Enumerations of Universal Cycles for k-Permutations

Zuling Changa,b, Jie Xuea*

a School of Mathematics and Statistics, Zhengzhou University, 450001 Zhengzhou, China
b State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, 100093 Beijing, China

Abstract

Universal cycle for k-permutations is a cyclic arrangement in which each k-permutation appears exactly once as k consecutive elements. Enumeration problem of universal cycles for k-permutations is discussed and one new enumerating method is proposed in this paper. Accurate enumerating formulae are provided when $k = 2, 3$.

Key words: k-permutation; Universal cycle; Eulerian tour; Laplacian matrix; Eigenvalue

1 Introduction

Given a positive integer n, let $[n] = \{1, 2, \ldots, n\}$. A k-permutation is an ordered arrangement of k distinct elements in $[n]$, $1 \leq k \leq n$. Let $P_{n,k}$ be the set of all k-permutations of the n-set $[n]$. Obviously, $|P_{n,k}| = n!/(n-k)!$. Let $C = (x_1, x_2, \ldots, x_{|P_{n,k}|})$ be a cyclic arrangement (or periodic sequence), where each $x_i \in [n]$ for $1 \leq i \leq |P_{n,k}|$. If in C each k-permutation appears exactly once as k consecutive elements, then we say that C is a universal cycle for $P_{n,k}$. For example, if $n = 4$ and $k = 2$, then $(12, 31, 43, 12)$ is a universal cycle for $P_{4,2}$, as follows.

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
3 & 1 & & \\
4 & 3 & \Rightarrow & P_{4,2} = \{12, 13, 14, 21, 23, 24, 31, 32, 34, 41, 42, 43\} \\
1 & 2 & 4 & 2
\end{array}
\]

Universal cycles were introduced by Chung, Diaconis, and Graham \cite{3} as generalizations of de Bruijn cycles \cite{2}, which are binary sequences with period 2^n that contain every binary n-tuple. Universal cycles are connected with Gray codes deeply \cite{9, 11}. In this paper we consider the universal cycles for k-permutations. Jackson \cite{6} showed that the universal cycle for k-permutations always exists when $k < n$. There are lots of results about the construction of universal cycles for k-permutations, mainly for the case that $k = n - 1$ named shorthand permutations \cite{4, 5, 8, 10}. Another interesting problem is to compute the number of distinct universal cycles for k-permutations. This problem was formally presented in \cite{7}.

*Emails: zuling_chang@zzu.edu.cn (Z. Chang), jie_xue@126.com (J. Xue).
Problem 1.1 (Problem 477 [7]) How many different universal cycles for $P_{n,k}$ exist?

Up to now, such enumeration problem has not been solved. When $k = 1$, the number of universal cycles for $P_{n,1}$ is obviously equal to $(n - 1)!$. But for $k \geq 2$, counting them is a little complicated. In this paper, we propose one new method to count them and accurate formulae for the number of universal cycles are provided when $k = 2$ and 3. The following two theorems are main results of this paper.

Theorem 1.2 The number of universal cycles for $P_{n,2}$, $n \geq 3$, is equal to

$$n^{n-2}[(n-2)!]^n. \quad (1)$$

Theorem 1.3 The number of universal cycles for $P_{n,3}$, $n \geq 4$, is equal to

$$(n - 3)\frac{(n-1)(n-2)}{2}(n-2)^{n-1}(n-1)^{\frac{(n-1)(n-2)}{2}} - 2n^{n-2}[(n-3)!]^n(n-1). \quad (2)$$

The rest of this paper is presented as follows. In Section 2 we collect preliminary notions and known results. Related lemmas and detailed proofs of Theorems 1.2 and 1.3 are provided in Sections 3. We conclude this paper in the last section.

2 Preliminaries

Let us recall some definitions and concepts for digraphs. For a vertex v in a digraph, its out-degree is the number of arcs with initial vertex v, and its in-degree is the number of arcs with final vertex v. A digraph is balanced if for each vertex, its in-degree and out-degree are the same. It is well-known that a digraph contains an Eulerian tour if and only if the digraph is connected and balanced (see, for example, [1, Theorem 1.7.2]).

Given a digraph D, its adjacency matrix is the $(0,1)$-matrix $A = (a_{i,j})$ where $a_{i,j} = 1$ if v_iv_j is an arc of D, and $a_{i,j} = 0$ otherwise. Let T be the diagonal matrix of the vertex out-degrees. The Laplacian matrix of D is defined as $L = T - A$. The eigenvalues of L are called the Laplacian eigenvalues of D. Obviously, the row sum of L is zero, which implies that 0 is an eigenvalue of L with respect to the eigenvector 1.

In order to count the number of distinct universal cycles for $P_{n,k}$, $k > 1$, we define a transition digraph. Let D be a digraph with vertex set $P_{n,k-1}$. The arcs of D satisfy the following rule: for any two vertices $i_1i_2\cdots i_{k-1}$ and $j_1j_2\cdots j_{k-1}$, there is an arc from $i_1i_2\cdots i_{k-1}$ to $j_1j_2\cdots j_{k-1}$ if and only if $i_s = j_{s-1}$ for $2 \leq s \leq k - 1$, and $i_1 \neq j_{k-1}$. Such a digraph is called the transition digraph of $P_{n,k}$. Let uv be an arc in D with initial vertex u and final vertex v. If $u = i_1i_2\cdots i_{k-1}$, then $v = i_2i_3\cdots i_{k-1}i_k$, where $i_k \in [n]\{i_1, i_2, \ldots, i_{k-1}\}$, and so the arc uv may be regarded as the k-permutation $i_1i_2\cdots i_{k-1}i_k$. On the other hand, any k-permutation $i_1i_2\cdots i_{k-1}i_k$ in $P_{n,k}$ is represented by an arc with initial vertex $i_1i_2\cdots i_{k-1}$ and final vertex $i_2i_3\cdots i_{k-1}i_k$. In [6], Jackson showed such transition digraph is balanced and connected. One can see that any Eulerian tour in this transition digraph corresponds to a universal cycle for $P_{n,k}$, which leads to the following proposition directly.
Proposition 2.1 The number of distinct universal cycles for $P_{n,k}$ is equal to the number of Eulerian tours of its transition digraph.

This proposition implies that it is sufficient to consider the number of Eulerian tours in the transition digraph of $P_{n,k}$. In the following, we establish the formulae for the number of distinct universal cycles. Let D be a connected balanced digraph, and let $\epsilon(D)$ denote the number of Eulerian tours of D. We use $d^+(v)$ to denote the out-degree of the vertex v.

Lemma 2.2 ([12]) Let D be a connected balanced digraph with vertex set V. If the Laplacian eigenvalues of D are $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_{|V|-1} > \mu_{|V|} = 0$, then

$$\epsilon(D) = \frac{1}{|V|} \prod_{v \in V} (d^+(v) - 1)!.$$

According to Lemma 2.2, to count the number of universal cycles for $P_{n,k}$, it is enough to compute the corresponding Laplacian eigenvalues. In the following section, we will show how to determine them by a simple method.

3 Enumeration formulae for $k = 2$ and 3

In this section we will count the number of universal cycles for $P_{n,2}$ and $P_{n,3}$, and the proofs of Theorems 1.2 and 1.3 are provided respectively.

Firstly we give the proof of Theorem 1.2 about the number of universal cycles for $P_{n,2}$.

Proof of Theorem 1.2. Let D be the transition digraph of $P_{n,2}$. The vertex set of D is $[n]$. For any two distinct vertices i and j, by the definition of transition digraph, ij is an arc of D. Note also that the out-degree of each vertex equals $n - 1$. Thus, the Laplacian matrix of D is

$$L = \begin{bmatrix}
 n - 1 & -1 & -1 & \cdots & -1 \\
 -1 & n - 1 & -1 & \cdots & -1 \\
 -1 & -1 & n - 1 & \cdots & -1 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 -1 & -1 & -1 & \cdots & n - 1
\end{bmatrix} = nI - J,$$

where J is the $n \times n$ matrix of all ones, and I is the $n \times n$ identity matrix. It is well known that the eigenvalues of J are n (once) and 0 ($n - 1$ times) [12]. A simple calculation shows that the eigenvalues of this Laplacian matrix are

$$\lambda_1, \lambda_2, \ldots, \lambda_n, 0, \underbrace{n, \ldots, n}_{n-1}.$$

According to Lemma 2.2, we obtain that

$$\epsilon(D) = \frac{1}{n} n^{n-1} [(n - 2)!]^n = n^{n-2} [(n - 2)!]^n.$$
Thus, it follows from Proposition 2.1 that there are \(n^{n-2} [(n-2)!]^n \) distinct universal cycles for \(P_{n,2} \).

Next we consider the universal cycles for \(P_{n,3} \). Let \(D \) be the transition digraph of \(P_{n,3} \) with adjacency matrix \(A \). One can see that \(D \) is balanced, and the out-degree (in-degree) of any vertex equals \(n - 2 \). The following lemma presents the property of the adjacency matrix \(A \).

Lemma 3.1 Let \(D \) be the transition digraph of \(P_{n,3} \) with adjacency matrix \(A \). Then

\[
A^4 + A^3 + (n - 3)A^2 - A - (n - 2)I = (n - 2)(n - 3)J,
\]

where \(J \) is the \(n(n-1) \times n(n-1) \) matrix of all ones, and \(I \) is the \(n(n-1) \times n(n-1) \) identity matrix.

Proof. Let \(\tau_\ell(u, v) \) denote the number of walks from \(u \) to \(v \) in \(D \) of length \(\ell \geq 1 \). In the following, we determine \(\tau_\ell(u, v) \) by distinguishing seven cases for any ordered pair \((u, v) \).

Case 1: \(u = ab \) and \(v = ab \), where \(a, b \in [n] \).

Obviously, \(\tau_1(ab, ab) = \tau_2(ab, ab) = 0 \). The 3-walk from \(ab \) to \(ab \) may be indicated as

\[
ab \rightarrow bx \rightarrow xa \rightarrow ab
\]

where \(x \in [n]\{a, b\} \). Thus, \(\tau_3(ab, ab) = n - 2 \). Similarly, the 4-walk from \(ab \) to \(ab \) is presented as

\[
ab \rightarrow bx \rightarrow xy \rightarrow ya \rightarrow ab
\]

where \(x, y \in [n]\{a, b\} \) and \(x \neq y \). Then \(\tau_4(ab, ab) = (n - 2)(n - 3) \).

Case 2: \(u = ab \) and \(v = ba \), where \(a, b \in [n] \).

It is easy to see that there is not walk from \(ab \) to \(ba \) of length \(\ell \leq 3 \), and so \(\tau_1(ab, ba) = \tau_2(ab, ba) = \tau_3(ab, ba) = 0 \). The 4-walk from \(ab \) to \(ba \) is expressed as

\[
ab \rightarrow bx \rightarrow xy \rightarrow ya \rightarrow ba.
\]

Thus, \(x, y \in [n]\{a, b\} \) and \(x \neq y \), which yielding \(\tau_4(ab, ba) = (n - 2)(n - 3) \).

Case 3: \(u = ab \) and \(v = ac \), where \(a, b, c \in [n] \).

There is not walk from \(ab \) to \(ac \) of length \(\ell \leq 2 \), hence \(\tau_1(ab, ac) = \tau_2(ab, ac) = 0 \). The 3-walk from \(ab \) to \(ac \) may be presented as

\[
ab \rightarrow bx \rightarrow xa \rightarrow ac
\]

where \(x \) belongs to \([n]\{a, b, c\} \). Then \(\tau_3(ab, ac) = n - 3 \). The 4-walk from \(ab \) to \(ac \) is

\[
ab \rightarrow bx \rightarrow xy \rightarrow ya \rightarrow ac.
\]

Obviously, \(x \in [n]\{a, b\} \), \(y \in [n]\{a, b, c\} \) and \(x \neq y \). Thus, \(\tau_4(ab, ac) = n - 3 + (n - 3)(n - 4) = (n - 3)^2 \).
Case 4: \(u = ab \) and \(v = ca \), where \(a, b, c \in [n] \).

In this case, \(uv \) is not an arc in \(D \), thus \(\tau_1(ab, ca) = 0 \). Moreover, \(ab \rightarrow bc \rightarrow ca \) is the unique 2-walk from \(ab \) to \(ca \), and so \(\tau_2(ab, ca) = 1 \). Since the 3-walk from \(ab \) to \(ca \) is

\[
ab \rightarrow bx \rightarrow xc \rightarrow ca,
\]

it means that \(x \in [n] \setminus \{a, b, c\} \). Therefore, \(\tau_3(ab, ca) = n - 3 \). Let

\[
ab \rightarrow bx \rightarrow xy \rightarrow yc \rightarrow ca
\]

be the 4-walk from \(ab \) to \(ca \). It follows that \(x, y \in [n] \setminus \{a, b, c\} \) and \(x \neq y \), hence \(\tau_4(ab, ca) = (n - 3)(n - 4) \).

Case 5: \(u = ab \) and \(v = bc \), where \(a, b, c \in [n] \).

Clearly, \(uv \) is an arc in \(D \), that is, \(\tau_1(ab, bc) = 1 \). Since there is no walk from \(ab \) to \(bc \) of length 2 or 3, we have \(\tau_2(ab, bc) = \tau_3(ab, bc) = 0 \). The 4-walk from \(ab \) to \(bc \) is presented as

\[
ab \rightarrow bx \rightarrow xy \rightarrow yb \rightarrow bc.
\]

It follows that \(x \in [n] \setminus \{a, b\} \), \(y \in [n] \setminus \{b, c\} \) and \(x \neq y \). Therefore, \(\tau_4(ab, bc) = (n - 3)^2 + (n - 2) \).

Case 6: \(u = ab \) and \(v = cb \), where \(a, b, c \in [n] \).

It is easy to see that the length of any walk from \(ab \) to \(cb \) is at least 3. Suppose that

\[
ab \rightarrow bx \rightarrow xc \rightarrow cb
\]

is a 3-walk from \(ab \) to \(cb \). Thus, \(x \in [n] \setminus \{a, b, c\} \), and so \(\tau_3(ab, cb) = n - 3 \). Let

\[
ab \rightarrow bx \rightarrow xy \rightarrow yc \rightarrow cb
\]

be a 4-walk from \(ab \) to \(cb \). It follows that \(x \in [n] \setminus \{a, b, c\} \), \(y \in [n] \setminus \{b, c\} \) and \(x \neq y \), which implies that \(\tau_4(ab, cb) = n - 3 + (n - 3)(n - 4) = (n - 3)^2 \).

Case 7: \(u = ab \) and \(v = cd \), where \(a, b, c, d \in [n] \).

Since \(uv \) is not an arc in \(D \), \(\tau_1(ab, cd) = 0 \). Note that \(ab \rightarrow bc \rightarrow cd \) is the unique 2-walk from \(ab \) to \(cd \). Hence \(\tau_2(ab, cd) = 1 \). For any \(x \in [n] \setminus \{a, b, c, d\} \), \(ab \rightarrow bx \rightarrow xc \rightarrow cd \) forms a 3-walk, thus \(\tau_3(ab, cd) = n - 4 \). The 4-walk from \(ab \) to \(cd \) is presented as

\[
ab \rightarrow bx \rightarrow xy \rightarrow yc \rightarrow cd,
\]

in which \(x \in [n] \setminus \{a, b, c\} \), \(y \in [n] \setminus \{b, c, d\} \) and \(x \neq y \). It follows that \(\tau_4(ab, cd) = n - 3 + (n - 4)^2 \).

Recall that the \((u, v)\)-entry of the matrix \(A^r \) is equal to \(\tau_r(u, v) \). According to the above cases, we determine the entries of matrices \(A, A^2, A^3 \) and \(A^4 \) respectively, as shown in Table 1. Assume that the matrix \(A \) satisfies the following equation

\[
\alpha_0 I + \alpha_1 A + \alpha_2 A^2 + \alpha_3 A^3 + \alpha_4 A^4 = J.
\]
The solution to this system of equations is given by

\[
\begin{align*}
\alpha_0 + \alpha_3(n - 2) + \alpha_4(n - 2)(n - 3) &= 1, \\
\alpha_4(n - 2)(n - 3) &= 1, \\
\alpha_3(n - 3) + \alpha_4(n - 3)^2 &= 1, \\
\alpha_2 + \alpha_3(n - 3) + \alpha_4(n - 3)(n - 4) &= 1, \\
\alpha_1 + \alpha_4((n - 3)^2 + (n - 2)) &= 1, \\
\alpha_2 + \alpha_3(n - 4) + \alpha_4((n - 3) + (n - 4)^2) &= 1.
\end{align*}
\]

The solution to this system of equations is given by

\[
\begin{align*}
\alpha_0 &= \frac{1}{n - 3}, \\
\alpha_1 &= \frac{1}{(n - 2)(n - 3)}, \\
\alpha_2 &= \frac{1}{n - 2}, \\
\alpha_3 &= \frac{1}{(n - 2)(n - 3)}, \\
\alpha_4 &= \frac{1}{(n - 2)(n - 3)}.
\end{align*}
\]

Thus, it follows that

\[-\frac{1}{n - 3}I - \frac{1}{(n - 2)(n - 3)}A + \frac{1}{n - 2}A^2 + \frac{1}{(n - 2)(n - 3)}A^3 + \frac{1}{(n - 2)(n - 3)}A^4 = J,
\]

that is,

\[-(n - 2)I - A + (n - 3)A^2 + A^3 + A^4 = (n - 2)(n - 3)J,
\]

and Equation (5) has been deduced.

Lemma 3.2 Let D be the transition digraph of \(P_{n,3}\) with adjacency matrix A. Then the eigenvalues of A are

\[
n - 2, \frac{1}{(n - 3)(n - 2)}p, \ldots, \frac{1}{n - 3}p, \ldots, q, \ldots, \frac{1}{(n - 3)(n - 2)}q,
\]

where p and q are the roots of \(\lambda^2 + \lambda + n - 2 = 0\).
Proof. Here we define a function \(\phi(x) = x^4 + x^3 + (n - 3)x^2 - x - (n - 2) \). If the eigenvalues of \(A \) are
\[\lambda_1, \lambda_2, \ldots, \lambda_i, \ldots, \lambda_{n(n-1)}, \]
then the eigenvalues of \(A^4 + A^3 + (n - 3)A^2 - A - (n - 2)I \) are
\[\phi(\lambda_1), \phi(\lambda_2), \ldots, \phi(\lambda_i), \ldots, \phi(\lambda_{n(n-1)}), \]
which will be the eigenvalues of \((n - 2)(n - 3)J\)
\[n(n-1)(n-2)(n-3), 0, 0, \ldots, 0, \]
\[\frac{n(n-1)-1}{n} \]
according to Lemma 3.1.

Recall that the out-degree of any vertex in \(D \) is equal to \(n - 2 \), that is, the row sum of \(A \) is \(n - 2 \). Let \(1 \) be a column vector of all ones. It is obvious that \(A1 = (n - 2)1 \), which implies that \(n - 2 \) is an eigenvalue of \(A \). Moreover, since \(\phi(n - 2) = n(n - 1)(n - 2)(n - 3) \), the multiplicity of \(n - 2 \) as an eigenvalue of \(A \) is 1. Therefore, the remaining eigenvalues of \(A \) are the roots of
\[\lambda^4 + \lambda^3 + (n - 3)\lambda^2 - \lambda - (n - 2) = (\lambda - 1)(\lambda + 1)(\lambda^2 + \lambda + n - 2) = 0. \]
So we can deduce that the characteristic polynomial of \(A \) is
\[|\lambda I - A| = (\lambda - n + 2)(\lambda - 1)s_1(\lambda + 1)s_2(\lambda^2 + \lambda + n - 2)s_3, \]
where \(s_1, s_2, s_3 \geq 0 \) and \(s_1 + s_2 + 2s_3 = n(n-1) - 1 \). In other words, the eigenvalues of \(A \) are
\[n-2, 1, \ldots, 1, -1, \ldots, -1, p, \ldots, p, q, \ldots, q, \]
where \(p \) and \(q \) are the roots of \(\lambda^2 + \lambda + n - 2 = 0 \). From Table 1, we obtain that the traces of \(A, A^2 \) and \(A^3 \) are 0, 0 and \(n(n-1)(n-2) \), respectively. Using the relationship between eigenvalues and trace of a matrix, we obtain
\[
\begin{aligned}
&n-2 + s_1 - s_2 + s_3(p + q) = 0, \\
&(n-2)^2 + s_1 + s_2 + s_3(p^2 + q^2) = 0, \\
&(n-2)^3 + s_1 - s_2 + s_3(p^3 + q^3) = n(n-1)(n-2).
\end{aligned}
\]
(6)

Since \(p \) and \(q \) are the roots of \(\lambda^2 + \lambda + n - 2 = 0 \), it follows that
\[
\begin{aligned}
p + q &= -1, \\
p^2 + q^2 &= (p + q)^2 - 2pq = -2n + 5, \\
p^3 + q^3 &= (p + q)(p^2 + q^2 - pq) = 3n - 7.
\end{aligned}
\]
(7)
Combining (6) and (7), we obtain that \(s_1 = (n - 1)(n - 2)/2, s_2 = n(n - 3)/2 \) and \(s_3 = n - 1 \), and the result follows.
Now, we provide the proof of Theorem 1.3.

Proof of Theorem 1.3. Let D be the transition digraph of $P_{n,3}$ with adjacency matrix A and Laplacian matrix L. Since the out-degree of any vertex in D is $(n-2)$, we have $L = (n-2)I - A$. Thus, it follows from Lemma 3.2 that the eigenvalues of L are

$$0, n-3, \ldots, n-3, n-1, \ldots, n-1, n-2 - p, n-2 - q, \ldots, n-2 - q,$$

where p and q are the roots of $\lambda^2 + \lambda + n - 2 = 0$. Since $pq = n-2$ and $p + q = -1$, we have

$$(n-2-p)(n-2-q) = (n-2)^2 - (p+q)(n-2) + pq = n(n-2).$$

According to Lemma 2.2, we obtain that

$$\epsilon(D) = \frac{1}{n(n-1)}(n-3)^{(n-1)(n-2)}(n-1)^{n(n-3)}[n(n-2)]^{n-1}[(n-3)!]^{n(n-1)}
= (n-3)^{(n-1)(n-2)}(n-2)^{n-1}(n-1)^{(n-1)(n-2)}2^{-2}n^{n-2}[(n-3)!]^{n(n-1)}.$$}

The number of distinct universal cycles for $P_{n,3}$ can be deduced directly based on Proposition 2.1.

\[\square \]

4 Conclusions

By discussing the entries of powers of adjacency matrix A, we construct a polynomial of A, and then the eigenvalues of A can be provided. According to this new method, enumerating results of universal cycles for $P_{n,2}$ and $P_{n,3}$ are proposed precisely. This new method can be applied to general case by analyzing the entries of A^i.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61772476 and 12001498).

References

[1] J. Bang-Jensen and G. Gutin, *Digraphs: Theory, Algorithms and Applications*, Springer Monographs in Mathematics, 2nd ed., Springer-Verlag, London, 2009.

[2] N. G. de Bruijn, “A combinatorial problem,” *Proceedings of the Section of Sciences of the Koninklijke Nederlandse Akademie van Wetenschappen te Amsterdam*, 49 (1946) 758–764.

[3] F. Chung, P. Diaconis, and R. Graham, “Universal cycles for combinatorial structures,” *Discrete Mathematics*, 110 (1992) 43–59.
[4] D. Gabric, J. Sawada, A. Williams, and D. Wong, “A successor rule framework for constructing k-ary de Bruijn sequences and universal cycles,” *IEEE Transactions on Information Theory*, 66 (2020) 679–687.

[5] A. E. Holroyd, F. Ruskey and A. Williams, “Shorthand universal cycles for permutations,” *Algorithmica*, 64 (2012) 215–245.

[6] B. Jackson, “Universal cycles of k-subsets and k-permutations,” *Discrete Mathematics*, 117 (1993) 141–150.

[7] B. Jackson, B. Stevens, and G. Hurlbert, “Research problems on Gray codes and universal cycles,” *Discrete Mathematics*, 309 (2009) 5341–5348.

[8] R. Johnson, “Universal cycles for permutations,” *Discrete Mathematics*, 309 (2009) 5264–5270.

[9] D.E. Knuth, *The Art of Computer Programming, Volume 4, Generating All Tuples and Permutations*, Fascicle 2, Addison-Wesley, 2005.

[10] F. Ruskey and A. Williams, “An explicit universal cycle for the $(n-1)$-permutations of an n-set,” *ACM Transactions on Algorithms*, 6-3 (2010) article 45: 1–12.

[11] R. Sedgewick, “Permutation Generation Methods,” *Computing Surveys*, 9 (1977) 137–164.

[12] R.P. Stanley, *Algebraic Combinatorics*, Springer-Verlag, New York, 2013.