Leaf-architected 3D Hierarchical Artificial Photosynthetic System of Perovskite Titanates Towards CO₂ Photoreduction Into Hydrocarbon Fuels

Han Zhou1,5, Jianjun Guo1,3, Peng Li1,3, Tongxiang Fan5, Di Zhang5 & Jinhua Ye1,2,3,4

1International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan, 2 Environmental Remediation Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan, 3 Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan, 4 TU–NIMS Joint Research Center, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China, 5 State Key Lab of Metal Matrix Composites, Shanghai Jiaotong University, Shanghai, 200240, P. R. China.

The development of an “artificial photosynthetic system” (APS) having both the analogous important structural elements and reaction features of photosynthesis to achieve solar-driven water splitting and CO₂ reduction is highly challenging. Here, we demonstrate a design strategy for a promising 3D APS architecture as an efficient mass flow/light harvesting network relying on the morphological replacement of a concept prototype-leaf’s 3D architecture into perovskite titanates for CO₂ photoreduction into hydrocarbon fuels (CO and CH₄). The process uses artificial sunlight as the energy source, water as an electron donor and CO₂ as the carbon source, mimicking what real leaves do. To our knowledge this is the first example utilizing biological systems as “architecture-directing agents” for APS towards CO₂ photoreduction, which hints at a more general principle for APS architectures with a great variety of optimized biological geometries. This research would have great significance for the potential realization of global carbon neutral cycle.

Facing increasing demands for energy and environmental concerns, the development of an “artificial photosynthetic system” (APS) in conceptually simpler form to achieve results of natural photosynthesis that is coupling solar-driven water splitting and CO₂ reduction in a way that eliminates the need for an external, sacrificial electron donor is one of the great challenges for the use of renewable energy and a sustainable development1-5. Practically, “CO₂ reduction” is more urgent than “water splitting” because it not only contributes to global carbon cycling for carbon neutral organic fuels, mimicking what real leaves do (natural carbon fixation), but also alleviating global climate changes6-7. However, as CO₂ is a relatively inert and stable compound, its reduction is quite challenging. The photoreduction of CO₂ has been widely studied for a long time as well as water splitting8-11. For heterogeneous photocatalysts, many efforts still focus on TiO₂-based10,12,13 materials while other catalysts such as Zn₂GeO₄14-16, ZnGa₂O₄17, CaFe₂O₄18, Al₃Ga₂O₁₅ (A = Ca, Sr, and Ba)19, WO₃20 and so forth have also been reported in recent years. However, the progress achieved in this field had not been as dramatic as that in water splitting for a few decades because of the low efficiencies, limited photocatalysts and/or requiring the use of sacrificial reducing agents. Generally, for the gas-phase reaction, multifold factors are involved including gas capture (gas diffusion/adsorption), light harvesting and gas conversion (multi-electron chemical reactions). We15-17 and others14 have recently demonstrated that mesoporous structured photocatalysts can significantly enhance the gas-phase reaction efficiency. However, gas diffusion limitation has still been a concerning problem for micro/mesoporous systems21. Thus, it is highly challenging but desirable to develop a promising and ideal APS having both the analogous important structural elements and reaction features of natural photosynthesis by constructing (i) efficient mass flow network with 3D multiple-scaled hierarchical porosity to suffer minimum gas diffusion, and high surface areas for improved overall reaction performances22,23, (ii) unique 3D architecture for enhanced light harvesting, (iii) suitable catalysts with sufficiently negative conduction band for strong reduction potential.
One promising approach to circumvent such issues concerns biomimetics \(^{24}\). Nature, over billions of years, has achieved in the leaf a great technological feature. A natural leaf is a synergy of complex architectures and functional components to produce an amazing bio-machinery for photosynthesis, that is efficiently harvest solar energy and convert water and carbon dioxide into carbohydrates and oxygen \(^{25}\). Natural leaves have demonstrated the perfect assembly of hierarchical levels of porosity into 3D elaborated architectures with high porosity, high connectivity and high surface areas for efficient mass flow including gas exchange \(^{26}\) for photosynthesis and water transportation \(^{27}\) for photosynthesis as well as for transpiration. Furthermore, the intrinsic 3D architecture within natural leaves strongly favors light harvesting \(^{28,29}\) via a synergy of multifold effects including the focusing of light by the lens-like epidermal cells, the multiple scattering and absorbance of light within the veins' porous network, the light propagation in the elongated columnar cells in palisade parenchyma acting as light guides, the enhanced effective light pathlength and light scattering by the irregular-shaped, loosely-packed spongy mesophyll cells and so forth.

Inspired by this, in the present work, leaf’s 3D unique hierarchical architecture would be selected as an ideal parent model (template) to emphasize the potential of our strategy in terms of the construction of an artificial photosynthetic system (APS). We present a promising APS of perovskite titanates (ATiO\(_3\), A = Sr, Ca, and Pb) by preserving very fine morphological details of leaves’ architectures for CO\(_2\) photoreduction into hydrocarbon fuels. The process uses artificial sunlight as the energy source, water as an electron donor and CO\(_2\) as the carbon source to create hydrocarbon fuels (mainly carbon monoxide and methane), mimicking what real leaves do. Various cocatalysts (Au, Ag, Cu, Pt, RuO\(_2\), and NiO\(_x\)) are loaded for enhanced activity, among which Au as a suitable cocatalyst, exhibits the best performance. The study demonstrates that leaves’ unique 3D hierarchical architectures, as a concept prototype would pave a new pathway for the development of an efficient mass flow network for improved gas diffusion as well as enhanced light harvesting. To the best of our knowledge this is the first example utilizing biological systems as an “architecture-directing agent” for the construction of APS for CO\(_2\) photoreduction. This research would have great significance for the potential realization of global carbon neutral cycle.

Results

Morphology and Key processes in NPS. It is useful to start with a review of some of the key elements and processes of natural photosynthesis that are to be reproduced functionally. Fig. 1 shows schematically the key processes that we shall be concerned with. Typically, natural photosynthesis is the process by green leaves use sunlight as the energy source, CO\(_2\) of the atmosphere, and water as chemicals to carry out two important reactions required for survival and growth of humanity: decomposition of water to molecular...
LCNP energy storage and conversion area. Inward diffusion of CO2 to chloroplasts is thereby facilitated. Intercellular diffusion is fundamentally a 3D process occurring with negligible resistance, because of molecular diffusion. Lateral diffusion in leaves is thus likely to occur preferentially in the spongy parenchyma whereas vertical diffusion encompasses both spongy and palisade tissue. CO2 then diffuses throughout the mesophyll cells, dissolves in wet cell walls, where it may dissociate into bicarbonate or remain as CO$_2^-$. In one or the other form, it diffuses in the liquid phase through the cell wall and into a chloroplast where it enters the Calvin cycle and completes its journey as a photosynthetic product (Fig. 1c).

Another dominating structure of leaves are the leaf veins, which form a venation system in leaf lamina for efficient hydraulic supply, delivery of nutrients and sugars to each part of a leaf, and biomechanical support. Macroscopically, the 2D optical images of a natural leaf play a significant role for the promotion of light harvesting ability. Biotemplated materials have been developed empirically according to eq 1:

$$E_{CB} = X - E_C - 0.5E_g$$

where E_C is the energy of free electrons on the hydrogen scale (4.5 eV), X is the electronegativity of the semiconductor, and E_g is the band-gap energy of the semiconductor according to UV-Vis light irradiation. Bare SrTiO$_3$ (Fig. 4a) and CaTiO$_3$ (Supplementary Fig. S5) evolve CO and CH$_4$ as the main products for CO$_2$ reduction in the absence of any sacrificial agents. The evolution amount of CO is larger than that of CH$_4$ both for bare STO and CTO series. It is well known that the CO$_2$ photoreduction mainly undergoes two courses, including oxidation and reduction processes. In the oxidation process, H$_2$O is oxidized to O$_2$ (2H$_2$O \rightarrow O$_2$ + 4H$^+$. In the reduction course, there is a chain reaction to reduce CO$_2$ to CH$_4$ CO$_2$ + 2H$^+$ + 2e$^-$ \rightarrow CO + H$_2$O, CO$_2$ + 4H$^+$ + 4e$^-$ \rightarrow HCHO + H$_2$O, CO$_2$ + 6H$^+$ + 6e$^-$ \rightarrow CH$_3$OH + H$_2$O, CO$_2$ + 8H$^+$ + 8e$^-$ \rightarrow CH$_4$ + 2H$_2$O)9, as shown in Supplementary Table S2. The position of the conduction band and valence band of the SrTiO$_3$ and CaTiO$_3$ could be calculated empirically according to eq 1:

$$E_{CB} = X - E_C - 0.5E_g$$

Cubic perovskite CaTiO$_3$ displays a suitable conduction/valence band positions (as desirable for photocatalytic water splitting). PbTiO$_3$ is a visible light responsive photocatalyst. Therefore, these photocatalysts are expected to be active for CO$_2$ reduction. So in this research, perovskite titanates ATiO$_3$ (A = Sr, Ca, Pb) are first chosen as the target photocatalysts for the construction and demonstration of a promising APS architecture.

Synthesis and characterization of APS. Here, a modified sol-gel method is used for the synthesis of leaf-architected APS of ATiO$_3$ (See Methods). After calcination at 600°C, organs could be removed completely according to TGA data (Supplementary Fig. S2) leaving crystalline perovskite titanates as demonstrated by XRD (Fig. 3a). The obtained APS exhibits morphological features of NPS at multilevel scales (Fig. 2). Macroscopically, the APS has a thin shape with shrinkage of about 50% of the original dimensions after calcination (Fig. 2k). The inter-connected branching venation networks are still clearly visible in APS (Fig. 2f). At the micro scale, the APS inherit the 3D architecture features, typically including the epidermal surfaces with numerous micrometer-sized stoma (Fig. 2n), the irregular-shaped, loosely-packed spongy mesophyll cells with numerous large interconnecting air spaces (Fig. 2e) in the range of micrometers which are much larger than the mean free path of gas molecules, thus gases suffer a minimum intercellular diffusion within such interconnected networks (Fig. 1b). Despite the appearance of close packing (Fig. 1b and 2f), palisade cell surfaces are generally exposed to intercellular airspace. Inward diffusion of CO$_2$ to chloroplasts is thereby facilitated. Intercellular diffusion is fundamentally a 3D process occurring with negligible resistance, because of molecular diffusion. Lateral diffusion in leaves is thus likely to occur preferentially in the spongy parenchyma whereas vertical diffusion encompasses both spongy and palisade tissue (Fig. 1b). CO$_2$ then diffuses throughout the mesophyll cells, dissolves in wet cell walls, where it may dissociate into bicarbonate or remain as CO$_2^-$. In one or the other form, it diffuses in the liquid phase through the cell wall and into a chloroplast where it enters the Calvin cycle and completes its journey as a photosynthetic product (Fig. 1c).

Another dominating structure of leaves are the leaf veins, which form a venation system in leaf lamina for efficient hydraulic supply, delivery of nutrients and sugars to each part of a leaf, and biomechanical support. Macroscopically, the 2D optical images of a natural leaf (Fig. 2b and 2c) indicate the inter-connected branching venation networks on multi-length scales. After the petiole, water moves through the xylem conduits within veins arranged in a reticulate hierarchy, with vein conductivity decreasing and vein density increasing from low-to-higher-order veins (Fig. 2c). Water exits the xylem and moves through bundle sheath, mesophyll, bundle sheath extensions, and/or epidermis and then evaporates and diffuses from the stoma. The leaf hydraulic system can be analyzed as a hierarchical inter-connected pipe network (Fig. 2d, 2g and 2j). Microscopically, Veins are composed of hierarchical cylindrical tubes at the length of several to tens of micrometers (Fig. 2g and 2j). Each tube is stacked by stacked layers of interconnected hollow sub-microtubes (Fig. 2h). Furthermore, the unique architecture of various structural elements and their organization way within the leaf play a significant role for the promotion of light harvesting efficiency (Supplementary Fig. S1).

Based on this, faithfully preservation of leaf’s architectures is expected to realize a promising APS with enhanced mass flow and light harvesting ability. Biotemplated materials have been developed in the last decade. However, most of which are restricted to binary compounds (e.g. single metal oxides) while biologically synthesis of multi-metallic oxides (e.g. ternary or quarternary compounds) with hierarchical porous structures has rarely reported and is highly challenging as it requires multiple precursors with strong interactions between each other in liquid phase as well as matching reaction/infiltration rates. Furthermore, biotemplated materials for CO$_2$ photoreduction have not been reported so far. It is noteworthy that many kinds of multi-metallic oxides have shown high activities in water splitting as well as in many other energy conversion areas. Perovskite, ABO$_3$ type materials (e.g. SrTiO$_3$, CaTiO$_3$) are considered as promising photocatalysts for water splitting, because of their high reduction and oxidation potential. SrTiO$_3$ has been known as a photocatalyst capable of decomposing H$_2$O into H$_2$ and O$_2$ without applying an external bias potential. Cubic perovskite CaTiO$_3$ displays a suitable conduction/valence band positions (as desirable for photocatalytic water splitting). PbTiO$_3$ is a visible light responsive photocatalyst. Therefore, these photocatalysts are expected to be active for CO$_2$ reduction. So in this research, perovskite titanates ATiO$_3$ (A = Sr, Ca, Pb) are first chosen as the target photocatalysts for the construction and demonstration of a promising APS architecture.

CO$_2$ photoreduction activity. Artificial photosynthesis is carried out on ATO series using H$_2$O and CO$_2$ as the reactants under UV-Vis light irradiation. Bare SrTiO$_3$ (Fig. 4a) and CaTiO$_3$ (Supplementary Fig. S5) evolve CO and CH$_4$ as the main products for CO$_2$ reduction in the absence of any sacrificial agents. The evolution amount of CO is larger than that of CH$_4$ both for bare STO and CTO series. It is well known that the CO$_2$ photoreduction mainly undergoes two courses, including oxidation and reduction processes. In the oxidation process, H$_2$O is oxidized to O$_2$ (2H$_2$O \rightarrow O$_2$ + 4H$^+$. In the reduction course, there is a chain reaction to reduce CO$_2$ to CH$_4$ CO$_2$ + 2H$^+$ + 2e$^-$ \rightarrow CO + H$_2$O, CO$_2$ + 4H$^+$ + 4e$^-$ \rightarrow HCHO + H$_2$O, CO$_2$ + 6H$^+$ + 6e$^-$ \rightarrow CH$_3$OH + H$_2$O, CO$_2$ + 8H$^+$ + 8e$^-$ \rightarrow CH$_4$ + 2H$_2$O)9, as shown in Supplementary Table S2. The position of the conduction band and valence band of the SrTiO$_3$ and CaTiO$_3$ could be calculated empirically according to eq 1:

$$E_{CB} = X - E_C - 0.5E_g$$

where E_C is the energy of free electrons on the hydrogen scale (4.5 eV), X is the electronegativity of the semiconductor, and E_g is the band-gap energy of the semiconductor according to UV-Vis spectrum (Supplementary Fig. S6). The edges of the valence band (E$_{VVN}$) of STO and CTO were determined to be 2.32 V and 2.64 V (vs normal hydrogen electrode, NHE) respectively, more positive than that of E’(H_2O/H^+) ($H_2O \rightarrow 1/2O_2 + 2H^+ + 2e^-$, E' redox = 0.82 V vs NHE), and the edges of the conduction band were estimated to be 0.86 V and 0.89 V (vs NHE) respectively, more negative than that of E’(CO_2/CO) ($CO_2 + 2e^- + 2H^- \rightarrow CO + H_2O$, E' redox = -0.53 V vs NHE) and E’(CO_2/CH_4) ($CO_2 + 8e^- + 8H^+ \rightarrow CH_4 + 2H_2O$, E' redox = -0.24 V vs NHE). This indicates that the photogenerated electrons and holes on the
Figure 2 | Morphology comparison between NPS and APS (leaf-architected SrTiO$_3$) from macro-, micro- to nanoscales. (a) Optical image of Cherry Blossom leaf. (b, c) Magnified optical images of the branching network of veins. FESEM images of (d) the cross-section of the vein porous architecture. (e) the lower epidermis. (f) the cross-section, indicating the differentiation of leaf mesophyll into palisade and spongy layers. (g) magnified image of the cross section of venation architecture, with the inset of the 3D illustration. (h) the stacked interconnected hollow sub-microtubes of the veins. (i) sub-micrometer sized pores on the walls. (j) the cross section of venation architecture axially. (k) Optical image of the APS. (l) magnified image of (k), indicating the branching network of artificial veins in APS. (m) a piece of APS hold by tweezer, indicating the relatively robust feature. FESEM images of (n) the surfaces of APS. (o) Magnified image of the surfaces, indicating the morphologies derived from the spongy tissues. (p) the cross section of venation architecture in APS. (q) the cross section of venation architecture axially in APS. (r) Magnified image of the walls. (s) TEM image of the mesoporous structures of SrTiO$_3$. (d) scale bar, 20 µm. (e, f, g, j, n, o, q) scale bar, 10 µm. (h, i, p, r) scale bar, 1 µm. (s) scale bar, 2nm. For NPS, the samples were carbonized before SEM observation.
irradiated STO and CTO can react with adsorbed CO2 and H2O to produce CO and CH4. Other products such as formate, formaldehyde, and methanol (HCOOH, HCHO, CH3OH) were not detected, probably because of the strong oxidation power of photogenerated valence band holes (or OH radicals) that can react with intermediates and products of CO2 conversion in reactions42,43, making the net hydrocarbon yield negligible.

Notably, leaf-architected APS of STO and CTO exhibit about a 1.5–2.2 fold and 3.5–4 fold improvement in activities than the corresponding powder constituents of APS and referenced STO/or CTO synthesized without templates (Fig. 4a and Supplementary Fig. S5). This is related to multiple processes mainly including gas diffusion and light harvesting. As shown in Figure 1d, CO2 and H2O vapor enter the APS through the hierarchical macro/mesopores (e.g., epidermal, veins, stoma, etc.) channels. Different from the NPS with only stoma as the gas entrance gate, APS is much more permeable for gas molecules due to its highly hierarchical porous feature. Then the entered gas molecules diffuse through the pore network, collide with the pore walls, adsorbed and react on active sites on these walls. As characterized above, the APS is comprised of a 3D hierarchical network of interconnected pores of varying shapes, diameters, and orientations. When the diameter of the pore is much greater than the mean free path of the gas molecules, the diffusing molecules will interact with each other more than with the pore walls, thereby minimizing the wall effects on the transport46. In this case, the pore diffusivity is essentially the same as the molecular diffusivity, in which the diffusion coefficient is much larger than that in mesopores. Take CO2 as an instance, the diffusion coefficient (D) in mesopores of APSSTO is calculated to be about 0.0189 cm2/s while that in macro-pore network of APSSTO is about ~0.097 cm2/s which is about 5–6 fold. By contrast, though there are still a few macropores in the corresponding powder constituents of APSSTO via grounding as demonstrated by SEM (Supplementary Fig. S7a), TEM (Supplementary Fig. S7b and S7c), and mercury porosimeter (Fig. 3b), the quantity of macropores decreases dramatically while the size distribution of macropores is also entirely different (Fig. 3b). Thus, the gas diffusion rate is smaller and longer time is required for reactants (CO2 and H2O vapor) to move into the deeper as well as for products (e.g, CO, CH4, etc.) to move from the deeper layer into the atmosphere. Detailed explanation and calculations of gas diffusion are discussed in the Supplementary Discussion. Besides, we think that leaf’s high connectivity of hierarchical pores and the branching network of venation may promote the gas diffusion. Modeling and computation is worth further study. On the other hand, as the 3D hierarchical architecture of NPS strongly favors light harvesting as discussed in Figure S1, the APS architecture would be favorable for capture more light and transfer light into the deeper layer of the 3D system, thus enhance light harvesting. Therefore, the difference in CO2 reduction activity observed between APSSTO and powdered APSSTO constituents can be explained by the distinct 3D hierarchical architecture. For referenced STO/or CTO, since the particles are closely packed which not only restricts efficient gas diffusion but also light harvesting as compared in Supplementary Fig. S9, so the activities are lower. Furthermore, the higher surface area and higher volume of mesopores (Supplementary Table S1) of the APS provide more reaction sites, thus enhancing the overall performances. So the improvement of the activities in APS is the synergy of the efficient mass flow 3D architecture for high gas diffusion coefficient and hence high gas diffusion rates of the reactants and the products, the complex morphology for enhanced light harvesting and the more reaction sites arising from the mesoporous structures and high specific surface areas.

To overcome the thermochemically unfavorable one-electron reduction of CO2, the proton-coupled multielectron transfer (PCET) (Supplementary Table S2) should be facilitated by modifying the surface properties of photocatalysts (e.g., loading a co-catalyst that serves as an electron reservoir)45,46. A series of cocatalysts were loaded onto STO samples for comparison (Fig. 4b and Supplementary Table S5). Loading Pt cocatalyst on STO could enhance the photocatalytic activity for water splitting42, but surprisingly not CO2 reduction in STO, probably because although Pt functions as an efficient cocatalyst for H2 evolution, it also catalyzes the reverse reaction of water formation from H2 and O2. Furthermore, loading

Figure 3 | (a) XRD patterns of ATiO3 (A = Sr, Ca, Pb) series. (b) Comparative hierarchical pore size distributions of SrTiO3 series derived from the N2 (BJH model, red triangles) adsorption (the inset of (1)), and mercury intrusion porosimetry, respectively. The plots are offset for clarity. (1) leaf-architected APSSTO, with the inset of sample’s optical image. (2) the corresponding powder constituents of APSSTO, with the inset of sample’s optical image. (3) referenced STO synthesized without templates.
with Pt could significantly promote the so-called process of PSRM (Photocatalytic Steam Reforming of Methane)\(^1\). When Au, Ag and Cu cocatalysts (Supplementary Fig. S10 and S11) were loaded respectively, photocatalytic activities for CO\(_2\) reduction into CO increased for Au and Ag. It has been reported that Au, Ag are highly active electrocatalysts for electrochemical reduction of CO\(_2\) to form CO selectively in an aqueous KHCO\(_3\) solution\(^49,50\). This fact indicated that the Au or Ag cocatalyst functioned as a CO\(_2\) reduction site to form CO. In the meanwhile, the CH\(_4\) evolution activity increased significantly, with the order of Au > Ag > Cu (Fig. 4b). Loading methods of cocatalysts would have significant effects on the photoreduction activity\(^19\). Take Au as an instance, a precipitation method is better than a photodeposition method, with the CH\(_4\) evolution activity up to almost three-fold increase (Fig. 4b and Supplementary Table S5). The difference in the activity was due to the differences in the size and homogeneity of loaded Au cocatalysts\(^5\). The size of Au is in the range of 5–7 nm (Supplementary Fig. S11b) by a photodeposition method while the average size is only about 2 nm via a precipitation method\(^5\). For all samples, there is no oxygen detected. The oxygen generated by the water oxidation is partially used for the oxidation of the evolved products (HCOOH, HCHO, CO, etc.)\(^46,47\) and partially is consumed by surface oxygen defects of the photocatalysts\(^52\). For Au, Ag, Cu, NiO\(_x\) systems, besides CO and CH\(_4\), other hydrocarbon compounds (C\(_2\)H\(_4\), C\(_2\)H\(_6\)) were also generated in the reaction. However, the productions of these organic compounds were much lower than that of CH\(_4\). These results suggest that the long chain organic molecules are generated via photocatalytic reforming of CH\(_4\), and CH\(_4\) is the source of this reaction\(^53\). The Au cocatalyst was also effective for CO\(_2\) reduction over CaTiO\(_3\) and PbTiO\(_3\) photocatalysts (Supplementary Fig. S12). PTO alone evolved negligible CH\(_4\) under UV and visible light irradiation, due to its relatively weak reduction power and strong oxidation potential. Loading with 1wt% Au increases its activities for CH\(_4\) evolution, still much lower than that of STO and CTO series (Supplementary Fig. S12).

We checked the durability of Au\(_{\text{precipitation}}\)-APS\(_{\text{STO}}\) as a photocatalyst. Fig. 4c shows CH\(_4\) formation by Au\(_{\text{precipitation}}\)(1 wt%)-APS\(_{\text{STO}}\) synthesized under CO\(_2\) with prolonged irradiation (up to 130 hrs). Au cocatalyst was synthesized via a precipitation method. The reaction sample was degassed after each run (~24 h), CO\(_2\) (80 kPa) was introduced to it, and then the vessel was irradiated again. (d) CH\(_4\) evolution in reference experiments in the conditions without H\(_2\)O, CO\(_2\), light irradiation, and catalyst compared with that in normal conditions. Au\(_{\text{photodeposition}}\)(1 wt%)-APS\(_{\text{STO}}\) was measured as the normal condition.

![Figure 4](https://www.nature.com/scientificreports/)

Figure 4 | Photocatalytic CO\(_2\) reduction activities. (a) CO and CH\(_4\) evolution on bare SrTiO\(_3\) series. (b) CO and CH\(_4\) evolution on APS\(_{\text{STO}}\) loaded with different cocatalysts. (c) Photocatalytic formation of CH\(_4\) on Au (1 wt%)-APS\(_{\text{STO}}\) synthesized under CO\(_2\) with prolonged irradiation (up to 130 hrs). Au cocatalyst was synthesized via a precipitation method. The reaction sample was degassed after each run (~24 h), CO\(_2\) (80 kPa) was introduced to it, and then the vessel was irradiated again. (d) CH\(_4\) evolution in reference experiments in the conditions without H\(_2\)O, CO\(_2\), light irradiation, and catalyst compared with that in normal conditions. Au\(_{\text{photodeposition}}\)(1 wt%)-APS\(_{\text{STO}}\) was measured as the normal condition.
considered as the contamination from air during samplings. Nevertheless, in the case that the CO₂ gas was replaced by Ar gas, a small amount of CH₄ was found which should be generated from the photoreduction of the remaining CO₂ on the sample surface. Consequently, all the above-mentioned reference experiments prove that the H₂O supplies protons, CO₂ offers a carbon source, and the photocatalyst gives the redox potentials for the whole reaction to finally produce CO and CH₄.

Discussion

We demonstrated a design strategy for a promising 3D APS architecture as an efficient mass flow network for improved gas diffusion and light harvesting relying on the morphological replacement of leaf’s 3D hierarchical architecture into perovskite titanates. We believe that a general method for the construction of 3D APS architectures of ATiO₃ (A = Sr, Ca, Pb) achieved here through the conversion of the morphological elements of NPS into APS, can be extended to other multi-metallic oxides, such as tantalates (e.g. NaTaO₃, KTaO₃, Sr₄Ta₂O₉), niobates (e.g. NaNbO₃) via modified sol-gel or polymerizable complex method. Such methodology can also be extended to polymeric metal-free photocatalysts, such as graphitic carbon nitride (g-C₃N₄) based on earth-abundant elements. To the best of our knowledge this is the first example utilizing biological systems as an “architecture-directing agent” for the synthesis of APS for CO₂ photoreduction. Assisted by the large variety of green plants and biological systems, this design strategy hints at a more general principle for the design of APS architectures with a great variety of useful and optimized geometries. Indeed, hierarchical constructions on a scale ranging from nanometers to millimeters are characteristic of biological structures and introduce the capacity to answer physical or chemical demands occurring at these different levels. Many of these hierarchical, elaborate structures are barely attainable by man-made materials. This strategy could be extended to various hierarchical biological systems (e.g. photosynthetic diatoms, radiolarians, etc.). By using biomass as the raw resources, this strategy also has great significance for the realization of global carbon neutral cycle as well as for the ultimate goal of solar energy utilization in tailor-made synthesis of fine chemicals and solar fuel from CO₂ (Fig. 5). An area for further study is the computation, simulation and modeling of leaf’s 3D concept prototypes, and biomimetic synthesis of the complicated networks (e.g. with the assistance of 3D inkjet printing technology) for large scale production. Finally, this study opens possibilities of applications of leaf’s 3D architecture prototype or other architecture models in nature for the field of artificial photosynthesis as well as many other energy capture, conversion and storage areas, such as solar cells, fuel cells, battery electrodes, and so forth.

Methods

Synthesis of APSs of ATiO₃ (A = Sr, Ca, Pb). Fresh green leaves (Cherry Blossom) were cut into 2 cm × 2 cm pieces and washed with deionized water, then they were immersed in 5% diluted HCl overnight to get rid of Mg, K, Ca, P, S and other ions. Afterwards, the treated leaves were washed with deionized water and ethanol several times. A typical preparation for APSs for Au, Ag, Cu was as follows: Titanium tetrabutoxide (10 mmol) was dissolved and stirred in heated (70 °C) acetylacetone while Sr(Ac)₂+0.5H₂O (10 mmol) was dissolved and stirred in heated (70 °C) ethanol/CH₃COOH (v : v = 1 : 1) solution. Then the two solutions were mixed, and then P123 (4 g) was added with stirring at 70 °C for 4 h. The pretreated leaves were immersed in the precursors for eight hours at room temperature and then washed with ethanol for four times. The infiltrated leaves were dried at 100 °C for one day and then calcined at 600 °C for 10 h in O₂ atmosphere at a heating rate of 1 °C min⁻¹ for multi-metal oxides crystallization and for organics removal. For the synthesis of CaTiO₃ and PbTiO₃, Ca(Ac)₂+H₂O and Pb(Ac)₂+3H₂O were used instead of Sr(Ac)₂+0.5H₂O. For the synthesis of CaTiO₃, Ca(Ac)₂+H₂O was dissolved and stirred in heated (70 °C) CH₃COOH solution instead of ethanol/CH₃COOH solution. The powder constituents of APSs were obtained by grounding the APSs with a mortar. The referenced ATOs were synthesized without using leaves as templates.

Loading the co-catalysts. The loading of Pt, Au, Ag, Cu were performed by a photodeposition method using H₂PtCl₆+H₂O, HAuCl₄+3H₂O, AgNO₃, Ca(NO₃)₂ as the Pt, Au, Ag, and Cu sources, respectively. Typically, 0.2 g photocatalyst, 220 ml distilled water, 50 ml methanol and a given amount of noble metal solutions (1 wt%) were placed in a glass vessel. The reaction solution was irradiated by a 300 W Xe arc lamp for 1 h with stirring. Then, the photocatalysts were filtered, washed thoroughly with deionized water, dried in a vacuum at room temperature for 4 h and then dried in an oven at 100 °C for 10 h. The loading of Au was also performed by a precipitation method for comparison. The precipitation procedure was done at 343 K and pH 9 for 4 h with 1 wt% HAuCl₄+3H₂O as the Au source, using (0.2 M) NaOH to maintain the pH constant. The catalyst was then recovered, filtered, washed with deionized water, and dried at 373 K overnight. Finally, the powder was calcined at 473 K in air for 4 h.

The loading of RuO₂: The loading of RuO₂ was performed by impregnating photocatalyst powders with the solution of ruthenium complex [Ru(CO)₅Cl]₂ (Aldrich Chemical Co., 99% pure) in tetrahydrofuran (THF). The impregnated samples were stirred at 60 °C for 4 h, dried at 60 °C, and oxidized at 350 °C in air for 2 h to convert ruthenium complex species to ruthenium oxide.

The loading of NiOx: The SrTiO₃ particles were added to 20 ml of an aqueous Ni(NO₃)₂+6H₂O solution (1 wt% loading of NiO: STO) and thoroughly mixed in a sonication bath for 10 min. This solution was stirred at 100 °C and then calcined at 1 h at 350 °C in air. The air above the solid was flushed with N₂ and then replaced by H₂, and the sample was heated to 500 °C for 2 h to reduce nickel. The final product was obtained after another 1 h of heating at 200 °C in an O₂ atmosphere.

CO₂ photoreduction measurements. The CO₂ photoreduction experiments were carried out in a gas closed circulation system with an upside window (Figure S13). The catalyst (50 mg) was dispersed on a small glass cell and then located in a Pyrex reaction cell. After that, 2 ml of distilled water was added into the gas closed reaction system. The whole system was then evacuated and filled with 80 kPa of pure CO₂ gas. The light source was a 300 W Xe arc lamp (ILC Technology, CERMAX LX-300). An L-42 (Hoya Corp., Japan) cutoff filter was used to obtain visible light (λ > 420 nm). The organic products were sampled and measured with a gas chromatograph (GC-14B, Shimadzu) equipped with a flame ionization detector (FID) according to the standard curves. The H₂ and CO₂ evolution was measured with an online gas chromatograph (GC-8A, Shimadzu) with a TCD detector according to the standard curve.

Characterization. The crystal structure of samples was determined with an X-ray diffractometer (Rint-2000, Rigaku Co., Japan) with Cu Kα radiation. The diffused reflection spectra were measured with an integrating sphere equipped UV—visible recording spectrophotometer (UV-2500PC, Shimadzu Co., Japan) using BaSO₄ as a reference, and the optical absorption was calculated from the reflection spectra according to the Kubelka—Munk equation. Scanning Electron Microscopy (SEM) images were recorded to observe the morphology with scanning electron microscope (JEOL 7600F field emission scanning electron microscope). Transmission electron microscopy images and high-resolution images were recorded with a field emission transmission electron microscope (2100F, JEOL Co., Japan) operated at 200 kV. The specific surface areas were determined with a surface-area analyzer (BEL-SorpP mini, BEL Japan Co., Japan) by the Brunauer—Emmett—Teller (BET) method. Mercury porosimetry measurements were performed using an Autopore IV 9500 (Micromeritics Company).
1. Listori, A., Durrant, J. & Barber, J. Artificial Photosynthesis: solar to fuel. Nat. Mater. 8, 929–930 (2009).

2. Lewis, N. S. & Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 103, 15729–15735 (2006).

3. Tachibana, Y., Vayssieres, L. & Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 6, 511–518 (2012).

4. Antonietti, M. On the way to artificial photosynthesis: simple materials and system designs for photoelectrodes. Angew. Chem. Int. Ed. 52, 1086–1087 (2013).

5. Kalyanasundaram, K. & Graetzel, M. Artificial Photosynthesis: biomimetic approaches to solar energy conversion and storage. Current opinion in Biotechnology 21, 298–310 (2010).

6. Michel, J. Photochemical reduction: towards an artificial leaf? Nat. Chem. 3, 268–269 (2011).

7. Bensaid, S., Centi, G., Garene, E., Perathoner, S. & Saracco, G. Toward artificial leaves for solar hydrogen and fuels from carbon dioxide. ChemSusChem 5, 500–521 (2012).

8. Halmann, M. Photoelectrochemical reduction of aqueous carbon oxides on p-type gallium phosphide in liquid junction solar cells. Nature 277, 115–116 (1978).

9. Inoue, I., Fujishima, A., Konishi, S. & Honda, K. Photoelectrocatalytic reduction of carbon dioxide on TiO2 and related titanium containing solids. Energy Environ. Sci. 5, 921–930 (2012).

10. Roy, S. C., Varghese, O. K., Paulose, M. & Grimes, G. A. Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4, 1259–1278 (2010).

11. Hoffmann, M. R., Moss, J. A. & Baum, M. M. Artificial photosynthesis: semiconductor photocatalytic fixation of CO2 to afford higher organic compounds. Dalton Trans. 40, 5115 (2011).

12. Morti, K. Y., Yamashita, M. & Anpo, M. Photoelectrocatalytic reduction of CO2 with H2O on various titanium oxide photocatalysts. RSC Advances 2, 3165–3172 (2012).

13. Dhalakshminorthy, A., Navalon, S., Corma, A. & Garcia, H. Photoelectrocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ. Sci. 5, 921–930 (2012).

14. Liu, Q., Zhou, Y., Kou, J., Chen, X., Yan, S. & Zou, Z. G. High yield synthesis of ultralang and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. J. Am. Chem. Soc. 132, 14385–14387 (2010).

15. Zhang, N., Ouyang, S. X., Li, P., Zhang, Y. X., Xi, G. C., Gao, T. & Ye, J. H. In-situ photocatalysis synthesis of a micro/mesoporous Zn2GeO4 photocatalysts at room temperature for photoreduction of CO2, Chem. Commun. 47, 2041–2043 (2011).

16. Zhang, N., Ouyang, S. X., Gao, T. & Ye, J. H. Mesoporous zinc germanium oxynitride for CO2 photoreduction under visible light. Chem. Commun. 48, 1269–1271 (2012).

17. Yan, S. C., Ouyang, S. X., Gao, J., Yang, M., Meng, F. J. Y., Fan, X. X., Wan, L. L. I., L., Z. S., Ye, J. H., Zhou, Y. & Zou, Z. G. A room-temperature reactive-template route to mesoporous Zn2GeO4 with improved photocatalytic activity in reduction of CO2. Angew. Chem. Int. Ed. 49, 6400–6404 (2010).

18. Matsumoto, Y., Ohta, M. & Hombou, J. Photocatalytic reduction of carbon dioxide on p-type CaF2–CaO–TiO2 powder. J. Phys. Chem. 103, 2950–2955 (1999).

19. Iizuka, K., Wato, T., Miseki, Y., Sato, K. & Kudo, A. Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded Al2Ti3O9 (A = Ca, Sr, and Ba) using water as a reducing reagent. J. Am. Chem. Soc. 133, 20863–20868 (2011).

20. Xi, G. C., Ouyang, S. X., Li, P., Ye, J. H., Ma, Q. S., Su, B. L. & Wang, C. Ultrathin W18O49 nanowires with diameters below 1nm: synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. J. Phys. Chem. C 117, 5802–5807 (2013).

21. Takahashi, R., Sato, S., Sodesawa, T., Arai, K. & Yabuki, M. Effect of diffusion in catalytic dehydrogenation of alcohol over silica-alumina with continuous macropores. J. Catal. 229, 24–29 (2005).

22. Mitchell, S., Michels, N. L., Kunze, K. & Ramirez, J. P. Visualization of hierarchically structured zeodites bodies from macro to nano length scales. Nat. Chem. 4, 825–831 (2012).

23. Li, Y., Fu, Z. Y. & Su, B. L. Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater. 22, 4634–4667 (2012).

24. Sanchez, C., Arribart, H. & Guille, M. M. G. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat. Mater. 4, 277–288 (2005).

25. Barber, J. Biological solar energy. Philos. Trans. R. Soc. Lond. Ser. A 365, 1087–1023 (2007).

26. Parkhurst, D. F. Diffusion of CO2 and other gases inside leaves. New Phytol. 126, 449–479 (1994).

27. Bredribb, J. T., Field, T. S. & Sack, L. Viewing leaf structure and evolution from a hydriclasic perspective. Functional Plant Biology 37, 488–498 (1999).

28. Nüenemets, U. & Sack, L. Structural determinants of leaf light harvesting capacity and photosynthetic potentials. Prog. Bot. 67, 385–419 (2006).

29. Shimoni, E., Rav-Hon, O., Ohad, I., Brumfeld, V. & Reich, Z. Three-dimensional organization of higher-plant chloroplasts thylakoid membranes revealed by electron tomography. Plant Cell 17, 2580–2586 (2005).

30. Cowan, E. Economics of carbon fixation in higher plants. In: On the economy of plant form and function. (ed. Gimnich, T. J.) 133–170 (Cambridge University Press, 1986).

31. Niklas, K. J. A mechanical perspective on foliage leaf form and function. New Phytologist 143, 19–31 (1999).
Author contributions
H. Zhou designed the experiment, synthesized the materials and performed the measurements. J. Ye supervised the project. J. Guo and P. Li assisted with the photocatalytic performances measurement. H. Zhou wrote the paper. J. Ye, T. Fan and D. Zhang commented on the manuscript writing and the results discussion. All the authors discussed the results and comments on the manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

License: This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/

How to cite this article: Zhou, H. et al. Leaf-architected 3D Hierarchical Artificial Photosynthetic System of Perovskite Titanates Towards CO2 Photoreduction Into Hydrocarbon Fuels. Sci. Rep. 3, 1667; DOI:10.1038/srep01667 (2013).