Chemical characterization and anticholinesterase effects of essential oils derived from *Salvia* species

Halide. E. Temel, Betül Demirci, Fatih Demirci, Ferhat Celep, Ahmet Kahraman, Musa Doğan and Kemal Hüsnü Can Başer

Department of Biochemistry, Anadolu University, Faculty of Pharmacy, Eskişehir, Turkey; Department of Pharmacognosy, Anadolu University, Faculty of Pharmacy, Eskişehir, Turkey; Anadolu University, Faculty of Health Sciences, Eskişehir, Turkey; Department of Biology, Gazi University, Poлатlı Faculty of Science and Letters, Poлатlı Ankara, Turkey; Department of Biology, Usak University, Faculty of Science and Letters, Usak, Turkey; Department of Biology, Middle East Technical University, Faculty of Science and Letters, Ankara, Turkey; Department of Botany and Microbiology, King Saud University, Faculty of Science, Riyadh, Saudi Arabia

ABSTRACT

Inhibitory effect of *Salvia* species herbal preparations on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activity may contribute to regulation of cognitive performance and impaired cholinergic functions in patients with Alzheimer’s disease. This functional role of *Salvia* species and their components makes the investigations on *Salvia* valuable in medicine-related plant research. Within this work it was aimed to investigate the *in vitro* anti-cholinesterase effect of essential oils derived from ten *Salvia* species, which grow in Turkey. The chemical composition of essential oils were characterized by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), respectively. Results showed that all of the essential oils exhibited AChE inhibitory activity. *S. pseudeuphratica*, *S. hydrangea* and *S. divaricata* essential oils demonstrated the most potent AChE inhibitory effect \[50\% inhibition concentration (IC\(\text{_{50}}\) = 26.00 ± 2.00 μg/mL, 40.0 ± 4.00, 64.68 ± 4.16, respectively\]. The essential oil of *S. pseudeuphratica* demonstrated the highest inhibitory activity against AChE and BuChE among the tested *Salvia* essential oils. Evidences from the our study augment the importance of essential oils obtained from *Salvia* species and may support utilization of *Salvia* species for symptomatic treatment of Alzheimer disease.

KEYWORDS

acetylcholinesterase; butyrylcholinesterase; *Salvia* species; essential oil; phytochemistry

ARTICLE HISTORY

Received 16 December 2014
Accepted 23 February 2016

Introduction

Enzymes are important biochemical targets for treatment of several diseases and nearly 30% of all drugs in clinical use show their therapeutic effect by inhibition of enzymes (1). Beside synthetic drugs, plants and natural product-based therapeutics are an important potential source for treatment of a wide spectrum of pathologies. Ethnobotanical use of various plants may be either important in demonstrating the efficacy of natural products in treatment of diseases or a pathfinder in studies of drug-effect mechanism. Nowadays, as an enzyme inhibitor, natural compounds have a wide range of usage on many pathological conditions from analgesia to the symptomatic therapy of Alzheimer’s Disease (AD). Main treatment strategy for AD is restoration of decreased brain neuromediator acetylcholine levels with inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes. For treatment of AD, researchers have focused on screening the phytochemical contents and inhibitory effects of chemical contents of different plant fractions on enzyme activities. Because of their reputed inhibitory effect on cholinesterases *Salvia* L. species are an attractive research topic (2, 3).

The number of species known is now 100, demonstrating that Turkey is a major center of diversity for the genus in Asia (4). *S. ballisiana*, *S. cyanescens*, *S. divaricata*, *S. kronenburgii*, *S. nydegeri* and *S. pseudeuphratica* are species endemic to Turkey (5). Both *S. ballisiana* and *S. pseudeuphratica* are also local species. The main chemical constituents like flavonoids, polyphenols, monoterpenes, diterpenes and triterpenes of *Salvia* species have been subjected to phytochemical studies published in several reviews (6–10).

Salvia species are used in traditional medicine all around the world and their essential oils possess antimi- crobial, antioxidant, antidiabetic, antimutagenic, antitumor
The GC analysis was carried out using an Agilent 6890N GC system. FID detector temperature was 300°C. To obtain the same elution order with GC-MS, simultaneous auto-injection was done on a duplicate of the same column applying the same operational conditions. Relative percentage amounts of the separated compounds were calculated from FID chromatograms. The analysis results are given in Table 2.

Identification of components

Identification of the essential oil components were carried out by comparison of their relative retention times with those of authentic samples or by comparison of their relative retention index (RRI) to series of n-alkanes. Computer matching against commercial (Wiley GC/MS Library, MassFinder 3 Library) (15, 16) and in-house ‘Başer Library of Essential Oil Constituents’ built up by genuine compounds and components of known oils, as well as MS literature data (17, 18), was used for the identification.

Determination of AChE activity and BuChE activity

Different concentrations of the test samples were initially prepared in methanol. Essential oils tested at final concentration range 5–80 μg/mL and six different concentrations. Twenty micro litre of AChE enzyme (1 U/mL), 10 μL sample added to 2.4 mL buffer, the mixture was
Table 2. The chemical composition of the essential oils of *Salvia* species.

Compound	KI	RRI	Sb%	Sc%	Sd%	Shy%	Sk%	Sm%	Sn%	Sp%	Spc%	Sr%	Identification method	
Tricyclene	1012	1016	Tr	0.3	0.2	0.3	0.2	0.3	0.2	0.3	0.2	0.3	tr	
α-Pinene	1025	1032	7.5	6.4	17.1	3.7	0.5	1.2	15.8	12.2	0.6	2.8	RRI, MS	
α-Thujene	1026	1027	1.4	0.6	-	-	-	-	-	-	-	-	tr	
Camphene	1077	1076	1.2	2.3	7.7	9.4	0.2	1.6	0.4	0.5	2.3	2.3	RRI, MS	
β-Pinene	1117	1118	1.6	6.2	1.5	1.6	-	5.1	9.2	24.0	-	20.4	RRI, MS	
Sabine	1122	1132	2.8	0.5	-	0.3	-	0.9	1.3	1.1	-	0.5	RRI, MS	
Thuja-2,4(10)-diene	1122	1135	0.7	-	-	-	-	-	-	-	-	-	tr	
Myrcene	1160	1174	1.3	-	1.0	0.1	0.3	0.3	2.3	0.5	-	0.8	RRI, MS	
α-Terpine	1177	1188	0.9	0.2	-	-	-	-	-	-	-	-	tr	
Limonene	1212	1203	3.2	0.4	2.3	3.9	6.2	3.7	2.6	4.3	-	2.1	RRI, MS	
1,8-Cineole	1213	1213	2.9	9.1	30.9	7.4	21.5	27.4	4.8	6.5	18.2	9.3	RRI, MS	
β-Pheillardrene	1209	1218	0.2	-	-	-	-	-	-	-	-	-	tr	
(Z)-β-Ocimene	1271	1234	0.2	0.1	0.3	0.6	-	-	-	0.2	-	-	tr	
α-Thujene hydrate	1530	1540	0.6	-	-	-	-	-	-	0.6	-	-	-	
trans-Linalool oxide	1540	1466	1.6	0.7	-	-	-	-	0.4	1.2	-	0.5	RRI, MS	
1-Octen-3-ol (Furanoid)	1444	1452	0.4	-	-	-	-	-	-	0.2	-	-	tr	
Octenyl acetate	1386	1386	-	0.1	-	-	-	-	-	-	-	-	tr	
trans-Linalool oxide (Furanoid)	1450	1450	-	0.6	-	-	-	-	-	-	-	-	tr	
α-Cubebene	1480	1466	0.3	-	-	-	-	-	0.9	0.4	-	1.1	MS	
α-Copaene	1488	1497	0.6	0.2	0.3	0.3	-	1.3	-	-	-	-	MS	
α-Copaene aldehyde	1499	1499	0.9	-	-	-	-	-	-	-	-	-	tr	
α-Bourbonene	1528	1538	1.1	0.3	10.1	46.9	2.5	0.7	0.8	0.4	53.6	-	RRI, MS	
Camphor	1513	1532	0.3	-	-	-	10.1	46.9	2.5	0.7	0.8	53.6	-	RRI, MS
β-Bourbonone	1523	1535	1.4	-	-	-	0.5	1.4	0.1	2.8	-	2.8	MS	
α-Gurjunene	1529	1544	0.2	-	-	-	-	-	-	4.8	-	4.8	MS	
Linool	1543	1553	0.7	0.1	1.6	3.9	-	-	-	-	-	-	RRI, MS	
α-Sabinene hydrate	1556	1556	0.2	-	-	-	-	-	-	0.6	-	-	MS	
trans-Sabinene hydrate	1568	1568	-	1.8	6.7	0.2	-	-	-	-	-	-	RRI, MS	
Pinocarvone	1575	1586	1.7	-	0.5	-	-	-	0.4	0.3	-	1.3	RRI, MS	
β-Ylangene	1576	1589	-	-	-	4.3	-	-	-	-	-	-	MS	
Bornyl acetate	1579	1591	-	0.9	1.1	0.3	0.3	3.8	0.7	16.4	-	0.4	RRI, MS	
β-Copaene	1579	1597	-	-	-	-	-	-	-	-	-	-	1.5	MS
β-Elemene	1590	1600	-	-	-	-	-	-	-	-	-	-	MS	
Calane 1,4-diyl-β-gurjunene	1596	1610	1.7	-	-	-	-	-	-	0.4	-	-	MS	
Terpinen-4-ol	1601	1611	0.2	0.4	0.6	-	-	-	1.5	-	-	-	RRI, MS	
β-Caryophyllene	1608	1612	8.2	0.5	0.5	-	-	26.4	3.3	2.8	-	1.7	RRI, MS	
Hotrienol	1602	1616	-	-	-	0.6	-	-	-	-	-	-	MS	
trans-Dihydrocarvone	1623	1624	-	-	-	0.4	-	-	-	-	-	-	MS	
Aromadendrene	1650	1658	0.2	-	-	-	-	-	0.2	-	-	-	MS	

(Continued)
Compound	KI^a	RRI^b	Sb%	Sc%	Sd%	Shy%	Sk%	Sm%	Sn%	Sp%	Sps%	Sr%	Identification method	
cis-p-Mentha-2-en-1-ol	1614^c	1638	tr					0.1				0.4	MS	
trans-p-Mentha-2-8-dien-1-ol	1639^e	1639										0.4	MS	
cis-β-Terpineol	1639^e	1641						0.4				0.4	1.6 MS	
Myrenal	1631^e	1648	2.4	0.5	0.4		0.4	0.4	0.4			1.6 MS		
γ-Elemene	1642^e	1650								0.2			MS	
Sabinaketone	1651^e	1651								0.8			MS	
Alloaromadendrene	1649^e	1661					1.2		0.5			0.5	MS	
cis-Verbenol	1659^e	1663					0.3						MS	
Nonanol	1655^e	1664									0.7		tr, MS	
*(2R,3R)-Farnesene	1651^e	1668	0.5										RRI, MS	
trans-Pino carveol	1661^e	1669	2.5	0.3	1.0	0.7		0.6	0.4			0.9	RRI, MS	
epi-Zonarane	1677	1677	0.1										MS	
cis-p-Mentha-2,8-dien-1-ol	1652^e	1678						0.1					MS	
6-Terpineol	1679^e	1682						0.1					MS	
trans-Verbenol	1680^e	1683	1.9	1.5	0.9		0.7	0.2					RRI, MS	
α-Humulene	1663^e	1687	1.4			0.8		2.0	2.8	2.1		0.5	RRI, MS	
Cryptone	1674^e	1690											5.2 MS	
p-Mentha-1,8-dien-4-ol	1700	1700						0.3					MS	
Myrtenyl acetate	1691^e	1704											MS	
y-Muurole	1689^e	1704					1.1						3.0 MS	
α-Terpinol	1694^e	1706	0.3				1.0		1.0				RRI, MS	
Ledene	1708	1708								0.1			MS	
α-Terpinyl acetate	1694^e	1709	2.8					1.3					RRI, MS	
Borneol	1699^e	1719	0.6	1.8		0.4	0.7	0.7	0.2	0.6			RRI, MS	
Bicyclosesquiphellandrene	1722	1722	0.2										MS	
Verbenone	1720^e	1725	0.1		0.4	0.4					0.3		MS	
Germacrene D	1708^e	1726	0.5			0.6	4.3	2.3				0.8	MS	
Neryl acetate	1718^e	1733		0.5	0.9								RRI, MS	
p-Mentha-1,5-dien-8-ol	1674^e	1738	0.3		0.2								MS	
α-Muurole	1723^e	1740	0.2	0.4								0.6	MS	
Phellandral	1723^e	1744											RRI, MS	
trans-Carvyl acetate	1723^e	1747					0.8						RRI, MS	
Carvone	1733^e	1751	1.3	11.9								0.4	RRI, MS	
Bicyclogermacrene	1734^e	1755	2.8									0.9	MS	
Naphthalene	1735^e	1763	1.4	1.5	2.1	0.5						2.1	RRI, MS	
Geranyl acetate	1751^e	1765	1.2	1.5									RRI, MS	
δ-Cadinene	1755^e	1773	1.3	tr	0.6		2.4	0.9				2.4	MS	
γ-Cadinene	1763^e	1776	0.2	tr		0.4	0.4					1.0	MS	
ar-Curcumene	1781^e	1786		0.4									MS	
p-Methyl aceto phenone	1773^e	1797		0.4									MS	
Cadin-1,4-diene (=Cubenene)	1773^e	1799		0.4							0.3		MS	
Cumin aldehyde	1784^e	1802		tr								2.4	RRI, MS	
Myrenol	1790^e	1804	1.7	0.5								0.4	0.4	0.6 MS
Perilla aldehyde	1793^e	1807	0.7										MS	
trans-p-Mentha-1(7),8-dien-2-ol	1803^e	1811											MS	
p-Mentha-1,3-dien-7-al	1811	1811											MS	
trans-Carveol	1836^e	1845		0.7	3.4						0.3		RRI, MS	
Calamene	1927^e	1849	0.4	0.5			0.7	2.1		0.5			MS	
Compound	KI	RRI	Sb%	Sc%	Sd%	Shy%	Sk%	Sm%	Sn%	Sp%	Sps%	Sr%	Identification method	
--	----	-----	-----	-----	-----	------	-----	-----	-----	-----	------	-----	-----------------------	
Geraniol	1839c	1857	-	-	0.2	-	1.6	-	-	-	-	-	RRI, MS	
p-Cymen-8-ol	1848c	1864	-	-	-	-	0.1	-	-	-	-	0.5	RRI, MS	
Epi-Cubebol	1900c	1900	0.5	-	-	-	-	1.4	1.0	-	0.6	-	MS	
a-Calacorene	1921c	1941	-	-	-	-	-	-	-	-	0.5	-	MS	
1,5-Epoxy-salvial-4(14)-ene	1945	-	1.8	-	-	-	-	-	-	-	-	-	MS	
Piperitene	1909c	1949	-	-	-	-	-	-	-	0.2	-	-	RRI, MS	
Cubebol	1918c	1957	0.8	-	-	-	-	6.2	1.7	-	0.6	-	RRI, MS	
Furapelargone A	1984	-	-	-	-	-	-	-	-	0.6	-	-	MS	
γ-Calacorene	1984	-	-	-	-	-	-	-	-	-	0.3	-	MS	
trans-Sequinsabinene hydrate	2092c	2000	-	-	-	-	-	-	-	-	-	-	MS	
Iso-caryophyllene oxide	2001	1.1	-	-	-	-	-	1.6	-	0.2	-	-	MS	
Caryophyllene oxide	1962c	2008	34.1	4.0	-	-	1.4	-	22.2	5.6	4.5	-	1.6 RRI, MS	
Perilla alcohol	2006c	2029	tr	-	-	-	-	-	-	-	-	-	MS	
Salvia-4(14)-en-1-one	2016c	2037	-	1.1	-	-	-	-	-	-	-	0.5	MS	
Humulene epoxide-I	2015c	2045	0.4	-	-	-	-	1.4	1.0	-	1.0	-	MS	
(E)-Nerolidol	2036c	2050	-	3.3	-	-	-	-	-	-	-	-	MS	
Humulene epoxide-II	2047c	2071	3.7	0.1	0.7	2.1	-	1.6	2.5	2.0	-	0.8	MS	
Cubenol	2047c	2080	0.5	-	-	-	-	1.4	-	0.5	0.5	-	MS	
Humulene epoxide-III	2081c	2081	0.3	-	-	-	-	-	-	-	0.3	-	MS	
1-epi-Cubebol	2088c	2088	0.6	-	-	0.7	-	0.9	0.3	-	-	MS		
cis-Sequinsabinene hydrate	2096	-	-	-	-	-	0.4	-	-	-	-	MS		
Viridiflorol	2089c	2104	-	-	-	-	-	7.7	-	-	-	MS		
Furapelargone B	2105	-	-	-	-	-	-	-	-	3.2	-	MS		
Cumin alcohol	2058c	2113	-	-	-	-	-	-	-	-	1.4	-	RRI, MS	
Hexahydrofarnesyl acetone	2124c	2131	-	-	-	-	-	-	-	-	0.4	-	MS	
Valeranone	2145c	2144	-	-	2.6	23.2	1.1	1.1	2.8	1.7	-	10.4	MS	
Spathulenol	2126c	2144	-	-	2.6	23.2	1.1	1.1	2.8	1.7	-	-	MS	
T-Cadinol	2165c	2187	0.5	-	0.8	-	-	-	-	0.2	-	tr	MS	
Nonanoic acid	2159c	2192	-	-	-	-	-	-	-	tr	-	-	RRI, MS	
α-Turmerol	2214	-	-	-	-	-	-	-	-	-	-	-	MS	
α-Bisabolol	2235c	2232	-	-	-	-	-	-	-	-	-	-	MS	
4-Isopropyl phenol	2232	-	-	-	-	-	-	-	-	-	1.9	-	MS	
trans-α-Bergamotol	2247	tr	0.1	-	-	-	-	-	-	0.6	-	-	MS	
α-Eudesmol	2222c	2250	-	-	-	-	-	-	-	-	-	-	MS	
α-Cadinol	2227c	2255	-	-	-	-	-	-	-	-	0.4	0.5	MS	
Cadalene	2233c	2256	-	-	2.3	-	-	-	-	-	0.3	-	MS	
β-Eudesmol	2238c	2257	1.0	-	1.8	0.7	1.7	-	-	-	1.5	-	MS	
Alismol	2264	-	-	-	-	0.6	-	3.9	-	-	-	-	MS	
Guai-6,10(14)-dien-4β-ol	2269	-	-	-	-	-	-	-	0.7	-	-	MS		
Torilenol	2278	1.4	-	-	-	-	0.7	-	-	-	-	-	MS	
Decanoic acid	2273c	2298	-	-	-	-	-	-	-	-	-	-	RRI, MS	
Caryophylla-2(12)-6(13)-di-en-5β-ol (=Caryophylladienol I)	2316	-	-	-	-	-	-	-	-	-	-	MS		

(Continued)
incubated at 37°C for 15 minutes. After the 15 minutes incubation, 50 μL of 0.01 M DTNB and 20 μL of 75 mM acetylthiocholine iodide (ATCI) were added, and the final mixture was incubated at room temperature for 30 minutes. BuChE enzyme activity was determined using 20 μL of 25 mM butyrylthiocholiniodide (BTCI) as substrate and 20 μL of BuChE enzyme (1 U/mL). A control mixture and blank was prepared by using 10 μL of methanol instead of the oil sample, with all other procedures similar to those used in the case of the sample mixture. Absorbances were measured at 412 nm and 37°C using polystyrol cuvets using a spectrophotometer (Shimadzu, UV-1700) as previously reported (19, 20). Experiments were repeated in triplicates. Experimental data were calculated using the Microsoft Excel. All data are presented as mean ± standard deviation (SD) in Table 3 and Table 4.

The percent inhibition of enzymes activities (I%) was calculated by using the equation:

$$I\% = \left(\frac{OD_{sample}}{OD_{control}} \right) \times 100$$

Results and discussion

Chemical characterization of essential oils

Essential oils were obtained by hydrodistillation from the air-dried aerial parts of *Salvia ballsiana*, *S. cyanescens*, *S. divaricata*, *S. hydrangea*, *S. kronenburgii*, *S. macrochlamys*, *S. nydeggeri*, *S. pachystachys*, and *S. russelli*, respectively. The oils were subsequently analyzed by GC and GC-MS, and the characterized

| Table 3. Inhibition percentage (%) values of the in vitro tested *Salvia* essential oils. |
|---------------------------------|-----------------|-----------------|
| Essential Oil (80 μg/mL) | AChE % inhibition | BuChE % inhibition |
| S. ballsiana | 43.23 ± 0.40 | Nd |
| S. cyanescens | 15.45 ± 3.8 | 41.87 ± 4.14 |
| S. divaricata | 56.16 ± 3.28 | - |
| S. hydrangea | 53.34 ± 2.35 | 7.95 ± 0.66 |
| S. kronenburgii | 41.49 ± 3.60 | 12.81 ± 1.12 |
| S. macrochlamys | 42.69 ± 3.11 | Nd |
| S. nydeggeri | 49.35 ± 2.56 | 6.55 ± 2.01 |
| S. pachystachys | 35.43 ± 0.90 | Nd |
| S. pseudoeuphratica | 80.97 ± 2.74 | 49.18 ± 1.15 |
| S. russelli | 43.93 ± 2.75 | 24.66 ± 0.93 |

| Table 4. IC50 values of the in vitro tested *Salvia* essential oils and standard compound. |
|---------------------------------|-----------------|-----------------|
| Essential Oil (μg/mL) | AChE (IC50) | BuChE (IC50) |
| S. pseudoeuphratica | 26.00 ± 2.00 | >80 |
| S. hydrangea | 40.00 ± 4.00 | >80 |
| S. divaricata | 64.68 ± 4.16 | - |
| Galanthamine | 0.55 ± 0.10 | 6.1 ± 0.27 |

Note: No inhibition; nd: Not determined with interference; SD: Standard Deviation.
individual components are given in Table 2 with their relative percentages.

Fifty-six components which were representing 99.8% of the total essential oil of S. ballsiana were identified; caryophyllene oxide (34.1%), β-caryophyllene (8.2%) and α-pinene (7.5%) were main constituents.

Main constituents of S. cyanescens essential oil were spathulenol (23.2%), p-cymene (10.3%), 1,8-cineole (9.1%), α-pinene (6.4%) and β-pinene (6.2%) among the other fifty-one components comprising 93.1% of the total components.

Thirty-two components were identified representing 97.9% of the total essential oil of S. divaricata with 1,8-cineole (30.9%), α-pinene (17.1%), camphor (10.1%) and camphene (7.7%) as main constituents. In our previous work on S. divaricata essential oil, 1,8-cineole (40.0%), α-pinene (16.6%) and camphor (5.0%) were found as major components (12).

Main constituents of S. hydrangea were camphor (46.9%), camphene (9.4%) and 1,8-cineole (7.4%) among the other thirty-six components comprising 97.0% of the total components. Camphor (54.2%), humulene (4.0%), cis-sesquisabinene hydrate (2.8%), myrtenol (2.6%), beta-bisabolol (2.2%) and 1,8-cineole (2.1%) were found as predominant components of S. hydrangea essential oil by Kotan et al. (21). In the oil of S. hydrangea from Iran; β-caryophyllene(33.4%) and caryophyllene oxide (25.4%) were reported as major constituents (22).

GC-MS analysis of S. kronenburgii essential oil has shown that geranyl acetate (16.0%), 1,8-cineole (12.5%), carvone (12.0%) and limonene (6.2%) were the main constituents. Forty-four compounds were characterized representing 94.1% of the total oil. The essential oil composition was previously investigated by Altun et al. either (23).

Twenty-eight compounds were identified representing 97.2% of the total essential oil of S. macrochlamys with β-caryophyllene (26.4%) and caryophyllene oxide (22.2%) as main constituents. In our previous work, the oil of S. macrochlamys was characterized with 1,8-cineole (27%), borneol (13%), and camphor (11%) as main constituents (24).

This is the first report on the chemistry of S. nydeggeri. Forty-nine components were identified representing 92.0% of the total oil. α-Pinene (15.8%), β-pinene (9.2%), cubebol (6.2%) and caryophyllene oxide (5.6%) determined as major components.

GC-MS analysis of the oil of S. pachystachys has shown that β-pinene (24.0%), α-pinene (12.2%), spathulenol (10.4%), viridiflorol (7.7%) and 1,8-cineole (6.5%) were the main constituents. Sixty-two compounds were characterized representing 97.7% of the total oil.

A total of twenty-six compounds were characterized at S. pseudoeuphratica essential oil which were representing 96.0% of the total oil. This oil was characterized with a relatively high content of camphor (53.6%). The other main component was found as 1,8-cineole (17.4%).

Forty-eight compounds were identified representing 92.8% of the total essential oil of S. russellii with β-pinene (20.4%), 1,8-cineole (9.5%), α-copaene (8.7%), valeranone (8.7%) and α-gurjunene (4.8%) as main constituents.

In our study, it has been demonstrated that there is a qualitative and quantitative difference between investigated Salvia species among constituents of essential oils. The differences about chemical compositions of Salvia species evaluated in our study and the Salvia species investigated at either in our work or previous studies in the literature may be related with source of the plant, individual genetic variability, collection time of the plant, the proportions of distilled parts, variations in biosynthetic pathways and metabolism (25).

Inhibition effect of essential oils on cholinesterases

The AChE and BuChE inhibitory activity of essential oils derived from ten Salvia species has not been reported to date. This is the first study performed to demonstrate this activity. AChE and BuChE inhibitory activities of the essential oils are reported in Table 3 and Table 4. It is also known that Salvia species are used traditionally at various nervous system disorders (26). Previous studies demonstrated that Salvia essentials oils have potential therapeutic effects on mood and cognitive functions through cholinesterase inhibition which could be attributed to terpenes (11, 27).

The main finding of this study was that all investigated Salvia essential oils inhibited AChE enzyme activity. However, Essential oils were less active than galantamin; the standart inhibitor of AChE enzyme. While essential oil of S. pseudoeuphratica showed the highest inhibitory effect on AChE (IC_{50} = 26 ± 2 μg/mL), S. cyanescens and S. pachystachys showed the lowest inhibitory effects on AChE at the same concentration (80 μg/mL) among the species investigated. Our results also confirmed previous findings about AChE inhibitory activity of Salvia species (26).

Main component of S. pseudoeuphratica essential oil, generally attributed to the biological activity, is a naturally occurring monoterpenoid, camphor with a relative biological activity of 53.6%. Whereas, S. cyanescens (0.3%) and S. pachystachys (0.4%) were the Salvia species with the lowest camphor content. Svalve et al. (28) have demonstrated that AChE enzyme inhibitory effect of essential oil derived from poor camphor containing Salvia officinalis.
was lower than essential oils rich in camphor content. These findings suggested that camphor may be responsible from inhibitory effect on AChE enzyme.

Perry et al. (2) demonstrated that camphor is an uncompetitive reversible inhibitor of human erythrocyte AChE. Camphor, 1,8-cineole, and α-pinene inhibited the enzyme in a dose-dependent manner. When compared with standard drug physostigmine (IC50 = 4.5 × 10−8 M), the most active monoterpenes were 1,8-cineole (IC50 = 0.67 mM), α-pinene (IC50 = 0.63 mM) and camphor (4.7 mM), respectively. Inhibitory effect of camphor enantiomers on AChE activity was reported as (+)-camphor: 26.4%, (-)-camphor: 21.2% has been reported by Miyazawa et al. (29).

Other effective essential oils for AChE enzyme inhibition in our study were the essential oils obtained from S. hydrangea (40 ± 4%) and S. divaricata (64.68 ± 4.16%), respectively. While main component of Salvia hydrangea was camphor (46.9%), main component of S. divaricata was 1,8-cineol (30.9%). 1,8-cineole and α-pinene are two common monoterpenes in Salvia. AChE inhibitory activity of these Salvia species may be contributed with the presence of 1,8-cineole. Common property of forthcoming three Salvia with highest inhibitory effect on AChE enzyme was markedly rich camphor content among Salvia species investigated in our study. Combination of 1,8-cineole and camphor may result with either synergy or antagonism (30). Although Svalv et al. reported that Salvia species rich in 1,8-cineole, but not camphor, may provide oils with more potent cholinergic activities data obtained our study have showed that essential oils rich in camphor content also have inhibitory effect on cholinesterase activity (28). While camphor is known for therapeutic effects it should not be ignored that toxic effects of Salvia essential oils might be related with it (11, 31).

In enzyme inhibition assays, the percentage inhibition effect on AChE activity of essential oils obtained from S. nydegeri, S. russelli, S. ballisana, S. macrochlamys, S. kronenburgii was higher than 40% at 80 μg/mL concentration.

BuChE activity, which is also responsible for the hydrolysis of ACh; may increase for the compensation of deteriorated AChE activity in AD. In addition to esterase function, BuChE have peptidase effect. Peptidase activity ameliorates formation of β-amyloid by degredation of amyloid precursor protein (APP) which can be determined in large amounts at brain tissue of Alzheimer Disease patients (32). Therefore, inhibition BuChE (in addition to AChE) seems to have a therapeutic impact in AD.

Another finding of this study was inhibition of BuChE by essential oils obtained from some investigated Salvia species inhibitory activity of the oils on BuChE varied among the studied species. Although essential oils of S. pseudeuphratica and S. cyanesens showed the highest inhibitory effect on BuChE activity (49.18 ± 1.15% and 41.87 ± 4.14%, respectively) at the same test concentrations (80 μg/mL), they did not show 50% inhibition even at their highest concentration. Common property of S. cyanesens (30.9%) and S. pseudeuphratica (18.2%) essential oils were possessing the highest 1,8-cineole content.

Loizzo and co-workers reported that although 1,8-cineole has an inhibitory on BuChE activity (IC50 = 0.93 mM), camphor did not show inhibitory effect even at the highest tested concentration (10 mM). 1,8-cineole may have a role for the inhibitory effect of S. pseudeuphratica, S. cyanesens, S. russelli on BuChE enzyme (33).

Despite no camphor content, S. russelli have exhibited a high level of AChE inhibition and although main component of S. divaricata was 1,8 cineole, it did not demonstrate any BuChE inhibition. In spite the major factor that takes part in cholinesterase enzyme inhibition seems to be the main component of the essential oils, synergistic or antagonistic chemical interactions of essential oil components may play an important role.

Şenol and co-workers showed neither dichloromethane nor ethyl acetate extracts of the S. pseudeuphratica has inhibitory effect on AChE at a concentration of 100 μg/mL. AChE inhibitory effect of dichloromethane extract obtained from S.russelli (100 μg/mL) was 1.70 ± 0.85% and ethyl acetate extract of S. russelli (100 μg/mL) was 11.54 ± 0.34%. While dichloromethane extracts of S. pachystachys showed an inhibitory effect on AChE (2.34 ± 0.34%–100 μg/mL), ethyl acetate extract of S. pachystachys has no inhibitory effect on AChE activity at same concentration. However, relevant components of extracts were not reported in study of Senol et al. (34). Hence no inhibitory effect of S. pseudeuphratica ethyl acetate extracts on AChE activity was determined in the previous study, dual inhibitory effect of S. pseudeuphratica volatile fraction obtained in our work has showed the importance of investigation different fractions from the plants.

Evidences from our study augment the importance of essential oils obtained from Salvia species and support the utilization of Salvia species, especially the essential oil of S. pseudeuphratica, which has demonstrated the highest inhibitory activity against both enzymes, for symptomatic treatment of Alzheimer disease. Main constituents, camphor and 1,8-cineole are relevant compounds associated with cholinesterase inhibition. Contribution ratio of the active components effects cholinesterase activity in a important manner. Due to these dual efficacy on both cholinesterase enzymes, investigations on cholinesterase inhibitory effect of S. pseudeuphratica volatile fractions at in vivo studies can be worthwhile.
Acknowledgments
The authors would like to thank TUBITAK-TBAG-Project no: 106T117 and 104T450, for infrastructure. This work was presented at the 41st International Symposium on Essential Oils, 5–8 September 2010, Wroclaw, Poland.

Disclosure statement
No potential conflict of interest was reported by the authors.

References
1. R.A. Copeland, Evaluation of Enzyme Inhibitors in Drug Discovery: A Guide for Medicinal Chemists and Pharmacologists, pp. 1–5. John Wiley & Sons, NJ (2005).
2. N.S. Perry, P.J. Houghton, A. Theobald, P. Jenner and R.A. Copeland, In–vitro inhibition of human erythrocyte acetylcholinesterase by Salvia lavandulaefolia essential oil and constituent terpenes. J. Pharm. Pharmacol., 52, 895–902 (2000).
3. F.S. Senol, I.E. Orhan, S.A. Erdem, M. Kartal, B. Sener, Y. Kan, F. Celep, A. Kahraman and M. Dogan, Evaluation of cholinesterase inhibitory and antioxidant activities of wild and cultivated samples of Sage (Salvia fruticosa) by activity-guided fractionation. J. Med. Food, 14(11), 1476–1483 (2011).
4. F. Celep, T. Dirmenci and Ö. Güner, Salvia hasankeyfense (Lamiaceae), a new species from Hasankeyf (Batman, South-eastern Turkey). Phytotaxa, 227, 289–294 (2015).
5. A. Kahraman, F. Celep, M. Dogan, G.R. Guerin and S. Baghrpour, Mericarp morphology and its systematic implications for the genus Salvia L. section Hymenophace Benth. (Lamiaceae) in Turkey. Plant. Syst. Evol., 292, 33–39 (2011).
6. S.E. Kintzios, Sage: The Genus Salvia. Medicinal & Aromatic Plants. Gordon and Breach, Harwood Academic Publishers, Abington (Series No: 14) (2000).
7. B. Demiric, N. Tabanca and K.H.C. Başer, Enantiomeric distribution of some monoterpens in the essential oils of some Salvia species. Flavour. FrAGR. J., 17, 54–58 (2002).
8. A. Ulubelen, Cardioactive and antibacterial terpenoids from some Salvia species. Phytochem., 64, 395–399 (2003).
9. K.H.C. Başer, Aromatic biodiversity among the flowering plant Taxa of Turkey. Pure Appl. Chem., 74(4), 527–545 (2002).
10. Y. Lu and L.Y. Foo, Polyphenolics of Salvia-a Review. Phytochemistry, 59, 117–140 (2002).
11. Z. Fu, W. Hang, H. Xiaofei, S. Zhaolin and H. Chunchao, The Pharmacological Properties of Salvia Essential Oils. J. App. Pharm. Sci., 3(7), 122–127 (2013).
12. B. Demiric, K.H.C. Başer, B. Yildiz and Z. Bahcecioglu, Composition of the essential oils of six endemic Salvia spp. from Turkey. Flavour. FrAGR. J., 18, 116–121 (2003).
13. M. Kelen and B. Tepe, Chemical composition, antioxidant and antimicrobial properties of the essential oils of three Salvia species from Turkish flora. Bioresour. Technol., 99(10), 4096–4104 (2008).
14. G. Anackov, B. Bozin, L. Zorci, D. Vukov, N. Mimica-Dukić, L. Merkulov, R. Igić, M. Jovanović and P. Boza, Chemical composition of essential oil and leaf anatomy of Salvia bertoloni Vis. and Salvia pratensis L. (Sect. Plethiosphace, Lamiaceae). Molecules, 23, 14(1), 1–9 (2008).
15. F.W. McLafferty and D.B. Stauffer, The Wiley/NBS Registry of Mass Spectral Data., John Wiley & Sons, New York, NY (1989).
16. WA Koenig, D. Joulain and D.H. Hochmuth, Terpenoids and Related Constituents of Essential Oils. MassFinder 3, Hamburg, Germany (2004).
17. ESO 2000. The Complete Database of Essential Oils, Boedens Aroma Chemical Information Service. The Netherlands (1999).
18. D. Joulain and W.A. Koenig, The Atlas of Spectra Data of Sesquiterpene Hydrocarbons., EB-Verlag, Hamburg (1998).
19. G.L. Ellman, K.D. Courtney, V.J.R. Anders and R.M. Fetaher-Stone, A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 7, 88–95 (1961).
20. M.D. Altintop, A. Özdemir, Z.A. Kaplanikli, G. Turan-Zitouni, H.E. Temel and G.A. Ciftci, Synthesis and biological evaluation of some pyrazoline derivatives bearing a dithiocarbamate moiety as new cholinesterase inhibitors. Arch. Pharm. (Weinheim), 346(3), 189–199 (2013).
21. R. Kotan, S. Kordali, A. Cakir, M. Kesdey, Y. Kaya and H. Kilic, Antimicrobial and insecticidal activities of essential oil isolated from Turkish Salvia hydrangea DC. ex Benth. Biochem. Syst. Ecol., 36, 360–368 (2008).
22. M. Barazande, Essential oil composition of Thymus fallax Fisch. et C.A. Mey. from Iran. J. Essent. Oil Res., 16, 101–102 (2004).
23. M. Altun, M. Ünal, T. Kocagöz and A.C. Gören, Essential oil compositions and antimicrobial activity of Salvia species. J. Essent. Oil Bear. Pl., 10(3), 251–258 (2007).
24. N. Tabanca, B. Demirci, K.H. Baser, Z. Aytac, M. Ekici, S.I. Khan, M.R. Jacob and D.E. Wedge, Chemical composition and antifungal activity of Salvia macrochlamys and Salvia recognita Essential Oils. J. Agric. Food Chem., 54, 6593–6597 (2006).
25. N.B. Perry, R.E. Anderson, N.J. Brennan, M.H. Douglas, A.J. Heaney, J.A. Mcgimpsey and B.M. Smallfield, Essential oils from Dalmatian Sage (Salvia officinalis L.): variations among individuals, plant parts, seasons, and sites. J. Agric. Food Chem., 47, 2048–2054 (1999).
26. S. Vladimir-Knezevic, B. Blažeković, M. Kindl, J. Vladić, A.D. Lower-Nedza and A.H. Brantner, Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae family. Molecules, 19(1), 767–782 (2014).
27. M.R. Loizzo, R. Tundis, F. Conforti, F. Menichini, M. Bonesi, F. Nadjafi, N.G. Frega and F. Menichini, Salvia lerifolia Benth (Lamiaceae) extract demonstrates in vitro antioxidant properties and cholinesterase inhibitory activity. Nutr. Res., 30, 823–830 (2010).
28. S.U. Savelev, E.J. Okello and E.K. Perry, Butyryl- and acetylcholinesterase inhibitory activities in essential oils of Salvia species and their constituents. Phytother. Res., 18, 315–324 (2004).
29. M. Miyazawa and C. Yamafuji, Inhibition of acetylcholinesterase activity by bicyclic monoterpenoids. J. Agric. Food Chem., 53, 1765–1768 (2005).
30. S. Savelev, E. Okello, N.S. Perry, R.M. Wilkins and E.K. Perry, Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil. Biochem. Behav., 75, 661–668 (2003).
for their acetylcholinesterase inhibitory and antioxidant activities. Food Chem., 120, 34–43 (2010).

32. A.N. Cokugras, *Butyrylcholinesterase: structure and physiological importance*. Turk. J. Biochem., 28, 54–61 (2003).

33. M.R. Loizzo, F. Menichini, R. Tundis, M. Bonesi, F. Conforti, F. Nadjafi, G.A. Statti, N.G. Frega and F. Menichini, *In vitro biological activity of Salvia leriifolia benth essential oil relevant to the treatment of Alzheimer’s disease*. J. Oleo. Sci., 58, 443–446 (2009).

34. E.S. Senol, Ilkay Orhan, F. Celep, A. Kahraman, M. Dogan, G. Yilmaz and B. Sener, *Survey of 55 Turkish Salvia taxa for their acetylcholinesterase inhibitory and antioxidant activities*. Food Chem., 120, 34–43 (2010).

35. V.I. Babushok, P.J. Linstrom and I.G. Zenkevich, *Retention indices for frequently reported compounds of plant essential oils*. J. Phys. Chem. Ref. Data, 40(4), (2011). doi:10.1063/1.3653552

36. A. Abdelwahed, N. Hayder, S. Kilani, A. Mahmoud, J. Chibani, M. Hammami, L. Chekir-Ghedira and K. Ghedira, *Chemical composition and antimicrobial activity of essential oils from Tunisian Pituranthos tortuosus (Coss.) Maire*. Flavour. Fragr. J., 21, 129–133 (2006).

37. http://www.pherobase.com/database/kovats/kovats-detailsulcatone.php

38. http://www.flavornet.org/f_kovats.html

39. http://webbook.nist.gov/cgi/cbook.cgi?ID=C34995772&Units=SI&Mask=2680