On volumes determined by subsets of Euclidean space

Allan Greenleaf, Alex Iosevich and Mihalis Mourgoglou

Abstract. Given $E \subset \mathbb{R}^d$, define the volume set of E, $V(E) = \{ \det(x^1, x^2, \ldots, x^d) : x^j \in E \}$. In \mathbb{R}^3, we prove that $V(E)$ has positive Lebesgue measure if either the Hausdorff dimension of $E \subset \mathbb{R}^3$ is greater than $\frac{13}{5}$, or E is a product set of the form $E = B_1 \times B_2 \times B_3$ with $B_j \subset \mathbb{R}$, $\dim_H(B_j) > \frac{2}{3}$, $j = 1, 2, 3$. We show that the same conclusion holds for $V(E)$ of Salem subsets $E \subset \mathbb{R}^d$ with $\dim_H(E) > d - 1$, and give applications to discrete combinatorial geometry.

1. Introduction

A large class of Erdős type problems in geometric combinatorics ask whether a large set of points in Euclidean space determines a suitable large sets of geometric relations, configurations or objects. For example, the classical Erdős distance problem asks whether N points in \mathbb{R}^d, $d \geq 2$, determines $\gtrsim N^{\frac{d}{2}}$ distinct distances. See, for example [1, 13, 15, 16, 17] and the references there for thorough descriptions of these types of problems and recent results. (Here, and throughout, $X \lesssim Y$, if the controlling parameter is N, means that for every $\epsilon > 0$ there exists $C_\epsilon > 0$ such that $X \leq C_\epsilon N^\epsilon Y$, while $X \lesssim Y$ means $X \leq CY$ with C independent of N.)

Continuous variants of Erdős type geometric problems have also received much attention in recent decades. Perhaps the best known of these is the Falconer distance problem [7], which asks whether the one-dimensional Lebesgue measure of the distance set $\{ |x - y| : x, y \in E \}$ is positive, provided that the Hausdorff dimension, $\dim_H(E)$, of $E \subset \mathbb{R}^d$, $d \geq 2$, is greater than $\frac{d}{2}$. See [19, 4] for the best currently known results on this problem. Also see [5] for the closely related problem of finite point configurations.

In this paper we study the sets of volumes determined by sets $E \subset \mathbb{R}^d$. Given d vectors x^1, x^2, \ldots, x^d in \mathbb{R}^d, $d \geq 2$, let $\det(x^1, \ldots, x^d)$ denote the determinant of the matrix whose jth column is x^j. For $E \subset [0, 1]^d$, define the volume set of E,

$$V(E) := \{ \det(x^1, x^2, \ldots, x^d) \in \mathbb{R} : x^j \in E \}.$$

A problem is to find the optimal threshold $s_V(d)$ such that if the Hausdorff dimension of $E \subset [0, 1]^d$ is greater than $s_V(d)$, then the Lebesgue measure of $V(E)$, denoted by $\mathcal{L}^1(V(E))$, is positive. Letting E be a $(d - 1)$-dimensional hyperplane shows that one must take $s_V(d) \geq d - 1$.

The first two authors were supported by NSF grants DMS-0853892 and DMS-1045404. The third author holds a Sophie Germain International post-doctoral scholarship at Fondation de Mathématiques Jacques Hadamard (FMJH) and would like to thank the faculty and staff of the Université Paris-Sud 11, Orsay for their hospitality.
A result due to Erdo\u{g}an, Hart and the second author [6] shows that \(s_V(2) \leq \frac{3}{2} \). More generally, they prove the following result.

Theorem 1.1. [6] For \(d \geq 2 \), let \(E, F \subseteq [0,1]^d \) and \(Q \) be a non-degenerate bilinear form on \(\mathbb{R}^d \). Suppose that \(\dim_H(E) + \dim_H(F) > d + 1 \). Then \(\mathcal{L}^1(\{Q(x,y) : x \in E, y \in F\}) > 0 \).

Thus, if \(E \subseteq \mathbb{R}^2 \) with \(\dim_H(E) > \frac{3}{2} \), then \(\mathcal{L}^1(\mathcal{V}(E)) > 0 \).

Our four main results are the following.

Theorem 1.2. Let \(E \subseteq [0,1]^3 \), with \(\dim_H(E) > \frac{13}{5} \). Then \(\mathcal{L}^1(\mathcal{V}(E)) > 0 \).

In view of Thm. 1.1 above, Thm. 1.2 may be reduced to studying the Hausdorff dimension of the set of \((d - 1)\)-vectors of \(E \),

\[
\Lambda(E) := \{ *(x^1 \wedge x^2 \wedge \cdots \wedge x^{d-1}) : x^j \in E, 1 \leq j \leq d-1 \},
\]

where \(* \) is the Hodge star operator, \(* : \Lambda^{d-1} \mathbb{R}^d \rightarrow \mathbb{R}^d \). Since

\[
det(x^1, \ldots, x^d) = \pm x^d \cdot *(x^1 \wedge x^2 \wedge \cdots \wedge x^{d-1}),
\]

establishing Thm. 1.2 reduces to proving the following result.

Theorem 1.3. Let \(E \subseteq [0,1]^3 \) and suppose that \(\dim_H(E) > \frac{13}{5} \). Then

\[
\dim_H(E) + \dim_H(\Lambda(E)) > 4.
\]

If one could strengthen (1.3) to say that the left hand side is greater than 3, then Thm. 1.2 would be improved to the \(\dim_H(E) > 2 \). This would be optimal because, as noted above, the conclusion of Thm. 1.2 does not in general hold if \(\dim_H(E) \leq d - 1 \).

Remark 1.4. In the context of three dimensional vector spaces over finite fields, the analogue of Theorem 1.2 is completely resolved, with a sharp exponent using sum-product technology; see [2]. However, sum-product issues are generally believed to be more difficult in the continuous setting.

It is possible to obtain a better exponent than in Thm. 1.3, and thus Thm. 1.2, if the set \(E \) has a special form or satisfies Fourier decay conditions. We first consider the situation where the set under consideration is a Cartesian product of subsets of the real line.

Theorem 1.5. Suppose that \(E = B_1 \times B_2 \times B_3 \), where \(B_j \subseteq [0,1] \) satisfy \(\dim_H(B_j) > \frac{2}{3}, j = 1, 2, 3 \). Then \(\mathcal{L}^1(\mathcal{V}(E)) > 0 \).

Note that if each \(B_j \) is Ahlfors-David regular (see e.g. [14]), the assumption that the Hausdorff dimension of each \(B_j \) is greater than \(\frac{2}{3} \) is equivalent to the assumption that the Hausdorff dimension of \(E = B_1 \times B_2 \times B_3 \) is greater than 2. See, e.g., [8, 14].

Alternatively, one can also consider the situation in higher dimensions, when set \(E \subseteq \mathbb{R}^d \), \(d \geq 2 \), supports a measure that has good Fourier decay properties. Recall that \(E \subseteq [0,1]^d \), \(d \geq 2 \), is Salem if there exists a probability measure \(\mu \) supported on \(E \) such that

\[
|\hat{\mu}(\xi)| \lesssim |\xi|^{-\frac{d}{s}}, \quad |\xi| \rightarrow \infty,
\]

where \(s \) denotes the Hausdorff dimension of \(E \) and

\[
\hat{\mu}(\xi) = \int e^{-2\pi i x \cdot \xi} d\mu(x)
\]

is the Fourier transform of \(\mu \). We prove
Theorem 1.6. Suppose $E \subset \mathbb{R}^d$ is Salem and $s := \dim_H(E) > d - 1$. Then $\mathcal{L}^1(\mathcal{V}(E)) > 0$.

We note that while one cannot do better than the exponent $d-1$, as the example of a hyperplane shows, it is possible that this might not be the case for Salem sets. It is conceivable that the conclusion of Theorem 1.6 holds if the Hausdorff dimension of E is merely greater than one.

2. Proof of Theorem 1.6

Let ψ be a smooth cut-off function on \mathbb{R}^d, $\equiv 1$ in the unit ball and supported in the ball of radius \sqrt{d}. Then

$$(\mu \times \mu \times \cdots \times \mu)\{(x^1, x^2, \ldots, x^d) : t \leq \det(x^1, x^2, \ldots, x^d) \leq t + \epsilon\}$$

$$\approx \int \int \cdots \int \psi \left(\frac{\det(x^1, \ldots, x^d) - t}{\epsilon}\right) d\mu(x^1) \cdots d\mu(x^d)$$

$$= \int \int \cdots \int e^{2\pi i t^{\lambda} \det(x^1, \ldots, x^d)} e^{-2\pi i t^\lambda} d\mu(x^1) \cdots d\mu(x^d) \psi(\lambda)d\lambda. \tag{2.1}$$

Using (1.2), it follows that (2.1) equals

$$= \epsilon \int \cdots \int \hat{\mu}(\lambda(x^1 \wedge \cdots \wedge x^{d-1})) e^{-2\pi it\lambda} d\mu(x^1) \cdots d\mu(x^{d-1}) \hat{\psi}(\epsilon \lambda)d\lambda$$

$$= \epsilon \int \cdots \int_{|x^1 \wedge \cdots \wedge x^{d-1}| \leq \lambda^{-1}} \hat{\mu}(\lambda(x^1 \wedge \cdots \wedge x^{d-1})) e^{-2\pi it\lambda} d\mu(x^1) \cdots d\mu(x^{d-1}) \hat{\psi}(\epsilon \lambda)d\lambda$$

$$+ \epsilon \int \cdots \int_{|x^1 \wedge \cdots \wedge x^{d-1}| > \lambda^{-1}} \hat{\mu}(\lambda(x^1 \wedge \cdots \wedge x^{d-1})) e^{-2\pi it\lambda} d\mu(x^1) \cdots d\mu(x^{d-1}) \hat{\psi}(\epsilon \lambda)d\lambda := I + II.$$

Since $|\hat{\mu}(\xi)| \leq 1$, we have

$$I \lesssim \epsilon \int (\mu \times \cdots \times \mu)\{(x^1, \ldots, x^{d-1}) : |x^1 \wedge \cdots \wedge x^{d-1}| \leq \lambda^{-1}\} |\hat{\psi}(\epsilon \lambda)|d\lambda.$$

Lemma 2.1. With the notation above,

$$(\mu \times \cdots \times \mu)\{(x^1, \ldots, x^{d-1}) : |x^1 \wedge \cdots \wedge x^{d-1}| \leq \lambda^{-1}\} \lesssim \min\{1, \lambda^{d-2-s}\}. \tag{2.2}$$

To prove the lemma, start by noting that one has

$$|x^1 \wedge x^2 \wedge \cdots \wedge x^{d-1}| = |x^1| \cdot |x^2 \wedge \cdots \wedge x^{d-1}| \cdot \sin(\theta),$$

where θ is the angle between x^1 and the $(d-2)$-plane spanned Π by x^2, \ldots, x^{d-1}. Localize to where $|x^2 \wedge \cdots \wedge x^{d-1}| \approx 2^{-j}$. By induction, the measure of this set is $\lesssim 2^{j(d-3-s)}$. Since x^1 is contained in a $2^j \lambda^{-1}$-tubular nhood of Π, it follows that

$$(\mu \times \cdots \times \mu)\{(x^1, \ldots, x^{d-1}) : |x^1 \wedge \cdots \wedge x^{d-1}| \leq \lambda^{-1}\} \lesssim (2^j \lambda^{-1})^{-(d-2)} (2^j \lambda^{-1})^s (2^{-j})^{s-(d-3)} = \lambda^{d-2-s} 2^{-j}.$$
It follows that the left hand side of (2.2) is bounded by a constant multiple of
\[\sum_j \lambda^{d-2-s} 2^{-j} \lesssim \lambda^{d-2-s}, \]
completing the proof of Lemma 2.1.

It follows from Lemma 2.1 that
\[I \lesssim \int \min\{1, \lambda^{d-2-s}\} |\hat{\psi}(\epsilon \lambda)| \, d\lambda, \]
which is \(\lesssim 1 \) if \(s > d - 1 \). By the Salem property (1.4),
\[II \lesssim \epsilon \int \ldots \int \lambda^{-\frac{s}{2}} |x^1 \wedge \ldots \wedge x^{d-1}|^{-\frac{s}{2}} \, d\mu(x^1) \, d\mu(x^2) \ldots \, d\mu(x^{d-1}) |\hat{\psi}(\epsilon \lambda)| \, d\lambda \]
\[\approx \sum_{j \leq \log_2(\lambda)} 2^{j} \epsilon \int \lambda^{-\frac{s}{2}} \mu \times \ldots \times \mu \{(x^1, \ldots, x^{d-1}) : |x^1 \wedge \ldots \wedge x^{d-1}| \approx 2^{-j}\} |\hat{\psi}(\epsilon \lambda)| \, d\lambda. \]
Using Lemma 2.1, one sees that this is this is
\[\approx \int \sum_{j \leq \log_2(\lambda)} 2^{j(d-2-s)} 2^{\frac{s}{2}} \lambda^{-\frac{s}{2}} |\hat{\psi}(\epsilon \lambda)| \, d\lambda \lesssim \int_{1}^{\infty} \lambda^{d-2-s} |\hat{\psi}(\epsilon \lambda)| \, d\lambda, \]
which is bounded independently of \(\epsilon \) if \(s > d - 1 \), as desired. This finishes the proof of Thm. 1.6.

3. Proof of Theorem 1.5

We shall need the following consequence of Theorem 1.0.3 in [6].

Theorem 3.1. [6] Let \(A_1, A_2, A_3, A_4 \subset [0, 1] \), each with \(\dim_H(A_j) > \frac{2}{3} \). Then
\[(3.1) \]
\[L^1(\{a_1a_2 + a_3a_4 : a_j \in A_j\}) > 0. \]

To apply Thm. 3.1, consider
\[(3.2) \]
\[\det(x, y, z) = y_1(x_3z_2 - x_2z_3) + y_2(x_1z_3 - x_3z_1) + y_3(-x_1z_2 - x_2z_1). \]

Fix \(x_1, x_2, x_3, y_1, y_3 \in A \), all \(\neq 0 \), and let
\[w_1 = x_3z_2 - x_2z_3, \quad w_2 = x_1z_3 - x_3z_1. \]
Observe that
\[-x_1z_2 - x_2z_1 = -\frac{x_1}{x_3} w_1 - \frac{x_2}{x_3} w_2. \]

It follows that the expression in (3.2) equals
\[y_1w_1 + y_2w_2 - \frac{x_1}{x_3} w_1 - \frac{x_2}{x_3} w_2 = w_1 \left(y_1 - \frac{x_1}{x_3} \right) + w_2 \left(y_2 - \frac{x_2}{x_3} \right). \]
Let
\[A_1 = x_3B_2 - x_2B_3, \quad A_2 = x_1B_3 - x_3B_1, \quad A_3 = B_1 - \frac{x_1}{x_3}, \quad A_4 = B_2 - \frac{x_2}{x_3}. \]
From the assumption that $\dim_H(A) > \frac{2}{3}$, it follows that each $\dim_H(A_j)$ is also $> \frac{2}{3}$. By the above calculation, one has
\[
\{a_1a_2 + a_3a_4 : a_j \in A_j\} \subset V(B_1 \times B_2 \times B_3),
\]
and so the conclusion of Theorem 1.5 follows by Theorem 3.1.

4. Proof of Theorem 1.3

As noted in the introduction, in view of Thm. 1.1, it suffices to prove Thm. 1.3. For clarity and possible future use, we begin the analysis in \mathbb{R}^d, specializing to $d = 3$ later on. To this end, define a natural measure on the set of wedge products by the relation
\[
\int f(z) \, d\Lambda(z) = \int \ldots \int f(x^1 \wedge \ldots \wedge x^{d-1}) \, d\mu(x^1) \ldots d\mu(x^{d-1}).
\]

It follows that
\[
\tilde{\Lambda}(\xi) = \int \ldots \int e^{-2\pi i \xi \cdot (x^1 \wedge \ldots \wedge x^{d-1})} \, d\mu(x^1) \ldots d\mu(x^{d-1})
\]
and thus
\[
\int |\tilde{\Lambda}(\xi)|^2 \psi\left(\frac{\xi}{R}\right) \, d\xi
\]

(4.1) \[= R^d \int \int \tilde{\psi}(R(x^1 \wedge \ldots \wedge x^{d-1} - y^1 \wedge \ldots \wedge y^{d-1})) \, d\mu(x^1) \ldots d\mu(x^{d-1})d\mu(y^1) \ldots d\mu(y^{d-1}).\]

Since $\tilde{\psi}$ is rapidly decaying, it suffices to estimate
\[
(\mu \times \cdots \times \mu)\{(x^1, \ldots, x^{d-1}, y^1, \ldots, y^{d-1}) : |x^1 \wedge \ldots \wedge x^{d-1} - y^1 \wedge \ldots \wedge y^{d-1}| \leq R^{-1}\}.
\]

Let $B_r^d(x)$ be the d-dimensional ball of radius r centered at x; if $x = 0$, the center is suppressed. A_r^d will denote a d-dimensional annulus of inner/outer radii r_2 and r, not necessarily centered at the origin. For both, d is the ambient dimension if not included in the notation; lower dimensional balls and annuli in \mathbb{R}^d are denoted using the superscript. Denote $(d - 1)$-tuples of vectors in \mathbb{R}^d by $\vec{x} = (x^1, \ldots, x^{d-1})$, and then, as above, $\hat{\vec{x}} = *(x^1 \wedge \ldots \wedge x^{d-1})$, viewed as a vector.

Let μ be a Frostman measure on the s-dimensional $E \subset A_r^d$ [14]. To control (4.1), we want to estimate $R^d \cdot |\mu|^{2d-2}(F^R)$, where
\[
F^R := \{(\vec{x}, \vec{y}) : |\vec{x} - \vec{y}| < 1/R\}.
\]

Start by decomposing
\[
B_r^d = B_1(0) \cup \bigcup_{i=0}^{\log_2 R} (R/2^i)^d \cup \bigcup_{j=0} \bigcup_{i=0} B_1(z_j^{(i)}),
\]
where \(\{ z_j^{(i)} \}_j \) is a \((1/R)\)-net of points in the dyadic shell \(A_{2^{-1-i},2^{-i}} \). Then we can write
\[
F^R = \left\{ (\bar{x}, \bar{y}) : \bar{x}, \bar{y} \in B_{1/R} \right\} \cup \bigcup_j \left\{ (\bar{x}, \bar{y}) : \bar{x}, \bar{y} \in B_{1/R}(z_j^{(i)}) \right\}
\]
\[
\subset (G_0 \times G_0) \cup \bigcup_j G_j^{(i)} \times G_j^{(i)},
\]
where
\[
G_0 = \{ \bar{x} : \bar{x} \in B_{1/R} \}, \quad G_j^{(i)} = \{ \bar{x} : \bar{x} \in B_{1/R}(z_j^{(i)}) \};
\]
in terms of measure, the \(G_j^{(i)} \) essentially only depend on \(i \) and we refer to them generically as \(G^{(i)} \).

With all this, one has
\[
R^d \mu^{2d-2}(F^R) \lesssim \int \left(\mu^{d-1}(G_0)^2 + \sum_{i=0}^{\log_2 R} \left(\frac{R}{2^i} \right)^d \cdot \left(\mu^{d-1}(G^{(i)}) \right)^2 \right),
\]
where \(\mu^k := \mu \times \cdots \times \mu \), and we want to estimate the terms on the right hand side.

We now restrict ourselves to three dimensions \((d = 3)\).

To estimate the \(G_0 \) term, note that \(x^1 \in E \) is arbitrary, contributing \(\mu \lesssim C \). For \(x^1 \) fixed, \(x^2 \in \{ (1/R) \times (1/R) \times 1 \} \) tube, which we cover with \(R \) \((1/R)\)-balls, giving a \(\mu \) contribution \(\lesssim R \cdot R^{-s} = R^{1-s} \). Thus, \(\mu^2(G_0) \lesssim R^{1-s} \) and hence \(\mu^3(G_0 \times G_0) \lesssim R^{2-2s} \).

To estimate the \(G^{(i)} \) term, start by noting that, with \(z_0 := z_j^{(i)} \) fixed, \(x^1 \) must be in a thin \(\text{violet} \), \(\text{red} \), \(\text{green} \) and \(\text{blue} \) of thickness \(2^i/R \) in \(\mathbb{R}^3 \) of an annulus \(A_{2^i}^j \subset z_j^{(i)} \); call such a set a washer. Covering this with \((R/2^i)^2\) balls of radius \(2^i/R \) gives a \(\mu \) of \(\lesssim (R/2^i)^2 \). For each such \(x^1 \) fixed, \(x^2 \) must satisfy two constraints: (i) It has to be in the same washer as \(x^1 \); and (2) It has to make an angle of \(\sim 2^{-i} \) with \(x^1 \) and vary in the radial direction by \(\lesssim 2^i/R \). There are thus two cases,
\[
(a) \ 1 \leq 2^i \leq R^\frac{1}{4}; \quad \text{and} \quad (b) \ R^\frac{1}{4} \leq 2^i \leq R.
\]

In case (a), \(2^i/R \leq 2^{-i} \), so \(x^2 \) is confined to a \(2^{-i} \times (2^i/R) \times (2^i/R) \)-tube, which is covered by \(R/2^i \) \((2^i/R)\)-balls, giving
\[
\mu \lesssim (R/2^i)^2 \cdot (2^i/R) = 2^{(s-2)i} R^{-s}.
\]
Multiplying by the \(\mu \) measure in \(x^1 \) gives
\[
\mu^2(G^{(i)}) \lesssim 2^{2(s-4)i} R^{3-2s};
\]
squaring this and multiplying by the prefactor \((R/2^i)^d = R^d2^{-3i} \) gives
\[
2^{(4s-11)i} R^{3-4s}, \quad 1 \leq 2^i \leq R^\frac{1}{4},
\]
which, since \(4s - 11 < 0 \) for the \(s \) of interest, takes its largest value for \(2^i = 1 \), corresponding to generic configurations and yielding the estimate \(R^{3-4s} \) (before inclusion of the pre-prefactor of \(R^d = R^3 \) in (4.2)).

In case (b), \(2^i/R \geq 2^{-i} \) and so \(x^2 \) is confined to a \(2^{-i} \times 2^{-i} \times (2^i/R) \)-tube, which is covered by \(2^{2i}/R \) \((2^{i})\)-balls, giving
\[
\mu \lesssim 2^{2i} \cdot 2^{-si} = 2^{(2-s)i} R^{-1}.
\]
Multiplying by the \(\mu \) measure in \(x^1 \), squaring and multiplying by the \(R^d2^{-3i} \) gives \(2^{-3i} R^{5-2s} \) in the range \(R^\frac{1}{4} \leq 2^i \leq R \). The largest value is for \(2^i = R^\frac{1}{4} \), namely \(R^\frac{1}{4} \), but this is smaller than the \(R^{3-4s} \), as is the \(G_0 \) term.
Thus, we estimate (4.2) by $\mathcal{R}_1 \cdot \mathcal{R}_9 = \mathcal{R}_{12} \cdot \mathcal{R}_9$. It follows that the expression in (4.1) is $\lesssim \mathcal{R}_3^{-(4s-9)}$, which implies that the Hausdorff dimension of the set $\Lambda(E)$ is greater than or equal to $4s - 9$. To make use of Thm. 1.1, we need $s + (4s - 9) > 4$, which holds if $s > \frac{13}{5}$. This completes the proof of Thm. 1.3 and thus of Thm. 1.2.

5. Applications to discrete geometry

Definition 5.1. [12] Let P be a set of n points contained in $[0,1]^2$. Define the measure

$$d\mu_s^p(x) = n^{-1} \cdot n^{\frac{2}{s}} \cdot \sum_{p \in P} \chi_{B_{n^{-\frac{1}{s}}}}(x) dx,$$

where $\chi_{B_{n^{-\frac{1}{s}}}}(x)$ is the characteristic function of the ball of radius $n^{-\frac{1}{s}}$ centered at p. One says that P is s-adaptable if

$$I_s(\mu_P) = \int \int |x - y|^{-s} d\mu_s^p(x) d\mu_s^p(y) < \infty.$$

This is equivalent to the statement

$$n^{-2} \sum_{p \neq p' \in P} |p - p'|^{-s} \lesssim 1.$$

To understand this condition in clearer geometric terms, suppose that P comes from a 1-separated set A, scaled down by its diameter. Then the condition (5.2) takes the form

$$n^{-2} \sum_{a \neq a' \in A} |a - a'|^{-s} \lesssim (\text{diameter}(A))^{-s}.$$

Thus, P is s-adaptable if it is a scaled 1-separated set where the expected value of the distance between two points raised to the power $-s$ is comparable to the value of the diameter raised to the power of $-s$. This basically means that clustering within P is not allowed to be too severe.

In more technical terms, s-adaptability means that a discrete point set P can be thickened into a set which is uniformly s-dimensional in the sense that its energy integral of order s is finite. Unfortunately, it is shown in [12] that there exist finite point sets which are not s-adaptable for certain ranges of the parameter s. The point is that the notion of Hausdorff dimension is much more subtle than the simple “size” estimate. However, many natural classes of sets are s-adaptable. For example, homogeneous sets studied by Solymosi and Vu [18] and others are s-adaptable for all $0 < s < d$. See also [10] where s-adaptability of homogeneous sets is used to extract discrete incidence theorems from Fourier-type bounds.

The following argument is a variant of the conversion mechanism developed in [11, 9]. Suppose that one knew that $\mathcal{L}^1(\mathcal{V}(E)) > 0$ whenever $\text{dim}_H(E) > s_V$. Let P be an s-adaptable set with $s \in (s_0, d]$, and E denote the support of $d\mu_s^p$ above. It follows that

$$1 \lesssim \mathcal{L}^1(\mathcal{V}(E)) \lesssim n^{-\frac{1}{s}} \cdot \#(P).$$
and one can conclude that
\[\# \mathcal{V}(E) \gtrsim n^{1/2} \gtrsim n^{\frac{n}{n+1}}, \]
which yields the following theorem.

Theorem 5.2. Let \(P \) be a \(\frac{1}{3} \)-adaptable subset of \(\mathbb{R}^d \) of size \(n \). Let \(\mathcal{V}_\delta(P) \) denote the number of distinct \(\delta \)-separated volumes determined by \(P \). Then
\[\# \mathcal{V}_n^{-\frac{1}{5}}(P) \gtrsim n^{\frac{n}{5}}. \]

It is important to note that the significance of this result lies in the requirement that the volumes are \(n^{-\frac{1}{5}} \)-separated. In the absence of this feature, the exponent is inferior to the sharp result obtained by Dumitrescu and Toth \([3]\), who proved that for any points set \(P \subset \mathbb{R}^3 \) of size \(n \),
\[\# \mathcal{V}(P) \gtrsim n. \]

Even if one were to improve Thm. 1.2 to the conjecturally sharp \(\text{dim}_H(E) > 2 \), the resulting modification to Thm. 5.2 would be that
\[\# \mathcal{V}_n^{-1/2}(P) \gtrsim n^{1/2}, \]
still weaker in terms of the exponent than \([3]\). The analytic method used here yields a conclusion about \(n^{-\frac{1}{5}} \)-separated volumes; we do not know whether it is possible to obtain the sharp exponent using our methods.

References

[1] P. Brass, W. Moser and J Pach, Research Problems in Discrete Geometry, Springer (2000).
[2] D. Covert, D. Hart, A. Iosevich, D. Koh and M. Rudnev, Generalized incidence theorems, homogeneous forms and sum-product estimates in finite fields, European J. of Combinatorics 31, 2010, 306-319.
[3] A. Dumitrescu and C. Toth, On the number of tetrahedra with minimum, unit, and distinct volumes in three-space, (preprint), (2011).
[4] B. Erdoğan A bilinear Fourier extension theorem and applications to the distance set problem IMRN (2006).
[5] B. Erdoğan, A. Iosevich and K. Taylor Finite point configurations, uniform distribution, intersections of fractals, and number theoretic consequences, (in preparation), (2011).
[6] B. Erdoğan, D. Hart and A. Iosevich, Multi-parameter projection theorems with applications to sums-products and finite point configurations in the Euclidean setting, to appear in the Birkhauser volume in honor of Kostya Oskolkov’s 65th birthday, (2011).
[7] K. J. Falconer On the Hausdorff dimensions of distance sets, Mathematika 32 (1986), 206–212.
[8] K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, 85 Cambridge University Press, Cambridge, (1986).
[9] S. Hofmann and A. Iosevich, A Circular averages and Falconer/Erdős distance conjecture in the plane for random metrics, Proc. Amer. Math. Soc. 133 (2005), no. 1, 133-143.
[10] A. Iosevich, H. Jorati and I. Laba, Geometric incidence theorems via Fourier analysis, Trans. Amer. Math. Soc. 361 (2009), no. 12, 6595-6611.
[11] A. Iosevich, I. Laba, K-distance sets, Falconer conjecture, and discrete analogs, Integers 5 (2005), no. 2.
[12] A. Iosevich, M. Rudnev and I. Uriarte-Tuero, Theory of dimension for large discrete sets and applications, (arXiv:0707.1322).
[13] J. Matousek, Lectures on Discrete Geometry, Graduate Texts in Mathematics, Springer 202 (2002).
[14] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge University Press, volume 44, (1995).
[15] J. Pach Directions in combinatorial geometry, Jahresber. Deutsch. Math.-Verein. 107 (2005), no. 4, 215-225.
[16] J. Pach and M. Sharir Geometric incidences, Towards a theory of geometric graphs, 185-223, Contemp. Math., 342, Amer. Math. Soc., Providence, RI, (2004).
[17] L. Szekely, A. Crossing numbers and hard Erdős problems in discrete geometry Combin. Probab. Comput. 6 (1997), 353-358.
[18] J. Solymosi and V. Vu, Distinct distances in high dimensional homogeneous sets, Towards a theory of geometric graphs, 259-268, Contemp. Math., 342, Amer. Math. Soc., Providence, RI, (2004).
[19] T. Wolff, Decay of circular means of Fourier transforms of measures, International Mathematics Research Notices 10 (1999) 547-567.
