Research Article

Identification of Prognostic Fatty Acid Metabolism IncRNAs and Potential Molecular Targeting Drugs in Uveal Melanoma

Yang Xu,1 Rui Tian,2 Xin Liu,2 Meijiao Song,2 Lu Liu,2 Rong Guo,2 Zhuoya Li,2 Xiaomin Hu,2 and Hui Zhang2

1Jilin University, Hospital Stomatol, Jilin Provincial Key Laboratory Tooth Development & Bone Remodeling, 763 Heguang Rd., Changchun, 130021 Jilin Province, China
2Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130041 Jilin Province, China

Correspondence should be addressed to Hui Zhang; zhui99@jlu.edu.cn

Received 11 September 2022; Revised 17 September 2022; Accepted 24 September 2022; Published 11 October 2022

Academic Editor: Liaqat Ali

Copyright © 2022 Yang Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. The aim of this study was to identify prognostic fatty acid metabolism IncRNAs and potential molecular targeting drugs in uveal melanoma through integrated bioinformatics analysis. Methods. In the present study, we obtained the expression matrix of 309 FAM-mRNAs and identified 225 FAM-lncRNAs by coexpression network analysis. We then performed univariate Cox analysis, LASSO regression analysis, and cross-validation and finally obtained an optimized UVM prognosis prediction model composed of four PFAM-lncRNAs (AC104129.1, SOS1-IT1, IDI2-AS1, and DLGAP1-AS2). Results. The survival curves showed that the survival time of UVM patients in the high-risk group was significantly lower than that in the low-risk group in the train cohort, test cohort, and all patients in the prognostic prediction model (P < 0.05). We further performed risk prognostic assessment, and the results showed that the risk scores of the high-risk group in the train cohort, test cohort, and all patients were significantly higher than those of the low-risk group (P < 0.05), patient survival decreased and the number of deaths increased with increasing risk scores, and AC104129.1, SOS1-IT1, and DLGAP1-AS2 were high-risk PFAM-lncRNAs, while IDI2-AS1 were low-risk PFAM-lncRNAs. Afterwards, we further verified the accuracy and the prognostic value of our model in predicting prognosis by PCA analysis and ROC curves. Conclusion. We identified 24 potential molecularly targeted drugs with significant sensitivity differences between high- and low-risk UVM patients, of which 13 may be potential targeted drugs for high-risk patients. Our findings have important implications for early prediction and early clinical intervention in high-risk UVM patients.

1. Introduction

Uveal melanoma (UVM) is the most common intraocular malignant tumor, accounting for the first place of intraocular tumors [1]. This tumor is more common in adults, with a high degree of malignancy. The posterior pole of the eye is a predilection site, easy to transfer through blood flow, and the prognosis is poor [2, 3]. The occurrence and development of UVM is a complex process involving multifactor, multistage, and multigene variation accumulation and interaction [4]. It is widely believed that the abnormal expression of oncogenes and tumor suppressor genes leads to malignant transformation of cells, and these genes usually play a key role in the regulation of cell proliferation, division, and differentiation [5].

Metabolic dysregulation is one of the ten hallmarks of cancer, and increasing evidence suggests that metabolic reprogramming plays a crucial role in cancer initiation and progression [6, 7]. As an important part of lipid metabolism, fatty acids can accumulate to meet the needs of lipid synthesis signaling molecules and membranes [8]. Unregulated fatty acids can not only interfere with the efficacy of
chemotherapy and radiotherapy in cancer patients but also affect immunotherapy, which is a breakthrough in tumor therapy in recent years [9, 10]. More and more studies have shown that fat metabolism has a certain relationship with the occurrence and development of tumors, and fatty acid metabolism (FAM) is crucial.
(a)

(b)

Figure 2: Continued.
for the maintenance of the malignant tumor microenvironment [11–13]. In this paper, the correlation between fatty acid metabolism genes (FAMGs) and UVM was discussed, a prognosis prediction model based on FAMGs was constructed, and molecular targeted drugs sensitive to high-risk UVM patients were screened. Our findings have important implications for early prediction and early clinical intervention in high-risk UVM patients.

2. Materials and Methods

2.1. Data Download and Collation. Transcriptome data of UVM and corresponding clinical data were downloaded from our TCGA database (https://tcga-data.nci.nih.gov/tcga) [14], and a total of 80 UVM samples were collected. We then used custom Perl scripts to clean up all the data for subsequent analysis.

2.2. Identification of Fatty Acid Metabolism IncRNAs by Coexpression Analysis. First, the transcriptome expression matrices of all UVM samples were classified as RNAs, and mRNA and IncRNA expression matrices were screened out. Then, the relative expression levels of fatty acid metabolism genes (FAMGs) were extracted from the UVM transcriptome gene matrix using the R package limma [15]. Finally, the coexpression analysis of fatty acid metabolism mRNAs (FAM-mRNAs) and IncRNAs (FAM-IncRNAs) was performed by Pearson correlation test to determine the FAM-IncRNAs [16]. Pearson correlation coefficient > 0.7 and \(P \) value < 0.01 were considered statistically significant.

2.3. Construction of UVM Prognostic Prediction Model. First, the expression matrix of FAM-IncRNAs was collated and combined with the survival time and survival status of UVM patients. Then, all samples were randomly divided into the train cohort and the test cohort. Univariate and multivariate analyses and LASSO regression analysis were used to construct the UVM prognostic prediction model [17]. The relative expression levels of FAM-IncRNAs in each sample were then multiplied by the risk factors and added together to obtain the risk score for each sample [18]. Finally, by comparing the risk score of each sample with the median risk score of the model, all patients can be divided into the high-risk group and the low-risk group [19].

2.4. Survival Analysis of UVM Patients with Different Risk Groups. We performed a survival analysis of patients in the high-risk and low-risk groups to explore the prognostic value of prognostic prediction models [20]. We organized the train cohort, test cohort, and all patients’ survival information, risk score, risk grouping, and FAM-IncRNA expression matrix and plotted the survival curve of UVM patients in high- and low-risk groups to show the difference in survival prognosis of patients in different risk groups [21].

2.5. Risk Assessment of UVM Patients with Different Risk Groups. We performed risk assessments of UVM patients in high- and low-risk groups, aiming to elucidate the correlation between patient survival time, survival status, FAM-IncRNA expression, and risk score. Results are presented as risk curves, survival scatter plots, and risk gene heat maps [22, 23].
Figure 3: Continued.
2.6. Principal Component Analysis of UVM Patients with Different Risk Groups. To further verify whether our model can accurately distinguish between high-risk and low-risk UVM patients, we performed a principal component analysis (PCA) [24]. PCA is a statistical method that converts a group of possibly correlated variables into a group of linearly unrelated variables through orthogonal transformation [25]. The transformed variables are called principal components. We performed PCA of FAMGs and model genes by R package limma and ggplot2, respectively, and visualized them with scatter plots [26, 27].

2.7. ROC Curve Analysis of UVM Prognosis Prediction Model. Receiver Operating Characteristic (ROC), also known as the sensitivity curve, is a comprehensive index reflecting the continuous variables of sensitivity and specificity, and the relationship between the two is usually represented by a curve graph [28, 29]. The area under the ROC curve (AUC) represents the accuracy of a diagnostic test [30]. We used the R packages survival, survminer, and timeROC to test the accuracy of the UVM prognostic prediction model and plotted the ROC curves of the survival rate and clinical characteristics for visualization [31, 32].
2.8. Screening of Potential Molecular Targeting Drugs for UVM. In order to screen potential molecular targeting drugs for UVM, sensitivity analysis was performed on the whole transcription gene expression matrix and drugs through R package limma, ggpubr, pRRopetic, and ggplot2, and then, the UVM risk file and drug sensitivity results were combined to compare the sensitivity differences of patients in the high- and low-risk groups to different drugs [33]. Finally, we visualize the results through a boxplot. Finally, potential molecular targeted drugs for UVM were screened by drug sensitivity analysis [34].

3. Results

3.1. Identification of FAM-lncRNAs. We downloaded and collated 60,660 RNA transcript expression matrices from the TCGA database, including 19,962 mRNAs and 16,901 lncRNAs. We then obtained the expression matrix of 309 FAM-mRNAs and identified 225 FAM-lncRNAs by coexpression network analysis. The expression matrix of FAM-lncRNAs and their coexpression relationship with FAM-mRNAs are shown in Supplementary File 1.

3.2. Prognostic Prediction Model for UVM Patients. Univariate Cox analysis was performed on 225 FAM-lncRNAs, and 25 prognosis-related FAM-lncRNAs (PFAM-lncRNAs) were obtained, of which 4 PFAM-lncRNAs were low-risk lncRNAs (hazard ratio < 1) and 21 were high-risk lncRNAs (hazard ratio > 1) (as shown in Figure 1(a)). LASSO regression was used to select five PFAM-lncRNAs with significant differential expression to construct a Cox prognostic model (Figures 1(b) and 1(c)). The prognosis prediction model was evaluated and optimized by cross-validation, and finally, an optimized model consisting of four PFAM-lncRNAs (AC104129.1, SOS1-IT1, IDI2-AS1, and DLGAP1-AS2) was obtained. The raw data related to the prognostic prediction model are detailed in Supplementary File 2.

3.3. Differences in Survival Prognosis of Patients with Different UVM Risk Groups. Survival curves were drawn by comparing the survival differences between the high-risk and low-risk groups in the train cohort, test cohort, and all patients in the prognostic prediction model. As shown in Figures 2(a)–2(c), the survival time of UVM patients in the high-risk group was significantly lower than that in the low-risk group ($P < 0.05$).

3.4. Differences in Risk Prognosis of Patients with Different UVM Risk Groups. We further performed risk prognostic assessment to predict the risk prognostic of UVM patients in the high-risk and low-risk groups. The risk scores of the high-risk group in the train cohort, test cohort, and all patients were significantly higher than those of the low-risk group ($P < 0.05$) (Figures 3(a)–3(c)). As the risk score increased, patient survival decreased and the number of deaths increased (Figures 3(d)–3(f)). As shown in Figures 3(g)–3(i), AC104129.1, SOS1-IT1, and DLGAP1-AS2 were high-risk PFAM-lncRNAs, while IDI2-AS1 were low-risk PFAM-lncRNAs. These results suggest that the prognostic prediction model can accurately assess the difference in risk prognosis between patients in high- and low-risk groups.

3.5. PCA Analysis of the Prognostic Prediction Model. Through PCA analysis, we further verified the accuracy of our model in predicting prognosis. As shown in
ABT.888 sensitivity (IC50) 4.0

AMG.706 sensitivity (IC50) 4.8

Gefitinib sensitivity (IC50) –1

JNJ.26854165 sensitivity (IC50) 4.0

Mitomycin.C sensitivity (IC50) –2

Nilotinib sensitivity (IC50) 3.5

Figure 6: Continued.
Figure 6: Continued.
Figures 4(a) and 4(b), FAMGs and genes involved in model construction are highly discriminative between the high-risk group and low-risk group UVM patients, which indicates that the prognostic prediction model we constructed can better distinguish high-risk and low-risk patients.

3.6. ROC Curves of UVM Prognosis Prediction Model. We plotted ROC curves to assess and validate the prognostic value of the model. As shown in Figure 5(a), the AUCs for the 1-, 3-, and 5-year survival rates were 0.951, 0.953, and 1.000, respectively. Compared with other clinical features, the risk score AUC value based on the prognostic prediction model was the highest (1.000) (see Figure 5(b)). The above results demonstrate that the prognostic model can accurately and independently predict the prognosis of UVM patients.

3.7. Potential Molecular Targeted Drugs of UVM. Through drug sensitivity analysis, we identified 24 potential molecularly targeted drugs with significant sensitivity differences between high- and low-risk UVM patients (see Supplementary File 3 for details) \((P < 0.05)\). Figure 6 shows 13 molecularly targeted drugs, which have lower IC50 values in high-risk patients, indicating that these drugs may be potential molecularly targeted drugs for high-risk patients.

4. Discussion

UVM is the most common primary intraocular malignancy in adults, accounting for 85% of all ocular melanomas, and more than 50% of patients with UVM develop systemic metastases, which are rarely managed by surgery [35, 36]. The curative effect of UVM therefore often leads to a poor prognosis [37]. In this paper, we obtained the expression matrix of 309 FAM-mRNAs and identified 225 FAM-IncRNAs by coexpression network analysis. We then performed univariate Cox analysis, LASSO regression analysis, and cross-validation and finally obtained an optimized UVM prognosis prediction model composed of four PFAM-IncRNAs (AC104129.1, SOS1-IT1, IDI2-AS1, and DLGAP1-AS2). Next, we drew survival curves, showing that the survival time of UVM patients in the high-risk group was significantly lower than that in the low-risk group in the train cohort, test cohort, and all patients in the prognostic prediction model \((P < 0.05)\). We further performed risk prognostic assessment, and the results showed that the risk scores of the high-risk group in the train cohort, test cohort, and all patients were significantly higher than those of the low-risk group \((P < 0.05)\), patient survival decreased and the number of deaths increased with increasing risk scores, and AC104129.1, SOS1-IT1, and DLGAP1-AS2 were high-risk PFAM-IncRNAs, while IDI2-AS1 were low-risk PFAM-IncRNAs. Afterwards, we further verified the accuracy and the prognostic value of our model in predicting prognosis by PCA analysis and ROC curves. Finally, we identified 24 potential molecularly targeted drugs with significant sensitivity differences between high- and low-risk UVM patients, of which 13 may be potential targeted drugs for high-risk patients.

To the best of our knowledge, there are no bioinformatics studies on the association of FAMGs with UVM. However, in recent years, studies have found that FAM is involved in the pathophysiological mechanism of UVM, thereby affecting the prognosis of patients. Han et al. [38] showed by RNA sequencing, metabolomics, and molecular analysis that oxidative phosphorylation of BRCA1-associated protein 1 (OXPHOS BAP1) mutant UVM cells utilizes glycolysis and nucleotide biosynthesis pathways and fatty acid oxidation pathways, while the loss of BAP1 live mutations is associated with the transfer of UVM. This suggests that targeting tumor metabolism is a potential therapeutic option for BAP1-mutant UVM. Gu et al. [39] found that oridonin inhibited the expression of fatty acid synthase...
(FAS) in UVM cells and enhanced the expression of FAS by
ingulin, partially rescued oridonin-induced apoptosis, and
exhibited a strong anticancer effect. Using gas
cromatography-mass spectrometry and spectrophotometry
to compare the antioxidant status of uveal melanocytes and
UVM cells, Blasi et al. [40] showed that the proportion of
polyunsaturated fatty acids was significantly higher in
UVM cells \((P = 0.022) \), which showed that the antioxidant
pattern of UVM cells is different from that of skin melanocytes, which may be one of the pathogenic mechanisms
of abnormal proliferation of UVM cells.

Using comprehensive bioinformatics analyses, we identified
FAM-IncRNAs by coexpression analysis, constructed a
UVM prognostic prediction model, performed survival anal-
ysis and risk assessment of UVM patients with different risk
groups, and further verified the accuracy and prognostic
value of our model in predicting prognosis by PCA analysis
and ROC curves. Finally, we screened potential molecular
targeting drugs for UVM through drug sensitivity analysis.
Our findings will help to identify new prognostic IncRNA
characteristics of UVM and potential molecular targeting
drugs, which may have substantial clinical value for the early
detection and early treatment of UVM patients, especially
high-risk patients. However, this study also has some limita-
tions, such as not paying attention to the characteristics of
different pathological subtypes and clinical staging and grad-
ing of UVM and lack of experimental verification in vitro
and in vivo. In the future, these are subject to our further
research.

Data Availability

The dataset used and/or analyzed during this study may be
granted by contacting the corresponding author.

Consent

All authors provided consent for publication.

Conflicts of Interest

The authors declare that they have no competing interests.

Acknowledgments

The authors are thankful for the data provided by the TCGA
database. This study was funded by the Natural Science
Foundation Project of Science and Technology Department
of Jilin Province (No. 20190201150JC), International Science
and Technology Cooperation Project of Science and Tech-
ology Department of Jilin Province (No. 20200801026GH), Health Technology Innovation Project
in Jilin Province (No. 2019J015), Special Project for Medical
and Sanitary Talent of Jilin Province (No. 2019SCZT032), Health Technology Innovation Project in Jilin Province
(No. 2020J038), and Special Project of Medical and Health
Talents in Jilin Province (No. 2020SCZT045).

Supplementary Materials

The expression matrix of FAM-IncRNAs and their coexpres-
sion relationship with FAM-mRNAs are shown in Supple-
mentary File 1. The raw data related to the prognostic
prediction model are detailed in the Supplementary File 2.
Through drug sensitivity analysis, we identified 24 potential
molecularly targeted drugs with significant sensitivity differ-
ences between high- and low-risk UVM patients (see Sup-
plemetary File 3 for details) \((P < 0.05) \). (Supplementary
Materials)

References

[1] F. Mallone, M. Sacchetti, A. Lambiase, and A. Moramarco,
“Molecular insights and emerging strategies for treatment of
metastatic uveal melanoma,” Cancers, vol. 12, no. 10, 2020.
[2] Z. Zheng, L. Zhang, Z. Tu, Y. Deng, and X. Yin, “An
autophagy-related prognostic signature associated with
immune microenvironment features of uveal melanoma,” Bio-
science Reports, vol. 41, no. 3, 2021.
[3] J. Schultz, S. Ibrahim, J. Vera, and M. Kunz, “14-3-3sigma gene
silencing during melanoma progression and its role in cell
cycle control and cellular senescence,” Molecular Cancer,
vol. 8, no. 1, p. 53, 2009.
[4] M. C. Petralia, E. Mazzon, P. Fagone et al., “Characterization
of the pathophysiological role of CD47 in uveal melanoma,”
Molecules (Basel, Switzerland), vol. 24, no. 13, p. 2450, 2019.
[5] A. Yang, J. Lee, L. Shu et al., “Genome-wide analysis of DNA
methylation in UVB- and DMBA/TPA-induced mouse skin
cancer models,” Life Sciences, vol. 113, no. 1-2, pp. 45–54, 2014.
[6] Y. Liang, D. Zhang, T. Zheng et al., “IncRNA-ASOX2OT pro-
motes hepatocellular carcinoma invasion and metastasis
through miR-122-5p-mediated activation of PKM2,” Onco-
genesis, vol. 9, no. 5, p. 54, 2020.
[7] U. Kahya, A. Köseer, and A. Dubrovskas, “Amino acid trans-
porters on the guard of cell genome and epigenome,” Cancers,
vol. 13, no. 1, p. 125, 2021.
[8] M. Xu, H. Joo, and Y. Paik, “Novel functions of lipid-binding
protein 5 in Caenorhabditis elegans fat metabolism,” The Jour-
nal of Biological Chemistry, vol. 286, no. 32, pp. 28111–28118,
2011.
[9] G. Gelsomino, P. Corsetto, I. Campia et al., “Omega 3 fatty
acids chemosensitize multidrug resistant colon cancer cells
by down-regulating cholesterol synthesis and altering deter-
genent resistant membranes composition,” Molecular Cancer,
vol. 12, no. 1, p. 137, 2013.
[10] N. Zhan, B. Li, X. Xu, J. Xu, and S. Hu, "Inhibition of FASN
expression enhances radiosensitivity in human non-small cell
lung cancer," Oncology Letters, vol. 15, no. 4, pp. 4578–4584,
2018.
[11] J. Cohnen, L. Kornstädt, L. Hahnefeld et al., “Tumors provoke
inflammation and perineural microlesions at adjacent peripheral
nerves,” Cells, vol. 9, no. 2, p. 320, 2020.
[12] M. C. Madonna, J. E. Duer, J. V. Lee et al., “In vivo optical meta-
abolic imaging of long-chain fatty acid uptake in orthotopic
models of triple-negative breast cancer,” Cancers, vol. 13,
no. 1, p. 148, 2021.
[13] M. Muroski, J. Miska, A. Chang et al., “Fatty acid uptake in T
cell subsets using a quantum dot fatty acid conjugate,” Scienc-
ific Reports, vol. 7, no. 1, p. 5790, 2017.
[14] X. Huang, D. F. Stern, and H. Zhao, “Transcriptional profiles from paired normal samples offer complementary information on cancer patient survival - evidence from TCGA pan-cancer data,” *Scientific Reports*, vol. 6, no. 1, p. 20567, 2016.

[15] M. Li, L. Cui, X. Feng et al., “Losmapimod protected epileptic rats from hippocampal neuron damage through inhibition of the MAPK pathway,” *Frontiers in Pharmacology*, vol. 10, p. 625, 2019.

[16] Z.-Y. Wang, Z.-D. Guo, J.-M. Li et al., “Genome-wide search for competing endogenous RNAs responsible for the effects induced by Ebola virus replication and transcription using a trVLP system,” *Frontiers in Cellular and Infection Microbiology*, vol. 7, p. 479, 2017.

[17] T. Yang, L. Hao, R. Cui et al., “Identification of an immune prognostic 11-gene signature for lung adenocarcinoma,” *PeerJ*, vol. 9, p. e10749, 2021.

[18] Y. Mou, Y. Zhang, J. Wu et al., “The landscape of iron metabolism-related and methylated genes in the prognosis prediction of clear cell renal cell carcinoma,” *Frontiers in Oncology*, vol. 10, p. 788, 2020.

[19] W. Shi, L. Feng, S. Dong et al., “Exploration of prognostic index based on immune-related genes in patients with liver hepatocellular carcinoma,” *Bioscience Reports*, vol. 40, no. 7, 2020.

[20] Y. Zhang, S. Ma, Q. Niu et al., “Features of alternative splicing in stomach adenocarcinoma and their clinical implication: a research based on massive sequencing data,” *BMC Genomics*, vol. 21, no. 1, p. 580, 2020.

[21] Y. Cheng, C. Liu, Y. Liu et al., “Immune microenvironment related competitive endogenous RNA network as powerful predictors for melanoma prognosis based on WGCNA analysis,” *Frontiers in Oncology*, vol. 10, p. 577072, 2020.

[22] X. Tian, W.-H. Xu, A. Anwaier et al., “Construction of a robust prognostic model for adult adrenocortical carcinoma: results from bioinformatics and real-world data,” *Journal of Cellular and Molecular Medicine*, vol. 25, no. 8, pp. 3898–3911, 2021.

[23] Y. Miao, J. Wang, X. Ma, Y. Yang, and D. Mi, “Identification prognosis-associated immune genes in colon adenocarcinoma,” *Bioscience Reports*, vol. 40, no. 11, 2020.

[24] P. Zhou, Y. Lu, Y. Zhang, and L. Wang, “Construction of an immune-related six-lncRNA signature to predict the outcomes, immune cell infiltration, and immunotherapy response in patients with hepatocellular carcinoma,” *Frontiers in Oncology*, vol. 11, p. 661758, 2021.

[25] M. B. Nijaguna, V. Patil, A. S. Hegde et al., “An eighteen serum cytokine signature for discriminating glioma from normal healthy individuals,” *PLoS One*, vol. 10, no. 9, p. e0137524, 2015.

[26] T. Liu, C. Li, L. Jin, C. Li, and L. Wang, “The prognostic value of m6A RNA methylation regulators in colon adenocarcinoma,” *Medical Science Monitor: International Medical Journal of Experimental and Clinical Research*, vol. 25, pp. 9435–9445, 2019.

[27] Q. Li, S. Hu, Y. Wang et al., “mRNA and miRNA transcriptome profiling of granulosa and theca layers from geee ovarian follicles reveals the crucial pathways and interaction networks for regulation of follicle selection,” *Frontiers in Genetics*, vol. 10, p. 988, 2019.

[28] Z. Tieges, A. M. J. Maclullich, A. Anand et al., “Diagnostic accuracy of the 4AT for delirium detection in older adults: systematic review and meta-analysis,” *Age and Ageing*, vol. 50, no. 3, pp. 733–743, 2021.

[29] M. Faisal, A. J. Scally, N. Jackson et al., “Development and validation of a novel computer-aided score to predict the risk of in-hospital mortality for acutely ill medical admissions in two acute hospitals using their first electronically recorded blood test results and vital signs: a cross-sectional study,” *BMJ Open*, vol. 8, no. 12, p. e022939, 2018.

[30] S. Hong, W. Fang, Z. Hu et al., “A large-scale cross-sectional study of ALK rearrangements and EGFR mutations in non-small-cell lung cancer in Chinese Han population,” *Scientific Reports*, vol. 4, p. 7268, 2014.

[31] J. Nie, D. Shan, S. Li et al., “A novel ferroptosis related gene signature for prognosis prediction in patients with colon cancer,” *Frontiers in Oncology*, vol. 11, p. 654076, 2021.

[32] L. Luo, X. Yao, J. Xiang, F. Huang, and H. Luo, “Identification of ferroptosis-related genes for overall survival prediction in hepatocellular carcinoma,” *Scientific Reports*, vol. 12, no. 1, p. 10007, 2022.

[33] X. Deng, S. Das, K. Valdez, K. Camphausen, and U. Shankavaram, “SL-BioDP: multi-cancer interactive tool for prediction of synthetic lethality and response to cancer treatment,” *Cancers*, vol. 11, no. 11, p. 1682, 2019.

[34] F. Badotti, F. S. de Oliveira, C. F. Garcia et al., “Effectiveness of ITS and sub-regions as DNA barcode markers for the identification of Basidiomycota (fungi),” *BMC Microbiology*, vol. 17, no. 1, pp. 1–12, 2017.

[35] P. N. Tulley, M. Neale, D. Jackson et al., “The relation between c-myc expression and interferon sensitivity in uveal melanoma,” *The British Journal of Ophthalmology*, vol. 88, no. 12, pp. 1563–1567, 2004.

[36] A. Martel, A. Oberic, A. Moulin, L. Zografos, and M. Hamedani, "Eyelids metastases from uveal melanoma: clinical and histopathologic features of two cases and literature review," *Eye (London, England)*, vol. 33, no. 5, pp. 767–771, 2019.

[37] J. A. Lechem, M. K. van der Kooij, M. Fiocco et al., “Metastatic uveal melanoma: treatment strategies and survival-results from the Dutch Melanoma Treatment Registry,” *Cancers*, vol. 11, no. 7, p. 1007, 2019.

[38] A. Han, T. Purwin, N. Bechtel et al., “BAP1 mutant uveal melanoma is stratified by metabolic phenotypes with distinct vulnerability to metabolic inhibitors,” *Oncogene*, vol. 40, no. 3, pp. 618–632, 2021.

[39] Z. Gu, X. Wang, R. Qi et al., “Oridonin induces apoptosis in uveal melanoma cells by upregulation of Bim and downregulation of fatty acid synthase,” *Biochemical and Biophysical Research Communications*, vol. 457, no. 2, pp. 187–193, 2015.

[40] M. Blasi, V. Maresca, M. Roccella et al., "Antioxidant pattern in uveal melanocytes and melanoma cell cultures," *Investigative Ophthalmology & Visual Science*, vol. 40, no. 12, pp. 3012–3016, 1999.