Predictors of response to TNF antagonists in patients with ankylosing spondylitis and psoriatic arthritis: systematic review and meta-analysis

Jose Ramon Maneiro,1 Alejandro Souto,1 Eva Salgado,1 Antonio Mera,1,2 Juan J Gomez-Reino1,2

ABSTRACT

Objective: To identify predictors of response to tumor necrosis factor (TNF) antagonists in ankylosing spondylitis (AS) and psoriatic arthritis (PsA).

Methods: Systematic review and meta-analysis of clinical trials and observational studies based on a systematic search. Meta-analyses of similar observations were performed using random effects computing summary OR. Heterogeneity was tested using I², and risks of bias using funnel plots and the Egger test. Meta-regression was used to explore causes of heterogeneity.

Results: The electronic search captured 1340 references and 217 abstracts. 17 additional articles were identified after searching by hand. A total of 59 articles meet the purpose of the study and were reviewed. 37 articles (33 studies) included 6736 patients with AS and 23 articles (22 studies) included 4034 patients with PsA. 1 article included data on AS and PsA. Age (OR (95% CI) 0.91 (0.84 to 0.99), I²=84.1%), gender (1.57 (1.10 to 2.25), I²=0.0%), baseline BASDAI (1.31 (1.09 to 1.57), I²=84.1%), baseline BASFI (0.86 (0.79 to 0.93), I²=24.9%), baseline dichotomous C reactive protein (CRP) (2.14 (1.71 to 2.68), I²=22.3%) and human leucocyte antigen B27 (HLA-B27) (1.81 (1.35 to 2.42), I²=0.0%) predict BASDAI50 response in AS. No factor was identified as a source of heterogeneity. Only meta-analysis of baseline BASFI showed risk of publication bias (Egger test, p=0.004). Similar results were found for ASAS criteria response. No predictors of response were identified in PsA.

Conclusions: Young age, male sex, high baseline BASDAI, low baseline BASFI, high baseline CRP and HLA-B27 predict better response to TNF antagonists in AS but not in PsA.

INTRODUCTION

Tumor necrosis factor (TNF) antagonists are a major advance in the treatment of patients with inflammatory arthritis. The efficacy and safety of these drugs has been supported by clinical trials.1–7 However, not all patients respond to these therapies and, furthermore, they are not exempt from serious adverse events. TNF antagonists are associated with increased risk of infections, including reactivation of tuberculosis and other opportunistic infections.8–10 In the past few years new therapies have been approved for the treatment of spondyloarthritis, increasing the therapeutic options for these patients.11–12 How best to use these drugs remains unclear. An ability to identify which patients would have a better response to each biological therapy may help minimise the risks and costs associated with these therapies. The development of predictors of response might identify responders and thus help with making therapeutic decisions in clinical practice.

Several clinical and serological markers of response to biologics have been identified in rheumatoid arthritis (RA).13–18 However, data about predictors of response in patients with ankylosing spondylitis (AS) or psoriatic arthritis (PsA) are limited. The main objective of this study is to summarise information regarding predictors of response to TNF antagonists in patients with AS and PsA.

MATERIALS AND METHODS

We performed a systematic literature review to identify all publications analysing predictors of response to TNF antagonists in patients with AS or PsA. The protocol of the review is
available by email on request. PRISMA consensus was followed for the review and meta-analysis.19

Systematic literature research
Medline, Embase, Web of Knowledge and the Cochrane Library were searched for articles published between 1998 and April 2013. The search strategy focused on synonyms for disease, TNF antagonist, predictor and response, and was limited to articles published in English, Spanish, French, Italian or Portuguese (see online supplementary text). We also included abstracts online from 2001 to 2013 of the European League Against Rheumatism (EULAR) and the American College of Rheumatology (ACR) congresses.

Selection of articles
The selection criteria for articles and abstracts were: (1) studies in patients with a diagnosis of AS or PsA; (2) studies in patients treated with at least one TNF antagonist; (3) studies collecting data on predictor of response with some method of measurement; and (4) retrospective or prospective observational studies, or intervention studies. Two reviewers (JRM and AS) screened articles and abstracts for selection criteria independently, using a third reviewer (ES) for consensus. Once unrelated articles were excluded, the full report of all the selected studies was reviewed. Subsequently, articles not fulfilling all selection criteria were excluded. A table summarising the reasons for exclusion is included in the online supplementary material. A reverse search of included articles and a hand search of published clinical trials of TNF antagonist in AS or PsA, and of documents of the Food and Drug Administration (FDA) were also performed.

Data extraction
Data collected included publication details, study design, characteristics of patients, treatment, predictor and definition of response.

Risk of bias
We created an ad hoc checklist to analyse the risk of bias of included studies, containing 30 items with punctuation from 0 to 100 (from higher to lower risk). This checklist was based on the guidelines for assessing quality in prognostic studies on the basis of framework checklists.20 (available on request).

Statistical analysis
Results were presented as summary effect measures grouped by predictor and by response definition. When a measure of association was not available, this was calculated from the available data. Meta-analyses were performed using a random-effects approach, with the DerSimonian and Laird method computing the summary OR.21 Meta-analysis was only planned if at least three studies or subanalyses with similar design were available. For each analysis the effect was plotted by the inverse of its SE to identify risk of publication bias, assessing visually the symmetry of funnel plots, and its statistical significance using the Egger test.22 Heterogeneity was tested as proposed by Higgins and Thompson using I2.23 24 An I2 value >40% was arbitrarily chosen to represent high levels of heterogeneity. If high statistical heterogeneity was present, possible explanations were investigated using sensitivity analysis and meta-regression. Meta-regression aimed to determine the contribution of time to assess response, number of patients, quality of data, time of disease duration, biological used, design of the study, and levels of evidence to the summary effect. A p<0.10 was considered significant in the meta-regression and p<0.05 in other analyses. Stata V.11.1 (Stata/IC 11.1 for Windows, StataCorp LP, Texas, USA) was used in all statistical analyses.

RESULTS
The search identified a total of 1340 articles and 217 abstracts. After title/abstract screening, 125 articles were retrieved for full text review. After hand search and reverse search, 17 additional articles were included. A total of 83 articles were excluded after detailed review. Finally, 59 articles and abstracts were included in the present analysis (see online supplementary figure S1).

In 55 studies from these 59 documents, 10 770 patients were included (6736 with AS and 4034 with PsA). Thirty-seven articles (33 studies) included patients with AS26–60 and 23 (22 studies) patients with PsA.4 43 61–81 One of these articles included data about AS and PsA, and these data were analysed separately.52 Quality of data was ≥70% in 33 (60.0%) of the studies; 20 (60.6%) in studies of AS and 13 (59.0%) in studies of PsA (tables 1 and 2). Individual results are presented according to predictors and disease in online supplementary material (see online supplementary tables S1–S8).

Demographic and environmental factors
Thirteen studies included data about a demographic or environmental factor as predictor of response in AS,25 26 32 35 40 46 49 51 52 56 65 Age was analysed in 12 studies.25 26 32 35 40 46 49 50–52 56 57 65 Individual results showed better ASAS20,25 26 ASAS4026 and BASDAI50 responses in younger patients.26 35 40 46 50–52 Meta-analyses of age and BASDAI50 at 12 weeks were performed using data from two studies26 51 and from subgroups of one study,52 as well as with 24 weeks’ data from three studies.26 34 40 Analyses demonstrated a resulting OR (CI 95%) of 0.91 (0.84 to 0.99) with I2 of 84.1% (figure 1A) and no risk of publication bias (Egger test p=0.178), and 0.98 (0.97 to 0.99) with I2 12.5% (figure 1B) and no risk of publication bias (p=0.698) at 12 and 24 weeks, respectively. No factors were identified as a source of heterogeneity.

Gender was analysed in 10 studies.25 26 32 35 39 40 46 49 52 56 Results of individual studies showed better ASAS20,25 26 ASAS4026 and ASDAS responses in men.52 49 Meta-analysis
of gender and ASAS20 in three studies showed an OR of 2.58 (1.56 to 4.28) with an I² of 0.0% (figure 1C), and no risk of publication bias ($p=0.854$). Individual studies that analysed BASDAI presented contradictory results. Meta-analysis of gender and BASDAI50 including five studies showed an OR of 1.57 (1.10 to 2.25) with an I² of 0% (figure 1D), and no risk of publication bias ($p=0.085$). In one study, high body mass index (BMI) was related with poor BASDAI. Smoking was analysed in one study with no significant results.

In PsA, eight studies analysed demographic factors as potential predictors of response. Sixty-one studies included data about age. Only one study showed significant reverse association between age and minimal disease activity (MDA) response. Eight studies included data about gender. Sixty-three showed better response than women in five studies. One study showed a negative association of BMI with MDA response. Whereas another study showed no association between BMI and DAS28 remission.

Clinical factors

Twenty-one articles included data about clinical factors as predictors of response in AS. Five studies included data on BASDAI baseline. Individual results showed that higher baseline BASDAI predicts better BASDAI50 and ASDAS, but not ASAS20 response. Meta-analysis of baseline BASDAI and BASDAI50 in one study and subgroups of another study showed an OR of 1.31 (1.09 to 1.57) with I² of 0%, and no risk of publication bias ($p=0.673$). Eight studies analysed baseline BASFI. Individual results showed that higher baseline BASFI predicts poor BASDAI50 response. A meta-analysis including four studies showed an OR of...
0.86 (0.79 to 0.93) with I^2 of 24.9% (figure 2B) and risk of publication bias ($p=0.004$).

Use of concomitant DMARDs was analysed in seven studies,25 39 40 41 44 48 56 with only one reporting significant results.40 Meta-analysis of concomitant DMARD and ASAS20 including four studies showed an OR of 1.47 (0.81 to 2.66) with I^2 of 55.5%, and no risk of publication bias ($p=0.780$). No factor was identified as a source of heterogeneity. Other concomitant drugs such as sulfasalazine,25 non-steroidal anti-inflammatory drugs40 56 or corticosteroids25 40 were not associated with response.

Seven studies included data about peripheral arthritis and obtained contradictory results.26 29 32 35 42 52 Meta-analysis of peripheral arthritis and ASAS40 in three studies showed an OR of 0.94 (0.74 to 1.19) with an I^2 of 79.2%, and no risk of publication bias ($p=0.327$).30 35 36 Meta-analysis of peripheral arthritis and BASDAI50 in five studies26 29 32 35 42 and subgroups of another study52 showed an OR of 1.13 (0.64 to 1.97) with an I^2 of 70.8%, and no risk of publication bias ($p=0.780$). No factor was identified as a source of heterogeneity. Three studies analysed enthesitis and BASDAI50 and showed an OR of 0.92 (0.84 to 1.01) with an I^2 of 0.0%, and no risk of publication bias ($p=0.378$).29 52 Extra-articular manifestations such as uveitis, psoriasis or inflammatory bowel disease (IBD) did not present an association with response.25 29 One study that analysed baseline MRI scores showed association with BASDAI50.53 Syndesmophytes also showed association with poor response.55

Sixteen articles analysed several clinical factors in PsA.4 63 64 66–74 76 78–80 Six studies looked at HAQ baseline and obtained contradictory results.64 68–70 78 80 Other measures such as joint count, VAS pain, VAS global or DAS28 baseline also returned with variable results.63 64 70 Thirteen articles analysed concomitant DMARDs as predictor of response.4 64 66 67 69–74 76 79 80 No significant results were reported regardless of the type of concomitant DMARD, including MTX. One study showed better response with concomitant MTX than monotherapy.67 In four studies, meta-analysis of

Table 2 Table of evidence of studies of PsA

Study	Biologic	Design	Duration	N	Q	LE	Age*	DD*	Women (%)	HLAB27+ (%)	Prior biologics (%)
Antoni et ala	IFX	RCT	24	100	0.67	3	47.1	8.4	29.0	NA	0.0
Chandran et ala,1	NA	OP	11	40	0.66	2	44.0	12.0	30.0	NA	NA
Chimienti et ala,1	ADA, ETN	RCT	22	55	0.89	3	48.7	6.5	51.0	NA	0.0
di Minno et ala,1	IFX, ETN, ADA	OP	96	270	0.88	2	51.7	9.2	45.9	NA	0.0
Eder et ala,1	IFX, ETN, ADA, GOL	OP	48	95	0.75	2	45.7	11.8	67.9	NA	9.6
Gladman et ala	ADA	RCT	48	285	0.61	3	NA	NA	NA	NA	NA
Gladman et ala	ADA	RCT	24	144	0.90	3	47.8	9.9	43.7	NA	0.0
Gliborg et ala,1	IFX, ADA, ETN	OR	24	746	0.76	4	47.0	5.1	52.0	NA	0.0
Gratakos et ala	IFX	OP	38	69	0.85	2	42.5	8.0	60.8	NA	0.0
Iannone et ala	IFX, ETN, ADA	OR	NA	135	0.86	4	53.2	10.0	49.6	NA	0.0
Iervolino et ala	IFX, ETN, ADA	OP	12	136	0.90	2	45.6	5.2	58.4	NA	NA
Karanioklas et ala	ADA	RCT	48	116	0.88	3	46.3	7.9	55.7	23.0	0.0
Kavanaugh et ala,1	IFX	RCT	54	100	0.67	3	47.1	8.4	29.0	NA	0.0
Kavanaugh et ala,1	GOL	RCT	24	292	0.65	3	46.9	7.4	40.0	NA	0.0
Kristensen et ala,1	IFX, ETN, ADA	OP	48	261	0.70	2	47.3	8.4	50.5	NA	0.0
Marotta et ala	ADA	OP	12	24	0.53	3	NA	NA	NA	NA	NA
Mease et ala,1	ADA	RCT	12	151	0.68	3	48.6	9.8	43.7	NA	0.0
Morales-Lara et ala,1	IFX	OP	48	16	0.50	2	NA	NA	NA	NA	NA
Ramirez et ala	IFX, ETN, ADA	OP	24	103	0.78	2	49.0	12.0	47.6	23.0	0.0
Saber et ala	IFX, ETN, ADA	OP	12	152	0.73	2	45.0	8.0	52.3	NA	0.0
Spadaro et ala	ETN	OP	NA	82	0.56	3	51.8	9.1	42.6	NA	NA
Van den Bosch et ala	ADA	OP	12	442	0.76	2	47.8	10.6	50.0	23.3	14.9
Wagner et ala	GOL	RCT	14	74	0.80	3	48.5	36.0	NA	0.0	0.0

*Data are expressed in mean (years).
†Data are expressed in medians.
‡Data were calculated in the review.

ADA, adalimumab; DD, disease duration; ETN, etanercept; GOL, golimumab; IFX, infliximab; LE, level of evidence; N, number of patients; NA, not available; OP, observational prospective; OR, observational retrospective; Q, quality; RCT, randomised clinical trial.
concomitant MTX and ACR20 showed an OR of 1.18 (0.92 to 1.50) with an I² of 55.1%, and no publication bias (p=0.092). No factor was identified as a source of heterogeneity. In three studies, meta-analysis of concomitant MTX and ACR50 produced an OR of 1.23 (0.82 to 1.83) with an I² of 0.0%, and no risk of publication bias (p=0.782). Other DMARDs such as cyclosporine or sulfasalazine showed a better response in a combined group than in TNF antagonists monotherapy. Other variables such as large joint involvement, axial involvement, dactylitis, erosive arthritis or disease duration showed contradictory or not significant results.

Figure 1 Meta-analysis of demographic factors as predictor of response in ankylosing spondylitis (AS). (A) Meta-analysis of age and BASDAI50 at week 12 in AS. (B) Meta-analysis of age and BASDAI50 at week 24 in AS. (C) Meta-analysis of gender and ASAS20 in AS. (D) Meta-analysis of gender and BASDAI50 in AS. ES: effect size (OR).
Serological factors

Twenty four articles reported serological factors as predictors of response to TNF antagonists in AS. Individual results showed better response in patients with high levels of C reactive protein (CRP) in 22 articles. Meta-analysis of CRP and ASAS20 in six articles showed an OR of 2.53 (2.00 to 3.21) with an I² of 0.0% (figure 3A), and risk of publication bias (p=0.015). Meta-analysis of CRP and BASDAI50 in three articles showed an OR of 2.03 (1.49 to 2.76) with an I² of 27.6% (figure 3B), and no risk of publication bias (p=0.563). Meta-analysis of CRP and BASDAI50 in three articles showed an OR of 1.05 (1.01 to 1.08) with an I² of 85.5% (figure 3C), and risk of publication bias (p=0.008). No factor was identified as a source of heterogeneity. Sensitivity analysis showed one study as a source of heterogeneity.

Elevated baseline C3 complement levels showed poor association with response in one study. Other biomarkers such as adiponectin, ENRAGE (S100A12), IgA, IL-16, insulin and serum glutamic oxaloacetic transaminase were associated with EULAR response but not with ACR20. In contrast, pyridinoline showed association with ACR20 response but not with EULAR response.

Genetic factors

Twelve articles analysed genetic factors as predictors of response to TNF antagonists in AS. Human leucocyte antigen B27 (HLA-B27) was investigated in nine articles with contradictory results. Meta-analysis of HLA-B27 and ASAS20 in three studies showed an OR of 2.81 (0.95 to 7.16) with an I² of 81.5% (figure 4A), and no risk of publication bias (p=0.075).}

Figure 2 Meta-analysis of BASDAI baseline and BASFI baseline as predictors of response in ankylosing spondylitis (AS). (A) Meta-analysis of BASDAI baseline and BASDAI50 in AS. (B) Meta-analysis of BASFI baseline and BASDAI50 in AS.
identified as a source of heterogeneity. Meta-analysis of HLA-B27 and ASAS40 in three studies showed an OR of 1.83 (1.39 to 2.42) with an I² of 0.0% (figure 1B), and no risk of publication bias (p=0.628). Meta-analysis of HLA-B27 and BASDAI50 in three studies, and subgroups of other studies showed an OR of 1.81 (1.35 to 2.42) with an I² of 0.0% (figure 1C), and no risk of publication bias (p=0.074). No association was shown between −308 TNF gene polymorphism and BASDAI response. Association was reported of the rs396991 Fc γ-receptor (FCGR) 3A polymorphism with BASDAI50 response.

Two studies analysed potential genetic predictors of response in PsA. FCGR3A was reported not to be associated with response to all TNF antagonists in two studies. However, significant results were observed in a subanalysis of etanercept, but not monoclonal antibodies.

DISCUSSION

Our review showed that age, gender, baseline BASDAI, baseline BASFI, CRP and HLA-B27 predicts response to TNF antagonists in patients with AS. In contrast, robust predictors of response in PsA were not identified.

In RA, observational studies have suggested that smokers have a poorer response to TNF antagonists than ex-smokers or never smokers. Higher HAQ has also been related to poor response. Other possible predictors of remission with TNF antagonists such as age or gender have been proposed. Better response in younger patients and poor clinical response in women in our meta-analysis of AS was previously reported in patients with RA treated with TNF antagonists. Studies in PsA also suggest poor response in women, but this could not be confirmed in our meta-analysis.

High BASDAI and high CRP levels predict better response in AS. This could indicate that a subgroup of patients with higher baseline activity may have more benefit from treatment with TNF antagonists. In contrast, BASFI baseline levels are inversely related to response, possibly due to the fact that high BASFI is related in part with established disease and radiological damage. In line with this, syndesmophytes have also been related with poor response. HAQ was also related.....

Figure 3 Meta-analysis of C reactive protein (CRP) as predictor of response in ankylosing spondylitis (AS). (A) Meta-analysis of dichotomous CRP and ASAS20 in AS. (B) Meta-analysis of dichotomous CRP and ASAS40 in AS. (C) Meta-analysis of continuous CRP and BASDAI in AS. (D) Meta-analysis of dichotomous CRP and BASDAI50 in AS. NA: not available.
with poor response in RA and perhaps PsA, as suggested by the individual articles in our review.13 14

In AS and PsA, data from clinical trials have suggested that use of concomitant DMARD does not add benefit to the treatment with TNF antagonists in monotherapy.4 72 73 This is supported by our meta-analysis. Nevertheless, it is reported that the use of concomitant DMARDs decreases the development of antidrug antibodies, and this may be reflected by a lower rate of discontinuation of the biological for any cause.83

Positive HLA-B27 predicts better response to TNF antagonists in patients with AS. TNF is associated with activation of the HLA-B27promoter, and TNF has a pivotal role in the inflammatory component of spondyloarthritis.34 This is consistent with findings from animal model studies, in which a blockade of TNF is related with prevention of IBD and enthesitis in HLA-B27 transgenic rats.85 86 Several other biomarkers of inflammation were found to be related to TNF antagonist response in AS and PsA, but only in a small number of observations. This should be confirmed in subsequent studies.

The principal limitation of the meta-analyses was the variance in the design of studies included in the analysis (clinical trials, and prospective and retrospective observational studies). Furthermore, none of the clinical trials were designed to test the studied association and, thus, they were somehow similar to an observational prospective study regarding risk of bias. In observational studies there is a potential for bias from unmeasured confounding. There is some disagreement on whether meta-analyses should be restricted to include only randomised clinical trials. However, observational studies often represent the best available evidence. Observational studies are thought to over-estimate treatment or exposure effects. Nevertheless, meta-analyses of observational studies continue to be valuable and are commonly used for assessing efficacy and effectiveness, and are increasingly being published in the scientific literature.87 Our review is of predictor factors of response, but not of efficacy. Although the study design is important, there are many other factors influencing the reporting of predictors. The validated Hayden checklist assesses how each study meets the research question (not related to efficacy). Although the study design is important, there are many other factors influencing the reporting of predictors. The validated Hayden checklist assesses how each study meets the research question (not related to efficacy). All RCTs were of efficacy and predictive variables were not the primary variables. The use of random effects computing summary OR may have potentially accounted for this drawback. Also, to minimise this issue, our analysis of heterogeneity includes not only quality of data but design and level of evidence of the studies. Heterogeneity may help to point out factors that influence the results of the outcome that

Figure 4 Meta-analysis of human leucocyte antigen B27 (HLAB27) as predictor of response in ankylosing spondylitis (AS). (A) Meta-analysis of HLAB27 and ASAS20 in AS. (B) Meta-analysis of HLAB27 and ASAS40 in AS. (C) Meta-analysis of HLAB27 and BASDAI50 in AS.

![Figure 4](http://rmdopen.bmj.com/content/1/1/e000017/F4)

RMD Open: first published as 10.1136/rmdopen-2014-000017 on 18 February 2015. Downloaded from http://rmdopen.bmj.com/ on February 3, 2024 by guest. Protected by copyright.
were not observable in individual trials. Our statistics included analysis of heterogeneity, risk of bias and quality of data with stringent predefined criteria. The quantitative scales are main tools for assessing risk of bias. The Hayden scale in our study is appropriate because it allows for evaluation of the risk of bias as a relevant variable to identify causes of heterogeneity. Sensitivity analysis was carried out by stratification of meta-analyses by variable causing heterogeneity. Although OR is not the best estimate of association, we used OR because it is readily estimated from the different studies. The review identifies several possible predictors in PsA. However, no conclusive predictors were identified due to the limited number of studies and the heterogeneity of response measures. Also, it is not possible to know whether CRP quantification was carried out using similar or different techniques, and meta-analyses of dichotomous CRP included different cut-offs. Finally, although the findings of some meta-analyses should be interpreted with caution because of the risk of publication bias, our study has several strengths including good consistency of results and inclusion of approximately 60% of studies of high quality.

In conclusion, younger, male sex, high baseline BASDAI, low baseline BASFI, high CRP baseline and positive HLA-B27 predict individually better response in AS. In contrast, no conclusive predictors of PsA are identified.

Contributors JRM was involved in the data collection, interpretation of data, drafting the article, literature search and selection papers for inclusion. AS was involved in the selection papers for inclusion. ES was involved in the selection papers for inclusion. AM was involved in the study design, interpretation of data, drafting the article and revising it for critically important intellectual content. JG-R was involved in the conception and study design, interpretation of data, drafting the article and revising it critically for important intellectual content. All authors gave final approval of the version to be published.

Competing interests JG-R is on the Advisory Boards of Abbvie, BMS, Pfizer, Roche, MSD and UCB SA; has received lecture fees from Abbvie, BMS, Janssen and Jansen, MSD, Pfizer, Roche and UCB; and has received research grants from Roche, Pfizer, MSD and UCB.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data are available.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

REFERENCES

1. van der Heijde D, Kivitz A, Schiff MH, et al. Efficacy and safety of adalimumab in patients with ankylosing spondylitis: results of a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 2006;54:2136–46.
2. Mease PJ, Goffe BS, Metz J, et al. Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial. Lancet 2000;356:385–90.
3. Brandt J, Khariouzov A, Listing J, et al. Six-month results of a double-blind, placebo-controlled trial of etanercept treatment in patients with active ankylosing spondylitis. Arthritis Rheum 2003;48:1667–75.
4. Antoni C, Krueger GG, de Vlam K, et al. Infliximab improves signs and symptoms of psoriatic arthritis: results of the IMPACT 2 trial. Ann Rheum Dis 2005;64:1150–7.
5. Landewe R, Braun J, Deodhar A, et al. Efficacy of certolizumab pegol on signs and symptoms of axial spondyloarthritis including ankylosing spondylitis: 24-week results of a double-blind randomised placebo-controlled Phase 3 study. Ann Rheum Dis 2014;73:39–47.
6. Mease PJ, Fleischmann R, Deodhar AA, et al. Effect of certolizumab pegol on signs and symptoms in patients with psoriatic arthritis: 24-week results of a Phase 3 double-blind randomised placebo-controlled study (RAPID-PsA). Ann Rheum Dis 2014;73:48–55.
7. Kavanaugh A, McInnes I, Mease P, et al. Golimumab, a new human tumor necrosis factor alpha antibody, administered every four weeks as a subcutaneous injection in psoriatic arthritis: twenty-four-week efficacy and safety results of a randomized, placebo-controlled study. Arthritis Rheum 2009;60:976–86.
8. Gomez-Reino JJ, Carmona L, Valverde VR, et al. Treatment of rheumatoid arthritis with tumor necrosis factor inhibitors may predispose to significant increase in tuberculosis risk: a multicenter active-surveillance report. Arthritis Rheum 2003;48:2122–7.
9. Greenberg JD, Reed G, Krimer MJ, et al. Association of methotrexate and tumour necrosis factor antagonists with risk of infectious outcomes: a systematic review and meta-analysis of individual patient data from 46,681 patients with rheumatoid arthritis. Lancet 2015;385:491–501.
10. Hyrich KL, Watson KD, Silman AJ, et al. Predictors of response to anti-TNF-alpha therapy among patients with rheumatoid arthritis: results from the British Society for Rheumatology Biologics Register. Rheumatology 2006;45:1558–65.
11. Kristensen LE, Kapelanovic MC, Gulle A, et al. Predictors of response to anti-TNF therapy according to ACR and EULAR criteria in patients with established RA: results from the South Swedish Arthritis Treatment Group Register. Rheumatology (Oxford) 2008;47:495–9.
12. Mancarella L, Bobbio-Pallavicini F, Cuccarelli F, et al. GISEA group. Good clinical response, remission, and predictors of remission in rheumatoid arthritis patients treated with tumor necrosis factor-alpha blockers: the GISEA study. J Rheumatol 2007;34:1670–3.
13. Mattie DL, Brownfield A, Dawes PT. Relationship between pack-year history of smoking and response to tumor necrosis factor antagonists in patients with rheumatoid arthritis. J Rheumatol 2009;36:1180–7.
14. Radovits BJ, Kiviet W, Fransen J, et al. Influence of age on the outcome of antitumour necrosis factor alpha therapy in rheumatoid arthritis. Ann Rheum Dis 2009;68:1470–3.
15. Maneiro JR, Salgado E, Carmona L, et al. Rheumatoid factor as predictor of response to abatacept, rituximab and tocilizumab in rheumatoid arthritis. Ann Rheum Dis 2009;68:1470–3.
26. Arends S, Brouwer E, van der Veer E, et al. Baseline predictors of response and discontinuation of tumor necrosis factor-alpha blocking therapy in ankylosing spondylitis: a prospective longitudinal observational cohort study. *Arthritis Res Ther* 2011;13:R94.

27. Arends S, van der Veer E, and the prediction of serum MMP-3 level as a biomarker for monitoring and predicting response to etanercept treatment in ankylosing spondylitis. *J Rheumatol* 2011;38:1644–50.

28. Braun J, Brand J, Listing J, et al. Treatment of active ankylosing spondylitis with infliximab: a randomised controlled multicentre trial. *Lancet* 2002;359:1877–93.

29. Braun J, Rudwaleit M, Kary S, et al. Clinical manifestations and responsiveness to adalimumab are similar in patients with ankylosing spondylitis with and without concomitant psoriasis. *Rheumatology (Oxford)* 2010;49:1578–84.

30. Davis JC, van der Heijde D, Dougados M, et al. Baseline factors that influence ASAS 20 response in patients with ankylosing spondylitis treated with etanercept. *J Rheumatol* 2005;32:1751–4.

31. de Vries MK, van Eijk IC, van der Horst-Bruinsma IE, et al. Erythrocyte sedimentation rate, C-reactive protein level, and serum amyloid A protein for patient selection and monitoring of anti-tumor necrosis factor treatment in ankylosing spondylitis. *Arthritis Rheum* 2009;61:1484–90.

32. Fagerli KM, Lie E, Heiberg MS, et al. Body mass index influences ASAS 20 and ASAS 40 response to infliximab in ankylosing spondylitis according to the axial and/or peripheral arthritis and male sex predicting continuation of anti-tumor necrosis factor-alpha gene polymorphism predicts therapeutic response to TNF-alpha blockers in Danish patients with ankylosing spondylitis. *Rheumatology* 2007;46:93–6.

33. Fagerli KM, Lie E, van der Heijde D, et al. Predictors of response to infliximab at 12 weeks and 6 months in patients with ankylosing spondylitis starting biological therapies—results from the Portuguese register—Reuma.Pt. *Clin Exp Rheumatol* 2012;30:641–2.

34. Pedersen SJ, Sorensen U, Gamero P, et al. ASDAS, BASDAI and different treatment responses and their relation to biomarkers of inflammation, cartilage and bone turnover in patients with axial spondyloarthritis. *Clin Exp Rheumatol* 2012;30:197–203.

35. Perez-Guijo VC, Cravo AR, Castro Mdel C, et al. Efficacy of adalimumab in the adalimumab effectiveness in psoriatic arthritis trial. *Arthritis Care Res (Hoboken)* 2010;62:1349–61.

36. Huang F, Zhu J, Zhang L, et al. Peri-arterial involvement: autoantibodies and drop outs are more frequent in patients with ankylosing spondylitis with infliximab: a randomised controlled trial. *Ann Rheum Dis* 2012;71:700–6.

37. Stone MA, Payne U, Pacheco-Tena C, et al. Cytokine correlates of clinical response patterns to infliximab therapy of ankylosing spondylitis. *Ann Rheum Dis* 2004;63:685–70.

38. Tong Q, Zhao DB, Bajajcharya P, et al. TNF-alpha -857 and -1031 polymorphisms predict therapeutic response to anti-TNF-alpha blockers in Chinese patients with ankylosing spondylitis. *Pharmacogenomics* 2012;13:1459–67.

39. van der Heijde D, Bijlsma J, Listing J, et al. Adverse events in patients with ankylosing spondylitis treated with infliximab: results of a randomized, placebo-controlled trial (ASSERT). *Arthritis Rheum* 2005;52:582–91.

40. Visvanathan S, Wagner C, Marini JC, et al. Inflammatory biomarkers, disease activity and spinal disease measures in patients with ankylosing spondylitis treated with infliximab. *Ann Rheum Dis* 2008;67:511–17.

41. Wagner C, Visvanathan S, Braun J, et al. Serum markers associated with clinical improvement in patients with ankylosing spondylitis treated with golimumab. *Ann Rheum Dis* 2012;71:674–80.

42. Chandran V, Chen H, Pollock R, et al. Soluble biomarkers predict response to anti-tumour necrosis factor (TNF) therapy in psoriatic arthritis (PsA). *Arthritis Rheum*. 2009; Conference: American College of Rheumatology/Association of Rheumatology Health Professionals Annual Scientific Meeting, ACR/ARHP 09 Atlanta, GA United States. Conference Start: 20110106 Conference End: 20110111. Conference Publication: (var.pagings). 60:1778.

43. Chimenti MS, Perricone C, Graceffa D, et al. Complement system in psoriatic arthritis: a useful marker in response prediction and monitoring of anti-TNF treatment. *Clin Exp Rheumatol* 2012;30:23–30.

44. di Minno MN, Peluso R, Iervolino S, et al. The -308 tumour necrosis factor-alpha gene polymorphism predicts therapeutic response to anti-TNF alpha blockers in Chinese patients with ankylosing spondylitis. *Rheumatology* 2007;46:93–6.

45. de Vries MK, van Eijk IC, van der Horst-Bruinsma IE, et al. Erythrocyte sedimentation rate, C-reactive protein level, and serum amyloid A protein for patient selection and monitoring of anti-tumor necrosis factor treatment in ankylosing spondylitis. *Arthritis Rheum* 2009;61:1484–90.

46. Ottaviani S, Allarone Y, Tubach F, et al. Body mass index influences the response to infliximab in ankylosing spondylitis. *Arthritis Res Ther* 2012;14:R115.
68. Gratacos J, Casado E, Real J, et al. Prediction of major clinical response (ACR50) to infliximab in psoriatic arthritis refractory to methotrexate. *Ann Rheum Dis* 2007;66:493–7.

69. Iannone F, Fanizzi R, Scioscia C, et al. Body mass does not affect the remission of psoriatic arthritis patients on anti-TNF-alpha therapy. *Scand J Rheumatol* 2013;42:41–4.

70. Keravnos GN, Koukli EM, Katsalira A, et al. Adalimumab or cyclosporine as monotherapy and in combination in severe psoriatic arthritis: results from a prospective 12-month nonrandomized unblinded clinical trial. *J Rheumatol* 2011;38:2466–74.

71. Kavanagh A, Krueger GG, Beutler A, et al. Infliximab maintains a high degree of clinical response in patients with active psoriatic arthritis through 1 year of treatment: results from the IMPACT 2 trial. *Ann Rheum Dis* 2007;66:498–505.

72. Kavanagh A, van der Heijde D, McInnes IB, et al. Golimumab in psoriatic arthritis: one-year clinical efficacy, radiographic, and safety results from a phase III, randomized, placebo-controlled trial. *Arthritis Rheum* 2012;64:2504–17.

73. Kristensen LE, Gulfe A, Saxne T, et al. Efficacy and tolerability of anti-tumour necrosis factor therapy in psoriatic arthritis patients: results from the South Swedish Arthritis Treatment Group register. *Ann Rheum Dis* 2008;67:364–9.

74. Marotta A, Van Kuijk AW, Maksymowych WP, et al. 14-3-3 Eta is a modifiable serum biomarker that marks adalimumab response in psoriatic arthritis. *Arthritis Rheum*. 2012 October; Conference: Annual Scientific Meeting of the American College of Rheumatology and Association of Rheumatology Health Professionals 2012 Washington, DC United States. Conference Start: 20121109 Conference End: 20121114. Conference Publication: (var.pagings). 64:S247.

75. Mease PJ, Gladman DD, Ritcin CT, et al. Adalimumab for the treatment of patients with moderately to severely active psoriatic arthritis: results of a double-blind, randomized, placebo-controlled trial. *Arthritis Rheum* 2005;52:3279–89.

76. Ramirez J, Fernandez-Sueiro JL, Lopez-Mejias R, et al. FCGR2A/CD32A and FCGR3A/CD16A variants and EULAR response to tumor necrosis factor-alpha blockers in psoriatic arthritis: a longitudinal study with 6 months of followup. *J Rheumatol* 2012;39:1035–41.

77. Saber TP, Ng CT, Renard G, et al. Remission in psoriatic arthritis: is it possible and how can it be predicted? *Arthritis Res Ther* 2010;12:R94.

78. Spadaro A, Ceccarelli F, Scrivo R, et al. Life-table analysis of etanercept with or without methotrexate in patients with psoriatic arthritis. *Ann Rheum Dis* 2008;67:1650–1.

79. Van den Bosch F, Manger B, Goupille P, et al. Anti-TNF-alpha agents are less effective for the treatment of rheumatoid arthritis in current smokers. *J Clin Rheumatol* 2010;16:15–18.

80. Maneiro JR, Salgado E, Gomez-Reino JJ. Immunogenicity of monoclonal antibodies against tumor necrosis factor used in chronic immune-mediated inflammatory conditions: systematic review and meta-analysis. *JAMA Intern Med* 2013;173:1416–28.

81. Zhao L, Fong Y, Granfors K, et al. Identification of cytokines that might enhance the promoter activity of HLA-B27. *J Rheumatol* 2008;35:862–8.

82. Milia AF, Ibba-Manneschi L, Manetti M, et al. Evidence for the prevention of enthesitis in HLA-B27/hbeta(2)m transgenic rats treated with a monoclonal antibody against TNF-alpha. *J Cell Mol Med* 2011;15:270–9.

83. Milia AF, Manetti M, Generini S, et al. TNFalpha blockade prevents the development of inflammatory bowel disease in HLA-B27 transgenic rats. *J Cell Mol Med* 2009;13:164–76.

84. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. *Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group*. *JAMA* 2000;283:2008–12.

85. Dickersin K, Min YI, Meinert CL. Factors influencing publication of research results. Follow-up of applications submitted to two institutional review boards. *JAMA* 1992;267:374–8.

86. Biggervall BJ, Tweedle RL. Incorporating variability in estimates of heterogeneity in the random effects model in meta-analysis. *Stat Med* 1997;16:753–68.