Quantum Codes from Toric Surfaces

Johan P. Hansen

Abstract—A theory for constructing quantum error correcting codes from Toric surfaces by the Calderbank-Shor-Steane method is presented. In particular we study the method on toric Hirzebruch surfaces.

The results are obtained by constructing a dualizing differential form for the toric surface and by using the cohomology and the intersection theory of toric varieties.

Index Terms—Quantum computing, Codes, Block codes, Error correction codes.

I. INTRODUCTION

In [1] and [2] the author developed methods to construct linear error correcting codes from toric varieties and derive the code parameters using the cohomology and the intersection theory on toric varieties. This method is generalized in section II to construct linear codes suitable for constructing quantum codes by the Calderbank-Shor-Steane method. Essential for the theory is the existence and the application of a dualizing differential form on the toric surface.

A.R. Calderbank [3], P.W. Shor [4] and A.M. Steane [5] produced stabilizer codes from linear codes containing their dual codes.

These two constructions are merged to obtain results for toric surfaces in section II-C. Similar merging has been done for algebraic curves with different methods by A. Ashikhmin, S. Litsyn and M.A. Tsfasman in [6].

Johan P. Hansen March 20, 2012

A. Notation

- \(\mathbb{F}_q \) – the finite field with \(q \) elements of characteristic \(p \).
- \(\mathbb{F}_q^* \) – the invertible elements in \(\mathbb{F}_q \).
- \(k = \overline{\mathbb{F}}_q \) – an algebraic closure of \(\mathbb{F}_q \).
- \(\mathbb{Z} \) – the ring of integers.
- \(\mathbb{Z}^2 \) – the torus.
- \(\Delta \) – an integral convex polytope.
- \(X = \Delta \) – the toric surface associated to the polytope \(\Delta \).
- \(T = T_N = U_0 \subseteq X \) – the torus.
- \(S = |D_1| \cap |D_2| \subseteq \mathbb{X}(\mathbb{F}_q) \) – the intersection of the supports of the divisors \(D_1 \) and \(D_2 \).
- \(\omega_X \) – the sheaf of differential forms on \(X \).

II. THE METHOD OF TORIC VARIETIES

For the general theory of toric varieties we refer to [7], [8] and [9]. Here we will be using toric surfaces and we recollect some of their theory.

Johan P. Hansen is with the Department of Mathematics, Aarhus University, Aarhus, Denmark, e-mail: matjph@imf.au.dk.

Part of this work was done while visiting Institut de Mathématiques de Luminy, MARSEILLE, France. I thank for the hospitality shown to me.

A. Toric surfaces and their cohomology

Let \(M \) be an integer lattice \(M \simeq \mathbb{Z}^2 \). Let \(N = \text{Hom}_\mathbb{Z}(M, \mathbb{Z}) \) be the dual lattice with canonical \(\mathbb{Z} \)-bilinear pairing \(< , > : M \times N \rightarrow \mathbb{Z} \). Let \(M_{\mathbb{R}} = M \otimes_{\mathbb{Z}} \mathbb{R} \) and \(N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R} \) with canonical \(\mathbb{R} \)-bilinear pairing \(< , > : M_{\mathbb{R}} \times N_{\mathbb{R}} \rightarrow \mathbb{R} \).

Given a 2-dimensional integral convex polytope \(\Delta \) in \(M_{\mathbb{R}} \).

The support function \(h_{\Delta} : N_{\mathbb{R}} \rightarrow \mathbb{R} \) is defined as \(h_{\Delta}(n) := \inf \{< m, n > | m \in \Delta \} \) and the polytope \(\Delta \) can be reconstructed from the support function

\(h_{\Delta} = \{ m \in M | < m, n > \geq h(n) \ \forall n \in N \} \).

The support function \(h_{\Delta} \) is piecewise linear in the sense that \(N_{\mathbb{R}} \) is the union of a non-empty finite collection of strongly convex polyhedral cones in \(N_{\mathbb{R}} \) such that \(h_{\Delta} \) is linear on each cone. A fan is a collection \(\Delta \) of strongly convex polyhedral cones in \(N_{\mathbb{R}} \) such that every face of \(\sigma \in \Delta \) is contained in \(\Delta \) and \(\sigma \cap \sigma' \in \Delta \) for all \(\sigma, \sigma' \in \Delta \).

The normal fan \(\Delta \) is the coarsest fan such that \(h_{\Delta} \) is linear on each \(\sigma \in \Delta \), i.e. for all \(\sigma \in \Delta \) there exists \(\sigma_0 \in \eta \) such that

\(h_{\Delta}(n) = < l_{\sigma}, n > \ \forall n \in \sigma \).

The 1-dimensional cones \(\rho \in \Delta \) are generated by unique primitive elements \(n(\rho) \in N \cap \rho \) such that \(p = \mathbb{R}_{\geq 0} n(\rho) \).

Upon refinement of the normal fan, we can assume that two successive pairs of \(n(\rho) \)’s generate the lattice and we obtain the refined normal fan, which will be the fan we will be using for the the rest of the present paper.

The 2-dimensional algebraic torus \(T_N \simeq k^* \times k^* \) is defined by \(T_N := \text{Hom}_\mathbb{Z}(M, k^*) \). The multiplicative character \(\mathbb{F}_q \) is a field of characteristic \(p \) and \(M \) is the homomorphism \(\mathbb{F}_q : T \rightarrow \mathbb{K}^* \) defined by \(\mathbb{F}_q(t) = t(m, n) \) for \(t \in T_N \).

Specifically, if \(\{ m_1, m_2 \} \) are dual \(\mathbb{Z} \)-bases of \(N \) and \(M \) and we denote \(u_j : \mathbb{F}_q \rightarrow \mathbb{F}_q(t) = t(m_1, m_2) \) we have \(\mathbb{F}_q(t) = u_1(t) \lambda_1^1 u_2(t) \lambda_2^2 \).

The toric surface \(X_{\Delta} \) associated to the refined normal fan \(\Delta \) is

\(X_{\Delta} = \cup_{\Delta \in \Delta} U_\sigma \).

where \(U_\sigma \) is the \(k \)-valued points of the affine scheme \(\text{Spec}(k[S_{\sigma}]) \), i.e., morphisms \(u : S_{\sigma} \rightarrow k \) with \(u(0) = 1 \) and \(u(m + m') = u(m)u(m') \forall m, m' \in S_{\sigma} \), where \(S_{\sigma} \) is the additive subsemigroup of \(M \)

\(S_{\sigma} = \{ m \in M | < m, y > \geq 0 \ \forall y \in \sigma \} \).

The toric surface \(X_{\Delta} \) is irreducible, non-singular and complete under the assumption that we are working with the refined normal fan. If \(\sigma, \tau \in \Delta \) and \(\tau \) is a face of \(\sigma \), then \(U_\tau \)
is an open subset of U_σ. Obviously $S_0 = M$ and $U_0 = T_0$ such that the algebraic torus T_0 is an open subset of X_\square.

T_0 acts algebraically on X_\square. On $u \in U_\sigma$ the action of $t \in T_0$ is obtained as

$$(tu)(m) := t(m)u(m) \text{ for } m \in S_\sigma,$$

such that $tu \in U_\sigma$ and U_σ is T_0-stable. The orbits of this action are in one-to-one correspondence with Δ. For each $\sigma \in \Delta$, let

$$\text{orb}(\sigma) := \{ \sigma : M \cap \sigma \to k^* | u \text{ is a group homomorphism} \}.$$

Then $\text{orb}(\sigma)$ is a T_0 orbit in X_\square. Define $V(\sigma)$ to be the closure of $\text{orb}(\sigma)$ in X_\square.

A Δ-linear support function h gives rise to a polytope \square as above and an associated Cartier divisor

$$D_h = D_\square := - \sum_{\rho \in \Delta(t)} h(n(\rho))V(\rho),$$

where $\Delta(1)$ is the 1-dimensional cones in Δ. In particular

$$D_n = \text{div}(e(-n)) \text{ for } n \in M.$$

Lemma 1. Let h be a Δ-linear support function with associated convex polytope \square and Cartier divisor $D_h = D_\square$. The vector space $\mathcal{H}^0(X, \mathcal{O}_X(D_h))$ of global sections of $\mathcal{O}_X(D_h)$, i.e., rational functions f on X_\square such that $\text{div}(f) + D_\square \geq 0$ has dimension $\#(M \cap \square)$ and has $\{e(m)| m \in M \cap \square\}$ as a basis.

B. Intersection theory on a toric surface

For a Δ-linear support function h and a 1-dimensional cone $\rho \in \Delta(1)$ we will determine the intersection number $(D_h; V(\rho))$ between the Cartier divisor D_h and $V(\rho) = \mathbb{P}^1$. This number is obtained in [9, Lemma 2.11]. The cone ρ is the common face of two 2-dimensional cones $\sigma', \sigma'' \in \Delta(2)$. Choose primitive elements $n', n'' \in N$ such that

$$n' + n'' \in \mathbb{Z} \rho,$$

$$\sigma' + \rho = \mathbb{N}_{>0}n' + \mathbb{Z} \rho,$$

$$\sigma'' + \rho = \mathbb{N}_{>0}n'' + \mathbb{Z} \rho.$$

Lemma 2. For any $\rho \in M$, such that h coincides with l_ρ on ρ, let $h = -l_\rho$. Then

$$(D_h; V(\rho)) = - \overline{h(n')} + \overline{h(n'')}.$$

In the 2-dimensional non-singular case let $n(\rho)$ be a primitive generator for the 1-dimensional cone ρ. There exists an integer a such that

$$n' + n'' + an(\rho) = 0,$$

$V(\rho)$ is itself a Cartier divisor and the above gives the self-intersection number

$$(V(\rho); V(\rho)) = a.$$

More generally the self-intersection number of a Cartier divisor D_h is obtained in [9, Prop. 2.10].

Lemma 3. Let D_h be a Cartier divisor and let \square_h be the polytope associated to h. Then

$$(D_h; D_h) = 2 \text{vol}_2(\square_h),$$

where vol_2 is the normalized Lesbesgue-measure.

C. The support of the codes

The toric codes are obtained from evaluating certain rational functions in a suitable set S of \mathbb{F}_q-rational points on toric varieties, being the intersection of two ample divisors on X.

Definition 4. For $i = 1, 2$ let $I_i, J_i \subseteq \mathbb{F}_q$ with $I_1 \cap J_2 = I_2 \cap J_1 = \emptyset$ and introduce the two rational functions

$$F_i = \prod_{\psi \in I_i} (e(m_1) - \psi)^{n_{1, \psi}} \prod_{\psi \in J_i} (e(m_2) - \psi)^{n_{2, \psi}},$$

where the integer exponents satisfy $n_{1, \psi} \geq 1$ and $n_{2, \psi} \geq 1$.

For $i = 1, 2$, let $D_i = (F_i)_0$ be their divisor of zeroes, $|D_i|$ be their support and $U_i = X \setminus |D_i|$ their complement. It is important to note that the supports and their complement are independent of the choice of the exponents $n_{1, \psi} \geq 1$ and $n_{2, \psi} \geq 1$.

Finally let the support set of the code be $S = |D_1| \cap |D_2| = U_1 \cup U_2 \subseteq \mathbb{F}_q \times \mathbb{F}_q$.

Remark 5. As a set $S = I_1 \cup J_2 \cup I_2 \cup J_1$ of $\mathbb{F}_q \times \mathbb{F}_q$ with two subsets of $\#S = \#I_1 \cup \#J_2 + \#I_2 \cup \#J_1$ elements, but it is important to have in mind, that $S \subseteq \mathbb{F}_q \times \mathbb{F}_q$ is realized as the support of the intersection of two divisors in many different ways, namely one for each choice of the exponents $n_{1, \psi} \geq 1$ and $n_{2, \psi} \geq 1$.

D. Toric evaluation codes

We start by exhibiting the toric codes as evaluation codes supported on S.

Definition 6. For each $t \in T \simeq k^* \times k^*$, we evaluate the rational functions in $\mathcal{H}^0(X, \mathcal{O}_X(D_h))$

$$\mathcal{H}^0(X, \mathcal{O}_X(D_h)) \rightarrow k$$

$$f \mapsto f(t).$$

Let $\mathcal{H}^0(X, \mathcal{O}_X(D_h))^{\text{Frob}}$ denote the rational functions in $\mathcal{H}^0(X, \mathcal{O}_X(D_h))$ that are invariant under the action of the Frobenius, that is functions that are \mathbb{F}_q-linear combinations of the functions $e(m)$ in [3].

Evaluating in all points in S, we obtain the code $C_{S, \square} \subset (\mathbb{F}_q)^{\#S}$ as the image

$$\mathcal{H}^0(X, \mathcal{O}_X(D_h))^{\text{Frob}} \rightarrow C_{S, \square} \subset (\mathbb{F}_q)^{\#S}$$

$$f \mapsto (f(t))_{t \in T(\mathbb{F}_q)}$$

and the generators of the code is obtained as the image of the basis

$$e(m) \mapsto (e(m(t)))_{t \in S}.$$
1) Identically vanishing: Assume that f is identically zero along precisely a of these strata. As $e(m_1) - \psi$ and $e(m_1)$ have the same divisors of poles, they have equivalent divisors of zeroes, so

$$(e(m_1) - \psi)_0 \sim (e(m_1))_0.$$

Therefore

$$\text{div}(f) + D_{\Box} - a(e(m_1))_0 \geq 0$$

or equivalently

$$f \in \Omega^0(X, O_X(D_{\Box} - a(e(m_1))_0)).$$

Depending on the polytope \Box this gives an upper bound for the number a, using Lemma [1].

2) Vanishing in a finite number of points: On any of the $\#I_1 \cup \#I_2 - a$ other strata the number of zeroes of f is according to [10] at most the intersection number

$$(D_{\Box} - a(e(m_1))_0; (e(m_1))_0).$$

This number can be calculated using Lemma [2] and Lemma [3].

The above gives a method to construct toric codes from surfaces and obtain their precise parameters, this was done by the author in four cases in [2].

Example 7. (Hirzebruch surfaces). Let d, e, r be positive integers and let \Box be the polytope in \mathbb{R}^2 with vertices $(0,0), (d,0), (d,e+rd), (0,e)$, see Figure [1] and with (refined) normal fan as in Figure [2].

From the Hirzebruch surfaces with $I_1 = J_2 = \mathbb{P}_q^1 \times \mathbb{P}_q^1$ and $I_2 = J_1 = \emptyset$, we obtain using the above method the following theorem.

Theorem 8. Assume that $d < q - 1$, that $e < q - 1$ and that $e + rd < q - 1$. The toric code $C_{\mathbb{P}_q^1 \times \mathbb{P}_q^1}$ has length equal to $(q - 1)^2$, dimension equal to $\#(M \cap \Box) = (d+1)(e+1) + rd/(d+2)$ (the number of lattice points in \Box and the minimal distance is equal to $\min\{(q-1-(e+1)(q-1-(e-1-rd))\}.$

D. Joyner [11] has done extensive calculations on among others these toric codes. R. Joshua and R. Akhtbar [12] have obtained results on a different kind of toric codes that appear to be related to the dual of the present codes.

III. CODES FROM TORIC SURFACES CONTAINING THEIR DUAL CODE

A. Differential forms and residues

The residue theorem is obtained in [13] over \mathbb{C}, however the theorem and its various forms are essential and for completeness we present general proofs here. Throughout $\text{Res}_P(\omega)$ means the local Grothendieck residue, see, e.g., [14] and [15]. For residues on toric varieties we also refer to [16].

Theorem 9 (Residue theorem - general form). Let X be a complete smooth algebraic surface and let ω_X be the sheaf of differential 2-forms on X. Let U_1, U_2 be two open subsets of X such that $X \backslash (U_1 \cup U_2) = S$ is a finite set of points. Then

i) Let $\omega \in \omega_X(U_1 \cup U_2) = H^0(U_1 \cup U_2, \omega_X)$ be any 2-form on X with no poles on $U_1 \cup U_2$, then $\sum_{P \in S} \text{Res}_P(\omega) = 0$.

ii) For any $(w_k) \in \bigoplus_{P \in S} k$ with $\sum_{P \in S} w_P = 0$, there exists an $\omega \in \omega_X(U_1 \cup U_2)$, such that $\text{Res}_P(\omega) = w_P$ for all $P \in S$.

Proof: The Čech resolution $\omega_X|U_1 \bigoplus \omega_X|U_2 \rightarrow \omega_X|U_1 \cup U_2$ of the sheaf $\omega_X|U_1 \cup U_2$, obtained from the two open sets U_1 and U_2, gives that a 2-form ω on X without poles on $U_1 \cup U_2$ defines a class $[\omega] \in H^1(U_1 \cup U_2, \omega_X)$ and that every class has such a representation.

As $H^2(X, \omega_X) \cong k$ and $H^1(U_1 \cup U_2, \omega_X) = 0$ for $i \geq 2$ by
Serre duality, relative cohomology gives the exact sequence

$$\begin{align*}
H^1(U_1 \cup U_2, \omega_X) &\rightarrow H_S^2(X, \omega_X) \rightarrow H^2(X, \omega_X) \\
\oplus_{P \in S} H^2_P(X, \omega_X) &\rightarrow H^1(U_1 \cup U_2, \omega_X)
\end{align*}$$

Then $\sum_{P \in S} \text{Res}_P(\omega) = \text{Res}(\omega)$ and the claims follows from exactness of the last sequence.

In the above form there is no restrictions on the polar behavior as long as there are no poles on $U_1 \cup U_2$, however it is possible to prove the theorem in a stronger form.

For a divisor D on X the sheaf of differential forms $\omega_X(D)$, is the sheaf with $\omega_X(D)(U) = \{ \eta \in \omega(U) | (\eta + D) \geq 0 \} | U$ on open sets $U \subseteq X$. Its global sections $H^0(X, \omega(D))$ are the differential forms with $\omega(D) \geq 0$.

Theorem 10 (Residue theorem - special form). Let X be a complete smooth algebraic surface and let ω_X be the sheaf of differential 2-forms on X. For $i = 1, 2$, let D_i be ample and effective divisors on X with support $|D_i|$ and with complement $U_i = X \setminus |D_i|$. Assume that $X \setminus (U_1 \cup U_2) = |D_1| \cap |D_2| = S$ is a finite set of points.

i) For any $\omega \in H^0(X, \omega(D_1 + D_2))$, we have that $\sum_{P \in S} \text{Res}_P(\omega) = 0$.

ii) For any $(w_\bullet) \in \bigoplus_{P \in S} k$ with $\sum_{P \in S} w_P = 0$, there exists an $\omega \in H^0(X, \omega(D_1 + D_2))$, such that $\text{Res}_P(\omega) = w_P$ for all $P \in S$.

Proof: The morphism of sheaves

$$\omega_X(D_1) \oplus \omega_X(D_2) \rightarrow \omega_X(D_1 + D_2)$$

is injective with cokernel $j_* (\omega_{U_1 \cap U_2})$, where j is the open immersion of $U_1 \cup U_2 \rightarrow X$. The associated long exact cohomology sequence gives a surjection $H^0(X, \omega(D_1 + D_2)) \rightarrow H^1(U_1 \cup U_2, \omega_X)$ as $H^1(X, \omega(D_1)) = H^1(X, \omega(D_2)) = 0$ by the assumption on amplitudes of the divisors.

The proof now follows as in the above proof of Theorem 9.

B. Dualizing differential form of a toric code

We want to exhibit a differential form ω_0 on X with poles restricted to the points in the support $S = |D_1| \cap |D_2| = U_1 \cup U_2 \subseteq \mathbb{P}_q \times \mathbb{P}_q$, where $D_i = (F_i)_0$ are divisors of zeroes of the functions defined in Definition 4 and $|D_i|$ are their support and $U_i = X \setminus |D_i|$ their complement. Besides we want the differential form ω to vanish at the divisor $2D_2^\square$.

Definition 11. A differential form $\omega_0 \in H^0(X, \omega(D_1 + D_2 - 2D_2^\square))$ is called a dualizing form for the toric code and we will call the set

$$R = \{ P \in S | \text{Res}_P(\omega_0) \neq 0 \} \subseteq S$$

its restricted support.

This existence of a dualizing form for the toric code is obtained in two steps utilizing the representations of the set S as the intersection of the supports of various ample divisors.

Theorem 12. Assume that the support of the toric code is the intersection of the support of two ample divisors as in Definition 4. Assume that we can choose large exponents $n_{1,\psi} \geq 1$ and $n_{2,\psi} \geq 1$, such that $L(D_1 + D_2 - 2D_2^\square) \neq 0$. Then there exists a dualizing form for the toric code of Definition 4 with ample divisors D_1 and D_2.

Proof: For $i = 1, 2$, let $D_i = (F_i)_0$ be their divisor of zeroes, $|D_i|$ be their support and $U_i = X \setminus |D_i|$ their complement. Assuming that we can choose the exponents $n_{1,\psi} \geq 1$ and $n_{2,\psi} \geq 1$ such that D_i are ample Theorem 10 gives that for any $(w_\bullet) \in \bigoplus_{P \in S} k$ with $\sum_{P \in S} w_P = 0$, there exists an $\omega \in H^0(X, \omega(D_1 + D_2))$, such that $\text{Res}_P(\omega) = w_P$ for all $P \in S$.

In order to find a differential form vanishing at the divisor $2D_2^\square$ we note that the support of the divisors D_1 and D_2 and their complement is independent of the choice of the exponents $n_{1,\psi} \geq 1$ and $n_{2,\psi} \geq 1$, see Remark 8. An ω constructed as above is in the corresponding $H^0(X, \omega(D_1 + D_2))$ for larger values of the exponents and the corresponding divisors D_1 and D_2 are still ample.

Choose large exponents $n_{1,\psi} \geq 1$ and $n_{2,\psi} \geq 1$, such that

$$L(D_1 + D_2 - 2D_2^\square) \neq 0$$

and let $F \neq 0$ in $L(D_1 + D_2 - 2D_2^\square)$.

The corresponding divisors D_1 and D_2 and the differential form $\omega_0 = F \omega \in H(X, \omega(D_1 + D_2 - 2D_2^\square))$ are the desired entities.

C. Toric codes contained in their dual codes

For a linear code $C \subseteq \mathbb{F}_q^n$ and $w \in (\mathbb{F}_q^n)^*$, we let the w-dual be the code

$$C^w_w = \{ x \in \mathbb{F}_q^n | \sum_{i=1}^n w_i x_i y_i = 0 \ \forall y \in C \} \subseteq \mathbb{F}_q^n.$$
set \(S \) of rational points on toric varieties, being the intersection of two ample divisors on \(X \) as in Definition 4. With

\[
F_1 = \prod_{\psi \in \mathbb{F}_q^* \setminus \{1\}} (e(m_1) - \psi) (e(m_2) - 1)
\]
\[
F_2 = (e(m_1) - 1) \prod_{\psi \in \mathbb{F}_q^* \setminus \{1\}} (e(m_2) - \psi)
\]

we have the divisors

\[
D_1 = \left(F_1 \right)_0 \sim (q - 2)(V(\rho_1) + rV(\rho_4)) + V(\rho_2)
\]
\[
D_2 = \left(F_2 \right)_0 \sim (V(\rho_1) + rV(\rho_4)) + (q - 2)V(\rho_2)
\]

as

\[
e(m_1) - \psi_0 \sim (e(m_1) - 1) \sim V(\rho_1) + rV(\rho_4)
\]
\[
e(m_2) - \psi_0 \sim V(\rho_2)
\]

The divisors \(D_1 \) and \(D_2 \) are seen to be ample on \(X \), using the intersection numbers in Table 7 and the Nakai criterion. The support set of the code \(S = [D_1] \cap [D_2] = U_1 \cup U_2 = (\mathbb{F}_q^* \setminus \{1\}) \times (\mathbb{F}_q^* \setminus \{1\}) \subseteq \mathbb{F}_q^* \times \mathbb{F}_q^* \) is realized as the intersection of the support of two ample divisors and we can apply the construction above.

REFERENCES

[1] J. P. Hansen, “Toric surfaces and error-correcting codes,” in *Coding theory, cryptography and related areas* (Guanajuato, 1998). Berlin: Springer, 2000, pp. 132–142.

[2] ——, “Toric varieties Hirzebruch surfaces and error-correcting codes,” *Appl. Algebra Engrg. Comm. Comput.*, vol. 13, no. 4, pp. 289–300, 2002.

[3] A. Calderbank and P. Shor, “Good quantum error-correcting codes exist,” *Physical Review A - Atomic, Molecular, and Optical Physics*, vol. 54, no. 2, pp. 1098–1105, 1996.

[4] P. W. Shor, “Fault-tolerant quantum computation,” in *37th Annual Symposium on Foundations of Computer Science* (Burlington, VT, 1996). Los Alamitos, CA: IEEE Comput. Soc. Press, 1996, pp. 56–65.

[5] A. Steane, “Enlargement of calderbank-shor-steane quantum codes,” *IEEE Transactions on Information Theory*, vol. 45, no. 7, pp. 2492–2495, 1999.

[6] A. Ashikhmin, S. Litsyn, and M. Tsfasman, “Asymptotically good quantum codes,” *Physical Review A - Atomic, Molecular, and Optical Physics*, vol. 63, no. 3, pp. 1–5, 2001.

[7] D. A. Cox, J. B. Little, and H. K. Schenck, *Toric varieties*, ser. Graduate Studies in Mathematics. Providence, RI: American Mathematical Society, 2011, vol. 124.

[8] W. Fulton, *Introduction to toric varieties*, ser. Annals of Mathematics Studies. Princeton, NJ: Princeton University Press, 1993, vol. 131, the William H. Roever Lectures in Geometry.

[9] T. Oda, *Convex bodies and algebraic geometry*, ser. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Berlin: Springer-Verlag, 1988, vol. 15, an introduction to the theory of toric varieties, Translated from the Japanese.

[10] S. H. Hansen, “Error-correcting codes from higher-dimensional varieties,” *Finite Fields Appl.*, vol. 7, no. 4, pp. 531–552, 2001.

[11] D. Joyner, “Toric codes over finite fields,” *Appl. Algebra Engrg. Comm. Comput.*, vol. 15, no. 1, pp. 63–79, 2004.

[12] R. Joshua and R. Akhtar, “Toric residue codes: I,” *Finite Fields Appl.*, vol. 17, no. 1, pp. 15–50, 2011.

[13] P. A. Griffiths, “Variations on a theorem of Abel,” *Invent. Math.*, vol. 35, pp. 321–390, 1976.

[14] E. Kunz, *Residues and duality for projective algebraic varieties*, ser. University Lecture Series. Providence, RI: American Mathematical Society, 2008, vol. 47, with the assistance of and contributions by David A. Cox and Alicia Dickenstein.

[15] J. Lipman, “Dualizing sheaves, differentials and residues on algebraic varieties,” *Astérisque*, no. 117, pp. ii+138, 1984.

[16] E. Cattani, D. Cox, and A. Dickenstein, “Residues in toric varieties,” *Compositio Math.*, vol. 108, no. 1, pp. 35–76, 1997.

[17] W. Fulton, *Intersection theory*, 2nd ed., ser. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Berlin: Springer-Verlag, 1998, vol. 2.