Macrosymbionts of starfish *Echinaster luzonicus* (Gray, 1840) in the waters of a volcanic western Pacific island

Li-Chun Tseng1, Parinya Limviriyakul2, Jiang-Shiou Hwang1,3,4*

1 Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan, 2 Faculty of Fisheries, Department of Marine Science, Kasetsart University, Bangkok, Thailand, 3 Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, Taiwan, 4 Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan

☯ These authors contributed equally to this work.

* jshwang@mail.ntou.edu.tw

Abstract

During an investigation program of faunal diversity in the shallow reef zone of the active volcanic island off northeastern Taiwan in July and September 2020, numerous individuals of the starfish *Echinaster luzonicus* (Gray, 1840) were found, and some individuals were found with associated symbionts. Starfish sampling in the 150-m coral reef zone was undertaken at a depth of 8 m through scuba diving. For each type of potential macrosymbiont, both the dorsal and ventral sides were carefully examined. The prevalence of macrosymbionts on the starfish *E. luzonicus* was recorded. The most common symbiotic organism on *E. luzonicus* was the ectoparasitic snail *Melanella martinii* (A. Adams in Sowerby, 1854), followed by the pontoniine shrimp *Zenopontonia soror* (Nobili, 1904) and the rare polychaete scaleworm *Asterophilia carlae* Hanley, 1989. The prevalence ratio with host *E. luzonicus* was low and varied by 8.62% and 4.35%, 6.03% and 0%, and 0.86% and 0.72% in July and September 2020 for *M. martinii, Z. soror*, and *A. carlae*, respectively. The present study is the first to discover the scaleworm *A. carlae* as a macrosymbiont of the tropical starfish *E. luzonicus*, with a widespread distribution, off Taiwan’s northeastern coast, an area influenced by the Kurashio Current.

Introduction

Kueishan Island (also known as Gueishan or Turtle Island) is a tiny active volcanic island located off the northeastern coast of Taiwan [1,2]. Shallow hydrothermal vents are located on the east and southeast sides of the island, which features a low pH and a high sulfur concentration [3,4]. This toxic environment has low biodiversity [5]; only a few species of mollusks [5,6], crabs [2,7], benthic copepods [8,9], and cnidarians [5,10] have been recorded. By contrast, the hydrothermal vents slightly affect the seawater on the northwest side of the island. The coastal area northwest of Kueishan Island has a coral reef zone with a length of approximately 150 m and a depth range of 1–8 m. Several biological studies have been conducted in...
this small and healthy reef zone; for example, Hung [11] reported 256 fish species belonging to 42 family, and Limviriyakul [12] recorded 57 species of symbiotic decapods from various hosts, including algae, sponges, hydroids, actiniarians, scleractinians, alcyonarians, crinoids, and echinoids.

Echinoderms, a well-defined and highly-derived clade of metazoans with approximately 7,000 species, can be found in various habitats ranging from shallow intertidal areas to abyssal depths [13]. Numerous echinoderms have been found with diverse macrosymbiotic organisms, including feather stars (crinoids) [14–16], sea cucumbers (reviewed by Martin & Britayev [17]; Purcell et al. [18]), sea urchins [15,16,19–21], brittle stars [17], and starfish [17,19], as well as the small crustacean copepod associated with brittle stars [22]. Approximately 1,500 species of starfish live in all marine waters [23], and 48 valid species from 10 families have been recorded in waters around Taiwan [24,25]. Notably, in the reef and coastal waters of Taiwan, several studies have investigated symbiotic shrimps [15,26–28] and symbiotic crabs [20,22,29,30] on various host creatures. However, the evidence on the symbionts of echinoderms in the waters of Taiwan is scant [15,20], and no reports on the symbionts, particularly macrosymbionts, of starfish in the waters of Taiwan are available. Therefore, the diversity of starfish symbionts remains understudied.

Baseline information on the macrosymbionts of echinoderms is required. Thus, during the investigation program of faunal diversity in the present study, the often encountered starfish *Echinaster luzonicus* (Gray, 1840) in the reef zone of northwest Kueishan Island was studied to determine the diverse macrosymbionts of *E. luzonicus*, and the prevalence ratio of each macrosymbiont of *E. luzonicus* was compared.

Materials & methods

Study area description

Kueishan Island, with an area of approximately 2.841 km², is an active volcanic island in the vicinity of Yilan City off Taiwan’s northeastern coast, in the southeastern East China Sea (Fig 1). Kueishan Island is so named for its turtle-shaped topography. Shallow hydrothermal vents can be found on the eastern and southeastern sides of Kueishan Island. The western side faces eastern Taiwan, and the northwestern coast has a shallow band zone of coral reefs of approximately 150 m in length (Fig 2A). Numerous fish species inhabit this small and healthy reef area (Fig 2B). The seabed is sandy in the deeper waters.

Field sampling and sample treatment

Investigations of faunal diversity were undertaken in July and September 2020. Starfish sampling in the 150-m coral reef zone was undertaken at a depth of 8 m through scuba diving. For each type of potential macrosymbiont, both the dorsal and ventral sides were carefully examined. The prevalence of macrosymbionts on the starfish *E. luzonicus* was recorded. In the study area, *E. luzonicus* was often encountered in the reef zone at depths between 5 and 8 m, with polymorphisms of morphology and color. Specifically, colors ranged from bright orange to dark brown, and most individuals had six arms with a length of approximately 5–8 cm. Some starfish were comet shaped, with one bigger arm capable of regenerating a disc with small arms (Fig 2C). Unexpectedly, a scaleworm *A. carlae* was found (Fig 2D). Only a few symbiont individuals that were found for the first time were placed separately in a plastic ziplock bag and transported to the laboratory at National Taiwan Ocean University for photography and species identification.
Sample identification

In the laboratory, the collected animals were identified under a dissecting microscope (Olympus SZX16, Tokyo, Japan) using the keys described by the following researchers: Fauchald...
Results

Macrosymbionts of *E. luzonicus*

A total of 116 and 138 starfish (including the comet-shaped ones) were found in July and September 2020, respectively. On the northwest side of Kueishan Island, three species of macrosymbionts belonging to three classes of the animal kingdom were found on *E. luzonicus*, as follows: Gastropoda, *Melanella martinii* (A. Adams in Sowerby, 1854) (Littorinimorpha: Eulimidae) (Fig 3); Malacostraca, *Zenopontonia soror* (Nobili, 1904) (Decapoda: Palaemonidae) (Fig 4); and Polychaeta, *Asterophilia carlae* Hanley, 1989 (Phyllodocida: Polynoidae) (Fig 5) (Table 1). The scaleworm *A. carlae* found was the first discovery of this species in waters around Taiwan.

The three macrosymbiont species were found in different locations on the external body of the starfish. The snail *M. martinii* was found on the ventral side and was attached to the podia (also known as tube feet) close to the mouth or under the arms. The shrimp *Z. soror* was...
camouflaged (Fig 4) and was found on the ventral and lateral sides. Occasionally, this species was found underneath the starfish. The polychaete *A. carlae* was found on the ventral and lateral sides and occasionally on the dorsal side of the starfish, and it did not swim away when the host starfish was examined. Notably, all starfish individuals only hosted one species of macrosymbiont, and no more than one macrosymbiont species was observed on the same host starfish in the investigation.

Prevalence of macrosymbionts

The snail *M. martini* and the polychaete *A. carlae* were recorded in the July and September 2020 investigations. In July and September 2020, the prevalence of the snail *M. martini* was 8.52% and 4.35%, and that of the polychaete *A. carlae* was 0.86% and 0.72%, respectively. *Z. soror* only appeared in July, and its prevalence was 6.03% (Table 1). Regarding the number of symbiotic organisms recorded, 1–4, 2–5, and 1 individual snails, shrimps, and polychaetes were observed on starfish, respectively.

Discussion

Historical studies of *E. luzonicus*

Echinaster luzonicus is widely distributed in the intertidal zones and reefs of the Indo Pacific [39]. Several studies have recorded this species around the South China Sea, including in...
Taiwan [24], the Penghu Islands in the Taiwan Strait [40], the Dongsha Atoll of the northern South China Sea [41], southern Vietnam [42], Thailand [43], the Maldives and the Andaman and Nicobar Islands [44], the central South China Sea and Malaysia [45], Taiping Island in the southern part of the South China Sea [46], and Indonesia [47]. As mentioned, in the present

Fig 4. Symbiotic starfish shrimp: *Zenopontonia soror* (Nobili, 1904) with two types of color patterns. The scale bar = 5 mm. https://doi.org/10.1371/journal.pone.0278288.g004
Fig 5. Symbiotic polychaete: *Asterophilia carlae* Hanley, 1989, anterior view (upper) and posterior view (lower). The scale bar = 5 mm.

https://doi.org/10.1371/journal.pone.0278288.g005
study, the morphology and color of *E. luzonicus* observed varied. Of individuals of this species found in the Indian Ocean, Soota and Sastry [44] reported that they were autotomous, with five or more arms of unequal length. Their diverse color patterns indicate the high genetic variability of *E. luzonicus* within a population, with 22.9% polymorphic loci among 35 genetic loci in samples collected from Ryukyu Islands, Japan [48].

Several studies have reported that different macrosymbionts coexist on *E. luzonicus*, including the scaleworm *Asterophylia culcitae* [42], ctenophoran *Coeloplana astericola* [42,49,50], and shrimp *Z. soror* [42,51]. The copepods *Doridicola echinasteris* and *Stellicola oreastriphilus* have also been found [42]. They have evolved cryptically colors that are indistinguishable from those of its host starfish [52]. In the present study, three macrosymbionts of *E. luzonicus* were found in a small coral reef area. Until now, *M. martinii* and *A. carlae* had never been reported in the waters around Taiwan.

Macrosymbionts of *E. luzonicus*

Symbiosis, a mode of interaction between two heterospecific organisms, can be designated into three categories, namely mutualism, commensalism, and parasitism, depending on the presence or absence of “harm” or “benefit” in the partners [53]. In theory, the criteria of host mortality and metabolic dependency have often been used to determine the type of their interactions. However, the methods required to apply such criteria in marine ecosystems are costly and time consuming [54,55]. The type of symbiosis can be determined through indirect methods, such as laboratory observation of feeding behavior, in situ analysis [56] of the morphology and function of the mouth and foraging organ [57–59], analysis of the digestive tract [60], and analysis of intestinal contents [55].

Coral reefs contain the largest diversity of symbiotic associations in marine environments [54]. At least 860 invertebrate species live in close association with stony corals, and they depend on their hosts for food and habitat [61]. These symbiotic associations make coral reef communities the most complex and biodiverse marine ecosystems in coastal areas [61–63]. In reef areas, some host species are strongly reliant on their obligate symbionts to the point where they are unable to survive without them [61,64]. Understanding the modes in which marine fauna interact can help clarify their ecological roles and provide new insights into natural science. In this study, we found three species of macrosymbionts on *E. luzonicus*: *M. martinii*, *Z. soror*, and *A. carlae*. Several studies have revealed various ecological niches in the symbiotic relationship of these species with various hosts.

Melanella martinii—Notably, the snail *M. martinii* identified in both months of the investigation had not been reported previously in the waters of Kueishan Island. Studies have found *M. martinii* in the East China Sea, South China Sea, and Indoc–West Pacific [65]; Japan [35];
Vietnam [66]; Cebu, Philippines [67]; Singapore [68]; Lombok, Indonesia [69]; and Australia [70]. Several reports have indicated the presence of several mollusks in the shallow waters of hydrothermal vent areas on the eastern side of Kueishan Island, but not M. martinii [5,6,71].

Among holothurian symbionts, sea snails in the genus Melanella are parasites [18,72–74]. Most of them attach to the hosts’ skin, piercing through the tissue with their specialized proboscis and feeding on coelomocytes. These attachment strategies do not have severe effects on the hosts [18,72]. However, in this study, M. martinii was associated with starfish, an unusual host in the genus Melanella. Thus, due to the shortage of records and relevant evidence, whether the relationship between M. martinii and E. luzonicus is parasitic in nature remains unclear.

Symbiosis of several mollusks with various starfish species has been reported [50], such as Thyca crystallina and Stilifer cf. linckiae with the blue starfish Linckia laevigata [75], Granulithyca nardoafrianti with Nardoa frianti, T. crystallina with L. laevigata, and Stilifer spp. with L. laevigata and Culcita novaeguineae in the waters of southern Vietnam [42]. Furthermore, numerous species of starfish are prey and parasitic hosts for gastropods. For example, the giant triton Charonia tritonis preys on several asteroids, including the crown-of-thorns starfish Acanthaster planci [76]. The mollusks of Stylifer spp. consume the tissue of host starfish and are occasionally found within it [42].

Some eulimids are host-specific. A particular genus of eulimids tends to be restricted to a single class level or a lower taxon of echinoderm [72]. Gastropods of the genus Melanella are associated with holothurian hosts [72,73]. The present data revealed that M. martinii lived on the starfish of the class Asteroidea instead of on the usual holothurian hosts of its congeneric species. The association information of this snail is scarce; thus, further research is warranted. We also observed that the attachment of this snail to the starfish podia caused the starfish no injury. Therefore, we postulate that M. martinii might suck the body fluid of starfish but not consume their tissue.

Zenopontonia soror–Z. soror has a worldwide distribution; it has been found in Hong Kong, Taiwan, Xisha Islands, Hainan, and the Indo-Pacific [65]; southern Taiwan, northern South China Sea [77]; Japan, Taiwan, the Philippines, Indonesia, Papua New Guinea, Australia, New Caledonia, French Polynesia [12]; Vietnam [42,78]; Thailand [51]; and the Colombian Pacific [79]. In the current study, Z. soror was only found in the July investigation. Limviriyakul [12] did not find this species among the symbiotic crustaceans collected in the same area in April and September 2015. This shrimp may hide in the crevices of coral reefs or leap swiftly away when it detects an approaching diver [51]. It may also switch from one individual or species to another [78].

The shrimps Z. soror has been found on at least 23 species of shallow-water tropical starfish, such as Acanthaster planci, Culcita novaeguineae, Choriaster granulatus, and Linckia laevigata in Vietnam [78], as well as on various hosts, such as starfish and cushion stars. These include the crown-of-thorns starfish in Thailand [51], cushion star Culcita novaeguineae [80], and starfish Pentaceraster cumingi [79]. Zenopontonia soror can recognize, differentiate, and obtain protection from host species based on host-provided chemical and visual cues [78,80]. A record high of 25 Z. soror individuals was found on a single cushion star in the waters around Ko Waen Island in southern Thailand [51], and an even more astonishing 53 individuals were found on a crown-of-thorns starfish in Kuroshima Island, Japan [81]. The highest record in the present study was five shrimp on a single E. luzonicus. The difference in numbers may be attributable to variations in the size of the starfish species. Echinaster luzonicus is smaller than the cushion star and the crown-of-thorns starfish; thus, the load capacity of symbiotic shrimp is limited. This is also supported by Antokhina and Britayev [78], who suggested that the distribution of the starfish shrimp on its hosts in Vietnam does not depend directly on host abundance but is rather related to the host size, oral surface area, and morphological complexity.
Clear evidence obtained by directly observing, conducting experiments, and analyzing feeding appendages has led to the argument that *Z. soror* is an obligate commensal symbiont of starfish [36,78,80]. The shrimp highly depends on its host for nutrition and protection. The morphology of the mandible and chelae indicate that *Z. soror* may browse on mucus or mucus-entrapped particles [36]. Olliff [80] suggested that the shrimp may feed on host ectoparasites, similar to other symbionts living on larger hosts. *Zenopontonia soror* has the ability to change its color patterns to match its hosts in order to increase the survival rate [80–82]. These observations demonstrate coevolution between the starfish host and the *Z. soror* symbiont.

Asterophilia carlae—The scaleworm *A. carlae* was a noteworthy discovery in our samples. This scaleworm belongs to the highly diverse family Polynoidae, which contains numerous symbiotic species associated with other marine invertebrates [17,83,84]. *Asterophilia carlae* is distributed in regions of the Pacific Ocean, Fiji, and temperate, subtropical, and tropical waters [85]. Taxonomic records reveal that this species had not been previously recorded in waters around Taiwan or in seas adjacent to Mainland China [65]. This is the first record of *A. carlae* with *E. luzonicus* in Taiwanese waters since it was originally observed on the blue starfish *Linkia laevigater laevigata* in Fijian and Indonesian waters [32]. Its congener species, *A. culcitae* Britayev & Fauchald, 2005 [33] was first reported to be distributed in Vietnam [42], but it has yet to be found in Taiwanese waters. Historical records of *A. carlae* in the waters of Taiwan are not available. The record made in the present study is the northernmost record of this species in the world. Notably, this study is the first to document *A. carlae* in these regional waters. However, details concerning the presence of *A. carlae* in the waters of Taiwan remain unclear.

Hosts of *A. carlae* are mainly restricted to the class Asteroidea; host species in the class Crinoidea are rare [17]. However, the relationship between *A. carlae* and many symbiont polynoid scaleworms and their hosts remains poorly understood [86]. *Gastrolepidia clavigera*, a widespread polynoid scaleworm, is very similar to *A. carlae* and is ectsymbiotic with holothuroids [33]. This species was considered commensal [17] until Britayev and Lyskin [55] revealed it to be a parasite; it was found to feed on host tissue. It also feeds on parasitic copepods, but this does not afford greater advantage than does association with a host. Nevertheless, some symbiotic relationships between two partners can be shifted depending on the situation, such as from commensalism to parasitism [87]. Knowledge of *A. carlae* and its hosts is insufficient to determine the mode of symbiosis. Further studies should carefully account for the presence or absence of “harm” and “benefit” to reveal the true interspecific interaction.

The intrusion of warm South China Sea water through the Luzon Strait in the northern South China Sea may play a pivotal role in transporting the copepod *Calanoides philippinensis* to the northern waters of the western Pacific Ocean under the influence of the Kuroshio Current [88,89]. The results suggest that *A. carlae* in planktonic larval stage may also use the same pathway to move northward to the Kueishan Island reef area. In sum, the Kuroshio Current might contribute crucially to the geographic dispersal and distribution of *A. carlae*.

Martin and Britayev [17] reported a prevalence of 3.3%–13% but did not mention the examined number of hosts. The prevalence might be influenced by variable bathymetric [90], spatial [91], temporal [17], and host-related factors [92]. The present study examination of 116 and 138 starfish species in July and September 2020, respectively, demonstrated that the prevalence of *A. carlae* was low (average: 0.79%). We confirm the presence of *A. carlae* in the study area. Further studies are warranted to provide information on species population, seasonal succession, and other biological factors.
Conclusion

Among diverse heterospecific associations, the best visualized results may be obtained for symbiosis, which is maintained through spatiotemporal adaptive interactions [53]. The present study documented three species of ectosymbionts obtained from E. luzonicus. The findings provide insights into the relationship between each macrosymbiont species and E. luzonicus; furthermore, they advance the knowledge of the ecological role of starfish and their symbiotic associations. Determining whether the relationship of these macrosymbionts with their host starfish was epibiotic, commensal, or parasitic was challenging. We found no evidence of injuries on the surface or soft tissue of host starfish. Studies on intraspecific interactions of symbionts and their possible effects on the growth of reef starfish under laboratory conditions are required to gain a comprehensive understanding of their symbiotic relationships in nature.

Supporting information

S1 File. Supporting information file provides information of all figures.
(XLSX)

Acknowledgments

The authors would like to thank anonymous reviewers for their invaluable, detailed suggestions and criticisms, which greatly enhanced this paper.

Author Contributions

Conceptualization: Li-Chun Tseng, Jiang-Shiou Hwang.
Data curation: Li-Chun Tseng, Parinya Limviriyakul.
Formal analysis: Li-Chun Tseng.
Funding acquisition: Jiang-Shiou Hwang.
Investigation: Li-Chun Tseng.
Methodology: Li-Chun Tseng, Parinya Limviriyakul.
Project administration: Jiang-Shiou Hwang.
Resources: Jiang-Shiou Hwang.
Software: Li-Chun Tseng, Jiang-Shiou Hwang.
Supervision: Jiang-Shiou Hwang.
Validation: Li-Chun Tseng, Parinya Limviriyakul.
Visualization: Li-Chun Tseng.
Writing – original draft: Li-Chun Tseng, Parinya Limviriyakul.
Writing – review & editing: Li-Chun Tseng, Parinya Limviriyakul, Jiang-Shiou Hwang.

References

1. Song S-R. The Kueishantau—An active volcanic island of Taiwan. Taiwan Nat Sci. 2013; 32: 74–83.
2. Tseng L-C, Limviriyakul P, Ho P-H, Hwang J-S. The presence of Macromedaeus distinguendus (De Haan, 1835) (Brachyura, Xanthidae) in the shallow hydrothermal vent system off Northeastern Taiwan. Crustaceana. 2018; 91: 879–895.
3. Hung J-J, Yeh H-Y, Peng S-H, Chang Y-P, Hwang J-S. External-forcing modulation on temporal variations of hydrothermalism-evidence from sediment cores in a submarine venting field off northeastern Taiwan. PLoS ONE. 2018; 13: e0207774. https://doi.org/10.1371/journal.pone.0207774 PMID: 30496305

4. Lebrato M, Wang YV, Tseng L-C, Achterberg EP, Chen X-G, Molinero J-C, et al. Earthquake and typhoon trigger unprecedented transient shifts in shallow hydrothermal vents biogeochemistry. Sci Rep. 2019; 9: 16926. https://doi.org/10.1038/s41598-019-53314-y PMID: 31729442

5. Chan BKK, Wang T-W, Chen P-C, Lin C-W, Chan T-Y, Tsang L-M. Community structure of macrobiota and environmental parameters in shallow water hydrothermal vents off Kueishan Island, Taiwan. PLoS One. 2016; 11: e0148675. https://doi.org/10.1371/journal.pone.0148675 PMID: 26849440

6. Chen C, Chan T-Y, Chan BKK. Molluscan diversity in shallow water hydrothermal vents off Kueishan Island, Taiwan. Mar Biodivers. 2017; 48: 709–714.

7. Ng NK, Huang J-F, Ho P-H. Description of a new species of hydrothermal crab, *Xenograpsus testudinatus* (Crustacea: Decapoda: Brachyura: Grapsidae) from Taiwan. Natl Taiwan Mus. 2000; 10: 191–199.

8. Dahms H-U, Tseng L-C, Hwang J-S. Life history of the copepod *Paramphiascella* sp. affected by hydrothermal vent effluents. J Mar Sci Tech-Taiw. 2013; 21: 297–303.

9. Dahms H-U, Tseng L-C, Shim DM-C, Hwang J-S. Hydrothermal vent effluents affect life stages of the copepod *Tisbe* sp. J Mar Sci Tech-Taiw. 2014; 22: 82–88.

10. Chang C-M. Sulfide tolerance and detoxification of the vent crab, *Xenograpsus testudinatus*. Master thesis. Institute of Oceanography, National Taiwan University. Taipei, Taiwan. 2006.

11. Hung HY. A study on community structure of coral reef fishes in the waters of Turtle Island, northeastern Taiwan. Master thesis, National Taiwan Ocean University. Keelung, Taiwan. 2007.

12. Limviriyakul P. Biodiversity of symbiotic associations of decapods and host selection of *Tetralia rubrodactyla* in coral reefs of northeastern Taiwan. D. Phil. Dissertation, National Taiwan Ocean University. Keelung, Taiwan. 2016.

13. Wray GA. Echinodermata. Spiny-skinned animals: sea urchins, starfish, and their allies. 1999. http://tolweb.org/Echinodermata/2497. Accessed 5 April 2021.

14. Britayev TA, Beksheneva LF, Deart YV, Mekhova ES. Structure and variability of symbiotic assemblages associated with feather stars (Crinoidea: Comatulida) *Himerometra robustipinna*. Oceanology. 2016; 56: 666–674.

15. Limviriyakul P, Tseng L-C, Hwang J-S, Shih T-W. Anomuran and brachyuran symbiotic crabs in coastal areas between the southern Ryukyu arc and the Coral Triangle. Zool Stud. 2016a; 55: 1–14.

16. Limviriyakul P, Tseng L-C, Shih T-W, Hwang J-S. Symbiotic decapods in reef area of northeastern Taiwan. J. Ocean Underw Technol. 2016b; 26: 13–24.

17. Martin D, Britayev TA. Symbiotic polychaetes: review of known species. Oceanogr Mar Biol, Annu Rev. 1998; 35: 217–340.

18. Purcell S, Conand C, Uthicke S, Byrne M. Ecological roles of exploited sea cucumbers. Oceanogr Mar Biol, Annu Rev. 2016; 54: 367–386.

19. Yogesh Kumar JS, Rathnathan C, Venkataraman K. A report on some symbiotic shrimps (Crustacea: Decapoda) from the Andaman and Nicobar Islands, India. Scholars Acad. J Biosci. 2015; 3: 113–119.

20. Limviriyakul P, Tseng L-C, Tsai Y-H, Hwang J-S, Shih T-W. Baseline diversity and host relationships of symbiotic caridean shrimps on the coast of northern Taiwan, southern East China Sea, prior to the establishment of a conservation area. Mar Biodivers. 2020; 50: 1–13.

21. Brasseur L, Caulier G, Lepoint G, Gerbaux P, Eckhaut I. *Echinometra mathaei* and its ectocommensal shrimps: The role of sea urchin spinochrome pigments in the symbiotic association. Sci Rep. 2018; 8: 17540.

22. Ho JS, Dojiri M, Hendler G, Deets GB. A new species of Copepod (Thaumastosyllidae) symbiotic with a brittle star from California, USA, and designation of a new order Thaumatopseudilida. J Crustac Biol. 2003; 23: 582–594.

23. Sweet E. Fossil Groups: Modern forms: Asteroidea: Extant Orders of the Asteroidea. University of Bristol. 2005. https://web.archive.org/web/20070714073619/http://palaeo.gly.bris.ac.uk/PalaeoFiles/Fossilgroups/astero22/index_f_mod_fm.html. Accessed 12 March 2021.

24. Chao SM. New records of sea stars (Asteroidea: Echinodermata) from the continental shelf of Taiwan. Zool Stud. 2000; 39: 275–284.

25. Chao SM. Research and status of Taiwan echinoderm diversity and database. In: 2008 Workshop: Research and status of Taiwan species diversity. 2008. http://2008checklist.biodiv.tw/disc2008/doc/ Shi-Ming%20Chao.doc. Accessed 12 April 2021.

26. Chan TY, Yu HP. Decapod crustacean fauna study in Taiwan. J Fish Soc Taiwan. 2002; 29: 163–171.
27. Chang SC. Taxonomic studies on families Hippolytidae and Processidae (Crustacea, Decapoda, Caridea) of Taiwan. Master thesis, National Taiwan Ocean University. Keelung, Taiwan. 2010.
28. Chang SC, Komai T, Chan TY. First record of the hippolytid shrimp genus Lebbeus White, 1847 (Decapoda: Caridea) from Taiwan, with the description of three new species. J Crustac Biol. 2010; 30: 727–744.
29. Wei T-P, Hwang J-S, Tsai M-L, Fang L-S. New records of gall crabs (Decapoda, Cryptochiridae) from Orchid Island, Taiwan, northwestern Pacific. Crustaceaena. 2005; 78: 1063–1077.
30. Wei T-P, Chen H-C, Lee Y-C, Tsai M-L, Hwang J-S, Peng S-H, et al. Gall polymorphism of coral-inhabiting crabs (Decapoda, Cryptochiridae): A new perspective. J Mar Sci Tech-Taiw. 2013; 21: 304–307.
31. Fauchald K. The polychaete worms. Definitions and keys to the orders, families and genera. Nat Hist Mus Los Angeles County, Sci Ser. 1977; 6: 1–34.
32. Hanley JR. Revision of the scaleworm genera Arctonoë Chamberlin and Gastrolepidia Schmard a (Polychaeta: Polynoidae) with the erection of a new subfamily Arctono inae. The Beagle, Records of the Northern Territory Mus Arts Sci. 1989; 6: 1–35.
33. Britayev TA, Fauchald K. New species of symbiotic scaleworms Asterophilia (Polychaeta, Polynoidae) from Vietnam. Invertebr Zool. 2000; 3: 1–22.
34. Adams A. Monograph of the genera Eulima, Niso, Leiostra ca, Obeliscus, Pyramidella, and Monoptygma. In: Sowerby GB II (ed.). Thesaurus Conchyliorum. 1854; 793–825, pls.169–172.
35. Okutani T. Marine mollusks in Japan. Tokyo, Japan: Tokai University Press. 2000.
36. Bruce AJ. The shrimps associated with Indo-west Pacific echinoderms, with the description of a new species in the genus Periclimenes Costa, 1844 (Crustacea: Pontoniidae). Aust Mus Mem. 1982; 16: 191–216.
37. Chace FA, Bruce AJ. The caridean shrimps (Crustacea: Decapoda) of the Albatross Philippine expedition, 1907–1910, Part 6: Superfamily Palaemonoidea. Smithsonian Contrib Zool. 1993; 543: 1–152.
38. Holthuis LB. The recent genera of the caridean and stenopodidean shrimps (Crustacea, Decapoda): With an appendix on the order Amphionidae. Nationaal Natuurhistorisch Museum, Leiden. 1993.
39. Coleman N. Sea Stars: Echinoderms of Asia / Indo-Pacific. Australia: Neville Coleman's Underwater Geographic Pty Ltd. 2007.
40. Lu YL. A splendid sea world of Penghu. Special publication no. 16. Keelung: Fisheries Research Institute, Council of Agriculture. 2013.
41. Ye LC. Dongsha- The blue coral sea. Taichung, Taiwan: Wu Nan Books. 2010.
42. Antokhina TI, Britayev TA, Sea stars and their macrosymbionts in the Bay of Nhatrang, Southern Vietnam. Paleontol J. 2012; 46: 894–908.
43. Putchakar S, Sonchaeng P. Echinoderm fauna of Thailand: History and inventory reviews. Sci Asia. 2004; 30: 417–426.
44. Soota TD, Sastry DRK. A note on two species of Echinaster Müller and Troschel (Echinodermata: Asteroidea) from Indian Ocean. Records Zool Survey India. 1979; 75: 349–352.
45. Sim YK, Tan SH, Zulfigar Y. The diversity and abundance of the Sea Stars (Echinodermata: Asteroidea) from coral reefs of the central South China Sea. Publ Seto Mar Biol Lab Spec Publ Ser. 2009; 9: 25–36.
46. Shao KT, Lim HJ. A frontier in the South China Sea—Biodiversuty of Taiping Island, Nansha Islands. Wu-Nan Books. Taichung, Taiwan. 2014.
47. Mbana YR, Daud Y, Bullu NI. Diversity of starfish (Asteroidea) in Lamalaka beach, Kecamatan Ile Boleng, East Flores District. Indigenous Biologi. 2020; 3: 57–67.
48. Matsuoka N. Genetic variation in two starfish, Acanthaster planci and Echinaster luzonicus, from Okinawa. Bull Fac Agric Life Sci, Hiroshi Univ. 2005; 8: 9–16.
49. Mortensen T. Papers from Dr. Th. Mortensen's Pacific Expedition, 1914–16. 39. Two new ctenophores. Vidensk Medd Dan Nat Foren Kjøbenhavn. 1927; 83: 277–288.
50. Barel CDN, Kramers PGN. A survey of the echinoderm associates of the north-east Atlantic area. Zool Verh. 1977; 156: 1–159.
51. Thamrongnasawat T, Wisespongand P, Limviriyakul P. Reef fauna of Thailand. The Agricultural Research Development Agency. Bangkok, 2009.
52. Byrne M, O'Hara TD. Australian echinoderms: Biology, ecology and evolution. CSIRO publishing. Clayton, 2017.
53. Castro P. Brachyuran crabs symbiotic with scleractinian corals: A review of their biology. Micronesica. 1976; 12: 99–110.
54. Castro P. Animal symbioses in coral reef communities: A review. Symbiosis. 1988; 5: 161–184.
55. Britayev TA, Lyskin SA. Feeding of the symbiotic polychaete *Gastrolepidia clavigera* (Polynoidae) and its interactions with its hosts. Doklady Biol Sci. 2002; 385: 352–356.

56. Knudsen JW. *Trapezia* and *Tetralia* (Decapoda, Brachyura, Xanthidae) as obligate ectoparasites of pocilloporid and acroporid corals. Pac Sci. 1967; 21: 51–57.

57. Bruce AJ. Records of some rare pontoniid shrimps from Australian waters, with remarks upon the mouthparts of some species of the genus *Periclimenes* Costa, 1844. Zool. Verh. 1971; 114: 1–32.

58. Kropp RK. Feeding biology and mouthpart morphology of three species of coral gall crabs (Decapoda: Cryptochiridae). J Crustacean Biol. 1986; 6: 377–384.

59. Ashelby CW, De Grave S, Johnson ML. Preliminary observations on the mandibles of palaemonid shrimp (Crustacea: Decapoda: Caridea: Palaemonoidea). PeerJ. 2015; 3: e846. https://doi.org/10.7717/peerj.846 PMID: 25825676

60. Stimson J. Stimulation of fat-body production in the polyps of the coral *Pocillopora damicornis* by the presence of mutualistic crabs of the genus *Trapezia*. Mar Biol. 1990; 106: 211–218.

61. Stella JS, Pratchett MS, Hutchings PA, Jones GP. Coral-associated invertebrates: Density, ecological importance and vulnerability to disturbance. Oceanogr Mar Biol, Annu Rev. 2011; 49:43–104.

62. Raykov RK. Feeding biology and mouthpart morphology of three species of coral gall crabs (Decapoda: Cryptochiridae). J Crustacean Biol. 1986; 6: 377–384.

63. Ashelby CW, De Grave S, Johnson ML. Preliminary observations on the mandibles of palaemonid shrimp (Crustacea: Decapoda: Caridea: Palaemonoidea). PeerJ. 2015; 3: e846. https://doi.org/10.7717/peerj.846 PMID: 25825676

64. Stimson J. Stimulation of fat-body production in the polyps of the coral *Pocillopora damicornis* by the presence of mutualistic crabs of the genus *Trapezia*. Mar Biol. 1990; 106: 211–218.

65. Stella JS, Pratchett MS, Hutchings PA, Jones GP. Coral-associated invertebrates: Density, ecological importance and vulnerability to disturbance. Oceanogr Mar Biol, Annu Rev. 2011; 49: 43–104.

66. Paulay G. Diversity and distribution of reef organisms. In: Birkeland C (ed.). Life and death of coral reefs. New York: Chapman and Hall. 1997; 298–353.

67. Hylleberg J, Kilburn RN. Marine molluscs of Vietnam: annotations, voucher material, and species in need of verification. Spec Publ Phuket Mar Biol Cent. 2003; 28: 1–300.

68. Galli C. Worldwide mollusc species data base, Family: Eulimidae. 2015. https://www.bagniliggia.it/WMSDPDFFamily/EULIMIDAE.pdf. Accessed 26 May 2021.

69. Tan SK, Woo HPM. A preliminary checklist of the molluscs of Singapore. Raffles Museum of Biodiversity Research, National University of Singapore. 2010.

70. Schepman MM. The Prosobranchia of the Siboga Expedition. Part III. Gymnoglossa. E.J. Brill, Leiden. 1909.

71. Okhrin NH. Results of Dr E. Mjöberg’s Swedish scientific expeditions to Australia 1910–1913, XVII. Mollusca. Kongliga Svenska Vetenskaps-Akademiens Nya Handlingar, Stockholm. 1917.

72. Chen YY, Wu JY, Chen CTA, Liu LL. Effects of low-pH stress on shell traits of the dove snail, *Anachis misera*, inhabiting shallow-vent environments off Kueishan Islet, Taiwan. Biogeoosciences. 2015; 12: 2631–2639.

73. Wareñ A. A Generic Revision of the Family Eulimidae (Gastropoda, Prosobranchia). J Molluscan Stud. 1983; 49: 1–96.

74. Lyskin SA, Britayev TA. Symbionts of holothurians from South Vietnam: Intra- and interspecific interactions. Doklady Biol Sci. 2002; 385: 352–356.

75. De Grave S, Johnson ML. Preliminary observations on the mandibles of palaemonid shrimp (Crustacea: Decapoda: Caridea: Palaemonoidea). PeerJ. 2015; 3: e846. https://doi.org/10.7717/peerj.846 PMID: 25825676

76. Jeng MS. Studies on the land and aquatic decapod crustacean fauna of the Kenting National Park (II)–Communities of decapod crustaceans around the sea. Kenting National Park, Ministry of the Interior, Pingtung. 1997.

77. Antokhin TI, Britayev TA. Host recognition behaviour and its specificity in pontoniine shrimp *Zenopontonia soror* (Nobili, 1904)(Decapoda: Caridea: Palaemonoidea) associated with shallow-water sea stars. J Exp Mar Biol Ecol. 2020; 524: 151302.

78. González MJV, Borrero-Pérez GH. First records and new information on the associations of echinoderms with other phyla in the rocky reefs of northern Chocó, Colombian Pacific. ZooKeys. 2020; 921: 1–22. https://doi.org/10.3897/zookeys.921.32802 PMID: 32256148
80. Olliff ERR. Symbiosis of the sea star shrimp, *Periclimenes soror* Nobili, 1904 (Decapoda, Palaemonidae), and cushion star, *Culcita novaeguineae* Müller & Troschel, 1842 (Echinodermata, Asteroidea, Oreasteridae): host finding and benefits. Crustaceana. 2013; 86: 564–577.

81. Sakaji H, Okutani T. Association of *Periclimenes soror* Nobili (Decapoda, Caridea) with starfishes off Kuroshima Island, Yaeyama group. Res on Crustac. 1988; 17: 29–38.

82. Antokhina TI, Sorokin PA. Molecular genetic analysis of the two morphs of sea star shrimp *Periclimenes soror* Nobili, 1904, the symbionts of tropic sea stars. Russ J Genet. 2010; 46: 855–860.

83. Sugiyama T, Jimi N, Goto R. Widening the host range of the ectosymbiotic scale-worm *Asterophilia culcitae* (Annelida: Polynoidae) to three echinoderm classes, with data on its body color variation. Plankton Benthos Res. 2020; 15: 289–295.

84. Read G, Fauchald K. World Polychaeta Database. Polynoidae Kinberg, 1856. 2021a. http://www.marinespecies.org/aphia.php?p=taxdetails&id=939. Accessed 3 May 2021.

85. Read G, Fauchald K. World Polychaeta Database. *Asterophilia carlae* Hanley, 1989. 2021b. http://www.marinespecies.org/aphia.php?p=taxdetails&id=326679. Accessed 12 March 2021.

86. Britayev TA, Zamishliak EA. Association of the commensal scaleworm *Gastrolepidia clavigera* (Polychaeta: Polynoidae) with holothurians near the coast of South Vietnam. Ophelia. 1996; 45: 175–190.

87. Fautin DG, Guo CC, Hwang J-S. Costs and benefits of the symbiosis between the anemone shrimp *Periclimenes brevicarpalis* and its host *Entacmaea quadricolor*. Mar Ecol Prog Ser. 1995; 129: 77–84.

88. Tseng L-C, Hung J-J, Chen Q-C, Hwang J-S. Seasonality of the copepod assemblages associated with interplay waters off northeastern Taiwan. Helgol Mar Res. 2013; 67: 507–520.

89. Tseng L-C, Hung J-J, Molinero JC, Chen Q-C, Hwang J-S. Indicator species and seasonal succession of planktonic copepod assemblages driven by the interplay of subtropical and temperate waters in the southern East China Sea. Crustaceana. 2015; 88: 96–112.

90. Abello P, Sardà R, Masalles D. Infestation of some mediterranean brachyuran crabs by the polychaete *Iphitime cuenoti*. Cah Biol Mar. 1988; 29: 149–162.

91. Hendler G, Meyer DL. An association of a polychaete, *Branchiosyllis exilis* with an ophiuroid, *Ophiocoma echinata*, in Panama. Bull Mar Sci. 1982; 32: 736–744.

92. Comely CA, Ansell AD. The occurrence of the eunicid polychaetes *Iphitime cuenoti* Fauvel and *I. paguri* Fage & Legendre in crabs from the Scottish west coast. Ophelia. 1989; 31: 59–76.