A transient peak of infections during onset of rheumatoid arthritis: a 10-year prospective cohort study

Marina I Arleevskaya,1 Aida G Gabdoulkhakova,1 Yulia V Filina,1 Regina R Miftakhova,2 Anders Bredberg,2 Anatoly P Tsybulkin3

ABSTRACT

Objectives: The role of infection in rheumatoid arthritis (RA) has not been determined. We aimed to document the infectious burden and some aspects of antibacterial immunity in a large and prospective cohort study of RA patients in the early and late stages of the disease and in their relatives predisposed to RA.

Setting: Clinical and laboratory examination of all individuals enrolled in the study was performed in the Republican Clinical Hospital, Kazan, Russia.

Participants: 376 patients with RA, 251 healthy first-degree relatives and 227 healthy controls without a family history of autoimmune disease (all females) were examined twice annually over more than 10 years.

Primary and secondary outcome measures: The following parameters were investigated: type, duration and frequency of infections, bacterial colonisation and serum levels of IgG to bacteria, serum levels of total Ig, plasma cytokine levels, granulocyte reactive oxygen species production, lysozyme activity and phagocytosis.

Results: There were no significant differences in infection rate between healthy controls (median 14 days/year) and RA patients (13). However, infection rates were higher (p<0.001) in healthy relatives (53) and early stage patients (62), which groups also showed heavy bacterial skin colonisation. In contrast, late stage patients had fewer infection days (12; p<0.001) than healthy controls, although bacterial colonisation was still heavy. Phagocyte function and antibacterial antibody generation, together with compensatory cytokine production, were observed to be subnormal in the healthy relatives as well as in RA patients.

Conclusions: We observed a marked increase in overall infections at the time of RA onset, and signs of a defective antibacterial defence mechanism, contrasting with fewer infections in the late RA stage. It can be speculated that frequent early infections initiate a compensatory immune hyper-reactivity which reduces the infection load while stimulating the development of RA in predisposed individuals.

INTRODUCTION

It has long been hypothesised that infections play a role in the development of rheumatoid arthritis (RA).1–7 However, it remains to be elucidated whether infection is a cause or a consequence (or neither) of the numerous immune aberrations displayed by RA patients. Do infections play a pathogenic role by evoking immune reactions, for example resulting from molecular mimicry with a specific microbe or from repeated exposures to a multitude of foreign agents triggering a wear and tear type of immune defence?8

Intrigued by our observations that the leukocytes of RA patients show deficient phagocytosis,9 we decided to systematically document infections and some anti-bacterial immune parameters in a prospective large cohort study. Because the early stage of RA is considered to provide a window of opportunity to significantly impede disease progression,10 11 first-degree healthy relatives (HR) were included, some of whom developed RA during the study. If exposure to microbes was found to be a significant causative factor, this would have profound implications for our understanding of the pathophysiology of this disease, and how to best design early phase aggressive treatment.

MATERIALS AND METHODS

Study population
Most patients in the Tatarstan province in the European part of Russia (population 3.8

To cite: Arleevskaya MI, Gabdoulkhakova AG, Filina YV, et al. BMJ Open 2014;4:e005254. doi:10.1136/bmjopen-2014-005254

▸ Prepublication history for bmjopen-2014-005254 (http://dx.doi.org/10.1136/bmjopen-2014-005254).

© BMJ Publishing Group Ltd (2014). This is an Open Access research paper. Visit the journal online to view these files please.
or habitual alcoholism (by tradition it is uncommon inpressive therapy, and another 1.3% because of smokingSome 3.6% were excluded due to strong immunosup-
timated based on physician records and patient report.
Time zero during disease progression was de
mated based on physician records and patient report.
referred to our centre, the time of diagnosis was esti-
tered in the present study. Mean follow-up
Some patients with a diagnosis already when
1987, and the EULAR 2010 cri-
was from the year preceding enrolment. The study parti-
cipants were asked about symptoms suggesting infections
experienced during the preceding half or whole year.
Information from out-clinic documents was sought
whenever a general practitioner had been visited. Only
These episodes judged by the rheumatologist to truly
indicate an infection were scored (there were no formal
criteria). In the case of exacerbation of a chronic infec-
tion, the diagnosis was established by a specialist in the
corresponding medical area. Infections over a 1-year
period (the year immediately before assignment as HC,
HR or eRA, and the last year as laRA) for each study
subject are shown in figure 1. Infection data were col-
clected from all study subjects, but the described tests
were performed only for a limited time during the study,
with no selection bias other than study time, and thus
on only some of the subjects; for bacterial cultures
(n=16–139), anti-bacterial IgG n=16–51, lysozyme and
phagocytosis n=31–46, reactive oxygen species (ROS)
production n=11–19, cytokines n=14–58, total Ig levels
n=56–224, and IgE n=16–40. Written informed consent
was obtained from all subjects. The study was approved
by the ethics committee of the Kazan State Medical
Academy, Kazan, Russia (Permit no. 1/2002).

Study design

Anamnestic information on infections was collected by a
specialist in rheumatology trained in Russia at semi-
annual in-hospital 2-day visits for most of the HR and
the RA patients; for the HC group infection information
was from the year preceding enrolment. The study parti-
cipants were asked about symptoms suggesting infections
experienced during the preceding half or whole year.
Information from out-clinic documents was sought
whenever a general practitioner had been visited. Only
those episodes judged by the rheumatologist to truly
indicate an infection were scored (there were no formal
criteria). In the case of exacerbation of a chronic infec-
tion, the diagnosis was established by a specialist in the
corresponding medical area. Infections over a 1-year
period (the year immediately before assignment as HC,
HR or eRA, and the last year as laRA) for each study
subject are shown in figure 1. Infection data were col-
clected from all study subjects, but the described tests
were performed only for a limited time during the study,
with no selection bias other than study time, and thus
on only some of the subjects; for bacterial cultures
(n=16–139), anti-bacterial IgG n=16–51, lysozyme and
phagocytosis n=31–46, reactive oxygen species (ROS)
production n=11–19, cytokines n=14–58, total Ig levels
n=56–224, and IgE n=16–40. Written informed consent
was obtained from all subjects. The study was approved
by the ethics committee of the Kazan State Medical
Academy, Kazan, Russia (Permit no. 1/2002).

Experimental procedures

Bacterial cultures were established from skin (lower
volar arm) cotton swabs and from urine and faeces
samples, in the Bacteriology Laboratory, Republic
Hospital Number 3, Kazan, following routine procedures
established by Russian federal authorities. For quantita-
tion, the skin swab material or 1 g faeces was suspended
in 1 or 10 mL, respectively, phosphate-buffered neutral
pH saline; then 10 μL of this suspension or of urine was
streaked onto a Petri dish. Samples were obtained on
several occasions, but only one result for each sample
type (with the most complete sample set and from the
most recent date) per individual is presented in this
manuscript. Bacterial samples and blood for immuno-
logical investigation were taken only in the absence of
clinical signs of infection.

Phagocytosis of 14C-labelled Staphylococcus aureus and
lysozyme activity were measured as described earlier.12
ROS were analysed by luminol-dependent

Table 1

groups	Sample sizes and cross-over between the study groups
HCs	227
HRs	251
eRA	257
laRA	274
Intermediates (between eRA and laRA)	30
Total RA	376

eRA, early RA (<0.5 years RA duration); HCs, healthy controls (women with no RA among close relatives); HRs, healthy first-degree female relatives of RA patients; laRA, late RA (>3 years RA duration); RA, rheumatoid arthritis.
chemiluminescence real time registration using a chemiluminometer designed by Dr Santalov, Pushchino, Russia, with opsonised zymosan (Sigma, USA; final concentration 0.25 mg/mL) as stimulant. Serum IgG to S. aureus, S. epidermidis and E. coli was determined with ELISA (Navina, Russia). Plasma levels of tumour necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were measured by ELISA (Vector-Best Test Systems, Russia), and interferon γ (IFN-γ) by ELISA (BioLegend, USA). Serum IgG, IgM and IgA total levels were studied using a turbidometric method (Human Diagnostics, Germany), and IgE by ELISA (R&D, USA).

Statistical analysis
The sign criterion, Student t test for independent samples, the Mann–Whitney test, Wilcoxon test, χ² criterion and regression analysis were used. The Pearson criterion was used if case normal distribution was evident. The Spearman rank order correlation test and multiple regression analysis were used for analysis of association between infections and age.

RESULTS
Number of days with an infection experienced during a 1-year period
The infection results for the 1-year period preceding either the first examination (HC and HR), arthritis onset (eRA) or the last examination (laRA) (A) All subjects; (B) HR developing RA and followed to the late stage (a box symbol) and RA patients followed from time of diagnosis (a circle symbol). **p<0.01, ***p<0.001, as compared with HC (A, Mann–Whitney test) and as compared with the data in the preceding time point of analysis (B, Wilcoxon test). The median is shown, and whiskers denote 5% and 99% percentiles. eRA, early RA patients (<0.5 years RA duration); HC, healthy controls (women with no RA among close relatives); HR, healthy first-degree female relatives of RA patients; laRA, late RA patients (>3 years RA duration); RA, all rheumatoid arthritis patients.

Infection types
We also scored infection types (table 2). There was no infection in 12.4% of HC, 4.0% of HR (p<0.05), 2.0% of eRA (p<0.01) or 28.3% of laRA (p<0.01). The most frequent type of infection in all groups was influenza-like symptoms, with no differences between HC, HR and eRA; however the laRA group showed lower values. Symptoms typical for herpes simplex were more frequent, and each episode was longer, for HR and eRA; for laRA the result was similar to HC, but laRA had fewer episodes than eRA. Higher percentages of HR and eRA than HC had upper respiratory and urinary tract infections; again, laRA displayed lower rates. For many of the types of infection with a probable bacterial origin,
HR and eRA showed increase rates, while laRA had a tendency to lower rates (as compared with HR, eRA as well as HC). This can be exemplified by significant differences for acute sinusitis episodes (forming part of the upper respiratory tract data), with this type of infection affecting 2.7% of all HC, 4.8% of HR, 6.0% of eRA and 0.8% of laRA.

Bacterial colonisation

Samples for bacterial culture were taken from faeces, urine and skin at a time when the subjects showed no signs of infection (figure 2A). A high bacterial count was defined arbitrarily as $>10^5$ colony-forming units (CFU) per mL of a suspended skin swab, as $>10^5$ CFU per mL urine and as $>4\times10^8$ CFU per g of suspended faeces. For all three bacterial species and three sample types, high CFU values were more frequent among HR, eRA and laRA as compared with HC. As an example, a high count of *S. aureus* was found in 1 of 23 (4%) HC skin samples, in 13 of 38 (34%) HR samples, in 16 of 45 (36%) eRA samples and in 17 of 75 (23%) laRA samples (p<0.001 for HR and eRA, and p<0.01 for laRA, as compared with HC). For laRA, the *E. coli* and *S. aureus* CFU tended to be lower than for HR and eRA.

Table 2 Incidence and duration of some infection types during a 1-year period†

Infection type	HC (n=227)	HR (n=251)	eRA (n=257)	laRA (n=274)
No infection	12.4	4*	2**	28.3** ##
Influenza-like symptoms	51.3 (7)	56.8 (7)	52.4 (7)	42.6## (7)
Herpes simplex blisters	22.1 (7)	39** (10*)	33.3** (10*)	17.4## (7.9)
Upper respiratory tract†	32.0 (8.4)	51.0*** (10)	48.8*** (12.1*)	22.5** ## (7.7)
Chronic otitis, exacerbation	0	2.8 (14)	3.6** (14)	0 (0)
Chronic bronchitis, exacerbation	1.3 (30)	4* (30)	6.3** (30)	1.9# (21)
Pneumonia	0	0.4 (30)	2.4** (21)	0.4 (14)
Furunculosis, no fever	1.8 (10.5)	9.6** (14)	11.9** (14)	0.4## (10)
Urinary tract infection	2.2 (10)	5* (10)	6.7** (14)	0.8## (7##)
High fever of uncertain origin	0	3.2** (22)	2* (26)	0# (0)
Hospitalised infections	0	0.4## (30)	7.1** (20)	0.4## (14)

†Incidence as % of the individuals in the group with the particular infection (case duration as days, mean) is shown.
‡Including acute tonsillitis, otitis and sinusitis.

HR, healthy controls (women with no RA among close relatives); HR, healthy first-degree female relatives of RA patients; laRA, late RA patients (>3 years RA duration); RA, rheumatoid arthritis.

Figure 2 (A) Fraction of subjects showing heavy bacterial colonisation; (B) serum levels of IgG to *Escherichia coli*, *Staphylococcus epidermidis* and *Staphylococcus aureus*. A high bacterial colony-forming unit (CFU) count was defined arbitrarily (see text). In B, the subjects were separated into two subgroups depending on whether there was a high CFU count (‘Positives’) for any of the cultured samples. **p<0.01, ***p<0.001, as compared with HC; #p<0.05, ##p<0.01, as compared with eRA.

The median and 5% and 99% percentiles are shown. eRA, early RA patients (<0.5 years RA duration); HC, healthy controls (women with no RA among close relatives); HR, healthy first-degree female relatives of RA patients; laRA, late RA patients (>3 years RA duration); RA, rheumatoid arthritis.

Arleevskaya MI, et al. BMJ Open 2014;4:e005254. doi:10.1136/bmjopen-2014-005254.

Open Access on April 23, 2024 by guest. Protected by copyright.
whereas CFU for the less pathogenic commensal \textit{S. epidermidis} tended to be higher.

Serum IgG to \textit{E. coli}, \textit{S. aureus} and \textit{S. epidermidis}, and total Ig levels

There was no significant difference between the groups in serum levels of IgG to \textit{E. coli}, \textit{S. aureus} or \textit{S. epidermidis} (results not shown). However, if the subjects were separated into those with and without a high CFU result (as shown in \textit{figure 2A}), a pattern could be discerned (\textit{figure 2B}). Among the HC, the anti-\textit{E. coli} and anti-\textit{S. aureus} IgG levels were higher in subjects with more colonisation, whereas among HR and eRA the opposite was noted, and laRA showed an intermediate result with no apparent difference between the two CFU groups. This pattern was evident also for anti-\textit{S. epidermidis} among HC, HR and eRA, but the laRA patients showed the same result as the HC, that is, a higher IgG level in those with heavy bacterial colonisation. There was no difference in serum levels of total IgG, IgM or IgA between the subject groups (n=56–224) (\textit{figure 3A}). In a smaller subject subset (n=16–40), the serum total IgG level was approximately twofold elevated in HR (p<0.01) and laRA (p<0.05), but with no deviation in eRA as compared with HC (\textit{figure 3B}).

Plasma cytokine levels

In plasma obtained from subjects without signs of infection, levels of TNF-\(\alpha\), IL-6 and IFN-\(\gamma\) (not significant only with IFN-\(\gamma\) in eRA) were increased in HR, eRA and laRA as compared with HC (\textit{figure 4}). A high level of IL-1\(\beta\) was detected in HR and less so in laRA. For TNF-\(\alpha\) and IL-6, with monocytes considered to be a rich source, there was a tendency for eRA to show a lower concentration than HR and laRA. For IFN-\(\gamma\), originating mainly from T cells, there was a similar pattern.

Phagocyte function

Granulocytes from HR, eRA and laRA displayed a normal level of spontaneous (\textit{figure 5A}) and stimulated (\textit{figure 5B}) generation of ROS; however, after stimulation with opsonised zymosan the time needed to reach peak ROS production was significantly prolonged in HR, eRA and laRA (\textit{figure 5C}). The antibacterial activity of lysozyme secreted by granulocytes, as well as granulocyte phagocytosis of \textit{S. aureus}, were markedly reduced in both laRA and HR (\textit{figure 5D–E}); eRA samples were not available for analysis for these two immune parameters.
DISCUSSION

The quantity of overall infections was higher in the HR as compared with the HC group. It was further elevated in eRA, but lower in late laRA stage, even significantly lower than in the HC. The summary effect for the entire RA group was a slightly elevated (not significantly) infection quantity. Accordingly, there was an increase in infections in HR as they developed RA (n=26), and a decrease among RA patients after they transitioned from eRA to laRA (n=135). This strong correlation between infections and disease duration may have contributed to the previously published conflicting data on infection quantity in RA; for example, the relatively few hospitalised infections reported for methotrexate-treated patients may reflect a long disease duration.\(^\text{14}\)

Because this study was designed to examine the possible role of exposure to microbial antigens in a broad sense, we examined some aspects of the commensal bacterial flora, and the scoring of infections was not limited to objectively verifiable and severe types, such as septic arthritis. We were encouraged by previous observations that self-reporting by patients can serve as a valuable indicator of common infections.\(^\text{15,16}\) At the same time we are aware of the impact which confounding factors can have on the scoring of most types of infections. For example, non-microbial inflammation may mimic infection. Drug usage may also have a confounding effect; consumption of antibiotics with activities other than anti-bacterial might have an impact on infection score.\(^\text{17}\)

Furthermore, the more anti-inflammatory medication administered, the less severe the symptoms indicating infection. In fact, we did observe more infections among the eRA group (in whom infections during the 1-year period preceding diagnosis were scored) who were on less drug therapy compared to the laRA patients, who had far fewer infections and all of whom were prescribed DMARD. Nevertheless, we find it highly unlikely that our finding of fewer infections in late stage patients is due to DMARD usage. First, the observed extent of infection reduction (from 62 days in eRA to 12 days in laRA, figure 1A) is too large to be due to drug masking of signs of infection; second, the highly significantly increased infection load seen at time of diagnosis in the HR subjects developing RA (figure 1B) cannot be attributed to a decrease in DMARD intake. In conclusion, our data suggest true differences in microbial flora and infection quantity.

The high frequency of infections was accompanied by a high level of bacterial colonisation in both HR and eRA. This situation was different in laRA, where a marked reduction in infections was coupled with persistent strong colonisation. Some anti-bacterial defences were observed to function at a clearly subnormal level in both the early and late stages of RA, and also in the HR. These were neutrophil lysozyme activity, which was in accordance with a report of a markedly reduced (6.6-fold) expression level of the lysozyme gene in RA patient blood mononuclear cells,\(^\text{18}\) and phagocytosis of bacterial flora.\(^\text{19}\)

Figure 5 Granulocyte phagocytosis functions: spontaneous (A) and stimulated (B) ROS production, time to reach peak ROS production (C), lysozyme activity (D) and phagocytosis of *Staphylococcus aureus* (E). *p<0.05 as compared with HC. The median and 5% and 99% percentiles (A,B) and mean and SE (C,D) are shown. eRA, early RA patients (<0.5 years RA duration); HC, healthy controls (women with no RA among close relatives); HR, healthy first-degree female relatives of RA patients; laRA, late RA patients (>3 years RA duration); RA, rheumatoid arthritis; ROS, reactive oxygen species.

\(^{14}\) Arleevskaya MI, et al. *BMJ Open* 2014;4:e005254. doi:10.1136/bmjopen-2014-005254.
S. aureus by granulocytes. Another major anti-bacterial defence mechanism is production of ROS by granulocytes; we noted signs of reduced capacity in HR and RA patients, in line with findings that ROS protects against RA in the Ncf1ΔA rat model, and low antioxidant activity in RA patients.

We acknowledge that it remains to be elucidated whether infections, and exposure to more or less immunogenic colonising bacteria, act as ‘driver’ or ‘passenger’ phenomena during RA development. Hypothetically, at least two scenarios can be postulated: (1) frequent infectious episodes and RA could be two causally independent consequences of an immune system disturbance; and (2) recurrent infections contribute to RA development. Since the correlation between RA activity and infection quantity in eRA is opposite to that in laRA, it seems that the second scenario is the most likely.

Our collected findings suggest the following model for the pathogenesis of RA. Some anti-bacterial defence mechanisms, operating at a subnormal level during all stages of RA, result in an RA-predisposing exposure to microbial antigens in the shape of commensals and infections. A set of compensatory immune reactions follow. An increase in other defence mechanisms eventually succeeds in curbing the high level of infections, while exerting less influence on colonisation. The model is supported by evidence indicating that monocytes and macrophages, as well as other cytokine-producing cell types, are key players in RA, and by more recent reports of non-specific and sustained immunostimulation during RA development. The composition of the commensal bacterial flora, and gut microbiota manipulation, is known to influence inflammatory diseases and not least RA. Data from genome-wide association studies provide evidence that numerous factors beyond those analysed by us influence the development and progression of RA.

Notably, a high infection quantity was revealed by us in the great majority of, but not all, HR and eRA patients. So, microbial exposure might be a very important but not uniquely provoking factor.

In conclusion, our observations may prompt further studies on the clinical value of controlling infections and of manipulation of our commensal microbiota.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

REFERENCES

1. Kay A. Infection in rheumatoid arthritis. Lancet 1968;290:152.
2. Leirisalo-Repi M. Early arthritis and infection. Curr Opin Rheum 2005;17:433-9.
3. Opendik M, Hakgruder A, Kesen N. Treatment of rheumatoid arthritis with omidaizole. A randomized, double-blind, placebo-controlled study. Rheumatology 2006;45:636–7.
4. Vandervroucke JP, Kaaks R, Valkenburgh HA, et al. Frequency of infections among rheumatoid arthritis patients, before and after disease onset. Arthritis Rheum 1987;30:810–13.
5. Doria MF, Crowson CS, Pond GR, et al. Frequency of infection in patients with rheumatoid arthritis compared with controls. Arthritis Rheum 2002;46:2287–93.
6. Vinogradiva Y, Hippiisley-Coc J, Coupland C. Identification of new risk factors for pneumonia; population-based case-control study. Br J Gen Pract 2009;59:e329–35.
7. Söderlin MK, Bergsten U, Svensson B, et al. BARFOT study group. Patient-related events preceding the onset of rheumatoid arthritis: possible clues to aetiology. Musculoskeletal Care 2011;9:25–31.
8. Murakami M, Okuyama Y, Ogura H, et al. Local microbleeding facilitates IL-6- and IL-17-dependent arthritis in the absence of tissue antigen recognition by activated T cells. J Exp Med 2011;208:103–14.
9. Arleevskaya MI, Gabdoullakhakova AG, Filina JV, et al. Mononuclear phagocytes in rheumatoid arthritis patients and their relatives—family similarity. Open Rheumatol J 2011;5:36–44.
10. Boers M. Editorial. Understanding the window of opportunity concept in early rheumatoid arthritis. Arthritis Rheum 2003;48:1771–4.
11. MacInnes IB, O’Dell JR. State-of-the-art: rheumatoid arthritis. Ann Rheum Dis 2010;69:1896–906.
12. Arleevskaya MI, Zabotin AI, Khaliullina DG, et al. Absorption and digestion of phagocytosed objects by mononuclear phagocytes during rheumatoid arthritis. Bull Exp Biol Med 2004;2:150–51.
13. Abramson C, Bergdoll MS, Wheat LJ. Cumitech 22: Immunoserology of staphylococcal disease //Coordinating ed., Abramson C. Washington, DC: American Society for Microbiology, 1987.
14. Smitten AL, Choi HK, Hochberg MC, et al. The risk of hospitalized infection in patients with rheumatoid arthritis. J Rheumatol 2008;35:387–93.
15. Patkar CJR, Greenberg JA, Solomon DH. Validity of physician-reported hospitalized infections in a US arthritis registry. Rheumatol 2009;48:1269–72.
16. Simard JF, Stoll ML, Shadick NA, et al. Barfot study. Frequency of infection in rheumatoid arthritis. J Rheumatol 2000;27:430–9.
17. O’Dell JR, Elliott JR, Mallick JA, et al. Treatment of early seropositive rheumatoid arthritis: doxycycline plus methotrexate versus methotrexate alone. Arthritis Rheum 2006;54:821–7.
18. Edwards CJ, Feldman J, Buech J, et al. Molecular profiling of peripheral blood mononuclear cells from patients with rheumatoid arthritis. Mol Med 2007;13:40–58.
19. Holtqvist M, Oldfsson P, Gelderman KA, et al. A new arthritis therapy with oxidative burst inducers. PLoS Med 2006;3:e348.
20. Sarban S, Kocyigit A, Yazar M, et al. Plasma total antioxidant capacity, lipid peroxidation, and erythrocyte antioxidant enzyme activities in patients with rheumatoid arthritis and osteoarthritis. Clin Biochem 2007;38:981–6.
21. Szekanecz Z, Koch AE. Macrophages and their products in rheumatoid arthritis. Curr Opin Rheum 2007;19:289–95.
22. Yeo L, Toellner KM, Salmon M, et al. Cytokine mRNA profiling identifies B cells as major source of RANKL in rheumatoid arthritis. Ann Rheum Dis 2011;70:2022–8.
23. Hill DA, Siracusa MC, Abt MC, et al. Commensal bacterial-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat Med 2012;18:538–46.
24. Scheinecker C, Smolen JS. From the gut to the joint. Year in review. Nat Rev Rheumatol 2011;7:73–5.
25. Chodick G, Amital H, Shalem Y, et al. Persistence with statins and onset of rheumatoid arthritis: a population-based cohort study. PLoS Med 2010;7:e1000336.
26. Jarchum I, Pamer E. Regulation of innate and adaptive immunity by the commensal microbiota. Curr Opin Immunol 2011;23:353–60.
27. Clemente JC, Ursell LK, Wegener Parfrey L, et al. The impact of the gut microbiota on human health: an integrative view. Cell 2012;148:1258–70.
28. Sanford JA, Gallo RL. Functions of the skin microbiota in health and disease. Semin Immunol 2013;25:370–7.
29. Scher JU, Szczesnak A, Longman RS, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2013;2:e01202.
30. Orozco G, Barton A. Update on the genetic risk factors for rheumatoid arthritis. Expert Rev Clin Immunol 2010;6:61–75.
31. Kochi Y, Suzuki A, Yamada R, et al. Ethnogenetic heterogeneity of rheumatoid arthritis—implications for pathogenesis. Nat Rev Rheum 2010;5:290–5.