The Characterizations of Anisotropic Mixed-Norm Hardy Spaces on \mathbb{R}^n by Atoms and Molecules

Wenhua Wang and Aiting Wang

Abstract Let $\vec{p} \in (0, \infty)^n$, A be an expansive dilation on \mathbb{R}^n, and $H^{\vec{p}}_A(\mathbb{R}^n)$ be the anisotropic mixed-norm Hardy space defined via the non-tangential grand maximal function studied by [13]. In this paper, the authors establish new atomic and molecular decompositions of $H^{\vec{p}}_A(\mathbb{R}^n)$. As an application, the authors obtain a boundedness criterion for a class of linear operators from $H^{\vec{p}}_A(\mathbb{R}^n)$ to $H^{\vec{p}}_A(\mathbb{R}^n)$. Part of results are still new even in the classical isotropic setting (in the case $A := 2I_{n \times n}$, $I_{n \times n}$ denotes the $n \times n$ unit matrix).

1 Introduction

The theory of Hardy spaces on the Euclidean space \mathbb{R}^n has been developed and plays an important role in various fields of analysis and partial differential equations; see, for examples, [5, 8, 9, 22, 24, 26]. On the other hand, the mixed-norm Lebesgue space $L^\vec{p}(\mathbb{R}^n)$, with the exponent vector $\vec{p} \in (0, \infty)^n$, is a natural generalization of the classical Lebesgue space $L^p(\mathbb{R}^n)$, via replacing the constant exponent p by an exponent vector \vec{p}. The study of mixed-norm Lebesgue spaces originates from Benedek and Panzone [2]. Later on, function spaces in mixed-norm setting have attracted considerable attention and have rapidly been developed; see, for instance, [3, 6, 7, 15].

Let vector $\vec{p} := (p_1, \ldots, p_n) \in (0, \infty)^n$. Recently, Cleanthous et al. [4] introduced the anisotropic mixed-norm Hardy space $H^{\vec{p}}_A(\mathbb{R}^n)$, where $\vec{a} := (a_1, \ldots, a_n) \in [1, \infty)^n$, via the non-tangential grand maximal function, and then obtained its maximal function characterizations. Not long afterward, Huang et al. [11] further completed some real-variable characterizations of the space, such as the characterizations in terms of the atomic characterization and the Littlewood-Paley function characterization. Moreover, they obtained the boundedness of δ-type Calderón-Zygmund operators from $H^{\vec{p}}_A(\mathbb{R}^n)$ to $L^{\vec{p}}(\mathbb{R}^n)$ or from $H^{\vec{p}}_A(\mathbb{R}^n)$ to itself. For more information about this space, see [10, 12, 16].

Very recently, Huang et al. [13] also introduced the new anisotropic mixed-norm Hardy space $H^{\vec{p}}_A(\mathbb{R}^n)$ associated with a general expansive matrix A, via the non-tangential grand maximal function, and then established its various real-variable characterizations of $H^{\vec{p}}_A$, respectively, in terms of the atomic characterization and the Littlewood-Paley function characterization. For more information about Hardy space, see [13, 14, 21, 23, 25]. Nevertheless, the molecular decompositions of $H^{\vec{p}}_A(\mathbb{R}^n)$ has not been established till now. Once
its molecular decomposition is established, it can be conveniently used to prove the boundedness of many important operators on the space $H_A^p(\mathbb{R}^n)$, for example, one of the most famous operator in harmonic analysis, Calderón-Zygmund operators. To complete the theory of the new anisotropic mixed-norm Hardy space $H_A^p(\mathbb{R}^n)$, in this article, we establish the molecular decompositions of $H_A^p(\mathbb{R}^n)$. Then, as application, we further obtain a boundedness criterion for a class of linear operators from $H_A^p(\mathbb{R}^n)$ to $H_A^p(\mathbb{R}^n)$.

Precisely, this article is organized as follows.

In Section 2, we first recall some notations and definitions concerning expansive dilations, the mixed-norm Lebesgue space $L^p(\mathbb{R}^n)$ and the anisotropic mixed-norm Hardy space $H_A^p(\mathbb{R}^n)$, via the non-tangential grand maximal function.

The aim of Section 3 is to establish a new atomic characterization of $H_A^p(\mathbb{R}^n)$.

In Section 4, motivated by Liu et al. [18, 19] and Huang et al. [13], we introduce the anisotropic mixed-norm molecular Hardy space $H_{A,\text{mol}}^{p,q,s,\varepsilon}(\mathbb{R}^n)$ and establish its equivalence with $H_A^p(\mathbb{R}^n)$ in Theorem 4.4. When it comes back to the isotropic setting, i.e., $A := 2I_{n\times n}$, $I_{n\times n}$ denotes the $n \times n$ unit matrix, this result is still new, see Remark 4.5 for more details. It is worth pointing out that some of the proof methods of the molecular characterization of $H_A^p(\mathbb{R}^n) = H^{p,p}_A(\mathbb{R}^n)$ ([19, Theorem 3.9]) don’t work anymore in the present setting. For example, we search out some estimates related to $L^\varphi(\mathbb{R}^n)$ norms for some series of functions which can be reduced into dealing with the $L^q(\mathbb{R}^n)$ norms of the corresponding functions (see Lemma 4.6). Then, by using this key lemma and the Fefferman-Stein vector-valued inequality of the Hardy-Littlewood maximal operator M_{HL} on $L^\varphi(\mathbb{R}^n)$ (see Lemma 2.9), we prove their equivalences with $H_A^p(\mathbb{R}^n)$ and $H_{A,\text{mol}}^{p,q,s,\varepsilon}(\mathbb{R}^n)$.

In Section 5, as an application of the molecular characterization of $H_A^p(\mathbb{R}^n)$, we obtain a boundedness criterion for a class of linear operators from $H_A^p(\mathbb{R}^n)$ to $H_A^p(\mathbb{R}^n)$ (see Theorem 5.1 below). Particularly, when it comes back to the isotropic setting, i.e., $A := 2I_{n\times n}$, $I_{n\times n}$ denotes the $n \times n$ unit matrix, this result is also new.

Finally, we make some conventions on notation. Let $\mathbb{N} := \{1, 2, \ldots\}$ and $\mathbb{Z}_+ := \{0\} \cup \mathbb{N}$. For any $\alpha := (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_+^n := (\mathbb{Z}_+)^n$, let $|\alpha| := \alpha_1 + \cdots + \alpha_n$ and $\partial^\alpha := \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \cdots \left(\frac{\partial}{\partial x_n}\right)^{\alpha_n}$. Throughout the whole paper, we denote by C a positive constant which is independent of the main parameters, but it may vary from line to line. For any $q \in [1, \infty]$, we denote by q' its conjugate index, namely, $1/q + 1/q' = 1$. For any $a \in \mathbb{R}$, $|a|$ denotes the maximal integer not larger than a. The symbol $D \lesssim F$ means that $D \leq CF$. If $D \lesssim F$ and $F \lesssim D$, we then write $D \sim F$. If E is a subset of \mathbb{R}^n, we denote by χ_E its characteristic function. If there are no special instructions, any space $X(\mathbb{R}^n)$ is denoted simply by X. For instance, $L^2(\mathbb{R}^n)$ is simply denoted by L^2. The symbol C^∞ denotes the set of all infinitely differentiable functions on \mathbb{R}^n. Denote by S the space of all Schwartz functions and S' its dual space (namely, the space of all tempered distributions).
2 Preliminary

In this section, we first recall the notion of anisotropic mixed-norm Hardy space H^p_A, via the non-tangential grand maximal function $M_N(f)$, and then given its molecular decom- position.

We begin with recalling the notion of expansive dilations on \mathbb{R}^n; see [1, p.5]. A real $n \times n$ matrix A is called an expansive dilation, shortly a dilation, if $\min_{\lambda \in \sigma(A)} |\lambda| > 1$, where $\sigma(A)$ denotes the set of all eigenvalues of A. Let λ_- and λ_+ be two positive numbers such that
\[1 < \lambda_- < \min\{|\lambda| : \lambda \in \sigma(A)\} \leq \max\{|\lambda| : \lambda \in \sigma(A)\} < \lambda_+. \]

Then there exists a positive constant C, such that, for any $x \in \mathbb{R}^n$, when $j \in \mathbb{Z}_+$,
\[C^{-1}(\lambda_-)^j |x| \leq |A^j x| \leq C(\lambda_+)^j |x| \]
and, when $j \in \mathbb{Z}\setminus\mathbb{Z}_+$,
\[C^{-1}(\lambda_+)^j |x| \leq |A^j x| \leq C(\lambda_-)^j |x|. \]

From [1, p.5, Lemma 2.2] that, for a fixed dilation A, there exist a number $r \in (1, \infty)$ and a set $\Delta := \{x \in \mathbb{R}^n : |Px| < 1\}$, where P is some non-degenerate $n \times n$ matrix, such that
\[\Delta \subset r\Delta \subset A\Delta, \]
and we may assume that $|\Delta| = 1$, where $|\Delta|$ denotes the n-dimensional Lebesgue measure of the set Δ. Let $B_k := A^k \Delta$ for $k \in \mathbb{Z}$. Then B_k is open, $B_k \subset rB_k \subset B_{k+1}$ and $|B_k| = b^k$, here and hereafter, $b := |\det A|$. An ellipsoid $x + B_k$ for some $x \in \mathbb{R}^n$ and $k \in \mathbb{Z}$ is called a dilated ball. Denote by \mathcal{B} the set of all such dilated balls, namely,
\[\mathcal{B} := \{x + B_k : x \in \mathbb{R}^n, k \in \mathbb{Z}\}. \]

Throughout the whole paper, let σ be the smallest integer such that $2B_0 \subset A^\sigma B_0$ and, for any subset E of \mathbb{R}^n, let $E^\complement := \mathbb{R}^n \setminus E$. Then, for all $k, j \in \mathbb{Z}$ with $k \leq j$, it holds true that
\[B_k + B_j \subset B_{j+\sigma}, \]
\[B_k + (B_{k+\sigma})^\complement \subset (B_k)^\complement, \]
where $E + F$ denotes the algebraic sum $\{x + y : x \in E, y \in F\}$ of sets $E, F \subset \mathbb{R}^n$.

Definition 2.1. A quasi-norm, associated with dilation A, is a Borel measurable mapping $\rho_A : \mathbb{R}^n \to [0, \infty)$, for simplicity, denoted by ρ, satisfying
\begin{align*}
(i) & \quad \rho(x) > 0 \text{ for all } x \in \mathbb{R}^n \setminus \{0\}, \text{ here and hereafter, } 0 \text{ denotes the origin of } \mathbb{R}^n; \\
(ii) & \quad \rho(Ax) = b \rho(x) \text{ for all } x \in \mathbb{R}^n, \text{ where, as above, } b := |\det A|; \\
(iii) & \quad \rho(x + y) \leq C_A [\rho(x) + \rho(y)] \text{ for all } x, y \in \mathbb{R}^n, \text{ where } C_A \in [1, \infty) \text{ is a constant independent of } x \text{ and } y.
\end{align*}
In the standard dyadic case \(A := 2I_{n \times n} \), \(\rho(x) := |x|^n \) for all \(x \in \mathbb{R}^n \) is an example of homogeneous quasi-norms associated with \(A \), here and hereafter, \(I_{n \times n} \) denotes the \(n \times n \) unit matrix, \(| \cdot | \) always denotes the Euclidean norm in \(\mathbb{R}^n \).

By [1, Lemma 2.4], we see that all homogeneous quasi-norms associated with a given dilation \(A \) are equivalent. Therefore, for a given dilation \(A \), in what follows, for simplicity, we always use the step homogeneous quasi-norm \(\rho \) defined by setting, for all \(x \in \mathbb{R}^n \),

\[
\rho(x) := \sum_{k \in \mathbb{Z}} b^k \chi_{B_{k+1}\setminus B_k}(x) \text{ if } x \neq 0, \quad \text{or else } \rho(0) := 0.
\]

By (2.4), we know that, for all \(x, y \in \mathbb{R}^n \),

\[
\rho(x + y) \leq b^\sigma \left(\max \left\{ \rho(x), \rho(y) \right\} \right) \leq b^\sigma [\rho(x) + \rho(y)].
\]

Now we recall the definition of mixed-norm Lebesgue space. Let \(\vec{p} := (p_1, \ldots, p_n) \in (0, \infty]^n \). The \textit{mixed-norm Lebesgue space} \(L^{\vec{p}} \) is defined to be the set of all measurable functions \(f \) such that

\[
\|f\|_{L^{\vec{p}}} := \left\{ \int_{\mathbb{R}} \cdots \left[\int_{\mathbb{R}} |f(x_1, \ldots, x_n)|^{p_1} \, dx_1 \right]^{p_2/p_1} \cdots \, dx_n \right\}^{1/p_n} < \infty
\]

with the usual modifications made when \(p_i = \infty \) for some \(i \in \{1, \ldots, n\} \).

For any \(\vec{p} := (p_1, \ldots, p_n) \in (0, \infty]^n \), let

\[
p_- := \min\{p_1, \ldots, p_n\} \quad \text{and} \quad p_+ := \max\{p_1, \ldots, p_n\}.
\]

Lemma 2.2. [13, Lemma 3.4] Let \(\vec{p} \in (0, \infty]^n \). Then, for any \(r \in (0, \infty) \) and \(f \in L^{\vec{p}} \),

\[
\| |f|^r \|_{L^{\vec{p}}} = \|f\|_{L^{\vec{p}}^r}^r.
\]

In addition, for any \(\mu \in \mathbb{C}, \gamma \in [0, \min\{1, p_-\}] \) and \(f, g \in L^{\vec{p}}, \|\mu f\|_{L^{\vec{p}}} = |\mu| \|f\|_{L^{\vec{p}}} \) and

\[
\|f + g\|_{L^{\vec{p}}}^\gamma \leq \|f\|_{L^{\vec{p}}}^\gamma + \|g\|_{L^{\vec{p}}}^\gamma,
\]

here and hereafter, for any \(\alpha \in \mathbb{R}, \alpha \vec{p} := (\alpha p_1, \ldots, \alpha p_n) \) and

\[
p := \min\{p_-, 1\}
\]

with \(p_- \) as in (2.6).

A \(C^\infty \) function \(\varphi \) is said to belong to the Schwartz class \(\mathcal{S} \) if, for every integer \(\ell \in \mathbb{Z}_+ \) and multi-index \(\alpha, \|\varphi\|_{\alpha, \ell} := \sup_{x \in \mathbb{R}^n} |\partial^\alpha \varphi(x)| < \infty \). The dual space of \(\mathcal{S} \), namely, the space of all tempered distributions on \(\mathbb{R}^n \) equipped with the weak*-topology, is denoted by \(\mathcal{S}' \). For any \(N \in \mathbb{Z}_+ \), let

\[
\mathcal{S}_N := \{ \varphi \in \mathcal{S} : \|\varphi\|_{\alpha, \ell} \leq 1, \ |\alpha| \leq N, \ \ell \leq N \}.
\]

In what follows, for \(\varphi \in \mathcal{S}, k \in \mathbb{Z} \) and \(x \in \mathbb{R}^n \), let \(\varphi_k(x) := b^{-k} \varphi(A^{-k}x) \).
Definition 2.3. Let $\varphi \in S$ and $f \in S'$. The non-tangential maximal function $M_\varphi(f)$ with respect to φ is defined by setting, for any $x \in \mathbb{R}^n$,
\[
M_\varphi(f)(x) := \sup_{y \in x + B_k, k \in \mathbb{Z}} |f \ast \varphi_k(y)|.
\]
The radial maximal function $M_0^\varphi(f)$ with respect to φ is defined by setting, for any $x \in \mathbb{R}^n$,
\[
M_0^\varphi(f)(x) := \sup_{k \in \mathbb{Z}} |f \ast \varphi_k(x)|.
\]
Moreover, for any given $N \in \mathbb{N}$, the non-tangential grand maximal function $M_N(f)$ of $f \in S'$ is defined by setting, for any $x \in \mathbb{R}^n$,
\[
M_N(f)(x) := \sup_{\varphi \in S_N} M_\varphi(f)(x).
\]
The radial grand maximal function $M_N^0(f)(x)$ of $f \in S'$ is defined by setting, for any $x \in \mathbb{R}^n$,
\[
M_N^0(f)(x) := \sup_{\varphi \in S_N} M_0^\varphi(f)(x).
\]
The following anisotropic mixed-norm Hardy space $H_{\vec{A}}^{\vec{p}}$ was introduced in [13, Definition 2.5].

Definition 2.4. Let $\vec{p} \in (0, \infty)^n$, A be a dilation and $N \in \mathbb{N} \cap \lfloor (1/p - 1) \ln b / \ln \lambda_- \rfloor + 2, \infty)$, where p is as in (2.7). The anisotropic mixed-norm Hardy space $H_{\vec{A}}^{\vec{p}}$ is defined as
\[
H_{\vec{A}}^{\vec{p}} := \left\{ f \in S' : M_N(f) \in L^{\vec{p}} \right\}
\]
and, for any $f \in H_{\vec{A}}^{\vec{p}}$, let $\|f\|_{H_{\vec{A}}^{\vec{p}}} := \|M_N(f)\|_{L^{\vec{p}}}$.

Remark 2.5. Let $\vec{p} \in (0, \infty)^n$.

(i) From [13, Theorem 4.7], we know that the $H_{\vec{A}}^{\vec{p}}$ is independent of the choice of N, as long as $N \in \mathbb{N} \cap \lfloor (1/p - 1) \ln b / \ln \lambda_- \rfloor + 2, \infty)$.

(ii) When $\vec{p} := \{p, \ldots, p\}$, where $p \in (0, \infty)$, the space $H_{\vec{A}}^{\vec{p}}$ is reduced to the anisotropic Hardy H_A^p studied in [1, Definition 3.11].

(iii) From [13, Proposition 4], we know that, when
\[
A := \begin{pmatrix}
2^{a_1} & 0 & \cdots & 0 \\
0 & 2^{a_2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 2^{a_n}
\end{pmatrix}
\]
with $\vec{a} := (a_1, \ldots, a_n) \in [1, \infty)^n$, the space $H_{\vec{A}}^{\vec{p}}$ is reduced to the anisotropic Hardy $H_{\vec{a}}^{\vec{p}}$ studied in [4, 11].
We recall the following notion of anisotropic mixed-norm \((\vec{p}, q, s)\)-atoms introduced in [13, Definition 4.1].

Definition 2.6. Let \(\vec{p} \in (0, \infty)^n\), \(q \in (1, \infty]\) and \(s \in [\max\{(p_- - 1)\ln b/\ln \lambda_-, \infty]\) \cap \mathbb{Z}_+\) with \(p_-\) as in (2.6). An anisotropic mixed-norm \((\vec{p}, q, s)\)-atom is a measurable function \(a\) on \(\mathbb{R}^n\) satisfying

(i) (support) \(\text{supp } a \subset B\), where \(B \in \mathcal{B}\) and \(\mathcal{B}\) is as in (2.3);

(ii) (size) \(|a|_{L^q} \leq \|B\|^1/q \|\chi_B\|_{L^p}\);

(iii) (vanishing moment) \(\int_{\mathbb{R}^n} a(x)x^\alpha dx = 0\) for any \(\alpha \in \mathbb{Z}_+^n\) with \(|\alpha| \leq s\).

In this paper, we call an anisotropic mixed-norm \((\vec{p}, q, s)\)-atom simply by a \((\vec{p}, q, s)\)-atom. The following anisotropic mixed-norm atomic Hardy space was introduced in [13].

Definition 2.7. Let \(\vec{p} \in (0, \infty)^n\), \(q \in (1, \infty]\), \(A\) be a dilation and \(s \in [\max\{(p_- - 1)\ln b/\ln \lambda_-, \infty]\) \cap \mathbb{Z}_+\) with \(p_-\) as in (2.6). The anisotropic mixed-norm atomic Hardy space \(H^{\vec{p}, q, s}_A\) is defined to be the set of all distributions \(f \in \mathcal{S}'\) satisfying that there exist \(\{\lambda_i\}_{i \in \mathbb{N}} \subset \mathbb{C}\) and a sequence of \((\vec{p}, q, s)\)-atoms, \(\{a_i\}_{i \in \mathbb{N}}\), supported, respectively, on \(\{B^{(i)}_B\}_{i \in \mathbb{N}} \subset \mathcal{B}\) such that

\[
f = \sum_{i \in \mathbb{N}} \lambda_i a_i \quad \text{in } \mathcal{S}'.
\]

Moreover, for any \(f \in H^{\vec{p}, q, s}_A\), let

\[
\|f\|_{H^{\vec{p}, q, s}_A} := \inf \left\| \left\{ \sum_{i \in \mathbb{N}} \left[|\lambda_i| \chi_{B^{(i)}} \right] \right\}^{1/\eta} \right\|_{L^{p_\eta}},
\]

where \(\eta \in (0, \min\{1, p_-\})\) and the infimum is taken over all the decompositions of \(f\) as above.

Lemma 2.8. [13, Theorem 4.7] Let \(\vec{p} \in (0, \infty)^n, q \in (\max\{p_+, 1\}, \infty]\) with \(p_+\) as in (2.6), \(s \in [\max\{(p_- - 1)\ln b/\ln \lambda_-, \infty]\) \cap \mathbb{Z}_+\) with \(p_-\) as in (2.6) and \(N \in \mathbb{N} \cap [\max\{(1/2 - 1)\ln b/\ln \lambda_-, 2\}, \infty]\). Then

\[
H^{\vec{p}}_A = H^{\vec{p}, q, s}_A
\]

with equivalent quasi-norms.

We recall the definition of anisotropic Hardy-Littlewood maximal function \(M_{\text{HL}}(f)\). For any \(f \in L^1_{\text{loc}}\) and \(x \in \mathbb{R}^n\),

\[
M_{\text{HL}}(f)(x) := \sup_{x \in B \in \mathcal{B}} \frac{1}{|B|} \int_B |f(z)| dz,
\]

where \(\mathcal{B}\) is as in (2.3).
Lemma 2.9. [13, Lemma 4.4] Let $\vec{p} \in (1, \infty)^n$ and $u \in (1, \infty]$. Then there exists a positive constant C such that, for any sequence $\{f_k\}_{k \in \mathbb{N}}$ of measurable functions,

$$\left\| \left\{ \sum_{k \in \mathbb{N}} [M_{HL}(f_k)]^u \right\}^{1/u} \right\|_{L^{\vec{p}}} \leq C \left\| \left(\sum_{k \in \mathbb{N}} |f_k|^u \right)^{1/u} \right\|_{L^{\vec{p}}}$$

with the usual modification made when $u = \infty$, where M_{HL} denotes the Hardy-Littlewood maximal operator as in (2.8).

3 Atomic Decomposition of $H^{\vec{p}}_A$

In this section, we obtain the new atomic decomposition of $H^{\vec{p}}_A$. Let

$$\mathcal{S}_\infty := \left\{ \varphi \in \mathcal{S} : \int_{\mathbb{R}^n} x^\alpha \varphi(x) dx = 0, \forall \alpha \in \mathbb{Z}_+^n \right\}$$

equipped with the same topology as \mathcal{S}, and \mathcal{S}'_∞ be its dual space equipped with the weak-* topology. Now we introduce the new anisotropic mixed-norm atomic Hardy space $H^{\vec{p}, q, s}_A$ in term of \mathcal{S}'_∞.

Definition 3.1. Let $\vec{p} \in (0, \infty)^n$, $q \in (1, \infty]$, A be a dilation and $s \in [[[1/p_- - 1)\ln b/\ln \lambda_-], \infty) \cap \mathbb{Z}_+$ with p_- as in (2.6). The anisotropic mixed-norm atomic Hardy space $H^{\vec{p}, q, s}_A$ is defined to be the set of all distributions $f \in \mathcal{S}'$ satisfying that there exist $\{\lambda_i\}_{i \in \mathbb{N}} \subset \mathbb{C}$ and a sequence of (\vec{p}, q, s)-atoms, $\{a_i\}_{i \in \mathbb{N}}$, supported, respectively, on $\{B^{(i)}\}_{i \in \mathbb{N}} \subset \mathcal{B}$ such that

$$f = \sum_{i \in \mathbb{N}} \lambda_i a_i \text{ in } \mathcal{S}'_\infty.$$

Moreover, for any $f \in H^{\vec{p}, q, s}_A$, let

$$\|f\|_{H^{\vec{p}, q, s}_A} := \inf \left\{ \left\| \left(\sum_{i \in \mathbb{N}} \left[\frac{\lambda_i \chi_{B^{(i)}}}{\| \chi_{B^{(i)}} \|_{L^{\vec{p}}}} \right]^\eta \right)^{1/\eta} \right\|_{L^{\vec{p}}} \right\},$$

where $\eta \in (0, \min\{1, p_-\})$ and the infimum is taken over all the decompositions of f as above.

Theorem 3.2. Let $\vec{p} \in (0, 1]^n$, $q \in (1, \infty]$, $s \in [[[1/p_- - 1)\ln b/\ln \lambda_-], \infty) \cap \mathbb{Z}_+$ with p_- as in (2.6) and $N \in \mathbb{N} \cap [[[1/p - 1)\ln b/\ln \lambda_-] + 2, \infty)$. Then

$$H^{\vec{p}}_A = H^{\vec{p}, q, s}_A$$

in the following sense: if $f \in H^{\vec{p}}_A$, then $f \in H^{\vec{p}, q, s}_A$ and

$$\|f\|_{H^{\vec{p}, q, s}_A} \leq \|f\|_{H^{\vec{p}}_A}.$$
Conversely, if \(f \in H^\vec{p}_A \), then there exists a unique extension \(F \in H_A \) such that, for any \(\phi \in \mathcal{S}_\infty \), \(\langle F, \phi \rangle = \langle f, \phi \rangle \) and
\[
\|F\|_{H_A} \leq \|f\|_{H^\vec{p}_q A}.
\]

Remark 3.3. Let \(\vec{p} \in (0, \infty)^n \).

(i) When \(\vec{p} := \{p, \ldots, p\} \), where \(p \in (0, 1] \), this result is also new.

(ii) When
\[
A := \begin{pmatrix}
2^{a_1} & 0 & \cdots & 0 \\
0 & 2^{a_2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 2^{a_n}
\end{pmatrix}
\]
with \(\vec{a} := (a_1, \ldots, a_n) \in [1, \infty)^n \), this result is reduced to the [14, Theorem 3.3].

To prove Theorem 3.2, we need some technical lemmas as following.

Lemma 3.4. Let \(\vec{p} \in (0, \infty)^n \), \(q \in (1, \infty) \) and \(s \in [(1/p_- - 1)\ln b/\ln \lambda_+, \infty) \cap \mathbb{Z}_+ \) with \(p_- \) as in (2.6). Then there exists a positive constant \(C \) such that, for any \((\vec{p}, q, s)\)-atom \(b \) and \(\varphi \in \mathcal{S} \),
\[
\left| \int_{\mathbb{R}^n} b(y)\varphi(y)dy \right| \leq CM_s(\varphi),
\]
where \(M_s(\varphi) := \sup\{\|\varphi\|_{\alpha, 0} : \alpha \in \mathbb{Z}_+^n, |\alpha| \leq s + 1\} \).

Proof. For any \((\vec{p}, q, s)\)-atom \(b \), we assume \(\text{supp } b \subset B_k \). Now we claim that, for any \(k \in \mathbb{Z} \),
\[
\|\chi_{B_k}\|_{L^{\vec{p}}}^{-1} \lesssim \max\{b^{-k/p_-}, b^{-k/p_+}\}.
\]
In fact, there exists a \(K \in \mathbb{Z} \) large enough such that, when \(k \in (K, \infty) \cap \mathbb{Z} \), the
\[
\|\chi_{B_k}\|_{L^{\vec{p}}} = \left\{ \int_{\mathbb{R}^n} \cdots \int_{\mathbb{R}^n} |\chi_{B_k}(x_1, \ldots, x_n)|^{p_1} dx_1 \cdots dx_n \right\}^{1/p_1} \cdot \cdots \cdot \left\{ \int_{\mathbb{R}^n} \cdots \int_{\mathbb{R}^n} |\chi_{B_k}(x_1, \ldots, x_n)|^{p_+} dx_1 \cdots dx_n \right\}^{1/p_+}
\]
\[
\geq \left\{ \int_{\mathbb{R}^n} \cdots \int_{\mathbb{R}^n} |\chi_{B_k}(x_1, \ldots, x_n)|^{p_+} dx_1 \cdots dx_n \right\}^{1/p_+} = |B_k|^{1/p_+}.
\]
When \(k \in (-\infty, K] \), by [13, Lemma 6.8], we conclude that, for any \(\nu \in (0, 1) \),
\[
\|\chi_{B_k}\|_{L^{\vec{p}}} \lesssim b^{(1+\nu)(K-k)/p_-}.
\]
Let \(\nu \to 0 \). Then
\[
\frac{1}{\|\chi_{B_k}\|_{L^{\vec{p}}}} \lesssim \frac{b^{K/p_-}}{\|\chi_{B_k}\|_{L^{\vec{p}}}} b^{-k/p_-} \sim |B_k|^{-1/p_-}.
\]
If \(k > 0 \), we have
\[
\|b\|_{L^q} \leq \frac{|B_k|^{1/q}}{\|\chi_{B_k}\|_{L^p}} \lesssim |B_k|^{1/q-1/p_+}.
\]
If \(k \leq 0 \), we have
\[
\|b\|_{L^q} \leq \frac{|B_k|^{1/q}}{\|\chi_{B_k}\|_{L^p}} \lesssim |B_k|^{1/q-1/p_-}.
\]
Therefore, when \(k > 0 \), we have
\[
\left| \int_{\mathbb{R}^n} b(y) \varphi(y) dy \right| \leq \|\varphi\|_{L^\infty} \|b\|_{L^q} |B_k|^{1/q'} \lesssim \|\varphi\|_0 \|b\|_{L^q} |B_k|^{1/p_+ - 1/q} \lesssim M_s(\varphi).
\]
When \(k \leq 0 \), by the vanishing moment of \(b \) and the Taylor reminder theorem, we obtain
\[
\left| \int_{\mathbb{R}^n} b(y) \varphi(y) dy \right| \leq \left| \int_{\mathbb{R}^n} b(y) \left[\varphi(y) - \sum_{|\alpha| \leq s} \frac{\partial^\alpha \varphi(0)}{\alpha!} y^\alpha \right] dy \right| \lesssim M_s(\varphi) \left| \int_{B_k} b(y)|y|^{s+1} dy \right| \lesssim M_s(\varphi) \|b\|_{L^q} |B_k|^{1/q'} \lesssim M_s(\varphi) |B_k|^{1/q-1/p_-} |B_k|^{s+1-1/q} \lesssim M_s(\varphi).
\]
This finishes the proof of Lemma 3.4.

Lemma 3.5. Let \(\vec{p} \in (0, 1]^n \). Then, for any \(\{\lambda_i\}_{i \in \mathbb{N}} \subset \mathbb{C} \) and \(\{B^{(i)}\}_{i \in \mathbb{N}} \subset \mathcal{B} \),
\[
\sum_{i \in \mathbb{N}} |\lambda_i| \leq \left\{ \sum_{i \in \mathbb{N}} \left[\frac{|\lambda_i| \chi_{B^{(i)}}}{\|\chi_{B^{(i)}}\|_{L^\vec{p}}} \right]^\eta \right\}^{1/\eta}_{L^\vec{p}}
\]
where \(\eta \in (0, \vec{p}) \) with \(\vec{p} \) as in (2.7).

Proof. Since \(\vec{p} \in (0, 1]^n \) and the well-known inequality that, for all \(\{\lambda_i\}_{i \in \mathbb{N}} \subset \mathbb{C} \) and \(\vartheta \in (0, 1] \),
\[
\left(\sum_{i \in \mathbb{N}} |\lambda_i| \right)^\vartheta \leq \sum_{i \in \mathbb{N}} |\lambda_i|^\vartheta.
\]
Then we have
\[
\sum_{i \in \mathbb{N}} |\lambda_i| = \sum_{i \in \mathbb{N}} |\lambda_i| \left\| \frac{\chi_{B^{(i)}}}{\|\chi_{B^{(i)}}\|_{L^\vec{p}}} \right\|_{L^\vec{p}}
\]
\[
\lambda \left\| \sum_{i \in \mathbb{N}} \frac{\lambda_i |\chi_{B(i)}|}{\|\chi_{B(i)}\|_L^p} \right\|_{L^q}
\]
\[
\lambda \left\| \left\{ \sum_{i \in \mathbb{N}} \left[\frac{\lambda_i |\chi_{B(i)}|}{\|\chi_{B(i)}\|_L^p} \right] \right\}^{1/\eta} \right\|_{L^q}.
\]

This finishes the proof of Lemma 3.5. \(\square \)

Lemma 3.6. [17] Let \(\pi : S' \to S'_\infty \) satisfy that, for any \(f \in S' \) and \(\phi \in S'_\infty \),
\[
\langle \pi(f), \phi \rangle = \langle f, \phi \rangle.
\]
Then
\[
P = \{ f \in S' : \pi(f) = 0 \}.
\]
where \(P \) denote all polynomials on \(\mathbb{R}^n \). Moreover, \(P \) is closed in \(S' \).

Proof of Theorem 3.2. By the definitions of \(S \) and \(S_\infty \), we find that
\[
S_\infty \subset S,
\]
which implies that
\[
S' \subset S'_\infty.
\]
From this, Lemma 2.8, we conclude that
\[
H_\vec{p} = H^p_A \subset \mathbb{H}^p_A.
\]
and for any \(f \in H_\vec{p} \),
\[
\| f \|_{H^p_A} \leq \| f \|_{\mathbb{H}^p_A}.
\]
Therefore, to prove Theorem 3.2, it suffices to show that, for any \(\phi \in \mathbb{H}^p_A \), there exists a unique extension \(F \in H^p_A \) such that, for any \(\phi \in S_\infty \),
\[
\langle F, \phi \rangle = \langle f, \phi \rangle
\]
and
\[
\| F \|_{H^p_A} \leq \| f \|_{\mathbb{H}^p_A}.
\]
To show this, for any \(f \in \mathbb{H}^p_A \), by Definition 3.1, we deduce that there exists a sequence of \((\vec{p}, q, s) \)-atom \(\{a_i\}_{i \in \mathbb{N}} \), supported, respectively, on \(\{B(i)\}_{i \in \mathbb{N}} \subset \mathcal{B} \), such that
\[
f = \sum_{i \in \mathbb{N}} \lambda_i a_i \text{ in } S'_\infty
\]
and
\[
\| f \|_{\mathbb{H}^p_A} \sim \left\| \left\{ \sum_{i \in \mathbb{N}} \left[\frac{\lambda_i |\chi_{B(i)}|}{\|\chi_{B(i)}\|_L^p} \right] \right\}^{1/\eta} \right\|_{L^q} < \infty
\]
with \(\eta \in (0, \min\{1, p_\pm\}) \).

For any \(\varphi \in \mathcal{S} \), set

\[
\langle F, \varphi \rangle := \sum_{i \in \mathbb{N}} \lambda_i \int_{\mathbb{R}^n} a_i(x) \varphi(x) \, dx.
\]

Then, using Lemmas 3.4 and 3.5, we have

\[
|\langle F, \varphi \rangle| \lesssim M^{s}(\varphi) \sum_{i \in \mathbb{N}} |\lambda_i| \lesssim M^{s}(\varphi) \left\{ \sum_{i \in \mathbb{N}} \left[\frac{|\lambda_i| \chi_{B(i)}(\mathbb{R}^n)}{\| \chi_{B(i)} \|_{L^{\bar{p}}}} \right]^{\eta} \right\}^{1/\eta}, \quad \eta \in (0, \min\{1, p_\pm\}),
\]

which implies that \(F \in \mathcal{S}' \). From this, we see that, \(F \in H^{\vec{p}, q, s}_{A} \) and for all \(\phi \in \mathcal{S}_{\infty} \),

\[
\langle F, \phi \rangle = \langle f, \phi \rangle.
\]

By the Definition 3.1, we know that

\[
\| F \|_{H^{\vec{p}, q, s}_{A}} \leq \| f \|_{H^{\vec{p}, q, s}_{A}}.
\]

Finally, we only need to show that the distribution \(F \) is unique. In fact, if there exists distribution \(\tilde{F} \in H^{\vec{p}, q, s}_{A} \) such that, for any \(\psi \in \mathcal{S}_{\infty} \), \(\langle \tilde{F}, \psi \rangle = \langle f, \psi \rangle \). Then, by Lemma 3.6, we obtain

\[
F - \tilde{F} \in \mathcal{P}.
\]

By the fact that any element of \(H^{\vec{p}, q, s}_{A} \) vanishes weakly in infinity and \(F - \tilde{F} \in H^{\vec{p}, q, s}_{A} \), we deduce that \(F = \tilde{F} \) in \(\mathcal{S}'_{\infty} \). This finishes the proof of Theorem 3.2.

\[\square\]

4 Molecular Decomposition of \(H^{\vec{p}}_{A} \)

In this section, we introduce the definition of anisotropic mixed-norm molecules as follows.

Definition 4.1. Let \(\vec{p} \in (0, \infty)^n \), \(q \in (1, \infty] \),

\[
s \in \left[\left(\frac{1}{p_-} - 1 \right) \frac{\ln b}{\ln \lambda_-}, \infty \right) \cap \mathbb{Z}_+.
\]

and \(\varepsilon \in (0, \infty) \). A measurable function \(\mathcal{M} \) is called an *anisotropic mixed-norm (\(\vec{p}, q, s, \varepsilon \)) molecule* associated with a dilated ball \(x_0 + B_i \in \mathcal{B} \) if

(i) for each \(j \in \mathbb{Z}_+ \), \(\| \mathcal{M} \|_{L^q(U_j(x_0 + B_i))} \leq b^{-j \varepsilon} \frac{|B_i|^{1/q}}{\| \chi_{x_0 + B_i} \|_{L^{\vec{p}}}} \), where \(U_0(x_0 + B_i) := x_0 + B_i \) and, for each \(j \in \mathbb{N} \), \(U_j(x_0 + B_i) := x_0 + (A^j B_i) \setminus (A^{j-1} B_i) \);

(ii) for all \(\alpha \in \mathbb{Z}_+^n \) with \(|\alpha| \leq s \), \(\int_{\mathbb{R}^n} \mathcal{M}(x) x^\alpha \, dx = 0 \).

Remark 4.2. Let \(\vec{p} \in (0, \infty)^n \).
(i) When \(\vec{p} := \{p, \ldots, p\} \), where \(p \in (0, 1] \), the definition of the molecule in Definition 4.1 is reduced to the molecule in [19, Definition 3.7].

(ii) When it comes back to the isotropic setting, i.e., \(A := 2I_{n \times n} \), and \(\rho(x) := |x|^n \) for all \(x \in \mathbb{R}^n \), the definition of the molecule in Definition 2.4 is also new.

In what follows, we call an anisotropic mixed-norm \((\vec{p}, q, s, \varepsilon)\)-molecule simply by \((\vec{p}, q, s, \varepsilon)\)-molecule. Via \((\vec{p}, q, s, \varepsilon)\)-molecules, we introduce the following anisotropic mixed-norm molecular Hardy space \(H_{A, \text{mol}}^{\vec{p}, q, s, \varepsilon} \).

Definition 4.3. Let \(\vec{p} \in (0, \infty)^n \), \(q \in (1, \infty] \cap (p_+, \infty] \) with \(p_+ \) as in (2.6), \(s \) be as in (4.1) and \(\varepsilon \in (0, \infty) \). The anisotropic mixed-norm molecular Hardy space \(H_{A, \text{mol}}^{\vec{p}, q, s, \varepsilon} \) is defined to be the set of all distributions \(f \in S' \) satisfying that there exist \(\{\lambda_i\}_{i \in \mathbb{N}} \subset \mathbb{C} \) and a sequence of \((\vec{p}, q, s, \varepsilon)\)-molecules, \(\{\mathcal{M}_i\}_{i \in \mathbb{N}} \), associated, respectively, with \(\{B^{(i)}\}_{i \in \mathbb{N}} \subset \mathcal{B} \) such that

\[
f = \sum_{i \in \mathbb{N}} \lambda_i \mathcal{M}_i \text{ in } S'.
\]

Moreover, for any \(f \in H_{A, \text{mol}}^{\vec{p}, q, s, \varepsilon} \), let

\[
\|f\|_{H_{A, \text{mol}}^{\vec{p}, q, s, \varepsilon}} := \inf \left\{ \left\| \sum_{i \in \mathbb{N}} \left[\frac{\lambda_i |\chi_{B^{(i)}}|}{\|\chi_{B^{(i)}}\|_{L_{\vec{p}}}} \right]^{\eta} \right\|_{L_{\vec{p}}}^{1/\eta} \right\},
\]

where \(\eta \in (0, \min\{1, p_-\}) \) and the infimum is taken over all the decompositions of \(f \) as above.

The following Theorem 4.4 shows the molecular characterization of \(H_{A}^{\vec{p}} \), whose proof is given in the next section.

Theorem 4.4. Let \(\vec{p} \in (0, \infty)^n \) and \(q \in (1, \infty] \cap (p_+, \infty] \) with \(p_+ \) as in (2.6), \(s \) be as in (4.1), \(\varepsilon \in (\max\{1, (s + 1) \log b(\lambda_+)\}, \infty) \) and \(N \in \mathbb{N} \cap \left(\left\lfloor (1/p - 1) \log b/\log \lambda_- \right\rfloor + 2, \infty\right) \) with \(p \) as in (2.7). Then

\[
H_{A}^{\vec{p}} = H_{A, \text{mol}}^{\vec{p}, q, s, \varepsilon}
\]

with equivalent quasi-norms.

Remark 4.5. Let \(\vec{p} \in (0, 1]^n \).

(i) Liu et al. [20] introduced the anisotropic Hardy-Lorentz space \(H_{A}^{p, q} \), where \(p \in (0, 1] \) and \(q \in (0, \infty) \). When \(\vec{p} := \{p, \ldots, p\} \) with \(p \in (0, 1] \), the molecular characterization of \(H_{A}^{\vec{p}} \) in Theorem 4.4 is reduced to the molecular characterization of anisotropic Hardy spaces \(H_{A}^{p} = H_{A}^{p, p} \) in [19, Theorem 3.9].

(ii) When it comes back to the isotropic setting, i.e., \(A := 2I_{n \times n} \), the molecular characterization of \(H_{A}^{\vec{p}} \) in Theorem 4.4 is still new.
To show Theorem 4.4, we need the following lemma. By a similar proof of [13, Lemma 4.5], we obtain the following useful conclusion; the details are omitted.

Lemma 4.6. Let \(\vec{p} \in (0, \infty)^n \) and \(q \in (1, \infty] \cap (p_+, \infty] \) with \(p_+ \) as in (2.6). Assume that \(\{ \lambda_i \}_{i \in \mathbb{N}} \subset \mathbb{C} \), \(\{ B^{(i)} \}_{i \in \mathbb{N}} \subset \mathcal{B} \) and \(\{ a_i \}_{i \in \mathbb{N}} \in L^q \) satisfy, for any \(i \in \mathbb{N} \), \(\text{supp} a_i \subset A^j B^{(i)} \) with some fixed \(j_0 \in \mathbb{Z} \), \(\| a \|_{L^q} \leq \| \chi_{B^{(i)}} \|_{L^q} \) and

\[
\left\| \left(\sum_{i \in \mathbb{N}} \left(\frac{|\lambda_i| \chi_{B^{(i)}}}{\| \chi_{B^{(i)}} \|_{L^q}} \right)^{\eta} \right)^{1/\eta} \right\|_{L^{\vec{p},q}} < \infty.
\]

Then

\[
\left\| \left(\sum_{i \in \mathbb{N}} |\lambda_i| a_i \right)^{\eta} \right\|_{L^{\vec{p},q}} \leq C \left\{ \sum_{i \in \mathbb{N}} \left(\frac{|\lambda_i| \chi_{B^{(i)}}}{\| \chi_{B^{(i)}} \|_{L^q}} \right)^{\eta} \right\}^{1/\eta}_{L^{\vec{p},q}},
\]

where \(\eta \in (0, \min\{1, p_-\}) \) and \(C \) is a positive constant independent of \(\{ \lambda_i \}_{i \in \mathbb{N}} \), \(\{ B^{(i)} \}_{i \in \mathbb{N}} \) and \(\{ a_i \}_{i \in \mathbb{N}} \).

Proof of Theorem 4.4. By the definitions of \((\vec{p}, q, s, \varepsilon)\)-atom and \((\vec{p}, q, s, \varepsilon)\)-molecule, we find that a \((\vec{p}, \infty, s)\)-atom is also a \((\vec{p}, q, s, \varepsilon)\)-molecule, which implies that

\[
H_{A^{\infty,s}}^{\vec{p},q} \subset H_{A,\text{mol}}^{\vec{p},q, s, \varepsilon}.
\]

This, combined with Lemma 2.8, further implies that, to prove Theorem 4.4, it suffices to show \(H_{A,\text{mol}}^{\vec{p},q, s, \varepsilon} \subset H_{A^{\infty}}^{\vec{p},q} \).

For any \(f \in H_{A,\text{mol}}^{\vec{p},q, s, \varepsilon} \), by Definition 4.3, we have that there exists a sequence of
\((\vec{p}, q, s, \varepsilon)\)-molecules, \(\{ \mathcal{M}_i \}_{i \in \mathbb{N}} \), associated with dilated balls \(\{ B^{(i)} \}_{i \in \mathbb{N}} \subset \mathcal{B} \), where \(B^{(i)} := x_i + B_{\ell_i} \) with \(x_i \in \mathbb{R}^n \) and \(\ell_i \in \mathbb{Z} \), such that

\[
f = \sum_{i \in \mathbb{N}} \lambda_i \mathcal{M}_i \text{ in } S'
\]

and

\[
\| f \|_{H_{A,\text{mol}}^{\vec{p},q, s, \varepsilon}} \sim \left\{ \sum_{i \in \mathbb{N}} \left(\frac{|\lambda_i| \chi_{B^{(i)}}}{\| \chi_{B^{(i)}} \|_{L^q}} \right)^{\eta} \right\}^{1/\eta}_{L^{\vec{p},q}},
\]

where \(\eta \in (0, \min\{1, p_-\}) \). To prove \(f \in H_{A}^{\vec{p},q} \), it is easy to see that, for any \(N \in \mathbb{N} \cap [(1/p - 1) \ln b / \ln \lambda_-] + 2, \infty) \),

\[
\| M_N(f) \|_{L^{\vec{p},q}}^p \leq \| M_N \left(\sum_{i \in \mathbb{N}} \lambda_i \mathcal{M}_i \right) \|_{L^{\vec{p},q}}^p \leq \sum_{i \in \mathbb{N}} |\lambda_i| \| M_N(\mathcal{M}_i) \|_{L^{\vec{p},q}}^p
\]

\[
\leq \left(\sum_{i \in \mathbb{N}} |\lambda_i| \right)^{p} \left(\sum_{i \in \mathbb{N}} |\lambda_i| \right)^{p} \chi_{A^{2^p B^{(i)}}} \| M_N(\mathcal{M}_i) \chi_{(A^{2^p B^{(i)}})} \|_{L^{\vec{p},q}}^p.
\]
By this, Lemma 4.6, q ∈ ((max{p_+}, 1), ∞) and (4.2), we obtain

\[I_1 = \left\langle \left\{ \sum_{i \in \mathbb{N}} \left[\frac{|\lambda_i|}{\|\chi_{B(i)}\|_{L^\rho}} \right] \chi_{B(i)} M_N(\mathfrak{m}_i) \chi_{A^{2\sigma}B(i)} \right\}^{1/\eta} \right\rangle^{1/\eta} \leq \left\| \sum_{i \in \mathbb{N}} \left[\frac{|\lambda_i|}{\|\chi_{B(i)}\|_{L^\rho}} \chi_{B(i)} M_N(\mathfrak{m}_i) \chi_{A^{2\sigma}B(i)} \right] \right\|_{L^\rho} \sim \|f\|_{H_{\eta,q,s}^p}^{1/\eta} \|x\|_{L^\rho}^{1/\eta} \sim \|f\|_{H_{\eta,q,s}^p}^{1/\eta} \|x\|_{L^\rho}^{1/\eta} \sim \|f\|_{H_{\eta,q,s}^p}^{1/\eta} \|x\|_{L^\rho}^{1/\eta}. \]

To deal with I_2, for any i ∈ \mathbb{N} and x ∈ (x_i + A^{2\sigma}B(i))^C, we need to estimate \(M_N^0(\mathfrak{m}_i)(x) \), it’s proof is similar to that of [19, (3.48)]. Suppose that P is a polynomial of degree not greater than s which is determined later. By the Hölder inequality and Definitions 4.1, we know that

\begin{align*}
|\mathfrak{m}_i \ast \varphi_k(x)| &= b^{-k} \int_{\mathbb{R}^n} \mathfrak{m}_i(y) \varphi(A^{-k}(x - y)) \, dy \\
&\leq b^{-k} \sum_{j=0}^{\infty} \left| \int_{U_j(x_i + B_{\ell_i})} \mathfrak{m}_i(y) \left[\varphi(A^{-k}(x - y)) - P(A^{-k}(x - y)) \right] \, dy \right| \\
&\leq b^{-k} \sum_{j=0}^{\infty} \left| \frac{\mathfrak{m}_i}{\|\chi_{x_i+B_{\ell_i}}\|_{L^\rho}} \int_{U_j(x_i + B_{\ell_i})} \left[\varphi(A^{-k}(x - y)) - P(A^{-k}(x - y)) \right] \, dy \right|^{1/q'} \\
&\leq b^{-k} \sum_{j=0}^{\infty} b^{-j \varepsilon} \left| \frac{x_i + B_{\ell_i}}{b_j^{(1/q')^{-\varepsilon}}} \sup_{z \in A^{-k}(x - x_i) + B_{\ell_i+j-k}} |\varphi(z) - P(z)| \right| \\
&= b^{\ell_i-k} \sum_{j=0}^{\infty} b^{j/1/q'} \sup_{z \in A^{-k}(x - x_i) + B_{\ell_i+j-k}} |\varphi(z) - P(z)|.
\end{align*}

Assume that x ∈ x_i + B_{\ell_i+2\sigma+m+1}|B_{\ell_i+2\sigma+m+1} for some m ∈ Z+. Then, by (2.5), we know that, for any k ∈ Z and j ∈ Z+,

\begin{align*}
A^{-k}(x - x_i) + B_{\ell_i+j-k} &\subseteq A^{-k}(B_{\ell_i+2\sigma+m+1}|B_{\ell_i+2\sigma+m} + B_{\ell_i+j-k}) \\
&\subseteq A^{-k}(x - x_i + B_{\ell_i+j-k}).
\end{align*}
Taylor's theorem, (4.6)

\[|φ(z)| \lesssim \sup_{z \in A^{i+j-k}} \frac{1}{(1+\rho(z))^N} \]
\[\lesssim b^{-N(i+j+k+m)}. \]

If \(\ell_i \geq k \), let \(P = 0 \). Then we have, for any \(N \in \mathbb{N} \),

\[
\sup_{z \in A^{i-k}(x-x_i) + B_{i+j-k}} |\varphi(z)| \lesssim \sup_{z \in A^{i+j-k}(B_m)} \frac{1}{(1+\rho(z))^N} \]
\[\lesssim b^{-N(i+j-k+m)}. \]

If \(\ell_i < k \), let \(P \) be the Taylor expansion of \(\varphi \) at the point \(A^{-k}(x-x_i) \) of order \(s \). By Taylor's theorem, (2.1), (2.2) and (4.4), we obtain, for any \(N \in \mathbb{N} \),

\[
\sup_{z \in A^{i-k}(x-x_i) + A^{-k}B_{i}} |\varphi(z) - P(z)| \]
\[\lesssim \sup_{y \in A^{-k}B_{i}} \sup_{|\alpha| = s+1} |\partial^\alpha \varphi(A^{-k}(x-x_i) + y)| |y|^{s+1} \]
\[\lesssim b^{j(s+1)\log \lambda^+ \lambda_{-(s+1)(\ell_i-k)}} \sup_{z \in A^{i-k}(x-x_i) + A^{-k+j}B_{i}} \frac{1}{(1+\rho(z))^N} \]
\[\lesssim b^{j(s+1)\log \lambda^+ \lambda_{-(s+1)(\ell_i-k)}} b^{-N(\ell_i-k+j+m)}. \]

Notice that the supremum over \(k \leq \ell_i \) has the largest value when \(k = \ell_i \). Without loss of generality, we may assume that \(s := \lfloor \frac{1}{\ln b} - 1 \rfloor \) and \(N := s + 2 \). This implies \(b\lambda^{s+1} \leq b^N \) and the above supremum over \(k > \ell_i \) is attained when \(\ell_i - k + j + m = 0 \). By (4.3), (4.5), (4.6) and the fact that \(\varepsilon > (s+1)\log \lambda^+ \), we obtain

\[M^0_N(\mathcal{M}_i)(x) = \sup_{\varphi \in \mathcal{S}_N} \sup_{k \in \mathbb{Z}} |\mathcal{M}_i \ast \varphi_k(x)| \]
\[\lesssim \frac{b^{j(s+1)\log \lambda^+ \lambda_{-(s+1)(\ell_i-k)}} b^{-N(\ell_i-k+j+m)}}{\|\chi_{x_i + B_{\ell_i}}\|_{L^p}} \sum_{j=0}^{\infty} b^{-j\varepsilon} \max \left\{ b^{-mN(\ell_i-k+j+m)}, \right. \]
\[\left. b^{j(s+1)\log \lambda^+ \lambda_{-(s+1)(\ell_i-k)}} b^{-N(\ell_i-k+j+m)} \right\} \]
\[\lesssim \frac{b^{j(s+1)\log \lambda^+ \lambda_{-(s+1)(\ell_i-k)}} b^{-j\varepsilon} \max \{ b^{-mN}, (b\lambda^{s+1})^{-m} \}}{\|\chi_{x_i + B_{\ell_i}}\|_{L^p}} \]
\[\lesssim \frac{1}{\|\chi_{x_i + B_{\ell_i}}\|_{L^p}} b^{-mN(\ln \lambda_-/\ln b)} \]
\[\lesssim \frac{1}{\|\chi_{x_i + B_{\ell_i}}\|_{L^p}} b^{(s+1)(\ln \lambda_-/\ln b) + 1} b^{-\ell_i - \sigma + m} \]
\[\lesssim \frac{1}{\|\chi_{x_i + B_{\ell_i}}\|_{L^p}} |x_i + B_{\ell_i}| \left| \frac{(s+1)(\ln \lambda_-/\ln b) + 1}{\rho(x - x_i)} - [(s+1)(\ln \lambda_-/\ln b) + 1] \right| \]
\[\lesssim \frac{1}{\|\chi_{x_i + B_{\ell_i}}\|_{L^p}} |x_i + B_{\ell_i}| \left| \frac{(s+1)(\ln \lambda_-/\ln b) + 1}{\rho(x - x_i)} - [(s+1)(\ln \lambda_-/\ln b) + 1] \right| \]
This implies that

\[\sim \| \chi_{B^{(i)}} \|_{L^p}^{-1} \frac{|B^{(i)}|^\theta}{\rho(x - x_i)^\theta} \]

\[\lesssim \| \chi_{B^{(i)}} \|_{L^p}^{-1} [M_{HL}(\chi_{B^{(i)}})(x)]^\theta, \]

where, for any \(i \in \mathbb{N} \), \(x_i \) denotes the centre of the dilated ball \(B^{(i)} \) and

\[\theta := \left(\frac{\ln b}{\ln \lambda_-} + s + 1 \right) \frac{\ln \lambda_-}{\ln b} > \frac{1}{p}. \]

By this and the fact that, for any \(x \in \mathbb{R}^n \), \(M_N(f)(x) \sim M_N^0(f)(x) \) (see [1, Proposition 3.10]), we obtain

\[M_N(M_i)(x) \lesssim \| \chi_{B^{(i)}} \|_{L^p}^{-1} \frac{|B^{(i)}|^\theta}{\rho(x - x_i)^\theta} \lesssim \| \chi_{B^{(i)}} \|_{L^p}^{-1} [M_{HL}(\chi_{B^{(i)}})(x)]^\theta, \]

where, for any \(i \in \mathbb{N} \), \(x_i \) denotes the centre of the dilated ball \(B^{(i)} \) and \(\theta \) is as in (4.7). From this, Lemmas 2.2, 2.9, (3.1) and (4.2), we deduce that

\[I_2 \lesssim \left\| \sum_{i \in \mathbb{N}} \frac{|\lambda_i|}{\| \chi_{B^{(i)}} \|_{L^p}} [M_{HL}(\chi_{B^{(i)}})]^\theta \right\|_{L^p}^p \]

\[\lesssim \left\{ \sum_{i \in \mathbb{N}} \frac{|\lambda_i|}{\| \chi_{B^{(i)}} \|_{L^p}} [M_{HL}(\chi_{B^{(i)}})]^\theta \right\}^{1/\theta} \| f \|_{L^p}^{\theta p} \]

\[\lesssim \left\{ \sum_{i \in \mathbb{N}} \frac{|\lambda_i|}{\| \chi_{B^{(i)}} \|_{L^p}} \right\}^{1/\theta} \| f \|_{L^p}^{\theta p} \]

\[\lesssim \left\{ \sum_{i \in \mathbb{N}} \left[\frac{|\lambda_i|}{\| \chi_{B^{(i)}} \|_{L^p}} \right]^{n/\eta} \right\}^{1/\eta} \| f \|_{H_{A, \text{mol}}^{p,q,s,\varepsilon}}^p, \]

where \(\eta \in (0, \min\{1, p_-\}) \). This, together with \(I_1 \) and \(I_2 \), shows that

\[\| f \|_{H_{A}^{p}} \sim \| M_N(f) \|_{L^p} \lesssim \| f \|_{H_{A, \text{mol}}^{p,q,s,\varepsilon}}. \]

This implies that \(f \in H_{A}^{p} \) and hence \(H_{A, \text{mol}}^{p,q,s,\varepsilon} \subset H_{A}^{p} \). This finishes the proof of Theorem 4.4.

5 Application

In this section, as an application, we obtain a boundedness criterion for some linear operators from \(H_{A}^{p} \) to itself. Particularly, when \(A := 2I_{n \times n} \), this result is still new.
Theorem 5.1. Let \(\vec{p} \in (0, \infty)^n \), \(q \in (1, \infty] \cap (p_+, \infty) \) with \(p_+ \) as in (2.6), and \(s \) be as in (4.1). Suppose that \(T \) is a bounded linear operator on \(L^r \), for any \(r \in (1, \infty] \). If for any \((\vec{p}, q, s)\)-atom \(a \), supported on dilated ball \(B^{(i_0)} \in \mathcal{B} \), as in Definition 2.6, \(T(a) \) is a harmless constant multiple of a \((\vec{p}, q, s, \varepsilon)\)-molecule, associated with dilated ball \(B^{(i_0)} \in \mathcal{B} \), where \(\varepsilon > (s + 1) \log_b^+ \), then \(T \) extends uniquely to a bounded linear operator on \(H^\vec{p}_A \). Moreover, there exists a positive constant \(C \) such that, for all \(f \in H^\vec{p}_A \),

\[
\|T(f)\|_{H^\vec{p}_A} \leq C \|f\|_{H^\vec{p}_A}.
\]

(5.1)

To prove Theorem 5.1, we need some definitions and technical lemmas.

Definition 5.2. [13] Let \(\vec{p} \in (0, \infty)^n \), \(q \in (1, \infty] \) and \(s \in \left[(1/p_- - 1) \ln b / \ln \lambda_- \right], \infty \right) \cap \mathbb{Z}_+ \) with \(p_- \) as in (2.6). The anisotropic mixed-norm finite atomic Hardy space \(H^\vec{p}_A, q, s \) is defined to be the set of all distributions \(f \in S' \) satisfying that there exist \(I \in \mathbb{N} \), \(\{\lambda_i\}_{i \in [1, I]} \subset \mathbb{C} \) and a sequence of \((\vec{p}, q, s)\)-atoms, \(\{a_i\}_{i \in [1, I]} \subset \mathbb{C} \), supported, respectively, on \(\{B(i)\}_{i \in [1, I]} \subset \mathcal{B} \) such that

\[
f = \sum_{i=1}^{I} \lambda_i a_i \text{ in } S'.
\]

Moreover, for any \(f \in H^\vec{p}_A, q, s \), let

\[
\|f\|_{H^\vec{p}_A, q, s} := \inf \left\{ \left(\sum_{i=1}^{I} \left[\frac{\|\lambda_i \chi_{B(i)}\|_{L^\vec{p}}} {\|\chi_{B(i)}\|_{L^\vec{p}}} \right]^{\eta} \right)^{1/\eta} \right\},
\]

where \(\eta \in (0, \min\{1, p_-\}) \) and the infimum is taken over all the decompositions of \(f \) as above.

Lemma 5.3. [13, Theorem 5.3] Let \(\vec{p} \in (0, \infty)^n \), \(A \) be a dilation and \(s \in \left[(1/p_- - 1) \ln b / \ln \lambda_- \right], \infty \right) \cap \mathbb{Z}_+ \) with \(p_- \) as in (2.6)

(i) If \(q \in (\max\{p_+ ; 1\}, \infty) \) with \(p_+ \) as in (2.6), then \(\|\cdot\|_{H^\vec{p}_A, q, s} \) and \(\|\cdot\|_{H^\vec{p}_A} \) are equivalent quasi-norms on \(H^\vec{p}_A \).

(ii) \(\|\cdot\|_{H^\vec{p}_A, q, s} \) and \(\|\cdot\|_{H^\vec{p}_A} \) are equivalent quasi-norms on \(H^\vec{p}_A, q, s \cap C \), where \(C \) denotes the set of all continuous functions on \(\mathbb{R}^n \).

Lemma 5.4. [13, Theorem 4.7] Let \(\vec{p} \in (0, \infty)^n \), \(q \in (1, \infty] \cap (p_+, \infty) \) with \(p_+ \) as in (2.6), \(r \in (1, \infty] \) and \(s \in \left[(1/p_- - 1) \ln b / \ln \lambda_- \right], \infty \right) \cap \mathbb{Z}_+ \) with \(p_- \) as in (2.6). Then, for any \(f \in H^\vec{p}_A \cap L^r \), there exist \(\{\lambda_i\}_{i \in \mathbb{N}} \subset \mathbb{C} \), dilated balls \(\{x_i + B_{t_i}\}_{i \in \mathbb{N}} \subset \mathcal{B} \) and \((\vec{p}, q, s)\)-atoms \(\{a_i\}_{i \in \mathbb{N}} \) such that

\[
f = \sum_{i \in \mathbb{N}} \lambda_i a_i \text{ in } L^r,
\]

where the series also converge almost everywhere.
Lemma 5.5. [13] Let $\vec{p} \in (0, \infty)^n$ and $N \in \mathbb{N} \cap \left[\left(\frac{1}{\min\{1, p_-\}} - 1\right) \frac{\ln b}{\ln \lambda_-} + 2, \infty\right)$ with p_- as in (2.6). Then H^p_A is complete.

Now, we show Theorem 5.1 by borrowing some ideas from the proof of [13, Theorem 8.4].

Proof of Theorem 5.1. Let $\vec{p} \in (0, \infty)^n$, $q \in (1, \infty) \cap (p_+, \infty)$ with p_+ as in (2.6), and $s \in \left[\left(1/p_- - 1\right) \ln b/\ln \lambda_-\right], \infty) \cap \mathbb{Z}_+$ with p_- as in (2.6). Firstly, we show that (5.1) holds true for any $f \in H^p_{A, \text{fin}}$. For any $f \in H^p_{A, \text{fin}}$, by Definition 5.2, we know that $f \in H^p_A \cap L^q$. From Lemma 5.4, we know that there exist $\lambda_i \in \mathbb{C}$ and a sequence of (\vec{p}, q, s)-atoms, $\{a_i\}_{i \in \mathbb{N}}$, supported, respectively, on $\{B(i)\}_{i \in \mathbb{N}} \subset \mathfrak{B}$, where $B(i) := x_i + B_{\ell_i}$ with $x_i \in \mathbb{R}^n$ and $\ell_i \in \mathbb{Z}$, such that

$$f = \sum_{i \in \mathbb{N}} \lambda_i a_i \quad \text{in } L^q,$$

and

$$\left\| \left\{ \sum_{i \in \mathbb{N}} \left| \lambda_i \right| |\chi_{B(i)}| \right\|_{L^p}^{1/\eta} \right\|_{L^p}^{\eta} \lesssim \|f\|_{H^p_A}.$$ \hspace{1cm} (5.2)

where $\eta \in (0, \min\{1, p_+\})$. From this and the linear operator T is bounded on L^q, we conclude that, for any $f \in H^p_{A, \text{fin}}$, $T(f) = \sum_{i \in \mathbb{N}} \lambda_i T(a_i)$ in L^q and hence in S'. Therefore, for all $N \in \mathbb{N} \cap \left[\left(1/p_- - 1\right) \ln b/\ln \lambda_-\right] + 2, \infty)$,

$$\|M_N(T(f))\|_{L^p}^p \leq \left\| \sum_{i \in \mathbb{N}} \lambda_i |M_N(T(a_i))| \right\|_{L^p}^p \lesssim \left\| \sum_{i \in \mathbb{N}} \lambda_i |M_N(T(a_i))\chi_{A^{2\sigma}B(i)}| \right\|_{L^q}^p + \left\| \sum_{i \in \mathbb{N}} \lambda_i |M_N(T(a_i))\chi_{(A^{2\sigma}B(i))}\|_{L^q}^p \right\|_{L^p}^p \lesssim \left\| \sum_{i \in \mathbb{N}} |\lambda_i| |M_N(T(a_i))\chi_{A^{2\sigma}B(i)}| \right\|_{L^q}^p + \left\| \sum_{i \in \mathbb{N}} |\lambda_i| |M_N(T(a_i))\chi_{(A^{2\sigma}B(i))}\|_{L^q}^p \right\|_{L^p}^p \right\|_{L^p}^p \leq : K_1 + K_2,$$

where $A^{2\sigma}B(i)$ is the $A^{2\sigma}$ concentric expanse on $B(i)$, that is, $A^{2\sigma}B(i) := x_i + A^{2\sigma}B_{\ell_i}$, and p as in (2.7).

For K_1, from the boundedness of M_N and T on L^q, and the size condition of a_i, we know that

$$\|M_N(T(a_i))\chi_{A^{2\sigma}B(i)}\|_{L^q} \lesssim \|a_i\chi_{A^{2\sigma}B(i)}\|_{L^q} \lesssim \frac{|B(i)|^{1/q}}{\|\chi_{B(i)}\|_{L^p}}.$$

From this, Lemma 4.6 and (5.2), we further deduce that

$$K_1 \lesssim \left\| \left\{ \sum_{i \in \mathbb{N}} \left| \lambda_i \right| \chi_{B(i)} \right\|_{L^p}^{1/\eta} \right\|_{L^p}^p \lesssim \|f\|_{H^p_A}.$$
To deal with K_2, for any $i \in \mathbb{N}$ and $x \in (A^{2\sigma} B^{(i)})^C$, by the condition of Theorem 5.1, we see that, for any (\vec{p}, q, s)-atom a_i supported on a ball $B^{(i)}$, $T(a_i)$ is a harmless constant multiple of a $(\vec{p}, q, s, \varepsilon)$-molecule associated with $B^{(i)}$, where $\varepsilon > (s+1) \log_2^\lambda$. From this and (4.8), we know that

$$\tag{5.4} M_N(T(a_i))(x) \lesssim \|\chi_{B^{(i)}}\|_{L^p}^{-1} [M_{HL}(\chi_{B^{(i)}})(x)]^\theta,$$

where θ is as in (4.7). By (5.4) and an argument same as that used in the proof of (4.9), we obtain

$$K_2 \lesssim \left\{ \left| \sum_{i \in \mathbb{N}} \left[\frac{|\lambda_i|}{\|\chi_{B^{(i)}}\|_{L^p}} \right]^{1/\eta} \right|^{p} \right\}^{1/\eta} \lesssim \|f\|_{H_A^{\vec{p}, q, s}}.$$

Combining (5.3) and the estimates of K_1 and K_2, we further conclude that, for any $f \in H_{A, \text{fin}}^{\vec{p}, q, s}$,

$$\|T(f)\|_{H_A^{\vec{p}}} \lesssim \|f\|_{H_A^{\vec{p}}}.$$

Next, we prove that (5.1) also holds true for any $f \in H_{A, \text{fin}}^{\vec{p}}$. Let $f \in H_{A, \text{fin}}^{\vec{p}}$. By Lemma 5.3 and the obvious density of $H_{A, \text{fin}}^{\vec{p}, q, s}$ in $H_{A, \text{fin}}^{\vec{p}}$, we know that there exists a sequence $\{f_j\}_{j \in \mathbb{Z}^+} \subset H_{A, \text{fin}}^{\vec{p}, q, s}$, such that $f_j \to f$ as $j \to \infty$ in $H_{A, \text{fin}}^{\vec{p}}$. Therefore, $\{f_j\}_{j \in \mathbb{Z}^+}$ is a Cauchy sequence in $H_{A, \text{fin}}^{\vec{p}}$. By this, we see that, for any $j, k \in \mathbb{Z}^+$,

$$\|T(f_j) - T(f_k)\|_{H_{A, \text{fin}}^{\vec{p}}} = \|T(f_j - f_k)\|_{H_{A, \text{fin}}^{\vec{p}}} \lesssim \|f_j - f_k\|_{H_{A, \text{fin}}^{\vec{p}}}.$$

Notice that $\{T(f_j)\}_{j \in \mathbb{Z}^+}$ is also a Cauchy sequence in $H_{A, \text{fin}}^{\vec{p}}$. Applying Lemma 5.5, we conclude that there exists a $g \in H_{A, \text{fin}}^{\vec{p}}$ such that $T(f_j) \to g$ as $j \to \infty$ in $H_{A, \text{fin}}^{\vec{p}}$. Let $T(f) := g$. Then, $T(f)$ is well defined. In fact, for any other sequence $\{h_j\}_{j \in \mathbb{Z}^+} \subset H_{A, \text{fin}}^{\vec{p}, q, s}$ satisfying $h_j \to f$ as $j \to \infty$ in $H_{A, \text{fin}}^{\vec{p}}$, by Lemma 2.2, we have

$$\|T(h_j) - T(f)\|_{H_{A, \text{fin}}^{\vec{p}}} \leq \|T(h_j) - T(f_j)\|_{H_{A, \text{fin}}^{\vec{p}}} + \|T(f_j) - g\|_{H_{A, \text{fin}}^{\vec{p}}}.$$

which is wished.

From this, we see that, for any $f \in H_{A, \text{fin}}^{\vec{p}}$,

$$\|T(f)\|_{H_{A, \text{fin}}^{\vec{p}}} = \|g\|_{H_{A, \text{fin}}^{\vec{p}}} = \lim_{j \to \infty} \|T(f_j)\|_{H_{A, \text{fin}}^{\vec{p}}} \lesssim \lim_{j \to \infty} \|f_j\|_{H_{A, \text{fin}}^{\vec{p}}} \sim \|f\|_{H_{A, \text{fin}}^{\vec{p}}},$$

which implies that (5.1) also holds true for any $f \in H_{A, \text{fin}}^{\vec{p}}$ and hence completes the proof of Theorem 5.1.

Acknowledgements. The authors would like to express their deep thanks to the referees for their very careful reading and useful comments which do improve the presentation of this article.
References

[1] M. Bownik, Anisotropic Hardy spaces and wavelets, *Mem. Amer. Math. Soc.*, 164 (2003), 1-122.
[2] A. Benedek and R. Panzone, The space L^p, with mixed norm, *Duke Math. J.*, 28 (1961), 301-324.
[3] G. Cleanthous and A.G. Georgiadis, Mixed-norm α-modulation spaces, *Trans. Amer. Math. Soc.*, 373 (2020), 3323-3356.
[4] G. Cleanthous, A.G. Georgiadis and M. Nielsen, Anisotropic mixed-norm Hardy spaces, *J. Geom. Anal.*, 27 (2017), 2758-2787.
[5] Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, *SIAM J. Appl. Math.*, 66 (2006), 1383-1406.
[6] T. Chen and W. Sun, Iterated and mixed weak norms with applications to geometric inequalities, *J. Geom. Anal.*, 30 (2020), 4268-4323.
[7] T. Chen and W. Sun, Extension of multilinear fractional integral operators to linear operators on mixed-norm Lebesgue spaces, *Math. Ann.*, 379 (2021), 1089-1172.
[8] W. Ding and Y. Zhu, Mixed Hardy spaces and their applications, *Acta Math. Sci. Ser. B (Engl. Ed.)*, 40 (2021), 945-969.
[9] C. Fefferman and E.M. Stein, H^p spaces of several variables, *Acta Math.*, 129 (1972), 137-193.
[10] L. Huang, D.-C. Chang and D. Yang, Fourier transform of anisotropic mixed-norm Hardy spaces, *Front. Math. China*, 16 (2021), 119-139.
[11] L. Huang, J. Liu, D. Yang and W. Yuan, Atomic and Littlewood-Paley characterizations of anisotropic mixed-norm Hardy spaces and their applications, *J. Geom. Anal.*, 29 (2019), 1991-2067.
[12] L. Huang, J. Liu, D. Yang and W. Yuan, Dual spaces of anisotropic mixed-norm Hardy spaces, *Proc. Amer. Math. Soc.*, 147 (2019), 1201-1215.
[13] L. Huang, J. Liu, D. Yang and W. Yuan, Real-Variable characterizations of new anisotropic mixed-norm Hardy spaces, *Commun. Pure Appl. Anal.*, 19 (2020), 3033-3082.
[14] L. Huang, J. Liu, D. Yang and W. Yuan, Identification of anisotropic mixed-norm Hardy spaces and certain homogeneous Triebel-Lizorkin spaces, *J. Approx. Theory*, 258 (2020), 1-27.
[15] L. Huang, F. Weisz, D. Yang and W. Yuan, Summability of Fourier transforms on mixed-norm Lebesgue spaces via associated Herz spaces, *Anal. Appl. (Singap.)*, (2021), DOI: 10.1142/S021953052150135.
[16] L. Huang and D. Yang, On function spaces with mixed norms-a survey, *J. Math. Study*, 54 (2021), 262-336.
[17] L. Liu, Hardy spaces via distribution spaces, *Front. Math. China*, 2 (2007), 599-611.
[18] J. Liu, F. Weisz, D. Yang and W. Yuan, Variable anisotropic Hardy spaces and their applications, *Taiwanese J. Math.*, 22 (2017), 1173-1216.
[19] J. Liu, D. Yang and W. Yuan, Anisotropic Hardy-Lorentz spaces and their applications, *Sci. China Math.*, 59 (2016), 1669-1720.
[20] J. Liu, D. Yang and W. Yuan, Anisotropic variable Hardy-Lorentz spaces and their real interpolation, *J. Math. Anal. Appl.*, 456 (2017), 356-393.
[21] Y. Sawano, Atomic decompositions of Hardy space with variable exponent and its application to bounded linear operators, \textit{Integral Equations Operator Theory}, 77 (2013), 123-148.

[22] E.M. Stein and G. Weiss, On the theory of harmonic functions of several variables. I. The theory of H^p-spaces, \textit{Acta Math.}, 103 (1960), 25-62.

[23] J. Tan, Atomic decompositions of localized Hardy spaces with variable exponents and applications, \textit{J. Geom. Anal.}, 29 (2019), 799-827.

[24] L. Tang, $L^{p(\cdot),\lambda(\cdot)}$ regularity for fully nonlinear elliptic equations, \textit{Nonlinear Anal.}, 149 (2017), 117-129.

[25] H. Wang and Z. Liu, The Herz-type Hardy spaces with variable exponent and their applications, \textit{Taiwanese J. Math.}, 16 (2012), 1363-1389.

[26] C. Zhuo, D. Yang and Y. Liang, Intrinsic square function characterization of Hardy spaces with variable exponents, \textit{Bull. Malays. Math. Sci.}, 39 (2016), 1541-1577.

Aiting Wang

School of Mathematics and Statistics
Qinghai Nationalities University
Xining 810000, Qinghai, China

Wenhua Wang

School of Mathematics and Statistics
Wuhan University
Wuhan 430072, Hubei, China

E-mail:
wangwhmath@163.com (Wenhua Wang)
atwangmath@126.com (Aiting Wang)