Theoretical spectra of photoevaporating protoplanetary discs: an atlas of atomic and low-ionization emission lines

Barbara Ercolano¹,²*† and James E. Owen²

¹Department of Physics and Astronomy, University College London, WC1E 6BT
²Institute of Astronomy, Madingley Rd, Cambridge, CB3 0HA

ABSTRACT

We present a calculation of the atomic and low-ionization emission line spectra of photo-evaporating protoplanetary discs. Line luminosities and profiles are obtained from detailed photoionization calculations of the disc and wind structures surrounding young active solar-type stars. The disc and wind density and velocity fields were obtained from the recently developed radiation-hydrodynamic models of Owen et al. that include stellar X-ray and EUV irradiation of protoplanetary discs at various stages of clearing, from primordial sources to inner hole sources of various hole sizes.

Our models compare favourably with currently available observations, lending support to an X-ray driven photoevaporation model for disc dispersal. In particular, we find that X-rays drive a warm, predominantly neutral flow where the O I 6300 Å line can be produced by neutral hydrogen collisional excitation. Our models can, for the first time, provide a very good match to both luminosities and profiles of the low-velocity component of the O I 6300 Å line and other forbidden lines observed by Hartigan et al., which covered a large sample of T-Tauri stars.

We find that the O I 6300 Å and the Ne II 12.8 μm lines are predominantly produced in the X-ray-driven wind and thus appear blueshifted by a few km s⁻¹ for some of the systems when observed at non-edge-on inclinations. We note, however, that blueshifts are only produced under certain conditions: X-ray luminosity, spectral shape and inner hole size all affect the location of the emitting region and the physical conditions in the wind. We caution therefore that while a blueshifted line is a tell-tale sign of an outflow, the lack of a blueshift should not be necessarily interpreted as a lack of outflow. Comparison of spectrally resolved observations of multiple emission lines with detailed model sets, like the one presented here, should provide useful diagnostics of the clearing of gaseous discs.

Key words: accretion, accretion discs – protoplanetary discs – circumstellar matter – planetary systems – stars: pre-main-sequence.

1 INTRODUCTION

The circumstellar environments of newly born low- to intermediate-mass stars have recently been the object of much interest for their potential of hosting planetary systems. These (protoplanetary) discs of dust and gas hold the reservoir of material from which planets may form and provide the medium through which newly formed planets and planetesimals migrate towards or away from their parent star. For this reason no theory of planet formation can be complete without an understanding of how protoplanetary discs evolve and finally disperse.

The dispersal of protoplanetary discs has been studied observationally, through statistics of disc fractions in young clusters (e.g. Haisch, Lada & Lada 2001; Hernández et al. 2008; Mamajek 2009) and on an object-by-object basis through observations of individual so-called transition discs (e.g. Calvet et al. 2002), i.e. discs that appear to be optically thin in the dust in their inner regions, which is generally interpreted as evidence of partial (inside-out) clearing. Whether these discs with inner holes really represent a stage in the evolution/dispersal of protoplanetary discs is still uncertain. Currently, the consensus in the literature is that the dispersal of discs around T-Tauri stars is characterized by a rather fast transition time-scale, evidenced by the fact that very

*E-mail: be@ast.cam.ac.uk
†Present address: School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL.
few objects (typically 10 per cent) are caught in this transition phase (Strom et al. 1989; Skrutskie et al. 1990; Ercolano, Clarke & Robitaille 2009; Kim et al. 2009; Luhman et al. 2010; Muzerolle et al. 2010).

On the basis of these observational results, theoretical efforts have thus focused on identifying a mechanism to provide a two-time-scale dispersal phenomenon, i.e. a mechanism that would allow protoplanetary discs to be detected as optically thick (in the dust) for a few million years and then cause them to disperse very rapidly in about a tenth of their total lifetime, i.e. a time-scale much shorter than what would be expected by viscous evolution alone (Hartmann et al. 1998; Clarke, Gendrin & Sotomayor 2001).

The proposed mechanisms include planet formation itself (e.g. Armitage & Hansen 1999), grain growth (Dullemond & Dominik 2005), photophoresis (Krauss et al. 2007), MRI-driven winds (Suzuki & Inutsuka 2009) and photoevaporation (Clarke et al. 2001; Alexander, Clarke & Pringle 2006; Richling & Yorke 2000; Ercolano et al. 2008b; Ercolano, Clarke & Drake 2009a; Gorti & Hollenbach 2009; Owen et al. 2010). Understanding which (or what combination) of the proposed mechanisms dominates dispersal is key to understanding disc evolution and thus provides important constraints on planet formation theories by setting the time-scale over which planets may form and migrate.

Photoevaporation by soft X-ray radiation (100 eV < E < 1 keV) has been shown to drive powerful winds (Ercolano et al. 2008b; Ercolano, Clarke & Drake 2009a; Gorti & Hollenbach 2009), able to disperse the discs rapidly once the accretion rates have fallen to values lower than the photoevaporation rates (∼10^{-6} M_{⊙} yr^{-1} for X-ray luminosities of 2 × 10^{30} erg s^{-1}; Owen et al. 2010a; from now on O10). The mass-loss rates are roughly proportional to the impinging X-ray luminosity (Ercolano et al. 2009a), meaning that the expected mass-loss rates (and hence accretion rates) for solar-type stars span over the two–three decade range of X-ray luminosities (e.g. Preibisch et al. 2005; Güdel et al. 2007). The recent observation of shorter disc lifetimes in low-metallicity environments (Yasui et al. 2009) has been interpreted as further evidence for X-ray photoevaporation acting as the main disc dispersal mechanism in those clusters (Ercolano & Clarke 2009).

While encouraging, the evidence in favour of photoevaporation produced so far consists of statistics derived from observations of disc dispersal based on the evolution of their dust component. However, dust represents only a per cent or so of the total disc mass and the evolution of the dust and gas component of a disc do not necessarily go hand in hand (e.g. Takeuchi, Clarke & Lin 2005; Alexander & Armitage 2007). In the last few years, observations of emission lines from warm atomic and low-ionization gas in the inner region of discs are starting to provide some helpful clues of the physical conditions of the gaseous component in these planet-forming regions (Hartigan, Edwards & Ghandour 1995; Espaillat et al. 2007; Herczeg et al. 2007; Pascucci et al. 2007; Ratzka et al. 2007; Flaccomio et al. 2009; Najita et al. 2009; Pascucci & Sterzik 2009). Line emission from low-ionization and atomic species is of particular interest, as it is likely to trace material that is located in the warm upper layers of the disc atmosphere or in the flow itself, allowing the response of the gas to irradiation from the central star to be probed and understood. In particular Pascucci & Sterzik (2009) reported evidence of a blueshifted Ne II fine structure line at 12.8 μm, the blueshift is consistent with the line being formed in a slow-moving (a few km s^{-1}) disc wind (Alexander 2008). Earlier spectrally resolved observations of optical forbidden lines in T-Tauri stars (Hartigan et al. 1995, from now on HEG95), including O6300 Å, also revealed blueshifted low-velocity components, interpreted as evidence for a disc wind. The interpretation of these atomic and low-ionization emission line profiles is key to understand the kinematic structure of the warm upper disc layers and its wind. In this paper we provide the tools to exploit currently available and future observations using the framework of the X-ray-driven photoevaporation model of O10 (further discussed in Section 2).

Furthermore, with the Herschel Space Telescope and, later, James Webb Space Telescope, committed to studying planet formation through the characterization of discs, it is both timely and important to provide a solid theoretical framework for the interpretation of these new observations. In this context this paper has two main aims: (i) to provide an atlas of atomic and low-ionization emission line intensities and profiles predicted for the photoevaporating protoplanetary discs of O10 at various stages in their evolution; (ii) to compare the predictions of O10′s X-ray driven photoevaporation model with currently available observations and search for the ‘smoking gun’ of photoevaporation. We therefore list line intensities for the brightest lines and calculate line profiles for some of the more promising wind/disc tracers. We show results for discs at different stages of clearing, i.e. photoevaporating primordial discs where an inner hole is yet to form and systems in a more advanced clearing stage with inner holes (in dust and gas) of increasing radius. We note that, while several authors have presented theoretical calculations of emission line luminosities and profiles from T-Tauri discs (e.g. Glassgold, Najita & Igea 2007; Ercolano et al. 2008b; Gorti & Hollenbach 2008; Meijerink, Glassgold & Najita 2008; Hollenbach & Gorti 2009; Schisano, Ercolano & Güdel 2010), this is the first time that a fully self-consistent radiation-hydrodynamical and photoionization calculation is attempted, which provides us with the three-dimensional distribution of gas velocities and emissivities in the heated layers of the disc and its wind.

A comparison of the calculations presented in this paper with available observations suggests that X-ray-heated discs with hydrodynamically escaping winds produce emission line intensities and profiles that are consistent with those that are currently being observed. It is hoped that the results presented here may be used for the interpretation of future observational data which will be crucial to further test the validity of the X-ray photoevaporation scenario as a dominant disc-clearing mechanism.

The paper is organized as follows. Section 2 briefly describes the radiation-hydrodynamic disc models and lists the input parameters. Section 3 presents the results, including the emission line intensities and the predicted profiles for selected transitions. Sections 4 and 5 deal with a comparison of our results with currently available data. The main points of the paper are briefly summarized in Section 6.

2 THE RADIATION-HYDRODYNAMICS MODELS

Energetic radiation from young stellar objects (YSOs) ionizes and heats the gas in the surrounding protoplanetary disc. The gas expands as a result of the extra heating and some regions of the disc atmosphere may become unbound, giving rise to a photoevaporative wind from the disc surface. A calculation of accurate mass-loss rates and of the density and geometry of the flow requires the simultaneous solution of the two-dimensional radiative transfer and
the hydrodynamics problem. O10 recently presented the first fully self-consistent radiation hydrodynamics calculations of an X-ray plus EUV photoevaporated protoplanetary discs. Ercolano et al. (2009) and O10 found irradiation by soft X-rays to be most efficient at producing a photoevaporative disc wind with mass-loss rates of $\sim 10^{-8} \ M_\odot \ \text{yr}^{-1}$ for X-ray luminosities of $10^{30} \ \text{erg s}^{-1}$. When coupled with viscous evolution, these wind rates are sufficiently large to produce an inner hole in the disc, when the accretion rate drops significantly (a factor ~ 10) below the wind mass-loss rates. The remaining material is then dispersed in the final 15–20 per cent of the disc lifetime. In this paper we refer to EUV radiation as having energies between 13.6 and 100 eV, soft X-ray radiation between 100 eV and 1 keV, and hard X-ray radiation for energies larger than 1 keV. The total 'X-ray' luminosity is defined between 0.1 and 10 keV.

Two-dimensional hydrodynamic calculations were performed using a parametrization of the gas temperature based on the results of three-dimensional radiative transfer and photoionization calculations. Radiative equilibrium was assumed and verified a posteriori by ensuring that the thermal time-scale is shorter than the flow time-scale. The hydrodynamic calculations were carried out using a modified version of the ZEUS-2D code (Stone & Norman 1992a,b; Stone, Mihalas & Norman 1992) which includes heating from the X-ray and EUV radiation from a central YSO. The radiative transfer and photoionization calculations were carried out using the three-dimensional MOCASSIN code (Ercolano et al. 2003; Ercolano, Barlow & Storey 2005; Ercolano et al. 2008a) modified according to Ercolano et al. (2008b,a). The atomic data base included opacity data from Verner et al. (1993) and Verner & Yakovlev (1995), energy levels, collision strengths and transition probabilities from Version 5.2 of the CHIANTI data base (Landi & Phillips 2006, and references therein) and the improved hydrogen and helium free–bound continuous emission data of Ercolano & Storey (2006).

The models presented here are appropriate for a $0.7 \ M_\odot$ star; models for lower–higher-mass stars are currently being developed and will be presented in a future paper. We vary the X-ray luminosity to span the observed range for classical T-Tauri stars (cTTs) of this mass ($2 \times 10^{30} \leq L_x \leq 2 \times 10^{30} \ \text{erg s}^{-1}$; e.g. Preibisch et al. 2005; Güdel et al. 2007) and consider discs at different stages of dispersal, from discs extending all the way into their dust destruction radius ('primordial discs') to discs with cleared inner holes of varying sizes ($R_\text{in} = 8.3, 14.2$ and 30.5 AU, models A, D and G in O10, respectively). The ionizing spectra used were calculated by Ercolano et al. (2009a), using the plasma code of Kashyap & Drake (2000) from an emission measure distribution based on that derived for RS CVn type binaries by Sanz-Forcada, Brickhouse & Dupree (2002), which peaks at 10^5 K and fits to Chandra spectra of T-Tauri stars by Maggio et al. (2007), which peaks at around $10^{7.5}$ K. For the remainder of this paper we will refer to the models by their X-ray luminosity ($0.1 \text{keV} < h\nu < 10 \text{keV}$); we note, however, that the irradiating spectrum has a significant EUV component ($13.6 \text{eV} < h\nu < 0.1 \text{keV}$) with $L_{\text{EUV}} = L_x$ (see Ercolano et al. 2009a for further discussion).

The following elemental abundances were adopted, given as number densities with respect to hydrogen: He/H = 0.1, C/H = 1.4×10^{-4}, N/H = 8.32×10^{-5}, O/H = 3.2×10^{-4}, Ne/H = 1.2×10^{-4}, Mg/H = 1.1×10^{-4}, Si/H = 1.7×10^{-4}, S/H = 2.8×10^{-5}. These are solar abundances (Asplund, Grevesse & Sauval 2005) depleted according to Savage & Sembach (1996). D’Alessio, Calvet & Hartmann (2001) consider discs composed of a bimodal dust distribution, where atmospheric dust follows the standard MRN model and interior dust consists of larger grains with a size distribution still described by a power law of index -3.5, but with $a_{\text{min}} = 0.005 \ \mu \text{m}$ and $a_{\text{max}} = 1 \ \text{mm}$. The transition between atmospheric and interior dust occurs at a height of 0.1 times the mid-plane gas scaleheight.

As we are mainly interested in regions well above the transition point, we have chosen for simplicity to use atmospheric dust everywhere. Following D’Alessio et al. (2001), the dust to gas mass ratio of graphite is 0.00025 and that of silicates is 0.0004.

We refer the reader to Ercolano et al. (2008b,a) and O10 for further details about the codes used and the model set-up.

2.1 Differences in photoevaporation models

All photoevaporation models are based on the idea that a source of radiation (internal – e.g. the YSO, or external, e.g. a nearby OB star) heats up the gas in the disc, depositing enough energy to leave the gas unbound. Low-mass YSOs that are far from external sources of energetic radiation, e.g. a typical YSO in Taurus, are the only source of irradiation for their discs. A typical YSO produces chromospheric EUV ($13.6 \text{eV} \leq E < 100 \text{eV}$) and X-ray radiation ($E > 100 \text{eV}$), with luminosities for the latter spanning several orders of magnitude around $10^{30} \ \text{erg s}^{-1}$. The EUV luminosities are poorly known as they cannot be directly observed, but they are estimated to be of order $10^{31} \ \text{phot s}^{-1}$ (Alexander, Clarke & Pringle 2005). The YSO also radiates copiously in the FUV, both from the chromosphere and due to accretion shocks (which may also contribute some of the X-ray emission). Chromospheric FUV luminosities are comparable to the observed X-ray luminosities and accretion luminosities proportional to the accretion rate of the object.

Theoretical photoevaporation models that account for one or a combination of EUV, X-ray and FUV have been constructed by a number of authors and it is worthwhile to point out some of the basic differences amongst the current models. In terms of basic physics, the models can be split into two categories: (i) diffuse field and (ii) direct field dominated. The standard primordial disc EUV models of Hollenbach et al. (1994), Clarke et al. (2001) and Font et al. (2004) belong to the first category. In these models the heating of the upper layers of the gaseous disc is dominated by recombination photons from within the flow itself. The mass-loss rates in this case are accurately determined by hydrodynamical calculations and more importantly are the mass-loss rate profiles (Font et al. 2004). Mass-loss rates are found to be of order $10^{-10} \ M_\odot \ \text{yr}^{-1}$ with only a square-root dependence on the ionizing luminosity. The mass-loss radial profile is narrowly peaked at a few AU for solar-type stars.

As a result of the combined effect of EUV photoevaporation and viscous draining, most discs would eventually develop an inner hole when the accretion rates fall to a level comparable to the wind rates (Clarke et al. 2001; Alexander et al. 2006). At this point the models become direct field dominated (i.e. dominated by radiation from the central source) as the inner disc is removed and stellar EUV photons can directly reach the inner edge of the photoevaporating disc.

The FUV photoevaporation model of Gorti & Hollenbach (2009) and the X-ray photoevaporation models of Ercolano et al. (2008b, 2009a) and O10 also fall in the direct field dominated category, both during their primordial and inner hole phase. For models in this category, the heating is more or less set by the direct flux from the central source. Determination of accurate mass-loss rates relies on the ability to solve the radiative transfer and thermal calculation problem within a hydrodynamical calculation. This has only been done so far for the EUV model (Clarke et al. 2001; Font et al. 2004; Alexander et al. 2006) and the X-ray model (Owen et al. 2010),
both in the primordial and inner hole phase. A hydrodynamical calculation has not been performed for the FUV model and mass-loss rates in this case have been estimated by way of an approximation (Gorti & Hollenbach 2009), meaning that the values obtained carry potentially large uncertainties.

2.1.1 Temperature determination

The temperature structure in the upper layers of the gaseous disc is crucial in determining the flow launching zone and mass-loss rates (hence the wind structure). The thermal balance of EUV and X-ray irradiated models is set by heating by photoionization against cooling which is dominated by collisionally excited line emission. The physics and atomic data involved are reasonably well known. Ercolano et al. (2008b) describe all the heating and cooling mechanisms for the X-ray model in some detail. It is worth noting here that Ercolano et al. (2008b, 2009a) and O10 use the MOCASSIN code (Ercolano et al. 2003, 2005, 2008a) which does not include molecular cooling in its thermal balance. The lack of molecular cooling has been criticized by Gorti & Hollenbach (2009) as a possible source of uncertainty. However, we note that the launching region and the associated sonic surface occurs in a region where all molecules have already dissociated. While the X-rays can deposit energy in the deep molecular layers, their largest thermal impact is by far in the upper photodissociated layers. Furthermore, even at large column densities, where molecular cooling can occur, fig. 4 of Glassgold, Najita & Igea (2004) clearly shows that it is quickly overwhelmed by dust–gas collisions, which are fully implemented in MOCASSIN. We therefore conclude that the omission of molecular cooling is not a significant source of uncertainty in our models (see also further tests and discussion in O10).

In the FUV case explored by Gorti & Hollenbach (2009), the heating of the gas is dominated by photoelectric emission from dust grains, with PAHs completely dominating the heating channels (see, e.g. fig. 4 of Gorti & Hollenbach 2008). There are two problems with this approach. The first is that the photoelectric yields are very poorly known, with uncertainties that could be as large as 2 orders of magnitude (e.g. compare Abbas et al. 2006, with Feuerbacher et al. 1972). The other complication is the fact that the abundance (or even presence) of PAH in T-Tauri discs is highly uncertain with PAHs detections only in approximately 8 per cent of cases (e.g. Geers et al. 2006). Indeed, models predict that PAHs in the discs’ upper layers are easily destroyed by X-ray irradiation (e.g. Siebenmorgen & Krügel 2010). Even assuming that photoelectric yields are correct, the uncertainty in the abundance/presence of PAHs in the disc makes photoelectric heating almost a free parameter in these calculations and the temperature structure largely uncertain.

3 RESULTS

The results of our line luminosities and profile calculations (for a subset of the lines) are presented in this section. We note that for simplicity we choose not to follow the convention of using square brackets around forbidden transitions.

3.1 Atlas of line intensities

Tables 1–4 list the emission line spectra for the models described in the previous section. The spectra were calculated using the MOCASSIN code and using, as the input density structure, the output of our modified ZEUS-2D radiation-hydrodynamic calculations. The disk atmosphere is optically thin in the listed lines and therefore radiative transfer calculations in the lines are not necessary. Only a selected subset of lines is included here; however, the full set is available upon request from the authors.

The tables are organized as follows. Tables 1 and 3 list the luminosities of the collisionally excited transition of heavy elements and Tables 2 and 4 list a selection of hydrogen and helium recombination lines. Tables 1 and 2 show the results for the primordial disc models with varying X-ray luminosity (log(L_X) = 28.3, 29.3 and 30.3 erg s$^{-1}$) while Tables 3 and 4 show the results for the inner hole models irradiated by log(L_X) = 30.3 erg s$^{-1}$ and with varying hole sizes.

A casual inspection of these tables immediately reveals that the integrated line luminosities are not very sensitive (factors of 2–5 at most) to the size of the inner hole for the range considered here (8.3 AU ≤ R_{in} ≤ 30.5 AU). However, inner hole models do produce, in most cases, collisionally excited lines that are approximately a factor of 2 more luminous compared to those of a primordial disc with the same X-ray luminosity. This is due to the different physical conditions in inner hole winds that are less dense and, most importantly, on average warmer than primordial disc winds.

Line luminosities are, in general, correlated with X-ray luminosity; the response of different lines to changes in L_X is, however, different for different transitions, and depends both on how sensitive to changes in luminosity a line’s emitting region is and on the dependence of a given emission line on temperature, density or ionization structure. A number of factors are relevant to determining which region contributes to the emission of a given line. The ionic abundance is of course important; collisionally excited lines of Ne II and O I require Ne$^+$ and O$^+$, as well as colliding particles, like (e.g.) electrons and/or neutral hydrogen. H I recombination lines arise in a region where there is a non-zero abundance of H$^+$ and H. Another key property is temperature. Collisionally excited lines depend exponentially on the gas temperature through the Boltzmann term and therefore preferentially trace the hotter regions. In the case of collisionally excited lines in the infrared, however, this temperature dependence is weakened by the fact that the gas temperature is generally much higher than the line excitation temperature, causing the Boltzmann term to tend to unity. Recombination lines, on the other hand, only have an inverse square-root dependence on temperature and therefore are emitted preferentially in cooler regions, as long as these are not completely neutral. Gas density also influences the emissivity of collisionally excited lines through critical density arguments.

It should also be noted that increasing the X-ray luminosity not only affects the ionization rate of the wind, but also affects its density. Higher luminosities drive a more vigorous (denser) wind, with a roughly linear correlation between L_X and gas density in the wind. For the primordial disc models presented here, the scaling of the density with L_X can be understood simply. Given the wind is thermally driven, the specific energy requirements to drive the flow will only depend on the local value of the effective potential. Once a freely expanding wind is established, it will remain at an approximately constant temperature. Since for transonic/sonic flows the velocity is strongly coupled to the sound speed of the gas, which in turn only depends on the value of the gas temperature, then, for all density and temperature regimes we are interested in, this local specific energy requirement is equivalent to a local temperature condition in the
Table 1. Collisionally excited lines. Primordial disk models are with varying X-ray luminosity. Wavelengths are in vacuum. Only selected lines are listed here; the full set is available from the authors upon request.

Species	Wavelength (Å)	Line luminosity (L⊙)	30.3	
	log(LX) = 28.3	29.3	30.3	
C I	8729.51	1.79E-08	8.21E-08	5.78E-07
C I	9826.85	4.32E-08	3.67E-08	6.23E-07
C I	9852.99	1.27E-07	1.06E-08	1.16E-06
C II	1577287	8.80E-08	2.80E-07	6.64E-07
C II	2325.400	3.13E-09	5.60E-09	9.43E-07
C II	2324.210	3.13E-09	5.60E-09	9.43E-07
C II	1334.530	2.08E-10	4.35E-09	7.42E-08
C II	2328.840	3.73E-09	6.67E-09	1.11E-06
C II	2327.640	9.84E-09	1.54E-07	1.85E-06
C II	2326.110	2.08E-08	3.57E-09	5.56E-09
C II	1335.660	4.02E-11	8.60E-10	1.48E-08
C II	1335.710	3.58E-10	7.83E-09	1.34E-07
O I	6302.030	2.83E-07	1.93E-06	1.25E-05
O I	6365.530	9.10E-08	6.28E-07	4.01E-06
O I	2973.160	6.11E-10	9.18E-09	1.06E-07
O I	5578.890	5.22E-09	7.83E-08	9.12E-07
O II	3729.880	1.79E-08	1.06E-07	6.49E-07
O II	3727.090	3.58E-08	2.51E-07	1.85E-06
O II	2470.970	2.23E-09	2.70E-08	2.78E-07
O II	2471.090	6.68E-09	8.70E-08	8.65E-07
O II	7320.910	1.79E-08	2.12E-08	2.16E-07
O II	7321.980	4.17E-08	5.41E-08	5.41E-08
O III	7331.700	2.83E-09	3.57E-09	3.55E-07
Ne II	7332.780	2.23E-09	2.90E-08	2.93E-07
Ne II	128155.8	9.25E-09	5.51E-07	5.41E-06
Ne III	155545.2	1.01E-08	1.16E-07	1.06E-06
Ne III	3869.850	2.98E-09	6.28E-08	8.34E-07
Ne III	360230.6	5.96E-10	6.47E-09	5.72E-08
Ne III	3968.580	8.80E-10	1.93E-08	2.47E-07

Table 2. Recombination Lines of H, He i and He ii. Primordial disc models are with varying X-ray luminosity. Wavelengths are in vacuum. Only selected lines are listed here; the full set is available from the authors upon request.

Transition	Wavelength (Å)	Hydrogen	Line luminosity (L⊙)	30.3
	log(LX) = 28.3	29.3	30.3	
H I	6564.696	4.62E-07	2.77E-06	1.10E-05
4-2	4862.738	7.87E-08	9.18E-07	3.20E-06
5-2	4541.730	3.52E-08	4.26E-07	1.43E-06
6-2	4102.935	1.94E-08	2.41E-07	7.97E-07
5-3	12821.67	1.62E-08	1.67E-07	6.70E-07
6-3	10941.16	8.38E-09	9.13E-08	3.40E-07
7-3	10052.19	5.03E-09	5.70E-08	2.04E-07
8-3	9548.649	3.35E-09	3.91E-08	1.35E-07
7-4	21661.29	3.05E-09	3.01E-08	1.26E-07
7-5	46537.93	2.02E-09	1.88E-08	9.64E-08
7-6	123719.3	1.68E-09	1.23E-08	7.99E-08
8-7	190619.3	7.79E-10	5.50E-09	3.76E-08
9-7	113087.2	5.07E-10	3.86E-09	2.35E-08
44P-2D	4473.000	8.17E-10	1.63E-08	3.50E-08
3P-2S	3890.000	1.81E-09	3.79E-08	8.50E-08
44P-2D	3877.000	2.38E-09	4.79E-08	1.03E-07
2P-2S	10833.000	1.82E-08	4.43E-07	1.10E-06

launch region.2 Thus the spatial variation of temperature within the flow is approximately set by the mass of the central star, and will be independent of the local density and X-ray luminosity. Given also that temperature can be expressed as a monotonic function of the ionization parameter, the spatial variation of the ionization parameter is approximately fixed by the mass of the central star. Hence, using the definition of the ionization parameter ξ = LX/n2 and given the value of the ionization parameter is spatially fixed, at a point ξ = constant3 we find that gas density n ∝ LX, as can be seen in the primordial discs shown in Fig. 3. An element-by-element discussion, comments on observability of the various transitions and a comparison with observations and other theoretical investigation are presented in Section 4.

3.2 Line profiles

We have used our two-dimensional map of emissivities and gas velocities to reconstruct a three-dimensional cube of the disc and calculate the line-of-sight emission profiles for a number of transitions. The emissivities are calculated using 120 radial points

1 Note that throughout this paper we use (r, θ, φ) and (R, θ, z) to distinguish between spherical and cylindrical polar coordinates, respectively.

2 We have and will implicitly assume that the total input energy from the high-energy radiation is sufficient to balance the work done driving any flow. See O10 of a detailed discussion of this condition in relation to X-ray driven photoevaporative winds.

© 2010 The Authors. Journal compilation © 2010 RAS, MNRAS 406, 1553–1569
Collisionally excited lines. Inner hole disk models are with varying hole size. Wavelengths are in vacuum. Only selected lines are listed here; the full set is available from the authors upon request.

Table 4. Recombination lines of H, He\(\text{I}\) and He\(\text{II}\). Inner hole disc models are with varying hole size. Wavelengths are in vacuum. Only selected lines are listed here; the full set is available from the authors upon request.

Species	Wavelength (Å)	Line luminosity (L\(_\odot\))	R\(_{in} = 8.3\) AU	R\(_{in} = 14.2\) AU	R\(_{in} = 30.5\) AU
C I	8729.51	5.57E-07	5.57E-07	5.38E-07	2.25E-06
C I	9826.85	7.25E-07	5.57E-07	7.02E-07	1.21E-07
C I	9852.99	1.30E-06	1.66E-06	2.09E-06	1.99E-06
C II	15772.87	1.12E-06	1.41E-06	2.09E-06	1.90E-06
C II	2325.400	5.03E-07	4.48E-07	3.96E-07	9.13E-07
C II	2324.210	5.93E-07	4.81E-07	4.26E-07	9.31E-07
C II	1334.530	1.04E-07	9.13E-08	8.99E-08	7.22E-08
C II	2328.840	5.99E-07	5.31E-07	4.71E-07	9.13E-07
C II	2327.640	1.65E-06	1.49E-06	1.27E-06	1.99E-06
O I	6302.030	4.51E-05	4.48E-05	3.59E-05	1.30E-06
O I	6365.530	1.39E-05	1.41E-05	1.12E-05	6.42E-06
O I	2973.160	1.73E-08	1.07E-08	5.98E-09	8.30E-08
O I	5578.890	1.47E-07	9.13E-08	5.16E-08	6.39E-08
O II	3729.880	1.91E-06	2.32E-06	3.44E-06	7.05E-08
O II	3727.090	5.47E-06	6.64E-06	8.96E-06	2.88E-08
O II	2470.970	9.55E-07	9.13E-07	7.40E-07	6.07E-07
O II	2471.090	3.30E-06	3.15E-06	2.76E-06	4.07E-06
O II	7320.910	7.73E-07	6.97E-07	5.91E-07	1.03E-06
O II	7321.980	2.08E-08	1.99E-06	1.72E-06	5.12E-05
O II	7331.700	1.30E-06	1.16E-06	9.72E-07	3.08E-07
O II	7332.780	1.12E-06	1.07E-06	8.99E-07	2.81E-07
O III	883392.2	7.03E-08	7.22E-08	1.12E-07	7.32E-07
O III	518134.7	2.78E-07	3.23E-07	4.71E-07	1.41E-07
O III	4960.290	5.38E-07	3.98E-07	1.87E-06	3.65E-06
O III	2321.670	1.39E-08	6.22E-09	6.88E-08	1.76E-07
O III	5008.240	1.65E-06	1.16E-06	5.53E-06	8.87E-07
O III	1666.150	1.91E-08	7.30E-09	1.12E-07	9.13E-06
O III	4364.450	1.56E-08	7.05E-09	7.48E-08	1.04E-07
Ne II	128155.8	1.21E-05	1.16E-05	1.04E-05	2.34E-07
Ne III	155545.2	2.43E-06	2.90E-06	3.44E-06	5.73E-06

\(N_e = 120\) and 1500 height points \(N_z = 1500\). By assuming azimuthal symmetry about the z-axis, and reflection symmetry about the disc mid-plane the resultant three-dimensional grid has dimensions \(N_e \times 2N_z \times N_{\phi}\). We adopted a value of \(N_{\phi} = 130\) and checked that this was large enough to fully resolve the profiles. For the chosen emission lines the disc atmosphere is optically thin and therefore we assume that the line contribution of each parcel of gas can escape freely along the line of sight, provided that this does not intercept the mid-plane (e.g. Alexander 2008; Schisano et al. 2010). For almost edge-on inclinations escape columns are large enough for dust attenuation to start playing a role. This is not accounted for in this work and the magnitude of this effect depends largely on poorly known parameters such as dust-to-gas ratios, the degree of dust settling and grain growth in the disc.

The line luminosity is then computed by including a Doppler broadening term in each cell. Hence the line luminosity at a given velocity \(v\) is computed by evaluating the following integral by direct summation:

\[
L(v) = \int d^3r \frac{\langle \epsilon(r) \rangle}{2\pi v_{\text{disc}}(r)^2} \exp \left(-\frac{(v - v_{\text{gas}}(r))^2}{2v_{\text{disc}}^2} \right),
\]

where \(\langle \epsilon(r) \rangle\) is the volume averaged power emitted at a point \(r\), \(v_{\text{gas}}(r)\) is the projected gas velocity along the line of sight and \(v_{\text{disc}}\) is the
Figure 1. Line profiles for (from the top) Ne II 12.8 μm, O I 6300 Å and a generic hydrogen recombination line. The left, middle and right panels are for primordial disc models irradiated by \(\log(L_X) = 28.3, 29.3 \) and 30.3, respectively. These line profiles are all normalized, such that \(\int_{-40}^{40} L[v/(\text{km s}^{-1})] \, dv = 1 \).

The profiles are colour-coded according to their inclination angle; a colour legend is given in the top-left panel.

Fig. 2 shows the same line profiles for inner hole models with \(\log(L_X) = 30.3 \) erg s\(^{-1} \) and inner hole radii of 8.3 AU (left), 14.2 AU (middle) and 30.5 AU (right). Profiles are computed for 10 inclination angles from 0° to 90° degrees in steps of 10°. The profiles were degraded to an instrumental resolution of \(R = 100,000 \), typical of current ground-based facilities.

Fig. 3 shows two-dimensional density maps (colour gradients) of the primordial disc (left panels) and inner hole models (right panels), respectively, with velocity vectors overlain. The models from top to bottom are for increasing X-ray luminosities (left) and increasing inner hole radii (right). The black, magenta and yellow contours delineate the region containing 85 per cent of the emission for the H I recombination lines, the Ne II 12.8 μm and the O I 6300 Å, respectively. The noisy appearance of some of the emitting regions are due to Monte Carlo fluctuations and the imposition of a hard cut-off to draw the contours. We have checked that the noise does not affect luminosities and line profiles to more than a 5 per cent level.

The O I 6300 Å line (yellow contours) originates almost exclusively in the wind or in the very inner (hot and bound-\(R < 1 \) AU) region of the disc (in the primordial case), which is where the temperatures are high enough to populate its upper level. The same would be true for all collisionally excited optical and UV lines. It is the contribution from the bound hot inner disc that produces the ‘winged’ profiles for the O I 6300 Å clearly seen in the lower-luminosity primordial models.

4 The Ne II 15.5 μm region is very similar.
Figure 2. Line profiles for (from the top) Ne II 12.8 μm, O I 6300 Å and a generic hydrogen recombination line. The left, middle and right panels are for inner hole disc models irradiated by log(L_X) = 30.3, with inner holes of radius 8.3, 14.2 and 30.5, respectively. These line profiles are all normalized, such that ∫ [-40, 40] L[v/(km s⁻¹)] dv = 1. The profiles are colour-coded according to their inclination angle; a colour legend is given in the top-left panel.

The Ne II mid-infrared (MIR) lines can arise in much cooler regions and therefore, while still predominantly produced in the wind, they are not confined to the hot inner layers, but span a larger region. The Ne II emitting region (magenta contours in Fig. 3) and line profiles vary significantly with X-ray luminosity, tracing the highest electron density regions [L(Ne II) ∝ n_e²].

The profiles of H I recombination lines are more complicated as they have contributions arising both from the wind and from the bound disc. However, as will be discussed later, our models underpredict the luminosities of observed IR hydrogen recombination lines by 1 or 2 orders of magnitude (Pascucci et al. 2007; Ratzka et al. 2007; Najita et al. 2010) and underpredict the luminosities of observed Paβ and Brγ lines by 4 orders of magnitude (Muzerolle, Hartmann & Calvet 1998), implying that the emission region is spread over a large radial domain. The resulting line profiles may therefore bear little resemblance to those shown in this paper. The left panels of Fig. 3 (black contours) show that in the primordial disc models there is only a small wind contribution, which results in the hydrogen recombination profiles showing no blueshift at all. While inner hole models have larger wind contributions to the H I recombination lines, the resulting profiles are still not blueshifted, although this is virtually true for all line profiles from inner hole models, even those formed exclusively in the wind. The reason why inner hole models produce very small or no blueshifts is that at low inclinations both the blueshifted and redshifted components of the wind are visible through the hole, resulting in only a small, often undetectable, blueshift. At higher inclination the lines are Keplerian and no blueshift is expected anyway. We will discuss the significance of this result in the next section, when comparisons are made with observations, but we note at this point that this is only true if the winds are optically thin to the lines in question.

To aid comparison with observations we have summarized the main profile characteristics in Tables 5 and 6. These include the velocity of the peak(s), v_peak, the full width at half-maximum (FWHM) and the profile ‘type’. We have classified the profiles with four main types as shown in Fig. 4. Type ‘A’ is a single peaked profile that could be well approximated by a Gaussian. Type ‘B’ is a single peaked Gaussian-like profile, but with large wings. This is generally produced when there is both a wind and bound disc contribution to the line and/or the emission region is spread over a large radial domain. Type ‘C’ is a double-peaked profile, in this case the two
values of v_{peak} are given. Type ‘D’ includes profiles where two clear peaks are not resolved, yet the profile is broad, flat-topped or significantly asymmetric; in this case the value at the centre of the line (i.e. the middle of the FWHM segment, horizontal dashed red line in Fig. 4) is given; strictly speaking, this is not the location of the ‘peak’; however, we keep the label v_{peak} for simplicity.

3.3 Ne II 12.8 μm and O I 6300 Å radial profiles

The model’s radial intensity profiles of the Ne II 12.8 μm and of the O I 6300 Å line are shown in the left and right panels of Fig. 5. The top panels show the response of the radial intensity profiles of these lines to changes in the X-ray luminosity. Wider profiles are
expected for lower X-ray luminosities since these drive a wind that is less dense than in the higher X-ray luminosity case, meaning that the emission region is more extended. The bottom panels of Fig. 5 show the radial intensity profiles for discs irradiated by the same X-ray luminosity \((2 \times 10^{38} \text{ erg s}^{-1})\), with the black line representing a primordial disc and the red, green and blue lines representing discs with inner holes of size 8.3, 14.2 and 30.5 AU, respectively. Both the Ne ii and O i lines show the radial intensity profiles for discs irradiated by the same X-ray luminosity (28.3, 29.3 and 30.3 erg s\(^{-1}\)). It can be understood in a qualitative way. The lack of a simple relation between line luminosity and inclination or X-ray luminosity is particularly evident in the behaviour of the O i line. (b) The emitting region that dominates the luminosity for a given line can be considered a function of three variables: temperature, gas density and electron/ion fraction. All three influence the emissivity of a given line. The emitting region is more extended. The bottom panels of Fig. 5 show the radial intensity profiles for discs irradiated by the same X-ray luminosity (28.3, 29.3 and 30.3 erg s\(^{-1}\)). It can be understood in a qualitative way. The lack of a simple relation between line luminosity and inclination or X-ray luminosity is particularly evident in the behaviour of the O i line. (b) The emitting region that dominates the luminosity for a given line can be considered a function of three variables: temperature, gas density and electron/ion fraction. All three influence the emissivity of a given line.

3.4 Caveats and limitations

Before moving on to a comparison of our results with observations, it is worth stating a few caveats and limitations of our models.

(i) It is important to realize that the current models can only provide a snapshot of the various flow solutions and line profiles that will arise. This means that it is currently not possible to present any form of ‘interpolation’ scheme for the line profiles and only general trends can be qualitatively extracted. There are two main reasons for this: (a) Most of the emitting regions (see Fig. 3) are located in the subsonic region of the flow. In this region the flow velocity and direction are strongly and non-linearly affected by the interaction between the centrifugal force term and velocity divergence along the stream line (Ercolano et al. 2009a). Hence the variation of the blueshift with inclination and X-ray luminosity can only be understood in a qualitative way. The lack of a simple relation between line luminosity and inclination or X-ray luminosity is particularly evident in the behaviour of the O i line. (b) The emitting region that dominates the luminosity for a given line can be considered a function of three variables: temperature, gas density and electron/ion fraction. All three influence the emissivity of a given pocket of gas and the effect they have on each other again arises from highly non-linear phenomena, meaning the emission region can change smoothly with X-ray luminosity (e.g. H i) or smoothly for some values of X-ray luminosity (e.g. \(L_X > 10^{29} \text{ erg s}^{-1}\))

\(i\)	\(v_{\text{peak}}\) (km s\(^{-1}\))	FWHM (km s\(^{-1}\))	Profile	\(v_{\text{peak}}\) (km s\(^{-1}\))	FWHM (km s\(^{-1}\))	Profile	\(v_{\text{peak}}\) (km s\(^{-1}\))	FWHM (km s\(^{-1}\))	Profile
0	0	3.7	B	-0.25	5.0	B	-2.25	10.2	A
10	-0.25	6.0	A	-0.75	10.8	B	-3.25	10.6	A
20	-1	10.1	A	-2.75	13.9	A	-4.5	11.9	A
30	-1.25	13.6	D	-3.75	15.4	A	-5.25	13.4	A
40	-3/4+1.75	15.9	C	-4.25	16.6	A	-5.5	15.0	A
50	-3.5/4+2	17.6	C	-4.75	17.6	A	-5.5	16.5	A
60	-3.75+2.5	18.9	C	-2.25	18.6	D	-5	17.8	A
70	-4/+3	19.8	C	-4.75/+0.75	19.4	C	-4.5	19.0	A
80	-4/+3.5	20.4	C	-4.25/+1.75	20.0	C	-3.75	19.8	A
90	±3.75	20.8	C	±3.25	20.6	C	±2.5	22.6	C

Table 5. Line profiles from primordial discs irradiated by \(\log(L_X) = 28.3, 29.3\) and 30.3 erg s\(^{-1}\). The table lists the velocity of the peak, the full width at half-maximum (FWHM) and the type of the profile (see Fig. 4 for details), for 10 inclinations from 0\(^\circ\) to 90\(^\circ\). The profiles were degraded to an instrumental resolution of \(R = 100\,000\).
and rapidly for others (e.g. \(L_X < 10^{39} \, \text{erg s}^{-1} \)), as in the Ne \(\pi \) line.

(ii) The ionizing spectrum, particularly in the soft X-ray and EUV range, is somewhat uncertain. Observations of this part of the spectrum are hindered by absorption from interstellar hydrogen along the line of sight or closer to the star. While we have attempted to use a realistic spectrum (see Section 2 in this work and discussion in Ercolano et al. 2009a), it is very likely that T-Tauri stars possess a range of spectra of different hardness. Accretion funnels close to the star may also screen the disc from EUV and soft X-ray effectively changing the hardness of the radiation field seen by the disc. The effects of screening on photoevaporation rates have been explored and discussed in detail by Ercolano et al. 2009a).

(iii) Our models assume azimuthal symmetry; however, the effects of (possibly inclined) magnetic fields on corotation radius may cause twists and warps at the disc’s inner edge (e.g. Romanova et al. 2003; Bouvier et al. 2007; Long, Romanova & Lovelace 2007). Furthermore, accretion funnels may only screen a fraction of the radiation resulting in azimuthally varying irradiation. As the structure of magnetic fields around T-Tauri stars is becoming clearer through observations and modelling (Donati et al. 2007, 2008; Gregory et al. 2008; Jardine 2008; Hussain et al. 2009; Skelly et al. 2009), it will be very interesting to test these effects on photoevaporation and disc emission.

(iv) The models presented in this paper are for a 0.7 M\(_\odot\) star. It is difficult to extrapolate these results to different mass stars; however, models appropriate for different mass stars are currently being developed (Owen et al., in preparation).

(v) Our models do not account for molecular chemistry. While this is unlikely to produce a significant error in the photoevaporation rates and wind structure (see discussion in O10), it may affect the luminosities of low excitation temperature emission lines from neutral species (e.g. fine structure lines of O\(\text{I} \) and C\(\text{I} \)), which are produced in a region close to the atomic/molecular transition (the photodissociation region, PDR). We note that all the lines listed in Tables 1–4, however, are not significantly affected by the PDR, due to their high excitation temperatures (optical/Ultraviolet collisionally excited lines) and/or ionization requirements.

Table 6. Line profiles from inner hole discs irradiated by \(\log(L_X) = 30.3 \, \text{erg s}^{-1} \), with inner hole radii of 8.3, 14.2 and 30.5 AU. The table lists the velocity of the peak, the full width at half-maximum (FWHM) and the type of the profile (see Fig. 4 for details), for 10 inclinations from 0° to 90°. The profiles were degraded to an instrumental resolution of \(R = 100 \, 000 \).

\(i \)	\(R_{in} = 8.3 \, \text{AU} \)	\(R_{in} = 14.2 \, \text{AU} \)	\(R_{in} = 30.5 \, \text{AU} \)						
\(v_{peak} \) (km s\(^{-1}\))	FWHM (km s\(^{-1}\))	Profile	\(v_{peak} \) (km s\(^{-1}\))	FWHM (km s\(^{-1}\))	Profile	\(v_{peak} \) (km s\(^{-1}\))	FWHM (km s\(^{-1}\))	Profile	
0	-1	15.0	A	-0.5	13.3	A	-0.5	10.9	A
10	-1.25	15.4	A	-0.75	13.9	A	-0.5	11.2	A
20	-2	16.7	A	-1.25	15.2	A	-0.5	12.1	A
30	-2.75	19.7	A	-1.75	17.6	A	-0.75	13.7	A
40	-1.5	23.3	A	-1	20.8	D	-1.5	15.9	A
50	-1.5	26.2	D	-1	23.5	D	-0.5	18.2	D
60	-1.5	28.4	D	-1.25	25.8	D	-0.75	20.0	D
70	-7.25/+/2.5	29.8	C	-5.75/+2.25	27.2	C	-3/+1.5	21.3	C
80	-7/+4.25	30.2	C	-5.75/+3.75	27.8	C	-3.25/+2.25	21.7	C
90	±5.75	30.1	C	-5/+5	27.5	C	±3.25	21.3	C

Hydrogen recombination lines

\(i \)	\(\theta \)	\(\Theta_{in} \)	\(\Theta_{out} \)	\(\Theta_{rad} \)	\(\Theta_{out} \)	\(\Theta_{rad} \)	\(\Theta_{out} \)	\(\Theta_{rad} \)	
0	0	7.8	B	0	7.1	B	-0.25	6.5	B
10	0	8.3	B	0	7.4	B	-0.25	6.7	B
20	0	9.9	B	0	8.5	B	-0.25	7.3	B
30	-0.25	11.8	B	0	10.0	B	-0.25	8.1	B
40	-0.25	13.6	B	0	11.2	B	0	8.8	B
50	-0.25	15.1	B	0	12.5	B	0	9.6	B
60	-0.25	16.6	B	0	13.8	B	0	10.4	B
70	-0.25	18.1	B	-0.25	15.0	B	0	11.1	B
80	-0.25	19.0	B	-0.25	15.7	B	0	11.7	B
90	0	18.7	B	±0.75	15.7	C	0	11.8	B
Figure 4. Representative shapes for the line profile shapes calculated from our models. Profile A (left) can be well approximated by a Gaussian. Profile B is a Gaussian with large wings. Profile C is a double peaked profile and profile D are profiles where two clear peaks are not resolved, yet the profile is broad, flat-topped or significantly asymmetric. The blue vertical dots show the location of v_{peak} as given in Table 5 and the red horizontal dashed line shows the FWHM for the given profiles.

Figure 5. Radial intensity profiles of Ne II 12.8 μm (left panels) and O I 6300 Å (right panel). The top panels show how the profiles respond to variations in the X-ray luminosity in the case of a primordial disc, while the bottom panels show the response to different hole sizes (R_0). R_{sub} is the dust sublimation (destruction) radius. All models shown in the bottom panels are irradiated by an X-ray luminosity of 2×10^{30} erg s$^{-1}$.

(vi) Excitation rates of Ne$^+$ by collisions with neutrals are not known, therefore theoretical calculations of this line, including this work, only account for collisions with electrons. This is likely to result in the Ne II 12.8 μm line being underestimated by a factor of \sim2 (Glassgold et al. 2007).

(vii) The underlying disc flaring could be important since it determines the solid angle subtended by the disc to the ionizing radiation. Owen et al. (2010) briefly discuss this point with regard to mass-loss rates in their section 5, point vii. A discussion of the effects of flaring on line luminosities, specifically for the case of the Ne II
12.8 μm and Ne III 15.3 μm lines, is given by Schisano, Ercolano & Güdel (2010).

4 DISCUSSION: THE EMISSION LINE SPECTRA

The general behaviour of emission line intensities with X-ray luminosity and inner hole size has already been discussed in Section 3.1. Here we further comment on an element-by-element basis on the significance and observability of some of the transitions.

4.1 Carbon

C II fine structure lines are produced in a region that is very close to the atomic to molecular transition. The luminosities calculated by MOCASSIN for these transitions are likely to carry some error and they have therefore been omitted from the table and will be discussed in a forthcoming paper where a simplified chemical network is included. These lines may be interesting as probes of the gas at larger radii (e.g. Ercolano, Drake & Clarke 2009b).

The C II fine structure line at 157 μm, however, should be less affected by the molecular/atomic transition and therefore we discuss it further here. We report a luminosity of \(\sim 10^{-6} L_\odot \) for an X-ray luminosity of \(2 \times 10^{30} \) erg s\(^{-1}\), this should make this line an interesting target for Herschel observations. We note that the luminosity we predict for this line is almost three orders of magnitude larger than what was calculated by Meijerink et al. (2008); as discussed in Ercolano et al. (2008b), the low critical density for this line (49 cm\(^{-3}\)) implies that it will be preferentially emitted in low-density regions, such as the upper disc atmosphere and the flow, which were not included in the Meijerink calculations.

We also list a number of UV lines from C II, which are emitted predominantly in the wind; the strongest of these transitions is the doublet at 2327 Å.

4.2 Oxygen

As in the case of carbon, we limit our discussion of neutral oxygen emission to forbidden lines with high-temperature Boltzmann terms and exclude the O I fine structure lines that may be uncertain in our calculations for the reasons discussed above.

The O I 6300 Å forbidden line deserves special attention. This line was detected by HEG95 in the spectra of several T-Tauri stars. Detection of this line in T-Tauri stars has been reported by various other authors including White & Hillenbrand (2004) and Mohanty, Jayawardhana & Basri (2005). The O I 6300 Å line profiles reported by HEG95 all showed a double peak, with one component blueshifted to a few hundred km s\(^{-1}\) (high-velocity component, HVC) and a second component typically blueshifted by only a few km s\(^{-1}\) (low-velocity component, LVC). The HVC is generally attributed to spatially unresolved emission from a dense jet close to the star. The LVC, seen also in other forbidden lines, such as O I 5577 Å and S II 6731 Å, was interpreted by these authors as being produced in a slow-moving disc wind. This was evidenced by the fact that blueshifts were largest for forbidden lines of lowest critical density, suggesting that the low-velocity component accelerates away from the surface of the disc. HEG95 also noted that all optically thick discs that they observed had LVC forbidden line emission detections. Furthermore, all the LVCs were blueshifted to within the measurement errors (±2 km s\(^{-1}\)), leading them to conclude that, if the LVC arises from a disc wind, then all objects with optically thick inner discs must have a disc wind.

While HEG95 did not ascertain the nature of the disc wind, a photoevaporative wind origin was investigated by Font et al. (2004), who explored the ability of an EUV-driven photoevaporative wind to explain the LVC lines observed in the HEG95 spectra. They obtained encouraging results, which showed that forbidden line luminosities roughly of the observed magnitude can be produced in the ionized wind from an EUV-photoevaporated disc, and highlighted instead the failure of magnetic wind models in producing these lines. They identified, however, a discrepancy between their model and the observations in the luminosity of the O I 6300 Å line which remained underpredicted by approximately 2 orders of magnitude in their models.

The failure of the Font et al. (2004) calculations to reproduce the observed O I 6300 Å line luminosities results from the fact that an EUV-driven wind is, by construction, fully ionized. The O I 6300 Å line can only then be produced in a thin layer at the bottom of the photoevaporating (ionized) layer. An X-ray-driven photoevaporation process, however, yields a disc wind that is predominantly neutral, thus allowing abundant production of the O I 6300 Å line. Indeed we predict luminosities of a few \(10^{-5} L_\odot \) for \(L_X = 2 \times 10^{30} \) erg s\(^{-1}\), roughly 2 orders of magnitude higher than the value predicted by Font et al. (2004) and in the range of values reported by HEG94. Fig. 6 shows a comparison of equivalent widths observed in the LVC of O I 6300 Å by HEG95 (black histogram) to the those predicted by our models (red and blue line). The red line represents the primordial disc models irradiated by X-ray luminosities between \(2 \times 10^{28} \) and \(2 \times 10^{30} \) erg s\(^{-1}\) and the blue line corresponds to inner hole sources with hole sizes between \(\sim 8 \) and \(\sim 30 \) AU irradiated by an X-ray luminosity of \(2 \times 10^{30} \) erg s\(^{-1}\). The higher equivalent widths shown on the histogram are lines where even the LVC velocity range (−60 to 60 km s\(^{-1}\)) is saturated by emission from a jet (the x-axis is truncated in this plot and could go up to 7 Å). We note, however, that the range of hole sizes that we have investigated is restricted; furthermore, we do not have any inner hole models for lower luminosity.

The O I 6300 Å line is produced by collisional excitation, with neutral hydrogen being the dominant collider (rates from Launay &
Roueff 1977). We stress that in T-Tauri stars with winds, collisional excitation of the $^1\text{D}_2$ level of O will be the dominant production mechanism of the O λ 6300 Å line and not OH dissociation. UV photodissociation of OH, which may lead to branching to the excited $^1\text{D}_2$ level of neutral O, producing fluorescent emission of the O λ 6717- and 6731-Å lines (Störzer & Hollenbach 2000), is generally ruled out for the HEG95 sample by the fact that too large FUV fields are required and because of the difficulty in reproducing the observed O λ 6300 Å/O λ 5577 Å ratio (see also discussion in Störzer & Hollenbach 2000 and Font et al. 2004).

The luminosity of the O λ 5577 Å is underpredicted by our models compared to the HEG95 observations. This is, however, not a cause for concern, since this is most likely due to the fact that collisions with neutral hydrogen (which are likely to dominate as in the case of the O λ 6300 Å line) are not included in our calculation, due to the unavailability of collision rates for the $^1\text{S}_0$ level (Launay & Roueff 1977), only include the first four levels, $^1\text{P}_2$, $^1\text{P}_1$, $^1\text{P}_0$ and $^1\text{D}_2$). The O λ 2973 Å line is also a lower limit in our model for the same reason.

In brief, an X-ray-driven wind model offers a natural route to the production of the observed LVC of the O λ 6300-Å emission line. In the next section we will discuss the profiles we obtained for this line and compare them with observations.

Finally, O II and O III forbidden lines are also listed in Tables 1 and 3. O III forbidden lines are not very strong for primordial disc models and therefore are only listed for inner hole models. Inner hole model winds are less dense and hotter than those of primordial discs, hence favouring the production of nebular-like lines like the O II and O III listed in Table 3. We draw particular attention to the O III 88.3-μm line, which has luminosities of around 10^{-7} L$_{\odot}$ for inner hole sources, and may be just detectable with photodetector array camera and spectrometer (PACS) for the nearer sources.

4.3 Neon

Since the prediction by Glassgold et al. (2007) and the first detections of the Ne II 12.8-μm line in T-Tauri discs (Espaillat et al. 2007; Herczeg et al. 2007; Lahuis et al. 2007; Pascucci et al. 2007), this line has received a lot of attention in the literature, both observationally (Flaccomio et al. 2009; Najita et al. 2009; Schisano & Sterzik 2009; van Boekel et al. 2009; Gudel et al. 2010, submitted) and theoretically (Alexander 2008; Meijerink, Glassgold & Najita 2008; Hollenbach & Gorti 2009; Schisano, Ercolano & Gorti 2009). This line was originally proposed as a new probe of X-ray irradiation of T-Tauri discs, but a clean correlation with X-ray luminosity does not seem to exist even in the latest data. The large scatter in the L(Ne II) for stars of a given L_X may be due to differences in the irradiating spectrum or the disc structure (Schisano et al. 2009), variability, or, for the higher L(Ne II) cases, to stellar jets (Hollenbach & Gorti 2009; Shang et al. 2010).

The L(Ne II) we calculate from our models are in the range of those observed and show a roughly linear dependence with X-ray luminosity (see also Section 3.1). What our models show, however, is that this line is produced almost exclusively in the photoevaporating wind, as clear from the blueshifted profile for non-edge on inclinations (Table 5 and Fig. 1). This opens the exciting prospect to use this line as a probe of photoevaporative winds as we will discuss further in the next section. It is also clear that a clean linear relationship with L_X is not expected (or found) given that the wind structure and the Ne II emitting region change in response to different X-ray luminosities. In this perspective it is easy to understand the scatter in the L(Ne II)–L_X relation noticed by Güdel et al. (2010, submitted) even for the non-jet sources.

L(Ne II) is about a factor of 2 larger for inner hole models than a primordial model of the same X-ray luminosity and this is simply due to the larger emission region of the inner hole sources (see Fig. 3). We note that while Schisano et al. (2009) used disc-only models to probe the dispersion in the L(Ne)–L_X relationship, many of their conclusions with regard to the nature of the scatter (e.g. hardness of the ionizing radiation field) are equally applicable to a line that is produced in the wind.

The Ne II to Ne III ratio for our models is never lower than \sim0.1, while observations generally indicate lower values, e.g. \sim0.06 (Lahuis et al. 2007), \sim0.045 (Najita et al. 2010), although in the case of WL5 a value of \sim0.25 is reported by Flaccomio et al. (2009). Unfortunately, only very few detections of this line are currently available and it is therefore hard to draw statistically significant conclusions. To make matters worse this ratio is quite uncertain in theoretical models due to the lack of neutral collision rates, as mentioned in Section 3.1, and uncertainties in the charge exchange coefficients. In view of the current observational and theoretical difficulties with this line ratio, its diagnostic power cannot yet be harnessed.

4.4 Magnesium

We predict a rather strong Mg I line at 4573 Å (\sim10$^{-5}$ L$_{\odot}$ for $L_X = 2 \times 10^{30}$ erg s$^{-1}$). This line has been detected to date, in three young low-mass stars, namely YY Tauri (M0; Herbig 1990), XZ Tau B (M1; White & Ghez 2001) and very recently in the low-mass variable TWA 30 (Looper et al. 2010). Detection of this line in M-stars is rendered possible by the much lower stellar continuum in the B-band compared to higher-mass stars. The strength of this line implies that it could be an important coolant and should be considered when thermal calculations are carried out.

4.5 Silicon

We include Si lines in Tables 1 and 3 and draw the reader’s attention to the Si II 34.8-μm transition which has a luminosity of approximately 10$^{-6}$ L$_{\odot}$ for $L_X = 10^{30}$ erg s$^{-1}$. We caution, however, that Si lines and Mg lines are strongly affected by depletion on to dust grains which is very poorly constrained. While a hindrance for the prediction of accurate line luminosities, the dependence of these lines on depletion factors may actually be used to obtain clues about the disc evolution through comparison of models with observations.

4.6 Sulphur

We predict a number of S II, S III and S IV lines all with fairly large luminosities. In particular our models predict S λ 6717- and 6731-Å lines in the range observed by HEG95. The ratio of the 6731 Å to the 6717 Å, which is a useful density diagnostic, is \sim2 in our models, and it compares well with the value reported for most of the sources in HEG95. A ratio of 2 at \sim7000 K corresponds to an electron density of just below 104 cm$^{-3}$, again consistent with a wind origin of this line. Furthermore, all of the detections for the LCVs of these lines in HEG95 show a small blueshift, reinforcing the conclusion that all discs show evidence of a wind which can be produced by

Note that here we only compare with HEG95 for the LVC detections.
photoevaporation. The O\textsc{i} to S\textsc{ii} ratios also compare favourably when the O\textsc{i} line luminosities observed are in the range predicted by the model (i.e. $<10^{-4} \, L_\odot$); however, we note that this ratio can be as large as 1 order of magnitude for the higher O\textsc{i} luminosities detected by HEG95; these detections correspond to objects where the jet emission has saturated the LVC, and are associated with large equivalent widths in the LVC O\textsc{i} line (e.g. CW Tau, DQ Tau and HN Tau).

4.7 Hydrogen

Tables 2 and 4 show the luminosities of the hydrogen recombination lines. The H\textsc{i}(7-6) and H\textsc{i}(6-5) transitions were detected by Pascucci et al. (2007), Rat\v{z}ka et al. (2007), and a larger set of IR lines have been detected from the transition object TW Hya by Najita et al. (2010). The reported luminosities of those lines are of the same magnitude as for the Ne\textsc{ii} 12.8-\mum line also detected in the same objects. Our models, on the other hand, can only produce hydrogen recombination lines that are almost 2 orders of magnitude less luminous than the Ne\textsc{ii} 12.8 \mum. It seems therefore unlikely that a disc or wind origin can explain the reported hydrogen recombination line luminosities. This had already been noticed by Hollenbach & Gorti (2009), who analytically derive L(H\textsc{i} 7-6)/L(Ne\textsc{ii})\sim0.008, similar to what we find (0.015). We agree with Hollenbach & Gorti’s conclusion that these IR hydrogen lines must originate in a region of very dense plasma (where Ne\textsc{ii} 12.8 \mum would be collisionally quenched) close in to the star, possibly in an accretion shock. This is in line with earlier works (e.g. Muzerolle et al. 1998, 2000; Kurosawa, Harries & Symington 2005) that H recombination lines mostly originate in the magnetospheric accretion flow.

5 Discussion: blueshifted line profiles, a smoking gun for photoevaporation

The recent observation of a blueshifted Ne\textsc{ii} 12.8-\mum line profile by Pascucci & Sterzik (2009, hereafter P09) in a few well-known YSOs with discs, including TW Hya, has been interpreted as evidence for photoevaporation. As shown by Alexander (2008) the EUV-wind solution of Font et al. (2004) produces a good match to the data (blue line in Fig. 7), as does the X-ray-driven wind of O10 discussed in this paper (red line in Fig. 7). The X-ray wind model used for this figure is that of the primordial disc model irradiated by an X-ray luminosity, $\log(L_X) = 30.2 \, \text{erg s}^{-1}$. We stress that neither the EUV-wind nor the X-ray wind models were statistically fit to the data to produce the match. In both cases a model was chosen from the set of existing ones that best reproduced the observations. Both EUV wind and X-ray wind models’ initial parameters could be tweaked to produce a perfect fit to the data, but this was not attempted in this paper or by Alexander (2008) as the point of Fig. 7 is only to show that profiles in the range of those observed can be reproduced by photoevaporation models.

As both EUV and X-ray model produce a good match to the Ne\textsc{ii} data, it seems that this particular diagnostic cannot be used to discriminate between them. The O\textsc{i} 6300 \AA line intensities and LVC profiles, on the other hand, can only be reproduced by an X-ray-driven photoevaporation model, which predicts a largely neutral wind.

While a blueshifted emission line profile is a clear tell-tale sign of outflows, the detection of non-blueshifted lines (e.g. Najita et al. 2009) cannot be unambiguously interpreted as absence of a wind. It is clear from Figs 1 and 2 and the discussion in the previous section, that there are many reasons why a line like Ne\textsc{ii} 12.8 \mum or O\textsc{i} 6300 \AA, that has a significant blueshift in some cases, may instead appear centred in others – e.g. inclination, inner hole size, X-ray luminosity –, also different profiles respond differently to the change in these parameters, such that the relative centroid of, say, the Ne\textsc{ii} 12.8 \mum with respect to the O\textsc{i} 6300 \AA line may also shift with the shift in X-ray luminosity (see Fig. 1).

It should also be made clear that photoevaporation models predict that a large number of primordial discs, not only so-called transition discs, should have a disc wind and therefore produce blueshifted emission lines. This is in agreement with HEG95’s observations that showed blueshifted LVC of O\textsc{i} 6300 \AA for all the YSOs with discs. The detection of blueshifted lines does not indicate that a given disc is evolved, all that it indicates is that energetic radiation from the central star is able to reach the disc establishing a flow. Our models predict intensities and blueshifts for this line that are in agreement with observations, suggesting that the LVC of O\textsc{i} 6300 \AA is indeed a good candidate for tracing photoevaporating disc gas.

Further, spectrally resolved observations of this line would be extremely helpful in testing the presented model. P09 found that of the seven sources they observed with VISIR, a Ne\textsc{ii} detection was only obtained in the ‘transition’ (i.e. dust inner hole) sources. They interpreted their result as evidence of EUV-driven photoevaporation\footnote{At the time of publication of P09, line profiles had only been calculated for the EUV-driven wind model (Font et al. 2004; Alexander 2008).} and concluded that this can occur only at a late stage in the disc evolution. However, we note that the detection limits at the distance of the primordial disc sources which showed no evidence of Ne\textsc{ii} emission are of a few $10^{-6} \, L_\odot$; these are quite high and would only allow the strongest Ne\textsc{ii} sources to be detected. Indeed, Güdel et al. (2010, submitted) show that, excluding sources with known jets, many cTTS have L(Ne\textsc{ii}) lower than a few $10^{-6} \, L_\odot$. The Ne\textsc{ii}
luminosities predicted by our models for a primordial disc irradiated by log(L_X)=30.2 would be barely detectable at the sensitivity of the P09 observations. The fact that Ne II 12.8 µm was only detected in three of the sources of the P09 sample and that these happened to be transition discs may just be a coincidence, or, more likely, it may be due to the fact that, as predicted by our models, the Ne II line is brighter for transition discs. The latter explanation, however, would only stand if the inner hole of these sources were devoid of gas (or at least the gas was optically thin to both X-rays and the interested transitions). However, all of these ‘transition’ discs are still accreting and depending on the gas densities in the inner hole, perhaps a primordial disc model may be more appropriate.

One should also point out that the magnitude of the blueshift depends entirely on the size and location of the emitting region. The blueshift will be largest for inclinations where the emitting region is such as to maximize the line-of-sight component of the velocity vectors. The blueshift of a line is therefore not necessarily maximized for a completely face-on disc. A good example of this is provided by the O I 6300 Å profile of the log(L_X) = 29.3 erg s^{-1} primordial disc model.

While the current observational and theoretical emission line profile sample is still too small to draw any significant conclusions, these observations highlight the potential of using high-resolution spectroscopy of YSOs and detailed profile modelling to learn about the dispersal mechanism of protoplanetary discs.

6 CONCLUSIONS

X-rays have recently been shown to drive powerful outflows (Ercolano et al. 2008b, 2009a; O10). The recent radiation hydrodynamic calculation of O10 have demonstrated that that the two time-scale dispersal of protoplanetary discs around solar-type stars is successfully reproduced by this model. Further evidence is provided by the observation of shorter disc lifetimes in low metallicity environments (Yasui et al. 2009), a behaviour that is expected if X-ray-driven photoevaporation dominates the dispersal of discs and argues against planet formation as the main dispersal mechanism (Ercolano & Clarke 2009). Furthermore, the X-ray spectra of T-Tauri stars are fairly well characterized (e.g. Güdel et al. 2007) and the observed luminosities imply that significant X-ray photoevaporation must occur, unless the inner source is completely obscured due to accretion funnels thicker than 10^{13} cm^{-2} (Ercolano et al. 2009a) and covering all lines of sight from the source to the disc.

Encouraged by these results, in this paper we have presented an atlas of emission lines from atomic and low-ionization species emitted by photoevaporating protoplanetary discs around solar-type stars. We have used disc and wind density distributions obtained by the radiation-hydrodynamic calculations of O10 in the X-ray photoevaporation paradigm and have considered discs irradiated by a range of X-ray luminosities and at various stages of clearing, from primordial (i.e. extending all the way into the dust destruction radius) to inner hole sources with various hole sizes. Line profiles for the Ne II 12.8 µm, O I 6300 Å and H I recombination lines have also been calculated and should provide guidance for the interpretation of high-resolution spectroscopy of YSOs.

We compare the predictions of our models to available data in the literature and find agreement for the line intensities and profiles. We draw particular attention to the good agreement with the observations of HEG95 of the O I 6300 Å line intensity and profile in the spectra of T-Tauri stars. This had been a problem for previous, EUV-driven photoevaporation models (e.g. Font et al. 2004) which underestimated its luminosity by a couple of orders of magnitude. The problem with these previous models lay in the fact that EUV winds are, by construction, ionized, while X-ray photoevaporation provides a mechanism to drive warm neutral winds, a condition necessary for the production of blueshifted collisionally excited O I 6300 Å and O I 5577 Å.

As noted by Font et al. (2004), magnetic wind models systematically underpredict the luminosities of forbidden lines and cannot fit the observed profiles (e.g. García et al. 2001). The main problem with magnetic wind models is that they are too cold – an X-ray-driven photoevaporative wind naturally produces temperature, ionization degrees and consistent kinematic patterns able to produce forbidden line intensities and profiles in agreement with the observations. These results suggest that, while magnetic disc winds may work in conjunction with photoevaporation, they are unlikely to be operating alone.

We analyse our results for the Ne II 12.8 µm line profiles in the context of recent high-resolution observations of P09 and Najita et al. (2009). We discuss how the detection of a blueshifted line is a clear sign of an outflow, but caution against interpreting non-blueshifted profiles or non-detections as absence of a disc wind. We argue that the non-detections for the primordial discs in the P09 sample could be explained by insufficient sensitivity of the observations that are only able to probe the upper end of the Ne II luminosity distribution. The non-blueshifted line centroids in the Najita et al. (2009) sources are probably due to unfavourable (high inclination) viewing angles or to the effect of seeing blue and redshifted emitting material through a large inner hole, as may be the case of GM Aur, although we caution that this explanation is only valid if the gas, known to be present in the inner (dust) hole of this object, is optically thin to X-ray radiation and to the line in question.

Finally, our models cannot reproduce the observed emission line luminosities of IR hydrogen recombination lines, which for some objects are reported to be as bright as the Ne II 12.8 µm (Pascucci et al. 2007; Ratzka et al. 2007). As suggested by Hollenbach & Gorti (2009), these lines are probably produced in a dense, ionized region that is very close to the central star. High-resolution spectroscopy of these lines is needed to further constrain their origin.

ACKNOWLEDGMENTS

We thank the anonymous referee for an extremely detailed report that helped improve the clarity of our paper. We thank Ilaria Pascucci, Manuel Güdel and Joan Najita for helpful discussion and comparison of the observational results with our models. We thank Cathie Clarke, Al Glassgold, Greg Herczeg and Richard Alexander for helpful comments and a critical read of the paper. We also thank Richard Alexander for providing the Ne II line profile from the EUV-photoevaporation model. We thank Eugenio Schisano for helping with the line profiles. BE is supported by a Science and Technology Facilities Council Advanced Fellowship. JEO acknowledges support of an STFC PhD studentship. This work was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/), provided by Dell, Inc., using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England.

REFERENCES

Abbas M. M. et al., 2006, ApJ, 654, 324
Alexander R. D., 2008, MNRAS, 391, L64
Alexander R. D., Armitage P. J., 2007, MNRAS, 375, 500
