Ancient DNA of the Extinct Lava Shearwater (*Puffinus olsoni*) from the Canary Islands Reveals Incipient Differentiation within the *P. puffinus* Complex

Oscar Ramirez1, Juan Carlos Illera2*, Juan Carlos Rando3, Jacob Gonzalez-Solis4, Josep Antoni Alcover5, Carles Lalueza-Fox1*

1 Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain, 2 Island Ecology and Evolution Research Group, IPNA-CSIC, La Laguna, Tenerife - Canary Islands (Spain), 3 Departamento de Biología Animal (UDI Zoología), Universidad de La Laguna, La Laguna, Tenerife - Canary Islands (Spain), 4 Departament de Biologia Animal, Universitat de Barcelona, Barcelona, Spain, 5 Institut Mediterrani d’Estudis Avançats (CSIC-UIB), Palma de Mallorca – Balearic Islands (Spain)

Abstract

Background: The loss of species during the Holocene was, dramatically more important on islands than on continents. Seabirds from islands are very vulnerable to human-induced alterations such as habitat destruction, hunting and exotic predators. For example, in the genus *Puffinus* (family Procellariidae) the extinction of at least five species has been recorded during the Holocene, two of them coming from the Canary Islands.

Methodology/Principal Findings: We used bones of the two extinct Canary shearwaters (*P. olsoni* and *P. holeae*) to obtain genetic data, for use in providing insights into the differentiation process within the genus *Puffinus*. Although mitochondrial DNA (mtDNA) cytochrome *b* sequences were successfully retrieved from four Holocene specimens of the extinct Lava shearwater (*P. olsoni*) from Fuerteventura (Canary Islands), the *P. holeae* specimens yielded no DNA. Only one haplotype was detected in *P. olsoni*, suggesting a low genetic diversity within this species.

Conclusions: The phylogenetic analyses based on the DNA data reveal that: (i) the “*Puffinus puffinus complex*”, an assemblage of species defined using osteological characteristics (*P. puffinus, P. olsoni, P. mauretanicus, P. yelkouan* and probably *P. holeae*), shows unresolved phylogenetic relationships; (ii) despite the differences in body size and proportions, *P. olsoni* and the extant *P. puffinus* are sister species. Several hypotheses can be considered to explain the incipient differentiation between *P. olsoni* and *P. puffinus*.

Citation: Ramirez O, Illera JC, Rando JC, Gonzalez-Solis J, Alcover JA, et al. (2010) Ancient DNA of the Extinct Lava Shearwater (*Puffinus olsoni*) from the Canary Islands Reveals Incipient Differentiation within the *P. puffinus* Complex. PLoS ONE 5(12): e16072. doi:10.1371/journal.pone.0016072

Editor: M. Thomas P. Gilbert, Natural History Museum of Denmark, Denmark

Received October 20, 2010; Accepted December 5, 2010; Published December 31, 2010

Copyright: © 2010 Ramirez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: J.C.I. was funded by a Ramón y Cajal fellowship (Spanish Ministry of Education). C.L.F. and O.R. were supported by a grant from the Ministerio de Ciencia e Innovación from Spain, J.A.A. and J.C.R. were partially supported by Spanish Dirección General de Investigación Científica y Técnica, Research Project CGL2007-62047/BTE. C.L.F. and O.R. were supported by Spanish Dirección General de Investigación Científica y Técnica, Research Project BFU2009-06974. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: carles.lalueza@upf.edu

Introduction

In the recent history of the planet, humans have been a major underlying factor in determining extinction rates. In fact, the ongoing annihilation of vast numbers of species is known as the Holocene extinction [1]. In general, the ensuing loss of biodiversity is dramatically more pronounced on islands than continents, as islands often have a higher number of endemic species per unit area, and specific adaptations of their biota that predispose them to extinction, including tameness, site faithfulness, flightlessness and reduced fecundity [2–9]. During the Holocene, more than 20 seabird extinctions and a higher number of local extirpations have been documented on islands around the world [7–10]. Phylogenetic relationships and causes of extinctions are often difficult to unravel, but recent studies using ancient DNA have greatly improved our understanding on the evolutionary history of these extinct species (e.g., [11]).

In most cases, decrease of distribution ranges or extinction has been related to human arrivals causing habitat destruction, hunting pressure and the introduction of exotic predators [2][3][5][7][10][12]. Among seabirds, albatrosses and petrels (procellariiforms) are particularly vulnerable to extinction due to their high breeding site fidelity, and lack of effective anti-predator behaviour (e.g., [13]). These species usually breed on islands free of predators. Thus, when predators are introduced, their limited behavioural plasticity becomes, in essence, an evolutionary trap, that can easily lead to extinction (e.g., [14]). In fact, during the last 10,000 years, 56% of Holocene procellariiform species have lost populations, and five *Puffinus* shearwater species with unclear evolutionary relationships have been reported to be extinguished. The reason for this is usually claimed to be the human arrival on the islands they inhabited [9][10][12][13]. The genus *Puffinus* (family Procellariidae) is a diverse group of small and medium size birds (wings spanning 1.5–0.6 meters and weight of 170–700
grams) with a worldwide distribution [16–17]. Although in general recent phylogenetic studies of the group, based on mitochondrial gene trees of extant species, support previous morphological-based classifications [18–21], the phylogenetic relationships among some of the clades are still not well understood. For example, some of the monophyletic lineages such as P. lherminieri, P. baroli and P. puffinus, P. yellowan, P. mauretanicus form unresolved polytomies within the genus Puffinus [21]. Such results could be explained by a recent diversification, lineage extinction and incomplete sampling of extant taxa [22] favoured by the remarkable philopatry exhibited by shearwater populations [23–25].

The Dune (P. holeae) and Lava shearwater (P. olsoni) are two of the shearwater species that became extinct during the Holocene [26–27]. These are known to be former breeders in the Canary Islands, together with two other Puffinus species, the Manx shearwater (P. puffinus) (Figure 1) and the Little shearwater (P. baroli), which currently show a patchy distribution in the Canary Islands [28]. Distributions of P. holeae and P. olsoni were restricted to the Eastern Canary Islands (i.e., Lanzarote, Fuerteventura and islets around) [26–27] (Figure 1). According to the areas where bones were collected it is probable that they displayed different breeding behaviours. Bones of P. olsoni are abundant in caves located at recent lava fields [27], whereas remains of P. holeae are abundant at aeolianite formations or fossil dunes [26][29].

It has been suggested that the extinction of P. holeae was directly linked to the aboriginal colonization of the Canary Islands, its last known record have been dated to 1,159±790 calibrated years (yr) before present (BP) [15]. P. holeae bones from sites located in the south of Fuerteventura are much older, dating to the Upper Pleistocene. Direct radiocarbon age on eggshells from one of these sites yielded an age of 32,100±1,100 14C yr BP [26].

In contrast, the known assemblage of P. olsoni remains is holocenic [27]. According to archaeological evidence, P. olsoni was also exploited as a food resource by the aboriginal Canarian people [50], but the extinction of this shearwater took place after 1270 AD, that is, more than one millennium after the arrival of the pre-Hispanic settlers. It has been suggested that the introduction of exotic mammals such as rats and cats after the European arrival to the Canary archipelago (14th century) was the most probable cause of its extinction [9].

The morphological traits of the two extinct shearwaters have been thoroughly examined in relation to extant shearwaters. P. olsoni was intermediate in size (estimated weight range: 175–245 g; J.C.R., unpublished data), between P. baroli (170–225 g) and P. puffinus (375–459 g) [17]. P. holeae was larger than P. olsoni, with intermediate size (estimated weight range: 508–597 g; J.C.R., unpublished data) between P. puffinus and Cory’s Shearwater, Calonectris diomedea (800–1,100 g) [17]. Irrespective to the differences in body sizes, some osteological traits (especially skull features) suggest that both extinct species were closely related to either P. mauretanicus or to P. puffinus [26–27]. However, their evolutionary relationships are still unclear and no attempt to reconstruct their phylogeny by means of molecular tools has been undertaken so far.

The aim of this study was to use ancient mtDNA sequences from bones of both Canary extinct species to: (i) to investigate their phylogenetic relationships within the shearwater group and estimate their divergence times; and (ii) to compare the phylogenetic information with the osteological characters in order to determine whether morphological differentiation is coincident with the genetic affinities obtained.

Materials and Methods

Samples

Fourteen bone fragments, from a minimum of five P. olsoni individuals, and 10 forelimb and hindlimb bone fragments
(humerus, ulna, tibiotalarsus and tarsometatarsus), from a minimum of four *P. holae* individuals, were used for DNA extraction. Materials were identified through direct comparison with bones of both species from the collections at the Zoology Department of La Laguna University (DZUL).

In order to increase the likelihood of recovering the maximum genetic variability of *P. olsoni*, three sites in Fuerteventura were selected for DNA analysis (Figure 1): three humeri plus one ulna, derived from at least two specimens from Cueva de Las Palomas palaeontological site; one femur, one fragment of radius, one vertebral, four fragments of humerus plus one ulna, from at least two specimens from Cueva de Las Moscas archaeological site; and two humeri, from Cueva de La Laguna archaeological site (Figure 1). All samples were collected at the surface level. The recent aspect of the remains and the 14C ages of bones of this species from the two mentioned archaeological sites (1,290–1,440 and 750–969 calibrated yr respectively) [9] indicates a late Holocene age. No chronological information exists on bones from Cueva de Las Palomas, but based on the recent geological age of this volcano [31] the materials are estimated to be <10,000 years old. No material of putatively recent *P. holae* are available for DNA analysis. Bones used for the extractions were collected at the site called Huesos del Caballo in the south of Fuerteventura. *P. holae* eggshells collected from this palaeontological site were previously dated to the Upper Pleistocene [26].

Mitochondrial sequencing

Puffinus genomic DNA was isolated from bone powder in dedicated ancient DNA laboratories at the Institute of Evolutionary Biology (IBE) and at the University Pompeu Fabra (UPF) in Barcelona, by a protease-K extraction followed by a phenol-chloroform extraction protocol and a Gentricon-100 concentration column (Amicon), as described elsewhere [32]. No previous work with extant shearwaters had been conducted at these laboratories.

Puffinus specific primers were designed to amplify a fragment of 484 base pairs (bp) of the mitochondrial DNA (mtDNA) cytochrome *b* (cyt-b) gene. This was achieved through the amplification of five overlapping fragments of 173, 177, 119, 119 and 177 bp respectively, using a two-step PCR protocol [33]. Additionally, after unsuccessful amplifications, two shorter fragments of 75 and 102 bp were also tested in order to account for possible DNA degradation. Sequences of primers used for amplifying each one of the fragments targeted are reported in Table 1. Amplified products were purified with a gene clean silica method using the DNA Extraction Kit (Fermentas, USA) and cloned using the Topo TA cloning kit (Invitrogen, The Netherlands). Insert-containing colonies were subjected to 30 cycles of PCR with M13 universal primers and subsequently sequenced with an Applied BioSystems 3100 DNA sequencer, at the Servei de Sequenciación of the Universitat Pompeu Fabra (Barcelona).

Phylogenetic Analyses

The ancient mtDNA cyt-b sequences obtained were compared to a dataset of 87 mtDNA cyt-b sequences originating from 34 extant species of the genus *Puffinus* gathered from NCBI GenBank (Table 2). Additionally, cyt-b sequences from *Calonectris diomedea*, *Laguna brevisrostris*, *Bulweria bulwerii*, *Dionysia plumpeophora*, *D. exulans*, *Oceanodroma furcata*, *O. leucorhoa*, *Pterodroma auxiliaris* and *Struthio camelus* were also obtained from GenBank to be used as outgroups (Table 2). Recent phylogenetic study carried out with seabirds in the north Atlantic archipelagos [34–36] have estimated divergence times between lineages using the Kimura-2 correction, and suggest a mutation rate of 0.9% per million of years (mya) can be used for Procellariidae [37]. In order to compare our estimate with previous studies, genetic distances (corrected by the Kimura’s two parameter evolution model) among taxa were obtained using MEGA 4.0 [38]. Then, divergence times were estimated using the aforementioned mutation rate of 0.9% per mya. Phylogenetic reconstruction was performed with Mr. Bayes 3.1.2. [39][40]. The tree was rooted at the most phylogenetic distant outgroup species, *Struthio camelus*. The best model of nucleotide substitution was chosen by using the Bayesian Information Criteria model selection implemented in the program jModelTest version 0.1.1 [41]. Posterior distributions were obtained by four independent Monte Carlo Markov Chains (MCMCs), that included three heated chains and one cold chain of 10,000,000 iterations with the temperature set 0.2 each were run, and trees and model parameters were sampled every 1,000 generations. The convergence of the MCMCs was verified visually from the likelihood values but also we assessed the convergence with TRACER v. 1.5 [42]. The first quarter of sampled trees was discarded as burn-in, and the inference was drawn from the remaining trees. We repeated all MCMCs analyses twice in order to ensure the posterior probabilities were stable.

Results and Discussion

The partial sequence (484 bp) of the cyt-b gene was obtained from four out of five specimens of *P. olsoni* (Figure S1). However, the *P. holae* samples yielded no successful amplifications (from the Huesos del Caballo site). This failure is not surprising, since these samples are the oldest tested, and the warm climatic conditions of the Canary Islands are highly unfavourable for long-term DNA preservation. Therefore, it can be expected a priori that many Holocene and pre-Holocene remains will have low or null endogenous DNA content. For instance, another Holocene

Table 1. Primers used for amplification of a 484 bp fragment corresponding to the mtDNA cyt-b gene.

Primer Name	Sequence (S’-3’)	Product size
CytBPuf116F/CytBPuf253R	TGGGTCATCTCTCTGAGG/AAGATGAGCCACCGTTTGGC	173 bp
CytBPuf247F/CytBPuf382R	TGGGTCATCTCTCTGAGG/AAGATGAGCCACCGTTTGGC	177 bp
CytBPuf368F/CytBPuf448R	AGGGATCATCTCTCTGAGG/AAGATGAGCCACCGTTTGGC	119 bp
CytBPuf443F/CytBPuf522R	TGGGTCATCTCTCTGAGG/AAGATGAGCCACCGTTTGGC	119 bp
CytBPuf520F/CytBPuf601R	TGGGTCATCTCTCTGAGG/AAGATGAGCCACCGTTTGGC	119 bp
CytBPuf512F/CytBPuf345R	CACATCCGCAAGGATCTCA/GAGATGAGCCACCGTTTGGC	75 bp
CytBPuf539F/CytBPuf601R	CACATCCGCAAGGATCTCA/GAGATGAGCCACCGTTTGGC	102 bp

Table 1. Primers used for amplification of a 484 bp fragment corresponding to the mtDNA cyt-b gene.

doi:10.1371/journal.pone.0016072.t001
Table 2. Dataset of 87 mtDNA cyt-b sequences from 34 extant species of the genus *Puffinus* (extracted from the GenBank), plus the haplotype obtained from *P. olsoni* in this study (in bold), and the nine outgroup sequences.

Species	N	GenBank accession number	References
P. assimilis	1	AY219925	[21]
P. atrodorsalis	1	AY219965	[21]
P. bailloni	2	AY219963-AY219964	[21]
P. baroli	6	AF076080	[37]
		AY219934-AY219936	[21]
		AJ004206-AJ004207	[35]
P. boydi	1	AY219937	[21]
P. bulleri	1	AF076081	[37]
P. carneipes	1	AF076082	[37]
P. colstoni	4	AY219958-AY219959, AY219961-AY219962	[21]
P. creatopus	1	AF076083	[37]
P. dichrous	6	AY219949-AY219954	[21]
P. elegans	2	AY219932-AY219933	[21]
P. gavia	1	AY219977	[21]
P. gravis	1	U74354	[37]
P. griseus	1	U74353	[37]
P. haurakiensis	2	AY219930-AY219931	[21]
P. huttoni	2	AF076084	[37]
		AY219978	[21]
P. kermadecensis	3	AY219927-AY219929	[21]
P. lherminieri	8	AY219940-AY219945, AY219947-AY219948	[21]
P. loyemilleri	1	AY219946	[21]
P. mauretanicus	6	AJ004208-AJ004212	[35]
		AY219972	[21]
P. myrtae	2	AY219938-AY219939	[21]
P. nativitatis	2	AY219979	[21]
		AF076086	[37]
P. newelli	2	AY219974-AY219975	[21]
P. nicolae	3	AY219956-AY219957, AY219960	[21]
P. olsoni	1	HQ651230	This study
P. opisthomelas	2	AF076087	[37]
		AY219976	[21]
P. pacificus	1	AF076088	[37]
P. persicus	2	AY219966-AY219967	[21]
P. polynesiae	1	AY219955	[21]
P. puffinus	5	AJ004213-AJ004215	[37]
		AY219971	[21]
		U74355	[37]
P. subalaris	3	AY219968-AY219970	[21]
P. temptator	1	AY219980	[21]
P. tenuirostris	1	U74352	[37]
P. tunneyi	1	AY219926	[21]
P. yelkouan	10	AJ004216-AJ004224	[37]
		AY219973	[21]
Bulweria bulwerii	1	U74351	[37]
Calonectris diomedea	1	U74356	[37]
Lugensa brevirostris	1	U74357	[37]
Pterodroma axillaris	1	U74342	[37]
specimen (*Myotragus balearicus*) from an equally unfavorable Mediterranean environment yielded only 0.27% endogenous DNA, as detected through unspecific shotgun sequencing [43]. Additionally, the remains of *P. holeae* come from a palaeontologic site exposed to climatic factors (rain, wind, sunlight), while those of *P. olsoni* come from caves, where the effect of these damaging agents is minimized.

The DNA sequences from the four *P. olsoni* samples represent a unique and exclusive haplotype of the mtDNA cyt-b gene (Figure 2, Figure S1). Three of the four *P. olsoni*-specific substitutions correspond to either C to T or G to A transitions, which are commonly associated to DNA damage [44]. Nevertheless, we are confident of the truthfulness of these substitutions because: 1) they are reproducible among the four samples, 2) DNA from one *Puffinus* sample (*P. olsoni* 1) was independently extracted, amplified and sequenced in two dedicated ancient DNA laboratories for their authentication, and 3) about 50% of the fragments for each specimen have been replicated twice (Figure S1). Additional substitutions in one or few clones that are only present in one particular PCR but not in another PCR from the same sample can reasonably be attributed to DNA damage [44], and thus were not considered in the phylogenetic analyses.

jModelTest selected the Hasegawa Kishino Yano model (HKY +I+G). We confirmed with TRACER the concordance between runs obtained with the Bayesian inference. All parameters had effective sample size values above 240. The general topology obtained by performing Bayesian inference (Figure 2) supports previous phylogenetic assessment of the shearwaters, performed using different optimality criteria [18–21]. Our results do not seem to support the monophyly of the genus *Puffinus*, since *Calonectris diomedea* is grouped together to all *Puffinus* species with high nodal support (Figure 2, node A). The Bayesian Inference
supports a monophyletic group of seven species (P. tenaiostris, P. gravis, P. griseus, P. creatopus, P. carneipes, P. bulleri and P. pacificus) that are a distinct and ancient lineage (node B). In contrast, C. diomedea, P. subalaris and P. nattivitata lineages show unresolved phylogenetic relationships to the rest of shearwaters species analyzed (nodes C, D, E and F). All Puffinus species included in node F are grouped together with high nodal support. The four P. olsoni individuals constitute a monophyletic clade with the five P. puffinus individuals, as supported by high Bayesian posterior probabilities (node G). However, the inclusion of P. olsoni in the phylogenetic analysis was unable to resolve the position of the P. puffinus-P. olsoni clade (node G) with respect to the large and monophyletic clade containing 27 Puffinus species (node H). This lack of resolution could be attributed to the rapid origin and radiation of this clade (node G) from the respective lineages within the monophyletic Puffinus group (node H).

Using the previously estimated mutation rate for Procellariidae of 0.9% per million years [37], the time of the most recent common ancestor (MRCA) for P. olsoni and P. puffinus was estimated to be 600,000±400,000 years. Interestingly, the time for the split between P. puffinus and P. olsoni might be close to the diversification time estimated for the Cory’s shearwater Palearctic clade (900,000–700,000 years ago) [34]. Recent phylogeographic studies have showed the influence of past climatic and geologic events on the patterns of genetic structure of many seabird species (e.g., [34][35][45–48]). Variation in marine productivity related to productivity events on the patterns of genetic structure of many seabird species (node H). This lack of resolution could be attributed to the rapid origin and radiation of this clade (node G) from the respective lineages within the monophyletic Puffinus group (node H).

According to some morphological traits, P. olsoni should be included within the so-called “Puffinus puffinus complex” (i.e. P. puffinus, P. mauretanicus, P. yelkouan and, probably, P. holei). Puffinus olsoni is characterized by a lower and less bulky skull than their relatives. The premaxillary is very elongated with upper edges of the orbits being highly parallel and they display wide but flat humerus [27]. The mitochondrial DNA sequences suggest that the osteological affinities within this complex are not congruent with their phylogenetic relationships, due to the fact that these four taxa might be close to the Cory’s shearwater Palearctic clade (900,000–700,000 years ago) [34]. Further studies, that combine analysis of more individuals from more localities, radiocarbon dating on the bones in order to study possible temporal changes, and the sequencing of nuclear markers, will be needed to understand the evolutionary history of P. olsoni.

Supporting Information

Figure S1 Alignment of a 484 bp fragment corresponding to the mtDNA cyt-b gene obtained in the four samples of P. olsoni. (DOC)

Author Contributions

Conceived and designed the experiments: OR CL-F. Performed the experiments: OR CL-F. Analyzed the data: OR. Contributed reagents/materials/analysis tools: CL-F. Wrote the paper: OR JCI JCR JGS JAA CL-F.

References

1. Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 269: 347–350.
2. Olson SL, James HF (1982) Fossil birds from the Hawaiian Islands: evidence for a wholesale extinction by man before Western contact. Science 217: 635–635.
3. Quammen D (1996) The song of the Dodo: Island Biogeography in an Age of Extinctions. London: Penguin. 764 p.
4. Gaskel J (2000) Who killed the great Auk? Oxford: Oxford university Press. pp 224.
5. Worthy TH, Holdaway RH (2002) Pleistocene Living of New Zealand. The lost world of the Moa. Indiana: Indiana University Press. 716 p.
6. Duncan RP, Blackburn TM, Worthy TH (2002) Prehistoric bird extinctions and human hunting. Proc R Soc Lond B 269: 517–521.
7. Steadman D (2006) Extinction & Biogeography of Tropical Pacific Birds. Chicago: University of Chicago Press. 490 p.
8. Boyer AG (2000) Who killed the great Auk? Oxford: Oxford University Press. pp 224.
9. Olson SL, James HF (1982) Fossil birds from the Hawaiian Islands: evidence for a wholesale extinction by man before Western contact. Science 217: 635–635.
10. Quammen D (1996) The song of the Dodo: Island Biogeography in an Age of Extinctions. London: Penguin. 764 p.
11. Gaskel J (2000) Who killed the great Auk? Oxford: Oxford university Press. pp 224.
12. Worthy TH, Holdaway RH (2002) Pleistocene Living of New Zealand. The lost world of the Moa. Indiana: Indiana University Press. 716 p.
13. Duncan RP, Blackburn TM, Worthy TH (2002) Prehistoric bird extinctions and human hunting. Proc R Soc Lond B 269: 517–521.
14. Steadman D (2006) Extinction & Biogeography of Tropical Pacific Birds. Chicago: University of Chicago Press. 490 p.
15. Boyer AG (2000) Who killed the great Auk? Oxford: Oxford University Press. pp 224.
16. Olson SL, James HF (1982) Fossil birds from the Hawaiian Islands: evidence for a wholesale extinction by man before Western contact. Science 217: 635–635.
17. Olson SL, James HF (1982) Fossil birds from the Hawaiian Islands: evidence for a wholesale extinction by man before Western contact. Science 217: 635–635.
18. Quammen D (1996) The song of the Dodo: Island Biogeography in an Age of Extinctions. Oxford: Oxford University Press. pp 151–166.
19. Atkinson IAE (1985) The spread of commensal species of Rattus to oceanic islands and their effects on island avifaunas. In: Moors PJ, ed. Conservation of Island Birds. Cambridge: ICBP Publication 3. pp 35–81.
20. Igual JM, ForeroB MG, Gomez T, Orea D (2007) Can an introduced predator trigger an evolutionary trap in a colonial seabird? Biol Conserv 137: 159–166.
21. Austin JJ, Berta-polle V, Casquet E (2004) A global molecular phylogeny of the small Puffinus shearwaters and implications for systematics of the Little-Anthubon’s shearwater complex. Auk 121: 847–364.

22. Emerson BC, Oro MI, Hewitt GM (2000) Colonization and diversification of the species Brachyderes aegypti (Coleoptera) on the Canary Islands: evidence from mitochondrial DNA COII gene sequences. Evolution 54: 911–923.

23. Austin JJ, White RW, Ovenden JR (2000) Colonization and diversification of the philopatric, colonially nesting seabird, the Short-tailed Shearwater (Puffinus tenuirostris). Auk 117: 79–79.

24. Louzao M (2006) Conservation biology of the critically endangered Balearic shearwater Puffinus mauretanicus: bridging the gaps between breeding colonies and marine foraging grounds. Tesis Doctoral. Mallorca: Universitat de les Illes Balears.

25. Juste J, Genovart M, Oro D, Bertorelle G, Louzao M, et al. (2007) Identidad y estructura genética de la pardela balear (Puffinus mauretanicus). In: Investigación en Parques Nacionales. Proyectos de investigación en Parques Nacionales. 2003-2006. Ministerio de Medio Ambiente. pp 209–222.

26. Walker CA, Wragg GM, Harrison CJ (1990) A new shearwater from the Pleistocene of the Canary Islands and its bearing on the evolution of certain Puffinus shearwaters. Historical Biol 3: 203–224.

27. McMinn M, Jaume D, Alcover JA (2006) Puffinus olsoni n. sp.: nova espécie de baldeirita recentment extinguida proveniente de depósitos espeleológicos de Fuerteventura i Lanzarote. Illes Canàries, Atlàntic Oriental, Edicions 16: 03–71.

28. Martín A, Lorenzo JA (2001) Aves del Archipiélago Canario. La Laguna: Lemus. 787 p.

29. Michaux J, Hutterer R, López-Martínez N (1991) New fossil faunas from the Canary Islands: evidence from mitochondrial DNA COII gene sequences. Evolution 54: 911–923.

30. Juste J, Genovart M, Oro D, Bertorelle G, Louzao M, et al. (2007) Identidad y estructura genética de la pardela balear (Puffinus mauretanicus). In: Investigación en Parques Nacionales. Proyectos de investigación en Parques Nacionales. 2003-2006. Ministerio de Medio Ambiente. pp 209–222.

31. Criado C (1991) La evolución del relieve de Fuerteventura. Puerto del Rosario: Cabildo de Fuerteventura. 319 p.

32. Lalueza-Fox C, Rompler H, Caramelli D, Staubert C, Catalano G, et al. (2007) A melanocortin 1 receptor allele suggests varying pigmentation among Neanderthals. Nature 439: 724–727.

33. Krause J, Monteiro L, Hasegawa O, Friesen VL (2007) Global phylogeography of the band-rumped storm-petrel (Oceanodroma castro; Procellariiformes: Hydrobatidae). Mol Phylogenet Evol 43: 755–773.

34. Gomez-Diaz E, Gonzalez-Solis J, Prinado MA, Page RDM (2006) Phylogeography of the Calonectris shearwaters using molecular and morphometric data. Mol Phylogenet Evol 41: 322–332.

35. Heinrich P, Amenguial J, Wink M (1998) Phylogeographic relationships in Mediterranean and North Atlantic Puffinus shearwaters (Aves: Procellariidae) based on nucleotide sequences of mtDNA. Biochem Syst Ecol 26: 145–170.

36. Zino F, Brown R, Biscoito M (2006) The separation of Prionurus malinowskii (Zino’s Petrel) from Pterodroma feae (Féa’s Petrel) (Aves: Procellariidae). Ibis 150: 326–334.

37. Nunn GB, Stanley SE (1998) Body size effects and rates of cytochrome b evolution in tube-nosed seabirds. Mol Biol Evol 15: 1360–1371.

38. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599.

39. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754–755.

40. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.

41. Posada D (2008) jModelTest: Phylogenetic Model Averaging. Mol Biol Evol 25: 1253–1256.

42. Rambaut A, Drummond AJ, Tracer v1.4, Available from http://beast.bio.ed.ac.uk/Tracer.

43. Ramirez O, Gigi E, Bover P, Alcover JA, Bertranpetit J, et al. (2009) Paleogenomics in a temperate environment: shotgun sequencing from an extinct Mediterranean Caprine. PLoS One 4(5): e5670.

44. Holtebre M, Jernbac K, Serre D, Hasebelev AvA, Piaho S (2001) DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res 29(23): 4793–4799.

45. Peck RR, Congdon BC (2004) Reconciling historical processes and population structure in the sooty tern Sula fuscata. J Avian Biol 35: 327–335.

46. Smith AL, Monteiro L, Hasegawa O, Friesen VL, 2007) Global phylogeography of the band-rumped storm-petrel (Oceanodroma castro; Procellariiformes: Hydrobatidae). Mol Phylogenet Evol 43: 755–773.

47. Friesen VL, Smith AL, Gómez-Díaz E, Bolton M, Furness RW, et al. (2007) Sympatric speciation by allochrony in a seabird. Proc Nat Acad Sci USA 104: 18589–18594.

48. Jesús J, Menezes D, Gomes S, Oliveira P, Nogales M, et al. (2009) Phylogenetic relationships of gadfly petrels from the Northeastern Atlantic Ocean: molecular evidence for specific status of Bugio and Cape Verde petrels and implications for conservation. Bird Conserv Int 19: 199–214.

49. Nunn GB, Cooper J, Jouventin P, Robertson CJR, Robertson GG (1996) Evolutionary relationships among extant albatrosses(Procellariiformes: Diomedeidae) established from complete cytochrome b gene sequences. Auk 113: 748–761.

50. Lee K, Feinstein J, Cracraft J (1997) Phylogenetic relationships of the ratrie birds: resolving conflicts between molecular and morphological data sets. Mindell DP, ed. New York: Avian molecular evolution and systematics, Academic Press.