COACTIONS AND SKEW PRODUCTS OF TOPOLOGICAL GRAPHS

S. KALISZEWSKI AND JOHN QUIGG

Abstract. We show that the C^*-algebra of a skew-product topological graph $E \times \kappa G$ is isomorphic to the crossed product of $C^*(E)$ by a coaction of the locally compact group G.

1. Introduction

In [4, Theorem 2.4] we proved that if E is a directed graph and κ is a function from the edges of E to a discrete group G, then the graph algebra $C^*(E \times \kappa G)$ of the skew-product graph is a crossed product of $C^*(E)$ by a coaction of G. This was later generalized to homogeneous spaces G/H in [2, Theorem 3.4], and to higher-rank graphs in [9, Theorem 7.1]. In this paper we generalize the result to topological graphs and locally compact groups. More precisely, we prove in Theorem 3.1 that if $\kappa: E \to G$ is a continuous function (that is, a cocycle), then there exists a coaction ε of G on $C^*(E)$ such that

$$C^*(E \times \kappa G) \cong C^*(E) \times_{\varepsilon} G.$$

We give two distinct approaches to the coaction: in Section 3 we obtain the coaction indirectly, via an application of Landstad duality, and in Section 4 we construct the coaction directly, applying techniques developed in [6]. We thank Iain Raeburn for helpful conversations concerning this direct approach.

In Section 2 we record our conventions for topological graphs, C^*-correspondences, skew products, multiplier modules, and functoriality of Cuntz-Pimsner algebras. In an appendix we develop a few tools that we need for dealing with certain bimodule multipliers in terms of function spaces.

Date: December 12, 2012.

2000 Mathematics Subject Classification. Primary 46L05; Secondary 46L55.

Key words and phrases. topological graph, coaction, skew product.
2. Preliminaries

In general, we refer to [11] (see also [8]) for topological graphs, and to [11, 3] (see also [7]) for C^*-correspondences, except we make a few minor, self-explanatory modifications. Thus, a topological graph E comprises locally compact Hausdorff spaces E^1, E^0 and maps $s, r: E^1 \to E^0$ with s a local homeomorphism and r continuous. Let $A = C_0(E^0)$, and let $X = X(E)$ be the associated A-correspondence, which is the completion of $C_c(E^1)$ with operations defined for $f \in A$ and $\xi, \eta \in C_c(E^1)$ by

\[
\begin{align*}
 f \cdot \xi(e) &= f(r(e))\xi(e) \\
 \xi \cdot f(e) &= \xi(e)f(s(e)) \\
 \langle \xi, \eta \rangle(v) &= \sum_{s(e)=v} \overline{\xi(e)}\eta(e).
\end{align*}
\]

Throughout this paper we will also write $A' = C_0(E^1)$, so that X can be regarded as an $A' - A$ correspondence as well as an A-correspondence. Recall from [8] that the left A'-module multiplication is nondegenerate in the sense that $A' \cdot X = X$, and is determined by the homomorphism $\pi_E: A' \to \mathcal{L}(X)$ given by $(\pi_E(f)\xi)(e) = f(e)\xi(e)$ for $f \in A'$ and $\xi \in C_c(E^1)$, and the (nondegenerate) left A-module multiplication $\varphi_A: A \to \mathcal{L}(X)$ is then given by $\varphi_A(f) = \pi_E(\mathbb{1} \circ r)$ for $f \in A$.

We denote by $(k_X, k_A): (X, A) \to C^*(E) = \mathcal{O}_X$ the universal Cuntz-Pimsner covariant representation, and for any Cuntz-Pimsner covariant representation (ψ, π) of (X, A) in a C^*-algebra B we denote by $\psi^{(1)}: K(X) \to B$ the associated homomorphism\footnote{and here we use the notation of [1]: Raeburn would write $(\psi, \pi)^{(1)}$} determined by $\psi^{(1)}(\theta_{\xi, \eta}) = \psi(\xi)\psi(\eta)^*$, and by $\psi \times \pi: C^*(E) \to B$ the unique homomorphism satisfying

\[
(\psi \times \pi) \circ k_X = \psi \quad \text{and} \quad (\psi \times \pi) \circ k_A = \pi.
\]

Note that in [3], correspondences were called right-Hilbert bimodules, and nondegeneracy was built into the definition. All our correspondences will in fact be nondegenerate, so we can freely apply the results from [3].

For skew products of topological graphs, we use a slight variation of the definition in [1]: the main difference is that we use the same notational conventions as those in [11] for skew products of discrete directed graphs. Thus, a cocycle of a locally compact group G on a
topological graph E is a continuous map $\kappa: E^1 \to G$, and the skew product is the topological graph $E \times _\kappa G$ with

$$(E \times _\kappa G)^i = E^i \times G \quad (i = 0, 1),$$

$$r(e, t) = (r(e), \kappa(e)t), \quad \text{and} \quad s(e, t) = (s(e), t).$$

Our conventions for multipliers of correspondences are taken primarily from [3, Chapter 1], but also see [7]. If $(\pi, \psi, \tau): (A, X, B) \to (M(C), M(Y), M(D))$ is a correspondence homomorphism, then there is a unique homomorphism $\psi^{(1)}: \mathcal{K}(X) \to M(\mathcal{K}(Y)) = \mathcal{L}(Y)$ such that $\psi^{(1)}(\theta _{\xi, \eta}) = \psi(\xi)\psi(\eta)^*$ for $\xi, \eta \in X$. (For this result in the stated level of generality, in particular with no nondegeneracy assumption on (ψ, π), see [7, Lemma 2.1].) If (ψ, π) happens to be nondegenerate, then so is $\psi^{(1)}$, and hence $\psi^{(1)}$ extends uniquely to a homomorphism $\psi^{(1)}: \mathcal{L}(X) \to \mathcal{L}(Y)$.

A correspondence homomorphism $(\psi, \pi): (X, A) \to (M(Y), M(B))$ is defined in [7] to be Cuntz-Pimsner covariant if

(i) $\psi(X) \subset M_B(Y)$,

(ii) $\pi: A \to M(B)$ is nondegenerate,

(iii) $\pi(J_X) \subset M(B; J_Y)$, and

(iv) the diagram

$$
\begin{array}{ccc}
J_X & \xrightarrow{\pi|} & M(B; J_Y) \\
\varphi _A| \downarrow & & \downarrow \varphi _B| \\
\mathcal{K}(X) & \xrightarrow{\psi^{(1)}} & M_B(\mathcal{K}(Y))
\end{array}
$$

commutes,

where, for an ideal I of a C^*-algebra C,

$$M(C; I) := \{ m \in M(C) : mC \cup Cm \subset I \}.$$

By [7, Corollary 3.6], for each Cuntz-Pimsner covariant homomorphism (ψ, π), there is a unique homomorphism $O_{\psi, \pi}$ making the diagram

$$
\begin{array}{ccc}
(X, A) & \xrightarrow{(\psi, \pi)} & (M_B(Y), M(B)) \\
(\kappa_X, \kappa_A) \downarrow & & \downarrow (\kappa_Y, \kappa_B) \\
O_X & \xrightarrow{O_{\psi, \pi}} & M_B(O_Y)
\end{array}
$$

commute. Moreover, $O_{\psi, \pi}$ is nondegenerate, and is injective if π is.

Our conventions for coactions on correspondences mainly follow [3], but see also [6].
3. INDIRECT APPROACH

In this section we apply Landstad duality to give an indirect approach to the following result:

Theorem 3.1. If $\kappa: E^1 \to G$ is a cocycle on a topological graph E, then there is a coaction ε of G on $C^*(E)$ such that

$$C^*(E \times_\kappa G) \cong C^*(E) \times_\varepsilon G.$$

Throughout the rest of this paper, in addition to $A = C_0(E^0)$ and $X = X(E)$, we will also use the following abbreviations:

- $F = E \times_\kappa G$;
- $Y = X(E \times_\kappa G)$;
- $B = C_0((E \times_\kappa G)^0)$.

Proof. To apply Landstad duality [10, Theorem 3.3] (stated in more modern form in [5, Theorem 4.1]), we need the following ingredients:

- an action $\alpha: G \to \text{Aut } C^*(F)$, an $rt - \alpha$ equivariant nondegenerate homomorphism $\mu: C_0(G) \to M(C^*(F))$ (where “rt” is action of G on $C_0(G)$ by right translation), and an injective nondegenerate homomorphism $\Pi: C^*(E) \to M(C^*(F))$ whose image coincides with Rieffel’s generalized fixed-point algebra $C^*(F)^\alpha$. Note that in [5], $C^*(F)^\alpha$ would be written as $\text{Fix}(C^*(F), \alpha, \mu)$.

Since G acts on the right of the skew-product topological graph F via right translation in the second coordinate, by [11, Proposition 5.4 and discussion preceding Remark 5.3] we have an action $\beta = (\beta^1, \beta^0): G \to \text{Aut } Y$ such that

$$\beta^1_t(\xi)(e, r) = \xi(e, rt) \quad \text{for } \xi \in Y,$$

$$\beta^0_t(g)(v, r) = g(v, rt) \quad \text{for } g \in B,$$

which in turn gives an action on $C^*(F)$ such that

$$\alpha_t \circ k_Y = k_Y \circ \beta^1_t$$

$$\alpha_t \circ k_B = k_B \circ \beta^0_t.$$

Since $F^0 = E^0 \times G$, we have

$$B = C_0(F^0) = C_0(E^0) \otimes C_0(G) = A \otimes C_0(G),$$

so we can define a nondegenerate homomorphism $\mu: C_0(G) \to M(C^*(F))$ by

$$\mu(g) = k_B(1_{M(A)} \otimes g),$$

and then it is routine to verify that μ is $rt - \alpha$ equivariant.
Finally, since the action of G on F is free and proper, the proof of \cite[Theorem 5.6]{[1]} constructs an isomorphism

$$\Pi: C^*(E) \overset{\cong}{\to} C^*(F)^\alpha,$$

and then the result follows from Landstad duality. \hfill \qed

4. A direct approach to the coaction

As in Section 3, we suppose we are given a cocycle $\kappa: E^1 \to G$ of a locally compact group G on a topological graph E, and we continue to write $A = C_0(E^0), A' = C_0(E^1), X = X(E), F = E \times_{\kappa} G, Y = X(F),$ and $B = C_0(F^0)$.

Recall that the canonical embedding $G \subseteq M(C^*(G))$ is identified with a unitary element w_G of $M(C_0(G) \otimes C^*(G))$. Similarly, we may identify κ with a unitary element of

$$M^\beta(C^*(G)) = M(A' \otimes C^*(G)),$$

where $M^\beta(C^*(G))$ denotes the multiplier algebra $M(C^*(G))$ with the strict topology.

Define a nondegenerate homomorphism $\kappa^*: C_0(G) \to M(A')$ by $\kappa^*(f) = f \circ \kappa$, and a nondegenerate homomorphism $\nu: C_0(G) \to \mathcal{L}(X)$ by

$$\nu = \pi_E \circ \kappa^*,$$

where $\pi_E: A' \to \mathcal{L}(X)$ is the homomorphism given on $C_c(E^1)$ by pointwise multiplication.

Proposition 4.1. With the above notation, there is a coaction $(\sigma, \text{id}_A \otimes 1)$ of G on (X, A) defined by

$$\sigma(\xi) = v \cdot (\xi \otimes 1),$$

where

$$v = \nu \otimes \text{id}(w_G) \in \mathcal{L}(X \otimes C^*(G)),$$

and moreover there is a coaction ζ of G on $C^*(E)$ such that

$$\zeta \circ k_X = k_X \otimes \text{id} \circ \sigma \quad \zeta \circ k_A = k_A \otimes 1.$$

Proof. This follows from \cite[Corollaries 3.4–3.5]{[6]}, because $\nu: C_0(G) \to \mathcal{L}(X)$ commutes with φ_A. \hfill \qed

It will be convenient for us to find an equivalent expression for the coaction σ. Note that we may regard X as an $A' - A$ correspondence,
and hence $X \otimes C^*(G)$ as an $(A' \otimes C^*(G)) - (A \otimes C^*(G))$ correspondence. Thus we can write
\[\sigma(\xi) = \kappa^* \otimes \text{id}(w_G) \cdot (\xi \otimes 1). \]
However, we can go further: by construction the unitary element $\kappa^* \otimes \text{id}(w_G)$ of $M(A' \otimes C^*(G))$ coincides with the function in $C_b(E_1, M^\beta(C^*(G)))$ whose value at an edge e is $\kappa^* \otimes \text{id}(w_G)(e) = w_G(\kappa(e)) = \kappa(e)$; thus we can write
\[\sigma(\xi) = \kappa \cdot (\xi \otimes 1). \]

In Theorem 3.1 we used Landstad duality to show that $C^*(F)$ is isomorphic to the crossed product of $C^*(E)$ by a coaction ε of G; on the other hand, in Proposition 4.1 we directly constructed a coaction ζ of G on $C^*(E)$. To show that also $C^*(E) \times^\zeta G \cong C^*(F)$, we now show that in fact the coactions ε and ζ coincide. Since the mechanism behind Landstad duality is that ε is pulled back along Π^{-1} from the inner coaction δ^μ on $C^*(F)$, this is accomplished by the following:

Proposition 4.2. Let ζ be the coaction on $C^*(E)$ from Proposition 4.1 and let $\Pi: C^*(E) \to M(C^*(F))$ and $\mu: C_0(G) \to M(C^*(F))$ be as in the proof of Theorem 3.1. Then Π is $\zeta - \delta^\mu$ equivariant, and hence ζ coincides with the coaction ε from Theorem 3.1.

Proof. It is equivalent to show that $(\Pi, \mu): (C^*(E), C_0(G)) \to M(C^*(F))$ is a covariant representation for the coaction ζ, and for this we will apply [6, Corollary 4.3].

We will need to know how the homomorphism Π from [1] can be described using the techniques of [7]: [1] Proof of Theorem 5.6 constructs a correspondence homomorphism
\[(\psi, \pi): (X, A) \to (M_B(Y), M(B)), \]
although the notation in [1] is substantially different. In the terminology of [7, Definition 3.1], [1] Proof of Theorem 5.6 shows that (ψ, π) is Cuntz-Pimsner covariant, so that by [7, Corollary 3.6] there is a nondegenerate homomorphism $O_{\psi, \pi}$ making the diagram
\[
\begin{array}{ccc}
(X, A) & \xrightarrow{(\psi, \pi)} & (M_B(Y), M(B)) \\
\downarrow (k_X, k_A) & & \downarrow (k_Y, k_B) \\
C^*(E) & \xrightarrow{\sigma_{\psi, \pi}} & M_B(C^*(F))
\end{array}
\]

\[3\]The roles of E, X, A and F, Y, B are interchanged, and what we call (ψ, π) here was written as (μ, ν) in [1].
commute; the homomorphism \(\Pi \) from [1] coincides with \(\mathcal{O}_{\psi,\pi} \).

Thus, by [6, Corollary 4.3] it suffices to show that

\[
(\psi, \pi, \mu): (X, A, C_0(G)) \to (M_B(Y), M(B))
\]

is covariant for \((\sigma, \text{id}_A \otimes 1)\), in the sense of [6, Definition 2.9]. Thus we must show that

(i) \((\pi, \mu)\) is covariant for \((A, \text{id}_A \otimes 1)\), and

(ii) \(\psi \otimes \text{id} \circ \sigma(\xi) = \mu \otimes \text{id}(w_G) \cdot (\psi(\xi) \otimes 1) \cdot (\mu \otimes \text{id}(w_G)^*\) for all \(\xi \in X\).

Condition (i) is immediate because \(\pi\) and \(\mu\) commute. Next, we rewrite (ii) in an equivalent form:

\[
(ii)' \psi \otimes \text{id}(\sigma(\xi)) \cdot \mu \otimes \text{id}(w_G) = (\mu \otimes \text{id}(w_G) \cdot (\psi(\xi) \otimes 1))\]

To proceed further, notice that the maps \(\psi\), \(\pi\), and \(\mu\) from [1] take a particularly simple form in our present context:

- \(\psi = \text{id}_X \otimes 1_{M(C_0(G))}\);
- \(\pi = \text{id}_A \otimes 1_{M(C_0(G))}\);
- \(\mu = 1_{M(A)} \otimes \text{id}_{C_0(G)}\).

(We should explain our notation in the above expression for \(\psi\): it follows from the definitions that, as a Hilbert \((A \otimes C_0(G))\)-module, \(Y\) coincides with the external tensor product \(X \otimes C_0(G)\) (where \(C_0(G)\) is regarded as a Hilbert module over itself in the canonical way). One just has to keep in mind that \(Y\) does not coincide with \(X \otimes C_0(G)\) as a \(B\)-correspondence — the left \(B\)-module multiplication is twisted by the cocycle \(\kappa\).) Thus, for \(\xi \in X\) we can write:

- \(\psi(\xi) = \xi \otimes 1\);
- \(\overline{\psi \otimes \text{id}(\sigma(\xi))} = \sigma(\xi)_{13} = \kappa_{13} \cdot (\xi \otimes 1 \otimes 1)\);
- \(\mu \otimes \text{id}(w_G) = 1 \otimes w_G\).

Since both sides of (ii)' are adjointable Hilbert-module maps from \(B \otimes C^*(G)\) to \(Y \otimes C^*(G)\), and \(A \otimes C_c(G)\) is dense in \(B\), it suffices to check that the two sides of (ii)' take equal values on elementary tensors of the form \(f \otimes g \otimes a\), with \(f \in A, g \in C_c(G), a \in C^*(G)\). Evaluating the right-hand side of (ii)' gives

\[
(1 \otimes w_G) \cdot (f \otimes g \otimes a) = (1 \otimes w_G) \cdot (\xi \otimes 1 \otimes 1) \cdot (f \otimes g \otimes a) = (1 \otimes w_G) \cdot (\xi \cdot f \otimes g \otimes a).
\]

Now we must use the function-space techniques from Appendix A. We have \(1 \otimes w_G \in C_b(F^0, M^3(C^*(G)))\), with value \(t\) at \((v, t) \in F^0\)
\[\xi \cdot f \otimes g \otimes a \in C_c(F^1, C^*(G)), \] so by Corollary A.3 we can evaluate the last quantity in (4.1) at \((e, t) \in F^1\), giving
\[
\begin{align*}
(1 \otimes w_G)(r(e, t))(\xi \cdot f \otimes g \otimes a)(e, t) &= (1 \otimes w_G)(r(e), \kappa(e)t)(\xi \cdot f)(e)g(t)a \\
&= \kappa(e)t \xi(e)f(s(e))g(t)a \\
&= \xi(e)f(s(e))g(t)\kappa(e)ta.
\end{align*}
\]

We proceed similarly with the left-hand side of (ii)′:
\[
(\kappa_{13} \cdot (\xi \otimes 1 \otimes 1) \cdot (1 \otimes w_G)) \cdot (f \otimes g \otimes a)
\]
\[
= \kappa_{13} \cdot (\xi \cdot f \otimes w_G(g \otimes a))
\]
Now, \(\kappa_{13} \in C_b(F^1, M^\beta(C^*(G)))\), with value \(\kappa(e)\) at \((e, t)\), and \(\xi \cdot f \otimes w_G(g \otimes a) \in C_c(F^1, C^*(G))\) because \(\xi \cdot f \in C_c(E^1)\) and \(w_G(g \otimes a) \in C_c(G, C^*(G))\), so by Corollary A.3 we can evaluate the right-hand side of (4.2) at \((e, t) \in F^1\), giving
\[
\begin{align*}
\left(\kappa_{13} \cdot (\xi \cdot f \otimes w_G(g \otimes a))\right)(e, t) &= \kappa_{13}(e, t)(\xi \cdot f \otimes w_G(g \otimes a))(e, t) \\
&= \kappa(e)(\xi \cdot f(e)(w_G(g \otimes a))(t) \\
&= \kappa(e)\xi(e)f(s(e))w_G(t)(g \otimes a)(t) \\
&= \kappa(e)\xi(e)f(s(e))tg(t)a \\
&= \xi(e)f(s(e))g(t)\kappa(e)ta.
\end{align*}
\]

Therefore we have verified (ii)′, and this finishes the proof. \(\square \)

Appendix A. Functions and multipliers

In Section 4, we need to compute with bimodule multipliers in terms of functions. If \(T\) is a locally compact Hausdorff space and \(C\) is a \(C^*\)-algebra, we will use without comment the following identifications (see, e.g., [12] or [3 Appendix C]):

- \(C_0(T, C) = C_0(T) \otimes C\);
- \(M(C_0(T) \otimes C) = C_b(T, M^\beta(C))\),

where we write \(M^\beta(C)\) to denote \(M(C)\) with the strict topology. Note that since the action of \(C_b(T, M^\beta(C))\) by multipliers on \(C_0(T, C)\) is via pointwise multiplication, it preserves \(C_c(T, C)\).

We will need to use functions as multipliers on certain \(C^*\)-correspondences; since this theory is not easily available in the literature, we give details for all the results we need. However, we
make no attempt to construct a general theory — rather, we do only enough to establish Corollary \ref{cor:genskew} which we need in Section \ref{sec:skew}

For a topological graph E, we write (as in the rest of the paper) $A = C_0(E^0)$, $X = X(E)$, and $A' = C_0(E^1)$. We will regard $X \otimes C$ both as an $(A' \otimes C) - (A \otimes C)$ correspondence and as an $(A \otimes C)$-correspondence.

The following lemma is routine:

\textbf{Lemma A.1.} $C_c(E^1, C)$ embeds densely in the $(A' \otimes C) - (A \otimes C)$ correspondence $X \otimes C$ in the following way: if $\xi, \eta \in C_c(E^1, C) \subset X \otimes C$, $f \in C_c(E^1, C) \subset A' \otimes C$, and $g \in C_c(E^0, C) \subset A \otimes C$, then $f \cdot \xi$ and $\xi \cdot g$ are the elements of $C_c(E^1, C)$ given by

\begin{align}
(A.1) & \quad (f \cdot \xi)(e) = f(e)\xi(e) \\
(A.2) & \quad (\xi \cdot g)(e) = \xi(e) \cdot g(s(e)),
\end{align}

and (ξ, η) is the element of $C_c(E^0, C) \subset A \otimes C$ given by

\begin{equation}
(A.3) \quad \langle \xi, \eta \rangle(v) = \sum_{s(e)=v} \xi(e)^*\eta(e).
\end{equation}

Moreover, $g \cdot \xi$ is the element of $C_c(E^1, C)$ given by

\begin{equation}
(A.4) \quad (g \cdot \xi)(e) = g(r(e))\xi(e).
\end{equation}

\textbf{Proof.} First of all, \ref{eq:prehilbert} \ref{eq:prehilbert} \ref{eq:prehilbert} make $C_c(E^1, C)$ into a pre-Hilbert $C_c(E^0, C)$-module (where the latter is regarded as a dense $*$-subalgebra of $C_0(E^0, C) = A \otimes C$). The only non-obvious property of pre-Hilbert modules is that \ref{eq:prehilbert} does give an element of $C_c(E^0, C)$, but this can be proved by an argument similar to those used in \cite[Lemma 1.5]{Buss:2012}.

Observe that the Hilbert-module norm on $C_c(E^1, C)$ is given by

\begin{equation}
(A.5) \quad \|\xi\| = \sup_{v \in E^0} \left\|\sum_{s(e)=v} \xi(e)^*\xi(e)\right\|^{1/2},
\end{equation}

which is larger than the uniform norm. In particular, for $e \in E^1$ the evaluation map $\xi \mapsto \xi(e)$ from $C_c(E^1, C)$ to C is bounded from the Hilbert-module norm to the norm of C.

Computing with elementary tensors of the form $\xi \otimes c$ for $\xi \in C_c(E^1)$ and $c \in C$, it is now routine to verify that the completion of the pre-Hilbert module $C_c(E^1, C)$ is isomorphic to the external tensor product $X \otimes C$ of the Hilbert A-module X and the Hilbert C-module C.

Now regarding $X \otimes C$ as an $(A' \otimes C) - (A \otimes C)$ correspondence, \ref{eq:prehilbert} is obviously true on elementary tensors, hence for $f, \xi \in C_c(E^1) \otimes C$, and therefore as stated by density of $C_c(E^1) \otimes C$ in $C_c(E^1, C)$ and by continuity of evaluation. Finally, \ref{eq:prehilbert} follows from \ref{eq:prehilbert}. \hfill \box
Lemma A.2. Let \(K \subset E^1 \) be compact. On the subspace
\[
C_K(E^1, C) := \{ \xi \in C_c(E^1, C) : \text{supp} \xi \subset K \}
\]
of \(X \otimes C \), the Hilbert-module norm and the uniform norm are equivalent. Consequently, \(C_K(E^1, C) \) is norm-closed in \(X \otimes C \).

Proof. By (A.5), the uniform norm on \(C_K(E^1, C) \) is smaller than the Hilbert-module norm from \(X \otimes C \). Thus it suffices to show that the Hilbert-module norm is bounded above by a multiple of the uniform norm. Let \(\xi \in C_K(E^1, C) \). Using compactness of \(K \) and local homeomorphism of \(s \), it is easy to verify that the cardinalities of the intersections \(K \cap s^{-1}(v) \) for \(v \in E^0 \) are bounded above by some nonnegative integer \(d \). Then for any \(v \in E^0 \) we have
\[
\left\| \sum_{s(e)=v} \xi(e)^* \xi(e) \right\| \leq \sum_{s(e)=v} \|\xi(e)\|^2 \leq d\|\xi\|^2_u,
\]
where \(\|\xi\|^2_u \) denotes the uniform norm of \(\xi \), and the result follows. \(\square \)

Since \(X \otimes C \) is a nondegenerate \((A' \otimes C) - (A \otimes C)\) correspondence, the left module action of \(A' \otimes C \) extends canonically to the multiplier algebra \(M(A' \otimes C) = C_b(E^1, M^\beta(C)) \) (and similarly for the left module action of \(A \otimes C \)). The following corollary allows us to compute this extended left module action on generators:

Corollary A.3. If \(m \in C_b(E^1, M^\beta(C)) \) and \(\xi \in C_c(E^1, C) \subset X \otimes C \), then the element \(m \cdot \xi \) of \(X \otimes C \) lies in \(C_c(E^1, C) \), and
\[
(m \cdot \xi)(e) = m(e)\xi(e) \quad \text{for} \ e \in E^1.
\]
If \(n \in C_b(E^0, M^\beta(C)) \) then both \(n \cdot \xi \) and \(\xi \cdot n \) lie in \(C_c(E^1, C) \), and
\[
(n \cdot \xi)(e) = n(r(e))\xi(e);
\]
\[
(\xi \cdot n)(e) = \xi(e)n(s(e)).
\]

Proof. Choose a net \(\{m_i\} \) in \(C_c(E^1, C) \) converging strictly to \(m \) in \(M(C_0(E^1, C)) \). The conclusion holds for each \(m_i \cdot \xi \), by Lemma A.1. Let \(K = \text{supp} \xi \), a compact subset of \(E^1 \). Then \(m_i \cdot \xi \in C_K(E^1, C) \) for all \(i \). Since \(m_i \cdot \xi \to m \cdot \xi \) in the norm of \(X \otimes C \), we have \(m \cdot \xi \in C_K(E^1, C) \), by Lemma A.2.

For each \(e \in E^1 \), by norm-continuity of evaluation on \(C_c(E^1, C) \) we have
\[
(m \cdot \xi)(e) = \lim_i (m_i \cdot \xi)(e) = \lim_i m_i(e)\xi(e).
\]
Moreover, for any \(a \in C \), we can choose \(f \in C_0(E^1, C) \) such that \(f(e) = a \) and compute:
\[
m_i(e)a = m_i(e)f(e) = (m_if)(e) \to (m_f)(e) = m(e)a.
\]
COACTIONS AND SKEW PRODUCTS

Thus evaluation is strictly continuous on \(C_b(E^1, M^\beta(C)) \); in particular,
\[
\lim_i m_i(e)\xi(e) = m(e)\xi(e),
\]
which establishes (A.6).

The statement for \(n \cdot \xi \) follows by composing with the range map \(r: E^1 \to E^0 \), and the statement for \(\xi \cdot n \) is proved similarly to the above argument for \(m \cdot \xi \).

\[\square\]

References

[1] V. Deaconu, A. Kumjian, and J. Quigg, Group actions on topological graphs, Ergodic Theory Dynam. Systems 32 (2012), 1527–1566.

[2] K. Deicke, D. Pask, and I. Raeburn, Coverings of directed graphs and crossed products of \(C^* \)-algebras by coactions of homogeneous spaces, Internat. J. Math. 14 (2003), no. 7, 773–789.

[3] S. Echterhoff, S. Kaliszewski, J. Quigg, and I. Raeburn, A Categorical Approach to Imprimitivity Theorems for \(C^* \)-Dynamical Systems, vol. 180, Mem. Amer. Math. Soc., no. 850, American Mathematical Society, Providence, RI, 2006.

[4] S. Kaliszewski, J. Quigg, and I. Raeburn, Skew products and crossed products by coactions, J. Operator Theory 46 (2001), 411–433.

[5] ______, Proper actions, fixed-point algebras and naturality in nonabelian duality, J. Funct. Anal. 254 (2008), 2949–2968.

[6] S. Kaliszewski, J. Quigg, and D. Robertson, Coactions on Cuntz-Pimsner algebras, arXiv:1204.5822

[7] ______, Functoriality of Cuntz-Pimsner correspondence maps, arXiv:1204.5820

[8] T. Katsura, A class of \(C^* \)-algebras generalizing both graph algebras and homeomorphism \(C^* \)-algebras. I. Fundamental results, Trans. Amer. Math. Soc. 356 (2004), no. 11, 4287–4322.

[9] D. Pask, J. Quigg, and I. Raeburn, Coverings of \(k \)-graphs, J. Algebra 289 (2005), no. 1, 161–191.

[10] J.C. Quigg, Landstad duality for \(C^* \)-coactions, Math. Scand. 71 (1992), 277–294.

[11] I. Raeburn, Graph algebras, CBMS Regional Conference Series in Mathematics, vol. 103, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2005.

[12] I. Raeburn and D. P. Williams, Morita equivalence and continuous-trace \(C^* \)-algebras, Math. Surveys and Monographs, vol. 60, American Mathematical Society, Providence, RI, 1998.

(S. Kaliszewski) SCHOOL OF MATHEMATICAL AND STATISTICAL SCIENCES, ARIZONA STATE UNIVERSITY, TEMPE, ARIZONA 85287

E-mail address: kaliszewski@asu.edu

(John Quigg) SCHOOL OF MATHEMATICAL AND STATISTICAL SCIENCES, ARIZONA STATE UNIVERSITY, TEMPE, ARIZONA 85287

E-mail address: quigg@asu.edu