Inhibitory effect of Huangqi Zhechong decoction on liver fibrosis in rat

Shuang-Suo Dang, Xiao-Li Jia, Yan-An Cheng, Yun-Ru Chen, En-Qi Liu, Zong-Fang Li

AIM: To assess the inhibitory effect of Huangqi Zhechong decoction on hepatic fibrosis in rats induced by CCl4 plus alcohol and high fat low protein diet.

METHODS: Male SD rats were randomly divided into hepatic fibrosis model group, control group and 3 treatment groups consisting of 12 rats in each group. Except for the normal control group, all the rats were subcutaneously injected with CCl4 at a dosage of 3 mL/kg. In 3 treated groups, either high-dose group (9 mL/kg), medium-dose group (6 mL/kg), or low-dose group (3 mL/kg) was daily gavaged with Huangqi Zhechong decoction, and saline vehicle was given to model and control rats. Enzyme-linked immunosorbant assay (ELISA) and biochemical examinations were used to determine the changes of alanine aminotransferase (ALT), aspartate aminotransferase (AST), hyaluronic acid (HA), laminin (LN), type-III-procollagen-N-peptide (PIIIP), and type IV collagen content in serum, and hydroxyproline (Hyp) content in liver after sacrificing the rats. Pathologic changes, particularly fibrosis were examined by hematoxylin and eosin (HE) and Van Gieson staining.

RESULTS: Compared with the model control group, serum ALT, AST, HA, LN, PIIIP and type IV collagen levels dropped markedly in Huangqi Zhechong decoction groups, especially in the medium-dose Huangqi Zhechong decoction group (1 954±576 U/L vs 759±380 U/L, 2 735±786 U/L vs 1 259±829 U/L, 42.74±7.04 ng/mL vs 20.68±5.85 ng/mL, 31.62±5.84 ng/mL vs 14.87±1.45 ng/mL, 3.26±0.69 mg/mgprot vs 1.47±0.46 mg/mgprot, 77.68±20.23 ng/mL vs 25.64±4.68 ng/mL, respectively) (P<0.05). The Hyp content in liver tissue was also markedly decreased (26.47±11.24 mg/mgprot vs 9.89±3.74 mg/mgprot) (P<0.01). Moreover, the stage of the rat liver fibrosis in Huangqi Zhechong decoction groups was lower than that in model group, and more dramatic drop was observed in medium-dose Huangqi Zhechong decoction group (P<0.01).

CONCLUSION: Huangqi Zhechong decoction can inhibit hepatic fibrosis resulted from chronic liver injury, retard the development of cirrhosis, and notably ameliorate the liver function. It may be a safe and effective therapeutic drug for patients with fibrosis.

INTRODUCTION
Liver fibrosis is common in most chronic liver diseases regardless of the etiology[1-8]. Although new therapeutic approaches have recently been proposed, there is no established therapy for liver fibrosis[9]. Huangqi Zhechong decoction is a traditional Chinese medicine. The aim of the present study was to investigate the protective effects of Huangqi Zhechong decoction on liver fibrosis in rats of CCl4-induced cirrhosis.

MATERIALS AND METHODS
Reagents
CCl4 (Xi’an Chemical Factory) was diluted into 400 g/L in olive oil (Xi’an Chemical Factory). Huangqi Zhechong decoction was self-made by the Pharmaceutical Department of the Second Hospital, Xi’an Jiaotong University. The kit for Hyp was bought from Nianjing Jiancheng Biological Institute. Kits for HA, LN, PIIIP and type IV collagen were bought from Senxiong Company, Shanghai.

Animals
Sixty adult male SD rats weighing 150-200 g were provided by the Laboratory Animal Center of the College of Medicine, Xi’an Jiaotong University. The rats were randomly divided into 5 groups of 12 each: control group; model group; and 3 treatment groups. Except for the control rats, all rats were subcutaneously injected with 400 g/L CCl4 (CCl4:Olive oil 2:3), 3 mL/kg b.w., at every 3 d for 6 wk, and fed with high fat low protein diet (75% pure maize plus 20% lard and 0.5% cholesterol) and 300 mL/L alcohol as drinks. In the 3 treatment groups, Huangqi Zhechong decoction was administered daily via gastric tube to high-dose, medium-dose and low-dose groups at a dosage of 9 mL/kg, 6 mL/kg and 3 mL/kg for 6 wk, respectively. After 6 wk, except the dead, all the rats were anesthetized with 200 g/L urethane (5 mL/kg, abdominal injection). Blood was taken from abdominal aorta, centrifuged at 4 ℃, and plasma were kept at -20 ℃ for assays.

Pathological observations
Hepatic tissues were fixed in 40 g/L solutions of formaldehyde in 0.1% mol/L phosphate-buffered saline (pH 7.4), and embedded in paraffin. Five-micrometer thick section slides were prepared. All the sections stained with HE and standard van Gieson staining (VG) were coded and scored by blind reading. Van Gieson’s method was used to detect collagen fibers[10]. Liver condition was classified according to the standard formulated by China Medical Association in 1995[11].
and fibrosis was graded from 0 to 4 (0: no fibrosis; 1: portal area fibrosis; 2: fibrotic septa between portal tracts; 3: fibrosis septa and structure disturbance of hepatic lobule; and 4: cirrhosis).

Statistical analysis
Results were expressed as mean±SD. Quantitative data were analyzed by using ANOVA in statistical software SPSS 11.0. A value of \(P<0.05 \) was considered statistically significant. Ridit test was used for statistical analysis of the qualitative data.

RESULTS

Hyp content in liver tissues
Liver Hyp level was significantly lower in rats treated with CCl4 and Huangqi Zhechong decoction compared to the rats treated with CCl4 alone (\(P<0.01 \)). And the liver Hyp level of rat in 3 Huangqi Zhechong decoction treatment groups has no significant difference from control group (Table 1).

Plasma levels of ALT and AST
Plasma levels of ALT and AST in model group were higher than those in the controls (\(P<0.01 \)), while the Huangqi Zhechong decoction treatment groups showed significant lower ALT and AST levels than the model group. Furthermore, among the 3 treatment groups the medium-dose group showed the best effect and the levels of ALT and AST in serum showed no difference compared with the normal group (Table 1).

Group	n	ALT (U/L)	AST (U/L)	Liver Hyp (µg/ mgprot)
Control	12	86.0±17.7	329±40	10.02±1.05
Model	11	1 954±576	2 735±786	26.47±11.24
High-dose group	9	989±576	1 594±988	15.01±7.59
Medium-dose group	10	759±380	1 259±829	9.89±3.74
Low-dose group	10	1 003±530	1 650±928	10.06±2.58

\(P<0.05, \) \(P<0.01 \) vs model group; \(P<0.05, \) \(P<0.01 \) vs control group.

Table 2 serum levels of HA, LN, PIIIP and type IV collagen

Group	n	PIIIP (ng/mL)	Type IV collagen (ng/mL)	LN (ng/mL)	HA (ng/mL)
Control	12	0.34±0.67	18.47±3.43	10.07±1.74	17.96±5.86
Model	11	3.26±0.69	77.68±20.23	31.62±5.64	42.74±7.04
High-dose group	9	2.01±0.40	39.14±4.97	16.32±2.73	21.71±6.69
Medium-dose group	10	1.47±0.46	25.64±4.68	14.87±1.45	20.68±5.89
Low-dose group	10	1.84±0.27	29.09±2.78	17.02±2.74	24.18±7.89

\(P<0.05, \) \(P<0.01 \) vs model group; \(P<0.05, \) \(P<0.01 \) vs control group.

Table 3 Pathological observation of liver condition

Group	n	0	I	II	III	IV	U
Model	11	0	0	0	3	8	
High-dose group	9	0	0	2	3	3	1
Medium-dose group	10	0	4	4	2	0	4.01
Low-dose group	10	0	2	4	3	1	3.75

\(P<0.05, \) \(P<0.01 \) vs model group; The value of \(U \) represents the Ridit value of the two groups, \(U >1.96 \) means \(P<0.05, \) \(U >2.58 \) means \(P<0.01 \).

Figure 1 Liver tissue under light microscope. A: Normal liver tissue in control group (HE staining, original magnification: x400); B: Liver fibrosis tissue in model group, more fibrous tissue was formed in liver. A large amount of inflammatory cells soaked into the intralobular and the interlobular (van Gieson staining, original magnification: x200); C: Liver fibrosis tissue in Huangqi Zhechong decoction group. The pathological change of liver was rather lighter compared with the model (van Gieson staining, original magnification: x200).
Pathological assay
At the end of the study, the liver of control rats had no appreciable alterations (Figure 1A). In the model group, the margin of liver was uneven; more fibrous tissues formed and extended into the hepatic lobules to separate them incompletely; a large amount of inflammatory cells infiltrated in the intralobular and the interlobular regions; the liver structure was disordered with some displacement of central veins, and there were more necrotic and degenerated liver cells compared with the control (Figure 1B). While in the 3 treatment groups, especially in the medium-dose group, the pathological changes of liver was rather milder, showing less fibrous tissue proliferation and inflammatory cell infiltration in the interlobular space; the hepatic cell cords arranged radially with less displacement of central veins and less degenerated or necrosis hepatic cells, without any pseudolobule observed (Figure 1C). Compared with the model group, the liver condition of the rats was significantly improved in Huangqi Zhechong decoction groups (Table 3).

DISCUSSION
The incidence rate of chronic hepatopathy in China is high, which affects the patients by progressively developing irreversible cirrhosis[12,13]. Hepatic fibrosis is the intermediate and crucial stage of this process, characterized by reversibility. If treated properly in this stage, cirrhosis could be successfully prevented[14]. But it remains a problem to prevent cirrhosis or to control its progression in patients with a chronic liver disease[15]. Great efforts have been made to find safe and effective drugs. Recent clinical and experimental observations have demonstrated that Chinese medicines might be of some preventive and therapeutic values against fibrosis[16-18].

Of Huangqi Zhechong decoction, the Chinese traditional medicine, the Astragalus has the effects of activating blood circulation to relieve stasis, strengthening “spleen”, supplementing and smoothing “qi” to eliminate fullness, reinforcement body’s immunological function. It also could preserve the integrity of hepatocytes, eliminate toxic free radicals, inhibit lipid peroxidation of cytomembrane, relieve necrosis of hepatocytes, and obviously antifibrosis[19-23]. Thoroughfare is mainly used to activate blood circulation, remove stasis, and dredge the liver[24].

Huangqi Zhechong decoction has been used in clinic for many years to prevent liver fibrosis and shown good effect. However, its effect and the associated mechanisms need further experimental evidence. CCl4 is a super-hepatotoxin, with which many years to prevent liver fibrosis and shown good effect. Recent clinical and experimental observations have demonstrated that Chinese medicines might be of some preventive and therapeutic values against fibrosis[16-18].

The decoction may significantly decrease serum levels of ALT and AST in rats with hepatic injury caused by CCl4. It indicates that Huangqi Zhechong decoction may work through protecting the liver cells.

HA, LN, PHII and type IV collagen are good serum markers of hepatic fibrosis. In this study, the serum contents of these 4 markers in the model group were much higher than those of the controls (P<0.01). And the Huangqi Zhechong decoction groups had significantly low HA, LN, PHII and type IV collagen levels in serum than those in the controls, which indicated that Huangqi Zhechong decoction could successfully prevent hepatic fibrosis.

Hyp content in liver is another important index to react the hepatic fibrosis. In fibrotic liver, collagen fibers increase, which induced the rise of Hyp content in liver[28]. So Hyp level could provide the information about the degree and variant process of cirrhosis. In this study, we observed that the liver Hyp level in the model group was much higher than that of the controls and Huangqi Zhechong decoction groups.

In summary, Huangqi Zhechong decoction may play a role in antifibrotic therapy. It can protect the liver cells and inhibit the deposition of collagen fibers in liver. It may provide a safe and effective strategy for inhibition of cirrhosis in clinic use.

REFERENCES

1. Ma X, Qiu DK, Peng YS. Immunohistochemical study of hepatic oval cells in human chronic viral hepatitis. World J Gastroenterol 2001; 7: 238-242

2. Reshehyak VI, Sharafanova TI, Ichenko LU, Golovanova EV, Poroshenko GG. Peripheral blood lymphocytes DNA in patients with chronic liver diseases. World J Gastroenterol 2001; 7: 223-227

3. McCaughan GW, Gorrell MD, Bishop GA, Abbott CA, Shackel NA, McGuinness PH, Levy MT, Shariand AF, Bowen DG, Yu D, Slabiti L, Church WB, Napoli J. Molecular pathogenesis of liver disease: an approach to hepatic inflammation, cirrhosis and liver transplant tolerance. Immuno Res 2000; 174: 172-191

4. Ozakazi I, Watanabe T, Hozawa S, Arai M, Maruyama K. Molecular mechanism of the reversibility of hepatic fibrosis: with special reference to the role of matrix metalloproteinases. J Gastroenterol Hepatol 2000; 15(Suppl): D26-32

5. Jung SA, Chung YH, Park NH, Lee SS, Kim JA, Yang SH, Song IH, Lee SY, Suh DJ, Moon IH. Experimental model of hepatic fibrosis following repeated periportal necrosis induced by allyl alcohol. Scand J Gastroenterol 2003; 35: 969-975

6. Plummer JL, Ossowicz CJ, Whibley C, Ilesy AH, Hall PD. Influence of intestinal flora on the development of fibrosis and cirrhosis in a rat model. J Gastroenterol Hepatol 2000; 15: 1307-1311

7. Croquet V, Moal F, Veal N, Wang J, Oberti F, Roux J, Vuillermin E, Gallois Y, Douay O, Chappard D, Cales P. Hemodynamic and antifibrotic effects of losartan in rats with liver fibrosis and/or portal hypertension. J Hepatol 2002; 37: 773-780

8. Marcellin P, Asselah T, Boyer N. Fibrosis and disease progression in hepatitis C. Hepatology 2002; 36(Suppl 1): S47-56

9. Friedman SL. Molecular regulation of Hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000; 275: 2247-2250

10. Zhu H, Zeng L, Zhu D, Yuan Y. The role of TGF-beta 1 in mice hepatic fibrosis by Schistosomiasis japonica. J Tongji Med Univ 2000; 20: 320-321

11. China Medical Association infectious branch. The standard of grading and staging of viral hepatitis. Zhegao Minzu 1995; 13: 241-247

12. Lamireau T, Desmouliere A, Bioulac-Sage P, Rosenbaum J. Mechanisms of hepatic fibrogenesis. Arch Pediatr 2000; 9: 392-405

13. Brenner D, Waterboer T, Choi SK, Linquist JN, Stefanovic B, Burchardt E, Yamauchi M, Gillian A, Rippe RA. New aspects of hepatic fibrosis. J Hepatol 2000; 32(Suppl): S2-38

14. Riley TR 3rd, Bhatti AM. Preventive strategies in chronic liver disease: part II. Cirrhosis. Am Fam Physician 2001; 64: 1735-1740

15. Murphy F, Arthur M, Iredale J. Developing strategies for liver
fibrosis treatment. Expert Opin Investig Drugs 2002; 11: 1575-1585
16 **Liu C**, Jiang CM, Liu CH, Liu P, Hu YY. Effect of Fuzhenghuayu decoction on vascular endothelial growth factor secretion in hepatic stellate cells. Hepatobiliary Pancreat Dis Int 2002; 1: 207-210
17 **Liu P**, Liu CH, Wang HN, Hu YY, Liu C. Effect of salvianolic acid B on collagen production and mitogen-activated protein kinase activity in rat hepatic stellate cells. Acta Pharmacol Sin 2002; 23: 733-738
18 **Kusunose M**, Qiu B, Cui T, Hamada A, Yoshioka S, Ono M, Miyanoura M, Kyotani S, Nishioka Y. Effect of Sho-saiko-to extract on hepatic inflammation and fibrosis in dimethylnitrosamine induced liver injury rats. Biol Pharm Bull 2002; 25: 1417-1421
19 **Wang RT**, Shan BE, Li QX. Extracorporeal experimental study on immuno-modulatory activity of Astragalus membranaceus extract. Zhongguo Zhongxiyi Jiehe Zazhi 2002; 22: 453-456
20 **Chu DT**, Lin JR, Wong W. The in vitro potentiation of LAK cell cytotoxicity in cancer and aids patients induced by F3—a fractionated extract of Astragalus membranaceus. Zhonghua Zhongliu Zazhi 1994; 16: 167-171
21 **Zhang YD**, Shen JP, Zhu SH, Huang DK, Ding Y, Zhang XL. Effects of astragalus (ASI, SK) on experimental liver injury. Yaoxue Xuebao 1992; 27: 401-406
22 **Tan YW**, Yin YM, Yu Xj. Influence of Salvia miltiorrhiza and Astragalus membranaceus on hemodynamics and liver fibrosis indexes in liver cirrhotic patients with portal hypertension. Zhongguo Zhongxiyi Jiehe Zazhi 2001; 21: 351-353
23 **Fu QL**. Experimental study on qi-xu-huoxue therapy of liver fibrosis. Zhongguo Zhongxiyi Jiehe Zazhi 1992; 12: 228-229
24 **Chen H**, Wang L. Comparison on efficacy in treating liver fibrosis of chronic hepatitis B between Astragalus Polygonum anti-fibrosis decoction and jinshuibao capsule. Zhongguo Zhongxiyi Jiehe Zazhi 2000; 20: 255-257
25 **Kanta J**, Dooley S, DeVoux B, Breuer S, D’Amico T, Gressner AM. Tropoelastin expression is up-regulated during activation of hepatic stellate cells and in the livers of CCl4-cirrhotic rats. Liver 2002; 22: 220-227
26 **Yan JC**, Ma Y, Chen WB, Xu CJ. Dynamic observation on vascular diseases of liver tissues of rats induced by CCl4. Shijie Huaren Xiaohua Zazhi 2000; 8: 42-45
27 **Yan JC**, Chen WB, Ma Y, Xu CJ. Immunohistochemical study on hepatic vascular forming factors in liver fibrosis induced by CCI4 in rats. Shijie Huaren Xiaohua Zazhi 2000; 8: 1238-1241
28 **Garcia L**, Hernandez I, Sandoval A, Salazar A, Garcia J, Vera J, Grijalva G, Muriel P, Margolin S, Armendariz-Borunda J. Pirfenidone effectivelly reverses experimental liver fibrosis. J Hepatol 2002; 37: 797-805

Edited by Kumar M and Chen WW Proofread by Xu FM