Research Paper
Evaluating Potential of Electromagnetic Microwaves on Destruction Acanthamoeba Cysts

Zahra Eslamirad1, Reza Hajihossein1, *Homa Soleimani2

1. Department of Parasitology and Mycology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
2. Department of Medical Physics and Physiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.

Abstract

Objective: Acanthamoeba is a free-living and opportunistic amoeba that the potential of this parasite to convert to a cyst, making its treatment difficult. In this study, we investigated the effect of microwave radiation on Acanthamoeba cysts in vitro.

Methods: Acanthamoeba cysts were reproduced in the culture medium. We divided 16 test tubes containing cysts into two groups. The contents of 8 tubes were irradiated with continuous microwave in the time range of 0-120 s, and the next 8 tubes were irradiated with repetitive microwave in the range of 0-360 s. The mortality of cysts at the end of irradiation was recorded and compared with control.

Results: Continuous and repetitive irradiation of microwave resulted in mortality of 100 (%) of Acanthamoeba cysts during 120 and 360 seconds, respectively. In continuous mode, parasite mortality in all groups was significantly different from the control group (P<0.0001). But in the repetition pattern only in groups that had been irradiated for more than 60 seconds, parasite mortality was significantly different from the control group (P<0.0001).

Conclusion: The change of radiation mode from continuous to repetitive, reduces the thermal effects of the microwaves but does not affect the mortality rate of Acanthamoeba cysts. Therefore, probably the impact of microwaves was not only caused by the increase in ambient heat but also its another property is involved in the death of Acanthamoeba.

Keywords: Acanthamoeba, Free-living Amoeba, Microwave, Electromagnetic waves

Article Info:
Received: 08 Nov 2019
Accepted: 18 Dec 2019
Available Online: 01 Mar 2020

Extended Abstract

1. Introduction

Acanthamoeba is a free-living amoeba that plenty of them live around us [1]. The high prevalence of this parasite increases the risk of exposure to humans. Because the parasite is opportunistic, under appropriate conditions, human health at risk and caused acanthamoebiasis disease. The neurological disorders caused by this parasite often lead to death and the treatment of visual disorders has not been effective so far [2] because the parasite in vitro and in vivo environments become highly resistant cysts and hard to be treated and controlled [3].

Although a wide range of chemical drugs can be used to treat the disease, they may have side effects [5, 6]. Therefore, the searches for an alternative natural and traditional medicine rather than chemical drugs continue [2].
Recently the effect of some herbal compounds in the treatment of this disease has been studied and confirmed. Since human beings are exposed to high-frequency waves through natural and artificial sources, the effects of these waves on the control or treatments of microorganisms including parasites have also been addressed in some studies [8, 9]. In this study, we investigated the effect of microwave radiation on Acanthamoeba cysts in vitro.

2. Materials and Methods

An experimental study was performed on Acanthamoeba cysts in vitro. The parasitic cysts were cultured and a parasitic suspension containing 19000 to 20,000 cysts per ml was prepared. Sixteen test tubes containing 100 µl of parasitic suspension were prepared and divided into two groups including 8 tubes [16]. These tubes were irradiated by microwaves oven with a power of 1550 watts and a frequency of 2450 MHz. The contents of 8 tubes were irradiated with continuous microwave in 0-120 s time interval (first group) and the next 8 tubes were irradiated with repetitive microwave in 0-360 s time interval (second group). In both groups, the first tube with zero radiation time was considered as the control. The mortality of cysts at the end of irradiation was recorded and compared with control. The temperature of the parasitic suspension was recorded before and after the irradiation and the difference between the initial and final temperature of the experiment was recorded as ΔT. Each experiment was repeated 3 times.

3. Results

The results of this study showed that continuous and repetitive microwave irradiation resulted in 100% death of the parasite cysts in 120 and 360 s, respectively (Table 1 and 2). ANOVA analysis between the rate of the parasite after continuous microwave irradiation indicates that the parasitic mortality rate in the control group was significantly different from other irradiation times (except 10 s) (P<0.0001). Statistical analysis also showed that parasite mortality rates were significantly different between all continuous irradiation times (except for 30 and 90 s) (P<0.0001).

Table 1. The mortality rate of Acanthamoeba cysts after exposure to continuous microwave irradiation (first group)
Subgroup
1
2
3
4
5
6
7
8

Table 2. The mortality rate of Acanthamoeba cysts after exposure to repetitive microwave irradiation (second group)
Subgroup
1
2
3
4
5
6
7
8
ANOVA analysis between the rate of the parasite after repetitive microwave irradiation indicates that the parasitic mortality rate in the control group was significantly different from other irradiation times (except 10, 30, and 60 s) (P<0.0001).

4. Discussion

Acanthamoeba is a pathogenic organism that produces resistant cysts. These cysts lead to the ineffectiveness of conventional drugs against this parasite. Cysts of this parasite are resistant to chemical drugs or require overdosage of drugs to eliminate cysts. So finding and using drugs of natural origin or other treatments that destroy the cyst wall or wall synthesis obstacle have been the focus of researchers [17].

Also, the use of therapeutic properties of mechanical factors such as sound waves has been considered in recent years. So that some researchers use the waves (mechanical or electromagnetic) to eliminate pathogenic organisms and treat diseases. One of the first medical applications of electromagnetic waves has been to destroy cancer cells [20]. In recent years the effects of High-intensity Focused Ultrasound (HIFU) and microwave on some parasitic agents have been proven [8, 9, 15].

In this study, the effect of microwave as a high-frequency non-ionizing radiation with thermal effects on highly resistant Acanthamoeba cysts was investigated. The results showed that the effect of microwave irradiation on these cysts depends on the duration of irradiation. On the other hand, the mortality rate of Acanthamoeba parasites in continuous and repetitive microwave irradiation did not exceed 6% during 105 and 270 s, respectively, but when the irradiation time increased to 120 and 360 s respectively, the mortality rate rapidly increased to 100%.

The results of the study showed that during continuous irradiation of the microwave for 105 s, the mortality rate of Acanthamoeba cysts was only 5.7%, and ΔT about 83°C. However, during the repetitive microwave irradiation for 270 s, the ΔT was about 42°C, and the mortality was almost similar to the continuous irradiation mode. According to these results, the change in the mode of microwave irradiation, from continuous to repetitive, resulted in a reduction of ΔT but did not affect the mortality rate of Acanthamoeba cysts. Therefore, it seems that the effect of microwaves is not only caused by the increase in ambient heat but also another property of this type of wave is involved in the death of Acanthamoeba.

Ethical Considerations

Compliance with ethical guidelines

The project was approved by the Ethical Committee of Arak University of Medical Sciences (Code: 92-143-19).

Funding

This study extracted from a research project approved by the Arak University of Medical Sciences. We received financial support from the Deputy for Research and Technology of the university.

Authors' contributions

Conceptualization and Review & editing: Zahra Eslamirad and Homa Soleimani; Investigation: Reza Hajihossein, Zahra Eslamirad, and Homa soleimani; Validation: Zahra Eslamirad; Supervision: Homa soleimani.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

The authors would like to thank the Research Deputy of Arak University of Medical Sciences for their financial support of this research (Number: 2348).

Eslamirad Z, et al. Evaluating Potential of Electromagnetic Microwaves. CMJA. 2020; 9(4):3868-3877.
مقدمه
آکانتامبا، آمیبی آزاد زی است که به فراوانی در محیط اطراف ما زندگی می‌کند. حضور این انگل در نمونه‌های آب، خاک، گرد و غبار، نقاط مختلف دنیا از جمله ایران، به‌طور گسترده‌ای مشاهده شده است. این انگل به فرآیند تبدیل اسپور به کیست و نتیجه‌گیری از آن را نهادن و به بی‌دردسانی و وقوع بیماری آکانتامبازیس (پوستی، چشمی یا مغزی) منجر می‌کند. درمان‌های شیمیایی آینده‌های متعددی دارند و اکنون سه کرویت و درمان با کاربرد امواج الکترومغناطیسی مایکرو در محیط برون و درون تنی به کیست آکانتامبا تأثیر مثبتی داشته است. با این حال، اما درمان‌های شیمیایی دارای اثرات جانبی می‌باشند. برای یافتن داروهای طبیعی و سنتی در درمان این بیماری، بهترین محققان و درمانگران مطالعه کرده‌اند. از جمله اثر درمانگذار در درمان آکانتامبازیس، آنتی‌بیوتیک‌های فارماکوناتیک، فیتو‌مکانیسم‌های گیاهی مانند هیپوفورمال و هیپوفورمال فFRAME، و امواج الکترومغناطیسی مایکرو در محیط برون تنی، اکنون بیش از پیش از عصرهای متعددی آنتی‌بیوتیک‌ها در درمان این بیماری مورد استفاده قرار گرفته است. در این مطالعه، اثر امواج الکترومغناطیسی مایکرو در محیط برون تنی بر کیست آکانتامبا بررسی شد.

کلیدواژه‌ها:
آکانتامبا، آمیب آزاد زی، امواج مایکرو، امواج الکترومغناطیسی

1. Artemisis annua L
2. Melaleuca alternifolia
3. HIFU
4. Microwave
اموج الکترومغناطیسی غیریونیزه شامل امواج رادیویی و ماکرو ساخته شده از تلفن های همراه، وای فای، بلوتوث، اجاق های پخت وپز حاوی لامپ مگنترون و غیره می‌باشد. امواج ماکرو از تلفن‌های همراه، وای فای، بلوتوث، اجاق‌های پخت وپز حاوی لامپ مگنترون و غیره حاصل می‌شوند. از آنجا که چگونگی امواج الکترومغناطیسی تا حدی قابل اندازه‌گیری و مطالعه شده است، این امواج در منطقه‌های مختلف مورد بررسی قرار گرفته‌اند. در برخی از مطالعات، امواج ماکرو برای درمان تومور‌های بدخیم استفاده شده است. با توجه به اینکه سنجش پتانسیل عوامل در دسترسی ما از طبیعت متفاوت امواج که در اطراف ما وجود دارد نه تنها می‌تواند به شناخت ما از عوامل محیطی بیفزاید، بلکه ممکن است منجر به یافتن روش‌های جدیدی کنترلی یا درمانی ضد عوامل مولد بیماری شود. بنابراین در این مطالعه به بررسی امواج ماکرو بر روی کیست‌های آکانتامبا در محیط برخی در این شرایط پرداخته شده است.

مواد و روش‌ها

آماده‌سازی کیست‌های آکانتامبا

برای آماده‌سازی کیست‌های آکانتامبا، یکی از سیستم‌های به‌کارگیری شده در مطالعه میقانی و همکاران از خاک شهر اراک شرکت مادر سوسپانسیون الکترونیکی (Non-nutrient Agar، NNA) به کار گرفته شده است. پلیت‌های حاوی باکتری اشرشیا کلی درون آن‌ها تخلیه گردیده و در آن‌ها سوزنده‌های گرمایی تولیدی از امواج ماکرو به کار گرفته شدند. گرمای تولید شده از امواج ماکرو برای درمان تومور‌های بدخیم استفاده شده است.

مطالعه‌های تولیدکننده امواج ماکرو به‌طور کلی نشان می‌دهد که امواج ماکرو می‌توانند به عنوان یکی از روش‌های جدیدی برای درمان بیماری‌ها در محیط‌های مختلفی کاربرد داشته باشند.

4. شماره
5. دوره
6. اسفند
7. 1398
8. اسفند
9. شماره
10. 9
11. دوره
12. اسفند
13. 1398
14. اسفند
15. شماره

5. Radio frequency (RF)
6. High frequency
7. Non-nutrient Agar (NNA)
مانند همانطور که در جدول شماره ۲ مشاهده می‌شود، سپس از زمان شکاف تا زمان ۳۰ دقیقه مرگ‌ومیر به حداقل یک و ۳ دقیقه مرگ‌ومیر به حداقل ۷۲ درصد بود. ولی پس از زمان ۳ دقیقه، مرگ‌ومیر به حداقل ۶۰ درصد رسید.

هماهنوازی در توانایی افزایش توانایی و سطح مرگ‌ومیر کیست‌ها از آزمون آماری یافته‌های آزمون کولموگروف اسمیرنوف یافتگان در نظر گرفته شد.

در مورد مزایای کیست‌های آکانتامبا از نظر توانایی و سطح مرگ‌ومیر کیست‌ها، بهترین نتایج مشاهده شد.

جدول شماره ۱: سطح مرگ‌ومیر کیست‌های آکانتامبا پس از تب ذوب، پس از تب ذوب
پژوهش
نتایج معنی‌دار کننده که به منظور بررسی اثر کشندگی امواج مایکرو بر روی کیست‌های انگل آکانتامبا انجام شد نشان داد که اثرات کشندگی این امواج با وسیله به مدت‌زمینه تا بی‌سایه است. آکانتامبا، ارگانیسمی پاتوژن است که مولد عفونت‌های شدیدی مانند کراتیت و انسفالیت گرانولوماتوزی امیبی است. حضور این انگل در محیط اطراف ما غیر قابل انکار است. این ارگانیسم جهانی در نمونه‌های خاک، هوا و آب و نیز بافت‌های حیوانی شناسایی شده است. این ارگانیسم قادر است به کیست‌های مقاوم و خفته تبدیل شود که باعث شکست در درمان بیماری‌های ناشی از آن می‌شود.

جدول ۱: انحراف معیار میانگین تعداد دفعات مواجهه × مدت زمان تابش بر حسب ثانیه

ردیف	میزان میانگین (µ)	میزان میانگین تعداد دفعات مواجهه × مدت زمان تابش (x)	درصد	میزان مرگ و میر کیست‌های آکانتامبا پس از تابش تکرارپذیر امواج مایکرو
1	0	0	0	100%
2	0.001	0.001	1	99%
3	0.002	0.002	2	98%
4	0.003	0.003	3	97%
5	0.004	0.004	4	96%
6	0.005	0.005	5	95%
7	0.006	0.006	6	94%
8	0.007	0.007	7	93%

کشور ۳ میانگین روند مرجوع به کشندگی امواج مایکرو در طول زمان پس از تابش پیوسته (A1 و B1) امواج مایکرو و مقایسه روند تغییرات میزان مرگ و میر کیست‌های آکانتامبا.

diagram 1

diagram 2
احاله از این درمان لیمیت تخریب لیه‌های زایی کیست و بیماری‌گیری آن شدیت آن می‌تواند [17(105)270] در مطالعه‌های کمیته اخلاق دانشگاه علوم پزشکی اراک به تصویب رسیده است.

نتایج این مطالعه کنونی مبنایی برای نشان دادن مصداقی و اخلاقی در بررسی امواج الکترومغناطیسی (مایکرو) در تخریب کیست‌های آکانتامبا است. ویژه‌ترین اثر امواج مایکرو بر روی کیست‌های آکانتامبا به ترتیب، میزان مرگ کیست، تقریباً مشابه امواج از نوع پیوسته به تکرارپذیر، تا حدودی اثرات دمایی امواج بود. نتایج این مطالعه نشان داد که با تغییر در شیوه تابش دیگر این امواج در مرگ کیست‌های آکانتامبا نقش ایفا می‌کنند، به‌طوری که بر روی کیست‌های آکانتامبا در تابش پیوسته و کیست‌های آکانتامبا به مدت زمان تابش امواج بستگی دارد.

در این مطالعه به اثبات رسید که اثر امواج مایکرو بر روی کیست‌های بسیار مقاوم انگل آکانتامبا بررسی شد. موج به عنوان پرتو غیریونیزان با فرکانس بالا در آزمایش‌های پیش‌بینی بر روی کیست‌های پیش‌بینی نموده، تحقیق جهت ادامه آزمایشات در پرتو‌های غیریونیا پیش‌بینی شد. با افزایش فرکانس و توزیع شبکه در این مطالعه، میزان میکرو‌فرکانس مایکرو به مدت 100 و 200 ثانیه از شش درصد حالت پیوسته بود، میزان مرگ کیست تقریباً مشابه حالت پیوسته بود، ولی وقتی مدت تابش به 2000 ثانیه افزایش یافت میزان مرگ ومیر انگل تا حدودی تجاوز نکرد، ولی وقتی مدت تابش به 3000 ثانیه افزایش یافت میزان مرگ ومیر انگل تا حدودی تجاوز نکرد، ولی وقتی مدت تابش به 4000 ثانیه افزایش یافت میزان مرگ ومیر انگل تا حدودی تجاوز نکرد، ولی وقتی مدت تابش به 5000 ثانیه افزایش یافت میزان مرگ ومیر انگل تا حدودی تجاوز نکرد.

نتیجه‌گیری

نتایج این مطالعه نشان داد که برای شناخت این خواص نیاز به مطالعات بیشتری است.

ملاحظات اخلاقی

برنده‌ای از اصول اخلاقی پژوهش

این طرح پژوهش با کد اخلاقی 92-143-19 در کمیته اخلاق دانشگاه علوم پزشکی اراک به تصویب رسیده است.
این پژوهش با حمایت مالی معاونت تحقیقات و فناوری دانشگاه علوم پزشکی اراک انجام شد.

مشارکت‌نامه‌سازان

نویسندگان به یک اندازه در نگارش پژوهش مشارکت داشتند.

تعارض منافع

نویسندگان مقاله تصریح می‌کنند هیچ گونه تضاد منافعی در پژوهش حاضر وجود ندارد.

زهرا اسلامی راد و همکاران. ارزیابی پتانسیل امواج الکترومغناطیسی مایکروپر در تخریب کیستی کلیه گیاه‌پردازی‌ها.
References

[1] Niyyati M, Rezaei M. Current status of Acanthamoeba in Iran: A narrative review article. Iranian Journal of Parasitology. 2015; 10(2):157-63. [PMID] [PMCID]

[2] Derda M, Hadaś E, Cholewiński M, Skrzypczak Ł, Grzondziel A, Wojtkow-lak-Giera A. Artemisia annua L. as a plant with potential use in the treatment of acanthamoebiasis. Parasitology Research. 2016; 115:1635-9. [DOI:10.1007/s00436-016-4902-z] [PMID] [PMCID]

[3] Anwar A, Siddiqui R, Hameed A, Shah MR, Khan NA. Synthetic dihydropyridines as novel antacanthamoebic agents. Medicinal Chemistry. 2019; 15:1. [DOI:10.2174/1573406415666190722113412] [PMID]

[4] Feiz Haddad MH, Shokri A, Habibpour H, Heidar Nejadi SM. A review of Acanthamoeba keratitis in the Middle East and Iran. Journal of Acute Medicine. 2019; 8(4):133-41. [DOI:10.4103/2221-6189.263705]

[5] Müller GG, Kara-José N, de Castro RS. Antifungals in eye infections: Drugs and routes of administration. Revista Brasileira de Ofalmologia. 2013; 72(2):132-4. [DOI:10.1590/S0034-72802013000200014]

[6] Siddiqui R, Aqeel Y, Khan NA. The development of drugs against acanthamoeba infections. Antimicrobial Agents and Chemotherapy. 2016; 60(11):6441-50. [DOI:10.1128/AAC.00868-16] [PMID] [PMCID]

[7] Hadaś E, Derda M, Cholewiński M. Evaluation of the effectiveness of tea tree oil in treatment of Acanthamoeba infection. Parasitology Research. 2017; 116(3):997-1001. [DOI:10.1007/s00436-017-5377-2] [PMID] [PMCID]

[8] Liu AB, Cai H, Ye B, Chen LL, Wang MY, Zhang J, et al. The damages of high intensity focused ultrasound to transplanted hydatid cysts in abdominal cavities of rabbits with aids of ultrasound contrast agent and superabsorbent polymer. Parasitology Research. 2013; 112(5):1865-75. [DOI:10.1007/s00436-013-3340-4] [PMID]

[9] Eslamirad Z, Soleimani H, Hajhossein R, Rafiei F. Evaluation of lethal effect of microwave exposure on protoscolices of hydatid cyst in vitro. Asian Pacific Journal of Tropical Disease. 2015; 5(10):821-4. [DOI:10.1007/s00436-013-3340-4] [PMID]

[10] Salmen SH, Alharbi SA, Faden AA, Wainwright M. Evaluation of effect of high frequency electromagnetic field on growth and antibiotic sensitivity of bacteria. Saudi Journal of Biological Sciences. 2018; 25(1):105-10. [DOI:10.1016/j.sjbs.2017.07.006] [PMID] [PMCID]

[11] Ozdemir F, Kargi A. Electromagnetic waves and human health. In: Zhubenko V, editor. Electromagnetic Waves. Rijeka: InTech; 2011. [DOI:10.5772/16343]

[12] Cairang Y, Zhang L, Ren B, Ren L, Hou L, Wang H, et al. Efficacy and safety of ultrasound-guided percutaneous microwave ablation for the treatment of hepatic alveolar echinococcosis: A preliminary study. Medicine. 2017; 96(27):e7137. [DOI:10.1097/MD.0000000000007137] [PMID] [PMCID]

[13] Meighani M, Eslamirad Z, Hajhossein R, Ahmadi A, Saki S. Isolation and genotyping of acanthamoeba from soil samples in Markazi Province, Iran. Open Access Macedonian Journal of Medical Sciences. 2018; 6(12):2290-4. [DOI:10.3889/ojams.2018.454] [PMID] [PMCID]

[14] El-Sayed NM, Hikal WM. Several staining techniques to enhance the visibility of Acanthamoeba cysts. Parasitology Research. 2015; 114:823-30. [DOI:10.1007/s00436-014-4190-4] [PMID]

[15] Eslamirad Z, Soleimani H. Investigating the potential of protoscolices for cyst formation under in vivo microwave radiation (Persian). Complementary Medicine Journal. 2019; 9(1):3598-606. http://cmja.arakmu.ac.ir/article-1-647-en.html

[16] Mosayebi M, Hajhossein R, Ghorbanzadeh B, Kalantari S. A risk for nosocomial infection: contamination of hospital air cooling systems by Acanthamoeba spp. International Journal of Hospital Research. 2016; 5(1):17-21. [DOI:10.15171/ijhr.2016.04]

[17] Anwar A, Khan NA, Siddiqui R. Combating Acanthamoeba spp. cysts: What are the options? Parasites &Vectors. 2018; 11:26. [DOI:10.1186/s13071-017-2572-z] [PMID] [PMCID]

[18] Parasitology T, Ghaffarifar F, Fakhar M, Saberi R. Medicinal plants with anti-Acanthamoeba activity: A systematic review. Infectious Disorders - Drug Targets. 2019; 19:1. [DOI:10.2174/1871526519666190716095849] [PMID]

[19] Atari Lar S, Ebrahimi M. [A reflection on the healing power of the waves (Persian)]. Journal of Vibration & Sound. 2018; 7(13):104-19. http://jvs.isavir/article_32705.html

[20] Hedrick WR, Hykes DL, Strachman DE. Ultrasound physics and instrumentation. St. Louis: Mosby; 2005. https://books.google.com/books?id=QoVsQgAAACAAJ&dq

[21] Botsa E, Thanou I, Nikas I, Thanos L. Treatment of hepatic hydatid cyst in a 7-year-old boy using a new type of radiofrequency ablation electrode. The American Journal of Case Reports. 2017; 18:953-8. [DOI:10.12659/AJCR.904432] [PMID] [PMCID]

[22] Du XL, Ma QJ, Wu T, Lu JG, Bao GQ, Chu YK. Treatment of hepatic cysts by B-ultrasound-guided radiofrequency ablation. Hepatobiliary & Pancreatic Diseases International. 2007; 6(3):330-2. [PMID]