Determination of Cost-Effective Sand Mixing Ratio for Improvement of High Liquid Limit Soil Based on Fuzzy Comprehensive Evaluation

Dongning Sun ¹,², Xin Liu ¹,², Yuhao Cao ¹,², Junjie Gong ¹,², Baoning Hong ¹,²

¹ Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Nanjing 210024, P.R. China
² Institute of Tunnel and Underground Engineering, Hohai University, Nanjing 210024, P.R. China
liuxin100@hhu.edu.cn

Abstract. In order to save soil resources and increase the utilization range of high liquid limit soil, the high liquid limit soil was improved by mixing sand, and the cost-effective sand mixing ratio was determined with the help of fuzzy comprehensive evaluation method. It is shown that the sand-mixing improvement method can significantly reduce the liquid limit and plasticity index of high liquid limit soil, and increase its value of California bearing ratio to meet the property requirements for embankment filling. The fuzzy comprehensive evaluation results show that the improvement effect and cost of sand-mixed high liquid limit soil reach a comprehensive optimal state when the sand mixing ratio is 20%.

1. Introduction

High liquid limit soil is a kind of weak soil with high natural water content, high liquid limit and high fine particle content, and it is widely distributed in tropical and subtropical countries [1]. The Chinese standard stipulates that the soil with a fine particle content not less than 50% and a liquid limit higher than 50% is high liquid limit soil [2]. High liquid limit soil cannot be used as embankment filling for its low performance in engineering. To save soil resources and cost, it is common to improve high liquid limit soil by adding admixtures [3].

Sand-mixing improvement method for weak soil is low in cost, environmentally friendly, and easy to apply in engineering. Research efforts have been devoted to sand-mixing improvement of weak soil. For example, Park et al. [4] found that as sand content in bentonite increased, the angle of internal friction and the water permeability of bentonite increased while the cohesion decreased. Choo et al. [5] investigated the compressibility and small strain stiffness of kaolin clay mixed with different amounts of sand. Zhuang et al. [6] studied the dynamic characteristics of sand-mixed expansive soil. The above studies indicate that sand can improve the gradation of soil, improve the water permeability and the compressive strength of weak soil, therefore it is feasible to improve high liquid limit soil by mixing sand.

Fuzzy comprehensive evaluation method is a comprehensive evaluation method based on fuzzy mathematics, which can solve the problem that is difficult to quantify. Fuzzy comprehensive evaluation
method is widely used in engineering practice [7,8]. In this paper, sand is used as the admixture to improve the engineering performance of high liquid limit soil. Fuzzy comprehensive evaluation method is used to determine cost-effective sand mixing ratio to make the improvement effect and cost of improved soil reach a comprehensive optimal state.

2. Materials and Methods

2.1. Materials

The high liquid limit soil used in this paper is taken from Yunluo expressway, Guangdong Province, China. The physical and mechanical properties of high liquid limit soil in natural state are shown in table 1, and the particle grading curve is shown in figure 1.

Moisture content (%)	Liquid limit (%)	Plasticity index	Density (g/cm³)	Void ratio	Compression coefficient (MPa-1)	Quick direct shear test	Cohesion (kPa)	Angle of internal friction (°)
27.0	59.1	32.3	1.75	0.96	0.44	34.3	15.6	

Figure 1. Particle grading curves of high liquid limit soil and river sand

The sand used in this paper is river sand from the Pearl River Basin in China, as shown in figure 2. The physical and mechanical properties of river sand are shown in table 2, and the particle grading curve is shown in figure 1.

Moisture content (%)	Apparent density (g/cm³)	Mud content (%)	Quick direct shear test	Cohesion (kPa)
0	2.58	0.03	0	16.2

Figure 2. The river sand from the Pearl River Basin in China
2.2. Improvement Test of Sand-Mixed High Liquid Limit Soil
The sand mixing ratio \(\eta \) is the ratio of the mass of dry sand to the mass of dry soil, and the improved high liquid limit soils with different sand mixing ratios \(\eta = 15\%, 20\%, 25\% \) and \(30\% \) were made. According to the Chinese test code [9], geotechnical tests were carried out on the improved soils \(\eta = 15\%, 20\%, 25\% \) and \(30\% \) and untreated soil \(\eta = 0\% \).

2.3. Evaluation Model of Cost-Effective Sand Mixing Ratio
In this paper, the improvement effect and cost of sand-mixed high liquid limit soil were taken as the evaluation factors with the help of fuzzy comprehensive evaluation method.

2.3.1. Establishment of Factor Set. Factor set \(U \) is a set of factors that affect the evaluated object. In order to determine cost-effective sand mixing ratio, the factors in this paper were improvement effect and cost, and the factor set \(U \) was established as,

\[
U = \{u_1, u_2\} = \{\text{Improvement effect, Improvement cost}\} \quad (1)
\]

Since it is difficult to evaluate the improvement effect of improved soil by a single factor, the improvement effect \(u_1 \) is a set of subfactor related to the liquid limit, strength and compressibility of the improved soil. In this paper, the subfactor set \(u_1 \) included five subfactors: liquid limit \(W_L \) , free expansion rate \(F_s \) , California bearing ratio value \(CBR \) , unconfined compressive strength \(q_u \) and compression coefficient \(a_r \). The subfactor set \(u_1 \) was established as,

\[
u_1 = \{u_{11}, u_{12}, u_{13}, u_{14}, u_{15}\} = \{w_L, F_s, CBR, q_u, a_r\} \quad (2)
\]

2.3.2. Establishment of Comment Set. Comment set \(V \) is a set of comments of the evaluated object. The single-factor evaluation for each subfactor in subfactor set \(u_1 \) was made, thereby obtaining the membership degree \(r_i (0 \leq r_i \leq 1, i = 1, 2, ..., 5) \) of each subfactor \(u_i \) with respect to comment set \(V \). In same way, the membership degree \(r_j (0 \leq r_j \leq 1) \) of factor \(u_2 \) with respect to comment set \(V \) can be obtained.

2.3.3. Determining Weight Coefficient by Analytic Hierarchy Process. In this paper, analytic hierarchy process was used to determine the weight coefficient \(W_u \) of factor set \(U \) and the weight coefficient \(W_{u_1} \) of subfactor set \(u_1 \). Analytic hierarchy process can make the weight coefficient more objective and practical, easy to express quantitatively, thereby improving the accuracy of fuzzy comprehensive evaluation results.

2.3.4. Fuzzy Comprehensive Evaluation. The fuzzy comprehensive evaluation matrix \(R_1 \) of subfactor set \(u_1 \) was established as,

\[
R_1 = [r_{i1}, r_{i2}, r_{i3}, r_{i4}, r_{i5}] \quad (3)
\]

where \(r_{ij} (0 \leq r_{ij} \leq 1, j = 1, 2, ..., 5) \) is the membership degree of each subfactor \(u_{1j} \) with respect to comment set \(V \).
The comprehensive evaluation result B_1 of subfactor set u_1 can be determined as,

$$B_1 = W_{u_1} \cdot R_1^T$$ \hspace{1cm} (4)

where R_1^T is the transpose matrix of R_1, W_{u_1} is the weight coefficient of subfactor set u_1.

The final result B of the fuzzy comprehensive evaluation can be determined as,

$$B = W_u \cdot [r_1 \ r_2]^T$$ \hspace{1cm} (5)

where r_1 is the norm of matrix B_1, r_2 is the membership degree of factor u_2 with respect to comment set V, W_u is the weight coefficient of factor set U.

The larger the value of $|B|$ is, the closer the evaluated sand mixing ratio is to the most cost-effective sand mixing ratio.

3. Results and discussions

3.1. Physical and Mechanical Properties of Improved Soil

The particle size distribution of untreated soil ($\eta = 0\%$) and improved soils ($\eta = 15\%, 20\%, 25\%$ and 30%) are shown in table 3. The coarse particle content of high liquid limit soil increased obviously after mixing with sand, the gradation was improved. The increased coarse particles were mainly distributed in the particle size range of 0.5mm \sim 1.0mm.

Sand mixing ratio	Content less than the particle size / %							
	<0.075mm	<0.25mm	<0.5mm	<1mm	<2mm	<5mm	<10mm	<20mm
0%	89.81	92.57	92.95	93.43	93.68	95.98	98.83	100
15%	78.34	83.33	86.09	91.82	93.02	96.45	98.96	100
20%	75.15	80.76	84.19	91.38	92.83	96.57	98.99	100
25%	72.22	78.41	82.44	90.97	92.66	96.68	99.02	100
30%	69.52	76.23	80.82	90.60	92.51	96.80	99.06	100

The basic properties of untreated soil ($\eta = 0\%$) and improved soils ($\eta = 15\%, 20\%, 25\%$ and 30%) are shown in table 4. The free expansion rate F_3 decreased with the increase of sand mixing ratio η. As sand mixing ratio η increased, the liquid limit ω_l and plasticity index I_p of the improved soils decreased. The liquid limits of improved soils were all less than 50 $\%$, and the plasticity indexes were all less than 22. Chinese technical regulation [10] stipulates that soils with a liquid limit greater than 50$\%$ and a plasticity index greater than 26 cannot be used as embankment filling. Therefore, sand-mixing improvement method can enable the high liquid limit soil to be used as embankment filling.

Sand mixing ratio	Free expansion rate (%)	Liquid limit (%)	Plasticity index
0%	21.8	59.1	32.3
15%	8.0	49.9	21.5
20%	6.2	46.8	17.6
25%	4.6	45.8	16.2
30%	2.9	45.5	15.4
The strength test results of untreated soil ($\eta = 0\%$) and improved soils ($\eta = 15\%, 20\%, 25\%$ and 30%) are shown in table 5. The unconfined compressive strength q_u of high liquid limit soil was greatly improved after mixing with sand. The unconfined compressive strength q_u increased first and then decreased with the sand mixing ratio η, and reached the maximum when the sand mixing ratio η was 20%. The values of California bearing ratio CBR of improved soils were all higher than 3, which met the requirement for California bearing ratio CBR of embankment filling in Chinese technical regulation [10]. Compared with untreated soil, the compression coefficient η_c of improved soil decreased slightly.

Table 5. The strength test results of untreated soil and improved soils

Sand mixing ratio	Unconfined compressive strength (MPa)	California bearing ratio value (%)	Compression coefficient (η_c, MPa-1)
0%	0.07	2.8	0.25
15%	0.48	4.5	0.22
20%	0.54	5.1	0.21
25%	0.42	5.7	0.20
30%	0.33	6.1	0.18

3.2. Results of Fuzzy Comprehensive Evaluation

3.2.1. Variation of Factor and Subfactors with Sand Mixing Ratio. When the high liquid limit soil was improved by mixing sand, the improvement cost can be approximately determined by the mixing amount of sand. The cost was represented by 1.00 when the sand mixing ratio η was 15%, therefore based on the mixing amount of sand, the cost was represented by 1.33 when the sand mixing ratio η was 20%. In the same way, the cost was represented by 1.67 when the sand mixing ratio η was 25%, and the cost was represented by 2.00 when the sand mixing ratio η was 30%. The variations of factor and subfactors with sand mixing ratio η are shown in table 6.

Table 6. Variation of factor and subfactors with sand mixing ratio

Sand mixing ratio η	Improvement effect u_i	Liquid limit W_i (%)	Free expansion rate F_i (%)	California bearing ratio CBR (%)	Unconfined compressive strength q_u (MPa)	Compression coefficient η_c (MPa-1)
15%	u_{11}	49.9	8.0	4.5	0.48	0.22
20%	u_{12}	46.8	6.2	5.1	0.54	0.21
25%	u_{13}	45.8	4.6	5.7	0.42	0.20
30%	u_{14}	45.5	2.9	6.1	0.33	0.18

3.2.2. Calculation of Membership Degree. For subfactors including liquid limit W_i, free expansion rate F_i, and compression coefficient η_c, the lower the value is, the better the improvement effect is, therefore reduced semi trapezoid distribution function was selected as their membership function. For the subfactors including California bearing ratio value CBR and unconfined compressive strength q_u, the greater the value is, the better the improvement effect is, therefore ascended semi trapezoid distribution function was selected as their membership function. For improvement cost u_2, reduced semi trapezoid distribution function was selected as its membership function. Based on the value of each factor and subfactor in table 6 and the requirements for embankment filling in Chinese technical regulation [10], the membership function of each factor and subfactor is shown in table 7.
Table 7. Membership functions of factor and subfactors

Factor or subfactor	Membership function
\(u_1 \) Liquid limit \(w_L \)	\(r_{11} = \begin{cases} 1 & , \ x < 30 \\ \frac{50-x}{20} & , \ 30 \leq x \leq 50 \\ 0 & , \ x > 50 \end{cases} \)
\(u_2 \) Free expansion rate \(F_s \)	\(r_{12} = \begin{cases} 1 & , \ x < 30 \\ \frac{40-x}{40} & , \ 0 \leq x \leq 40 \\ 0 & , \ x > 40 \end{cases} \)
\(u_3 \) California bearing ratio \(CBR \)	\(r_{13} = \begin{cases} 0 & , \ x < 2 \\ \frac{x-2}{6} & , \ 2 \leq x \leq 8 \\ 1 & , \ x > 8 \end{cases} \)
\(u_4 \) Unconfined compressive strength \(q_u \)	\(r_{14} = \begin{cases} 0 & , \ x < 0.2 \\ \frac{x-0.2}{0.4} & , \ 0.2 \leq x \leq 0.6 \\ 1 & , \ x > 0.6 \end{cases} \)
\(u_5 \) Compression coefficient \(a_v \)	\(r_{15} = \begin{cases} 0 & , \ x < 0.1 \\ \frac{0.3-x}{0.2} & , \ 0.1 \leq x \leq 0.3 \\ 1 & , \ x > 0.3 \end{cases} \)
\(u_2 \) Improvement cost	\(r_2 = \begin{cases} 1 & , \ x < 1 \\ \frac{2-x}{1} & , \ 1 \leq x \leq 2 \\ 0 & , \ x > 2 \end{cases} \)

3.2.3. Calculation of Weight Coefficient. According to the engineering experience and the comparison result table of the factor importance (shown in table 8), the relative importance of each factor and subfactor was compared. In the factor set \(U \), the improvement effect \(u_1 \) was significantly more important than the improvement cost \(u_2 \). In the subfactor set \(u_t \), the liquid limit \(w_L \) was slightly more important than the free expansion rate \(F_s \) and the unconfined compressive strength \(q_u \), the California bearing ratio \(CBR \) was strongly more important than the liquid limit \(w_L \), and the compression coefficient \(a_v \) was significantly more important than the liquid limit \(w_L \).

The judgment matrix \(P_U \) of factor set \(U \) was established as,

\[
P_U = \begin{bmatrix} 1 & 5 \\ 1/5 & 1 \end{bmatrix}
\] \hspace{1cm} (6)

The judgment matrix \(P_{u_t} \) of subfactor set \(u_t \) was established as,
The eigenvector \(\mathbf{A}_U \) of the judgment matrix \(\mathbf{P}_U \) is the weight coefficient \(\mathbf{W}_U \) of factor set \(U \), and \(\mathbf{W}_U \) was as follows,

\[
\mathbf{W}_U = \mathbf{A}_U = \begin{bmatrix} 0.83 & 0.167 \end{bmatrix}
\]

(8)

The eigenvector \(\mathbf{A}_{u_1} \) of the judgment matrix \(\mathbf{P}_{u_1} \) is the weight coefficient \(\mathbf{W}_{u_1} \) of subfactor set \(u_1 \), and \(\mathbf{W}_{u_1} \) was as follows,

\[
\mathbf{W}_{u_1} = \mathbf{A}_{u_1} = \begin{bmatrix} 0.099 & 0.051 & 0.523 & 0.051 & 0.275 \end{bmatrix}
\]

(9)

In order to verify whether the weight distribution is reasonable, the consistency of the judgment matrix \(\mathbf{P}_U \) and \(\mathbf{P}_{u_1} \) was checked. The judgment matrix \(\mathbf{P}_U \) is a second-order matrix, and the second-order matrix is a consistent matrix. The judgment matrix \(\mathbf{P}_{u_1} \) is a fifth-order matrix, and the method for consistency check is as follows:

(a) The consistency indicator \(C.I. \) is determined as,

\[
C.I. = \frac{\lambda_{\text{max}} - n}{n - 1}
\]

(10)

where \(n \) is the order of the judgment matrix, \(\lambda_{\text{max}} \) is the maximum eigenvalue of the judgment matrix.

(b) The consistency ratio \(C.R. \) is determined as,

\[
C.R. = \frac{C.I.}{R.I.}
\]

(11)

where \(R.I. \) is the random consistency indicator and the value of \(R.I. \) is 1.12 when the order of the judgment matrix is 5.

Table 8. Comparison result of factor importance

Factor importance	Explanation	\(f(x, y) \)	\(f(y, x) \)
\(x \) is as important as \(y \)	\(x \) and \(y \) have the same contribution	1	1
\(x \) is slightly more important than \(y \)	The contribution of \(x \) is slightly greater	3	1/3
	than that of \(y \)		
\(x \) is significantly more important than \(y \)	The contribution of \(x \) is significantly	5	1/5
	greater than that of \(y \)		
\(x \) is strongly more important than \(y \)	The contribution of \(x \) is strongly greater	7	1/7
	than that of \(y \)		
\(x \) is more significant than \(y \)	The contribution of \(x \) is more significant	9	1/9
	than that of \(y \)		
\(x \) and \(y \) are between the above two adjacent judgments	The median of the above two adjacent judgments	2,4,6,8	1/2,1/4,1/6,1/8

The consistency ratio $C.R.$ of judgment matrix P_{u1} was 0.06, less than 0.10. Therefore, the judgment matrix P_{u1} had good consistency, which proved that the weight distribution was reasonable.

3.2.4. The determination of Cost-Effective Sand Mixing Ratio. Table 9 shows the fuzzy comprehensive evaluation results of each sand mixing ratio η_i. It is noticed that when the sand mixing ratio η is 20%, the value of $[B]$ is the largest, which is 0.526. Therefore, sand mixing ratio η of 20% is the cost-effective sand mixing ratio.

Table 9. Fuzzy comprehensive evaluation results of different sand mixing ratios

Sand mixing ratio η	15%	20%	25%	30%
The value of $[B]$	0.505	0.526	0.517	0.501

4. Conclusions
In this paper, the high liquid limit soil is improved with different sand mixing ratio, and the cost-effective sand mixing ratio is determined by the help of fuzzy comprehensive evaluation method. The main conclusions are as follows:

1) Compared with untreated soil, the physical and mechanical properties of improved soil are improved greatly, which enables the improved soil to be used as embankment filling. The liquid limit of the improved soil is less than 50%, and the plasticity index is less than 22.

2) Taking improvement cost and improvement effect as evaluation factors, based on the results of fuzzy comprehensive evaluation, the improvement effect and cost of sand-mixed high liquid limit soil reach a comprehensive optimal state when the sand mixing ratio is 20%.

Acknowledgment(s)
This work was supported by the National Natural Science Foundation of China (Grant No. 51609071), the Fundamental Research Funds for the Central Universities (Grant No. B200202087, B200204032).

References
[1] J. Wang, L. Wu, R. Feng. “An experimental case study of a high-liquid-limit lateritic soil with its application in road construction,” Road Materials and Pavement Design., vol.18, no.6, pp. 1423–1433, 2017.
[2] “Ministry of Water Resources of the People's Republic of China, GB/T 50145-2007 Standard for Engineering Classification of Soil,” China Planning Publishing House, Beijing, China, 2007.
[3] W, Zhang, H, Zheng, J, Qi, et al. “Experimental study on the feasibility of using water glass and aluminum sulfate to treat complications in high liquid limit soil subgrade,” Advances in Materials Science and Engineering., vol. 2015 457978, 2015.
[4] S. Park, Z. Nong. “Effect of sand contents on plastic and liquid limits and shear strength of clays,” Journal of the Korean Geotechnical Society., vol. 30, no.2, pp. 65–76, 2014.
[5] H. Choo, W. Lee, C. Lee. “Compressibility and small strain stiffness of kaolin clay mixed with varying amounts of sand,” KSCE Journal of Civil Engineering., vol. 21 no. 6, pp. 2152–2161, 2017.
[6] X. Zhuang, J. Wang, K. Wang, et al. “Experimental study on dynamic characteristics of expansive soil modified by weathered sand,” Rock and Soil Mechanics., vol. 39, pp. 149–156, 2018.
[7] X. Liu, C. Ni, L. Zhang, et al. “Durability assessment of lightweight cellular concrete in subgrade by the method of analytic hierarchy process combined with fuzzy comprehensive evaluation,”
Mathematical Problems in Engineering., vol. 2019, no. 11, pp. 1–10, 2019.

[8] X. Xue, X. Yang. “Seismic liquefaction potential assessed by fuzzy comprehensive evaluation method,” Natural Hazards., vol. 71, no. 3, pp. 2101–2112, 2014.

[9] “Ministry of Water Resources of the People's Republic of China, GB/T 50123-2019 Standard for Geotechnical Testing Method,” China Planning Press, Beijing, China, 2019.

[10] “CCCC Second Highway Survey, design and Research Institute Co. LTD. JTG D30-2015 Specifications for Design of Highway Subgrades,” People's Communications Publishing House, Beijing, China, 2015.