The Effects of COVID-19 On The Quality of Life Among a Sample of The General Lebanese Population

Chadia HADDAD
INSPECT-LB

Sandrella Bou Malhab (✉ sandrella.bmalhab@gmail.com)
Lebanese University https://orcid.org/0000-0002-3950-3022

Hala SACRE
INSPECT-LB

Rasha THEBIAN
Lebanese University: Universite Libanaise

Hassan SALAME
Al Zahraa University Hospital

Mira HLEYHEL
INSPECT-LB

Hussein HAMIEH
Lebanese University: Universite Libanaise

Nazih Bou Chahine
Al Zahraa University Hospital

Maha HOTEIT
Lebanese University: Universite Libanaise

Anwar Al Souheil
Lebanese University: Universite Libanaise

Pascale SALAMEH
INSPECT-LB

Research

Keywords: quality of life, COVID-19, symptom severity, sociodemographic, well-being

Posted Date: November 22nd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1070681/v1
Abstract

Background: Infectious illness outbreaks, such as COVID-19, have a devastating impact on physical health and social and psychological well-being. Therefore, the objective of this study was to assess the quality of life (QOL) after the COVID-19 outbreak in a sample of the Lebanese population and compare sociodemographic factors associated with QOL among COVID-19 patients and healthy controls.

Methods: A cross-sectional study conducted between January and March 2021 during the lockdown imposed by the Lebanese Government enrolled 2349 Lebanese adults. The major dependent variable was the 12-item Short Form Survey (SF-12), often used as a QOL measure for assessing the impact of health on an individual's everyday life.

Results: In participants with non-positive PCR, linear regression showed that higher income (Beta=2.224) is associated with a higher QOL score. Whereas higher household crowding index (Beta=-0.537), older age (Beta=-0.109), being married (Beta=-1.308), having hypertension (Beta=-2.479), and other chronic diseases (Beta=-3.704) were associated with a lower QOL score.

In participants with positive PCR, linear regression showed that the female gender (Beta=2.416) and a higher income (Beta=4.856) were associated with a higher QOL score. Whereas shortness of breath (Beta=-2.607), sore throat (Beta=-5.654), sneezing (Beta=-3.761), and having a chronic disease other than hypertension (Beta=-3.181) were associated with a lower QOL score.

Conclusion: Overall, factors such as age, male gender, married status, crowded household, low monthly income, high BMI, the presence of chronic disease, and severe COVID-19 symptoms were related to lower QOL after the covid-19 pandemic.

Background

The novel coronavirus, which first appeared in Wuhan, China, towards the end of 2019, rapidly spread across countries and was declared a pandemic on March 11, 2020 (1). Coronavirus disease 2019 (COVID-19) infections caused hospitalization and death for millions of people worldwide and are among the most common causes of referral of the elderly to hospitals (2). By May 26, 2021, COVID-19 had infected over 167 million and killed over 3 million individuals (3), its rapid spread putting a heavy burden on health systems globally (4). Containment attempts are ongoing; but, given the numerous uncertainties surrounding the disease transmissibility and virulence, their efficiency is unknown. In Lebanon, since the declaration of the first case of COVID-19 on February 21, 2020, different life components have been severely or partially interrupted (5). The disease has affected the whole population, not just those infected or exposed (5). In addition to COVID-19, the Lebanese have been facing a steep socioeconomic crisis. Thus, a multifaceted approach was required from the Lebanese government to limit the infection and get through the crucial phase (5). Consequently, the Lebanese government has imposed strict measures such as a national curfew and closing the borders (land, airport, and seaport), schools, universities, bars, gyms,
malls, and restaurants. The lockdown was successful in lowering cases and, so far, in controlling and containing the infection (6).

Infectious illness outbreaks, such as COVID-19, have a devastating impact on people's physical health and social and psychological well-being, in addition to severe economic implications (7). The World Health Organization (WHO) defines the quality of life (QOL) as “an individual’s perception of their position in life in the context of the culture and value systems in which they live and in relation to their goals, expectations, standards, and concerns” (8). Mental health experts have raised concerns about the impact of the COVID-19 pandemic on the psychological functioning, well-being, and QOL of communities (9), particularly the psychological effects of pervasive quarantine and preventive measures to reduce COVID-19 spread (9). People's everyday activities have dramatically changed by strict adherence to preventive measures such as wearing facemasks, regular handwashing, sanitizing surfaces, and, most importantly, keeping social distance and isolation of infected persons (10). Individuals who have been quarantined are more likely to experience a wide range of unpleasant emotions, including fear, anger, guilt, and a sense of loss of control (10). Also, most social and professional engagements that required travel or gatherings were canceled, disrupting people's everyday activities and overall functioning and well-being (11).

COVID-19 patients appear to be negatively affected by the disease in terms of physical and mental health and health-related QOL (12–14). Although most of them have a favorable evolution, some have worse outcomes, progressing to acute respiratory distress syndrome and needing intensive care therapy (15). Patients who survive may be at risk for poor health-related QOL and chronic symptoms following discharge (15). Also, COVID-19 can considerably influence the mental health and QOL of recovered patients and their families who might experience post-traumatic stress disorder, depression, anxiety, and sleeplessness (12, 16, 17). A recent study from Italy among 143 COVID-19 patients found that symptoms persisted and QOL was low 60 days following the occurrence of symptoms (18).

The impact of diseases, disorders, or disabilities on the physical, mental, and social aspects of patient health is assessed using QOL measures that can be generic (used in a wide range of illnesses) or disease-specific (designed for a particular disease) (19). Although both generic and respiratory-specific QOL questionnaires have been validated and standardized, the question remains whether the instrument is adapted in patients with a new disease, such as COVID-19, where the pulmonary function might be impaired, and dyspnea is one of the most common patient complaints (20, 21). Despite the large number of people who have been infected with COVID-19 and have developed symptoms, the clinical course of the associated respiratory disease and impact on overall general health and function has not been elucidated completely. To date, few studies have demonstrated that COVID-19 has a detrimental influence on the overall quality of life (22–25). The assessment of QOL and the various related factors helps identify problems that can influence everyday lives during the COVID-19 pandemic.

Therefore, the objective of this study was to assess the QOL after the COVID-19 outbreak in a sample of the Lebanese population and compare sociodemographic factors associated with QOL among COVID-19
Methods

Study design and sampling

This cross-sectional study was conducted between January and March 2021 during the lockdown imposed by the Lebanese Government. It used an electronic questionnaire and the snowball sampling technique to recruit a geographically representative sample of 2369 Lebanese adults. The sample was then weighted for geographical dwelling region, gender, and education level, as per the Central Administration of Statistics figures to optimize sample representativeness.

Sample size calculation

The minimum sample size was calculated using the G-Power software, version 3.0.10. The calculated effect size was 0.0101, expecting a squared multiple correlation of 0.01 (R^2 deviation from 0) related to the Omnibus test of multiple regression. The minimum necessary sample was n=2091, considering an alpha error of 5%, a power of 80%, and allowing 20 predictors to be included in the model. The target sample size was multiplied by 1.1 to allow for possible missing values.

Questionnaire and variables

The questionnaire used was standardized in Arabic (the native language in Lebanon) and required 20 minutes to complete. The introductory section included explanations and the study objective; participants who answered the questionnaire gave informed consent to participate implicitly. The questions covered sociodemographic characteristics, health status, COVID-19 (symptoms, duration, hospital admission...), in addition to questions used for the scales' construction.

Major dependent variable

The 12-item Short Form Survey (SF-12) is a self-reported questionnaire, often used as a QOL measure for assessing the impact of health on an individual's everyday life (26), and validated in the general Lebanese population (27). The score is usually calculated online and spans from 0 to 100. For the purpose of this study and ease of work, all 12 items were rated on a 5-point Likert scale from 1 (always) to 5 (never). The total score, ranging from 13 to 56, was calculated by summing all the answers, with higher scores indicating higher QOL during the COVID-19 pandemic. The validity of the score calculated as such was confirmed in the current population and during the COVID-19 pandemic period, using appropriate statistical measures.

Independent variables

The independent variables were divided into three parts. Part 1 included sociodemographic characteristics such as age, gender, socioeconomic status through household income, marital status,
employment status, and education level. Age (in years) was later categorized into four quartiles: less than 24 years, 24 to 32 years, 32 to 41 years, and more than 41 years.

Part 2 covered personal medical history (diabetes, cardiovascular diseases, and cancer) and risk factors for chronic diseases (smoking, alcohol consumption, and hypertension).

Part 3 was related to COVID-19. In addition to questions about symptoms, it described the disease severity and status, computed through a categorical variable based on self-declared information: non-positive SARS-CoV-2 PCR result (includes those with a negative test result and those who never took the test), mild (positive PCR but no symptoms), moderate (positive PCR with symptoms but no hospitalization), and severe status (positive PCR with symptoms and hospitalization) disease.

Statistical analysis

Data were converted from Google to an Excel spreadsheet, then analyzed using SPSS version 25.0. A descriptive analysis was first conducted to evaluate sample characteristics.

Construct validity of the SF-12 scale was assessed in the current population using the rotated component matrix technique. The Kaiser-Meyer-Olkin measure of sampling adequacy and Bartlett's test of sphericity were calculated to ensure the adequacy of the models. Factors with eigenvalues values higher than one were retained and the scree plot method (28) was used to determine the number of components to extract. Only items with a factor loading higher than 0.4 were considered (29). Moreover, the internal consistency of the scales was assessed using Cronbach's alpha.

For bivariate analysis, a p-value lower than 0.05 was considered significant. The sample being higher than 1000, parametric tests were used (30): means were compared with Student t-test and ANOVA, and percentages using the Chi-squared test. Pearson's correlation was applied to examine the association between continuous variables. For multivariate analysis, a MANCOVA was used to compare adjusted means for specific factors. Additionally, eight linear regressions were conducted, taking the QOL as the dependent variable and all variables that showed a p<0.1 in the bivariate analysis as independent variables. In all cases, a p-value less than 0.05 was considered significant.

Results

Sample description

The sociodemographic characteristics of the participants are summarized in Table 1. The mean QOL score was 38.48 ± 7.44 (Median=38, Min=13.00, Max=56.00). The mean age of the participants was 32.97 ± 11.08 years, and the mean BMI was 25.99 ± 4.90. More than half of the participants were females (51.4%), married (62.9%), non-smoker (63.6%), and had a low income (69.5%). Only 36.4% of the participants were smokers, and 21.2% had a university education level. Most participants had a negative PCR result for COVID-19 (83.4%), while 1.9% had mild disease, 12.9% had moderate disease, and 1.8% had severe disease.
Table 1
Sample characteristics

Factor	N (%)
Gender	
Male	1142 (48.6%)
Female	1207 (51.4%)
Marital status	
Non-married	870 (37.1%)
Married	1478 (62.9%)
Education level	
Non-university level	1851 (78.8%)
University level	498 (21.2%)
Income level	
Low income	1632 (69.5%)
High income	717 (30.5%)
Smoking status	
Non-smoker	1493 (63.6%)
Smoker	856 (36.4%)
Suffer from chronic disease	
No	1814 (77.2%)
Yes	534 (22.8%)
Are you willing to take the COVID-19 vaccine	
No	1022 (44.1%)
Yes	1297 (55.9%)
COVID-19 status	
Negative	1958 (83.4%)
Mild (no symptoms)	44 (1.9%)
Moderate (symptoms without hospitalization)	304 (12.9%)
Severe (required hospitalization)	43 (1.8%)

Mean (SD)
A factor analysis using the rotated component matrix technique was used to test the validity of the QOL scale and ensure the model's adequacy. All items of the scale could be extracted from the list, and none was removed because none of the items over-correlated with each other ($r > 0.9$), or had a low loading on factors (< 0.3) or a low communality (< 0.3). The Kaiser-Meyer-Olkin measure of sampling adequacy was 0.784, and Bartlett's test of sphericity was significant ($p<0.001$). QOL scale items produced four factors that had an eigenvalue over 1; the first factor explained 31.44% of the total variance, while the second explained 11.75%, the third 10.34%, and the fourth 9.20%, making a total of 62.73% of the data variance. The total reliability of Cronbach's alpha was 0.784 (Table 2).

Factor 1 covered negative psychophysical effects: “Feeling depressed”; “Performed less due to psychological problems”; “Feeling exhausted”; “Health status obstacle in family relations”; “Difficulty performing tasks as usual”. Cronbach's alpha was 0.760.

Factor 2 explained disease physical limits: “Did you perform less due to your disease”; “Were you limited in performing specific tasks”; “You think your health status is”; “Pain limits to perform house duties”. Cronbach's alpha was 0.667.

Factor 3 included physical effort limits: “Effort limited to moderate physical activity”; “Effort to climb multilevel stairs”. Cronbach's alpha was 0.609,

Factor 4 involved positive psychological effects and consisted of one item: “Feeling relaxed”.

Table 2. Rotated component matrix of the quality of life scale (12 items)
Factor	Item	Factor 1	Factor 2	Factor 3	Factor 4	H2 communalities
Feeling depressed	11	0.813				0.683
Performed less due to psychological problems	6	0.674				0.652
Feeling exhausted	10	0.667				0.594
Health status obstacle in family relations	12	0.624				0.553
Difficulty performing tasks as usual	7	0.543				0.577
Did you perform less due to your disease	4	0.776				0.622
Were you limited in performing specific tasks	5	0.691				0.650
You think your health status is	1	0.611				0.563
Pain limits to perform house duties	8	0.521				0.506
Effort limited to moderate physical activity	2	0.894				0.793
Effort to climb multilevel stairs	3	0.720				0.627
Feeling relaxed	9		0.839			0.709
Percentage variance explained		31.443%	11.749%	10.342%	9.204%	
Cronbach alpha= 0.784						
Kaiser-Meyer-Olkin (KMO)= 0.788						
Bartlett’s test of sphericity p<0.001						

Bivariate analysis

In participants with non-positive PCR, non-married status, higher education level, higher income, and absence of chronic diseases were associated with higher QOL scores. Whereas lower QOL scores were associated with older age, higher household crowding index, and higher BMI.

In participants with positive PCR, higher QOL scores were associated with the female gender, higher education level, higher income, absence of chronic diseases, smoker status, no COVID-19 symptoms, no hospital admission, and mild COVID-19 disease. Higher household crowding index, higher BMI, and longer duration of hospital stay and symptoms were associated with lower QOL scores.
Table 3
Bivariate analysis taking the quality of life scale in the stratified sample

	In participants with SARS-CoV-2 non-positive PCR result	In participants with SARS-CoV-2 positive PCR result		
	Mean (SD)	P value	Mean (SD)	P value
Gender				
Male	38.99 (7.10)	0.739	33.49 (6.91)	<0.001
Female	39.11 (7.46)		37.99 (7.52)	
Marital status				
Non-married	40.04 (7.49)	<0.001	35.57 (7.06)	0.736
Married	38.47 (7.10)		35.84 (7.84)	
Education level				
Non-university level	38.63 (7.25)	<0.001	35.33 (7.16)	0.054
University level	40.65 (7.21)		37.13 (8.67)	
Income level				
Low income	38.33 (7.44)	<0.001	33.36 (6.50)	<0.001
High income	40.81 (6.57)		39.55 (7.59)	
Suffer from chronic disease				
No	40.09 (7.03)	<0.001	37.13 (7.33)	<0.001
Yes	35.51 (7.01)		30.05 (5.59)	
Type of chronic disease				
No disease	39.51 (7.16)	<0.001	36.45 (7.76)	<0.001
Hypertension	36.85 (6.95)		30.01 (2.16)	
Other disease	35.84 (8.30)		33.41 (4.40)	
Smoking status				
Non-smoker	39.31 (7.36)	0.054	34.64 (7.71)	<0.001
Smoker	38.62 (7.15)		37.74 (6.85)	
Did you suffer from COVID-19 symptoms				
No	37.51 (5.39)	0.101		
	In participants with SARS-CoV-2 non-positive PCR result	In participants with SARS-CoV-2 positive PCR result		
----------------------------------	---	--		
Yes	35.50 (7.77)			
COVID-19 symptoms				
No symptoms	36.83 (4.73)	0.019		
Fever	33.99 (9.03)			
General pain	36.15 (6.83)			
Muscle pain	36.49 (6.30)			
Lost smell	40.08 (6.04)			
Hospital admission due to COVID-19				
No	36.33 (7.81)	<0.001		
Yes	31.26 (2.20)			
Cured from COVID-19				
No	32.82 (5.93)	<0.001		
Yes	36.52 (7.74)			
Still suffering from COVID-19 symptoms				
No	38.20 (7.20)	<0.001		
Yes	32.70 (6.86)			
COVID-19 status				
Mild disease	37.51 (5.39)	<0.001		
Moderate disease	36.15 (8.11)			
Severe disease	31.26 (2.20)			
Age (years)	-0.141	<0.001		
	-0.052	0.329		
Household crowding index	-0.173	<0.001		
	-0.119	0.023		
BMI	-0.127	<0.001		
	-0.129	0.014		
Duration smoking (years)	-0.023	0.343		
	0.219	<0.001		
In participants with SARS-CoV-2 non-positive PCR result

Duration of hospitalization (days)	-0.185	<0.001
Duration of COVID-19 symptoms	-0.411	<0.001

Multivariable analysis

In participants with non-positive PCR, linear regression 1 showed that higher income (Beta=2.224) is associated with a higher QOL score. Whereas higher household crowding index (Beta=-0.537), older age (Beta=-0.109), being married (Beta=-1.308), having hypertension (Beta=-2.479), and other chronic diseases (Beta=-3.704) were associated with a lower QOL score.

In participants with positive PCR, linear regression 2 showed that higher income (Beta=5.113), female gender (Beta=4.479), and smoker status (Beta=2.094) were associated with a higher QOL score, while higher BMI (Beta=-0.233) and having a chronic disease other than hypertension (Beta=-5.186) were associated with a lower QOL score.

Linear regression 3, taking COVID-19 conditions as independent variables, showed that a prolonged hospital stay (Beta=-0.841), longer duration of COVID-19 symptoms (Beta=-0.260), and persisting COVID-19 symptoms (Beta=-2.869) were associated with a lower QOL score.

Linear regression 4, taking COVID-19 conditions and sociodemographic characteristics as independent variables, showed that higher income (Beta=5.427) and smoker status (Beta=2.354) were associated with a higher QOL score, while a prolonged hospital stay (Beta=-0.490), longer duration of COVID-19 symptoms (Beta=-0.268), and persisting COVID-19 symptoms (Beta=-2.531) were associated with a lower QOL score.

Linear regression 5 showed that moderate COVID-19 status (Beta=-1.365) and severe COVID-19 status (Beta=-6.251) were associated with a lower QOL score.

Linear regression 6, taking the COVID-19 status and sociodemographic factors as independent variables, showed that female gender (Beta=4.497) was associated with a higher QOL score, whiles higher BMI (Beta=-0.211) and severe COVID-19 status (Beta=-4.921) were associated with a lower QOL score.

Linear regression 7 showed that fever (Beta=-2.525), shortness of breath (Beta=-3.262), sore throat (beta=-5.654), and persisting COVID-19 symptoms (Beta=-5.024) were associated with a lower QOL score.

Linear regression 8, taking sociodemographic factors and COVID-19 symptoms as independent variables, showed that the female gender (Beta=2.416) and a higher income (Beta=4.856) were associated with a higher QOL score. Whereas shortness of breath (beta=-2.607), sore throat (Beta=-5.654), sneezing
(Beta=-3.761), and having a chronic disease other than hypertension (Beta=-3.181) were associated with a lower QOL score.
Table 4
Multivariable analysis in participants with non-positive SARS-CoV-2 PCR result

Linear regression 1 taking the QOL scale as the dependent variable

Factor	Unstandardized beta	Standardized beta	95% CI	P value
Household crowding index	-0.537	-0.124	-0.737; -0.337	<0.001
Age	-0.109	-0.163	-0.140; -0.079	<0.001
High income vs. low*	2.224	0.140	1.486; 2.962	<0.001
Married vs. single*	-1.308	-0.087	-1.986; -0.630	<0.001
Chronic disease (hypertension vs. no disease*)	-2.479	-0.100	-3.609; -1.349	<0.001
Chronic disease (other diseases vs. no disease*)	-3.704	-0.118	-5.135; -2.274	<0.001

Variables entered: marital status; education level; income level; smoking status; age; household crowding index; BMI; type of chronic disease

Multivariable analysis in participants with positive SARS-CoV-2 PCR result

Linear regression 2 taking the sociodemographic factors as independent variables

Factor	Unstandardized beta	Standardized beta	95% CI	P value
High income vs. low*	5.113	0.327	3.637; 6.590	<0.001
Female vs. male*	4.479	0.293	3.051; 5.906	<0.001
Smoker vs. non-smoker*	2.094	0.131	0.593; 3.596	0.006
Chronic disease (other diseases vs. no disease*)	-5.186	-0.132	-8.755; -1.617	0.005
BMI	-0.233	-0.127	-0.401; -0.066	0.006

Variables entered: education level; income level; age; household crowding index; smoking status; BMI; type of chronic disease; gender

Linear regression 3 taking COVID-19 conditions as independent variables

Factor	Unstandardized beta	Standardized beta	95% CI	P value
Linear regression 1 taking the QOL scale as the dependent variable

Factor	Unstandardized beta	Standardized beta	95% CI	P value
Hospitalization duration	-0.841	-0.233	-1.168; -0.513	<0.001
Symptoms duration	-0.260	-0.306	-0.362; -0.158	<0.001
Still suffering from COVID-19 symptoms vs. no*	-2.869	-0.189	-4.695; 0.043	0.002

Variables entered: hospital duration; symptoms duration; still suffering from symptoms

Linear regression 4 taking COVID-19 conditions and sociodemographic factors as independent variables

Factor	Unstandardized beta	Standardized beta	95% CI	P value
High income vs. low*	5.427	0.350	4.126; 6.727	<0.001
Smoker vs. non-smoker*	2.354	0.149	1.040; 3.668	<0.001
Hospitalization duration	-0.490	-0.136	-0.795; -0.186	0.002
Symptoms duration	-0.268	-0.315	-0.361; -0.175	<0.001
Still suffering from COVID-19 symptoms vs. no*	-2.531	-0.167	-4.165; -0.897	0.002

Variables entered: hospital duration; symptoms duration; still suffering from symptoms; income level; smoking status; gender

Linear regression 5 taking COVID-19 status as the independent variable

Factor	Unstandardized beta	Standardized beta	95% CI	P value
Moderate COVID-19 state vs. mild*	-1.365	-0.077	-3.742; 1.012	0.260
Severe COVID-19 state vs. mild*	-6.251	-0.266	-9.285; -3.116	<0.001

Variables entered: COVID-19 status severe; COVID-19 status moderate

Linear regression 6 taking COVID-19 status and sociodemographic factors as independent variables

Factor	Unstandardized beta	Standardized beta	95% CI	P value
Female vs. male	4.497	0.294	2.974; 6.020	<0.001
Linear regression 1 taking the QOL scale as the dependent variable

Factor	Unstandardized beta	Standardized beta	95% CI	P value
BMI	-0.211	-0.115	-0.404; -0.018	0.032
Severe COVID-19 state vs. mild*	-4.921	-0.209	-8.287; -1.555	0.004

Variables entered: COVID-19 status severe; COVID-19 status moderate; gender; BMI; age

Linear regression 7 taking COVID-19 symptoms as independent variables

Factor	Unstandardized beta	Standardized beta	95% CI	P value
Fever vs. no*	-2.525	-0.165	-4.185; -0.864	0.003
Shortness of breath vs. no*	-3.262	-0.212	-5.086; -1.439	<0.001
Sore throat vs. no*	-5.654	-0.373	-7.281; -4.027	<0.001
Still suffer from COVID-19 symptoms vs. no*	-5.024	-0.331	-6.673; -3.375	<0.001

Variables entered: fever; general pain; muscle pain; lost smell; lost taste; shortness of breath; diarrhea; sneezing; sore throat; headache; still suffer from COVID-19 symptoms

Linear regression 8 taking sociodemographic factors and COVID-19 symptoms as independent variables

Factor	Unstandardized beta	Standardized beta	95% CI	P value
Female vs. male*	2.416	0.159	0.987; 3.846	0.001
High income vs. low*	4.856	0.312	3.433; 6.279	<0.001
Shortness of breath vs. no*	-2.607	-0.169	-4.406; -0.809	0.005
Sore throat vs. no*	-2.986	-0.196	-4.671; -1.301	0.001
Sneezing vs. no*	-3.761	-0.213	-5.485; -2.036	<0.001
Suffer from chronic disease vs. no*	-3.181	-0.167	-5.096; -1.266	0.001

Variables entered: fever; general pain; muscle pain; lost smell; lost taste; shortness of breath; diarrhea; sneezing; sore throat; headache; gender; income; smoking status; BMI; chronic disease;

*reference value
Adjusted quality of life values among non-positive PCR participants

Figure 1 shows the association of the COVID-19 QOL scale with income level, marital status, and chronic disease status in participants with non-positive PCR. Significantly higher means were shown for higher income, being married, and the absence of chronic diseases.

Adjusted quality of life values among COVID-19 positive participants

Figure 2 shows QOL scores according to gender, income level, and chronic disease status in participants with positive PCR results. Significantly higher means were shown for female gender, higher income, and the absence of chronic disease. Furthermore, Figure 3 shows values according to COVID-19 symptoms (fever, shortness of breath, sore throat, and sneezing). Significantly higher means were shown for participants with no symptoms.

Discussion

This study assessed the quality of life post-COVID-19 and the related factors among a sample from the general Lebanese population infected or not with COVID-19. The results showed that demographic backgrounds, medical conditions, and COVID-19 symptoms and severity were related to poor QOL among a sample of the Lebanese population. Most previous studies have focused on the QOL of COVID-19 patients in hospitals (23–25, 31), while just a few have evaluated QOL post-COVID-19 (32, 33). Garrat et al. found that, compared to the general population, social functioning, general health, and aspects of mental health were affected after COVID-19 onset among 458 non-hospitalized COVID-19 patients (32). Furthermore, among 279 hospitalized COVID-19 patients the QOL was altered after discharge with a slight difference in pain in the ICU group, but no statistically significant difference in the ward groups (33). COVID-19 has resulted in a considerable loss of human life throughout the world, and it poses an unprecedented threat to public health, food systems, and the workplace. This unexpected pandemic and subsequent lockdown dramatically affected QOL due to the suspension of social activities, closure of public spaces and stores, loss of employment, and reduced income.

In this study, we could validate the use of the previously validated SF-12 to assess the quality of life during the COVID-19 pandemic. The factor analysis showed that items converged into four factors. The scale internal consistency was found to be very satisfactory (Cronbach's alpha: 0.784). In light of these results, the scale can be considered efficient in both research and clinical practice.

Our results revealed that having a chronic disease was related to poor QOL in both groups (infected or not with COVID-19), in line with other findings showing that the COVID-19 pandemic had a mostly negative impact on QOL and the well-being of those with chronic medical problems (13, 25, 34). According to the literature, people with chronic diseases, including diabetes, hypertension, heart disease, and other chronic
illnesses, have a reduced QOL (35–38). A study among 1,139 participants from China during the COVID-19 pandemic showed that respondents with three chronic diseases and above reported lower QOL than other respondents (13). Furthermore, patients with chronic illnesses had worse emotional/mental than physical health QOL during the COVID-19 pandemic (34).

It is widely recognized that most chronic illnesses can affect overall health by reducing the capacity to live well, limiting functional status, productivity, and quality of life, and substantially contributing to health care expenses (39). During the COVID-19 pandemic, patients with chronic illness faced more challenges managing their daily activities, nutrition, and exercise as they must be monitored regularly (40). Dealing with their condition was difficult, especially given the shortage of resources and access to health facilities and health care experts (40). Also, individuals with chronic diseases are at higher risk for catching the virus, being hospitalized, and developing severe respiratory symptoms, which adds to their concern (34) and could negatively affect their quality of life (41).

When looking into the demographic factors, a lower income, a crowded household, the male gender, married status, and older age were associated with lower QOL scores. In the context of the COVID-19 pandemic and lockdown, these results seem reasonable. Across countries, economic hardships due to COVID-19 are likely to have a detrimental impact on the QOL. Similarly, previous studies have found that individuals with lower income levels had worse QOL ratings (25, 42–44). Many people have lost their job and were at risk of falling into extreme poverty, which could lead to limited access to quality health care. Also, our results showed that participants who lived in a crowded house have a poor QOL, in line with other findings (45). Living in overcrowded homes may cause tensions, exacerbated by a higher probability of catching illnesses, thus generating unfavorable consequences among inhabitants. Hence, people with reduced income and those living in overcrowded households have a higher financial strain that could unfavorably affect their overall health. This aspect is exacerbated in Lebanon due to the unprecedented economic crisis.

Our results also demonstrated that older age was associated with lower QOL. Few studies suggested that elderly persons are more likely than younger individuals to experience reduced quality of life during the pandemic (12, 13). Contrarily, a study among 494 adults from Germany and Poland found that the QOL of older participants during the pandemic was better than that of younger comparison groups (46). The QOL could depend on the cultural characteristics, economic, and financial stability of a country. In a country like Lebanon with low resources and an unstable political structure, measures to protect the elderly are severely inadequate, affecting their QOL (47). Moreover, older people are more prone to the mental stress of a probable infection and reduced cognitive and physical functions that could decrease their QOL (48).

Also, being married was associated with higher QOL in our results. Evidence suggests that married people have higher mental health than those who have never been married or have been married before (49). In India, married individuals had a 40% reduced likelihood of anxiety than unmarried individuals during COVID-19 (50). Relationships, marriage, birth, and divorce rates can all be affected in such challenging
times (51). Previous findings reveal that the effect of marriage on QOL depends on the quality of the marital relationship and that single persons have better mental health than those who are unhappily married (52).

In our study, the male gender was related to lower QOL among participants with COVID-19, while gender did not affect QOL among non-positive participants. According to previous research, men and women are subject to various cultural norms and societal influences that could influence their QOL (53). In Lebanon, the female gender was associated with higher stress at the beginning of the pandemic (54); it seems that this difference tends to reverse with time, particularly among previous COVID-19 patients, given that COVID-19 severity is associated with the male gender. In COVID-19, men are more likely to get a more severe illness than women and could have persistent symptoms that could affect their quality of life (55). Indeed, the male gender had lower QOL during the COVID-19 pandemic in Saudi Arabia (25). A higher incidence of most illnesses in men may also be linked to a lower life expectancy and worse QOL than women (55). Furthermore, men who are the primary earners for their families were more likely to experience stress and anxiety resulting from poor health or job loss during the pandemic, particularly in the Lebanese setting.

Also, our study have found an association between higher BMI and worse QOL, similar to other studies (56). A cohort study done among 504 COVID-19 patients have found that BMI was related to impaired physical quality function (56). It is well known that BMI is associated with reduced life expectancy and lower quality of life, even in the absence of disease (57).

Our results showed that physical symptoms and more severe COVID-19 were associated with lower QOL, similar to previous findings (22, 56, 58, 59). Most patients who needed hospitalization for COVID-19 still had persisting symptoms, especially tiredness and dyspnea, after being discharged (33). A cohort study of 1,733 COVID-19 patients found that in most patients, some symptoms persisted after six months of onset, especially tiredness or muscle weakness, sleep problems, and anxiety or depression (60). These symptoms were more detected in severe disease, in addition to lung diffusion abnormalities (60). Unusual symptoms, such as headache, stomach discomfort, and chest pain, could persist months after recovery, particularly in severe/critical patients (56). Furthermore, due to the impact of COVID-19 on everyday life and work, a significant proportion of patients may continue to experience psychological issues after being discharged from the hospital (58), also related to the long period of isolation, fear of illness, and extreme uncertainty experienced during COVID-19, causing significant psychological and mood disturbances, including insomnia, irritability, and anger, in addition to physical impairment (56). Consequently, it is likely that the persistence of symptoms influences overall health, physical and emotional well-being, social functioning, and quality of life (58).

Limitations

This study has several limitations. Its cross-sectional design makes it difficult to make causal inferences. The number of COVID-19 patients with severe disease is limited; a larger sample is needed to clarify the
effect on QOL, using a prospective design for optimal results. The snowball sampling technique used to collect the data is nonrandom, which could generate a selection bias. Also, the use of an online survey has excluded people who were not on social media, resulting in less generalizable results. The self-reported questionnaire used might have led to information bias or data misreporting. Comparisons between pre-pandemic and post-pandemic QOL were not possible since we did not evaluate the quality of life before the pandemic. The time to recovery was not considered when assessing the QOL of COVID-19 patients; long-term follow-up can give more insight into changes in physical and mental health. Concerning the quality of life scale, we could not perform a confirmatory analysis to consolidate our results, nor a convergent validity analysis to compare our results with other related scales. Furthermore, comprehensive evaluation tools such as the Quality of Life Enjoyment and Satisfaction Questionnaire, Hamilton Anxiety Scale, and Hamilton Depression Scale should be used to investigate the physical and mental health of COVID-19 patients, as they may improve the accuracy of quality of life assessment. Finally, multiple confounding factors that could affect the physiological and psychological QOL have not been all collected; therefore, the multivariate analysis could not be adjusted over all the potential confounding factors, and residual confounding is possible. Nevertheless, our results were consistent with other findings, and we could demonstrate a dose-effect relationship with COVID-19 severity, duration of symptoms, and related quality of life. Thus, we have no reason to think that optimizing the methods would change the substance of our findings.

Conclusion

Overall, factors such as age, male gender, married status, crowded household, low monthly income, high BMI, the presence of chronic disease, and severe COVID-19 symptoms were related to lower QOL after the covid-19 pandemic. Our findings also confirmed the harmful impact of the COVID-19 on survivors’ quality of life. Future prospective studies on a larger sample are needed to replicate the effects of the COVID-19 pandemic on the quality of life and confirm our findings.

Abbreviations

QOL: quality of life

COVID-19: Corona virus disease 2019

PCR: polymerase chain reaction

SF-112: 12-item Short Form Survey

SARS-CoV-2: severe acute respiratory syndrome of the corona virus 2

BMI: body mass index

Declarations
Ethics approval and consent to participate

The Zahraa Hospital Ethics Committee approved the study protocol (Reference number 9/2020), given that it was observational and respected the anonymity of participants.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Competing interests

The authors have nothing to disclose.

Funding

None.

Authors’ contribution

PS designed the study. PS, CH, and SBM drafted the manuscript. PS and SBM carried out the analysis and interpreted the results. RT, HS2, AS, MH, HH, and NBC participated in drafting the questionnaire and were involved in the data collection process. PS and HS1 assisted in drafting and reviewing the manuscript. PS supervised the course of the article. HS1 critically reviewed and edited the manuscript. All the authors reviewed and approved the final version of the manuscript.

Acknowledgments

The authors would like to thank Mohammad Mekkawi, Hady Skaff, Jamila Al Hajj, Ghassan Aawar, and Bilal Namel.

References

1. World Health Organization. Coronavirus disease 2019 (COVID-19) situation report-51. 2020.
2. Gebru AA, Birhanu T, Wendimu E, Ayalew AF, Mulat S, Abasimel HZ, et al. Global burden of COVID-19: Situational analysis and review. Human antibodies. 2021.
3. Worldometer. COVID-19 CORONAVIRUS PANDEMIC. Available from: https://www.worldometers.info/coronavirus/?utm_campaign=homeAdvegas1? [Last Accessed May 26, 2021]. 2021.
4. Keni R, Alexander A, Nayak PG, Mudgal J, Nandakumar K. COVID-19: emergence, spread, possible treatments, and global burden. Frontiers in public health. 2020;8:216.

5. Bizri AR, Khachfe HH, Fares MY, Musharrafieh U. COVID-19 pandemic: An insult over injury for Lebanon. Journal of community health. 2020;1–7.

6. Kharroubi S, Saleh F. Are Lockdown Measures Effective Against COVID-19? Frontiers in Public Health. 2020;8:610.

7. Qiu J, Shen B, Zhao M, Wang Z, Xie B, Xu Y. A nationwide survey of psychological distress among Chinese people in the COVID-19 epidemic: implications and policy recommendations. General psychiatry. 2020;33(2).

8. Group W. The World Health Organization quality of life assessment (WHOQOL): position paper from the World Health Organization. Social science & medicine. 1995;41(10):1403–9.

9. Rubin GJ, Wessely S. The psychological effects of quarantining a city. Bmj. 2020;368.

10. Lee M, You M. Psychological and behavioral responses in South Korea during the early stages of coronavirus disease 2019 (COVID-19). International journal of environmental research and public health. 2020;17(9):2977.

11. Mazza C, Ricci E, Biondi S, Colasanti M, Ferracuti S, Napoli C, et al. A nationwide survey of psychological distress among Italian people during the COVID-19 pandemic: immediate psychological responses and associated factors. International journal of environmental research and public health. 2020;17(9):3165.

12. Nguyen HC, Nguyen MH, Do BN, Tran CQ, Nguyen TT, Pham KM, et al. People with suspected COVID-19 symptoms were more likely depressed and had lower health-related quality of life: the potential benefit of health literacy. Journal of clinical medicine. 2020;9(4):965.

13. Ping W, Zheng J, Niu X, Guo C, Zhang J, Yang H, et al. Evaluation of health-related quality of life using EQ-5D in China during the COVID-19 pandemic. PloS one. 2020;15(6):e0234850.

14. Rajkumar RP. COVID-19 and mental health: A review of the existing literature. Asian journal of psychiatry. 2020;52:102066.

15. Taboada M, Moreno E, Cariñena A, Rey T, Pita-Romero R, Leal S, et al. Quality of life, functional status, and persistent symptoms after intensive care of COVID-19 patients. British journal of anaesthesia. 2021;126(3):e110-e3.

16. Wang C, Pan R, Wan X, Tan Y, Xu L, Ho CS, et al. Immediate psychological responses and associated factors during the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China. International journal of environmental research and public health. 2020;17(5):1729.

17. Tan BY, Chew NW, Lee GK, Jing M, Goh Y, Yeo LL, et al. Psychological impact of the COVID-19 pandemic on health care workers in Singapore. Annals of internal medicine. 2020;173(4):317–20.

18. Carfi A, Bernabei R, Landi F. Persistent symptoms in patients after acute COVID-19. Jama. 2020;324(6):603–5.
19. Pequeno NPF, de Araújo Cabral NL, Marchioni DM, Lima SCVC, de Oliveira Lyra C. Quality of life assessment instruments for adults: a systematic review of population-based studies. Health and quality of life outcomes. 2020;18(1):1–13.

20. Mo X, Jian W, Su Z, Chen M, Peng H, Peng P, et al. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge. European Respiratory Journal. 2020;55(6).

21. Goërtz YM, Van Herck M, Delbressine JM, Vaes AW, Meys R, Machado FV, et al. Persistent symptoms 3 months after a SARS-CoV-2 infection: the post-COVID-19 syndrome? ERJ open research. 2020;6(4).

22. Jacobs LG, Gourna Paleoudis E, Lesky-Di Bari D, Nyirenda T, Friedman T, Gupta A, et al. Persistence of symptoms and quality of life at 35 days after hospitalization for COVID-19 infection. PloS one. 2020;15(12):e0243882.

23. Alinia C, Yaghmaei S, Abdullah FZ, Ahmadi A, Samadi N, Pourteymour S, et al. The health-related quality of life in Iranian patients with COVID-19. BMC infectious diseases. 2021;21(1):1–8.

24. Meys R, Delbressine JM, Goërtz YM, Vaes AW, Machado FV, Van Herck M, et al. Generic and Respiratory-Specific Quality of Life in Non-Hospitalized Patients with COVID-19. Journal of clinical medicine. 2020;9(12):3993.

25. Algahtani FD, Hassan S-u-N, Alsaiif B, Zrieq R. Assessment of the quality of life during COVID-19 pandemic: A cross-sectional survey from the kingdom of saudi arabia. International Journal of Environmental Research and Public Health. 2021;18(3):847.

26. Ware Jr JE, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Medical care. 1996:220–33.

27. Haddad C, Sacre H, Obeid S, Salameh P, Hallit S. Validation of the Arabic version of the “12-item short-form health survey” (SF-12) in a sample of Lebanese adults. Archives of Public Health. 2021;79(1):1–8.

28. Kanyongo GY. Determining the correct number of components to extract from a principal components analysis: A Monte Carlo study of the accuracy of the scree plot. Journal of modern applied statistical methods. 2005;4(1):13.

29. Ellis JL. Factor analysis and item analysis. Applying Statistics in Behavioural Research. 2017:11–59.

30. Mishra P, Pandey CM, Singh U, Gupta A, Sahu C, Keshri A. Descriptive statistics and normality tests for statistical data. Annals of cardiac anaesthesia. 2019;22(1):67.

31. Arab-Zozani M, Hashemi F, Safari H, Yousefi M, Ameri H. Health-Related Quality of Life and its Associated Factors in COVID-19 Patients. Osong public health and research perspectives. 2020;11(5):296–302.

32. Garratt AM, Ghanima W, Einvik G, Stavem K. Quality of life after COVID-19 without hospitalisation: good overall, but reduced in some dimensions. The Journal of infection. S0163-4453 (21) 00006–2.

33. Garrigues E, Janvier P, Kherabi Y, Le Bot A, Hamon A, Gouze H, et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. Journal of Infection. 2020;81(6):e4-e6.
34. O’Dwyer MC, Meixner K, Albiac LC, El Khoury C, Capizzano JN, Ramakrishnan M, et al. Health-Related Quality of Life for People With Acute and Chronic Illnesses During the COVID-19 Pandemic. The Journal of the American Board of Family Medicine. 2021;34(3):509–21.
35. Siboni FS, Alimoradi Z, Atashi V, Alipour M, Khatooni M. Quality of life in different chronic diseases and its related factors. International journal of preventive medicine. 2019;10.
36. Somrongthong R, Hongthong D, Wongchalee S, Wongtongkam N. The influence of chronic illness and lifestyle behaviors on quality of life among older Thais. BioMed research international. 2016;2016.
37. Wong ELY, Xu RH, Cheung AWL. Health-related quality of life among patients with hypertension: population-based survey using EQ-5D-5L in Hong Kong SAR, China. BMJ open. 2019;9(9):e032544.
38. Zhuang Y, Ma Q-H, Pan C-W, Lu J. Health-related quality of life in older Chinese patients with diabetes. PloS one. 2020;15(2):e0229652.
39. Megari K. Quality of life in chronic disease patients. Health psychology research. 2013;1(3).
40. Saqib MAN, Siddiqui S, Qasim M, Jamil MA, Rafique I, Awan UA, et al. Effect of COVID-19 lockdown on patients with chronic diseases. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020;14(6):1621–3.
41. Bryson WJ. Long-term health-related quality of life concerns related to the COVID-19 pandemic: a call to action. Quality of Life Research. 2021;30(3):643–5.
42. Ikeda T, Igarashi A, Odani S, Murakami M, Tabuchi T. Health-Related Quality of Life during COVID-19 Pandemic: Assessing Impacts of Job Loss and Financial Support Programs in Japan. Applied Research in Quality of Life. 2021:1–17.
43. Janssen M, Szende A, Cabases J, Ramos-Goñi JM, Vilagut G, König H-H. Population norms for the EQ-5D-3L: a cross-country analysis of population surveys for 20 countries. The European Journal of Health Economics. 2019;20(2):205–16.
44. Yang Z, Busschbach J, Liu G, Luo N. EQ-5D-5L norms for the urban Chinese population in China. Health and quality of life outcomes. 2018;16(1):1–9.
45. Tran BX, Nguyen HT, Le HT, Latkin CA, Pham HQ, Vu LG, et al. Impact of COVID-19 on economic well-being and quality of life of the Vietnamese during the national social distancing. Frontiers in psychology. 2020;11.
46. Bidzan-Bluma I, Bidzan M, Jurek P, Bidzan L, Knietzsch J, Stueck M, et al. A Polish and German Population Study of Quality of Life, Well-Being, and Life Satisfaction in Older Adults During the COVID-19 Pandemic. Frontiers in psychiatry. 2020;11.
47. Abdulrahim S, Ajrouch KJ, Antonucci TC. Aging in Lebanon: Challenges and opportunities. The Gerontologist. 2015;55(4):511–8.
48. Walle-Hansen M, Ranhoff A, Mellingsæter M, Wang-Hansen M, Myrstad M. Health-related quality of life, functional decline, and long-term mortality in older patients following hospitalisation due to COVID-19. BMC geriatrics. 2021;21(1):1–10.
49. Uecker JE. Marriage and mental health among young adults. Journal of Health and Social Behavior. 2012;53(1):67–83.

50. Ahmad A, Rahman I, Agarwal M. Factors influencing mental health during COVID-19 outbreak: an exploratory survey among Indian population. MedRxiv. 2020.

51. Pieh C, O’Rourke T, Budimir S, Probst T. Relationship quality and mental health during COVID-19 lockdown. PLoS One. 2020;15(9):e0238906.

52. Holt-Lunstad J, Birmingham W, Jones BQ. Is there something unique about marriage? The relative impact of marital status, relationship quality, and network social support on ambulatory blood pressure and mental health. Annals of behavioral medicine. 2008;35(2):239–44.

53. Denton M, Prus S, Walters V. Gender differences in health: a Canadian study of the psychosocial, structural and behavioural determinants of health. Social science & medicine. 2004;58(12):2585–600.

54. Salameh P, Aline H, Badro DA, Abou Selwan C, Randa A, Sacre H. Mental health outcomes of the CoViD-19 pandemic and a collapsing economy: perspectives from a developing country. Psychiatry research. 2020;294:113520.

55. Jin J-M, Bai P, He W, Wu F, Liu X-F, Han D-M, et al. Gender differences in patients with COVID-19: focus on severity and mortality. Frontiers in public health. 2020;8:152.

56. Chen K-Y, Li T, Gong F, Zhang J-S, Li X-K. Predictors of health-related quality of life and influencing factors for COVID-19 patients, a follow-up at one month. Frontiers in Psychiatry. 2020;11:668.

57. Park S. Pathways linking obesity to health-related quality of life. Quality of Life Research. 2017;26(8):2209–18.

58. Qu G, Zhen Q, Wang W, Fan S, Wu Q, Zhang C, et al. Health-related quality of life of COVID-19 patients after discharge: A multicenter follow-up study. Journal of clinical nursing. 2021;30(11-12):1742–50.

59. Santus P, Tursi F, Croce G, Di Simone C, Frassanito F, Gaboardi P, et al. Changes in quality of life and dyspnoea after hospitalization in COVID-19 patients discharged at home. Multidisciplinary respiratory medicine. 2020;15(1).

60. Huang C, Huang L, Wang Y, Li X, Ren L, Gu X, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. The Lancet. 2021.

Figures
Figure 1

Adjusted means for income level (p=0.012), marital status (p=0.006), and chronic disease status (p=0.016) in participants with non-positive PCR result for SARS-CoV-2 where covariates are evaluated at the following values: age = 32.97 and household crowding index = 1.48.

Figure 2

Adjusted means for gender (p<0.001), income level (p<0.001), and chronic disease status (p<0.001) in participants with positive PCR result for SARS-CoV-2 where covariates are evaluated at the following values: age = 34.54 and BMI=26.02.
Figure 3

Adjusted means for COVID-19 symptoms (fever (p=0.004); shortness of breath (p<0.001); sore throat (p<0.001); sneezing (p<0.001)) in participants with positive PCR result for SARS-CoV-2 where covariates are evaluated at the following values: age = 34.54 and BMI=26.02.