Kingdom-wide analysis of the evolution of the plant type III polyketide synthase superfamily

Thomas Naake,1 Hiroshi A. Maeda,2 Sebastian Proost,3,4 Takayuki Tohge5 and Alisdair R. Fernie1,*

1 Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
2 Department of Botany, University of Wisconsin–Madison, 430 Lincoln Drive, Madison, WI 53706, USA
3 Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Herestraat, 3000 Leuven, Belgium
4 VIB-KU Leuven Center for Microbiology, Campus Gasthuisberg, Rega Instituut, Herestraat, 3000 Leuven, Belgium
5 Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan

*Author for communication: fernie@mpimp-golm.mpg.de
†Senior author.

Introduction

During plant evolution, the number of specialized metabolites and the enzymes responsible for their synthesis exploded (Weng et al., 2012; Moghe and Last, 2015). The number of protein folds, however, remained restricted (Chothia and Lesk, 1986; Weng et al., 2012). This is likely because novel biosynthetic pathways generally originate by gene duplication events and/or by functional divergence of existing genes (Moghe and Last, 2015). Commonly, duplicated genes, from already enzymatically active enzymes, were subjected to differential mutations resulting in a broader substrate specificity and a lower activation energy of catalysis, led single enzymes catalyzing multiple reactions.
and thereby synthesizing multiple products (Weng et al., 2012).

About 450–500 million years ago, Charophycean freshwater green algae began to colonize land (Kenrick and Crane, 1997; Gensel, 2008; Banks et al., 2011). Early land plants needed to adapt quickly to their altered environment, leading to the innovation of novel metabolic pathways, including phenylpropanoids, sporopollenin, and lignin biosynthesis. These include the provision of rigid building blocks to allow for growth on land and molecules for biotic and abiotic stress (Weng and Chapple, 2010; Weng et al., 2012). They achieved this by “recycling” enzymes from existing core pathways, co-optimizing them, and evolving novel functionalities (Lesburg et al., 1997; Wendt et al., 1997; Bohlmann et al., 1998; Austin and Noel, 2003; Weng, 2014; Moghe and Last, 2015). The availability of plant and algae genomes allowed to trace the diversification of plant enzyme families undergoing evolutionary alterations and shaping the vast plant chemical diversity seen today (Nelson and Werck-Reichhart, 2011; Shockey and Browse, 2011; Caputi et al., 2012; Kawai et al., 2014). These studies, while highly informative, were, however, restricted to phylogenetic analyses of gene/protein sequences and did not take into account the genomic context for all analyzed species which would reveal the deep ancestral history and the points of diversification of a gene family.

Given their strategic importance within the phenylpropanoid pathway, we postulate that type III polyketide synthases (PKSs) may have played a major role in the colonization of land by providing the precursors for the synthesis of flavonoids (Buer and Muday, 2004) and sporopollenin (Dobritsa et al., 2010; Kim et al., 2010). The diverse functions of PKSs arose due to their differences in (1) substrate specificities, (2) the number of condensation rounds, and (3) cyclization reactions all of which are ultimately governed by the sequence of the genes which encode them (Austin and Noel, 2003; Morita et al., 2019).

To elucidate the evolution of type III PKSs, we here utilized a phylogenomic network approach (Zhao et al., 2017; Zhao and Schranz, 2017, 2019), to study the syntenic relationships between genomic regions of a myriad of species spanning the green lineage. Synteny analysis, therefore, provides a means to examine the ancient history of gene evolution, since gene sequences can change their functionality by mutations, while synteny can be retained over a longer time scale. Such approaches allow the inference of the orthology, timing, and mode of duplication of pairs/groups of genes (Kurata et al., 1994). Here, we modified the approach in order to allow cross-kingdom analysis and combined it with the phylogenetic approach to investigate the relationship between functional divergence of various genes and their genomic location. These combined analyses revealed an early segmental duplication event that led to the emergence of the LAP and CHS clades. We also provide evidence that the evolution of the type III PKS superfamily is governed by whole-genome duplication (WGD) and triplication (WGT) events following the emergence of the LAP and CHS clades. We propose an evolutionary route for the CHSs governed by a WGT event and its subsequent diversification in a Fabales-specific clade. Our combined results are further discussed in the context of early land plant colonization and the maintenance of presence of type III PKS genes in their genomic context.
Figure 1 Overview of important reactions catalyzed by type III PKSs. The reaction type is defined on the basis of combinations of three features according to pPAP (Shimizu et al., 2017a, 2017b): 1) starter substrate: three categories for the starter substrates based on their acyl group: ring (R), short chain (S, C2–C12), or long chain (L, up to C26). Additional characters are added to specify acyl groups (branched chain, b; carboxylate group, c; hydroxy group, h; nitrogen, n); 2) number of condensations: indicates the number of methylene carbonate units in the intermediates. Additional characters are added to specify other substrates than malonyl-CoA (methylmalonyl-CoA, m; ethylmalonyl-CoA, e; acetoacetyl-CoA, a;
Results

PKS copy numbers widely vary among different plant and green algae species
Flavonoid and sporopollenin biosynthesis evolved on the terrestrialization of the green lineage. To study the diversification of the PKS superfamily, the fully sequenced genomes of 126 species spanning the green lineage (Supplemental Figure S1) were queried for the number of PKS copies they possessed. To provide a robust classification of protein families, we used OrthoFinder (Emms and Kelly, 2015) and MCL (Enright et al., 2002). We detected 63,344 and 61,643 groups containing more than one protein sequence for OrthoFinder and MCL clustering, respectively. Within this dataset, the type III PKS superfamily formed one protein group with 1,621 different protein sequences detected by either of the clustering methods, of which 1,551 protein signatures/sequences were jointly detected by both. Within these groups, all previously characterized and described PKS sequences were recovered (see Supplemental Dataset S1).

We have to note a bias in the selection of genomes toward angiosperm genomes since the selection of species was driven by availability of high-quality genomes and this is inherently biased toward angiosperms. PKSs are present in all land plants albeit in varying copy numbers (Supplemental Figure S2 and Supplemental Table S1). However, PKSs were not found, or only found in low copy numbers, in the Chlorophyta, and are absent in Chlorokybophyceae, Mesostigmaphyceae, and Klebsormidiophyceae of the Charophyta (see Supplemental File S1). By contrast, type III PKSs were detected in Penium margaritaceum (Jiao et al., 2020), a member of the Zygnematophyceae, a more recent lineage of the green algae.

Synteny network analysis detects clade-specific and reaction type-specific clusters
To study the diversification of the type III PKS superfamily, we followed a synteny network approach (Zhao and Schranz, 2017). Whole genomes of 126 species were compared in a pairwise manner, followed by robust block detection of regions containing type III PKS genes and network analysis to detect syntenic clusters within the network. Here, network nodes correspond to genomic regions containing one or multiple (tandem-duplicated) PKS genes, while edges correspond to detected synteny between these regions based on the results of two commonly employed algorithms for synteny detection, i-ADHoRe and MCScanX (Proost et al., 2012; Wang et al., 2012). The resultant network contained 706 vertices corresponding to syntenic regions containing single or multiple type III PKS genes, of which 166 vertices corresponded to regions with tandem-duplicated genes, from a total of 105 species (Supplemental Table S2). Tandem-duplicated genes may play important roles in providing genetic redundancy, gene dosage balance, genetic robustness, and to provide an additional means for divergence in transcriptional regulation and protein sequence (Semon and Wolfe, 2007; Hahn, 2009; Innan and Kondrashov, 2010; Liu et al., 2011). The highest number of tandem-duplicated PKS genes in one syntenic region was 23 (Arachis duranensis), containing mainly “R-4-A”-type stilbene synthase, STS, sequences, Figures 1, 2. Arachis ipaensis (21 genes) and grape vine (Vitis vinifera, 20 genes) had the second- and third-highest numbers of tandem-duplicated genes (also containing mostly "R-4-A"-type STS sequences), respectively.

For most of the possible syntenic relationships, the network was characterized by an absence of synteny between PKS-containing regions. The network was sparse with 4.7% of all possible edges (11,702 of 248,865 possible edges). We applied a robust cluster detection approach on the network using four different algorithms that resulted in the detection of 27 syntenic clusters (Figure 2 and interactive Figure 1 available at https://pksevolution.github.io/PKS_visualizations/).

The previously characterized dicot CHS genes, such as tomato (Solanum lycopersicum) Solyc09g091510/SICH51 and Solyc05g053550/SICH52 were located to the syntenic cluster 2, while Arabidopsis thaliana AT5G13930/TT4 and maize (Zea mays) Zm00001d052673/C2 were found in syntenic cluster 4 (Figure 2). Of the 27 clusters, some were shared between systematic groups, including the major clusters 1, 2, 3, and 5, while others were clade-specific. For instance, cluster 4 with the second highest number of PKS did not contain syntenic regions in the majority of Asterids species. This suggests that either Asterids never had PKS locating to cluster 4, that specific synteny was lost, or the regions/gens were deleted (see Supplemental Table S3).

diketide-CoA, d); 3) mechanism of intramolecular cyclization: Claisen, C; aldol, A; lactone, L; no cyclization, X; nitrogen-carbon, N. The features 1) and 2) are interrelated since Claissen- or aldol-type cyclizations require typically at least four and lactonization at least three carbonyl units in the intermediate. The pPAP software will define four major categories for a classified reaction type (R-4-C for CHS and BPS; R-4-A for STS and BBS; R-2-X for BAS, DCS, and CURS; Other for ACS, VPS, OLS, and LAP, see colored boxes). (1) p-coumaroyl CoA, (2) malonyl CoA, (3) 3-hydroxybenzoyl CoA, (4) dihydro-m-coumaroyl CoA, (5) p-coumaroyl diketide CoA, (6) N-methylantraniloyl CoA, (7) fatty acid acyl CoA, (8) isovaleroyl CoA, (9) hexanoyl CoA, (10) naringenin chalcone, (11) 2,3',4,6-tetrahydroxybenzophenone, (12) resveratrol, (13) 3,3',5-trihydroxybenzoyl, (14) benzalacetone, (15) bisdemethoxycurcumin, (16) 1,3-dihydroxy-N-methylacridone, (17) phloroisovalerophenone, (18) olivetolic acid, (19) triketide intermediate, (20) triketide pyrone, (21) tetraketide intermediate, (22) tetraketide pyrone. ACS, acridone synthase; BAS, benzalacetone synthase; BBS, bibenzyl synthase; BPS, benzophenone synthase; CURS, curcumin synthase; DCS, diketide-CoA synthase; LAP, hydroxyalkyl 2-pyrene synthase/LESS ADHESIVE POLLEN; OLS, 3,5,7-trioxododecanoyl-CoA synthase/olivetol synthase; PKS, polyketide synthase; VPS, phloroisovalerophenone synthase.
Syntenic regions exclusively consisting of commelinid species were found in clusters 9, 21, and 27. Furthermore, the clusters 11 and 22 consisted mainly of syntenic regions of commelinids. BLAST analysis of PKS sequences revealed that the annotation of bisdemethoxycurcumin synthases was exclusive for commelinid species. Genes in cluster 9 were mainly annotated as "Other" by pPAP and bisdemethoxycurcumin synthase (BCURS) by BLAST analysis (BCURS are canonically classified as "R-2-X" by pPAP [Shimizu et al., 2017b]). Genes in cluster 22 were mainly annotated as "R-2-X" or "Other" via pPAP and as BCURS by BLAST (type "Other" by pPAP and acridone synthase by BLAST in the Citrus genus). These two clusters indicate a commelinid-specific invention of BCURS and PKSs of the "Other" type. Cluster 21 contains genes of unknown function annotated as "Other" by pPAP and CHS-like by BLAST (gray color in Figure 2).

PKSs in the clusters 3 and 11 were almost exclusively classified as "Other" by pPAP and annotated as type III PKS A or CHS-like based on BLAST analysis. PKSs in the clusters 1 and 27 were almost exclusively annotated as "Other" by pPAP and type III PKS B or CHS-like by BLAST (Figure 2). The syntenic cluster 3 showed depletion of syntenic regions of members of the commelinids with the exception of oil palm (Elaeis guineensis) and date (Phoenix dactylifera). Cluster 11 was specific for members of the commelinids. By contrast, syntenic cluster 1 showed depletion of syntenic regions of members of the commelinids with the exception of banana (Musa acuminata), great millet (Sorghum bicolor), Oropetium thomaeum, barley (Hordeum vulgare), and Leersia perrieri, while the syntenic cluster 27 exclusively contained commelinid PKS. Clusters 1 and 27 contained a characterized LAP5, while 3 and 11 contain characterized LAP6 genes (Dobritsa et al., 2010; Kim et al., 2010; e.g. AT4G34850/LAP5 in cluster 1 and AT1G02050/LAP6 in cluster 3) and homologs (Supplemental Table S4).
Synteny network analysis detects four enriched clusters of “R-4-C”-type PKSs corresponding to CHS pPAP classification revealed further that specific kinds of PKS genes showed certain distributions among different clusters. In particular, we found that “R-4-C”-type PKS corresponding to the CHS function are overrepresented in the syntenic clusters 2 (and tightly associated 14), 4, and 5 (Fisher’s Exact test, odds ratio: 13.33, P-value < 2.2e-16), and the “R-4-C”-classified PKSs were only found to a minor extent in some other syntenic clusters (Supplemental Figures S3, S4). This observation led to the hypotheses that the major CHS-containing clusters 2/14, 4, and 5 either evolved independently three times, or, a scenario that is more likely, evolved by duplication of the gene regions following the loss of the synteny between these three CHS-enriched clusters.

Phylogenetic analysis indicates timing of the appearance of “R-4-C”-enriched clusters
To further evaluate these two hypotheses, we performed a phylogenetic analysis using PKS amino acid sequences to link their syntenic cluster membership with sequence divergence reflected in the phylogenetic tree. The analysis incorporated sequences from over 180 species thereby dramatically extending previous phylogenetic analyses on the type III PKSs (Xie et al., 2016). Here, we included 1,607 different amino acid sequences and obtained detailed phylogenetic relationships using the maximum-likelihood method (Figure 3 and Supplemental Figures S5, S6) having high transfer bootstrap expectation values (Lemoine et al., 2018) for all major clades (Supplemental Figure S7). The phylogenetic tree showed that “R-4-C”/CHSs are mainly present in one very large clade (Figure 3) that is dominated by sequences of the type “R-4-A,” “R-4-C,” and “Other.” This clade also contains the sequences of AT5G13930/TT4 from A. thaliana, Solyc9g091510/SICHS1 and Solyc05g033500/SICHS2 from S. lycopersicum and Zm00001d052673/C2 from Z. mays. By contrast, the other clade contains mainly sequences of the type “R-2-X” and “Other.”

Sequences of the type “R-4-C”/CHS corresponding to the syntenic clusters 2, 4, 5, and 14 are located in neighboring, yet mostly distinct subclades. Comparing the “R-4-C”-dominated clade (Figure 3) and the distribution of sequences present in the syntenic clusters (Supplemental Figure S3), it seems likely that the “R-4-C”-type genes in the syntenic clusters originated from the same evolutionary event by duplication/triplication events. From this result, we hypothesize that “R-4-C”-type PKSs were initially contained in a protocluster that contained primordial “R-4-C”-type PKS. This was most likely followed by one or two early duplication events, depending if the LAP or CHS clade evolved first, creating the syntenic protoclusters 2/5/14 and 3, followed by loss of synteny between the protoclusters. Phylogenetic analysis further suggests that type III PKS from the type “R-4-C” found in syntenic cluster 5, mainly from the Fabales, originated from type III PKS sequences from syntenic cluster 2, since the “R-4-C”-type sequences are located closely in the phylogenetic tree (Figure 3 and Supplemental Figure S5).

Considering the situation that we found for syntenic cluster 5, it seems most probable that the primordial CHS genes were initially present in syntenic protocluster 2/14, followed by a loss of synteny between syntenic protocluster 2/14 and 5 (Supplemental Figure S3), leading to the present situation of having four major CHS-enriched clusters. Interestingly, “R-4-C”-type PKS sequences from Physcomitrella patens were detected in the syntenic clusters 5 and 15 while PKS from Azolla filiculoids, common liverwort (Marchantia polymorpha), Salvinia cucullata, and Selaginella moellendorffii were present in syntenic clusters 4 and/or 5. Within the phylogenetic tree, these sequences located both within the LAPS/6 and the “R-4-C”-containing clade. Furthermore, syntenic cluster 5 contains the duplicated regions of “R-4-A”-type PKS sequences of A. duranensis, A. ipaensis, and V. vinifera corresponding to the STS function.

Independent and multiple evolution of “R-4-A”-type PKS with STS function
The clades containing the “R-4-A”-type STS of V. vinifera and of the Arachis genus are located within the “R-4-C”-type dominated clade (clusters 2/14, 4 and 5), which suggests that parallel evolution led to the emergence of type “R-4-A”-type PKSs after the emergence of the “R-4-C”-type protocluster. The synteny network and the phylogenetic analysis suggest that syntenic cluster 5 is a relic from syntenic regions that were separated by the emergence of the “R-4-C”-type dominated clade since sequences of syntenic cluster 5 disperse along the phylogenetic tree (Figure 3). In addition to these early evolutionary events, phylogenetic analysis further highlights several independent evolutionary events underlying the “R-4-A”-type III PKSs. STSs from V. vinifera and the Arachis genus evolved within the same syntenic cluster 5 independently or, although less likely given their evolutionary distances, evolved once and diverged into their sequences while maintaining STS function (Figure 3 and Supplemental Figure S5). Other “R-4-A”-type PKS sequences evolved in several far-related taxa within the monocots, eudicots, and gymnosperms (Figure 3 and Supplemental Figure S5). The gymnosperm-specific “R-4-A”-type PKSs form a monophyletic clade within the phylogenetic tree suggesting that the appearance of “R-4-A” happened before their speciation. These “R-4-A”-type PKSs correspond mostly to pinosylvin-forming STSs and evolved most probably from CHSs or a protoform within the gymnosperms.

As in a previous study (Han et al., 2006), the “R-4-A”-type bibenzyl synthases from the species of the Orchidaceae form a distinct clade from their “R-4-C”-type orthologs, suggesting their divergence into subfamilies before the speciation of this family. Next to the evolution of “R-4-A”-type sequences, we further recapitulated the proposed evolutionary trajectory of VPS from common hop (Humulus lupulus) and OLS from Cannabis sativa and proposed a possible evolutionary
Figure 3 Phylogenetic tree of type III PKSs with information on syntenic cluster membership, and type of the sequence according to pPAP-classification. The phylogenetic tree, based on amino acid sequences, indicates that the LAP ortholog containing clade and the "R-4-C"-containing clade evolved by an early duplication event (early GD). The "R-4-C"-containing syntenic clusters 2/14, 4, and 5 containing clades form highly related but mostly distinct clades in the phylogenetic tree indicating that cluster 2/14, 4, and 5 evolved by duplication events. The LAP5/6 clade contains orthologs of LAP5 and 6 from A. thaliana (Supplemental Table S4). Blue arrows indicate "R-4-A" sequences that evolved independently several times. Blue arrows with star (*) indicate STS sequences of V. vinifera, A. duranensis, A. ipaensis, and from gymnosperms. Magenta arrows indicate duplication events involving (proto) "R-4-C"-type PKS sequences. Magenta arrows with a star indicate the origin of "R-4-C" sequences from these events. The gene tree containing 1,607 unique sequences was build using RAxML using 1,000 bootstrap replications. Supplemental Figures S5, S6 show information on the taxonomy. The tree shows high transfer bootstrap expectation values (Lemoine et al., 2018) for all major clades (cf. Supplemental Figure S7). For the pPAP classification of PKS, refer to the legend and Figure 1. Experimentally validated sequences are indicated by numbers. 1: triketide and tetraketide pyrone synthase, PKS18; 2: phloroglucinol synthase; 3: RppA; 4: quinolone synthase; 5: β-ketoacyl carrier protein synthase III; 6: 2'-oxoalkylerosycylic acid synthase, ORAS; 7: CsyB; 8: 2'-oxoalkylresorcinol synthase, ORS; 9: hydroxyalkyl ω-pyrene synthase, LAP; 10: hydroxyalkyl ω-pyrene synthase, LAPS; 11: hydroxyalkyl ω-pyrene synthase, LAP6; 12: stilbenecarboxylate synthase, SCS; 13: valerophenone synthase, VPS, VPS annotated with "R-4-C" also show prenylflavonoid synthase function; 14: diketide-CoA synthase, DCS; 15: curcuminoid synthase, CS/CURS; 16: octaketide synthase, OS; 17: chromone synthase; 18: aleosone synthase; 19: pyrrolidine ketide synthase; 20: alkylresorcylic acid synthase, ARS; 21: acridone synthase, ACS; 22: benzalacetone synthase, BAS; 23: olivetol synthase, OLS; 24: 2-pyrene synthase, 2-PS; 25: orcinol synthase; 26: benzophenone synthase, BPS. A high-resolution version of this figure is available at https://pksevolution.github.io/PKS_visualizations/.

Plant Physiology, 2021, Vol. 185, No. 3
route of aleosone synthase, chromone synthase, and OS in Krantz aloe (Aloe arborescens, see Supplemental File S1).

Combining syntenic network and phylogenetic analysis reveals timing of type III PKS evolution

Having performed independent phylogenetic and synteny analysis, we next attempted to see what added value could be obtained by combining these analyses. Interestingly, the phylogenetic tree indicates a commelinid-specific clade that mainly contains members of the syntenic clusters 4, 5, 10, and 22. It seems most probable that the PKS genes located in syntenic clusters 10 and 22 originate either from a duplication event in clades 5 and 4, resulting in the formation of 5 and proto 4/10/22, followed by a duplication of protocluster 4/10/22 and loss of synteny resulting in 10 and 22 (see (1) in Figure 4) or by duplication of the clades 4 and 5 and diversification in the syntenic clusters 4, 5, 10, and 22 and loss of synteny between the syntenic clusters (see (2) in Figure 4). Furthermore, the phylogenetic analysis indicates that the Angiosperm-specific clade containing LAM homologs (Supplemental Table S4) and members of the syntenic clusters 1, 3, 11, and 27 evolved from protoclusters by a segmental duplication event (Figure 3) that we named A and A* in our model of PKS evolution (Figure 4). This clade contains AtLAP5 or AtLAP6 orthologs within the Bryophyta, Marchantiophyta, Lycopodiophyta, Pinophyta, Ginkgophyta, and Gnetaophyta, instead of AtCHS orthologs (Supplemental Figure S5). This finding suggests that the LAP5/6 orthologs in this clade originated before the divergence of Angiosperms from these aforementioned taxa. The clade containing the LAP5/6 orthologs in angiosperms either originated from one duplication event of the protocluster A leading to the formation of a syntenic cluster B, followed by a second duplication event leading to two regions of B that correspond to the proto 3/11 and proto 1/27 cluster (see (3) in Figure 4) or by two duplication events of the regions A or A* leading to the proto 3/11 and proto 1/27 syntenic clusters followed by a loss of synteny between the two protoclusters (see (4) in Figure 4). This clade in the phylogenetic tree indicates that one subclade, either 3/11 or 1/27, originated from the other by a duplication event before the divergence of the monocots and eudicots, followed by loss of synteny between the monocot-specific and eudicot-specific clusters. Within the subclade corresponding to the syntenic clusters 3 and 11, cluster 3 indicates a duplication event within the Brassicales, leading to the emergence of two copies of LAP6 orthologs within the Brassicales, which still share synteny with other members of the syntenic cluster 3 (Figure 2), indicating a recent duplication event. However, a caveat regarding the quality of the gymnosperm genomes should be noted. Currently, no syntenic information is available on these species due to their large genome sizes and technical difficulties in their assembly (for details, see Supplemental File S1).

Drivers of genomic maintenance in syntenic regions

The results above show that the genomic regions containing type III PKS remain syntenic over a long evolutionary timeframe. This raises the questions why the synteny between PKS-containing genomic regions was maintained, and if genes corresponding to specific biological processes contribute to their maintenance. We conducted a GO enrichment analysis on the genes that were reported as being syntenic and checked for enrichment against the background (all genes showing synteny for each species or all genes present in the data sets). We performed this analysis by using syntenic regions containing PKS genes (Supplemental Figures S8, S9) and regions where we excluded the PKS genes prior to analysis (Figure 5 and Supplemental Figure S10) to remove bias that originates from the presence of PKS genes. All comparisons showed similar results in their overrepresentations, with the exception of the comparisons where PKS genes were included, which showed specific enrichment of PKS-related terms. We also checked the overrepresentation for GO terms of the CHS-enriched syntenic clusters 2, 4, 5, and 14 by performing enrichment tests against the genes of syntenic regions containing PKS to test if the CHS-enriched syntenic clusters differ from the PKS-containing syntenic regions. The analysis did not show fundamentally different results from the other comparisons, rather the terms were specialized terms of those found in the other set comparisons (Supplemental Figure S11). This indicates that the CHS-enriched syntenic clusters share an evolutionary past with the PKS-containing background.

When excluding PKS genes, for the category “Biological process,” the syntenic regions did show few enriched terms that are involved in flavonoid biosynthesis, e.g. “cyanidin 3-O-glycoside metabolic process,” “flavonone metabolic process,” or “isoflavonoid metabolic process” (Supplemental Table S5, S6). These terms were found partly in syntenic regions of Brassicales showing large syntenic regions or in a smaller subset of species. The GO enrichment analysis revealed four (flavonoid) regulation-related processes and seven upstream biological processes (Supplemental Tables S5–S8).

Unexpectedly, statistically significant enrichment was detected for GO terms that are related to direct and indirect effects of flavonoids/polyketides on biological processes (genes in syntenic regions: 139 terms, all genes: 149 terms). These terms included processes that are linked to hormone metabolism, growth, development in response to hormonal signaling, and responses to biotic and abiotic stress (Supplemental Tables S5, S6).

Discussion

During evolution, the biochemical repertoire of plants was expanded to synthesize a myriad of small molecules (Weng et al., 2012; Moghe and Last, 2015). This chemical diversity was achieved by the recruitment of enzymes involved in primary metabolism and duplication of biosynthetic genes (D’Auria, 2006; Falara et al., 2011; Weng et al., 2012; Chae et al., 2014). Here, we presented a large-scale synteny
analysis for the type III PKS superfamily in the green lineage and outlined the most likely evolutionary route for biochemical diversification of this important entry point of specialized metabolism. The products of the enzymatic activity of type III PKSs, flavonoids, and building blocks for the pollen exine layer, are ubiquitously distributed in the plant kingdom and have been suggested to be pivotal prerequisites for colonizing the land. Next to the evolution of the lignin pathway, the metabolic innovation of CHS rendered the shikimate pathway, a pathway only found in microorganisms, fungi, and plants, considerably more important (Kubitzki, 1987), such that nowadays it can carry 25% of the total C assimilatory flux (Huang et al., 2010). These innovations render it a high-flux bearing pathway, which is...
Figure 5 Gene ontology enrichment of syntenic regions (type III PKS excluded). PKS genes were removed prior to conducting enrichment analysis. Three enrichment sets were compared: A, Genes of PKS-containing syntenic regions were checked for enrichment against background (all genes in syntenic regions); B, Genes of syntenic regions in CHS-enriched clusters 2, 3, 5, and 14 against background; C, Genes of syntenic regions in CHS-enriched clusters 2, 3, 5, and 14 against syntenic genes of all species. The syntenic regions were enriched to a total of 509 (biological process), 230 (molecular function), and 108 (cellular compartment) significant terms (FDR-corrected q-value < 0.05). Enriched terms were categorized into higher categories. Many enriched terms in the category “Biological process” can be linked to flavonoid-related processes (“leaf, root, pollen, floral or seed development,” and “response to environment or hormonal signaling”). The size of the vertex corresponds to the number of genes with the same GO term. Terms with a FDR-corrected q-value of < 0.2 are displayed. Edges correspond to the similarity between terms based on their gene set overlap (50% Jaccard similarity and 50% overlap between terms with a cutoff of 0.375). FDR, false discovery rate.
capable of producing a wide spectrum of polyphenolic compounds that play vital roles in development and biotic and abiotic interactions (Fernie, 2019).

Type III PKSs evolved when colonizing terrestrial ecosystems

For non-land plants (non-embryophytes), that were included in the study here, we found PKS signatures only for some species of the Chlorophyta and *Ectocarpus siliculosus* (Ochrophyta). Chlorophyta are located at the base of green algae, while *E. siliculosus* is from the Chromista kingdom (Cock et al., 2010; Jiao et al., 2020). The PKS signatures from the Chlorophyta do not fall into the generic length range of PKS protein sequences suggesting that these PKS sequences are unlikely complete and functional proteins. However, experimental evidence in support of this supposition is currently lacking. The PKSs from *E. siliculosus* fall within the range of generic PKS sequences found in vascular plants; however, all three sequences are located close to the out-group of the phylogenetic tree. Previously, the *E. siliculosus* genome was predicted to encode three type III PKS that may be involved in phloroglucinol biosynthesis (Cock et al., 2010; Meslet-Cladiere et al., 2013) that correspond to the PKSs from *E. siliculosus* fall within the range of generic PKS sequences found in vascular plants; however, all three sequences are located close to the out-group of the phylogenetic tree. Previously, the *E. siliculosus* genome was predicted to encode three type III PKS that may be involved in phloroglucinol biosynthesis (Cock et al., 2010; Meslet-Cladiere et al., 2013) that correspond to the PKSs from *E. siliculosus* fall within the range of generic PKS sequences found in vascular plants; however, all three sequences are located close to the out-group of the phylogenetic tree. Previously, the *E. siliculosus* genome was predicted to encode three type III PKS that may be involved in phloroglucinol biosynthesis (Cock et al., 2010; Meslet-Cladiere et al., 2013) that correspond to the sequences we found here. The shikimate pathway is also fully encoded in the genome of *E. siliculosus*; however, some downstream pathways, including the pathways leading to phenylpropanoids and salicylic acid, are lacking (Cock et al., 2010; Meslet-Cladiere et al., 2013). Genome mining of other brown algae species detected homologs of type III PKSs and 4-coumarate:CoA ligase (4CL) among Streptophyta, but not Chlorophyta. These findings indicate that these members of the Streptophyta acquired polyphenolic activity, but no activity of type III PKSs or that type III PKSs were lost again in the course of evolution, the latter becoming more probable if the hypothesis of Stebbins and Hill that Charophyceae have secondarily returned to an aquatic habitat, after adaptation to terrestrial or amphibian life (Stebbins and Hill, 1980), is correct. Recently, the genomes of *Mesostigma viride*, *Chlorokybus atmophyicus* (Wang et al., 2019), and *P. margaritaceum* (Jiao et al., 2020), members of the Mesostigmatophyceae, Chlorokybophyceae, and Zygmenatophyceae, respectively, were published. *Mesostigma viride* and *C. atmophyicus* did not show any type III PKS signatures within their genomes. By contrast, *P. margaritaceum* was reported to contain 11 copies of type III PKS. This indicates that type III PKS appeared earliest with the Zygmenatophyceae, but not with the earlier appearing Mesostigmatophyceae, Chlorokybophyceae, and Charophyceae. To our knowledge, no full genome is available yet for a member of the Coleochaetophyceae, the next basal class to the Zygmenatophyceae. Such a genome and additional genomes of the Zygmenatophyceae represent (an) intriguing model(s) to study further the emergence of type III PKS in the green lineage and will yield higher resolution as to which step in evolution type III PKS emerged.

Independent evolution of STS function in different taxa

The evolution of "R-4-A"-type PKS was studied previously. Schroder and Schroder (1990) found that STS and CHS sequences differ in charged/uncharged amino acids across the whole sequences. Tropf et al. (1994) found that STS grouped with CHS sequences in their phylogenetic analysis and subsequently concluded, that STSs evolved from CHSs multiple times independently, while STSs and CHSs have a common evolutionary origin. Their mutagenesis studies showed that three amino acid changes in CHS hybrid/chimera are sufficient to obtain STS activity. Austin et al. (2004) revealed the structure of functional STS in *Pinus sylvestris* (Scots pine) and identified the structural
basis of STS sequences from CHS ancestors corresponding to a cryptic thioesterase activity in the active site, due to an alternative hydrogen bonding network (“aldol switch”). Guided by the STS protein structure, Austin et al. (2004) performed mutagenesis studies to convert CHS into STS. Here, we found similarly that the type “R-4-A” was associated to different clades in the phylogenetic trees supporting previous findings that STSs evolved independently. The clade of gymnosperm STS seemed to appear after the divergence of gymnosperms with angiosperms since the “R-4-A”-type containing clade of gymnosperms locates close to the “R-4-C”- and “Other”-type containing clade of gymnosperms. We found that “R-4-A”-type sequences of V. vinifera and Arachis sp. are located in the same syntenic cluster. The fact that the STS sequences of V. vinifera and Arachis sp. do not form a monophyletic clade, however, suggests that independent evolutionary events generated the “R-4-A” function in these species. In the Arachis genus, the “R-4-A” function most likely evolved before the speciation of A. duranensis and A. ipaensis since both “R-4-A”-containing genomic regions locate to the same syntenic cluster and the “R-4-A”-type sequences to the same clade in the phylogenetic tree. Generally, we found that “R-4-A” function is independent of the syntenic regions (Supplemental Figures S3, S4). The phylogenetic analysis suggests that also in gymnosperms the “R-4-A” function evolved before speciation of the gymnosperm species under study.

Gene ontology indicates no formation of type III PKS-containing gene clusters across the green lineage

The type III PKS-containing gene regions maintain their synteny over a long time and across a wide range of taxa (Figure 2 and Supplemental Figures S3, S12, S13). By contrast, some type III PKS-containing regions show no synteny to other regions, which could be attributed to low assembly quality (Supplemental Figure S12, C), small scaffold size (Supplemental Figure S12, E, right plot), or to the high taxonomic distance from Angiosperms (Supplemental Figure S12, E).

Plant specialized metabolic pathways may be encoded as regulon-like gene clusters which consist of mostly non-homologous genes that are physically linked and functionally related via biosynthetic pathways and coregulated (Osborn, 2010). Gene clusters for specialized metabolic pathways were previously shown for alkaloids (Itkin et al., 2013), diterpenoid phytoalexins (Shimura et al., 2007; Miyamoto et al., 2016), triterpenoids (Qi et al., 2004; Field and Osbourn, 2008), hydroxamic acids (Frey et al., 1997), and syringyl lignin (Weng et al., 2011). It was hypothesized that gene clustering provides a selective advantage due to more efficient inheritance since clustered genes are probably retained in the face of recombination. Furthermore, gene clusters allow for coordinate transcription via genomic and epigenetic mechanisms (Weng et al., 2012). In order to test whether this was the case for polyketide/flavonoid biosynthetic gene clusters, we conducted PKS-containing syntenic regions a GO enrichment and co-expression analysis for PKS genes of the syntenic clusters 2, 4, 5, and 14 using the STRING database (Supplemental File S1). The analyses showed no enriched terms for polyketide-related processes except some upstream-related processes (related to acetate metabolism, shikimate metabolism) and generally no co-expression between PKS/CHS and other genes.

In barley, a gene cluster consisting of Cer-c, a CHS-like diketone synthase, Cer-q, a lipase/carboxyl transferase, and Cer-u, a cytochrome P450 hydroxylase was recently predicted making it, to our knowledge, the only published example to report a gene cluster containing a PKS gene (Schneider et al., 2016). Cer-c in our study did not show synteny to other PKS genes. However, the results presented here render it unlikely that PKSs form gene clusters at least in the many species we studied.

Looking at other processes, we found enrichment of processes that showed biological involvement of polyketide products, especially in processes that are linked to hormonal processes and effects. It has been suggested that flavonoid metabolism initially evolved as an internal physiological regulator/chemical messenger (Stafford, 1991), rather than as a UV filter as proposed in Kubitzki (1987), since enzymatic capabilities and enzyme quantities should be low after recruitment from β-ketoacyl ACP synthases (Stafford, 1991). Interestingly, many signaling-related processes were enriched in the genomic context of PKS and CHS genes. It is possible that PKS-related genes governing such processes are an evolutionary remnant or provide a direct fitness effect, which maintains type III PKS genes in close genomic proximity to these genes. Alternatively or in addition, “hijacking” of genomic regions that contain pivotal genes, such as genes that are linked to transcription and translation, amino acid metabolism, cell development, and responses with the environment, could explain the presence of type III PKS in these genomic regions.

Possible evolutionary route of the type III PKS superfamily, suggested by combined syntenic network and phylogenetic analyses

Type III PKSs catalyze the sequential condensation of acetate units to a starter molecule. The reaction sequence mirrors the biosynthetic pathway of fatty acid synthases in primary metabolism (Austin and Noel, 2003). It has been hypothesized that type III PKSs evolved from β-ketoacyl ACP synthases (Austin and Noel, 2003) due to their similar reaction mechanism and the presence of the αβxαβx-fold. Using syntenic information and information from a large-scale phylogenetic analyses, we outlined an evolutionary route for the type III PKS superfamily (Figure 4) after the emergence of the first version of a PKS protein. The evolution of type III PKSs is primarily governed by an early gene region or genome duplication that formed the two major “R-4-C”-containing clusters (2, 4, 5, and 14), and an LAP ortholog-containing clade (Figure 3). WGDs have neither been
described for the liverwort *M. polymorpha* (Bowman et al., 2017) nor the Lycophyte *S. moellendorfii* (Banks et al., 2011). However, they were described for *P. patens* (Rensing et al., 2008) and the Tracheophyta after the divergence from the Bryophyta (Van de Peer et al., 2017; Clark and Donoghue, 2018), indicating that the "R-4-C"-specific and LAPS/6 clades evolved possibly by a segmental duplication event before the divergence of the Bryophyta from the Tracheophyta.

After the divergence from the Bryophyta and gymnosperms, the LAP5 and LAP6-containing clades (including the Angiosperm-specific clusters 1, 3, 11, and 27) formed by a gene region/genome duplication event, possibly the \(\varepsilon\) WGD event 321–295 million years ago (Clark and Donoghue, 2017, 2018; Van de Peer et al., 2017), followed by diversification into eudicot- (1 and 3) and monocot-specific (11 and 27) clusters. Within the Brassicales, possibly the \(\alpha\) or \(\beta\) WGD event formed the syntenic clusters 14 and 15 88–40 million years ago (Edger et al., 2015; Hohmann et al., 2015; van de Peer et al., 2017; Clark and Donoghue, 2018).

The members of the LAPS/6-specific clade are anther-specific and involved in sporopollenin biosynthesis (Dobritsa et al., 2010; Kim et al., 2010). Orthologs can also be found in members of the Bryophyta, Marchantiophyta, Lycopodiophyta, Pinophyta, Ginkgophyta, and Gnetophyta. This suggests that LAPS/6 orthologous sequences evolved before the divergence between the former and the Angiosperms by a segmental duplication event. The divergence between gymnosperm- and Angiosperm-forming clades was 365.0–330.9 million years ago in the Carboniferous (Morriss et al., 2018; Li et al., 2019b), the divergence between the Bryophyte- and the Tracheophyta-forming clades occurred 506.4–460.3 million years ago (Morriss et al., 2018). Since PKS can be found in all land plant lines, it can be concluded that the type III PKS superfamily is at least 460.3–506.4 million years old.

The two major "R-4-C"-containing regions proto 2/5/14 (containing no "R-4-C" sequences from Monocots) and four evolved possibly by the \(\gamma\) WGD event 135–116 million years ago after the divergence of the Eudicots and the Monocots (Jiao et al., 2012; van de Peer et al., 2017; Clark and Donoghue, 2018). Intriguingly, we found that the CHSs of *Glycine max* interacting with chalcone reductase (Mameda et al., 2018) locate to syntenic cluster 5 suggesting that a duplication event in the Fabales leading to syntenic cluster 5 facilitated the biosynthesis of isoflavonoids (see Supplemental File S1 for details).

The monocot-specific clades of syntenic clusters 4, 5, 10, and 22 possibly evolved by the \(\rho\) WGD event 135–110 million years ago (Ming et al., 2015), followed by \(\sigma\) and \(\rho\) WGD (see (1) in Figure 4) or by the \(\sigma\) or \(\rho\) WGD in the Monocot lineage (see (2) in Figure 4) 120–95 million years ago (D’Hont et al., 2012; Ming et al., 2015; van de Peer et al., 2017; Clark and Donoghue, 2018).

The question remains, which clade evolved directly from the protocluster A, the LAPS/6 clade or the clade containing syntenic clusters 2, 4, 5, 14, and others.

It is interesting to note that sequences of *A. filiculoides* (syntenic cluster 4), *M. polymorpha* (5), and *P. patens* (15), *S. cucullata* (4), and *S. moellendorfii* (4) are located in the "R-4-C"-containing clade and the clade containing the LAPS/6 homologs (Figure 3). Most of the sequences in the syntenic cluster 4, 5, and 15 co-locate to the phylogenetic clade containing the syntenic clusters 2, 4, 5, and 14 and show strong synteny to "R-4-C"-containing syntenic clusters, and less to the LACP-containing syntenic clusters 1 and 3. This favors the hypothesis that the syntenic clusters 4 and 5 are primordial and existed before the emergence of LAPS/6-containing syntenic clusters, albeit it has to be kept in mind that not all sequences of the Bryophyta, Lycopodiophyta, Marchantiophyta, and Polypodipsida showed synteny to other sequences, and that the loss of synteny between clusters might differ between different clusters.

Studying the macroevolution of the type III PKS superfamily, the clade containing the syntenic clusters 2, 4, 5, and 14 or the clade containing LAPS/6 evolved from protocluster A and the respective other clade evolved by a genome (region) duplication event from protocluster A or A*.

Another possibility, although less favored, is that two genome (region) duplication events from A or A* occurred forming the clade containing LAPS/6 and the syntenic clusters 2, 4, 5, and 14. The "R-4-C"-type enriched syntenic clusters 2, 5, and 14 do not contain monocot "R-4-C" sequences indicating that the diversification into eudicot "R-4-C" happened after the divergence from the monocots or that monocot PKS genes in the syntenic clusters 2, 5, and 14 lost their "R-4-C" function after diverging from the eudicots. Next to their macroscale evolution, we observed gene expression changes for CHS orthologs and conservation of expression pattern for LAPS/6 orthologs (see Supplemental File S1 for details) indicating a diversification of CHS orthologs after duplication events.

Sporopollenin is a constituent of the spore and pollen grain outer walls of all known land plants. The average pine sporopollenin structure consists of two fatty acid-derived polyvinyl alcohol-like units, each flanked at one end by a \(\alpha\)-pyrone at one end and cross-linked by an ester at the other end. Sporopollenin furthermore possesses supposedly covalently linked \(p\)-coumaric acid and naringenin as structural units (Li et al., 2019a). Tri- and tetraketide \(\alpha\)-pyrones are formed by LAPS and LAP6 from a broad range of potential acyl-CoA synthetase 5-synthesized fatty acyl-CoA starter substrates (Dobritsa et al., 2010; Kim et al., 2010). Sporopollenin might have equipped algal zygotes with a UV-protecting outer layer that promoted their movement onto the land (Morant et al., 2007; Weng and Chapple, 2010). As some of the most primitive organisms, some members of the freshwater algae Charophytes are believed to host the phenylpropanoid pathway (Kroken et al., 1996; Morant et al., 2007) and it has been suggested that the UV autofluorescent lignin-like material surrounding the zygotes of several charophytic algae species, including *Coleochaete*, is sporopollenin (Delwiche et al., 1989; Kroken et al., 1996; Weng and Chapple, 2010). By contrast, Zygmenatophyceae
zygospores contain algaenan that differs from pollen grains in its chemical position and the biochemical pathway (acetate–malate pathway) leading to its production (Versteegh and Blokker, 2004). Furthermore, to our knowledge, the presence of type III PKS-like enzymes in the genomes of Charophyta is not reported with the exception of P. marina (Jiao et al., 2020). The adaption of a sporopollenin-containing protecting spore wall is considered a synapomorphy of the embryophytes to colonize the land, but appears to be pre-adaptive given that it is present in the Charophyceae, the proposed sister group to the embryophytes (Delwiche et al., 1989; Kroken et al., 1996; Morant et al., 2007; Weng and Chapple, 2010; Wallace et al., 2011). If LAPS/6 evolved first, the syntenic clusters 1/27 and/or 3/11 duplicated and formed the primordial cluster of “R-4-C”-type PKS genes, followed by a loss of synteny between the clusters 1/27 and 3/11. This sequence of events is consistent with the work of Weng and Chapple (2010) who postulated that the emergence of sporopollenin biosynthesis occurred earlier than that of phenylpropanoid metabolism and flavonoid biosynthesis. To our knowledge, it is not clear if sporopollenin biosynthesis required at this point of emergence the presence of α-pyrene. With the data currently at hand, the exact sequence of events can, however, not be elucidated fully.

In the coming years we expect that more genomes, especially from species of early-diverging lineages will be made available. Such information would allow us to refine the evolutionary sequence we presented here to a higher resolution than is currently possible. This fact notwithstanding, we feel that the study here has allowed us to carry out a comprehensive analysis, and one that is unprecedented in scope of the evolution of the type III PKS family in a manner which we believe is highly applicable to myriad of other specialized pathways of the plant kingdom and beyond.

Materials and methods

Retrieval of genomic data and processing of proteome files

Protein FASTA files and .gff/gff3 files were downloaded for 126 species from the sources indicated in Supplemental Dataset S2. If available, functional annotation files (containing GO annotation and InterPro domains) were downloaded from the same sources. Splice variants, if any were annotated, were removed retaining only the variant with the longest coding sequence for each locus.

Annotated transposable elements in the genomes were removed. Additionally, to further remove TEs and remove TEs in genomes where they were not annotated, a local peptide library was built containing known A. thaliana, rice (Oriza sativa), tomato (S. lycopersicum), and maize (Z. mays) transposable elements. All species’ protein FASTA files were queried (using BLAST, default settings) against this database and hits were considered a transposable elements, and removed as well, when the protein identity was >70%, the E-value < 0.05 AND the length >50. The proteome files were checked for completeness using BUSCO (Sepey et al., 2019; v4.0.2_cv1, -m proteins, –l chlorophyta_odb10, lineage dataset from 20 November 2019, for the species C. braunii, Chlamydomonas reinhardtii, Coccomyxa sp. C169, Cyanidoschyzon merolae, Cyanophora paradoxa, Dunaliella salina, K. nitens, Ostreococcus lucimarinus, Volvox carteri, -l stramenopiles_odb10, lineage dataset from November 21, 2019, for the species E. siliculosus and Aureococcus anophagefferens, –l cyanobacteria_odb10, lineage dataset from April 24, 2019, Synechocystis sp. PCC 6803, or -l embryophyta_odb10, lineage dataset from November 20, 2019, for all other species) in the respective docker container.

Inference of orthogroups, orthologs, and gene families using OrthoFinder and MCL

Orthogroups were inferred from protein FASTA files (proteome files) using OrthoFinder (Emms and Kelly, 2015; v2.2.7), Python (v2.7.10), diamond (v0.9.9), dlcpar (v1.0), fastme (v2.1.5), and mcl (v14.137) using the command orthofinder.py -f ./ -S diamond. To obtain MCL groups, pairwise-species BLAST files were used as input for MCL(Enright et al., 2002) clustering using mclxload (–stream-mirror, –stream-neg-log10, -stream-tf “ceil (200),” abc file from BLAST results) and mcl (-I 2; https://micans.org/mcl/).

Detection of syntenic regions using i-ADHoRe and MCScanX

For each species, information on the gene orientation (+/-) was extracted from the .gff/gff3 and one file per scaffold/chromosome was created containing the gene (matching the identifier in the protein FASTA file) and its orientation according to the order in the genome. i-ADHoRe (v3.0.01) was used to detect collinear regions between two genomes using the following settings within the .ini file: table_type=family, cluster_type=collinear, alignment_method=gg2, gap_size=15, cluster_gap=20, max_gaps_in_alignment=20, q_value=0.9, prob_cutoff=0.001, anchor_points=5, level_2_only=true, write_stats=true, and number_of_threads=4. For blast_table, the output from OrthoFinder or MCL clustering was used, respectively, where each protein (in the first column) referred to an orthogroup/group (in the second column). MCScanX (mcscanx_h, version 3-28-2013) detected collinear regions between two genomes (using –b 0 option, MATCH_SCORE=50, MATCH_SIZE=5, GAP_PENALTY=−1, OVERLAP_WINDOW=5, E_VALUE=1e−05, MAX_GAPS=25) using the homology relations from OrthoFinder or MCL clustering. In the following, all gene pairs were regarded as syntenic that were reported by i-ADHoRe and MCScanX above the respective thresholds. A selection of sequences of model species was validated for syntenic relationships using the PLAZA database (https://bioinforatics.psb.ugent.be/plaza/).
Annotation of type III PKS genes
PKS protein sequences were blasted against the NCBI database and the fit with lowest E-value was reported for annotation (expect threshold: 10; word size: 6; matrix: BLOSUM62; Gap costs: existence: 11, Extension: 1; Compositional adjustments: Conditional compositional score matrix adjustment). The same parameters were used when blasting other sequences using blastp against the NCBI database. Classification of the type III PKS reaction type was predicted via pPAP (Shimizu et al., 2017a; v1.1) using the protein sequences as input (ruby v2.5.1p57, BioRuby 1.5.2, MAFFT v7.310, and HMMER v3.2.1). The number of exons was taken from the PLAZA database (Dicots PLAZA 4.0, Monocots PLAZA 4.0, Gymno PLAZA 1.0, pico-PLAZA 2.0).

To retrieve type III PKS sequences in the species C. atrophyticus (accession no. RHPH00000000) and M. viride (accession no. RHPH00000000; Wang et al., 2019), known CDS sequences of P. marginatatum were blasted against the assemblies of the two species using the following options “Optimize for: Somewhat similar sequences (blastn),” “database: ASM910322v1 GenBank assembly GCA_009103225.1” (C. atrophyticus) / “database: AS974604v1 GenBank assembly GCA_009746045.1” (M. viride), “Match score: 2,” “Mismatch score −3,” “Gap costs: Existence: 5, Extension: 2,” “Word size: 7,” “filter low complexity regions,” “mask for lookup table only.” To retrieve type III PKS sequences of members of the Coleochaetaphyceae, we queried the CDS sequences against the nucleotide collection of the Coleochaetaphyceae (taxid: 131209, other algorithm parameters identical as for C. atrophyticus and M. viride).

Tandem gene identification and syntenic network construction and clustering
Analysis of synteny was done according to Zhao and Schranz (2017) following a network approach using a custom script. Tandem genes were defined as present when they were detected in one of the four methods. All tandem genes per region (genes that form a component) were treated as a tandem gene region in the following. In a next step and for each method, the value 0.25 was added to \(a_{ij} \) to adjacency matrix \(A \), if syntenic link between (tandem) gene regions \(i \) and \(j \) containing PKS genes, exists. Connections of type “i–ADHoRe + MCL and MCScanX + OrthoFinder” and “i–ADHoRe + OrthoFinder and MCScanX + MCL” were removed from the adjacency matrices. Vertices that do not link to others were removed. To determine clusters of the syntenic network, four community structure detection algorithms (all algorithms resulted in ≤ 20 clusters) were applied separately on the network to retrieve membership: based on greedy optimization of modularity (function fastgreedy.community, modularity = TRUE), via short random walks (function walktrap.community, modularity = TRUE, steps = 15), based on the leading eigenvector of the community matrix (function leading.eigenvector.community, steps = 15), and based on multi-level optimization of modularity (function multilevel.community, all functions from igraph package v1.2.4.1, R v3.5.0). After this step, distances were calculated for each cluster: if cluster assignment was identical, distance was set to 0, otherwise to 1. The final cluster membership was obtained by affinity propagation clustering for cluster detection using the information from all four cluster detection algorithms (apcluster from the apcluster package, v1.4.6, convits = 1,000, maxits = 10,000, lam = 0.9, nonoise = TRUE, Supplemental Dataset S3). The enrichment test for “R-4-C”-type PKS in clusters 2, 4, 5, and 14 (selection criteria: more than 15% of genes are of type “R-4-C” and at least 10 genes in cluster) was performed with the function fisher.test (alternative = “greater”) in the R environment (v3.5.0) after removing the terms for sequences that were not present in the syntenic network. The custom script for network construction can be accessed via www.github.com/tnaake/PKS_synteny.

Phylogenetic analysis
A multiple sequence alignment was built from characterized PKS protein sequences using MUSCLE (v3.8.31). A HMM protein profile was built using hmmbuild (–fragthresh 0, hmmer v3.2.1). Using hmmsearch, the HMM protein profile was queried against the proteome files. Sequences from species, for which no proteome file is available, were added manually by NCBI database research. Hits were aligned with the protein profile using hmmpfam and the alignment was manually checked. Columns with > 20% missing values were excluded from further analysis, as well as frayed C- and N-terminal regions of the alignment (Supplemental Dataset S4). Tree building was done by raxmlHPC-AVX (–f a, –m PROTGAMMALGX, –c 25, –p 12345, –x 12345) using 1,000 bootstrap replicates, and the genes AAK45681, BAD97390, and BAA33495 as outgroups. Booster (Lemoine et al., 2018) calculated transfer bootstrap expectation values for branches (–a tbe).

Visualization of the tree was performed within the R environment (v3.5.0) and ggtree (v1.17.1). The phylogenetic species tree was obtained by OrthoFinder via species tree inference from All Genes (STAG; Emms and Kelly, 2019) using the processed proteome files and midpoint rooting in FigTree (v1.4.3).

Enrichment analysis
Gene ontology terms were obtained for each species separately by using the processed proteome FASTA files and PANNZER2 (Koskinen et al., 2015; Toronen et al., 2018) entering the species name in the field “Scientific name of query species.” Subsequently, three types of enrichment analyses were run: (1) enrichment of genes of PKS-containing syntenic regions with no removal of PKS genes using the syntenic genes of syntenic regions as background, (2) enrichment of genes of PKS-containing syntenic regions with removal of PKS genes using the syntenic genes of syntenic regions as background, (3) enrichment of genes of PKS-containing syntenic regions with no removal of PKS genes using all genes as background (syntenic genes of syntenic regions and other genes), (4) enrichment of genes of PKS-containing
syntenic regions and all genes as background. GO terms of genes in PKS-containing syntenic regions were tested against GO terms of the backgrounds (genes of all syntenic regions or all genes, PKS-BG), genes of "R-4-C"-enriched syntenic regions of clusters 2, 4, 5, and 14 were tested against background (CHS-BG) and genes of "R-4-C"-enriched syntenic regions of clusters 2, 4, 5, and 14 were tested against GO terms of genes within PKS-containing syntenic regions (CHS-PKS) using fisher.test (alternative = "greater") within R (v3.5.0). The enrichment analyses were separately conducted for PKS-BG, CHS-BG, and CHS-PKS and P-values were adjusted by Benjamini–Hochberg using p.adjust within the R environment (v3.5.0). Enriched terms were visualized in Cytoscape (Shannon et al., 2003; v3.6.1) using Enrichment Map (Merico et al., 2010; FDR q-value cutoff = 0.2, P-value cutoff = 0.5, NES [GSEA only]=All, Data Set Edges=Combine edges across data sets [sparser], Cutoff = 0.375, Metric = Jaccard + Overlap combined, Jaccard = 50%, Overlap = 50%). The custom script for enrichment analysis can be accessed via www.github.com/tnaake/PKS_synteny.

Co-expression analysis using STRING DB

Protein sequence FASTA files were obtained for the genes in PKS-containing syntenic regions from the union of all four methods (i-ADHoRe + OrthoFinder, i-ADHoRe + MCL, MCScanX + OrthoFinder, MCScanX + MCL) for all PKS-containing syntenic regions from A. thaliana, S. lycopersicum, O. sativa, Z. mays, and grape vine (V. vinifera). Query sequences with highest identity to STRING proteins were taken as the mapping candidate. Co-expression within syntenic regions were checked by using the STRING DB (Szklarczyk et al., 2015) with the following settings: meaning of network edges = confidence, active interactive sources = Co-expression, minimum required interaction score = medium (0.400), max number of interactors to show: first shell = none, second shell = none).

Gene expression CoNekT database

Raw expression values were downloaded for PKS sequences from the CoNekT database (Proost and Mutwil, 2018; retrieved April 25, 2019) for the species A. thaliana, O. sativa, S. moellendorffii, S. lycopersicum, V. vinifera, and Z. mays. Sampling conditions were categorized into roots/rhizoids, leaves, stem/shoot, fruit/siliques/ear/strobilus/spores, seed, flower, and pollen. Mean values from raw expression values per category were calculated for each gene. Pearson correlation values were calculated between averaged gene expression values using the cor function within R (v3.5.0). Pearson correlation values were clustered by affinity propagation clustering using apcluster (apcluster package, convits = 1,000, maxits = 10,000, nonoise = TRUE seed = 1,000) in R (v3.5.0).

Accession numbers

The names of all analyzed genes/proteins are mentioned in Supplemental Dataset S1. The names refer either to the identifiers in the NCBI GenBank or to the identifier of the respective genome sequence files (Supplemental Dataset S2).

Supplemental data

The following materials are available in the online version of this article.

Supplemental Figure S1. Phylogenetic tree for 126 analyzed species.
Supplemental Figure S2. Number of type III PKS in analyzed species.
Supplemental Figure S3. Distribution of type III PKS in syntenic clusters.
Supplemental Figure S4. Number of regions and number of type III PKS per syntenic cluster.
Supplemental Figure S5. Phylogenetic tree of type III PKSs with information on syntenic cluster membership, type of the sequence according to pPAP-classification, and the taxonomic order.
Supplemental Figure S6. Phylogenetic tree of type III PKSs with additional information (syntenic cluster membership; type of sequence according to pPAP-classification; number of exons of the gene sequence; and taxonomic information on the family, order, unranked taxonomic information, and class).
Supplemental Figure S7. Transfer bootstrap expectation values for phylogenetic gene tree of type III PKSs.
Supplemental Figure S8. Gene ontology enrichment of syntenic regions (type III PKS included).
Supplemental Figure S9. Gene ontology enrichment of syntenic regions (type III PKS included).
Supplemental Figure S10. Gene ontology enrichment of syntenic regions (type III PKS excluded).
Supplemental Figure S11. Enriched terms for syntenic genes of CHS-enriched clusters versus syntenic genes of type III PKS-containing syntenic regions.
Supplemental Figure S12. Quality of synteny network.
Supplemental Figure S13. Number of genes in type III PKS-containing syntenic regions and size of syntenic regions in kb.
Supplemental Figure S14. Co-expression network of syntenic regions in A. thaliana, S. lycopersicum, V. vinifera, and Z. mays.
Supplemental Figure S15. Gene expression of type III PKS genes of A. thaliana, S. moellendorffii, S. lycopersicum, V. vinifera, and Z. mays.
Supplemental Table S1. Number of type III PKSs for selected species.
Supplemental Table S2. Species not represented in the synteny network due to missing type III PKS genes, taxonomic distance, and/or low-quality genome assemblies.
Supplemental Table S3. Number of type III PKS genes in the network for species belonging to the asterids.
Supplemental Table S4. Sequences in LAP5/LAP6 ortholog-specific clade.
Supplemental Table S5. GO enrichment analysis of syntenic regions (genes of syntenic regions).
Supplemental Table S6. GO enrichment analysis of syntetic regions (all genes in data set)

Supplemental Table S7. Gene information for enriched GO terms of category “Biological process” directly linking to flavonoid metabolism (genes of syntetic regions).

Supplemental Table S8. Gene information for enriched GO terms of category “Biological process” directly linking to flavonoid metabolism (all genes in data set).

Supplemental Dataset S1. Information on PKS genes/amino acids used in phylogenetic and synteny analysis.

Supplemental Dataset S2. Data sources of genomes.

Supplemental Dataset S3. Information on PKS in synteny analysis (tandem and single genes, singletons).

Supplemental Dataset S4. Alignment of PKS amino acid sequences.

Acknowledgments

The authors would like to thank Stefanie Hartmann for discussion about phylogenetic analysis. They thank Iben Sorensen and Jocelyn Rose for providing the PKS sequences of *P. marginaticeum*. They would like to thank Camilla Ferrari for help in gathering the genomic data, Nooshin Omranian for helpful discussion about network analysis, and Federico Scossa for discussion about phylogenetic analysis. T.N. acknowledges the financial support of the IMPRS-PMPG program.

Funding

S.P. is supported by VLAIO grant HBC.2016.0556. The work of H.A.M. was supported by the National Science Foundation grants IOS-1836824 and MCB-1818040.

Conflict of interest statement: None declared.

References

Austin MB, Bowman ME, Ferrer JL, Schroder J, Noel JP (2004) An aldol switch discovered in stilbene syntheses mediates cyclization specificity of type III polyketide synthases. Chem Biol 11: 1179–1194

Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20: 79–110

Baharum H, Morita H, Tomitsuka A, Lee FC, Ng KY, Rahim RA, Abe I, Ho CL (2011) Molecular cloning, modeling, and side-directed mutagenesis of type III polyketide synthase from *Sargassum binderi* (Phaeophyta). Mar Biotechnol 13: 845–856

Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribkov M, dePamphilis C, Albert VA, Aono N, Aoyama T, Ambrose BA, et al. (2011). The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332: 960–963

Bohmann J, Meyer-Gaun G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci U S A 95: 4126–4133

Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu SQ, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F, et al. (2017) Insights into land plant evolution garnered from the *Marchantia polymorpha* genome. Cell 171: 287

Buer CS, Muday GK (2004) The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell 16: 1191–1205

Caputi L, Malnoy M, Goremykin V, Nikiforova S, Martens S (2012). A genome-wide phylogenetic reconstruction of family I UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land. Plant J 69: 1030–1042

Chae L, Kim T, Nilo-Poyanco R, Rhee SY (2014) Genomic signatures of specialized metabolism in plants. Science 344: 510–513

Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5: 823–826

Clark JW, Donoghue PCJ (2017) Constraining the timing of whole genome duplication in plant evolutionary history. Proc Biol Sci 284: 20170912

Clark JW, Donoghue PCJ (2018) Whole-genome duplication and plant macroevolution. Trends Plant Sci 23: 933–945

Cock JM, Sterck L, Rouze P, Scornet D, Allen AE, Amoutzias G, Anthouard V, Artigueneave F, Aurry JM, Badger JH, et al. (2010) The *Ectocarpus* genome and the independent evolution of multicellularity in brown algae. Nature 465: 617–621

D’Auria JC (2006) Aclttransferases in plants: a good time to be P. margaritaceum. Curr Opin Plant Biol 9: 331–340

D’Hont A, Denoeud F, Aurry JM, Baurens FC, Carrel F, Garsmeur O, Noel B, Bocs S, Droz G, Rouard M, et al. (2012). The banana (*Musa acuminata*) genome and the evolution of monocotyledonous plants. Nature 488: 213–217

de Vries J, Archibald JM (2018) Plant evolution: landmarks on the path to terrestrial life. New Phytolet 217: 1428–1434

de Vries J, de Vries S, Slamovits CH, Rose LE, Archibald JM (2017) How embryophytic is the biosynthesis of phenylpropanoids and their derivatives in streptophyte algae? Plant Cell Physiol 58: 934–945

Delwiche CF, Graham LE, Thomson N (1989) Lignin-like compounds and sporopollenin coleochaete, an algal model for land plant ancestry. Science 245: 399–401

Dittami SM, Riisberg I, John U, Orr R, Jakobsen KS, Edvardsen B (2012) Analysis of expressed sequence tags from the marine microalga *Pseudochlatttonella farcimen* (Dictyochophyceae). Protist 163: 143–161

Dolitsits AA, Lei ZT, Nishikawa S, Urbanczak-Wochniak E, Huhman DV, Preuss D, Sumner LW (2010) LAPS and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis. Plant Physiol 153: 975–985

Edger PP, Heidel-Fischer HM, Bekaert M, Rota J, Glockner G, Platts AE, Heckel DG, Der JP, Wafula EK, Tang M, et al. (2015) The butterfly plant arms-race escalated by gene and genome duplications. Proc Natl Acad Sci U S A 112: 8362–8366

Emms DM, Kelly S (2015) OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16

Emms DM, Kelly S (2019) OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20: 238

Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30: 1575–1584

Falarra V, Akhtar TA, Nguyen TTH, Syropoulou EA, Bleeker PM, Schauvinhod I, Matsuba Y, Bonini ME, Schilimiller AL, Last RL, et al. (2011) The tomato terpene synthase gene family. Plant Physiol 157: 779–803

Fernie AR (2019) Evolution: an early role for flavonoids in defense against oomycete infection. Curr Biol 29: R688–R690

Field B, Oxbourn AE (2008) Metabolic diversification—independent assembly of operon-like gene clusters in different plants. Science 320: 543–547

Frey M, Chomet P, Glawischng E, Stettner C, Grun S, Winklmair A, Eisenreich W, Bacher A, Meeley RB, Briggs SP, et al. (1997) Analysis of a chemical plant defense mechanism in grasses. Science 277: 696–699

Funa N, Awakawa T, Horinouchi S (2007) Pentaketide resorcylic acid synthesis by type III polyketide synthase from *Neurospora crassa*. J Biol Chem 282: 14476–14481
Funa N, Ohnishi Y, Ebizuka Y, Horinouchi S (2002) Properties and substrate specificity of RPaA, a chalcone synthase-related polyketide synthase in Streptomyces griseus. J Biol Chem 277: 4628–4635

Gensel PG (2008) The earliest land plants. Annu Rev Ecol Evol Syst 39: 459–477

Hahn MW (2009). Distinguishing among evolutionary models for the maintenance of gene duplicates. J Hered 100: 605–617

Han YY, Ming F, Wang W, Wang JW, Ye MM, Shen DL (2006) Molecular evolution and functional specialization of chalcone synthase superfamily from Phalaenopsis orchid. Genetica 128: 429–438

Hashimoto M, Koen T, Takahashi H, Suda C, Kitamoto K, Fujii I (2014) Aspergillus oryzae CsyB catalyzes the condensation of two beta-ketoacyl-CoAs to form 3-acetyl-4-hydroxy-6-alkyl-alpha-pyrone. J Biol Chem 289: 19976–19984

Hohmann N, Wolf EM, Lysak MA, Koch MA (2015) A time-calibrated road map of Brassicaceae species radiation and evolutionary history. Plant Cell 27: 2770–2784

Huang T, Tohge T, Lytovchenko A, Fernie AR, Jander G (2010) Pleiotropic physiological consequences of feedback-insensitive phenylalanine biosynthesis in Arabidopsis thaliana. Plant J 63: 823–835

Innan H, Kondrashov F (2010) The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 11: 97–108

Itkin M, Heinig U, Tzfadia O, Bhide AJ, Shinde B, Cardenas PD, Lesburg CA, Zhai G, Cane DE, Christianson DW (2009). Distinguishing among evolutionary models for the earliest land plants. Annu Rev Ecol Evol Syst 40: 67–81

Jiao C, Sorensen I, Sun X, Sun H, Behar H, Alseekh S, Philippe G, Kawai Y, Ono E, Mizutani M (2014) Evolution and diversity of the evolutionary history. Plant Cell 27: 2770–2784

Kroken SB, Graham LE, Cook ME (2015) PANNZER: high-throughput functional annotation of uncharacterized proteins in an error-prone environment. Bioinformatics 31: 1544–1552

Kroken SB, Graham LE, Cook ME (1996) Occurrence and evolutionary significance of resistant cell walls in charophytes and bryophytes. Am J Bot 83: 1241–1254

Kubitski K (1987) Phenylpropanoid metabolism in relation to land plant-origin and diversification. J Plant Physiol 113: 17–24

Kurata N, Moore G, Nagamura Y, Foote T, Yano M, Minobe Y, Gale M (1994) Conservation of genome structure between rice and wheat. Bio-Technology 12: 276–278

Lemoine F, Entfellner JBD, Wilkinson E, Correia D, De Oliveira T, Gascuel O (2018) Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556: 452

Lesburg CA, Zhai G, Cane DE, Christianson DW (1997) Crystal structure of pentalenene synthase: mechanistic insights on terpenoid cyclization reactions in biology. Science 277: 1820–1824

Li FS, Phylo P, Jacobowitz J, Hong M, Weng JK (2019a) The molecular structure of plant sporopollenin. Nat Plants 5: 41–46

Li HT, Yi TS, Gao LM, Ma PF, Zhang T, Yang JB, Gitzendanner MA, Fritsch PW, Cai J, Luo Y, et al. (2019b) Origin of angiosperms and the puzzle of the Jurassic gap. Nat Plants 5: 461–470

Liu SL, Baute GJ, Adams KL (2013) Organ and cell type-specific complementory expression patterns and regulatory nonfunctionalization between duplicated genes in Arabidopsis thaliana. Genome Biol Evol 3: 1419–1436

Mameda R, Waki T, Kawai Y, Takahashi S, Nakayama T (2018) Involvement of chalcone reductase in the soybean isoflavone metabolism: identification of GmCHRs, which interacts with 2-hydroxyisoflavonane synthase. Plant J 96: 56–74

Merico D, Isserlin R, Steuver O, Emili A, Bader GD (2010) Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS ONE 5: e13984

Meslet-Cladiere L, Delage L, Leroux CJJ, Goultierquer S, Leblanc C, Creis E, Gall EA, Stiger-Pouvreau V, Cazek M, Potin P (2013) Structure/function analysis of a type III polyketide synthase in the brown algal Ectocarpus siliculosus reveals a biochemical pathway in phlorotannin monomer biosynthesis. Plant Cell 25: 3089–3103

Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010a) The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phyto 188: 82–97

Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010b) Central and storage carbon metabolism of the brown alga Ectocarpus siliculosus: insights into the origin and evolution of storage carbohydrates in Eukaryotes. New Phyto 188: 67–81

Ming R, VanBuuren R, Wai CM, Tang H, Schatz MC, Bowers JE, Lyons E, Wang ML, Chen J, Biggers E, et al. (2015) The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47: 1435–1442

Miyamoto K, Fujita M, Shenton MR, Akashi S, Sugawara C, Sakai A, Horie K, Hasegawa M, Kawaide H, Mitsuhashi W, et al. (2016) Evolutionary trajectory of phytoalexin biosynthetic gene clusters in rice. Plant J 87: 293–304

Moghe GD, Last RL (2015) Something old, something new: conserved enzymes and the evolution of novelty in plant specialized metabolism. Plant Physiol 169: 1512–1523

Morant M, Jorgensen K, Schaller H, Pino F, Moller BL, Werck-Reichhart D, Bak S (2007) CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell 19: 1473–1487

Morita H, Wong CP, Abe I (2019) How structural subtleties lead to molecular diversity for the type III polyketide syntheses. J Biol Chem 294: 15121–15136

Morris JL, Puttick MN, Clark JW, Edwards D, Kenrick P, Pressel S, Wellman CH, Yang Z, Schneider H, Donoghue PCJ (2018) The timescale of early land plant evolution. Proc Natl Acad Sci U S A 115: E2274–E2283

Nelson D, Werck-Reichhart D (2011) A P450-centric view of plant evolution. Plant J 66: 194–211

O’Neill SD, Tong Y, Sporlein B, Forkmann G, Yoder JI (1990) Molecular genetic analysis of chalcone synthase in Lycopersicon esculentum and an anthocyanin-deficient mutant. Mol Gen Genet 224: 279–288

Osborn A (2010) Gene clusters for secondary metabolic pathways: an emerging theme in plant biology. Plant Physiol 154: 531–535

Pearson GA, Hoarau G, Lago-Leston A, Coyer JA, Kube M, Reinhardt R, Henckel K, Serrao ET, Corre E, Olsen JL (2010) An expressed sequence tag analysis of the intertidal brown seaweeds Fucus serratus (L.) and F. vesiculosus (L.) (Heterokontophyta, Phaeophyceae) in response to abiotic stressors. Mar Biotechnol 12: 195–213

Proost S, Fostier J, De Witte D, Dhodect B, Demeester P, Van de Peer Y, Vandezande K (2012) i-ADHoRe 3.0—fast and sensitive detection of genomic homology in extremely large data sets. Nucl Acids Res 40: e11

Proost S, Mutwil M (2018) CoNeKt: an open-source framework for comparative genomic and transcriptomic network analyses. Nucl Acids Res 46: W133–W140
