Chemoeccological Study of Trophic Interaction Between Pseudosphinx Tetroio L. Larvae and Allamanda Cathartica L.

LINDA MATIGNON
UA

MAME E MARIETOU LO
UNIMES

MAURO VICENTINI
UB

DROCHS PETRI VALENCIA
Pontificia Universidad Javeriana

MARCOS V. PALMEIRA-MELLO
UFF: Universidade Federal Fluminense

MURIEL SYLVESTRE
UA

NADY PASSE-COUTrIN
UA

ANUBIS VEGA-RUA
Pasteur Institut of Guadeloupe: Institut Pasteur de Guadeloupe

Antonio Domenech
UV

ZOHRA BENFODDA
UNIMES: Universidade Metropolitana de Santos

Patrick Meffre
Centre Universitaire de Formation et de Recherche-Unimes: Universite de Nimes

Gerardo Cebrián-Torrejón (✉️ gerardo.cebrian-torrejon@univ-antilles.fr)
Université des Antilles: Universite des Antilles https://orcid.org/0000-0002-5776-922X

Research Article

Keywords: Pseudosphinx tetroio, Apocynaceae, Allamanda cathartica, Chemical ecology, Phytochemistry, Electrochemical ecology, PCA analysis.

DOI: https://doi.org/10.21203/rs.3.rs-776886/v1
CHEMOECOLOGICAL STUDY OF TROPHIC INTERACTION BETWEEN
Pseudosphinx tetrio L. LARVAE AND _Allamanda cathartica_ L.

LINDA MATIGNON¹, MAME MARIETOU LO², MAURO VICENTINI³, DROCHS PETRI VALENCIA⁴, MARCOS V. PALMEIRA-MELLO⁵, MURIEL SYLVESTRE¹, NADY PASSE-COUTRIN¹, ANUBIS VEGA-RUA⁶, ANTONIO DOMENECH⁷, ZOHRA BENFODDA², PATRICK MEFFRE² and GERARDO CEBRIÁN-TOREJÓN¹,*

¹COVACHIM-M2E Laboratory EA 3592, University of the French West Indies, Fouillole Campus, UFR SEN, Department of Chemistry, Pointe-à-Pitre Cedex, France.

²CHROME laboratory, EA7352, University of Nîmes, F- 30021 Nîmes Cedex 1, France

³Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70297-400, Brazil.

⁴Pontificia Universidad Javeriana sede Cali, Departamento de Ciencias Naturales y Matemáticas, Calle 18 No. 118-250 Cali, Colombia.

⁵Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, 24020-141 Niterói, RJ, Brazil.

⁶Laboratory of vector control research, Institute Pasteur of Guadeloupe – Lieu-dit Morne Jolivière, 97139 Les Abymes, Guadeloupe, France

⁷Departament de Química Analítica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.

*Corresponding author.COVAChIM-M2E Laboratory EA 3592, University of the French West Indies, Fouillole Campus, UFR SEN, Department of Chemistry, Pointe-à-Pitre Cedex, France. E-mail address: gerardo.cebrian-torrejon@univ-antilles.fr (G. Cebrian-Torrejon).

Abstract– The larval caterpillar _Pseudosphinx tetrio_ L. is a species that feeds specifically on plants belonging to the family Apocynaceae. The genus _Allamanda_ includes many shrubs or flowering trees which are grown throughout the tropical regions and are well known due their several biological properties. This work explores the interaction between the caterpillar and this plant using several analytical techniques such as thin layer chromatography, nuclear magnetic resonance spectroscopy, high performance liquid chromatography coupled with mass spectrometry and cyclic voltammetry. Further, a multivariate data analysis was performed in attempt to obtain better insights regard the samples.

The results point out the similar profile between the health and herbivore _Allamanda cathartica_ L.’s leaves and the caterpillars’ faeces. The similar analytical profile between the leaves of _A. cathartica_ and the faeces of _P. tetrio_, as well as the difference with the caterpillar’s bodies suggest a selective excretion of compounds by the caterpillar. These compounds found selectively in the faeces (and not in the body) can explain that _P. tetrio_ can feed this toxic Apocynaceae species.
Key Words – *Pseudosphinx tetrio*, Apocynaceae, *Allamanda cathartica*, Chemical ecology, Phytochemistry, Electrochemical ecology, PCA analysis.
INTRODUCTION

Commonly known as “glutton caterpillar”, *Pseudosphinx tetrio* L. (Linnaeus 1771) is a velvety black caterpillar (Lepidopterae) about 12 cm long, with bright yellow stripes along the body and a bright orange-red head (Haxaire and Herbin 2000; Haxaire and Rasplus 1986). *P. tetrio* has the ability to eat up to twice its weight in food during a day this fact explains the common name of “glutton caterpillar”. According to aposematic hypothesis, it becomes toxic for its predators upon to absorb toxic compounds present in the latex of some plants (Warrell 2009). The larva of *P. tetrio* feeds preferentially on the leaves of plants as *Allamanda cathartica* L. (Apocynaceae), which are rich in toxic latex (Rajamanickam and Sudha 2013).

Allamanda cathartica L. (Petricevich and Abarca-Vargas 2019), also known as yellow *Allamanda* in the West Indies, is a widely grown shrub and frequently recognized as golden trumpet vine (Khanam et al. 2018). It is a native plant from Brazil (Pessoa et al. 2006) used in traditional medicine to treat jaundice (Nayak et al. 2006), presenting several biological activities as antioxidant (Hammeed et al. 2014), antimicrobial (Sharmin et al. 2015), antifungal (Souza et al. 2020), antimalarial (Conrad et al. 2013), anti-inflammatory (Boeing et al. 2018) and anticancer (Wong et al. 2011).

In the context of tropical chemical ecology, many different plant-herbivore interactions are highly specialized (Forister et al. 2015). In a self-defence process, plants can biosynthesize secondary metabolites to reduce herbivory. In turn, herbivores can react to these compounds in attempt to metabolize, excrete selectively or to use them for own defence (upon incorporation into the body) (Eisner and Meinwald 1995; Opitz and Muller 2009). Herein, we will explore the chemical interaction between *P. tetrio* and *A. cathartica* by several analytical methods, including an innovative electrochemical approach (named electrochemical ecology) and multivariate analysis in order to obtain better insights regard their specific interaction.

MATERIAL AND METHODS

Sample’s preparation. Healthy and herbivored leaves of *A. cathartica*, as well as *P. tetrio* caterpillars have been collected in Guadeloupe Island (French West Indies), specifically in “Le Gosier” city (16°13'00.5"N 61°31'09.9"W). Leaves were cleaned (with distilled water) and lyophilized. The caterpillars have been kept in a cage for 24 hours, to collect their faeces, and starved for 48 hours to use their corpse in the evaluation of biomolecules incorporation to the caterpillar bodies excluding the digestive material. Finally, the dried leaves, the caterpillars’ bodies and faeces were lyophilized and powdered. Afterwards, 50 g of each sample was extracted by maceration extraction for 48 hours. The maceration was carried out in a ternary mixture of dichloromethane/methanol/distilled water (Yu Lin et al 2007; Mushtaq et al 2014) (1:1:1 v/v, 200 mL). Upon the complete extraction, the solutions were filtered and extracted by liquid-liquid extraction and two phases were obtained for each manipulation (Table 1). Finally, these phases have been dried by rotary evaporation.
Table 1 Phases obtained for each manipulation after liquid-liquid extractions

	Organic Phase	Aqueous Phase
Healthy *A. cathartica* leaves	1.2	2.2
Herbivored *A. cathartica* leaves	1.3	2.3
Caterpillars	1.4	2.4
Caterpillar’s faeces	1.5	2.5

Analysis and quantification. Analysis were performed using several techniques such as thin layer chromatography (TLC), nuclear magnetic resonance spectroscopy (1H-NMR), high performance liquid chromatography coupled with mass spectrometry (HPLC-MS) and cyclic voltammetry (CV).

Thin layer chromatography (TLC). The thin layer chromatography of all the organic phases were carried out with a gradient of two different mixtures of elution solvents composed by CH₂Cl₂/MeOH or n-hexane/AcOEt with a volume of 10 mL in different proportions (80/20, 50/50, 90/10, 95/5, 99/1, 50/50). Further TLCs of all aqueous phases were made on cellulose TLC with a mixture of H₂O/MeOH elution solvent in different proportions (50/50 – 100) as mobile phase.

Nuclear magnetic resonance spectroscopy (1H-NMR). 15 mg of each extract was solubilized in 650 µL of DMSO and transferred to NMR tubes. 1D 1H nuclear magnetic resonance spectra were recorded with a BRUKER Avance 300 MHz spectrometer equipped with a BBO probe and automatic tube changer. Chemical shifts (δ) are expressed in ppm relative to tetramethylsilane (TMS) taken as external reference and internal calibration is performed on the solvent signal. All spectra were processed using Topspin 2.1 software. The classical 1D proton with a 90° pulse width was performed. The spectra were acquired using 256 scans and 2 dummy scans of 32 K data points with a spectral width of 5411.255 Hz.

High performance liquid chromatography coupled with mass spectrometry (HPLC-MS). Triplicates of each extract were made and dissolved in 750 µL of methanol (LCMS grade) and 750 µL of ultra-pure water (Elga Purelab Classic). The mixtures were sonicated in the ultrasonic bath then filtered on 13 mm and 0.45 µm PTFE filters and placed in amber vials. The analysis is performed on a Waters (Milford, MA, USA) Alliance e2695 liquid chromatographic system, equipped with a Waters 2996 photodiode array detector (PDA), coupled with the orthogonal quadrupole mass spectrometer (Micromass ZQ, Manchester, UK). The systems were controlled by MassLynx v.4.1 software (Micromass, Manchester, UK). The mass is equipped with an electrospray ionization ESI (Waters) source, the ionization is performed in positive mode. A double detection is carried out by mass spectrometry in ESI (range 71 to 1200 Da) and by a PDA diode array detector (UV detection between 210–400 nm). The analytical column was XTERRA MS C18 column (2.1 x 100 mm, 3.5 µm) (Waters). The elution is performed with a mobile phase flow rate of 0.2 mL/min consisting of a mixture of ultrapure water containing 0.1% formic acid (A) and methanol containing 0.1% formic acid (B). The program starts at t = 0 min ratio (A: B) 95:5, at t = 2 min (95:5), at t = 5 min (90:10), at t = 15 min (60:40), at t = 40 min (50:50), at t = 55 min (45:55), at t = 60 min (0:100), at t = 65 min (0:100), at t = 75 min (95:5) and at t = 80 min (95:5). The injection volume was 10 µl and detection was at 280 nm and at 320 nm. The ESI-MS parameters were as follows: desolvation gas (N₂) flow rate: 650 L/h; cone gas flow rate: 40 L/h; drying gas temperature: 450 °C; source temperature: 120 °C; capillary voltage: 3 kV; cone voltage: 85 V; RF lens voltage: 0.1 V.
Cyclic Voltammetry (CV). Cyclic voltammograms were obtained at 298±1 K in a conventional three-electrode cell using a platinum wire auxiliary electrode and an Ag/AgCl (3M NaCl) reference electrode. Measurements were carried out with CH In660 equipment using 0.10 M potassium phosphate buffer at pH 7.0 as a supporting electrolyte. The working electrode was prepared by evaporating 50 μL of an ethanol (EtOH) suspension of extract of interest, ground leaves or insect samples under air on a glassy carbon electrode (GCE, BAS MF 2012, geometrical area 0.071 cm²). In order to mimic the natural environment, no degasification of the electrolyte was performed.

Principal Component Analysis (PCA). The raw data from HPLC-MS was exported as netCDF files, using DataBridge software (Waters, USA), and pre-processed using XCMS Online (Mahieu et al 2016; Tautenhahn et al 2012) for feature detection, retention time correction and alignment of metabolites detected on HPLC-MS analysis. The dataset was created with 12 samples from each organic and aqueous extract fraction (3 samples from each manipulation (see Table 1)). Peak detection was performed using cent Wave peak detection (Δm/z = 10 ppm; minimum peak width, 5 s; maximum peak width, 20 s) and mzwid = 0.015, minfrac = 0.5, bw = 5 were used for retention time alignment. The processed data (csv file) was further exported to MetaboAnalyst 4.0 (Chong et al 2018). All data variables were scaled by pareto method prior to PCA. PCA is an unsupervised method commonly used to identify patterns between multivariate samples (Wold et al 1987; Jolliffe, 2005) and was recently employed on chemical variability of Allamanda cathartica extracts (Rodrigues et al 2020).

RESULTS AND DISCUSSION

TLC analysis. First, a TLC study has been conducted. The different results of this approach were exposed in the Table 2. In our first hypothesis (Hyp. 1), we propose that the caterpillars ingest and store certain metabolites (for example the metabolite with a Rf of 0.16 on TLC 3 (orange color)). The second hypothesis proposed (Hyp. 2), also illustrated in Table 2, refers to a selective excretion of an unidentified molecule by the caterpillars (for example the metabolite with a Rf of 0.95 on TLCs 2 and 3 (blue color)). Finally, the third hypothesis (Hyp. 3), is related with the response of the healthy plant to the herbivory (for example the metabolite with a Rf of 0.28 on TLC 1 (pink color), as this metabolite is present in the healthy leaves and not in the herbivored ones. The opposite case can be observed with the metabolite with a Rf of 0.18 on TLC 4 (green color) that is only seen in healthy leaves and thus could be considered as a metabolic marker for herbivory.
Table 2 Organic phases obtained with TLCs results. (A) healthy *A. cathartica* leaves, (B) herbivored *A. cathartica* leaves, (C) caterpillar’s bodies and (D) caterpillars’s faces. Solvent percentages are presented as highest polarity in solution (MeOH and EtOAc)*

Elution solvent	%*	TLC	Rf	A (1.2)	B (1.3)	C (1.4)	D (1.5)
CH₂Cl₂	100	1	0.16	0.28	Hyp. 1,3		Hyp. 1
			0.58				
	5	2	0.05	0.19			
			0.22	0.60			
CH₂Cl₂ / MeOH	10	3	0.16	0.20	Hyp. 1	Hyp. 1	Hyp. 1
			0.57	0.90			Hyp. 2
	1	4	0.18	0.30	Hyp. 1,3		Hyp. 1
			0.79	0.93			Hyp. 2
CH₂Cl₂	100	5	0.08	0.17			Hyp. 2
			0.37	0.62			
C₆H₁₄	100	6	0.03	0.37	Hyp. 1	Hyp. 1	Hyp. 1
			0.17	0.30			
	20	7	0.34	0.64	Hyp. 1	Hyp. 1	Hyp. 1
			0.94	0.97			Hyp. 2
C₆H₁₄ / C₄H₈O₂	50	8	0.48	0.95		Hyp. 1,3	Hyp. 1
			0.95	0.97			
	80	9	0.50	0.91			
			0.94	0.91			
C₄H₂O₂	100	10	0.19	0.19			
			0.89	0.89			

* Similarly, metabolite between two extracts or more are described in colors: orange: A, B and C; blue: A, B and D; pink: A and C; yellow: B and D. Hypothesis that can be illustrated by each compound are cited.

¹H NMR. The ¹H NMR data were obtained only from plants and caterpillar organic extracts, using DMSO-d₆ as solvent. Solvents signals from deuterated DMSO and residual water at 2.5 and 3.3 ppm, respectively, were removed (Fig. 1). The analysis indicates minor differences between spectra of health and herbivored *Allamanda* leaves. This result is contradictory with regards our Hypothesis. 3 (were a reaction of the plant to aggression was attended).
The spectra derived from caterpillars’ bodies and faeces present big differences between the samples, and the chemical profile of healthy *Allamanda* and caterpillar’s faeces are very similar. This result confirms our Hypothesis 2, showing the similarity between the chemical profile of *A. cathartica* leaves and caterpillars’ faeces when compared to the caterpillars’ bodies. These similarities and dissimilarities confirm our hypothesis (Hyp. 3) of the selective excretion of toxic compounds.

Fig. 1 \(^1\)H NMR of organic extracts in DMSO-\(d_6\). (2_1) Healthy *Allamanda* leaves; (3_1) Herbivored *Allamanda* leaves; (4_1) Caterpillar’s bodies and (5_1) Caterpillar’s faeces.

HPLC-MS. In this study, the samples containing the healthy and herbivored leaves of *Allamanda cathartica*, as well the caterpillars and their faeces were investigated using chromatographic techniques (Barny *et al* 2021; Marques *et al* 2018; Prabhadevi *et al* 2012; Khanam *et al* 2018) (Fig.2). The similar profile observed on these spectra, suggests the presence of the same main compounds in the healthy (A) and herbivored (B) *A. cathartica* leaves, with similar retention times (RT) of 20.00 min and 20.50 min, respectively. A second compound can be identified in these spectra with comparable retention times (RTs: 25.52 min and 26.02 min). These results are opposed to our hypothesis 3 (as we can see in the TLCs and \(^1\)H NMR profiles). The analysis indicates a presence of this compound in the caterpillar’s faeces (D, RT: 25.73 min) but not in their body (C), confirming as well our hypothesis 2 (in agreement with the\(^1\)H NMR and TLC results). Finally, the results show that the compounds found in *P. tetroio’s* bodies (C, RT: 20.43 min and 25.66 min) are significantly different than other compounds found in the faeces (confirming as well our hypothesis 2).
Electrochemical investigation. Cyclic voltammetry studies have been employed in attempt to investigate possible interactions between different compounds and were previously used for monitoring plant defence against external stressors (Cebrian-Torrejon et al 2015; Palmeira-Mello et al 2021; Doménech-Carbó et al 2015; Rozoy et al 2013). Here, the predation of *A. cathartica* by *Pseudosphinx tetrio* has been electrochemically monitored via cyclic voltammetry (CV). We investigate the voltammetric response of films (at the surface of a glassy carbon electrode) of organic and aqueous extracts of healthy and predated leaves of the plant and samples of body and excrements of *P. tetrio* in 0.10 mol L⁻¹ phosphate solution buffer at pH 7.0. The reported methodology is ultimately based on the voltammetry of microparticles (VMP) technique (Domenech-Carbó et al 2013).

The behaviour of films on glassy carbon electrodes of healthy and predated leaves of *A. cathartica* are showed in Fig. 3. It was observed a set of three chemically irreversible oxidation processes A_1, A_2 and A_3 (0.28 V, 0.65 V and an undefined shoulder near to 1.00 V respectively). Where as A_1 and A_2 peaks decrease upon cycling until a totally passivated and stable state is attained approximately at the second cycle, an increasing of A_3 peak was observed. Thus, the variations in the ratio of peaks A_1 and A_3, can infer differences in the nature of the redox species in *A. cathartica* healthy and herbivored leaves. These oxidation processes represent a profile observed in several vegetable species and are attributed to the oxidation of polyphenolic organic compounds. In fact, the voltammogram of the predated leaves exhibits the same signals than healthy leaves, but the peak A_1, is depleted while the signal A_3 is enhanced. Finally, a reduction process approximately at -1.0 V can be observed when the potential sweep is reversed.
towards less positive potentials. Although these processes are slightly more negative for the healthy than for herbivore leaves, both correspond to the typical behaviour of the oxygen reduction in water. This result is basically opposed to our hypothesis 3 about the chemical response to the herbivory, but by this technique we can identify slight differences between healthy and herbivore leaves maybe related with polyphenols (reaction against oxidative stress) (Singh et al 2021).

![Figure 3](image)

Fig. 3 Cyclic voltammograms of films from a) healthy and b) herbivored or predated leaves of *A. cathartica* on glassy carbon electrode in contact with air-saturated 0.10 M phosphate buffer at pH 7.0. scan rate 10 mV s\(^{-1}\)

The cyclic voltammetry of films on glassy carbon electrodes of *P. tetrio*’s bodies and its excrements after predation on leaves of *P. tetrio* are presented on Fig.4. The cyclic voltammogram does not show clear oxidation process in the initial anodic scan for the body of *P. tetrio*, but revealed three oxidation processes at 0.22, 0.45 and 0.78 V, for its faeces, namely A\(_1\), A\(_2\) and A\(_3\), respectively, which are similar to those found for *A. cathartica* analysis. Once again, a typical oxygen reduction process in water was observed in cathodic region for both analysis. Further, a characteristic signal C\(_1\) appears in both samples suggesting the presence of oxidized metabolite of *P. tetrio*. This result confirms the hypothesis 2 in agreement with the other analytical approaches.
Fig. 4 Cyclic voltammograms of films from a) *Pseudosphinx tetrio*’s bodies and b) *Pseudosphinx tetrio*’s excrements after predation on leaves of *A. cathartica* on glassy carbon electrode in contact with air-saturated 0.10M phosphate buffer at pH 7.0. Potential scan rate 10 mV/s.

A comparison between the voltammograms of films from the water extracts of healthy and predated leaves of *A. cathartica* in contact with air-saturated 0.10 M phosphate buffer at pH 7.0 was performed (Fig. 5). Here, the signal A1 appears clearly recorded in the healthy leaves and is accompanied by a well-defined cathodic peak at -1.25 V (C2). This signal C2 disappears in the voltammograms of the predated leaves while the signal A1 decreases and the signal A3 at 0.78 V becomes clearly marked. This result confirms the hypothesis 3, showing a reaction of the leaves against the herbivory, the disparition of signal C2 and the apparition of signal A3 as result of the herbivory.

This voltammetry is to some extent reproduced in the aqueous extracts of *P. tetrio* and its excrements, reproduced in Fig. 6, thus suggesting the existence of common electroactive compounds.
Fig. 5 Cyclic voltammograms of films from the water extracts of a) healthy and b) predated leaves of *A. cathartica* on glassy carbon electrode in contact with air-saturated 0.10 M phosphate buffer at pH 7.0. Potential scan rate 10 mV s\(^{-1}\).

Fig. 6 Cyclic voltammograms of films from water extracts of a) *P. tetrio*’s bodies and b) its excrements after predation on leaves of *A. cathartica* on glassy carbon electrode in contact with air-saturated 0.10 M phosphate buffer at pH 7.0. Potential scan rate 10 mV s\(^{-1}\).

PCA Analysis. A total of 24 chromatograms were acquired using HPLC-EI-MS, 12 from aqueous fraction and 12 from organic fraction (3 biological replicates for each species). To identify differences in the metabolites or even in their concentration in the samples, the set of 24 samples was analyzed obtained from XCMS and used for data analysis. Two spreadsheets were obtained after data processing of HPLC-MS analysis, with 168 and 412 variables from organic and aqueous fractions, respectively (retention time m/z). In the PCA analysis, two plots were generated, namely score and loading plots. The first one shows the samples grouping, whereas the second one indicates the contribution of each variable to these samples. The PCA analysis were focused on the detection of any inherent pattern within the data. As observed in Fig.7, samples of healthy and
herbivored *Allamanda* leaves are close related, with small difference each other, when compared with the caterpillars’ bodies and faeces. Further, when all samples are compared, the predated and not predated leaves from *Allamanda* are very similar to each other, and different from the other samples. In addition, the Caterpillars’ bodies extracts present a great difference. In Fig. 8 (loadings plot) are presented the variables that influences the grouping observed.

Fig. 7 Score plot of 12 samples of organic and aqueous extracts of all manipulation, obtained from 168 (left) and 412 (right) variables, respectively. (2_1and 2_2) red circle, healthy *Allamanda* leaves; (3_1and 3_2) green circle, herbivored *Allamanda* leaves; (4_1and 4_2) blue circle, caterpillar’s bodies and (5_1and 5_2) light blue circle, caterpillar’s faeces.

Fig. 8 Score plots of 12 samples of organic and aqueous extracts of all manipulation, obtained from 168 (left) and 412 (right) variables, respectively. Each dot represents one variable (retention time m/z).

In conclusion, we investigated the plant-herbivore interaction between caterpillar *Pseudosphinx tetrio* and the flowering plant *Allamanda cathartica*. In this approach, several techniques were employed in attempt to gain better insights regarding this trophic relationship, such as TLC, ’H NMR, HPLC-MS (analyzed by a
multivariate PCA) and an innovative approach by electrochemical methods (electrochemical ecology). The results point out the similar profile between the health and herbivored *A. cathartica*’s leaves and the caterpillars’ faeces. The similar analytical profile between the leaves of *A. cathartica* and the faeces of *P. tetrio*, as well as the difference with the caterpillar’s bodies suggest a selective excretion of compounds by the caterpillar (proposed hypothesis 2). These compounds found selectively in the faeces (and not in the body) can explain that *P. tetrio* can feed this toxic Apocynaceae species.

DECLARATIONS.

Funding. The authors would like to acknowledge for financial support to the projet “AgroEcoDiv” from European Union Fund (FEDER) and “Région Guadeloupe”. We would also like the Caribaea Initiative association for two month study grant from Matignon.

Conflicts of interest/Competing interests (include appropriate disclosures). The authors declare that they have no conflict of interest.

Availability of data and material. Not applicable.

Additional declarations for articles in life science journals that report the results of studies involving humans and/or animals ethics approval. Not applicable

Consent to participate (include appropriate statements). Not applicable.

Consent for publication (include appropriate statements). Not applicable

REFERENCES

Haxaire J, Herbin D (2000) *Les Lépidoptères Sphingidae de Bolivie. Ecologie et systématique. 2ème Partie : les sous-familles des Smerinthinae et Macroglossinae pro parte (1).*

Haxaire J, Rasplus J-Y (1986) *Contribution à la connaissance des Sphingidae de Guyane Française. 1e Partie.* 91.

Warrell DA (2009) Researching nature’s venoms and poisons. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 103: 860–866. https://doi.org/10.1016/j.trstmh.2009.02.020.

Rajamanickam K, Sudha SS (2013) *In-vitro* antimicrobial activity and *In-vivo* toxicity of *Moringa oleifera and Allamanda cathartica* against multiple drug resistant clinical pathogens. *Int J Pharm Bio Sci* 4: B768-B775.

Petricevich VL, Abarca-Vargas R (2019) *Allamanda cathartica*: A Review of the Phytochemistry, Pharmacology, Toxicology, and Biotechnology. *Molecules* 24: 1238. https://doi.org/10.3390/molecules24071238.
Khanam MN, Anis M, Ahmad, S (2018) Establishment of adventitious root cultures of *Allamanda cathartica* L. for the production of iridoid glycosides and its identification using HPTLC MS. *Industrial Crops and Products* 125: 198–206. https://doi.org/10.1016/j.indcrop.2018.08.044.

Pessoa C, Costa-Lotufo LV, Levy A et al (2006) Anticancer potential of Northeast Brazilian plants. *Adv Phytomed*, 2: 197-211. https://doi.org/10.1016/S1572-557X(05)02012-X.

Nayak S, Nalabothu P, Sandiford S et al (2006) Evaluation of wound healing activity of *Allamanda cathartica* L. and *Laurus nobilis* L. extracts on rats. *BMC Complement Altern Med* 6: 12. https://doi.org/10.1186/1472-6882-6-12.

Hammeed A, Nawaz G, Gulzar T (2014) Chemical composition, antioxidant activities and protein profiling of different parts of *Allamanda cathartica*. *Nat Prod Res* 28, 2066-2071. https://doi.org/10.1080/14786419.2014.923997.

Sharmin M, Das Banya P, Paul L et al (2015) Study of microbial proliferation and the in vitro antibacterial traits of commonly available flowers in Dhaka Metropolis. *Asian Pac J Trop Dis* 5: 91–97. https://doi.org/10.1016/S2222-1808(14)60634-4.

Souza ES, Barcellos VA, Sbaraini N et al (2020) A Plumieridine-Rich Fraction From *Allamanda polyantha* Inhibits Chitinolytic Activity and Exhibits Antifungal Properties Against *Cryptococcus neoformans*. *Front Microbiol* 11:2058. https://doi.org/10.3389/fmicb.2020.02058.

Conrad OA, Dike IP, Agbara, U (2013) *In vivo* antioxidant assessment of two antimalarial plants—*Allamanda cathartica* and *Bixa Orellana*. *Asian Pac J Trop Biomed* 3: 388–394. https://doi.org/10.1016/S2221-1691(13)60082-9.

Boeing T, Souza P, Bonomini TJ et al (2018) Antioxidant and anti-inflammatory effect of plumieride in dextran sulfate sodium-induced colitis in mice. *Biomedicine & Pharmacotherapy* 99: 697–703. https://doi.org/10.1016/j.biopha.2018.01.142.

Wong SK, Lim YY, Abdullah NR et al (2011) Antiproliferative and phytochemical analyses of leaf extracts of ten Apocynaceae species. *Pharmacognosy Res.* 3: 100.

Forister ML, Novotny V, Panorska AK et al (2015) The global distribution of diet breadth in insect herbivores. *Proc Natl Acad Sci USA* 112: 442. https://doi.org/10.1073/pnas.1423042112.

Eisner T, Meinwald J (1995) National Academy of Sciences. *Chemical Ecology: The chemistry of biotic interaction*, Washington, DC: National Academy of Sciences Press.
Opitz SEW, Muller C (2009) Plant chemistry and insect sequestration. Chemoecology 19: 117. https://doi.org/10.1007/s00049-009-0018-6.

Yu Lin C, Wu H, Tjeerdema R et al (2007) Evaluation of Metabolite Extraction Strategies From Tissue Samples Using NMR Metabolomics. 3: 55-67. https://doi.org/10.1007/s11306-006-0043-1.

Mushtaq Y, Hae Choi Y, Verpoorte R et al (2014) Extraction for Metabolomics: Access to The Metabolome. Phytochem Anal 25:291–306. https://doi.org/10.1002/pca.2505.

Mahieu NG, Genenbacher JL, Patti GJ (2016) A roadmap for the XCMS family of software solutions in metabolomics. Curr Opin Chem Biol 30: 87–93. https://doi.org/10.1016/j.cbpa.2015.11.009.

Tautenhahn R, Patti GJ, Rinehart D et al (2012) XCMS online: A web-based platform to process untargeted metabolomic data. Anal Chem 84: 5035–5039. https://doi.org/10.1021/ac300698c.

Chong J, Soufman O, Li C et al (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46: W486–W494. https://doi.org/10.1093/nar/gky310.

Barny LA, Tasca JA, Sanchez HA et al (2021) Chemotaxonomic investigation of Apocynaceae for retronecine-type pyrrolizidine alkaloids using HPLC-MS/MS. Phytochem 185: 112662. https://doi.org/10.1016/j.phytochem.2021.112662.

Marques JI, Alves JSF, Torres-Rêgo M et al (2018) Phytochemical Analysis by HPLC–HRESI-MS and Anti-Inflammatory Activity of Tabernaemontana catharinensis. Int J Mol Sci 19: 636. https://doi.org/10.3390/ijms19020636.

Prabhadevi V, Sahaya SS, Johnson M et al (2012) Phytochemical studies on Allamanda cathartica L. using GC–MS. Asian Pac J Trop Biomed 2: S550–S554. https://doi.org/10.1016/S2221-1691(12)60272-X.

Khanam MN, Anis M, Ahmad S (2018) Establishment of adventitious root cultures of Allamanda cathartica L. for the production of iridoid glycosides and its identification using HPTLC MS. Ind Crop Prod 125: 198–206. https://doi.org/10.1016/j.indcrop.2018.08.044.

Cebrian-Torrejon G, Kablan L, Ferreira ME et al (2015) Harvesting canthinones: identification of the optimal seasonal point of harvest of Zanthoxylum chiloperone leaves as a source of 5-methoxycanthin-6-one. Nat Prod Res 29: 2054–2058, https://doi.org/10.1080/14786419.2015.1022774.
Palmeira-Mello MV, Souza JL, Pérez AF et al (2021) Insights of Tris(2-pyridylmethyl)amine as anti-tumor agent for osteosarcoma: experimental and in silico studies. J Mol Struc 1228: 129773. https://doi.org/10.1016/j.molstruc.2020.129773.

Doménech-Carbó A, Cebrián-Torrejón G, Lopes-Souto A et al (2015) Electrochemical ecology: VIMP monitoring of plant defense against external stressors. RSC Adv 5: 61006–61011. https://doi.org/10.1039/C5RA11336A.

Rozoy E, Araya-Farias M, Simard S et al (2013) Redox properties of catechins and enriched green tea extracts effectively preserve L-5-methyltetrahydrofolate: Assessment using cyclic voltammetry analysis. Food Chem 138: 1982–1991. https://doi.org/10.1016/j.foodchem.2012.09.135.

Domenech-Carbó A, Labuda J, Scholz F (2013) Electroanalytical chemistry for the analysis of solids: Characterization and classification (IUPAC Technical Report). Pure Appl Chem 85: 609–631. https://doi.org/10.1515/ci.2013.35.3.22c.

Singh S, Kaur I, Kariyat R (2021) The Multifunctional Roles of Polyphenols in Plant-Herbivore Interactions. Int J Mol Sci 22: 1442. https://doi.org/10.3390/ijms22031442.

Wold S, Esbensen K, Geladi P (1987) Principal Componet Analysis. ChemomIntell Lab Syst 2: 37–52. https://doi.org/10.1016/0169-7439(87)80084-9.

Jolliffe I (2005) Principal Component Analysis. Encycl Stat Behav Sci (American Cancer Society). https://doi.org/10.1002/0470013192.bsa501.

Rodrigues DW, Muller AFF, Bonomini TJ (2020) Chemical variability of Allamanda cathartica L. flowers assessed by multivariate data analysis. Quimica Nova, 43: 201. https://doi.org/10.21577/0100-4042.20170467.