The Impact of Transforming Growth Factor-b1 on the men infertility

Arshed S. Alkafagi, Wejdan M. Kadhum, Abbas Gafil Abbas
lecturer, High Health institute

Abstract:
The influence of cytokines in the reproductive system is becoming increasingly important. The major cytokines involved in the proliferative system are TGFβ-1 that performs many cellular functions, including controlling cell growth, cell proliferation, cell differentiation and apoptosis. Current information indicates a close interrelationship between immune and reproductive functions resulting from the participation of certain cytokines and their receptors. Cytokine-converting growth factor-b (TGF-b) is initially purified from human platelets, a rich source of this protein. In addition to platelets, TGF-b1 is also generated in other blood elements from these elements plasma (semen plasma) and circulating white blood cells. However, more than many years after the initial isolation of TGF-b1, there is no consensus on the amount of TGF-b1 present in normal human plasma. TGFb1 is considered as a critical regulator of reproductive tissue development and characteristic cyclic modification. The physiological significance of TGFb1 in reproductive biology and productivity has been extensively examined in Tgfb1 null mutant mice. Genetic deficiency of TGFb1 disrupts the functioning of the hypothalamic-pituitary-gonadal axis, inhibiting luteinizing hormone (LH) synthesis and leading to subsequent effects on testosterone production in males. These studies demonstrate the profound importance of TGFb1 in males and provide a basis for exploring the importance of this cytokine in Human infertility and sexual dysfunction.

Introduction
TGFB family contains more than 40 proteins, and their names differ due to the different way of diagnosing them. This family discovered in humans is 1-3 and is encoded by genes that differ from one to the other (1). Saito-kin tgfβ receptors are intrinsic serine / threonine kinases. TGFB receives a signal by a complex network of receptors that is formed by two types of serine / threonine kinases peptide. It claims one type and type two peptide. The second type is the molecular unit of the binding process, while the first type constitutes the receptor signal. It is a receptor serine / threonine kinases stimulated through phosphorylation and then binding.

The TGFB family contains a group of cytokines, some of which show the key role in T-management germ cell growth. The study of the TGFB binding signals can be divided into two stages. The first level is the biophysical level. The second is the biochemical level, which includes distinguishing the basic structure and common tools for the binding process and the important signals for binding with receptors.

The cellular molecular level is trying to answer what kind of family tgfβ, which includes the process of development and cell differentiation, cell proliferation and death. Thus, in this way, the number of cells, the type of cells, and the fate of cells are controlled. The process of secreting this type of cytokinin in the male system works on the growth and development of testicles (2). The embryonic stage, the testes try to preserve the characteristics of the germ cell lineage at puberty, the testicles regulate the differentiation of sperm and its aftermath, and the maintenance of the stem cells of the sperm communities as well as the age of the germ cells in addition to that includes a function in the setoli cell, which are cells that maintain germ cells Especially by regulation the so-called blood testes barrier (3).
Infertility is defined as the failure of husbands to conceive a pregnancy or children after a year of the mating process. The prevalence of infertility in developed countries is 3.5-16.7, while in non-developed countries it is 6.9-9.3% (4). I increase this percentage of infertility affected by many factors and diseases, especially when environmental factors such as nature of food and type of life are known, as well as it is important to know that I, genetic factors play an important role in male infertility and are also considered one of the main factors (5). There are many cases in the unknown nature of food and type of life as well as obesity cancer is also considered one of the causes that lead to infertility for men. (6) The global percentage of infertile men is estimated at more than 186 million people, and most of them live in developed countries. Of the reasons that may lead to infertility, what are the anatomical or physical reasons or genetic factors (7) Infertile men are usually incompetent in the production of sperm in terms of number and size (8). Infertility is divided into two types. The first type is primary infertility, which is presented as the inability of the spouses to have children after the first year of marriage. The second type is known as secondary infertility, which is the inability of a couple to conceive after a period of the first childbearing (9). The process of reproduction is an important developmental process for preserving organisms and their types in transferring genetic traits from one generation to another as well as preserving the stability and durability of the species (10). One of the most important factors that affect the male reproductive system, especially in the testicles, is the blood testis barrier, as the direct damage and this barrier leads to A big problem in the testicles, which leads to infertility, as the testicle is considered one of the immunocompromised sites, research that no survivors can penetrate it except in special circumstances such as wounds, first operations, the first infection with a bacterial disease in this area, which then leads to To penetrate this immune barrier causing damage to the male reproductive system (11). Tgfb1 is a multifunctional cytokine that includes the differentiated generation of many new cells which, in case of any defect, may lead to your infertility (12,13). Many experiments claim on mice to find out the effect of TGFb1 the importance immune resistance and immune characteristics this cytokine and its features seem largely through antigen presenting cell immune cells such as macrophage and dendritic cell where this cytokine diagnosed as results printability inhibitory and motivational different environments (14).

many studies proved for this cytokine great effect Al reproductive system Male and female as well as the importance of this cytokine in sterility and sexual dysfunction (15)

Range of TGF-b1 in plasma of normal human

Despite the great importance of the high rates of tgf1 in the plasma, a lot of preliminary results and information showed that there is a relationship between concentration coming home and some matter, despite this, these still need many studies to know the normal values of this cytokine in the human blood plasma. Many have been studied in normal people. Those who do not suffer from any diseases, we impose an estimate of the correct normal proportions of this cytokine and in order for it to be a measure that depends for the purposes of comparison with it. Among the factors that may participate in and contribute to the rate and concentration of homeostasis in the plasma of healthy people (16).

The role of TGF-b1 in male sexual function

Latest scholarship outcome tells Male homozygoite for nul mutation in the Tgfb1 genes display a reproduction pheno-type with two distinguishing properties, one, the mice has decrease testis and testosterone serum levels, which is minor to insufficiency in circulation LH that is Minor cause the mice reveal a whole incapacity to conjugate with females. Since testosterone auxiliary advances testosterone serum concentrated but is unsuccessful in reestablishing coupling capability, it accomplishes that TGF-b1 have important as well as possibly autonomous parts in regulated of each the pituitary hypothalamic and gonadal axis and usual men erectile job. This sterility isn't owing weaknesses in spermatogenes for example sperms improved to the Tgfb1 null mutation men epididymis of can inseminate ocytes in vitro, as an ordinary degree of improvement to the blasto-cyst phase. Reproduction tract tissue of Male containing the penis, testes, semen vesicle glands are of normal mass and overweight form. Nearer investigation of performance of Tgf1 mutant men once interrelating through accessible women shown this mice display probable noticeable marks of sexy attention in the females, comprising urogenital exploration and increasing performance (17).

Another study showed that the particular part of TGF-b1 in semen plasma remains to be elucidated. Because TGF-b1 is so abundant in seminal plasma that its concentration is 5-folded larger than this in sera and represent the main physical meditation of TGF-b1 informed to a biologic liquid, it is logical to expect that semen plasm TGF-b1 could has a
character to production. Seminal plasma TGF-b1 has been shown to inhibit lymphocytes and natural killer cells, Seminal plasma has been reported to prevent immune reaction to sperm and to prolong the life of spermatozoa in the reproductive tract of female. TGF-b1 is the major immunosuppressive influence in semen plasma the abrogation by seminal plasma, possibly by TGF-b1 of the host protection apparatus could contribute to the improvement of neoplasia and sexually transmitted organisms therefore, the immunosuppressive properties of seminal plasma, or TGF-b1, may be its most significant function and might show a major role in communication between reproductive and immunity systems (18).

A part to TGFb1 in men minor organ sex development is proposed via investigation of TGFb1 proteins range in men rats through and after sexual maturity. It has been displayed this TGFb1 in the penis rat rises 2- to 3-time richness stuck between three and seven weeks of ages, parallel enhanced growth of penile. These collected with earlier f inded this TGFb1 excites synthesis of collagen in smooth muscle cells from men corpora cavernous in vitro may be understood to suggest a part of TGF-b in helping growth of penile (19).

Position of TGF-b1 in spermatozoa

In spermatozoa, powerfully positive responses of TGF-b1 as stained by anti-TGF-b1 antiserum IgG antibodies were experiential mainly at the post-acrosomal section of the head, the neck, and middle part of the tail when the semen samples. Virtually each and every spermatozoon was stained by anti-TGF-b1 antiserum IgG antibodies. Even though the positive stain design and strength of the reaction diverse from spermatozoon to spermatozoon, the rigorous staining commonly was identified (20).

Immune cell goals for TGF-b1 achievement in reproductive tissues

TGF-b1 has numerous various parts in guideline of cell differentiation proliferation, apoptosis and extra-cellular matrix creation. In that reverence, TGF-b1 is a factor for growth. Nevertheless, TGF-b1 as well uses a collection of properties of the immunity system cells and thus is a cytokine. Suitable operative on the reproduction structure uses TGFb1 in entirely it various range for occupations plus separating relation significance for each this is a compound assignment, the others and laboratories well-known the great richness of TGFb1 in mice and men semen plasma (21), it is involving in get ready parental immunity tolerance to antigens in fetal (22). TGF-b1 documented a strong mediator dynamic regulated the function of T cell, essential to continuing tolerant in immune system from the mother to father antigen articulated to the maternal fetal crossing point (23,24). Numerous of the properties of TGF-b1 insufficiency on reproduction role this it has detected in such ideal may be outstanding to TGF-b1 stand-in a cytokine regulating the macrophage. This character macrophag in reproduction organ has been mainly inspected via investigation of colony-Csf1 (stimulating factor 1) mutation mice model, was shows little amounts macrophages owing to condition of CSF1 macrophag construction, distinction with existence. Macrophag stimulate reproduction job during tissue alteration to led produced the growth influences, with Csf1 mutated null consequences to a collection of reproduction injuries (25). The prominent resemblance amongst reproduction organ illnesses designated in Csf1 also Tgf-b1 mutant nul mouse propose mechanical relation among TGF-b1 and macrophages. TGF-B1 isn’t essential for macrophage enrollment, such as we have detected common amounts and dissemination of macrophages cells in reproduction organ like the uterus, and mammary gland and penis. Nevertheless, macrophage purpose is organized via the micro-environment of cytokine, exact pheno-types and actions of this macrophage in reproduction tract well greatly probable to exaggerated via TGF-b1 insufficiency. TGF-b1 a crucial regulator the function of macrophag with is recognized the regulator expressed of pro-inflammatory and anti-inflammatory cytokine in tissue particular mode besides flexible inducible, adhesion proteins, proteases and nitric oxide synthase complicated of cell movement and injury healing. the explore to character of macrophage as mediators to TGF-b1 insufficiency, restricted transgenic styles the limit TGF-b1 signaling in macrophages are necessary (26).

TGF-b1 as a prospective therapeutic to administer sterility

TGF-b1 signaling is controlled via a multifaceted level of extra-cellular and intra-cellular devices. Disturbed TGF-b1 act in exact human tissues might get up from a diversity of reasons comprising dyes-regulated expression of isoform, triggering, richness of resolvable and membrane-related required proteins, expressed of TGF-b receptor and intra-cellular SMAD signaling circuit board. This effect to agitation might be genetically, linked to poly-morphisms in TGF-b1 ligand or genes receptor (27) and minor contact to converter gene Nevertheless, investigation of whole TGF-b1 signaling path-way in exact tissue isn't potential in populations of patient with TGF-b ligand richness in form liquids is
using as sign to disturbed TGF-b signaling. Our trainings and others have obviously revealed that TGF-b1 levels differ commonly among people in blood and seminal plasma (28). Changed plasm TGFB1 have been linked to sterility and sub-fertility rising from dysfunction of erectile (29). likewise, TGF-b1 is identified to prompt fibrosis of penile in an illness Peyronie of rat model (30).

also endogenously changeability the production TGF-b1 with its related signaling regulation, these might be nutritional foundations to TGF-b1 this effect TGF- bio-availability. Particularly, TGF-b1 is existing in great amounts in colostrum, and dense milk this is indication in the models of animal who oral TGF-b1 drinking be able to effect immune role. Many scholarships display variances in the levels of serum of TGF-b1 in subgroups patient, with the prospect of operate circulation TGF-b1 through changed lifestyle or regime might deliver novel treatments for management of childlessness in both men and women (31).

Conclusion

d varied array of actions for each of the TGF-b isoform in numerous features of reproductive is proposed via the hundreds of available study relating that cytokines and hormone prompted gonads improvement, gametocyte creation, steroidogenic. There is also increasing indication involving TGF-b in developmental and role the minor sexual tissues such as the penile, semen vesicle and prostate. Moreover, TGF-b1 existing in semen and formed via the embryo and decidua might take a part in generating and keeping an immune-tolerant situation for the conception. Numerous actions of TGF-b1, mainly those concerning immune tolerance of gamete or perception antigens, perhaps be accomplished through the activity of TGF-b1 determined macrophage populations. Furthermore, appearance of TGF-b1 seems to be reduced in an amount of reproduction pathology. This comprise prostate cancer, endometriosis, penis fibrosis and breast cancer.

The Tgfb1 mutation in mice have been an appreciated device with significantly helpful of describing important characters of TGF-b1 in reproductive biology. Crucial activities in a collection of diverse reproduction organ with manners has being defined. This properties being applied directed, during guideline of role of exact cells kinds contained by this organ, with ultimately, during each hormones regulators of the gonadal axis, hypothalamic, pituitary and possibly via ruling of immunity cell purpose. This visions delivered via Tgfb1 mutated mouse have been a valuable initial fact exploring the importance of these cytokines in man sterility with sensual dyes-function.

References:
1. Lawrence DA. (1996). Transforming growth factor-beta: a general review. Eur Cytokine Netw; 7:363–374.
2. Reginald Gorczynski, MD, Jacqueline Stanley (1999). Clinical Immunology. Professor, Departments Surgery and Immunology University of Toronto and The Toronto Hospital
Toronto, Canada
3. Loveland KL, Hime G (2005) TGFbeta superfamily members in spermatogenesis: setting the stage for fertility in mouse and Drosophila. Cell Tissue Res 322(1):141–146.
4. Masoumi SZ, Parsa P, Darvish N, Mokhtari S, Yavangi M, Roshanaei G. (2015). An epidemiologic survey on the causes of infertility in patients referred to infertility center in Fatemieh Hospital in Hamadan. Iran J Reprod Med.;13(8):513-6.
5. Ji G, Long Y, Zhou Y, et al. (2012): Common variants in mismatch repair genes associated with increased risk of sperm DNA damage and male infertility.
6. Jungwirth A, Giwercman A, Tournaye H, et al. (2012): European Association of Urology guidelines on Male Infertility: the 2012 update. Eur Urol 62: 324-332.
7. Inhorn MC, Patrizio P. (2015). Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Human reproduction update.:21(4):411-26.
8. Cooper TG, Noonan E, Von Eckardstein S, Auger J, Baker HW, Behre HM, Haugen TB, Kruger T, Wang C (2009). "World Health Organization reference values for human semen characteristics". Human Reproduction Update. 16 (3): 231–45.

9. F. Zegers-Hochschild, et al., (2017). The international glossary on infertility and fertility care, Fertil. Steril. 108 (3) 393–406.

10. Zhao GQ, Garbers DL (2002) Male germ cell specification and differentiation. Dev Cell 2(5):537–547.

11. Cheng, C. Y. & Mruk, D. D. (2012). The blood-testis barrier and its implications for male contraception. Pharmacol. Rev. 64, 16–64

12. Ingman WV, Robertson SA (2002) Defining the actions of transforming growth factor beta in reproduction. Bioessays 24:904–914.

13. Roberts AB, Anzano MA, Lamb LC, Smith JM, Sporn MB (1981). New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. Proc Natl Acad Sci USA; 78: 5339–5343.

14. Bogdan C, Nathan C. (1993). Modulation of macrophage function by transforming growth factor beta, interleukin-4, and interleukin-10. Ann NY Acad Sci; 685:713–739.

15. Wendy V. Ingman *, Sarah A. (2009). Survey The essential roles of TGFβ1 in reproduction Robertson Discipline Obstetrics and Gynaecology and Research Centre for Reproductive Health, University of Adelaide, South Australia 5005, Australia

16. David J. Graingera, David E. Mosedalea, James C. Metcalfe (2000). TGF-b in blood: a complex problem. Department of Medicine, University of Cambridge, Box 157, Addenbrookes Hospital, Hills Road, Cambridge CB2 2QQ, UK Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1WQ, UK

17. Shull MM, Ormsby I, Kier AB, et al. (1992). Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature; 359:693–9.

18. Nocera MA, Chu TM (1995). Characterization of latent transforming growth factor-β, B from human seminal plasma. Am J Reprod Immunology; 33:282-91.

19. Gelman J, Garban H, Shen R, Ng C, Cai L, Rajfer J, Gonzalez Cadavid NF. (1998) Transforming growth factor-beta1 (TGF-beta1) in penile and prostate growth in the rat during sexual maturation. J Androl; 19:50–57.

20. T. M. Chu, Ph.D.Mary Ann Nocera, M.S.Kathleen C. Flanders, Ph.D.,Elzbieta Kawinski, Ph.D (1996). Localization of seminal plasma transforming growth Factor-β1 on human spermatozoa: an immunocytochemical study. Roswell Park Cancer Institute, New York State Department of Health, Buffalo, New York, and National Cancer Institute, National Institutes of Health, Bethesda, Maryland

21. Robertson SA, Ingman WV, O’Leary S, Sharkey DJ, Tremellen KP. (2002) Transforming growth factor beta—a mediator of immune deviation in seminal plasma. J Reprod Immunol; 57:109–28

22. Robertson SA, Guerin LR, Bromfield JJ, Branson KM, Ahstrom AC, Care AS. (2009) Seminal fluid drives expansion of the CD4 + CD25 + T regulatory cell pool and induces tolerance to paternal alloantigens inn mice. Biol Reprod: 80:1036–

23. Horwitz DA, Zheng SG, Wang J, Gray JD. (2008) Critical role of IL-2 and TGF-beta in generation, function and stabilization of Foxp3 + CD4 + Treg. Eur J Immunol 38:912–5.

24. Zenclussen AC. (2006) Regulatory T cells in pregnancy. Springer Semin Immunopathol ; 28:31–9.

25. Cohen PE, Nishimura K, Zhu L, Pollard JW. (1999) Macrophages: important accessory cells for reproductive function. J Leukoc Biol; 66:765–72.
26. Letterio JJ, Roberts AB. (1998) Regulation of immune responses by TGF-beta. Annu Rev Immunol; 16:137–61.

27. Smith AJ, Humphries SE. (2009). Cytokine and cytokine receptor gene polymorphisms and their functionality. Cytokine Growth Factor Rev; 20:43–59.

28. Tang Y, McKinnon ML, Leong LM, Rusholme SA, Wang S, Akhurst RJ. (2003). Genetic modifiers interact with maternal determinants in vascular development of Tgfb1 mice. Hum Mol Genet; 12:1579–89.

29. Ryu JK, Song SU, Choi HK, et al. (2004). Plasma transforming growth factor-beta1 levels in patients with erectile dysfunction. Asian J Androl; 6:349–53.

30. Bivalacqua TJ, Diner EK, Novak TE, et al. (2000). A rat model of Peyronie’s disease associated with a decrease in erectile activity and an increase in inducible nitric oxide synthase protein expression. J Urol; 163:1992–8.

31. Letterio JJ, Geiser AG, Kulkarni AB, Roche NS, Sporn MB, Roberts AB. (1994) Maternal rescue of transforming growth factor-beta 1 null mice. Science; 264:1936–8.