The Effects of 17β-estradiol on Mitochondrial Biogenesis and Function in Breast Cancer Cell Lines are Dependent on the ERα/ERβ Ratio

Jorge Sastre-Serra¹², Mercedes Nadal-Serrano¹², Daniel Gabriel Pons¹², Adamo Valle¹², Jordi Oliver¹² and Pilar Roca¹²

¹Grupo multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Palma de Mallorca, Illes Balears, ²Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III

Key Words
Estrogen receptor alpha and beta ratio • Breast cancer • 17β-estradiol (E2) • Mitochondrial biogenesis

Abstract
Background/Aims: 17β-estradiol (E2) is a risk factor for the development of breast cancer, and cause tumorigenesis in epithelial breast cells. Moreover, E2 has distinct effects on different tissues that are attributed to the presence of two estrogen receptor isoforms, ERα and ERβ. Methods: The effect of E2 on mitochondrial biogenesis and function was investigated in two breast cancer cell lines with different estrogen receptor ratios, MCF-7 (high ERα/ERβ ratio) and T47D (low ERα/ERβ ratio) cell lines treated with physiological concentrations of E2 (1 nM). Results: Mitochondria of the MCF-7 cell line showed an increase in proliferation but a decrease in functionality, while the T47D cell line, with low ERα/ERβ ratio, maintained functionality with fewer mitochondria. Conclusion: Our results suggest that ERs endowment and its subtypes relation have an effect on treatment response and could contribute new ideas about mitochondria and ERs in breast cancer, as well as new indicators to the disease progression.

Introduction
Estrogens are hormones that have different roles in a number of physiological processes and pathologic conditions such as cancer [1, 2]. It is well known that estrogens, and particularly 17β-estradiol (E2), are risk factors for the development of breast cancer, and cause tumorigenesis in epithelial breast cells [3]. In the last decades, the focus on estrogen effects has been on the action of these hormones by their binding to estrogen receptors [4, 5]. There are two estrogen receptors: the classical receptor called estrogen receptor alpha (ERα) and the second receptor estrogen receptor beta (ERβ) [6]. ERβ may have different biological effects than ERα and display different intracellular and tissue distribution patterns [7-9], whilst ERα mediates the proliferative actions of E2 and these effects can be opposed by ERβ [10]. In the last few years, researchers have studied the pathways of these receptors with the aim to understand
the importance of these signals in breast cancer.

Moreover, it is known that in mtDNA there are estrogen response elements (ERE) as well as estrogen receptors that can localize in mitochondria in response to several signals [11-13]. On the other hand, mitochondrial biogenesis and reactive oxygen species (ROS) production are under estrogen influence [14, 15]. Similarly, it is demonstrated that mitochondria can modulate the expression of nuclear cell cycle genes and human breast tumor growth [16-18]. For this reason, some authors have given estrogens a new role in the breast carcinogenesis process through the modulation of mitochondrial function and ROS production [14, 19-21].

Additionally, although it is well known that mitochondrial function is altered in cancer cells [15], the supposed theories on the effects of estrogen on mitochondria are controversial, as several studies have shown an increased mitochondrial biogenesis in response to E2 treatment while others have found a mitochondrial dysfunction under the same conditions [12, 14, 22, 23].

The purpose of this article is to investigate whether the influence of E2 on mitochondrial biogenesis and function is dependent on the estrogen receptor ratio. To tackle this aim, we used two breast cancer cell lines: the MCF-7 cell line with a high ERα/ERβ ratio, and T47D cell line with a low ERα/ERβ ratio.

Materials and Methods

Materials

17β-estradiol (E2) was purchased from Sigma-Aldrich (St. Louis, MO, USA). Mitotracker Green (MTG) was purchased from Molecular Probes (Eugene, OR, USA). Routine chemicals were supplied by Roche (Barcelona, Spain), Sigma-Aldrich (St Louis, MO, USA), Panreac (Barcelona, Spain), and Bio-Rad Laboratories (Hercules, CA, USA).

Cell culture and treatments

Breast cancer cell lines MCF-7 and T47D bear a great resemblance to one another as human breast adenocarcinoma cell lines with a great difference in ERα/ERβ with MCF-7 possessing the highest ratio. Cell lines were purchased from ATCC and maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% foetal bovine serum (FBS), 1% antibiotics (penicillin and streptomycin) in 5% CO₂ in air at 37°C. To evaluate the effects of 17β-estradiol, cells were grown in phenol red-free DMEM containing 10% charcoal-stripped FBS 24 hours prior to treatment. Experiments were performed when cell cultures reached confluence by providing fresh media supplemented with 1 nmol/l E2 (Sigma-Aldrich).

Analysis of Cardiolipin content

Cardiolipin content was assayed using Nonyl Acridine Orange (NAO) fluorescence and quantified using a microplate fluorescence reader FLx800 (BIO-TEK Winooski, Vermont, USA) set at 485/20 nm to excitation and 528/20 to emission. The fluorescence was corrected by Hoescht 33342 (Sigma-Aldrich) fluorescence with the same fluorescence reader set at 360/40 nm to excitation and 460/40 to emission.

Citrate synthase, cytochrome c oxidase and ATPase activities

The cell lysates used for enzymatic activities were obtained by scrapping cells in RNAase-free water. CS (citrate synthase; EC 2.3.3.1) activity was measured using a spectrophotometric method [25]. Briefly, cell lysate was incubated in 0.1 M NaPO₄H₂, pH 7.0, in the presence of 2 µg/mL catalase and 5 mM substrate DAB (3, 3’ diaminebenzidine-tetrachloride). After 30 s, 100 µM reduced cytochrome c was added to start the reaction, and the absorbance variation was recorded for 15 min at 450 nm. ATPase (ATP phosphohydrolase, Complex V, EC 3.6.1.3) activity was measured by monitoring the oxidation of NADH at 340 nm and 37°C [26], with an extinction coefficient was 6.22 mM⁻¹ cm⁻¹.

Real time PCR

Total RNA was isolated from cultured cells using TriPure® isolation reagent and quantified using a spectrophotometer set at 260 nm. One µg of the total RNA was reverse transcribed to cDNA at 42°C for 60 min with 25 U MuLV reverse transcriptase in a 10 µl volume of retrotranscription reaction mixture containing 10 mM Tris-HCl (pH 9.0), 50 mM KCl, 0.1% Triton X-100, 2.5 mM MgCl₂, 2.5 µM random hexamers, 10 U RNAsase inhibitor and 500 µM each dNTP. Each cDNA was diluted 1/10 and aliquots were frozen (-70°C) until the PCR reactions were carried out.

PCR was done for seven target genes: Presenilin 2 (pS2), peroxisome proliferator-activated receptor-gamma coactivator-lalphap (PGC1α), nuclear respiratory factors 1 and 2 (NRF1 and NRF2), mitochondrial transcription factor A (TFAM), mitochondrial single strand DNA binding protein (mtSSB) and 18S, using specific primers (see Table 1) SYBR Green technology on a LightCycler 480 System II (Roche Diagnostics, Basel, Switzerland). Total reaction volume was 10 µL, containing 6.5 µL Lightcycler® 480 SYBR Green I Master, 0.5 µM of the sense and antisense specific primers and 2.5 µl of the cDNA template. The amplification program consisted of a preincubation step for template cDNA denaturation (5 min, 95°C), followed by 45 cycles consisting of a denaturation step (10 s, 95°C), an annealing step (10 s, 60°C for PGC1α, NRF1, NRF2 and mtSSB; and 61°C for 18S, pS2 and TFAM) and an extension step (12s, 72°C). A negative control lacking cDNA template was run in each assay.
The resulting PCR products were resolved on a 2% agarose gel in 45 mM Tris-borate-EDTA 1 mM buffer (pH 8.0) and visualized by ethidium bromide staining. Bands were analysed with a Chemidoc XRS densitometer (Biorad). The Ct values of the real-time PCR were analysed, taking into account the efficiency of the reaction and referring these results to the total DNA amount, using the GenEx Standard Software (MultiDAnalises, Sweden).

mtDNA quantification

DNA was isolated from cultured cells using TriPure® isolation reagent following the manufacture protocol and used to quantify mtDNA. 5 ng of the total DNA (quantified using a spectrophotometer set at 260 nm) was amplified using specific primers for 18S and the NADH dehydrogenase subunit 4, with SYBR Green technology on a LightCycler 480 System II (Roche Diagnostics, Basel, Switzerland).

Total reaction volume was 10 µL, containing 6.5 µl Lightcycler® 480 SYBR Green I Master, 0.5 µM of the sense and antisense specific primers and 2.5 µl of the cDNA template. The amplification program consisted of a preincubation step for denaturation (5 min, 95°C) followed by 45 cycles consisting of a denaturation step (10 s, 95°C), an annealing step (10 s, 6°C for 18S and mtDNA), and an extension step (12 s, 72°C). A negative control without cDNA template was run in each assay. The primers used were forward 5'-ggACACggACAgATTgACA
ACCACAgAAgATCgAgAAgAgA

TgTAgCTCCCTgTgCATCT

and reverse fluorescently-labelled primers for 18S and mtDNA.

The resulting PCR products were analysed with the same method before described in section 2.5.

Western blotting

Proteins were isolated from cultured cells using TriPure® isolation reagent following the manufacture protocol. For western blot analysis 50 µg of protein from cell lysate was fractionated by SDS-PAGE (12% polyacrylamide gel) and electrotransferred onto nitrocellulose filters. Membranes were incubated in a blocking solution of 5% nonfat powdered milk in TBS-T (20 mM Tris HCl, 0.13 mM NaCl, and 0.1% Tween 20). Anti-α against COXIV (Mitoscience, OR, USA), ATPasa, ERα, ERβ TFAM and Tubulin (Santa Cruz Biotechnologies, CA, USA) were used as primary antibodies. Protein bands were visualized by Immun-Star® Western C® Kit reagent (Biorad) western blotting detection systems. The chemiluminiscence signal was captured with a Chemidoc XRS Kit reagent (Biorad) and analysed with Quantity One Software (Biorad).

Visualization of mitochondria

Mitochondria were visualized with the mitochondria-specific dye MitoTracker Green as previously described by Rodriguez-Enriquez et al. [27]. The confocal images were acquired on a Leica TCS-SP2 confocal microscope.

Statistics

The Statistical Program for the Social Sciences software for Windows (SPSS, version 18.0; SPSS Inc, Chicago, IL) was used for all statistical analyses. Data are presented as means ± standard error of the mean (SEM). Statistical differences between control and E2-treated cells were analysed by Student’s t-test. Statistical significance was set at P < 0.05.

Results

E2 had an effect over estrogen receptor alpha and beta (ERα and ERβ), as shown in Table 2, with a statistically significant decreases in both MCF-7 and T47D cell lines. We used two breast cancer cell lines with different estrogen receptor levels and ratios (Table 2). It can be observed in Table 3 that E2 had a proliferative effect in MCF-7 cell line but not in T47D cell line, with all

Table 1. Table and conditions used for RT-PCR. T° An.: Annealing temperature; pS2: presenilin 2; PGC1α: peroxisome proliferator-activated receptor-gamma coactivator-1alpha; NRF1 and NRF2: nuclear respiratory factor 1 and 2; TFAM: mitochondrial transcription factor A; mtSSB: mitochondrial single strand DNA binding protein.

Gene	Forward Primer (5′-3′)	Reverse Primer (3′-5′)	T° An. (°C)
18S	gACACggACAgATTgACA	ACCACAgAAgATCgAgAAgA	61
pS2	TgTgCTCCCTgTgCATCT	gTgTgCTCCCTgTgCATCT	61
PGC1α	TCACgTCCCTCggATgACA	TgCTCCgTgCACAAAACAg	60
NRF1	CCACgTCCCTCggATgACA	TgTgCTCCCTgTgCATCT	60
NRF2	gCgACggAAgATgAC	gTgTgCTCCCTgTgCATCT	60
TFAM	AgATggCTggTCCTACT	CAAgACAgATgAAAACACCTC	61
mtSSB	TgTgAAgAAgATgggCTgCgAA	TggCCAAAgATCgATCC	60

Mitochondrial Biogenesis and Function Depends on ERα/ERβ Ratio
results obtained by the MTT assay. The MCF-7 cell line showed significant increases in mtDNA copy number (14 %) and cardiolipin content (4 %). However, T47D cell line showed a statistically significant decrease.
in mtDNA copy number (25%) but not in cardiolipin content. For this reason, the NAO/mtDNA ratio was higher in T47D cell line than in MCF-7 cell line (0.91 and 1.33 respect to control as 1.00) after treatment with E2.

In an attempt to localize these differences in mitochondrial biogenesis, we checked the effect of E2 on mRNA expression of different genes involved in this pathway. As shown in Fig. 1, PGC1α, NRF1, NRF2, TFAM and mtSSB had a time-dependent increase with the E2 treatment. It is worth noting that initial mRNA levels and the amount of the increase observed differed, depending on the cell line. Moreover, these effects were also monitored by the TFAM, COX and ATPase protein levels. Table 4 shows the decrease in TFAM and COX protein levels in MCF-7 cell line (35% and 60%, respectively), while in T47D cell line there were no changes after 48 hours of E2-treatment. Furthermore, ATPase protein levels decreased in the T47D cell line (22%). All of these changes are statistically significant. Consequently, the ATPase/COX ratio showed an increase in MCF-7 cell line and a decrease in T47D cell line.

At this point of the experiment, it was considered of interest to investigate the activities of the mitochondrial-related enzymes. As shown in Table 5, citrate synthase activity showed a statistically significant decrease in the
MCF-7 cell line (28 %) while the T47D cell line showed an increase (27 %). Furthermore, COX and ATPase activities were lower in MCF-7 E2-treated cells than in treated controls. Moreover, as shown in Fig. 2, morphology of mitochondria were different in E2-treated cell line, while T47D cell line not showed differences in mitochondrial morphology after treatment.

Discussion

E2 increased mitochondrial biogenesis in MCF-7 and T47D breast cancer cell lines. However, there is a clear difference in the response in the mitochondrial biogenesis of these cell lines when faced this E2 stimulation. MCF-7 cell line (high ERα/ERβ ratio) has mitochondria with lower mitochondrial function than T47D cell line (with low ERα/ERβ ratio) although this latter line had more functional mitochondria in response to the E2 treatment. These results would be in agreement with the different physiological functions of estrogens displayed once bound to their corresponding receptors [8, 21, 28].

In the MCF-7 cell line, which has highest reported ERα/ERβ ratio [29, 30] E2 increased mtDNA copy number, although mitochondrial function was diminished since Citrate Synthase, cytochrome c oxidase and ATPase activities suffered a statistically significant decreases. Moreover, cytochrome c oxidase protein levels were also lower after E2 treatment. However, for the T47D cell line, with lower ERα levels than the MCF-7 cell line, E2, despite a decrease in mtDNA copy number per cell, maintained mitochondrial function, as enzymatic activities did not decrease per cell with E2. This is noteworthy as given that even citrate synthase has a tendency to increase, the enzymatic activities indicate functional mitochondria.

These estrogen receptor isoform dependent differences in mitochondria fit with the dual effect of E2 found in different tissues [31]. Thus, E2 has a beneficial role in some tissues such as: heart, brain, muscle, brown adipose tissue, and liver [32-34], where this hormone increases mitochondrial function. This effect agrees with studies that show more functional mitochondria in female rats and these findings have been associated with a lower oxidative stress [35, 36]. However, E2 has a role in tissue malignancy in: ovary, mammary gland and uterus; and has been related to lifetime exposure to estradiol and other cancer risk factors [8]. These effects could be attributed to the difference in the predominant estrogen receptor isoform in the tissues [9].

Expression of mitochondrial biogenesis genes was increased in MCF-7 cell line, but to a lesser degree than in T47D cell line. Amongst all genes studied, it should be underscored that TFAM, had a higher expression in the T47D cell line than in the MCF-7 in response to E2 treatment. Moreover, there was a decrease in TFAM protein levels after a 48h E2 treatment respect to its control in the MCF-7 cell line, while in the T47D cell line, there was an increase in this protein. High TFAM levels are known to stimulate differentiation, while low levels of TFAM stimulate mitochondrial proliferation [37-40]. Thus, the resultant TFAM levels would be in agreement with mitochondrial functionality observed in these breast cancer cell lines. Another important mitochondria biogenesis factor is NRF-2, which also increased with E2, although differed in its magnitude of expression according to cell line, showing a higher increase in the T47D cell line than in the MCF-7 cell line. NRF-2 has been related to mitochondrial maturation, owing to the fact that it regulates traffic and assembly related-genes of the mitochondrial proteins [41]. Thus, the effect of E2 on mitochondrial biogenesis genes indicate different responses in the genes involved in mitochondrial biogenesis, as the MCF-7 cell line showed a response to proliferation while the T47D showed a differentiation response.

Lately, mechanisms has been proposed to modulate mitochondrial number and the deleterious effects from signals like ROS or UV light known as mitoptosis [42]. Mitoptosis in normal conditions removes dysfunctional mitochondria [43]. There are studies that show that in some cancers, mitoptosis is inhibited, and for this reason, the damaged mitochondria accumulated in the cells would create mitochondrial dysfunction, affecting mitochondrial biogenesis [44]. Mitoptosis could be explained by the increase in MCF-7 mtDNA copy number caused by an accumulation of dysfunctional mitochondria, or as well by the decrease observed in the T47D cell line, when removing the damaged mitochondria accumulated in the pretreatment with Charcoal, where the beneficial effects of E2 in this cell line there are not present.

In fact, if we observed mitochondrial morphology, we appreciate a several change in morphology of E2-treated MCF-7 mitochondria according to all the results.

In summing up, the results suggest that E2 acts over function, proliferation and mitochondrial differentiation, according to the estrogen receptor ratio (ERα/ERβ), with lesser mitochondrial activity present in the cell line with a predominance of ERα, while in contrast, the cell line with a lower ERα/ERβ ratio had more functional mitochondria.
Thus, our results reinforce the idea that depending on the estrogen receptor endowment and its subtype relation, breast tumors could have different response to treatment and prognosis, with ERβ clinical analyses could provide an indicator to the disease progression and provide new insight of the role of mitochondria and estrogen receptors in breast cancer.

Acknowledgements

This work was supported by the Spanish Government (PS09/01637). J. Sastre-Serra, M. Nadal-Serrano and D. G. Pons were funded by grants of Comunidad Autónoma de las Islas Baleares, and A. Valle was funded by grant of “Asociación Española Contra el Cáncer”.

References

1. Clemons M, Goss P: Estrogen and the risk of breast cancer. N Engl J Med 2001;344:276-285.
2. Harrington WR, Sheng S, Barnett DH, Petz LN, Katzenellenbogen JA, Katzenellenbogen BS: Activities of estrogen receptor alpha- and beta-selective ligands at diverse estrogen responsive gene sites mediating transactivation or transrepression. Mol Cell Endocrinol 2003;206:13-22.
3. Yager JD, Liehr JG: Molecular mechanisms of estrogen carcinogenesis. Annu Rev Pharmacol Toxicol 1996;36:203-232.
4. Pearce ST, Jordan VC: The biological role of estrogen receptors alpha and beta in cancer, Crit Rev Oncol Hematol 2004;50:3-22.
5. Pettersson K, Delaunay F, Gustafsson JA: Estrogen receptor beta acts as a dominant regulator of estrogen signaling. Oncogene 2000;19:4970-4978.
6. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA: Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A 1996;93:5925-5930.
7. Heldring N, Pike A, Andersson S, Matthews I, Cheng G, Hartman I, Tjugue M, Strom A, Treuter E, Warner M, Gustafsson JA: Estrogen receptors: How do they signal and what are their targets. Physiol Rev 2007;87:905-931.
8. Palmieri C, Saji S, Zelada-Hedman M, Warri A, Weihsa Z, Van Noorden S, Wahlstrom T, Coombes RC, Warner M, Gustafsson JA: Estrogen receptor beta in breast cancer. Endoc Relat Cancer 2002;9:1-13.
9. Drummond AE, Fuller PJ: The importance of erbeta signalling in the ovary. J Endocrinol 2010;205:15-23.
10. Strom A, Hartman J, Foster JS, Kietz S, Wimalasena J, Gustafsson JA: Estrogen receptor beta inhibits 17beta-estradiol-stimulated proliferation of the breast cancer cell line t47d. Proc Natl Acad Sci USA 2004;101:1566-1571.
11. Pedram A, Razandi M, Wallace DC, Levin ER: Functional estrogen receptors in the mitochondria of breast cancer cells. Mol Biol Cell 2006;17:2125-2137.
12. Chen QJ, Esthe M, Alworth WL, Yager JD: Binding of mcf-7 cell mitochondrial proteins and recombinant human estrogen receptors alpha and beta to human mitochondrial DNA estrogen response elements. J Cell Biochem 2004;93:358-373.
13. Yang SH, Liu R, Perez EJ, Wen Y, Stevens SM, Jr., Valencia T, Bruin-Zinkernagel AM, Prokel L, Will Y, Dykens J, Koulou P, Simpkins JW: Mitochondrial localization of estrogen receptor beta. Proc Natl Acad Sci USA 2004;101:4130-4135.
14. Sastre-Serra J, Valle A, Company MM, Garau I, Oliver J, Roca P: Estrogen down-regulates uncoupling proteins and increases oxidative stress in breast cancer cell lines according to eralpha/erbeta ratio. J Steroid Biochem Mol Biol 2011;123:133-139.
15. Ivanova MM, Luken KH, Zimmer AS, Lenzo FL, Smith RJ, Arteel MW, Kollenberg TJ, Mattingly KA, Klinge CM: Tamoxifen increases nuclear respiratory factor 1 transcription by activating estrogen receptor {beta} and ap-1 recruitment to adjacent promoter binding sites. FASEB J 2011;25:1402-1416.
16. Felty Q, Xiong WC, Sun D, Sarkar S, Singh KP, Parkash J, Roy D: Estrogen-induced mitochondrial reactive oxygen species as signal-transducing messengers. Biochemistry 2005;44:6900-6909.
17. Felty Q, Roy D: Estrogen, mitochondria, and growth of cancer and non-cancer cells. J Carcinog 2005;4:1.
18. Parkash J, Felty Q, Roy D: Estrogen exerts a spatial and temporal influence on reactive oxygen species generation that precedes calcium uptake in high-capacity mitochondria: Implications for rapid nongenomic signaling of cell growth. Biochemistry 2006;45:2872-2881.
19. Addison R, McCormick DB: Biogenesis of flavoprotein and cytochrome components in hepatic mitochondria from riboflavin-deficient rats. Biochem Biophys Res Commun 1978;81:133-138.
20. Soglu B, Gelissen G, Wiesner RJ: Biogenesis of giant mitochondria during insect flight muscle development in the locust, locusta migratoria (L.). Transcription, translation and copy number of mitochondrial DNA. Eur J Biochem 2000;267:11-17.
21. Miro AM, Sastre-Serra J, Pons DG, Valle A, Roca P, Oliver J: 17beta-estradiol regulates oxidative stress in prostate cancer cell lines according to eralpha/erbeta ratio. J Steroid Biochem Mol Biol 2011;123:133-139.
22. Ivanova MM, Luken KH, Zimmer AS, Lenzo FL, Smith RJ, Arteel MW, Kollenberg TJ, Mattingly KA, Klinge CM: Tamoxifen increases nuclear respiratory factor 1 transcription by activating estrogen receptor {beta} and ap-1 recruitment to adjacent promoter binding sites. FASEB J 2011;25:1402-1416.
23. Mattingly KA, Ivanova MM, Riggs KA, Wickramasinghe NS, Barch MJ, Klinge CM: Estradiol stimulates transcription of nuclear respiratory factor-1 and increases mitochondrial biogenesis. Mol Endocrinol 2008;22:609-622.
Nakano K, Tarashima M, Tachikawa E, Noda N, Nakayama T, Sasaki K, Mizoguchi E, Matsuzaki M, Osawa M: Platelet mitochondrial evaluation during cytochrome c and dichloroacetate treatments of melas. Mitochondrion 2005;5:426-433.

Chrzanowska-Lightowlers ZM, Turnbull DM, Lightowlers RN: A microtiter plate assay for cytochrome c oxidase in permeabilized whole cells. Anal Biochem 1993;214:45-49.

Ragan C, Wilson M, Darley-Usmar V, Lowe P: Subfractionation of mitochondria and isolation of the proteins of oxidative phosphorylation. IRL Press, OXFORD 1987

Rodriguez-Enriquez S, Kai Y, Maldonado E, Currin RT, Lemasters JJ: Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes. Autophagy 2009;5:1099-1106.

Chen JQ, Yager JD, Russo J: Regulation of mitochondrial respiratory chain structure and function by estrogen/estrogen receptors and potential physiological/pathophysiological implications. Biochim Biophys Acta 2005;1746:1-17.

Buterin T, Koch C, Naegeli H: Convergent transcriptional profiles induced by endogenous estrogen and distinct xenoestrogens in breast cancer cells. Carcinogenesis 2006;27:1567-1578.

Sartippour MR, Pietras R, Marquez-Garban DC, Chen HW, Heber D, Henning SM, Sartippour G, Zhang L, Lu M, Weinberg O, Rao JY, Brooks MN: The combination of green tea and tamoxifen is effective against breast cancer. Carcinogenesis 2006;27:2424-2433.