SOLUTION OF CERTAIN PELL EQUATIONS

ZHID RAZA, HAFSA MASOOD MALIK

Abstract. Let a, b, c be any positive integers such that $c \mid ab$ and d^\pm_i is a square free positive integer of the form $d^\pm_i = a^{2k}b^{2l} \pm ic^m$ where $k, l \geq m$ and $i = 1, 2$. The main focus of this paper is to find the fundamental solution of the equation $x^2 - d^\pm_i y^2 = 1$, with the help of the continued fraction of $\sqrt{d^\pm_i}$. We also obtain all the positive solutions of the equations $x^2 - d^\pm_i y^2 = \pm 1$ and $x^2 - d^\pm_i y^2 = \pm 4$ by means of the Fibonacci and Lucas sequences.

Furthermore, in this work, we derive some algebraic relations on the Pell form $F_{d^\pm_i}(x, y) = x^2 - d^\pm_i y^2$ including cycle, proper cycle, reduction and proper automorphism of it. We also determine the integer solutions of the Pell equation $F_{\Delta}(x, y) = 1$ in terms of d^\pm_i.

We generalized all the results of the papers [2], [9], [26] and [37].

1. Introduction

Let d be a positive integer which is not a perfect square and N be any nonzero fixed integer. Then the equation $x^2 - dy^2 = N$ is known as Pell equation after the name of English mathematician, John Pell. The equations $x^2 - dy^2 = 1$ and $x^2 - dy^2 = -1$ are known as the classical Pell equations. If $a^2 - db^2 = N$, we say that (a, b) is a solution of the equation $x^2 - dy^2 = N$. We use the notation (a, b) and $a + \sqrt{db}$ interchangeably to denote the solutions of the equation $x^2 - dy^2 = N$. Also, if a and b are positive, we say that $a + b\sqrt{d}$ is a positive solution to the equation $x^2 - dy^2 = N$. Among these there is a least solution $a_1 + b_1\sqrt{d}$, in which a_1 and b_1 have their least positive values. Then the number $a_1 + b_1\sqrt{d}$ is called fundamental solution of the equation $x^2 - dy^2 = N$. If $a + \sqrt{db}$ and $r + \sqrt{ds}$ are solutions of the equation $x^2 - dy^2 = N$, then $a = r$ iff $b = s$, and $a + \sqrt{db} < r + \sqrt{ds}$ iff $a < r$ and $b < s$.

An equation $x^2 - dy^2 = 1$ has infinite many solutions iff the equation $x^2 - dy^2 = -1$ has no solution. The continued fraction of \sqrt{d} played a vital role to solve the Pell equation $x^2 - dy^2 = \pm 1$. Actually its period length is useful for knowing the solution of this equation. Let d be a positive integer that is not a perfect square. Then there

1991 Mathematics Subject Classification. 11D09, 11D79, 11D45, 11A55, 11B39, 11B50.

Key words and phrases. The Pell equations, continued fraction, integer solutions, the generalized Fibonacci and Lucas sequences, binary quadratic form, cycle, proper cycle.
is a continued fraction expansion of \sqrt{d} such that $\sqrt{d} = [a_0, a_1, a_2, \ldots, a_{n-1}, 2a_0]$ where n is the period length and the a_j's are given by the recursion formula; $a_0 = \sqrt{d}, a_k = \pm a_{k-1}$ and $a_{k+1} = \frac{1}{x_k-a_k}, k = 0, 1, 2, \ldots$

Recall that $a_n = 2a_0$ and $a_{n+k} = a_k$ for all $k \geq 1$. Then n^{th} convergent of \sqrt{d} is given by

$$\frac{p_n}{q_n} = [a_0, a_1, a_2, \ldots, a_{n-1}, a_n] = a_0 + \frac{1}{a_1 + \frac{1}{\ddots + \frac{1}{a_{n-1} + \frac{1}{a_n}}}}$$

In this paper, we give the fundamental solution of the equation $x^2 - d_i^\pm y^2 = \pm 1$ by means of the period length of the continued fraction expansion of $\sqrt{d_i^\pm}$, where $d_i^\pm = a^{2k}b^2 \pm ic^m$. After finding the fundamental solution of the Pell equation $x^2 - d_i^\pm y^2 = \pm 1$, we obtain the positive integer solutions of equation $x^2 - d_i^\pm y^2 = \pm 4$, for $d_i^\pm = a^{2k}b^2 \pm ic^m$ by the means of the generalized Fibonacci and Lucas sequences.

The main results of this paper also generalized the results presented in [2], [9] and [26].

Furthermore, in this work, we derive some algebraic relations on the Pell form $F_{d_i^\pm}(x, y) = x^2 - d_i^\pm y^2$ or of discriminant $\Delta d_i^\pm = 4d_i^\pm$ including cycle, proper cycle, reduction and proper automorphism of it. Also we determine the integer solutions of the Pell equation $F_{\Delta d_i^\pm}(x, y) = 1$ via d_i^\pm. The main results of this paper also generalized the results presented in [37].

2. Basic Setup

If N is a quadratic non-residue modulo d, then the Pell Equation $x^2 - dy^2 = N$ has no integer solution. If N is a perfect square, then the Pell Equation $x^2 - dy^2 = N$ is solvable in integers for all positive, non-square integers d. The equation $x^2 - dy^2 = 1$ has a solution in positive integers x and y for all positive, non-square integers d. If $(x, y) = (u, v)$ is a positive integer solution of $x^2 - dy^2 = 1$, then there exists a positive integer m such that $u + v\sqrt{d} = x_1 + y_1m\sqrt{d}$, where (x_1, y_1) is the fundamental solution of $x^2 - dy^2 = 1$.

If we know the fundamental solutions of the equations $x^2 - dy^2 = \pm 1$ and $x^2 - dy^2 = \pm 4$ then we can give all positive integer solutions to these equations. For more information about the Pell equation, one can consult [25] and [20].

The generalized Fibonacci and Lucas sequences $f_n(w, z)$ and $L_n(w, z)$ are given in the followings:

Let w and z be two nonzero positive integers with $w^2 + 4z \geq 0$. The generalized Fibonacci and Lucas sequences with initial conditions $f_0(w, z) = 0, f_1(w, z) = 1$ and $L_0(w, z) = 2, L_1(w, z) = 0$ are of the form $f_n(w, z) = w f_{n-1}(w, z) + z f_{n-2}(w, z)$, $L_n(w, z) = w L_{n-1}(w, z) + z L_{n-2}(w, z) \forall n \geq 2$, respectively. They can also be
Let $\frac{p_l}{q_l}$ be the convergent of the continued fraction expansion of \sqrt{d}, and let l be the length of the expansion.

- If l is even, then the fundamental solution of $x^2 - dy^2 = 1$ is given by
 \[x = p_{l-1} \quad y = q_{l-1} \]
 and the equation $x^2 - dy^2 = -1$ has no solutions.

- If l is odd, then the fundamental solution of $x^2 - dy^2 = 1$ is given by
 \[x = p_{2l-1} \quad y = q_{2l-1} \]
 and $x = p_{l-1}, y = q_{l-1}$ is the fundamental solution of $x^2 - dy^2 = -1$.

Theorem 2.2. If x_1, y_1 is the fundamental solution of $x^2 - dy^2 = 1$, then every positive solution of the equation is given by x_n, y_n, where x_n and y_n are integers determined from $x_n + y_n\sqrt{d} = (x_1 + y_1\sqrt{d})^n$ \(n = 1, 2, 3, \ldots\)

Theorem 2.3. If x_1, y_1 is the fundamental solution of $x^2 - dy^2 = -1$, then every positive solution of the equation is given by x_n, y_n, where x_n and y_n are integers determined from $x_n + y_n\sqrt{d} = (x_1 + y_1\sqrt{d})^{2n-1}$ \(n = 1, 2, 3, \ldots\)

The following two theorems are given in [20].

Theorem 2.4. If x_1, y_1 is the fundamental solution of $x^2 - dy^2 = 4$, then every positive solution of the equation is given by x_n, y_n, where x_n and y_n are integers determined from $x_n + y_n\sqrt{d} = \frac{(x_1 + y_1\sqrt{d})^n}{2^n}$ \(n = 1, 2, 3, \ldots\)

Theorem 2.5. If x_1, y_1 is the fundamental solution of $x^2 - dy^2 = -4$, then every positive solution of the equation is given by x_n, y_n, where x_n and y_n are integers determined from $x_n + y_n\sqrt{d} = \frac{(x_1 + y_1\sqrt{d})^n}{4^n}$ \(n = 1, 2, 3, \ldots\)

The following theorems are given in [32].

Theorem 2.6. Let $d \equiv 2 \pmod{4}$ or $d \equiv 3 \pmod{4}$. Then the equation $x^2 - dy^2 = -4$ has no solution if and only if the equation $x^2 - dy^2 = -1$ has positive solutions.

Theorem 2.7. Let $d \equiv 0 \pmod{4}$. If $x_1 + \frac{d}{4}y_1$ is the fundamental solution of the equation $x^2 - \frac{d}{4}y^2 = 1$, then the fundamental solution of the equation $x^2 - dy^2 = 4$ is given as $(2x_1, y_1)$.
Theorem 2.8. Let $d \not\equiv 0 \pmod{4}$. If $x_1 + y_1 \sqrt{d}$ is the fundamental solution of the equation $x^2 - dy^2 = 1$ then the fundamental solution of the equation $x^2 - dy^2 = 4$ is $(2x_1, 2y_1)$.

3. Basic Setup 2

A real binary quadratic form (or just a form) F is a polynomial in two variables x and y of the type

$$F = F(x, y) = ax^2 + bxy + cy^2$$

with real coefficients a, b, c. We denote F briefly by $F = (a, b, c)$. The discriminant of F is defined by the formula $b^2 - 4ac$ and is denoted by Δ. A quadratic form F of discriminant Δ is called indefinite if $\Delta > 0$, and is called integral if and only if $a, b, c \in \mathbb{Z}$. An indefinite quadratic form $F = (a, b, c)$ of discriminant Δ is said to be reduced if

$$|\sqrt{\Delta} - 2|a| < b < \sqrt{\Delta}$$

Most properties of quadratic forms can be giving by the aid of extended modular group Γ (see [34]). Gauss defined the group action of Γ on the set of forms as follows:

$$gF(x, y) = (ar^2 + brs + cs^2)x^2 + (2art + bru + bts + 2csu)xy + (at^2 + btu + cu^2)y^2$$

for $g = \begin{pmatrix} r & s \\ t & u \end{pmatrix} \in \Gamma$. An element $g \in \Gamma$ is called an automorphism of F if $gF = F$. If $\det g = 1$, then g is called a proper automorphism of F and if $\det g = -1$, then g is called an improper automorphism of F. Let $\text{Aut}(F)^+$ denote the set of proper automorphisms of F and let $\text{Aut}(F)^-$ denote the set of improper automorphisms of F (for further details on binary quadratic forms see [13], [5], [7] and [24]). Let $\rho(F)$ denotes the normalization (it means that replacing F by its normalization) of $(c, -b, a)$. To be more explicit, we set

$$\rho^{i+1}(F) = (c_j, -b_j + 2c_j r_j, c_j r_j^2 - b_j r_j + a_j),$$

where

$$r_j = \begin{cases} \text{sign}(c_j) \left\lfloor \frac{b}{2|c_j|} \right\rfloor, & \text{for } |c_j| \geq \sqrt{\Delta}; \\ \text{sign}(c_j) \left\lfloor \frac{b + \sqrt{\Delta}}{2|c_j|} \right\rfloor, & \text{for } |c_j| < \sqrt{\Delta}. \end{cases}$$

for $j \geq 0$. The number r_j’s called the reducing number and the form $\rho^{i+1}(F)$ is called the reduction of F. Further if F is reduced, then so is $\rho^{i+1}(F)$. In fact, ρ is a permutation of the set of all reduced indefinite forms. Let $\tau(F) = \tau(a, b, c) = (-a, b, -c)$. Then the cycle of F is the sequence $((\tau \rho)^j(G))$ for $j \in \mathbb{Z}$, where $G = (A, B, C)$ is a reduced form with $A > 0$ which is equivalent to F. The cycle and proper cycle of F is given by the following theorem [13]:
Theorem 3.1. Let $F = (a, b, c)$ be reduced indefinite quadratic form of discriminant Δ. Then the cycle of F is a sequence $F_0 \sim F_1 \sim F_2 \sim \ldots \sim F_{l-1}$ of length l, where $F_0 = F = (a_0, b_0, c_0)$,

\begin{equation}
 s_j = s(F_j) = \left\lfloor \frac{b_j + \sqrt{\Delta}}{2|c_j|} \right\rfloor \quad \text{and}
\end{equation}

\begin{equation}
 F_{j+1} = (a_{j+1}, b_{j+1}, c_{j+1}) = (|c_j|, -b_j + 2|c_j|s_j, -(c_j s_j^2 + b_j s_j + a_j))
\end{equation}

for $1 \leq i \leq l - 2$. If l is odd, then the proper cycle of F is $F_0 \sim \tau F_1 \sim F_2 \sim \tau F_3 \cdots \sim \tau F_{l-2} \sim F_{l-1} \sim F_0 \sim F_1 \sim F_2 \sim \cdots \sim F_{l-2} \tau F_{l-1}$ of length $2l$. In this case the equivalence class of F is equal to the proper equivalence class of F, and if l is even, then the proper cycle of F is $F_0 \sim \tau F_1 \sim F_2 \sim \tau F_3 \cdots \sim F_{l-2} \sim \tau F_{l-1}$ of length l. In this case the equivalence class of F is the disjoint union of the proper equivalence class of F and the proper equivalence class of $\tau(F)$.

4. Main Results

In this section, we will give our main results about the positive solutions of the Pell equations $x^2 - dy^2 = \pm 1$, and $x^2 - dy^2 = \pm 4$ for particular values of d. More precisely, for $d = d^\pm = a^{2k}b^2 \pm ic^m$, all the positive solutions of the equation in terms of the generalized Fibonacci and Lucas sequences has been investigated. Throughout in this section h will be a positive integer such that $h = \frac{a^kb^l}{c^m}$, because $c \mid ab$.

Theorem 4.1. Let $h = \frac{a^kb^l}{c^m}$ be a positive integer, then the continued fraction of

\begin{enumerate}
 \item[i:] d^-_1 has the form $[a^kb^l; 1, 2h-2, 1, 2a^kb^l - 2]$ \hspace{1cm} \text{ab} \geq 2$
 \item[ii:] d^+_1 has the form $[a^kb^l; 2h, 2a^kb^l]$
 \item[iii:] d^-_2 has the form $[a^kb^l - 1; 1, h - 2, 1, 2a^kb^l - 2]$ \hspace{1cm} \text{ab} \geq 3$
 \item[iv:] d^+_2 has the form $[a^kb^l; h, 2a^kb^l]$
\end{enumerate}
Proof. For d_1^-, the continued fraction

\[
\sqrt{a^{2k}b^{2l} - c^m} = a^k b^l - 1 + \frac{1}{\sqrt{a^{2k}b^{2l} - c^m + a^k b^l - 1}}
\]

\[
= a^k b^l - 1 + \frac{1}{\sqrt{2a^k b^l - c^m}}
\]

\[
= a^k b^l - 1 + \frac{1}{1 + \frac{1}{\sqrt{2a^k b^l - c^m}}}
\]

\[
= a^k b^l - 1 + \frac{1}{1 + \frac{1}{\sqrt{a^{2k}b^{2l} - c^m + a^k b^l - c^m}}}
\]

\[
= a^k b^l - 1 + \frac{1}{1 + \frac{1}{\sqrt{a^{2k}b^{2l} - c^m + a^k b^l - c^m}}}
\]

\[
= a^k b^l - 1 + \frac{1}{2h - 2 + \sqrt{a^{2k}b^{2l} - c^m + a^k b^l - c^m}}
\]

\[
= a^k b^l - 1 + \frac{1}{2h - 2 + \sqrt{a^{2k}b^{2l} - c^m + a^k b^l - c^m}}
\]

\[
= a^k b^l - 1 + \frac{1}{2h - 2 + \sqrt{a^{2k}b^{2l} - c^m + a^k b^l - c^m}}
\]

\[
= a^k b^l - 1 + \frac{1}{2h - 2 + \sqrt{a^{2k}b^{2l} - c^m + a^k b^l - c^m}}
\]

\[
= a^k b^l - 1 + \frac{1}{2h - 2 + \sqrt{a^{2k}b^{2l} - c^m + a^k b^l - c^m}}
\]

Hence $\sqrt{a^{2k}b^{2l} - c^m}$ has the continued fraction of the form $[a^k b^l - 1; 1, 2h - 2, 1, 2a^k b^l - 2]$. Similarly for d_2^-, one can obtained the required form of the continued fraction.
For \(d_2^+\), the continued fraction
\[
\sqrt{a^{2k}b^{2l} + 2cm} = a^k b^l + (\sqrt{a^{2k}b^{2l} + 2cm} - a^k b^l)
\]
\[
= a^k b^l + \frac{1}{\sqrt{a^{2k}b^{2l} + 2cm - a^k b^l}} = a^k b^l + \frac{1}{h + \frac{1}{\sqrt{a^{2k}b^{2l} + 2cm - a^k b^l}}}
\]
Hence \(\sqrt{a^{2k}b^{2l} + 2cm}\) has the continued fraction of the form \([a^k b^l; h, 2a^k b^l]\).
Similarly for \(d_1^+\), one can obtained the required form of the continued fraction.

Corollary 4.2. If \(c = 1\), then the continued fraction of
- i: \(d_1^-\) has of the form \([a^k b^l; 1, 2a^k b^l - 2]\)
- ii: \(d_1^+\) has the form \([a^k b^l; 2a^k b^l]\)
- iii: \(d_2^-\) has of the form \([a^k b^l - 1; 1, a^k b^l - 2, 1, 2a^k b^l - 2]\)
- iv: \(d_1^+\) has the form \([a^k b^l; a^k b^l, 2a^k b^l]\)

Remark 4.3. The continued fraction of \(d_3 = \sqrt{a^{2k} - a^k}\) is of the form \([a^k - 1; 2, 2a^k - 2]\)

Theorem 4.4. i: Let us consider the Pell equation \(x^2 - d_2^\pm y^2 = 1\), then the fundamental solution \((x_1^\pm, y_1^\pm)\) is of the form \((2ha^k b^l \pm 1, 2h)\) and the other solutions are \((x_n^\pm, y_n^\pm)\), where
\[
\frac{x_n^+}{y_n^+} = [a^k b^l; 2h, 2a^k b^l, 2h] \quad \text{(n-1)time}
\]
\[
\frac{x_n^-}{y_n^-} = [a^k b^l - 1; 1, 2h - 2, 1, 2a^k b^l - 2, 1] \quad \text{(n-1)time}
\]

ii: Let us consider the Pell equation \(x^2 - d_2^\pm y^2 = 1\), the fundamental solution \((x_1^\pm, y_1^\pm)\) is of the form \((ha^k b^l \pm 1, h)\) and the other solutions are \((x_n^\pm, y_n^\pm)\), where
\[
\frac{x_n^+}{y_n^+} = [a^k b^l; h, 2a^k b^l, h] \quad \text{(n-1)time}
\]
\[
\frac{x_n^-}{y_n^-} = [a^k b^l - 1; 1, h - 2, 1, 2a^k b^l - 2, 1] \quad \text{(n-1)time}
\]
Proof. The period length of the continued fraction of $\sqrt{d_i^+}$ is 2 by theorem 4.1. Since $p_{-2} = 0, p_{-1} = 1, q_{-2} = 1, q_{-1} = 0$, $p_k = a_kp_{k-1} + p_{k-2}, q_k = a_kq_{k-1} + q_{k-2}$, therefore the fundamental solution is of the form $p_1^+ = a_1p_0 + p_{-1} = 2ha^b_1+1, q_1^+ = a_1q_0 + q_{-1} = 2h$ for d_1^+ by using lemma 2.1. Similarly the equation $x^2 - d_1^+y^2 = 1$ has the required solution form due to the theorem 4.1 and lemma 2.1.

Now we assume that (x_{n-1}, y_{n-1}) is a solution, that is, $x_{n-1} - d_1^+y_{n-1}^2 = 1$. Then we have that

$$\frac{x_{n-1}^2}{y_{n-1}^2} = a_1b_1' + \frac{1}{a_1b_1'+1} = \frac{x_{n-1}^2}{y_{n-1}^2} = a_1b_1 + \frac{1}{a_1b_1'} = \frac{a_0}{y_n} = \frac{(ha^b_1+1)x_{n-1}+hdy_{n-1}}{hx_{n-1}+(ha^b_1+1)y_{n-1}}$$

(4.1)

Similarly for d_1^+ and d_i^- we can get all positive solutions of the required form.

\[\square\]

Corollary 4.5. The equation $x^2 - d_i^+y^2 = -1$ has no positive integer solutions, except $x^2 - d_1^+y^2 = -1$ has solution $(a_1b_1', 1)$ only if $c = 1$.

Proof. The continued fraction of $\sqrt{d_i^-}$ have even length, therefore the equation $x^2 - d_i^+y^2 = -1$ has no solution by lemma 2.1 but if $c = 1$, then $\sqrt{d_i^-}$ have odd length, therefore the equation has solution by lemma 2.1 and get required solution.

\[\square\]

Theorem 4.6. The n^{th} integer solution $(x_n^+; y_n^+)$ of $x^2 - d_i^+y^2 = -1$ can be given as a linear combination of $x_i^+; y_i^+$ and d_i^+ namely, for $n \geq 2$

$$x_n^+ = x_1^+x_{n-1} + y_1^+d_1^+\ y_{n-1}$$
$$y_n^+ = y_1^+x_{n-1} + x_1^+y_{n-1}$$

and also satisfy the recurrence relation for $n \geq 4$

$$x_n^+ = (2x_1^+ - 1)(x_{n-1} + x_{n-2}) - x_{n-3}$$
$$y_n^+ = (2x_1^+ - 1)(y_{n-1} + y_{n-2}) - y_{n-3}$$

Proof. The first assertion is easily seen from 4.1. The second assertion can be proved by induction on n.

\[\square\]

Theorem 4.7. All positive integer solutions of the equation $x^2 - d_i^+y^2 = 1$ are given by

$$(x_n^+, y_n^+) = \left(\frac{1}{2}L_n(x_{1}^+, -1), y_1^+f_n(x_{1}^+, -1)\right) \quad n = 1, 2, 3, \ldots$$
Proof. Consider the Pell equation \(x^2 - d_i^+ y^2 = 1 \), then by theorem 4.3 and theorem 2.2 all positive solution of the equation are given by \(x_n^+ + y_n^+ \sqrt{d_i^+} = (x_1^+ + y_1^+ \sqrt{d_1^+})^n \).

Let \(\alpha_i^\pm = x_1^+ + y_1^+ \sqrt{d_1^+} \) and \(\beta_i^\pm = x_1^+ - y_1^+ \sqrt{d_1^+} \). Then \(\alpha_i^\pm + \beta_i^\pm = 2x_1^+ \), \(\alpha_i^\pm - \beta_i^\pm = 2y_1^+ \sqrt{d_1^+} \) and \(\alpha_i^\pm \beta_i^\pm = 1 \). Therefore \(x_n^+ + y_n^+ \sqrt{d_i^+} = (\alpha_i^\pm)^n, x_n^+ - y_n^+ \sqrt{d_i^+} = (\beta_i^\pm)^n \).

Thus it follows that \(x_n^+ = \frac{(\alpha_i^\pm)^n + (\beta_i^\pm)^n}{2y_1^+ \sqrt{d_i^+}} = \frac{y_1^+}{2}L_n(x_1^+, -1) \) and \(y_n^+ = \frac{(\alpha_i^\pm)^n - (\beta_i^\pm)^n}{2\sqrt{d_i^+}} = \frac{y_1^+}{2}f_n(x_1^+, -1) \).

\[\square \]

Theorem 4.8. The fundamental solution of the Pell equation \(x^2 - d_i^+ y^2 = 4 \) is \((x_1^+, y_1^+) = (2x_1^+, 2y_1^+) \).

Proof. We know that \(a^k b^l = c^m \) so \((a^k b^l)^2 = (c^m)^2 \Rightarrow d_i^+ = c^{2m} h^2 \pm ic^m \). We will give proof for only \(d_i^+ = a^{2k} b^{2l} + 2c^m \). If \(c = 2s \) is even, then \(d_i^+ \equiv 0 \) (mod 4) and \(d_i^+ = 2^{m-2} s^2 h^2 + 2^{m-1} s^m \).

Hence by theorem 4.1 and 4.3 it follows that the equation \(x^2 - (2^{m-2} s^2 h^2 + 2^{m-1} s^m)y^2 = 1 \) has the fundamental solution \((2^m h s^m + 1, 2h) \).

Then, by theorem 2.4, the fundamental solution to the equation \(x^2 - d_i^+ y^2 = 4 \) is of the form \((2^{m+1} h^2 s^m + 2, 2h \sqrt{d_2^+}) \). Since \(c = 2s \) and \(2^m h s^m = a^{2k} b^l \), so the the equation has the fundamental solution \((2a^{2k} b^l + 2 + 2h \sqrt{d_2^+}) \).

Assume that \(c \) is odd. Then \(d_i^+ \equiv 2, 3 \) (mod 4) if \(a^{2k} b^l \) is even or odd respectively. Thus, by theorem 4.4 and 4.3 it follows that the fundamental solution of the equation \(x^2 - (2^{m-2} s^2 h^2 + 2^{m-1} s^m)y^2 = 1 \) is of the form \((2^m h s^m + 2, 2h) \).

Then, by theorem 4.4, the fundamental solution to the equation \(x^2 - d_i^+ y^2 = 4 \) is of the form \((2a^{2k} b^l + 2 + 2h \sqrt{d_2^+}) \). Similarly, we can proof for other values of \(d_i^+ \).

\[\square \]

Theorem 4.9. The equation \(x^2 - d_i^+ y^2 = -4 \) has no positive integer solution, except \(x^2 - d_i^+ y^2 = -4 \) when \(c = 1 \).

Proof. Let \(d_i^+ = a^{2k} b^{2l} + c^m \) and assume that \(c \) is odd. Then \(d_i^+ \equiv 2, 3 \) (mod 4) if \(a^{2k} b^l \) is even or odd respectively. Thus, by theorem 2.6 and theorem 4.3 the equation \(x^2 - d_i^+ y^2 = -4 \) has no solution.

Now suppose that \(c \) is even and the positive integer \(f \) and \(g \) are the solution of the above equation, then \(f^2 - d_i^+ g^2 = -4 \). But \(d_i^+ \) is even and therefore \(f \) and \(g \) are even. Since \((a^{k} b^{l})^2 = (c^m h^2) \) therefore, \(f^2 - (2^{m-2} s^2 h^2 + 2^{m-1} s^m)g^2 = -4 \) and implies that \((\frac{f}{2})^2 - (2^{m-2} s^2 h^2 + 2^{m-1} s^m)g^2 = -1 \) this is impossible by theorem 4.4, similarly, for the other equations.

\[\square \]

Corollary 4.10. The equation \(x^2 - d_i^+ y^2 = -4 \) has positive integer solutions \((2a^k b^l, 2) \) if \(c = 1 \).

Theorem 4.11. All the positive solutions of the equation \(x^2 - d_i^+ y^2 = 4 \) are given as

\[(x_i^+, y_i^+) = (L_n(2x_1^+, -1), y_1^+ f_n(2x_1^+, -1)) \quad n = 1, 2, 3, \ldots \]
Proof. We know by theorem 4.3 that $2x_1^\pm + 2y_1^\pm \sqrt{d_1^\pm}$ is the fundamental solution of the equation $x^2 - d_1^\pm y^2 = 4$. Therefore by theorem 2.4, all positive integer solution of the equation $x^2 - d_1^\pm y^2 = 4$ are given by $x_n^\pm + y_n^\pm \sqrt{d_1^\pm} = \frac{1}{2^{n-1}} (2x_1^\pm + 2y_1^\pm \sqrt{d_1^\pm})^n = 2^{\frac{n-1}{2}} (2x_1^\pm + 2y_1^\pm \sqrt{d_1^\pm})^n$. Now, let us consider $\alpha_i^\pm = \frac{2x_1^\pm + 2y_1^\pm \sqrt{d_1^\pm}}{2} \text{ and } \beta_i^\pm = \frac{2x_1^\pm - 2y_1^\pm \sqrt{d_1^\pm}}{2}$.

Then $\alpha_i^\pm + \beta_i^\pm = x_i^\pm \text{, } \alpha_i^\pm - \beta_i^\pm = 2y_i^\pm \sqrt{d_1^\pm} \text{ and } \alpha_i^\pm \beta_i^\pm = 1$. Thus it is easily seen that $x_n^\pm + y_n^\pm \sqrt{d_1^\pm} = 2(\alpha_i^\pm)^n \text{ and } x_n^\pm - y_n^\pm \sqrt{d_1^\pm} = 2(\beta_i^\pm)^n$. Therefore $x_n^\pm = (\alpha_i^\pm)^n + (\beta_i^\pm)^n = L_n(2x_1^\pm, -1) \text{ and } y_n^\pm = \frac{(\alpha_i^\pm)^n - (\beta_i^\pm)^n}{\sqrt{d_1^\pm}} = y_1^\pm i(n(2x_1^\pm, -1)$. □

Thus we can give the following corollaries.

Corollary 4.12. If $d_1^+ = a^{2k} + am$, then $\sqrt{d_1^+} = [a^k, 2a^{k-m}, 2a^k]$ and if $d_1^- = a^{2k} + am$, then $\sqrt{d_1^-} = [a^k, a^{k-m}, 2a^k]$.

Corollary 4.13. If $d = a^{2k} + 2am$, then the fundamental solution to the equation $x^2 - d^+ y^2 = 1$ is $x_1 + y_1 \sqrt{d_1^+} = a^{2k-m} + a^{k-m} \sqrt{d}$ and the equation $x^2 - d_1^- y^2 = -1$ has no solutions.

Corollary 4.14. Let $d_1^+ = a^{2k} + am$. Then the fundamental solution to the equation $x^2 - d_1^+ y^2 = 1$ is $x_1 + y_1 \sqrt{d_1^+} = a^{2k-m} + 1 + a^{k-m} \sqrt{d}$ and the equation $x^2 - d_1^+ y^2 = -1$ has no solutions.

Remark 4.15. • If $c = b$ and $k = l = m = 1$, then the main results of [9] become the corollaries of our main results.

• If $c = a$ and $k = l = m = 1$ and $b = 1$, then the main results of [26] become the corollaries of our main results.

5. Main Results 2

Let us consider the matrix $M_{\pm i}$ associated with d_i^\pm and corresponding fundamental solution x_i^\pm, y_i^\pm as

$$M_{\pm i} = \begin{pmatrix} x_1^\pm & y_1^\pm d_1^\pm \\ y_1^\pm & x_1^\pm \end{pmatrix}$$

In the following theorem, we able to determine the n^{th} power of $M_{\pm i}$ which we use it later. (Here, we note that $\binom{n}{2j} = \binom{n-2}{2j} + \binom{n-2}{2j-2} + 2\binom{n-2}{2j-1}$ for $j = 1, 2, \ldots, \frac{n-2}{2}$).

Theorem 5.1. If $n \geq 0$, then the n^{th} power of $M_{\pm i}$ is given by

$$M_{\pm i}^n = \begin{pmatrix} M_{11}^n & M_{12}^n \\ M_{21}^n & M_{22}^n \end{pmatrix}$$

where
So it is true for \(M_{11}^n \), \(M_{12}^n \), and \(M_{21}^n \). We will prove it for

(a): Here we will give the proof for

\[
M_{11}^n = \sum_{j=0}^{n} \binom{n}{2j} (x_1^{\pm 1})^{n-2j} (y_1^{\pm 1})^{2j} (d_i^{\pm 1})^j = M_{22}^n
\]

\[
M_{12}^n = \sum_{j=0}^{n} \binom{n}{2j+1} (x_1^{\pm 1})^{n-2j} (y_1^{\pm 1})^{2j+1} (d_i^{\pm 1})^{j+1}
\]

\[
M_{21}^n = \sum_{j=0}^{n} \binom{n}{2j+1} (x_1^{\pm 1})^{n-2j} (y_1^{\pm 1})^{2j+1} (d_i^{\pm 1})^{j}
\]

(b): If \(n \) is odd

\[
M_{11}^n = \sum_{j=0}^{n-1} \binom{n}{2j} (x_1^{\pm 1})^{n-2j} (y_1^{\pm 1})^{2j} (d_i^{\pm 1})^j = M_{22}^n
\]

\[
M_{12}^n = \sum_{j=0}^{n-1} \binom{n}{2j+1} (x_1^{\pm 1})^{n-2j} (y_1^{\pm 1})^{2j+1} (d_i^{\pm 1})^{j+1}
\]

\[
M_{21}^n = \sum_{j=0}^{n-1} \binom{n}{2j+1} (x_1^{\pm 1})^{n-2j} (y_1^{\pm 1})^{2j+1} (d_i^{\pm 1})^{j}
\]

Proof. (a): Here we will give the proof for \(d_2^+ \) by mathematical induction on \(n \). If \(n = 2 \), then

\[
M_{21}^2 = \left(h^2 a^{2k} b^{2j} + 1 + 2h a^{k} b^j + h^2 d_2^+ \right), \quad \text{where}
\]

\[
M_{11}^2 = \sum_{j=0}^{2} \binom{2}{2j} (h a^{k} b^j + 1)^{2-2j} h^{2j} d_2^+ = (h a^{k} b^j + 1) + h^2 d_2^+ = M_{22}^2
\]

\[
M_{12}^2 = \sum_{j=0}^{2} \binom{2}{2j+1} (h a^{k} b^j + 1)^{1-2j} h^{2j+1} d_2^+ = 2h (h a^{k} b^j + 1)
\]

\[
M_{21}^2 = \sum_{j=0}^{2} \binom{2}{2j+1} (h a^{k} b^j + 1)^{1-2j} h^{2j+1} d_2^+ = 2h (h a^{k} b^j + 1)
\]

So it is true for \(n = 2 \). Let us assume that it is true for \(n - 2 \), that is, \(M_{11}^{n-2} = \left(M_{11}^{n-2} \ M_{12}^{n-2} \ M_{21}^{n-2} \right) \), where \(M_{11}^{n-2} = \sum_{j=0}^{n-3} \binom{n-3}{2j} (h a^{k} b^j + 1)^{n-3-2j} h^{2j} (d_2^+)^j = M_{22}^{n-2} \)

\[
M_{12}^{n-2} = \sum_{j=0}^{n-3} \binom{n-3}{2j+1} (h a^{k} b^j + 1)^{n-3-2j} h^{2j+1} (d_2^+)^j + M_{21}^{n-2} = \sum_{j=0}^{n-3} \binom{n-3}{2j+1} (h a^{k} b^j + 1)^{n-3-2j} h^{2j+1} (d_2^+)^j
\]

We will prove it for \(n \), since \(M_{11}^n = M_{11}^{n-2} M_{12}^{n-2} \), we get
From 4.6, we can write the solution for x_i as

$$x_i = \sum_{j=0}^{\frac{n}{2}} \binom{n}{2j} (x_1^{\pm i})^{n-2j} (y_1^{\pm i})^{2j} (d_1^+)^{j}, \quad \text{if } n \text{ is even;}$$

$$x_i = \sum_{j=0}^{\frac{n-1}{2}} \binom{n}{2j+1} (x_1^{\pm i})^{n-2j} (y_1^{\pm i})^{2j} (d_1^+)^{j}, \quad \text{if } n \text{ is odd.}$$

Similarly, we can write the solution for y_i as

$$y_i = \sum_{j=0}^{\frac{n-2}{2}} \binom{n}{2j+1} (x_1^{\pm i})^{n-2j} (y_1^{\pm i})^{2j+1} (d_1^+)^{j}, \quad \text{if } n \text{ is even;}$$

$$y_i = \sum_{j=0}^{\frac{n-3}{2}} \binom{n}{2j} (x_1^{\pm i})^{n-2j} (y_1^{\pm i})^{2j+1} (d_1^+)^{j}, \quad \text{if } n \text{ is odd.}$$

Theorem 5.2. The nth integer solution of $F_{\Delta d_i^+}(x, y) = 1$ is $(x_n^{\pm i}, y_n^{\pm i})$, where

$$x_n^{\pm i} = \sum_{j=0}^{\frac{n}{2}} \binom{n}{2j} (x_1^{\pm i})^{n-2j} (y_1^{\pm i})^{2j} (d_1^+)^{j}, \quad \text{if } n \text{ is even;}$$

$$x_n^{\pm i} = \sum_{j=0}^{\frac{n-1}{2}} \binom{n}{2j+1} (x_1^{\pm i})^{n-2j} (y_1^{\pm i})^{2j} (d_1^+)^{j}, \quad \text{if } n \text{ is odd.}$$

The proof follows from Theorem 4.6.
Now we can consider the Pell form $F_{\Delta_{d_1^+}}$ and note that this form is not reduced since $|\sqrt{4d} - 1| > 0$. So we can give the following theorem related to reduction of $F_{\Delta_{d_1^+}}$:

Theorem 5.3.

i: The reduction of $F_{\Delta_{d_1^+}}$ is

$$\rho^2(F_{\Delta_{d_1^+}}) = (1, 2hc^n, -c^m).$$

ii: The reduction of $F_{\Delta_{d_2^+}}$ is

$$\rho^2(F_{\Delta_{d_2^+}}) = (1, 2hc^n, -2c^m).$$

iii: The reduction of $F_{\Delta_{d_1^-}}$ is

$$\rho^2(F_{\Delta_{d_1^-}}) = (1, 2hc^n - 2, 1 - (2h - 1)c^m).$$

iv: The reduction of $F_{\Delta_{d_2^-}}$ is

$$\rho^2(F_{\Delta_{d_2^-}}) = (1, 2hc^n - 2, 1 - 2(h - 1)c^m).$$

Proof. Let $F_{\Delta_{d_1^+}} = d_{1,0}^+ = (1, 0, -d_1^+)$. Then from (3.5), we get $r_0 = 0$ and hence from (3.4), we have $\rho^1(F_{\Delta_{d_1^+}}) = (-d_1^+, 0, 1)$ which is not reduced. If we apply the reduction algorithm to $\rho^2(F_{\Delta_{d_1^+}})$ again, then we find that $r_1 = a^k b^l$ and so $\rho^2(F_{\Delta_{d_1^+}}) = (1, 2hc^n, -c^m)$ which is reduced. Similarly, we can get the reduction for others forms.

Now we can consider the cycle and proper cycle of $\rho^2(F_{\Delta_{d_1^+}})$.

Theorem 5.4. Let us consider the reduction $\rho^2(F_{\Delta_{d_1^+}})$ of $(F_{\Delta_{d_1^+}})$. Then

(1) The cycle of $\rho^2(F_{\Delta_{d_1^+}})$ is $(1, 2hc^n, -c^m) \sim (c^m, 2hc^n, -1).

(2) The cycle of $\rho^2(F_{\Delta_{d_2^+}})$ is $(1, 2hc^n - 2, 1 - (2h - 1)c^m) \sim (2hc^n - c^m - 1, 2hc^n - 2, -1).

(3) The cycle of $\rho^2(F_{\Delta_{d_1^-}})$ is $(1, 2hc^n - 2, 1 - (2h - 1)c^m) \sim (2hc^n, 2hc^n, -1).

(4) The cycle of $\rho^2(F_{\Delta_{d_2^-}})$ is $(1, 2hc^n - 4, 1 - 2(h - 1)c^m) \sim (2hc^n - 2c^m - 1, 2(h - 2)c^m, -2c^m) \sim (2hc^n, 2hc^n - 4c^m, -2hc^m + 2c^m + 1) \sim (2hc^n - 2c^m - 1, 2hc^n - 4, -1).

Proof. Let $\rho^2(F_{\Delta_{d_1^+}}) = \rho^2(F_{\Delta_{d_1^+}}) = (1, 2a^k b^l, -a^k b^l).$ Then from (3.6), we get $s_0 = 2h$ and thus $\rho^2(F_{\Delta_{d_1^+}}) = (a^k b^l, 2a^k b^l, -1).$ Again from (3.6), we get $s_1 = 2a^k b^l$ and hence $\rho^2(F_{\Delta_{d_1^+}}) = (1, 2a^k b^l, -a^k b^l) = \rho^2(F_{\Delta_{d_1^+}}).$ So the cycle of $\rho^2(F_{\Delta_{d_1^+}})$ is
\(\rho^2(F_{\Delta_{d_1^+}}) \sim \rho^2(F_{\Delta_{d_1^-}}) \). Note that \(l = 2 \), therefore from theorem 5.1 the proper cycle of \(\rho^2(F_{\Delta_{d_1^+}}) \) is \((1, 2a^kb', -a^kb')\) \(\sim (-2a^kb', 2a^kb', 1) \) of length 2. Similarly for \(\rho^2(F_{\Delta_{d_2^+}}) \) and \(\rho^2(F_{\Delta_{d_2^-}}) \), we can obtained the required cycle.

Corollary 5.5. The proper cycle of \(\rho^2(F_{\Delta_{d_1^+}}) \) is \((1, 2hc^m, -c^m) \sim (-c^m, 2hc^m, 1) \) of length 2.

The proper cycle of \(\rho^2(F_{\Delta_{d_2^+}}) \) is \((1, 2hc^m, -2c^m) \sim (2c^m, 2hc^m, -1) \) of length 2.

The proper cycle of \(\rho^2(F_{\Delta_{d_1^+}}) \) is \((1, 2hc^m - 2, 1 - (2h - 1)c^m) \sim (-2hc^m + c^m + 1, (2h - 1)c^m, c^m) \sim (-c^m, 2hc^m - 2c^m, 2hc^m - c^m - 1) \sim (-2hc^m + c^m + 1, 2hc^m - 2, 1) \) of length 4.

The proper cycle of \(\rho^2(F_{\Delta_{d_2^+}}) \) is \((1, 2hc^m - 2, 1 - 2(h - 1)c^m) \sim (-2hc^m + 2c^m + 1, 2(h - 2)c^m, 2c^m) \sim (-2c^m, 2hc^m - 4c^m, 2hc^m - 2c^m - 1) \sim (-2hc^m + 2c^m + 1, 2hc^m - 4, 1) \) of length 4.

Now we consider the proper automorphisms of \(F_{\Delta_{d_i^+}} \). To get this we first consider the following representations of the action of the group \(\Gamma \)

\[
g_{F_{\Delta_{d_i^+}}} = \left(\begin{array}{c} x_1^{\pm i} \\ y_1^{\pm i} \\ y_1^{\pm i} \\ x_1^{\pm i} \end{array} \right)
\]

Then we can give the following theorem which can be proved as in the same way that theorem 5.1 was proved.

Theorem 5.6. Let \(d_i^+ \) denote non-zero square free positive integer. Then

i: The set of proper automorphisms of \(F_{\Delta_{d_i^+}} \) is

\[
\text{Aut}^+(F_{\Delta_{d_i^+}}) = \{ \pm g_{F_{\Delta_{d_i^+}}}^n : n \in \mathbb{Z} \}.
\]

ii: The integer solutions of \(F_{\Delta_{d_i^+}}(x, y) = 1 \) are \((x_n^{\pm i}, y_n^{\pm i})\), where

\[
\left(\begin{array}{c} x_n^{\pm i} \\ y_n^{\pm i} \end{array} \right) = (g_{F_{\Delta_{d_i^+}}}^n) \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \quad \text{for } n \geq 1.
\]

Remark 5.7. If \(c = a \) and \(k = l = m = 1 \) and \(b = 1 \), then the main results of [37] become the corollaries of our main results.

References

[1] Adler, A., Coury, J. E., The Theory of Numbers: A Text and Source Book of Problems, Jones and Bartlett Publishers, Boston, MA, 1995.

[2] Bilge Peker And Hasan Eenay, The Generalized Fibonacci and Lucas of The Pell Equations \(x^2 - (a^2b^2 - b)y = N \) and \(x^2 - (a^2b^2 - 2b)y = N \) [arXiv:1303.1838](http://arxiv.org/abs/1303.1838) (in 2013)

[3] E. J. Barbeau. Pells Equation, New York, Springer-Verlag Inc, 2003.
[4] T. Breiteig. When is the product of two oblong numbers another oblong? Math. Mag. 73 (2000), 120129.
[5] D. A. Buell. Binary Quadratic Forms, Clasical Theory and Modern Computations. New York, Springer-Verlag, 1989.
[6] A. Chandoul. The Pell Equation \(x^2 - Dy^2 = k^2 \), Adv. in Pure Maths. 1 (2011), 1622.
[7] D. E. Flath. Introduction to Number Theory, New York etc., Wiley-Interscience Publication, 1989.
[8] H. M. Edward. Fermats Last Theorem: A Genetic Introduction to Alge- braic Number Theory. Graduate Texts in Mathematics, vol. 50, Springer-Verlag, 1977.
[9] Guney, M., Solutions of the Pell equations \(x^2 - (a^2b^2 + 2b)y^2 = N \) when \(N \in \{1, 4\} \), Mathematica Aeterna 2(7)2012, 629 − 638.
[10] Ismail, M. E. H., One Parameter Generalizations of the Fibonacci and Lucas Numbers, The Fibonacci Quarterly 46 − 47 (2009), 167 − 180.
[11] M. Jacobson, H. Williams. Solving the Pell Equation, CMS Books in Mathematics. New York, Springer, 2009.
[12] Jacobson, M. J., Williams, H. C., Solving the Pell Equation, Springer, 2006.
[13] Jones, J. P., Representation of Solutions of Pell Equations Using Lucas Sequences, Acta Academiae Paed. Agr., Sectio Mathematicae 30 (2003), 75 − 86.
[14] J. Buchmann, U. Vollmer. Binary Quadratic Forms: An Algorithmic Approach. Berlin, Heidelberg, Springer-Verlag, 2007.
[15] H. W. Lenstra. Solving the Pell Equation. Notices Amer. Math. Soc. 49 (2) (2002), 182192.
[16] Kalman, D., Mena R., The Fibonacci Numbers exposed, Mathematics Magazine 76 (2003), 167 − 181.
[17] Keskin, R., Solutions of some quadratic Diophantine equations, Computers and Mathematics with Applications, 60 (2010), 2225 − 2230.
[18] Keskin, R., Guney, M., Positive Integer Solutions of the Pell Equation \(x^2 - dy^2 = N, d \in \{k^2 \pm 4, k^2 \pm 1\} \) and \(N \in \{\pm 1, \pm 4\} \) (submitted).
[19] Koninck, J., Mercier, A, 1001 Problems in Classical Number Theory, American Mathematical Society, 2007.
[20] LeVeque, W. J., Topic in Number Theory, Volume I and II, Dover Publicatios, Newyork (2002).
[21] K. Matthews. The Diophantine Equation \(x^2 - Dy^2 = N, D > 0 \). Exposition. Math. 18 (2000), 323331.
[22] McDaniel, W. L., Diophantine Representation of Lucas Sequences, The Fibonacci Quarterly 33 (1995), 58 − 63.
[23] Melham, R., Conics Which Characterize Certain Lucas Sequences, The Fibonacci Quarterly 35 (1997), 248 − 251.
[24] R. A. Mollin. Quadratics. CRS Press, Boca Raton, New York, London, Tokyo, 1996.
[25] Nagell, T., Introduction to Number Theory, Chelsea Publishing Company, New York, 1981.
[26] Peker, B., Solutions of the Pell equations \(x^2 - (a^2 + 2a)y^2 = N \) via generalized Fibonacci and Lucas numbers [arXiv:1304.1043v1].
[27] Peker, B., Ph.D. Thesis. Selcuk University (to appear).
[28] R. A. Mollin. Fundamental Number Theory with Applications. Second Edition Chapman & Hall CRC, Boca Raton, London, New York, 2008.
[29] Redmond, D., Number Theory: An Introduction, Markel Dekker, Inc, 1996.
[30] Ribenboim, P., My Numbers, My Friends, Springer-Verlag New York, Inc., 2000.
[31] Robbins, N., Beginning Number Theory. Wm.C. Brown, Oxford, London (1993).
Robertson, J. P., On D so that $x^2 - Dy^2$ represents m and $-m$ and not -1, Acta Mathematica Academia Paedagogocae Nyiregyhaziensis 252009, 155 – 164.

A. Tekcan. Pell Equation $x^2 - Dy^2 = 2$, II. Ir. Math. Soc. Bull. 54 (2004) 7389. A. S. Shabani. The Proof of Two Conjectures Related to Pells Equation $x^2 - Dy^2 = 4$. Int. J. Comput. Math. Sci. 2, 1(2008), 2427.

A. Tekcan, O. Bizim, M. Bayraktar. Solving the Pell Equation using the Fundamental Element of the Field $\mathbb{Q}(\sqrt{\Delta})$. Southeast Asian Bull. Math. 30, 2(2006), 355 – 366.

A. Tekcan. The Pell Equation $x^2 - Dy^2 = 4$. Appl. Math. Sci., Ruse 1, 58(2007), 363369.

A. Tekcan. The Number of Solutions of Pell Equations $x^2 - ky^2 = N$ and $x^2 + xy - ky^2 = N$ over \mathbb{F}_p. Ars Comb. 102(2011), 225236.

A. Tekcan. Pell Form and Pell Equation via Oblong Numbers, Serdica Math J.39 (2013), 37 – 52.

Department of Mathematics, National University of Computer and Emerging Sciences, B-Block, Faisal Town, Lahore, Pakistan.

E-mail address: zahid.raza@nu.edu.pk, hafsa.masood.malik@gmail.com