How to sample connected K-partitions of a graph

Marina Meila
mmp@stat.washington.edu

August 2, 2018

Abstract

A connected undirected graph $G = (V,E)$ is given. This paper presents an algorithm that samples (non-uniformly) a K partition U_1, \ldots, U_K of the graph nodes V, such that the subgraph induced by each U_k, with $k = 1 : K$, is connected. Moreover, the probability induced by the algorithm over the set C_K of all such partitions is obtained in closed form.

1 Problem and notation

A connected undirected graph $G = (V,E)$ with $|V| = n$ is given. A connected K-partition of G denotes a partition of V into K clusters U_1, \ldots, U_K, such that the subgraph of G induced by each U_k, with $k = 1 : K$, is connected. Here K is considered fixed and may be omitted for brevity.

A connected partition is denoted by C, and the set of all connected K partitions of G is denoted by C_K. Counting $|C_K|$ is known to be hard in general [1].

Denote by T a spanning tree of G, and by T the set of all spanning trees of G. The spanning trees of a simple undirected graph can be counted by Tutte’s Matrix Tree Theorem [2]. This theorem extends to multigraphs with no self loops. Let $t(G) = |T|$, and $t(S)$ the number of spanning trees in the subgraph of G induced by $S \subset V$. The Matrix Tree Theorem states that $t(G) = \det(L(G)^*)$ where $L(G) = D(G) - A(G)$ the diagonal degree matrix minus the adjacency matrix of G (i.e. the unnormalized Laplacian of graph G), and L^* is a minor of matrix L, i.e L with the i-th row and column removed, for some arbitrary i. Note that $t(G)$ is 0 if G is not connected and that $\det L = 0$ always, as the rows of L sum to 0.

2 An algorithm for sampling from C_K

The following algorithm samples connected K-partitions, non-uniformly.

Algorithm SampleConnectedPartition(K, G)

1. Sample a spanning tree $T \in T$ uniformly at random.

2. Remove $K - 1$ edges from T uniformly at random without replacement.

Return the connected components $U_{1:K}$ of T obtained in Step 2.

Proof sketch: it is obvious that each U_k is connected. Step 1 can be performed for example by assigning the edges random weights and computing the minimum spanning tree with these weights.

We say that a spanning tree $T \in T$ is compatible with a partition $C \in C_K$ iff C can be obtained from T by removing $K - 1$ edges.
3 Analysis. Probability induced by SampleConnectedPartition on C_K

The question now is: what is the probability of obtaining a given partition $U_{1:K}$ by the SampleConnectedPartition algorithm?

We first explain the idea for $K = 2$; in this case we remove a single edge from T. Let $S \subset V$ (S represents U_1 or U_2). Denote by ∂S the edges between S and $V \setminus S$. Any spanning tree T must intersect ∂S (otherwise T would not be connected). If $|T \cap \partial S| > 1$, no edge removal will produce the partition $C = (S, V \setminus S)$. But if $|T \cap \partial S| = 1$, then w.p. $1/(n-1)$ the partition is obtained, namely when the single edge in $T \cap \partial S$ is deleted from T.

For a fixed S, let the event $\mathcal{T}_S = \{|T \cap \partial S| = 1\} \subset \mathcal{T}$. Note that fixing S in this case amounts to fixing the partition C.

Any T in \mathcal{T}_S contains a spanning tree of S, a spanning tree of $V \setminus S$, and one edge from ∂S. Hence,

$$|\mathcal{T}_S| = t(S)t(V \setminus S)|\partial S|$$

and

$$P(C) = \frac{P(\mathcal{T}_S)}{n-1} = \frac{t(S)t(V \setminus S)|\partial S|}{(n-1)t(G)}$$

Now, let’s consider the general case of a K partition $C = (U_1, \ldots, U_K)$. Each T that is compatible with C must contain a spanning tree T_k of the subgraph induced by U_k, for each $k = 1 : K$. Furthermore, these trees must be connected by edges between two clusters $U_k, U_{k'}$, ensuring that no loops are formed. In other words, to complete $\cup_{1:k} T_k$ to a spanning tree T of G that is compatible with C, we contract each U_k to a single node; all the edges between U_k and $U_{k'}$ are now between the two nodes representing U_k and $U_{k'}$. Hence, we obtain a multigraph $M(G, C)$ with K nodes. Any spanning tree of $M(G, C)$ completes $\cup_{1:k} T_k$ to a spanning tree of G.

The number of spanning trees in the multigraph $M(G, C)$ is obtained again by the Matrix Tree Theorem, where each edge has a weight equal to its multiplicity.

Once we have a T compatible with C, we need to remove the set of $K-1$ edges connecting the clusters $U_{1:K}$, out of $\binom{n-1}{K-1}$ possible edge removals. Hence,

$$P(U_{1:K}) = \frac{t(M(G, U_{1:K}))\prod_{k=1}^{K} t(U_k)}{\binom{n-1}{K-1}t(G)}$$

This analysis also shows that SampleConnectedPartition samples every connected partition of G with non-zero probability.

4 An example

Let the graph G with $n = 10$ be defined by the following adjacency matrix A.

	1	2	3	4	5	6	7	8	9	10
1	0	1	1	1	0	0	0	0	0	0
2	1	0	1	1	1	0	0	0	0	0
3	1	1	0	1	0	0	0	0	1	0
4	1	1	1	0	0	1	0	0	0	0
5	0	1	0	0	0	1	1	0	0	0
6	0	0	0	1	1	0	1	0	0	1
7	0	0	0	0	1	1	0	1	0	0
8	0	0	0	0	0	1	0	1	1	1
9	0	0	1	0	0	0	0	1	0	1
10	0	0	0	0	0	1	0	1	1	0
The node degrees are

\[
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
3 & 4 & 4 & 4 & 3 & 4 & 3 & 3 & 3 & 3 \\
\end{array}
\]

and the Laplacian matrix is

\[
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
1 & 3 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
2 & -1 & 4 & -1 & -1 & -1 & 0 & 0 & 0 & 0 \\
3 & -1 & -1 & 4 & -1 & 0 & 0 & 0 & -1 & 0 \\
4 & -1 & -1 & -1 & 4 & 0 & -1 & 0 & 0 & 0 \\
5 & 0 & -1 & 0 & 0 & 3 & -1 & -1 & 0 & 0 \\
6 & 0 & 0 & 0 & -1 & -1 & 4 & -1 & 0 & 0 \\
7 & 0 & 0 & 0 & 0 & -1 & -1 & 3 & -1 & 0 \\
8 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 3 & -1 \\
9 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & -1 & 3 \\
10 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & -1 \\
\end{array}
\]

Let the $K = 3$ clusters be $U_1 = \{1, 2, 3, 4\} , U_2 = \{5, 6, 7\}, U_3 = \{8, 9, 10\}$. Then,

\[t(A) = \det(L_{1:9,1:9}) = 4,546 \quad t(U_1) = 16, \quad t(U_2) = t(U_3) = 3 \quad (4) \]

and

\[M(G) = \begin{bmatrix}
0 & 2 & 1 \\
2 & 0 & 2 \\
1 & 2 & 0
\end{bmatrix} \quad t(M(G)) = 8 \quad \binom{n-1}{K-1} = 36 \quad (5) \]

Hence, the probability of the partition (U_1, U_2, U_3) is equal to $\frac{16 \times 3 \times 3 \times 8}{36 \times 4546} = 0.0070$.

Acknowledgement

This problem was suggested by a question from Steve K.

References

[1] A. Vince Counting connected sets and connected partitions of a graph Australasian Journal of Combinatorics, 67, 2017.

[2] D. M. West An introduction to graph theory Prentice Hall, 2001.