Prevalence of methylmalonic acidemia among newborns and the clinical-suspected population: a meta-analyse

Lizi Jina,b, Xueyan Hanc, Falin Hea,b and Chuanbao Zhanga,b

aNational Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P. R. China; bChinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China; cDepartment of Medical Statistics, Peking University First Hospital, Beijing, P. R. China

ABSTRACT

Importance: Knowing the scale of rare inborn errors is important for screening and resource allocation. Evidence on the prevalence of methylmalonic acidemia (MMA) among newborns and the clinical-suspected population from large-scale screening programs needs to be systematically synthesized.

Objective: To estimate the worldwide prevalence of MMA for newborns and the clinical-suspected population and explore the differences in different regions, periods, and diagnostic technologies.

Data sources: MEDLINE, Embase, CRD, Cochrane Library, Scopus, CINAHL, and PROSPERO. Study Selection: All studies reporting the epidemiology characteristics of MMA were selected.

Data extraction and synthesis: Characteristics of study, subjects, and epidemiology were extracted, random-effect models were used for meta-analyses.

Main outcome and measure: Pooled prevalence of MMA.

Results: This study included 111 studies. The pooled prevalence of MMA worldwide was 1.14 per 100,000 newborns (1516/190,229,777 newborns, 95% CI: 0.99–1.29) and 652.11 per 100,000 clinical-suspected patients (1360/4,805,665 clinical-suspected individuals, CI: 544.14–760.07). Asia and Africa got a higher pooled prevalence of MMA. The prevalence of MMA in newborns increased through the years, while that in the clinical-suspected population decreased. Collecting blood \(\geq 72\) h after birth had a higher pooled prevalence of MMA than collecting during 24–72 h after birth. The combining-use of MS/MS and GC/MS had a higher pooled prevalence than the single-use of MS/MS or GC/MS. Prevalence of cbl C, mut, cbl B, cbl A, isolated MMA, combined MMA and homocystinuria, vitamin B12-responsive MMA was synthesized.

Conclusions and relevance: Prevalence of MMA among newborns was extremely low, but considerably high in the clinical-suspected population, indicating the need for more efficient newborn screening strategies and closer monitoring of the high-risk population for the early signs of MMA. Asia and Africa should attach importance to the high prevalence of MMA. Further diagnostic tests were recommended for the combining-use vs single-use of MS/MS and GC/MS and for collecting blood after 72 h vs during 24–72 h after birth.

Introduction

Methylmalonic acidemia (MMA) is an inborn error and rare disease caused by genetic disorders of methylmalonate \cite{1,2} and cobalamin metabolism \cite{3}. Without early identification and intervention, patients with MMA might suffer from acute metabolic acidosis, multiple organ dysfunction, irreversible developmental retardation, even die at a young age, while a good prognosis can be obtained with simple and timely treatments \cite{4–9}.

Epidemiological information on MMA currently comes from individual screening studies. Newborn screening has been recognized as the most valuable third-tiered measure to prevent birth defects in the world \cite{10}. Due to the nonspecific, heterogeneous manifestations, and their role in causing irreversible but preventable dysfunction, MMA has been one of the primary screening for inherited metabolic disorders (IMDs) in most newborn screening programs. Other than screenings that target newborns, selective screening is also performed for patients with clinically suspected IMDs (“clinical-suspected” population in this study) \cite{11}. These patients are generally characterized

CONTACT Chuanbao Zhang c cbzhang@nccl.org.cn; Falin He c flhe@nccl.org.cn National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P. R. China; Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Dahua Road, Dongcheng District, Beijing 100730, P. R. China

c Supplemental data for this article can be accessed here.

© 2022 Informa UK Limited, trading as Taylor & Francis Group
by repeated vomiting, slow development, mental retardation, abnormal muscular tone, jaundice, and hepatomegaly, and their laboratory tests often showed metabolic acidosis and positive ketone bodies in urine [11]. Additionally, clinical diagnosis reported in a few studies [12–16] in early years has also provided the prevalence, in which MMA is diagnosed mainly based on the experience of clinicians rather than spectrometry technologies, which was introduced after the 1990s.

The prevalence of MMA in previous literature varied significantly. Auray-Blais C et al. [17] found that the prevalence of MMA was 2.56 in 100,000 newborns in Canada, while Chiju Yang et al. [18] screened the 514,234 newborns in China and found the prevalence to be 17.89 in 100,000 newborns. The variations in reported prevalence could be attributed to many factors, such as geographical regions, ethnics, diagnosis tools and procedures, dried blood spot (DBS) sample collection time, and diagnosis criteria. As for diagnosis technologies, the main techniques are thin-layer chromatography (TLC) [17], gas chromatography/mass spectrometry (GC/MS) [19], and tandem mass spectrometry (MS/MS) [20], and the procedures also varied in different programs, such as the single-use of TLC, MS/MS or GC/MS, as well as the combining-use of MS/MS and GC/MS. Sample collection times are also different among different countries, e.g. China has recommended 72 h~7 days after birth as the time for DBS collection while the American College of Medical Genetics and Genomics (ACMG) has advised collecting DBS at 24~48 h after birth [21]. A comprehensive literature review on MMA prevalence could provide synthesized evidence on the pooled prevalence of MMA, thus enabling the quantification on the scale of the disease and a comprehensive understanding of the variation in the prevalence of each stratum.

This study aims to estimate the pooled prevalence for MMA among newborns and clinical-suspected populations and to identify the differences in prevalence between different regions, periods, and diagnostic technologies through a systematic review and meta-analyses. It may advance the understanding of the epidemiological characteristics and disease burden of MMA in the world. The results of this study may provide a further reference for subsequent improvements on MMA screening programs.

Methods

This review was conducted and reported according to The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement [22].

Search strategy and eligibility criteria

A two-stage search strategy was undertaken (Supplemental Table 1) AQ3. In Stage 1, we identified all articles relevant to screening programs and epidemiology of all types of IMDs in PubMed (MEDLINE), Embase, CRD, Cochrane Library, Scopus, CINAHL, PROSPERO since their establishment; In Stage 2, we identified all articles relevant to epidemiology and screening of MMA in MEDLINE. Supplemental Figure 1 showed the flow diagram of literature searching. To be included, studies had to accurately report the epidemiology data of MMA. Titles/abstracts were screened, and the full texts were retrieved and reviewed by LZ and FH independently. Disagreements were solved by consensus within groups.

Data collection

An electronic data extraction form was designed to collect data from eligible studies. For studies that contained the prevalence of MMA for more than one population, region, or screening period, the data in these studies would be extracted for the individual population, region, the screening period.

Risk of bias assessment

The risk of bias assessment tool used in this study was developed by Hoy et al. [23], which was designed to evaluate the risk of bias for population-based prevalence studies. The tool is a 10-item checklist, comprising items evaluating selection and nonresponse bias, measurement bias, and the bias related to the analysis. A summary score of 0–3, 4–6, 7–10 indicated low, moderate, high risk, respectively.

Statistical analysis

Studies with low and moderate risk of bias were included for further analysis. The prevalence and its 95% confidence interval (CI) were presented as the total number of cases per 100,000 and calculated by the Clopper–Pearson method. If studies provided zero MMA cases, they would still be included but they wouldn’t participate in the synthesis of estimates. Random-effects meta-analysis was used to calculate pooled estimates. Heterogeneity between individual studies was assessed by I^2-square (I^2) statistics. Subgroup analyses would be conducted if there was at least 1 paper in each subgroup. Grouping factors were as follows: continents, periods (1969–1999, 2000–2010, 2011–2020), diagnosis technologies (main
technologies of TLC, GC/MS, MS/MS were extracted, the usages of them were used for grouping: TLC, the single use of MS/MS, the single use of GC/MS, the combined use of MS/MS and GC/MS, sample collection time (according to the baseline of collecting periods, the sample collecting time was classified into groups of $> 24 \text{h}$, $> 36 \text{h}$, $> 48 \text{h}$, $> 72 \text{h}$, and $>5 \text{ days after birth}$). Meta-regression would be conducted and the study-level characteristics (baseline survey year, publication year, sample size, and risk of bias) were included to explore the source of heterogeneity. Sensitive analysis was carried out to explore the influence of individual studies on the overall estimates. A significance threshold of $p < .05$ was used, two-tail. All analysis was implemented using R 3.6.2 (R Foundation for Statistical Computing) and Microsoft Excel 2016 (Microsoft Corporation, Redmond, WA, USA).

Results

Study characteristic

Table 1 presented the characteristics of included studies. A total of 111 studies (involved 190,229,777 newborns and 4,805,665 clinical-suspected patients) with low and moderate risk of bias were included in this review. The included studies had provided data of 6 continents. The study period was from 1969 to 2019, in which 1969 to 2019 for screening newborns, 1970 to 2019 for screening clinical-suspected population. The sample size of screened population ranged from 26 to 75,100,000, in which 1,127 to 75,100,000 for newborns, and 26 to 596,591 clinical-suspected patients. Extracted data allowed the synthesis of pooled prevalence of the following subtypes: mut (21 studies), cbl A (2 studies), cbl B (4 studies), cbl C (19 studies).

Prevalence of MMA among newborns and clinical-suspected patients

Figure 1 and Figure 2 had shown the meta-analysis of prevalence estimates of MMA for newborns and clinical-suspected populations, respectively. The overall estimate of prevalence of MMA were 1.14 per 100,000 newborns (1,516/190,229,777 newborns, 95% CI: 0.99–1.29, $I^2 = 95.5\%$) and 652.11 per 100,000 clinical-suspected patients (1,360/4,805,665 patients, 95% CI: 544.14–760.07, $I^2 = 95.4\%$). The pooled prevalence among these two populations was significantly different ($p < .001$).

Supplemental Figures 2–4 had exhibited stratified meta-analysis for pooled prevalence among different continents, screening periods, diagnosis technologies, and blood collecting time.

Prevalence stratified by continents

In newborns, it showed that Asia got the highest pooled prevalence of MMA (2.06 per 100,000 newborns, CI: 1.77–2.36, $I^2 = 97.1\%$), followed by North America (1.04 per 100,000, CI: 0.33–1.75, $I^2 = 88.8\%$), Oceania (0.62 per 100,000, CI: 0.14–1.10, $I^2 = 0.0\%$), and Europe (0.33 per 100,000, CI: 0.09–0.57, $I^2 = 28.7\%$), see Supplemental Figure 2.

For the clinical-suspected population, selective screening conducted in Asia (38 studies) was more than that in South America (4 studies), Africa (3 studies), and Europe (1 study). Selective screening reports haven’t been found in North America and Oceania in this study. Stratified meta-analysis showed that Asia got the highest pooled prevalence of MMA (728.99 per 100,000 clinical-suspected patients, CI: 599.19–858.79, $I^2 = 96.0\%$), too, followed by Africa (674.13 per 100,000, CI: 481.62–866.65, $I^2 = 0.0\%$), and South America (674.13 per 100,000, CI: 148.43–478.11, $I^2 = 86.1\%$), see Supplemental Figure 3.

To exclude errors that might be caused by different detection methods, we also compared the results of those studies using the same methods (Supplemental Figure 4). It showed Asia still got the highest pooled prevalence in newborns no matter using what detection methods. Interestingly, in the clinical-suspected population, when adopting the single-use of MS/MS or adopting MS/MS combined GC-MS, the first highest MMA pooled prevalence was in Africa and the second highest prevalence was in Asia.

Prevalence stratified by screening periods

In newborns, the pooled prevalence of MMA has increased from 0.26 per 100,000 newborns between 1969 and 1999 to 1.22 per 100,000 newborns between 2000 and 2010, to 9.38 per 100,000 newborns between 2011 and 2020, see Supplemental Figure 2. While in the clinical-suspected population, the pooled prevalence of MMA has decreased from 1034.06 per 100,000 individuals between 2000 and 2010, to 390.46 per 100,000 individuals between 2011 and 2020, see Supplemental Figure 3.

Prevalence stratified by diagnosis technologies

In newborns, TLC got the highest pooled prevalence of MMA (2.61 per 100,000, CI: 2.13 to 3.10, $I^2 = 0.0\%$), see Supplemental Figure 2. The single use of GC/MS (1.65 per 100,000, CI: −0.13 to 3.43, $I^2 = 95.6\%$) had higher pooled prevalence than the single use of MS/
Ref	First author (year published)	Country	Screening periods	Sample size	Type of subjects	Dried blood spot collecting time/age	Key testing tools/approaches	Diagnostic criteria (μmol/l)	Risk of bias
[17]	Auray-Blais C et al. (2007)	Canada	1975–2006	2,342,029	Newborn	14d of age (in 1973); 21 d old (in 1981)	TLC, GC-MS	NA	2
[12]	Tangeraas T et al. (2020)	Norway	2012.3.1–2020.2.29	461,369	Newborn	Average(range): 53 h (40–87 h)	LC-MS/MS; NGS	C3 > 4.75; C3/C2 > 0.25.	0
[24]	Yang Y et al. (2019)	China	2014.1–2018.6	536,008	Newborn	Average(range): 4.0 d (3–7), 60 d (61–87 d)	MS/MS; NGS	NA	2
[13]	Smon A et al. (2017)	Slovenia	2013–2014	10,048	Newborn	Average(range): 8.5 months (6 to 11 months)	LC-MS/MS; GS-M; MS; NGS	Plasma C3 – high; Urine OA – MMA.	4
[25]	la Marca G et al. (2008)	Italy	2002.1–2004.10	160,000	Newborn	48 and 72 h of life	LC-MS/MS	C3 > 3.3, C3/C0 > 0.13; C3/C4 > 12.5; C3/C4 > 12.5.	2
[26]	Frazier DM et al. (2006)	USA	1997.7.28–2005.7.28	944,078	Newborn	Average (range): 5 years	MS/MS	C3 > 4.82; C3 ≥ 9; C3/C2 > 0.15.	2
[18]	Yang C et al. (2019)	China	2014.7.14–2018.12.31	514,234	Newborn	3 and 7 d of life	MS/MS	Reference range: C3 (0.2–4.2); C3/C2 (0.02–0.18); C3/C0 (0.01–0.19).	1
[27]	Zytkovicz TH et al. (2001)	USA	1999–2001	164,000	Newborn	1–3 d after birth.	MS/MS	NA	0
[28]	Mohamed S et al. (2020)	Saudi Arabia	2012.1–2017.12	56,632	Newborn	24 h after birth	MS/MS	C3 > 10; C3/C2 > 0.4.	4
[29]	Deng K et al. (2020)	Mainland China	2016.1–2017.12	461,500	Newborn	Average (range): 4.0 d (3–7)	MS/MS, NGS	Reference range: C3 (0.2–4.2); C3/C2 (0.04–0.22).	1
[30]	Lin Y et al. (2019)	China	2014.4–2018.12.31	514,234	Newborn	3 and 7 d of life	MS/MS	Reference range: C3 (0.3–4.5); C3/C0 (0.02–0.2); C3/C2 (0.01–0.2).	1
[31]	Shibata N et al. (2018)	Japan	2001–2014	13,900,000	Newborn	48–72 h after birth in Japan, South Korea and Taiwan, and 36–72 h after birth in Germany.	MS/MS	C3 < 3.84.	1
[32]	Shibata N et al. (2018)	Korea	2000–2015	34,400,000	Newborn	48–72 h after birth	MS/MS	C3 < 3.84.	1
[33]	Shibata N et al. (2018)	Germany	2002–2015	75,100,000	Newborn	36–72 h after birth	MS/MS	C3 < 3.84.	1
[34]	Alfadhel M et al. (2017)	Saudi Arabia	2005.8.1–2012.12.31	775,000	Newborn	After 24 h of age	MS/MS	C3 > 6.5.	1
[35]	Hassan FA et al. (2016)	Egypt	2008.1–2009.11	25,276	Newborn	NA	MS/MS	Reference range: C3 (0.2–4.3); C3/C2 (0.02–0.17).	1
[36]	Kneissler I et al. (2015)	Lebanon	2007–2013	126,000	Newborn	NA	MS/MS	C3 < 3.84.	1
[37]	Scalamiero E et al. (2015)	Italy	2007.5–2014.9.30	45,466	Newborn	48–72 h after birth	MS/MS	C3 < 3.84.	1
[38]	Lim JS et al. (2014)	Japan	2006.6–2014.4	177,267	Newborn	First sample at 24–72 h, 2nd at 4 weeks of life and 3rd at 4 weeks of life.	MS/MS	C3 < 3.84.	1
[39]	Barends M et al. (2014)	England	2002.2–2014.1	847,418	Newborn	48–72 h of age	MS/MS	C3 < 3.8, C3/C2 < 0.18.	1
[40]	Lund AM et al. (2012)	Denmark	2002.2–2011.3.31	504,049	Newborn	Median age was 2.5 d.	MS/MS	C3 > 6.0; C3/C2 > 0.25.	1
[41]	Lindner M et al. (2011)	Germany	1999.1.1–2009.6.30	1,084,195	Newborn	Between day of life three to five before 2002 and between 36 and 72 h thereafter.	MS/MS	C3 < 3.84.	1
[42]	Couce ML et al. (2011)	Spain	2000.7.1–2010.7.1	210,165	Newborn	Before 2002: between the 5th MS/MS and 8th days. Since 2002: 3rd day of life.	MS/MS	C3 < 3.84.	1
Table 1. Continued.

Ref	First author (year published)	Country	Screening periods	Sample size	Type of subjects	Dried blood spot collecting time/age	Key testing tools/approaches	Diagnostic criteria (μmol/l)	Risk of bias
[46]	Lee HC et al. (2011)	China	2005–2009 before 2009 (2004–2008)	177,000	NA	NA	Between days 3 and 6 of life	MS/MS, GC-MS	NA
[47]	Vilarinho L et al. (2010)	Portugal	before 2009 (2004–2008)	316,243	Newborn	NA	NA	MS/MS, GC-MS	NA
[48]	Niu DM et al. (2010)	China	2000.3–2009.6	1,321,123	Newborn	24 h after the first feeding or MS/MS	48 h (but not later than 72 h)	C3, C3/C2, C3/C0	NA
[49]	Louskas YL et al. (2010)	Greece	2007.7–2009.12	45,000	Infants born in Athens, Greece	72 h of life	MS/MS, GC-MS	C3 > 7.00, C3/C2 > 0.31.	2
[50]	Kasper DC et al. (2010)	Austria	2002.4–2009.12	622,489	Newborn	36 and 72 h of life	MS/MS, GC-MS	C3 > 6.0, C3/C2 > 0.3	4
[51]	Moammar H et al. (2010)	Saudi Arabia	1983.11–2008.12.31	165,530	Newborn	5 and 8 d of age	MS/MS, GC-MS	NA	3
[52]	Walter JH et al. (2009)	England	before 2009.8.11	24,983	Newborn	3 of age	MS/MS, GC-MS	NA	3
[53]	CDC (2006)	USA	2001–2006	2,174,313	Newborn	3 of age	MS/MS, GC-MS	NA	3
[54]	Loukas YL et al. (2010)	Greece	2007.8–2009.12	7,315	Babies 21 d after their birth Babies 21 d after their birth	MS/MS, GC-MS	C3 > 7.00, C3/C2 > 0.31.	2	
[55]	Schulze A et al. (2003)	Germany	1998.4–2011.9	250,000	Newborn	3rd and 7th day of life	C3 > 6.0, C3/C2 > 0.31.	2	
[56]	Hoffmann GF et al. (2004)	Germany	NA	382,247	Newborn	5th day	MS/MS, GC-MS	NA	3
[57]	Naylor EW et al. (1999)	United Kingdom	1997.11–1999.30	687,630	Newborn	48 h of age, and usually on day 3 of life	MS/MS, GC-MS	NA	3
[58]	Guo K et al. (2018)	China	2015.1–2015.12	48,297	Newborn	Infants born in Jining, China, between January 2015 and December 2015	Between 3rd and 10th day of life	NA	2
[59]	Applegarth DA et al. (2002)	Canada	1997.4–2001.7	102,200	Newborn	5th or sixth day of life	MS/MS, GC-MS	NA	3
[60]	Applegarth DA et al. (2000)	Korea	before 1999	16,246	Newborn	48h of age or more, and usually on day 3 of life	MS/MS, GC-MS	NA	3
[61]	Preeti Sharma et al. (2018)	India	2013.5–2014.12	371,942	Newborn	37.16	MS/MS, GC-MS	NA	3
[62]	Al Hosani H et al. (2013)	the United Arab Emirates	1979–1996	137,120	Newborn	48h of age or more, and usually on day 3 of life	MS/MS, GC-MS	NA	3
[63]	C Cantú-Reyna et al. (2016)	Mexico	2012.11–2014.8.9	10,000	Newborn	Birth before 48h of life	MS/MS, GC-MS	NA	2
[64]	Chong SC et al. (2017)	China	2015.3–2017.3	30,448	Newborn	Birth before 48h of life	MS/MS, GC-MS	NA	2
[65]	Shi XT et al. (2012)	Mainland China	2004–2007	317,942	Newborn	37.16	MS/MS, GC-MS	NA	2
[66]	Park KJ et al. (2016)	Korea	2013.5–2014.12	93,165	Newborn	37.16	MS/MS, GC-MS	NA	2
[67]	Applegarth DA et al. (2000)	Canada	1997–1998	1,105	Newborn	2 or 3, and usually on day 3 of life	MS/MS, GC-MS	NA	2
[68]	Al Bu Ali WH et al. (2011)	Saudi Arabia	2006.4–2009	37,168	Newborn	37.16	MS/MS, GC-MS	NA	2
[69]	Yamaguchi S (2008)	Japan	1997–2007	606,380	Newborn	37.16	MS/MS, GC-MS	NA	2
[70]	Peetee Sharma et al. (2018)	India	2012.10–2015.11	70,590	Newborn	37.16	MS/MS, GC-MS	NA	2
[71]	Wilson C et al. (2008)	Australia	2004.1–2006	270,000	Newborn	37.16	MS/MS, GC-MS	NA	3
[72]	Huang XW et al. (2011)	China	2009.1–2010.9	129,415	Newborn	72 h after birth and 8 breastfeeds.	MS/MS, GC-MS	NA	3
Ref	First author (year published)	Country	Screening periods	Sample size	Type of subjects	Dried blood spot collecting time/age	Key testing tools/approaches	Diagnostic criteria (μmol/l)	Risk of bias
-----	-------------------------------	---------	------------------	-------------	------------------	-------------------------------------	----------------------------	-----------------------------	--------------
[78]	WANG LW et al. (2019)	China	2012.12–2018.12	820,337	Newborn	Newborns in Henan province who were fully breast-fed 72 h after birth.	MS/MS	Reference range: C3 (0.32–4.1), C3/C2 (0.04–0.23), C3/C0 (0.01–0.16).	3
[79]	Hong F et al. (2017)	China	2009.1–2016.12	1,861,262	Newborn	72 h after birth and enough breastfeeds.	MS/MS	NA	3
[80]	Zhang R et al. (2021)	China	2014.1–2019.12	146,152	Newborn	An average age of 7.25 d at birth.	MS/MS	C3: 0.35–4.00; C3/C2: 0.03–0.18; C3/Met: 0.02–0.25; C3/C0: 0.02–0.22.	3
[81]	Ao Zhenzhen et al. (2020)	China	2013.6–2019.6	20,000	Newborn		MS/MS	NA	3
[82]	Xu K et al. (2001)	China	1999.2–2000.8	393	Subjects suspected of having IEM.		NA	3	
[83]	Hori D et al. (2005)	Japan	1995–2002	4,653	Subjects suspected of having IEM.		NA	3	
[84]	Hori D et al. (2005)	Asia	1995–2002	1,369	Subjects suspected of having IEM.		NA	3	
[85]	Han LS et al. (2007)	China	2002–2006	3,070	Subjects suspected of having IEM.		NA	3	
[86]	Marquez-Caraveo ME et al. (2020)	Mexico	2017.6–2019.7	51	Subjects suspected of having IEM.		NA	3	
[87]	Wajner M et al. (2018)	Brazil	2017.6–2018.12	21,800	Subjects suspected of having IEM.		GC-MS; LC-MS/MS; reverse phase HPLC.	NA	3
[88]	Altimimi HA et al. (2019)	Iraq	2017.4–2018.41	112	Subjects suspected of having IEM.		NA	3	
[89]	Vargas CR et al. (2018)	Brazil	2013.6–2019.6	20,000	Subjects suspected of having IEM.		NA	3	
[90]	ICNTR Task Force (2017)	India	before 2017	851	Subjects suspected of having IEM.		NA	3	
[91]	Shibata N et al. (2018)	Japan	2000–2015	30,625	Subjects suspected of having IEM.		NA	3	
[92]	Shibata N et al. (2018)	Vietnam	2000–2015	3,054	Subjects suspected of having IEM.		NA	3	
[93]	Shibata N et al. (2018)	China	2000–2015	2,105	Subjects suspected of having IEM.		NA	3	
[94]	Wang H et al. (2017)	China	2013.6–2015.10	183	Subjects suspected of having IEM.		GC-MS/MS.	Increased level of C3 and C3/C2; elevated level of methylmalonic acid and methyl citrate.	3
[95]	Hampe MH et al. (2016)	India	2013.7–2016.1	23,140	Subjects suspected of having IEM.		GC-MS; LC-MS/MS; reverse phase HPLC.	NA	3
[96]	Dogan E et al. (2017)	Turkey	2010.1–2016.12	4,800	Subjects suspected of having IEM.		NA	3	
[97]	Hassan FA et al. (2016)	Egypt	2008.1–2015.1	3,900	Subjects suspected of having IEM.		NA	3	
[98]	Kiykim E et al. (2016)	Turkey	2009.1–2014.2	778	Subjects suspected of having IEM.		NA	3	
[99]	Han L et al. (2014)	China	2002.2–2012.6	18,303	Subjects suspected of having IEM.		NA	3	
[100]	Jiang M et al. (2015)	China	2009.1–2012.3	16,075	Subjects suspected of having IEM.		NA	3	
[101]	Shawky RM et al. (2015)	Egypt	NA	40	Subjects suspected of having IEM.		NA	3	
[102]	Selim LA et al. (2014)	Egypt	2008.6–2013.6	3,380	Subjects suspected of having IEM.		NA	3	

Table 1. Continued.
Table 1. Continued.

Ref	First author (year published)	Country	Screening periods	Sample size	Type of subjects	Dried blood spot collecting time/age	Key testing tools/approaches	Diagnostic criteria (μmol/l)	Risk of bias
[97]	Golbahar J et al. (2013)	Bahrain	2008.1.1–2011.12.31	1,986	Subjects suspected of having IEM.	NA	MS/MS	High C3; High urinary methyliminonic acid; Reversed phase chromatography; Ion-exchange chromatography; GC-MS.	2
[98]	Karam PE et al. (2013)	Lebanon	1998–2010	2,921	Subjects suspected of having IEM.	NA	Reversed phase chromatography; Ion-exchange chromatography; GC-MS.	Homocystine + Methylmalonic, methylcitric.	2
[99]	Tu W et al. (2012)	China	2009.1.1–2009.8.31	724	Subjects suspected of having IEM.	NA	MS/MS	C3 < 5.0; C4DC < 0.60; C3/C6 < 2.0; C3/C2 < 0.3; C3 (0.47–4.33).	2
[100]	Huang X et al. (2012)	China	2008–2011	11,060	Subjects suspected of having IEM.	NA	MS/MS	C3 (0.47–4.33).	2
[101]	Al Riyami S et al. (2012)	The Sultanate of Oman	1998.5–2008.7	1,100	Subjects suspected of having IEM.	NA	MS/MS	NA	2
[102]	Tu WJ et al. (2010)	China	2008.10.1–2009.9.30	26	Subjects suspected of having IEM.	NA	LC-MS/MS	C3 < 5.8; C3/C2 < 0.32; C3/C16 < 2.2.	2
[103]	Nagaraja D et al. (2010)	India	2007–2009	3,550	Subjects suspected of having IEM.	NA	MS/MS	C4DC (0.00–2.6); C3 (0.32–5.81); C3/C0 (0.00–0.53); C3/C2 (0.02–0.36)	2
[104]	Wajner M et al. (2009)	Brazil	1994.1–2008.7	6,866	Subjects suspected of having IEM.	NA	GC-MS	NA	2
[105]	Song Y et al. (2008)	China	before 2007	618	Subjects suspected of having IEM.	NA	GC-MS	NA	2
[106]	Yang Y et al. (2008)	China	1998.6–2007.5	9,566	Subjects suspected of having IEM.	NA	GC-MS, MS/MS, fluorescence polarization immunoassay.	GC-MS, MS/MS, enzyme analysis, genetic analysis.	2
[107]	Abdel-Hamid M et al. (2007)	Kuwait	2004.5–2006.3	362	Subjects suspected of having IEM.	NA	MS/MS	NA	2
[108]	Joshi SN et al. (2007)	The Sultanate of Oman	1998.6–2005.5	166	Subjects suspected of having IEM.	NA	MS/MS	NA	2
[109]	Tan IK et al. (2006)	Singapore	1992–2005	3,656	Subjects suspected of having IEM.	NA	MS/MS	NA	2
[110]	Yoon HR et al. (2005)	South Korea	2001.4–2004.3	6,795	Subjects suspected of having IEM.	NA	Between 1 month and 18 years of age	GC-MS, HPLC.	2
[111]	Shigematsu Y et al. (2002)	Japan	before 2001	164	Subjects suspected of having IEM.	NA	MS/MS	C3/C2 > 0.25	2
[112]	Wajner M et al. (2002)	Brazil	1994.1–2001.7	1,926	Subjects suspected of having IEM.	NA	GC-MS	NA	2
[113]	Chace DH et al. (2001)	United States and Canada	1996.5.1–2000.11.30	7,038	Subjects suspected of having IEM.	NA	MS/MS	C3, C3/C2	2
[114]	Machill G et al. (1994)	Germany	1970–1994	~130,000	Subjects suspected of having IEM.	NA	GC-MS, HPLC.	NA	3
[115]	Lehner W et al. (1994)	Germany	1973–1990	~40,000	Subjects suspected of having IEM.	NA	GC-MS	NA	3
[116]	Lehner W et al. (1984)	Germany	1975–1981	~9,000	Subjects suspected of having IEM.	NA	GC-MS	NA	3
[117]	Chalmers RA et al. (1980)	England	before 1980	695	Subjects suspected of having IEM.	NA	GC-MS, TLC.	NA	2
[118]	Bower A et al. (2019)	France	2010.1.1–2014.12.31	11,301	Subjects suspected of having IEM.	NA	MS/MS, GC-MS.	NA	2
[119]	Haferz A et al. (2020)	Pakistan	2015.4–2018.3	805	Subjects suspected of having IEM.	NA	Ion Exchange Chromatography; GC-MS.	NA	2
[120]	AlObaidy H et al. (2013)	Libya	2001.1–2012.12	19,938	Subjects suspected of having IEM.	Between 24h	MS/MS	NA	2

(continued)
Ref	First author (year published)	Country	Screening periods	Sample size	Type of subjects	Dried blood spot collecting time/age	Key testing tools/approaches	Diagnostic criteria (μmol/l)	Risk of bias
[118]	Gündüz M et al. (2015)	Turkey	2010.1-2013.6	2,994	Subjects suspected of having IEM.	NA	Ion-exchange chromatography; GC-MS.	NA	2
[119]	Cheema HA et al. (2016)	Pakistan	2011.1-2014.10	239	Subjects suspected of having IEM.	NA	MS/MS, GC-MS.	NA	2
[120]	Lin SX et al. (2019)	China	2012.2-2016.12	15,851	Subjects suspected of having IEM.	NA	GC-MS	NA	2
[121]	Gu XF et al. (2011)	China	2002.11-2003.6	104	Subjects suspected of having IEM.	NA	MS/MS	NA	2
[122]	Xu FL et al. (2012)	China	2008.6-2011.8	287	Subjects suspected of having IEM.	NA	GC-MS	NA	2
[123]	Luo XP et al. (2003)	China	2001.4-2002.10	352	Subjects suspected of having IEM.	NA	GC-MS	NA	2
[124]	Xie LJ et al. (2008)	China	2003.6.1-2006.9.30	132	Subjects suspected of having IEM.	NA	MS/MS, GC-MS.	C3 < 4.00; C3/C0 < 0.20; C3/C2 < 0.35.	2
[125]	Han Lian-shu et al. (2006)	China	? 2003-2006	2,566	Subjects suspected of having IEM.	NA	MS/MS, GC-MS, Enzyme analysis, gene analysis.	C3, C3/C2, C3/C0.	2
[12]	Tangeras T et al. (2020)	Norway	2002-2012	596,591	Subjects suspected of having IEM.	NA	NA	NA	5
[13]	Smon A et al. (2017)	Slovenia	1999-2013	293,897	Newborn	NA	NA	NA	5
[14]	Wilcken B et al. (2009)	Australia	1994-1998	1,017,800	Unscrened infants.	NA	NA	NA	4
[14]	Wilcken B et al. (2009)	Australia	1998-2002	533,400	Unscrened infants.	NA	NA	NA	5
[15]	Wilcken B et al. (2003)	Australia	1974-1979	NA	Subjects suspected of having IEM.	NA	GC	Clinical diagnosis	5
[15]	Wilcken B et al. (2003)	Australia	1978-1982	NA	Subjects suspected of having IEM.	NA	NA	Clinical diagnosis	5
[15]	Wilcken B et al. (2003)	Australia	1982-1986	NA	Subjects suspected of having IEM.	NA	NA	Clinical diagnosis	5
[15]	Wilcken B et al. (2003)	Australia	1986-1990	NA	Subjects suspected of having IEM.	NA	NA	Clinical diagnosis	5
[15]	Wilcken B et al. (2003)	Australia	1990-1994	NA	Subjects suspected of having IEM.	NA	NA	Clinical diagnosis	5
[15]	Wilcken B et al. (2003)	Australia	1994-1998	NA	Subjects suspected of having IEM.	NA	NA	Clinical diagnosis	5
[16]	Wilson C et al. (2008)	New Zealand	2004.1-2006	175,000	Newborn	NA	NA	NA	5
MS (1.25 per 100,000, CI: 1.01 to 1.48, \(I^2 = 96.8\%\)). Compared with the single use of MS/MS or GC/MS, the combining use of MS/MS and GC/MS (1.91 per 100,000, CI: 1.28 to 2.55, \(I^2 = 92.5\%\)) had higher pooled prevalence.

In clinical-suspected patients, the combining use of MS/MS and GC/MS (1429.71 per 100,000 clinical-suspected patients, CI: 1071.43–1787.98, \(I^2 = 97.4\%\)) had the highest pooled prevalence compared with the single use of MS/MS or GC/MS, see Supplemental Figure 3. The single use of GC/MS (596.43 per 100,000, CI: 426.38–766.48, \(I^2 = 89.4\%\)) had higher pooled prevalence than the single use of MS/MS (306.30 per 100,000, CI: 199.94–412.65, \(I^2 = 88.7\%\)).

Prevalence stratified by DBS collecting time
For the variety of dried blood spots (DBS) collecting age among different programs, there were 33 studies that could support this subgroup analyses. Supplemental Figure 2 showed collecting DBS \(\geq 72\) h after birth had the highest pooled prevalence of MMA (5.46 per 100,000 newborns, CI: 3.68 to 7.14, \(I^2 = 96.5\%\)).

Prevalence of subtypes of MMA
Overall estimates of the prevalence of MMA due to methylmalonyl-CoA mutase deficiency (mut type), MMA due to the defect of adenosylcobalamin (cbl) metabolism (cbl A, cbl B, cbl D, cbl C, cbl F, cbl J), isolated MMA (mut, cbl A, cbl B, cbl D-variant 2), combined MMA and homocystinuria (cbl C, cbl D, cbl F, cbl J), vitamin B12-responsive MMA (cbl A, cbl B), vitamin B12-unresponsive MMA (mut type) could be observed from the reported studies and they were summarized in Supplemental Figure 5. It showed the pooled prevalence of cbl C (2.35 per 100,000 newborns, CI: 1.45–2.35, \(I^2 = 93.0\%\)) was the highest among that of other subtypes, followed by mut (0.98 per 100,000 newborns, CI: 0.58–1.39, \(I^2 = 88.7\%\)).
69.0%), cbl B (0.41 per 100,000 newborns, CI: −0.50 to 1.32, $I^2 = 63.1\%$), and cbl A (0.22 per 100,000 newborns, CI: −0.33 to 0.77, $I^2 = 0.0\%$). And the pooled prevalence of complete mutase deficiency (mut 0: 0.21 per 100,000 newborns, CI: 0.14 to 0.57, $I^2 = 0.0\%$) was higher than that of partial mutase deficiency (mut−: 0.21 per 100,000 newborns, CI: 0.14 to 0.57, $I^2 = 0.0\%$).

As for pooled prevalence of subtypes for biochemical phenotypes, combined MMA and homocystinuria got the highest estimates (1.70 per 100,000 newborns), followed by MMA due to the defect of adenosylcobalamin (cbl) metabolism (1.28 per 100,000 newborns, CI: 0.81 to 1.75, $I^2 = 89.0\%$) and isolated MMA (0.99 per 100,000 newborns, CI: 0.67 to 1.30, $I^2 = 60.2\%$). As for clinical phenotypes, vitamin B12–unresponsive MMA (0.98 per 100,000 newborns, CI: 0.58 to 1.39, $I^2 = 69.0\%$) had a higher pooled prevalence than vitamin B12–responsive MMA (0.30 per 100,000 newborns, CI: 0.07 to 0.52, $I^2 = 38.8\%$).

Heterogeneity analysis

Sensitive analysis for each subtype showed that individual studies have minor differences to meta-analyses estimates and they could be considered robust because no individual study had affected most of the pooled estimates by more than 5.0%. Meta-regression results showed that baseline survey year ($p < 0.001$), publish year ($p < 0.001$), sample size ($p < 0.001$), and risk of bias ($p < 0.001$) might account for the high heterogeneity.

Discussion

This review had comprehensively reported the difference and characteristics of the prevalence of MMA among newborns and clinical-suspected populations. To our knowledge, nearly none of the systematic reviews had reported them previously [126–128]. In this review, the synthesis estimate of the prevalence of MMA among the newborn population was 1.14 per 100,000, which was consistent with Almäsi T et al. [126], in which the pooled prevalence was below 2 cases per 100,000 for 39 studies.

The prevalence of MMA among clinical-suspected populations was significantly higher than that among the newborn population irrespective of regions, years, and diagnostic technologies. The inherited reason should be the missing of early identification. MMA is a
monogenic inherited disease, once missing the identification in the early years, patients will get a high possibility of developing into symptomatic [7]. Reasons for missing the early identification should be carefully investigated, it's might be multiple, maybe the small coverage of newborn screening for MMA in the early years or the high false-negative rate of MMA identification. Further studies can be carried out to find more efficient strategies for early identification [24].

It's shown that Asia and Africa got a relatively higher pooled prevalence than other continents in both populations. In addition, Africa had a very high MMA prevalence in the clinical-suspected population while the prevalence in newborns remains unclear, indicating Africa should pay attention to the early screening and prevention of MMA. Besides, these results may reflect the high rate of consanguineous marriage in Asia and Africa [129,130], and further studies investigating the associations of the occurrence of MMA with consanguineous marriage rate are necessary.

The prevalence of MMA among newborns had been obviously increasing from 0.26 per 100,000 between 1969 and 1999 to 1.22 per 100,000 between 2000 and 2010 and to 9.38 per 100,000 between 2011 and 2020. While in clinical-suspected population the trend had dramatically decreased, from 1034.06 per 100,000 between 2000 and 2010 to 390.46 per 100,000 between 2011 and 2020. The reason for this phenomenon may be associated with the introduction of MS/MS into newborn screening programs in 1999 [20], the more potential patients are timely identified and treated in their newborns, the less patients develop into symptomatic patients. Since the prenatal screening for MMA has not been carried out on a large scale, the decreasing prevalence of the clinical-suspected population maybe suggests the newborn screening had played a great role in the prevention of MMA.

Interestingly, when DBS was collected at >24 h, ≥36 h, or ≥48 h after birth, the pooled prevalence estimates were all below 1 case per 100,000 newborns. While the estimate could be up to 5 cases per 100,000 when collecting after 72 h after birth, which might indicate that false-negative events probably happened when collecting DBS during 24 h–72 h after birth. Another interesting thing was that irrespective of the newborns or clinical-suspected patients, the prevalence of MMA pooled by programs adopting the combined use of MS/MS and GC/MS was higher than the prevalence pooled by programs adopting the single-use of MS/MS or GC/MS. It's hard to identify and conclude which DBS collecting time and which detection methods can obtain more reliable and sensitive results. Therefore, future diagnostic tests may be useful to determine the sensitivity and specificity of different MS methods or different DBS collection times to help policymakers and healthcare providers make more efficient screening procedures.

The treatments varied for different subtypes [7], screening program should more precisely list the subtypes of MMA. cblC might be recommended to be screened for newborns because the prevalence of cbl C was the highest among all subtypes, but long-term follow-up data and cost-benefit studies are needed to support this decision.

Several limitations of this study need to be addressed. The prevalence of MMA and its subtype may be underestimated because some studies that reported unclear MMA prevalence were excluded in this study, e.g. studies that reported “MMA/propionic acidemia” [131–135]. The lack of reporting the false positive rates, false negative rates, follow-up periods, population screening coverage, and races of the screened population in screening studies were all potential contributors leading to imprecise estimates of this study.

The prevalence estimates of MMA stratified by multiple subgroups in this review may be beneficial for further cost-effectiveness evaluation research. For example, assessing the cost-benefit of screening different subtypes of MMA, and that of screening by different technologies. Also, the results may be a reference basis for the disease control state of MMA, providing base data for a future prospective study. These results are also useful to assess the burden of MMA in a population.

Conclusions

Our review has determined the pooled prevalence and characteristics of methylmalonic acidemia in newborns and clinical-suspected populations through a systematic review and meta-analyze. Though the pooled prevalence in clinical-suspected populations has been decreased dramatically, it's still much higher than that in newborns. More efficient newborn screening strategies and closer monitoring of the clinical-suspected population for the early signs of MMA are warranted. The high prevalence of MMA in Asia and Africa should be attached importance. Further diagnostic tests were recommended for the combining-use vs single-use of MS/MS and GC/MS and for collecting blood after 72 h vs during 24–72 h after birth.
Acknowledgments

We are grateful for the kind help of ZhenNi Liu and ShaSha Wang in acquiring the full-text of the part of the literature.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This research was supported by the National Key Research and Development Program of China under Grant [2021YFC1005300].

References

[1] Rosenberg LE, Lilljeqvist A, Hsia YE. Methylmalonic aciduria: metabolic block localization and vitamin B12 dependency. Science. 1968;162(3855):805–807.
[2] Rosenberg LE, Lilljeqvist AC, Hsia YE. Methylmalonic aciduria. An inborn error leading to metabolic acidosis, long-chain ketonuria and intermittent hyperglycinemia. N Engl J Med. 1968;278(24):1319–1322.
[3] Tanpaiboon P. Methylmalonic acidemia (MMA). Mol Genet Metab. 2005;85(1):2–6.
[4] Morrow G, 3rd, Barness LA, Cardinale GJ, et al. Congenital methylmalonic acidemia: enzymatic evidence for two forms of the disease. Proc Natl Acad Sci U S A. 1969;63(1):191–197.
[5] Pillai NR, Stroup BM, Poliner A, et al. Liver transplantation in propionic and methylmalonic acidemia: a single center study with literature review. Mol Genet Metab. 2019;128(4):431–443.
[6] Raval DB, Merideth M, Sloan JL, et al. Methylmalonic acidemia (MMA) in pregnancy: a case series and literature review. J Inherit Metab Dis. 2015;38(5):839–846.
[7] Huenner M, Scholl-Burgi S, Hadayo K, et al. Three new cases of late-onset cblC defect and review of the literature illustrating when to consider inborn errors of metabolism beyond infancy. Orphanet J Rare Dis. 2014;9:161.
[8] Carrillo-Carrasco N, Chandler RJ, Venditti CP. Combined methylmalonic acidemia and homocystinuria, cblC type. I. Clinical presentations, diagnosis and management. J Inherit Metab Dis. 2012;35(1):91–102.
[9] Carrillo-Carrasco N, Venditti CP. Combined methylmalonic acidemia and homocystinuria, cblC type. II. Complications, pathophysiology, and outcomes. J Inherit Metab Dis. 2012;35(1):103–114.
[10] Sahai I, Marsden D. Newborn screening. Crit Rev Clin Lab Sci. 2009;46(2):55–82.
[11] Han LS, Ye J, Qiu WJ, et al. Selective screening for inborn errors of metabolism on clinical patients using tandem mass spectrometry in China: a four-year report. J Inherit Metab Dis. 2007;30(4):507–514.
[12] Tangeraas T, Sæves I, Klingenberg C, et al. Performance of expanded newborn screening in Norway supported by post-analytical bioinformatics tools and rapid second-tier DNA analyses. Int J Neonatal Screen. 2020;6(3):51.
[13] Smon A, Repic Lampret B, Groselj U, et al. Next generation sequencing as a follow-up test in an expanded newborn screening programme. Clin Biochem. 2018;52:48–55.
[14] Wilcken B, Haas M, Joy P, et al. Expanded newborn screening: outcome in screened and unscreened patients at age 6 years. Pediatrics. 2009;124(2):e241–e248.
[15] Wilcken B, Wiley V, Hammond J, et al. Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N Engl J Med. 2003;348(23):2304–2312.
[16] Wilson C, Kerruish NJ, Wilcken B, et al. The failure to diagnose inborn errors of metabolism in New Zealand: the case for expanded newborn screening. N Z Med J. 2007;120(1262):U2727.
[17] Auray-Blais C, Cyr D, Drouin R. Quebec neonatal mass urinary screening programme: from microorganisms to macromolecules. J Inherit Metab Dis. 2007;30(4):515–521.
[18] Yang C, Zhou C, Xu P, et al. Newborn screening and diagnosis of inborn errors of metabolism: a 5-year study in an Eastern Chinese population. Clin Chim Acta. 2020;502:133–138.
[19] Kühara T. Gas chromatographic-mass spectrometric urinary metabolome analysis to study mutations of inborn errors of metabolism. Mass Spectrom Rev. 2005;24(6):814–827.
[20] Chace DH, Kalas TA, Naylor EW. The application of tandem mass spectrometry to neonatal screening for inherited disorders of intermediary metabolism. Annu Rev Genomics Hum Genet. 2002;3:17–45.
[21] Gallagher RC, Pollard L, Scott AI, et al. Laboratory analysis of organic acids, 2018 update: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2018;20(7):683–691.
[22] Page MJ, Moher D, Bossuyt PM, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372:n160.
[23] Hoy D, Brooks P, Woolf A, et al. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. J Clin Epidemiol. 2012;65(9):934–939.
[24] Yang Y, Wang L, Wang B, et al. Application of next-generation sequencing following tandem mass spectrometry to expand newborn screening for inborn errors of metabolism: a multicenter study. Front Genet. 2019;10:86.
[25] La Marca G, Malvagia S, Casetta B, et al. Progress in expanded newborn screening for metabolic conditions by LC-MS/MS in Tuscany: update on methods to reduce false tests. J Inherit Metab Dis. 2008;31 Suppl 2:S395–S404.
[26] Frazier DM, Millington DS, McCandless SE, et al. The tandem mass spectrometry newborn screening experience in North Carolina: 1997–2005. J Inherit Metab Dis. 2006;29(1):76–85.
[27] Zytkovicz TH, Fitzgerald EF, Marsden D, et al. Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots: a two-year summary from the New England newborn screening program. Clin Chem. 2001;47(11):1945–1955.

[28] Mohamed S, Elsheikh W, Al-Aqeel AI, et al. Incidence of newborn screening disorders among 56632 infants in Central Saudi Arabia. A 6-year study. Saudi Med J. 2020;41(7):703–708.

[29] Mao X, Li S, Ma Y, et al. Ethnic preference distribution of inborn errors of metabolism: a 4-year study in a multi-ethnic region of China. Clin Chim Acta. 2020;511:160–166.

[30] Deng K, Zhu J, Yu E, et al. Incidence of inborn errors of metabolism detected by tandem mass spectrometry in China: a census of over seven million newborns between 2016 and 2017. J Med Screen. 2020;26:96914320973690.

[31] Ma S, Guo Q, Zhang Z, et al. Expanded newborn screening for inborn errors of metabolism by tandem mass spectrometry in newborns from Xinxing city in China. J Clin Lab Anal. 2020;34(5):e23159.

[32] Lin Y, Zheng Q, Zheng T, et al. Expanded newborn screening for inherited metabolic disorders and genetic characteristics in a Southern Chinese population. Clin Chim Acta. 2019;494:106–111.

[33] Wang T, Ma J, Zhang Q, et al. Expanded newborn screening for inborn errors of metabolism by tandem mass spectrometry in Suzhou, China: disease spectrum, prevalence, genetic characteristics in a Chinese population. Front Genet. 2019;10:1052.

[34] Yang CJ, Wei N, Li M, et al. Diagnosis and therapeutic monitoring of inborn errors of metabolism in 100,077 newborns from Jining city in China. BMC Pediatr. 2018;18(1):110.

[35] Messina M, Meli C, Raudino F, et al. Expanded newborn screening using tandem mass spectrometry: seven years of experience in Eastern Sicily. Int J Neonatal Screen. 2018;42(12).

[36] Shibata N, Hasegawa Y, Yamada K, et al. Diversity in the incidence and spectrum of organic acidemias, fatty acid oxidation disorders, and amino acid disorders in Asian countries: selective screening vs. expanded newborn screening. Mol Genet Metab Rep. 2018;15:6–10.

[37] Alfadhil M, Al Othaim A, Al Saif S, et al. Expanded newborn screening program in Saudi Arabia: incidence of screened disorders. J Paediatr Child Health. 2017;53(6):585–591.

[38] Hassan FA, El-Mougy F, Sharaf SA, et al. Inborn errors of metabolism detectable by tandem mass spectrometry in Egypt: the first newborn screening pilot study. J Med Screen. 2016;23(3):124–129.

[39] Khneisser I, Adib S, Assaad S, et al. Cost-benefit analysis: newborn screening for inborn errors of metabolism in Lebanon. J Med Screen. 2015;22(4):182–186.

[40] Scolamiero E, Cozzolino C, Albano L, et al. Targeted metabolomics in the expanded newborn screening for inborn errors of metabolism. Mol Biosyst. 2015;11(6):1525–1535.

[41] Lim JS, Tan ES, John CM, et al. Inborn error of metabolism (IEM) screening in Singapore by electrospray ionization-tandem mass spectrometry (ESI/MS/MS): an 8-year journey from pilot to current program. Mol Genet Metab. 2014;113(1–2):53–61.

[42] Barends M, Pitt J, Morrissy S, et al. Biochemical and molecular characteristics of patients with organic acidemias and urea cycle disorders identified through newborn screening. Mol Genet Metab. 2014;113(1–2):46–52.

[43] Lund AM, Hougaard DM, Simonsen H, et al. Inborn error of metabolism (IEM) screening in Denmark, the Faroe Islands and Greenland – experience and development of a routine program for expanded newborn screening. Mol Genet Metab. 2012;107(3):281–293.

[44] Lindner M, Grauer G, Haege G, et al. Efficacy and outcome of expanded newborn screening for metabolic diseases – report of 10 years from South-West Germany. Orphanet J Rare Dis. 2011;6:44.

[45] Couce ML, Castineiras DE, Bóveda MD, et al. Evaluation and long-term follow-up of infants with inborn errors of metabolism identified in an expanded screening programme. Mol Genet Metab. 2011;104(4):470–475.

[46] Lee HC, Mak CM, Lam CW, et al. Analysis of inborn errors of metabolism: disease spectrum for expanded newborn screening in Hong Kong. Chin Med J. 2011;124(7):983–989.

[47] Vilarinho L, Rocha H, Sousa C, et al. Four years of expanded newborn screening in Portugal with tandem mass spectrometry. J Inherit Metab Dis. 2010;33 Suppl 3 (Suppl 3):S133–S138.

[48] Niu DM, Chien YH, Chiang CC, et al. Nationwide survey of extended newborn screening by tandem mass spectrometry in Taiwan. J Inherit Metab Dis. 2010;33(Suppl 2):S295–S305.

[49] Loukas YL, Soumelas GS, Dotsikas Y, et al. Expanded newborn screening in Greece: 30 months of experience. J Inherit Metab Dis. 2010;33 Suppl 3 (Suppl 3):S341–S348.

[50] Kasper DC, Ratschmann R, Metz TF, et al. The national Austrian newborn screening program – eight years experience with mass spectrometry. Past, present, and future goals. Wien Klin Wochenschr. 2010;122(21–22):607–613.

[51] Moammar H, Cheriyan G, Mathew R, et al. Incidence and patterns of inborn errors of metabolism in the Eastern Province of Saudi Arabia, 1983–2008. Ann Saudi Med. 2010;30(4):271–277.

[52] Walter JH, Patterson A, Till J, et al. Bloodspot acylcarnitine and amino acid analysis in cord blood samples: efficacy and reference data from a large cohort study. J Inherit Metab Dis. 2009;32(1):95–101.

[53] Centers for Disease Control and Prevention (CDC). Impact of expanded newborn screening—United States, 2006. MMWR Morb Mortal Wkly Rep. 2008;57(37):1012–1005.

[54] Lee NC, Chien YH, Peng SF, et al. Brain damage by mild metabolic derangements in methylmalonic acidemia. Pediatr Neurol. 2008;39(5):325–329.
Abdel-Hamid M, Tisocki K, Sharaf L, et al. Development, validation and application of tandem mass spectrometry for screening of inborn metabolic disorders in Kuwaiti infants. Med Princ Pract. 2007;16(3):215–221.

Huang HP, Chu KL, Chien YH, et al. Tandem mass spectrometry in Taiwan—report from one center. J Formos Med Assoc. 2006;105(11):882–886.

Yoon HR, Lee KR, Kang S, et al. Screening of newborns and high-risk group of children for inborn metabolic disorders using tandem mass spectrometry in South Korea: a three-year report. Clin Chim Acta. 2005;354(1–2):167–180.

Hoffmann GF, von Kries R, Klose D, et al. Frequencies of inherited organic acidurias and disorders of mitochondrial fatty acid transport and oxidation in Germany. Eur J Pediatr. 2004;163(2):76–80.

Auray-Blais C, Giguère R, Lemieux B. Newborn urine screening programme in the province of Quebec: an update of 30 years’ experience. J Inherit Metab Dis. 2003;26(4):393–402.

Schulze A, Lindner M, Kohlmüller D, et al. Expanded newborn screening for inborn errors of metabolism by electrospray ionization-tandem mass spectrometry: results, outcome, and implications. Pediatrics. 2003;111(6Pt 1):1399–1406.

Shigematsu Y, Hirano S, Hata I, et al. Pilot study of gas chromatographic-mass spectrometric screening of newborn urine for inborn errors of metabolism after treatment with urease. J Chromatogr B Biomed Sci Appl. 1999;731(1):141–147.

Wiley V, Carpenter K, Wilcken B. Newborn screening with tandem mass spectrometry: 12 months’ experience in Nsw Australia. Acta Paediatr Suppl. 1999;88(432):48–51.

Naylor EW, Chace DH. Automated tandem mass spectrometry for mass newborn screening for disorders in fatty acid, organic acid, and amino acid metabolism. J Child Neurol. 1999;14(Suppl 1):54–58.

Guo K, Zhou X, Chen X, et al. Expanded newborn screening for inborn errors of metabolism and genetic characteristics in a Chinese population. Front Genet. 2018;9:122.

Cantú-Reyna C, Zepeda LM, Montemayor R, et al. Incidence of inborn errors of metabolism by expanded newborn screening in a mexican hospital. J Inborn Errors Metab Screening. 2016;4(11):1–8.

Chong SC, Law LK, Hui J, et al. Expanded newborn metabolic screening programme in Hong Kong: a three-year journey. Hong Kong Med J. 2017;23(5):489–496.

Shi XT, Cai J, Wang YY, et al. Newborn screening for inborn errors of metabolism in mainland china: 30 years of experience. JIMD Rep. 2012;6:79–83.

Park KJ, Park S, Lee E, et al. A population-based genomic study of inherited metabolic diseases detected through newborn screening. Ann Lab Med. 2016;36(6):561–572.

Applegarth DA, Toone JR, Lowry RB. Incidence of inborn errors of metabolism in British Columbia, 1969–1996. Pediatrics. 2000;105(1):e10.

Al Hosani H, Salah M, Osman HM, et al. Expanding the comprehensive national neonatal screening programme in the United Arab Emirates from 1995 to 2011. East Mediterr Health J. 2014;20(1):17–23.

Al Bu Ali WH, Balaha MH, Al Moghannum MS, et al. Risk factors and birth prevalence of birth defects and inborn errors of metabolism in Al Ahsa, Saudi Arabia. Pan Afr Med J. 2011;8:14.

Yamaguchi S. Newborn screening in Japan: restructuring for the new era. Ann Acad Med Singap. 2008;37(12 Suppl):13–15.

Sharma P, Kumar P, Tyagi MS, et al. Prevalence of inborn errors of metabolism in neonates. J Clin Diagn Res. 2018;12(5):BC07–BC13.

Yoon HR, Lee KR, Kim H, et al. Tandem mass spectrometric analysis for disorders in amino, organic and fatty acid metabolism: two year experience in South Korea. Southeast Asian J Trop Med Public Health. 2003;34 Suppl 3(Suppl 3):115–120.
with autism and other neurodevelopmental disorders. J Autism Dev Disord. 2021;51(6):2124–2131.

[85] Wajner M, Sitta A, Kayser A, et al. Screening for organic acidurias and aminoacidopathies in high-risk Brazilian patients: eleven-year experience of a reference center. Genet Mol Biol. 2019;42(1 suppl 1):178–185.

[86] Altimimi HA, Aljawiwi HF, Ali EA. Inborn errors of metabolism in children with unexplained developmental delay in Misan, Iraq. Oman Med J. 2019;34(4):297–301.

[87] Vargas CR, Ribas GS, da Silva JM, et al. Selective screening of fatty acids oxidation defects and organic acidemias by liquid chromatography/tandem mass spectrometry acylcarnitine analysis in Brazilian patients. Arch Med Res. 2018;49(3):205–212.

[88] ICMR Task Force on Inherited Metabolic Disorders. High risk stratified neonatal screening. Indian J Pediatr. 2018;85(12):1050–1054.

[89] Wang H, Wang X, Li Y, et al. Screening for inherited metabolic diseases using gas chromatography-tandem mass spectrometry (GC-MS/MS) in Sichuan, China. Biomed Chromatogr. 2017;31(4):e3847.

[90] Hampe MH, Panaskar SN, Yadav AA, et al. Gas chromatography/mass spectrometry-based urine metabolome study in children for inborn errors of metabolism: an Indian experience. Clin Biochem. 2017;50(3):121–126.

[91] Dogan E, Uysal S, Ozturk Y, et al. Selective screening for inborn errors of metabolism: a report of six years’ experience. Iran J Pediatr. 2017;27(5):e11323.

[92] Kiykim E, Zeybek CA, Zubarioglu T, et al. Inherited metabolic disorders in Turkish patients with autism spectrum disorders. Autism Res. 2016;9(2):217–223.

[93] Han L, Han F, Ye J, et al. Spectrum analysis of common inherited metabolic diseases in Chinese patients screened and diagnosed by tandem mass spectrometry. J Clin Lab Anal. 2015;29(2):162–168.

[94] Jiang M, Liu L, Mei H, et al. Detection of inborn errors of metabolism using GC-MS: over 3 years of experience in Southern China. J Pediatr Endocrinol Metab. 2015;28(3–4):375–380.

[95] Shawky RM, Abd-Elkahalek HS, Elakhdar S. Selective screening in neonates suspected to have inborn errors of metabolism. Egypt J Med Hum Genet. 2015;16(2):165–171.

[96] Selim LA, Hassan SA, Salem F, et al. Selective screening for inborn errors of metabolism by tandem mass spectrometry in Egyptian children: a 5 year report. Clin Biochem. 2014;47(9):823–828.

[97] Golbahar J, Al-Jishi EA, Altyabay DD, et al. Selective newborn screening of inborn errors of amino acids, organic acids and fatty acids metabolism in the kingdom of Bahrain. Mol Genet Metab. 2013;110(1–2):98–101.

[98] Karam PE, Habbal MZ, Mikati MA, et al. Diagnostic challenges of aminoacidopathies and organic acidemias in a developing country: a twelve-year experience. Clin Biochem. 2013;46(18):1787–1792.

[99] Tu W, He J, Dai F, et al. Impact of inborn errors of metabolism on admission in a neonatal intensive care unit – a prospective cohort study. Indian J Pediatr. 2012;79(4):494–500.

[100] Huang X, Yang L, Tong F, et al. Screening for inborn errors of metabolism in high-risk children: a 3-year pilot study in Zhejiang Province, China. BMC Pediatr. 2012;12:18.

[101] Al Riaymi S, Al Maney M, Joshi SN, et al. Detection of inborn errors of metabolism using tandem mass spectrometry among high-risk omani patients. Oman Med J. 2012;27(6):482–485.

[102] Gogolak G, Panapka SN, Yadav AA, et al. Gas chromatography/mass spectrometry tandem mass spectrometry for analysis of acylcarnitines in dried blood specimens collected at autopsy from neonatal intensive care unit. Chin Med Sci J. 2010;25(2):109–114.

[103] Nagaraja D, Mamatha SN, De T, et al. Screening for inborn errors of metabolism using automated electrospray tandem mass spectrometry: study in high-risk Indian population. Clin Biochem. 2010;43(6):581–588.

[104] Wajner M, Coelho D, M D, Ingrassia R, et al. Selective screening for organic acidemias by urine organic acid GC-MS analysis in Brazil: fifteen-year experience. Clin Chim Acta. 2009;400(1–2):77–81.

[105] Song YZ, Li BX, Hao H, et al. Selective screening for inborn errors of metabolism and secondary methylmalonic aciduria in pregnancy at high risk district of neural tube defects: a human metabolome study by GC-MS in China. Clin Biochem. 2008;41(7–8):616–620.

[106] Yang Y, Yao Z, Song J, et al. Outcome of organic acidemias in China. Ann Acad Med Singap. 2008;37(12 Suppl):120–123.

[107] Yoshi SN, Venugopalan P. Clinical characteristics of neonates with inborn errors of metabolism detected by Tandem MS analysis in Oman. Brain Dev. 2007;29(9):543–546.

[108] Tan IK, Gajra B, Lim MS. Study of inherited metabolic disorders in Singapore – 13 years’ experience. Ann Acad Med Singap. 2006;35(11):804–813.

[109] Wajner M, Raymond K, Barschak A, et al. Detection of organic acidemias in Brazil. Arch Med Res. 2002;33(6):581–585.

[110] Chace DH, DiPerna JC, Mitchell BL, et al. Electrospray tandem mass spectrometry for analysis of acylcarnitines in dried postmortem blood specimens collected at autopsy from infants with unexplained cause of death. Clin Chem. 2001;47(7):1166–1182.

[111] Chace DH, DiPerna JC, Mitchell BL, et al. Electrospray tandem mass spectrometry for analysis of acylcarnitines in dried postmortem blood specimens collected at autopsy from infants with unexplained cause of death. Clin Chem. 2001;47(7):1166–1182.

[112] Machii G, Grimm U, Ahlbehrndt I, et al. Results of selective screening for inborn errors of metabolism in the former East Germany. Eur J Pediatr. 1994;153(7 Suppl 1):S14–S16.

[113] Lehnhert W. Long-term results of selective screening for inborn errors of metabolism. Eur J Pediatr. 1994;153(7 Suppl 1):S14–S16.

[114] Lehnhert W, Niederhoff H. Seven years of experience with selective screening for organic acidurias. Eur J Pediatr. 1984;142(3):208–210.

[115] Chalmers RA, Purkiss P, Watts RW, et al. Screening for organic acidurias and amino acidopathies in newborns and children. J Inherit Metab Dis. 1980;3(2):27–43.
[115] Bower A, Imbard A, Benoist JF, et al. Diagnostic contribution of metabolic workup for neonatal inherited metabolic disorders in the absence of expanded newborn screening. Sci Rep. 2019;9(1):14098.

[116] Hafeez A, Ijaz A, Chaudhry N, et al. Diagnosis of inherited metabolic disorders by selective metabolite testing: three years’ experience at a tertiary care center in Rawalpindi. J Pak Med Assoc. 2020;70(1):53–57.

[117] AlObaidy H. Patterns of inborn errors of metabolism: a 12 year single-center hospital-based study in Libya. Qatar Med J. 2013;2013(2):57–65.

[118] Gündüz M, Unal S, Okur I, et al. Neonates with inborn errors of metabolism: spectrum and short-term outcomes at a tertiary care hospital. Turk J Pediatr. 2015;57(1):45–52.

[119] Cheema HA, Malik HS, Parkash A, et al. Spectrum of inherited metabolic disorders in pakistani children presenting at a tertiary care Centre. J Coll Physicians Surg Pak. 2016;26(6):498–502.

[120] Lin SX, Shu JB, Wang C, et al. Clinical analysis of 15,851 children at risk of inherited metabolic diseases. Zhongguo Dang Dai Er Ke Za Zhi. 2017;19(12):1243–1247. Chinese.

[121] Gu XF, Han LS, Gao XL, et al. A pilot study of selective screening for high risk children with inborn error of metabolism using tandem mass spectrometry in China. Zhonghua Er Ke Za Zhi. 2004;42(6):401–404. Chinese.

[122] Xu FL, Fan T, Duan JJ, et al. Clinical analysis of organic acidemia in neonates from neonatal intensive care units. Zhongguo Dang Dai Er Ke Za Zhi. 2012;14(5):336–339. Chinese.

[123] Luo XP, Wang MT, Wei H, et al. Application of gas chromatography-mass spectrometry analysis on urine filter paper in the clinical-suspected screening and diagnosis of inherited metabolic diseases. Zhonghua Er Ke Za Zhi. 2003;41(4):245–248. Chinese.

[124] Xie LJ, Zhu JX, Zhu XD, et al. Combined use of tandem mass spectrometry with urine gas chromatography/mass spectrometry is useful for diagnosis of inborn errors of metabolism in children. Zhongguo dang dai er ke za zhi. 2008;10(1):31–34. Chinese.

[125] Han LS, Gao XL, Ye J, et al. Study of application of the tandem mass spectrometry in the differential diagnosis of organic acidemias. J Clin Pediatr. 2006;24(12):970–974. Chinese.

[126] Almäsi T, Guey LT, Lukacs C, et al. Systematic literature review and meta-analyse on the epidemiology of methylmalonic acidemia (MMA) with a focus on MMA caused by methylmalonyl-CoA mutase (mut) deficiency. Orphanet J Rare Dis. 2019;14(1):84.

[127] Waters D, Adeloye D, Woolham D, et al. Global birth prevalence and mortality from inborn errors of metabolism: a systematic analysis of the evidence. J Glob Health. 2018;8(2):021102.

[128] Moorthie S, Cameron L, Sagoo GS, et al. Systematic review and meta-analysis to estimate the birth prevalence of five inherited metabolic diseases. J Inherit Metab Dis. 2014;37(6):889–898.

[129] Shalev SA. Characteristics of genetic diseases in consanguineous populations in the genomic era: Lessons from Arab communities in North Israel. Clin Genet. 2019;95(1):3–9.

[130] Kari JA, Bockenhauer D, Stanescu H, et al. Consanguinity in Saudi Arabia: a unique opportunity for pediatric kidney research. Am J Kidney Dis. 2014;63(2):304–310.

[131] Feuchtbaum L, Lorey F, Faulkner L, et al. California’s experience implementing a pilot newborn supplemental screening program using tandem mass spectrometry. Pediatrics. 2006;117(5 Pt 2):S261–S269.

[132] Khalaf SM, El-Tellawy MM, Refat NH, et al. Detection of some metabolic disorders in suspected neonates admitted at Assiut University Children Hospital. Egypt J Med Hum Genet. 2019;20(1):29.

[133] Tu W, Song X, Dai F, et al. Application of liquid chromatography-tandem mass spectrometry (LC-MS/MS) in screening of high risk children with inherited metabolic diseases in Northern China. J Pediatr Endocrinol Metab. 2010;23(12):1245–1252.

[134] Lukacs Z, Santer R. Evaluation of electrospray-tandem mass spectrometry for the detection of phenylketonuria and other rare disorders. Mol Nutr Food Res. 2006;50(4–5):443–450.

[135] Meng M, Zhang YP. Impact of inborn errors of metabolism on admission in a neonatal intensive care unit: a 4-year report. J Pediatr Endocrinol Metab. 2013;26(7–8):689–693.