Implicit Frictional Dynamics With Soft Constraints

Egor Larionov, Andreas Longva, Uri M. Ascher, Jan Bender, and Dinesh K. Pai

Abstract—Dynamics simulation with frictional contacts is important for a wide range of applications, from cloth simulation to object manipulation. Recent methods using smoothed lagged friction forces have enabled robust and differentiable simulation of elastodynamics with friction. However, the resulting frictional behavior can be inaccurate and may not converge to analytic solutions. Here we evaluate the accuracy of lagged friction models in comparison with implicit frictional contact systems. We show that major inaccuracies near the stick-slip threshold in such systems are caused by lagging of friction forces rather than by smoothing the Coulomb friction curve. Furthermore, we demonstrate how systems involving implicit or lagged friction can be correctly used with higher-order time integration and highlight limitations in earlier attempts. We demonstrate how to exploit forward-mode automatic differentiation to simplify and, in some cases, improve the performance of the inexact Newton method. Finally, we show that other complex phenomena can also be simulated effectively while maintaining smoothness of the entire system. We extend our method to exhibit stick-slip frictional behavior and preserve volume on compressible and nearly-incompressible media using soft constraints.

Index Terms—Dry friction, contact, elasticity, deformable object dynamics.

I. INTRODUCTION

Modern simulation pipelines in computer graphics and engineering involve contact handling. This ensures that simulated objects do not interpenetrate each other as they interact. During this interaction, friction ensures that solid objects are held in place or are otherwise limited in how they move. This work focuses on the accuracy and effectiveness of smooth friction models.

In recent years we have seen a resurgence of promising work in developing more robust methods for simulating frictional contact in computer graphics. This problem is particularly difficult since friction and contact cannot be simultaneously described by a single energy potential [2]. This precludes formulating the frictional contact problem as a single energy minimization. However, energy minimization used for solving discretized ordinary differential equations (ODEs) over each time step has remained popular in graphics, due to its flexibility and robustness characteristics. Unfortunately, optimization based solvers used for dynamics equations require specialized algorithms for handling frictional contacts, which necessarily produces drawbacks in accuracy or robustness.

In this work, we demonstrate failure cases in popular optimization based frictional contact solvers and propose an alternative method for solving elastodynamic problems with frictional contacts that is simple to implement and accurate in comparison. By resolving the sliding frame and contact forces implicitly when computing friction, our method can produce more accurate friction behavior, and it requires no additional iterations or specialized mechanisms for coupling friction, contact and elasticity.

Frictional contact is traditionally modeled as a non-smooth problem requiring sophisticated tools. In particular, non-smooth integrators, root finding or optimization techniques are needed for handling inclusion terms in the mathematical model. This drastically complicates the problem and substantially limits the number of solution approaches. While non-smoothness is required to guarantee absolute sticking, it is not generally necessary if simulations are limited in time. In fact, when observed on a microscale, even dry friction responds continuously to changes in velocity [3]. Accordingly, we adopt a smooth friction formulation. We show that when applied fully implicitly in the equations of motion, it can produce predictable sticking. In contrast, our study shows that the popular approach of lagging friction causes inaccurate and time step dependent sticking behavior. In particular, we demonstrate the importance of evaluating the sliding basis (defined in Section III-C) and contact forces implicitly for accurate friction simulation.

Finally, to maintain smoothness of the entire problem we employ a penalty force for contact resolution and a smooth implicit surface model proposed by Larionov et al. [4] for representing the contact surface. We also show how additional soft constraints can be added to the system for controlling the volume of an object.

Maintaining smoothness of the entire system makes it easier to solve and allows derivatives to be propagated through each step of the simulation. However, full differentiable simulation is outside the scope of this work.

In summary, our primary contributions are

- A comparison between lagged and fully implicit friction models focusing on frictional accuracy.
A stable implementation of high-order time integration for frictional contact problems that is applicable to both lagged and fully implicit formulations.

A novel smooth Stribeck friction model used for modeling stick-slip effects due to the microstructure of contacting surfaces.

A physically-based volume change penalty for controlling compressibility in compressible and nearly incompressible regions.

A simple adaptive penalty stiffening strategy for effectively resolving interpenetrations with penalty-based contact methods.

Furthermore, to better characterize the instability of single point frictional contacts, we present an eigen-analysis of a 2D point contact subject to friction in Section I of the supplemental document.

II. RELATED WORK

Simulating the dynamics of deformable elastic objects [5] and cloth [6] has been an active area of research in graphics for decades. Methods requiring accuracy often reach for a finite element method (FEM) [7], while methods aiming for performance reach for position-based techniques [8], [9], [10], or projective-dynamics [11]. Our work targets simulation accuracy, and thus stays close to the tried and tested FEM.

a) Frictional Contact: In recent years, lots of attention has been dedicated towards robust and accurate contact and friction solutions. Earlier works in graphics developed non-smooth methods to resolve contact and friction forces at the end of the time step obtaining solutions faithful to the Coulomb model. Kaufman et al. [12] proposed a predictor-corrector method to solve for friction and contact separately from elasticity equations. This was later extended to high-order time integration [13] and separately to full FEM simulations [4] while maintaining the decoupling. Other methods reformulate the problem as a non-smooth root finding problem [14], [15], [16], [17] or using proximal algorithms [18]. More recently, more attention was brought towards modeling friction as a smoothly changing force at the stick-slip limit [1], [19]. This allows each simulation step to remain differentiable. Geilinger et al. [19] favored a more traditional root-finding solver combining friction and contact forces with elastic equations of motion. In contrast, Li et al. [1] proposed a robust optimization framework to solve for contact and lagged friction forces. Unfortunately, even with multiple iterations, the lagged friction approach might not converge to an accurate friction solution (cf. Fig. 1), which is especially noticeable in sticking configurations close to the slip threshold. Furthermore, their proposed method for higher-order integration is not applied to the contact solve causing instabilities. In this work, we demonstrate and address these shortcomings using a solution method that favors friction accuracy at the cost of some robustness, while maintaining smoothness of the system. While non-smooth methods for frictional contact are interesting and have been physically validated [13], our work is focused solely on smooth methods.

b) Higher-Order Integrators for Contact Problems: Most contact formulations, especially those formulated in terms of constraints, intrinsically rely on a particular choice of time discretization, which is usually backward Euler (BE). However, the highly dissipative characteristics of BE have motivated the use of higher-order schemes like TR-BDF2 or SDIRK2, which preserve high energy dynamics while maintaining stability [20], [21]. A benefit of smooth contact models based on penalty or barrier functions is that both normal and friction forces are defined with explicit formulas, as opposed to implicitly defined through constraints. This makes it possible to apply higher-order integrators directly, as demonstrated by Geilinger et al. [19] for BDF2, Li et al. [1] applied trapezoid rule (TR), however it is only applied to non-contact forces, which we show causes stability issues. Brown et al. [22] focus on first-order methods and apply TR-BDF2 to a non-smooth optimization-based contact model with lagged friction, though this has unclear implications for high-accuracy second-order methods. Here, we show how higher-order methods can be applied to systems with lagged or implicit friction methods.

c) Volume Preservation: Many solids exhibit volume preserving behavior. We focus primarily on inflated objects like tires and sports equipment (e.g., sports balls), as well as nearly incompressible objects like the human body. Inflated objects

Fig. 1. An upside-down bowl is lifted using 3 soft pads via friction. The chosen frames between 1 and 150 are frames 35, 40 and 100, at which point the bowl slips out for time steps $h = 0.005$, 0.0025, and 0.00125 s respectively for the lagged method. Using fully implicit integration, the bowl sticks even at the largest time step $h = 0.005$ s as shown. For the pads, $\rho = 1000$ kg/m^3 (density), $E = 600$ KPa (Young’s modulus), and $\nu = 0.49$ (Poisson ratio). For the bowl, $\rho = 400$ kg/m^3, $E = 11000$ KPa and $\nu = 0.1$. The friction coefficient is set to $\mu = 0.65$ between the two. See Fig. 5 for the plot of the bowl height in all tested configurations.
are typically simulated using soft constraints [10], [23], [24], [25], [26], where in effect the volume change of an object is penalized assuming Boyle’s law for ideal gasses. These methods are effective, however, their physical accuracy is rarely questioned. Incompressible or nearly-incompressible materials are often modeled with stiff Poisson’s ratios [27] or hard volume preservation constraints [28]. In contrast to previous work, we propose a unified physically-based penalty formulation for volume preservation that models both compressible and nearly-incompressible objects using a single penalty controlled by a physical compression coefficient. Additionally, we illustrate how the volume preservation models differ, indicating the expected trade-offs in each model.

III. Method

Here we develop the equations involved in solving for the motion of deformable objects subject to frictional contacts.

A set of generalized coordinates \(q(t) \in \mathbb{R}^n \) (e.g., stacked vertex positions of a FEM mesh in 3D), represents a system of solids moving through time. A sparse symmetric positive definite (SPD) \(m \times m \) matrix \(M \) denotes generalized mass. In the following we omit the time dependence for brevity, but later reintroduce it when discussing time discretization schemes.

Using dot notation for time derivatives and with generalized velocities \(v = \dot{q} \) we can write the force balance equation as

\[
M \ddot{q} = \mathbf{f}(q, v)
\]

and tangent basis

\[
\partial_{\mathbf{v}} \mathbf{f}(\mathbf{q}, \mathbf{v}) = \mathbf{f}_e(q) + \mathbf{f}_d(q, v) + \mathbf{f}_c(q) + \mathbf{f}_f(q, v) + \mathbf{f}_g(q),
\]

where \(\mathbf{f}_e \) are elastic forces, \(\mathbf{f}_d \) are damping forces, \(\mathbf{f}_c \) are contact forces, \(\mathbf{f}_f \) is friction, and \(\mathbf{f}_g \) are external forces such as gravity.

A. Elasticity and Damping

Elastic forces are typically derived from a configuration dependent energy potential \(W(q) \) as \(\mathbf{f}_e(q) = -\frac{\partial W(q)}{\partial q} \). The elastic potential \(W \) can be defined by the classic linear, neo-Hookean, StVK or Mooney-Rivlin models [29], or even a data-driven model [30]. We will focus on neo-Hookean materials for both solids and cloth. We then define the stiffness matrix \(K(q) = -\frac{\partial^2 W(q)}{\partial q \partial q^\top} \), which dictates how resistant an object is to deformation. For nonlinear models like neo-Hookean elasticity, \(K \) may be indefinite, which is important to know when picking an appropriate linear solver.

Damping forces are often defined by \(\mathbf{f}_d(q, v) = -D(q)v \), where \(D \) is a symmetric, and usually positive semi-definite, matrix. We use the Rayleigh damping model for simplicity where \(D = \alpha M + \beta K \) for some constants \(\alpha, \beta \geq 0 \).

B. Contact

Traditionally contact constraints have been formulated with a nonnegativity constraint on some “gap” function \(d(q) \) that roughly determines how far objects are away from each other. This function \(d \) may be closely related to a component-wise signed distance function, however, generally it merely needs to be continuous, monotonically increasing in the direction of separation, and constant at the surface. We define \(d_i \) for each potential contact point \(i \) such that \(d = (d_1, d_2, \ldots, d_n) \), where \(n \) is the total number of potential contacts. Here we use the contact model of Larionov et al. [4], where surface vertices of one object are constrained to have non-negative potential values when evaluated against a smooth implicit function \(\mathbf{d} \) closely approximating the surface of another object. Interestingly, if we allow objects some small separation tolerance at equilibrium, we can reformulate this constraint as an equality constraint by using a soft-max [19] or a truncated log barrier [1] function. These types of equality constraints greatly simplify the contact problem and have shown tremendous success in practice.

One disadvantage of log-barrier formulations is that the initial state must be free of collisions prior to the optimization step in order to avoid infinite energies and undefined derivatives. In the absence of thin features or risk of tunneling, it is sufficient to use a simple penalty function to resolve interpenetrating geometry. In this work we choose to use penalty-based contacts for simplicity, however, our formulation is fully compatible with a log-barrier method coupled with continuous collision detection (CCD) as proposed by Li et al. [1]. The idea is to help our solver guide interpenetrating meshes out of intersecting configurations. We define a cubic contact penalty by

\[
b(x; \delta, \kappa) = \kappa \begin{cases}
\frac{1}{2} (x - \delta)^3 & \text{if } x < \delta \\
0 & \text{otherwise}
\end{cases}
\]

where \(\delta > 0 \) is the thickness tolerance and \(\kappa > 0 \) is a contact stiffness parameter that will need to be automatically increased to ensure that no surface vertices of one object are penetrating the implicit surface of another at the end of the time step. Here \(b \) corresponds to the first non-zero term in the Taylor expansion of the truncated log-barrier used by Li et al. [1], but unlike the log-barrier it is well-defined also for negative arguments. The penalty is applied to each pair of contact points with distance \(d_i \) giving us an aggregate contact energy

\[
W_c(d) = \sum_{i=1}^{n} b(d_i; \delta, \kappa).
\]

Now the contact force can be written simply as the negative energy derivative

\[
f_c(q)^\top = -\frac{\partial W_c}{\partial q} = \lambda(q)^\top \frac{\partial d}{\partial q},
\]

where

\[
\lambda(q)^\top = -\frac{\partial W_c}{\partial d}
\]

is the stacked vector of contact force magnitudes. In effect our contact formulation enforces the equality constraint \(W_c(d(q)) = 0 \).

C. Friction

We define the contact Jacobian \(J_c(q) \) and tangent basis \(B(q) \) over all potential contact points as in [4]. Then \(T(q) = J_c(q)^\top B(q) \) is the \(m \times n \) matrix defining the sliding basis [1]. In short, this matrix maps forces in contact space to generalized forces in configuration space.

We can now derive the smoothed friction force [1], [19] from first principles. For each contact \(i \), the maximum dissipation
principle (MDP) postulates that friction force ought to maximally oppose relative velocity

$$f_{f,i}(v; \mu) = \arg\max_{|y| \leq \mu \lambda_i} (-\nabla^T y), \quad \text{(3)}$$

where μ is the coefficient of friction, which limits the friction force\(^1\) and λ_i is the ith element of λ as defined in (2). We can solve (3) explicitly with an inclusion

$$f_{f,i}(v; \mu) \in -\mu \lambda_i \left\{ \begin{array}{ll}
\{ \bar{v}_i / ||\bar{v}_i|| \} & \text{if } ||\bar{v}_i|| > 0 \\
\{ u \in \mathbb{R}^2 : ||u|| \leq 1 \} & \text{otherwise.}
\end{array} \right. \quad \text{(4)}$$

This is commonly referred to as Coulomb friction. Unfortunately, the non-smoothness around $||\bar{v}_i|| = 0$ calls for non-smooth optimization or root-finding techniques [12, 14, 18], making this problem numerically challenging. Another disadvantage of non-smoothness is that it greatly complicates differentiation of the solver, which can be critical for solving inverse problems easily. We opt to approximate Coulomb friction using a smoothed model [1, 19]. Since most animations call for relatively short time frames, we typically do not require absolute sticking. Interestingly, smooth friction models have been proposed in older engineering literature [3, 31, 32] to improve hysteretic behavior and alleviate numerical difficulties. A simple smoothing [19] of (4) can be written as

$$f_{f,i}(v; \mu) \approx -\mu \lambda_i s(||\bar{v}_i||) \eta(\bar{v}_i), \quad \text{(5)}$$

where $\eta : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ defines the per-contact nonlinearity

$$\eta(\bar{v}_i) = \left\{ \begin{array}{ll}
\bar{v}_i / ||\bar{v}_i|| & \text{if } ||\bar{v}_i|| > 0 \\
0 & \text{otherwise,}
\end{array} \right. \quad \text{(6)}$$

and the function s defines the pre-sliding transition. A popular C^1 option for s as depicted in Fig. 2(a) for different values of ϵ, is

$$s(v; \epsilon) = \left\{ \begin{array}{ll}
\frac{2v}{1 + \frac{v^2}{\epsilon^2}} & \text{if } v < \epsilon \\
1 & \text{otherwise.}
\end{array} \right. \quad \text{(7)}$$

Simpler and smoother functions exist, however this choice is convenient since ϵ directly controls the sliding velocity tolerance during sticking.

\[^1\]Unless otherwise specified, $|| \cdot ||$ refers to the Euclidean norm.

We can then easily express more complex friction models by substituting $\mu \lambda_i s(||\bar{v}_i||)$ with a velocity dependent function $c(v, \lambda_i; \mu)$ of multiple coefficients μ. For instance, Stribeck and viscous friction [33] can be expressed with $\mu = (\mu_d, \mu_s, \mu_v)$ representing dynamic, static and viscous friction coefficients respectively

$$f_{f,i}(v; \mu) = -c(||\bar{v}_i||, \lambda_i; \mu) \eta(\bar{v}_i),$$

$$c(v, \lambda_i; \mu) = (\mu_d + (\mu_s - \mu_d)g(v/v_s))s(v; \epsilon)\lambda_i + \mu_v v$$

$$g(x) = \left\{ \begin{array}{ll}
(2x + 1)(x - 1)^2 & \text{if } x < 1 \\
0 & \text{otherwise,}
\end{array} \right. \quad \text{(8)}$$

where g is a compact Gaussian approximation, and v_s is Stribeck velocity, which defines how gradually friction decays from static into dynamic as velocity increases. Fig. 2(b) illustrates how the different parameters in (8) control the overall curve. In general, v_s should be larger than ϵ, where values close to ϵ may lower the observed/effective static friction force. Setting $v_s = 10\epsilon$ works well for modeling common dry friction when ϵ is small. The Stribeck component is a useful tool for introducing static friction into the smoothed friction model. Our example in Section V-C2 shows how this model can introduce stick-slip behavior from the real world.

We can express the nonlinearity in (6) as a function over all (stacked) relative velocities $\bar{v} \in \mathbb{R}^{2n}$ using a diagonal block matrix

$$H(\bar{v}) = \begin{bmatrix}
\eta(\bar{v}_1) \\
\vdots \\
\eta(\bar{v}_n)
\end{bmatrix}. \quad \text{(9)}$$

Then the total friction force can be written compactly as

$$f_f(q, v) = -T(q)H(T(q)\top v)c(q, v), \quad \text{(9)}$$

where $c_i = c(||\bar{v}_i||, \lambda_i; \mu)$ is the ith component of the stacked vector of friction force magnitudes.

D. Volume Change Penalty

In soft tissue simulation, resistance to volume change is typically controlled by Poisson’s ratio. This, however, assumes that the simulated body is homogeneous and void of internal structure. For more complex structures like the human body, a zonal constraint is a more suitable method to enforce incompressibility [28]. Compressible objects, however, require a different method altogether. In this section we propose a physically-based and stable model to represent compressible and nearly incompressible objects. In particular, we want to efficiently model inflatable objects like balloons, tires and sports balls, as well as nearly incompressible objects like the human body or other organic matter.

We start from the isothermal compression coefficient [34, Section 5.3] defined by

$$\kappa_v = \frac{-1}{\lambda} \left(\frac{\partial V}{\partial P} \right)_T, \quad \text{(10)}$$

\[1\]Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.
The penalty force is then given directly by the negative derivative of (13) and controlled by the compression parameter κ_v

$$f_v(q) = -\frac{(V - V_0) \partial V}{V_0 \kappa_v} \frac{\partial V}{\partial q} \tag{14}$$

This can then be added directly to (1b). Incidentally, the Jacobian of (14) is dense, however, it can be approximated by the sparse term involving $q^T V / \partial q^2$, which expresses only local force changes. In matrix-free solvers where only matrix-vector products are required, the complete derivative can be computed without hindering performance since the full dense Jacobian is never stored in memory.

IV. NUMERICAL METHODS

In this section we outline and motivate methods for approximately solving the non-linear force balance system (1a).

A. Time Integration

The equations of motion (1a) can be discretized in time using a variety of implicit time integration methods. Purely explicit integration schemes are not recommended since they prohibitively restrict the admissible time step size in stiff problems — contact and friction can produce extremely large forces causing instability that is intrinsic to the problem we are trying to solve.

Using standard notation, we assume that at time t we know $q = q^t$ and $v = v^t$, and employ a step size h to proceed forward in time. The integration methods we consider can be expressed by the momentum balance equation

$$0 = r(v^{t+h}; h, f, M), \tag{15}$$

where we use superscripts to indicate time. Each integration scheme is characterized by one or more residual functions r used to determine the final velocity v^{t+h}. Except for trapezoidal scheme, all integrators we consider are L-stable, indicating that they dampen high frequency error components for stiff and highly oscillatory or unstable problems. Elastodynamics with frictional contacts can exhibit instabilities (see Section I.B. in the supplemental document), however, we know that friction is naturally dissipative, and so we expect solutions to behave stably overall. L-stability ensures that any additional stiffness present in the system will not destabilize the numerical solution. For further discussion on stability see [35].

1) Backward Euler: The simplest implicit scheme is backward Euler (BE), defined by

$$r_{BE}(v^{t+h}) = M(v^{t+h} - v^t) - hf(q^t + hv^{t+h}, v^{t+h}) = 0. \tag{16}$$

2) Trapezoidal Rule: A well-known method for mixing explicitly and implicitly determined forces on the system is the trapezoidal rule (TR), defined by the momentum balance

$$r_{TR}(v^{t+h}) = M(v^{t+h} - v^t) - \frac{h}{2} \left(f(q^t, v^t) + f(q^{t+h}, v^{t+h}) \right) = 0,$$
where \(q^{t+h} = q^t + \frac{h}{2} (v^t + v^{t+h}) \).

Notably, this method is equivalent to the popular implicit Newmark-\(\beta\) [36, 37, 38] method with \(\beta = 1/4\) and \(\gamma = 1/2\). The frictional contact problem we address is not stable, and can generate large stiffnesses for high elastic moduli, large deformations or due to contact and friction. The smoothed frictional contact problem produces high frequency oscillations, which are exacerbated by TR, whereas ideally we want these to be damped away. See Section I.B. in the supplemental document for a concrete example. In spite of these flaws, TR is still used in practice, often decoupled from the frictional contact problem [1]. In Section V-A3 we demonstrate how properly coupling TR as defined in (17) can resolve some instabilities in practice.

It is also straightforward to use higher-order L-stable methods within our formulation. BDF2, TR-BDF2 and SDIRK2 are defined in the supplemental document; for further discussion of these methods see [20, 21].

B. Damped Newton

The momentum balance (15) can be solved efficiently by second-order root-finding methods like Newton’s. In the absence of constraints, this can be seen as a generalization of incremental potential optimization [39], where the merit function is set to be an energy potential \(W(v) \) such that \(\partial W(v)/\partial v = r(v) \). However, in that case to maintain a descent direction, \(\partial r/\partial v \) must be appropriately modified to remain positive definite.

Since the presence of friction forces precludes a single potential \(W \) for minimization [2], many methods relying on incremental potentials build special workarounds to solve for exact Coulomb-based friction, including staggered projections [12], fixed-point methods [18] and lagged friction [1]. Others employ non-smooth Newton to find roots of a proxy function [14, 15, 40]. We employ the penalty-based frictional contact approach promoted by Geilinger et al. [19]. We extend their approach with additional terms of the Jacobian relating to changes in the sliding basis to ensure a more accurate descent direction and parity with the method in Section IV-C. In addition to contacts against static boundaries, we also demonstrate how this method performs in full bidirectional contact between elastic solids. Empirically we found that in many common cases omitting sliding basis derivatives can speed up simulations, especially when contact Jacobians are complex, however we expect convergence can suffer in cases with complex deforming contact surfaces and large time steps. We leave a comprehensive convergence study to future work since it would require more careful contact handling. For lower resolution examples we use the damped Newton algorithm as defined in Algorithm 1, where the problem Jacobian defined by \(J = \partial r/\partial v \) is a square and potentially non-symmetric matrix (see Section I.A. in the supplemental document). Assuming that \(J \) is boundedly invertible in the neighborhood of the root, for a sufficiently good initial estimate, damped Newton is guaranteed to converge\(^4\) [41]. While singular Jacobians can cause problems, in our experiments they are rare, and often can be eliminated by decreasing the time step in dynamic simulations. Furthermore, in Section I.A. of the supplemental document we show that our method does not introduce singularities through coupling between elasticity, contact and friction on a single node.

C. Inexact Damped Newton

For large scale problems, it is often preferable to use an iterative linear solver, which can outperform a direct solver when degrees of freedom are sufficiently abundant. We use inexact Newton to closely couple the iterative solver with our damped Newton’s method. Since friction forces produce a non-symmetric Jacobian, we chose the biconjugate gradient stabilized (BiCGSTAB) algorithm [42] to find Newton search directions \(p_k \). For Jacobian \(J = \partial r/\partial v \) with \(r_k = r(v_k) \), the search direction is determined by

\[
\| r_k + J p_k \|_2 \leq \sigma_k \| r_k \|_2,
\]

where \(\sigma_k = \min(\|r_k\|^2/\|r_{k-1}\|, \sigma) \) and \(\varphi = (1 + \sqrt{5})/2 \) to maintain Q-quadratic convergence [43].

Using BiCGSTAB as the iterative solver additionally allows one to use forward automatic differentiation to efficiently compute products \(Jp \) [44].

The final inexact Newton algorithm is presented in Algorithm 2.

D. Contact

To ensure that no penetrations remain (i.e., \(d_i > 0 \) for each contact \(i \)) at the end of the time step we measure the deepest penetration depth \(d_{\text{deepest}} = \min_i (d_i(q^{t+h})) \), and bump the contact stiffness parameter \(\kappa \) by the factor \(\frac{b}{b(d_{\text{deepest}})} \) whenever \(d_{\text{deepest}} < 0 \), where \(b \) is the scalar derivative of \(b \). The same

\(^4\)If \(J \) is also sufficiently regular then (undamped) Newton convergence is Q-quadratic.
Algorithm 2: INEXACTDAMPEDNEWTON.

Input:

\[k_{\text{max}} \leftarrow \text{maximum number of Newton iterations} \]
\[v \leftarrow \text{previous velocities} \]
\[c_1 \leftarrow 10^{-4} \]
\[\sigma \leftarrow 0.01 \]
\[\rho \leftarrow 0.5 \]

Output: \(v_k \) \(\leftarrow \) velocity for the next time step

1. \(v_0 \leftarrow v \) /* Initialize velocity */
2. for \(k \leftarrow 0 \) to \(k_{\text{max}} \) do
3. if SHOULDSTOP\((r(v_k)), v_k)\) then
4. break
5. \(\sigma_k \leftarrow \min\left(\|r_k\|^2 / \|r_{k-1}\|^2, \sigma\right) \)
6. Find \(p_k \) such that \(\|r_k + J_k p_k\| \leq \sigma_k \|r_k\| \)
7. \(\alpha \leftarrow 1 \) /* Backtracking */
8. while \(\|r(v + \alpha p)\| > (1 - c_1 \alpha(1 - \sigma_k))\|r(v_k)\| \) do
9. \(\alpha \leftarrow \rho \alpha \)
10. end
11. \(\sigma_k \leftarrow 1 - \alpha(1 - \sigma_k) \)
12. \(v_{k+1} \leftarrow v_k + \alpha p_k \)
13. end

step is then repeated with the new \(\kappa \). This scheme sets the optimal contact penalty value found by the Newton scheme to appear for contacts 0.5\(\delta \) outside the contact surface. As such, in most cases one time step with an additional contact iteration is sufficient before all contacts are resolved. Furthermore, \(\kappa \) is never decreased so long as there are active contacts to avoid oscillations at the contact surface.

The downside of this technique is that it compromises the smoothness of the simulation. We postulate that in practice, this may not be problematic in a differentiable pipeline since \(\kappa \) is not changed frequently and subsequent differentiable iterations can carry forward the maximal \(\kappa \) to maintain smoothness.

E. Correct TR Integration in IPC

Li et al. [1] introduced incremental potential contact (IPC), a robust method to resolve contacts by minimizing incremental potentials with friction being evaluated using lagged positional estimates from the previous time step. Here we propose a simple fix for handling higher-order time integrators in the IPC framework, and show how our formulation relates to this method. With the lagged friction approach, the BE and TR discretizations are given by

\[r_{\text{BE,IPC}}(v^{t+h}) = v^{t+h} - v^t - hM^{-1}f_{\text{lag}}(q^t, q^{t+h}, v^{t+h}), \]
\[r_{\text{TR,IPC}}(v^{t+h}) = v^{t+h} - v^t - h/2M^{-1}(f_{\text{lag}}(q^t, q^{t+h}, v^{t+h}) \]
\[+ f_{\text{lag}}(q^t, q^t, v^t)), \]

respectively, where we write

\[f_{\text{lag}}(q^t, q^{t+h}, v^{t+h}) = f_{\text{lag}}(q^{t+h}, v^{t+h}) + f_f(q^t, v^{t+h}). \]

Here \(f_{\text{lag}} \) is the sum of elastic, damping, contact and external forces and \(f_f \) is the friction force as before. Notice that in (19) the entire net force \(f_{\text{lag}} \) is split into implicit and explicit parts, whereas the original proposal [1] for TR in IPC is to apply this splitting to non-contact forces only. In Section V-A3 we show how solving (19) will generate more stable results when compared to the original IPC implementation.

Note that \(f_{\text{lag}} \) has a well-defined antiderivative with respect to \(v^{t+h} \), which can be minimized using common optimization tools. In this view, IPC effectively solves (18) or (19) using the proposed log-barrier potential as a merit function, CCD aided line search and Hessian projection. Although this can be done iteratively with better estimates for the lagged friction force, this approach has limitations as demonstrated in Section V-A1.

V. RESULTS

All experiments were run on the AMD Ryzen Threadripper 1920X CPU with 12 cores, 24 threads at 3.7 GHz boost clock and 32 GB RAM. We used Blender 3.1 [45] for all 3D renderings. For Algorithm 1 we used the Intel MKL sparse LU solver to solve the square non-symmetric linear system on line 6. We used dual numbers for forward automatic differentiation [46] and a custom BiCGSTAB implementation for the inexact Newton Algorithm 2. In the following results Algorithms 1 and 2 are dubbed “Direct” and “Iterative”, respectively, since the former uses a direct linear solver and the latter uses an iterative linear solver. We did not evaluate viscous friction effects here, so \(\mu_v = 0 \) in all examples. For examples using the same dynamic and static friction coefficients \(\mu_d \) and \(\mu_s \), we omit the subscript.

A. Friction Accuracy

With the following examples we demonstrate two scenarios where lagged friction causes large deviations from an expected accurate and stable friction response.

1) Block Slide: In this example we let a stiff elastic block slide down a 10° slope expecting it to stop for \(\mu = 0.177 > \tan(10°) \) after sliding for a total of \(x_T = 0.769 \) m for \(T = 15.38 \) seconds (see supplemental document for details on the experiment).

Fig. 4 demonstrates that our method produces consistent stopping across a variety of step sizes using BE and TR time integration. We compare against IPC [1], a state-of-the-art smoothed friction method using a lagged friction approach to show that it fails to establish consistent stopping with BE, and fails to stop with TR altogether after 50 seconds. We reproduce the lagged friction method in our simulator to demonstrate that TR can be used to generate reliable stopping if the equations of motion are correctly integrated as in (19). Our method produces a more accurate stopping distance using TR than IPC does using BE even after using multiple fixed point iterations.

2) Bowl Grasp: Control over the friction coefficient is particularly important in grasping scenarios since grasped objects
are often delicate. This means that friction forces involved in lifting are often close to the sliding threshold.

As shown in Fig. 1, an upside down bowl is lifted using 3 soft pads to compare sticking stability of lagged friction given in (18) against a fully implicit method from (16). The bowl is successfully picked up and stuck to the pads for a range of time steps when using the implicit method, however it slips for different time step values with lagged friction. The height of the bowl is plotted in Fig. 5 for each method and time step combination.

3) Ball in a Box: A rubber ball placed inside an elastic box has an initial spin of 4800 rotations per minute and an initial velocity set to $\vec{v}_0 = (-0.923, -0.385, 0)$. In Fig. 6, we demonstrate how our fully coupled TR integrator produces more stable dynamic simulations compared to the decoupled TR as proposed by Li et al. [1]. This scenario is simulated with both methods for 800 frames at $h = 0.01$ s with comparable damping parameters as shown in Fig. 6(b). The TR implementation used by IPC blows up, whereas in our formulation the energy is eventually dissipated as expected.

B. Performance

In this section, we show how various combinations of volume preservation and frictional contact constraints affect
(a) The TR formulation proposed in IPC is unstable (top row) whereas our method produces a dissipative scenario (bottom row) even with a slightly weaker damping.

(b) The ball (top) and the box (bottom) are simulated individually with both methods and centroid heights are plotted to ensure that the oscillation amplitudes with TR as implemented by IPC do not exceed those generated by our implementation. This test ensures that the reason for blowup in IPC is not due to integration of elasticity equations alone, but indeed due to loose coupling between elastic and contact terms.

Fig. 6. Ball in a box. A spinning ball bounces inside an elastic box. Here \(\rho = 10000 \text{ kg/m}^3 \), \(E = 500 \text{ KPa} \), and \(\nu = 0.1 \) for the box and \(\rho = 500 \text{ kg/m}^3 \), \(E = 50 \text{ KPa} \) and \(\nu = 0.45 \) for the ball, with friction coefficient set to \(\mu = 0.1 \) between them. For IPC, damping ratio is set to 0.02, and for our model, the damping parameter is set to 0.1 Hz. In both cases Rayleigh damping is used.

In this case exact Newton can use an iterative solver, however a full comparison of the trade-offs between different solvers is outside the scope of the paper since this type of solver would require an additional fixed tolerance, which would affect performance and convergence characteristics. Interestingly this data also indicates that larger friction coefficients cause a bigger bottleneck for the solve compared even to stiff volume change penalties (indicated by small \(\kappa_v \)).

1) Tube Cloth Bend: The inexact Newton Algorithm 2 shines particularly in scenarios with numerous contacts, such as with tight-fitting garments, where the entire garment is in contact with a body. Here we simulate a simplified scenario of a tube cloth wrapped around a bending soft object resembling an elbow or knee as depicted in Fig. 7. Table I shows the corresponding timing results, which indicate that inexact Newton performs much better than the damped Newton algorithm employing a direct solver. Furthermore, the performance gap becomes large when the number of elements is increased. The higher resolution example in Table I does not include the “Direct” solver because it is intractable at that resolution due to the scalability limitations of the direct solve.

# Elements	\(\mu \)	Solver Type	\(\kappa_v \)	Time	Memory	Volume Loss
3K Tris 5K Tets	0.2	Iterative	N/A	4.81	1.84 GB	0.962%
		Direct	N/A	22.1	6.51 GB	0.962%
0.8	Iterative	N/A	12.7	1.91 GB	0.962%	
Direct	N/A	25.6	7.09 GB	0.962%		
8K Tris 30K Tets	0.2	Iterative	4.6e-5	8.59	830 MB	2.55%
	Iterative	12.2	858 MB	2.44e-4%		
0.8	Iterative	N/A	51.6	625 MB	2.57%	
Iterative	53.2	918 MB	2.44e-4%			

Time is measured in seconds per frame and memory refers to total memory growth during the simulation as reported by Houdini’s performance monitor. Simulations without volume change penalty have no \(\kappa_v \).

In Table II b that scenarios with small \(\kappa_v \) favor the “Iterative” method. In Table II c we see that this is true whether J is sparsely approximated (“Inexact”) or not (“Exact”). In contrast, stiffer scenarios prefer the “Direct” method due to worse system conditioning.

2) Ball Squish: A hollow ball at various resolutions (1 K, 55 K and 160 K elements) is pressed between two flat planes as demonstrated in Fig. 8. As a result the ball experiences volume loss. To preserve some of the volume we simulate the compression with compression coefficients \(\kappa_v = 1 \) (e.g., a ball filled with air) and \(\kappa_v = 0.01 \) (e.g., a ball filled with water). In the latter case we expect significantly less volume loss, which is reflected in our experiments as shown in Table II. Furthermore, we note from Table II b that scenarios with small \(\kappa_v \) favor the “Iterative” method. In Table II c we see that this is true whether J is sparsely approximated (“Inexact”) or not (“Exact”).
Fig. 8. **Ball squish.** A hollow ball of various resolutions is squished between two parallel rigid plates. The same simulations are performed for varying Young's moduli E and compression coefficients k_v. As expected, the squished ball occupies a larger volume for smaller k_v (last row), and, possibly due to locking artifacts, occupies a smaller volume for larger E.

Table II

Ball Squish Timings, Memory Usage (in Parentheses) and Volume Loss

# Elements	1K	55K	160K
Direct			
Iterative	0.354 (0.228)	15.9 (1.69)	61.0 (4.26)
Iterative	0.391 (0.081)	31.9 (0.719)	111 (1.92)
Volume loss	33.6%	27.8%	27.7%

(a) $E = 100$ KPa, $k_v = 1$.

(b) $E = 100$ KPa, $k_v = 0.01$.

(c) $E = 100$ KPa, for 1K elements.

(d) $E = 1000$ KPa with no volume preservation constraint.

A hollow ball is squished between two flat rigid plates at time step $h = 0.001$ s. Timings are given in seconds per frame and averaged over 804 frames. The memory usage measured in GB over the entire simulation sequence is shown in parentheses. Volume loss is computed for the change in volume between frames 1 and 804 as a percentage of initial volume inside the ball. Each table specifies the number of elements, young's modulus E and compression coefficient k_v where applicable. Here we compare how the performance characteristics of our "Direct" and "Iterative" methods change when problem stiffness and k_v are varied for different mesh resolutions.

C. **Real World Phenomena**

In the following example we show how our simulator can reproduce deformations captured in the real world.

1) **Tennis Ball:** Tennis ball dynamics is a prime example for all methods proposed in this paper. Volume preservation and higher-order integration enables accurate bounce behavior, whereas accurate friction is needed for predicting the bounce trajectory. Here we demonstrate the need for the former.

First, we launch a tennis ball at a wall at 100 mph (44.7 m/s) to reproduce accurate slow motion deformation. Tennis balls are typically pressurized to approximately 1 atm above atmospheric pressure to produce a livelier bounce during play. In Fig. 9 we show how deformation changes when the ball is pressurized and compare the result with live footage. The simulation contains 100 K tetrahedra and 92 K vertices. The ball is hollow with a stiff inner layer ($E = 6$ MPa, $\nu = 0.4995$ and $\rho = 934$ kg/m3) and a light outer felt material ($E = 5.4$ MPa, $\nu = 0.3$ and $\rho = 4.69$ kg/m3). The volume change penalty is applied to the interior of the ball. This 1000 frame simulation took 4.89 seconds per frame and a total of 11.33 GB in memory.

Next, a tennis ball is dropped from a 254 cm height to evaluate its bounce with and without pressurization. We show how pressurization and choice of integrator can drastically affect the height of the bounce in Fig. 10. 2) **Tire Wrinkling:** We model an inflated tire used by top fuel dragsters to show the folding phenomenon at the start of the race. The tires are deliberately inflated at a low pressure of 0.68 atm above atmospheric pressure, which allows them to better grip the asphalt for a better head start. As a result the soft tire tends to wrinkle as the wheels start to turn. This phenomenon allows for a larger contact patch between the tire and the ground for better traction, which translates to a larger acceleration. In Fig. 11 we demonstrate this phenomenon in simulation with a shell model tire inflated using our volume change penalty. The outer side of the tire is initially stuck to the ground and then dragged while maintaining consistent contact. Accurate simulation of stick-slip
transitions of the tire is critical in determining its performance since traction transfers torque into forward acceleration of the vehicle, which ultimately determines the outcome of a race. The tire is simulated using 93 K triangles and 46 K vertices. The tire mesh is split into an outer stiffer part that is in contact with the ground and a softer inner part where the label is printed. The inner rim sets the Dirichlet boundary condition generating the rotation. Here $\mu_d = 0.5$, $\mu_s = 1.5$, and $\nu = 0.49$ everywhere, while $E = 400$ KN/m, $\rho = 200$ kg/m2 and bending stiffness set at 0.56 on the outer part, and $E = 200$ KN/m, $\rho = 50$ kg/m2, and bending stiffness set at 0.01 on the inner part. The simulation ran with $h = 0.00125$ s for 20 seconds per frame on average using the damped Newton solver. This example shows how the stick-slip phenomenon can be modeled with distinct static and dynamic friction coefficients using the smoothed Stribeck model proposed in Section III-C.

VI. CONCLUSION AND LIMITATIONS

We have presented a fully implicit method for simulating hyperelastic objects subject to frictional contacts. This method generalizes the popular optimization framework for simulating hyperelasticity with contact and lagged friction potentials. We demonstrate how higher-order integrators can be applied in our method as well as in IPC-style frameworks. Our method addresses the lack of friction convergence in lagged friction formulations by evaluating contacts, friction forces as well as tangential bases explicitly.

We have extended this approach to include static friction and physically-based volume preservation that can be used to simulate compressible as well as nearly incompressible media in a single solve.

a) Local minima: Solving for roots of nonlinear momentum equations allows one to resolve friction forces accurately, however, this comes with a trade-off. Optimization theory allows one to reliably find a descent direction even when the objective Hessian is indefinite via projection or filtering techniques. Although computing the descent direction for finding roots of nonlinear equations allows one to use the entire unfiltered Jacobian, global convergence can only be theoretically guaranteed when the Jacobian is bounded on the neighborhood of the initial point. For stiff systems, this assumption can become problematic, although the practical implications are unclear.

b) Hydrostatic equilibrium: Our volume change penalty model expects hydrostatic equilibrium, which may not always be a good approximation. For quickly deforming objects like in the tennis ball and tire examples, some details of the deformation may be missing due to this approximation. This is because the object deforms faster than the air moves inside the volume, creating a non-uniform pressure distribution. The comparison of our hydrostatic model to a fully dynamic fluid simulation remains as future work.

REFERENCES

[1] M. Li et al., “Incremental potential contact: Intersection- and inversion-free large deformation dynamics,” ACM Trans. Graph., vol. 39, no. 4, 2020, Art. no. 49.
[2] P. G. De Saxcé and Z. Q. Feng, “The bipotential method: A constructive approach to the complete contact law with friction and improved numerical algorithms,” Math. Comput. Modelling, vol. 28, no. 4, pp. 225–245, Aug. 1998. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0895717798001198
[3] J. Wojewoda, A. Stefaniškis, M. Wiercigroch, and T. Kapitaniak, “Hysteresis effects of dry friction: Modelling and experimental studies,” Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., vol. 366, no. 1866, pp. 747–765, Mar. 2008, doi: 10.1098/rsta.2007.2125.
[4] E. Larionov, Y. Fan, and D. K. Pai, “Frictional contact on smooth elastic solids,” ACM Trans. Graph., vol. 40, no. 2, Apr. 2021, Art. no. 15, doi: 10.1145/3446663.
[5] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elastically deformable models,” SIGGRAPH Comput. Graph., vol. 21, no. 4, pp. 205–214, Aug. 1987, doi: 10.1145/37402.37427.
[6] D. Baraff and A. Witkin, “Large steps in cloth simulation,” in Proc. 25th Annu. Conf. Comput. Graph. Interactive Techn., 1998, pp. 43–54.
[7] E. Sifakis and J. Barbic, “FEM simulation of 3D deformable solids: A practitioner’s guide to theory, discretization and model reduction,” in Proc. ACM SIGGRAPH Courses, New York, USA, 2012, pp. 20:1–20:50, doi: 10.1145/2343483.2343501.
[8] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliffe, “Position based dynamics,” J. Vis. Commun. Image Representation, vol. 18, no. 2, pp. 109–118, 2007.
[9] M. Macklin, M. Müller, and N. Chentanez, “XPBD: Position-based simulation of compliant constrained dynamics,” in Proc. 9th Int. Conf. Motion Graphics, New York, NY, USA, 2016, pp. 49–54, doi: 10.1145/2994258.2994272.
[10] J. Bender, M. Müller, and M. Macklin, “A survey on position based dynamics, 2017,” in Proc. Euro. Assoc. Comput. Graph. Tut., 2017, Art. no. 6.
[11] S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly, “Projective dynamics: Fusing constraint projections for fast simulation,” ACM Trans. Graph., vol. 33, no. 4, Jul. 2014, Art. no. 154, doi: 10.1145/2601097.2601116.
[12] D. M. Kaufman, S. Sueda, D. L. James, and D. K. Pai, “Staggered projections for frictional contact in multibody systems,” ACM Trans. Graph., vol. 27, no. 5, pp. 164:1–164:11, 2008.
[13] D. Chen, D. I. W. Levin, W. Matusik, and D. M. Kaufman, “Dynamics-aware numerical coarsening for fabrication design,” ACM Trans. Graph., vol. 36, no. 4, Jul. 2017, Art. no. 84, doi: 10.1145/3072959.3073669.
[14] F. Bertails-Descloues, F. Cadoux, G. Daviet, and V. Acary, “A nonsmooth newton solver for capturing exact coulomb friction in fiber assemblies,” ACM Trans. Graph., vol. 30, no. 1, 2011, Art. no. 6.
[15] G. Daviet, F. Bertails-Descloues, and L. Boisseux, “A hybrid iterative solver for robustly capturing coulomb friction in hair dynamics,” ACM Trans. Graph., vol. 30, no. 5, pp. 1–12, Dec. 2011, doi: 10.1145/2070781.2041737.
[16] J. Li et al., “An implicit frictional contact solver for adaptive cloth simulation,” ACM Trans. Graph., vol. 37, no. 4, 2018, Art. no. 52.
[17] M. Macklin, K. Erleben, M. Müller, N. Chentanez, S. Jeschke, and V. Makoviychuk, “Non-smooth newton methods for deformable multi-body dynamics,” ACM Trans. Graph., vol. 38, no. 5, pp. 1–20, Oct. 2019, doi: 10.1145/3338685.
[18] K. Erleben, “Rigid body contact problems using proximal operators,” in Proc. ACM SIGGRAPH/Eurographics Sym. Comput. Animation, New York, NY, USA, 2017, pp. 13:1–13:12, doi: 10.1145/3099564.3099575.
[19] M. Geilinger, D. Hahn, J. Zehnder, M. Bächer, B. Thomaszewski, and S. Coros, “ADD: Analytically differentiable dynamics for multi-body systems with frictional contact,” ACM Trans. Graph., vol. 39, no. 6, pp. 1–15, Nov. 2020, doi: 10.1145/3414685.3417766.

[20] F. Löschner, A. Longva, S. Jeske, T. Kugelstadt, and J. Bender, “Higher-order time integration for deformable solids,” Comput. Graph. Forum, vol. 39, no. 8, pp. 157–169, Dec. 2020, doi: 10.1111/cgf.14110.

[21] U. M. Ascher, E. Larionov, S. H. Sheen, and D. K. Pai, “Simulating deformable objects for computer animation: A numerical perspective,” J. Comput. Dyn., vol. 9, no. 2, pp. 47–68, 2022.

[22] G. E. Brown, M. Overby, Z. Forootaninia, and R. Narain, “Accurate dissipative forces in optimization integrators,” ACM Trans. Graph., vol. 37, no. 6, Dec. 2018, Art. no. 282, doi: 10.1145/3272127.3275011.

[23] J. Bonet, R. D. Wood, J. Mahaney, and P. Heywood, “Finite element analysis of air supported membrane structures,” Comput. Methods Appl. Mechanics Eng., vol. 190, no. 5, pp. 579–595, 2000. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S00457825999904284.

[24] M. Skouras, B. Thomaszewski, B. Bickel, and M. Gross, “Computational design of rubber balloons,” Comput. Graph. Forum, vol. 31, no. 2pt4, pp. 835–844, 2012, doi: 10.1111/j.1467-8659.2012.03064.x.

[25] M. Skouras et al., “Designing inflatable structures,” ACM Trans. Graph., vol. 33, no. 4, Jul. 2014, Art. no. 63, doi: 10.1145/2601097.2601166.

[26] J. Panetta, F. Isvoranu, T. Chen, E. Siéfert, B. Roman, and M. Pauly, “Computational inverse design of surface-based inflatables,” ACM Trans. Graph., vol. 40, no. 4, Jul. 2021, Art. no. 40, doi: 10.1145/3450626.3459789.

[27] B. Smith, F. D. Goes, and T. Kim, “Stable neo-hookean flesh simulation,” Trans. Graph., vol. 33, no. 4, Jul. 2014, Art. no. 12, doi: 10.1145/2601097.2601166.

[28] S. H. Sheen, E. Larionov, and D. K. Pai, “Volume preserving simulation of soft tissue with skin,” Proc. ACM Comput. Graph. Interactive Techn., vol. 4, no. 3, pp. 1–23, 2021.

[29] P. G. Ciarlet, Lectures on Three-Dimensional Elasticity, vol. 71. Berlin: Germany: Springer, 1983.

[30] H. Wang, J. F. O’Brien, and R. Ramamooorthy, “Data-driven elastic models for cloth: Modeling and measurement,” in Proc. ACM SIGGRAPH Papers, Vancouver, BC, Canada, 2011, Art. no. 71. [Online]. Available: https://portal.acm.org/citation.cfm?doid=1964921.1964966.

[31] R. Kikuuwe, N. Takesue, A. Sano, H. Mochiyama, and H. Fujimoto, “Fixed-step friction simulation: From classical coulomb model to modern continuous models,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Edmonton, Alta, Canada, 2005, pp. 1009–1016. [Online]. Available: https://ieeexplore.ieee.org/document/1545579/.

[32] J. Awrejcewicz, D. Grzelczyk, and Y. Pyryev, “404. A novel dry friction modeling and its impact on differential equations computation and lyapunov exponents estimation,” J. Vibroengineering, vol. 10, no. 4, pp. 475–482, 2008.

[33] B. Armstrong-Helouvy, “Stick slip and control in low-speed motion,” IEEE Trans. Autom. Control, vol. 38, no. 10, pp. 1483–1496, Oct. 1993.

[34] F. Mandl, Statistical Physics. London, NY, USA: Wiley, 1971.

[35] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, vol. 61. Philadelphia, PA, USA: SIAM, 1998.

[36] N. M. Newmark, “A method of computation for structural dynamics,” J. Eng. Mechanics Division, vol. 85, no. 3, pp. 67–94, 1959, doi: 10.1061/CEA3.0000098.

[37] T. J. R. Hughes and G. E. P. A. Knobel, Academic, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Mineola, NY, USA: Dover Publications, 2000.

[38] M. Gérardin, D. Rixen, M. Gérardin, and D. Rixen, Théorie Des Vibrations: Application à La Dynamique Des Structures, vol. 2. Paris, France: Masson, 1993.

[39] C. Kane, J. E. Marsden, M. Ortiz, and M. West, “Variational integrators and the newmark algorithm for conservative and dissipative mechanical systems,” Int. J. Numer. Methods Eng., vol. 49, no. 10, pp. 1295–1325, 2000.

[40] D. M. Kaufman, R. Tamstorf, B. Smith, J.-M. Aubry, and E. Grinspun, “Adaptive nonlinearity for collisions in complex rod assemblies,” ACM Trans. Graph., vol. 33, no. 4, 2014, Art. no. 123.

[41] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New York, NY, USA: Springer, 2006.

[42] H. A. van der Vorst, “Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,” SIAM J. Sci. Statist. Comput., vol. 13, no. 2, pp. 631–644, Mar. 1992, doi: 10.1137/0913055.

[43] S. C. Eisenstat and H. F. Walker, “Choosing the forcing terms in an inexact newton method,” SIAM J. Sci. Comput., vol. 17, no. 1, pp. 16–32, 1996, doi: 10.1137/0917003.

[44] A. Griewank and A. Walther, Evaluating Derivatives, 2nd ed. Philadelphia, PA, USA: Soc. Ind. Appl. Math., 2008, doi: 10.1137/1.9780898717761.

[45] B. Online Community, “Blender - A 3D modelling and rendering package,” Blender Foundation, Stichting Blender Foundation, Amsterdam, 2021. [Online]. Available: https://www.blender.org.

[46] E. Larionov, “autodiff,” 2022. [Online]. Available: https://github.com/elrno/autodiff.

[47] M. Anderson, “Tennis ball hitting the wall at 100 mph,” Feb. 2018. [Online]. Available: https://www.youtube.com/watch?v=gXp2QgY1OB8.

[48] Goodyear, “Nhra drag race tire wrinkle in slow motion Top fuel and funny car,” 2020. [Online]. Available: https://www.youtube.com/watch?v=gXp2QgY1OB8.