Antitumor and Immunostimulating Activities of *Elfvingia applanata* Hot Water Extract on Sarcoma 180 Tumor-bearing ICR Mice

Sung Mi Shim, Jae Seong Lee, Tae Soo Lee and U Youn Lee*

Division of Life Sciences, University of Incheon, Incheon 406-840, Korea
(Received March 12, 2012. Accepted March 12, 2012)

Elfvingia applanata, a medicinal mushroom belonging to Basidiomycota, has been used in the effort to cure cancers of the esophagus and stomach, and is also known to have inhibitory effects on hepatitis B virus infection. The hot water soluble fraction (as Fr. HW) was extracted from fruiting bodies of the mushroom. *In vitro* cytotoxicity tests showed that hot water extract was not cytotoxic against cancer cell lines such as Sarcoma 180, HT-29, HepG2, and TR at concentrations of 10~2,000 µg/mL. Intraperitoneal injection with Fr. HW resulted in a life prolongation effect of 45.2% in mice previously inoculated with Sarcoma 180. Treatment of Fr. HW resulted in a 2.53-fold increase in the numbers of murine spleen cells at a concentration of 50 µg/mL, compared with control. Incubation of murine spleen cells with Fr. HW at a concentration of 500 µg/mL resulted in improved immune-potentiating activity of B lymphocytes through an 8.3-folds increase in alkaline phosphatase activity, compared with control. Fr. HW generated 12.5 µM of nitric oxide (NO) when cultured with RAW 264.7, a mouse macrophage cell line, at the concentration of 50 µg/mL, while lipopolysaccharide, a positive control, produced 15.2 µM of NO. Therefore, the results suggested that antitumor activities of Fr. HW from *E. applanata* might, in part, be due to host mediated immunostimulating activity.

KEYWORDS: Anticancer activity, *Elfvingia applanata*, Hot water extract, Immunostimulating

Introduction

Cancer is one of the leading causes of death worldwide. Although medicines and technologies used in the effort to cure cancers have improved during the last three decades, the adverse side effects of chemotherapeutic treatment remain an unresolved problem. Therefore, strategies for development of new medicines have focused on effective natural products without side effects [1, 2]. Immunomodulatory and antitumor activities of polysaccharides and protein-bound polysaccharides extracted from a variety of higher fungi have been reported [3, 4]. Polysaccharides and protein-bound polysaccharides, such as schizophyllan, lentinan, and polysaccharide K (PSK), were isolated from *Schizophyllum commune, Lentinus edodes*, and *Trametes versicolor*, respectively. Effective inhibition of tumor cell growth and survival rate with low or without toxicity have been reported in Sarcoma 180 tumor-bearing mice treated with these compounds, which are used for immunopharmaceuticals for treatment of cancer related diseases in Asian countries [5-7]. In general, the antitumor activities are attributed to stimulation of the cell-mediated immune responses of the host without adverse effects [4].

Elfvingia applanata, mushroom, belonging to Polyporaceae of Basidiomycota, has long been used in Asian countries as a medicine for treatment of cancers of the esophagus and stomach, inflammation, rheumatism, and hepatitis B virus infection [8, 9].

In the present study, crude polysaccharides were extracted from fruiting bodies of *E. applanata* with hot water and antitumor and immuno-potentiating activities of the mushroom were investigated. The *in vivo* antitumor effect in Sarcoma 180 tumor-bearing mice and *in vitro* cytotoxic activities of 4 cancer cell lines were studied. In addition, for study of immunopotentiating activities, nitric oxide (NO) production, proliferation of splenocytes, and alkaline phosphatase (APase) activity in murine spleen cells were also investigated.

Materials and Methods

Mushroom. Fresh fruiting bodies of *E. applanata* were collected in Seoul, Korea, in June, 2006. A pure culture was deposited in the Culture Collection and DNA Bank of Mushroom (CCDBM), Division of Life Sciences, University of Incheon, Korea, with acquired accession No.
volumes of ethanol and allowed to stand overnight at 4°C. Supernatants obtained were combined and mixed with 4°C. The residue was then heated in a boiling water bath for 3 hr, and suspended in distilled water (3,000 mL). The suspension by incubation at 37°C for 4 hr with 5% of 3-(4,5-dimethyl-1-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium-5-carboxanilide (XTT) solution was mixed with 30 µL of 25 µM phenazine methosulfate, followed by incubation at 37°C with 5% atmospheric CO2 for 2 hr under dark conditions. OD was then measured using a microplate reader at 450 nm. Viability was defined as the ratio (expressed as a percentage) of absorbance of treated cells to untreated cells that served as control. All experiments were replicated three times and mean values are presented.

In vivo assay of antitumor activity. Antitumor activity of hot water extract was assayed against mouse Sarcoma 180 cells (ascitic type, 5 × 10^6 cells) implanted in a 6-wk-old ICR mouse. The test sample was dissolved in phosphate buffered saline (PBS, pH 7.4; Gibco BRL., Gaithersburg, MD, USA) and filtered through a 0.22 µm of membrane filter (Millipore Co., Bedford, MA, USA), followed by intraperitoneal injection in mice for 10 consecutive days at a dose of 20 mg/kg, starting from 24 hr before and after tumor implantation. Antitumor activity of the hot water extract against Sarcoma 180 tumor-bearing ICR mice was evaluated according to the increase in life span (ILS). The method previously described by Geran et al. [11] was used for calculation of ILS. ILS = [(T − C)/C] × 100(%), where T is the mean of survival day (MSD) of the treated groups and C is the MSD of the control group. Survival of mice was evaluated every day after tumor implantation until death. Experiments with mice were conducted in accordance with procedures and policies approved by the Animal Care and Ethics Committee at the University of Incheon.

Proliferation of murine spleen cells. The WST-1 assay was performed to test for proliferation of murine spleen cells [12]. Six-wk-old ICR male mice were sacrificed by cervical dislocation, followed by aseptic removal of the spleen and grinding of the spleen using a 100-mesh sieve (Bellco Glass Inc., Vineland, NJ, USA). Two volumes of lymphocyte separation medium (PAA laboratory Gmbh, Pasching, Austria) were added to the extracted solution, which was then centrifuged for 20 min at 400 g. Monocyte cells of spleen were selectively separated and centrifuged 3 times for approximately 5 min at 300 g. The spleen cells (2 × 10^6 cells/mL) were then added to RPMI 1640 medium supplemented with heat-inactivated fetal bovine serum, followed by treatment with different concentrations
of the hot water extract (50, 200, and 500 µg/mL) and incubated for 48 hr in 96-well microplates at 37°C with 5% atmospheric CO2 under dark conditions. In the same manner, lipopolysaccharide (LPS), a positive control, was incubated with different concentrations of 5 and 10 µg/mL. Thereafter, 10 µL of a 5 mg/mL concentration of WST-1 assay solution was added to each well, followed by incubation for 4 hr at 37°C with 5% CO2 under dark conditions. OD was measured using a microplate reader at 440 nm.

APase activity in murine spleen cells. A method previously described by Ohno et al. [13] was used for measurement of APase activity of murine spleen cells. Six-wk-old ICR male mice were sacrificed by cervical dislocation and cell suspension of the spleen was prepared aseptically. Various concentrations of the hot water extract (50, 100, and 200 µg/mL) were applied to 100 µL of spleen cells (1 × 10^6 cells/well), followed by incubation for 48 hr in 96-well microplates at 37°C with 5% atmospheric CO2. Differing concentrations of LPS (5 and 50 µg/mL) were applied to 100 µL of spleen cells (1 × 10^6 cells/well), followed by incubation for 48 hr in 96-well microplates at 37°C with 5% atmospheric CO2. Cell suspensions were collected and freeze-thawed, followed by addition of 50 mM of sodium carbonate buffer (pH 9.8) containing p-nitrophenyl-phosphate (0.1 mg/ml) and MgCl2 (1 mM) to 10 µL of the cell lysate. The reaction mixture was incubated for 1 hr at 37°C with 5% atmospheric CO2 and was terminated by addition of 500 µL of 0.3 N ice cold NaOH. Absorbance was measured at 405 nm. APase activity of spleen cells was expressed as the stimulation index (AL.P SI). AL.P SI = mean OD in the treated group/mean OD in control group.

NO production by RAW 264.6 macrophages. The method described previously by Choi et al. [14] was used for assessment of NO production in the culture supernatants of RAW 264.7. Briefly, 100 µL of RAW 264.7 cells (1 × 10^5 cells/well) treated with various concentrations of the hot water extract (50, 100, and 200 µg/mL) were incubated for 48 hr in 96-well microplates at 37°C with 5% atmospheric CO2. LPS, the positive control, was applied to 100 µL of RAW 264.7 cells (1 × 10^5 cells/well) at concentrations of 1, 10, and 50 µg/mL, followed by culture for 48 hr in 96-well microplates at 37°C with 5% atmospheric CO2. Then, an equal volume of Griess reagent (1% sulfanilamide, 0.1% naphthylethlenediamine dihydrochloride in 2.5% phosphoric acid) was mixed with the culture and allowed to stand for 10 min. OD was measured using a microplate reader at 540 nm. Nitrite concentration was calculated from a standard curve prepared with known concentrations of sodium nitrite. Each experiment was replicated three times.

Results and Discussion

Cytotoxicity by MTT assay. For the MTT assay, cytotoxicity was expressed as the survival fraction compared with untreated control cells. For evaluation of cell viability and proliferation, 100 µL of cells of HT-29, HepG2, TR, and Sarcoma 180 cell lines (1 × 10^5 cells/well) were treated with different concentrations of Fr. HW (10, 100, 1,000, and 2,000 µg/mL) of E. applanata, followed by incubation for 48 hr in 96-well microplates. Viabilities of HT-29 and Sarcoma 180 cell lines cultured with 10 µg/mL of Fr. HW
ranged from 100–110%, whereas those of the same cell lines cultured with 2,000 µg/mL were 62 and 83% (Fig. 1). Viabilities of TR and HepG2 cell lines cultured at 10 µg/mL of Fr. HW were 82% and 83%, whereas those of the same cell lines incubated at the concentration of 1,000 µg/mL were 50% and 75% (Fig. 2). Thus, the viabilities of Sarcoma 180 and HT-29 cell lines incubated for 48 hr at 10–2,000 µg/mL of concentration ranged from 61–110% and treatment with Fr. HW resulted in gradual inhibition of Sarcoma 180 and HT-29 cell lines in a dose-dependent manner. Viabilities of TR and HepG2 cell lines cultured in 10 µg/mL of Fr. HW ranged from 82–84%, while those of cell lines cultured in 1,000 µg/mL were 51 and 72%. Thus, the viabilities of Sarcoma 180 and HT-29 cell lines cultured for 48 hr at concentrations of 10–2,000 µg/mL of Fr. HW ranged from 61–110%. According to the results, Fr. HW of *E. applanata* had no significant cytotoxic effect on 4 cancer cell lines tested at concentrations of 10–2,000 µg/mL.

In vivo assay of antitumor activity. Antitumor activity of hot water extract of fruiting bodies of *E. applanata* was tested against Sarcoma 180 tumor-bearing mice; the results are summarized in Table 1. The MSD for the control group was 15.5 days, while the MSD of the Fr. HW treated group was 22.5 days at a dose of 20 mg/kg. The life span of Sarcoma 180 tumor-bearing mice was increased by 45.2%, compared with the control group. Shim *et al.* [15] reported that treatment with methanol extract of *Paecilomyces sinclairii* resulted in inhibited growth of Sarcoma 180 tumor cells and prolongation of the life span of mice by 32.3%, compared with the control. Lee *et al.* [16] reported that the life span of Sarcoma 180 tumor-bearing ICR mice was increased by 66.7%, compared with control group, when injected with methanol extract isolated from fruiting bodies of *Tremella aurantialba*. In general, the criteria for judging the antitumor effect of any substances include prolongation of the life span by more than 25% [17]. According the results, it is concluded that treatment with Fr. HW showed a significant increase and the fruiting bodies of *E. applanata* might contain effective antitumor substances against Sarcoma 180 tumor-bearing mice.

Table 1. The effects of hot water extract isolated from fruiting bodies of *Elfvingia applanata* on the life span of Sarcoma 180 tumor-bearing ICR mice (i.p.)

Group	Dose (mg/kg body weight)	Survival days	ILS (%)
Control	0	15.5 ± 0.00	-
Fr. HW	20	22.5 ± 2.35	45.2

Each experimental group consisted of 8 mice. Survival days for each mouse in the experimental group were measured individually and the mean survival days (mean ± SE) were calculated for each group. Hot water was used for extraction of Fr. HW. ILS: increase of life span; i.p., intraperitoneal injection; Fr. HW, hot water soluble fraction.

Proliferation of murine spleen cells. Six-wk-old mice were sacrificed by cervical dislocation and cell suspension of the spleen was prepared aseptically from mice. Various concentration of the hot water extract (50, 100, and 200 µg/mL) were applied to 100 µL of spleen cells (1 × 10³ cells/well), followed by incubation for 48 hr in 96-well microplates. The effects of Fr. HW on proliferation of murine spleen cells were evaluated. As shown in Fig. 3, treatment of murine spleen cells with LPS resulted in a significant, 3.2-fold, increase in cell numbers, and treatment with Fr. HW resulted in a 2.53-fold increase in cell numbers, compared with the control, at a concentration of 50 µg/mL. Li *et al.* [18] reported that proteoglycan extracted from crude liquid culture medium and mycelia of *Phellinus nigricans* stimulated proliferation of lymphocytes of spleen cells and also increased production of tumor necrosis factor-α. Murine spleen cells are the main residence of various immune cells and are also important for host immune response. According the results, it is concluded that treatment with Fr. HW can improve the immune response of the host via stimulating proliferation of immune-organ, murine spleen cells.

APase activity in murine spleen cell. Six-wk-old mice were sacrificed by cervical dislocation and cell suspension of...
the spleen was prepared aseptically. Various concentrations of Fr. HW (50, 100, and 200 µg/mL) were applied to 100 µL of spleen cells (1 × 10^6 cells/well), followed by incubation for 48 hr in 96-well microplates. Stimulation of splenic lymphocytes with LPS and Fr. HW at 50 µg/mL resulted in a 5.67- and 3.72-fold increase of APase activity, respectively, compared with control (Fig. 4). However, APase activity in splenocytes stimulated with 5 µg/mL of LPS was 1.42-folds higher than that of splenocytes stimulated with Fr. HW at 5 µg/mL. Murine spleen cells stimulated with LPS and Fr. HW showed a positive concentration-dependent increase in APase activity. Lee et al. [16] reported that APase activity were increased by 1.1~1.16-folds when stimulated with crude polysaccharides of Tremella auricularia at concentrations of 200~500 µg/mL. Therefore, it is concluded that treatment with Fr. HW could result in improved immunostimulating activity of the host via increasing alkaline phosphatase activity.

NO production by RAW 264.7 macrophages. NO production in culture supernatants of RAW 264.7 macrophage was evaluated using 100 µL of RAW 264.7 cells (1 × 10^6 cells/well) treated with various concentrations of Fr. HW (50, 100, and 200 µg/mL). In the control group, 4.5 µM of NO was released in RAW 264.7 macrophages, while 14.8 µM and 15.2 µM of NO were produced by treatment with LPS at concentrations of 10 and 50 µg/mL (Fig. 5). NO produced by Fr. HW were 12.5 µM, 16.3 µM, and 22.4 µM at concentrations of 50 µg/mL, 100 µg/mL, and 200 µg/mL, respectively. Thus, release of NO by RAW 264.7 macrophages activated by Fr. HW resulted in gradually increased production of NO with increasing concentrations of Fr. HW. Kim et al. [19] reported RAW 264.7 macrophages stimulated by polysaccharides extracted from Phellinus linteus increased the production of NO by dose-dependent manner. According to the results, treatment of RAW 264.7 macrophages with Fr. HW can result in increased production of NO and improvement of the immune response of mice. Ooi and Liu [1] reported that polysaccharides extracted from mushrooms exert anti-tumor effects through activation of different immune responses in the host rather than by direct killing of tumor cells. Our results also showed that hot water extract isolated from fruiting bodies of E. applanata had no significant direct cytotoxic effect against 4 cancer cell lines; rather, it has immunopotentiating activities. Therefore, further studies are needed for elucidation of major components of fruiting body of E. applanata involved in immunostimulation of mice.

Acknowledgements

This study was supported by a research grant from the University of Incheon in 2011.

References

1. Ooi VE, Liu F. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr Med Chem 2000; 7:715-29.

2. Chihara G, Hamuro G, Maeda Y, Arai Y, Fukuoka F. Antitumor polysaccharide derived chemically from natural...
glucan (Pachyman). Nature 1970;225:943-4.
3. Wasser SP, Weis AL. Medicinal properties of substances occurring in higher basidiomycetes mushrooms: current perspectives (review). Int J Med Mushrooms 1999;1:31-62.
4. Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 2002;60:258-74.
5. Komatsu N, Okubo S, Kikumoto S, Kimura K, Saito G. Host-mediated antitumor action of schizophyllan, a glucan produced by Schizophyllum commune. Gann 1969;60:137-44.
6. Chihara G, Maeda Y, Hamuro J, Sasaki T, Fukuoka F. Inhibition of mouse sarcoma 180 by polysaccharides from Lentinus edodes (Berk.) Sing. Nature 1969;222:687-88.
7. Tsukagoshi S, Ohashi F. Protein-bound polysaccharide preparation, PS-K, effective against mouse sarcoma-180 and rat ascites hepatoma AH-13 by oral use. Gann 1974;65:557-8.
8. Park WH, Lee HD. Medicinal mushrooms in Korea. Seoul: Kyohak Publishing Co., Ltd.; 2002.
9. Ying JZ, Mao XL, Ma QM, Zong YC, Wen HA. Icones of medicinal fungi from China. Beijing: Science Press; 1988.
10. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55-63.
11. Geran RI, Greenberg NH, MacDonald MM, Schumacher AM, Abbot BJ. Protocols for screening chemical agents and natural products against animal tumors and other biological systems. Cancer Chemother Rep 1972;3:59-61.
12. Ngamwongsatit P, Banada PP, Panbangred W, Bhunia AK. WST-1-based cell cytotoxicity assay as a substitute for MTT-based assay for rapid detection of toxigenic Bacillus species using CHO cell line. J Microbiol Methods 2008;73:211-5.
13. Ohno N, Arai Y, Suzuki I, Yadomae T. Induction of alkaline phosphatase activity in murine spleen cells treated with various mitogens. J Pharmacobiodyn 1986;9:593-9.
14. Choi SH, Jun CD, Lee, BS, Park SD, Oh JS, Chung HT. Effect of various extrinsic and intrinsic factors on the nitric oxide production of murine macrophage. Korean J Biol Response Modif 1993;3:15-22.
15. Shim SM, Im KH, Kim JW, Lee UY, Shim MJ, Lee MW, Lee TS. Studies on immuno-modulatory and antitumor effects of crude polysaccharides extracted from Paecilomyces sinclairii. Kor J Mycol 2003;31:155-60.
16. Lee GW, Kim HY, Hur H, Lee MW, Shim MJ, Lee UY, Lee TS. Antitumor and immuno-modulatory effect of crude polysaccharides from fruiting body of Tremella aurantialba against mouse sarcoma 180. Kor J Mycol 2008;36:66-74.
17. Clarkson BD, Burchenal JH. Preliminary screening of antineoplastic drugs. Prog Clin Cancer 1965;1:625-9.
18. Li X, Jiao LL, Zhang X, Tian WM, Chen S, Zhang LP. Antitumor and immunomodulating activities of proteoglycans from mycelium of Phellinus nigricans and culture medium. Int Immunopharmacol 2008;8:909-15.
19. Kim GY, Choi GS, Lee SH, Park YM. Acidic polysaccharide isolated from Phellinus linteus enhances through the up-regulation of nitric oxide and tumor necrosis factor-α from peritoneal macrophages. J Ethnopharmacol 2004;95:69-76.