Genetic variation in XPD predicts treatment outcome and risk of acute myeloid leukemia following chemotherapy

James M. Allan, Alexandra G. Smith, Keith Wheatley, Robert K. Hills, Lois B. Travis, Deirdre A. Hill, David M. Swirsky, Gareth J. Morgan, and Christopher P. Wild

The xeroderma pigmentosum group D (XPD) gene encodes a DNA helicase that functions in nucleotide excision repair of chemotherapy-induced DNA damage, the efficiency of which is predicted to be affected by a lysine to glutamine variant at codon 751. We hypothesized that this constitutive genetic variant may modify clinical response to chemotherapy, and we have examined its association with outcome following chemotherapy for acute myeloid leukemia (AML) in 341 elderly patients entered into the United Kingdom Medical Research Council AML 11 trial, and with the risk of developing chemotherapy-related AML. Among subjects treated for AML, disease-free survival at one year was 44% for lysine homozygotes, compared with 36% for heterozygotes and 16% for glutamine homozygotes (hazard ratio [HR], 1.30; 95% confidence interval [CI], 1.01-1.70; \(P = .04 \)). Similarly, overall survival at one year was 38% for lysine homozygotes, 35% for heterozygotes, and 23% for glutamine homozygotes (HR, 1.18; 95% CI, 0.99-1.41; \(P = .07 \)). Furthermore, homozygosity for the XPD codon 751 glutamine variant was associated with a significantly increased risk of developing AML after chemotherapy (odds ratio, 2.22 for Gin/Gin vs Lys/Lys; 95% CI, 1.04-4.74). These data suggest that the XPD codon 751 glutamine variant protects against myeloid cell death after chemotherapy. (Blood. 2004;104:3872-3877)

© 2004 by The American Society of Hematology
is predicted to affect protein function and has been shown to
modulate cellular response to genotoxins,23-26 and also outcome in
patients treated with chemotherapy.27 However, conflicting results
have led to suggestions that functionality of the codon 751
polymorphism may be exposure- and pathway-specific, affecting
both DNA repair and cell death.28 Consistent with a role for XPD in
cell death, P53-mediated apoptosis is attenuated in XPD mutated
fibroblasts.29,30 Furthermore, P53 interacts directly with the car-
boxy terminus of XPD, which includes the polymorphic codon
751 residue.28

We hypothesized that any functional effect of the XPD codon
751 variant in myeloid cells, both leukemic and normal, may be
amplified following exposure to chemotherapy, giving rise to an
altered clinical response. In order to test this hypothesis, we
determined association of the XPD codon 751 polymorphism with
outcome of 341 AML patients treated with chemotherapy in the
United Kingdom Medical Research Council AML 11 trial, and also
with susceptibility to developing AML after chemotherapy.

Patients, materials, and methods

Subjects

We examined XPD codon 751 polymorphism status in 4 groups of
individuals (Table 1): 341 AML cases enrolled in the United Kingdom
Medical Research Council AML 11 trial, 420 de novo AML cases and 729
noncancer controls recruited as part of a United Kingdom Leukaemia
Research Fund case-control study, and 91 therapy-related AML (t-AML) cases.

AML 11 cases

DNA was available from 341 patients enrolled into the United Kingdom
Medical Research Council AML 11 trial between November 1990 and June
1998 (Table 1). All patients signed an informed consent before entering the
study. The demographic and clinical characteristics of the 341 patients who
took part in this study were not significantly different from the 1314 patients
enrolled in the AML11 study as a whole. Full details of this trial have been
published elsewhere.31,32 Briefly, elderly patients (> 60 years of age)
diagnosed with any form of de novo or secondary AML (secondary disease
is defined as AML after a prior diagnosis of myelodysplasia syndrome or
after previous therapy) were enrolled in the AML 11 trial, which incorpo-
rated 3 randomizations. Patients were initially randomized to receive
induction therapy with either DAT (daunorubicin, cytarabine, 6-thiogua-
nine), ADE (cytarabine, daunorubicin, etoposide), or MAC (mitoxantrone,
cytarabine) for the first 2 courses. Patients who were in remission after 2
courses of induction therapy were given DAT consolidation therapy.
The second randomization was between short consolidation (no further treat-
ment) and long consolidation (3 additional courses: COAP [cyclophospha-
mide, vincristine, cytosine arabinoside, prednisolone], DAT, and COAP).
The third randomization was between interferon-α maintenance for one
year versus no maintenance.

A bone marrow aspirate containing less than 5% leukemic blast cells
and showing normal maturation of other cell lineages was the criterion for
the achievement of complete remission. Remission failure was classified by
the investigating clinician as either induction death (related to treatment
and/or hypoplasia) or resistant disease. Overall survival was defined as the
time from entry into the trial to death, and disease-free survival was defined as
the time from complete remission to either disease relapse or death in
remission. The date of the last follow-up was June 1, 2003. Patients lost to
follow-up (n = 3) were censored at the date they were last known to be alive.

The results of the AML11 trial have been published elsewhere.31
Briefly, the complete remission rate of patients allocated to DAT (62%) was
significantly higher than that of patients allocated to either ADE (50%) or
MAC (55%). However, there were no differences between the induction
schedules with respect to disease-free survival or overall survival. There
were also no differences between short consolidation versus long consolida-
tion or interferon maintenance versus no maintenance with respect to
disease-free survival or overall survival. As such, for the purposes of the
present study we have collapsed all induction and consolidation groups.

Overall survival was affected by cytogenetics (karyotype), presenting
white blood cell count, age, performance status, and type of AML (de novo
disease [n = 241] vs secondary disease [n = 97]; 3 cases were unclassi-
fied).32 As such, we tested for association between these prognostic markers
and XPD codon 751 polymorphism status.

Leukaemia Research Fund cases and unaffected controls

De novo AML (n = 420) and control group participants (n = 729) donated
blood as part as part of a large population-based case-control study of acute
leukemia, which has been fully described elsewhere.33 All patients signed
informed consent before entering the study. All patients were between 16
and 69 years of age, and were diagnosed with AML between April 1991 and
December 1996, while resident in parts of the north and southwest of
England. All diagnoses were pathologically confirmed. Patients were
considered ineligible if, prior to a diagnosis of acute leukemia, they had
been diagnosed with chronic myeloid leukemia or myelodysplastic syn-
drome within the previous 6 months, or any malignancy within the previous
2 years. From the general practice where the patient was registered, 2
controls per patient, individually matched on sex, age, and ethnic origin,
were randomly selected. All patients and controls signed an informed
consent before entering the study.

Table 1. Description of study subjects

Variable	AML 11	Controls	De novo AML	All cases	Radiotherapy only	Chemotherapy*	
No.	341	729	420	91	40	51	
Sex							
Male, no. (%)	143 (42)	393 (54)	227 (54)	36 (40)	11 (28)	25 (49)	
Female, no. (%)	198 (58)	336 (46)	193 (46)	55 (60)	29 (73)	26 (51)	
Age, y	Mean (standard deviation)	66.9 (5.5)	48.1 (14.3)	47.5 (14.5)	55.3 (13.6)	61.0 (8.5)	50.8 (14.8)
Median	66.6	50.3	49.9	58.7	62.1	52.7	
Age groups							
16 to 39 y, no. (%)	0	218 (30)	132 (31)	16 (18)	0	16 (31)	
40 to 59 y, no. (%)	38 (11)	322 (44)	180 (43)	34 (37)	17 (43)	17 (33)	
60 to 69 y, no. (%)	206 (60)	189 (26)	108 (26)	41 (45)	23 (58)	18 (35)	
70 to 74 y, no. (%)	72 (21)	0	0	0	0	0	
75 y or more, no. (%)	25 (7)	0	0	0	0	0	

*Nineteen patients also received radiotherapy.
t-AML case series

For this study, t-AML is defined as AML diagnosed at least 2 months after the start of initial chemotherapy and/or radiotherapy. All 91 t-AML patients have been described elsewhere.\(^5^,\)\(^3\) Of the t-AML patients, 24 were identified in the Leukaemia Research Fund acute leukemia case-control study.\(^1\) DNA samples from an additional 67 individuals with t-AML were obtained from subjects enrolled in the United Kingdom Medical Research Council AML trials (n = 10; n = 33), and 12 (n = 28).\(^3\)\(^3\)\(^5\) There were 40 t-AML patients who had previous exposure to radiotherapy only. There were 51 t-AML cases that occurred after treatment with chemotherapy, with 19 also receiving radiotherapy. Among the 35 cases for which specific chemotherapeutic agents were documented, the majority (n = 30) had prior exposure to combination chemotherapy, of which alkylating agents were the most common component.\(^5\)

DNA extraction

DNA was extracted from whole frozen blood (AML incidence case-control study and AML 11 prognostic study) using proteinase K digestion and phenol/chloroform extraction, or from archived bone marrow smears (for some t-AML cases) using the QIAamp mini DNA extraction kit according to the manufacturer’s recommendations for archived bone marrow (Qiagen, Hilden, Germany).

XPD codon 751 genotyping

XPD genotyping was performed using a polymerase chain reaction restriction fragment length polymorphism (RFLP). Briefly, exon 23 of XPD was amplified using AmpliTaq Gold (Applied Biosystems, Foster City, CA), forward primer (5' atcgtgctcctactggctc 3') and reverse primer (5' tggcacgtgacagtgaat 3'), with the following amplification conditions: 1 cycle of 95°C for 15 minutes; 36 cycles of 95°C for 1 minute, 56°C for 1 minute, and 72°C for 1 minute; followed by 1 cycle of 72°C for 10 minutes. Digestion of the resulting 324-bp amplicon with XpaI that resulted in generation of 100-bp and 224-bp fragments corresponded to individuals heterozygous for the codon 751 polymorphism. Approximately 4% of all cases and controls were genotyped using direct sequencing; concordance with RFLP genotyping was 100%.

Statistical analysis

In the AML 11 prognostic study, \(\chi^2 \) tests for heterogeneity and for trend were used to test for association between XPD genotype and prognostic markers (age, sex, presenting white blood cell count, performance status, French-American-British (FAB) type, cytogenetics, and diagnosis (de novo AML vs secondary AML)) and dichotomous outcomes (remission, induction death, resistant disease). For time to event data, Kaplan-Meier survival curves were constructed for each XPD codon 751 genotype group and compared using the log-rank test. Tests for trend were used for comparisons of outcome by the 3 XPD codon 751 genotype groups. Disease-free survival and overall survival analyses were adjusted for cytogenetic status, age, performance status, and white blood cell count. All \(P \) values are 2-tailed. All analyses were conducted using SAS (Cary, NC).

For the AML and t-AML incidence case-control analysis, odds ratios and 95% confidence intervals, adjusted for age and sex, were estimated using unconditional logistic regression.\(^5\) XPD codon 751 was analyzed as a trichotomous variable (Lys/Lys, Lys/Gln, Gln/Gln) using the lysine homoyz-gotes as the reference group. Due to a considerably stronger association with leukemogenesis,\(^1\) chemotherapy was given precedence over radiotherapy; t-AML cases who received both modalities (n = 19) were grouped with those who received chemotherapy alone, as described previously.\(^5\) All analyses were conducted using Stata, 1999 (Stata, College Station, TX).

Results

XPD polymorphism and outcome after chemotherapy

We first determined association of the XPD codon 751 variant with outcome after chemotherapy in 341 elderly patients with AML. Of the patients, 134 (39%) were homozygous for the lysine-encoding allele, 163 (48%) were heterozygous, and 44 (13%) were homozygous for the glutamine-encoding allele. There were no significant differences between the polymorphism subgroups according to age, sex, presenting white blood cell count, secondary status, FAB type, or performance status (data not shown). However, there was an association between XPD genotype and cytogenetic status. Of 341 patients, 308 were successfully tested for cyto genetic status, and individuals who were carriers of at least one glutamine-encoding allele were more likely to have a karyotype associated with adverse prognosis (test for trend, \(P = .008; \) Table 2).\(^3\) The association between XPD genotype and prognostic cytogenetic status was not seen in the t-AML case series as a whole (test for trend, \(P = .62; \) Table 2), but was evident in those cases whose leukemia developed after any form of chemotherapy (test for trend, \(P = .02; \) Table 2).

Table 2. XPD codon 751 polymorphism status and association with prognostic cytogenetic status

XPD codon 751	All cases, no.	Favorable, no. (%)	Intermediate, no. (%)	Adverse, no. (%)	Cytogenetics not known, no.
AML11	308	19 (100)	235 (100)	54 (100)	33
Lys/Lys	122	13 (68)	93 (40)	16 (30)	12
Lys/Gln	144	6 (32)	109 (46)	29 (54)	19
Gln/Gln	42	0	33 (14)	9 (17)	2
t-AML (all cases)*	71	9	40	22	20
Lys/Lys	29	4 (44)	17 (43)	8 (36)	7
Lys/Gln	28	5 (56)	16 (40)	7 (32)	12
Gln/Gln	14	0	7 (18)	7 (22)	1
t-AML after chemotherapy	38	3	20	15	13
Lys/Lys	13	2 (67)	9 (45)	2 (13)	4
Lys/Gln	13	1 (33)	6 (30)	6 (40)	8
Gln/Gln	12	0	5 (25)	7 (47)	1

Favorable defined as cases with t(8;21), t(15;17), or inv(16), irrespective of the presence of additional cytogenetic abnormalities; adverse defined as cases lacking a favorable abnormality but with 5 or more unrelated abnormalities, \(7^\), \(5^\), del(5q), or any 3q abnormality; all remaining cases composed the intermediate risk group, and included cases with normal karyotype, \(+8 \) or 11q23 abnormalities. In the test for trend between XPD genotype and prognostic cytogenetic status, for AML11, \(P = .008; \) for t-AML, \(P = .62; \) for t-AML after chemotherapy, \(P = .02.\)

*Includes 30 cases common with the AML11 case series.
The complete remission rate of all cases was 55%. There was no significant difference in complete remission rates between individuals homozygous for the glutamine-encoding allele (45%), lysine homozygotes (56%), and heterozygotes (58%) (test for trend, \(P = .8 \); Table 3). There were 152 (45%) patients who failed to achieve complete remission (Table 3), with 83 of these due to resistant disease and 69 due to induction death. *XPD* genotype was not significantly associated with either resistant disease (test for trend, \(P = .8 \)) or induction death (test for trend, \(P = 1.0 \); Table 3).

Disease-free survival and overall survival of all patients at one year was 37% and 35%, respectively (Table 3). The *XPD* codon 751 variant was associated with both disease-free survival and overall survival. Specifically, disease-free survival at one year for lysine homozygotes, heterozygotes, and glutamine homozygotes was 44%, 36%, and 16%, respectively (adjusted hazard ratio [HR], 1.30; 95% confidence interval [CI], 1.01-1.70; test for trend, \(P = .04 \)) (Table 3; Figure 1). Consistent with this, overall survival at one year for lysine homozygotes, heterozygotes, and glutamine homozygotes was 38%, 35%, and 23%, respectively (adjusted HR, 1.19; 95% CI, 0.99-1.41; \(P = .07 \)) (Table 3; Figure 1).

These data suggest a role for the *XPD* codon 751 polymorphism in modulating clinical outcome after chemotherapy for AML, and specifically that the glutamine variant confers greater protection against chemotherapy-induced leukemic blast cell death relative to the lysine variant, giving rise to earlier disease relapse and ultimately to shorter overall survival.

XPD polymorphism and risk of AML

Given that the codon 751 polymorphism may modulate myeloid leukemic blast cell death after chemotherapy, we next wished to address association of this variant with risk of developing myeloid leukemia, particularly t-AML arising after chemotherapy. In order to do this, we determined the *XPD* codon 751 polymorphism status of 420 cases of de novo AML, 91 cases of t-AML, and 729 noncancer controls. *XPD* codon 751 polymorphism was not significantly associated with risk of de novo AML (Table 4). However, it is possible that cell death does not significantly contribute to determining de novo AML risk, or that NER is not involved in repairing DNA damage induced by endogenous or environmental leukemogens. In order to further examine these 2 possibilities, we determined the *XPD* codon 751 genotype distribution in a case series of 51 individuals who developed t-AML as a consequence of chemotherapy for a prior condition. The majority of these cases had prior exposure to alkylating agents, including melphalan, chlorambucil, mitomycin C, and cisplatin derivatives, many of which are human leukemogens and all of which induce DNA damage that is repaired by NER. Furthermore, therapeutic doses of many of these chemotherapy agents cause acute and severe bone marrow toxicity. Thus, the ability to appropriately engage apoptosis after chemotherapy, eliminating mutated myeloid precursor cells, is likely to play a critical role in protecting against the development of t-AML. Consistent with a role for the *XPD* glutamine variant in protecting against chemotherapy-induced myeloid cell death, and potentiating the survival of mutated clones, individuals homozygous for the glutamine-encoding allele were significantly overrepresented in t-AML cases after chemotherapy, compared with controls (odds ratio [OR], 2.22 [Gln/Gln vs Lys/Lys]; 95% CI, 1.04-4.74; Table 4).

We also determined the *XPD* codon 751 genotype distribution in a series of 40 t-AML cases whose disease developed subsequent to radiotherapy only. The toxicity and mutagenicity of radiotherapy is mediated predominantly via the direct induction of DNA single- and double-strand breaks, which are not substrates for NER. Consistent with this repair specificity, the *XPD* genotype distribution between the postradiotherapy t-AML case series and controls was not significantly different (Table 4).

Discussion

We have shown that the *XPD* codon 751 polymorphism is an independent prognostic marker for disease-free survival and overall survival in elderly AML patients treated with chemotherapy, and specifically that the glutamine variant was associated with a poorer prognosis relative to the lysine variant. It is likely, therefore, that at least one chemotherapy agent used in the United Kingdom Medical Research Council AML 11 trial induces DNA damage that is repaired by NER. Recognition and repair of DNA damage induced by other nitrogen mustards suggest that NER may also repair cyclophosphamide-induced DNA damage. If this is the case, the use of cyclophosphamide as consolidation therapy in the AML 11 trial, but not as induction therapy, may explain why the *XPD* codon 751 variant was not associated with remission, resistant disease, or induction death (Table 3). Further work to identify those chemotherapy agents that interact with NER may...
allow for the development of individualized treatment regimes for AML in the elderly.

These results are consistent with data reported in a small study of patients treated with platinum-based chemotherapy for colorectal cancer,27 where 10 subjects homozygous for the glutamine-encoding allele had significantly shorter overall survival (median survival, 3.3 months) than 22 subjects homozygous for the lysine-encoding allele (median survival, 17.4 months). As in our study, heterozygotes had an intermediate overall survival (median survival, 12.8 months), suggesting an allele dosage effect with respect to outcome. It is possible that the XPD codon 751 polymorphism may be an independent prognostic marker for outcome after chemotherapy for other forms of cancer, including other hematologic malignancies treated using nitrogen mustards, such as multiple myeloma.

We have also shown that homozygosity for the codon 751 glutamine variant is associated with a significantly increased risk of developing t-AML after chemotherapy, but is not associated with risk of t-AML after radiotherapy or with risk of de novo AML. However, we recognize that this association is modest and suggest that it be viewed in the context of other risk factors, including other genetic polymorphisms.

The findings reported in this study are consistent with a model whereby the XPD codon 751 variant modulates cellular ability to engage cell death in response to chemotherapy, and specifically that the XPD codon 751 glutamine variant protects against cell death relative to the lysine variant. We can postulate 2 general mechanisms by which the XPD codon 751 variant may modulate myeloid cell death in response to chemotherapy: either via a direct role for XPD in signaling cell death, or indirectly via XPD repair of protoxic DNA lesions.

The codon 751 polymorphism may exert a direct effect on the myeloid cell death machinery via interaction between XPD, through its carboxy terminus domain, and P53.28 Indeed, evidence exists to support this model, in that P53-dependent apoptosis is compromised in fibroblasts from XPD patients, a phenotype that can be restored by expression of wild-type XPD.29 Thus, we can hypothesize that the codon 751 polymorphism modulates the ability of XPD to signal P53-dependent cell death, possibly following stalled transcription or repair. If the codon 751 polymorphism modulates myeloid cell death only, and does not affect the efficiency of other cellular functions such as DNA repair, then its contribution to t-AML risk is readily predicted. The inability to appropriately engage cell death is predicted to result in the persistence of genetically unstable and potentially mutated preleukemic cells, a model suggested by others.28

The codon 751 variant may also modulate myeloid cell death indirectly by affecting the efficiency of NER to repair chemotherapy-induced protoxic DNA lesions. Like P53, P44 also interacts with the carboxy terminus of XPD, stimulating its helicase activity.38 Mutations in the carboxy terminus of XPD, including R722W and delta716-730, can prevent P44 binding, weakening the helicase activity of XPD.38 Indeed, attenuation of this interaction is responsible for the NER-deficient phenotype of xeroderma pigmentosum patients with these constitutive XPD carboxy terminus mutations. Thus, it might be alternatively hypothesized that the codon 751 polymorphism weakens but does not abolish P44 binding, which in turn compromises NER by attenuating the helicase activity of XPD. Because XPD is a component of both transcription-coupled and global genomic repair, a generic effect on NER capacity is likely to affect the repair of both protox and promutagenic chemotherapy-induced DNA lesions. In this model, predicting the overall effect on t-AML risk is made difficult because repair of protox and promutagenic DNA lesions contribute in opposing directions to cancer risk. This model predicts that any modulatory effect of the codon 751 polymorphism on the direction of t-AML risk will be determined not only by whether cell death, and the elimination of mutated clones, plays an important role in protecting against therapy-related leukemogenesis, but also by the extent of cell death, which will be a function of chemotherapy dose to the bone marrow.

Overrepresentation of individuals homozygous for the glutamine-encoding allele in the postchemotherapy t-AML case series (Table 4) is consistent with both of these models. As such, further work is required to determine which, if either, of these models may be operating in myeloid cells. Nevertheless, our results identify the XPD codon 751 polymorphism as an independent prognostic marker in elderly AML patients treated with chemotherapy. Furthermore, the observed association with t-AML risk provides additional evidence for functionality of the XPD codon 751 polymorphism in the myeloid lineage, and also highlights cell death as a potentially important mechanism protecting against therapy-related leukemogenesis.

Acknowledgments

We are grateful to Rachel Clack (Clinical Trial Service Unit, University of Oxford), the staff at the Leukaemia Research Fund Epidemiology and Genetics Unit (York University), and the Medical Research Council Adult Leukemia Working Party for their expert assistance. We acknowledge the support of Stephen Langabeer at the Medical Research Council DNA/RNA bank, University College London Hospital, a facility funded by the Kay Kendall Leukaemia Fund of the United Kingdom. The Epidemiology and Genetics Unit and the Haematological Malignancy Diagnostic Service are members of the Haematology Research Network for Yorkshire and Humber.

| Table 4. XPD codon 751 polymorphism and risk of de novo and therapy-related AML |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| | De novo AML cases | T-AML cases, previous therapy |
| | No. (%) | Radiotherapy only | Chemotherapy* |
| | OR (95% CI) | No. (%) | OR (95% CI) |
| No. (%) | 729 (100) | 420 (100) | 40 (100) |
| XPD codon 751 | | | |
| Lys/Lys | 293 (42) | 144 (38) | 19 (48) |
| Lys/Gln | 299 (43) | 176 (46) | 1.20 (0.91-1.57) |
| Gln/Gln | 104 (15) | 63 (16) | 1.22 (0.84-1.78) |
| ND | 33 | 37 | 2 (5) |
| | | | 0.34 (0.07-1.51) |
| | | | 13 (25) |
| | | | 2.22 (1.04-4.74) |

Odds ratios (OR) and 95% confidence intervals (CI) were estimated using logistic regression adjusting for sex and age at diagnosis in comparison with controls. NA indicates not applicable; ND, not determined.

*Chemotherapy alone, or in combination with radiotherapy.
References

1. Neubauer A, Dodek RK, George SL, et al. Prognostic importance of mutations in the ras proto-oncogenes in novo acute myeloid leukaemia. Blood. 1992;80:1603-1611.

2. Wattel E, Preudhomme C, Hequet B, et al. p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood. 1994;83:3148-3157.

3. Kiyoh H, Nabe T, Nakano Y, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood. 1999;93:3074-3080.

4. Kotzot PD, Gale RE, Frew ME, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical research Council AML 10 and 12 trials. Blood. 2001;98:1752-1759.

5. Allan JM, Wild CP, Rollinson S, et al. Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapy-induced leukemogenesis. Proc Natl Acad Sci U S A. 2001;98:11592-11597.

6. Davies SM, Robison LL, Buckley JD, et al. Glutathione S-transferase polymorphisms and outcome of chemotherapy in childhood acute myeloid leukaemia. J Clin Oncol. 2001;19:1279-1287.

7. Grant DF, Bessho T, Reardon JT. Nucleotide excision repair capacity by XPD polymorphism in lung cancer patients. Cancer Res. 2001;61:7461-7464.

8. Reardon JT, Vaisman A, Chaney SG, Sancar A. Cross-links. Mol Cell Biol. 2003;23:754-761.

9. Ziemba A, Derosier LC, Methvin R, et al. Repair of melphalan monoadducts. Cancer Res. 1999;59:3968-3971.

10. Keung YK, Beaty M, Powell BL, Molnar I, Buss D, Pettenati M. Philadelphia chromosome positive myelodysplastic syndrome and acute myeloid leukemia-retrospective study and review of literature. Leukemia Res. 2004;28:579-586.

11. Cantriot Y, Falinski R, Loual T, et al. p210 BCR-ABL kinase regulates nucleotide excision repair (NER) and resistance to UV radiation. Blood. 2003;102:2632-2637.

12. Calais P, Biernacka M, Piatkowski P, et al. XPD 115 Arg allele modifies sensitivity to DNA-damaging agents: evidence for association with p53-mediated apoptosis pathway. Cancer Res. 2001;61:3012-3020.

13. Cadranel J, Watanabe K, Auriol A, et al. XPD subunit of TFIIH. Nat Genetics. 1998;20:184-188.

14. Wang XW, Vermeulen W, Coursin JD, et al. XPD and XPD helicases are components of the p53-mediated apoptosis pathway. Genes Dev. 1996; 10:1219-1232.

15. Robles AI, Wang XW, Harris CC. Drug-induced apoptosis is delayed and reduced in XPD lymphoblastoid cell lines: possible role of TFIIF in p53-mediated apoptotic cell death. Oncogene. 1999;18:4681-4688.

16. Goldstone AH, Buxton K, Wheatley K, Smith AG, Hutchinson RM, Clark RE. Attempts to improve treatment outcomes in acute myeloid leukaemia (AML) in older patients: the results of the United Kingdom Medical Research Council AML11 trial. Blood. 2001;98:1302-1311.

17. Grimwade D, Walker H, Harrison G, et al. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukaemia (AML): analysis of 1605 patients entered into the United Kingdom Medical research Council AML11 trial. Blood. 2001;98:1312-1320.

18. Kane EV, Roman E, Cartwright R, Parker J, Morgan AJ. Tobacco and the risk of acute leukemia in adults. Br J Cancer. 1999;81:1228-1233.

19. Worrellow LJ, Travis LB, Smith AG, et al. An intron splice acceptor polymorphism in MSH2 and risk of leukemia after treatment with chemotherapy-eliciting alkylating agents. Clin Cancer Res. 2003;9:3012-3020.

20. Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. Blood. 1998;92:2322-2333.

21. Breslow NE, Day NE. Classical methods of analysis of matched data. In: Statistical Methods in Cancer Research: The Analysis of Case-Control Studies. Vol. 1. Lyon, France: International Agency for Research in Cancer. 1980:162-189.

22. Roth RB, Samson LD. Gene transfer to suppress p53-mediated apoptosis in normal human lymphoblastoid cells with the XPD 312 Asp/Asp genotype. Cancer Res. 2001;61:7430-7434.

23. Wang XW, Vermeulen W, Coursin JD, et al. XPD and XPD helicases are components of the p53-mediated apoptosis pathway. Genes Dev. 1996; 10:1219-1232.

24. Park DJ, Stoehmacher J, Zhang W, Tsao-Wei DD, Groschen S, Lenz HJ. A Xeroderma pigmen-
tosum group D gene polymorphism predicts clinical outcome to platinum based chemotherapy in patients with advanced colorectal cancer. Cancer Res. 2001;61:8654-8658.

25. Qiao Y, Spitz MR, Guo Z, et al. Rapid assessment of XPD variants in lung cancer patients. Cancer Res. 2001;61:11592-11597.

26. McGahon A, Bissonnette R, Schmitt M, Cotter TG. BCR-ABL maintains functional significance of XPD polymorphic variants: attenuation of apoptosis and resistance to UV radiation. Blood. 1999;93:117-1178.

27. Keung YK, Beaty M, Powell BL, Molinar I, Buss D, Pettenati M. Philadelphia chromosome positive myelodysplastic syndrome and acute myeloid leukemia-retrospective study and review of literature. Leukemia Res. 2004;28:579-586.

28. Cantriot Y, Falinski R, Loual T, et al. p210 BCR-ABL kinase regulates nucleotide excision repair (NER) and resistance to UV radiation. Blood. 2003;102:2632-2637.

29. McGahon A, Bissonnette R, Schmitt M, Cotter TG. BCR-ABL maintains functional significance of XPD polymorphic variants: attenuation of apoptosis and resistance to UV radiation. Blood. 1999;93:117-1178.

30. Cotter TG, BCR-ABL: an anti-apoptosis gene in chronic myelogenous leukemia. Leuk Lymphoma. 1999;10:1219-1232.

31. Lunn RM, Helzlsouer KJ, Parshad R, et al. XPD polymorphisms: effects on DNA repair proficiency. Carcinogenesis. 2000;21:23-36.

32. Roth RB, Samson LD. Gene transfer to suppress p53-mediated apoptosis in normal human lymphoblastoid cells with the XPD 312 Asp/Asp genotype. Cancer Res. 2001;61:7430-7434.

33. Wang XW, Vermeulen W, Coursin JD, et al. XPD and XPD helicases are components of the p53-mediated apoptosis pathway. Genes Dev. 1996; 10:1219-1232.

34. Park DJ, Stoehmacher J, Zhang W, Tsao-Wei DD, Groschen S, Lenz HJ. A Xeroderma pigmen-
tosum group D gene polymorphism predicts clinical outcome to platinum based chemotherapy in patients with advanced colorectal cancer. Cancer Res. 2001;61:8654-8658.

35. Qiao Y, Spitz MR, Guo Z, et al. Rapid assessment of XPD variants in lung cancer patients. Cancer Res. 2001;61:11592-11597.

36. McGahon A, Bissonnette R, Schmitt M, Cotter TG. BCR-ABL maintains functional significance of XPD polymorphic variants: attenuation of apoptosis and resistance to UV radiation. Blood. 1999;93:117-1178.

37. Keung YK, Beaty M, Powell BL, Molinar I, Buss D, Pettenati M. Philadelphia chromosome positive myelodysplastic syndrome and acute myeloid leukemia-retrospective study and review of literature. Leukemia Res. 2004;28:579-586.

38. Cantriot Y, Falinski R, Loual T, et al. p210 BCR-ABL kinase regulates nucleotide excision repair (NER) and resistance to UV radiation. Blood. 2003;102:2632-2637.

39. McGahon A, Bissonnette R, Schmitt M, Cotter TG. BCR-ABL maintains functional significance of XPD polymorphic variants: attenuation of apoptosis and resistance to UV radiation. Blood. 1999;93:117-1178.

40. Cotter TG, BCR-ABL: an anti-apoptosis gene in chronic myelogenous leukemia. Leuk Lymphoma. 1999;10:1219-1232.

41. Lunn RM, Helzlsouer KJ, Parshad R, et al. XPD polymorphisms: effects on DNA repair proficiency. Carcinogenesis. 2000;21:23-36.

42. Spitz MR, Wu X, Wang Y, et al. Modulation of nucleotide excision repair capacity by XPD polymorphisms in lung cancer patients. Cancer Res. 2001;61:1354-1357.

43. Hemminki K, Xu G, Angelini S, et al. XPD exon 10 and 23 polymorphisms and DNA repair in human skin in situ. Carcinogenesis. 2001;22:1185-1192.

44. Qiao Y, Spitz MR, Guo Z, et al. Rapid assessment of repair of ultraviolet DNA damage with a modified host-cell reactivation assay using a luciferase reporter gene and correlation with polymorphisms of DNA repair genes in normal human lymphocytes. Mutat Res. 2000;509:165-174.
Genetic variation in XPD predicts treatment outcome and risk of acute myeloid leukemia following chemotherapy

James M. Allan, Alexandra G. Smith, Keith Wheatley, Robert K. Hills, Lois B. Travis, Deirdre A. Hill, David M. Swirsky, Gareth J. Morgan and Christopher P. Wild

Updated information and services can be found at:
http://www.bloodjournal.org/content/104/13/3872.full.html

Articles on similar topics can be found in the following Blood collections
 Clinical Trials and Observations (4796 articles)
 Neoplasia (4182 articles)

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml