TRPM2 links oxidative stress to NLRP3 inflammasome activation

Zhenyu Zhong1, Yougang Zhai1, Shuang Liang2, Yasuo Mori3, Renzhi Han4, Fayyaz S Sutterwala5,6 & Liang Qiao1

Exposure to particulate crystals can induce oxidative stress in phagocytes, which triggers NLRP3 inflammasome-mediated interleukin-1β secretion to initiate undesirable inflammatory responses that are associated with both autoinflammatory and metabolic diseases. Although mitochondrial reactive oxygen species have a central role in NLRP3 inflammasome activation, how reactive oxygen species signal assembly of the NLRP3 inflammasome remains elusive. Here, we identify liposomes as novel activators of the NLRP3 inflammasome and further demonstrate that liposome-induced inflammasome activation also requires mitochondrial reactive oxygen species. Moreover, we find that stimulation with liposomes/crystals induced reactive oxygen species-dependent calcium influx via the TRPM2 channel and that macrophages deficient in TRPM2 display drastically impaired NLRP3 inflammasome activation and interleukin-1β secretion. Consistently, Trpm2−/− mice are resistant to crystal-/liposome-induced interleukin-1β-mediated peritonitis in vivo. Together, these results identify TRPM2 as a key factor that links oxidative stress to the NLRP3 inflammasome activation. Therefore, targeting TRPM2 may be effective for the treatment of NLRP3 inflammasome-associated inflammatory disorders.

1 Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA. 2 Graduate Program of Molecular Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA. 3 Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan. 4 Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA. 5 Inflammation Program, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA. 6 Veterans Affairs Medical Center, Iowa City, Iowa 52241, USA. Correspondence and requests for materials should be addressed to L.Q. (email: lqiao@lumc.edu).
Liposomes are particles consisting of self-aggregated lipids and are commonly used as effective immune adjuvants and efficient drug-delivery vehicles to treat various infectious and cancerous diseases. Although previous studies have indicated that liposomes can enhance the expression of chemokines, such as CCL2, and co-stimulatory molecules, such as CD80/86, in antigen-presenting cells, little is known about whether an innate immune receptor exists to sense the presence of liposomes. During the past decade, a number of studies have demonstrated that particulate substances such as alum, silica, monosodium urate and calcium pyrophosphate dihydrate crystals can induce NLRP3 (nod-like receptor family, pyrin domain-containing 3) inflammasome activation, which mediates the secretion of biologically active interleukin-1 (IL-1)β from macrophages. As liposomes are also particulate in nature, we hypothesized that the NLRP3 inflammasome may serve as an innate immune sensor for liposomes.

Although the precise mechanism by which the NLRP3 inflammasome is activated remains unknown, several stress-related cellular processes, including cytosolic depletion of potassium, lysosome disruption, mitochondrial damage, and intracellular calcium elevation, have been proposed to be involved in the activation of this inflammasome. Mitochondria are an ancient and evolutionarily conserved cellular organelle that has a key role in regulating the signalling pathways of pattern recognition receptors, including the NLRP3 inflammasome. Upon stimulation with particulate stimuli, mitochondria can transmit stress signals to alarm the immune system via secondary signalling messengers, such as mitochondrial reactive oxygen species (ROS). Blocking ROS generation by mitochondria has been shown to abolish NLRP3 inflammasome activation whereas artificial induction of mitochondrial ROS can spontaneously induce NLRP3-mediated IL-1β secretion. Although it is clear that mitochondrial ROS have a pivotal role, the precise mechanism underlying ROS-induced NLRP3 inflammasome activation remains poorly understood.

In this study, we identified liposomes as a novel group of particulate activators of the NLRP3 inflammasome and further demonstrated that liposomes/crystals induced mitochondrial ROS production, which subsequently triggered a calcium influx via the plasma membrane cation channel TRPM2 (transient receptor potential melastatin 2). TRPM2 deficiency dramatically impaired liposome/crystal-induced NLRP3 inflammasome activation, bioactive IL-1β release and subsequent inflammatory responses. These observations identify a novel role for TRPM2 in linking oxidative stress to calcium mobilization, which ultimately results in NLRP3 inflammasome activation.

Results
Liposomes induce NLRP3 inflammasome-dependent IL-1β release. It is generally accepted that a ‘two-step’ process is necessary for NLRP3 inflammasome-mediated IL-1β release. The first step requires NF-κB activation to induce synthesis of pro-IL-1β, whereas the second step involves assembly of a large cytosolic protein complex, termed inflammasomes, which lead to caspase-1 activation. Caspase-1 then cleaves pro-IL-1β into its mature form. To determine whether liposomes can trigger activation of the NLRP3 inflammasome, we first tested whether several liposomes, consisting of different phospholipids, can induce bioactive IL-1β release in macrophages. Cationic (DOTAP, DOPC and DDA) and anionic (DPPC-DMPG) liposomes elicited IL-1β release from lipopolysaccharide (LPS)-primed murine bone marrow-derived macrophages (BMDMs) and phorbol 12-myristate 13-acetate (PMA)-primed human THP-1 cells (Fig. 1a,b), and the levels of secreted IL-1β were dependent on the dose and size of the liposomes (Supplementary Fig. S1). Pro-caspase-1 was autocleaved after stimulation with charged liposomes, and active caspase-1 was responsible for the maturation of IL-1β (Fig. 1c,d). Unlike IL-1β release, the secretion of both tumour-necrosis factor (TNF) and IL-6, which relies on NF-κB activation, was not enhanced in LPS-primed BMDMs after liposomes stimulation (Supplementary Fig. S2a,b). Consistently, liposomes alone did not induce either TNF or IL-6 secretion in unprimed macrophages (Supplementary Fig. S2c). In sharp contrast to the charged liposomes, neutral liposomes, such as DOPC and PC-Chol liposomes, failed to trigger IL-1β secretion (Fig. 1a,b and Supplementary Fig. S3a,b). However, the incorporation of cationic lipids into neutral liposomes rescued IL-1β secretion (Supplementary Fig. S3c), which suggests that the charge of liposomes determines their ability to induce IL-1β release. Furthermore, although liposomes induced low levels of cytotoxicity in macrophages (Supplementary Fig. S4), ATP and uric acid, two known NLRP3 inflammasome agonists that are released from dying cells, were not intermediates responsible for liposome-induced IL-1β secretion (Supplementary Fig. S5).

Next, we sought to determine whether the intact NLRP3 inflammasome machinery was essential for liposome-induced IL-1β secretion. First, we observed that liposome-induced IL-1β secretion required LPS priming (Fig. 1e). Moreover, macrophages deficient in NLRP3, ASC or caspase-1, three key components of the NLRP3 inflammasome, all failed to respond to liposome stimulation after LPS priming (Fig. 1f). In contrast, macrophages deficient in NLRP4, another Nod-like receptor that recognizes bacterial flagellin, or AIM2 (absence in melanoma 2), an immune sensor for DNA, responded to charged liposomes stimulation in a manner similar to wild-type cells (Fig. 1f and Supplementary Fig. S6). These data collectively suggest that charged liposomes induced IL-1β secretion specifically via activation of the NLRP3 inflammasome.

To further confirm that charged liposomes activate the NLRP3 inflammasome, we next tested whether potassium efflux, a seemingly obligatory event during NLRP3 inflammasome activation, was necessary for liposome-induced inflammasome activation. Indeed, the blockade of potassium efflux with a high concentration of KCl drastically decreased the liposome-induced NLRP3 inflammasome activation (Fig. 1g). Similar results were also obtained when glibenclamide, an inhibitor that blocks potassium channel, was used (data not shown). Hereafter, we used DOTAP and DPPC-DMPG liposomes as the representative cationic and anionic liposomes, respectively, to investigate the mechanism by which charged liposomes activate the NLRP3 inflammasome.

NLRP3 inflammasome activation requires uptake of liposomes. NLRP3 is a cytosolic innate immune receptor that, upon activation, recruits ASC and pro-caspase-1 to assemble into the inflammasome. Therefore, we next tested whether cellular uptake of liposomes was necessary for activation of the NLRP3 inflammasome. The inhibition of the endocytic pathway with cytochalasin D, a potent inhibitor of actin polymerization, greatly reduced liposome-induced IL-1β secretion, whereas ATP-induced NLRP3 inflammasome activation, which does not require endocytic routes to activate the NLRP3 inflammasome, was largely unaffected (Fig. 2a). These data suggest that the cellular internalization of liposomes is an essential step for liposome-induced NLRP3 inflammasome activation.

We also sought to determine whether the lysosome-cathepsin B pathway was involved in liposome-induced NLRP3 inflammasome activation. First, we found that the pharmacological inhibition of lysosomal acidification, a process critical for
crystal-induced inflammasome activation12, did not significantly affect liposome-induced NLRP3 inflammasome-mediated IL-1β secretion (Supplementary Fig. S7a). Furthermore, we also observed that lysosomal cathepsin B was not necessary for liposome-triggered NLRP3 inflammasome activation because cathepsin B-deficient macrophages had only a minimal reduction in the amount of secreted IL-1β after liposome stimulation (Supplementary Fig. S7b). Notably, we observed that liposome-induced IL-1β secretion was decreased in BMDMs that were pretreated with a cathepsin B inhibitor, CA-074-Me (Supplementary Fig.S7c). These seemingly conflicting data may be due to the potential off-target side effects of CA-074-Me12,27,28. Taken together, these data indicate that liposomes may either activate the NLRP3 inflammasome in a lysosome-independent manner or that several lysosomal cathepsins, such as cathepsins B and L, are functionally redundant in mediating liposome-induced NLRP3 inflammasome activation.

Liposomes induce mitochondrial ROS to activate inflammasome

Although mitochondrial ROS are essential for activation of the NLRP3 inflammasome17–20, a recent study also suggested a role for ROS during the first priming step of pro-IL-1β synthesis29. Therefore, to specifically investigate the role of ROS during activation of the NLRP3 inflammasome activation but not during pro-IL-1β synthesis, we added ROS inhibitors after the synthesis of pro-IL-1β was completed. This was achieved through prolonged LPS stimulation to saturate NF-κB activation before ROS inhibition. As shown in Fig. 2b, prolonged LPS priming for 18 h maximized the level of NF-κB-mediated transcription, which was measured by the production of NF-κB-mediated TNF.

We then evaluated whether different liposomes could induce mitochondrial ROS production. Notably, only the charged liposomes, but not neutral liposomes, induced the robust generation of mitochondrial ROS in LPS-primed macrophages (Fig. 2c). Moreover, even in the absence of an LPS-priming step, charged liposomes remained capable of increasing the mitochondrial ROS levels, suggesting that LPS pre-stimulation is not necessary for mitochondrial ROS induction (Supplementary Fig. S8). Next, we used the pharmacological inhibitor diphenyleneiodonium (DPI), which blocks mitochondrial ROS production when used at high concentrations30,31, to further investigate whether mitochondrial ROS were involved in liposome-induced NLRP3 inflammasome activation. The addition of DPI before liposome stimulation drastically reduced liposome-induced mitochondrial ROS production and IL-1β release (Fig. 2d,e). Notably, the reduction in IL-1β secretion was not owing to the inhibition of NF-κB activation by DPI because neither the levels of pro-IL-1β nor Nlrp3 were significantly changed after the 18-h LPS-priming step (Supplementary Fig. S9).
In contrast to DPI, pretreatment of the macrophage with VAS2870, which blocks NADPH oxidase (NOX)-generated ROS, did not affect liposome-induced IL-1β secretion, suggesting that mitochondria, rather than NOX-derived ROS, drive the NLRP3 inflammasome activation (Supplementary Fig. S10). Moreover, because activation of the AIM2 inflammasome by poly(dA:dT) was not affected by DPI treatment (Fig. 2e), the inhibition of mitochondrial ROS seemed to specifically affect the NLRP3 inflammasome. Similar results were also observed when other ROS inhibitors, such as (2R, 4R)-4-aminopyrrolidine-2,4-dicarboxylate (APDC) or N-acetyl-cysteine (NAC), were used (data not shown). Taken together, these data indicate that mitochondrial ROS production is essential for NLRP3 inflammasome activation by charged liposomes and that the failure of neutral liposomes to activate the NLRP3 inflammasome directly correlates with their inability to induce mitochondrial ROS.

Particulates induce a ROS-dependent Ca$^{2+}$** influx via TRPM2.**

Our findings indicated that, similar to crystals,33 liposomes activate the NLRP3 inflammasome via the induction of mitochondrial ROS. However, little is known about the mechanism by which ROS promote NLRP3 inflammasome activation. Owing to the existence of a diverse pool of stimuli21, these agonists may activate a common signalling intermediate that directs assembly of the NLRP3 inflammasome. Recently, it has been shown that accumulation of ROS can induce a calcium influx via the TRPM2 channel34,35. TRPM2 is expressed by immune cells, such as dendritic cells, monocytes, macrophages, PMNs and lymphocytes, and is a calcium-permeable non-selective cation channel that has a crucial role in innate immune regulation36. TRPM2-mediated calcium influx has been implicated in ROS-induced chemokine production in monocytes34. Notably, TRPM2-deficient mice are also susceptible to infection of *Listeria monocytogenes*37, a known activator of the NLRP3 inflammasome22,38. As calcium appears to be a key mediator of various signalling events under stressed conditions, we hypothesize that liposomes/crystals induce ROS-dependent TRPM2-mediated calcium influx, which eventually signals assembly and activation of the NLRP3 inflammasome.

As shown in Fig. 3a,b, we first observed that charged liposomes or crystals induced the increase in the concentration of intracellular free calcium ([Ca$^{2+}$]). This elevation in [Ca$^{2+}$], was owing to calcium influx across the plasma membrane because the removal of extracellular calcium from the buffer solution dramatically inhibited the increase of [Ca$^{2+}$] (Fig. 3c,d and Supplementary Fig. S11). Furthermore, blockade of mitochondrial ROS by DPI also prevented liposome-/crystal-induced calcium influx, suggesting that calcium influx is ROS-dependent. Notably, BMDMs deficient in TRPM2 had similar defects in calcium influx after liposome/crystal stimulation, indicating that calcium influx is mediated by the TRPM2 channel (Fig. 3c,d and Supplementary Fig. S11). To further verify the role of TRPM2 in mediating calcium influx, we tested whether inhibition of TRPM2 activation affected liposome-/crystal-induced calcium influx. TRPM2 channel can be gated by ADP-ribose, a metabolic product formed during cellular exposure to ROS36,37. Therefore, we treated LPS-primed wild-type BMDMs with DPQ, an inhibitor of poly(ADP-ribose) polymerase, to prevent ADP-ribose accumulation9,40 before the addition of liposomes/crystals to determine whether the calcium influx was affected. As expected, DPQ significantly reduced calcium influx in response to stimulation with particles (Fig. 3c,d and Supplementary Fig. S11). These data collectively indicate that stimulation of macrophages with either liposomes or crystals can trigger ROS-dependent TRPM2-mediated calcium influx.

Ca$^{2+}$** influx via TRPM2 directs particle-induced IL-1β release.**

We next determined whether TRPM2-mediated calcium influx was critical for IL-1β release. *Trpm2*−/− BMDMs demonstrated...
significantly reduced IL-1β secretion in responses to stimulation with the liposomes DOTAP and DPPC-DMPG or the crystals of alum, silica and MSU. In contrast, poly(dA:dT)-induced IL-1β secretion, which is AIM2 inflammasome-dependent²⁴,²⁵, was largely unaffected (Fig. 4a). Similarly, the removal of extracellular calcium from the culture medium significantly impaired the particulate agonist- but not poly(dA:dT)-, induced IL-1β release (Fig. 4a).

Furthermore, we observed that the decrease in the mature IL-1β secretion in Trpm2⁻/⁻ BMDMs was not owing to the reduction in either pro-IL-1β or NLRP3 levels, the genes for which are regulated by NF-κB²¹,⁴¹ because TRPM2 deficiency affected neither pro-IL-1β nor NLRP3 (Fig. 4b,c and data not shown). Consistent with this finding, TNF secretion was not affected by TRPM2 deficiency (Fig. 4d). Moreover, the inhibition of TRPM2 activation by DPQ also significantly impaired liposome-/crystal-, but not poly(dA:dT)-, induced IL-1β secretion (Fig. 4e). In contrast to the wild-type cells, Trpm2⁻/⁻ BMDMs did not display any further reduction in IL-1β secretion after DPQ treatment (Supplementary Fig. S12),

Figure 3 | Liposomes and crystals induce ROS-dependent Ca²⁺ influx via the TRPM2 channel. (a) The change in [Ca²⁺], over time was represented by the fluorescence of Fura-2 at 340 nm to that at 380 nm (F340/F380) and (b) the maximum [Ca²⁺] elevations, represented by ΔF340/F380, are shown in LPS-primed wild-type BMDMs treated with medium alone, cationic liposomes (DOTAP, 30 µg ml⁻¹), neutral liposomes (DOPC, 30 µg ml⁻¹), anionic liposomes (DPPC-DMPG, 30 µg ml⁻¹) or silica crystals (300 µg ml⁻¹). (c) The time-dependent change in [Ca²⁺], represented by F340/F380, in the LPS-primed Trpm2⁺/+ BMDMs cultured in calcium-containing solution that were pretreated with DPI (25 µM) or DPQ (200 µM) for 45 min before the addition of the indicated liposomes (30 µg ml⁻¹) or crystals (alum, 400 µg ml⁻¹; silica, 300 µg ml⁻¹) is shown. The same doses of liposomes or crystals were also used to stimulate the LPS-primed Trpm2⁻/⁻ BMDMs cultured in calcium-containing solution. The [Ca²⁺⁺] change over time, represented by F340/F380, after stimulation with liposomes or crystals in LPS-primed Trpm2⁺/+ BMDMs cultured in calcium-free 0.5 mM EGTA-containing solution is also shown. Inflammasome agonists were added 1 min after the initiation of calcium recording as shown in (a,c). (d) The maximum [Ca²⁺⁺] elevations, represented by ΔF340/F380, are shown for LPS-primed BMDMs in response to the stimulations described in (c). The data are representative of at least three independent experiments and are shown as mean ± s.e.m. in (b,d) (n = 22-31 in (b), and n = 21-34 in (d)).
indicating that DPQ treatment specifically blocked TRPM2-mediated IL-1β release. It has been shown that the inhibition of key enzymes in the mitochondrial respiratory chain can artificially increase the levels of mitochondrial ROS and trigger spontaneous NLRP3 inflammasome activation in the absence of inflammasome stimuli, so, we therefore next verified the role of TRPM2 in mediating IL-1β release under these conditions. To do so, we artificially induced the accumulation of mitochondrial ROS with antimycin A, an inhibitor that specifically blocks the respiratory chain complex III, and determined whether TRPM2 deficiency affected antimycin A-induced IL-1β release. Indeed, we found that TRPM2+/− BMDMs had significantly reduced secretion of IL-1β, but not TNF (Fig. 4f). Consistently, TRPM2 deficiency also decreased IL-1β secretion in response to direct stimulation with ROS, such as H2O2 (Fig. 4f). Together, these results suggest a critical role for TRPM2-mediated calcium influx in bioactive IL-1β release, and demonstrate that TRPM2 deficiency specifically impairs the processing of immature pro-IL-1β into its mature form.

It should be noted that in addition to TRPM2-dependent IL-1β release, liposomes/crystals also induced TRPM2-independent IL-1β secretion. This effect was most likely mediated by endoplasmic reticulum (ER)-calcium release via IP3R, as suggested in a recent study by Murakami et al. In support of the hypothesis that calcium influx and ER calcium release are both essential for NLRP3 inflammasome activation, we observed that the intracellular calcium chelator BAPTA-AM, which blocks [Ca2+]i elevation regardless of the source of calcium, almost completely inhibited IL-1β release (Supplementary Fig. S13) whereas the inhibition of either calcium influx (Fig. 4a) or intracellular ER calcium release (Supplementary Fig. S13) only partially reduced IL-1β secretion. Together, these results demonstrate that both calcium influx and ER calcium release are critical for activation of the NLRP3 inflammasome.
TRPM2 deficiency inhibits caspase-1 activation. To determine the mechanism by which TRPM2 deficiency leads to impaired processing of bioactive IL-1β, we tested whether Trpm2−/− BMDMs were defective in caspase-1 activation. As shown in Fig. 5a,b, deficiency in TRPM2 or the blockade of [Ca^{2+}]_i increase via BAPTA-AM that drastically reduced the level of mature caspase-1 in response to liposomes or crystals. This defect was not owing to impaired mitochondrial ROS production because neither genetic ablation of TRPM2 nor removal of extracellular calcium impaired mitochondrial ROS production after liposome stimulation (Fig. 5c–e, and Supplementary Fig. S14). Moreover, we found that Nlrp3−/− macrophages displayed a comparable level of calcium influx as wild-type cells in response to liposome stimulation (Fig. 5f), suggesting that TRPM2-mediated calcium influx is an early event before assembly of the NLRP3 inflammasome. Together, these data indicate that ROS-dependent calcium influx via the TRPM2 channel is critical for NLRP3 inflammasome-mediated caspase-1 activation.

Along with the role of calcium influx in activation of the NLRP3 inflammasome, potassium efflux has been shown to be essential for inflammasome activation by most, if not all, NLRP3 inflammasome agonists. It appears that the mobilization of both cations across the plasma membrane is crucial for NLRP3 inflammasome activation. Consistent with a recent study, we found that the blockade of potassium efflux did not prevent calcium influx induced by NLRP3 inflammasome agonists (Supplementary Fig. S15), which further verifies that in addition to potassium efflux, calcium influx is also a crucial event for NLRP3 inflammasome activation. As TRPM2 is a non-selective cation channel that allows the passage of both calcium and potassium, it is possible that TRPM2 deficiency may also affect potassium efflux. However, as the removal of extracellular calcium did not further decrease the particulate-induced NLRP3 activation was also primarily dependent on calcium influx (Supplementary Fig. S16). However, in contrast to particulate agonists of the NLRP3 inflammasome, ATP uses P2X7, but not TRPM2, to induce calcium influx and NLRP3 inflammasome activation (Supplementary Fig. S16). Consistent with this notion, deficiency in P2X7 did not affect calcium influx triggered by particulate stimuli (Supplementary Fig. S17). Taken together, these results suggest that calcium influx is a general proximal step during NLRP3 inflammasome activation, and that different activators of the NLRP3 inflammasome may use distinct plasma membrane ion channels to mediate calcium influx.
Figure 6 | TRPM2 is critical for particle-induced IL-1β release and subsequent immune responses in vivo. The IL-1β concentration (a,d) and neutrophil recruitment (b,e,f) were quantified in peritoneal lavage fluid from wild-type (Il1r1+/+ and Trpm2+/+), Il1r1−/− or Trpm2−/− mice 6 h after intraperitoneal injection of PBS supplemented with either MSU crystals (a-c) or DOTAP liposomes (d-f). The data are representative of two independent experiments (mean and s.e.m. of three to five mice per group). (g-j) Six- to eight-week old female wild-type (Trpm2−/− and Il1r1+/+), Trpm2−/− (g,i) or Il1r1−/− (h,j) mice were subcutaneously immunized on day 0 and day 14 with 40 μg per mouse OVA alone or the same amount of OVA encapsulated within DOTAP liposomes (g,h) or mixed with LPS (25 μg per mouse, i,j). On day 24, the mice were killed, and sera were collected and analysed for OVA-specific IgG1, IgG2b and IgG2c levels by ELISA. The data are shown as geometrical mean within DOTAP liposomes (g,h) or mixed with LPS (25 μg per mouse, i,j). On day 24, the mice were killed, and sera were collected and analysed for OVA-specific IgG1, IgG2b and IgG2c levels by ELISA. The data are shown as geometrical mean ± s.e.m., and are representative of at least two independent experiments (n = 4–5 mice per group). *P < 0.05 versus controls. Statistical significance was determined by the standard two-tailed Student’s t-test.

TRPM2 is crucial for NLRP3 inflammasome activation in vivo.

To further validate the role of TRPM2 in mediating NLRP3 inflammasome activation in vivo, we determined whether TRPM2 deficiency affected crystal-/liposome-induced IL-1β secretion and subsequent neutrophil recruitment after intraperitoneal injections of these particulate stimuli. We first observed that the level of IL-1β in the peritoneal fluid of the Trpm2−/− mice was significantly reduced as compared with that from wild-type mice after injection with either MSU crystals or DOTAP liposomes (Fig. 6a,d). Moreover, particle-induced neutrophil recruitment was also significantly decreased in Trpm2−/− mice, which was similar to that observed in Il1r1−/− mice (Fig. 6b,c,e,f). In contrast, neutrophil recruitment was not affected by either TRPM2 or IL-1R deficiency in response to an intraperitoneal challenge with zymosan, a Toll-like receptor 2 agonist (Supplementary Fig.S18). These data collectively indicate that TRPM2 is essential for NLRP3 inflammasome activation in vivo.

Finally, we tested whether deficiency in TRPM2, which results in decreased IL-1β secretion, would affect the adjuvanticity of liposomes in vivo. As shown in Fig. 6g, the level of ovalbumin (OVA)-specific IgG1 was significantly reduced in Trpm2−/− mice after immunization with OVA-encapsulated DOTAP liposomes. Furthermore, because a role for the IL-1β-IL-1 receptor signalling axis in mediating Th2 responses has been previously suggested, we further tested whether the inhibition of IL-1 receptor signalling influenced the levels of antigen-specific antibodies after immunization with antigen-encapsulated liposomes. Similar to Trpm2−/− mice, Il1r1−/− mice also
demonstrated a significant reduction in OVA-specific IgG1 levels compared with the wild-type mice (Fig. 6h). However, in contrast to the liposomal adjuvant, a deficiency in either TRPM2 or IL-1R did not impair the optimal levels of anti-OVA antibodies when LPS, a Toll-like receptor 4 agonist, was used as the adjuvant (Fig. 6i,j), which suggests that TRPM2- and IL-1R-deficient mice do not have a general defect in mounting an antibody response. Taken together, these data indicate that TRPM2 and IL-1R are essential for the induction of an optimal antibody response against the antigens that are encapsulated within liposomes.

Discussion

Liposomes are promising immune adjuvants and delivery vectors for the treatment of both infectious and cancerous diseases\(^4,5\). Therefore, understanding the innate immune recognition process for liposomes will not only mechanistically define/improve their adjuvant effect but also help to prevent any undesirable inflammatory responses, particularly when liposomes are used as drug-delivery vehicles for anti-cancer therapies. In this study, we identified the NLRP3 inflammasome as a novel innate immune sensor for liposomes. Notably, only the charged, but not neutral, liposomes activated the NLRP3 inflammasome, which is most likely owing to the fundamental differences in their induction of mitochondrial ROS. As the plasma membrane potential is tightly associated with the oxidative state in phagocytes\(^44–46\), it is plausible that charged, but not neutral, liposomes could induce cellular oxidative stress via alteration of the plasma membrane potential, which would eventually result in NLRP3 inflammasome activation. Therefore, charged liposomes may be more suitable as immune adjuvants, whereas neutral liposomes may be more suitable as delivery vectors for anti-cancer drugs.

Although an essential role for mitochondrial ROS has recently been implicated in activation of the NLRP3 inflammasome\(^7,11\), the precise mechanism underlying ROS-induced inflammasome activation remains elusive. In this study, we identified a novel signalling axis originating from ROS production, followed by TRPM2-mediated calcium influx and ultimately activation of the NLRP3 inflammasome. Therefore, our results provide at least one mechanistic link that connects oxidative stress with NLRP3 inflammasome activation. In addition to TRPM2-dependent IL-1\(\beta\) release, we observed that a portion of particle-induced IL-1\(\beta\) secretion was independent of TRPM2-mediated calcium influx but instead was dependent on calcium release from intracellular stores. This observation is consistent with a recent report by Murakami et al.\(^{15}\) that demonstrated a role for IP\(_3\)R-mediated calcium release from the ER in the activation of the NLRP3 inflammasome. Although it is clear that both calcium influx and ER calcium release are critical for IL-1\(\beta\) secretion, how multiple calcium mobilization events cooperatively trigger NLRP3 inflammasome activation remains to be further defined. Recently, a report by Zhou et al.\(^{20}\) demonstrated a close interaction between the ER and mitochondria in response to NLRP3 inflammasome stimuli. As calcium overload in mitochondria is essential for ROS production, it is plausible that ER-mitochondria contact may be beneficial for rapid calcium flow from the ER into mitochondria, which may facilitate the generation of sufficient mitochondrial ROS, particularly at later stage during activation of the NLRP3 inflammasome. Moreover, Murakami et al.\(^{15}\) have also demonstrated that in addition to facilitating mitochondrial ROS production, ER-derived calcium is also essential for mitochondria to maintain a damaged state. Mitochondrial damage has been shown to induce the release of mitochondrial DNA into the cytosol, which also activates the inflammasomes\(^{19,47}\). In addition to mitochondrial DNA, our study demonstrates that ROS released from the damaged mitochondria activate the TRPM2 channel, which results in calcium influx across the plasma membrane. As blocking TRPM2-mediated calcium mobilization drastically impaired caspase-1 activation and did not affect mitochondrial ROS production, it is possible that, unlike ER-derived calcium, TRPM2-mediated calcium influx may directly signal activation of the NLRP3 inflammasome.

Based on our current study and a previous report by Murakami et al.\(^{15}\), it appears that calcium mobilization is a critical step during NLRP3 inflammasome activation. Calcium is a key signalling mediator for a number of cellular proteases, protein kinases and phospholipases, some of which may be involved in NLRP3 inflammasome activation. Consistent with this notion, ERK1/2 kinase has been implicated in regulating activation of the NLRP3 inflammasome\(^8\). Similarly, we have preliminary data indicating that the inhibition of protein kinase C\(\varepsilon\) also partially impairs NLRP3 inflammasome activation (unpublished results).

These calcium-dependent enzymes may function to either proteolytically inactivate a negative regulator or activate a positive regulator of NLRP3, resulting in the assembly of the inflammasome complex.

Finally, accumulating evidence has suggested that dysregulation of the NLRP3 inflammasome is tightly associated with many inflammatory disorders, such as gout, atherosclerosis, silicosis, asbestosis and Alzheimer’s disease\(^{49,50}\). In this study, we demonstrated that TRPM2 deficiency drastically impairs the inflammatory response induced by MSU crystals, the causal agent of gout. This finding has therefore suggested a therapeutic potential of targeting TRPM2 to treat NLRP3 inflammasome-associated autoinflammatory diseases. Furthermore, other studies have also linked the NLRP3 inflammasome to a number of metabolic diseases, including obesity and type 2 diabetes\(^{51–53}\). For instance, NLRP3 deficiency protects mice from high-fat diet-induced obesity, and the saturated fatty acid palmitate, which is found in high-fat diets, can induce NLRP3 inflammasome-mediated IL-1\(\beta\) secretion, which interferes with insulin signalling and eventually results in reduced glucose tolerance and insulin sensitivity. As our results indicate a role for TRPM2 in NLRP3 inflammasome activation, blocking TRPM2 would be expected to rescue metabolic disorders that are a result of a high-fat diet. In support of this hypothesis, a recent study suggested that TRPM2-deficient mice have attenuated obesity-mediated inflammation, and that TRPM2 deletion can protect mice from developing diet-induced obesity and insulin resistance\(^54\). Together, these studies highlight the therapeutic potential of targeting TRPM2 to treat autoinflammatory and metabolic disorders associated with undesirable activation of the NLRP3 inflammasome.

Methods

Mice. C57BL/6, Il1r1\(-/-\) and P2X7\(-/-\) mice were purchased from Jackson Laboratories. Trpm2\(-/-\) mice were a generous gift from Dr Yasuo Mori and have been previously described\(^{34}\). Trpm2\(-/-\) mice were backcrossed with C57BL/6 mice for at least five generations before use in the experiments described. Trpm2\(-/-\) mice and their wild-type littermates (Trpm2\(+/-\)) were used in these studies. All mice were bred and maintained in the animal facility at Loyola University Chicago and were treated in accordance with the guidelines of the Institutional Animal Care and Use Committee of Loyola University Chicago.

Reagents. 1,2-Dioleoyl-3-trimethyl ammonium propane (DOTAP), 3\(\beta\)-(N,N,N',N'-dimethylaminoethane)-carboxamidoylcholeral hydrochloride (DC-Chol), dime-thylcytidylic acid (benzamide salt) (DDA), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phospho-(1’-rac-glycerol) (DMPG) and L-\(\gamma\)-phosphatidylcholine (soy extract) were purchased from Avanti Polar Lipids (Alabaster, AL). Track-etch polycarbonate membranes (2 \(\mu\)m, 800 nm, 400 nm, 200 nm and 100 nm) were from Milipore. The Lipex liposomes extruder was from Northern Lipids and other common lab chemicals and reagents were from Sigma-Aldrich and Fisher Scientific. Cholesterol, ovalbumin, silica, ATP, PMA, cytochalasin D,
uricase, bafloymycin A1, Ca-C74-Me, H2O2, antimycin and BA0-AM were from Sigma-Aldrich. Uliptrpe LPS, zynosan, and poly(dA:dT) were from Invivogen. zVAD-fmk, APDC and DPQ were from Alexis Biochemicals. DPI was from Calbiochem. Monosodium urate crystals, VAS2870 and NAC were from Enzo LifeSciences. Injection Alum and streptavidin-HRP were from Pierce. The milky solution of liposomes was extruded 25 times through an appropriately sized polycarbonate membrane filter using a Lipex extruder connected to a high-pressure nitrogen cylinder to produce liposomes of the desired sizes. For example, liposomes were passed through a 100-nm polycarbonate membrane filter 25 times to generate liposomes.

To form OVA-encapsulated liposomes, the thin lipid film was hydrated with a solution of OVA in deionized water. The liposomes were sized to 400 nm. The non-encapsulated OVA was separated using 100 K dialysis membrane tubing (Spectrum Laboratories). The amount of the encapsulated OVA was determined by BCA assay using a BCA protein assay kit (ThermoFisher Scientific).

Cell culture and stimulation. Human THP-1 cells (ATCC) were grown in RPMI-1640 medium supplemented with 10% (vol/vol) fetal bovine serum. THP-1 cells were primed with PMA (100 nM) for 3 h, washed three times and cultured overnight in serum-free DMEM medium. The cells were then stimulated with either liposomes alone (40 μg per mouse), OVA-encapsulated DOTAP liposomes or OVA mixed with LPS, and the animals were boosted once after 2 weeks. Ten days after the final immunization, the mice were killed by exposure to CO2 and the immune sera from the periphery blood were isolated.

Statistics. All data are shown as mean ± s.d. or mean ± s.e.m. Statistical analysis was performed using a two-tailed Student’s t-test for all studies. For all tests, P-values <0.05 were considered statistically significant.

References
1. Allison, A. G. & Gregoriadis, G. Liposomes as immunological adjuvants. Nature 252, 252 (1974).
2. Al-Jamal, W. T. & Kostarelos, K. Liposomes: from a clinically established drug delivery system to a nanomedicine tool. Expert Rev. Drug Deliv. 6, 785–796 (2009).
3. Yan, W., Chen, W. & Huang, L. Mechanism of adjuvant activity of cationic liposome formulations in cancer therapy: 15 years along the road. Mol. Pharm. 2, 22–28 (2005).
4. Eisenbarth, S. C., Colegio, O. R., O’Connor, W., Sutterwala, F. S. & Flavell, R. A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nat. Immunol. 8, 847–856 (2007).
5. Cui, Z., Han, S. J., Wang, D. P. & Huang, L. Immunostimulation mechanism of LPD nanoparticle as a vaccine carrier. Mol. Pharm. 8, 22–28 (2011).
6. Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674–677 (2008).
7. Eisenbarth, S. C., Colegio, O. R., O’Connor, W., Sutterwala, F. S. & Flavell, R. A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008).
8. Li, H., Willingham, S. B., Ying, J. P. & Re, F. Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J. Immunol. 181, 17–21 (2008).
9. Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674–677 (2008).
10. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).
11. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–242 (2006).
12. Jin, C. & Flavell, R. A. Molecular mechanism of NLRP3 inflammasome activation. J. Clin. Immunol. 30, 628–631 (2010).
13. Murakami, T. et al. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc. Natl Acad. Sci. USA 109, 11282–11287 (2012).
14. West, A. P., Shadel, G. S. & Ghosh, S. Macrophages in innate immune responses. Nat. Rev. Immunol. 11, 389–402 (2011).
15. Kepp, O., Galluzzi, L. & Kroemer, G. Mitochondrial control of the NLRP3 inflammasome. Nat. Immunol. 12, 199–200 (2011).
16. Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674–677 (2008).
17. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).
18. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–242 (2006).
19. Jin, C. & Flavell, R. A. Molecular mechanism of NLRP3 inflammasome activation. J. Clin. Immunol. 30, 628–631 (2010).
20. Murakami, T. et al. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc. Natl Acad. Sci. USA 109, 11282–11287 (2012).
21. West, A. P., Shadel, G. S. & Ghosh, S. Macrophages in innate immune responses. Nat. Rev. Immunol. 11, 389–402 (2011).
22. Kepp, O., Galluzzi, L. & Kroemer, G. Mitochondrial control of the NLRP3 inflammasome. Nat. Immunol. 12, 199–200 (2011).
18. Tschopp, J. Mitochondria: sovereign of inflammation? Eur. J. Immunol. 41, 1196–1202 (2011).
19. Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).
20. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).
21. Gross, O., Thomas, C. J., Guarda, G. & Tschopp, J. The inflammasome: an integrated view. Immunol. Rev. 243, 136–151 (2011).
22. Marriathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).
23. Miao, E. A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat. Immunol. 7, 569–575 (2006).
24. Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009).
25. Fernandes-Almeiri, T., Yu, J. W., Datta, P., Wu, J. & Almeini, E. S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458, 509–513 (2009).
26. Ogura, Y., Sutterwala, F. S. & Flavell, R. A. The inflammasome: first line of the immune response to cell injury. Cell 126, 659–662 (2006).
27. Dostert, C. et al. Malarial hemoglobin is a Nalp3 inflammasome activating danger signal. PLoS One 4, e5610 (2009).
28. Newman, Z. L., Leppla, S. H. & Moayeri, M. CA-074Me protection against anthrax lethal toxin. Proc. Natl. Acad. Sci. USA 107–117 (1991).
29. Ogura, Y., Sutterwala, F. S. & Flavell, R. A. The inflammasome: first line of the immune response to cell injury. Cell 126, 659–662 (2006).
30. Bulua, A. C. et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J. Exp. Med. 208, 319–333 (2011).
31. Holland, P. C. & Sherratt, H. S. Biochemical effects of the hypoglycaemic compound diphenyleneiodonium. Catalysis of anion-hydroxyl ion exchange across the inner membrane of rat liver mitochondria and effects on oxygen uptake. Biochem. J. 129, 39–54 (1972).
32. Stiele, C. et al. Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells. Biochem. Biophys. Res. Commun. 344, 200–205 (2006).
33. Tschopp, J. & Schroder, K. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat. Rev. Immunol. 10, 210–215 (2010).
34. Yamamoto, S. et al. TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. J. Biol. Chem. 284, 730–737 (2009).
35. Shupliakov, O. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17, 179–188 (2011).
36. Chen, W. L., Wang, Y., Li, C. & Zhang, Z. Inflammasome activation in obesity. Cell 154, 609–622 (2013).
37. Kaur, N. et al. TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br. J. Pharmacol. 143, 186–192 (2004).
38. Suto, M. J., Turner, W. R., Arundel-Suto, C. M., Werbel, L. M. & Sebolt-Leopold, J. S. Dihydroxysoquinolones: the design and synthesis of a new series of potent inhibitors of poly(ADP-ribose) polymerase. Anticancer Drug Des. 6, 107–117 (1991).
39. Bauerfeind, F. G. et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183, 787–791 (2009).
40. Gross, O. et al. Inflammasomes activators induce interleukin-1alpha secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 36, 388–400 (2012).