In vitro activity of bedaquiline against rapidly growing nontuberculous mycobacteria

Diana A. Aguilar-Ayala,1,2,*, Margo Cnockaert,1 Emmanuel André,3 Koen Andries,4 Jorge A. Gonzalez-Y-Merchand,2 Peter Vandamme,1 Juan Carlos Palomino1 and Anandi Martin1,3

Abstract

Bedaquiline (BDQ) has been proven to be effective in the treatment of multidrug-resistant tuberculosis. We hypothesized that BDQ could be a potential agent to treat nontuberculous mycobacterial (NTM) infection. The objective of this study was to evaluate the in vitro activity of BDQ against rapidly growing mycobacteria by assessing the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) against 18 NTM strains. For MIC determination we performed the resazurin microtitre assay broth dilution, and for the MBC the c.f.u. was determined. BDQ exhibited a strong inhibitory effect against most NTM tested; however, for some NTM strains the MBC was significantly higher than the MIC. A new finding is that Mycobacterium flavescent has a mutation in the gene atpE associated with natural resistance to BDQ. These preliminary promising results demonstrate that BDQ could be potentially useful for the treatment of NTM.

The genus Mycobacterium comprises more than 150 different species of mycobacteria with the capacity to cause pathogenicity in humans [1]. Most important among these species, due to their airborne transmission and public health implications, are Mycobacterium tuberculosis and Mycobacterium leprae causing tuberculosis (TB) and leprosy, respectively. Among nontuberculous mycobacteria (NTM), Mycobacterium avium and Mycobacterium abscessus represent prevalent sources of infection not only in immunocompromised individuals but also in other susceptible populations, such as in cystic fibrosis patients [2]. More recently, other emerging NTM, such as Mycobacterium chimaera, have been reported as causes of outbreaks due to heating–cooling devices in surgical rooms [3].

Drug resistance is one of the key issues associated with the current burden of TB around the world, negatively impacting control of the disease [4, 5]. Efforts have been devoted to the discovery and development of new anti-TB drugs [6]. As a result two new drugs, bedaquiline (BDQ) and delamanid, were recently approved for the treatment of multidrug-resistant TB (MDR-TB) [7, 8]. BDQ has a broad antimycobacterial spectrum and a novel mode of action, inhibiting the ATP synthase [9]. We hypothesized that BDQ could also treat NTM infection.

For infections caused by NTM, combination antimicrobial chemotherapy is the treatment of choice in most cases [10, 11]. Nevertheless, NTM is difficult to eradicate because most of them are naturally resistant to many common antibiotics and in many cases become refractory to the commonly recommended antibiotics [12]. In this context, BDQ has recently been used as off-label for salvage treatment in patients with Mycobacterium intracellulare lung disease, with encouraging results [13]. In order to shed light on the conditions and parameters guiding the potential use of BDQ for NTM infections, we evaluated its in vitro activity against a panel of rapidly growing NTM reference strains and clinical isolates, and explored the possible correlation of single nucleotide polymorphisms in the target gene and natural resistance to the drug.

Eighteen rapidly growing mycobacterial strains were used in this study (Table 1). Seventeen were obtained from the CCUG collection (http://www.ccug.se) and one strain from the UCL collection in Brussels, Belgium. Strains were cultured on Löwenstein–Jensen medium and the inoculum was
prepared in distilled water, adjusted to McFarland 0.5 and diluted 1:10 in Mueller–Hinton (MH) broth medium. *Mycobacterium smegmatis* CCUG 28063 was used for quality control since its minimum inhibitory concentration (MIC) for BDQ of 0.015 µg ml⁻¹ is well known [9]. To assess whether BDQ had a bacteriostatic or bactericidal effect, we determined the MIC and minimum bactericidal concentration (MBC) using the resazurin microplate assay (REMA) [14, 15]. Briefly, twofold serial dilutions were made in MH in 96-well polystyrene plates. BDQ concentrations were 2.0–0.0035 µg ml⁻¹ and each experiment was performed in triplicate. An inoculum equal to McFarland 0.5 diluted 1:10 was prepared. Growth controls without drug (positive control), a drug control and a sterile control (negative control) were also prepared for each assay. To prevent evaporation during incubation, 200 µl sterile distilled water was added to all perimeter wells. Plates were sealed and incubated at 37 °C for 3 days before adding 30 µl of 0.01 % resazurin to all wells and incubating for a further 24 h. The MIC was determined as the lowest drug concentration that prevented growth and, therefore, a colour change from blue (oxidized state) to pink (reduced state). MIC values were scored for each isolate tested. The same plates were used for MBC determination. At day 4 of incubation and after the MIC reading, four blue wells were chosen to test the viability of the mycobacteria. One hundred microlitres from each well at the MIC, one concentration higher, and the previous two BDQ dilutions, were transferred to a tube and diluted in sterile distilled water to 10⁻³, 10⁻⁴ and 10⁻⁵ and plated in duplicate on Luria broth (LB) agar plates to determine the c.f.u. Also, c.f.u. were determined in duplicate for the positive control diluted 10⁻⁴, 10⁻⁵ and 10⁻⁶. The plates were incubated for 4 days. The percentage of killed bacteria was calculated against the control, and the MBC was defined as the lowest drug concentration that killed 99.9 % of bacteria.

For investigation of the mutation in the gene *atpE*, DNA extraction was carried out according to Perez-Martinez et al. [16]. Briefly, a loopful of mycobacteria from a Löwenstein–Jensen culture was resuspended in 100 µl Milli-Q water, boiled for 5 min, placed on ice for 10 min, centrifuged at room temperature (13 600 g, 5 min) and the supernatants were used for PCR. The *atpE* gene was amplified using degenerated primers *atpE* forward (degenerated) 5'–TGTATTCAGGCGACCATGG-3' and *atpE* reverse (degenerated) 5'–CGGGTACGCAAGGAGGGTGG-3' [17]. However, if these primers did not amplify *atpE*, a second set of primers was used: *atpE* forward 5'–TGTATTCAGGCACCAGAC-3' and *atpE* reverse 5'–CCGTTTSGGDABGAGGAAGTTG-3' [18]. For the degenerated primers, the PCR was run with an initial pre-denaturation at 95 °C for 5 min, followed by 30 cycles of denaturation at 95 °C for 1 min, annealing at 57 °C for 1 min and elongation at 72 °C for 1 min. The reaction was finished with 7 min final elongation at 72 °C. Amplicons were detected by agarose (1.5 %) gel electrophoresis and ethidium bromide staining.

For the second set of primers, the PCR was run with an initial pre-denaturation at 95 °C for 5 min, followed by 30 cycles of denaturation at 95 °C for 1 min, annealing at 62 °C for 1 min and elongation at 72 °C for 1 min. The reaction was finished with 7 min final elongation at 72 °C. In both cases, identical primers were used for sequencing PCR (BigDye Terminator Sequencing Kit; Applied
MIC and MBC results are shown in Table 1. For the majority of strains, BDQ had a significantly higher MBC compared to the respective MIC, suggesting a bacteriostatic effect. This occurred for *Mycobacterium smegmatis*, *M. phlei*, *M. peregrinum*, *M. paraa fortuitum*, *M. mageritense*, *M. wolinskiy*, *M. abscessus* and *M. chelonae*. On the other hand, *M. duvalii* and *M. neoaurum* had a high MIC (2 µg ml\(^{-1}\)) without atp\(E\) mutation; however, as the other genes of the ATP synthase operon were not sequenced beside *atp\(E\)*, we cannot exclude a mutation in one of the other seven genes of the ATP synthase operon. Interestingly, the BDQ MBC cannot exclude a mutation in one of the other seven genes of the ATP synthase operon.

For all NTM except *M. flavescens* and *M. chelonae*, the alanine at position 63 is replaced by a methionine. As previously reported for *M. xenopi*, *M. shimoidei* and *M. novocastrense*, the alanine at position 63 is replaced by a methionine in all other known NTM atp\(E\) sequences, this alanine is conserved. We confirmed the presence of this methionine at position 63 by sequencing atp\(E\) in one clinical *M. flavescens* isolate from St Luc Hospital, Brussels. The presence of this specific mutation is clearly associated with resistance to BDQ resulting in a high MIC. Our data show that the mechanism by which the NTM are inhibited in their growth (as reflected by their MIC) may be different from the mechanism by which they are killed (as reflected by their MBC). BDQ did not show bactericidal activity for the majority of strains tested. However, we did find BDQ bactericidal activity for *M. cosmeticum*, *M. mucogenicum*, *M. fortuitum* and *M. franklinii*. This finding should be confirmed with a larger number of clinical isolates. There is still more research to be done to explain why the NTM strains tested are highly sensitive to BDQ and which other factors besides polymorphisms in Atp\(E\) may influence the resistance to BDQ resulting in a high MIC. Our data show that the mechanism by which the NTM are inhibited in their growth (as reflected by their MIC) may be different from the mechanism by which they are killed (as reflected by their MBC). BDQ did not show bactericidal activity for the majority of strains tested. However, we did find BDQ bactericidal activity for *M. cosmeticum*, *M. mucogenicum*, *M. fortuitum* and *M. franklinii*. This finding should be confirmed with a larger number of clinical isolates. There is still more research to be done to explain why the NTM strains tested are highly sensitive to BDQ and which other factors besides polymorphisms in Atp\(E\) may influence the resistance to BDQ resulting in a high MIC. Our data show that the mechanism by which the NTM are inhibited in their growth (as reflected by their MIC) may be different from the mechanism by which they are killed (as reflected by their MBC). BDQ did not show bactericidal activity for the majority of strains tested. However, we did find BDQ bactericidal activity for *M. cosmeticum*, *M. mucogenicum*, *M. fortuitum* and *M. franklinii*. This finding should be confirmed with a larger number of clinical isolates. There is still more research to be done to explain why the NTM strains tested are highly sensitive to BDQ and which other factors besides polymorphisms in Atp\(E\) may influence the resistance to BDQ resulting in a high MIC. Our data show that the mechanism by which the NTM are inhibited in their growth (as reflected by their MIC) may be different from the mechanism by which they are killed (as reflected by their MBC). BDQ did not show bactericidal activity for the majority of strains tested. However, we did find BDQ bactericidal activity for *M. cosmeticum*, *M. mucogenicum*, *M. fortuitum* and *M. franklinii*. This finding should be confirmed with a larger number of clinical isolates. There is still more research to be done to explain why the NTM strains tested are highly sensitive to BDQ and which other factors besides polymorphisms in Atp\(E\) may influence the resistance to BDQ resulting in a high MIC. Our data show that the mechanism by which the NTM are inhibited in their growth (as reflected by their MIC) may be different from the mechanism by which they are killed (as reflected by their MBC). BDQ did not show bactericidal activity for the majority of strains tested. However, we did find BDQ bactericidal activity for *M. cosmeticum*, *M. mucogenicum*, *M. fortuitum* and *M. franklinii*. This finding should be confirmed with a larger number of clinical isolates. There is still more research to be done to explain why the NTM strains tested are highly sensitive to BDQ and which other factors besides polymorphisms in Atp\(E\) may influence the
sensitivity of NTM to BDQ. In addition, more research is needed to understand why in some species the MIC and MBC of BDQ are very close and for other species the MBC is much higher than the MIC, and to elucidate the most promising companion drugs.

In conclusion, to the best of our knowledge, this is the first study to have assessed the MIC and MBC values for BDQ against a large number of rapidly growing NTM. We also described for the first time that M. flavescentis is naturally resistant to BDQ and its high MIC correlates with the mutation found at amino acid 63 in AtpeE (alanine replaced by methionine). However, despite finding this, BDQ exhibited a strong inhibitory effect against all NTM tested, suggesting the potential to treat NTM infections. These preliminary results warrant further research in this area.

Funding information
The authors received no specific grant from any funding agency.

Acknowledgements
Bedaquiline was generously provided by Johnson and Johnson (Beers). We acknowledge the support of the BOF fellowship (‘Bijzonder Onderzoeksfonds’ register number 01W01514, special foundation for research of Ghent University, Belgium) to D.A.A. The support of the CONACyT (Mexico) scholarship to D.A.A. is gratefully acknowledged.

Conflicts of interest
K.A. has conducted research experiments on bedaquiline activity against M. tuberculosis that has been supported by Janssen Labora-
tory. All other authors report no potential conflicts.

References
1. Tortoli E. Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin Microbiol Rev 2014;27:727–752.
2. Martiniano SL, Nick JA, Daley CL. Nontuberculous mycobacterial infections in cystic fibrosis. Clin Chest Med 2016;37:83–96.
3. Sommerstein R, Schreiber PW, Diekema DJ, Edmond MB, Hasse B et al. Mycobacterium chimaera outbreak associated with heater-cooler devices: piecing the puzzle together. Infect Control Hosp Epidemiol 2017;38:103–108.
4. Frieden TR, Brudney KF, Harries AD. Global tuberculosis: perspectives, prospects, and priorities. JAMA 2014;312:1393–1394.
5. Falzon D, Mirzayev F, Wares F, Baena IG, Zigon M et al. Multi-drug-resistant tuberculosis around the world: what progress has been made? Eur Respir J 2015;45:150–160.
6. Ma Z, Lienhardt C, McIlroy H, Nunn AJ, Wang X. Global tuberculosis drug development pipeline: the need and the reality. Lancet 2010;375:2100–2109.
7. Palomino JC, Martin A. TMC207 becomes bedaquiline, a new anti-TB drug. Future Microbiol 2013;8:1071–1080.
8. Sotgiu G, Pontali E, Centis R, D’Ambrosio L, Migliori GB. Delamanid (OPC-67683) for treatment of multi-drug-resistant tuberculosis. Expert Rev Anti Infect Ther 2015;13:305–315.
9. Andries K, Verhasselt P, Guillemont J, Göhlmann HW, Neefs JM et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 2005;307:223–227.
10. Esteban J, García-Pedrauzela M, Muñoz-Ega MC, Alcaide F. Current treatment of non-tuberculous mycobacterial infections: an update. Expert Opin Pharmacother 2012;13:967–986.
11. Stout JE, Koh WJ, Yew WW. Update on pulmonary disease due to non-tuberculous mycobacteria. Int J Infect Dis 2016;45:123–134.
12. Rubio M, March F, Garrigó M, Moreno C, Español M et al. Inducible and acquired clarithromycin resistance in the Mycobacterium abscessus complex. PLoS One 2015;10:e014016.
13. Alexander DC, Vasireddy R, Vasireddy S, Philyev JV, Brown-Elliott BA et al. Emergence of mmpT5 variants during Bedaquiline treatment of Mycobacterium intracellulare lung disease. J Clin Microbiol 2017;55:574–584.
14. Palomino JC, Martin A, Camacho M, Guerra H, Swings J et al. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2002;46:2720–2722.
15. Martin A, Camacho M, Portaels F, Palomino JC. Resazurin microtiter assay plate testing of Mycobacterium tuberculosis susceptibili-
ties to second-line drugs: rapid, simple, and inexpensive method. Antimicrob Agents Chemother 2003;47:3616–3619.
16. Pérez-Martínez I, Ponce-de-León A, Bobadilla M, Villegas-Sepúlveda N, Pérez-Garcia M et al. A novel identification scheme for genus Mycobacterium, M. tuberculosis complex, and seven mycobacteria species of human clinical impact. Eur J Clin Microbiol Infect Dis 2008;27:451–459.
17. Huitric E, Verhasselt P, Ansied K, Hoffner SE. In vitro antymycobacterial spectrum of a diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother 2007;51:4202–4204.
18. Huitric E, Verhasselt P, Koul A, Andries K, Hoffner S et al. Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother 2010;54:1022–1028.
19. Petrelia S, Cambau E, Chauffour A, Andries K, Jarlier V et al. Genetic basis for natural and acquired resistance to the diarylqui-
none R207910 in mycobacteria. Antimicrob Agents Chemother 2006;50:2853–2856.