CEP3 Encodes a Centromere Protein of Saccharomyces cerevisiae

Alexander V. Strunnikov, Jeffrey Kingsbury, and Douglas Koshland
Carnegie Institution of Washington, Department of Embryology, Baltimore, Maryland 21210

Abstract. We have designed a screen to identify mutants specifically affecting kinetochore function in the yeast Saccharomyces cerevisiae. The selection procedure was based on the generation of "synthetic acentric" minichromosomes. "Synthetic acentric" minichromosomes contain a centromere locus, but lack centromere activity due to combination of mutations in centromere DNA and in a chromosomal gene (CEP) encoding a putative centromere protein. Ten conditional lethal cep mutants were isolated, seven were found to be alleles of NDC10 (CEP2) encoding the 110-kD protein of yeast kinetochore. Three mutants defined a novel essential gene CEP3. The CEP3 product (Cep3p) is a 71-kD protein with a potential DNA-binding domain (binuclear Zn-cluster). At nonpermissive temperature the cep3 cells arrest with an undivided nucleus and a short mitotic spindle. At permissive temperature the cep3 cells are unable to support segregation of minichromosomes with mutations in the central part of element III of yeast centromere DNA. These minichromosomes, when isolated from cep3 cultures, fail to bind bovine microtubules in vitro. The sum of genetic, cytological and biochemical data lead us to suggest that the Cep3 protein is a DNA-binding component of yeast centromere. Molecular mass and sequence comparison confirm that Cep3p is the p64 component of centromere DNA binding complex Cbf3 (Lechner, 1994).

Chromosome segregation in mitosis requires the presence of a specialized chromosomal structure that facilitates binding of chromosomes to the microtubules (mt) of the mitotic spindle. Functionally, this structure could be defined as a linker between DNA and microtubules, and is known as the centromere, or kinetochore (used interchangeably here). Structural organization of centromeres varies dramatically among evolutionary remote species and can be extremely complex (Brinkley et al., 1992; Grady et al., 1992). This complexity makes the structure-function analysis of a centromere a very difficult challenge. Fortunately, the centromere of the budding yeast, Saccharomyces cerevisiae, (Clarke and Carbon, 1980) provides an excellent model for studying centromere organization and activity. The centromere DNA (CenDNA) of S. cerevisiae is less than 150 bp in length (Bloom and Carbon, 1982), drastically smaller than CenDNA of other well studied eukaryotes (Pluta et al., 1990). The CenDNA in yeast thus provides a space for binding of only limited number of protein molecules. Also, only a single microtubule is attached to each kinetochore in the cells of budding yeast (Peterson and Ris, 1976). These facts outline the unique status of S. cerevisiae centromere in the list of model segregation loci.

Upon the identification of the centromere locus of yeast chromosomes (Clarke and Carbon, 1980), the efforts of several groups were focused on the identification of proteins associated with centromere DNA in vivo, in conjunction with the dissection of structural properties of CenDNA itself. It has been suggested that yeast CenDNA can be subdivided into three distinct structural elements (recently reviewed in Hegemann and Fleig, 1993). The first, CDEI is associated with the CPI/Cbf1p/Cpflp protein (Bram and Kornberg, 1987; Baker et al., 1989; Cai and Davis, 1990; Mellor et al., 1990). Both CDEI and CPI are dispensable for centromere function under the standard laboratory conditions. The second element, CDEII, is an A- and T-rich region protected from nuclease digestion and/or modification in vivo (Bloom et al., 1984; Densmore et al., 1991). The CDEII element is required for proper centromere function, however there is no data, so far, indicating that it directly binds to a specific polypeptide. Finally, the CDEIII element is absolutely essential for centromere assembly and activity, both in vivo and in vitro (Hegemann et al., 1988; Lechner and Carbon, 1991; McGrew et al., 1986; Panzeri et al., 1985). The multisubunit CDEIII-binding complex Cbf3 has been purified and partially characterized (Lechner and Carbon, 1991). The Cbf3 complex has three major components: p58, p64, and p110. As these subunits have not been purified individually, the primary biochemical activity of each of them is un-
known. The genes encoding p58 (CTF13) (Doheny et al., 1993) and pl10 (NDC10/CBF2/CTF14) (Doheny et al., 1993; Goh and Kilmartin, 1993; Jiang et al., 1993a) have recently been characterized. The p58 and pl10 proteins (henceforth, referred to as Ctf13p and Ndc10p, respectively) are indispensable for viability of yeast cell. The cells of the temperature-sensitive (ts) ncl101 mutant do not exhibit cell cycle arrest at nonpermissive temperature, instead they undergo an abortive mitosis, leaving most of chromosomal DNA unsegregated but associated with an asymmetric spindle (Goh and Kilmartin, 1993). In contrast, the only known ts allele of ctf13 (Doheny et al., 1993) causes cells to arrest at nonpermissive temperature in G2-M with an undivided nucleus and a short mitotic spindle.

Clearly, the identification of additional protein components of yeast kinetochore is necessary to understand its molecular structure and function. We expect such kinetochore proteins to have several characteristic features exemplified by CFI, Ctf13p and Ndc10p. First, they should be physically associated either directly or indirectly with CenDNA and/or the spindle microtubules. Second, cells deprived of a kinetochore protein should show some cytological defects consistent with the inability to segregate chromosomes properly. Third, the trans-mutations in the genes encoding centromere components should show genetic interaction with cis-CenDNA mutations (cen). These features provide at least three criteria to recognize a particular protein as a kinetochore component. Some other proteins satisfy at least one of these criteria and so, are the potential candidates for kinetochore components: p64 (Lechner and Carbon, 1991), Mckl (Shero and Hieter, 1991), Cse1 and Cse2 (Xiao et al., 1993), Cbf5 (Jiang et al., 1993b), Top2 (Jiang et al., 1993b), Kar3 (Middleton and Carbon, 1994), and Mif2 (Brown et al., 1993). However, the DNA binding proteins essential for assembly of functional kinetochore remain unidentified. Particularly, proteins which make direct contacts with CDEII are important, as CDEII is absolutely required for centromere function. Based on our belief that the yeast centromere is a complex multisubunit structure, with many structural components yet to be found, we have designed a genetic screen aimed directly at identifying proteins involved in the formation of yeast centromeres.

Materials and Methods

Strains and Genetic Techniques

S. cerevisiae strains (S28C background) are listed in Table I. Strain YPH102 was used for mutagenesis, YPH499 was used for backcrosses of centromere proteins mutants (cep). Strain S42 (Doheny et al., 1993) was used as a tester for ncl10 alleleism. Media, incubation conditions, and strain manipulations were according to published protocols (Sherman et al., 1986). E. coli strains DH5a (BRL), TOP10 (Invitrogen, San Diego, CA) and SCS110 (Stratagene, La Jolla, CA) were used for plasmid propagation. Standard methods of yeast genetics were done as described (Guthrie and Fink, 1991; Sherman et al., 1986). Mitotic stability of plasmids, defined as the fraction of cells in a culture that retain the plasmid when the cells are grown under selective conditions, was estimated as described previously (Strunnikov et al., 1993). As this parameter correlates well with the efficiency of plasmid transmission per cell division (Hieter et al., 1985a; Koshland et al., 1985), it was used as a routine estimate for the efficiency of minichromosome transmission. The disruption allel (cep3-ΔI) of cep3 was constructed by transforming the AS260 diploid strain with pAS450 (see below) digested with Eag1 and Xba1, giving AS270. Disruption of one copy of CEP3 gene with HIS3 marker was confirmed by Southern blot hybridization. After sporulation, segregation of two viable (His3+) spores was observed in every tetrad. The His3+ spores were recovered only after transformation of AS270 with pAS452 prior to tetrad analysis. Haploid His3+ strains (cep3-ΔI) always carried the pAS452 (CEP3) plasmid.

Nomenclature

Standard nomenclature (Jones et al., 1992) for yeast genes and proteins was used. As most of yeast centromere factors and corresponding genes are known under redundant names (CP, Cep, Cbf, Ctf, Ndc) we chose the existing “CEP” acronym (Baker and Madison, 1990) for the genes isolated in our screen. Centromere mutations where designated using the locus name, CDE number, and particular mutation name, e.g., cen6-III/5I. The CDEIII mutations used are shown in Fig. 1 B.

The Screening Procedure for Isolation of cep Mutants

A schematic view of the selection procedure is given in Fig. 1. The first screening included monitoring of plasmids with different reporter CenDNA to identify those suitable for large scale mutagenesis. Strain YPH102 was transformed with corresponding plasmid containing leu2-d gene and a CenDNA of interest. The cultures were mutagenized with EMS (50-90% viability). Cells where plated to form single colonies in the absence of selection for leucine prototrophs. The plates were then replicated onto media lacking leucine and incubated for 48 h. at 23°C. The frequency of Leu+ colonies was determined for each reporter CenDNA tested, and the corresponding colonies were picked from master plates. The trans-mutations were distinguished from other mutant classes via retransformation with the same minichromosome. The plasmid pAS97 (see below), which exhibited the highest rate of induced trans-mutations and, at the same time, the lowest rate of spontaneous Leu+ loss was used for large-scale mutagenesis. Only mutants reproducibly showing Leu+ phenotype and temperature sensitivity where chosen for further analysis. All mutant alleles were back crossed at least twice, to demonstrate that the generated mutations are single mutations of nuclear origin, and that temperature sensitivity cosegregates in meiosis with the accumulation of pAS97.

Plasmid Construction

Yeast E. coli shuttle vectors, used for cloning purposes were pRS vectors (Christianson et al., 1992; Sikorski and Hieter, 1986). pBlues (Novagen, Inc., Madison, WI) was used as a cloning vector for PCR-generated fragments.

Plasmid pAS93. The backbone of most of the minichromosomes used in mutagenesis experiments, was constructed from FAT-RS303 (leu2-d, HIS3, 2μ-ORd, Amp+) (contribution of D. Gottschling, University of Chicago, Chicago, IL). The HIS3 marker was removed by digestion with BamHI and religation; the URA3 gene (Smal-HindIII fragment) and ARSH4 (HindIII-XhoI fragment) were inserted into PvuII-XhoI sites to make pAS49. pAS93 has unique BamHI, SalI, and SmaI sites, used for cloning of CenDNA fragments, giving the following minichromosomes: pAS94 (cen3-III/XhoI BamHI-BamHI fragment); pAS95 (GALI-CEN3 BamHI-BamHI fragment); pAS96 (cen6-III/XhoI Sall-BamHI fragment); pAS97 (cen6-III/5I Sall-BamHI fragment); pAS98 (cen3-III/BstI Sall-SalI fragment); pAS112 (cen-III/BstI Sall-SalI fragment); pAS113 (cen-III/5I Sall-SalI fragment); pAS114 (cen6-III/5I SalI-BamHI fragment); pAS122 (CEN6SalI-BamHI fragment). pAS76 has the CEN4 XhoI-Scal fragment inserted into Sall-Smal sites of YEpFAT7 (Rung and Zakian, 1989). The corresponding pDK minichromosomes (without leu2-d and 2μ-ORd) have been described before (Kingsbury and Koshland, 1991): pDK381 contains CEN6 SacBamHI fragment, pDK377 contains cen6-III/5I Sall-BamHI fragment, pDK371 contains cen6-III/5I BstI SalI-SalI fragment, pDK378 contains cen6-III/5I Sall-BamHI fragment, pDK374 contains cen3-III XhoI BamHI-BamHI fragment and pDK380 contains cen6-III/5I Sall-BamHI fragment. Descriptions of all CenDNA fragments used were published previously (Hegemann et al., 1988; Hill and Bloom, 1987; McGrew et al., 1986).

Several plasmids, containing the CEP3 gene from the original isolate pAS300, have been constructed. pAS409 (pRS414 backbone) contains the entire genomic insert of pAS300 as 9-kb Eagl-BamHI fragment. pAS420 is pRS414 with 3.2-kb BssHII-EcoRI fragment of pAS300. HincII-HincII fragment of pAS420 (Fig. 2 A) was introduced into pR406, pRS425, and pRS416 cut with PvuII producing pAS451, pAS452 and pAS461, respectively. To construct a deletion of CEP3, two PCR fragments corresponding
to upstream noncoding and downstream noncoding regions of CEP3 ORF were cloned into pBluescript, making pAS446.1. In this plasmid the CEP3 open reading frame (ORF) is substituted by single BamHI recognition site, in which the HIS3 gene (BamHI-BamHI fragment) was inserted, to give pAS450. To construct the epitope-tagged versions of CEP3 the pAS451 plasmid was cut with either SpeI or HindIII (Fig. 2 A). In-frame insertion of six tandem tag sequences encoding the c-myc epitope (Strunnikov et al., 1993) into SpeI site produced pAS454 (cep3::myc allele). In-frame insertion of a triple tag sequence (contribution of M. Rose, Princeton University, Princeton, NJ; HindIII-ends introduced by PCR) encoding a hemagglutinin epitope (ha) into HindIII site of pAS451 produced pAS464 (CEP3::ha allele). Correct boundaries between CEP3 and the tag-encoding fragments were confirmed by DNA sequencing.

Cloning, Mapping, and Sequence Analysis of the CEP3 Gene

The genomic DNA library used to isolate the CEP3 gene was the LEU2/CEN library (Spencer et al., 1988) in pSB32 vector. Two ts strains, 14-YPH102 (cep3::1), and 10-YPH102 (cep3::2) were transformed with library plasmid DNA. Cells were spread on plates without leucine and incubated at 23°C for 24 h. The plates were then shifted to 37°C, and temperature-resistant colonies were picked. Total DNA was extracted and used to transform E. coli cells. Two plasmids were found to enable 14-YPH102 and 10-YPH102 to grow at 37°C. These plasmids also complemented the ts-lethal phenotype of back-crossed cep3 strains. Restriction mapping showed, that the clones contain largely overlapping inserts of genomic DNA. The plasmid chosen for subcloning was designated pAS300.

Mapping of the cloned fragment to a chromosome was accomplished using the EagI-BamHI fragment of pAS300 as a hybridization probe for genomic DNA. The plasmid chosen for subcloning was designated pAS300. The first extrachromosomal replicon identified in yeast was the endogenous 2 μm plasmid (Beggs, 1978). It is a circular multicopy (20–30) double-stranded DNA molecule which uses its own specialized system to partition effectively during mitotic divisions (Broach and Volkert, 1991). In contrast, artificial minichromosomes with a centromere locus, segregate using the mitotic apparatus designed for chromosomes and are maintained as single copy per cell. The screen for genes encoding putative centromere proteins was based on the observation that the presence of both 2μm plasmid replication/segregation locus (2μM-ORI) and a yeast centromere on the same circular plasmid (2μm/CEN plasmid) creates an epistatic relationship between these two loci (Tschumper and Carbon, 1983). Such a plasmid behaves as a single-copy minichromosome and not as multicopy 2μm plasmid (Tschumper and Carbon, 1983). Several reports have been published however that compromising centromere function in such a minichromosome can convert it into a multicopy equivalent of the 2μm plasmid, at least in some cells in the population (Apostol and Greer, 1988; Chlebowicz-Sledziewska and Sledziewski, 1985; Schulman and Bloom, 1993). These results provided the primary basis for design of our screen (Fig. 1 A).

Antibodies and Cytological Methods

Indirect immunofluorescence was performed as described (Kilmartin and Adams, 1984). Yeast nuclear DNA was stained by DAPI included into mounting media (Mowiol; Cal Biochemical, La Jolla, CA). Microtubules were detected with the mouse monoclonal antibody YOL1/34 (1:200) (Kilmartin et al., 1982) and goat anti-mouse antibodies conjugated to rhodamine (Cappel Laboratories, Cochranville, PA). Mouse monoclonal anti-c-myc antibody 9E10 (Evan et al., 1985) and mouse monoclonal anti-hemagglutinin antibody 12CA5 (ABA1CO, Richmond CA) were used to monitor tagged Cep3p on Western blots. The pooled monoclonal antibodies against a 90-KD component of the spindle pole body (Rout and Kilmartin, 1990), were used undiluted for indirect immunofluorescent staining.

Minichromosome–Microtubule Binding Assays

The microtubule-minichromosome binding assays were performed essentially as described (Kingsbury and Koshland, 1991) with minor modifications (Kingsbury and Koshland, 1993). Binding experiments were done for two or four parallel cultures, always including YPH102/pDK381 strain as a control. For each minichromosome/strain combination (Fig. 6) the independent binding experiments have been performed at least twice.

Results

Isolation of cep Mutants

The first extrachromosomal replicon identified in yeast was the endogenous 2 μm plasmid (Beggs, 1978). It is a circular multicopy (20–30) double-stranded DNA molecule which uses its own specialized system to partition effectively during mitotic divisions (Broach and Volkert, 1991). In contrast, artificial minichromosomes with a centromere locus, segregate using the mitotic apparatus designed for chromosomes and are maintained as single copy per cell. The screen for genes encoding putative centromere proteins was based on the observation that the presence of both 2μm plasmid replication/segregation locus (2μM-ORI) and a yeast centromere on the same circular plasmid (2μm/CEN plasmid) creates an epistatic relationship between these two loci (Tschumper and Carbon, 1983). Such a plasmid behaves as a single-copy minichromosome and not as multicopy 2μm plasmid (Tschumper and Carbon, 1983). Several reports have been published however that compromising centromere function in such a minichromosome can convert it into a multicopy equivalent of the 2μm plasmid, at least in some cells in the population (Apostol and Greer, 1988; Chlebowicz-Sledziewska and Sledziewski, 1985; Schulman and Bloom, 1993). These results provided the primary basis for design of our screen (Fig. 1 A).

The second rationale for the cep screen was the use of a dose-dependent marker to follow changes in the copy number of the 2μm/CEN plasmid. Such markers have been used previously for other applications and genetic screens (Hieter et al., 1985b; Larionov et al., 1989; Runge et al., 1991; Smith et al., 1990; Toh-E, 1981). In our screen for cep mutants we used the leu2-d gene as that marker. The leu2-d

Strain	Genotype	Source
YPH102	MATα ade2 his3 leu2 lys2 ura3	Ph. Hieter
YPH499	MATα ade2 his3 leu2 trpl1 ura3	Ph. Hieter
S42	MATα cfp14(cdc10)-42 ade2 leu2 lys2 ura3 his3	This study
AS260	MATα/ΔMATα ade2 his3 leu2 trpl1/TRP1 ura3	This study
AS270	MATα cep3-1/CEP3 ade2 his3 leu2 trpl1/TRP1 ura3	This study
1dAS255	MATα cep3-1 ade2 his3 leu2 trpl1 ura3	This study
6dAS255	MATα cep3-1 ade2 his3 leu2 trpl1 ura3	This study
1cAS251	MATα cep3-1 ade2 his3 leu2 trpl1 ura3	This study
2bAS282	MATα cep3-2 ade2 his3 leu2 trpl1 ura3	This study
3dAS282	MATα cep3-2 ade2 his3 leu2 trpl1 ura3	This study
2aAS257	MATα cep3-3 ade2 his3 leu2 ura3	This study
The expression of the single transition from normal 20-30 copies per cell to 100-150 copies (under 2μm plasmid copy number control, allowing for the generation of Leu + clones) was possible due to the epistatic effect mentioned above, the 2μm/CMV-leu2-d plasmid copy number control, allowing transition from normal 20-30 copies per cell to 100-150 copies (under leu2-d selection) without any deleterious effect on cell physiology. Due to the epistatic effect mentioned above, the 2μm/CMV-leu2-d minichromosome can not undergo amplification from one copy per cell to 100 copies per cell without abolishing centromere function completely (Schulman and Bloom, 1993). This loss of function of the plasmid-born CEN locus (reporter centromere) as a result of unlinked (chromosomal) mutation in a cep locus (Fig. 1 A) is the essence of the screen described below.

Mutagenesis of YPH102 cells that contained the 2μm/CEN minichromosome with a wild-type CenDNA (CEN4 or CEN6) failed to produce trans-mutations that could inactivate the reporter centromere. The most likely explanation for this failure is that these cep mutations not only inactivated the reporter centromere on the plasmid but also inactivated the chromosomal centromeres. Such cep mutants would not be recovered due to loss of viability. To overcome this problem, we decided to compromise the reporter centromere by using the CenDNA mutations that retain only partial centromere activity in vivo. We rationalized that this modification would allow the isolation of putative cep mutants displaying synergistic loss of the reporter centromere activity ("synthetic acentric" phenotype) due to the compound effect of cis and trans mutations. However, these cep mutants would be viable because the chromosomal centromeres with their wild-type CenDNA would retain enough centromere activity to allow proper chromosome segregation.

To identify CenDNA mutations with the appropriate level of partial centromere activity for our screen, we constructed the strains containing the 2μm/CEN minichromosomes with different CenDNA mutations. We then tested these strains for the generation of Leu + clones before and after mutagenesis. Mutagenesis of strains harboring 2μm/CEN plasmids with cen6-(I)8c (dysfunctional CDEII) did not give significant numbers of Leu + clones after the mutagenesis. The activity of this reporter centromere was apparently too similar to wild-type and hence, as discussed above, failed to give cep mutants. Strains that had 2μm/CEN plasmids with GAL::CEN3 (transcriptionally inactivated centromere), cen3-(III)- BCT1, cen3-(III)BCT2, cen3-(II)X35, and cen6-(III)14a had a very high rate of spontaneous Leu + clones. These reporter centromeres apparently were compromised so much that they already allowed the reporter plasmid to achieve high copy number in the absence of cep mutants. However strains that contained 2μm/CEN plasmids with either cen6-(III) 15t or cen6-(III)1920 had undetectable levels of spontaneous Leu + clones but numerous Leu + clones after the mutagenesis. These induced Leu + clones were good candidates for cep mutants, indicating that either of these CenDNA mutations would work as a reporter for our screen.

The minichromosome pAS97 (Fig. 1 A), having cen6-(III)15t as a reporter CEN, was primarily used for the screen described in this report (See Materials and Methods). When the YPH102/pAS97 strain was mutagenized, the estimated frequency of induced Leu + clones carrying cep mutations was 9 × 10-6. The unwanted Leu + clones, including the cis-mutants and clones with rearranged minichromosomes, originated with a similar frequency. More than 30 cep mutants were isolated. 10 of them were conditional lethal mutants recessive for temperature-sensitive growth. These 10 mutants were conditionally lethal and recovered due to loss of viability. To overcome this problem, we decided to compromise the reporter centromere by using the CenDNA mutations that retain only partial centromere activity in vivo.
A

The DNA sequence of 2,074-bp fragment containing the CEP3 gene was determined. The sequence of CEP3 fragment revealed a 608-codon ORF, potentially encoding a novel protein with molecular mass of 71 kD (Fig. 2 A). The amino terminus of predicted polypeptide contained a binuclear zinc-cluster motif Zn(II)Cy5 (Pan and Coleman, 1990) (Fig. 2 B) common to several DNA-binding proteins (Dhawale and Lane, 1993). The rest of Cep3p did not show any significant similarity to known protein sequences. According to secondary structure prediction (Rost and Sander, 1993) 54% of the polypeptide aminoacid residues are in alpha-helix, and 37% form loops. Only one short region of the protein was predicted (Lupas et al., 1991) to form coiled-coil structure with probability higher than 0.3 (Fig. 2 A).

The chromosomal copy of the CEP3 gene was disrupted by substituting the CEP3 ORF with the HIS3 marker. We failed to recover the resulting allele, cep3-Δ1, as a haploid strain, thus showing that CEP3 is an essential gene. The essential nature of CEP3 and the presence of a DNA-binding motif suggest that Cep3p is a new DNA-binding component of yeast centromere.

To assess the expression level of CEP3, we introduced two alternative in-frame epitope tags (See Materials and Methods) into the COOH-terminal part of Cep3p (Fig. 2 A). The cep3::myc construct did not complement cep3-1, cep3-3, or cep3-Δ1 defects. This result indicates that the essential region of Cep3p is not limited to the putative Zn-binding cluster.

However the alternative cep3-Al construct did complement the cep3-1 and cep3-Δ1 mutations. The Cep3p is a rare protein as the Cep3p-ha protein can only be detected on Western blots when concentrated by immunoprecipitation (data not shown).

B

The primary DNA sequence of BssHII-HincII fragment of plasmid pAS420 and the putative polypeptide product are shown. Cysteine residues of the putative DNA-binding domain are italicized. Recognition sites for BssHII and HindIII endonucleases used to construct tagged versions of Cep3p are shown. Protein residues 367-402, able to form coiled-coil structure, are underlined. These sequence data are available from GenBank/EMBL/DDBJ under accession number U12339. (B) Alignment of the metal-binding cluster of Cep3p to known fungal proteins: Mal2p (Kopetzki et al., 1989), Pdr3p (Genbank/EMBL/DDBJ accession number X79803), Gal4p (Marmorstein et al., 1992), HaAp (Zhang and Guarente, 1994). The identical residues and conserved cysteins are highlighted.
Detailed cytological analysis of the cep3 mutants was limited to cep3-1 and cep3-2, as cep3-3 cells showed practically identical characteristics in all preliminary tests. When the wild-type and cep3 cells were shifted to 37°C (the nonpermissive temperature for cep3), their viability remained the same for 4 h. However, by 8 h the viability of cep3 cells dropped below 20%. Time-course observations showed, that after the 6-h shift to nonpermissive temperature the cep3 cells reach full arrest of cell division (Fig. 3 A). In the course of incubation at 37°C, the late anaphase cells and small-budded cells, present at 25°C (Fig. 4 A), disappear. The large-budded (dumbbell) cell with an undivided nucleus at the bud neck and a short spindle (Fig. 4 B) become the dominating class in the cep3 population (Fig. 3 A). Most of the cep3 cells arrested at 37°C have diploid DNA content (Fig 3 B). This complex of features is highly suggestive of G2-M phase arrest. The virtual absence of elongated mitotic spindles, was verified by the spindle pole body staining (Fig. 5 C). Therefore the phenotype of cep3 is more similar to cfl3-30 cells (Doheny et al., 1993) than to ndcl0-1 mutant (Goh and Kilmartin, 1993).

The staining of spindle microtubules in the cep3 cells lacking their mitochondrial DNA also revealed that the dominant class of cells in the arrested cep3 population is not homogeneous. We found some indications of the abnormal distribution of nuclear DNA, including the separation of chromosomal DNA from the mitotic spindle, nuclear DNA cut by the cytokinesis, and nuclear DNA unevenly spread between the mother and daughter cell (Fig. 5, A and B). The latter phenotype is probably due to the spindle movements known as the phenomenon of nuclear transits (Palmer et al., 1989), accompanied by the failure of the majority of chromosomes to attach to the mitotic spindle. The presence of cells with their spindles and nuclear DNA positioned in the different cell bodies (Fig. 5, A and B) suggests that in the arrested cep3 cells chromosomes fail to maintain attachment to the microtubules of mitotic spindle.

Interestingly, at the restrictive temperature some of the examined cep2 (ndcl0) mutants arrest like the cep3 cells (data not shown). This finding brings up the possibility that the cep3, cfl3 (Doheny et al., 1993) and ndcl0 (Goh and Kilmartin, 1993) cells may display the same kind of mitotic arrest as a consequence of centromere inactivation.

Interaction between cep3 Mutations and Centromere Mutations In Vivo

Given the synthetic destabilization of the reporter centromere, cen6-(III)15t, in the cep3 mutants and the presence of a DNA binding motif in the Cep3p, it is reasonable to postulate that Cep3p is a CDEIII-specific DNA-binding protein. To investigate this possibility we determined the specificity of interaction between the cep3 mutations and different CenDNA mutations. cep3 mutants were transformed with pDK minichromosomes (URA3, ARS1, CEN minichromosomal RNAse treatment. The accumulation of G2-M cells with double (2c) content of DNA is evident. The "lc ~ peak corresponds to G1 cells. FACS profiles for the cep3-2 strains look identical (not shown) to the profile of the cep3-1 strain.
some small budded cells are present in the population. (B) The cep3-2 cells (2bAS282 strain) after 6 h at 37°C. The dominating class of large budded cells with an undivided nucleus and a short spindle is evident. Bar, 10 μm.

Figure 4. Micrograph of the cep3 cells under permissive and restrictive temperatures. (A) The logarithmic population of cep3-2 cells (3dAS282) at 25°C. DNA is stained with DAPI and the microtubules are stained with anti-tubulin antibodies. Differential interference contrast (DIC) images show general cell shape. The late anaphase cells with elongated mitotic spindles, as well as small-budded cells are present in the population. (B) The cep3-2 cells (2bAS282 strain) after 6 h at 37°C. The dominating class of large budded cells with an undivided nucleus and a short spindle is evident. Bar, 10 μm.

Therefore, the Ndcl0p may also directly or indirectly participate in CDEIII binding (see Discussion). On the other hand, the smcl-1 mutation, which also affects minichromosome transmission (Strunnikov et al., 1993), did not exhibit the synthetic acentric phenotype with any of centromeres harboring these CenDNA mutations (data not shown). Therefore, the synthetic acentic phenotype is not a general property of any mutation that affects minichromosome transmission. The similar pattern of interaction with centromere DNA mutations at the permissive temperature displayed by the cep2 and cep3 mutants suggests that the corresponding proteins act in close proximity in vivo.

The cep3 Mutation Interferes with Centromere Function In Vitro

The kinetochore of S. cerevisiae acts as a tripartite system (CenDNA-kinetochore proteins-microtubules) which acquires motility at the time of mitosis. Based on this concept, three types of biochemical assays have been applied previously to testing the yeast centromere function in vitro: protein-DNA interaction (Doheny et al., 1993; Ng and Carbon,
Figure 5. Arrested population of cep3-1 cells lacking mitochondria. (A) The cep3-1 (kcAS281) culture lacking mitochondrial DNA (rho°) after 6 h at 37°C. The cells where stained with DAPI and anti-tubulin antibodies. The cell marked with an arrow has underwent partial separation of chromosomal DNA; the bulk of chromosomal DNA and the spindle are separated from each other and positioned in different cell bodies, the phenotype never observed in wild type cells. (B) The rho° cep3-1 cells (kcAS281) representing the abnormal subtypes of the large budded cells with an undivided nucleus. From top to the bottom: separation of chromosomes from the mitotic spindle; cut-like phenotype; formation of a potential aploid cell. Bar, 10 μm. (C) Spindle pole body staining of the cep3-2 cells. 2bAS282 cells were stained with antibodies against the 90-kD SPB component after 6 h. at 37°C. The position of SPBs shows that corresponding mitotic spindles remain bipolar (no spindle collapse) but do not elongate, even in the cells with chromosomal DNA spread out between the mother and daughter cells. Bars, 10 μm.

1987), centromere-microtubule interaction (Kingsbury and Koshland, 1991; Kingsbury and Koshland, 1993), and motility assays (Hyman et al., 1992; Middleton and Carbon, 1994). To reveal the molecular basis of the “synthetic acentric” phenotype, we carried out experiments testing the fidelity of centromere binding to bovine microtubules in a cell-free system. This minichromosome-microtubule binding assay has been described previously (Kingsbury and Koshland, 1991, 1993). It involves quantitative precipitation of minichromosomes isolated from yeast cells (in the form of chromatin) by their association with taxol-stabilized bovine microtubules. All experimental data presented in this report were obtained for Cep3+ or Cep3− cells arrested with nocodazole prior to the preparation of the extracts contain-
ing minichromosomes. Arrest with nocodazole (G2-M transition), as was previously shown (Kingsbury and Koshland, 1991), confers the highest mt-binding potential for wild type cultures. This provides a wide range for the comparison of experimental data obtained for mutant and wild type extracts and CenDNA. The G2-M transition is also the phase when the function of a centromere is actually required for progression of the normal cell division cycle through mitosis, i.e., when the kinetochore is in its most active state. In fact, comparison of mt-binding activity of cis-mutant centromeres from the asynchronous culture (Kingsbury and Koshland, 1991) to activity from nocodazole arrested cells (Fig. 6) suggests that centromeres assembled with some cis-mutant CenDNA (e.g., cen6-(III)15t) achieve almost full wild-type activity in the cells arrested in G2-M.

Four types of cultures (grown at 23°C) were used for microtubule-binding experiments: Cep3+ cells with wild type CEN6 minichromosome, Cep3+ cells with mutant CenDNA (cen6-(III)15t) minichromosome, Cep3- cells with wild type CEN6 minichromosome and Cep3- cells with mutant CenDNA (cen6-(III)15t) minichromosome (Fig. 6). These combinations are analogous to ones used for assaying microtubule-minichromosome stability in vivo (Table II). For both cep3/CEN6 or CEP3/cen6 combinations, only a slight difference in the capacity of minichromosome-microtubule binding was observed at 23°C (Fig. 6). However, combining the cep3 (trans) and cen (cis) mutation in the same cell produced a striking effect: the microtubule-minichromosome binding became indistinguishable from the background level (i.e., of acentric plasmid precipitation; Kingsbury and Koshland, 1991). This result indicates that there is an intimate link between the structure of CDEIII and the Cep3p function. These cell-free system experiments are in agreement with data obtained in vivo for these minichromosomes. Results of these experiments provide a basis for a hypothesis addressing the mechanism of the "synthetic acentric" phenotype: the synthetic acentrics are probably generated in vivo, due to the inability of cen6-(III)15t minichromosomes to bind yeast microtubules.

The structural properties of Cep3p, as well as the cytological, genetic, and biochemical data obtained for cep3 mutants, provide a basis for assuming that Cep3 protein is the CDEIII-binding subunit of yeast centromere, indispensable for both kinetochore assembly and function. To summarize, several properties of Cep3p suggest that it is a centromere protein: (a) mutant forms of the protein show allele specific interactions with particular CenDNA mutations; (b) minichromosomes isolated from cep3 cells exhibit a defect in the centromere-dependent binding to microtubules in vitro; (c) the Cep3 protein is essential for cell viability, and the cep3 mutants exhibit complex mitotic defects consistent with a failure of centromere function; and (d) the amino acid sequence of the Cep3 protein is identical to the sequence of p64 found in the Cbf3 complex (Lechner, 1994). The fact, that both Cep3p and Cep2p, are the subunits of Cbf3 complex, shows that our screen was very selective for genes encoding the components of yeast centromere.

Discussion

Developing a Selective Primary Screen for Kinetochore Components

Centromere proteins have been previously identified in cells of vertebrates as centromere (or kinetochore) antigens (Compton et al., 1991; Earnshaw et al., 1987a, b; Yen et al., 1992). The yeast centromere proteins have been identified by their biochemical properties (CenDNA association) (Jiang et al., 1993a; Lechner and Carbon, 1991) or by secondary screening of existing collections of temperature-sensitive mutants (Goh and Kilmartin, 1993) or mutants with frequent chromosome loss (Doheny et al., 1993). However, the identification of additional centromere components by these approaches has proved limited, mainly because they are labor intensive. In this report we described a new approach for identifying centromere proteins by selecting mutants displaying the “synthetic acentric” phenotype. Using this approach we have isolated multiple mutations in two genes encoding minichromosomes with reporter centromere:

Strain	CEN6	cen6-(III)15t	cen3-(III)BCTI	cen6-(III)19K20	cen3-(II)X78	cen6-(II)8c
Cep+	88.9 ± 4.3	85.4 ± 6.2	77.0 ± 5.0	84.8 ± 3.8	86.3 ± 4.5	87.9 ± 0.9
cep3-1	86.3 ± 4.2	6.0 ± 3.8	3.6 ± 3.5	78.7 ± 7.0	80.3 ± 1.8	80.0 ± 4.0
cep3-2	87.4 ± 0.8	9.3 ± 2.1	11.8 ± 5.1	81.3 ± 2.7	83.3 ± 4.5	65.4 ± 13.2
cep2-12	81.8 ± 3.9	10.3 ± 2.6	15.8 ± 2.2	63.9 ± 1.7	83.7 ± 4.3	65.8 ± 5.0

Figure 6. Minichromosome-microtubule binding experiments. Four types of extracts used for microtubule-binding experiments: CEP3/CEN6, strain YPH102 transformed with pDK381; CEP3/cen6-(III)15t, YPH102 with pDK377 minichromosome; cep3-1/CEN6, ldAS255 with pDK381 minichromosome; cep3-1/cen6-(III)15t, ldAS255 with pDK377 minichromosome. Binding at mt concentrations, higher than required for saturation of binding in wild type strain (Kingsbury and Koshland, 1991), was done to exclude the possible rescue of binding activity in cep3 mutant extracts by the excess of mt.
coding probable centromere components; one of these genes, \textit{NDC10} (\textit{CEP2}), had been identified previously (Goh and Kilmartin, 1993; Jiang et al., 1993a) while the other, \textit{CEP3}, is a novel gene.

The improved efficiency of our approach relies on three major principles. First, by requiring the reporter minichromosome to achieve a very high copy number, we selected only those mutants that completely inactivate the reporter centromere, thus eliminating the possible background of mutants, able to accumulate only few extra copies of minichromosome (Larionov et al., 1989). Second, we used a reporter centromere that was already partially impaired by a \textit{cis}-mutation. In this way mutant centromere proteins, that inactivated the reporter centromere, would still be active on chromosomal centromeres, allowing the mutant cells to survive. Third, since we assumed that many kinetochore proteins would be essential for viability, we imposed the requirement that the \textit{cep} mutants be conditionally lethal.

The "synthetic acentric" approach has at least two obvious virtues for the future studies on centromere proteins. First, it provides a very rapid and efficient means to isolate mutant alleles of genes encoding the p10 and p64 components of the kinetochore. These mutations may serve as powerful tools for dissecting the molecular organization and the cellular role of these proteins. For example, some new alleles of \textit{ncl0} (\textit{cep2}) isolated by our synthetic acentric approach (see below) are phenotypically distinct from known \textit{ncl0} alleles. Second, although this approach may be saturated for the \textit{cen6-(III)15t} reporter, as evidenced by the isolation of multiple alleles of \textit{ncl0} and \textit{cep3}, other reporter CenDNA sequences with CDEII or CDEIII mutations may be used to identify genes encoding additional centromere proteins. For example, the \textit{cen6-(III)19t20} mutation is not synthetically acentric when combined with the \textit{ncl0} or \textit{cep3} alleles, yet potential \textit{cep} mutants were obtained with this centromere as a reporter (Strunnikov, A. V., unpublished results).

\textbf{The CEP3 Gene Encodes a Putative CenDNA-binding Protein That Is Necessary for Microtubule-binding Activity of the Centromere}

DNA sequence analysis revealed that \textit{CEP3} encodes a protein with a predicted NH\textsubscript{2}-terminal DNA-binding domain Zn\textsubscript{II}Cys\textsubscript{6} (Pan and Coleman, 1990). In other fungal proteins this domain mediates DNA binding in a sequence-specific manner and has been found only in transcription factors-like proteins, dispensable under standard laboratory conditions. The most characterized member of this family, Gal4p, binds a palindromic DNA sequence as a dimer (Marmorstein et al., 1992). Interestingly, CenDNA mutations that interact with \textit{cep3} alleles lie in symmetrical positions of the CDEIII palindrome, suggesting that Cep3p could also bind DNA as a dimer. Previously, a limited functional symmetry of CDEIII was described (Jehn et al., 1991) based on data obtained for \textit{cis} mutations.

Of three major proteins in the Cbf3 complex, Cep3p is the only subunit with an evident DNA-binding motif. Therefore, it is reasonable to assume that Cep3p mediates binding of the Cbf3 complex to CDEIII. Surprisingly, all tested \textit{cep2} (\textit{ncl0}) mutations have similar pattern of interaction with CDEIII mutations as do \textit{cep3} alleles (this study). One possible explanation for this phenomenon is that Ndc10p also binds to the same nucleotides of CDEIII as does Cep3p. However, this seems unlikely, as Ndc10p and Cep3p do not share significant sequence similarity and Ndc10p lacks any known DNA-binding motif. More likely, Ndc10p is a cofactor of Cep3p binding to CDEIII. Alternatively, Ndc10p could be an unconventional DNA-binding protein affecting Cep3p due to the close proximity of Cep3p and Ndc10p binding sites. These models are yet to be verified by biochemical studies, however, our genetic data provide the first evidence that Cep3p and Ndc10p physically interact in vivo.

What would be a hypothetical way to construct a functional centromere, taking into account that Cep3p has the only known DNA-binding motif among the Cbf3 components? One possibility is, that Cep3p Zn-cluster is solely responsible for tethering all other centromere components to the CenDNA. This seems unlikely because the binding of kinetochore proteins to CenDNA should have special requirements to withstand the pulling forces that are exerted during mitosis. The interaction between CDEIII and the relatively simple DNA-binding motif of Cep3p, likely, would not be sufficient for this purpose. Also, since CDEII, CDEIII and flanking sequences form a large special chromatin structure (Bloom et al., 1984), it seems likely that other DNA-binding components exist. Based on the fact, that CDEIII and the proteins bound to it are the key elements for the assembly of this entire complex (mutations in CDEIII can both abolish centromere function [Hegemann et al., 1988; McGrew et al., 1986] and prevent formation of centromere chromatin [Saunders et al., 1988]), we can suggest that the DNA-binding motif of Cep3p first recognizes CDEIII during replication of centromere chromatin ("centromere priming" role) and then nucleates assembly of other centromere proteins. These proteins (including Cep3p) could then be locked on the CenDNA using a special mechanism, yet to be identified. For example, the relative richness of Cep3p in cysteine residues (beyond the Zn cluster) provides a possibility for disulfide bonds which could covalently lock Cep3p as well as other subunits wrapped around CenDNA. Partial DNA-wrapping has been documented for the Gal4 protein previously (Marmorstein et al., 1992).

In addition to the putative DNA-binding properties of Cep3p in vivo, we examined the role of Cep3p in organizing microtubule-binding activity of the kinetochore. We showed that the minichromosomes isolated from \textit{cep3} cells exhibit a dramatic defect in centromere-dependent binding of minichromosomes to microtubules in vitro. This observation has three important implications. First, it validates the use of isolated minichromosome as the means to identify and characterize structural components of kinetochore, required for microtubule binding. Second, \textit{cep3-1} is the first described mutation in a Cbf3 component that disrupts the microtubule binding activity of centromere, corroborating the importance of Cbf3 complex for centromere structure and function (Lechner and Carbon, 1991; Hyman et al., 1992). Third, the microtubule-binding data suggest a molecular model for the "synthetic acentric" phenomenon. While it is theoretically possible that Cep3p directly binds microtubules, it is more likely that the presence of Cep3p is needed to assemble a multi-protein complex which has mt-binding subunits, in ac-
cordance with our model published previously (Kingsbury and Koshland, 1993). This hypothetical "centromere priming" role for the Cep3 protein, if verified by additional biochemical experiments, could help to identify other centromere proteins physically associated with Cep3p.

Cellular Response to the Loss of Centromere Function

The cells of multicellular organisms developed a sensitive mechanism which delays anaphase if even one chromosome fails to achieve its metaphase position (Nicklas and Arana, 1992). It has been suggested that this delay reflects a "checkpoint" that monitors chromosome congression and kinetochore-microtubule attachment. As some aspects of cell cycle regulation in S. cerevisiae may be quite different from multicellular organisms (Nasmyth, 1993), it is possible that loss of kinetochore function would not generate a cell cycle delay. In fact no delay was observed in ndcl0-1 cells, the first mutants demonstrated to be defective in an essential yeast centromere protein (Goh and Kilmartin, 1993). At restrictive temperature these cells undergo asymmetric elongation of the mitotic spindle leaving most of the chromosomes unsegregated. However, experiments with CenDNA mutations (Spencer and Hieter, 1992) and analysis of ctf3-30 mutant suggested that yeast cells could respond to the loss of centromere function in more classical fashion. The inactivation of Ctf3p results in a metaphase-like delay with no elongation of the mitotic spindle. Since CTF13 encodes an essential Cbf3 component, the ctf3-30 arrest could reflect an authentic "checkpoint" in response to the loss of centromere integrity (Doheny et al., 1993). Our data obtained for three independent alleles of cep3 support the latter idea. The arrest in cep3 mutant cells is phenomenologically close to the published description of ctf3-arrested cells. Moreover we found an indication that the arrest in cep3 cells is probably due to the separation of chromosomes from mitotic spindle. If the arrest observed in cep3 and ctf3 cells is a checkpoint activated by the inability of chromosomes to establish stable contacts with kinetochore microtubules, the ndcl0-1 mutant could still retain partial kinetochore activity, resulting in a catastrophic anaphase. This interpretation makes the control of chromosome segregation in S. cerevisiae more relevant to the metaphase-anaphase control in the cells of Metazoa.

In conclusion, we described an effective and non-laborious screen for cep genes. This screen allowed isolation of the CEP3 gene, a new essential gene encoding a putative centromere component in yeast, as well as new alleles of the CEP2 (NDC10) gene, encoding a known centromere protein. These results bring us closer to understanding the centromere structure, however, more proteins need to be identified. Our system based on the generation of synthetic acentric mutants should be very useful in the identification of these unknown centromere proteins.

We would like to thank Tami Kingsbury, Vincent Guacci, and Ayumu Yamamoto for critical reading of the manuscript. We also thank Johannes Lehner for communicating p64 sequence prior to publication. Finally, we thank Cristina Norman for help in preparation of the manuscript. This work was supported by a grant from National Institutes of Health (GM-41718) to D. Koshland.

Received for publication 20 September 1994 and in revised form 6 December 1994.

References

Apostol, B., and C. L. Greer. 1988. Copy number and stability of yeast 2μ-based plasmids carrying a transcription-conditional centromere. Gene. 57:59-68.

Baker, R. E., and D. C. Miason. 1990. Isolation of the gene encoding the Saccharomyces cerevisiae centromere-binding protein CEP1. Mol. Cell. Biol. 10:2455-2467.

Baker, R. E., M. Fitzgerald-Hayes, and T. C. O'Brien. 1989. Purification of the yeast centromere binding protein CEP1 and a mutational analysis of its binding site. J. Biol. Chem. 264:10843-10850.

Beggs, J. D. 1978. Transformation of yeast by a replicating hybrid plasmid. Nature (Lond.). 275:104-109.

Bloom, K. S., and J. Carbon. 1982. Yeast centromere DNA is in a unique and highly ordered structure in chromosomes and small circular minichromosomes. Cell. 29:305-317.

Bloom, K. S., E. Amaya, J. Carbon, L. Clarke, A. Hill, and E. Yeh. 1984. Chromatin conformation of yeast centromeres. J. Cell Biol. 99:1559-1568.

Bram, R. J., and R. D. Kornberg. 1987. Isolation of a Saccharomyces cerevisiae centromere DNA-binding protein, its human homolog, and its possible role as a transcription factor. Mol. Cell. Biol. 7:403-409.

Brinkley, B. R., J. Ouspenkii, and R. P. Zinkowski. 1992. Structure and molecular organization of the centromere-kinetochore complex. Trends Cell Biol. 2:15-21.

Broach, J. R., and F. C. Volkert. 1991. Circular DNA plasmids of yeasts. In The Molecular and Cellular Biology of the Yeast Saccharomyces. J. R. Broach, J. R. Pringle, and E. W. Jones, editors. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. pp. 297-313.

Brown, M. T., L. Goetsch, and L. H. Hartwell. 1993. MIP2 is required for centromere integrity during anaphase spindle elongation in Saccharomyces cerevisiae. J. Cell Biol. 123:387-403.

Cai, M., and R. W. Davis. 1990. Yeast centromere binding protein CBF1, of the helix-loop-helix protein family, is required for chromosome stability and methionine prototrophy. Cell. 61:437-446.

Chiebovicz-Sledziewska, E., and A. Z. Sledziewski. 1985. Construction of multicopy yeast plasmids with regulated centromere function. Gene. 39:25-31.

Christianson, T. W., R. S. Sikorski, M. Dante, J. H. Shero, and P. Hieter. 1985a. Multifunctional yeast high-copy-number shuttle vectors. Gene. 110:119-122.

Clarke, L., and J. Carbon. 1980. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature (Lond.). 287:504-506.

Compton, D. A., T. J. Yen, and D. W. Cleveland. 1991. Identification of novel centromere/kinetochore-associated proteins using monoclonal antibodies generated against human mitotic chromosome scaffolds. J. Cell Biol. 112:1083-1097.

Dennatore, L., W. E. Payne, and M. Fitzgerald-Hayes. 1991. In vivo genomic footprint of a yeast centromere. Mol. Cell. Biol. 11:154-165.

Dhawale, S. S., and A. C. Lane. 1993. Compilation of sequence-specific DNA-binding proteins implicated in transcriptional control in fungi. Nucleic Acids Res. 21:5537-5546.

Doheny, K., P. Sorger, A. Hyman, S. Tugendreich, F. Spencer, and P. Hieter. 1993. Identification of essential components of the S. cerevisiae kinetochore. Cell. 73:761-772.

Earnshaw, W. C., P. S. Machlin, B. J. Bordwell, N. F. Rothfield, and D. W. Cleveland. 1987a. Analysis of anticientromere autoantibodies using cloned autoantigen CENP-B. Proc. Natl. Acad. Sci. USA. 84:4979-4983.

Earnshaw, W. C., K. F. Sullivan, P. S. Machlin, C. A. Cooke, D. A. Kaiser, T. D. Pollard, N. F. Rothfield, and D. W. Cleveland. 1987b. Molecular cloning of CENP-B, the major human mitotic chromosome scaffold. J. Cell Biol. 104:817-829.

Evan, G. I., G. K. Lewis, G. Ramsey, and J. M. Bishop. 1985. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol. 5:3610-3616.

Goh, P. Y., and J. Kilmartin. 1993. NDC10: a gene involved in chromosome segregation in S. cerevisiae. J. Cell Biol. 121:503-512.

Grady, D. L., R. R. Ratliff, D. L. Robinson, E. C. McCanlies, J. Meyne, and R. K. Moyzis. 1992. Highly conserved repetitive DNA sequences are present in human chromosomes. Proc. Natl. Acad. Sci. USA. 89:1695-1699.

Guthrie, C., and G. R. Fink, editors. 1991. Guide to Yeast Genetics and Molecular Biology. Academic Press, Inc., New York. 913 pp.

Hagemann, J. H., and U. N. Fleig. 1993. The centromere of budding yeast. BioEssays. 15:451-460.

Hagemann, J. H., J. H. Shero, G. Cottarel, P. Philippens, and P. Hieter. 1988. Mutational analysis of the centromere DNA from chromosome VI of Saccharomyces cerevisiae. Mol. Cell. Biol. 8:2523-2528.

Henikoff, S. 1984. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 28:351-359.

Hieter, P., C. Mann, M. Snyder, and R. Davis. 1985. Mitotic stability of yeast chromosomes: A colony color assay that measures nondisjunction and chromosome loss. Cell. 40:381-392.

Hieter, P., D. Priddmore, J. H. Hagemann, M. Thomas, R. W. Davis, and P. Philippens. 1985. Mutational selection and analysis of centromeric

Strunnikov et al. CEP3/Gen for a Centromere Protein
Jones, E. W., J. R. Pringle, and J. R. Broach, editors. 1992. The Molecular Biology of the Cell. Cold Spring Harbor Press, Cold Spring Harbor, NY.

Kilmartin, J., and A. Adams. 1984. Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces cerevisiae. J. Cell Biol. 98:922-933.

Kilmartin, J. V., B. Wright, and C. Milstein. 1982. Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line. J. Cell Biol. 93:576-582.

Kingsbury, J., and D. Koshland. 1991. Centromere-dependent binding of yeast minichromosomes to microtubules in vitro. Cell. 66:483-495.

Kingsbury, J., and D. Koshland. 1993. Centromere Function on Minichromosomes Isolated from Budding Yeast. Mol. Biol. Cell. In press.

Koppitz, E., E. Zeliner, G. Schumacher, and F. K. Zimmermann. 1989. Nucleotide sequence of the Saccharomyces cerevisiae positive regulator mutant gene MAL2-8cp. Nucleic Acids Res. 17:5390.

Koshland, D. E., J. C. Kent, and L. H. Hartwell. 1985. Genetic analysis of the mitotic transmission of minichromosomes. Cell. 40:393-403.

Larionov, V. L., N. Y. Kouprina, A. V. Strunnikov, and A. V. Vlasov. 1989. A direct selection procedure for isolating yeast mutants with an impaired segregation of artificial minichromosomes. Curr. Genet. 15:17-25.

Lechner, J. 1994. A zinc finger protein, essential for chromosome segregation. Mol. Cell. Biol. 17:275-285.

Lechner, J., and J. Carbon. 1991. A 240 kd Multisubunit Protein Complex, CBF3, is a Major Component of the Budding Yeast Centromere. Cell. 64:717-725.

Lupsa, A., M. VanDyke, and J. Stock. 1991. Predicting coiled coils from protein sequences. Science (Wash. DC). 252:1162-1164.

Marmorstein, R., M. Carey, M. Ptashne, and S. C. Harrison. 1992. DNA recognition by GAL4: structure of a protein-DNA complex. Nature (Lond.). 356:408-414.

McGrew, J. B., D. Ische, and M. Fitzgerald-Hayes. 1986. Single base-pair mutations in centromere element III cause aberrant chromosome segregation in Saccharomyces cerevisiae. Mol. Cell. Biol. 6:530-538.

Mellor, J., W. Jagielska, M. Funk, J. Rathjen, C. A. Barnes, T. H. Zinn, J. H. Hegemann, and P. Phippen. 1990. CFP1, a yeast protein which functions in centromeres and promoters. EMBO (Eur. Mol. Biol. Organ.). 15:3203-3211.

Mellor, J., and J. Carbon. 1994. KARI kinases is a minus-end-directed motor that functions with centromere binding proteins (CBF3) on an in vitro yeast kinetochore. Proc. Natl. Acad. Sci. USA. 91:7212-7216.

Nasmyth, K. 1993. Control of the yeast cell cycle by the Cdc28 protein kinase. Curr. Opin. Cell Biol. 5:166-179.

Ng, R., and J. Carbon. 1987. Mutational and in vitro protein-binding studies on centromere DNA from Saccharomyces cerevisiae. Mol. Cell. Biol. 7: 4522-4534.

Nicklas, B., and P. Arana. 1992. Evolution and the meaning of metaphase. J. Cell Sci. 102:681-690.

Pan, T., and J. E. Coleman. 1990. GAL4 transcription factor is not a "zinc finger" but forms a Zn(II)-Cys, binuclear cluster. Proc. Natl. Acad. Sci. USA. 87:2077-2081.

Palmer, R. E., M. Koval, and D. Koshland. 1989. The dynamics of chromosome movement in the budding yeast Saccharomyces cerevisiae. J. Cell Biol. 109:3355-3366.

Panteri, L., L. Landonio, A. Stotz, and P. philippsen. 1985. Role of conserved sequence elements in yeast centromere DNA. EMBO (Eur. Mol. Biol. Organ.). 4:1867-1874.

Peterson, J. B., and H. Ris. 1976. Electron microscopic study of the spindle and chromosome movement in the yeast Saccharomyces cerevisiae. J. Cell Sci. 22:219-242.

Pluta, A. F., C. A. Cooke, and W. C. Earnshaw. 1990. Structure of the human centromere at metaphase. Trends Biochem. Sci. 15:181-185.

Proma, T. A., D. Cristie, and R. M. Liskay. 1994. Dual requirement in yeast DNA mismatch repair for MLH1 and PMS1, two homologs of the bacterial mutL gene. Mol. Cell. Biol. 14:407-415.

Rout, B., and C. Sander. 1994. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins Struct. Funct. Genet. 19:55-72.

Rout, M. P., and J. V. Kilmartin. 1990. Components of the yeast spindle and spindle pole body. J. Cell Biol. 111:1913-1927.

Runge, K. W., and V. A. Zakian. 1989. Introduction of extra telomeric DNA sequences into Saccharomyces cerevisiae results in telomere elongation. Mol. Cell. Biol. 9:1488-1497.

Runge, K. W., R. J. Wellinger and V. A. Zakian. 1991. Effects of excess centromeres and excess telomeres on chromosome loss rates. Mol. Cell. Biol. 11:2919-2928.

Saunders, M., M. Fitzgerald-Hayes, and K. Bloom. 1988. Chromatine structure of altered yeast centromeres. Proc. Natl. Acad. Sci. USA. 85:175-179.

Schulman, I. G., and K. Bloom. 1993. Genetic dissection of centromere function. Mol. Cell. Biol. 13:3156-3166.

Sherman, F., and J. Hicks. 1986. Methods in Yeast Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. 186 pp.

Shero, J., and P. Hieter. 1991. A suppressor of a centromere DNA mutation encodes a putative protein kinase (MCK1). Genes Dev. 5:549-560.

Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genet. 122:19-27.

Smith, D. R., A. P. Smyth, and D. T. Moir. 1990. Amplification of large artificial chromosomes. Proc. Natl. Acad. Sci. USA. 87:8342-8346.

Spencer, F., and P. Hieter. 1992. Centromere DNA mutations induce a mitotic delay in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 89:8908-8912.

Spencer, F., C. Connelly, S. Lee, and P. Hieter. 1988. Isolation and cloning of conditionally lethal chromosome transmission fidelity genes in Saccharomyces cerevisiae. In Cancer Cells. Vol. 6: Eukaryotic DNA Replication. T. Kelly, and B. Stillman, editors. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. 441-452.

Strunnikov, A. V., V. L. Larionov, and D. Koshland. 1993. SMC1: An essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous protein family. J. Cell Biol. 123:1635-1648.

Toh-E, A. 1981. Curing of the 2m DNA plasmid from Saccharomyces cerevisiae. J. Bacteriol. 145:1421-1424.

Tschumper, G., and J. Carbon. 1983. Copy number control by a yeast centromere. Gene. 23:221-232.

Xiao, Z., J. T. McGrew, A. J. Schroeder, and M. Fitzgerald-Hayes. 1993. SCE1 and SCE2, two new genes required for accurate mitotic chromosome segregation in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:4691-4702.

Yen, T. J., G. Li, B. Schar, I. Szilak, and D. W. Cleveland. 1992. CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature (Lond.). 359:536-539.

Zhang, L., and L. Guarente. 1994. The yeast activator HAP1—a GAL4 family member—binds DNA in a directly repeated orientation. Genes Dev. 8:2110-2119.