APPROXIMATION BY POLYNOMIALS IN TWO DIFFEOMORPHISMS

BY A. G. O’FARRELL AND K. J. PRESKENIS

We denote by C the complex plane. If f and g are complex-valued functions on a set S, then $C[f,g]$ denotes the algebra of polynomials in f and g, with complex coefficients, regarded as functions on S.

Theorem. Let $1 \leq k \in \mathbb{Z}$, and let f and g be C^k diffeomorphisms of C into C, having opposite degrees. Then $C[f,g]$ is dense in the Fréchet space $C^k(C)$, i.e., given $h \in C^k(C)$, and $X \subset C$ compact, there is a sequence $h_n \in C[f,g]$ such that h_n and its derivatives up to order k tend to h and its derivatives, uniformly on X.

In case $f(z) = z$ and $g(z) = z$, the Theorem reduces to a result of Weierstrass.

Since each diffeomorphism of the closed unit disc D into C extends to a diffeomorphism of C into C, we deduce the following.

Corollary. Let f and g be C^1 diffeomorphisms of D into C, having opposite degrees. Then $C[f,g]$ is dense in $C(D)$.

This settles an old chestnut in the field of uniform algebras. It remains open whether the Corollary works for $k = 0$, i.e., for all pairs of homeomorphisms of opposite degrees.

Proof of Theorem. Without loss of generality, we may take $g = z$, because the chain rule for $D^j(h \circ g)$ is linear in h and involves only $D^i h$ and $D^j g$ for $0 \leq i \leq j$.

Since f has degree -1, we deduce that $|f_\bar{z}| > |f_z|$ on C. In particular, $f_\bar{z} \neq 0$, so the graph $G = \{(z, f(z)) : z \in C\}$, which is a C^k submanifold of C^2, has no complex tangents. By the Range-Siu theorem [2], $C^k(G)$ is the closure of the space $\mathcal{O}(G)$ of all functions holomorphic in a neighbourhood of G. If we can show that G has an exhaustion by polynomially-convex compact sets, then by the functional calculus [4, Chapter 8], it will follow that $C[z,w]$ is dense in $\mathcal{O}(G)$, and hence in $C^k(G)$; since $z \mapsto (z, f)$ is a C^k diffeomorphism of $C \to G$, this will imply that $C[z,f]$ is dense in $C^k(C)$. Thus it suffices to show that $X = \{(z, f(z)) : z \in K\}$ is polynomially-convex whenever $K \subset C$ is a closed disc.

Fix a closed disc $K \subset C$. By modifying f off K, if need be, we may assume f maps C onto C, that Df and Df^{-1} are bounded and uniformly continuous, and that $|f_\bar{z}|$ and $1 - |f_z/f_\bar{z}|$ are bounded away from zero. We need two lemmas, which are essentially classical results of Wermer.
LEMMA 1. There exists a constant $\lambda_1 > 0$ such that

$$(z - a)(f(z) - f(a)) + \lambda f_2(a)$$

is nonzero whenever $0 < \lambda < \lambda_1$, $a \in \mathbb{C}$, and $z \in \mathbb{C}$.

PROOF. Pick $\delta > 0$ such that the modulus of continuity $\omega(\delta)$ of Df at δ is less than half \((\inf |f_d|)(1 - \sup |f_2/f_2|)\). Applying the mean value theorem to the real and imaginary parts of f we deduce that for $0 < |z - a| < \delta$, the value $f(z) - f(a)$ differs from $f_2(a)(z - a) + f_2(a)(z - a)$ by less than $2\omega(\delta)|z - a|$. Thus

$$\text{Re}\left(\frac{(z - a)(f(z) - f(a))}{f_2(a)}\right) > 0$$

whenever $|z - a| < \delta$. But for $|z - a| \geq \delta$,

$$\left|\frac{(z - a)(f(z) - f(a))}{f_2(a)}\right| \geq \frac{\delta^2(\sup |Df^{-1}|)^{-1}}{\inf |f_2|}.$$

Denoting the right-hand side by λ_1, we see that $(z - a)(f(z) - f(a))/f_2(a)$ omits $\{-\lambda: 0 < \lambda < \lambda_1\}$, for all a and z, so the lemma is proved.

Let us denote the uniform closure of $C[z, f]$ in $C(K)$ by A.

LEMMA 2. Suppose that for each $a \in K$, there exists a sequence $\lambda_n \downarrow 0$ such that $(z - a)(f(z) - f(a)) + \lambda_n f_2(a)$ is invertible in A. Then $A = C(K)$.

PROOF. Briefly, let μ be a measure on K, annihilating A. It suffices to show that the Cauchy transform $\hat{\mu}(a) = \int d\mu(\zeta)/\zeta - a$ vanishes at every point $a \in K$ at which the Newtonian potential $\int |\mu(\zeta)|/|\zeta - a|$ is finite. But the hypothesis, together with Lemma 1, yields a sequence $f_n \in A$ such that $f_n \to (z - a)^{-1}$, pointwise on $K \sim \{a\}$, and $|f_n(z)| \leq \text{const} |z - a|^{-1}$. Thus the dominated convergence theorem yields the desired result.

We remark that the hypothesis of Lemma 2 can be weakened to “almost all $a \in K$”.

CONCLUSION OF PROOF OF THEOREM. Suppose X is not polynomially-convex. Then $A \neq C(K)$, so by Lemma 2, there exists $a \in K$ and $\lambda_2 > 0$ such that for every λ with $0 < \lambda < \lambda_2$, the polynomial $(z - a)(w - f(a)) + \lambda f_2(a)$ has a zero somewhere on the polynomially-convex hull of X. Fix λ, with $0 < \lambda < \min\{\lambda_1, \lambda_2\}$. Then the family of algebraic curves

$$(z - a - t)(w - f(a + t)) + \lambda f_2(a + t) = 0 \quad (0 \leq t < \infty)$$

is a curve of algebraic hypersurfaces which meets the hull of X, does not meet X (by Lemma 1), and goes to the hyperplane at infinity (since f maps onto C, and f_2 is bounded). This contradicts Oka’s characterization of polynomial hulls, as given in [3, (1.2), p. 263]. Thus X is polynomially-convex, and we are done.

We remark that minor modifications to the foregoing proof permit us to strengthen the Corollary, as follows:

Let f be an orientation-reversing homeomorphism of \mathbb{C} into \mathbb{C}, which is locally C^1 and noncritical off a closed set E, having area zero and not separating the plane. Then $C[z, f]$ is dense in $C(C)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Also, for any compact set \(X \) in \(\mathbb{C} \) and for \(0 < \alpha < 1 \), suppose \(\text{Lip}(\alpha, X) \) denotes the space of bounded functions \(g \) of \(X \) into \(\mathbb{C} \) such that for some \(K > 0 \), \(|g(z) - g(w)| \leq K|z - w|^{\alpha}\) for all \(z, w \in X \) with \(\text{norm sup}|g| + \text{Least } K \) and suppose \(\text{lip}(\alpha, X) \) denotes those functions \(g \in \text{Lip}(\alpha, X) \) such that, given \(\epsilon > 0 \), there exists \(\delta > 0 \) such that \(|g(z) - g(w)| \leq \epsilon|z - w|^{\alpha}\) whenever \(z \) and \(w \) satisfy \(|z - w| < \delta\). In view of the results given in [1, p. 227], the conclusion of the above remark implies \(C[z, f] \) is dense in \(\text{lip}(\alpha, X) \) for any compact set \(X \) in \(\mathbb{C} \).

Finally, we remark that the Theorem of this paper is sharp in the sense that one critical point destroys it.

References

1. A. G. O'Farrell and K. J. Preskenis, *Approximation by polynomials in two complex variables*, Math. Ann. 246 (1980), 225-232.
2. M. Range and Y.-T. Siu, *C\(^k \) approximation by holomorphic functions and \(\delta \)-closed forms on \(C^k \) submanifolds of a complex manifold*, Math. Ann. 210 (1974), 105-122.
3. G. Stolsenberg, *Polynomially and rationally convex sets*, Acta Math. 109 (1963), 259–289.
4. J. Wermer, *Banach algebras and several complex variables*, Springer, 1976.

Department of Mathematics, Maynooth College, Co. Kildare, Ireland
Department of Mathematics, Framingham State College, Framingham, Massachusetts 01701

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
