COMPLEX DYNAMICS IN A DISCRETE-TIME SIZE-STRUCTURED CHEMOSTAT MODEL WITH INHIBITORY KINETICS

DAN ZHANG a,b, XIAOCHUN CAI c AND LIN WANG d,*

a School of Mathematics and Computational Science
Xiangtan University
Xiangtan, 411105, Hunan, China

b School of Computer Science and Network Security
Dongguan University of Technology
Dongguan, 523808, Guangdong, China

c College of Finance and Statistics
Hunan University
Changsha, 410079, Hunan, China

d Department of Mathematics and Statistics
University of New Brunswick
Fredericton, NB, Canada

(Communicated by Xiaoqiang Zhao)

ABSTRACT. An inhibitory uptake function is incorporated into the discrete, size-structured nonlinear chemostat model developed by Arino et al. (Journal of Mathematical Biology, 45(2002)). Different from the model with a monotonically increasing uptake function, we show that the inhibitory kinetics can induce very complex dynamics including stable equilibria, cycles and chaos (via the period-doubling cascade). In particular, when the nutrient concentration in the input feed to the chemostat S_0 is larger than the upper break-even concentration value μ, the model exhibits three types of bistability allowing a stable equilibrium to coexist with another stable equilibrium, or a stable cycle or a chaotic attractor.

1. Introduction. The chemostat is an important laboratory device that has been widely used for research in cell biology [8], ecology [4, 19] and evolutionary biology [11, 16, 20, 25, 26]. On the one hand, chemostat experiments can verify predictions made from mathematical modeling; On the other hand, chemostat experiments can provide some challenging problems in dynamical systems and stimulate the development of new mathematical theory. For instance, experiments by Hansen and Hubbell [14] successfully confirmed the theoretical results from mathematical analysis in [15]. Transient oscillations observed in experiments could be due to non-negligible micro-organism’s death and inhibitory kinetics as suggested by mathematical analysis in [24, 29].

Chemostat models mainly consist of differential equations including ordinary differential equations, delay differential equations and partial differential equations (see, for example, [7, 9, 10, 18, 22, 24, 27, 28, 29]). In discrete time steps, in order

2010 Mathematics Subject Classification. Primary: 39A30, 92D25.

Key words and phrases. Chemostat model, inhibitory kinetics, discrete time, chaos, bistability.

* Corresponding author.
to model size structure, authors in [12] formulated a nonlinear matrix model for the evolution, considering a finite set of biomass classes. The discrete-time version of the LaSalle invariance principle is used in [2, 3] for the classical chemostat system to provide a more elegant analysis. In [23], Smith and Zhao extended the result to the \(n\)-species case by using Liapunov functions. The authors in [2] introduced inhomogeneous cell division size and analyzed nonzero globally stable equilibrium. However, these models are based on the assumption that the nutrient uptake and the cell growth function \(f\) is increasing and bounded satisfying \(f(0) = 0, f'(S) > 0\), and \(f''(S) < 0\), where \(S\) is the state variable representing the substrate concentration in the chemostat.

It has been pointed out by many scientists that certain substrates may be growth-limiting at low concentrations and growth-inhibiting at high concentrations [17]. This results in nonmonotone uptake functions. Some specific and general models of inhibitory kinetics have been discussed in [1, 5, 6, 7, 17]. For example, a specific functional form of inhibitory kinetics \(f(S) = \frac{m}{1 + bS + \frac{S}{c}}\) was used [5]. We note that the above mentioned studies considering functional form of inhibitory kinetics only considered in continue-time chemostat models.

In this paper, we aim to extend some results of [2] and [23] for one substrate and one population of microorganisms, to the case with inhibitory kinetics. We show that the inhibitory kinetics can induce very complex dynamics and three types of bistability can be observed. Most interestingly, for the two dimensional full model at the population level, each component is (numerically) shown to be chaotic, while the sum of the two components approaches a constant value.

We organize the rest of this paper as follows. For convenience, we present the model proposed in [2] and introduce our model assumptions in Section 2. We then analyze the limiting system in Section 3 and lift the obtained results to the full model in Section 4. Three types of bistability is numerically explored in Section 5. A brief summary and discussion is given in the last section.

2. The model and model assumptions.

The discrete, size-structured model of single specie on a limiting nutrient in the chemostat proposed in [2] is given by

\[
\begin{align*}
\dot{x}_t+1 &= (1 - E)A(S_t)x_t \\
\dot{S}_t+1 &= (1 - E)[S_t - f(S_t)U_t] + ES^0,
\end{align*}
\]

where \(t = 0, 1, \ldots\), the vector \(x_t \in \mathbb{R}^r_+, r = r_b + r_g + r_d > 0\), gives the distribution of biomass (in nutrient equivalent units) of the microbial population among \(r\) size classes at the \(t\)-th time step. There are \(r_b\) birth classes, \(r_d\) division classes, and \(r_g\) growth classes. \(S_t\) denotes the nutrient concentration at the \(t\)-th time step. \(S^0 > 0\) is the nutrient concentration in the input feed to the chemostat, \(E \in (0, 1)\) is the washout rate for the chemostat. The total biomass of the population at the \(t\)-th time step is given by \(U_t = x_t \cdot 1\), the scalar product of \(x_t\) and \(1 = (1, \ldots, 1) \in \mathbb{R}^r\). The nutrient uptake rate for the population is \(f(S)\). The transition matrix \(A(S_t)\) is given as

\[
A(S_t) = \begin{bmatrix}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{bmatrix},
\]
where A_{12}, A_{23} and A_{31} are zero matrices with sizes $r_b \times r_g$, $r_g \times r_d$ and $r_d \times r_b$, respectively, and

$$A_{11} = \begin{pmatrix} 1 - P_t & 0 & \cdots & 0 \\ MP_t & 1 - P_t & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ MP_t & 1 - P_t & \ddots & 0 \end{pmatrix}_{r_b \times r_b},$$

$$A_{22} = \begin{pmatrix} 1 - P_t & 0 & \cdots & 0 \\ MP_t(1 - D_1) & 1 - P_t & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ MP_t(1 - D_{rd-1}) & 1 - P_t & \cdots & 0 \end{pmatrix}_{r_g \times r_g},$$

$$A_{33} = \begin{pmatrix} 1 - P_t & 0 & \cdots & 0 \\ MP_t & 1 - P_t & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ MP_t & 1 - P_t & \ddots & 0 \end{pmatrix}_{r_d \times r_d},$$

$$A_{13} = \begin{pmatrix} MP_tD_1 \\ \vdots \\ MP_tD_{rd-1} \\ MP_t \end{pmatrix}_{r_b \times r_d},$$

$$A_{21} = \begin{pmatrix} 0 & \cdots & MP_t \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & 0 \end{pmatrix}_{r_g \times r_b},$$

$$A_{32} = \begin{pmatrix} 0 & \cdots & MP_t \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & 0 \end{pmatrix}_{r_d \times r_g},$$

with $P_t = f(S_t)/(M - 1)$, $M = 2^{r_b + r_g + r_d}$ and $D_i = D_i(S_t)$. We refer to [2] for further details.

With previous study carried out in [2, 12, 21, 23] in mind, in order for the model to make biological sense, throughout this paper, we always assume the following two assumptions.

- **(H1)**: The uptake function is in the form of $f(S) = \frac{aS}{1 + bS + cS^2}$, $S \in [0, +\infty)$, $a > 0, b \in \mathbb{R}_+, c > 0$. Moreover, the maximum uptake rate $m := \sup_{S \geq 0} f(S) = f(\sqrt{1/c}) = \frac{a}{b + 2c}$ satisfies $m < M - 1$;

- **(H2)**: The iteration period (or time step) T satisfies

$$T \leq \min\left(\frac{M - 1}{m}, \frac{\ln 2}{(r_b + r_g + r_d)m}\right).$$

To study the dynamics of system (1), we may also need the following assumption.

- **(H3)**: If $aS^0 > 1$, it is required that $g(\xi) = (1 - E)(1 + f(\xi))(S^0 - \xi) \leq S^0$, where $\xi \in (0, S^0)$ is the unique positive solution of $h(v) = 0$ with $h(v)$ defined by

$$h(v) = c^2v^4 + 2bcv^3 + (b^2 + ab + 2c + acS^0)v^2 + 2(a + b)v + 1 - aS^0$$

for $v \in [0, S^0]$.

3. Dynamics of the limiting system. Note that $1^T A(S_t) = [1 + (M - 1)P_1]1^T = (1 + f(S_t))1^T$. It then follows that the total biomass $U_t = 1^T x_t$ satisfies the difference equation
\[U_{t+1} = 1^T x_{t+1} = 1^T A(S_t)x_t = (1 - E)(1 + f(S_t))U_t, \]
Let $Q_t = S_t + U_t$. By (3) and the second equation of (1), we find that Q_t satisfies
\[Q_{t+1} = (1 - E)Q_t + ES^0, \quad t \geq 0, \]
which results in
\[Q_t = S^0 - (1 - E)^t(S^0 - Q_0), \quad t \geq 0. \]
and hence
\[\lim_{t \to \infty} Q_t = S^0. \]
In view of $S_t = Q_t - U_t$ and $\lim Q_t = S^0$, we obtain the limiting system
\[U_{t+1} = (1 - E)(1 + f(S^0 - U_t))U_t := G(U_t) \]
with the initial value $U_0 \in D$, where D is defined as
\[D := \{ U \in \mathbb{R}_+ : U \leq S^0 \}. \]

Our next result implies that D is positively invariant for system (7), and hence (7) defines a discrete dynamical system on D.

Lemma 3.1. Assume $G(U)$ is defined in (7). Then the following statements hold.

(i) If $aS^0 \leq 1$, then $G(D) \subset D$ for $U \in [0, S^0]$ and $G'(U) > 0$;
(ii) If $aS^0 > 1$ and (H3) holds, then $G(D) \subset D$ for any $U \in [0, S^0]$. Furthermore, $G'(U) > 0$ for $U \in (0, S^0 - \xi)$ and $G'(U) < 0$ for $U \in (S^0 - \xi, S^0)$, where ξ is defined in (H3).

Proof. It follows from (7) that $G(U) \geq 0$ for any $U \in [0, S^0]$. A direct calculation yields
\[\frac{d}{dv}((1 + f(v))(S^0 - v)) = -\frac{h(v)}{(1 + bv + cv^2)^2}, \]
where $h(v)$ is defined in (2). By the chain rule, we have
\[G'(U) = \frac{(1 - E)h(S^0 - U)}{(1 + b(S^0 - U) + c(S^0 - U)^2)^2}. \]

If $aS^0 \leq 1$, then clearly $h(S^0 - U) > 0$ for $U \in [0, S^0]$. Thus $G(U)$ is increasing in U and $G(U) \leq G(S^0) = (1 - E)S^0 < S^0$ for $U \in [0, S^0]$. This proves $G(D) \subset D$.

Suppose $aS^0 > 1$. For any $v \in (0, S^0)$, we have $h'(v) > 0$ and $h(0) = 1 - aS^0 < 0$. Further, $h(S^0) = c^2(S^0)^4 + 2bc(S^0)^3 + (b^2 + 2c + ab + acS^0)(S^0)^2 + 2bS^0 + aS^0 + 1 > 0$. Thus $h(v) = 0$ admits a unique positive root $\xi \in (0, S^0)$ and $h(v) < 0$ for $v \in (0, \xi)$ and $h(v) > 0$ for $v \in (\xi, S^0)$. It follows from (9) that $G'(U) > 0$ for $U \in (0, S^0 - \xi)$ and $G'(U) < 0$ for $U \in (S^0 - \xi, S^0)$. This, together with (H3), implies $G(U) \leq G(S^0 - \xi) \leq S^0$.

In the case that $\frac{1}{1 + E} - 1 = \frac{E}{1 + E} < m = \sup_{S \geq 0} f(S)$, the equation $(1 - E)(1 + f(S)) = 1$ admits two positive solutions, which we denote by λ and μ with $\lambda \leq \mu$. Note that these two solutions are referred to as the lower and upper break-even nutrient concentrations, respectively [27]. Further, we know that the function $f(S)$ is strictly increasing for $S \in [0, \lambda]$, and is strictly decreasing for $S \in [\mu, S^0]$ provided that $\mu \leq S^0$.

Theorem 3.2. Suppose that $\frac{E}{1-E} < m$. Let U_t be the solution of (7) with $0 < U_0 \in D$. For the case with $aS^0 \leq 1$ we have the following results.

(i) If $S^0 < \lambda$, then $\lim_{t \to \infty} U_t = 0$;
(ii) If $\lambda < S^0 < \mu$, then $\lim_{t \to \infty} U_t = S^0 - \lambda$;
(iii) If $\mu < S^0$, then $\lim_{t \to \infty} U_t = 0$ when $U_0 < S^0 - \mu$ and $\lim_{t \to \infty} U_t = S^0 - \lambda$ when $U_0 > S^0 - \mu$.

Proof. We first prove (i). Suppose $S^0 < \lambda$. We then have $(1-E)(1+f(S^0-U_t)) < 1$, and hence $U_{t+1} = (1-E)(1 + f(S^0 - U_t))U_t \leq U_t$. Note that for $U_0 \in D$ with $U_0 > 0$, we know $U_t \in D, t \geq 1$. Thus we obtain a sequence $\{U_t\}, t = 0, 1, \cdots$, which is decreasing and is bounded below from 0. Thus the sequence has a limit. In this case, the only fixed point of $G(U)$ is $U_0^* = 0$. Thus $\lim_{t \to \infty} U_t = 0$.

Next we consider the case with $\lambda < S^0 < \mu$. In this case $G(U)$ has two fixed points $U_0^* = 0$ and $U_1^* = S^0 - \lambda$. By Lemma 3.1, we know that $G(U)$ is increasing. If the initial value $U_0 \in (0, S^0 - \lambda)$, then $U_{t+1} = G(U_t) \leq G(S^0 - \lambda) = S^0 - \lambda$ and hence $U_t \in (0, S^0 - \lambda)$ for $t = 0, 1, \cdots$. This implies that $S^0 - U_t \in (\lambda, S^0)$ and $(1-E)(1+f(S^0 - U_t)) > 1$. Consequently, $U_{t+1} = G(U_t) = (1-E)(1+f(S^0 - U_t))U_t \geq U_t$. That is, the solution sequence $\{U_0, U_1, U_2, \cdots\}$ is increasing and bounded above by $S^0 - \lambda$. Thus $\lim_{t \to \infty} U_t = S^0 - \lambda$. If $U_0 \in (S^0 - \lambda, S^0)$, then $U_{t+1} = G(U_t) = (1-E)(1+f(S^0 - U_t))U_t \in (S^0 - \lambda, (1-E)S^0) \subset (S^0 - \lambda, S^0), t = 0, 1, \cdots$. Moreover, $S^0 - U_t \in (0, \lambda)$ and hence $0 < (1-E)(1+f(S^0 - U_t)) < 1$. This implies that the solution sequence $\{U_0, U_1, \cdots\}$ is decreasing and is bounded below by $S^0 - \lambda$. Again, $\lim_{t \to \infty} U_t = S^0 - \lambda$. This proves conclusion (ii).

If $\mu < S^0$, then the map $G(U)$ admits three fixed points $U_0^* = 0, U_1^* = S^0 - \lambda$ and $U_2^* = S^0 - \mu$. For the solution sequence $\{U_0, U_1, \cdots\}$ with $U_0 \in (0, S^0 - \mu)$. Similar to case (ii), we can show that $U_t \in (0, S^0 - \mu)$ and $U_{t+1} \leq U_t$. That is, the solution sequence is monotonically decreasing and is bounded below from 0. Thus $\lim_{t \to \infty} U_t = 0$. For $U_0 \in (S^0 - \mu, S^0 - \lambda)$, we have an increasing solution sequence with an upper bound $S^0 - \lambda$. It is then straightforward to verify that $\lim_{t \to \infty} U_t = S^0 - \lambda$.

If $U_0 \in (S^0 - \lambda, S^0)$, we can show that $U_t \in (S^0 - \lambda, S^0)$ and $\{U_t\}$ is decreasing. As a result, $\lim_{t \to \infty} U_t = S^0 - \lambda$. Therefore, $U_2^* = S^0 - \mu \in (0, S^0 - \lambda)$ is unstable, which separates the basins of attraction of two stable fixed points U_0^* and U_1^*.

For the case $aS^0 > 1$, the monotonicity of the solution sequences cannot be guaranteed, the resulting dynamics of the map $U_{t+1} = G(U_t)$ can be very complex. In the following, we first present some stability result and then use bifurcation diagrams to illustrate the complex dynamics of (7).

Theorem 3.3. Assume that $\frac{E}{1-E} < m$, $aS^0 > 1$, and $G(S^0 - \xi) \leq S^0$, where ξ is the unique positive solution of $h(v) = 0$ defined in (H3). Consider the limiting system (7) with $0 < U_0 \in D$, the following results hold:

(1) If $S^0 \leq \lambda$, then $\lim_{t \to \infty} U_t = 0$;

(2) If $\lambda < S^0 < \mu$, then $U_0^* = 0$ is unstable and $U_1^* = S^0 - \lambda$ is stable provided that

$$(1-E)(S^0 - \lambda)f'(\xi) < 2;$$

(10)

(3) If $S^0 > \mu$, then (3.a) $U_0^* = 0$ is stable and attracts solutions with $U_0 \in [0, S^0 - \mu]$; (3.b) $U_2^* = S^0 - \mu$ is unstable and (3.c) $U_1^* = S^0 - \lambda$ is stable if (10) holds.
Proof. The proof of conclusion (1) is identical to that of (i) in Theorem 3.2.

If \(\lambda < S^0 < \mu \), two fixed points are \(U_0^* = 0 \) and \(U_1^* = S^0 - \lambda \). It follows from (9) and \(S^0 \in (\lambda, \mu) \) that \(G'(0) = (1 - E)(1 + f(S^0)) > 1 \). Thus \(U_0^* = 0 \) is unstable. For the fixed point \(U_1^* = S^0 - \lambda \), its linear stability depends on \(G'(S^0 - \lambda) \). Note that \(G'(S^0 - \lambda) = 1 - (1 - E)(S^0 - \lambda)f'(\lambda) < 1 \) (since \(f'(\lambda) > 0 \)). We conclude that \(U_1^* = S^0 - \lambda \) is locally asymptotically stable if (10) holds.

If \(\mu < S^0 \), \(G(U) \) has three positive fixed points \(U_0^* = 0 \), \(U_1^* = S^0 - \lambda \) and \(U_2^* = S^0 - \mu \) satisfying \(0 < S^0 - \mu < S^0 - \lambda \). In this case \(G'(0) = (1 - E)(1 + f(S^0)) \in (0, 1) \), thus \(U_0^* = 0 \) is stable. Moreover, we can show that \([0, S^0 - \mu] \) is positively invariant and \(U_{t+1} = G(U_t) \leq U_t \) if \(U_t \in [0, S^0 - \mu] \). Therefore, if \(U_0 \in [0, S^0 - \mu] \), then the solution sequence is decreasing and \(\lim_{t \to \infty} U_t = U_0^* = 0 \). For the fixed point \(U_2^* = S^0 - \mu \), since \(\mu < S^0 \) and \(f'(\mu) < 0 \), we obtain

\[
G'(U_2^*) = 1 - (1 - E)(S^0 - \mu)f'(\mu) > 1.
\]

Therefore, \(U_2^* \) is unstable. The stability of \(U_1^* = S^0 - \lambda \) follows from the same linear stability analysis at in case (2).

Corollary 1. Under the assumptions of Theorem 3.3 with \(S^0 > \mu \), if \(G(S^0) < S^0 - \mu \), then there exists \(\eta \in (S^0 - \xi, S^0) \) such that \(G(\eta) = S^0 - \mu \). Thus \(U_0^* = 0 \) also attracts solutions with \(U_0 \in (\eta, S^0) \).

Proof. The existence of \(\eta \) follows from \(G(U) \) is decreasing for \(U \in (S^0 - \xi, S^0) \) and \(G(S^0) < S^0 - \mu \). If \(U_0 \in (\eta, S^0) \), then \(U_1 = G(U_0) \in (0, S^0 - \mu) \). As a consequence of conclusion (3.a), we have \(\lim_{t \to \infty} U_t = 0 \).

Remark 1. In Theorem 3.3, if (10) is not satisfied, i.e., \(G'(U_1^*) = G'(S^0 - \lambda) \leq -1 \), then \(U_1^* \) becomes unstable, a period-doubling cascade to chaos may occur. A representative bifurcation diagram illustrating the dynamics of (7) is presented in Figure 1 (for case (3.c)) (A similar bifurcation diagram can be obtained for case (2) as well).

![Bifurcation diagram for the discrete chemostat model](image)

Figure 1. Bifurcation diagram of the limiting system (7). Here \(f(s) = \frac{as}{1 + 0.1s} \), \(E = 0.1 \), \(S^0 = 100 \), \(U_0 = 70 \) with \(a \in [0.049, 0.059] \). Thus \(asS^0 > 1 \) and \(S^0 > \mu \). A cascade of period-doublings to chaos occurs as \(a \) increases.
4. **Dynamics of the full model.** In this section we consider the dynamics of the full size-structured model (1). To this end, we first lift the results for the limiting system (7) to the reduced system at the total population level, which is described by

\[
\begin{align*}
U_{t+1} &= (1 - E)(1 + f(S_t))U_t \\
S_{t+1} &= (1 - E)(S_t - f(S_t)U_t) + ES^0.
\end{align*}
\]

(11)

The initial value \((U_0, S_0)\) associated with (11) is

\[(U(0), S(0)) \in \Omega := \{(U, S) \in \mathbb{R}^2_+: 0 \leq U + S \leq S^0\}.
\]

Denote by \(L\) the mapping determined by the right side of (11). They (11) can be rewritten as

\[(U_{t+1}, S_{t+1}) = L(U_t, S_t).
\]

(12)

If \((U_t, S_t) \in \Omega\), then \(U_t \leq S^0 - S_t\) and \(S_{t+1} = (1 - E)(S_t - f(S_t)U_t) + ES^0 \geq p(S_t)\), where the function \(p(S)\) is given by

\[p(S) = (1 - E)(S - f(S)(S^0 - S)) + ES^0
\]

with \(p(0) = ES^0 < p(S^0) = S^0\). To ensure that \(L\) does define a discrete dynamical system on \(\Omega\), we need the following lemma.

Lemma 4.1. Consider \(p(S)\) defined in (13). If \(aS^0 \leq 1\), then \(p(S) > 0\); If \(aS^0 > 1\) then \(p(S) \geq 0\) provided that \((H3)\) is further satisfied.

Proof. Direct calculations yield

\[
p'(S) = (1 - E)[1 + f(S) + (S - S^0)f'(S)]
\]

\[= \frac{1 - E}{(1 + bS + cS^2)^2}h(S),
\]

where \(h(S)\) is defined in (2). In the case that \(aS^0 \leq 1\), it is clear that \(h(0) = 1 - aS^0 \geq 0\) and \(h(S) \geq h(0) \geq 0\). Thus \(p'(S) \geq 0\) and hence \(p(S) \geq p(0) = ES^0 > 0\). For the case \(aS^0 > 1\) we have \(h(0) = 1 - aS^0 < 0\) and there exists a unique value \(\xi \in (0, S^0)\) such that \(h(\xi) = 0\) and \(p(S) \geq p(\xi)\) for \(S \in [0, S^0)\). By \((H3)\), it follows from \(g(\xi) = (1 - E)(1 + f(\xi))(S^0 - \xi) \leq S^0\) that \(p(\xi) = S^0 - g(\xi) \geq 0\). This proves that \(p(S) \geq 0\) for \(S \in [0, S^0]\).

Let \((U_t, S_t)\) be the solution of (11) with \((U_0, S_0) \in \Omega\) and \(U_0 > 0\). Throughout this section, we always assume that \(\frac{E}{1 - E} < m\). Thus \(\lambda < \mu\) exist. Denote

\[
E_0 = (0, S^0), \ E_1 = (S^0 - \lambda, \lambda), \ E_2 = (S^0 - \mu, \mu).
\]

Theorem 4.2. Suppose that \(aS^0 \leq 1\). We have the following statements.

\[(I.1):\] If \(S^0 < \lambda\), then \(\lim_{t \to \infty} (U_t, S_t) = E_0;\)

\[(I.2):\] If \(\lambda < S^0 < \mu\), then \(E_0\) is unstable and \(\lim_{t \to \infty} (U_t, S_t) = E_1;\)

\[(I.3):\] If \(S^0 > \mu\), then both \(E_0\) and \(E_1\) are stable and \(E_2\) is unstable.

Proof. Since \(aS^0 \leq 1\), it follows from Lemmas 3.1 and 4.1 that \(L(U, S) \in \Omega\). That is, the set \(\Omega\) is positively invariant. Therefore system (11) defines a discrete dynamical system on \(\Omega\).

For the case with \(S^0 < \lambda\), it follows from \(S_t \leq S^0 < \lambda\) and \(f(S)\) is increasing for \(S \in [0, \lambda]\) that \((1 - E)(1 + f(S_t)) < (1 - E)(1 + f(\lambda)) = 1\). This leads to \(U_{t+1} < U_t\).
On the other hand, $S_t \leq S^0 < \lambda$ implies that $(1 - E) f(S_t) < E$. Consequently
\[
S_{t+1} = (1 - E)(S_t - f(S_t) U_t) + ES^0 \\
= S_t + E(S^0 - S_t) - (1 - E)f(S_t) U_t \\
\geq S_t + E(S^0 - S_t) - EU_t \\
= S_t + E(S^0 - S_t - U_t) \geq S_t.
\]

The monotonicity and boundedness of $\{U_t\}$ and $\{S_t\}$ show that $\lim_{t \to \infty} U_t = U^* \leq S^0$ and $\lim_{t \to \infty} S_t = S^* \leq S^0$ exist. From the first equation of (11), we have $U^* = (1 - E)(1 + f(S^*)) U^*$. This, together with $(1 - E)(1 + f(S^*)) < 1$, immediately shows that $\lim_{t \to \infty} U_t = U^* = 0$. Taking the limit on both sides of the second equation of (11) yields $\lim_{t \to \infty} S_t = S^* = S^0$.

Now we consider the case $\lambda < S^0 < \mu$. In this case, $(1 - E)(1 + f(S^0)) > 1$ and system (11) admits two feasible fixed points, E_0 and E_1. Standard linear stability analysis shows that the two eigenvalues associated with the Jacobian matrix of L at E_0 are $1 - E \in (0, 1)$ and $(1 - E)(1 + f(S^0)) > 1$. This shows that E_0 is unstable and is indeed a saddle point with the stable manifold given by $\{(0, S) : S \in [0, S^0]\}$. As in [21], the two eigenvalues of the Jacobian matrix of L at E_1 are $1 - E$ and $1 - (1 - E)(S^0 - \lambda)f'(\lambda)$. Since $\frac{E}{1 - E} < m$, $0 < \lambda < \sqrt{1/c}$ and $f''(S) < 0$ for $S \in (0, \sqrt{1/c})$, $(S^0 - \lambda)f'(\lambda) < S^0f'(0) = aS^0 \leq 1$. Thus both eigenvalues are in $(0, 1)$ and hence E_1 is locally asymptotically stable.

Since $U_0 > 0$, it follows from (11) that $U_t > 0$, $\forall t > 0$. Clearly the initial condition (U_0, S_0) is not in the stable manifold of E_0. As in the proof of [21, Theorem 2.4], for the orbit $\{(U_t, S_t)\}_{t \geq 0}$, let Λ be its omega limit set. Then Λ is a nonempty, compact, invariant subset in the line segment $U + S = S^0$ in Ω. From the dynamics of L restricted to this line segment and note that $E_0 \notin \Lambda$, we see that Λ contains E_1 and hence $\lim_{t \to \infty} (U_t, S_t) = E_1$.

Suppose that $S^0 > \mu$. Then three fixed points, E_0, E_1 and E_2 of system (11) are all feasible. Note that $(1 - E)(1 + f(S^0)) < 1$, $aS^0 \leq 1$, $f'(\lambda) > 0$ and $f'(\mu) < 0$. For the Jacobian matrix of (11) at E_0, both eigenvalues $1 - E$ and $(1 - E)(1 + f(S^0))$ belong to $(0, 1)$ and hence E_0 is locally asymptotically stable. The local stability of E_1 can be similarly proved as for the case $\lambda < S^0 < \mu$. At the fixed point, E_2, one eigenvalue of its Jacobian matrix is $1 - (1 - E)(S^0 - \mu)f'(\mu) > 1$, the other eigenvalue is $1 - E$. Thus E_2 is unstable.

\begin{proof}
It follows from Lemma 4.1 and (5) that $L(U, S) \in \Omega$ and thus system (11) defines a discrete dynamical system on Ω. Proof of (II.1) is the same as the proof of (I.1) in Theorem 4.2. (II.2) follows from linear stability analysis. In this case, for the fixed point, the Jacobian matrix has two eigenvalues, one is $1 - E \in (0, 1)$ and the other is $1 - (1 - E)(S^0 - \lambda)f'(\lambda) < 1$. Thus E_1 is stable provided (10) holds and is unstable if (10) is not satisfied. (III.c) follows from the same argument as in the proof of (I.3) in Theorem 4.2.
\end{proof}
Remark 2. Denote by \tilde{U}_t the solution of (7) with $\tilde{U}_0 \in D$ and $\tilde{U}_0 = U_0 > 0$. Even though the stability condition for the fixed point $U^*_1 = S^0 - \lambda$ of the limiting system (7) is the same as that for the fixed point $E_1 = (S^0 - \lambda, \lambda)$ of the full model at the population level i.e., system (11) (as can be seen from Theorems 3.3 and 4.3), we should point out that the solution \tilde{U}_t of the limiting system (7) approaches zero does not necessarily imply U_t of (11) tends to zero. In other words, $\lim_{t \to \infty} \tilde{U}_t = 0$ does not imply $\lim_{t \to \infty} (U_t, S_t) \to (0, S^0)$. To illustrate this, we take $a = 0.05$, $b = 0.1$, $c = 0.01$, $S^0 = 100$, $E = 0.1$. Then $\lambda \approx 3.1386$, $\mu \approx 31.8614$. Based on Theorem 3.3, if $U_0 < S^0 - \mu$, then the solution \tilde{U}_t of (7) satisfies $\lim_{t \to \infty} \tilde{U}_t = 0$. If we take $U_0 = 60 < S^0 - \mu \approx 68.1386$, as seen from the left panel of Figure 2, \tilde{U}_t does approach 0, while for system (11) with $(U_0, S_0) = (60, 6)$, the total biomass U_t satisfies $\lim_{t \to \infty} U_t = S^0 - \lambda \approx 96.8614$ (See the right panel of Figure 2).

To describe the dynamics of the full model (1), we first define the set Γ as

$$
\Gamma = \{(x, S) \in \mathbb{R}_r^{r+1} : x \cdot 1 + S \leq S^0\}.
$$

It follows from the positive invariance of Ω for (11) that the set Γ is positively invariant with respect to (1). As in [2, 21, 23], by using the weak ergodic theorem of Golubitsky et al. [13, Corollary 3.2], we can obtain the following result illustrating the biomass has a stable uniform size distribution.

Theorem 4.4. Consider (1). For any $(x_0, S_0) \in \Gamma$ with $x_0 \cdot 1 > 0$, if the solution (U_t, S_t) of (11) satisfies $\lim_{t \to \infty} (U_t, S_t) = (S^0 - \lambda, \lambda)$, then

$$
\lim_{t \to \infty} x_t = \frac{S^0 - \lambda}{r} 1.
$$
5. Bistability: Numerical exploration. Note that when the nutrient concentration in the input feed to the chemostat S^0 is larger than the upper break-even concentration value μ, for system (11), the washout fixed point E_0 is stable, while dynamics of the fixed point E_1 is complex. In this section, we numerically explore possible dynamics. In particular, we demonstrate that system (11) exhibits three types of bistability, namely, type-I: the stable fixed point E_0 coexists another stable fixed point E_1; type-II: the stable fixed point E_0 coexists with a stable cycle; and type-III: the stable equilibrium E_0 coexists with a chaotic attractor.

To numerically demonstrate three types of bistability, we fix parameter values $b = 0.1$, $c = 0.01$, $S^0 = 100$, $E = 0.1$ and vary the value of a. First, we take $a = 0.05$. Calculations yield $\lambda \approx 3.1386$, $\mu \approx 31.8614$. Assumptions of Theorem 4.3 are satisfied and $(1 - E)(S^0 - \lambda)f'(\lambda) \approx 1.9698 < 2$. Thus both E_0 and E_1 are stable. Bistability of type-I occurs, and is demonstrated in Figure 3.

Now we take $a = 0.054$, then $\lambda \approx 2.7927$, $\mu \approx 35.8073$. All assumptions of Theorem 4.3 are satisfied and $(1 - E)(S^0 - \lambda)f'(\lambda) \approx 2.3645 > 2$. Thus E_0 is stable and E_1 is unstable, numerical simulations show that a cycle appears with U_t oscillating about $S^0 - \lambda$. The model outcome is initial condition dependent, bistability of type-II emerges. A representative figure is presented in Figure 4.

Figure 3. Numerical solutions of system (11) with $f(s) = \frac{0.05s}{1+0.1s+0.017s^2}$, $E = 0.1$, $S^0 = 100$. Left: $(U_t, S_t) \to E_0 = (0, S^0)$ as $t \to \infty$, initial condition $(U_0, S_0) = (10, 6)$ was used; Right: $(U_t, S_t) \to E_1 = (S^0 - \lambda, \lambda)$ as $t \to \infty$, initial condition was $(U_0, S_0) = (80, 6)$.

Figure 4. Numerical solutions of system (11) with $f(s) = \frac{0.054s}{1+0.1s+0.017s^2}$, $E = 0.1$, $S^0 = 100$. Left: $(U_t, S_t) \to (0, S^0)$ as $t \to \infty$, initial condition $(U_0, S_0) = (10, 6)$ was used; Right: (U_t, S_t) approaches a stable $2 - cycle$, initial condition was $(U_0, S_0) = (80, 6)$.
Let $a = 0.059$. Then $\lambda \approx 2.4607$, $\mu \approx 40.6393$. All assumptions of Theorem 4.3 are satisfied and $(1 - E)(S^0 - \lambda)f'(\lambda) = 2.85 > 2$. Thus E_0 is stable and E_1 is unstable. Numerical solutions with two sets of initial conditions, $(U_0, S_0) = (10, 6)$ and $(U_0, S_0) = (80, 6)$, are plotted in Figure 5. As shown in Figure 5, bistability of type-III is observed. It is interesting to note that when $(U_0, S_0) = (80, 6)$, though $S_t + U_t \to S^0$, componentwise, both S_t and U_t behave chaotically.

Figure 5. Numerical solutions of system (11) with $f(s) = 0.059s^0 + 0.1s + 0.01s^2$, $E = 0.1$, $S^0 = 100$. Left: $(U_t, S_t) \to (0, S^0)$ as $t \to \infty$, initial condition $(U_0, S_0) = (10, 6)$ was used; Right: (U_t, S_t) approaches a chaotic attractor, initial condition was $(U_0, S_0) = (80, 6)$.

6. **Summary.** In this paper, we have incorporated a specific inhibitory uptake function into the discrete, size-structured chemostat model developed in [2]. Our results demonstrate that the inhibitory kinetics can induce very complex dynamics. Even for the limiting system (7), the attractor can either be a fixed point, a cycle or a chaotic attractor (See Figure 1). For the full model at the population level, system (11) with $aS^0 > 1$, if the nutrient concentration in the input feed to the chemostat S^0 is larger than the upper break-even concentration value μ, we have shown that the model outcome is initial-condition dependent, and the model exhibits three types of bistability (See Figures 3-5). This phenomenon of bistability can never occur when the uptake function is monotonically increasing [21].

It is interesting to note that though the sum of the total biomass and the nutrient approaches a constant value, i.e., $U_t + S_t \to S^0$ as $t \to \infty$, componentwise, the total biomass U_t and the nutrient concentration S_t can both be chaotic (See Figure 5). Moreover, as pointed out in Remark 2, when the uptake function is inhibitory, the solution behavior of the limiting system and that of the full model may not be necessarily equivalent. More precisely, for the total biomass (the U component) alone, the basins of attraction may be different, the initial nutrient concentration does play a role in determining the model outcome.

Acknowledgments. The authors would like to thank the Associate Editor and the anonymous referee for their valuable comments and suggestions, which greatly improved the presentation of this work. Part of the work was carried out when DZ and XC were visiting the University of New Brunswick (UNB); DZ and XC would like to thank the hospitality they received from UNB.

DZ was partially supported by the National Natural Science Foundation of China (No. 11501193) and the China Post Doctorial Fund (No. 2015M582335). XC was partially supported by the National Social Science Foundation of China.
REFERENCES

[1] J. F. Andrews, A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, *Biotech. Bioeng.*, **10** (1968), 707–723.

[2] J. Arino, J.-L. Gouze and A. Sciandra, A discrete, size-structured model of phytoplankton growth in the chemostat, *J. Math. Biol.*, **45** (2002), 313–336.

[3] R. A. Armstrong and R. McGehee, Competitive exclusion, *Am. Nat.*, **115** (1980), 151–170.

[4] L. Becks, F. M. Hilker, H. Malchow, K. Jürgens and H. Arndt, Experimental demonstration of chaos in a microbial food web, *Nature*, **435** (2005), 1226–1229.

[5] B. Boon and H. Laudeuout, Kinetics of nitrite oxidation by Nitrobacter winogradskyi, *Biochem. J.*, **85** (1962), 440–447.

[6] A. W. Bush and A. E. Cook, The effect of time delay and growth rate inhibition in the bacterial treatment of wastewater, *J. Theor. Biol.*, **63** (1976), 385–395.

[7] G. J. Butler and G. S. K. Wolkowicz, A mathematical model of the chemostat with a general class of functions describing nutrient outake, *SIAM J. Appl. Math.*, **45** (1985), 138–151.

[8] E. P. Cohen and H. Eagle, A simplified chemostat for the growth of mammalian cells: characteristics of cell growth in continuous culture, *J. Exp. Med.*, **113** (1961), 467–474.

[9] J. M. Cushing, A competition model for size-structured species, *SIAM J. Appl. Math.*, **49** (1989), 838–858.

[10] J. M. Cushing, *An Introduction to Structured Population Dynamics*, Regional Conference Series in Applied Mathematics 71, SIAM, Philadelphia, PA, 1998.

[11] D. E. Dykhuizen and A. M. Dean, Evolution of specialists in an experimental microcosm, *Genetics*, **167** (2005), 2015–2026.

[12] T. B. K. Gage, F. M. Williams and J. B. Horton, Division synchrony and the dynamics of microbial populations: A size-specific model, *Theor. Pop. Bio.*, **26** (1984), 296–314.

[13] M. Golubitsky, E. B. Keeler and M. Rothschild, Convergence of the age-structure: Applications of the projective metric, *Theor. Pop. Bio.*, **7** (1975), 84–93.

[14] S. R. Hansen and S. P. Hubbell, Single nutrient microbial competition: Agreement between experimental and theoretical forecast outcomes, *Science*, **207** (1980), 1491–1493.

[15] S. B. Hsu, S. P. Hubbell and P. Waltman, A mathematical theory for single nutrient competition in countinuous cultures of micro-organisms, *SIAM J. Appl. Math.*, **32** (1977), 366–383.

[16] L. Jones and S. P. Ellner, Effects of rapid prey evolution on predator-prey cycles, *J. Math. Biol.*, **55** (2007), 541–573.

[17] J. L. Jost, J. F. Drake, A. G. Fredrickson and H. M. Tsuchiya, Interactions of Tetrahymena pyriformis, Escherichia coli, Azotobacter vinelandu and glucose in a minimal medium, *J. Bacteriol.*, **113** (1973), 834–841.

[18] J. A. J. Metz and O. Diekmann, *The Dynamics of Physiologically Structured Populations*, Lecture Notes in Biomathematics 68, Springer-Verlag, New York, 1986.

[19] S. Pavlou and I. G. Kevrekidis, Microbial predation in a periodically operated chemostat: A global study of the interaction between natural and externally imposed frequencies, *Math. Biosci.*, **108** (1992), 1–55.

[20] E. Senior, A. T. Bull and J. H. Slater, Enzyme evolution in a microbial community growing on the herbicide Dalapon, *Nature*, **263** (1976), 476–479.

[21] H. L. Smith, A discrete, size-structured model of microbial growth and competition in the chemostat, *J. Math. Biol.*, **34** (1996), 734–754.

[22] H. L. Smith and P. Waltman, *The Theory of the Chemostat: Dynamics of Microbial Competition*, Cambridge University Press, 1995.

[23] H. L. Smith and X.-Q. Zhao, Competitive exclusion in a discrete-time, size-structured chemostat model, *Discrete Contin. Dyn. Syst. Ser. B.*, **1** (2001), 183–191.

[24] L. Wang and G. S. K. Wolkowicz, A delayed chemostat model with general delayed response functions and differential removal rates, *J. Math. Anal. Appl.*, **321** (2006), 452–468.

[25] H. A. Wichman, J. Millstein and J. J. Bull, Adaptive molecular evolution for 13,000 phage generations: A possible arms race, *Genetics*, **170** (2005), 19–31.

[26] L. M. Wick, H. Weilenmann and T. Egli, The apparent clock-like evolution of Escherichia coli in glucose-limited chemostats is reproducible at large but not at small population sizes and can be explained with Monod kinetics, *Microbiology (Reading, Engl.)*, **148** (2002), 2889–2902.
[27] G. S. K. Wolkowicz and Z. Lu, Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates, *SIAM J. Appl. Math.*, **52** (1992), 222–233.

[28] J. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat, *SIAM J. Math. Anal.*, **38** (2007), 1860–1885.

[29] H. Xia, G. S. K. Wolkowicz and L. Wang, Transient oscillations induced by delayed growth response in the chemostat, *J. Math. Biol.*, **50** (2005), 489–530.

Received May 2018; revised August 2018.

E-mail address: zhang11dan@126.com
E-mail address: cxchn@hnu.edu.cn
E-mail address: lwang2@unb.ca