RESEARCH ARTICLE

Efficacy of Noninvasive Stellate Ganglion Blockade Performed Using Physical Agent Modalities in Patients with Sympathetic Hyperactivity-Associated Disorders: A Systematic Review and Meta-Analysis

Chun-De Liao¹², Jau-Yih Tsauo¹, Tsan-Hon Liou²⁴⁵, Hung-Chou Chen²³⁵⁶, Chi-Lun Rau²⁴⁶

¹ School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan, ² Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan, ³ Center for Evidence-Based Health Care, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan, ⁴ Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan, ⁵ Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

☯ These authors contributed equally to this work.
* rauchilun@gmail.com

Abstract

Background
Stellate ganglion blockade (SGB) is mainly used to relieve symptoms of neuropathic pain in conditions such as complex regional pain syndrome and has several potential complications. Noninvasive SGB performed using physical agent modalities (PAMs), such as light irradiation and electrical stimulation, can be clinically used as an alternative to conventional invasive SGB. However, its application protocols vary and its clinical efficacy remains controversial. This study investigated the use of noninvasive SGB for managing neuropathic pain or other disorders associated with sympathetic hyperactivity.

Materials and Methods
We performed a comprehensive search of the following online databases: Medline, PubMed, Excerpta Medica Database, Cochrane Library Database, Ovid MEDLINE, Europe PubMed Central, EBSCOhost Research Databases, CINAHL, ProQuest Research Library, Physiotherapy Evidence Database, WorldWideScience, BIOSIS, and Google Scholar. We identified and included quasi-randomized or randomized controlled trials reporting the efficacy of SGB performed using therapeutic ultrasound, transcutaneous electrical nerve stimulation, light irradiation using low-level laser therapy, or xenon light or linearly polarized near-infrared light irradiation near or over the stellate ganglion region in treating complex regional pain syndrome or disorders requiring sympatholytic management. The included articles were subjected to a meta-analysis and risk of bias assessment.
readers may contact to request the data, and a confirmation that data will be available upon request to all interested researchers. Chun-De Liao, Email: 0841508@tmu.edu.tw, Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan, No.291, Zhongzheng Rd., Zhonghe Dist., New Taipei City 23561, Taiwan, Tel: 886-2-2249-0088 ext. 1619; Amy Hsieh (Liao’s secretary). Email: amyhsieh.sky@gmail.com, Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan, No.291, Zhongzheng Rd., Zhonghe Dist., New Taipei City 23561, Taiwan, Tel: 886-2-2249-0088 ext. 1618. c) Chun-De Liao, No.291, Zhongzheng Rd., Zhonghe Dist., New Taipei City 23561, Taiwan, Tel: 886-2-2249-0088 ext. 1619; Amy Hsieh (Liao’s secretary). Email: amyhsieh.sky@gmail.com, Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan, No.291, Zhongzheng Rd., Zhonghe Dist., New Taipei City 23561, Taiwan, Tel: 886-2-2249-0088 ext. 1618. c) We provide instructions for how to request the articles used in our study as follows: Readers may request articles used in this study by the ways listed as follows: 1) Use title of the article listed in reference of this study to make an electronic search on online databases, such as PubMed (http://www.ncbi.nlm.nih.gov/pubmed), Embase (http://store.elsevier.com/en_US/info/30800006), the Cochrane Library Database (http://www.cochranelibrary.com) etc. 2) Use the doi numbers listed in reference of this study to make an online search on Google scholar (http://scholar.google.com.tw). 3) Use the doi numbers or title of the article listed in reference of this study to make an online search on ResearchGate (http://researchgate.net/). A request for full text of the article to authors can be made. 4) Contact the local library to make a request by the delivery systems listed below: RapidILL (http://rapidill.org); Nationwide Document Delivery Service, NDDS (https://ndds.stpi.narl.org.tw); Journal Article Delivery Express, JADE (http://www.lib.ntu.edu.tw/8080/JADE).

Funding: All the authors received no specific funding for this work.

Competing Interests: The authors have declared that no competing interests exist.

Introduction

The prevalence of chronic pain is 20%–30% in the general population, and approximately one-fifth of people who complain of chronic pain are believed to predominantly experience neuropathic pain. Neuropathic pain syndromes are particularly distressful chronic pain syndromes affecting 2%–8% of the general population and their quality of life. Neuropathic pain syndromes are clinically characterized by spontaneous, stimulus-independent, persistent pain. Moreover, a sympathetically maintained component is a common feature of these syndromes, along with multiple α-adrenergic sensitization-associated subsets dependent on activity in the sympathetic nervous system [1].

Sympathetic overflow or hyperactivity is a common clinical feature of neuropathic pain syndromes such as complex regional pain syndrome (CRPS) type I [2–4], fibromyalgia [5–7], and trigeminal neuralgia [8]. Pain can be enhanced or maintained by functional abnormalities of the sympathetic nervous system, including functional sympathetic afferent coupling and increased adrenergic receptor expression at the peripheral terminals of nociceptive afferent nerve fibers, resulting in the release of neuropeptides [substance P and calcitonin gene-related peptide (CGRP)] from peptidergic unmyelinated fibers [4, 9–11]. In addition to pain, excessive sympathetic outflow originating from small-fiber neuropathy (e.g., CRPS and reflex sympathetic dystrophy) leads to changes in sympathetic vasoconstrictor activity and sudomotor dysfunction, which might be clinically represented as skin temperature and/or color changes, swelling, edema, or hyperhidrosis (i.e., spontaneous, thermoregulatory, and sudomotor axon reflex sweating) in the affected extremity [2, 3]. Furthermore, vasomotor abnormalities or hyperhidrosis responding to neurogenic inflammation alter the concentration of peripheral neuropeptides in the affected tissue, such as the antidromic release of the vasodilated neuromediators CGRP or the vasoconstrictive neuropeptide endothelin-1 by the endings of afferent polymodal C fibers and efferent sympathetic fibers that critically regulate vasomotor and trophic efferent functions [4, 10, 11]. Therefore, the modulation of sympathetic activity by using a sympathetic inhibitor or a local sympathetic ganglion blockade may affect the pain course in patients with chronic pain and hyperalgesia that are suspected to be sympathetically maintained [12].

Stellate ganglion blockade (SGB), a local anesthetic blockade of the sympathetic ganglia, is used in clinical practice to manage various vascular disorders and pain conditions including...
upper extremity, nuchal, cephalic, and atypical facial pain. SGB has been advocated as an early intervention for achieving sympatholysis through the blockade of efferent sympathetic nerves [13–16]; however, the efficacy and safety of sympathetic blockades remain unclear [17]. Moreover, the success of conventional SGB depends on the skill through which the invasive technique is applied. In addition, the following serious complications can occur during or after the application of the anterior paratracheal technique: local muscle injury and scarring caused by repeated injections at the same point [18]; convulsions caused by intraarterial injections (incidence: 1.7 per 1000 blockades) [19, 20]; esophageal puncture [21]; retropharyngeal hematoma or recurrent laryngeal or phrenic nerve blockade resulting in fatal respiratory arrest [22–24]; locked-in syndrome [25, 26]; pneumothorax [23]; sinus arrest [27]; serious cervical hematoma [28]; and severe arterial hypotension [29]. Moreover, repeated application of the technique can cause recurrent paralysis of the involved nerves.

The sympathetic nerves are of particular interest in pain treatment. Therefore, numerous noninvasive approaches for SGB employing physical agent modalities (PAMs) have been developed as alternatives to the conventional invasive anesthetic technique, including therapeutic ultrasound (US), transcutaneous electrical nerve stimulation (TENS), light irradiation using low-level laser therapy (LLLT), and xenon light and linearly polarized near-infrared (LPNIR) light irradiation near or over the stellate ganglion region. In addition, noninvasive SGB can be safely and conveniently performed in clinical practice, particularly in patients declining injections, having a high bleeding tendency, undergoing anticoagulant therapy, or having contraindications for nerve blockade, such as those with hemophilia [30–34]. In patients with neuropathic pain syndromes, the effects of SGB performed using light irradiation were similar to those of conventional intensive SGB, including improved blood flow through vasodilation and reduced pain by direct blockade of the afferent nociceptive signals traveling through sympathetic pathways [31, 33, 35–38]. Moreover, the effects of SGB performed using TENS [39–41] and therapeutic US [41, 42] were similar. Compared with the conventional nerve blockade technique, noninvasive SGB is free from potential complications such as infection, bleeding, potential nerve damage, and other adverse events that may be caused by an injective or a puncture injury following repeated applications [19–29]. Moreover, noninvasive SGB can be conveniently performed in clinical practice even in the absence of an anesthesiologist and is well tolerated by patients without any thermal injury or with few adverse effects [31, 39, 40, 43–56], regardless of the application modality.

Noninvasive SGB can provide clinically effective pain relief, improve peripheral vasomotor and sudomotor dysfunction and abnormal heart rate variability (HRV), and maintain homeostasis in patients with neuropathic pain syndromes such as CRPS [40, 41, 43, 44, 46, 53, 57], fibromyalgia [33], glossodynia [52], burning mouth syndrome [31, 36, 58], postherpetic neuralgia [49, 59, 60], trigeminal neuralgia [61], and thalamic pain [55] as well as in those with other disorders such as Bell’s palsy [50, 51, 60], musculoskeletal pain [38], postoperative sensory disturbance [62], Raynaud’s phenomenon [63], glaucoma [64], and sudden deafness [65]. In addition, noninvasive SGB can alleviate conditions associated with hypersympathetic tone [35, 45, 47, 64–68] and physiological changes associated with suppressed sympathetic activities in healthy adults [34, 37, 42, 56, 69–75]. Because of the heterogeneity of treatment protocols and study designs, careful interpretation of results and drawing of conclusions regarding the short- and long-term efficacy of noninvasive SGB are necessary. In addition, because each PAM has various applications, providing prompt and definite guidance to clinicians performing SGB as the primary procedure in clinical practice becomes difficult. Therefore, a review on the efficacy of noninvasive SGB reported in studies using various methodologies is urgently required.
Despite the increased use of PAMs in pain management, the effectiveness of their application in sympathetic blockade has only been sporadically examined. Most studies examining this topic have used a nonrandomized experimental design or case series [31, 33, 36, 45, 64, 76–81]. Several reviews and meta-analyses of the effectiveness of PAMs in pain management have been published for assisting clinicians in making decisions [82–87]. However, few systematic meta-analyses have provided adequate evidence on the efficacy of noninvasive SGB performed using PAMs.

We conducted a systematic review and meta-analysis to determine the effectiveness of noninvasive SGB in managing neuropathic pain and disorders associated with sympathetic nervous system dysfunction.

Materials and Methods

Design

This study was approved by the Ethical Review Board of Taipei Medical University (protocol number: N201602100) and conducted in accordance with the guidelines recommended by the Preferred Reporting Items for Systematic Reviews and Meta-Analysis [88]. We conducted a comprehensive electronic database search. Original research articles on the clinical efficacy of SGB performed using noninvasive PAMs for pain management published between January 1950 and December 2015 were aggregated and coded. The articles were obtained from the following online databases: Physiotherapy Evidence Database, Medline, PubMed, Excerpta Medica Database, Cochrane Library Database, Ovid MEDLINE, Europe PubMed Central, EBSCOhost Research Databases, ProQuest Research Library, WorldWideScience, BIOSIS, and Google Scholar. Secondary sources were papers cited by the articles retrieved from these databases and articles published in journals that were not available in these databases. The search was restricted to published or in-press articles on human studies, without language restriction. Non-English language papers were translated to English. In addition, we consulted anesthesiology and neurology experts to conduct a systematic review and meta-analysis of noninvasive SGB for pain management. Two reviewers (CDL and CLR) independently searched articles, screened studies, and extracted data in a blinded manner with adequate reliability. Any disagreements between the reviewers were resolved through consensus with other team members (HCC and THL) acting as arbiters.

Search strategy

We used the following search terms to identify articles on neuropathic pain and associated conditions: “chronic pain/syndrome,” “neuropathic pain/syndrome,” “complex regional pain syndrome type I/type II,” “reflex sympathetic dystrophy,” “fibromyalgia,” “glossodynia,” “burning mouth syndrome,” “postherpetic trigeminal neuralgia,” “neuralgia,” “thalamic pain,” “Bell’s/facial palsy,” “musculoskeletal pain,” “postoperative sensory disturbance,” “post-traumatic pain disorders,” “Raynaud’s phenomenon/disease/syndrome,” “sympathetic dysfunction/hyperactivity,” “symptomatically maintained pain syndrome,” “CRPS,” and “RSD.” Furthermore, search terms used for SGB were “stellate ganglion,” “stellate ganglion block/blockade,” “sympathetic (ganglion) block/blockade.” On the basis of previous studies [83, 84], we used the following search terms for light therapy: “laser therapy,” “low-energy photon therapy,” “low output laser,” “low-level laser therapy,” “LLLT,” “LASER,” “photobiomodulation,” “phototherapy,” “light therapy/(ir)radiation,” “narrow-band light therapy,” and “linear (ly) polarized infrared light.” The search terms used for therapeutic US were “ultrasound/ultrasonic/US therapy” and “therapeutic ultrasound.” The terms used for TENS were “transcutaneous electrical nerve stimulation,” “electric(al)/electricity/electrotherapy/stimulation,”
“transdermal electroimpulses,” “low-level transcutaneous electrical stimulation,” “diadynamotherapy,” “diodynamic therapy,” “diadynamic current,” “electroacupuncture,” “electroanaesthesia,” and “external noninvasive peripheral nerve stimulation.” Other common search terms for noninvasive interventions included “electrophysical agent/modality,” “biostimulation,” and “neuromodulation.”

Study selection criteria
Article were included if they fulfilled the following criteria [89]: (1) the article was published or in press in a peer-reviewed, scientific journal; (2) it was published between January 1950 and December 2015; (3) it reported an in vivo human trial only; (4) the trial design was randomized or quasi-randomized and controlled, and the trial concerned sympathetic blockade using noninvasive SGB for patients with neuropathic pain disorders with or without sympathetic hyperactivity [90]; (5) the trial was conducted using an electrophysical modality that delivered US, light irradiation, or electrostimulation to or on the area near the stellate ganglion on either the right or left side; (6) control groups were administered a placebo using sham irradiation or stimulation or they underwent active treatment (e.g., exercise and other physical therapeutic modalities); (7) the trial included a cointervention, such as pharmacological and conventional invasive SGB, or other physical therapies in both placebo and noninvasive SGB groups; (8) pain was measured using a quantifiable scale or outcome, such as the visual analog scale (VAS), and (9) the following application parameters could be extracted: source of stimulation, wavelength, power, power density, number and duration of treatment sessions, frequency of treatment, dose (intensity), side of the area treated, and mode of treatment (continuous or pulse mode for therapeutic US and monophasic or biphasic mode for TENS).

Articles on studies using animal models, case reports, and case series were excluded. In addition, non-English articles that could not be translated into English were excluded.

Data extraction
We developed a data extraction sheet for the included studies and refined it accordingly [91]. An author (CDL) extracted the relevant data from the included studies, and another author (CLR) reviewed the extracted data. Any disagreement between the two authors was resolved through consensus. A third author (THL) was consulted if the disagreement persisted.

Outcome measures
The effects of noninvasive SGB on primary outcomes including pain intensity, sympathetic skin response, peripheral blood flow or vascular conductance, and peripheral skin temperature were calculated as weighted mean differences (WMDs) or standard mean differences (SMDs) versus the placebo or active control. In addition, secondary outcomes including functional mobility and disability were calculated as SMDs versus the placebo or active control.

Assessment of bias risk and methodological quality
Quality assessment was performed using the Physiotherapy Evidence Database (PEDro) quality scale, a valid measure of the methodological quality of clinical trials [92], to assess the risk of bias. The PEDro scores of the following 10 items were determined: random allocation, concealed allocation, similarity at the baseline, subject blinding, therapist blinding, assessor blinding, >85% follow-up for at least one key outcome, intention-to-treat analysis, between-group statistical comparison for at least one key outcome, and point and variability measures for at least one key outcome. Each item was scored as 1 when a criterion was clearly satisfied or 0...
when the criterion was unclear or absent; the final sum of the scores (0–10) was obtained by summing the scores for all 10 items. The methodological quality of all included studies was independently and blindly assessed by two researchers (CDL and HCC) according to the PEDro classification scale. If any item of the assessed study had different graded scores, it was further ranked by a third assessor (THL). The interrater reliability measured using the generalized kappa statistic is between 0.40 and 0.75 for the PEDro scale [93]. The intraclass correlation coefficient associated with the cumulative PEDro score is 0.91 [95% confidence interval (CI): 0.84–0.952] for nonpharmacological studies [94]. The methodological quality of the included studies was rated from excellent to poor on the basis of the PEDro score: 9–10, excellent; 6–8, good; 4–5, fair; and <4, poor.

We examined adverse events when reported even if they were not specified a priori. The duration of follow-up was assessed and defined as immediate (<1 day), short term (<1 month), medium term (1–6 months), and long term (>6 months) [89].

Statistical analysis

We separately computed the effect size of each study for the primary and secondary outcome measures after noninvasive SGB. The primary outcomes were defined as pooled estimates of the mean difference in changes between the mean of the treatment and placebo (or active control) groups, weighted by the inverse of the standard deviation (SD) for every included study. If the exact variance of paired differences was not derivable, it was imputed by assuming a correlation coefficient of 0.8 between the baseline and posttreatment pain scores [95, 96]. If data were reported as a median (range), they were recalculated algebraically from the trial data for imputing the sample mean and SD [97]. The odds ratio with a 95% CI was calculated for dichotomous outcomes. For the secondary outcomes, the effect size was defined as an SMD, which was a combined outcome measure without units.

Fixed-effects or random-effects models were used depending on the presence of heterogeneity. Statistical heterogeneity was assessed using the I^2 statistics for significance ($p < 0.05$) and χ^2 and F values of >50% [98]. The fixed-effects model was used when significant heterogeneity was absent ($p > 0.05$), whereas the random-effects model was used when heterogeneity was significant ($p < 0.05$).

Subgroup analysis was performed on the basis of the therapy type and methodological quality of the included studies. Potential publication bias was investigated through visual inspection of a funnel plot for exploring possible reporting bias [99] and was assessed using Egger’s regression asymmetry test [100], by using SPSS (Version 17.0; IBM, Armonk, NY, USA). A value of $p < 0.05$ was considered to be statistically significant. All analyses were conducted using RevMan 5.3 (The Nordic Cochrane Centre, Copenhagen, Denmark).

Results

Selection process

Fig 1 illustrates the flow chart of the selection process. The final sample consisted of nine randomized placebo- or active-controlled [40, 43–50] and four quasi-randomized [51–54] trials published between 1994 and 2014 with a total sample size of 440 patients.

Study characteristics

Table 1 lists the demographic data and study characteristics of the included trials. Noninvasive SGB was performed using therapeutic US, TENS, and light irradiation in two [43, 44], four
and seven [46, 49–54] trials, respectively. The applied parameters of modalities used for SGB and treatment protocols are summarized in Table 2.

Of the 13 trials, six reported co-interventions, with one using physical therapy [44], three allowing pharmacological medication [47, 50, 51], and two combining physical therapy and
Study	Age (y/r)	Sex	No. per group	Design	Condition treated	Side treated	Groups	Cointervention	Total treatment sessions (duration)	Measurement time points	Outcome measures	
Askin (2014) [43]	45.5 (13.3)	19/21	13	DB	CRPS (type I)	NA	Gr 1: SG-US (0.5 wt/cm²)	Pharmacological medication	20 (6 weeks)	Pretest	VAS	
	46.0 (13.3)	13	RCT				Gr 2: SG-US (3 wt/cm²)	TENS		Posttest	DASH	
	44.8 (13.6)	14				Gr 3: Placebo	Contrast bath			SSR		
Aydemir (2006) [44]	21.9 (1.05)	NA	9	RCT	CRPS (type I)	R/L/Bil	Gr 1: SGB + sham SG-US	Exercise	21	Pretest	VAS	
	21.4 (0.73)	9				Gr 2: SG-US + sham SGB	Contrast bath			Posttest	Edema	
	21.1 (0.38)	7				Gr 3: Placebo	TENS	Pneumatic compression			Follow-up: 1 month	Grip strength
Cipriano (2014) [47]	62.0 (4.0)	18/20	20	DB	CAD	NA	Gr 1: SG-TENS	Pharmacological medication	20 (1 week)	Pretest	VAS	
	66.0 (3.0)	18	RCT			Gr 2: Placebo				Posttest	Opioid usage	
										BP	Femoral blood flow	
										6MWT		
Barker (2007) [45]	65.3 (18.3)	32/21	53	RCT	Posttraumatic vasoconstriction and hypothermia	R/L	Gr 1: SG-TENS treated limb	NA	1	Pretest	Pulse oximeter dropout alerts	
										Posttest	(alarm duration and frequency)	
											Difference between core and skin temperature	
Bolel (2006) [40]	44.6 (16.4)	12/18	15	RCT	RSD	R/L	Gr 1: SG-TENS	Pharmacological medication	1	Pretest	SSR	
	41.1 (20.8)	15				Gr 2: Placebo	Exercise			Posttest		
											Physical therapy agents	
											(hot/cold pack, whirl-pool, TENS)	

(Continued)
Study	Age (y/r)	Sex	No. per group	Design	Condition treated	Side treated	Groups	Cointervention	Total treatment sessions (duration)	Measurement time points	Outcome measures	
Fassoula ki (1994)	45.8 (8.0)	NA	19	RCT	Hysterectomy	NA	Gr 1: SGTENS	Gr 2: Placebo	NA	1	Preoperation	
	44.6 (10.7)		19		operation						BP	
Nakase (2004)	66.0 (9.3)	NA	49/15	Quasi-randomized	Glossodynia	R/L/Bil	Gr 1: SGL	Gr 2: Gargle medication	16 (4 weeks)	Pretest	VAS	
	64.9 (12.4)		19	active-controlled							Posttest	Tongue temperature
	63.1 (16.0)		8								Tongue blood flow	
Basford (2003)	45.8 (12.3)	5/1	6	DB	CRPS (type I)	R	Tr 1: SGL	Tr 2: Placebo	1	Pretest	VAS	
				Randomized crossover placebo-controlled							Posttest	Finger circumference
											HRV	
											Skin temperature	
											Digital blood flow	
Wee (2001)	59.0 (1.4)	NA	20	Quasi-randomized	RSD	R/L	Gr 1: SGL limb	Gr 2: Control limb	30 (6 weeks)	Pretest	VAS	
	59.0 (1.4)		20	Crossover							Posttest	Finger circumference
											HRV	
											Skin temperature	
											Digital blood flow	
Kudoh (1998)	44.5 (1.6)	27/23	25	RCT	Facial palsy	R/L	Gr 1: SGL	Gr 2: Control*	2–4 session/week (3 months)	Pretest	Electroneurography	
	43.7 (2.3)		25								Mid-time point: 1, 2, & 3 months	
Hashimoto (1997)	66.3 (5.4)	2/6	8	DB	PHN	R/L	Tr 1: SGL (150W)	Tr 2: SGL (60W)	NA	1	Pretest	VAS
				Randomized crossover placebo-controlled							Posttest	Skin temperature
											Follow-up 5–30 min	
Yamada (1995)	43.6 (12.5)	13/11	7	Quasi-randomized	Hunt’s syndrome II	NA	Gr 1: SGL	Gr 2: SGL + PM	21–66 (5–12 weeks)	Pretest	Paralysis score	
	45.1 (14.0)		7		Bell’s palsy						Mid-time point: 2 weeks	
	43.2 (10.9)		10								Follow-up 5–12 weeks	
Study	Age (y/r)	No. per group	Design	Condition treated	Side treated	Groups	Cointervention	Total treatment sessions (duration)	Measurement time points	Outcome measures		
---------------------	-----------	---------------	-------------------------	-------------------	--------------	--------	----------------	-----------------------------------	------------------------	------------------		
Murakami (1993) [51]	45.3 (4.1)	52	Quasi-randomized	Facial palsy	NA	Gr 1: SGL	Pharmacological medication	NA	Posttest 1, 7, 14, 21, 30 & > 30 days	Paralysis score		
	43.5 (4.1)	15				Gr 2: SGB						
	41.8 (4.7)	26				Gr 3: SGL + SGB						

DB = double blind; RCT = randomized control trial; NA = not available; R = right; L = left; Bil = bilateral; Gr = group; Tr = treatment; CRPS = complex regional pain syndrome; CAD = coronary artery disease; RSD = reflex sympathetic dystrophy; PHN = postherpetic neuralgia; SG-US = ultrasound therapy to the stellate ganglion; SGB = stellate ganglion blockade; TENS = transcutaneous electrical nerve stimulation; SGL = Light irradiation to the stellate ganglion; VAS = visual analog scale; DASH = Disability of the Arm, Shoulder, and Hand scale; SSR = sympathetic skin response; BP = blood pressure; 6MWK = 6-min walk test; HR = heart rate; HRV = heart rate variability

* no intervention to the stellate ganglion

doi:10.1371/journal.pone.0167476.t001
medication as a between-group co-intervention [40, 43]. With regard to treated conditions, patients with neuropathic pain disorders, namely CRPS type I [40, 43, 44, 46, 53], glossodynia [52], and postherpetic neuralgia [49], were treated in seven trials; patients with atypical facial palsy [50, 51, 54] were treated in three trials; patients with conditions related to sympathetic cardiovascular changes following a coronary artery bypass graft surgery [47] or a hysterectomy [48] were treated in two trials; and patients with posttraumatic hypothermia-related vasoconstriction were treated in one trial by applying TENS on the area near the stellate ganglion [45].

The immediate analgesic and sympatholytic effects of noninvasive SGB and the short-term follow-up of clinical outcomes within 1 month after the end of the treatment protocol were reported in five trials conducting one SGB session [40, 45, 46, 48, 49] and seven trials performing 6–22 SGB sessions using various protocols within an overall treatment period of 1–12 weeks [43, 44, 47, 50, 52–54]. The medium-term follow-up of clinical outcomes 3 months after the end of the treatment protocol was reported in three trials [50, 51, 54]. None of the included trials reported long-term outcomes.

Table 2. Source of stimulation, wavelength, power, power density, and energy.

Study	Source of stimulation	Wavelength/Frequency	Application parameters	Duration (min)	Power (W)	Power Density (W/cm²)	Energy
Askin (2014)	Therapeutic US	1 MHz	1-cm² heading applicator; Pulse pattern, 1:4	5	0.5	300 J/cm²	300 J/cm²
Aydemir (2006)	Therapeutic US	1 MHz	1-cm² heading applicator	5	3.0	180 J/cm²	180 J/cm²
Cipriano (2014)	TENS	40–80 Hz	Pulse duration: 150–200 μs (mA)	30			
Barker (2007)	TENS	100 Hz	Pulse duration: 200 μs; Intensity: 15 mA				
Bolel (2006)	Diadynamic current	50–100 Hz	NA				
Fassoulaki (1994)	TENS	40 Hz	Intensity 12–29 mA (mean ± SD, 18 ± 4 mA)	600			194.8 J/cm²
Nakase (2004)	LPNIR light	600–1600 nm	Duty cycle (on/off ratio), 1 s/2 s	10	0.97	NA	88.3 J
Basford (2003)	LPNIR light	600–1600 nm	Duty cycle (on/off ratio), 1 s/4 s	8	0.92	0.6	287 J/cm²
Wee (2001)	Helium-neon laser	NA	Duty cycle (on/off ratio), 1 s/5 s	20	1.44	NA	18 J
Kudoh (1998)	LPNIR light	600–1600 nm	Duty cycle (on/off ratio), 1 s/5 s	10	1.44	NA	289.2 J/cm²
Hashimoto (1997)	GaAlAs semiconductor	830 nm	Duty cycle (on/off ratio), 1 s/2 s	3	0.15	NA	27 J
Yamada (1995)	GaAlAs semiconductor	830 nm	Duty cycle (on/off ratio), 1 s/2 s	5	0.15	0.21	18 J
Murakami (1993)	GaAlAs semiconductor	830 nm	Duty cycle (on/off ratio), 1 s/2 s	2–3	0.06	NA	NA

a US = ultrasound; TENS = transcutaneous electric nerve stimulation; LPNIR = linear polarized near infrared; NA = not available

b This was applied during transportation to the hospital.

doi:10.1371/journal.pone.0167476.t002
Risk of bias in the included studies

The two assessors primarily calculated the same PEDro score for the nine included studies [40, 43–46, 48–50, 54]. The third assessor determined the PEDro score of the remaining four trials [47, 51–53]. The interrater reliability associated with the cumulative PEDro score was acceptable with an intraclass correlation coefficient of 0.98 (95% CI: 0.94–0.99). The methodological quality was high for all the included studies with a median (range) PEDro score of 6 (5–8). The methodological quality of 10 and 3 trials was classified as good and fair, respectively. The individual PEDro scores are listed in Table 3. Of the 13 studies, 9 had random allocation, 5 had concealed allocation, all had similarity at the baseline, 6 incorporated subject blinding, 4 incorporated therapist blinding, 4 incorporated assessor blinding, 9 had adequate follow-up, 10 had intention-to-treat analysis, 11 had between-group comparisons, and all had point estimates and variability.

Effect on pain relief

The five trials [43, 44, 47, 49, 52] determined pain intensity on a VAS. All VAS data were transformed to 0–100-mm continuous data. The analysis of the transformed VAS data revealed that compared with the control group, pain decreased in the SGB group by a WMD of −21.59 mm (95% CI, −34.25, −8.94; p = 0.0008), irrespective of the methodological quality used. Moreover, significant heterogeneity was observed between trials (p < 0.00001; I² = 93%; Fig 2A). In addition to VAS score, Cipriano et al. (2014) reported a significant decrease in the analgesic need (i.e. daily opioid dosage) with an SMD of −2.73 (95% CI, −3.64, −1.82; p < 0.00001) [47], indicating a high pain control efficacy of noninvasive SGB.

A subgroup analysis of anticipated optimal dose ranges for noninvasive SGB applied for treating pain revealed that a high dose of US energy (i.e. 3.0 w/cm²) resulted in a significant SMD of −0.81 (95% CI, −1.44, −0.18; p = 0.01) without heterogeneity between trials (p = 0.97; I² = 0%). In addition, a high dose of light irradiation (i.e. 150W or >27J) resulted in a significant SMD of −2.06 (95% CI, −2.66, −1.46; p < 0.00001) without heterogeneity between trials (p = 0.70; I² = 0%; Fig 2B).

Sympatholytic effects

Immediate sympatholytic responses after noninvasive SGB were determined by measuring sympathetic skin responses in two trials [40, 43], circulating β-endorphin levels in one trial [47], and skin vasomotor reflex in one trial [46]. Because the trials used different measures, the combined results were calculated as SMDs. The combined SMD effect size was −1.75 (95% CI, −3.16, −0.34; p = 0.01), and heterogeneity was present (p < 0.00001; I² = 89%; Fig 3).

Effect on hemodynamic response

Immediate hemodynamic responses following noninvasive SGB were determined in three trials [46–48], with two comparing blood pressure and two comparing heart rates (HRs; Fig 4). Two trials on SGB performed using TENS [47, 48] presented different comparisons of arterial pressure for immediate posttreatment sympathetnic responses. The combined SMD effect size was −0.82 (95% CI, −1.29, −0.35; p = 0.0007), and heterogeneity was absent (p = 0.46; I² = 0%; Fig 4).

Two trials, one using TENS [48] and the other using light irradiation [46] for SGB, presented different comparisons of the HR. No significant effect of SGB performed using light irradiation was observed on immediate changes in postirradiation HRs [46]. By contrast, Fassoulaki et al. [48] reported a significant change in postirradiation HRs, favoring the SGB group with an SMD of −2.78 (95% CI, −3.70, −1.87; p < 0.0001). The combined SMD effect size was −1.58 (95% CI, −2.30, −0.87; p < 0.0001), and heterogeneity was present (p < 0.0001; I² = 94%; Fig 4).
Table 3. Summary of the methodological quality based on the PEDro classification scale.

Study	Overalla	Eligibility Criteriaa	Random allocation	Concealed allocation	Baseline comparable	Subject Blinding	Therapist Blinding	Assessor Blinding	Adequate follow-up	Intention to treat	Between-group comparison	Point estimates & variability
Askin (2014)	7	X	X	X	X	X	X	X	X	X	X	X
Aydemir (2006)	7	X	X	X	X	X	X	X	X	X	X	X
Cipriano (2014)	6	X	X	X		X	X	X	X	X	X	X
Barker (2007)	7	X	X	X	X	X	X	X	X	X	X	X
Boie (2006)	6	X	X	X	X	X	X	X	X	X	X	X
Fassoulaki (1994)	8	X	X	X	X	X	X	X	X	X	X	X
Nakase (2004)	5	X		X	X		X	X	X	X	X	X
Basford (2003)	8	X	X	X	X	X	X	X	X	X	X	X
Wee (2001)	5	X		X	X		X	X	X	X	X	X
Kudoh (1998)	6	X	X	X	X		X	X	X	X	X	X
Hashimoto (1997)	8	X	X	X	X		X	X	X	X	X	X
Yamada (1995)	6	X		X	X		X	X	X	X	X	X
Murakami (1993)	5	X		X	X		X	X	X	X	X	X
Summary*	13	9	5	13	6	3	4	9	10	11	13	

a Points of methodological quality were “X” when a criterion was fulfilled. Methodological quality: 9–10, excellent; 6–8, good; 4–5, fair; <4, poor.

1 The score was determined by a third assessor.

2 This item was not used to calculate the total score.

3 This was calculated as the number of studies satisfied.

doi:10.1371/journal.pone.0167476.t003
Effect on peripheral blood flow

Three trials reported continuous data on changes in peripheral blood flow according to different measures [46, 47, 52]. One trial measured femoral blood flow after SGB performed using TENS [47], whereas the other two trials measured tongue blood flow [52] and digital blood flow [46] after SGB performed using light irradiation. The combined analysis revealed that
noninvasive SGB significantly increased peripheral blood flow with an SMD of 1.57 (95% CI, 1.06, 2.08; \(p < 0.00001 \)), and heterogeneity was present (\(p = 0.05; I^2 = 66\% \); Fig 5).

Effect on peripheral skin temperature

Four trials reported continuous data on changes in peripheral skin temperature by using different measures; the methodological quality of two trials was good [46, 49] and that of the other two trials was fair [52, 53]. The combined analysis revealed a significant effect of noninvasive SGB with an SMD of 2.24 (95% CI, 0.99, 3.49; \(p = 0.0005 \)), and heterogeneity was present (\(p = 0.001; I^2 = 81\% \); Fig 6). An additional trial that was not pooled into the meta-analysis used noninvasive SpO\(_2\) monitoring in which the signal detection quality was majorly limited.
because of vasoconstriction and hypothermia in patients with minor trauma [45]. The results indicated that SGB performed using TENS relieved hypothermia, as observed by a reduction in the alarm frequency and time when dropout alerts were initiated, and decreased the difference between the core and skin temperatures.

Fig 5. Standard mean difference in peripheral blood flow change between noninvasive stellate ganglion blockade (SGB) and placebo groups in three controlled trials grouped according to the type of electrophysical modality used. Trial results plotted on the right-hand side indicate effects favoring noninvasive SGB, and the combined effects are plotted using black diamonds. US = ultrasound; TENS = transcutaneous electrical nerve stimulation.

doi:10.1371/journal.pone.0167476.g005

Fig 6. Standard mean difference in the peripheral temperature change between noninvasive stellate ganglion blockade (SGB) and placebo groups in four controlled trials grouped according to the type of electrophysical modality used. Trial results plotted on the right-hand side indicate effects favoring noninvasive SGB, and the combined effects are plotted using black diamonds. US = ultrasound; TENS = transcutaneous electrical nerve stimulation.

doi:10.1371/journal.pone.0167476.g006
Effect on functional mobility and disability

Six studies provided evidence of short-term improvement in functional mobility or disability following noninvasive SGB treatment. The methodological quality of the three trials was good [43, 47, 50], and that of the other three trials was fair [51, 53, 54] (Fig 7A). Several questionnaire-based and functional outcome measures were used to evaluate disability, functional mobility, and clinical outcomes. One trial [43] evaluated disability of upper extremities after

(A) Follow up < 1 month

Study or Subgroup	Noninvasive SGB	Control	Std. Mean Difference					
Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	
Askin 2014 [43]	35.8	19.1718	26	34.9	17.24	14	17.4%	0.05 [-0.60, 0.70]
Subtotal (95% CI)	26	Heterogeneity: Not applicable						
		Test for overall effect: Z = 0.14 (P = 0.89)						

Study or Subgroup	Noninvasive SGB	Control	Std. Mean Difference					
Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	
Cipriano 2014 [47]	35	12	20	6	10	18	15.2%	2.56 [1.68, 3.44]
Subtotal (95% CI)	20	Heterogeneity: Not applicable						
		Test for overall effect: Z = 5.70 (P < 0.00001)						

Study or Subgroup	Noninvasive SGB	Control	Std. Mean Difference					
Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	
Yamada 1995 [54]	14.1	8.17	10	7	1.01	10	14.0%	0.71 [-0.29, 1.72]
Murakami 1993 [51]	19.2	5.1	26	15.9	3.9	15	17.4%	0.69 [0.03, 1.34]
Wee 2001 [53]	0.48	0.75	20	0.23	0.36	20	17.7%	0.42 [-0.21, 1.04]
Kudoh 1998 [50]	0.3	1.08	25	0.2	1.2	25	18.3%	0.09 [-0.47, 0.64]
Subtotal (95% CI)	78	Heterogeneity: Tau^p = 0.00; Chi^2 = 2.35; df = 3 (P = 0.50); I^2 = 0%						
		Test for overall effect: Z = 2.37 (P = 0.02)						
Total (95% CI)	124	102	100.0%	0.71 [0.06, 1.35]				

(B) Follow up at 3 months

Study or Subgroup	Noninvasive SGB	Control	Std. Mean Difference				
Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI
Subtotal (95% CI)	0	0	Not estimable				

Study or Subgroup	Noninvasive SGB	Control	Std. Mean Difference					
Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	
Kudoh 1998 [50]	16	0.9	25	9	1.2	25	32.2%	6.50 [5.06, 7.93]
Yamada 1995 [54]	27.6	4.8	7	25.5	2.6	10	33.6%	0.55 [-0.44, 1.54]
Murakami 1993 [51]	22.4	2.1	26	18.4	1.8	15	34.2%	1.96 [1.19, 2.74]
Subtotal (95% CI)	58	Heterogeneity: Tau^p = 5.97; Chi^2 = 45.40; df = 2 (P < 0.00001); I^2 = 96%						
		Test for overall effect: Z = 2.04 (P = 0.04)						

Fig 7. Forest plot of comparisons of outcomes between noninvasive stellate ganglion blockade and placebo groups: (A) short- and (B) medium-term effects on functional mobility and disability outcomes. Trial results plotted on the right-hand side indicate effects favoring noninvasive SGB, and the combined effects are plotted using black diamonds. US = ultrasound; TENS = transcutaneous electrical nerve stimulation.

doi:10.1371/journal.pone.0167476.g007
SGB performed using therapeutic US by using the Disability of the Arm, Shoulder, and Hand scale [101]. Three trials [50, 51, 54] examined the paralysis score following SGB performed using light irradiation in patients with facial palsy by using the 40-point and 3-grade Yanagihara scale [102]. One trial [47] evaluated physical function after SGB performed using TENS in patients receiving coronary artery bypass graft surgery by using the 6-min walk test [103]. Another trial [53] assessed the clinical outcome of arm swelling in patients with reflexive sympathetic dystrophy following SGB performed using LPNIR light irradiation by measuring the arm circumference. The combined analysis revealed a significant effect of noninvasive SGB with an SMD of 0.71 (95% CI, 0.06, 1.35; \(p = 0.03 \)), and heterogeneity was present (\(p = 0.0001; I^2 = 80\% \); Fig 7A).

Only three studies [50, 51, 54] provided evidence for medium-term effects of SGB performed using light irradiation on functional recovery in patients with facial palsy. The combined analysis revealed a significant effect of noninvasive SGB with an SMD of 2.95 (95% CI, 0.11, 5.78; \(p = 0.04; I^2 = 96\% \), \(p < 0.00001 \); Fig 7B).

Side effects of noninvasive SGB

No side effects or adverse events were reported in all included trials. Among the modalities, US, TENS, and LPNIR light irradiation were well tolerated by patients in two [43, 44], four [40, 45, 47, 48], and seven [46, 49–54] trials, respectively.

Publication bias

Because only five trials were included in group comparisons for pain reduction, the detection of publication bias from the funnel plot was limited. However, we did not observe substantial asymmetry in the funnel plot of pain reduction through visual inspection (Fig 8). In addition, the results of Egger’s linear regression test provided no evidence of reporting bias among the studies (\(t = -0.376; p = 0.732 \)).

Discussion

In this study, we conducted a comprehensive database search and identified previous controlled and quasi-controlled trials determining the clinical efficacy of noninvasive SGB performed using PAMs in patients with neuropathic pain syndromes or multiple clinical conditions associated with sympathetic hyperactivity. We obtained significant evidence for the efficacy of noninvasive SGB in the short- and medium-term treatment of neuropathic pain.

Noninvasive applications of SGB have been reported to produce effects similar to those of conventional invasive SGB in pain relief, hemodynamic physiology improvement through HR and HRV reduction [56, 69], and increased peripheral blood flow and skin temperature because of vasodilation [35, 60]. Nacitarhan et al. indicated that SGB performed using therapeutic US exerts positive effects on the autonomic nervous system by altering HRV parameters, particularly by reducing the low to high frequency power ratio [42]. Similar results were reported by Yoshida et al. [34]. In this study, we identified significant sympatholytic effects immediately after noninvasive SGB, regardless of the electrophysical modality used. This result indicated that a sympathetic blockade can be effectively performed using noninvasive alternatives to conventional invasive SGB. However, whether the analgesic or sympatholytic effects of noninvasive SGB vary with the type of disease remains unclear. Nevertheless, SGB performed using PAMs is painless and rarely causes side effects. Therefore, it may be a suitable alternative for patients having contraindications for a conventional sympathetic blockade, such as those with a high bleeding tendency.
Because the number of trials identified in our comprehensive search was low, we could not perform a subgroup analysis of optimal dose ranges for noninvasive SGB performed using each electrophysical modality. In addition, we could not compare the application dosage among the four PAMs because different energy forms produce different physiological effects (i.e., therapeutic US generates mechanical vibration energy producing diathermal and non-thermal effects, including cavitation, acoustic streaming, and microstreaming; therapeutic light generates photon energy initiating photobiomodulation effects or athermic photochemical reactions; and therapeutic electricity generates electrical energy inducing electrochemical effects) and energy in different forms penetrates through the skin and into tissues through its specific transdermal pathway of conductance and transformation (i.e., mechanical vibration energy is transdermally conducted through a coupling medium; photon energy is transmitted directly through absorption and indirectly through refraction, dispersion, and reflection; and electric current is delivered by the electric charge flow or by driving charged particles), with varying permeability into deep tissues [39, 104]. However, a high treatment efficacy can be achieved using high doses of energy emitted from the PAMs [105]. Hence, we performed a subgroup analysis of the trials examining different application dosages for noninvasive SGB performed using therapeutic US [43, 44] and light irradiation [49, 52]. Our results
demonstrated that compared with a low-power density, the application of high-dose US or light irradiation with a high-power density increased the short-term analgesic efficacy. In addition, a higher analgesic effect was obtained following SGB performed using light irradiation than SGB performed using therapeutic US. Our findings are consistent with those of a previous study regarding the short-term efficacy of electrophysical modality interventions for osteoarthritic knee pain [106].

We observed significant immediate treatment effects and short-term clinical efficacy of noninvasive SGB. However, only three trials [50, 51, 54] investigating the recovery of facial palsy reported medium-term outcomes with a significant effect size. Because the studies reported few results, we could not determine the long-term treatment outcomes over 6 months. Thus, additional studies are required to determine the long-term effect of noninvasive SGB on clinical outcomes.

Sympathetic blockade targeting the stellate ganglion area is believed to be beneficial for patients with a history of chronic musculoskeletal pain syndromes, sympathetically maintained pain syndrome, and clinical conditions associated with vasoconstriction caused by sympathetic hyperactivity. To the best of our knowledge, few systematic reviews or meta-analyses have focused on the clinical efficacy of noninvasive SGB. In this study, we included trials on noninvasive SGB performed using therapeutic US, TENS, LLLT, and LPNIR light irradiation. Our findings support the previous findings of noninvasive SGB performed using PAMs, indicating that phototherapy, TENS, and therapeutic US are beneficial for relieving pain of any etiology. However, although the available results on the efficacy of noninvasive SGB are promising, they demonstrate significant variability. A large-scale prospective randomized controlled trial is required to determine the specific benefits of noninvasive SGB on medium- and long-term outcomes in patients with sympathetic hyperactivity-associated disorders.

Our study has some limitations. First, the articles included in this study were of low methodological quality and had some biases, thus weakening the reliability of the data. Of the nine included studies accurately describing their randomized allocation design [40, 43–50], only five clearly described allocation concealment [40, 43–46]. In addition, of all the 13 included trials, only six [43, 44, 46–48], three [46, 48, 49], and four [43, 44, 46, 48] incorporated subject, therapist, and assessor blinding, respectively. Second, although the data did not suggest substantial publication bias and suggested a significant effect size on pain reduction favoring noninvasive SGB, heterogeneity among the included studies was high. The high heterogeneity may be attributable to the varying designs or low methodological quality of the included studies and low number of studies and participants. Furthermore, only five trials were included for assessing the publication bias of pain reduction and only two studies were available for subgroup comparisons; thus, the results of analyses of publication bias and heterogeneity and the resulting I^2 values were unreliable. Third, although we performed a meta-analysis of all the included trials using SGB with different PAMs, a subgroup analysis of different PAM types could not be performed because the number of articles included for each electrophysical modality was low and the measurement tools used to assess clinical outcomes varied among trials. Nevertheless, all the studies included in the statistical analysis of the analgesic effect [43, 44, 47, 49, 52] reported pain outcomes by using VAS scores, enhancing the ease of comparing treatment efficacies among different PAM types for noninvasive SGB and increasing the generalizability of our results to neuropathic pain of different etiologies [107]. Finally, because of limited published evidence, we could identify only the immediate treatment effects (within 1 day) and short-term outcomes (up to 1 month) after noninvasive SGB application. Additional studies on noninvasive SGB performed using the PAMs discussed in this study are required to determine whether the sympatholytic effects are beneficial in long-term clinical outcomes.
Conclusions

The results of this study demonstrated that noninvasive SGB performed using PAMs relieved pain and improved autonomic dysfunction in patients with sympathetic hyperactivity disorders. The results indicate that sympathetic blockade can be effectively performed with few side effects by using noninvasive SGB with PAMs. Our findings can assist clinicians in making decisions regarding alternatives to conventional SGB and selecting the optimal treatment strategy. However, additional high-quality, large-scale, randomized controlled trials with long-term follow-up are required to further establish the efficacy of PAMs in noninvasive SGB for pain management.

Supporting Information

S1 PRISMA Checklist. PRISMA 2009 checklist.

Author Contributions

Conceptualization: CDL JYT.
Data curation: CDL.
Formal analysis: CDL.
Investigation: CDL CLR HCC THL.
Methodology: CDL CLR HCC.
Project administration: CDL.
Supervision: JYT CLR HCC THL.
Validation: THL CLR.
Visualization: CLR HCC THL.
Writing – original draft: CDL.
Writing – review & editing: CDL CLR THL.

References

1. Cohen SP, Mao J. Neuropathic pain: mechanisms and their clinical implications. BMJ. 2014; 348:f7656. doi: 10.1136/bmj.f7656 PMID: 24500412
2. Schlereth T, Drummond PD, Birklein F. Inflammation in CRPS: role of the sympathetic supply. Auton Neurosci. 2014; 182:102–7. doi: 10.1016/j.autneu.2013.12.011 PMID: 24411269
3. Oaklander AL, Fields HL. Is reflex sympathetic dystrophy/complex regional pain syndrome type I a small-fiber neuropathy? Ann Neurol. 2009; 65(6):629–38. doi: 10.1002/ana.21692 PMID: 19557864
4. Bruehl S. Complex regional pain syndrome. BMJ. 2015; 351:h2730. doi: 10.1136/bmj.h2730 PMID: 26224572
5. Martinez-Lavin M. Fibromyalgia as a sympathetically maintained pain syndrome. Curr Pain Headache Rep. 2004; 8(5):385–9. PMID: 15361323
6. Zamuner AR, Barbic F, Dipaola F, Bulgheroni M, Diana A, Atzeni F, et al. Relationship between sympathetic activity and pain intensity in fibromyalgia. Clin Exp Rheumatol. 2015; 33(1 Suppl 88):S53–7. PMID: 25786044
7. Martinez-Lavin M, Vidal M, Barbosa RE, Pineda C, Casanova JM, Nava A. Norepinephrine-evoked pain in fibromyalgia. A randomized pilot study. BMC Musculoskelet Disord. 2002; 3:2. doi: 10.1186/1471-2474-3-2 PMID: 11860612
8. Leonard G, Chalaye P, Goffaux P, Mathieu D, Gaumond I, Marchand S. Altered autonomi c nervous system reactivity to pain in trigeminal neuralgia. Can J Neurol Sci. 2015; 42(2):125–31. doi: 10.1017/ cjn.2015.10 PMID: 25804249

9. Nickel FT, Seifert F, Lanz S, Mihofner C. Mechanisms of neuropathic pain. Eur Neuropsychopharma- col. 2012; 22(2):81–91. doi: 10.1016/j.eunph.2011.05.005 PMID: 21672666

10. Birklein F, Schmelz M. Neuropeptides, neurogenic inflammation and complex regional pain syndrome (CRPS). Neurosci Lett. 2008; 437(3):199–202. doi: 10.1016/j.neulet.2008.03.081 PMID: 18423863

11. Birklein F, Schmelz M, Schifter S, Weber M. The important role of neuropeptides in complex regional pain syndrome. Neurology. 2001; 57(12):2179–84. http://dx.doi.org/10.1212/wnl.57.12.2179. PMID: 11756594

12. Tran KM, Frank SM, Raja SN, El-Rahmany HK, Kim LJ, Vu B. Lumbar sympathet ic block for sympa-thetically maintained pain: changes in cutaneous temperatures and pain perception. Anesth Analg. 2000; 90(6):1396 –401. PMID: 10825327

13. Day M. Sympathet ic Blocks: The Evidence. Pain Pract. 2008; 8(2):98–109. doi: 10.1111/j.1533-2500. 2008.00177.x PMID: 18366465

14. Makhariya MY, Amr YM, El-Bayoumy Y. Effect of early stellate ganglion blockade for facial pain from acute herpetic zoster and incidence of postherpetic neuralgia. Pain Physician. 2012; 15(6):467–74. PMID: 23159662

15. Ackerman WE, Zhang JM. Efficacy of stellate ganglion blockade for the management of type 1 complex regional pain syndrome. South Med J. 2006; 99(10):1084–8. doi: 10.1097/01.smj.0000233257. 76957.b2 PMID: 17100029

16. de Mos M, de Bruijn AG, Huygen FJ, Dielemann JP, Stricker BH, Sturkenboom MC. The incidence of complex regional pain syndrome: a population-based study. Pain. 2007; 129(1–2):12–20. doi: 10. 1016/j.pain.2006.09.008 PMID: 17084977

17. Stanton TR, Wand BM, Carr DB, Birklein F, Wasner GL, O’Connell NE. Local anaesthe tic sympath etic blockade for complex regional pain syndrome. Cochrane Database Syst Rev. 2013; 8:CD004598.

18. Lotze M, Moseley GL. Theoret ical Considera tions for Chronic Pain Rehabili tation. Phys Ther. 2015; 95(9):1316 –20. doi: 10.2522/ptj.20140581 PMID: 25882484

19. Wulf H, Maier C. Complications and side effects of stellate ganglion block. Results of a question-naire survey. Anaesthesia. 1992; 41(3):146– 51. PMID: 1570888

20. Mahli A, Coskun D, Akcali DT. Aetiology of convuls ions due to stellate ganglion block: a review and report of two cases. Eur J Anaesthesiol. 2002; 19(5):376–80. PMID: 12095029

21. Siegenthaler A, Mlekusch S, Schliessbach J, Curatolo M, Eichenberger U. Ultrasound imaging to esti-mate risk of esophageal and vascular puncture after conventional stellate ganglion block. Reg Anesth Pain Med. 2012; 37(2):224–7. doi: 10.1055/s-2008-1038845 PMID: 19629898

22. Takanami I, Abiko T, Koizumi S. Life-threaten ing airway obstruction due to retropharyn geal and cervi-comediastinal hematomas following stellate ganglion block. Anesthesiology. 2006; 105(6):123 8–45; discus-sion 5A-6A. PMID: 17122587

23. Chaturvedi A, Dash H. Locked-in syndrome during stellate ganglion block. Indian J Anaesth. 2010; 54 (4):324–6. doi: 10.4103/0019-5049.68376 PMID: 20882175

24. Saxena AK, Saxena N, Aggarwal B, Sethi AK. An unusual complication of sinus arrest following right-sided stellate ganglion block: a case report. Pain Pract. 2004; 4(3):245–8. doi: 10.1111/j.1533-2500. 2004.04309.x PMID: 17173606

25. Uchida T, Nakao S, Morimoto M, Iwamoto T. Serious cervical hematoma after stellate ganglion block. J Anesth. 2015; 29(2):321. doi: 10.1007/s00540-014-1914-7 PMID: 25256578

26. Kimura T, Nishiwaki K, Yokota S, Komatsu T, Shimada Y. Severe hypertension after stellate ganglion block. Br J Anaesth. 2005; 94(6):840–2. doi: 10.1093/bja/aei134 PMID: 15849210

27. Huang D, Gu Y-H, Liao Q, Yan X-B, Zhu S-H, Gao C-Q. Effects of linear-polarized near-infrared light irradiation on chronic pain. ScientificWorldJournal. 2012; 1:1–4.
31. Momota Y, Kani K, Takano H, Matsumoto F, Aota K, Takegawa D, et al. High-wattage pulsed irradiation of linearly polarized near-infrared light to stellate ganglion area for burning mouth syndrome. Case Rep Dent. 2014; 2014:171657. doi: 10.1155/2014/171657 PMID: 25386367
32. Saeki S. Equipment for low reactive level laser therapy including that for light therapy. Masui. 2006; 55(9):1104–11. PMID: 16984008
33. Nakajima F, Komoda A, Aratani S, Fujita H, Kawate M, Nakatani K, et al. Effects of xenon irradiation of the stellate ganglion region on fibromyalgia. J Phys Ther Sci. 2015; 27(1):209–12. doi: 10.1589/jpts.27.209 PMID: 25642075
34. Yoshida H, Nagata K, Nakai K, Wakayama S. Does Instability during Standing Occur just after Transcutaneous Xenon Light Irradiation around the Stellate Ganglion? J Phys Ther Sci. 2009; 21(4):355–9.
35. Han SM, Lee SC. The change of blood flow velocity of radial artery after linear polarized infrared light radiation near the stellate ganglion: comparing with the stellate ganglion block. J Korean Pain Soc. 2001; 14(1):37–40.
36. Velasco F, Carrillo-Ruiz JD, Castro G, Arguelles C, Velasco AL, Kassian A, et al. Motor cortex electrical stimulation applied to patients with complex regional pain syndrome. Pain. 2009; 147(1–3):91–8. doi: 10.1016/j.pain.2009.08.024 PMID: 19793621
37. Mii S, Kim C, Matsu H, Oharazawa H, Shiba T, Takahashi H, et al. Increases in central retinal artery blood flow in humans following carotid artery and stellate ganglion irradiation with 0.6 to 1.6 microm irradiation. J Nippon Med Sch. 2007; 74(1):23–9. PMID: 17384474
38. Yoo C, Lee W-K, Kemmotsu O. Efficacy of polarized light therapy for musculoskeletal pain. Laser Ther. 1993; 5(4):153–7.
39. Schwartz RG. Electric sympathetic block: current theoretical concepts and clinical results. J Back Musculoskeletal Rehabil. 1998; 10:31–46.
40. Bolel K, Hizmetli S, Akyuz A. Sympathetic skin responses in reflex sympathetic dystrophy. Rheumatol Int. 2006; 26(9):788–91. doi: 10.1007/s00296-005-0081-4 PMID: 16328419
41. Hazneci B, Tan AK, Özdem T, Dincer K, Kalyon TA. The effects of transcutaneous electroneurostimulation and ultrasound in the treatment of reflex sympathetic dystrophy syndrome. Turk J Phys Med Rehab. 2005; 51(3):83–9. Embase Accession Number: 2005470359.
42. Aydemir K, Taskaynatan MA, Yazicloglu K, Ozgul A. The effects of stellate ganglion block with lidocaine and ultrasound in complex regional pain syndrome: A randomized, double blind, placebo controlled study. J Rheumatol Med Rehabil. 2006; 17(3):193–200. Embase Accession Number: 2007018461.
43. Barker R, Lang T, Hager H, Steinlechner B, Hoerauf K, Zimpfer M, et al. The influence of stellate ganglion transcutaneous electrical nerve stimulation on signal quality of pulse oximetry in prehospital trauma care. Anesth Analg. 2007; 104(5):1150–3, tables of contents. doi: 10.1213/01.ane.0000260564.52592.63 PMID: 17456666
44. Basford J, Sandroni P, Low P, Hines S, Gehrkine J, Gehrkine T. Effects of linearly polarized 0.6–1.6 μM irradiation on stellate ganglion function in normal subjects and people with complex regional pain (CRPS I). Lasers Surg Med. 2003; 32(5):417–23. doi: 10.1002/lsm.10186 PMID: 12769697
45. Cipriano G Jr., Neder JA, Umpierre D, Arena R, Vieira PJ, Chiappa AM, et al. Sympathetic ganglion transcutaneous electrical nerve stimulation after coronary artery bypass graft surgery improves femoral blood flow and exercise tolerance. J Appl Physiol. 2014; 117(6):633–8. doi: 10.1152/japplphysiol.00993.2013 PMID: 25103974
46. Fassoulaki A, Sarantopoulos C, Papilas K, Zotou M. Nerve stimulation in patients undergoing hysterectomy under general anaesthesia. Anaesthesi Reanim. 1994; 19(2):49–51. PMID: 8185744
47. Hashimoto T, Kemmotsu O, Otsuka H, Numazawa R, Ohta Y. Efficacy of laser irradiation on the area near the stellate ganglion is dose-dependent: a double-blind crossover placebo-controlled study. Laser Ther. 1997; 9(1):7–11.
48. Kudoh A, Yodono M, Ishihara H, Matsu M. Does Low-reactive level laser therapy and stellate ganglion block improved Bell’s Palsy. Laser Ther. 1998; 10(2):65–9.
49. Murakami F, Kemmotsu O, Kawano Y, Matsumura C, Kaseno S, Imai M. Does Low-reactive level laser therapy and stellate ganglion block improved Bell’s Palsy. Laser Ther. 1993; 5(3):131–5.
52. Nakase M, Okumura K, Tamura T, Kamei T, Kada K, Nakamura S, et al. Effects of near-infrared irradiation to stellate ganglion in glossodynia. Oral Dis. 2004; 10(4):217–20. doi: 10.1111/j.1601-0825.2004.01001.x PMID: 15196143
53. Wee JS, Jung JC, Han JY, Lee SG, Rowe SM. Effects of Stellate Ganglion Irradiation by the Low-level Laser Therapy on Reflex Sympathetische Dystrophy of the Hemiplegic Arm. Chonnam Med J. 2001; 37(1):49–54.
54. Yamada H, Yamanakd Y, Oriharaz H, Ogawa H. A preliminary clinical study comparing the effect of low level laser therapy (LLLT) and corticosteroid therapy in the treatment of facial palsy. Laser Ther. 1995; 7(4):157–62.
55. Myojo Y, Konzaki T, Tohyama K. The effects of irradiation therapy in the proximity of the stellate ganglion with linearly polarized near infrared light on thalamic pain. Hokuriku J Anesth. 1998; 32(1):29–32. Embase Accession Number: 1999044321.
56. Saeki T, Kunieda T, Takamura M, Yuasa T, Nagai H, Sakagami S, et al. Effects of Linear Polarized Near-Infrared Ray Irradiation Near the Left Stellate Ganglion on Electrocardiogram in Drug-induced QT Prolongation. J Juzen Med Soci. 2001; 110(3/4):252–62.
57. Ikeda T, Serada K, Tomaru T. Comparative Study of Stellate Ganglion Block and Polarized Infrared Ray Irradiation near the Stellate Ganglion in Shoulder-Hand Syndrome. Showa Univ J Med Sci. 2000; 12(3):241–5.
58. Dos Santos Lde F, de Andrade SC, Nogueira GE, Leao JC, de Freitas PM. Phototherapy on the Treatment of Burning Mouth Syndrome: A Prospective Analysis of 20 Cases. Photochem Photobiol. 2015; 91(8):1231–6. doi: 10.1111/php.12490 PMID: 26138316
59. Yoshizawa A, Gyoda Y. Mono- and polychromatic phototherapy for pain control: experiences in our hospital. Laser Ther. 2005; 14(3):135–9.
60. Masaaki S, Norihiro Y, Koichi K, Hiroaki N, Hirohisa O, Toru T. Effects of electrical and laser acupuncture to the stellate ganglion on autonomic nervous system. J Jpn Soc Acupunct Moxibust. 1986; 36(4):281–7.
61. Zoller B, Fuchs P, Zoller J. Application of low power lasers for stellate ganglion block—A new variation in pain therapy. Akupunktur. 1994; 22(4):268–73.
62. Nogami K, Taniguchi S. Stellate Ganglion Block, Compared With Xenon Light Irradiation, Is a More Effective Treatment of Neurosensory Deficits Resulting From Orthognathic Surgery, as Measured by Current Perception Threshold. J Oral Maxillofac Surg. 2015; 73(7):1267–74. doi: 10.1016/j.joms.2015.01.012 PMID: 25900233
63. Nitta K, Tohdo Y, Nagase N, Kobayashi T. Combined treatment with linearly polarized near infrared light and kampo medicine for Raynaud’s phenomenon. Hokuriku J Anesth. 1995; 29(1):55–7. Embase Accession Number: 1995250680.
64. Sugiyama T, Kojima S, Ueki M, Hirotsujii N, Ikeda T, Kawachi A, et al. Effect of infrared irradiation to the stellate ganglion on glaucoma. Jap J Clin Ophthal. 2006; 60(13):2041–5.
65. Okita M, Okada K, Maekawa T, Kuroda K, Inoue K, Ookubo H, et al. Treatment of sudden deafness in outpatient pain clinic—A comparison between stellate ganglion block and linearly polarized near-infrared light irradiation around the satellite ganglion. Masui To Sosei. 2007; 43(1):1–4. Embase Accession Number: 2007194495.
66. Takeyoshi S, Takiyama R, Tsuno S, Saeki N, Hidaka S, Maekawa T. Low reactive-level infrared diode laser irradiation of the area over the stellate ganglion and stellate ganglion block in treatment of allergic rhinitis: a preliminary comparative study. Laser Ther. 1996; 8(2):159–64.
67. Lee CH, Chen GS, Yu HS. Effect of linear polarized light irradiation near the stellate ganglion on skin blood flow of fingers in patients with progressive systemic sclerosis. Photomed Laser Surg. 2006; 24(1):17–21. doi: 10.1089/pho.2006.24.17 PMID: 16503783
68. Kasamaki Y, Saito T, Tanaka K, Ishikawa h, Ohta M, Nakai T, et al. Efficacy of Low Level Laser Therapy around the Stellate Ganglion in the Treatment of Sick Sinus Syndrome. Circ J. 2009; 73:582.
69. Yoshida H, Nagata N, Denpouya T. Effects of transcutaneous xenon light irradiation around the stellate ganglion on autonomic functions. J Phys Ther Sci. 2009; 21(1):1–6.
70. Wajima Z, Shitara T, Inoue T, Ogawa R. Linear polarized light irradiation around the stellate ganglion area increases skin temperature and blood flow. Masui. 1996; 45(4):433–8. PMID: 8725597
71. Mori S, Zeniya F, Sano K, Matsuui Y, O K.. Effects on the Cornea and Conjunctiva of Stellate Ganglion Radiation Block Using Linearly Polarized Light in the Near-Infrared Spectrum. Nihon Ganka Ky. 2002; 53(9):699–702. Embase Accession Number: 2002437337.
72. Matsuda T, Furuno H, Matsuda T, Fukuoka T, Tanabe T, Shiraishi M. Effects of polarized infrared ray irradiation near the stellate ganglion on digital perspiration. J Jpn Soc Pain Clin. 1999; 6(1):17–21.
73. Noro H, Takayama S, Agish Y. Effects of the Stellate Ganglion Radiation by Polarized Light on the Autonomic Nervous System and Electroencephalogram. J Jpn Soc Balneol Climatol Phys Med. 1997; 60:193–9.

74. Tomasi FP, Chiappa G, Maldaner da Silva V, Lucena da Silva M, Lima AS, Arena R, et al. Transcutaneous Electrical Nerve Stimulation Improves Exercise Tolerance in Healthy Subjects. Int J Sports Med. 2015; 36(8):661–5. doi: 10.1055/s-0034-1387763 PMID: 25607523

75. Larsen B, Macher F, Bolte M, Larsen R. Blockade of the stellate ganglion by transcutaneous electric nerve stimulation (TENS): A double-blind study on healthy probands. Anesthesiol Intensivmed Notfallmed Schmerzther. 1995; 30(3):155–62.

76. Adachi M, Morishita T, Endo S, Kasahara T, Osaki S, et al. Effect of linear polarized light irradiation near the stellate ganglion in patient with ventricular tachyarrhythmia. Heart Rhythm. 2015; 12(5):S400–S1.

77. Tamagawa S, Otsuka H, Kemmotsu O, Kakehata J, Numazawa R, Mayumi T. Sever intractable facial pain attenuated by a combination of 830 nm diode low reactive-level laser therapy and stellate ganglion block: a case report. Laser Ther. 1996; 8(2):155–8.

78. Otsuka H, Okubo K, Imai M, Kaseno S, Kemmotsu O. Polarized light irradiation near the stellate ganglion in a patient with Raynaud’s sign. Masui. 1992; 41(11):1814–7. PMID: 1460761

79. Otsuka H, Kemmotsu O, Imai M, Kaseno S. The combination of low reactive-level laser therapy (LLLT) and stellate ganglion block for the treatment of allergic rhinitis. Laser Ther. 1992; 4(3):117–20.

80. Iakimova ME, Latfullin IA, Azin AL, Kublano VS, Smirnov AV. Possibilities to improve the cerebral venous tonus in patients suffering of accelerated ageing in blood circulation system by the nonmedicamentous sympathocorrection method. Adv Gerontol. 2004; 14:101–4. PMID: 15559507

81. Portwood MM, Lieberman JS, Taylor RG. Ultrasound treatment of reflex sympathetic dystrophy. Arch Phys Med Rehabil. 1987; 68(2):116–8. PMID: 3813857

82. Fattal C, Kong ASD, Gilbert C, Ventura M, Albert T. What is the efficacy of physical therapies for treating neuropathic pain in spinal cord injury patients? Ann Phys Rehabil Med. 2009; 52(2):149–66. doi: 10.1016/j.rehab.2008.12.006 PMID: 19909705

83. Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM. Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet. 2009; 374(9705):1897–908. doi: 10.1016/S0140-6736(09)61522-1 PMID: 19913903

84. Fulop AM, Dhimmer S, Deluca JR, Johanson DD, Lenz RV, Patel KB, et al. A meta-analysis of the efficacy of laser phototherapy on pain relief. Clin J Pain. 2010; 26(8):729–36.

85. Falaki F, Nejat AH, Dalirsani Z. The Effect of Low-level Laser Therapy on Trigeminal Neuralgia: A Review of Literature. J Dent Res Dent Clin Dent Prospects. 2014; 8(1):1–5. doi: 10.5681/joddd.2014.001 PMID: 25024832

86. Ricci NA, Dias CN, Driusso P. The use of electrothermal and phototherapeutic methods for the treatment of fibromyalgia syndrome: a systematic review. Rev Bras Fisioter. 2010; 14(1):1–9. PMID: 20414555

87. Costantini A. Spinal cord stimulation. Minerva Anestesiol. 2005; 71(7–8):471–4. PMID: 16012421

88. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015; 349:g7647. doi: 10.1136/bmj.g7647 PMID: 25555855

89. Furlan AD, Pennick V, Bombardier C, van Tulder M. 2009 updated method guidelines for systematic reviews in the Cochrane Back Review Group. Spine. 2009; 34(18):1929–41. doi: 10.1097/BRS.0b013e3181bfcdf9 PMID: 19680101

90. Deeks JJ, Dinnes J, D’Amico R, Bowden AJ, Sakarowitch C, Song F, et al. Evaluating non-randomised intervention studies. Health Technol Assess. 2003; 7(27):iii–x, 1–173. PMID: 14499048

91. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med. 2009; 151(4):W65–94. PMID: 19622512

92. de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2003; 49(2):129–33. PMID: 14963084

93. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003; 83(6):713–21. PMID: 12852621

94. Foley NC, Bhogal SK, Teasell RW, Bureau Y, Speechley MR. Estimates of quality and reliability with the physiotherapy evidence-based database scale to assess the methodology of randomized controlled trials of pharmacological and nonpharmacological interventions. Phys Ther. 2006; 86(8):817–24. PMID: 16737407
95. Follmann D, Elliott P, Suh I, Cutler J. Variance imputation for overviews of clinical trials with continuous response. J Clin Epidemiol. 1992; 45(7):769–73. PMID: 1619456

96. Abrams KR, Gillies CL, Lambert PC. Meta-analysis of heterogeneously reported trials assessing change from baseline. Stat Med. 2005; 24(24):3823–44. doi: 10.1002/sim.2423 PMID: 16320285

97. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014; 14:1–21.

98. Bowden J, Tierney JF, Copas AJ, Burdett S. Quantifying, displaying and accounting for heterogeneity in the meta-analysis of RCTs using standard and generalised Q statistics. BMC Med Res Methodol. 2011; 11:41. doi: 10.1186/1471-2288-11-41 PMID: 21473747

99. Sedgwick P, Marston L. How to read a funnel plot in a meta-analysis. BMJ. 2015; 351:1–3.

100. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997; 315(7109):629–34. PMID: 9310563

101. Brunner F, Hilfiker R, Meier B, Bachmann LM. Simplifying the assessment of activity limitations of patients with complex regional pain syndrome 1 of the upper extremity by using the Visual Analog Scale. J Musculoskeletal Pain. 2011; 19(4):207–11.

102. Yanagihara N. Incidence of Bell’s palsy. Ann Otol Rhinol Laryngol Suppl. 1988; 137:3–4. PMID: 3144231

103. Cacciatore F, Abete P, Mazzella F, Furgi G, Nicolino A, Longobardi G, et al. Six-minute walking test but not ejection fraction predicts mortality in elderly patients undergoing cardiac rehabilitation following coronary artery bypass grafting. Eur J Prev Cardiol. 2012; 19(6):1401–9. doi: 10.1177/1474182611422991 PMID: 21933832

104. Blake E, McMakin C, Lewis DC, Buratovich N, Neary DE Jr. Electrotherapy Modalities. In: Chaitow L, editor. Naturopathic Physical Medicine: Theory and Practice for Manual Therapists and Naturopaths. Elsevier Health Sciences; 2008. pp. 539–56.

105. Bjordal JM, Bensadoun R-J, Tunér J, Frigo L, Gjerde K, Lopes-Martins RA. A systematic review with meta-analysis of the effect of low-level laser therapy (LLLT) in cancer therapy-induced oral mucositis. Support Care Cancer. 2011; 19(8):1069–77. doi: 10.1007/s00520-011-1202-0 PMID: 21660670

106. Bjordal JM, Johnson MI, Lopes-Martins RA, Bogen B, Chow R, Ljunggren AE. Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials. BMC Musculoskelet Disord. 2007; 8:51. doi: 10.1186/1471-2474-8-51 PMID: 17587446

107. Kukull WA, Ganguli M. Generalizability: The trees, the forest, and the low-hanging fruit. Neurology. 2012; 78(23):1886–91. doi: 10.1212/WNL.0b013e318258f812 PMID: 22665145