CRUSTACEAN VITELLOGENIN: A SYSTEMATIC AND EXPERIMENTAL ANALYSIS OF THEIR GENES, GENOMES, MRNAS AND PROTEINS; AND PERSPECTIVE TO NEXT GENERATION SEQUENCING

BY

STEPHANIE JIMENEZ-GUTIERREZ1), CRISTIAN E. CADENA-CABALLERO2), CARLOS BARRIOS-HERNANDEZ3), RAUL PEREZ-GONZALEZ1), FRANCISCO MARTINEZ-PEREZ2,3) and LAURA R. JIMENEZ-GUTIERREZ1,5)

1) Sea Science Faculty, Sinaloa Autonomous University, Mazatlan, Sinaloa, 82000, Mexico
2) Coelomate Genomic Laboratory, Microbiology and Genetics Group, Industrial University of Santander, Bucaramanga, 680007, Colombia
3) Advanced Computing and a Large Scale Group, Industrial University of Santander, Bucaramanga, 680007, Colombia
4) Catedra-CONACYT, National Council for Science and Technology, CDMX, 03940, Mexico
5) Corresponding author; e-mail: ljimenez@uas.edu.mx

ABSTRACT

Crustacean vitellogenesis is a process that involves Vitellin, produced via endoproteolysis of its precursor, which is designated as Vitellogenin (Vtg). The Vtg gene, mRNA and protein regulation involve several environmental factors and physiological processes, including gonadal maturation and moult stages, among others. Once the Vtg gene, mRNAs and protein are obtained, it is possible to establish the relationship between the elements that participate in their regulation, which could either be species-specific, or tissue-specific. This work is a systematic analysis that compares the similarities and differences of Vtg genes, mRNA and Vtg between the crustacean species reported in databases with respect to that obtained from the transcriptome of Callinectes arcuatus, C. toxotes, Penaeus stylirostris and P. vannamei obtained with MiSeq sequencing technology from Illumina. Those analyses confirm that the Vtg obtained from selected species will serve to understand the process of vitellogenesis in crustaceans that is important for fisheries and aquaculture.

RESUMEN

La vitelogénesis de los crustáceos es un proceso que involucra la vitelina, producida a través de la endoproteólisis de su precursor llamado Vitelogenina (Vtg). La regulación del gen Vtg, los ARNm y la Vtg involucra factores ambientales y procesos fisiológicos, incluyendo: maduración gonadal, etapas de muda, entre otros. Con el gen Vtg, los ARNm y la proteína obtenidos, es posible correlacionar los elementos que participan en su regulación, pudiendo ser especie-específicos o tejido-específicos. Este trabajo es un análisis sistemático que compara las similitudes y diferencias...
en los genes Vtg, mRNA y Vtg entre especies de crustáceos reportadas en bases de datos contra las obtenidas a partir del transcriptoma de Callinectes arcuatus, C. toxotes, Penaeus stylirostris y P. vannamei mediante la tecnología de secuenciación MiSeq de Illumina. Éstos análisis confirman la importancia de los estudios de la vitelogénesis en especies de crustáceos de importancia pesquera y acuícola.

INTRODUCTION

Crustacea have different sexual systems, each aimed at achieving maximum reproduction efficiency in their specific situation. In oviparous species, ovary maturation comprises the synthesis of yolk protein denoted as Vitellin (Vn), which is the most important source of energy and nutrients for embryo development (Boulangé-Lecomte et al., 2017). Vn is produced through the endoproteolysis of its precursor Vitellogenin (Vtg), and both proteins are immunologically similar (Avarre et al., 2003; Zmora et al., 2007; Xie et al., 2009). The process of Vtg biosynthesis and its accumulation in the ovary is named “vitellogenesis”, and it is essential for ovarian maturation (Thongda et al., 2015). According to species, Vtg biosynthesis occurs in the ovary and/or hepatopancreas (Shen et al., 2014).

Before the 1990s, most studies focused on ovarian Vtg synthesis; thereafter, crustacean extra-ovarian Vtg synthesis has been well analysed (Jayasankar et al., 2002; Bae et al., 2017). Among species, there are differences between ovarian and extra-ovarian Vtg synthesis (Phiriyangkul et al., 2007). Some proposals to explain this pattern have been established, including applied methodologies, molecular concentration, source of the organisms, among others. The procedures to establish Vtg mRNA concentration in any physiological condition request a correct hybridization between mRNA and the antisense molecule, such as oligonucleotides, complementary DNA (cDNA), or an adequate primer to DNA polymerization. Therefore, the Vtg gen, cDNA and protein sequence are fundamental for a molecular probe design to quantify the mRNA from the genes’ expression that participate in crustacean vitellogenesis.

Nowadays, to obtain DNA or RNA sequences quickly in a specific physiological condition, Next Generation Sequencing (NGS) technologies are the better option. They often produce in the order of thousands or hundreds of thousands of sequences, in shorter times and at significantly lower costs (Jimenez-Gutierrez et al., 2016). NGS has been performed in several species of crustaceans; some works have focused on reproduction-involved tissues (He et al., 2012; Gao et al., 2014; Shen et al., 2014), and few of them have yielded physiological implications (Tarrant et al., 2014; Peng et al., 2015; Lee et al., 2017; Das et al., 2018; Uengwetwanit et al., 2018; Wang et al., 2019). In this way, since NGS technologies give new options to identify genes and mRNAs, among which the various Vtg
transcripts (Shen et al., 2014; Tarrant et al., 2014), NGS is another option to establish the Vtg mRNA expression between maturity stages and sexes (Liu et al., 2015), whose sequences are published in public data bases such as GenBank.

From the available information, most of the Vtg mRNA characterizations from ovary or hepatopancreas were carried out under laboratory conditions. Even though cultured species do not face dramatic climatic changes, many metabolic pathways are circadian-rhythm dependent. In both wild and cultured organisms, many clock genes are strongly related with ovarian development (Tarrant et al., 2014; Chen et al., 2017). Therefore, there currently exists a lack of integration of Vtg mRNAs from crustacean species from fishery, as well as information integration among the different species of crustaceans.

In this work, Vtg mRNAs from the most important crustacean species for the Eastern Pacific fishery (i.e., Callinectes arcuatus Ordway, 1863, C. toxotes Ordway, 1863 and Penaeus stylirostris Stimpson, 1871, and cultured Penaeus vannamei Boone, 1931), were determined with MiSeq Illumina Sequencing Technology. This work sought to deepen the understanding of the different molecules involved in crustacean vitellogenesis, for their use in the evaluation of reproductive periods, and their regulation in different crustacean species of commercial importance.

MATERIAL AND METHODS

Crustacean genomes, Vtg genes mRNA and Vtg identification in the National Center for Biotechnology Information (NCBI)

To identify the crustacean genomes in the Genome Database from NCBI, the keyword “crustacean” was used. Then, the Vtg gene sequences were identified using the keyword “Vitellogenin” in Genomedata Base whereas the mRNAs were determined from the “GenBank Database” using the same keywords (Benson et al., 2005). To construct the Vtg and Vtg crustacean database, the complete open reading frame (ORF) sequences were used, and partial sequences were discarded.

To corroborate the complete Vtg genes mRNAs and protein sequences reported in the respective databases, a Basic Local Alignment Search Tool (BLAST; Altschul et al., 1990) in the NCBI database was made with an Expected Threshold of 100, a Match/Mismatch of 1-2 and 20 000 Max Target Sequences. Furthermore, a multiple alignment among Vtg Selected was performed with software Kalign 2.0 (Lopez, 2008; Lassmann et al., 2009; Chojnacki et al., 2017). The alignment parameters were similar to those proposed by the lost DNA model (Martínez-Pérez et al., 2005): output format Clustal W, gap open penalty of 9.0, gap extension penalty 0.2, terminal gap penalties 0.45, and bonus score 0.0.
The identification of the introns and exons of the reported Vtg genes was done according to the reported GenBank sequence and from the respective paper. Furthermore, data from mRNA and ORF of each Vtg sequence were corroborated with the alignment among the genomic sequence with the aforementioned parameters. The codons of each exon were established with corresponding amino acids obtained from the ORF translation with the software EXPASY Translate tool (SIB, 2016).

Vitellogenin mRNA phylogenetic tree, and Vtg domains

Determination of the phylogenetic relationships among the sequences of the Vtg mRNA was made by Bayesian inference with Mr Bayes software (Ronquist et al., 2012), in 2 runs with 4 Markov-Monte Carlo chains and with a maximum of 30 million generations and sampling every 3000 generations. The Vtg domain identification from each species was done following the protein report from GenBank.

Animal collection

Wild animals including Callinectes arcuatus, C. toxotes and Penaeus stylirostris were obtained from a fishing boat in the East Pacific (23°20'N 106°30'W), while cultured P. vannamei were obtained from an aquaculture farm in Mazatlán, Sinaloa, Mexico (23°1'N 106°12'W). From the wild animals, a stock from both Vtg synthesis tissues (ovary and hepatopancreas) was used to obtain the transcriptome that represents all maturity stages, the capture season and the circadian rhythm for each species. For the cultured organisms, a stock from each Vtg synthesis tissue (ovary and hepatopancreas), was used to obtain the transcriptome that represents all maturity stages and the circadian rhythm. The details are indicated in table I.

RNA isolation and illumina sequencing

Total RNA from each tissue stock was obtained with the following protocol: Total RNA was isolated from 100-150 mg of the tissue stock with the Pure Link RNA Mini Kit (Invitrogen / Thermo Fisher Scientific, Waltham, MA) following the manufacturer’s instructions and resuspended in 90 μl free RNase water. A second round of purification was conducted as follows: a volume of Trizol reagent and 40 μl of chloroform were added, then the mixture was vortexed for 10 s and incubated for 10 min. at 4°C. The phases were obtained by centrifugation at 13 000 g for 45 min. at 4°C to obtain the supernatant. The RNA was precipitated with 90 μl of isopropyl alcohol and 10 μl of high salt buffer (0.8 M sodium citrate and 1.2 M NaCl) and then incubated over night at −20°C. The RNA was
TABLE I
Sources of collection of the species of Crustacea studied herein

Species	Tissue	Maturity stages	Collection_date	Day/night	Source
Penaeus vannamei	Ov	I to V	Nov 2018	Circadian rhythm	Aquaculture
Boone, 1931					
Penaeus vannamei	Hp	I to V	Nov 2018	Circadian rhythm	Aquaculture
Penaeus stylirostris	Ov/Hp	I to V	Jan 2018-Jan 2019	Undetermined	Fisheries
Stimpson, 1871					
Callinectes arcuatus	Ov/Hp	I to V	Jan 2018-Jan 2019	Day	Fisheries
Ordway, 1863					
Callinectes toxotes	Ov/Hp	I to V	Jan 2018-Jan 2019	Day	Fisheries
Ordway, 1863					

Ov, Ovary; Hp, Hepatopancreas.

concentrated by centrifugation at 13 000 g for 55 min. at 4°C. The pellet was washed two times as follows: 200 μl of 70% ethanol with DEPC water (0.1% diethyl pyrocarbonate in Type 1 Water) were used and recovered at the previous speed and temperature centrifugation for 15 min. The RNA was dried off at room temperature and hydrated with 30 μl of DEPC water.

Ovarian and hepatopancreas transcriptomic illumina sequencing

All RNA samples were submitted to Genoma Mayor, Universidad Mayor in Chile (Santiago de Chile). The RNA concentration of each sample was determined with QuantiFluor® dsDNA System (Promega, Madison, WI) and the Integrity with Bioanalyzer 2100 RNA 6000 Nano Kit (Agilent Technologies, Santa Clara, CA). The library construction was done using TruSeq Stranded mRNA (Illumina, San Diego, CA). The purity library and size fragments were determined as previously described for total RNA extraction, and the library was sequenced in Illumina MiSeq instrument according to the manufacturer’s procedure.

De novo assembly and Vtg analysis

To obtain each transcriptome, the adapter sequences from each read and low-quality reads were first eliminated with the software Trim-galore, from http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/. The normalization was done with Trinity version 2.6.6 (Haas et al., 2013) with the function: <insilico_read_normalization.pl>. The de novo assembled was carried out with the software SPAdes version 3.12.0 at http://cab.spbu.ru/files/release3.12.0/. Finally, to establish the correlation between the sequences assembled and their function, a BLAST alignment
was done with software Diamond version 0.9.22 versus the “Nucleotide collection” database from NCBI. From these results, the putative Vtg sequences of each species were corroborated with a second BLAST alignment.

RESULTS

Until November 2018, 27 crustacean genome projects had been reported by the NCBI (see Supplementary Material A-I). From these, six corresponded to the class Branchiopoda, mainly comprising species of the families Triopsidae and Daphniidae. In contrast, the genome of eight of the nine families of the class Hexanauplia had been sequenced. The rest of the genomic projects reported in the NCBI corresponded to species of Malacostraca; however, the majority of these were still under construction.

From the available information, two main Vtg genes had been determined. Both genes, Vtg1 and Vtg2, from Daphnia magna Straus, 1820 have 16 introns and 17 exons, whereas in species of Decapoda, such as Metapenaeus ensis (De Haan, 1844), and Scylla paramamosain Estampador, 1950, the Vtg1 gene has 14 introns and 15 exons, and the Vtg2 gene has fewer than 12 introns and 13 exons (Supplementary Material A-II). The length of the nucleotide sequence of Vtg in the GenBank database ranges from 5000 to 6000 bp in classes such as Branchiopoda and Hexanauplia; meanwhile, in the class Malacostraca, the Vtg sequences range from 7782 to 8518 bp. Those genes code for Vtgs varying from 2534 to 2592 amino acids in length (Supplementary Material A-III).

The phylogenetic relationships determined based on nucleotide Vtg sequences of crustacean species showed, that the analysed Decapoda share a common ancestor (fig. 1). There were three main clades: one from the suborder Dendrobranchiata, another for the infraorder Caridea, and the third for the infraorder Brachyura. The evaluated sequences were not separated by tissue of origin, but were catalogued by the species to which they belong. Despite some previously reported transcriptomes that show up to 20 transcripts per species that encode Vtg (Supplementary Material A-IV), in some species, different results with respect to Vtg expression had been reported depending upon the methodology applied (Supplementary Material A-V).

On international databases, the reported Vtg molecular weights range from 200 to 500 kDa, according to the species. Vtg from the classes Branchiopoda and Hexanauplia contain less than those from the class Malacostraca. Vtg has conserved regions among the species, especially in their amino terminus, where the Vitellogenin-N domain is located. In this sense, seven domains have been found in species of crustaceans, at least three of which are found in all crustacean species: the domains Vitellogenin-N, Von Willebrand factor type D (VWD), and the
Fig. 1. Phylogenetic tree based on Vtg sequences from species of Crustacea. The nucleotide sequences were aligned with Clustal W software, with the parameters proposed in the DNA loss model (Martinez-Perez, 2005). The phylogeny with Bayesian inference was obtained with MrBayes software with 2 runs, and 4 Markov-Monte Carlo chains, with *Daphnia pulex* Leydig, 1860, as an outgroup. Numbers above the nodes indicate nonparametric bootstrap values (30 million generations, sampling the chains every 3000 generations). Sequences that specify the tissue of origin are marked with the suffixes Hp, Hepatopancreas; Ov, Ovary; Ts, Testicle. The access numbers are indicated in the table Supplementary Material A-II.
Fig. 2. Domain locations from crustacean Vtg sequences reported in GenBank. Each region is indicated in its respective colour. The positions of each domain are indicated in the table Supplementary Material A-VI. Sources: Genom, Genomic; CoOrg, Complete Organism; Hp, Hepatopancreas; Ov, Ovary; Ts, Testicle; HP OV, Hepatopancreas & Ovary; Ov Ts, Ovary & Testicle; ND, Not Determined.

Domain of Unknown Function (DUF) DUF1943 (fig. 2; Supplementary Material A-VI). Other domains that are exclusively present in Malacostraca are the Ferritin-like domain, the C8 domain, and the VWD domain.

Some publications related to Vtg synthesis show more than one Vtg; however, in the GenBank database one Vtg sequence is exclusively reported for most
Table II

The similarity of Vtg sequences from hepatopancreas and ovary from several species of decapod Crustacea

Species	Accession numbers	Ovary	Hepatopancreas	Similarity (%)
Penaeus merguiensis (De Man, 1888)	AAR88442.2	ACV32381.1	99	
Penaeus vannamei Boone, 1931*	AAP76571.2	AGX26044.1	99	
*Penaeus vannamei***	MN105877	MN105878	69	
Callinectes sapidus Rathbun, 1896	AEI59132.1	ABC41925.1	98	
Cherax quadricarinatus (Von Martens, 1868)**	AAS68191.1	AAG17936.1	54	
Metapenaeus ensis (De Haan, 1844)*	AAN40700.1	AAN86120.1	42	

* Vtg sequence from the hepatopancreas (HP) is incomplete.
** Vtg sequence from the ovary (OV) is incomplete.

In crustaceans, with an exception for species such as *Penaeus merguiensis* (De Man, 1888), *P. vannamei*, *M. ensis*, *Cherax quadricarinatus* (Von Martens, 1868), and *Callinectes sapidus* Rathbun, 1896, which have Vtg sequences reported from both tissues (hepatopancreas and ovary). Complete Vtg sequences from both tissues are almost identical. However, for some of these sequences, at least one is incomplete. In the specific case of previously reported *P. vannamei*, the partial Vtg sequence was from the amino-terminal region, which is the most conserved region. In our results, the partial ovary Vtg sequence carboxyl-terminal region has a similarity of 69% with hepatopancreas Vtg. In contrast, for *C. quadricarinatus* and *M. ensis*, the partial sequences were from the carboxyl-terminal region, which is why the similarity of the sequences that could be checked drops to 54% and 42%, respectively (table II).

Transcriptomes from cultured *P. vannamei* and wild *Penaeus stylirostris*, *Callinectes arcuatus* and *C. toxotes* allow to identify the Vtg sequences and their deduced proteins (table III). The *P. vannamei* complete Vtg from hepatopancreas shares 69% similarity with partial carboxyl-terminal ovary Vtg. In general, all Vtg sequences presented identities greater than 90% with those from previously reported species, including other species of the same genus. The effect of neuropeptides and physiological conditions on Vtg expression and synthesis in crustaceans is illustrated in Supplementary Material A-VII.

Discussion

Traditional and NGS technologies can help to establish genomes and transcriptomes. From the available genomes, the number and arrangement of the introns/exons are species-specific (Martínez-Pérez et al., 2009). The numbers of Vtg introns
TABLE III

Species	Tissue	Vtg accession number	Deduced protein similarity (%)	GenBank species
Penaeus vannamei	Ov	MN105877.1	99.4	P. vannamei ROT61469.1
Penaeus vannamei	Hp	MN105878.1	94	P. vannamei AAP76571.2
Penaeus stylirostris	Ov/Hp	MN105879.1	99	P. vannamei ROT61470.1
Callinectes arcuatus	Ov/Hp	MN105880.1	93.1	C. sapidus AEI59132.1
Callinectes toxotes	Ov/Hp	MN105881.1	91.7	C. sapidus AEI59132.1

Ov, ovary; Hp, hepatopancreas.

and exons from crustacean species are like those from other invertebrate and vertebrate species, suggesting a common ancestor (Kung et al., 2004). Nevertheless, the higher number of introns of Branchiopoda with respect to Malacostraca is directly related to their lower number of base pairs on Vtg sequences and to the higher specialization of Vtg of Malacostraca species.

Despite the presence of at least two Vtg sequences reported for several species, in the phylogenetic tree, the sequences are not separated according to the tissue of origin but according to species. This suggests a possible alternative splicing and punctual mutations within each species (Tarrant et al., 2014; Liu et al., 2015). Some authors have suggested a divergent evolutionary process (Tarrant et al., 2014; Liu et al., 2015).

The Vtg transcript of vertebrates is encoded by a multigene family (Tarrant et al., 2014). But in the invertebrates, only for Procambarus clarkii (Girard, 1852), 29 transcripts were reported that encode Vtg (Shen et al., 2014). Our results from each tissue, which agree with previous reports, suggest possible alternative mRNA splicing events (Mak et al., 2005) or an early gene duplication event, followed by rapid sequence divergence (Phiriyangkul et al., 2007), which represent phenomena that are not limited to the infraorder group and neither by their geographical distribution.

Most works have focused on differential tissue expression of Vtg in female crustaceans. For example, in the shrimp Metapenaeus ensis, Vtg1 is expressed in ovary and hepatopancreas, whereas Vtg2 is expressed exclusively in the hepatopancreas (Wong et al., 2008). However, a main point of discussion is which organ is the major site of synthesis. A major Vtg expression in the hepatopancreas has been reported for some crustacean species, such as the shrimps Penaeus japonicus Spence Bate, 1888 (cf. Okumura, 2007), P. merguiensis (cf. Phiriyangkul et al., 2007), P. vannamei (cf. Raviv et al., 2006) and M. ensis (cf. Tsang et al., 2003; Tiu et al., 2006a), the freshwater crayfish Procambarus clarkii, and the blue swimming crab.
Callinectes sapidus (cf. Shen et al., 2014; Thongda et al., 2015). Nonetheless, the results depend upon the methodologies applied.

With genome databases, Vtg genes, mRNA and Vtg proteins, in this work, the Vtg is confirmed in ovary/hepatopancreas transcriptomes from the wild-caught crustaceans C. arcuatus, C. toxotes and P. stylirostris in addition to the ovary and hepatopancreas transcriptomes from cultured P. vannamei. Even so, there are some previously published transcriptomes from P. vannamei with Illumina MiSeq technology, most of which do not have a reproductive focus (Zhang et al., 2016; Fan et al., 2019), and some of them are focused on eyestalk tissue (Wang et al., 2019) and changes in hepatopancreas after eyestalk ablation (Lee et al., 2017). Next to Vtg, some other mRNAs have been implicated in reproduction control, such as the Vtg receptor (VtgR; Shen et al., 2014), the Gonadotropin-Releasing Hormone (GnRH) signalling pathway (among them: GnRH receptor and epidermal growth factor receptor), Torso-like, and Vigillin, among others (Tarrant et al., 2014; Uengwetwanit et al., 2018).

Preliminary transcriptomic results from P. vannamei, P. stylirostris, C. arcuatus and C. toxotes help to find some reproduction-related genes such as VtgR, vitelline membrane outer protein, vitellogenin carboxipeptidase, ecdysone receptor (EcR), ecdysteroid-regulated protein, ecdysone-induced protein, progesterone-like protein, progesterone-induced-blocking factor, progesterone receptor, crustacean female sex hormone ovarian isoform, lutropin-choriogonadotropic hormone receptor, ovarian peritrophin, ovary development related protein, ovigerous-hair stripping substance, ovoinhibidor, ovarian killer protein, ecdysteroid receptor, ecdysteroid-regulated protein, ecdysone-induced protein, voltage-dependent calcium channel, FEM-1, and insulin growth factor, among others.

Most of these could serve as molecular markers of maturity stages, as well as to study the interactions in the induction and repression of reproduction. However, further studies are necessary to understand the role of each one on the reproduction of crustaceans.

Despite the substantial amount of information generated from NGS, there remains a large number of unknown genes and functions, because organisms have phenotypic plasticity, i.e., the ability to express different phenotypes from the same genotype due to changes in environmental conditions (An et al., 2018). Also, the complete genome of most crustaceans is unknown, and there is a limited number of non-redundant sequences in the international databases for some species.

Vtg synthesis

Vtg is a member of a family of lipid transfer proteins (Smolenaars et al., 2007). The classes Branchiopoda and Hexanauplia have fewer amino acids as compared
to the class Malacostraca. The fact that Malacostraca species present more domains implies a higher level of regulation and more possible functions for Vtg. The Vitellogenin-N domain is the core of the protein, and transfers cholesterol and triglycerides to Vtg (Bai et al., 2015). The Ferritin-like domain stores iron in a biologically available form. The GL/ICG motifs from the C8 and VWD domains are necessary for the oligomerization of the protein (Bai et al., 2015; Wu et al., 2018). In addition to these domains from crustacean Vtg, some motifs, such as R-K.XXR, KLSR, KCYR, and KFSR, are found in mammals, insects, and crustaceans (Xie et al., 2009). These have been proposed as processing motifs for the subtilisin-like protease family (Tseng et al., 2001).

Vtg is composed of two subunits in the early stages of vitellogenesis and of four subunits in the late stages of vitellogenesis, which is congruent with Western blot immunopositive signals concentrated on the lower-molecular-weight fraction of the ovarian polypeptide (Okuno et al., 2002; Zmora et al., 2007). Vtg subunits have been detected by ELISA assays in the ovary, haemolymph, and hepatopancreas; however, in some crustacean species, Vtg was not found in the hepatopancreas, despite the presence of the Vtg transcript (Auttarat et al., 2006). In some species, Vtg levels in the hepatopancreas at any stage are low or undetectable by Western blot (Auttarat et al., 2006; Phiriyangkul et al., 2007).

This suggests that the demand for Vtg from the ovary is greater than the rate of synthesis from the hepatopancreas (Auttarat et al., 2006), whereas in the ovaries the concentrations of Vtg during ovarian maturation are lower than those of Vn (Auttarat et al., 2006; Wong et al., 2008). This is likely because Vtg may be excreted from the hepatopancreas immediately after synthesis and/or due to the great number of proteases already present in this organ (Phiriyangkul & Utarabhand, 2006; Zmora et al., 2009). In some cases, the presence of small Vtg peptides depends upon the accurate preservation of the sample, because even under a congelation point, RNases and proteases have activity (Auttarat et al., 2006).

Ovary development and maturation

Regardless of the presence of one or two Vtg transcripts, their expression is strictly related to the oogenic cycle (Raviv et al., 2006), and Vtg levels in the haemolymph are often indicative of ovarian development (Thongda et al., 2015). For most crustacean species, ovarian development is separated into four stages (Nguyen et al., 2018) and external conditions are intimately connected with ovarian maturation, depending mostly on the season of the year, with maximum reproduction peaks in seasons with higher temperatures (Thongda et al., 2015).

Previous reports show a species-specific Vtg expression pattern. For most crustaceans, both Vtg transcription and yolk volume increase in parallel to ovarian
maturation (Kung et al., 2004). For the shrimps *Penaeus merguiensis*, *P. indicus* H. Milne Edwards, 1837 and *P. vannamei*, the Vtg expression levels are higher in the ovary than in the hepatopancreas at all evaluated stages (Phiriyangkul & Utarabhand, 2006; Raviv et al., 2006), whereas for the shrimp *P. japonicus*, the expression pattern is the opposite (Tsutsui et al., 2000). The highest Vtg mRNA levels from the ovarian tissue of *P. merguiensis* were observed in the early vitellogenic stage, and these decrease in advanced stages, with an opposite expression pattern in the hepatopancreas (Phiriyangkul et al., 2007). However, in some reports for *P. japonicus* (cf. Okumura, 2007), and *Scylla paramamosain* (cf. Jia et al., 2013), a constant increase occurs from the primary vitellogenic stage to final maturation, with a decrease after oviposition.

In some species of decapods, such as the mud crab *S. paramamosain* (cf. Gong et al., 2015) and the prawn *Macrobrachium rosenbergii* (De Man, 1879) (cf. Okuno et al., 2002), the ovary is only known as a site for Vtg uptake and accumulation during ovarian development (Gong et al., 2015), synthesizing only small amounts of Vtg (Tiu et al., 2006b). In other species, such as the ridgeback prawn *Sicyonia ingentis* (Burkenroad, 1938), the shrimp *P. japonicus* and the swimming crab *Callinectes sapidus* (cf. Tsukimura, 2001; Okumura, 2007; Thongda et al., 2007; Zmora et al., 2007), Vtg synthesis occurs in both tissues. We have found Vtg transcripts in both tissues from adult females of the Pacific blue swimming crab *C. arcuatus* and also in the hepatopancreas of subadult females of *P. stylirostris* (without developed gonads), whereas in subadult females of *P. vannamei*, Vtg transcripts were absent.

It is important to highlight these physiological differences and the species-specific regulation level, because in tropical countries, fishery management is generalized for all members of the same crustacean family (e.g., in the families Peneidae and Portunidae; NOM-039-PESC, 2003; NOM-002-SAG/PESC, 2013), despite differences in the regulation of their reproduction. In this sense, Vtg sequences for species that are not cultured commercially, such as the shrimp *P. stylirostris* and the crabs *C. arcuatus* and *C. toxotes*, among others, are less studied and were absent in the GenBank databases until this work.

All of the abovementioned studies suggest a perfectly coordinated process among the hepatopancreas and ovary, where the genes Vtg, VtgR and EcR, among others, could be potential markers for evaluating ovarian maturation in each species. However, Vtg expression and Vtg synthesis patterns are not the same for all infraorders from the subphylum Crustacea, not even among members of the same genus. Evaluations must be standardized by each species, and by each habitat, without neglecting the evolutionary history of each gene. An understanding of all of these physiological processes can be used to assay the crustacean reproduction process in both aquaculture and fisheries.
ACKNOWLEDGEMENTS

We thank projects CONACYT (National Council for Science and Technology) Basic Science 2015-255664, and the project 5713 from the Vice-Rectory of Investigation of the Industrial University of Santander. We also thank the Advanced Computing and a Large Scale Group of the Industrial University of Santander (SC3-UIS), supported by the Vice-Rector for Investigation and Extension of the Industrial University of Santander, for their support in the nucleotide and protein analyses.

REFERENCES

ALTSCHLUL, S. F., W. GISH, W. MILLER, E. W. MYERS & D. J. LIPMAN, 1990. Basic local alignment search tool. J. Mol. Biol., 215: 403-410. DOI:10.1016/S0022-2836(05)80360-2.

AN, H., T. DO, G. JUNG, M. Z. KARAGOZLU & C. B. KIM, 2018. Comparative transcriptome analysis for understanding predator-induced polyphenism in the water flea Daphnia pulex. Int. J. Mol. Sci., 19: 1-13. DOI:10.3390/ijms19072110.

AUTTARAT, J., P. PHIRIYANGKUL & P. UTARABHAND, 2006. Characterization of vitellin from the ovaries of the banana shrimp Litopenaeus merguiensis. Comp. Biochem. Physiol., (B, Biochem. Mol. Biol.) 143: 27-36. DOI:10.1016/j.cbpb.2005.09.009.

AVARRE, J. C., R. MICHELIS, A. TIETZ & E. LUBZENS, 2003. Relationship between vitellogenin and vitellin in a marine shrimp (Penaeus semisulcatus) and molecular characterization of vitellogenin complementary DNAs. Biol. Reprod., 69: 355-364. DOI:10.1095/biolreprod.102.011627.

BAE, S. H., T. OKUTSU, N. TSUTSUI, B. J. KANG, H. Y. CHEN & M. N. WILDER, 2017. Involvement of second messengers in the signaling pathway of vitellogenesis-inhibiting hormone and their effects on vitellogenin mRNA expression in the whiteleg shrimp, Litopenaeus vannamei. Gen. Comp. Endocrinol., 246: 301-308. DOI:10.1016/j.ygeneco.2017.01.006.

BAI, H., H. QIAO, F. LI, H. FU, S. SUN, W. ZHANG, S. JIN, Y. GONG, S. JIANG & Y. XIONG, 2015. Molecular characterization and developmental expression of vitellogenin in the Oriental river prawn Macrobrachium nipponense and the effects of RNA interference and eyestalk ablation on ovarian maturation. Gene, 562: 22-31. DOI:10.1016/j.gene.2014.12.008.

BENSON, D. A., I. KARSCH-Mizrachi, D. J. LIPMAN, J. OSTELL & D. L. WHEELER, 2005. GenBank. Nucleic Acids Res., 33: 34-38. DOI:10.1093/nar/gki063.

BOULANGÉ-LECOMTE, C., B. XUEREB, G. TRÉMOLET, A. DUFLOT, N. GIUSTI, S. OLIVIER, E. LEGRAND & J. FORGET-LERAY, 2017. Controversial use of vitellogenin as a biomarker of endocrine disruption in crustaceans: new adverse pieces of evidence in the copepod Eurytemora affinis. Comp. Biochem. Physiol., (C, Toxicol. Pharmacol.) 201: 66-75. DOI:10.1016/j.cbpc.2017.09.011.

CHEN, S., H. QIAO, H. FU, S. SUN, W. ZHANG, S. JIN, Y. GONG, S. JIANG, W. XIONG & Y. WU, 2017. Molecular cloning, characterization, and temporal expression of the clock genes period and timeless in the Oriental river prawn Macrobrachium nipponense during female reproductive development. Comp. Biochem. Physiol., (A, Mol. Integr. Physiol.) 207: 43-51. DOI:10.1016/j.cbpa.2017.02.011.

CHOJNACKI, S., A. COWLEY, J. LEE, A. FOIX & R. LOPEZ, 2017. Programmatic access to bioinformatics tools from EMBL-EBI update: 2017. Nucleic Acids Res., 45: 550-553. DOI:10.1093/nar/gkx273.
CRUSTACEAN VITELLOGENESIS AND SEQUENCE ANALYSIS

DAS, S., L. VRASPIR, W. ZHOU, D. S. DURICA & D. L. MYKLES, 2018. Transcriptomic analysis of differentially expressed genes in the molting gland (Y-organ) of the blackback land crab, Gecarcinus lateralis, during molt-cycle stage transitions. Comp. Biochem. Physiol., (D, Genomics Proteomics) 28: 37-53. DOI:10.1016/j.cbd.2018.06.001.

FAN, L., Z. WANG, M. CHEN, Y. QU, J. LI, A. ZHOU, S. XIE, F. ZENG & J. ZOU, 2019. Microbiota comparison of Pacific white shrimp intestine and sediment at freshwater and marine cultured environment. Sci. Total Environ., 20: 1194-1204. DOI:10.1016/j.scitotenv.2018.12.069.

GAO, J., X. WANG, Z. ZOU, X. JIA, Y. WANG & Z. ZHANG, 2014. Transcriptome analysis of the differences in gene expression between testis and ovary in green mud crab (Scylla paramamosain). BMC Genomics., 15: 1-15. DOI:10.1186/1471-2164-15-585.

GONG, J., H. YE, Y. XIE, Y. YANG, H. HUANG, S. LI & C. ZENG, 2015. Ecdysone receptor in the mud crab Scylla paramamosain: a possible role in promoting ovarian development. J. Endocrinol., 224: 273-287. DOI:10.1530/JOE-14-0526.

HAAS, J. B., A. PAPANICOLAOU, M. YASSOUR, M. GRABHERR, P. D. BLOOD, J. BOWDEN, M. B. COUGER, D. ECCLES, B. LI, M. LIEBER, M. D. MACMANES, M. OTT, J. ORVIS, N. POCHET, F. STROZZI, N. WEEKS, R. WESTERMAN, T. WILLIAM, C. N. DEWEY, R. HENSCHEL, R. D. LEDUC, N. FRIEDMAN & A. REGEV, 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc., 8: 1494-1512. DOI:10.1038/nprot.2013.084.

HE, L., Q. WANG, X. JIN, Y. WANG, L. CHEN, L. LIU & Y. WANG, 2012. Transcriptome profiling of testis during sexual maturation stages in Eriocheir sinensis using illumina sequencing. PLoS One, 7: 1-9. DOI:10.1371/journal.pone.0033735.

JAYASANKAR, V., N. TSUTSUI, S. JASMAN, H. SAIDO-SAKANAKA, W. J. YANG, A. OKUNO, T. T. THANI, H. HIEN, K. AIDA & M. N. WILDER, 2002. Dynamics of vitellogenin mRNA expression and changes in hemolymph vitellogenin levels during ovarian maturation in the giant freshwater prawn Macrobrachium rosenbergii. J. Exp. Zool., 293: 675-682. DOI:10.1002/jez.10167.

JIA, C., C. B. LIETZ, H. YE, L. HUI, Q. YU, S. YOO & L. LI, 2013. A multi-scale strategy for discovery of novel endogenous neuropeptides in the crustacean nervous system. J. Proteomics, 91: 1-12. DOI:10.1016/j.jprot.2013.06.021.

JIMENEZ-GUTIERREZ, L. R., C. J. BARRIOS-HERNÁNDEZ, G. R. PEDRAZA-FERREIRA, L. VERA-CALA & F. MARTINEZ-PEREZ, 2016. Importance of databases of nucleic acids for bioinformatics analysis focused to genomics. J. Phys. Conf. Ser., 743: 1-4. DOI:10.1088/1742-6596/743/1/012009.

KUNG, S. Y., S. M. CHAN, J. H. HUI, W. S. TSANG, A. MAK & J. G. HE, 2004. Vitellogenesis in the sand shrimp, Metapenaeus ensis: the contribution from the hepatopancreas-specific vitellogenin gene (MeVg2). Biol. Reprod., 71: 863-870. DOI:10.1095/biolreprod.103.022905.

LASSMANN, T., O. FRINGS & E. L. L. SONNHAMMER, 2009. Kalign2: high-performance multiple alignment of protein and nucleotide sequences allowing external features. Nucleic Acids Res., 37: 858-865. DOI:10.1093/nar/gkn1006.

LEE, J. H., I. T. SURYANINGTYAS, T. YOON, J. M. SHIM, H. PARK & H. KIM, 2017. Transcriptomic analysis of the hepatopancreas induced by eyestalk ablation in shrimp, Litopenaeus vannamei. Comp. Biochem. Physiol., (D, Genomics Proteomics) 24: 99-110. DOI:10.1016/j.cbd.2017.08.004.

LIU, Y., M. HUI, Z. CUI, D. LUO, C. SONG, Y. LI & L. LIU, 2015. Comparative transcriptome analysis reveals sex-biased gene expression in juvenile Chinese mitten crab Eriocheir sinensis. PLoS One, 10: 1-21. DOI:10.1371/journal.pone.0133068.

LOPEZ, R., 2008. Biological data resources at the EMBL-EBI. Rev. Colomb. Biotecnol., 10: 120-128. DOI:10.15446/rev.colomb.biote.
MAK, A. S. C., C. L. CHOY, S. H. K. TIIU, J. H. L. HUI, J. G. HE, S. S. TOBE & S. CHAN, 2005. Vitellogenesis in the red crab *Charybdis feriatus*: hepatopancreas-specific expression and farnesoid acid stimulation of vitellogenin gene expression. Mol. Reprod. Dev., 70: 288-300. DOI:10.1002/mrd.20213.

MARTÍNEZ-PÉREZ, F., W. G. BENDEN, B. S. CHANG & S. S. TOBE, 2009. FGLamide Allatostatin genes in Arthropoda: introns early or late? Peptides, 30: 1241-1248. DOI:10.1016/j.peptides.2009.04.001.

MARTÍNEZ-PÉREZ, F., D. DURÁN-GUTIÉRREZ, L. DELAYE, A. BECERRA, G. AGUILAR & S. ZINKER, 2007. Loss of DNA: a plausible molecular level explanation for crustacean neuropeptide gene evolution. Peptides., 28: 76-82. DOI:10.1016/j.peptides.2006.09.021.

NGUYEN, T. V., G. E. ROTLLANT, S. F. CUMMINS, A. ELIZUR & T. TOMER, 2018. Insights into sexual maturation and reproduction in the Norway lobster (*Nephrops norvegicus*) via *in silico* prediction and characterization of neuropeptides and G protein-coupled receptors. Front. Endocrinol., 9: 1-16. DOI:10.3389/fendo.2018.00430.

NOM-002-SAG/PESC, 2013. Para ordenar el aprovechamiento de las especies de camarón en aguas de jurisdicción federal de los Estados Unidos Mexicanos. Diario Oficial de la Federación. Available at: http://www.dof.gob.mx/nota_detalle_popup.php?codigo=5306294.

NOM-039-PESC, 2003. Pesca responsable de jaiba en aguas de jurisdicción federal del litoral del Océano Pacífico. Especificaciones para su aprovechamiento. Diario Oficial de la Federación. Available at: http://dof.gob.mx/nota_detalle.php?codigo=4926205andfecha=26/07/2006.

OKUMURA, T., 2007. Effects of bilateral and unilateral eyestalk ablation on vitellogenin synthesis in immature female kuruma prawns, *Marsupenaeus japonicus*. Zool. Sci., 24: 233-240. DOI:10.2108/zsj.24.233.

OKUNO, A., W. J. YANG, V. JAYASANKAR, H. SAIDO-SAKANAKA, D. T. T. HUONG, S. JASMANI, M. ATOMOMARSONO, T. SUBRAMONIAM, N. TSUTSUI, T. OHIRA, I. KAWAZOE, K. AIDA & M. N. WILDER, 2002. Deduced primary structure of vitellogenin in the giant freshwater prawn, *Macrobrachium rosenbergii*, and yolk processing during ovarian maturation. J. Exp. Zool., 292: 417-429. DOI:10.2108/zsj.24.233.

PENG, J., P. WEI, B. ZHANG, Y. ZHAO, D. ZENG, X. CHEN, M. LI & X. CHEN, 2015. Gonadal transcriptomic analysis and differentially expressed genes in the testis and ovary of the Pacific white shrimp (*Litopenaeus vannamei*). BMC Genomics, 16: 1-18. DOI:10.1186/s12864-015-2219-4.

PHIRIYANGKUL, P., P. PUENGYAM, I. B. JAKOBSEN & P. UTRABHAND, 2007. Dynamics of vitellogenin mRNA expression during vitellogenesis in the banana shrimp *Penaeus (Fenneropenaeus) merguiensis* using real-time PCR. Mol. Reprod. Dev., 74: 1198-1207. DOI:10.1002/mrd.20629.

PHIRIYANGKUL, P. & P. UTRABHAND, 2006. Molecular characterization of a cDNA encoding vitellogenin in the banana shrimp, *Penaeus (Litopenaeus) merguiensis* and sites of vitellogenin mRNA expression. Mol. Reprod. Dev., 73: 410-423. DOI:10.1002/mrd.20424.

RAV, S., S. PARNES, C. SEGALL, C. DAVIS & A. SAGI, 2006. Complete sequence of *Litopenaeus vannamei* (Crustacea: Decapoda) vitellogenin cDNA and its expression in endocrinologically induced sub-adult females. Gen. Comp. Endocrinol., 145: 39-50. DOI:10.1016/j.ygcen.2005.06.009.

RONQUIST, F., M. TESLENKO, P. VAN DER MARK, D. L. AYRES, A. DARLING, S. HÖHNA, B. LARGET, L. LIU, M. A. SUCHARD & J. P. HUELSENBECK, 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol., 61: 539-542. DOI:10.1093/sysbio/sys029.

SHEN, H., Y. HU, Y. MA, X. ZHOU, Z. XU, Y. SHUI, C. LI, P. XU & X. SUN, 2014. In-depth transcriptome analysis of the red swamp crayfish *Procambarus clarkii*. PLoS One, 9: 1-13. DOI:10.1371/journal.pone.0110548.
SIB [SWISS INSTITUTE OF BIOINFORMATICS MEMBERS], 2016. The SIB Swiss Institute of Bioinformatics’ resources: focus on curated databases. Nucleic Acids Res., 44: 27-37. DOI:10.1093/nar/gkv1310.

SMOLENARS, M. M., O. MADSEN, K. W. RODENBURG & D. J. VAN DER HORST, 2007. Molecular diversity and evolution of the large lipid transfer protein superfamily. J. Lipid Res., 48: 489-502. DOI:10.1194/jlr.R600028-JLR200.

TARRANT, A. M., M. F. BAUMGARTNER, B. H. HANSEN, D. ALTIN & A. J. OLSEN, 2014. Transcriptional profiling of reproductive development, lipid storage and molting throughout the last juvenile stage of the marine copepod Calanus finmarchicus. Front. Zool., 11: 1-15. DOI:10.1186/s12983-014-0091-8.

THONGDA, W., J. S. CHUNG, N. TSUTSUI, N. ZMORA & A. KATENTA, 2015. Seasonal variations in reproductive activity of the blue crab, Callinectes sapidus: Vitellogenin expression and levels of vitellogenin in the hemolymph during ovarian development. Comp. Biochem. Physiol., (A, Mol. Integr. Physiol.) 179: 35-43. DOI:10.1016/j.cbpa.2014.08.019.

TIU, S. H., J. H. L. HUI, J. G. HE, S. S. TOBE & S. M. CHAN, 2006a. Characterization of vitellogenin in the shrimp Metapenaeus ensis: expression studies and hormonal regulation of MeVg1 transcription in vitro. Mol. Reprod. Dev., 73: 424-436. DOI:10.1002/mrd.20433.

TIU, S. H., J. H. L. HUI, A. S. C. MAK, J. HE & S. M. CHAN, 2006b. Equal contribution of hepatopancreas and ovary to the production of vitellogenin (PmVg1) transcripts in the tiger shrimp, Penaeus monodon. Aquaculture, 254: 666-674. DOI:10.1016/j.aquaculture.2005.11.001.

TSANG, W. S., L. S. QUACKENBUSH, B. K. C. CHOW, S. H. K. TIU, J. G. HE & S. M. CHAN, 2003. Organization of the shrimp vitellogenin gene: evidence of multiple genes and tissue specific expression by the ovary and hepatopancreas. Gene, 303: 99-109. DOI:10.1016/S0378-1119(02)01139-3.

TSENG, D. Y., Y. N. CHEN, G. H. KOU, C. F. LO & C. M. KUO, 2001. Hepatopancreas is the extravarian site of vitellogenin synthesis in black tiger shrimp, Penaeus monodon. Comp. Biochem. Physiol., (A, Mol. Integr. Physiol.) 129: 909-917. DOI:10.1016/S1095-6433(01)00355-5.

TSUKIMURA, B., 2001. Crustacean vitellogenesis: its role in oocyte development. Am. Zool., 41: 465-467. DOI:10.1093/ich/41.3.465.

TSUTSUI, N., I. KAWAZOE, T. OHIRA, S. JASMANI, W. J. YANG, M. N. WILDER & K. AIDA, 2000. Molecular characterization of a cDNA encoding vitellogenin and its expression in the hepatopancreas and ovary during vitellogenesis in the kuruma prawn, Penaeus japonicus. Zool. Sci., 17: 651-660. DOI:10.2108/zsj.15.651.

UENGWETWANIT, T., P. PONZA, D. SANGSRAKRU, D. WICHADAKUL, S. INGSRISWANG, R. LEE-LATANAWIT, S. KLINBUNGA, S. TANGPHATSORNRUANG & N. KAROONUTHAISIRI, 2018. Transcriptome-based discovery of pathways and genes related to reproduction of the black tiger shrimp (Penaeus monodon). Mar. Genomics, 37: 69-73. DOI:10.1016/j.margen.2017.08.007.

WANG, Z., S. LUAN, X. MENG, B. CAO, K. LUO & J. KONG, 2019. Comparative transcriptomic characterization of the eyestalk in Pacific white shrimp (Litopenaeus vannamei) during ovarian maturation. Gen. Comp. Endocrinol., 274: 60-72. DOI:10.1016/j.ygcen.2019.01.002.

WONG, Q. W., W. Y. MAK & K. H. CHU, 2008. Differential gene expression in hepatopancreas of the shrimp Metapenaeus ensis during ovarian maturation. Mar. Biotechnol., 10: 91-98. DOI:10.1007/s10126-007-9042-0.

WU, H., F. Z. JIANG, J. X. GUO, J. Q. YI, J. B. LIU, Y. S. CAO, X. S. LAI & G. R. ZHANG, 2018. Molecular characterization and expression of vitellogenin and vitellogenin receptor of Thitarodes put (Lepidoptera: Hepialidae), an insect on the Tibetan plateau. J. Ins. Sci., 18: 1-7. DOI:10.1093/jisesa/iey010.
XIE, S., L. SUN, F. LIU & B. DONG, 2009. Molecular characterization and mRNA transcript profile of vitellogenin in Chinese shrimp, *Fenneropenaeus chinensis*. Mol. Biol. Rep., 36: 389-397. DOI:10.1007/s11033-007-9192-1.

ZHANG, D., F. WANG, S. DONG & Y. LU, 2016. De novo assembly and transcriptome analysis of osmoregulation in *Litopenaeus vannamei* under three cultivated conditions with different salinities. Gene, 78: 185-193. DOI:10.1016/j.gene.2015.12.026.

ZMORA, N., J. TRANT, S. M. CHAN & J. S. CHUNG, 2007. Vitellogenin and its messenger RNA during ovarian development in the female blue crab, *Callinectes sapidus*: gene expression, synthesis, transport, and cleavage. Biol. Reprod., 77: 138-146. DOI:10.1095/biolreprod.106.055483.

ZMORA, N., J. TRANT, Y. ZOHAR & J. S. CHUNG, 2009. Molt-inhibiting hormone stimulates vitellogenesis at advanced ovarian developmental stages in the female blue crab, *Callinectes sapidus* 1: an ovarian stage dependent involvement. Saline Systems., 5: 1-11. DOI:10.1186/1746-1448-5-7.

SUPPLEMENTARY MATERIAL

The seven tables presented in Supplementary Material as well as the corresponding references, follow below.
No.	Nuc acid	Class	Family	Organism	Common name	Genome ID	Reference
1	Genome	Branchiopoda	Daphniidae	Daphnia manga	Common water fleas	10953	Orsini et al. (2016)
2	Genome	Branchiopoda	Daphniidae	Daphnia pulex	Common water fleas	288	Colbourne et al. (2011)
3	Genome	Branchiopoda	Limnadiidae	Eulimnadia texana	Clam Shrimp	66591	Baldwin-Brown et al. (2018)
4	Genome	Branchiopoda	Triopsidae	Lepidurus arcticus	Tadpole shrimps	ND	Savojardo et al. (2019)
5	Genome	Branchiopoda	Triopsidae	Lepidurus apus lubbocki	Tadpole shrimps	ND	Savojardo et al. (2019)
6	Genome	Branchiopoda	Triopsidae	Triops cancriformis	Tadpole shrimp	7259	Ikeda et al. (2015)
7	Genome	Hexanauplia	Archaeobalanidae	Semibalanus balanoides	Northern acorn barnacle	73714	Nunez et al. (2018)
8	Genome	Hexanauplia	Acartiidae	Acartia tonsa	Copepod	66903	Jørgensen, (2017)*
9	Genome	Hexanauplia	Calanidae	Calanus glacialis	Copepod	64149	Weydmann et al. (2017)
10	Genome	Hexanauplia	Calanidae	Calanus finmarchicus	Copepod	10995	Weydmann et al. (2018)
11	Genome	Hexanauplia	Caligidae	Caligus rogercresseyi	Sea louse	38161	Leong et al. (2015)*
12	Genome	Hexanauplia	Harpacticidae	Tigropus kingsejongensis	Antarctic-endemic copepod	ND	Kang et al. (2017)
13	Genome	Hexanauplia	Triopsidae	Lepeoptheirus salmonis	Salmon louse	2713	Tjensvoll et al. (2005)
14	Genome	Hexanauplia	Oithonidae	Oithona nana	Copepod of ocean Indo-West Pacific	53058	Register and William, (2017)*
15	Genome	Hexanauplia	Temoridae	Eurytemora affinis	A calanoid copepod	17731	Regier et al. (2010)
16	Genome	Malacostraca	Armadilliidae	Armadillidium vulgare	Pillbug	50510	Leclercq et al. (2016)
17	Genome	Malacostraca	Atyidae	Caridina multidentata	Amano Shrimp	54074	Sasaki et al. (2017)
18	Genome	Malacostraca	Atyidae	Neocaridina denticulata	Japanese swamp shrimp	ND	Kenny et al. (2014)
No.	Nuc acid	Class	Family	Organism	Common name	Genome ID	Reference
-----	----------	----------	-----------------	-------------------------	------------------------	-----------	----------------------------
4	Genome	Malacostraca	Cambaridae	*Procambarus virginalis*	Marbled crayfish	66438	Gutekunst et al. (2018)
5	Genome	Malacostraca	Hyalidae	*Hyalella azteca*	Amphipod	16496	Lowe and Eddy (1997)
6	Genome	Malacostraca	Hyalidae	*Parhyale hawaiensis*	Amphipod crustacean	15533	Kao et al. (2016)
7	Genome	Malacostraca	Ligiidae	*Ligia exotica*	Sea roach or wharf roach	54073	Sasaki et al. (2017)
8	Genome	Malacostraca	Palaemonidae	*Palaemon carinicauda*	Shrimp	ND	Yuan et al. (2017)
9	Genome	Malacostraca	Penaeidae	*Penaeus vannamei*	Pacific shrimp	ND	Yu et al. (2015)
10	Genome	Malacostraca	Penaeidae	*Penaeus japonicus*	Shrimp	24063	Yamauchi et al. (2004)
11	Genome	Malacostraca	Penaeidae	*Penaeus monodon*	Shrimp	1(2027)	Wilson et al. (2000)
12	Genome	Malacostraca	Varunidae	*Eriocheir sinensis*	Chinese mitten crab	12268	Sun et al. (2005)

Data are organized by class. Genome ID is the NCBI access code for the genome.
*Sequence without published paper
Table A-II

Genes: Characterization of form of Vtg gene: number of introns, exons, RNA length, and the number of amino acids from the deduced protein

No.	Class	Family	Organism	Common name	Tissue mRNA	Vtg Gen	Gen bp	Introns	Exons	mRNA bp	ORF bp	AA bp	Acces Nuc	Acces AA	Reference
1	Branchiopoda	Daphniidae	*Daphnia magna*	Common water fleas	Genome dmagvtg1	ND	16	17	6335	6335	2001	AB114859	BAG05137	Tokishita et al. (2006)	
2	Malacostraca	Palaemonidae	*Macrobrachium lanchesteri*	Prawn	Genome ND	10432	14	15	7614	7614	2537	KX154220.1	AQX37249.1	Ngernsiri et al. (2017)	
3	Malacostraca	Palaemonidae	*Metapenaeus ensis*	Ovary Meg1	10900	14	15	8012	7779	2592	AF548364.1	AAN40701.1	Tsang et al. (2003)		
4	Malacostraca	Peneidae	*Penaeus monodon*	Black tiger shrimp	Hepatopancreas and ovary PmVtg1	ND	14	15	7948	7755	2583	DQ288843.1	ABB89953.1	Teseng et al. (2001); Tiu et al. (2006b)	
5	Malacostraca	Nephropidae	*Homarus americanus*	Lobster	Hepatopancreas HaVg1	ND	14	15	ND	7755	2583	EF422415.1	ABO09863.1	Tiu et al. (2009)	
6	Malacostraca	Portunidae	*Charybdis feriata*	Crucifix crab	Vtg1	14	15	8032	77400	2579	AY724676.1	AAV93364.1	Mak et al. (2005)		
1	Branchiopoda	Daphniidae	*Daphnia magna*	Common water fleas	Genome dmagvtg2	ND	16	17	6229	6009	2001	AB252738	BAE94324	Tokishita et al. (2006)	
2	Malacostraca	Palaemonidae	*Metapenaeus ensis*	Shrimp	Hepatopancreas Meg2	ND	12	13	7898	7883	2560	AY530205	AAT11391.1	Kung et al. (2004)	
3	Malacostraca	Portunidae	*Scylla paramamosain*	Mud Crab	Testis Vtg2	10329	11	12	7071	7071	2356	KU987908.1	AR146323.1	Yang et al. (2016)	

Vtg Gen, name assigned to the Vitellogenin gene; Gen bp, size in base pairs of genes described for Vitellogenin; Introns, number of introns reported; Exons, number of exons reported; mRNA bp, Messenger RNA base pairs; ORF bp, Open reading frame base pairs; AA bp, number of amino acids; Acces Nuc, NCBI accession code for nucleic acids; Acces AA, NCBI accession code for amino acids.
No.	Nuc acid Class	Organism	Common name	Family	Tissue	mRNA	ORF	AA	Reference			
1	Genome	Branchiopoda Daphniidae	Daphnia magna	Branchiopoda Daphniidae	Common water fleas	Genome	ND	ND	Tokishita et al. (2006)			
2	Genome	Branchiopoda Daphniidae	Daphnia magna	Branchiopoda Daphniidae	Common water fleas	Genome	6029	6009	BAE84342.1	Xue et al. (2012)		
3	Genome	Branchiopoda Daphniidae	Daphnia magna	Branchiopoda Daphniidae	Common water fleas	Genome	6000	1999	GL73346 EF62844	Calabrese et al. (2011)		
4	mRNA	Hexanauplia Temoridae	Tigriopus japonicus	Hexanauplia Temoridae	Copepod	mRNA	TSNR 5692	5529	EUB22629.1	Lee et al. (2008)		
5	mRNA	Hexanauplia Temoridae	Eurytemora affinis	Hexanauplia Temoridae	Copepod	mRNA	TSNR 5419	5310	EUB22629.1	Xuereb et al. (2012)		
6	mRNA	Hexanauplia Cyclopetidae	Paracyclops naana	Hexanauplia Cyclopetidae	Cyclopoid copepod	Complete organism	5889	5718	1995	GQ205415.1 ADD73551.1	Hwang et al. (2010)	
7	mRNA	Hexanauplia Cyclopetidae	Paracyclops naana	Hexanauplia Cyclopetidae	Cyclopoid copepod	Complete organism	5954	5857	1995	GQ205416.1 ADD73552	Hwang et al. (2010)	
8	mRNA	Hexanauplia Harpacticidae	Tigriopus kingsejongensis	Hexanauplia Harpacticidae	Antarctic-endemic copepod	mRNA	TSNR 5698	5568	1855	KT367516.1 AL075636.1	Kang et al. (2017)	
9	mRNA	Hexanauplia Harpacticidae	Tigriopus kingsejongensis	Hexanauplia Harpacticidae	Antarctic-endemic copepod	mRNA	TSNR 5520	5388	1795	KT367519.1 AL075637.1	Kang et al. (2017)	
10	mRNA	Hexanauplia Caligidae	Lepeophtheirus salmonis	Hexanauplia Caligidae	Salmon louse	Complete organism	5942	5885	1995	EUB22629.1	Eichner et al. (2008)	
11	mRNA	Hexanauplia Caligidae	Lepeophtheirus salmonis	Hexanauplia Caligidae	Salmon louse	Complete organism	5948	5893	1995	EUB22629.1	Eichner et al. (2008)	
12	mRNA	Malacostraca Penaeidae	Penaeus chinensis	Malacostraca Penaeidae	Chinese white shrimp	Hepatopancreas and ovary	7956	7764	2587	AY051318.3	AAL26124.3	Raviv et al. 2006)
13	mRNA	Malacostraca Penaeidae	Penaeus japonicus	Malacostraca Penaeidae	Kuruma prawn	Hepatopancreas	7931	7764	2584	AB176644.1 BAD9835.2	Tsutsui et al. (2005)	
No.	Nuc acid Class	Family	Organism	Common name	Tissue	mRNA pb	ORF pb	AA pb	Acces Nuc	Acces AA	Reference	
-----	---------------	-------------------	---------------------------------	------------------	---------------------------------	---------	--------	-------	-----------	----------	--	
7	mRNA	Malacostraca	Penaeidae	Penaeus japonicus	Kuruma prawn Hepatopancreas and	7970	7764	2597	AB033719.1	BAB01568.1	Tsutsui et al. (2006)	
8	mRNA	Malacostraca	Penaeidae	Penaeus monodon	Black tiger shrimp Hepatopancreas and ovary	7948	7755	2584	DQ288843.1	ABB89953.1	Tiu et al (2006b)	
9	Gene	Malacostraca	Penaeidae	Metapenaeus ensis	Greasyback shrimp ovary	7980	7779	2592	AF548363.1	AAN40700.1	Tsang et al. (2003)	
10	mRNA	Malacostraca	Penaeidae	Metapenaeus ensis	Greasyback shrimp ovary	8012	7779	2592	AF548364.1	AAN40701.1	Tsang et al. (2003)	
11	mRNA	Malacostraca	Penaeidae	Metapenaeus ensis	Vtg 1 TSNR	7967	7752	2583	AY103478.1	AAM48287.1	Tsang et al. (2003); Kung et al. (2004)	
12	mRNA	Malacostraca	Penaeidae	Metapenaeus ensis	Vtg 2	7898	7683	2560	AY530205.1	AAT01139.1	Kung et al. (2004)	
13	mRNA	Malacostraca	Palaemonidae	Macrobrachium nipponense	Greasyback shrimp ovary and Testis	7808	7611	2536	KJ768657.1	AJP60219.1	Bai et al (2005)	
14	mRNA	Malacostraca	Palaemonidae	Macrobrachium rosenbergii	Greasyback shrimp Giant freshwater shrimp Hepatopancreas	7782	7614	2537	AB056458.1	BAB69831.1	Yang et al. (2000)	
15	Gene	Malacostraca	Palaemonidae	Macrobrachium lanchesteri	Prawn Genome	7614	7614	2537	KX154220.1	AQQX37249.1	Ngemsi et al. (2017)	
16	mRNA	Malacostraca	Palaemonidae	Palaemon carinicauda	Shrimp mRNA TSNR	7841	7632	2543	Q319034.1	AFM82474.1	Liang et al. (2011)	
17	mRNA	Malacostraca	Pandalidae	Pandalus hypsinosus	Coonstripped shrimp Hepatopancreas	7827	7605	2534	AB117524.1	BAI1098.1	Tsutsui et al. (2004)	
18	mRNA	Malacostraca	Pandalidae	Pandalopsis jponica Vtg 1	Shrimp mRNA TSNR	7791	7710	2533	GQ476736.2	ACU51164.1	Lee et al. (2008)	
19	mRNA	Malacostraca	Pandalidae	Pandalopsis jponica Vtg 2	Shrimp Hepatopancreas Vtg 2	7792	7614	2537	KF731996.1	AHD26978.1	Jeon et al. (2010)	
20	mRNA	Malacostraca	Pandalidae	Cherax quadricarinatus	Australian red claw crayfish Hepatopancreas	7944	7755	2584	AF306784.1	AAG17936.1	Abdu et al. (2002)	
21	mRNA	Malacostraca	Nephropidae	Homarus americanus	American lobster Hepatopancreas	8518	7752	2583	EF422415.1	ABO09863.1	Tiu et al. (2009)	
22	mRNA	Malacostraca	Upogebiidae	Upogebia major	Mud shrimp Hepatopancreas	7799	7707	2568	AB365125.1	BAP91417.1	Kang et al. (2008)	
23	mRNA	Malacostraca	Portunidae	Callinectes sapidus	Blue crab Hepatopancreas	7833	7692	2563	DQ314748.1	ABC41925.1	Zmora et al. (2007)	
No.	Nuc acid	Class	Family	Organism	Common name	Tissue	mRNA pb	ORF pb	AA pb	Acces Nuc	Acces AA	Reference
-----	----------	-------------	--------------	---------------------------	----------------	------------	---------	--------	-------	-----------------	-----------	---------------------------
24	mRNA	Malacostraca	Portunidae	*Callinectes sapidus*	Blue crab	Ovary	7881	7695	2564	JF719908.1	AEI59132.1	Thongda et al. (2015)
25	mRNA	Malacostraca	Portunidae	Scylla paramamosain	Green mud crab	Spermatozoon	8316	7071	2356	KJ923433.1	AKB93368.1	Yang et al. (2016)
26	mRNA	Malacostraca	Portunidae	Scylla paramamosain 1	Green mud crab	Spermatozoon	7816	7683	2560	FJ812090.1	ACO36035.1	Yang et al. (2016)
27	mRNA	Malacostraca	Portunidae	Scylla paramamosain2	Green mud crab	mRNA TSNR	7809	7683	2560	KC734559.1	AGN96208.1	Yang et al. (2016)
28	Gene	Malacostraca	Portunidae	Scylla paramamosain Vtg 2	Mud Crab	Testis	7071	7071	2356	KU987908.1	ARJ46323.1	Yang et al. (2016)
29	mRNA	Malacostraca	Varunidae	Eriocheir sinensis	Chinese mitten crab	mRNA TSNR	7921	7689	2562	KJ699151.1	AGM75775.1	Qiu et al. (2013)
30	mRNA	Malacostraca	Portunidae	Charybdis feriatus	Red crab	Hepatopancreas	8032	7740	2579	AY724676.1	AUA93694.1	Mak et al. (2005)
31	mRNA	Malacostraca	Potamidae	Longipotamon honnense	Crab	Ovary	7764	7701	2566	KP319023.1	AKI23633.1	Yang and Liu (2014)
32	mRNA	Malacostraca	Portunidae	Portunus trituberculatus	Swimming crab	Hepatopancreas	7846	7683	2560	DQ000638.1	AAX94762.1	Yang et al. (2005)
33	mRNA	Malacostraca	Varunidae	Eriocheir sinensis	Chinese mitten crab	Hepatopancreas and Ovary	7939	7707	2568	MF043589.1	ASW18692.1	Le et al. (2017)
34	mRNA	Malacostraca	Squillidae	Oratosquilla oratoria	Mantis shrimp	mRNA TSNR	7686	7521	2506	KR422400.1	ALI16501.1	Zhang (2015)

Data are organized by class. mRNA bp, messenger RNA base pairs; mRNA TSNR, mRNA tissue not reported or published; Vtg 1 TSNR, Vitellogenin 1 tissue not reported or published; ORF bp, open reading frame base pairs; AA pb, amino acid base pairs; Acces Nuc, NCBI accession code for nucleic acids; Acces AA, NCBI accession code for amino acids.

* Sequence without published paper.
Table A-IV

Transcriptome: Available transcriptomes from different decapod species: tissue of the transcriptome and the technology applied to obtain it

No.	Class	Family	Organism	Emb	Lv	Ad	HpF	HpM	Ov	Ts	Next generation sequence	Reference
1	Branchiopoda	Daphniidae	*Daphnia magna*	*	–	–	–	–	–	*Illumina Miseq*	Lai et al. (2016)	
2	Branchiopoda	Daphniidae	*Daphnia magna*	–	–	–	–	–	*	*Microarray*	Toyota et al. (2016)	
3	Hexanauplia	Balanidae	*Balanus amphitrite*	–	*	*	–	–	–	*454 pyrosequencing*	Chen et al. (2016)	
4	Hexanauplia	Caligidae	*Caligus rogercresseyi*	–	–	Vg1-Vg2	–	–	–	*Ion Proton Sequencer*	Chavez-Mardones et al. (2016)	
5	Malacostraca	Varunidae	*Eriocheir sinensis*	–	–	Mal>Fem	–	–	–	*454 pyrosequencing*	Ventura-Lopez et al. (2017)	
6	Malacostraca	Penaeidae	*Penaeus vannamei*	–	–	–	–	–	*	*454 pyrosequencing*	Chen et al. (2011)	
7	Malacostraca	Palaemonidae	*Palaemonetes pugio*	–	–	–	–	–	–	*Microarray*	Li et al. (2013)	
8	Malacostraca	Cambaridae	Procambarus clarkii	–	–	–	–	–	5	*454 GS FLX system*	Jiang et al. (2014)	
9	Malacostraca	Cambaridae	Procambarus clarkii	14	–	–	–	6	5	*Illumina HiSeq2000*	Shen et al. (2014)	
10	Malacostraca	Gammaridae	Echinogammarus marinus	Vg1	Vg1-Vg2	–	–	–	–	*454 GS-Flx titanium*	Short et al. (2014)	
11	Malacostraca	Nephropidae	Nephrops norvegicus	8	*	–	–	–	–	*Illumina NextSeq 500*	Rotllant et al. (2017)	
12	Malacostraca	Portunidae	Portunus trituberculatus	9 AlSp	*	–	–	–	–	*Illumina HiSeq2000*	Yang et al. (2015)	

Data are organized by class. Emb, embryo; Lv, larva; Ad, adult; HpF, hepatopancreas female; HpM, hepatopancreas male; Ov, ovary; Ts, testis; –, undetermined; Vtg1, Vitellogenin 1 mRNA; Vtg 2, Vitellogenin 2 mRNA; Mal>Fem, Vtg mRNA is greater in males Vs to females; 9 AlSp, amount of Vitellogenin mRNA identified with alternative splicing; 8, number of Vitellogenin transcripts identified by tissue.

* mRNA expression.
TABLE A-V

Vtg aportation: Tissue with greater contribution of Vtg of different species of crustaceans

No.	Class	Infraorder	Family	Species	Ov	Hp	Reference
1	Malacostraca	Dendrobranchiata (Suborder)	Penaeidae	Penaeus japonicus	*		Yano and Chinzei (1987)
					*		Tsutsui et al. (2000)
					*		Okumura et al. (2007)
							Phiriyangkul et al. (2007)
2	Malacostraca	Dendrobranchiata (Suborder)	Penaeidae	Penaeus merguiensis	*		
3	Malacostraca	Dendrobranchiata (Suborder)	Penaeidae	Penaeus vannamei	*		Avarre et al. (2003)
4	Malacostraca	Dendrobranchiata (Suborder)	Penaeidae	Penaeus monodon	**		Raviv et al. (2006)
							Tiu et al. (2006b)
5	Malacostraca	Dendrobranchiata (Suborder)	Penaeidae	Penaeus semisulcatus	*		Tseng et al. (2001)
							Teng et al. (2001)
6	Malacostraca	Dendrobranchiata (Suborder)	Penaeidae	Metapenaeus ensis	*		Tsang et al. (2003)
7	Malacostraca	Dendrobranchiata (Suborder)	Sicyoniidae	Sicyonia ingentis	**		Tsukimura (2001)
8	Malacostraca	Caridea	Palaemonidae	Macrobrachium rosenbergii	*		Jayasankar et al. (2002)
9	Malacostraca	Caridea	Palaemonidae	Macrobrachium nipponense	*		Bai et al. (2015)
10	Malacostraca	Caridea	Pandalidae	Pandalus hyspinotus			Tsutsui et al. (2004)
11	Malacostraca	Astacidea	Cambaridae	Procambarus clarkii			Wolin et al. (1973)
12	Malacostraca	Astacidea	Parastacidae	Cherax quadricarinatus			Serrano-Pinto et al. (2004)
13	Malacostraca	Brachyura	Epialtidae	Libinia emarginata			Wolin et al. (1973);
							Paulus and Laufer (1987)
No.	Class	Infraorder	Family	Species	Ov	Hp	Reference
-----	-----------	------------	-----------	---------------------	----	------	----------------------------------
14	Malacostraca	Brachyura	Portunidae	* Callinectes sapidus*			* Zmora et al. (2007)
							* Thongda et al. (2015)
15	Malacostraca	Brachyura	Portunidae	* Scylla serrata			* Warrier and Subramoniam (2002)
16	Malacostraca	Brachyura	Portunidae	* Scylla paramamosain**			Jia et al. (2013)
17	Malacostraca	Brachyura	Portunidae	* Charybdis feriata*			* Mak et al. (2005)
18	Malacostraca	Brachyura	Portunidae	* Portunus triuberclatus*			* Yang et al. (2005)
19	Malacostraca	Brachyura	Carcinidae	* Carcinus maenas*			* Paulus and Laufer (1987)
20	Malacostraca	Brachyura	Ocypodidae	* Leptuca pugilator*			* Wolin et al. (1973)
							* Eastman-Reks and Fingerman (1985)
21	Malacostraca	Brachyura	Grapsidae	* Pachygrapsus crassipes*			Lui and O’Connor (1977)

* The major aportation site.
** Equal contribution in both sites.
| No. | Class | Family | Organism | Source | Vitellogenin_N | DUF1943 | DUF1081 | DUF445 | Ferritin_like | VWD | C8 | AA | Access No. | Reference |
|-----|----------------|---------------|-------------------|--------|----------------|---------|---------|---------|---------------|-----|-----|----|-----------------------------------|--------------------------------|
| 1 | Branchiopoda | Daphniidae | *Daphnia magna* | Genome | 253..961 | 998-1268| – | – | – | 168..1895 | 2000 | UniProtKB — Q766D3 (Q766D3_9CRUS) | Tokishita et al. (2006) |
| 2 | Branchiopoda | Daphniidae | *Daphnia magna* | Genome | 254..962 | 999..1275| – | – | – | 1684..1841 | 2002 | UniProtKB — Q1JUB0.EDB | Tokishita et al. (2007) |
| 3 | Branchiopoda | Daphniidae | *Daphnia pulex* | Genome | 251..959 | 996..1272| – | – | – | 1681..1838 | 1999 | EFX62844 | Colbourne et al. (2011) |
| 4 | Hexanauplia | Temoridae | *Eurytemora affinis* | ND | 20..696 | 745..992 | – | – | – | 1457..1618 | 1769 | AGH68974.1 | Xuereb et al. (2012) |
| 5 | Hexanauplia | Temoridae | *Tigriopus japonicus* | ND | 24..716 | 748..1028| – | – | – | 1511..1677 | 1842 | ABZ91537.1 | Lee et al. (2008) |
| 6 | Hexanauplia | Cyclopoidae | *Panacuclorella nana* | Genome | 24..774 | 848..1086| – | – | – | 1571..1739 | 1905 | ADD73551.1 | Hwang et al. (2010) |
| 7 | Hexanauplia | Cyclopoidae | *Tigriopus japonicus* | Genome | 22..696 | 741..1036| – | – | – | 1481..1657 | 1813 | ADD73552 | Hwang et al. (2010) |
| 8 | Hexanauplia | Harpacticidae | *Tigriopus kingsejongensis* | mRNA | 24..725 | 757..1032| – | – | – | 1517..1688 | 1855 | ALO75636.1 | Kang et al. (2017) |
| 9 | Hexanauplia | Harpacticidae | *Tigriopus kingsejongensis* | mRNA | 32..716 | 761..1046| – | – | – | 1476..1629 | 1795 | ALO75637.1 | Kang et al. (2017) |
| 10 | Hexanauplia | Caligidae | *Lepeophtheirus salmonis* | Genome | 24..750 | 782..1069| – | – | – | 1578..1771 | 1965 | ABU41134.1 | Eichner et al. (2008) |
| 11 | Hexanauplia | Caligidae | *Lepeophtheirus salmonis* | Genome | 22..713 | 758..1103| – | – | – | 1551..1705 | 1903 | ABU41135.1 | Eichner et al. (2008) |
| 12 | Malacostraca | Penaeidae | *Peneaus semisulcatus* | Ovary | 42..585 | 618..926 | 949..1047| – | – | 2357..2497 | 2586 | AAR88442.2 | Phiriyangkul et al. (2007) |
| 13 | Malacostraca | Penaeidae | *Peneaus merguiensis* | Hepat | 42..585 | 618..926 | 950..1048| – | – | 2348..2497 | 2587 | ACV32381.1 | Puengyam and Utarabhand (2009) |
| 14 | Malacostraca | Penaeidae | *Peneaus chinensis* | Ovary | 42..585 | 618..926 | 949..1047| – | – | 2357..2497 | 2587 | AAL12620.3 | Averre et al. (2003) |
| 15 | Malacostraca | Penaeidae | *Peneaus vannamii* | Ovary | 42..585 | 618..926 | 947..1048| – | – | 2351..2497 | 2587 | AAP76571.2 | Raviv et al. (2006) |
| 16 | Malacostraca | Penaeidae | *Peneaus vannamii* | Ovary | 42..585 | 618..926 | 947..1048| – | – | 2351..2497 | 2587 | AAP76571.2 | This study |
| 17 | Malacostraca | Penaeidae | *Peneaus vannamii* | Ovary | 42..585 | 618..926 | 947..1048| – | – | 181..247 | 323..369 | 377 Partial | This study |
| No. | Class | Family | Organism | Source | Vitellogenin_N | DUF1943 | DUF1081 | DUF445 | Ferritin_like | VWD | C8 | AA | Acces No. | Reference |
|-----|------------|---------------|-----------------|--------------|----------------|----------|----------|--------|---------------|-----|------|----|----------|--------------------------|
| 8 | Malacostraca | Penaeidae | *Penaeus* | Hepat Ovary | – | – | – | – | – | – | – | – | – | This study |
| 9 | Malacostraca | Penaeidae | *Penaeus japonicus* | Hepat | 42.585 | 618.926 | – | – | – | 2348..2497 2533..2579 2584 | BAD98732.1 | Tsutsui et al. (2005) |
| 10 | Malacostraca | Penaeidae | *Penaeus japonicus* | Hepat Ovary | 42.585 | 618.926 | – | – | – | 2358..2498 2533..2579 2597 | BAB01568.1 | Tsutsui et al. (2000) |
| 11 | Malacostraca | Penaeidae | *Penaeus monodon* | Hepat Ovary | 42.585 | 618.926 | – | – | – | 2354..2494 2530..2576 2584 | ABB89953.1 | Tiu et al. (2006b) |
| 12 | Malacostraca | Penaeidae | *Metapenaeus ensis* | Ovary Vtg 1 | 42.585 | 620.926 948..1048 | – | – | – | 2357..2502 2592 | AAN40701.1 | Tsutsui et al. (2003) |
| 13 | Malacostraca | Penaeidae | *Metapenaeus ensis* | Hepat Ovary | 42.586 | 621.928 950..1050 | – | – | – | 2346..2491 2583 | AAM48287.1 | Tsang et al. (2003); Kung et al. (2004) |
| 14 | Malacostraca | Penaeidae | *Metapenaeus ensis* | Hepat Vtg 2 | 42.586 | 619.928 | – | – | – | 2331..2470 2560 | AT01139.1 | Kung et al. (2004) |
| 15 | Malacostraca | Palaemonidae | *Macrobrachium nipponense* | Ovary- Testis | 40.587 | 620.918 | – | – | – | 2304..2444 2536 | AJP60219.1 | Bai et al. (2005) |
| 16 | Malacostraca | Palaemonidae | *Macrobrachium rosenbergii* | Hepat | 41.588 | 621.919 | – | – | – | 2305..2445 2537 | BAB69831.1 | Yang et al. (2000) |
| 17 | Malacostraca | Palaemonidae | *Macrobrachium lanestieri* | Genom | 41.588 | 621.913 | – | – | – | 2305..2445 2537 | A qx37249.1 | Ngemiri et al. (2017)* |
| 18 | Malacostraca | Palaemonidae | *Palaemon carinicauda* | ND | 41.589 | 621.923 956..1038 | – | – | – | 2311..2451 2543 | APM82474.1 | Liang et al. (2011)* |
| 19 | Malacostraca | Pandalidae | *Pandalus hiosinotus japonica* | Vg2 Hepat | 42.589 | 622.922 | – | – | – | 2302..2442 2534 | BAD1098.1 | Tsutsui et al. (2014) |
| 20 | Malacostraca | Pandalidae | *Pandalopsis carinicauda* | Hepat | 42.589 | 622.926 | – | – | – | 2302..2444 2483.2530 2537 | AHD26978.1 | Jeon et al. (2010) |
| 21 | Malacostraca | Parastacidae | *Cherax quadricarinatus* | Hepat | 42.585 | 617.932 954..1050 2049..2319 2095..2199 | 2345..2491 2530..2576 2584 | AAG17936.1 | Abdu et al. (2002) |
| 22 | Malacostraca | Nephropidae | *Homarus americanus* | Hepat | 42.588 | 621.930 955..1048 | – | – | – | 2351..2490 2583 | ABOO9863.1 | Tiu et al. (2009) |
| 23 | Malacostraca | Upogebiidae | *Upogebia major* | Hepat | 41.582 | 615.922 | – | – | – | 2333..2475 2568 | BAPF1417.1 | Kang et al. (2008) |
| 24 | Malacostraca | Portunidae | *Callinectes sapidus* | Hepat | 41.586 | 619.927 | – | – | – | 2332..2471 2563 | ABC41925.1 | Zmora et al. (2007) |
| 25 | Malacostraca | Portunidae | *Callinectes sapidus* | Ovary | 41.586 | 619.927 | – | – | – | 2333..2472 2564 | AEIS9132.1 | Thongda et al. (2015) |

* Table A-VI (Continued)
| No. | Class | Family | Organism | Source | Vitellogenin_N | DUF1943 | DUF1081 | DUF445 | Ferritin_like | VWD | C8 | AA | Access No. | Reference |
|-----|----------------|------------|---------------------------|--------|----------------|---------|---------|---------|---------------|---------|--------|---------|----------------------|----------------------------------|
| 27 | Malacostraca | Portunidae | *Callinectes toxotes* | Hepat | 41.586 | 619.921 | – | – | – | 2329.2468 | 2560 | This study | This study | |
| 28 | Malacostraca | Portunidae | *Callinectes arcuatus* | Hepat | 41.587 | 619.922 | – | – | – | 2329.2468 | 2560 | Partial | This study | |
| 29 | Malacostraca | Portunidae | *Scylla paramamosain* | ND | 40.585 | 618.919 | – | – | – | 2329.2468 | 2560 | ACO36035.1 | Yang et al. (2016) |
| 30 | Malacostraca | Portunidae | *Scylla paramamosain* | ND | 40.585 | 618.919 | – | – | – | 2329.2468 | 2560 | AGN96208.1 | Yang et al. (2016) |
| 31 | Malacostraca | Portunidae | *Scylla paramamosain* | Testis | 1.378 | 411.709 | – | – | – | 2125.2264 | 2356 | ARI46323.1 | Yang et al. (2016) |
| 32 | Malacostraca | Varunidae | *Eriocheir sinensis* | ND | 41.587 | 620.926 | – | – | – | 2340.2471 | 2562 | AGM75775.1 | Qiu et al. (2013)* |
| 33 | Malacostraca | Portunidae | *Charybdis feriatus* | Hepat | 40.585 | 618.923 | – | – | – | 2327.2487 | 2579 | AUM39694.1 | Mak et al. (2005) |
| 34 | Malacostraca | Potamidae | *Longipotamon honanense* | Ovary | 41.587 | 620.925 | – | – | – | 2335.2475 | 2566 | AKI23633.1 | Yang and Liu (2014) |
| 35 | Malacostraca | Portunidae | *Portunus trituberculatus*| Hepat | 41.584 | 617.925 | – | – | – | 2329.2469 | 2560 | AAX94762.1 | Yang et al. (2005) |
| 36 | Malacostraca | Varunidae | *Eriocheir sinensis* | Hepat | 41.587 | 620.920 | – | – | – | 2344.2477 | 2568 | ASW18692.1 | Li et al. (2017) |
| 37 | Malacostraca | Squillidae | *Oratosquilla oratoria* | ND | 41.589 | 621.926 | 954.1052| – | – | 2334.2488 | 2506 | ALI16501.1 | Zhang (2015)* |

Data are organized by class. Vitellogenin_N, lipoprotein amino terminal region, pfam01347; DUF1943, domain of unknown function 1943, pfam09172; DUF1081, domain of unknown function 1081, pfam06448; DUF445, protein of unknown function 445, pfam04286; Ferritin_like, ferritin-like superfamily of diiron-containing four-helix-bundle proteins, cl00264; VWD, von Willebrand factor type D domain, cl02516; C8, C8 domain, pfam08742; AA pb, amino acid base pairs; Acces No., NCBI accession code for nucleic acids; CoOrg, complete organism; Hepat, hepatopancreas; ND, not determined;.

* Sequence without published paper.
TABLE A-VII
Vtg regulation: Physiological factors and responses in regulation of reproduction in crustacean species

Factor	Effect	Reference
Juvenile organism	Absence of Vtg and VIH	This study
Ovary development (I-IV)	Decreases VIH levels	Okumura (2007)
	Increase proportionally Vtg mRNA and Vtg synthesis	Kung et al. (2004); Thongda et al. (2007)
	Increase MIH levels, without significant changes in MIH expression	Zmora et al. (2009)
VIH	Affects Vtg expression depending on the ovarian-stage	This study; Bae et al. (2017)
Ecdysis (moult)	Does not occur at the same time as the reproduction	Zmora et al. (2009)
	Increase Vtg expression at initial maturation stages	Gong et al. (2015)
	Decrease Vtg expression days before the moult	Jayasankar et al. (2002)
Post-moult	Upregulation of Vtg	Avarre et al. (2003)
MIH	Negatively regulates ecdysteroidogenesis	Bae et al. (2017); Zmora et al. (2009); Das et al. (2018)
High Ca2+ concentrations	Abolish MIH effects, due to the enhanced degradation of cAMP.	Bae et al. (2017); Das et al. (2018)
Increasing EcR mRNA	Parallely increase Vtg levels until ovary stage III.	Gong et al. (2015)

REFERENCES FOR SUPPLEMENTARY MATERIAL

ABDU, U., C. DAVIS, I. KHALAILA & A. SAGI, 2002. The vitellogenin cDNA of Cherax quadricarinatus encodes a lipoprotein with calcium binding ability, and its expression is induced following the removal of the androgenic gland in a sexually plastic system. Gen. Comp. Endocrinol., 127: 263-272. DOI:10.1016/S0016-6480(02)00053-9.

AVARRE, J.-C., R. MICHELIS, A. TIETZ & E. LUBZENS, 2003. Relationship between vitellogenin and vitellin in a marine shrimp (Penaeus semisulcatus) and molecular characterization of vitellogenin complementary DNAs. Biol. Reprod., 69: 355-364. DOI:10.1095/biolreprod.102.011627.

BAE, S. H., T. OKUTSU, N. TSUTSUI, B. J. KANG, H. Y. CHEN & M. N. WILDER, 2017. Involvement of second messengers in the signaling pathway of vitellogenesis-inhibiting hormone and their effects on vitellogenin mRNA expression in the whiteleg shrimp, Litopenaeus vannamei. Gen. Comp. Endocrinol., 246: 301-308. DOI:10.1016/j.ygcen.2017.01.006.

BAI, H., H. QIAO, F. LI, H. FÜ, S. SUN, W. ZHANG, S. JINa, Y. GONG, S. JIANG & Y. XIONG, 2015. Molecular characterization and developmental expression of vitellogenin in the oriental river prawn Macrobrachium nipponense and the effects of RNA interference and eyestalk ablation on ovarian maturation. Gene, 562: 22-31. DOI:10.1016/j.gene.2014.12.008.

CHÁVEZ-MARDONES, J. & C. GALLARDO-ESCÁRATE, 2015. Next-generation transcriptome profiling of the salmon louse Caligus rogercresseyi exposed to deltamethrin (AlphaMax™): discovery of relevant genes and sex-related differences. Mar. Biotechnol., 17: 793-810. DOI:10.1007/s10126-015-9661-9.
CHEN, J. S., T. W. SAPPINGTON & A. S. RAIKHEL, 1997. Extensive sequence conservation among insect, nematode, and vertebrate vitellogenin reveals common ancestry. J. Mol. Evol., 44: 440-451. DOI:10.1007/PL00006164.

CHEN, Z. F., K. MATSUMURA, H. WANG, S. M. ARELLANO, X. YAN, I. ALAM, J. A. C. ARCHER, V. B. BAJIC & P. Y. QIAN, 2011. Toward an understanding of the molecular mechanisms of barnacle larval settlement: a comparative transcriptomic approach. PLoS ONE, 6: e22913. DOI:10.1371/journal.pone.0022913.

COLBOURNE, J. K., M. E. PFRENDER, D. GILBERT, W. K. THOMAS, A. TUCKER, T. H. OAKLEY, S. TOKISHITA, A. AERTS, G. J. ARNOLD, M. K. BASU, D. J. BAUER, C. E. CÁCERES, L. CARMEL, C. CASOLA, J.-H. CHOI, J. C. DETER, Q. DONG, S. DUSHEYKO, B. D. EADS, T. FROHLICH, K. A. GEILER-SAMEROTTE, D. GERLACH, P. HATCHER, S. JOGDEO, J. KRIGSVELD, E. V. KRIVENTSEVA, D. KÜLTZ, C. LAFORSCH, E. LINDQUIST, J. LOPEZ, J. R. MANAK, J. MULLER, J. PANGILINAN, R. P. PATWARDHAN, S. PITLUCK, E. J. PRITHAM, A. RECHTSTEINER, M. RHO, I. B. ROGOZIN, O. SAKARYA, A. SALAMOV, S. SCHAAK, H. SHAPIRO, Y. SHIGA, C. SKALITZKY, Z. SMITH, A. SOUVOROV, W. SUNG, Z. TANG, D. TSUCHIYA, H. TU, H. VOS, M. WANG, Y. I. WOLF, H. YAMAGATA, T. YAMADA, Y. YE, J. R. SHAW, J. ANDREWS, T. J. CREASE, H. TANG, S. M. LUCAS, H. M. ROBERTSON, P. BORK, E. V. KOONIN, E. I. V. GRIGORIEV, M. LYNCH & J. L. BOORE, 2011. The ecoresponsive genome of Daphnia pulex. Science, 331: 555-561. DOI:10.1126/science.1197761.

DAS, S., L. V. VRASPIR, W. ZHOU, D. S. DURICA & D. L. MYKLES, 2018. Transcriptomic analysis of differentially expressed genes in the molting gland (Y-organ) of the blackback land crab, Gecarcinus lateralis, during molt-cycle stage transitions. Comp. Biochem. Physiol., (D, Genomics Proteomics) 28: 37-53. DOI:10.1016/jxbd.2018.06.001.

EASTMAN-REKS, S. B. & M. FINGERMAN, 1985. In vitro synthesis of vitellin by the ovary of the fiddler crab, Uca pugilator. J. Exp. Zool., 233: 111-116.

EICHNER, C., P. FROST, B. DYSVIK, I. JONASSEN, B. KRISTIANSEN & F. NILSEN, 2008. Salmon louse (Lepeophtheirus salmonis) transcriptomes during post molting maturation and egg production, revealed using EST-sequencing and microarray analysis. BMC Genomics, 9: 1-15. DOI:10.1186/1471-2164-9-126.

GONG, J., H. YE, Y. XIE, Y. YANG, H. HUANG, S. LI & C. ZENG, 2015. Ecdysone receptor in the mud crab Scylla paramamosain: a possible role in promoting ovarian development. J. Endocrinol., 224: 273-287. DOI:10.1530/JRE-14-0526.

GUTEKUNST, J., R. ANDRIANTSOA, C. FALCKENHAYN, K. HANNA, W. STEIN, J. RASAMY & F. LYKO, 2018. Clonal genome evolution and rapid invasive spread of the marbled crayfish. Nature Ecol. Evol., 2: 567-572. DOI:10.1038/s41559-018-0467-9.

HWANG, X., B. FENG, H. HUANG & H. YE, 2017. In vitro stimulation of vitellogenin expression by insulin in the mud crab, Scylla paramamosain, mediated through PI3K/Akt/TOR pathway. Gen. Comp. Endocrinol., 250: 175-180. DOI:10.1016/j.ygcen.2017.06.013.

IKEDA, K. T., Y. HIROSE, K. HIRAOKA, E. NORO, K. FUJISHIMA, M. TOMITA & A. KANAI, 2015. Identification, expression, and molecular evolution of microRNAs in the “living fossil” Triops cancriciformis (tadpole shrimp). RNA, 21: 230-242.

JAYASANKAR, V., N. TSUTSUI, S. JASMANI, H. SAIDO-SAKANAKA, W. J. YANG, A. OKUNO, T. T. TRAN, K. AIDA & M. N. WILDER, 2002. Dynamics of vitellogenin mRNA expression and changes in hemolymph vitellogenin levels during ovarian maturation in the giant freshwater prawn Macrobrachium rosenbergii. J. Exp. Zool., 293: 675-682. DOI:10.1002/jez.10167.
JEON, J. M., S. O. LEE, K. S. KIM, H. J. BAEK, S. KIM, I. K. KIM, D. J. MYKLES & H. W. KIM, 2010. Characterization of two vitellogenin cDNAs from a Pandalus shrimp (Pandalopsis japonica): expression in hepatopancreas is down-regulated by endosulfan exposure. Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 157: 102-112. DOI:10.1016/j.xbpb.2010.05.006.

JIA, X., Y. CHEN, Z. ZOU, P. LIN, Y. WANG & Z. ZHANG, 2013. Characterization and expression profile of Vitellogenin gene from Scylla paramamosain. Gene, 520: 119-130. DOI:10.1016J.gene.2013.02.035.

JIANG, H., Z. XING, W. LU, Z. QIAN, H. YU & J. LI, 2014. Transcriptome analysis of red swamp crawfish Procambarus clarkii reveals genes involved in gonadal development. PLoS ONE, 9: e0105122. DOI:10.1371/journal.pone.0105122.

KANG, B. J., T. NANRI, J. M. LEE, H. SAITO, C. H. HAN, M. HATAKEYAMA & M. SAIGUSA, 2008. Vitellogenesis in both sexes of gonochoristic mud shrimp, Upogebia major (Crustacea): analyses of vitellogenin gene expression and vitellogenin processing. Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 149: 589-598. DOI:10.1016/j.cbpb.2007.12.003.

KANG, S., D. H. AHN, J. H. LEE, S. G. LEE, I. SHIN, J. LEE, G. S. MIN, H. LEE, H. W. KIM, S. KIM & H. PARK, 2017. The genome of the Antarctic-endemic copepod, Tigriopus kingsejongensis. GigaScience, 6: 1-9. DOI:10.1093/gigascience/giw010.

KANG, B. J., T. NAMRI, J. M. LEE, H. SAIITO, C. H. HAN, M. HATAKEYAMA & M. SAIGUSA, 2008. Vitellogenesis in both sexes of gonochoristic mud shrimp, Upogebia major (Crustacea): analyses of vitellogenin gene expression and vitellogenin processing. Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 149: 589-598. DOI:10.1016/j.cbpb.2007.12.003.

KAO, D. G., A. LAI, E. STAMATAKI, S. ROSIC, N. KONSTANTINIDES, E. Jarvis, A. Di DONFRANCESCO, N. POUCHKINA-STANCHEVA, M. SE’MON, M. GRILLO, H. BRUCE, S. KUMAR, I. SIWANOWICZ, A. LE, A. LEMIRE, M. B. EISEN, C. EXTAVOUR, W. E. BROWNE, C. WOLFF, M. AVEROF, N. H. PATEL, P. SARKIES, A. PAVLOPOULOS & A. ABOBAKER, 2016. The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion. Elife, 5: e02062. DOI:10.7554/elif.e.20062.

KENNY, N. J., Y. W. SIN, X. SHEN, Q. ZHE, W. WANG, T. F. CHAN, S. S. TOBE, S. M. SHIMELD, K. H. CHU & J. H. HUI, 2014. Genomic sequence and experimental tractability of a new decapod shrimp model, Neocaridina denticulata. Mar. Drugs, 12: 1419-1437. DOI:10.3390/ md12031419.

KUNG, S. Y., S.-M. CHAN, J. H. L. HUI, W. S. TSANG, A. MAK & J. G. HE, 2004. Vitellogenesis in the sand shrimp, Metapenaeus ensis: the contribution from the hepatopancreas-specific vitellogenin gene (MeVg2). Biol. Reprod., 71: 863-870. DOI:10.1095/biolreprod.103.022905.

LAI, K. P., J. W. LI, C. Y. S. CHAN, T. F. CHAN, K. W. Y. YUEN & J. M. Y. CHIU, 2016. Transcriptomic alterations in Daphnia magna embryos from mothers exposed to hypoxia. Aquat. Toxicol., 177: 454-463. DOI:10.1016/j.aquatox.2016.06.020.

LECLERCQ, S., J. THÉZÉ, M. A. CHEBBI, I. GIRAUD, B. MOUMEN, L. ERNENWEIN, P. GRÈVEA, C. GILBERTA & R. CORDAUX, 2016. Birth of a W sex chromosome by horizontal transfer of Wolbachia bacterial symbiont genome. Proc. Natl. Acad. Sci. USA, 113: 15036-15041. DOI:10.1073/pnas.1608979113.

LEE, K. W., D. S. HWANG, J. S. RHEE, J. S. KI, H. G. PARK, J. C. RYU, S. RAISUDDIN & J. S. LEE, 2008. Molecular cloning, phylogenetic analysis and developmental expression of a vitellogenin (Vg) gene from the intertidal copepod Tigriopus japonicus. Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 150: 395-402. DOI:10.1016/j.cbpb.2008.04.009.

LEE, S. R., J. H. LEE, A. R. KIM, S. KIM, H. PARK, H. J. BAEK & H. W. KIM, 2016. Three cDNAs encoding vitellogenin homologs from Antarctic copepod, Tigriopus kingsejongensis: cloning and transcriptional analysis in different maturation stages, temperatures, and putative reproductive hormones. Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 192: 38-48. DOI:10.1016/j.cbpb.2015.11.008.

LI, L., X. J. LI, Y. M. WU, L. YANG, W. LI & Q. WANG, 2017. Vitellogenin regulates antimicrobial responses in Chinese mitten crab, Eriocheir sinensis. Fish Shellfish Immunol., 69: 6-14. DOI:10.1016/j.fsi.2017.08.002.
Li, T. & M. BROUWER, 2013. Field study of cyclic hypoxic effects on gene expression in grass shrimp hepatopancreas. Comp. Biochem. Physiol. D: Genomics Proteomics, 8: 309-316. DOI:10.1016/j.jbvd.2013.09.001.

LUI, C. W. & J. D. O’CONNOR, 1977. Biosynthesis of crustacean lipovitellin. III. The incorporation of labeled amino acids into the purified lipovitellin of the crab Pachygrapsus crassipes. J. Exp. Zool., 199: 105-108. DOI:10.1002/jez.1401990112.

LUI, Y., M. HUI, Z. CUI, D. LUO, C. SONG, Y. LI & L. LIU, 2015. Comparative transcriptome analysis reveals sex-biased gene expression in juvenile Chinese mitten crab Eriocheir sinensis. PLoS ONE, 10: e133068. DOI:10.1371/journal.pone.0133068.

LOWE, T. M. & S. R. EDDY, 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res., 25: 955-964.

MAK, A. S. C., C. L. CHOI, J.-G. HE, J. H. L. HUI, S. H. K. TIU, S. S. TOBE & S. M. CHAN, 2005a. Vitellogenesis in the red crab, Charybdis feriatus: hepatopancreas-specific expression and farnesoid acid stimulation of vitellogenin gene expression. Mol. Reprod. Dev., 70: 288-300. DOI:10.1002/mrd.20213.

MAK, A. S. C., C. L. CHOI, J. H. L. HUI, S. H. K. TIU, J.-G. HE, S. S. TOBE & S. M. CHAN, 2005b. Hepatopancreas-specific expression and farnesoid acid stimulation of vitellogenin gene expression. Mol. Reprod. Dev., 70: 288-300. DOI:10.1196/annals.1327.008.

NUNEZ, J. C., R. G. ELYANOW, D. A. FERRANTI & D. M. RAND, 2018. Population genomics and biogeography of the northern acorn barnacle (Semibalanus balanoides) using pooled sequencing approaches. In: Population genomics: 1-30. (Springer, Cham). DOI:10.1007/13836_2018_58.

OKUMURA, T., 2007. Effects of bilateral and unilateral eyestalk ablation on vitellogenin synthesis in immature female kuruma prawns, Marsupenaeus japonicus. Zool. Sci., 24: 233-240. DOI:10.2108/zsj.24.233.

ORSINI, L., H. MARSHALL, M. CUENCA CAMBRONERO, A. CHATURVEDI, K. W. THOMAS, M. E. PFRENDER, K. I. SPANIER & L. DE MEESTER, 2016. Temporal genetic stability in natural populations of the waterflea Daphnia magna in response to strong selection pressure. Mol. Ecol., 25: 6024-6038. DOI:10.1111/mec.13907.

PAULUS, J. E. & H. LAUFER, 1987. Vitellogenocytes in the hepatopancreas of Carcinus maenas and Libinia emarginata (Decapoda, Brachyura). Int. J. Invertebr. Reprod. Dev., 11: 29-44.

PHIRIYANGKUL, P., P. PUENGYAM, I. B. JAKOBSSEN & P. UTRABHAND, 2007. Dynamics of vitellogenin mRNA expression during vitellogenesis in the banana shrimp Penaeus (Penneropeanaeae) merguiensis using real-time PCR. Mol. Reprod. Dev., 74: 1198-1207. DOI:10.1002/mrd.20629.

PHIRIYANGKUL, P. & P. UTRABHAND, 2006. Molecular characterization of a cDNA encoding vitellogenin in the banana shrimp, Penaeus (Litopenaeus) merguiensis and sites of vitellogenin mRNA expression. Mol. Reprod. Dev., 73: 410-423. DOI:10.1002/mrd.20424.

RAVIV, S., S. PARNES, C. SEGALL, C. DAVIS & A. SAGI, 2006. Complete sequence of Litopenaeus vannamei (Crustacea: Decapoda) vitellogenin cDNA and its expression in endocrinologically induced sub-adult females. Gen. Comp. Endocrinol., 145: 39-50. DOI:10.1016/j.ygeno.2005.06.009.

ROTTLANT, G., T. V. NGUYEN, V. SBRAGAGLIA, L. RAHI, K. J. DUDLEY, D. HURWOOD, T. VENTURA, J. B. COMPANY, V. CHAND, J. AGUZZI & P. B. MATHER, 2017. Sex and tissue specific gene expression patterns identified following de novo transcriptomic analysis of the Norway lobster, Nephrops norvegicus. BMC Genomics, 18: 1-14. DOI:10.1186/s12864-017-3981-2.

SASAKI, M., Y. AKIYAMA-OUDA & H. ODA, 2017. Evolutionary origin of type IV classical cadherins in arthropods. BMC Evol. Biol., 17: 142. DOI:10.1186/s12862-017-0991-2.
Savojardo, C., A. Luchetti, P. L. Martelli, R. Casadio & B. Mantovani, 2019. Draft genomes and genomic divergence of two Lepidurus tadpole shrimp species (Crustacea, Branchiopoda, Notostraca). Mol. Ecol. Resources, 19: 235-244. DOI:10.1111/1755-0998.12952.

Serrano-Pinto, V., I. Landais, M. H. Ogliastro, M. Gutiérrez-Ayala, H. Mejía-Ruiz, H. Villarreal-Colmenares, A. Garcia-Gasca & C. Vázquez-Boucard, 2004. Vitellogenin mRNA expression in Cherax quadricarinatus during secondary vitellogenic at first maturation females. Mol. Reprod. Dev., 69: 17-21. DOI:10.1002/mrd.20157.

Shen, H., Y. Hu, Y. Ma, X. Zhou, Z. Xu, Y. Shui, C. Li, P. Xu & X. Sun, 2014. In-depth transcriptome analysis of the red swamp crayfish Procambarus clarkii. PLoS ONE, 9: e110548. DOI:10.1371/journal.pone.0110548.

Short, S., G. Yang, P. Kille & A. T. Ford, 2014. Vitellogenin is not an appropriate biomarker of feminisation in a Crustacean. Aquat. Toxicol., 153: 89-97. DOI:10.1016/j.aquatox.2013.11.014.

Sun, H., K. Zhou & D. Song, 2005. Mitochondrial genome of the Chinese mitten crab Eriocheir japonica sinensis (Brachyura: Thoracotremata: Grapsoidea) reveals a novel gene order and two target regions of gene rearrangements. Gene, 349: 207-217. DOI:10.1016/j.gene.2004.12.036.

Thongda, W., J. S. Chung, N. Tsutsui, N. Zmora & A. Katenta, 2014. Seasonal variations in reproductive activity of the blue crab, Callinectes sapidus: Vitellogenin expression and levels of vitellogenin in the hemolymph during ovarian development. Comparative Biochemistry and Physiology — Part A: Molecular and Integrative Physiology, 179(1): 35-43. DOI:10.1016/j.cbpa.2014.08.019.

Tiu, S. H. K., J. H. L. Hui, J. G. He, S. S. Tobe & S. M. Chan, 2006a. Characterization of vitellogenin in the shrimp Metapenaeus ensis: expression studies and hormonal regulation of MeVg1 transcription in vitro. Mol. Reprod. Dev., 73: 424-436. DOI:10.1002/mrd.20433.

Tiu, S. H. K., J. H. L. Hui, A. S. C. Mak, J. G. He & S. M. Chan, 2006b. Equal contribution of hepatopancreas and ovary to the production of vitellogenin (PmVg1) transcripts in the tiger shrimp, Penaeus monodon. Aquaculture, 254: 666-674. DOI:10.1016/j.aquaculture.2005.11.001.

Tiu, S. H. K., J. H. L. Hui, B. Tsukimura, S. S. Tobe, J. G. He & S. M. Chan, 2009. Cloning and expression study of the lobster (Homarus americanus) vitellogenin: conservation in gene structure among decapods. Gen. Comp. Endocrinol., 160: 36-46. DOI:10.1016/j.ygcen.2008.10.014.

Tjensvoll, K., K. Hodneland, F. Nilson & A. Nylund, 2005. Genetic characterization of the mitochondrial DNA from Lepeopodthuris salmonis (Crustacea: Copepoda). A new gene organization revealed. Gene, 353: 218-230. DOI:10.1016/j.gene.2005.04.033.

Tokishita, S., Y. Kato, T. Kobayashi, S. Nakamura, T. Ohta & H. Yamagata, 2006. Organization and repression by juvenile hormone of a vitellogenin gene cluster in the crustacean, Daphnia magna. Biochem. Biophys. Res. Commun., 345: 362-370. DOI:10.1016/j.bbrc.2006.04.102.

Toyota, K., T. D. Williams, T. Sato, N. Tatarazako & T. Iguchi, 2017. Comparative ovarian microarray analysis of juvenile hormone-responsive genes in water flea Daphnia magna: potential targets for toxicity. J. Appl. Toxicol., 37: 374-381. DOI:10.1002/jat.3368.

Tsang, W. S., L. S. Quackenbush, B. K. C. Chow, S. H. K. Tiu, J. G. He & S. M. Chan, 2003. Organization of the shrimp vitellogenin gene: evidence of multiple genes and tissue specific expression by the ovary and hepatopancreas. Gene, 303: 99-109. DOI:10.1016/S0378-1191(02)01139-3.

Tseng, D. Y., Y. N. Chen, G. H. Kou, C. F. Lo & C. M. Kuo, 2001. Hepatopancreas is the extraovarian site of vitellogenin synthesis in black tiger shrimp, Penaeus monodon. Comp. Biochem. Physiol. A: Mol. Integr. Physiol., 129: 909-917. DOI:10.1016/S1095-6433(01)00355-5.
TSUKIMURA, B., 2001. Crustacean vitellogenesis: its role in oocyte development. Am. Zool., 41: 465-467.

TSUTSUI, N., I. KAWAZOE, T. OHIRA, S. JASMANI, W.-J. YANG, M. N. WILDER & K. AIDA, 2000. Molecular characterization of a cDNA encoding vitellogenin and its expression in the hepatopancreas and ovary during vitellogenesis in the kuruma prawn, Penaeus japonicus. Zool. Sci., 17: 651-660. DOI:10.2108/zsj.17.651.

TSUTSUI, N., Y. K. KIM, S. JASMANI, T. OHIRA, M. N. WILDER & K. AIDA, 2005. The dynamics of vitellogenin gene expression differs between intact and eyestalk ablated kuruma prawn Penaeus (Marsupenaeus) japonicus. Fish. Sci., 71: 249-256. DOI:10.1111/j.1444-2906.2005.00957.x.

TSUTSUI, N., H. SAIDO-SAKANAKA, W.-J. YANG, V. JAYASANKAR, S. JASMANI, A. OKUNO, T. OHIRA, T. OKUMURA, K. AIDA & M. N. WILDER, 2004. Molecular characterization of a cDNA encoding vitellogenin in the coonstriped shrimp, Pandalus hypsinotus, and site of vitellogenin mRNA expression. J. Exp. Zool., 301: 802-814. DOI:10.1002/jez.a.

VENTURA-LÓPEZ, C., P. E. GALINDO-TORRES, F. G. ARCOS, C. GALINDO-SÁNCHEZ, I. S. RACOTTA, C. ESCOBEDO-FREGOSO & A. M. IBARRA, 2017. Transcriptomic information from Pacific white shrimp (Litopenaeus vannamei) ovary and eyestalk, and expression patterns for genes putatively involved in the reproductive process. Gen. Comp. Endocrinol., 246: 164-182. DOI:10.1016/j.ygcen.2016.12.005.

WARRIER, S. & T. SUBRAMONIAM, 2002. Receptor mediated yolk protein uptake in the crab Scylla serrata: crustacean vitellogenin receptor recognizes related mammalian serum lipoproteins. Mol. Reprod. Dev., 61: 536-548. DOI:10.1002/mrd.10106.

WEYDMANN, A., A. PRZYLUCKA, M. LUBOSNY, K. S. WALCZYNSKA, E. A. SERRÃO, G. A. PEARSON & A. BURZYNSKI, 2017. Mitochondrial genomes of the key zooplankton copepods Arctic Calanus glacialis and north Atlantic Calanus finmarchicus with the longest crustacean non-coding regions. Sci. Rep., 7: 13702. DOI:10.1038/s41598-017-13807-0.

WILSON, K., V. CAHILL, E. BALLMENT & J. BENZIE, 2000. The complete sequence of the mitochondrial genome of the crustacean Penaeus monodon: are malacostracan crustaceans more closely related to insects than to branchiopods? Mol. Biol. Evol., 17: 863-874. DOI:10.1093/oxfordjournals.molbev.a026366.

WOLIN, E. M., H. LAUER & D. F. ALBERTINI, 1973. Uptake of the yolk protein, lipovitellin, by developing crustacean oocytes. Dev. Biol., 35: 160-170.

XIE, S., L. SUN, F. LIU & B. DONG, 2009. Molecular characterization and mRNA transcript profile of vitellogenin in Chinese shrimp, Fenneropenaeus chinensis. Mol. Biol. Rep., 36: 389-397. DOI:10.1007/s11033-009-0003-6.

XUEREB, B., J. FORGET-LERAY, S. SOUSSI, O. GLIPPA, D. DEVREKER, T. LESUEUR, S. MARIE, J. M. DANGER & C. BOULANGÉ-LECOMTE, 2012. Molecular characterization and mRNA expression of grp78 and hsp90A in the estuarine copepod Eurytemora affinis. Cell Stress Chaperones, 14: 457-472. DOI:10.1007/s12192-012-0323-9.

YAMAUCHI, M. M., M. U. MIYA, R. J. MACHIDA & M. NISHIDA, 2004. PCR-based approach for sequencing mitochondrial genomes of decapod crustaceans, with a practical example from kuruma prawn (Marsupenaeus japonicus). Mar. Biotechnol., 6: 419-429. DOI:10.1007/s10126-003-0036-2.

YANG, F., H. T. XU, Z. M. DAI & W. J. YANG, 2005. Molecular characterization and expression analysis of vitellogenin in the marine crab Portunus trituberculatus. Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 142: 456-464. DOI:10.1016/j.xbpsb.2005.09.001.

YANG, Y., J. WANG, T. HAN, T. LIU, C. WANG, J. XIAO, C. MU, R. LI, F. YU & H. SHI, 2015. Ovarian transcriptome analysis of Portunus trituberculatus provides insights into genes expressed during phase III and IV development. PLoS ONE, 10: e0138862. DOI:10.1371/journal.pone.0138862.
Yang, Y., B. Zheng, C. Bao, H. Huang & H. Ye, 2016. Vitellogenin2: spermatozoon specificity and immunoprotection in mud crabs. Reproduction, 152: 235-243. DOI:10.1530/REP-16-0188.

Yano, I. & Y. Chinzei, 1987. Ovary is the site of vitellogenin synthesis in Kuruma prawn, Penaeus japonicus. Comp. Biochem. Physiol. B, 86: 213-218.

Yang, W. J., T. Ohira, N. Tsutsui, T. Subramonian, D. T. T. Huong, K. Aida & M. N. Wilder, 2000. Determination of amino acid sequence and site of mRNA expression of four vitellins in the giant freshwater prawn, Macrobrachium rosenbergii. J. Exp. Zool., 287: 413-422. DOI:10.1002/1097-010X(20001101)287:6<413::AID-JEZ2>3.0.CO;2-V.

Yu, Y., X. Zhang, J. Yuan, F. Li, X. Chen, Y. Zhao, L. Huang, H. Zheng & J. Xiang, 2015. Genome survey and high-density genetic map construction provide genomic and genetic resources for the Pacific White Shrimp Litopenaeus vannamei. Sci. Rep., 5: 15612. DOI:10.1038/srep15612.

Yuan, J., Y. Gao, X. Zhang, J. Wei, C. Liu, F. Li & J. Xiang, 2017. Genome sequences of marine shrimp Exopalaemon carinicauda Holthuis provide insights into genome size evolution of Caridea. Mar. Drugs, 15: 213. DOI:10.3390/md15070213.

Zmora, N., J. Trant, S.-M. Chan & J. S. Chung, 2007. Vitellogenin and its messenger RNA during ovarian development in the female blue crab, Callinectes sapidus: gene expression, synthesis, transport, and cleavage. Biol. Reprod., 77: 138-146. DOI:10.1095/biolreprod.106.055483.

First received 7 April 2019.
Final version accepted 6 July 2019.