SAKK 16/14: Durvalumab in Addition to Neoadjuvant Chemotherapy in Patients With Stage IIIA(N2) Non–Small-Cell Lung Cancer—A Multicenter Single-Arm Phase II Trial

Sacha I. Rothschild, MD, PhD1; Alfred Zippelius, MD1; Eric I. Eboulet, PhD2; Spasenija Savic Prince, MD1; Daniel Betticher, MD1; Adrienne Bettini, MD1; Martin Früh, MD1,2; Markus Joerger, MD, PhD1; Didier Lardinois, MD1; Hans Gelpke, MD1; Laetitia A. Mouli, MD, PhD1; Christian Britschgi, MD, PhD1; Walter Weder, MD1; Solange Peters, MD, PhD1; Michael Mark, MD1; Richard Cathomas, MD1; Adrian F. Ochsenbein, MD1; Wolf-Dieter Janthur, MD1; Christine Waibel, MD1; Nicolas Mach, MD1; Patrizia Froesch, MD1; Martin Buess, MD, PhD1; Pierre Bohanes, MD1; Gilles Godar, MSc2; Corinne Rusterholz, PhD2; Michel Gonzalez, MD2; Michael Mark, MD1; and Miklos Pless, MD1; for the Swiss Group for Clinical Cancer Research (SAKK)

PURPOSE

For patients with resectable stage IIIA(N2) non–small-cell lung cancer, neoadjuvant chemotherapy with cisplatin and docetaxel followed by surgery resulted in a 1-year event-free survival (EFS) rate of 48% in the SAKK 16/00 trial and is an accepted standard of care. We investigated the additional benefit of perioperative treatment with durvalumab.

METHODS

Neoadjuvant treatment consisted of three cycles of cisplatin 100 mg/m2 and docetaxel 85 mg/m2 once every 3 weeks followed by two doses of durvalumab 750 mg once every 2 weeks. Durvalumab was continued for 1 year after surgery. The primary end point was 1-year EFS. The hypothesis for statistical considerations was an improvement of 1-year EFS from 48% to 65%.

RESULTS

Sixty-eight patients were enrolled, 67 were included in the full analysis set. Radiographic response rate was 43% (95% CI, 31 to 56) after neoadjuvant chemotherapy and 58% (95% CI, 45 to 71) after sequential neoadjuvant immunotherapy. Fifty-five patients were resected, of which 34 (62%) achieved a major pathologic response (MPR; ≤ 10% viable tumor cells) and 10 (18%) among them a complete pathologic response. Postoperative nodal downstaging (ypN0-1) was observed in 37 patients (67%). Fifty-one (93%) resected patients had an R0 resection. There was no significant effect of pretreatment PD-L1 expression on MPR or nodal downstaging. The 1-year EFS rate was 73% (two-sided 90% CI, 63 to 82). Median EFS and overall survival were not reached after 28.6 months of median follow-up. Fifty-nine (88%) patients had an adverse event grade ≥ 3 including two fatal adverse events that were judged not to be treatment-related.

CONCLUSION

The addition of perioperative durvalumab to neoadjuvant chemotherapy in patients with stage IIIA(N2) non–small-cell lung cancer is safe and exceeds historical data of chemotherapy alone with a high MPR and an encouraging 1-year EFS rate of 73%.

J Clin Oncol 39:2872-2880. © 2021 by American Society of Clinical Oncology

INTRODUCTION

Non–small-cell lung cancer (NSCLC) accounts for 80%-85% of all lung cancers. Approximately 20% of all patients with NSCLC are diagnosed with stage III NSCLC. Despite the option of curative-intent multimodality treatment in most patients with locally advanced NSCLC, 5-year survival rates are only between 19% and 36%.1,2 The management of patients with potentially resectable stage IIIA(N2) NSCLC is controversial. Neoadjuvant chemotherapy followed by surgery as well as definitive combined chemoradiotherapy (CRT) are standard treatment options. Several trials have shown that the addition of a second local treatment approach (ie, neoadjuvant or adjuvant radiotherapy, or surgery after CRT) does not improve outcome.3,5

The Swiss cooperative group for Cancer Research (SAKK) substantially contributed to establish a standard of care for patients with locally advanced stage III(N2) NSCLC. In the single-arm phase II trial SAKK 16/96, 90 patients with stage IIIA(N2) NSCLC were treated with three cycles of neoadjuvant chemotherapy with cisplatin and docetaxel followed by surgery resulting in a median overall survival (OS) of 27 months.6 Complete resection and nodal downstaging were the most relevant prognostic determinants.7 The randomized phase
CONTEXT

Key Objective
In patients with resectable stage IIIA(N2) non–small-cell lung cancer (NSCLC), neoadjuvant chemotherapy with cisplatin and docetaxel is an accepted standard of care based on the previous work of our group. The objective of this trial is to demonstrate that the addition of perioperative durvalumab is efficacious and feasible.

Knowledge Generated
The addition of perioperative durvalumab to neoadjuvant chemotherapy for stage IIIA(N2) NSCLC led to an increase in the 1-year event-free survival to 73% compared with 48% in a patient population selected with identical inclusion and exclusion criteria but receiving chemotherapy only in our previous trials. In addition, we demonstrated that neoadjuvant use of durvalumab after chemotherapy is safe and well-tolerated and resulted in a high rate of pathologic regression. In contrast to the previously published trials with neoadjuvant immunotherapy, all patients in this study had confirmed involvement of the N2 lymph nodes and thus belong to the highest-risk group of patients for recurrence after surgery.

Relevance
Our results support the addition of perioperative immune checkpoint inhibitors to neoadjuvant chemotherapy in patients with resectable stage IIIA(N2) NSCLC. The fact that the high pathologic remission rate is associated with overall outcome, which has also been shown in other trials, has implications for the design of future trials.

METHODS

Study Design and Participants
This investigator-initiated, open-label, multicenter, single-arm, phase II trial was performed at 14 sites within the SAKK network in Switzerland (Data Supplement, online only).

Patients were eligible for enrollment if they were between 18 and 75 years with an Eastern Cooperative Oncology Group performance status score of 0-1 and had a pathologically proven, locally advanced T1-3N2M0, stage IIIA(N2) NSCLC, according to the seventh edition of the TNM classification. Staging was done by positron emission tomography-computed tomography (PET-CT) and brain MRI. The N2 involvement had to be proven by mediastinoscopy or endobronchial ultrasonography with transbronchial fine-needle aspiration. Resectable N2 was not limited to a single station. Details for mediastinal lymph node staging are given in the Protocol (online only) and Data Supplement. The lung function assessment for surgery was performed according to the guidelines of the European Society of Thoracic Surgeons. Primary technical resectability was assessed by local surgeons with the...
aim to achieve complete resection according to RamiPorta,21 and it was validated by an interdisciplinary tumor board. Full inclusion and exclusion criteria are listed in the trial Protocol. This trial is registered with ClinicalTrials.gov (identifier: NCT02572843).

Tumor tissue from initial biopsy and resection specimens underwent central pathology review in accordance with the WHO classification (4th edition, 2015) and the protocol of the College of American Pathologists.22,23 Pathologic response was evaluated by assessing the percentage of residual viable tumor volume in relation to the tumor bed. The tumor bed consists of viable tumor, necrosis, and stroma.24,25

MPR was defined as ≤ 10% viable tumor cells, whereas pCR was defined as no evidence of viable tumor cells.26 PD-L1 testing was performed using the Ventana SP263 assay (Ventana, Tucson, AZ; for details, see the Data Supplement).

The trial was done in accordance with the principles of the Declaration of Helsinki. The Protocol was approved by the ethics committee of each participating site. Written informed consent was obtained from all patients.

Treatment

Chemotherapy consisted of three cycles of 100 mg/m² cisplatin and 85 mg/m² docetaxel given once every 3 weeks, with mandatory granulocyte colony-stimulating factor.

Two doses of durvalumab 750 mg were administered sequentially three weeks after the last dose of chemotherapy, two weeks apart. In case of premature discontinuation of chemotherapy, durvalumab treatment started 3-5 weeks after the last dose of chemotherapy. Guidelines for treatment and dose adjustments are described in the Protocol.

Surgery was scheduled 2-4 weeks after the last application of durvalumab. Tumor resection could be performed by thoracotomy or video-assisted thoracoscopic surgery. Surgery included an anatomical resection such as lobectomy or pneumonectomy with a mediastinal lymph node dissection as previously described.27 Patients in whom resection was incomplete were allowed to receive postoperative radiotherapy beginning 4-6 weeks after surgery.

Adjuvant durvalumab given at a dose of 750 mg once every two weeks for 26 cycles started between 4 and 6 weeks after surgery.

Assessments

Standard baseline assessments had to be done within 42 days before inclusion. Details are provided in the Protocol. All patients underwent PET-CT and mediastinal lymph node staging within 30 days before inclusion.

Restaging (PET-CT) was performed after cycle three of chemotherapy and again within 2 weeks before surgery. Blood and stool samples were taken serially; the details are described in the Protocol.

Lifelong follow-ups were planned 1 month after surgery, then every 3 months for 2 years, every 6 months in years 3-5, and then every 12 months.

Tumor assessments were performed locally by the study centers and reported according to RECIST version 1.1. Morbidity, mortality, and surgical complications were monitored during the first 30 days after surgery.

Adverse events (AEs) and abnormal laboratory findings were graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-CTCAE) version 4.03.

End Points

The primary end point was event-free survival (EFS) at 1 year. An event was defined as relapse or progression according to RECIST 1.1 criteria, secondary tumor, or death because of any cause, whichever occurred first. Secondary end points were EFS, OS, objective response rate (ORR) after neoadjuvant chemotherapy and after neoadjuvant chemotherapy and immunotherapy, pCR, MPR, rate of nodal downstaging to < ypN2, complete resection (RO), pattern of recurrence, AEs, and postoperative 30-day mortality. Definitions of the end points are available in the Data Supplement. Details for prespecified exploratory end points are given in the Protocol.

Statistical Analysis

A 1-year EFS rate ≤ 48% (on the basis of the primary analysis of trial SAKK 16/00)3 was considered not promising, whereas a rate ≥ 65% was considered promising. According to a single-stage phase II design on the basis of survival rate at a specific time point, 64 patients were needed to obtain a power of 80% with a significance level of 5%. Assuming a 5% rate of nonevaluable patients, the target sample size was set at 68 patients.

An interim safety analysis was performed after the first 25 patients, with the possibility of an extended examination of the data by an independent data-monitoring committee in case of a postoperative 30-day mortality rate > 10%.

All efficacy end points were analyzed on the basis of the full analysis set (FAS: eligible patients who received at least one dose of chemotherapy). Toxic effects were assessed in the safety population, which comprised patients who received at least one dose of chemotherapy. FAS-2 was defined as all patients who received at least one dose of chemotherapy and at least one dose of durvalumab.

We used the Kaplan-Meier method to estimate EFS and OS. Survival curves and rates were compared using the log-rank test and Kaplan-Meier method at a specific time point, and the CI was estimated on the basis of the log-log transformation of the Kaplan Meier estimator. Hazard ratios and odds ratios and their 95% CIs were calculated with the Cox regression model and logistic regression to explore the association between possible prognostic factors and...
Sixty-two (93%) of the 67 patients started therapy, mainly because of renal toxicity or hearing impairment. Sixty (90%) of 67 patients completed three cycles of neoadjuvant chemotherapy. The median relative total dose administration is shown in the Data Supplement. Twenty-two patients (33%) received carboplatin instead of cisplatin during the second and third (n = 15) or third cycle (n = 7) of neoadjuvant chemotherapy, mainly because of renal toxicity or hearing impairment. Sixty-two (93%) of the 67 patients started neoadjuvant durvalumab treatment. Fifty-five (82%) patients underwent tumor resection. The most common reasons patients were not operated on were disease progression (n = 6), treatment discontinuation because of toxicity (n = 3), and inoperability (n = 3). Fifty (75%) patients started adjuvant durvalumab treatment. Median duration of adjuvant durvalumab treatment was 52 weeks (range, 2-54).

Of the 55 patients undergoing resection, 43 (78%) had a lobectomy, seven (13%) a bilobectomy, and five (9%) a pneumonectomy. The overall 30-day postoperative mortality was 2% (one patient with fatal bronchopulmonary bleeding, which was deemed unrelated to the study treatment). In 51 of 55 patients (93%) an R0 surgical resection was achieved, three (6%) patients had an R1, and one (2%) patient an R2 resection. Six (11%) patients underwent postoperative radiotherapy. The reasons were incomplete resection in four patients and investigator decision against the Protocol recommendation in two patients.

At the time of data cutoff (July 10, 2020), 25 (37%) patients had completed the trial treatment as per Protocol, 37 patients had discontinued the trial treatment, and five patients were still on trial treatment. With a median follow-up of 28.6 months (range: 2.1-47.9), 45 (67%) patients were alive and free of recurrence. Twenty-two (33%) of 67 patients in the FAS population had disease progression or had died. In the FAS, 1-year EFS was 73% (two-sided 90% CI, 63 to 82). Therefore, the primary end point of the trial was reached. Median EFS was not reached (Fig 1). Two-year EFS was 68% (95% CI, 54 to 78). Median OS was not reached (Fig 2). OS rates at 1 and 2 years were 91% (95% CI, 81 to 96) and 83% (95% CI, 71 to 90). Overall, 15 (22%) patients died. Causes of death were progressive disease in 12 (80%) patients, bronchopulmonary bleeding after surgery in one patient, sepsis after surgery in one patient, and pulmonary embolism after completing adjuvant durvalumab in one patient.

After neoadjuvant chemotherapy, the ORR according to RECIST 1.1 was 43% (29 of 67; 95% CI, 31 to 56), including two (3%) patients with a CR and 27 (40%) patients with a PR (Appendix Table A2, online only; Fig 3). After neoadjuvant durvalumab (n = 62), ORR was 58% (36 of 62; 95% CI, 45 to 71), with four (7%) and 32 (52%) patients achieving a CR and PR, respectively. Overall, seven (11%) patients had disease progression during neoadjuvant therapy.

Thirty-four of 55 patients (62%; 95% CI 48-75) achieved an MPR (Table 2, Fig 3). Among them were 10 patients with a pCR (10 of 55 patients, 18%; 95% CI, 9 to 31). Seven (70%) of 10 patients with a pCR and 19 (56%) of 34 patients with an MP had a radiographic complete or partial response after neoadjuvant therapy (Data Supplement). Radiographic response was associated with pathologic response (r = 0.399; 95% CI, 0.136 to 0.609;
Nodal downstaging to ypN1 occurred in 11 (20%) of 55 patients, whereas ypN0 was found in 26 (47%) of 55 patients. Patients with a PD-L1 expression of ≥25% had a higher rate of pCR (odds ratio, 4.8; 95% CI, 1.0 to 22.8; \(P = .047 \); Data Supplement). However, PD-L1 expression was not significantly

\[P = .004; \text{Data Supplement}. \]

FIG 1. Kaplan-Meier survival curve for EFS. Dotted lines represent 95% CIs. EFS, event-free survival; NR, not reached.

FIG 2. Kaplan-Meier survival curve for OS. Dotted lines represent 95% CIs. NR, not reached; OS, overall survival.
associated with MPR, nodal downstaging, or EFS at 1-year (Data Supplement).

Disease progression after resection occurred in 15 (27%) of 55 patients, three of whom had achieved an MPR and two ypN0. The pattern of recurrence is shown in the Data Supplement. Of the seven patients with a local recurrence, four underwent salvage radiotherapy. In a post hoc analysis, median EFS was significantly longer for patients achieving an MPR or pCR; likewise, MPR also significantly predicted OS (Data Supplement). Nodal clearance (ypN0) was significantly associated with a longer median EFS (Data Supplement). Of the 12 patients who did not undergo tumor resection, four (33%) patients had disease progression and six (50%) have died.

All 67 patients included in the safety population experienced at least one AE. In total, 59 (88%) patients had an AE grade ≥ 3 including two fatal AEs. One patient died because of respiratory failure during neoadjuvant chemotherapy, most likely caused by disease progression. Another patient died because of bronchopulmonary hemorrhage 10 days after surgery. Regarding each phase of the trial treatment, all patients (grade ≥ 3: 67%) experienced an AE during neoadjuvant chemotherapy, 50 (81%; grade ≥ 3: 13%) patients during neoadjuvant immunotherapy, 48 (87%; grade ≥ 3: 29%) patients during the perioperative phase, and 49 (98%; grade ≥ 3: 50%) patients during adjuvant immunotherapy (Appendix Table A3, online only; Table 3; Data Supplement). AEs of special interest with durvalumab were pneumonitis in two (3%), hypersensitivity reactions in three (5%), and hepatic function abnormalities in six (10%) patients.

DISCUSSION

To our knowledge, this is thus far the largest reported prospective trial of perioperative anti-PD-L1 therapy in addition to neoadjuvant chemotherapy in patients with resectable NSCLC. Furthermore, to our knowledge, it is the first study focusing on patients with stage IIIA(N2) disease with confirmed mediastinal lymph node involvement. We recently showed long-term survival data of 29% after 10 years for patients with stage IIIA(N2) NSCLC treated with neoadjuvant chemotherapy. In this trial, we investigated the addition of perioperative durvalumab to standard platinum-based neoadjuvant chemotherapy. The goal of improving EFS from 48% to 65% after one year was clearly achieved with an EFS at one year of 73%. After a median follow-up period of 28.6 months, neither the median EFS

FIG 3. Waterfall plot. Only data from patients who underwent resection are included (n = 55). One patient underwent lung wedge resection at diagnosis (UPN 063). Therefore, pathologic regression could not be assessed in this patient. Pathologic regression is defined as percent residual viable tumor volume in relation to the tumor bed. The tumor bed consists of viable tumor, necrosis, and stroma. CR, complete remission; NE, not evaluable; PD, programmed cell death 1; PD-L1, programmed cell death-ligand 1; PR, partial remission; SD, stable disease.

TABLE 2. Pathologic Response

Response	Total (n = 55), No. (%)	95% CI
pCR	10 (18)	9 to 31
MPRa	34 (62)	48 to 75
Nodal downstaging	37 (67)	53 to 79
ypNO	26 (47)	
ypN1	11 (20)	

Abbreviations: MPR, major pathologic response; pCR, pathologic complete response; yp, postoperative staging after neoadjuvant therapy. aDefined as $\leq 10\%$ viable tumor cells.
TABLE 3. Treatment-Related AEs With Durvalumab in the Neoadjuvant Setting (n = 62)

AE	Grades 1 and 2	Grade 3	Grade 4
Adrenal insufficiency	1 (2)		
ALT increased	1 (2)	3 (5)	
Arthralgia	8 (13)		
Arthritis	1 (2)	1 (2)	
AST increased	2 (3)	1 (2)	
Autoimmune hepatitis	1 (2)		
Rash	9 (15)		
Pruritus	1 (2)		
Pneumonitis	1 (2)	1 (2)	
Nausea	8 (13)		
Lipase increased	1 (2)		
Diarrhea	11 (18)	1 (2)	
Dyspnea	3 (5)		
Fatigue	21 (34)	3 (5)	
Hyperkeratosis	1 (2)		
Hyperthyroidism	6 (10)		
Lipase increased	1 (2)		
Lung infection	1 (2)	3 (5)	
Nausea	8 (13)	1 (2)	
Pneumonitis	1 (2)	1 (2)	
Pruritus	9 (15)	1 (2)	
Rash	9 (15)		

NOTE. Data are presented as No. (%). Shown are the treatment-related AEs of any grade that occurred in more than 10% of patients or any treatment-related AEs of grade 3 or higher. No grade 5 treatment-related AEs were observed.

Abbreviation: AE, adverse event.

nor the median OS was reached. The surgical 30-day postoperative mortality rate was low and comparable with previous trials of our group with neoadjuvant chemotherapy alone.

Early tumor progression and immune-mediated toxicities under immune checkpoint inhibition are major concerns when using this new treatment strategy. In our trial, 82% of the patients were operated. This number is consistent with our previous data with chemotherapy alone and in agreement with other trials in patients with stage IIIA NSCLC after neoadjuvant treatment. The most common reason for not operating after neoadjuvant treatment was disease progression. Definitive CRT and additive durvalumab on the basis of the PACIFIC trial would most likely not have prevented distant metastases and would therefore not have improved the outcome of those patients. Only one patient experienced toxicity that precluded subsequent surgery. One recent trial evaluating 6 weeks of neoadjuvant nivolumab and ipilimumab treatment was terminated early after inclusion of nine patients only because of a high rate of treatment-related AEs grade ≥ 3 and 3 patients with biopsy-confirmed tumor progression precluding surgery, whereas in the NEOSTAR trial, 17 of 21 (81%) patients receiving the same combination regimen went on to surgery as planned.

Initial trials investigating the use of PD-1 and PD-L1 inhibitors in the neoadjuvant setting as monotherapy showed a rate of MPR of 19%-45% in patients with stage I-III NSCLC with 5%-15% of patients achieving complete pathologic remission. The combination of chemotherapy and immunotherapy as neoadjuvant treatment leads to a further increase in pathologic regression rates, as demonstrated in our trial (MPR 62% including 18% pCR). This rate is also clearly higher than the MPR rate in patients treated with neoadjuvant chemotherapy alone, which was below 30% in our previous trials. High pathologic regression rates were also shown in two previously published trials with combined neoadjuvant chemotherapy and immunotherapy. The NADIM trial included only stage IIIA patients and demonstrated an MPR rate of 83% and a 2-year PFS of 77.1% in resected patients with the combination of carboplatin, paclitaxel, and nivolumab. In the trial by Shu et al, combined chemoimmunotherapy with atezolizumab in patients with stage IB-IIIA NSCLC resulted in an MPR rate of 57% and a pCR rate of 33%. In the latter trial, patients who achieved an MPR also had a numerically longer disease-free survival according to a post hoc analysis. Similarly, a post hoc analysis of our data showed a correlation between MPR and improved EFS as well as OS. Although pathologic regression is a well-established predictor of EFS and OS with neoadjuvant chemotherapy, its value for patients treated with immune checkpoint inhibitors has not yet been proven. Our trial and other recently published data seem to support the relevance of MPR and will contribute to the discussion around adequate surrogate end points for neoadjuvant trials and might influence the design of future trials.

Mediastinal lymph node clearance in patients with confirmed mediastinal lymph node involvement is one of the most important prognostic factors after neoadjuvant chemotherapy. In our trial, almost half of the patients achieved nodal clearance, which was a relevant predictor for EFS and OS. Similar findings were observed in other trials investigating combined chemoimmunotherapy.

In our trial, pathologic responses were observed independently of tumor PD-L1 expression confirming results from other neoadjuvant trials with immune checkpoint inhibitors. The clinical value of an immunotherapy in early-stage NSCLC has not been clarified yet. Several randomized trials are currently investigating their use in the adjuvant and neoadjuvant setting. As in the NADIM trial, patients in our trial received adjuvant immunotherapy for one year postoperatively. This was not the case in other neoadjuvant trials. The role of adjuvant immune checkpoint inhibitors is currently evaluated in several randomized phase III trials.

Our trial includes a comprehensive translational research program for which we collected serially blood and stool
samples. These projects are still ongoing and may provide further insights into the activity of perioperative immunotherapy in stage IIIA(N2) NSCLC.

In summary, the SAKK 16/14 trial is the largest published trial of perioperative anti-PD-L1 therapy in addition to neoadjuvant chemotherapy in patients with resectable stage IIIA(N2) NSCLC. The treatment resulted in a high 1-year EFS rate of 73%. Our results show that the addition of perioperative durvalumab to neoadjuvant chemotherapy with cisplatin and docetaxel in patients with resectable stage IIIA(N2) NSCLC is a highly active and safe therapy that needs to be further investigated.

AFFILIATIONS
1Department of Medical Oncology and Comprehensive Cancer Center, University Hospital Basel, Basel, Switzerland
2SAKK Coordinating Center, Bern, Switzerland
3Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
4Department of Oncology, HFR Fribourg—Hôpital fribourgeois, Fribourg, Switzerland
5Department of Oncology/Hematology, Cantonal Hospital St Gallen, St Gallen, Switzerland
6Department of Oncology, Inselspital Bern, Bern, Switzerland
7Division of Thoracic Surgery, University Hospital Basel, Basel, Switzerland
8Department of Thoracic and Visceral Surgery, Cantonal Hospital Winterthur, Winterthur, Switzerland
9Department of Oncology, Cantonal Hospital Winterthur, Winterthur, Switzerland
10Department of Medical Oncology and Hematology, Comprehensive Cancer Center Zurich, University Hospital Zurich, University of Zurich, Zurich, Switzerland
11Department of Thoracic Surgery, University Hospital of Zurich, Zurich, Switzerland
12Department of Oncology, University Hospital Lausanne CHUV, Lausanne, Switzerland
13Division of Oncology/Hematology, Cantonal Hospital Graubünden, Chur, Switzerland
14Department of Oncology/Hematology, Cantonal Hospital Aarau, Aarau, Switzerland
15Department of Oncology, University Hospital Baden, Baden, Switzerland
16Department of Oncology, University Hospital Geneva, Geneva, Switzerland
17Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
18Division of Medical Oncology, St Clarapistal, Basel, Switzerland
19Centre de Chimothérapie Anti-Cancéreuse, Lausanne, Switzerland
20Department of Thoracic Surgery, University Hospital Lausanne CHUV, Lausanne, Switzerland

CORRESPONDING AUTHOR
Sacha I. Rothschild, MD, PhD, Department of Medical Oncology and Comprehensive Cancer Center, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; e-mail: sacha.rothschild@usb.ch.

DISCLAIMER
The trial was designed by the sponsor and the investigators. The study funders had no role in trial design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the trial and had final responsibility for the decision to submit the manuscript for publication.

REFERENCES
1. Goldstraw P, Chansky K, Crowley J, et al: The IASLC Lung Cancer Staging Project: Proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM classification for lung cancer. J Thorac Oncol 11:39-51, 2016

PRIOR PRESENTATION
Presented at the 2020 ASCO Annual Meeting (Virtual), May 29–June 2, 2020 (abstr 9016) and the 2020 European Society for Medical Oncology Congress (Virtual), September 19-21, 2020 (abstr 1237MO).

SUPPORT
Supported by research agreements with the following institutions: Swiss State Secretary for Education, Research and Innovation (SERI), Swiss Cancer Research Foundation (SCS), and Swiss Cancer League (SCL). Research funding for translational research projects was granted by Gateway for Cancer Research and Rising Tide Foundation. AstraZeneca provided drug and financial support.

CLINICAL TRIAL INFORMATION
NCT02572843

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
Disclosures provided by the authors are available with this article at DOI https://doi.org/10.1200/JCO.21.00276.

DATA SHARING STATEMENT
The trial Protocol did not include a data sharing plan. Therefore, data from the trial will not be shared publicly as data sharing was not included when ethical approval was requested. The full trial Protocol is available with this article at DOI: https://doi.org/10.1200/JCO.21.00276.

AUTHOR CONTRIBUTIONS
Conception and design: Sacha I. Rothschild, Alfred Zippelius, Eric I. Eboulet, Walter Weder, Michel Gonzalez, Miklos Pless
Provision of study materials or patients: Sacha I. Rothschild, Alfred Zippelius, Spasenija Savic Prince, Daniel Betticher, Adrienne Bettini, Martin Früh, Markus Joerger, Didier Lardinois, Hans Gelpke, Laetitia A. Mauti, Christian Britschgi, Walter Weder, Solange Peters, Michael Mark, Richard Cathomas, Adrian F. Ochsenbein, Wolf-Dieter Janthur, Christine Wabel, Nicolas Mach, Patrizia Froesch, Martin Buess, Pierre Bohanes, Michel Gonzalez, Miklos Pless
Collection and assembly of data: Sacha I. Rothschild, Eric I. Eboulet, Spasenija Savic Prince, Daniel Betticher, Adrienne Bettini, Martin Früh, Markus Joerger, Didier Lardinois, Christian Britschgi, Solange Peters, Michael Mark, Richard Cathomas, Adrian F. Ochsenbein, Wolf-Dieter Janthur, Christine Wabel, Nicolas Mach, Patrizia Froesch, Martin Buess, Pierre Bohanes, Gilles Godar, Corinne Rusterholz, Miklos Pless
Data analysis and interpretation: Sacha I. Rothschild, Alfred Zippelius, Eric I. Eboulet, Spasenija Savic Prince, Miklos Pless
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors
2. Siegel RL, Miller KD, Jemal A: Cancer statistics, 2020. CA Cancer J Clin 70:7-30, 2020
3. Pless M, Stupp R, Ris H-B, et al: Induction chemoradiation in stage IIIA(N2) non-small-cell lung cancer: A phase 3 randomised trial. Lancet 386:1049-1056, 2015
4. Albain KS, Swann RS, Rusch VW, et al: Radiotherapy plus chemotherapy with or without surgical resection for stage III non-small-cell lung cancer: A phase III randomised controlled trial. Lancet 376:379-386, 2009
5. Le Peuchoux C, Pounel N, Barlesi F, et al: An international randomized trial, comparing post-operative conformal radiotherapy (PORT) to no PORT, in patients with completely resected non-small-cell lung cancer (NSCLC) and mediastinal N2 involvement. Primary end-point analysis of Lung ART (IFCT-0503). Ann Oncol 31:S178, 2020
6. Böttcher DC, Hsu Schmitz S-FF, Totsch M, et al: Mediastinal lymph node clearance after docetaxel-cisplatin neoadjuvant chemotherapy is prognostic of survival in patients with stage IIIA pN2 non-small-cell lung cancer: A multicenter phase II trial. J Clin Oncol 21:1752-1759, 2003
7. Böttcher DC, Hsu Schmitz S-F, Totsch M, et al: Prognostic factors affecting long-term outcomes in patients with resected stage IIIA pN2 non-small cell lung cancer: 5-year follow-up of a phase II study. Br J Cancer 94:1099-1106, 2006
8. Früh M, Böttcher DC, Stupp R, et al: Multimodal treatment in operable stage III NSCLC: A pooled analysis on long-term results of three SAKK trials (SAKK 16/96, 16/00, and 16/01). J Thorac Oncol 14:115-123, 2019
9. Remon J, Passiglia F, Ahn MJ, et al: Immune checkpoint inhibitors in thoracic malignancies: Review of the existing evidence by an IASLC expert panel and recommendations. J Thorac Oncol 15:91-947, 2020
10. Antonia SJ, Villegas A, Daniel D, et al: Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med 379:2342-2350, 2018
11. Liu J, Blanke SJ, Yong MCR, et al: Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease. Cancer Discov 6: 1392-1399, 2016
12. Forde PM, Chaft JE, Smith KN, et al: Neoadjuvant PO-1 blockade in resectable lung cancer. N Engl J Med 378:1976-1986, 2018
13. Kwaśniewski DJ, Rusch VW, Chaft JE, et al: Neoadjuvant atezolizumab in resectable non-small cell lung cancer (NSCLC): Interim analysis and biomarker data from a multicenter study (LCMC3). J Clin Oncol 37, 2019 (suppl; abstr 8503)
14. Cascione T, William WN, Weissferdt A, et al: Neoadjuvant nivolumab or nivolumab plus ipilimumab in operable non-small cell lung cancer: The phase 2 randomized NEOSTAR trial. Nat Med 27:504-514, 2021
15. Wisse M, Mazieres J, Lavole A, et al: Neoadjuvant durvalumab in resectable non-small cell lung cancer (NSCLC): Preliminary results from a multicenter study (IFCT-1601 IONESCO). Ann Oncol 31, 2020 (suppl 4; abstr 12140)
16. Gao S, Li N, Gao S, et al: Neoadjuvant PO-1 inhibitor (sintilimab) in NSCLC. J Thorac Oncol 15:816-826, 2020
17. Ready N, Tong BC, Clarke J, et al: Neoadjuvant pembrolizumab in early stage non-small cell lung cancer (NSCLC): Toxicity, efficacy, and surgical outcomes. J Thorac Oncol 14, 2019 (suppl; abstr P2.04-89)
18. Provencio M, Nadal E, Insa A, et al: Neoadjuvant chemotherapy and nivolumab in resectable non-small-cell lung cancer (NADIM): An open-label, multicentre, single-arm, phase 2 trial. Lancet Oncol 21:1413-1422, 2020
19. Shu CA, Gainor JF, Awad MM, et al: Neoadjuvant atezolizumab and chemotherapy in patients with resectable non-small-cell lung cancer: An open-label, multicentre, single-arm, phase 2 trial. Lancet 21:786-795, 2020
20. Brunelli A, Charloux A, Boullier CT, et al: The European Respiratory Society and European Society of Thoracic Surgeons guidelines for radical treatment (surgery and chemoradiotherapy) in patients with lung cancer. Eur J Cardiothorac Surg 36:181, 2009
21. Rami-Porta R, Wittekind C, Goldstraw P: Complete resection in lung cancer surgery: Proposed definitions. J Thorac Oncol 10:1243-1260, 2015
22. Travis WD, Brambilla E, Nicholson AG, et al: The 2015 World Health Organization classification of lung tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol 10:1243-1260, 2015
23. Schneider F, Butnor KJ, Beasley MB, et al: Protocol for the examination of resection specimens from patients with primary non-small cell carcinoma, small cell carcinoma, or carcinoid tumor of the lung. Arch Pathol Lab Med 133:1552-1559, 2020
24. Juncker K, Langner K, Klinke F, et al: Grading of tumor regression in non-small cell lung cancer: 5-year follow-up of a surrogate endpoint. Lancet Oncol 15:e42-e50, 2014
25. Hellmann MD, Chaft JE, William WN, et al: Pathological response after neoadjuvant chemotherapy in resectable non-small-cell lung cancers: Proposal for the use of major pathological response as a surrogate endpoint. Lancet 15:e42-e50, 2014
26. Lardinois D, De Leyn P, Van Schil P, et al: ESTS guidelines for intraoperative lymph node staging in non-small cell lung cancer. Eur J Cardiothorac Surg 30: 787-792, 2006
27. Reuss JE, Anagnostou V, Cottrell TR, et al: Neoadjuvant nivolumab plus ipilimumab in resectable non-small cell lung cancer. J Immunother Cancer 8:e001282, 2020
28. Cascone T, William WN, Weissferdt A, et al: Neoadjuvant nivolumab (N) or nivolumab plus ipilimumab (NI) for resectable non-small cell lung cancer (NSCLC): Clinical and correlative results from the NEOSTAR study. J Clin Oncol 37, 2019 (suppl; abstr 8504)
AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
SAKK 16/14: Durvalumab in Addition to Neoadjuvant Chemotherapy in Patients With Stage IIIA(N2) Non–Small-Cell Lung Cancer—A Multicenter Single-Arm Phase II Trial

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/jco/authors/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Sacha I. Rothschild
Consulting or Advisory Role: Bristol Myers Squibb, AstraZeneca, Boehringer Ingelheim, Eisai, Roche, Novartis, Merck Serono, MSD Oncology, Pfizer, Takeda, AbbVie
Research Funding: Boehringer Ingelheim, AstraZeneca, Bristol Myers Squibb, Eisai, Merck Serono, AbbVie
Expert Testimony: Roche, AstraZeneca, Bristol Myers Squibb
Travel, Accommodations, Expenses: Roche Pharma AG, Lilly, Bristol Myers Squibb, AstraZeneca, Merck Sharp & Dohme, Amgen

Alfred Zippelius
Honoraria: BMSi, MSD, Roche, NBE Therapeutics, ACM Pharma, Hookipa Biotech, Beyondspring Pharmaceuticals
Research Funding: Roche, NBE Therapeutics, Secarna, ACM Pharma, Hookipa Biotech, Beyondspring

Spasenija Savic Prince
Consulting or Advisory Role: Diaceutics Ireland Limited, Merck (Schweiz) AG, AstraZeneca AG

Daniel Betticher
Travel, Accommodations, Expenses: Bayer

Adrienne Bettini
Honoraria: MSD Oncology
Consulting or Advisory Role: MSD Oncology, AstraZeneca
Travel, Accommodations, Expenses: Janssen Oncology

Martin Früh
Consulting or Advisory Role: BMS, AstraZeneca, MSD, Takeda, Roche, Lilly
Speakers’ Bureau: Pfizer
Research Funding: BMS, AstraZeneca

Markus Joerger
Consulting or Advisory Role: Novartis, AstraZeneca, Basilea Pharmaceutical, Bayer, Bristol Myers Squibb, Debiopharm Group, Merck, Roche, Sanofi
Research Funding: AstraZeneca, Basilea Pharmaceutical, Bayer, Bristol Myers Squibb, Daiichi Sankyo, Immunophotonics, InnoMedica, Janssen Oncology, Lilly, Merck, Novartis, Pfizer, PharmaMar, Roche, Sanofi, Takeda

Laetitia A. Mauti
Consulting or Advisory Role: Takeda, Roche, AstraZeneca, Bristol Myers Squibb, Merck, Roche, AstraZeneca

Christian Britschgi
Consulting or Advisory Role: AstraZeneca, Pfizer, Roche, Takeda, Janssen-Cilag, Boehringer Ingelheim
Travel, Accommodations, Expenses: AstraZeneca, Takeda

Walter Weder
Consulting or Advisory Role: AstraZeneca, Covidiend/Medtronic
Speakers’ Bureau: AstraZeneca, Covidiend/Medtronic
Travel, Accommodations, Expenses: AstraZeneca, Covidiend/Medtronic

Solangie Peters
Honoraria: Roche, Bristol Myers Squibb, Novartis, Pfizer, MSD, AstraZeneca, Takeda, Illumina, Medscape
Consulting or Advisory Role: Roche/Genentech, Novartis, Bristol Myers Squibb, Pfizer, MSD, Amgen, AstraZeneca, Janssen, Regeneron, Merck Serono, Boehringer Ingelheim, Takeda, Lilly, AbbVie, Bayer, Biocartis, Debiopharm Group, Illumina, PharmaMar, Sanofi, Seattle Genetics, Blueprint Medicines, Daiichi Sankyo, Incyte, Bioinvent, Clovis Oncology, Vaccibody, Phosplatin Therapeutics
Research Funding: Roche, BMS, MSD, Amgen, Lilly, AstraZeneca, Pfizer, Illumina, Merck Serono, Novartis, Bafosidis, Boehringer Ingelheim, Iovance Biotherapeutics, Phosplatin Therapeutics
Expert Testimony: Roche, Bristol Myers Squibb, MSD, Sanofi, Incyte
Travel, Accommodations, Expenses: Roche, Bristol Myers Squibb, MSD, Sanofi, Incyte

Uncompensated Relationships: Journal of Thoracic Oncology, ESMO, European Thoracic Oncology Platform (ETOP), Annals of Oncology

Michael Mark
Consulting or Advisory Role: Roche, AstraZeneca, Takeda, BMS, MSD Oncology
Travel, Accommodations, Expenses: Pfizer, Roche, Takeda

Richard Cathomas
Honoraria: Janssen-Cilag, Astellas Pharma, BMS, Debiopharm Group
Consulting or Advisory Role: Astellas Pharma, Bristol Myers Squibb, Pfizer, Roche, MSD Oncology, Janssen-Cilag, Bayer, Sanofi, Ipsen
Travel, Accommodations, Expenses: AstraZeneca

Adrian F. Ochsbein
Consulting or Advisory Role: Tolremo
Research Funding: argenx
Patents, Royalties, Other Intellectual Property: Patent on the anti-CD70 antibody cusatuzumab

Wolf-Dieter Janthur
Consulting or Advisory Role: Roche, Takeda, MSD, Novartis

Nicolas Mach
Stock and Other Ownership Interests: MaxiVAX SA
Research Funding: MaxiVax
Patents, Royalties, Other Intellectual Property: I am an inventor on patent owned by MaxiVAX SA and on patent co-owned by Geneva University Hospital and MaxiVAX SA

Uncompensated Relationships: MaxiVax

Patrizia Froesch
Consulting or Advisory Role: Pfizer, Takeda, Roche, Boehringer Ingelheim, AstraZeneca, Novartis, Bayer

Pierre Bohanes
Honoraria: MSD, Bayer
Travel, Accommodations, Expenses: Janssen

Corinne Rusterholz
Employment: Roche

Miklos Pless
Honoraria: Janssen-Cilag
Consulting or Advisory Role: AbbVie, AstraZeneca, Boehringer Ingelheim, Bristol Myers Squibb, Esai Europe, MSD Oncology, Novartis, Pfizer/EMD Serono, Roche, Takeda, Merck Serono
Expert Testimony: Takeda
Travel, Accommodations, Expenses: Vifor Pharma, Bristol Myers Squibb, Boehringer Ingelheim, AstraZeneca

No other potential conflicts of interest were reported.
APPENDIX

TABLE A1. PD-L1 Expression Status on Tumor Cells

PD-L1 Expression	Patients (n = 67), No. (%)
\geq 50%	12 (18)
\geq 25%	13 (19)
\geq 1%	32 (48)
< 1%	17 (25)
Unknown	18 (27)

Abbreviation: PD-L1, programmed cell death–ligand 1.

TABLE A2. Radiographic Response

Response	After Chemotherapy (n = 67), No. (%)	After Durvalumab (n = 62), No. (%)
CR	2 (3)	4 (7)
PR	27 (40)	32 (52)
Objective response	29 (43) (95% CI, 31 to 56)	36 (58) (95% CI, 45 to 71)
SD	30 (45)	16 (26)
PD	3 (5)	4 (7)
NE	2 (2)	4 (7)
Missing	3 (5)a	2 (3)a

Abbreviations: CR, complete remission; NE, not evaluable; PD, progressive disease; PR, partial remission; SD, stable disease.

aTumor assessment not done (n = 1), withdrawn by physician (n = 1), and patient refusal (n = 1).

TABLE A3. Treatment-Related AEs During Neoadjuvant Chemotherapy (n = 67)

AE	Grades 1 and 2	Grade 3	Grade 4
Hematologic			
Anemia	3 (5)	2 (3)	
Febrile neutropenia	3 (5)		
Neutropenia	2 (3)	6 (9)	6 (9)
Thrombocytopenia	5 (8)	1 (2)	
Nonhematologic			
Abdominal pain	10 (15)	2 (3)	
Acute kidney injury	10 (15)	2 (3)	
Alopecia	36 (54)		
Anaphylaxis	1 (2)		
Anorexia	19 (28)	5 (8)	
Atrial fibrillation	1 (2)		
Catheter-related infection	1 (2)		
Colitis	1 (2)		
Constipation	16 (24)		
Dehydration	1 (2)	4 (6)	
Diarrhea	27 (40)	9 (13)	
Dysgeusia	36 (54)		

(continued on following page)
Table A3. Treatment-Related AEs During Neoadjuvant Chemotherapy (n = 67) (continued)

AE	Grades 1 and 2	Grade 3	Grade 4
Dyspnea	2 (3)		
Fatigue	31 (46)	9 (13)	
Heart failure		1 (2)	
Hypokalemia	1 (2)		1 (2)
Hypomagnesemia	1 (2)	1 (2)	
Hyponatremia	3 (5)		
Lung infection		4 (6)	
Mucositis oral	7 (11)		
Myalgia	7 (11)		
Palmar-plantar erythrodysesthesia syndrome	1 (2)	1 (2)	
Paresthesia	8 (12)		
Peripheral sensory neuropathy	20 (30)		
Pruritus	2 (3)	1 (2)	
Sepsis		1 (2)	
Small-intestinal mucositis		1 (2)	
Syncope		1 (2)	
Tinnitus	23 (34)		
Vomiting	21 (31)	1 (2)	

NOTE. Data are presented as No. (%). Shown are the treatment-related AEs of any grade that occurred in more than 10% of patients or any treatment-related AEs of grade 3 or higher. No grade 5 treatment-related AEs were observed.

Abbreviation: AE, adverse event.