Cardiovascular Toxicity of Targeted Therapies for Cancer: An Overview of Systematic Reviews

Marina T. van Leeuwen, MPH, PhD,1,*,† Steven Luu, MD,1,† Howard Gurney, MBBS, FRACP,2 Martin R. Brown, MBBS, FRACP, FCSANZ, FESC, MRCP,2 Sallie-Anne Pearson, PhD,1 Kate Webber, MBBS, PhD, FRACP,3,4 Lee Hunt, MEd,5 Soojung Hong, MD,1,6 Geoffrey P. Delaney, MBBS, MD, PhD, FRANZCR,7,8,9 Claire M. Vajdic1

1Centre for Big Data Research in Health, University of New South Wales, Sydney, New South Wales, Australia; 2Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia; 3Department of Oncology, Monash Health, Clayton, Victoria, Australia; 4School of Clinical Sciences, Monash University, Clayton, Victoria, Australia; 5Cancer Voices NSW, Milsons Point, New South Wales, Australia; 6Division of Oncology-Haematology, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea; 7Liverpool Cancer Therapy Centre, Liverpool, New South Wales, Australia; 8Collaboration for Cancer Outcomes Research and Evaluation, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia; and 9South Western Sydney Clinical School, University of New South Wales, Liverpool, New South Wales, Australia

†Co-first authors.
*Correspondence to: Marina T. van Leeuwen, MPH, PhD, Centre for Big Data Research in Health, University of New South Wales, Sydney 2052, New South Wales, Australia (e-mail m.vanleeuwen@unsw.edu.au).

Abstract

Background: Several targeted therapies for cancer have been associated with cardiovascular toxicity. The evidence for this association has not been synthesized systematically nor has the quality of evidence been considered. We synthesized systematic review evidence of cardiovascular toxicity of individual targeted agents. Methods: We searched MEDLINE, Embase, and the Cochrane Database of Systematic Reviews for systematic reviews with meta-analyses of cardiovascular outcomes for individual agents published to May 2020. We selected reviews according to prespecified eligibility criteria (International Prospective Register of Systematic Reviews CRD42017080014). We classified evidence of cardiovascular toxicity as sufficient, probable, possible, or indeterminate for specific cardiovascular outcomes based on statistical significance, study quality, and size. Results: From 113 systematic reviews, we found at least probable systematic review evidence of cardiovascular toxicity for 18 agents, including high- and all-grade hypertension for bevacizumab, ramucirumab, axitinib, cediranib, pazopanib, sorafenib, sunitinib, vandetanib, aflibercept, abiraterone, and enzalutamide, and all-grade hypertension for nintedanib; high- and all-grade arterial thromboembolism (includes cardiac and/or cerebral events) for bevacizumab and abiraterone, high-grade arterial thromboembolism for trastuzumab, and all-grade arterial thromboembolism for sorafenib and tamoxifen; high- and all-grade venous thromboembolism (VTE) for lenalidomide and thalidomide, high-grade VTE for cetuximab and panitumumab, and all-grade VTE for bevacizumab; high- and all-grade left ventricular ejection fraction decline or congestive heart failure for bevacizumab and trastuzumab, and all-grade left ventricular ejection fraction decline/congestive heart failure for pazopanib and sunitinib; and all-grade corrected QT interval prolongation for vandetanib. Conclusions: Our review provides an accessible summary of the cardiovascular toxicity of targeted therapy to assist clinicians and patients when managing cardiovascular health.

Cancer treatment has changed dramatically over the past 2 decades with the evolution of more selective, mechanism-based therapies. Although these targeted therapies have contributed to considerable improvements in patient survival, they have been associated with short-term and longer term cardiovascular toxicity because of shared cardiovascular protein signaling pathways (1). These toxicities include but are not limited to hypertension, thromboembolism, reduction in left ventricular ejection fraction (LVEF), congestive heart failure, and arrhythmias. Cardiovascular toxicity associated with established anti-neoplastic agents, such as anthracyclines, has been well described, whereas the evidence for targeted agents is still...
emerging. Moreover, and in contrast to anthracyclines, evidence-based guidelines for monitoring and managing potential cardiovascular toxicity in patients exposed to these agents are largely lacking (2,3).

Overviews of systematic reviews (also called umbrella reviews) collate information from multiple systematic reviews to provide a comprehensive synthesis of evidence (4,5). Additionally, they can provide a perspective on the heterogeneity, possible sources of bias, and methodological quality of systematic reviews that may affect the credibility of evidence in a field (6). There have been no systematically conducted overviews of the cardiovascular toxicity of targeted therapy for cancer. In this overview, we provide an accessible synthesis with which to inform clinicians in general practice, cardiology, and oncology, as well as patients, when managing cardiovascular health.

Methods

Protocol and Registration

Our study was conducted according to an a priori protocol (7) registered on the International Prospective Register of Systematic Reviews (PROSPERO CRD42017080014) (8,9). We followed methodological guidelines for overviews from the Cochrane Collaboration (4), the Joanna Briggs Institute (5), and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (10,11).

Information Sources and Search Strategy

We searched MEDLINE, Embase, and the Cochrane Database of Systematic Reviews. Our search strategy was based on predefined systematic review search filters (12) and was aided by an experienced research librarian. Search terms comprised keywords related to cancer, drug therapy, adverse events, toxicity, systematic reviews, and meta-analyses. The search strategy was adapted for each database (see Supplementary Methods). As per our published protocol, our initial search included English language studies published to December 31, 2016; we performed an updated search on May 20, 2020, to include studies published up to that date. We hand-searched reference lists to identify any further eligible studies. We used EndNote X8.0.1 (Thomson Reuters 2016) to manage retrieved studies.

Eligibility Criteria

We included published, peer-reviewed systematic reviews of phase II–III randomized controlled trials (RCTs) and observational cohort studies that reported meta- or pooled estimates for cardiovascular outcomes for individual targeted agents. Reviews in which the research question was not clearly defined, did not present the sources searched or a search strategy, or did not provide information on the inclusion and exclusion criteria applied were not considered systematic and were therefore not included (13). We also did not include systematic reviews published only in abstract form.

We included studies of human cancer patients, with no restrictions by cancer type, patient age, or sex. The definition of targeted therapy included agents within the World Health Organization Anatomical Therapeutic Chemical classification rubrics (14), as follows: monoclonal antibodies (L01XC), protein kinase inhibitors (L01XE), other antineoplastic agents (L01XX), hormone antagonists and related agents (L02B), and immunomodulating agents (L04AX). We included agents administered in both neoadjuvant and adjuvant settings, and restricted, where possible, to first-line therapy; we excluded studies solely examining second-line therapy because of the possibility of nonrandom distribution of patients with prior exposure. Exceptions were studies in metastatic prostate cancer patients, almost all of whom had received prior androgen deprivation therapy, and patients receiving extended adjuvant tamoxifen, our justification being equal distribution of prior exposure. We did not include photodynamic therapy.

To enable an assessment of individual agents, we included only those systematic reviews that compared the agent with placebo, or the agent in combination with standard therapy with standard therapy alone, with or without concurrent radiotherapy, surgery, or transplantation. We excluded systematic reviews with 1 or more studies in which the agent of interest was compared directly with another agent (head-to-head studies), network meta-analyses, or in which the agent was given in both the treatment and control arms. We included dose-specific estimates for bevacizumab (low or high, as specified by the study authors) where available; for studies presenting both dose-specific and “any dose” estimates, only the dose-specific estimates contributed to the evidence synthesis.

We included systematic reviews if they reported meta-estimates for at least 1 cardiovascular outcome. We considered all relevant diseases of the cardiovascular system, including but not limited to hypertension, arterial thrombosis (including myocardial infarction, ischaemic heart disease, and cerebrovascular disease), venous thrombosis (including deep vein thrombosis and pulmonary embolism), LVEF decline and congestive heart failure, and arrhythmia. Definitions of cardiovascular toxicity and grade were as reported by the study authors. We did not include hematological toxicities or edema.

Data Extraction

After initial duplicate removal, 2 reviewers (S.L. and C.V.) independently screened titles and abstracts against eligibility criteria. They retrieved potentially relevant studies in full-text format to further determine inclusion. The reviewers then extracted data from each included study independently using a predefined data extraction form, which was piloted and refined accordingly. Where data reported within systematic reviews were inconsistent, the reviewers contacted the authors directly for clarification; they excluded systematic reviews with data irregularities that could not be resolved by communication with the authors. The reviewers extracted the following data items: bibliographic details, methodological characteristics (study design and bias assessment, intervention, cardiovascular outcome), patient characteristics, and results. The reviewers resolved discrepancies through discussion and consultation with a third reviewer (M.v.L.) if consensus could not be reached.

Assessment of Methodological Quality of Included Reviews

Two reviewers (S.L. and C.V.) independently appraised the methodological quality of included reviews using A MeaSurement Tool to Assess systematic Reviews (AMSTAR) (15,16), a validated and reliable tool (17). We did not exclude reviews based on their AMSTAR score; however, we used AMSTAR scores to preferentially select higher quality reviews in the case of overlapping primary studies (see “Evidence Synthesis”).
Assessment of Quality of Evidence

Umbrella reviews should provide an indication of the quality of the primary studies underlying each of the systematic reviews that have been included in the umbrella reviews (5). However, there is no agreed-on method with which to evaluate the quality of evidence across systematic reviews (18). The GRADE system, as applied in Cochrane reviews (4), to assess the quality of evidence and strength of recommendations cannot be readily applied in overviews of systematic reviews (18,19). Given the scope of this overview, it was not feasible to judge the quality of each primary study included in each systematic review. Nevertheless, for each systematic review, we report in detail the method of bias assessment applied and the distribution of scores across each domain. Additionally, the strict criteria on which we based our synthesis ensured the contribution of only those systematic reviews in which the quality of primary studies was adequately reported and considered (see “Evidence Synthesis”) (18).

Evidence Synthesis

We applied set criteria in the case of more than 1 systematic review of the same therapy in the same patient population and for the same cardiovascular outcome. If the primary studies were completely overlapping, we selected the review of the highest quality. If the primary studies were partially overlapping, we retained both reviews provided that the lower quality review added more than one-third new primary studies. And if the primary studies did not overlap, we retained both reviews. We noted systematic reviews that were removed because of completely overlapping primary studies and used footnotes to indicate systematic reviews with partially overlapping primary studies. For studies presenting meta-estimates for multiple organs, we selected only the all-organ estimate to avoid duplication with organ-specific studies. We display the published meta-estimates for each agent and cardiovascular outcome; however, we did not compute an overview meta-estimate, because of marked heterogeneity in study populations and cardiovascular outcomes between studies and difficulty determining overlapping primary studies (20,21). We applied the criteria described in Figure 1 to classify agents as having sufficient, probable, or possible systematic review evidence of cardiovascular toxicity, indeterminate systematic review evidence of toxicity, or sufficient systematic review evidence of no toxicity for each cardiovascular outcome (7). This terminology is as per that applied by the International Association for Research on Cancer when synthesizing and classifying evidence regarding suspected hazards to human health (22). We considered evidence to be sufficient if a systematic review was of high quality, assessed the quality of the primary studies and took this into account in formulating their conclusions, and identified a statistically significant association based on at least 1000 exposed patients (23-25). We presented our evidence synthesis using a “stop-light indicator” for visualization (5). For each agent and cardiovascular outcome, evidence of cardiovascular toxicity superseded any other classification; where there was sufficient systematic review evidence of no cardiovascular toxicity, this superseded indeterminate evidence. We prepared a Plain Language Summary of our study according to the Cochrane standards (26).

Results

Eligible Systematic Reviews

We identified 22 113 nonduplicate, potentially relevant articles in our literature search (see Supplementary Figure 1, available online, for the Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram). After screening titles and abstracts, and full-text review, 160 systematic reviews were eligible for data extraction. We excluded a further 33 systematic reviews during the data extraction process, 18 due to the inclusion of primary studies containing head-to-head comparisons (27-44), 6 due to the inclusion of primary studies containing noncomparable or unclear trial arms (45-50), 5 due to the inclusion of primary studies of exclusively second-line therapies (51-55), and 4 due to unresolvable data irregularities or methodological issues (56-59). Due to overlapping primary studies in higher quality systematic reviews, 14 otherwise eligible systematic reviews did not contribute to the evidence synthesis (60-73). Our final evidence synthesis involved a total of 113 systematic reviews (74-186).

Characteristics of Included Systematic Reviews

Characteristics of the 113 systematic reviews that contribute to the evidence synthesis are given in Supplementary Table 1 (available online). Twenty-one (18.6%) systematic reviews were judged to be of high quality (AMSTAR score 8-11), 82 (72.6%) to be of moderate quality (AMSTAR score 4-7), and 10 (8.8%) to be of low quality (AMSTAR score 0-3). Less than one-half (n = 48, 42.5%) of systematic reviews assessed the quality of the primary studies and took this into account in formulating their conclusions. All but 3 (94,114,171) of the systematic reviews included RCTs only. There was heterogeneity by patient population, including by cancer site, type (predominantly solid), stage, and treatment setting. Only 22 (19.5%) of the systematic reviews were conducted exclusively in the first-line setting or presented subanalyses for the first-line setting. There was also heterogeneity in the investigation and reporting of cardiovascular toxicity. Only 48 (42.5%) of included systematic reviews investigated adverse events, including cardiovascular toxicity, as a primary outcome. Approximately one-half (n = 60, 53.1%) used a version of the National Cancer Institute Common Toxicity Criteria for Adverse Events, the Common Toxicity Criteria, or the New York Heart Association Classification to define cardiovascular toxicity; the remainder did not report the source of the definition applied. Systematic reviews often reported incomplete information about the contributing primary studies. For instance, length of follow-up either was mostly not reported (n = 63, 55.8%) or was incomplete (n = 33, 29.2%). Many systematic reviews (n = 20, 17.7%) did not report the number of exposed patients. Moreover, it was not always clear which primary studies contributed to which meta-estimate, complicating the assessment of overlapping primary studies.

Results of Evidence Synthesis

Meta-estimates were identified for 1 or more cardiovascular outcomes for 29 individual targeted agents, including 9 monoclonal antibodies, 12 protein kinase inhibitors, 2 “other antineoplastic agents,” 5 hormone antagonists, and 2 immunomodulating agents. The evidence synthesis is...
presented in Figure 2 and a Plain Language Summary in Supplementary Figure 2 (available online). Extracted meta-estimates for agents with at least probable systematic review evidence of cardiovascular toxicity are summarized in Tables 1-3; estimates are presented in full in Supplementary Tables 2-6 (available online).

There was sufficient evidence of (increased risk of) high-grade hypertension for bevacizumab, and at least probable evidence of all-grade hypertension, irrespective of dose (Table 1). There was sufficient evidence of high- and all-grade hypertension for pazopanib, sorafenib, aflibercept, abiraterone, and enzalutamide, and all-grade hypertension for vandetanib. There was probable evidence of high- and all-grade hypertension for axitinib, cediranib, and sunitinib; high-grade hypertension for vandetanib; and all-grade hypertension for nintedanib.

There was sufficient evidence of high- and all-grade thromboembolism and arterial thromboembolism, and high-grade cardiac events for any-dose bevacizumab (Table 2). There was sufficient evidence of high- and all-grade cardiac events for abiraterone, and high-grade cardiac events for trastuzumab. There was probable evidence of all-grade arterial thromboembolism and cardiac events for cetuximab in colorectal cancer patients, on high- or all-grade cardiac events for tamoxifen or enzalutamide, or on all-grade cardiac events for letrozole.

There was probable evidence of all-grade cerebrovascular events for high-dose bevacizumab. There was also probable evidence of all-grade cerebrovascular events for tamoxifen, but only for all settings combined; there was sufficient evidence of...
no effect of tamoxifen on cerebrovascular events in the extended adjuvant setting. There was sufficient evidence of no effect on all-grade cerebrovascular events for letrozole.

There was sufficient evidence of high-grade venous thromboembolism (VTE) for cetuximab and panitumumab and all-grade VTE for lenalidomide. There was probable evidence of high-grade VTE for both lenalidomide and thalidomide. There was probable evidence of all-grade VTE for bevacizumab, irrespective of dose, with the notable exception of bevacizumab studies in breast cancer patients, for which there was sufficient evidence of no effect.

There was sufficient evidence of high- and all-grade congestive heart failure or LVEF decline for trastuzumab and probable evidence for any-dose bevacizumab (Table 3). There was probable evidence of all-grade congestive heart failure or LVEF decline for pazopanib and sunitinib. There was sufficient evidence of all-grade QTc interval prolongation for vandetanib.

Discussion

We provide an overview of the cardiovascular toxicities of targeted therapy based on contemporary systematic review.
Table 1: Summary of estimates for agents with at least probable systematic review evidence of hypertension

Agent	Molecular target	High grade **Evidence**^a	All grade **Evidence**^b	Highest level of evidence **Evidence**^c	Cancer	% Outcome in exposed	RR or OR **Evidence**^d	Highest level of evidence **Evidence**^c	Cancer	% Outcome in exposed	RR or OR **Evidence**^d
Bevacizumab, low dose	VEGF-A	Sufficient (141)	Solid	4.8 (3.5 to 6.4)	Probable (154, 179)	Solid	17.9	4.1-7.1			
Bevacizumab, high dose	VEGF-A	Sufficient (141)	Solid	7.4 (4.2 to 12.9)	Probable (154, 179)	Solid	17.9	4.1-7.1			
Paclitaxel, any dose	VEGF-A	Sufficient (82, 94, 116, 117, 127, 162)	Incomplete	-	Sufficient (99, 141, 172)	Solid	3.0 (2.3 to 3.8)	-			
Ramucirumab	VEGFR-2	Probable (145, 166)	Solid	9.0-9.9	Probable (145, 166)	Solid	4.1-7.1				
Axitinib	VEGFR-1, -2, and -3	Probable (124)	Solid	6.0	Probable (157)	Solid	3.0 (2.3 to 3.8)				
Cediranib	VEGFR-1, -2, and -3	Probable (124)	Solid	11.9	Probable (119, 124)	Solid	2.8-3.7				
Nintedanib	VEGFA (82, 94, 116, 117, 127, 162)	Probable (154, 179)	Solid	6.1 (4.0 to 11.0)	Probable (157)	Solid	8.7				
Pazopanib	VEGFR-1, -2, and -3	Probable (124)	Solid	16.3	Probable (124)	Solid	3.0-5.1				
Sorafenib	c-RAF, VEGFR-1, -2, and -3	Probable (124)	Solid	6.0	Probable (124)	Solid	3.0-5.1				
Sunitinib	c-RAF, VEGFR-1, -2, and -3	Probable (124)	Solid	11.9	Probable (119, 157)	Solid	4.4-5.0				
Vandetanib	VEGFR-2, EGFR, RET	Probable (176)	Lung	1.6	Sufficient (169)	Lung	4.1 (2.1 to 8.0)				
Aflibercept	VEGFR-1 and -2, PlGF	Sufficient (138)	Solid	13.8	Sufficient (138)	Solid	4.5 (3.8 to 5.2)				
Abiraterone	CYP17A1	Sufficient (146)	mHSPC	13.6	Sufficient (180)	mCRPC	15.5				
Enzalutamide	Androgen receptor	Sufficient (107, 183)	Prostate	Incomplete	Sufficient (107, 183)	Prostate	Incomplete				

a As defined by systematic review study authors or where reported as grade 3 or greater (severe) based on National Cancer Institute Common Terminology Criteria for Adverse Events (NCI CTC AE) grading scale.
b As defined by systematic review study authors or where grade was not specified.
c Shows range where evidence grade was informed by more than 1 study.
d Shows range where evidence grade was not informed by more than 1 study.

a As defined by systematic review study authors or where reported as grade 3 or greater (severe) based on National Cancer Institute Common Terminology Criteria for Adverse Events (NCI CTC AE) grading scale.
b As defined by systematic review study authors or where grade was not specified.
c Shows range where evidence grade was informed by more than 1 study.
d Shows range where evidence grade was not informed by more than 1 study.
Outcome, agent	Molecular target	Highest level of evidence	% Outcome in exposed	RR or OR	Highest level of evidence	% Outcome in exposed	RR or OR	
Thromboembolism								
Bevacizumab, high dose	VEGF-A	—	—	—				
Bevacizumab, any dose	VEGF-A	Sufficient (85, 127) mCRC	7.0-7.9	1.6-1.8				
Lenalidomide	Lymphoid transcription factors IKZF1 and IKZF3	Probable (165) MM	8.5	(1.4 to 8.3)				
ATE								
Bevacizumab, low dose	VEGF-A	Probable (148) Solid	2.6	1.4	(1.0 to 2.0)	Probable (140) Solid	1.5	(1.1 to 2.1)
Bevacizumab, any dose	VEGF-A	Sufficient (161) mCRC	2.9	2.1	(1.1 to 3.7)	Probable (116) Ovarian	2.4	(1.3 to 4.0)
Sorafenib	c-RAF; VEGFR-1, -2, and -3; PDGFR-β; c-kit; RET; FLT-3	—	—	—	—	Probable (136) Solid	1.7	(1.2 to 4.4)
Cardiac events								
Bevacizumab, low dose	VEGF-A	—	—	—	—	Probable (88) Solid	1.9	(1.1 to 4.2)
Bevacizumab, high dose	VEGF-A	—	—	—	—	Probable (156) Solid	1.6	(1.6 to 12.1)
Bevacizumab, any dose	VEGF-A	Sufficient (117) Breast	1.7	3.2	(1.5 to 7.0)	—	—	—
Trastuzumab	HER-2	Sufficient (114, 160) Breast	Incomplete	1.9-2.5	(1.2 to 3.3)	—	—	—
Sorafenib	c-RAF; VEGFR-1, -2, and -3; PDGFR-β; c-kit; RET; FLT-3	—	—	—	—	Probable (157) Solid	1.5	(1.2 to 3.3)
Abiraterone	CYP17A1	Sufficient (144, 146) mHSPC, mCRPC	4.0-6.5	2.1-2.9	(1.0 to 1.6)	Sufficient (180) mCRPC	17.1	(1.0 to 1.6)
Cerebrovascular events								
Bevacizumab, high dose	VEGF-A	—	—	—	—	Probable (156, 186) Solid	1.4-1.4	(1.0 to 1.0)
Tamoxifen^c	ER-α and -β	—	—	—	—	Probable (83) Breast	1.4	(1.1 to 2.0)
VTE								
Bevacizumab, low dose	VEGF-A	—	—	—	—	Probable (132) Solid	NR	(1.1 to 1.6)
Bevacizumab, high dose	VEGF-A	—	—	—	—	Probable (132) Solid	NR	(1.0 to 1.7)
Bevacizumab, any dose	VEGF-A	—	—	—	—	Probable (168) Ovarian	NR	(1.0 to 2.0)

(continued)
Outcome, agent	Molecular target	Highest level of evidence (ref)	% Outcome in exposed	RR or OR
Cetuximab	EGFR	Sufficient (130)	5.3	(1.2 to 1.8)
			—	—
Panitumumab	EGFR	Sufficient (130)	9.0	(1.2 to 1.8)
			—	—
Lenalidomide	Lymphoid			
transcription factors IKZF1 and IKZF3	Probable (185)	4.4	(1.5 to 4.4)	
		MM	Sufficient (170)	6.1
		MM	Probable (112)	7.5
Thalidomide	Lymphoid			
transcription factors IKZF1 and IKZF4	Probable (110)	5.3	(1.2 to 5.1)	
		MM	Probable (112)	7.5

a As defined by systematic review study authors or where reported as grade 3 or greater (severe) based on National Cancer Institute Common Terminology Criteria for Adverse Events. — indicates no systematic reviews; CI = confidence interval; c-kit = stem cell factor receptor; c-RAF = proto-oncogene serine/threonine-protein kinase; CYP17A1 = cytochrome P450 17A1; EGFR = epidermal growth factor receptor; ER = estrogen receptor; FLT-3 = FMS-like tyrosine kinase; IKZF = Ikaros family zinc finger transcription factors; mCRC = metastatic colorectal cancer; mCRPC = metastatic castration resistant prostate cancer; MM = multiple myeloma; NR = not reported; OR = odds ratio; PDGFR = platelet-derived growth factor receptors; RET = glial cell line-derived neurotrophic factor receptor (rearranged during transfection); RR = relative risk; VEGF = vascular endothelial growth factor; VEGFR = vascular endothelial growth factor receptor.
| Outcome, agent | Molecular target | Highest level of evidence (ref) | Cancer | % outcome in exposed
| | | | | RR or OR
		High-grade	All-grade				
CHF or LVEF decline	Bevacizumab, high dose	VEGF-A	Probable (92, 135)	Breast, solid	1.1-1.6	2.3-4.5	
		Bevacizumab, any dose	VEGF-A	Probable (93, 96, 167)	Breast, solid	Incomplete	2.3-5.7
	Trastuzumab	HER-2	Sufficient (114, 131)	Breast	Incomplete	2.0-5.1	
	Pazopanib	VEGFR-1, -2, and -3; c-kit; PDGFR-α and -β; FGFR; c-Fms	—	—	—		
	Sunitinib	VEGFR-1, -2, and -3; PDGFR-α and β; c-kit; RET; FLT-3	—	—	—		
QTc interval prolongation	Vandetanib	VEGFR-2, EGFR, RET	—	—	—		

aAs defined by systematic review study authors, or where reported as grade 3 or higher (severe) based on National Cancer Institute Common Terminology Criteria for Adverse Events. — = no systematic reviews; CI = confidence interval; c-Fms = transmembrane glycoprotein receptor tyrosine kinase; CHF = congestive heart failure; c-kit = stem cell factor receptor; EGFR = epidermal growth factor receptor; FGFR = fibroblast growth factor receptor; FLT-3 = FMS-like tyrosine kinase 3; LVEF = left ventricular ejection fraction; NR = not reported; OR = odds ratio; PDGFR = platelet-derived growth factor receptor; QTc = corrected QT; RET = glial cell line-derived neurotrophic factor receptor (rearranged during transfection); RR = relative risk; VEGF = vascular endothelial growth factor; VEGFR = vascular endothelial growth factor receptor.

bAs defined by systematic review study authors or where grade was not specified.

cShows range where evidence grade was informed by more than 1 study.

dShows range in point estimates where evidence grade was informed by more than 1 study, or RR or OR (95% CI) where informed by 1 study.
sequently, peripheral vascular resistance is increased, leading to an imbalance between vasodilation and vasoconstriction; consequently with nitric oxide–mediated vascular homeostasis, causing the vascular endothelial growth factor (VEGF) signalling pathway or its receptor (VEGFR). VEGF-VEGFR inhibitors interfere with nitric oxide–mediated vascular homeostasis, causing an imbalance between vasodilation and vasoconstriction; consequently, peripheral vascular resistance is increased, leading to hypertension (1). New-onset or worsening hypertension typically arises within the first few weeks of exposure (187) and is considered a marker of oncological efficacy (188). We did not identify any eligible systematic reviews of hypertension and regorafenib, because the primary studies were conducted solely in heterogenous, previously treated patients (124).

The increased risk of hypertension for men with metastatic castration-resistant and/or hormone-sensitive prostate cancer receiving enzalutamide and abiraterone is supported by recent observational data (189). Both therapies target the androgen signalling pathway: enzalutamide inhibits the androgen receptor, and abiraterone inhibits testosterone synthesis through inhibition of cytochrome P450 (CYP17A1) (190). Treatment with abiraterone can lead to increased levels of steroids with mineralocorticoid effects, including hypertension, mitigated by the use of prednisone (191). Most men had received prior androgen deprivation therapy, and some had received prior docetaxel. Observational data have consistently shown that androgen deprivation therapy in itself increases the risk of cardiovascular events (192) as well as metabolic syndrome and its components (hypertension, dyslipidaemia, hyperglycaemia, obesity) (193) because of the effect of inhibition of testosterone production on metabolic pathways.

The increased risk of arterial cardiovascular and cerebrovascular events for some monoclonal antibodies and protein kinase inhibitors relates to the disruption of endothelial cell function. Increased endothelial cell apoptosis results in exposure of the subendothelial membrane, activating the coagulation cascade and leading to thrombosis (194). Of interest, as noted by others, we saw increased risk of cardiovascular events for abiraterone but not enzalutamide, suggesting a different cardiovascular toxicity profile (73,107).

The conflicting evidence we observed for bevacizumab relates to heterogeneity in patient populations; there was increased risk in studies of patients with colorectal and solid tumors combined but not breast cancer. Patients may have different background risks of thrombosis—for instance, cardiovascular disease and colorectal cancer have shared risk factors—and different concurrent chemotherapy regimens.

We found sufficient evidence of no effect on arterial cardiovascular or cerebrovascular events in postmenopausal women with breast cancer receiving adjuvant or extended adjuvant tamoxifen; in fact, a 33% reduction in risk for cardiovascular events was reported for adjuvant tamoxifen (111). The potential cardioprotective effects of tamoxifen appear to relate to the alteration of serum lipid levels (195,196). We also saw no effect on cardiovascular or cerebrovascular events for extended adjuvant letrozole (111); previous evidence, largely based on head-to-head comparisons with tamoxifen, has been conflicting, possibly because of the cardioprotective effects of the latter (111,196,197). The effects of tamoxifen on venous thrombotic events were indeterminate (83), although evidence of increased risk is suggested by both RCT and observational data (197).

The increased risk of VTE, specifically deep vein thrombosis, in multiple myeloma patients treated with lenalidomide and thalidomide has been seen in both RCT and observational data and is consistently higher in patients concurrently treated with dexamethasone (198,199).

Cardiotoxicity in anthracycline-exposed patients receiving trastuzumab is well described; direct damage to myocytes by exposure to anthracyclines may render patients more vulnerable to trastuzumab-induced cardiotoxicity (200). We saw sufficient evidence of increased risk of LVEF decline and congestive heart failure in HER-2 positive breast cancer patients treated with trastuzumab with or following anthracycline treatment. In subanalyses, this effect was evident only for patients receiving anthracycline-containing regimens, not taxane- or aromatase inhibitor-containing regimens, although no statistically significant differences were detected due to small numbers (79).

There was sufficient evidence of increased risk of QTc interval prolongation in patients treated with vandetanib for various solid cancers; a dose-response effect has also been reported (102). Drug-induced QTc interval prolongation is caused by interaction with myocardial potassium ion channels (hERG K+) impeding electrical flow and delaying impulse conduction (201). This predisposes to malignant cardiac arrhythmias such as torsades de pointes and cardiac arrest.

Early detection and treatment of cardiovascular complications of cancer therapy is currently the primary focus of oncology (2,202). Our evidence synthesis supports recommendations for blood pressure monitoring and institution of early antihypertensive therapy for patients treated with drugs targeting the VEGF-VEGFR signalling pathway, including bevacizumab, ramucirumab, axitinib, cediranib, nintedanib, pazopanib, sorafenib, sunitinib, and afiblercept as well as abiraterone and enzalutamide. Clinical surveillance for arterial or VTE is recommended for patients treated with bevacizumab, cetuximab, panitumumab, sorafenib, lenalidomide, and thalidomide. Cardiac surveillance by clinical review and noninvasive imaging is recommended for patients treated with bevacizumab, trastuzumab, pazopanib, sorafenib, sunitinib, vorinostat, and abiraterone.

Cardiovascular monitoring should be individualized based on patients’ risk profile (202,203). Risk factors that predispose to cardiovascular toxicity should be discussed with patients, and modifiable risk factors should be addressed during and after cancer therapy. Monitoring with transthoracic echocardiogram and electrocardiogram should be considered in high-risk patients, such as those with preexisting cardiovascular disease or metabolic syndrome, prior chemotherapy or radiotherapy, or family history of cardiovascular disease (202). The detection of subclinical disease remains challenging, and recommendations for the routine use of biomarkers, such as troponin or brain natriuretic peptides, are not universal (2,3).

This is the first overview to our knowledge to appraise rigorously and synthesize comprehensively the published systematic review evidence of cardiovascular toxicity of targeted
therapy for cancer. Systematic reviews that adequately incorporate quality assessment are considered to provide the highest level of research evidence (204). The classification of sufficient or probable evidence of cardiovascular toxicity, or of no effect, was based only on high-quality reviews or on moderate-quality reviews in which the quality of primary studies was adequately assessed and also took the number of exposed patients into consideration. Our synthesis is therefore likely to be conservative. These steps were necessitated by the preponderance of low-quality systematic reviews, which fail to adequately account for the quality of primary studies (205).

Several limitations must be considered. Overviews of systematic reviews present several methodological challenges (18,20). First, our restriction to published systematic review evidence precludes the inclusion of agents for which systematic reviews have not yet been conducted or for which systematic reviews were deemed ineligible. Much of the eligible, published literature pertains to antiangiogenic agents; for instance, we found only 1 eligible systematic review on immune checkpoint inhibitors (108), and 1 on MEK inhibitors (74). Because there is currently no agreed method for the inclusion of additional primary studies, up-to-datedness remains an issue (206).

Second, despite our intention to include systematic reviews of observational studies, almost all were of RCTs. Estimates of cardiovascular risk based on RCTs may reflect outcomes in healthier populations, often without preexisting cardiovascular morbidity, and may therefore underestimate the toxicities that would be observed in routine clinical care. In addition, reporting of adverse events in RCTs is often suboptimal (207), and outcomes may be selectively included or reported in systematic reviews (208). Risk may also be underestimated because of insufficient follow-up time with which to observe late effects. The average length of follow-up for contributing primary studies was inadequately reported, and thus no conclusions can be drawn with respect to the timing of cardiovascular events.

Third, systematic review methodology was often poorly reported; a recent cross-sectional analysis of oncology systematic reviews found, for instance, that less than two-thirds are reproducible (209). The incomplete reporting of contributing primary studies complicated our assessment of overlapping primary studies, meaning that some primary studies may have been overrepresented. This, together with considerable heterogeneity in study populations, outcome definitions, and study quality, invalidated the computation of overview meta-estimates (20,21). Systematic reviews with overlapping primary studies are annotated in the tables and forest plots but nevertheless may give a false impression about the extent and consistency of the evidence; however, the stop-light indicator is unaffected by overlapping primary studies.

Fourth, in the absence of well-established criteria for classifying evidence, our approach has been guided by published umbrella reviews (23-25). Our use of cut points defined by the number of patients and statistical significance will have affected the classification for some agents. For instance, systematic reviews of cardiovascular outcomes involving less than 1000 exposed patients could only ever contribute probable evidence for that agent, regardless of study quality, statistical significance, or effect size.

We present a comprehensive summary and accessible reference table of the cardiovascular toxicity of targeted therapy for cancer based on current systematic review evidence. Our quality assessment ensures that our synthesis is based on the most robust studies. Guidelines for the management of cardiovascular toxicity associated with targeted therapy are lacking. Given the escalation of targeted therapy in contemporary practice, it is imperative that both clinicians and patients be provided with quality evidence with which to manage potential cardiovascular risk.

Funding
Not applicable.

Notes
Role of the funder: None.

Disclosures: MTvL receives a postdoctoral fellowship from the National Health and Medical Research Council (ID 1012141); HG reports personal fees from, and is on the Advisory Board for BMS, Pfizer, MSD, Ipsen, Roche, AstraZeneca, Astellas, outside the submitted work. CMV is supported by a Scintia Fellowship from the University of New South Wales. SL, MRB, KW, S-AP, LH, SH, and GPD have nothing to disclose.

Author contributions: MTvL, CMV, and SL developed the search strategy, performed the literature search, extracted the data, compiled the evidence synthesis, and drafted the manuscript. All authors made substantial intellectual contributions to development of the study protocol. All authors contributed to data interpretation and critical review of the manuscript. HG, S-AP, KW, and SH provided expertise on targeted therapies, HG, MRB, KW, SH, GD on clinical relevance, and MRB on cardiovascular toxicity. LH contributed to the development of the stop-light indicator. All authors have approved the final version of the manuscript. MTvL is the guarantor.

Data availability
The data underlying this article are available in the article and in its online supplementary material.

References
1. Li W, Croce K, Steensma DP, et al. Vascular and metabolic implications of novel targeted cancer therapies: focus on kinase inhibitors. J Am Coll Cardiol. 2015;66(10):1160–1179.
2. Totzeck M, Schüler M, Stuschke M, et al. Cardio-oncology—strategies for management of cancer-therapy related cardiovascular disease. Int J Cardiol. 2019;280:163–175.
3. Yeh ETH, Chang H-M. Oncocardiology—past, present, and future: a review. JAMA Cardiol. 2016;1(9):1066–1072.
4. Becker LA, Oxman AD. Overviews of reviews. In: J Higgins, S Green, eds. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [Updated March 2011]: The Cochrane Collaboration, 2011. www.handbook.cochrane.org.
5. Aromataris E, Fernandez R, Godfrey CM, et al. Summarizing systematic reviews: methodological development, conduct and reporting of an umbrella review approach. Int J Evid Based Healthc. 2015;13(3):132–140.
6. Ioannidis J. Next-generation systematic reviews: prospective meta-analysis, individual-level data, networks and umbrella reviews. Br J Sports Med. 2017;51(20):1456–1458.
7. van Leeuwen MT, Liu S, Gurney H, et al. Cardiovascular toxicity of targeted therapies for cancer: a protocol for an overview of systematic reviews. BMJ Open. 2018;8(6):e021064.
8. Booth A, Clarke M, Dooley G, et al. The nuts and bolts of PROSPERO: an international prospective register of systematic reviews. Syst Rev. 2012;1(1):2.
9. Booth A, Clarke M, Ghersi D, et al. An international registry of systematic review protocols. Lancet. 2011;377(9760):108–109.
10. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.
11. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.
12. BMJ Publishing Group. BMJ best practice: study design, search filters. https://bestpractice.bmj.com/info/toolkit/learn-ebm/study-design-search-filters/. Accessed November 26, 2019.
116. Li J, Zhou L, Chen X, et al. Addition of bevacizumab to chemotherapy in patients with ovarian cancer: a systematic review and meta-analysis of randomized trials. Clin Transl Oncol. 2015;17(9):673–683.

117. Li Q, Yan H, Zhao P, et al. Efficacy and safety of bevacizumab combined with chemotherapy for managing metastatic colorectal cancer: a meta-analysis of randomized controlled trials. Sci Rep. 2015;5(1):15746.

118. Li X, Huang R, Xu Z. Risk of adverse vascular events in newly diagnosed glioblastoma multiforme patients treated with bevacizumab: a systematic review and meta-analysis. Sci Rep. 2015;5(1):14608.

119. Li J, Gu J. Cardiovascular toxicities with vascular endothelial growth factor receptor tyrosine kinase inhibitors in cancer patients: a meta-analysis of 77 randomized controlled trials. Clin Drug Investig. 2018;38(12):1109–1123.

120. Li LJ, Chen DF, Wu GF, et al. Incidence and risk of thromboembolism associated with bevacizumab in patients with non-small cell lung carcinoma. Thorac Dis. 2018;10(8):5010–5022.

121. Liao C, Yin F, Huang P, et al. A meta-analysis of randomized controlled trials comparing chemotherapy plus bevacizumab plus chemotherapy alone in HER-2-positive advanced breast cancer. Breast. 2011;17(1):109–111.

122. Lima AB, Macedo LT, Sasse AD. Addition of bevacizumab to chemotherapy in advanced non-small cell lung cancer: a systematic review and meta-analysis. PLoS One. 2011;6(8):e26168.

123. Liu Y, He S, Ding Y, et al. The efficacy and safety of thalidomide-based therapy in patients with advanced non-small cell lung cancer: a meta-analysis. Contemp Oncol. 2014;18(1):39–47.

124. Liu B, Ding F, Liu Y, et al. Incidence and risk of hypertension associated with vascular endothelial growth factor receptor tyrosine kinase inhibitors in cancer patients: a comprehensive network meta-analysis of 72 randomized controlled trials involving 30013 patients. Oncotarget. 2016;7(41):67667–67673.

125. Liu B, Ding F, Zhang D, et al. Risk of venous and arterial thromboembolic events associated with VEGFR-TKIs: a meta-analysis. Cancer Chemother Pharmacol. 2017;80(3):487–495.

126. Liu M, Zheng Y, Chen Z, et al. Risk of severe pulmonary embolism in cancer patients receiving bevacizumab: results from a meta-analysis of published and unpublished data. Tumour Biol. 2017;39(7):101048281771489.

127. Lv C, Wu S, Zheng D, et al. The efficacy of additional bevacizumab to cytotoxic chemotherapy regimens for the treatment of colorectal cancer: an updated meta-analysis for randomized trials. Cancer Biother Radio. 2013;28(7):501–509.

128. Lyu WW, Zhao QC, Song DH, et al. Thalidomide-based regimens for elderly and/or transplant ineligible patients with multiple myeloma: a meta-analysis. Chin Med J (Engl). 2011;124(12):1025–1029.

129. Macedo LT, da Costa Lima AB, Sasse AD. Addition of bevacizumab to first-line chemotherapy in advanced colorectal cancer: a systematic review and meta-analysis, with emphasis on chemotherapy subgroups. BMC Cancer. 2013;13(12):952.

130. Miroddi M, Sterrantino C, Simmonds M, et al. Systematic review and meta-analysis of the risk of severe and life-threatening thromboembolism in cancer patients receiving anti-EGFR monoclonal antibodies (cetuximab or panitumumab). J Clin Gastroenterol. 2016;50(12):967–974.

131. Moja L, Tagliaabate L, Balduzzi S, et al. Trastuzumab containing regimens for early breast cancer. Cochrane Database Syst Rev. 2012;4:CD006243.

132. Nalluri SR, Chu D, Kerezeski R, et al. Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis. JAMA. 2008;300(19):2277–2285.

133. Pujol JL, Pirker R, Lynch TJ, et al. Meta-analysis of individual patient data from randomized trials of chemotherapy plus cetuximab as first-line treatment for advanced non-small cell lung cancer: a systematic review and meta-analysis. Med Oncol. 2015;32(2):473.

134. Ranpura V, Pulipati B, Chu D, et al. Increased risk of high-grade hypertension with bevacizumab in cancer patients: a meta-analysis. Am J Hypertens. 2010;23(5):460–468.

135. Ranpura V, Hapani S, Wu S. Treatment-related mortality with bevacizumab in cancer patients: A meta-analysis of 30013 patients. JAMA. 2011;305(3):287–294.

136. Rossan J, Metzger-Filho O, Paemas M, et al. Bevacizumab and breast cancer: a meta-analysis of first-line phase III studies and a critical reappraisal of available evidence. J Oncol. 2012;2012:1–8.

137. Run R, G, Sigala S, Danzi E, et al. Incidence and relative risk of adverse events of special interest in patients with castration resistant prostate cancer treated with CYP-17 inhibitors: a meta-analysis of published trials. Crit Rev Oncol hematol. 2016;101:12–20.

138. Ranpura V, Pulipati B, Chu D, et al. Bevacizumab in the treatment of vascular endothelial growth factor receptor tyrosine kinase inhibitors in solid tumors: data from a literature based meta-analysis. Invest New Drugs. 2017;35(4):518–523.

139. Rydzewska LJM, Burdett S, Vale GL, et al. Adding abiraterone to androgen deprivation therapy in men with metastatic hormone-sensitive prostate cancer: a systematic review and meta-analysis. Eur J Cancer. 2017;84:88–101.

140. Santoni M, Guerra F, Conti A, et al. Incidence and risk of cardiotoxicity in cancer patients treated with targeted therapies. Cancer Treat Rev. 2017;59:123–131.

141. Schütz Fab, Y, Azzi GR, et al. Bevacizumab increases the risk of arterial ischemia: a large study in cancer patients with a focus on different subgroup outcomes. Am J Oncol. 2011;22(6):1406–1412.

142. Scott K, Hayden PJ, Will A, et al. Bertzoomib for the treatment of multiple myeloma. Cochrane Database Syst Rev. 2016;2016(4):CD010816.

143. Shen A, Tang C, Wang Y, et al. A systematic review of sorafenib in child-pa A patients with unresectable hepatocellular carcinoma. J Clin Oncol. 2015;33(10):1351–1358.

144. Soria JC, Mauguen A, Beck M, et al. Systematic review and meta-analysis of randomised, phase II/III trials adding bevacizumab to platinum-based chemotherapy as first-line treatment in patients with advanced non-small-cell lung cancer. Cancer Treat Rev. 2018;64:871–880.

145. Sun J, Chen C, Yao X, et al. Lapatinib combined with neoadjuvant paclitaxel-trastuzumab-based chemotherapy in patients with human epidermal growth factor receptor-2 positive breast cancer: a meta-analysis of randomised controlled trials. Breast. 2015;32(2):497.

146. Tang NP, Li H, Qiu YL, et al. Risk/benefit profile of panitumumab-based therapy in patients with metastatic colorectal cancer: evidence from five randomised controlled trials. Tumor Biol. 2014;35(3):10409–10418.

147. Tian W, Ding W, Kim S, et al. Efficacy and safety profile of combining vandetanib with chemotherapy in patients with advanced non-small cell lung cancer: a meta-analysis. PLoS One. 2013;8(7):e67929.

148. Totzeck M, Minuc R, Rassaf T. Cardiovascular adverse events in patients treated with bevacizumab: a meta-analysis of more than 20 000 patients. J Am Heart Assoc. 2017;6(8):10.

149. Totzeck M, Minuc R, Rotezk S, et al. Cardiovascular diseases in patients receiving small molecules with anti-vascular endothelial growth factor activity: a meta-analysis of approximately 29,000 cancer patients. Eur J Prev Cardiol. 2018;25(5):482–494.

150. Valacch A, Mauird D, Poylso NP, et al. Trastuzumab combined with neoadjuvant chemotherapy in patients with HER2-positive breast cancer: a systematic review and meta-analysis. Invest New Drugs. 2015;32(2):473.

151. Valacch A, Neachouva A, Polys佐 NP, et al. Cardiac toxicity in breast cancer patients treated with dual HER2 blockade. Int J Cancer. 2013;133(9):2245–2252.

152. Viani GA, Alenfo SL, Stefano EJ, et al. Anti-angiogenic therapies for metastatic colorectal cancer. Cochrane Database Syst Rev. 2009;(3):CD003939.

153. Wagner AD, Thomsson C, Haerding J, et al. Vascular-endothelial-growth-factor (VEGF) targeting therapies for endocrine refractory or resistant metastatic breast cancer. Cochrane Database Syst Rev. 2012;(7):CD008941.

154. Wang W, Tang ZH, Xu TT, et al. Efficacy and safety of sorafenib for advanced non-small cell lung cancer: a meta-analysis of randomized controlled trials. Asian Pac J Cancer Prev. 2014;15(4):5691–5696.

155. Wang TS, Lei W, Cui W, et al. A meta-analysis of bevacizumab combined with chemotherapy in the treatment of ovarian cancer. Indian J Cancer. 2014;51(7):e95–e98.

156. Wang X, Li Y, Yan X. Efficacy and safety of novel agent-based therapies for multiple myeloma: a meta-analysis. Biomed Res Int. 2016;2016:1–77.

157. Wang X, Qu X, Wang Y, et al. The impact of adjuvant trastuzumab on survival in patients with advanced solid tumors: a systematic review and meta-analysis of randomized ii/iii controlled trials. Clin Drug Invest. 2016;36(1):27–39.
167. Wang BC, Fu C, Xie LK, et al. Comparative toxicities of neoadjuvant chemotherapy with or without bevacizumab in HER2-negative breast cancer patients: a meta-analysis. Ann Pharmacother. 2020;54(6):517–525.

168. Wu YS, Shui L, Shen D, et al. Bevacizumab combined with chemotherapy for ovarian cancer: an updated systematic review and meta-analysis of randomized controlled trials. Oncotarget. 2017;8(4):10703–10713.

169. Xiao YY, Zhan P, Yuan DM, et al. Chemotherapy plus vandetanib or chemotherapy alone in advanced non-small cell lung cancer: a meta-analysis of four randomized controlled trials. Clin Oncol. 2013;25(1):e7–e15.

170. Yang M, Yuan JQ, Bai M, et al. Transarterial chemoembolization combined with sorafenib for unresectable hepatocellular carcinoma: a systematic review and meta-analysis of randomized controlled trials. PLoS One. 2013;8(3):e64354.

171. Yang M, Yuan JQ, Bai M, et al. Transarterial chemoembolization combined with sorafenib for unresectable hepatocellular carcinoma: a systematic review and meta-analysis. Mol Biol Rep. 2014;41(10):6575–6582.

172. Ye Q, Chen HL. Bevacizumab in the treatment of ovarian cancer: a meta-analysis from four phase III randomized controlled trials. Arch Gynecol Obstet. 2013;288(3):655–666.

173. Zhang J, Wu S, Tang L, et al. Incidence and risk of QTc interval prolongation among cancer patients treated with vandetanib: a systematic review and meta-analysis. PLoS One. 2012;7(2):e30553.

174. Zeng Z, Lin J, Chen J. Bortezomib for patients with previously untreated multiple myeloma: a systematic review and meta-analysis of randomized controlled trials. Am J Hematol. 2013;88(7):935–943.

175. Zhang T, Ding X, Wei D, et al. Sorafenib improves the survival of patients with advanced hepatocellular carcinoma: a meta-analysis of randomized trials. Anticancer Drugs. 2010;21(3):326–332.

176. Zhang X, Qin Y, Li H, et al. Efficacy and safety of vandetanib, a dual VEGFR and EGFR inhibitor, in advanced non-small-cell lung cancer: a systematic review and meta-analysis. Asian Pac J Cancer Prev. 2011;12(11):2867–2863.

177. Zhang D, Ye J, Xu T, et al. Treatment related severe and fatal adverse events with cetuximab in colorectal cancer patients: a meta-analysis. J Chemother. 2013;25(3):170–176.

178. Zhou T, Wang X, Xu T, et al. Bevacizumab significantly increases the risks of hypertension and proteinuria in cancer patients: a systematic review and comprehensive meta-analysis. Oncotarget. 2017;8(31):51492–51506.

179. Zhou M, Yu J, Qu X, et al. Phase III trials of standard chemotherapy with or without bevacizumab for ovarian cancer: a meta-analysis. PLoS One. 2013;8(12):e81858.

180. Zhou ZR, Liu SX, Zhang TS, et al. Abiraterone for treatment of metastatic castration-resistant prostate cancer: a systematic review and meta-analysis. Asian Pac J Cancer Prev. 2014;15(9):1313–1320.

181. Zhi X, Wu S, Dahut WL, et al. Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis. 2007;49(2):186–193.

182. Zhu ZL, Zhang J, Chen ML, et al. Efficacy and safety of Trastuzumab added to standard treatments for HER2-positive metastatic breast cancer patients. Asian Pac J Cancer Prev. 2013;14(12):7111–7116.

183. Zhu X, Wu S. Increased risk of hypertension with enalaprilatamide in prostate cancer: a meta-analysis. Cancer Invest. 2019;37(9):478–488.

184. Zongwen S, Song K, Cong Z, et al. Evaluation of efficacy and safety for bevacizumab in treating malignant pleural effusions caused by lung cancer through intrapleural injection. Oncotarget. 2017;8(69):113318–113330.

185. Zou Y, Lin M, Sheng Z, et al. Rombertuz and lenalidomide as front-line therapy for multiple myeloma. Leuk Lymphoma. 2014;55(9):2024–2031.

186. Zuo PY, Chen XL, Liu YW, et al. Increased risk of cerebrovascular events in patients with cancer treated with bevacizumab: a meta-analysis. PLoS One. 2014;9(7):e103049.

187. Mouhayer E, Durand J-B, Cortes J. Cardiovascular toxicity of tyrosine kinase inhibitors. Expert Opin Drug Saf. 2013;12(5):687–696.

188. Shah D, Shah R, Morganroth J. Tyrosine kinase inhibitors: their on-target toxicities as potential indicators of efficacy. Drug Saf. 2013;36(6):415–426.

189. Boegemann M, Khakkar S, Bera G, et al. Abiraterone acetate plus prednisone for the management of metastatic castration-resistant prostate cancer (mCRPC) without prior use of chemotherapy: report from a large, international, real-world retrospective cohort study. BMC Cancer. 2019;19(1):60.

190. Gudati AK. Current and potential targets for drug design in the androgen receptor pathway for prostate cancer. Expert Opin Drug Discov. 2018;13(8).

191. Alex AB, Pal SK, Agarwal N. CYP17 inhibitors in prostate cancer: latest evidence and clinical potential. Ther Adv Med Oncol. 2016;8(4):267–275.

192. Bosco C, Bosnyak Z, Malmberg A, et al. Quantifying observational evidence for risk of fatal and nonfatal cardiovascular disease following androgen deprivation therapy for prostate cancer: a meta-analysis. Eur Urol. 2015;68(3):386–396.

193. Bosco C, Crawley D, Adolfsen J, et al. Quantifying the evidence for the risk of metabolic syndrome and its components following androgen deprivation therapy for prostate cancer: a meta-analysis. PLoS One. 2015;10(3):e0117344.

194. Bronte G, Bronte E, Novo G, et al. Conquests and perspectives of cancer-angiogenesis-targeting tyrosine kinase inhibitor-based therapy. Expert Opin Drug Saf. 2015;14(2):253–267.

195. Love RR, Wiebe DA, Feyzi JM, et al. Effects of tamoxifen on cardiovascular risk factors in postmenopausal women after 5 years of treatment. J Natl Cancer Inst. 1994;86(20):1534–1539.

196. Dewar JA, Horobin JM, Preece FT, et al. Long term effects of tamoxifen on blood lipid values in breast cancer. BMJ. 1992;305(6847):225–226.

197. Matthews A, Stanswyk S, Farmer RE, et al. Long term adjuvant endocrine therapy and risk of cardiovascular disease in female breast cancer survivors: systematic review. BMJ. 2018;363:k3845.

198. Shin J, Lee J-J, Kim K, et al. Venous thromboembolism in relapsed or refractory multiple myeloma patients treated with lenalidomide plus dexamethasone. J Hematol. 2019;10(6):79–90.

199. Palumbo A, Rajkumar SV, Dimopoulos MA, et al. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia. 2008;22(2):414–423.

200. Ewer MS, Ewer SM. Cardiototoxicity of anticancer treatments. Nat Rev Cardiol. 2015;12(9):547–558.

201. Sanguinetti MC, Mitcheson JS. Predicting drug-hERG channel interactions that cause acquired long QT syndrome. Trends Pharmacol Sci. 2005;26(3):131–134.

202. Han X, Zhou Y, Liu W. Precision cancer-angiogenesis: understanding the cardio-toxicity of cancer therapy. NIPP Precision Oncol. 2017;1(1):31.

203. Manolis AA, Manolis TA, Mikhailidis DP, et al. Cardiovascular safety of oncologic agents: a double-edged sword even in the era of targeted therapies—part I. Expert Opin Drug Saf. 2018;17(9):875–892.

204. Murad MH, Asli N, Alshamsi M, et al. New evidence pyramid. Evid Based Med. 2016;21(4):125–127.

205. Ioannidis JP. The mass production of redundant, misleading, and confused systematic reviews and meta-analyses. BMJ. 2014;349:g6541–g6554.

206. Pieper D, Antoine SL, Neugebauer EA, et al. Up-to-dateness of reviews is of- flicted systematic reviews and meta-analyses. BMJ. 2014;349:g6931–g6943.

207. Turner L, Shamseer L, Altman DG, et al. Consolidated standards of reporting trials (CONSORT) and the completeness of reporting of randomized controlled trials (RCTs) published in medical journals. Cochrane Database Syst Rev. 2012;11:MR000030. doi:10.1002/14651858.MR000030.pub2(11).

208. Page MJ, McKenzie JE, Kirkham J, et al. Bias due to selective inclusion and exclusion of studies: a summary of 12 systematic reviews. J Clin Epidemiol. 2014;67(12):1302–1308.

209. Wayant C, Page MJ, Vassar M. Evaluation of reproducible research practices in oncology systematic reviews with meta-analyses referenced by national comprehensive cancer network guidelines. JAMA Oncol. 2019;5(1):1550–1555.