Schemes and Performance Evaluation Criteria of Korean Association of External Quality Assessment (KEQAS) for Improving Laboratory Testing

Sollip Kim, M.D., Ph.D.1, Kyunghoon Lee, M.D., Ph.D.2, Hyung-Doo Park, M.D., Ph.D.3, Yong-Wha Lee, M.D., Ph.D.4, Sail Chun, M.D., Ph.D.5, and Won-Ki Min, M.D., Ph.D.5

1Department of Laboratory Medicine, Inje University, Ilsan Paik Hospital, Goyang, Korea; 2Department of Laboratory Medicine, Seoul National University Bundang Hospital and College of Medicine, Seongnam, Korea; 3Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; 4Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea; 5Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea

External quality assessment (EQA) is important for evaluating clinical laboratories and enhancing their testing quality. EQA schemes are variable; thus, it is crucial that the EQA organizers share their experiences to continuously improve the EQA scheme. The Korean Association of External Quality Assessment Service (KEQAS) has been the leading, authorized EQA institute for the standardization and quality management of laboratory testing in Korean medical institutions since 1976. The EQA scheme underwent a major change in 2016, and the number of EQA programs increased significantly since then. The key changes implemented in EQA scheme include a fully computerized assessment to accelerate feedback and unification of the testing and reporting methods. We provide an overview of the EQA schemes and performance evaluation criteria of the KEQAS and suggest directions for achieving the global harmonization of EQA.

Key Words: Korean Association of External Quality Assessment Service (KEQAS), Performance, Evaluation, Laboratory testing, Schemes, Quality, Harmonization

External quality assessment (EQA) is a widely accepted method for evaluating clinical laboratories and enhancing their testing quality [1]. EQA helps laboratories recognize and resolve their deficiencies in routine processes while instilling employee confidence [2]. All laboratories should therefore be encouraged to participate in EQA schemes, and such participation should be mandatory wherever possible [3]. Effective participation in EQA schemes in Europe is a mandatory requirement for country-specific accreditation bodies to have access to International Standards Organization (ISO) 15189 accreditation [4, 5]. In the United States, laboratories that conduct moderate or high-complexity tests are subject to reported inspections on a biennial basis and should participate in an EQA scheme authorized by the Center for Medicare & Medicaid Services under the Clinical Laboratory Improvement Improvement Amendment Law, which applies to all laboratories testing human specimens [6]. In Korea, laboratories with a satisfactory EQA can receive a quality incentive for testing since the notification of the Ministry of Health and Welfare took effect in 2017 [7]. However, EQA participation is not yet mandatory for laboratories in Korea, except for referral laboratories, and even...
basic data such as the adequacy of EQA schemes are not available. Since many EQA schemes vary broadly in terms of content, it is crucial that the EQA organizers share their experiences to continuously improve the EQA scheme. We provide an overview of the EQA schemes and performance evaluation criteria of the Korean Association of External Quality Assessment Service (KEQAS) and suggest directions for joining global harmonization movements.

The KEQAS has been the leading authorized EQA institute for the standardization and quality management of clinical laboratories in Korea since 1976. Although the number of KEQAS programs is relatively small compared with other major EQAs, all the most requested routine tests, except special tests performed only at some university hospitals, are covered by the existing programs. The KEQAS obtained ISO 17043 (EQA provider) accreditation in August 2015. Major changes to the EQA schemes were implemented in 2016; the assessment is now fully computerized to accelerate feedback, and the methods of analysis and reporting across schemes are unified [8] (Table 1). Since these changes, the number of programs has increased significantly from 46 in 2016 and 65 in 2019 to 70 in 2020. These programs cover all disciplines of laboratory medicine, including three programs of accuracy-based proficiency tests, two of point-of-care tests, one of liquid biopsy, and three of next-generation sequencing, with a total of 852 test items covered and 1,844 institutions participating in EQA as of February 2020. Approximately 50% of hospitals (including small-to-medium sized hospitals, general hospitals, and tertiary care hospitals) that submit health insurance claims for laboratory tests in Korea participate in the KEQAS EQA [9]. Currently, specimens for 50 programs are prepared in-house, whereas specimens for the remaining programs are purchased from third-party manufacturers. With respect to the transport time after specimen shipments (e.g., the sixth shipment of 2019), 90% of the participating laboratories received the specimens within 32 hours and 99.9% within 48 hours. EQA results may be influenced by the deterioration of specimens during transportation and storage before testing [10]. Many specimens should be transported refrigerated or frozen; therefore, it is advantageous to deliver the specimens as soon as possible.

Accuracy-based EQA, which refers to commutable materials with target values, has substantially contributed to improving the accuracy of clinical laboratory tests [10]. The KEQAS has provided accuracy-based EQA for HbA1c tests since 2009, and for five chemistry tests (cholesterol, HDL cholesterol, LDL cholesterol, triglyceride, and creatinine) since 2011 [11]. The number of participants in accuracy-based EQA for HbA1c and creatinine in 2020 was 597 and 1,758, respectively. In 2011, Miller and colleagues [10] suggested six categories of EQA based on specimen characteristics, including commutability, value assignment method, and replication in the EQA survey. For example, programs in category 1 use commutable specimens with target values established by a reference system, and programs in category 2 are the same as those of category 1, except that specimens are not replicated within the survey cycle. Programs in categories 3 and 4 use commutable specimens, but the target values are not assigned by a reference system. Programs in categories 5 and 6 use non-commutable specimens [10]. Accuracy-based EQA in the KEQAS belongs to category 2, whereas the other KEQAS programs belong to category 6. The KEQAS should not only continue to increase its accuracy-based programs, but should also attempt category 1 EQA, which allows for evaluations of imprecision in laboratories by conducting repeated tests.

The consensus value of a peer group is the basis of a laboratory’s evaluation by the KEQAS EQA scheme. A peer group usually consists of laboratories that use the same analyzer from the same manufacturer, as similar matrix-related bias for a given specimen can be assumed. The use of manufacturer-based peer groups is the only acceptable method for comparing the test results of multiple analytes in immunoassay, hematology, and molecular test schemes, which lack standardization and/or harmonization across participating laboratories that use similar principles but slightly different methodologies [12]. The peer groups are further divided into instrument- or reagent-based subgroups. However, for general chemistry, the peer group is based on those using the same methods, not on the same manufacturer, because many laboratories use an open system with regards to the manufacturers of instruments, calibrators, and reagents. The peer groups are further divided into reagent manufacturer-based subgroups. The KEQAS evaluates the participants’ results based on the standard deviation index (SDI) among peer groups for quantitative tests, which is calculated as the difference between the individual laboratory test results and the mean result of the peer group divided by the peer group SD. Therefore, the SDI reflects bias as a multiple of the SD. The SDI is evaluated when the peer group size (i.e., the number of participants in each category) is eight or larger after removing outliers. In such cases, the subgroups are also evaluated. SDI>3 is considered unacceptable.

Currently, there are large differences in the analytical performance specifications (APS) used in different EQA schemes [13]. Maximum tolerance limits can be statistically determined (e.g.,
Table 1. Overview of the proficiency test scheme of the Korean Association of External Quality Assessment Service

Discipline	Classification of the Program	Program	Tests	Distribution/yr	Specimen (origin; type; state; preparation)	Shipping conditions (°C)	N participants (2020)
Transfusion medicine	Posttransfusion testing	Blood crossmatching and Blood typing, general	Blood crossmatching; ABO typing; RhD typing	2	Human; WB; Liquid; IH	FRG	923
		Blood typing, special	ABO subtyping; Rh CcEeAg test; Weak D test	2	Human; WB; Liquid; IH	FRG	253
		Transfusion Ab, general	Unexpected Ab, screening; Direct anti–human globulin test	2	Human; WB and plasma; Liquid; IH	FRG	335
		Transfusion Ab, special	Unexpected Ab, identification; ABO Ab titration	2	Human; Plasma; Liquid; IH	FRG	139
Diagnostic hematology	Hematology and clinical microscopy	CBC and microscopy	CBC	2	Animal; WB; Liquid; P	FRG	1,819
		Peripheral blood smear (pilot project)	Malaria detection; Parasitemia; Identification	2	Human; Blood smear; Image; IH	FRG	277
		ESR (pilot project)	ESR	2	Synthetic material; Latex; Liquid; P	FRG	448
Coagulation		Coagulation, general	PT INR; aPTT; Coagulation factor I (fibrinogen); Thrombin time; Antithrombin III activity	2	Human; Plasma; Lyophilized; P	FRG	606
		Coagulation, special	Protein C (functional); Protein S (functional)	2	Human; Plasma; Lyophilized; P	FRG	20
Clinical chemistry	Urinalysis and stool occult blood, etc.	Urinalysis	Urinalysis	3	Animal; Serum, Hb and Enzyme; Liquid; P	FRG	1,726
		Stool occult blood	Urine sediment	3	Human; Urine; Image; IH	FRG	1,014
		Blood gas analysis	Stool occult blood (Q1); Stool occult blood (QN)	2	Other origins; Hb; Lyophilized; P	FRG	420
		Blood gas analysis	pH; pCO₂; pO₂; Lactic acid; Ionized calcium; Ionized magnesium; Sodium; Potassium; Chloride	2	DW; Buffered bicarbonate and electrolyte solution; Liquid; P	FRG	177
		Blood gas analysis, POCT	pH; pCO₂; pO₂	2	DW; Buffered bicarbonate and electrolyte solution; Liquid; P	FRG	40
General chemistry	Routine chemistry	Sodium; Potassium; Chloride; Calcium; Phosphorus; Magnesium; BUN; Glucose; Cholesterol; HDL-C; LDL-C; TG; ALT; ALP; AST; Bilirubin; total; Bilirubin, direct; Albumin; Protein; GGT; LDH; Amylase; Lipase; CK; Uric acid; Iron; TIBC; Total CO₂; Osmolality	4	Human; Serum; Lyophilized; P	FRG	1,801	
ICG test		ICG concentration; K; R15		2	Human; plasma; Liquid	FRG	40
Urine chemistry		Urine album; Calcium; Chloride; Creatinine; Glucose; Magnesium; Phosphorus; Potassium; Urine protein; Sodium; Urea Nitrogen; Uric acid; hCG	2	Human; Urine; Lyophilized; P	FRG	304	
Special proteins	Special proteins	Ceruloplasmin; Ferritin; Transferrin; Haptoglobin; Preealbumin; Alpha 1-antitrypsin; CRP (QL); CRP (QN); ASO (QL); ASO (QN); RF (QL); RF (QN)	2	Human; Serum; Liquid; P	F	620	
Carbohydrates, lipids, proteins, and vitamins	Glucose, POCT	Glucose		2	Human; Serum and Hb; Liquid; P	FRG	375
Cardiac markers		CK-MB, mass; CK-MB, activity; Homocysteine; Myoglobin; Troponin I; Troponin T; BNP; Pro-BNP; High sensitivity CRP	2	Human; Serum; Liquid; IH	F	475	
Metabolism testing	Newborn screening	Total galactose; 17-hydroxyprogesterone; TSH; T4, total; Newborn screening for inborn error of metabolism	2	Human; WB; Dried blood spot; IH	F	17	
Discipline	Classification of the Program	Program	Tests	Distribution/yr	Specimen (origin; type; state; preparation)	Shipping conditions (°C)	N participants (2020)
--	-------------------------------	--------------------------------------	---	-----------------	---	--------------------------	-----------------------
Endocrinology		Hormones I	TSH; T4, total; T4, free; T3, total; Thyroidglobulin; TCG, total (serum); Testosterone; Estradiol; Progesterone; Prolactin; Insulin; Folate; Human growth hormone; Vitamin B₁₂; Cortisol	2	Human; Serum; Liquid; P	F	661
Endocrinology		Hormones II	PTH; Erythropoietin; Vitamin D; Procalciton	2	Human; Serum; lyophilized; P	F	315
Tumor markers		Hormones III (pilot project)	Anti-Mülleran hormone	2	Human; Serum; Liquid; IH	F	723
Tumor markers		Tumor markers I	AFP (QN); CEA; PSA; PWKA-II	2	Human; Serum; Liquid; IH	F	446
Tumor markers		Tumor markers II	CA 125; CA 19-9; CA 15-3; CA 72-4; Beta-2-microglobulin; Human epididymis protein 4	2	Human; Serum; lyophilized; P	F	106
Therapeutic drug monitoring and toxicity		Therapeutic drug monitoring, general	Acetaminophen; Amikacin; Amitriptyline; Carbamazepine; Carbamazepine,fre; Chloramphenicol; Desipramine; Disopyramide; Digoxin; Etoxoidimide; Lidocaine; Gentamicin; Lithium; Metotrexate; Nortriptyline; Phenobarbital; Phenyo; Phenyo; free; Primidine; Procainamide; Propanolol; Quinidine; Salicylate; Theophylline; Tobramycin; Valproic acid; Valproic acid, free; Vancomycin	2	Human; Serum; lyophilized; P	F	13
Immunosuppressants therapeutic drug monitoring			Cyclosporine; Tacrolimus (FKS06); Sirolimus; Everolimus	2	Human; WB; Liquid; P	F	77
Therapy drug monitoring, special			MPA; Voriconazole; Posaconazole; Itraconazole	2	Human; Serum; Liquid; IH	F	141
Drug of abuse (QL)			Amphetamine, Methamphetamine; MDMA; Morphine, Free; Phencyclidine, 3,4-Secobarbital; 3,4-COEPH-11-CHR-THC; Benzylclogonine; Ethanol; LSD; Methadone; Methaqualone; Nondazepam; Nortriptyline; Oxazepam; Propoxyphene	2	Human; Urine; Liquid; P	F	275
Accuracy-based chemistry			Cholesterol, total; HDL-C; LDL-C; TG; Apo-1protein and A1; Apo-1protein	2	Human; Serum; Liquid; IH	F	1,758
Accuracy-based chemistry			B; Lipoprotein(a)	2	Human; Serum; Liquid; IH	F	597
Accuracy-based creatinine			Creatinine; estimated GFR	2	Human; Plasma; Liquid; IH	F	164
Accuracy-cased HbA1c			HbA1c	2	Human; WB; Liquid; IH	F	595
Diagnostic immunology			Complements and immunoglobulins C3; C4; IgG; IgA; IgM; IgE; FLC; kappa; FLC; lambda	2	Human; Serum; Liquid; P	F	
Serology			Syphilis tests	2	Human; Plasma; Liquid; IH	F	

(Continued to the next page)
Discipline	Classification of the Program	Program	Tests	Distribution/yr	Specimen (origin; type; state; preparation)	Shipping conditions (°C)	N participants (2020)
Hepatitis serology			HBSAg; HBsAb; HCV Ab; HBc Ab; total; HBe Ab; IgM; HBeAg; HBeAb; HAV Ab; total; HAV Ab, IgG; HAV Ab, IgM	2	Human; Plasma; Liquid; IH	F	1,103
Virus serology I			HIV Ag/Ab; HTLV Ab; CMV Ab, IgG; CMV Ab, IgM	2	Human and Animal; Serum; Liquid; IH	F	591
Virus serology II			Rubella IgG; Rubella IgM; EBV Viral Capsid Ag, IgG; EBV Viral Capsid Ag, IgM; EBV Nucleic Acid Ag, IgG	2	Human and Animal; Serum; Liquid; IH	F	93
Histocompatibility testing			HLA Typing	2	Human; WB; Liquid; IH		
			HLA B27 Typing; HLA B51 Typing	2	Human; WB; Liquid; IH		
			HLA crossmatching, CDC; HLA crossmatching, flow cytometry	2	Human; Serum and PBMC; Liquid; IH		
Cellular immunity, flow cytometry			HLA Ab screening; HLA Ab identification	2	Human; Serum; Liquid; IH		
			Lymphocyte subset assay	2	Human; WB; Liquid; IH		
			CD34+ Stem/Progenitor cell assay	2	Human; WB; Liquid; IH		
			Hematologic malignancy immunophenotyping	2	Human; WB and BM aspirate; Liquid; IH		
Autoimmunity			ANA; Anti-mitochondrial Ab; Anti-smooth muscle Ab	2	Human; Serum; Liquid; IH		
			Anti-thyroglobulin Ab; Anti-thyroperoxidase Ab; Anti-dsDNA Ab	2	Human; Serum; Liquid; IH		
			Allergen-specific IgE (QN), Multi-allergen screen (Semi-QN)	2	Human; Serum; Liquid; IH		
Allergy test			Tuberculosis Ag response	2	Animal; Serum and Interferon-gamma power; Lymphophized; IH		
Infection-induced immune responses			IGRA	2	Animal; Serum and Interferon-gamma power; Lymphophized; IH		
Clinical microbiology	Microbiology	Mycobacteriology, general	Acid-fast stain microscopy	3	Human; MTB; Slide; IH	F	255
		Mycobacteriology, drug sensitivity	Acid-fast bacilli culture; Acid-fast bacilli identification	3	Human; Sputum; Liquid; IH	F	7
		Bacteriology	Bacteria stain microscopy; Bacteria culture; Bacteria identification; Antibiotics sensitivity test	3	Human; Bacteria; Liquid medium; IH	F	282
		Mycology	Fungus stain microscopy; Fungus culture; Fungus identification	2	Human; Fungus; Liquid medium; IH	F	135
		Parasitology	Parasite eggs image	3	Human and Animal; Parasite egg image; IH	F	217
			Parasite eggs slide	3	Human and Animal; Parasite egg slide; IH	F	132
Molecular diagnostics	Molecular microbiology, mycobacteria	MTB DNA; MTB DNA, isoniazid resistance mutation; MTB DNA, rifampicin resistance mutation	3	Human; MTB and NTM; Liquid; IH	F	121	

(Continued to the next page)
Discipline	Classification of the Program	Program	Tests	Distribution/yr	Specimen (origin; type; state; preparation)	Shipping conditions (°C)	N participants (2020)
Molecular microbiology, viruses			CMV (QL); CMV (QN); EBV (QL); EBV (QN); HPV (QL); HIV (QL); HIV (QN); Adenovirus (QL); Influenzavirus A,B (QL); Param influenza 1,2,3 virus (QL); RSV (QL); BK virus (QL)	2	Human; Serum (Plasma); Liquid; IH	F	124
Human genetics							
Cytogenetics				2	Human; Virus; Liquid; IH	F	
FISH				3	Human; WB; Image; IH	-	40
Molecular, hematologic malignancy				3	Human; WB; Slide; IH	F	32
Molecular, solid tumors			KRAS gene mutation; EGR gene mutation; BRAF gene mutation; KIT (C-Kit) gene mutation	2	Human; DNA; Liquid; IH	FRG	28
Molecular, genetic disorders			BRCA1; BRCA2; TP53; AIP7B; MT-TL1; MT-TK; GJB2; LHON major mutation; RET; Spincerebellar ataxia; APOE genotyping; FGR3 major mutation; MTHFR genotyping; Prader-Willi/Angelman syndrome; DMD, Del/Dup; HD gene trinucleotide repeat expansion; FMR1 gene trinucleotide repeat expansion; TGFBI major mutation; SBMA; SMN1, Del/Dup	2	Human; DNA; Liquid; IH	FRG	56
Pharmacogenetics, Molecular, pharmacogenetics			CYP2C19 genotyping; CYP2C9 genotyping; VKOR1 gene mutation; CYP2D6 genotyping; FMRI gene trinucleotide repeat expansion; TGFBI major mutation; SBMA; SMN1, Del/Dup	2	Human; DNA; Liquid; IH	FRG	21
Human genetics, others			ABO genotyping	2	Human; DNA; Liquid; IH	FRG	16
Molecular, others							
Liquid biopsy			EGR gene	2	Human; Plasma; Liquid; IH	F	30
NGS, somatic			NGS - somatic	2	Human; DNA; Liquid and FASTO file; IH	F	23
NGS, germline			NGS - germline	2	Human; DNA; Liquid and FASTO file; IH	F	24
NGS, liquid biopsy (pilot project)			NGS - liquid biopsy	2	Human; DNA; Liquid	F	5

Abbreviations: Ab, antibody; AFP, alpha-fetoprotein; Ag, antigen; ALP, alkaline phosphatase; ALT, alanine transferase; ANA, anti-nuclear Ab; aPTT, activated partial thromboplastin time; ASO, anti-streptolysin O; AST, aspartate aminotransferase; BUN, blood urea nitrogen; C, complement component; CA, cancer antigen; CBC, complete blood cell count; CDC, complement-dependent cytotoxicity; CEA, carcinoembryonic Ag; CK, creatine kinase; C-KIT, C-kit gene; CMV, cytomegalovirus; CRP, C-reactive protein; EBV, Epstein–Barr virus; estimated GFR, estimated glomerular filtration rate; F, frozen; FISH, fluorescence in situ hybridization; FLC, free light chain; FRG, refrigerated; GGT, gamma-glutamyl transferase; HAV, hepatitis A virus; HB, hepatitis B virus; HD, hepatitis D virus; HCV, hepatitis C virus; Hb, hemoglobin; HbA1c, hemoglobin A1c; HbAb, hepatitis B virus core Ab; HBsAb, hepatitis B virus envelope Ab; HBeAb, hepatitis B virus envelope Ab; HBSAg, hepatitis B virus surface Ab; hCG, human chorionic gonadotropin; HCV, hepatitis C virus; HDL-C, high-density lipoprotein cholesterol; HIV, human immunodeficiency virus; HLA, human leukocyte antigen; HPV, human papillomavirus; HTLV, human T-lymphotrophic virus; ICG, indocyanine green; Ig, immunoglobulin; IGRA, interferon-gamma release assay; IH, in-house prepared quality material; LDH, lactate dehydrogenase; LDL-C, low-density lipoprotein cholesterol; LSD, lysergic acid diethylamide; MDMA, methylene dioxy methamphetamine; MPA, methiopropamine; NGS, next-generation sequencing; P, purchased quality material; PBMC, peripheral blood mononuclear cell; PIVKA-II, protein induced by vitamin K absence or antagonist-II; POCT, point-of-care testing; PSA, prostate-specific antigen; PT, prothrombin time; PTH, parathyroid hormone; QL, qualitative; QN, quantitative; RF, rheumatoid factor; RSV, respiratory syncytial virus; RT, room temperature; T3, triiodothyronine; T4, thyroxine; TG, triglyceride; TIBC, total iron-binding capacity; TSH, thyroid-stimulating hormone; WB, whole blood.
using ±3 SDIs or Z-scores) or established as fixed percentages or amounts (e.g., ±15% of the target value or ±10 mg/dL) [14]. As the SDI is a standardized value, it can be compared among all analytes [15]. However, the limitation of the statistical method is that when applying the SDI as a tolerance limit, the acceptable range for peer groups with larger SDs is larger than that for

Fig. 1. Flow diagram of performance evaluation for (A) qualitative and (B) semi-quantitative tests in the KEQAS EQA scheme. Abbreviations: KEQAS, Korean Association of External Quality Assessment Service; EQA, external quality assessment.
peer groups with smaller SDs. Quantitative responses of the US College of American Pathologists (CAP) EQA scheme are evaluated based on a fixed range, mean percentage, SD, or variable range according to the test items. Switzerland’s Suisse de Contrôle de Qualité uses government regulations and a combination of limits established by scientific societies and Z-scores to deter-

Amylase

Specimen	Year Result	Group	N	Mean	SD	CV(%)	Median	Min	Max	SDI
CC-19-01	78	All	820	78.7	9.9	12.6	79	40	433	
		Hydrolysis of 4,6-ethylidene-4-nitropheno-malohespase	348	79.5	3.2	4.0	79	40	172	-0.47
		Roche	148	79.3	1.5	1.9	79	75	90	-0.87
CC-19-02	734	All	819	79.0	9.9	12.5	79	6	381	
		Hydrolysis of 4,6-ethylidene-4-nitropheno-malohespase	348	378.3	17.7	4.7	375	260	931	-0.24
		Roche	148	372.8	5.3	1.4	375	358	408	8.23
CC-19-03	80	All	842	79.7	3.2	4.0	81	42	179	0.09
		Hydrolysis of 4,6-ethylidene-4-nitropheno-malohespase	348	79.8	1.6	2.0	80	74	92	0.13

Fig. 2. Examples of the EQA reports of the KEQAS. (A) Participant evaluation report and (B) participants’ summary. Abbreviations: KEQAS, Korean Association of External Quality Assessment Service; EQA, external quality assessment.

Testosterone

Specimen	Year Result	N	Mean	SD	CV(%)	Median	Min	Max	SDI
CH1-18-01		96	3.8449	0.4823	12.5444	4	0.188	15.19	
	All	19	3.9214	0.2675	6.8222	3.88	3.44	4.5	
	Abbott	3	3.8614	0.2113	5.5295	3.88	3.44	4.5	
	ARCHITECT 1000	16	3.5055	0.1508	4.3025	3.54	3.31	4.26	
	ARCHITECT 2000	12	3.971	0.155	3.6925	4.15	0.883	15.19	
	Beckman Coulter Inc.	1	3.471	0.0438	2.0993	3.53	3.31	4.26	
	Accer2	1	3.14	0.05	3.49	3.49	3.49	4.29	
	UniCel DxH800	3	3.14	0.05	3.49	3.49	3.49	4.29	
	BioMerieux	1	3.14	0.05	3.49	3.49	3.49	4.29	
	Mini vidas	1	3.14	0.05	3.49	3.49	3.49	4.29	
	DiStromin	1	3.14	0.05	3.49	3.49	3.49	4.29	
	Liaison	1	3.14	0.05	3.49	3.49	3.49	4.29	
	Roche	1	3.14	0.05	3.49	3.49	3.49	4.29	
	coba s001	6	4.1971	0.155	3.6925	4.195	0.883	15.19	
	cobaS4000 e411	3	4.164	0.0759	1.8217	4.2	0.82	4.48	
	cobaS600 e601	11	4.164	0.0759	1.8217	4.2	0.82	4.48	
	cobaS8000 e602	19	4.109	0.1234	3.0043	4.13	0.908	15.19	
	Modular E170	7	3.0581	0.1866	6.1004	3.042	2.794	3.4	
	Siemens Healthcare Diagnostics, Inc	14	3.068	2.87	3.4	2.794	3.385	3.85	
	ADVIA Centaur® XP Immunoassay System	7	3.068	2.87	3.4	2.794	3.385	3.85	

Fig. 2. Examples of the EQA reports of the KEQAS. (A) Participant evaluation report and (B) participants’ summary. Abbreviations: KEQAS, Korean Association of External Quality Assessment Service; EQA, external quality assessment.
mine the acceptable range. The Netherlands' Dutch Foundation for Quality Assessment in Medical Laboratorie (SKML) and the UK Welsh EQA provider (WEQAS) use a combination of biological variation and state-of-the-art methods [13]. Although the KEQAS has been using the SDI as a tolerance limit for evaluation, APS should be considered as an alternative based on the clinical requirement for each test.

Peer groups of qualitative tests are formed in the same manner, that is, according to the same instrument manufacturer and the same reagent manufacturer with respect to the characteristics of the tests. Flow diagrams of performance evaluation for qualitative and semi-quantitative tests are shown in Fig. 1A and B, respectively.

The performance evaluation for qualitative and semi-quantitative tests has not yet been standardized [13]. For qualitative tests, 80% consensus of referees or participants is the standard used for evaluation in the US CAP EQA scheme; for example, in urinalysis dipstick tests, 80% participant consensus can be determined by grouping the mode with the next one or the two most frequent responses. In the EQA scheme of the UK WEQAS, the spiked values are used to determine the target value; if these values are not available, interpretation is based on the majority percentage of responses from participants. In the EQA scheme of SKML, performance is scored using a point system based on expert findings or consensus results. However, detailed information on the evaluation criteria of these EQA schemes are not available. The KEQAS's new suggestions for performance criteria for qualitative and semi-quantitative tests based on experience will be useful for achieving global EQA harmonization.

Two reports (the participant evaluation report and participants’ summary) are electronically generated simultaneously within five working days after each participant submit its results for each round of the scheme (Fig. 2). The mean turnaround time from result submission to report release was 33 days (range 6–104 days) in 2019 because of the review by the program manager. One of the drawbacks of EQAs is that laboratories cannot obtain feedback in a timely manner [6]. Therefore, KEQAS should consider ways to shorten the time for the review. For example, the evaluation criteria should be well established, there should be measures in place to cope with exceptions, and the assessment should be fully automated.

Approximately 60%–70% of the laboratory tests errors are due to the pre-analytical process [16]. Therefore, identifying appropriate quality metrics is crucial in determining the quality of laboratory services [17]. According to the model of quality indicators developed by the Working Group of the International Federation of Clinical Chemistry and Laboratory Medicine [17], proficiency testing and EQA schemes have allowed clinical laboratories to measure, monitor, and improve their analytical performance over time [18-20]. It may be helpful to introduce extra-analytical quality indicators in the KEQAS EQA scheme to monitor and improve the overall quality of more laboratories.

In conclusion, the KEQAS has been providing the EQA scheme for 45 years to improve the quality of clinical laboratories in Korea. Our summary of the EQA scheme, performance evaluation criteria of the KEQAS, and suggestions for improvement would help achieve global harmonization of EQA.

ACKNOWLEDGMENTS
None.

AUTHOR CONTRIBUTIONS
SC and WKM designed the study; SK and KL collected data and wrote manuscript; and HDP and WHL edited the manuscript. All authors have read and approved the final manuscript.

CONFLICTS OF INTEREST
None declared.

RESEARCH FUNDING
This study was supported by the research fund of the Korean Association of External Quality Assessment Service (Fund No. KEQAS-2019-01).

ORCID
Sollip Kim https://orcid.org/0000-0003-0474-5897
Kyunghoon Lee https://orcid.org/0000-0002-3154-0347
Hyung-Doo Park https://orcid.org/0000-0003-1798-773X
Yong-Wha Lee https://orcid.org/0000-0002-4459-6286
Sail Chun https://orcid.org/0000-0002-5792-973X
Won-Ki Min https://orcid.org/0000-0002-5158-2130

REFERENCES
1. Jang MA, Yoon YA, Song J, Kim JH, Min WK, Lee JS, et al. Effect of accreditation on accuracy of diagnostic in medical laboratories. Ann Lab Med 2017;37:213-22.
2. Lee W, Ryoo N, Suh HS, Jeon CH. Improvement in external quality as-
essment results for qualitative fecal immunochemical tests in Korea after feedback to manufacturers. Ann Lab Med 2019;39:584-6.
3. World Health Organization. WHO manual for organizing a national external quality assessment programme for health laboratories and other testing sites. Geneva, Switzerland: WHO Press, 2016.
4. Ceriotti F and Cobbaert C. Harmonization of External Quality Assessment Schemes and their role—clinical chemistry and beyond. Clin Chem Lab Med 2018;56:1587-90.
5. Halliasos A. Inter-laboratory comparisons and EQA in the Mediterranean area. EJIFCC 2018;29:253-8.
6. Peterson JC, Hill RH, Black RS, Winkelman J, Tholen D. Review of proficiency testing services for clinical laboratories in the United States—final report of a Technical Working Group. Battelle Memorial Institute. Atlanta, GA, 2008.
7. Kim S, Yun YM, Kim H, Um TH, Chang J, Jeong H, et al. The new diagnosis-related group reimbursement system and laboratory test quality in Korea: analysis of external quality assessment results. Healthcare (Basel) 2020; 8:127.
8. Korean Association of External Quality Assessment Service. https://keqas.org/ (Updated on Sep 2020).
9. Kim H, Kim S, Yun YM, Um TH, Chang J, Lee KS, et al. Status of quality control for laboratory tests of medical institutions in Korea: analysis of 10 years of data on external quality assessment participation. Healthcare (Basel) 2020;8:75.
10. Miller WG, Jones GR, Horowitz GL, Weykamp C. Proficiency testing/external quality assessment: current challenges and future directions. Clin Chem 2011;57:1670-80.
11. Jeong TD, Lee HA, Lee K, Yun YM. Accuracy-based proficiency testing of creatinine measurement: 7 years’ experience in Korea. J Lab Med Qual Assur 2019;41:13-23.
12. Krleza JL, Celap I, Tanaskovic JV. External Quality Assessment in Croatia: problems, challenges, and specific circumstances. Biochem Med (Zagreb) 2017;27:86-92.
13. Jones GRD, Albarede S, Kesseler D, MacKenzie F, Mammen J, Pedersen M, et al. Analytical performance specifications for external quality assessment—definitions and descriptions. Clin Chem Lab Med 2017;55:949-55.
14. CLSI. Using proficiency testing and alternative assessment to improve medical laboratory quality. 3rd ed. CLSI QMS24. Wayne, PA: Clinical and Laboratory Standards Institute, 2016.
15. Coucke W and Soumali MR. Demystifying EQA statistics and reports. Biochem Med (Zagreb) 2017;27:37-48.
16. Lippi G, Chance JJ, Church S, Dazzi P, Fontana R, Giavarina D, et al. Preanalytical quality improvement: from dream to reality. Clin Chem Lab Med 2011;49:1113-26.
17. Plebani M, Sciacovelli L, Alta A, Padoan A, Chiozza ML. Quality indicators to detect pre-analytical errors in laboratory testing. Clin Chim Acta 2014;432:44-8.
18. Duan M, Kang F, Zhao H, Wang W, Du Y, He F, et al. Analysis and evaluation of the external quality assessment results of quality indicators in laboratory medicine all over China from 2015 to 2018. Clin Chem Lab Med 2019;57:812-21.
19. Badrick T, Gay S, McCaughey EJ, Georgiou A. External Quality Assessment beyond the analytical phase: an Australian perspective. Biochem Med (Zagreb) 2017;27:73-80.
20. Bachner P. Anniversary of Q-Probes and Q-Tracks quality assurance programs. Arch Pathol Lab Med 2014;138:1139-40.