COVID-19: can we treat the mother without harming her baby?

Michael D. Wiese1, Mary J. Berry2, Pravin Hissaria3, Jack R.T. Darby1,4 and Janna L. Morrison1,4

1Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia; 2Centre for Translational Physiology & Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand; 3Department of Immunology, SA Pathology, Royal Adelaide Hospital, Adelaide University, Adelaide, South Australia, Australia and 4Early Origins of Adult Health Research Group, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia

Abstract

Medical care is predicated on ‘do no harm’, yet the urgency to find drugs and vaccines to treat or prevent COVID-19 has led to an extraordinary effort to develop and test new therapies. Whilst this is an essential cornerstone of a united global response to the COVID-19 pandemic, the absolute requirements for meticulous efficacy and safety data remain. This is especially pertinent to the needs of pregnant women; a group traditionally poorly represented in drug trials, yet at heightened risk of unintended adverse materno-fetal consequences due to the unique physiology of pregnancy and the life course implications of fetal or neonatal drug exposure. However, due to the complexities of drug trial participation when pregnant (be they vaccines or therapeutics for acute disease), many clinical drug trials will exclude them. Clinicians must determine the best course of drug treatment with a dearth of evidence from either clinical or preclinical studies, where at least in the short term they may be more focused on the outcome of the mother than of her offspring.

Background

Since the beginning of 2020, when most of us had not heard of COVID-19, as of 8 October 2020,1 there have been over 36 million cases of SARS-CoV-2 and 1 million deaths from COVID-19 globally. The devastating impact of COVID-19 on communities worldwide is clear. Although vaccination is a key part of our global response to this crisis, we need a more immediate armamentarium of safe drugs to treat those infected with SARS-CoV-2 now, and during the months or years ahead whilst vaccine development progresses. There is no definite timeline on vaccine development. Even if a vaccine against SARS-CoV-2 is developed, its success depends on the development of lasting immunity, stability of the virus, availability and efficacy of the vaccine, and the willingness of the population to be vaccinated.

Furthermore, it remains important to acknowledge that we as a population are susceptible to novel coronaviruses, with three life-threatening variants emerging in the past 20 years. These novel viruses will require treatment and thus understanding the impact of the disease, its vaccine and treatment on the fetus and child will future-proof our pharmaceutical toolbox. In 2017, the WHO identified 17 diseases for which vaccine development was a priority: MERS and SARS, both coronaviruses, were highly ranked,2 yet neither have an effective vaccine. Of 224 candidate vaccines, only 2.7% have advanced to Phase 1 trials.3 Thus, despite vaccine candidates for SARS-CoV-2 entering human safety trials, there may be some time before an effective vaccine is available. Vaccines for SARS have been complicated by hyperimmune responses following infection in vaccinated individuals, likely due to antibodies that target the spike protein on the virus.4 Over the last 20 years, despite societal awareness and engagement, progress with vaccine development programmes (such as for HIV5 and Zika virus6) has been slow, and proportional engagement in clinical trial participation across ethnic and socio-economic groups may not have been achieved.7 Even if a safe, effective SARS-CoV-2 vaccine is found, significant vaccine hesitancy and refusal remains an important issue for both health care workers8,9 and the wider community which may limit vaccine uptake10 and virus elimination strategies.11

Critically, whilst vaccine-preventable disease is a major health initiative, pregnant women are traditionally amongst the last to access new vaccinations due to the inherent ethical implications and concerns around potential fetal toxicity. Many vaccines, such as those recommended for seasonal influenza, need to be administered annually, as prior immunisation confers limited longevity of protection, thus immunisation prior to pregnancy is not assured of offering protection during pregnancy. There is emerging evidence of reinfection,12-14 which suggests that vaccination for SARS-CoV2 may last for a limited period; however, we are too early in our learnings to fully appreciate the duration of immunity after contracting SARS-CoV-2 or receiving an...
effective vaccine. Thus, even if current claims of an approved vaccine by the end of 2020 are realised, ensuring global access to an effective vaccine will take far longer, and, even if available, vaccination uptake may be lower than required to slow the spread with a vaccine that is only partially effective, especially in women of reproductive age. Indeed, women of reproductive age, particularly those aged 20–29 years are also the group most likely to be SARS-CoV-2-positive.\(^{15}\) Thus, we must be prepared to provide the best care to pregnant women whilst also reducing harm to their baby. Regardless of whether a vaccine is available, effective and safe, there will be a need to treat pregnant women with symptomatic COVID-19 and/or the next novel coronavirus that enters the human population through zoonotic infection comes along. Understanding the safety of these drugs for pregnant women and their babies will future-proof our clinical toolbox against COVID-19.

COVID-19 in pregnancy

There is evidence for unique immunological changes in each stages of pregnancy that result in a different response to viral infections compared to non-pregnant women,\(^{16}\) and pregnant women are identified as being part of a vulnerable population by RANZCOG.\(^{17}\) Specifically, they are more susceptible to respiratory infections and thus it is possible they may also be more susceptible to SARS-CoV-2,\(^{18}\) although susceptibility varies.\(^{19}\) Whilst there is evidence that pregnancy is not related to severity of disease,\(^{19–21}\) poor maternal outcomes such as ventilation and ECMO have been reported.\(^{22,23}\) The prevalence of SARS-CoV-2 in a community is an important factor when determining risk of exposure\(^ {24,25} \) and this will vary both across and within counties. In the US and UK, 7–15% of women presenting at hospital for term delivery tested positive for SARS-CoV-2 in March/April 2020.\(^ {24,26,27} \) In New York, 10% of 675 pregnant women (>20 weeks) tested positive and concerning 78% of them were symptomatic.\(^ {26} \) In contrast, other studies suggest that 14–70% of pregnant women who tested positive are asymptomatic.\(^ {28–30} \) The course of COVID-19 in pregnancy has been described and includes fever, coughing and dyspnea with severe cases including acute respiratory disease.\(^ {19,25,27,31–34} \) Pregnant women may have more pulmonary infiltrate than non-pregnant women,\(^ {34}\) although most experience mild disease.\(^ {19,35,36} \) A systematic review has highlighted the increased risk of ICU support needed for pregnant women with COVID-19 compared to non-pregnant women of equivalent age.\(^ {27} \) Symptomatic pregnant women with COVID-19, particularly those who develop pneumonia, may be at increased risk of delivering their baby preterm by caesarean section due to maternal complications.\(^ {25,27,30,34,35,37–40} \) Preterm delivery puts the neonate at increased risk of poor immediate and longer-term outcomes.\(^ {41} \) There is also evidence that these pregnancies are associated with greater risk of fetal distress, stillbirth, miscarriage, low birth weight and respiratory distress in the newborn.\(^ {30,32,33,36,42} \) Overall, however, for term-born infants whose mothers have COVID-19, neonatal outcomes are good,\(^ {36} \) despite a higher risk of bacterial pneumonia\(^ {15} \) and, although rates of admission to neonatal intensive care units are high,\(^ {27} \) few neonatal deaths have been reported.\(^ {33} \) Based on the time course of the appearance of SARS-CoV-2 across the globe (Fig. 1), most publications to date report data on women who contract COVID-19 in the third trimester.\(^ {30,32,33,36,42} \) Thus, the feto-maternal complications of infection with SARS-CoV-2 in the first or second trimester are currently uncertain.\(^ {35} \) Understanding the impact of the timing of infection on the course of a pregnancy and long-term outcomes in the offspring will take many years in the clinical population. Furthermore, few studies have included contemporaneous SARS-CoV-2-negative pregnancies as a control group, reducing the impact of the data. For example, meta-analysis of studies that included a pregnant SARS-CoV-2-negative control group shows no significant relationship between SARS-CoV-2 infection and preterm delivery.\(^ {45} \) Lastly, there are many systematic reviews of small studies with overlapping reporting dates. Thus, for all who we know regarding SARS-CoV-2 in pregnancy, the true impact is not clear. From this perspective, prevention of SARS-CoV-2 is the best option,\(^ {39} \) and an effective vaccine may allow this to occur.

Vertical transmission of COVID-19 in pregnancy

Many studies have focused on whether COVID-19 is vertically transmitted from mother to her fetus or if the risk of exposure to the baby occurs during the postnatal period. Theoretically, vertical transmission remains possible. Angiotensin converting enzyme 2, a target of SARS-CoV-2 cell entry, and the spike glycoprotein of SARS-CoV2 have been found on the syncytiotrophoblast cells of the placental villi that form the interface between mother and fetus in the placenta.\(^ {3} \) Many case or small studies have been performed and systematic reviews of these studies have not identified evidence for vertical transmission.\(^ {24,26,29,32,41,52–64} \) There is no evidence that vaginal delivery, breastfeeding or remaining with the mother postnatally increase the risk of neonatal infection, as long as appropriate contact precautions are meticulously applied, whilst the mother remains infectious.\(^ {62} \) However, this issue focuses on the concept that the only risk of a SARS-CoV2-positive mother to the fetus is that the fetus/baby may also get COVID-19. Crucially, we do not know the impact of maternal COVID-19 and/or the pharmacological treatment of COVID-19 on the pregnant woman on the developing fetus and how this will impact the offspring across the course of their lives. The principles of developmental origins of health and disease (DOHaD) highlight the importance of taking a life course approach and understanding the mechanisms linking exposures during pregnancy on offspring health in infancy, childhood, adulthood and old age,\(^ {65–67} \) and this must be considered in the case of COVID-19.

Drug safety in pregnancy

Historically, most Phase 3 drug trials have included men, and in recent times, non-pregnant women. In many cases, information about the safety of drug use during pregnancy in terms of birth outcomes is collected many years after the drug comes onto the market and is obtained through surveillance programmes such as the now defunct Motherisk programme.\(^ {66–69} \) The problem with this long delay from the drug entering the market and the slow gathering of, in most instances, negative outcomes makes it difficult to understand the true prevalence of poor outcomes and the mechanisms that underlie them. This delays an understanding of the actual impact of drug exposure during pregnancy to the offspring and thus delays changes in practice such as use of another drug, a change in dosing or discussion about termination of pregnancy.\(^ {66–69} \) Inclusion of women of reproductive age and pregnant women in clinical trials is an important feature of minimising harm to the fetus. A recent white paper has been released by the WHO that uses learnings from HIV to propose guidelines for accelerating such data and the key use of physiologically based pharmacokinetic data to inform clinical trials in pregnant women.\(^ {70} \) Any drug given to a pregnant woman, as well as its metabolites, will be distributed to both the maternal and fetal compartments.
Fetal development is a dynamic process; the consequences of drug exposure are dependent on the specific stage of fetal development at the time of the exposure. Thus, it is necessary to consider that, in addition to the mother, the fetus is also a patient who will be exposed to the drug. Exposure to toxic drug effects may lead to fetal demise, miscarriage, disruption of organ formation (for instance, as seen with devastating consequences with thalidomide), impaired fetal growth or altered organ function. These all have adverse implications for the wellbeing of the baby and may result in lifelong health impairment. This highlights the importance of the timing of drug exposure during pregnancy (Fig. 2) and the need for preclinical studies that are specifically designed to address questions around safety of maternal drug treatment, at different periods of gestation, on the baby. These studies cannot simply look for congenital malformations, as drugs may be more nuanced effects with the true extent of problems only manifesting later in life. For example, our previous work has shown that maternal treatment with antidepressants can result in changes in body composition in childhood. Some medications proposed for treatment of COVID-19 in pregnancy already have a widely characterised maternal and infant safety profile (e.g., antiretroviral drugs used to reduce vertical transmission rates of HIV), which enables better decision-making between clinicians and their patients. However, many important knowledge gaps around the safety of other drugs that may potentially be used to treat pregnant women infected with SARS-CoV-2 remain.

Drug treatment of SARS-CoV-2

Until now, treatment of COVID-19 has focused on the use of antiviral medications (e.g., remdesivir) and immunomodulators (e.g., dexamethasone, hydroxychloroquine, tocilizumab and anakinra) to dampen an exaggerated immune response to SARS-CoV-2 infection in acutely unwell patients. Other than the use of dexamethasone in patients with severe COVID-19, there is no conclusive evidence that any of these therapies increase survival, although most of the trials that have been conducted have yet to report their findings. Prophylaxis against infection will no doubt be a strategy that is explored, although early positive signs with hydroxychloroquine were followed by evidence of a lack of efficacy and concerns about increased mortality, development of cardiac arrhythmias and cardiac death.

Selection criteria for drugs to treat the symptoms of COVID-19 in pregnant women

When a pregnant woman requires management of COVID-19, the clinician will be presented with two patients: a pregnant woman and a fetus. However, it is the pregnant woman who will be experiencing the symptoms of COVID-19 and who will require treatment with the primary concern being the mothers’ wellbeing. Her symptoms of COVID-19 may result in hypoxemia, hyperthermia or hypoglycemia in the fetus, and these could all have negative consequences during fetal as well as postnatal life. However, it is important to consider that some treatments for the symptoms of COVID-19 in the mother may have greater or fewer effects on the fetus. These effects may be short or long term and may manifest as congenital malformations, or changes in the structure and function of organ systems that persist throughout the life course and confer a greater risk of chronic disease later in life. This later point raises concerns for COVID-19 in the context of the DOHaD hypothesis (Fig. 3). Thus, it is important to ensure that preclinical studies are performed to fill the gaps in our knowledge about the effects of these drugs on the pregnant mother, the developing fetus and the offspring from childhood to adulthood. This will allow the clinician the opportunity to pair this knowledge with the best evidence around treatment of COVID-19 to select a...
treatment strategy that will result in the best outcomes for the pregnant woman with the least risk of negative outcomes for the offspring.

We referred to the current guidelines for care of COVID-19 patients and inspected the clinical trials registries (e.g., ClinicalTrials.gov and ANZCTR.org.au) as well as publications on emerging clinical evidence for effectiveness in treatment of COVID-19. Here, we summarise some of the medications used in the treatment of COVID-19 and the knowledge base about their use in pregnancy and the impact on the fetus and offspring. Clearly, this is a dynamic area, and drugs for use in treating COVID-19 may change as data emerge from ongoing clinical trials, and thus Table 1 is not comprehensive but reflects the current knowledge base.

No or limited data of many of the medications in clinical trials for the treatment of COVID-19 in pregnant women and their offspring

Clinical prioritisation means that in most settings, the immediate health needs of the mother outweigh theoretical health implications of drug exposure to the fetus. For example, a PubMed search of ‘Remdesivir and pregnancy’ produced 13 results (6 October 2020), including 4 case reports with polypharmacy treatment of COVID-19 which contained little to no fetal outcome data and one case series of 64 pregnant women with severe or critical COVID-19, 16 of whom received remdesivir (including 65% of those women assessed as being critical) an average of 10.5 days after symptoms emerged. In this case, series pregnancy and neonatal outcomes were reported, but the sample was not large enough to disentangle the effects of a mother with COVID-19 from those of exposure to remdesivir (and other treatments) on the fetus and there was no follow-up after birth. Concerningly, despite an absence of knowledge of placental transfer, remdesivir is deemed safe for the treatment of COVID-19 in pregnancy based on very limited data, with evidence of safety in pregnancy arising from a single study in a pregnant patient with Ebola, published in 2017.

Many of the candidate drugs are also used in other immune-mediated or inflammatory conditions, many of which affect women of reproductive age. Thus, even if these drugs are not used in COVID-19, better understanding of the effects of these drugs in pregnancy will be a significant and clinically valuable contribution to fetal safety of drugs used in women. There is an urgent need to utilise appropriate animal models, rather than women facing life-threatening illness, to establish the acute and longer-term outcomes of fetal drug exposure.

Preclinical models for determining the safety of drug treatments in pregnancy

Unfortunately, many studies of the effects of drugs during pregnancy in humans simply focus on gross pregnancy outcomes (e.g., gestational age at birth) and the overall physical condition of the baby at birth (e.g., congenital malformations). The long latency and other confounding factors between fetal drug exposure and later-life wellbeing prohibit most human long-term follow-up studies. Preclinical studies of the effects of maternal drug treatment on her offspring prior to birth and throughout the life course (Fig. 2) must be performed in a species where the timing of fetal development aligns with that of humans. Although non-human primates such as Macaca fascicularis may be the gold standard for drug testing, due to ethical concerns and logistical constraints, they may not be appropriate for characterisation of fetal impact of drug exposures (myometrial contraction after fetal surgery for catheter placement and technical limitations of fetal size (adults weigh 1.5–2 kg)).

Sheep and guinea pigs have been extensively used in preclinical studies that have been used to build an evidence base for therapies in obstetrics and paediatrics, most notably the use of antenatal steroids in women at risk of preterm delivery. The effects of a range of maternal drug treatments, including antidepressants, rosiglitazone, resveratrol, betamethasone and methamphetamine, on physiological outcomes in the fetus and juvenile have been studied in sheep and guinea pigs. There are advantages and disadvantages to each model. In sheep models, fetal surgery can be performed to allow collection of paired blood samples from the maternal and fetal circulation and determine the fetal response to maternal drug treatment in real time. In guinea pigs, one can comprehensively assess the longer-term effects of fetal drug exposure to primary school age equivalency or

Fig. 3. It is necessary to identify COVID-19 drug therapies for pregnant women who do not harm their babies’ growth and development or the health of their offspring throughout their life. Studies in humans will take years to decades to perform, but preclinical studies in appropriate models will accelerate our knowledge.
Candidate drugs	Mechanism of action	Dose and mode of delivery	Evidence of efficacy in treating COVID-19 in RCTs	Pregnancy outcomes	Birth outcomes	Childhood outcomes	
Antivirals							
Remdesivir	Viral RNA polymerase inhibitor (antiviral)	Initial dose of 200 mg; then 100 mg for 9 days; intravenous (IV).	5, not 10, day course may improve outcome. 112–114	Case report of neonate admitted to NICU with persistent pulmonary hypertension and patent ductus arteriosus. 115	Preclinical data: negative effects on kidney.	No data	
Ritonavir and lopinavir	Protease inhibitors	Oral 100 mg twice daily for 14 days in combination with oral 400 mg twice daily for 14 days.	No significant benefit compared to standard care with respect to 28-day mortality (−5.8%, 95% CI −17.3 to 5.7) or clinical improvement (HR 1.31, 95% CI 0.95 to 1.8) of combination of ritonavir and lopinavir in severe COVID-19. 116	Limited data but has been used in pregnancy to prevent viral transmission. Low placental transfer. 36	Two large population studies that showed no association with premature delivery, low birthweight and congenital abnormalities. 118,119	No data	
Immunomodulators							
Dexamethasone	Anti-inflammatory	6 mg/day (oral or IV) for up to 10 days. 122	Rate ratio of 28-day death rate compared to usual care of 0.83 (95% CI 0.75–0.93). Differences were greater in those who received mechanical ventilation and oxygen, but not amongst those who received no respiratory support. 29	Use the lowest effective dose for the shortest possible time. Placental transfer is greater with dexamethasone compared to other corticosteroids (Australian Medicines Handbook).	Used in suspected preterm birth to mature fetal lungs (4 doses 6 apart; 6 mg IM). Evidence that repeated doses have negative outcomes. 120–125	Not known in the dosing strategy used in COVID-19.	
Tocilizumab	Anti-interleukin 6 immunomodulator	8 mg/kg; second dose if condition worsens; IV (ClinicalTrials.gov NCT04320615).	In COVID-19-associated cytokine storm syndrome, patients given high-dose methylprednisolone +/- tocilizumab were more likely to improve clinically, less likely to die or require mechanical ventilation. Controls were historical rather than concurrent. 126	Crosses the placental barrier and found in cord blood, newborn plasma and breast milk (n = 2). 127	Two small, uncontrolled studies did not identify increased risk of spontaneous abortion, preterm or stillbirth or malformations. 128,129	Little data	No data

(Continued)
Candidate drugs	Mechanism of action	Dose and mode of delivery	Evidence of efficacy in treating COVID-19 in RCTs	Pregnancy outcomes	Birth outcomes	Childhood outcomes
Anakinra	Anti-interleukin 1 (immunomodulator)	Up to 100 mg via subcutaneous (SC) or intravenous (IV) injection 4 times a day.	Case series and cohort studies in patients with severe COVID-19 suggest clinical improvement, reduced ICU admission, invasive mechanical ventilation and mortality.\(^{136-138}\) No prospective or direct comparisons with other therapies/standard of care.	Small case series (n = 43) of pregnancies and breastfed neonates (n = 14) exposed to IL-1RA therapy did not identify developmental abnormalities. European Guidelines recommend to discontinue and/or switch to an alternate agent before conception, pregnancy or breastfeeding.\(^{139}\)	Little data	No data
Baricitinib	JAK-STAT inhibitor	4 mg/d for 7–14 days; oral.	Uncontrolled and historically controlled studies demonstrate reduced disease progression when given to patients with moderate to severe COVID-19.\(^{140,141}\) No prospective comparisons with other therapies/standard of care.	Small molecule likely to cross the placenta. Tofacitinib recommended to be stopped prior to conception.	Contraindicated\(^{143}\); 1 case report\(^{144}\)	No data
Antibiotic						
Azithromycin	Macrolide antibiotic	Oral/IV	Meta-analysis of mostly non-randomised studies identified increased mortality with azithromycin + HCQ (33%) compared to baseline (28%) and HCQ alone (22%).\(^{145}\) Azithromycin (B1), erythromycin (A) and roxithromycin (B1) are considered safe to use (Australian Medicines Handbook).	Azithromycin crosses the placental barrier in sheep and non-human primates. Cohort study suggests increased cardiac (first trimester) and genital (any trimester) malformations in pregnancies exposed to macrolides compared to those exposed to penicillins.\(^{146,147}\)	No data	No data
Antiparasitic						
Ivermectin	Antihelmintic	Various, including 0.6 mg/kg once daily by IV injection and 12–15 mg orally as single doses in addition to other therapies.	No direct evidence of efficacy.	Not associated with an increased risk of congenital abnormalities (Australian Medicines Handbook). ADEC Category B3. Limited fetal exposure in sheep models of pregnancy.\(^{148}\) Very low-level evidence suggests no evidence of increased risk of stillbirth, spontaneous abortion or congenital abnormalities.	No data	No data
Monoclonal antibodies			Currently in Phase 1–3 clinical trials showing promising initial results.\(^{149}\)	No data. However, monoclonal antibodies are known to cross placenta in third trimester and are found in cord blood and breast milk.	No data	No data

\(^{14}\) M. D. Wiese et al. [112] 10.107126817-2021-4353 Published online by Cambridge University Press
adulthood. Detailed fetal physiological studies are not possible in human pregnancy and similarly, waiting several years for the effects of fetal exposure in humans to become manifest is unethical and may result in ongoing harm whilst pregnant women continue to receive drugs that are not appropriate for use in pregnancy.

Separation of vertical versus early postnatal transmission of SARS-CoV-2 remains challenging. However, the impact of COVID-19 on the fetus per se appears to primarily relate to the overall clinical condition of the mother. Thus, the primary aim of preclinical studies is to identify which of the potential therapeutic options for COVID-19 are likely to have minimal or no effect on the fetus and thus the child and later life adult. Some agents under review for use in COVID-19 are already used in pregnancy for other conditions (e.g., lopinavir and ritonavir are used in HIV treatment). However, despite widespread clinical use, it is not always clear whether any adverse effects on her child are due to the effects of maternal viral infection, the mothers’ other co-morbidities, or the effects of the candidate drug on fetal or childhood growth or physiological function; such studies must be performed in rigorous preclinical models of pregnancy in a physiologically relevant species.

It is known that up to 99% of women take a prescribed or over the counter medication during pregnancy. In addition to this existing medication use, women with COVID-19 will be treated with a range of medications for symptom management. Furthermore, as social isolation is known to adversely impact on mental health, pregnant women during the pandemic, with or without COVID-19, may therefore also require treatment for mental health disorders. Thus, complications relating to polypharmacy is a concern, especially if access to usual health care providers is hampered as a result of the pandemic. SARS-CoV-2 infection and the need for pharmacological intervention need to account not only for the medications required to treat the infection, but their interaction with a panoply of medications needed to treat other non-COVID-19 diseases.

Concluding remarks

If clinicians have the choice of medications believed to have equitable efficacy for maternal symptoms, the fetal and postnatal impact of the drug will inform important maternal therapy choices. Ensuring rigorously tested, high-quality information is available for clinicians, women and their families is paramount to avoid the unintended consequences of poorly designed, inappropriately tested drug regimens becoming an accepted part of clinical care. Treatment of COVID-19 represents a profound challenge to physicians across the globe. The best treatments are yet to be established, leading to an unprecedented explosion in new drug therapy trials. Pregnant women are especially vulnerable to the effects of COVID-19, yet we are without clear guidance on drugs that are effective for the mother but are also safe for her developing fetus. Given the well-documented issues surrounding drug research participation during pregnancy, pregnant women, despite vulnerability to COVID-19, are likely to be amongst the last clinical groups to have access to robust scientific evidence to guide clinical decision-making. Simply waiting for an effective vaccine to become available, or for herd immunity to take effect, is an unacceptably risky strategy. To reduce the latency in human safety and efficacy trials, we highlight the need to capitalise on well-established perinatal translational platforms to firstly test the acute fetal effects (sheep) and secondly assess any adverse pregnancy or longer-term outcomes on offspring (guinea pigs).

Financial support. JLM was funded by an ARC Future Fellowship (Level 3; FT170100431).

Conflicts of interest. The authors have no competing interests to disclose.

References

1. JHU. 2020. https://coronavirus.jhu.edu/map.html
2. WHO. Annual review of diseases prioritized under the Research and Development Blueprint. Information consultation, 24–25 January 2017. http://www.who.int/blueprint/what/research-development/2017-Prioritization-Long-Report.pdf?ua=1
3. Maslow IN. The cost and challenge of vaccine development for emerging and emergent infectious diseases. Lancet Glob Health. 2018; 6 (12), e1266–e1267.
4. Jiang S, He Y, Liu S. SARS vaccine development. Emerg Infect Diseases. 2005; 11 (7), 1016–1020.
5. Laher F, Bekker LG, Garrett N, Lazarus EM, Gray GE. Review of preventative HIV vaccine clinical trials in South Africa. Arch Virol. 2020; doi: 10.1007/s00705-020-04777-2.
6. Lunardelli VAS, Apostolico JS, Fernandes ER, Santoro Rosa D. Zika virus: an update on the current efforts for vaccine development. Hum Vaccin Immunother. 2020; doi: 10.1080/21645515.2020.1796428.
7. Cobb EM, Singer DC, Davis MM. Public interest in medical research participation: differences by volunteer status and study type. Clin Transl Sci. 2014; 7 (2), 145–149.
8. Wilson R, Zaytseva A, Bocquier A, et al. Vaccine hesitancy and self-vaccination behaviors among nurses in southeastern France. Vaccine. 2020; 38 (5), 1144–1151.
9. Lau LHW, Lee SS, Wong NS. The continuum of influenza vaccine hesitancy among nursing professionals in Hong Kong. Vaccine. 2020; doi: 10.1016/j.vaccine.2020.08.038.
10. Detoc M, Bruel S, Frappe P, Botelho-Nevers E, Gagneux-Brunon A. Intention to participate in a COVID-19 vaccine clinical trial and to get vaccinated against COVID-19 in France during the pandemic. medRxiv. 2020; doi: 10.1101/2020.04.23.20076513.
11. Phadke VK, Bednarczyk RA, Salmon DA, Ober SM. Association between vaccine refusal and vaccine-preventable diseases in the United States: a review of measles and pertussis. JAMA. 2016; 315 (11), 1149–1158.
12. Bongiovanni M. COVID-19 re-infection in a healthcare worker. J Med Virol. 2020; doi: 10.1002/jmv.25655.
13. Bruni M, Cecattiilio V, Diaz-Basabe A, et al. Persistence of anti-SARS-CoV-2 antibodies in non-hospitalized COVID-19 convalescent health care workers. J Clin Med. 2020; 9 (10).
14. Goldman JD, Wang K, Roltgen K, et al. Reinfection with SARS-CoV-2 and failure of humoral immunity: a case report. medRxiv. 2020; doi: 10.1101/2020.09.22.20192443.
15. health.gov.au. Coronavirus (COVID-19) current situation and case numbers. 2020. https://www.health.gov.au/news/health-alerts/novel-coronavirus-2019-ncov-health-alert/coronavirus-covid-19-current-situation-and-case-numbers
16. Mor G, Gardenias I. The immune system in pregnancy: a unique complexity. Am J Reprod Immunol. 2010; 63 (6), 425–433.
17. RANZCOCG. Statements and Guidelines. 2020. https://ranzoccg.edu.au/statements-guidelines/covid-19-statement-information-for-pregnant-women
18. Liu H, Wang LL, Zhao SJ, Kwak-Kim J, Mor G, Liao AH. Why are pregnant women susceptible to COVID-19? An immunological viewpoint. J Reprod Immunol. 2020; 139, 103122.
19. Ryan GA, Purandare NC, McAuliffe FM, Hod M, Purandare CN. Clinical update on COVID-19 in pregnancy: A review article. J Obstet Gynaecol Res. 2020; 46 (8), 1235–1245.
20. Qiancheng X, Jian S, Lingling P, et al. Coronavirus disease 2019 in pregnancy. Int J Infect Dis. 2020; doi: 10.1016/j.ijid.2020.04.065.
21. Molteni E, Ashley CM, Ma W, et al. SARS-CoV-2 (COVID-19) infection in pregnant women: characterization of symptoms and syndromes predictive of disease and severity through real-time, remote participatory epidemiology. medRxiv. 2020; doi: 10.1101/2020.08.17.20161760.

https://doi.org/10.1017/S2040174420001403 Published online by Cambridge University Press
22. Ronnie I, Lånsberg JK, Vikhareva O, Hanson SR, Herbst A, Zaigham M. Complicated COVID-19 in pregnancy: a case report with severe liver and coagulation dysfunction promptly improved by delivery. BMC Pregnancy Childbirth. 2020; 20 (1), 511.

23. Zambrano LD, Ellington S, Strid P, et al. Update: characteristics of symptomatic women of reproductive age with laboratory-confirmed SARS-CoV-2 infection by pregnancy status — United States. MMWR Morb Mortal Wklk Rep. 2020; 69, 1641–1647.

24. Rozycki HJ, Kotecha S. Covid-19 in pregnant women and babies: what pediatricians need to know. Paediatr Respir Rev. 2020; 35, 31–37.

25. Pierce-Williams RAM, Burd J, Felder L, et al. Clinical course of severe and critical coronavirus disease 2019 in hospitalized pregnancies: a United States cohort study. Am J Obstet Gynecol MFM. 2020; 2 (3), 100134.

26. Prabhu M, Cagino K, Matthews KC, et al. Pregnancy and postpartum outcomes in a universally tested population for SARS-CoV-2 in New York City: a prospective cohort study. Jbiog. 2020; doi: 10.1111/1471-0528.16403.

27. Allotey J, Stallings E, Bonet M, et al. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: living systematic review and meta-analysis. BMJ. 2020; 370, m3320.

28. Petrirosso E, Giles M, Cole S, Rees M. COVID-19 and pregnancy: a review of clinical characteristics, obstetric outcomes and vertical transmission. Aust N Z J Obstet Gynaecol. 2020; doi: 10.1111/ajo.13204.

29. Xu S, Shao F, Bao B, et al. Clinical manifestation and neonatal outcomes of pregnant women with coronavirus disease 2019 pneumonia in Wuhan, China. Open Forum Infect Dis. 2020; 7 (7), oofa283.

30. Smith V, See D, Warty R, et al. Maternal and neonatal outcomes associated with COVID-19 infection: a systematic review. PLoS One. 2020; 15 (6), e0234187.

31. Pereira A, Cruz-Melguizo S, Adrien M, Fuentes L, Marín E, Perez-Medina T. Clinical course of coronavirus disease-2019 in pregnancy. Acta Obstet Gynecol scand. 2020; 99 (7), 839–847.

32. Yang Z, Wang M, Zhu Z, Liu Y. Coronavirus disease 2019 (COVID-19) in pregnancy: 2 case reports on maternal and neonatal outcomes in Yichang city, Hubei Province, China. Medicine (Baltimore). 2020; 99 (29), e21334.

33. Yang Z, Liu Y. Vertical transmission of severe acute respiratory syndrome Coronavirus 2: a systematic review. Am J Perinatol. 2020; 37 (10), 1055–1060.

34. Zaigham M, Andersson O. Maternal and perinatal outcomes with COVID-19: a systematic review of 108 pregnancies. Acta Obstet Gynecol Scand. 2020; doi: 10.1111/aogs.13867.

35. Yoon SH, Kang JM, Ahn JG. Clinical outcomes of 201 neonates born to mothers with COVID-19: a systematic review. Eur Rev Med Pharmacol Sci. 2020; 24 (14), 7804–7815.

36. Thomas P, Alexander PE, Ahmed U, et al. Vertical transmission risk of SARS-CoV-2 infection in the third trimester: a systematic scoping review. J Matern Fetal Neonatal Med. 2020; doi: 10.1080/14767058.2020.1795941.

37. Della Gatta AN, Rizzo R, Pilu G, Simonazzi G. COVID19 during pregnancy: a systematic review of the literature with quality assessment of the studies. Pathogens. 2020; 9.

38. Dotters-Katz SK, Hughes BL. Considerations for obstetric care during the COVID-19 pandemic. Am J Perinatol. 2020; doi: 10.1055/s-0040-1710051.

39. Di Mascio D, Khalil A, Saccone G, et al. Outcome of Coronavirus spectrum infections (SARS, MERS, COVID-19) during pregnancy: a systematic review and meta-analysis. Am J Obstet Gynecol MFM. 2020; doi: 10.1016/j.ajogm.2020.100107.

40. Dottert S, Hughes BL. Considerations for obstetric care during the COVID-19 pandemic. Am J Perinatol. 2020; doi: 10.1055/s-0040-1710051.

41. Oncel MT, Akın IM, Kanburuglu MK, et al. A multicenter study on epidemiological and clinical characteristics of 125 newborns born to women infected with COVID-19 by Turkish Neonatal Society. Eur J Pediatr. 2020; doi: 10.1007/s00431-020-03767-5.

42. Berry MJ, Foster T, Rowe K, Robertson O, Robson B, Piere N. Gestational age, health, and educational outcomes in adolescents. Pediatrics. 2018; 142 (5).

43. Panahi L, Amir M, Pousy S. Risks of Novel Coronavirus Disease (COVID-19) in pregnancy: a narrative review. Arch Acad Emerg Med. 2020; 8 (1), e34.
65. Barker DJ. Fetal programming and public health. In *Fetal programming influences on development and disease in later life* (eds. O’Brien PMS, Wheeler T, Barker DJ). 1999; pp. 3–11. Royal College of Obstetrics and Gynaecology Press: London.

66. Koren G. “Prozac Baby” - 25 years of motherisk research into SSRIs and alcohol in pregnancy. *J Popul Ther Clin Pharmacol.* 2014; 21 (3), e526–532.

67. Nulman I, Rovet J, Stewart DE, et al. Neurodevelopment of children exposed in utero to antidepressant drugs. *N Engl J Med.* 1997; 336 (4), 258–262.

68. Pastuszak A, Schick-Boschette B, Zuber C, et al. Pregnancy outcome following first-trimester exposure to fluoxetine (Prozac). *Jama.* 1993; 269 (17), 2246–2248.

69. Riggan I, Frankel Z, Moretti M, Pupco A, Koren G. The fetal safety of fluoxetine: a systematic review and meta-analysis. *J Obstet Gynaecol Canada.* 2013; 35 (4), 362–369.

70. Eke AC, Oluagunju A, Momper J, et al. Optimizing pharmacology studies in pregnant and lactating women using lessons from HIV: a consensus statement. *Clin Pharmacol Ther.* 2020; doi: 10.1002/cpt.2048.

71. Stefanovic V. COVID-19 infection during pregnancy: fetus as a patient deserves more attention. *J Perinat Med.* 2020; 48 (5), 438–440.

72. Lenz W. A short history of thalidomide embryopathy. *Teratology.* 1988; 38 (3), 203–215.

73. Darby JRT, Varcoe TJ, Orgeig S, Morrison JL. Cardiorespiratory consequences of intrauterine growth restriction: Influence of timing, severity and duration of hypoxaemia. *Theriogenology.* 2020.

74. Grzeskowiak LE, Gilbert AL, Morrison JL. Neonatal outcomes after late-gestation exposure to selective serotonin reuptake inhibitors. *J Clin Psychopharmacol.* 2012; 32 (5), 615–621.

75. Grzeskowiak LE, Gilbert AL, Morrison JL. Prenatal exposure to selective serotonin reuptake inhibitors and risk of childhood overweight. *J Dev Orig Health Dis.* 2012; 3 (4), 253–261.

76. Grzeskowiak LE, Gilbert AL, Sorensen TI, et al. Prenatal exposure to selective serotonin reuptake inhibitors and childhood overweight at 7 years of age. *Ann Epidemiol.* 2013; 23 (11), 681–687.

77. Grzeskowiak LE, Morrison JL, Henrksen TB, et al. Prenatal antidepressant exposure and child behavioural outcomes at 7 years of age: a study within the Danish National Birth Cohort. *BJOG.* 2016; 123 (12), 1919–1928.

78. Morrison JL. Sheep models of intrauterine growth restriction: fetal adaptations and consequences. *Clin Exp Pharmacol Physiol.* 2008; 35 (7), 730–743.

79. Darby JRT, Varcoe TJ, Orgeig S, Morrison JL. Cardiorespiratory consequences of intrauterine growth restriction: Influence of timing, severity and duration of hypoxaemia. *Theriogenology.* 2020.

80. Pierce-Williams RAM, Burd J, Felder L, et al. Methamphetamine administration increases hepatic CFTR1A2 but not CFTR3A activity in female guinea pigs. *PLoS One.* 2020; 15 (5), e0233010.

81. Morrison JL. Pregnancy and diabetes in pregnant and lactating women using lessons from HIV: a consensus statement. *J Obstet Gynaecol Canada.* 2012; 35 (4), 362–369.

82. Boulware DR, Pullen MF, Bangdiwala AS, et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. *N Engl J Med.* 2020; doi: 10.1056/NEJMoa2001638.

83. Mehra MR, Desai SS, Ruschitzka F, Patel AN. Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a systematic review and meta-analysis. *J Am Soc Nephrol.* 2020; 31 (5), 1293–1303.

84. Anderson J, Schauer J, Bryant S, Graves CR. The use of convalescent plasma therapy and remdesivir in the successful management of a critically ill obstetric patient with novel coronavirus 2019 infection: A case report. *Case Rep Womens Health.* 2020; doi: 10.1016/j.crwnh.2020.e00221.

85. Mulangu S, Dodd LE, Davey RT, Jr, et al. A randomized, controlled trial of ebola virus disease therapeutics. *N Engl J Med.* 2019; 381 (24), 2293–2303.

86. Louchet M, Sibude J, Peytavin G, Picone O, Tréluyer JM, Mandelbrot L. Placental transfer and safety in pregnancy of medications under investigation to treat coronavirus disease 2019. *Am J Obstet Gynecol MFM.* 2020; 2 (3), 100159.

87. Babiker O, Bélanger A. The cynomolagus monkey (*Macaca fascicularis*) is the best animal model for the study of steroid glucoronidation. *J Steroid Biochem Mol Biol.* 2003; 85 (2–5), 235–245.

88. Morrison JL, Berry MJ, Botting KJ, et al. Improving pregnancy outcomes in humans through studies in sheep. *Am J Physiol Regul Integr Comp Physiol.* 2018; 315 (6), R1123–R1153.

89. Morrison JL, Botting KJ, Darby JRT, et al. Guineapig models for translation of the developmental origins of health and disease hypothesis into the clinic. *J Physiol.* 2018; 596 (23), 5355–5369.

90. Morrison JL, Chien C, Gruber N, Rurak D, Riggs W. Fetal behavioural state changes following maternal fluoxetine infusion in sheep. *Dev Brain Res.* 2001; 131 (1–2), 47–56.

91. Morrison JL, Chien C, Riggs KW, Gruber N, Rurak D. Effect of maternal fluoxetine administration on uterine blood flow, fetal blood gas status, and growth. *Pediatr Res.* 2002; 51 (4), 433–442.

92. Morrison JL, Riggs KW, Chien C, Gruber N, McMillen IC, Rurak DW. Chronic maternal fluoxetine infusion in pregnant sheep: effects on the maternal and fetal hypothalamic-pituitary-adrenal axes. *Pediatr Res.* 2004; 56 (1), 40–46.

93. Morrison JL, Rurak DW, Chien C, et al. Maternal fluoxetine infusion does not alter fetal endocrine and biophysical circadian rhythms in pregnant sheep. *J Soc Gynecol Investig.* 2005; 12 (5), 356–364.

94. Mulhauser BS, Morrison JL, McMillin IC. Risperidone increases the expression of Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ) target genes in adipose tissue, liver and skeletal muscle in the sheep fetus in late gestation. *Endocrinology.* 2009; 150 (9), 4287–4294.

95. Darby JRT, Saini BS, Soo JY, et al. Subcutaneous maternal resveratrol treatment increases uterine artery blood flow in the pregnant EWE and increases fetal but not cardiac growth. *J Physiol.* 2019; 597 (20), 5063–5077.

96. Berry LM, Polk DH, Iqegami M, Jobe AH, Padbury JF, Ervin MG. Preterm newborn lamb renal and cardiovascular responses after fetal or maternal antenatal betamethasone. *Am J Obstet Gynecol.* 1997; 272 (6), R1972–R1979.

97. Berry M, Gray C, Wright K, Dyson R, Wright I. Premature guinea pigs: a new paradigm to investigate the late-effects of preterm birth. *J Dev Orig Health Dis.* 2015; 6 (2), 143–148.

98. Soo JY, Wiese MD, Dyson RM, et al. Methamphetamine administration increases hepatic CFTR1A2 but not CFTR3A activity in female guinea pigs. *PLoS One.* 2020; 15 (5), e0233010.

99. Morrison JL. Pregnancy and diabetes in pregnant and lactating women using lessons from HIV: a consensus statement. *J Obstet Gynaecol Canada.* 2012; 35 (4), 362–369.

100. Shaw JC, Dyson RM, Palliser HK, Gray C, Berry MJ, Hirst JJ. Neurosteroid replacement therapy using the allopregnanolone-analogue ganaxolone following preterm birth in male guinea pigs. *Pediatr Res.* 2019; 85 (1), 86–96.

101. Shaw JC, Palliser HK, Dyson RM, Berry MJ, Hirst JJ. Disruptions to the cerebellar GABAergic system in juvenile guinea pigs following preterm birth. *Int J Dev Neurosci.* 2018; 65, 1–10.

102. Shaw JC, Palliser HK, Dyson RM, Hirst JJ, Berry MJ. Long-term effects of preterm birth on behavior and neurosteroid sensitivity in the guinea pig. *Pediatr Res.* 2016; 80 (2), 275–283.

103. Sarr O, Thompson JA, Zhao L, Lee TY, Regnault TR. Low birth weight male guinea pig offspring display increased visceral adiposity in early adulthood. *PLoS One.* 2014; 9 (6), e89433.

104. Thompson JA, Gros R, Richardson BS, Piorkowski K, Regnault TR. Central stiffening in adulthood linked to aberrant aortic remodeling under suboptimal intrauterine conditions. *Am J Physiol Regul Integr Comp Physiol.* 2011; 301 (6), R1731–1737.

105. Thompson JA, Sarr O, Piorkowski K, Gros R, Regnault TR. Low birth weight followed by postnatal over-nutrition in the guinea pig exposes a
146. Nicolas P, Maia MF, Bassat Q, et al. Safety of oral ivermectin during pregnancy: a systematic review and meta-analysis. *Lancet Glob Health.* 2020;8(1), e92–e100.

147. Fan H, Gilbert R, O’Callaghan F, Li L. Associations between macrolide antibiotics prescribing during pregnancy and adverse child outcomes in the UK: population based cohort study. *Bmj.* 2020; 368, m331.

148. Pérez R, Palma C, Núñez MJ, Cox J. Pharmacokinetics of ivermectin after maternal or fetal intravenous administration in sheep. *J Vet Pharmacol Ther.* 2008;31(5), 406–414.

149. Shanmugaraj B, Siriwattananon K, Wangkanont K, Phoolcharoen W. Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 (COVID-19). *Asian Pac J Allergy Immunol.* 2020;38(1), 10–18.