CHANDRA DETECTION OF A HOT GASEOUS CORONA AROUND THE EDGE-ON GALAXY NGC 4631

Q. Daniel Wang,1 Stefan Immler,2 Rene Walterbos,3 James T. Lauroesch,4 and Dieter Breitschwerdt4

Received 2001 May 11; accepted 2001 June 5; published 2001 June 25

ABSTRACT

We present a Chandra X-ray observation that shows, unambiguously for the first time, the presence of a giant diffuse X-ray–emitting corona around the edge-on disk galaxy NGC 4631. This corona, with a characteristic thermal temperature of \((2–7) \times 10^6 \) K, extends as far as 8 kpc away from the galactic plane. The X-ray morphology resembles the radio halo of the galaxy, indicating a close connection between outflows of hot gas, cosmic rays, and the magnetic field from the galactic disk. Enhanced diffuse X-ray emission is apparently enclosed by numerous Hα-emitting loops blistered out from the central disk of the galaxy, as is evident in a comparison with our deep Hubble Space Telescope imaging.

Subject headings: galaxies: individual (NGC 4631) — galaxies: ISM — galaxies: spiral — X-rays: galaxies

On-line material: color figures

1. INTRODUCTION

Although postulated more than four decades ago (Spitzer 1956), the existence of a hot \((T \approx 10^6 \text{ K}) \) extended corona around our Galaxy is still subject to debate. What limits our ability to understand the corona around the Milky Way is our location in its midst. Given the expected characteristic temperature of \(\sim 10^6 \) deg for this gas, soft X-ray emission is the primary tracer for the Galactic corona. However, the soft X-ray sky observed from our location within the Galaxy is very confusing because of the multiple origins of X-ray–emitting hot gas. Any extended Galactic corona, if present, is embedded between a nonuniform foreground, produced by the Local Hot Bubble around the Sun, and various contributions from other nearby interstellar gas clouds, and an extragalactic soft X-ray background of an uncertain spectrum. Disentangling these components along a typical line of sight is extremely difficult, if not impossible.

The most direct way to study extended galactic coronae is to observe nearby edge-on disk galaxies. ROSAT Observations of such galaxies have demonstrated that extraplanar X-ray emission is present in relatively normal spiral galaxies (NGC 891, Bregman & Houck 1997; NGC 4631, Wang et al. 1995 and Vogler & Pietsch 1996). Such "normal" edge-on galaxies, in which star formation is not dominated by galactic nuclear regions but extends over a large fraction of the galactic disk, are ideal for investigating the general properties of galactic halos and their connections to galactic disks. The limited sensitivity and spatial resolution of ROSAT, however, did not allow for an unambiguous separation of diffuse emission from discrete sources, let alone a detailed study of morphology, ionization, and dynamics of hot gas.

In this Letter, we report preliminary results from observations of the SBc/d type galaxy NGC 4631 with the Chandra X-Ray Observatory and the Hubble Space Telescope (HST). This galaxy is ideal for studying the soft X-ray emission from its galactic corona because of the very low Galactic foreground absorption \((N_{\text{H}} = 1.2 \times 10^{20} \text{ cm}^{-2}) \) and its edge-on orientation with respect to the viewing direction. Active star formation is apparent throughout much of the NGC 4631 disk, apparently triggered by interactions with neighboring galaxies. Evidence for this interaction includes the presence of H I tidal tails (Weliachew, Sancisi, & Guelin 1978). Such active star formation is presumably a necessary condition for the heating of coronal gas.

2. CHANDRA OBSERVATION AND DATA CALIBRATION

Our Chandra observation was carried out with the Advanced CCD Imaging Spectrometer chip S3 (ACIS-S3) at the focal plane of the telescope mirror. The spatial resolution of the observation before any smoothing is \(\sim 1'' \), corresponding to \(\sim 37 \) pc at the 7.6 Mpc distance of the galaxy. This superb resolution, together with the high sensitivity of the instrument and the long exposure (\(\sim 60 \) ks), allows us to remove pointlike sources and to probe directly the corona and its relation to other galactic components. We calibrated the data using primarily the software package CIAO v2.1 with the latest calibration products (CALDB v2.3). We selected data only in the energy range of 0.3–7 keV. Particle background is greatly enhanced at higher energies, while the calibration of both the gain (with uncertainties up to \(\sim 30\% \)) and quantum efficiency (up to \(\sim 10\% \)) of the detector are unreliable at lower energies. We excluded bad pixels, rows, and node boundaries and screened the data for high and low background times by clipping observation periods with an offset exceeding \(\pm 3 \sigma \) from the mean quiescent count rate \((1.16 \text{ counts s}^{-1}) \). This filtering led to the exclusion of \(8\% \) of the total counts and \(6\% \) of the total exposure time, resulting in a cleaned exposure time of 55.1 ks.

We further conducted both background subtraction and exposure correction of the data. We use deep (138 ks) blank-field background data sets with similar foreground absorption and an identical focal-plane temperature as our NGC 4631 observation to determine the position-dependent background rates. The same data-filtering criteria were applied. We created bad-pixel and node-boundary–removed exposure maps in various energy bands. For the spectral analysis of extended X-ray emission, we constructed weighted-instrument effective-area and spectral-response matrices, using a low-resolution (bin size = \(4'' \), 0.3–2.5 keV band image of diffuse emission in detector coordinates. The weighting corrects for variations (up to \(\sim 20\% \))
in the instrument sensitivity across the detector (e.g., effective area, gain, and quantum efficiency). It is important to note that the currently available instrument-response matrices at low energies (≤1 keV) employ various approximations, which may not be appropriate and which may lead to an underestimation of the line strength. Since NGC 4631 fills nearly the entire ACIS-S3 field of view, we extracted the background from the same detector regions in the empty-field background observations described above as the source regions in the NGC 4631 observations.

3. ANALYSIS AND RESULTS

Chandra images in the soft and hard X-ray bands are presented in Figure 1. Whereas there is little indication of extraplanar emission in the hard band, the enhanced emission in the soft band extends as far as 8 kpc away from the plane of the galaxy, preferentially toward the north. The diffuse emission becomes progressively more extended with decreasing energy (Fig. 2). The distribution of the low surface brightness emission is nearly symmetric, relative to the minor axis of the galaxy. This extraplanar soft X-ray emission clearly represents the corona of the galaxy.

We have conducted a preliminary X-ray spectral analysis of the corona. We extracted a point-source–excised spectrum in a corona region 4′ wide and 2.5′ high (Fig. 2b). The spectrum in the 0.3–2 keV range can be characterized reasonably well (χ^2/degrees of freedom = 78/47; Fig. 3) by a thermal plasma model with two temperature components: 0.18 (0.16–0.20) and 0.61 (0.48–0.71) keV. The jointly fitted metal abundance and absorption column density are 8 (5–12)% solar and 3.7 (2.2–5.8) \times 1020 cm$^{-2}$, which is consistent with the expected foreground absorption. The uncertainties quoted in the parentheses are 90% confidence intervals. Assuming that the model is a reasonable characterization of the corona emission, we derive a conversion ratio of the emission measure (in units of cm$^{-6}$ pc) to the observed count intensity (10$^{-4}$ counts s$^{-1}$ arcmin$^{-2}$) of 91 (27) for the low- (high-) temperature component. The average ratio of the low- to high-temperature emission measures is ~8 over the corona region. The low-temperature component dominates the outer corona (≥2′), whereas the high-temperature component becomes significant in regions close to the disk. The characteristic gas density and thermal pressure (p/k_B) are ~1 (5) \times 10$^{-3}$ cm$^{-3}$ and ~5 (40) \times 103 K, respectively, in the outer (inner) corona. The total luminosity of the corona is a few times 1039 ergs s$^{-1}$ in the 0.3–2 keV band; the uncertainty in the absorption correction is large. More careful analysis is required, especially in regions close the disk. Nevertheless, the amount of observed diffuse X-ray emission clearly accounts for only a small fraction (≤1%) of the estimated energy input from supernovae in the galaxy (Wang et al. 1995).

The energy-dependent distribution of the diffuse X-ray emission is further illustrated in Figure 4. The emission in the lowest energy range (0.3–0.6 keV) has the flattest distribution. The dip just below the galaxy’s major axis (z = 0′), most prominent in lower energy bands, is caused by X-ray absorption from the galactic disk that is slightly tilted with its near side below the major axis. The dip at z = 2′ spatially coincides with a giant dusty arch discovered recently by Neininger & Dumke (1999). In fact, this arch seems to enclose the enhanced soft diffuse X-ray emission, approximately outlined by the outer white contour in Figure 2a, in the northern central region of the galaxy.

4. MULTIWAVELENGTH COMPARISON

Figure 2b presents a morphological comparison of the diffuse X-ray and Hα emissions from NGC 4631. Whereas the Hα line emission represents primarily warm gas photoionized by stars, the soft diffuse X-ray emission arises in coronal gas.
coronal gas is distributed farther out from the disk than the warm gas, although the galaxy might also have a very low surface brightness Hα-emitting halo, which may extend farther out (Donahue, Aldering, & Stocke 1995). The enhanced X-ray emission arises in regions containing coherent vertical Hα filaments, primarily in the upper central portion of the galactic disk. The left one-quarter of the disk, although highly disturbed, does not show many vertical Hα filaments or much enhanced extraplanar diffuse X-ray emission.

This association between enhanced Hα/X-ray filamentary features appears most vividly in Figure 5, which covers the inner 5.5×5.5 kpc region of the galaxy (Fig. 2b). We obtained this deep Hα image using the Wide Field Planetary Camera 2 (WFPC2) on board the HST: eight orbits, narrowband imaging, plus one broadband continuum. The image shows numerous filaments emanating from the disk, mostly apparent in the upper right-hand part of the image. Such coherent looplike features most likely represent “a froth of merged superbubbles,” which were created by massive star clusters, have broken out from the dense neutral gas of the disk, and are expanding into the halo (e.g., Mac Low, McCray, & Norman 1989; Norman & Ikeuchi 1989). The overall correlation between this froth and the enhanced diffuse X-ray emission is apparent. However, relatively bright loops do not seem to have a configuration with open tops, as one might expect in galactic chimney models. The prominent V-shaped double filaments, just above the large dark cloud near the center of the image, may not be an opened chimney, and most likely represent walls of many projected loops. X-ray emission within the loops is generally enhanced.
by a factor of up to ~ 3. Furthermore, the WFPC2 image reveals several bow-shaped filaments far away from the central plane of the galaxy. The largest and brightest one, labeled “Arc” in Figure 5, “covers” the top of the V-shaped filaments. These $H\alpha$ filaments may represent the illuminated edges of infalling clouds, which could originate in cooled halo gas or in instabilities of the dusty arch.

The overall X-ray morphology of the corona (e.g., Fig. 1b) resembles the well-known radio halo of this galaxy (Hummel & Dettmar 1990), indicating a close link between the outflows of hot gas and the cosmic ray/magnetic field from the galactic disk. One scenario for the formation of such a radio halo is that hot gas draws magnetic fields (and cosmic rays) from the disk into the halo, before being ultimately confined by the magnetic field tension at large off-plane distances (Wang et al. 1995).

The unusually low metal abundance inferred from our spectral fit is apparently an artifact, which could be caused by the poorly calibrated instrument-response shape below ~ 1 keV (§ 2) and/or by the overly simplified spectral model that we have assumed. A realistic temperature distribution should span a range, which tends to smooth out temperature-sensitive spectral features resulting from metal emission lines. While our spectral analysis provides an estimate of the temperature range, a realistic model is yet to be developed for a reliable measurement of the abundance. More importantly, however, the outflowing gas may not be in an ionization equilibrium state (Breitschwerdt & Schmutzler 1999). We are currently conducting a spatially resolved spectroscopic analysis of the Chandra data and are investigating a self-consistent dynamical and thermal plasma emission model.

Now with the corona around NGC 4631 firmly detected, one may naturally ask the following questions: Does the extent of galactic coronae always coincide with the radio halos? Is the galaxy-galaxy interaction necessary to generate the coronae? Do properties of diffuse hot gas depend on the Hubble type of a galaxy? Ongoing and future observations with the Chandra and XMM-Newton X-ray observatories will allow us to answer these questions, leading to a better understanding of our own Galaxy as well as the structure and evolution of galaxies in general.

We thank M. Markevitch and A. Vikhlinin for helping with the calibration software and the referee for useful comments, especially on existing problems with the spectral-response matrices. This work is funded by SAO Chandra grant GO0-1150X, STScI grant GO0-8166.01, and NASA LTSA grant NAG5-8999.

REFERENCES

Bregman, J. N., & Houck, J. C. 1997, ApJ, 485, 159
Breitschwerdt, D., & Schmutzler, T. 1999, A&A, 347, 650
Donahue, M., Aldering, G., & Stocke, J. T. 1995, ApJ, 450, L45
Hoopes, C. G., Walterbos, R. A. M., & Rand, R. D. 1999, ApJ, 522, 669
Hummel, E., & Dettmar, R.-J. 1990, A&A, 236, 33
Mac Low, M.-M., McCray, R., & Norman, M. L. 1989, ApJ, 337, 141
Neininger, N., & Dumke, M. 1999, Proc. Natl. Acad. Sci., 96, 5360
Norman, C. A., & Ikeuchi, S. 1989, ApJ, 345, 372
Spitzer, L., Jr. 1956, ApJ, 124, 20
Vogler, A., & Pietsch, W. 1996, A&A, 311, 35
Wang, Q. D., et al. 1995, ApJ, 439, 176
Weliachew, L., Sancisi, R., & Guelin, M. 1978, A&A, 65, 37

Fig. 5.—HST WFPC2 $H\alpha$ image of the central 5.5×5.5 kpc region of NGC 4631 (Fig. 2b). The high-level X-ray contours in Fig. 2 are plotted, and a few tentatively identified $H\alpha$-emitting loops are outlined in the right-hand panel.