Aspect-Based Sentiment Analysis on Indonesian Presidential Election Using Deep Learning

Fadillah Said¹, Lindung Parningotan Manik²

¹,²Universitas Nusa Mandiri
Jalan Jatiwaringin Raya No. 02, Cipinang Melayu, Makasar, Jakarta Timur, Indonesia

e-mail: ¹14002413@nusamandiri.ac.id, lindung.lpm@nusamandiri.ac.id

Abstract - The 2019 presidential election is a presidential election that has been a hot topic for some time since 2018. In predicting the winner of the 2019 presidential election, research has been carried out on Aspect-based Sentiment Analysis (ABSA) datasets using machine learning algorithms such as Support Vector Machine (SVM), Naive Bayes (NB), and K-Nearest Neighbors (KNN) and produces a fairly good accuracy. This study proposes a deep learning method using BERT (Bidirectional Encoder Representation Form Transformers) and RoBERTa (A Robustly Optimized BERT Pretraining Approach) models. The results of this study indicate that the indobenchmark BERT and RoBERTa base-Indonesian single label classification models on target features with preprocessing produce the best accuracy of 98.02%. The indolem BERT model and the indobenchmark single label classification model on target features without preprocessing produce the best accuracy of 98.02%. The BERT indobenchmark single label classification model on aspect features with preprocessing produces the best accuracy of 74.26%. The BERT indolem single label classification model on aspect features without preprocessing produces the best accuracy of 74.26%. The BERT indobenchmark single label classification model on sentiment features with preprocessing produces the best accuracy of 94.06%. The BERT indolem single label classification model on sentiment features without preprocessing produces the best accuracy of 96.66%. The BERT indobenchmark multi label classification model without preprocessing produces the best accuracy of 98.66%.

Keywords: sentiment analysis, deep learning, classification
INTRODUCTION

The 2019 presidential election is a presidential election that has been a hot topic of conversation for some time, and people have even talked about this topic since 2018 on the internet. Social media, such as Twitter and Facebook, have an important role because political parties use social media such as Twitter and Facebook to campaign and advertise their candidates. By using social media, political parties can obtain information that cannot be obtained from the media or traditional voting results, which can be used to predict election results (Suciati et al., 2019).

In predicting the winner of the 2019 Indonesian presidential election, a dataset has been presented using Aspect-Based Sentiment Analysis (ABSA) which focuses on the character of the candidate. ABSA can help organizations become customer-centric so that presidential candidates can listen and understand the voices of their people, evaluate, and learn from people's input and expectations.

Data mining (DM) is a set of techniques and procedures for finding knowledge from various data sources such as data warehouses or relational databases, into an unformatted flat file created from predictive analysis using statistical study techniques to predict or anticipate certainty-based statistical measures. This knowledge can be classified in different rules and patterns that can help users/organizations to analyze collective data and predict decisions (Hamid Mughal, 2018) (Manjarres et al., 2018).

Natural Language Processing (NLP) is also known as the field of computational linguistics, which involves engineering computational models and processes to solve practical problems in understanding human language (Otter et al., 2021). From a scientific perspective, NLP aims to model the cognitive mechanisms underlying human language comprehension and production. From an engineering perspective, NLP is concerned with developing new practical applications to facilitate the interaction between computers and human language.

Sentiment analysis, also known as opinion mining, is a field within NLP that studies the computation of opinions, emotions, and subjectivity contained in text and often in negative, neutral and positive categories. Sentiments are collected, analyzed, and then summarized to produce real-time feedback (Hoang et al., 2019) (Sun et al., 2019).

ABSA is a text mining method that organizes text into targets and aspects and then labels each as a sentiment polarity. This is different from the usual sentiment analysis which only recognizes the overall polarity of the text (Manik et al., 2020). Polarity gives the difference between the number of positive words and the number of negative words in each text divided by the number of sentiment words (Budiharto & Meiliana, 2018).

Machine learning (ML) is a branch of Artificial Intelligence (AI) and is closely related to (and often overlaps with) computational statistics, which also focuses on making predictions using computers. Like DM, ML can also be unsupervised learning and is used to study and define basic behavior profiles for various entities and then use it to find meaningful anomalies (Xin et al., 2018). ML focuses on classification and regression based on known and previously learned features of training data. The engine learns a given pattern based on the data set and generates its own rules. When data is entered into the machine, the machine can recognize the data.

Previous research has conducted on the 2019 presidential election ABSA dataset using machine learning algorithms such as the Support Vector Machine (SVM), Naive Bayes (NB), and K-Nearest Neighbors (KNN) and produced a fairly good accuracy on target class, aspect and sentiment.

RESEARCH METHODOLOGY

1. Research Dataset
The dataset used in this study is the 2019 presidential election ABSA dataset which consists of 2019 instances and 5 features.
Table 1. Attributes of Research Dataset

id	tweet	target	aspect	sentiment	id	tweet
0	PRABOWO	LEADERSHIP	POSITIVE			
1	PRABOWO	LEADERSHIP	NEGATIVE			
2	PRABOWO	SANDIAGA UNO	OTHER	POSITIVE		
3	JOKOWI	LEADERSHIP	NEGATIVE			
4	JOKOWI	MA'RUF AMIN	EMPATHY	POSITIVE		
		
2014	JOKOWI	INTEGRITY	POSITIVE			
2015	MA’RUF	LEADERSHIP	POSITIVE			
2016	MA’RUF	SANDIAGA.UNO	POSITIVE			
2017	MA’RUF	LEADERSHIP	POSITIVE			
2018	PRABOWO	INTEGRITY	POSITIVE			

Table 2. Class Distribution

Target	Aspect	Sentiment
JOKOWI (787)	INTEGRITY	POSITIVE
PRABOWO (472)	EMPATHY	NEGATIVE
SANDIAGA UNO(387)	LEADERSHIP	NEUTRAL
PRABOWO- SANDIAGA (373)	COMPETENCE	NEUTRAL
PRABOWO- SANDIAGA UNO (202)	COMPETENCE	NEUTRAL
MA’RUF (115)	OTHER	(352)
JOKOWI- MA’RUF (56)	OTHER	(352)

2. Preprocessing

The first preprocessing in this research is data cleaning where the process is to homogenize all text into lowercase letters (lowercase), clean data containing url (http://), tabs and newlines, non ascii characters, punctuation, whitespace, reply, threads, numbers, and delimiters such as commas (,), and periods (.), but do not delete username tokens (@), do not delete emojis, and do not delete hashtag tokens (#) as shown in Figure 2.
The next step is to do stemming to change all the words in the document into basic words by eliminating all affixes, namely prefixes, suffixes, infixes, and confixes as shown in Figure 3.

![Figure 3. Stemming](source)

The last step is encoding. Two categorical encoding techniques are used, the first is Label Encoding which is used to convert labels to numeric form by assigning a unique number (starting from 0) to each data class. The second is One Hot Encoding which changes each categorical variable into a new column and each column contains the number "0" or "1" which corresponds to which column the label or category is in. (Waasiu et al., 2021) The use of these two categorical encoding techniques depends on what classification technique will be used when implementing the BERT and RoBERTa models (single label classification or multi label classification).

3. Implementation of BERT and RoBERTa

Before training the dataset, the dataset is adjusted to the input representation that will be received by BERT and RoBERTa. Therefore we need a tokenizer that aims to tokenize sentences and generate appropriate input. Sentences will be processed by the tokenizer to represent the input on BERT and also RoBERTa. In this study, the BERT model used is indolem and indobenchmark, while the RoBERTa model used is robert-base-indonesian.

Each sentence will be broken down into words using a wordpiece and will get the ID of the word. Each word will get a token that has become a system provision. Each sentence will also get a special token at the beginning and end of the sentence. In BERT the tokens used are [CLS] for tokens at the beginning of sentences and [SEP] for tokens at the end of sentences. While in RoBERTa the tokens used are <s> for tokens at the beginning of sentences and </s> for tokens at the end of sentences.

After that, the sentence is adjusted to the maximum length that has been determined using [PAD] on BERT and <pad> on RoBERTa. Because the maximum length specified is 32, both [PAD] and <pad> will be useful to fill in the blanks if the
sentence is not up to 32 words. Sentence embedding is given to the sentence to distinguish the first sentence and the second sentence or padding. This stage can be done by giving the number 1 in the first sentence and giving the number 0 in the padding. The BERT tokenizer can find out which is the first sentence and which is the padding by looking at the [SEP] token which functions to separate the two sentences.

Positional embedding is also added for each token to indicate the position of each word in the sentence. This stage is done to find out the position of each word. So even though at the beginning of the sentence there is a word and at the end of the sentence there is also the same word but has a different meaning, it will not treat the token with the same meaning.

Figure 4. The tokenization process using the BERT and RoBERTa models

4. Fine Tuning

This study performs fine tuning using hyperparameters on BERT and RoBBERTa, where the best accuracy results are obtained using hyperparameters as shown in Table 3.

Fine Tuning on Target Feature	Fine Tuning on Aspect Features	Fine Tuning on Sentiment Features	Fine Tuning on Multilabel Classification
Batch	Batch	Batch	Batch
Size : 8	Size : 8	Size : 24	Size : 8
Epoch : 10	Epoch : 10	Epoch : 10	Epoch : 10
Optimizer : Adam	Optimizer : Adam	Optimizer : Adam	Optimizer : Adam
g Rate : 1e-5	g Rate : 1e-5	g Rate : 2e-5	g Rate : 1e-5

Source: (Said & Manik, 2022)

RESULTS AND DISCUSSION

Prior to classification, the dataset is divided into training datasets, validation datasets, and testing datasets.
datasets. The training dataset is used to train the model. While the validation dataset is used to minimize overfitting. The testing dataset itself is used as a final test to see the accuracy of the network that has been trained with the training dataset.

After the data preprocessing process, fine tuning is carried out on the data using the following hyperparameters:

- Fine Tuning on target features: Batch Size: 8, Epoch: 10, Optimizer : Adam, Learning Rate: 1e-5
- Fine Tuning on aspect features: Batch Size: 8, Epoch: 10, Optimizer : Adam, Learning Rate: 1e-5
- Fine Tuning on sentiment features : Batch Size: 24, Epoch: 10, Optimizer : Adam, Learning Rate: 2e-5
- Fine Tuning on multi label classification: Batch Size: 8, Epoch: 10, Optimizer : Adam, Learning Rate: 1e-5

Test results on these features produce the following accuracy values:

1. Single Label Classification

a. Single Label Classification with Preprocessing

Classification Method	Test Accuracy	Train Accuracy
BERT indolem	97.03 %	98.79 %
BERT indobenchmark	98.02 %	99.28 %
RoBERTa base-indonesian	98.02 %	99.17 %

Source: (Said & Manik, 2022)

Classification Method	Test Accuracy	Train Accuracy
BERT indolem	98.02 %	98.35 %
BERT indobenchmark	98.02 %	99.28 %
RoBERTa base-indonesian	95.05 %	99.06 %

Source: (Said & Manik, 2022)

b. Single Label Classification without Preprocessing

Classification Method	Test Accuracy	Train Accuracy
BERT indolem	72.28 %	98.9 %
BERT indobenchmark	74.26 %	99.83 %
RoBERTa base-indonesian	65.35 %	99.06 %

Source: (Said & Manik, 2022)
Table 7 shows that indolem BERT and BERT get the best accuracy on the target feature, which is 98.02%. Table 8 shows that BERT indolem gets the best accuracy on aspect features, which is 74.26%. Table 9 shows that BERT indolem gets the best accuracy on the sentiment feature, which is 94.06%.

2. Multi Label Classification

Table 10. Test results of multi label classification with preprocessing

Classification Method	Accuracy	F1 Micro	F1 Macro
BERT indolem	89.9 %	97.79 %	95.25 %
BERT indobenchmark	98.66 %	99.5 %	98.47 %
RoBERTa base-indonesian	96.33 %	99.06 %	97.27 %

Source: (Said & Manik, 2022)

Table 11. Multi label classification test results without preprocessing

Classification Method	Accuracy	F1 Micro	F1 Macro
BERT indolem	96.33 %	99.1 %	97.4 %
BERT indobenchmark	98.66 %	99.53 %	98.95 %
RoBERTa base-indonesian	97.23 %	99.18 %	97.26 %

Source: (Said & Manik, 2022)

Table 10 and Table 11 show that the indobenchmark BERT gets the best accuracy in the multilabel classification technique with or without preprocessing.

CONCLUSION

The BERT and RoBERTa models are able to perform target, aspect and sentiment analysis tasks well, both using single label classification and multi label classification. BERT indobenchmark and RoBERTa base-Indonesian single label classification on target features with preprocessing resulted in the best accuracy of 98.02%. BERT indolem and indobenchmark single label classification on target features without preprocessing produce the best accuracy of 98.02%. BERT indobenchmark single label classification on aspect features with preprocessing produces the best accuracy of 74.26%. BERT indolem single label classification on aspect features without preprocessing produces the best accuracy of 74.26%. BERT indolem single label classification on the sentiment feature with preprocessing produces the best accuracy of 93.07%. BERT indolem single label classification on the sentiment feature without preprocessing produces the best accuracy of 94.06%. BERT indobenchmark multi label classification with preprocessing produces the best accuracy of 98.66%. BERT indobenchmark multi label classification without preprocessing produces the best accuracy of 98.66%.

REFERENCES

Budiarto, W., & Meiliana, M. (2018). Prediction and analysis of Indonesia Presidential election from Twitter using sentiment analysis. *Journal of Big Data, 5*(1), 1–10. https://doi.org/10.1186/s40537-018-0164-1

Hamid Mughal, M. J. (2018). Data mining: Web data mining techniques, tools and algorithms: An overview. *International Journal of Advanced Computer Science and Applications, 9*(6), 208–215. https://doi.org/10.14569/IJACSA.2018.090630

Hoang, M., Bihorac, O. A., & Rouces, J. (2019). Aspect-Based Sentiment Analysis using BERT. *Proceedings of the 22nd Nordic Conference on Computational Linguistics*, 187–196. https://www.aclweb.org/anthology/W19-6120

Manik, L. P., Febri Mustika, H., Akbar, Z., Kartika, Y. A., Ridwan Saleh, D., Setiawan, F. A., & Atman Satya, I. (2020). Aspect-Based Sentiment Analysis on Candidate Character Traits in Indonesian Presidential Election. *Proceeding - 2020 International Conference on Radar, Antenna, Microwave, Electronics and Telecommunications, ICRAMET 2020*, 224–228. https://doi.org/10.1109/ICRAMET51080.20209298595

Manjarres, A. V., Sandoval, L. G. M., & Suárez, M. J. S. (2018). Data mining techniques applied in
educational environments: Literature review. Digital Education Review, 33, 235–266. https://doi.org/10.1344/der.2018.33.235-266

Otter, D. W., Medina, J. R., & Kalita, J. K. (2021). A Survey of the Usages of Deep Learning for Natural Language Processing. IEEE Transactions on Neural Networks and Learning Systems, 32(2), 604–624. https://doi.org/10.1109/TNNLS.2020.2979670

Said, F., Manik, L. P. (2022). Aspect-Based Sentiment Analysis on Indonesian Presidential Election Using Deep Learning.

Suciati, A., Wibisono, A., & Mursanto, P. (2019). Twitter Buzzer Detection for Indonesian Presidential Election. ICICOS 2019 - 3rd International Conference on Informatics and Computational Sciences: Accelerating Informatics and Computational Research for Smarter Society in The Era of Industry 4.0. Proceedings.

https://doi.org/10.1109/ICICoS48119.2019.8982529

Sun, C., Huang, L., & Qiu, X. (2019). Utilizing BERT for aspect-based sentiment analysis via constructing auxiliary sentence. NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, 1, 380–385.

Waasiu, A., B. A. I., & Lawi, A. (2021). Klasifikasi Audio Cats and Dogs Menggunakan Model Artificial Neural Network Multi-perceptron. 56–61.

Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., Gao, M., Hou, H., & Wang, C. (2018). Machine Learning and Deep Learning Methods for Cybersecurity. IEEE Access, 6(c), 35365–35381. https://doi.org/10.1109/ACCESS.2018.2836950