NUMBER OF BOUND STATES OF SCHRÖDINGER OPERATORS WITH MATRIX-VALUED POTENTIALS

RUPERT L. FRANK, ELLIOTT H. LIEB, AND ROBERT SEIRINGER

Dedicated to Jean-Claude Cortet,
in appreciation of his contribution to Letters in Mathematical Physics

ABSTRACT. We give a CLR type bound on the number of bound states of Schrödinger operators with matrix-valued potentials using the functional integral method of Lieb. This significantly improves the constant in this inequality obtained earlier by Hundertmark.

1. Introduction

We consider the Schrödinger operator $-\Delta - V(x)$ on \mathbb{R}^d, but with the difference from the usual case that V is a Hermitian matrix-valued potential. In other words, the Hilbert space is not $L^2(\mathbb{R}^d)$ but $L^2(\mathbb{R}^d; \mathbb{C}^N)$. The values of functions in this space, $\psi(x)$, are N-dimensional vectors. (What we say here easily generalizes to ‘operator-valued’ potentials, i.e., \mathbb{C}^N is replaced by a Hilbert space such as $L^2(\mathbb{R}^m)$, but we stay with matrices in order to avoid technicalities.) The Cwikel-Lieb-Rozenblum (CLR) bound for $d \geq 3$ in the scalar case $N = 1$ states that $#((-\Delta - V))$, the number of negative eigenvalues of $-\Delta - V$, can be estimated by

$$
#((-\Delta - V)) \leq L_{0,d} \int_{\mathbb{R}^d} V_+(x)^{d/2} \, dx .
$$

(1.1)

(Here and below $v_+: = (|v|\pm v)/2$ denotes the positive and negative part of v.) We remind the reader that the ‘semi-classical’ approximation to $#((-\Delta - V))$ is given in the scalar case by the phase space volume

$$
(2\pi)^{-d} \int_{\{(p,x) \in \mathbb{R}^d \times \mathbb{R}^d : p^2 - V(x) < 0\}} dp \, dx = L_{0,d}^{cl} \int_{\mathbb{R}^d} V_+(x)^{d/2} \, dx
$$

where

$$
L_{0,d}^{cl} = (2\pi)^{-d} \int_{\{p \in \mathbb{R}^d : p^2 < 1\}} dp = (2^d \pi^{d/2} \Gamma(d/2 + 1))^{-1}.
$$
The bound (1.1) was obtained by completely independent methods in \([C, L, R]\). Later, different proofs were given in \([C_0, L, Y]\). The best constant, which is close to optimal for \(d = 3\), was obtained in \([L]\) using the Feynman-Kac formula and Jensen’s inequality.

Our goal here is to extend inequality (1.1) to the matrix case (with a possibly different constant \(L_{0,d}\)). The motivation for this extension was the work of Laptev and Weidl \([LW1]\) who realized that the extension allowed one to conclude that good/sharp constants obtained in low dimensions would automatically give good/sharp constants in higher dimensions. The fact that the inequality (1.1) is valid in the matrix case was proved by Hundertmark \([H]\), confirming a conjecture in \([LW2]\). He follows Cwikel’s method and obtains a constant which is far from optimal. Hundertmark points out that ‘it would be nice to extend Lieb’s [. . .] proof of the CLR-bound to operator-valued potentials’. This is the content of this letter.

Theorem 1.1. Let \(d \geq 3\) and assume that \(V\) is a function on \(\mathbb{R}^d\) taking values in the Hermitian \(N \times N\) matrices. Then

\[
\#(-\Delta - V) \leq R_{0,d} L_{0,d}^{cl} \int_{\mathbb{R}^d} \text{Tr}_{C^N} \left[V_+(x)^{d/2}\right] \, dx
\]

where \(R_{0,d} \leq 10.332\) and \(V_+ := (|V| + V)/2\).

The constant 10.332 will be obtained for \(d = 3\) and, by the Laptev–Weidl method (as used by Hundertmark \([H]\)) it is valid uniformly for all \(d \geq 3\). We emphasize that our bound on \(R_{0,d}\) is slightly worse than the constant 6.87 in \([L]\) for the scalar case \(N = 1\). Still, it improves that of \([H]\) by almost one order of magnitude. For \(d = 3\) our bound on \(R_{0,3}\) is at most a factor 2.24 bigger than the optimal constant in (1.2), since it is known that \(R_{0,3} \geq 8/\sqrt{3} \approx 4.619\).

It is well known that by a simple integration the bound (1.2) yields the Lieb-Thirring inequalities

\[
\text{Tr}_{L_2(\mathbb{R}^d, C^N)} \left((-\Delta - V)^\gamma\right) \leq R_{\gamma,d} L_{\gamma,d}^{cl} \int_{\mathbb{R}^d} \text{Tr}_{C^N} \left[V_+(x)^{\gamma + d/2}\right] \, dx
\]

for all \(\gamma > 0, d \geq 3\) with \(R_{\gamma,d} \leq R_{0,d} \leq 10.332\) and

\[
L_{\gamma,d}^{cl} = (2\pi)^{-d} \int_{\mathbb{R}^d} (1 - p^2)^{\gamma} \, dp.
\]

Indeed, \(R_{\gamma,d}\) is a monotone non-increasing function of \(\gamma\) \([AL]\). Even in the scalar case \(N = 1\), this yields the best known constants in this inequality for the parameter range \(0 < \gamma < 1/2\). For comparison we recall that the best known bounds for larger values of \(\gamma\) are \(R_{\gamma,d} \leq 2\pi/\sqrt{3} \approx 3.628\) if \(\gamma \geq 1/2\) and \(R_{\gamma,d} \leq \pi/\sqrt{3} \approx 1.814\) if \(\gamma \geq 1\) \([HLV, DLL]\). For \(\gamma \geq 3/2\) one has \(R_{\gamma,d} = 1\), which is sharp \([LW1]\). We refer to the surveys \([H, LW2]\) for more about inequalities (1.3).

Apart from yielding very accurate constants we believe that there is a mathematical interest in extending the path-integral method in \([L]\) to the operator-valued situation. In contrast to the method of \([C]\) used in \([H]\), which is rather rigidly based on mapping...
properties of the Fourier transform, the method of [L] used here works in much wider
generality, e.g. on Riemannian manifolds. The only input needed is an upper bound
on the heat kernel of the (scalar) unperturbed operator. For example, the Hardy-Lieb-
Thirring bounds in [FLS] extend to the matrix-valued situation.

As already pointed out, we proceed similarly to [L]. Therefore we will be brief at
some points and ignore some technicalities. There is an important new ingredient in
our proof, however. Since matrices \(W_1, \ldots, W_n \) do not commute, in general, we need to
work with the “time ordering” of a function \(f(\sum_j W_j) \) of their sum. In Proposition 3.1
we shall prove a modification of Jensen’s inequality valid in this setting for a certain
class of convex functions \(f \).

2. A trace formula

Given self-adjoint \(N \times N \)-matrices \(W_1, \ldots, W_n \) and a function \(f \) on \(\mathbb{R} \), the usual ma-
trix \(f(\sum_j W_j) \) is defined by the spectral projections of \(\sum_j W_j \). Instead, we introduce
the “time-ordering” of the matrix \(f(\sum_j W_j) \) as follows. We write \(W_j \) in its spectral
representation

\[
W_j = \sum_{k=1}^N w_k^{(j)} P_k^{(j)},
\]

where \(w_k^{(j)} \) are the eigenvalues and \(P_k^{(j)} \) the corresponding orthogonal projections, and define

\[
\mathcal{T} f(W_1, \ldots, W_n) := \sum_{k_1, \ldots, k_n=1}^N f\left(\sum_{j=1}^n w_k^{(j)}\right) P_{k_1}^{(1)} \cdots P_{k_n}^{(n)}.
\] (2.1)

Intuitively, this means that when calculating \(f(\sum_j W_j) \), one puts all the \(W_1 \)'s left of
the \(W_2 \)'s, the \(W_2 \)'s left of the \(W_3 \)'s, and so on, without worrying about commutators. It is instructive to look at some examples.

Example 2.1. If \(f(\mu) = \mu^k, k \in \mathbb{N} \), then the definition immediately implies

\[
\mathcal{T} f(W_1, \ldots, W_n) = \sum_{j_1 + \cdots + j_n = k} \frac{k!}{j_1! \cdots j_n!} W_1^{j_1} \cdots W_n^{j_n}.
\]

Example 2.2. If \(f(\mu) = e^{\alpha \mu}, \alpha \in \mathbb{R} \), then again by the definition (2.1)

\[
\mathcal{T} f(W_1, \ldots, W_n) = e^{\alpha W_1} \cdots e^{\alpha W_n}.
\]

Similarly, one shows that if \(f(\mu) = \mu e^{\alpha \mu}, \alpha \in \mathbb{R} \), then

\[
\mathcal{T} f(W_1, \ldots, W_n) = W_1 e^{\alpha W_1} e^{\alpha W_2} \cdots e^{\alpha W_n} + e^{\alpha W_1} W_2 e^{\alpha W_2} \cdots e^{\alpha W_n} + \cdots + e^{\alpha W_1} e^{\alpha W_2} \cdots W_n e^{\alpha W_n}.
\]

We have introduced the notion of time-ordering in order to generalize the trace
formula in [L], which is the starting point of the analysis leading to (1.1).
Proposition 2.3. Let f be a non-negative, lower semi-continuous function f with $f(0) = 0$, and let

$$F(\lambda) := \int_0^\infty f(\mu)e^{-\mu/\lambda} \mu^{-1} d\mu, \quad \lambda > 0. \quad (2.2)$$

Then for any sufficiently regular and decaying functions V on \mathbb{R}^d, $d \geq 3$, taking values in the non-negative $N \times N$-matrices, one has

$$\text{Tr}_{L_2(\mathbb{R}^d; \mathbb{C}^N)} F(V^{1/2}(-\Delta)^{-1}V^{1/2}) = \int_0^\infty \frac{dt}{t} \lim_{n \to \infty} \int_{\mathbb{R}^d} \cdots \int_{\mathbb{R}^d} dx_1 \cdots dx_n \prod_{j=1}^n k\left(x_j, x_{j-1}, \frac{t}{n}\right) \text{Tr}_{\mathbb{C}^N} \left[Tf\left(\frac{t}{n}V(x_1), \ldots, \frac{t}{n}V(x_n)\right)\right] \quad (2.3)$$

with the convention that $x_0 = x_n$.

In the limit $n \to \infty$ the multiple integral on the right side of (2.3) converges to a Wiener integral (the Feynman-Kac integral); in fact, the right side of (2.3) is the Trotter product approximation to this integral $[1, \text{RS}, 2]$. \\

Proof. By an approximation argument $[2] \text{ Thm. 8.2}$ it suffices to prove this formula for

$$F(\lambda) = \lambda/(1 + \alpha \lambda), \quad f(\mu) = \mu e^{-\alpha \mu},$$

where $\alpha > 0$ is a constant. Using the resolvent identity and Trotter’s product formula, one easily verifies that in this case

$$F(V^{1/2}(-\Delta)^{-1}V^{1/2}) = V^{1/2}(-\Delta + \alpha V)^{-1}V^{1/2} = \int_0^\infty V^{1/2} \exp(-t(-\Delta + \alpha V))V^{1/2} dt = \int_0^\infty \lim_{n \to \infty} T_n(t) dt .$$

Here,

$$T_n(t) := V^{1/2}\left(\exp(t\Delta/n) \exp(-t\alpha V/n)\right)^n V^{1/2} .$$

The latter is an integral operator and we evaluate its trace by integrating its kernel on the diagonal. Let k denote the heat kernel

$$k(x, y, t) := (4\pi t)^{-d/2} \exp(|x - y|^2/(4t)) .$$

Then

$$\text{Tr}_{L_2(\mathbb{R}^d; \mathbb{C}^N)} T_n(t) = \int \cdots \int dx_1 \cdots dx_n \prod_{j=1}^n k\left(x_j, x_{j-1}, \frac{t}{n}\right) \text{Tr}_{\mathbb{C}^N} \left[e^{-\alpha \frac{t}{n}V(x_1)} \cdots e^{-\alpha \frac{t}{n}V(x_n)}V(x_n)\right] .$$
Cyclical relabeling of the variables leads to
\[
\text{Tr}_{L_2(\mathbb{R}^d;\mathbb{C}^N)} T_n(t) = \frac{1}{t} \int \cdots \int dx_1 \cdots dx_n \prod_{j=1}^n k \left(x_j, x_{j-1}, \frac{t}{n} \right) \text{Tr}_{\mathbb{C}^N} \left[T f\left(tV(x_1)/n, \ldots, tV(x_n)/n \right) \right]
\]
(compare with Example 2.2). The claimed formula (2.3) follows if one interchanges
the trace with the \(t \)-integration and the \(n \)-limit.

3. JENSEN’S INEQUALITY AND TIME ORDERING

To apply (2.3) we need to estimate the trace of a time-ordered sum. Recall that
Jensen’s inequality says that \(\text{Tr} f(\sum W_j) \leq n^{-1} \sum \text{Tr} f(nW_j) \) for \(f \) convex. The
analog for the time-ordered case, and a certain class of \(f \)'s, is

Proposition 3.1. Assume that

\[
f(\mu) = \sum_{j=0}^{\infty} \alpha_j \mu^j + \int_{\mathbb{R}} e^{-\alpha \mu} d\mu(\alpha)
\]

(3.1)

for some \(\alpha_0, \alpha_1 \in \mathbb{R}, \alpha_j \geq 0 \) for \(j \geq 2 \) and a non-negative measure \(\mu \). Then for any
non-negative \(N \times N \)-matrices \(W_1, \ldots, W_n \)

\[
\text{Re Tr}_{\mathbb{C}^N} [T f(W_1, \ldots, W_n)] \leq \frac{1}{n} \sum_{j=1}^{n} \text{Tr}_{\mathbb{C}^N} f(nW_j).
\]

Note that the \(f \) in (3.1) is convex. We do not know whether the statement is true
for an arbitrary convex function. If it were, the constant in Theorem 1.1 could be
improved, as explained at the end of this letter.

Proof. By linearity of the trace it suffices to consider the cases \(f(\mu) = \mu^k, k \in \mathbb{N}, \) and
\(f(\mu) = e^{\alpha \mu} \). In the former case, one has by Hölder’s inequality for traces (see, e.g.,
[SI Thm. 2.8])

\[
\text{Re Tr}_{\mathbb{C}^N} [T f(W_1, \ldots, W_n)] = \sum_{j_1 + \ldots + j_n = k} \frac{k!}{j_1! \cdots j_n!} \text{Re Tr}_{\mathbb{C}^N} \left[W_{j_1}^{j_1} \cdots W_{j_n}^{j_n} \right]
\]

\[
\leq \sum_{j_1 + \ldots + j_n = k} \frac{k!}{j_1! \cdots j_n!} \left(\text{Tr}_{\mathbb{C}^N} W_1^k \right)^{j_1/k} \cdots \left(\text{Tr}_{\mathbb{C}^N} W_n^k \right)^{j_n/k}
\]

\[
= f \left(\sum_{j=1}^{n} \left(\text{Tr}_{\mathbb{C}^N} W_j^k \right)^{1/k} \right),
\]
and the assertion follows from the convexity of f. In the latter case, one has similarly by Hölder’s inequality and the geometric-arithmetic mean inequality
\[
\text{Re } \operatorname{Tr}_{CN}[T f(W_1, \ldots, W_n)] = \text{Re } \operatorname{Tr}_{CN}[e^{\alpha W_1} \cdots e^{\alpha W_n}]
\leq (\operatorname{Tr}_{CN} e^{\alpha W_1})^{1/n} \cdots (\operatorname{Tr}_{CN} e^{\alpha W_n})^{1/n}
\leq \frac{1}{n} \sum_{j=1}^{n} \operatorname{Tr}_{CN} e^{\alpha W_j},
\]
as claimed.

Corollary 3.2. Assume that f is a non-negative function of the form considered in Proposition 3.1 and let F be as in (2.2). Then for any sufficiently regular and decaying function V on \mathbb{R}^d taking values in the non-negative $N \times N$-matrices, one has
\[
\operatorname{Tr}_{L^2(\mathbb{R}^d; CN)} F(V^{1/2}(-\Delta)^{-1}V^{1/2}) \leq \frac{1}{(4\pi)^{d/2}} \int_{\mathbb{R}^d} \frac{f(s)}{s^{d/2}} \int_{\mathbb{R}^d} \operatorname{Tr}_{CN} [V(x)^{d/2}] \, dx.
\]

Proof. Combining Proposition 3.1 with Proposition 2.3 we obtain
\[
\operatorname{Tr}_{L^2(\mathbb{R}^d; CN)} F(V^{1/2}(-\Delta)^{-1}V^{1/2})
\leq \int_{0}^{\infty} \frac{dt}{t} \lim_{n \to \infty} \int_{\mathbb{R}^d} \cdots \int_{\mathbb{R}^d} \prod_{j=1}^{n} k\left(x_j, x_{j-1}, \frac{t}{n}\right) \frac{1}{n} \sum_{j=1}^{n} \operatorname{Tr}_{CN} f(tV(x_j)) \, dx_1 \cdots dx_n.
\]
(Here we have used that the left side of (2.3) is real, hence only the real part of $\operatorname{Tr} T f$ contributes to the integral.) The semi-group property implies
\[
\frac{1}{n} \int_{\mathbb{R}^d} \cdots \int_{\mathbb{R}^d} \prod_{j=1}^{n} k\left(x_j, x_{j-1}, \frac{t}{n}\right) \sum_{j=1}^{n} \operatorname{Tr}_{CN} f(tV(x_j)) \, dx_1 \cdots dx_n
= \frac{1}{n} \sum_{j=1}^{n} \int_{\mathbb{R}^d} k(x_j, x_j, t) \operatorname{Tr}_{CN} f(tV(x_j)) \, dx_j = \frac{1}{(4\pi t)^{d/2}} \int_{\mathbb{R}^d} \operatorname{Tr}_{CN} f(tV(x)) \, dx.
\]
Denoting the eigenvalues of $V(x)$ by $v_1(x) \leq \ldots \leq v_N(x)$ one finds that
\[
\int_{0}^{\infty} \frac{dt}{t} \frac{\operatorname{Tr}_{CN} f(tV(x))}{t^{d/2}} = \sum_{j=1}^{N} \int_{0}^{\infty} \frac{dt}{t} \frac{f(v_j(x))}{t^{d/2}} = \sum_{j=1}^{N} v_j(x)^{d/2} \int_{0}^{\infty} \frac{ds}{s} \frac{f(s)}{s^{d/2}},
\]
thereby proving the assertion.

4. Proof of Theorem 1.1

First we assume that $d = 3$. By the variational principle we can assume that $V(x)$ is a non-negative matrix for all x, and by an approximation argument we can assume that V is smooth and rapidly decaying. For any increasing function F on $(0, \infty)$ the Birman-Schwinger principle implies that
\[
\#(-\Delta - V) \leq F(1) F_{L^2(\mathbb{R}^d; CN)} F(V^{1/2}(-\Delta)^{-1}V^{1/2}) \tag{4.1}
\]
We choose $F = F_a$ of the form (2.2) where $a > 0$ is a parameter and $f = f_a$ is defined by

$$f_a(\mu) = \frac{\mu^2}{\mu + a} = \mu - a + \frac{a^2}{\mu + a} = \mu - a + a^2 \int_0^\infty e^{-t(\mu + a)} \, dt.$$

Since this function is of the form considered in Proposition 3.1 we can apply Corollary 3.2 and get in view of (4.1)

$$\#(-\Delta - V) \leq C_a \int_{\mathbb{R}^3} \text{Tr}_{C^N} \left[V(x)^{3/2} \right] \, dx$$

where

$$C_a := (4\pi)^{-3/2} F_a(1)^{-1} \left(\int_0^\infty \frac{f_a(s)}{s^{3/2}} \frac{ds}{s} \right)^{-1} = \frac{1}{8} (\pi a)^{-1/2} \left(1 + ae^a \int_a^\infty \frac{e^{-s} ds}{s} \right)^{-1}.$$

The result follows by choosing $a = 1.13$, which approximately minimizes C_a.

Now we assume that $d \geq 4$. We will use the Laptev-Weidl strategy to reduce this case to the case $d = 3$ as in [H]. We note that by a straightforward approximation argument as in [LW1] the inequality for $d = 3$ holds also for $N = \infty$, i.e., if $V(x)$ assumes values in the compact self-adjoint operators on a separable Hilbert space. Introduce variables $x = (x_1, x_2) \in \mathbb{R}^d$ where $x_1 \in \mathbb{R}^3$ and $x_2 \in \mathbb{R}^{d-3}$. We decompose the Laplacian correspondingly as $-\Delta = -\Delta_1 - \Delta_2$ and define, for fixed $x_1 \in \mathbb{R}^3$, $W(x_1) := (-\Delta_1 - V(x_1, \cdot))_\ast$. If V is, say, smooth with compact support, then $W(x_1)$ is a compact operator in $L^2(\mathbb{R}^{d-3}, C^N)$ for every x_1. The variational principle and the inequality for $d = 3$ imply that

$$\#(-\Delta - V) \leq \#(-\Delta_1 - W) \leq RL_{0,3}^{cl} \int_{\mathbb{R}^3} \text{Tr}_{L^2(\mathbb{R}^{d-3}, C^N)} \left[W(x_1)^{3/2} \right] \, dx_1.$$

By the result of Laptev and Weidl [LW1], one has

$$\text{Tr}_{L^2(\mathbb{R}^{d-3}, C^N)} \left[W(x_1)^{3/2} \right] \leq RL_{\gamma_{3/2,d-3}}^{cl} \int_{\mathbb{R}^{d-3}} \text{Tr}_{C^N} \left[V(x_1, x_2)^{d/2} \right] \, dx_2$$

with the constant $RL_{\gamma_{3/2,d-3}}^{cl}$ from (1.4). Noting that $RL_{0,3}^{cl}L_{\gamma_{3/2,d-3}}^{cl} = RL_{0,d}^{cl}$ we obtain the assertion of Theorem 1.1.

Remark 4.1. If the estimate in Proposition 3.1 held for all convex functions (not merely for those of the form (3.1)), then we could choose $f_a(\mu) = (\mu - a)^+_{\ast}$ in the preceding proof, as in [L], and would get the same constant as in the scalar case.

References

[AL] M. Aizenman, E.H. Lieb, *On Semi-Classical Bounds for Eigenvalues of Schrödinger Operators*, Phys. Lett. **66A** (1978), 427–429.

[Co] J. G. Conlon, *A new proof of the Cwikel-Lieb-Rosenbljum bound*. Rocky Mountain J. Math. **15** (1985), no. 1, 117–122.
M. Cwikel, Weak type estimates for singular values and the number of bound states of Schrödinger operators. Ann. Math. 106 (1977), 93–102.

J. Dolbeault, A. Laptev, M. Loss, Lieb-Thirring inequalities with improved constants. J. Eur. Math. Soc., to appear. Preprint: arXiv:0708.1165v2 [math.AP].

R. L. Frank, E. H. Lieb and R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators. J. Amer. Math. Soc., to appear. Preprint: arXiv:math/0610593v2 [math.SP]

D. Hundertmark, On the number of bound states for Schrödinger operators with operator-valued potentials. Ark. Mat. 40 (2002), 73–87.

D. Hundertmark, A. Laptev and T. Weidl, New bounds on the Lieb-Thirring constants. Invent. Math., 40 (2000), 693–704.

T. Ichinose, Norm convergence of the Trotter product formula for Schrödinger operators via the Feynman-Kac formula. Path integrals: Dubna ’96, 341–346, Joint Inst. Nuclear Res., Dubna, 1996.

A. Laptev, T. Weidl, Sharp Lieb-Thirring inequalities in high dimensions. Acta Math. 184 (2000), 87–111.

A. Laptev, T. Weidl, Recent results on Lieb-Thirring inequalities. Journées “Équations aux Dérivées Partielles” (La Chapelle sur Erdre, 2000), Exp. No. XX, Univ. Nantes, Nantes, 2000.

P. Li, S. T. Yau, On the Schrödinger equation and the eigenvalue problem. Comm. Math. Phys. 88 (1983), no. 3, 309–318.

E. H. Lieb, Bounds on the eigenvalues of the Laplace and Schrödinger operators, Bull. Amer. Math. Soc. 82 (1976), 751–752. The number of bound states of one body Schrödinger operators and the Weyl problem. Proc. A.M.S. Symp. Pure Math. 36 (1980), 241–252.

E. H. Lieb, W. Thirring, Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. Studies in Mathematical Physics, 269–303. Princeton University Press, Princeton, NJ, 1976.

G. V. Rozenblum, M. Solomyak, The Cwikel-Lieb-Rozenblum estimator for generators of positive semigroups and semigroups dominated by positive semigroups. St. Petersburg Math. J. 9 (1998), no. 6, 1195–1211.

G. V. Rozenblum, Distribution of the discrete spectrum of singular differential operators. Soviet Math. Dokl. 13 (1972), 245–249, and Soviet Math. (Iz. VUZ) 20 (1976), 63–71.

B. Simon, Trace ideals and their applications, Second edition, Mathematical Surveys and Monographs 120, American Mathematical Society, Providence, RI, 2005.

B. Simon, Functional Integration and Quantum Physics, Second edition, Amer. Math. Soc., Providence, RI, 2005.

Rupert L. Frank, Department of Mathematics, Princeton University, Washington Road, Princeton, NJ 08544, USA
E-mail address: rlfrank@math.princeton.edu

Elliott H. Lieb, Departments of Mathematics and Physics, Princeton University, P. O. Box 708, Princeton, NJ 08544, USA
E-mail address: lieb@princeton.edu

Robert Seiringer, Department of Physics, Princeton University, P. O. Box 708, Princeton, NJ 08544, USA
E-mail address: rseiring@princeton.edu