BEAM-Modified Conditioning Therapy with Cisplatin+Dexamethasone Instead of Carmustine Prior to Autologous Hematopoietic Stem Cell Transplantation (HSCT) in Patients with Hodgkin and Non-Hodgkin Lymphoma

Ana Lucia Ron-Magaña
Omar Eduardo Fernandez-Vargas
Esperanza Barrera-Chairez
Carlos Silvestre Ron-Guerrero
Ana Jaqueline Bañuelos-Ávila

Background: High-dose chemotherapy followed by autologous hematopoietic stem cell transplant has proven useful in relapsed or refractory cases of Hodgkin and non-Hodgkin lymphoma. BEAM (carmustine, etoposide, cytarabine, melphalan) is frequently used as a conditioning regimen; however, the high cost and limited availability of BCNU hinders its use in Mexico.

Material/Methods: Between January 2013 and February 2019, refractory or relapsing HL and NHL patients were treated with an autologous HSCT conditioned with cisplatin+dexamethasone as substitution for BCNU in BEAM.

Results: Four HL patients and 6 NHL patients were included; 60% were male, the average age was 34.5±15.2 years, the median follow-up was 19.1 months, and 70% had a complete response after transplant. OS at 12 months was 63% for NHL and 100% for HL. Time to hematological recovery was 17.6±2.8 days; all patients developed grade III/IV neutropenia and thrombocytopenia, and 8 patients had transplant-related infections.

Conclusions: This retrospective study based on real-world data introduces the option of substituting carmustine with cisplatin+dexamethasone, with a similar response, expected lower cost, and better accessibility in developing nations.

MeSH Keywords: Bone Marrow Transplantation • Hodgkin Disease • Lymphoma, Non-Hodgkin • Transplantation Conditioning

Full-text PDF: https://www.annalsoftransplantation.com/abstract/index/idArt/918259
Background

Intensive chemotherapy as a conditioning regimen prior to autologous hematopoietic stem cell transplantation (HSCT) is a therapeutic option for a subset of patients with Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL), especially those with aggressive or refractory disease [1–4]. One of the most commonly used conditioning therapies uses carmustine (BCNU), etoposide, cytarabine, and melphalan (BEAM) [5–8]. However, due to frequent BCNU shortages and its high cost, it has been replaced with other chemotherapeutic agents such as bendamustine, lomustine, and busulfan [9–12].

Similar to BCNU, alkylating agents like cisplatin and carboplatin have been used in conjunction with doxorubicin, etoposide, or dexamethasone as conditioning regimens prior to autologous HSCT for both hematological and non-hematological malignancies [13–16]. Dexamethasone, on the other hand, is used both for its anti-emetic and tumor-suppressive properties [17,18].

To the best of our knowledge, there have been no reports of cisplatin as a substitute for BCNU in BEAM. This could be a feasible option in developing nations with difficult access to carmustine. We report the results of a pilot study of our single-center experience with CEAM-Dex as a conditioning therapy for HL and NHL patients.

Material and Methods

We performed a retrospective record-based study describing our single-center experience with relapsed or refractory HL or NHL patients who underwent autologous HSCT conditioned with CEAM-Dex, from January 2013 to September 2018. The patients included were conditioned using cisplatin 100 mg/m² on day –6; etoposide 200 mg/m², dexamethasone 40 mg/m², and cytarabine 200 mg/m² on days –5 to –2; and melphalan 140 mg/m² on day –1, all administered intravenously. Unmodified hematopoietic progenitor cells were obtained from filgrastim or filgrastim+prelixafor-mobilized peripheral blood and infused on day 0.

Data collected included disease features at diagnosis and prior to transplant, and transplantation-related factors, including outcome variables. All patients received standard supportive care, including granulocyte colony-stimulating factors and antimicrobial prophylaxis.

Kaplan-Meier method was used to estimate overall survival (OS) and progression-free survival (PFS). We recorded time to neutrophil and platelet recovery, defined as the first of 3 consecutive days with an absolute neutrophil count ≥0.5×10⁹/L and a platelet count exceeding ≥20×10⁹/L without transfusion support for 7 consecutive days [19,20].

Results

Patient characteristics

A total of 10 patients with either relapsed or refractory lymphoma were included. Patient demographics are summarized in Table 1. Briefly, of the patients included, 40% had Hodgkin lymphoma and 60% non-Hodgkin lymphoma. Of the patients with HL, 75% had nodular sclerosis and 25% had mixed cellularity histology. Most cases (75%) had advanced disease at diagnosis and were classified as high-grade, and all were treated with 2 or more chemotherapy regimens, achieving partial response prior to transplant. NHL patients had anaplastic large-cell lymphoma histology in one-third of the cases, one-third had DLBCL, and one-third had extra-nodal NK/T cell lymphoma, nasal type. The majority of patients (66%) had

Table 1. Patient demographic data at mobilization.

Characteristic	Value
Age in years, mean (range)	34.5 (19–64)
Gender, (%)	
Female	40
Male	60
Diagnosis, (%)	
HL	40
NHL	60
Stage at diagnosis, (%)	
I/II	30
III/IV	70
Stage at transplant, (%)	
0	40
I/II	50
III/IV	10
Mobilization agent, (%)	
Filgrastim	70
Prelixafor+Filgrastim	30
Pre-transplant KPS, (%)	
80	20
90	30
100	50

CR – complete response; HL – Hodgkin lymphoma; KPS – Karnofsky performance status; NHL – non-Hodgkin lymphoma; RT – radiotherapy. * Denotes complete remission.
advanced-stage disease and a high IPI score at diagnosis. NHL patients were treated with an average of 2.7 lines; half were on complete response and half were on partial response prior to transplantation.

Transplant, toxicity, and hematopoietic recovery

All patients were conditioned with CEAM-Dex prior to the auto-HSCT. Time from diagnosis to transplant was 37.5±22.06 months overall; 53±24.12 for HL patients and 27.17±14.37 for NHL. HSCs were collected from peripheral blood mobilized with filgrastim (70%) or filgrastim+plerixafor (30%), with an average CD34+ cell infusion of 2.88±1.18×10^6/kg.

Transplant-related toxicities were grade I (GI) anemia in 1 patient, GII in 6 patients, GIII in 1 patient, and GIV in 2 patients. All patients presented with GIV neutropenia and thrombocytopenia, 20% had severe mucositis (GIII/IV), and only 1 patient had reversible azotemia. Eight patients had infections related to the transplant; of these, 4 had pneumonia, 4 had diarrhea, 2 had catheter-related infections, and 1 had acute brucellosis. Neutrophil recovery presented at a mean of 12.4 (10–14) days, while platelet recovery presented at a mean of 10.3 (5–18) days. Hematological recovery was achieved at a mean of 17.5 (range 12–21 days) days in 90% of patients. The mean hospital stay was 25.6 days (range 22–29), summarized in Table 2.

Relapse and survival

The median follow-up time was 19.1 (range 1–39) months. HL patients had a complete response after transplant, with an OS at 12 and 36 months of 100% and 50%, respectively. In patients with NHL, OS was 68.5% at 12 and 36 months. Only 1 patient with anaplastic T NHL relapsed at 6 months. Three deaths were reported in the NHL branch, all attributable to infections, at 1, 8, and 33 months (Figure 1).

Outcomes	Value
Time to neutrophil recovery in days, mean (range)	Overall 12.44 (10–14)
	NHL 11.6 (10–12)
	HL 13.5 (12–14)
Time to platelet recovery in days, mean (range)	Overall 10.33 (5–18)
	NHL 10.8 (8–18)
	HL 9.75 (5–14)
Time to hematological recovery in days, mean (range)	Overall 17.56 (12–21)
	NHL 16.60 (12–20)
	HL 18.75 (17–21)
Anemia, n (%)	GI/II 7 (70)
	GIII/IV 3 (30)
Azoemia, n (%)	GI/II 1 (10)
Mucositis, n (%)	GI/II 8 (80)
	GIII/IV 2 (20)
Infections, n (%)	None 2 (20)
	Pneumonia 4 (40)
	Diarrhea 4 (40)
	Other infections 4 (40)
Transplant outcome, n (%)	CR 7 (70)
	Failure 3 (30)

CR – complete remission; HL – Hodgkin lymphoma; NHL – non-Hodgkin lymphoma.

Figure 1. Kaplan-Meier analysis of HL and NHL patients conditioned with CEAM-Dex.
Discussion

Combined conditioning chemotherapy plus autologous HCT is the treatment of choice for eligible relapsed or refractory lymphoid malignancies; however, no definitive evidence supports the use of one conditioning regimen over others, varying mainly based on local institutional practice. BEAM has been the most commonly administered regimen for both NHL and HL; nonetheless, the high cost and difficult access of BCNU limits its use in our practice [1,2,9].

In our series of relapsed or refractory HL and NHL patients conditioned with CEAM-Dex, we achieved an OS of 78.7% at 12 months and 52.5% at 36 months. Accounting for the inclusion of low-risk DLBCL patients in other studies, this is similar to that reported with BEAM chemotherapy, with an OS at 36 months ranging from 56% to 75% [6,11,21].

As commonly reported in the literature, sever mucositis was a common toxicity, second only in frequency to bone marrow suppression. However, we did not observe non-infectious pulmonary toxicity, commonly attributable to carmustine [1,11,21]. Infectious complications were slightly lower than Puig et al. reported (80% vs. 89%).

Time to engraftment, as measured by time to neutrophil and platelet recovery, was 12.4±1.33 days and 10.3±3.7 days, respectively, which is comparable to reports by Puig et al., Sakellari et al., and Caballero et al.

Conclusions

Although our present study has limitations due to its retrospective nature, our results show that carmustin plus dexamethasone as a substitute for BCNU in BEAM chemotherapy has a response rate, overall survival, and toxicity profile similar to those reported in the literature, thus providing an alternative for developing countries with difficult access to carmustine.

References:

1. Gyurkocza B, Sandmaier BM: Conditioning regimens for hematopoietic cell transplantation: One size does not fit all. Blood, 2014; 124(3): 344–53
2. Philip T, Guglielmi C, Hagenbeck A et al: Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin’s lymphoma. N Engl J Med, 1995; 333(23): 1540–45
3. Perrone G, Giuli P, Corradini P: Autologous stem cell transplantation for T-cell lymphomas. Semin Hematol, 2014; 51(1): 59–64
4. Phillips GL, Wolff SN, Herzig RH et al: Treatment of progressive Hodgkin’s disease with intensive chemoradiotherapy and autologous bone marrow transplantation. Blood, 1989; 73(8): 2086–92
5. Chopra R, McMillan AK, Linch DC et al: The place of high-dose BEAM therapy and autologous bone marrow transplantation in poor-risk Hodgkin’s disease. A single-center eight-year study of 155 patients. Blood, 1993; 81(5): 1137–45
6. Caballero MD, Rubio V, Rifon J et al: BEAM chemotherapy followed by autologous stem cell support in lymphoma patients: Analysis of efficacy, toxicity and prognostic factors. Bone Marrow Transplant, 1997; 20(6): 451–58
7. Przepiorka D, van Besien K, Khouri I et al: Carmustine, etoposide, cytarabine, and melphalan (DHAP) regimen on stem cell mobilization and transplant outcomes of patients with non-Hodgkin’s lymphoma who are candidates for up-front autologous stem cell transplantation. Korean J Intern Med, 2018; 33(6): 1169–81
8. Hanna N, Gharpure VS, Abonour R et al: High-dose carboplatin with etoposide in patients with recurrent thymoma: the Indiana University experience. Bone Marrow Transplant, 2001; 28(5): 435–38
9. McCowage GB, Vowels MR, Shaw PJ et al: Autologous bone marrow transplantation for advanced neuroblastoma using teniposide, doxorubicin, melphalan, cisplatin, and total-body irradiation. J Clin Oncol, 1995; 13(11): 2789–95
10. Abbott B, Ipoltiti C, Bruton J et al: Antiemetic efficacy of granisetron plus dexamethasone in bone marrow transplant patients receiving chemotherapy and total body irradiation. Bone Marrow Transplant, 1999; 23(3): 265–69
11. Kumar S, Lacy MQ, Dispenzieri A et al: Single agent dexamethasone for pretreatment of stem cell transplantation induction therapy for multiple myeloma. Bone Marrow Transplant, 2004; 34(6): 485–490
12. Sharma A, Kalyal S, Iqbal S et al: Comparison of BEAM vs. LEAM regimen in autologous transplant for lymphoma at AIIMS. Springerplus, 2013; 2: 489
13. Cruet-Hennequet S, Glynn MT, Murillo LS et al: Enhanced DNA-PK-mediated RPA2 hyperphosphorylation in DNA polymerase eta-deficient human cells treated with cisplatin and oxaliplatin. DNA Repair (Amst), 2008; 7(4): 582–96
14. Jeon SY, Yih H-Y, Kim HS et al: The effect of the dexamethasone, cytarabine, and cisplatin (DHAP) regimen on stem cell mobilization and transplant outcomes of patients with non-Hodgkin’s lymphoma who are candidates for up-front autologous stem cell transplantation. Korean J Intern Med, 2018; 33(6): 1169–81
15. Ron-Magaña A.L. et al.: BEAM or BUCYVP16-conditioning regimen for autologous hematopoietic cell transplantation in non-Hodgkin’s lymphomas. Blood Marrow Transplant, 2009; 15(5): 632–38
16. Kim HT, Armand P: Clinical endpoints in autologous hematopoietic stem cell transplantation studies: The cost of freedom. Biol Blood Marrow Transplant, 2013; 19(6): 860–66
17. Singer S, Sharma N, Dean R et al: BEAM or BUCYVP16-conditioning regimen for autologous stem-cell transplantation in non-Hodgkin’s lymphomas. Bone Marrow Transplant, 2019 [Epub ahead of print]