Biliary tract external drainage increases the expression levels of heme oxygenase-1 in rat livers

Lu Wang, Bing Zhao, Ying Chen, Li Ma, Er-Zhen Chen* and En-Qiang Mao*

Abstract

Background: Heme oxygenase-1 (HO-1) protects cells by anti-oxidation, maintaining normal microcirculation and anti-inflammatory under stress. This study investigated the effects of biliary tract external drainage (BTED) on the expression levels of HO-1 in rat livers.

Methods: Biliary tract external drainage was performed by inserting a cannula into the bile duct. Sixty Sprague–Dawley rats were randomized to the following groups: sham 1 h group; BTED 1 h group; bile duct ligation (BDL) 1 h group; sham 6 h group and BTED 6 h group. The expression levels of HO-1 mRNA were analyzed using real-time RT-PCR. The expression levels of HO-1 were analyzed using immunohistochemistry.

Results: The expression levels of HO-1 mRNA in the liver of the BTED group increased significantly compared with the sham group 1 and 6 h after surgery (p < 0.05). The expression levels of HO-1 in the BTED group increased significantly compared with the sham group 1 and 6 h after surgery. The expression levels of HO-1 mRNA in the liver in the BDL group decreased significantly compared with the sham group 1 h after surgery (p < 0.05). The expression levels of HO-1 in the BDL group decreased significantly compared with the sham group at this time.

Conclusion: Biliary tract external drainages increase the expression levels of HO-1 in the liver.

Keywords: Biliary tract external drainage, Heme oxygenase-1

Background

Heme oxygenase-1 (HO-1) protects cells by anti-oxidation, maintaining normal microcirculation and anti-inflammatory under stress. Four decades of research have witnessed the HO-1 system continues to fascinate researchers across many areas of basic and clinical sciences [1, 2]. Bilirubin may play an negative feedback on the formation of HO-1 according to this theory. We speculate that biliary tract external drainage (BTED) may induce compensatory increase in HO-1 expression via blocking the enterohepatic circulation of bilirubin. Therefore, we explored effects of BTED on HO-1 expression in the liver.

Methods

Animal model

Sixty adult male Sprague–Dawley rats (250–300 g) were purchased from the Experimental Animal Center of Ruijin Hospital. Rats were housed and fed in accordance with the guidelines of the Committee on Care and Use of Laboratory Animal Resources approved by the Shanghai Jiao Tong University Medicine School Animal Care and Ethics Committee.

After a 1-week adaption period during which food and water were available ad libitum, rats were randomly divided into 5 groups: sham 1 h group; BTED 1 h group; bile duct ligation (BDL) 1 h group; sham 6 h group and BTED 6 h group. Rats were fasted overnight prior to experiments, but water was available ad libitum. Rats in the BTED group were intraperitoneally anesthetized with 3% sodium pentobarbital (0.2 ml/100 g). Laparotomies were performed after shaving and sterilization. Bile duct
was exposed long enough for BTED. A catheter (inner diameter 0.4 mm; outer diameter 0.8 mm; length 20 cm) was inserted into the bile duct. The distal end of bile duct was ligated. The catheter was passed through the flank of rats to avoid bile passage into the gut and allow for the external collection of bile. In the BDL group, the bile duct was ligated. The abdomen was closed subsequently. Rats in the BDL group underwent pentobarbital anesthesia, laparotomy, bile duct ligation and suture. Rats in the sham group underwent pentobarbital anesthesia, laparotomy and suture. Twelve rats in every group were sacrificed at the point of setting time. Livers were collected.

The expression levels of HO-1 messenger RNA (mRNA) in the liver

Liver scrapings from all animals were snap frozen and stored at −80°C for real-time RT-PCR. Total RNA was extracted from the liver using TRIzol reagent. Aliquots (2 µg) of total RNA were used to synthesize complementary DNA (cDNA). Purity and content of RNA was determined using ultraviolet spectrophotometry. A reverse transcription reaction was conducted in a mixture containing random primers, Revert Aid Reverse Transcriptase, RNase inhibitor, and dNTPs. The PCR reaction mixture was prepared using an SYBR Premix Ex Taq with specific upstream and downstream primers. The thermal cycling conditions were 10 s at 95°C for the initial denaturation step followed by 40 cycles of 95°C for 5 s and 60°C for 20 s in a real-time PCR system (7500, ABI, Foster, USA). The mRNA levels of HO-1 are expressed relative to the sham rats using the ΔΔCt method. The primers for HO-1 were 5′-ACCCCCACAAATCTTCAAAACG-3′ and 5′-GAGCAGGAAGGCCGT-TCTTAG-3′. The primers for β-actin were 5′-GCCGCTCTGCCTGACACAGG-3′ and 5′-GTGTGGTGCCCAATCCTTCTCC-3′.

Immunohistochemistry

Samples were fixed in 4% paraformaldehyde, embedded in paraffin and sectioned at 4 µm. Sections were mounted onto APES-coated slides, deparaffinized, rehydrated, incubated in 3% hydrogen peroxide to quench any endogenous peroxidase activity, and washed with distilled water and PBS for 5 min. Sections were placed in 3% citrate buffer to repair antigens. The buffer was heated to a temperature of 92–98°C using a microwave and maintained at that temperature for 10 min. The sections were cooled to room temperature. A 10% nonimmune goat serum was applied to eliminate nonspecific staining. Sections were incubated overnight at 4°C with optimally diluted primary antibody. Primary antibody used for immunohistochemistry was a rabbit polyclonal to HO-1 (1:200). Sections were washed with PBS and incubated with a broad-spectrum second antibody for 30 min, rewashed, and incubated with peroxidase-conjugated streptavidin for 15 min. Peroxidation activity was visualized via incubation with a peroxidase substrate solution (DAB kit). Sections were counterstained with hematoxylin.

Reagents

TRIzol lysate was purchased from the Invitrogen Company (Frederick, USA). The revertAid first stand cDNA synthesis kit was purchased from the Thermo Company (Lithuania, EU), the Fluorescence quantitative RT-PCR kit was purchased from the Takara Company (Dalian, China), the HO-1 primers were synthesized by the Invitrogen Company (Shanghai, China), the anti-heme oxygenase 1 antibody was purchased from the Abcam Company (Cambridge, MA, USA), the immunohistochemistry kit was purchased from the Invitrogen Company (Frederick, USA).

Statistics

Data were analyzed using SPSS 16.0 software. All data are expressed as mean ± SE of mean values, and results were compared using the unpaired Student’s t test and one-way analysis of variance followed by Tukey’s test. A p < 0.05 was considered to be statistically significant.

Results

Effects of BTED on the expression levels of HO-1 mRNA in the liver

The expression levels of HO-1 mRNA in the liver of the BTED group increased significantly compared with the sham group 1 h after surgery (p < 0.05) (Figure 1a). The expression levels of HO-1 mRNA in the liver of the BDL group decreased significantly compared with the sham group 1 h after surgery (p < 0.05) (Figure 1a). The expression levels of HO-1 mRNA in the liver of the BTED group increased significantly compared with the sham group 6 h after surgery (p < 0.05) (Figure 1b).

Immunohistochemistry

The expression levels of HO-1 in the liver of the BTED group increased significantly compared with the sham group 1 h after surgery (Figure 2a, b). The expression levels of HO-1 in the liver of the BDL group decreased significantly compared with the sham group 1 h after surgery (Figure 2a, c). The expression levels of HO-1 in the liver of the BTED group increased significantly compared with the sham group 6 h after surgery (Figures 2d, e).

Discussion

HO-1, a 32-kDa microsomal enzyme [3], catalyzes the rate-limiting step in oxidative degradation of heme to CO, biliverdin (soon reduced to bilirubin) and iron [4].
Since its discovery [5], studies have shown that HO-1 plays an important role in many modern medical disciplines, such as critical care [6–8], pulmonology [9–11], nephrology [12–14], gastroenterology [15–17], cardiology [18–20], neurology [21–23] and transplant immunology [24–26]. Sofalcone increases HO-1 in human umbilical vein endothelial cells and blocks endothelial dysfunction [27]. The polymorphism of the guanidinium thiocyanate repeats in the HO-1 promoter region is associated with the development of necrotizing acute pancreatitis [28]. Capsaicin induces HO-1 expression in kidney tissues and ameliorates cisplatin-induced renal dysfunction. Notably, the protective effects of capsaicin were completely abrogated by treatment with HO-1 inhibitor [29]. HO-1 expression protects the heart from acute injury [30].

The HO-1 system plays a vital role in anti-oxidative stress, anti-inflammation and regulation of cytokine expression. The analysis of the HO-1 gene knockout mice showed that HO-1 is an important molecule in systemic responses to stress. Endothelial cells are more susceptible to cytotoxicity induced by pro-oxidant stimuli in this case and produce more intracellular reactive oxygen species (ROS) when challenged with such stimuli [31–33]. HO-dependent protection is due to the reaction products of HO activity. CO, biliverdin and iron each contribute to the restoration of cellular homeostasis under inducing...
conditions [34, 35]. CO decreases proinflammatory cytokine production [36–39], reduces apoptosis [40–42], improves organ function [43, 44] and increases survival [45–47]. Biliverdin and bilirubin, the end bile pigments of heme degradation, protect cells against injury caused by oxidative stress in vitro [46, 48, 49]. Iron potentially acts as a catalyst of deleterious pro-oxidant reactions [50–52] (Figure 3).

Bilirubin may play a role via negative feedback on the formation of HO-1 according to theory. We speculate that BTED may induce compensatory increases in HO-1 expression in the liver by blocking the enterohepatic circulation of bilirubin. In this research, we found that the expression levels of HO-1 in the liver of the BTED group increased significantly compared with the sham group. The expression levels of HO-1 in the liver of the BDL group decreased significantly compared with the sham group. These results demonstrate that BTED may play important roles in anti-inflammation, anti-oxidative stress and regulation of cytokine expression by increasing the expression levels of HO-1. Specific roles of BTED in the treatment of diseases require further study.

Conclusion
The expression levels of HO-1 mRNA and protein in the liver increased significantly from 1 h after BTED and this effect lasts for more than 6 h. The expression levels of HO-1 mRNA and protein in the liver decreased significantly 1 h after BDL.

Acknowledgements
This research was supported by National Natural Science Foundation of China (No. 81171789). We thank the staff of Shanghai Institute of Traumatology and Orthopaedics for their technical support.

Compliance with ethical guidelines
Competing interests
The authors declare that they have no competing interests.

Received: 25 April 2015 Accepted: 30 June 2015
Published online: 22 July 2015

References
1. Janssen A, Fiebiger S, Bros H, Hertwig L, Romero-Suarez S, Hamann I et al (2015) Treatment of chronic experimental autoimmune encephalomyeli-

2. Surolia R, Karki S, Kim H, Yu Z, Kulkarni T, Mirov SB et al (2015) Heme oxy-

3. Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH (1993) Carbon mon-

4. Christodoulides N, Durante W, Kroll MH, Schafer AI (1995) Vascular

5. Tenhunen R, Marver HS, Schmid R (1968) The enzymatic conversion of

6. Hoetzl A, Leitz D, Schmidt R, Tritzschler E, Bauer I, Loop T et al (2006)

7. Kim YH, Yoon DW, Kim JH, Lee JH, Lim CH (2014) Effect of remote ischemic post-conditioning on systemic inflammatory response and sur-

8. Zhao B, Fei J, Chen Y, Ying YL, Ma L, Song XQ et al (2014) Vitamin C treat-

9. Raval OM, Lee PJ (2010) Heme oxygenase-1 in lung disease. Curr Drug

Authors’ contributions
LW, EZC and EQM drafted the manuscript. LW, BZ, and YC participated in the surgical procedure. LW and BZ carried out the immunohistochemistry. LW carried out the real-time PCR. LW and YC performed the statistical analysis. EZC and EQM conceived of the study, and participated in the design of the study. All authors read and approved the final manuscript.
10. Joo Choi R, Cheng MS, Shik Kim Y (2014) Desoxysphingogentin up-regulates Nr2f2-mediated heme oxygenase-1 expression in macrophages and inflammatory lung injury. Redox Biol 2:504–512

11. Shu YS, Tao W, Miao QB, Zhu YB, Yang YF (2014) Improvement of ventilation-induced lung injury in a rat model by inhibition of inhibitory kappaB kinase. J Trauma Acute Care Surg 76:1417–1424

12. Shin DH, Park HM, Jung KA, Choi HG, Kim JA, Kim DD et al (2010) The NrF2-heme oxygenase-1 system modulates cyclopentbin A-induced epithelial-mesenchymal transition and renal fibrosis. Free Radic Biol Med 48:1051–1063

13. Chung S, Yoon HE, Kim SJ, Koh ES, Hong YA, Park CW et al (2014) Oleandrin acid attenuates renal fibrosis in mice with unilateral ureteral obstruction via facilitating nuclear translocation of NrF2. Nutr Metab (Lond) 11:22

14. Yoda Y, Amagase K, Kato S, Tokioka S, Murano M, Kakimoto K et al (2010) Prevention by lansoprazole, a proton pump inhibitor, of indomethacin-induced small intestinal ulceration in rats through induction of heme oxygenase-1. J Physiol Pharmacol 61:287–294

15. Takanori T, Yasunobu M, Morimoto K, Ohno T, Kurozumi T et al (2010) A somatostatin analogue, oxtrecept, ameliorates intestinal ischemia-reperfusion injury through the early induction of heme oxygenase-1. J Surg Res 175:350–358

16. Niu X, de Graaf IA, van der Bij HA, Groothuis GM (2014) Precision cut intestinal slices are an appropriate ex vivo model to study NSAID-induced intestinal toxicity in rats. Toxicol In Vitro 28:1296–1305

17. Motawi TK, Darwish HA (2011) Abd El Tawab AM. Effects of caffeic acid phenethyl ester on endotoxin-induced cardiac stress in rats: a possible mechanism of protection. J Biochem Mol Toxicol 25:84–94

18. Lee YM, Cheng PY, Chim LS, Kornowski R, Aravot D, Shainberg A, Laniado-Schwartzman M, et al (2010) Hydrogen-enriched preservation protects the isogeneic intestinal graft and amends recipient gastric function during transplantation. Transplantation 90:499–506

19. Forresti R, Green CJ, Motterlini R (2004) Generation of bile pigments by haem oxygenase: a refined cellular strategy in response to stressful events. J Physiol 559:579–592

20. Otterbein LE, Otterbein SL, Ifedigbo E, Liu F, Morse DE, Fearns C et al (2013) Protective role of HO-1 and carbon monoxide in hepatic cellular senescence and inflammatory lung injury. Am J Respir Cell Mol Biol 36:175–182

21. Nakao K, Kimura J, Tsung A, Ikeda A, Tomiyama K et al (2006) Low-dose carbon monoxide inhalation prevents ischemia/reperfusion injury of transplanted rat lung grafts. Surgery 140:179–185

22. Azab M, Rodríguez-Alcántara Z, Asano K, Doppman JL, Ribeiro A et al (2014) Pharmacological application of carbon monoxide ameliorates cold ischemia/reperfusion injury after liver transplantation. Surgery 153:852–860

23. Schallner N, Fuchs M, Schwier CJ, Loos T, Buerkle H et al (2015) Heme oxygenase-1 gene promoter polymorphism is associated with the development of necrotizing acute pancreatitis. Pancreas 43:1271–1276

24. Jiang SH, Kim HD, Oh GS, Shin A, Lee S, Choe SK et al (2014) Caspacin ameliorates cisplatin-induced renal injury through induction of heme oxygenase-1. Mol Cells 37:234–240

25. Hull TJ, Bolketty S, DerMedina AC, Litovsky SH, Prabhud SS, Agarwal A et al (2013) Heme oxygenase-1 expression protects the heart from acute injury caused by inducible CRE recombinase. Lab Invest 93:868–879

26. Poss KD, Tonegawa S (1997) Reduced stress defense in heme oxygenase-1-deficient cells. Proc Natl Acad Sci USA 94:10925–10930

27. Larsen R, Gesselin R, Jeney V, Tokaji L, Bozza FA, Jäplass AM et al (2010) A central role for free heme in the pathogenesis of severe sepsis. Sci Transl Med 2:51ra71

28. Koutunyovych G, Ghosh MC, Ollivierre W, Weitzeil RP, Eckhaus MA, Tisdale JF et al (2014) Wild-type macrophages reverse disease in heme oxygenase-1-deficient mice. Blood 124:1522–1530

29. Nyberg SC, Sestan N, Kaur S, Chen D, Deitch EA et al (2014) Hydrogen preconditioning during ex vivo lung perfusion protects the human lung against reperfusion injury caused by reperfusion. J Trauma Acute Care Surg 76:909–915

30. Hull TD, Bolisetty S, DeAlmeida AC, Litovsky SH, Prabhud SS, Agarwal A et al (2013) Hydrogen preconditioning during ex vivo lung perfusion protects the human lung against reperfusion injury caused by reperfusion. J Trauma Acute Care Surg 76:909–915

31. Poss KD, Tonegawa S (1997) Reduced stress defense in heme oxygenase-1-deficient cells. Proc Natl Acad Sci USA 94:10925–10930

32. Larsen R, Gesselin R, Jeney V, Tokaji L, Bozza FA, Jäplass AM et al (2010) A central role for free heme in the pathogenesis of severe sepsis. Sci Transl Med 2:51ra71

33. Koutunyovych G, Ghosh MC, Ollivierre W, Weitzeil RP, Eckhaus MA, Tisdale JF et al (2014) Wild-type macrophages reverse disease in heme oxygenase-1-deficient mice. Blood 124:1522–1530

34. Nyberg SC, Sestan N, Kaur S, Chen D, Deitch EA et al (2014) Hydrogen preconditioning during ex vivo lung perfusion protects the human lung against reperfusion injury caused by reperfusion. J Trauma Acute Care Surg 76:909–915

35. Hull TD, Bolisetty S, DeAlmeida AC, Litovsky SH, Prabhud SS, Agarwal A et al (2013) Hydrogen preconditioning during ex vivo lung perfusion protects the human lung against reperfusion injury caused by reperfusion. J Trauma Acute Care Surg 76:909–915

36. Larsen R, Gesselin R, Jeney V, Tokaji L, Bozza FA, Jäplass AM et al (2010) A central role for free heme in the pathogenesis of severe sepsis. Sci Transl Med 2:51ra71

37. Koutunyovych G, Ghosh MC, Ollivierre W, Weitzeil RP, Eckhaus MA, Tisdale JF et al (2014) Wild-type macrophages reverse disease in heme oxygenase-1-deficient mice. Blood 124:1522–1530

38. Nyberg SC, Sestan N, Kaur S, Chen D, Deitch EA et al (2014) Hydrogen preconditioning during ex vivo lung perfusion protects the human lung against reperfusion injury caused by reperfusion. J Trauma Acute Care Surg 76:909–915

39. Koutunyovych G, Ghosh MC, Ollivierre W, Weitzeil RP, Eckhaus MA, Tisdale JF et al (2014) Wild-type macrophages reverse disease in heme oxygenase-1-deficient mice. Blood 124:1522–1530

40. Nyberg SC, Sestan N, Kaur S, Chen D, Deitch EA et al (2014) Hydrogen preconditioning during ex vivo lung perfusion protects the human lung against reperfusion injury caused by reperfusion. J Trauma Acute Care Surg 76:909–915

41. Poss KD, Tonegawa S (1997) Reduced stress defense in heme oxygenase-1-deficient cells. Proc Natl Acad Sci USA 94:10925–10930

42. Larsen R, Gesselin R, Jeney V, Tokaji L, Bozza FA, Jäplass AM et al (2010) A central role for free heme in the pathogenesis of severe sepsis. Sci Transl Med 2:51ra71

43. Koutunyovych G, Ghosh MC, Ollivierre W, Weitzeil RP, Eckhaus MA, Tisdale JF et al (2014) Wild-type macrophages reverse disease in heme oxygenase-1-deficient mice. Blood 124:1522–1530

44. Nyberg SC, Sestan N, Kaur S, Chen D, Deitch EA et al (2014) Hydrogen preconditioning during ex vivo lung perfusion protects the human lung against reperfusion injury caused by reperfusion. J Trauma Acute Care Surg 76:909–915

45. Poss KD, Tonegawa S (1997) Reduced stress defense in heme oxygenase-1-deficient cells. Proc Natl Acad Sci USA 94:10925–10930

46. Larsen R, Gesselin R, Jeney V, Tokaji L, Bozza FA, Jäplass AM et al (2010) A central role for free heme in the pathogenesis of severe sepsis. Sci Transl Med 2:51ra71

47. Koutunyovych G, Ghosh MC, Ollivierre W, Weitzeil RP, Eckhaus MA, Tisdale JF et al (2014) Wild-type macrophages reverse disease in heme oxygenase-1-deficient mice. Blood 124:1522–1530

48. Nyberg SC, Sestan N, Kaur S, Chen D, Deitch EA et al (2014) Hydrogen preconditioning during ex vivo lung perfusion protects the human lung against reperfusion injury caused by reperfusion. J Trauma Acute Care Surg 76:909–915

49. Poss KD, Tonegawa S (1997) Reduced stress defense in heme oxygenase-1-deficient cells. Proc Natl Acad Sci USA 94:10925–10930

50. Larsen R, Gesselin R, Jeney V, Tokaji L, Bozza FA, Jäplass AM et al (2010) A central role for free heme in the pathogenesis of severe sepsis. Sci Transl Med 2:51ra71
50. Kvam E, Hejmadi V, Ryter S, Pourzand C, Tyrrell RM (2000) Heme oxygenase activity causes transient hypersensitivity to oxidative ultraviolet A radiation that depends on release of iron from heme. Free Radic Biol Med 28:1191–1196
51. Hurttilla H, Koponen JK, Kansanen E, Jyrkkänen HK, Kivelä A, Kylatie R et al (2008) Oxidative stress-inducible lentiviral vectors for gene therapy. Gene Ther 15:1271–1279
52. Yegin ZA, Iyidir OT, Demirtas C, Suyani E, Yetkin I, Pasaoglu H et al (2014) The interplay among iron metabolism, endothelium and inflammatory cascade in dysmetabolic disorders. J Endocrinol Invest 38:333–338