A Radó theorem for complex spaces

Viorel Vîjîitu

Abstract. We generalize Radó’s extension theorem from the complex plane to reduced complex spaces.

2010 Mathematics Subject Classification: 32D15, 32D20, 32C15

Key words: Radó’s theorem, complex space, c-holomorphic function

1 Introduction

A theorem due to Radó asserts that a continuous complex valued function on an open subset of the complex plane is holomorphic provided that it is holomorphic off its zero set.

Essentially this theorem was proved in [10]. Since then many other proofs have been proposed, e.g. [2], [3], [6], and [7]. The articles [1], [11] and [14] give some generalizations.

Radó’s statement remains true for complex manifolds (or, more generally, for normal complex spaces) as well as in the complex plane.

In this short note we investigate a natural extension of Radó’s theorem when the ambient space has (non normal) singularities.

Complex spaces, unless explicitly stated, are assumed to be reduced and countable at infinity. Let $\mathbb{N} = \{1, 2, \ldots\}$ be the set of natural numbers;

Here we state our main results.

Proposition 1 There is an irreducible Stein curve X and a continuous function $f : X \to \mathbb{C}$ that is holomorphic off its zero set but no power f^ν, $\nu \in \mathbb{N}$, is globally holomorphic.

Theorem 1 Let X be a complex space and $\Omega \subset X$ be a relatively compact open set. Then, there is $\nu_\Omega \in \mathbb{N}$ such that, for every continuous function $f : X \to \mathbb{C}$ that is holomorphic off its zero set, and for every integer $\nu \geq \nu_\Omega$, the power function f^ν is holomorphic on Ω.
Recall the following definition. Let \(X \) be a complex space. A continuous, complex-valued function \(f \) defined on an open set \(U \subset X \) is \(c \)-holomorphic if its restriction of to \(\text{Reg}(X) \cap U \) is holomorphic, where \(\text{Reg}(X) \) is the open set of those points of \(X \) where it is locally a manifold. The sheaf of germs of \(c \)-holomorphic functions in \(X \) is denoted by \(\mathcal{O}_X^c \); it is a coherent \(\mathcal{O}_X \)-module.

Henceforth the following remark will be used tacitly. For a complex space \(X \), any continuous function \(f : X \to \mathbb{C} \) that is holomorphic off its zero set \(f^{-1}(0) \) is \(c \)-holomorphic. (This results by the classical Radó theorem on complex manifolds.)

2 Proof of Proposition 1

The example of a Stein curve \(X \) is obtained by implanting generalized cusp singularities at the points \(2, 3, \ldots \), of \(\mathbb{C} \), and then the existence of the function \(f \) is obtained via Cartan’s vanishing theorem on Stein spaces.

In order to proceed, let \(p \) and \(q \) be coprime integers \(\geq 2 \). Consider the cusp like irreducible and locally irreducible complex curve

\[
\Gamma = \{(z_1, z_2) \in \mathbb{C}^2 : z_1^p = z_2^q \} \subset \mathbb{C}^2.
\]

Its normalization is \(\mathbb{C} \) and \(\pi : \mathbb{C} \to \Gamma, t \mapsto (t^p, t^q) \), is the normalization map. Note that \(\pi \) is a homeomorphism.

A continuous function \(h : \Gamma \to \mathbb{C} \) that is holomorphic off its zero set, but fails to be globally holomorphic is produced as follows.

Select natural numbers \(m \) and \(n \) with \(mq - np = 1 \), and define \(h : \Gamma \to \mathbb{C} \) by setting for \((z_1, z_2) \in \Gamma \),

\[
h(z_1, z_2) := \begin{cases}
z_1^m/z_2^n & \text{if } z_2 \neq 0, \\
0 & \text{if } z_2 = 0.
\end{cases}
\]

It is easily seen that \(h \) is continuous (as \(\pi \) is a homeomorphism, the continuity of \(h \) follows from that of \(h \circ \pi \), which is equal to the identity mapping on \(\mathbb{C} \)), \(h \) is holomorphic off its zero set (incidentally, here, the regular part \(\text{Reg}(\Gamma) \) is the complement of this zero set), and \(h \) is not holomorphic about \((0, 0) \) (use a Taylor series expansion about \((0, 0) \in \mathbb{C}^2 \) of a presumably holomorphic extension).

Furthermore, \(h^k \) is globally holomorphic provided that \(k \geq (p-1)(q-1) \).

(Because every integer \(\geq (p-1)(q-1) \) can be written in the form \(\alpha p + \beta q \), where \(\alpha, \beta \) are integers.)
with \(\alpha, \beta \in \{0, 1, 2, \ldots\} \), and since \(h^p \) and \(h^q \) are holomorphic being the restrictions of \(z_2 \) and \(z_1 \) to \(\Gamma \) respectively.)

Also, \(z_1^p z_2^q h \) is holomorphic on \(\Gamma \) provided that \(q \frac{(m + a)/p}{+ b} \geq n \), where \([\cdot]\) is the floor function.

It is interesting to note that the stalk of germs of c-holomorphic functions \(\mathcal{O}_0^c \) at 0 is generated as an \(\mathcal{O}_0 \)-module by the germs at 0 of \(1, h, \ldots, h^r \), where \(r = \min\{p, q\} \).

Now, for each integer \(k \geq 2 \), let \(\Gamma_k := \{(z_1, z_2) \in \mathbb{C}^2 ; z_1^k = z_2^{k+1}\} \).

As previously noted, \(\Gamma_k \) is an irreducible curve whose normalization map is \(\pi_k : \mathbb{C} \to \Gamma_k, t \mapsto (t^{k+1}, t^k) \), and the function \(h_k : \Gamma_k \to \mathbb{C} \) defined for \((z_1, z_2) \in \Gamma_k \) by

\[
h_k(z_1, z_2) := \begin{cases} z_1/z_2 & \text{if } z_2 \neq 0, \\ 0 & \text{if } z_2 = 0, \end{cases}
\]

has the following properties:

a) The function \(h_k \) is c-holomorphic.

b) The power \(h_k^{k-1} \) is not holomorphic.

c) The function \(z_1^{k-1} h_k \) is holomorphic because it is the restriction of \(z_2^k \) to \(\Gamma_k \).

Here, with these examples of singularities at hand, we change the standard complex structure of \(\mathbb{C} \) at the discrete analytic set \(\{2, 3, \ldots\} \) by complex surgery, in order to obtain an irreducible Stein complex curve \(X \) and a discrete subset \(\Lambda = \{x_k : k = 2, 3, \ldots\} \) such that, at the level of germs \((X, x_k) \) is biholomorphic to \((\Gamma_k, 0) \).

The surgery, that we recall for the commodity of the reader (because in some monographs like [8] the subsequent condition (\(\star \)) is missing), goes as follows.

Let \(Y \) and \(U' \) be complex spaces together with analytic subsets \(A \) and \(A' \) of \(Y \) and \(U' \) respectively, such that there is an open neighborhood \(U \) of \(A \) in \(Y \) and \(\varphi : U \setminus A \to U' \setminus A' \) that is biholomorphic.

Then define

\[
X := (Y \setminus A) \sqcup_{\varphi} U' := (Y \setminus A) \sqcup U'/\sim
\]

by means of the equivalence relation \(U \setminus A \ni y \sim \varphi(y) \in U' \setminus A' \).

Then there exists exactly one complex structure on \(X \) such that \(U' \) and \(Y \setminus A \) can be viewed as open subsets of \(X \) in a canonical way provided that the following condition is satisfied:
(⋆) For every \(y \in \partial U \) and \(a' \in A' \) there are open neighborhoods \(D \) of \(y \) in \(Y \), \(D \cap A = \emptyset \), and \(B \) of \(a' \) in \(U' \) such that \(\varphi(D \cap U) \cap B \subseteq A' \).

Thus \(X \) is formed from \(Y \) by "replacing" \(A \) with \(A' \).

In practice, the condition (⋆) is fulfilled if \(\varphi^{-1} : U' \setminus A' \to U \setminus A \) extends to a continuous function \(\psi : U' \to U \) such that \(\psi(A') = A \). In this case, if \(D \) and \(V \) are disjoint open neighborhoods of \(\partial U \) and \(A \) in \(Y \) respectively, then \(B = A' \cup \varphi(V \setminus A) \) is open in \(U' \) because it equals \(\psi^{-1}(V) \) and (⋆) follows immediately. (This process is employed, for instance, in the construction of the blow-up of a point in a complex manifold!)

Coming back to the construction of the example proving Proposition 1, consider \(Y = \mathbb{C} \), \(A = \{2, 3, \ldots \} \) and for each \(k = 2, 3, \ldots \), let \(\Delta(k, 1/3) \) be the disk in \(\mathbb{C} \) centered at \(k \) of radius \(1/3 \) that is mapped holomorphically onto an open neighborhood \(U_k \) of \((0, 0) \in \Gamma_k \) through the holomorphic map \(t \mapsto \pi_k(z - k) \). Applying surgery, we get an irreducible Stein curve \(X \) and the discrete subset \(\Lambda \) with the aforementioned properties.

It remains to produce the function \(f \) as stated. For this we let \(\mathcal{I} \subset \mathcal{O}_X \) be the coherent ideal sheaf with support \(\Lambda \) and such that \(\mathcal{I}_{x_k} = \mathfrak{m}_{x_k}^{k-1} \) for \(k = 2, 3, \ldots \), where \(\mathfrak{m}_{x_k} \) is the maximal ideal of the analytic algebra of the stalk of \(\mathcal{O}_X \) at \(x_k \).

From the exact sequence

\[
0 \to \mathcal{I} \to \mathcal{O}_X \to \mathcal{O}_X/\mathcal{I} \to 0,
\]

we obtain a \(c \)-holomorphic function \(f \) on \(X \) such that, for each \(k = 2, 3, \ldots \), at germs level \(f \) equals \(h_k (\text{mod } \mathcal{I}_{x_k}) \).

By properties \(a_k \), \(b_k \) and \(a_k \) from above, it follows that there does exist \(\nu \in \mathbb{N} \) such that \(f^\nu \) becomes holomorphic on \(X \). (For instance, if \(f = h_k + g_k^{k-1} \), for certain \(g_k \in \mathfrak{m}_{x_k} \), then \(f^{k-1} \) is not holomorphic about \(x_k \).)

3 Proof of Theorem 1

This is divided into four steps. In the first step we recall, following [4], the multiplicity of an analytic set at a point. Then in Step 2, we estimate the vanishing order of a \(c \)-holomorphic function germ at a point of its zero set in terms of the multiplicity of the analytic germ where it is defined. In Step 3 we collect some useful facts about \(O^N \)-approximability due to Spallek [13] and Siu [12]. Eventually, the proof of theorem is achieved in the fourth step.
Step 1. Let \(A \) be a pure \(k \)-dimensional locally analytic subset of \(\mathbb{C}^n \). Let \(a \in A \) and select a \((n-k)\)-dimensional complex subspace \(L \subset \mathbb{C}^n \) such that \(a \) is an isolated point of the set \(A \cap \{a\} + L \). Then, as we know, there is a domain \(U \ni a \in \mathbb{C}^n \) such that \(A \cap U \cap \{a\} + L = \{a\} \) and such that the projection \(\pi_L : A \cap U \to U'_L \subset L^\perp \) along \(L \) is a \(d \)-sheeted analytic cover, for some \(d \in \mathbb{N} \), where \(L^\perp \) is the orthogonal of \(L \) with respect to the canonical scalar product in \(\mathbb{C}^n \).

The critical analytic set \(\Sigma \) of this cover does not partition the domain \(U'_L \) and is nowhere dense in it, therefore the number of sheets of this cover does not change when shrinking \(U \). Furthermore, if \(z' \) is the projection of \(z \) in \(L^\perp \) and \(z' \in U'_L \setminus \Sigma \), then
\[
\# \ A \cap U \cap \{z\} = d
\]
and all \(d \) points of the fiber above \(z' \) tend to \(a \) as \(z' \to a'. \) This number is called the multiplicity of the projection \(\pi_L|_A \) at \(a \), and is denoted by \(\mu_a(\pi_L|_A) \).

For any point \(x \in A \) in the above indicated small neighborhood \(U \ni a \) the number of sheets of the cover \(A \cap U \to U'_L \) does not exceed \(d \) in a neighborhood of \(x \) (it may be less), hence the function \(\mu_x(\pi_L|_A) \) is upper semicontinuous on \(A \cap U \). See [4], p. 102.

Thus, for every \((n-p)\)-dimensional complex plane \(L \subset \mathbb{C}^n \) such that \(a \) is an isolated point in \(A \cap \{a\} + L \), the multiplicity of the projection \(\mu_a(\pi_L|_A) \) is finite. The minimum of these numbers over all \(L \in \text{Gr}(n-p,n) \) as above is denoted \(\mu_a(A) \) and is called the multiplicity of \(A \) at \(a \).

Furthermore, it can be shown that the multiplicity \(\mu_a(A) \) does not depend on how \(A \) is locally embedded at \(a \) into a complex euclidean space.

Altogether we get a function \(A \ni x \mapsto \mu_x(A) \in \mathbb{N} \) that is upper semicontinuous. See [4], p. 120.

Step 2. For the sake of simplicity, let \(a = 0 \) and for the complex subspace \(L = \{0\} \times \mathbb{C}^{n-k} \) the projection \(\pi_L|_A \) realizes \(\mu_0(A) \), namely \(\mu_0(\pi_L|_A) = \mu_0(A) \).

With the necessary changes, by Step 1 we arrive at the following set-up.

The set \(A \) is (locally) analytic in \(D \times \mathbb{C}^{n-k} \) with \(D \) a domain of \(\mathbb{C}^k \), the map \(\pi : A \to D \) is induced by the first projection from \(\mathbb{C}^k \times \mathbb{C}^{n-k} \) onto \(\mathbb{C}^k \), \(A \ni (z,w) \mapsto \pi(x) = z \), such that \(\pi \) is a (finite) branched covering with image \(D \), covering number \(d := \mu_0(A) \), critical set \(\Sigma \), which is a nowhere dense analytic subset of \(D \), and \(\pi^{-1}(0) = \{0\} \).

Now, let \(h : A \to \mathbb{C} \) be any \(c \)-holomorphic function. For every point
\[x = (z, w) \in (D \setminus \Sigma) \times \mathbb{C}^{n-k}, \] we define the polynomial
\[
\omega(x, t) = \prod_{\pi(x') = z} (t - h(x')) = t^d + a_1(x)t^{d-1} + \cdots + a_d(x).
\]

Since \(h \) is holomorphic on the regular part \(\text{Reg}(A) \) of \(A \) and \(h \) is continuous on \(A \), \textit{a fortiori} \(h \) is bounded on any compact subset of \(A \) (in particular, on \(\pi^{-1}(K) \), for every compact set \(K \) of \(D \)), the coefficients \(a_j \) are naturally holomorphic on \((D \setminus \Sigma) \times \mathbb{C}^{n-k} \) and locally bounded on \(D \times \mathbb{C}^k \). Thus, granting Riemann’s extension theorem, they extend holomorphically to \(D \times \mathbb{C}^{n-k} \) (we keep the same notations for the extensions). If, furthermore, \(h(0) = 0 \), then all coefficients \(a_j(0) = 0 \) because \(\pi \) is proper and \(\pi^{-1}(0) = \{0\} \).

Therefore we obtain a distinguished Weierstrass polynomial of degree \(d \),
\[W(x, t) = t^d + a_1(x)t^{d-1} + \cdots + a_d(x), \]
that is the unique extension of \(\omega \) to \(D \times \mathbb{C}^{n-k} \) and such that
\[W(x, h(x)) = 0 \]
for all \(x \in A \).

Note that, if \(W(x, t) = 0 \), then the identity \(|t|^d = O(\|x\|) \) holds true as \((x, t) \to 0 \) since \(|a_j(x)| = O(\|x\|) \), or equivalently
\[|t| = O(\|x\|^{1/d}) \]
as \((x, t) \to 0 \), meaning that there are positive constants \(M \) and \(\epsilon \) such that, if \(W(x, t) = 0 \) and \(\max\{|t|, \|x\|\} < \epsilon \), then \(|t| \leq M\|x\|^{1/d} \).

To sum up, coming back to the general setting, and using that for two real numbers \(\alpha \) and \(\beta \), one has \(s^\alpha = O(s^\beta) \) as \((0, \infty) \ni s \to 0 \) if and only if \(\alpha \geq \beta \), by routine arguments, from Step 1 and the above discussion we get the following fact.

1. Let \(A \) be a locally analytic subset of \(\mathbb{C}^n \) of pure dimension. Then the multiplicity function \(\mu_x(A) \) on \(x \in A \) is upper semicontinuous. Furthermore, any point \(a \in A \) admits an open neighborhood \(U \) in \(A \) such that, for every point \(x_0 \in U \) and every non-constant, \(c \)-holomorphic germ \(h : (A, x_0) \to (\mathbb{C}, 0) \), one has
\[|h(x)| = O(\|x - x_0\|^\alpha) \]
as \(A \ni x \to x_0 \),
where \(\alpha = 1/\mu_a(A) \).

In general, if \((A, x) = \bigcup_j (A_j, x) \) is the decomposition of the germ \((A, x) \) into its finitely many irreducible components, whose number might depend on \(x \in A \), then we set \(\mu_x(A) = \max_j \mu_x(A_j) \). The multiplicity function thus
defined is upper semicontinuous on \(A \) and the above “identity” in (\(\dagger \)) holds for the exponent \(\alpha \) given by \(1/\alpha = \max_j \mu_a(A_j) \).

For the commodity of the reader, we mention that, for any complex space \(X \) we get a natural multiplicity function \(X \ni x \mapsto \mu_x(X) \in \mathbb{N} \) that is upper semicontinuous, although this information is not used hereafter.

Step 3. From Spallek [13] we recall the following notion. Let \(A \subset \mathbb{C}^n \) be a set and \(a \) a point of \(A \). We say that a germ function \(\varphi : (A,a) \to (\mathbb{C},\varphi(a)) \) is \(O_N \)-approximable at \(a \) if there exists a polynomial \(P(z,\overline{z}) \) of degree at most \(N - 1 \) in the variables \(z_j - a_j, \overline{z}_j - \overline{a}_j, j = 1, \ldots, n \), such that

\[
|\varphi(z) - P(z, \overline{z})| = O(\|z - a\|^N) \quad \text{as} \quad A \ni z \to a.
\]

Example 1. If \(\varphi \) is the restriction of a \(C^\infty \)-smooth, complex valued function defined on a neighborhood of \(a \) in \(\mathbb{C}^n \), then using Taylor formula, one has that \(\varphi \) is \(O_N \)-approximable at \(a \) for all positive integers \(N \).

Example 2. Let \(A \) be locally analytic at the point \(a \), and \(\nu, N \in \mathbb{N} \) that satisfy \(\nu > \mu_a(A)N \). Then, by (\(\dagger \)) it follows that for any germ of a \(c \)-holomorphic map \(h : (A,a) \to (\mathbb{C},0) \), \(\Re h^\nu \) and \(\Im h^\nu \) are \(O_N \)-approximable at \(a \).

The following result due to Siu [12] improves onto Spallek’s similar one from [13].

Proposition 2 For every compact set \(K \) of a complex space \(X \) there exists a positive integer \(N = N(K) \) depending on \(K \) such that, if \(f \) is a \(c \)-holomorphic function germ at \(x \in K \) and \(\Re f \) is \(O_N \)-approximable at any point in some neighborhood of \(x \), then \(f \) is a holomorphic germ at \(x \).

Step 4. To conclude the theorem, since the assertion to be proven is local, without any loss in generality, we may assume that \(X \) is an analytic subset of some open set of \(\mathbb{C}^n \).

Now let \(K \) be a compact set of \(X \). We claim that there is \(\nu_K \in \mathbb{N} \) such that, for any \(c \)-holomorphic function \(f \) on \(X \) that is holomorphic off its zero set \(f^{-1}(0) \), the power \(f^\nu \) is holomorphic about \(K \) for all integers \(\nu \geq \nu_K \).

For this consider a compact neighborhood \(K^* \) of \(K \) in \(X \). Since the function \(X \ni x \mapsto \mu_x(X) \in \mathbb{N} \) is upper semicontinuous, there exists a natural number \(d \) such that \(\mu_x(X) < d \) for all \(x \in K^* \).

We show that \(\nu_K = dN \) is as desired, where \(N \) is selected according to Proposition 2 corresponding to the compact \(K \) of \(X \).
Indeed, in order to show that f^ν is holomorphic about K for $\nu \in \mathbb{N}$ that satisfies $\nu \geq \nu_K$, we apply Proposition 2, and for this we need to check that the function $\text{Re} f^\nu$ is O^N-approximable at any point $x \in K^*$.

This follows by case analysis.

If $f(x) \neq 0$, since f is holomorphic on the open set $X \setminus f^{-1}(0)$ of X so that $\text{Re} f$ and $\text{Im} f$ are C^∞-smooth there, by Example 1 it follows that $\text{Re} f^\nu$ is O^N-approximable at x.

If $f(x) = 0$, then by Example 2 the function $\text{Re} f^\nu$ is O^N-approximable at x because $\nu \geq dN = \nu_K$.

This completes the proof of the theorem.

4 A final remark

Below we answer a question raised by Th. Peternell at the XXIV Conference on Complex Analysis and Geometry, held in Levico-Terme, June 10–14, 2019. He asked whether or not a similar statement like Theorem 1 does hold for non reduced complex spaces.

More specifically, let (X, \mathcal{O}_X) be a not necessarily reduced complex space and $f : X \to \mathbb{C}$ be continuous such that, if A denotes the zero set of f, then $X \setminus A$ is dense in X and there is a section $\sigma \in \Gamma(X \setminus A, \mathcal{O}_X)$ whose reduction $\text{Red}(\sigma)$ equals $f|_{X \setminus A}$.

Is it true that, for every relatively compact open subset D of X, there is a positive integer n such that σ^n extends to a section in $\Gamma(D, \mathcal{O}_X)$?

We show that the answer is "No".

In order to do this, recall that, if R is a commutative ring with unit and M is an R-module, we can endow the direct sum $R \oplus M$ with a ring structure with the obvious addition, and multiplication defined by

$$(r, m) \cdot (r', m') = (rr', rm' + r'm).$$

This is the Nagata ring structure from algebra [9].

Now, if (X, \mathcal{O}_X) is a complex space, and \mathcal{F} a coherent \mathcal{O}_X-module, then $\mathcal{H} := \mathcal{O}_X \oplus \mathcal{F}$ becomes a coherent sheaf of analytic algebras and (X, \mathcal{H}) a complex space ([5], Satz 2.3).

The example is as follows. Let $^{\nu} \mathcal{O}$ denotes the structural sheaf of \mathbb{C}^n. The above discussion produces a complex space $(\mathbb{C}, \mathcal{H})$ such that $\mathcal{H} = \mathcal{O} \oplus ^{\nu} \mathcal{O}$, that can be written in a suggestive way $\mathcal{H} = \mathcal{O} + \epsilon \cdot \mathcal{O}$, where ϵ is a symbol.
Radó theorem for complex spaces

with $\epsilon^2 = 0$. As a matter of fact, if we consider \mathbb{C}^2 with complex coordinates (z, w) and the coherent ideal \mathcal{I} generated by w^2, then \mathcal{H} is the analytic restriction of the quotient \mathcal{O}/\mathcal{I} to \mathbb{C}.

The reduction of $(\mathbb{C}, \mathcal{H})$ is $(\mathbb{C}, 1_\mathcal{O})$. A holomorphic section of \mathcal{H} over an open set $U \subset \mathbb{C}$ consists of couple of ordinary holomorphic functions on U.

Now take f the identity function id on \mathbb{C}, and the holomorphic section $\sigma \in \Gamma(\mathbb{C}^*, \mathcal{H})$ given by $\sigma = id + \epsilon g$, where g is holomorphic on \mathbb{C}^* having a singularity at 0, for instance $g(z) = 1/z$.

Obviously, the reduction of σ is the restriction of id on \mathbb{C}^*, and no power σ^k of σ extends across 0 to a section in $\Gamma(\mathbb{C}, \mathcal{H})$, since $\sigma^k = id + \epsilon kg$ and g does not extend holomorphically across $0 \in \mathbb{C}$.

Acknowledgements. We thank the anonymous reviewer for critical reading and suggestions that helped to improve on earlier drafts of the manuscript.

References

[1] B. Aupetit: Une généralisation du théorème d’extension de Radó, Manuscripta Math. 23 (1977/78), 319–323.
[2] H. Behnke and K. Stein: Modifikation komplexer Mannigfaltigkeiten und Riemannscher Gebiete, Math. Ann. 124 (1951), 1–16.
[3] H. Cartan: Sur une extension d’un théorème de Radó, Math. Ann. 125 (1952), 49–50.
[4] E. M. Chirka: Complex analytic sets. Kluwer Academic Publishers Group, Dordrecht, 1989.
[5] O. Forster: Zur Theorie der Steinschen Algebren und Moduln, Math. Z. 97 (1967), 376–405.
[6] E. Heinz: Ein elementarer Beweis des Satzes von Radó-Behnke-Stein-Cartan über analytische Funktionen, Math. Ann. 131 (1956), 258–259.
[7] R. Kaufman: A theorem of Radó, Math. Ann. 169 (1967), 282.
[8] L. Kaup and B. Kaup: Holomorphic functions of several variables, de Gruyter Studies in Mathematics 3, Berlin, 1983.
[9] M. Nagata: Local rings. New York: Interscience 1962.
[10] T. Radó: Über eine nicht fortsetzbare Riemannsche Mannigfaltigkeit, Math. Z. 20 (1924), 1–6.
[11] J. Riihentaus: A note concerning Radó’s theorem, Math. Z. 182 (1983), 159–165.
[12] Y.T. Siu: O^N-approximable and holomorphic functions on complex spaces, *Duke Math. J.* **36** (1969), 451–454.

[13] K. Spallek: Differenzierbare und holomorphe Funktionen auf analytischen Mengen, *Math Ann.* **161** (1965), 143–162.

[14] E. L. Stout: A generalization of a theorem of Radó, *Math. Ann.* **177** (1968), 339–340.

[15] H. Whitney: Complex analytic varieties, Addison–Wesley, 1972.

Université de Lille, Lab. Paul Painlevé, Bât. M2
F-59655 Villeneuve d’Ascq Cedex, France
E-mail: viorel.vajaitu@univ-lille.fr