Negative Regulation of p120GAP GTPase Promoting Activity by p210bcr/abl: Implication for RAS-dependent Philadelphia Chromosome Positive Cell Growth

By Tomasz Skorski, Palanisamy Kanakaraj, De-Hui Ku, Malgorzata Nieborowska-Skorska, Eli Canaani, Gerald Zon,* Bice Perussia, and Bruno Calabretta

From the Department of Microbiology and Immunology and Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107; and *Lynx Therapeutics, Inc., Hayward, California 94404

Summary
The p210bcr/abl tyrosine kinase appears to be responsible for initiating and maintaining the leukemic phenotype in chronic myelogenous leukemia (CML) patients. p210bcr/abl and p120GAP interactions play a central role in transducing mitogenic signals. Therefore, we investigated whether p210bcr/abl and p120GAP are regulated by p210bcr/abl and whether this activation is functionally significant for CML cell proliferation. We report that transient expression of p210bcr/abl in fibroblast-like cells induces simultaneous activation of p210bcr/abl and inhibition of GTPase-promoting activity of p120GAP, and confirm these data showing that downregulation of p210bcr/abl expression in CML calls with bcr/abl antisense oligodeoxynucleotides induces both inhibition of p210bcr/abl activation and stimulation of GTPase-promoting activity of p120GAP. Tyrosine phosphorylation of two p120GAP-associated proteins, p190 and p62, which may affect p120GAP activity, also depends on p210bcr/abl tyrosine kinase expression. Direct dependence of these effects on the kinase activity is proven in experiments in which expression of c-MYB protein in fibroblast-like cells or downregulation of c-MYB expression resulting in analogous inhibition of CML cell proliferation does not result in the same changes. Use of specific antisense oligodeoxynucleotides to downregulate p210bcr/abl reveals a requirement for functional p210bcr/abl in the proliferation of Philadelphia chromosome-positive CML primary cells. Thus, the p210bcr/abl-dependent regulation of p120GAP activity is responsible, in part, for the maintenance of p210bcr/abl in the active GTP-bound form, a crucial requirement for CML cell proliferation.

The Philadelphia chromosome (Ph1) is present in most chronic myelogenous leukemias (CML) (1, 2) and in a cohort of acute lymphocytic leukemia patients (3). This translocation results in the juxtaposition of the abl gene, normally on chromosome 9, and the bcr gene on chromosome 22. The bcr/abl hybrid genes generate fusion proteins in which the NH2-terminal region of c-abl is replaced by bcr exon 3, exon 2 (p210bcr/abl), or exon 1 (p185bcr/abl). These fusion proteins can transform immature hematopoietic cells in vitro (4, 5), cause CML or acute leukemia-like syndromes in mice (6–9), and are necessary for the growth of human CML cells in vitro and in vivo (10, 11). The p210bcr/abl and p185bcr/abl proteins possess constitutive tyrosine kinase activity, which is necessary for the transforming potential of the chimeric gene (12) and appears to be activated by sequences in the first bcr exon (13). bcr/abl proteins are localized mainly in the cytoplasm (14). The identification of the substrates involved in transducing the oncogenic signal initiated by the bcr/abl protein is likely to shed light on the mechanisms of leukemogenesis and may reveal new targets for antileukemia therapy.

The role of p210bcr/abl in signal transduction and cell growth is well established, based in part on the observations that functional wild-type activated p210bcr/abl (GTP-bound form) is required for mitogenic and oncogenic activity of tyrosine kinases (15, 16) and for the growth of normal human hematopoietic cells (17). p210bcr/abl activity is regulated by the opposing effects of guanine nucleotide exchange factors and GTPase activating proteins (GAPs). Exchange factors stimulate the exchange rate of GDP for GTP on p210bcr/abl and thereby activate it (18, 19). Activated receptor tyrosine kinases interact with and modulate the activity of the guanine nucleotide exchange factor Sos via the GRB-2 protein (20, 21). Recently, the physical interaction between p210bcr/abl and GRB-2, and its cooperation with p210bcr/abl to induce oncogenesis, have been demonstrated in primary murine bone marrow cell cultures and in rat fibroblasts (22).
GAPs (p120GAP and neurofibromatosis type 1 [NF-1] protein) stimulate the slow intrinsic rate of GTP hydrolysis on p21^{wt} and therefore act as negative regulators of p21^{wt} function (23-26). p120GAP forms a complex with bcr/abl proteins through its Src homology (SH)2 domain (27). Tyrosine phosphorylation of p120GAP and/or of the two GAP-associated proteins p190 and p62 was described in cells expressing bcr/abl (28), and was also observed in cells expressing other activated cytoplasmic tyrosine kinases (29, 30) or after cytokine stimulation (31). Phosphorylation of p190 and p62 was found in all CML cases examined, whereas p120GAP phosphorylation occurred only in some cases. p120GAP complexed with p190 has lower GTPase-promoting activity than monomeric p120GAP (30), which may allow p21^{wt} to remain in its active GTP-bound form. On the other hand, p120GAP is also a candidate as a p21^{wt} effector protein and may function downstream of p21^{wt} in the signal transduction pathway (32-34).

p120GAP may be involved in bcr/abl-dependent leukaemogenesis, based on its physical interaction with p120^{cr/abl} protein (27) and its requirement in Ph¹ cell growth (35), but it is also a well-known negative regulator of p21^{wt}. Accordingly, we asked whether p21^{wt} is activated by p210^{cr/abl} and is necessary for the proliferation of Ph¹ chromosome-positive, bcr/abl-dependent CML cells, and whether it regulates both p120GAP and p21^{wt} to allow them to work in concert in bcr/abl-dependent leukaemogenesis. We also investigated potential mechanisms of the bcr/abl-dependent p21^{wt} activation, focusing on the two p120GAP-associated proteins, p190 and p62, which might be involved in the regulation of GTPase-promoting activity of p120GAP. To this aim, we transiently expressed p120^{cr/abl} in cells to examine the effects of this protein on the activation of p21^{wt}, the GTPase-promoting activity of p120GAP, and the tyrosine phosphorylation of p190 and p62. To complement our findings using cells more relevant for the functional analysis of bcr/abl, similar experiments were also carried out in Ph¹ chromosome-positive CML cells in which p210^{cr/abl} expression was inhibited with bcr/abl antisense oligodeoxynucleotides. Finally, the role of p21^{wt} in the proliferation of CML cells was directly assessed by downregulating p21^{wt} expression with antisense oligodeoxynucleotides. Our results confirm that the status of p21^{wt} activation in CML cells depends on p210^{cr/abl} expression and produce the first direct demonstration that p210^{cr/abl} inhibits the GTPase-promoting activity of p120GAP, thus maintaining p21^{wt} in an active GTP-bound form in CML cells.

Materials and Methods

Cell Lines. BV173 cells with a t(9;22) chromosomal translocation established from a patient with CML-BC (CML-BC) (36), NB4 promyelocytic leukemia cells with a t(15;17) chromosomal translocation (37), HL-60 promyelocytic leukemia cells (38), and COS-7 simian fibroblast-like cells (39), were maintained in RPMI 1640 medium supplemented with 10% fetal bovine serum (FBS). Syrian hamster Tk-ts13 fibroblasts (40) were maintained in 1640 medium supplemented with 10% fetal bovine serum (FBS).

Primary Cells. Mononuclear cells from CML-BC and CML-chronic phase (CP) patients (>50,000/μl white blood cells, >95% Ph¹ metaphases) were obtained after separation of peripheral blood on Histopaque-1077 (Sigma Chemical Co., St. Louis, MO). Light-density mononuclear cells were incubated on petri dishes for 90 min at 37°C to remove most adherent cells. CD34⁺ cells were isolated as described using hematopoietic cellular antigen 1 mAb and polystyrene magnetic beads (17). Recovery of CD34⁺ cells from CML-BC and CML-CP varied between 8 and 41% and 6 and 20%, respectively.

Antisense (AS) and Sense (S) Oligodeoxynucleotides. The following phosphorothioate oligodeoxynucleotides, dissolved in IMDM were used: bcr/abl: 5'-AAGGGCTTCTCTCTTT-3' (b2/a2 AS) and 5'-TAAGAAGAAGCCCTTCT-3' (b2/a2 S); c-myb: 5'-ATAGCTGCTGGGCGTTCGGC-3' (AS) and 5'-GCCCGAAGAGCCGGCAGCACTA-3' (S); K-ras: 5'-TCAGTTTATATCAGCTAT-3' (AS) and 5'-ATAGCGGATATAGGTCG-3' (S); K-ras: 5'-GAGTTTATATCAGCTAT-3' (AS) and 5'-ATAGCTGAATGACCATCT-3' (S) and 5'-ATAGCTGAATGACCATCT-3' (S). These compounds were synthesized on a DNA synthesizer (model 380B; Applied Biosystems, Inc., Foster City, CA) by means of β-cyanoethylphosphoramidite chemistry. They have sequences complementary (or corresponding) to the breakpoint region of the bcr/abl transcripts (41), codons 2-9 of c-myb (42), and codons 1-6 of H-, K-, and N-ras mRNAs (43, 44, and 45, respectively).

Transfections. Cells were transfected using the calcium-phosphate precipitation method (46) with slight modifications. After transfection with either 10 μg of pSV-bcr/abl plasmid containing the 7.0-kb bcr exon 3/bcl exon 2 cDNA driven by SV-40 early promoter, pSV-c-myc plasmid containing a human c-myc full-length cDNA driven by the SV-40 early promoter (47), or the empty pSV plasmid, the cells were washed and incubated in serum-free medium supplemented with 0.1% BSA (Sigma Chemical Co.).

Oligomer Treatment of Cells. CML-CP or CML-BC cells (10⁶) were seeded into 24-well cell culture plates (Costar Corp., Cambridge, MA) in 0.4 ml IMDM supplemented with 2% heat-inactivated human AB serum and Hepes buffer. BV173, HL-60, and NB4 cells (10⁵/100 μl/well) were placed in 96-well culture plates in RPMI medium supplemented with 10% FBS, l-glutamine, and penicillin/streptomycin. For protein studies, 5 × 10⁴ BV173 or HL-60 cells/20 ml medium were placed in 175-cm² LUX tissue culture flasks (Nuanc, Inc., Naperville, IL). The first dose of sense or antisense oligodeoxynucleotides was added at the beginning of culture. The second and third doses (50% of the initial one) were added 24 and 48 h later. Control groups were left untreated. Where indicated, 50 U/ml IL-3 (Genetics Institute, Cambridge, MA) was added to the primary cells cultures together with the third dose of oligodeoxynucleotides. Primary cells were incubated for an additional 72 h before plating in 35-mm petri dishes. The cells in 96-well plates were counted on days 4, 6, and 8 and viability was assessed using the vital dye trypan blue. Cells in flasks were depleted of dead cells by density gradient centrifugation on Histopaque-1077, and counted before use.

** Colony Assay.** Duplicate cultures were prepared in semisolid methylcellulose medium (HCC 4230; Terry Fox Labs, Vancouver, Canada). IL-3 and human AB serum concentrations during culture were fivefold lower than those used during the oligodeoxynucleotide treatment. In some cultures, no IL-3 was added. Cultures were maintained for 10-12 d, after which plates were scanned with an inverted microscope and the number of colonies (>50 cells) and clusters (8-40 cells) were determined.

Immunoprecipitation and Western Blotting. Cells (2 × 10⁶) were solubilized in lysis buffer containing 10 mM Hepes, pH 7.5, 0.15 M NaCl, 10% glycerol, 10 μg/ml each leupeptin and aprotanin.
precipitated (1 h, 4°C with 5% IgG, 1% of anti-human GAP rabbit serum (Sigma Chemical Co.), 1 mM PMSF, 1 mM NaVO₄, 1% NP-40, and 5 mM EDTA. Postnuclear lysates were, if indicated, immunoprecipitated (1 h, 4°C) with 5 μl of anti-human GAP rabbit serum (UBI, Inc., Lake Placid, NY) precoupled to protein A-Sepharose (Pharmacia LKB Biotechnology, Piscataway, NJ). The beads were washed twice with lysis buffer and twice with 10 mM Hepes, 0.15 M NaCl, and 0.2% NP-40. Immunoprecipitated proteins were eluted in sample buffer, separated on 7.5% SDS-PAGE, and transferred to nitrocellulose (Micron Separations Inc., Westboro, MA). The filters were saturated with 0.5% gelatin in Tris-buffered saline (TBS) and then incubated (12 h, 4°C) with affinity-purified antiphosphotyrosine rabbit polyclonal antibody (ICN Biomedicals, Inc., Costa Mesa, CA), anti-ABL antibody (48), anti-v-H-ras mAb (Oncogene Science Inc., Uniondale, NJ) or anti-c-MYB antibody (UBI), as indicated. Filters were washed five times with 0.25% Tween, 0.25% NP-40 in TBS buffer. Bound proteins were detected using the enhanced chemiluminescence Western blotting detection system (Amersham Corp., Arlington Heights, IL). When indicated, after stripping, the filters were blotted sequentially with anti-human heat-shock protein (HSP) 72/73 (Oncogene Science Inc.) or anti-human p120GAP antiserum, as controls for loaded protein amounts.

GTP-bound p21⁺⁺ assay. BV173 cells (10⁷) were labeled with [³²P]orthophosphate (NEN Research Products, DuPont, Wilmington, DE) (3 h, 37°C) in phosphate-free medium, and then GTP/GDP-bound p21⁺⁺ was determined as described (49). In transfected Tk-ts13 and COS-7 cells, GTP-bound p21⁺⁺ was detected as described (50). Briefly, cells were washed with serum- and phosphate-free RPMI medium and incubated in 4 ml phosphate-free RPMI containing 0.25 mCi [³²P]orthophosphate. After 3–4 h at 37°C, the cells were washed once with ice-cold PBS, and 0.5 ml ice-cold buffer (50 mM Tris-HCl, pH 7.5, 20 mM MgCl₂, 150 mM NaCl, 0.5% NP-40, 10 μg/ml aprotinin, 0.5 mM PMSF), and finally, 50 μg/ml anti-v-H-ras rat mAb was added. After 1 h at 4°C, cells were dislodged by trituration and transferred to microcentrifuge tubes. p21⁺⁺ in the supernatant was immunoprecipitated using Protein A–agarose coupled to goat anti-rat IgG (Oncogene Science Inc.) and analyzed as described (49).

Assay of GTPase-promoting Activity of p120GAP. BV173 (10⁷), Tk-ts13 (5 × 10⁶) and COS-7 cells (5 × 10⁶) were assayed for GTPase-promoting activity using purified p21⁺⁺ protein (generous gift of Dr. F. McCormick, Onyx Pharmaceuticals, Richmond, CA) bound to α-²⁵P[GTP, as described (49), in the presence of 1 mM n-dodecyl-β-d-mannoside to inhibit NF-1 activity (51).

Results

p21⁺⁺/abl-dependent Model Systems. Downstream targets of p21⁺⁺/abl tyrosine kinase were analyzed in Tk-ts13 and COS-7 cells transiently expressing a full-length bcr/abl cDNA driven by the early SV-40 promoter, and in the Phi-positive cell line BV173 exposed to bcr/abl-specific phosphorothioate antisense oligodeoxynucleotides. Tk-ts13 and COS-7 cells were chosen for their high transfection efficiency and BV173 cells were selected for their exquisite sensitivity to p21⁺⁺/abl depletion. In both Tk-ts13 and COS-7 cells, p21⁺⁺/abl expression levels, as detected by Western blotting and reaction with an anti-ABL mAb, were highest 36–48 h after transfection (Fig. 1 A), although the protein was already detectable 12 h after transfection (data not shown). The appearance of several tyrosine phosphorylated proteins (including one of 210 kD) in cells transiently expressing p21⁺⁺/abl indicated that the protein had the expected kinase activity. In contrast, transfection of Tk-ts13 and COS-7 cells with the pSV vector only or with the pSV vector encoding c-MYB protein did not result in changes in protein tyrosine phosphorylation (Fig. 1 B).

Incubation of bcr/abl-dependent BV173 cells with bcr/abl antisense oligodeoxynucleotides resulted in a 80–90% decrease in expression of p21⁺⁺/abl, but not of HSP 72/73 (Fig. 2), the p85 subunit of PI-3 kinase (11), p120GAP, or p21⁺⁺ (data not shown). This treatment also led to complete inhibition of cell proliferation (Fig. 2). Proliferation of HL-60 and NB4 cell lines was not affected by treatment with bcr/abl antisense oligodeoxynucleotides (data not shown). BV173 cell proliferation was also inhibited after downregulation of c-MYB ex-

Figure 1. Expression of p21⁺⁺/abl and c-MYB proteins and tyrosine phosphorylation of cellular proteins in cells transfected with bcr/abl cDNA or c-myb cDNA containing plasmids. (A) Tk-ts13 (left) and COS-7 cells (right) were transfected with pSV-bcr/abl, or pSV plasmids; (B) Tk-ts13 cells were transfected with pSV-c-myb or pSV plasmids. After 48 h, total cellular proteins were isolated from 10⁶ cells, divided into two samples, and analyzed by Western blotting with anti-ABL (α-ABL), anti-c-MYB (α-c-MYB), or antiphosphotyrosine (α-P(Tyr)) antibodies, as indicated.
The results are expressed as percent GTP-bound/GTP plus GDP-bound p21146 as measured in Tk-ts13 and COS-7 cells 48 h after transfection with pSV-bcr/abl plasmid, relative to the levels in cells transfected with the pSV empty plasmid (Table 1). The three- to fourfold increase in GTP-bound p21146 likely underestimates the effects of p21146 because at most 70% of the cells are expected to be p21146 positive after transfection (40). Transient expression of c-MYB protein, which is essential for the growth of bcr/abl-dependent cells, but most likely acts downstream of p21146, did not affect the ratio of GTP/GDP associated with p21146 (Table 1).

To further examine the role of p21146 in the activation of p21146 in leukemic cells carrying the Phi1 chromosome, the active GTP-bound p21146 was measured in BV173 cells exposed to bcr/abl-specific antisense oligodeoxynucleotides for 72 h to inhibit p21146 expression. After the culture, dead cells were depleted by density gradient centrifugation and biochemical analysis was conducted on an equal number of cells from treated and control cultures. Downregulation of p21146 expression was associated with a sevenfold decrease in GTP-bound p21146 as compared with untreated, or sense-treated cells (Table 2). In control experiments, downregulation of c-MYB expression was concurrent with inhibition of BV173 proliferation, but did not change the amount of GTP-bound p21146 (Table 2), thus demonstrating the specificity in the linkage between p21146 expression and p21146 activation.

Table 1. Activation of p21146 in Tk-ts13 and COS-7 Cells upon Expression of p21146 or c-MYB Proteins

Cells	pSV	pSV-bcr/abl	pSV-c-myb
COS-7	5.1 ± 0.8	23.7 ± 4.7±	ND
TK-ts13	7.1 ± 2.7	23.3 ± 1.0×	7.4 ± 0.6

The indicated cells were transfected with the pSV plasmid, empty or containing bcr/abl or c-myb, as indicated. p21146 activation was analyzed after 48 h.

Table 2. Influence of p21146 or c-MYB Protein Downregulation on p21146 Activation in BV173 Cells

Oligodeoxynucleotide treatment	None	Sense	Antisense
bcr/abl	7.0 ± 0.8	7.4 ± 1.8	1.1 ± 1.5*
c-myb	7.9 ± 0.9	7.8 ± 1.5	7.6 ± 1.3

BV173 cells were exposed to the indicated oligodeoxynucleotides for 72 h, after which p21146 activation was determined. The results are expressed as percent GTP-bound/GTP plus GDP-bound p21146, mean ± SD, three (bcr/abl) and two (c-myb) experiments, respectively.

* p = 0.01, bcr/abl antisense versus bcr/abl sense and c-myb antisense group. (Student's t unpaired test).
Figure 3. Effect of p21\textasciitilde downregulation on proliferation of bcr/abl-dependent and -independent cell lines. (A) The indicated cells were treated with a mixture of H-, K-, and N-ras sense (−O−) or antisense (−II−) oligodeoxynucleotides (40+20+20 μg/ml). Control (−/−) cells were left untreated. The number of live cells was scored at the indicated days (experiment representative of four performed). Total proteins (B and C) were isolated from 106 cells after 72-h incubation, p21\textasciitilde protein and HSP 72/73 in BV173 (B) or HL-60 cells (C) were detected on the same blot by Western blotting using specific antibodies. Results are representative of two independent experiments.

GTPase-promoting Activity of p120GAP in Cells after Induction or Inhibition of p21\textasciitilde Expression. GTPase-promoting activity of p120GAP was assessed in cell lysates from Tk-ts13 or COS-7 cells 48 h after transfection with pSV-bcr/abl plasmid or pSV empty plasmid. Assays were done, in the presence of 1 mM n-dodecyl-β-mannoside to inhibit NF-1 activity, using purified p21\textasciitilde coupled to α-[32P]GTP as a substrate. p21\textasciitilde expression and protein tyrosine phosphorylation were examined in each experiment. The amounts of α-[32P] GTP that remained bound to p21\textasciitilde after a 10-min incubation with 20 and 75 μl of cell lysate from p21\textasciitilde expressing Tk-ts13 cells (60.1% and 45.1%, respectively) were higher than those measured after incubation with lysates from cells not expressing p21\textasciitilde (46.6% and 19.2%, respectively) (Fig. 4 A). Cell lysates from COS-7 cells expressing p21\textasciitilde also showed reduction in GTPase-promoting activity of p120GAP (46.6 and 75 μl of cell lysate from p21\textasciitilde-expressing cells, 67.2% and 64.8% of p21\textasciitilde was in the GTP-bound form versus 62.4 and 51% of nonexpressing cells, respectively) (Fig. 4 B). These experiments suggest that transient expression of p21\textasciitilde tyrosine kinase in transfected cells reduces the GTPase-promoting activity of p120GAP. After treatment with 20 and 75 μl of BV173 cell lysates obtained after 72-h incubation of the cells with bcr/abl phosphorothioate antisense oligodeoxynucleotides, only 44.0 and 6.9% of p21\textasciitilde remained in the α-[32P]GTP-bound form. In contrast, 58 and 31.1% of p21\textasciitilde was in α-[32P]GTP-bound form after incubation with 20 and 75 μl, respectively, of cell lysates obtained from sense oligodeoxynucleotide-treated cells (Fig. 4 C). Compared with sense oligodeoxynucleotide-treated cells, cell lysates from untreated cells had similar p120GAP activity. Downregulation of c-MYB expression was also associated with inhibition of BV173 cell growth, but this did not affect the GTPase-promoting activity of p120GAP, as compared with the control group (Fig. 4 C'). This argues against the possibility that the observed changes in p120GAP activity were due to inhibition of cell proliferation, and confirms that downregulation of p21\textasciitilde expression specifically results in enhancement of the GTPase-promoting activity of p120GAP.

Phosphorylation of p120GAP and of two GAP-associated Proteins, p190 and p62 after Induction or Inhibition of p21\textasciitilde Expression. Tyrosine phosphorylation of p120GAP and of two p120GAP-associated proteins, p190 and p62, was examined using antiphosphotyrosine antibody (α-P-Tyr) in Western blots of p120GAP immunoprecipitates from the cells transiently expressing p21\textasciitilde tyrosine kinase, but tyrosine phosphorylation of p190 was three- to fourfold higher as compared with that in cells transfected with insertless plasmid (Fig. 5 A). No tyrosine phosphorylation of p62 was detected in cells transfected with the insertless plasmid even after long exposure of the blot, whereas the band corresponding to p62 was intense in cells transfected with the pSV-bcr/abl plasmid (Fig. 5 A). Equal amounts of immunoprecipitated p120GAP were detected on the same blot.

To analyze whether p21\textasciitilde tyrosine kinase regulates tyrosine phosphorylation of p120GAP, p190, and p62 in CML cells, phosphorylation of these proteins was examined in BV173
Table 3. Effect of Inhibition of p21^{wt} (H-ras, K-ras, and N-ras) Expression on In Vitro Colony Formation by CML Primary Cells

Cells	Oligodeoxynucleotide Treatment	IL-3	Control	Sense	Antisense	Percent Inhibition
CML-CP 1[*]		+	310 ± 16[†]	317 ± 38	125 ± 35	61 (p = 0.001)⁾
CML-CP 2		+	400 ± 26	458 ± 14	148 ± 23	68 (p = 0.004)
CML-CP 3		+	120 ± 13	104 ± 4	29 ± 9	72 (p <0.001)
+[†]			27 ± 7	22 ± 4	4 ± 1	82 (p <0.001)
CML-CP 4		+	378 ± 21	378 ± 67	106 ± 4	72 (p = 0.03)
CML-BC 1		-	225 ± 19	215 ± 24	92 ± 37	57 (p <0.001)
+			1,120 ± 196	1,042 ± 189	454 ± 149	56 (p <0.001)
CML-BC 2		+	120 ± 17	119 ± 13	15 ± 7	87 (p <0.001)
+[†]			67 ± 13	67 ± 13	31 ± 4	54 (p <0.001)
CML-BC 3		+	507 ± 97	468 ± 101	113 ± 11	76 (p <0.001)
+[†]			67 ± 13	67 ± 13	31 ± 4	54 (p <0.001)
CML-BC 4		+	1,355 ± 426	1,280 ± 187	305 ± 13	76 (p <0.001)
+[†]			655 ± 35	630 ± 60	259 ± 16	59 (p = 0.01)
CML-BC 5		+	597 ± 13	604 ± 54	155 ± 35	76 (p <0.001)
+[†]			240 ± 38	216 ± 18	58 ± 15	73 (p <0.001)
CML-BC 6		-	69 ± 9	59 ± 10	6 ± 1	90 (p = 0.017)
+			329 ± 72	331 ± 37	147 ± 27	56 (p <0.001)
+[†]			148 ± 29	138 ± 42	24 ± 11	83 (p = 0.002)
CML-BC 7		+	359 ± 30	360 ± 45	105 ± 16	71 (p = 0.017)
CML-BC 8		+	142 ± 8	107 ± 9	33 ± 3	69 (p = 0.008)

160 or 80 μg/ml of the RAS oligodeoxynucleotides mixture was added at time 0 and the next two doses (each one half of the first dose) were added 24 and 48 h later. Cells (5 x 10⁴ partially purified mononuclear cells or 5 x 10³ CD34⁺ cells per plate) were plated after 120 h culture. Bcr/abl antisense oligodeoxynucleotide treatment inhibited colony formation by 40-50% (CML-CP) and 60-90% (CML-BC) in comparison with sense treatment.

* PBMC were obtained from 12 CML patients, as indicated.
† Numbers are colonies per plate, mean of triplicates ± SD.
§ Inhibition of colony formation by antisense versus sense oligodeoxynucleotide treatment. Statistical significance (by Student's t unpaired test) is reported in parentheses.

Discussion

This study was undertaken to determine whether p21^{wt} and p120GAP, two signal transduction pathway molecules possibly involved in bcr/abl-induced leukemogenesis, are regulated by p21^{ker/abl} tyrosine kinase. We used two separate
experimental approaches: transient expression of p210_{ber/abl} protein in fibroblasts and downregulation of p210_{ber/abl} expression in Philadelphia chromosome-positive cells by their exposure to antisense oligodeoxynucleotides directed against <i>ber/abl</i> mRNA. Results obtained with both approaches indicated that the status of p21^{nu} activation depended on p210_{ber/abl} expression. Transient expression of p210_{ber/abl} upon cDNA transfection in Tk-ts13 and COS-7 cells stimulated p21^{nu}, as indicated by the increased amount of its GTP-bound form. Conversely, selective inhibition of p210_{ber/abl} expression in CML cells by <i>ber/abl</i>-targeted antisense oligodeoxynucleotides resulted in diminished GTP-bound p21^{nu}. In control experiments, the human c-MYB protein, a transcriptional regulator that presumably functions only in the nucleus, did not affect p21^{nu}. The antisense oligodeoxynucleotide strategy was previously employed by others (52, 53) to inhibit p21^{nu} expression. Our results using this approach directly demonstrate that p21^{nu} is necessary for the proliferation of CML cells and suggest that its activation by p210_{ber/abl} plays a crucial role in <i>ber/abl</i>-induced leukemogenesis.

The possibility that an oncogenic point mutation in p21^{nu}, rather than the stimulation of wild-type p21^{nu} by p210_{ber/abl}, is responsible for its constitutive activation and consequent proliferation of CML cells, especially CML-Bc, is unlikely because oncogenic point mutations in the <i>RAS</i> genes are rarely found in CML (54–56). <i>N-ras</i> point mutations have been detected in a very small group of CML-Bc patients (56). We have detected no point mutations in <i>N-ras</i> exon 1 and exon 2 in several CML-Bc patients whose <i>N-ras</i> we sequenced (Skorski, T., unpublished data). Thus, together with our previous findings that proliferation of growth-factor-stimulated normal bone marrow progenitor cells depends on wild-type p21^{nu} (17), the results reported here support a primary role for wild-type p21^{nu} as a key signal transducing molecule in Ph¹ chromosome-positive hematopoietic cells. Presumably, in the leukemic cells, p21^{nu} is abnormally activated by p210_{ber/abl}, resulting in disruption of the mechanisms regulating ligand-receptor-activated signal transduction pathways.

Tyrosine kinases might activate p21^{nu} proteins through distinct pathways, depending on the cell type and on conditions that favor a particular pathway among several alternatives. p21^{nu} activation correlates with decreased p120GAP activity in T and B cells after activation by PHA and antigen, respectively (49, 57). Binding of epidermal growth factor (EGF) to its receptor stimulates p21^{nu} (58) by changing the intracellular localization of guanine nucleotide exchange factor, thus modulating its access to the substrate, and decreasing p120GAP GTPase-promoting activity (59). Nerve growth factor stimulates both exchange factor and GTPase-promoting activities (60), and p21^{nu} activation is controlled by the balance in activity between these two regulatory proteins. The mechanism(s) of p21^{nu} activation by p210_{ber/abl} in CML cells is poorly understood. However, a recent publication (22) suggests that the GRB-2/Sos pathway may be involved. The association of BCR/ABL protein with GRB-2 reported in that manuscript is required for the activation of the p21^{nu} signaling pathway in transfected fibroblasts and for transformation of fibroblasts and murine bone marrow cultures.

Because p210_{ber/abl} is complexed with p120GAP in CML cells (28, 35) and activated p21^{nu} (this report), we investigated whether the latter effect depends on modulation of GTPase-promoting activity of p120GAP. Using two distinct approaches to modulate p210_{ber/abl} expression i.e., transient expression in fibroblasts and inhibition by antisense oligodeoxynucleotide supplemented with pSV-<i>ber/abl</i> (A) or pSV plasmids (O). BV173 cells (C) were treated with <i>ber/abl</i> sense (A) <i>ber/abl</i> antisense (I) or <i>c-myc</i> antisense (A) oligodeoxynucleotides (40+20+20 μg/ml), or left untreated (O). After 48 (A and B) or 72 h (C), cell lysates were prepared and assayed for GTPase-promoting activity on p21^N using recombinant p21^N coupled to α-[32P]GTP. Results are expressed as percent GTP-bound/GTP plus GDP-bound forms of p21^N from two independent experiments. Bars are SD.

Figure 4. Effect of p210_{ber/abl} expression on GTPase-promoting activity of p120GAP. Tk-ts13 (A) and COS-7 cells (B) were transfected with pSV-<i>ber/abl</i> (●) or pSV plasmids (O). BV173 cells (C) were treated with <i>ber/abl</i> sense (▲) <i>ber/abl</i> antisense (■) or <i>c-myc</i> antisense (△) oligodeoxynucleotides (40+20+20 μg/ml), or left untreated (O). After 48 (A and B) or 72 h (C), cell lysates were prepared and assayed for GTPase-promoting activity on p21^N using recombinant p21^N coupled to α-[32P]GTP. Results are expressed as percent GTP-bound/GTP plus GDP-bound forms of p21^N from two independent experiments. Bars are SD.
oxynucleotides in CML cells, we demonstrate that p210^{ker/abl} negatively regulates the GTPase-promoting activity of p120GAP. Again, deregulation of c-MYB expression in CML cells did not affect p120GAP activity. These results strongly support the conclusion that activation of p21^{mu} by p210^{ker/abl} tyrosine kinase in CML cells depends, at least in part, on inhibition of GTPase-promoting activity of p120GAP. It is possible that both p120GAP-dependent (this paper) and GRB-2/Sos-dependent mechanisms of p21^{mu} activation work in concert in ker/abl-dependent leukemic cells. p210^{ker/abl} may activate p21^{mu} via GRB-2/Sos and, at the same time, inhibit the rate of p21^{mu} inactivation (hydrolysis of GTP-p21^{mu} to GDP-p21^{mu}), decreasing the GTPase-promoting activity of p120GAP. The existence of the GRB-2/Sos activation mechanism awaits, however, confirmation in Ph¹ chromosome-positive cells.

The mechanism(s) by which p210^{ker/abl} might regulate the GTPase-promoting activity of p120GAP was analyzed. Two proteins, p190 and p62, are tyrosine phosphorylated and are associated with p120GAP in cells expressing oncogenic tyrosine kinases, including p210^{ker/abl} (61, 30, 62). p190 was shown to inhibit in vitro GTPase-promoting activity when complexed with p120GAP (30). Our experiments expand this observation to show that p210^{ker/abl} but not c-MYB, increases the proportion of tyrosine phosphorylated p190 and p62 detected in complex with p210GAP (30). Elevated levels of tyrosine phosphorylated p190 complexed with p210GAP correlate with increased amount of GTP-bound p21^{mu} (62, 63). This raises the possibility that p210^{ker/abl} inhibits the GTPase-promoting activity of p120GAP by increasing the tyrosine phosphorylation of p190 complexed with it. Alternatively, p210^{ker/abl} might bind p120GAP and inactivate it or make it less available for interaction with p21^{mu}. The first mechanism was described for activated EGF receptor (59).

The consequence(s) of p21^{mu}-p120GAP interaction is a matter of controversy (32, 64). The COOH-terminal region of p120GAP is sufficient to accelerate p21^{mu} GTPase activity and therefore to inactivate p21^{mu} (65). The NH₂-terminal region contains two SH2 domains and an intervening SH3 domain, all implicated in the interactions between tyrosine kinases and their target molecules (66). p120GAP interacts with the domain of p21^{mu} that has effector function (67), and it has been suggested that GAP serves both as a target for activated p21^{mu} (33, 34) and as its negative regulator (25, 26). Hence, the transient interaction of p120GAP with p21^{mu}-GTP at the plasma membrane might simultaneously induce GTP hydrolysis and generate a downstream signal involving a p120GAP-associated activity or protein. Indeed, p120GAP SH2-SH3 domains, or the SH3 domain per se, may transduce signals from p21^{mu} to activate fos promoter in mammalian cells (33) and to block germinal vesicle breakdown induced by oncogenic H-ras in Xenopus oocytes (34). p21^{mu}-GTP interacts with the COOH-terminal region of p120GAP and is consequently altered to p21^{mu}-GDP. This reaction is thought to induce a conformational change(s) in the SH2-SH3 domains, allowing them to interact with phosphorylated proteins (33).

These observations may explain the role of p120GAP in p210^{ker/abl}-dependent cells both as signal transducer (35), and as negative regulator of RAS activity (this paper). Here, we report that the amount of tyrosine phosphorylated p190 and p62 detected in complex with p120GAP, which is not tyrosine phosphorylated. Elevated levels of tyrosine phosphorylated p190 complexed with p210GAP correlate with increased amount of GTP-bound p21^{mu} (62, 63). This raises the possibility that p210^{ker/abl} inhibits the GTPase-promoting activity of p120GAP by increasing the tyrosine phosphorylation of p190 complexed with it. Alternatively, p210^{ker/abl} might bind p120GAP and inactivate it or make it less available for interaction with p21^{mu}. The first mechanism was described for activated EGF receptor (59).
phosphorylation on tyrosine residues correlates with the transforming activity of p210^{bcr/abl} (69), and it has been proposed to provide a link between phospholipase C (PLC_γ-1) and p21^{mu} activation pathways (70). p190, in addition to regulating the GTPase-promoting activity of p120GAP, may function as a transcriptional repressor (61) and may serve as a bridge between ras and rho signal transduction pathways (71). Thus, it is possible that p62 and p190 have signal transducing functions on their own.

In summary, we directly proved the hypothesis that p21^{mu} expression is necessary for the <i>bcr/abl</i>-dependent proliferation of Ph¹ CML cells. Our data demonstrate that p210^{bcr/abl} tyrosine kinase stimulates p21^{mu} activity and inhibits GTPase-promoting activity of p120GAP, which may help p21^{mu} to remain in an active GTP-bound form in CML cells. The amount of tyrosine phosphorylated p190 and p62 proteins detectable in complex with p120GAP is increased by p210^{bcr/abl}, suggesting that these proteins may regulate GTPase-promoting activity of p120GAP and/or serve as signal transducing molecules in <i>bcr/abl</i>-dependent leukemogenesis.

We thank Larry DeDionisio, Laura Christensen, and Annette Raible of Lynx Therapeutics, Inc. for their skilled preparation of the phosphorothioate oligodeoxynucleotides. We thank Dr. R. Arlinghaus of MD Anderson Cancer Center, University of Texas, Houston, TX for the generous gift of the 8E9 anti-ABL antibody.

This work was supported in part by National Institutes of Health (NIH) grants CA-46782, CA45826, CA-37155, and American Cancer Society grant CH-492. D.-H. Ku is supported by NIH training grant T32 CA-09670. B. Calabretta is a scholar of the Leukemia Society of America.

Address correspondence to Dr. B. Calabretta, Department of Microbiology and Immunology, Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107.

Received for publication 31 January 1994 and in revised form 11 March 1994.

References

1. Shtivelman, E., B. Lifshitz, R.P. Gale, B.A. Roe, and E. Canaani. 1985. Fused transcript of abl and <i>br</i> genes in chronic myelogenous leukemia. <i>Nature (Lond.)</i>. 315:550.

2. Epner, D.E., and H.P. Koeflter. 1990. Molecular genetics advances in chronic myelogenous leukemia. <i>Ann. Int. Med.</i> 113:3.

3. Clark, S.S., J. McLaughlin, M. Timmonis, A.M. Pendergast, Y. Ben-Neriah, L. Dow, G. Rovera, S.D. Smith, and O.N. Witte. 1988. Expression of a distinctive <i>bcr-abl</i> oncogene in Ph¹-positive acute lymphoblastic leukemia (ALL). <i>Science (Wash. DC)</i>. 239:775.

4. McLaughlin, J., E. Chinese, and O.N. Witte. 1987. In vitro transformation of immature hematopoietic cells by the P210 BCR/ABL oncogene product of the Philadelphia chromosome. <i>Proc. Natl. Acad. Sci. USA</i>. 84:6558.

5. Gishizky, M.L, and O.N. Witte. 1992. Initiation of deregulated growth of multipotent progenitor cells by <i>bcr-abl</i> in vitro. <i>Science (Wash. DC)</i>. 256:836.

6. Daley, G.Q., R.A. Van Etten, and D. Baltimore. 1990. Induction of chronic myelogenous leukemia in mice by the P210^{bcr/abl} gene of the Philadelphia chromosome. <i>Science (Wash. DC)</i>. 247:824.

7. Heisterkamp, N., G. Jenster, J. ten Hoeve, D. Zovich, P.K. Pattengale, and J. Groffen. 1990. Acute leukemia in <i>bcr-abl</i> transgenic mice. <i>Nature (Lond.)</i>. 344:251.

8. Elefanty, A.G., I.K. Harilaharan, and S. Cory. 1990. <i>bcr-abl</i>, the hallmark of chronic myeloid leukemia in man, induces multiple haematopoietic neoplasms in mice. <i>EMBO (Eur. Mol. Biol. Organ.)</i> J. 9:1069.

9. Kelliher, M.A., J. McLaughlin, O.N. Witte, and N. Rosenberg. 1990. Induction of a chronic myelogenous leukemia-like syndrome in mice with <i>v-abl</i> and BCR/ABL. <i>Proc. Natl. Acad. Sci. USA</i>. 87:6649.

10. Szczylik, C., T. Skorski, N.C. Nicolaides, L. Manzella, L. Malaguarnera, D. Venturelli, A.M. Gewirtz, and B. Calabretta. 1991. Selective inhibition of leukemia cell proliferation by BCR-<i>ABL</i> antisense oligodeoxynucleotides. <i>Science (Wash. DC)</i>. 253:562.

11. Skorski, T., M. Nieborowska-Skorska, N.C. Nicolaides, C. Szczylik, P. Iversen, R.V. Iozzo, G. Zon, and B. Calabretta. 1994. Suppression of Philadelphia leukemia cell growth in mice by <i>bcr/abl</i> antisense oligodeoxynucleotides. <i>Proc. Natl. Acad. Sci. USA</i>. In press.

12. Lugo, T.G., A.M. Pendergast, A.J. Muller, and O.N. Witte. 1990. Tyrosine kinase activity and transformation potency of <i>bcr-abl</i> oncogene products. <i>Science (Wash. DC)</i>. 247:1079.

13. Pendergast, A.M., A.J. Muller, M.H. Havlik, Y. Maru, and O.N. Witte. 1991. <i>BCR-ABL</i> sequences essential for transformation by the <i>BCR-ABL</i> oncogene bind the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner. <i>Cell</i>. 66:161.

14. Dhut, S., T. Champlin, and B.D. Young. 1990. BCR-<i>ABL</i> and <i>ABL</i> proteins: biochemical characterization and localization. <i>Leukemia</i>. 4:745.

15. Mulcahy, L.S., M.R. Smith, and D.W. Stacey. 1985. Requirement for <i>ras</i> proto-oncogene function during serum-stimulated growth of NIH 3T3 cells. <i>Nature (Lond.)</i>. 313:241.

16. Smith, M.R., S.J. DeGudicibus, and D.W. Stacey. 1986. Requirement for <i>c-ras</i> proteins during viral oncogene transformation. <i>Nature (Lond.)</i>. 320:540.

17. Skorski, T., C. Szczylik, M.Z. Ratajczak, L. Malaguarnera, A. Gewirtz, and B. Calabretta. 1992. Growth factor-dependent inhibition of normal hematopoiesis by <i>N-ras</i> antisense oligodeoxynucleotides. <i>Exp. Med.</i> 175:743.

18. Bollag, G., and F. McCormick. 1991. Regulators and effectors...
of ras proteins.

19. Downward, J. 1992. Regulatory mechanisms for ras proteins.
 Bioassays. 14:177.

20. Lowenstein, E.J., R.J. Daly, A.G. Batzer, W. Li, B. Margolis,
 R. Lammers, A. Ulrich, E.Y. Skolnik, D. Bar-Sag, and J. Schlesinger.
 1992. The SH2 and SH3 domain-containing protein
 GRB2 links receptor tyrosine kinases to ras signalling. Cell.
 70:431.

21. Egan, S.E., B.W. Giddings, M.W. Brooks, L. Buday, A.M.
 Szilezak, and R.A. Weinberg. 1993. Association of Ras
 exchange protein with Grb2 is implicated in tyrosine kinase
 signal transduction and transformation. Nature (Lond.). 363:45.

22. Pendergast, A.M., L.A. Quilliam, L.D. Cripe, C.H. Bassign,
 Z. Dal, N. Li, A. Batzer, K.M. Rabun, C.J. Der, J. Schlesinger,
 and M. Gishizky. 1993. BCR-ABL-induced oncogenesis
 is mediated by direct interaction with the SH2 domain
 of the GRB-2 adaptor protein. Cell. 75:175.

23. Ballester, R., D. Marchuk, M. Boguski, A. Saulino, R. Letcher,
 W. Cole, and F. Collins. 1990. The NFI locus encodes a
 protein functionally related to mammalian GAP and yeast IRA
 proteins. Cell. 63:851.

24. Martin, G.A., D. Viskochil, G. Bollag, P.C. McCabe, W.J.
 Grosier, H. Haubruck, L. Conroy, R. Clark, P. O'Connell,
 R.M. Cawther, et al. 1990. The GAP-related domain of the
 neurofibromatosis type 1 gene product interacts with ras p21.
 Cell. 63:843.

25. Tsahay, M., and F. McCormick. 1987. A cytoplasmic protein
 stimulates normal N-ras p21 GTase, but does not affect
 oncogenic mutants. Science (Wash. DC). 238:542.

26. Vogel, U.S., R.A.F. Dixon, M.D. Schaber, R.E. Diehl, M.S.
 Marshall, E.M. Scolnick, I.S. Sigal, and J.B. Gibbs. 1988.
 Cloning of bovine GAP and its interaction with oncogenic
 ras p21. Nature (Lond.). 335:90.

27. Muller, A.J., and F. McCormick. 1991. Differential regula-
 tions of ras expression by anti-sense nonionic deoxynucleotide
 analogs. Mol. Cell. Biol. 11:1804.

28. Druker, B.K., K. Okuda, U. Matulonis, R. Salga, T. Roberts,
 and J.D. Griffin. 1992. Tyrosine phosphorylation of rasGAP
 and associated proteins in chronic myelogenous leukemia
 cells. Blood. 79:2215.

29. Ellis, E., M. Moran, F. McCormick, and T. Pawson. 1990.
 Phosphorylation of GAP and GAP-associated proteins by
 transforming and mitogenic tyrosine kinases. Nature (Lond.). 343:377.

30. Moran, M., P. Polakis, F. McCormick, T. Pawson, and C. Ellis.
 1991. Protein-tyrosine kinases regulate the phosphorylation,
 protein interaction, subcellular distribution, and activity of
 p21GTPase-activating protein. Mol. Cell. Biol. 11:804.

31. Molloy, C.J., D.P. Bottraro, T.P. Fleming, M.S. Marshall, J.B.
 Gibbs, and S.A. Aaronson. 1989. PDGF induction of tyrosine
 phosphorylation of GTPase activating protein. Nature (Lond.).
 342:711.

32. McCormick, F. 1989. ras GTPase activating protein: signal
 transmitter and signal terminator. Cell. 56:5.

33. Medema, R.H., W.L. DeLaat, G.A. Martin, F. McCormick,
 and J.L. Bos. 1992. GTPase-activating protein SH2-SH3 dom-
 ains induce gene expression in a Ras-dependent fashion. Mol.
 Cell. Biol. 12:3425.

34. Duchesne, M., F. Schweighoffer, F. Parker, F. Clerc, Y. Frobert,
 M.N. Thang, and B. Tocquev. 1993. Identification of SH3 dom-
 ain of GAP as an essential sequence for Ras-GAP-mediated
 signalling. Science (Wash. DC). 259:525.

35. Skorski, T., P. Kanakaraj, M. Nieborowska-Skorska, M.
 Ratajczak, C. Szczylwik, G. Zon, R.B. Arlingshaus, A. Gewirtz,
 B. Perussia, and B. Calabretta. 1993. p120 GAP requirement
 in normal and malignant human hematopoiesis. J. Exp. Med.
 178:1923.

36. Pegoaroi, L., L. Matera, J. Ritz, A. Levis, A. Palumbo, and
 G. Biagini. 1983. Establishment of a Ph1 positive human cell
 line (BV173). J. Natl. Cancer Inst. 70:447.

37. Lanotte, M., V. Martin-Thouvenin, S. Najman, P. Balerini, F.
 Valensi, and R. Berger. 1991. NBR4, a maturation inducible
 cell line with t(15;17) marker isolated from a human acute
 promyelocytic leukemia (M3). Blood. 77:1080.

38. Collins, S.J., R.C. Gallo, and R.E. Gallagher. 1977. Continuous
 growth and differentiation of human myeloid leukemic cells
 in suspension culture. Nature (Lond.). 270:347.

39. Gluzman, Y. 1981. SV40-transformed simian cells support the
 replication of early SV40 mutants. Cell. 23:175.

40. Shen, Y.M., R.R. Hirschorn, W.E. Mercer, E. Sarmac, Y.
 Tsutsui, K.J. Soprano, and R. Baserga. 1982. Gene transfer:
 DNA microinjection compared with DNA transfection with
 a very high efficiency. Mol. Cell. Biol. 2:1145.

41. Shitivelman, E., B. Lifshitz, R.P. Gale, B.A. Roe, and E.
 Canani. 1986. Alternative splicing of RNAs transcribed from
 the human abl gene and from the c-erb abl fused gene.
 Cell. 47:277-284.

42. Majello, B., L.C. Kenyon, and R. Dalla Fava. 1986. Human
 c-myb protooncogene: nucleotide sequence of cDNA and or-
 ganization of the genomic locus. Proc. Natl. Acad. Sci. USA.
 83:9636-9640.

43. Capon, D.J., E.Y. Chen, A.D. Levinson, P.H. Seeburg, and
 D.V. Goeddel. 1983. Complete nucleotide sequences of the T24
 human bladder carcinoma oncogene and its normal homologue.
 Nature (Lond.). 302:33.

44. Kahn, S., P. Yamamoto, C. Almoguera, E. Winter, K. For-
 rester, J. Jordan, and M. Perouch. 1987. The c-K-ras gene and
 human cancer. Antisense Res. 7:639.

45. Hall, A., and R. Brown. 1985. Human N-ras: cDNA cloning
 and gene structure. Nucleic Acids Res. 13:5255.

46. Huttner, K.M., J.A. Barbosa, G.A. Scangos, D.D. Pratchea,
 and F.H. Ruddle. 1982. Complete nucleotide sequences of the T24
 human bladder carcinoma oncogene and its normal homologue.
 Nature (Lond.). 302:33.

47. Clarke, M.F., J.F. Kukowska-Latallo, E. Westin, M. Smith,
 and E.V. Prochownik. 1988. Constitutive expression of a c-myb
 cDNA blocks Friend murine erythroleukemia cell differen-
 tiation. Mol. Cell. Biol. 8:884.

48. Campbell, M.L., W. Li, and R.B. Arlinghaus. 1990. P210
 BCR-ABL is complexed to p160 BCR and ph-P53 protein in
 K562 cells. Oncogene. 5:773.

49. Downward, J., J.D. Graves, P.H. Wame, S. Rayter, and D.A.
 Cantrell. 1990. Stimulation of p21 expression upon T-cell activation.
 Nature (Lond.). 346:719.

50. Gibbs, J.B., M.S. Marshall, E.M. Scolnick, R.A.F. Dixon, and
 U.S. Vogel. 1990. Modulation of guanine nucleotides bound
 to Ras in NIH3T3 cells by oncogenes, growth factors, and
 the GTPase activating protein (GAP). J. Biol. Chem. 265:20437.

51. Bollag, G., and F. McCormick. 1991. Differential regulations
 of rasGAP and neurofibromatosis gene product activities.
 Nature (Lond.). 357:576.

52. Brown, D., A. Yu, P. Miller, K. Blake, C. Wei, H.-F. Kung,
 R.J. Black, P.O.P. Tsu, and E.H. Chang. 1989. Modulation of
 ras expression by anti-sense nonionic deoxynucleotide analogs.
 Oncogene Res. 4:243.

53. Daaka, Y., and E. Wickstrom. 1990. Target dependence of anti-
 sense oligodeoxynucleotide inhibition of c-Ha-ras p21 expres-
sion and focus formation in T24-transformed NIH 3T3 cells.

Oncogene Research. 5:267.

Janssen, J.W.G., A.C.M. Steenvoorde, J. Lyons, B. Anger, J.U. Bohlke, J.L. Bos, H. Seliger, and C. Bartram. 1987. RAS gene mutations in acute and chronic myelocytic leukemias, chronic myeloproliferative disorders, myelodysplastic syndromes. Proc. Natl. Acad. Sci. USA. 84:9228.

Collins, S.J., M. Howard, D.F. Andrews, E. Agnra, and J. Radich. 1989. Rare occurrence of N-ras point mutations in Philadelphia chromosome positive chronic myeloid leukemia. Blood. 73:1028.

Ahuja, H.G., A. Foti, M. Bar-Eli, and M.J. Cline. 1990. The pattern of mutational involvement of RAS genes in human hematologic malignancies determined by DNA amplification and direct sequencing. Blood. 75:1684.

Lazarus, A.H., K. Kawauchi, M.J. Rapoport, and T.L. Delovitch. 1993. Antigen-induced B lymphocyte activation involves the p21^W and rasGAP signaling pathway. J. Exp Med. 178:1765.

Buday, L., and J. Downward. 1993. Epidermal growth factor regulates p21^W through the formation of a complex of receptor, Grb2 adaptor protein, and Sos nucleotide exchange factor. Cell. 73:611.

Serth, J., W. Weber, M. Frech, R.A. Wittinghofe, and A. Pingoud. 1992. Binding the H-ras p21 GTPase activating protein by the activated epidermal growth factor receptor leads to inhibition of the p21 GTPase activity in vitro. Biochemistry. 31:6361.

Li, B.-Q., D. Kaplan, H. Kung, and T. Kamata. 1992. Nerve growth factor stimulation of ras-guanine nucleotide exchange factor and GAP activities. Science (Wash. DC). 256:1456.

McWhirter, J.R., and TV.J. Wang. 1991. Activation of tyrosine kinase and microfilament-binding functions of c-abl by bcr sequences in bcr/abl fusion proteins. Mol. Cell. Biol. 11:1553.

Settleman, J., V. Narasimhan, L.C. Foster, and R.A. Weinberg. 1992. Molecular cloning of cDNAs encoding the GAP-associated protein p190: implications for a signalling pathway from RAS to the nucleus. Cell. 69:539.

Chang, J.H., L.K. Wilson, J.S. Moyers, K. Zhang, and S.J. Parson. 199. Increased levels of p21^W-GTP and enhanced DNA synthesis accompany elevated tyrosyl phosphorylation of GAP-associated proteins, p190 and p62, in c-sr overexpressors. Oncogene. 8:959.

Hall, A. 1990. ras and GAP—Who's controlling whom? Cell. 61:921.

Marshall, M.S., W.S. Hill, S.N. Assunta, U.S. Vogel, M.D. Schaber, E.M. Scolnick, R.A.F. Dixon, I.S. Sigal, and J.B. Gibbs. 1989. A C-terminal domain of GAP is sufficient to stimulate ras p21GTPase activity. EMBO (Eur. Mol. Biol. Organ.) J. 8:1105.

Moran, M.F., C.A. Koch, D. Anderson, C. Ellis, L. England, G.S. Martin, and T. Pawson. 1990. Src homology region 2 domains direct protein-protein interactions in signal transduction. Proc. Natl. Acad. Sci. USA. 87:8622.

Adari, H., D.R. Lowy, B.M. Willumsen, C.J. Der, and F. McCormick. 1988. Guanosine triphosphatase activating protein (GAP) interacts with the p21^W effector binding domain. Science (Wash. DC). 240:518.

Wong, G., O. Muller, R. Clarke, L. Conroy, M.F. Moran, P. Polakis, and F. McCormick. 1992. Molecular cloning and nucleic acid binding properties of the GAP-associated tyrosine phosphoprotein p62. Cell. 69:551.

Muller, A.J., J.C. Young, A.M. Pendergast, M. Pondel, N.R. Landau, D.R. Littman, and O.N. Witte. 1991. BCR first exon sequences specifically activate the BCR/ABL tyrosine kinase oncogene of Philadelphia chromosome-positive human leukemias. Mol. Cell. Biol. 359:153.

Hubert, P., P. Debré, L. Boumsell, and G. Bismuth. 1993. Tyrosine phosphorylation and association with phospholipase C-y1 of the GAP-associated 62-kD protein after CD2 stimulation of Jurkat T cell. J. Exp. Med. 178:1587.

Settleman, J., C.F. Albright, L.C. Foster, and R. Weinberg. 1992. Association between GTPase activators for Rho and Ras families. Nature (Lond.). 359:153.