EPISTEMIC EXTENSION OF GÖDEL LOGIC

H. FARAHANI¹, A. H. SHARAFI², R. A. BORZOOEI²

¹Department of Computer Science, Shahid Beheshti University, G.C, Tehran, Iran
h-farahani@sbu.ac.ir

²Department of Mathematics, Shahid Beheshti University, G.C, Tehran, Iran
am.hsn.sharafi@gmail.com, Borzooei@sbu.ac.ir

Abstract. In this paper, some epistemic extensions of Gödel logic are introduced. We establish two proof systems and show that these logics are sound with respect to an appropriate Kripke semantics. Furthermore, we demonstrate weak completeness theorems, that is if a formula ϕ is valid then its double negation ¬¬ϕ is provable. A fuzzy version of muddy children puzzle is given and using this, it is shown that the positive and negative introspections are not valid. We enrich the language of epistemic Gödel logic with two connectives for group and common Knowledge and give corresponding semantics for them. We leave the problem of soundness and completeness in this general setting open. Finally, an action model approach is introduced to establish a dynamic extension of epistemic Gödel logic.

1. Introduction

Many modal extensions of fuzzy logics have been introduced in the literature. In [3, 4, 5, 6], some modal extensions of Gödel fuzzy logic are presented. Some modal extensions of Lukasiewicz logic are studied in [16, 17], where a classical accessibility relation semantics is used. In [22], some modal extensions of product fuzzy logic by using both relational and algebraic semantics are studied. The relational semantics of these extensions is based on Kripke structures with classical accessibility relations. In [11], Hajek proposes a fuzzy variant of each recursively axiomatized logic extending S₅. [23] studies some modal logics over MTL, where the semantics is based on Kripke structures with truth values in [0,1] and classical accessibility relations.

Key words and phrases. Gödel logic . Epistemic logic . Dynamic extension.
In this paper, some epistemic extensions of propositional Gödel logic are introduced with both fuzzy propositions and fuzzy accessibility relations. The main new fuzzification made in this paper, is fuzzifying the precondition function of an epistemic action in the introduced dynamic epistemic

In Section 2, we first propose a language for an epistemic extension of Gödel fuzzy logic and give a Kripke semantics while both propositions at the possible worlds and accessibility relations are fuzzy taking values in \([0,1]\). Accessibility relations are not necessarily symmetric, since the amount of indistinguishing may differ in different worlds. Also, a fuzzy version of popular muddy children puzzle is proposed to show that some formulas including positive and negative introspection are not valid. In the sequel of the section, we propose two axiom systems which are sound with respect to the corresponding semantics. Also, we obtain weak completeness theorems, in the sense that if a formula \(\varphi\) is valid then \(\neg\neg\varphi\) is provable. Section 3 is devoted to the soundness and weak completeness theorems.

In Section 4, we expand the language of epistemic Gödel logic with two connectives for group and common knowledge. The corresponding semantics is presented, but the problem of soundness and completeness are left open in this setting.

In Section 5, we introduce an action model approach to give a dynamic extension of epistemic Gödel logic. The language of an action model includes formulas with \(G(\varphi) = g\) and \(G(\varphi) > g\) notations. Intuitively, these formulas inform the agents about the truth values of pre-conditions. Furthermore, we show the validity of some formulas which are similar to some axioms of the proof system AMC \([7]\). Finally, by considering the agents with hearing impairment, we give an example that our fuzzy muddy children puzzle is updated after some announcements.

We assume that the reader is familiar with basic facts on the classical modal logic, see e.g. \([1]\). The main reference for the Gödel logic is \([12]\). In particular, we have the following theorems in Gödel logic which we will use in our proofs;

\[
\begin{align*}
[(G2)] \quad (\varphi \land \psi) &\rightarrow \varphi \\
[(G4)] \quad (\varphi \rightarrow (\psi \rightarrow \chi)) &\leftrightarrow ((\varphi \land \psi) \rightarrow \chi) \\
[(GT1)] \quad \psi &\rightarrow (\varphi \rightarrow \psi) \\
[(GT2)] \quad (\varphi \rightarrow \psi) &\rightarrow (\neg\psi \rightarrow \neg\varphi) \\
[(GT3)] \quad (\neg(\varphi \land \psi)) &\rightarrow (\varphi \rightarrow \neg\psi) \\
[(GT4)] \quad (\neg\neg\varphi \land \neg\psi) &\leftrightarrow \neg\neg(\varphi \land \psi) \\
[(GT5)] \quad \neg\neg(\varphi \rightarrow \psi) &\leftrightarrow (\neg\neg\varphi \rightarrow \neg\neg\psi)
\end{align*}
\]
Throughout this paper, it is assumed that \mathcal{P} is a set of atomic propositions and \mathcal{A} is a set of agents, unless otherwise stated.

2. Epistemic Gödel logic

2.1. Semantics of epistemic Gödel logic.

Definition 2.1. The language of epistemic Gödel logic (EGL) is generated by the following BNF:

$$\varphi :: p \mid \perp \mid \varphi \land \varphi \mid \varphi \Rightarrow \varphi \mid B_a \varphi$$

where, $p \in \mathcal{P}$ and $a \in \mathcal{A}$.

Note that the language of EGL is an expansion of the language of Gödel logic. It is enriched by all epistemic connectives B_a, where $a \in \mathcal{A}$. Further connectives \neg, \lor and \leftrightarrow are defined as similar as GL [12].

Definition 2.2. (EGL Model) An EGL-model is a structure $M = (S, r_{a|\sigma}, \pi)$, where

- S is a set of states,
- $r_{a|\sigma} : S \times S \to [0, 1]$ is a function which assigns a value in $[0, 1]$ to each $(s, s') \in S \times S$. We call it the indistinguishing function.
- $\pi : S \times \mathcal{P} \to [0, 1]$ is a valuation function which assigns a truth value to each atomic proposition $p \in \mathcal{P}$, in every state $s \in S$.

The valuation function π, can be extended to all formulas naturally, denoted by V. The model M is called reflexive if for all $a \in \mathcal{A}$ and all $s \in S$, $r_a(s, s) = 1$.

Let $M = (S, r_{a|\sigma}, \pi)$ be an EGL-model. For each state $s \in S$ and each formula φ, we use the notation $V_s(\varphi)$ for $V(s, \varphi)$, which is defined as follows:

- $V_s(p) = \pi(s, p)$; $p \in \mathcal{P}$
- $V_s(\varphi \land \psi) = \min\{V_s(\varphi), V_s(\psi)\}$
- $V_s(\varphi \Rightarrow \psi) = \begin{cases} 1 & V_s(\varphi) \leq V_s(\psi) \\ V_s(\psi) & V_s(\varphi) > V_s(\psi) \end{cases}$
- $V_s(\neg \varphi) = \begin{cases} 0 & V_s(\varphi) > 0 \\ 1 & V_s(\varphi) = 0 \end{cases}$
- $V_s(\varphi \lor \psi) = \max\{V_s(\varphi), V_s(\psi)\}$
- $V_s(B_a(\varphi)) = \min_{s' \in S} \max\{1 - r_a(s, s'), V_{s'}(\varphi)\}$

Note that $\neg \varphi$ and so $\neg \neg \varphi$ take the crisp values.

Definition 2.3. Let φ be an EGL-formula and $M = (S, r_{a|\sigma}, \pi)$ be an EGL-model.
For each $0 \leq R = \text{impaired}. We consider a set of children (agents) with muddy faces. The agents may be visually impaired. We consider sets of possible worlds. Also, corresponding to each agent a, we consider an atomic proposition m. Then, the valuation function π is defined as follows:

$$\pi((t_j)_{1 \leq j \leq k}, m_i) = t_i \quad (1 \leq i \leq k)$$

Suppose that $\alpha \in (0, 1)$ and for each $a \in A$, $B_a \in [0, 1]$ is the amount of visual impairment of the agent a. Also, let $s_1 = (t^1_j)_{1 \leq j \leq k}$ and $s_2 = (t^2_j)_{1 \leq j \leq k}$ be two states in S. Then, the indistinguishing functions are defined as follows:

$$r_{a_i a_j}^{s_1 s_2} = \begin{cases}
B_{a_i}(1 - \alpha(t^1_j - t^2_j)) & t^1_j \neq t^2_j \\
1 & t^1_j = t^2_j
\end{cases} \quad \text{where, } 1 \leq i, j \leq k, \ j \neq i$$

$$r_{a_i}(s_1, s_2) = \min \left\{ r_{a_i a_j}^{s_1 s_2} \mid 1 \leq j \leq k, j \neq i \right\} \quad \text{where, } 1 \leq i \leq k$$

Note that the indistinguishing functions defined above are compatible with our intuition, because the more the difference between the amounts of mud on the faces of the other agents, the easier it is to distinguish the states exactly.

Example 2.4. (A fuzzy muddy children) Let $A = \{a_1, \ldots, a_k\}$ be a set of children (agents) with muddy faces. The agents may be visually impaired. We consider n intervals with equal length except the first zero-length interval. Suppose that $(\beta_i, \beta_{i+1}]$; $0 \leq i \leq n-1$; be the desired intervals, which β_is satisfy the following conditions:

$$\beta_0 = \beta_1 = 0, \quad \beta_{i+1} - \beta_i = \frac{1}{n-1} \quad (1 \leq i \leq n-1)$$

For each $0 \leq i \leq n - 1$, we name the interval $(\beta_i, \beta_{i+1}]$ by β_i, then let $R = \{\beta_i \mid 1 \leq i \leq n\}$. We consider $S = \{(t_j)_{1 \leq j \leq k} \mid t_j \in R\}$ as the set of possible worlds. Also, corresponding to each agent $a_j, 1 \leq j \leq k$, we consider an atomic proposition m_j, which intuitively means "the face of the agent a_j is muddy". Let $P = \{m_j \mid 1 \leq j \leq k\}$ be the set of atomic propositions. Then, the valuation function $\pi : S \times P \to [0, 1]$ is defined as follows:

$$\pi((t_j)_{1 \leq j \leq k}, m_i) = t_i \quad (1 \leq i \leq k)$$

Proposition 2.5. The following schemes are not EGL-valid.

1. $B_a \varphi \rightarrow B_a B_a \varphi$
2. $\neg B_a \varphi \rightarrow B_a (\neg B_a \varphi)$
3. $B_a (\varphi \lor \psi) \rightarrow B_a \varphi \lor B_a \psi$
4. $\neg B_a \varphi \rightarrow B_a \neg \varphi$
5. $B_a \varphi \lor B_a \neg \varphi$
valid in the model M.

It can be shown that some instances of the desired schemes fail to be valid in the model M'. For each part we find an state $s \in S$ and a formula φ such that $(M', s) \not\models \varphi$.

(1): We show that the formula $B_b m_a \rightarrow B_b B_b m_a$ is not valid in $(M', (1, 1))$.

The following statements hold:

$$V_{(0,0)}(B_b m_a) = V_{(0,0.5)}(B_b m_a) = V_{(0,1)}(B_b m_a) = 0,$$

$$V_{(0,5,0)}(B_b m_a) = V_{(0,5,0.5)}(B_b m_a) = V_{(0,5,1)}(B_b m_a) = 0.19,$$

$$V_{(1,0)}(B_b m_a) = V_{(1,0.5)}(B_b m_a) = V_{(1,1)}(B_b m_a) = 0.28.$$

Therefore, $V_{(1,1)}(B_b B_b m_a) = 0.19$, and because $V_{(1,1)}(B_b m_a) > V_{(1,1)}(B_b B_b m_a)$, it can be concluded that $V_{(1,1)}(B_b m_a \rightarrow B_b B_b m_a) = 0.19$.

Similarly, the following counter examples contradict EGL-validity of the schemes in parts 2-6:

(2) $V_{(0,5,0)}(\neg B_a m_b \rightarrow B_a (\neg B_b m_b)) = 0.64$

(3) $V_{(0,0)}(B_b (m_a \lor (m_a \rightarrow m_b)) \rightarrow B_b m_a \lor B_b (m_a \rightarrow m_b)) = 0.19$

(4) $V_{(0,0)}(\neg B_b m_a \rightarrow B_b \neg m_a) = 0.19$

(5) $V_{(0,5,0)}(B_b m_a \lor \neg B_b m_a) = 0.19$

(6) $V_{(1,0)}(m_a \rightarrow B_b \neg B_b \neg m_a) = 0.28$.

Remark 2.6. Note that positive introspection and negative introspection are not EGL-valid, by Proposition 2.5.

Proposition 2.7. Let φ be an EGL-formula. The following formulas are valid in all EGL-models.

(1) $B_a \varphi \land B_a (\varphi \rightarrow \psi) \rightarrow B_a \psi$

(2) $B_a (\varphi \rightarrow \psi) \rightarrow (B_a \varphi \rightarrow B_a \psi)$

(3) $\neg \neg B_a \neg \varphi \rightarrow \neg \neg B_a \varphi$

(4) $B_a (\varphi \land \psi) \leftrightarrow B_a \varphi \land B_a \psi$.

Proof. We only show that the formula in part (1) is EGL-valid. The validity of the other parts can be shown similarly. Suppose that $M = (S, r_{\alpha \in A}, \pi)$ is an EGL-model and $s \in S$. We show that $B_a \varphi \land B_a (\varphi \rightarrow \psi) \rightarrow B_a \psi$ is valid in the pointed model (M, s). Let $\Gamma = \{s' \in S \mid V_{s'}(\varphi) \land V_{s'}(\psi)\}$, then
We consider a proof system

\[V_s(B_a(\varphi \rightarrow \psi)) = \left\{ \begin{array}{ll}
\min \max \{1 - r_a(s, s'), V_{s'}(\psi)\} & \Gamma \neq \phi \\
1 & \Gamma = \phi
\end{array} \right. \]

If \(\Gamma = \phi \), then \(V_s(B_a\varphi \land B_a(\varphi \rightarrow \psi)) = V_s(B_a\varphi) \) and also \(\forall t \in S, V_t(\varphi) \leq V_t(\psi) \). So, it can be obtained that \(\forall s \in S, V_s(B_a\varphi) \leq V_s(B_a\psi) \). Hence, \(V_s(B_a\varphi \land B_a(\varphi \rightarrow \psi)) \leq V_s(B_a\psi) \) and so \(V_s(B_a\varphi \land B_a(\varphi \rightarrow \psi) \rightarrow B_a\psi) = 1 \). Otherwise, if \(\Gamma \neq \phi \) then

\[V_s(B_a\varphi \land B_a(\varphi \rightarrow \psi)) = \min \left\{ \min \left\{ \min \max \{1 - r_a(s, s'), V_{s'}(\psi)\} \right\}, \min \max \{1 - r_a(s, s'), V_{s'}(\varphi)\} \right\}, \]

\[= \min \left\{ \min \max \{1 - r_a(s, s'), V_{s'}(\varphi)\}, \min \max \{1 - r_a(s, s'), V_{s'}(\varphi)\} \right\}. \]

Now, If \(s' \in \Gamma \), then \(V_{s'}(\psi) < V_{s'}(\varphi) \) and so

\[\min \max \{1 - r_a(s, s'), V_{s'}(\psi)\} \leq \min \max \{1 - r_a(s, s'), V_{s'}(\varphi)\}. \]

Therefore,

\[V_s(B_a\varphi \land B_a(\varphi \rightarrow \psi)) = \min \left\{ \min \max \{1 - r_a(s, s'), V_{s'}(\psi)\}, \min \max \{1 - r_a(s, s'), V_{s'}(\varphi)\} \right\}. \]

Also, if \(s' \in \Gamma^c \), then \(V_{s'}(\varphi) \leq V_{s'}(\psi) \) and so

\[\min \max \{1 - r_a(s, s'), V_{s'}(\varphi)\} \leq \min \max \{1 - r_a(s, s'), V_{s'}(\psi)\}. \]

Consequently, it can be concluded that \(V_s(B_a\varphi \land B_a(\varphi \rightarrow \psi)) \leq V_s(B_a\psi) \), which completes the proof. \(\Box \)

Remark 2.8. The scheme \(B_a(\varphi) \rightarrow \varphi \) is valid in all reflexive EGL-models.

2.2. The proof systems. Let \(\varphi, \psi \) be EGL-formulas and \(a \in A \). Consider the following axiom schemes and inference rules:

(A1) all instantiations of propositional Gödel logic tautologies,

(A2) \(B_a\varphi \land B_a(\varphi \rightarrow \psi) \rightarrow B_a\psi \)

(A3) \(\neg\neg B_a\neg\neg \varphi \rightarrow \neg\neg B_a \varphi \)

(A4) \(B_a\varphi \rightarrow \varphi \)

(R1) \(\varphi \quad \varphi \rightarrow \psi \rightarrow \psi \quad (MP) \)

(R2) \(\frac{\psi}{B_a \varphi} \quad (B) \)

We consider a proof system \(B_F \) which has (A1), (A2) and (A3) as its
axiom schemes and both inference rules \((R1)\) and \((R2)\). The system \(T_F\) is an extension of \(B_F\) by the extra axiom scheme \((A4)\). The axiom \((A4)\), intuitively means that the completely known facts are completely true.

Note that the formulas in the first axiom \((A1)\) are not only in the language of propositional Gödel logic, but in the language of EGL.

From now on we assume that \(D\) is the system \(B_F\) or \(T_F\), unless otherwise stated. A derivation of a formula \(\varphi\) from a set of formulas \(\Gamma\) within system \(D\) is defined naturally; notation \(\Gamma \vdash_D \varphi\). If the system \(D\) is clear from the context, we just write \(\Gamma \vdash \varphi\).

Definition 2.9. Let \(\varphi, \varphi_1, \ldots, \varphi_n\) be formulas in the language of EGL.

1. \(\varphi\) is \(D\)-consistent if \(\nvdash_D \neg \varphi\).
2. A finite set \(\{\varphi_1, \ldots, \varphi_n\}\) is \(D\)-consistent if \(\varphi_1 \land \ldots \land \varphi_n\) is \(D\)-consistent,
3. An infinite set \(\Gamma\) of formulas is \(D\)-consistent if any finite subset of \(\Gamma\) is \(D\)-consistent,
4. A formula or a set of formulas is called \(D\)-inconsistent if it is not \(D\)-consistent,
5. A set \(\Gamma\) of formulas is maximally \(D\)-consistent if:
 a. \(\Gamma\) is \(D\)-consistent,
 b. \(\Gamma \cup \{\psi\}\) is \(D\)-inconsistent for any formula \(\psi \notin \Gamma\).

If there is no ambiguity, we say consistent/inconsistent instead of \(D\)-consistent/D-inconsistent.

Lemma 2.10. (1) Every consistent set of formulas can be extended to a maximally consistent set. (2) Let \(\Gamma\) be a maximally consistent set of formulas, then the following statements hold for all EGL-formulas \(\varphi, \psi\):

 a. either \(\varphi \in \Gamma\) or \(\neg \varphi \in \Gamma\),
 b. \(\varphi \land \psi \in \Gamma\) \iff \(\varphi \in \Gamma\) and \(\psi \in \Gamma\),
 c. if \(\varphi \in \Gamma\) and \(\varphi \rightarrow \psi \in \Gamma\) then \(\psi \in \Gamma\),
 d. \(\Gamma\) is closed under deduction, i.e. if \(\vdash \varphi\) then \(\varphi \in \Gamma\).

Proof. The proof is similar to the proof of Lemma 1.4.3 of [19].

3. Soundness and completeness

Let \(\mathcal{M}\) be a class of EGL-models. The system \(D\) is called:

- **sound** with respect to \(\mathcal{M}\), if \(\vdash \varphi\) then \(\mathcal{M} \models \varphi\),
- **complete** with respect to \(\mathcal{M}\), if \(\mathcal{M} \models \varphi\) then \(\vdash \varphi\),
- **weak complete** with respect to \(\mathcal{M}\), if \(\mathcal{M} \models \varphi\) then \(\vdash \neg \neg \varphi\).
Lemma 3.1. The inference rules (R1) and (R2) are admissible, i.e. for each rule if all premises are EGL-valid, then its conclusion is also EGL-valid.

Proof. The proof is obvious. □

Theorem 3.2. (Soundness)
(1) B_F is sound with respect to the class of all EGL-models
(2) T_F is sound with respect to the class of all reflexive EGL-models.

Proof. The proof is obtained in a straightforward manner by applying Proposition 2.7, Remark 2.8 and Lemma 3.1. □

Lemma 3.3. (Model Existence Lemma) The following statements are equivalent:
(1) If $\models \varphi$, then $\vdash \neg \neg \varphi$,
(2) if $\not\models \neg \neg \varphi$ then there is an EGL-model $M = (S, r_{\text{let}A}, \pi)$ and a state $s \in S$
such that $(M, s) \not\models \varphi$,
(3) if $\neg \neg \varphi$ is consistent then it is satisfiable, i.e. there is an EGL-model $M = (S, r_{\text{let}A}, \pi)$ and a state $s \in S$ such that $(M, s) \models \neg \neg \varphi$.

Proof. (1) and (2) are obviously equivalent. For convention, we use the notation ”$\exists M \exists s$” to mean ”there exists an EGL-model $M = (S, r_{\text{let}A}, \pi)$ and a state $s \in S$”.
(2)\Rightarrow(3). We restate the statements (2) and (3) as follows, respectively:

$\not\models \neg \neg \varphi \Rightarrow \exists M \exists s V_s(\varphi) \neq 1$
$\not\models \neg \neg \neg \varphi \Rightarrow \exists M \exists s V_s(\neg \neg \varphi) = 1$

Assume that (2) holds, then

$\not\models \neg \neg \neg \varphi \Rightarrow \exists M \exists s V_s(\neg \neg \varphi) = \begin{cases} 0 & 0 < V_s(\neg \neg \varphi) < 1 \\ 1 & V_s(\neg \neg \varphi) = 0 \end{cases}$

Replacing φ by $\neg \varphi$ gives rise to

$\not\models \neg \neg \varphi \Rightarrow \exists M \exists s V_s(\neg \varphi) = \begin{cases} 0 & 0 < V_s(\neg \varphi) < 1 \\ 1 & V_s(\neg \varphi) = 0 \end{cases}$

But since $\neg \varphi$ takes crisp value, the case where $0 < V_s(\neg \varphi) < 1$ never happens. Therefore,

$\not\models \neg \neg \varphi \Rightarrow \exists M \exists s V_s(\neg \varphi) = 1$

(3)\Rightarrow(2). Assume that (3) holds, then $\not\models \neg \neg \varphi$ implies that $\exists M \exists s V_s(\neg \varphi) = 0$. Replacing φ by $\neg \varphi$, it can be obtained that

$\not\models \neg \neg \neg \neg \varphi \Rightarrow \exists M \exists s V_s(\neg \neg \varphi) = 0$

Therefore, $\not\models \neg \varphi$ implies that $\exists M \exists s V_s(\varphi) \neq 1$, which completes the proof. □
Theorem 3.4. (Weak Completeness) B_F is weak complete with respect to the class of all EGL-models.

Proof. By model existence lemma, it is enough to show that for each formula φ, if $\neg\neg\varphi$ is consistent then $\neg\neg\varphi$ is satisfiable. By Lemma 2.10 part (1), it is sufficient to show that for each maximally consistent set Φ of formulas, the set of all double negated formulas contained in Φ is satisfiable. This is obtained by constructing a so-called canonical EGL-model. The canonical EGL-model $M^c = (S^c, r^c_{a\in A}, \pi^c)$ is defined as follows:

- $S^c = \{ s_\Theta \mid \Theta$ is a maximally consistent set of formulas $\}$
- $r^c_{a\in A}(s_\Theta, s_\Psi) = \begin{cases} 1 & \Theta/B_a \subseteq \Psi \\ 0 & \text{otherwise} \end{cases}$, where $\Theta/B_a = \{ \neg\neg\varphi \mid \neg\neg B_a \varphi \in \Theta \}$,
- $\pi^c(s_\Theta, p) = \begin{cases} 1 & \neg\neg p \in \Theta \\ 0 & \neg\neg p \notin \Theta \end{cases}$, where $p \in P$.

π^c can be extended to all formulas, naturally. As before we use the notation V for its extension. Note that π^c and V take crisp values. Now it is enough to show that for each formula φ and each $s_\Theta \in S^c$ the following statement holds:

$$V_{s_\Theta}(\neg\neg\varphi) = 1 \iff \neg\neg\varphi \in \Theta$$

We prove it by induction on the structure of φ:

Case 1: $\varphi = p$, where $p \in P$:

$$V_{s_\Theta}(\neg\neg p) = 1 \iff V_{s_\Theta}(p) > 0 \iff V_{s_\Theta}(p) = 1 \iff \pi^c(s_\Theta, p) = 1 \iff \neg\neg p \in \Theta$$

Case 2: $\varphi = \varphi_1 \land \varphi_2$

$$V_{s_\Theta}(\neg\neg(\varphi_1 \land \varphi_2)) = 1 \iff V_{s_\Theta}(\varphi_1 \land \varphi_2) > 0 \iff V_{s_\Theta}(\varphi_1) > 0, V_{s_\Theta}(\varphi_2) > 0 \iff V_{s_\Theta}(\neg\neg\varphi_1) = 1, V_{s_\Theta}(\neg\neg\varphi_2) = 1 \iff \neg\neg\varphi_1, \neg\neg\varphi_2 \in \Theta$$ (induction hypothesis)

$$\iff \neg\neg\varphi_1 \land \neg\neg\varphi_2 \in \Theta \quad \text{(maximal consistency of } \Theta)$$

$$\iff \neg\neg(\varphi_1 \land \varphi_2) \in \Theta \quad ((\text{GT4}) \text{ and maximal consistency of } \Theta)$$

Case 3: $\varphi = \varphi_1 \rightarrow \varphi_2$

(\Rightarrow) Let $\neg\neg(\varphi_1 \rightarrow \varphi_2) \in \Theta$, then using (GT5) and maximal consistency of Θ it is concluded that

$$\neg\neg\varphi_1 \rightarrow \neg\neg\varphi_2 \in \Theta \quad (3.1)$$

Assume that $V_{s_\Theta}(\neg\neg(\varphi_1 \rightarrow \varphi_2)) = 0$. Then, $V_{s_\Theta}(\varphi_1 \rightarrow \varphi_2) = 0$ and so it is demonstrated that $V_{s_\Theta}(\varphi_1) = 1, V_{s_\Theta}(\varphi_2) = 0$. Hence $V_{s_\Theta}(\neg\neg\varphi_1) = 1$ and $V_{s_\Theta}(\neg\neg\varphi_2) = 0$. By induction hypothesis, $\neg\neg\varphi_1 \in \Theta$ and then by
applying Lemma 2.10 the statement (3.1) and the maximal consistency of Θ, it is concluded that \(-\varphi_2 \in \Theta\). Consequently, by induction hypothesis \(V_{\Theta}(\neg\varphi_2) = 1\), contradicting the assumption.

\((\Rightarrow)\) Assume that \(V_{\Theta}(\neg(\varphi_1 \to \varphi_2)) = 1\), then \(V_{\Theta}(\varphi_1 \to \varphi_2) = 1\). Thus it is obtained that either \(V_{\Theta}(\varphi_2) = 1\) or \(V_{\Theta}(\varphi_1) = V_{\Theta}(\varphi_2) = 0\). If \(V_{\Theta}(\varphi_2) = 1\), it is derived that \(V_{\Theta}(\neg\varphi_2) = 1\) and then by induction hypothesis \(-\varphi_2 \in \Theta\). Since \(-\varphi_2 \to (\neg \varphi_1 \to \neg \varphi_2)\) is an instance of (GT1), then maximal consistency of \(\Theta\) results in \(-\varphi_1 \to \neg \varphi_2 \in \Theta\). Therefore, by (GT5) we obtain \(-\varphi_1 \to \varphi_2 \in \Theta\). In the other case, if \(V_{\Theta}(\varphi_1) = V_{\Theta}(\varphi_2) = 0\), by absurd hypothesis suppose that \(-\varphi_1 \to \varphi_2 \in \Theta\). Hence, by maximal consistency of \(\Theta\) it is obtained that \(-\varphi_1 \to \varphi_2 \in \Theta\). Then by applying (GT8) and (GT6), \(-\varphi_1 \to \varphi_2 \in \Theta\) and \(-\varphi_2 \to (\neg \varphi_1 \to \neg \varphi_2)\) is an instance of \(\Theta\), respectively. Now, by case 3, we have \(V_{\Theta}(\neg\varphi_2) = 1\) and hence \(V_{\Theta}(\neg\varphi_1 \to \varphi_2) = 1\), contradicting the assumption \(V_{\Theta}(\varphi_1) = V_{\Theta}(\varphi_2) = 0\).

Case 4: \(\varphi = B_a \psi\)

\((\Leftarrow)\) Assume that \(\neg B_a \psi \in \Theta\), then \(\neg \psi \in \Theta/B_a\). Let \(\Psi\) be an arbitrary maximally consistent set of formulas and \(s_\psi \in S^c\). Then we have:

\[r^c_a(s_\Theta, s_\psi) = 1 \Rightarrow \neg \psi \in \Theta/B_a \subseteq \Psi \Rightarrow V_{s_\psi}(\neg \psi) = 1 \quad \text{(induction hypothesis)}\]

\[\Rightarrow V_{s_\psi}(\psi) = 1\]

Consequently, \(V_{s_\Theta}(B_a \psi) = \min_{s_\psi \in S^c} \{1 - r^c_a(s_\Theta, s_\psi), V_{s_\psi}(\psi)\} = 1\), so \(V_{s_\Theta}(\neg B_a \psi) = 1\).

\((\Rightarrow)\) Assume that \(V_{s_\Theta}(\neg B_a \psi) = 1\).

Claim: \(\Theta/B_a \cup \{\neg \psi\}\) is inconsistent.

Proof of the Claim. Suppose that \(\Theta/B_a \cup \{\neg \psi\}\) is consistent. Then by Lemma 2.10 there exists a maximally consistent extension \(\Psi\) such that \(\Theta/B_a \subseteq \Theta/B_a \cup \{\neg \psi\} \subseteq \Psi\). Thus, \(r^c_a(s_\Theta, s_\psi) = 1\) and \(\neg \psi \in \Psi\). By induction hypothesis \(V_{s_\psi}(\neg \psi) = 1\) and then \(V_{s_\psi}(\psi) = 0\). Therefore, \(V_{s_\psi}(B_a \psi) = \min_{s_\psi \in S^c} \{1 - r^c_a(s_\Theta, s_\psi), V_{s_\psi}(\psi)\} = 0\) and it is concluded that \(V_{s_\Theta}(\neg B_a \psi) = 0\), which contradicts the assumption. ■

Consequently, it follows that there is some inconsistent finite subset \(\Delta\) of \(\Theta/B_a \cup \{\neg \psi\}\), let \(\Delta = \{\neg \varphi_1, \ldots, \neg \varphi_k, \neg \psi\}\). Note that without loss of generality, we assume that \(\Delta\) contains \(\neg \psi\). Hence

\[\vdash (\neg \varphi_1 \land \ldots \land \neg \varphi_k \land \neg \psi)\]

By (GT4), (GT6) and transitivity rule it can be obtained that

\[\vdash (\varphi_1 \land \ldots \land \varphi_k \land \neg \psi) \rightarrow (\neg \varphi_1 \land \ldots \land \neg \varphi_k \land \neg \psi)\]

So applying (GT2) yields

\[\vdash (\neg \varphi_1 \land \ldots \land \neg \varphi_k \land \neg \psi) \rightarrow (\varphi_1 \land \ldots \land \varphi_k \land \neg \psi)\]
Hence, it can be concluded that \(\vdash \neg(\varphi_1 \land \ldots \land \varphi_k \land \neg\psi) \), and then
\(\vdash \varphi_1 \to ((\varphi_2 \to (\ldots (\varphi_k \to \neg\psi) \ldots))) \), by using (GT3). Consequently
by applying (R2) we obtain \(\vdash B_a(\varphi_1 \to \xi) \), by (GT6). Since \(\Theta \) is a maximally consistent set, then by Lemma 2.10 the following statement holds
\[\neg\neg B_a(\varphi_1 \to \xi) \in \Theta \quad (3.2) \]
Also from \(\neg\neg\varphi_1, \ldots, \neg\neg\varphi_k \in \Theta/B_a \), it is demonstrated that
\[\neg\neg B_a\varphi_1, \ldots, \neg\neg B_a\varphi_k \in \Theta \quad (3.3) \]
Thus, we have
\[\vdash B_a\varphi_1 \land B_a(\varphi_1 \to \xi) \to B_a\xi \quad \text{(instance of (A2))} \]
\[\vdash B_a\varphi_1 \to (B_a(\varphi_1 \to \xi) \to B_a\xi) \quad \text{(by (G4))} \]
\[\vdash \neg\neg(B_a\varphi_1 \to (B_a(\varphi_1 \to \xi) \to B_a\xi)) \quad \text{(by (GT6))} \]
\[\vdash \neg\neg B_a\varphi_1 \to (\neg\neg B_a(\varphi_1 \to \xi) \to \neg\neg B_a\xi) \quad \text{(by (GT5))} \]
Therefore,
\[\neg\neg B_a\varphi_1 \to (\neg\neg B_a(\varphi_1 \to \xi) \to \neg\neg B_a\xi) \in \Theta. \quad (3.4) \]
By (3.3), (3.4) and the maximal consistency of \(\Theta \) it follows that:
\[\neg\neg B_a(\varphi_1 \to \xi) \to \neg\neg B_a\xi \in \Theta \quad (3.5) \]
Also, by (3.2), (3.6) and the maximal consistency of \(\Theta \) it can be concluded that \(\neg\neg B_a\xi \in \Theta \). Repetitive application of the above process yields \(\neg\neg B_a\neg\neg\psi \in \Theta \) and then by using (A3) we conclude that \(\neg\neg B_a\psi \in \Theta \), which completes the proof. \(\square \)

Theorem 3.5. \(T_F \) is weak complete with respect to the class of all reflexive EGL-models.

Proof. The proof is similar to the proof of Theorem 3.4 except for the indistinguishing functions of canonical model. We must consider the following condition in our canonical model:
\[\forall a \in A \ \forall s \in S^c \ r^c_a(s, s) = 1 \quad \square \]

4. **EGL with common knowledge**

Let \(B \subseteq A \). We add two connectives \(E_B\varphi \) and \(C_B\varphi \) to the language of EGL, which mean "every agents in \(B \) knows \(\varphi \)" and "\(\varphi \) is common knowledge between the agents of \(B \)" respectively. We call this extension the *epistemic Gödel logic with common knowledge*, denoted by CEGL.
Lemma 4.4. The CEGL-formulas are defined as follows:
\[\varphi ::= p \mid \bot \mid \varphi \land \varphi \mid \varphi \rightarrow \varphi \mid B_a \varphi \mid E_B \varphi \mid C_B \varphi \]
where, \(p \in \mathcal{P} \) and \(a \in \mathcal{A} \). Notice that the connective \(E_B \) can be defined in terms of \(B_a \)'s, that is \(E_B(\varphi) = \wedge_{a \in B} B_a \varphi \).

Definition 4.2. (CEGL-Model) A CEGL-model is a structure \(M = (S, r_{a \in \mathcal{A}}, \pi) \), which its parameters are defined as an EGL-model, but the extension \(V \) of \(\pi \) is also defined for two new connectives \(E_B \) and \(C_B \) as follows:
\begin{itemize}
 \item \(V_s(E_B \varphi) = \min_{b \in B} V_s(B_b \varphi) \)
 \item \(V_s(C_B \varphi) = \inf_{i \in \mathbb{N}} E_B^i \varphi \)
\end{itemize}
where, for each \(i \in \mathbb{N} \), \(E_B^i \varphi = E_B E_B ... E_B \varphi \) (\(i \) times).

Proposition 4.3. The following rules are admissible in CEGL, that is if the premise of a rule is CEGL-valid, then its conclusion is also CEGL-valid.
\begin{enumerate}
 \item \(\frac{\varphi}{E_B \varphi} \quad (E) \)
 \item \(\frac{\varphi}{C_B \varphi} \quad (O) \)
\end{enumerate}

Proof. The proof is straightforward. \(\square \)

Lemma 4.4. Let \(\varphi, \psi \) be formulas in the language of CEGL. The following statements hold:
\begin{enumerate}
 \item \(E_B \varphi \rightarrow \varphi \) is valid in all reflexive CEGL-models.
 \item \(C_B \varphi \rightarrow \varphi \) is valid in all reflexive CEGL-models.
 \item For each \(n \in \mathbb{N} \), the formula \(E_B^n(\varphi \rightarrow \psi) \land E_B^n \varphi \rightarrow E_B^n \psi \) is CEGL-valid.
 \item \(E_B^n(\varphi \rightarrow \psi) \rightarrow (E_B^n \varphi \rightarrow E_B^n \psi) \) is CEGL-valid.
\end{enumerate}

Proof. Parts (1) and (2) can be proved easily. Parts (3) and (4) are equivalent, by using (G4). So we only prove the part (3). Let \(M = (S, r_{a \in \mathcal{A}}, \pi) \) be a CEGL-model and \(s \in S \). We show by induction on \(n \) that \(V_s(E_B^n(\varphi \rightarrow \psi) \land E_B^n \varphi \rightarrow E_B^n \psi) = 1 \).

(Basis) By (A2), \(V_s(B_b(\varphi \rightarrow \psi) \land B_b \varphi \rightarrow B_b \psi) = 1 \), for each \(b \in \mathcal{B} \).

Therefore,
\[\min_{b \in B} \left\{ V_s(B_b(\varphi \rightarrow \psi)), V_s(B_b \varphi) \right\} \leq V_s(B_b \psi) \]
\[\implies \min_{b \in B} \left\{ \min_{b \in B} \left\{ V_s(B_b(\varphi \rightarrow \psi)), V_s(B_b \varphi) \right\} \right\} \leq \min_{b \in B} \left\{ V_s(B_b \psi) \right\} \]
\[\implies \min_{b \in B} \left\{ V_s(B_b(\varphi \rightarrow \psi)), \min_{b \in B} V_s(B_b \varphi) \right\} \leq \min_{b \in B} V_s(B_b \psi) \]
\[\implies V_s(E_B(\varphi \rightarrow \psi) \land E_B \varphi) \leq V_s(E_B \psi) \]
and so \(V_s(E_B(\varphi \rightarrow \psi) \land E_B\varphi \rightarrow E_B\psi) = 1 \).

(Induction step) Assume that \(V_s(E^n_B(\varphi \rightarrow \psi) \land E^n_B\varphi \rightarrow E^n_B\psi) = 1 \), for each \(1 \leq i \leq n \). We check that \(V_s(E^{n+1}_B(\varphi \rightarrow \psi) \land E^{n+1}_B\varphi \rightarrow E^{n+1}_B\psi) = 1 \).

By induction hypothesis and the admissibility of \((R2)\) the following equation is obtained:

\[
V_s(B_B(E^n_B(\varphi \rightarrow \psi) \land E^n_B\varphi \rightarrow E^n_B\psi)) = 1
\]

Using Proposition \(2.7\) part (ii), it is demonstrated that for each \(b \in B \):

\[V_s(B_b(E^n_B(\varphi \rightarrow \psi) \land E^n_B\varphi) \rightarrow B_bE^n_B\psi) = 1 \]

Also, by Proposition \(2.7\), part \((iv)\), we obtain the following equation for each \(b \in B \):

\[V_s(B_bE^n_B(\varphi \rightarrow \psi) \land B_bE^n_B\varphi \rightarrow B_bE^n_B\psi) = 1 \]

Therefore, for all \(b \in B \):

\[
\min \left\{ V_s(B_bE^n_B(\varphi \rightarrow \psi)), V_s(B_bE^n_B\varphi) \right\} \leq V_s(B_bE^n_B\psi),
\]

\[
\min \left\{ \min \left\{ V_s(B_bE^n_B(\varphi \rightarrow \psi)), V_s(B_bE^n_B\varphi) \right\} \right\} \leq \min V_s(B_bE^n_B\psi),
\]

\[
\min \left\{ \min_{b \in B} V_s(B_bE^n_B(\varphi \rightarrow \psi)), \min_{b \in B} V_s(B_bE^n_B\varphi) \right\} \leq \min V_s(B_bE^n_B\psi),
\]

\[
\min \left\{ \min_{b \in B} V_s(E^{n+1}_B(\varphi \rightarrow \psi)), \min_{b \in B} V_s(E^{n+1}_B\varphi) \right\} \leq \min V_s(E^{n+1}_B\psi),
\]

and consequently

\[
V_s(E^{n+1}_B(\varphi \rightarrow \psi) \land E^{n+1}_B\varphi \rightarrow E^{n+1}_B\psi) = 1.
\]

Corollary 4.5. For each \(n \in \mathbb{N} \), \(E^n_B(\varphi \rightarrow E_B\varphi) \rightarrow E^n_B\varphi \) is valid in all reflexive CEGL-models.

Proof. Let \(M = (S,r_a,a,\pi) \) be a reflexive CEGL-model and \(s \in S \). We show by induction on \(n \) that \(E^n_B(\varphi \rightarrow E_B\varphi) \rightarrow E^n_B\varphi \) is valid in \((M,s)\).

(Basis) By Lemma \(4.4\) part (i), the formula \(E_B(\varphi \rightarrow E_B\varphi) \rightarrow (\varphi \rightarrow E_B\varphi) \) is valid in all reflexive CEGL-models, so \(V_s(E_B(\varphi \rightarrow E_B\varphi) \land \varphi \rightarrow E_B\varphi) = 1 \). Since by Lemma \(4.4\) part (i), \(V_s(E_B\varphi) \leq V_s(\varphi) \), then we have \(V_s(E_B(\varphi \rightarrow E_B\varphi)) \leq V_s(E_B\varphi) \). Therefore, \(V_s(E_B(\varphi \rightarrow E_B\varphi) \rightarrow E_B\varphi) = 1 \).

(Induction step) Assume that \(V_s(E^n_B(\varphi \rightarrow E_B\varphi) \rightarrow E^n_B\varphi) = 1 \), then we show that \(V_s(E^{n+1}_B(\varphi \rightarrow E_B\varphi) \rightarrow E^{n+1}_B\varphi) = 1 \). By induction hypothesis and Proposition \(4.3\) it is obtained that \(V_s(E_B(E^n_B(\varphi \rightarrow E_B\varphi) \rightarrow E^n_B\varphi))) = 1 \). So \(V_s(E^{n+1}_B(\varphi \rightarrow E_B\varphi) \rightarrow E^{n+1}_B\varphi) = 1 \), by using Lemma \(4.4\) part (iv).

Proposition 4.6. The following formulas are valid in all reflexive CEGL-models.

\[
\begin{align*}
(1) & \quad E_B\varphi \rightarrow B_a\varphi \\
(2) & \quad C_B(\varphi \land E_B\varphi) \rightarrow C_B\varphi \\
(3) & \quad C_B(\varphi \rightarrow E_B\varphi) \rightarrow C_B\psi \\
(4) & \quad C_B(\varphi \rightarrow E_B\varphi) \rightarrow C_B(\varphi \rightarrow C_B\varphi)
\end{align*}
\]
Proof. The parts (1) and (2) can be shown easily. Let $M = (S, r_{al_{lat}}A, \pi)$ be a reflexive CEGL-model and $s \in S$. We show (3) and (4) are valid in (M, s).

Proof of (3). Using Lemma 4.4 we have

$$\min \left\{ V_s(C_B\varphi \rightarrow \psi), V_s(C_B\varphi) \right\} = \min \left\{ \inf_{i \in \mathbb{N}} V_s(E_B^i\varphi \rightarrow \psi), \inf_{i \in \mathbb{N}} V_s(E_B^i\varphi) \right\}$$

$$\leq \inf_{i \in \mathbb{N}} \min \left\{ V_s(E_B^i\varphi \rightarrow \psi), V_s(E_B^i\varphi) \right\} \leq \inf_{i \in \mathbb{N}} V_s(E_B^i\varphi) = V_s(C_B\psi)$$

Hence, $V_s(C_B(\varphi \rightarrow \psi) \land C_B\varphi \rightarrow C_B\psi) = 1$

Proof of (4). By Corollary 4.5, $V_s(E_B^i(\varphi \rightarrow E_B\varphi)) \leq V_s(E_B^i\varphi)$, for all $i \in \mathbb{N}$. Then, $\inf_{i \in \mathbb{N}} V_s(E_B^i(\varphi \rightarrow E_B\varphi)) \leq \inf_{i \in \mathbb{N}} V_s(E_B^i\varphi)$, so $V_s(C_B(\varphi \rightarrow E_B\varphi)) \leq V_s(C_B\varphi)$. Therefore, $V_s(C_B(\varphi \rightarrow E_B\varphi) \land \varphi) \leq V_s(C_B\varphi)$ and consequently $V_s(C_B(\varphi \rightarrow E_B\varphi) \rightarrow (\varphi \rightarrow C_B\varphi)) = 1 \square$

Remark 4.7. The formula $C_B(\varphi \rightarrow \psi) \land C_B\varphi \rightarrow C_B\psi$, in part (3) of Proposition 4.6, is also valid in all non-reflexive CEGL-models.

5. A Dynamic Extension of EGL

Definition 5.1. (Action Model) Let \mathcal{L} be any logical language. An action model A is a structure $A = (E, u_{al_{lat}}A, pre)$ such that

- E is a non-empty finite set of actions,
- for each $a \in A$, $u_a : E \times E \rightarrow [0, 1]$ is a (indistinguishing) function, which for each $e \in E$, $u_a(e, e) = 1$,
- $pre : E \rightarrow \mathcal{L}$ is a function which assigns a precondition $pre(e) \in \mathcal{L}$, to each action $e \in E$. We denote $pre(e)$ by pre_e.

Definition 5.2. The set of formulas of dynamic epistemic Gödel logic (briefly, DEGL) are defined as follows:

$$\varphi ::= p \mid \bot \mid \varphi \land \varphi \mid \varphi \rightarrow \varphi \mid B_a\varphi \mid [A, e]\varphi$$

where, $A = (E, u_{al_{lat}}A, pre)$ is an action model whose language \mathcal{L} is defined by the following BNF:

$$\chi ::= G(\psi) = g \mid G(\psi) > g \mid \bot \mid \chi \land \chi \mid \chi \rightarrow \chi$$

in which,

$$\psi ::= p \mid \bot \mid \psi \land \psi \mid \psi \rightarrow \psi \mid B_a\psi$$

where, $p \in \mathcal{P}$, $a \in A$, $e \in E$ and $g \in [0, 1]$. We call $[A, e]\varphi$ the updating formula and we refer to $G(\psi) = g$ and $G(\psi) > g$ as G-formulas.

Intuitively, $G(\psi) = g$ says that the truth value of ψ is g and $G(\psi) > g$ says that the truth value of ψ is strictly greater than g.
In the language \(\mathcal{L} \), the formulas \(\neg \varphi \), \(\varphi \lor \psi \) and \(\varphi \leftrightarrow \psi \) are defined as similar as GL. Moreover, further connectives are defined as follows:

\[
\begin{align*}
G(\varphi) \geq g & := G(\varphi) = g \lor G(\varphi) > g \\
G(\varphi) \leq g & := \neg(G(\varphi) > g) \\
G(\varphi) < g & := \neg(G(\varphi) \geq g)
\end{align*}
\]

Definition 5.3. A DEGL-model is a structure \(M = (S, r_{a \in \mathcal{A}}, \pi) \) in which \(S, r_{a \in \mathcal{A}} \) and \(\pi \) are defined analogous to their definition in the EGL-models, but the expansion \(V \) of \(\pi \) is also defined on updating and \(G \)-formulas as follows:

- \(V_a(G(\varphi) = g) = \begin{cases} 1 & V_a(\varphi) = g \\ 0 & \text{otherwise} \end{cases} \)
- \(V_a(G(\varphi) > g) = \begin{cases} 1 & V_a(\varphi) > g \\ 0 & \text{otherwise} \end{cases} \)
- \(V_a([A, e] \varphi) = \begin{cases} V'_a(\varphi) & (s, e) \in S' \\ 1 & \text{otherwise} \end{cases} \)

where, \(V'_a(\varphi) \) is defined below. Also note that the \(G \)-formulas take crisp values.

Definition 5.4. (Product Model) Let \(M = (S, r_{a \in \mathcal{A}}, \pi) \) be a DEGL-model and \(A = (E, u_{a \in \mathcal{A}}, \text{pre}) \) be an action model. Then, updating \(M \) by \(A \) is defined by the product model \(M \times A = (S', r'_{a \in \mathcal{A}}, \pi') \), where:

- \(S' = \{(s, e) \mid s \in S, e \in E, V_a(\text{pre}_e) = 1\} \) is the set of states,
- for each \(a \in \mathcal{A} \), \(r'_a : S' \times S' \to [0, 1] \) is a function, which for all \((s_1, e_1), (s_2, e_2) \in S'\):

\[
r'_a((s_1, e_1), (s_2, e_2)) = \min \{r_a(s_1, s_2), u_a(e_1, e_2)\}
\]

We call it the indistinguishing function,

- \(\pi' : S' \times \mathcal{P} \to [0, 1] \) is a valuation function, which for each \((s, e) \in S' \) and each \(p \in \mathcal{P} \), we have \(\pi'((s, e), p) = \pi(s, p) \).

The function \(\pi' \) can be extended to all DEGL-formulas, naturally. We use the similar notation \(V' \) for the extended function.

Proposition 5.5. Let \(\varphi \) be a DEGL-formula. The following formulas are valid in all DEGL-models.

\[
\begin{align*}
(1) & \quad [A, e]p \leftrightarrow (\text{pre}_e \rightarrow p) \\
(2) & \quad [A, e] \neg \varphi \leftrightarrow (\text{pre}_e \rightarrow \neg [A, e] \varphi) \\
(3) & \quad [A, e](\varphi \land \psi) \leftrightarrow ([A, e] \varphi \land [A, e] \psi) \\
(4) & \quad [A, e]B_a \varphi \rightarrow (\text{pre}_e \rightarrow B_a[A, e] \varphi) \\
(5) & \quad \bigwedge_{e' \in E, u_a(e, e') \neq 0} B_a[A, e'][e] \varphi \rightarrow [A, e]B_a \varphi
\end{align*}
\]
Proof. We only prove parts (4) and (5). Other parts can be proved in a similar fashion more easily. Assume that \(M = (S, r_{alucA}, \pi) \) is a DEGL-model, \(A = (E, u_{alucA}, pre) \) is an action model, \(M \times A = (S', r_{alucA}', \pi') \) is the product model corresponding to the update of \(M \) by \(A \), \(s \in S \) and \(e \in E \).

Proof of (4) If \(V_s(pre_e) = 1 \), then

\[
V_s([A, e]B_a\varphi) = V'_s(s, e)(B_a\varphi)
\]

\[
= \min_{(s', e') \in S'} \max \{1 - r'_a((s, e), (s', e')), V'_{(s', e')}(\varphi)\}
\]

\[
= \min_{(s', e') \in S'} [\min \max \{1 - r_a(s, s'), u_a(e, e'), V'_{(s', e')}(\varphi)\}]
\]

\[
= \min_{(s', e') \in S'} \max \{1 - r_a(s, s'), V'_{(s', e')}(\varphi), 1 - u_a(e, e')\}
\]

and so we have

\[
V_s([A, e]B_a\varphi) = \min \left\{ \min_{s' \in S} \max \{1 - r_a(s, s'), V'_{(s', e')}(\varphi), 1 - u_a(e, e')\}, \right\}
\]

\[
= \min \left\{ V_s(B_a[A, e]\varphi), \min_{s', e' \in E} \max \{1 - r_a(s, s'), V'_{(s', e')}(\varphi), 1 - u_a(e, e')\} \right\}
\]

Therefore, \(V_s([A, e]B_a\varphi) \leq V_s(B_a[A, e]\varphi) \) and hence

\(V_s([A, e]B_a\varphi \rightarrow B_a[A, e]\varphi) = 1 \).

Otherwise, if \(V_s(pre_e) = 0 \), then \(V_s([A, e]B_a\varphi \wedge pre_e) \leq V_s(B_a[A, e]\varphi) \), which completes the proof.

Proof of (5) We consider two cases. In first case \(V_s(pre_e) = 1 \), then for each \(e' \in E \) which \(u_a(e, e') \neq 0 \), we have the following equation:

\[
V_s(B_a[A, e']\varphi) = \min_{s' \in S} \max \{1 - r_a(s, s'), V'_{s'}([A, e']\varphi)\}
\]

\[
= \min_{s' \in S} \max \{1 - r_a(s, s'), V'_{(s', e')}(\varphi)\}
\]

Similar to the proof of part (4), it can be obtained that

\[
V_s([A, e]B_a\varphi) = \min \left\{ \max \{1 - r_a(s, s'), V'_{(s', e')}(\varphi), 1 - u_a(e, e')\}, s' \in S, e' \in E, u_a(e, e') \neq 0, V'_e(pre_{e'}) = 1 \right\}
\]
and consequently
\[
V_s(\bigwedge_{e'\in E, u_a(e,e') \neq 0} B_a[A, e'] \varphi) = \min_{e'\in E, u_a(e,e') \neq 0} \min_{s'\in S} \max \{1 - r_a(s, s'), V_{s'}(\varphi)\} \\
\leq \min_{e'\in E, u_a(e,e') \neq 0} \min_{s'\in S} \max \{1 - r_a(s, s'), V_{s'}(\varphi), 1 - u_a(e, e')\} \\
\leq \min_{(s', e') \in S', u_a(e,e') \neq 0} \max \{1 - r_a(s, s'), V_{s'}(\varphi), 1 - u_a(e, e')\} \\
= V_s([A, e] B_a \varphi)
\]
So, \(V_s(\bigwedge_{e'\in E, u_a(e,e') \neq 0} B_a[A, e'] \varphi \rightarrow [A, e] B_a \varphi) = 1\). In the other case \(V_s(\text{pre}_e) = 0\), then by definition it can be obtained that \(V_s([A, e] B_a \varphi) = 1\), which completes the proof. \(\square\)

Example 5.6. (Updating the fuzzy muddy children) In this example an update of Example 2.4 of fuzzy muddy children is given. For each agent \(a \in \mathcal{A}\), we consider a new parameter \(H_a \in [0, 1]\) as the amount of hearing impairment of the agent \(a\). If \(E = \{e_1, \ldots, e_m\}\) is the set of actions, then for each \(a \in \mathcal{A}\) and \(1 \leq i, j \leq m\), the indistinguishing function \(u_a\) is defined as follows:

\[
u_a(e_i, e_j) = \begin{cases} H_a & i \neq j \\ 1 & i = j \end{cases}
\]

We suppose that \(\mathcal{A} = \{a, b\}\) and somebody makes an announcement about two things: (1) number of agents with muddy face (2) the amount of mud in each muddy face. Then, \(E = \{e_1, e_2\}\) while \(\text{pre}_{e_1}\) says “The face of exactly one of the agents is a little muddy” and \(\text{pre}_{e_2}\) says “The face of exactly one of the agents is a little muddy”. We consider the value \(\frac{1}{2}\) as being a little muddy. So, the pre-conditions are the following formulas:

\[
\text{pre}_{e_1} := (G(m_a) \geq \frac{1}{2} \lor G(m_b) \geq \frac{1}{2}) \land \neg (G(m_a) \geq \frac{1}{2} \land G(m_b) \geq \frac{1}{2})
\]

\[
\text{pre}_{e_2} := (G(m_a) = \frac{1}{2} \lor G(m_b) = \frac{1}{2}) \land \neg (G(m_a) = \frac{1}{2} \land G(m_b) = \frac{1}{2})
\]

Also, we suppose that \(H_a = 0, H_b = 0.75\). Then the indistinguishing functions \(u_a, u_b\) are defined as follows:

\[
u_a(e_i, e_j) = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases} \quad \nu_b(e_i, e_j) = \begin{cases} 0.75 & i \neq j \\ 1 & i = j \end{cases}
\]

Thus, the definition of action model \(A = (E, u_{a|a\in\mathcal{A}}, \text{pre})\) is completely done. Now we update the model \(M\) in Example 2.4 by the action model \(A\). The product model \(M \times A = (S', r_{a|a\in\mathcal{A}}, \pi')\) is defined as follows:
The set of states S' is as follows:

$$S' = \{ ((0, \frac{1}{2}), e_1), ((0, 1), e_1), ((\frac{1}{2}, 0), e_1), ((1, 0), e_1), ((0, \frac{1}{2}), e_2), ((\frac{1}{2}, 0), e_2), ((1, \frac{1}{2}), e_2), ((\frac{1}{2}, 1), e_2) \}$$

Let $(i, j), (i', j') \in S'$ and $k \in \{1, 2\}$. Then the indistinguishing functions are defined as below:

$$r'_a(((i, j), e_k), ((i', j'), e_k)) = \begin{cases} 0 & |j - j'| = 0 \\ 0.36 & |j - j'| = \frac{1}{2} \\ 0.32 & |j - j'| = 1 \end{cases}$$

$$r'_a(((i, j), e_1), ((i', j'), e_2)) = 0$$

$$r'_b(((i, j), e_k), ((i', j'), e_k)) = \begin{cases} 0 & |i - i'| = 0 \\ 0.81 & |i - i'| = \frac{1}{2} \\ 0.72 & |i - i'| = 1 \end{cases}$$

$$r'_b(((i, j), e_1), ((i', j'), e_2)) = \begin{cases} 0.75 & |i - i'| = 0 \\ 0.75 & |i - i'| = \frac{1}{2} \\ 0.72 & |i - i'| = 1 \end{cases}$$

The valuation function on atomic propositions m_a, m_b are defined as follows:

$$\pi'((i, j), e_k), m_a) = i$$

$$\pi'((i, j), e_k), m_b) = j$$

where, $(i, j) \in S'$ and $k \in \{1, 2\}$.

Conclusions

We introduced some epistemic extensions of Gödel logic. We established two deductive systems which are sound and weak complete with respect to the corresponding Kripke semantics. Afterwards, we enriched the language of epistemic Gödel logic with two operators for group and common Knowledge and proposed the corresponding semantics. Moreover, by introducing an action model approach, we gave a dynamic extension of the epistemic Gödel logic. Also, we derived the validity of some formulas in the language of dynamic extension.

For the future work, if one can extend Proposition 5.5, such that it gives a translation from DEGL to (static) epistemic Gödel logic, then one can prove soundness and weak completeness for DEGL.

References

[1] P. Blackburn, J. F. A. K. van Benthem, F Wolter, Handbook of Modal Logic, Volume 3 (Studies in Logic and Practical Reasoning), Elsevier Science Inc. New York, NY, USA, 2006.

[2] F. Bou, F. Esteva, L. Godo, Exploring a syntactic notion of modal many-valued logics. Mathware and Soft Computing, 15, 175-181, 2008.
[3] X. Caicedo, R. O. Rodriguez, A Gödel modal logic. *Logic, Computability and Randomness*, Cordoba, Argentina, 2004, full text eprint arXiv:0903.2767.

[4] X. Caicedo, G. Metcalfe, R. Rodriguez, and J. Rogger, A finite model property for Gödel modal logics. In Leonid Libkin, Ulrich Kohlenbach, and Ruy de Queiroz, editors, *WoLLIC*, Lecture Notes in Computer Science, 8071, 226-237, 2013.

[5] X. Caicedo and R. O. Rodriguez, Standard Gödel modal logics. *Studia Logica*, 94(2), 189-214, 2010.

[6] X. Caicedo and R. O. Rodriguez, Bi-modal Gödel logic over [0, 1]-valued kripke frames. *Journal of Logic and Computation*, 25(1), 37-55, 2015.

[7] H.P. van Ditmarsch, W. van der Hoek and B.P. Kooi, Dynamic Epistemic Logic. Synthese Library volume 337. Springer, 2007.

[8] F. Esteva, P. Garcia-Calvs, L. Godo, Enriched interval bilattices and partial many-valued logics: an approach to deal with graded truth and imprecision. *International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems*, 2, 37-54, 1994.

[9] M. C. Fitting, Many-valued modal logics. *Fundamenta Informaticae*, 15, 235-254, 1992.

[10] M. C. Fitting, Many-valued modal logics II, *Fundamenta Informaticae*, 17, 55-73, 1992.

[11] P. Hájek, On fuzzy modal logics. *Fuzzy Sets and Systems*, 161(18), 2010.

[12] P. Hájek, *Metamathematics of Fuzzy Logic*, Kluwer Academic Publishers, Dordrecht, 1998.

[13] P. Hájek, D. Harmancová, A comparative fuzzy modal logic, *Fuzzy Logic in Artificial Intelligence*, 27-34,1993.

[14] P. Hájek, D. Harmancová, A many-valued modal logic, In *Proc. IPMU1996*, *University of Granada*, 1021-1024, 1996.

[15] P. Hájek, D. Harmancová, F. Esteva, P. Garcia, L. Godo, On modal logics of qualitative possibility in a fuzzy setting, In *Proceedings of the Conference on Uncertainty in Artificial Intelligence, Seattle*, 145-152,1994.

[16] G. Hansoul, B. Teheux, Completeness results for many-valued ukasiewicz modal systems and relational semantics, *arXiv:math.LO/0612542v1*, 2006.

[17] G. Hansoul and B. Teheux, Extending ukasiewicz logics with a modality: Algebraic approach to relational semantics. *Studia Logica*, 101(3), 505-545, 2013.

[18] G. Hughes, M. Cresswell, A New Introduction to Modal Logic, *Routlege, London*, 1996.

[19] J.-J. Ch. Meyer, W. van der Hoek, *Epistemic Logic for AI and Computer Science*, Cambridge University Press, Cambridge, 1995.

[20] A. M. Mironov, Fuzzy modal logics. *Journal of Mathematical Sciences*, 128, 3461-3483, 2005.

[21] K. Segerberg, Some modal logics based on a three-valued logic, *Theoria 33*, 53-71, 1967.

[22] A Vidal, F Esteva, L Godo, On modal extensions of Product fuzzy logic, *Journal of Logic and Computation, In Press. Proc. of the Joint Conference IFSA-EUSFLAT*, 2015.

[23] A Vidal Wandelmmer, On modal expansions of t-norm based logics with rational constants, University of Barcelona, Ph.D thesis, 2015.