FUNCTORS OF MODULES ASSOCIATED WITH FLAT AND PROJECTIVE MODULES II

ADRIÁN GORDILLO-MERINO, JOSÉ NAVARRO, PEDRO SANCHO

Abstract. Let R be an associative ring with unit. Given an R-module M, we can associate the following covariant functor from the category of R-algebras to the category of abelian groups: $S \mapsto M \otimes_R S$. With the corresponding notion of dual functor, we prove that the natural morphism of functors $M \to M^{\vee \vee}$ is an isomorphism. We prove several characterizations of the functors associated with flat modules, flat Mittag-Leffler modules and projective modules.

1. Introduction

Let R be an associative ring with unit. Consider the functor from the category of R-algebras R-Alg to the category of right R-modules R-Mod, $o: R$-$\text{Alg} \to R$-Mod, $o(S) := S$ for any R-algebra S, and the functor $r: R$-$\text{Mod} \to R$-Alg, $r(N) = R\langle N \rangle$, where $R\langle N \rangle$ is the R-algebra generated by N (see [3.1]). It is well known the functorial isomorphism

$$\text{Hom}_R(N, o(S)) = \text{Hom}_{R-alg}(r(N), S)$$

for any right R-module N and any R-algebra S. Hence, it is easy to obtain a functorial isomorphism

$$\text{Hom}_{grp}(G \circ o, F) = \text{Hom}_{grp}(G, F \circ r)$$

for any covariant functors of abelian groups $G: R$-$\text{Mod} \to Z$-Mod, and $F: R$-$\text{Alg} \to Z$-Mod.

Let \mathcal{R} be the covariant functor from the category of R-algebras, to the category of R-algebras, defined by $\mathcal{R}(S) := S$, for any R-algebra S.

Definition 1.1. A functor of \mathcal{R}-modules is a covariant functor $M: R$-$\text{Alg} \to Z$-Mod together with a morphism of functors of sets $\mathcal{R} \times M \to M$ that endows $M(S)$ with an S-module structure, for any R-algebra S.

A morphism of \mathcal{R}-modules $f: M \to M'$ is a morphism of functors such that the morphisms $f_S: M(S) \to M'(S)$ are morphisms of S-modules.

If $G: R$-$\text{Mod} \to Z$-Mod is additive, then $G^o := G \circ o$ is naturally a functor of \mathcal{R}-modules. Let $in, h_x: R\langle N \rangle \to R\langle N \oplus x \cdot R \rangle$ be the morphisms of R-algebras induced by the morphisms of R-modules $N \to R\langle N \oplus x \cdot R \rangle$, $n \mapsto n, x \cdot n$. Given a

1991 Mathematics Subject Classification. Primary 16D10; Secondary 18A99.

Key words and phrases. flat, projective, Mittag-Leffler, reflexivity theorem, functors.

All authors have been partially supported by Junta de Extremadura and FEDER funds.
functor of \(R \)-modules \(F \), let \(F^r: R\text{-Mod} \to Z\text{-Mod} \) be defined as follows: \(F^r(N) \) is the kernel of the morphism

\[
F(R(N)) \xrightarrow{F(h_x) - x \cdot F(in)} F(R(N \oplus x \cdot R))
\]

for any right \(R \)-module \(N \) and any \(n' \in F(R(N)) \). We prove \(4.8 \) the following theorem.

Theorem 1.2. Let \(F: R\text{-Alg} \to Z\text{-Mod} \) be a covariant functor of \(R \)-modules and \(G: R\text{-Mod} \to Z\text{-Mod} \) an additive covariant functor of abelian groups. Then, we have a functorial isomorphism

\[
\text{Hom}_{grp}(G, F^r) \cong \text{Hom}_R(G^o, F)
\]

In Algebraic Geometry, functors of \(R \)-modules from the category of \(R \)-algebras to the category of abelian groups are featured more frequently than those from the category of right \(R \)-modules to the category of abelian groups. Nevertheless, the results about reflexivity of modules and characterizations of flat Mittag-Leffler modules are obtained more naturally with the latter functors (see \(5 \)). The results below are a consequence of Theorem 1.2 and the results obtained in \(5 \).

Any \(R \)-module \(M \) can be thought as a functor of \(R \)-modules: Consider the following covariant functor of \(R \)-modules \(M \), defined by

\[
M(S) := S \otimes_R M,
\]

for any \(R \)-algebra \(S \). We will say that \(M \) is the quasi-coherent \(R \)-module associated with \(M \). It is easy to prove that the category of \(R \)-modules is equivalent to the category of quasi-coherent \(R \)-modules.

Given a functor of \(R \)-modules \(M \), we will say that the functor of right \(R \)-modules \(M^\vee \) defined by

\[
M^\vee(S) = \text{Hom}_R(M, S),
\]

for any \(R \)-algebra \(S \), is the dual functor of \(M \). We will say that \(M^\vee \) is the \(R \)-module scheme associated with the \(R \)-module \(M \). We are now in a position to state the main results of this paper, grouped together herein according to the concepts involved:

Theorem 1.3. Let \(M \) be an \(R \)-module. The natural morphism of \(R \)-modules

\[
M \to M^{\vee \vee}
\]

is an isomorphism.

When \(R \) is a commutative ring, this theorem has been proved for finitely generated modules using the language of sheaves in the big Zariski topology, in \(6 \), and it is implicit in \(4 \). The reflexivity of these quasi-coherent \(R \)-modules \(M \) has been used for a variety of applications in theory of linear representations of affine group schemes \(1, 2, 3 \). Likewise, we think that this new reflexivity theorem will be useful in the theory of comodules over non-commutative rings.

Theorem 1.4. Let \(M \) be an \(R \)-module such that \(M^r(N) = N \otimes_R M \), for any right \(R \)-module \(N \). Then,
(1) M is a finitely generated projective module if and only if M is a module scheme.

(2) M is a flat module if and only if M is a direct limit of module schemes.

(3) M is a flat Mittag-Leffler module if and only if M is a direct limit of submodule schemes.

(4) M is a flat strict Mittag-Leffler module if and only if M is a direct limit of submodule schemes, $N_i \subseteq M$, and the dual morphism $M^\vee \rightarrow N_i$ is an epimorphism, for any i.

(5) M is a countably generated projective module if and only if there exists a chain of module subschemes of M,

$$N_0 \subseteq N_1 \subseteq \cdots \subseteq N_n \subseteq \cdots,$$

such that $M = \cup_{n \in \mathbb{N}} N_n$.

(6) M is projective if and only if there exists a chain of R-submodules of M,

$$W_0 \subseteq W_1 \subseteq \cdots \subseteq W_n \subseteq \cdots,$$

such that $M = \cup_{n \in \mathbb{N}} W_n$, where W_n is a direct sum of module schemes and the natural morphism $M^\vee \rightarrow W_n^\vee$ is an epimorphism, for any $n \in \mathbb{N}$.

Also, the theorem below establishes several statements which are equivalent to an R-module being a flat strict Mittag-Leffler module.

Theorem 1.5. Let M be an R-module such that $M^\vee(N) = N \otimes_R M$, for any right R-module N. Then, the following, equivalent conditions are met:

(1) M is a flat strict Mittag-Leffler R-module.

(2) Let $\{M_i\}_{i \in I}$ be the set of all finitely generated submodules of M, and $M^*_i := \text{Im}[M^* \rightarrow M^*_i]$. The natural morphism $M \rightarrow \lim_{\rightarrow} M_i^\vee$ is an isomorphism.

(3) There exists a monomorphism $M \hookrightarrow \prod_{J} R$.

(4) Every morphism of R-modules $f : M^\vee \rightarrow R$ factors through the quasi-coherent module associated with $\text{Im} f_R$.

2. **Preliminaries**

Let R be an associative ring with unit, and let \mathcal{R} be the covariant functor from the category of R-algebras to the category of R-algebras, defined by $\mathcal{R}(S) := S$, for any R-algebra S.

Definition 2.1. A functor of \mathcal{R}-modules is a covariant functor $\mathcal{M} : R\text{-Alg} \rightarrow \mathbb{Z}\text{-Mod}$ together with a morphism of functors of sets $\mathcal{R} \times \mathcal{M} \rightarrow \mathcal{M}$ that endows $\mathcal{M}(S)$ with an S-module structure, for any R-algebra S.

A morphism of \mathcal{R}-modules $f : \mathcal{M} \rightarrow \mathcal{M}'$ is a morphism of functors such that the morphisms $f_S : \mathcal{M}(S) \rightarrow \mathcal{M}'(S)$ are morphisms of S-modules.

Definition 2.2. If \mathcal{M} is an \mathcal{R}-module, the dual \mathcal{M}^\vee is the following functor $R\text{-Alg} \rightarrow \mathbb{Z}\text{-Mod}$

$$\mathcal{M}^\vee(S) := \text{Hom}_{\mathcal{R}}(\mathcal{M}, S),$$

which is a functor of right \mathcal{R}-modules.
If S is an R-algebra, the restriction of an R-module M to the category of S-algebras will be written

$$M_{|S}(S') := M(S'),$$

for any S-algebra S'.

Definition 2.3. The functor of homomorphisms $\mathbb{Hom}_R(M, M')$ is the covariant functor R-$\text{Alg} \to \mathbb{Z}$-$\text{Mod}$ defined by

$$\mathbb{Hom}_R(M, M')(S) := \text{Hom}_S(M_{|S}, M'_{|S}),$$

where $\text{Hom}_S(M_{|S}, M'_{|S})$ stands for the set of all morphisms of S-modules from $M_{|S}$ to $M'_{|S}$.

In the following, it will also be convenient to consider another notion of dual module: M^* is the functor of right R-modules defined by

$$M^* := \mathbb{Hom}_R(M, R).$$

Definition 2.4. The quasi-coherent R-module associated with an R-module M is the following covariant functor $\mathcal{M} : R$-$\text{Alg} \to \mathbb{Z}$-$\text{Mod}$,

$$\mathcal{M}(S) := S \otimes_R M.$$

Quasi-coherent modules are determined by its global sections. In particular, we will make use of the following statement, whose proof is immediate:

Proposition 2.5. Restriction to global sections $f \mapsto f_R$ defines a bijection:

$$\text{Hom}_R(\mathcal{M}, \mathcal{M}) = \text{Hom}_R(M, M(R)),$$

for any quasi-coherent R-module \mathcal{M} and any R-module M.

As a consequence, both notions of dual module introduced above coincide on quasi-coherent modules; that is, $\mathcal{M}^* = \mathcal{M}^\vee$.

In fact, if S is an R-algebra, then

$$\mathcal{M}^\vee(S) = \text{Hom}_R(\mathcal{M}, S) = \text{Hom}_R(M, S)$$

and, as $\mathcal{M}_{|S}$ is the quasi-coherent S-module associated with $S \otimes_R M$,

$$\mathcal{M}^*(S) = \text{Hom}_S(\mathcal{M}_{|S}, S) = \text{Hom}_S(S \otimes_R M, S) = \text{Hom}_R(M, S) = \mathcal{M}^\vee(S).$$

Definition 2.6. We will say that a functor from the category of right R-modules to the category of abelian groups is a functor of abelian groups.

Definition 2.7. Given a functor of abelian groups \mathbb{G}, let \mathbb{G}° be the functor from the category of R-algebras to the category of abelian groups defined by

$$\mathbb{G}^\circ(S) := \mathbb{G}(S),$$

for any R-algebra S. Given a morphism of R-algebras $w : S \to S'$ then $\mathbb{G}^\circ(w) := \mathbb{G}(w)$.

1In this paper, we will only consider well-defined functors $\text{Hom}_R(M, M')$, that is to say, functors such that $\text{Hom}_S(M_{|S}, M'_{|S})$ is a set, for any R-algebra S.
Remark 2.8. Observe that we can define $s \ast g := \mathbb{G}(s \cdot g)$, for any $g \in \mathbb{G}^o(S)$ and $s \in S$ (where $s \cdot S \to S$ is defined by $s \cdot (s') := s \cdot s'$). If \mathbb{G} is additive, then \mathbb{G}^o is a functor of R-modules.

Any morphism $\phi: \mathbb{G} \to \mathbb{G}'$ of functors of abelian groups defines the morphism $\phi^o: \mathbb{G}^o \to \mathbb{G}'^o$, $\phi^o_S := \phi_S$ for any R-algebra S. Obviously,

$$\phi^o_S(s \ast g) = \phi_S(\mathbb{G}(s \cdot g)) = \mathbb{G}'(s \cdot (\phi_S(g))) = s \ast \phi^o_S(g).$$

Finally, any definition or statement in the category of R-modules has a corresponding definition or statement in the category of right R-modules, that we will use without more explicit mention.

As examples, if M is an R-module, then $M^* := \text{Hom}_R(M, R)$ is a right R-module. If N is a right R-module, then the dual module defined by

$$N^* := \text{Hom}_R(N, R)$$

is an R-module, etc.

3. Extension of a functor on the category of algebras to a functor on the category of modules

Notation 3.1. If M is an R-module, observe that $M \otimes_Z R$ is an R-bimodule and we can consider the tensorial R-algebra

$$R(M) := T_R(M \otimes_Z R) = (T_Z^R M) \otimes_Z R.$$

Remark 3.2. If N is a right R-module, then:

$$R(N) := T_R^R(R \otimes_Z N).$$

Lemma 3.3. The following functorial map is bijective:

$$\text{Hom}_{R-\text{alg}}(R(M), S) \to \text{Hom}_R(M, S), \quad f \mapsto f',$$

where $f'(m) := f(m \otimes 1)$ for any $m \in M$.

Proof. $\text{Hom}_{R-\text{alg}}(T_R(M \otimes_Z R), S) = \text{Hom}_{R \otimes Z R}(M \otimes_Z R, S) = \text{Hom}_R(M, S).$ \hfill \square

Any R-linear morphism $\phi: M \to M'$ uniquely extends to a morphism of R-algebras $\phi: R(M) \to R(M')$, $m \otimes 1 \mapsto \phi(m) \otimes 1$.

If we use the notation

$$M \cdot^n R := M \otimes_Z \cdots \otimes_Z M \otimes_Z R, \quad m_1 \cdots m_n \cdot r \mapsto m_1 \otimes \cdots \otimes m_n \otimes r,$$

then

$$R(M) = \bigoplus_{n=0}^{\infty} M \cdot^n R,$$

and the product in this algebra can be written as follows:

$$(m_1 \cdots m_n \cdot r) \cdot (m'_1 \cdots m'_n \cdot r') = m_1 \cdots m_n \cdot (r m'_1) \cdot m'_2 \cdots m'_n \cdot r'.$$

Notation 3.4. Let us use the following notation

$$M \oplus Rx := M \oplus R, \quad (m, r \cdot x) \mapsto (m, r).$$

Likewise, if M is a right R-module $M \oplus xR := M \oplus R$, $(m, x \cdot r) \mapsto (m, r)$.

Notation 3.5. Let M be a right R-module. Consider the morphisms of R-algebras
\[in, h_x : R(M) \to R(M \oplus xR) \]
induced by the morphism of R-modules $M \to R(M \oplus xR)$, $m \mapsto m$, $x \cdot m$ for any $m \in M$.

Definition 3.6. Given a functor of R-modules F, let F^\prime, be the functor of abelian groups, defined as follows: $F^\prime(M)$ is the kernel of the morphism
\[
\begin{align*}
F(R(M)) & \xrightarrow{F(h_x) - x \cdot F(in)} F(R(M \oplus xR)) \\
\end{align*}
\]
for any right R-module M and any $f \in F(R(M))$.

If $w : M \to M'$ is a morphism of R-modules, it induces morphisms of R-algebras
\[R(w) : R(M) \to R(M') \]
and $R(w \oplus 1) : R(M \oplus xR) \to R(M' \oplus xR)$, $R(w \oplus 1)(m) = w(m)$, $R(w \oplus 1)(x) = x$. Observe that $R(w \oplus 1) \circ h_x = h_x \circ R(w)$. Hence, we have the morphism
\[F^\prime(w) : F^\prime(M) \to F^\prime(M') \]
for any $f \in F^\prime(M) \subset F(R(M))$.

Note 3.7. In a similar vein, we can define the extension of a functor F of right R-modules, which is a functor F^τ from the category of R-modules to the category of abelian groups.

Notation 3.8. Let N be a right R-module and let M be an R-module. Consider the sequence of morphisms of groups
\[
N \otimes_R M \xrightarrow{i} N \otimes_R M \otimes_R R \xrightarrow{p_1 \otimes p_2} N \otimes_R M \otimes_R R \otimes_R R
\]
where $i(n \otimes m) := n \otimes m \otimes 1$, $p_1(n \otimes m \otimes r) := n \otimes m \otimes r \otimes 1$ and $p_2(n \otimes m \otimes r) := n \otimes m \otimes 1 \otimes r$, is exact.

Lemma 3.9. Let M be an R-module and N a right R-module. Then,
\[
\mathcal{N}^\tau(M) = \text{Ker}[N \otimes_R M \otimes_R R \xrightarrow{p_1 \otimes p_2} N \otimes_R M \otimes_R R \otimes_R R]
\]
Proof. It is easy to prove that the kernel of the morphism
\[N \otimes_R R(M) \to N \otimes_R R(M)[x], \quad n \otimes p(m) \mapsto n \otimes (p(m)x - p(mx)) \]
is included in $N \otimes_R M \otimes_R R$. Observe that the morphism of R-algebras $R(M \oplus Rx) \to R(M)[x]$, $m \mapsto m$ and $x \mapsto x$, is an epimorphism.

Then,
\[
\mathcal{N}^\tau(M) \subseteq N \otimes_R M \otimes_R R
\]
and $\mathcal{N}^\tau(M) = \text{Ker}(p_1 - p_2)$.
Remark 3.10. Observe that
\[N^r(M) = \text{Ker}[N \otimes R M \otimes Z R_p \otimes R Q N \otimes R M \otimes Z R] = M^r(N) . \]

Proposition 3.11. Let \(N \) be a right \(R \)-module and let \(M \) be an \(R \)-module. If \(M \) (or \(N \)) is an \(R \)-bimodule or a flat module, then
\[N^r(M) = N \otimes R M . \]

Proof. By Lemma 3.9 we have to prove that \(\text{Ker}(p_1 - p_2) = N \otimes R M \).

Suppose that \(M \) is a bimodule. It is clear that \(\text{Im} i \subseteq \text{Ker}(p_1 - p_2) \). Let
\[s: N \otimes R M \otimes Z R \to N \otimes R M, \quad s(n \otimes m \otimes r) = n \otimes m r \text{ and} \]
\[s': N \otimes R M \otimes Z R \to N \otimes R M \otimes Z R, \quad s'(n \otimes m \otimes r \otimes r') = n \otimes m r \otimes r' . \]

Observe that \(s \circ i = \text{Id} \), so that \(i \) is injective. Also, \(s' \circ p_2 = \text{Id} \) and \(s' \circ p_1 = i \circ s \).

Thus, if \(x \in \text{Ker}(p_1 - p_2) \), then \(p_1(x) - p_2(x) = 0 \); hence, \(0 = s'(p_1(x)) - s'(p_2(x)) = i(s(x)) - x \) and \(x \in \text{Im} i \). Then, \(\text{Ker}(p_1 - p_2) = N \otimes R M \).

In particular, taking the bimodule \(M = R \), the following sequence of morphisms of groups is exact:
\[N \xrightarrow{i} N \otimes Z R \xrightarrow{p_1} N \otimes Z R \otimes R . \]

Thus, if \(M \) is flat, tensoring by \(M \) it also follows that \(\text{Ker}(p_1 - p_2) = N \otimes R M \). □

Proposition 3.12. If there exists a central subalgebra \(R' \subseteq R \) such that \(Q \to Q \otimes R' R \) is injective, for any \(R' \)-module \(Q \), then
\[N^r(M) = N \otimes R M . \]

Proof. Let us write \(M' := M \otimes R' R \), which is a bimodule as follows:
\[r_1 \cdot (m \otimes r) \cdot r_2 = r_1 m \otimes rr_2 . \]

The morphism of \(R \)-modules \(i: M \to M' \), \(i(m) := m \otimes 1 \) is universally injective: Given an \(R \)-module \(P \), put \(Q := P \otimes R M \). Then, the morphism \(P \otimes R M = Q \to Q \otimes R' R = P \otimes R M' \) is injective.

Put \(Q := M'/M \) and \(M'' := Q \otimes R' R \). Let \(p_1 \) be the composite morphism \(M' \to M'/M = Q \to Q \otimes R' R = M'' \). The sequence of morphisms of \(R \)-modules
\[0 \to M \xrightarrow{i} M' \xrightarrow{p_1} M'' \]
is universally exact. Consider the following commutative diagram
\[
\begin{array}{ccc}
0 & \to & N \otimes R M \\
\downarrow & & \downarrow \text{Id} \\
0 & \to & N \otimes R M \otimes Z R \\
\downarrow & & \downarrow \text{Id} \\
0 & \to & N \otimes R M \otimes Z R \otimes R \\
\downarrow & & \downarrow \text{Id} \\
0 & \to & N \otimes R M \otimes Z R \otimes Z R \\
\downarrow & & \downarrow \text{Id} \\
0 & \to & N \otimes R M \otimes Z R \otimes Z R \otimes R \\
\downarrow & & \downarrow \text{Id} \\
0 & \to & N \otimes R M \otimes Z R \otimes Z R \otimes Z R \\
\end{array}
\]

(where \(i' = \text{Id} \otimes i \otimes \text{Id} \otimes \text{Id} \) and \(p' = \text{Id} \otimes p \otimes \text{Id} \otimes \text{Id} \)) whose rows are exact, as well as both the second and third columns, by Proposition 3.11. Hence, the first column is exact too. □
Proposition 3.13. Let F be a functor of R-modules. Then,
$$F^{v^R}(M) = \text{Hom}_R(F, M),$$
for any R-module M. Hence, $F^{v^R} = F$.

Proof. By Lemma 3.9 and Proposition 3.11, the sequence of morphisms
$$S \otimes_R M \longrightarrow S \otimes_R R\langle M \rangle \longrightarrow S \otimes_R R\langle M \oplus Rx \rangle$$
is exact for any R-algebra S, that is, if M, $R\langle M \rangle$ and $R\langle M \oplus Rx \rangle$ are the quasi-coherent modules associated with M, $R\langle M \rangle$ and $R\langle M \oplus Rx \rangle$, respectively, then the sequence of morphisms
$$M \longrightarrow R\langle M \rangle \longrightarrow R\langle M \oplus Rx \rangle$$
is exact. Hence, $F^{v^R}(M) = \text{Hom}_R(F, M)$.

4. ADJOINT FUNCTOR THEOREM

Given an R-algebra S, let $\pi_S: R(S) \rightarrow S$ be the morphism of R-algebras $s \mapsto s$, for any $s \in S$.

Definition 4.1. Let F be an R-module. We have a natural morphism $\pi_F: F^{v^R} \rightarrow F$ defined as follows
$$\pi_{F,S}(m) = F(\pi_S)(m), \text{ for any } m \in F^{v^R}(S) = F^r(S) \subseteq F(R(S)).$$

Proposition 4.2. For any $s \in S$ and $m \in F^{v^R}(S) = F^r(S) \subseteq F(R(S))$,
$$\pi_{F,S}(s \cdot m) = s \cdot F(\pi_S)(m).$$
(Recall Remark 2.5).

Proof. Given $m \in F^r(S)$, we know that $F(h_x)(m) - x \cdot F(in)(m) = 0$, by Definition 3.6. Let $h_s: R\langle S \rangle \rightarrow R\langle S \rangle$ be defined by $h_s(s') = s \cdot s' \in S \cdot S \subseteq R(S)$. Consider the morphism of R-algebras $R\langle S \oplus Rx \rangle \xrightarrow{x=s} R\langle S \rangle, s' \mapsto s'$ and $x \mapsto s$. We have the commutative diagrams

$$
\begin{array}{ccc}
R\langle S \rangle & \xrightarrow{h_x} & R\langle S \oplus xR \rangle \\
\downarrow h_s & & \downarrow \text{id} \\
R\langle S \rangle & & R\langle S \rangle \\
\end{array}
\begin{array}{ccc}
R\langle S \rangle & \xrightarrow{\text{id}} & R\langle S \oplus xR \rangle \\
\downarrow x=s & & \downarrow x=s \\
R\langle S \rangle & & R\langle S \rangle \\
\end{array}
$$

Then,
$$0 = F(x = s)(F(h_x)(m) - x \cdot F(in)(m)) = F(h_x)(m) - s \cdot m.$$}

Observe that $\pi_S \circ h_s = \pi_S \circ R\langle s \rangle$. Then,
$$0 = F(\pi_S)(F(h_x)(m) - s \cdot m) = F(\pi_S)(F(R\langle s \rangle))(m) - s \cdot m$$
$$= F(\pi_S)(s \cdot m - s \cdot m) = F(\pi_S)(s \cdot m) - s \cdot F(\pi_S)(m)$$
$$= \pi_{F,S}(s \cdot m) - s \cdot \pi_{F,S}(m).$$

□
Proposition 4.3. Let $\phi : F \to F'$ be a morphism of R-modules. The diagram

$$
\begin{array}{ccc}
F^{ro} & \xrightarrow{\phi^{ro}} & F'^{ro} \\
\downarrow{\pi_F} & & \downarrow{\pi_{F'}} \\
F & \xrightarrow{\phi} & F'
\end{array}
$$

is commutative.

Proof. The diagram

$$
\begin{array}{ccc}
F^{ro}(S) & \xrightarrow{\phi^{ro}(S)} & F'^{ro}(S) \\
\downarrow{\pi_{F}(S)} & & \downarrow{\pi_{F'}(S)} \\
F(S) & \xrightarrow{\phi_S} & F'(S)
\end{array}
$$

is commutative. \qed

Given a right R-module N, let $i_N : N \to R\langle N \rangle$ be the morphism of R-modules $n \mapsto n$, for any $n \in N$.

Definition 4.4. Let G be a functor of abelian groups. We have a natural morphism $i_G : G \to G^{or}$ defined as follows:

$$
i_G,N(g) := G(i_N)(g), \text{ for any } g \in G(N)
$$

Let us check that $G(i_N)(g) \in G^{or}(N) \subset G^{or}(R(N)) = G(R(N))$: The composite morphism

$$
N \xrightarrow{i_N} R\langle N \rangle \xrightarrow{h_x - x \cdot in} R\langle N \oplus xR \rangle
$$

is zero. Hence,

$$
0 = G(h_x - x \cdot in)(G(i_N)(g)) = (G(h_x) - G(x \cdot in))(G(i_N)(g))
= (G^o(h_x) - x \cdot G^o(in))(G(i_N)(g))
$$

and $G(i_N)(g) \in G^{or}(N)$.

Proposition 4.5. Let $\phi : G \to G'$ be a morphism of functors of groups. The diagram

$$
\begin{array}{ccc}
G & \xrightarrow{\phi} & G' \\
\downarrow{i_G} & & \downarrow{i_{G'}} \\
G^{or} & \xrightarrow{\phi^{or}} & G'^{or}
\end{array}
$$

is commutative.
Proof. The diagram
\[\begin{array}{ccc}
G(N) & \xrightarrow{\phi_N} & G'(N) \\
\downarrow i_{G,N} & & \downarrow i'_{G,N} \\
G^{or}(N) & \xrightarrow{\phi_N} & G^{or}(N) \\
\downarrow & & \downarrow \\
G^r(R(N)) & \xrightarrow{\phi_{R(N)}} & G'^r(R(N)) \\
\downarrow & & \downarrow \\
G(R(N)) & \xrightarrow{\phi_{R(N)}} & G'(R(N))
\end{array} \]
is commutative. □

Lemma 4.6. Let G be a functor of abelian groups. The composite morphism
\[G^a \circ i_{G^a} \circ \pi_G \circ G \rightarrow G^a \]
is the identity morphism.

Proof. The diagram
\[\begin{array}{ccc}
G^a(S) & \xrightarrow{i^a_{G,S}} & G^{or}(S) \\
\downarrow & & \downarrow \\
G(S) & \xrightarrow{i_{G,s}} & G^{or}(S) \\
\downarrow & & \downarrow \\
G(R(S)) & \xrightarrow{G^{or}(s)} & G^a(R(S)) \\
\downarrow & & \downarrow \\
G_R(N) & \xrightarrow{\phi_R(N)} & G^r(R(N))
\end{array} \]
is commutative. Hence, $\pi_{G^a,S} \circ i^a_{G,S} = G(\pi_S) \circ G(i_S) = G(\pi_S \circ i_S) = Id$. □

Lemma 4.7. Let F be an R-module. The composite morphism
\[F^r \circ i_{F^r} \circ F^{or} \circ \pi_F \circ F \rightarrow F^r \]
is the identity morphism.

Proof. The diagram
\[\begin{array}{ccc}
F^r(N) & \xrightarrow{i_{F^r,N}} & F(R(N)) \\
\downarrow & & \downarrow \pi_{F,R(N)} \\
F^{or}(N) & \xrightarrow{F^{or}(i_N)} & F^r(R(N)) \\
\downarrow & & \downarrow \pi_{F,R(N)} \\
F^r(N) & \xrightarrow{i_{F^r,N}} & F(R(N)) \\
\downarrow & & \downarrow \\
F(R(N)) & \xrightarrow{F(R(i_N))} & F(R(N))
\end{array} \]
is commutative. Then, $\pi_{F^r,N} \circ i_{F^r,N} = Id$ since
\[F(\pi_{R(N)}) \circ F(i_{R(N)}) = F(\pi_{R(N)} \circ R(i_N)) = F(Id) = Id. \]
Hence, $\pi_F^a \circ i_{F^r} = Id$. □
Theorem 4.8. Let F be an R-module and G an additive functor of abelian groups. Then, we have the functorial isomorphism

$$\text{Hom}_{\text{grp}}(G, F^\circ) \cong \text{Hom}_R(G^\circ, F)$$

\begin{equation}
\phi \mapsto \pi_F \circ \phi^o \\
\varphi \circ i_G \mapsto \pi_F \circ i_G \circ \varphi \\
\varphi \circ i_G \mapsto \pi_F \circ i_G \circ \varphi
\end{equation}

Proof. It is a check:

\begin{align*}
\phi &\mapsto \pi_F \circ \phi^o \mapsto \pi_F \circ \phi^o \circ i_G = \pi_F \circ i_F \circ \phi \\
\varphi &\mapsto \varphi \circ i_G \mapsto \pi_F \circ \varphi^o \circ i_G = \pi_F \circ i_F \circ \varphi
\end{align*}

\hfill \Box

Corollary 4.9. Let F be an R-module such that $\pi_F : F^\circ \to F$ is an isomorphism. If F' is another R-module, the natural morphism

$$\text{Hom}_R(F, F') \to \text{Hom}_{\text{grp}}(F^\circ, F'), \ f \mapsto f^\circ.$$

Proof. $\text{Hom}_R(F, F') = \text{Hom}_R(F^\circ, F') \cong \text{Hom}_{\text{grp}}(F^\circ, F')$. \hfill \Box

5. Reflexivity theorem

Let M be an R-module. The functor $\mathcal{M}^{\vee r}$ is precisely the functor of (co)points of M in the category of R-modules: if Q is another R-module, in virtue of Proposition 3.13:

$$\mathcal{M}^{\vee r}(Q) = \text{Hom}_R(M, Q) = \text{Hom}_R(M, Q).$$

Lemma 5.1. Let M be a right R-module and G an additive functor of abelian groups. Then,

$$\text{Hom}_{\text{grp}}(\mathcal{M}^{\vee r}, G) = G(M).$$

Proof. It is Yoneda’s lemma. \hfill \Box

Theorem 5.2. Let M be an R-module and N be a right R-module. Then,

$$\text{Hom}_R(\mathcal{M}^{\vee}, N) = N^r(M).$$

Proof. \mathcal{M}^{\vee} satisfies the hypothesis of Theorem 5.1 (see Proposition 3.13), so that

$$\text{Hom}_R(\mathcal{M}^{\vee}, N) \cong \text{Hom}_{\text{grp}}(\mathcal{M}^{\vee r}, N^r) \cong N^r(M).$$

\hfill \Box

Theorem 5.3. Let M be an R-module. The natural morphism of R-modules

$$\mathcal{M} \to \mathcal{M}^{\vee \vee}$$

is an isomorphism.

Proof. It is a consequence of Theorem 5.2 and Proposition 3.11

$$\mathcal{M}^{\vee \vee}(S) = \text{Hom}_R(\mathcal{M}^{\vee}, S) = \mathcal{M}^{\vee}(S) = S \otimes_R M = \mathcal{M}(S).$$

\hfill \Box
Theorem 5.4. Let M be an R-module. The natural morphism of R-modules
\[M \rightarrow M^{**} \]
is an isomorphism.

Proof. Let S be an R-algebra. $M |_{S}$ is the S-quasi-coherent module associated
with $S \otimes_{R} M$ and $M |_{S}^{*} = M |_{S}^{\vee}$. Then,
\[M^{**}(S) = \text{Hom}_{S}(M |_{S}^{*}, S) = \text{Hom}_{S}(M |_{S}^{\vee}, S) \]
\[\cong S \otimes_{S} (S \otimes_{R} M) = S \otimes_{R} M = \mathcal{M}(S). \]
\[\square \]

6. Quasi-coherent modules associated with flat modules

Given an R-module M, let M_{r} be the functor of abelian groups defined by
\[M_{r}(N) := N \otimes_{R} M. \]
for any right R-module N. Observe that there exists a natural morphism $M_{r} \rightarrow M^{r}$ and $M_{r}^{o} = M^{ro} = M$, by Proposition 3.11.

In [5], it is given several characterizations of M_{r}, when M is a flat or projective module. The adjoint functor theorem will give us the corresponding characterizations of M, when M is a flat or projective module. We have only to add the following hypothesis.

Hypothesis 6.1. From now on we will assume that $M_{r} = M^{r}$ (if M is a flat R-module, then $M_{r} = M^{r}$, by Proposition 3.11.)

Definition 6.2. We will say that N^{r} is the module scheme associated with N.

Theorem 6.3. M is a finitely generated projective module iff M is a module scheme.

Proof. \Rightarrow By [5 3.1], there exists an isomorphism $M_{r} \simeq N^{vr}$. Then,
\[M = M_{r}^{o} \simeq N^{vr} = N^{r}. \]
\[\Leftarrow\] $M \simeq N^{r}$. Then, $M_{r} = M^{r} \simeq N^{vr}$. By [5 3.1], M is a finitely generated projective module.

\square

Theorem 6.4. M is a flat module iff M is a direct limit of module schemes.

Proof. \Rightarrow By [4 3.2], there exists an isomorphism $M_{r} \simeq \lim_{\rightarrow i \in I} N_{i}^{vr}$. Then,
\[M = M_{r}^{o} \simeq (\lim_{\rightarrow i \in I} N_{i}^{vr})^{o} = \lim_{\rightarrow i \in I} N_{i}^{vr} = \lim_{\rightarrow i \in I} N_{i}^{r}. \]
\[\Leftarrow\] $M \simeq \lim_{\rightarrow i \in I} N^{r}$. Then, $M_{r} = M^{r} \simeq \lim_{\rightarrow i \in I} N^{vr}$. By [4 3.2], M is flat.

\square

Lemma 6.5. Let N_{1}, N_{2} be right R-modules. Then,
1. $\text{Hom}_{R}(N_{1}^{r}, N_{2}^{r}) = \text{Hom}_{\text{grp}}(N_{1}^{vr}, N_{2}^{vr}).$
2. $\text{Hom}_{R}(N_{1}, N_{2}) = \text{Hom}_{\text{grp}}(N_{1}^{r}, N_{2}^{r}).$
3. $\text{Hom}_{R}(N_{1}^{r}, M) = \text{Hom}_{\text{grp}}(N_{1}^{vr}, M^{r}).$
(4) \(\text{Hom}_R(\mathcal{M}', N_1) = \text{Hom}_{\text{grp}}(\mathcal{M}'^r, N_{1r}). \)

Proof. 1. It is Corollary 6.5.
 2. \(\text{Hom}_R(N_1, N_2) = \text{Hom}_{\text{grp}}(N_{1r}, N_{2r}). \)
 3. \(\text{Hom}_R(N_1', \mathcal{M}) = \text{Hom}_{\text{grp}}(N_1'^r, \mathcal{M}^r) = \text{Hom}_{\text{grp}}(N_1^r, \mathcal{M}_r). \)
 4. \(\text{Hom}_R(\mathcal{M}', N_1) = \text{Hom}_{\text{grp}}(\mathcal{M}'^r, N_{1r}). \)

\(\square \)

Lemma 6.6. Let \(f : \mathbb{F}_1 \to \mathbb{F}_2 \) be a morphism of \(\mathcal{R} \)-modules. Then, \(f \) is a monomorphism iff the morphism of functors of groups \(f^r : \mathbb{F}_1^r \to \mathbb{F}_2^r \) is a monomorphism.

Proof. If \(f \) is a monomorphism, then \(f^r \) is a monomorphism, since \(f^r_S = f_{R(N)} \) on \(\mathbb{F}_1^r(N) \subseteq \mathbb{F}_1(R(N)). \) If \(f^r \) is a monomorphism, then \(f = f^{ro} \) is a monomorphism since \(f^{ro}_S = f^S. \)

\(\square \)

Theorem 6.7. Let \(M \) be an \(\mathcal{R} \)-module. The following statements are equivalent.

1. \(M \) is a flat Mittag-Leffler module.
2. Every morphism of \(\mathcal{R} \)-modules \(\mathcal{N}' \to \mathcal{M} \) factors through an \(\mathcal{R} \)-submodule scheme of \(\mathcal{M} \), for any right \(\mathcal{R} \)-module \(N \).
3. \(\mathcal{M} \) is equal to a direct limit of \(\mathcal{R} \)-submodule schemes.

Proof. 1. \(\iff \) 2. It is an immediate consequence of [5, 4.5], Lemma 6.6, and Lemma 6.6.

1. \(\iff \) 3. It is an immediate consequence of [5, 4.5] and Lemma 6.6 since \(\mathcal{M} \cong \lim_{\to \mathcal{N}^r_i} \mathcal{M}_r \cong \lim_{\to \mathcal{N}^r_i} \mathcal{M}_r. \)

\(\square \)

Lemma 6.8. A morphism of \(\mathcal{R} \)-modules \(f : \mathcal{M}' \to \prod_{i \in I} \mathcal{N}_i \) is an epimorphism iff the corresponding morphism of functors of groups \(\mathcal{M}'^r \to \prod_{i \in I} \mathcal{N}_{ir} \) (see 6.7 (4)) is an epimorphism.

Proof. \(\Rightarrow \) \(f = (\sum_j n_n \otimes m_{ij})_{i \in I} \) through the equality

\[
\text{Hom}_R(\mathcal{M}', \prod_{i \in I} \mathcal{N}_i) = \text{Hom}_R(\mathcal{M}'^r, \prod_{i \in I} \mathcal{N}_{ir}) \cong \prod_{i \in I} \mathcal{N}_{ir}(M) = \prod_{i \in I} (N_i \otimes \mathcal{M}_r(M)).
\]

We have to prove that the morphism

\[
\text{Hom}_R(M, N) \xrightarrow{1} \mathcal{M}'^r(N) \xrightarrow{r} \prod_{i \in I} \mathcal{N}_{ir}(N) \xrightarrow{\prod_{i \in I} (N_{ir} \otimes N)}
\]

\[
h \xrightarrow{(\sum_j n_n \otimes h(m_{ij}))_{i \in I}} (\sum_j n_n \otimes h(m_{ij}))_{i \in I}
\]

is an epimorphism, for any \(\mathcal{R} \)-module \(N \). If \(N \) is an \(\mathcal{R} \)-algebra, then it is an epimorphism, since \(f \) is an epimorphism. We can suppose that \(N \) is a free \(\mathcal{R} \)-module, since the functor \(\prod_{i \in I} \mathcal{N}_{ir} \) preserves epimorphisms. In this case \(N \) is naturally a bimodule. Let \(\pi : R(N) \to N \) be the composition of the obvious morphisms of \(\mathcal{R} \)-modules \(R(N) \to N \cdot \mathcal{R} \to N \). Obviously, \(\pi \) is an epimorphism. Then, we can suppose that \(N \) is an \(\mathcal{R} \)-algebra. We conclude.

\(\square \)
Theorem 6.9. Let M be an R-module. The following statements are equivalent:

1. M is a flat strict Mittag-Leffler module.
2. Any morphism $f : M^\vee \to N$ factors through the quasi-coherent module associated with $\text{Im} f_R$, for any right R-module N.
3. Any morphism $f : M^\vee \to R$ factors through the quasi-coherent module associated with $\text{Im} f_R$.
4. Let $\{M_i\}_{i \in I}$ be the set of all finitely generated R-submodules of M, and $M_i' := \text{Im}[M^* \to M_i^*]$. The natural morphism $M \to \lim_{\rightarrow} M_i^\vee$ is an isomorphism.
5. M is a direct limit of submodule schemes, $N_i^\vee \subseteq M$ and the dual morphism $M^\vee \to N_i$ is an epimorphism, for any i.
6. There exists a monomorphism $M \hookrightarrow \prod R$.

Proof. 1. \iff 2. It is a consequence of [5, 4.9 (2)] and Lemma 6.5 4.
 1. \iff 3. It is a consequence of [5, 4.10] and Lemma 6.5 4.
 1. \iff 4. It is a consequence of [5, 4.9 (3)].
 1. \iff 5. It is a consequence of [5, 4.9 (4)] and Lemma 6.8.
 1. \iff 6. It is a consequence of [5, 4.7 (3)] and Lemma 6.9. \qed

Proposition 6.10. An R-module M is a projective R-module of countable type if and only if there exists a chain of submodule schemes of M

$$N_1^\vee \subseteq N_2^\vee \subseteq \cdots \subseteq N_n^\vee \subseteq \cdots$$

such that $M = \bigcup_{n \in \mathbb{N}} N_n^\vee$.

Proof. It is a consequence of [5, 4.11,13] and Lemma 6.0. \qed

Theorem 6.11. An R-module M is projective if and only if there exists a chain of R-submodules of M

$$W_1 \subseteq W_2 \subseteq \cdots \subseteq W_n \subseteq \cdots$$

such that $M = \bigcup_{n \in \mathbb{N}} W_n$, where W_n is a direct sum of module schemes and the natural morphism $M^\vee \to W_n^\vee$ is an epimorphism, for any $n \in \mathbb{N}$.

Proof. It is a consequence of [5, 4.14] and Lemma 6.8. \qed

References

[1] Álvarez, A., Sancho, C., Sancho, P.: Algebra schemes and their representations, J. Algebra 296/1 (2006) 110–144.
[2] Álvarez, A., Sancho, C., Sancho, P.: A characterization of linearly semisimple groups, Acta. Math. Sin.-English Ser. 27/1 (2011) 185–192.
[3] Álvarez, A., Sancho, C., Sancho, P.: Reynolds operator on functors, J. Pure Appl. Algebra. 215/8 (2011) 1958–1966.
[4] Demazure, M., Gabriel, P.: Introduction to Algebraic Geometry and Algebraic Groups, Mathematics Studies 39, North-Holland, 1980.
[5] Gordillo-Merino, A., Navarro, J., Sancho, P.: Functors of modules associated with flat and projective modules, arXiv:1710.04153v3.
[6] Hirschowitz, A.: Cohérence et dualité sur le gros site de Zariski, Algebraic curves and projective geometry (Trento, 1988), LNM, 1389, Springer, Berlin, 1989.
FUNCTORS OF MODULES ASSOCIATED WITH FLAT AND PROJECTIVE MODULES II

Departamento de Matemáticas, Universidad de Extremadura, Avenida de Elvas, s/n, 06006 Badajoz (SPAIN)
E-mail address: adgorner@unex.es, navarroarmendia@unex.es, sancho@unex.es