Solvolthermally-synthesized anatase TiO$_2$ nanoparticles for photoanodes in dye-sensitized solar cells

Kadhim Al-Attafi a,b, Andrew Nattestad c,*, Hamzeh Qutaish a, Min-Sik Park d, Lok Kumar Shrestha e, Katsuhiko Ariga e, Shi Xue Dou a, and Jung Ho Kim a,d,*

a Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW 2525, Australia

b Department of Physics, College of Science, University of Karbala, Karbala 56001, Iraq

c Intelligent Polymer Research Institute (IPRI), ARC Centre of Excellence for Electromaterials Science, AIIM, University of Wollongong, NSW 2525, Australia

d Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea

e World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

* Corresponding authors

Andrew Nattestad anattest@uow.edu.au

Jung Ho Kim jhk@uow.edu.au
The reference intensity method (RIR) for quantification analysis

The commercial NR18-T and synthesised SANP nanoparticles were spiked with about 10% silicon to act as an internal standard to assess the degree of crystallinity. The actual weight ratio was (90.7 %:9.3 %) for NR18-T:Si and (90.3 %:9.7 %) for SANP:Si. While The calculated weight ratios obtained from the integrated intensities (after subtracting the background) of NR18-T: Si and SANP: Si was (90.3 %:9.7 %) and (90 %:10 %) respectively (Figure S1). Thus, the percentage decrease of crystallinity degree, which represents the amorphous weight ratio, can be calculated as:

\[
\text{Amorphous TiO}_2 \text{ (Wt\%)} = 100 \text{ (Wt\%)} - [\text{Si}_{\text{mass}} \text{ (Wt\%)} + \frac{\text{Si}_{\text{mass}} \text{ (Wt\%)} \times \text{crystalline TiO}_2 \text{XRD (Wt\%)}}{\text{Si}_{\text{XRD}} \text{ (Wt\%)}}]
\]

Or,

\[(90.7 \%-90.3 \%)/90.3 \% = 4 \% \text{ for NR18-T}\]

\[(90.3\%-90\%)/90\%=3 \% \text{ for synthesised SANP}\]

The calculated amount of amorphous phase (less than 3%) which can be raised from the broadened peaks compared to the best fitting due to the nanosize effect with different grain size ranges or very finely crystalline phase (different full-width half-maximum-FWHM).

Figure S1: The quantification of the crystallinity degree of NR18-T and synthesised SANP nanoparticles using the reference intensity method (RIR).
Figure S2: HRTEM images and SAED patterns of (a,b) SANP; and (c,d) NR18-T.

Figure S3: (a) XRD patterns of synthesised SANP with/without calcination; (b) HRTEM images of synthesised SANP without calcination, the morphology and internal microspores structure.
Figure S4: Particle size distribution of (a, b) SANP (c, d) NR18-T.

Thickness optimization of SANP|D149 photoanode based DSCs

DSCs solar performance was investigated for different SANP photoanode thicknesses sensitized with a metal-free D149 organic dye Table S1 (SANP photoanode structures 8 ± 0.5, 10 ± 0.5 and 12 ± 0.5 µm in thickness and 11 ± 0.5 µm bilayer photoanode structure consist of 6 µm SANP layer with 5 µm top commercial scattering WER2-O layer). As shown in Figure S7 a and b Table S2, DSCs based on SANP-10 µm showed the PCE, and IPCE due to the LHE leading to higher J_{sc} compared to other devices. All devices showed similar V_{oc} while there is a difference in the FF values due to owing different Φ_{ccr} in term of the charge recombination.
Table S1: Optimization of photoanode thickness based on synthesised SANP sensitized with D149.

SANP	D149 (8 µm)	J_{sc} (mA·cm$^{-2}$)	V_{oc} (V)	FF (%)	PCE (%)
1	14.0	0.68	61.1	6.06	
2	12.7	0.68	61.2	5.51	
3	14.2	0.67	59.7	6.14	
4	12.9	0.67	61.4	5.56	
Average	13.5	0.68	60.8	5.82	
STDEV	0.7	0.01	0.8	0.33	

SANP	D149 (10 µm)	J_{sc} (mA·cm$^{-2}$)	V_{oc} (V)	FF (%)	PCE (%)
1	17.1	0.67	63.6	7.02	
2	16.5	0.68	63.2	6.85	
3	17.2	0.65	63.8	6.72	
4	16.7	0.66	63.2	6.80	
Average	16.9	0.66	63.5	6.91	
STDEV	0.3	0.01	0.3	0.12	

SANP	D149 (12 µm)	J_{sc} (mA·cm$^{-2}$)	V_{oc} (V)	FF (%)	PCE (%)
1	15.3	0.68	57.6	5.82	
2	16.3	0.68	59.2	6.15	
3	15.8	0.67	60.3	6.00	
4	15.9	0.67	55.3	6.00	
Average	15.6	0.67	57.7	6.08	
STDEV	0.4	0.01	2.5	0.08	

SANP	WER2-O	D149 (11 µm)	J_{sc} (mA·cm$^{-2}$)	V_{oc} (V)	FF (%)	PCE (%)
1		14.9	0.69	58.6	5.80	
2		13.7	0.68	55.3	5.58	
3		13.7	0.69	56.4	5.75	
4		14.9	0.69	55.4	5.71	
Average		14.9	0.69	56.4	5.71	
STDEV		0.6	0.01	1.5	0.10	

Table S2: J-V parameters of devices based on optimized SANP sensitized with D149.

Device	J_{sc} (mA·cm$^{-2}$)	V_{oc} (V)	FF (%)	PCE (%)
SANP-8 µm	13.5±0.7	0.68±0.01	57.6±2.5	5.82±0.30
SANP-10 µm	16.9±0.3	0.66±0.01	63.5±0.3	6.91±0.13
SANP-12 µm	15.6±0.4	0.67±0.01	61.5±0.7	6.10±0.10
SANP/WER2-O-11 µm	14.9±0.7	0.69±0.01	56.5±1.5	5.71±0.10
Table S3: J-V parameters details of devices based on synthesized SANP, NR18-T and NR18-T/WER2-O sensitized with D149.

Device	J_{sc} (mA·cm$^{-2}$)	V_{oc} (V)	FF (%)	PCE (%)				
SANP	D149 (10 µm)	1	17.1	0.67	63.7	7.02		
2	16.5	0.68	63.2	6.85				
3	17.2	0.65	63.9	6.72				
4	16.7	0.66	63.3	6.80				
Average					16.9	0.66	63.5	6.91
STDEV					0.3	0.01	0.3	0.12
NR18-T	D149 (10 µm)	1	14.0	0.65	60.3	5.53		
2	15.0	0.67	55.0	5.57				
3	15.1	0.67	57.3	5.81				
Average					14.7	0.67	57.5	5.63
STDEV					0.6	0.011	2.6	0.15
NR18/WER2-O	D149 (11 µm)	1	16.0	0.65	57.7	6.04		
2	15.6	0.68	55.2	5.86				
3	16.1	0.64	52.7	5.44				
4	15.1	0.68	55.9	6.19				
Average					15.7	0.66	55.4	5.88
STDEV					0.4	0.02	2.0	0.32

Figure S5: (a) J-V characteristics measured under 1 sun illumination with an area of 0.16 cm2 and; (b) The IPCE
Figure S6: Dye desorption measurements of (a) D149 on SANP, NR18-T and WER2-O films (three films for each, thickness 5.0 ± 0.3 µm; area= 1 cm2); (b) The quantified LHE of D149 desorbed on SANP, NR18-T and WER2-O films.

Figure S7: The optical band gap (E_g) measurements (Tauc plot) of SANP, NR18-T and WER2-O films (10.0±0.3 µm thick).
Raman Analysis

The percentage of specific exposed (001) facets of anatase can be quantified from the relative intensity ratios of $E_g(1)$ and A_{1g} vibrational modes in Raman spectra, [1-3] typically from the relative ratio of $E_g(1)$ at 144 cm$^{-1}$ and A_{1g} at 513 cm$^{-1}$ vibrational modes ($A_{1g}/E_g(1)$). This is of interest as a possible explanation for the difference in IEP between SANP and the other TiO$_2$ materials.

Figure S8 shows Raman spectra of both samples, collected in the range of (100-800 cm$^{-1}$). Gaussian fits were applied for the ease of comparison to calculate the Full Width at Half Maximum (FWHM) of all vibration modes. Raman spectra of anatase TiO$_2$ is distinguished by six allowed vibrational modes centered at 144 cm$^{-1}$ ($E_g(1)$), 197 cm$^{-1}$ ($E_g(2)$), 399 cm$^{-1}$ (B_{1g}), 513 cm$^{-1}$ (A_{1g}), 519 cm$^{-1}$ (B_{1g}), and 639 cm$^{-1}$ ($E_g(3)$).[4] All active vibrational modes ($A_{1g} + 2B_{1g} + 3E_g$) were detected in both SANP and NR18-T, with the good agreement to previously reported values,[5] SANP showed less peak broadening compared to NR18-T which is correlated with smaller particle sizes, indicating better crystallinity compared to NR18-T.

![Figure S8: Raman measurements of SANP and NR18-T films (3 μm).](image-url)
XPS analysis

XPS spectra were measured in range (260-550 eV). Figure S9 shows the spectra of SANP and NR18-T where the peaks of Ti, O and C are observed for both samples. These peaks (Ti, O) are in good agreement with anatase TiO$_2$.[6] Whereas Figures S10 a,b show the high-resolution spectra of (Ti 2p$_{1/2}$ and Ti 2p$_{3/2}$) at 458 eV and 464 eV respectively which correspond to Ti 2p representing the Ti$^{4+}$ oxidation state.[7] The O 1s peaks at 529 and 530.6 eV were assigned to Ti-O and OH respectively.[8]

Figure S9: XPS survey of SANP and NR18-T materials.
Figure S10: XPS spectra of (a,b) Ti 2p and (c,d) O 1s of; SANP and NR18-T.

Figure S11: EIS Nyquist plots fitting for devices based on SANP, NR18-T and NR18-T/WER2-O photoanodes sensitized with D149.
Figure S12: Dye desorption measurements of (a) N719 on SANP, NR18-T and WER2-O films (three films for each, thickness 5.0±0.3 µm; area= 1 cm²); (b) The quantified LHE of N719 desorbed on SANP, NR18-T and WER2-O films.

Table S4: J-V parameters details of devices based on synthesized SANP, NR18-T and NR18-T/WER2-O sensitized with N719 dye.

SANP	N719 (10 µm)	J_{sc} (mA·cm$^{-2}$)	V_{oc} (V)	FF (%)	PCE (%)
1	15.5	0.72	70.3	7.88	
2	15.3	0.71	70.1	7.68	
3	15.9	0.69	69.5	7.64	
Average	15.6	0.71	69.9	7.73	
STDEV	0.3	0.02	0.41	0.13	

NR18-T	N719 (10 µm)	J_{sc} (mA·cm$^{-2}$)	V_{oc} (V)	FF (%)	PCE (%)
1	14.8	0.68	73.2	7.35	
2	14.4	0.68	73.5	7.20	
3	14.1	0.70	72.3	7.16	
Average	14.4	0.69	73.0	7.23	
STDEV	0.4	0.02	0.6	0.10	

NR18/WER2-O	N719 (15 µm)	J_{sc} (mA·cm$^{-2}$)	V_{oc} (V)	FF (%)	PCE (%)
1	14.9	0.72	73.0	7.90	
2	16.0	0.71	72.6	8.20	
3	15.2	0.69	73.0	7.65	
Average	15.37	0.71	72.8	7.91	
STDEV	0.57	0.02	0.4	0.28	
Figure S13: EIS Nyquist plots fitting for devices based on SANP, NR18-T and NR18-T/WER2-O photoanodes sensitized with N719.

References

1. Tian, F., Y. Zhang, J. Zhang, and C. Pan, Raman Spectroscopy: A New Approach to Measure the Percentage of Anatase TiO$_2$ Exposed (001) Facets. The Journal of Physical Chemistry C, 2012. 116(13): p. 7515-7519.

2. Chu, L., Z. Qin, and J. Yang, Anatase TiO$_2$ nanoparticles with exposed {001} facets for efficient dye-sensitized solar cells. Scientific reports, 2015. 5: p. 12143.

3. Yang, H.G., C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, and G.Q. Lu, Anatase TiO$_2$ single crystals with a large percentage of reactive facets. Nature, 2008. 453: p. 638.

4. Ohsaka, T., Temperature dependence of the Raman spectrum in anatase TiO$_2$. Journal of the Physical Society of Japan, 1980. 48(5): p. 1661-1668.

5. Šćepanović, M.J., M. Grujić-Brojčin, Z. Dohčević-Mitrović, and Z. Popović, Characterization of anatase TiO$_2$ nanopowder by variable-temperature Raman spectroscopy. Science of Sintering, 2009. 41(1): p. 67-73.

6. Shaban, M., J. Poostforooshan, and A. Weber, Surface–Initiated Polymerization on Unmodified Inorganic Semiconductor Nanoparticles via Surfactant–Free Aerosol–Based Synthesis toward Core–Shell Nanohybrids with Tunable Shell Thickness. V. 5. 2017. 18651-18663.

7. Hwang, J.-Y., S.-T. Myung, J.-H. Lee, A. Abouimrane, I. Belharouak, and Y.-K. Sun, Ultrafast sodium storage in anatase TiO$_2$ nanoparticles embedded on carbon nanotubes. Nano Energy, 2015. 16: p. 218-226.

8. Ni, J., S. Fu, C. Wu, J. Maier, Y. Yu, and L. Li, Self-supported nanotube arrays of Sulfur-doped TiO$_2$ enabling ultrastable and robust Sodium storage. Advanced Materials, 2016. 28(11): p. 2259-2265.