ON THE COHOMOLOGY OF THE LOSEV–MANIN MODULI SPACE

JONAS BERGSTRÖM AND SATOSHI MINABE

Abstract. We determine the cohomology of the Losev–Manin moduli space \(\overline{M}_{0,2|n} \) of pointed genus zero curves as a representation of the product of symmetric groups \(\mathbb{S}_2 \times \mathbb{S}_n \).

Introduction

The Losev–Manin moduli space \(\overline{M}_{0,2|n} \) was introduced in [6] and it parametrizes stable chains of projective lines with marked points \(x_0 \neq x_\infty \) and \(y_1, \ldots, y_n \), where the points \(y_1, \ldots, y_n \) are allowed to collide, but not with \(x_0 \) nor \(x_\infty \), see Definition 1.1. In [6] this moduli space was denoted by \(\overline{L}_n \), here we have adapted the notation used in [8]. There is a natural action of \(\mathbb{S}_2 \times \mathbb{S}_n \) on \(\overline{M}_{0,2|n} \) by permuting \(x_0, x_\infty \) and \(y_1, \ldots, y_n \) respectively. This makes the cohomology \(H^*(\overline{M}_{0,2|n}, \mathbb{Q}) \) into a representation of \(\mathbb{S}_2 \times \mathbb{S}_n \). The aim of this note is to determine the character of this representation.

The moduli space \(\overline{M}_{0,2|n} \) can also be described as a moduli space of weighted pointed curves which were studied by Hassett [3, Section 6.4]. In this terminology it is the moduli space of genus 0 curves with 2 points of weight 1 and \(n \) points of weight \(1/n \), and it would be written \(\overline{M}_{0,A} \) where \(A = (1, 1/n, \ldots, 1/n) \).

Another interesting aspect of the space \(\overline{M}_{0,2|n} \) is that it has a structure of toric variety. It is proved in [6] that \(\overline{M}_{0,2|n} \) is isomorphic to the smooth projective toric variety associated with the convex polytope called the permutahedron. This toric variety is obtained by an iterated blow-up of \(\mathbb{P}^{n-1} \) formed by first blowing up \(n \) general points, then blowing up the strict transforms of the lines joining pairs among the original \(n \) points, and so on up to \((n-3)\)-dimensional hyperplanes, see [4, §4.3]. With this perspective, the action of \(\mathbb{S}_2 \times \mathbb{S}_n \) can be seen in the following way. The \(\mathbb{S}_n \)-action comes from permuting the \(n \)-points of the blow-up, and the action of \(\mathbb{S}_2 \) comes from the Cremona transform of \(\mathbb{P}^{n-1} \) induced by the group inversion of the torus \((\mathbb{C}^*)^{n-1} : (t_1, \ldots, t_{n-1}) \mapsto (t_1^{-1}, \ldots, t_{n-1}^{-1}) \).

Alternatively, we can view our moduli space \(\overline{M}_{0,2|n} \) as the toric variety \(X(A_{n-1}) \) associated to the fan formed by Weyl chambers of the root system of type \(A_{n-1} \) (\(n \geq 2 \)), see [1]. The cohomology of \(X(A_{n-1}) \) is a representation of the Weyl group \(W(A_{n-1}) \cong \mathbb{S}_n \) and this representation was studied in [9, 2, 12, 5]. On the other hand, \(X(A_{n-1}) \) has another automorphism coming from that of the Dynkin diagram. This automorphism together with the action of the Weyl group corresponds precisely to the \(\mathbb{S}_2 \times \mathbb{S}_n \)-action on \(\overline{M}_{0,2|n} \).

2000 Mathematics Subject Classification. Primary 14H10; Secondary 14M25.
The cohomology of the moduli space \(\overline{M}_{0,2|n} \) has also been studied by mathematical physicists, since it corresponds to the solutions of the so-called commutativity equations. For this perspective we refer to \([6, 10]\) and the references therein.

The outline of the paper is as follows. In Section \(1\) we define \(\overline{M}_{0,2|n} \) and we state some known results on its cohomology. Our main result is Theorem \(2.3\) where we give a formula for the \(S_2 \times S_n \)-equivariant Poincaré-Serre polynomial of \(\overline{M}_{0,2|n} \). The main theorem is formulated in Section \(2\) and it is proved in Section \(3\). In Section \(4\) we present a formula for the generating series of the \(S_2 \times S_n \)-equivariant Poincaré-Serre polynomial of \(\overline{M}_{0,2|n} \). In Appendix \(A\) we then show that the result of Procesi in \([9]\) on the \(S_n \)-equivariant Poincaré-Serre polynomial is in agreement with our result. Finally in Appendix \(B\) we list the \(S_2 \times S_n \)-equivariant Poincaré-Serre polynomial of \(\overline{M}_{0,2|n} \) for \(n \) up to 6.

Acknowledgement. The authors thank the Max–Planck–Institut für Mathematik for hospitality during the preparation of this note. The second named author is supported in part by JSPS Grant-in-Aid for Young Scientists (No. 22840041).

1. The moduli space \(\overline{M}_{0,2|n} \)

In this note, a curve means a compact and connected curve over \(\mathbb{C} \) with at most nodal singularities and the genus of a curve is the arithmetic genus.

Definition 1.1. For \(n \geq 1 \), let \(\overline{M}_{0,2|n} \) be the moduli space of genus 0 curves \(C \) with \(n+2 \) marked points \((x_0, x_\infty|y_1, \ldots, y_n)\) satisfying the following conditions:

(i) all the marked points are non-singular points of \(C \),

(ii) \(x_0 \) and \(x_\infty \) are distinct,

(iii) \(y_1, \ldots, y_n \) are distinct from \(x_0 \) and \(x_\infty \),

(iv) the components corresponding to the ends of the dual graph contain \(x_0 \) or \(x_\infty \),

(v) each component has at least three special (i.e. marked or singular) points.

Remark 1.2. In (iii) above, \(y_i \) and \(y_j \) are allowed to coincide. The conditions imply that the dual graph of \(C \) is linear and that each irreducible component must contain at least one marked point in \((y_1, \ldots, y_n)\). This means that \(C \) is a chain of projective lines of length at most \(n \).

The moduli space \(\overline{M}_{0,2|n} \) is a nonsingular projective variety of dimension \(n-1 \), see \([6\) Theorem 2.2\]. It has an action of \(S_2 \times S_n \) by permuting the marked points \((x_0, x_\infty|y_1, \ldots, y_n)\).

1.1. Cohomology of \(\overline{M}_{0,2|n} \). The cohomology ring \(H^*(\overline{M}_{0,2|n}, \mathbb{Q}) \) was studied in \([6]\). It is algebraic, i.e., all the odd cohomology groups are zero and \(H^*(\overline{M}_{0,2|n}, \mathbb{Q}) \) is isomorphic to the Chow ring \(A^*(\overline{M}_{0,2|n}, \mathbb{Q}) \), see \([6\) Theorem 2.7.1\]. The Poincaré-Serre polynomials

\[
E_{2|n}(q) = \sum_{i=0}^{n-1} \dim_{\mathbb{Q}} H^{2i}(\overline{M}_{0,2|n}, \mathbb{Q}) q^i \in \mathbb{Z}[q],
\]
were also computed, see [6] Theorem 2.3.

The action of \(S_2 \times S_n \) on \(\overline{M}_{0,2|n} \) gives the cohomology \(H^*(\overline{M}_{0,2|n}, \mathbb{Q}) \) a structure of \(S_2 \times S_n \) representation. In [9], Procesi computed the \(S_n \)-equivariant Poincaré-Serre polynomial of the toric variety \(X(A_{n-1}) \) (which is isomorphic to \(\overline{M}_{0,2|n} \)), see Appendix A.

Throughout this note the coefficients of all cohomology groups will be \(\mathbb{Q} \).

2. Statement of the result

2.1. Partitions. A partition \(\lambda = (\lambda_1 \geq \lambda_2 \geq \cdots) \) is a non-increasing sequence of non-negative integers which contains only finitely many non-zero \(\lambda_i \)'s. The number \(l(\lambda) \) of positive entries is called the \textit{length} of \(\lambda \). The number \(|\lambda| := \sum \lambda_i \) is called the \textit{weight} of \(\lambda \). If \(|\lambda| = n \) we say that \(\lambda \) is a partition of \(n \). We denote by \(\mathcal{P}(n) \) the set of partitions of \(n \) and by \(\mathcal{P} \) the set of all partitions. A sequence

\[
w \cdot \lambda = (\lambda_{w(1)}, \lambda_{w(2)}, \ldots), \quad w \in S_{l(\lambda)},
\]

obtained by permuting the non-zero elements of \(\lambda \) is called an ordered partition of \(n \). The number \(c_{\lambda} \) of distinct ordered partitions obtained from \(\lambda \) is given by

\[
c_{\lambda} = \frac{l(\lambda)!}{\text{Aut}(\lambda)},
\]

where \(\text{Aut}(\lambda) \) is the subgroup of \(S_{l(\lambda)} \) consisting of the permutations which preserve \(\lambda \). Let \(m_k(\lambda) := \# \{ i \mid \lambda_i = k \} \), we then have

\[
\text{Aut}(\lambda) = \prod_{k \geq 1} (m_k(\lambda)!) .
\]

With this notation a partition \(\lambda \) can also be written as \(\lambda = [1^{m_1(\lambda)} 2^{m_2(\lambda)} \cdots] \). For \(\lambda \in \mathcal{P}(n) \) and \(\mu \in \mathcal{P}(m) \) we then define \(\lambda + \mu \in \mathcal{P}(m+n) \) by \(m_k(\lambda + \mu) := \# \{ i \mid \lambda_i = k \} + \# \{ i \mid \mu_i = k \} \).

2.2. Symmetric functions. For proofs of the statements in this section see for instance [7].

Let \(\Lambda^y := \lim_{n \to \infty} \mathbb{Z}[y_1, \ldots, y_n]^{S_n} \) be the ring of symmetric functions. Similarly we define \(\Lambda^{x|y} := \Lambda^x \otimes \Lambda^y \). It is known that \(\Lambda^x \otimes \mathbb{Q} = \mathbb{Q}[p_1^y, p_2^y, \ldots] \) where \(p_k^y \) are the power sums in the variable \(y \). For \(\lambda \in \mathcal{P} \), we set \(p_{\lambda}^y := \prod_i p_{\lambda_i}^y \).

For a representation \(V \) of \(S_n \), we define \(\text{ch}^y_{\rho}(V) := \frac{1}{n!} \sum_{w \in S_n} \text{Tr}_V(w)p_{\rho(w)}^y \in \Lambda^y \),

where \(\rho(w) \in \mathcal{P}(n) \) is the partition of \(n \) which represents the cycle type of \(w \in S_n \). Similarly we define, for a \(S_2 \times S_n \) representation \(V \),

\[
\text{ch}^{x|y}_{2|n}(V) := \frac{1}{2(n!)} \sum_{(v, w) \in S_2 \times S_n} \text{Tr}_V((v, w))p_{\rho(v)}^x p_{\rho(w)}^y \in \Lambda^{x|y}.
\]

Recall that irreducible representations of \(S_n \) are indexed by \(\mathcal{P}(n) \). For \(\lambda \in \mathcal{P}(n) \), let \(V_\lambda \) be the irreducible representation corresponding to \(\lambda \) and define the Schur polynomial

\[
s_{\lambda}^y := \text{ch}^y_{\rho}(V_\lambda) \in \Lambda^y.
\]
In the following we will use that, if V_i are representations of S_n, for $1 \leq i \leq k$, then
\[
\text{ch}^y_{\sum_{i=1}^n} \left(\text{Ind}_{S_{n_1} \times \ldots \times S_{n_k}}^{S_{n_1+\ldots+n_k}} (V_1 \otimes \ldots \otimes V_k) \right) = \prod_{i=1}^k \text{ch}^y_{n_i} (V_i),
\]
\[
\text{ch}^y_{n_1n_2} \left(\text{Ind}_{S_{n_1} \times S_{n_2}}^{S_{n_1+n_2}} (V_1 \otimes V_2 \otimes \ldots \otimes V_2) \right) = \text{ch}^y_{n_1} (V_1) \circ \text{ch}^y_{n_2} (V_2),
\]
where \sim denotes the wreath product, that is, $S_{n_1} \sim S_{n_2} := S_{n_1} \times (S_{n_2})^{n_1}$ where S_{n_1} acts on $(S_{n_2})^{n_1}$ by permutation, see [Appendix A, p. 158]. Plethysm is an operation $\circ : \Lambda^y \times \Lambda^y \rightarrow \Lambda^y$ which we will extend to an operation $\circ : \Lambda^y \times \Lambda^y[q] \rightarrow \Lambda^y[q]$ by putting $p^n \circ q = q^n$.

2.3. The main theorem.

Definition 2.1. The $S_2 \times S_n$-equivariant Poincaré-Serre polynomial of $\overline{M}_{0,2|n}$ is defined by
\[
E_{S_2 \times S_n}(q) := \sum_{i=0}^{n-1} \text{ch}^{y,q}_{2|n} (H^2(\overline{M}_{0,2|n})) q^i \in \Lambda^y[q].
\]

The usual Poincaré-Serre polynomial $E_{2|n}(q)$ is recovered from the equivariant one by
\[
\frac{\partial^2}{\partial (p_1^y)^2} \frac{\partial^n}{\partial (p_1^y)^n} E_{S_2 \times S_n}(q) = E_{2|n}(q).
\]

We will make some ad-hoc definitions in order to formulate an explicit formula for $E_{S_2 \times S_n}(q)$. The proof will then furnish an explanation to these definitions.

Definition 2.2. First put $g_0^y := 1$, then for any $n \geq 1$ and any (unordered) partition λ put
\[
f_\lambda^y := \sum_{i=0}^{n-1} (-1)^i s_{(n-i,1)}^y q^{n-1-i}, \quad F_\lambda^y := \prod_{j=1}^{\ell(\lambda)} f_{\lambda_j}^y, \quad g_\lambda^y := \sum_{i=0}^{n-1} s_{(n-i,1)}^y q^{n-1-i}.
\]

Theorem 2.3. We then have
\[
E_{S_2 \times S_n}(q) = \frac{1}{2} (p_1^y)^2 \sum_{\lambda \in \mathcal{P}(n)} c_\lambda F_\lambda^y + \frac{1}{2} p_2^y \sum_{k=0}^{[n/2]} g_{n-k}^y \sum_{\mu \in \mathcal{P}(k)} c_\mu (p_2^y \circ F_\mu^y).
\]

Results for $1 \leq n \leq 6$ obtained from (2.1) are listed in Appendix B.

3. Proof of Theorem 2.3

3.1. Stratification of $\overline{M}_{0,2|n}$. For $k \geq 0$, we denote by $\Delta_{n,k}$ the closed subset of $\overline{M}_{0,2|n}$ consisting of curves with at least k nodes. Let $\Delta_{n,k}^* := \Delta_{n,k} \setminus \Delta_{n,k+1}$ be the open part of $\Delta_{n,k}$ which corresponds to curves with exactly k nodes. It is easy to see that $\Delta_{n,k} \neq \emptyset$ only for $0 \leq k \leq n-1$ and that $\Delta_{n,n-1}^* = \Delta_{n,n-1} = \{pt\}$. Note that $\Delta_{n,k}^*$ is preserved by the $S_2 \times S_n$-action. Hence its cohomology $H^*(\Delta_{n,k}^*)$ is a representation of $S_2 \times S_n$.

Definition 3.1. For an ordered partition λ of n with length $k+1$, let $\Delta_\lambda^* \subset \Delta_{n,k}^*$ correspond to all chains of projective lines of length $k+1$ such that precisely λ_i of the marked points (y_1, \ldots, y_n) are on the ith component (where the component with the marked point x_0 is the 1st component and the one with x_∞ is the $(k+1)$th).
Note that Δ^*_λ is preserved by S_n (but not necessarily by $S_2 \times S_n$, see below) and hence $H^*(\Delta^*_\lambda)$ is a representation of S_n.

Lemma 3.2. (i) $\Delta^*_{n, 0} \cong (\mathbb{C}^*)^{n-1}$. (ii) $\Delta^*_\lambda \cong \prod_{i=1}^{\ell(\lambda)} \Delta^*_{\lambda_i, 0}$.

(iii) We have a stratification

$$
\Delta^*_{n, k} = \bigsqcup_{\lambda = (\lambda_1, \ldots, \lambda_{k+1})} \Delta^*_\lambda,
$$

where λ runs over all ordered partitions of n with length $k + 1$.

Proof. (i) We have $\Delta^*_{n, 0} \cong (\mathbb{P}^1 \setminus \{0, \infty\})^n / \mathbb{C}^* \cong (\mathbb{C}^*)^n / \mathbb{C}^*$. (ii) Clear from the definition. (iii) This is found by considering the ways to distribute n marked points (y_1, \ldots, y_n) on the chain of projective lines of length $k + 1$ so that each irreducible component contains at least one of the points.

It follows from Lemma 3.2 (ii) that Δ^*_λ and $\Delta^*_{\lambda'}$ are $(S_n$-equivariantly) isomorphic when λ and λ' are different orderings of the same element in $P(n)$.

3.2. Cohomology of $\Delta^*_{n, 0}$

Since $\Delta^*_{n, 0} \cong (\mathbb{C}^*)^{n-1}$, $H^i(\Delta^*_{n, 0}) = 0$ for $i \geq n$, and moreover the mixed Hodge structure on $H^2(\Delta^*_{n, 0})$ is a pure Tate structure of weight $2(n-1-i)$, that is,

$$
H^2(\Delta^*_{n, 0}) = \mathbb{C}(n-1-i)^{\oplus (n-1)}.
$$

Lemma 3.3. For $0 \leq i \leq n-1$, we have

$$
\text{ch}_{2|n}^{x|y}(H^i(\Delta^*_{n, 0})) = \begin{cases}
\sum_{s(i) \in (n-1, 1)} s_i \otimes s_{(n-i, 1)} & \text{if } i \text{ is even} \\
\sum_{s(i) \in (n-1, 1)} \otimes s_{(n-i, 1)} & \text{if } i \text{ is odd}.
\end{cases}
$$

Proof. Take an isomorphism $\Delta^*_{n, 0} = (\mathbb{C}^*)^n / \mathbb{C}^* \rightarrow (\mathbb{C}^*)^{n-1}$ given by

$$(z_1 : z_2 : \cdots : z_{n-1} : z_n) \mapsto \left(\frac{z_1}{z_n}, \ldots, \frac{z_{n-1}}{z_n}\right) =: (y_1, \ldots, y_{n-1}).$$

Then it is easy to see that $H^1(\Delta^*_{n, 0}) = \otimes_{i=1}^{n-1} \mathbb{C}(\frac{1}{2\pi i} \frac{dy_j}{y_j})$ is the standard representation $s_{(n-1, 1)}$ under the action of S_n. The action of S_2 is by interchanging 0 and ∞, that is by the isomorphism $t \mapsto 1/t$ of \mathbb{P}^1, which induces the action $(z_1 : \cdots : z_n) \mapsto (1/z_1 : \cdots : 1/z_n)$ on $\Delta^*_{n, 0}$. This tells us that $(y_1, \ldots, y_{n-1}) \mapsto (1/y_1, \ldots, 1/y_{n-1})$ and since $\frac{d(1/y)}{dy} = -\frac{dy}{y^2}$ we conclude that $H^1(\Delta^*_{n, 0}) = V_{(1,2)} \otimes V_{(n-1,1)}$. Using once more that $\Delta^*_{n, 0} \cong (\mathbb{C}^*)^{n-1}$ we get

$$
H^k(\Delta^*_{n, 0}) \cong \Lambda^k H^1(\Delta^*_{n, 0}) \cong \Lambda^k(V_{(1,2)} \otimes V_{(n-1,1)}) \cong (\otimes^k V_{(1,2)}) \otimes V_{(n-k, 1^k)}.
$$

Corollary 3.4. We have the equality

$$
\sum_{i=0}^{n-1} (-1)^i \text{ch}_{2|n}^{x|y}(H^2(\Delta^*_{n, 0}, i)) q^{n-1-i} = \frac{1}{2} (p_1^x)^2 f_n^y + \frac{1}{2} p_2^x g_n^y.
$$
Proof. By Poincaré duality, \(H^2_c(n-1-i)(\Delta_{n,0}^*) \cong H^i(\Delta_{n,0}^*) \), and since every irreducible representation of \(S_2 \times S_n \) is defined over \(\mathbb{Q} \), the dual representation is isomorphic to itself. The equality now follows from the lemma together with the relations \(2s_{(2)}^* = (p_1^*)^2 + p_2^* \) and \(2s_{(1,2)}^* = (p_1^*)^2 - p_2^* \). \(\square \)

3.3. Cohomology of \(\Delta_n^* \).

Corollary 3.5. For any ordered partition \(\lambda \) of \(n \) with length \(k + 1 \), \(H^c_c(2(n-k-1)-i)(\Delta_n^*) \) is a pure Hodge structure of weight \(2(n-k-1-i) \).

Proof. This follows from Lemma 3.2 (ii) and the purity of the cohomology of \(\Delta_n^* \). \(\square \)

Corollary 3.6. For any ordered partition \(\lambda \) of \(n \) with length \(k + 1 \) we have

\[
\sum_{i=0}^{n-k-1} (-1)^i \text{ch}_n^y \left(H^c_c(2(n-k-1)-i)(\Delta_n^*) \right) q^{n-k-1-i} = F^y_n.
\]

Proof. From Lemma 3.2 (ii) we know that \(\Delta_n^* \cong \prod_{s=1}^{k+1} \Delta_{n,s}^* \), and on each \(\Delta_{n,s}^* \) we have an action of \(S_{n,s} \). The action of \(S_n \) on \(H^c_c(\Delta_n^*) \) will thus be the induced action from \(S_{\lambda,1} \times \ldots \times S_{\lambda_k+1} \) to \(S_n \). The result now follows from Corollary 3.4 by forgetting the action of \(S_2 \). \(\square \)

3.4. Proof of Theorem 2.3. We have the following long exact sequence of cohomology with compact support:

\[
\cdots \longrightarrow H^{n-k}(\Delta_{n,n+1}) \longrightarrow H^{n-k}(\Delta_{n,k}) \longrightarrow H^i(\Delta_{n,n}) \longrightarrow H^i(\Delta_{n,k+1}) \longrightarrow \cdots.
\]

This is an exact sequence of both mixed Hodge structures and \(S_2 \times S_n \)-representations. Therefore, using the exact sequence (3.1) inductively (this is just the additivity of the Poincaré-Serre polynomial) we get

\[
E_{S_2 \times S_n}(q) = \sum_{k=0}^{n-1} \left\{ \sum_{i=0}^{n-1} (-1)^i \text{ch}_n^y \left(H^c_c(2(n-i)-1)(\Delta_{n,k}^*) \right) q^{n-1-i} \right\}.
\]

We will now find a formula for \(\text{ch}_n^y(H^c_c(2(n-1)-i)(\Delta_{n,k}^*)) \). Let us begin with a strata \(\Delta_n^* \) for an ordered partition \(\lambda \) of \(n \) with length \(k + 1 \). The action of \(S_2 \) will then send the strata given by \(\lambda \) to the one given by \(\lambda' = (\lambda_{k+1}, \lambda_k, \ldots, \lambda_1) \). We will therefore divide into two cases.

Let us first assume that \(\lambda \neq \lambda' \). Since the action of \(S_2 \) interchanges the two components it will also interchange the factors of \(H^i_c(\Delta_n^* \cup \Delta_{n,k}^*) = H^i_c(\Delta_n^*) \oplus H^i_c(\Delta_{n,k}^*) \) and hence

\[
\text{ch}_n^y(H^i_c(\Delta_n^* \cup \Delta_{n,k}^*)) = (p_1^*)^2 \text{ch}_n^y(H^i_c(\Delta_n^*)).
\]

Let us now assume that \(\lambda = \lambda' \). We can then decompose our space as \(\Delta_n^* = \Delta_1^* \times \Delta_2^* \times \Delta_3^* \) where, if \(k + 1 = 2m \),

\[
\Delta_1^* := \prod_{i=1}^{m} \Delta_{n,i,0}, \quad \Delta_2^* := \{ pt \}, \quad \Delta_3^* := \prod_{i=m+1}^{2m} \Delta_{n,i,0}.
\]
and, if \(k + 1 = 2m + 1 \),

\[
\Delta_i^* := \prod_{i=1}^{m} \Delta_{i,0}^*, \quad \Delta_i^* := \Delta_{i,m+1,0}, \quad \Delta_i^* := \prod_{i=m+2}^{2m+1} \Delta_{i,0}^* .
\]

Let us put \(\alpha := \lambda_{m+1} \) if \(k+1 \) is odd and \(\alpha := 1 \) if \(k+1 \) is even, and in both cases \(\beta := \sum_{i=1}^{m} \lambda_i \).

The action of \(S_2 \) interchanges the \((S_\beta \text{-equivariant}) \) isomorphic components \(\Delta_1^* \) and \(\Delta_3^* \) and sends the space \(\Delta_2^* \) to itself. Define the semidirect product \(S_2 \rtimes (S_\beta \times S_\alpha \times S_\beta) \) where \(S_2 \) acts as the identity on \(S_\alpha \) and permutes the factors \(S_\beta \times S_\beta \) (i.e. as the wreath product). The group \(S_2 \rtimes (S_\beta \times S_\alpha \times S_\beta) \) naturally embeds, by the map \(i \) say, in \(S_{2\beta + \alpha} = S_n \). Let us then put \(S_2 \rtimes (S_\beta \times S_\alpha \times S_\beta) \) in \(S_2 \times S_n \) by \((\tau, \sigma) \mapsto (i(\tau, \sigma)) \), where \(\tau \in S_2 \) and \(\sigma \in S_\beta \times S_\alpha \times S_\beta \).

The action of \(S_2 \rtimes S_n \) on \(\Delta_1^* \) will then be the induced action from \(S_2 \rtimes (S_\beta \times S_\alpha \times S_\beta) \) acting naturally on \(\Delta_1^* \times \Delta_2^* \times \Delta_3^* \). Using Corollary 3.3 we conclude that

\[
\text{ch}_2^{\text{inv}}(H_1^*(\Delta_1^*)) = \frac{1}{2} p_1^2 f_0 \left(p_1^{p_1} \circ \text{ch}_1^\beta(H_1^*(\Delta_1^*)) \right) + \frac{1}{2} p_2^2 g_0 \left(p_2^{p_2} \circ \text{ch}_1^\beta(H_1^*(\Delta_1^*)) \right) .
\]

Applying formula (3.3) and formula (3.4) (and using Lemma 3.2 (iii) and Corollary 3.6) to equation (4.2), gives equation (2.1).

4. Generating series

4.1. Generating series of \(E_{S_2 \times S_n}(q) \). For any sequence of polynomials \(h_n \) we have the formal identity,

\[
1 + \sum_{n=1, n \lambda \in P(n)} c_{\lambda} \prod_{j=1}^{l(\lambda)} h_{\lambda_j} = 1 + \sum_{r=1}^{\infty} \left(\sum_{n=1}^{\infty} h_n \right)^r = \left(1 - \sum_{n=1}^{\infty} h_n \right)^{-1} .
\]

The following proposition follows directly from (1.1) and Theorem 2.3.

Proposition 4.1. The generating series of \(E_{S_2 \times S_n}(q) \) is determined by,

\[
1 + \sum_{n=1}^{\infty} E_{S_2 \times S_n}(q) = \frac{1}{2} \left(p_1^2 \right)^2 \left(1 - \sum_{n=1}^{\infty} f_n \right)^{-1} + \frac{1}{2} p_2^2 \left(1 + \sum_{n=1}^{\infty} g_n \right) \left(1 - \sum_{n=1}^{\infty} \left(p_2^2 \circ f_n \right) \right)^{-1} .
\]

Remark 4.2. Consider the moduli space \(M \) defined as in Definition 1.1 but with the additional demand that \(y_1, \ldots, y_n \) are distinct from each other. From Carel Faber we learnt the following formula, which is very similar to (1.2), for the generating series of the \(S_2 \times S_n \)-equivariant Poincaré-Serre polynomial of \(M \). Carel Faber obtained the formula as a direct consequence of an equality he learned from Ezra Getzler. These results have not been published.

Let \(h_{n+2}^y \) be the \(S_{n+2} \)-equivariant Poincaré-Serre polynomial of \(M_{0,n+2} \), the moduli space of genus 0 curves with \(n + 2 \) marked distinct points. The \(S_2 \times S_n \)-equivariant Poincaré-Serre polynomial of the open part of \(M \) (defined using the compactly supported Euler-characteristic) consisting of irreducible curves will then equal

\[
\frac{1}{2} \left(p_1^2 \right)^2 f_n^y + \frac{1}{2} p_2^2 g_n^y = \frac{1}{2} \left(p_1^2 \right)^2 \left(\frac{\partial^2 h_{n+2}^y}{\partial p_1^2} \right) + \frac{1}{2} p_2^2 \left(2 \frac{\partial h_{n+2}^y}{\partial p_2} \right) .
\]
From the proof of Theorem 2.3 we see that replacing f_n^y by \tilde{f}_n^y (and g_n^y by \tilde{g}_n^y) in equation (1.2) gives the $S_2 \times S_n$-equivariant Poincaré-Serre polynomial of M.

Remark 4.3. The polynomials f_n^y and g_n^y can be formulated in terms of $P_n^y(q) \in \Lambda^y[q]$, the Hall–Littlewood symmetric function associated to $\lambda \in \mathcal{P}$ (cf. [7, III-2]). This function is defined as the limit of the following symmetric polynomial:

$$P_\lambda(y_1, \ldots, y_k; q) = \sum_{w \in S_k/\mathcal{S}_k^\lambda} w \left(y_1^{\lambda_1} \cdots y_k^{\lambda_k} \prod_{\lambda_i > \lambda_j} \frac{y_i - qy_j}{y_i - y_j} \right),$$

where \mathcal{S}_k^λ is the stabilizer subgroup of λ in S_k and $l(\lambda) \leq k$ is assumed. In the special case $\lambda = (n)$, where $n \geq 1$, the following formula is known (cf. [7, p. 214]):

$$P_{(n)}^y(q) = \sum_{r=0}^{n-1} (-q)^r s_{(n-r, 1^r)},$$

hence $f_n^y = q^{n-1}P_{(n)}^y(q^{-1})$ and $g_n^y = q^{n-1}P_{(n)}^y(-q^{-1})$.

4.2. Generating series of $E_{S_n}(q)$

The S_n-equivariant Poincaré-Serre polynomial of $\overline{M}_{0,2|n}$ equals

$$E_{S_n}(q) := \sum_{i=0}^{n-1} \text{ch}_n^i \left(H^2(\overline{M}_{0,2|n}) \right) q^i = \left. \frac{\partial^2}{\partial (pt)^2} \right|_{pt=1} E_{S_2 \times S_n}(q) \in \Lambda^y[q],$$

and so

$$1 + \sum_{n=1}^{\infty} E_{S_n}(q) = \left(1 - \sum_{n=1}^{\infty} f_n^y \right)^{-1}.$$

Corollary 3.4 then tells us that the generating series of $E_{S_n}(q)$ is the multiplicative inverse of the generating series (in compactly supported cohomology) of $\Delta^*_{n,0}$, which is the open part of $\overline{M}_{0,2|n}$ consisting of irreducible curves.

If we set $q = 1$, the Hall–Littlewood function $P_{(n)}^y(q^{-1})$ becomes the nth power sum p_n^y and formula (1.4) takes a very simple form. Let $\epsilon_{S_n} := E_{S_n}(1) \in \Lambda^y$, be the S_n-equivariant Euler characteristic of $\overline{M}_{0,2|n}$. We then have

$$1 + \sum_{n=1}^{\infty} \epsilon_{S_n} z^n = \left(1 - \sum_{n=1}^{\infty} p_n^y z^n \right)^{-1}.$$

Appendix A. Consistency with Procesi’s result

A.1. Procesi’s recursive formula

In [9], Procesi obtained the following recursive relation among $E_{S_n}(q)$ with respect to n.

Theorem A.1 (Procesi). The $E_{S_n}(q)$ satisfy

$$E_{S_{n+1}}(q) = s_{(n+1)}^y \sum_{i=0}^{n} q^i + \sum_{i=0}^{n-2} s_{(n-i)}^y E_{S_{i+1}}(q) \left(\sum_{k=1}^{n-i-1} q^k \right).$$

As a corollary, we have the following formula which is obtained in [2, 11, 12].
Corollary A.2. We have

\[1 + \sum_{n=1}^{\infty} E_{S_n}(q)t^n = \frac{(1 - q)H(t)}{H(qt) - qH(t)}, \]

where \(H(t) = \sum_{r \geq 1} h_r t^r \) is the generating function of the complete symmetric functions in the variable \(y \).

A.2. Equivalence. The following proposition shows the equivalence between our result and Procesi’s by comparing Equation (4.4) and Equation (4.3) to Corollary A.2.

Proposition A.3. We have

\[\frac{(1 - q)H(t)}{H(qt) - qH(t)} = \left\{ 1 - \sum_{r=1}^{\infty} q^{-1} P_r^{\mu} (q^{-1})(qt)^r \right\}^{-1}. \]

Proof. As in [7] pp. 209–210, we have

\[\frac{H(qt)}{H(t)} = \prod_{i \geq 1} \frac{1 - ty_i}{1 - qt y_i} = 1 + (1 - q^{-1}) \sum_{i=1}^{n} \frac{y_i q t}{y_i} \prod_{j \neq i} \frac{y_i - y_j^{-1}}{y_i - y_j} = 1 + (1 - q^{-1}) \sum_{r=1}^{\infty} P_r^{\mu} (q^{-1})(qt)^r. \]

An easy manipulation of this formula gives the wanted equality. \(\square \)

APPENDIX B. \(E_{S_2 \times S_n}(q) \) for \(n \) up to 6

\(n \)	\(E_{S_2 \times S_n}(q) \)
1	\(s_{(2)}^{(2)}s_{(1)}^{(2)} \)
2	\((q + 1)s_{(2)}^{(2)}s_{(2)}^{(2)} \)
3	\(s_{(2)}^{(2)} \left((q^2 + q + 1)s_{(3)}^{(2)} + q s_{(2,1)}^{(2)} \right) + q s_{(1)}^{(2)}s_{(3)}^{(2)} \)
4	\(s_{(2)}^{(2)} \left((q^2 + 2q^2 + 2q + 1)s_{(4)}^{(1)} + (q^2 + q)s_{(3,1)}^{(2)} + (q^2 + q^2)s_{(2,2)}^{(1)} \right) + s_{(1,2)}^{(2)} \left((q^2 + q)s_{(4)}^{(1)} + (q^2 + q)s_{(2,1)}^{(1)} \right) \)
5	\(s_{(2)}^{(2)} \left((q^4 + 2q^3 + 4q^2 + 2q + 1)s_{(5)}^{(3)} + (2q^3 + 3q^2 + 2q)s_{(4,1)}^{(2)} + (q^2 + 2q^2 + q^3 + 2q^2 + q)s_{(3,2)}^{(1)} + 2q^2 s_{(3,1,2)}^{(1)} \right) \)
6	\(s_{(2)}^{(2)} \left((q^5 + 3q^4 + 6q^3 + 6q^2 + 3q + 1)s_{(6)}^{(4)} + (2q^4 + 6q^3 + 6q^2 + 2q)s_{(5,1)}^{(2)} + (2q^4 + 7q^3 + 7q^2 + 2q)s_{(5,2)}^{(2)} + (q^3 + q^2)s_{(4,1)}^{(4)} + (2q^3 + 2q^2)s_{(3,2)}^{(2)} \right) + s_{(1,2)}^{(2)} \left((2q^4 + 4q^3 + 4q^2 + 2q)s_{(6)}^{(4)} + (q^4 + 6q^3 + 6q^2 + 2q)s_{(5,1)}^{(2)} + (q^4 + 5q^3 + 5q^2 + q)s_{(4,2)}^{(4)} + (2q^3 + 2q^2)s_{(3,2)}^{(2)} \right) + s_{(1,2)}^{(2)} \left((2q^4 + 4q^3 + 4q^2 + 2q)s_{(6)}^{(4)} + (q^4 + 3q^3 + 3q^2 + q)s_{(3,2)}^{(2)} \right) + (2q^3 + 2q^2)s_{(3,2,1)}^{(1)} \)
References

[1] V. Batyrev and M. Blume, *The functor of toric varieties associated with Weyl chambers and Losev–Manin moduli spaces*, Tohoku Math. J. (2) 63 (2011), no. 4, 581–604.

[2] I. Dolgachev and V. Lunts, *A character formula for the representation of a Weyl group in the cohomology of the associated toric variety*, J. Algebra 168 (1994), no. 3, 741–772.

[3] B. Hassett, *Moduli spaces of weighted pointed stable curves*, Adv. Math. 168 (1994), no. 3, 741–772.

[4] M. M. Kapranov, *Chow quotients of Grassmannians. I*, Adv. Soviet Math. 16 (1993), 29–110.

[5] G. I. Lehrer, *Rational points and Coxeter group actions on the cohomology of toric varieties*, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 2, 671–688.

[6] A. Losev and Y. Manin, *New moduli spaces of pointed curves and pencils of flat connections*, Michigan Math. J. 48 (2000), 443–472.

[7] I. G. Macdonald, *Symmetric functions and Hall polynomials*, Second edition, The Clarendon Press, Oxford University Press, New York, 1995. x+475 pp.

[8] A. Marian, D. Oprea and R. Pandharipande, *The moduli space of stable quotients*, Geom. Topol. 15 (2011), 1651–1706.

[9] C. Procesi, *The toric variety associated to Weyl chambers*, In Mots, 153–161, Lang. Raison. Calc., Hermés, Paris, 1990.

[10] S. Shadrin and D. Zvonkine, *A group action on Losev–Manin cohomological field theories*, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 7, 2719–2743.

[11] R. P. Stanley, *Log-concave and unimodal sequences in algebra, combinatorics, and geometry*, In Graph theory and its applications: East and West (Jinan, 1986), 500–535, New York Acad. Sci. 576, New York, 1989.

[12] J. R. Stembridge, *Some permutation representations of Weyl groups associated with the cohomology of toric varieties*, Adv. Math. 106 (1994), no. 2, 244–301.

Matematiska institutionen, Stockholms Universitet, 106 91 Stockholm, Sweden.
E-mail address: jonasb@math.su.se

Department of Mathematics, Tokyo Denki University, 120-8551 Tokyo, Japan
E-mail address: minabe@mail.dendai.ac.jp