Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Substantial nitrogen oxides emission reduction from China due to COVID-19 and its impact on surface ozone and aerosol pollution

Qianqian Zhang, Yuepeng Pan, Yuexin He, Wendell W. Walters, Qianyin Nie, Xuyan Li, Guangyi Xu, Jiali Shao, Chunlai Jiang

HIGHLIGHTS

• NO\textsubscript{x} emission in the lockdown period is 53.4% lower than the same period in 2019.
• East China experienced greater influence from COVID-19 than national mean level.
• NO\textsubscript{x} decline leads to 36.5% \textit{O}_3 increase and 12.5% PM\textsubscript{2.5} decrease over East China.
• Elevated \textit{O}_3 enhances secondary aerosols formation through heterogeneous pathway.

ABSTRACT

A top-down approach was employed to estimate the influence of lockdown measures implemented during the COVID-19 pandemic on NO\textsubscript{x} emissions and subsequent influence on surface PM\textsubscript{2.5} and ozone in China. The nation-wide NO\textsubscript{x} emission reduction of 53.4% due to the lockdown in 2020 quarter one in China may represent the current upper limit of China's NO\textsubscript{x} emission control. During the Chinese New Year Holiday (P2), NO\textsubscript{x} emission intensity in China declined by 44.7% compared to the preceding 3 weeks (P1). NO\textsubscript{x} emission intensity increased by 20.3% during the 4 weeks after P2 (P3), despite the unchanged NO\textsubscript{2} column. It recovered to 2019 level at the end of March (P4). The East China (22°N - 42°N, 102°E - 122°E) received greater influence from COVID-19. Overall NO\textsubscript{x} emission from East China for 2020 first quarter is 40.5% lower than 2019, and in P4 it is still 22.9% below the same period in 2019. The 40.5% decrease of NO\textsubscript{x} emission in 2020 first quarter in East China lead to 36.5% increase of surface \textit{O}_3 and 12.5% decrease of surface PM\textsubscript{2.5}. The elevated \textit{O}_3 promotes the secondary aerosol formation through heterogeneous pathways. We recommend that the complicated interaction between PM\textsubscript{2.5} and \textit{O}_3 should be considered in the emission control strategy making process in the future.

1. Introduction

Beginning in December of 2019, the COVID-19 pandemic was first reported in Wuhan and rapidly evolved across the globe. China took
decisive action to combat the spread of COVID-19 that included the lockdown of Wuhan as of Jan 23, 2020, stay-at-home orders during the Chinese New Year Holiday (Jan 24–Feb 2, 2020), and the shutdown of non-essential businesses. People gradually went back to work commencing on Feb 3, and energy demands, factory production, and vehicular traffic gradually recovered (Myllyvirta, 2020).

Nitrogen oxides \((NO_x = NO + NO_2) \), a key component of the atmosphere, are mainly emitted from fossil-fuel combustion activities (Bauwens et al., 2020; Zhao et al., 2013). Thus, NO\(_x\) emissions are closely linked to human activities and respond quickly to economic changes. A dramatic decrease in nitrogen dioxide (NO\(_2\)) columns over China from satellite measurements were observed during February of 2020 (Bauwens et al., 2020; Liu et al., 2020), and NO\(_x\) emissions are expected to decrease accordingly (Ding et al., 2020; Zhang et al., 2020). Zhang et al. (2020) has calculated NO\(_x\) emission changes from East China from Jan 1 to Mar 12, 2020, and Ding et al. (2020) estimated NO\(_x\) emission from Chinese cities due to the COVID-19 lockdown. They focus on NO\(_x\) emission changes from regional or individual cities, but did not evaluate NO\(_x\) emissions from the whole China and regional difference for each period before, during and after the lockdown period in 2020. In addition, comparison of 2020 NO\(_x\) emission with those in past years is also lacked to thoroughly understand changes in NO\(_x\) emissions associated with COVID-19.

NO\(_x\) play a crucial role in atmospheric chemistry, being precursors of both fine particle (PM\(_{2.5}\)) and ozone \((O_3) \). NO\(_x\) are oxidized by hydroxyl (OH) and \(\mathrm{O}_3 \) in the atmosphere to form nitric acid (HNO\(_3\)) and then nitrate, which is an important component of PM\(_{2.5}\) (Wang et al., 2013). NO\(_x\) undergoes a series of photochemical reaction to generate \(\mathrm{O}_3 \). During the lockdown period in 2020, emission reduction of primary air pollutants, including NO\(_x\), result in remarkable decrease in surface observed PM\(_{2.5}\) concentration (Shi and Brasseur, 2020). On the other hand, increase in \(\mathrm{O}_3 \) and radicals due to NO\(_x\) emission reduction leads to secondary aerosol formation and haze events during the lockdown period in 2020 (Huang et al., 2020; Le et al., 2020). However, there is no quantification of PM\(_{2.5}\) and \(\mathrm{O}_3 \) sensitivity to NO\(_x\) emission change during COVID-19 in published works. To what extent the NO\(_x\) emission reduction in 2020 quarte one can impact surface air quality is still unclear.

In this study, we aim to evaluate the influence of NO\(_x\) emission changes for 2020 quarter one on both PM\(_{2.5}\) and \(\mathrm{O}_3 \) pollution over China. First we use a top-down method to assess NO\(_x\) emissions from China for the periods before, during, and after the Chinese New Year Holiday, and we also provide a historical context by a comparison with NO\(_x\) emission in 2019. Then we estimate PM\(_{2.5}\) and \(\mathrm{O}_3 \) changes due to NO\(_x\) emission change through a model study.

2. Methodology

2.1. TROPOMI NO\(_2\) retrieval

The TROPOMI onboard the S-5P mission provides tropospheric NO\(_2\) with a spatial resolution of up to \(3.5 \times 5.5 \) km\(^2\). Tropospheric NO\(_2\) vertical column density (VCD) was retrieved through a three-step procedure using the DOMINO approach (Boersma et al., 2011; van Geffen et al., 2020). First, the slant column density (SCD) is obtained by a differential optical absorption spectroscopy (DOAS) technique. Second, the stratospheric component of SCD is separated via data assimilation using a chemical transport model (CTM/DA). Finally, tropospheric VCD is acquired by dividing SCD by the tropospheric air mass factor (AMF) computed by the TM5 CTM.

Tropospheric NO\(_2\) VCD is sensitive to the NO\(_x\) vertical profile shape used in calculating AMF (Lamsal et al., 2010). The tropospheric AMF was calculated based on GEOS-Chem simulation and used in replacement of the a priori TM5 NO\(_2\) profiles to diminish inconsistencies between model and satellite NO\(_2\) columns (Boersma et al., 2016; Lamsal et al., 2010; Visser et al., 2019). Tropospheric NO\(_2\) VCDs obtained using AMF calculated from TM5, and GEOS-Chem NO\(_2\) profiles are referred to as TROPOMI\(^{\text{TM}}\) and TROPOMI\(^{\text{GC}}\), respectively. The difference between the two sets of tropospheric NO\(_2\) VCD is shown in Fig. S1. Overall, the two sets of data correlate well with each other, with the correlation coefficient \(r \) being 0.90. The discrepancy between TROPOMI\(^{\text{GC}}\) and TROPOMI\(^{\text{TM}}\) is small over China (bias within \(\pm 5\% \)). TROPOMI\(^{\text{GC}}\) is <20% higher than TROPOMI\(^{\text{TM}}\) over South Korea and India. The disagreement between the two datasets can be attributed to the employment of different emission inventories within these models (Vinken et al., 2014).

For quality assurance, we use the TROPOMI data with a qa_value above 0.5, and only pixels with valid data for more than 3 days in each week were selected.

2.2. GEOS-Chem model and bottom-up inventory

In this study, we employ version v11-1 of the model to conduct a series of simulations to probe changes in NO\(_x\) emissions. The nested grid version of the GEOS-Chem model has a horizontal resolution of 0.5°-(latitude) \(\times \) 0.625°(longitude) over East Asia (60°E - 150°E, 10°S - 55°N), and is driven by the MERRA-2 reanalysis meteorological field. We used the global simulation with 2°-(latitude) \(\times \) 2.5°(longitude) grids to provide the boundary condition (Zhang et al., 2018, 2019). All simulations were run from December 2018 to March 2019 and December 2019 to March 2020. In these simulations, the first month was used for spin-up and the subsequent three months for analysis.

Global anthropogenic NO\(_x\) emissions were taken from EDGAR v4.2 (EC-JRC/PBL, http://edgar.jrc.ec.europa.eu) and overwritten by MIX inventory (Li et al., 2017) over East Asia. Natural NO\(_x\) emissions include biomass burning sources from GFED v4.1, soil sources from Hudman et al. (2012), and lightning described by Murray et al. (2012). The default anthropogenic NO\(_x\) and relevant PM\(_{2.5}\) and \(\mathrm{O}_3 \) precursors in MIX inventory are scaled from 2010 to 2019 following Xu et al. (2020) (Fig. S2).

2.3. Top-down NO\(_x\) emission estimation

We use the mass balance procedure developed by Martin (2003) and Lamsal et al. (2011) and improved by Vinken et al. (2014) and Visser et al. (2019) to estimate the top-down NO\(_x\) emissions using TROPOMI/NO\(_2\) column and GEOS-Chem model. This method takes into account the fact that NO\(_x\) VCD responds non-linearly to surface NO\(_x\) emission change. We perform a sensitivity study by perturbing surface NO\(_x\) emission by 15% to get the scaling factor \(\beta \), which denotes relative change of simulated NO\(_2\) VCD due to a 1% change in NO\(_x\) emission. The influence of NO\(_x\) emission on the tropospheric AMF calculation (the dimensionless factor \(\gamma \)) is also considered following Visser et al. (2019). The equation used to estimate top-down NO\(_x\) emission \((E_{\text{bd}})\) based on bottom-up NO\(_x\) emission \((E_{\text{bu}})\) and TROPOMI NO\(_2\) VCD with AMF from GEOS-Chem using bottom-up NO\(_x\) emission \((C_{\text{TROPOMI}})\) is and simulated NO\(_2\) VCD using bottom-up NO\(_x\) emission \((C_{\text{GC bu}})\) as follows:

\[
E_{\text{bd}} = \frac{E_{\text{bu}} \cdot (1 + \beta(1 + \gamma)) \cdot C_{\text{TROPOMI}}}{C_{\text{GC bu}}}
\]

The scale factor \(\beta \) and \(\gamma \) are calculated using the following equations:

\[
\beta = \frac{\left(C_{\text{GC bu}} - C_{\text{TROPOMI}} \right)}{C_{\text{GC bu}}} \cdot 0.15
\]

\[
\gamma = \frac{\left(C_{\text{TROPOMI}} \cdot \left(1 + \frac{C_{\text{TROPOMI}}}{C_{\text{GC bu}}} - 1 \right) \right) - \left(C_{\text{TROPOMI}} \cdot \left(1 + \frac{C_{\text{GC bu}}}{C_{\text{TROPOMI}}} - 1 \right) \right)}{\left(C_{\text{TROPOMI}} \cdot \left(1 + \frac{C_{\text{GC bu}}}{C_{\text{TROPOMI}}} - 1 \right) \right) \cdot \left(C_{\text{TROPOMI}} \cdot \left(1 + \frac{C_{\text{GC bu}}}{C_{\text{TROPOMI}}} - 1 \right) \right)}
\]

Uncertainties exist in the top-down inventory estimation. First is the uncertainty of satellite data, which is mainly driven by the calculation of air mass factors, and it can amount to \(\pm 30\% \) (Lorente et al., 2019). The second is the model performance in simulating atmospheric NO\(_x\) lifetime. GEOS-Chem simulates noontime hydroxyl (OH) concentration at Beijing for 2020 January to March mean of \(1.5 \times 10^6 \) mole/cm\(^3\), which is lower than Tan et al. (2018) measured for 2016 January and
February (2.4–3.6 × 10^6 molec/cm^3). The underestimation of OH concentration may lead to overestimation of NOx lifetime, but it is difficult to quantify this uncertainty for lack of enough surface observation. Third, the Sentinel-5 Precursor (S–5P) mission has an equator crossing time near 13:30 local solar time. NOx emissions derived from noontime NO2 column may introduce uncertainty considering the diurnal variation of NOx emissions. Fourth, the longer lifetime of NO2 during winter may result in transport of NO2 from source regions (“smearing”) and thus lead to bias of top-down emission estimation. We will validate our top-down NOx emission inventory using surface NO2 measurements and through comparison with NO2 emissions from other studies.

3. Results and discussion

3.1. NOx emission

We conduct simulations for 2019 and 2020 first quarter with the top-down NOx emission inventories for the two years, respectively. Simulated surface NO2 concentration is compared with observations (Fig. S3). The model and observation correlates well with each other with a correlation coefficient of 0.64 for the two years, but the model tends to underestimate NO2 concentration by more than 50%. Surface NO2 measurements are monitored by the chemiluminescence analyzer which may lead to overestimate of NO2 by about 50% due to interference from other nitrogen species (Kharol et al., 2015; Zhang et al., 2016). If we simply cut the observed NO2 concentration by 50%, model underestimation will decline to 4.5% for 2019 and 13.5% for 2020.

We divide the first quarter of 2019 and 2020 into four periods. The first period (P1) is 3-weeks before Chinese New Year holiday, the second period (P2) is the Chinese New Year holiday (2019 Feb 4–10 and 2020 Jan 23–Feb 2), and the third and fourth periods (P3 and P4) are 1–4- and 5–8-weeks after Chinese New Year holiday. Mean satellite retrieved NO2 VCD are compared over the four periods for the year 2019 and 2020, and NO2 emissions were calculated at a weekly level.

3.1.1. Significant NOx emission reduction in China from P1 to P2 and P3 period

Fig. 1 presents NOx emission intensity (Gg/d) for each week before, during, and after the Chinese New Year Holiday. NOx emissions for the whole China and the east part of China (EC, 112°E–122°E, 30°N–42°N) are given. The EC region has the largest population and the most serious air pollution in China. In Fig. 2 we display the mean NOx emission intensity during the four periods of quarter one in 2020 and 2019, and the difference between the two years.

Overall, in 2020, NOx emissions dropped steadily during P1. In P2, NOx emission intensity from China was 44.7% lower than P1, slightly lower than NO2 column change (Fig. 3, 49.0%). In contrast, the decrease in NOx emission intensity in 2019 due to the New Year Holiday effect was only 20.9%. This indicates a much greater influence of the lockdown measures than the holiday effect (Tan et al., 2009) on the reduction of NOx emissions. We should also see that NOx emission from EC experienced a greater influence from COVID-19. In 2020, the decrease rate from P1 to P2 was 52.1% in EC, and it was only 17.2% in 2019. Moreover, NOx emission from EC makes up ~50% of the total NOx emission from China in 2020 P1, 2019 P1 and P2, but it was only 41.2% in 2020 P2.

No increase in NOx emission intensity was observed for the first week after the New Year Holiday, which was extended to combat the spread of COVID-19. Starting on Feb 10, 2020, more and more people went back to work, and NOx emissions from China increased at an average 10.0% rate during the next two weeks. As of Mar 1, 2020, the fourth week after the Chinese New Year Holiday, NOx emission from China was 43.0 Gg/d, which was 19.0% higher than the previous week and 47.0% higher than the New Year Holiday period. As a result, NOx emission intensity from China increased by 20.3% from the 2020 New Year Holiday to the subsequent 4-week period despite the unchanged NO2 columns, but was still 33.5% below the level of P1. By contrast, NO2 emission from EC in P3 only increased by 9.5% than P2, and was 42.3% lower than P1. The mean NOx emission intensity from China for P2 and P3 (33.3 Gg/d) was 36.7% lower than P1. This difference was smaller than observed for NO2 columns during the same periods of 49.8% (Fig. 3). The discrepancy between NOx emission and NO2 column differences can be explained by the shorter lifetime of NO2 in February than in January.

Before the Chinese New Year Holiday, NOx emissions from China was about 20% lower in 2020 than in 2019 (Fig. 2). This change in NOx emissions reflects the long-term trend of decreasing NOx emissions in China (Bauwens et al., 2020; Field et al., 2020), which has been an important and effective control strategy to combat air pollution. Following the holiday, differences in NOx emission from China between 2020 and 2019 were greater than 40% and as high as 54.3% during P2 and P3 periods. This large discrepancy indicates a substantial reduction in NOx emissions due to measures to combat COVID-19.

Our estimation of NOx emission reductions due to lockdown is within reasonable bounds comparing to published works. Huang et al. (2020) reported a 60–70% reduction of NOx emission from China due to the lockdown. Ding et al. (2020) estimated that NOx emission from cities in East China have declined by 20–50%. Zhang et al. (2020) calculated that NOx (22°N – 42°N, 102°E – 122°E) emissions from East China before and during the lockdown are 1589 and 795 Gg/month, respectively. Comparable to Zhang et al. (2020), our estimation of NOx emissions from this region amount to 1348 Gg/month for P1 and 728 Gg/month for P2, respectively.

This is not the first time that a large decrease in air pollutant emissions has been observed over a short period. Previously, China implemented stringent regulations to reduce air pollutant emissions for some key events, such as the 2008 Olympic Games, 2014 Asia-Pacific
Economic Cooperation (APEC) Summit, and 2015 V-Day Military Parade. Indeed, Wang et al. (2010) reported a 47% decrease in NO\textsubscript{x} emission from Beijing during the 2008 Olympic Games. Zhang et al. (2016) estimated a NO\textsubscript{x} emission reduction of 33% in Beijing and 35% in Hebei province during the APEC period. However, these measurements are limited to Beijing and surrounding areas, and for a relatively short time. The pandemic of COVID-19 led to a nation-wide NO\textsubscript{x} emission intensity reduction of 36.7% during the lockdown period (P2 and P3) compared to the pre-crisis (P1) level, and 53.4% compared to the same period in 2019. This may be the upper limit of NO\textsubscript{x} emission control for China at the present level of economy and technology. Anthropogenic NO\textsubscript{x} originates mainly from industry, power plants, and transportation sources. During the lockdown period, most of the business and industries were closed, and people stayed at home to avoid infection. Myllyvirta (2020) reported that coal use in power plants in China fell to a four-year low during the P2 and P3 periods. Crude oil processing of Sinopec dropped by more than 30% in February below the usual
level, and gasoline sales in Beijing during P2 and P3 were only a quarter of the normal level.

3.1.2. The rebound of NOx emission in China during P4 period

As the economy rebounded and energy consumption increased, NOx emission from China began to grow in March 2020. NOx emission intensity during the sixth week (55.0 Gg/d) caught up with that during P1 (52.7 Gg/d). By Mar 29, NOx emission intensity reached 70.4 Gg/d. Despite the relatively small change of NO2 columns (32.5%), the average NOx emission intensity from China in the P4 period was 75.1% higher than that in the P3 period, and more than twice that in the Chinese New Year Holiday. NOx emission intensity during the P4 period in 2020 was only 8.2% less than in 2019. Furthermore, since the seventh week after Feb 3, China’s NOx emission intensity exceeds that in the same period in 2019, indicating a full rebound of NOx emission from China at the end of the first quarter of 2020. However, NOx emission from EC increased at a much slower rate than the national mean level in P4, and it was 22.9% lower than 2019 P4.

Myllyvirta (2020) reported that coal consumption in China returned to the normal range at about seven weeks after the New Year Holiday, and Sinopec crude oil processing during March went back to the normal level. On the other hand, gasoline sales in Beijing only recovered to 50% of the usual level by the end of March, which, to some extent, indicates that NOx emission in EC will see a further increase as the recovery of gasoline sales in April and May.

In summary, the large decrease in NOx emission during the lockdown period may be the upper limit of current NOx emission control in China, and the COVID-19 has greater impact on NOx emission from the EC region than the national mean. Rebound of NOx emission from EC during P4 is weaker compared to the national mean.

3.2. Influence of NOx emission changes on surface O3 and PM2.5

After we calculate NOx emissions from China in 2019 and 2020 first quarter, we use the two sets of emissions to evaluate impact of NOx emission change on PM2.5 and O3. To do so, we use the meteorology field for 2020 quarter one, emissions of all species but NOx are scaled up to the year 2019 on the basis of 2010 MIX emission inventory (Fig. S2). We perform two simulations. In the first simulation we use top-down estimated NOx emission for 2019 and in the second one we use that for 2020. The difference between the two simulations can be treated as influence of NOx emission change. To distinguish the two simulations, we call the simulation with 2019 NOx emission the standard simulation (STD), and the one with 2020 NOx emission the optimized simulation (OPT). We have shown in Table S1 that the model can well capture the spatial distribution of observed O3 and PM2.5 over East China (correlation coefficient greater than 0.60) with acceptable bias (normalized mean bias within ±30%).

Fig. 4 displays simulated 2020 first quarter mean O3 and PM2.5 distribution with 2019 and 2020 NOx emissions, respectively, and the difference between the two years. Overall, 40.5% decrease in NOx emission over EC leads to 36.5% increase in surface O3 concentration. This indicates an overall NOx-saturated (VOCs-limited) regime of ozone formation over EC during 2020 quarter one. Under this condition (NOx-saturated), react with NO2 to generate HNO3 is the main sink of OH (Shah et al., 2020), and decrease of NOx leaves more OH to form O3. PM2.5 responds positively with respect to NOx emission change. 40.5% decrease of NOx emission results in 12.5% decrease in PM2.5 concentration over EC. We use the sensitivity factor η as introduced by (Zhang et al., 2015) to represent influence of NOx emission change on PM2.5 concentration. η value for each period is depicted in Table S2. η value increases as NOx emission reduction rate increases, because that as NOx emission decreases, nitrate formation becomes more sensitive to NOx emission change (Zhang et al., 2019). Besides O3, concentrations of some other atmospheric oxidants, such as HO2, NO3 radical and OH have also increased (Fig. S4). Increase of oxidants in the atmosphere will promote formation of secondary aerosols (Huang et al., 2020; Sun et al., 2020). Secondary aerosols form through homogeneous and heterogeneous pathways, and we find that the elevated oxidants may be more favorable for the heterogeneous pathway. We performed a sensitivity study in which the heterogeneous formation of nitrate is isolated. The result shows that, in the STD simulation,

![Fig. 4](image-url). Simulated 2020 first quarter mean surface O3 (top) and PM2.5 (bottom) concentrations in STD simulation (left) and OPT simulation (middle), and the difference between them (right).
4. Conclusion
The outbreak of COVID-19 lead to substantial decrease of NOx emission and air quality changes in China. The purpose of this study is to quantify the NOx emission changes and subsequent influence on surface PM2.5 and ozone air quality in China due to COVID-19.

Using TROPOMI NO2 columns in combination with the GEOS-Chem chemical transport model, we estimate weekly NOx emissions from China in 2019 and 2020 quarter one. The 44.7% decrease of NOx emission intensity in China from P1 to P2 is substantially higher than the holiday effect in 2019. The nation-wide 53.4% low NO2 emission from China in 2020 lockdown period (P2 and P3) compared to the same period in 2019 indicates a much stronger effect from COVID-19 than previously implemented localized NOx emission regulation. For the second 4-week period after the Chinese New Year Holiday (P4), NO2 emission intensity started to rebound as the resumption of energy use and economic activity. Interestingly, as of Mar 29, in the last two weeks of 2020 quarter one, NOx emission has surpassed that in 2019 by 3.5%, indicating a full rebound of NOx emission from China. Compared to the national total level, NOx emission from EC region received a much greater impact from COVID-19. NOx emission in EC during lockdown was 58.4% lower than 2019, and in P4 it was still 22.9% lower than 2019 P4.

Overall, NOx emission from China in 2020 first quarter is 28.1% lower than that in the same period in 2019, for EC, the ratio is 40.5%. Such large magnitude of decrease in NOx emission has large influence on surface PM2.5 and O3 air quality. We find from model work that 40.5% decrease of NOx emission in EC results in 36.5% increase and 12.5% decrease of surface O3 and PM2.5 concentration, respectively. Elevated O3 and relevant oxidants enhance the secondary aerosol formation through heterogeneous pathway. The complicated interaction between PM2.5 and O3 should be considered in the emission control strategy making process in the future.

Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.scitotenv.2020.142238.

References
Bauwens, M., Compernolle, S., Stavrakou, T., Müller, J.F., Gent, J., Eskes, H., Levelt, P.F., A.R. Veefkind, J.P., Vinkenck, J., Yu, H., Zehner, C., 2020. Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations. Geophys. Res. Lett. 47. https://doi.org/10.1029/2020GL087978.
Boersma, K.F., Eske, H.J., Dirksen, R.J., van der, A.R.J., Veefkind, J.P., Stammes, P., Huijnen, V., Kopp, O.J., Sree, M., Claas, J., Leclerc, J., Richter, A., Zhou, Y., Brunner, D., 2021. An improved tropospheric NO2 column retrieval algorithm for the ozone monitoring instrument. Atmos. Meas. Tech. 4, 1905–1928. https://doi.org/10.5194/amt-4-1905-2011.
Boersma, K.F., Vinken, G.C.M., Eske, H.J. 2016. Representativeness errors in comparing chemical transport and chemistry climate models with satellite UV–VIS tropospheric column retrievals. Geosci. Model Dev. 9, 875–898. https://doi.org/10.5194/gmd-9-875-2016.
Deng, Z., van der, A.R.J., Eskes, H., Miljingu, B., Stavrakou, T., van Geffen, J., Veefkind, P., 2020. Chinese NOx emission reductions and rebound as a result of the COVID-19 crisis quantified through inversion of TROPOMI NO2 observations. Geophys. Res. Lett. 47. https://doi.org/10.1029/2020GL090314.
Field, R.D., Hickman, J.E., Geogdzhayev, I.V., Tsigaridis, K., Bauer, S.E., 2020. Changes in satellite retrievals of atmospheric NOx emission over eastern China during the 2020 COVID-19 lockdowns. Atmos Chem. Phys. Discuss. https://doi.org/10.5194/acp-2020-476 (review).
Huang, X., Ding, A., Gao, J., Zheng, B., Zhou, D., Qin, X., Wang, R., Ren, C., Nie, W., Chi, X., Wang, S., Xu, Z., Chen, L., Li, Y., Che, F., Fang, J., Nang, H., Tong, D., Qin, W., Cheng, W., Liu, W., Fu, Q., Chai, F., Davis, S.-J., Zhang, Q., He, K. 2020. Enhanced secondary pollution reduction of primary emissions during COVID-19 lockdown in China. National Science Review https://doi.org/10.1093/nsr/nwaa137.
Hudman, R.C., Moore, N.E., Meibust, A.K., Martin, R.V., Russell, A.R., Valin, L.C., Cohen, R.C., 2012. Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space based constraints. Atmos. Chem. Phys. 12, 7779–7795. https://doi.org/10.5194/acp-12-7779-2012.
Khalid, S.K., Martin, R.V., Phillips, S., Rohe, L., Lamsal, L.N., Jerrer, M., Bauer, M., Crouse, D.L., McLinden, C., Burnett, R.T., 2015. Assessment of the magnitude and recent trends in satellite-derived ground-level nitrogen dioxide over North America. Atmos. Environ. 118, 236–245. https://doi.org/10.1016/j.atmosenv.2015.08.011.
Lamsal, L.N., Martin, R.V., van Donkelaar, A., Celarier, E.A., Bucsela, E.J., Boersma, K.F., Dirksen, R., Luo, C., Wang, Y., 2010. Indirect validation of tropospheric nitrogen dioxide retrieved from the OMI satellite instrument: insight into the seasonal variation of nitrogen oxides at northern midlatitudes. J. Geophys. Res. 115. https://doi.org/10.1029/2009JD013351.
Lamsal, L.N., Martin, R.V., Padmanabhan, A., van Donkelaar, A., Zhang, Q., Sioris, C.E., Chance, K., Kurosu, T.P., Newchurch, M.J., 2011. Application of satellite observations for timely updates to global anthropogenic NOx emission inventories. Geophys. Res. Lett. 38, 105810. https://doi.org/10.1029/2011GL046475.
Le, T., Wang, Y., Liu, Y., Jiang, Y., Yang, Y., Li, C., Seinfeld, J.-H., 2020. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science 369, 5. https://doi.org/10.1126/science.abb7431.
Li, M., Zhang, Q., Kurokawa, J.-i., Woo, J.-H., He, K., Lu, Z., Obara, T., Song, Y., Streets, D.G., Carmichael, G.R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, D., Liu, F., Su, H., Zheng, B., 2017. Mx: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 17, 925–963. https://doi.org/10.5194/acp-17-9352017.
Liu, F., Page, A., Strade, S., Yoshida, Y., Choi, S., Zheng, B., Lamsal, L.N., Li, C., Krotkov, N.A., Eskes, H., van der, A.R., Veefkind, J.P., Levelt, P.F., Hauser, O.P., Joiner, J., 2020. Abrupt decline in tropospheric nitrogen dioxide over China after the outbreak of COVID-19. Sci. Adv. 6, aabc2992. https://doi.org/10.1126/sciadv.aabc2992.
Lorente, A., Boersma, K.F., Eske, H.J., Veefkind, J.P., van Geffen, J., de Zeeuw, M.B., Denier van der Gon, H.A.C., Beirle, S., Krol, M.C., 2019. Quantification of nitrogen oxides emissions from build-up of pollution over Paris with TROPOMI. Sci. Rep. 9, 20033. https://doi.org/10.1038/s41598-019-56428-5.
Martin, R.V., 2003. Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns. J. Geophys. Res. 108. https://doi.org/10.1029/2003JD003543.
Murray, L., Jacob, D., Logan, J.A., Hudman, R.C., Koshak, W., 2012. Optimized regional and interannual variability of lightning in a global chemical transport model constrained by US/OTD satellite data. J. Geophys. Res.: Atmospheres. 117 https://doi.org/10.1029/2012JD019734.
Myllyvirta, L., 2020. Coronavirus temporarily reduced China’s CO2 emission by a quarter. Carbonbrief https://www.carbonbrief.org/analysis-coronavirus-has-temporarily-reduced-chinas-co2-emissions-by-a-quarter.
Shah, V., Jacob, D.J., Li, K., Silven, R.F., Zhai, S., Liu, M., Lin, J., Zhang, Q., 2020. Effect of changing NOx lifetime on the seasonality and long-term trends of satellite-observed tropospheric NOx columns over China. Atmos. Chem. Phys. 20, 1483–1495. https://doi.org/10.5194/acp-20-1483-2020.
Shi, X., Brasseur, G.P., 2020. The response in air quality to the reduction of Chinese economic activities during the COVID-19 outbreak. Geophys. Res. Lett. 47. https://doi.org/10.1029/2020GL088070.
Sun, Y., Lei, L., Zhou, W., Chen, C., He, Y., Sun, Y., Jin, Z., Xu, W., Wang, Q., Ji, D., Fu, P., Wang, Z., Worsnop, D.R., 2020. A chemical cocktail during the COVID-19 outbreak in Beijing, China: insights from six-year aerosol particle composition measurements during the Chinese New Year holiday. Sci. Total Environ. 742, 140739. https://doi.org/10.1016/j.scitotenv.2020.140739.

Tan, P.-H., Chou, C., Liang, J.-Y., Chou, C.C.K., Shiu, C.-J., 2009. Air pollution “holiday effect” resulting from the Chinese New Year. Atmos. Environ. 43, 2114–2124. https://doi.org/10.1016/j.atmosenv.2009.01.037.

Tan, Z., Rohrer, F., Lu, K., Ma, X., Bohn, B., Broch, S., Dong, H., Fuchs, H., Gkatzelis, G.I., Hofzumahaus, A., Holland, F., Li, X., Liu, Y., Novelli, A., Shao, M., Wang, H., Wu, Y., Zeng, L., Hu, M., Kroll, S., A., Wohner, A., Zhang, Y., 2018. Wintertime photochemistry in Beijing: observations of RO radicals concentrations in the North China Plain during the BEST-ONE campaign. Atmos. Chem. Phys. 18, 12391–12411. https://doi.org/10.5194/acp-18-12391-2018.

Visser, A.J., Boersma, K.F., Ganzeveld, L.N., Krol, M.C., 2019. European NOx emissions in WRF-Chem derived from OMI: impacts on summertime surface ozone. Atmos. Chem. Phys. 19, 11821–11841. https://doi.org/10.5194/acp-19-11821-2019.

Wang, S., Zhao, M., Xing, J., Wu, Y., Zeng, L., Hu, M., Kroll, S., A., Wohner, A., Zhang, Y., 2010. Quantifying the air pollutants emission reduction during the 2008 Olympic games in Beijing. Environ. Sci. Technol. 44 (7). https://doi.org/10.1021/es9028167.

Wang, Y.X., Zhang, Q.Q., He, K., Zhang, Q., Chai, L., 2013. Sulfate-nitrate-ammonium aerosols over China: response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia. Atmos. Chem. Phys. 13, 2635–2652. https://doi.org/10.5194/acp-13-2635-2013.

Xu, C., Zhang, Q., Yao, Y., Zhang, X., 2020. Changes in PM2.5 sensitivity to NOx and NH3 emissions due to a large decrease in SO2 emissions from 2013 to 2018. Atmospheric and Oceanic Science Letters 13, 6. https://doi.org/10.1080/16742814.2020.1738009.

Zhang, Q., Wang, Y., Ma, Q., Yao, Y., Xie, Y., He, K., 2015. Regional differences in Chinese SO2 emission control efficiency and policy implications. Atmos. Chem. Phys. 15, 6521–6533. https://doi.org/10.5194/acp-15-6521-2015.

Zhao, B., Wang, S.X., Liu, H., Xu, J.Y., Fu, K., Klimont, Z., Hao, J.M., He, K.B., Cofala, J., Amann, M., 2013. NOx emissions in China: historical trends and future perspectives. Atmos. Chem. Phys. 13, 9869–9897. https://doi.org/10.5194/acp-13-9869-2013.