Estimation of the critical temperatures of alkaline metals on the basis of specified data on surface tension polytherms

B B Alchagirov, B S Karamurzov, Kh Kh Kalazhokov, Z A Kokov and O Kh Kyasova
Kabardino-Balkarian State University, Chernyshevskogo Street 173, Nalchik, Kabardino-Balkaria 360004, Russia
E-mail: alchg@kbsu.ru

Abstract. The critical temperatures of alkali metals are calculated on the basis of refined data on temperature dependences of surface tension of alkali metals approximated with linear equations. It is shown that the calculated values of the critical temperatures of alkali metals are in satisfactory agreement with the experimental results and theoretical calculations available in the literature.

The study of the temperature dependence of surface tension (ST) allowed D I Mendeleev to predict in 1860 the existence of the critical point \((T_c) \), which he termed the absolute boiling point, and to establish that the extent of the liquid phase is finite \[1, 2\]. The fact that surface tension becomes zero at the critical point can be used to estimate the \(T_c \). We assume linear dependence of surface tension \(\sigma(T) \) on temperature in the entire range of liquid phase of alkali metals. We note that for alkali metals the data on surface tension \(\sigma(T) \) are available in the widest temperature intervals, including those in the relative proximity to the critical temperatures \[3–8\]. It should also be noted that alkali metals are good model objects and meet the criteria of thermodynamic equivalence.

In \[2\], experimental data on temperature dependence of surface tension \(\sigma(T) \) obtained in high vacuum \[5\] were used to estimate the critical temperatures \(T_c \) of alkali metals, as well \(T_c \) calculated using the following equation from \[9\]:

\[
\sigma = \frac{kT}{2} \ln \frac{\rho'}{\rho''} \frac{1}{\omega},
\]

in which \(\sigma \) is the surface tension, \(T \) is the absolute temperature, \(k \) is the Boltzmann constant, \(\rho' \) and \(\rho'' \) are the density of the liquid and vapor, respectively, and \(\omega \) is the effective molar area of the surface layer.

In this work we present, in table 1, the results of \(T_c \) calculations based on experimental \(\sigma(T) \) data obtained in \[4, 5, 10\], approximated using linear functions of the critical temperature

\[
\sigma(T) = \sigma_m - \frac{\partial \sigma}{\partial T} (T_c - T_m),
\]

where \(T_m \) is the melting temperature, \(\sigma_m \) is the ST at \(T_m \).
Table 1. The results of theoretical calculations and experimental measurements of T_c (K).

Me	Li	Na	K	Rb	Cs	Fr
[11]	3293	—	—	—	—	—
[12]	—	2800	2440	2190	2150	—
[13]	—	2880	2440	—	—	—
[14]	3223 ± 600	2573 ± 350	2223 ± 600	2093 ± 25	2057 ± 40	—
[15]	2938	—	—	—	—	—
[16]	3286	2573 ± 60	2173 ± 50	—	—	—
[5]	—	2136	1790	—	—	—
[17]	—	—	—	—	—	1550
[18]	3831	2635	2185	2061	1942	—
[19]	3223	2573	2223	2093	2057 ± 40	1810
[20]	—	2504	2281 ± 5	2106	2048 ± 4	—
[2]	—	2326	1924	—	—	—
[21, 22]	3680 ± 300	2503 ± 50	2281	2106 ± 15	2043 ± 15	1980 ± 50
[23]	—	2504 ± 50	2240 ± 40	2097 ± 10	2043 ± 6	—
[24]	—	—	2280	2090	2010	—
[25]	—	—	—	—	1924	—
[26]	3503 ± 10	2497 ± 18	2239 ± 49	2100 ± 15	2035 ± 23	—
[26]	3344 ± 42	—	—	—	—	—
[27]	3741	2429	2195	1995	2018	—
[28]	3474	2590	2195	—	—	—
[7]	3407	—	2050	—	—	—
[8]	3232	—	—	—	—	—
[29]	—	—	—	—	1938 ± 10	—
[30]	—	2485	2280	2017	1924	—
[4]	3285	2421	2106	1796	1736	—
[31]	3214	2908	2152	1912	1770	—
[32]	3350	2263	2111	1946	1884	—
[6]	3225	—	—	—	—	—
[33, 34]	3503 ± 10	2497 ± 18	2239	—	2035 ± 23	—
[35]	3210	2480	2230	2120	2020	—
[36]	—	—	—	—	1400	—
[37]	—	—	1987	1822	—	—
[38]	3940	2489	—	—	—	—
[39]	—	—	—	—	1690	—
[40]	2797	2180	2233	1836	1786	—
This work	3190	2420	2106	1930	1830	1690

The relation (2) is used often along with various methods for estimating T_c [21, 39]. However, as justly noted in the works of L Fokin et al [21, 22], it depends on reliable data on $\sigma(T)$. We note that a number of input parameters that were used in these methods became obsolete and have since been revised [31, 41].

The studies [21, 22], in which estimates of T_c for alkali metals obtained using relation (2) were presented, were published decades ago. Since then the experimental methods have improved and precision techniques were developed for determining the ST and density of alkali metals. The
application of these techniques with samples of improved purity in ultrahigh vacuum conditions provided new data which allowed to substantially refine the previous data [6, 25, 29, 42–45].

Table 1 shows the experimental data [4,6–8,16,21,22,31,40,46,47] for determining the critical temperature and, for comparison, the main results of T_c calculations by different authors.

The values of T_c for lithium obtained in this study are 10% lower than the experimental and theoretical results available in the literature. This difference can be explained by several factors. The approximate nature of the majority of theoretical studies of T_c of lithium. The errors of the experimental measurements of T_c are still large, and amount to about 10% [21,22]. With the exception of francium, the temperature dependence of the surface tension of lithium is still the least studied among alkali metals. This, in our opinion, is due to the methodological peculiarities (its unusually large capillary constant) and the resulting significant difficulties in the experimental study of physicochemical properties of lithium. Unlike the other alkali metals, high-purity samples of lithium are still in short supply. Lithium samples presently used in the experiments contain no more than 99.9% of the main element. Furthermore, the impurities present in these samples (sodium, potassium, and oxygen, etc. [48,49]) are surface-active relative to lithium, which can affect and distort significantly the results of measurements of its physical and chemical properties.

The comparison of the calculated and experimental values of T_c presented in table 1 indicates that the T_c estimates obtained using our $\sigma(T)$ data for lithium, sodium, potassium and cesium [4, 19, 23, 29, 41, 46] are in satisfactory agreement with data from direct T_c measurements by P. Achener et al. [16], within the error margins of the latter.

The somewhat lower values of T_c for sodium and cesium calculated by the authors of [2] using experimental data for $\sigma(T)$ from [5] suggest, in our opinion, that the temperature dependences of ST of sodium and cesium obtained in [10] are more reliable than the results of $\sigma(T)$ measurements obtained in [5].

Thus the critical temperatures for lithium, sodium, potassium, rubidium and cesium were calculated based on refined data on the temperature dependences of surface tension of alkali metals. It is shown that the calculated values for the critical temperatures of these metals are in satisfactory agreement with the results of experimental studies.

References

[1] Mendeleev D I 1947 Liquids (Sochineniya vol 5) (Leningrad–Moskva: Akad. Nauk SSSR) pp 40–55
[2] Semenchenko V K and Pugachevich P P 1981 Fiz. Met. Metalloved. 52 654–8
[3] Nizhenko V I and Floka L I 1981 The Surface Tension of Liquid Metals and Alloys: A Reference Book (Moscow: Metallurgiya)
[4] Alchagirov B B 1991 Surface Tension of Alcaline Metals and Alloys with Their Participation (Obz. Teplofiz. Sovsestva Veshchestev no 3,4) (Moscow: IVTAN)
[5] Kiriyenenco A A 1970 Investigation of the Thermophysical Properties of Substances (Novosibirsk: Nauka) pp 124–43
[6] Yakimovich K A and Mozgovoi A G 2000 High Temp. 38 657–9
[7] Timrot D L, Reutov B F, Arkhipov A P and Eremin N M 1988 Teplofiz. Vys. Temp. 26 174–8
[8] Timrot D L, Reutov B F, Arkhipov A P and Eremin N M 1990 Teplofiz. Vys. Temp. 28 601–4
[9] Semenchenko V K 1976 J. Phys. Chem. 50 1846–8
[10] Osiko T P and Alchagirov B B 1987 Teplofiz. Vys. Temp 25 609–11
[11] Taylor J W 1955 Phil. Mag. 46 867–76
[12] Grosse A V 1961 J. Inorg. Nucl. Chem. 22 23–31
[13] Grosse A V 1964 J. Inorg. Chem. 26 1349–61
[14] Dillon I G, Nelson P A and Swanson B S 1966 J. Chem. Phys. 44 4229–38
[15] Bohdansky J and Schins H E J 1967 J. Inorg. Nucl. Chem. 29 2173–9
[16] Achener P Y, Mackewicz W V and Fisher D L 1968 Surface tension and contact angle of lithium and sodium Preprint AGN–8195
[17] Osminin Yu P 1969 Zh. Fiz. Khim. 43 2610
[18] Young D A and Alder B J 1971 Phys. Rev. A 3 364–71
[19] Fortov V E, Dremin A N and Leont’ev A A 1975 *High Temp.* 13 1072–80
[20] Blairs S 1978 *J. Coll. Interf. Sci.* 67 548–51
[21] Gogoleva V V and Fokin L R 1981 Estimation of critical parameters of lithium and francium *Preprint* 1-061 (Moscow: IVTAN)
[22] Mozgovoy A G, Fokin L R and Chernov A I 1984 *Critical Parameters of Alkali Metals* (Obz. Teplofiz. Vsoistvaem Veshchestvo no 5) (Moscow: IVTAN)
[23] Martynyuk M M 1983 *Zh. Fiz. Khim.* 57 810–21
[24] Hensel F 1984 *Mat. Res. Soc. Proc.* 22 3–12
[25] Jungst S, Knuth B and Hensel F 1985 *Phys. Rev. Lett.* 50 2160–3
[26] Ohse R W, Badelet J F, Magill J and Tetenbaum M 1985 *Handbook of Thermodynamic and Transport Properties of Alkali Metals. Chapter 6.1.: An Assessment of the Melting, Boiling, and Critical Point Data of the Alkali Metals* (Oxford: IUPAC. Blackwell Scientific Publications) chapter 6.1 pp 329–48
[27] Gathers G R 1986 *Rep. Prog. Phys.* 49 341–96
[28] Azad A M, Ganesan S and Sreedharan 1986 *Trans. Ind. Inst. Metals* 39 455–8
[29] Kozhevnikov V F 1990 *Sov. Phys. JETP* 70 298–310
[30] Hensel F 1990 *J. Phys.: Condens. Matter* 2 SA33–45
[31] Keene B J 1993 *Int. Mater. Res.* 38 157–92
[32] Martynyuk M M 1998 *Zh. Fiz. Khim.* 72 19–22
[33] Kirillov P L, Terentyeva M I and Deniskina N B 2000 *Thermophysical Properties of Liquid Metal Coolants. Overview. FEI-0291* (Moscow: TsNIInatominform)
[34] Kirillov P L, Terentyeva M I and Deniskina N B 2007 *Thermophysical Properties of Nuclear Materials* (Moscow: Izdat)
[35] Basin A S 2002 Basic critical point parameters for metals with close-packed crystalline structure *Materials of the X Russian Conference on Thermophysical Properties of Substances* (Kazan: Butlerov Communications) pp 103–8
[36] Kuzhitov L V, Kol’tsov A V and Kol’tsov V B 2003 *Inorg. Mater.* 39 1138–41
[37] Mousazadeh M H, Khanchi A and Ghanadi Marageh M 2006 *J. Iran. Chem. Soc.* 3 22–31
[38] Khishchenko K V 2008 *J. Phys.: Conf. Ser.* 98 032023
[39] Alchagirov B B, Arkhestov R Kh, Dyshekova F F, Kegadueva Z A and Lukozheva Z Z 2008 *Doklady AMAN* 10 106–7
[40] Dohov M P 2010 *Sovremennye Naukoemkie Tekhnologii* (10) 174–6
[41] Chowdhury A, Binvignat-Toro J and Bonilla C F 1982 The experimental surface tension of sodium to 1600 K and its extrapolation towards the critical point *Proc. VIII Symp. on Thermophysical Properties* (New York: ASME) pp 437–42
[42] Alchagirov B B 1989 *Byull. Izobret.* 12 188
[43] Alchagirov B B, Khokonov Kh B and Karamurzov B S 2017 *Methods and Devices for Research in the Field of Physics of Interphase Phenomena in Condensed Substances (Special Physical Practices)* (Nalchik: KBSU)
[44] Alchagirov B B, Alberdieva D Kh, Gorchkhanov V G, Fokin L R, Arkhestov R Kh, Dyshekova F F, Kegadueva Z A and Afaunova L Kh 2015 Thermostat and pycnometer for precise measurements of the density of liquids *Patent* 2567187
[45] Alchagirov B B, Dyshekova F F and Kokov Z A 2017 *Priory* (2) 18–28
[46] Alchagirov B B and Arkhestov R Kh 1991 *Izv. Sev.-Kavk. Nauchn. Tsentr Vvash. Shk., Estestv. Nauki* (2) 60–3
[47] Alchagirov B B 1986 *Izv. Sev.-Kavk. Nauchn. Tsentr Vvash. Shk., Estestv. Nauki* (4) 51–6
[48] Powell G L, Clausing R E and McGuire G E 1975 *Surf. Sci.* 49 310–4
[49] Bastasz R and Whaley J A 2004 *FusionEng. Des.* 72 111–9