Nuclear Astrophysics With Gamma-Beams

Moshe Gai
LNS at Avery Point, University of Connecticut, Groton, CT 06340, USA
E-mail: moshe.gai@uconn.edu http://astro.uconn.edu

Abstract. Gamma-Beams now available at the HIγS facility of the TUNL at Duke University and soon to be available at the Extreme Light Infrastructure - Nuclear Physics (ELI-NP) in Magurele, near Bucharest, Romania, present scientific opportunities for progress in Nuclear Physics and Nuclear Astrophysics. In particular the use of Time Projection Chamber (TPC) detectors in these facilities will address the large confusion of conflicting data on the 12C(α,γ) reaction and promise to yield progress on this four decades old problem.

1. Introduction: The 12C(α,γ) Reaction

Over the last four decades conflicting data plagued our attempts to deduce the cross section of the 12C(α,γ) reaction at low energies and did not allow an accurate extrapolation of the astrophysical s-factor to stellar energies. In particular conflicting data did not allow us to chose between the high value (\sim80 keVb) and the low value (\sim10 keVb) solutions of the E1 s-factor at stellar energies. The so called “cascade” s-factors were deduced with large uncertainty, as large as a factor of 25. And the E1-E2 mixing phase angle (ϕ_{12}) was shown to conflict with unitarity [1]. Recent modern measurement of S_{E1} and S_{E2} at Stuttgart, were demonstrated [1] to have error bars which are considerably larger than quoted by the authors [2, 3]. In spite of the little progress in measurements of the cross section of the 12C(α,γ) reaction, several recent R-Matrix global analyses claim to achieve accuracies of the total s-factor (E1 + E2 + cascade) between 4.5% and 12%. In this paper we first examine one such recently published claim [4] and we point out to the use of gamma-beams to allow for future progress in the field.

The data used in a recent R-Matrix global analysis of the 12C(α,γ) reaction [4] are shown on the left of Fig. 1. We note that in spite of the poor quality of all eight angular distributions measured below $E_\alpha = 2.0$ MeV, the authors still claim to be within reach of extracting the total s-factor (E1 + E2 + cascade) with accuracy nearing 10%. Furthermore, in the same figure we show the published analysis of the very same angular distribution measured at $E_L = 1.79$ MeV. Other angular distributions used in [4] were also analyzed in [1] and the extracted error bars are shown to be very large, similar to the error demonstrated at $E_L = 1.79$ MeV. These analyses (e.g. of the angular distribution measured at $E_L = 1.79$ MeV) [1] demonstrate that the E2/E1 cross sections cannot be determined with sufficient accuracy (e.g. better than a factor of 6 at $E_L = 1.79$ MeV!), casting strong doubt on the authors [4] claim of reaching a 10% accuracy in extracting the astrophysical cross section factor of the 12C(α,γ) reaction.

2. Gamma-Ray Facilities: The HIγS and ELI-NP

A HIγS gamma-ray facility has been operating by TUNL at Duke University [5] over the last two decades and a new gamma-ray facility is constructed by the EU at Magurele near Bucharest...
3. Conclusions

R-Matrix global analyses cannot resolve the conflicting measurements on the $^{12}\text{C}(\alpha,\gamma)$ reaction and a new and bold approach is needed to measure the cross sections at very low energies. This goal quite possibly may be achieved with gamma-ray beams in the newly constructed ELI-NP...
and the currently operating HIγS facility.

4. Acknowledgements
The material presented in this paper is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-94ER40870.
Figure 3. A rendering of the ELITPC with the u-v-w multilayer board readout [8].

Figure 4. Anticipated results from measurements with the HIγS O-TPC [7] and all ELI-NP ELITPC [8] detectors.

References
[1] Moshe Gai, Phys. Rev. C 88, 062801(R) (2013).
[2] J.W. Hammer et al., Nucl. Phys. A752, 514c (2005).
[3] M. Assuncao et al., Phys. Rev. C 73, 055801 (2006).
[4] R.J. deBoer et al., Rev. Mod. Phys. 89, 035007 (2017)
[5] H.R. Weller, M.W. Ahmed, H.Gao, W. Tornow, Y. Wu, M. Gai, R. Miskimen, Prog. Part. Nucl. Phys. 62, 257 (2009).
[6] D. Filipescu, A. Anzalone, D.L. Balabanski, S. S. Belyshev, F. Camera, M. La Cognata, P. Constantin, L. Csige, P. V. Cuong, M. Cwiok, V. Derya, W. Dominik, M. Gai, S. Gales, I. Gheorghe, B.S. Ishkhanov,
A. Krasznahorkay, A. A. Kuznetsov, C. Mazzocchi, V.N. Orlin, N. Pietralla, M. Sin, K.A. Stopani, O. Tesileanu, C.A. Ur, I. Ursu, H. Utsunomiya, V.V. Varlanov, H.R. Weller, N.V. Zamfir, and A. Zilges, Eur. Phys. J. A51, 185 (2015).

[7] M. Gai, M.W. Ahmed, S.C. Stave, W.R. Zimmerman, A. Breskin, B. Bromberger, R. Chechik, V. Dangendorf, Th. Delbar, R.H. France III, S.S. Henshaw, T.J. Kading, P.P. Martel, J.E.R. McDonald, P.-N. Seo, K. Tittelmeier, H.R. Weller, and A.H. Young., Jour. Instr. 5, 12004 (2010).

[8] M. Cwiok, M. Bieda, J.S. Bihalowicz, W. Dominik, Z. Janas, L. Janiak, J. Manczak, T. Matulewicz, C. Mazzocchi, M. Pfüetzner, P. Podlaski, S. Sharma, M. Zaremba, D. Balabanski, A. Bey, D.G. Ghita, O. Tesileanu, M. Gai, Act. Phys. Pol. 49, 1001 (2018).

[9] O. Tesileanu, M. Gai, A. Anzalone, C. Balan, J.S. Bihalowicz, M. Cwiok, W. Dominik, S. Gales, D.G. Ghita, Z. Janas, D.P. Kendellen, M. La Cognata, C. Matei, K. Mikszuta, C. Petcu, M. Pfüetzner, T. Matulewicz, C. Mazzocchi, C. Spitaleri, Rom. Rep. Phys. 68, S699 (2016).