Constraints on primordial non-Gaussianity from future H\textsubscript{i} intensity mapping experiments

YI-CHAO L1 and YIN-ZHE M1

School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa and NAOC-UKZN Computational Astrophysics Centre (NUCAC), University of KwaZulu-Natal, Durban, 4000, South Africa

The primordial non-Gaussianity induces scale-dependent bias of the H\textsubscript{i} with respect to the underlying dark matter, which exhibits features on the very large scales of the 21-cm power spectrum potentially observable with H\textsubscript{i} intensity mapping observations. We forecast the prospective constraints on the four fundamental shapes of primordial non-Gaussianity (local, equilateral, orthogonal, and enfolded), with the current and future H\textsubscript{i} intensity mapping experiments, BINGO, FAST, and SKA-I. With the current configuration of the experiments and assumed one-year observation assumption, we find that the SKA-I will provide tighter constraints on the local shape of primordial non-Gaussianity than Planck. The results are $(\sigma_{f_{\text{local}}^{\text{NL}}}, \sigma_{f_{\text{local}}^{\text{equil}}}, \sigma_{f_{\text{local}}^{\text{orth}}}, \sigma_{f_{\text{local}}^{\text{enfold}}})$ SKA-I = $(0.54, 86, 25, 43)$, $(\sigma_{f_{\text{local}}^{\text{NL}}}, \sigma_{f_{\text{local}}^{\text{equil}}}, \sigma_{f_{\text{local}}^{\text{orth}}}, \sigma_{f_{\text{local}}^{\text{enfold}}})$ BINGO = $(17, 100, 128, 164)$, $(\sigma_{f_{\text{local}}^{\text{NL}}}, \sigma_{f_{\text{local}}^{\text{equil}}}, \sigma_{f_{\text{local}}^{\text{orth}}}, \sigma_{f_{\text{local}}^{\text{enfold}}})$ FAST = $(9.5, 44, 75, 94)$. If the lower frequency band of FAST can be used, the constraint on local-type primordial non-Gaussianity will be $f_{\text{local}} < 1.62$ which is better than Planck. In addition, if the observation time for FAST could be extended to two years, the constraint on the equilateral shape of primordial non-Gaussianity would be improved to $f_{\text{local}} < 32$. Similarly, if the observational time of SKA-I could be extended to two years, the constraint on local and orthogonal shapes could be improved to 0.43 and 20, respectively, achieving better constraints than Planck.

I. INTRODUCTION

The statistical properties of the primordial fluctuation offer rich insights into the physics of inflation and the early Universe [1]. One of the widely discussed questions is whether or not the primordial fluctuations deviated from the Gaussian distribution. The simple single-field slow-roll inflationary model predicts primordial fluctuation with almost Gaussian distribution. The simple single-field slow-roll inflationary model predicts primordial fluctuation with almost Gaussian distribution. The simple single-field slow-roll inflationary model predicts primordial fluctuation with almost Gaussian distribution. The simple single-field slow-roll inflationary model predicts primordial fluctuation with almost Gaussian distribution. The simple single-field slow-roll inflationary model predicts primordial fluctuation with almost Gaussian distribution. The simple single-field slow-roll inflationary model predicts primordial fluctuation with almost Gaussian distribution. The simple single-field slow-roll inflationary model predicts primordial fluctuation with almost Gaussian distribution. The simple single-field slow-roll inflationary model predicts primordial fluctuation with almost Gaussian distribution. The simple single-field slow-roll inflationary model predicts primordial fluctuation with almost Gaussian distribution. The simple single-field slow-roll inflationary model predicts primordial fluctuation with almost Gaussian distribution. The simple single-field slow-roll inflationary model predicts primordial fluctuation with almost Gaussian distribution. The simple single-field slow-roll inflationary model predicts primordial fluctuation with almost Gaussian distribution. The simple single-field slow-roll inflationary model predicts primordial fluctuation with almost Gaussian distribution. The simple single-field slow-roll inflationary model predicts primordial fluctuation with almost Gaussian distribution. The simple single-field slow-roll inflationary model predicts primordial fluctuation with almost Gaussian distribution. The simple single-field slow-roll inflationary model predicts primordial fluctuation with almost Gaussian distribution. The simple single-field slow-roll inflationary model predicts primordial fluctuation with almost Gaussian distribution. The simple single-field slow-roll inflationary model predicts primordial fluctuation with almost Gaussian distribution. The simple single-field slow-roll inflationary model predicts primordial fluctuation with almost Gaussian distribution. The simple single-field slow-roll inflationary model predicts primordial fluctuation with almost Gaussian distribution. The simple single-field slow-roll inflationary model predicts primordial fluctuation with almost Gaussian distribution.

If the primordial fluctuation is Gaussian, the two-point correlation function (i.e. the power spectrum in Fourier space) can describe all of the statistical properties of the PNG. Therefore, the most straightforward way to measure the PNG is through the higher-order correlation of CMB or LSS. Current measurements of the temperature and polarization of CMB from the Planck satellite provide state-of-the-art constraints on local, equilateral and orthogonal types of PNG [13] as $f_{\text{local}} = 0.8 \pm 5.0$, $f_{\text{equil}} = -4 \pm 43$, and $f_{\text{orth}} = -26 \pm 21$ at 68% confidence level (C.L.).

Besides the constraints from CMB, there have been many efforts to measure f_{NL} through large-scale structure surveys. This is because the PNG induces a scale-dependent bias of the galaxy with respect to the underlying dark matter distribution tracer [16-22]. Reference [19] used spectroscopic and photometric luminous red galaxy samples and quasar samples from the SDSS survey to obtain the limit for local-type PNG as $-31(-96) < f_{\text{local}} < +70(+96)$ at 95% (99.7%) C.L., which was comparable to the measurements at the time from the Wilkinson Microwave Anisotropy Probe (WMAP) five-year results. Reference [23] used radio sources from the NRAO VLA Sky Survey (NVSS), the quasar and MegaZ-LRG (DR7) catalogues of the SDSS, and the final SDSS II Luminous Red Galaxy (LRG) photometric redshift survey and found $f_{\text{local}} = 48 \pm 20$ (1σ C.L.). Reference [24] found $f_{\text{local}} = 90 \pm 30$ at 1σ C.L. by using photometric SDSS data, but due to unaccounted systematics this result may be better interpreted as $f_{\text{local}} < 120$ at 84% C.L. Reference [25] used the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) data to constrain the f_{local} and found $-45 < f_{\text{local}} < 195$ at 2σ C.L. In addition, Ref. [26] used the correlation of the residual peculiar velocities on different directions to constrain PNG and found $|f_{\text{local}}| < 25.7$ at 68% C.L. These limits are currently consistent with but weaker than the measurements from the Planck CMB observation. In general, the scale-dependent bias signal can be degenerared with the nonlinear bias between halo and underlying dark matter, which is contributed from the nonlinear evolution of the matter fluctuations [27]. However, forecasts indicate that the constraint errors could decrease 1 or 2 orders of the magnitude with the future LSS survey, especially for the future radio survey. (see [28] and its references for review). Beside the constraint on the PNG amplitude, previous studies also show that the scale-dependent bias introduced by the PNG is sensitive mainly to the squeezed limit and, with the future LSS surveys, it can be used to distinguish among different PNG shapes [29-30].

The scale-dependent bias not only affects the large-scale galaxy bias, but also affects the H\textsubscript{i} distribution. A more efficient method of the radio survey is to map out a large volume of the Universe through the intensity mapping technique, which measures the combined H\textsubscript{i} emission of the unresolved galaxies. Therefore, in principle one can obtain a three-
dimensional HI distribution that can provide more modes of fluctuation than the CMB two-dimensional sphere. There have been several works to forecast the detectability of PNG through the HI intensity mapping technique \cite{31, 33}, but those forecasts are exclusively only for the local and equilateral type of PNG and limited experimental cases (SKA and Tianlai). In this work, we will calculate the scale-dependent bias of all four typical types of PNG by using the halo model and calculate their imprints on the power spectrum of HI. Then we forecast the detectability of all three ongoing HI imaging surveys, i.e., BAO as Integrated Neutral Gas Observation (BINGO) \cite{34}, Five-Hundred-Metre Aperture Spherical Telescope (FAST) \cite{35, 36} and Square Kilometre Array Phase-I (SKA-I) \cite{37}.

This paper is organized as follows. In Sec. \textbf{III} we summarize the primordial bispectrum and discuss different types of PNG to be forecasted in this work. In Sec. \textbf{IV} we calculate the scale-dependent bias of the LSS induced by the PNG, and then the power spectrum of HI. In Sec. \textbf{V} we introduce the Fisher matrix forecast method that used in our analysis. In Sec. \textbf{VI} the detailed experiment parameters are discussed. In Sec. \textbf{VII} we present our results and some discussion. Conclusion will be in the last section.

Besides the PNG parameters, we will adopt a spatially flat Universe with cosmological parameters fixed as Planck 2015 best-fitting values \cite{39}, i.e. $\Omega_m = 0.309; \Omega_k = 0.691; \sigma_8 = 0.809$; and $h = 0.68$, where the Hubble constant is $H_0 = 100 \, h \, \text{km} \, \text{s}^{-1} \, \text{Mpc}^{-1}$. The amplitude and tilt of scalar power spectrum are $A_s(k_0) = 2.141 \times 10^{-9}$ and $n_s = 0.961$, where pivot scale is $k_0 = 0.002 \, \text{Mpc}^{-1}$.

\section{II. PRIMORDIAL BISPECTRUM}

The inflationary models predict the primordial curvature fluctuations with the deviation from Gaussian distribution \cite{4, 39, 41}. The deviation is particularly described by writing the gauge-invariant Bardeen’s potential ϕ as the sum of a Gaussian random field and a quadratic correlation \cite{40, 42},

$$\phi = \phi_G + f_{NL}(\phi_G^2 - \langle \phi_G^2 \rangle),$$

in which f_{NL} is a dimensionless, phenomenological parameter describing the magnitude of the PNG.

To extract more information of the non-Gaussian primordial fluctuations, we need to go beyond the statistics of the power spectrum. The lowest-order statistics sensitive to the PNG is the three-point function or bispectrum $B_\phi(k_1, k_2, k_3)$, in which ϕ is the primordial Bardeen potential which is directly related to the curvature perturbation \cite{43}. The potential of the primordial curvature perturbation is related to the Newtonian potential during the matter domination via the transfer function $T(k)$ which satisfies $T(k \to 0) = 1$. By applying the Poisson equation, ϕ is related to the matter density field $\delta_m(k)$ by $\delta_m(k) = M(k) \phi(k)$, where

$$M(k) = \frac{2 \kappa^2 T(k)}{3 \Omega_m H_0^2},$$

The configuration shape of $B_\phi(k_1, k_2, k_3)$ is related to the physical mechanisms during the inflation. In our analysis, we consider four classes of bispectrum shape characterizing the local, equilateral, enfolded and orthogonal types of PNG.

\subsection{A. Local shape}

The local-type PNG can be produced in different inflationary models, such as the multifield model \cite{5, 44}, curvaton model \cite{45}, inhomogeneous reheating \cite{48} or new Ekpyrotic models \cite{46}. In these cases, f_{NL}^local can be substantially different from zero.

The potential bispectrum of the local-type PNG has the simple form,

$$B_\phi(k_1, k_2, k_3) = 2 f_{NL}^\text{local} [P_\phi(k_1)P_\phi(k_2) + (\text{cyc.})],$$

in which, $P_\phi(k) = 2\pi^2 A_s(k_0)(k/k_0)^{n_s - 4}$ is the power spectrum of the Gaussian Bardeen potential.

\subsection{B. Equilateral shape}

The equilateral-type of PNG can be produced in the inflationary models with higher-derivative interactions. Usually there are two dominant interaction terms of the inflation field giving rise to the PNG peaking in the equilateral limit, which can be represented by a unique template with the equilateral shape.

The primordial bispectrum of the equilateral type takes the form \cite{39},

$$B_\phi(k_1, k_2, k_3) = 6 f_{NL}^\text{equil} \gamma(k_1, k_2, k_3)$$

$$\times \left[\left(\frac{\phi_\phi}{\phi_G^2} \right) + \frac{\phi_\phi^2}{\phi_G^4} \right]^{2/3},$$

in which function $\gamma(k_1, k_2, k_3)$ takes into account the running of f_{NL}^equil and reads \cite{47}

$$\gamma(k_1, k_2, k_3) = \left(\frac{k_1 + k_2 + k_3}{k_{CMB}} \right)^{2\kappa},$$

where $k_{CMB} = 0.086 \, \text{hMpc}^{-1}$, roughly corresponding to the largest ℓ used to estimate the non-Gaussianity with WMAP data \cite{48}. The free parameter κ is assumed to be constant.

Following the discussion in the works of \cite{47, 49}, we use small negative $\kappa = -0.2$ to enhance the non-Gaussianity on small scales. In the rest of this paper, the equilateral-type bispectrum always take the form of Eq. (4) with $\kappa = -0.2$.

C. Orthogonal shape

The shapes of PNG caused by the two dominant terms of higher-derivative interactions, as we introduced above, are slightly different around flattened triangles \(k_2 + k_3 \simeq k_1 \). By taking an appropriate linear combination, the resulting orthogonal shape of the PNG can minimize the similarities and maximize the differences. The orthogonal shape is well approximated by the following template \([41,50]\):

\[
B_\phi(k_1, k_2, k_3) = 6f_{NL}^{\text{orth}} \left[-3 \left(P_\phi(k_1)P_\phi(k_2) + \text{cyc.} \right) \right. \\
- \left. 8 \left(P_\phi(k_1)P_\phi(k_2)P_\phi(k_3) \right)^{2/3} \right. \\
+ \left. 3 \left(P_\phi^{1/3}(k_1)P_\phi^{2/3}(k_2)P_\phi(k_3) + \text{cyc.} \right) \right],
\]

(6)

D. Enfolded shape

It is well studied that if the initial vacuum state for the inflation deviates from the standard Bunch-Davies vacuum, the resulting bispectrum takes the enfolded shape \([9-12]\), which can be approximated by

\[
B_\phi(k_1, k_2, k_3) = 6f_{NL}^{\text{enfold}} \left[\left(P_\phi(k_1)P_\phi(k_2) + \text{cyc.} \right) \right. \\
+ \left. 3 \left(P_\phi^{1/3}(k_1)P_\phi^{2/3}(k_2)P_\phi(k_3) + \text{cyc.} \right) \right].
\]

(7)

Note that as pointed out in Appendix C of \([51]\), the squeezed limit of this type of non-Gaussianity will result in a negligible scale-dependent bias. Reference \([51]\) suggested a new factorizable template with correct squeezed limit.

III. HI BIAS AND POWER SPECTRA OF 21-CM

The \(\text{HI} \) bias is the bias of \(\text{HI} \) distribution with respect to the underlying dark matter distribution and the \(\text{HI} \) bias function, \(b_{\text{HI}} \), can be obtained by assuming a model for the amount of \(\text{HI} \) mass in a dark matter halo of mass \(M \), \(M_{\text{HI}}(M) \), and integrating over the halo mass function \(\text{dn}/\text{d}M \). Here we use the Sheth-Tormen halo mass function \([52]\) with mass range \([10^8, 10^{10}] \odot \)

\[
b_{\text{HI}}(z) = \frac{1}{\rho_{\text{HI}}(z)} \int_{M_{\text{min}}}^{M_{\text{max}}} \frac{\text{dn}}{\text{d}M}(M, z)M_{\text{HI}}(M)b(M, z),
\]

(8)

in which \(b(M, z) \) is the real-space halo bias and \(\rho_{\text{HI}}(z) \) is

\[
\rho_{\text{HI}}(z) = \int_{M_{\text{min}}}^{M_{\text{max}}} \frac{\text{dn}}{\text{d}M}(M, z)M_{\text{HI}}(M).
\]

(9)

For the \(\text{HI} \) intensity mapping experiments, we follow the assumption discussed in \([53]\) and consider a simple power law model for the amount of \(\text{HI} \) mass,

\[
M_{\text{HI}}(M) = AM^\alpha, \quad \alpha \approx 0.6,
\]

(10)

which is a redshift independent function. The prefactor \(A \) will be canceled with the normalization of \(\rho_{\text{HI}} \).

A. The Lagrangian bias

The Lagrangian bias describes the statistical bias of the halo distribution to the primordial dark matter fields. The PNG affects the initial conditions of the primordial density fields, so it is more convenient to study such effects in Lagrangian space.

On the other hand, it is also necessary to study the statistics of the evolved halo field at low redshifts in Eulerian space, which is conveniently related to the observation. The bias in Lagrangian space, \(b_L \), relates to the Eulerian space bias, \(b_E \), via \(b_E = b_L + 1 \). The extra unity factor of \(b_E \) reflects the motions of primordial peaks at later times. The uniformly distributed halos in the initial epoch, which have \(b_L = 0 \), will lead to unbiased distribution to the dark matter field at a later time. The \(b_L \) for halos is defined as positive. But for other dark matter tracers, it can be negative. The tracers anticorrelated with the initial dark matter fields will lead to the less clustered distribution than the dark matter field at later time.

It the past 30 years, people have been developing different analytical, semianalytical and parametric models of the bias function. Below, we list the three most typical and commonly used ones.

Based on the Press and Schechter (PS) halo mass function \([50]\) and its extensions, \([54]\), \([55]\) give the bias factor for the halo of mass \(M \),

\[
b_L(M, z) = \frac{1}{\delta_c} \left[\nu^2(M, z) - 1 \right],
\]

(11)

where \(\nu(M, z) = \delta_c(z)/\sigma_k \). \(\delta_c(z) \) is \(\delta_c / D(z) \), where \(D(z) \) is the linear growth function and we use Eq. (10) in \([55]\) to
compute it. \(\delta_c \simeq 1.686 \) is the critical density contrast for spherical collapse. With the approximation of high-peak, the above bias factor can be expressed as \(b_L(M, z) = \delta_c(z)/\sigma_R^2 \) (Matarrese and Verde 2008 [17]). With the ellipsoidal collapse model [57], Mo and White (2002) [55] give another expression,

\[
b_L(M, z) = \frac{1}{\delta_c(z)} \left[\mu'^2 + b \mu'^2(1-c) - \frac{\mu'^2 c}{\sqrt{\alpha}} \right],
\]

(12)

in which, \(\mu' = \sqrt{\alpha} \mu \) and \(\alpha = 0.707, \beta = 0.5, c = 0.6 \).

Figure 1 shows the three models of Lagrangian bias we discussed above.

B. The scale-dependent bias

As we analyzed before, PNG affects the distribution of the peaks at the initial stage of matter fluctuations; therefore, it is correlated with the Lagrangian bias. In the presence of PNG, the halo bias can be written as the combination of a usual scale-invariant bias, \(b(M, z) \), and a scale-dependent modification, \(\Delta b(M, z, k) \),

\[
b^{NG}(M, z, k) = b(M, z) + \Delta b(M, z, k).
\]

(13)

By substituting Eq. (13) into Eq. (8), we can obtain the scale-dependent HI bias, which can be expressed as,

\[
b_{HI}^{NG}(z, k) = b_{HI}(z) + \Delta b_{HI}(z, k),
\]

(14)

in which \(b_{HI}^{NG}(z, k) \) is the total bias, \(b_{HI}(z) \) is the scale-independent term, and \(\Delta b_{HI}(z, k) \) is the scale-dependent term, which is obtained by integrating \(\Delta b(M, z, k) \) over the halo mass function and the HI mass model,

\[
\Delta b_{HI}(z, k) = \frac{1}{\rho_{HI}(z)} \int_{M_{min}}^{M_{max}} dM \times \frac{d n}{d M}(M, z) M_{HI}(M) \Delta b(M, z, k),
\]

(15)

where \(\rho_{HI}(z) \) is calculated in Eq. (9).

Dalal et al. [16] firstly derived the expression of scale-dependent correction to the bias of galaxies and halos for local-shape bispectrum,

\[
\Delta b^D(z, k) = 2(b_{E} - 1)f_{NL}\delta_c \frac{3\Omega_m}{2a(z)g(z)\mu^2 \sigma_{D}^2},
\]

(16)

in which, \(\delta_c \) is the critical density, \(a(z)g(z) = D(z) \) is the linear growth factor and \(\mu_H = 1/H_0 \). Equation (16) is derived by only considering the high peaks of the density contrast, which means that the expression only works at the large scales with \(k \to 0 \).

More accurate analytical expressions for the scale-dependent bias have been studied [17][22]. A widely used expression is derived by Matarrese and Verde [17],

\[
\Delta b^{MV}(M, z, k) = 2f_{NL} \frac{\delta_c^2(z)}{\sigma_R^2} \frac{\mathcal{F}(k)}{\mathcal{M}_R(k)},
\]

(17)

in which, \(\delta_c(z) = \delta_c/D(z)^{-1} \) and \(\mathcal{M}_R(k) \) is Eq. (2) smoothed with window function \(W_R(k) \),

\[
\mathcal{M}_R(k) = \frac{2T(k)k^2}{3H_0^2\Omega_m} W_R(k),
\]

(18)

where \(R \) denotes a smoothing radius which defines the halo mass \(M \) by

\[
M = \frac{3H_0^2\Omega_m}{8\pi G}\frac{4\pi R^3}{3}.
\]

(19)

So \(\Delta b^{MV} \) is also a function of halo mass, \(M \). \(\mathcal{F}(k) \) is related to the bispectrum of primordial potential field \(B_\phi(k_1, k_2, k) \), and the power spectrum \(P_\phi(k) \),

\[
\mathcal{F}(k) = \frac{1}{16\pi^2\sigma_R^2} \int dk_1 k_1^2 \mathcal{M}_R(k_1)

\times \int_{-1}^{1} dk_M \mathcal{M}_R(k_2) \frac{B_\phi(k_1, k_2, k)}{P_\phi(k)},
\]

(20)

where \(k_2^2 = k^2 + k_1^2 + 2k_1k\mu \) and \(\sigma_R \) is the rms of the underlying dark matter fluctuation fields smoothed on scale \(R \) given in Eq. (19).

If we substitute the local-shape bispectrum into Eq. (20), and take the limit of \(k \to 0 \), then the dependence of \(\Delta b^{MV}(M, z, k) \) on the halo mass automatically drops of,

\[
\mathcal{F}(k) \to 1, \quad T(k) \to 1, \quad \mathcal{M}_R(k) \to (2/3)k^2/(H_0^2\Omega_m),
\]

and,

\[
\Delta b^{MV}(z, k) \to 2(b_E - 1)f_{NL}\delta_c \frac{3H_0^2\Omega_m}{a(z)g(z)\mu^2 \sigma_{D}^2} \approx \frac{\Delta b^D(z, k)}{k^2},
\]

(21)

i.e. the general expression of scale-dependent bias in Eq. (17) recovers the bias proposed in Dalal et al. [16]. The advantage of using Eq. (17) is that it can be used to calculate any shape of PNG, provided that the bispectrum \(B_\phi \) function is given.

The scale-dependent bias for equilateral, orthogonal and enfolded shapes of PNG can be obtained by substituting Eqs. (4), (6) and (7) into Eq. (20). In Fig. 2 we show the absolute value of the scale-dependent part of the bias, i.e. Eq. (15) for the four shapes of PNG at \(z = 0 \) (left panel) and \(z = 2 \) (right panel). One can see that the local shape has the most prominent features of scale-dependent bias at large scales, which can be constrained with 21-cm intensity mapping observation on large angular scales. The orthogonal and

1 This is consistent with Eq. 13 in [17]. The "\(\Delta c \)" defined in [17] is equal to \(\delta_c \) in this paper.

2 In Ref. [17], \(b_L - 1 = b_L = \delta_c/\sigma_R^2 \)
enfolded shapes have less prominent features but are possibly detectable at small k. The scale-dependent bias induced by equilateral shape is too small on large scales so it will be hard to detect. The results shown in Fig. 2 are consistent with the analysis in [52] and Fig. 1 in [58].

We can see the asymptotic behavior of scale-dependent bias [Eq. (15)] on large scales by taking the limit of $k \rightarrow 0$, then $\Delta b \rightarrow (F/M_R)$. Therefore,

\[
\Delta b(\text{Local}) \sim k^{-2} \\
\Delta b(\text{Equilateral}) \sim \text{const} \\
\Delta b(\text{Enfolded}) \sim k^{-1} \\
\Delta b(\text{Orthogonal}) \sim k^{-1}.
\]

These asymptotic behaviors of Δb are consistent with the computation of halo models in Fig. 2.

C. Power spectrum

We employ the H$_i$ tomographic angular power spectrum as the observable in our analysis. The expression of the angular power spectrum of the ith and the jth redshift bins is

\[
C_{ij}^\ell = 4\pi T_b^{ij} \int d\ln k W_i^j(k) W_j^i(k) \Delta_\chi^2(k),
\]

in which, $\Delta_\chi^2(k)$ is the dimensionless power spectrum of primordial curvature perturbation and $T_b^{ij} = T_b(z_i)T_b(z_j)$ is the multiplication of H$_i$ mean brightness temperature of the ith and jth redshift bins. We use the expression of $T_b(z)$ in [Chang et al. 2008 59],

\[
T_b(z) = 0.39 \left(\frac{\Omega_{H_1}}{10^{-3}} \right) \left(\frac{1 + z}{2.5} \right)^{0.5} \left(\frac{\Omega_m + (1 + z)^3 \Omega_{A}}{0.29} \right)^{-0.5} \text{mK},
\]

where Ω_{H_1} is the fractional H$_1$ density assumed to be 0.62×10^{-3} [60]. The window function $W_i(k)$ is,

\[
W_i(k) = \int d\chi \frac{dN_g(\chi)}{d\chi} j_0(k\chi) b_{H_1}^{NG}(\chi(z_1),k) T_\delta(\chi,k),
\]

where j_0 is a spherical Bessel function, $dN_g(\chi)/d\chi$ is the redshift distribution of galaxy number, $T_\delta(\chi,k)$ is the transfer function for the galaxy number over-density, and $b_{H_1}^{NG}$ is the
total bias of H\textsc{i} (Eq. (14)). To calculate the angular power spectrum, we use the CAMB_SOURCES package [61].

Figure 3 shows the tomographic angular power spectrum. The upper panel shows the cross-power spectrum between redshift $z_i = 3.06$ and z_j, which ranges from 0.37 to 3.06 shown with different colors. The lower panel shows the ratio of the cross-power spectrum of different redshift bins to the auto-power spectrum of the same redshift bin. We can see that the cross-power spectrum decreases as the redshift deviates from $z_i = 3.06$. This is what we expected, since the cross-correlated signal should drop if the frequency windows move away from each other.

IV. FISHER MATRIX FORECAST

To forecast the potential for constraining f_{NL}, we perform the Fisher matrix analysis. If we assume that the model likelihood surface in parameter space can be well approximated by a multivariate Gaussian, the Fisher matrix F is then a good approximation for the inverse of the parameter covariance. In the 21-cm tomography, each frequency band will provide a map of 21-cm intensities, so we need to sum over the Fisher matrix in both ℓ-space and frequency space. Since $\nu = 1420\text{MHz}/(1 + z)$, each frequency corresponds to a unique redshift slice. The Fisher matrix is

$$F_{\alpha\beta} = f_{\text{sky}} \sum_{\ell} \left(\frac{2\ell + 1}{2} \right) \text{tr}[C_{\ell,\alpha}\Sigma_{\ell}C_{\ell,\beta}\Sigma_{\ell}],$$

(26)

in which C_{ℓ} is an $n_z \times n_z$ matrix, in which each element is the H\textsc{i} cross angular power spectrum between the two frequency bins. $\Sigma_{\ell} = (C_{\ell} + N_{\ell})^{-1}$ is the total noise inverse matrix, in which N_{ℓ} is the $n_z \times n_z$ experimental noise power spectrum. Here we make a simple assumption that the noises in different frequency (redshift) bins are uncorrelated, therefore the N_{ℓ} is a diagonal matrix. In reality, 21-cm intensity maps are highly contaminated by the foreground, such as Galactic synchrotron emission, extragalactic point sources, and atmospheric signal. One needs to apply foreground removal technique to reduce the foreground contamination. However, there always be some level of residual Galactic foreground after applying such techniques to the maps. Therefore the cross-correlation of noises between different frequency bands may not completely be zero.

Under our simplified assumption, the element of N_{ℓ} matrix is

$$N_{ij}^{\ell} = \delta^{ij} N_{\text{HI}}^{\ell},$$

$$= \delta^{ij} T_{\text{sys}}^2 S_{\text{survey}} / (N_{\text{ant}} N_{\text{feed}} D_{\text{dish}}^2),$$

(27)

$T_{\text{sys}} = T_{\text{rec}} + T_{\text{sky}}$ is the system temperature, which is contributed from the sky temperature, $T_{\text{sky}} = 60 \times (300\text{MHz}/\nu)^{2.55}$, and receiver temperature T_{rec} for each experiment. N_{ant} and N_{feed} are the number of antenna and the number of feed horn in each antenna respectively. The detailed experimental parameters for FAST, SKA-I and BINGO are listed in Table I.

V. EXPERIMENT PARAMETERS

Experiment	Parameter	Value
FAST	ν_{min} [MHz]	1050
SKA-I	ν_{min} [MHz]	350
BINGO	ν_{min} [MHz]	960
FAST	$\Delta\nu$ [MHz]	10
SKA-I	$\Delta\nu$ [MHz]	10
BINGO	$\Delta\nu$ [MHz]	10
FAST	n_z	30
SKA-I	n_z	70
BINGO	n_z	30
FAST	D_{dish} [m]	300
SKA-I	D_{dish} [m]	15
BINGO	D_{dish} [m]	25
FAST	$N_{\text{ant}} \times N_{\text{feed}}$	1×19
SKA-I	$N_{\text{ant}} \times N_{\text{feed}}$	190×1
BINGO	$N_{\text{ant}} \times N_{\text{feed}}$	1×60
FAST	T_{TOT} [yr]	1
SKA-I	T_{TOT} [yr]	1
BINGO	T_{TOT} [yr]	1
FAST	T_{rec} [K]	25
SKA-I	T_{rec} [K]	28
BINGO	T_{rec} [K]	50
FAST	S_{survey} [deg2]	< 24000
SKA-I	S_{survey} [deg2]	< 25000
BINGO	S_{survey} [deg2]	2500

a. BINGO The BINGO experiment is a single-dish HI intensity mapping experiment, which aims at mapping the HI emission at frequencies between 960MHz and 1260MHz [34, 63]. The telescope of the BINGO experiment has no moving parts and it conducts a drift-scan strategy. To achieve enough survey area, a wide instantaneous field of view (FOV) with multiple feeds is required. A total of 60 feeds laid out in a rectangle of 16m \times 15m at the focal plane. This will form a FOV of about 10$^\circ$ (in Declination direction) \times 9$^\circ$ (in Right Ascension direction). With the 10$^\circ$ wide strip centering at Declination of -45°, the total survey area is about 2500 deg2.

b. FAST FAST is the largest single-dish telescope, which also has the multibeam system of 19 feed-horns array [35, 56]. The multibeam system is proposed to work at frequencies from 1.05 to 1.45GHz with system temperature of 25K. In our analysis, we only include the frequencies up to 1.35GHz. With the 300m illuminated aperture, each of the feed-horns has the beam size (Full Width at Half Maximum) of 2.9$^\prime$, and form a 26$^\prime$ FOV with 19 beams. Due to the long slewing time, FAST can only work on drift-scan observation mode. Similar to the BINGO experiment, FAST scans a 26$^\prime$ wide strip along the Right Ascension direction for each sidereal day. But the zenith angle of FAST can be adjusted from Dec: $-14^\circ12^\prime$ to Dec: $65^\circ48^\prime$. Without over lapping between scanning strips, it takes about half year to cover all 80$^\circ$ Declination range. With one-year observation (3.15 \times 107 second), the maximum survey area is about 24000 deg2.

c. SKA-I The SKA Phase I (SKA-I) plans to construct 190 movable 15m dishes [33]. The maximum survey area is about 25000 deg2. A efficient survey area is need to be explored to minimal the constraint errors. In our analysis, we only consider the autocorrelation of each dishes, which means that the SKA-I works as 190 single dishes. Without the interferometry, the SKA-I has very low resolution and is only sensitive to the low-ℓ modes.

Figure 4 shows the noise power spectra of different experiments in at redshift bin $z = 0.37$ (left upper panel) and $z = 3.06$ (right upper panel). The black solid line in the upper panel of each figure shows the standard angular power
VI. RESULTS AND DISCUSSION

Figure 5 shows the $\sigma_{f_{NL}}$ contours for local-shape PNG in the plane of the survey area and total observation time. The left and middle panels of Fig. 5 show the contours for SKA-I and FAST experiments respectively. The color going from red to blue means that the constraints become stronger. Different black solid lines are the contours of the same error of f_{NL}^{local}. Therefore, the error tends to become smaller if $N_{ant} \times N_{feed} \times t_{TOT}$ becomes bigger. Thus the most efficient way to reduce the constraint error is to increase the observation time or the number of dishes(feeds). Assuming one-year observation time and the maximum dish(feeds) number for SKA-I and FAST experiments, the constraint errors of various PNG types as a function of survey area are shown in the right panel of Fig. 5. In order to have a clear view, the constraint errors, $\sigma_{f_{NL}}$, are divided by their minimal values.

It is true that the optimal survey area may not be the maximal survey area. For example, in the case of equilateral shape, the optimization is about 6000 deg^2 for the FAST experiment. For other shapes, the optimized survey areas are approaching the maximum sky coverage of SKA-I or FAST. The large survey area can help to beat the cosmic variance on large scales, but the integration time per pixel becomes smaller, leading to larger pixel noise.

One can see from the right panel of Fig. 5 that, generally speaking, the larger the survey area is, the smaller the error of f_{NL}, except for measuring equilateral shape of PNG using the FAST survey. This is different from the situation of using 21-cm intensity mapping to measure the angular scale of BAO acoustic oscillation, which have the optimal survey area around 6000 deg^2 (For BINGO, see Fig. 7 in [34], and for FAST, see Fig. 1 in [66]). The reason is because scale-dependent bias from PNG is always prominent on very large scales, so beating down cosmic variance is more important than lowering down the pixel noise. However, BAO scale is subhorizon for which there is always a trade-off between lowering down pixel noise and beating down cosmic variance. We use different optimized survey areas for different cases in the later analysis.

Figure 6 shows the $\sigma_{f_{NL}}$ as a function of ℓ_{min} if we fix $\ell_{max} = 600$. Different PNG shapes are shown in different panels. In each panel, different colors indicate different experiments as shown in the legends. The optimized survey areas are applied to the analysis. The constraint errors of different PNG shapes from Planck satellite are shown with the black dashed lines [13]. The $\sigma_{f_{NL}}$ of different PNG shapes forecasted with different experiments are listed in Table 11.
FIG. 5: The left (for SKA-I) and middle (for FAST) panels show the $\sigma_{f_{NL}}$ contours for local-shape PNG in the parameter space of the survey area and total observation time. The dashed contour is the error of constraint with Planck temperature and polarization data [15]. The right panel shows the $\sigma_{f_{NL}}/\langle \sigma_{f_{NL}} \rangle_{\text{min}}$ as a function of survey area for various PNG types. The solid lines show the results for SKA-I with one-year observational time and 190 dishes; the dashed lines show the results for FAST with one-year observational time and 19 beams.

FIG. 6: The $\sigma_{f_{NL}}$ as a function of ℓ_{min} for various experiments and PNG shapes. The black dashed line is the current constraint with Planck temperature and polarization data [15].

We can see that, for the local shape PNG, the SKA-I experiment is potentially able to constrain f_{NL} better than Planck experiment. But we should realize that it is only the most ideal case. It is well known that, one of the big challenges for observations of HI intensity mapping is the foreground subtraction, and the low-ℓ modes may not be detectable due to the foreground contamination. Our results show that, to obtain a remarkable constraint on f_{NL} with the SKA-I intensity mapping in the future, we need to recover the angular power spectrum of HI with the minimal $\ell_{\text{max}} \simeq 50$. This is the aim...
of several recent efforts of restoring large angular power with cross-correlation with weak gravitational lensing [67,68]. We also find that the constraint error for orthogonal shape PNG with SKA-I is \(~\sim 25\), which is at the same level of current Planck limit. If the observation can be extended to 2 years, the error will be reduced to \(~\sim 20\).

The constraint error for equilateral shape PNG with FAST is \(~\sim 44\), which is better than the results of SKA-I and BINGO experiments. The FAST error on \(f_{\text{NL}}^\text{equl}\) is close to the current limit of Planck experiment. This is because the scale-dependent bias induced by the equilateral shape PNG has higher signal-to-noise ratio at small scales and the FAST experiment is more sensitive to the small-scale modes than SKA-I single dish mode and BINGO. So far, in our analysis, we assume perfect knowledge of the power spectrum and do not include the theoretical error. However, it has been shown that the higher derivative terms contribute to the scale-dependent bias on small scales [69,70]. Such contributions induce extra uncertainties to the scale-dependent bias measurements and reduce the detectability of equilateral PNG.

We also test the possible extensions of the current configuration by adding more integration time. If the observation time for SKA-I and FAST could be extended to 2 years, the constraints on \(f_{\text{NL}}\) can be improved quantitatively. The forecasted constraint on different shapes of PNG are listed in Table I. It is worth noticing that the constraint error on the orthogonal-shaped PNG with SKA-I and the equilateral-shaped PNG with FAST becomes smaller than the limits of Planck with extended observational time.

A good extension for FAST experiment is to extend its bandwidth to the lower frequencies, which are corresponding to the higher redshifts. So far the FAST telescope has one ultrawideband receiver working on 270MHz \(~\sim 1.62\text{GHz}\). Unfortunately, the ultrawideband receiver has only one beam. It will take quite a long time to achieve the same observation time as the multibeam receiver. Now the multibeam system of the FAST telescope is designed to work on frequencies between 1050MHz and 1350MHz. Assuming that the FAST multibeam system works on the frequencies between 350MHz and 1050MHz, which is the same as the frequency range of SKA-I experiment, the constraint for local shape PNG will be \(\sigma_{f_{\text{NL}}^\text{local}} \sim 1.62\) with the optimized survey area of 6000 deg\(^2\). The constraint errors (\(\sigma_{f_{\text{NL}}^\text{L}}\)) for orthogonal and enfolded shapes become 39 and 64 respectively, which are all highly reduced.

VII. CONCLUSION

In this work, we explored the constraining power on the primordial non-Gaussianity (PNG), with the future single-dish HI intensity mapping observations with BINGO, FAST and SKA-I. Four fundamental shapes of PNG are studied in our analysis, including local, equilateral, orthogonal and enfolded. We focus on the effect of scale-dependent bias to the underlying dark matter tracer, induced by the primordial non-Gaussianity. The properties of such scale-dependent bias at large-scale limit are discussed in our analysis. The forecast results are listed in Table I.

Our forecasts show that with the current configuration of the experiments one-year observation time, the constraint on local shape of PNG from SKA-I intensity mapping experiment can be better than the current Planck experiment. The optimized survey area of 25000 deg\(^2\) is applied in the analysis of SKA-I, but the results are more sensitive to the total observation time than the survey area. However, the HI intensity mapping experiments may be contaminated by the foreground and the low-\(\ell\) modes may be detectable. Our analysis shows that the SKA-I experiment can still have the remarkable constraint without the modes of \(\ell \lesssim 50\). With two-years observation, the constraint on orthogonal shape PNG is \(~\sim 20\), which is also better than the constraint from Planck measurement.

The FAST experiment has the advantage of higher angular resolution and is more sensitive to the small-scale modes, which is good for constraining the equilateral shape of PNG. With the current configuration and two years observation, the constraint error for the equilateral shape of PNG will be \(\sigma_{f_{\text{NL}}^\text{equl}} = 32\), which is better than the current limit of the Planck observation. However, such a limit is achieved by ignoring the extra uncertainties caused by the higher derivative terms. Previous studies show that such extra uncertainties may not be negligible. The detailed limit for the equilateral-type PNG needs to be investigated in the future analysis.

Similar constraint on the local shape of PNG can be achieved by the FAST HI intensity mapping, if its frequency bandwidth can be extended to the lower frequencies (ultraw-
ide band). Assuming the same working frequency range, the best constraint from FAST on the local shape of primordial non-Gaussianity is $f_{NL} \sim 1.62$.

The studies we conduct here are the standard power spectra analysis of 21 cm. There have been efforts on using the multitracer technique to beat the cosmic variance and obtain tighter constraints on f_{NL} \cite{[71,73]}. In addition, using three-point correlation function is another way to measure PNG. These methods will be explored to measure all shapes of f_{NL} in the future work.

\begin{acknowledgments}
We thank Neal Dalal, Di Li, Roy Maartens, Jerome Gleyzes, Yi Wang and Xiao-Dong Xu for helpful discussions and Stefano Camera for his help on CAMB SOURCES. This work is supported by the National Research Foundation of South Africa with Grant no.105925 and the University of KwaZulu-Natal staff start-up grant.
\end{acknowledgments}

[1] N. Bartolo, E. Komatsu, S. Matarrese, and A. Riotto, Physics Reports 402, 103 (2004), astro-ph/0406398.
[2] T. Falk, R. Rangarajan, and M. Srednicki, Physical Review D 46, 4232 (1992), astro-ph/9208002.
[3] V. Acquaviva, N. Bartolo, S. Matarrese, and A. Riotto, Nuclear Physics B 667, 119 (2003), astro-ph/0209156.
[4] J. Maldacena, Journal of High Energy Physics 5, 013 (2003), astro-ph/0210603.
[5] A. Linde and V. Mukhanov, Physical Review D 56, R535 (1997), astro-ph/9610219.
[6] D. H. Lyth, C. Ungarelli, and D. Wands, Physical Review D 67, 023503 (2003), astro-ph/0208055.
[7] M. Alishahiha, E. Silverstein, and D. Tong, Physical Review D 70, 123505 (2004), hep-th/0404084.
[8] P. Creminelli, A. Nicolis, L. Senatore, M. Tegmark, and M. Zaldarriaga, Journal of Cosmology and Astroparticle Physics 5, 004 (2006), astro-ph/0509029.
[9] X. Chen, M.-x. Huang, S. Kachru, and G. Shiu, Journal of Cosmology and Astroparticle Physics 1, 002 (2007), hep-th/0605045.
[10] R. Holman and A. J. Tolley, Journal of Cosmology and Astroparticle Physics 5, 001 (2008), 0710.1302.
[11] P. D. Meerburg, J. P. van der Schaar, and P. S. Corasaniti, Journal of Cosmology and Astroparticle Physics 5, 018 (2009), 0901.4044.
[12] A. Achucarro, J.-O. Gong, S. Hardeman, G. A. Palma, and S. P. Patil, Journal of Cosmology and Astroparticle Physics 1, 030 (2011), 1010.3693.
[13] A. Ashoorioon and G. Shiu, Journal of Cosmology and Astroparticle Physics 3, 025 (2011), 1012.3392.
[14] A. Ashoorioon, K. Dimopoulos, M. M. Sheikh-Jabbari, and G. Shiu, Journal of Cosmology and Astroparticle Physics 2, 025 (2014), 1306.4914.
[15] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, F. Arroja, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, et al., Astronomy and Astrophysics 594, A17 (2016), 1502.01592.
[16] N. Dalal, O. Doré, D. Huterer, and A. Shirokov, Physical Review D 77, 123514 (2008), 0710.4560.
[17] S. Matarrese and L. Verde, Astrophysical Journal Letters 677, L77 (2008), 0801.4826.
[18] C. Carbone, L. Verde, and S. Matarrese, Astrophysical Journal Letters 684, L1 (2008), 0806.1950.
[19] A. Slosar, C. Hirata, U. Seljak, S. Ho, and N. Padmanabhan, Journal of Cosmology and Astroparticle Physics 8, 031 (2008), 0805.3580.
[20] V. Desjacques, D. Jeong, and F. Schmidt, Physical Review D 84, 063512 (2011), 1105.3628.
[21] T. Matsubara, Physical Review D 86, 063518 (2012), 1206.0562.
[22] A. Raccanelli, M. Shiraishi, N. Bartolo, D. Bertacca, M. Liguori, S. Matarrese, R. P. Norris, and D. Parkinson, ArXiv e-prints (2015), 1507.05903.
[23] J.-Q. Xia, C. Baccigalupi, S. Matarrese, L. Verde, and M. Viel, Journal of Cosmology and Astroparticle Physics 8, 033 (2011), 1104.5015.
[24] N. Nikoloudakis, T. Shanks, and U. Sawangwit, Monthly Notices of the Royal Astronomical Society 429, 2032 (2013), 1204.3609.
[25] A. J. Ross, W. J. Percival, A. Carnero, G.-b. Zhao, M. Manera, A. Raccanelli, E. Aubourg, D. Bizyaev, H. Brewer, J. Brinkmann, et al., Monthly Notices of the Royal Astronomical Society 428, 1116 (2013), 1208.1491.
[26] Y.-Z. Ma, J. E. Taylor, and D. Scott, Monthly Notices of the Royal Astronomical Society 436, 2029 (2013), 1308.2673.
[27] J. Gleyzes, R. de Putter, D. Green, and O. Doré, ArXiv e-prints (2016), 1612.06366.
[28] V. Desjacques, D. Jeong, and F. Schmidt, ArXiv e-prints (2016), 1611.09787.
[29] J. Noreña, L. Verde, G. Barenboim, and C. Bosch, Journal of Cosmology and Astroparticle Physics 8, 019 (2012), 1204.6324.
[30] E. Sefusatti, J. R. Fergusson, X. Chen, and E. P. S. Shellard, Journal of Cosmology and Astroparticle Physics 8, 033 (2012), 1204.6318.
[31] S. Camera, M. G. Santos, P. G. Ferreira, and L. Ferramacho, Physical Review Letters 111, 171302 (2013), 1305.6928.
[32] Y. Xu, X. Wang, and X. Chen, The Astrophysical Journal 798, 40 (2015), 1410.7794.
[33] P. Bull, P. G. Ferreira, P. Patel, and M. G. Santos, The Astrophysical Journal 803, 21 (2015), 1405.1452.
[34] R. A. Battye, I. W. A. Browne, C. Dickinson, G. Heiron, B. Maffei, and A. Poursidou, Monthly Notices of the Royal Astronomical Society 434, 1239 (2013), 1209.0343.
[35] R. Nan, D. Li, C. Jin, Q. Wang, L. Zhu, W. Zhu, H. Zhang, Y. Yue, and L. Qian, International Journal of Modern Physics D 20, 989 (2011), 1105.3794.
[36] D. Li and Z. Pan, Radio Science 51, 1060 (2016).
[37] P. E. Dewdney, P. J. Hall, R. T. Schilizzi, and T. J. L. W. Lazio, IEEE Proceedings 97, 1482 (2009).
[38] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, et al., Astronomy and Astrophysics 594, A13 (2016), 1502.01598.
[39] T. J. Allen, B. Grinstein, and M. B. Wise, Physics Letters B 197, 66 (1987).
[40] A. Gangui, F. Lucchin, S. Matarrese, and S. Mollerach, The Astrophysical Journal 430, 447 (1994), astro-ph/9312033.
