Effect of mitogen-activated protein kinase signal transduction pathway on multidrug resistance induced by vincristine in gastric cancer cell line MGC803

Bo Chen, Feng Jin, Ping Lu, Xiang-Lan Lu, Ping-Ping Wang, Yun-Peng Liu, Fan Yao, Shu-Bao Wang

INTRODUCTION
Multidrug resistance (MDR) is a major factor in the failure of many forms of chemotherapy. Several different molecular mechanisms will switch on in MDR cells, the most investigated mechanisms with known clinical significance are: (1) activation of transmembrane proteins effluxing different chemical substance from the cells, including mainly P-glycoprotein (P-gp) encoded by MDR1 and multidrug resistance related protein (MRP); (2) activation of the enzymes of the glutathione detoxification system (especially GST-π); (3) alteration of the genes and proteins involved in the control of apoptosis (especially p53 and Bcl-2) [15-17]. MDR associated genes are expressed in a large proportion of human tumors, and its expression in several different forms of cancer was shown to be associated with a lack of response to combination chemotherapy. MDR1 expression is usually low or undetectable prior to treatment, but it is frequently increased during the progression of the disease and, most noticeably, after chemotherapy. The increased expression of MDR1 mRNA can be found in some drug-sensitive cancer cells by transient exposure to different chemotherapeutic drugs [18-20].

The signal transduction pathway of the mitogen-activated protein kinase (MAPK) plays a critical role in cell proliferation, differentiation and apoptosis. The ERK1/2 (Ras/Raf-1/MEK1/2/ERK1/2) signal transduction pathway is a subfamily of MAPK. The expression of MDR and the activation of MAPK are increased in cancer cells after treatment with various therapeutic drugs. The selective inhibitor of MEK1/2, PD098059, has been shown to significantly reverse the drug resistance of drug resistant cell line L1210/VCR [21, 22]. The mechanism is unclear. Whether MAPK plays a role in MDR, and whether the alteration of MEK can regulate the expression of MDR need to be elucidated.

Our study was to observe the expressions of associated genes of MDR of human gastric cancer cell line MGC803 by their transient exposure to vincristine (VCR) and the effect on MDR by the specific inhibitor of MEK1/2, PD098059.

MATERIALS AND METHODS

Reagents
Human gastric cancer cell line MGC803 was obtained from Tumor Research Institute (China Medical University, Shenyang). RPMI1640 medium was the product of Gibco (USA). Chemical drug vincristine was purchased from Hualian Co. (Shanghai, China). PD098059 was the product of Promega (USA). Rabbit anti-human P-gp, MRP1, GST-π polyclonal antibody were products of Oncogen (USA). Alkaline phosphatase-conjugated goat anti-rabbit IgG was purchased from Zhongshan Co. (Beijing).

Morphological analysis of cells
After treated with VCR (20 µg/L) or VCR (20 µg/L)+PD098059 (10 µmol/L) for 24 h, 48 h, MGC803 cells were analyzed by wright-Giemsa staining, and the morphology of cells was examined under optic microscope.
Cell cycle analysis

MGC803 cells (1×10^5/L) were seeded into 12-well plates and cultured in 1 mL RPMI medium. After cultured for 4 h, cells were treated with VCR (20 µg/L), PD098059 (10 µmol/L) or VCR (20 µg/L) + PD098059 (10 µmol/L) for 24 h, 48 h, 96 h. Cells were harvested and washed with ice-cold PBS twice, centrifuged (1200 g, 5 min) and supplemented with ice-cold 70 µL/L ethanol overnight. Cells were treated with RNase (200 µg/L) at 37 °C for 1 h after washed with ice-cold PBS twice, then centrifuged (120 g, 5 min), treated with PI (20 µg/mL) for 30 min in dark room at 4 °C. Cell cycle was analyzed by flow cytometer and CELLQuest software.

MTT assay of drug sensitivity

Cells (1×10^5/L) pretreated with VCR (20 µg/L) for 72 h were plated into 96-well plates and cultured in 100 µL RPMI medium. After cultured for 4 h, cells were divided into two groups: one group was treated with various concentrations of VCR (1 µg/L, 10 µg/L, 100 µg/L, 1000 µg/L), the other group was treated with a fixed concentration of PD098059 (10 µmol/L) and various concentration of VCR (1 µg/L, 10 µg/L, 100 µg/L, 1000 µg/L). The unpretreated MGC803 cells were treated with various concentration of VCR (1 µg/L, 10 µg/L, 100 µg/L, 1000 µg/L) as negative control group. After treated for 72 h, 20 µL of 5 g/L MTT [3-(4,4-dimeththiazol-2-yl)2,5-diphenylterazolium bromide] in PBS was added to each well, incubated for 4 h at 37 °C and the formed formazan crystals were dissolved in 100 µL of DMSO. The absorbance was recorded at 570 nm on a microplate reader (BIORAD). Drug sensitivity is expressed as IC_{50} for cells, which the concentration of drugs that caused a 50% reduction in the at 570 nm relative to untreated cells (controls).

Western blot analysis

MGC803 cells were harvested after treated with VCR (20 µg/L) or VCR (20 µg/L)+ PD098059 (10 µmol/L) for 24, 48, 72 h. A total of 2×10^5 cells were lysed in 200 µL RIPA buffer containing phenylmethy fluoride (PMIF, 100 mg/L), Aprotinin (2 mg/L), 50 mmol/L Triscl pH 7.4, 150 mmol/L NaCl, 1 g/L SDS, 10 g/LTriton-100, 1 mmol/L EDTA pH 8.0. Protein samples were sonicated on ice, lysed for 40 min at 4 °C, then centrifuged (15 400 g, 20 min) at 4 °C. The supernatant was transferred to a new tip on ice and then the amount of the protein calculated. Protein samples were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDSPAGE), transferred to a PVDF membrane. The membrane was incubated in a blocking solution containing 50 g/L fat free milk powder for 1 h, then probed with rabbit anti-human P-gp polyclonal antibody overnight, and incubated with alkaline phosphatase-conjugated goat anti-rabbit IgG for 2 h. The membrane was then stained by blue tetrazolium (NBT) and 5'-bromo-4-chloro-3 - indolphosphate (BCIP) solution. The integrated density value (IDV) was analyzed by Fluorchem software.

Statistical analysis

Data were analyzed by chi square test. P<0.05 was considered as significant.

RESULTS

Apoptosis of cells treated with VCR and PD098059

The apoptotic bodies were observed in the MGC803 cells after treated with VCR (20 µg/L) or VCR (20 µg/L)+ PD098059 (10 µmol/L) for 48 h (Figure 1A, B, C).

The apoptosis of MGC803 cells was detected by flow cytometric analysis. The rate of apoptotic cells treated with VCR for 72 h was 18.41%, and that treated with VCR and PD098059 for 72 h was 35.61%. There was a significant difference between them (P<0.05). The apoptotic rates of MGC803 cells untreated and treated with PD098059 only were 8.46% and 6.26%. There was no significant difference between them (P>0.05) (Figure 2).

Drug sensitivity of cells treated with VCR and PD098059

The IC_{50} of MGC803 pretreated with VCR for 72 h followed by treatment with various concentrations of VCR was 284±13.2 µg/L. It was 2.24-fold as that of negative control group (127±17.6 µg/L), and 1.48-fold as those of cells treated with various concentrations of VCR (191±27.9 µg/L). And, the concentration of PD098059 was fixed. It showed that the drug-resistance of MGC803 pretreated with VCR was increased and PD098059 could reverse the drug resistance induced by VCR partially.

Expression of MDR1, MRP1 and GST-π

Western blot was used to detect the expression of MDR associated genes. The expression of P-gp in MGC803 cells gradually increased after treated with VCR for 24-72 h (Table 1, Figure 3). But the expression of MRP1 and GST-π did not increase significantly (Table 1, Figure 3). The expression of P-gp was inhibited when MGC803 cells were treated with VCR and PD098059 for 24-72 h (Table 1, Figure 3).
untreated cells; Lane 2, positive control cells; Lane 3, cells treated for 24 h; Lane 4, cells treated 48 h; Lane 5, cells treated for 72 h.

Table 1 IDV of expression of MDR associated gene

Group	VCR (MDR1)	VCR (MRP1)	VCR (GST-π)	VCR+PD098059 (MDR1)
Untreated MGC803 cells	116±7.5	38±14.5	122±16	54±9.5
Positive control	192±8.6	64±13.2	144±21	105±9.5
24 h	159±9.5	34±9.3	123±19.5	63±16.7
48 h	172±7.6	30±11.5	110±15.6	64±21.1
72 h	196±15.1	33±15.5	110±13.6	58±9.5

DISCUSSION

Different tumors are different in sensitivity to chemotherapeutic drugs, and drug resistance can be induced by chemotherapy. The failure of cancer chemotherapy is mainly due to the overexpression of associated genes of MDR. Cytotoxic drug resistant cell lines have been induced after long-term exposure to gradient concentrations of cytotoxic drugs. Whether the expression of MDR could be induced by transient exposure to chemotherapeutic drugs has aroused. Chaudhary et al have found that the expressions of MDR1 mRNA in drug sensitive leukemia cell line K562 increased by short-term exposure to different chemotherapeutic drugs. Schondorf et al also found that MDR1-mRNA was detectable in each cell line when short-term cultures of 6 established ovarian cancer cell lines were exposed to one of three anticancer drugs at concentrations equivalent to the clinically achievable plasma peak concentration. The method described here was easy to perform and could be of striking value in predicting the development of tumor chemoresistance. Our results of western blot showed that the expression of P-gp in MGC803 cells increased significantly but the expressions of MRP1 and GST-π did not increase after induction by VCR for 72 h and the MTT assay showed that the drug resistance of MGC803 cells pretreated with VCR was 2.24-fold as that of untreated MGC803 cells. It suggested that the expression of MDR1 in MGC803 cells could be induced after transient exposure to VCR.

Mitogen-activated protein kinases (MAPKs), found in all eukaryotes, are common participants in signal transduction pathways from the membrane to the nucleus, and play an important role in cell proliferation, differentiation and apoptosis. The mammalian MAPK family includes ERK1/2, JNK/SAPKs, ERK4 and etc. ERK1/2 is the most important subgroup among them. ERK1/2 signal transduction pathways contain at least three protein kinases. They are Raf-1, MAPK/ERK kinases1/2(MEK1/2) and ERK1/2. Raf-1 is activated by Ras, then phosphorylates two residues, either serine or threonine, to activate MEK1/2. MEK1/2 activates ERK1/ERK2 by...
phosphorylating a tyrosine and a threonine residues[31].

Signal transduction pathways play critical roles in pathogenesis and progress of tumor. The activation of MAPK and expression of MDR can be induced by anti-cancer drugs[32]. But the relation between them is not clear. Kisucuka et al found PD098059 significantly reduced the survival of murine vinrirstine resistant L1210/VCR cells with a decrease of LC50 to vincristine from 2.65 mmol/L to 0.67 mmol/L. The result of the study demonstrated that the inhibitor of MEK1/2 signaling pathway was a repressor of VCR resistance in L1210/VCR cells, but the precise mechanism of PD098059 in modulation of MDR is not resolved yet, and the role of ERK-mediated phosphorylation cascade could be considered[33]. Ding et al found that PD098059 re-sensitized the Taxol resistant human ovarian cancer cell line A1847/TX at least 20-fold, but when MDR1 cDNA was stably expressed in the wild-type cell line to generate a highly Taxol-resistant sub-line, 1847/MDR5, MAPK kinases again became activated. This result demonstrated that the increased activity of the signaling pathway in the Taxol-resistant lines was directly attributable to MDR1 overexpression and was not due to the effects of Taxol itself, and that MAPK regulated the expression of MDR1[31]. It has been found that the expression of MDR1 can block apoptosis induced by the Fas ligand cascade. Expression of MDR1 resulted in a decrease in the rate of production of active caspase 3, a key effector caspase in the apoptotic cascade, upon Fas ligation[31]. The ERK1/2 pathway has also been shown to inhibit caspase-3 activation[34]. Another possibility is that MDR1 may have additional physiological functions, for instance, MDR1 induces novel Na+ and Cl dependent pathway for transmembrane H+ efflux that results in intracellular alkalization[35]. Apoptosis induced by chemotherapeutic drugs is prevented by intracellular acidification and the induction of apoptotic events such as DNA laddering can be inhibited by increasing the intracellular pH in this manner. In a recent study, Wittstein et al demonstrated that inhibition of the ERK1/2 pathway using PD098059 resulted in re-alkalinisation of vascular endothelial cells in perfusion experiments[36]. Thus alterations in cellular pH may provide the stimulus for a variety of signaling pathways and responses mediated by both MDR and ERK1/2. The relation between MAPK and MDR1 is not clear yet. MAPK signal pathway may combine with other different mechanisms to modulate the expression of MDR1. Our study showed that PD098059 could reduce the drug resistance and enhance the killing action of VCR, and rates of apoptosis of MGC803 cells which were treated with VCR only increased from 18.41% to 35.61% when treated with PD098059 and VCR. It showed that PD098059 could reverse the drug resistance partially by reducing the IC50 of MGC803 cells pretreated by VCR from (287±13.2) μg/L to (191±27.9) μg/L. At the same time, the expression of P-gp was inhibited by PD098059. It was suggested that when MGC803 cells were treated with VCR, the stimulation may be transducted by activation of MAPK signaling pathway to MDR1 gene and the expression of MDR1 increased. As a result, VCR was transported out of cells and multidrug resistance developed. The inhibitor of MEK1/2, PD098059 could reduce the expression of mdr1 and drug resistance of cells exposed to VCR by blocking the ERK1/2 signal transduction pathway. The precise mechanism between MDR1 and MAPK signal transduction pathway needs further study.

REFERENCES

1. Zhang LJ, Chen KN, Xu GW, Xing HP, Shi XT. Congenital expression of mdr-1 gene in tissues of carcinoma and its relation with pathomorphology and prognosis. World J Gastroenterol 1999; 5: 53-56
2. Thottassery JV, Zambetti GP, Arimori K, Schuetz EG, Schuetz JD. p53-dependent regulation of MDR1 gene expression causes selective resistance to chemotherapeutic agents. Proc Natl Acad Sci U S A 1997; 94: 11037-11042
3. Nagata J, Kijima H, Hatanaka A, Arai S, Miyachi H, Abe Y, Yamazaki H, Nakamura M, Watanabe N, Mine T, Kondo T, Scanlon KJ, Ueyama Y. Reversal of drug resistance using hammerhead ribozymes against multidrug resistance-associated protein and multidrug resistance 1 gene. Int J Oncol 2002; 21: 1021-1026
4. Lage H, Perlitz C, Abele R, Tampe R, Dietel M, Schadendorf D, Sinha P. Enhanced expression of human ABC-transporter tap is associated with cellular resistance to mitoxantrone. FEBS Lett 2001; 503: 179-184
5. Zhan M, Yu D, Lang A, Li L, Pollock RE. Wild type p53 sensitizes soft tissue sarcoma cells to doxorubicin by down-regulating multidrug resistance-1 expression. Cancer 2001; 92: 1556-1566
6. Liu B, Staren E, Iwamura T, Appert H, Howard J. Effects of Taxotere on invasive potential and multidrug resistance phenotype in prostate cancer cell line SUIT-2. World J Gastroenterol 2003; 7: 143-148
7. Stavrovskaya AA. Cellular mechanisms of multidrug resistance of tumor cells. Biochemistry 2000; 65: 95-106
8. van Brussel JP, van Steenbrugge GJ, Romijn JC, Schroder FH, Middick GH. Chemoresistance of prostate cancer cell lines and expression of multidrug resistance-related proteins. Eur J Cancer 1999; 35: 664-671
9. Rueflii AA, Smyth MJ, Johnstone RW. HMBa induces activation of a caspase-independent cell death pathway to overcome P-glycoprotein-mediated multidrug resistance. Blood 2000; 95: 2378-2385
10. Bohacova V, Kvackajova J, Barancik M, Drobsna Z, Breier A. Glutathione S-transferase does not play a role in multidrug resistance of L1210/VCR cell line. Physiol Res 2000; 49: 447-453
11. Smyth MJ, Krasovskis E, Sutton VR, Johnstone RW. The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc Natl Acad Sci U S A 1998; 95: 7024-7029
12. Naito S, Yokomizo A, Koga H. Mechanisms of drug resistance in chemotherapy for urogenital carcinoma. Int J Urol 1999; 6: 427-439
13. Warr JR, Bamford A, Quinn DM. The preferential induction of apoptosis in multidrug-resistance KB cells by 5-fluorouracil. Cancer Lett 2002; 175: 39-44
14. Roeppe PD. PH and multidrug resistance. Novartis Found Symp 2001; 240: 232-247
15. Holzmayer TA, Hilsenbeck S, Von Hoff DD, Roninson IB. Clinical correlates of MDR1 (P-glycoprotein) gene expression in ovarian and small-cell lung carcinomas. J Natl Cancer Inst 1992; 84: 1486-1491
16. Chan HS, Thornor PS, Haddad G, Ling V. Immunohistochemical detection of P-glycoprotein: Prognostic correlation in soft tissue sarcoma of childhood. J Clin Oncol 1990; 8: 689-704
17. Tseng CP, Cheng AJ, Chung JT, Tseng CH, Wang HM, Liao CT, Chen H, Tseng KC. Quantitative analysis of multidrug-resistance mdr1 gene expression in head and neck cancer by real-time RT-PCR. Jpn Cancer J Res 2002; 93: 1230-1236
18. Schondorf T, Kurbacher CM, Gohring UJ, Benz C, Becker M, Sarotius J, Kolhagen H, Mallman P, Neumann R. Induction of MDR1 gene expression by antineoplastic agents in ovarian cancer cell lines. Anticancer Res 2002; 22: 2199-2203
19. Kato A, Miyazaki M, Ambiru S, Yoshitomi H, Ito H, Nakagawa K, Shimizu H, Yokosuka O, Nakajima M. Multidrug resistance gene (MDR-1) expression as a useful prognostic factor in patients with human hepatocellular carcinoma after surgical resection. J Surg Oncol 2001; 78: 110-115
20. Sonneveld P. Multidrug resistance in haematological malignancies. J Intern Med 2000; 247: 521-534
21. Chaudhary PM, Roninson IB. Induction of multidrug resistance in human cells by transient exposure to different chemotherapeutic drugs. J Natl Cancer Inst 1993; 85: 632-639
22. Zhang P, Wang D, Zheng G. Induction of multidrug resistance in Tca8113 cells by transient exposure to different chemotherapeutic drugs. Hua xi Kou qiang Yi xue Zhai 2003; 21: 70-73
23. Brugger D, Brischwein K, Liu C, Bader P, Niethammer D, Gekeler V, Beck JF. Induction of drug resistance and protein kinase C genes in A2780 ovarian cancer cells after incubation with antine-
oplasic agents at sublethal concentrations. Anticancer Res 2002; 22: 4229-4232

24 Schondorf T, Neumann R, Benz C, Becker M, Riffelmann M, Gohring UJ, Sartorius J, von Konig CH, Breidenbach M, Valter MM, Hoopmann M, Di Nicolantonio F, Kurbacher CM. Cisplatin, doxorubicin and paclitaxel induce mdr1 gene transcription in ovarian cancer cell lines. Recent Results Cancer Res 2003; 161: 111-116

25 Kisacka J, Barancik M, Bohacova V, Breier A. Reversal effect of specific inhibitors of extracellular-signal regulated protein kinase pathway on P-glycoprotein mediated vincristine resistance of L1210 cells. Gen Physiol Biophys 2001; 20: 439-444

26 Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades. Adv Cancer Res 1998; 74: 49-139

27 Karin M. Mitogen-activated protein kinase cascades as regulators of stress responses. Ann N Y Acad Sci 1998; 851: 139-146

28 Evans DR, Hemnings BA. Signal transduction. What goes up must come down. Nature 1998; 394: 23-24

29 Chen J, Fuji K, Zhang L, Roberts T, Fu H. Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc Natl Acad Sci USA 2001; 98: 7783-7788

30 Busca R, Abbe P, Mantoux F, Aberdam E, Peyssonnaux C, Eychene A, Ortonne JP, Ballotti R. Ras mediates the CAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes. EMBO J 2000; 19: 2900-2910

31 Payne DM, Rossonomd AJ, Martino P, Erickson AK, Her JH, Shabanowitz J, Hunt DF, Weber MJ, Sturgill TW. Identification of the regulatory phosphorylation sites in pp42/ERK mitogen-activated protein kinase (MAP kinase). EMBO J 1991; 10: 885-892

32 Dent P, Jarvis WD, Birrer MJ, Fisher PB, Schmidt-Ullrich RK, Grant S. The roles of signaling by the pp42/44 mitogen-activated protein (MAP) kinase pathway; a potential route to radio- and chemotherapy sensitization of tumor cells resulting in the induction of apoptosis and loss of clonogenicity. Leukemia 1998; 12: 1843-1850

33 Ding S, Chamberlain M, McLaren A, Goh L, Duncan I, Wolf CR. Cross-talk between signalling pathways and the multidrug resistant protein MDR-1. Br J Cancer 2001; 85: 1175-1184

34 Kim MS, So HS, Park JS, Lee KM, Moon BS, Lee HS, Kim TY, Moon SK, Park R. Hwansodan protects PC12 cells against serum-deprivation-induced apoptosis via a mechanism involving Ras and mitogen-activated protein (MAP) kinase pathway. Gen Pharmacol 2000; 34: 227-235

35 Fritz F, Howard EM, Hoffman MM, Roepe PD. Evidence for altered ion transport in Saccharomyces cerevisiae overexpressing human MDR1 protein. Biochemistry 1999; 38: 4214-4226

36 Wittstein IS, Qiu W, Ziegelstein RC, Hu Q, Kass DA. Opposite effects of pressurized steady versus pulsatile perfusion on vascular endothelial cell cytosolic pH: role of tyrosine kinase and mitogen-activated protein kinase signaling. Circ Res 2000; 86: 1290-1296

Edited by Zhu LH Proofread by Xu FM