Use of green solvents as pre-treatment of dissolving pulp to decrease CS$_2$ consumption from viscose production

Carlos Arce · Tamara Llano · Sara González · Alberto Coz

Received: 4 May 2020 / Accepted: 15 September 2020 / Published online: 6 October 2020
© Springer Nature B.V. 2020

Abstract Choline chloride-based deep eutectic solvents are widely used in biomass processing. In this work, four different green solvent mixtures were used as pre-treatment of acid sulphite dissolving pulp with the hypothesis of increasing the possibilities to produce viscose fibres and decreasing the use of the harmful and toxic carbon disulphide in the process. The experiments were performed at two different pulp to solvent mass ratios. Pulp quality parameters were also measured to determine the suitability of the pre-treatment: α-cellulose, viscosity, lignin and pentosan content. In addition, X-ray diffraction analysis of pulps at the best solid to liquid ratio was performed to obtain the influence of the crystallinity index. Best results were obtained with the use of lactic acid, with reactivity values close to 94%, giving a reduction of CS$_2$ usage of 15.83%. Furthermore, a linear relationship between the crystallinity index calculated by the XRD and reactivity with a regression factor of 0.87 was found.
Introduction

The growing concern about environmental issues has led researchers to find newer technologies to solve conventional problems. In this sense, the search for greener solvents to be used industrially has become of great importance (Zdanowicz et al. 2018). As a result, Abbott et al. (2003) proposed deep eutectic solvents (DES) as an alternative to traditional solvents. DES systems are a mixture of two or more components with a final melting point much lower than the individual components (Kumar et al. 2016) which makes it liquid at room temperature (Procentese and Rehmann 2018). These solvents are usually composed by a quaternary ammonium, phosphonium or sulfonium cation or a metal chloride (Smith et al. 2014), defined as Hydrogen Bond Acceptor (HBA) and a Hydrogen Bond Donor (HBD).

Depending on the components employed to form the solvent, DES can be classified in four types (Zdanowicz et al. 2018): (1) organic salts and metal chlorides; (2) organic salts and metal hydrates; (3) organic salts and organic compounds (carboxylic acids, alcohols, or amides); and (4) metal chlorides and organic compounds (amides, alcohols). These solvents have similar properties to Ionic Liquids (IL): low vapour pressure, chemical and thermal stability, non-flammability and can be tailored (Wilpiszewsk and Spychaj 2011). However, DES mixtures exhibit some advantages when compared with IL, i.e. easier to prepare, cheaper and have higher biodegradability (Ling et al. 2020). These characteristics make DES to be used in a wide range of research areas: metal processing (Zhang et al. 2012; Smith et al. 2014), biotechnology and bioengineering (Mbous et al. 2017), gas separation (García et al. 2015) or biomass processing (Zdanowicz et al. 2018; Kalhor and Ghandi 2019) among others.

Regarding biomass processing, the use of DES has focused on lignocellulosic materials because of their ability to dissolve lignin with the almost negligible dissolution of cellulose (Francisco et al. 2012), making biomass suitable for further processing. However, lignin is not the only undesirable component in lignocellulosic materials. Hemicelluloses, in the form of pentosan, can hinder the processability of this kind of materials, in this sense, enzymatic treatment (Kaur et al. 2016) or alkali treatment (Kaur et al. 2017) can be used effectively. The application of DES to lignocellulosic biomass covers a wide range of steps during biomass processing: pre-treatment (Fang et al. 2017; Tommasi et al. 2017; Shen et al. 2019), delignification, (Jablonský et al. 2015; Liu et al. 2016), and enzymatic hydrolysis (Kaur et al. 2016; Tommasi et al. 2017).
2017; Chen and Wan 2018), extraction (Huang et al. 2017; Cao et al. 2019; Deng et al. 2019) and reaction media (da Silva et al. 2015; Sert et al. 2018; Lou et al. 2019). Researches have tested several DES in biomass: Using different HBD’s (Gunny et al. 2015; Ling et al. 2020); different HBA’s (Francisco et al. 2012; Abdulmalek et al. 2017) or even a different kind of DES (Biswas et al. 2006; Supeno et al. 2014). For the components of the DES used in this field, Choline Chloride (ChCl) has been extensively used as HBD, due to its availability and biodegradability (Gadilohar and Shankarling 2017). Carboxylic acids such as malic acid (MA), oxalic acid (OxA) and lactic acid (LA) and amides such as urea (Ur) can be used as HBA for treatment of lignocellulosic biomass (Tan et al. 2019).

Cellulose is the most abundant natural polymer on earth, and dissolving pulp is the primary source of high purity cellulose (Li et al. 2018). Dissolving pulp can be used to produce a wide variety of products such as cellulose acetates, cellulose nitrates, cellulose ethers, viscose fibres and lyocell fibres (Miao et al. 2014). Among the end-use products mentioned above, viscose production is the main consumer of dissolving pulp; in fact, 70% of viscose was produced from dissolving pulp (Kumar and Christopher 2017). Carbon disulphide (CS$_2$) is used in the xanthation phase of the viscose process, to dissolve alkali cellulose formed in the mercerisation phase. This compound is toxic and environmentally harmful (Duan et al. 2015). Therefore, CS$_2$ consumption needs to be reduced as much as possible and as a result, mitigate the adverse effects that this reagent can produce on the process, either economically or environmentally (Li et al. 2018). Cellulose reactivity is the key parameter to improve for reducing the use of CS$_2$ within the viscose process. Therefore, it is crucial to make the viscose process more sustainable with the environment. Cellulose reactivity is defined as the ability of chemicals to dissolve cellulose, and it has a direct relationship with CS$_2$ consumption (the higher the reactivity, the lower the CS$_2$ needed). Such parameter can be determined by several methods such as Iodine sorption, NMR spectroscopy, viscose filterability and Fock’s test (Arce et al. 2020).

Treatments of different nature can improve cellulose reactivity: (1) mechanically, breaking or removing the primary cell wall and shortening cellulose chains (Tian et al. 2014); (2) chemically, eliminating undesired components or hydrolysing cellulose chain (Arnoul-Jarriault et al. 2015; Wang et al. 2018); (3) enzymatic processes, removing hemicelluloses (pentosan content) and adjusting viscosity (Ibarra et al. 2010; Gehmayr et al. 2011; Sango et al. 2018); (4) IL extraction, removing pentosan with nearly no effect on cellulose (Li et al. 2012); (5) or using combinations of them (Yang et al. 2018). The methods mentioned before, either use energy or reagents that increase the environmental impacts of the pulping and the viscose process. For this reason, authors selected DES as the best technique able to reduce the environmental impacts of the pulping and viscose sectors. Due to the similarity between IL and DES, this work has the hypothesis that DES can be used as pre-treatment for dissolving pulp to increase its reactivity. DES green solvents have been successfully used to increase the hydrolysis of cellulose (Xia et al. 2014) or to improve the production of hydroxymethylfurfural (HMF) and furfural (da Silva et al. 2015). DES have also been used in pulp to observe the effect that this treatment would have on it (Jablonsky et al. 2018). However, DES have never been used as pre-treatment to increase pulp reactivity, reducing the CS$_2$ used in the viscose process. Therefore, this work aims to assess the enhancement of reactivity of dissolving pulp towards viscose and quantify the theoretical reduction of CS$_2$ usage, employing ChCl-based DES mixtures. The properties α-cellulose content, pentosan content, lignin content and intrinsic viscosity are also analysed to check that the resulting pulp meets the requirements to be transformed into viscose. The reduction of the quantity of CS$_2$ used in the viscose process, as a result of the reactivity increase, is also determined together with the correlation between reactivity and cellulose crystallinity.

Materials and methods

DES preparation and pulp treatment

Dissolving pulp used in this work was provided by a pulp mill, Sniace S.A. located in Northern Spain (Cantabria). This company produces dissolving pulp through the acid sulphite cooking coupled with total chlorine-free (TCF) bleaching.

DES treatment of pulp was performed based on the methodology of Majova et al. (2017). Initially, the pulp was soaked and stirred in water to obtain a
consistency of 4%. The mole ratio for each DES system was 1:9 ChCl:LA, 1:1 ChCl:MA, 1:3 ChCl:OxA and 1:2 ChCl:Ur as recommended in the bibliography (Jablonsky et al. 2015; Pan et al. 2017). These DES are widely used with lignocellulosic materials because of their ability to delignify (Zdanowicz et al. 2018). Reactants were weighed and mixed. The mixture was heated at 80 °C and magnetically stirred, until a clear liquid was formed. Finally, pulp and DES are put together in a flask and placed in a water bath at 60 °C for one hour. When the treatment finishes, the pulp is washed with tap water, until the pH of washing wastewater is around 7.

Reactivity and intrinsic viscosity analyses were performed in triplicates; error bars were calculated as standard deviation. Pentosan, α-cellulose and kappa number error bars were calculated in duplicates, because of the scarce in pulp quantity and results were confirmed with quality pulp parameters from the industry. These analyses are based on the methodology used by a previous work of the authors (Llano et al. 2018). Table 1 shows the characteristics of the untreated dissolving pulp.

Fock reactivity

Reactivity of pulp samples was measured by the method described by Tian et al. (2013) which is based on Fock (1959). First, 0.5 g of pulp calculated as oven-dried (o.d.) was weighed and put into a 250 mL Erlenmeyer flask. Then, 50 mL of 9% (w/w) NaOH was added and stirred for 10 min at 19 °C. 1.3 mL of CS₂ was added, sealed with plastic parafilm and stirred at 250 rpm for 3 h at 19 °C; this is the xanthation phase in which cellulose-xanthate is formed. When reaction time finishes, water was added until a total mass of 100 g, the solution was then agitated and centrifuged at 5000 rpm for 15 min. Afterwards, 10 mL of the supernatant was poured in a 100 mL flask, and 3 mL of sulphuric acid 20% (w/w) was added to regenerate the dissolved cellulose. The flasks were left in a fume hood for 15–20 h for the CS₂ excess to be removed.

Dissolved cellulose was measured by oxidation with K₂Cr₂O₇. Firstly, 20 mL of 68% (w/w) sulphuric acid was added and stirred at 250 rpm for 1 h. When the stirring time was set, 10 mL of 1/6 M K₂Cr₂O₇ was added, and the mixture was reflux-boiled for 1 h. Finally, the flasks were left to cool at room temperature and then diluted to a total volume of 100 mL. 40 mL of the solution was pipetted into a 250 mL Erlenmeyer flask and 5 mL of 10% (w/w) KI was added and titrated with 0.1 N Na₂S₂O₃ using starch as an indicator. The volume of Na₂S₂O₃ was used for the calculation of the dissolved cellulose (DC) using Eq. 1:

\[
DC(\%) = \frac{\left(v_1 \cdot c_1 - \left(\frac{v_2 \cdot c_2 \cdot 100}{40} \right) \cdot \frac{1}{6} \right) \cdot M \cdot \frac{1}{4} \cdot \frac{100}{10.4}}{m} \cdot 100
\]

where M is the molecular weight of a glucose unit, m is the o.d. weight of the pulp sample (g), v₁ and c₁ are the volume and the concentration of K₂Cr₂O₇, respectively. v₂ and c₂ are the volume and the concentration of Na₂S₂O₃, respectively.

Pentosans

The moisture content of the pulp was measured, and 1.6 g of pulp was weighed, and 100 mL of NaOH 5% (w/w) was added. Then, it was stirred for 3 min and left in a water bath for 1 h, the suspension was filtered, and 15 mL of the filtrate was added to a 250 mL Erlenmeyer flask and mixed with 10 mL of K₂Cr₂O₇ 1/6 M and 35 mL of commercial H₂SO₄. It was left to cool for 15 min, and 50 mL of distilled water were added. The solution was titrated with 0.1 N (NH₄)₂·Fe(SO₄)₂·6H₂O using ferroin as an indicator.

Table 1: Untreated pulp quality values

Sample	Pentosan (%)	Fock's reactivity (%)	α-cellulose (%)	Viscosity (mL/g)	Kappa
Raw pulp	2.89 ± 0.169	80.58 ± 2.437	91.05 ± 0.045	465.90 ± 14.46	1.04 ± 0.179
Intrinsic viscosity

Intrinsic viscosity was determined by the standard ISO 5351(2010). 0.25 g. oven-dried pulp was dissolved in cupriethylendiamine solution for half an hour. After this, the sample was left in a water bath at 25 °C for 15 min and passed through Cannon–Fenske 150 viscometer at 25 °C.

\(a\)-cellulose

\(a\)-cellulose was determined according to TAPPI T203 cm-99 (1999). Oven-dried pulp samples were weighed to an equal of 1.6 ± 0.1 g. Pulp was consecutively extracted with 17.5% NaOH solutions at 25 ± 0.2 °C for a total extraction time of 60 ± 5 min. Then, pulp samples were stirred and filtered. 25 mL of the filtrate were taken and mixed with 10 mL of 0.5 N K\(_2\)Cr\(_2\)O\(_7\) and 50 mL of 96% H\(_2\)SO\(_4\). After 15 min, samples were cooled by adding 50 mL of water and titrated with 0.1 N (NH\(_4\))\(_2\)Fe(SO\(_4\))\(_2\)-6H\(_2\)O using ferroin indicator.

Kappa

Kappa is an index that estimates the amount of residual lignin and hexenuronic acid by measuring the oxidant demand of the pulp. TAPPI UM 246 (1991) method was implemented to obtain the micro kappa number of high-purity pulp from the final stages of the bleaching process. Micro kappa is used in this work because lignin content at this stage of the production of dissolving pulp is too low, and using traditional kappa method may lead to unprecise values.

CS\(_2\) consumption calculation

CS\(_2\) consumption was calculated using Fock reactivity, \(a\)-cellulose content and the stoichiometric value required for the xanthation phase which is 23.5% (expressed in g CS\(_2\) per 100 g of cellulose) (Arce et al. 2020; Gondhalekar et al. 2019a). Considering Fock’s reactivity as a reaction yield of xanthation, and the \(a\)-cellulose content of the pulp, the theoretical quantity of fibres (TF) is obtained using Eq. 2. CS\(_2\) consumption is calculated using the stoichiometric value of CS\(_2\) and \(a\)-cellulose content (Eq. 3).

\[
TF(\%) = \frac{a\text{-cellulose}(\%) \cdot \text{Reactivity}(\%)}{100} \tag{2}
\]

\[
CS_2\text{usage}(\%) = \frac{a\text{-cellulose}(\%) \cdot 23.5}{100} \tag{3}
\]

The CS\(_2\) usage needs to be calculated not only to consider the reactivity of the sample but also to assess the ratio of consumption per fibre (RCF), as shown in Eq. 4. The final reduction of CS\(_2\) usage was calculated using as reference the RCF from the inlet pulp.

\[
RCF = \frac{CS_2\text{usage}(\%)}{TF(\%)} \tag{4}
\]

X-ray diffraction and crystallinity index

Characterisation of the untreated pulp and DES-treated pulps at 1/20 S/L ratio was carried out by powder-Ray diffraction (XRD); XRD studies were performed in air atmosphere on a Bruker D8 Advance diffractometer, using Cu K\(_\alpha\) radiation and a LynxEye detector. Diffraction patterns were collected with an angular 2\(\theta\) range between 10\(^\circ\) and 70\(^\circ\) with a 0.03\(^\circ\) step size and measurement time of 3 s per step, and a graphite monochromator.

The XRD spectra were used to calculate de crystallinity index (CrI) using Eq. 5 proposed by Segal et al. (1959).

\[
\text{CrI}(\%) = \frac{(I_{200} - I_{am})}{I_{200}} \cdot 100 \tag{5}
\]

where \(I_{200}\) is the intensity of the crystalline plane (200) at around 22\(^\circ\) and \(I_{am}\) is the intensity of the amorphous cellulose at the minimum near 18\(^\circ\).

Results

Effect of DES pre-treatment on pulp quality parameters

In this work, the pre-treatment of dissolving pulp with DES to increase reactivity has been assessed. Four DES were tested: ChCl:MA, ChCl:LA, ChCl:OxA and ChCl:Ur at two different S/L ratio, 1/5 and 1/20. Intrinsic viscosity, lignin content (micro-kappa), pentosan content and reactivity of the pulp were analysed to evaluate the effects of the pre-treatment \(a\)-cellulose
content. The parameters α-cellulose and intrinsic viscosity are shown in Fig. 1, with both solid to liquid ratios.

At 1/20 solid to liquid ratio, cellulose content increases slightly when the system is formed by ChCl:LA (1.65%), ChCl:MA (0.29%) and ChCl:Ur (0.94%), showing that the solubility of cellulose in the DES used in this work is almost negligible as stated by Kumar et al. (2016). It should be noted that the increase in cellulose does not mean that it is a product of a chemical reaction; it means that other compounds are eliminated; thus, cellulose content is concentrated.

Viscosity also increases when using the same DES systems, as long fibres of cellulose are released. Higher viscosity values are obtained when the ChCl:LA and ChCl:Ur systems are used, reaching values of 509.25 and 507 mL/g respectively. The system ChCl:MA nearly did not affect viscosity (479.61 mL/g concerning 465.9 mL/g in the raw pulp). However, using the ChCl:OxA DES mixture both α-cellulose content (86.86%) and viscosity (338.70 mL/g) decrease. These results are in accordance with Škulcová et al. (2016) and Zhang et al. (2020). The later studied the dissolution of cellulose when using many DES systems. It was found that ChCl:OxA lead to the highest dissolution of cellulose, up to 2.5% of cellulose was dissolved in OxA. In this study the dissolution of cellulose was 4.57%; however, the system in this study was formed by 1/3 ChCl:OxA and Zhang et al. (2020) used 1/2 ChCl:OxA, therefore it is possible that increasing OxA in the mixture, might lead to higher cellulose dissolution.

Regarding the S/L ratio, also affects the dissolution of OxA significantly, since increasing the quantity of DES results in the higher dissolution of cellulose. The decrease in cellulose, significantly affects viscose, since α-cellulose includes high molecular weight chains. This effect is probably due to the H-bonds formed when using this system. At 1/5 solid to liquid ratio, cellulose content remains almost constant for all the systems used with values ranging between 91.09% for ChCl:LA and 89.46% for ChCl:Ur. Therefore, using a lower S/L ratio softens the effect that DES has on the pulp, in terms of α-cellulose content.

Regarding viscosity changes, the trend is very similar to that shown for a 1/20 ratio. The highest viscosity increase was obtained with ChCl:Ur and the system ChCl:OxA gave the lowest viscosity as well; therefore this system harms pulp viscosity, making it unsuitable for pulp pre-treatment for viscose purposes. Figure 2 shows the influence of DES pre-treatment on lignin content (kappa) and pentosan content.

As can be seen from Fig. 2b lignin content decreases for all the DES systems and ratios tested. When a 1/20 ratio is used, the higher lignin reduction is achieved with ChCl:LA, reducing kappa number until 0.07 (91.83% reduction). On the other hand, the lowest lignin reduction is obtained using ChCl:OxA with a final kappa value of 0.87 (3.71% reduction). Recent studies obtained the highest delignification with ChCl:OxA showing a kappa reduction of 38.7% (Majová et al. 2017). However, initial lignin content had a strong influence on delignification, the lower the initial lignin, the lower the delignification. In fact, Majová et al. (2017) had a 0.8% kappa reduction when initial kappa was 11.8. This trend is also shown in this work, with an initial kappa value of 1.16, the lignin reduction was 32.5%. Nevertheless, initial kappa of 0.91 results in a 3.71% lignin reduction. This trend is the same when using ChCl:MA, achieving up to

Fig. 1 Evolution of a α-cellulose content and b intrinsic viscosity after DES treatment

(C) Springer
90.9% lignin elimination when initial lignin content was higher. Taking into account the fact that the raw material of this work is dissolving pulp, ChCl:OxA is not recommended because it gives low delignifying properties, a reduction of \(\alpha\)-cellulose and a decrease of viscosity in relation to the raw pulp. Zhang et al. (2016) used ChCl:LA, ChCl:OxA and ChCl:MA to increase the saccharification rate of corncob, achieving 86.1%, 98.5% and 22.4% of lignin reduction, respectively. Procentese et al. (2015) employed ChCl:Ur in agricultural biomass giving total lignin reduction of 7.1%. In this work, the reduction of lignin when using ChCl:Ur was in the range of 31.75% and 43.17% when the S/L ratio was 1/5 and 1/20, respectively.

Most of the studies focus on delignification of untreated biomass residues with higher lignin content than high-cellulose dissolving pulps such as rice residues (Kandanelli et al. 2018), corn stover (Xu et al. 2016) or potato peels (Procentese et al. 2018). Based on results obtained in this study, and comparing with the literature working with oxalic-based DES mixtures, it can be concluded that ChCl:OxA is more effective when used with high-lignin content samples than with dissolving pulps.

Pentosan content in the pulp, showed in Fig. 2a, increases when a higher ratio is used. The highest increase is produced when using ChCl:Ur at a 1/20 S/L ratio, up to 3.9%. In the bibliography studied, Zhao et al. (Zhao et al. 2017) achieved a 6% xylan removal at a 1/5 S/L ratio whereas Tan et al. (2019) obtained 20% xylan removal when using ChCl:Ur at 1/10 S/L ratio in the same study the authors reached a 100% xylan removal with ChCl:LA at 1/10. As happened with lignin content, pentosan content seems to be affected by the initial content. The studies mentioned before use wheat straw (21.8% xylan content) and oil palm empty fruit bunch respectively, which have a higher amount of pentosan content than dissolving pulp. Therefore, pentosan elimination reduces as the initial pentosan content decreases. The evolution of pentosan content is not linear, since increasing the quantity of DES in the system, does not always translate on higher pentosan elimination. Morais et al. (2018) studied the effect solubilisation of xylans, similar to pentosan, using DES, specifically ChCl:Ur, at different ratios and concentrations, and found out that increasing DES quantity in the system does not lead to the same increase on xylan dissolution, the maximum extraction was obtained at 50% DES/water concentration whereas increasing DES content to a 75%, xylan extraction did not improve. From Table 2, reducing DES quantity leads to a reduction in pentosan. Morais et al. (2018), employed temperatures from 70 to 90 °C, thus reducing the viscosity of DES. In this work, the temperature was kept at 60 °C; therefore, viscosity is higher. This fact might explain why 1/5 S/L ratio can extract more pentosan than 1/20 S/L ratio.

It should be noted that the raw material used in this work, has already been through several processes (cooking and bleaching) which makes pulp more accessible to reactants than the untreated material, by increasing the porosity and thus, the specific surface area (Li et al. 2018).

The selectivity of the DES treatment towards delignification can be seen comparing Figs. 1a and 2b. While \(\alpha\)-cellulose content remained constant or even increased, lignin content decreased for all the DES employed. Alvarez-Vasco et al. (2016) explained...
this effect by the ability of DES to cleave ether bonds present in lignin. They also observed no carbohydrates dissolved in the DES. Tang et al. (2017) showed that DES systems exhibit strong interactions with lignin; in fact, some of the DES precipitated with the lignin extracted. Therefore, the results showed in this work, regarding lignin and cellulose content, agree with the bibliography studied.

Table 2 shows the yields obtained when compared with the raw pulp; negatives values imply the property decreased.

Table 2 Yields, in %, obtained referred to the raw pulp

	α-cellulose	Intrinsic viscosity	Pentosan	Kappa
S/L ratio				
ChCl:LA	1.65	6.95	5.55	-6.08
ChCl:Ur	0.29	6.47	38.99	-6.28
ChCl:MA	0.94	0.72	7.42	-13.56
ChCl:OxA	-4.57	-28.87	21.66	-3.71

From Table 2, some conclusions can be drawn. Regarding α-cellulose content, some DES lead to a low quantity (DES:Ur and DES:OxA), undesirable for viscose purposes. The reference values for pulp quality were obtained from the standard FZ/T 51001-(2009). Regarding pentosan content, even though it increases for some systems, pentosan content never reaches 4%, which is the maximum value that the standard considers. Kappa is always below 1%, and viscosity barely changes, except for DES:OxA, which leads to a 28.87% viscosity reduction and a 4.57% α-cellulose reduction. These results make DES:OxA unsuitable to be used as pre-treatment for viscose purposes.

Figure 3 represents the changes in reactivity with each DES and at each S/L ratio. Effects of DES mixtures over this parameter have never been studied before and is crucial for improving the viscose process and decrease the use of non-environmentally friendly reagents, i.e. CS₂ and NaOH. Error bars have been added in the figure. These errors are based on standard deviation and are lower than 10 for every analysis.

Reactivity increases for all the DES employed. The best results were obtained using an S/L ratio of 1/20, except for ChCl:MA. The highest increase of reactivity was produced using ChCl:OxA at a 1/20 ratio, however, as stated before, this DES will not be considered as the best, because pulp after the treatment does not have enough quality to be considered suitable for viscose purposes. Tian et al. (2020), stated that the hydrogen bonding abilities of DES could swell cellulose and as a result, increase reactivity, which agrees with this work. No literature has been found about the use of DES to increase reactivity. This paper is the first research analysing the effect of DES over cellulose reactivity. Previous works have used different lignocellulosic materials to increase their accessibility to chemicals, i.e. several authors used DES for glucose release from cellulose (Nor et al. 2016; Xu et al. 2016; Xing et al. 2018). This behaviour can be related to reactivity.

Nevertheless, such behaviour had not been determined. Regarding reactivity towards viscose, several authors have used different methods to upgrade cellulose pulp, recently. Duan et al. (2019) used mechanical and chemical treatments simultaneously to increase reactivity up to 83.5% while reducing viscosity to 411 mL/g. Zhou et al. (2019) performed an ultrasonic pre-treatment to increase Fock’s reactivity by breaking H-bonds through cavitation. This treatment leads to a reactivity value of 73.2% with nearly no changes on viscosity. Similar effects occurred in this study, since DES barely changed viscosity, except for ChCl:OxA. Sango et al. (2018) used an enzymatic treatment and obtained a resulting pulp with a Fock’s reactivity of 77.4% with a small
decrease in viscosity. As an alternative, Arce et al. (2020) studied the possibility of increasing Fock’s reactivity through bleaching, instead of using pre-treatments. As a result, bleaching operating conditions were adjusted, and Fock’s reactivity was improved to 95.3% with a viscosity of 448 mL/g. In this study, DES pre-treatment was proved to be an exciting alternative, since Fock’s reactivity was increased up to 93.7% when using ChCl:LA with minor changes on viscosity.

XRD spectra and effect on crystallinity index

Since the best results were obtained when using a 1/20 S/L ratio, XRD of the resulting and untreated pulps were performed to explain this modification in cellulose reactivity. Figure 4 shows the XRD for treated and untreated pulp using 1/20 pulp to DES ratio.

XRD spectra show the typical shape associated to cellulose I, with a broad peak at 20 between 12° and 18° and a maximum at around 22° (Li et al. 2012), which correspond to the planes 110, 110 and 200 (Sirvio¨ et al. 2015). After DES treatment, the structure of cellulose remains intact, and the intensity of both peaks is reduced after the treatment. No cellulose II is formed because there are no peaks at 20° and 22°, which are characteristic of cellulose II (Hori and Wada 2006). To assess the influence of the intensity reduction, a crystallinity index (CrI) for each pulp was calculated following the Segal method. This method was chosen because it gave results easily comparable with other samples (Segal et al. 1959; Park et al. 2010). Table 3 shows the results obtained.

The CrI of the pulps were calculated using Eq. 5. As can be seen from Table 3, CrI of pulp decreases after treatment with DES, making pulps more accessible for subsequent reagent or enzymatic attacks and therefore more reactive. The highest decrease in crystallinity is obtained with ChCl:Ox. Interestingly, the treatment with ChCl:Ox also resulted in the lowest viscosity. This decrease was produced by the diminution of the amorphous and crystalline regions, as proposed by Kumar et al. (2016), who found a decrease in the CrI of rice straw when treated by ChCl:LA system. Gondhalekar et al. (2019a), proposed that the reduction of crystallinity is caused by the weakening of the hydrogen bonding (Gondhalekar et al. 2019a). Procentese et al. (2015) found a slight decrease, as well, in the crystallinity index of corncob when treated with ChCl:Urea system (Procentese et al. 2015). Additionally, a linear relationship between CrI and reactivity was found as represented in Fig. 5. Looking at Fig. 5, for reactivity values ranging between 75 and 100%, the higher the crystallinity, the lower the reactivity.

CS2 consumption

Carbon disulphide is a critical compound in the manufacture of viscose fibre and environmental wise, one of the most concerning. CS2 consumption was calculated, as stated by Arce et al. (2020). This calculation considers the α-cellulose content and Fock’s reactivity, to measure the theoretical quantity of fibres, and the stoichiometric quantity of CS2, used in the xanthation phase to calculate the quantity used of this compound, described by Gondhalekar et al. (2019b). Finally, a ratio between the CS2 usage and the theoretical fibres was obtained. The reduction was assessed using the untreated pulp (raw pulp) as reference. Results are shown in Table 4. DES treatment reduces the usage of CS2 for every system.

The DES that gave the highest reduction of CS2 usage was ChCl:OxA, even though α-content was the lowest, meaning that reactivity has a more substantial influence on CS2 than α-cellulose content.

Arce et al. (2020), obtained lower reductions, with a maximum reduction of 13.74%, modifying the operating conditions of the bleaching stage of dissolving pulp. So, DES pre-treatment can be an excellent...
alternative to increase the reactivity of dissolving pulp and decrease the CS$_2$ in the process of viscose fibre manufacturing.

ChCl:LA at a 1/20 S/L ratio was considered as the best pre-treatment among the experiments performed. The authors would like to remark that the best DES treatment depends significantly on the objective of the research, i.e. Zhang et al. (2016) found that ChCl:OxA was the best for butanol fermentation and saccharification Kumar et al. (2016) chose ChCl:Glycerol. Regarding lignin elimination and mechanical properties of pulp, Škulcová et al. (2016) found ChCl:MA as the best, whereas Xu et al. (2016) selected ChCl:Fomic acid as the best for lignin elimination and Abdulmalek et al. (2017) determined that Ethylammonium ethylene glycol as the best for both lignin and hemicellulose removal. Even though reactivity is not the highest obtained with ChCl:LA, the results obtained using this configuration are following the pulp quality standards of FZ/T 51001-(2009) for viscose purposes. It should be noted that the decrease in crystallinity can affect not only to CS$_2$ consumption but also to NaOH consumption, since accessibility increases when crystallinity decreases (Gondhalekar et al. 2019b).

Conclusions

The use of DES at two different solid/liquid ratios as a pre-treatment of dissolving pulp to increase its reactivity together with other pulp parameters was assessed in this work. As a result, it was concluded that DES used in this research, increase the reactivity of pulp and reduce crystallisation index. Additionally, a relationship between reactivity and this index was obtained. The highest increase of reactivity was obtained with ChCl:OxA, however, other quality parameters of the pulp were not suitable for viscose purposes. Lactic acid with choline chloride at a 1/20 ratio is recommended in this work. At these conditions, reactivity increased up to 93.70%, reducing the CS$_2$ usage by 15.83%. Treated pulp had the following characteristics: 92.50% of α-cellulose, a kappa number of 0.07, an intrinsic viscosity in mL/g equal to 509.25, pentosan content of 2.93%, with a crystallinity index of 70.20%.

As future work and with the knowledge acquired from this research, an optimisation of the pre-treatment will be performed to find the most suitable operating conditions to obtain the best quality for the pulp. Furthermore, the use of DES pre-treatment on different parts of the bleaching process will also be considered.

Table 3: Crystallinity indexes for untreated and DES-treated pulps

	Raw pulp	ChCl:MA	ChCl:LA	ChCl:OxA	ChCl:Ur
CrI (%)	79.09	71.63	70.23	65.8	70.63

Table 4: CS$_2$ consumption after DES treatment at a ratio of 1/20

Treatment	α-cellulose	Fock’s reactivity (%)	CS$_2$ (%)	TF (%)	RCF	CS$_2$ reduction (%)
Raw pulp	91.02	78.86	21.4	71.8	0.30	–
ChCl:LA	92.52	93.70	21.7	86.7	0.25	15.83
ChCl:Ur	91.28	94.81	21.5	86.5	0.25	16.82
ChCl:MA	91.88	85.18	21.6	78.3	0.28	7.416
ChCl:OxA	86.86	100.00	20.4	86.9	0.24	21.14
Acknowledgments The authors acknowledge the pulp mill Sniace S.A. for providing the pulp needed for the experiments and analyses, and the use of the laboratories when needed.

Compliance with ethical standards

Conflict of interest The authors declare they have no conflict of interest.

References

Abbott AP, Capper G, Davies DL et al (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Comm. https://doi.org/10.1039/h210714g

Abdulmalek E, Zulkefli S, Rahman MBA (2017) Pelarut eutektik sebagai media dalam pembengkakan dan pelarutan batang kelapa sawit. Malays J Anal Sci 21:20–26. https://doi.org/10.17576/mjans-2017-2101-03

Alvarez-Vasco C, Ma R, Quintero M et al (2016) Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorisation. Green Chem 18:5133–5141. https://doi.org/10.1039/c6gc01007e

Arce C, Llano T, García P, Coz A (2020) Technical and environmental improvement of the bleaching sequence of dissolving pulp for fibre production. cellulose. https://doi.org/10.1007/s10570-018-1123-8

Arnoul-Jarriault B, Lachenal D, Chirat C, Heux L (2015) Upgrading softwood bleached kraft pulp to dissolving pulp by cold caustic treatment and acid-hot caustic treatment. Ind Crops Prod 65:565–571. https://doi.org/10.1016/j.indcrop.2014.09.051

Biswas A, Shogren RL, Stevenson DG et al (2006) Ionic liquids as solvents for biopolymers: acylation of starch and zein protein. Carbohydr Polym 66:546–550. https://doi.org/10.1016/j.carbpol.2006.04.005

Cao Q, Li J, Xia Y et al (2019) Green extraction of six phenolic compounds from rattan (Calamoideae faberii) with deep eutectic solvent by homogenate-assisted vacuum-cavitation method. Molecules. https://doi.org/10.3390/molecules24010113

Chen Z, Wan C (2018) Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment. Bioresour Technol 250:532–537. https://doi.org/10.1016/j.biortech.2017.11.066

da Silva Lacerda V, López-Sotelo JB, Correa-Guimaraes A et al (2015) A kinetic study on microwave-assisted conversion of cellulose and lignocellulosic waste into hydroxymethylfurfural/turfural. Bioresour Technol 180:88–96. https://doi.org/10.1016/j.biortech.2014.12.089

Deng W, Yu L, Li X et al (2019) Hexafluoroisopropanol-based hydrophobic deep eutectic solvents for dispersive liquid-liquid microextraction of pyrethroids in tea and fruit juices. Food Chem 274:891–899. https://doi.org/10.1016/j.foodchem.2018.09.048

Duan C, Qin X, Wang X et al (2019) Simultaneous mechanical refining and phosphotungstic acid catalysis for improving the reactivity of kraft-based dissolving pulp. Cellulose 26:5685–5694. https://doi.org/10.1007/s10570-019-02461-6

Fang C, Thomsen MH, Frankaer CG et al (2017) Reviving pre-treatment effectiveness of deep eutectic solvents on lignocellulosic date palm residues by prior recalcitrance reduction. Ind Eng Chem Res 56:3167–3174. https://doi.org/10.1021/acs.iecr.6b04733

Fock W (1959) A modified method for determining the reactivity of viscose-grade dissolving pulps. Das Papier 13:92–95

Francisco M, van den Bruinhorst A, Kroon MC (2012) New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem. https://doi.org/10.1039/c2gc00728d

FZ/T 51001-2009 Pulp Board for Viscose Fiber— Determination for Reaction Property. China National Standards Press, Beijing (2011)

Gadilohar BL, Shankarling GS (2017) Choline based ionic liquids and their applications in organic transformation. J Mol Liq 227:234–261

García G, Aparicio S, Ullah R, Attilan M (2015) Deep eutectic solvents: physicochemical properties and gas separation applications. Energy Fuels 29:2616–2644. https://doi.org/10.1021/ef5028873

Gehmøy V, Schild G, Sixta H (2011) A precise study on the feasibility of enzyme treatments of a kraft pulp for viscose application. Cellulose 18:479–491. https://doi.org/10.1007/s10570-010-9483-x

Gondhalekar SC, Pawar PJ, Dhumal SS (2019a) Use of electron beam irradiation for improving reactivity of dissolving pulp in viscose process. J Radioanal Nucl Chem 322:67–72. https://doi.org/10.1007/s10997-019-06563-0

Gondhalekar SC, Pawar PJ, Dhumal SS, Thakre SS (2019b) Mechanism of xanthation reaction in viscose process. Cellulose 26:1595–1604. https://doi.org/10.1007/s10570-018-2213-5

Gunny AAN, Arbain D, Nashef EM, Jamal P (2015) Applicability evaluation of Deep Eutectic Solvents-Cellulase system for lignocellulose hydrolysis. Bioresour Technol 181:297–302. https://doi.org/10.1016/j.biortech.2015.01.075

Hori R, Wada M (2006) The thermal expansion of cellulose II and IIII crystals. Cellulose 13:281–290. https://doi.org/10.1007/s10570-005-9038-8

Huang Y, Feng F, Jiang J et al (2017) Green and efficient pretreatment effectiveness of deep eutectic solvents on lignocellulosic date palm residues by prior recalcitrance reduction. Ind Eng Chem Res 56:3167–3174. https://doi.org/10.1021/acs.iecr.6b04733

Ibarra D, Kögcke V, Ek M (2010) Behavior of different monocomponent endoglucanases on the accessibility and reactivity of dissolving-grade pulps for viscose process. Enzyme Microb Technol 47:355–362. https://doi.org/10.1016/j.enzmtec.2010.07.016

ISO 5351 (2010) Pulps—Determinations of limiting viscosity number in cupriethylenediamine (CED) solution solution. International Organization for Standardization, Geneva
Jablonsky M, Majova V, Skulcová A, Haz A (2018) Delignification of pulp using deep eutectic solvents. J Hyg Eng Des 22:76–81

Jablonsky M, Škulcová A, Kamenská L et al (2015) Deep eutectic solvents: fractionation of wheat straw. BioResources 10:8039–8047. https://doi.org/10.15376/biores.10.4.8039-8047

Kalhor P, Ghandi K (2019) Deep eutectic solvents for pretreatment, extraction, and catalysis of biomass and food waste. Molecules. https://doi.org/10.3390/molecules2424012

Kandanelli R, Thulluri C, Mangala R et al (2018) A novel ternary combination of deep eutectic solvent-alcohol (DES-OL) system for synergistic and efficient delignification of biomass. Bioresour Technol 265:573–576. https://doi.org/10.1016/j.biortech.2018.06.002

Kaur P, Bhardwaj NK, Sharma J (2016) Pre-treatment with xylanase and its significance in hemicellulose removal from mixed hardwood kraft pulp as a process step for viscose. Carbohydr Polym 145:95–102. https://doi.org/10.1016/j.carbpol.2016.03.023

Kaur P, Bhardwaj NK, Sharma J (2017) Pentosan Reduction from Mixed Hardwood Kraft Pulp with Alkali Treatment and Its Statistical Optimisation. Lignocellulose 6:23–35

Kumar H, Christopher LP (2017) Recent trends and developments in dissolving pulp production and application. Cellulose. https://doi.org/10.1007/s10570-017-1285-y

Kumar AK, Parikh BS, Pravakar M (2016) Natural deep eutectic solvent mediated pre-treatment of rice straw: bioanalytical characterisation of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ Sci Pollut Res 23:9265–9275. https://doi.org/10.11356-015-4780-4

Li D, Sevastyanova O, Ek M (2012) Pre-treatment of softwood dissolving pulp with ionic liquids. Holzforschung 66:935–943. https://doi.org/10.1515/hf-2011-0180

Li H, Legere S, He Z et al (2018) Methods to increase the reactivity of dissolving pulp in the viscose rayon production process: a review. Cellulose 25:3733–3753. https://doi.org/10.1007/10570-018-1840-1

Ling Z, Guo Z, Huang C et al (2020) Deconstruction of oriented crystalline cellulose by novel levulinic acid based deep eutectic solvents pre-treatment for improved enzymatic accessibility. Bioresour Technol 305:123025. https://doi.org/10.1016/j.biortech.2020.123025

Liu Y, Chen W, Xia Q et al (2017) Efficient cleavage of lignin-carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent. ChemSusChem 10:1692–1700. https://doi.org/10.1002/cssc.201601795

Llano T, Arce C, Ruiz G et al (2018) Modelling and optimisation of the last two stages of an environmentally-compatible TCF bleaching sequence. BioResources 13:6642–6662. https://doi.org/10.15376/biores.13.3.6642-6662

Lou R, Ma R, Lin KT et al (2019) Facile extraction of wheat straw by deep eutectic solvent (DES) to produce lignin nanoparticles. ACS Sustain Chem Eng 7:10248–10256. https://doi.org/10.1021/acssusc晚报8b05816

Majová V, Horanová S, Škulcová A, Šima J, Jablonský M (2017) Deep eutectic solvent delignification: impact of initial lignin. BioResources 12:7301–7310

Mbous YP, Hayyan M, Hayyan A et al (2017) Applications of deep eutectic solvents in biotechnology and bioengineering—Promises and challenges. Biotechnol Adv 35:105–134. https://doi.org/10.1016/j.biotechadv.2016.11.006

Miao Q, Chen L, Huang L et al (2014) A process for enhancing the accessibility and reactivity of hardwood kraft-based dissolving pulp for viscose rayon production by cellulase treatment. Bioresour Technol. https://doi.org/10.1016/j.biortech.2013.12.040

Morais ES, Mendonça PV, Coelho JFF et al (2018) Deep eutectic solvent aqueous solutions as efficient media for the solubilisation of hardwood xylans. Chemsuschem 11:753–762. https://doi.org/10.1002/cssc.201702007

Nor NAM, Mustapha WAW, Hassan O (2016) Deep eutectic solvent (DES) as a pre-treatment for oil palm empty fruit bunch (OPEFB) in sugar production. Procedia Chem 18:147–154. https://doi.org/10.1016/j.proche.2016.01.023

Pan M, Zhao G, Ding C et al (2017) Physicochemical transformation of rice straw after pre-treatment with a deep eutectic solvent of choline chloride/urea. Carbohydr Polym 176:307–314. https://doi.org/10.1016/j.carbpol.2017.08.088

Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels. https://doi.org/10.1186/1754-6834-3-10

Procenente A, Rehnmann L (2018) Fermentable sugar production from a coffee processing by-product after deep eutectic solvent pretreatment. Bioresour Technol Rep 4:174–180. https://doi.org/10.1016/j.bitre.2018.10.012

Procenente A, Johnson E, Orr V et al (2015) Deep eutectic solvent pre-treatment and subsequent saccharification of corncob. Bioresour Technol 192:31–36. https://doi.org/10.1016/j.biortech.2015.05.053

Procenente A, Raganati F, Olivieri G et al (2018) Deep Eutectic Solvents pre-treatment of agro-industrial food waste. Biotechnol Biofuels 11:1–12. https://doi.org/10.1186/s13068-018-1034-y

Sango C, Kaur P, Bhardwaj NK, Sharma J (2018) Bacterial cellulase treatment for enhancing reactivity of pre-hydrolysed kraft dissolving pulp for viscose. J Biotechnol 8:1–7. https://doi.org/10.1017/s13205-018-1293-0

Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffraction pattern. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

Sert M, Arslanoğlu A, Ballice L (2018) Conversion of sunflower stalk based cellulose into the valuable products using choline chloride based deep eutectic solvents. Renew Energy 118:993–1000. https://doi.org/10.1016/j.renene.2017.10.083

Shen XJ, Wen JL, Mei QQ et al (2019) Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pre-treatment for cellulose enzymatic hydrolysis and lignin valorisation. Green Chem 21:275–283. https://doi.org/10.1039/c8gc03064b
Sirvio JA, Visanko M, Liimatainen H (2015) Deep eutectic solvent system based on choline chloride-urea as a pretreatment for nanofibrillation of wood cellulose. Green Chem 17:3401–3406. https://doi.org/10.1039/c5gc00398a

Škulcová A, Kamenská L, Kalman F et al (2016) Deep eutectic solvents as medium for pretreatment of biomass. Key Eng Mater. https://doi.org/10.4028/www.scientific.net/KEM.688.17

Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082. https://doi.org/10.1021/cr030162p

Supeno S, Daik R, El-Sheikh S (2014) The synthesis of a macro-initiator from cellulose in a zinc-based ionic liquid. BioResources 9:1267–1275

Tan YT, Ngoh GC, Chua ASM (2019) Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin. Bioresour Technol 281:359–366. https://doi.org/10.1016/j.biortech.2019.02.010

Tang X, Zuo M, Li Z et al (2017) Green processing of lignocellulosic biomass and its derivatives in deep eutectic solvents. Chemsuschem 10:2696–2706

TAPPI T203 cm-99 (1999) “Alpha-, beta- and gamma-cellulose in pulp,” TAPPI test methods. TAPPI Press, Atlanta

TAPPI UM 246 (1991) “Micro kappa number,” TAPPI useful methods 1991. TAPPI Press, Atlanta, pp 43–44

Tian C, Zheng L, Miao Q et al (2013) Improvement in the Fock test for determining the reactivity of dissolving pulp. Tappi J 12:21–26

Tian C, Zheng L, Miao Q et al (2014) Improving the reactivity of kraft-based dissolving pulp for viscose rayon production by mechanical treatments. Cellulose 21:3647–3654. https://doi.org/10.1007/s10570-014-0332-1

Tian D, Guo Y, Hu J et al (2020) Acidic deep eutectic solvents pre-treatment for selective lignocellulosic biomass fractionation with enhanced cellulose reactivity. Int J Biol Macromol 142:288–297. https://doi.org/10.1016/j.ijbiomac.2019.09.100

Tommasi E, Cravotto G, Galletti P et al (2017) Enhanced and selective lipid extraction from the microalgae P. tricornutum by dimethyl carbonate and supercritical CO2 using deep eutectic solvents and microwaves as pretreatment. ACS Sustain Chem Eng 5:8316–8322. https://doi.org/10.1021/acssuschemeng.7b02074

Wang X, Duan C, Zhao C et al (2018) Heteropoly acid catalytic treatment for reactivity enhancement and viscosity control of dissolving pulp. Bioresour Technol 253:182–187. https://doi.org/10.1016/j.biortech.2018.01.022

Wilpiszewska K, Spychaj T (2011) Ionic liquids: media for starch dissolution, plasticisation and modification. Carbohydr Polym 86:424–428

Xia S, Baker G, Li H et al (2014) Aqueous ionic liquids and deep eutectic solvents for cellulosic biomass pre-treatment and saccharification. RSC Adv 4:10586–10596. https://doi.org/10.1039/c3ra46149a

Xing W, Xu G, Dong J et al (2018) Novel dihydrogen-bonding deep eutectic solvents: pre-treatment of rice straw for butanol fermentation featuring enzyme recycling and high solvent yield. Chem Eng J 333:712–720. https://doi.org/10.1016/j.cej.2017.09.176

Xu GC, Ding JC, Han RZ et al (2016) Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresour Technol 203:364–369. https://doi.org/10.1016/j.biortech.2015.11.002

Yang S, Wen Y, Zhang H et al (2018) Enhancing the Fock reactivity of dissolving pulp by the combined prerefining and poly dimethyl diallyl ammonium chloride-assisted cellulose treatment. Bioresour Technol 260:135–140. https://doi.org/10.1016/j.biortech.2018.03.119

Zdanowicz M, Wilpiszewska K, Spychaj T (2018) Deep eutectic solvents for polysaccharides processing. A review. Carbohydr Polym 200:361–380. https://doi.org/10.1016/j.carbpol.2018.07.078

Zhang Q, De Oliveira Vigier K, Royer S, Jérome F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41:7108. https://doi.org/10.1039/c2cs35178a

Zhang C-W, Xia S-Q, Ma P-S (2016) Facile pre-treatment of lignocellulosic biomass using deep eutectic solvents. Bioresour Technol 219:1–5. https://doi.org/10.1016/j.biortech.2016.07.026

Zhang H, Lang J, Lan P et al (2020) Study on the dissolution mechanism of cellulose by ChCl-based deep eutectic solvents. Materials (Basel) 13:1–12. https://doi.org/10.3390/ma13020278

Zhao L, Yuan Z, Kapu NS et al (2017) Increasing efficiency of enzymatic hemicellulose removal from bamboo for production of high-grade dissolving pulp. Bioresour Technol 223:40–46. https://doi.org/10.1016/j.biortech.2016.10.034

Zhou S, Li Y, Huang L et al (2019) Ultrasound treatment for enhancing the accessibility and reactivity of softwood rayon-grade kraft-based dissolving pulp. Cellulose 26:9287–9294. https://doi.org/10.1007/s10570-019-02719-z

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.