Development of optical imaging formation system for research of magnetic track parameters from moving object

S E Logunov1, V V Davydov1,2, V Yu Rud'1,2

1Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya street 29, St. Petersburg, Russia, 195251
2All-Russian scientific Research Institute of Phytopathology, Institute street 5, Odintsovo, Moscow Region, Russia, 143050
3The Bonch-Bruevich Saint - Petersburg State University of Telecommunications, Bolshevikov ave. 22/1, St. Petersburg, Russia, 193232

Abstract. The necessity of the magnetic track research from the moving object is substantiated. An optical system has been developed to detect a magnetic track at sea depth from the moving magnetic object. A method of processing and decoding optical images formed using a ferrofluid cell and laser radiation is proposed. The results of experimental studies are presented.

1. Introduction

Research of physical phenomena that are formed as a result of interaction of a magnetic field with matter is one of the most difficult tasks of both fundamental and applied physics [1-8]. There have been countless researches that show that a large amount of information is embedded in the variations of the magnetic and electromagnetic fields after its interaction with the substance [8-15]. There is new knowledge about the structure of matter, various physical processes, the dynamics of their development when this information decipher. This information will help to more fully describe the various phenomena, determine the parameters and develop methods for measuring them in practical use.

The using of magnetic field variations allows to realize the investigations of the magnetic tracks. This phenomenon is formed during a movement of the magnetic object in the different media. The most striking example of magnetic tracks is the movement of a comet or meteorite in airspace, a ship at sea, etc. The appearance of the magnetic track is associated with a change in the structure of the magnetic field lines in the movement zone of the magnetic object.

Research the magnetic track at the depth of the sea with high pressure of water layers is one of the complex issues. In this case, the influence of various external factors that are present during the formation of the magnetic track in other conditions (for example, the flow of water, wind, etc.) on the processes of destruction of the track are insignificant. Currently of most methods which are used for monitoring the situation control in various sectors of the water area do not allow detecting a moving magnetic object at depths of more than 500-530 m [15-24]. The only effective method of detecting magnetic objects at such depths is the use of high-precision magnetometers, especially quantum, with high sensitivity. High sensitivity makes it possible to measure small variations in the magnetic field.
[10, 25–27]. Information about them change allows to determine the presence of a magnetic object in a given area, both mobile and stationary. By immersing the magnetometer to a depth, it is possible to establish the presence in the marine environment of a magnetic track from a moving object. Also, based on the readings of this device, it is possible to investigate the change in magnetic field variations in various parts of the magnetic track and determine the rate of its destruction.

Carrying out such experiments in real conditions is a rather complicated process. In addition, to search for a magnetic track in a large sector of the sea depth, it is necessary to use more than 10 magnetometers and special vessels for them maintenance. This is extremely difficult to implement. Therefore, for getting the necessary information for the preparation and conduct of experiments at sea depths, we developed an experimental stand and an optical method for studying the magnetic track in the laboratory. The particular attention in this method was paid to the formation of optical images during the movement of a magnetic object. In addition, it should be noted that for detecting a magnetic track is necessary the reliable system which is steady to immersion of the great depths. This system should provide a process for measuring variations in the magnetic field in a large plane and be easily moved at depth. Its development requires additional research.

2. Methods of magnetic track detection and experimental setup

The magnetic track of investigation by us is formed in the process of closing and opening the lines of force of a magnetic field on a magnetic object during its movement. It should be noted that molecules located next to a magnetic object are magnetized (the magnetic field of a moving magnetic object can be 20-30 times greater than the Earth’s magnetic field). In addition, an empty space is formed behind the departed moving magnetic object at a depth. This space is filled with great speed, since the pressure at such depths is more than 55 atm. At a high speed of a moving object, the process of magnetic track formation becomes very fast. Turbulent flows play the main role in this process.

Based on the completed investigations of the structure of magnetic field lines under the influence of perturbing magnetic fields [13, 28–29], it was decided to create a magnetic track in an aqueous solution of single-domain magnetite nanoparticles (ferromagnetic fluid), the average particle size of which is 12 nm. The volume concentration of magnetite particles is 0.025. The oleic acid acted as a surface substance (surfactant). The magnetic fluid is placed in a quartz cuvette. The nature of the motion of a magnetic object in a ferromagnetic fluid was reproduced by a point magnetic field of a “magnetic pen” with induction at the end of the order of 1 T. The scope of the perturbing magnetic field that was moving was 1 mm3. The laser radiation with $\lambda = 632.8$ nm was applied to the transparent face of the cell. A material opaque to laser radiation was deposited on the other side of the cell. A “magnetic pen” moved along this face. A cell with ferromagnetic fluid was in the laboratory magnetic field of the Earth. In the reflected light, a speckle pattern is recorded by a specialized video camera. For the formation and the focusing of images as well as the transformation of laser radiation are used the various optical elements and techniques [30-40].

Figure 1. The diffraction pattern of laser radiation in the case of the placement of a magnetic fluid: (a) in the Earth's magnetic field; (b) in a magnetic field when a magnetic pen is moving.
In fig. 1 shows optical images in reflected laser radiation without the influence of a “magnetic pen” on a ferromagnetic fluid and when it moves along an opaque face of a quartz cell. In the zone of action of the “magnetic pen”, nanoparticles are placed on the lines of force of the magnetic field (fig. 1.b). The agglomerates (speckle structures) are formed. It should be noted that at a high speed of movement of the “magnetic pen” along the wall, a wave appears on the surface of the magnetic fluid. This is due to the fact that under the influence of a strong alternating magnetic field, turbulent motion of magnetite particles in a ferrofluid liquid occurs due to a sharp change in energy with increasing magnetic field induction. This process reproduces the turbulent motion of water molecules with magnetization at a depth during moving a magnetic object.

The obtained experimental results, as well as data obtained as a result of previous studies [13, 28, 29] allowed us to develop an experimental setup for studying the magnetic track. Its structural diagram is presented in fig. 2.

![Figure 2](image)

Figure 2. The block diagram of the experimental setup: 1 - power supply; 2 - solenoid; 3 - rectangular vessel; 4 - water; 5 - non-magnetic material; 6 - ferrofluid cell; 7 - case; 8 - laser; 9 - aperture; 10 - lens; 11 - photosensitive element; 12 - polarizer; 13 - processing device.

The magnetic fluid (an aqueous solution of magnetite nanoparticles with a concentration of 0.03 - surfactant - oleic acid) is placed on a support of non-magnetic material 5 in a ferrofluid cell 6. The cell is placed in the magnetic field of the solenoid 2. Induction of the magnetic field B1 in the cell placement area of 6.8 mT. A rectangular vessel 3 with a liquid medium 4 (water) is located between the solenoid and the ferrofluid cell. Along the length of the vessel 3 moves the body 7, made of permalloy [41-44]. For image registration of the reflected laser radiation from speckle structures is using the special optical system developed by us. In fig. 3.a shows the image of the reflected laser radiation from speckle structures formed by nanoparticles on the lines of force of the magnetic field of the solenoid recorded by photosensitive element 11 (fig. 2).

The movement of the body 7 through the vessel closes the force lines of the magnetic field of the solenoid to 7. The agglomerates that are formed in the magnetic field begin to collapse under the action of thermal motion, and the recorded speckle pattern changes. In fig. 3.b shows the image of reflected radiation from the speckle pattern of nanoparticles through tz = 20 s after the magnetic field lines of the solenoid are shorted to the body and at tz = 120 s - fig. 3.c. The movement of the body 7 through the vessel closes the force lines of the magnetic field of the solenoid to 7.

The movement of the body 7 through the vessel closes the force lines of the magnetic field of the solenoid to 7. The agglomerates that are formed in the magnetic field begin to collapse under the action of thermal motion, and the recorded speckle pattern changes. In fig. 3.b shows the image of reflected radiation from the speckle pattern of nanoparticles through tz = 20 s after the magnetic field
lines of the solenoid are shorted to the body and at tz = 120 s - fig. 3.c. The value tz = 120 s is the average travel time of a moving magnetic object through a space point at a depth in the zone of formation of the magnetic track. The longitudinal relaxation time T1, which determines the process of magnetization of the substance, for water at a depth of less than 1 s. For the complete magnetization of a liquid medium, 3T1 time is required [1, 2, 25-27, 45].

Figure 3. The diffraction pattern of laser radiation in the case of magnetic fluid: (a) in a uniform magnetic field; (b) - magnetic field lines are closed on the body; (c) - 2 minutes have passed after the closure of all the lines of force of the magnetic field on the body.

3. The results of experimental research and their discussion

It should be noted that the process of the magnetic track formation depends both on the speed of movement and on the magnitude of the induction B of the magnetic field of the moving object. As an example, in fig. 4 shows images of reflected radiation from the speckle pattern of nanoparticles through tz = 5 s (fig. 4.b) after the field lines of the magnetic field of the solenoid are closed to the body and at tz = 30 s - fig. 4.c.

Figure 4. The diffraction pattern of laser radiation in the case of a magnetic fluid: (a) in a uniform magnetic field; (b) - magnetic field lines are closed on the body; (c) - 2 minutes have passed after the closure of all magnetic field lines on the object.

The obtained result of a change in the structure of the recorded optical image, which was formed from the movement of a moving object from a material with a low value of B0 = 153 μT at atmospheric pressure, confirms the influence of the speed of the object on the process of formation of the magnetic track. With increasing pressure of the water layer and the volume of the moving object, this process will be more pronounced.

As an example, in fig. 5 shows the images of reflected radiation from the speckle pattern of nanoparticles through tz = 5 s (fig. 5.b) after the magnetic field lines of the solenoid are closed to a moving object with induction B0 = 1.7 mT (previously used permalloy), and at tz = 30 s - fig. 5.c. A
magnet made of a samarium-cobalt alloy was used as a moving object. The direction of the lines of force of the magnetic field of the solenoid and magnet coincide.

![Figure 5.](image)

Figure 5. The diffraction pattern of laser radiation in the case of a magnetic fluid: (a) in a uniform magnetic field; (b) - magnetic field lines are closed on the body; (c) - 2 minutes have passed after the closure of all magnetic field lines on the object.

Analysis of the obtained results in fig. 4 and 5 show a change in the nature of the optical image from speckle structures after the field lines are closed to a magnetic object. The process of the speckle structures destruction depends from the object speed in all directions of the recorded image.

It shows the possibility of the changes detecting in magnetic field variations by optical sensor. By processing images from optical sensors spaced at equal distances, it is possible to construct the diagrams of magnetic field variations changes and to establish the presence of the magnetic track on the depth of the water area.

![Figure 6.](image)

Figure 6. (a, b). The dependence of the intensity I on the distance between the force lines of the magnetic field: a) in a homogeneous field B_0; b) the magnetic field from the mobile object.

4. Conclusion

The research results allowed to develop a device in the squares form with the side of 8-10 m in the corners of which there are optical sensors based on ferrofluid cells for detecting a magnetic track at a depth of the sea. The data of experiments on the magnetic track detection from moving magnetic objects in the specialized pool with the using developed by us the sensor system confirms the measurements are made by proton immersion magnetometer.

The completed experiments showed that for determination of the magnetic track formation time and the direction of the magnetic object movement at amplitude change of the magnetic field
variations, it is more advisable to use a magnetometer. The sensitivity of the developed optical sensors in some cases is not enough to obtain a reliable result.

In figure 6, as an example, presents the distribution data in the diffraction pattern for the laser radiation transmitted through the ferrofluid cell.

5. References
[1] D’yachenko S V, Kondrashkova I S and Zhermnoyi A I 2017 Technical Physics 62(1) 1602-1604.
[2] D’yachenko S V and Zhernovoi A I 2016 Technical Physics 61(12) 1845-1847.
[3] Kashen R S and Gazizov E G 2010 Journal of Applied Spectroscopy 77(3) 321-328.
[4] Alashkin E M, Kondratyeva E T, Kuzmin V V, Safullin K R, Stanislavovas A A, Savinkov A V, Klokchov A V and Tagirov M S 2018 JEPT Letters 107(2) 111-117.
[5] Filippov A, Artamonova M, Rudakova M, Gimadzhanov R and Skirda V 2012 Magnetic Resonance in Chemistry 50(2) 114-119.
[6] Davydov R V and Antonov V I 2018 Journal of Physics: Conference Series 1135(1) 012087.
[7] Petrov A A, Grebenikova N M, Lukashev N A, Ivanova N V, Rodygina N S and Moroz A V 2018 Journal of Physics: Conference Series 1038(1) 012032.
[8] Alexandrov A S, Ivanov A A, Archipov R V, Gafurov M R and Tagirov M S 2019 Magnetic Resonance in Solids 21(2) 19203.
[9] Davydov V V, Myazin N S, Fadeenko V B and Logunov S E 2018 Technical Physics Letters 44(2) 153-156.
[10] Marusina M Y, Bazarov B A, Galaidin P A, Marusin M P, Silaev A A, Zakemovskaya E Y and Mustaev Y N 2014 Measurement Techniques 57(5) 580-586.
[11] Kharitonov S I, Kazanskiy N L, Doskolovich L L and Strelkov Yu S 2016 Modeling the reflection of the electromagnetic waves at a diffraction grating generated on a curved surface Computer Optics 40(2) 194-202 DOI: 10.18287/2412-6179-2016-40-2-194-202.
[12] Vasilyev V V, Kapustin A I, Skidanov R V, Ivliev N A, Podlipnov V V and Ganchevskaya S V 2019 Experimental investigation of the stability of Bessel beams in the atmosphere Computer Optics 43(3) 376-384 DOI: 10.18287/2412-6179-2019-43-3-376-384.
[13] Logunov S E, Koshkin A Y and Davydov V V 2016 Journal of Physics: Conference Series 741(1) 012092.
[14] D’yachenko S V, Vaseshenkova M A, Martinson K D, Cherepkova I A and Zhermnoyi A I 2016 Technical Physics 89(5) 690-696.
[15] Zherdev D A, Kazanskiy N L and Fusrov V A 2014 Object recognition by the radar signatures of electromagnetic field scattering on base of support subspaces method Computer Optics 38(3) 503-510.
[21] Podstrigaev A S, Smolyakov A V, Myazin N S, Grebenikova N M and Davydov R V 2019 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11660 LNCS 525-533.

[22] Fadeenko V V, Kuts V A and Vasiliev D A 2018 Journal Physics: Conference Series 1135(1) 012053.

[23] Koucheryavy A, Vladyko A and Kirichek R 2015 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9247 299-308.

[24] Lenets V A, Tarasenko M Yu, Rodugina N S and Moroz A V 2018 Journal of Physics: Conference Series 1038(1) 012037.

[25] Davydov V V, Dudkin V I and Karseev A Yu 2015 Technical Physics 60(3) 456-460.

[26] Davydov V V, Dudkin V I and Velichko E N 2016 Measurement Techniques 59(2) 176-182.

[27] Zhernovoi A I and D’yachenko S V 2015 Technical Physics 60(4) 595-599.

[28] Logunov S E, Vysocky M G, Davydov V V, Koshkin A Yu and Rud V Yu 2017 Journal of Physics: Conference Series 917(5) 052058.

[29] Logunov S E, Davydov V V, Vysocky M G and Mazing M S 2018 Journal of Physics: Conference Series 1038(1) 012093.

[30] Kharitonov S I, Doskolovich L L and Kazanskiy N L 2018 Asymptotic methods of solving problems of diffraction by non-periodic structures Computer Optics 42(2) 160-168 DOI: 10.18287/2412-6179-2017-41-2-160-168.

[31] Pavelyeva E A 2018 Image processing and analysis based on the use of phase information Computer Optics 42(6) 1022-1034 DOI: 10.18287/2412-6179-2018-42-6-1022-1034.

[32] Skidanov R V and Ganchevskaia S V 2015 An algorithm for designing a DOE to form optical traps of a preset configuration Computer Optics 39(2) 181-186 DOI: 10.18287/0134-2452-2015-39-2-181-186.

[33] Skidanov R V, Blank V A and Morozov A A 2015 Study of an imaging spectrometer based on a diffraction lens Computer Optics 39(2) 218-223 DOI: 10.18287/0134-2452-2015-39-2-218-223.

[34] Kozlova E S and Kotlyar V V 2014 Specified parameters of sellmeyer model for silica glass Computer Optics 38(1) 51-56.

[35] Kozlova E S, Kotlyar V V and Nalimov A G 2015 Comparative modeling of amplitude and phase zone plates Computer Optics 39(5) 687-693 DOI: 10.18287/0134-2452-2015-39-5-687-693.

[36] Davydov R V, Mazing M S, Yushkova V V and Simanov A V 2019 Journal of Physics: Conference Series 1410(1) 012067.

[37] Nepomnyashchaya E, Velichko E, Aksenov E and Bogomaz T 2018 Biophotonics: Photonic Solutions for Better Health Care VI. – International Society for Optics and Photonics 10685 10685F2.

[38] Baranov M A, Dudina A L and Nepomnyashchaya E K 2019 Journal of Physics: Conference Series 1226(1) 012005.

[39] Savchenko E and Velichko E 2019 International Society for Optics and Photonics 11065 11065U1.

[40] Kuzmin M S, Davydov V V and Rogov S A 2019 On the use of a multi-raster input of one-dimensional signals in two-dimensional optical correlators Computer Optics 43(3) 391-396 DOI: 10.18287/2412-6179-2019-43-3-391-396.

[41] Davydov R V and Antonov V I 2007 Journal of Physics: Conference Series 929(1) 012040.

[42] Gorynin I V, Oryshchenko A S, Malyshevskii V A, Farmakovskii B V and Kuznetsov P A 2015 Metal Science and Heat Treatment 56(9-10) 519-524.

[43] Myazin N S 2018 Journal Physics: Conference Series 1135(1) 012061.

[44] Zhernovoi A I and Diachenko S V 2017 Russian Physics Journal 58(1) 133-137.

[45] Alexandrov A S, Archipov R V, Ivanov A A, Gnezdilov O I, Gafurov M R and Skirda V D 2014 Applied Magnetic Resonance 45(11) 1275-1287.