Rescue of Inhibitory Synapse Strength following Developmental Hearing Loss

Vibhakar C. Kotak1*, Anne E. Takesian1, Patricia C. MacKenzie2, Dan H. Sanes1,2

1 Center for Neural Science, New York University, New York, New York, United States of America, 2 Department of Biology, New York University, New York, New York, United States of America

Abstract

Inhibitory synapse dysfunction may contribute to many developmental brain disorders, including the secondary consequences of sensory deprivation. In fact, developmental hearing loss leads to a profound reduction in the strength of inhibitory postsynaptic currents (IPSCs) in the auditory cortex, and this deficit persists into adulthood. This finding is consistent with the general theory that the emergence of mature synaptic properties requires activity during development. Therefore, we tested the prediction that inhibitory strength can be restored following developmental hearing loss by boosting GABAergic transmission in vivo. Conductive or sensorineural hearing loss was induced surgically in gerbils prior to hearing onset and GABA agonists were then administered for one week. IPSCs were subsequently recorded from pyramidal neurons in a thalamocortical brain slice preparation. Administration of either a GABA A receptor a1 subunit specific agonist (zolpidem), or a selective GABA reuptake inhibitor (SGRI), rescued IPSC amplitude in hearing loss animals. Furthermore, this restoration persisted in adults, long after drug treatment ended. In contrast, a GABA B receptor agonist baclofen did not restore inhibitory strength. IPSCs could also be restored when SGRI administration began 3 weeks after sensory deprivation. Together, these results demonstrate long-lasting restoration of cortical inhibitory strength in the absence of normal experience. This suggests that in vivo GABA A receptor activation is sufficient to promote maturation, and this principle may extend to other developmental disorders associated with diminished inhibitory function.

Introduction

An influential theory in developmental plasticity states that inhibitory synapse function regulates the excitatory synapse critical period [1], [2], [3], [4]. Support for this idea comes from experiments in which the critical period for ocular dominance plasticity (i.e., the reduced cortical activation by a deprived eye) is accelerated or terminated prematurely by agents that augment GABA A receptor-mediated transmission [5], [6], [7]. However, the normal emergence of inhibitory transmission, itself, depends on both spontaneous and driven activity [2], [4], [8]. In the auditory system, developmental deprivation of sound induces a profound reduction of inhibitory strength, and this weakened inhibition persists into adulthood [9], [10], [11], [12], [13], [14]. Here, we evaluate the extent to which cortical inhibitory synapse maturation relies on GABA receptor activation in animals reared with hearing loss.

A reduction in GABA signaling can delay or prevent the maturation of inhibitory synapses. For example, mice lacking the enzyme associated with GABA synthesis, glutamic acid decarboxylase (GAD) 65, do not exhibit ocular dominance plasticity; however, treatment with benzodiazepines restores this mechanism [15]. Similarly, neuronal cultures from mice deficient in GAD67 display a loss of inhibitory terminals on cortical pyramidal cells, but a normal number of anatomical contacts are restored by pharmacological activation of GABAergic transmission [16]. Thus, we reasoned that interventions employing GABAergic agonists immediately following hearing loss could prevent the functional decline of inhibitory strength, even in the absence of normal hearing.

Experimental approaches to repair brain function by modifying inhibition differ depending upon the goal, and the nature of the disorder. For example, research on ocular dominance plasticity seeks to reduce inhibition in adults in order to restore excitatory synaptic plasticity after the critical period has ended [17], [18], [19]. Other investigators have explored stem cell transplantation to facilitate de novo synaptogenesis, and the augmentation of inhibitory drive [20], [21], [22]. Since improved behavioral or neural performance is correlated with stronger GABAergic transmission [23], [24], [25], we sought to reverse the hearing loss-induced dysfunction of inhibitory synaptic strength in the thalamorecipient auditory cortex (ACx).

To test the role of GABA receptor activation, hearing loss was induced prior to hearing onset and GABA agonists were then administered for one week. The amplitude of inhibitory currents was assessed in thalamorecipient ACx neurons in brain slices. Three agents were chosen to activate GABA A receptors only (zolpidem, an a1-subunit potentiator), both GABA A and GABA B receptors (selective GABA reuptake inhibitor, SGRI, 1-[2-[[Di-phenylmethylene]imino]oxy]ethyl]-1,2,5,6-tetrahydroy-3-pyridine-carboxylic acid hydrochloride hydrochloride and GABA B recep-
tors only (baclofen, BAC). Zolpidem and SGRI restored inhibitory strength while BAC treatment was ineffective. Furthermore, inhibitory restoration persisted in adults. These findings suggest that the basic principle of activity-dependent synapse maturation can be used as a strategy to overcome the deficits that may attend early sensory deprivation.

Methods

Animals

Animal care, maintenance, surgery and pharmacological treatments were in accordance with the guidelines and rules of the Institutional Animal Care and Use Committee, New York University (NYU), approved by the Office of Laboratory Animal Welfare, Office of Extramural Research, and U.S. National Institutes of Health (NIH; Bethesda, MD, USA). See SI Methods for details.

Hearing loss surgeries

Gerbil (*Meriones unguiculatus*) pups at postnatal day (P) 10 (P10) were anesthetized with the halogenated ethyl methyl ether methoxyflurane (Metofane). Anesthetic effect occurred by 10 min as tested by an absence of response to nociceptive stimuli (toe pinch). Conductive hearing loss was induced by tympanic membrane puncture and malleus removal. Cochlear ablations were performed on gerbil pups at P10, just prior to the onset of response to airborne sound [10]. See SI Methods for details on sham surgery and sham injection.

In vivo pharmacological treatment

A key objective in this study was an attempt to rescue inhibitory synaptic strength following conductive hearing loss. In order to be less invasive and support cortical inhibitory synapses at a slow and sustained level, we subcutaneously administered conductive hearing loss (CHL) pups once everyday for 7 days (i.e. during P11 through P17). We administered the GABA_A receptor α1 subunit-specific agent zolpidem (Sigma, 10 mg/kg), or a selective GABA reuptake inhibitor (SGRI, NO-711 hydrochloride, 1-[2-[[[(Diphenylmethylene)imino]oxy]ethyl]-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid, Sigma, 10 mg/kg), or the GABA_B agonist BAC (Sigma, 2.5 mg/kg). In a separate group of CHL pups, we administered SGRI (10 mg/kg) during P30–36 following CHL.

The doses were determined based on pilot experiments in which zolpidem, SGRI, or BAC was administered in vivo. The initial doses of each drug was 1 mg/kg in 2 CHL animals, and this did not have an apparent effect on spontaneous inhibitory postsynaptic current (sIPSC) amplitudes. The dose was then increased to 10 mg/kg, and this appeared to restore sIPSC amplitude. Therefore, we chose to retain this dose for the study. For BAC, 10 mg/kg led to a decline in motor activity over several days, and we therefore reduced the BAC dosage to 2.5 mg/kg. For a comprehensive outline of the protocol, see Table 1. See SI Methods for details.

Brain slice preparation and whole cell recordings

Thalamocortical brain slices (500 µm) were generated as described in our previous papers [10], [11], [12]. See SI Methods for details on whole-cell recordings and selective stimulation of putative unitary afferents for eliciting minimum evoked (m) IPSCs.

Statistics

Statistical tests of data distribution were followed by comparisons between groups using commercial software (JMP, SAS).

Table 1. Experimental groups.

Group	P10	P11–17	P18–22	P30–36	P90–110
Control	record	record	record	record	record
CHL	record	record	record	record	record
CHL	zolpidem	record	record	record	record
CHL	SGRI	record	record	record	record
CHL	baclofen	record	record	record	record
CHL	zolpidem	record	record	record	record
CHL	SGRI	record	record	record	record
CHL	baclofen	record	record	record	record
CHL	zolpidem	record	record	record	record
CHL	SGRI	record	record	record	record
CHL	baclofen	record	record	record	record
Sham surgery	record	record	record	record	record

Rescue of inhibitory synaptic currents

A Shapiro-Wilcoxon W (Goodness-of-fit) test was performed to test for a normal distribution. For those data sets that were not normally distributed, a Wilcoxon rank sums test was performed to determine whether there was a main effect, followed by pairwise comparisons. For the data that were normally distributed, an ANOVA test was performed to determine whether there was a main effect, followed by pairwise comparisons using a Students’ t test.

Results

Rescue of inhibitory synaptic strength by GABA_A receptor activation

We first asked whether administration of a GABA_A receptor agonist, zolpidem, could rescue inhibitory synaptic strength in juvenile animals reared with CHL (Fig. 1). As reported previously [14], neurons recorded from juvenile animals with CHL displayed significantly smaller sIPSCs compared to age-matched controls. (mean pA ± SEM; Control: 29.9±3.1, n = 19 (11 animals) vs. CHL: 18.7±2.4, n = 10 (7 animals), χ² = 6.3, p = 0.01; Fig. 1). This finding was reconfirmed by comparing animals with sham surgery to a new group of animals with CHL surgery at P10 (see Suppl. Fig. S1A). When zolpidem was administered for the 7 days immediately following CHL at P10, sIPSCs were significantly larger than those from untreated CHL animals [CHL: 18.7±2.4, institute). A Shapiro-Wilcoxon W (Goodness-of-fit) test was performed to test for a normal distribution. For those data sets that were not normally distributed, a Wilcoxon rank sums test was performed to determine whether there was a main effect, followed by pairwise comparisons. For the data that were normally distributed, an ANOVA test was performed to determine whether there was a main effect, followed by pairwise comparisons using a Students’ t test.
In the third set of experiments, we asked whether a GABA B receptor agonist did not rescue inhibitory strength.

In the third set of experiments, we asked whether a GABA B receptor agonist did not rescue inhibitory strength. As shown in Figure 3, BAC did not rescue either sIPSC amplitudes when administered to CHL animals for 7 days [mean pA ± SEM: CHL: 18.7±2.4, n = 10 (7 animals) vs. BAC-treated CHL: 15.5±1.8, n = 11 (7 animals), \(\chi^2 = 6.6, p = 0.01 \)]. Furthermore, there was no significant change in either sIPSC amplitude or PPR (Fig. S1).

Rescue of inhibitory synapse strength by a GABA B reuptake inhibitor

We next asked whether administration of a selective GABA B reuptake inhibitor (SGRI) could preserve inhibitory synaptic strength in juvenile animals reared with CHL. As shown in Figure 1, SGRI was also able to rescue sIPSC amplitude when administered to CHL animals for 7 days [mean pA ± SEM: Control: 18.7±2.4, n = 10 (7 animals) vs. SGRI-treated CHL: 34.3±6.5, n = 11 (7 animals), \(\chi^2 = 4.5, p = 0.03 \)]. Furthermore, there was no difference between sIPSCs from control and SGRI-treated CHL animals (Control: 29.9±3.1, n = 19 vs. SGRI-administered CHL: 34.3±6.5, n = 11, \(\chi^2 = 0.005, p = 0.95 \)). SGRI administration in CHL animals also restored me-IPSCs amplitudes [CHL: 5.3±0.5, n = 8 (3 animals) vs. SGRI-treated CHL: 9.4±0.5, n = 7 (3 animals), \(\chi^2 = 10, p = 0.001 \)]. There was no difference between me-IPSCs from control and SGRI-treated CHLs [Control: 12.1±1.3, n = 9 (4 animals) vs. SGRI-treated CHL: 9.4±0.6, n = 7 (3 animals), \(\chi^2 = 2.3, p = 0.1 \)]. In contrast to these results, when animals with sham surgery were treated with SGRI, there was no significant change in either sIPSC amplitude or PPR (Fig. S1).

GABA B receptor agonist did not rescue inhibitory strength

In the third set of experiments, we asked whether a GABA B receptor agonist, could restore inhibitory synapse function in juvenile animals reared with CHL (Fig. 3). Here, we found that BAC did not rescue either sIPSC amplitudes when administered to CHL animals [mean pA ± SEM: CHL: 18.7±2.4, n = 10 (7 animals) vs. BAC-treated CHL: 15.5±1.8, n = 11 (7 animals), \(\chi^2 = 1.1, p = 0.3 \); control: 29.9±3.1, n = 19 (11 animals) vs. BAC-treated CHL: 15.5±1.8, n = 11 (8 animals), \(\chi^2 = 1.02, p = 0.0006 \)]. me-evoked IPSC amplitudes [mean pA ± SEM:
CHL: 5.3±0.5, n = 8 (4 animals) vs. BAC-treated CHL: 7.6±1.8, n = 7 (3 animals), \(\chi^2 = 0.9, p = 0.4\).

Rescue of inhibitory synapse strength persisted in adulthood

CHL induced at P10 leads to a persistent reduction of sIPSC amplitude recorded in adults at P90–110 [14]. Therefore, we asked whether pharmacological reinstatement of inhibitory currents observed in juveniles persisted into adulthood. CHL was induced at P10, and each of the three GABAergic agents was administered to separate groups of CHL animals from P11–17. Animals were weaned at P30, reared until adulthood, and recordings were obtained from brain slices at P90–110.

CHL induced at P10 resulted in a persistent reduction of sIPSC amplitude when recorded in adults at P90–110 (mean IPSC pA ± SEM; Control adult: 27.2±2.7, n = 29 (16 animals) vs. CHL adult: 16.5±2.1, n = 11 (6 animals), \(\chi^2 = 8.2, p = 0.004\) [14]. As shown in Figure 4, the outcome of drug-treatment, when tested in adulthood, was consistent with observations made in juveniles. Administration of either zolpidem or SGRI, but not BAC, preserved sIPSC amplitudes in adult animals reared with CHL (mean pA ± SEM; CHL adult: 16.5±2.1 pA, n = 11 (6 animals) vs. zolpidem-treated CHL adult: 25.6±2.4 pA; n = 9 (6 animals), \(\chi^2 = 5.7, p = 0.01\)). There was no difference between sIPSCs from adult controls and zolpidem-treated CHL adults (Control: 27.2±2.7, n = 29 vs. zolpidem-treated CHL adult: 25.6±2.4; n = 9, \(\chi^2 = 0.3, p = 0.7\)).

The effect of SGRI administration during juvenile development also persisted when sIPSCs were recorded in adult animals [Fig. 4; mean pA ± SEM; CHL adult: 16.5±2.1 pA, n = 11 (7 animals) vs. SGRI-treated CHL adult: 23.6±1.4 pA; n = 6 (4 animals), \(\chi^2 = 3.6, p = 0.05\)]. There was no difference between sIPSCs from adult controls and SGRI-treated CHL adults (Control: 27.2±2.7, n = 29 vs. SGRI-treated CHL adult: 23.6±1.4; n = 6 (4 animals), \(\chi^2 = 0.01, p = 0.89\)). In contrast, BAC-treated CHL animals continued to display IPSCs resembling those of CHL animals when assessed in adulthood (Fig. S3), indicating an absence of restoration (mean pA ± SEM; CHL adult: 18.5±1.2 pA; n = 8 (4 animals), \(\chi^2 = 1.5, p = 0.21\); Control adult: 27.2±2.7, n = 29 vs. BAC-treated CHL adult: 18.5±1.1; n = 8 (4 animals), \(\chi^2 = 3.6, p = 0.05\)).

Rescue of inhibitory strength occurred following bilateral cochlear ablation

To determine whether it is possible to preserve inhibitory strength even after complete loss of auditory afferents, we performed bilateral cochlear ablations at P10, followed by administration of zolpidem from P11–17. Zolpidem rescued sIPSC amplitudes in cochlear-ablated animals, just as it did in CHL animals. Figure 5 shows that neurons recorded from juvenile animals reared with cochlear ablations displayed significantly smaller sIPSCs [mean pA ± SEM; Control: 29.9±3.1, n = 19 (11 animals) vs. ablated: 18.3±1.2 pA; n = 8 (4 animals), \(\chi^2 = 1.5, p = 0.21\); Control adult: 27.2±2.7, n = 29 vs. BAC-treated CHL adult: 18.5±1.1; n = 8 (4 animals), \(\chi^2 = 3.6, p = 0.05\)].
Rescue of inhibitory strength was observed after delayed SGRI administration

To determine whether GABA receptor activation could preserve IPSC strength when treatment was delayed by about 3 weeks from CHL induction, we induced CHL at P10, administered SGRI at P30–36, and raised animals to adulthood. As shown in Figure 6, SGRI could restore sIPSC amplitudes in adults when treatment was delayed [mean ± SEM; adult control: 27.2 ± 2.7, n = 29 (16 animals) vs. SGRI-treated at 30–36 CHL adult: 26.8 ± 3.7; n = 9 (6 animals), χ² = 0.04, p = 0.82; CHL adult: 16.5 ± 2.1, n = 11 vs. SGRI-treated P30–36 CHL adult: 26.8 ± 3.7; n = 9 χ² = 5.75, p = 0.01].

Discussion

Developmental hearing loss may originate in the periphery, yet it causes pervasive impairment of CNS synapses and membrane properties. The disruption of one such property, inhibitory synaptic strength, has been suggested to be a causative factor in many central disorders, including hearing loss [10], [11], [12], [13], [26], [27], [28], [29], [30], [31]. In fact, developmental hearing loss results in weakened inhibitory synaptic strength that persists into adulthood [14]. Our findings suggest that in vivo GABA_A receptor activation is sufficient to promote the maturation of inhibitory synaptic strength in CHL animals, and this principle may apply to other disorders associated with diminished inhibition.

Activity-dependent regulation of developing GABAergic synapses

Converging lines of evidence indicate that inhibitory synapse maturation is facilitated by both spontaneous and driven activity [2], [4], [8]. In the auditory system, disruption of normal activity can perturb both inhibitory synapse strength and the specificity of anatomical projections [32], [33], [34], [35], [36], [37]. Similarly, it has been found that normal activity is necessary for the maturation and maintenance of inhibitory synaptic currents in sensory cortices and dissociated cultures [38], [39], [40], [41], [42], [43], [44], [45]. Consistent with this principle, our results demonstrate that activation of the GABA_A receptor α1 subunit (via zolpidem) or an increase in extracellular GABA at inhibitory synapses (via SGRI action) could each preserve sIPSC amplitude in juvenile animals reared with CHL (Figs. 1, 2). Furthermore, inhibitory strength remained comparable to control levels in adult CHL animals long after drug treatment was terminated (Fig. 4). This finding is broadly consistent with the result that loss of GABA synthesis leads to a reduction of cortical inhibitory boutons and GABAergic transmission, and this can be reversed by activating GABA_A receptors [16], [46].

Temporal window for rescue of inhibitory strength

Descriptive findings from the rodent auditory CNS indicate that many inhibitory synapse properties reach adult-like characteristics within the first 2–3 postnatal weeks [12], [47], [48], [49], [50], [51], [52], [53], [54]. Therefore, we expected that GABAergic activation would no longer rescue inhibitory strength if it were initiated after 4 postnatal weeks. Contrary to this prediction, we found that the time window during which GABA_A receptor activation is sufficient to restore inhibitory strength after CHL extended beyond one month (Fig. 6). Therefore, cortical inhibitory synaptic strength remains sensitive to environmental perturbation after the age when it would normally have reached maturity.

This result is consistent with findings from the visual system suggesting that deprivation extends the critical period. For

Figure 3. Baclofen does not rescue inhibitory strength in juveniles after P10 hearing loss. A Representative sIPSCs recorded in L2/3 pyramidal cells in ACx in slices from animals aged P18 to P22 (V_HOLD = −60 mV). Examples are shown from control (top, black), CHL (middle, orange), and BAC-treated CHL (bottom, olive) animals. B Bar graph (mean ± SEM) of average sIPSC amplitude from all recorded neurons showing diminished sIPSC amplitude in CHL animals is not rescued after treatment with BAC. C Representative traces of minimum-amplitude evoked IPSCs (me-IPSCs) recorded in L2/3 pyramidal cells in ACx in slices from animals aged postnatal day (P) 18 to P22 (V_HOLD = −60 mV). Examples are shown from control (top, black), CHL (middle, orange) and BAC-treated CHL (bottom, olive). In each of these panels, the gray traces represent failures at sub-minimal stimulus intensities. D Bar graph (mean ± SEM) of average me-evoked IPSC amplitude from all recorded neurons showing diminished me-IPSC amplitude in CHL animals is not rescued by treatment with BAC.

doi:10.1371/journal.pone.0053438.g003
example, when kittens are reared in the dark, it is found that monocular deprivation can continue to induce changes in cortical processing in adult animals [55]. Similarly, in the auditory system, the sensitive period can be extended by rearing animals in a pulsed noise environment [56]. Our results are consistent with a delay in the closure of a sensitive period for inhibitory synaptic maturation. Thus, for animals reared with CHL, we found that late administration of SGRI was able to restore inhibitory strength (Fig. 6). Therefore, our finding indicates that the auditory deprivation due to CHL extended the critical period such that SGRI could induce a positive effect.

Possible mechanism for restoration of inhibitory strength

Injury or inactivation of the cochlea leads to reduced central spontaneous activity during development and into adulthood [57], [58], [59]. Therefore, the enhancement in excitation and...
concomitant decrease in inhibition following severe hearing loss [10] is consistent with a homeostatic response to the decrease in postsynaptic activity [60], [61]. However, if a purely homeostatic mechanism was operative, then GABA_A agonist treatment should not have resulted in more inhibition. Thus, diminished activity does not provide a complete explanation of the outcome. Since these results suggest a non-homeostatic mechanism, it is possible that developing inhibitory synapses display unique responses to manipulations of activity. For example, hearing loss reduces the trafficking of GABA_A subunits into ACx inhibitory synapses [62], and it is possible that GABA_A activation restores this process. Agonist-mediated activation of the inhibitory postsynaptic anchoring protein, gephyrin, can facilitate clustering and restore the GABA_A receptor accumulation [63], [64], [65]. Other GABA_A receptor trafficking mechanisms could operate in synergy with gephyrin to normalize receptor trafficking and restore inhibitory strength [63], [64], [65], [66], [67], [68], [69]. In fact, sustained activation of GABA_A receptors by their potent agonist, muscimol, is also known to facilitate IPSCs via increased trafficking of GABA_A receptors to the postsynaptic membrane [70]. Since the artificial cerebrospinal fluid (ACSF) and internal pipette solution were identical for all groups of animals, it is unlikely that chloride transport mechanisms [71] contribute to our observations.

We have provided evidence that preservation of cortical inhibitory synaptic strength is feasible in animals with moderate or severe hearing loss. Since we do not know the effect of GABA_A agonists on excitatory synapses [72] or voltage-gated channels, it is premature to infer that cortical networks will be fully restored following the pharmacological procedures employed here. However, the impact of GABAergic activation does persist long after treatment ceases [Figs. 4, and 6], suggesting that the potential ameliorative effect of pharmacological treatment can be tested behaviorally [73].

References
1. Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6:377–387.
2. Huang ZJ (2009) Activity-dependent development of inhibitory synapses and innervation pattern: role of GABA signalling and beyond. J Physiol 587:1881–1888.
3. Baronielli L, Braschi C, Spolidoro M, Beginisic T, Maffei L, et al. (2011) Brain plasticity and disease: a matter of inhibition. Neural Plast 2012:1–11.
4. Sale A, Berardi N, Spolidoro M, Baronielli L, Maffei L (2010) GABAergic inhibition in visual cortical plasticity. Front Cell Neurosci 4:1–6.
5. Fagiolini M, Hensch TK (2000) Inhibitory threshold for critical-period activation in primary visual cortex. Nature 404:183–186.
6. Iwai Y, Fagiolini M, Obata K, Hensch TK (2003) Rapid critical period induction by tonic inhibition in visual cortex. J Neurosci 23:6695–6702.
7. Fagiolini M, Fritschy JM, Low K, Mohler H, Rudolph U, et al. (2004) Specific GABA_A circuits for visual cortical plasticity. Science 303:1681–1683.
8. Gramana R, Henschegger C, Jutmer R, Meier JC, Kirschhofer S (2011) Functional hallmarks of GABAergic synapse maturation and the diverse roles of neurotrophins. Front Cell Neurosci 5:1–12.
9. Vale C, Sanes DH (2000) Afferent regulation of inhibitory synaptic transmission in the developing auditory midbrain. J Neurosci 20:1912–1921.
10. Kotak VC, Takesian AE, Sanes DH (2010) Presynaptic GABAergic receptors regulate experience-dependent development of inhibitory short-term plasticity. J Neurosci 30:2716–2727.
11. Sanes DH, Kotak VC (2011) Developmental plasticity of auditory cortical inhibitory synapses. Hear Res 279:140–148.
12. Takesian AE, Kotak VC, Sanes DH (2012) Age-dependent effect of hearing loss on cortical inhibitory synapse function. J Neurophysiol 107:937–947.
13. Takesian AE, Kotak VC, Sanes DH (2010) Presynaptic GABAergic receptors regulate experience-dependent development of inhibitory short-term plasticity. J Neurosci 30:2716–2727.
14. Takesian AE, Kotak VC, Sanes DH (2010) Presynaptic GABAergic receptors regulate experience-dependent development of inhibitory short-term plasticity.
15. Hensch TK, Fagiolini M, Mataga N, Stryker MP, Backeskeov S, et al. (1998) Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282:1504–1508.
16. Chattopadhyaya R, Di Cristo G, Wu CZ, Knott G, Kuhlman S, et al. (2007) GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex. Neuron 54:889–903.
17. He HY, Hodos W, Quinlan EM (2006) Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex. J Neurosci 26:2951–2955.
18. Sale A, Maya Vetencourt JF, Medina P, Cenni MC, Baronielli L, et al. (2007) Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition. Nat Neurosci 10:679–681.
19. Harauzov A, Spolidoro M, DiCristo G, De Paule R, Cancedda L, et al. (2010) Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. J Neurosci 30:361–371.
20. Southwell DG, Froemke RC, Alvarez-Buylla A, Stryker MP, Gandhi SP (2010) Cortical disinhibition induced by inhibitory neuron transplantation. Science 327:1145–1148.
21. Zipancic I, Calcagnotto ME, Piquer-Gil M, Mello LE, Alvarez-Dolado M (2010) Transplantation of GABAergic precursors restores hippocampal inhibitory function in a mouse model of seizure susceptibility. Cell Transplant 19:549–564.
22. Tanaoka DH, Toriumi K, Kubo K, NabeiShima T, Nakajima K (2011) GABAergic precursor transplantation into the prefrontal cortex prevents phencyclidine-induced cognitive deficits. J Neurosci 31:14116–14125.
23. Gleich O, Hanani I, Kittel MC, Klump GM, Struts J (2006) A quantitative analysis of psychometric functions for different auditory tasks in gerbils. Hear Res 220:27–37.
24. Leventhal AG, Wang Y, Pu M, Zhou Y, Ma Y (2003) GABA and its agonists improved visual cortical function in senescent monkeys. Science 300:812–815.
25. Edlen RA, Muthukumaraswamy SD, Freeman TC, Singh KD (2009) Orientation discrimination performance is predicted by GABA concentration and gamma oscillation frequency in human primary visual cortex. J Neurosci 29:15721–15726.
26. Gitis AH, Leventhal DK, Fersterheim BA, Petitbone JR, Berke JD, Kreitzer AC (2011) Selective inhibition of striatal fast-spiking interneurons causes dyskinesias. J Neurosci 31:15272–15273.

27. Cossart R, Christophe Bernard C, Y Ben-Ari Y (2005) Multiple faces of GABAergic neurons and synapses: multiple fates of GABA signaling in epilepsies. Trends Neurosci 28:108–115.

28. Benarroch EE (2007) GABA A receptor heterogeneity, function, and implications for epilepsy. Neurology 68:612–614.

29. Klepner SR, Tobin AJ (2001) GABA signaling: therapeutic targets for epilepsy, Parkinson’s disease and Huntington’s disease. Expert Opin Ther Targets 5:219–239.

30. Chao HT, Chen H, Samaco RC, Xue M, Chalhourou M, et al. (2010) Dyfunction in GABA signalling mediates autism-like stereotypes and Rett syndrome phenotypes. Nature 468:263–269.

31. Xu H, Kotak VC, Sanes DH (2007) Developmental conductive hearing loss disrupts temporal properties in the auditory cortex. J Neurosci 27:9417–9426.

32. Sanes DH, Takács C (1993) Activity-dependent refinement of inhibitory connections. Eur J Neurosci 5:350–374.

33. Noh J, Seal RP, Garver JA, Edwards RH, Kandler K (2010) Glutamate corelease at GABAergic/glycinergic synapses is crucial for the refinement of an inhibitory map. Nat Neurosci 13:232–238.

34. Kaper C, Seidl AH, Schweizer H, Grothe B (2002) Experience-dependent refinement of inhibitory inputs to auditory coincidence-detector neurons. Nat Neurosci 5:247–253.

35. Werthaf F, Alexandrova O, Grothe B, Koch U (2008) Experience-dependent refinement of the inhibitory axons projecting to the medial superior olive. Dev Neurobiol 68:1454–1462.

36. Vale C, Schoellerjemmer L, Sanes DH (2003) Deafness disrupts chloride transporter function and inhibitory synaptic transmission. J Neurosci 23:7516–7524.

37. Franklin SR, Bruno-Behboodi JK, Henkel CK (2008) Bilateral cochlear ablation in postnatal rat disrupts development of banded pattern of projections from the dorsal nucleus of the lateral lemniscus to the inferior colliculus. Neuroscience 154:346–354.

38. Morales B, Choi SY, Kirkwood A (2002) Dark rearing alters the development of GABAergic transmission in visual cortex. J Neurosci 22:8084–8090.

39. Jiao Y, Zhang C, Yanagawa Y, Sun QQ (2006) Major effects of sensory experience on the neocortical inhibitory circuits. J Neurosci 26:8691–8701.

40. Bartley AF, Huang ZJ, Huber KM, Gilson JR (2008) Differential activity-dependent, homostatic plasticity of two neocortical inhibitory circuits. J Neurophysiol 100:1983–1994.

41. Jiao Y, Zhang Z, Zhang C, Wang X, Sakata K, Lu B, Sun QQ (2011) A key mechanism underlying sensory experience-dependent maturation of neocortical GABAergic circuits in vivo. Proc Natl Acad Sci USA 108:12131–12136.

42. Maffei A, Nelson SB, Turrigiano GG (2004) Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation. Nat Neurosci 7:1353–1359.

43. Kliman V, van Rossum MC, Turrigiano GG (2002) Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABA A receptors clustered at neocortical synapses. J Neurosci 22:1328–1337.

44. Hong EJ, McCord AE, Greenberg ME (2008) A biological function for the neuronal activity-dependent component of BDNF transcription in the development of cortical inhibition. Neuron 60:610–624.

45. Liu Y, Bloodgood BL, Hauser JL, Lapan AD, Koon AC, et al. (2008) Activity-dependent regulation of inhibitory synapse development by Npase. Nature 455:1198–1204.

46. Katagiri H, Fajardo M, Hensch TK (2007) Optimization of somatic inhibition at critical period onset in mouse visual cortex. Neuron 53:805–812.

47. Sanes DH (1993) The development of synaptic function and integration in the central auditory system. J Neurosci 13:2627–2637.

48. Kandler K, Friauf E (1995) Development of glycinergic and glutamatergic synaptic transmission in the auditory brainstem of perinatal rats. J Neurosci 15:6890–6904.

49. Sanes DH, Takács C (2003) Deafness disrupts chloride transporter function and inhibitory synaptic transmission. J Neurosci 23:7516–7524.

50. Chirila FV, Rosland KC, Thompson JM, Spiro GA (2007) Development of gerbil medial superior olive: integration of temporally delayed excitation and inhibition at physiological temperature. J Physiol 584:167–190.

51. Dorrn AL, Yuan K, Barker AJ, Schreiner CE, Froemke RC (2010) Developmental sensory experience balances cortical excitation and inhibition. Nature 465:932–936.

52. Sun YJ, Wu GK, Lin BH, Li P, Zhou M, Xiao Z, Tao HW, Zhang LI (2010) Fine-tuning of pre-balanced excitation and inhibition during auditory cortical development. Nature 465:927–931.

53. Sun YJ, Wu GK, Lin BH, Li P, Zhou M, Xiao Z, Tao HW, Zhang LI (2010) Fine-tuning of pre-balanced excitation and inhibition during auditory cortical development. Nature 465:927–931.

54. Mower GD, Berry D, Burchiel JL, Duuby EH (1981) Comparison of the effects of dark rearing and binocular suture on development and plasticity of cat visual cortex. Brain Res 220:253–267.

55. Mower GD, Berry D, Burchiel JL, Duuby EH (1981) Comparison of the effects of dark rearing and binocular suture on development and plasticity of cat visual cortex. Brain Res 220:253–267.

56. Chang EF, Mezrich MM (2003) Environmental noise retards auditory cortical development. Science 300:498–502.

57. Tauci DL, Gast NB, Durham D (2001) Effects of conductive hearing loss on gerbil central auditory system activity in silence. Hear Res 155:124–132.

58. Tisch TX, Rodriguez-Contreras A, Cris T, Wang H, Horst JG, Bergles DE (2010) Calcium action potentials in hair cells pattern auditory neuron activity before hearing onset. Nat Neurosci 13:1050–1052.

59. Harrison RV, Negandhi J (2012) Resting neural activity patterns in auditory brainstem and midbrain in conductive hearing loss. Acta OtoLaryngol 132:409–414.

60. Winner P (2011) Mechanisms of GABAergic homostatic plasticity. Neural Plast 2011:489470.

61. Turrigiano G (2012) Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb Perspect Biol a4005736.

62. Sarro E, Kotak VC, Sanes DH (2008) Hearing loss alters the sub-cellular distribution of pre-synaptic GAD and postsynaptic GABA B receptors in the auditory cortex. Cerebral Cortex 18:2055–2067.

63. Nusser Z, Call-Candy S, Farrant M (1997) Differences in synaptic GABA A receptor number underlie variation in GABA mini amplitude. Neuron 19:697–709.

64. Lascher Bernhard, Tuchs F, Kilpatrick CL (2011) GABA A receptor trafficking-mediated plasticity of inhibitory synapses. Neuron 70:383–409.

65. Mukherjee J, Kretschmannova K, Gouzer G, Marie HM, Ramsden S, et al. (2011) The residence time of GABA A receptors at inhibitory synapses is determined by direct binding of the receptor [alpha]1 subunit to Gephyrin. J Neurosci 31:14677–14687.

66. Kittler JT, Delmas P, Jovanovic JN, Brown DA, Smart TG, Moss SJ (2000) Constitutive endocytosis of GABA B receptors by an association with the adapatin AP2 complex modulates inhibitory synaptic currents in hippocampal neurons. J Neurosci 20:7927–7972.

67. Kittler JT, Moss SJ (2003) Modulation of GABA B receptor activity by phosphorylation and receptor trafficking: implications for the efficacy of synaptic inhibition. Curr Opinion Neurobiol 13:341–347.

68. Vithalani M, Tersumama M, Moss SJ (2011) The dynamic modulation of GABA B receptor trafficking and its role in regulating the plasticity of inhibitory synapses. Physiol Rev 91:1009–1022.

69. Panzanelli P, Gouza BC, Schlatter MC, Benke D, Tyagarajan SK, et al. (2011) Distinct mechanisms regulate GABA A receptor and gephyrin clustering at perisomatic and axo-axonic synapses on CA1 pyramidal cells. J Physiol 589:4909–4918.

70. Meyer DK, Olenik C, Hofmann F, Barth H, Leemhuis J, et al. (2000) Neuronal competition and plasticity in the dorsal nucleus of the lateral lemniscus to the inferior colliculus. Neuroscience 98:255–267.

71. Panzanelli P, Gouza BC, Schmidt MC, Benke D, Tyagarajan SK, et al. (2011) Regulation of somatodendritic GABA A receptor channels in rat hippocampal neurons: evidence for a role of the small GTPase Rac1. J Neurosci 20:6743–6751.

72. Vithalani M, Tersumama M, Moss SJ (2011) The dynamic modulation of GABA B receptor trafficking and its role in regulating the plasticity of inhibitory synapses. Physiol Rev 91:1009–1022.