Abstract. We have performed 27Al-NQR measurements in CeOs$_2$Al$_{10}$ which exhibits a novel phase transition at $T_0=29$ K. The NQR parameters determined for all the Al sites in ambient pressure were compared with those in CeRu$_2$Al$_{10}$ with $T_0=27$ K and CeFe$_2$Al$_{10}$ with no phase transition. The distinct NQR splitting just below $T_0=32.5$ K under pressure 0.66 GPa ensures an enhancement of T_0 and a homogeneous transition. Despite the increase of T_0, the nuclear spin-lattice relaxation rate $1/T_1$ is suppressed over whole range of temperature than in ambient pressure. The characteristic features of no critical slowing down at T_0 and of the remarkable decrease of $1/T_1T$ starting at $T > T_0$ become prominent under pressure, suggesting an approach to Kondo semiconductor in a valence fluctuation regime.

1. Introduction

CeOs$_2$Al$_{10}$ exhibits a transition to the novel phase at $T_0=29$ K. The transition temperature is extraordinary high to ascribe it to the RKKY interaction because of the long Ce-Ce distance of ~ 5.2 Å. In the early stage of the study, the transition is ascribed to the nonmagnetic origins; CDW[1], the stuructural transition to lower symmetric phase[2], and a spin singlet formation[3, 4]. However recent neutron scattering (NS) confirmed the existence of the long range antiferromagnetic (AF) order below T_0 in both CeRu$_2$Al$_{10}$[5, 6, 7] and CeOs$_2$Al$_{10}$.[7] However it is still under devate why the T_0 is so high and, moreover, how to map the novel phase to the Doniach criterion.[8]

In this context, an interesting feature is the scaling behaviors of the physical properties against pressure among the isomorphic compounds, CeRu$_2$Al$_{10}$ with $T_0=27$ K, CeOs$_2$Al$_{10}$ with $T_0=29$ K and CeFe$_2$Al$_{10}$ with no phase transition.[1] In applying pressure, T_0 increases initially and decreases abruptly at about 2 GPa for CeOs$_2$Al$_{10}$ and 4 GPa for CeRu$_2$Al$_{10}$ as like the first order transition in the pressure-temperature ($p-T$) plane.[1] The electronic state of CeOs$_2$Al$_{10}$ in ambient pressure corresponds to that of CeRu$_2$Al$_{10}$ under 2 GPa.

We focus on Al-NQR in CeOs$_2$Al$_{10}$ in the present report. A part of Al-NQR measurements have been reported previously.[9] We will report whole the NQR spectra including all the Al sites in ambient pressure. Moreover NQR measurements are newly performed under pressure. We focus on the NQR splitting just below T_0 and the T-dependence of $1/T_1$ under pressure, comparing with the previous results in ambient pressure and those in CeRu$_2$Al$_{10}$ as well.

26th International Conference on Low Temperature Physics (LT26) IOP Publishing
Journal of Physics: Conference Series 400 (2012) 032052 doi:10.1088/1742-6596/400/3/032052
Published under licence by IOP Publishing Ltd

27Al-NQR Study on Novel Phase Transition in CeOs$_2$Al$_{10}$

M. Matsumura1, T. Inagaki1, H. Kato1, T. Nishioka1, H. Tanida2 and M. Sera2

1Graduate School of Integrated Arts and Sciences, Kochi University, Kochi 780-8520, Japan
2Department of Quantum Matter, ADSM, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan
E-mail: matumura@cc.kochi-u.ac.jp
Figure 1. The Al-NQR spectrum in CeOs$_2$Al$_{10}$ at 77 K.

Table 1. NQR parameters in CeOs$_2$Al$_{10}$.

site	Al(1)	Al(2)	Al(3)	Al(4)	Al(5)
ν_Q (MHz)	1.80	-	1.45	1.82	2.61
η	\sim0.56	-	\sim0	\sim0	\sim0

2. Experiments
The single crystal CeOs$_2$Al$_{10}$ was crushed into powder below 53 μm in the present measurement. The preparation of the single crystal had been reported already.\[1\] The NQR measurements were carried out using phase coherent spin echo method. The so called ν^2 correction has been made for spin echo intensity at respective frequencies ν. The inversion-recovery method for the nuclear magnetization was used to evaluate $1/T_1$ for Al(5)$_{HF}$ NQR peak, where the recovery function of the nuclear magnetization is written as, $p(t) = 1 - m(t)/m(\infty) = a(0.427e^{-3t/T_1} + 0.573e^{-10t/T_1})$ with the fitting parameter a.\[10\] The piston-cylinder cell was used in the NQR measurement under pressure. The pressure media is the mixture (1:1) of fluorinert FC-77 and FC-70. The pressure was determined by the superconducting transition temperature of Pb metal.

3. Experimental Results and Discussions
Figure 1 shows the NQR spectrum at 77 K. The five inequivalent Al sites is numbered as Al(i) (i=1 \sim 5) and the two NQR lines at high and low frequencies for each site are labeled as Al(i)$_{HF}$ and Al(i)$_{LF}$, respectively, which are the same as previous report.\[9\] Even including the new NQR lines Al(3)$_{LF}$ and Al(4)$_{LF}$, the previous assignment is supported. The resonances associated with Al(2) site is out of our observation. The NQR parameters, the quadrupole frequency ν_Q and the asymmetry parameter η, are listed in Table I. The value η is almost the same as those in CeRu$_2$Al$_{10}$\[2\] and CeFe$_2$Al$_{10}$\[12\], confirming the common local symmetry. The magnitude of ν_Q in CeOs$_2$Al$_{10}$ is largest among the isomorphic compounds. The NQR parameters in CeRu$_2$Al$_{10}$ are substantiated quantitatively by the band structure calculation.\[2\] The band calculations also for CeOs$_2$Al$_{10}$ and CeFe$_2$Al$_{10}$ are desired.

The NQR splitting near neighbor to T_0 for Al(4)$_{HF}$ under 0.66 GPa is shown in Fig. 2. The qualitative feature of the NQR splittings due to magnetic order in ambient pressure is the same as those in CeRu$_2$Al$_{10}$\[2\] except for the slight quantitative difference (not shown). As shown in Fig. 2, the splitting below 32 K and no splitting above 33 K indicates $T_0 \sim 32.5$ K under 0.66 GPa, which means the increase of T_0 from 28.6 K in ambient pressure. No residual
resonances around 3.66 MHz which is the peak position at $T > T_0$ imply the homogeneous bulk transition, excluding the possibility of the co-existence of the ordered and disordered regions. Thus the smaller entropy decrease $\Delta S (\sim 0.3R \ln 2)$[11] than in CeRu$_2Al_{10}$ ($\sim 0.7R \ln 2$)[1] at the transitions is not a volume fraction effect but an essential bulk feature, where R is the gas constant.

Figure 3(a) shows the T-dependence of $1/T_1$ under ambient and 0.66 Gpa. The arrows indicate T_0 for respective cases. As already pointed out previously, $1/T_1$ does not exhibit even prominent hump not to mention critical divergence, and the remarkable decrease seems to start above T_0. This characteristic behavior becomes more prominent under pressure 0.66 GPa. No anomaly of $1/T_1$ at T_0 is not due to an inhomogeneity effect, but is essential one as mentioned before.

In general, $1/T_1$ is written as, $1/T_1 \propto \sum_q A(q)^2 \chi^2(q, \omega_0)/\omega_0$, where $A(q)$ is the Fourier q
component of the hyperfine interaction between Al nuclear spin and the electron spins relating to the relaxation mechanism, $\chi'(q, \omega)$ the imaginary part of dynamical susceptibility at the q mode and NQR frequency ω_0, Γ_q the characteristic fluctuation frequency of the q mode in electron system. Assuming Lorentz type $\chi(q, \omega) = \chi(q)/(1 - i\omega/\Gamma_q)$, and fast fluctuation regime, $\Gamma_q \gg \omega_0$, $1/T_1 \propto \sum_q A(q)^2 \chi(q)/\Gamma_q$.

When the temperature approaches to T_0 from above, $1/T_1$ diverges because the staggered susceptibility $\chi(Q)$ with the AF wave vector Q diverges, and also Γ_q slows down with growing up of the correlation length of the Q mode. The divergence is eventually ceased if $A(Q)$ is zero geometrically. However these are not zero for all the Al sites in CeTAl_10 ($T=$Ru, Os and Fe) for the magnetic structure proposed by NS. 1/T$_1$ should exhibit critical slowing down more or less if the transition is cooperative 2nd order AF one. The AF order in CeRuAl_10 or CeOsAl_10 might not be primary to the phase transition at T_0 but induced one by some hidden ordering accompanying by no collective mode of f electron spins.

Figure 3(b) shows the T-dependence of $1/T_1T$ together with our previous results of CeRu$_2$Al$_{10}$[2] and CeFe$_2$Al$_{10}$.[12] We have interpreted T-dependence of $1/T_1T$ in CeRu$_2$Al$_{10}$ in terms of dense Kondo scenario; localized moment of Ce at higher temperature, coherent state below $T^* \sim 60$ K and after that the novel phase transition occurs at T_0.[2] On the other hand, Kondo semiconductor with narrow hybridized band has been applied to CeFe$_2$Al$_{10}$.[12] The T-dependence of T_1T above T_0 in Fig 3(b) represents that CeOs$_2$Al$_{10}$ is in the intermediate state between CeRu$_2$Al$_{10}$ and CeFe$_2$Al$_{10}$. Then the temperature T^* might be assigned to higher one than room temperature in CeOs$_2$Al$_{10}$, and CeFe$_2$Al$_{10}$ as well.

The gap magnitude below T_0 is nearly the same among CeRu$_2$Al$_{10}$, CeOs$_2$Al$_{10}$ in ambient pressure and in 0.66GPa as easily seen in Fig. 3(b). However the T-dependence in the low temperatures $T \ll T_0$ in CeOs$_2$Al$_{10}$ is different from those both in CeRu$_2$Al$_{10}$ and CeFe$_2$Al$_{10}$. The latters follow Korringa law ($T_1T=\text{const.}$), suggesting a pseudo gap with the density of coherent state at the Fermi energy ϵ_F. On the other hand, $1/T_1 \sim \text{const.}$ in CeOs$_2$Al$_{10}$ might be ascribed to the relaxation process through incoherent states in the gap, hence suggest a full gap opening at ϵ_F. These difference with respect to the density of states at ϵ_F is consistent with the specific heat measurements.[1]

This work were supported by Grant-in-Aid for Scientific Research (C) of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

[1] Nishioka T, Kawamura Y, Takesaka T, Kobayashi R, Kato H, Matsumura M, Kodama K, Matsubayashi K and Uwatoko Y 2009 J. Phys. Soc. Jpn. 78 123705
[2] Matsumura M, Kawamura Y, Edamoto S, Takesaka T, Kato H, Nishioka T, Tokunaga Y, Kambe S and Yasuoka H 2009 J. Phys. Soc. Jpn. 78 123713
[3] Tanida H, Tanaka D, Sera M, Moriyoshi C, Kuroiwa Y, Takesaka T, Nishioka T, Kato H, Matsumura M and Uwatoko Y 2009 J. Phys. Soc. Jpn. 78 123705
[4] Hanzawa K 2010 J. Phys. Soc. Jpn. 79 043708
[5] Robert J, Mignot J-M, Andre G, Nishioka T, Kobayashi R, Matsumura M, Tanida H, Tanaka D and Sera M 2010 Phys. Rev. B 82 100404(R)
[6] Khaykin D D, Hillier A D, Adroja D T, Strydom L C, Peratheeapan P, Knight K, Deen P, Ritter C, Muro Y and Takabatake T 2010 Phys. Rev. B 82 100405(R)
[7] Kato H, Kobayashi R, Takesaka T, Nishioka T, Matsumura M, Kaneko K, Metoki N 2011 J. Phys. Soc. Jpn. 80 073701
[8] Doniach S 1977 Physica 91B 231
[9] Kato H, Takesaka T, Kobayashi R, Nishioka T, Matsumura M, Tokunaga Y and Kambe S 2010 J. Phys.: Conf. Series 273 012037
[10] MacLaughlin D. E., Williamson J. D. and Butterworth J 1971 Phys. Rev. B 4 60
[11] Muro Y, Kajino J, Umeo K, Nishimoto K, Tamura R and Takabatake T 2010 Phys. Rev. B 81 214401
[12] Kawamura H, Edamoto S, Takesaka T, Nishioka T, Kato H, Matsumura M, Tokunaga Y, Kambe S, Yasuoka H 2010 J. Phys. Soc. Jpn. 79 103701