Inhibition in vivo of both infective *Leishmania major* and *L. mexicana amazonensis* mediated by a single monoclonal antibody

M. C. Debons-Guillem*1, I. Vouldoukis*2, A. Roseto*1, C. Alfred*2, C. Chopin*1, I. Ploton*2 and L. Monjour*2

*1U. 107 INSERM, LOI CNRS, Dép. d’Oncologie Expérimentale, Institut de Recherches sur les Maladies du Sang, Hôpital Saint-Louis, 2, Place du Dr. Alfred Fournier, 75475, Paris Cedex 10, France; *2Laboratoire de Parasitologie, CHU Pitié-Salpêtrière, 91 Boulevard de l’Hôpital, 75013 Paris, France

Abstract

Monoclonal antibodies raised against a strain of *Leishmania infantum* isolated in Greece were produced and tested for their protective effect in an *in vivo* system (in BALB/c mice). A single monoclonal antibody, IgG2b isotype, can prevent the development of two *Leishmania* strains in *in vivo*: one of *L. major* and one of *L. mexicana amazonensis*. This antibody-mediated protection may be dependent on complement.

Introduction

Monoclonal antibodies produced by hybrid cell lines have been raised, against the New World species of *Leishmania* (see McHahon-Pratt & David, 1981). They have been used, in particular, to identify the subspecies of *L. brasilienensis* (see McHahon-Pratt et al., 1982). Recent studies have shown that monoclonal antibodies could kill parasites cultured within macrophages in *in vitro*. Such induced mortality has been recorded in one series of experiments with *L. major*, a pathogenic agent of Old World leishmaniasis (Handman & Hocking, 1982).

Complete protection against *L. mexicana amazonensis* promastigotes inoculated with monoclonal antibodies has been similarly obtained *in vivo*, using a Whim assay system (Anderson et al., 1983).

The data presented here show that a single monoclonal antibody is able to protect the BALB/c mouse from infection with either *L. major* or *L. mexicana amazonensis*.

Materials and Methods

Production of monoclonal antibodies

Monoclonal antibodies were produced as described elsewhere (Roseto et al., 1982; Monjour et al., 1984b). We used a *Leishmania* strain isolated in Greece, *L. infantum* (LEM 497, Montpellier Collection), from the bone marrow of a sick dog and injected into a hamster. The amastigotes from the hamster spleen were deposited in a liquid medium (RPMI 1640 medium supplemented with 20% foetal calf serum) and after transformation into promastigotes at 24°C, the parasites were passaged not more than twice in the nutrient broth.

Promastigote preparations were used to immunize three BALB/c female mice two months old and serologically negative for *Leishmania*. Each animal was injected three times, every 15 days subcutaneously with 10⁴ parasites + 10 µg of Quil A purified Saponin (Laboratories Superfos, Denmark). One month later the mouse with the highest anti-leishmanial titre was given a booster injection of 2 × 10⁷ promastigotes administered intraperitoneally four days before cell fusion. Spleen cells were mixed with immunoglobulin-non-secretting, 8-azaguanine-resistant, Sp2/0 myeloma cells (Shulman et al., 1978) and fused with 50% polyethylene glycol, following the technique described by Galfré et al. (1977). Fused cells were selected in a hypoxanthine/azaserine (HA) selective medium.

Protective immunity assay

One ascitic fluid (64B16 : IgG2b) which proved to be positive by IIF with *L. infantum* (LEM 497), *L. major* (LEM 129 Montpellier Collection, Ref. MHRO/SU/59/Neal P.), *L. mexicana amazonensis* LV79 (Liverpool Collection), *L. donovani ITMAR 263* (Antwerp Collection) and using amastigotes, isolated in Greece were used as antigens. Mice and human anti-leishmanial sera, normal sera and RPMI medium were used as controls.

Positive hybridoma cultures were cloned using the limiting dilution technique and mink CCL64 cells (American Type Culture Collection) as feeder cells. The supernatants of growing clones were resealed by IIF. 104 clones proved to be positive and 10 were selected which had high antibody titres (> 3200). Specificity of the monoclonal antibodies secreted by these ten clones was determined by an indirect immunofluorescence test (as described by D'Ibarra et al., 1982) using live promastigotes of the following strains: *L. infantum* (LEM 497), *L. major* (LEM 129 Montpellier Collection, Ref. MHRO/SU/59/Neal P.), *L. mexicana amazonensis* LV79 (Liverpool Collection), *L. donovani ITMAR 263* (Antwerp Collection) and using amastigotes, obtained as described elsewhere (Monjour et al., 1984a).

Large quantities of antibodies were obtained by intraperitoneal injection of 2 × 10⁸ hybridoma cells into pristane-treated BALB/c mice. Two weeks later ascitic fluids were recovered.

IgG classes were determined by the immunodiffusion method.

Inhibition in vivo of both infective Leishmania major and L. mexicana amazonensis mediated by a single monoclonal antibody
animals in each case were observed for three months. Control animals developed cutaneous leishmanial lesions with detectable amastigotes. Each experimental group included five BALB/c mice.

Results

Before the protective immunity assay, we examined the monoclonal antibodies with respect to their isotype and their target antigens. Most belonged to the IgG isotype IgG1 and the others to IgG2b. Based on observation of strong fluorescent labelling of the \textit{L. major} and \textit{L. m. amazonensis} live promastigote surfaces, we selected one monoclonal antibody (64B16 : isotype Ig2b) as potentially protective. Fig. 1 indicates that pre-treatment of the two \textit{Leishmania} species, with 64B16 abolished their capacity to induce a cutaneous infection. Ascitic fluid containing monoclonal antibodies against \textit{P. falciparum} and HBS, whether decomplemented or not, did not prevent the experimental infection. Complete protection was observed for over three months even though as many as \(10^6\) promastigotes were injected (Table I). Lesions appeared in controls two months after infection. Lesion size was between 0.25 and 0.5 cm at three months and over 0.5 cm when the animal died about six months after infection. Using Giemsa staining, it was confirmed that the lesions were due to leishmaniasis.

Discussion

As seen in another \textit{in vivo} system described elsewhere (MONJOUR et al., 1984a) anti-leishmanial monoclonal antibodies raised against an Old World strain can afford protection against New World \textit{Leishmania} including \textit{L. donovani}. This cross protection has been confirmed by these data using \textit{L. major} or \textit{L. m. amazonensis} and BALB/c female mice for the protective immunity assay.

Recent studies proved that antibodies could be important in the development of immunity to leishmaniasis. They abolished the capacity of \textit{L. major} to multiply within macrophages \textit{in vitro} (HANDMAN & HOCKING, 1982), and provided protection against \textit{L. mexicana} infections in mice (ANDERSON et al., 1983).

In our experiments, we demonstrate that a single monoclonal antibody raised against \textit{L. infantum} can prevent the development of one strain of \textit{L. major} and one of \textit{L. mexicana amazonensis}.

The mechanisms conferring possible resistance to \textit{Leishmania} infections have frequently been discussed. This disease was considered to be controlled by cell-mediated immunity (MAUEL & BEHIN, 1981). Recent studies suggested that additional co-operation with humoral antibody could play an important part in effective protection (ARRENDONDO & PEREZ, 1979; ALEXANDER & PHILLIPS, 1980). Furthermore, HOWARD et al. (1982) in prophylactic immunization against experimental leishmaniasis noted that antibody response may be crucial in resistance to the infection. They considered that the development of cell-mediated immunity in immunization might not be necessary. At the present time, as did HANDMAN & HOCKING (1982) and ANDERSON et al. (1983), we report that antibodies, when used in an \textit{in vitro} or an \textit{in vivo} system, can abolish the development of parasites. The role of the complement (C') in this effect is controversial. It has been proved that antibody + C caused the lysis of promastigotes (ADLER, 1964). In our own experiments, decomplemented monoclonal antibody ascites were not able

Antigen	Monoclonal antibody 64B16	Ascitic fluid Sp2.0	Monoclonal anti-HBS	Monoclonal anti-
\textit{Leishmania major}	5/5	0/5	0/5	0/5
\textit{Leishmania mexicana amazonensis}	5/5	0/5	0/5	0/5

Symbols represent number of protected mice over total number of treated mice.

Fig. 1: Cutaneous leishmaniasis.

The promastigote strains have been pretreated with an anti-\textit{Leishmania} (A) monoclonal antibody, and a control monoclonal antibody (B).
to prevent Leishmania infections. However, ANDERSON et al. (1983) using one antibody of isotype \(\text{IgG}_1 \) suggests that the mechanism of this antibody-mediated protection may be \(C' \) independent. Finally, according to HANDMAN & HOCKING (1982), isotype \(\text{IgG}_b \) promotes \(L. \) major killing \(\text{in vitro} \) and isotypes \(\text{IgG}_a \) or \(\text{IgG}_3 \) are cytotoxic to promastigotes in the presence of complement.

These last observations have to be confirmed in several \(\text{in vivo} \) systems to distinguish the mechanism by which these antibodies are protective. Their use may allow the identification of the Leishmania antigens inducing effective immunity.

Acknowledgements

We thank Professor N. Leger, Laboratoire de Parasitologie, Faculté de Pharmacie de Reims (France) for the gift of the Leishmania strain isolated in Greece, and Professor Rioux, Laboratoire de Parasitologie, Faculté de Médecine, Montpellier (France) for the identification of this strain.

References

Adler, S. (1964). Leishmania. In: Advances in Parasitology. Vol. 1. B. Dawes (Editor). New York: Academic Press, p. 35.

Alexander, J. & Phillips, R. S. (1980). Leishmania mexicana and Leishmania tropica major: adoptive transfer of immunity in mice. Experimental Parasitology, 49, 34.

Anderson, S., David, J. R. & McMahon-Pratt, D. (1983). In \(\text{in vivo} \) protection against Leishmania mexicana mediated by monoclonal antibodies. Journal of Immunology, 131, 1616-1618.

Arreondo, B. & Perez, H. (1979). Alterations of the immune response associated with chronic experimental leishmaniasis. Infection and Immunity, 25, 16-22.

De Ibarra, A. A. L., Howard, J. G. & Snary, D. (1982). Monoclonal antibodies to Leishmania tropica major: specificities and antigen location. Parasitology, 85, 523-531.

Galfre, G., Howe, S., Milstein, C., Butcher, G. V. & Howard, J. C. (1977). Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature, 266, 550-552.

Handman, E. & Hocking, R. E. (1982). Stage-specific strain-specific and cross-reactive antigens of Leishmania species identified by monoclonal antibodies. Infection and Immunity, 37, 28-33.

Howard, J. G., Nicklin, S., Hale, C. & Liew, F. Y. (1982). Prophylactic immunization against experimental leishmaniasis. I. Protection induced in mice genetically vulnerable to fatal Leishmania tropica infection. Journal of Immunology, 129, 2206-2212.

McMahon-Pratt, D. & David, J. R. (1981). Monoclonal antibodies that distinguish between New World species of Leishmania. Nature, 291, 581-583.

McMahon-Pratt, D., Bennett, E. & David, J. R. (1982). Monoclonal antibodies that distinguish subspecies of Leishmania braziliensis. Journal of Immunology, 129, 926-927.

Mauel, J. & Behin, R. (1981). Immunology of Leishmaniasis. In: Biology and Physiology of Protozoa. (2nd ed.) Vol. 4. M. Levandowski and S. H. Hutner (Editors). New York: Academic Press, p. 429.

Monjour, L., Mille, C., Druiille, P. & Gentilini, M. (1978). Application de l’immuno-electro-diffusion sur membrane d’acétate de cellulose au diagnostic de la leishmaniosse viscérale humaine et canine. Annales de la Société Belge de Médecine Tropicale, 58, 293-300.

Monjour, L., Vouldoukis, I., Brandicourt, O., Mazier, D., Alfred, C., Ploton, I. & Gentilini, M. (1984a). Rapid, large scale production and isolation for Leishmania amastigotes. Annals of Tropical Medicine and Parasitology, 78, 423-425.

Monjour, L., Roseto, A., Vouldoukis, I., Guillemin, M. C., Alfred, C., Ploton, I. & Gentilini, M. (1984b). Protection, using a new \(\text{in vivo} \) system, against Old and New World Leishmania species mediated by a single monoclonal antibody. Acta Tropica (in press).

Roseto, A., Vautherot, J. F., Bobulesco, P. & Guillemin, M. C. (1982). Isolement d’hybrides cellulaires secretant des antigènes spécifiques du coronavirus entérique bovin. Comptes-Rendus de l’Académie des Sciences. Paris, 294, 347-352.

Shulman, M., Wilde, C. D. & Kohler, G. (1978). A better cell line for making hybridomas secreting specific antibodies. Nature, 276, 269-270.

Accepted for publication 22nd February, 1985.

FIFTH EUROPEAN COURSE IN TROPICAL EPIDEMIOLOGY

Institute of Tropical Hygiene and Public Health,
University of Heidelberg, Germany

8-19 September 1986

Organized by: Institute of Tropical Hygiene & Public Health, University of Heidelberg; London School of Hygiene & Tropical Medicine; Royal Tropical Institute, Amsterdam; Epidemiology & Community Medicine, University of Antwerp; Liverpool School of Tropical Medicine.

This intensive introductory course in epidemiology is intended for physicians and other persons with a professional interest in health in tropical countries. The course will provide participants with basic skills in the epidemiological assessment of local health problems and service priorities, and in the planning of field studies. It will be conducted in English. The closing date for applications is 31 May 1986.

For further information and application forms, contact:

R. J. Hayes,
Tropical Epidemiology Unit,
London School of Hygiene and Tropical Medicine,
Keppel Street, London WC1E 7HT.
Telephone: 01-636 8636 (Ext 243)