Environmental Research Communications

LETTER

Analyzing the critical locations in response of constructed and planned dams on the Mekong River Basin for environmental integrity

Yuan Gao1, Shiblu Sarker1,2, Tanni Sarker3 and Olkeba Tolessa Leta1

1 Department of Geology and Mining Engineering, Xinjiang University, Urumqi, Xinjiang, People’s Republic of China
2 Bureau of Watershed Management and Modeling, St. Johns River Water Management District, Palatka, Florida, United States of America
3 School of Planning, Design and Construction, Michigan State University, East Lansing, Michigan, United States of America

∗ Author to whom any correspondence should be addressed.
E-mail: shiblu.buet@gmail.com

Keywords: Mekong River Basin, Mekong River Network, critical nodes, ecological integrity

Abstract
Massive hydropower dams in the Mekong river basin (MRB) have triggered substantial debate and international attention due to its utmost importance on maintaining ecology and biodiversity. Although numerous studies have been conducted to assess the consequences of existing and proposed dams, the combined effects of dams on biodiversity and ecosystems have received limited attention. In this study, we focused on the dam’s locations and suitability on the overall Mekong River Network in order to comprehend the environmental and ecological integrity of the MRB as a whole. Overall, we identified harmful dams on their associated sub-basins based on the notion of connectivity. The vulnerability of ecosystems and biodiversity in the MRB is well recognized, and our findings generally provide additional theoretical support for their protection.

1. Introduction

The Mekong River basin (MRB) is one of the largest and complex river basins along with its river network systems [1, 2]. Rapid socioeconomic development growth and rising increase in regional energy demands have recently led to an increase in the construction of enormous hydroelectric dams throughout the basin [3, 4]. Specifically, China alone has been recently building dozens of mega dams on the Lancang River [2, 4], which is responsible for the drainage of the upper MRB. Additionally, several large main channel dams have been constructed, and approximately a dozen main channel dams and over one hundred tributary dams have also been planned [1, 4, 5]. The new dams and reservoirs are projected to meet fast expanding energy demands and bring other societal purposes, which in turn will trigger multiple socioeconomic and environmental challenges [2, 5–7].

Hydro-dynamically, dams affect natural flow regimes [8] by altering the amplitude, timing, and flow of water along with sediments and nutrients [2, 9–13], which have detrimental effect on the downstream eco-hydrological systems, especially on the river-floodplain ecosystems and their biological integrity [14, 15]. The impacts of flow regulation on the natural regime in the MRB can also be characterized by a unique hydrological flow pattern known as the flood pulse, which supplies water and full of sediments and nutrients to agricultural land, inland fisheries, and instream and wetland ecosystems that are acting as a key feature for life and important ecosystems in the Lower MRB [16, 17]. In addition, flood pulse is the main driver of the Tonle Sap River Basin (TSRB) that discharges water, nutrients and sediments into the Tonle Sap Lake (TSL) during the rainy season and drains water from the lake into the Mekong river during the dry season. Seasonal river-lake inundation dynamics in the vicinity of this lake support one of the world’s largest and most profitable freshwater fisheries [18, 19] and provide important ecological and agricultural flow in the Mekong Delta during the dry season [20]. Any changes in the duration, intensity, timing, and speed of the Mekong river flow, as well as the associated
floodplain dynamics, can thus result in a severe impact on a wide variety of ecosystems and jeopardize regional food security [17].

In riverine ecosystems, biological and ecological communities frequently occur in spatially structured environments where connectivity plays a direct role in their functions [21–23]. Consequently, the reduction in the connectivity of a Mekong River Network (MRN) is a direct measure of the integrity of the MRB [24]. In this study, we emphasized on the positions of the dams and their suitability on the entire MRN in order to hold integrity and vulnerability of the MRN as a proxy to understand environmental and ecological integrity of the entire MRB. Therefore, our objective was to identify critical nodes on a suit of the MRN obtained from the digital elevation model (DEM) data, which was sufficiently robust to support ecological processes in this enormous river basin using the recently published critical node identification (CNI) framework [24, 25]. Such studies are expected to enhance our understanding on the suitability of existing/planned dams in the MRN system and their integrity with the ecosystem functioning of the MRB.

2. Study area and data

2.1. Description of study area
The Mekong River Basin is classified by its unique and complex hydrologic, climatic, and physiographic characteristics. The River originates in China’s Tibetan Plateau and then flows through Myanmar, Laos, Thailand, and Cambodia (see figure 1), draining a ∼ 795, 000 km2 basin to the ocean in the Vietnam’s Mekong Delta with an annual mean flow of ∼ 15, 000 km3/year [4, 26]. The Mekong River is the basin’s primary river,
ranking tenth in the world in terms of mean annual flow at its mouth and second next to the Amazon River in terms of aquatic biodiversity and freshwater catch fisheries [3, 27, 28].

2.2. Data
We used geo-referenced dam data from the Consultative Group for International Agricultural Research (CGIAR), which is an open access and contains other attributes of dams as well. The data is publicly available at (https://wle-mekong.cgiar.org/maps/, accessed on 15 March 2021). The digital elevation model (DEM) data was collected from the HydroSHEDS (https://www.hydrosheds.org/, accessed on 15 March 2021) [29]. Classification of dams and their locations on the MRB is shown in Figure 2.

3. Methods
3.1. Mekong River Network (MRN) extraction
In this study, we adopted the DEM data to extract river network for the MRB. DEM displays elevation data in an array of cells and are useful to facilitate hydrologic analysis in Geographic Information Systems (GIS). We computed the river networks from the DEM using an area threshold method [24, 25, 30] by using ArcGIS.

3.2. Critical nodes detection
Critical nodes are a subset of nodes that their removal cause the greatest amount of network fragmentation. This can be accomplished by reducing the size of the largest remaining connected components or by minimizing

Figure 2. Classification of dams and their location on MRB. Figure 6 of the appendix depicts the sub-basins wise dams and their location.
pairwise connectivity, which is the total number of node pairs connected by a path. In Figure 3, a schematic example river network is shown to illustrate the concept of pairwise connectivity, where the number of CNs is considered to be equal to 1 (i.e., \(k = 1 \)) and \(a \), \(b \), and \(c \) are the remaining connected components (i.e., fragmentation) due to the removal of node 7. In other words, 7 is a subset of nodes, whose removal causes the greatest amount of network fragmentation or minimum size of the largest remaining connected components (i.e., \(a \), \(b \), and \(c \)). In general mathematical formulations to identify CNs on MRN can be written as follows:

In order to identify critical nodes of the MRB, the MRN is represented by using a simple undirected graph \(G = (N, E) \) with a set of nodes \(N \) and links \(E \). The links connecting node \(i \in N \) and \(j \in N \) are represented by a pair \((i, j) \in E \). Let \(N(i) = \{ j: (i, j) \in E \} \) denote the neighbourhood of node \(i \). In this formulation, we assume that up to \(k \) nodes in this graph are deleted as critical nodes, where \(k \) is the user-defined parameter that can be selected based on the number of internal structure i.e., number of Dams \(k = ND \). For any node \(i \in N \), we define the indicator variable \(v_i \) as equation (1) (see details in [24, 25]).

\[
v_i = \begin{cases}
1, & \text{if node } i \text{ is deleted as a CN}, \\
0, & \text{otherwise}.
\end{cases}
\] (1)

Then, for each pair of nodes \(i, j \in V \) (\(i \neq j \)), we define the indicator variable \(u_{ij} \) as equation (2) (see details in [24, 25]).

\[
u_{ij} = \begin{cases}
1, & \text{if nodes } i, j \in V \text{ are connected by a path in the remaining graph}, \\
0, & \text{otherwise}.
\end{cases}
\] (2)

The objective function, which quantifies the number of connected node pairs in the remaining graph, and the limit on the number of removed nodes can be expressed as \(\sum_{i,j \in V} u_{ij} \) and \(\sum_{i \in V} v_i \leq K \), respectively. Critical nodes can then be determined via minimizing the objective function using linear integer programming. For more details on methods to identify critical nodes see [24, 25, 31–33].

In fact the formulation of these critical nodes is solely based on network connectivity. However, in order to better understand network vulnerability (i.e., the optimal response of a network to an internal structure) and protection (i.e., network defense), this disruption metric can be used in conjunction with other metrics (see details in [24]).

4. Results and discussion

Figure 4 shows the locations of computed critical nodes (i.e., CNs) under the criteria \(k = ND \) as detailed in the methods section. For simplicity, the four categories of dams presented in Figure 2 are lumped into one category to define the value of \(k \), i.e., \(k = ND \). Computed CNs were superimposed on the extracted MRN for visualization purposes. The channel order of the MRN based on the Horton-Strahler [24, 34] ordering scheme is shown in Figure 3.
Figure 4 with different colors. Furthermore, red color indicated the dams and green color are indicated the computed CNs. Figure 4 clearly indicates that all the dams are not coincided with the CNs. However, some of them are very close to the locations of CNs.

Out of all the available dams in the MRB, we identified the harmful dams based on the location of dams and their channel connectivity. For example, the harmful dams for the five sub-basins of the MRB are shown in figure 5 whereas table 1 summarizes the dams’ properties. The harmful dams for the five sub-basins are shown in the figure 5 and their details attribute are also included in the table 1.

5. Implications towards ecological and biological contexts of MRB

In this study, we analyzed the positions of dams and their suitability on the Mekong River Network (MRN) through identifying CNs on the MRN. The Mekong River provides ideal conditions for large-scale hydropower development and energy transition [35–37]. There are total of 440 dams on the MRB (figure 2), and 136 of the dams are close to the critical nodes, which may pose harm to biodiversity and ecology of the MRB. There have been transboundary impacts from the upper Mekong River dams, but the lower Mekong River dams may exacerbate these effects because they can cause rapid rises and falls in water levels as well as disrupt sediment transport and block fish migration [5]. The dam may also result in irreversible and permanent ecological transformations to the MRB by altering the hydraulic and hydrological flow regime and negatively impacting fisheries and other aquatic resources [38–40]. In addition, the flow alterations caused by planned dams may
further affect a wide range of hydrological and ecological systems across the MRB while fulfilling future energy demands [27].

The effect of network topology can also affect the ecosystems’s biodiversity of the dendritic river networks [41], although the influence of the dams on the ecological systems of the MRB may differ. The long-term survival of species and the stability of ecosystems are directly impacted by spatial synchrony, which is well-known, [42]. The network topology of the MRB and its unidirectional flow of water, nutrients, and sediments promote asynchronous dynamics among the populations, thus promoting species persistence [42]. The network branching complexity can directly regulate the degree of synchrony among species. It is also anticipated that the central nodes of the network will have higher levels of connectivity and dispersal than the marginal nodes of the network [43–45]. Accordingly, the area where critical nodes identified close to the main stem, which are mostly distributed among the upper MRB (figure 4), tends to have higher degree of synchrony. Overall, the vulnerability of the ecosystems and biodiversity in the MRB is well recognized and our results provide further theoretical support for their protection.

6. Summary and conclusions

On the MRB, critical nodes are a subset of nodes that their deletion result in maximum fragmentation of the MRN. In this study, we identified critical nodes on the Mekong river network using an optimization approach in which the number of dams is a key constraint, in order to gain a better understanding of the ecological integrity of the MRN under potential disruption of dams. Overall, the main findings of this study can be summarized as follows:

![Identified harmful dams on MRN. Figure 8 of the appendix depicts the harmful dams for five sub-basins of MRN.](image-url)
Table 1. List of dams that are harmful to the Mekong River Basin’s ecological integrity.

S. no	Location	Rivers	Purpose	Capacity	Size	Height	Status	Completion Year
1	Kham, Tibet, China	Lancang	N/A	108	N/A	N/A	Planned	N/A
2	China	N/A	10.8	N/A	N/A	N/A	Planned	N/A
3	Kham, Tibet, China	Lancang	N/A	150	N/A	N/A	Under Construction	N/A
4	China	N/A	16.5	N/A	N/A	N/A	Under Construction	N/A
5	China	N/A	6.6	N/A	N/A	N/A	Planned	N/A
6	Kham, Tibet, China	Lancang	N/A	66	N/A	N/A	Planned	N/A
7	China	Lancang	N/A	160	N/A	N/A	Planned	N/A
8	Kham, Tibet, China	Lancang	N/A	16	N/A	N/A	Planned	N/A
9	Zhag' yab, Tibet, China	Lancang	N/A	240	N/A	N/A	Under Construction	N/A
10	China	N/A	24	N/A	N/A	N/A	Under Construction	N/A
11	China	N/A	10	N/A	N/A	N/A	Planned	N/A
12	Zhag' yab, Tibet, China	Lancang	N/A	100	N/A	N/A	Planned	N/A
13	Zogang, Tibet, China	Lancang	N/A	1000	N/A	N/A	Planned	N/A
14	China	N/A	100	N/A	N/A	N/A	Under Construction	N/A
15	China	Lancang	Hydropower	3000	Large	315	Planned	N/A
16	China	N/A	240	N/A	N/A	N/A	Under Construction	N/A
17	Markam, Tibet, China	Lancang	N/A	2400	N/A	N/A	Planned	N/A
18	China	Lancang	Hydropower	2800	Large	310	Planned	N/A
19	Markam, Tibet, China	Lancang	N/A	2400	N/A	N/A	Planned	N/A
20	China	N/A	240	N/A	N/A	N/A	Planned	N/A
21	China	Lancang	Hydropower	2200	Large	220	Under Construction	N/A
22	Deqin, Yunnan, China	Lancang	N/A	2600	N/A	N/A	Planned	N/A
23	Deqin, Yunnan, China	Lancang	N/A	1200	N/A	N/A	Suspended	N/A
24	China	N/A	N/A	N/A	N/A	N/A	Cancelled	N/A
25	China	N/A	N/A	N/A	N/A	N/A	Under Construction	N/A
26	China	Lancang	Hydropower	960	Large	136.5	Under Construction	N/A
27	China	N/A	N/A	N/A	N/A	N/A	Planned	N/A
28	Weisi Lisu, Yunnan, China	Lancang	N/A	1250	N/A	N/A	Planned	N/A
29	Lanping, Yunnan, China	Lancang	N/A	1900	N/A	N/A	Under Construction	N/A
30	China	N/A	N/A	N/A	N/A	N/A	Under Construction	N/A
31	China	N/A	N/A	N/A	N/A	N/A	Planned	N/A
32	China	N/A	N/A	N/A	N/A	N/A	Under Construction	N/A
33	Yunlong, Yunnan, China	Lancang	N/A	900	N/A	N/A	Under Construction	N/A
34	China	N/A	N/A	N/A	N/A	N/A	Under Construction	N/A
S. no	Location	Rivers	Purpose	Capacity	Size	Height	Status	Completion Year
-------	---------------------------	---------	---------	----------	------	--------	-----------------	-----------------
36	Yunlong, Yunnan, China	Lancang	N/A	1400	N/A	N/A	Under Construction	N/A
37	China	N/A	N/A	N/A	N/A	N/A	Operational	N/A
38	Yunlong, Yunnan, China	Lancang	N/A	900	N/A	N/A	Operational	N/A
39	China	N/A	N/A	N/A	N/A	N/A	Operational	N/A
40	China	N/A	N/A	N/A	N/A	N/A	Operational	N/A
41	China	N/A	N/A	N/A	N/A	N/A	Operational	N/A
42	China	N/A	N/A	N/A	N/A	N/A	Operational	N/A
43	China	N/A	N/A	N/A	N/A	N/A	Operational	N/A
44	China	Lancang	N/A	N/A	N/A	N/A	Operational	N/A
45	China	N/A	N/A	N/A	N/A	N/A	Operational	N/A
46	Nanjian Yi, Yunnan, China	Lancang	N/A	4200	Large	292	Operational	N/A
47	China	Lancang	N/A	1550	N/A	N/A	Operational	N/A
48	Jingdong Yizu, Yunnan, China	Lancang	N/A	920	N/A	N/A	Operational	N/A
49	China	N/A	N/A	N/A	N/A	N/A	Operational	N/A
50	Jingdong Yizu, Yunnan, China	Lancang	N/A	1350	N/A	N/A	Operational	N/A
51	China	N/A	N/A	N/A	N/A	N/A	Operational	N/A
52	China	Lancang	N/A	1350	Large	110	Operational	2003
53	Simao District, Yunnan, China	Lancang	N/A	5850	N/A	N/A	Operational	N/A
54	China	N/A	N/A	N/A	N/A	N/A	Operational	N/A
55	Jinghong City, Yunnan, China	Lancang	N/A	1750	N/A	N/A	Operational	N/A
56	China	Lancang	Hydropower	155	Large	60.5	Planned	2015
57	Jinghong City, Yunnan, China	Lancang	N/A	600	N/A	N/A	Cancelled	N/A
58	Laos	Ou River	Hydropower	180	N/A	N/A	Under Construction	2016
59	Laos	Ou River	Hydropower	240	N/A	N/A	Under Construction	2016
60	Laos	Ou River	Hydropower	75	Large	77	Planned	2014
61	Laos	Ou River	Hydropower	97.8	Small	11	Planned	2017
62	Laos	Ou River	Hydropower	300	Large	37.71	Planned	2013
63	Laos	Hydropower	134	Large	103	Planned	2016	
64	Laos	Ou River	Hydropower	180	Large	145	Planned	2013
65	Laos	Nam Khan	Hydropower	130	Large	177	Under Construction	2015
66	Laos	Nam Khan	Hydropower	60	Large	151	Under Construction	2015
67	Laos	Hydropower	147.19	Large	53	Planned	2016	
68	Laos	Tha River	Hydropower	168	Large	64	Planned	2013
69	Laos	Hydropower	1230	Large	28	Planned	2016	
70	Laos	Hydropower	1285	Large	48	Under Construction	2019	
71	Laos	Hydropower	43.7	Large	35	Planned	2019	
S. no	Location	Rivers	Purpose	Capacity	Size	Height	Status	Completion Year
-------	--------------	-----------------	-------------	----------	-------	--------	------------	-----------------
72	Laos	Hydropower	84.9	Large	22		Planned	2019
73	Laos	Hydropower	N/A				Planned	N/A
74	Laos	Mekong	N/A				Planned	expected 2016
75	Laos	Hydropower	1079	Large	45		Planned	2017
76	Laos	Mekong	N/A		N/A		Planned	expected 2017
77	Laos	Nam Lik	Hydropower	100	Large	169	Operational	2010
78	Laos	Ngum	Hydropower	54	Large	75	Planned	2018
79	Laos	Ngum	Hydropower	440	Large	220	Planned	2014
80	Laos	Ngum	Hydropower	615	Large	181.5	Operational	2010
81	Laos	Ngum	Hydropower	148.69	Large	75	Operational	1971
82	Laos	N/A	N/A				Planned	N/A
83	Laos	Nam Lik	Hydropower	60	Large	41	Planned	Under Construction 2016
84	Laos	Ngum	Hydropower	90	Large	47	Planned	2018
85	Laos	Hydropower	110	Large	214		Planned	2020
86	Laos	Hydropower	210	Large	17		Operational	2012
87	Laos	Tha River	Hydropower	523	Large	65	Planned	2014
88	Laos	Nam Theun	Hydropower	1075	Large	155	Operational	2009
89	Thailand	Hydropower	25.2	Large	35.1		Operational	1966
90	Thailand	IRR	N/A				Operational	N/A
91	Thailand	Hydropower	N/A				Operational	N/A
92	Thailand	IRR	N/A				Operational	N/A
93	Sre Pok, Cambodia	Sre Pok River	N/A	222	N/A		Under Construction	expected 2018
94	Thailand	Lam Dom Noi	N/A	36	N/A		Operational	1872
95	Thailand	Hydropower	36	Large	42		Operational	1971
96	Thailand	Hydropower	136	Large	17		Operational	1994
97	Laos	Hydropower	1872	Large	27		Planned	2017
98	Laos	Hydropower	248	Large	200		Planned	2016
99	Laos	Hydropower	63.4	Large	46		Planned	2022
100	Laos	Hydropower	107	Large	103		Planned	2019
101	Laos	Hydropower	30	Large	33		Planned	2021
102	Laos	Hydropower	300	Large	169		Planned	2014
103	Laos	Hydropower	144.6	Large	25		Planned	2012
104	Laos	Hydropower	91.1	Large	22		Operational	2012
105	Laos	Hydropower	390	Large	55	Under Construction	N/A	
106	Laos	Hydropower	60.8	Large	37.5		Planned	2013
107	Laos	Hydropower	32	Large	65		Operational	2011
S. no	Location	Rivers	Purpose	Capacity	Size	Height	Status	Completion Year
-------	----------	--------	---------	----------	-------	--------	--------------------	-----------------
108	Laos	Hydropower	54	Small	12		Planned	2021
109	Laos	Hydropower	250	Large	101.5		Under Construction	2013
110	Laos	Hydropower	64	Large	69		Planned	2018
111	Laos	Hydropower	100	Large	31		Planned	2018
112	Laos	Hydropower	23	Large	55		Under Construction	2015
113	Laos	Hydropower	74	Small	12		Under Construction	2016
114	Vietnam	Hydropower	49	Large	88		Planned	N/A
115	Vietnam	Hydropower	86	Large	83		Operational	2009
116	Vietnam	Hydropower	12	Small	7		Operational	1990
117	Vietnam	N/A	16	N/A	35.5		Operational	2009
118	Vietnam	Hydropower	220	Large	70		Planned	N/A
119	Cambodia	Hydropower	143	Large	35		Operational	2007
120	Cambodia	Hydropower	96	Large	35		Planned	N/A
121	Cambodia	N/A	N/A	N/A	31.5		Operational	2008
122	Vietnam	Hydropower	260	Large	69		Operational	2006
123	Vietnam	Hydropower	720	Large	71		Planned	2001
124	Vietnam	Hydropower	100	Large	71		Operational	2008
125	Vietnam	N/A	100	N/A	38		Planned	2009
126	Vietnam	N/A	360	Large	74		Operational	2009
127	Cambodia	Hydropower	480	Large	45		Planned	2016
128	Cambodia	Hydropower	30	Large	90		Planned	N/A
129	Cambodia	Hydropower	25	Large	90		Planned	N/A
130	Cambodia	Hydropower	980	Large	22		Planned	N/A
131	Cambodia	Hydropower	N/A	N/A	38		Planned	N/A
132	Cambodia	Hydropower	23	Large	38		Planned	N/A
133	Cambodia	N/A	N/A	N/A	151		Planned	2015
134	Laos	Hydropower	260	Large	72		Planned	2015
135	Laos	Hydropower	16,8	Large	72		Planned	2015
Critical nodes were superimposed on the Mekong River Network, where we have found that several of the computed critical nodes coincide with the locations of dams.

Harmful dams were identified based on the location of critical nodes and the location of dams considering channel connectivity.

We showed that the harmful dams associated with their attributes for five sub-basins, that can be useful for understanding, quantifying, and monitoring of dams effect on the MRB in the context of ecological sustainability.

Our findings indicate the possibility of identifying critical nodes based on the number of dams, their impact on the MRB, and their ecological characteristics as a result of human activities. By identifying critical nodes and harmful dams, this study could also provide useful information on the environmental consequences of the constructed or planned dams for the MRB and its riparian communities.

Apart from topological connectivity, it is also important to maintain persistent flow of sediment, water, and other environmental fluxes in order to minimize the fragmentation of ecological and biological connectivity. Our findings imply that the location of continuous monitoring of environmental fluxes, particularly water quality parameters such as total nitrogen, total phosphorus, water temperature, sediment concentration, and other potentially harmful and essential natural constituents, is a possibility. The identified CNs can be used as the most effective locations for monitoring and quantifying these environmental fluxes in order to evaluate the effect of dams on the MRB. Furthermore, continues evaluation of the MRB’s hydrological and environmental fluxes can be done by utilizing eco-hydrological models, such as Soil and Water Assessment Tool (SWAT [46]), Hydrological Simulation Program–Fortran (HSPF [47]), others, and calibrating the models with collected hydrological and environmental fluxes at CNs identified by this study.

Acknowledgments

This research was partially funded by the Doctoral Scientific Research Startup Foundation of Xinjiang University grant 620 321 004, and the Natural Science Foundation of Xinjiang Uygur Autonomous Region grant 2022D01C40.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://doi.org/https://wle-mekong.cgiar.org/maps/.

Author contributions

Y G and S S planned and conceptualized the research idea, S S developed the methodology and carried out the simulations, T S and S S organized the figures and analyzed the data, O T L contributed to the interpretation of the findings and editing the manuscript. Funding is gathered by Y G Each author contributed to the preparation of the manuscript.
Appendix

Figure 6. Classification of dams and their location by sub-basin.
Figure 7. Sub-basins wise Dam’s location and Critical nodes.
Figure 8. Identified harmful dams for five sub-basins on MRN.

References

[1] Grumbine R E and Xu J 2011 Mekong hydropower development Science 332 178–9
[2] Pokhrel Y, Shin S, Lin Z, Yamazaki D and Qi J 2018 Potential disruption of flood dynamics in the lower mekong river basin due to upstream flow regulation Sci. Rep. 8 1–13
[3] Winemiller K O et al 2016 Balancing hydropower and biodiversity in the amazon, congo, and mekong Science 351 128–9
[4] Pokhrel Y, Burbano M, Roush J, Kang H, Sridhar V and Hyndman D W 2018 A review of the integrated effects of changing climate, land use, and dams on mekong river hydrology Water 10 266
[5] Stone R 2016 Dam-building threatens mekong fisheries (https://doi.org/10.1126/science.354.6316.1084)
[6] Sabo J L, Ruhi A, Holgrieve G W, Elliott V, Arias M E, Ngor P B, Räsänen T A and Nam S 2017 Designing river flows to improve food security futures in the lower mekong basin Science 358 eaao1053
[7] Schmitt R J P, Rizzi S, Castelletti A and Kondolf G M 2018 Improved trade–offs of hydropower and sand connectivity by strategic dam planning in the mekong Nature Sustainability 1 96–104
[8] Poff NL, Allan JD, Bain MB, Barr JR, Reutesteeg KL, Richter BD, Sparks RE and Stromberg JC 1997 The natural flow regime
BioScience **47** 769–84

[9] Haddeland I, Skaugen T and Lettenmaier DP 2006 Anthropogenic impacts on continental surface water fluxes *Geophys. Res. Lett.* **33** 108046

[10] Hansakshi N, Kanae S and Oki T 2006 A reservoir operation scheme for global river routing models *J. Hydrol.* **327** 22–41

[11] Pokhrel Y, Hansakshi N, Koirala S, Cho J, Yeh P-J, Kim H, Kanae S and Oki T 2012 Incorporating anthropogenic water regulation modules into a land surface model *Journal of Hydrometeorology* **13** 255–69

[12] Pokhrel YN, Felfelani F, Shin S, Yamada T and Satoh Y 2017 Modeling large-scale human alteration of land surface hydrology and climate *Geoscience Letters* **6** 1–13

[13] Veldkamp T E et al. 2017 Water scarcity hotspots travel downstream due to human interventions in the XX and XXI century *Nat. Commun.* **8** 1–12

[14] Bunn SE and Arthington AH 2002 Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity *Environmental Management* **30** 492–507

[15] Pringle C 2003 What is hydrologic connectivity and why is it ecologically important? *Hydrol. Processes* **17** 2685–9

[16] Arias ME, Cochrane TA, Norton D, Killien TJ and Khon P 2013 The flood pulse as the underlying driver of vegetation in the largest wetland and fisheries of the mekong basin *Ambio* **42** 664–76

[17] Kummu M and Sarkkula J 2008 Impact of the mekong river flow alteration on the tonle sap flood pulse *AMBIO: A Journal of the Human Environment* **37** 185–92

[18] Baran E and Myschowoda C 2009 Dams and fisheries in the mekong basin *Aquat. Ecosystem Health Manage.* **12** 227–34

[19] Bonheur N and Lane BD 2002 Natural resources management for human security in cambodia’s tonle sap biosphere reserve *Environ. Sci. Policy* **5** 33–41

[20] Frappart F, Minh KD, J Hermitte J, Cazenave A, Ramillien G, Le Toan T and Mognard-Campbell N 2006 Water volume change in the lower mekong from satellite altimetry and imagery data *Geophys. J. Int.* **167** 570–84

[21] Carrara F, Altermann P, Rodriguez-Iturbe I and Rinaldo A 2012 Dendritic connectivity controls biodiversity patterns in experimental metacommunities *Proc. Natl Acad. Sci.* **109** 5761–6

[22] Terui A, Ishiyama N, Urake H, Ono S, Finlay J and Nakamura F 2018 Metapopulation stability in branching river networks *Proc. Natl Acad. Sci.* **115** E5963–9

[23] Benda I, EE, Poff NL, Miller D, Dunne T, Reeves G, Pess G and Pollock M 2004 The network dynamics hypothesis: how channel networks structure riverine habitats *BioScience* **54** 413–27

[24] Sarker S, Varkey AV, Boginski V and Singh G 2019 Critical nodes in river networks *Sci. Rep.* **9** 1–11

[25] Sarker S 2021 Investigating topologic and geometric properties of synthetic and natural river networks under changing climate *University of Central Florida* (https://stars.library.ucf.edu/ets2020/965/)

[26] Commission M R et al. 2005 Overview of the hydrology of the mekong basin *Mekong River Commission, Viet Nam* **82**

[27] Ziv G, Baran E, Nam S, Rodriguez-Iturbe I and Levin SA 2012 Trading-off fish biodiversity, food security, and hydropower in the mekong river basin *Proc. Natl Acad. Sci.* **109** 5609–14

[28] Commission M R et al. 2010 Mekong river commission, state of the basin report 2010 *Technical Report.*

[29] Lehner B, Verdin K and Jarvis A 2008 New global hydrography derived from spaceborne elevation data *Eos, Trans. Am. Geophys. Union* **89** 93–4

[30] Tarboton DG 1997 A new method for the determination of flow directions and upslope areas in grid digital elevation models *Water Resour. Res.* **33** 309–19

[31] Veremyev A, Prokopyev O A and Pasiliao E L 2014 An integer programming framework for critical elements detection in graphs *Journal of Combinatorial Optimization* **28** 233–73

[32] Veremyev A, Prokopyev O A and Pasiliao E L 2017 Finding groups with maximum betweenness centrality *Optimization Methods and Software* **32** 369–99

[33] Arulselvan A, Commander CW, Eleftheriadou L and Pardalos PM 2009 Detecting critical nodes in sparse graphs *Computers and Operations Research* **36** 2193–200

[34] Horton RE 1945 Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology *Geol. Soc. Am. Bull.* **56** 375–378

[35] International Hydropower Association (IHA) 2016 Hydropower status report 2016 *International Hydropower Association* (https://www.hydropower.org/news/2016-hydropower-status-report-available-for-download/)

[36] Kurisî A and Jurasz J 2022 Small hydropower plants proliferation and fluvial ecosystem conservation nexus *Complementarity of Variable Renewable Energy Sources* (Amsterdam: Elsevier) pp 503–27

[37] Kurisî A, Pinheiro A N, Sordo-Ward A and Bejarano M D 2021 and L Garrote. Ecological impacts of run-of-river hydropower plantscurrent status and future prospects on the brink of energy transition *Renew. Sustain. Energy Rev.* **142** 110833

[38] In international rivers. The xayaburi dam: A looming threat to the mekong river, 2018.

[39] Kummu M, Lu XX, Wang J and Varis O 2010 Basin-wide sediment trapping efficiency of emerging reservoirs along the mekong *Geomorphology* **119** 181–97

[40] Van Manh N, Dung NV, Hung NN, Kummu M, Merz B and Apel H 2015 Future sediment dynamics in the mekong delta floodplains: Impacts of hydropower development, climate change and sea level rise *Global Planet. Change* **127** 22–33

[41] Larsen S, Bruno MC, Vaughan IP and Zolezzi G 2019 Testing the river continuum concept with geostatistical stream-network models *Ecological Complexity* **39** 100773

[42] Tonkin JD, Altermann P, Finn DS, Heino J, Olden JD, Pauls SU and Lytle DA 2018 The role of dispersal in river network metacommunities: Patterns, processes, and pathways *Freshwater Biology* **63** 141–63

[43] Finn DS, Blouin MS and Lytle DA 2007 Population genetic structure reveals terrestrial affinities for a headwater stream insect *Freshwater Biology* **52** 1881–97

[44] Brown BL and Swan CM 2010 Dendritic network structure constrains metacommunity properties in riverine ecosystems *Journal of Animal Ecology* **79** 571–80

[45] Erös T and Lowe WH 2019 The landscape ecology of rivers: from patch-based to spatial network analyses *Current Landscape Ecology Reports* **4** 103–12

[46] Arnold JG, Srinivasan R, Mutthia R S and Williams JR 1998 Large area hydrologic modeling and assessment part i: model development in a *JAWRA Journal of the American Water Resources Association* **34** 73–89

[47] Bicknell BR, Imhoff JC, Kittle JL Jr., Jobes TH and Donigian A Jr. 2001 Hydrological simulation program–fortran version 12 *User’s Manual. Aqua Terra Consultants, Mountain View, CA*