Coccidioidomycosis osteomyelitis of the knee in a 23-year-old diabetic patient

Lowell Ellerbrook, BS, and Shaked Laks, MD

Coccidioidomycosis is a pulmonary infection caused by the dimorphic fungi Coccidioides immitis and Coccidioidomycosis posadasii. This disease is endemic to the southwestern United States and has a predilection for immunocompromised patients. Diabetes mellitus has been shown to be a strong risk factor for acquiring this infection in these states. Most cases are asymptomatic or present with mild pulmonary symptoms. However, untreated pulmonary mycosis can lead to disseminated infection, most often involving meningitis, osteomyelitis, or skin and soft-tissue infections. When there is arthritis, the knee is the most common site of infection. We present a case of a 23-year-old male with longstanding, uncontrolled Type 1 diabetes mellitus who was found to have pulmonary coccidioidomycosis following diagnosis of coccidioidomycosis osteomyelitis of the knee.

Case report

Our patient presented to the emergency department at 21 years of age with right knee pain for six months. He stated that he injured the knee in a mixed martial arts workout and had progressive swelling and pain upon flexion and weight bearing. The patient had no other complaints. He had a 10-year history of Type 1 diabetes mellitus that had progressed to neuropathy and gastroparesis at the time of presentation. Physical exam of the knee was normal except for medial joint line tenderness and pain on weight bearing and external rotation. AP and lateral views of the knee showed no fractures or evidence of arthritis, but a small suprapatellar effusion was present (Fig. 1).

The patient was referred to the orthopedics clinic from the ED but did not follow up. He returned to the orthopedic clinic with similar complaints 16 months after his original presentation of knee pain in the ED. AP and lateral views of the knee, when compared to earlier radiographs, showed decreased bone density and a large erosion of the medial trochlear facet, with a small effusion of the suprapatellar bursa (Fig. 2). MRI revealed a 3-cm, sharply demarcated erosion of the anterior aspect of the trochlear notch and medial facet, with synovial thickening and enhancement and patchy edema of the femoral and tibial metaphyses (Fig. 3). The study was reported as a chronic synovitis, possibly related to a granulomatous infection, and synovial fluid aspiration for cytology and culture was recommended. Aspiration of the knee was performed, including removing...
Coccidioidomycosis osteomyelitis of the knee in a 23-year-old diabetic patient

Fig. 2. (A) AP and (B) Lateral radiograph of the knee demonstrates increased osteopenia, joint effusion, and erosion of the medial trochlear surface (arrow).

Fig. 3. Sagittal (A) T1, (B) fat-saturated proton density, and (C) fat-saturated T1 postcontrast images demonstrate a large, well-defined erosion (black arrow in A), patchy bone marrow edema (white arrow in B), and synovial thickening and enhancement (white arrow in C).

A pus-like fluid. Orthopedics recommended surgical intervention with incision and debridement but the patient refused and was, again, lost to followup.

The patient returned again one month later with increased swelling of the knee and very limited range of motion. Incision and debridement performed at this time revealed a 3-cm x 3-cm x 2-cm cavitary lesion of the distal femur with surrounding granulation tissue and hypertrophied synovium.

The original pathologic evaluation of surgical samples described a necrotizing granulomatous inflammation. Further pathologic testing showed that specimens stained negative for acid-fast bacteria but stained positive on Grocott’s methenamine silver stain for fungus. Findings were described as most consistent with a subspecies of Coccidioides being the causal organism (Fig. 4).

Though the patient had experienced no pulmonary symptoms, a screening chest x-ray was performed. Radiographs demonstrated opacity in the medial right lung apex, with a central curvilinear lucency (Fig. 5). A CT scan of the chest demonstrated two cavitary lesions measuring 1.5 and 3 cm in the right upper lobe. A soft-tissue mass was present within the larger cavity, likely representing a mycetoma. There was adjacent bronchiectasis, parenchymal scarring, and multiple, small centrilobular nodules in the right upper lobe (Fig. 6).

The patient has been treated almost three

years with oral fluconazole, 600mg daily, for disseminated infection and followed up in a clinic checking coccidioides antibody titers. There have been heightened measures to improve his followup, and control of his diabetes and coccidioidomycosis infection, since surgery. In followup, his hemoglobin A1c has remained elevated around 14 to 15%, and he has shown signs of early glaucoma and renal disease. To date, his coccidioides antibody titers have remained elevated, and he has been unable to discontinue his antifungal therapy.

Discussion

Coccidioidomycosis, also known as “San Joaquin Valley Fever,” was first reported by Posadas and Wernicke in Argentina in 1892, followed shortly by cases in the San Joa-
Coccidioidomycosis osteomyelitis of the knee in a 23-year-old diabetic patient

Fig. 4A. H&E stain. Characteristic spherules of coccidioides from knee debridement. Various sizes and stages of spherules are typical. Fig 4B. H&E stain. Granuloma formation with histiocytes and giant cells in a background of chronic lymphocytic inflammation. Granuloma surrounds a coccidioidal spherule filled with endospores that could disseminate if ruptured. Fig 4c. GMS stain. Coccidioidal spherules within granulomas display variable uptake of silver stain.

Fig. 5. AP radiograph of the chest demonstrates a wedge-shaped area of air space consolidation in the right upper lobe containing a crescentic lucency (arrow). There is mild retraction of the right hilum likely related to volume loss and scarring.

Fig. 6. (A) Axial CT of the chest demonstrate a 3-cm cavitary lesion in the right upper lobe containing soft-tissue density with a crescentic lucency in the nondependent portion. (B) Coronal reformatted CT image demonstrates right-upper-lobe bronchiectasis, scarring, and multiple centrilobular nodules.

Inhalation of spores from the soil-dwelling, dimorphic fungi Coccidioides immitis and Coccidioides posadasii causes pulmonary coccidioidomycosis (9). Within immunocompetent patients, a delayed-type cell-mediated response limits infections to being asymptomatic 60% of the time, or only causing mild flu-like symptoms 15% of the time (1, 5, 8)

Coccidioidomycosis is a disease of regional endemcity, highly concentrated within focal areas of the Western Hemisphere that have warm and arid to semi-arid climates (4-6). Endemic regions have been described along the US-Mexico border and in areas of Central and South America (4-8). It is thought that many other areas of Central and South America could also be considered endemic, but this is difficult to establish due to varying reporting measures and poor specificity of skin reaction tests to differentiate mycoses found in these regions (7).
Coccidioidomycosis osteomyelitis of the knee in a 23-year-old diabetic patient

We present this case of a young male with poorly controlled diabetes to illustrate the radiographic findings of disseminated coccidioidomycosis with pulmonary and joint involvement. This case also serves to illustrate the dangers of an unchecked granulomatous disease within an immunocompromised host and the importance of good followup with similar patients.

References

1. Smith CE, Beard RR. Varieties of coccidioidal infection in relation to the epidemiology and control of the diseases. *Am J Public Health Nations Health*. 1946;36:1394-1402

2. Hirschmann JV. The early history of coccidioidomycosis: 1892–1945. *Clin Infect Dis*. 2007;44(9):1202-1207. [PubMed]

3. McGahan JP, Graves DS, Palmer PES, Stadnik RC, Dublin AB. Classic and contemporary imaging of coccidioidomycosis. *AJR Am J Roentgenol*. 1981 Feb;136(2):393-404. [PubMed]

4. Kirkland TN, Fierer J. Coccidioidomycosis: a reemerging infectious disease. *Energ Infect Dis*. 1996 Jul-Sep;2(3):192-199. [PubMed]

5. Laniado-Laborin R. Expanding understanding of epidemiology of coccidioidomycosis in the Western hemisphere. *Ann N Y Acad Sci*. 2007 Sep;1111:19-34. [PubMed]

6. Galgiani JN, Ampel NM, Blair JE. Coccidioidomycosis. *Clin Infect Dis*. 2005;41:1217-1223. [PubMed]

7. Brown J, Benedict K, Park BJ, Thompson GR 3rd. Coccidioidomycosis: epidemiology. *Clin Epidemiol*. 2013 Jun 25;5:185-197. [PubMed]

8. Winthrop KL, Chiller T. Preventing and treating biologic-associated opportunistic infections. *Nat Rev Rheumatol*. 2009 Jul;5(7):405-410. [PubMed]

9. Fisher MC, Koenig GL, White TJ, Taylor JW. Molecular and phenotypic description of Coccidioides posadasii sp nov., previously recognized as the non-California population of Coccidioides immitis. *Mycolo*. 2002;94:73-84. [PubMed]

10. Ampel NM. Measurement of cellular immunity in human coccidioidomycosis. *Myopathologica*. 2003;156(4):247-262. [PubMed]

11. Drutz DJ, Catanzara A. Coccidioidomycosis. Part I. *Am Rev Respir Dis*. 1978;117(3):559-585. [PubMed]

12. Drutz DJ, Catanzara A. Coccidioidomycosis. Part II. *Am Rev Respir Dis*. 1978;117(4):727-771. [PubMed]

13. Blair JE. State-of-the-art treatment of coccidioidomycosis skeletal infections. *Ann N Y Acad Sci*. 2007 Sep;1111:422-33. [PubMed]

14. Zeppa MA1, Laorr A, Greenspan A, McGahan JP, Steinbach LS. Skeletal coccidioidomycosis: imaging findings in 19 patients. *Skeletal Radiol*. 1996 May;25(4):337-43. [PubMed]

15. Lund PJ1, Chan KM, Unger EC, Galgiani TN, Pitt MJ. Magnetic resonance imaging in coccidioidal arthropit. *Skeletal Radiol*. 1996 Oct;25(7):661-5. [PubMed]