The exponentiated Hencky-logarithmic strain energy.
Part III: Coupling with idealized multiplicative isotropic finite strain plasticity

Patrizio Neff1 and Ionel-Dumitrel Ghiba2

August 5, 2015

\textit{Dedicated to David J. Steigmann, a great scientist and good friend}

Abstract

We investigate an immediate application in finite strain multiplicative plasticity of the family of isotropic volumetric-isochoric decoupled strain energies

\[F \mapsto W_{\text{sh}}(F) := \tilde{W}_{\text{sh}}(U) := \begin{cases} \frac{\mu}{k} e^{\frac{1}{k} \text{dev}_a \log U}^2 + \frac{\kappa}{2k} e^{\frac{1}{k} \text{ja}(\log U)}^2 & \text{if } \det F > 0, \\ +\infty & \text{if } \det F \leq 0, \end{cases} \]

based on the Hencky-logarithmic (true, natural) strain tensor $\log U$. Here, $\mu > 0$ is the infinitesimal shear modulus, $\kappa = \frac{2\mu + \lambda}{3} > 0$ is the infinitesimal bulk modulus with λ the first Lamé constant, k, \tilde{k} are additional dimensionless material parameters, $F = \nabla \varphi$ is the gradient of deformation, $U = \sqrt{F^T F}$ is the right stretch tensor and $\text{dev}_a \log U = \log U - \frac{1}{n} \text{tr}(\log U) \cdot \mathbb{1}$ is the deviatoric part of the strain tensor $\log U$.

Based on the multiplicative decomposition $F = F_\epsilon F_p$, we couple these energies with some isotropic elasto-plastic flow rules $F_p \frac{\partial}{\partial t} [F_p^{-1}] \in -\bar{\nabla} \chi (\text{dev}_3 \Sigma)$ defined in the plastic distortion F_p, where $\bar{\nabla} \chi$ is the subdifferential of the indicator function χ of the convex elastic domain $E_\epsilon (\Sigma, \frac{1}{k} \Sigma_0^2)$ in the mixed-variant Σ-stress space, $\Sigma_0 = F_p^T D_{F_p} W_{\text{tot}}(F)$ and $W_{\text{tot}}(F)$ represents the isochoric part of the energy. While W_{sh} may lose ellipticity, we show that loss of ellipticity is effectively prevented by the coupling with plasticity, since the ellipticity domain of W_{sh} on the one hand, and the elastic domain in Σ_0-stress space on the other hand, are closely related. Thus the new formulation remains elliptic in elastic unloading at any given plastic predeformation. In addition, in this domain, the true-stress-true-strain relation remains monotone, as observed in experiments.

\textbf{Key words}: Hencky strain, logarithmic strain, natural strain, true strain, Hencky energy, volumetric-isochoric split, multiplicative decomposition, elasto-plasticity, bounded elastic distortions, ellipticity domain, return mapping algorithm, finite strain plasticity, isotropic formulation, 9-dimensional flow rule, associated plasticity, subdifferential formulation, convex elastic domain, plastic spin

1Corresponding author: Patrizio Neff, Head of Lehrstuhl für Nichtlineare Analysis und Modellierung, Fakultät für Mathematik, Universität Duisburg-Essen, Thea-Leymann Str. 9, 45127 Essen, Germany, email: patrizio.neff@uni- dues.de

2Ionel-Dumitrel Ghiba, Lehrstuhl für Nichtlineare Analysis und Modellierung, Fakultät für Mathematik, Universität Duisburg-Essen, Thea-Leymann Str. 9, 45127 Essen, Germany; Alexandru Ioan Cuza University of Iași, Department of Mathematics, Blvd. Carol I, no. 11, 700506 Iași, Romania; and Octav Mayer Institute of Mathematics of the Romanian Academy, Iași Branch, 700506 Iași, email: dumitrel.ghiba@uni- due.de, dumitrel.ghiba@uaic.ro
1 Introduction

1.1 Preliminaries

It is impossible to give an account of all works treating finite strain plasticity based in some way or another on the logarithmic strain space description. The logarithmic description\(^1\) is arguably the simplest approach to finite plasticity, suitable for the phenomenological description of isotropic polycrystalline metals if the structure of geometrically linear theories is used with respect to the Lagrangian logarithmic strain. In this paper we do not consider hypoelastic-plastic models [73, 22, 43, 97] in which, contrary to hyperelastic models, the potential character of the elastic energy is ignored [42, 53]. Otherwise, they are simply the hyperelastic models rewritten in a suitable incremental form. In case of the logarithmic rate, however, the hypoelastic model integrates exactly to the well-known hyperelastic quadratic Hencky model.

In isotropic finite strain computational hyperelasto-plasticity [4, 3, 19, 85, 86, 79, 13, 80, 98] the mostly used elastic energy is the quadratic Hencky logarithmic energy [91, 58, 16, 47, 96, 99, 7, 26] (see also [24, 81, 83, 77, 75, 17, 52])

\[
W_h(F_e) := \frac{\mu}{4} \| \text{dev}_n \log C_e \|^2 + \frac{\kappa}{8} [\text{tr}(\log C_e)]^2 = \mu \| \text{dev}_n \log U_e \|^2 + \frac{\kappa}{2} [\text{tr}(\log U_e)]^2, \tag{1.1}
\]

where \(\mu > 0\) is the infinitesimal shear modulus, \(\kappa > 0\) is the infinitesimal bulk modulus, \(C_e := F_e^T F_e\) is the elastic right Cauchy-Green tensor, \(U_e\) the right stretch tensor, i.e. the unique element of PSym\((n)\) for which \(U_e^2 = C_e\) and

\[
F = F_e \cdot F_p \tag{1.2}
\]

is the multiplicative decomposition of the deformation gradient [33, 34, 35, 38, 61, 68, 9, 50, 49]. Here we adopt the usual abbreviations of Lie-group theory and we let Sym\((n)\) and Sym\((n)\) denote the symmetric and positive definite symmetric tensors respectively. We have used the Frobenius tensor norm \(\|X\|^2 = \langle X, X \rangle_{\mathbb{R}^{n \times n}}\), where \(\langle X, Y \rangle_{\mathbb{R}^{n \times n}}\) is the standard Euclidean scalar product on \(\mathbb{R}^{n \times n}\). The identity tensor on \(\mathbb{R}^{n \times n}\) will be denoted by \(\mathbb{1}\), so that \(\text{tr}(X) = \langle X, \mathbb{1} \rangle\), while \(\text{dev}_n X = X - \frac{1}{n} \text{tr}(X) \cdot \mathbb{1}\) is the n-dimensional deviatoric part of a second order tensor \(X \in \mathbb{R}^{n \times n}\).

Among the works which use the Hencky strain in elasto-plasticity we may also mention [87, 47, 75, 8, 77, 76, 14, 18]. The expression \(W_h\) is the energy considered by J.C. Simo (see Eq. (3.4), page 147, from [88] and also [1]) because

\[
W_h(F_e) := \mu \| \text{dev}_n \log F_e^T F_e \|^2 + \frac{\kappa}{8} [\text{tr}(\log F_e^T F_e)]^2 = \frac{\mu}{4} \| \text{dev}_n \log F_e^T F_e \|^2 + \frac{\kappa}{2} [\text{tr}(\log F^T F)]^2. \tag{1.3}
\]

As J.C. Simo already pointed out [89, page 392], the Hencky energy \(W_h\) "has the correct behaviour for extreme strains in the sense that" \(W(F_e) \to \infty\) as \(\text{det} F_e \to 0\) and, likewise \(W(F_e) \to \infty\) as \(\text{det} F_e \to \infty\), but \(W_h\)

\(^1\)According to Hanin and Reiner [23, page 384]: "... there are problems in large plastic deformation. Here the only adequate measure in the Hencky measure, because this is the only measure in which the extensions form a group as can be seen from the relation

\[
\log \frac{\ell_3}{\ell_1} = \log \left(\frac{\ell_3}{\ell_2} \frac{\ell_2}{\ell_1} \right) = \log \frac{\ell_3}{\ell_2} + \log \frac{\ell_2}{\ell_1},
\]

This property of forming a group is required in plasticity because in (ideal) plasticity the amount of finite deformation reached at any time is of no physical significance. As a matter of fact no definite meaning can be attached to such deformation because while in elasticity there exists an 'unstrained state' to which the length \(\ell_0\) is referred, no "undeformed state" can be defined. In plasticity, as in viscosity, the increase in length \(d\ell\), which takes place during the time increment \(dt\), can only be referred to the instantaneous length \(\ell\) so that the extension

\[
\varepsilon = \int_{t_0}^{t_{n+1}} \frac{d\ell}{\ell} = \log \frac{\ell_n}{\ell_{n+1}}
\]

which is Hencky's measure. At the same time, only in the Hencky measure can the cubical dilatation be measured by the first invariant as can be seen from

\[
\varepsilon_v = \log \frac{V}{V_0} = \log \left(\frac{\ell_1}{\ell_{n0}} \frac{\ell_2}{\ell_{n0}} \frac{\ell_3}{\ell_{n0}} \right) = \log \frac{\ell_1}{\ell_{n0}} + \log \frac{\ell_2}{\ell_{n0}} + \log \frac{\ell_3}{\ell_{n0}}
\]

so that the deviator is of physical significance; and plasticity relations must be expressed in terms of deviators."
"is not a convex function of" $\det F_c$ "and hence W_H "cannot be a polyconvex function of the deformation gradient [...]. Therefore, the stored energy function" W_H "cannot be accepted as a correct model of elasticity for extreme strains. Despite this shortcoming, the model provides an excellent approximation for moderately large elastic strains, vastly superior to the usual Saint-Venant-Kirchhoff model of finite elasticity". Furthermore, this limitation has negligible practical implications in realistic models of classical plasticity, which are typically restricted to small elastic strains, and is more than offset by the simplicity of the return mapping algorithm in stress space, which takes a format identical to that of the infinitesimal theory\(^{\text{2}} \). The last statement is the core argument why the Hencky energy is favoured in computational metal elasticity\(^{\text{3}} \).

Several models of such a type have been considered in [72, 32]. The decisive advantage of using the energy W_H compared to other elastic energies stems from the fact that computational implementations of elasto-plasticity [17] based on the additive decomposition $\varepsilon = \varepsilon_c + \varepsilon_p$ in infinitesimal models [69, 15, 71, 62, 27], can be used with nearly no changes also in isotropic finite strain problems [89, page 392].

The computation of the elastic equilibrium at given plastic distortion F_p suffers, however, under the well-known non-ellipticity\(^{\text{4}} \) of W_H [5, 2. 55, 28].

Recently, it has been discovered that the elastic Hencky energy does have a fundamental differential geometric meaning, not shared by any other elastic energy (see [63, 64, 39]). For this investigation new mathematical tools had to be discovered [70, 36] also having consequences for the classical polar decomposition [30, 29]. We denote by $C = F^T F$ the right Cauchy-Green tensor, U the right stretch tensor, $B = F F^T$ the left Cauchy-Green (or Finger) tensor, and by V the left stretch tensor.

In the remaining part of this paper, after a paragraph giving some information on the results obtained for the exponentiated Hencky energy, we will consider the coupling to finite plasticity based on a 9-dimensional flow rule [92, 21].

1.2 The exponentiated Hencky energy

With a view to overcome the shortcomings of the quadratic Hencky energy, in a previous work [66] we have modified the Hencky energy and we considered

$$ W_{\text{ex}}(F) = W_{\text{ex}}^\text{iso}(\frac{F}{\det F^2}) + W_{\text{ex}}^\text{vol}(\det F^2 \cdot \mathbb{I}) = \begin{cases} \frac{H}{k} k \| \varepsilon_c \| \log U \|^2 + \frac{K}{2k} \| \varepsilon_p \| (\log \det U)^2 & \text{if } \det F > 0, \\ +\infty & \text{if } \det F \leq 0. \end{cases} \tag{1.4} $$

We have called this the exponentiated Hencky energy. For the two-dimensional situation $n = 2$ and for $\mu > 0, \kappa > 0$, we have established that the functions W_{ex} : $\mathbb{R}^{n \times n} \rightarrow \mathbb{R}^+$ from the family of exponentiated Hencky type energies are rank-one convex [66] for $k \geq \frac{1}{4}$ and $\hat{k} \geq \frac{1}{8}$, while they are polyconvex [67] for $k \geq \frac{1}{3}$ and $\hat{k} \geq \frac{1}{8}$.

Regarding the three-dimensional case we have proved [66] that, for all $k > 0$, the function $F \mapsto e^{k \| \varepsilon_c \| \log U \|^2}$, $F \in \text{GL}^+(3)$ is not rank-one convex (and therefore not polyconvex). However, from this shortcoming, in the next section we will discuss an interesting relation between non-ellipticity of W_{ex} in three-dimensions and finite plasticity models.

Moreover, in the first part [66] it is shown that the proposed energies have some other very useful properties: analytical solutions are in agreement with Bell’s experimental data; planar pure Cauchy shear stress produces

\[\text{The isotropic Saint-Venant-Kirchhoff elastic energy } W_{\text{SVK}}(F_c) \text{ reads: } W_{\text{SVK}}(F_c) = \frac{H}{k} \| F^T F_c - \mathbb{I} \|^2 + \frac{K}{2k} \| \varepsilon_p \| \| F^T F_c - \mathbb{I} \|^2 \]

and does not satisfy the Baker-Ericksen-inequalities, and is not separably convex. Therefore $W_{\text{SVK}}(F_c)$ is not rank-one convex [55, 78, 84]. Moreover, in the neighborhood of the identity it has the wrong nonlinear second order correction compared to all known experimental facts. For this reason, $W_{\text{SVK}}(F_c)$ is not a useful strain energy expression and should therefore be avoided in simulations.

\[\text{We need to be a little more specific. For the additive model in the format } \| \log C - \log C_0 \|^2 \text{ the complete systems of equations of the plastic flow rule are identical to the infinitesimal additive model, while for the truly multiplicative model the return mapping algorithm is similar to the infinitesimal case.} \]

\[\text{We know that } W_H \text{ is L2-elliptic in a large neighbourhood of the identity if } \lambda, \mu > 0, \lambda_i \in [0.2162, 1.39561], \text{ [see 5, 6], therefore } F \mapsto W_H(F) \text{ is L2-elliptic for small elastic strains. Since the elasto-plastic model should secure small elastic strains anyway it seems that the non-ellipticity occurring for large elastic strains is not essential. However, in numerical FEM-implementation it is necessary to compute the so-called elastic trial stress. The corresponding elastic trial deformation states } F_c \text{ may well be far outside the L2-ellipticity range. The model using the Hencky energy } W_H \text{ cannot guarantee that the computation of the elastic trial state is well-posed!} \]
bimodal pure shear strain and the value 0.5 of Poisson’s ratio corresponds to exact incompressibility, the analytical expression of the pressure is in concordance with the classical Bridgman’s compression data for natural rubber etc. An immediate application to rubber-like materials is proposed in [51].

We note that the **Kirchhoff stress tensor** \(\tau_{\text{st}}\) corresponding to the exponentiated energies is given [74] by

\[
\tau_{\text{st}} = 2\mu e^k \| \text{dev} \log V \|^2 - \text{dev} \log V + \kappa e^k |\text{tr}(\log V)|^2 \text{tr}(\log V) \cdot \mathbb{1},
\]

while the **Cauchy stress tensor** is given by

\[
\sigma_{\text{st}} = e^{-\text{tr}(\log V)} \cdot \tau_{\text{st}}.
\]

Both tensors \(\sigma_{\text{st}}\) and \(\tau_{\text{st}}\) differ from their classical Hencky-counterparts \(\sigma_{\text{H}}\) and \(\tau_{\text{H}}\) only by some nonlinear scalar factors. Moreover, by orthogonal projection onto the Lie-algebra \(\mathfrak{s}(3)\) and \(\mathbb{R} \cdot \mathbb{1}\), respectively, we find

\[
\text{dev} \sigma_{\text{st}} = e_k \| \text{dev} \log V \|^2 \text{dev} \sigma_{\text{H}}, \quad \text{tr}(\sigma_{\text{st}}) = e_k |\text{tr}(\log V)|^2 \text{tr}(\sigma_{\text{H}}).
\]

Therefore, the deviatoric part of the Cauchy stress \(\text{dev} \sigma_{\text{st}}\) and the trace of the Cauchy stress \(\text{tr}(\sigma_{\text{st}})\) are in a simple relation with the corresponding quantities for the quadratic Hencky energy \(\mathcal{W}_H\). Hence, the change of a given FEM-implementation of \(\mathcal{W}_H\) into \(\mathcal{W}_{\text{st}}\) is nearly free of costs [93, 40, 54, 25].

We also need to introduce the convex elastic domain in the Kirchhoff-stress space

\[
\mathcal{E}_c(\tau_{\text{st}}, \frac{2}{3} \sigma^2) := \left\{ \tau_c \in \text{Sym}(3) \mid \| \text{dev} \tau_c \|^2 \leq \frac{2}{3} \sigma_e^2 \right\} \subset \text{Sym}(3).
\]

Incidentally, the set \(\mathcal{E}_c(\tau_{\text{st}}, \frac{2}{3} \sigma_e^2)\) coincides with the set considered in the study of the monotonicity properties of the map \(\log U \mapsto \mathcal{W}_{\text{st}}(\log U)\) which we have called the true-stress-true-strain (TSTS-M+) monotonicity condition [66, 31]. The monotonicity of the Cauchy stress tensor as a function of \(\log B\) or \(\log V\) means

\[
\langle \sigma(\log B_1) - \sigma(\log B_2), \log B_1 - \log B_2 \rangle > 0, \quad \forall B_1, B_2 \in \text{PSym}(3), \quad B_1 \neq B_2,
\]

which implies the **true-stress-true-strain-invertibility** (TSTS-I), i.e. the invertibility of the map \(\log B \mapsto \sigma(\log B)\). This means that for our \(\mathcal{W}_{\text{st}}\)-formulation, the **true-stress-true-strain** relation is **monotone inside the elastic domain** \(\mathcal{E}_c(\tau_{\text{st}}, \frac{2}{3} \sigma_e^2)\). This is a feature of \(\mathcal{W}_{\text{st}}\) not shared with any other known elastic energy. For more constitutive issues regarding the interesting properties of \(\mathcal{W}_{\text{st}}\) we refer the reader to [66].

2 Multiplicative isotropic elasto-plasticity directly in terms of the non-symmetric plastic distortion \(F_p\)

In planar elasto-plasticity\(^6\) our development suggests to replace the energy \(\mathcal{W}_H\) by

\[
\mathcal{W}_{\text{st}}(F_c) := \frac{\mu}{k} e^k \| \text{dev} \log C_e \|^2 + \frac{\kappa}{2k} e^k |\text{tr}(\log C_e)|^2 = \frac{\mu}{k} e^k \| \text{dev} \log F_p^{-T} F_p^{-T} F F^{-1} \|^2 + \frac{\kappa}{2k} e^k |\text{tr}(\log (F F^{-1}))|^2 + \frac{\kappa}{2k} e^k |\log(|\det F_p|)|^2,
\]

where we have imposed the condition of plastic incompressibility \(\det F_p = 1\). Let us remark that for small deformations

\[
\mathcal{W}_{\text{st}}(F_c) = \mu e^k \| \text{dev} \log U_c \|^2 + \frac{\kappa}{2k} e^k |\text{tr}(\log U_c)|^2 = \mu \| \text{dev} \log U_c \|^2 + \frac{\kappa}{2k} |\text{tr}(\log U_c)|^2 + \text{h.o.t.}
\]

\[
\mathcal{W}_{\text{st}}(F_c) = \mu \| \log U_c \|^2 + \frac{\kappa}{2k} |\text{tr}(\log U_c)|^2 + \text{h.o.t.} = \mu \| \varepsilon_c \|^2 + \frac{\kappa}{2k} |\text{tr}(\varepsilon_c)|^2 + \text{h.o.t.,}
\]

where \(\varepsilon_c\) is the symmetric elastic strain. A direct identification of the constitutive coefficients gives us that

\[
\mu = \mu_{\text{sd}}, \quad \kappa - \mu = \lambda_{\text{sd}}.
\]

\(^6\)In order to model plane strain with this model, the coefficient \(\kappa\) has to be modified in order to be consistent with plane strain linear elasticity in the infinitesimal limit, see (2.2).
Lemma 2.1. (rank-one convexity and multiplicative decomposition) If the elastic energy \(F \mapsto W(F) \) is rank-one convex of class \(C^2 \), it follows that the elasto-plastic formulation
\[
F \mapsto W(F, F_p) := W(F F_p^{-1}) = W(F_c)
\]
remains rank-one convex w.r.t \(F \) \cite{[58, 56, 37]} at given plastic distortion \(F_p \).

Proof. This is clear, because
\[
D_{F_p}^2[W(F F_p^{-1})].(\xi \otimes \eta, \xi \otimes \eta) = D_{F_c}^2[W(F_c)].((\xi \otimes \eta)F_p^{-1}, (\xi \otimes \eta)F_p^{-1}) = D_{F_c}^2[W(F_c)].(\xi \otimes \tilde{\eta}, \xi \otimes \tilde{\eta}),
\]
where \(\tilde{\eta} = F_{p}^{-T}\eta \) and \(\xi \otimes \tilde{\eta} \) is the (dyadic) tensor product of \(\xi, \eta \in \mathbb{R}^3 \).

Remark 2.2. The same constitutive invariance property is true for convexity, polyconvexity and quasiconvexity \cite{[58, 32]}.

Therefore, the multiplicative approach is ideally suited as far as preservation of ellipticity properties for elastic unloading is concerned. Note that this feature is not true for some additive approaches, see \cite{[65]}.

Definition 2.3. (reduced dissipation inequality-thermodynamic consistency) We say that the reduced dissipation inequality along the plastic evolution is satisfied if and only if
\[
\frac{d}{dt}[W(F F_p^{-1}(t)) \leq 0, \quad (2.5)]
\]
for all constant in time \(F \).

Let us further remark that for fixed \(F \) and for an energy for which the decomposition into isochoric and volumetric parts
\[
W = W_{\text{iso}}(F_c) + W_{\text{vol}}(F_c) = W_{\text{iso}}(FF_p^{-1}) + W_{\text{vol}}(F) \quad (2.6)
\]
holds true, in view of Sansour’s result \cite{[82]} (see also \cite{[46, 48, 45] and [90, page 305]}), we have for the reduced dissipation inequality
\[
\frac{d}{dt}[W_{\text{iso}}(FF_p^{-1})] = \langle DF_cW_{\text{iso}}(F_c), F \frac{d}{dt}[F_p^{-1}] \rangle = \langle DF_cW_{\text{iso}}(F_c), FF_p^{-1}F_p \frac{d}{dt}[F_p^{-1}] \rangle
\]
\[
= \langle FF_p^{-1}F_c \frac{d}{dt}[F_p^{-1}] \rangle = \langle \Sigma_c, F_p \frac{d}{dt}[F_p^{-1}] \rangle = -\langle \Sigma_c, \frac{d}{dt}[F_p]F_p^{-1} \rangle \leq 0, \quad (2.7)
\]
where
\[
\Sigma_c = F_c^TDF_cW_{\text{iso}}(F_c) = 2C_cD_{C_c}[\widehat{\Theta}_{\text{iso}}(C_c)] = F_c^T \tau_c F_c^{-T}
\]
is the mixed variant (transformed) Kirchhoff tensor and
\[
\tau_c := 2D_{B_c}[\widehat{\Theta}_{\text{iso}}(B_c)]B_c = 2D_{\log B_c}[\widehat{\Theta}_{\text{iso}}(\log B_c)] = D_{\log V_c}[\widehat{\Theta}_{\text{iso}}(\log V_c)]
\]
is the elastic Kirchhoff stress-tensor. Note that \(\Sigma_c \) is symmetric in case of elastic isotropy, while \(\tau_c \) is always symmetric. The tensor \(\Sigma = C \cdot S_2(C) \) where \(S_2 = 2D_C[W(C)] \) is the second Piola-Kirchhoff stress tensor, is sometimes called the Mandel stress tensor and \(\text{dev} \Sigma_c = \text{dev} \Sigma_E \), where \(\Sigma_E \) is the elastic Eshelby tensor
\[
\Sigma_E : = F_c^TDF_c[W(F_c)] - W(F_c) \cdot \mathbb{1} = D_{\log C_c}[\widehat{\Theta}(\log C_c)] - \widehat{\Theta}(\log C_c) \cdot \mathbb{1}, \quad (2.8)
\]
driving the plastic evolution (see e.g. \cite{[20, 61, 41, 12, 10, 11]}).

A simple thermodynamically admissible perfect plasticity model \cite{[44, page 67]} (see also \cite{[90, 57, 59, 60, 61]}) is obtained by defining the plastic evolution
\[
F_p \frac{d}{dt}[F_p^{-1}] = -\frac{d}{dt}[F_p]F_p^{-1} \in -\partial \chi(\text{dev} \Sigma_c), \quad (2.8)
\]
where ∂X is the subdifferential of the indicator function X of the convex elastic domain
\[
E_e(\Sigma_e, \frac{1}{3} \sigma_e^2) := \{ \Sigma_e \in \mathbb{R}^{3 \times 3} \mid \| \text{dev}_3 \Sigma_e \|^2 \leq \frac{1}{3} \sigma_e^2 \} \tag{2.9}
\]
in the mixed-variant Σ_e-stress space. Let us remark that in the isotropic case
\[
E_e(\Sigma_e, \frac{1}{3} \sigma_e^2) := \{ \Sigma_e \in \text{Sym}(3) \mid \| \text{dev}_3 \Sigma_e \|^2 \leq \frac{1}{3} \sigma_e^2 \}. \tag{2.10}
\]
The choice (2.8) ensures $\frac{d}{dt} [W_{\text{iso}} (F F_p^{-1})] \leq 0$ at fixed F, therefore the reduced dissipation inequality (2.7) is satisfied and the deviatoric formulation together with the use of $F_p \frac{d}{dt} [F F_p^{-1}] = -\frac{d}{dt} [F_p] F_p^{-1}$ as conjugate variable guarantees $\det F_p = 1$.

Next, a (for us at first surprising) algebraic estimate is introduced.

Lemma 2.4. Let $F_e \in \text{GL}^+(3)$ be given. Then it holds $\| F_e^T S F_e^{-T} \|^2 \geq \frac{1}{2} \| S \|^2$ for all $S \in \text{Sym}(3)$, the constant being independent of F_e.

Proof. Let us define the left Cauchy-Green tensor $B_e = F_e F_e^T \in \text{PSym}(3)$. We have
\[
\| F_e^T S F_e^{-T} \|^2 = \langle F_e^T S F_e^{-T}, F_e^T S F_e^{-T} \rangle = \langle F_e F_e^T S, S F_e^{-T} F_e^{-1} \rangle = \langle B_e S, S B_e^{-1} \rangle. \tag{2.11}
\]
Since $B_e = F_e F_e^T \in \text{PSym}(3)$, there is $Q \in \text{SO}(3)$ such that $D_e = Q^T B_e Q = \text{diag}(d_1, d_2, d_3)$. Hence, we obtain
\[
\| F_e^T S F_e^{-T} \|^2 = \langle Q^T D_e Q S, S Q^T D_e^{-1} Q \rangle = (D_e Q S Q^T, Q S Q^T D_e^{-1}). \tag{2.12}
\]
Moreover, considering $Q S Q^T := \tilde{S} = \begin{pmatrix} \tilde{S}_{11} & \tilde{S}_{12} & \tilde{S}_{13} \\ \tilde{S}_{21} & \tilde{S}_{22} & \tilde{S}_{23} \\ \tilde{S}_{31} & \tilde{S}_{32} & \tilde{S}_{33} \end{pmatrix}$ and using that $1 \leq \frac{d_i}{d_j} + \frac{d_j}{d_i}$ for $d_i, d_j > 0$, we deduce
\[
\| F_e^T S F_e^{-T} \|^2 = \tilde{S}_{11}^2 + \tilde{S}_{22}^2 + \tilde{S}_{33}^2 + \tilde{S}_{12} \left(\frac{d_1}{d_2} + \frac{d_2}{d_1} \right) + \tilde{S}_{23} \left(\frac{d_2}{d_3} + \frac{d_3}{d_2} \right) + \tilde{S}_{31} \left(\frac{d_3}{d_1} + \frac{d_1}{d_3} \right) \geq \frac{1}{2} \| \tilde{S} \|^2 = \frac{1}{2} \| S \|^2,
\]
due to the symmetry of \tilde{S} and the proof is complete. \hfill \Box

Remark 2.5. Note that for $S \notin \text{Sym}(3)$ there is always an estimate similar to that given by Lemma 2.4 but which involves constants depending on F_e, i.e. $\| F_e^T S F_e^{-T} \|^2 \geq c(F_e) \| S \|^2$.

Remark 2.6. It is easy to see the relations
\[
\Sigma_e = F_e^T \tau_e F_e^{-T}. \tag{2.13}
\]
Note that (2.13), as opposed to appearance, is not at variance with symmetry of Σ_e in case of isotropy.

Remark 2.7. Since
\[
\text{dev}_3 \Sigma_e = \text{dev}_3 (F_e^T \tau_e F_e^{-T}) = F_e^T \tau_e F_e^{-T} - \frac{1}{3} \text{tr}(F_e^T \tau_e F_e^{-T}) \cdot \mathbb{1} = F_e^T (\tau_e - \frac{1}{3} \text{tr}(\tau_e)) \cdot \mathbb{1}) F_e^{-T}, \tag{2.14}
\]
we can note
\[
\text{dev}_3 \Sigma_e = F_e^T (\text{dev}_3 \tau_e) F_e^{-T}, \quad \text{dev}_3 \tau_e = F_e^{-T} (\text{dev}_3 \Sigma_e) F_e^T, \quad \text{tr}(\Sigma_e) = \text{tr}(\tau_e). \tag{2.15}
\]
Thus, using Lemma 2.4 we obtain the estimate
\[
\| \text{dev}_3 \Sigma_e \| = \| F_e^T (\text{dev}_3 \tau_e) F_e^{-T} \| \geq \frac{1}{\sqrt{2}} \| \text{dev}_3 \tau_e \|, \tag{2.16}
\]
which is valid for general anisotropic materials and it explains our choice of factors in $\mathcal{E}_c(\Sigma_{\text{el}}, \frac{1}{3} \sigma_0^2)$ and $\mathcal{E}_c(\tau_{\text{el}}, \frac{2}{3} \sigma_0^2)$, respectively. Moreover, numerical tests suggest that the LH-ellipticity domain of the distorsional energy function $F \mapsto W_{\text{el}}(F) = \frac{2}{k} e \| \text{dev}_3 \log U \|^2$, $F \in \text{GL}^+(3)$, with $k \geq \frac{1}{10}$ (the necessary condition for separate convexity (SC) of $e^k \| \text{dev}_3 \log U \|^2$ in 3D) is an extremely large cone

$$\mathcal{E}(W_{\text{el}}, \text{LH}, U, 27) = \{ U \in \text{PSSym}(3) \mid \| \text{dev}_3 \log U \|^2 < 27 \};$$

Therefore we have the inclusion of domains

$$\{ U \in \text{PSSym}(3), \Sigma_{\text{el}} \in \mathcal{E}_c(\Sigma_{\text{el}}, \frac{1}{3} \sigma_0^2) \} \subseteq \{ U \in \text{PSSym}(3), \tau_{\text{el}} \in \mathcal{E}_c(\tau_{\text{el}}, \frac{2}{3} \sigma_0^2) \} \subseteq \mathcal{E}(W_{\text{el}}, \text{LH}, U, 27).$$

![Figure 1: Elastic domains expressed in the mixed variant symmetric stress tensor Σ_{el} and the symmetric Kirchhoff stress tensor τ_{el} related to the ellipticity domain $\mathcal{E}(W_{\text{el}}, \text{LH}, U, 27)$. The elastic domains are viewed as subsets of PSSym(3).](image)

In (1.7) the considered convex "elastic domain", in which monotonicity and/or ellipticity for W_{el} is considered, is defined in terms of $\| \text{dev}_3 \Sigma_{\text{el}} \|$, not in terms of $\| \text{dev}_3 \Sigma_{\text{el}} \|$. However, adapting Lemma 2.4 to W_{el}, we see that, in the three-dimensional case, our previous results indicating the loss of ellipticity only for extreme distorsional strains suggest that the coupling with plasticity is most natural: permanent deformation sets in, based on a criterion of distorsional energy (Huber-Hencky-von Mises-type) $\| \text{dev}_3 \Sigma_{\text{el}} \|^2 \leq \frac{1}{3} \sigma_0^2$, and our former results suggest that $W_{\text{pl}}(F_0)$ never reaches the non-elliptic domain in any elasto-plastic process. This is in sharp contrast to the loss of ellipticity of the quadratic Hencky energy W_{pl}, which is not related to the distorsional energy alone. As it turns out, for the overall non-elliptic energy W_{pl} (in three dimensions) plasticity provides a natural relaxation mechanism, which prevents loss of ellipticity in the elastic domain. Moreover, in the above defined elastic domain $\mathcal{E}_c(\Sigma_{\text{el}}, \frac{1}{3} \sigma_0^2)$, the constitutive relation $\log B_{\text{el}} \mapsto \sigma(\log B_{\text{el}})$ remains monotone, i.e. the true-stress-true-strain monotonicity condition (TSTS-M) is satisfied in $\mathcal{E}_c(\Sigma_{\text{el}}, \frac{1}{3} \sigma_0^2)$ (see [66, 94, 95, 31]).

Remark 2.8. For the isotropic case we have $\tau_{\text{el}} B_{\text{el}} = B_{\text{el}} \tau_{\text{el}}$, which implies

$$\| \text{dev}_3 \Sigma_n \|^2 = \langle F_{\text{el}}^T (\text{dev}_3 \tau_{\text{el}}) F_{\text{el}}^{-T}, F_{\text{el}}^T (\text{dev}_3 \tau_{\text{el}}) F_{\text{el}}^{-T} \rangle = \langle B_{\text{el}} (\text{dev}_3 \tau_{\text{el}}), (\text{dev}_3 \tau_{\text{el}}) B_{\text{el}}^{-1} \rangle = \| \text{dev}_3 \tau_{\text{el}} \|^2.$$

This fact can be also proved using the fact that, in the isotropic case, both tensors Σ_{el} and τ_{el} are symmetric and they have the same invariants. Therefore, using (2.13) we obtain that in the isotropic case we have $\sqrt{2} \mathcal{E}_c(\Sigma_{\text{el}}, \frac{1}{3} \sigma_0^2) = \mathcal{E}_c(\tau_{\text{el}}, \frac{2}{3} \sigma_0^2)$.

Summarizing the properties of the 9-dimensional flow rule for the plastic distortion (2.8) we have:

1) it is thermodynamically correct ($\frac{d}{dt} \| W(F F_p^{-1}) \| \leq 0$);
ii) the right hand side is a function of F and F_p^{-1};

iii) plastic incompressibility: the constraint $\det F_p(t) = 1$ for all $t \geq 0$ follows from the flow rule in combination with the initial condition $\det F_p(t)|_{t=0} = 1$;

iv) the above properties imply that the flow rule (2.8) is consistent;

v) it satisfies the principle of maximum dissipation and is an associated plasticity model;

vi) elastic unloading remains rank-one convex under arbitrary plastic predeformation.

3 Conclusion and open problems

We have shown that the multiplicative plasticity models preserve ellipticity in purely elastic processes at frozen plastic variables provided that the initial elastic response is elliptic. Preservation of LH-ellipticity is, in our view, a property which should be satisfied by any hyperelastic-plastic model since the elastically unloaded material specimen should respond reasonable under further purely elastic loading. In contrast to multiplicative models, the much used additive logarithmic model does not preserve LH-ellipticity in general [65].

An interesting question concerns the requirements that one should impose on the elastic response for arbitrary large distortional strains. One may reasonably argue that these requirements are void of any relevance, since the material can never be observed in a state of large elastic distortional strain: prior to that, dissipative processes will occur. In the case of the energy W_{st}, which is not rank-one elliptic for extreme elastic distortional strains, we have explicitly shown that elastic unloading will remain rank-one convex and the true-stress-true-strain relation remains monotone. This is a remarkable feature in geometrically nonlinear material models. In a future contribution we will provide the analytical proof for the rank-one convexity domain for W_{st} in $n = 3$.

References

[1] F. Armero and J.C. Simo. A priori stability estimates and unconditionally stable product formula algorithms for nonlinear coupled thermoplasticity. *Int. J. Plast.*, 9(6):749–782, 1993.

[2] D. Balzani, J. Schröder, D. Gross, and P. Neff. Modeling of Anisotropic Damage in Arterial Walls Based on Polyconvex Stored Energy Functions. In D.R.J. Owen, E. Onate, and B. Suarez, editors, *Computational Plasticity VIII, Fundamentals and Applications, Part 2*, pages 802–805. CIMNE, Barcelona, 2005.

[3] A. Bertram. An alternative approach to finite plasticity based on material isomorphisms. *Int. J. Plast.*, 15(3):359–374, 1999.

[4] A. Bertram. Elasticity and plasticity of large deformations: An introduction. Springer, 2012.

[5] O.T. Bruhns, H. Xiao, and A. Mayers. Constitutive inequalities for an isotropic elastic strain energy function based on Hencky’s logarithmic strain tensor. *Proc. Roy. Soc. London A*, 457:2207–2226, 2001.

[6] O.T. Bruhns, H. Xiao, and A. Mayers. Finite bending of a rectangular block of an elastic Hencky material. *J. Elasticity*, 66(3):237–256, 2002.

[7] O.T. Bruhns, H. Xiao, and A. Mayers. Self-consistent Eulerian rate type elasto-plasticity models based upon the logarithmic stress rate. *Int. J. Plast.*, 15(5):479–520, 1999.

[8] M.A. Camacho, F.J. Montáns, and K.J. Bathe. Modeling large strain anisotropic elasto-plasticity with logarithmic strain and stress measures. *Comp. Struct.*, 89(11):826–843, 2011.

[9] C. Carstensen, K. Hackl, and A. Mielke. Non-convex potentials and microstructures in finite-strain plasticity. *Proc. Royal Soc. London, Series A: Math. Phys. Eng. Sci.*, 458:299–317, 2002.

[10] S. Cíeja-Tigoš. Consequences of the dissipative restrictions in finite anisotropic elasto-plasticity. *Int. J. Plast.*, 19(11):1917–1964, 2003.

[11] S. Cíeja-Tigoš and L. Iancu. Orientational anisotropy and strength-differential effect in orthotropic elasto-plastic materials. *Int. J. Plast.*, 47:80–110, 2013.

[12] S. Cíeja-Tigoš and G.A. Maugin. Eshelby’s stress tensors in finite elastoplasticity. *Acta Mech.*, 139(1-4):231–248, 2000.

[13] W. Deittrich and S. Reese. On the theoretical and numerical modelling of Armstrong-Frederick kinematic hardening in the finite strain regime. *Comp. Meth. Appl. Mech. Eng.*, 193(1):87–116, 2004.

[14] E.N. Dvorkin, D. Pantuso, and E.A. Repetto. A finite element formulation for finite strain elasto-plastic analysis based on mixed interpolation of tensorial components. *Comp. Meth. Appl. Mech. Eng.*, 114(1):35–54, 1994.

[15] F. Ebobisse and P. Neff. Existence and uniqueness for rate-independent infinitesimal gradient plasticity with isotropic hardening and plastic spin. *Math. Mech. Solids*, 15(6):691–703, 2010.
[16] A.L. Eterovic and K.J. Bathe. A hyperelastic-based large strain elastoplastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures. *Int. J. Num. Meth. Eng.*, 30(1):1099–1114, 1990.
[17] G. Gabriel and K.J. Bathe. Some computational issues in large strain elastoplastic analysis. *Comp. and Struct.*, 56(2):249–267, 1995.
[18] M.G.D. Geers. Finite strain logarithmic hyperelastic-plasticity with softening: a strongly non-local implicit gradient framework. *Comp. Meth. Appl. Mech. Eng.*, 193(30):3377–3401, 2004.
[19] R. Glüge and J. Kalisch. Graphical representations of the regions of rank-one-convexity of some strain energies. *Tech. Mech.*, 32:227–237, 2012.
[20] A. Gupta, D.J. Steigmann, and J.S. Stőken. On the evolution of plasticity and incompatibility. *Math. Mech. Solids*, 12(6):599–610, 2007.
[21] A. Gupta, D.J. Steigmann, and J.S. Stőken. Aspects of the phenomenological theory of elastic-plastic deformation. *J. Elast.*, 104(1-2):249–266, 2011.
[22] M.E. Gurtin and K. Spear. On the relationship between the logarithmic strain rate and the stretching tensor. *Int. J. Solids Struct.*, 19(5):437–444, 1983.
[23] M. Hanin and M. Reiner. On isotropic tensor-functions and the measure of deformation. *Z. Angew. Math. Phys.*, 7(5):377–393, 1956.
[24] K. Heiduschke. The logarithmic strain space description. *Int. J. Solids Struct.*, 32(8):1047–1062, 1995.
[25] K. Heiduschke. Computational aspects of the logarithmic strain space description. *Int. J. Solids Struct.*, 33(5):747–760, 1996.
[26] D. Henann and L. Anand. A large deformation theory for rate-dependent elastic-plastic materials with combined isotropic and kinematic hardening. *Int. J. Plast.*, 25(10):1833–1878, 2009.
[27] M. Horák and M. Jirásek. An extension of small-strain models to the large-strain range based on an additive decomposition of a logarithmic strain. In J. Chleboun, K. Segeth, J. Šístek, and T. Vejchodský, editors, *Progr. Algorithms Num. Math.*, volume 16, pages 86–93, 2013.
[28] J.W. Hutchinson and K.W. Neve. Finite strain J2-deformation theory. In D.E. Carlson and R.T. Shield, editors, *Proceedings of the IUTAM Symposium on Finite Elasticity*, pages 237–247. Martinus Nijhoff, 1982. https://www.uni-duis.de/imperia/md/content/mathematik/age_neff/hutchinson_ellipticity90.pdf.
[29] C.S. Jog. *Foundations and Applications of Mechanics: Continuum mechanics*, volume 1. CRC Press, 2002.
[30] C.S. Jog. On the explicit determination of the polar decomposition in n-dimensional vector spaces. *J. Elasticity*, 66(2):159–169, 2002.
[31] C.S. Jog and K.D. Patil. Conditions for the onset of elastic and material instabilities in hyperelastic materials. *Arch. Appl. Mech.*, 83(1–2), 2013.
[32] J. Krishnan and D. Steigmann. A polyconvex formulation of isotropic elastoplasticity theory. *IMA J. Appl. Math.*, 79:722–738, 2014.
[33] E. Krüner. Der fundamentale Zusammenhang zwischen Versetzungsdichten und Spannungsfunktionen. *Z. Angew. Math. Phys.*, 14(4):463–475, 1963.
[34] E. Krüner. *Kontinuumstheorie der Versetzungen und Eigenspannungen*. Springer, Berlin, 1968.
[35] E. Krüner. Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. *Arch. Rat. Mech. Anal.*, 4(1):273–334, 1959.
[36] J. Lankeit, P. Neff, and Y. Nakatsuka. The minimization of matrix logarithme: On a fundamental property of the unitary polar factor. *Lin. Alg. Appl.*, 449(0):28 – 42, 2014.
[37] J. Lankeit, P. Neff, and D. Pauly. Uniqueness of integral solutions to $\nabla G = G\zeta$, $|\zeta| = 0$ for integrable tensor coefficients G and applications to elasticity. *Z. Angew. Math. Phys.*, 64:1679–1698, 2013.
[38] E.H. Lee. Elastic-plastic deformation at finite strains. *J. Appl. Mech.*, 36(1):1–6, 1969.
[39] R. Martin and P. Neff. Minimal geodesics on GL(n) for left-invariant, right-O(n)-invariant Riemannian metrics. *Preprint arXiv:1409.7849*, 2014.
[40] A. Masud, M. Panahandeh, and F. Aurichio. A finite-strain finite element model for the pseudoeelastic behavior of shape memory alloys. *Comp. Meth. Appl. Mech. Eng.*, 148(1):23–37, 1997.
[41] G. Maugin. *Eshelby stress in elastoplasticity and ductile fracture*. *Int. J. Plast.*, 10(4):393–408, 1994.
[42] A. Meyers. On the consistency of some Eulerian strain rates. *Z. Angew. Math. Mech.*, 79(3):171–177, 1999.
[43] A. Meyers, H. Xiao, and O.T. Bruhns. Choice of objective rate in single parameter hypoplastic deformation cycles. *Comp. Struct.*, 84(17):1134–1140, 2006.
[44] C. Miehe. *Kanoniache Modelle multipakitativer Elasto-Plastizität. Thermodynamische Formulierung und numerische Implementierung*. Habilitationsschrift, Universität Hannover, Germany, 1992.
[45] C. Miehe. On the representation of Prandtl-Reuss tensors within the framework of multiplicative elastoplasticity. *Int. J. Plast.*, 10(6):609–621, 1994.
[46] C. Miehe. Variational gradient plasticity at finite strains. Part 1: Mixed potentials for the evolution and update problems of gradient-extended dissipative solids. *Comp. Meth. Appl. Mech. Eng.*, 208:677–703, 2014.
[47] C. Miehe, N. Apel, and M. Lambrecht. Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials. *Comp. Meth. Appl. Mech. Eng.*, 191(47):5385–5415, 2002.

[48] C. Miehe, F. Wechsberger, and F. Aldakkheel. Variational gradient plasticity at finite strains. Part II: Local-global updates and mixed finite elements for additive plasticity in the logarithmic strain space. *Comp. Meth. Appl. Mech. Eng.*, 208:704–734, 2014.

[49] A. Mielke. Finite elastoplasticity Lie groups and geodesics on SL(2). In P. Newton, P. Holmes, and A. Weinstein, editors, *Geometry, Mechanics, and Dynamics*, pages 61–90. Springer, 2002.

[50] A. Mielke. Energetic formulation of multiplicative elastoplasticity using dissipation distances. *Cont. Mech. Thermodyn.*, 15(4):351–382, 2003.

[51] G. Montella, S. Govindjee, and P. Neff. The exponentiated-Hencky strain energy in modeling tire derived material for moderately large deformation. *submitted*, 2015.

[52] J. Moser and M. Ortiz. Variational h-adaption in finite deformation elasticity and plasticity. *Int. J. Num. Meth. Eng.*, 72(5):505–523, 2007.

[53] Ch. Müller and O.T. Brühns. A thermodynamic finite-strain model for pseudoelastic shape memory alloys. *Int. J. Plast.*, 22(9):1656–1682, 2006.

[54] R. Naghdabadi, M. Baghani, and J. Arghavani. A viscoelastic constitutive model for compressible polymers based on logarithmic strain and its finite element implementation. *Finite Elem. Anal. Des.*, 62:18–27, 2012.

[55] P. Neff. *Mathematische Analyse multipikativer Viskoplastizität*. Ph.D. thesis, Technische Universität Darmstadt. Shaker Verlag, ISBN 3-86624-750-0, 2000.

[56] P. Neff. On Korn’s first inequality with nonconstant coefficients. *Proc. Roy. Soc. Edinb. A*, 132:221–243, 2002.

[57] P. Neff. Finite multiplicative plasticity for small elastic strains with linear balance equations and grain boundary relaxation. *Cont. Mech. Thermodynamics*, 15(2):161–195, 2003.

[58] P. Neff. Some results concerning the mathematical treatment of finite plasticity. In *Deformation and Failure in Metallic Materials*, pages 251–274. Springer, 2003.

[59] P. Neff. Local existence and uniqueness for quasistatic finite plasticity with grain boundary relaxation. *Quart. Appl. Math.*, 63:88–116, 2005.

[60] P. Neff. A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rotations. *Int. J. Eng. Sci.*, 44:574–594, 2006.

[61] P. Neff, K. Chelminski, and H.D. Alber. Notes on strain gradient plasticity: finite strain covariance modeling and global existence in the infinitesimal rate-independent case. *Math. Mod. Meth. Appl. Sci.*, 19:307–346, 2009.

[62] P. Neff, K. Chelminski, W. Müller, and C. Wiener. A numerical solution method for an infinitesimal elastoplastic Cosserat model. *Math. Mod. Meth. Appl. Sci.*, 17(06):1211–1239, 2007.

[63] P. Neff, B. Eidel, and R. Martin. Geometry, solid mechanics and logarithmic strain measures. The Hencky energy is the squared geodesic distance of the deformation gradient to SO(n) in any left-invariant, right-O(n)-invariant Riemannian metric on GL(n), in preparation, 2015.

[64] P. Neff, B. Eidel, F. Osterbrink, and R. Martin. The Hencky strain energy \(\| \log \mathbf{U} \|^2 \) measures the geodesic distance of the deformation gradient to SO(3) in the canonical left-invariant Riemannian metric on GL(3). *PAMM*, 13(1):595–597, 2013.

[65] P. Neff and I.D. Ghiau. Loss of ellipticity in additive logarithmic finite strain plasticity. *submitted*, arXiv:1410.2819, 2014.

[66] P. Neff, I.D. Ghiau, and J. Lankert. The exponentiated Hencky-logarithmic strain energy. Part I: Constitutive issues and rank-one convexity. *to appear in J. Elasticity*, 2015.

[67] P. Neff, I.D. Ghiau, J. Lankët, R. Martin, and D. Steigmann. The exponentiated Hencky-logarithmic strain energy. Part II: Coercivity, planar polyconvexity and existence of minimizers. *to appear in Z. Angew. Math. Phys.*, arXiv:1408.4430, 2015.

[68] P. Neff and D. Knees. Regularity up to the boundary for nonlinear elliptic systems arising in time-incremental infinitesimal elastoplasticity. *SIAM J. Math. Anal.*, 40(1):2143, 2008.

[69] P. Neff, W. Müller, and C. Wiener. Parallel simulation of an infinitesimal elastoplastic Cosserat model. *GAMM-Mitteilungen*, 33(1):79–94, 2010.

[70] P. Neff, Y. Nakatsuka, and A. Fischle. A logarithmic minimization property of the unitary polar factor in the spectral norm and the Frobenius matrix norm. *SIAM J. Matrix Analysis*, 35(1):112–1154, 2014.

[71] P. Neff, A. Sydow, and C. Wiener. Numerical approximation of incremental infinitesimal gradient plasticity. *Int. J. Num. Meth. Eng.*, 77(3):414–436, 2009.

[72] P. Neff and C. Wiener. Comparison of models for finite plasticity. A numerical study. *Comput. Visual. Sci.*, 6:23–35, 2003.

[73] R.W. Ogden. Compressible isotropic elastic solids under finite strain-constitutive inequalities. *Quart. J. Mech. Appl. Math.*, 23(4):457–468, 1970.

[74] R.W. Ogden. *Non-Linear Elastic Deformations*. Mathematics and its Applications. Ellis Horwood, Chichester, 1. edition, 1983.

[75] P. Papadopoulos and J. Lu. A general framework for the numerical solution of problems in finite elastoplasticity. *Comp. Meth. Appl. Meth. Eng.*, 150(1):1–18, 1998.
[76] D. Perić and E.A. de Souza Neto. A new computational model for Tresca plasticity at finite strains with an optimal parametrization in the principal space. Comp. Meth. Appl. Mech. Eng., 171(3):463–489, 1999.

[77] D. Perić, D.R.J. Owen, and M.E. Hounvor. A model for finite strain elastoplasticity based on logarithmic strains: Computational issues. Comp. Meth. Appl. Mech. Eng., 94(1):45–41, 1992.

[78] A. Raoul. Non-polyconvexity of the stored energy function of a St. Venant-Kirchhoff material. Aplikace Matematiky, 6:417–419, 1986.

[79] S. Reese and D. Christ. Finite deformation pseudo-elasticity of shape memory alloys: Constitutive modelling and finite element implementation. Int. J. Plast., 24(3):455–482, 2008.

[80] S. Reese and P. Wriggers. A material model for rubber-like polymers exhibiting plastic deformation: computational aspects and a comparison with experimental results. Comp. Meth. Appl. Mech. Engng., 148:279–298, 1997.

[81] C. Sansour. On the dual variable of the logarithmic strain tensor, the dual variable of the Cauchy stress tensor, and related issues. Int. J. Solids Struct., 38(50):9221–9232, 2001.

[82] C. Sansour. On the physical assumptions underlying the volumetric-isochoric split and the case of anisotropy. Eur. J. Mech.-A/Solids, 27(1):278–289, 2008.

[83] C. Sansour and W. Wagner. Viscoelasticity based on additive decomposition of logarithmic strain and unified constitutive equations: Theoretical and computational considerations with reference to shell applications. Comp. Struct., 81(15):1583–1594, 2003.

[84] J. Schröder and P. Neff. Poly, quasi and rank-one convexity in mechanics. CISM Course Udine. Springer, 2009.

[85] A.V. Shatov and J. Ihlemann. Analysis of some basic approximations to finite strain elastoplasticity in view of reference change. Int. J. Plast., 63:186–197, 2014.

[86] A.V. Shatov and R. Kreif斯基. Finite strain viscoplasticity with nonlinear kinematic hardening: Phenomenological modeling and finite integration. Comp. Meth. Appl. Mech. Engng., 197(21):2017–2029, 2008.

[87] J.C. Simo. Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comp. Meth. Appl. Mech. Engng., 99(1):61–112, 1992.

[88] J.C. Simo. Recent developments in the numerical analysis of plasticity. In E. Stein, editor, Progress in computational analysis of inelastic structures, pages 115–173. Springer, 1990.

[89] J.C. Simo. Numerical analysis and simulation of plasticity. In P.G. Clarlet and J.L. Lions, editors, Handbook of Numerical Analysis, volume VI. Elsevier, Amsterdam, 1998.

[90] J.C. Simo and J.R. Hughes. Computational Inelasticity, volume 7 of Interdisciplinary Applied Mathematics. Springer, Berlin, 1998.

[91] J.C. Simo and M. Ortiz. A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations. Comp. Meth. Appl. Mech. Engng., 49:221–245, 1985.

[92] D. J. Steigmann and A. Gupta. Mechanically equivalent elastic-plastic deformations and the problem of plastic spin. J. Appl. Mech., 78(4):397–417, 2011.

[93] E. Tanaka. Finite element investigation of the problem of large strains, formulated in terms of true stress and logarithmic strain. Acta Mech., 34(1-2):129–141, 1979.

[94] C. Vallée. Lois de comportement élastique isotropes en grandes déformations. Int. J. Eng Sci., 16(7):451–457, 1978.

[95] C. Vallée, D. Fortuné, and C. Lerintiu. On the dual variable of the Cauchy stress tensor in isotropic finite hyperelasticity. Comptes Rendus Mécanique, 336(11):851–855, 2008.

[96] H. Xiao, O. Bruhns, and A. Meyers. A consistent finite elastoplasticity theory combining additive and multiplicative decomposition of the stretching and the deformation gradient. Int. J. Plast., 16(2):43–177, 2000.

[97] H. Xiao, O.T. Bruhns, and A. Meyers. Existence and uniqueness of the integrable-exactly hyperelastic equation $\tau^\lambda = \lambda(\text{tr}D)D + 2\mu D$ and its significance to finite inelasticity. Acta Mech., 138(1-2):331–350, 1999.

[98] H. Xiao, O.T. Bruhns, and A. Meyers. Elastoplasticity beyond small deformations. Acta Mechanica, 182(1-2):31–111, 2006.

[99] Y. Zhu, G. Kang, Q. Kan, and O. Bruhns. Logarithmic stress rate based constitutive model for cyclic loading in finite plasticity. Int. J. Plast., 54:34–55, 2014.