Physico-Chemical Evaluation and Hematological Responses in *Clarias gariepinus* (Burchell 1822) Juveniles Exposed to *Adenium obesum* Stem Bark Acute Bioassay

B. O. Muyiwa¹, N. S. Emmanuel², F. M. Yahuza², M. Aliyu³, C. U. Inegbenosun⁴, I. Musah²

¹Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
²Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University Zaria, Kaduna State, Nigeria
³School of Post Basic ORL Nursing National Ear Care Center, Kaduna, Nigeria
⁴Department of Zoology, Faculty of Natural Science, Ambrose Alli University, Ekpoma Edo State, Nigeria

Email: *bmuyiwa2571@gmail.com*

Abstract

The experiment was conducted to evaluate the acute toxicity of aqueous extract of *Adenium obesum* stem bark in juveniles of *Clarias gariepinus* by assessing the hematological responses of the exposed groups compared to the control in a static non-renewal bioassay for 96 hours. The fishes (*N* = 180, mean weight and length 21.48 ± 3.32 g and 11.37 ± 1.23 cm) respectively were randomly distributed 10 (ten) fishes per group in triplicates constituting six experimental groups as follows; G1 (Control), G2 (6.5 mg/l), G3 (7.8 mg/l), G4 (8.5 mg/l), G5 (9.5 mg/l) and G6 (11.5 mg/l). Red blood cell (RBC) count, packed cell volume (PCV) and hemoglobin concentration were decreased significantly (*P* < 0.05) as opposed to the significant (*P* < 0.05) increase in total white blood cell count (TWBC). Thus the study concludes that aqueous extract of *Adenium obesum* stem bark is toxic to erythrocytes while a converse adaptive response in the white blood cells.

Keywords

Adenium obesum, Clarias gariepinus, Hematology, Toxicity

1. Introduction

Hematological parameters are indicators of stress and give information on the physiological responses of fishes to a changing external environment [1]. It has
been used as an index of fish health status in a number of fish species to detect physiological changes, as a result of exposure to different stressful conditions such as handling, pollutants, metals, hypoxia, anesthetics and acclimatization [2] [3] [4]. Blood of living organisms is very sensitive to changes and is widely used in ichthyology and aquaculture researches as well as toxicology and biological monitoring [5] [6] [7]. Its composition often reflects the total physiological condition [8]. Because blood is in direct contact with various organ and tissues of the body, it is therefore the medium of intercellular and intracellular transport from which the physiological state of an animal at a particular time can be extrapolated. Thus, blood provides an ideal medium for toxicity studies. The blood parameters have been considered as diagnostic indices of pathological condition as well as important markers for the assessment of systemic functions and overall health of animals. Furthermore, it also helps in diagnosing the structural and functional status of animals exposed to the toxicant [9] [10]. It is important in toxicological research because a hematological alteration is a good method for rapid evaluation of the chronic toxicities of a compound, a thin epithelial membrane separates fish blood from the water and any unfavorable changes in the water medium which is reflected in the blood of the fish [11] [12] [13]. Oreochromis niloticus exposed to cadmium showed significant reduction in RBC, Hb and PCV [14]. Although the hematological response to the toxicity of ethanol extract of Adenium obesum stem bark has been reported by [15], the study is however not carried out in fishes. Therefore this study seeks to investigate the hematological response in Juvenile Clarias gariepinus exposed to aqueous extract of Adenium obesum stem bark in an acute bioassay.

2. Materials and Methods

2.1. Plant Collection

The stem bark of Adenium obesum was harvested from Bassawa area within Zaria, Kaduna State in Nigeria during the November-December season, 2016, and authenticated at the Herbarium section of the Department of Biological Sciences, A.B.U, Zaria, by Mallam Namadi sunusi, where a specimen was deposited and a voucher number 01386 was assigned. The stem bark was picked and dried under shade until constant weight was obtained.

2.2. Plant Extraction

The extraction was carried out as described below according to the method of [16]. The stem bark of Adenium obesum was dried under shade until constant weight is obtained, stem bark were crushed into coarse powder using a pestle and mortar and stored for the extraction process. The fine powder was added into distilled water and shaken gently for ten minutes using a shaker to make a homogenous mixture. The mixture was left for 24 hours after which it was filtered and the filtrate used for the study.
2.3. Experimental Site

This study was conducted in the department of Veterinary Pathology, Faculty of Veterinary medicine, Ahmadu Bello University Zaria, Nigeria.

2.4. Ethical Approval and Experimental Animals

Ethical clearance approval was obtained from Ahmadu Bello University Committee on Animal Use and Care (ABUCAUC) with approval number ABUCAUC/2017/014. One hundred and eighty (180) live juvenile African-sharp tooth catfish (*C. gariepinus*), average weight and weight of (21.48 ± 3.32) g and length of (11.37 ± 1.23) cm respectively were sourced from a commercial catfish farm (fish house), located within Kaduna State in Nigeria, and the species determined at the fishery section, Department of Biological Sciences, ABU Zaria, Nigeria. Fish acclimatization lasted for 21 days under natural day and night photo-periods (12/12-h) with complete changing of pond water once in every three days. The fish were fed to their satisfaction (ad libitum) twice daily with 2 mm Coppens® fish feed for aquaculture (Coppens® International by Helmond, Holland).

2.5. Experimental Design

A total of one hundred and eighty (180) fishes with an average mean body weight of 21.48 ± 3.32 gram and an average mean length of 11.37 ± 1.23 cm were divided into six (6) groups of 10 fishes per group in triplicate after a 14 days acclimatization period. Fishes were then selected at random and kept in a static system of water. Feeding was halted a day prior to exposure to aqueous extract *Adenium obesum* stem bark throughout the test period, both for range finding and definitive test.

2.6. Toxicity Bioassay

A range finding test to determine the five extract concentrations as described by [17] was performed. Mortality was used as an end point of toxicity and this was determined according to [18]. A preliminary range finding test was carried out based on the concentration of the active ingredient in the test chemical. The range finding was done using the following concentrations as described by [17].

The result obtained from the range finding test provided a guide for the definitive test. Definitive test was carried out using six groups, G1 (control), G2 (6.5 mg/l), G3 (7.8 mg/l), G4 (8.5 mg/l), G5 (9.5 mg/l) and G6 (11.5 mg/l). The acute toxicity tests were performed according to the static non-renewable bioassay procedure [19]. The experimental design consisted of a control and five concentrations of the extract, (6.5 mg/l, 7.8 mg/l, 8.5 mg/l, 9.5, and 11.5 mg/l) with 10 (ten) fish per group in triplicate. A glass aquarium of 40 litres capacity with aeration was used per each group. Each glass aquarium was covered with nylon mesh tied firmly with rubber strap to prevent the fish from jumping out. Fish showing no respiratory movement and response to tactile stimuli were considered as dead and removed immediately. During the exposure in different con-
centrations of aqueous extract *Adenium obesum* stem bark, the behavioural changes of the fishes were also recorded. Daily physicochemical characteristics, temperature and pH of fish culture water were ascertained using a Hanna “Combo portable hand instrument (Hi 98129, Hanna Instrument, Mauritius) while their dissolved oxygen contents were similarly established using the modified Winkler-Azide method [20] [21].

2.7. Collection of Blood Samples

Two (2) ml of blood was collected from each sampled fish via caudal veno-puncture, using the lateral approach, a 25 G needle was introduced through the lateral line laterally to the body of the fish until contact was made with the spine at which point the needle was gently withdrawn with aspiration. As the blood flowed into the needle the gentle backward withdrawal was halted allowing for more blood to be drawn from which about 1 ml of the collected blood was dispensed into a bottle containing ethylene diamine tetra acetic acid (EDTA) anticoagulant for hematological evaluations.

2.8. Hematological Assessment

The packed cell volume (PCV) was determined using the standard method described by [22]. The red blood cells (RBC) and the total white blood cells (TWBC) were determined using the method described by [23]. The haemoglobin concentration was determined using the method described by [24]. The differential white blood cells were determined using the method described by [25].

2.9. Statistical Analyses

Data was expressed as mean ± SEM and then subjected to Two-way Analysis of Variance (ANOVA). Values with P < 0.05 were considered statistically significant. Tukey’s multiple comparison tests for means was used to compare differences between the various means using SPSS version 20.

3. Results

3.1. Result of Physicochemical Parameters Following Exposure to Aqueous Extract *Adenium obesum* Stem Bark

| Table 1 shows the result of some physicochemical parameters. Results in this study showed a non-significant (P > 0.05) increase for the PH across the groups. Although the changes observed in the oxygen and temperature were also non-significant (P > 0.05), however there was a significant (P < 0.05) dose dependent increase in the total dissolved solids (mg/l) and electric conductivity (µs/cm). |

3.2. Result of Red Blood Cell count, Hemoglobin Concentration, Packed Cell Volume, Mean Corpuscular Volume and Mean Corpuscular Hemoglobin Following Exposure to Aqueous Extract *Adenium obesum* Stem Bark

| There was a significant (P < 0.05) decrease in the Red Blood Cell (RBC) level in |
all the exposed groups compared to control with a corresponding increase in the concentration of the aqueous extract *Adenium Obesum* stem. The result of Hb shows a statistically significant decrease (P < 0.05) in all the treated groups compared to the control; G2 (9.98 ± 0.01 g/dl), G3 (9.90 ± 0.00 g/dl), G4 (9.44 ± 0.00 g/dl); G5 (9.14 ± 0.00 g/dl) and G6 (8.18 ± 0.16 g/dl) vs G1 (11.01 ± 0.01 g/dl). PCV in Table 2 shows a significant decrease in all the treated groups compared to the control thus; 27.02% ± 0.01%, 25.02% ± 0.01%, 22.01% ± 0.00%, 20.04% ± 0.01%, and 17.67% ± 0.33% for G2, G3, G4, G5 and G6 respectively versus G1 (32.33% ± 0.67%). This result is also consistent with the changes observed in MCV and MCH. There was a significant (P < 0.05) decrease in MCV of all the exposed groups compared to the control thus; G2 (130.07 ± 0.01 µm³), G3 (127.07 ± 0.58 µm³), G4 (121.00 ± 0.57 µm³), G5 (117.44

Table 1. Physicochemical parameters of the different concentrations for acute toxicity test.

GROUP	PH	TEMP ('C)	DO(mg/l)	TDS (mg/l)	Electric Conductivity (µs/cm)
G1	7.01 ± 0.01a	27.01 ± 0.01a	4.87 ± 0.01a	3.37 ± 0.01a	35.02 ± 0.12a
G2	8.00 ± 1.01b	27.02 ± 0.01b	4.88 ± 0.03b	46.01 ± 3.01b	124.22 ± 1.42b
G3	8.01 ± 0.11b	27.00 ± 0.00b	4.79 ± 0.12b	53.02 ± 3.22b	231.10 ± 2.67c
G4	8.02 ± 0.01b	27.00 ± 0.00b	4.89 ± 0.11b	77.13 ± 6.13d	354.22 ± 4.11d
G5	8.07 ± 0.02b	27.00 ± 0.00b	4.91 ± 0.20b	86.05 ± 7.55e	397.11 ± 4.87e
G6	8.13 ± 0.10b	27.01 ± 0.02b	4.88 ± 0.03b	107.02 ± 9.65f	499.81 ± 6.31f

Data are presented as mean ± SEM. KEYS: G1 (Control), G2 (6.5mg/l), G3 (7.8 mg/l), G4 (8.5 mg/l), G5 (9.5 mg/l), G6 (11.5 mg/l); TEMP = temperature, DO = dissolved oxygen, TDS = total dissolved solids. Values in each column with different superscripts are significantly different at P < 0.05.

Table 2. Red Blood Cell count, Hemoglobin Concentration, Packed Cell Volume, Mean Corpuscular Volume and Mean Corpuscular Hemoglobin Following 96-hr Exposure to Aqueous Extract *Adenium obesum* Stem Bark.

TREATMENT GROUPS	ACUTE BIOASSAY HEMATOLOGICAL PARAMETERS				
	RBC (x10¹²/L)	Hb (g/dl)	PVC (%)	MCV (µm³)	MCH (pg)
G1	2.73 ± 0.03a	11.01 ± 0.01a	32.33 ± 0.67a	134.84 ± 0.01a	33.28 ± 0.57a
G2	2.06 ± 0.01a	9.98 ± 0.01a	27.02 ± 0.01b	130.07 ± 0.01b	29.47 ± 0.11b
G3	1.33 ± 0.02b	9.90 ± 0.00b	25.02 ± 0.01c	127.07 ± 0.58c	22.15 ± 0.04d
G4	1.05 ± 0.03c	9.44 ± 0.00d	22.01 ± 0.00d	121.00 ± 0.57d	20.23 ± 0.01d
G5	0.97 ± 0.04d	9.14 ± 0.00e	20.04 ± 0.01e	117.44 ± 1.16e	18.35 ± 0.01e
G6	0.91 ± 0.01e	8.19 ± 0.16f	17.69 ± 0.33f	111.02 ± 0.57f	14.7 ± 0.34f

Data are presented as means ± SEM. KEYS: G1 (Control), G2 (6.5 mg/l), G3(7.8 mg/l), G4 (8.5 mg/l), G5 (9.5 mg/l), G6 (11.5 mg/l); Values in each column with different superscripts are significantly different at P < 0.05.RBC, red blood cell; Hb, Hemoglobin Concentration; PVC, Packed Cell Volume; MCV, Mean Corpuscular Volume; MCH, Mean Corpuscular Hemoglobin.
± 1.16 µm³) and G6 (111.02 ± 0.57 µm³) versus G1 (134.84 ± 0.01 µm³). The Mean Haemoglobin Concentration (MHC) levels of the groups G2, G3, G4, G5 and G6 (29.47 ± 0.11 pg, 22.15 ± 0.04 pg, 20.23 ± 0.00 pg, 18.35 ± 0.01 pg, 14.70 ± 0.33 pg) respectively decreased significantly (P < 0.05) compared to the control (33.27 ± 0.57 pg).

3.3. Result of Mean Corpuscular Hemoglobin Concentration, Total White Blood Cell Count, Heterophil, Eosinophil, Monocytes and Lymphocyte Following Exposure to Aqueous Extract Adenium obesum Stem Bark

There was a significant decrease (P < 0.05) in the mean corpuscular hemoglobin concentration (MCHC) in all the treated groups compared to the control thus; G2 (27.67 ± 0.03 g/dl), G3 (26.67 ± 0.03 g/dl), G4 (24.90 ± 0.06 g/dl), G5 (24.25 ± 0.01 g/dl) and G6 (23.01 ± 0.33 g/dl) vs G1 (33.28 ± 0.5 g/dl) respectively as shown in Table 3. Total white blood cell (TWBC), Heterophil (He), monocytes (mon) and Lymphocytes (Lym) were significantly (P < 0.05) increased in all the exposed groups compared to the control group as shown in Table 3 except the level of He in G2 and Eos in G3 where the changes were not significant (P > 0.05) compared to the control.

4. Discussion

Physico-chemical parameters such as temperature, pH, dissolved oxygen, pH, electric conductivity and total dissolved solids are vital aquatic indices which determine fish health, growth and reproduction [26]. The increase in pH with time could have been due to the product ion of basic products of metabolism which precipitated an increase in the acidity. This study is however converse to that [27] in the acute bioassay of Clarias gariepinus exposed to sponge plant fruit.

Table 3. Mean Corpuscular Hemoglobin Concentration, Total White Blood Cell Count, Heterophil, Eosinophil, Monocytes and Lymphocyte following 96-hr Exposure to Aqueous Extract Adenium obesum Stem Bark.

GROUP	MCHC (g/dl)	TWBC (×10⁹/L)	He (%)	Eos (%)	Mon (%)	Lym (%)
G1	33.28 ± 0.57	1.98 ± 0.01	5.34 ± 0.06	2.67 ± 0.03	14.20 ± 0.06	77.67 ± 0.33
G2	27.67 ± 0.03	2.13 ± 0.01	5.66 ± 0.01	2.37 ± 0.01	14.51 ± 0.01	78.88 ± 0.34
G3	26.67 ± 0.03	2.67 ± 0.01	5.94 ± 0.01	2.65 ± 0.01	14.82 ± 0.01	80.91 ± 0.54
G4	24.90 ± 0.06	2.53 ± 0.01	5.98 ± 0.01	2.98 ± 0.01	15.02 ± 0.01	82.79 ± 0.30
G5	24.25 ± 0.01	2.72 ± 0.01	6.05 ± 0.01	3.28 ± 0.01	15.16 ± 0.01	84.88 ± 0.34
G6	23.01 ± 0.33	2.92 ± 0.01	6.45 ± 0.23	3.43 ± 0.21	15.67 ± 0.14	87.71 ± 0.86

Data are presented as means ± SEM. KEYS: G1 (Control), G2 (6.5 mg/l), G3 (7.8 mg/l), G4 (8.5 mg/l), G5 (9.5 mg/l), G6 (11.5 mg/l); Values in each column with different superscripts are significantly different at P < 0.05. MCHC = Mean Corpuscular Hemoglobin concentration, TWBC = total white blood cell count, He = heterophil, Eos = Eosinophil, Mon = monocyte, Lym = lymphocyte.
extract which reported a low pH. TDS and Electrical conductivity also increased across the different treatments which may be due to the chemical composition of *Adenium obesum* [28] DO is one of the most important factor for all living organisms especially fish survival (Bartram and Balance, 1996). DO was maintained steadily in this study as opposed to the reports of [29] which reported a decrease in DO. The result of DO according to this study could be attributed to the continuous aeration provided by the aerators within the system. The physico-chemical parameters monitored in this study seemed to have contributed little or none to the toxicity of *Adenium obesum* stem bark extract on the blood cells.

Hematological evaluation is a pathophysiological indicator of the state of health of the whole body, therefore, the hematology profile is important in diagnosing the structural and functional status of fish exposed to contaminants [30]. The resultant decrease in the RBC in this study could have been from a possible deleterious effect of the extract on the cell membrane; compromising the structural integrity of the lipid bi-layer of the membrane consequently culminating in hemolysis. Other possible pathology would include impairment of hematopoietic tissues as well as synthesis related factors. Stress related complications could have contributed to the hemolysis of the cells precipitated by generation of reactive oxygen species which are known provoking factors for lipid peroxidation. However the increase observed in the white blood cell series in this study could be from a possible adaptive immune response. These results agree with that of [31] who reported a reduction in RBC, HB and PCV in fish exposed to ethanol extract of *Adenium Obesum* stem bark. Similar studies on the effect of plant extracts on hematological responses was conducted by [32] who also reported a reduction in the RBC, PCV and Hb levels in *Clarias gariepinus* fingerlings exposed to the roots of *Telfairia occidentalis* [33] study on white tilapia *oreochromis niloticus* (Travawas) reported a reduction in the levels of RBC, Hb, and PCV on exposure to almond (*Terminalia catappa*), pawpaw (*Carica papaya*), Neem (*Azadirachta indica*), Tobacco (*Nicotiana tobacum*) and Cassava (*Manihot esculenta*) extracts. [34] [35] [36] reported a reduction in all the blood indices of *Clarias gariepinus* fingerlings exposed to Tobacco leaf except MCHC that showed a decrease. The reduction of RBC, Hb, PCV and erythrocytic indices in this study also agreed with the findings of [37]-[46]. Reductions in hemoglobin, packed cell volume and red blood counts were reported in fish exposed to toxicants, [47] who reported changes in hemoglobin percentage and red blood cells count of the fish *Clarias batrachus*. The reduction in PCV is suggestive of anemia as it is the variable that is normally used to assess the basic status of the erythrocyte [48]. The pan leukocytosis recorded in the exposed groups could be due to an attempt by the fish to fight against the toxicant (plant extract) which has led to the production of more antibodies (WBC) to improve the health status of the fish. Similar findings were reported by [49] that the increase in WBC during acute and sub-lethal treatment may be due to stimulated lymph myeloid tis-
sue as a defense mechanism of the fish to tolerate the toxicity. Enhancement in the total white blood cell count following exposure in the exposed groups could be possible due to leucocytosis which is an outcome of proliferation of hemopoietic cells, leading to increase of the TWBC in the peripheral blood [50] [51]. Changes in WBC and differential count have been reported to play important roles in the assessment of the state of health of fishes, and leucopenia and leucocytosis has been reported in the fish, *Clarias gariepinus* exposed to pathogens, heavy metals and chemotherapeutants [52] [53].

5. Conclusion

The observed reduction in the Packed Cell Volume (PCV), Hemoglobin Concentration (Hb) and Red Blood Cells (RBCs) values in the exposed fish may either be due to impaired erythropoietic response or increased destruction of RBCs thus implying that the extract of the aqueous extract of *Adenium obesum* could caused anemia. The leukocytosis observed is likely due to the adaptive immune response of the fish to protect itself against the toxicant in this case, the aqueous extract of *Adenium obesum* stem bark. From the hematological profile findings in this study the *Adenium obesum* extract can be said to be toxic to fish or aquatic animals red blood cells if not used within its safety or sub lethal concentration with great care and discretion in researches or studies.

Acknowledgements

This is to recognize the contribution of Professor Sani Adamu, Professor of Clinical Pathology, Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, for his guidance and analysis of the hematological results.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Hrubec, T.C., Smith, S.A. and Robertson, J.L. (2001) Age Related Differences in Haematologic and Plasma Chemistry Analytes of Hybrid Striped Basis *Morore chrysonx Morore saxatilis*. Veterinary Clinical Pathology, 30, 8-15. https://doi.org/10.1111/j.1939-165X.2001.tb00249.x

[2] Jhosi, P.H.P. and Bose, M. (2003) Effect of Lindane and Malathion Exposures to Certain Blood Parameters in a Fresh Water Fish *Clarias batrachus*. Pollution Research, 21, 55-57.

[3] Hori, T.S.F., Avilez, I.M., Iwama, G.K., Johnson, G. and Afonso, L.O.B. (2008) Impairment of the Stress Response in Matrixxa Juveniles (*Brycon amazonicus*) Exposed to Low Concentrations of Phenol. Comparative Toxicology and Pharmacology, 147, 416-423. https://doi.org/10.1016/j.cbpc.2008.01.003

[4] Alwan, S.F., Hadi, A.A. and Shokr, A.E. (2009) Alterations in Hematological Pa-
rameter of Fresh Water Fish *Tilapia zilli* Exposed to Aluminium. *Journal of Science and Its Applications, 3*, 12-19.

[5] Svoboda, M., Luskova, V. and Drastichova, Z.U. (2001) The Effect of Diazinon on Hematological Indices of Common Carp (*Cyprinus carpio* L.). *Acta Veterinary Brno, 70*, 457-465. https://doi.org/10.2754/avb200170040457

[6] Adejeyi, A., Weller, T.M. and Gray, J.W. (2007) MRSA in Children Presenting to Hospitals in Birmingham, UK. *Journal of Hospital Infection, 65*, 29-34. https://doi.org/10.1016/j.jhin.2006.09.024

[7] Adeyemo, O.K. (2008) Histological Alterations Observed in the Gills and Ovaries of *Clarias gariepinus* Exposed to Environmentally Relevant Lead Concentrations. *Journal of Environmental Health, 70*, 48-51.

[8] Venkatesan, S., Pugazhendy, K., Meenambal, M., Sangetha, D., Vasantharaja, C., Jayachandren, K. and Prabakaran, S. (2012) Protective Role of Spirulina on the Variation of Hematological Parameter Induced by Herbicide Atrazine in the Fresh water Fish *Cyprinus carpio* (Linn). *International Journal of Pharmaceutical & Biological Archives, 3*, 249-254.

[9] Atamanalp, M. and Yanik, T. (2003) Alterations in Hematological Parameters of Rainbow Trout (*Oncorhynchus mykiss*) Exposed to Mancozeb. *Turkey Journal Veterinary Animal Science, 27*, 1213-1217.

[10] Talas, Z.S. and Gulhan, M.F. (2009) Effects of Various Propolis Concentrationson Biochemical and Hematological Parameters of Rainbow Trout (*Oncorhynchus mykiss*). *Ecotoxicology and Environmental Safety, 72*, 1994-1998. https://doi.org/10.1016/j.ecoenv.2009.04.011

[11] Suvetha, L., Ramesh, M. and Saravanan, M. (2010) Influence of Cypermethrin Toxicity on Ionic Regulation and Gill Na+/K+-ATPase Activity of a Freshwater Teleost Fish *Cyprinus carpio*. *Environmental Toxicology and Pharmacology, 29*, 44-49. https://doi.org/10.1016/j.etap.2009.09.005

[12] Shahi, J. and Singh, A. (2011) Effect of Bioactive Compounds Extracted from Euphorbiaceous Plants on Hematological and Biochemical Parameters of *Channa punctatus*. *Institute of Medicine in the Tropics, Sao Paulo, 53*, 259-263. https://doi.org/10.1590/S0036-46652011000500004

[13] Kori-Siakpere, O. and Ubogu, E.O. (2008) Sublethal Hematological Effects of Zinc on the Freshwater Fish, *Heteroclarias sp.* (Osteichthyes: Clariidae). *Africa Journal of Biotechnology, 7*, 2068-2073. https://doi.org/10.5897/AJB07.706

[14] Kaoud, H.A., Zaki, M.M., El-Dahshan, A.R., Saeid, S. and El Zorba, H.Y. (2011) Amelioration the Toxic Effects of Cadmium-Exposure in Nile Tilapia (*Oreochromis Niloticus*) by Using *Lemma gibba* L. *Life Science Journal, 8*, 185-195. https://doi.org/10.1016/j.joxlet.2011.05.455

[15] Abalaka, S.E. and Auta, J. (2010) Toxic Effects of Aqueous and Ethanol Extracts of *Parkia biglobosa* Pods on *Clarias gariepinus* Adults. *World Journal of Biological Research, 3*, 9-17. https://doi.org/10.3923/javaa.2010.1068.1072

[16] Saravanan, M., Vasantha Kumar, D., Malarvizhi, A. and Ramesh, M. (2010) Biosafety of *Azadirachta indica* (A. Juss) Leaves Extracts on Certain Biochemical Parameters in *Labeo rohita*. *Journal of Biopesticides, 3*, 227-231.

[17] Fafioye, O. (2005) Plants with Piscicidal Activities in South Western Nigeria. *Turkish Journal of Fisheries and Aquatic Sciences, 5*, 91-97.

[18] Organization for Economic Co-Operation and Development (2001) Guidelines for the Testing of Chemicals No. 423: Acute Oral Toxicity-Acute Toxic Class Method.
Paris.

[19] Abalaka, S.E., Fatihu, M.Y., Ibrahim, N.D.G. and Ambali, S. (2015) Liver Histopathological Changes in *Clarias gariepinus* Exposed to Ethanol Extract of *Adenium obesum* Stem Bark. *Journal of Morphological Science, 32*, 22-28.
https://doi.org/10.4322/jms.069314

[20] Lind, O. (1979) A Handbook of Limnological Methods. C.V. Mosby Co., St. Louis, 199.

[21] APHA (1985) Standard Method for the Examination of Water and Waste Water. 6th Edition, American Public Health Association, Washington DC, 413-426.

[22] Rehman, H., Abbas, S. and Lohahet, N. (2003) Laboratory Manual of Physiology. Vol. 1, Society of Veterinary Physiology, Lahore.

[23] Ellis, A.E., Munro, A.L.S. and Roberts, R.J. (1976) Defence Mechanisms in Fish. A Study of the Phagocytic System and the Fate of Intraperitoneal Injected Particulate Material in the Plaice *Pleuronectes platessa* L. *Journal of Fish Biology, 8*, 67-78.
https://doi.org/10.1111/j.1095-8649.1976.tb03908.x

[24] Feldmann, B.V., Zinki, J.G. and Jain, N.C. (2000) Schalm’s Veterinary Haematology. 5th Edition, Lea and Fibiger, Philadelphia.

[25] Kemal, J. (2014) Laboratory Manual and Review on Clinical Pathology. OMICS Group eBooks, Foster City, 5-18.

[26] Audu, B.S., Adamu, K.M. and Nonyelu, O.N. (2014) Changes in Hematological Parameters of *Clarias gariepinus* Exposed to Century Plant (*Agave americana*) Leaf Dust. *International Journal of Applied Biological Research, 6*, 54-65.

[27] Odioko, E., Sikoki, F.D., Vincent-Akpu, I.F. and Utibe, D.I. (2016) Acute Toxicity of Sponge Plant (*Luffa cylindrica*) Fruit Extract on the African Catfish (*Clarias gariepinus*, Burchell 1822) Juveniles. *International Journal of Life Sciences Research, 4*, 148-159.

[28] Couillard, C.M., Lee, K.B., Legare, B. and King, T.L. (2005) Effect of Dispersant on the Composition of the Water Soluble-Accommodated Fraction of Crude Oil and Its Toxicity to Larval Marine Fish. *Environment Toxicology and Chemistry, 24*, 1496-14504.
https://doi.org/10.1897/04-267R.1

[29] Bartram, I. and Balance, R. (1996) Water Quality Monitoring: A Practical Guide to the Design of Freshwater Quality Studies and Monitoring Programme. Published on Behalf of UNDP and WHO Chapman and Hall, London, 383 p.

[30] Adhikari, S., Sarkar, B., Chatterjee, A., Mahapatra, C.T. and Ayyappan, S. (2004) Effects of Cypermethrin and Carbophoran on Certain Hematological Parameters and Prediction of Their Recovery in a Fresh Water Teleost, *Labeo rohita* (Hamilton). *Ecotoxicology and Environmental Safety, 58*, 220-226.
https://doi.org/10.1016/j.ecoenv.2003.12.003

[31] Agwu, E.J., Odo, G.E., Ekhe, F., Attamah, G.N., Uwagbae, M. and Eze, C. (2018) A Survey of the Insect Pests and Farmers’ Practices in the Cropping of Yellow Pepper *Capsicum annuum* Linnaeus in Enugu State of Eastern Nigeria. *African Journal of Agricultural Research, 13*, 742-752.
https://doi.org/10.5897/AJAR2016.11834

[32] Fafioye, O.O. (2012) Acute and Sub-Acute Toxidencies of Five Plant Extracts on White Tilapia, *Oreochromis niloticus* (Trewavas). *Irjas, 2*, 525-530.

[33] Omoniyi, I., Agbon, A.O. and Sodaunke, S.A. (2002) Effect of Lethal and Sublethal Concentrations of Tobacco (Nicotiana Tobacum) Leaf Dust Extract on Weight and Hematological Changes in *Clarias Gariepinus* (Burchell). *Journal of Applied Science and Environmental Management, 6*, 37-41.
[34] Musa, S.O. and Omoregie, E. (1999) Hematological Changes in the Mudfish, *Clarias gariepinus* (Burchell) Exposed to Malachite Green. *Journal of Aquatic Sciences*, **14**, 37-42. https://doi.org/10.4314/jas.v14i1.19971

[35] Omoregie, E., Esyeyin, T.G. and Ofojekwu, P.P.C. (1994) Chronic Effects of Formalin on Erythrocytic Counts and Plasma Glucose of the Nile Tilapia, *Oreochromis niloticus*. *Asian Fisheries Science*, **7**, 1-6.

[36] Nounou, A.H., Soliman, M.M., Rizkalla, E.H. and Assad, M.N. (1997) Hematological and Biochemical Changes in *Clarias lazera* as a Result of Long Term Exposure to Trial Combination of Lead, Mercury and Arsenic. *Egypt Journal of Agricultural Research*, **75**, 247-270.

[37] Ezeri, G.N.O. (2001) Hematological Response of *Clariasgariepinus* to Bacterial Infection and Prophylactic Treatment with Antibiotics. *Journal Aquatic Science*, **16**, 22-24.

[38] Das, B.K. and Mukherjee, S.C. (2000) Sub Lethal Effect of Quinalphos on Selected Blood Parameters of *Labeo rohita* (Ham.) Fingerlings. *Asian Fisheries Science*, **13**, 225-233.

[39] Devi, R. and Banerjee, T.K. (2007) Hematological Disturbances Due to Ammonia Toxicity in the Air-Breathing Fish *Channa striata*. *Biochemistry and Cell Archives*, **7**, 217-223.

[40] Singh, A.P., Singh, S., Bhartiya, P. and Yadav, K. (2010) Toxic Effect of Phorate on the Serum Biochemical Parameters of Snake Headed Fish *Channa punctatus* (Bloch). *Advances in Bioresearch*, **1**, 177-181.

[41] Obiezue, R.N., Okoye, I.C., Ikele, B.C. and Obi, I.K. (2011) Evaluation of Biochemical Parameters of *Clarias gariepinus* Exposed to Sub Lethal Concentration of *Cypermethrin*. *Animal Research International*, **8**, 1480-1484.

[42] Adebayo, O.T., Fasakin, E.A. and Adewumi, J.A. (2012) Reproductive Performance of Partial Gonaectomized Male African Catfish, *Clarias gariepinus* Broodstocks. *Theriogenology*, **77**, 1050-1055. https://doi.org/10.1016/j.theriogenology.2011.09.027

[43] Okwu, D.E. (2005) Phytochemicals, Vitamins and Mineral Content of Two Nigerian Medicinal Plants. *International Journal of Molecular Medicine and Advance Sciences*, **1**, 375-381.

[44] Nwani, C.D., Nwadinigwe, A.O., Joshua, P.E., Onyek, C.C., Ogbonna, S.U., Uk-onze, J.A. and Eze, S.O.O. (2016) Hepatic Antioxidant Status and Hematological Parameters in African Catfish, *Clarias gariepinus* Juvenile Exposed to Sublethal Concentration of *Psychotria microphylla*. *The Journal of Animal & Plant Sciences*, **26**, 275-281.

[45] Jegede, O.I., Akintoye, M.A. and Awopetu, J.L. (2018) Karyotype of the African Weakly Electric Fish, *Gymnarchus niloticus* (Osteoglosifotmes: Gymnarchidae) from Oluwa River, Nigeria. *Ife Journal of Science*, **20**, 3. https://doi.org/10.4314/ijss.v20i3.8

[46] Maheshwaran, R., Devapaul, A., Velmurugan, B. and Ignacimuthu, S. (2008) Hematological Studies of Freshwater Fish, *Clarias batrachus* (L.) Exposed to Mercuric Chloride. *International Journal of Integrated Biology*, **2**, 49-54.

[47] Kerr, M.G. (2005) Diagnostic Procedures for the Private Practice Laboratory: Clinical Biochemistry and Heamatology. In: Kahn, C.M., Ed., *The Merck Veterinary Manual*, Ninth Edition, Merck & Co., Inv., Whitehouse Station, 1339-1368.
[48] Ates, B., Orun, I., Talas Z.S., Durmaz, G. and Yilmaz, I. (2008) Effects of Sodium Selenite on Some Biochemical and Hematological Parameters of Rainbow Trout (Oncorhynchus mykiss, Walbaum, 1792) Exposed to Lead and Copper. *Fish Physiology and Biochemistry*, **34**, 53-59. https://doi.org/10.1007/s10695-007-9146-5

[49] Tariq, A., Mussarat, S., Adnan, M., Abd-Allah, E.F., Hasheem, Alqarawi, A.A. and Ullah, R. (2015) Ethnomedicinal Evaluation of Medicinal Plants Used against Gastrointestinal Complaints. *BioMed Research International*, **2015**, Article ID: 892947. https://doi.org/10.1155/2015/892947

[50] Sharma, P., Jha, A.B., Dubey, R.S. and Pessarakli, M. (2012) Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. *Journal of Botany*, **2012**. Article ID: 217037. https://doi.org/10.1155/2012/217037

[51] Van Vuren, J.H.J., Van Fer Merwe, M. and Du Preez, H.H. (1994) The Effect of Copper on the Blood Chemistry of Clarias gariepinus (Clariidae). *Ecotoxicology and Environment Safety*, **29**, 187-199. https://doi.org/10.1016/0147-6513(94)90019-1

[52] Ezeri, G.N.O. (2001) Hematological Response of Clarias gariepinus to Bacterial Infection and Prophylactic Treatment with Antibiotics. *Journal Aquatic Science*, **16**, 22-24. https://doi.org/10.4314/jas.v16i1.19996

[53] Omorogie, E. and Oyebanji (2002) Oxytetracycline-Induced Blood Disorder in Nile Tilapia, Oreochromis niloticus. *Journal of World Aquaculture Society*, **33**, 377-382. https://doi.org/10.1111/j.1749-7345.2002.tb00514.x