Child-onset Hemifacial Spasm-a case report

Tao Sun
Sun Yat-sen University First Affiliated Hospital
https://orcid.org/0000-0001-9195-6558

Ning Li
Sun Yat-sen University First Affiliated Hospital

Jinlong Liu
Sun Yat-sen University First Affiliated Hospital

Chao Yang (✉️ st1649496818@163.com)
Sun Yat-sen University First Affiliated Hospital
https://orcid.org/0000-0002-9599-7194

Case report

Keywords: Hemifacial Spasm, Neurovascular Conflict, Carbamazepine, Child-onset

DOI: https://doi.org/10.21203/rs.3.rs-779146/v1

License: ☉️ ⚖️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Hemifacial spasm (HFS) is a common cranial nerve disease, with peak onset in the forty to sixty years old and child-onset HFS is rare. HFS brings many negative effects on the physical and mental health of patients. Here, we report a 10-year-old case of primary HFS patient.

Case Presentation

Here we report an 11-year-old HFS case last for more than 1 year. An 11-year-old girl complained of frequently involuntary twitch in lower eyelid as the girl was 10 years old, then symptom worsen gradually involved right upper lip in recently months. The girl's daily life was badly influenced. Brain magnetic resonance imaging indicated that AICA compressed right facial nerve. The patient was treated with carbamazepine 200mg per day, and symptom gradually relieve. But bad treatment compliance appeared, and we introduced the advantages and disadvantages of botulinum toxin and MVD to her parents. However, considering the young age, above mentioned options are not considered for the time being. And more observations of medications treatment were needed to guide further treatment.

Conclusion

Child-onset hemifacial spasm is rare and the case we report is one of the youngest known cases of such disease. For such patients, medication is the first choice, but the exact mechanisms remain to be further explored.

Background

HFS is a common cranial nerve disease, mainly manifests as muscle involuntary contractions restricted in the distribution of facial nerve, generally lower eyelid onset, and gradually aggravates to involve the ipsilateral face [1–3]. This disease usually occurs spontaneously and deteriorate as patients are stressful or fatigue [4], but also caused by mini stimulation. Generally speaking, HFS spasm involves only unilateral face[5], mainly the left side[3]. HFS could be divided into primary and secondary based on the potential etiology and primary HFS in majority of cases. Secondary HFS is usually caused by facial nerve injury or compression of nearby primary lesions, such as tumor, inflammatory plaques [6, 7]. Primary HFS is generally caused by neurovascular conflict (NVC), especially root exit zone (REZ) of this nerve [3, 8]. For the compression results in local demyelination, and hyper excitability. Among the compressional arteries, anterior inferior cerebellar artery (AICA) and posterior inferior cerebellar artery (PICA) are the most common, and rarely superior cerebellar artery (SCA), petrosal vein (PV) and vertebrobasilar artery (VBA) [3, 8, 9].

Many researches indicated that HFS is mainly involved middle aged and elderly people [3, 8], it is extremely rare in childhood and adolescence [10, 11]. What's more, more attention should be paid to
childhood and adolescence onset HFS, for many primary lesions usually manifest as HFS, such as
cyst[12] and glioma[13, 14]. According to the severity of spasm and its impact on life, Cohen classied
HFS into 5 grades[15](Table 1).

Table 1. Cohen Score of Hemifacial Spasm

Grade	Description
0	No spasm
1	Increased blinking or slight flutter of facial muscle caused by external stimulation;
2	Spontaneous slight flutter of eyelids and facial muscles without dysfunction;
3	Significant spasms with slight dysfunction;
4	Severe spasticity and dysfunction, inability to read or walk for inability to open eyes

In general, medication is the first-line treatment for HFS, such as anti-epileptic drugs and botulinum toxin [16–18], which could alleviate the spasm, but the long-term effect is usually far from satisfactory, and usually lead to some side effects [19–21]. Microvascular decompression (MVD) is a validated option for these patients who are refractory to medications or cannot tolerate the complications [22, 23]. Here we report an 11-year-old HFS case due to compression of the right AICA.

Case Presentation

An 11-year-old girl accompanied by their parents presented to the clinic complained of frequently involuntary twitch in lower eyelid as the girl was 10 years old, then symptom worsen gradually involved right upper lip in recently months even during sleep. For this, the child was unwilling to communicate with classmates or friends and had feelings of inferiority, which seriously impacted her normal life and study. Physical examination of the nervous system: touching can induce spasm, manifested as strong spasm of the right upper lip and lower eyelid, which badly affects vision and walking of the child, but no other positive findings were observed.

Brain magnetic resonance imaging indicated that AICA compressed REZ of the right facial nerve cranial laterally (Fig. 1), and then primary HFS was considered. After comprehensive consideration of the patient’s age and family’s wishes, the patient was treated with carbamazepine 200mg per day, and symptom gradually relieve, with a Cohen Score of 1 in last outpatient follow-up. But bad treatment compliance in this patient was observed, so we introduced the advantages and disadvantages of botulinum toxin and MVD to her parents. However, considering the young age, the mentioned treatments are not considered for the time being. And more observations of medications treatment were carried on to guiding further treatment.

Discussions And Conclusion
Here, we report an 11-year-old HFS case caused by compression of AICA. This is one of the youngest reported cases of primary HFS in the literature to date.

As we all know, HFS is a common cranial nerve disease, mainly manifested as involuntary convulsion of muscles innervated by facial nerve, the spasm could be provoked by mini stimulus, such as touching and light [4, 18]. Studies have shown that HFS generally involves only unilateral face, mostly on the left side[5, 24], and a few involves bilaterally or accompanied with other cranial nerve diseases, such as trigeminal neuralgia or glossopharyngeal neuralgia[25, 26].

Although HFS generally does not make threat to life, it will affect patients' daily study and life, and cause huge psychological hurt, seriously damage the patient's life quality. Therefore, it is an urgent task for doctors in this field to strengthen the research on diagnosis and treatment of HFS.

Based on different pathogenic factors, HFS can be divided into two types: primary and secondary HFS. Secondary HFS was caused by compression of local lesions near the nerve [6, 7]. The pathogenic mechanism of the primary HFS is not totally made clear, but NVC of the nerve, especially REZ is the most accepted [3, 8]. AICA and PICA is the most common culprit vessels, followed by SCA PV and VBA [3, 8, 9].

At present, medication is the preferred treatment for HFS, such as anti-epileptic drugs and botulinum toxin injection [16–18]. Many patients could achieve partial relieve, but long-term outcome is still far from our expectation and it is easily lead to some serious side effects [27].

For these reasons, MVD has become a validated option for those who are refractory to medications or those who cannot tolerate the side effects[23]. Relevant studies have shown that the long-term efficient could achieve about 90% with little complication rate[28]. For younger patients with poor adherence or severe side effects, MVD is also a feasible option to achieve long-term relief[29].

Generally, primary HFS mainly involve middle to aged people [3, 8], adolescent are less affected, and previously related conditions are mainly case reports [10–14]. Furthermore, for the rarity of youth primary HFS, more attentions should be paid to such patients to exclude secondary HFS, such as cyst[12], glioma[13, 14] and Chiari type 1[30] malformation. As such conditions may lead to more serious outcome, especially in childhood-onset HFS.

In conclusion, child-onset hemifacial spasm is rare and the case we report is one of the youngest known cases of such disease. For such patients, medication is the first choice, but the exact mechanisms remain to be further explored.

Abbreviations

HFS: hemifacial spasm; MVD: microvascular decompression; AICA: anterior inferior cerebellar artery; PICA: posterior inferior cerebellar artery; SCA: superior cerebellar artery; PV: petrosal vein; VBA: vertebrobasilar artery; NVC: neurovascular conflict; REZ: root exit zone;
Declarations

Acknowledgements: Not applicable.

Authors' contributions: CY developed the profile and guided the writing and TS is the main writer of this report, correct the manuscript, follow the patient; NL assisted CY and TS to look for relate paper and conclude the review and follow the patient; JIL played a part in follow the patient and conduct the treatment and diagnosis.

Funding: Funding provided by Science and Technology Department of Guangdong Province (K0214019).

Availability of data and material: Not applicable as this is a case report

Submission statement: This manuscript is original and has not been submitted elsewhere in part or in whole.

Ethics approval and consent to participate: This case report was approved by Ethics Committee of the First Affiliated Hospital of Sun Yat-sen University.

Consent for publication: The authors have obtained the patient's written informed consent for print and electronic publication of this case report.

Conflict of interests: The authors declare that they have no conflict of interest.

Author details: 1: Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, No 58th, Zhongshan Er Road, Guangzhou 510000, China

References

[1] Wang A, Jankovic J (1998) Hemifacial spasm: clinical findings and treatment. Muscle Nerve 21: 1740-1747

[2] Tan NC, Chan LL, Tan EK (2002) Hemifacial spasm and involuntary facial movements. Qjm 95: 493-500

[3] Niu X, Sun H, Yuan F, Chen X, Wei Z, Wang H, Ren J, Zhang J, Li W (2019) Microvascular decompression in patients with hemifacial spasm. Brain Behav 9: e01432

[4] Palaram H, Carrera E, Vargas MI, Kleinschmidt A, Fleury V (2017) Familial hemifacial spasm of young-onset: Report of two cases. J Neurol Sci 373: 83-85

[5] da Silva Martins WC, de Albuquerque LAF, de Carvalho GTC, Dourado JC, Dellaretti M, de Sousa AA (2017) Tenth case of bilateral hemifacial spasm treated by microvascular decompression: Review of the pathophysiology. Surg Neurol Int 8: 225
[6] Yaltho TC, Jankovic J (2011) The many faces of hemifacial spasm: differential diagnosis of unilateral facial spasms. Mov Disord 26: 1582-1592

[7] Machado RA, Moubayed SP, Khorsandi A, Hernandez-Prera JC, Urken ML (2017) Intermittent facial spasms as the presenting sign of a recurrent pleomorphic adenoma. World J Clin Oncol 8: 86-90

[8] Sindou M, Mercier P (2018) Microvascular decompression for hemifacial spasm: Outcome on spasm and complications. A review. Neurochirurgie 64: 106-116

[9] El Refaee E, Langner S, Baldauf J, Matthes M, Kirsch M, Schroeder HW (2013) Value of 3-dimensional high-resolution magnetic resonance imaging in detecting the offending vessel in hemifacial spasm: comparison with intraoperative high definition endoscopic visualization. Neurosurgery 73: 58-67; discussion 67

[10] Chaudhry N, Srivastava A, Joshi L (2015) Hemifacial spasm: The past, present and future. J Neurol Sci 356: 27-31

[11] Vasquez PC, Torres AR, Silvera VM, Scott RM (2016) Hemifacial Spasm in a Child Treated With Microvascular Decompression of the Facial Nerve. Pediatr Neurol 57: 84-87

[12] Higashi S, Yamashita J, Yamamoto Y, Izumi K (1992) Hemifacial spasm associated with a cerebellopontine angle arachnoid cyst in a young adult. Surg Neurol 37: 289-292

[13] Mezer E, Nischal KK, Nahjawan N, MacKeen LD, Buncic JR (2006) Hemifacial spasm as the initial manifestation of childhood cerebellar astrocytoma. J aapos 10: 489-490

[14] Masruha MR, Fialho LM, da Nóbrega MV, Lin J, Pinho RS, Cavalheiro S, Vilanova LC (2011) Hemifacial spasm as a manifestation of pilocytic astrocytoma in a pediatric patient. J Pediatr Neurosci 6: 72-73

[15] Cohen DA, Savino PJ, Stern MB, Hurtig HI (1986) Botulinum injection therapy for blepharospasm: a review and report of 75 patients. Clin Neuropharmacol 9: 415-429

[16] Duarte GS, Rodrigues FB, Castelão M, Marques RE, Ferreira J, Sampaio C, Moore AP, Costa J (2020) Botulinum toxin type A therapy for hemifacial spasm. Cochrane Database Syst Rev 11: Cd004899

[17] Costa J, Espírito-Santo C, Borges A, Ferreira JJ, Coelho M, Moore P, Sampaio C (2005) Botulinum toxin type A therapy for hemifacial spasm. Cochrane Database Syst Rev 2005: Cd004899

[18] Trosch RM, Adler CH, Pappert EJ (2007) Botulinum toxin type B (Myobloc) in subjects with hemifacial spasm: results from an open-label, dose-escalation safety study. Mov Disord 22: 1258-1264

[19] Tan EK, Hameed S, Fook-Chong S, Hussein K, Lum SY, Chan LL (2008) Treatment outcome correlates with knowledge of disease in hemifacial spasm. Clin Neurol Neurosurg 110: 813-817
[20] Huang YC, Fan JY, Ro LS, Lyu RK, Chang HS, Chen ST, Hsu WC, Chen CM, Wu YR (2009) Validation of a Chinese version of disease specific quality of life scale (HFS-36) for hemifacial spasm in Taiwan. Health Qual Life Outcomes 7: 104

[21] Quagliato EM, Carelli EF, Viana MA (2010) Prospective, randomized, double-blind study, comparing botulinum toxins type a botox and prosigne for blepharospasm and hemifacial spasm treatment. Clin Neuropharmacol 33: 27-31

[22] Neves DO, Lefaucheur JP, de Andrade DC, Hattou M, Ahdab R, Ayache SS, Le Guerinel C, Keravel Y (2009) A reappraisal of the value of lateral spread response monitoring in the treatment of hemifacial spasm by microvascular decompression. J Neurol Neurosurg Psychiatry 80: 1375-1380

[23] Illingworth RD, Porter DG, Jakubowski J (1996) Hemifacial spasm: a prospective long-term follow up of 83 cases treated by microvascular decompression at two neurosurgical centres in the United Kingdom. J Neurol Neurosurg Psychiatry 60: 72-77

[24] Huang T, Xiong NX, Fu P, Abdelmaksoud A, Wang L, Zhao HY (2019) Synchronous bilateral hemifacial spasm: case-report and literature review. Acta Neurochir (Wien) 161: 509-515

[25] Li HY, Xing YZ, Lai SL, Wang L, Liang QH (2019) [Clinical study of microvascular decompression in patients with coexistent hemifacial spasm and ipsilateral trigeminal neuralgia]. Zhonghua Yi Xue Za Zhi 99: 1805-1808

[26] Muhammad S, Niemelä M (2018) Surgical management of coexisting trigeminal neuralgia and hemifacial spasm. Surg Neurol Int 9: 214

[27] Gutierrez SAS, Yu JRT, Yalung PM, Jamora RDG (2021) Real-world experience with botulinum toxin A for the treatment of hemifacial spasm: A study of 1138 injections. Clin Neurol Neurosurg 205: 106632

[28] Lee JA, Kong DS, Lee S, Park SK, Park K (2021) Association of Thyroid Hypofunction with Clinical Outcomes after Microvascular Decompression for Hemifacial Spasm. Eur Neurol: 1-7

[29] Jho HD, Jannetta PJ (1987) Hemifacial spasm in young people treated with microvascular decompression of the facial nerve. Neurosurgery 20: 767-770

[30] Felício AC, de Godeiro C, Jr., Borges V, de Azevedo Silva SM, Ferraz HB (2008) Young onset Hemifacial Spasm in patients with Chiari type I malformation. Parkinsonism Relat Disord 14: 66-68

Figures
Brain MRI indicates that the right facial nerve was compressed cranial laterally by an inferior anterior cerebellar arterial loop.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- d938659a0cc97005ff7c8674d375316d.mp4
- renamed0242b.jpg