GLOBAL $W^{2,p}$ ESTIMATES FOR THE MONGE-AMPERE EQUATION

O. SAVIN

ABSTRACT. We obtain global $W^{2,p}$ estimates for the Monge-Ampere equation under natural assumptions on the domain and boundary data.

1. INTRODUCTION

Interior $W^{2,p}$ estimates for strictly convex solutions for the Monge-Ampere equation were obtained by Caffarelli in [C] under the necessary assumption of small oscillation of the right hand side. The theorem can be stated as follows.

Theorem 1.1 (Interior $W^{2,p}$ estimates). Let $u : \overline{\Omega} \to \mathbb{R}$,

\begin{equation}
(1.1) \quad u = 0 \quad \text{on } \partial \Omega,
\end{equation}

be a continuous convex solution to the Monge-Ampere equation

\begin{equation}
(1.2) \quad \det D^2 u = f(x) \quad \text{in } \Omega, \quad 0 < \lambda \leq f \leq \Lambda,
\end{equation}

for some positive constants λ, Λ.

For any p, $1 < p < \infty$ there exists $\varepsilon(p) > 0$ depending on p and n such that if

\begin{equation}
(1.3) \quad B_\rho \subset \Omega \subset B_{1/\rho}
\end{equation}

and

\begin{equation}
(1.4) \quad \sup_{|x-y| \leq \rho} |\log f(x) - \log f(y)| \leq \varepsilon(p),
\end{equation}

for some small $\rho > 0$, then

\[\|u\|_{W^{2,p}(\{u < -\rho\})} \leq C, \]

and C depends on ρ, λ, Λ, p and n.

In this short paper we obtain the global $W^{2,p}$ estimates under natural assumptions on the domain and boundary data.

Theorem 1.2 (Global $W^{2,p}$ estimates). Let Ω be a convex bounded domain and $u : \overline{\Omega} \to \mathbb{R}$ be a Lipschitz continuous convex solution of the Monge-Ampere equation

\begin{equation}
(1.2) \quad \det D^2 u = f(x) \quad \text{in } \Omega, \quad 0 < \lambda \leq f \leq \Lambda,
\end{equation}

Assume that

\[u|_{\partial \Omega} \in C^{1,1}, \quad \partial \Omega \in C^{1,1}, \]

and there exists $\rho > 0$ small such that f satisfies

\begin{equation}
(1.3) \quad u(y) - u(x) - \nabla u(x) \cdot (y - x) \geq \rho |x - y|^2 \quad \forall x, y \in \partial \Omega,
\end{equation}

then

\[\|u\|_{W^{2,p}(\Omega)} \leq C, \]

The author was partially supported by NSF grant 0701037.
with C depending on $\|\partial\Omega\|_{C^{1,1}}$, $\|u|_{\partial\Omega}\|_{C^{1,1}}$, $\|u\|_{C^{0,1}}$, ρ, λ, Λ, p and n.

Remark 1.3. The gradient $\nabla u(x)$ when $x \in \partial\Omega$ is understood in the sense that
$$y_{n+1} = u(x) + \nabla u(x) \cdot (y - x)$$
is a supporting hyperplane for the graph of $u(y)$ but
$$y_{n+1} = u(x) + (\nabla u(x) - \delta \nu_x) \cdot (y - x)$$
is not a supporting hyperplane for any $\delta > 0$, where ν_x denotes the exterior normal to $\partial\Omega$ at x.

In general the Lipschitz continuity of the solution can be easily obtained from the boundary data by the use of barriers. Also the quadratic separation assumption (1.4) can be checked in several situations directly from the boundary data, see Proposition 3.2 in [S2]. This is the case for example when the boundary data is more regular i.e.

$$u|_{\partial\Omega}, \partial\Omega \in C^3, \quad \text{and } \Omega \text{ is uniformly convex.}$$

As a consequence of Theorem 1.2 we obtain

Corollary 1.4. Let $u : \overline{\Omega} \to \mathbb{R}$ be a continuous solution of the Monge-Ampere equation (1.2) that satisfies (1.3) and (1.5). Then
$$\|u\|_{W^{2,p}(\Omega)} \leq C,$$
with C depending on $u|_{\partial\Omega}$, $\partial\Omega$, ρ, λ, Λ, p and n.

In particular, if u solves the Monge-Ampere equation (1.2) with $f \in C(\overline{\Omega})$ and (1.5) holds, then $u \in W^{2,p}(\Omega)$ for any $p < \infty$.

The assumptions on the boundary behavior of u and $\partial\Omega$ in Theorem 1.2 and Corollary 1.4 seem to be optimal. Wang in [W] gave examples of solutions u to (1.2) with $f = 1$ and either $u \in C^{2,1}$ or $\partial\Omega \in C^{2,1}$, that do not belong to $W^{2,p}(\Omega)$ for large values of p.

The proof of Theorem 1.2 is based on a localization theorem for the Monge-Ampere equation at boundary points which was proved in [S1], [S2]. It states that under natural local assumptions on the domain and boundary data, the sections
$$S_h(x_0) = \{x \in \overline{\Omega} \mid u(x) < u(x_0) + \nabla u(x_0) \cdot (x - x_0) + h\},$$
with $x_0 \in \partial\Omega$ are “equivalent” to ellipsoids centered at x_0. We give its precise statement below.

Assume for simplicity that

$$B_\rho(\rho e_n) \subset \Omega \subset \{x_n \geq 0\} \cap B_{\overline{\rho}},$$
for some small $\rho > 0$, that is $\Omega \subset (\mathbb{R}^n)^+$ and Ω contains an interior ball tangent to $\partial\Omega$ at 0. Let $u : \overline{\Omega} \to \mathbb{R}$ be continuous, convex, satisfying

$$\det D^2 u = f, \quad 0 < \lambda \leq f \leq \Lambda \quad \text{in } \Omega.$$

After subtracting a linear function we also assume that

$$x_n = 0$$
is the tangent plane to u at 0,
in the sense that
$$u \geq 0, \quad u(0) = 0,$$and any hyperplane $x_{n+1} = \delta x_n$, $\delta > 0$, is not a supporting plane for u.

Theorem 1.5 shows that if the boundary data has quadratic growth near \(\{x_n = 0\} \) then, each section of \(u \) at 0

\[
S_h := S_h(0) = \{x \in \overline{\Omega} : u(x) < h\},
\]

is equivalent to a half-ellipsoid centered at 0.

Theorem 1.5 (Localization theorem). Assume that \(\Omega, u \) satisfy (1.6)-(1.8) above and,

\[
\rho|x|^2 \leq u(x) \leq \rho^{-1}|x|^2 \quad \text{on } \partial \Omega \cap \{x_n \leq \rho\}.
\]

Then, for each \(h < c_0 \) there exists an ellipsoid \(E_h \) of volume \(\omega_n h^{n/2} \) such that

\[
c_0 E_h \cap \overline{\Omega} \subset S_h \subset c_0^{-1} E_h \cap \overline{\Omega}.
\]

Moreover, the ellipsoid \(E_h \) is obtained from the ball of radius \(h^{1/2} \) by a linear transformation \(A_h^{-1} \) (sliding along the \(x_n = 0 \) plane)

\[
A_h E_h = h^{1/2} B_1
\]

\[
A_h(x) = x - \nu x_n, \quad \nu = (\nu_1, \nu_2, \ldots, \nu_{n-1}, 0),
\]

with

\[
|\nu| \leq c_0^{-1} |\log h|.
\]

The constant \(c_0 > 0 \) above depends on \(\rho, \lambda, \Lambda, \) and \(n \).

2. Proof of Theorem 1.2

We start by remarking that under the assumptions of Theorem 1.5 above, we obtain that also the section \(\{u < h^{1/2} x_n\} \) has the shape of \(E_h \).

Indeed, since

\[
S_h \subset c_0^{-1} E_h \subset \{x_n \leq c_0^{-1} h^{1/2}\}
\]

and \(u(0) = 0 \), we can conclude from the convexity of \(u \) that the set

\[
F := \{x \in \overline{\Omega} : u < c_0 h^{1/2} x_n\}
\]

satisfies for all small \(h \)

\[
F \subset S_h \cap \Omega,
\]

and \(F \) is tangent to \(\partial \Omega \) at 0. We show that \(F \) is equivalent to \(E_h \) by bounding its volume by below.

Lemma 2.1. We have

\[
|F| \geq c |E_h|
\]

for some \(c > 0 \) small depending on \(\rho, \lambda, \Lambda, n \).

Proof. From Theorem 1.5 there exists \(y \in \partial S_{\theta h} \) such that \(y_n \geq c_0(\theta h)^{1/2} \). We evaluate

\[
v := u - c_0 h^{1/2} x_n,
\]

at \(y \) and find

\[
v(y) \leq \theta h - c_0 h^{1/2} c_0(\theta h)^{1/2} \leq -\delta h,
\]

for some \(\delta > 0 \) provided that we choose \(\theta \) small depending on \(c_0 \). Since \(v = 0 \) on \(\partial F \) and

\[
\det D^2 v \geq \lambda
\]

we have

\[
\inf_F v \leq C(\lambda) |F|^{2/n},
\]
hence
\[ch^{n/2} \leq |F|. \]

Next we prove Theorem 1.2. We denote by \(c, C \) positive constants that depend on \(\rho, \Lambda, p, n \) and \(\|\partial\Omega\|_{C^{1,1}}, \|u|\partial\Omega\|_{C^{1,1}}, \|u\|_{C^{0,1}} \). For simplicity of notation, their values may change from line to line whenever there is no possibility of confusion.

Given \(y \in \Omega \) we denote by
\[S_h(y) := \{ x \in \Omega \mid u(x) < u(y) + \nabla u(y) \cdot (x - y) \} \]
and let \(\bar{h}(y) \) be the maximal value of \(h \) such that \(S_h(y) \subset \Omega \), i.e
\[\bar{h}(y) := \max\{ h \geq 0 \mid S_h(y) \subset \Omega \}. \]

Lemma 2.2. Let \(y \in \Omega \) and denote for simplicity \(\bar{h} = \bar{h}(y) \). If \(\bar{h} \leq c_1 \) then
\[S_{\bar{h}}(y) \subset D_{C\bar{h}^{1/2}} := \{ x \in \Omega \mid \text{dist}(x, \partial\Omega) \leq C\bar{h}^{1/2} \}, \]
and
\[\int_{S_{\bar{h}}(y)} \|D^2u\|^p \, dx \leq C|\log \bar{h}|^{2p}\bar{h}^{n/2}. \]

Proof. Without loss of generality assume
\[0 \in \partial S_h(y) \cap \partial\Omega. \]

After subtracting a linear function and relabeling \(\rho \) if necessary we may also assume that \(u \) satisfies the conditions of Theorem 1.5 at the origin. This implies
\[S_h(y) = \{ x \in \Omega \mid u < \alpha x_n \}, \quad \alpha > 0 \]
and \(\bar{h} > 0 \). Since (see (2.1))
\[c\bar{h}^{n/2} \leq |S_h(y)| \leq C\bar{h}^{n/2}, \]
we obtain from (2.1) and Lemma 2.1
\[c\bar{h}^{1/2} \leq \alpha \leq C\bar{h}^{1/2}, \]
and that \(S_h(y) \) is equivalent to an ellipsoid \(\tilde{E} := E_{C\bar{h}} \). This implies that
\[y + c\tilde{E} \subset S_h(y) \subset C\tilde{E}, \]
with
\[\tilde{E} = \bar{h}^{1/2}A^{-1}B_1, \quad Ax := x - \nu x_n, \]
and
\[\nu_n = 0, |\nu| \leq C|\log \bar{h}|. \]

The inclusion above implies
\[S_h(y) \subset \{ x_n \leq C\bar{h}^{1/2} \} \subset D_{C\bar{h}^{1/2}}. \]
The rescaling \(\tilde{u} : \tilde{\Omega} \to \mathbb{R} \) of \(u \)
\[\tilde{u}(x) := \frac{1}{\bar{h}}u(y + \bar{h}^{1/2}A^{-1}x), \]
satisfies
\[\tilde{\Omega} = \bar{h}^{-1/2}A(\Omega - y), \quad \tilde{S}_1(0) = \bar{h}^{-1/2}A(S_h(y) - y) \subset \tilde{\Omega}, \]
and
\[B_c \subset \tilde{S}_1(0) \subset B_C, \]
Global $W^{2,p}$ Estimates

where $\tilde{S}_1(0)$ represents the section of \tilde{u} at the origin at height 1. Moreover,

$$\det D^2\tilde{u}(x) = \tilde{f}(x) := f(y + \tilde{h}^{1/2}A^{-1}x)$$

and (1.3) implies

$$|\log \tilde{f}(x) - \log \tilde{f}(z)| \leq \varepsilon(p) \quad \forall x, z \in \tilde{S}_1(0)$$

since

$$|\tilde{h}^{1/2}A^{-1}(x - z)| \leq C|\log \tilde{h}| \leq \rho.$$

The interior $W^{2,p}$ estimate for \tilde{u} in $\tilde{S}_0(1)$ gives

$$\int_{\tilde{S}_1/2(0)} \|D^2\tilde{u}\|^p dx \leq C,$$

hence

$$\int_{\tilde{S}_{1/2}(y)} \|D^2u\|^p dx = \int_{\tilde{S}_{1/2}(0)} \|A^T D^2\tilde{u} A\|^p \tilde{h}^{n/2} dx \leq C|\log \tilde{h}|^{2p} \tilde{h}^{n/2}.$$

We also need the following covering lemma.

Lemma 2.3 (Vitali covering). There exists a sequence of disjoint sections

$$S_{\delta h_i}(y_i), \quad \tilde{h}_i = \tilde{h}(y_i),$$

such that

$$\Omega \subset \bigcup_{i=1}^{\infty} S_{\delta h_i/2}(y_i),$$

where $\delta > 0$ is a small constant that depends only on λ, Λ and n.

Proof. We choose δ such that if

$$S_{\delta h_i}(y) \cap S_{\delta h_i}(z) \neq \emptyset \quad \text{and} \quad 2\tilde{h}(y) \geq \tilde{h}(z),$$

then

$$S_{\delta \tilde{h}_i}(z) \subset S_{\delta \tilde{h}_i/2}(y).$$

The existence of δ follows from the engulfing properties of sections of solutions to Monge-Ampere equation (1.2) with bounded right hand side (see [CG]).

Now the proof is identical to the proof of Vitali’s covering lemma for balls. We choose $S_{\delta h_1}(y_1)$ from all the sections $S_{\delta h}(y), \ y \in \Omega$ such that

$$\tilde{h}(y_1) \geq \frac{1}{2} \sup_y \tilde{h}(y),$$

then choose $S_{\delta h_2}(y_2)$ as above but only from the remaining sections $S_{\delta h}(y)$ that are disjoint from $S_{\delta h_1}(y_1)$, then $S_{\delta h_3}(y_3)$ etc. We easily obtain

$$\Omega = \bigcup_{y \in \Omega} S_{\delta h}(y) \subset \bigcup_{i=1}^{\infty} S_{\delta h_i/2}(y_i).$$

□
End of proof of Theorem 1.2

\[\int_{\Omega} \|D^2 u\|^p \, dx \leq \sum_i \int_{S_{\bar{h}_i/2}(y_i)} \|D^2 u\|^p \, dx. \]

There are a finite number of sections with \(\bar{h}_i \geq c_1 \) and, by the interior \(W^{2,p} \) estimate, in each such section we have

\[\int_{S_{\bar{h}_i/2}(y_i)} \|D^2 u\|^p \, dx \leq C. \]

Next we consider the family \(\mathcal{F}_d \) of sections \(S_{\bar{h}_i/2}(y_i) \) such that

\[\frac{d}{2} < \bar{h}_i \leq d \]

for some constant \(d \leq c_1 \). By Lemma 2.2 in each such section

\[\int_{S_{\bar{h}_i/2}(y_i)} \|D^2 u\|^p \, dx \leq C \log d \frac{2p}{d - \bar{h}_i(y_i)}, \]

and since \(S_{\bar{h}_i}(y_i) \subset D_{Cd/2} \) are disjoint we find

\[\sum_{i \in \mathcal{F}_d} \int_{S_{\bar{h}_i/2}(y_i)} \|D^2 u\|^p \, dx \leq C \log d \frac{2p}{d^{1/2}}. \]

We add these inequalities for the sequence \(d = c_1 2^{-k}, k = 0, 1, \ldots \) and obtain the desired bound.

REFERENCES

[C] Caffarelli L., Interior \(W^{2,p} \) estimates for solutions of Monge-Ampere equation, Ann. of Math. 131 (1990), 135-150.

[CG] Caffarelli L., Gutierrez C., Properties of solutions of the linearized Monge-Ampere equations, Amer. J. Math. 119 (1997), 423-465.

[S1] Savin O., A localization property at the boundary for Monge-Ampere equation, Preprint arXiv:1010.1745

[S2] Savin O, Pointwise \(C^{2,\alpha} \) estimates at the boundary for Monge-Ampere equation, Preprint arXiv:1101.5436

[W] Wang X.-J., Regularity for Monge-Ampere equation near the boundary, Analysis 16 (1996) 101-107.