Giant sellar metastasis from renal cell carcinoma
A case report and literature review
Zhiwei Shen, PhD, Chengxian Yang, MD, Xinjie Bao, MD∗, Renzhi Wang, MD

Abstract
Rationale: Sellar metastasis is a rare and complex disease whose clinical features are strongly associated with the primary malignancy. Here, we present a rare case of giant sellar metastasis spread from renal cell carcinoma (RCC).
Patient concerns: A 30-year-old Chinese woman was admitted to our hospital, reporting headache, nasal congestion, nausea, vomiting, and a sharp decline in her right eye vision.
Diagnoses: Brain magnetic resonance imaging (MRI) revealed an invasive sellar mass with cavernous sinus and nasal cavity extension. Additionally, the patient had a medical history of right radical nephrectomy for clear-cell RCC.
Interventions: The patient underwent a successful subtotal resection of the tumor. Final pathological diagnosis confirmed sellar metastasis from RCC. After surgery, the patient was referred to our medical oncology department and received further systemic therapy.
Outcomes: No light perception remained in her right eye even after prompt surgical decompression. Follow-up MRI showed subtotal resection of the giant sellar metastasis.
Lesson: Sellar metastasis, although rare, should be particularly considered for elderly patients with deteriorating visual function and medical histories of cancer.
Abbreviations: ACTH = adrenocorticotropic hormone, ccRCC = clear cell renal cell carcinoma, MRI = magnetic resonance imaging, PRL = prolactin, RCC = renal cell carcinoma, SM = sellar metastasis.
Keywords: pan-hypopituitarism, renal cell carcinoma, sellar metastasis, visional function

1. Introduction
Sellar metastasis (SM) is a rare disease caused by the migration of distant malignant tumors to the sellar region. Breast and lung cancer are the 2 most common sources of metastases to the sellar region.[1] Renal cell carcinoma (RCC) is a relatively rare source of distant metastases to this region. Clinical manifestations of SM largely depend on tumor size and location; reported symptoms include visual field defects, headache, pituitary gland dysfunction, diabetes insipidus, and ophthalmoplegia.[2] Occasionally, these symptoms are the first manifestation of occult malignancy. Clinically, SM should be considered in differential diagnoses of patients with rapid tumor growth and histories of malignancy. Although histopathological confirmation is critical to a definitive diagnosis of SM, many published cases of SM were clinically presumed rather than histologically confirmed.[1] Here, we present a case of giant SM from RCC, which was successfully resected and confirmed by histopathology. In addition, we provide a literature review with basic statistics regarding this rare neurosurgical topic.

2. Case report
In June 2017, a 30-year-old Chinese woman presented to our clinic reporting headache, nasal congestion, nausea, vomiting, and a sharp decline in her right eye vision. The intermittent headache, located mainly in bilateral frontotemporal regions, first occurred 2 months earlier and decreased after taking pain relievers. One month earlier, the headache worsened and was associated with nasal congestion, hyposmia, nausea, and vomiting. She had also suffered a sharp decline in her right eye vision over 6 days. She denied polyuria, diplopia, dysphonia, and other symptoms. When admitted to our hospital for further evaluation, she had lost most of the sight in her right eye. Eye examination revealed her pupils were equally round with direct light re
diminished on the right eye

Editor: N/A.
The authors have no conflicts of interest to disclose.
Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
∗Correspondence: Xinjie Bao, Department of Neurosurgery, Pituitary Center, Peking Union Medical College Hospital, 1 Shuaifuyuan, Wangfujing, Beijing 100730, China (e-mail: baoxinjie1@pumch.cn).
Copyright © 2018 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-N2), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
Medicine (2018) 97(47):e13376
Received: 22 August 2018 / Accepted: 31 October 2018
http://dx.doi.org/10.1097/MD.0000000000013376
As our patient had a history of ccRCC, and a rapid onset and progressive symptoms of headache and decreased visual function, a metastasis from RCC was presumably diagnosed. Endoscopic endonasal transsphenoidal surgery was immediately performed to restore the patient’s partial right vision. Follow-up MRI showed subtotal resection of the giant sellar metastasis (Fig. 1C, D). Unfortunately, no light perception remained in her right eye even after prompt surgical decompression. Immunohistochemistry revealed that tumor cells were positive for the markers PAX-8, CA9, RCC, and vimentin, and negative for CD10 and epithelial membrane antigen, consistent with the diagnosis of a ccRCC metastasis (Fig. 2). Also, the Ki-67 index was 15%, indicating highly active tumor cells. After surgery, the patient was referred to our medical oncology department and received further systemic therapy. Through follow-up via telephone in July 2018, the patient was still alive receiving chemotherapy and showed no relief of her visual disability.

3. Discussion

Metastases to the sellar area are rare, accounting for only 0.87% of all reported intracranial metastases.\(^\text{[3]}\) Reportedly, the most common sources are breast cancer in women (29%), and lung cancer in men (30%).\(^\text{[1]}\) Renal cell carcinoma is the ninth most common cancer worldwide,\(^\text{[4]}\) and is a relatively rarer source of distant metastases to sellar region. Table 1 summarizes 21 full-text, English-language case reports of SMs from RCC (including this case report) that could be searched from 1992 to 2018 in PubMed,\(^\text{[5–19]}\) whereas Table 2 shows basic statistical analyses of some characteristic parameters in these studies. We found the median patient age is 56.6 years old which is similar to the finding...
Figure 2. A, Tumor epithelial cells with clear cytoplasm and small granular nuclear chromatin were demonstrated by light microscopy (H&E, ×100). B, Tumor cells demonstrate diffuse reactivity for the tumor marker, PAX-8 (×100). C, Renal cell carcinoma (RCC, ×100). Additional immunohistochemical staining revealed a predominance of vimentin, and CA9 with no evidence of CD10 and epithelial membrane antigen, consistent with a diagnosis of clear-cell RCC.

Table 1
Literature review of 21 reported cases of sellar metastasis from renal cell carcinoma.

Authors and year	Age and sex	Manifestations and pituitary function	MRI and size	Pathology	Medical history and other metastases	Management	Interval from RCC to SM	Survival status
Present study	30, F	Headache, visual decline, normal	4.8 ± 3.6 cm,ellar mass with bone destruction	ccRCC	ccRCC, lung	Transphenoidal resection + radiotherapy + chemotherapy	3 m	Still alive in July 2018
Y. Zhao et al, 2018	40, M	None, primary hypothyroidism	unknown	ccRCC	ccRCC, unknown	Transphenoidal resection + radiotherapy	Unknown	Death
Di Nuzzo V et al, 2018	59, M	Pituicyte node	Absence	ccRCC, chest lymph, pancreas, cerebellum	Gamma knife surgery + sorafenib	14 y	Still alive before case report	
Wendel C et al, 2017	61, M	Normal	1.8 ± 3.4 cm,ellar mass, brain, nasal septum	ccRCC	ccRCC, lung	Surgical resection + radiotherapy + sorafenib	2 y	Still alive before case report
Paydarsh M et al, 2016	50, M	Pituicyte node	Absence	ccRCC	ccRCC, lung	Antihypertensive therapy	SM was first found	Still alive before case report
Ramek J et al, 2016	54, F	Eyelid ptosis, worsening vision, headache, pan-hypothalamic area	2.5 cm, bone destruction	ccRCC	ccRCC, pancreas, lungs	Surgical resection + radiotherapy + chemotherapy	6 y	Death 8 m after surgery
Heung JM et al, 2013	40, F	Headache, vision worsened, hyperprolactinemia, hypocortisolism	2.5 cmellar mass, suprasellar extension	ccRCC	RICC, chest lymph, lung, adrenal gland, pituitary gland	Chemotherapy + surgical decompression	3 y	Still alive before case report
Yang L et al, 2013	51, M	Blurred vision, hemianopia, ptosis of eyelid, diplopia, hyperprolactinemia, ACTH deficiency	Diffuse enlargement of pituitary gland	ccRCC	ccRCC, adrenal gland, bone, retroperitoneal lymph node, lung	Srsatib + surgery + radiot technology	<7 m	Death 9 m after surgery
Ginsberg R et al, 2013	45, M	Visual deterioration, decreased libido, pan-hypothalamic area with increased prolactin level	3.6 ± 2.4 cmellar mass, eroding the sellar floor	ccRCC	No significant medical history	Surgical resection + stereotactic radiography	SM was first found	Not described
Kramer PK et al, 2010	74, M	Visual deterioration, abducent nerve palsy, pan-hypothalamic area with increased prolactin level	1.2 ± 0.9 cmellar mass	RICC	RICC, lung	Chemotherapy + radiotherapy + tumor resection	5 y	Still alive before case report
Gopin T et al, 2007	67, M	Diencephalitis, diabetis, blurry vision, headache, impotence, diabetes insipidus, pituitary area with increased prolactin level	2.0 cmellar mass with erosion of sellar floor	RICC	RICC, panhypothalamic syndrome, lung	Surgical resection + radiation therapy	27 y	Still alive before case report
Gopin T et al, 2007	51, M	Headache, visual deficits, ACTH and gonadotropin deficiency	2.3 cmellar mass with optic chiasm deficiency	ccRCC	ccRCC, lung, scalp	Surgical resection + whole brain radiation treatment	About 10 y	Still alive before case report
Gopin T et al, 2007	53, M	Headache, lethargy, decreased libido, increased thirst, diabetes insipidus, third nerve palsy, diabetes insipidus, pituitary area with increased prolactin level	Invasive sellar and parasellar mass	ccRCC	No significant medical history	Surgical resection + radiation therapy	SM was first found	Death 12 m after surgery
Gopin T et al, 2007	67, F	Fatigue, ACTH and gonadotropin deficiency	2.5 cmellar mass with optic chiasm deficiency	None	RICC, pancreas	Stereotactic radiotherapy + chemotherapy + sorafenib	7 y	Still alive before case report
Gopin T et al, 2007	61, F	Arenal mental status, panhypothalamic area with increased prolactin level	1.9 cmellar mass with optic chiasm deficiency	None	ccRCC, lung	Declared treatment of stereotactic radiotherapy + tyrosine kinase inhibitor	3 m	Still alive before case report
Palkod J et al, 2005	70, M	Headache, bilateral hemianopia, diabetes insipidus, pan-hypothalamic area with increased prolactin level	Sellar mass eroding the sellar base	RICC	RICC	Surgical resection + stereotactic radiosurgery	6 y	Still alive before case report
Basaria S et al, 2004	77, F	Blurred vision, reduced appetite, fatigue, diplopia, ptosis, hemianopia, diabetes insipidus, pituitary area with increased prolactin level	2.0 ± 0.2 cmellar mass compressing the optic chiasm	RICC	RICC, lung, spleen	Surgical resection + stereotactic radiosurgery	2 m	Death 12 m after surgery
Yokoyama T et al, 2004	63, M	Visual field deficit, headache, hemianopia, diabetes insipidus, pan-hypothalamic area with increased prolactin level	Sellar mass with erosion of the bony floor and dorsum sella turica	None	RICC, lung, bone	Stereotactic radiotherapy	8 y	Still alive before case report
Weber J et al, 2003	62, M	Headache, visual loss, bilateral hemianopia, normal pituitary area, pineal tumor	Large sellar mass	ccRCC	ccRCC, adenocortical adenoma	Surgical resection	4 y	Death from pneumonia
Beckett DJ et al, 1998	56, M	Lethargy, vomiting, loss of libido, pan-hypothalamic area	Large sellar mass	RICC	RICC, no significant medical history	Surgical resection + radiotherapy	SM was first found	Still alive before case report
Kuruppu H et al, 1992	57, M	Lethargy, vomiting, loss of libido, pan-hypothalamic area	Large sellar mass	Metastatic ccRCC	Metastatic ccRCC, no significant medical history	Surgical resection + radiotherapy	SM was first found	Still alive before case report

ACTH=adrenocorticotropic hormone, ccRCC=clear cell renal cell carcinoma, F=female, M=male, m=month, PRL=prolactin, RCC=renal cell carcinoma, SM=sellar metastasis, y=year.
of Al-Aridi et al that median age of SM patients is 56 years.\cite{11} However, whereas the previous study found SM to be equally distributed by sex,\cite{11} we were surprised to find significantly higher incidence of SM from RCC in men (71.4%) than in women (28.6%; Table 2). We attribute this difference mainly to the higher incidence (62.2%) of RCC in men.\cite{11} Regarding pathological subtype, we found ccRCC makes up almost all the reported literatures of SM from RCC (Table 1), which may be because ccRCC is the most common histological subtype.\cite{20} In addition, we found about 60% of patients with SM from RCC develop metastasis simultaneously in the lung, followed by pancreas (20%), bone (20%), and adrenal gland (15%; Table 2).

SM is usually asymptomatic; only 20% of patients show symptoms.\cite{21} Although the median interval from RCC to SM is 6.2 years (Table 2), in some cases SM was detected earlier than the primary RCC (Table 1).\cite{12,14} Headache, pituitary dysfunction, visual deterioration, diabetes insipidus, and ophthalmoplegia are common presentations of metastases in the sellar region. Whereas hypopituitarism, visual defects, and headache are not helpful in differentiating SM from pituitary adenoma, diabetes insipidus, and cranial neuropathies are reported to be strong indicators of SM.\cite{22} Nevertheless, we found visual disturbance (66.7%) and pan-hypopituitarism (60%) were the 2 most common symptoms in patients with RCC metastasis to the sellar region (Table 2); indeed, our present case presented a giant sellar mass extending along the cavernous sinus and optic nerve, but without diabetes insipidus or cranial neuropathy. The patient’s MRI image showed an intact pituitary gland, located above the tumor. To our knowledge, this is the first report to describe a huge sellar metastasis (diameter > 4 cm) that did not invade the pituitary gland or cranial nerves related to eye movements.

Acknowledgment

The authors express many thanks to the patient for generously authorizing us to share his rare case.

Author contributions

ZS and CY wrote the first draft of the manuscript. XB revised the manuscript substantially and approved its final version. RW participated in patient care.

Resources:

Xinjie Bao.

Supervision:

Renzhi Wang.

Writing – original draft:

Zhiwei Shen.

Writing – review & editing:

Chengxian Yang.

References

\cite{11} Al-Aridi R, El Sibai K, Fu P, et al. Clinical and biochemical characteristic features of metastatic cancer to the sella turcica: an analytical review. Pituitary 2014;17:575–87.

\cite{2} Altay T, Krish M, Coulworth WT. Sellar and parasellar metastatic tumors. Int J Surg Oncol 2012;2012:647256.

\cite{3} He W, Chen F, Dalm B, et al. Metastatic involvement of the pituitary gland: a systematic review with pooled individual patient data analysis. Pituitary 2015;18:159–68.

\cite{4} Jonasch E, Gao J, Rathmell WK. Renal cell carcinoma. BMJ 2014;349:g4797.

\cite{5} Zhao Y, Lian W, Xing B, et al. Diagnosis, therapy and therapeutic effects in cases of pituitary metastasis. World Neurosurg 2018;117:122–8.

\cite{6} Di Nunno V, Mollica V, Corcioni B, et al. Clinical management of a pituitary gland metastasis from clear cell renal cell carcinoma. Anticancer Drugs 2018;29:710–5.
[7] Wendel C, Campitiello M, Plastino F, et al. Pituitary metastasis from renal cell carcinoma: description of a case report. Am J Case Rep 2017;18:7–11.
[8] Payandeh M, Sadeghi M, Sadeghi E. The complete response to targeted drugs without surgery or radiotherapy: a case of pituitary metastasis from renal cell carcinoma. Acta Med Iran 2016;54:617–9.
[9] Ravnik J, Smigoc T, Bunc G, et al. Hypophyseal metastases: a report of three cases and literature review. Neurol Neurochir Pol 2016;50:511–6.
[10] Hwang JM, Kim YH, Kim TM, et al. Differential diagnosis and management of a pituitary mass with renal cell carcinoma. J Korean Neurol Surg Soc 2013;54:132–5.
[11] Yang L, Yu SY, Hu GY. Pituitary metastasis from a renal cell carcinoma progressed after sorafenib treatment. Chin J Cancer 2013;32:353–6.
[12] Grossman R, Maimon S, Levine R, et al. Multimodal treatment of hemorrhagic pituitary metastasis as first manifestation of renal cell carcinoma. World Neurosurg 2013;79:798.E1–798.E5.
[13] Kramer CK, Ferreira N, Silveiro SP, et al. Pituitary gland metastasis from renal cell carcinoma presented as a non-functioning macroadenoma. Arq Bras Endocrinol Metabol 2010;54:498–501.
[14] Gopan T, Toms XA, Prayson RA, et al. Symptomatic pituitary metastases from renal cell carcinoma. Pituity 2007;10:251–9.
[15] Pallud J, Nataf F, Roujeau T, et al. Intraventricular haemorrhage from a renal cell carcinoma pituitary metastasis. Acta Neurochir (Wien) 2005;147:1003–4.
[16] Basaria S, Westra WH, Brem H, et al. Metastatic renal cell carcinoma to the pituitary presenting with hyperprolactinemia. J Endocrinol Invest 2004;27:471–4.
[17] Weber J, Gasel AM, Hoch A, et al. Concomitant renal cell carcinoma with pituitary adenoma. Acta Neurochir (Wien) 2003;145:227–31.
[18] Beckett DJ, Gama R, Wright J, et al. Renal carcinoma presenting with adrenocortical insufficiency due to a pituitary metastasis. Ann Clin Biochem 1998;35(pt 4):542–4.
[19] Koshiyama H, Ohgaki K, Hida S, et al. Metastatic renal cell carcinoma to the pituitary gland presenting with hypopituitarism. J Endocrinol Invest 1992;15:677–81.
[20] Mahasen SZ, Aloudah N, Al-Surimi K, et al. Epidemiology profile of renal cell carcinoma: a 10-year patients’ experience at King Abdulaziz Medical City, National Guard Health Affairs, Saudi Arabia. Urol Ann 2018;10:59–64.
[21] Gilard V, Alexandre C, Prous F, et al. Pituitary metastasis: is there still a place for neurosurgical treatment? J Neurooncol 2016;126:219–24.
[22] Goulart CR, Upadhyay S, Ditzel Filho LFS, et al. Newly diagnosed sellar tumors in patients with cancer: a diagnostic challenge and management dilemma. World Neurosurg 2017;106:254–65.
[23] Morita A, Meyer FB, Laws ER Jr. Symptomatic pituitary metastases. J Neurosurg 1998;89:69–73.
[24] Max MB, Deck MD, Rottenberg DA. Pituitary metastasis: incidence in cancer patients and clinical differentiation from pituitary adenoma. Neurology 1981;31:998–1002.
[25] Al-Adnani M, Cannon SR, Flanagan AM. Chordomas do not express CD10 and renal cell carcinoma (RCC) antigen: an immunohistochemical study. Histopathology 2003;47:535–7.
[26] Feiz-Elmez I, Rao G, White WL, et al. Efficacy of trans-septal trans-sphenoidal surgery in correcting visual symptoms caused by hematogenous metastases to the sella and pituitary gland. Skull Base 2008;18:77–84.
[27] Fassett DR, Couldwell WT. Metastases to the pituitary gland. Neurosurg Focus 2004;16:E8.