Supporting Information for:

Performance of Localized-Orbital Coupled Cluster Approaches for the Conformational Energies of Longer n-alkane Chains

Golokesh Santra* and Jan M.L. Martin*

Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science,

7610001 Reḥovot, Israel.

Email: gershom@weizmann.ac.il

golokesh.santra@weizmann.ac.il
Table S1: Performance of RI-MP2 and RI-MP2-F12 methods with different basis set size for the conformer energies of n-dodecane (C_nH_{2n+2}, $n=12$). All the results are in kcal/mol unit.

# Conf.	New Ref.[a]	RI-MP2-F12	RI-MP2										
		VDZ-F12	VTZ-F12	V[T,Q]Z-F12	def2-TZVPP	def2-QZVPP	def2-[T,Q]ZVPP	AVTZ	AVQZ	AV{T,Q}Z	AV{Q,5}Z		
1	1.82	1.62	1.61	1.61	1.60	1.48	1.56	1.56	1.62				
2	2.05	1.63	1.62	1.61	1.60	1.29	1.52	1.73	1.22	1.49	1.56	1.75	1.64
3	2.49	2.17	2.16	2.16	2.15	1.85	2.06	2.26	1.82	2.06	2.11	2.28	2.18
4	3.16	2.70	2.71	2.71	2.70	2.23	2.56	2.86	1.95	2.45	2.61	2.92	2.79
5	3.66	3.49	3.50	3.50	3.49	3.25	3.42	3.59	3.15	3.39	3.46	3.61	3.53
6	3.88	3.58	3.58	3.59	3.58	3.23	3.47	3.70	3.08	3.41	3.52	3.72	3.65
7	4.16	3.89	3.89	3.89	3.88	3.56	3.79	4.00	3.47	3.76	3.83	4.03	3.92
8	4.31	3.90	3.90	3.90	3.89	3.44	3.75	4.03	3.16	3.62	3.79	4.06	3.99
9	4.89	4.59	4.60	4.60	4.59	4.23	4.48	4.72	4.13	4.45	4.54	4.76	4.63
10	5.45	5.11	5.12	5.13	5.11	4.65	4.98	5.29	4.41	4.88	5.03	5.32	5.20
11	5.99	5.63	5.64	5.64	5.63	5.23	5.51	5.78	4.98	5.40	5.54	5.79	5.72
12	6.56	6.28	6.28	6.28	6.27	5.97	6.19	6.39	5.83	6.12	6.22	6.40	6.33

MAD (kcal/mol)	ref	0.32	0.32	0.32	0.33	0.67	0.43	0.20	0.82	0.49	0.39	0.18	0.27
RMSD (kcal/mol)	0.33	0.33	0.33	0.34	0.69	0.44	0.21	0.85	0.50	0.40	0.19	0.28	
MSD (kcal/mol)	-0.32	-0.32	-0.32	-0.33	-0.67	-0.43	-0.20	-0.82	-0.49	-0.39	-0.18	-0.27	

MAD (kcal/mol)	ref	0.34	0.10	0.13	0.49	0.16	0.06	0.15	0.06
RMSD (kcal/mol)	0.35	0.10	0.13	0.52	0.17	0.06	0.16	0.07	
MSD (kcal/mol)	-0.34	-0.10	0.13	-0.49	-0.16	-0.06	0.15	0.06	

[a] MP2-F12/V[T,Q]Z-F13 + [CCSD(F12*)-MP2-F12]/cc-pVTZ-F12 + [DF-CCSD(T)-DF-CCSD]/AV[T,D]Z
Table S2: Performance of six HLCs relative to canonical [DF-CCSD(T) - DF-MP2] with AVTZ throughout. Total [CCSD(T)-MP2] contributions has been divided into [CCSD-MP2] and (T) parts for better understanding of error compensation in different localized orbital methods. All the results are in kcal/mol unit.

# Conf.	[DF-CCSD(T) - DF-MP2]	HLC6	HLC7	HLC8	HLC3	HLC15	HLC16	[DLPNO-CCSD(T) - LMP2]/TightPNO
1	0.48	0.46	0.46	0.46	0.50	0.45	0.48	0.52
2	0.97	0.94	0.93	0.92	0.99	0.89	0.93	1.01
3	0.81	0.77	0.77	0.76	0.83	0.75	0.79	0.89
4	1.28	1.24	1.21	1.21	1.30	1.15	1.20	1.20
5	0.58	0.56	0.55	0.55	0.60	0.53	0.56	0.60
6	0.91	0.88	0.86	0.85	0.92	0.82	0.86	0.92
7	0.79	0.75	0.75	0.75	0.81	0.72	0.76	0.82
8	1.26	1.23	1.19	1.19	1.29	1.15	1.18	1.20
9	0.93	0.90	0.88	0.87	0.95	0.84	0.89	0.95
10	1.15	1.11	1.08	1.08	1.17	1.03	1.08	1.12
11	1.17	1.14	1.11	1.10	1.20	1.05	1.09	1.16
12	0.93	0.89	0.88	0.88	0.96	0.85	0.89	0.97

MAD	0.034	0.050	0.053	0.021	0.087	0.047	0.037
RMSD	0.035	0.052	0.055	0.022	0.091	0.053	0.043
MSD	-0.034	-0.050	-0.053	0.021	-0.087	-0.047	0.007

# Conf.	[DF-CCSD(T) - DF-MP2]	HLC6	HLC7	HLC8	HLC3	HLC15	HLC16	[DLPNO-CCSD(T) - LMP2]/TightPNO
1	-0.25	-0.26	-0.23	-0.24	-0.24	-0.21	-0.23	-0.26
2	-0.49	-0.52	-0.46	-0.47	-0.48	-0.44	-0.45	-0.49
3	-0.44	-0.44	-0.41	-0.41	-0.43	-0.39	-0.40	-0.44
4	-0.75	-0.82	-0.71	-0.70	-0.73	-0.67	-0.69	-0.70
5	-0.39	-0.42	-0.38	-0.38	-0.38	-0.35	-0.36	-0.39
6	-0.57	-0.61	-0.54	-0.54	-0.56	-0.51	-0.52	-0.55
7	-0.49	-0.51	-0.47	-0.46	-0.48	-0.43	-0.44	-0.48
8	-0.78	-0.84	-0.73	-0.72	-0.75	-0.69	-0.71	-0.72
9	-0.60	-0.63	-0.57	-0.57	-0.59	-0.53	-0.55	-0.58
10	-0.77	-0.81	-0.72	-0.72	-0.74	-0.68	-0.70	-0.73
11	-0.76	-0.82	-0.72	-0.72	-0.74	-0.67	-0.69	-0.71
12	-0.62	-0.64	-0.60	-0.60	-0.61	-0.55	-0.57	-0.60

MAD	0.034	0.031	0.033	0.017	0.067	0.051	0.025
RMSD	0.039	0.033	0.036	0.019	0.070	0.053	0.032
MSD	-0.034	-0.031	-0.033	0.017	0.067	0.051	0.022

# Conf.	[DF-CCSD(T) - DF-MP2]	HLC6	HLC7	HLC8	HLC3	HLC15	HLC16	[DLPNO-CCSD(T) - LMP2]/TightPNO
1	0.24	0.20	0.23	0.22	0.25	0.23	0.25	0.26
2	0.48	0.42	0.46	0.46	0.50	0.46	0.48	0.52
3	0.37	0.33	0.36	0.35	0.40	0.36	0.39	0.45
4	0.52	0.42	0.50	0.51	0.58	0.49	0.51	0.51
5	0.19	0.13	0.17	0.17	0.22	0.18	0.20	0.21
6	0.33	0.27	0.31	0.32	0.37	0.32	0.34	0.38
7	0.31	0.24	0.28	0.28	0.34	0.29	0.32	0.33
8	0.48	0.39	0.46	0.47	0.54	0.46	0.47	0.48
9	0.33	0.27	0.31	0.31	0.37	0.31	0.34	0.37
10	0.38	0.30	0.36	0.36	0.43	0.35	0.38	0.39
11	0.40	0.31	0.38	0.38	0.46	0.38	0.40	0.44
12	0.31	0.25	0.28	0.28	0.35	0.30	0.32	0.37

MAD	0.068	0.019	0.020	0.038	0.020	0.009	0.033
RMSD	0.070	0.020	0.021	0.040	0.022	0.010	0.038
MSD	-0.068	-0.019	-0.020	0.038	-0.020	0.003	0.029
Table S3: Performance of localized orbital based high-level corrections relative to the canonical [CCSD(F12*)] − MP2-F12/[VTZ-F12 + (T)/AV{D,T}Z correction used for the reference conformer energies of n-dodecane.

# Conformers in the ACONF12 set	MAD (kcal/mol)	RMSD (kcal/mol)	MSD (kcal/mol)										
	01	02	03	04	05	06	07	08	09	10	11	12	
HLC1\(^a\)	0.22	0.45	0.34	0.46	0.17	0.30	0.28	0.42	0.30	0.34	0.36	0.29	0.035
HLC2\(^a\)	0.24	0.48	0.37	0.52	0.19	0.33	0.31	0.48	0.33	0.38	0.40	0.31	0.038
HLC3\(^a\)	0.25	0.51	0.43	0.50	0.20	0.36	0.32	0.47	0.35	0.37	0.44	0.35	0.035
HLC4\(^a\)	0.27	0.55	0.43	0.63	0.25	0.42	0.38	0.61	0.43	0.51	0.53	0.42	0.050
HLC5\(^a\)	0.33	0.58	0.46	0.58	0.24	0.41	0.43	0.58	0.43	0.47	0.53	0.44	0.073
HLC6\(^a\)	0.20	0.42	0.33	0.42	0.13	0.27	0.24	0.39	0.27	0.30	0.31	0.25	0.032
HLC7\(^a\)	0.23	0.46	0.36	0.50	0.17	0.31	0.28	0.46	0.31	0.36	0.38	0.28	0.017
HLC8\(^a\)	0.22	0.46	0.35	0.51	0.17	0.32	0.28	0.47	0.31	0.36	0.38	0.28	0.016
HLC9\(^a\)	0.21	0.44	0.35	0.45	0.15	0.29	0.26	0.43	0.30	0.34	0.35	0.28	0.009
HLC10\(^a\)	0.26	0.50	0.40	0.55	0.20	0.36	0.32	0.51	0.36	0.42	0.44	0.33	0.059
HLC11\(^a\)	0.24	0.48	0.38	0.51	0.19	0.33	0.30	0.47	0.33	0.38	0.40	0.31	0.031
HLC12\(^a\)	0.27	0.52	0.42	0.58	0.23	0.39	0.35	0.55	0.39	0.45	0.47	0.37	0.088
HLC13\(^a\)	0.22	0.46	0.36	0.47	0.16	0.31	0.27	0.45	0.31	0.36	0.38	0.30	0.012
HLC14\(^a\)	0.22	0.45	0.36	0.46	0.17	0.29	0.28	0.42	0.31	0.34	0.36	0.28	0.006
HLC15\(^a\)	0.23	0.46	0.36	0.49	0.18	0.32	0.29	0.46	0.31	0.35	0.38	0.30	0.015
HLC16\(^a\)	0.25	0.48	0.39	0.51	0.20	0.34	0.32	0.47	0.34	0.38	0.40	0.32	0.038
HLC17\(^a\)	0.25	0.47	0.38	0.50	0.20	0.33	0.31	0.47	0.34	0.38	0.40	0.33	0.035
HLC18\(^a\)	0.25	0.48	0.39	0.52	0.22	0.35	0.33	0.49	0.36	0.40	0.42	0.35	0.052
HLC19\(^a\)	0.26	0.48	0.39	0.51	0.21	0.34	0.33	0.48	0.35	0.39	0.42	0.35	0.048
HLC20\(^a\)	0.26	0.49	0.40	0.53	0.23	0.36	0.34	0.50	0.37	0.41	0.44	0.36	0.062
HLC21\(^a\)	0.28	0.51	0.41	0.56	0.24	0.38	0.36	0.53	0.40	0.44	0.47	0.40	0.087
HLC22\(^a\)	0.29	0.52	0.43	0.56	0.25	0.39	0.37	0.52	0.40	0.44	0.46	0.39	0.091

\[DF\]CCSD(T) − RI-MP2/AVTZ
\[DLPNO-CCSD(T1) − LMP2\]/TightPNO/CPS\{6,7\}/AVTZ
\[DLPNO-CCSD(T1) − LMP2\]/VeryTightPNO/AVTZ
\[DLPNO-CCSD(T1) − LMP2\]/VeryTightPNO/AV[T,Q]Z
\[DLPNO-CCSD(T1) − LMP2\]/TightPNO/CPS\{6,7\}/AV[T,Q]Z
\[LNO-CCSD(T) − LMP2\]/Tight/AVTZ
\[LNO-CCSD(T) − LMP2\]/\texttt{vTight}/AVTZ
\[LNO-CCSD(T) − LMP2\]/Tight/AVQZ
\[LNO-CCSD(T) − LMP2\]/\texttt{vTight}/AVQZ
\[LNO-CCSD(T) − LMP2\]/Tight/AVSZ
\[LNO-CCSD(T) − LMP2\]/\texttt{vTight}/AV[T,Q]Z
\[LNO-CCSD(T) − LMP2\]/Tight/AV[T,Q]Z
\[LNO-CCSD(T) − LMP2\]/\texttt{vTight}/AVQZ
\[LNO-CCSD(T) − LMP2\]/Tight/AVQZ
\[PNO-LCCSD(T) − LMP2\]/Default/AVTZ
\[PNO-LCCSD(T) − LMP2\]/Tight/AVTZ
\[PNO-LCCSD(T) − LMP2\]/Default/AVQZ
\[PNO-LCCSD(T) − LMP2\]/Tight/AVQZ
\[PNO-LCCSD(T) − LMP2\]/Default/AV[T,Q]Z
\[PNO-LCCSD(Ts)-F12b − LMP2-F12\]/Default/VTZ-F12
\[PNO-LCCSD(Ts)-F12b − LMP2-F12\]/Tight/VTZ-F12

S4
Table S4: Conformer energies of \(n\)-dodecane, \(n\)-hexadecane, and \(n\)-icosane with three high-level corrections (HLC14, HLC8, and HLC13) using localized orbital methods. For convenience, we have retained the numbering and ordering of different conformers from ref.\(^1\); conformer energies of \(n\)-dodecane and \(n\)-hexadecane are relative to the all-trans conformer 0, while those for \(n\)-icosane are relative to the “hairpin” conformer 00.

	RI-MP2-F12/V\(\{T,Q\}\)Z-F12 + HLC		RI-MP2-F12/V\(\{T,Q\}\)Z-F12 + HLC		RI-MP2-F12/V\(\{T,Q\}\)Z-F12 + HLC
	HLC14\(^{(a)}\) HLC8\(^{(b)}\) HLC13\(^{(c)}\)	#	HLC14\(^{(a)}\) HLC8\(^{(b)}\) HLC13\(^{(c)}\)	#	HLC14\(^{(a)}\) HLC8\(^{(b)}\) HLC13\(^{(c)}\)
1	1.82 1.82 1.79	0	-0.49 -0.39 -0.49	0	2.20 2.06 2.19
2	2.06 2.06 2.01	1	2.15 2.19 2.10	1	4.15 4.10 4.07
3	2.51 2.50 2.47	3	2.54 2.57 2.47	5	4.81 4.67 4.75
4	3.16 3.21 3.10	4	2.68 2.68 2.63	6	4.99 4.87 4.91
5	3.65 3.66 3.61	2	2.94 2.98 2.87	7	5.27 5.14 5.21
6	3.87 3.89 3.83	6	3.24 3.23 3.14	3	4.85 4.81 4.74
7	4.16 4.16 4.11	7	3.28 3.29 3.21	11	5.60 5.47 5.52
8	4.31 4.36 4.25	5	3.34 3.35 3.25	10	5.58 5.46 5.50
9	4.90 4.90 4.84	8	3.68 3.68 3.62	4	5.31 5.26 5.23
10	5.45 5.48 5.40	9	3.98 3.99 3.93	12	5.74 5.61 5.69
11	5.99 6.01 5.92	10	4.08 4.12 4.03	8	5.28 5.27 5.21
12	6.55 6.56 6.50	11	4.35 4.36 4.31	2	5.05 5.11 4.95
13	4.54 4.54 4.47	9	5.77 5.65 5.67	16	6.01 5.89 5.91
14	4.95 4.95 4.89	16	6.01 5.89 5.91	16	6.12 5.99 6.03
15	5.02 5.00 4.95	13	6.12 5.99 6.03	17	6.33 6.24 6.24
16	5.84 5.94 5.71	17	6.33 6.24 6.24	15	6.52 6.39 6.41
17	6.11 6.15 6.02	15	6.52 6.39 6.41	19	6.65 6.52 6.56
18	6.74 6.73 6.63	14	6.38 6.36 6.28	14	6.74 6.73 6.63
19	7.94 7.97 7.81	20	7.94 7.97 7.81		

\(^{(a)}\)HLC14 = [LNO-CCSD(T) − LMP2]/vTight/AV\{Q,5\}Z

\(^{(b)}\)HLC8 = [LNO-CCSD(T) − LMP2]/vvTight/AVTZ

\(^{(c)}\)HLC13 = [LNO-CCSD(T) − LMP2]/Tight/AV\{T,Q\}Z
Table S5: ACONF16 conformer energies relative to the 00 (hairpin) conformer.

# Conf. ACONF16	MP2-F12/V{T,Q}Z-F12+HLC	HLC14^(a)	HLC8^(b)	HLC13^(c)
0		0.49	0.39	0.49
1		2.64	2.58	2.58
3		3.02	2.96	2.96
4		3.16	3.07	3.12
2		3.43	3.38	3.36
6		3.72	3.62	3.63
7		3.77	3.69	3.69
5		3.83	3.75	3.73
8		4.17	4.08	4.11
9		4.47	4.39	4.41
10		4.57	4.51	4.52
11		4.84	4.75	4.79
12		5.03	4.94	4.96
14		5.43	5.34	5.38
13		5.51	5.40	5.44
15		6.33	6.33	6.19
16		6.59	6.55	6.51

^{(a) HLC14 = [LNO-CCSD(T) − LMP2]/vTight/AV{Q,5}Z}
^{(b) HLC8 = [LNO-CCSD(T) − LMP2]/vvTight/AVTZ}
^{(c) HLC13 = [LNO-CCSD(T) − LMP2]/Tight/AV{T,Q}Z}
Method Details	Composite methods	c_i	MAD (kcal/mol)	MSD (kcal/mol)	RMSD (kcal/mol)
LNO-CCSD(T)	Normal [T,Q] + c[TightPNO – Normal]/T	0.93	0.23 0.26 0.28 0.18	0.09 0.26	
	Normal [Q,5] + c[TightPNO – Normal]/T	1.09	0.18 0.15 0.28 0.12	0.17 0.21	
	Tight [T,Q] + c[vTight – Tight]/T	0.79	0.23 0.21 0.25 0.22	0.05 0.25	
	Tight [T,Q] + c[TightPNO – Tight]/T	0.72	0.23 0.21 0.24 0.23	0.04 0.25	
	Tight [Q,5] + c[vTight – Tight]/T	1.26	0.12 0.11 0.13 0.12	0.03 0.13	
	Tight [Q,5] + c[vTight – Tight]/Q	1.14	0.08 0.05 0.08 0.09	0.00 0.09	
	Tight [Q,5] + c[TightPNO – Tight]/T	1.11	0.12 0.11 0.11 0.13	0.02 0.13	
	vTight [T,Q] + c[vTight – Tight]/T	0.77	0.26 0.23 0.30 0.24	0.08 0.28	
	vTight [Q,5] + c[vTight – Tight]/T + c[vTight – Tight]/Q	\(c_i=2.45\)	0.08 0.05 0.05 0.12	-0.02 0.10	
PNO-LCCSD(T)	Default [T,Q] + c[TightPNO – Tight]/T	0.39	0.14 0.14 0.18 0.10	0.10 0.15	
	Tight [T,Q] + c[TightPNO – Tight]/T	0.30	0.17 0.19 0.25 0.10	0.12 0.19	
	Tight [T,Q] + c[TightPNO – Tight]/Q	0.66	0.19 0.21 0.27 0.11	0.13 0.21	
DLPNO-CCSD(T)	NormalPNO [T,Q] + c[TightPNO – NormalPNO]/T	0.90	0.13 0.14 0.20 0.07	0.13 0.15	
	NormalPNO [T,Q] + c[TightPNO – NormalPNO]/T	0.93	0.14 0.11 0.16 0.14	0.13 0.15	
	TightPNO [T,Q] + c[TightPNO – TightPNO]/T	1.02	0.25 0.23 0.31 0.20	0.10 0.27	
	TightPNO [T,Q] + c[TightPNO – TightPNO]/Q	0.05	0.14 0.18 0.24 0.05	0.11 0.17	
	(T)TightPNO/Q + c[(T)TightPNO/Q – TightPNO/Q]	\(c_i=0.61\)	0.10 0.12 0.16 0.04	0.09 0.12	

Coefficients (c_i) are taken from the “Raw” category of Ref. 7.

Table S6: Performance of the composite LNO-CCSD(T), PNO-LCCSD(T), DLPNO-CCSD(T), and DLPNO-CCSD(T) methods with respect to the revised ACONFL reference data. Heatmapping is from red (worst) via yellow to green (best). [a]
DL PNO-CCSD(T0)	Normal PNO{T,Q} + c1[Tight PNO - Normal PNO]/T	Normal PNO{T,Q} + c1[Tight PNO/CPS{6,7} - Normal PNO]/T	Tight PNO{T,Q} + c1[VeryTight PNO - Tight PNO]/T	Tight PNO{T,Q}/CPS{6,7} + c1[Tight PNO/CPS{6,7} - Normal PNO]/T	(T0)Tight PNO/Q + c1[(T0)Tight PNO/Q - (T0)Tight PNO]/T] + c2[(T0)Tight PNO/T] - c2		
	0.32	0.06	0.01	0.05	0.10	0.00	0.01
	-1.28	-0.02	0.05	0.26	0.08	0.00	0.00
	-0.99	0.05	0.08	0.12	0.27	0.00	0.00
	c1=1.25, c2=16.81	0.03	0.03	0.03	0.04	0.00	0.00

[a] The expression CPS{X,Y} refers to the extrapolation of T_{cut}PNO to the complete PNO space limit using T_{cut}PNO=10^{-X} and 10^{-Y}, where Y=X+1
Table S7: Performance of pure and composite LNO-CCSD(T), PNO-LCCSD(T), and DLPNO-CCSD(T\(_1\)) methods with respect to the revised reference conformer energies of \(n\)-hexadecane and \(n\)-icosane using HLC8. Heatmapping is from red (worst) via yellow to green (best).

Method Details	Basis set	MAD (kcal/mol)	MSD (kcal/mol)	RMSD (kcal/mol)				
	ACONFL	ACONF12	ACONF16	ACONF20				
LNO-CCSD(T) Normal	AVTZ	1.00	0.77	1.00	-0.11	1.10		
	AVQZ	0.41	0.29	0.41	0.47	-0.03	0.45	
	AVSZ	0.30	0.21	0.24	0.40	0.03	0.34	
	AV\{T,Q\}Z	0.05	0.03	0.04	0.07	0.02	0.07	
	AV\{Q,5\}Z	0.21	0.14	0.11	0.34	0.09	0.26	
LNO-CCSD(T) Tight	AVTZ	0.85	0.60	0.82	1.02	-0.05	0.97	
	AVQZ	0.26	0.16	0.24	0.34	0.00	0.31	
	AVSZ	0.15	0.08	0.14	0.19	-0.01	0.17	
	AV\{T,Q\}Z	0.12	0.13	0.14	0.10	0.04	0.13	
	AV\{Q,5\}Z	0.03	0.01	0.04	0.04	-0.01	0.05	
LNO-CCSD(T) vTight	AVTZ	0.77	0.51	0.71	0.97	0.00	0.90	
	AVQZ	0.22	0.11	0.16	0.32	0.04	0.27	
	AVSZ	0.10	0.04	0.07	0.17	0.03	0.13	
	AV\{T,Q\}Z	0.15	0.15	0.20	0.11	0.06	0.16	
	AV\{Q,5\}Z	0.03	0.05	0.04	0.02	0.03	0.04	
LNO-CCSD(T) vvTight	AVTZ	0.77	0.50	0.71	0.96	0.00	0.89	
	AVQZ	0.06	0.04	0.04	0.09	0.02	0.07	
	AVSZ	0.10	0.12	0.13	0.05	0.09	0.11	
	AV\{T,Q\}Z	0.09	0.11	0.16	—	—	—	
	AV\{Q,5\}Z	0.15	0.18	0.21	0.09	0.14	0.17	
PNO-LCCSD(T) Default	AVTZ	0.06	0.04	0.04	0.09	0.02	0.07	
	AVQZ	0.10	0.12	0.13	0.05	0.09	0.11	
	AVSZ	—	0.10	0.16	—	—	—	
	AV\{T,Q\}Z	0.15	0.18	0.21	0.09	0.14	0.17	
	AV\{Q,5\}Z	0.03	0.08	0.18	—	—	—	
PNO-LCCSD(T) Tight	AVTZ	0.12	0.07	0.12	0.14	-0.02	0.13	
	AVQZ	0.09	0.11	0.11	0.07	0.09	0.10	
	AVSZ	—	0.10	—	—	—	—	
	AV\{T,Q\}Z	0.18	0.23	0.26	0.08	0.16	0.20	
	AV\{Q,5\}Z	0.20	0.23	0.29	—	—	—	
DLPNO-CCSD(T) \(_0\) NormalPNO	AVTZ	0.77	0.68	0.90	0.72	-0.22	0.84	
	AVQZ	0.33	0.32	0.41	0.26	-0.14	0.36	
	AVSZ	0.24	0.28	0.35	0.14	-0.16	0.28	
	AV\{T,Q\}	0.09	0.09	0.09	0.10	-0.09	0.10	
	AV\{Q,5\}	0.20	0.23	0.29	0.11	-0.19	0.23	
DLPNO-CCSD(T) \(_0\) TightPNO T\(_{CutPNO}=10^{-6}\)	AVTZ	0.56	0.30	0.45	0.78	0.07	0.67	
	AVQZ	0.13	0.10	0.11	0.17	-0.01	0.15	
	AVSZ	—	0.16	—	—	—	—	
	AV\{T,Q\}	0.17	0.05	0.12	0.27	-0.06	0.22	
	AV\{Q,5\}	—	0.42	—	—	—	—	
DLPNO-CCSD(T) \(_0\) TightPNO T\(_{CutPNO}=10^{-7}\)	AVTZ	0.67	0.38	0.57	0.91	0.06	0.79	
	AVQZ	0.18	0.04	0.08	0.35	0.11	0.26	
	AVSZ	—	0.05	—	—	—	—	
	AV\{T,Q\}	0.18	0.23	0.28	0.06	0.14	0.22	
	AV\{Q,5\}	—	0.11	—	—	—	—	
DLPNO-CCSD(T) \(_0\) TightPNO	AVTZ	0.72	0.42	0.62	0.98	0.05	0.86	
T$\text{CutPNO}=10^{-6,7}$	AVQZ	0.23	0.06	0.10	0.44	0.17	0.33	
---------------------------	------	------	------	------	------	------	------	
or CPS{6,7}[a]	AV5Z	—	0.02	—	—	—	—	
	AV{T,Q}	0.26	0.33	0.37	0.14	0.25	0.29	
VeryTightPNO	AV{T,Q}	—	0.05	—	—	—	—	
	AVTZ	0.61	0.36	0.53	0.81	0.05	0.71	
	AVQZ	—	0.01	—	—	—	—	
	AV{T,Q}	—	0.25	—	—	—	—	
DLPNO-CCSD(T_1)	NormalPNO	AVTZ	0.79	0.70	0.93	0.72	-0.23	0.86
	AVQZ	0.34	0.35	0.44	0.26	-0.16	0.38	
	AV5Z	0.26	0.30	0.38	0.14	-0.18	0.30	
	AV{T,Q}Z	0.11	0.11	0.12	0.11	-0.10	0.12	
	AV{Q,5}Z	0.22	0.25	0.32	0.12	-0.20	0.25	
TightPNO	AVTZ	0.58	0.32	0.49	0.81	0.06	0.69	
T$\text{CutPNO}=10^{-6}$	AVQZ	0.15	0.05	0.07	0.27	0.12	0.20	
	AV5Z	—	0.13	—	—	—	—	
	AV{T,Q}Z	0.24	0.29	0.34	0.12	0.16	0.27	
	AV{Q,5}Z	—	0.22	—	—	—	—	
TightPNO	AVTZ	0.70	0.41	0.60	0.94	0.05	0.82	
T$\text{CutPNO}=10^{-7}$	AVQZ	0.20	0.05	0.09	0.37	0.10	0.28	
	AV5Z	—	0.03	—	—	—	—	
	AV{T,Q}Z	0.16	0.20	0.25	0.06	0.13	0.19	
	AV{Q,5}Z	—	0.08	—	—	—	—	
TightPNO	AVTZ	0.76	0.45	0.66	1.01	0.05	0.89	
T$\text{CutPNO}=10^{-6,7}$	AVQZ	0.25	0.08	0.14	0.43	0.09	0.33	
or CPS{6,7}[a]	AV5Z	—	0.04	—	—	—	—	
	AV{T,Q}Z	0.14	0.16	0.20	0.07	0.12	0.16	
	AV{Q,5}Z	—	0.02	—	—	—	—	
VeryTightPNO	AVTZ	0.64	0.39	0.56	0.84	0.04	0.75	
	AVQZ	—	0.02	—	—	—	—	
	AV{T,Q}Z	—	0.23	—	—	—	—	

[a] The expression CPS{X,Y} refers to the extrapolation of T_{CutPNO} to the complete PNO space limit using $T_{\text{CutPNO}}=10^{-X}$ and 10^{-Y}, where $Y=X+1$
Table S8: Performance of standard and composite PNO-LCCSD(T) methods with respect to the revised reference conformer energies of longer n-alkanes. The default "REXT" setting for the "Tight" and "Default" domains (7 and 5 bohr, respectively) were used throughout. Heatmapping is from red (worst) via yellow to green (best).

Threshold	Basis set	c_1	MAD (kcal/mol)		MSD (kcal/mol)	RMSD (kcal/mol)		
			ACONFL	ACONF12	ACONF16	ACONF20		
Default	AVTZ	0.05	0.04	0.06	0.05	0.02	0.06	
	AVQZ	0.10	0.11	0.15	0.05	0.07	0.12	
	AV5Z	0.16	0.17	0.22	0.10	0.11	0.18	
	AV[T,Q]Z	0.16	0.17	0.22	0.10	0.11	0.18	
	AV{Q,5}Z	0.09						
Tight	AVTZ	0.42	0.37	0.46	0.41	-0.10	0.46	
	AVQZ	0.05	0.02	0.02	0.09	0.03	0.07	
	AV5Z	0.05						
	AV{T,Q}Z	0.21	0.22	0.29	0.15	0.12	0.23	
	AV{Q,5}Z	0.11						
Composite methods\[^a\]	Default {T,Q} + c_1[Tight – Default]/T	0.39	0.06	0.01	0.03	0.12	0.06	0.08
Composite methods\[^b\]	Tight {T,Q} + c_1[Tight – Default]/T	0.30	0.09	0.10	0.13	0.06	0.08	0.11
	Tight {T,Q} + c_1[Tight-Default]/Q	0.66	0.12	0.14	0.18	0.07	0.09	0.14
Composite methods\[^b\]	Default {T,Q} + c_1[Tight – Default]/T	0.40	0.06	0.01	0.03	0.12	0.06	0.09
Composite methods\[^b\]	Tight {T,Q} + c_1[Tight – Default]/T	0.53	0.06	0.01	0.03	0.11	0.05	0.07
	Tight {T,Q} + c_1[Tight-Default]/Q	1.53	0.05	0.03	0.04	0.08	0.05	0.06

\[^a\] Coefficients are taken from the "raw" category of Table 4 in Ref. 2

\[^b\] Coefficients are reoptimized relative to the revised ACONFL reference data.
Table S9: Performance of explicitly correlated PNO-LCCSD(T)-F12b with respect to the revised reference conformer energies of longer n-alkanes. The default “REXT” setting for the “Tight” and “Default” domains (7 and 5 a.u., respectively) were used throughout. Heatmapping is from red (worst) via yellow to green (best).

Methods	Threshold	Basis set	MAD (kcal/mol)	MSD (kcal/mol)	RMSD (kcal/mol)			
			ACONFL	ACONF12	ACONF16	ACONF20		
PNO-LCCSD(T)-F12b	Default	VDZ-F12	0.17	0.08	0.12	0.26	-0.05	0.20
		VTZ-F12	0.16	0.14	0.19	0.15	0.04	0.18
		VQZ-F12		0.10				
	Tight	VDZ-F12	0.16	0.13	0.16	0.17	0.01	0.17
		VTZ-F12	0.13	0.12	0.16	0.12	0.04	0.14
PNO-LCCSD(Ts)-F12b[a]	Default	VDZ-F12	0.10	0.02	0.04	0.18	-0.06	0.13
		VTZ-F12	0.13	0.12	0.15	0.12	0.04	0.14
		VQZ-F12		0.09				
	Tight	VDZ-F12	0.08	0.06	0.07	0.09	0.00	0.08
		VTZ-F12	0.10	0.09	0.12	0.08	0.03	0.10

[a]Following Ref.², the (T) terms of PNO-LCCSD(T)-F12b and DLPNO-CCSD(Ts)-F12 were scaled by 1.1413, 1.0527, and 1.0232 for VDZ-F12, VTZ-F12, and VQZ-F12, respectively.
The complete author list of Q-CHEM 6

Evgeny Epifanovsky, Andrew T. B. Gilbert, Xintian Feng, Joonho Lee, Yuezhi Mao, Narbe Mardirossian, Pavel Pokhilko, Alec F. White, Marc P. Coons, Adrian L. Dempwolff, Zhengting Gan, Diptarka Hait, Paul R. Horn, Leif D. Jacobson, Ilya Kaliman, Jörg Kussmann, Adrian W. Lange, Ka Un Lao, Daniel S. Levine, Jie Liu, Simon C. McKenzie, Adrian F. Morrison, Kaushik D. Nanda, Felix Plasser, Dirk R. Rehn, Marta L. Vidal, Zhi-Qiang You, Ying Zhu, Bushra Alam, Benjamin J. Albrecht, Abdulrahman Aldossary, Ethan Alguire, Josefine H. Andersen, Vishikh Athavale, Dennis Barton, Khadiza Begam, Andrew Behn, Nicole Bellonzi, Yves A. Bernard, Eric J. Berquist, Hugh G. A. Burton, Abel Carreras, Kevin Carter-Fenk, Romit Chakraborty, Alan D. Chien, Kristina D. Closser, Vale Cofer-Shabica, Saswata Dasgupta, Marc de Wergifosse, Jia Deng, Michael Diedenhofen, Hainam Do, Sebastian Ehlerh, Po-Tung Fang, Shervin Fatehi, Qingguo Feng, Triet Friedhoff, James Gayvert, Qinghui Ge, Gergely Gidofalvi, Matthew Goldey, Joe Gomes, Cristina E. González-Espinoza, Sahil Gulania, Anastasia O. Gunina, Magnus W. D. Hanson-Heine, Phillip H. P. Harbach, Andreas Hauser, Michael F. Herbst, Mario Hernández Vera, Manuel Hodecker, Zachary C. Holden, Shannon Houck, Xunkun Huang, Kerwin Hui, Bang C. Huynh, Maxim Ivanov, Ádám Jász, Hyunjun Ji, Hanjie Jiang, Benjamin Kaduk, Sven Kähler, Kirill Khistyae, Jaehoon Kim, Gergely Kis, Phil Klunzinger, Zsuzsanna Koczor-Benda, Joong Hoon Koh, Dimitri Kosenkov, Laura Koulias, Tim Kowaleczky, Caroline M. Krauter, Karl Kue, Alexander Kunitsa, Thomas Kus, István Lad jánszki, Arie Landau, Keith V. Lawler, Daniel Lefrançois, Susi Lehtola, Run R. Li, Yi-Pei Li, Jiashu Liang, Marcus Liebenthal, Hung-Hsuan Lin, You-Sheng Lin, Fenglai Liu, Kuan-Yu Liu, Matthias Loipersberger, Arne Luenser, Aaditya Manjanath, Prashant Manohar, Erum Mansoor, Sam F. Manzer, Shan-Ping Mao, Aleksandr V. Marenich, Thomas Markovich, Stephen Mason, Simon A. Maurer, Peter F. McLaughlin, Maximilian F. S. J. Menger, Jan-Michael Mewes, Stefanie A. Mewes, Pierpaolo Morgante, J. Wayne Mullinax, Katherine J. Oosterbaan, Garrette Paran, Alexander C. Paul, Suranj K. Paul, Fabijan Pavošević, Zheng Pei, Stefan Prager, Emil I. Proynov, Ádám Rák, Eloy Ramos-Cordoba, Bhaskar Rana, Alan E. Rask, Adam Rettig, Ryan M. Richard, Fazle Rob, Elliot Rossomme, Tarek Scheele, Maximilian Scheurer, Matthias Schneider, Nickolai Sergueev, Shaama M. Sharada, Wojciech Skomorowski, David W. Small, Christopher J. Stein, Yu-Chuan Su, Eric J. Sundstrom, Zhen Tao, Jonathan Thirman, Gábor J. Tornai, Takashi Tsuchimochi, Norm M. Tubman, Srimukh Prasad Veccham, Oleg Vydrov, Jan Wenzel, Jon Witte, Atsushi Yamada, Kun Yao, Sina Yeganeh, Shane R. Yost, Alexander Zech, Igor Ying Zhang, Xiong Zhang, Yu Zhang, Dmitri Zuev, Alán Aspuru-Guzik, Alexis T. Bell, Nicholas A. Besley, Ksenia B. Bravaya, Bernard R. Brooks, David Casanova, Jeng-Da Chai, Sonia Coriani, Christopher J. Cramer, György Cserey, A. Eugene DePrince III, Robert A. DiStasio Jr., Andreas Drew, Barry D. Dunietz, Thomas R. Furlani, William A. Goddard III, Sharon Hammes-Schiffer, Teresa Head-Gordon, Warren J. Hehre, Chao-Ping Hsu, Thomas-C. Jagau, Yousung Jung, Andreas Klamt, Jing Kong, Daniel S. Lambrecht, WanZhen Liang, Nicholas J. Mayhall, C. William McCurdy, Jeffrey B. Neaton, Christian Ochsenfeld, John A. Parkhill, Roberto Peverati, Vitaly A. Rassolov, Yihan Shao, Lyudmila V. Slipchenko, Tim Stauch, Ryan P. Steele, Joseph E. Subotnik, Alex J. W. Thom, Alexandre Tkatchenko, Donald G. Truhlar, Troy Van Voorhis, Tomasz A. Wesolowski, K. Birgitta Whaley, H. Lee Woodcock III, Paul M. Zimmerman, Shirin Faraji, Peter M. W. Gill, Martin Head-Gordon, John M. Herbert, and Anna I. Krylov. Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. [J. Chem. Phys. 155, 084801 (2021)]

See also: https://www.q-chem.com/
References:

1. S. Ehlert, S. Grimme and A. Hansen, Conformational Energy Benchmark for Longer n-Alkane Chains, *J. Phys. Chem. A*, 2022, **126**, 3521–3535.

2. G. Santra, E. Semidalas, N. Mehta, A. Karton and J. M. L. Martin, S66x8 noncovalent interactions revisited: new benchmark and performance of composite localized coupled-cluster methods, *Phys. Chem. Chem. Phys.*, 2022, **24**, 25555–25570.

3. K. A. Peterson, M. K. Kesharwani and J. M. L. Martin, The ‘cc-pV5Z-F12 basis set: Reaching the basis set limit in explicitly correlated calculations, *Mol. Phys.*, 2015, **113**, 1551–1558.