This article can be cited before page numbers have been issued, to do this please use: R. Rosati, R. Perea Causin, S. Brem and E. Malic, Nanoscale, 2019, DOI: 10.1039/C9NR07056G.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Negative effective excitonic diffusion in monolayer transition metal dichalcogenides

Roberto Rosati,* Raül Perea-Causín,‡ Samuel Brem,* and Ermin Malic*

Monolayers of transition metal dichalcogenides (TMDs) have attracted much attention in particular due to their remarkable exciton landscape including bright as well as momentum- and spin-dark excitons states.1–14 Recently, their spatiotemporal exciton dynamics has been studied15,22, showing peculiar effects including a distinct diffusion of bright and spin-dark excitons at low temperature25 as well as the formation of spatial halos at higher excitation densities.24 The origin of the latter has been suggested to stem from phonon winds25 or efficient thermalization.26

In this work, we shed light on the impact of the versatile exciton landscape including bright and momentum-dark states on spatiotemporal exciton dynamics in TMD monolayers in different temperature regimes. The resulting evolution is a complicated process with a coexistence of several many-particle mechanisms, showing in particular the appearance of different phases which will be addressed in the following. At a more simplified level, one expects that after optical excitation the excitons thermalize in energy on a quick timescale of hundreds of femtoseconds at room temperature10,11,14 (Fig. 1(a)). However, spatial propagation can result also on longer timescales in anisotropic exciton occupations, since excitons with same energy but different momentum orientation propagate towards different spatial directions - similarly to electrons in quantum wells.26,27 Momentum thermalization at each space point drives toward an isotropic distribution [Fig. 1(b)]. During this evolution, the excitonic spatial distribution undergoes an effective diffusion, i.e. it broadens in space while preserving position of the maximum distribution and rotational symmetry. Here effective diffusion refers to the transient evolution, whereas the conventional diffusion refers to the steady-state regime.13,20 Furthermore, different diffusion characteristics of bright and dark states can result in a local nonequilibrium among different valleys. Here, a space-dependent equilibration of bright and dark states leads toward a valley-thermalized occupation [Fig. 1(c)].

Based on a fully quantum mechanical approach10,11,14, this work provides microscopic insights into the interplay of spatiotemporal exciton dynamics and thermalization. We resolve the evolution of optically excited, spatially localized excitons in time, momentum, energy, and space taking into account bright and momentum-dark excitonic states. We predict unexpected spatiotemporal dynamics including the emergence of a negative effective diffusion, where the spatial profiles of the excitonic distribution shrink in space, apparently moving back towards the excitation center [cf. blue arrow in Fig. 1(d)].

1 Theoretical approach

Our goal is to study on a microscopic footing the spatiotemporal dynamics of excitons in the exemplary hBN-encapsulated tungsten disulfide (WS2) monolayers. Considering the single-particle dispersion,22 and solving the exciton Wannier equation,10,11,28 we obtain a set of exciton states |α⟩ ≡ ⟨Q, v⟩ characterized by the valley index v, the center-of-mass momentum Q and the exciton energy $E_\alpha = E_v + \hbar^2 Q^2/(2M_v)$ with M_v as the total valley-dependent mass. Due to considerable energy separations, we...
restrict our attention to the 1s states of the bright excitons (KK) and the momentum-dark excitons (KK'), (KA) lying approximately 51.5 and 30.5 meV below KK, respectively. These values have been obtained by solving the Wannier equation and are in good qualitative agreement with recent ab-initio studies. Spin-dark states have not been taken into account, as they are not expected to qualitatively affect the main message of this work, i.e. the transient spatiotemporal dynamics of spin-allowed states of the bright excitons.

Now, we introduce an equation of motion for the spatiotemporal dynamics of excitons by exploiting the Heisenberg equation and the many-particle Hamilton operator. The derived semiconductor Bloch equation can then be transformed in the Wigner representation and reads in the low excitation regime:

$$\partial_t N_{Q}^v(r,t) = \left(\frac{hQ}{M_v} \nabla - \gamma \delta_{Q,0} \delta_{KK} \right) N_{Q}^v(r,t) + \Gamma_{Q,0}^{KK} \left| p_0(r,t) \right|^2 + \Lambda_{Q}(r,t) |_{\text{scat}}.$$ \hspace{1cm} (1)

The first term indicates the free evolution of excitons $V_{Q}^v N_{Q}^v(r,t) = hQ/M_v$, while the second term takes into account the losses due to the direct photoluminescence $\Gamma_{Q,0}^{KK} \left| p_0(r,t) \right|^2$. Here, γ describes the radiative recombination rate within the light cone $\delta_{Q,0} \delta_{KK}$. Effects of phonon-assisted radiative recombination are beyond the scope of this work.

The first contribution in the second line of Eq. (1) describes the formation of incoherent excitons due to phonon-driven transfer from the excitonic polarization $\rho_{0}^E(r,t)$ (referred to in literature as coherent excitons). The latter are optically excited by an electromagnetic field $A(r,t)$ through $\delta p_{Q}(r,t) = \mathbf{M} \cdot A(r,t) \delta_{Q,0}$, with \mathbf{M} depending on optical matrix elements and excitonic wave function. The process is driven by exciton-phonon scattering with the rates $\Gamma_{Q,0}^{v'}$ describing scattering from state $|Q\rangle$ to $|Q'\rangle$ via interaction with phonons. We take into account longitudinal and transverse acoustic (LA, TA) and optical (LO, TO) modes as well as the out-of-plane A_1 optical mode, which provide the most efficient scattering channel.

Phonon energies as well as carrier-phonon scattering coefficients within the deformation potential approximation are extracted from density functional theory studies. Since coherent excitons decay on an ultrafast timescale of 10-100 fs, the incoherent exciton distribution that determines the spatiotemporal dynamics of the photoluminescence.

Finally, the last term in Eq. (1) describes the scattering contribution. In this work we focus on high-quality hBN-encapsulated TMD monolayer samples, where disorder does not play a large role. The encapsulation with hBN has been applied as a key strategy to prepare high-quality TMD samples, resulting in strong linewidth narrowing ascribed to shielding off the material from the substrate and surface defects as well as to mitigation of the effect of dielectric disorder. We restrict our attention to the low-excitation regime, where the main source of scattering is given by exciton-phonon interactions. The inter-valley $(v \neq v')$ and inter-valley $(v = v')$ contribution can be written as $\delta_{Q} N_{Q}^v(r,t) |_{\text{scat}} = \sum' \delta_{Q} N_{Q}^v(r,t) |_{\text{scat}}$, where $\delta_{Q} N_{Q}^v(r,t) |_{\text{scat}}$ indicates the dynamics of N^v induced by the interaction with $N^{v'}$. The corresponding equation of motion reads

$$\partial_t N_{Q}^v(r,t) |_{\text{scat}} = \sum' \left[\Gamma_{Q}^{v'} N_{Q}^{v'}(r,t) - \Gamma_{Q}^{v} N_{Q}^{v}(r,t) \right].$$ \hspace{1cm} (2)

where the first (second) term describes the in- (out-) scattering dynamics of the Wigner function N_{Q}^v. Using the index shift $Q \leftrightarrow Q'$ one can show for the exciton density $\delta_{Q} N_{Q}^v(r,t) |_{\text{scat}} = \frac{1}{\hbar} \sum_{Q} \delta_{Q} N_{Q}^v(r,t) |_{\text{scat}} = -\delta_{Q} N_{Q}^{v'}(r,t) |_{\text{scat}}$. It follows immediately that inter-valley scattering does not change $N_v(r,t)$, i.e. $\delta_{Q} N_{Q}^{v'}(r,t) |_{\text{scat}} = 0,$
as expected for broad densities. Although having no direct contribution, the intravalley scattering may have a considerable impact on the spatial distribution $N_e(r)$, since locally (i.e. in every position r) these scattering channels redistribute the Wigner function N^0_Q in the momentum Q toward the local equilibrium distribution $N^0_Q(r, t) \propto \text{Exp}[-\epsilon^0_Q/(k_B T)]$. By studying how the difference between N^0_Q and N^0_Q evolves, it can be shown that the dynamics of the spatial distribution N_e is given in the absence of intervalley scattering mechanisms and in the steady-state regime by the Fick’s law

$$\partial_t N_e(r,t) = D_e \Delta_r N_e(r,t).$$

Here decaying mechanisms have been omitted and $D_e = 1/(2\tau^0_Q \gamma^0_Q)$ is the diffusion coefficient, with $\gamma^0_Q = \Sigma^r_Q \Gamma^r_Q$ providing the Q-dependent relaxation time induced by intravalley processes. The introduced expectation value $\langle f_Q \rangle^0$ provides the average of f_Q assuming a (local) thermalized distribution $\langle f_Q \rangle^0 = \Sigma^r_Q f_Q \text{Exp}(-\epsilon^0_Q/k_B T) / \Sigma^r_Q \text{Exp}(-\epsilon^0_Q/k_B T)$. Under the assumption of constant relaxation times $\gamma^0_Q \approx \tau_Q$, the well-known steady-state relation $D_e = \tau_Q / \epsilon^0_Q$ can be recovered.

The evolution of $N_e(r,t)$ undergoes a so-called effective diffusion, i.e. i) it preserves the location of its center (in contrast to transport studies involving a shift of the occupation peak), ii) is rotationally symmetric, and iii) broadens in space. In order to quantify this effective diffusion process, we introduce a width w_0 of the distribution N_e which is proportional to the variance, $w_2^2 = \int r^2 N_e(r, t) dr / N_e$. According to Fick’s law [Eq. (3)], confined spatial distributions would behave as $N_e(r, t) \propto \exp(-r^2/w_2^2(t))$ with $w_2^2(t) = w_{2,0}^2 + 4D_e t$, where $w_{2,0}$ is the initial width. It follows that one can define an effective diffusion coefficient (or diffusivity) as $D_e = \frac{1}{4} \frac{\partial w_2^2}{\partial t}$, i.e. as slope of the temporal evolution of the squared width w_2^2. In the so-called conventional diffusion, D_e is constant. This behaviour occurs in the steady-state regime and can be described by the conventional Fick’s law [Eq. (3)]. However, before the steady-state regime is reached, the spatial distribution is expected to undergo a non-trivial evolution, which can be interpreted in terms of a modified Fick’s law with a time-dependent effective diffusion coefficient $D_e(t)$.

As a remarkable example, in the so-called ballistic scenario, where many-particle scattering is negligible, the effective diffusion coefficient $D_e(t)$ increases linearly with time. The intravalley scattering leads the system from a ballistic regime to a conventional diffusion by acting as a frictional mechanism counteracting the free evolution. When the intervalley contribution becomes of the same order of magnitude as the intravalley one, intriguing phenomena are expected including negative effective diffusion effects as will be discussed below. Since we will mostly focus on transient phenomena, for the sake of simplicity and unless otherwise specified below we will simply write diffusion when referring to effective diffusion.

2 Results

2.1 Spatiotemporal photoluminescence

Now, we exploit the theoretical approach discussed above to describe the spatiotemporal dynamics in monolayer TMDs. First, we create a non-equilibrium through an optical excitation which is resonant to the A exciton and centered in time (around $t_0 = 0.2$ ps with $A(r,t)$ having an amplitude FWHM of 100 fs) and space (around $r = 0$ with amplitude FWHM of 0.5 μm and associated width w of about 0.3 μm). We emphasize that although the size of the intensity affects the initial width of the distribution, its impact on the evolution of $D_e(t)$ is found to be negligible, as far as no additional effects induced by stronger localizations are considered. Then, we evaluate Eqs. (1) and (2) to describe transient changes of the effective diffusion coefficients $D_e(t)$ including phonon-assisted transfer between bright and momentum-dark excitons.

We start considering the direct PL spatial distribution I_{PL}, which remains rotationally symmetric with respect to a center $r = 0$, hence we plot only the values along the x-axis. We show in Fig. 2 normalized PL distributions, from which the change of the spatial profile can be better understood, while the unnormalized PL can be found in the supplementary material. Note that I_{PL} undergoes decaying processes similar to the case of spatially homogeneous optical excitations. Such decays are dominated by shape-preserving mechanisms (e.g. radiative recombination or fast intervalley thermalization), hence affecting the total exciton density but not the profile of its spatial distribution. While in Fig. 2 the initial shape of I_{PL} follows the intensity of the exciting optical field, its evolution illustrates the increase of the lateral size of the spatial exciton distribution at different temperatures. At 300 K, there is only a modest and constant broadening, while at 77K, one can see a more pronounced increase of the spatial size due to the weaker counteracting exciton-phonon scattering at lower temperatures. Interestingly, different timescales are observable, exhibiting a much faster effective diffusion in the first few picoseconds followed by a slower broadening.

Further decreasing the temperature to 20 K, we find in addition to an unexpected fast broadening between approximately 4 and 8 ps an even more surprising behaviour: After approximately 30 ps, the PL spatial distribution starts to shrink, i.e. the normalized PL profile apparently goes back in space towards the center of the distribution rather than diffusing away from it. This indicates...
an effective back-diffusion (in the sense of reduction of second moment) or according to a modified Fick's law [see Eq. 3], negative diffusion. Although also observed in single-species studies,50,51 negative diffusions appear usually in multi-component systems (also called uphill diffusion, see e.g.53,55). Negative carrier diffusions have been shown e.g. in scanning ultrafast electron microscopy studies56 as a result of spatial separation of electrons and holes and resulting (Coulomb-induced) interaction. In our case, the multi-component nature is induced by the remarkable multi-valley exciton landscape displayed in TMD monolayers. We will show below that the efficient intervalley exciton-phonon scattering is the origin of both the back-diffusion as well as the sharp increase at about 4-8 ps. In particular, we will discuss how the observed diffusion delay stems from the interplay of initial valley-intrinsic diffusion (with the appearance of cold/hot energy distribution in bright and dark valley, respectively) and time required to absorb (acoustic) intervalley phonons from higher-energy dark exciton states.

2.2 Valley-dependent exciton diffusion

To understand the interesting spatiotemporal evolution of the PL, we perform now a quantitative analysis of the shape of excitonic densities including bright and dark states. Figure 3 illustrates the time evolution of the squared spatial width \(w^2 \) and the resulting diffusion coefficient \(D_v \) for \(KK \), \(KK' \) and \(K\Lambda \) excitons. In addition we plot the analogous variables for the total spatial density \(N(r,t) \) obtained by summing over the three intravalley spatial densities \(N(r,t) = \sum_v N_v(r,t) \) (dotted lines). The PL (dashed lines) follows the dynamics of \(NK \) while \(N \) follows the dynamics of the most occupied valley, i.e. \(K\Lambda \) at 300 K and \(KK' \) at the two lowest temperatures. At room temperature [Fig. 3(a)] we observe an almost identical behavior for all three types of excitons. The diffusion coefficients \(D_v \) become very quickly time-independent and reach a stationary value of almost \(1 \text{ cm}^2/\text{s} \). This is a consequence of a very efficient exciton-phonon scattering at 300 K that results in an ultrafast equilibration of all intra- and intervalley exciton states, before a considerable spatial separation between valleys could appear. This is not the case anymore at 77 K [Fig. 3(b)], where we observe valley-dependent values.

In Fig. 3(b) we find three well-distinguished phases determining the temporal evolution of exciton diffusion in TMD monolayers: I) an initial phase with a valley-dependent fast increase of diffusion coefficients (green-shaded background), II) a transient phase where the differences between valleys decrease (red-shaded background), and III) a final phase, where an effective stationary diffusion coefficient is reached (blue-shaded background). It is the relatively long duration of phase II, where the diffusion coefficients are still valley-intrinsic, which gives rise to the observed different widths \(w^2 \) for different exciton densities. These differences are essentially preserved in phase III, i.e. the \(w^2 \) trajectories tend to parallel resulting in similar diffusion coefficients \(D_v \).

Decreasing the temperature to 20 K [Fig. 3(c)], both the maximal values of coefficients \(D_v \) and the spatial separation between valley-dependent widths \(w^2 \) further increase, reflecting the strongly reduced efficiency of exciton-phonon scattering counteracting diffusion and valley redistribution of excitons. After the initial steep increase, the diffusion coefficients of both \(KK \) and \(K\Lambda \) excitons undergo a subsequent decrease eventually leading to negative values at around 30-100 ps for \(KK \) excitons (see inset). The appearance of negative effective diffusion explains the features observed in the PL in Fig. 2. Although a thorough microscopic description of other interaction mechanisms, such as disorder, has not been considered, we find that slightly increasing the scattering rates (i.e. somehow mimicking the presence of additional scattering channels) the qualitative aspects of the evolution of \(D_{KK} \) at 20 K would still be present. Furthermore, in the considered WS\(_2\) monolayer we find that the radiative recombination [see rate \(\gamma \) in Eq. 1] has a negligible effect on \(D_{KK} \). As we will see in next subsection, the evolution of \(D_{KK} \) is in fact ruled by the energetically lowest dark excitonic states, the latter being affected by \(\gamma \) only via second order processes (i.e. refilling of valley \(KK \)).

2.3 Intervalley exciton-phonon scattering

To better understand the mechanism underlying the predicted negative diffusion, we investigate the role of intervalley exciton-phonon scattering. Figure 4 illustrates the full temporal evolution of \(D_v \) at 300 K in the gedanken experiments, where we artifi-
cically switch off the intervalley scattering after 10 ps. We clearly observe that without intervalley scattering one would have pronounced valley-dependent diffusion coefficients D_v reflecting different effective masses of the involved valleys. Recalling the discussed steady-state relation between D_v and intravalley τ_s, this implies scattering rates of approximately 84 (omitting the radiative decay γ), 66 and 43 fs for KK', KK'' and KK''', respectively. Fig. 4 already shows the crucial role of intervalley scattering for exciton diffusion even at room temperature.

To be able to quantitatively understand how the intervalley scattering affects the diffusion at low temperatures, we introduce the scattering-induced shape variation

$$\eta_v(r, t) = \frac{1}{2} \left(\frac{\partial_n N_v(r, t)}{|r|} dr - c_v N_v(r, t) \right),$$

with the space-independent ratio $c_v = \frac{1}{2} \sum_{v} \int \frac{\partial_n N_v(r, t)}{|r|} dr$. The shape variation $\eta_v(r, t)$ is the difference between full scattering-induced density dynamics $\partial_n N_v(r, t)|_{scat}$ and shape-preserving change of exciton amount. The latter only induces a variation of amplitude $N_v(r, t + \Delta t) = (1 + c_v \Delta t) N_v(r, t)$ in the limit $\Delta t \to 0$. The quantity η_v alone, in contrast, would induce $\partial_n N_v(r, t + \Delta t) = N_v(r, t) + \Delta \eta_v(r, t)$. Since $\int d\eta_v(r, t) = 0$, it follows that η_v may describe amount-preserving variations of density N_v, i.e. η_v extracts the changes in shape of N_v from $\partial_n N_v(r, t)|_{scat}$, while the variation of n_v is described by $c_v N_v$. The shape variation η_v describes scattering-induced spatial redistribution of density $N_v(r)$ from, e.g. position r_1 toward r_2, by assuming negative (positive) values in the regions where the distribution is lost (gained). Thus, η_v directly affects the exciton diffusion process. Exploiting the general definition of the diffusion coefficient D_v below Eq. 3, we introduce a scattering-induced diffusion coefficient

$$D_{scat} = \frac{1}{2} \left(\frac{\partial_n N_v(r, t)}{|r|} dr \right)$$

This quantity provides the contribution of spatial density redistribution induced by exciton-phonon scattering to the exciton diffusion. Recalling that for broad distributions the intravalley scattering mechanisms do not contribute to the scattering-induced dynamics of N_v, i.e. $\partial_n N_v(r, t)|_{scat} \equiv \sum_{v} \partial_n N_v(r, t)|_{scat}$, the scattering-induced diffusion coefficient D_{scat} can also be seen as the direct measure for the intervalley scattering-induced diffusion D_{interv}.

Figure 5(a) shows a direct comparison between scattering-induced (D_{interv}) and full diffusion coefficient D_{KK} at 20 K. We find strong similarities between the two lines, indicating that the scattering-induced diffusion dominates the transient features of D_{KK}. These include e.g. the high peak at about 8 ps, which can be explained as follows: Due to the low temperature the momentum-dark excitons have not fully thermalized yet, having an overpopulation of states with energies high enough to scatter into KK excitons (cf. blue arrow in Fig. 4(a)).

This can be observed also in Fig. 5(b), where the Wigner distribution $N_{KK}(x)$ for KK' excitons is plotted at 5 ps, i.e. during the steep increase. Due to the reduced temperature, both energy and momentum thermalizations are not finished yet. We find a clear anisotropy in momentum, such that there is a higher exciton occupation at positive (negative) momenta for $x > 0$ ($x < 0$). The energy distribution is not thermalized around $k_s \approx 0$, but exhibits peaks at finite momenta indicating a hot exciton distribution.

The non-equilibrium excess-energy is induced by the polarization-to-population transfer, implying that the incoherent dark states formed directly after the optical excitation lay one intervalley phonon energy below the KK minimum (i.e. the energy of coherent excitons). This creates an initial hot distribution of dark excitons, which subsequently relaxes toward the corresponding ground state. In contrast, the initial distribution in KK is even colder than 20 K, resulting in a very slow effective diffusion in the bright valley before the steep increase. Note that these hot dark excitons can scatter back into KK exciton states via absorption of intervalley phonons. As a guide to the eye, the dotted line in Figs. 5(b-c) indicates the minimum wave-vector modulus required for such an intervalley process via absorption of acoustic modes. As shown in Fig. 5(b),
the distribution of these KK' states with high-enough energy is mostly located away from the initial excitation spot, while the other KK' with smaller energies are distributed closer to $r = 0$. Once these spatially wide-spread hot states scatter into KK valley, the density of the latter undergoes a steep extension of its spatial broadening, resulting in the increase of the squared width w_{KK}^2 in Fig. 3(c). The absorption of phonons with finite energy is less effective at small temperatures, thus inducing the time delay of Figs. 2(d) and 4 whose duration is found to be directly affected by acoustic-phonon-induced intervalley scattering. Once occupied mostly via scattering from high-energy dark states, the KK excitons thermalize. It is during this valley-thermalization phase (cf. also Fig. 4(c-d)) that the negative transient diffusion in D_{KK} appears. When the diffusion of KK excitons shows the highest negative values, the distribution of KK' excitons is already quasi-thermalized both in energy and momentum, cf. Fig. 4(c). It is crucial to have a dark state well below the bright one, so that a hot dark excitonic distribution can be formed giving rise to the steep increase of D_{KK} on a few picoseconds timescale, cf. Figs. 5(a-b). This behaviour is expected to change qualitatively in semiconductors where the bright exciton is the energetically lowest state.

The driving force behind the remarkable negative diffusion are intervalley exciton-phonon scattering processes, as the similarity of D_{interv} with the scattering-induced diffusion D shows if Fig. 5(a) (see also the inset). Note that the effect of D_{interv} becomes smaller for excitons with a higher population, i.e., the energetically lowest and thus the highest occupied KK' excitons have a negligible D_{interv} (not shown), resulting in a smoother evolution of w_{KK}^2 and D_{KK} (Fig. 3(c)). In fact, it can be shown that the mutual interaction between two valleys v_1 and v_2 leads to $\eta_{v_1} \approx -\eta_{v_2}$. Inserting the last approximation in the η-dependent definition of D_{interv}, one finds $\left| D_{v_1}^{interv} \right| \approx \left| D_{v_2}^{interv} \right| |n_{v_2}/n_{v_1}|$. As a consequence, for $n_{v_1} \ll n_{v_2}$ it follows that $\left| D_{v_1}^{interv} \right| \gg \left| D_{v_2}^{interv} \right|$. This explains why the negative diffusion region only appears for lower-populated exciton valleys [Fig. 3(c)].

The different temporal behaviour displayed by D_{interv} is induced by different qualitative trends of the shape variation η_{KK}, cf. Fig. 3(d). Here, we have normalized η_{KK} with respect to $\eta_{KK}(0,t)$ and considered the dimension-free position $\sqrt{x/w_{KK}(t)}$ to compare spatial distributions with different height and width. At 2 ps, the timescale is too short for the absorption of phonons, hence both D_{interv} and η are negligible. In contrast, at 20 ps D_{interv} is very high. Accordingly, η shows the conventional diffusive shape with a transfer of density from the center $[\eta(x) < 0$ for $x \approx 0]$ toward the tails $[\eta > 0$ for $x \gg 2w_{KK}]$. However, at 50 ps there is a remarkable change of sign in η, which is now positive in the center and negative in the tail. This implies an uphill transfer of density from the tails toward the center, i.e., a negative diffusion, which is in fact displayed in Fig. 5(d) at 50 ps. At 120 ps, there is a similar behaviour of η however with a reduced magnitude. This implies a D_{interv} with a reduced negativity (in agreement with Fig. 5(a)) that is overcompensated by other mechanisms resulting in an overall positive diffusion, cf. the red line in Fig. 5(a).

3 Conclusions

We have shown that the spatiotemporal exciton dynamics in transition metal dichalcogenides can result in an unexpected negative exciton diffusion, i.e., a shrinking of the spatial exciton density. Based on a fully quantum mechanical approach providing microscopic insights into time-, momentum- and space-resolved exciton dynamics, we ascribe this behaviour to the interplay of valley-intrinsic diffusion and intervalley thermalization processes. The key ingredient is the remarkable excitonic landscape of TMD monolayers containing bright and lower-lying dark states. Our work sheds light on the emerging field of spatiotemporal dynamics in atomically thin materials and may trigger new experimental and theoretical studies on valley-dependent exciton diffusion.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This project has received funding from the Swedish Research Council (VR, project number 2018-00734) and the European Union’s Horizon 2020 research and innovation programme under grant agreement No 785219 (Graphene Flagship).

Notes and references

1. T. Mueller and E. Malic, npj 2D Materials and Applications, 2018, 2, 29.
2. G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand and B. Urbaszek, Rev. Mod. Phys., 2018, 90, 021001.
3. D. Xiao, G.-B. Liu, W. Feng, X. Xu and W. Yao, Phys. Rev. Lett., 2012, 108, 196802.
4. A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen and T. F. Heinz, Phys. Rev. Lett., 2014, 113, 076802.
5. K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao and J. Shan, Phys. Rev. Lett., 2014, 113, 026803.
6. H. Yu, X. Cui, X. Xu and W. Yao, Nat. Sci. Rev., 2015, 2, 57.
7. A. Steinhoff, M. Florian, M. Rösner, M. Lorke, T. O. Wehling, C. Gies and F. Jahnke, 2D Mater., 2016, 3, 031006.
8. G. Wang, C. Robert, M. M. Glazov, F. Cadiz, E. Courtade, T. Amand, D. Lagarde, T. Taniguchi, K. Watanabe, B. Urbaszek and X. Marie, Phys. Rev. Lett., 2017, 119, 047401.
9. T. Deilmann and K. S. Thygesen, Phys. Rev. B, 2017, 96, 201113(R).
10. M. Selig, G. Berghäuser, M. Richter, R. Bratschitsch, A. Knorr and E. Malic, 2D Mater., 2018, 5, 035017.
11. S. Brem, M. Selig, G. Berghaeuser and E. Malek, Sci. Rep., 2018, 8, 8238.
12. T. Deilmann and K. S. Thygesen, 2D Mater., 2019, 6, 035003.
13. N. Lundt, L. Dusanowski, E. Sedov, P. Stepanov, M. M. Glazov, S. Klemmt, M. Klaas, J. Beierlein, Y. Qin, S. Tongay, M. Richard, A. V. Kavokin, S. Höfling and C. Schneider, Nat. Nanotechnol., 2019, 14, 770–775.
14. P. Merkl, F. Mooshammer, P. Steinleitner, A. Giringhuber, K. Lin, P. Nagler, J. Holler, C. Schüller, J. Lupton, T. Korn, ...
