The Maillard Reaction (MR), named after its discoverer Louis Maillard from France, actually consists of a number of complex chemical reactions which require amino acids and reducing sugars as substrates. It can occur at room temperature but is intensified at higher temperatures so it is mostly associated with processing and heating of food rich in sugars and amino acids. The reaction is well-known for browning it causes in thermally treated foodstuffs. Many factors influence the type of MRPs formed: pH, sugar content, and processing conditions (temperature, pressure, duration). The compounds formed exhibit different biological properties, some are harmful to organisms and some are considered to be beneficial. Maillard Reaction products. The reaction can be briefly characterized in a few steps:

1. Reaction of reducing sugars’ carbonyl group (glucose, fructose, disaccharides hydrolysis products) with a free amino group (present in amino acids or proteins, mainly the ε-amino group of lysine, but also the α-amino groups of terminal amino acids in proteins). As a result a Schiff base is formed which is a tautomeric form of N-substituted glycosylamine.

2. N-substituted glycosylamine undergoes rearrangement and gives ketosamine or aldosamine. Amadori rearrangement product (1-amino-1-deoxy-2-ketose) is formed if aldoses are react or Heyns rearrangement product is formed (2-amino-2-deoxyaldose) if ketoses are used. One of the Amadori rearrangement products is furosine (Figure 2) formed when the ε-amino group of lysine react with the carbonyl group of glucose (Erbersdobler and Somozoa, 2007; Martins et al., 2000; Nahid and Niaz, 2015; Parker 2012).

3. Amadori rearrangement products degrade, following pathway which depend on pH. It is accompanied by dehydration.

 a. If pH is 7 or below then furfural or hydroxymethylfurfural (Figure 2) among others are formed.

 b. If pH is higher than 7 then 4-hydroxy-5-methyl-2,3-dihydrofuran-3-one and highly reactive acetal, furanone, maltol, pyruvaldehyde and diacetyl among others are formed.

4. All these compounds mentioned above are highly reactive. Carbonyl groups condense with free amino groups and these products undergo further transformations. Dicarbonyl compounds will react with amino acids with the formation of aldehydes and α-aminoketones.

5. The most distinctive products formed are melanoidins, which are polymeric compounds of high molecular weight, characteristic brown colour and rich in various chemical groups (e.g. carboxyl, ester, amine, hydroxyl and many more). Structure of melanoidins has still not fully been determined (Martins et al., 2000; Nahid and Niaz, 2015; Parker 2012).

Hydroxymethylfurfural (HMF) is commonly used as Maillard reaction indicator in thermally processed food (Cendrowski et al., 2011; Erbersdobler and Somozoa, 2007; Garza, Ibarz, Pagánand Giner, 1999; Rada-Mendoza et al., 2002a). HMF itself can also be produced through L-ascorbic acid degradation and hexoses (fructose and glucose) dehydration (Bharate and Bharate, 2014; Cendrowski et
ways can be thermally treated even longer than 3 hours (Cendrowski and Mitek, 2012; Parker, 2012; “Powidła śliwkowe z węgierek,” 2018; “Powidła śliwkowe lowickie,” 2018). As fruit jams have acidic pH, the Maillard Reaction follows the 1,2-enolisation pathway leading to the formation of significant amounts of HMF (Figure 1) (Murkovic and Pichler, 2006). Steber et al. (1987) proposed that less than 5 mg of HMF in 100 g of jam indicates the proper jam preparation procedure (Steber and Klostermeyer, 1987). Based on reference data it can be stated that HMF concentration in jams depends on type of sample and varies from less than 0.1 to almost 120 mg/100 g (Cendrowski, 2012; Murkovic and Pichler, 2006). Fruit-based baby foods exhibit lower concentrations of this compound (from a non-detectable amount up to 0.8 mg/100 g) (Rada-Mendoza et al., 2002b). Among fruit products, the highest concentrations of HMF are detected in dried fruits and juices obtained from dried fruit (Murkovic and Pichler, 2006). Conversely, juice produced from raw pomegranates by Sabanci et al. (2018) contained no HMF (Sabanci, Cevik, Cokcezme, Yildiz and Icier, 2018). Generally, the intensity of the Maillard Reaction, and therefore levels of HMF in fruit based food is considered high. It is worth noting that concentration of this compound is higher in some processed fruit products than in other foodstuffs like bread or meat, as shown in Table 1. The exceptions are caramel products, where HMF concentration can reach up to almost 1 g/ 100 g of product.

HMF is usually not detected in fresh honesy or can be present in them only in trace amounts, below 0.1mg/100g (Kesic et al., 2014; Missio da Silva et al., 2016). The content of HMF in honey is significantly influenced by temperature, time and storage conditions as well as the geographical factor. The formation of HMF depends on the floral origin of honey, pH, total acidity, moisture, type and content of reducing sugars. The highest concentrations of HMF were determined in honeys from tropical countries (Table 1) (Shapla et al., 2018). While HMF is commonly used as a Maillard Reaction marker there are two other compounds proposed as indicators of the reaction in fruit baby foods and jams: furfural and furosine. They are determined less often in studies on MRPs in food. Furfural is created in Maillard reaction at the same stage as HMF (Figure 1). Cendrowski et al. (2011) noted concentrations of this compound varying from about 0.0025 to 0.021 mg/100g of product in jams (Cendrowski et al., 2011; Rada-Mendoza et al., 2002a; 2004) examining furoine levels in various food samples, detected compound concentrations in the range between 15.1 to 629.3 mg/100 g of protein in fruit jams and from 44.0 to 178.0 mg/100 g of protein in baby foods (Rada-Mendoza et al., 2002a; Rada-Mendoza et al., 2004).

e1384

J Microbiol Biotech Food Sci / Nowak et al. 2021 : 11 (3)
Table 2 concentrations of HMF and furosine in various jams and baby fruit foods are shown.

Food product	Amount of HMF (mg/ 100 g)
Dried fruits	
Juices obtained from dried fruit	2.50 to 290.0
Jams	trace amount ~ 120
Fruit baby foods	not detectable ~ 0.98
Baby biscuits	not detectable ~ 3.50
Baby gruel	0.114
Caramel products	11.0 - 95.0
Coffee	0.5 – 42.0 (mg/ 100 ml)
Bread	≤ 41.0
Meat products	< 0.09
Honey from Europe	0.0 – 11.2
Honey from Africa and Asia	0.0 – 113.2
Honey South and North America	0.0 – 11.5

FACTORS INFLUENCING THE FORMATION OF MRPs IN FRUIT PRODUCTS

Jams contain fruits (fresh or already processed), fruit juice, sweetening agents, sometimes also texture modifiers (pectins), acids (e.g. citric acid) and additional antioxidants (Cendrowski, 2012; Rada-Mendoza et al., 2002a; Tomas et al., 2017).

In jam manufacturing, a few major elements of the process influence the pathway of Maillard Reaction: sugar content, pressure along with temperature, processing time, pH and storage conditions.

Sugar and fruit content

Sugar content influences moisture and water activity in food. Lower sugar content means not only less reactant available, but also higher moisture and water activity, which affect intensity of the Maillard Reaction (Makawi et al., 2009; Parker, 2012; Rada-Mendoza et al., 2002a).

In the Table 2 based on the reference data HMF and furosine concentrations in jams and fruit-based baby food were shown and compared according to the sugar content. It can be noticed that jams of high sugar content (60% or more) contained more HMF (0.45 – 15.96 mg/100 g of product) than other samples (0.08 – 7.5 mg/100 g of product). In almost all products of low sugar content (40% or less) HMF concentration was lower than 0.7 mg/100 g. HMF content in fruit-based baby food that usually do not have additional sugar (Rada-Mendoza et al., 2002a) is low and stays in range of undetectable amount to 1.0 mg/100 g. It is possible to avoid excessive formation of HMF even in jams rich in sugar through manipulation of preparation process parameters. It was proven by Cendrowski et al. (2012) in a study where two jams of same sugar content (68%) were prepared. The sample without addition of citric acid had significantly lower HMF concentration, therefore in jams rich in sugar addition of citric acid would be unfavorable (Cendrowski, 2012).

Rada-Mendoza et al. (2002a; 2004) noted an significant influence of sugar content on the furosine levels. Reduced sugar jams show lower furosine levels than standard jams. Even less furosine can be found in fruit-based baby food (Rada-Mendoza et al., 2002a).

There is little data on the impact of fruit share on HMF and furosine concentration. Rada-Mendoza et al. (2002b; 2002a) carried out a comparative study of a several samples of commercially available jams from various types of fruit in terms of the influence of fruit share, sugar content, pH and moisture on the HMF and furosine concentrations. The research showed that the formation of MRPs in jams depends on different factors - not necessarily on the fruit share. To eliminate the possible variability due to the type of fruit, a study on jams made only from peach was carried out and it showed that reduced-sugar jam samples had the lowest levels of furosine. The amount of HMF in these samples varied regardless of the pH, sugar or fruit content. According to the Rada Mendoza et al. (2002b) low HMF contents in fruit-based infant foods, compared with those found in jams, may in part be due to the lower fruit concentration in fruit-based infant foods.

Temperature, pressure and processing time

Higher temperature levels and long processing periods correspond with an increase in the abundance of Maillard Reaction markers in jams. It is caused by an increase in reactivity between sugars and amino acids. Studies on peach puree proven that darkening of this product is intensified with an increase of temperature and time, with thermal treatment being more influential than the length of heating period (Garza et al., 1999). Moreover, it was noted that both HMF and furosine are formed in larger number amount in jams that undergo more severe heat treatment (Rada-Mendoza et al., 2004). The pressure is also the factor on which the course of Maillard Reaction depends. There are two major pressure condition types used in the jam production: atmospheric pressure and under the vacuum (Rada-Mendoza et al., 2002a; Korus et al., 2015). In conducted an experiment where cooking jam in an open pan and cooking in a vacuum evaporator were compared. The second method allowed the application of lower temperatures but took longer than cooking under the normal pressure. Open pan cooking resulted in 5 times higher HMF concentrations than cooking under vacuum. While storage caused an increase in HMF in only vacuum cooked samples, these concentrations were still notably lower than in open pan cooked jams. It is important to note that in the vacuum cooked samples there was also no loss of polyphenols, lesser loss of flavonoids and anthocyanins (Korus, Jaworska, Bernas and Juszczak, 2015; Okut et al., 2018) list advantages of vacuum cooking: lower temperatures, a shortened time period and decreased concentration of oxygen during the process. These conditions preserve natural bioactive compounds and the colour of fruit. The obvious disadvantage of this method is limited application in the industrial production only. Okut et al. (2018) developed prototype household vacuum cooking equipment which after optimization lead to achievement of low concentrations of HMF (Okut et al., 2018).

Decreased pressure allows the use of low temperatures, which limits Maillard Reaction’s intensity and prevents the loss of natural compounds. However, some beneficial MRPs (e.g. melanoids) are produced in larger amounts when the temperature is higher (Flores and del Castillo, 2016; Garza et al., 1999; Nahid and Niaz, 2015; Tomas et al., 2017).

pH

The pH affects reactivity of sugars and amino acids – key compounds in the earliest stage of Maillard Reaction (Martins et al., 2000). The value of pH in jams depends mostly on the fruit species used in production and on addition of pH modifiers into the product (Rada-Mendoza et al., 2002a). In fruit jams and similar products relatively low pH can be measured: about 2.1–3.9 in jam samples and about 3.7–4.2 in fruit-based baby food (Cendrowski et al., 2011; Rada-Mendoza et al., 2002a; Rada-Mendoza et al., 2004). Low pH values are linked to intensified formation of HMF in Maillard reaction (Figure 1) (Cendrowski, 2012; Kopjar, Durkan and Piližuta, 2010). For example, bitter orange jam has much lower pH and exhibits higher levels of HMF compared to sweet orange jam (Kopjar et al., 2010). Under acidic conditions hydroxymethylfurfural is formed even at low temperatures (Cendrowski, 2012). Baby food show lower amounts of HMF by mean value than jams probably because of their higher pH (Rada-Mendoza et al., 2002b).

Rada-Mendoza et al. (2002a) noted differences between furosine levels in jams obtained from various fruits which are attributed partially to the differences of pH in the samples. Banana and fig jams which have higher pH values than many other processed fruit products have higher furosine levels (Rada-Mendoza et al., 2004). However the addition of citrus juice causes the formation of higher furosine levels in baby food (Rada-Mendoza et al., 2002a). Furthermore, three out of six examined samples with citrus juice presented an undetectable quantity of hydroxymethylfurfural (Rada-Mendoza et al., 2002b). Nonetheless, if comparing the influences of different factors on the formation of Maillard Reaction markers in thermally treated fruit products, it can be concluded that HMF synthesis seems to be less dependent on the jam’s pH and sugar content than on temperature and heating time (Rada-Mendoza et al., 2002b; Vorlova et al., 2006).

Storage conditions

Prolonged storage can alter compounds formed in the Maillard Reaction too. During 12 months of storage browning in jams still occurs, more noticeably at higher temperature. Increases in amount of HMF and furosine were observed by Rada-Mendoza et al. (2004), but HMF quantity seemed to be more dependent on temperature than furosine quantity. During storage of commercial jams HMF amount significantly changed:

- from 0.6 mg/100 g of product to 2.5 mg/100 g of product in 20°C;
- from 0.6 mg/100 g of product to 35.2 mg/100 g of product in 35°C (Rada-Mendoza et al., 2004).

This finding, supported by other authors, Djoudene et al. (2016) determined 144% HMF content increase in 25°C and 169% in 35°C in orange jam after 30 days (Djoudene and Louällèche, 2016). In many other jam samples HMF content increases during storage too and rate of this change depends on temperature (Aslanova, Bakkalbasi and Artik, 2010; Kopjar et al., 2010; Tonali, Tarazona-
Díaz, Aguayo and Louailchea, 2013). Cendrowski et al. (2011) noticed the rise in HMF and furfural levels in jams made of rose petals, black currant and blueberry. Refrigerated samples shown significantly lower HMF concentrations (Cendrowski et al., 2011; Cendrowski, 2012). Fruit-based baby food undergo similar changes too (Rada-Mendoza et al., 2004). Moreover, concentrations of HMF and furfural increase with simultaneous decrease in ascorbic acid and there is a linear relationship between these two phenomena. This might be caused by ascorbic acid degradation leading to the formation of furfural (Cendrowski et al., 2011).

Rada-Mendoza et al. (2004) state that simultaneous evaluation of HMF and furfural levels in jams and fruit-based baby food can help in the detection of incorrect storage conditions or overheating during preparation, as furfural formation is less sensitive to the high temperatures (Rada-Mendoza et al., 2004).

INFLUENCE OF MRPs ON ORGANISM

Heat treatment and/or prolonged storage conditions might partially decrease the amount of biochemical components of foodstuff such as vitamins and nutrients and – unfortunately – at the same time enhance the content of MRPs (Keski et al., 2014; Shapla et al., 2018). HMF, which occurs at a very low concentration or is not detected in fresh products, can serve as the factor of quality and freshness of sugar rich foodstuffs. The Codex Alimentarius Standard Commission set the maximum concentration for HMF in honey at 4.0 mg/100 g (with a higher limit of 8.0 mg/100g for honeys originating from tropical countries) to ensure that the product has not undergone extensive heating during processing and is safe for the consumer (Codex Alimentarius Commission, 2001). HMF content in honey is an important parameter for the analysis of the quality of honey, its freshness, antioxidant activity, as well as its nutritional value. Some of the studies had also focused on the influence of storage time on the quality of honey. It was shown that samples of 4 year old honey contains on average 52.44% higher HMF amount compared to fresh honey samples (Keski et al., 2014). It is worth noting that for jams no standard describing the acceptable content of HMF has been introduced yet though its concentrations can be higher in fruit products than in honey (Table1). During the Maillard Reaction some biological active ingredients of food undergo degradation, and among these are valuable vitamins, polyphenols and amino acids. Many studies note loss of vitamin C (ascorbic acid) during the preparation of jams (Aksay, Tokbas, Arslan and Çınar, 2018; Cendrowski et al., 2011; Henning and Glomb, 2016; Kopjar et al., 2010). For example Aksay et al. (2018) evaluated the vitamin C concentration of 0.11 mg/100 g in fresh mandarin fruit and 0.07 mg/100 g in mandarin jam (Aksay et al., 2018). Ascorbic acid can directly undergo degradation to HMF and furfural (Henning and Glomb, 2016). A correlation between furfural concentration and ascorbic acid loss in black currant and blueberry jams was reported by (Aksay, Tokbas, Arslan and Çınar, 2018; Cendrowski et al., 2011). Initial addition of ascorbic acid into fruits during the preparation of jams causes an increase in final HMF content (Kopjar et al., 2010). It is important to underline the fact, that as phenolic content is unfortunately decreased in jams compared to fresh fruit, the final product still has a notable antioxidant capacity (Aksay et al., 2018).

The Maillard Reaction uses amino acids contained in the food product which leads to the loss of protein content, thus lowering nutritive value of product. During the reaction amino acids can be destroyed and become biologically inactive (essential amino acids) and non-nutritive forms. However, it is worth noting that the conditions of the experiment, both decrease and increase of protein digestibility can be observed (Teodorowicz, van Neerven and Savelkoul, 2017). Whole proteins undergo cross-linking by MRPs, thus even some enzymes become less active (Martins et al., 2000; Nahid and Niaz, 2015). Sabater et al. (2018) state that control of furfural levels is crucial for evaluation of the influence of heat treatment on the loss of lysole and the general loss of nutritive value in infant foodstuffs (Sabater et al., 2018).

Flores et al. (2016) compared home-made strawberry jam, industrially obtained jam and fresh fruit to evaluate the presence of antioxidative compounds. The authors point out several advantages of home-made jam over the industrially processed jam, such as lower antioxidants loss, the preservation of natural compounds and smaller amount of carcinogenic MRPs. It is attributed to less severe thermal treatment of fruit (Flores and del Castillo, 2016).

INFLUENCE OF MRPs ON ORGANISM

The importance of a balanced diet has become one of the priorities of modern life. The general society’s awareness and knowledge regarding the influence of many chemical compounds formed in food during processing (also under home conditions) on human health had to lead to the need for further investigation (Lund and Ray, 2017). The formation of melanoidins (Maillard Reaction Products) in human tissues definitely gets more and more scientific attention since many different MRPs are present in a wide variety of foodstuffs, including products designed for infants (Plaza et al., 2016; Rada-Mendoza et al., 2004; Vorlova et al., 2006). The large body of evidence has demonstrated that diets rich in MRPs may lead to the increase of inflammatory stress response, incidence of some cancers, cardiovascular diseases or even the alteration of glucose metabolism (AlJahdali and Carbonero, 2017; Delgado-Andrade, 2014; Labuz-Roszak et al., 2018; Nogajczyk, Szumska, Kumasza and Tyrpié-Golder, 2015; Sebeková and Brouder Sebeková, 2018). The problem goes even further when infants’ diets, which are supposed to be rich in fruit and fruit based products, are taken into account (Plaza et al., 2016). Such consumption of food rich in MRPs is definitely not recommended to the organism (Ostman, 2016). Moreover, there are studies which have suggested the hypothesis of the connection of exposure to some MRPs in early childhood with obesity and the increased risk of other cardiovascular and metabolic diseases in later life (Gupta and Uribarri, 2016; Mercic et al., 2010).

MRPs that have harmful properties are HMF and furfural, two compounds that have been detected in jams (Monien et al., 2009; Saeed, Wang and Zheng, 2017). HMF is present in many food products including those designed for small children, for example grape, biscuits and fruit based-food (Tab 1) (Plaza et al., 2016; Rada-Mendoza et al., 2002a; Rada-Mendoza et al., 2002b; Saeed et al., 2010).

Scientific data provides contradictory information on hydroxymethylfurfural’s safety. In vitro studies suggest that it is not dangerous in low amounts, such as 0.5 – 1 mg/kg body weight, though it poses a serious health risk in concentrations much higher than present in processed food. It was proven that HMF in high concentrations shows irritating properties (Murkovic and Pichler, 2006). Some researchers have estimated daily exposure to HMF and, for example, in the Czech Republic exposure reaches up to 1.11 mg per inhabitant and in Spain it ranges from 2.1 mg even up to 23 mg (Ruñán-Henares and de la Cueva, 2008). This amount should not pose any risk to a healthy adult person (Vorlova et al., 2006) but still scientists do not know the exact impact on the organism of very young children, if present. It is also not clear if they can be converted into sulfur-methyl-2-furfural (SMF) which may induce toxic and mutagenic effect. According to Monien et al. (2009) significant amounts of SMF can be created in human body after ingesting HMF (Monien et al., 2009). The scientists observed this phenomenon in mice and since the metabolism of HMF probably follows the same pathways of bio transformation as furfural in all mammalians (Capuno and Fogliano, 2011) it does not exclude the risk of SMF formation in humans. SMF shows carcinogenic properties as it can react not only with DNA (forming adducts) but also with other macromolecules (Monien et al., 2009; Monien et al., 2012; Murkovic and Pichler, 2006).

HMF itself is too small compound to be recognized by the immune system (T-cells) but it has been proven that it is capable of immunomodulation since it can bind to large peptides and then interact with T-cells (Lin et al., 2016). Moreover, furfural (which is also present in jams and gruel for infants) (Plaza et al., 2016) is able to modulate the immune response and can act as neo-epitope (Lin et al., 2016). This shows the immunosensitizing potential of these MRPs which can lead to autoimmune disorders. Alteration of food proteins immunogenicity by MRPs is considered (Teodorowicz et al., 2017).

The other MRPs – furose – is widely present in many food products, including infant fruit food and formulas (Table 2) (Rada-Mendoza et al., 2002a; Sabater et al., 2018). However it is little known about its effect on human health, especially its immunological aspects (Sabater et al., 2018). While the damage does not lead to increased mutagenicity it is possible that furose causes apoptotic cell death than mutations leading to carcinogenesis (Saeed et al., 2017). In mice models furose was proven to be toxic towards the kidney and liver and affected count of leukocytes, lymphocytes, neutrophils, red blood cells and blood plateletes (Li et al., 2018). These early findings might help us to better understand the risk assessment and provide the evidence for further food safety regulations regarding MRPs occurrence.

Not all MRPs have negative effects on human health. Among MRPs some compounds are beneficial for health have been identified. These include melanoids, which have antioxidative and antibiotic properties (since they contain catechol and reductane groups) (Delgado-Andrade, Seiquer, Haro, Castellano and Navarro, 2010; Sebeková and Brouder Sebeková, 2018). The properties of these compounds depend strongly on the product processing conditions (e.g. the reaction of Maillard reaction, will it be performed or not? What kind of high amount neutral to the organism. Furthermore it was proven that, the intake of melanoids can also reduce the formation of oxidative stress (Sebeková and Brouder Sebeková, 2018). The missing information regarding melanoids is how they interact with different molecules and microbiota inside the gastrointestinal tract (AlJahdali and Carbonero, 2017).

It is known that MRPs reduce the activity of oxidoreductases (tyrosinases and polyphenol oxidases – POOs). The mentioned enzymes oxidize endogenous phenolic compounds present in fruits. Activity of some MRPs preserves these phenolic compounds and prevents enzymatic browning in food. Moreover, properly studied compounds such as melanoids and flavonoids are inhibitors of mutagens - heterocyclic amines - which are produced in the Maillard Reaction too. In some
food products the addition of sugar makes them more resistant to oxidative rancidity (Janoszka, 2010; Manzocco, Calligaris, Mastrocola, Nicoli and Table 2 Exemplary experiments focusing on the Maillard Reaction chemical markers (HMF, furfural and furosine) evaluation

Examined material	Sugar content [%]	HMF [mg/100 g of product]	Furosine [mg/100 g of protein]	Reference
Jams with sugar content ≤ 40%				
black currant jam	35	0.076 – 0.445	(Korus et al., 2015)	
blueberry jam	39.5	0.285	(Cendrowski et al., 2011)	
rose petals jam	40	less than 0.10	(Cendrowski and Mitek 2012)	
peach jam	31 – 40	15.1 – 137.9	(Rada-Mendoza et al., 2002a)	
pineapple jam	40	51.2	(Rada-Mendoza et al., 2002a)	
pineapple jam	40	0.33	(Rada-Mendoza et al., 2002b)	
peach jam	31 – 40	0.68 – 1.4	(Rada-Mendoza et al., 2002b)	
Jams with sugar content > 40% and < 60%				
strawberry jam	41.8 – 54.6	1.198 – 7.496	(Okut et al., 2018)	
apricot jam	45.4	3.083	(Aslanova, Bakkalbusi and Artik, 2010)	
strawberry jam	47.5	2.039	(Vorlova et al., 2006)	
cherry jam	53.8	3.418	(Rada-Mendoza et al., 2002b)	
sour cherry jam	43	0.87	(Rada-Mendoza et al., 2002b)	
raspberry jam	53	1.75	(Rada-Mendoza et al., 2002b)	
peach jam	42 – 55	42.8 – 335.4	(Rada-Mendoza et al., 2002a)	
jamps obtained from plum, pineapple, sweet orange, apricot, strawberry, mixture of fruit, banana, tropical fruit, lemon	47 – 55	66.3 – 224.3	(Rada-Mendoza et al., 2002b)	
peach jams	42 – 55	trace amount – 1.67	(Rada-Mendoza et al., 2002b)	
jamps obtained from plum, pineapple, sweet orange, apricot, strawberry, mixture of fruit, banana, tropical fruit, lemon	47 – 55	0.09 – 1.36	(Rada-Mendoza et al., 2002b)	
Jams with sugar content ≥ 60%				
peach jam	≥ 60	0.6	264.0	(Rada-Mendoza et al., 2004)
sweet and sour orange, lemon, apple, apricot, mulberry, mixture of fruit, hiberry, fig	60 - 63	72.6 - 448.3	(Rada-Mendoza et al., 2002a)	
peach jams	60 - 63	149.8 - 629.3	(Rada-Mendoza et al., 2002b)	
jamps obtained from apricot, peach red currant, strawberry	60 – 65	0.45 – 15.96	(Vorlova et al., 2006)	
apricot jam	63.2 – 66.6	0.94	(Touati et al., 2015)	
peach jams	68	0.54 – 4.02	(Cendrowski and Mitek 2012)	
orange jam	69	1.8	(Jiaoudene and Louailleche, 2016)	
Jams and fruit-based baby food with unknown content of sugar				
fruit-based baby food	N/A	0.1	75.2	(Rada-Mendoza et al., 2004)
	N/A	44.0 – 178.0	(Rada-Mendoza et al., 2002a)	
strawberry jam	N/A	no detectable amount – 0.8	(Rada-Mendoza et al., 2002b)	
raspberry jam	N/A	0.21 – 0.98	(Vorlova et al., 2006)	
peach jams prepared in the laboratory	N/A	0.1 – 3.4	38.0 – 120.0	(Rada-Mendoza et al., 2004)
various jams	N/A	1.2 – 2.2	(Baltaci and Akşit, 2016)	
sweet orange jam	N/A	5.83	(Kopjar, Durkan and Piližota, 2010)	
bitter orange jam	N/A	23.1	(Constantin et al., 2018)	
plum jam	N/A	3.14 – 53.25	(Jalili and Ansari, 2015)	
jamps obtained from apple, apricot, carrot, black cherry, pumpkin, and mango	N/A	4.89 – 24.6	(Makawi et al., 2009)	
various jams	N/A	2.62 – 80.7	(Murkovic and Pichler, 2006)	
plum jam	N/A	110 – 120	(Murkovic and Pichler, 2006)	
The chemical pathways of MRPs in food products are relatively well-known, but so far the biological aspects and the impact of these compounds on the human organism contains many gaps to be filled. As fruit and fruit derivatives are recognized as an element of well-balanced diet, it is important to evaluate the influence of Maillard reaction on their safety. Fruit-rich diet is linked to a lower chronic diseases risk and reduced cancer risk (Cendrowski et al., 2011; Cendrowski, 2012; Flores and del Castillo, 2016; Tomas et al., 2017). Among variety of Maillard Reaction Products, desirable and undesirable compounds can be found. The presence of some mutagenic compounds depends significantly on the pathway taken by the reaction. An understanding of the process is therefore key to establish the optimal conditions in the processing of fruit (Martins et al., 2000).

CONCLUSION

The Maillard Reaction is an elaborate network of chemical transformations which leads to the formation of many MRPs, including melanoidins, brown substances responsible for darkening food during e.g. roasting. Some MRPs are believed to pose a risk to health in high concentrations. The reaction itself leads to lowering nutritional value of food. Therefore, research in field of Maillard Reaction occurrence in fruit products is reasonable, as many of them are an essential part of a balanced diet and children nourishment. While Maillard reaction was widely evaluated in many food products, few studies have focused on jams and fruit-based baby food.

Fruit jams and fruit-based baby food contain ingredients that undergo Maillard Reaction during their preparation and storage. Long heating periods and the abundance of sugar typical for these products favor Maillard reaction occurrence. At low pH the characteristic for fruit the MR pathway leads to hydroxymethylfurural formation in jams and other fruit derivatives. Thus, HMF can be used as Maillard reaction marker in fruits products, along with other compounds: furfurose and furfural.

Acknowledgments: This work was supported by KNW-1-148/KR/80 project of Medical University of Silesia in Katowice. Authors declare no conflict of interest.

REFERENCES

ALJAHDALI, N., CARBONERO, F. 2017. Impact of Maillard reaction products on nutrition and health: Current knowledge and need to understand their fate in the human digestive system. Critical Reviews in Food Science and Nutrition, 13, 1-14. https://doi.org/10.1080/10408398.2017.1378865

AKSAY, S., TOKBAŞ, H., ARSLAN, R., ÇINAR, F. 2018. Some physicochemical properties of the whole fruit mandarin jam. Turkish Journal of Agriculture Food Science and Technology, 6(5):632-635. https://doi.org/10.24295/turjaf.v6s5.632-635.1948

ASLANOVA, D., BAKKALBASI, E., ARTIK, N. 2010. Effect of storage on 5-hydroxymethylfurural (HMF) formation and color change in jams. International Journal of Food Properties, 13(4):904-912. https://doi.org/10.1080/10942990903208896

BALTACI, C., AKŞIT, Z. 2016. Validation of HPLC method for the determination of 5-hydroxymethylfurural in pestil, kôme, jam, marmalade and pekmez. Hittite Journal of Science and Engineering, 32(9):1-97. https://doi.org/10.17350/HJSE.1900000003

BHARATE, S. B. 2010. Heterocyclic amines and azaarenes in pan-fried meat and its gravy fried without additives and in the presence of onion and garlic. Food Chemistry, 120(2), 463-473. https://doi.org/10.1016/j.foodchem.2009.10.039

KORUS, A., JAWORSKA, G., BERNAŚ, E., JUSZCZAK, L. 2015. Characteristics of physico-chemical and functional properties of mulberry (Vaccinium myrtillus L.) jams with added herbs. Journal of Food Science and Technology, 52(5):2815–2823. https://doi.org/10.1007/s13197-014-1315-9

KULUT, T. 2016. Dietary glycoconjugates and infant formulas. Türk pediatri arşivi, 51(4):179–185. https://doi.org/10.5325/TurkPediatriArsiv.2016.2543

LI, H. Y., XING, L., WANG, J. Q., ZHENG, N. 2018. Toxicology studies of furfurose in vitro/in vivo and exploration of the related mechanism. Toxicology letters, 291, 101-111. https://doi.org/10.1016/j.toxlet.2018.02.018

LUN, N., LIU, T., LIN, L., LIN, S., ZANG, Q., HE, J., ... JIN, H. 2016. Comparison of in vivo immunomodulatory effects of 5-hydroxymethylfurural and 5, 5'-oxydimethylenebis (2-furfural). Regulatory Toxicology and Pharmacology, 81, 500-511. https://doi.org/10.1016/j.yrtph.2016.10.008

MÁDHAVI, B., KUSUMAIA, T. 2017. Maillard reaction products: some considerations on their health effects. Clinical Chemistry and Laboratory Medicine, 52(1):53-60. https://doi.org/10.1515/cclm-2012-0823

MANZOCCHI, L., CALLIGARIS, S., MASTROCOLA, D., NICOLI, M. C., LERICI, C. R. 2001. Review of non-enzymatic browning and antioxidative capacity
in processed foods. *Trends in Food Science and Technology*, 11(9–10):340–346. [https://doi.org/10.1016/S0924-2244(01)00014-0]

MARTINS, S. I. F. S., JONGEN W. M. F., VAN BOEKEK M. A. J. S. 2000. A review of Maillard reaction in food and implications to kinetic modeling. *Trends in Food Science and Technology*, 11(9–10):364–373. [https://doi.org/10.1016/S0924-2244(01)00022-X]

MERICO, V., PICCARDO, C., CAI, W., CHEN, X., ZHU, L., STRIKER, G. E.,... URBARBi. J. 2010. Maternally transmitted and food-derived glycoconjugates: a factor preconditioning the young to diabetes? *Diabetes Care*, 33(10):2232–2237. [https://doi.org/10.2337/dc10-1058]

MEURILLON, M., ENGEL, E. 2016. Mitigation strategies to reduce the impact of heterocyclic aromatic amines in proteinaceous foods. *Trends in Food Science and Technology*, 50, 70–84. [https://doi.org/10.1016/j.tifs.2016.01.007]

MONIEN, B. H., FRANK, H., SEIFELD, A., GLATT, H. 2009. Conversion of the common food constituent 5-hydroxymethylfurfural into a mutagenic and carcinogenic sulfuric acid ester in the mouse in vivo. *Chemical Research in Toxicology*, 22(6):1123–1128. [https://doi.org/10.1021/tx9000623]

MONIEN, B. H., ENGST, W., BARKNOWITZ, G., SEIDEL, A., GLATT, H. 2012. Mutagenicity of 5-Hydroxymethylfurfural in V79 cells expressing human SULT1A1: identification and mass spectrometric quantification of DNA adducts formed. *Chemical Research in Toxicology*, 25(7):1484–1492. [https://doi.org/10.1021/tx300150b]

MUKOVIC, M., PICHLER, N. 2006. Analysis of 5-hydroxymethylfurfural in coffee, dried fruits and urines. *Molecular Nutrition and Food Research*, 50(9):842–846. [https://doi.org/10.1002/mnfr.200500262]

NAHID, T., NIAZ, M. 2015. Food processing and Maillard reaction products: effect on human health and nutrition. *International Journal of Food Science*, 2015, 1–6. [https://doi.org/10.1155/2015/526762]

NOGAJCZYK, A., SZUMSKA, M., KUMASZKA, B., TYRPIEN-GOLDIER, K. 2015. Methods of determination of pentosidine - the advanced glycation end-product of proteins. Aparatura Badawcza I Dyskrytyczna, 20(3), 158–165.

OKUT, D., DEVSEREN, E., KOC M., OCAK, Ö.Ö., KARATAŞ, H., KAYMAK-ERTEKİN, F. 2018. Developing a vacuum cooking equipment prototype to produce strawberry jam and optimization of vacuum cooking conditions. *Journal of Food Science and Technology*, 55(1):90–100. [https://doi.org/10.1007/s13197-017-2819-x]

PARKER, J. K. 2012. The kinetics of thermal generation of flavour. *Science of Food and Agriculture*, 93(2):197–208. [https://doi.org/10.1002/jsfa.5943]

PLAZA, M., ÖSTMAN, E., TAREKE, E. 2016. Maillard reaction products in powdered food for infants and toddlers. *European Journal of Nutrition and Food Safety*, 6:265–74. [https://doi.org/10.1007/s13197-016-0155-0]

POWIDLA ŚLIWKOWE ŁOWICKIE [Plum jam from Łowicz]. (2018, September 9) Retrieved from https://www.gov.pl/web/rolnictwo/powida-sliwkowe-lowickie

POWIDLA ŚLIWKOWE Z WĘGIEREK [Plum jam made of „węgierka” plum]. (2018, September 26) Retrieved from https://www.gov.pl/web/rolnictwo/powida-sliwkowe-z-wegierek

RADA-MENDOZA, M., OLANO, A., VILLAMIEL, M. 2002a. Furosine as indicator of Maillard reaction in jams and fruit-based infant foods. *Journal of Agricultural and Food Chemistry*, 50(14):4141–4145. [https://doi.org/10.1021/jf0201024]

RADA-MENDOZA, M., OLANO, A., VILLAMIEL, M. 2002b. Determination of hydroxymethylfurfural in commercial jams and in fruit-based infant foods. *Food Chemistry*, 79(4):513–516. [https://doi.org/10.1016/S0308-8146(02)00217-0]

RADA-MENDOZA, M., LUZ SANTZ, OLANO, A., VILLAMIEL, M. 2004. Formation of hydroxymethylfurfural and furosine during the storage of jams and fruit-based infant foods. *Food Chemistry*, 85(4):605–609. [https://doi.org/10.1016/j.foodchem.2003.07.002]

RUFIAN-HENARES, J. A., DE LA CUEVA, S. P. 2008. Assessment of hydroxymethyl furfural intake in the Spanish diet. *Food Additives and Contaminants: Part A*, 25(11):1306–1312. [https://doi.org/10.1080/02652240802163406]

SÁBANI S., CEVIK, M., CORGEZME, O. F., YILDIZ, H., ICIER, F. 2018. Quality characteristics of pomegranate juice concentrates produced by ohmic heating assisted vacuum evaporation. *Science of Food and Agriculture*, 99(5):2589–2595. [https://doi.org/10.1002/jsfa.9474]

SÁBÁTER, C., MONTELLA, A., OVEJERO, A., PRODANOVA, M., OLANO, A., CORZO, N. 2018. Furosine and HMF determination in prebiotic-supplemented infant formula from Spanish market. *Journal of Food Composition and Analysis*, 66, 65–73. [https://doi.org/10.1016/j.jfca.2017.12.004]

SAEED, Y., WANG, J. Q., ZHENG, N. 2017. Furosine induces DNA damage and cell death in selected human cell lines: a strong toxicant to kidney Hek-293 cells. *Food and Biotechnology*, 26(4):1093–1101. [https://doi.org/10.1007/s11068-017-0131-1]

SHAPLA, U. M., SOLAYMAN, M., ALAM, N., KHALII, M. I., GAN, S. H. 2018. 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: effects on bees and human health, *Chemistry Central Journal*, 12(1):35. [https://doi.org/10.1186/s13065-018-0408-3]

STEBER F., KLOSTERMEYER, H. 1987. Heat treatment of fruit preparations and jams, and monitoring its efficacy. *Molkerei Zeitung Weltr der Milch*, 41, 289–290, 292–295

ŠEBEKOVÁ, K., BROUDER ŠEBEKOVÁ, K. 2018. Glycated proteins in nutrition: Friend or foe? *Experimental gerontology*, 117, 76–90. [https://doi.org/10.1016/j.exger.2018.11.012]

ŠVECVO, B., MACH, M. 2017. Content of 5-hydroxymethyl-2-furfural in biscuits for kids. *Interdisciplinary toxicology*, 10(2):66–69. [https://doi.org/10.1515/intox-2017-0011]

TEODOROWICZ, M., VAN NEEBKEN, J., SAVELKOUL, H. 2017. Food processing: the influence of the Maillard reaction on immunogenicity and allergenicity of food proteins. *Nutrients*, 9(8):835. [https://doi.org/10.3390/nu9080835]

TOMAS, M., TOYDEMIR, G., Boyacioglu, D., Hall, R. D., Beekwilder, J., Capanoglu, E. 2017. Processing black mulberry into jam: effects on antioxidant potential and in vitro bioaccessibility. *Journal of the science of food and agriculture*, 97(10):3106–3113. [https://doi.org/10.1002/jsfa.8152]

TOUATI, N., TARAZONA-DIÁZ, M. P., AGUAYO, E., LOUAILECHEA, H. 2013. Effect of storage time and temperature on the physicochemical and sensory characteristics of commercial apricot jam. *Food Chemistry*, 145, 23–27. [https://doi.org/10.1016/j.foodchem.2013.08.037]

VORLOVA, L., BORKOVCOVÁ, I., KALÁBOVÁ, K., VECEREK, V. 2006. Hydroxymethylfurfural contents in foodstuffs determined by HPLC method. *Journal of Food and Nutrition Research*, 45(1):34–38.