がん転移活性を評価し再発ハイリスク群を予測するバイオマーカーの開発

本 田 一 文1,2)

要旨：後発転移を予防する目的に補助化学療法が実施されるが、そもそも原発巣が完全に切除されているのであれば、後発転移の有無は腫瘍が持つ個性である転移活性に依存する可能性が高い。すなわち、原発巣の腫瘍個性が分子生物学的にプロファイルできれば、最適な補助化学療法に対する戦略を提供できる可能性がある。

われわれは、高転移性の乳がん、大腸がん、卵巣がん、肺がん、唾液腺がん、舌がんで遺伝子増幅するアクチン束状化分子 ACTN4 の単離を行った。ACTN4 タンパク質の高発現は、がん転移に関与する細胞突起の形成を誘導する。カナダで実施された非小細胞肺がんの補助化学療法に対するランダム化比較試験のトランスクリプトームのサブグループ解析では、ACTN4 の高発現グループでのみで補助化学療法の上乗せ効果が確認できた。ACTN4 の遺伝子増幅を検出する FISH プローブを開発し、I 期肺癌がんの転移活性を予測し、適切な補助化学療法に資するバイオマーカーの臨床開発を開始した。

遺伝子増幅により後発転移を予測できるのは、非小細胞肺がんだけではない。口腔がんについても後発転移ハイリスク群を同定することで、適切な治療戦略を提示できる可能性はある。本バイオマーカーの臨床的意義について紹介する。

キーワード：転移活性、バイオマーカー、ACTN4、補助化学療法

1. はじめに

がんの予後を決定する因子として、転移巣の制御があげられる。外科的に原発巣が完全に切除されているにも関わらず、しばしば原発以外の場所から再発を見ることもあるが、転移巣の制御のみならず転移巣をいかに制御するかが予後の改善には重要である。たとえ又はメソクラベルでは手術で原発巣を切除できる早期がんであったとしても、腫瘍細胞自身が持つ生物学的な個性として転移活性が高い場合には、画像検査では検出できないミクロな転移巣の存在を否定できず、完全切除後の治療戦略決定に難渋することがある。そもそも術後補助療法の有効な患者群とは、「切除範囲外に転移巣が存在し、補助療法が転移巣に対して奏効する患者群」と定義することができる。だとすれば、「補助療法実施を必要とする患者群」とは「転移活性の再発高リスク群」と言えることも可能である。

われわれは、がん転移活性を評価し再発ハイリスク群を予測するバイオマーカーとして ACTN4 遺伝子増幅の臨床開発を進めている。本稿ではその詳細について述べる。

2. がん転移に寄与する ACTN4 の遺伝子クローニングとがん組織における遺伝子増幅

著者らは、がんの浸潤と転移の分子メカニズムを明らかにするため、免疫化学染色で乳がんの浸潤先進部に強く染色されるモノクローナル抗体を樹立し、ファージスクリーニング系でアクチン束状化に関与する細胞骨格 α-actinin の 4 番目の分子をコードする ACTN4 遺伝子（遺伝子名 ACTN4, タンパク質名 actinin-4）の全長クローニングに世界で初めて成功した1)。Actinin-4 タンパク質の分子構造は、N 末端から actin binding domain, spectrin like repeat, EF hand domain を持ち、細胞内で 2 量体を形成することで、細胞骨格である actin を束状化する（図 12)。Actinin-4 の過剰発現は、がん細胞浸潤の先端である浸潤突起の形成に強く関与し、細胞外マトリックスをマトリックスメタロプロテアーゼ（MMPs）ファミリーにより細胞外基質を消化することで、がんの転移・浸潤を促進する3)。

事実、ドキシサイクリンのプロモーターで厳密に発現がコントロールできる大腸がん細胞を作成し、免疫不全マウスの盲腸部に同所移植した実験系では、腸間膜リンパ節への

1) 日本医科大学大学院医学研究科生体機能制御学分野 （主任：本田一文大学院教授）
2) 国立がん研究センター研究所早期診断バイオマーカー開発部門 （主任：本田一文部門長）
顕著な転移が観察された。転移形質の高い乳がんや大腸がん症例で、Actinin-4 テンパク質の増加が確認できたが、そのテンパク質増発現の原因が分からなかった。ACTN4 の染色体位置は 19q13 である。当時、複数のがんで同部位の遺伝子増幅が報告され始めていた。そこで FISH（fluorescence in situ hybridization）法を用いて、ACTN4 の遺伝子増幅を膵がんと卵巣がんで確認した。特に卵巣がんでは、たんぱく発現に比較しても FISH によって ACTN4 遺伝子増幅を確認する方が、厳密に全生存期間の推定できることを明らかにした。現在では、actinin-4 テンパク質増発現増加や ACTN4 遺伝子増幅と予後不良が種々のがんで報告されている。詳細は表 1 に記載した。

3. 肺がんにおける ACTN4 のテンパク質
発現増強と遺伝子増幅

肺がん診療ガイドライン（2019 年）（https://www.haigan.gr.jp/modules/guideline/index.php?content_id=3）によると、「病変全体径で 2 cm を超える術後病理病期Ⅰ A/Ⅰ B/Ⅱ期（第 8 版）完全切除、肺がんが症例に対して、テガフール・ウラシル配合剤（UFT）による補助化学療法の実施」を強く推奨している（エビデンス A）。その根拠はⅠ期肺がんに対する UFT の効果を検討する第Ⅲ相試験が実施され、全体では 3%（85%→88%）、IB 期（T＞3 cm）においては 11%（74%→85%）の上乗せ効果が認められたことに起因する。さらに 4 個の臨床試験で加えて行われたメタアナリシス（2,003 症例：腫がん 84%，非腫がん 16%）の結果でも、全体で 5%（77%→82%）の 5 年生存割合の改善を認め、UFT の有効性が確認された。腫瘍径＞2 cm かつ 3 cm 以下の患者群における UFT の有効性が十分に評価されているものである。一方で、同ガイドラインにおいては、術後病理Ⅰ期の肺がんの完全切除例では手術単独でも 74%が無再発であり、化学療法の安全性を十分考慮すべきである。肺がん新診療ガイドライン 2019 年 4-2、術後補助化学療法の解説より抜粋）。

本総説の「1. はじめに」にて先述した通り、術後補助化学療法が奏効する群を層別化して効果的な術後補助化学療法を実施するためには、腫瘍が持つ転移活性を評価することで、切除部位以外の微小転移巣を予測することが重要
Table 1 ACTN4が悪性化形質に関与することを報告した代表的な論文（文献 Honda. Cell Biosci 2015 改変）

Type of malignant tumor	Observations
Brain tumors	1) Correlation between histological grade and protein expression of actinin-4 in gliomas¹⁹.
2) Association of actinin-4 with cell migration in gliomas²⁰.
3) Overexpression of actinin-4 in high-grade astrocytomas²¹. |
| **Head and neck cancer** | 4) Positive correlation between ACTN4 amplification and the histological grade of salivary gland carcinomas. The importance of ACTN4 amplification as a prognostic biomarker in salivary gland carcinomas²².
5) Positive correlation between invasive classification of oral squamous cell carcinoma and protein expression of actinin-4²³.
6) Correlation between histological grade and protein expression in thyroid cancer²⁴.
7) Prognostic biomarkers in squamous cell carcinoma of the oral tongue with expression of PTEN-targeting and ACTN4 targeting miRNAs²⁵.
8) Prognostic significance of gene amplification of ACTN4 in stage-I/II oral tongue cancer¹⁸. |
| **Lung cancer** | 9) Utility of ACTN4 amplification as a prognostic biomarker for stage I adenocarcinoma of the lung²¹.
10) Overexpression of actinin-4 mRNA in NSCLC²⁶.
11) Identification of a splice variant of actinin-4 in SCLC as a cancer testis antigen^{4, 27}. Utility of a splice variant of actinin-4 in the lung as a prognostic biomarker for high-grade malignant neuroendocrine tumors²⁸.
12) Expression of actinin-4 in blood samples of patients with NSCLC and utility as a diagnostic biomarker for NSCLC^{29, 30}.
13) Actinin-4 overexpression as adjuvant chemotherapy in resected lung adenocarcinoma³¹.
14) A two genes prognostic classifier including ACTN4 transcript for early stage lung squamous cell carcinoma³¹.
15) Assessment of efficient adjuvant chemotherapy for non-small cell lung cancer by metastatic potential involved in ACTN4⁴². |
| **Breast cancer** | 16) Identification of actinin-4 as a novel actin-bundling protein, and utility of actinin-4 as a prognostic biomarker for invasive ductal breast cancer^{4, 27}.
17) Summary of actinin-4 as a translational coactivator in breast cancer^{25, 33}.
18) Identification of protein-protein interactions between estrogen receptors and actinin-4⁴¹.
19) Prognostic biomarker in HER2-negative, node-negative invasive breast carcinoma with gene amplification of ACTN4³⁵. |
| **Esophageal cancer** | 20) Overexpression of actinin-4 according to clinical stage in esophageal cancer³⁶. |
| **Gastric cancer** | 21) Promotion of metastatic ability with actin-4 in gastric cancer²⁷. |
| **Pancreatic cancer** | 22) First evidence of ACTN4 amplification in cancer. Identification of actinin-4 overexpression in patients with invasive ductal adenocarcinoma of the pancreas with poor prognosis³⁵.
23) Clinical utility of ACTN4 amplification as a predictive biomarker for chemoradiotherapy in LAPC³⁰.
24) Association of actinin-4 with invadopodia in pancreatic cancer³⁰. |
| **Colorectal cancer** | 25) Identification of overexpression of actinin-4 in areas of EMT in colorectal cancer³⁵.
26) Involvement of actinin-4 in the formation of cellular protrusions that are associated with invasion and migration⁴⁰. |
| **Gastrointestinal stromal tumor (GIST)** | 27) Fusion gene of EIF3K-ACTN4 in GIST⁴¹. |
| **Cervical cancer** | 28) Diagnostic and prognostic biomarker for cervical cancer with serum levels of actinin-4 protein³⁵.
29) Regulation of cancer stem cell properties and chemoresistance with actinin-4 in cervical cancer⁴². |
| **Ovarian cancer** | 30) Identification of actinin-4 overexpression in ovarian cancer, and correlation between actinin-4 overexpression and overall survival in patients with ovarian cancer⁴¹.
31) Utility of ACTN4 amplification as a prognostic biomarker in ovarian cancer³⁶.
32) Accumulation of ACTN4 amplification in high-grade clear cell carcinoma of ovarian cancer³⁷.
33) Identification of ACTN4 amplification in fallopian tube carcinomas⁴¹. |
そこでわれわれは,国立がん研究センター中央病院および国立がん研究センター東病院で切除され術後補助化学療法が実施されていないⅠ期肺腺がんの切除標本を免疫染色とFISH法を用いて,actinin-4タンパク質発現と遺伝子増幅を確認した11)。独立した2つのコホートで確認したが,ACTN4遺伝子増幅したⅠ期肺腺がん群（23例）は非増幅群（267例）に比較して全生存期間が有意に短縮し,5年生存割合はそれぞれ,96%（95%CI 92-99%）,93%（95%CI 87-99%）,70%（95%CI 47-100%）であった11)。本所見は,ACTN4の遺伝子増幅は術後化学療法を実施しないⅠ期肺腺がんの強力な予後予測バイオマーカーであり,完全切除手術がなされているにもかかわらず死亡の高リスク因子であることは,画像でとらえきれない微小残存転移巣を予測するバイオマーカーであることを強力に示唆している2)。

実際,肺がん細胞株でACTN4の遺伝子増幅を認めるA549細胞にshRNAを用いてactinin-4タンパク質発現をノックダウンしてみると,細胞の浸調能や糸状突起の形成は著しく減少した。ルシフェラーゼで発光するA549細胞株を免疫不全マウスに尾静脈に注入し40日間観察すると肺転移が顕著に観察される。一方でactinin-4ノックダウンA549細胞株を尾静脈に注入しても肺への転移は確認できなかった（図3A）12)。すなわち,先に提示した仮説のとおり,ACTN4遺伝子増幅は転移活性亢進による切除範囲以外の微小転移巣の存在を反映する代理バイオマーカーの可能性が高い。

加えて,「肺がん診療ガイドライン（2019）CQ29」には,術後病理病気Ⅱ-ⅢA期（第8版）切除例に対してシスプラチン併用化学療法を勧めている。この根拠も,メタアナリシスによる術後補助化学療法による有意な延長が認められていることを根拠とする33)。カナダで行われたシス
プラチン・ビノレルビンの併用補助化学療法の第3相ランダム化比較試験（JBR.10）の結果の公開データベースを用いて。ACTN4のmRNA指標にサブグループ解析を実施したところACTN4高発現群では、術後補助化学療法により全生存期間の延長が認められたが、低発現群では生存期間の改善は認められなかった（図3B）。このことからも、ACTN4は補助化学療法により恩恵を受ける患者群を層別化するバイオマーカーである可能性を示唆するものである。同結果をうえ、日本医療開発機構（AMED）の支援を受け、日本医科大学、東京医科大学、国立がん研究センターの多施設共同研究によるバイオマーカー社会実装に向けた医師主導臨床研究を開始されている。

図3 ACTN4高発現、低発現グループにおける補助化学療法層別化の可能性（Miura et al. Oncotarget 2016より改変して転載12）
A、B：カナダで実施されたランダム化比較 III相試験JBR.10のデータを公開データベースより抽出。ACTN4で層別化し補助化学療法の実施群と非実施群で全生存期間を解析（黒：ADC補助化学療法群、グレー：補助化学療法非実施群）。
A：ACTN4高発現群サブグループ、B：ACTN4低発現群サブグループ。
C、D、E：shRNAを用いてACTN4発現をノックダウンした肺がん細胞株（A549）とそのコントロール細胞の尾静脈注射マウス肺転移モデル。ACTN4ノックダウン細胞（sh#2）では肺がん細胞株では、ルシフェラーゼ発光解析、マクロ解析でも肺転移が観察できないが、そのコントロール細胞（shC）では多発肺転移が観察できる。ACTN4のノックダウンは著明に肺転移能を減弱する。
D：sh2 ACTN4ノックダウン肺がん細胞株の尾静脈注入40日後の肺マクロ写真、E：sh2 ACTN4コントロール細胞株の肺マクロ写真。
図4 ウカリ期脅がんにおけるACTN4タンパク質発現と遺伝子増幅で層別化した予後解析（Kakuya et al. IJOMS 2017を改変して転載）。
A: 免疫染色によるactinin-4タンパク質のI/II期脅がんでの発現。代表的なタンパク質陽性例の顕微鏡写真。
B: FISH法によるACTN4遺伝子増幅症例。
C: ACTN4タンパク質発現、遺伝子増幅で層別化した無病生存曲線（グレー線：actinin-4タンパク質陰性/ACTN4遺伝子非増幅症例。黒線：タンパク質陽性/遺伝子非増幅症例。破線：タンパク質陽性/増幅症例）。
D: ACTN4タンパク質発現、遺伝子増幅で層別化した全生存曲線。
E: C, Dで解析した症例で後発頭部リンパ節転移が確認され国立がん研究センター中央病院で頭部郭清術を実施した症例の全生存曲線（グレー線：ACTN4遺伝子非増幅症例。黒線：遺伝子増幅症例）。

*P=0.036 (HR; 2.82, 95% CI; 1.04 – 7.64)
**P=0.008 (HR; 2.19, 95% CI; 1.17 – 4.09)

*P=0.0008 (HR; 7.60, 95% CI; 1.95 – 29.6)
**P=0.035 (HR; 4.62, 95% CI; 0.998 – 21.3)
4. 舌扁平上皮のの後々を厳密に予測する
ACTN4の遺伝子増幅

現在、臨床的にリンパ節転移のない早期舌がん（stage-I/II）に対する手術による標準治療は、舌部分切除、または舌部分切除＋患側頸部郭清術である。以前からのク
リニカルクエスチョンとして、「早期舌がんに予防郭清は必要か？」があげられてきた。2015年のインドからのランダム化第3相試験はこの問題に対する一つの回答であ
る。すなわち、早期口腔がんに対する予防的頸部郭清術群は非郭清術群に対して主解析である全生存期間（HR: 0.64；95%CI: 0.34-0.59，3年生存割合80.0% VS. 67.5%）
と副次解析の無病生存期間（HR: 0.45; 95%CI 0.34-0.59, 3年無病生存割合69.5% VS. 45.9%）ともに有意に優れていることを証明した15)。

しかしこの試験では、再発時のリンパ節転移が進行して発見されることが多く、術後のフォロー
アップが触診のみまたは触診+超音波にのみにランダム
化されているのがリミテーションとなっている。本邦では
実施されるCT検査によるフォローアップがなされてお
らず、この結果をそのまま日本の日常診療に外挿できるか
どうかは疑問が残るところである16)。

この疑問を解消するために本邦でもstage-Ⅰ/Ⅱ(T1-2N0)
舌がんに対する舌部分切除単独群と舌部分切除+予防的
頸部郭清群に対するランダム化比較試験が実施されてい
る（JCOG 1601: Randomized Phase III study to evaluate
the value of omission of prophylactic neck dissection for
stage I/II tongue cancer）17)。この試験は舌部分切除に対
する舌部分切除+予防郭清群について全生存期間での非
劣勢を明らかにすることを目的にデザインされていて、よ
り低侵襲な標準治療の確立を目指している。結果が待た
れるところである。

一方で、後発頭頸部リンパ節転移は原発巣が持つ腫瘍個
性である転移活性に起因する可能性も高い。であれば、
ACTN4遺伝子増幅が後発頭頸部転移のバイオマーカーにな
りうる可能性もある。そこで、国立がん研究センター中央
病院頭頸部外科で手術されたstage-Ⅰ/Ⅱの手術病理切片を
用いてACTN4のタンパク質発現と遺伝子増幅の状態を免
疫染色とFISH法でレトロスペクティブに検討した。「①免
疫染色陰性(actinin-4タンパク質陰性)」、「②免疫染色陽
性(actinin-4タンパク質陽性)/FISH陰性(ACTN4遺伝
子非増幅)」、「③免疫染色陽性/FISH陽性(ACTN4遺伝
子増幅)」に分類して、無病生存期間と全生存期間を評価
した。症例は国立がん研究センター中央病院で初回手術に
て舌部分切除を受けた症例とし、術前化学療法実施症例、
病理学的に切除断端陽性症例、局所再発症例、FISH法に
よる評価不能症例を除外された51例である。図4が示す
ように、無病生存期間は「①免疫染色陰性」に比較して
「②免疫染色陽性/FISH陰性」(HR: 2.82, 95%CI: 1.04-7.64)、「③免疫染色陽性/FISH陽性」(HR: 2.19, 95%CI: 1.17-4.09)ともに有意に短かっ
た。また、その生存期間中央値（median survival time, MST）は「①免疫染色陰性/FISH陰性」、「③免疫染色陽性/FISH陽性」について
それぞれ1,964日、744日であり、「①免疫染色陰性」は
MSTに達しなかった。興味深いことに、同症例を全生存
期間で評価すると「①免疫染色陰性」と「②免疫染色
陰性/FISH陰性」の有意差は消減し、「①免疫染色陰性」と
「③免疫染色陽性/FISH陽性」（HR: 7.60, 95%CI: 1.95-29.6）
にのみ有意な短縮が認められた(図4)18)。

この研究は症例数も少なく後ろ向き研究のため、ど
こまで信頼できるかはわからないが、後ろ向き観察研究を
含め多施設共同研究による検証が必要であろう。

本総説は、2020年1月23日に行われた第38回日本口腔腫瘍学
会総会・学術大会のシンポジウムで発表した内容の抜粋であ
る。

本論文に関して、開示すべき利益相反状態はない。

文献
1) Honda, K., Yamada, T., et al.: Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. J Cell Biol 140: 1383-1393, 1998.
2) Honda, K.: The biological role of actinin-4（ACTN4）in malignant phenotypes of cancer. Cell Biosci 5: 41, 2015.
3) Yamaguchi, H., Ito, Y., et al.: Actinin-1 and actinin-4 play essential but distinct roles in invadopodia formation by carcinoma cells. Eur J Cell Biol 96: 685-694, 2017.
4) Honda, K., Yamada, T., et al.: Actinin-4 increases cell
motility and promotes lymph node metastasis of colorectal cancer. Gastroenterology 128 : 51–62, 2005.
5) Kikuchi, S., Honda, K., et al.: Expression and gene amplification of actin-4 in invasive ductal carcinoma of the pancreas. Clin Cancer Res 14 : 5348–5356, 2008.
6) Yamamoto, S., Tsuda, H., et al.: Actinin-4 gene amplification in ovarian cancer: a candidate oncogene associated with poor patient prognosis and tumor chemoresistance. Mod Pathol 22 : 499–507, 2009.
7) Yamamoto, S., Tsuda, H., et al.: ACTN4 gene amplification and actin-4 protein overexpression drive tumour development and histological progression in a high-grade subset of ovarian clear-cell adenocarcinomas. Histopathology 60 : 1073–1083, 2012.
8) Kato, H., Ichinose, Y., et al.: A randomized trial of adjuvant chemotherapy with uracil-tegafur for adenocarcinoma of the lung. N Engl J Med 350 : 1713–1721, 2004.
9) Hamada, C., Tanaka, F., et al.: Meta-analysis of postoperative adjuvant chemotherapy with tegafur-uracil in non-small cell lung cancer. J Clin Oncol 23 : 4999–5006, 2005.
10) Hamada, C., Tsuboi, M., et al.: Effect of postoperative adjuvant chemotherapy with tegafur-uracil on survival in patients with stage IA non-small cell lung cancer: an exploratory analysis from a meta-analysis of six randomized controlled trials. J Thorac Oncol 4 : 1511–1516, 2009.
11) Noro, R., Honda, K., et al.: Distinct outcome of stage I lung adenocarcinoma with ACTN4 cell motility gene amplification. Ann Oncol 24 : 2594–2600, 2013.
12) Miura, N., Kamita, M., et al.: Efficacy of adjuvant chemotherapy for non-small cell lung cancer assessed by metastatic potential associated with ACTN4. Oncotarget 7 : 33165–33178, 2016.
13) Butts, C.A., Ding, K., et al.: Randomized phase III trial of vinorelbine plus cisplatin compared with observation in completely resected stage IB and II non-small-cell lung cancer: updated survival analysis of JBR-10. J Clin Oncol 28 : 29–34, 2010.
14) Zhu, C.Q., Ding, K., et al.: Prognostic and predictive gene signature for adjuvant chemotherapy in resected non-small-cell lung cancer. J Clin Oncol 28 : 4417–4424, 2010.
15) D’Cruz, A.K., Vaish, K., et al.: Elective versus Therapeutic Neck Dissection in Node-Negative Oral Cancer. N Engl J Med 373 : 521–529, 2015.
16) 花井信広: Stage I/II舌癌に対する予防的頸部郭清術の意義を検証するための多施設共同臨床試験. 日耳鼻 122 : 1107–1112, 2019.
17) Tanaka, K., Hanai, N., et al.: Randomized phase III study to evaluate the value of omission of prophylactic neck dissection for stage I/II tongue cancer: Japan Clinical Oncology Group study (JCOG1601, RESPOND). Jpn J Clin Oncol 48 : 1105–1108, 2018.
18) Kakuya, T., Mori, T., et al.: Prognostic significance of gene amplification of ACTN4 in stage I and II oral tongue cancer. Int J Oral Maxillofac Surg 46 : 968–976, 2017.
19) Fukushima, S., Yoshida, A., et al.: Immunohistochemical actin-4 expression in infiltrating gliomas: association with WHO grade and differentiation. Brain Tumor Pathol 31 : 11–16, 2014.
20) Henry, W.I., Dubois, J., et al.: The microtubule inhibiting agent epothilone B antagonizes glioma cell motility associated with reorganization of the actin-binding protein alpha-actinin 4. Oncology reports 25 : 887–893, 2011.
21) Quick, Q., Skalli, O.: Alpha-actinin 1 and alpha-actinin 4: contrasting roles in the survival, motility, and RhoA signaling of astrocytoma cells. Experimental cell research 316 : 1137–1147, 2010.
22) Watabe, Y., Mori, T., et al.: Copy number increase of ACTN4 is a prognostic indicator in salivary gland carcinoma. Cancer Med 3 : 613–622, 2014.
23) Yamada, S., Yamamoto, S., et al.: RNAi-mediated down-regulation of alpha-actinin-4 decreases invasion potential in oral squamous cell carcinoma. Int J Oral Maxillofac Surg 39 : 61–67, 2010.
24) Tanaka, N., Yamashita, T., et al.: Histological growth pattern of and alpha-actinin-4 expression in thyroid cancer. Anticancer Res 34 : 3157–3163, 2014.
25) Berania, I., Cardin, G.B., et al.: Four PTEN-targeting co-expressed miRNAs and ACTN4- targeting miR-548b are independent prognostic biomarkers in human squamous cell carcinoma of the oral tongue. International journal of cancer 141 : 2318–2328, 2017.
26) Yamagata, N., Shyr, Y., et al.: A training-testing approach to the molecular classification of resected non-small cell lung cancer. Clin Cancer Res 9 : 4695–4704, 2003.
27) Honda, K., Yamada, T., et al.: Alternative splice variant of actinin-4 in small cell lung cancer. Oncogene 23 : 5257–5262, 2004.
28) Miyanaga, A., Honda, K., et al.: Diagnostic and prognostic significance of the alternatively spliced ACTN4 variant in high-grade neuroendocrine pulmonary tumours. Annals of oncology: official journal of the European Society for Medical Oncology/ESMO 24 : 84–90, 2013.
29) Chen, Y.Y., Wang, L.W., et al.: Meta-analysis of postoperative adjuvant chemotherapy without radiotherapy in early stage non-small cell lung cancer. Oncol Targets Ther 8 : 2033–2043, 2015.
30) Wang, M.C., Chang, Y.H., et al.: Alpha-actinin 4 is associated with cancer cell motility and is a potential biomarker in non-small cell lung cancer. J Thorac Oncol 10 : 286–301, 2015.
31) Noro, R., Ishigame, T., et al.: A Two-Genes Prognostic Classifier for Early-Stage Lung Squamous Cell Carcinoma in Multiple Large-Scale and Geographically Diverse Cohorts. J Thorac Oncol 12 : 65–76, 2017.
32) Hsu, K.S., Kao, H.Y.: Alpha-actinin 4 and tumorigenesis of breast cancer. Vitamins and hormones 93 : 323–331, 2013.
33) Chakraborty, S., Reineke, E.L., et al.: Alpha-actinin 4 potentiates myocyte enhancer factor-2 transcription activity by antagonizing histone deacetylase 7. The Journal of biological chemistry 281 : 35070–35080, 2006.
34) Khurana, S., Chakraborty, S., et al.: The actin-binding protein, actinin alpha 4 (ACTN4), is a nuclear receptor coactivator that promotes proliferation of MCF-7 breast cancer cells. The Journal of biological chemistry 286 : 1850–1859, 2011.
35) Sugano, T., Yoshida, M., et al.: Prognostic impact of ACTN4 gene copy number alteration in hormone receptor-positive, HER2-negative, node-negative invasive breast carcinoma. Br J Cancer 122 : 1811–1817, 2020.
36) Babakov, V.N., Petukhova, O.A., et al.: RelA/NF-kappaB transcription factor associates with alpha-actinin-4. Experimental cell research 314: 1030–1038, 2008.
37) Liu, X., Chu, K.M.: alpha-Actinin-4 promotes metastasis in gastric cancer. Lab Invest 97: 1084–1094, 2017.
38) Watanabe, T., Ueno, H., et al.: ACTN4 copy number increase as a predictive biomarker for chemoradiotherapy of locally advanced pancreatic cancer. Br J Cancer 112: 704–713, 2015.
39) Welsch, T., Keleg, S., et al.: Actinin-4 expression in primary and metastasized pancreatic ductal adenocarcinoma. Pancreas 38: 968–976, 2009.
40) Hayashida, Y., Honda, K., et al.: E-cadherin regulates the association between beta-catenin and actinin-4. Cancer Res 65: 8836–8845, 2005.
41) Cho, W.C., Shin, Y.K., et al.: The role of novel fusion genes in human GIST cell lines derived from imatinib-resistant GIST patients: A therapeutic potential of fusion gene. Biochem Biophys Res Commun 529: 699–706, 2020.
42) Jung, J., Kim, S., et al.: alpha-Actinin-4 regulates cancer stem cell properties and chemoresistance in cervical cancer. Carcinogenesis 41: 940–949, 2020.
43) Yamamoto, S., Tsuda, H., et al.: Actinin-4 expression in ovarian cancer: a novel prognostic indicator independent of clinical stage and histological type. Mod Pathol 20: 1278–1285, 2007.
44) Nowee, M.E., Snijders, A.M., et al.: DNA profiling of primary serous ovarian and fallopian tube carcinomas with array comparative genomic hybridization and multiplex ligation-dependent probe amplification. The Journal of pathology 213: 46–55, 2007.
45) Koizumi, T., Nakatsuji, H., et al.: The role of actinin-4 in bladder cancer invasion. Urology 75: 357–364, 2010.
46) Yoshii, H., Ito, K., et al.: Increased expression of alpha-actinin-4 is associated with unfavorable pathological features and invasiveness of bladder cancer. Oncology reports 30: 1073–1080, 2013.
47) Jasavala, R., Martinez, H., et al.: Identification of putative androgen receptor interaction protein modules cytoskeleton and endosomes modulate androgen receptor signaling in prostate cancer cells. Mol Cell Proteomics 6: 252–271, 2007.
48) Ishizuya, Y., Uemura, M., et al.: The role of actinin-4 (ACTN4) in exosomes as a potential novel therapeutic target in castration-resistant prostate cancer. Biochem Biophys Res Commun 523: 588–594, 2020.
49) Shao, H., Li, S., et al.: alpha-Actinin-4 is required for amoeboid-type invasiveness of melanoma cells. The Journal of biological chemistry 289: 32717–32728, 2014.
50) Zhang, Y.Y., Tabataba, H., et al.: ACTN4 regulates the stability of RIPK1 in melanoma. Oncogene 37: 4033–4045, 2018.
51) Burmeister, T., Meyer, C., et al.: The MLL recombinome of adult CD10-negative B-cell precursor acute lymphoblastic leukemia: results from the GMALL study group. Blood 113: 4011–4015, 2009.
52) Yang, J.J., Park, T.S., et al.: Molecular characterization and clinical course of MLL-ACTN4 rearrangement in therapy-related hematologic malignancies. Haematologica 99: e49–e51, 2014.
53) Agarwal, N., Adhikari, A.S., et al.: MTBP suppresses cell migration and filopodia formation by inhibiting ACTN4. Oncogene 32: 462–470, 2013.
54) Iwakuma, T., Agarwal, N.: MDM2 binding protein, a novel metastasis suppressor. Cancer metastasis reviews 31: 633–640, 2012.
Predictive biomarker for efficient adjuvant therapies by evaluating metastatic ability

Kazufumi Honda1,2)

1) Department of Bioregulation, Graduate School of Medicine, Nippon Medical School
(Chief: Prof. Kazufumi Honda)
2) Department of Biomarkers for Early Detection of Cancer, National Cancer Center Research Institute
(Chief: Dr. Kazufumi Honda)

Abstract

Adjuvant chemotherapy is performed with the aim of preventing late metastasis; however, if the primary tumor is completely resected initially, the development of late metastases most likely depends on the characteristic metastatic activity of the tumor. In other words, it may be that the best strategies for adjuvant chemotherapy could be established if the molecular biological profiles of primary tumor characteristics are determined.

We isolated the actin-bundling molecule alpha-actinin-4 (ACTN4) from gene amplification in highly metastatic breast cancer, colorectal cancer, ovarian cancer, pancreatic cancer, lung cancer, salivary gland cancer, and tongue cancer. High expression of the ACTN4 protein induces the formation of cell processes that are involved in cancer metastasis. In a transcriptome subgroup analysis of a randomized controlled study of adjuvant chemotherapy for non-small cell lung cancer conducted in Canada, an additional effect from adjuvant chemotherapy was demonstrated only in a group with high ACTN4 expression. We developed a FISH probe that detects gene amplification of ACTN4 and began the clinical development of biomarkers that predict the metastatic activity of stage I lung adenocarcinoma and contribute to providing appropriate adjuvant chemotherapy.

Non-small cell lung cancer is not the only cancer in which late metastasis can be predicted from gene amplification. For oral cancer as well, it may be possible to provide appropriate therapeutic strategies by identifying high-risk groups for late metastasis. Here, we discuss the clinical significance of these biomarkers.

Key words: metastatic ability, biomarker, ACTN4, adjuvant chemotherapy

Requests for reprints to: Dr. Honda K., Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan