Systematic Review

Systematic Review: The Gut Microbiome and Its Potential Clinical Application in Inflammatory Bowel Disease

Laila Aldars-García 1,2, María Chaparro 1,2,† and Javier P. Gisbert 1,2,*,†

1 Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain; laila.alga@gmail.com (L.A.-G.); mariachs2005@gmail.com (M.C.)
2 Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
* Correspondence: javier.p.gisbert@gmail.com; Tel.: +34-913-093-911; Fax: +34-915-204-013
† Authors share co-senior authorship.

Abstract: Inflammatory bowel disease (IBD) is a chronic relapsing–remitting systemic disease of the gastrointestinal tract. It is well established that the gut microbiome has a profound impact on IBD pathogenesis. Our aim was to systematically review the literature on the IBD gut microbiome and its usefulness to provide microbiome-based biomarkers. A systematic search of the online bibliographic database PubMed from inception to August 2020 with screening in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was conducted. One-hundred and forty-four papers were eligible for inclusion. There was a wide heterogeneity in microbiome analysis methods or experimental design. The IBD intestinal microbiome was generally characterized by reduced species richness and diversity, and lower temporal stability, while changes in the gut microbiome seemed to play a pivotal role in determining the onset of IBD. Multiple studies have identified certain microbial taxa that are enriched or depleted in IBD, including bacteria, fungi, viruses, and archaea. The two main features in this sense are the decrease in beneficial bacteria and the increase in pathogenic bacteria. Significant differences were also present between remission and relapse IBD status. Shifts in gut microbial community composition and abundance have proven to be valuable as diagnostic biomarkers. The gut microbiome plays a major role in IBD, yet studies need to go from casualty to causality. Longitudinal designs including newly diagnosed treatment-naïve patients are needed to provide insights into the role of microbes in the onset of intestinal inflammation. A better understanding of the human gut microbiome could provide innovative targets for diagnosis, prognosis, treatment and even cure of this relevant disease.

Keywords: gut microbiome; inflammatory bowel disease; Crohn’s disease; ulcerative colitis; biomarkers

1. Introduction

The gastrointestinal microbiota comprises a collection of microbial communities, including viruses, bacteria, archaea and fungi, inhabiting the gastrointestinal tract [1]. The constitution and diversity of the microbiota in different sections of the gastrointestinal tract are highly variable and its concentration increases steadily along it, with small numbers in the stomach and very high concentrations in the colon [2,3]. This community has been linked to many diseases, including inflammatory bowel disease (IBD) [4].

IBD encompasses a group of chronic inflammatory bowel pathologies of idiopathic origin that affect millions of people throughout the world; the two most important pathologies covered by this term are Crohn’s disease (CD) and ulcerative colitis (UC) [5]. IBD is not curable and shows a chronic evolution, with alternating periods of exacerbation and remission. This situation entails a high burden on health care systems, which try to provide treatment and to ensure quality of life for these complex patients who often require lifelong medical attention.
The microbiota of the gastrointestinal tract is frequently proposed as one of the key players in the etiopathogenesis of IBD. Studies in animal models and humans have shown that there is a persistent imbalance of the intestinal microbiome (which refers to the gut microbiota and their collective genetic material) related to IBD, with a substantial body of literature providing evidence for the relation of the human gut microbiome and IBD [4,6–10]. Despite all this evidence, it has been difficult to determine whether these changes in the microbiome are the cause of IBD or rather the result of inflammation after IBD onset. The consequence of this relationship between the human gut and microbes is that pharmacological therapies, diet and other interventions targeted to the host will also significantly impact the gut microbiota. Most of the existing studies attempting to determine whether dysbiosis is causative or a consequence of inflammation had certain limitations, such as disparities in methodologic approaches, including different techniques used to analyze the gut microbiome, different sampling sites (stool/mucosa) or site of inflammation, lack of prospective data, small cohort sizes, restricted focus on bacteria, different disease activities and influence of treatment interventions.

We conducted a systematic review to comprehensively collate the body of evidence surrounding the relationship between the gut microbiome and IBD. Our objective was to describe the associations between IBD and dysbiosis and the potential clinical translation of microbiome-based biomarkers.

2. Methodology

2.1. Search Strategy

An electronic search was conducted using the MEDLINE database via PubMed to identify published articles on the gut microbiome and IBD, from inception to August 2020. The search strings used were:

```
[("ulcerative colitis" [MeSH Terms]) OR ("colitis" [All Fields] AND "ulcerative" [All Fields]) OR ("ulcerative colitis" [All Fields]) OR ("crohn disease" [MeSH Terms]) OR ("crohn" [All Fields] AND "disease" [All Fields]) OR ("crohn disease" [All Fields]) OR ("crohn’s disease" [All Fields]) OR ("inflammatory bowel diseases" [MeSH Terms]) OR ("inflammatory bowel diseases" [All Fields]) AND ("microbiome" [All Fields]) OR "microbiota" [All Fields]).
```

Moreover, the reference lists of the included studies were revised to identify further relevant studies.

The work was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement in Appendix A [11].

2.2. Eligibility Criteria

The inclusion criteria were intestinal microbiome studies comparing IBD patients with controls; performed on fecal, intestinal lavage or intestinal tissue samples; focused on human adults; written in English.

Studies were excluded if they reported data on IBD complications or postsurgery (pouchitis, fistulae, among others); studied other conditions in addition to IBD (irritable bowel syndrome, Clostridium difficile infection, primary sclerosing cholangitis, among others); were abstracts from conference proceedings, letters to editor, reviews or reported only one patient.

3. Results

A total of 5267 records were identified from the PUBMED database. Of 190 papers remaining after screening, 23 did not include controls, 22 included other pathologies and 2 were in silico studies. A total of 143 papers were ultimately included.

3.1. Gut Microbiome Studies in IBD: Methodologic Aspects

The main methodologic characteristics of the studies included in this review are summarized in Table 1 (IBD gut microbiome studies using non-next-generation sequencing [NGS] approaches) and Table 2 (IBD gut microbiome studies using NGS approaches).
Reference	Year	Treatment	No. of Participants	Disease State	Specimen	Histology	Design	Microbiome Analysis Method	Focus	Microbiota Findings
Macfarlane et al. [12]	2004	Not naïve	NA 9 NA 10	Active	Biopsy	NA	Cross-sectional	Culture, FISH	Bacteria	UC
* Peptostreptococci were only present in UC patients. |
| Lepage et al. [13] | 2005 | Not naïve | 20 11 NA 4 | Active/Inactive | Stool and biopsy | Non-inflamed | Cross-sectional | TTGE (16S rDNA V6–V8 region) | Bacteria | CD and UC | Dominant species differ between the mucosa-associated and fecal microbiota.
* The microbiota is relatively stable along the distal digestive tract. |
| Manichanh et al. [14] | 2006 | Not naïve | 6 NA NA 6 | Inactive | Stool | NA | Cross-sectional | Cloning, Sequencing (16S rDNA) | Bacteria | CD | Reduced Firmicutes diversity. |
| Bibiloni et al. [15] | 2006 | Naïve | 20 15 NA 14 | Active | Biopsy | Inflamed/non-inflamed | Cross-sectional | DGGE (16S rDNA V3 region) and qPCR | Bacteria | CD and UC | Bacteria associated with inflamed and non-inflamed tissues did not differ.
* UC had more bacteria associated with biopsies than CD.
* Bacteroidetes were more prevalent in CD than in UC. |
| Sokol et al. [16] | 2006 | Not naïve | NA 9 NA 9 | Active | Stool | NA | Cross-sectional | TTGE (16S rDNA V6–V8 region) | Bacteria | UC | Reduced bacterial diversity. |
| Gophna et al. [17] | 2006 | Not naïve | 6 5 NA 5 | Active/Inactive | Biopsy | Inflamed/non-inflamed | Cross-sectional | PCR, cloning, sequencing (16S rDNA) | Bacteria | CD and UC | No significant difference between inflamed and non-inflamed tissues.
* In CD, increased Proteobacteria and Bacteroidetes and reduced Clostridia.
* No difference between UC and HC. |
| Scanlan et al. [18] | 2006 | Not naïve | 16 NA NA 6 | Active/Inactive | Stool | NA | Longitudinal | DGGE (16S rDNA) | Bacteria | CD | Lower temporal bacterial stability but higher stability for remission patients.
* Lactic acid bacteria spp. varied significantly between the CD groups.
* Decrease in Clostridium and Bacteroides spp. |
Table 1. Cont.

Reference	Year	Treatment	Disease State	Microbiome Analysis Method	Focus	Microbiota Findings				
Zhang et al.	2007	Not naïve	NA 24 NA 24	DGGE (16S rDNA V3 region)	Bacteria	Lactobacilli and the *Clostridium leptum* subgroup were significantly different between the inflamed and non-inflamed tissues. They were also affected by UC location.				
Sepehri et al.	2007	Not naïve	10 15 NA 16	ARISA, T-RFLP	Bacteria	Differences between inflamed and non-inflamed tissues were found. The non-inflamed tissues form an intermediate population between HC and inflamed tissue for both CD and UC.				
Andoh et al.	2007	Not naïve	NA 44 NA 44	T-RFLP (16S rDNA)	Bacteria	Bacterial communities are different between HC and active UC patients and between active and inactive patients. *Eubacterium*, and *Fusobacterium* were predominantly detected in the active patients. *Lactobacillus* were more predominant in the inactive patients.				
Frank et al.	2007	Not naïve	68 61 NA 61	PCR, cloning, sequencing (16S rDNA)	Bacteria	Significant differences between the microbiotas of CD and UC and those of non-IBD controls. Depletion of members of the phyla Firmicutes and Bacteroidetes.				
Ott et al.	2008	Not naïve	13 NA 5 5	PCR, cloning and sequencing	Bacteria	Temporal instability and bacterial richness decreased in relapsing patients compared to remission.				
Ott et al.	2008	Not naïve	31 26 NA 47	DGGE, clone libraries, sequencing, in situ hybridization (18S rDNA)	Fungi	Increased fungal richness and diversity in CD.				
Reference	Year	Treatment	No. of Participants	Disease State	Specimen	Histology	Design	Microbiome Analysis Method	Focus	Microbiota Findings
----------------------	------	-----------	---------------------	---------------	----------	-----------	--------------	---------------------------	------------------------	--
Martinez et al. [25]	2008	Not naïve	NA 16 NA	Inactive	Stool	NA	Longitudinal	DGGE (16S rDNA V6–V8 region)	Bacteria	UC Temporal instability and reduced diversity in remission patients.
Dicksved et al. [26]	2008	Not naïve	14 NA NA	Active/Inactive	Stool	NA	Cross-sectional	T-RFLP, cloning and sequencing (16S rDNA)	Bacteria	CD Decreased bacterial diversity. Decreased *Bacteroides uniformis* and increased *B. ovatus* and *B. vulgatus*. Ileal CD bacterial communities were significantly different from HC and colonic CD.
Kuehbacher et al. [27]	2008	Not naïve	42 31 NA	Active	Biopsy	Inflamed	Cross-sectional	T-RFLP (16S rDNA)	Bacteria	CD and UC TM7 (subgroup of Gram-positive uncultivable bacteria) were more diverse in CD than in UC and non-IBD controls.
Andoh et al. [28]	2008	Not naïve	34 NA NA	Active/Inactive	Stool	NA	Cross-sectional	T-RFLP (16S rDNA)	Bacteria	CD Decrease in *Clostridium* cluster IV, *Clostridium* cluster XI and subcluster XV. Increase in *Bacteroides* and Enterobacteriales.
Nishikawa et al. [29]	2009	Not naïve	9 NA NA	Active/Inactive	Biopsy	Inflamed/Non-inflamed	Longitudinal	T-RFLP (16S rDNA)	Bacteria	UC Decreased diversity due to loss of commensals. Decreased diversity in inactive patients compared to active patients.
Willing et al. [30]	2009	Not naïve	14 NA NA	Active/Inactive	Biopsy	Inflamed/Non-inflamed	Cross-sectional	T-RFLP, cloning and sequencing, qPCR (16S rDNA)	Bacteria	CD Ileal CD had a lower abundance of *Faecalibacterium prausnitzii* and an increased abundance of *Escherichia coli* compared to healthy co-twins and colonic CD. Dysbiosis was significantly correlated to the disease phenotype.
Reference	Year	Treatment	No. of Participants	Disease State	Specimen	Histology	Design	Microbiome Analysis Method	Focus	Microbiota Findings
-------------------	------	-----------	---------------------	---------------	----------	-----------	--------------	---	--	--
Andoh et al.	2009	Not naïve	NA 2 NA 3Ur	Inactive	Stool	NA	Cross-sectional	T-RFLP (16S rDNA)	Bacteria	Increase in *Clostridium* cluster IX and decreases in *Clostridium* cluster XIVa.
Gillevet et al.	2010	Not naïve	4 2 NA 4	NA	Stool and biopsy	NA	Cross-sectional	LH-PCR, cloning, sequencing, and multitagged pyrosequencing (16S rDNA)	Bacteria	CD and UC. Mucosal microbiome is distinct from the luminal microbiome in HC. Mucosal microbiome appears to be dysbiotic in IBD.
Rehman et al.	2010	Not naïve	10 10 NA 10	Active	Biopsy	Inflamed	Cross-sectional	PCR, cloning, sequencing (16S rDNA)	Bacteria	CD and UC. Increase in *Escherichia* sp.
Kang et al.	2010	Not naïve	6 NA NA 6	Inactive	Stool	NA	Cross-sectional	Microarray (16S rDNA)	Bacteria	CD. Decreased *Eubacterium rectale*, *B. fragilis* group, *B. vulgatus*, *Ruminococcus albus*, *R. callidus*, *R. bromii*, and *F. prausnitzii*. Increased *Enterococcus* sp., *Clostridium difficile*, *E. coli*, *Shigella flexneri*, and *Listeria* sp.
Rowan et al.	2010	Not naïve	NA 20 NA 19	Active/Inactive	Biopsy	NA	Cross-sectional	PCR, qPCR (16S rDNA)	Bacteria	UC. Increase in *Desulfovibrio*, more marked in acute phase.
Andoh et al.	2011	Not naïve	31 31 NA 30	Active/Inactive	Stool	NA	Cross-sectional	T-RFLP (16S rDNA V4-V9)	Bacteria	CD and UC. Decrease in the *Clostridium* family in active UC and inactive/active CD. Increase in *Bacteroides*. Inactive UC tended to be closer to that of HC.
Mondot et al.	2011	Not naïve	16 NA NA 16	Active	Stool	NA	Cross-sectional	qPCR, RT qPCR (16S rDNA)	Bacteria	CD. Decrease in *F. prausnitzii* *Ruminococcus* bromii, *Oscillo bacter valericigenes*, *Bifidobacterium* bifidum, and *E. rectale*. Increase in *E. coli* and *Enterococcus faecium*. More marked increase in *E. coli* in ileal CD.
Reference	Year	Treatment	No. of Participants	Disease State	Specimen	Histology	Design	Microbiome Analysis Method	Focus	Microbiota Findings
--------------------	-------	-----------------	---------------------	---------------	----------	-----------	----------------	---------------------------	-------	--
Joossens et al.	2011	Not naïve	68	NA	Stool	NA	Cross-sectional	DGGE (16S rDNA V3), qPCR	CD	Decrease in Dialister invisus species of Clostridium cluster XIVa, F. prausnitzii and Bifidobacterium adolescentis. Increase in R. gnavus.
Lepage et al.	2011	Not naïve	NA	8	Biopsy	NA	Cross-sectional	PCR, cloning, sequencing (16S rDNA)	UC	Decreased bacterial diversity. Increase in Actinobacteria and Proteobacteria. Healthy siblings from discordant twins had more bacteria from the Lachnospiraceae and Ruminococcaceae families than twins who were both healthy.
Benjamin et al.	2012	Not naïve	103	NA	Stool	NA	Cross-sectional	FISH (16S rDNA)	CD	Increase in Bacteroides-Prevotella in smokers (38.4%) compared with nonsmokers (28.1%). Increase in bifidobacterial and Bacteroides-Prevotella. Decrease in F. prausnitzii.
Hotte et al.	2012	Not naïve	15	14	Biopsy	Non-inflamed	Cross-sectional	T-RFLP (16S rDNA)	CD and UC	Increase in Proteobacteria compared with HC and UC.
Pistone et al.	2012	Not naïve	35	18	Biopsy	Inflamed/non-inflamed	Cross-sectional	PCR M. avium subspecies paratuberculosis	CD and UC	Increase in M. avium subspecies paratuberculosis compared to controls.
Andoh et al.	2012	Not naïve	67	NA	Stool	NA	Longitudinal	T-RFLP (16S rDNA V1-V9)	CD	Decrease in Clostridia in active disease and remission and in Bifidobacterium in active phase but increased during remission. Increase in Bacteroides genus in active. Decreased bacterial diversity.
Table 1. Cont.

Reference	Year	Treatment	No. of Participants	Disease State	Specimen	Histology	Design	Microbiome Analysis Method	Focus	Microbiota Findings
Li et al. [44]	2012	Not naïve	18 NA NA 9	Active	Stool and biopsy	Inflamed/non-inflamed	Cross-sectional	DGGE (16S rDNA V3 region), sequencing	Bacteria	Decreased bacterial diversity. Increase in γ-Proteobacteria (especially E. coli and S. flexneri). Decrease in reduced Bacteroidetes and Firmicutes. In ulcerated mucosa, E. coli was increased and F. prausnitzii, Lactobacterium coliforms, Bacteroides sp and Streptococcus gallolyticus were decreased compared with the non-ulcerated.
Nemoto et al. [45]	2012	Not naïve	NA 48 NA 36	Active/Inactive	Stool	NA	Cross-sectional	Culture, T-RFLP, qPCR	Bacteria	Decreased bacterial diversity. Decrease in Bacteroides and Clostridium subcluster XI and Enterococcus. Increase in Enterococcus.
Vignaes et al. [46]	2012	Not naïve	NA 12 NA 6	Active/Inactive	Stool	NA	Cross-sectional	DGGE (16S rDNA, 16S-23S rDNA intergenic spacer region), qPCR	Bacteria	Different microbiota in active UC compared to HC but in inactive UC compared to HC. Decrease in Lactobacillus spp. and Akkermansia muciniphila in active disease.
de Souza et al. [47]	2012	Not naïve	11 7 NA 14	NA	Stool and biopsy	Inflamed/non-inflamed	Cross-sectional	Culture	E. coli	CD and UC Only the mucosa-associated population of E. coli was increased, not in stool. The increase was prominent in the ileal CD and rectum and sigmoid of both UC and CD.
Duboc et al. [48]	2013	Not naïve	12 30 NA 26	Active/Inactive	Stool	NA	Cross-sectional	PCR (rDNA), culture	Bacteria	CD and UC Decrease in the ratio between F. prausnitzii and E. coli
Sha et al. [49]	2013	Not naïve	10 26 NA 14	Active/Inactive	Stool	NA	Cross-sectional	DGGE (16S rDNA V6-V8 region), qPCR	Bacteria	CD and UC Decrease in the numbers of Bacteroides–Porphyromonas–Prevotella, Bifidobacterium and B. fragilis in active phase. Decrease in Helicobacter and Clostridium phylogenetic clusters XI and XIVa in active and inactive phases. Increase in E. coli in active phases.
Table 1. Cont.

Reference	Year	Treatment	No. of Participants	Disease State	Specimen	Histology	Design	Microbiome Analysis Method	Focus	Microbiota Findings
Kabeerdoss et al. [50]	2013	Not naïve	20 22 NA 17	Active/Inactive	Stool	NA	Cross-sectional	TTGE (16S rDNA V1–V9), qPCR	C. leptum group, F. prausnitzii	CD and UC
									Decrease in C. leptum group bacteria and F. prausnitzii.	Decreased bacterial diversity.
Varela et al. [51]	2013	Not naïve	NA 116 NA 29 Ur + 31	Inactive	Stool	NA	Cross-sectional and longitudinal	PCR (16S rDNA), qPCR	F. prausnitzii	UC
									Decrease in F. prausnitzii in patients and relatives.	Recovery of the F. prausnitzii population after relapse was associated with remission.
Midtvedt et al. [52]	2013	Not naïve	4 NA NA 5	Active	Stool and biopsy	Inflamed	Cross-sectional	Microarray	Bacteria	CD
									Decrease in Bacteroides in both stool and biopsies.	
Fujimoto et al. [53]	2013	Not naïve	47 NA NA 20	Active/Inactive	Stool	NA	Cross-sectional	qPCR, PCR (16S rDNA V4–V9), T-RFLP	F. prausnitzii and Bilophila wadsworthia	CD
									Decrease in Clostridia, including the genus Faecalibacterium.	Decreased bacterial diversity.
Fite et al. [54]	2013	Not naïve	NA 33 NA 18	Active	Biopsy	Inflamed	Longitudinal	qPCR	Bacteria	UC
									High clinical activity indices were associated with enterobacteria, desulfovibrios, type E Clostridium perfringens, and Enterococcus fecalis.	Decreased bacterial diversity.
Rajilic-Stojanovic et al. [55]	2013	Not naïve	NA 15 NA 15	Inactive	Stool	NA	Longitudinal	Microarray	Bacteria	UC
									Decrease in members of the Clostridium cluster IV R. bromii et rel. E. rectale et rel., Roseburia sp., and Akkermansia sp.	Decrease in C. coccoides and C. leptum clusters.
Kumari et al. [56]	2013	Not naïve	NA 26 NA 14	Active/Inactive	Stool	NA	Cross-sectional	FISH, flow cytometry, qPCR (16S rDNA)	Bacteria	UC
									F. prausnitzii and Roseburia intestinales were differentially present in patients with different disease activity.	
Table 1. Cont.

Reference	Year	Treatment	No. of Participants	Disease State	Specimen	Histology	Design	Microbiome Analysis Method	Focus	Microbiota Findings
Hedin et al. [57]	2014	Not naïve	22	NA	NA	25 + 21Ur	Inactive	Stool	NA	Cross-sectional qPCR (16S rDNA) Bacteria CD - Siblings shared dysbiosis pattern with patients (lower concentrations of F. prausnitzii, Clostridia cluster IV and Roseburia spp.).
Lennon et al. [58]	2014	Not naïve	NA	NA	19	34	Active	Biopsy	NA	Cross-sectional qPCR (16S rDNA) Desulfovibrio species UC - No significant differences in Desulfovibrio sp. were found between cohorts or at each sampling region between the cohorts.
Machiels et al. [59]	2014	Not naïve	NA	127	NA	447	Active/Inactive	Stool	NA	Cross-sectional PCR (16S rDNA V3 region) DGGE, sequencing, qPCR Bacteria UC - Decrease in Roseburia hominis and F. prausnitzii showed an inverse correlation with disease activity.
Wang et al. [60]	2014	Not naïve	21	34	NA	21	Active/Inactive	Stool and biopsy	Inflamed/non-inflamed	Cross-sectional qPCR (16S rDNA) Bacteria CD and UC - Bifidobacterium was increased in biopsies of active UC patients, and higher in the biopsies than in the fecal samples in active CD patients. - *Lactobacillus* group was increased in biopsies of active CD patients. - *F. prausnitzii* was decreased in both the fecal and biopsy specimens of the active patients.
Blais Lecours et al. [61]	2014	Not naïve	18	11	NA	29	Active/Inactive	Stool	NA	Cross-sectional qPCR Archaea and bacteria CD and UC - Increase in Methanosphaera stadtmanae.
Fukuda et al. [62]	2014	Not naïve	NA	69	NA	80Ur	Active/Inactive	Stool	NA	Cross-sectional PCR (16S rDNA, V4-V9 region), T-RFLP Bacteria UC - Development of a Discriminant Score based on selected OTUs. - Five differential clusters were obtained indicating a strong association between the gut microbiota and UC.
Table 1. Cont.

Reference	Year	Treatment	No. of Participants	Disease State	Specimen	Histology	Design	Microbiome Analysis Method	Focus	Microbiota Findings
Li et al. [63]	2014	Not naïve	19	NA	NA	Active	Stool and biopsy	Inflamed/non-inflamed	Cross-sectional	DGGE (18S rDNA), cloning, sequencing
Andoh et al. [64]	2014	Not naïve	160	NA	NA	Active/Inactive	Stool	NA	Longitudinal	T-RFLP (16S rDNA V1–V9)
Wisittipanit et al. [65]	2015	Not naïve	101	89	NA	Active/Inactive	Biopsy and lumen aspiration	NA	Cross-sectional	LH-PCR (16S rDNA V1–V2 region)
Kabeerdoss et al. [66]	2015	Naïve and not naïve	28	32	NA	Biopsy	Inflamed/non-inflamed	Cross-sectional	RT-qPCR (16S rDNA)	Bacteria

Reference	Year	Treatment	No. of Participants	Disease State	Specimen	Histology	Design	Microbiome Analysis Method	Focus	Microbiota Findings
Takeshita et al. [67]	2016	Not naïve	NA 48 NA 34	Active/Inactive	Stool	NA	Cross-sectional	RT-qPCR	Bacteria	Decrease bacterial diversity in active phase. Fusicatenibacter saccharivorans was decreased in active patients and increased in quiescent.
Zhang et al. [68]	2017	Not naïve	132 NA NA 71	Active/Inactive	Stool	NA	Cross-sectional	Culture	Bacteria	CD Increase in E. coli and Enterococcus spp. in active phase compared with inactive and controls.
Vrakas et al. [69]	2017	Naïve and not naïve	12 20 NA 20	Active/Inactive	Biopsy	Inflamed	Cross-sectional	RT-qPCR (16S rDNA)	Bacteria	CD and UC Increased total bacterial DNA concentration levels in active phase compared to the inactive. Increase in Bacteroides spp. in active and inactive phases. Decrease in C. leptum group (IV), and F. prausnitzii in active and inactive phases.
Zamani et al. [70]	2017	Not naïve	NA 35 NA 60	Active	Biopsy	Inflamed	Cross-sectional	Culture, qPCR	Bacteria	UC No association between B. fragilis and UC. Enterotoxigenic B. fragilis was more prevalent in UC patients with diarrhoea.
Ghavami et al. [71]	2018	Not naïve	9 45 NA 47	Active/Inactive	Stool	NA	Cross-sectional	PCR, qPCR (16S rDNA)	Bacteria and Methanobrevibacter smithii (Archaea)	CD and UC Decrease in Methanobrevibacter smithii. More marked increase in Mbb. smithii in remission than in active phase.
Le Baut et al. [72]	2018	Not naïve	262 NA NA 76	Resected tissue and biopsy	Inflamed/non-inflamed	Cross-sectional	PCR	Yersinia Species	CD	Increase in Yersinia species.
Al-Bayati et al. [73]	2018	Not naïve	NA 40 NA 40	Biopsy	Inflamed	Cross-sectional	Culture, PCR (16S rDNA)	Bacteria	UC Decrease in F. prausnitzii, Prevotella, and Peptostreptococcus productus.	
Table 1. Cont.

Reference	Year	Treatment	No. of Participants	Disease State	Specimen	Histology	Design	Microbiome Analysis Method	Focus	Microbiota Findings
Heidarian et al. [74]	2019	Not naïve	7 22 NA 29	Active/Inactive	Stool	NA	Cross-sectional	qPCR	Bacteria	
									CD and UC	• Decrease in Bacteroides, F. prausnitzii, Prevotella spp., and Methanobrevibacterium.
										• Decrease in Bacteroides spp., F. prausnitzii, and Prevotella spp. in UC patients with disease activity score greater than 4.
										• Increase in Streptococcus and Haemophilus in the patients who were at flare.
Vatn et al. [75]	2020	Naïve and not naïve	68 84 12 160	Active/Inactive	Stool	NA	Cross-sectional	GA-map™ (16S rDNA V3-V9 region)	Bacteria	CD and UC
										• Decrease in Firmicutes and Eubacterium hallii.
										• Increase in Bifidobacterium spp., E. hallii, Actinobacteria and Firmicutes in ulcerative proctitis, compared to extensive colitis.
										• No association with disease location in CD.

Abbreviations: CD, Crohn’s disease; UC, ulcerative colitis; IBD, inflammatory bowel disease; IBDU, inflammatory bowel disease unclassified; HC, healthy control; C, control; NA, not applicable; FISH, fluorescence in situ hybridization; TTGE, temporal temperature gradient gel electrophoresis; DGGE, denaturing gradient gel electrophoresis; qPCR, quantitative real-time polymerase chain reaction; ARISA, automated ribosomal intergenic spacer analysis; T-RFLP, terminal restriction fragment length polymorphism; Ur, unaffected relatives; LH-PCR, length heterogeneity polymerase chain reaction; OTUs, operational taxonomic unit. * No microorganisms specified.

Table 2. Gut microbiome studies in inflammatory bowel disease using next-generation sequencing approaches.

Reference	Year	Treatment	No. of Participants	Disease State	Specimen	Histology	Design	Microbiome Analysis Method	Focus	Microbiota Findings
Willing et al.	2010	Not naïve	29 16 NA 35	Active/Inactive	Stool and biopsy	Non-inflamed	Cross-sectional	16S rDNA sequencing	Bacteria	CD and UC
										• Ileal CD differed from colonic CD.
										• In ileal CD, decrease in Faecalibacterium and Roseburia, and increase in Enterobacteriaceae and Ruminococcus gravis.
Rausch et al.	2011	Not naïve	29 NA NA 18	Inactive	Biopsy	Non-inflamed	Cross-sectional	16S rDNA V1–V2 region sequencing	Bacteria	CD
										• Decrease in bacterial diversity.
										• Prevotella, Lactobacillus, Coprococcus, Clostridium, Faecalibacterium, and Stenotrophomonas were only present in HC.
Table 2. Cont.

Reference	Year	Treatment	No. of Participants	Disease State	Specimen	Histology	Design	Microbiome Analysis Method	Focus
Walker et al. [78]	2011	Not naïve	6, 6, NA	Active	Biopsy	Inflamed/non-inflamed	Cross-sectional	16S rDNA V1–V8 region sequencing	Bacteria
Erickson et al. [79]	2012	Not naïve	8, NA, NA	Active/Inactive	Stool	NA	Cross-sectional	16S rDNA V1–V2 region and WGS	Bacteria
Morgan et al. [80]	2012	Not naïve	121, 75, 8	Active/Inactive	Stool and biopsy	NA	Cross-sectional	16S rDNA V3–V5 region and WGS	Bacteria
Ricanek et al. [81]	2012	Naïve	4, NA, NA	Active	Biopsy	Inflamed	Cross-sectional	16S rDNA sequencing	Bacteria
Thorkildsen et al. [84]	2013	Naïve	30, 33, 3	Active	Stool	NA	Cross-sectional	16S rDNA (all regions) sequencing	Bacteria

CD and UC
- Decrease in bacterial diversity.
- Decrease in Firmicutes and increase in Bacteroidetes, and in CD only, Enterobacteriaceae.
- Differences between inflamed and non-inflamed tissues were found.

CD and UC
- Decrease in bacterial diversity.
- Decrease in Firmicutes in ileal CD.

CD and UC
- Disease status influenced Firmicutes and Enterobacteriaceae abundances.

CD and UC
- Microbiota of Norwegian CD patients was found to be similar to that of CD patients in other countries.

CD and UC
- Decrease in C. coccoides-E. rectales group in ileal CD compared to control non-IBD.
- Decrease in F. prausnitzii in CD.

CD and UC
- Decrease in Firmicutes and increase in Proteobacteria and Actinobacteria.
- Decrease in microbial diversity.

CD and UC
- Increase in Escherichia/Shigella in CD.
- Decrease in Faecalibacterium in CD compared to both UC and controls.
| Reference | Year | Treatment | No. of Participants | Disease State | Specimen | Histology | Design | Microbiome Analysis Method | Focus | Microbiota Findings |
|--------------------|--------|-----------|---------------------|---------------|----------|----------------------------|----------------|-------------------------------|---|--|
| Prideaux et al. [85] | 2013 | Not naïve | 22, 30, NA | CD, UC | Biopsy | Inflamed/non-inflamed | Cross-sectional | Microarray, 16S rDNA V1–V3 region sequencing | Bacteria | CD and UC
• Decrease in microbial diversity and in Faecalibacterium, Coprococcus, Dorea, Roseburia, and 2 unclassified genera (from Lachnospiraceae and Clostridiales) in CD.
• In UC, diversity was reduced in Chinese subjects.
• Actinobacteria was significantly different between the UC groups.
• Decrease in Coprococcus and Dorea genera in UC. |
| Chiodini et al. [86] | 2013 | Not naïve | 14, NA | NA | Resected tissue | NA | Cross-sectional | 16S rDNA V3–V6 region sequencing | Bacteria | CD
• Separation of the submucosal and mucosal microbiome and existence of a submucosal bacterial population within diseased tissues. |
| Pérez-Brocal et al. [87] | 2013 | Naïve and not naïve | 11, NA, NA | CD | Stool | NA | Cross-sectional | Viral DNA and 16S rDNA V1–V3 region sequencing | Bacteria and viruses | CD
• Decreased bacterial and viral diversity.
• Synchroococcus phage S CBS1 and Retroviridae family viruses were more represented in CD.
• Increase in Proteobacteria and decrease in Tenericutes, the order Bacteroidales and Collinsella aerofaciens. |
| Davenport et al. [88] | 2014 | Not naïve | 13, 14, NA | CD, UC | Biopsy | Inflamed | Cross-sectional | 16S rDNA V4 region sequencing | Bacteria | CD and UC
• Decreased bacterial diversity.
• No phylum-level significant differences in Firmicutes or Proteobacteria
• Bacteroidetes were only increased in CD. |
Table 2. Cont.

Reference	Year	Treatment	No. of Participants	Disease State	Specimen	Histology	Design	Microbiome Analysis Method	Focus	
Chen et al.	2014	Not naïve	26 41 NA 21	Active/Inactive	Stool and biopsy	Inflamed/non-inflamed	Cross-sectional	16S rDNA V1–V3 region sequencing	Bacteria CD and UC	
									- Decrease in Roseburia, Coprococcus, and Ruminococcus.	
									- Increase in Escherichia-Shigella and Enterococcus.	
									- Fecal- and mucosa-associated microbiota were similar between CD and UC and differed from HC.	
Wang et al.	2015	Not naïve	6 4 NA 5	NA	Biopsy	NA	Cross-sectional	RNA sequencing	Bacteria and viruses CD and UC	
									- Increase in bradyrhizobiaceae, enterobacteriaceae, comamonadaceae, and moraxellaceae families.	
									- Human adenovirus and Herpesviridae sequences were predominant in IBD.	
Lavelle et al.	2015	Not naïve	NA 9 NA 4	NA	Luminal brush, mucosal biopsy, mucus gel layer	Inflamed/non-inflamed	Cross-sectional	16S rDNA V4 region sequencing	Bacteria UC	
									- Spatial variation between the luminal and mucosal communities in both cohorts.	
									- Decrease in Bacteroidaceae and Akkermanniaceae.	
									- Increase in Clostridiaceae, Peptostreptococcaceae, Enterobacteriaceae, Ruminococcaceae, Bifidobacteriaceae, Actinomyctaeae and FJ440089, an uncultured member of the Prevotellaceae family.	
Chiordini et al.	2015	Not naïve	20 NA NA 15	NA	Biopsy	Inflamed	Cross-sectional	16S rDNA V4 region sequencing	Bacteria CD	
									- Distinct sub-mucosal microbiome compared to mucosa and/or fecal material.	
									- Desulfovibrionales were present within the submucosal tissues.	
									- Increase in Firmicutes in the subjacent submucosa as compared to the parallel mucosal tissue.	
									- Increase in Propionibacterium spp., Cloacibacterium spp., Parasutterella spp. and Methylobacterium spp.	
Reference	Year	Treatment	No. of Participants	Disease State	Specimen	Histology	Design	Microbiome Analysis Method	Focus	Microbiota Findings
--------------------	------	-------------------------	---------------------	---------------	----------	--------------------	--------------	-----------------------------	------------------------	---
Pérez-Brocal et al. [93]	2015	Naïve and not naïve	20 NA NA 20	Active	Stool and biopsy	Inflamed/non-inflamed	Cross-sectional	16S rDNA V1–V3 region and viral DNA/RNA sequencing	Bacteria and viruses	Decrease bacterial diversity in all CD groups. Increased richness and diversity were observed in feces compared with biopsies. Increase in Actinobacteria, Gammaproteobacteria, and Fusobacteria.
Vidal et al. [94]	2015	Not naïve	13 NA NA 7	Active/Inactive	Biopsy	Non-inflamed	Cross-sectional	16S rDNA V1–V5 region sequencing	Bacteria	Decrease in Clostridia and increase in Bacteroidetes and Proteobacteria. No detection of F. prausnitzii.
Norman et al. [95]	2015	Not naïve	18 42 NA 12	Active/Inactive	Stool	NA	Cross-sectional	VLP DNA sequencing	Viruses	CD and UC Increase in Caudovirales bacteriophages. It did not appear that expansion and diversification of the enteric virome was secondary to changes in the microbiota.
Eun et al. [96]	2016	Not naïve	35 NA NA 15	Inactive	Stool and biopsy	NA	Cross-sectional	16S rDNA V1–V3 region sequencing	Bacteria	Decrease in bacterial diversity. Increase in Proteobacteria was increased in both fecal and mucosal tissues, and Fusobacteria only in tissue samples. Increase in Gammaproteobacteria and Fusobacteria in both fecal and mucosal tissue samples in active phase.
Chiodini et al. [97]	2016	Not naïve	20 NA NA 15	NA	Biopsy	Inflamed	Cross-sectional	16S rDNA V1–V3 region sequencing	Bacteria	CD Increase in Sphingomonadaceae, Alicyclobacillaceae, Methylbacteriaceae, Pseudomonadaceae and Prevotellaceae in the submucosa at the advancing disease margin when compared to the superjacent mucosa (translocation).
Reference	Year	Treatment	No. of Participants	Disease State	Specimen	Histology	Design	Microbiome Analysis Method	Focus	
--------------------	------	-----------------	---------------------	---------------	----------	-----------	--------------	------------------------------------	--	
Rehman et al. [98]	2016	Not naïve	28	Inactive	Biopsy	NA	Cross-sectional	16S rDNA V1–V2 region sequencing	Bacteria	
			30						CD and UC	
			NA						• Proteobacteria decrease in UC compared with CD and HC.	
			30						• Different microbial pattern based on geographical origin.	
Takahashi et al. [99]	2016	Not naïve	68	Active/Inactive	Stool	NA	Cross-sectional	qPCR and 16S rDNA V3–V4 region sequencing	Bacteria	
			NA						CD and UC	
			NA						• Increase in Actinomyces and Bifidobacterium.	
Forbes et al. [100]	2016	Not naïve	15	NA	Biopsy	Inflamed/non-inflamed	Cross-sectional	16S rDNA V6 region sequencing	Bacteria	
			21						CD and UC	
			NA						• No difference between inflamed and non-inflamed tissues were found.	
			7						• There were only differences between the inflamed and non-inflamed	
									• mucosa between CD and UC.	
									• Increase in Bacteroides and Fusobacteria in inflamed CD mucosa	
									• than in inflamed UC mucosa.	
									• Proteobacteria and Firmicutes were more frequently in the inflamed	
									• UC mucosa.	
Liguori et al. [101]	2016	Not naïve	23	Active/Inactive	Biopsy	Inflamed/non-inflamed	Cross-sectional	qPCR (16S or 18S rDNA) 16S rDNA V3–V4 region and ITS2 sequencing	Bacteria and fungi	
			NA						CD and UC	
			NA						• Decrease in bacterial diversity.	
			10						• Increase in Proteobacteria and Fusobacteria.	
									• Increase in fungal load in active phase.	
									• Cystofilobasidiaceae family and Candida glabrata species were	
									• overrepresented.	
Mar et al. [102]	2016	Not naïve	NA	NA	Stool	NA	Cross-sectional	16S rDNA V3–V4 region and ITS2 sequencing	Bacteria and fungi	
			30						UC	
			NA						• Decrease in bacterial diversity.	
			13						• Decrease in Bacteroides and Prevotella species and Alternaria	
									• alternata, Aspergillus flavus,	
									• Aspergillus cibarius, and Candida soja.	
									• Increase in Streptococcus, Bifidobacterium, and Enterococcus	
									• and Candida albicans and Debaryomyces.	
Table 2. Cont.

Reference	Year	Treatment	No. of Participants	Disease State	Specimen	Histology	Design	Microbiome Analysis Method	Focus	Microbiota Findings	
Hoarau et al. [103]	2016	Not naive	20	NA	NA	NA	Cross-sectional	16S rDNA V4 region and ITS1 sequencing	Bacteria and fungi	CD Increase in Serratia marcescens and E. coli, and Candida tropicalis.	
Hedin et al. [104]	2016	Not naive	21	NA	NA	NA	Cross-sectional	16S rDNA V1–V3 region sequencing	Bacteria	CD Decrease in bacterial diversity. Decrease in *F. prausnitzii*.	
Naftali et al. [105]	2016	Not naive	31	NA	NA	NA	Cross-sectional	16S rDNA V1–V3 region sequencing	Bacteria	CD Difference between ileal CD compared with colonic CD. This separation was unaffected by the biopsy’s location, its inflammatory state or disease state. *Faecalibacterium* was strongly reduced in ileal CD compared with colonic CD, whereas *Enterobacteriaceae* were more abundant in the former.	
Pedamallu et al. [106]	2016	Not naive	12	NA	NA	NA	Cross-sectional	WGS	Bacteria	CD Decrease in Bacteroidetes and Clostridiales. Enrichment of enterotoxigenic *Staphylococcus aureus* and an environmental *Mycobacterium* species within deeper layers of the ileum.	
Sokol et al. [107]	2016	Not naive	149	86	NA	38 Active/Inactive	Stool	Cross-sectional	16S rDNA V3–V5 region and ITS2 sequencing	Bacteria and fungi	CD and UC Increase in Basidiomycota/Ascomycota ratio and *C. albicans*. Decrease in *Saccharomyces cerevisiae*. Correlations between bacterial and fungal components.
Santorl et al. [108]	2017	Not naive	50	82	NA	51 Active/Inactive	Stool	Cross-sectional	16S rDNA V3–V4 region sequencing, qPCR	Bacteria	CD and UC Increase in Firmicutes, Proteobacteria, Verrucomicrobia, and Fusobacteria. Decrease in Bacteroidetes and Cyanobacteria.
Table 2. Cont.

Reference	Year	Treatment	No. of Participants	Disease State	Specimen	Histology	Design	Microbiome Analysis Method	Focus	Microbiota Findings
Pascal et al. [109]	2017	Not naïve	34 33 NA 40 + 71Ur	Active/Inactive	Stool	NA	Longitudinal	16S rDNA V4 region sequencing	Bacteria	CD and UC: Dysbiosis was greater in CD than UC, as shown by a more reduced diversity, a less stable microbial community.
Chen et al. [110]	2017	Not naïve	NA 8 NA 8 NA	NA	Stool	NA	Cross-sectional	16S rDNA V3–V4 region sequencing	Bacteria	UC: Decrease in Firmicutes, (Blautia, Clostridium, Coprococcus and Roseburia). Decreased bacterial diversity.
Hall et al. [111]	2017	Not naïve	9 10 1 12	Active/Inactive	Stool	NA	Longitudinal	WGS	Bacteria	CD and UC: Increase in facultative anaerobes. Increase in R. genus, often co-occurring with increased disease activity.
Qiu et al. [112]	2017	Not naïve	NA 14 NA 15	Active	Biopsy	Inflamed	Cross-sectional	18S rDNA sequencing	Fungi	UC: Increase in Wickerhamomyces, unidentified genus of Saccharomycotales, Aspergillus, Sterigmatomyces, and Candida. Decrease in Exophiala, Alternaria, Emersiella, Epicoccum, Acremonium, Trametes, and Penicillium.
Kennedy et al. [113]	2018	Not naïve	37 NA NA 54	Inactive	Stool	NA	Cross-sectional	16S rDNA V1–V2 region sequencing	Bacteria	CD: Decrease in bacterial diversity. Decrease in Ruminococcaceae, Rikenellaceae, and Christensenellaceae. Increase in Enterobacteriaceae.
Ji et al. [114]	2018	Not naïve	51 66 NA 66	Active/Inactive	Stool	NA	Cross-sectional	16S rDNA V4 region sequencing	Bacteria	CD and UC: Results were different between HC and IBD patients and between active and inactive patients.
Imbann et al. [115]	2018	Not naïve	188 107 18 582	Active/Inactive	Stool	NA	Cross-sectional	16S rDNA V4 region sequencing	Bacteria	CD and UC: Colonic CD was different from that of patients with ileal CD, with a decrease in alpha diversity associated with ileal CD. Decrease in the genus Roseburia was associated with higher IBD risk score.
Table 2. Cont.

Reference	Year	Treatment	No. of Participants	Disease State	Specimen	Histology	Design	Microbiome Analysis Method	Focus	Microbiota Findings
Nishino et al.	2018	Not naïve	26, 43 NA 14	Active/Inactive	Macosal brush	Non-inflamed	Cross-sectional	16S rDNA V3–V4 region sequencing	Bacteria	CD and UC:
										- No significant difference among anatomical sites within individuals.
										- Increase in Proteobacteria and decrease in Firmicutes in CD and Bacteroidetes in CD.
										- Greater abundance of Escherichia, Ruminococcus (R. gnavus), Clostridium, Cetobacterium, Peptostreptococcus in CD, and the Faecalibacterium, Blautia, Bifidobacterium, Roseburia and Citrobacter in UC.
Rojas-Feria et al.	2018	Naïve	13 NA NA 16	Onset	Stool	NA	Cross-sectional	16S rDNA V1–V3 region sequencing	Bacteria	CD:
										- Decrease in bacterial diversity.
										- Decrease in Firmicutes and an increase in Bacteroidetes.
Schirmer et al.	2018	Naïve and not naïve	30, 21 NA 11	Active/Inactive	Stool	NA	Longitudinal	WGS	Bacteria	CD and UC:
										- Decrease in bacterial diversity.
										- Decrease in Firmicutes and increase in Enterobacteriaceae.
										- Longitudinal profiles showed taxonomic shifts in community composition over time that coincided with changes in disease severity.
Chiodini et al.	2018	Not naïve	20 NA NA 15	Resected tissue	Inflamed	Cross-sectional	16S rDNA V1–V3 region sequencing	Bacteria	CD:	
										- Increase in bacterial richness.
										- Bacterial translocation, with two bacterial families (Comamonadaceae and Xanthomonadaceae), having penetrated the mucosal surfaces.
Hirano et al.	2018	Not naïve	NA 14 NA 14	Active	Biopsy	Inflamed/non-inflamed	Cross-sectional	16S rDNA V4 region sequencing	Bacteria	UC:
										- Decrease in bacterial diversity.
										- Increase in Clostridium and the Tissierellaceae and decrease in Neisseria in inflamed site when compared to the non-inflamed site.
Reference	Year	Treatment	No. of Participants	Disease State	Specimen	Histology	Design	Microbiome Analysis Method	Focus	Microbiota Findings
---	---	---	---	---	---	---	---	---	---	---
Ma et al. [121]	2018	Not naïve	15	Active/Inactive	Stool	NA	Cross-sectional	16S rDNA V4 region sequencing	Bacteria	Increase in Proteobacteria. Decrease in Bacteroidetes in the active CD compared to inactive CD. Bacteroidetes showed a negative correlation with the CD activity index scores.
Walujkar et al. [122]	2018	Not naïve	NA	Active	Biopsy	Inflamed	Longitudinal	16S rDNA V4 region sequencing	Bacteria	UC Increase in bacterial count in active UC. Increase in *Stenotrophomonas, Parabacteroides, Elizabethkingia, Pseudomonas, Micrococcus, Ochrobactrum and Achromobacter* in active UC.
Moen et al. [123]	2018	Naïve	NA	Onset	Biopsy	Inflamed/non-inflamed	Cross-sectional	16S rDNA V4 region sequencing	Bacteria	UC No difference in bacterial diversity. Proteobacteria were higher in the inflamed tissue compared with the non-inflamed.
Laserna-Mendieta et al. [124]	2018	Not naïve	71	Active/Inactive	Stool	NA	Cross-sectional	16S rDNA V3–V4 region sequencing	Bacteria	CD and UC Decreased bacterial diversity. Decreased in *Clostridium* cluster IV, *Roseburia*, and *F. prausnitzii* only in CD.
Libertucci et al. [127]	2018	Not naïve	43	Active/Inactive	Biopsy	Inflamed/non-inflamed	Cross-sectional	16S rDNA V3 region and ITS2 sequencing	Bacteria and fungi	CD Increase in *Escherichia* and a decrease in *Firmicutes* in inflamed tissue. Bacterial diversity did not correlate with inflammation.
Moustafa et al. [126]	2018	Not naïve	45	Active/Inactive	Stool	NA	Cross-sectional	WGS	Bacteria	CD and UC Decreased bacterial diversity. Increase in *Proteobacteria* and decrease in Bacteroidetes and Firmicutes.
O’Brien et al. [127]	2018	Not naïve	24	NA	Biopsy	Inflamed/non-inflamed	Cross-sectional	16S rDNA V1–V3 region sequencing	Bacteria	CD No bacterial imbalance or reduced diversity in CD aphthous ulcers and adjacent mucosa, relative to control biopsies.
Reference	Year	Treatment	No. of Participants	Disease State	Specimen	Histology	Design	Microbiome Analysis Method	Focus	Microbiota Findings
--------------------	------	-----------	---------------------	---------------	----------	--------------------	----------	----------------------------	---	--
Zakrzewski et al. [128]	2019	Not naïve	15	NA	NA	58	Active	Inflamed/non-inflamed	Cross-sectional	16S rDNA V3–V4 region sequencing
									VLP and 16S rDNA sequencing	
Zuo et al. [129]	2019	Not naïve	NA	91	NA	76	Active/Inactive	Biopsy	Inflamed/non-inflamed	Cross-sectional
									VLP and 16S rDNA sequencing	
										Virome correlated with intestinal inflammation.
										Increase in Escherichia phage and Entrobacteria phage.
Altomare et al. [130]	2019	Not naïve	10	NA	NA	11	Active/Inactive	Stool and biopsy	Inflamed/non-inflamed	Cross-sectional
										In the colon district some specific bacterial biomarkers were identified: Entrobacteriaceae for IBD stools, Bacteroides for IBD biopsies.
Franzosa et al. [131]	2019	Not naïve	68	53	NA	34	Active/Inactive	Stool	NA	Cross-sectional
										Decreased bacterial diversity.
										Decrease in Firmicutes and increase in Proteobacteria.
										Disease localization did not have a significant effect among CD subjects.
Lloyd-Price et al. [132]	2019	Not naïve	67	38	NA	27	Active/Inactive	Stool and biopsy	Inflamed/non-inflamed	Longitudinal
										CD and UC
										Increase in facultative anaerobes at the expense of obligate anaerobes.
										Periods of disease activity were marked by increases in temporal taxonomic variability.
Imai et al. [133]	2019	Not naïve	20	18	NA	20	Inactive	Stool	NA	Cross-sectional
										CD and UC
										Decrease in bacterial diversity in CD compared to HC and UC.
										No difference in fungal diversity.
										Increase in Candida in CD compared to HC and UC.
Table 2. Cont.

Reference	Year	Treatment	No. of Participants	Disease State	Specimen	Histology	Design	Microbiome Analysis Method	Focus	Microbiota Findings			
Li et al. [134]	2019	Not naïve	106	NA	88	89	Resected tissue	Inflamed/non-inflamed	Longitudinal	16S rDNA V3–V5 region sequencing, qPCR	Bacteria	CD and UC: Proteobacteria was positively associated with ileal CD and more marked in non-inflamed tissue.	
Vester-Andersen et al. [135]	2019	Not naïve	58	82	NA	30	Active/Inactive	Stool	Cross-sectional	16S rDNA V3–V4 region sequencing	Bacteria	CD and UC: Decrease in richness, diversity and Firmicutes in active and in aggressive CD. Increase in Proteobacteria in CD.	
Clooney et al. [136]	2019	Not naïve	27	82	NA	61	Active/Inactive	Stool	NA	Whole-virome analysis and 16S rDNA V3–V4 region sequencing	Bacteria and viruses	CD and UC: No changes in viral richness. Increase in Caudovirales. Changes in virome reflected alterations bacteriome.	
Braun et al. [137]	2019	Not naïve	45	NA	NA	22	Inactive	Stool	NA	16S rDNA V4 region sequencing	Bacteria	CD: Decrease in bacterial diversity. Inactive patients preceding flare showed a decrease in Christensenellaceae and S24.7, and increase in Gemellaceae compared with those in remission.	
Galazzo et al. [138]	2019	Not naïve	57	NA	NA	15	Active/Inactive	Stool	NA	16S rDNA V4 region sequencing	Bacteria	CD: Decrease in bacterial diversity and richness. Microbial community structure was less stable over time.	
Sun et al. [139]	2019	Not naïve	NA	58	NA	30	Active/Inactive	Stool	Cross-sectional	16S rDNA V3–V4 region sequencing	Bacteria	UC: Decreased bacterial diversity. Firmicutes and Bacteroidetes, were the most abundant active UC and inactive UC, respectively. Increase in Proteobacteria and Fusobacteria and decrease in Firmicutes and Bacteroidetes in active UC.	
Yilmaz et al. [140]	2019	Not naïve	270	232	NA	573	Active/Inactive	Biopsy	Inflamed/non-inflamed	Longitudinal	16S rDNA V5–V6 region sequencing	Bacteria	CD and UC: Decrease in diversity in CD compared with UC and HC. Firmicutes were higher than Bacteroidetes in UC compared with CD.
Table 2. Cont.

Reference	Year	Treatment	No. of Participants	Disease State	Specimen	Histology	Design	Microbiome Analysis Method	Focus	Microbiota Findings			
Magro et al. [141]	2019	Not naïve	18 NA NA 18	Inactive	Stool	NA	Cross-sectional	16S rDNA V3–V4 region sequencing	Bacteria	Decrease in bacterial diversity. Increase in Proteobacteria and decrease in Deltaproteobacteria, Akkermansia, Oscillospira and Saccharomyces cerevisiae.			
Zhang et al. [142]	2019	Not naïve	NA 63 NA 30	Active/Inactive	Stool	NA	Cross-sectional	16S rDNA V4 region sequencing	Bacteria	Decrease in Porphyromonadaceae, Rikeneliaceae, and Lachnospiraceae and increase in Enterococcus and Streptococcus.			
Alam et al. [143]	2020	Not naïve	9 11 NA 10	NA	Stool	NA	Cross-sectional	16S rDNA V1–V3 region sequencing	Bacteria	Decrease in bacterial diversity. Increase in Porphyromonadaceae, Rikeneliaceae, and Lachnospiraceae and increase in Enterococcus and Streptococcus.			
Ryan et al. [144]	2020	Not naïve	80 50 NA 31	Active/Inactive	Biopsy	Inflamed/non-inflamed	Cross-sectional	16S rDNA V3–V4 region sequencing	Bacteria	Difference in inflamed and non-inflamed colonic segments in both CD and UC. Inflammatory status did not appear to affect diversity.			
Butera et al. [145]	2020	No naïve	NA 88 NA 24	Active	Biopsy	Inflamed/non-inflamed	Cross-sectional	16S rDNA V3–V4 region sequencing	Bacteria	High IL-13mRNA patients are younger at diagnosis and show higher prevalence of extensive colitis than low IL-13mRNA patients. Increase in Prevotellaceae in patients with high IL-13mRNA tissue content and Sutterella and Acidaminococcus in patients with low IL-13mRNA tissue content.			
Boland et al. [146]	2020	No naïve	101 99 15 48	Active/Inactive	Biopsy	NA	Cross-sectional	16S rDNA V4 region sequencing	Bacteria	CD mucosal biopsy who achieved mucosal healing had lower diversity than biopsies from patients with UC or HC. Diversity was differently related to mucosal healing in CD and UC.			
Reference	Year	Treatment	No. of Participants	Disease State	Specimen	Histology	Design	Microbiome Analysis Method	Focus	Microbiota Findings			
-----------	------	-----------	---------------------	---------------	----------	-----------	--------	-----------------------------	-------	------------------------			
Olaisen et al. [147]	2020	No naïve	51	NA	NA	40	Active/Inactive	Biopsy	Inflamed/non-inflamed	Cross-sectional	16S rDNA V3–V4 region sequencing	Bacteria	CD
											Decreased bacterial diversity.		
										Overrepresentation of Tyzzerella 4.			
										No difference in diversity in inflamed and non-inflamed ileal mucosa.			
Shahir et al. [148]	2020	No naïve	125	NA	NA	23	NA	Biopsy	Inflamed/non-inflamed	Cross-sectional	16S rDNA V1–V2 region sequencing	Bacteria	CD
										Decreased bacterial diversity.			
										Distinct profile in colon and ileum.			
										Increase in obligate anaerobes in the ileum, B. fragilis was dramatically increased.			
Park et al. [149]	2020	No naïve	370	NA	NA	740	Active/Inactive	Stool	NA	Longitudinal	16S rDNA V3–V4 region sequencing	Bacteria	CD
										Diversity was more decreased in patients with worse prognosis.			
										E. coli might be causally involved in CD progression.			
Clooney et al. [150]	2020	No naïve	303	228	NA	161	Active/Inactive	Stool	NA	Longitudinal	16S rDNA V3–V4 region sequencing	Bacteria	CD and UC
										Decrease in bacterial diversity but increase in variability.			
										Reduced temporal microbiota stability, particularly in patients with changes in disease activity.			
Park et al. [151]	2020	No naïve	10	6	NA	9Ur	Inactive	Stool	NA	Cross-sectional	16S rDNA V3–V4 region sequencing	Bacteria	CD and UC
										Decrease in bacterial diversity.			
										Different diversity and identification of differentially abundant taxa in affected IBD relatives.			
Lo Sasso et al. [152]	2020	No naïve	41	43	NA	42	Active	Stool	NA	Cross-sectional	16S rDNA V4 region and WGS	Bacteria	CD and UC
										Increase in Proteobacteria, Actinobacteria, and Fusobacteria.			
										Decrease in Firmicutes, Bacteroidetes, and Verrucomicrobia.			
Reference	Year	Treatment	No. of Participants	Disease State	Specimen	Histology	Design	Microbiome Analysis Method	Focus	Microbiota Findings			
-------------------	------	-----------	---------------------	---------------	----------	-----------	----------	----------------------------	---	--			
Borren et al.	2020	No naïve	108	NA	NA	Inactive	Stool	NA	Longitudinal WGS	CD and UC	Increase in Proteobacteria and Fusobacteria and, at the species level, *Lachnospiraceae bacterium_2_1_56FAA* in relapse. Potential microbial biomarker to identify proinflammatory state in quiescent IBD that predisposes to clinical relapse.		
Rubbens et al.	2020	No naïve	29	NA	NA	Inactive	Stool	NA	Flow cytometry and 16S rDNA sequencing	CD	Decrease in bacterial diversity. Potential of flow cytometry to perform rapid diagnostics of microbiome profile.		

Abbreviations: CD, Crohn’s disease; UC, ulcerative colitis; IBD, inflammatory bowel disease; IBDU, inflammatory bowel disease unclassified; HC, healthy control; C, control; NA, not applicable; Ur, unaffected relatives; WGS, whole-genome shotgun sequencing; qPCR, quantitative real-time polymerase chain reaction; VLP, virus-like particle; ITS, internal transcribed spacer.
3.1.1. Study Design

Across the included studies, populations ranged from 2 to 531 patients, many of them with a small sample size that reduced the precision of the estimations. Thus, since many results are limited by sample size, further studies with larger cohorts are desirable to confirm these results and to clarify the significance of the microbiome in the pathogenesis of IBD.

In addition, to date, most published studies in IBD are cross-sectional (121 out of the 143 reviewed studies). However, longitudinal designs are required to capture changes that precede or coincide with disease and symptom onset, and to mechanistically relate microbiome shifts with disease pathogenesis. Overall, longitudinal studies in IBD (only 15% of the included studies) indicate that there is decreased stability in the microbiota composition in UC and CD patients [18,23,25,118,131,132,138,149]. These dynamic changes emphasize the importance of longitudinal sampling for a better understanding of taxa stability in individuals.

The IBD microbiome varies not only over time but also with treatment [80,155,156]. Newly diagnosed patients with no treatment provide an ideal scenario to study the potential etiopathogenesis related to intestinal dysbiosis that occurs in IBD. Mouse and human studies have proven that the gut microbiome is required for disease onset, as germ-free mice rarely develop the disease [157,158], antibiotics can prevent disease onset in mice [159] and ameliorate (but not cure) the disease in humans [160].

However, prior IBD microbiome studies have mostly included subjects with an established treatment; of the 143 microbiome studies included herein, only 11 included treatment-naïve patients [15,66,69,75,81,84,87,93,117,118,123], sometimes only on a small subset of the cohort, and only one was conducted prospectively.

Results on newly diagnosed treatment-naïve patients showed that gut dysbiosis is already established at the beginning of the disease. The dysbiotic profile in the gut of newly diagnosed treatment-naïve IBD patients presents reduced microbial abundance, less biodiversity in the structure of microbial communities, and differential bacterial abundances compared to the profile of established and treated IBD patients or control groups. Conversely, one study showed none or minor microbial differences between these patients and a control group [84].

Current knowledge, despite some controversy, provides valuable insights supporting the idea that microbial alterations may precede IBD onset. Given the limited number of studies in this type of patients, no consistent conclusion can be inferred, and further work is needed to investigate in depth the gut dysbiosis of newly diagnosed treatment-naïve IBD patients.

3.1.2. Microbiome Analysis Methods

Culture-independent and -dependent methods for microbial community analysis have both been used to describe microorganisms from different environments, including the human gut. However, due to the inability to culture the majority of the resident bacteria from the gastrointestinal tract, culture-independent methods have proven much more reliable and faster in profiling complex microbial communities.

Culture-independent techniques are based on sequence divergences of the small subunit ribosomal RNA (16S rRNA) or other target gene regions. Some of these techniques are quantitative real-time PCR (qPCR), denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (T-RFLP), fluorescence in situ hybridization (FISH), DNA microarrays, and NGS. All these techniques, except for NGS, are referred herein as non-NGS techniques.

Currently, there are many differences in study design and methodology among studies, making translation of basic science results into clinical practice a challenging task. Among the studies included in this review, very few used culture-dependent techniques (7 out of 143); and over the years, NGS became the most employed technique—79 studies used NGS, while 64 studies used non-NGS approaches.
Lately, the most widely used approaches are amplicon gene sequencing, predominantly the 16S rRNA gene (16S rDNA), and whole-genome shotgun sequencing, both NGS techniques.

Another recent technique much less used in this field is flow cytometry. A recent study demonstrated that cytometry fingerprints can be used as a diagnostic tool to classify samples according to CD state [154]. These results highlight the potential of flow cytometry as a tool to conduct rapid and cheaper diagnostics of microbiome-associated diseases.

3.1.3. Sample Type and Site

Currently, bacterial diversity in the human gut is determined through analysis of the luminal content (stool) and mucosal biopsies; however, the stool microbiome differs from the mucosa-associated microbiome [161]. Most of the bacteria are tightly adhered to the mucus and this mucosa-adhered microbiota may be associated with the pathogenesis of the disease [9,76]. Changes observed in stool samples likely represent an indirect measure of what is happening at the mucosal surface, where microorganisms interact more intimately with the host and induce disease.

The studies reviewed herein used fecal data, biopsy data or both, and most of them showed differences between fecal and biopsy samples [13,32,47,80,89,93,96,130], although a few studies found similarities [52,76]. The reported differences in microbial composition related to whether the sample origin was fecal or mucosal indicate that each biological sample represents a different environment thus emphasizing the importance of experimental design. Biopsies are primarily recommended for the dissection of the complex pathogenesis of IBD, whereas feces could effectively detect key biomarkers, enabling non-invasive continuous disease monitoring.

In biopsy samples, sampling site can also be a confounding factor. Many studies have compared the microbiome of inflamed and non-inflamed tissue from the same IBD patient. Regarding the effect of gut inflammation on the microbiota, there are some discrepancies among studies. Some researchers did not find significant differences in the mucosa-associated bacteria between apparently normal and inflamed mucosa in IBD patients [15,66,100,127,128,147]. Conversely, other studies found gut microbiome differences between inflamed and non-inflamed regions in mucosal biopsies [19,44,72,78,120,125,134,144]. This difference was also observed in fungal communities of inflamed mucosa, which are distinguishable from those of the non-inflamed area [63].

In spite of the controversial results, there is evidence supporting that inflamed and non-inflamed tissue samples in both CD and UC may present some differential microbiota composition suggesting that a comparison of mucosal samples obtained from identical sites in IBD patients and non-IBD controls is needed to avoid the confounding effect of inflammation in the assessment of the microbial profile.

3.1.4. Structural and Functional Analysis

IBD microbiome studies have typically focused on characterizing the composition of a community and less attention has been paid to functional profiles of the microbes within a community. Functional information can be inferred from the taxa through bioinformatic approaches or directly assessed via whole-genome shotgun sequencing.

Function is more informative than taxonomy [162] as it provides information on possible mechanisms acting on microbes and on microbe–host interactions, which are important for understanding microbial communities, specially microbiome-related diseases. The loss of a particular function could be more biologically meaningful than the loss of a single or a group of species.

The vast majority of the studies published on the IBD microbiome to date have focused on taxonomy and the reported associations in the IBD gut microbiome are largely limited to identifying high-level taxonomic classification (ranging from phyla to genera) given, for example, the limitations of amplicon gene sequencing for reliable species identification.
Some IBD gut microbiome studies have assessed the change in microbial function compared to healthy subjects. Outcomes of such studies showed a quite distinct change in microbial functions, such as fecal tryptic activity, oxidative response or lipid and glycan metabolism pathways [52,80,83,88,132]. Based on these results, it is necessary to redirect the study of dysbiosis from a purely compositional definition to a definition that includes functional changes of the microbiota.

3.2. Dysbiosis in IBD

The microbiome is different among healthy individuals around the globe [163], and the great differences found between the microbiomes of apparently healthy people complicate the definition of a healthy microbiome. Despite this divergence, the vast and diverse microbial gut community lives in relative balance in healthy individuals. Dysbiosis refers to an imbalance in microbial species, which is commonly associated with impaired gut barrier function and inflammatory activity [164]. It encompasses major traits such as loss of beneficial microbes, expansion of pathobionts, and loss of diversity [3] (Figure 1). The following sections will describe the key alterations found in the gut of IBD patients.

![Gut microbiota disturbance in inflammatory bowel disease compared to healthy individuals. Upward arrow indicates increase and downward arrow decrease.](image)

3.2.1. Defining the Gut Microbiome in IBD

Although the gastrointestinal tract contains trillions of resident microorganisms that include bacteria, archaea, fungi and viruses, the studies revised herein highlighted that current research on microbiome is mainly focused on bacteria.

Bacterial Dysbiosis

It has consistently been shown that there is a disease-dependent restriction of biodiversity and an imbalanced bacterial composition associated with IBD. The abundance of beneficial microorganisms such as Clostridium groups IV and XIVa, Bacteroides, Suterella, Roseburia, Bifidobacterium species and Faecalibacterium prausnitzii is reduced, whereas some pathogens such as Proteobacteria members (including invasive and adherent Escherichia coli), Veil-
lonellaceae, Pasteurellaceae, Fusobacterium species, and *Ruminococcus gnavus* are increased [4]. Most of the studies have revealed that in IBD patients, commensal bacteria are depleted and the microbial community is less diverse [14,22,37,48,80,94,106,108,126,143,150,152,153].

The increase in the phylum Proteobacteria, which includes multiple genera considered potentially pathogenic such as *Escherichia, Salmonella, Yersinia, Desulfovibrio, Helicobacter* or *Vibrio*, has been extensively reported in IBD patients [17,22,34,35,58,76,113,116,126,135,165].

In the *Firmicutes* phylum, *F. prausnitzii*, an anti-inflammatory commensal bacterium, is frequently decreased in CD, while less evidence has been reported in UC, where it is sometimes increased and in other studies decreased [14,22,51,59,73,89,109,140,142,166,167]. Specific decrease in *Roseburia* spp. in patients with IBD has also been consistently noted [56,59,76,99,115,116,130]. Both bacteria are known to be involved in the production of butyrate, an important energy source for intestinal epithelial cells, which strengthens gut barrier function and exerts important immunomodulatory functions [168]. In this same phylum, the mucin degrader *R. gnavus* is frequently increased in IBD patients’ gut, which may impair barrier stability and contribute to inflammation [38,76,103,111,116,132,140,144].

Fungal Dysbiosis

Despite the large body of literature on the IBD gut bacterial microbiome, little has been published on the gut mycobiome; specifically, only nine studies reviewed herein included fungal analysis.

Fungi are ubiquitous and their presence in the gastrointestinal tract has been demonstrated [169]. It was already evidenced many years ago that antibodies directed against mannanproteins of *Saccharomyces cerevisiae* (ASCA) were associated with CD, suggesting an inappropriate immune response to fungi in these patients [170].

Although fungi only constitute approximately 0.1% of the total microbial community in the gut [171], changes in gut mycobiota have been reported in IBD patients. However, results on fungal diversity are controversial; compared to controls, some studies have shown that fungal diversity is decreased in UC patients [107,112], and in CD, diversity and richness have been reported to be either increased [24,63], reduced [103,133], or unchanged [101]. Findings across fungal studies have consistently shown an increase in fungal load, especially in *Candida albicans* [24,63,101,102,107,133].

Nowadays, the exact mechanisms of intestinal fungi in IBD remain unclear and microbiome studies need to include fungi to properly address the complex challenges of this promising field.

Viral Dysbiosis

The human gut virome includes a diverse collection of viruses, mostly bacteriophages, directly impacting on human health [172]. In this systematic review, only seven studies included viral analysis [87,90,93,95,129,132,136]. Alterations in IBD gut virome showed an expansion of *Caudovirales* and an inverse correlation between the virome and bacterial microbiome, suggesting an hypothesis where changes in the gut virome may affect bacterial dysbiosis [90,95,129,136]. The use of data on both bacteriome and virome composition would contribute to improve classification between health and disease.

These findings suggest that the loss of virus-bacterium relationships can cause microbiota dysbiosis and intestinal inflammation. However, whether viruses have a direct role in IBD pathogenesis, or merely reflect underlying dysbiosis remains to be determined.

Archaeal Dysbiosis

The human gut microbiota also contains prokaryotes of the domain Archaea. Methane-producing archaea (methanogens) have been associated with disorders of the gastrointestinal tract and dysbiosis. Methanogens play an important role in digestion, improving polysaccharide fermentation by preventing accumulation of acids, reaction end-products and hydrogen gas [173].
The two reviewed studies including archaeal analysis have shown that the variable prevalence of methanogens in different individuals may play an important role on IBD pathogenesis [61,71]. Lecours et al. showed that the abundance of *Methanosphaera stadtmanae* in fecal samples was significantly higher in IBD patients than in healthy subjects. Interestingly, only IBD patients developed a significant anti-*Msp. stadtmanae* immunoglobulin G response, indicating that the composition of archaeal microbiome appears to be an important determinant of the presence or absence of autoimmunity [61].

The other study demonstrated an inverse association between *Methanobrevibacter smithii* load and susceptibility to IBD, which could be extended to IBD patients in remission as they found that *Mbb. smithii* load was markedly higher in healthy subjects compared to IBD patients [71]. Although archaeal diversity in the gastrointestinal tract is far lower than that of bacteria, these microorganisms can also exert inflammatory effects and their consideration in microbiome studies may be crucial for developing optimal diagnostics and prognostics tools.

Disease Activity and Severity

Different disease activity and severity have been described among IBD patients with a given clinically defined condition, suggesting that, in the context of microbiome dysfunction, each condition may present different microbial profiles. The reviewed studies showed a clear difference in the gut microbiota associated with different disease activity and severity in IBD patients.

Dysbiosis was evidenced by Tong et al. [83] at remission, where highly preserved microbial groups accurately classified IBD status during disease quiescence, suggesting that microbial dysbiosis in IBD may be an underlying disorder not only associated with active disease. In general, compared to inactive disease, bacterial diversity and richness are reduced in active disease. Studies of intestinal microbiota in active/inactive IBD patients have consistently shown an increase in *F. prausnitzii* and *Clostridiales* in inactive IBD compared to active IBD, and the increase in *Proteobacteria* in active IBD compared to inactive IBD. Besides, *F. prausnitzii* and *R. hominis* display an inverse correlation with disease activity [51,54,56,59,60,68,114,135,137,139,149].

Some studies showed that the genus *Bifidobacterium* is significantly decreased in stool samples during the active phase of CD and UC compared to the remission phase [43,49,68]. On the contrary, biopsies showed a higher abundance of *Bifidobacterium* during active UC, and the proportion of *Bifidobacterium* was significantly higher in biopsies than in the fecal samples in active CD patients [60]. Some controversial results were also found as other researchers did not find a correlation between microbiota and disease activity [35,45,50,101,105,138].

Regarding IBD severity, different microbial abundance was detected in both biopsies and fecal samples from patients with more aggressive disease, and gut dysbiosis was not only related to current activity but also to the course of the disease. In biopsies, *Firmicutes* showed a significant decrease and *Proteobacteria* a significant increase in more aggressive CD [135], and *Bifidobacterium* was inversely correlated with IBD severity [54,135,149]. The risk of flare was associated with reduced microbial richness, increased dysbiosis index and higher individualized microbial instability [74,122,132,137,146,153].

This area is still in its infancy and some results are inconsistent between studies. Several studies have evidenced microbiota signatures of disease activity and severity and the likelihood of a flare-up. However, more research is necessary to identify specific microbial taxa.

3.3. Gut Microbiome-Based Biomarkers in IBD

Ideal biomarkers should be easy to obtain, easy to determine, non-invasive, cheap, and capable of providing rapid and reproducible results. Non-invasive tests for IBD are already available, including serum antibodies [174,175], imaging-based screenings [176], and fecal biomarkers [177]. However, endoscopy remains the gold standard for IBD diagnosis, as
the aforementioned non-invasive tests are limited to active disease and their outcome can be interfered by diseases other than IBD limiting their clinical utility.

As a non-invasive, cost-effective technique, microbiome-based biomarkers might have great potential for early-stage disease detection and disease course prognosis as well as for treatment based on patient stratification. To this end, several attempts have been made to develop indices of dysbiosis based on relative abundances of selected microbial taxa in IBD patients compared to those of a healthy population. In stool samples, a machine learning algorithm using a combination of 50 operational taxonomic units was able to differentiate remission from active CD [178], and the genera *Collinsella* and *Methanobrevibacter* could be used to differentiate between UC and CD [109]. In biopsies, *Faecalibacteria* and *Papillibacter* were indicators of IBD status [98], *F. prausnitzii* and *E. coli* were used for differential diagnosis of CD (ileal/colonic) [30], supervised learning classification models were able to classify IBD at specific intestinal locations [65], and microbiome shifts predicted patient outcome [62,64,132,137,145,154]. In biopsies, stool and blood a dysbiosis score accurately stratified IBD patients [132].

In the previous sections, differential results on the gut microbiome between CD and UC, IBD and healthy subjects or between different disease activities have been described. Such research on the IBD microbiome has evidenced that (1) alterations in the abundance of certain microbial taxa or (2) in the structure of the microbial community, (3) the decreased bacterial richness and/or diversity and (4) the decreased microbial community stability could be used as potential biomarkers in the field.

Nevertheless, due to the high microbiome diversity between individuals, and within the same individual over time, the predictive value of these potential indicators is currently far below the level required for utility in diagnosis, prognosis, or response to treatment. Nonetheless, the increasing number of microbiome studies along with the use of longitudinal approaches pave the way to the refinement of microbiome-based biomarkers as useful disease indicators.

4. Concluding Remarks and Future Perspectives

The study of the human microbiome and its involvement in human health is nowadays one of the most active research topics in biomedicine. A simple search for “Microbiota” and “disease” within PubMed Database reveals almost 28,000 hits to date (august 2020). Given the potential clinical application of the microbiome, the number of studies in this field is rapidly increasing. However, some limitations can be found across these studies, including different methodologic approaches, small cohort sizes, different microbiome analysis methods and sample types and sites, main focus on bacteria, and influence of disease activity and treatment interventions. Therefore, these limitations result in variable findings, difficulty to establish comparison between studies and lack of reproducibility of microbiome signatures across studies.

Recent studies based on novel DNA sequencing methods have revealed major differences in microbial taxonomic and functional composition between IBD patients and healthy individuals. The current knowledge guides us to move our focus from community composition to the understanding of the interactions between microbial functions and the IBD gut microbiome.

The microbiota is very specific to an individual and variable in time, and therefore studies need to go from searching for correlation to searching for causation through longitudinal approaches. One important factor that we must keep in mind when studying the microbiome is that it is a “living entity” subject to variability. This variability is even more evident in the IBD microbiome. To better understand the IBD–microbiome connection, we require prospective longitudinal studies, along with following populations with early-onset IBD. The question of whether dysbiosis precedes the development of IBD and sets the inflammatory process, or merely reflects the altered immune and metabolic environment of the inflamed mucosa, remains to be answered. For this reason, it is of paramount importance to study newly diagnosed treatment-naïve patients, where the
Microbiome can be studied at the beginning of the disease and without the influence of any IBD treatment. Developing unified approaches to the accurate quantitative assessment of the gut microbiome would contribute to comparisons among studies and to its further clinical application.

The main feature in IBD gut dysbiosis is the decrease in beneficial bacteria and the increase in pathogens. Gut microbiome studies are mainly focused on bacteria, yet beyond bacteria, the gut microbiome is composed of other microorganisms such as viruses, fungi or archaea, which play a role in IBD etiology and/or in bacterial population control. In addition, it is currently known that disease activity and severity influence the gut microbiome, thereby affecting the results. IBD can be considered as a “multimicrobial” disease with no single causative microorganism, in which more severe disease is linked to reduced gut microbial diversity, and proliferation or reduction in specific taxa. Therefore, future studies should include the whole community for a deeper understanding of this disease.

The usefulness of the gut microbiome as a tool towards targeted non-invasive biomarkers for IBD has been evaluated by compelling studies. An acceptable biomarker may help in early diagnosis and classification of IBD as well as in the prediction of disease outcome. Overall, IBD clinical management would benefit from the identification of microbiome-based biomarkers, which could provide less invasive assessment tools, enable personalized treatments, and reduce the health care economic burden associated with IBD. Collectively, these microbiome data represent a valuable data source that can be continually mined to identify associations between the microbiome and IBD for a deeper pathophysiological understanding which may promote the development of clinical strategies, including disease prevention, treatment, stratification and assessment of high-risk population.

Author Contributions: Guarantor of the article: L.A.-G., M.C. and J.P.G. contributed to the study conception and design, literature search, data collection and interpretation, and to the writing of the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by Sara Borrell contract CD19/00247 from the Instituto de Salud Carlos III (ISCIII) to L.A.-G.

Data Availability Statement: All data used, generated or analyzed during this study are included in this published article.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Appendix A

Table A1. PRISMA Checklist.

Section/Topic	#	Checklist Item	Reported on Page #
TITLE		Title 1 Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT		Structured summary 2 Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	1
INTRODUCTION		Rationale 3 Describe the rationale for the review in the context of what is already known.	1–2
		Objectives 4 Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	2
METHODS		Protocol and registration 5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	2
Table A2. PRISMA Checklist.

Section/Topic	#	Checklist Item	Reported on Page #
TITLE			
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report	2
		characteristics (e.g., years considered, language, publication status) used as	
		criteria for eligibility, giving rationale.	
Information sources	7	Describe all information sources (e.g., databases with dates of coverage,	2
		contact with study authors to identify additional studies) in the search and	
		date last searched.	
Search	8	Present full electronic search strategy for at least one database, including	2
		any limits used, such that it could be repeated.	
Study selection	9	State the process for selecting studies (i.e., screening, eligibility,	2
		included in systematic review, and, if applicable, included in the	
		meta-analysis).	
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms,	2
		independently, in duplicate) and any processes for obtaining and confirming	
		data from investigators.	
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in	2
		the review, with reasons for exclusions at each stage, ideally with a flow	
		diagram.	
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g.,	3–8
		study size, PICOS, follow-up period) and provide the citations.	
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome	N/A
		level assessment (see item 12).	
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a)	N/A
		simple summary data for each intervention group (b) effect estimates and	
		confidence intervals, ideally with a forest plot.	
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and	N/A
		measures of consistency.	
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	N/A
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup	N/A
		analyses, meta-regression [see Item 16]).	
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main	N/A
		outcome; consider their relevance to key groups (e.g., healthcare providers,	
		users, and policy makers).	
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at	N/A
		review-level (e.g., incomplete retrieval of identified research, reporting bias).	
Conclusions	26	Provide a general interpretation of the results in the context of other	8–9
		evidence, and implications for future research.	
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g.,	9
		supply of data); role of funders for the systematic review.	
References

1. Hoyles, L.; Swann, J. Influence of the human gut microbiome on the metabolic phenotype. In The Handbook of Metabolic Phenotyping; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 535–560, ISBN 9780128122938.

2. Rajilic-Stojanovic, M.; Figueiredo, C.; Smet, A.; Hansen, R.; Kupcinskas, J.; Rokkas, T.; Andersen, L.; Machado, J.C.; Ianiro, G.; Gasbarrini, A.; et al. Systematic review: Gastric microbiota in health and disease. Aliment. Pharmacol. Ther. 2020, 51, 582–602. [CrossRef] [PubMed]

3. Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [CrossRef]

4. Pittayanon, R.; Lau, J.T.; Leonitiadis, G.I.; Tse, F.; Yuan, Y.; Surette, M.; Moayyedi, P. Differences in gut microbiota in patients with vs without inflammatory bowel diseases: A systematic review. Gastroenterology 2020, 158, 930–946.e1. [CrossRef]

5. Medina Benitez, E.; Fuentes Lugo, D.; Suarez Cortina, L.; Prieto Bozano, G. Enfermedad inflamatoria intestinal. In Protocolos Diagnóstico-Terapéuticos de Gastroenterología, Hepatología y Nutrición Pedátrica SEGHNP-AEP; Ediciones Ergon: Madrid, Spain, 2010; pp. 151–160.

6. Khan, I.; Ullah, N.; Zha, L.; Bai, Y.; Khan, A.; Zhao, T.; Che, T.; Zhang, C. Alteration of gut microbiota in inflammatory bowel disease (IBD): Cause or consequence? IBD treatment targeting the gut microbiome. Pathogens 2019, 8, 126. [CrossRef]

7. Ni, J.; Wu, G.D.; Albenberg, L.; Tomov, V.T. Gut microbiota and IBD: Causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 573–584. [CrossRef] [PubMed]

8. Zhou, M.; He, J.; Shen, Y.; Zhang, C.; Wang, J.; Chen, Y. New frontiers in genetics, gut microbiota, and immunity: A rosetta stone for the pathogenesis of inflammatory bowel disease. BioMed Res. Int. 2017, 2017, 8201672. [CrossRef] [PubMed]

9. Zuo, T.; Ng, S.C. The gut microbiota in the pathogenesis and therapeutics of inflammatory bowel disease. Front. Microbiol. 2018, 9, 2247. [CrossRef]

10. Glassner, K.L.; Abraham, B.P.; Quigley, E.M.M. The microbiome and inflammatory bowel disease. J. Allergy Clin. Immunol. 2020, 145, 16–27. [CrossRef] [PubMed]

11. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [CrossRef]

12. Scanlan, P.D.; Shanahan, F.; Mahony, C.O.; Marchesi, J.R. Culture-independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn’s disease. J. Clin. Microbiol. 2006, 44, 3980–3988. [CrossRef]

13. Martínez. C.; Antolin, M.; Santos, J.; Torrejon, A.; Casellas, F.; Borruel, N.; Guarné, F.; Malagelada, J.R. Unstable composition of the fecal microbiota in ulcerative colitis during clinical remission. Am. J. Gastroenterol. 2008, 103, 643–648. [CrossRef]

14. Ott, S.J.; Plamondon, S.; Hart, A.; Begun, A.; Rehman, A.; Kamm, M.A.; Schreiber, S. Dynamics of the mucosa-associated flora in ulcerative colitis patients during remission and clinical relapse. J. Clin. Microbiol. 2008, 46, 3510–3513. [CrossRef]

15. Francosoa, E.A.; Sirota-madi, A.; Avila-pacheco, J.; Formelos, N.; Haiser, H.J.; Reinker, S.; Vatanen, T.; Hall, A.B.; Mallick, H.; Mciver, L.J.; et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 2019, 4, 293–305. [CrossRef]

16. Galazzo, G.; Tedjo, D.I.; Wintjens, D.S.J.; Savelkoul, P.H.M.; Masclee, A.A.M.; Bodelier, A.G.L.; Pierik, M.J.; Jonkers, D.M.A.E.; Penders, J. Faecal microbiota dynamics and their relation to disease course in Crohn’s disease. J. Crohn’s Colitis 2019, 13, 1273–1282. [CrossRef]

17. Schirmer, M.; Francosoa, E.A.; Lloyd-Price, J.; Mciver, L.J.; Schwager, R.; Poon, T.W.; Ananthakrishnan, A.N.; Andrews, E.; Barron, G.; Lake, K.; et al. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat. Microbiol. 2018, 3, 337–346. [CrossRef]

18. Lloyd-Price, J.; Arze, C.; Ananthakrishnan, A.N.; Schirmer, M.; Avila-Pacheco, J.; Poon, T.W.; Andrews, E.; Ajami, N.J.; Bonham, K.S.; Brislawn, C.J.; et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 2019, 569, 655–662. [CrossRef]

19. Park, S.; Kim, H.-N.; Choi, C.H.; Im, J.P.; Cha, J.M.; Eun, C.S.; Kim, T.-O.; Kang, S.-B.; Bang, K.B.; Kim, H.G.; et al. Differentially abundant bacterial taxa associated with prognostic variables of Crohn’s disease: Results from the IMPACT study. J. Clin. Med. 2020, 9, 4117. [CrossRef] [PubMed]

20. Morgan, X.C.; Tickle, T.L.; Sokol, H.; Gevers, D.; Devaney, K.L.; Ward, D.V.; Reyes, J.A.; Shah, S.A.; Leleiko, N.; Snapper, S.B.; et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012, 13, R79. [CrossRef] [PubMed]

21. Halffvarson, J.; Brislawn, C.J.; Lamendella, R.; Vázquez-Baева, Y.; Walters, W.A.; Bramer, L.M.; D’Amato, M.; Bonfiglio, F.; McDonald, D.; Gonzalez, A.; et al. Dynamics of the human gut microbiome in Inflammatory Bowel Disease. Nat. Microbiol. 2017, 2, 17004. [CrossRef]

22. Zhou, Y.; Xu, Z.Z.; He, Y.; Yang, Y.; Liu, L.; Lin, Q.; Nie, Y.; Li, M.; Zhi, F.; Liu, S.; et al. Gut microbiota offers universal biomarkers across ethnicity in inflammatory bowel disease diagnosis and infliximab response prediction. mSystems 2018, 3, e00188-17. [CrossRef]

23. Feng, T.; Wang, L.; Schoeb, T.R.; Elson, C.O.; Cong, Y. Microbiota innate stimulation is a prerequisite for T cell spontaneous proliferation and induction of experimental colitis. J. Exp. Med. 2010, 207, 1321–1332. [CrossRef] [PubMed]
24. Nagao-Kitamoto, H.; Shreiner, A.B.; Gillilland, M.G.; Kitamoto, S.; Ishii, C.; Hirayama, A.; Kuffa, P.; El-Zaatari, M.; Grasberger, H.; Seekatz, A.M.; et al. Functional characterization of inflammatory bowel disease-associated gut dysbiosis in gnotobiotic mice. *CMGH* 2016, 2, 468–481. [CrossRef] [PubMed]

25. Ward, N.L.; Phillips, C.D.; Nguyen, D.D.; Shanmugam, N.K.N.; Song, Y.; Hodin, R.; Shi, H.N.; Cherayil, B.J.; Goldstein, A.M. Antibiotic treatment induces long-lasting changes in the fecal microbiota that protect against colitis. *Inflamm. Bowel Dis.* 2016, 22, 2328–2340. [CrossRef]

26. Khan, K.J.; Ullman, T.A.; Ford, A.C.; Abreu, M.T.; Abadir, A.; Marshall, J.K.; Talley, N.J.; Moayyedi, P. Antibiotic therapy in inflammatory bowel disease: A systematic review and meta-analysis. *Am. J. Gastroenterol.* 2011, 106, 661–673. [CrossRef] [PubMed]

27. Thorkildsen, L.T.; Nwosu, F.C.; Avershina, E.; Ricanek, P.; Perminow, G.; Brackmann, S.; Vatn, M.H.; Rudi, K. Dominant fecal microbiota in newly diagnosed untreated inflammatory bowel disease patients. *Gastroenterol. Res. Pract.* 2013, 2013, 636785. [CrossRef] [PubMed]

28. Ricanek, P.; Lothe, S.M.; Frye, S.A.; Rydning, A.; Vatn, M.H. Gut bacterial profile in patients newly diagnosed with treatment-naïve Crohn’s disease. *Clin. Exp. Gastroenterol.* 2015, 8, 173–186. [CrossRef]

29. Pérez-Brocal, V.; García-López, R.; Vázquez-Castellanos, J.F.; Nos, P.; Beltrán, B.; Latorre, A.; Moya, A. Study of the viral and microbial communities associated with Crohn’s disease: A metagenomic approach. *Clin. Transl. Gastroenterol.* 2013, 4, e36. [CrossRef]

30. Kabeerdoss, J.; Jayakanthan, P.; Pugazhendhi, S.; Ramakrishna, B.S. Alterations of mucosal microbiota in the colon of patients with inflammatory bowel disease revealed by real time polymerase chain reaction amplification of 16S ribosomal ribonucleic acid. *Indian J. Med. Res.* 2015, 142, 23–33. [PubMed]

31. Pérez-Brocal, V.; García-López, R.; Nos, P.; Beltrán, B.; Moret, I.; Moya, A. Metagenomic analysis of Crohn’s disease patients identifies changes in the virome and microbiome related to disease status and therapy, and detects potential interactions and biomarkers. *Inflamm. Bowel Dis.* 2015, 21, 2515–2532. [CrossRef]

32. Vrakas, S.; Mountzouris, K.C.; Michalopoulos, G.; Karamanolis, G.; Papatheodoridis, G.; Tzathas, C.; Gazoulis, M. Intestinal bacteria composition and translocation of bacteria in inflammatory bowel disease. *PloS ONE* 2017, 12, e0170034. [CrossRef]

33. Rojas-feria, M.; Romero-gómez, M.; García, F.; Grande, L.; et al. Modulation of faecal metagenome in Crohn’s disease: Role of microRNAs as biomarkers. *World J. Gastroenterol.* 2018, 24, 5223–5233. [CrossRef] [PubMed]

34. Vatn, S.; Carstens, A.; Kristoffersen, A.B.; Bergemalm, D.; Casar, F.; Grande, L. et al. Analysis of drug exposure and microbiota in newly diagnosed inflammatory bowel disease patients. *Scand. J. Gastroenterol.* 2014, 49, 1391–1401. [CrossRef] [PubMed]

35. Bibiloni, R.; Mangold, M.; Madsen, K.L.; Fedorak, R.N.; Tannock, G.W. The bacteriology of biopsies differs between newly diagnosed inflammatory bowel disease patients. *Clin. Gastroenterol.* 2013, 28, 173–186. [CrossRef]

36. Moen, A.E.F.; Lindstrøm, J.C.; Tannock, G.W. The bacteriology of biopsies differs between newly diagnosed inflammatory bowel disease patients. *Clin. Gastroenterol.* 2013, 28, 173–186. [CrossRef] [PubMed]

37. Rubbens, P.; Proops, R.; Kerckhof, F.M.; Boon, N.; Waegeman, W. Cytometric fingerprints of gut microbiota predict Crohn’s disease state. *ISME J.* 2016, 10, 1844–1854. [CrossRef] [PubMed]

38. Miller, B.P.; Dicksved, J.; Halfvarson, J.; Andersson, A.F.; Lucio, M.; Zheng, Z.; Järnerot, G.; Tysk, C.; Jansson, J.K.; Engstrand, L. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. *Gastroenterology* 2010, 139, 1844–1854. [CrossRef]

39. Chen, L.; Wang, W.; Zhou, R.; Ng, S.C.; Li, J.; Huang, M.; Zhou, F.; Wang, X.; Shen, B.; Kamm, M.A.; et al. Characteristics of fecal and mucosa-associated microbiota in inflammatory bowel disease patients. *Medicine* 2014, 93, e51. [CrossRef]

40. Lepage, P.; Seksik, P.; Sutren, M.; de la Cocheti, M.F.; Jian, R.; Marteau, P.; Doré, J. Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. *Inflamm. Bowel Dis.* 2005, 11, 473–480. [CrossRef]

41. Gillelev, P.; Sikaroodi, M.; Keshavarzian, A.; Mutlu, E.A. Quantitative assessment of the human gut microbiome using multitag pyrosequencing. *Chem. Biodivers.* 2010, 7, 1065–1075. [CrossRef] [PubMed]

42. Eun, C.S.; Kwak, M.J.; Han, D.S.; Lee, A.R.; Park, D.I.; Yang, S.K.; Kim, Y.S.; Kim, J.F. Does the intestinal microbial community of Korean Crohn’s disease patients differ from that of western patients? *BMC Gastroenterol.* 2016, 16, 28. [CrossRef] [PubMed]

43. Thorkildsen, L.T.; Nwosu, F.C.; Avershina, E.; Ricanek, P.; Perminow, G.; Brackmann, S.; Vatn, M.H.; Rudi, K. Dominant fecal microbiota in newly diagnosed untreated inflammatory bowel disease patients. *Gastroenterol. Res. Pract.* 2013, 2013, 636785. [CrossRef] [PubMed]

44. Rubbens, P.; Proops, R.; Kerckhof, F.M.; Boon, N.; Waegeman, W. Cytometric fingerprints of gut microbiota predict Crohn’s disease state. *ISME J.* 2015, 11, 354–358. [CrossRef] [PubMed]

45. Willing, B.P.; Dickson, J.; Halfvarson, J.; Andersson, A.F.; Lucio, M.; Zheng, Z.; Järnerot, G.; Tysk, C.; Jansson, J.K.; Engstrand, L. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. *Gastroenterology* 2010, 139, 1844–1854. [CrossRef]

46. Chen, L.; Wang, W.; Zhou, R.; Ng, S.C.; Li, J.; Huang, M.; Zhou, F.; Wang, X.; Shen, B.; Kamm, M.A.; et al. Characteristics of fecal and mucosa-associated microbiota in inflammatory bowel disease patients. *Medicine* 2014, 93, e51. [CrossRef]

47. Lepage, P.; Seksik, P.; Sutren, M.; de la Cocheti, M.F.; Jian, R.; Marteau, P.; Doré, J. Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. *Inflamm. Bowel Dis.* 2005, 11, 473–480. [CrossRef]

48. Gillelev, P.; Sikaroodi, M.; Keshavarzian, A.; Mutlu, E.A. Quantitative assessment of the human gut microbiome using multitag pyrosequencing. *Chem. Biodivers.* 2010, 7, 1065–1075. [CrossRef] [PubMed]

49. Eun, C.S.; Kwak, M.J.; Han, D.S.; Lee, A.R.; Park, D.I.; Yang, S.K.; Kim, Y.S.; Kim, J.F. Does the intestinal microbial community of Korean Crohn’s disease patients differ from that of western patients? *BMC Gastroenterol.* 2016, 16, 28. [CrossRef] [PubMed]

50. Allomare, A.; Putignani, L.; Del Chierico, F.; Coca, S.; Angeletti, S.; Ciccozzi, M.; Tripiciano, C.; Dalla Piccola, B.; Cicala, M.; Guarino, M.P.L. Gut mucosal-associated microbiota better discloses inflammatory bowel disease differential patterns than faecal microbiota. *Dig. Liver Dis.* 2019, 51, 648–656. [CrossRef] [PubMed]

51. De Souza, H.L.; De Carvalho, V.R.; Romeiro, F.G.; Sassaki, L.Y.; Keller, R.; Rodrigues, J. Mucosa-associated but not luminal Escherichia coli is augmented in Crohn’s disease and ulcerative colitis. *Gut Pathog.* 2012, 4, 21. [CrossRef] [PubMed]
46. Midtvedt, T.; Zabarovsky, E.; Norin, E.; Bark, J.; Gizatullin, R.; Kashuba, V.; Ljungqvist, O.; Zabarovska, V.; Mölby, R.; Embreg. I. Increase of faecal tryptic activity relates to changes in the intestinal microbiome: Analysis of Crohn’s disease with a multidisciplinary platform. *PloS ONE* **2013**, *8*, e66074. [CrossRef] [PubMed]

47. Forbes, J.D.; Van Domselaar, G.; Bernstein, C.N. Microbiome survey of the inflamed and noninflamed gut at different compartments within the gastrointestinal tract of inflammatory bowel disease patients. *Inflamm. Bowel Dis.* **2016**, *22*, 817–825. [CrossRef] [PubMed]

48. O’Brien, C.L.; Kiely, C.J.; Pavli, P. The microbiome of Crohn’s disease aphthous ulcers. *Gut Pathog.* **2018**, *10*, 44. [CrossRef]

49. Olaisen, M.; Flatberg, A.; Granlund, A. van B.; Rayset, E.S.; Martinsen, T.C.; Sandvik, A.K.; Fossmark, R. Bacterial mucosa-associated microbiome in inflamed and proximal noninflamed ileum of patients with Crohn’s disease. *Inflamm. Bowel Dis.* **2020**, *27*, 12–24. [CrossRef]

50. Zakrzewski, M.; Simms, L.A.; Brown, A.; Appleyard, M.; Irwin, J.; Waddell, N.; Radford-Smith, G.L. IL23R-protective coding variant promotes beneficial bacteria and diversity in the ileal microbiome in healthy individuals without inflammatory bowel disease. *J. Crohn’s Colitis* **2019**, *13*, 451–461. [CrossRef] [PubMed]

51. Hirano, A.; Umeno, J.; Okamoto, Y.; Shibata, H.; Ogura, Y.; Moriyama, T.; Torisu, T.; Fujikoa, S.; Fuyuno, Y.; Kawarabayasi, Y.; et al. Comparison of the microbial community structure between inflamed and non-inflamed sites in patients with ulcerative colitis. *J. Gastroenterol. Hepatol.* **2018**, *33*, 1590–1597. [CrossRef] [PubMed]

52. Walker, A.W.; Sanderson, J.D.; Churcher, C.; Parkes, G.C.; Hudspith, B.N.; Rayment, N.; Brostoff, J.; Parkhill, J.; Dougan, G.; Petrovska, L. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. *BMC Microbiol.* **2011**, *11*, 7. [CrossRef]

53. Li, Q.; Wang, C.; Tang, C.; Li, N.; Li, J. Molecular-phylogenetic characterization of the microbiota in ulcerated and non-ulcerated regions in the patients with crohn’s disease. *PloS ONE* **2012**, *7*, e34993. [CrossRef]

54. Zhang, M.; Liu, B.; Zhang, Y.; Wei, H.; Lei, Y.; Zhao, L. Structural shifts of mucosa-associated lactobacilli and Clostridium leptum subgroup in patients with ulcerative colitis. *J. Clin. Microbiol.* **2007**, *45*, 496–500. [CrossRef]

55. Li, E.; Zhang, Y.; Tian, X.; Wang, X.; Gathungu, G.; Wolber, A.; Shiekh, S.S.; Sartor, R.B.; Davidson, N.O.; Ciorba, M.A.; et al. Inflammation of Crohn’s disease related polymorphisms in innate immune function on ileal microbiome. *PloS ONE* **2019**, *14*, e0213108. [CrossRef]

56. Le Baut, G.; O’Brien, C.; Pavli, P.; Roy, M.; Seksik, P.; Tréton, X.; Nancey, S.; Barnich, N.; Bezault, M.; Auzolle, C.; et al. Prevalence of Yersinia species in the ileum of Crohn’s disease patients and controls. *Front. Cell. Infect. Microbiol.* **2018**, *8*, 336. [CrossRef]

57. Ryan, F.J.; Ahern, A.M.; Fitzgerald, R.S.; Laserna-Mendieta, E.J.; Power, E.M.; Clooney, A.G.; O’Donoghue, K.W.; McMurdie, P.J.; Iwai, S.; Crites-Christoph, A.; et al. Colonc microbiota is associated with inflammation and host epigenetic alterations in inflammatory bowel disease. *Nat. Commun.* **2020**, *11*, 1512. [CrossRef] [PubMed]

58. Libertucci, J.; Dutta, U.; Kaur, S.; Jury, J.; Rossi, L.; Fontes, M.E.; Shajib, M.S.; Khan, W.I.; Surette, M.G.; Verdu, E.F.; et al. Inflammation-related differences in mucosa-associated microbiota and intestinal barrier function in colonic Crohn’s disease. *Am. J. Physiol. Gastrointest. Liver Physiol.* **2018**, *315*, G420–G431. [CrossRef] [PubMed]

59. Li, Q.; Wang, C.; Tang, C.; He, Q.; Li, N.; Li, J. Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in crohn’s disease. *J. Clin. Gastroenterol.* **2014**, *48*, 513–523. [CrossRef] [PubMed]

60. Doolittle, W.F.; Booth, A. It’s the song, not the singer: An exploration of holobiosis and evolutionary theory. *Biol. Philos.* **2017**, *32*, 5–24. [CrossRef]

61. Tong, M.; Li, X.; Parfrey, L.W.; Roth, B.; Ippoliti, A.; Wei, B.; Borneman, J.; McGovern, D.P.B.; Frank, D.N.; Li, E.; et al. A modular organization of the human intestinal mucosal microbiota and its association with inflammatory bowel disease. *PloS ONE* **2013**, *8*, e80702. [CrossRef]

62. Davenport, M.; Poles, J.; Leung, J.M.; Wolff, M.J.; Abidi, W.M.; Ullman, T.; Mayer, L.; Cho, I.; Loke, P. Metabolic alterations to the microbiome in ulcerated and non-ulcerated regions in the patients with crohn’s disease. *Inflamm. Bowel Dis.* **2020**, *26*, 44. [CrossRef]

63. Petrovska, L. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. *BMC Microbiol.* **2011**, *11*, 7. [CrossRef]

64. Bäckhed, F.; Fraser, C.M.; Ringel, Y.; Sanders, M.E.; Sartor, R.B.; Sherman, P.M.; Versalovic, J.; Young, V.; Finlay, B.B. Defining a normal gut microbiota. *Cell Host Microbe* **2007**, *10*, 205–211. [CrossRef] [PubMed]

65. Frank, D.N.; Amand, A.L.S.; Feldman, R.A.; Boedeker, E.C.; Harpaz, N.; Pace, N.R. Molecular-phylogenetic characterization of microbial community differences in human inflammatory bowel diseases. *Proc. Natl. Acad. Sci. USA* **2007**, *104*, 13780–13785. [CrossRef]

66. Santoru, M.L.; Piras, C.; Murgia, A.; Palmas, V.; Camboni, T.; Liggi, S.; Ibbi, I.; Lai, M.A.; Orru, S.; Blosi, S.; et al. Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients. *Sci. Rep.* **2017**, *7*, 9523. [CrossRef]

67. Lo Sasso, G.; Kachatriyan, L.; Kondylis, A.; Battey, J.N.D.; Solovyeva, V.V.; Garanina, E.E.; Kitaeva, K.V.; Ivanov, K.Y. Inflammatory bowel disease—Associated changes in the gut: Focus on Kazan patients. *Inflamm. Bowel Dis.* **2020**, *27*, 418–433. [CrossRef]

68. Alam, M.T.; Amos, G.C.A.; Murphy, A.R.J.; Murch, S.; Wellington, E.M.H.; Arasaradnam, R.P. Microbial imbalance in inflammatory bowel disease patients at different taxonomic levels. *Gut Pathog.* **2020**, *12*, 1–8. [CrossRef]

69. Manichanh, C.; Bonnourd, E.; Gloux, K.; Pelletier, E.; Frangeul, L.; Nalin, R.; Jarrin, C.; Chardon, P.; Manteau, P.; Rocca, J.; et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. *Gut* **2006**, *55*, 205–211. [CrossRef]
70. Mondot, S.; Kang, S.; Furet, J.P.; Aguirre De Cacer, D.; McSweeney, C.; Morrison, M.; Marteau, P.; Doré, J.; Leclerc, M. Highlighting new phylogenetic specifics of Crohn’s disease microbiota. *Inflamm. Bowel Dis.* 2011, 17, 185–192. [CrossRef]
71. Pedamallu, C.S.; Bhatt, A.S.; Bullman, S.; Fowler, S.; Freeman, S.S.; Durand, J.; Jung, J.; Duke, F.; Marzo, V.; Cai, D.; et al. Metagenomic characterization of microbial communities in situ within the deeper layers of the ileum in Crohn’s disease. *CMGH* 2016, 2, 563–566.e5. [CrossRef]
72. Moustafa, A.; Li, W.; Anderson, E.L.; Wong, E.H.M.; Dulai, P.S.; Sandborn, W.J.; Biggs, W.; Yooseph, S.; Jones, M.B.; Venter, J.C.; et al. Genetic risk, dysbiosis, and treatment stratification using host genome and gut microbiome in inflammatory bowel disease. *Clin. Transl. Gastroenterol.* 2018, 9, e132. [PubMed]
73. Duboc, H.; Rajca, S.; Rainteaud, D.; Benarous, D.; Maubert, M.A.; Quervain, E.; Thomas, G.; Barbu, V.; Humbert, L.; Despras, G.; et al. Connecting dysbiosis, bile-acid dysmetabolism and Gut inflammation in inflammatory bowel diseases. *Gut* 2012, 62, 531–539. [CrossRef]
74. Vidal, R.; Ginard, D.; Khorrari, S.; Mora-Ruiz, M.; Munoz, R.; Hermoso, M.; Diaz, S.; Cifuentes, A.; Orfila, A.; Rosselló-Móra, R. Crohn associated microbial communities associated to colonic mucosal biopsies in patients of the western Mediterranean. *Syst. Appl. Microbiol.* 2015, 38, 442–452. [CrossRef]
75. Borren, N.Z.; Plichta, D.; Joshi, A.D.; Bonilla, G.; Sadreyev, R.; Vlamakis, H.; Xavier, R.J.; Ananthakrishnan, A.N. Multi-“omics” profiling in patients with quiescent inflammatory bowel disease identifies biomarkers predicting relapse. *Inflamm. Bowel Dis.* 2020, 26, 1524–1532. [CrossRef]
76. Clooney, A.G.; Eckenberger, J.; Laserna-Mendieta, E.; Sexton, K.A.; Bernstein, M.T.; Vagianos, K.; Sargent, M.; Ryan, F.J.; Moran, C.; Sheehan, D.; et al. Ranking microbiome variance in inflammatory bowel disease: A large longitudinal intercontinental study. *Gut* 2020, 70, 499–510. [CrossRef]
77. Kennedy, N.A.; Lamb, C.A.; Berry, S.H.; Walker, A.W.; Mansfield, J.; Parkes, M.; Simpkins, R.; Tremelling, M.; Nutland, S.; Parkhill, J.; et al. The impact of NOD2 variants on fecal microbiota in Crohn’s disease and controls without gastrointestinal disease. *Inflamm. Bowel Dis.* 2018, 24, 583–592. [CrossRef]
78. Kleessen, B.; Kroesen, A.J.; Buhr, H.J.; Blaut, M. Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. *Scand. J. Gastroenterol.* 2002, 37, 1034–1041. [CrossRef]
79. Gophna, U.; Sommerfeld, K.; Gophna, S.; Doolittle, W.F.; Van Zanten, S.J.O.V. Differences between Tissue-Associated Intestinal Microfloras of Patients with Crohn’s Disease and Ulcerative Colitis. *J. Clin. Microbiol.* 2006, 44, 4136–4141. [CrossRef]
80. Kang, S.; Denman, S.E.; Morrison, M.; Yu, Z.; Dore, J.; Leclerc, M.; McSweeney, C.S. Dysbiosis of fecal microbiota in Crohn’s disease patients as revealed by a custom phylogenetic microarray. *Inflamm. Bowel Dis.* 2010, 16, 2034–2042. [CrossRef]
81. Nishino, K.; Nishida, A.; Inoue, R.; Kawada, Y.; Ohno, M.; Sakai, S.; Inatomi, O.; Bamba, S.; Sugimoto, M.; Kawahara, M.; et al. Analysis of endoscopic brush samples identified mucosa-associated dysbiosis in inflammatory bowel disease. *J. Gastroenterol.* 2018, 53, 95–106. [CrossRef]
82. Vester-Andersen, M.K.; Mirsefati-Lauridsen, H.C.; Proberg, M.V.; Mortensen, C.O.; Träger, C.; Skovsen, K.; Thorkildgaard, T.; Nejgaard, C.; Vind, I.; Kroglert, K.A.; et al. Increased abundance of proteobacteria in aggressive Crohn’s disease seven years after diagnosis. *Sci. Rep.* 2019, 9, 13473. [CrossRef]
83. Rowan, F.; Docherty, N.G.; Murphy, M.; Murphy, B.; Coffey, J.C.; O’Connell, P.R. Desulfovibrio bacteria species are increased in ulcerative colitis. *Dis. Colon Rectum* 2013, 56, 1530–1536. [CrossRef]
84. Lennson, G.; Balfe, Á.; Bambury, N.; Lavelle, A.; Maguire, A.; Docherty, N.G.; Coffey, J.C.; Winter, D.C.; Sheehan, K.; O’Connell, P.R. Correlations between colonic crypt mucin chemotype, inflammatory grade and Desulfovibrio species in ulcerative colitis. *Color. Dis.* 2014, 16, 161–169. [CrossRef]
85. Al-Bayati, L.; Fasaei, B.N.; Merat, S.; Bahonar, A. Longitudinal analyses of Gut-associated bacterial microbiota in ulcerative colitis patients. *Arch. Iran. Med.* 2018, 21, 578–584. [CrossRef]
86. Machiels, K.; Joossems, M.; Sabino, J.; De Preter, V.; Arijs, I.; Eeckhout, V.; Ballet, V.; Claes, K.; Van Immerseel, F.; Verbeke, K.; et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. *Gut* 2014, 63, 1275–1283. [CrossRef]
87. Varela, E.; Manichanh, C.; Gallart, M.; Torrejón, A.; Borrue, N.; Castellas, F.; Guarnier, F.; Antolin, M. Colonisation by Faecalibacterium prausnitzii and maintenance of clinical remission in patients with ulcerative colitis. *Aliment. Pharmacol. Ther.* 2013, 38, 151–161. [CrossRef] [PubMed]
88. Pascual, V.; Pouzoulo, M.; Borruel, N.; Castellas, F.; Campos, D.; Santiago, A.; Martinez, X.; Varela, E.; Sarrabayrouse, G.; Machiels, K.; et al. A microbial signature for Crohn’s disease. *Gut* 2017, 66, 813–822. [CrossRef] [PubMed]
89. Yilmaz, B.; Juillerat, P.; Oyâs, O.; Ramon, C.; Bravo, F.D.; Franc, Y.; Fournier, N.; Michetti, P.; Mueller, C.; Geuking, M.; et al. Microbial network disturbances in relapsing refractory Crohn’s disease. *Nat. Med.* 2019, 25, 323–336. [CrossRef] [PubMed]
90. Sokol, H.; Seksik, P.; Rigottier-gois, L.; Lay, C.; Lepage, P.; Podgajen, I.; Marteau, P. Specificities of the fecal microbiota in inflammatory bowel disease. *Microorganisms* 2006, 12, 106–111. [CrossRef]
91. Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdir, O.; Bermúdez-Humárán, L.G.; Gratadoux, J.J.; Blugeon, S.; Bironneau, C.; Furet, J.P.; Corthier, G.; et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. *Proc. Natl. Acad. Sci. USA* 2008, 105, 16731–16736. [CrossRef]
92. Zhang, Y.-L.; Cai, L.-T.; Qi, J.-Y.; Lin, Y.-Z.; Dai, Y.-C.; Jiao, N.; Chen, Y.-L.; Zheng, L.; Wang, B.-B.; Zhu, L.-X.; et al. Gut microbiota contributes to the distinction between two traditional Chinese medicine syndromes of ulcerative colitis. *World J. Gastroenterol.* 2019, 25, 3108–3282. [CrossRef]

93. Takahashi, K.; Nishida, A.; Fujimoto, T.; Fujii, M.; Shioya, M.; Imaeda, H.; Inatomi, O.; Bamba, S.; Andoh, A.; Sugimoto, M. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn’s disease. *Digestion* 2016, 93, 59–65. [CrossRef]

94. Imhann, F.; Vila, A.V.; Bonder, M.J.; Fu, J.; Gevers, D.; Visschedijk, M.C.; Spekhorst, L.M.; Alberts, R.; Franke, L.; van Dullemen, H.M.; et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. *Gut* 2018, 67, 108–119. [CrossRef]

95. Kumari, R.; Ahuja, V.; Paul, J. Fluctuations in butyrate-producing bacteria in ulcerative colitis patients of North India. *World J. Gastroenterol.* 2013, 19, 3404–3414. [CrossRef]

96. Venegas, D.P.; De La Fuente, M.K.; Landskron, G.; Gonzalez, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short chain fatty acids (SCFAs) mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. *Front. Immunol.* 2019, 10, 277. [CrossRef]

97. Joossens, M.; Huys, G.; Cnockaert, M.; De Preter, V.; Verbeke, K.; Rutgeerts, P.; Vandamme, P.; Vermeire, S. Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. *Gut* 2011, 60, 631–637. [CrossRef]

98. Hall, A.B.; Yassour, M.; Sauk, J.; Garner, A.; Jiang, X.; Arthur, T.; Lagoudas, G.K.; Vatanen, T.; Fornelos, N.; Wilson, R.; et al. A novel Ruminococcus gravis clade enriched in inflammatory bowel disease patients. *Genome Med.* 2017, 9, 103. [CrossRef]

99. Hoarau, G.; Mukherjee, P.K.; Gower-Rousseau, C.; Hager, C.; Chandra, J.; Retuerto, M.A.; Neut, C.; Vermeire, S.; Clemente, J.; Colombel, J.F.; et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. *MBio* 2016, 7, e01250-16. [CrossRef]

100. Underhill, D.M.; Iliiev, I.D. The mycobiota: Interactions between commensal fungi and the host immune system. *Nat. Rev. Immunol.* 2014, 14, 405–416. [CrossRef]

101. McKenzie, H.; Main, J.; Pennington, C.R.; Parratt, D. Antibody to selected strains of Sacharomyces cerevisiae (baker’s and brewer’s yeast) and Candida albicans in Crohn’s disease. *Gut* 1990, 31, 536–538. [CrossRef]

102. Qin, J.; Li, R.; Raes, J.; Pelletier, E.; Tap, J.; Brusa, M.; Batto, J.M.; Biddinger, P.K.; Bokulich, N.A.; De Filippis, F.; et al. Human gut microbial gene catalog established by metagenomic sequencing. *Nature* 2010, 464, 59–65. [CrossRef]

103. Qiu, X.; Ma, J.; Jiao, C.; Mao, X.; Zhao, X.; Lu, M.; Wang, K.; Zhang, H. Alterations in the mucosa-associated fungal microbiota in patients with ulcerative colitis. *Onco Targets and Therapy* 2017, 8, 107577–107588. [CrossRef]

104. Sokol, H.; Leducq, V.; Ashchard, H.; Pham, H.P.; Jegou, S.; Landman, C.; Cohen, D.; Liguori, G.; Bourrier, A.; Nion-Larmurier, I.; et al. Fungal microbiota dysbiosis in IBD. *Gut* 2016, 66, 1039–1048. [CrossRef]

105. Ott, S.J.; Kuhrscher, T.; Musfeldt, M.; Rosenstiel, P.; Hellmig, S.; Rehman, A.; Drews, O.; Weichert, W.; Timmis, K.N.; Schreiber, S. Fungi and inflammatory bowel diseases: Alterations of composition and diversity. *Scand. J. Gastroenterol.* 2008, 43, 831–841. [CrossRef]

106. Imai, T.; Inoue, R.; Kawada, Y.; Morita, Y.; Inatomi, O.; Nishida, A.; Bamba, S.; Kawahara, M.; Andoh, A. Characterization of fungal dysbiosis in Japanese patients with inflammatory bowel disease. *J. Gastroenterol.* 2019, 54, 149–159. [CrossRef]

107. Liguori, G.; Lamas, B.; Richard, M.L.; Brandi, G.; da Costa, G.; Hoffmann, T.W.; Di Simone, M.P.; Calabrese, C.; Poggioli, G.; Langella, P.; et al. Fungal dysbiosis in mucosa-associated microbota of Crohn’s disease patients. *J. Crohn’s Colitis* 2016, 10, 296–305. [CrossRef]

108. Mar, J.S.; Lamere, B.J.; Lin, D.L.; Levan, S.; Nazareth, M.; Mahadevan, U.; Lynch, S.V. Disease severity and immune activity relate to distinct interkingdom gut microbiome states in ethnically distinct ulcerative colitis patients. *MBio* 2016, 7, e01072-16. [CrossRef]

109. Shkporov, A.N.; Clooney, A.G.; Sutton, T.D.S.; Ryan, F.J.; Daly, K.M.; Nolan, J.A.; McDonnell, S.A.; Khokhlova, E.V.; Draper, L.A.; Forde, A.; et al. The human gut virome is highly diverse, stable, and individual specific. *Cell Host Microbe* 2019, 26, 527–541.e5. [CrossRef]

110. Clooney, A.G.; Sutton, T.D.S.; Shkporov, A.N.; Holohan, R.K.; Daly, K.M.; O’Regan, O.; Ryan, F.J.; Draper, L.A.; Plevy, S.E.; Ross, R.P.; et al. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. *Cell Host Microbe* 2019, 26, 764–778.e5. [CrossRef]

111. Wang, W.; Jovel, J.; Halloran, B.; Wine, E.; Patterson, J.; Ford, G.; O’Keefe, S.; Meng, B.; Song, D.; Zhang, Y.; et al. Metagenomic analysis of microbiome in colon tissue from subjects with inflammatory bowel disease reveals interplay of viruses and bacteria. *Inflamm. Bowel Dis.* 2015, 21, 1419–1427. [CrossRef]

112. Zuo, T.; Lu, X.J.; Zhang, Y.; Cheung, C.P.; Lam, S.; Zhang, F.; Tang, W.; Ching, J.Y.L.; Zhao, R.; Chan, P.K.S.; et al. Gut mucosal virome alterations in ulcerative colitis. *Gut* 2019, 68, 1169–1179. [CrossRef] [PubMed]

113. Norman, J.M.; Handley, S.A.; Baldridge, M.T.; Droit, L.; Catherine, Y.; Keller, B.C.; Kambal, A.; Zhao, G.; Stappenbeck, T.S.; McGovern, D.P.B.; et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. *Cell* 2015, 160, 447–460. [CrossRef]

114. Dridi, B.; Raoult, D.; Drancourt, M. Archaea as emerging organisms in complex human microbiomes. *Anaerobe* 2011, 17, 56–63. [CrossRef]
115. Ghavami, S.B.; Rostami, E.; Sephay, A.A.; Shahrokh, S.; Balaii, H.; Aghdæi, H.A.; Zali, M.R. Alterations of the human gut Methanobrevibacter smithii as a biomarker for inflammatory bowel diseases. *Microb. Pathog.* 2018, 117, 285–289. [CrossRef]

116. Blais Lecours, P.; Marsolais, D.; Cormier, Y.; Berberi, M.; Hache, C.; Bourdages, R.; Duchaine, C. Increased prevalence of methanospirillum barkeri in inflammatory bowel diseases. *PLoS ONE* 2014, 9, e87734. [CrossRef]

117. Sun, M.; Du, B.; Shi, Y.; Lu, Y.; Zhou, Y.; Li, B. Combined signature of the fecal microbiome and plasma metabolome in patients with ulcerative colitis. *Med. Sci. Monit.* 2019, 25, 3303–3315. [CrossRef]

118. Wang, W.; Chen, L.; Zhou, R.; Wang, X.; Song, L.; Huang, S.; Wang, G.; Xia, B. Increased proportions of bifidobacterium and the lactobacillus group and loss of butyrate-producing bacteria in inflammatory bowel. *J. Clin. Microbiol.* 2014, 52, 398–406. [CrossRef]

119. Braun, T.; Di Segni, A.; Benshoshan, M.; Neuman, S.; Levhar, N.; Bubis, M.; Picard, O.; Sosnovski, K.; Efroni, G.; Farage Barhom, S.; et al. Individualized dynamics in the gut microbiota precede Crohn’s disease flares. *Am. J. Gastroenterol.* 2019, 114, 1142–1151. [CrossRef]

120. Sha, S.; Xu, B.; Wang, X.; Zhang, Y.; Kong, X.; Zhu, H.; Wu, K. The biodiversity and composition of the dominant fecal microbiota in ulcerative colitis in relation to patient age and disease severity and duration. *J. Clin. Microbiol.* 2013, 51, 849–856. [CrossRef]

121. Zhang, J.; Chen, S.L.; Li, L.B. Correlation between intestinal flora and serum inflammatory factors in patients with Crohn’s disease. *Eur. Rev. Med. Pharmacol. Sci.* 2017, 21, 4913–4917.

122. Ji, Y.; Li, X.; Zhu, Y.; Li, N.; Zhang, N.; Niu, M. Faecal microRNA as a biomarker of the activity and prognosis of inflammatory bowel diseases. *Biochem. Biophys. Res. Commun.* 2018, 503, 2443–2450. [CrossRef]

123. Andoh, A.; Kuzuoaka, H.; Tsujikawa, T.; Nakamura, S. Multicenter analysis of fecal microbiota profiles in Japanese patients with Crohn’s disease. *J. Gastroenterol.* 2012, 47, 1298–1307. [CrossRef]

124. Naftali, T.; Reshef, L.; Kovacs, A.; Porat, R.; Amir, I.; Konikoff, F.M.; Gophna, U. Distinct microbiotas are associated with ileum-restricted and colon-involving Crohn’s disease. *Dig. Dis. Sci.* 2018, 63, 1284–1292. [CrossRef]

125. Nakamura, S.; Hiraoka, A.; Endo, J.; Nakamura, S.; Nakamura, S.; Nakamura, S. Multicenter analysis of fecal microbiota profiles in Japanese patients with Crohn’s disease. *J. Gastroenterol.* 2012, 47, 1298–1307. [CrossRef]

126. Kabeerdoss, J.; Sankaran, V.; Pugazhendhi, S.; Ramakrishna, B.S. Clostridium leptum group bacteria abundance and diversity in the ileum-restricted and colon-involving Crohn’s disease. *World J. Gastroenterol.* 2012, 18, 577–582. [CrossRef]

127. Kabeerdoss, J.; Sankaran, V.; Pugazhendhi, S.; Ramakrishna, B.S. Clostridium leptum group bacteria abundance and diversity in the ileum-restricted and colon-involving Crohn’s disease. *World J. Gastroenterol.* 2012, 18, 577–582. [CrossRef]

128. Shin, J.; Shin, J. Distinct microbiotas are associated with ileum-restricted and colon-involving Crohn’s disease. *Gastroenterol. Hepatol.* 2015, 29, 2955–2964. [CrossRef]

129. Boland, K.; Bedrani, L.; Turpin, W.; Kabakchiev, B.; Stempak, J.; Borowski, K.; Nguyen, G.; Steinhart, A.H.; Smith, M.I.; Croitoru, K.; et al. Persistent diarrhea in patients with Crohn’s disease after mucosal healing is associated with lower diversity of the intestinal microbiome and increased dysbiosis. *Clin. Gastroenterol. Hepatol.* 2020, 19, 296–304.e3. [CrossRef]

130. Walujkar, S.A.; Kumbhare, S.V.; Marathe, N.P.; Patangia, D.V.; Lawate, P.S.; Bharadwaj, R.S.; Shouche, Y.S. Molecular profiling of mucosal tissue associated microbiota in patients manifesting acute exacerbations and remission stage of ulcerative colitis. *World J. Microbiol. Biotechnol.* 2018, 34, 76. [CrossRef]

131. Mitsuyama, K.; Niwa, M.; Takedatsu, H.; Yamasaki, H.; Kuwaki, K.; Yoshioka, S.; Yamauchi, R.; Fukunaga, S.; Torimura, T. Antibody markers in the diagnosis of inflammatory bowel disease. *Visz. Gastrointest. Med. Surg.* 2019, 33, 227–234. [CrossRef]

132. López, R.N.; Leach, S.T.; Lemberg, D.A.; Duvoisin, G.; Garry, R.B.; Day, A.S. Fecal biomarkers in inflammatory bowel disease. *J. Gastroenterol. Hepatol.* 2017, 32, 577–582. [CrossRef]

133. Liu, Y.; Hauenstein, K. New imaging techniques in the diagnosis of inflammatory bowel diseases. *Visz. Gastrointest. Med. Surg.* 2015, 31, 227–234. [CrossRef]

134. Lopez, R.N.; Leach, S.T.; Lemberg, D.A.; Duvoisin, G.; Garry, R.B.; Day, A.S. Fecal biomarkers in inflammatory bowel disease. *J. Gastroenterol. Hepatol.* 2017, 32, 577–582. [CrossRef]

135. Teloy, D.I.; Smolinska, A.; Savelkoul, P.H.; Masclay, M.; Van Schooten, F.J.; Pierik, M.J.; Penders, J.; Jonkers, D.M.A.E. The fecal microbiota as a biomarker for disease activity in Crohn’s disease. *Sci. Rep.* 2016, 6, 35216. [CrossRef]

136. Rehman, A.; Rausch, P.; Wang, J.; Skieceviciene, J.; Kiudelis, G.; Bhagalia, K.; Amarapurkar, D.; Kupcinskas, L.; Schreiber, S.; Rosenstiel, P.; et al. Geographical patterns of the standing and active human gut microbiome in health and IBD. *Gut* 2016, 65, 238–248. [CrossRef]

137. Willing, B.; Halfvarson, J.; Dicksved, J.; Rosenquist, M.; Järnerot, G.; Engstrand, L.; Tysk, C.; Jansson, S.J. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn’s disease. *Inflamm. Bowel Dis.* 2009, 15, 653–660. [CrossRef]

138. Wisittipanit, N.; Rangwala, H.; Sikaroodi, M.; Keshavarzian, A.; Mutlu, E.A.; Gillevet, P. Classification methods for the analysis of LH-PCR data associated with inflammatory bowel disease patients. *Int. J. Bioinform. Res. Appl.* 2015, 11, 111–129. [CrossRef]

139. Fukuda, K.; Fujita, Y. Determination of the discriminant score of intestinal microbiota as a biomarker of disease activity in patients with ulcerative colitis. *BMC Gastroenterol.* 2014, 14, 49. [CrossRef]
140. Andoh, A.; Kobayashi, T.; Kuzuoka, H.; Tsujikawa, T.; Suzuki, Y.; Hirai, F.; Matsui, T.; Nakamura, S.; Matsumoto, T.; Fujiyama, Y. Characterization of gut microbiota profiles by disease activity in patients with Crohn’s disease using data mining analysis of terminal restriction fragment length polymorphisms. *Biomed. Rep.* **2014**, *2*, 370–373. [CrossRef]

141. Butera, A.; Di Paola, M.; Vitali, F.; De Nitto, D.; Covotta, F.; Borrini, F.; Fica, R.; De Filippo, C.; Cavalieri, D.; Giuliani, A.; et al. IL-13 mRNA tissue content identifies two subsets of adult ulcerative colitis patients with different clinical and mucosa-associated microbiota profiles. *J. Crohn’s Colitis* **2020**, *14*, 369–380. [CrossRef]

142. Macfarlane, S.; Furrie, E.; Cummings, J.H.; Macfarlane, G.T. Chemotaxonomic analysis of bacterial populations colonizing the rectal mucosa in patients with ulcerative colitis. *Clin. Infect. Dis.* **2004**, *38*, 1690–1699. [CrossRef][PubMed]

143. Sokol, H.; Lepage, P.; Seksik, P.; Dore, J.; Marteau, P. Temperature gradient gel electrophoresis of fecal 16S rRNA reveals active escherichia coli in the microbiota of patients with ulcerative colitis. *J. Clin. Microbiol.* **2006**, *44*, 3172–3177. [CrossRef][PubMed]

144. Sepehri, S.; Kotlowski, R.; Bernstein, C.N.; Krause, D.O. Microbial diversity of inflamed and noninflamed gut biopsy tissues in inflammatory bowel disease. *Inflamm. Bowel Dis.* **2007**, *13*, 675–683. [CrossRef][PubMed]

145. Andoh, A.; Sakata, S.; Koizumi, Y.; Mitsuyama, K.; Fujiyama, Y.; Benno, Y. Terminal restriction fragment length polymorphism analysis of the diversity of fecal microbiota in patients with ulcerative colitis. *Inflamm. Bowel Dis.* **2007**, *13*, 955–962. [CrossRef][PubMed]

146. Dicksveld, J.; Halfvarson, J.; Rosenquist, M.; Järnerot, G.; Tysk, C.; Apajalahti, J.; Engstrand, L.; Jansson, J.K. Molecular analysis of the gut microbiota of identical twins with Crohn’s disease. *ISME J.* **2008**, *2*, 716–727. [CrossRef][PubMed]

147. Kuehbacher, T.; Rehman, A.; Lepage, P.; Hellmig, S.; Föltsch, U.R.; Schreiber, S.; Ott, S.J. Intestinal TM7 bacterial phylogenies in active inflammatory bowel disease. *J. Med. Microbiol.* **2008**, *57*, 1569–1576. [CrossRef][PubMed]

148. Andoh, A.; Tsujikawa, T.; Sasaki, M.; Mitsuyama, K.; Suzuki, Y.; Matsui, T.; Matsumoto, T.; Benno, Y.; Fujiyama, Y. Faecal microbiota profile of Crohn’s disease determined by terminal restriction fragment length polymorphism analysis. *Aliment. Pharmacol. Ther.* **2008**, *29*, 75–82. [CrossRef]

149. Nishikawa, J.; Kudo, T.; Sakata, S.; Benno, Y.; Sugiyama, T. Diversity of mucosa-associated microbiota in active and inactive ulcerative colitis. *Scand. J. Gastroenterol.* **2009**, *44*, 180–186. [CrossRef]

150. Andoh, A.; Ida, S.; Tsujikawa, T.; Benno, Y.; Fujiyama, Y. Terminal restriction fragment polymorphism analyses of fecal microbiota in five siblings including two with ulcerative colitis. *Clin. J. Gastroenterol.* **2009**, *2*, 343–345. [CrossRef]

151. Rehman, A.; Lepage, P.; Nolte, A.; Hellmig, S.; Schreiber, S.; Ott, S.J. Transcriptional activity of the dominant gut mucosal microbiota in chronic inflammatory bowel disease patients. *J. Med. Microbiol.* **2010**, *59*, 1114–1122. [CrossRef]

152. Andoh, A.; Imaeda, H.; Aomatsu, T.; Inatomi, O.; Bamba, S.; Sasaki, M.; Saito, Y.; Tsujikawa, T.; Fujiyama, Y. Terminal restriction fragment length polymorphism analysis of the diversity of fecal microbiota in patients with ulcerative colitis. *Clin. J. Gastroenterol.* **2011**, *46*, 479–486. [CrossRef]

153. Lepage, P.; Hösler, R.; Spehlini, M.E.; Rehman, A.; Zvirbliene, A.; Begun, A.; Ott, S.; Kupcinskas, L.; Dore, J.; Raedler, A.; et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. *Gastroenterology* **2011**, *141*, 227–236. [CrossRef]

154. Benjamin, J.L.; Hedin, C.R.H.; Koutsoumpas, A.; Ng, S.C.; McCarthy, N.E.; Prescott, N.J.; Pessoa-Lopes, P.; Mathew, C.G.; Sanderson, J.; Hart, A.L.; et al. Smokers with active Crohn’s disease have a clinically relevant dysbiosis of the gastrointestinal microbiota. *Inflamm. Bowel Dis.* **2012**, *18*, 1092–1100. [CrossRef]

155. Hotte, N.S.C.; Salim, S.Y.; Tso, R.H.; Albert, E.J.; Bach, P.; Walker, J.; Dielemann, L.A.; Fedorak, R.N.; Madsen, K.L. Patients with inflammatory bowel disease exhibit dysregulated responses to microbial DNA. *PLoS ONE* **2012**, *7*, e39793. [CrossRef]

156. Pistone, D.; Marone, P.; Fajoro, M.; Fabbi, M.; Vicari, N.; Daffara, S.; Dalla Valle, C.; Gabba, S.; Sassera, D.; Verri, A.; et al. Mycobacterium avium paratuberculosis in Italy: Commensal or emerging human pathogen? *Dig. Liver Dis.* **2012**, *44*, 461–465. [CrossRef][PubMed]

157. Vignaes, L.K.; Brynsvok, J.; Steenholt, C.; Wilcks, A.; Licht, T.R. Gram-negative bacteria account for main differences between faecal microbiota from patients with ulcerative colitis and healthy controls. *Benefer. Microbes* **2013**, *3*, 287–297. [CrossRef][PubMed]

158. Fujimoto, T.; Imaeda, H.; Takahashi, K.; Kasumi, E.; Bamba, S.; Fujiyama, Y.; Andoh, A. Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn’s disease patients. *J. Gastroenterol. Hepatol.* **2013**, *28*, 613–619. [CrossRef][PubMed]

159. Rajilic-Stojanovic, M.; Shanahan, F.; Guarner, F.; De Vos, W.M. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. *Inflamm. Bowel Dis.* **2013**, *19*, 481–488. [CrossRef]

160. Hedin, C.R.; McCarthy, N.E.; Louis, P.; Farquharson, F.M.; McCartney, S.; Taylor, K.; Prescott, N.J.; Murrells, T.; Stagg, A.J.; Whelan, K.; et al. Altered intestinal microbiota and blood T cell phenotype are shared by patients with Crohn disease and their unaffected siblings. *Gut* **2014**, *63*, 1578–1586. [CrossRef]

161. Takeshita, K.; Mizuno, S.; Mikami, Y.; Sujino, T.; Saigusa, K.; Matsuoka, K.; Naganuma, M.; Sato, T.; Takada, T.; Tsuji, H.; et al. A single species of clostridium Subcluster XIVa decreased in ulcerative colitis patients. *Inflamm. Bowel Dis.* **2016**, *22*, 2802–2810. [CrossRef]

162. Zamani, S.; Hesam Shariati, S.; Zali, M.R.; Asadzadeh Aghdaei, H.; Sarabi Asiabar, A.; Bokaie, S.; Nomanpour, B.; Sechi, L.A.; Feizabadi, M.M. Detection of enterotoxigenic Bacteroides fragilis in patients with ulcerative colitis. *Gut Pathog.* **2017**, *9*, 53. [CrossRef]
163. Rausch, P.; Rehman, A.; Künzel, S.; Häsl er, R.; Ott, S.J.; Schreiber, S.; Rosenstiel, P.; Franke, A.; Baines, J.F. Colonic mucosa-associated microbiota is influenced by an interaction of crohn disease and FUT2 (Secretor) genotype. *Proc. Natl. Acad. Sci. USA* 2011, 108, 19030–19035. [CrossRef] [PubMed]

164. Erickson, A.R.; Cantarel, B.L.; Lamendella, R.; Darzi, Y.; Mongodin, E.F.; Pan, C.; Shah, M.; Halfvarson, J.; Tysk, C.; Henri ssat, B.; et al. Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn’s disease. *PLoS ONE* 2012, 7, e49138. [CrossRef] [PubMed]

165. Li, E.; Hamm, C.M.; Gulati, A.S.; Sartor, R.B.; Chen, H.; Wu, X.; Zhang, T.; Rohlf, E.J.; Zhu, W.; Gu, C.; et al. Inflammatory bowel diseases phenotype, *C. difficile* and NOD2 genotype are associated with shifts in human ileum associated microbial composition. *PLoS ONE* 2012, 7, e26284. [CrossRef] [PubMed]

166. Prideaux, L.; Kang, S.; Wagner, J.; Buckley, M.; Mahar, J.E.; De Cruz, P.; Wen, Z.; Chen, L.; Xia, B.; Van Langenberg, D.R.; et al. Impact of ethnicity, geography, and disease on the microbiota in health and inflammatory bowel disease. *Inflamm. Bowel Dis.* 2013, 19, 2906–2918. [CrossRef]

167. Chiodini, R.J.; Dowd, S.E.; Davis, B.; Galandiuk, S.; Chamberlin, W.M.; Kuenstner, J.T.; McCallum, R.W.; Zhang, J. Crohn’s disease may be differentiated into 2 distinct biotypes based on the detection of bacterial genomic sequences and virulence genes within submucosal tissues. *J. Clin. Gastroenterol.* 2013, 47, 612–620. [CrossRef]

168. Lavelle, A.; Lennon, G.; O’Sullivan, O.; Docherty, N.; Balf, A.; Maguire, A.; Mulcahy, H.E.; Doherty, G.; O’Donoghue, D.; Hyland, J.; et al. Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. *Gut* 2015, 64, 1553–1561. [CrossRef]

169. Chiodini, R.J.; Dowd, S.E.; Chamberlin, W.M.; Galandiuk, S.; Davis, B.; Glassing, A. Microbial population differentials between mucosal and submucosal intestinal tissues in advanced Crohn’s disease of the ileum. *PLoS ONE* 2015, 10, e0134382. [CrossRef]

170. Chiodini, R.J.; Dowd, S.E.; Galandiuk, S.; Davis, B.; Glassing, A. The predominant site of bacterial translocation across the intestinal mucosal barrier occurs at the advancing disease margin in Crohn’s disease. *Microbiology* 2016, 162, 1608–1619. [CrossRef]

171. Hedin, C.; Van Der Gast, C.J.; Rogers, G.B.; Cuthbertson, L.; McCartney, S.; Stagg, A.J.; Lindsay, J.O.; Whelan, K. Siblings of patients with Crohn’s disease exhibit a biologically relevant dysbiosis in mucosal microbial metacommunities. *Gut* 2016, 65, 944–953. [CrossRef]

172. Chen, G.; Zhang, Y.; Wang, W.; Ji, X.; Meng, F.; Xu, P.; Yang, N.; Ye, F.; Bo, X. Partners of patients with ulcerative colitis exhibit a biologically relevant dysbiosis in fecal microbial metacommunities. *World J. Gastroenterol.* 2017, 23, 4624–4631. [CrossRef]

173. Chiodini, R.J.; Dowd, S.E.; Barron, J.N.; Galandiuk, S.; Davis, B.; Glassing, A. Transitional and temporal changes in the mucosal and submucosal intestinal microbiota in advanced crohn’s disease of the terminal ileum. *J. Med. Microbiol.* 2018, 67, 549–559. [CrossRef]

174. Ma, H.Q.; Yu, T.T.; Zhao, X.J.; Zhang, Y.; Zhang, H.J. Fecal microbial dysbiosis in Chinese patients with inflammatory bowel disease. *World J. Gastroenterol.* 2018, 24, 1464–1477. [CrossRef]

175. Laserna-Mendieta, E.J.; Clooney, A.G.; Carretero-Gomez, J.F.; Moran, C.; Sheehan, D.; Nolan, J.A.; Hill, C.; Gahan, C.G.M.; Joyce, S.A.; Shanahan, F.; et al. Determinants of reduced genetic capacity for butyrate synthesis by the gut microbiome in Crohn’s disease and ulcerative colitis. *J. Crohn’s Colitis* 2018, 12, 204–216. [CrossRef]

176. Magro, D.O.; Santos, A.; Guadagnini, D.; de Godoy, F.M.; Silva, S.H.M.; Lemos, W.J.F.; Vitulo, N.; Torriani, S.; Pinheiro, L.V.; Martinez, C.A.R.; et al. Remission in Crohn’s disease is accompanied by alterations in the gut microbiota and mucins production. *Sci. Rep.* 2019, 9, 53. [CrossRef]

177. Shahir, N.M.; Wang, J.R.; Wolber, E.A.; Schaner, M.S.; Frank, D.N.; Ir, D.; Robertson, C.E.; Chaumont, N.; Sadiq, T.S.; Koruda, M.J.; et al. Crohn’s disease differentially affects region-specific composition and aerotolerance profiles of mucosally adherent bacteria. *Inflamm. Bowel Dis.* 2020, 26, 1843–1855. [PubMed]

178. Park, Y.M.; Ha, E.; Gu, K.-N.; Shin, G.Y.; Lee, C.K.; Kim, K.; Kim, H.J. Host genetic and gut microbial signatures in familial inflammatory bowel disease. *Clin. Transl. Gastroenterol.* 2020, 11, e00213. [CrossRef] [PubMed]