CDF SEARCHES FOR NEW PHENOMENA

Dave Toback

University of Chicago
for the CDF Collaboration

Abstract

We present results of recent searches for new physics using the CDF detector at the Fermilab Tevatron. Presented are searches for Higgs → γγ, as well as more general searches in γγ + X where X is E_T, jets, charged leptons, b-quarks or extra photons. The CDF eeγγE_T candidate event is discussed along with estimates of the expected rates in the Standard Model. Other searches for SUSY, Higgs and Technicolor look for particles which decay to vector bosons and b-quarks.
1 Introduction

Many possible extensions to the Standard Model include final state signatures involving vector bosons. For example, events which can decay to final state photons have recently received a great deal of attention. We present resent results from data collected by the CDF detector [1] during the 1992-1995 collider run of the Fermilab Tevatron.

We begin with a search for new heavy particles which decay into two photons e.g. Higgs $\rightarrow \gamma\gamma$ [2]. Other searches in two photon events look for missing E_T, jets, charged leptons, b-quarks and/or extra photons and provide sensitivity to Supersymmetry and other theoretical models [3, 4, 5]. The CDF $ee\gamma\gamma E_T$ candidate event [6] turns up naturally in these searches and we present the results of a detailed study of the event. The expected number of events with the $ee\gamma\gamma E_T$ signature from Standard Model production are summarized. A number of models which predict $ee\gamma\gamma E_T$ events also predict events in the inclusive $\gamma\gamma + E_T$ and $\gamma\gamma+$jets data and limits are presented on these models. We conclude with searches for Supersymmetry, associated Higgs production and Technicolor by looking for new particles which decay to final states which contain a vector boson (γ, W or Z^0) and a b-quark [2, 4, 7, 8].

2 High Mass $X \rightarrow \gamma\gamma$ Search

Many models of new physics predict events with two photons in the final state. We begin with a search for new heavy particles which decay via $X \rightarrow \gamma\gamma$. The invariant mass of isolated diphoton candidates with $E_T > 22$ GeV and $|\eta| < 1.0$ in 100± 7 pb$^{-1}$ of data is shown in Figure 1 along with the Standard Model predictions. There is no evidence for an excess or resonance at high mass. Using a model of direct Higgs production in which the Higgs decays via $H \rightarrow \gamma\gamma$ [2], an experimental limit is set as a function of the Higgs mass and is shown in Figure 2. Limits on associated Higgs production from CDF are in progress; limits from DØ and OPAL are discussed in Refs. [9, 10].

3 $\gamma\gamma + X$

In the last couple of years, many models of new physics predict events with two high-P_T isolated photons produced in association with other particles in the final state. CDF has recently submitted a paper which describes a set of searches using a sample of two
isolated photons with $E_T^\gamma > 12$ GeV and $|\eta| < 1.0$. Each event is searched for anomalous production of $\gamma\gamma + X$ where X is E_T (from neutrinos or other particles such as Supersymmetric LSP’s), jets, electrons, muons and taus, b-tagged jets, or extra photons.

3.1 $\gamma\gamma + E_T$

The $\gamma\gamma + E_T$ search is optimized to look for new heavy particles produced in Gauge-Mediated Supersymmetry with a light gravitino (\tilde{G}). In many of these models the sparticles decay into the lightest neutralino, N_1, which in turn decays via $N_1 \rightarrow \gamma\tilde{G}$ producing two photons and E_T in every event. CDF has searched an integrated luminosity of 85 ± 7 pb$^{-1}$ for $\gamma\gamma + E_T$ events using two different photon E_T thresholds: $E_T^\gamma > 12$ GeV and $E_T^\gamma > 25$ GeV. The results are shown in Figure 3. With a threshold of $E_T^\gamma > 12$ GeV, $E_T > 35$ GeV, 0.5 ± 0.1 events are expected with 1 event observed. For a threshold of
Figure 3: The E_T spectrum for diphoton events with $E_T > 12$ GeV and $E_T > 25$ GeV in the data from the CDF detector. The boxes indicate the range of the values of the E_T distribution predicted from detector resolution. The one event on the tail is the $ee\gamma\gamma E_T$ candidate event.

Figure 4: The cross-section upper limits versus the mass of the C_1 for a Gauge-Mediated model with a light gravitino in the MSSM and taking into account the one-loop renormalization group effects \[3\]. The C_1 is excluded for all masses with $M_{C_1} < 120$ GeV.

$E_T > 25$ GeV and $E_T > 25$ GeV, 0.5 ± 0.1 events are expected with 2 events observed. The observations are consistent with background expectations with one possible exception on the tail of the distribution of Figure 3. This event is the $ee\gamma\gamma E_T$ candidate event (see Figure 3) and will be discussed later.

Limits have been set on a number of Supersymmetric models with a light gravitino by other collaborations \[11, 12\]. The CDF limit, interpreted in a Gauge-Mediated scenario in the MSSM with a light gravitino and using the full one-loop normalization group corrections (See Ref. \[3\]e) is shown in Figure 4. The lowest value of the lightest chargino mass, M_{C_1}, that is excluded at 95% C.L. is $M_{C_1} < 120$ GeV. Similarly, $M_{N_1} < 65$ GeV is excluded at the 95% C.L.
3.2 $\gamma\gamma$ + Jets

The $\gamma\gamma$ data has also been searched for additional jet production. Jets which have $E_T > 10$ GeV and have $|\eta| < 2.0$ are counted and compared to expectations by using the low N_{Jet} results to estimate the production for large N_{Jet}. In the data with two photons with $E_T > 12$ GeV, 2 events are observed with ≥ 4 jets with 1.6 ± 0.4 expected. Similarly, when both photons are required to have $E_T > 25$ GeV, a total of 1.7 ± 1.5 are expected with ≥ 3 jets with 0 events observed. These results are shown in Figure 5 and are consistent with background expectations.

3.3 Other $\gamma\gamma + X$ Results

The $\gamma\gamma$ data is also searched for the presence of associated lepton, b-quark and/or additional photon production. The results are presented in Table 1. A total of 2 events with b-tags are found, consistent with background expectations. No events with a third
Table 1: Number of observed and expected $\gamma\gamma$ events with additional objects in 85 pb$^{-1}$ from CDF.

Signature (Object)	Obs.	Expected		
$E_T > 35$ GeV, $	\Delta\phi_{E_T-jet}	> 10^\circ$	1	0.5 ± 0.1
$N_{jet} \geq 4$, $E_{jet}^{jet} > 10$ GeV, $	\eta^{jet}	< 2.0$	2	1.6 ± 0.4
Central e or μ, $E_T^{e,\mu} > 25$ GeV	3	0.3 ± 0.1		
Central τ, $E_T > 25$ GeV	1	0.2 ± 0.1		
b-tag, $E_T^b > 25$ GeV	2	1.3 ± 0.7		
Central γ, $E_T^{3\gamma} > 25$ GeV	0	0.1 ± 0.1		

Object	Obs.	Exp.		
$E_T > 25$ GeV, $	\Delta\phi_{E_T-jet}	> 10^\circ$	2	0.5 ± 0.1
$N_{jet} \geq 3$, $E_{jet}^{jet} > 10$ GeV, $	\eta^{jet}	< 2.0$	0	1.7 ± 1.5
Central e or μ, $E_T^{e,\mu} > 25$ GeV	1	0.1 ± 0.1		
Central τ, $E_T > 25$ GeV	0	0.03 ± 0.03		
b-tag, $E_T^b > 25$ GeV	0	0.1 ± 0.1		
Central γ, $E_T^{3\gamma} > 25$ GeV	0	0.01 ± 0.01		

4 The CDF $ee\gamma\gamma E_T$ Candidate Event

The CDF $ee\gamma\gamma E_T$ candidate event [6] (see Figure 6) is an unusual event. It has two photons which are very energetic ($E_T = 32$ and 36 GeV respectively), large E_T ($E_T = 55 \pm 7$ GeV), a high-E_T central electron (36 GeV) and an electromagnetic cluster in the plug calorimeter (63 GeV) which easily passes the standard electron selection criteria used for Z^0 identification. The total P_T of the 4-cluster system is 48 ± 2 GeV/c, opposite to the E_T and in good agreement with the measured magnitude, implying the imbalance is intrinsic to the 4-cluster system. The invariant mass of the electron and the
electromagnetic cluster in the plug calorimeter is $163 \pm 3 \text{ GeV}/c^2$, far from the Z^0 mass.

Although the electromagnetic cluster in the plug calorimeter passes all of the standard electron selection criteria, there is reason to believe it is not an electron. CDF uses three tracking chambers to determine the charged particle trajectory. The trajectory only passes through the inner layers of the Central Tracking Chamber, so the efficiency to see a track is ≈ 0. In addition, there is too much activity from the underlying event to see individual hits which might indicate a track. The results from the vertex finding chamber (VTX) are completely consistent with the single electron hypothesis. However, these results are not as precise as the silicon vertex detector (SVX) which shows no clear track pointing directly at the cluster. There is, however, a track 26 mrad away in ϕ. While this electron may have passed through a bad region of the detector, there are no other such events in a control sample of electrons (see Figure 7) from $Z^0 \rightarrow e^+e^-$ events. The probability of an electron to have a ϕ mismatch this large is estimated to be less than 0.3% at 95% C.L.

The interpretation of the cluster as coming from a photon, the 1-prong hadronic decay of a τ, or a jet, while possible, are unlikely in that this would be an unusual example of any of them [3]. The photon interpretation is unlikely as it requires the tracks in the SVX and VTX to be completely unrelated. The probabilities of this have been estimated to be at the few percent level. Another possibility is that this is the 1-prong hadronic decay of a τ, e.g., $\tau \rightarrow \pi^+\pi^0\nu_{\tau}$. However, more than 95% of τ's leave a greater percentage of their energy in hadronic calorimeter than is observed. The probability that a generic jet would fake the electron signature in the plug calorimeter is estimated to be 2×10^{-3} / jet. The conclusion is that there is not enough information to establish the origin of the cluster.

Figure 7: The $\Delta \phi$ between the measured electron position from the calorimeter and the ϕ from the SVX tracker for electrons from a $Z^0 \rightarrow e^+e^-$ control sample. The two peaks correspond to the bending of positively and negatively charged electrons in the magnetic field.

$Z^0 \rightarrow e^+e^-$ events. The probability of an electron to have a ϕ mismatch this large is estimated to be less than 0.3% at 95% C.L.
4.1 How many $ee\gamma\gamma E_T$ events expected?

The Standard Model rates for producing a signature of two photons, two electromagnetic clusters (one central) passing the electron requirements and E_T, all with $E_T > 25$ GeV, and $M_{ee} > 110$ GeV/c2 (above the Z^0 boson) \cite{13} has been estimated for $WW\gamma\gamma$ and $t\bar{t}$, as well as sources which include additional cosmic ray interactions, jets which fake electrons and/or photons, and overlapping events.

The primary estimate allows sources from both real electrons and fakes to contribute. The number of events is dominated by $WW\gamma\gamma$ production which should produce $(8 \pm 8) \times 10^{-7}$ events. The next highest producer is $t\bar{t}$ and yields $(3 \pm 3) \times 10^{-7}$ events. Fakes contribute $(3 \pm 3) \times 10^{-7}$ events. Two overlapping events (including cosmic ray contributions) contribute $(8 \pm 8) \times 10^{-9}$ events. Summing all sources yields $(1 \pm 1) \times 10^{-6}$ events. Since the plug cluster may not be due to an electron, a separate estimate is made by including only sources where the plug cluster is due to a jet faking an electron. The rate is reduced because the dominant sources are no longer allowed to contribute and the dominant source becomes $e\gamma\gamma E_T + j$ where the jet fakes the plug electron. In this case, the total rate is estimated to be $(6 \pm 6) \times 10^{-8}$ events.

5 Interpreting the Event

There has been a great deal of speculation about the $ee\gamma\gamma E_T$ candidate event. While \textit{a priori} it’s unlikely to be $WW\gamma\gamma$ production, it could be an example of ‘anomalous’ $WW\gamma\gamma$ production. This hypothesis allows for a quantitative estimate of anomalous $WW\gamma\gamma$ by looking at the hadronic decays of $WW\gamma\gamma$. Given 1 $\ell\ell\gamma\gamma E_T$ candidate event and using the ratio of acceptances and branching ratios, CDF predicts a total of 30 times as many $\gamma\gamma jjj$ events to be seen in the data with two photons with $E_T > 25$ GeV. From Figure \ref{fig:5} no such $\gamma\gamma jjj$ events are seen in the data. Anomalous $WW\gamma\gamma$ is excluded at the 95% C.L. as the source of the $ee\gamma\gamma E_T$ candidate event.

Most new models which predict $ee\gamma\gamma E_T$ events also predict $\gamma\gamma + E_T$. Currently a number of limits have already been for these models and there is no experimental evidence which furthers the understanding of the event.
Figure 8: The missing E_T in $\gamma+b$ events, and the number of jets produced in $\gamma+b+E_T$ events from CDF. The dashed line is the background prediction, the points are the data, and the dotted line is the prediction from the light \tilde{t} model. The N_{Jet} spectrum is made by requiring $E_T > 20$ GeV. The SUSY model is normalized by a factor of 100 times the expected rate in the E_T plot and a factor of 10 in the N_{Jet} plot.

6 Searches in $\gamma b + X$

6.1 SUSY Models: light \tilde{t}

Motivated in part by the $ee\gamma E_T$ candidate event, Ambrosanio et al. have predicted a neutralino LSP model, $N_2 \rightarrow \gamma N_1$ [4] with a light \tilde{t}. In this case, a chargino would decay via $C \rightarrow b\tilde{t} \rightarrow b(cN_1)$ and CN_2 production would have the final state signature $\gamma b c E_T$. At the Tevatron, the dominant production mechanism is from squark and gluino production which decay to CN_2. CDF has studied $\gamma+b$ production in 85 ± 7 pb$^{-1}$ of data with isolated photons with $E_T > 25$ GeV and $|\eta| < 1.0$, and a b-tagged jet with $E_T > 30$ GeV, and $|\eta| < 2.0$. A total of 1175 events are observed with 1000 ± 200 events expected, dominated by multijets with fake photons. The E_T distribution is shown in Figure 9 with two events passing a cut of $E_T > 40$ GeV. As a second search, the N_{Jet} distribution in the $\gamma+b+E_T$ events is studied. The N_{Jet} distribution for events with $E_T > 20$ GeV is shown in Figure 9. Since there is no excess, limits are set and shown in Figure 9.
Figure 10: The $M(b,\text{jet})$ (top) and $M(\gamma,b,\text{jet}) - M(b,\text{jet})$ (bottom) for events with a photon, one b-tagged jet and second jet. The data are the points with error bars; the solid histogram is the background estimate (normalized to the data); the dashed histogram is a Monte Carlo simulation of a point in Technicolor parameter space, scaled up by a factor of 4.

Figure 11: The 95% C.L. excluded region in the $\omega_T - \pi_T$ mass plane. The dashed lines indicate the thresholds for decay modes that are assumed to be zero in the model.

6.2 Technicolor: ω_T

In new models of Technicolor [7], there exists a new particle, ω_T, which for some region of parameter space decays predominantly via $\omega_T \rightarrow \gamma \pi_T \rightarrow \gamma b\bar{b}$. CDF has searched for such a decay using the same $\gamma + b$ datasets as before. In addition to the isolated photon with $E_T > 25$ GeV and $|\eta| < 1.0$, two jets are required with $E_T > 30$ GeV and $|\eta| < 2.0$, one of which is required to be b-tagged. There are 200 events in the data sample with 130 ± 40 events expected, dominated by fake photon backgrounds. Since the masses are fully reconstructed, peaks are expected in the $M(b,\text{jet})$ and $M(\gamma,b,\text{jet}) - M(b,\text{jet})$ distributions. The data as well as background expectations are shown in Figure 10. There is no evidence of new particle production. Limits are set on production assuming $\text{Br}(\omega_T \rightarrow \gamma b\bar{b}) = 100\%$ with the results shown in Figure 11.
Figure 12: The invariant mass of the dijet and W+dijet mass systems for the W+2 jet sample with a b-tag.

Figure 13: The 95% C.L. excluded region in the M_{π_T} vs. M_{ρ_T} mass plane (dark shaded region). The lines represent the contour of constant total production cross section.

7 WX and ZX production

7.1 Technicolor: ρ_T

The ω_T is not the only Technicolor particle recently searched for at the Tevatron. Recent results from a CDF search in 109 ± 7 pb$^{-1}$ of data look for the production and decay of the ρ_T. The ρ_T can come in charged and neutral states and decay via $\rho_T^0 \rightarrow W \pi^+_T \rightarrow \ell v b \bar{c}$ and $\rho_T^+ \rightarrow W \pi^+_T \rightarrow \ell v b \bar{c}$ \cite{8}. The search requires a high-p_T, charged lepton (e or μ), missing transverse energy, and two jets, one of which is required to pass b-tagging requirements. The e or μ is required to be isolated, have $p_T > 20$ GeV and have $|\eta| < 1.0$. The missing transverse energy is required to be $E_T > 20$ GeV. The event is required to have two and only two jets with $E_T > 15$ GeV and $|\eta| < 2.0$. A total of 42 events are observed in the data with an expectation of 32 ± 4 events. The dijet and W+dijet masses\footnote{The W+Dijet mass is made by constraining the ℓE_T system to have a mass consistent with that of a W boson.} are shown in Figure 12. While a signal would show up as a bump in both distributions, there is no evidence for a bump in either. Limits on the production of the ρ_T are shown in Figure 13.
7.2 Associated Higgs → $b\bar{b}$

Both CDF and DØ have used the $\ell \nu b\bar{b}$ decay channel to search for and set limits on associated Higgs production (VH where V is a W or a Z^0) with $H \rightarrow b\bar{b}$ [2]. These results [14] are displayed along with results using the hadronic decays of the W boson from CDF and the $Z^0 \rightarrow \nu\bar{\nu}$ results from DØ [15] in Figure 14.

8 Conclusions

The CDF collaboration continues to search for new phenomena at the Fermilab Tevatron and has set limits on a number of Supersymmetric, Technicolor and Higgs models. The CDF $ee\gamma\gamma E_T$ candidate event has now been studied systematically. However, one of the electron candidates has an ambiguous interpretation and the origin of the event remains a mystery. While many searches for hints of its origin are complete (for some interpretations), many are still underway. With the Run II upgrades providing better acceptance and many times the data the future is very promising.

9 Acknowledgments

The author would like to thank Henry Frisch, Ray Culbertson, Peter Wilson, Sarah Eno, John Hobbs, John Womersley, Bryan Laurer, Takanobu Handa, Juan Valls, Leslie Groer, Stephen Mrenna, Dave Hedin, Chris Kolda, Gordy Kane and Jianming Qian for their work on the analyses presented.
References

[1] F. Abe, et al., (CDF), Nucl. Instrum. Meth. 271A.

[2] A. Stange, W. Marciano, and S. Willemenbrock, Phys. Rev. D 49, 1354 (1994) and references therein.

[3] a) P. Fayet, Phys Rep 105 21 (1984); b) M. Dine, A. Nelson, Y. Nir and Y. Shirman, Phys. Rev. D 53, 2658 (1996); c) S. Dimopoulos, M. Dine, S. Raby and S. Thomas, Phys. Rev. Lett. 76, 3494 (1996); d) S. Dimopoulos, S. Thomas and J. Wells, Phys. Rev. D 54, 3283 (1996); e) K. Babu, C. Kolda and F. Wilczek, Phys. Rev. Lett. 77, 3070 (1996); f) J. Lopez and D. Nanopoulos, Mod. Phys. Lett. A10, 2473 (1996); g) S. Ambrosanio, G. Kane, G. Kribs, S. Martin and S. Mrenna, Phys. Rev. D 54, 5395 (1996).

[4] a) H. Haber, G. Kane and M. Quiros, Phys Letters B 160, 297 (1985); b) S. Ambrosanio, G. Kane, G. Kribs, S. Martin and S. Mrenna, Phys. Rev. Lett. 76, 3498 (1996); c) S. Ambrosanio, G. Kane, G. Kribs, S. Martin and S. Mrenna, Phys. Rev. D 55, 1372 (1997).

[5] See for example a) G. Bhattacharyya and R. Mohapatra, Phys. Rev. D 54, 4204 (1996); b) J. Rosner, Phys. Rev. D 55, 3143 (1997); c) K. Lane, Phys Letters B 357, 624 (1995).

[6] F. Abe et al., hep-ex/9801019. Submitted to Physics Review Letters.

[7] E. Eichten, K. Lane and J. Womersley, Phys. Lett. B 405, 305 (1997)

[8] E. Eichten and K. Lane hep-ph/9609297 and references therein.

[9] B. Abbott et al., FERMILAB-CONF-97-325-E, Oct 1997.

[10] K. Ackerstaff et al., Eur. Phys. J. C 1, 31 (1998).

[11] S. Abachi et al., Phys. Rev. Lett. 78, 2070 (1997) and B. Abbott et al., Phys. Rev. Lett. 80, 442 (1998)

[12] ALEPH Collaboration, Phys. Lett. B 420 127 (1998), DELPHI Collaboration, Eur. Phys. J. C 1, 1 (1998), L3 Collaboration, Phys. Lett. B 415 299 (1997), OPAL Collaboration, Submitted to Eur. Phys. J. C., hep-ex/9801024.
[13] D. Toback, Searches for New Physics in Diphoton Events in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV, Ph.D. thesis, University of Chicago, 1997; F. Abe et al., to be submitted to Phys Rev D.

[14] F. Abe et al., Phys. Rev. Lett. 79, 3819 (1997), P. Tamburello, FERMILAB-CONF-96-389-EC, Oct 1996.

[15] B. Abbott et al., FERMILAB-CONF-97-358-E, Oct 1997.