A Structure at 2175 MeV in $e^+ e^- \rightarrow \phi f_0(980)$ Observed via Initial-State Radiation

B. Aubert,1 M. Bona,1 D. Boutigny,1 F. Couderec,1 Y. Karyotakis,1 J. P. Lees,1 V. Poireau,1 V. Tisserand,1 A. Zghiche,1 E. Graugés,2 A. Palano,3 J. C. Chen,4 N. D. Qi,4 G. Rong,4 P. Wang,4 Y. S. Zhu,4 G. Eigen,5 I. Ofte,5 B. Stugu,5 G. S. Abrams,6 M. Battaglia,6 D. N. Brown,6 J. Button-Shafer,6 R. N. Cahn,6 E. Charles,6 M. S. Gill,6 Y. Groyman,6 R. G. Jacobsen,6 J. A. Kadyk,6 L. T. Kerth,6 Yu. G. Kolomensky,6 G. Kukartsev,6 G. Lynch,6 L. M. Mir,9 T. J. Orimoto,6 M. Pripstein,6 N. A. Roe,6 M. T. Ronan,6 W. A. Wenzel,6 P. del Amo Sanchez,7 M. Barrett,7 K. E. Ford,7 T. J. Harrison,7 A. J. Hart,7 C. M. Hawkes,7 A. T. Watson,7 T. Held,8 H. Koch,8 B. Lewandowski,8 M. Pelizaeus,8 K. Peters,8 T. Schroeder,8 M. Steinke,8 J. T. Boyd,9 J. P. Burke,9 W. N. Cottingham,9 D. Walker,9 J. J. Asgeirsson,10 T. Cuhadar-Donszelmann,10 B. G. Fulsom,10 C. Heart,10 N. S. Knecht,10 T. S. Mattison,10 J. A. McKenna,10 A. Khan,11 P. Kyberd,11 M. Saleem,11 D. J. Sherwood,11 L. Teodorescu,11 V. E. Blinov,12 A. D. Bukin,12 V. P. Druzhinin,12 V. B. Golubev,12 A. P. Omuchin,12 S. I. Serednyakov,12 Yu. I. Skovpen,12 E. P. Solodov,12 K. Y. Todymyrov,12 M. Bondioli,13 M. Brunschweig,13 M. Chao,13 S. Curry,13 I. Eschrich,13 D. Kirkby,13 A. J. Larkford,13 P. Lund,13 M. Mandelkern,13 R. K. Mommsen,13 W. Roethel,13 D. P. Stoker,13 S. Abachi,14 C. Buchanan,14 S. D. Foulkes,15 J. W. Gary,15 O. Long,15 B. C. Shen,15 K. Wang,15 L. Zhang,15 H. K. Hadavand,16 E. J. Hill,16 H. P. Paar,16 S. Rahatlou,16 V. Sharma,16 J. W. Berryhill,17 C. Campagnari,17 A. Cunha,17 B. Dahmes,17 T. M. Hong,17 D. Kovalskyi,17 J. D. Richman,17 T. W. Beck,18 A. M. Eiseir,18 C. J. Flacco,18 C. A. Heusch,18 J. Kroseberg,18 W. S. Lockman,18 G. Nesom,18 T. Schalk,18 B. A. Schumm,18 A. Seiden,18 P. Spradlin,18 D. C. Williams,18 M. G. Wilson,18 J. Albert,19 E. Chen,19 A. Dvoretskii,19 F. Fang,19 D. G. Hitlin,19 I. Narsky,19 T. Piatenko,19 F. C. Porter,19 A. Ryd,19 G. Mancinelli,20 B. T. Meadows,20 K. Mishra,20 M. D. Sokoloff,20 F. Blanc,21 P. C. Bloom,21 S. Chen,21 W. T. Ford,21 J. F. Hirschauer,21 A. Kreis,21 M. Nagel,21 U. Nauenberg,21 A. Olivas,21 W. O. Rudick,21 J. G. Smith,21 K. A. Ulmer,21 S. R. Wagner,21 J. Zhang,21 A. Chen,22 E. A. Eckhart,22 A. Soffer,22 W. H. Toki,22 R. J. Wilson,22 F. Winklmeier,22 Q. Zeng,22 D. D. Altenburg,23 E. Feltresi,23 A. D. Hauke,23 H. J. Jasper,23 J. M. Merkl,23 A. Petzold,23 B. Spaan,23 T. Brandt,24 V. Klose,24 H. M. Lacker,24 W. F. Mader,24 R. Nogowski,24 J. Schubert,24 K. R. Schubert,24 R. Schwierz,24 J. E. Sundermann,24 A. Volk,24 D. Bernard,25 G. R. Bonneau,25 E. Latour,25 Ch. Thiebaux,25 M. Verderi,25 P. J. Clark,26 W. Gradl,26 F. Muheim,26 S. Playfer,26 A. I. Robertson,26 Y. Xie,26 M. Andreotti,27 D. Bettoni,27 C. Bozzi,27 R. Calabrese,27 G. Cibinetto,27 E. Luppi,27 M. Negri,27 A. Petrella,27 L. Piemontese,27 E. Precpice,27 F. Anulli,28 R. Baldini-Ferroli,28 A. Calcaterra,28 R. de Sangro,28 G. Finocchiaro,28 S. Pacetti,28 P. Patteri,28 I. M. Peruzzi,28 M. Piccolo,28 M. Rama,28 A. Zallo,28 A. Buzzo,29 R. Contr,29 M. Lo Vetere,29 M. M. Macri,29 M. R. Monge,29 S. Passaggio,29 C. Patrignani,29 E. Robutti,29 A. Santroni,29 S. Tosi,29 G. Brandenburg,30 K. S. Chaisangvanchan,30 M. Morii,30 J. Wu,30 R. S. Dubitzky,31 J. Marks,31 S. Schenk,31 U. Uwer,31 D. J. Bard,32 W. Bhimji,32 D. A. Bowerman,32 P. D. Dauncey,32 U. Egede,32 R. L. Flack,32 J. A. Nash,32 M. B. Nikolic,32 W. Panduro Vazquez,32 P. K. Behera,33 X. Chai,33 M. J. Charles,33 U. Mallik,33 N. T. Meyer,33 V. Ziegler,33 J. Cochran,34 H. B. Crawley,34 L. Dong,34 V. Eyles,34 W. T. Meyer,34 S. Prell,34 E. I. Rosenberg,34 A. E. Rubin,34 A. V. Gritsan,35 A. G. Denig,36 M. Fritsch,36 G. Schott,36 N. Arnaud,37 M. Davier,37 G. Grosdidier,37 A. Höcker,37 F. Le Diberder,37 V. Lepeltier,37 A. M. Lutz,37 A. Oyanguren,37 S. Pruvot,37 S. Rodier,37 P. M. Schune,37 M. H. Schune,37 A. Stocchi,37 W. F. Wang,37 G. Wornser,37 C. H. Cheng,38 D. J. Lange,38 M. D. Wright,38 C. A. Chavez,39 I. J. Forther,39 J. R. Fry,39 E. Gabathuler,39 R. Gamet,39 K. A. George,39 E. D. Hutchcroft,39 D. J. Payne,39 K. C. Schofield,39 C. Touramanis,39 A. J. Bevan,40 F. Di Lodovico,40 W. Menges,40 R. Sacco,40 G. Cowan,41 H. U. Flaecher,41 D. A. Hopkins,41 P. S. Jackson,41 T. R. McMahon,41 S. Ricciardi,41 F. Salvatore,41 A. C. Wren,41 D. N. Brown,42 C. L. Davis,42 J. Allison,43 N. R. Barlow,43 J. R. Barlow,43 Y. M. Chia,43 C. L. Edgar,43 G. D. Lafferty,43 M. T. Naisbit,43 J. C. Williams,43 J. I. Yi,43 C. Chen,44 W. D. Hulsbergen,44 A. Jawahery,44 C. K. Lae,44 D. A. Roberts,44 G. Simi,44 G. Blaylock,45 C. Dallapiccola,45 S. S. Hertzbach,45 Z. Li,45 T. B. Moore,45 S. Sarem,45 H. Staengle,45 R. Cowan,46 G. Sciolla,46 S. J. Sekula,46 M. Spitznagel,46 F. Taylor,46 R. K. Yamamoto,46 H. Kim,47 S. E. Mclachlin,47 P. M. Patel,47 S. H. Robertson,47 A. Lazzaro,48 V. Lombardo,48 F. Palombo,48 J. M. Bauer,49 L. Cremaldi,49 V. Eschenburg,49 R. Godang,49 R. Kroeger,49 D. A. Sanders,49 D. J. Summers,49 H. W. Zhao,49 S. Brunet,50 D. Côté,50 M. Simard,50
P. Taras,50 F. B. Viana,50 H. Nicholson,51 N. Cavallo,52 G. De Nardo,52 F. Fabozzi,52 C. Gatto,52 L. Lista,52 D. Monorchio,52 P. Paolucci,52 D. Piccolo,52 C. Sciaccia,52 M. A. Baak,53 G. Raven,53 H. L. Snoek,53 C. P. Jessop,54 J. M. LoSecco,54 T. Allmendinger,55 G. Benelli,55 L. A. Corwin,55 K. K. Gan,55 K. Honscheid,55 D. Hufnagel,55 P. D. Jackson,55 H. Kagam,55 R. Kass,55 A. M. Rahimi,55 J. J. Regensburger,55 R. Ter-Antonyan,55 Q. K. Wong,55 N. L. Blount,56 J. Brunswick,56 R. Frey,56 O. Ignkina,56 J. A. Kolb 56 M. Lu,56 R. Rahmat,56 N. B. Sinev,56 D. Strom,56 J. Strube,56 E. Torrence,56 A. Gaz,57 M. Margoni,57 M. Morandini,57 A. Pompli,57 M. Posocco,57 M. Rotondo,57 F. Simonetto,57 R. Stroili,57 C. Voci,57 M. Benayoun,58 H. Briand,58 J. Chauveau,58 P. David,58 L. Del Buono,58 Ch. de la Vaissière,58 O. Hamon,58 B. L. Hartfield,58 Ph. Leruste,58 J. Maleclos,58 J. Ocariz,58 L. Roos,58 G. Thelin,58 L. Gladney,58 M. Biasini,59 R. Covarelli,59 C. Angelini,59 G. Batignani,59 S. Bettarini,59 F. Bucci,60 G. Calderini,61 M. Carpinella,61 R. Ceci,61 F. Forti,61 M. A. Giorgi,61 A. Lusiani,61 G. Marchiori,61 M. A. Mazur,61 M. Morganti,61 N. Neri,61 E. Paoloni,61 G. Rizzo,61 J. J. Walsh,61 M. Haire,62 D. Judd,62 D. E. Wagoner,62 J. Biesiada,63 N. Danielsen,63 P. Elmer 63 Y. P. Lau,63 C. Lu,63 J. Olsen,63 A. J. S. Smith,63 A. V. Telnov,63 F. Bellini,64 G. Cavoto,64 A. D’Orazio,64 D. del Re,64 E. Di Marco,64 R. Facchin,64 F. Ferrarotto,64 F. Ferroni,64 M. Gaspero,64 L. Li Gioi,64 M. A. Mazzoni,64 S. Morganti,64 G. Piredda,64 F. Poli,64 F. Safai Tehrani,64 C. Voena,64 M. Ebert,65 H. Schröder,65 R. Waldi,65 T. Adye,66 N. De Groot,66 B. Franke,66 E. O. Olaiya,66 F. F. Wilson,66 R. Aleksan,67 S. Emery,67 A. Vaithe,67 S. F. Ganzhur,67 G. Hamele de Monchenault,67 W. Kozanecki,67 M. Legendre,67 G. Vasseur,67 Ch. Yêche,67 M. Zito,67 X. R. Chen,68 H. Liu,68 W. Park,68 M. V. Purohit,68 J. R. Wilson,68 M. T. Allen,69 D. Astorn,69 Q. Bartoldus,69 P. Bechtle,69 N. Berger,69 R. Claus,69 J. P. Coleman,69 M. R. Convery,69 M. Cristinziani,69 J. C. Dingfelder,69 J. Dorfan,69 G. P. Dubois-Felsmann,69 D. Djoumic,69 W. Dunwoodie,69 R. C. Field,69 T. Glanzman,69 S. J. Gowdy,69 M. T. Graham,69 P. Grenier,69 V. Halyov,69 C. Hast,69 T. Hryn’ova,69 W. R. Immes,69 M. H. Kelsey,69 P. Kim,69 D. W. G. S. Leith,69 S. Li,69 S. Luitz,69 V. Luth,69 H. L. Lynch,69 D. B. MacFarlane,69 H. Marsiske,69 R. Messner,69 D. R. Muller,69 C. P. O’Grady,69 V. E. Ozcan,69 A. Perazzo,69 M. Peri,69 T. Pulliam,69 B. N. Ratcliff,69 A. Rodman,69 A. A. Salnikov,69 R. H. Schindler,69 J. Schwinning,69 A. Snyder,69 J. Stelzer,69 D. Su,69 M. K. Sullivan,69 K. Suzuki,69 S. K. Swain,69 J. M. Thompson,69 J. Vavra,69 N. van Bael,69 M. Weaver,69 A. J. J. Weinstein,69 W. J. Wisniewski,69 M. Wittgen,69 D. H. Wright,69 A. K. Yarritu,69 K. Yi,69 C. C. Young,69 P. R. Burchat,70 A. J. Edwards,70 S. A. Majewski,70 B. A. Petersen,70 C. Roat,70 L. Wilden,70 S. Ahmed,71 M. S. Alam,71 R. Bula,71 J. A. Ernst,71 V. Jain,71 B. Pan,71 M. A. Saeed,71 F. R. Wappler,71 S. B. Zain,71 W. Bugg,72 M. Krishnamurthy,72 S. M. Spanier,72 R. Eckmann,73 J. L. Ritchie,73 A. Satpathy,73 C. J. Schilling,73 R. F. Schwitters,73 J. M. Izen,74 X. C. Lou,74 S. Ye,74 F. Bianchi,75 F. Gallo,75 D. Gambia,75 M. Bomben,76 L. Bosio,76 C. Cartaro,76 F. Cossutti,76 G. Della Ricca,76 S. Dittongo,76 L. Lacari,76 F. Bass,76 V. Azzolini,77 N. Lopez-March,77 F. Martinez-Vidal,77 Sw. Banerjee,78 B. Bluian,78 C. M. Brown,78 D. Fortin,78 K. Hamano,78 R. Kowalewski,78 I. M. Nugent,78 J. M. Roney,78 R. J. Sobie,78 J. J. Back,79 P. F. Harrison,79 T. E. Latham,79 G. B. Mohanty,79 M. Pappagallo,79 H. R. Band,80 X. Chen,80 B. Cheng,80 S. Dasu,80 M. Datta,80 K. T. Flood,80 J. J. Holler,80 P. E. Kutter,80 B. Mellado,80 A. Mihalyi,80 Y. Pan,80 M. Pierini,80 R. Prepost,80 S. L. Wu,80 Z. Yu,80 and H. Neal81

(The BABAR Collaboration)

1Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France
2Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3Università di Bari, Dipartimento di Fisica e INFN, I-70126 Bari, Italy
4Institute of High Energy Physics, Beijing 100039, China
5University of Bergen, Institute of Physics, N-5007 Bergen, Norway
6Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
7University of Birmingham, Birmingham, B15 2TT, United Kingdom
8Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
9University of Bristol, Bristol BS8 1TL, United Kingdom
10University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
11Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
12Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
13University of California at Irvine, Irvine, California 92697, USA
14University of California at Los Angeles, Los Angeles, California 90024, USA
15University of California at Riverside, Riverside, California 92521, USA
16University of California at San Diego, La Jolla, California 92093, USA
17University of California at Santa Barbara, Santa Barbara, California 93106, USA
18University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
19California Institute of Technology, Pasadena, California 91125, USA
We study the initial-state-radiation processes $e^+e^- \rightarrow K^+K^0\pi^+\pi^-\gamma$ and $e^+e^- \rightarrow K^+K^-\pi^0\pi^0\gamma$ using an integrated luminosity of 232 fb$^{-1}$ collected at the $\Upsilon(4S)$ mass with the BABAR detector at SLAC. Even though these reactions are dominated by intermediate states with excited kaons, we are able to study for the first time the cross section for $e^+e^- \rightarrow \phi(1020)f_0(980)$ as a function of center-of-mass energy. We observe a structure near threshold consistent with a 1^{+} resonance with mass $m = 2.175 \pm 0.010 \pm 0.015$ GeV/c^2 and width $\Gamma = 58 \pm 16 \pm 20$ MeV. We observe no $Y(4260)$ signal and set a limit of $\mathcal{B}_{Y \rightarrow \phi\pi^+\pi^-} \cdot \Gamma_{\phi\pi^+\pi^-} < 0.4$ eV (90% confidence level), which excludes some models.

PACS numbers: 13.66.Bc, 14.40.Cs, 13.25.Gv, 13.25.Jx, 13.20.Jf

The nature of the $Y(4260)$ resonance, which BABAR recently discovered through its production via initial state radiation (ISR) in e^+e^- annihilations and its decay into $J/\psi\pi^+\pi^-$, remains unclear. It is well above threshold for the $D_s^+\bar{D}_s^*$ decays expected for a wide charmonium state, but no peak is observed in the total cross section $e^+e^- \rightarrow$ hadrons in this mass region. Some models predict a large branching fraction for $Y(4260)$ into $\phi\pi\pi$. Moreover, the rich spectroscopy of the $J/\psi\pi\pi$ final state motivates a thorough investigation of the analogous $\phi\pi\pi$ state.

In this paper we update our previous analysis with ISR of $e^+e^- \rightarrow K^+K^-\pi^+\pi^-\pi^0$. We include more data and relax the selection criteria, resulting in a fivefold increase in the number of selected events. We obtain an improved cross section measurement over a wide range of effective center-of-mass (C.M.) energies, and perform the first studies of the $\phi\pi^+$, $f_0(980)K^+K^-$ and ϕf_0 intermediate states. We also present the first measurements of the $e^+e^- \rightarrow K^+K^-\pi^0\pi^0$ cross section and its ϕf_0 component.

We use data corresponding to an integrated luminosity of 232 fb$^{-1}$ recorded by the BABAR detector on and off the $\Upsilon(4S)$ resonance. Charged-particle tracking is provided by a five-layer silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH) in a 1.5 T axial magnetic field. Photon and electron energies are measured in a CsI(Tl) electromagnetic calorimeter (EMC). Charged particles are identified by specific ionization in the SVT and DCH, and an internally reflecting ring-imaging Cherenkov detector (DIRC).

We use a simulation package developed for radiative processes that generates hadronic final states following Ref. 1, multiple soft photons from the initial-state using a structure-function technique 2, 3, 4, and photons from the final-state particles using PHOTOS 5, 6. We generate $K^+K^-\pi\pi$ final states both according to phase space and with a model that includes the $\phi(1020) \rightarrow K^+K^-$ and $f_0(980) \rightarrow \pi\pi$ channels. We pass the events through a detector simulation 7, and reconstruct them in the same way as we do the data. We generate a number of backgrounds with this package, including the ISR processes $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\gamma$, $\pi^+\pi^-\pi^0\pi^0\gamma$, $\phi\eta\gamma$, $\phi\pi^0\gamma$ and $\pi^+\pi^-\pi^0\gamma$, and we also study $e^+e^- \rightarrow q\bar{q}$ events generated by JETSET 8, $e^+e^- \rightarrow \tau^+\tau^-$ by KORALB 9, and $\Upsilon(4S)$ decays using our own generator 10.

We consider three types of backgrounds. The first, which peaks at low values of χ^2, is due to non-ISR events, and is dominated by $e^+e^- \rightarrow q\bar{q}$ events with a hard π^0 producing a fake ISR photon. To evaluate this background, we use simulated mass and χ^2 distribu-
tions normalized to data events in which the ISR photon combines with another cluster to form a π^0 candidate. The second type of background, due to ISR $e^+e^- \to \pi^+\pi^-\pi^+\pi^-$ events with misidentified π^\pm, also contributes at low χ^2 values. We derive reliable estimates of their contributions from the known cross sections [3]. The third type of background comprises all remaining background sources and is estimated from the control regions $30 < \chi^2_{K\pi\pi\pi} < 60$ and $50 < \chi^2_{K\pi\pi\pi} < 100$, as detailed in Refs. [3],[13]. We subtract these backgrounds, about 8-10% (15–20%) total contribution, from the selected $K^+K^-\pi^+\pi^-(K^+K^-\pi^0\pi^0)$ events.

We measure the track-finding efficiency from the data, and measure the kaon identification efficiency from a clean sample of ISR $e^+e^- \to \phi \to K^+K^-$ events to a precision of 2.0%, a fourfold improvement over our previous result [3]. The π^0 reconstruction efficiency is determined from ISR $e^+e^- \to \omega \pi^0 \gamma \to \pi^+\pi^-\pi^0\pi^0\gamma$ events and the method described in Ref. [13]. The above procedures allow us to correct the efficiency obtained from the MC simulation. In Fig. [a] we show the cross sections for the two processes, calculated by dividing the background-subtracted yield in each bin by the efficiency and the ISR luminosity [3]. The errors are statistical only. The $e^+e^- \to K^+K^-\pi^+\pi^-$ cross section (Fig. [a]) is consistent with both the direct measurement by DM1 [14] and our previous measurement [3], but is far more precise. In addition to the sharp J/ψ peak, wider structures are visible near 1.8 GeV, 2.2 GeV and possibly 2.4 GeV. The $e^+e^- \to K^+K^-\pi^0\pi^0$ cross section (Fig. [b]) shows the same general features, including a J/ψ peak and a steep drop around 2.2 GeV. The total systematic uncertainty in the $K^+K^-\pi^+\pi^-\pi^0\pi^0$ cross section ranges from 7% (10%) at threshold to 9% (15%) at high E.C.M.

As seen previously [3], there is a rich substructure in the $e^+e^- \to K^+K^-\pi^+\pi^-$ process, dominated by the $K^{*0}(892)K\pi$ intermediate state, but with large signals from the $K_1(1270)$, $K_2^{0}(1430)$ and $K_1(1400)$ resonances. The $e^+e^- \to K^+K^-\pi^+\pi^0\pi^0$ process is also dominated by the $K^{*+}(892)K^+\pi^0$ intermediate state. Understanding these contributions via a partial wave analysis is outside the scope of this paper.

Here we concentrate on events with an intermediate $\phi(1020)$ and/or $f_0(980)$ state. Figure [2] shows scatter plots of $m(\pi^+\pi^-)$ or $m(\pi^0\pi^0)$ versus $m(K^+K^-)$ for the selected events (including backgrounds) in the data. A $\phi \to K^+K^-$ band is visible in both cases, as well as a concentration of events indicating correlated production of ϕ and f_0. A horizontal $\rho(770)$ band is visible for the charged mode only, and is due to $K_1 \to K\rho$ decays. Most of the K^* intermediate states are outside the bounds of these plots. Selecting ϕ events with $|m(K^+K^-)-1020\text{ MeV}/c^2|<10\text{ MeV}/c^2$, and subtracting events with $10<|m(K^+K^-)-1020\text{ MeV}/c^2|<20\text{ MeV}/c^2$ (see Figs. [3],[c]) and MC simulated backgrounds, we obtain the ϕ-associated $m(\pi\pi)$ distributions shown in Figs. [3],[d]. Clear $f_0(980)$ signals are visible in both cases, and there is an indication of $f_2(1270) \to \pi^+\pi^-$. The histogram in Fig. [3] is the result of a simulation that includes $f_0(600)$, $f_0(980)$ and a small fraction of $f_2(1270)$ resonances and describes the general features of the distribution. The curve in Fig. [3] is a fit of two Breit-Wigner functions corresponding to the $f_0(600)$ and $f_0(980)$ with the relative phase set to π; events with $m(\pi^0\pi^0)<0.45$ GeV/c2 are dominated by background-subtraction uncertainties and not used in the fit. The fitted f_0 parameters are consistent with PDG [12] values. Figure [4] shows the $m(K^+K^-\pi\pi)$ distributions in the charmonium region for events with $m(K^+K^-)$ in the ϕ signal and sideband regions. There is a strong J/ψ sig-
ground events from the 3.8–5.0 GeV region.

We also observe 10 events, we calculate

\[B_{Y \rightarrow \phi \pi^+ \pi^-} \cdot \Gamma_{ee} < 0.4 \text{ eV} \]

at the 90% confidence level, which is in agreement with the upper limit obtained by CLEO \[14\] and is well below our analogous measurement \[B_{Y \rightarrow J/\psi \pi^+ \pi^-} \cdot \Gamma_{ee} = (5.5 \pm 1.1^{+0.7}_{-0.8}) \text{ eV} \] \[1\]. This excludes models (e.g. \[2\]) in which these two \(Y(4260)\) branching fractions are comparable.

We now consider the quasi-two-body intermediate state \(\phi f_0(980)\). In each 25 MeV/c^2 (40 MeV/c^2) bin of \(m(K^+K^-\pi^+)\) we select \(K^+K^-\pi^+\pi^- \cdot (K^+K^-\pi^+)\) events with \(m(\pi^0\pi^0)\) in the 0.85–1.1 GeV/c^2 region and fit their \(m(K^+K^-)\) distribution to extract the number of events with a true \(\phi\). These are shown in Fig. 3a with about 700 events for the \(K^+K^-\pi^+\pi^-\) channel and about 120 events for the \(K^+K^-\pi^0\pi^0\) channel; there is a contribution of about 10% from \(e^+e^- \rightarrow \phi\pi\) events where the pion pair is not produced through the \(f_0(980)\).

Both distributions show the sharp rise from threshold as expected for a pair of relatively narrow resonances, and a slow, smooth decrease at high \(E_{C.M.}\), with signals for \(J/\psi\) and \(\psi(2S)\) in Fig. 3b. Both also show a resonance-like structure at about 2.15 GeV/c^2. There are no known meson resonances with I=0 near this mass.

Dividing by the efficiency, ISR luminosity, \(B_{\phi \rightarrow K^+K^-} = 0.491 \pm 0.003\) \[9\], and \(B_{f_0 \rightarrow \phi \pi^+\pi^-}(\pi^0\pi^0) = 2/3(1/3)\), we obtain the two consistent measurements of the \(e^+e^- \rightarrow \phi f_0\) cross section shown in Fig. 3c (including about 10% \(\phi\pi\) contribution). We use the following function of \(s = E_{C.M.}^2\):

\[\sigma(s) = \frac{P(s)}{P(m_{\phi}^2)} \cdot A_{nr} e^{-i\phi_x} + \frac{\sqrt{\sigma_0 m_x} \Gamma_x}{m^2 - s - i\sqrt{\Delta \Gamma}} \]

where \(N_{nr}\) normalizes the amplitude of the non-resonant spectrum, \(\sigma_0\) is a peak cross section for the hypothesized resonance, and \(m_x, \Gamma_x, \phi_x\) are the mass, total width and phase of the resonance.
FIG. 5: The number of a) $e^+e^- \rightarrow \phi f_0(980)$ events vs. invariant mass extracted as described in the text. Some bins have been combined for clarity, as indicated by the horizontal error bars.

and relative phase of the non-resonant amplitude to the standard Breit-Wigner amplitude. The factor $P(s)$ gives a good approximation of the two-body phase space factor for particles with similar masses; both the $\phi(1020)$ and $f_0(980)$ have small but finite widths, and our selection cut of $m(\pi\pi) > 0.85$ GeV/c^2 defines an effective minimum mass, $m_0 = 1.8$ GeV/c^2. The form of A_{nr} is determined from a simulation that takes the ϕ and $f_0(980)$ lineshapes into account. A very sharp exponential cutoff (parameter a_1) is needed to describe the simulation well, but does not affect the spectrum well above threshold. There is no theoretical prediction for the form at high s, other than that, in the absence of resonances, it should fall smoothly with increasing s. A second order polynomial

and relative phase of the non-resonant amplitude to the standard Breit-Wigner amplitude. The factor $P(s)$ gives a good approximation of the two-body phase space factor for particles with similar masses; both the $\phi(1020)$ and $f_0(980)$ have small but finite widths, and our selection cut of $m(\pi\pi) > 0.85$ GeV/c^2 defines an effective minimum mass, $m_0 = 1.8$ GeV/c^2. The form of A_{nr} is determined from a simulation that takes the ϕ and $f_0(980)$ lineshapes into account. A very sharp exponential cutoff (parameter a_1) is needed to describe the simulation well, but does not affect the spectrum well above threshold. There is no theoretical prediction for the form at high s, other than that, in the absence of resonances, it should fall smoothly with increasing s. A second order polynomial

FIG. 6: The $e^+e^- \rightarrow \phi f_0(980)$ cross section, with about 10% of the $\phi\pi\pi$ contribution, obtained via ISR in the $K^+K^-\pi^+\pi^-$ (circles) and $K^+K^-\pi^0\pi^0$ (squares) final states. The curves represent results of the fits described in the text.

(parameters a_2 and a_3) describes the simulation, so we fit Eq. 2 to the data, floating N_{nr}, a_1, a_2 and a_3. The result without a resonant component is shown as the dashed curve in Fig. 6. The $\chi^2_0 = 80.5/(56 - 5)$ has confidence level $P(\chi^2_0) = 0.0053$, and the fitted parameter values are close to those from the simulation; it is unlikely that a simple, smooth threshold curve can accommodate the data.

Including a single resonance (Eq. 1), we obtain a good fit with $\chi^2_x = 37.6/(56 - 9)$ ($P(\chi^2_x) = 0.84$), shown as the solid line in Fig. 6. The fitted resonance parameter values are

The first error is statistical and the second is systematic. Monte Carlo simulations show that the probability of such a signal arising by chance is less than 10^{-3}. The modestly negative value of ψ_x provides constructive interference below the resonance peak and destructive interference above it, in accord with the data. Variations in the resonance parameters are used to estimate the systematic errors. The fit of the mass spectra in Fig. 5a,b with Eq. 1 with normalization to the number of events under the Breit-Wigner curve gives 170 ± 63 and 31 ± 15 events for $\pi^+\pi^-$ and $\pi^0\pi^0$ respectively. Note that the observed structure is close to the $\Lambda\Lambda$ production threshold at 2.23 GeV/c^2 and the opening of this channel may also contribute to the ϕf_0 cross section.

We perform a number of systematic checks. Treating selected $K^+K^-K^+K^-$ and $\pi^+\pi^-\pi\pi$ events as signal, we observe no structure. Selecting $K^+(892)K\pi$ events,
which have little kinematic overlap with \(\phi f_0(980) \), we see no structure. Excluding the dominant \(K^+K^-\pi^0\pi^0 \) intermediate states and selecting events with \(m(\pi^+\pi^-) \) in the range 0.6–0.85 GeV/c\(^2\) for the charged mode we observe structure at 2.15 GeV/c\(^2\) with a similar yield. Because of the many overlapping intermediate states we cannot perform a quantitative measurement. This will be the subject of future investigation. Events with no \(f_0(980) \) candidate do not exhibit a structure in the \(K^+K^-\pi^0\pi^0 \) mode. We conclude that the new structure decays to \(\phi f_0(980) \) with a relatively large branching fraction. We estimate

\[
B_{x \to \phi f_0} \cdot \Gamma_{ee} = \frac{\Gamma_x \sigma_0 m_x^2}{12\pi C} = (2.5 \pm 0.8 \pm 0.4) \text{ eV},
\]

where we fit the product \(\Gamma_x \sigma_0 \) to reduce correlations, and the conversion constant \(C = 0.389 \text{ mb (GeV/c}^2\text{)}^2 \).

In summary, we present the most precise measurements of the cross sections for \(e^+e^- \to K^+K^-\pi^+\pi^- \) and \(e^+e^- \to K^+K^-\pi^0\pi^0 \) from threshold to 4.5 GeV. In the \(\phi\pi\pi \) channels we observe the \(J/\psi \) and \(\psi(2S) \) but not the \(Y(4260) \). In the \(\phi f_0 \) channel, we observe a new resonance-like structure, which might be interpreted as an \(s\bar{s}\bar{s} \) analogue of the \(Y(4260) \), or as an \(s\bar{s}\bar{s} \) state that decays predominantly to \(\phi f_0(980) \).

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and PPARC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

* Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
† Also with Università della Basilicata, Potenza, Italy

[1] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 95, 142001 (2005).
[2] Shi-Lin Zhu, Phys. Lett. B625, 212 (2005).
[3] BABAR Collaboration, B. Aubert et al., Phys. Rev. D71, 052001 (2005).
[4] BABAR Collaboration, B. Aubert et al., Nucl. Instrum. Meth. A479, 1 (2002).
[5] H. Czyż and J. H. Kühn, Eur. Phys. J. C18, 497 (2001).
[6] A. B. Arbuzov et al., J. High Energy Phys. 9710, 001 (1997).
[7] M. Caffo, H. Czyż and E. Remiddi, Nuovo Cim. A110, 515 (1997); Phys. Lett. B327, 369 (1994).
[8] E. Barberio, B. van Eijk and Z. Was, Comput. Phys. Commun. 66, 115 (1991).
[9] GEANT4 Collaboration, S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[10] T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994).
[11] S. Jadach and Z. Was, Comput. Phys. Commun. 85, 453 (1995).
[12] D. J. Lange, Nucl. Instrum. Meth. A462, 152 (2001).
[13] BABAR Collaboration, B. Aubert et al., Phys. Rev. D73, 052003 (2006).
[14] DM1 Collaboration, A. Cordier et al., Phys. Lett. B110, 335 (1982).
[15] Review of Particle Physics, S. Eidelman et al., Phys. Lett. B592, 1 (2004).
[16] CLEO Collaboration, T. E. Coan et al., Phys. Rev. Lett. 96, 162003 (2006).