Spatial Inhomogeneities in Disordered d-Wave Superconductors: Effect on Density of States and Superfluid Stiffness

Amit Ghosal, Mohit Randeria and Nandini Trivedi
Department of Theoretical Physics, Tata Institute of Fundamental Research, Mumbai 400005, India

We study a short coherence length d-wave superconductor with finite density of unitary scatterers using the Bogoliubov-deGennes technique. We find that the low-energy density of states is reduced, the superfluid stiffness is significantly larger and off-diagonal long range order is more robust than the self-consistent T-matrix prediction. These results are a consequence of the inhomogeneous pairing amplitude in the ground state and of the low-lying excitations formed by hybridized impurity resonances. These features, with their nontrivial spatial structure, cannot be adequately described within the conventional T-matrix approach.

PACS numbers: 74.20.-z, 74.40.+k, 74.20.Mn, 71.55.Jv, 74.62.Dh

(October 30, 2018)

Recently there has been a great deal of theoretical and experimental interest in the problem of disordered d-wave superconductors (SC) given the d-wave symmetry of the high Tc cuprates. A single unitary scatterer was predicted by Balatsky and coworkers to lead to a low-energy resonance with a characteristic four-fold symmetric wavefunction about the impurity site. This was recently observed in an STM study of a Zn-doped cuprate. The T-matrix approximation used in Ref. [1] is very accurate for the one-impurity problem, and the order parameter suppression near the impurity, which it neglects, does not lead to any qualitative changes. On the other hand, the problem of a finite density of unitary scatterers is more subtle [2]. There is a large body of theoretical work using the self-consistent T-matrix approximation leading to very interesting predictions [1,3,4].

However, the impurity averaging procedure used in this method, and in other approaches [5,6], that go beyond it, basically washes out the inhomogeneous structures that the disorder potential gives rise to.

We use the Bogoliubov-deGennes (BdG) approach to study the spatial inhomogeneity induced by unitary scatterers in a short coherence length (ξ0) superconductor, and to understand how these affect the low energy properties of the system such as the one-particle density of states (DOS) N(ω) and the superfluid stiffness Ds. Our main results can be summarized as follows:

(1) The low energy DOS is considerably reduced relative to the T-matrix result. The low lying excitations are found to be generated by the interference of individual impurity resonances. Such excitations, with their nontrivial spatial structure, cannot be adequately described within the T-matrix formulation.

(2) The superfluid stiffness Ds is found to be significantly larger than that obtained within the T-matrix analysis. The larger Ds directly correlates with the lower DOS for “normal” excitations.

(3) We find that off-diagonal long range order (ODLRO) and finite superfluid stiffness survive to impurity concentrations much higher than the critical concentration of the T-matrix approximation. This relative insensitivity of short coherence length d-wave superconductors to impurities is shown to be closely tied to the inhomogeneity of the pairing amplitude on the scale of ξ0 in response to a random potential. In contrast, the T-matrix approach assumes a uniform amplitude which then gets globally suppressed to zero at a critical disorder.

Several authors have previously used the BdG approach for dirty d-wave systems. Tc reduction, superfluid density and localization of excitations was studied in Ref. [7] and more recently the density of states has been studied in refs. [8]. Our calculations differ from these in several aspects, some more important (e.g., working at fixed density rather than fixed chemical potential and inclusion of inhomogeneous Hartree-Fock shifts) than others (such as choice of Hamiltonian parameters, and particle-hole asymmetry). While our results are broadly consistent with those obtained previously, what is new here is our emphasis on understanding the BdG results for N(ω), Ds and ODLRO in terms of two different effects: (A) the inhomogeneity in the local pairing amplitude which characterizes the disordered ground state, and (B) the spatial structures characterizing the low-lying excitations in the disordered system. This provides a deeper insight into our BdG results, and also highlights the shortcomings of the T-matrix approach.

We model the 2D disordered d-wave SC by the Hamiltonian \(\mathcal{H} = \mathcal{K} + \mathcal{H}_{\text{int}} + \mathcal{H}_{\text{dis}} \). The kinetic energy \(\mathcal{K} = -t \sum_{<ij>,\alpha} (\hat{c}_{i\alpha}^\dagger \hat{c}_{j\alpha} + \text{h.c.}) \) describes electrons, with spin \(\alpha \) at site \(i \) created by \(\hat{c}_{i\alpha}^\dagger \), hopping between nearest-neighbors \(<ij> \) on a square lattice. The interaction term \(\mathcal{H}_{\text{int}} = J \sum_{<ij>} (\hat{S}_i \cdot \hat{S}_j - n_i n_j / 4) + U \sum_i n_{i\uparrow} n_{i\downarrow} \) is chosen to lead to a d-wave SC ground state in the disorder-free system. The spin operator \(\hat{S}_i^\alpha = c_{i\alpha}^\dagger \sigma^\alpha \sigma^\beta c_{i\beta} \), where the \(\sigma^\alpha \) are Pauli matrices, and the density \(n_{i\alpha} = c_{i\alpha}^\dagger c_{i\alpha} \) with \(n_i = n_{i\uparrow} + n_{i\downarrow} \). Finally, \(\mathcal{H}_{\text{dis}} = \sum_i (V(i) - \mu) n_i \) where \(\mu \) is the chemical potential and the disorder potential \(V(i) \) is an independent...
random variable at each site which is either $+V_0$, with a probability n_{imp} (impurity concentration), or zero. We believe that such a simple model is adequate to describe the strongly-correlated cuprates at low temperatures because their SC state has sharp quasiparticle excitations.

The BdG equations are given by:

$$
\left(\begin{array}{c} \hat{\xi} \\ \Delta^* \end{array} \right) \left(\begin{array}{c} u_n \\ v_n \end{array} \right) = E_n \left(\begin{array}{c} u_n \\ v_n \end{array} \right)
$$

(1)

where $\hat{\xi}u_n(j) = -\sum_\delta (t+W_j)u_{n}(j+\delta)+(V(j)-\mu_j)u_n(j)$ and $\Delta u_n(j) = \sum_\delta \Delta(j+\delta)u_n(j+\delta)$, and similarly for $v_n(j)$. The pairing amplitude on a bond $(j;\delta)$, where $\delta = \pm x, \pm y$, is defined by $\Delta(j;\delta) = -J(c_{j+\delta}^\dagger c_{j}+c_{j}^\dagger c_{j+\delta})/2$. The inhomogeneous Hartee-Fock shifts are given by $\mu_j = \mu - U\langle n_j \rangle/2 + J \sum_\delta \langle n_{j+\delta} \rangle$ and $W_j = J\langle c_{j+\delta}c_{j}-c_{j}c_{j+\delta}\rangle$.

We numerically solve for the BdG eigenvalues $E_n \geq 0$ and eigenvectors (u_n, v_n) on a lattice of N sites with periodic boundary conditions. We then calculate the pairing amplitude $\Delta(j;\delta) = J \sum_n [u_{n}(j+\delta)v_{n}^*(j) + u_{n}(j)v_{n}^*(j+\delta)]/2$ at $T=0$, the density $\langle n_j \rangle = 2 \sum_n |v_n(j)|^2$, and Fock shift $W_j = J \sum_n v_n(j+\delta)v_{n}^*(j)$. These are fed back into the BdG equation, and the process iterated until self consistency is achieved for each of the (local) variables defined on the sites and bonds of the lattice. The chemical potential μ is chosen to obtain a given average density $\langle n \rangle = \sum \langle n_j \rangle / N$. The d-wave pairing amplitude is given by $\Delta(j) = |\Delta(j;+\hat{x}) - \Delta(j;+\hat{y}) + \Delta(j;-\hat{x}) - \Delta(j;-\hat{y})|/4$.

We have studied the model for a range of parameters and lattice sizes. Here we focus on $J=U=1.15$, in units of $t=1$, with $\langle n \rangle = 0.875$ (similar to the parameters used in refs. 13, 15) on systems of size up to 26×26. For these parameters, and $n_{\text{imp}} = 0$, the DOS $N_0 \simeq 0.21$ and $\Delta_0 \simeq 0.077$ corresponding to a maximum gap of 0.31. For the impurity potential we choose $V_0 = 100$, close to the unitary limit. The results are averaged over 15 - 40 different realizations of the random potential.

Let us first study the density of states (DOS) $N(\omega)$ as $\omega \to 0$. To highlight this, we compare in Fig. 2 the finite $N(0)$ of the T-matrix analysis with the BdG $\overline{N}(0)$, which is the average of $N(\omega)$ over the (arbitrarily chosen) range $|\omega| \leq 0.05 \ll \gamma$.

![FIG. 2. BdG density of states (DOS) on a $N = 24 \times 24$ system, with $J = U = 1.15t$ and $\langle n \rangle = 0.875$, averaged over 40 disorder realizations at each n_{imp}. Note the sharp drop in the DOS near $\omega = 0$ on a scale much smaller than the energy gap of 0.31t in the pure system.](image)

To gain further insight into this difference between the T-matrix and BdG results, we study the wavefunctions of the low-lying excitations for individual disorder realizations. The probability density $|u_n(i)|^2 + |v_n(i)|^2$ corresponding to the lowest energy states at various impurity...
concentrations are plotted in right hand panels of Fig. 3.

FIG. 3. Left column: Evolution of the local pairing amplitude $\Delta(i)$ with impurity concentration. Dark regions in the grey-scale plot indicate suppressed pairing amplitude, and are correlated with the impurity locations. Parameters used are $J = U = 1.15t$ and $\langle n \rangle = 0.875$ on an $N = 24 \times 24$ system. Right column: The corresponding probability density $|u_n(i)|^2 + |v_n(i)|^2$ for the lowest excited state ($n = 1$) wavefunction. Higher probability is indicated by a darker shade. Each impurity location is marked by a dot.

The resonance for a single unitary impurity shows characteristic powerlaw tails along diagonal directions $\pm i$. From Fig. 3, and other low lying excitations not shown here, we see that for finite n_{imp} these wave functions are generated by the hybridization of individual impurity resonances. The effects of constructive and destructive interference between the “diagonal tails” of individual resonances are apparent. The importance of such states was suggested in ref. [1]; however, their analysis assumed that the resonance energies are randomly distributed over a scale $W \gg \Delta_0$, which is not the case in the physical situation obtained here.

We emphasize that excitations with such non-trivial spatial structures cannot be described by T-matrix theory, which treats the scattering of quasiparticles in a homogeneous (impurity averaged) medium off a single impurity in a self-consistent fashion. The resulting constant $N(0)$ then arises from a constant broadening γ (defined above) of states near the d-wave nodes. In contrast, the low energy DOS in the BdG theory comes from new states arising out of hybridization of impurity resonances.

We already see from Fig. 2 that at and beyond the critical concentration of the T-matrix approach, $n_{\text{imp}}^c \approx 0.08$ for our choice of parameters, the BdG DOS does not approach the non-disordered value N_0. This raises the questions: does SC persist beyond n_{imp}^c, and if so, how? To address these issues we calculate the superfluid stiffness using the linear response result: $D_s/\pi = \langle -k_x \rangle - \Lambda_{xx}(q_x = 0, q_y \to 0, \omega = 0)$. The diamagnetic term $\langle -k_x \rangle$, is one-half (in 2D) the kinetic energy $\langle -K \rangle$, and the paramagnetic term Λ_{xx}, is the long wavelength limit of the transverse current-current correlation averaged over disorder realizations.

FIG. 4. $T = 0$ (a) off-diagonal long order parameter and (b) superfluid stiffness, as a function of concentration of unitary scatterers, obtained by the BdG method. Note that d-wave superconductivity is much more robust than the T-matrix prediction. Parameters used are $J = U = 1.15t$ and $\langle n \rangle = 0.875$, with $N_0 = 0.21$ and $D_s,0 = 0.80$, on an $N = 24 \times 24$ system, averaged over 15 disorder realizations.

We see from Fig. 4b that the superfluid stiffness D_s is much larger than the T-matrix result, consistent with Ref. [2], and does not vanish up to $n_{\text{imp}} = 0.12$ which is 50% larger than n_{imp}^c within the T-matrix approximation. (We did not go to higher impurity concentrations because of the increase in computational time to reach
self-consistency.) In any case, we expect that once D_s is sufficiently small, phase fluctuations neglected within the BdG mean field approach will drive the transition to the non-superconducting state [17]; this is left for a future investigation. Here we wish to gain insight into how the system manages to exhibit $D_s > 0$, even when T-matrix theory predicts it to be non-superconducting.

One way to think about this is to correlate D_s and $N(\omega)$. A smaller DOS for low-lying excitations in the BdG approach implies fewer “normal fluid” excitations and hence a larger superfluid density compared to the T-matrix approximation. A complementary approach, which we find very illuminating, relates the D_s to the inhomogeneous pairing amplitude $\Delta(i)$ in the disordered ground state, shown in the left panels of Fig. 3. Notice that the d-wave pairing amplitude is suppressed in the vicinity of an impurity on the scale of the coherence length ξ_0 which is 3 to 4 lattice units. (In addition, a small extended s-wave component, not shown, also develops nearby.) The regions of suppressed pairing amplitude give the appearance of “swiss cheese” [18] at finite n_{imp} in Fig. 3.

In the T-matrix approach the order parameter is forced to be spatially uniform and it vanishes for $n_{\text{imp}} \geq n_{\text{imp}}^\text{imp}$. However, by allowing the pairing amplitude to vary on the scale of ξ_0, in response to the impurity potential, the BdG solution permits a non-vanishing order parameter Δ which is larger than that obtained within T-matrix theory for all n_{imp}; see Fig. 4a. (Δ is formally defined in terms of the long distance behavior of the appropriate reduced two-particle density matrix). We note that both Δ / ξ_0 and $D_s / D_s,0$ are linear functions of $n_{\text{imp}} \xi_0^2$ for a substantial range of impurity concentration.

To qualitatively understand the superfluid stiffness D_s, consider applying an external phase twist to the inhomogeneous ground state. Despite the fact that at large n_{imp} there are large regions where the amplitude vanishes, there are still paths that permit phase information to be conveyed from one edge of the system to the other, thus leading to a non-vanishing D_s. Thus the spatial inhomogeneity of the pairing amplitude, which is particularly important in short coherence length superconductors, is crucial in understanding the relative insensitivity of the system to unitary impurities, in that the order parameter and superfluid stiffness are much larger than one might have guessed from the T-matrix approximation. This lack of sensitivity of the high Tc cuprates to disorder has been seen in numerous experiments [18].

Despite the quantitative results on finite systems and their detailed qualitative understanding, many questions remain open. The first one relates to T_c suppression. While it is easy to calculate the “mean field T_c”, a more reliable estimate should include the effect of both phase fluctuations and quasiparticles. Another important question is thermal transport in the SC state. Why does it not reflect the low energy structure of the DOS and why is it consistent with the universal behavior predicted by T-matrix theory [14], when the superfluid density [18] shows deviations from it. A full understanding of the asymptotic DOS of the low-energy excitations, their localization properties and the study of SC state transport on a network of hybridized resonances are all topics for future research.

Acknowledgements: We would like to thank A. V. Balatsky, P. J. Hirschfeld, A. Paramekanti, S. H. Pan and G. P. Das for illuminating discussions. M. R. was supported in part by the Department of Science and Technology through the Swarnajayanti scheme.

[1] A. V. Balatsky, M. I. Salkola and A. Rosengren, Phys. Rev. B51, 15547 (1995); M. I. Salkola, A. V. Balatsky, and D. J. Scalapino, Phys. Rev. Lett. 77, 1841 (1996).
[2] S. H. Pan et al., Nature 403, 746 (2000).
[3] A. V. Balatsky and M. I. Salkola, Phys. Rev. Lett. 76, 2386 (1996).
[4] P. A. Lee, Phys. Rev. Lett. 71, 1887 (1993).
[5] P. J. Hirschfeld and N. Goldenfeld, Phys. Rev. B 48, 4219 (1993).
[6] M. J. Graf et al., Phys. Rev. B53, 15147 (1996).
[7] K. Maki in “Lectures on the Physics of Highly Correlated Electron Systems”, AIP Conf. Proc. 438, edited by F. Mancini (AIP, New York, 1998).
[8] T. Senthil et al., Phys. Rev. Lett. 81, 4704 (1998).
[9] M. Franz, C. Kallin and A. J. Berlinsky, Phys. Rev. B54, R6897 (1996); M. Franz et al., Phys. Rev. B56 7882 (1997).
[10] M. E. Flatte and J. M. Byers, Phys. Rev. Lett. 80, 4546 (1998).
[11] W. A. Atkinson, P. J. Hirschfeld and A. H. MacDonald, arXiv:cond-mat/0002333.
[12] The mean field equations for our model are identical with those of refs. [11], provided one ignores the Hartree and Fock shifts (defined below Eq. (1)) in all models. However, we choose to work with a tJ-like Hamiltonian and keep the appropriate Hartree-Fock shifts.
[13] Y. Wang and A. H. MacDonald, Phys. Rev. B52 R3876 (1995).
[14] In order to achieve self-consistency for local pairing amplitudes and Hartree-Fock shifts we had to use the Broyden method (see, e.g., W. E. Pickett, Comp. Phys. Rep. 9, 115 (1989)). The number of iterations necessary to obtain self-consistency grows considerably with disorder; we have checked that the same self-consistent solution is obtained for different initial guesses.
[15] The T-matrix results plotted in Figs. 2 and 4 are adapted from ref. [14] for a particle-hole symmetric, continuum model with the same values of N_0, Δ_0 and n_{imp}.
[16] We will discuss elsewhere the dependence of the impurity resonance wavefunctions on model parameters and on the system size.
[17] A. Ghosal, M. Randeria and N. Trivedi, Phys. Rev. Lett. 81, 3940 (1998).
[18] B. Nachumi et al., Phys. Rev. Lett. 77, 5241 (1996).
[19] L. Taillefer et al., Phys. Rev. Lett. 79, 483 (1997).