Control Synthesis for Multi-Agent Systems under Metric Interval Temporal Logic Specifications *

Sofie Andersson * Alexandros Nikou *
Dimos V. Dimarogonas *

* ACCESS Linnaeus Center, School of Electrical Engineering and KTH Center for Autonomous Systems, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
E-mail: {sofa, anikou, dimos}@kth.se

Abstract: This paper presents a framework for automatic synthesis of a control sequence for multi-agent systems governed by continuous linear dynamics under timed constraints. First, the motion of the agents in the workspace is abstracted into individual Transition Systems (TS). Second, each agent is assigned with an individual formula given in Metric Interval Temporal Logic (MITL) and in parallel, the team of agents is assigned with a collaborative team formula. The proposed method is based on a correct-by-construction control synthesis method, and hence guarantees that the resulting closed-loop system will satisfy the specifications. The specifications considers boolean-valued properties under real-time. Extended simulations has been performed in order to demonstrate the efficiency of the proposed controllers.

Keywords: Reachability analysis, verification and abstraction of hybrid systems, Multi-agent systems, Control design for hybrid systems, Modelling and control of hybrid and discrete event systems, Temporal Logic

1. INTRODUCTION

Multi-agent systems are composed by \(N \geq 2 \) number of agents which interact in an environment. Cooperative control for multi-agent systems allows the agents to collaborate on tasks and plan more efficiently. In this paper, the former is considered by regarding collaborative team specifications which requires more than one agent to satisfy some property at the same time. The aim is to construct a framework that will start from an environment and a set of tasks, both local (i.e. specific to an individual agent) and global (i.e. requires collaboration between multiple agents), and yield the closed-loop system that will achieve satisfaction of the specifications, by control synthesis.

The specification language that has been introduced to express such tasks is Linear Temporal Logic (LTL) (see e.g., [Loizou and Kyriakopoulos 2004]). The general framework that is used is based on a three-steps procedure ([Kloetzer and Belta 2008, Kress-Gazit et al. 2007]): First the agent dynamics is abstracted into a Transition System. Second a discrete plan that meets the high level task is synthesized. Third, this plan is translated into a sequence of continuous controllers for the original system.

Control synthesis for multi-agent systems under LTL specifications has been addressed in [Kloetzer et al. 2011, Guo and Dimarogonas 2015, Kantaros and Zavlanos 2016]. Due to the fact that we are interested in imposing timed constraints to the system, the aforementioned works cannot be directly utilized. Timed constraints have been introduced for the single agent case in [Gol and Belta 2013, Raman et al. 2015, Fu and Topcu 2015, Zhou et al. 2016] and for the multi-agent case in [Karaman and Frazzoli 2008, Nikou et al. 2016b]. Authors in [Karaman and Frazzoli 2008] addressed the vehicle routing problem, under Metric Temporal Logic (MTL) specifications. The corresponding approach does not rely on automata-based verification, as it is based on a construction of linear inequalities and the solution of a resulting Mixed-Integer Linear Programming (MILP) problem. In our previous work [Nikou et al. 2016b], we proposed an automatic framework for multi-agent systems such that each agent satisfies an individual formula and the team of agents one global formula.

The approach to solution suggested in this paper follows similar principles as in [Nikou et al. 2016b]. However, we start from the continuous linear system itself rather than assuming an abstraction, by adding a way to abstract the environment in a suitable manner such that the transition time is taken explicitly into account. The suggested abstraction is based on the work presented in [Gol and Belta 2013], which considered time bounds on facet reachability for a continuous-time multi-affine single agent system. Here, we consider multi-agent systems and suggest an alternative time estimation and provide a proof for its validity. Furthermore, we present alternative definitions of the local BWTS, the product BWTS and the global BWTS, compared to the work presented in [Nikou et al. 2016b]. The definitions suggested here

* This work was supported by the H2020 ERC Starting Grant BU COPH SYS, the Swedish Research Council (VR), the Swedish Foundation for Strategic Research (SSF) and the Knut och Alice Wallenberg Foundation.
requires a smaller number of states and hence, a lower computational demand. The drawback of the suggested definitions is an increased risk of a false negative result and a required modification to the applied graph-search-algorithm. However, this will have no effect on the fact that the method is correct by construction. The method, in its entirety, has been implemented in simulations, demonstrating the satisfaction of the specifications through the resulting controller.

The contribution of this paper is summarized in four parts; (1) it extends the method suggested in [Nikou et al. 2016b] with the ability to define the environment directly as a continuous linear system rather than treating the abstraction as a given, (2) it provides for a less computationally demanding alternative, (3) simulation results which support the claims are included, (4) it considers linear dynamics in contrast to the already investigated (in [Nikou et al. 2016b]) single integrator.

This paper is structured as follows. Section 2 introduces some preliminaries and notations that will be applied throughout the paper, Section 3 defines the considered problem and Section 4 presents the main result, namely the solution framework. Finally, simulation result is presented in Section 5, illustrating the framework when applied to a simple example, and conclusions are made in section 6.

2. PRELIMINARIES AND NOTATION

In this section, the mathematical notation and preliminary definitions from formal methods that are required for this paper are introduced.

Given a set S, we denote by $|S|$, 2^S its cardinality and the set of all its subsets respectively. Let $A \in \mathbb{R}^{a \times m}$, $B \in \mathbb{R}^n$ be a matrix and a vector respectively. Denote by $[A]_{ij}$ the element in the i-th row and j-th column of matrix A. Similarly, denote by $[B]_i$ the i-th element of vector B.

Given a set of nonnegative rational numbers $\mathbb{T} \subset \mathbb{Q}_+$ a time sequence is defined as:

Definition 1. [Alur and Dill 1994] A time sequence $\tau = \tau_0 \tau_1 ...$ is an infinite sequence of time values which satisfies all the following:

- $\tau_i \in \mathbb{T} \subset \mathbb{Q}_+$,
- $\tau_i < \tau_{i+1}$, $\forall i \geq 0$ and
- $\exists i \geq 1$, s.t. $\tau_i > t$, $\forall t \in \mathbb{T}$.

An atomic proposition ap is a statement over the system variables that is either true (\top) or false (\bot).

Definition 2. A Weighted Transition System (WTS) is a tuple $T = (\Pi, \Pi_{init}, \Sigma, \rightarrow, AP, L, d)$ where

- Π = $\{r_i : i = 0, ..., M\}$ is a set of states,
- $\Pi_{init} \subset \Pi$ is a set of initial states,
- $\Sigma = \{\sigma_i : i = 0, ..., I\}$ is a set of inputs,
- $\rightarrow \subset \Pi \times \Sigma \times \Pi$ is a transition map; the expression $r_i \xrightarrow{\sigma_i} r_k$ is used to express transition from r_i to r_k under the action σ_i,
- AP is a set of observations (atomic propositions),
- $L : \Pi \rightarrow 2^{AP}$ is an observation map and
- $d : \rightarrow \rightarrow \mathbb{R}_+$ is a positive weight assignment map; the expression $d(r_i, \sigma_j, r_k)$ is used to express the weight assigned to the transition $r_i \xrightarrow{\sigma_i} r_k$.

Definition 3. A timed run $r^t = (r(0), \tau_0)(r(1), \tau_1)...$ of a WTS T is an infinite sequence where $r(0) \in \Pi_{init}$, and $r(j) \in \Pi$, $r(j) \xrightarrow{\tau_j} r(j + 1)$, $\forall j \geq 1$ s.t.

- $\tau_0 = 0$,
- $\tau_{j+1} = \tau_j + d(r(j), \sigma_j, r(j + 1))$, $\forall j \geq 1$, for some $\sigma_j \in \Sigma$.

Definition 4. A timed word produced by a timed run is an infinite sequence of pairs $w(r^t) = (L(r(0)), \tau_0)(L(r(1)), \tau_1)...$, where $r^t = (r(0), \tau_0)(r(1), \tau_1)...$ is the timed run.

Definition 5. The syntax of MITL over a set of atomic propositions AP is defined by the grammar

$$
\phi := \top | ap | \neg \phi | \psi \lor \psi | \psi U[a,b] \psi
$$

where $ap \in AP$ and ψ are formulas over AP. The operators are Negation (\neg), Conjunction (\lor) and Until (U) respectively. The extended operators Eventually (\Diamond) and Always (\Box) are defined as:

$$
\Diamond [a,b] \phi := \top U[a,b] \phi, \quad (2a)\\
\Box [a,b] \phi := \neg \Diamond [a,b] \neg \phi. \quad (2b)
$$

Given a timed run $r^t = (r(0), \tau_0)(r(1), \tau_1), ..., (r(n), \tau_n)$ of a WTS, the semantics of the satisfaction relation is then defined as:

- $(r^t, i) \models \phi \Leftrightarrow ap \Leftrightarrow ap \in L(r(i))$,
- $(r^t, i) \models \neg \phi \Leftrightarrow \phi \Leftrightarrow (r^t, i) \neq \phi$,
- $(r^t, i) \models \phi \lor \psi \Leftrightarrow (r^t, i) \Leftrightarrow \phi$ and $(r^t, i) \models \psi$,
- $(r^t, i) \models \phi U[a,b] \psi \Leftrightarrow \exists j \in [a,b]$, s.t. $(r^t, j) \models \psi$ and $\forall i \leq j, (r^t, i) \models \phi$.

Definition 6. A clock constraint Φ_X is a conjunctive formula on the form $x \leq a$, where $\in \mathbb{R}$, is a clock and a is some constant. Let Φ_X denote the set of clock constraints.

The TBA was first introduced in [Alur and Dill 1994] and is defined as

Definition 7. A Timed Büchi Automaton (TBA) is a tuple $A = (S, S_0, X, I, E, F, AP, L)$ where

- $S = \{s_l : l = 0, ..., L\}$ is a finite set of locations,
- $S_0 \in S$ is the set of initial locations,
- X is a finite set of clocks,
- $I : S \rightarrow \Phi_X$ is a map labelling each state s_l with some clock constraints Φ_X,
- $E \subseteq S \times \Phi_X \times 2^X \times S$ is a set of transitions and $F \subseteq S$ is a set of accepting locations,
- AP is a finite set of atomic propositions,
- L is a labelling function, labelling every state with a subset of atomic propositions.

A state of A is a pair (s, v) where $s \in S$ is a location and v is a clock valuation that satisfies the clock constraint $I(s)$. The initial state of A is a pair $(s_0, (0,0,0,...))$, where $s_0 \in S_0$ and the null-vector $(0,0,0,...)$ is a vector of $|X|$ number of valuations $v_i = 0$. For the semantics and examples of the above TBA definition we refer the reader to [Nikou et al. 2016a].
It has been shown in previous work [Alur et al. 1996] that any MITL formula can be algorithmically translated to a TBA such that the language that satisfies the MITL formula is also the language that produces accepting runs by the TBA. The TBA expresses all possibilities, both satisfaction and violation of the MITL formula. All timed runs which result in the satisfaction of the MITL formula are called accepting:

Definition 8. An accepting run is a run for which there are infinitely many \(j \geq 0 \) s.t. \(q_j \in F \), i.e. a run which consists of infinitely many accepting states.

In motion-planning, the movement of an agent can be described by a timed run. For the multi-agent case, the movement of all agents can be collectively described by a collective run. The definition is

Definition 9. [Nikou et al. 2016b] The collective timed run \(r_C = (r_C(0), \tau_C(0))(r_C(1), \tau_C(1)) \ldots \) of \(N \) agents, is defined as follows

- \((r_C(0), \tau_C(0)) = (r_1(0), \ldots, r_N(0), \tau_C(0)) \)
- \((r_C(i + 1), \tau_C(i + 1)) = (r_1(j_1), \ldots, r_N(j_N), \tau_C(i + 1)), \)

for \(i \geq 0 \) where \((r_C(i), \tau_C(i)) = (r_1(i), \ldots, r_N(i), \tau_C(i)) \) and

\[
\begin{align*}
&l = \arg\min_{k \in I} \{r_k(i_k + 1), \}
\end{align*}
\]

\[
\begin{align*}
&\tau_C(i + 1) = r_k(i_k + 1),
\end{align*}
\]

\[
\begin{align*}
&r_k(j_k) = \begin{cases} r_l(i_l + 1), & \text{if } k = l \\ r_k(i_l), & \text{otherwise.} \end{cases}
\end{align*}
\]

3. PROBLEM DEFINITION

3.1 System Model

Consider \(N \) agents performing in a bounded workspace \(X \subset \mathbb{R}^n \) and governed by the dynamics

\[
\dot{x}_m = A_m x_m + B_m u_m, \quad m \in I,
\]

\[
x_m(0) = x_m^0, \quad x_m \in X
\]

where \(I = \{1, \ldots, N\} \) is a set containing a label for each agent.

3.2 Problem Statement

The problem considered in this paper consists in synthesizing a control input sequence, \(u_m, m \in I \), such that each agent satisfies a local individual MITL formula \(\phi_m \) over the set of atomic propositions \(AP_m \). At the same time, the team of agents should satisfy a team specification MITL formula \(\phi_C \) over the set of atomic propositions \(AP_C = \bigcup_{m \in I} AP_m \).

Following the terminology presented in Section 2, the problem becomes:

Problem 10. Synthesize a sequence of individual timed runs \(r_1^t, \ldots, r_N^t \) such that the following holds:

\[
(r_C \models \phi_C) \land (r_1^t \models \phi_1 \land \ldots \land r_N^t \models \phi_N)
\]

where the collective run \(r_C \) was defined in 3 9.

Remark 11. Initially it might seem that if a run \(r_C \) that satisfies the conjunction of the local formulas i.e., \(r_C \models r_1^t \land \ldots \land r_N^t \) can be found, then the Problem 10 is solved in a straightforward centralized way. This does not hold since by taking into account the counterexample in [Nikou et al. 2016b, Section III], the following holds:

\[
r_C^t \models \bigwedge_{k \in I} \varphi_k \Leftrightarrow r_1^t \models \varphi_1 \land \ldots \land r_N^t \models \varphi_N.
\]

4. PROPOSED SOLUTION

The solution approach involves the following steps:

1. For each agent, we abstract the continuous-time linear system (3) into a WTS which describes the possible movements of the agent considering the dynamics and limitations of the state space (section 4.1).
2. For each agent, we construct a local BWTS out of its WTS and a TBA representing the local MITL specification. The accepting timed runs of the local BWTS satisfy the local specification (section 4.2).
3. Next, we construct a product BWTS out of the local BWTSs. The accepting timed runs of the product BWTS satisfy all local specifications (section 4.3).
4. Next, we construct a global BWTS out of the product BWTS and the TBA representing the global MITL specification. The accepting runs of the global BWTS satisfy both the global specification and all local specifications (section 4.4).
5. Finally, we determine the control input by applying a graph-search algorithm to find an accepting run of the global BWTS and projecting this accepting run onto the individual WTSs (section 4.5).

The computational complexity of the proposed approach is discussed in Section 4.6.

4.1 Constructing a WTS

In this section we consider the abstraction of the environment into a WTS. The definition of a WTS was given in Section 2. The abstraction is performed for each agent \(m \in I \), resulting in \(N \) number of WTSs.

Following the idea of [Gol and Belta 2013], we begin by dividing the state space \(X_m \) into \(p \)-dimensional rectangles, defined as in Definition 12.

Definition 12. A \(p \)-dimensional rectangle \(R_p(a, b) \subset \mathbb{R}^p \) is characterized by two vectors \(a, b \), where \(a = (a_1, a_2, \ldots, a_p) \), \(b = (b_1, b_2, \ldots, b_p) \) and \(a_i < b_i, \forall i = 1, 2, \ldots, p \). The rectangle is then given by

\[
R_p(a, b) = \{ x \in \mathbb{R}^p : a_i \leq x_i \leq b_i, \forall i \in \{1, 2, \ldots, p\} \}
\]

such that formula (7) is satisfied for each rectangle, i.e. such that each atomic proposition in the set \(AP_m \) is either true at all points within a rectangle \(R_p(a, b) \) or false at all points within the rectangle, i.e.

\[
ap_i = (\top, \forall x \in R_p(a, b)) \quad \text{or} \quad \neg a_i = (\bot, \forall x \in R_p(a, b), \forall x \in AP_m)
\]

The set of states \(\Pi = \{r_0, r_1, \ldots, r_M\} \) of the WTS is then defined as the set of rectangles

\[
R = \{R_p(a^0, b^0), R_p(a^1, b^1), \ldots, R_p(a^M, b^M)\}
\]

From this, the definition of the initial state \(\Pi_{init} \), transitions \(\rightarrow \) and labelling \(L \) follows directly:

\[
\Pi_{init} = \{r_1^0 \mid x_m^0 \in R_p(a^1, b^1)\}
\]
\[r_i \rightarrow r_j \text{ iff } R_p(a_i, b_j) \text{ and } R_p(a_j, b_i) \quad (9) \]

have a common edge,

\[L(r_i) = \{ ap_i \in AP_m | ap_i = True \ \forall x \in R_p(a_i, b_j) \} \quad (10) \]

The set \(\Sigma \) is given as the set of control inputs which induce transitions. In particular, a control input must be defined for each possible transition such that it guarantees the transition, that is no other transition can be allowed to occur and the edge of which the transition goes through must be reachable. This conditions on control inputs are required both to ensure that the synthesized path is followed and to guarantee that the following time estimation holds. A suggested low-level controller for a transition \(r_k \rightarrow r_l \) in direction \(i \), based on [Gol and Belta 2013], is given by

\[
\begin{align*}
\max_{u_m \in U_m} & \left[\dot{x}_m \right]_j \\
\text{s. t.} & \left[x_m \right]_j \geq \epsilon > 0, \\
& \left[x_m \right]_j \leq -\epsilon, \forall j \neq i, j = \{1, \ldots, p\}, \text{if } \left[x_m \right]_j = b^k_j, \\
& \left[x_m \right]_j \geq \epsilon, \forall j \neq i, j = \{1, \ldots, p\}, \text{if } \left[x_m \right]_j = a^k_j. \\
\end{align*}
\]

(11)

where \(U_m = [-u_{max}, u_{max}] \) is some bound on \(u_m \) and \(\epsilon \) is a robustness parameter. The idea is to maximize the transition speed, under the conditions that the speed in direction \(j \) is negative at the edge with norm direction \(j \), where \(j \) is the transition direction.

Finally, the weights \(d \) are assigned as the maximum transition times. These values are given according to Theorem 13 below. The theorem depends on the assumption \(B_m u_m = B_{m1} x_m + B_{m2} \), where \(B_{m1} \) and \(B_{m2} \) are matrices of dimension \(N \times N \) and \(N \times 1 \) respectively. The assumption corresponds to \(u_m \) being affine.

Theorem 13. The maximum time \(T_{max}(r_k, r_l) \) required for the transition \(r_k \rightarrow r_l \) to occur, where \(R_p(a^k, b^k) \) and \(R_p(a^l, b^l) \) share the edge \(e_{kl} \), is a constant \(\tau_{kl} \) if and only if \(e_{kl} \) is a robustness parameter. The idea is to maximize the transition speed, under the conditions that the speed in direction \(j \) is negative at the edge with norm direction \(j \), where \(j \) is the transition direction.

The maximum time \(T_{max}(r_k, r_l) \) required for a transition \(r_k \rightarrow r_l \) to occur, where \(R_p(a^k, b^k) \) and \(R_p(a^l, b^l) \) share the edge \(e_{kl} \), is a constant \(\tau_{kl} \) if and only if \(e_{kl} \) is a robustness parameter. The idea is to maximize the transition speed, under the conditions that the speed in direction \(j \) is negative at the edge with norm direction \(j \), where \(j \) is the transition direction.

\[
T_{max}(r_k, r_l) = \ln \left(\left(\frac{A_{m}^{*}x^0 + C_{m}^{*} + B_{m}^{*}u_m}{A_{m}^{*}x^0 + C_{m}^{*} + B_{m}^{*}u_m} \right) \right) \frac{1}{A_{m}^{*}x^0} \\
\text{where} \\
C_{m}^{*} = \sum_{j=1}^{n} \min_{r_m \in r_k} \left([A_{m}^{*}]_{ij} [x_m]_j \right),
\]

(12)

and

\[
\min_{[x_m]_j \in r_k} \left([A_{m}^{*}]_{ij} [x_m]_j \right) = \begin{cases}
[A_{m}^{*}]_{ij} a_k^i & \text{if } [A_{m}^{*}]_{ij} > 0 \\
[A_{m}^{*}]_{ij} b_k^i & \text{if } [A_{m}^{*}]_{ij} < 0
\end{cases}
\]

(13)

and \(x^0, x^1 \in e_{kl} \) (note that \(x^0, x^1 \) are the 4th coordinate of the initial and final positions of the transition), \(A_{m}^{*} = A_m + B_{m1} \) and \(B_{m}^{*} = B_{m2} \). Where \(x_m = A_m x_m + B_m u_m = A_m x_m + B_{m1} x_m + B_{m2} \).

See figure 1 for illustration of the variables of Theorem 13 in 2 dimensions.

Proof of Theorem 1

\(T_{max} \) - the maximum transition time for \(r_k \rightarrow r_l \) in a system following the linear dynamics (3) is determined by considering the minimum transition speed. Consider the dynamics of agent \(m \) projected onto the direction of the transition \(i \), i.e.

\[
[\dot{x}_m]_i = [A_m x_m + B_m u_m]_i, \\
[\dot{x}_m(0)]_i = [x_m(0)]_i = x^0, \\
[\dot{x}_m(t)]_i = [x_m(t)]_i = x^1,
\]

where \(x^0 \) is the \(i \)th coordinate of some point on the edge \(e_{kl} \), and \(x^1 \) is the \(i \)th coordinate of some point on the edge \(e_{kl} \). Since \(B_m u_m = B_{m1} x_m + B_{m2} \), system (14) can be rewritten to (15), by introducing \(A_{m}^{*} = A_m + B_{m1} \) and \(B_{m}^{*} = B_{m2} \)

\[
[\dot{x}_m]_i = [A_{m}^{*}x_m]_i + \sum_{j=1}^{n} [A_{m}^{*}]_{ij} [x_m]_j + [B_{m}^{*}]_i \]

(15)

The maximum transition time is determined by solving (15) for \(t \). The equation can be solved by separating \([x_m]_i \) from \(t \), if and only if \([A_{m}^{*}]_{ij}[x_m]_j \) is a constant \(\forall j \). Since \([A_{m}^{*}]_{ij} \) is a constant this holds if and only if \([\dot{x}_m]_j = 0 \) or \([A_{m}^{*}]_{ij} = 0 \). Otherwise, the maximum transition time can be underestimated by considering the minimum transition speed \(\min [x_m]_j \), at every point in \(r_k \), which can be determined by considering the limits of \([x_m]_j \) in \(r_k \), namely \(a_k^i \) and \(b_k^j \)

\[
\min_{[x_m]_j \in r_k} ([A_{m}^{*}]_{ij} [x_m]_j) = \begin{cases}
[A_{m}^{*}]_{ij} a_k^i & \text{if } [A_{m}^{*}]_{ij} > 0 \\
[A_{m}^{*}]_{ij} b_k^i & \text{if } [A_{m}^{*}]_{ij} < 0
\end{cases}
\]

(16)

The maximum transition time, denoted \(T_{max} \), can then be overestimated as the solution to

\[
\dot{y} = [A_{m}^{*}]_{i} y + C_{m}^{*} + [B_{m}^{*}]_i \\
y(0) = x^0, \\
y(T_{max}) = x^1
\]

(17)
where
\[C_m^* = \min_{x_m \in \mathcal{X}} \sum_{j=1}^{n} A_{m,j}^* \delta [x_m]_j = \sum_{j=1}^{n} \min_{x_m \in \mathcal{X}} A_{m,j}^* \delta [x_m]_j \]

. Which can be solved as:
\[
\frac{dy}{dt} = [A_{m,i}]_{i y} C_m^* + [B_{m,i}]_{i y} \Rightarrow \\
\int dt = \int \left(\frac{1}{[A_{m,i}]_{i y} C_m^* + [B_{m,i}]_{i y}} \right) dy \Rightarrow \\
t + t_e = \ln([A_{m,i}]_{i y} C_m^* + [B_{m,i}]_{i y}) \tag{18}
\]

Now, \(y(0) = x^0 \) yields
\[
t_e = \ln\left([A_{m,i}]_{i y} C_m^* + [B_{m,i}]_{i y}\right) \tag{19}
\]
and \(y(T_{\text{max}}) = x^1 \) yields
\[
T_{\text{max}} = \ln \left(\frac{[A_{m,i}]_{i y} x^1 + C_m^* + [B_{m,i}]_{i y}}{[A_{m,i}]_{i y}} \right) \tag{20}
\]

Remark 14. If \(C_m^* = 0 \) or \([x_m]_j = 0 \) \(\forall j \), then \(T_{\text{max}} \) is the maximal time required for the transition to occur. Otherwise \(T_{\text{max}} \) is an over-approximation.

Finally, the weights of the WTS are defined as
\[
d(r_i, r_j) = T_{\text{max}}(r_i, r_j) \text{ where } (r_i, \sigma, r_j) \in \rightarrow . \quad (21)
\]

for \(\sigma = u_{m}(r_i, r_j) \).

4.2 Constructing a Local BWTS

Next, a local BWTS is constructed out of the WTS and a TBA representing the local MITL specification for each agent. As stated in Section 2 any MITL formula can be represented by a TBA [Alur et al. 1996]. Approaches for the translation were suggested in [Maler et al. 2006], [Brihaye et al. 2013] and [Nickovic and Piterman 2010]. Note that the time-intervals considered by the MITL formulas must be on the form \(\leq \alpha \) due to the over-approximation of time in the abstraction. The local BWTS is defined as:

Definition 15. Given a weighted transition system \(T = (\Pi, \Pi_{\text{init}}, \Sigma \rightarrow, AP, L, d) \) and a timed Büchi automaton \(A = (S, S_{\text{init}}, X, I, E, F, AP, L) \) their local BWTS is defined as \(T^p = T \otimes A = (Q, Q_{\text{init}}, \rightarrow, d^p, F^p, AP, L^p, I^p, C) \) with:

- \(Q \subseteq \{(r, s) \in \Pi \times S : L(r) = L(s)\} \),
- \(Q_{\text{init}} = \Pi_{\text{init}} \times S_{\text{init}} \),
- \(q \rightarrow q' \text{ iff } \).
- \(q = (r, s), q' = (r', s') \in Q \)
- \((r, r') \in \rightarrow \) and
- \(\exists \gamma, R, \text{ s.t. } (s, \gamma, R, s') \in E \),
- \(d^p(q, q') = d(r, r') \text{ if } (q, q') \in \rightarrow\),
- \(F^p = \{(r, s) \in Q : s \in F\} \) and
- \(L^p(r, s) = L(r) \),
- \(I^p(q) = I(s) \),
- \(C = \{c_1, \ldots, C_M\} \),
- \(c_i = \{(q, q') \mid \exists R \text{ s.t. } (s, R, s') \in E \text{ and } x_i \in R\} \)
- \(M = |X| \).

It follows from the construction and automata-based LTL model checking theory [Baier and Katoen 2007] that all possible runs of the local BWTS correspond to a possible run of the WTS. Furthermore, all accepting states of the local BWTS correspond to accepting states in the TBA. This is formalized in Lemma 16.

Lemma 16. An accepting timed run \(r_k = (q_k(0), \tau_k(0))(q_k(1), \tau_k(1)) \ldots \) of the local BWTS projects onto the timed run \(r^* = (r(0), \tau(0))(r(1), \tau(1)) \ldots \) of the WTS that produces the timed word \(w(r^*) = (L_k(r(0)), \tau(0))(L_k(r(1)), \tau(1))\ldots \) accepted by the TBA. Also, if there is a timed run that produces an accepting timed word of the TBA, then there is an accepting timed run of the local BWTS.

4.3 Constructing a Product BWTS

Now, a product BWTS should be constructed from the local BWTSs. The definition is given as follows:

Definition 17. Given \(N \) local BWTSs \(T_{k}^p, \ldots, T_N^p \), defined as in Definition 15, and \(M_k = |X_k| \) for \(k \in \{1, \ldots, N\} \), the product BWTS

\[
T_G = T_1^p \otimes \ldots \otimes T_N^p = \]

\[
= (Q_1, Q_{1\text{init}}, \rightarrow_1, d_1^p, F_1^p, AP_1, L_1^p, C_1, M_1) \ldots \]

\[
\ldots \otimes (Q_N, Q_{N\text{init}}, \rightarrow_N, d_N^p, F_N^p, AP_N, L_N^p, C_N, M_N) \]

\[
= (Q_G, Q_{G\text{init}}, \rightarrow_G, d_G, F_G, AP_G, L_G, C_G, M_G)
\]

is defined as:

- \(Q_G \subseteq Q_1 \times \ldots \times Q_N \)
- \(Q_{G\text{init}} = Q_{1\text{init}} \times \ldots \times Q_{N\text{init}} \)
- \((q_G, q'_G) \in \rightarrow_G \text{ iff } \)
- \(q_G = (q_1, \ldots, q_N) \in Q_G, \)
- \(q'_G = (q'_1, \ldots, q'_N) \in Q_G, \)
- \(\exists q_k \in Q_k \text{ s.t. } (q_k, q'_k) \in \rightarrow_k, \forall k \in I, \)
- \(d_G(q_G, q'_G) = d_{\text{max}}(d_k^p), \text{if } (q_G, q'_G) \in \rightarrow_G, \)
- \(F_G = \{(q_1, \ldots, q_N) \in Q_G : q_k \in F_k^p, \forall k \in I\}, \)
- \(AP_G = \bigcup_{k \in I} AP_k, \)
- \(L_G(q_1, \ldots, q_N) = \bigcup_{k \in I} L_k^p(q_k), \)
- \(I_G(q_G) = \bigcup_{k \in I} I_k^p(q_k), \)
- \(C_G = \{C_1, \ldots, C_N\}, \quad C_i = \{c_1, \ldots, c_M_i\} \),
- \(c_i \quad \text{s.t. } (q_k, q'_k) \in c_i, c_k \in C_i \}
- \(M = \{M_1, \ldots, M_N\} \)

It follows from the construction that an accepting collective run of the product BWTS corresponds to accepting runs of each local BWTS. Formally

Lemma 18. An accepting collective run \(r_G \) of the product BWTS projects onto an accepting timed run \(r_k \) of a local BWTS, for each \(k \in I \). Moreover, if there exists an accepting timed run for every local BWTS, then there exists an accepting collective run.

Remark 19. Note that the definition does not allow for the agents to start transitions at different times. This causes an overestimation of required time which increases the risk for false negative result. An alternative definition which allows the mentioned behaviour was suggested in [Nikon
4.4 Constructing a Global BWTS

Finally, a global BWTS is constructed from the product BWTS and a TBA representing the global MITL specification.

Definition 20. Given a product BWTS $T_G = (Q_G, Q_G^{init}, \rightarrow_G, d_G, F_G, A_P, L_G, I_G, C_G, M)$ and a global TBA $A_G = (S_G, S_G^{init}, X_G, I_G, E_G, F_G, L_G)$, with $M_G = |X_G|$, their global BWTS $T_G = T_G \otimes A_G = (Q_G, Q_G^{init}, \rightarrow_G, d_G, F_G, A_P, L_G)$ is defined as:

- $\hat{Q}_G \subseteq \{(q, s) \in Q_G \times S_G \mid L_G(q) = L_G(s)\} \times Z_0 \times \ldots \times Z_N \times \{1, 2\}$, where $Z_i = \{z_1, \ldots, z_{M_i}\}$ for $i = 1, \ldots, N$ and $Z_0 = \{z_0^1, \ldots, z_{M_0}\}$
- $Q_G^{init} = Q_G^{init} \times S_G^{init} \times \{1, \ldots, 1\} \times \ldots \times \{1, \ldots, 1\}$, where $\{1, \ldots, 1\}$ consists of $N + 1$ sets, where the first set contains M_G ones and the remaining sets contain M_i each,
- $(q_G, q_G') \in \hat{\rightarrow}_G$ iff
 - $q_G = (q, s, Z_0, \ldots, Z_N, l) \in \hat{Q}_G$,
 - $q_G' = (q', s', Z_0', \ldots, Z_N', l') \in Q_G$,
 - $(q', q') \in \rightarrow_G$,
 - $\exists \gamma, R \text{ s.t. } (s, \gamma, R, r') \in E_G$.

For all $i \in \{1, \ldots, N\}$, Z_i and Z'_i are such that

- $z_k^0 = 0$ and $z_k'^0 = 1$, if $(q, q') \in c_i^i$,
- $z_k^0 = z_k'^0$, otherwise

Z_0 and Z'_0 are such that

- $z_k^0 = 0$ if $x_k \in R$
- $z_k^0 = 1$ otherwise

- $z_k'^0 = 1$ if $x_k \in R$
- $z_k'^0 = 0$ otherwise

- $l' = \begin{cases} 1, & \text{if } l = 1 \text{ and } q \in F_G \\ 2, & \text{otherwise} \end{cases}$

- $\hat{d}_G(q_G, q_G') = d_G(q, q')$ if $(q_G, q_G') \in \hat{\rightarrow}_G$,
- $F_G = \{q, s, Z_0, \ldots, Z_N, l) \in Q_G \text{ s.t. } q \in F_G\}$ and
- $L_G(q, s, Z_0, \ldots, Z_N, l) = L_G(r)$.

4.5 Control Synthesis

The controller can now be designed by applying a modified graph-search algorithm (such as a modified Dijkstra) to find an accepting run of the global product. The modification of the algorithm includes a clock valuation when considering a transition. A sketch of the modification is given in Algorithm 1. The idea is to calculate the clock valuation for each clock given the predecessors of the current state, if a valuation does not satisfy the clock constraint the transition is not valid. When the algorithm is complete the accepting run is projected onto the WTSs following Lemma 16, Lemma 18 and Lemma 21. Finally, the set of controllers are given as the sequences of control inputs which induces the timed runs (r_1, r_2, \ldots, r_N) which in turn produce accepted timed words of all local TBAs as well as of the global TBA.

Algorithm 1: Modification to search-algorithm to evaluate clocks

Result: Clock Valuation

M=Total number of clocks;

q=current state; q'=possible successor of q;

for $i = 1 : M$
do
 \begin{enumerate}
 \item $v_i = d(q, q')$; $k = q$;
 \item if $z_i(k) = 1$ then
 \begin{enumerate}
 \item $v_i = v_i + d(\text{Pred}(k), k)$;
 \item $k = \text{Pred}(k)$;
 \item if $\text{Pred}(k)$ is empty then
 \begin{enumerate}
 \item break;
 \end{enumerate}
 \end{enumerate}
 \end{enumerate}
end \end{enumerate}

end if $v_1, \ldots, v_M \not\in I(q)$ then
 Transition is illegal - don’t add q as a successor to $\text{Pred}(q)$.
end

4.6 Complexity

The framework proposed in this paper requires at most

$$|T_G| = \prod_{i=1}^{N}(|T_i| \times |A_i| \times 2^{M_i}) \times |A_G| \times 2^{M_G} \times 2 \quad(22)$$

number of states. The method suggested in [Nikou et al. 2016b] requires

$$|T_G| = \prod_{i=1}^{N} \left(|T_i| \times |A_i| \times (C_{\text{max},i} + 1)^{M_i} \right) \times |A_G| \times 2 \times (C_{\text{max},G} + 1)^{M_G} \times 2$$

number of states, where all possible clock values are integers in the set $[0, C_{\text{max},i}]$ and $[0, C_{\text{max},G}]$ for the local and global TBA's respectively. Hence the number of states required in the proposed framework is a factor

$$\prod_{i=1}^{N} (C_{\text{max},i} + 1)^{M_i} \times (C_{\text{max},G} + 1)^{M_G} \leq 2 \sum_{i=1}^{N} (M_i + M_G)$$

less.
Consider \(N = 2 \) agents with dynamics in the form:

\[
\dot{x} = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u \tag{23a}
\]

\[
\dot{x} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \tag{23b}
\]
evolving in a bounded workspace \(X \) consisting of 6 rooms and a hallway as can be seen in Figure 2. Each agent is assigned with the local MITL formula \(\phi_L = \Diamond_{0.1} r_2 \land r_2 \rightarrow \Diamond_{0.3} r_6 \) (‘Eventually, within 0.1 time units, the agent must be in room 2, and if the agent enters room 2 it must then enter room 6 within 0.3 time units.’). Furthermore, they are assigned with the global MITL formula \(\phi_G = \Diamond_1 (a_1 = r_1 \land a_2 = r_2) \) (‘Eventually, within 1 time units, agent 1 must be in room 1 and agent 2 must be in room 2, at the same time.’). The initial positions of each agent is indicated by the encircled 1 and 2 in Figure 2.

Remark 22. As can be seen in figure 2, some walls have been added to the environment. Transitions through these are forbidden. This is handled by the abstraction since the edges on which the walls are placed aren’t reachable.

The suggested environment can be abstracted to a WTS of 9 states (see figure 3), while the local MITL formula can be represented by a TBA of 4 states. This results in a local BWTS of 36 states. Notable is that the local BWTSs for each agent will be identical if and only if the dynamics are identical. Furthermore, if the problem at hand only considers local MITL formulas - that is, if no global tasks are considered - the five step procedure described earlier can stop here. In that case, the control design can be performed based on accepting runs of each local BWTS. Since a global task is considered in this case, the product BWTS and the global BWTS must be constructed. The product BWTS will consist of \(|Q_1| \times |Q_2| = 1296 \) states while the global BWTS will consist of \(2 \times (|Q_{BWTS} | \times |Q_{TBA}| \times 2^{M_1} \times 2^{M_2} \times 2^{M_3}) = 248832 \) states. MATLAB was used to simulate the problem by constructing all transition systems and applying a modified Dijkstra algorithm to find an accepting path as well as a control sequence that satisfies the specifications.

The projection of the found accepting run onto each WTS, as well as a control sequence that satisfies the specifications. Table 1. The worst case estimation of the transition times as well as the actual required time. The actual transition times are defined as the maximum of the times the individual agents require to complete the transition. These transitions require agent 2 to stay in place, hence the actual time is here defined as the time agent 1 requires to complete the transition. Numbered in order of transitions, see figure 4.

Position	Agent 1 Time Estimation	Case Time			
0	2	5	0	0.0589	0.0368
1	5	6	0.04	0.026*	
2	6	6	0.0771	0.0212	
3	5	5	0.0865	0.0403	
4	8	8	0.0465	0.0151	
5	7	7	0.1343	0.1366	
6	8	8	0.0927	0.027*	

Table 1. The worst case estimation of the transition times as well as the actual required time. The actual transition times are defined as the maximum of the times the individual agents require to complete the transition. These transitions require agent 2 to stay in place, hence the actual time is here defined as the time agent 1 requires to complete the transition. Numbered in order of transitions, see figure 4.
Fig. 4. Illustration of the paths of each agent in the example. The numbers 0-9 represent the end of each joined transition. The actual arrival time at each location as well as the time the agent is required to wait till the worst case transition time has been reached (and it is guaranteed that all other agents have transitioned), is noted to the right of the figure. The time the agent has to wait till corresponds to the worst case estimation of the required transition time and is due to the requirement that the agents make transitions simultaneously. It is notable that both agents finish all transitions on less time than the worst case estimation. Hence, the waiting time can be further cut by allowing the agents to communicate to each other when a transition is done.

The simulation presented in this section was run in MATLAB on a laptop with a Core i7-6600U 2.80 GHz processor, the runtime was approximately 30min.

6. CONCLUSIONS AND FUTURE WORK

A correct-by-construction framework to synthesize a controller for a multi-agent system following continuous linear dynamics such that some local MITL formulas as well as a global MITL formula are satisfied, has been presented. The method is supported by result of the simulations in the MATLAB environment. Future work includes communication constraints between the agents.

REFERENCES

Alur, R., and Dill, D.L. (1994). A theory of timed automata. *Theoretical computer science*, 126(2), 183–235.

Alur, R., Feder, T., and Henzinger, T.A. (1996). The benefits of relaxing punctuality. *Journal of the ACM (JACM)*, 43(1), 116–146.

Baier, C. and Katoen, J.P. (2007). *Principles of model checking*. MIT Press.

Brihaye, T., Estièvenart, M., and Geeraerts, G. (2013). On mitl and alternating timed automata. In *Formal Modeling and Analysis of Timed Systems*, 47–61. Springer.

Fu, J. and Topeu, U. (2015). Computational methods for stochastic control with metric interval temporal logic specifications. *CoRR*, abs/1503.07193.

Gol, E.A. and Belts, C. (2013). Time-constrained temporal logic control of multi-affine systems. *Nonlinear Analysis: Hybrid Systems*, 10, 21–33.

Guo, M. and Dimarogonas, D. (2015). Multi-Agent Plan Reconfiguration Under Local LTL Specifications. *The International Journal of Robotics Research*, 34(2), 218–235.

Kantaros, Y. and Zavlanos, M. (2016). A Distributed LTL-Based Approach for Intermittent Communication in Mobile Robot Networks. *American Control Conference (ACC)*, 2016, 5557–5562.

Karaman, S. and Frazzoli, E. (2008). Vehicle Routing Problem with Metric Temporal Logic Specifications. *47th IEEE Conference on Decision and Control (CDC 2008)*, 3953–3958.

Kloetzer, M., Ding, X.C., and Belts, C. (2011). Multi-Robot Deployment from LTL Specifications with Reduced Communication. *50th IEEE Conference on Decision and Control (CDC 2011)*, 4867–4872.

Kloetz, M. and Belts, C. (2008). A fully automated framework for control of linear systems from temporal logic specifications. *Automatic Control, IEEE Transactions on*, 53(1), 287–297.

Kress-Gazit, H., Fainekos, G.E., and Pappas, G.J. (2007). Where is waldo? sensor based temporal logic motion planning. *mag*.

Loizou, S. and Kyriakopoulos, K. (2004). Automatic Synthesis of Multi-Agent Motion Tasks Based on LTL Specifications. *43rd IEEE Conference on Decision and Control (CDC 2004)*, 1, 153–158.

Malé, O., Nickovic, D., and Pnueli, A. (2006). From mitl to timed automata. In *Formal Modeling and Analysis of Timed Systems*, 274–289. Springer.

Nicković, D. and Piterman, N. (2010). From MTL to deterministic timed automata. Springer.

Nikou, A., Boskis, D., Tumova, J., and Dimarogonas, D.V. (2016a). Cooperative Planning for Coupled Multi-Agent Systems under Time-Oriented Specifications. *http://arxiv.org/pdf/1603.05097v2.pdf*.

Nikou, A., Tumova, J., and Dimarogonas, D.V. (2016b). Cooperative task planning of multi-agent systems under timelapse temporal specifications.

Raman, V., Donzé, A., Sadigh, D., Murray, R., and Seshia, S. (2015). Reactive Synthesis from Signal Temporal Logic Specifications. *18th International Conference on Hybrid Systems: Computation and Control (HSCC 2015)*, 239–248.

Zhou, Y., Maity, D., and Baras, J.S. (2016). Timed Automata Approach for Motion Planning Using Metric Interval Temporal Logic. *European Control Conference (ECC 2016)*.