Rearrangements of Desmosomal and Cytoskeletal Proteins During the Transition from Epithelial to Fibroblastoid Organization in Cultured Rat Bladder Carcinoma Cells

Brigitte Boyer,* Gordon C. Tucker,* Ana Maria Vallés,* Werner W. Franke,† and Jean Paul Thiery*

* Laboratoire de Physiopathologie du Développement, Centre National de la Recherche Scientifique and Ecole Normale Supérieure, 75230 Paris, Cedex 05, France; and † Division of Membrane Biology and Biochemistry, Institute for Cell and Tumor Biology, German Cancer Research Center, D-6900 Heidelberg, Federal Republic of Germany

Abstract. Changes of cell morphology and the state of differentiation are known to play important roles in embryogenesis as well as in carcinogenesis. Examples of particularly profound changes are the conversions of epithelial to mesenchymal cells; i.e., the dissociation of some or all polygonal, polar epithelial cells and their transformation into elongate, fibroblastoid cells of high motility. As an in vitro model system for such changes in cell morphology, we have used cell cultures of the rat bladder carcinoma-derived cell line NBT-II which, on exposure to inducing medium containing a commercial serum substitute (Ultrroser G), show an extensive change in their organization (epithelial-mesenchymal transition): the junctions between the epithelial cells are split, the epithelial cell organization is lost, and the resulting individual cells become motile and assume a spindle-like fibroblastoid appearance. Using immunofluorescence microscopy and biochemical protein characterization techniques, we show that this change is accompanied by a redistribution of desmosomal plaque proteins (desmoplakins, desmoglein, plakoglobin) and by a reorganization of the cytokeratin and the actin–fodrin filament systems. Moreover, intermediate-sized filaments of the vimentin type are formed in the fibroblastoid cells. We demonstrate that the modulation of desmosomal proteins, specifically an increase in soluble desmoplakins, is a relatively early event in cell dissociation and in epithelial–mesenchymal transition. In this process, a latent period of 5 h upon addition of inducing medium precedes the removal of these desmosomal components from the plasma membrane. The transition, which is reversible, is dependent on continued protein synthesis and phosphorylation but not on the presence of the inducing medium beyond the initial 2-h period. We discuss the value of this experimental system as a physiologically relevant approach for studying the regulation of the assembly and disassembly of desmosomes and other intercellular adhesion structures, and as a model of the conversion of cells from one state of differentiation into another.

ACQUISITION of cell motility is a prerequisite to biological processes taking place in tissue remodeling. It has been described as a major event in morphogenesis (22, 67, 68, 71), wound repair (75), and pathological situations such as invasion and metastasis of tumor cells (discussed in reference 62). Even though the cellular mechanisms responsible for the acquisition of cell motility remain unclear, it can be postulated that they are multiple, depending in part on the state of differentiation of the cells that will eventually migrate. Epithelial cells have two main possibilities to move: they can remain linked together and move as epithelial sheets, as observed in gastrulation and epiboly (71) and wound healing (65); alternatively, they can dissociate and migrate as individual cells. For example, during early embryogenesis certain groups of cells can detach from the epithelium and transiently or permanently express locomotory properties (8, 12, 15, 21, 64). In such cases, the acquisition of motility is correlated with dramatic changes in the program of cell differentiation. The migrating cells no longer express epithelial characteristics, and acquire a mesenchymal phenotype. This change in cell differentiation is evidenced not only by the loss of the apico-basolateral polarity typical for epithelial cells, but also by an abrupt change in cytoskeletal organization: mesenchymal cells no longer produce cytokeratin filaments and express vimentin intermediate filaments (22). In addition, the cell–cell adhesion of epithelial cells mediated by specific cell adhesion molecules (CAMs)† and certain junctions such as desmosomes and zona6 adhaerens are decreased in transition to mesenchymal

1. Abbreviations used in this paper: CAMs, cell adhesion molecules; D-, desmosome negative; DG, desmoglein; 6-DMP, 6-dimethylaminopurine; DP, desmoplakin; EMT, epithelial–mesenchymal transition; IF, intermediate filament; PG, plakoglobin.

© The Rockefeller University Press, 0021-9525/89/10/1495/15 $2.00
The Journal of Cell Biology, Volume 109, October 1989 1495-1509

1495
cells and are strengthened in the reverse process (8, 12, 21, 22). These observations have led to the concept of "epithelial-mesenchymal transition" (EMT), defined as the possibly reversible process of conversion between epithelial and mesenchymal cell differentiation programs.

The structural and molecular mechanisms involved in such drastic changes are only poorly understood. Because of the general importance of EMT, several groups have tried to establish in vitro model systems, using well-defined cell cultures, that could be of value for studies of the individual steps of such complex processes. Although not directly relevant to EMT, many observations of enhanced migratory activity and of morphological changes of a given cell type from an epithelial to a fibroblastoid appearance have been related to effects of certain agents such as addition of antibodies against CAMs (3); transfection of cells with oncogenes (26, 55); addition of EGF, transforming growth factor-α, or "epithelial scatter factor" to cell cultures (2, 7, 61); lowering of the extracellular Ca ++ concentration (32); or plating the cells on specific substrata (66). As a particularly convenient cell system we have used the rat bladder carcinoma cell line NBT-II which was first found to undergo EMT-like changes when cultured on collagen type I fibers (66). We have been able to demonstrate a similar effect by addition of Ultroser G, a serum substitute. As a first approach we have followed the fate of a special type of junction, the desmosome, and of junction-associated cytoskeletal elements, during an experimentally induced EMT-like change.

Desmosomes are abundant in all layers of the transitional epithelium of the bladder (i.e., the urothelium [25, 34]), and probably play an important role in maintaining tissue cohesion during mechanical stretching of this organ. In addition, the development, growth, and metastasis of bladder carcinomas has been studied extensively with respect to changes of desmosomal frequency or distribution, and of expression of cytoskeletal proteins (43, 74). The structure and composition of desmosomes has been investigated in numerous studies (for review see references 9, 20, 57), and biochemical analyses have allowed the identification of at least six major polypeptides in desmosomes of stratified epithelia including urothelium. These are the four nonglycosylated proteins: desmoplakin I (DP I, M, 250,000), desmoplakin II (DP II, M, 215,000), plakoglobin (PG, M, 83,000), and a basic polypeptide of M, 75,000 (band 6 protein). In addition three glycoproteins have been identified: desmoglein (DG, M, 165,000), and desmocollins I (M, 130,000) and II (M, 115,000). Obviously these three glycoproteins are good candidates for an involvement in the formation and maintenance of stable intercellular adhesion.

Until now the only method used to study the assembly and disassembly of the individual desmosomal proteins as well as the changes in desmosomes occurring in situations of reduced intercellular adhesion was to lower the external Ca ++ concentrations in cell culture media, resulting in the rapid internalization of desmosomes, whereas desmosomes were reformed when the Ca ++ concentration was brought back to normal levels (13, 35, 41, 42, 50, 51, 73). As we show in this study, the EMT-like change of NBT-II cells offers a quasi-physiological model of desmosome splitting, modulation, and loss which is accompanied by enhanced cell motility and by extensive modifications of cytoskeletal organization.

Materials and Methods

Reagents

Cycloheximide, 6-dimethylaminopurine (6-DMPA), cytochalasin B, and FITC-conjugated phalloidin were purchased from Sigma Chemical Co. (St. Louis, MO). Mouse monoclonal antibodies against DPs I and II, DG, and PG have been described before (9, 10, 57). Guinea pig antiserum gp10 is directed against cytokeratins 8 and 18. Human autoimmune antivimentin IgM was kindly provided by Prof. J. C. Brouet (Hôpital Saint-Louis, Paris, France). Rabbit antiserum against fodrin was a generous gift of Dr. J. Nelson (Institute for Cancer Research, Philadelphia, PA). Goat antiserum against rabbit aminopeptidase N, kindly provided by Dr. S. Maroux (Centre de Biochimie et de Biologie Moléculaire, Marseille, France) has been described elsewhere (17). Mouse monoclonal anticytokeratin 15 was purchased from Boehringer Mannheim GmbH (Mannheim, FRG). Rabbit IgG against human IgM was obtained from Nordic Immunology (Tilburg, The Netherlands). FITC-conjugated goat anti-rabbit IgG (Pasteur Institute, Paris, France), FITC-conjugated rabbit anti-goat IgG (Miles Scientific, Paris, France), and Texas Red-conjugated goat anti-mouse IgG (Immunotech, Marseille, France) were used as secondary antibodies. 125I-labeled anti-mouse Ig, 125I-labeled protein A, mouse antivimentin- and antiacladinated arcosses were obtained from Amersham International (Buckinghamshire, UK).

Cell Culture

The NBT-II cell line originally established by Toyoshima et al. (70) was obtained from Prof. M. Mareel (Laboratory of Experimental Canceology, University Hospital, Ghent, Belgium). The cells were grown in 5 % CO 2) in standard medium (DME supplemented with glutamine, antibiotics, and 10% heat-inactivated fetal calf serum). The cells were routinely subcultivated twice a week by gentle trypsinization with a solution containing 0.05 % (wt/vol) trypsin 0.02 % (wt/vol) EDTA, and replated at 1:2 dilution. When appropriate (see Results), Ultroser G serum substitute (Institut Biologique Franaais [IBF], Ville nue-les-Garenne, France) was added to the standard medium at a final concentration of 2 %, thus defining the inducing medium. In these conditions, the growth rate curves of NBT-II cells in either standard or inducing medium were similar. In each experiment, induction of EMT was initiated after a 24-h preculture in standard medium that allowed a total recovery from trypsinization.

Cell Colonization Experiments (In Vitro Wound Model)

Subconfluent NBT-II cell monolayers were obtained after 48 h of culture in standard medium. They were gently scratched with a Gilson pipette yellow tip, and extensively rinsed with standard medium to remove all cellular debris. That procedure left a cell-free area of substratum ("wound"). Then the cultures were allowed to grow overnight in either standard or EMT-inducing medium. The next morning, the cultures were rinsed with PBS, stained with Coomassie blue, and photographed on Panatomic-X film (Eastman Kodak Co., Rochester, NY) with an Olympus camera mounted on an inverted microscope (Leitz, Wetzlar, FRG).

Immunofluorescence Microscopy of NBT-II Cells

Subconfluent monolayers of NBT-II cells were cultured on glass coverslips in either standard or inducing medium. The cells were fixed at −20°C with methanol for 5 min followed by acetone for 1 min before processing for DP, DG, PG, vimentin, cytokeratin, actin, and vinculin immunostaining. Aminopeptidase N immunolabeling was performed after fixation for 30 min in 2.5% glutaraldehyde. Before fodrin immunostaining, cells were fixed for 30 min in 1.75% formaldehyde in PBS and extracted for 5 min in 0.5% (wt/vol) Triton X-100. Primary antibodies were applied for 1 h, followed by three 5-min washes in PBS, a 30-min incubation with FITC-conjugated goat anti-rabbit IgG, FITC-conjugated rabbit anti-goat IgG, or Texas Red-conjugated goat anti-mouse IgG, and three final washes of 5 min each in PBS. For vimentin immunostaining, primary antibody incubation was followed by application of first rabbit anti-human IgM and then FITC-conjugated goat anti-rabbit IgG. Double immunofluorescence labeling was performed by applying a mixture of anti-DP and antivimentin, followed by extensive washing, incubation with rabbit anti-human IgM, washes in PBS, and...
finally application of a mixture of FITC-coupled goat anti-rabbit IgG and Texas red-coupled goat anti-mouse IgG. For actin staining, FITC-coupled phallolidin was applied for 30 min, followed by several washes as described above for antibody work. Finally, coverslips were dipped briefly in water, then in ethanol, and mounted in Moviol (Hoechst GmbH, Frankfurt, FRG). The cells were viewed en face with a 63X objective using a Leitz microscope equipped with epifluorescence illumination and photographed on Tri-X Pan film.

When appropriate (see Results), the percentages of D- (desmosome negative) cells were counted. In these experiments, identical number of cells were seeded on each coverslip and the extent of confluence at the end of culture was similar as estimated by the number of cells per millimeter squared. Cells were considered D- when DP or DG immunoreactive “dots” were totally absent from the cell periphery. For each measurement, at least 500 cells were counted.

Solubility Properties of DP, DG, and PG Proteins

Subconfluent cultures of NBT-II cells grown in standard or inducing medium in 90-mm Petri dishes were extracted sequentially. At the end of the period of cell culture, cells were transferred to 4°C, rinsed twice with ice cold PBS containing 1 mM CaCl₂, 1 mM MgCl₂, and then extracted in situ with 1 ml per Petri dish of a buffer containing 10 mM Tris-HCl (pH 7.4), 140 mM NaCl, 5 mM EDTA, 2 mM DTT, 1 mM PMSF, 0.05% Triton X-100 (near-physiological buffer) for 5 min at 4°C. Cells were scraped from the Petri dishes with a rubber policeman, homogenized with five strokes of a loose-fitting Dounce homogenizer (Kontes Glass Co., Vineland, NJ) and extraction was continued for another 5 min. The homogenate was centrifuged at 100,000 g for 2 h to yield a supernatant (physiological supernatant) and pellet. The latter was then homogenized by 10 strokes of the Dounce homogenizer in a buffer containing 10 mM Tris-HCl (pH 7.4), 1.5 M KCl, 5 mM EDTA, 2 mM DTT, 1 mM PMSF, 1% Triton X-100 (high salt buffer), extracted for 10 min on ice, and centrifuged at 20,000 g for 15 min to yield a supernatant (high salt supernatant) and pellet (insoluble fraction). For kinetic experiments (see Results), the same numbers of cells were seeded in each Petri dish. Equal numbers of cells were obtained for each time-point as estimated by counting the cells obtained in control dishes. Similar protein contents were recovered for each time-point as estimated by quantitating proteins in control dishes with the Bolton—Hunter reagent (Bio-Rad protein assay dye reagent; Bio-Rad Laboratories, Richmond, CA).

Immunoblotting

Immunoblotting with anti-DP, anti-DG, and anti-PG were performed on subcellular fractions obtained as described above. SDS-7.5% polyacrylamide gels were loaded with samples resulting from the fractionation of the same number of cells (5 × 10⁶ cells). Immunoblotting with mouse antivimentin and guinea pig gpl0 anticytokemtin 8 and 18 was performed on subcellular fractions obtained as described above. SDS-7.5% polyacrylamide gels were loaded with samples resulting from the fractionation of the same number of cells (5 × 10⁶ cells). Immunoblotting with mouse antivimentin and guinea pig gpl0 anticytokemtin 8 and 18 was performed on subcellular fractions obtained as described above. SDS-7.5% polyacrylamide gels were loaded with samples resulting from the fractionation of the same number of cells (5 × 10⁶ cells). Immunoblotting with mouse antivimentin and guinea pig gpl0 anticytokemtin 8 and 18 was performed on subcellular fractions obtained as described above. SDS-7.5% polyacrylamide gels were loaded with samples resulting from the fractionation of the same number of cells (5 × 10⁶ cells).

Results

Ultraser G Induces Modification of NBT-II Cell Morphology and Motility

The NBT-II cell line is derived from a rat bladder squamous carcinoma which was first described as undergoing EMT when cultured on collagen type I fibers (66). We have found that a serum substitute (Ultraser G; IBF), added to a final concentration of 2% in the standard medium (thus defining the so-called “inducing medium”), induced the same morphological changes as collagen type I. NBT-II cells grown on glass or plastic in standard medium assumed an epithelial morphology, forming dense monolayer colonies of tightly packed polygonal cells (Fig. 1a). In inducing medium, they became progressively fibroblastoid: they flattened, exhibited a spindle shape, and crawled over one another (Fig. 1, a and b).

The motility of NBT-II cells was therefore assayed by two different techniques, a colonization assay (wound healing) and time-lapse videomicroscopy. In the colonization assay, NBT-II cells cultured in standard medium were not able to cover a defined area or wound, that had been produced 24 h before, whereas NBT-II cells cultured for the same period in inducing medium invaded the wound completely (Fig. 1, c and d). The differences between the epithelial and fibroblastoid NBT-II cells in their ability to recolonize such wound areas did not arise from differences in their capacity to proliferate, since [³H]thymidine incorporation into NBT-II cells cultured in either standard or inducing medium was similar: NBT-II cells cultured for 48 h in standard medium incorporated 39,933 (± 5,601 SEM) cpm of [³H]thymidine added for the last 2 h of culture; whereas NBT-II cells plated and cultured in standard medium for 24 h and then in inducing medium for the last 24 h of culture incorporated, in the same experimental conditions, 36,483 (± 965 SEM cpm) of [³H]thymidine. Time-lapse videomicroscopy experiments showed that cells migrated individually and did not move as groups or colony sheets. The speed of locomotion was measured more precisely: NBT-II cells cultured in standard medium did not move at all, whereas NBT-II cells cultured in inducing medium for at least 12 h reached an average speed of locomotion of 50 μm/h.

One of the major features of the EMT of NBT-II cells is the disruption of the extended cell contacts of the epithelial cells (Fig. 1, compare a and b). Since transmission electron microscopy performed on epithelial NBT-II cells in standard medium revealed the presence of numerous desmosomes in cellular interdigitations (data not shown), we studied the fate of some desmosomal proteins during EMT in special detail.

Desmosomes Are Rapidly Altered During EMT

Immunofluorescence studies performed with monoclonal antibodies against desmosome-specific proteins such as DPs I and II or DG showed that NBT-II cells cultured in standard medium expressed DP and DG immunoreactivities in typical punctate arrays along cell boundaries (Fig. 2, a and d, respectively). In addition, we examined the expression of junctional plaque proteins not confined to desmosomes: PG is shared in common by desmosomes and intermediate junctions (11); and vinculin is expressed in both intermediate junctions and focal contacts (28). Consequently, in contrast to the punctate staining of anti-DP and anti-DG, PG and vinculin immunoreactivities were distributed uniformly along cell boundaries (Fig. 2, g and h, respectively). This indicates that adhering junctions of the intermediate type, probably puncta adhaerentia, contribute, in addition to desmosomes, to the cellular coherence of NBT-II cells.

When the standard medium was replaced by the inducing medium, the immunoreactivities found with anti-DP, anti-DG, anti-PG, and antivinculin antibodies rapidly disappeared from regions of intercellular contacts. 8 h after medium
change, the majority of cells were negative, with the exception of vinculin immunostaining which persisted at certain cell contacts. Morphological changes were not yet observed (Fig. 2, b, e, h, and k). 48 h after onset of EMT, little immunostaining was seen in occasional residual contacts and the morphology of the cells was obviously transformed (Fig. 2, c, f, i, and l). It is noteworthy that in cells which had largely lost their cortical staining, DP antibodies displayed a cytoplasmic immunostaining formed by the superposition of discrete spots on a diffuse staining pattern (Fig. 2 b). In the same conditions, anti-DG showed only a punctate cellular staining (Fig. 2 e) and staining with anti-PG and antivinclulin antibodies was largely diffuse throughout the cytoplasm (Fig. 2, h and k).

We estimated the percent values of cells which had lost their cortical DP staining as a function of time after initiation of EMT (D- cells; cf. Fig. 3). Similar results were obtained from immunostainings with DG antibodies (data not shown). The relatively high basal level (23% D- cells in cultures grown in standard medium) was mainly due to the specific conditions of culture: since DP immunostaining was more easily observable at subconfluence, experiences were performed at ~70% confluence (in these culture conditions, some isolated cells were present and did not express desmosomes). Therefore, the percent of D- cells was compared only in cells having reached the same degree of confluence (see Materials and Methods).

During the first 4 h after medium change, there was no obvious change in the distribution of DP positive sites; i.e., desmosomes. Disappearance of cortical DP staining was first observed after 5 h of culture in inducing medium but was rather heterogeneous. Some cells were negative whereas others still showed desmosomal staining. The submembrane DP immunoreactivity was then lost very rapidly: after 8 h of culture in inducing medium, 80% of the cells were negative for cortical dot staining with anti-DP; i.e., intact desmosomes. As shown in Fig. 2, the disappearance of cortical immunoreactivity of desmosomal marker proteins was correlated with an increase in intracytoplasmic DP-positive “dots,” suggesting that the modifications of desmosome immunoreactivity were due to the rapid internalization of “half-desmosomes” occurring after initiation of EMT. To examine this hypothesis, we studied the localization of desmosomal proteins in subcellular fractions.

Modifications of Levels of Soluble and Insoluble Desmosomal Proteins

Desmosomes are known to be insoluble structures resistant to solubilization by nonionic detergents and buffers of high and low ionic strength (27). Partitioning the cytoplasm into different fractions extracted by near-physiological, Triton X-100 high salt, and SDS-PAGE buffers allowed us to demonstrate that these proteins existed in soluble and insoluble...
forms (see also references 11, 13, 27, 50). Extraction in near-physiological and high salt buffers released certain desmosomal proteins in a soluble state (Fig. 4, PS and HSS), whereas the insoluble proteins were extracted only by the final SDS-PAGE buffer (Fig. 4, HSI). These insoluble proteins probably represented those proteins which were stably assembled into a cytoskeletal array and which formed the complex structures seen at the electron microscopic level. The soluble protein pool could represent either newly synthesized molecules not yet assembled into plaque structures, or the proteins disassembled from desmosomes, or a mixture of both.

Interestingly, the solubility properties of DP, DG, and PG were not identical. Under standard conditions, the soluble pool of DP molecules (~20% of the total) was released by the near-physiological buffer (Fig. 4 A, PS, lane S) and further extraction with high-salt buffer did not solubilize considerable additional amounts of DP (not shown). On the other hand, the near-physiological buffer did not solubilize DG molecules, as expected for an integral membrane glycoprotein (not shown). A certain proportion of DG (<10% of the total) was solubilized with the Triton X-100, high salt buffer (Fig. 4 B). Although present in intermediate junctions as well as in desmosomes, PG molecules were also subjected to the same analysis. As already described for other cell cultures (24), the PG soluble pool (~30% of the total) could be divided into molecules extracted by the initial near-physiological buffer and into molecules solubilized subsequently by the detergent–high salt buffer (Fig. 4 C, see the first lane of PS and HSS).

Immunoblotting of the subcellular fractions performed as described in Fig. 4 was done in conditions which ensured the linearity of the signal within the range of measures. The partitioning of DP, DG, and PG proteins into soluble and insoluble...
Figure 3. The rapid decay of cortical DP immunoreactivity in inducing medium is preceded by a latent period. Subconfluent cultures of NBT-II cells were established in either standard or inducing medium. Cells were fixed and processed for immunofluorescence with a monoclonal DP antibody. Cells were considered as negative (DP- cells) when no cortical staining was visualized. The 20% background level is due to the fact that immunofluorescence studies were performed after growing cells at subconfluence.

Figure 4. Levels of soluble and insoluble forms of DP, DG, and PG during EMT. Subconfluent cultures of NBT-II cells were established in standard medium (lanes S). Alternatively, they were cultured in inducing medium for 8, 16, or 48 h. Cells were then lysed and fractionated in situ with near-physiological and Triton X-100, high-salt buffers to yield a physiological supernatant (PS), high salt supernatant (HSS), and insoluble fraction (HSI). The proteins solubilized in SDS-containing buffer were separated by SDS-PAGE and immunoblotted with DP (A), DG (B), and PG (C) antibodies. Since extraction with high salt buffer does not release substantial amounts of DP protein in soluble form, and extraction with near-physiological buffer does not solubilize DG protein, the corresponding autoradiograms have not been shown.

Figure 5. Modifications of levels of DP, DG, and PG in soluble and insoluble forms during EMT. Subconfluent monolayers of NBT-II cells were fractionated into a physiological supernatant (○), high salt supernatant (●), and insoluble fraction (×). Each lysate for each time-point was divided into equal aliquots which were separated by SDS-PAGE and immunoblotted with anti-DP (a), anti-DG (b), and anti-PG (c). The immunolabeled DP, DG, and PG were quantitated as described in Materials and Methods. Values are expressed as the calculated peak areas resulting from scanning the autoradiograms.
The membrane-bound glycoprotein DG showed a different kind of change of its solubilization properties (Fig. 5 b). Until 16 h after EMT initiation, a significant proportion of it remained in a pelletable form that could not be extracted in the Triton X-100 high salt buffer used. Thereafter, however, the relative proportion of insoluble fraction as well as the absolute amount of DG decreased drastically. This indicated that the state of DG is altered upon the internalization of the desmosomal material.

An even different solubilization behavior was found for PG. The PG pool soluble in near-physiological buffer remained essentially unaltered (Fig. 5 c) whereas the high salt-extractable and insoluble pools decreased significantly. As a result, 48 h after the onset of EMT the form soluble in the near-physiological buffer exceeded the insoluble PG.

Internalization of Desmosomal Proteins Requires only a Short Pulse of Inducing Medium and Can Be Reversed in Standard Conditions of Culture

NBT-II cell dissociation by inducing medium exhibited some features which were different from those observed after lowering the Ca++ concentration in the culture medium: in low calcium medium, DP and DG immunoreactive sites were totally internalized in <1 h, whereas a considerable proportion of the PG and vinculin immunoreactive structures remained at the cell surface (data not shown). We therefore decided to define some prerequisites of the system in order to understand how the signal provided by the inducing medium acts in the cell and on the desmosomes.

In a first set of experiments, we applied a pulse of inducing medium for various periods (up to 8 h) followed by culture in standard medium. We estimated the effect on desmosomes by counting the number of cells without cortical DP immunofluorescence after 8 h of culture. As shown in Fig. 6 a, a 30-min or 1-h pulse did not induce obvious desmosome losses. 2- and 3-h pulses, however, led to desmosome disappearance in 40 and 50% of the cells, respectively. In comparison, the continuous presence of the inducing medium for 8 h led to DP internalization and desmosome loss in 70% of the cells.

In a second set of experiments, NBT-II cells were pulsed for 2 h with the inducing medium and then incubated for varying periods in standard medium. The number of cells without DP reactive sites at the cell periphery (Fig. 6 b) decreased with time of culture in the standard medium and reached the basal level (identical to that obtained without inducing medium) after 46 h of chase with the standard medium. We conclude, therefore, that the loss of desmosomes, which cannot be observed before several hours of culture, occurs even if the inducing medium is not applied during the whole incubation period but is totally reversible by culturing the cells back in standard medium during an appropriate period of time; i.e., for 2 d.

To rule out the possibility that the long-term inducing
effect was due to the slow release of inducing factors from the extracellular matrix synthesized by NBT-II cells, we carried out a third set of experiments (Fig. 6 c). After a 2-h incubation in either standard medium or inducing medium, the cells were trypsinized, washed extensively, plated on coverslips, and cultured for another 16 h in standard or inducing medium. As illustrated in Fig. 6 c, control cells pulsed and cultured in standard medium after trypsinization were able to reform desmosomes at the end of the incubation. On the other hand, desmosomes were internalized or lost in 50% of the cells first pulsed with inducing medium, and then trypsinized and cultured in standard medium.

Together, these results indicate that the signals provided by the inducing medium reach the cell rapidly, suggesting that the cellular modifications in response to the inducing signals are not leading immediately to cell dissociation and loss of desmosomes.

Internalization of Desmosomes Requires Protein Synthesis and Phosphorylation

Cycloheximide, an inhibitor of protein synthesis, was added to cells grown in inducing medium for 6 h. Desmosome disappearance was estimated by the loss of DP reactive sites at the cell periphery. When 1 mM cycloheximide was present throughout the incubation period in the inducing medium, no desmosome losses were observed (Fig. 7 b). The same blocking effect was obtained when 1 mM cycloheximide was added for the first 3 h of incubation and then removed from the cell culture by extensive washing (Fig. 7 c). In contrast, when added for the last 3 h of the incubation period, cycloheximide did not have any effect on desmosome modulation (Fig. 7 d). We checked, by [35S]methionine incorporation experiments done in parallel, that the presence of cycloheximide in the culture medium totally blocked protein synthesis, whereas removing the drug from the cell culture restored it (data not shown).

We tested also the effect of 6-DMAP, an inhibitor of diverse cellular kinases (45), on the internalization of desmosomes in the inducing medium. Used at concentrations ranging from 20 μM to 1 mM, 6-DMAP did not inhibit [35S]methionine incorporation into NBT-II cells and at concentrations up to 800 μM it inhibited only slightly [3H]thymidine incorporation (data not shown). When used at high concentrations (600–800 μM) 6-DMAP abolished the effect of the inducing medium on desmosomes (Fig. 7 h). In control cells cultured in standard medium, the addition of 6-DMAP did not modify substantially the distribution of DP immunoreactive sites (Fig. 7 f). The inhibitory effect observed with 6-DMAP did not result from the partial inhibition of proliferation since drugs such as hydroxyurea, which totally inhibited [3H]thymidine incorporation into NBT-II cells had no effect on desmosome internalization (data not shown).

These results suggest that protein synthesis and phosphorylation events are necessary steps in the pathway leading to desmosome disruption and internalization.

Modifications of Cytoskeletal Organization During Cell Dissociation

The cytoskeleton is likely to be involved in EMT-like changes of cell organization for two main reasons. First, microfilament organization plays a major role in the acquisition of motility (38). Second, desmosomes anchor intermediate filaments (IFs) to the cell surface (e.g., reference 5). Therefore, it was interesting to study the distribution of the actin filament system and the IF cytoskeleton in epithelial and fibroblastoid NBT-II cells.
Figure 8. Changes of cytoskeletal elements in epithelial and fibroblastoid NBT-II cells. Subconfluent monolayers of NBT-II cells were maintained in either standard (a, c, and e) or inducing (b, d, and f) medium, fixed, and processed for immunofluorescence microscopy. (a and b) Actin was visualized using FITC-labeled phalloidin. Note actin enrichment along cell boundaries in a but not in b. The inset in b shows a well-spread fibroblastoid cell exhibiting actin staining with several focal contacts. (c and d) For fodrin immunostaining, cells were fixed in formaldehyde (1.75%) and permeabilized with Triton X-100. Photographs shown here were taken at the basolateral plane of the cells. Note peripheral enrichment at cell boundaries in c and a central, mostly perinuclear concentration in d. (e and f) Aminopeptidase N immunoreactivity was visualized on the apical surface of epithelial cells (e), whereas it was distributed uniformly on the entire cell surface of fibroblastoid cells (f). Bar, 5 μm.

The distribution of actin was primarily subcortical in the epithelial cell cultures (Fig. 8 a). It became less organized in fibroblastoid cells appearing upon growth in inducing medium. In some cells, stress fibers formed by actin bundles were visualized, whereas in other cells, the pattern was more disperse (Fig. 8 b). Actin bundles were localized predominantly at the edges of some well-spread fibroblastoid cells (Fig. 8 b, inset), with a pattern similar to that found in focal contacts.

We also studied the distribution of fodrin, the structural and probably functional homologue of spectrin in nonerythroid cells (29). As shown in Fig. 8 c, fodrin immunostaining was prominent in the regions of cell contacts, and focusing at the apical and basal planes indicated that it was predominantly localized at the basolateral membrane. The polarized staining was lost as early as 8 h after addition of the inducing medium. Little or no fodrin was detected in regions of apposition of adjacent cells, and the fodrin immunostaining assumed a diffuse distribution enriched in the perinuclear region (Fig. 8 d).

Aminopeptidase N, which is localized at the apical surface of rabbit intestinal cells (30), assumed a partially polarized
distribution on the plasma membrane of NBT-II cells: its immunoreactivity was observed predominantly at the apical surface (Fig. 8 e); this restricted distribution was lost upon growth in inducing medium and the immunoreactivity was redistributed on the entire cell surface (Fig. 8 f).

The organization of cytokeratin IFs in epithelial and fibroblastoid forms of NBT-II cells was studied with cytokeratin antibodies (Fig. 9, a and b) as well as with a guinea pig antiserum specifically directed against cytokeratins 8 and 18 (data not shown). In the epithelial cell colonies, the cytokeratin filaments displayed a very organized distribution: the antibodies stained fibrils extending from the cell surface to the perinuclear region, many of them showing an almost radial distribution (Fig. 9 a). The fibroblastoid cells exhibited dramatic differences of cytokeratin filament organization. The overall immunostaining with both kinds of antibodies was greatly reduced and the fibrils formed a disorganized cytoplasmic meshwork which apparently had lost its membrane anchorage (Fig. 9 b).

Vimentin was not detected in NBT-II epithelial cells (Fig. 9 c). However, after 2 d of culture in the inducing medium, vimentin IFs were observed in many cells, whereas other cells had a more diffuse pattern of staining (Fig. 9 d). Immunoblotting experiments performed with antibodies specific for cytokeratins 8 and 18 and vimentin confirmed the progressive reduction of cytokeratins and the appearance of vimentin during EMT. Quantification of the amounts of cytokeratins and vimentin expressed during EMT was done by scanning the autoradiograms (Fig. 9, e and f). As early as 1 d after addition of the inducing medium, the amount of cytokeratin was already reduced, whereas vimentin expression was not yet initiated. Vimentin expression was visual-
Figure 10. Disruption of cell contacts and changes in desmosomes are not dependent on cell movement. Subconfluent monolayers of NBT-II cells were established in either standard (a, b, e, and f) or inducing medium (c, d, g, and h) for 16 h. Cells were cultured in the absence (a, c, e, and g) or presence (b, d, f, and h) of cytochalasin B (1 μg/ml). (a–d) In one set of experiments, the cultures were scratched gently in order to create wounds and photographs of the wounds were taken at the end of the incubation. Control cells cultured in standard medium do not migrate into the cell-free area (a and b), whereas cells grown in inducing medium have totally covered it (c). The migration of cells grown in inducing medium is inhibited by cytochalasin B (d). (e–h) In a parallel set of experiments, cells were fixed and processed for DP immunostaining. Note that the cells grown in inducing medium are elongated in the absence of cytochalasin B (g), whereas in the presence of cytochalasin B (h) they are dissociated but do not exhibit pseudopodial protrusions. Bars: (a–d) 100 μm; (e–h) 10 μm.

Desmosome Alterations in Scattering Carcinoma Cells

Boyer et al.
Figure 11. The transition towards a fibroblastoid phenotype is reversed by removing the inducing medium. NBT-II cells were maintained in inducing medium for 2 mo before switching to standard medium for 3 d. Cells were fixed and processed for double immunofluorescence microscopy using a human autoimmune antiserum against vimentin (a) and a monoclonal antibody against DPs (b). Note recovery to vimentin-negative state in the peripheral epithelial cell colony (a) which exhibits DP immunolabeling in a peripheral punctate pattern typical of localization of the immunoreactivity in desmosomal intercellular junctions (b). Bar, 25 μm.

Discussion

Understanding the mechanisms involved in the change of cell organization from an epithelial to a fibroblastoid appearance (EMT) whereby the orderly activation or suppression of genes in response to environmental signals leads to cell dissociation and motility remains a crucial issue in embryology. We have been able to demonstrate that soluble factors contained in Ultroser G, as well as insoluble extracellular matrix components (66; Tucker, G. C., B. Boyer, J. Gavrilovic, H. Emonard, and J. P. Thiery, manuscript in preparation), induce such a conversion in an in vitro cell culture model system; i.e., the NBT-II cell line derived from a rat bladder carcinoma (70). Our major goal is now to purify the soluble factors promoting multiple effects such as cell dissociation and motility, and to understand what is the hierarchy of the events leading to EMT. Apparently, the NBT-II cell model system fulfills several major criteria of EMT as described in other systems.

First, we show that addition of inducing medium (containing Ultroser G) induces morphological changes resembling those observed in embryonic cells undergoing EMT. Before addition of inducing medium, the cells form a cobblestone-like monolayer of polygonal cells; whereas upon addition of inducing medium, the cells dissociate, assume a spindle-like shape, and migrate actively as individual cells.

Second, the changes in cytoskeletal organization also correspond to a change from an epithelial to fibroblastoid character. In standard medium, NBT-II cells form an epithelial-like sheet, as indicated by the enrichment of fodrin, a marker of the basolateral domain of the plasma membrane (46), at the basolateral plasma membrane; as well as by the predominantly apical localization of aminopeptidase N; and by the observation that in immunofluorescence microscopy, PG and vinculin are enriched in extended, linear boundary structures at the level of the subapical cortex, resembling a zonula adherens.

Third, NBT-II cells contain a well-developed network of cytokeratin IFs, most of which radiate from the perinuclear cytoplasm toward the periphery, where they frequently terminate as discrete spots near the plasma membrane; i.e., desmosomes. After induction of EMT, the cytokeratin fibril distribution is dramatically altered and no longer shows preferential order. However, even though expressed in lower amounts, cytokeratins do not disappear completely from the fibroblastoid NBT-II cells. Probably, some of these residual cytokeratin IFs are anchored to the plaques associated with the intracytoplasmic, desmosome-derived vesicular structures, as described for other individualized epithelial cells separated by treatment with Ca⁺⁺-chelating agents, or with trypsin, or after growth in media of low calcium concentrations (13, 35, 41, 42, 49). Electron microscopy studies are underway to clarify this point.

Fourth, vimentin IFs are formed in the fibroblastoid NBT-II cells relatively early upon EMT induction. Such a rapid induction of vimentin IF formation has been often observed in primary cultured epithelial cells (59) including rat hepatocytes (24), as well as human mesothelial and urothelial cells, and this advent of vimentin is known to be influenced by various components such as externally added retinoid compounds as well as certain growth factors and hormones (for reviews see references 37, 53, 54). Since it has been demonstrated that vimentin IFs may be linked to desmosomes (10, 25, 36), the desmosome-derived structures detected in the cytoplasm of the fibroblastoid NBT-II cells could be associated with vimentin as well as with cytokeratin filaments. Induction of synthesis of vimentin in carcinoma cells is also of interest since the onset of vimentin synthesis has been correlated in some carcinoma cells with the acquisition of metastatic properties (52).

Fifth, actin is another cytoskeletal protein whose change in distribution is indicative of EMT: after addition of the inducing medium, the cortical ring of actin microfilaments disappears and is replaced by stress fibers in the long axis of cells, typical of many mesenchymal cells in culture (6).

Taken together, these changes of cytoskeletal characteristics indicate that the NBT-II model provides a meaningful system in which to analyze possible biochemical and genetic mechanisms involved in EMT. It should be noted, however, that none of the above mentioned criteria alone defines a
Alterations of Desmosomal Components During Cell Epithelial cells is mediated by CAMs and special junctions. The modulation of CAMs during EMT has been well documented in vivo (12), and it has been suggested that the pathway leading to desmosome alterations in Scattering Carcinoma Cells is facilitated by a higher motility of the invasive and metastatic cells. Moreover, changes of the morphological appearance of carcinomas and for metastasis to distant sites, and this spreading of tumor cells is apparently facilitated by a higher motility of the invasive and metastatic cells. Moreover, changes of the morphological appearance and the state of differentiation of cells within a tumor similar to those described in the present study will give rise to intrinsic tumor cell heterogeneity, which may also include differences in the expression program and would explain the known, puzzling phenomenon of the emergence of different kinds of tumors from a certain primary carcinoma, including the appearance of "sarcomatous" tumor forms from originally solid carcinomas (for a comprehensive review see references 39, and also for the in vitro and in vivo emergence of some specific inhibitors of phosphorylation and protein synthesis. Obviously, analysis of the proteins accumulating in NBT-II cells in response to inducing medium is needed to give further insight into the mechanisms by which the inducing medium produces desmosome alterations.

As a first step we have studied, by immunolocalization and immunoblotting of proteins of subcellular fractions, the fate of desmosomal proteins during EMT. Immunolocalization of DP-I and II reveals that cortical (i.e., desmosome-associated DP) is internalized during EMT and appears as discrete intracytoplasmic spots which most likely represent endocytic vesicles bearing remnants of desmosomal plaques (cf. references 13, 35). The vesicle nature is also indicated by the appearance of DG, a transmembrane protein, in such dots (cf. this study and reference 13). Concomitantly, there is a notable increase in the diffuse cytoplasmic immunofluorescence with DP antibodies, similar to that observed upon exposure of cells to low calcium concentrations (35, 41, 42, 50). Biochemical analyses suggest that during this period of time a considerable portion of DP is solubilized, since the soluble DP pool increases for the first hours of EMT, whereas the proportion of insoluble DP decreases. We suggest therefore that solubilization of DP might play a key role in the destabilization of desmosomes. Studies of the rates of synthesis and turnover of the various desmosomal proteins, in pulse and pulse-chase experiments, are now underway to identify more precisely the desmosomal target(s) involved in these changes.

In the last decade, the problem of assembly and disassembly of desmosomes and desmosomal plaques has been approached primarily by calcium switch experiments (32, 35, 41, 42, 50). However, the specific regulation of desmosomal formation and disassembly may depend on the cell type used and on the specific inductor of the switch. The NBT-II model system thus provides an alternative physiologically relevant method to study the reversible process of desmosome assembly and disassembly. Obviously, there also exist other factors that can affect, or at least contribute to, the dispersion of cells from a tightly packed cobblestone monolayer to a population of motile individual cells, such as the "scatter factor" described by Stoker and colleagues (60, 61). Future experiments will reveal whether these different factors interact separately with distinct receptors or whether there are interrelationships forming effector networks.

Our observations made with the NBT-II rat bladder carcinoma cells grown in culture may also be relevant for our understanding of two major events in cancer spreading and malignant growth; i.e., invasion and metastasis on the one hand and the progressive appearance of tumor cell type heterogeneity on the other (for reviews see references 18, 33, 47). Local, and usually transient, loss of intercellular adhesion, including the splitting of desmosomes, is an obvious prerequisite for the invasion of carcinomas and for metastasis to distant sites, and this spreading of tumor cells is apparently facilitated by a higher motility of the invasive and metastatic cells. Moreover, changes of the morphological appearance and the state of differentiation of cells within a tumor similar to those described in the present study will give rise to intrinsic tumor cell heterogeneity, which may also include differences in the expression program and would explain the known, puzzling phenomenon of the emergence of different kinds of tumors from a certain primary carcinoma, including the appearance of "sarcomatous" tumor forms from originally solid carcinomas (for a comprehensive review see reference 39, and also for the in vitro and in vivo emergence of some specific inhibitors of phosphorylation and protein synthesis. Obviously, analysis of the proteins accumulating in NBT-II cells in response to inducing medium is needed to give further insight into the mechanisms by which the inducing medium produces desmosome alterations.

As a first step we have studied, by immunolocalization and immunoblotting of proteins of subcellular fractions, the fate of desmosomal proteins during EMT. Immunolocalization of DP-I and II reveals that cortical (i.e., desmosome-associated DP) is internalized during EMT and appears as discrete intracytoplasmic spots which most likely represent endocytic vesicles bearing remnants of desmosomal plaques (cf. references 13, 35). The vesicle nature is also indicated by the appearance of DG, a transmembrane protein, in such dots (cf. this study and reference 13). Concomitantly, there is a notable increase in the diffuse cytoplasmic immunofluorescence with DP antibodies, similar to that observed upon exposure of cells to low calcium concentrations (35, 41, 42, 50). Biochemical analyses suggest that during this period of time a considerable portion of DP is solubilized, since the soluble DP pool increases for the first hours of EMT, whereas the proportion of insoluble DP decreases. We suggest therefore that solubilization of DP might play a key role in the destabilization of desmosomes. Studies of the rates of synthesis and turnover of the various desmosomal proteins, in pulse and pulse-chase experiments, are now underway to identify more precisely the desmosomal target(s) involved in these changes.

In the last decade, the problem of assembly and disassembly of desmosomes and desmosomal plaques has been approached primarily by calcium switch experiments (32, 35, 41, 42, 50). However, the specific regulation of desmosomal formation and disassembly may depend on the cell type used and on the specific inductor of the switch. The NBT-II model system thus provides an alternative physiologically relevant method to study the reversible process of desmosome assembly and disassembly. Obviously, there also exist other factors that can affect, or at least contribute to, the dispersion of cells from a tightly packed cobblestone monolayer to a population of motile individual cells, such as the "scatter factor" described by Stoker and colleagues (60, 61). Future experiments will reveal whether these different factors interact separately with distinct receptors or whether there are interrelationships forming effector networks.

Our observations made with the NBT-II rat bladder carcinoma cells grown in culture may also be relevant for our understanding of two major events in cancer spreading and malignant growth; i.e., invasion and metastasis on the one hand and the progressive appearance of tumor cell type heterogeneity on the other (for reviews see references 18, 33, 47). Local, and usually transient, loss of intercellular adhesion, including the splitting of desmosomes, is an obvious prerequisite for the invasion of carcinomas and for metastasis to distant sites, and this spreading of tumor cells is apparently facilitated by a higher motility of the invasive and metastatic cells. Moreover, changes of the morphological appearance and the state of differentiation of cells within a tumor similar to those described in the present study will give rise to intrinsic tumor cell heterogeneity, which may also include differences in the expression program and would explain the known, puzzling phenomenon of the emergence of different kinds of tumors from a certain primary carcinoma, including the appearance of "sarcomatous" tumor forms from originally solid carcinomas (for a comprehensive review see reference 39, and also for the in vitro and in vivo emergence of some specific inhibitors of phosphorylation and protein synthesis. Obviously, analysis of the proteins accumulating in NBT-II cells in response to inducing medium is needed to give further insight into the mechanisms by which the inducing medium produces desmosome alterations.
of different types of carcinomas from a given kind of bronchial tumor see references 14, 31). Such changes of the differentiation character of the cells in a given primary tumor are particularly problematic as their frequency seems to be often enhanced during therapy. If one makes the reasonable assumption that conversions of the differentiation type of one tumor cell type to another, as we describe for the NBT-II cell model in vitro, can also occur in vivo, it seems impossible to escape the corollary that the local environment of a tumor may not only influence its proliferation rate but also its state of differentiation and its metastatic potential.

We thank Dr. J. Gavrilovic for critical reading of the manuscript.

This work was supported by the Centre National de la Recherche Scientifique, the Association pour la Recherche contre le Cancer (ARC 6455), the Ligue Nationale Francaise contre le Cancer. A. M. Valles is a fellow of the National Institutes of Health, Centre National de la Recherche Scientifique.

Received for publication 9 January 1989 and in revised form 7 June 1989.

References

1. Bader, B. L., L. Jahn, and W. W. Franke. 1986. Low level expression of cytokeratins 8, 18 and 19 in vascular smooth muscle cells of human umbilical cord and in cultured cells derived therefrom, with an analysis of the chromosomal focus containing the cytokeratin 19 gene. Eur. J. Cell Biol. 47:300-319.

2. Barrandon, Y., and H. Green. 1987. Cell migration is essential for sustained growth of keratinocyte colonies: the roles of transforming growth factor-a and epidermal growth factor. Cell. 50:1131-1137.

3. Behrens, J., W. Birchmeier, S. L. Goodman, and B. A. Imhof. 1985. Dissociation of Madin-Darby canine epithelial cells by the monoclonal antibody anti-Arc-I: mechanistic aspects and identification of the antigen as a component related to uvomorulin. J. Cell Biol. 101:1307-1315.

4. Ben-Ze’ev, A. 1984, Differential control of cytokeratins and vimentin synthesis by cell-cell contact and spreading in cultured epithelial cells. J. Cell Biol. 99:1424-1433.

5. Bologna, M., R. Allen, and R. Dubecco. 1986. Organization of cytokeratin bundles by desmosomes in rat mammary cells. J. Cell Biol. 102:560-567.

6. Burridge, K. 1986. Substrate adhesion in normal and transformed fibroblasts: organization and regulation of cytoskeletal, membrane and extracellular matrix components at focal contacts. Cancer Rev. 4:18-78.

7. Chinkers, M., J. A. McKanna, and S. Cohen. 1979. Rapid induction of growth factor-a in epidermal growth factor. J. Cell Biol. 83:260-265.

8. Chuong, C.-M., and G. M. Edelman. 1985. Expression of cell adhesion molecules in embryonic induction. II. Morphogenesis of adult feathers. J. Cell Biol. 101:1027-1043.

9. Cowin, P., W. W. Franke, C. Grund, H.-P. Kapprell, and J. Kartebreck. 1985. The desmosome- intermediate filament complex. In The Cell in Contact. G. M. Edelman and J. P. Thiery, editors. John Wiley & Sons, New York. 427-460.

10. Cowin, P., H.-P. Kapprell, and W. W. Franke. 1985. The complement of desmosomal plaque proteins in different cell types. J. Cell Biol. 101:1442-1455.

11. Cowin, P., H.-P. Kapprell, W. W. Franke, J. Tamkun, and R. O. Hynes. 1986. Plakoglobin, a protein common to different kinds of intercellular adhering junctions. J. Cell Biol. 106:1023-1033.

12. Duband, J. L., T. Volberg, I. Sabany, J. P. Thiery, and B. Geiger. 1988. Spatial and temporal distribution of adherens-junction-associated adhesion molecules in vitro during avian embryogenesis. Development (Camb.) 103:325-344.

13. Duden, R., and W. W. Franke. 1988. Organization of desmosomal plaque proteins in cells growing at low calcium concentrations. J. Cell Biol. 107:1049-1063.

14. Dunsil, M. S., and K. C. Gatter. 1986. Cellular heterogeneity in lung cancer. Histopathology (Oxf.) 10:461-475.

15. Edelman, G. M. 1984. Cell adhesion and morphogenesis: the regulatory hypothesis. Proc. Natl. Acad. Sci. USA. 81:1460-1464.

16. Edelman, G. M., B. A. Murray, R. M. Mege, B. A. Cunningham, and W. J. Gallin. 1987. Cellular expression of liver and neural cell adhesion molecules after transfection with their cDNAs results in specific cell-cell binding. Proc. Natl. Acad. Sci. USA. 84:8302-8306.

17. Feracci, H., and S. Maroux. 1980. Rabbit intestinal aminopeptidase N purification and molecular properties. Biochim. Biophys. Acta. 599:448-463.

18. Fidler, I. J., and J. R. Hart. 1982. Biological diversity in metastatic neo-
46. Nelson, W. J., and P. J. Veshnock. 1986. Dynamics of membrane-skeleton organization during development of polarity in Madin-Darby canine kidney epithelial cells. J. Cell Biol. 103:1751–1766.

47. Nicolson, G. L. 1987. Tumor cell instability, diversification, and progression to the metastatic phenotype: from oncogene to oncofetal expression. Cancer Res. 47:1473–1487.

48. Ochs, B. A., W. W. Franke, R. Moll, C. Grund, M. Cremer, and T. Nusse. 1987. Transformation of cell adhesion properties by exogenously introduced E-cadherin cDNA. Nature (Lond.) 329:341–343.

49. Overton, J. 1968. The fate of desmosomes in trypsinized tissue. J. Exp. Zool. 168:203–214.

50. Pasdar, M., and W. J. Nelson. 1988. Kinetics of desmosome assembly in Madin–Darby canine kidney epithelial cells: temporal and spatial regulation of desmoplakin organization and stabilization upon cell–cell contact. J. Cell Biol. 106:677–685.

51. Penn, E. J., I. D. J. Burdett, C. Hobson, A. I. Magee, and D. A. Rees. 1987. Structure and assembly of desmosome junctions: biosynthesis and turnover of the major desmosome components of Madin–Darby canine kidney cells in low calcium medium. J. Cell Biol. 105:2327–2334.

52. Ramackers, F. C. S., D. Haag, A. Kanti, O. Moesker, P. H. K. Jap, and G. P. Vooijs. 1983. Coexpression of keratin- and vimentin-type intermediate filaments in human metastatic carcinoma cells. Proc. Natl. Acad. Sci. USA. 80:2618–2623.

53. Rheinwald, J. G., and T. M. O'Connell. 1985. Intermediate filament proteins as distinguishing markers of cell type and differentiated state in cultured human urinary tract epithelia. Ann. NY Acad. Sci. 455:259–267.

54. Rheinwald, J. G., T. M. O'Connell, N. D. Connell, S. M. Rybak, B. L. Allen-Hoffmann, P. J. La Rocca, Y. -J. Wu, and S. M. Rehwoldt. 1984. Expression of specific keratin subsets and vimentin in normal human epithelial cells. A function of cell type and conditions of growth during serial culture. Cancer Cells (Cold Spring Harbor). 1:217–228.

55. Rijsewijk, F., L. van Deemter, E. Wagenaar, A. Sonnenberg, and R. RAC mammary cell line results in morphological transformation and tumorigenicity. EMBO (Eur. Mol. Biol. Organ.) J. 6:127–131.

56. Savino, W., M. Dardenne, M. Papiernik, and J. -F. Bach. 1982. Thymic hormone containing cells. Characterization and localization of serum thymic factor in young mouse thymus studied by monoclonal antibodies. J. Exp. Med. 156:623–633.

57. Schmelz, M., R. Duden, P. Cowin, and W. W. Franke. 1986. A constitutive transmembrane glycoprotein of M, 165,000 (desmoglein) in epidermal and non-epidermal desmosomes. I. Biochemical identification of the peptide. Eur. J. Cell Biol. 42:177–183.

58. Schmid, E., W. W. Franke, C. Grund, D. L. Schiller, H. Kolb, and N. Pawelez. 1983. An epithelial cell line with elongated myoid morphology derived from bovine mammary gland. Exp. Cell Res. 146:309–328.

59. Schmid, E., D. L. Schiller, C. Grund, J. Studler, and W. W. Franke. 1983. Tissue type-specific expression of intermediate filament proteins in a cultured epithelial cell line from bovine mammary gland. J. Cell Biol. 96:37–50.

60. Stoker, M., and M. Perryman. 1985. An epithelial scatter factor released by embryo fibroblasts. J. Cell Sci. 77:209–223.

61. Stoker, M., E. Gherardi, M. Perryman, and J. Gray. 1987. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature (Lond.) 327:239–242.

62. Strauli, P., and L. Weiss. 1977. Perspectives in cancer research. Cell locomotion and tumor penetration. Eur. J. Cancer. 13:1–12.

63. Sun, T. -T., P. Bonitz, and W. H. Burns. 1984. Cell culture of mammalian thymic epithelial cells: growth, structural and antigenic properties. Cell. Immunol. 83:1–13.

64. Takeishi, M. 1987. Cadherins: a molecular family essential for selective cell–cell adhesion and animal morphogenesis. Trends Genet. 3:213–217.

65. Takeschi, S. 1987. Cytochalasin B affects selectively the marginal cells of the epithelial sheet in culture. Zool. Sci. (Tokyo). 4:465–474.

66. Tchao, R. 1982. Novel forms of epithelial cell motility on collagen and on glass surfaces. Cell Motil. 4:333–341.

67. Thiery, J. P. 1984. Mechanisms of cell migration in the vertebrate embryo. Cell Differ. 15:1–15.

68. Thiery, J. P., G. C. Tucker, and H. Aoyama. 1985. Gangliogenesis in the avian embryo: migration and adhesion properties of neural crest cells. In Molecular Basis of Neural Development. G. M. Edelman, W. M. Gall, and W. M. Cowan, editors. John Wiley and Sons, New York. 181–211.