Neonatal diabetes mellitus (NDM) is a rare cause of hyperglycemia in the neonatal period. It is caused by mutations in genes that encode proteins playing critical roles in normal functions of pancreatic beta cells. Neonatal diabetes is divided into temporary and permanent subtypes. Treatment is based on the correction of fluid-electrolyte disturbances and hyperglycemia. Patients respond to insulin or sulfonylurea treatment according to the mutation type. Close glucose monitoring and education of caregivers about diabetes are vital.

Keywords: Insulin therapy; neonatal diabetes mellitus; sulfonylurea.

Please cite this article as "Zübarioğlu A.U., Bülbül A., Uslu H.S. Neonatal Diabetes Mellitus. Med Bull Sisli Etfal Hosp 2018;52(2):71–78."
months of age. However, in some patients it may manifest again, especially around the time of adolescence. The clinical onset of TNDM is characterized by hyperglycemia, glycosuria, dehydration, weight loss, and metabolic acidosis with or without ketonemia. Lower plasma insulin levels are detected both at baseline and after glucose-loading test. Median age at diagnosis is 6 days (1–81 days). Most affected babies are born as low-birth weight neonates. This condition originates from fetal insulin deficiency. In France, in a study performed with 29 babies with diagnosis of TND Mequal gender distribution was detected and intrauterine growth retardation was noted in 74% cases. In approximately 70% cases paternal uniparental disomy of chromosome 6q24, paternally derived unbalanced duplication or methylation defect of maternal allele are found. These anomalies result in the excess production of ZAC/PLAGL1 (a transcriptional regulator of type 1 receptor of pituitary adenylate cyclase-activating polypeptide, which is an important regulator of insulin secretion), which induces TNDM.

In general, patients with the 6q24 anomaly are born with moderate growth retardation (median birth weight 1930 g); they develop clinical symptoms of severe nonketotic hyperglycemia within the first week of their lives. Despite the initial presentation with severe symptoms, diabetes resolves up to median 12 weeks in most of the patients. However, during remission period, temporary hyperglycemic episodes may be seen with the intervening diseases.

Table 1. Monogenic subtypes of neonatal diabetes mellitus

Gene	Locus	Hereditary	Other clinical features
Abnormal pancreatic development			TNDM±macroglossia±umbilical hernia
PLAGL1	6q24	variable	TNDM (multiple hypomethylation syndrome) ± macroglossia ± umbilical defects ± congenital heart disease
ZFP57	6p22.1	OR	TNDM + pancreatic agenesis (steatorrhea)
PDX1	13q12.1	OR	PNDM + pancreatic agenesis (steatorrhea) ± cerebellar hypoplasia/aplasia + central respiratory dysfunction
PTF1A	10p12.3	OR	PNDM + pancreatic agenesis (steatorrhea) + cerebellar hypoplasia/aplasia + central respiratory dysfunction
HNF1B	17cen-q21.3	OD	TNDM + pancreatic hypoplasia and renal cysts
RFX6	6q22.1	OR	PNDM + intestinal atresia+gallbladder agenesis
GATA6	18q11.1-q11.2	OD	PNDM + congenital cardiac defects + biliary anomalies
GLIS3	9p24.3-p23	OR	PNDM + congenital hypothyroidism + glaucoma + hepatic fibrosis + renal cysts
NEUROG3	10q21.3	OR	PNDM + enteric anendocrinosis, malabsorptive diarrhea
NEUROD1	2q32	OR	PNDM + cerebellar hypoplasia + visual impairment + deafness
PAX6	11p13	OR	PNDM + microphthalmia + cerebral malformation
Abnormal B-cell function			
KCNJ11	11p15.1	Spontaneous, OD	PNDM/TNDM ± DEND
ABCC8	11p15.1	Spontaneous, OD,OR	TNDM/PNDM ± DEND
INS	11p15.1	OR	Isolated PNDM or TNDM
GCK	7p15-p13	OR	Isolated PNDM
SLC2A2(GLUT2)	3q26.1-q26.3	OR	Fanconi-Bickel syndrome PNDM + hypergalactosemia, hepatic dysfunction
SLC19A2	1q23.3	OR	Roger's Syndrome PNDM ± Thiamine-responsive megaloblastic anemia, sensorineural deafness
B-cell destruction			
INS	11p15.1	Spontaneous, OD	Isolated PNDM
EIF2AK3	2p12	OR	Wolcott–Rallison syndrome PNDM + skeletal dysplasia + recurrent hepatic dysfunction
IER3IP1	18q12	OR	PNDM + microcephaly + lissencephaly + epileptic encephalopathy
FOX3P	Xp11.23-p13.3	X-related, OR	IPEX syndrome (autoimmune enteropathy, eczema, autoimmune hypothyroidism, increased IgE)
WFS1	4p16.1	OR	PNDM + optic atrophy + diabetes insipidus + deafness

*TNDM: temporary neonatal diabetes mellitus ** PNDM: permanent neonatal diabetes mellitus.
Neurolog

Although these mutations may

The patients with

In these cases, clinical manifes

In some cases, presence of these mutations

Many genetic

These cases are diagnosed within the

Because KATP channels and KIR 6.2 subunits

Activating heterogenous mutations in KCNJ11, which en

Permanent Neonatal Diabetes Mellitus (PNDM)

This form of neonatal diabetes generally onsets relatively

In a study including 73 cases with NDM

A significant clinical difference does not exist regarding

More than 90% patients having activating mutations in

PNDM may rarely manifest because of mutations in GATA6, RXF6, IPF-1, EIF2AK3, GCK, FOXP3, PTF1A, GLIS3, and INS genes.[7, 12-48] In some cases, presence of these mutations causes pancreatic hypoplasia, agenesis, or beta cell age

It should not be forgotten that pancreatic agenesis or hy

It is found to be more effective in achieving glycemic control

In 44 cases, sulfonylurea treatment initiation alowed for termination of insulin administration in 44 cases, and glycosylated hemoglobin levels decreased from 8.1% down to 6.4%.[27]

Activating mutations in ABCC8 gene that encodes type 1

Neurological disorders may also seen in patients with ABCC8 muta

A development of diabetes. ATP-sensitive potassium

Activating mutations in KCNJ11 and ABCC8 genes affect

KIR6.2 and SUR1 subunits of KATP channels, and may in

duce TNDM in 25% cases. TNDM patients having these

mutations demonstrate a mild intrauterine growth retar

dation and are usually diagnosed after a longer duration,

which indicates that a milder prenatal insulin deficiency is present. In addition, diabetes may remits and recur later in this group of patients.[6] Although these mutations may cause either TNDM or PNDM, KCNJ11 mutations more frequently cause permanent NDM whereas ABCC8 mutations more frequently cause temporary NDM.

Activating mutations in KCNJ11 and ABCC8 genes affect KIR6.2 and SUR1 subunits of KATP channels, and may induce TNDM in 25% cases. TNDM patients having these mutations demonstrate a mild intrauterine growth retardation and are usually diagnosed after a longer duration, which indicates that a milder prenatal insulin deficiency is present. In addition, diabetes may remits and recur later in this group of patients.[6] Although these mutations may cause either TNDM or PNDM, KCNJ11 mutations more frequently cause permanent NDM whereas ABCC8 mutations more frequently cause temporary NDM.

Permanent Neonatal Diabetes Mellitus (PNDM)

This form of neonatal diabetes generally onsets relatively later, generally within the first 3 months of life, and affected neonates require lifelong insulin therapy.[20] Many genetic mutations including 6p parental imprinting are responsible from the development of permanent NDM. With activation of these mutations, the number of open ATP-sensitive potassium channels increases. As a result, pancreatic beta cells hyperpolarize, preventing insulin secretion, resulting in the development of diabetes. ATP-sensitive potassium channel consists of a small subunit of KIR6.2 and four regulator SUR1 subunits surrounding a central pore. Single gene mutations are etiological agents of many cases of TNDM.

Activating heterogenous mutations in KCNJ11, which encode KIR6.2 subunits, are responsible from approximately half of the cases.[21-23] These cases are diagnosed within the first 2 months of age. These patients are born as low-birth weight babies according to their gestational age, and they catch up with their postnatal growth rate only with insulin treatment.[24] Because KATP channels and KIR 6.2 subunits are found in skeletal muscle and neurons, abnormalities as severe growth retardation, epilepsy, muscle weakness, and dysmorphism are detected in some patients; these symptoms are cumulatively referred to as DEND syndrome (developmental retardation, epilepsy, NDM).[25, 26] In pa-
and blood glucose levels reach very high levels. In these cases, insulin treatment is required on an emergency basis. Mostly, the patients have concomitant diseases as congenital heart disease, and most of these patients die because of the presence of anomalies incompatible with survival. In 50-75% of permanent NDM patients, a mutation is detected in KATP channels or proinsulin (INS) gene. Most of these mutations manifest as heterozygous and de novo mutations, and family history of these patients is unremarkable. However, some ABCC8 and INS mutations, and some other more rarely seen mutations, are homozygous mutations that require recessive hereditary transmission. Consanguineous marriages also increase the risk of development of these recessive subtypes. In children having KATP channel mutations born to consanguineous couples, conversion from insulin treatment to sulfonylurea treatment has a significantly lower likelihood.

Treatment

Treatment is based on correction of fluid and electrolyte disorders and hypoglycemia. The first step of treatment of hyperglycemia seen in NDM is to decrease glucose intake of the newborn. These interventions are initiated when blood glucose levels rise above 180-200 mg/dl. If the baby is receiving intravenous fluids, glucose infusion rate should be decreased in a stepwise manner. Blood glucose levels usually get controlled by decreasing the infusion rate to 4–6 mg/kg/min. If parenteral nutrition fluid also contains amino acids and lipid emulsion, blood glucose levels may be maintained despite decreasing glucose intake because babies may produce glucose through gluconeogenesis from glycerol and amino acids to maintain normoglycemia. Decreasing the glucose infusion rate provides a short-term solution, and by restricting the calorie intake limits growth rate. Both growth and more balanced glucose tolerance may be maintained with enteral nutrition. Insulin treatment is indicated in hyperglycemic babies despite decrease in glucose infusion rate. Insulin treatment ameliorates glucose tolerance, provides higher calorie intake, and improves growth. Definitive indications for insulin treatment are not determined; however, general approach tends to favor initiation of insulin infusion in babies with permanent hyperglycemia (>200–250 mg/dl) despite reduction of glucose infusion rate down to 4 mg/kg/min and who can not gain weight because of decrease in calorie intake. In babies with de novo diabetes, initiation of insulin therapy at an early stage of the disease is a necessity to prevent acute metabolic decompensation and ensure weight gain. These babies mostly respond good to insulin treatment. Insulin dose should be adjusted based on plasma glucose concentration, glucosuria, or both. Because of an increased risk of hypoglycemia, careful and frequent monitoring of plasma glucose carries utmost importance.

Insulin treatment

Insulin treatment may be administered as multiple injections daily or continuous subcutaneous infusions. During neonatal period, usually crystallized insulin is preferred. Because only small doses of insulin should be used, crystallized insulin should be diluted with physiological saline to obtain a concentration of 0.1 U/ml. The prepared solution should be changed at every 24 h.

The first step in the continuous treatment of hyperglycemia is to deliver a bolus infusion of crystallized insulin at a dose of 0.01–0.05 U/kg/h for 15 min in addition to intravenous fluid therapy. Blood glucose level measurements are performed at every 30–60 min, and if hyperglycemia persists, then this regimen is repeated at every 4–6 h. If hyperglycemia persists despite three bolus infusions, continuous infusion is started at a dose of 0.01–0.05 U/kg/h and with small increments; a maximum infusion rate of 0.1 U/kg/h may be attained. The targeted blood sugar level is 150–200 mg/dl, and values <150 mg/dl increase the risk of hypoglycemia.

In babies receiving parenteral nutrition or continuous enteral nutrition, delivery of a total daily dose of insulin as a continuous basal infusion is sufficient. At the start of breastfeeding or bottle feeding, it is appropriate to administer basal insulin as 30%, and meal time insulin doses as 70% of total dose. Daily total insulin requirement varies between 0.29 U/kg and 1.4 U/kg/d. In situations where extremely small doses of insulin (≤0.02 U/h or bolus ≤0.2 U) are required, administration of diluted insulin using continuous subcutaneous infusions should be the treatment alternative because it decreases the risk of hypoglycemia. Continuous infusion of insulin via subcutaneous route using an insulin pump provides administration of low doses of basal insulin and variable meal time insulin release similar to physiological insulin release, so allows flexible amount of food intake. The safety and effectiveness of insulin pumps have been demonstrated even in very small children. It is accepted as the first-line treatment alternative for this group of patients.

Sulfonylurea treatment

In most patients having activating mutations of KCNJ11 or ABCC8, replacement of pre-existing insulin treatment by sulfonylurea treatment results in better metabolic control. Initial sulfonylurea doses of the patients having KCNJ11 mutation are generally higher than that in cases with ABCC8 mutation. Also, patients with neuro-
logical symptoms may require higher doses. Independent from mutation type, the requirement for sulfonylurea doses tends to decrease over time. In the treatment, different types of sulfonylureas have been used (glibenclamide, glipizide, gliclazide) and during long-term follow-up, similar rates of permanent effectiveness and safety have been observed. The detected side effects were temporary and dental discoloration in the long term.58

Additional treatments

In patients with pancreatic agenesis, pancreatic enzymes should be given in addition to insulin therapy.

Glucose monitoring

Frequent glucose monitoring is very important for optimal insulin therapy, and it provides the opportunity for detecting attacks of hyperglycemia and hypoglycemia and to make appropriate interventions. Blood glucose levels should be checked by family members or caregivers at least 4–6 times a day. Glucose monitoring should be more frequent in babies whose glycemic control is not achieved and de novo diagnosed ones especially.59 Nowadays, glycemic variations may closely follow up with continuous glucose monitoring (CGM) by using subcutaneous sensors. Use of CGM in combination with continuous subcutaneous insulin infusion is becoming an increasingly important treatment modality.60 CGM has advantages of decreasing the frequency of hypoglycemic episodes, alleviating anxiety levels of the families, and revealing undetectable hypoglycemia, especially in small children. However, restricted body surface area of small babies limits its permanent use in the ones who had insulin pump without enough additional subcutaneous area. Also the high financial burden of this application is its disadvantage.

Method of feeding

Breast feeding is recommended in babies with NDM, similar to the recommendations for other babies.62 The amount of breast milk received at each breastfeeding may be calculated by weighing the babies before and after each breastfeeding, and each 100 ml breast milk contains 6–7 g carbohydrates.63 Insulin requirement in neonates is related to the frequency of breastfeeding.53 A bolus insulin dose may be administered after breastfeeding in babies receiving subcutaneous insulin infusion.64

Diabetes training

One of the main components of diabetes treatment is to make the families competent in managing diabetes through continuous diabetes training. The patients especially in their neonatal and infancy period are completely dependent on their caregivers for insulin injections, appropriate nutrition, monitoring glycemic levels, and other treatments. In this age group, poor glycemic control is caused by the inadequacy of verbal interaction, variations in fasting and appetite, variability of activity, frequent infections, and the fear of hypoglycemia/hyperglycemia.65 Hence, prevention, detection, and management of dysglycemia is extremely important in this age group.

Future treatments

To optimize insulin replacement, development of an artificial pancreas that provides insulin release cycle into blood by continuous monitoring of glucose levels is an important field of research in diabetes. Various studies have demonstrated that sensor- sensitive pump treatment improves metabolic control and decreases hyperglycemia risk. However, continuous use of the sensor is important for its effectiveness.67 Glycemic control provided by hypoglycemia risk decreased in older pediatric groups and adults. By continuous glucose monitoring, continuous subcutaneous insulin infusion and computerized algorithms with new technologies.68, 69 However, these technologies have not been approved for pediatric age groups.

Conclusion

The diagnosis of NDM in the neonatal period is extremely complex condition both for attendant clinicians and patient’s family. Determination of the genetic subtype by molecular diagnosis predicts prognosis, and risk of potential development of nonpancreatic characteristics, and also reveals the risk of development of diabetes in future siblings and generations. The most important impact of genetic subtyping is that it enables switching from administration of insulin injections to sulfonylureas, which provides better glycemic control in patients with K_{ATP} channel mutations. Up to now, 20 distinct gene mutations have been found to be responsible for NDM, and animal experiments are currently ongoing to detect new responsible genes. New genes to be identified using molecular studies will better clarify treatment, management, and prognosis of the disease.

Disclosures

Peer-review: Externally peer-reviewed.

Conflict of Interest: None declared.

Authorship contributions: Concept – A.U.Z.; Design – A.U.Z., A.B.; Supervision – H.S.U.; Materials – A.U.Z.; Data collection &/or processing – A.U.Z., A.B.; Analysis and/or interpretation – A.U.Z., H.S.U.; Literature search – A.U.Z., A.B.; Writing – A.U.Z.; Critical review – A.B., H.S.U.
References

1. Rubio-Cabezas O, Ellard S. Diabetes mellitus in neonates and infants: genetic heterogeneity, clinical approach to diagnosis, and therapeutic options. Horm Res Paediatr 2013;80:137–46.

2. Stay J, Steiner DF, Park SY, Ye H, Phillipson LH, Bell GI. Clinical and molecular genetics of neonatal diabetes due to mutations in the insulin gene. Rev Endocr Metab Disord 2010;11:205–15.

3. De Franco E, Flanagan SE, Houghton JA, Lango Allen H, Mackay DJ, Temple IK, et al. The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study. Lancet 2015;386:957–63.

4. von Mühlenfeld KE, Herkenhoff H. Long-term course of neonatal diabetes. N Engl J Med 1995;333:704–8.

5. Murphy R, Ellard S, Hattersley AT. Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. Nat Clin Pract Endocrinol Metab 2008;4:200–13.

6. Flanagan SE, Patch AM, Mackay DJ, Edghill EL, Glyn AL, Robinson D, et al. Mutations in ATP-sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. Diabetes 2007;56:1930–7.

7. Edghill EL, Flanagan SE, Patch AM, Boustred C, Parrish A, Shields B, et al; Neonatal Diabetes International Collaborative Group. Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes 2008;57:1034–42.

8. Kalhan SC, Devaskar SU. Disorders of carbohydrate metabolism. In: Martin RJ, Fanaroff AA, Walsh MC, editors. Neonatal-Perinatal Medicine: Diseases of the Fetus and Infant. Vol 2. 9th ed. St. Louis: Elsevier Mosby; 2011. p.1497.

9. Boonen SE, Pörksen S, Mackay DJ, Oestergaard E, Olsen B, Bron-dum-Nielsen K, et al. Clinical characterisation of the multiple maternal hypomethylation syndrome in siblings. Eur J Hum Genet 2008;16:453–61.

10. Metz C, Cavé H, Bertrand AM, Deffert C, Gueguen-Giroux B, Czernichow P, et al; NDM French Study Group. Neonatal diabetes mellitus. Neonatal diabetes mellitus: chromosomal analysis in transient and permanent cases. J Pediatr 2002;141:483–9.

11. Hermann R, Laine AP, Johansson C, Niederland T, Tokarska L, Dziatkowiak H, et al. Transient but not permanent neonatal diabetes mellitus is associated with paternal uniparental isodisomy of chromosome 6. Pedia-trics 2000;105:49–52.

12. Shield JP. Neonatal diabetes: new insights into aetiology and implications. Horm Res 2000;53 Suppl 1:7–11.

13. Kamiya M, Judson H, Okazaki Y, Kusakabe M, Muramatsu M, Takada S, et al. The cell cycle control gene ZAC/PLAGL1 is imprinted—a strong candidate gene for transient neonatal diabetes. Hum Mol Genet 2000;9:453–60.

14. Temple IK, Shield JP. Transient neonatal diabetes, a disorder of imprinting. J Med Genet 2002;39:872–5.

15. Mackay DJ, Callaway JL, Marks SM, White HE, Acerini CL, Boonen SE, et al. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat Genet 2008;40:949–51.

16. Temple IK, Shield JP. 6q24 transient neonatal diabetes. Rev Endocr Metab Disord 2010;11:199–204.

17. Temple IK, Gardner RJ, Mackay DJ, Barber JC, Robinson DO, Shield JP. Transient neonatal diabetes: widening the understanding of the etiopathogenesis of diabetes. Diabetes 2000;49:1359–66.

18. Docherty LE, Kabwama S, Lehmann A, Hawke E, Harrison L, Flanagan SE, et al. Clinical presentation of 6q24 transient neonatal diabetes mellitus (6q24 TNDM) and genotype-phenotype correlation in an international cohort of patients. Diabetologia 2013;56:758–62.

19. Shield JP, Temple IK, Sabin M, Mackay D, Robinson DO, Betts PR, et al. An assessment of pancreatic endocrine function and insulin sensitivity in patients with transient neonatal diabetes in remission. Arch Dis Child Fetal Neonatal Ed 2004;89:341–3.

20. Rubio-Cabezas O, Klupa T, Malecki MT; CEE3D Consortium. Permanent neonatal diabetes mellitus—the importance of diabetes differential diagnosis in neonates and infants. Eur J Clin Invest 2010;41:323–33.

21. Glyn AL, Pearson ER, Amtcliff JF, Proks P, Bruining GJ, Slingerland AS, et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 2004;350:1838–49.

22. Glyn AL, Cummings EA, Edghill EL, Harries LW, Scott R, Costa T, et al. Permanent neonatal diabetes due to paternal germline mosaicism for an activating mutation of the KCNJ11 Gene encoding the Kir6.2 subunit of the beta-cell potassium adenosine triphosphate channel. J Clin Endocrinol Metab 2004;89:3932–5.

23. Vaxillaire M, Populaire C, Busiah K, Cavé H, Glyn AL, Hattersley AT, et al. Kir6.2 mutations are a common cause of permanent neonatal diabetes in a large cohort of French patients. Diabetes 2004;53:2719–22.

24. Slingerland AS, Hattersley AT. Activating mutations in the gene encoding Kir6.2 alter fetal and postnatal growth and also cause neonatal diabetes. J Clin Endocrinol Metab 2006;91:2782–88.

25. Hattersley AT, Ashcroft FM. Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. Diabetes 2005;54:2503–13.

26. Clark RH, McTaggart JS, Webster R, Mannikko R, Iberl M, Sim XL, et al. Muscle dysfunction caused by a KATP channel mutation in neonatal diabetes mellitus–the importance of diabetes molecular genetics of neonatal diabetes due to mutations in ATP-sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. Diabetes 2007;56:1930–7.

14. Temple IK, Shield JP. Transient neonatal diabetes, a disorder of imprinting. J Med Genet 2002;39:872–5.
29. Ellard S, Flanagan SE, Girard CA, Patch AM, Harries LW, Parrish A, et al. Permanent neonatal diabetes caused by dominant, recessive, or compound heterozygous SUR1 mutations with opposite functional effects. Am J Hum Genet 2007;81:375–82.

30. Rafiq M, Flanagan SE, Patch AM, Shields BM, Ellard S, Hattersley AT; Neonatal Diabetes International Collaborative Group. Effective treatment with oral sulfonylureas in patients with diabetes due to sulfonylurea receptor 1 (SUR1) mutations. Diabetes Care 2008;31:204–9.

31. Klupa T, Skupien J, Mirkiewicz-Sieradzka B, Gach A, Noczyńska A, Zubkiewicz-Kucharska A, et al. Efficacy and safety of sulfonylurea use in permanent neonatal diabetes due to KCNJ11 gene mutations: 34-month median follow-up. Diabetes Technol Ther 2010;12:387–91.

32. Smith SB, Qu HQ, Taleb N, Kishimoto NY, Scheel DW, Lu Y, et al. Rfx6 directs islet formation and insulin production in mice and humans. Nature 2010;63:775–80.

33. Scharfmann R, Polak M. Transcribing neonatal diabetes mellitus. N Engl J Med 2010;362:1538–9.

34. Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF. Pancreatic agenesis as a feature of permanent neonatal diabetes due to mutations: a syndrome of exocrine and endocrine pancreatic insufficiency. J Pediatr 1986;109:465–8.

35. Winter WE, Maclaren NK, Riley WJ, Toskes PP, Andres J, Rosenbloom AL. Congenital absence of insulin cells in a neonate with diabetes mellitus and mutate-deficient methylnalonic acidaemia. Diabetologia 1993;36:352–7.

36. Blum D, Dorchy H, Mouraux T, Vamos E, Mardens Y, Kumps A, et al. Congenital absence of insulin cells in a neonate with diabetes mellitus and mutase-deficient methylmalonic acidaemia. Diabetes 2004;53:1876–83.

37. Colombo C, Porzio O, Liu M, Massa O, Vasta M, Salardi S, et al; Early Onset Diabetes Study Group of the Italian Society of Pediatric Endocrinology and Diabetes (SIEDP). Seven mutations in the human insulin gene linked to permanent neonatal/infancy-onset diabetes mellitus. J Clin Invest 2008;118:2148–56.

38. Støy J, Edghill EL, Flanagan SE, Ye H, Paz VP, Pluzhnikov A, et al; Neonatal Diabetes International Collaborative Group. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci U S A 2007;104:15040–4.

39. Garin I, Edghill EL, Akerman I, Rubio-Cabezás O, Ríco I, Locke JM, et al; Neonatal Diabetes International Group. Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis. Proc Natl Acad Sci USA 2010;107:3105–10.

40. Chen R, Hussain K, Al-Ali M, Dattani MT, Hindmarsh P, Jones PM, et al. Neonatal and late-onset diabetes mellitus caused by failure of pancreatic development: report of 4 more cases and a review of the literature. Pediatr Diabetes 2008;96:1541–7.

41. Karges B, Meissner T, Icks A, Kapellen T, Holl RW. Management of diabetes mellitus in infants. Nat Rev Endocrinol 2011;8:201–11.

42. Tubiana-Rufi N. Insulin pump therapy in neonatal diabetes. Endocr Dev 2007;12:67–74.

43. Beardsall K, Pesterfield CL, Acerini CL. Neonatal diabetes and insulin pump therapy. Arch Dis Child Fetal Neonatal Ed 2007;92:F223–4.

44. Fox LA, Buckloh LM, Smith SD, Wysocki T, Mauers N. A randomized controlled trial of insulin pump therapy in young children with type 1 diabetes. Diabetes Care 2005;28:1277–81.

45. Mack-Fogg JE, Orlowski CC, Jospe N. Continuous subcutaneous insulin infusion in toddlers and children with type 1 diabetes mellitus is safe and effective. Pediatr Diabetes 2005;6:17–21.

46. Aguilar-Bryan L, Bryan J. Neonatal diabetes mellitus. Endocr Rev 2008;29:265–91.

47. MacQueen GM, Whitehead AS, Hattersley AT. High-dose glibenclamide can replace insulin therapy despite transitory diarrhea in early-onset diabetes caused by a novel R201L Kir6.2 mutation. Diabetes Care 2005;28:758–9.

48. Kumaraguru J, Flanagan SE, Greeley SA, Nuboer R, Stoy J, Phillips LH, et al. Tooth discoloration in patients with neonatal diabetes after transfer onto glibenclamide: a previously unreported
side effect. Diabetes Care 2009;32:1428–30.
59. Ziegler R, Heidtmann B, Hilgard D, Hofer S, Rosenbauer J, Holl R; DPV-Wiss-Initiative. Frequency of SMBG correlates with HbA1c and acute complications in children and adolescents with type 1 diabetes. Pediatr Diabetes 2011;12:11–7.
60. Kordonouri O, Pankowska E, Rami B, Kapellen T, Coutant R, Hartmann R, et al. Sensor-augmented pump therapy from the diagnosis of childhood type 1 diabetes: results of the Paediatric Onset Study (ONSET) after 12 months of treatment. Diabetologia 2010;53:2487–95.
61. Deiss D, Kordonouri O, Meyer K, Danne T. Long hypoglycaemic periods detected by subcutaneous continuous glucose monitoring in toddlers and pre-school children with diabetes mellitus. Diabet Med 2001;18:337–8.
62. Smart C, Aslander-van Vliet E, Waldron S. Nutritional management in children and adolescents with diabetes. Pediatr Diabetes 2009;10 Suppl 12:100–17.
63. Sauer CW, Kim JH. Human milk macronutrient analysis using point-of-care near-infrared spectrophotometry. J Perinatol 2011;31:339–43.
64. Wilson DM, Buckingham BA, Kunselman EL, Sullivan MM, Paguntalan HU, Gitelman SE. A two-center randomized controlled feasibility trial of insulin pump therapy in young children with diabetes. Diabetes Care 2005;28:15–9.
65. Komulainen J, Kulmala P, Savola K, Lounamaa R, Ilonen J, Reijonen H, et al. Clinical, autoimmune, and genetic characteristics of very young children with type 1 diabetes. Childhood Diabetes in Finland (DiMe) Study Group. Diabetes Care 1999;22:1950–5.
66. Slover RH, Welsh JB, Criego A, Weinzimer SA, Willi SM, Wood MA, et al. Effectiveness of sensor-augmented pump therapy in children and adolescents with type 1 diabetes in the STAR 3 study. Pediatr Diabetes 2012;13:6–11.
67. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group, Tamborlane WV, Beck RW, Bode BW, Buckingham B, Chase HP, Clemons R, et al. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N Engl J Med 2008;359:1464–76.
68. Hovorka R, Kumareswaran K, Harris J, Allen JM, Elleri D, Xing D, et al. Overnight closed loop insulin delivery (artificial pancreas) in adults with type 1 diabetes: crossover randomised controlled studies. BMJ 2011;342:d1855.
69. Elleri D, Allen JM, Nodale M, Wilinska ME, Mangat JS, Larsen AM, et al. Automated overnight closed-loop glucose control in young children with type 1 diabetes. Diabetes Technol Ther 2011;13:419–24.