Short Communication

Ki 67 is a major, but not the sole determinant of Oncotype Dx recurrence score

S Sahebjam1, R Aloyz1, D Pilavdzic2, M-L Brisson2, C Ferrario1, N Bouganim1, V Cohen1, WH Miller Jr1,3 and LC Panasci*,1,3

1Department of Medical Oncology, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada; 2Department of Pathology, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; 3Segal Cancer Center, Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada

BACKGROUND: Immunohistological assessment of Ki 67 expression is less expensive than Oncotype Dx, which is currently used to identify patients with lymph node-negative breast cancer, who will benefit from adjuvant chemotherapy.

METHODS: The relationship of immunohistologically measured Ki 67 to Oncotype DX recurrence score (RS) was examined in 53 cases of T1–2 N0 M0 (oestrogen receptor-positive, HER2/neu negative) breast cancer.

RESULTS: There was a strong linear correlation between Ki 67 value and the Oncotype Dx RS. All patients in the low Ki 67 group (Ki 67 of ≤ 10%) had Oncotype Dx RSs of low or intermediate risk. The vast majority of patients (93.8%) in the high-Ki 67 group (Ki 67 > 25%) had oncotype RSs of high or intermediate risk.

CONCLUSION: Ki 67 proliferation value is a major, but not the sole determinant of Oncotype Dx score.

British Journal of Cancer (2011) 105, 1342–1345. doi:10.1038/bjc.2011.402 www.bjcancer.com

© 2011 Cancer Research UK

Keywords: Ki 67 expression; immunohistochemistry; Oncotype Dx

Ki 67 protein is found in proliferating cells. It is present in the nuclei of cells in G1, S, G2, and M phases of the cell cycle. Ki 67 protein levels are low during G1- and early S-phase, and gradually increase to reach a maximum during mitosis. Therefore, Ki 67 protein expression can be a useful marker of cell proliferation (Urruticoechea et al, 2005).

Multiple studies have shown an association of Ki 67 expression with prognosis and response to systemic treatments in both the neoadjuvant and adjuvant settings. High-Ki 67 expression has been associated with an increased risk of breast cancer recurrence and cancer death (Lee et al, 1997; Colleoni et al, 2004; Kronqvist et al, 2004; Penault-Llorca et al, 2009). Tumours with high Ki 67 before neoadjuvant chemotherapy have a higher rate of pathologic response, and lower Ki 67 after neoadjuvant chemotherapy is associated with favourable disease-free survival (DFS; Nishimura et al, 2010; Yerushalmi et al, 2010). At least two studies have suggested that patients with high-Ki 67 tumours may benefit more from adjuvant chemotherapy and endocrine therapy (Viale et al, 2008a, b; Penault-Llorca et al, 2009).

The Oncotype Dx gene test (Genomic Health, Redwood City, CA, USA) is a commercially available reverse transcriptase PCR assay (RT–PCR) of 21 genes, which uses a specific algorithm to calculate the recurrence score (RS) for oestrogen receptor (ER)-positive breast cancers. On the basis of RS, patients are considered low risk (RS < 18), intermediate risk (18 ≤ RS < 31), or high risk (RS ≥ 31). Although different cancer-related genes including ER and HER-2 expression are included in calculating the RS, five proliferation genes (Ki 67, STK 15, Survivin, CCNB 1, and MYBL 2) are heavily weighted and especially important in this calculation (Paik et al, 2004). This test is currently used for predicting the risk of recurrence in lymph node-negative ER-positive breast cancers, and is considered by the National Comprehensive Cancer Network guidelines as an option to help decision-making in this group of patients. Unfortunately, the high cost of this multigene assay limits its’ use in daily practice in many countries.

The aim of this study was to compare the correlation of immunohistologically measured Ki 67 protein expression with the Oncotype Dx RS in patients with lymph node-negative ER/progesterone receptor (PR)-positive, HER-2-negative breast cancers.

MATERIALS AND METHODS

With approval from the Institutional Research Ethics Committee, we analysed 53 cases of T1–2 N0 M0 (ER/PR-positive, HER-2-negative) breast cancer treated in the Jewish General Hospital, Montreal, Canada. These cases were chosen randomly from a pool of patients with early-stage breast cancer, who had Oncotype Dx analysis of their tumour. Pathology reports were reviewed and histological type, tumour size, Nottingham grade, perineural invasion status, lymphovascular invasion status, invasive tumour necrosis, ER levels, and PR levels were recorded. ER and PR levels were recorded as per the Allred Score (Harvey et al, 1999). All tumours were HER-2 negative, using immunohistochemistry (IHC) or fluorescent in situ hybridisation. Sentinel lymph node sampling data were available in all patients and no lymph node
involvement was reported. The Oncotype Dx RS results were provided by Genomic Health test reports. Patients were stratified to three risk groups as per Oncotype RS: low risk (RS < 18), intermediate risk (18 ≤ RS < 31), and high risk (RS ≥ 31) (Paik et al., 2004).

Ki 67 expression was examined by IHC of formalin-fixed deparaffinised tissue, using prediluted rabbit monoclonal antibody against human Ki 67 (Clone 30-9, Ventana, Tucson, AZ, USA) at a concentration of 2 μg ml⁻¹. Slides were stained on automated immunostainer Benchmark XT from Ventana, using the iView DAB Detection Kit. The same tissue blocks were used for both Oncotype Dx testing and Ki 67 immunostaining. Results were assessed without the use of an image analysis system. The fraction of positive cells (in percentage) with definite nuclear immunostaining, including mild, moderate, and strong was counted. The representative fields were chosen at low magnification and included at least two areas at the most cellular edges of tumour, and one area in the centre. The number of cells counted at high-power magnification varied depending on distribution of Ki 67 immunopositive staining. For cases with even distribution, the Ki 67 staining was determined with 400–600 tumoural cells, but in cases with uneven distribution, up to 2500 tumoural cells were counted. The stained slides were evaluated by two of the authors where the distribution of Ki-67-positive tumoural cells was uneven, or when the percentage of immunoreactivity was near the cut-off points. Patients were divided into low-risk (Ki 67 < 10%), intermediate-risk (10% ≤ Ki 67 < 25%), and high-risk group (Ki 67 ≥ 25%) on the basis of the expression of Ki 67.

Ki 67 < 10% was considered low, based on a cut-off point used by Kronqvist et al. (2004) and Breast International Group Trial 1-98 (Viale et al., 2008a,b). However, as there were other studies that used Ki 67 > 20% as their cut-off point, we decided to consider Ki 67 > 25% as high (Colleoni et al., 2004; Viale et al., 2008a,b). By doing so, we could study the group of patients with Ki 67 values falling between these two numbers (Ki 67 intermediate group).

The SPSS version 19 (Chicago, IL, USA) was used for statistical analysis. Linear regression, univariate analysis, multivariate analysis, and partial correlation analysis were performed.

RESULTS

The pathologic characteristics of patients are presented in Table 1.

The median Ki 67 value was 17.3% (range 2–90%). The median Oncotype RS was 18 (range 7–60). There was a strong linear correlation between Ki 67 expression and Oncotype RS (correlation coefficient = 0.73, P-value < 0.001; Figure 1).

There was also a significant correlation between Nottingham grade and Oncotype RS on univariate analysis (correlation coefficient = 0.52, P-value < 0.001). The correlation of Ki 67 and Oncotype RS remained robust (correlation coefficient = 0.6, P-value < 0.001), even after controlling for the effect of Nottingham grade by using partial correlation analysis and multivariate analysis. On the other hand, there was no significant correlation between Nottingham grade and Oncotype RS when the effect of Ki 67 was controlled (correlation coefficient = 0.064, P-value = 0.65). This suggests that the correlation found between Nottingham grade and Oncotype RS on univariate analysis was most likely due to the effect of Ki 67.

We also analysed the correlation between other histopathological characteristics of tumour with Oncotype RS. Previously, Flanagan et al. (2008) reported significant correlation between nuclear grade, mitotic count, ER score, and PR score. In our study, there was a weak but significant correlation between nuclear grade and Oncotype RS (correlation coefficient = 0.39, P-value = 0.005). This correlation was weaker but still significant, when the effect of Ki 67 was controlled by using partial correlation analysis (correlation coefficient = 0.32, P-value = 0.047). There was a significant correlation between mitosis score (measured as part of Nottingham scoring) and Oncotype RS in univariate analysis (correlation coefficient = 0.39, P-value = 0.005). This correlation

Table 1 Pathological characteristics of tumours

Size	Number (%)
≤ 1 cm	6 (11.3)
> 1 cm	47 (88.7)

Histology	Number (%)
Ductal	48 (90.6)
Lobular	5 (9.4)

Nottingham grade	Number (%)
1	15 (28.3)
2	29 (54.7)
3	9 (17)

Ki 67	Number (%)
Low (<10)	16 (30.2)
Intermediate (10 ≤ Ki 67 < 25)	21 (39.6)
High (Ki 67 ≥ 25)	16 (30.2)

ER level (Allred score)	Number (%)
Negative (<3)	0 (0)
Weak (3–4)	1 (1.9)
Strong (≥5)	52

PR level (Allred score)	Number (%)
Negative (<3)	6 (11.3)
Weak (3–4)	9 (17)
Strong (≥5)	38 (71.7)

Oncotype Dx RS category	Number (%)
Low (RS ≤ 17)	25 (47.2)
Intermediate (18 ≤ RS ≤ 30)	20 (37.7)
High (RS ≥ 31)	8 (15.1)

Abbreviations: ER = oestrogen receptor; PR = progesterone receptor; RS = recurrence score.

Figure 1 Correlation of Oncotype DX RS with Ki 67 value. Correlation coefficient = 0.73, P-value < 0.001.
was not significant when the effect of Ki 67 was controlled in multivariate analysis and partial analysis (correlation coefficient = 0.054, P-value = 0.714).

In previous studies, lower expression of PR has been associated with higher Oncotype RS (Flanagan et al, 2008; Tang et al, 2010). Tang et al (2010) demonstrated that among ER-positive tumours, PR-poor tumours had significantly higher Oncotype RS. Our results were consistent with these findings. ER/PR expression had a significant inverse correlation with Oncotype RS, but did not affect the correlation between Ki 67 and Oncotype RS. Lower expression of PR was associated with higher Oncotype RS (correlation coefficient = −0.56, P-value <0.001), which was independent from the effect of ER expression. The combination of ER/PR expression and Ki 67 had a very strong correlation with Oncotype RS (correlation coefficient = 0.84, (0.75–0.93) P-value <0.001).

There was no significant correlation between perineural invasion, lymphovascular invasion, invasive tumour necrosis, and Oncotype RS on multivariate analysis.

Most patients (93.85%) in the high-Ki 67 group (Ki 67 ≥25%) had Oncotype RS of high or intermediate risk. All patients in low-Ki 67 group (Ki 67 of <10%) had RS of low or intermediate risk (Table 2).

DISCUSSION

Oncotype Dx testing provides valuable prognostic and predictive information in patients with early-stage breast cancers. Unfortunately, the high price limits the accessibility of this test to all patients. Hence, there has been increasing interest to find simple pathology tests, which can help predict the recurrence of disease. As Ki 67 is one of the proliferation genes assessed routinely by IHC in different malignancies, several investigators have studied its prognostic and predictive value in different stages of breast cancer treatment. High-Ki 67 expression detected by IHC has been associated with higher Oncotype RS and was used in combination with the PR level to divide cases into different subgroups.

In summary, our data suggests that Ki 67 is the major but not the sole determinant of Oncotype RS. It will be of great interest to study an immunopanel consisting of Ki 67 with other proliferation markers measured by Oncotype Dx, that is, STK 15, Survivin, CCNB1, and MYBL2.

REFERENCES

Allison KH, Kandalaf PL, Sitlani CM, Dintzis SM, Gown AM (2011) Routine pathologic parameters can predict Oncotype DX(TM) recurrence scores in subsets of ER positive patients: who does not always need testing? Breast Cancer Res Treat; e-pub ahead of print 3 March 2011; doi:10.1007/s10549-011-1416-3

Colleoni M, Rotmensz N, Peruzzotti G, Maisonneuve P, Viale G, Renne G, Casadio C, Veronesi P, Intra M, Torrisi R, Goldhirsh A (2004) Minimal and small size invasive breast cancer with no axillary lymph node involvement: the need for tailored adjuvant therapies. Ann Oncol 15: 1633–1639
Ki 67 and Oncotype Dx recurrence score
S Sahebjam et al

1345

© 2011 Cancer Research UK
British Journal of Cancer (2011) 105(9), 1342 – 1345

Molecular Diagnostics

Flanagan MB, Dabbs DJ, Brusky AM, Beriwal S, Bhargava R (2008) Histopathologic variables predict Oncotype DX recurrence score. *Mod Pathol* 21: 1255 – 1261

Gwin K, Pinto M, Tavassoli FA (2009) Complementary value of the Ki-67 proliferation index to the oncotype DX recurrence score. *Int J Surg Pathol* 17: 303 – 310

Harvey JM, Clark GM, Osborne CK, Allred DC (1999) Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. *J Clin Oncol* 17: 1474 – 1481

Hugh J, Hanson J, Cheang MC, Nielsen TO, Perou CM, Dumontet C, Reed J, Krajewska M, Treilleux I, Rupin M, Magherini E, Mackey J, Martin M, Vogel C (2009) Breast cancer subtypes and response to docetaxel in node-positive breast cancer: use of an immunohistochemical definition in the BCIRG 001 trial. *J Clin Oncol* 27: 1168 – 1176

Kronqvist P, Kuopio T, Nykänen M, Helenius H, Anttinen J, Klemi P, South-Western Finland Breast Group (2004) Predicting aggressive outcome in T1N0M0 breast cancer. *Br J Cancer* 91: 277 – 281

Lee AK, Loda M, Mackarem G, Bosari S, Delellis RA, Heatley GJ, Hughes K (1997) Lymph node negative invasive breast carcinoma 1 centimeter or less in size (T1a,bN0M0): clinicopathologic features and outcome. *Cancer* 79: 761 – 771

Nishimura R, Osako T, Okumura Y, Hayashi M, Arima N (2010) Clinical significance of Ki-67 in neoadjuvant chemotherapy for primary breast cancer as a predictor for chemosensitivity and for prognosis. *Breast Cancer* 17: 269 – 275

Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T, Hiller W, Fisher ER, Wickerham DL, Bryant J, Wolmark N (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. *N Engl J Med* 27: 2817 – 2826

Pennault-Llorca F, André F, Sagan C, Lacroix-Triki M, Denoux Y, Verriele V, Jacquemier J, Baranzelli MC, Bibeau F, Antoine M, Lagarde N, Martin AL, Asselain B, Roché H (2009) Ki67 expression and docetaxel efficacy in patients with estrogen receptor-positive breast cancer. *J Clin Oncol* 27: 2809 – 2815

Tang P, Wang J, Hicks DG, Wang X, Schiffhauer L, McMahon L, Yang Q, Shaye M, Huston A, Skinner KA, Griggs J, Lyman G (2010) A lower Allred score for progesterone receptor is strongly associated with a higher recurrence score of 21-gene assay in breast cancer. *Cancer Invest* 28: 978 – 982

Urruticoechea A, Smith IE, Dowsett M (2005) Proliferation marker Ki-67 in early breast cancer. *J Clin Oncol* 23: 7212 – 7220

Viale G, Giobbie-Hurder A, Regan MM, Coates AS, Mastropasqua MG, Dell’Orto P, Maiorano E, MacGregor G, Braye SG, Olschlegel C, Neven P, Orosz Z, Olszewski WP, Knox F, Thürlimann B, Price KN, Castiglione-Gertsch M, Gelber RD, Gusterson BA, Goldhirsch A, Breast International Group Trial 1-98 (2008a) Prognostic and predictive value of centrally reviewed Ki-67 labeling index in postmenopausal women with endocrine-responsive breast cancer: results from Breast International Group Trial 1-98 comparing adjuvant tamoxifen with letrozole. *J Clin Oncol* 26: 5569 – 5575

Viale G, Regan MM, Mastropasqua MG, Maffini F, Maiorano E, Colleoni M, Price KN, Golouh R, Perin T, Brown RW, Kovács A, Pillay K, Olschlegel C, Gusterson BA, Castiglione-Gertsch M, Gelber RD, Goldhirsch A, Coates AS, International Breast Cancer Study Group (2008b) Predictive value of tumor Ki-67 expression in two randomized trials of adjuvant chemoendocrine therapy for node-negative breast cancer. *J Natl Cancer Inst* 100: 207 – 212

Williams DJ, Cohen C, Darrow M, Page AJ, Chastain B, Adams AL (2011) Proliferation (Ki-67 and phosphohistone H3) and Oncotype DX recurrence score in estrogen receptor-positive breast cancer. *Appl Immunohistochem Mol Morphol* 19: 431 – 436

Yerushalmi R, Woods R, Ravdin PM, Hayes MM, Gelmon KA (2010) Ki67 in breast cancer: prognostic and predictive potential. *Lancet Oncol* 11: 174 – 183