Species composition of sea stars (Echinodermata: Asteroidea) in the Patagonian Argentinian deep sea, including seven new records: connectivity with sub-Antarctic and Antarctic fauna

Jennifer Hurtado-García1 · M. Eugenia Manjón-Cabeza1

Received: 3 January 2022 / Revised: 20 May 2022 / Accepted: 23 May 2022 / Published online: 28 June 2022
© The Author(s) 2022

Abstract
The main target of this paper is to improve the knowledge of the species composition of sea stars in Patagonian Argentine deep sea reaching depths of 2062 m. In addition, these results offer us the opportunity to analyze the possible connections between Argentinian marine fauna and adjacent Antarctic areas that have become a topic of interest in the past few years. This work is based on Atlantic Projects’ surveys carried out on an atypical and especially vulnerable marine ecosystems (canyons created from craters collapse by gas leaks). These are profusely impacted by frequent fishing activities, being one of the most important and international fishing grounds, where 887 records (1878 specimens) of 41 species of asteroids were collected in 217 stations ranging from 219 to 2062 m in depth. Seven of those species are proposed as new records: (Diplasterias octoradiata (Studer 1885), Plutonaster bifrons (Wyville Thomson, 1873), Radiaster elegans Perrier, 1881, Anseropoda antarctica Fisher, 1940, Pilloshuriaster calvus Mah, 2011, Paralophaster lorioli (Koehler, 1907), Pteraster flabellifer Mortensen 1933). After refining the database built from literature and open-access databases such as OBIS and AntBIF, the new Argentinian asteroids deep-water checklist contains 2198 records from 64 asteroids species including the 7 new records proposed. Most of these 64 species (89.06%) are present in Antarctic-adjacent waters, and after the study of their occurrences at traditional biogeographic entities, our results support the hypothesis that Argentinian waters (in the case of the class Asteroidea) should be considered part of the sub-Antarctic entity.

Keywords Asteroids · Asteroidea · Argentine · Antarctica

Introduction
The distribution of Argentinian marine fauna and their connection with adjacent areas has become a topic of interest in the last few years. Regarding the north, a good study of these connections can be found in Alvarado and Solís-Marín (2013) and, within this field, the study undertaken by Brogger et al. (2013a) in Argentinean waters. Regarding the south, some authors have tried to explain how species distribution areas can help to analyze the existence of biogeographical entities (regions or provinces) in the Southern Ocean, mainly based on their occurrence (Hedgpeth 1969; Rodriguez et al. 2007; Griffiths et al. 2009; De Broyer et al. 2014; Figuerola et al. 2017; Weir and Stanworth 2019, among others). In the case of echinoderms, the most recent studies have been carried out by Martin-Ledo and Lopez Gonzalez (2014), Danis et al. (2014), Eleaume et al. (2014), Saimède et al. (2014), and Moreau et al. (2017, 2018, 2019, 2021), among others. The study area is located in the Southwest Atlantic. It extends over 200 miles from the exclusive economic zone of Argentinian waters and reaches a depth of 2062 m. This zone is known as the Patagonian fishing area, owing to the fishing activities undertaken here by many countries, among them Spain (del Rio et al. 2012). These fishing activities are related to the area’s high biodiversity, which is mainly due to the nutrient-rich upwelling during spring and summer as a consequence of the confluence of two ocean currents: the warm, subtropical Brazilian current (BC), which flows from the north, and the cold, deeper current from the Malvinas/Falkland Islands (M/FI) from the south. The latter could be considered a branch of the Antarctic Circumpolar Current...
(ACC) (Piola and Rivas 1997; Piola and Matano 2001; Rivas et al. 2006; Campagna et al. 2007). In addition, the bottom morphology shows a canyon system with very special features since it was created from the collapse of a series of pockmarks (craters produced by gas leaks).

In this context, the Spanish General Secretariat of Fisheries charged the Spanish Institute of Oceanography (Instituto Español de Oceanografía, IEO), with the undertaking of a series of multidisciplinary research surveys (focused on slope and canyon systems: Atlantis Project; del Rio et al. 2012) aimed at studying the potential existence of vulnerable marine ecosystems (VMEs), where echinoderms, among others, represent one of the most abundant and frequent taxa in the area.

Most studies on echinoderms from this area are restricted to the Argentinian shelf or near the slope, such as Bernasconi (1934, 1935, 1937, 1941a, 1941b, 1943, 1962a, 1962b, 1963, 1964a, 1964b, 1965, 1966a, 1972, 1973a, 1980), Tablado (1982), and Tablado and Maytia (1988), and more recent studies, such as Brogger et al. (2010, 2013b), Martínez and Brogger (2012), Martínez et al. (2015), Souto et al. (2014), Brogger and O’Hara (2015), Di Giorgio et al. (2015), Arribas et al. (2016), Epherra et al. (2015, 2017), Hunter et al. (2016); Martínez (2016), Martínez and Penchasazdeh (2017), Martínez et al. (2018; 2020), Wilkie and Brogger (2018), Carames et al. (2019), Flores et al. (2019), Martín and Tavares (2019), and Gil et al. (2020). With regard to the class Asteroidea, few papers have been published recently: Romanelli and Tablado (2011), Pérez et al. (2017), Cossi et al. (2017), Arribas et al. (2017), Bercocechua et al. (2017), Rivadeneira et al. (2017), Fraysse et al. (2018), Rivadeneira et al. (2020) and Fraysse et al. (2020), and Moreau et al. (2018, 2021). However, some asteroids were found in deeper areas that were recorded on research cruises, such as the Challenger, Vema, and Walter Herwig, with results published by Sladen (1882, 1883) and Bernasconi (1965, 1966b, 1973b) respectively.

The objectives of the present work are to review the asteroid diversity in the study area considering: (1) the wide depth range covered by the Atlantis project compared with previous studies, (2) the potential record of new species occurrences, with better descriptions of species depth ranges, and (3) quantifying the number of common species shared with Antarctic waters describing potential connections between these two areas.

Material and methods

Field sampling

Sampling was done during Atlantis Projects’ surveys (13 multidisciplinary research expeditions) on board the Miguel Oliver vessel from 2007 to 2010 (Fig. 1). Different equipment was used: rock dredge (0.8 m wide and 0.3 m high; mesh size 10 mm), mega box corer dredge, and LOFOTEN trawl (31.20 m × 17.70 m; mesh size 35 mm).

Fauna was collected at 480 stations; however, only 217 stations were taken into account (219 m to 2062 m depth) because the present study is restricted to the slope and canyons system (Table 1).

Identification and taxonomy

Asteroids were sorted and fixed in 70% ethanol. Identification was based on morphological characters according to: Clark and Downey (1992), Clark (1962), Bernasconi (1934, 1935, 1937, 1941a, 1943, 1957, 1961, 1962a, 1962b, 1963, 1964a, 1964b, 1965, 1966a, 1966b, 1967, 1972, 1973a, 1980), Tablado (1982), Tablado and Maytia (1988), McKnight (2006), Mah (2011, 2018), and the original descriptions. Asteroids’ classifications were checked in World Register of Marine Species (WoRMS: Mah 2022), and new record species AphiaID (urn:lsid:marinespecies.org:taxname) were included for consulting and referring to synonymies. Morphological notations follow Clark and Downey (1992).

Datasets

After species identification, the results were georeferenced and included in a dataset.

Several publicly available datasets were used for species distribution analysis: Ocean Biogeographic Information System (OBIS), Antarctic Biodiversity Information Facility (AntBIF), Museo Argentino de Ciencias Naturales (MACN), and online USNM Invertebrate Zoology Collection database. On the other hand, other records were include coming from literature such as Mah (2011), Mah and Blake (2012), Souto et al. (2014), Moreau et al. (2018), Guillaumeot et al. (2020), and Moreau et al. (2021). These records were assessed to determine their reliability on the basis of two criteria: (1) records published in scientific journals and (2) records or human observations from international surveys or institutions and identified by experts of recognized standing. The reliable records were included together with Atlantic surveys ones that were curated following a polygon built (ArcGIS 10.7) delimiting the area of study to the appropriated countries borders and depth range (nodes: 37.69°S, 69.37°W; 37.69°S, 48.97°W; 55.78°S, 68.60°W; 55.67°S, 63.48°W; 49.81°S, 63.54°W; 49.63°S, 48.97°W).
Arc (SA), sub-Antarctic Islands, including Bouvet Island, Prince Edward Islands, Crozet Islands and Kerguelen Islands (SAI), and Antarctica (A) following Griffiths et al. (2009), based on Moore et al. (1999).

Results

Studied area checklist and new records

A total of 1878 specimens, belonging to 41 asteroid species (Table 2), were found where Ctenodiscus australis were the most frequent and abundant (22.68%; 50.23%), followed by Cheiraster planeta (9.31%; 28.57%) and Henricia studeri (12.83%; 28.57%).

Twenty-four species expanded their bathymetric range (Table 3), and seven species are proposed as new records for Argentinian waters, which are summarized below (Fig. 2, 3; Online Resource 1).

Phylum Echinodermata Klein 1778
Class Asteroidea Blainville 1830

Order Forcipulatida Perrier 1884
Family Asteriidae Gray 1840

Genus Diplasterias Perrier 1891
Diplasterias octoradiata (Studer 1885), new record (Fig. 2a–c)
AphiaID: 172655
Diagnosis Arms 7–9, rarely 5, 6, 10. Abactinal surface rigid, skin pustular, skeleton continuous and delicate with spines numerous with a crossed pedicellariae wreath (Fig. 2a). Superomarginal spines with a wreath of crossed pedicellariae (Fig. 2b). Adambulacral plates without crossed pedicellariae, straight and predominantly monacanthid (Fig. 2c).
Distribution Malvinas/Falkland Islands, The Scotia Arc, Ross Sea, Wilkes Land. Present study: Argentine. New record: 2 specimens (Online Resource 1).
Bathymetric range 7–866 m (Ahearn 1995; USNM1087183 from Invertebrate Collection Database, NMNH). Present study: 849–855 m.
Remarks Diplasterias octoradiata and Diplasterias radiata (Koehler 1923) (7–10 arms) could be confused because of their arms number overlap; however, the number of adambulacral spines are different: D. radiata are diplacanthid, and D. octoradiata are monacanthid.

Order Paxillosida Perrier 1884
Family Astropectinidae Gray 1840

Fig. 1 Area of study. a General view with the sampled area labeled as b. b Sampled area; stations are represented by black dots.
Table 1 Geographical positions (LAT, latitude; LON, longitude) and depth (D) of the stations (ST) from Atlantis Project (Argentine slope and canyons system)

ST	LAT	LON	D	ST	LAT	LON	D
DR01.0108	−46.66	−59.62	980	DR17.0108	−45.46	−58.88	1820
DR01.0209	−43.92	−59.30	1369	LO1.1207	−46.27	−60.12	533
DR01.0210	−41.90	−57.85	338	LO10.1207	−45.55	−59.87	772
DR01.1008	−46.94	−60.01	761	LO100.09	−45.54	−59.12	1383
DR02.0209	−44.73	−59.61	1226	LO101.08	−45.76	−59.54	1110
DR02.0210	−41.89	−57.78	417	LO101.09	−45.51	−59.20	1343
DR02.1008	−46.98	−60.03	720	LO102.08	−45.72	−59.72	896
DR02.1208	−45.83	−59.80	922	LO103.08	−45.53	−59.74	836
DR03.0108	−46.95	−59.95	782	LO105.08	−45.27	−59.68	875
DR03.1208	−45.83	−59.80	922	LO106.08	−45.27	−59.68	875
DR04.0209	−44.75	−59.27	1543	LO107.08	−45.27	−59.78	784
DR04.1008	−41.98	−57.97	521	LO108.09	−45.28	−59.54	1043
DR04.1208	−45.83	−59.80	926	LO109.09	−45.32	−59.69	870
DR05.0209	−44.66	−59.76	1002	LO110.09	−45.27	−59.18	1359
DR05.0210	−42.01	−57.93	775	LO112.09	−45.27	−59.68	909
DR05.1008	−46.97	−59.79	917	LO113.09	−45.03	−59.49	1241
DR05.1208	−45.65	−59.66	1320	LO114.09	−45.00	−59.61	1180
DR06.0209	−44.70	−59.23	2062	LO115.09	−45.74	−59.29	1334
DR06.0210	−42.02	−57.94	476	LO116.09	−45.29	−59.55	1037
DR06.1008	−47.28	−59.96	901	LO117.09	−45.59	−59.61	1093
DR06.1208	−46.03	−59.94	732	LO118.09	−45.36	−59.50	1255
DR07.0108	−46.37	−59.84	783	LO119.09	−45.24	−59.32	1233
DR07.0209	−44.74	−59.32	1432	LO120.09	−45.09	−59.95	445
DR07.1008	−45.68	−59.93	780	LO121.09	−45.27	−59.75	939
DR07.1208	−45.50	−59.87	845	LO122.09	−45.27	−59.94	1087
DR08.0108	−44.20	−57.83	1061	LO123.09	−45.26	−59.87	1043
DR08.0210	−47.19	−59.94	809	LO124.09	−45.59	−60.01	472
DR08.1008	−44.14	−59.38	1640	LO125.09	−45.30	−59.12	1353
DR08.1208	−42.12	−57.74	1054	LO126.09	−45.23	−59.50	1105
DR09.0209	−47.19	−59.90	782	LO127.09	−45.48	−59.87	1105
DR09.0210	−45.86	−59.69	1077	LO128.09	−45.59	−60.06	480
DR10.0209	−44.17	−59.18	1530	LO129.09	−45.47	−60.00	424
DR10.0210	−47.19	−59.76	815	LO130.09	−45.94	−60.05	533
DR10.1008	−46.12	−59.57	1023	LO131.09	−45.75	−60.13	219
DR11.0108	−45.41	−59.76	863	LO132.09	−45.69	−60.00	623
DR11.0209	−43.98	−59.29	1399	LO133.09	−45.95	−60.06	480
DR11.1008	−47.17	−59.65	927	LO134.09	−45.83	−59.99	685
DR11.1208	−45.97	−59.62	1067	LO135.09	−45.90	−60.12	319
DR12.0108	−45.18	−59.89	805	LO136.09	−45.94	−60.11	342
DR12.0209	−43.68	−59.10	1551	LO137.09	−46.09	−60.05	597
DR12.1008	−46.90	−59.55	1055	LO138.09	−46.10	−60.19	262
DR14.1208	−45.96	−59.80	852	LO139.09	−46.23	−60.09	561
DR15.0108	−45.41	−59.21	1900	LO140.09	−46.72	−60.24	570
DR16.0108	−45.31	−59.42	1547	LO141.09	−46.55	−59.90	734
ST	LAT	LON	D	ST	LAT	LON	D
-------	-------	-------	-----	-------	-------	-------	-----
DR16.1208	-45.86	-59.95	760	LO36.10	-46.63	-60.24	522
LO37.08	-46.70	-60.12	631	LO69.08	-47.48	-59.47	1051
LO37.10	-46.66	-60.33	457	LO69.09	-47.49	59.81	785
LO38.09	-46.41	-60.20	464	LO7.09	-45.42	-60.02	350
LO39.09	-46.47	-60.13	583	LO70.08	-47.07	-60.32	582
LO4.1207	-45.84	-59.92	780	LO70.09	-47.41	-60.01	718
LO40.08	-46.94	-60.72	273	LO71.08	-47.08	-60.20	657
LO45.08	-46.37	-60.09	620	LO71.09	-47.34	-59.90	766
LO47.08	-47.63	-60.52	479	LO71.10	-47.18	-60.29	578
LO47.10	-46.94	-60.48	475	LO72.08	-47.23	-60.21	636
LO48.09	-46.74	-60.61	245	LO72.09	-47.26	-60.03	726
LO48.10	-46.84	-60.61	290	LO72.10	-47.16	-60.21	625
LO49.08	-47.41	-60.58	459	LO73.08	-47.22	-60.10	696
LO5.10	-45.28	-59.98	405	LO73.09	-47.24	-60.10	692
LO50.09	-46.95	-60.59	374	LO73.10	-47.04	-60.12	665
LO50.10	-47.03	-60.62	371	LO74.08	-47.11	-59.99	755
LO51.08	-47.37	-60.69	415	LO74.09	-47.78	-59.66	774
LO51.09	-47.01	-60.51	469	LO75.08	-47.13	-59.86	808
LO52.08	-47.24	-60.69	393	LO75.09	-47.61	-59.57	911
LO52.09	-47.10	-60.60	427	LO75.10	-46.90	-59.89	801
LO53.09	-46.93	-60.69	274	LO76.09	-47.51	-59.60	909
LO54.08	-47.56	-60.22	611	LO76.10	-46.88	-60.11	670
LO55.08	-47.47	-60.38	549	LO77.08	-47.00	-59.64	957
LO55.09	-47.11	-60.34	565	LO77.09	-47.40	-59.68	876
LO56.08	-47.33	-60.26	612	LO78.10	-46.62	-59.86	738
LO56.09	-47.02	-60.25	618	LO79.08	-46.91	-59.91	787
LO56.10	-47.36	-60.56	462	LO79.09	-47.15	-59.80	852
LO57.08	-47.35	-60.42	542	LO79.10	-46.44	-59.87	723
LO57.09	-47.16	-60.25	612	LO8.09	-45.47	-59.92	720
LO57.10	-47.32	-60.49	495	LO8.08	-46.77	-60.31	520
LO58.08	-47.21	-60.39	545	LO8.09	-46.76	-60.31	519
LO58.09	-47.24	-60.31	585	LO8.10	-46.41	-59.68	832
LO59.08	-47.33	-59.87	787	LO8.10	-46.88	-60.17	651
LO59.09	-47.64	-60.56	461	LO8.09	-46.88	-60.15	643
LO60.08	-47.44	-59.89	761	LO8.10	-46.08	-59.64	899
LO60.09	-47.43	-60.73	394	LO8.09	-46.85	-59.99	723
LO61.08	-47.62	-60.03	680	LO8.10	-45.88	-59.81	844
LO61.09	-47.32	-60.64	428	LO8.09	-46.90	-59.81	886
LO62.08	-47.74	-59.77	745	LO8.08	-46.64	-59.87	744
LO62.10	-47.45	-59.95	727	LO8.09	-47.05	-59.91	784
LO63.08	-47.57	-59.72	779	LO8.09	-46.44	-59.65	865
LO63.09	-47.36	-60.35	567	LO8.08	-46.52	-60.24	480
LO63.10	-47.58	-59.89	725	LO8.09	-46.47	-59.62	883
LO64.08	-47.42	-59.72	847	LO8.08	-46.48	-60.10	619
LO64.09	-47.52	-60.24	603	LO8.10	-45.76	-59.74	865
LO65.09	-47.65	-60.20	595	LO8.08	-46.46	-59.95	693
LO66.09	-47.69	-60.06	654	LO8.09	-46.46	-59.96	690
LO67.09	-47.66	-59.85	730	LO8.10	-45.55	-59.66	896
LO67.10	-47.56	-59.65	850	LO8.08	-46.41	-59.80	784
LO68.09	-47.56	-59.71	814	LO8.10	-45.61	-59.92	758
Genus *Plutonaster* Sladen 1889

Plutonaster bifrons (Wyville Thomson 1873), new record (Fig. 2d–g)

AphiaID: 123904

Diagnosis Quite long arms $R/r = 3.4/1–5.0/1$, with narrow tips, almost pointed. Abactinal surface with plates with rather thin paxillae, in transverse series (Fig. 2d). Abactinal paxillae with columns oval in cross-section, crowned with 15–25 short spines. Marginal plates, both superomarginal and inferomarginal with only one prominent conical spine, and otherwise covered with very minute spines (Fig. 2f). Actinal plates covered with minute spines or granules and often with a single conical spine (Fig. 2e). Adambulacral plates with 5–10 furrow spines of equal size, outside of which is a single large conical spine (Fig. 2g).

Distribution Mediterranean Sea, Northeast Atlantic Ocean (from Faroe Islands to Gulf of Guinea, including Canary Islands), Northwest Atlantic Ocean (from New Jersey (USA) to Venezuela). Present study: Argentine. New record: 9 specimens (Online Resource 1).

Bathymetric range 100–3587 m (Mortensen 1927; USNM E-31521 from Invertebrate Collection Database, NMNH). Present study 1037–1820 m.

Remarks Related to *Plutonaster agassizi* (Verrill 1880), *P. bifrons* shows a narrow and pointed arms with a terminal plate as long as wide, since *P. agassizi* ones are rounded, their tips are blunt, and their superomarginal plates curve inward. In contrast, the superomarginal armament of *P. bifrons* has spines on all plates and relatively long and pointed. *P. agassizi* does not present spines, at least from the distal side, and, if present, they are short, rigid, or conical.

Family Radiasteridae Fisher 1916

Genus *Radiaster* Perrier 1881

Radiaster elegans Perrier 1881, new record (Fig. 2h–l)

AphiaID: 152510

Diagnosis Arms long $R/r = 3.5/1$, with small madreporite (Fig. 2h). Marginal plates with double series of spines larger than abactinal and actinal plates (Fig. 2k, 2l). Transverse series of actinal plates (Fig. 2i) different from the adambulacral ones (Fig. 2j). Oral plates markedly enlarged so that each jaw has a double keel of numerous suboral spines.

Distribution Caribe Sea, Venezuela. Present study: Argentine. New record: 1 specimen (Online Resource 1).

Bathymetric range 604–1446 m (USNM E19305, Oregon II expedition 1970, USNM E 31524 from Invertebrate Collection Database, NMNH). Present study 1077 m.

Remarks There are five *Radiaster* species (including *R. elegans*): *Radiaster elegans* Perrier 1881 [Gulf of Mexico (USNM E 31,524) from Leeward I. to north of Guayana (Clark and Downey, 1992)]. It presents long arms and small madreporite; *Radiaster gracilis* (H.L. Clark, 1916) (New Zealand and Australia, Tasmania: Mah et al. 2009) presents...
Order	Family	Species	A Stations
Forcipulatida	Asteriidae	Anteliaster australis Fisher, 1940	35 DR04.1008, DR07.0108, DR12.0209, DR14.1208, LO10.1207, LO102.08, LO108.08, LO122.09, LO29.09, LO33.09, LO37.10, LO50.10, LO56.08, LO62.08, LO63.09, LO63.10, LO72.08, LO79.08, LO87.08, LO87.10, LO88.09, LO9.1207, LO92.09
		Diplasterias brandti Bell, 1881	22 DR01.0209, DR04.0210, LO105.08, LO121.09, LO14.08, LO39.09, LO45.08, LO50.09, LO53.09, LO57.09, LO58.08, LO58.09, LO67.09, LO71.09, LO72.09, LO83.09
		Diplasterias brucei Koehler, 1907	25 DR07.0209, DR16.1208, LO108.08, LO20.09, LO29.09, LO33.09, LO37.08, LO77.09, LO80.09, LO80.10, LO81.08, LO82.09, LO82.10, LO86.08, LO88.08, LO89.10, LO9.1207, LO92.09, LO93.10, LO98.09
		Diplasterias octoradiata Studer, 1885	2 LO92.09, LO93.09
La	Lethasterias australis Fisher, 1923	117 DR15.0108, DR16.1208, LO10.1207, LO108.08, LO108.09, LO122.09, LO2.1207, LO21.09, LO26.09, LO28.09, LO33.09, LO36.10, LO38.09, LO39.09, LO45.08, LO50.09, LO52.08, LO59.09, LO62.08, LO63.09, LO66.09, LO67.09, LO68.09, LO69.08, LO71.08, LO71.09, LO72.10, LO73.09, LO73.10, LO74.09, LO75.08, LO77.09, LO80.09, LO80.10, LO81.08, LO82.09, LO82.10, LO86.08, LO88.08, LO89.10, LO9.1207, LO92.09, LO93.10, LO98.09	
	Labidiaster radiosus Loven in Lütken, 1871	2 LO10.1207, LO21.09	
Pm	Psalidaster mordax Fisher, 1940	52 DR01.0209, DR03.1008, DR05.1208, DR08.0108, DR15.0108, DR16.1208, DR01.0209, DR03.1008, DR03.1208, DR09.1208, DR12.0108, DR12.1008, DR16.1208, DR17.0108, LO10.1207, LO108.08, LO108.09, LO123.09, LO21.09, LO28.09, LO34.10, LO36.08, LO37.08, LO39.09, LO45.08, LO49.08, LO52.09, LO54.08, LO55.09, LO56.08, LO56.09, LO57.08, LO57.09, LO58.08, LO58.09, LO59.09, LO60.09, LO61.09, LO62.08, LO63.09, LO64.09, LO65.09, LO66.09, LO67.09, LO67.09, LO70.08, LO70.09, LO71.09, LO71.10, LO72.09, LO73.08, LO73.09, LO73.10, LO74.09, LO75.08, LO77.09, LO80.09, LO80.10, LO81.08, LO82.09, LO82.10, LO86.08, LO88.08, LO89.10, LO9.1207, LO90.09, LO93.10, LO98.09	
Ss	Smilasterias scalprifera Sladen, 1889	10 LO120.08, LO14.08, LO72.08, LO84.09, LO92.09, LO94.09	
			174 DR02.0209, DR02.1008, DR03.1008, DR03.1208, DR09.1208, DR12.0108, DR12.1008, DR16.1208, DR17.0108, LO10.1207, LO108.08, LO108.09, LO123.09, LO21.09, LO28.09, LO34.10, LO36.08, LO37.08, LO39.09, LO45.08, LO49.08, LO52.09, LO54.08, LO55.09, LO56.08, LO56.09, LO57.08, LO57.09, LO58.08, LO58.09, LO59.09, LO60.09, LO61.09, LO62.08, LO63.09, LO64.09, LO65.09, LO66.09, LO67.09, LO67.09, LO70.08, LO70.09, LO71.09, LO71.10, LO72.09, LO73.08, LO73.09, LO73.10, LO74.09, LO81.09, LO81.09, LO83.09, LO84.08, LO87.08, LO88.08, LO88.09, LO90.09, LO99.09, LO99.09, LO93.08, LO93.09, LO96.08
Paxillosida	Asteropectinidae	Bathybiaster loripes Sladen, 1889	51 DR01.0209, DR02.0210, DR05.0210, DR06.0210, LO134.08, LO33.09, LO34.10, LO38.09, LO45.08, LO48.10, LO50.09, LO51.09, LO52.08, LO54.08, LO55.08, LO56.09, LO57.08, LO58.09, LO59.09, LO60.09, LO61.09, LO62.08, LO63.09, LO64.09, LO65.09, LO66.09, LO67.09, LO67.09, LO70.08, LO70.09, LO71.09, LO71.10, LO72.09, LO73.08, LO73.09, LO73.10, LO81.09, LO81.09, LO83.09, LO84.08, LO87.08, LO88.08, LO88.09, LO90.09, LO99.09, LO99.09, LO93.08, LO93.09, LO96.08
			93 DR05.0210, DR02.0209, DR09.0209, DR12.0108, DR15.0108, DR16.1208, LO10.1207, LO108.08, LO108.09, LO123.09, LO33.09, LO36.10, LO4.1207, LO45.08, LO57.09, LO58.08, LO58.09, LO59.09, LO61.09, LO66.09, LO67.09, LO71.08, LO73.08, LO75.10, LO82.09, LO88.09, LO88.09, LO89.10, LO92.09, LO93.09, LO94.09, LO96.09, LO98.09
Lk	Leptychaster kerguelenensis E. A. Smith, 1876	9 DR17.0108, LO101.09, LO101.08, LO101.09, LO112.09, LO118.08, LO127.09, LO133.08	
Ph	Plutonaster bifrons Wyville Thomson, 1873	9 DR17.0108, LO101.09, LO101.08, LO101.09, LO112.09, LO118.08, LO127.09, LO133.08	
Table 2 (continued)

Order	Family	Species	A Stations
Ctenodiscidae	Ctna	Ctenodiscus australis	Loven in Lütken, 1871
			DR01.0210, DR02.0209, DR02.0210, DR03.0210, DR03.08, DR03.1008, DR04.1008, DR04.1208, DR05.0209, DR06.0210, DR06.1008, DR08.0108, DR09.0210, DR09.1008, DR09.1208, DR10.1208, DR11.1008, DR12.0108, DR12.1008, DR16.0108, DR17.0108, LO1.1207, LO10.1207, LO1003.08, LO1004.08, LO1004.09, LO1005.08, LO1007.08, LO1007.09, LO1008.08, LO14.09, LO12.0207, LO21.09, LO22.10, LO25.08, LO26.09, LO29.09, LO33.09, LO36.08, LO36.10, LO37.08, LO40.08, LO45.08, LO47.08, LO48.09, LO49.08, LO50.09, LO51.09, LO52.08, LO52.09, LO53.09, LO55.08, LO55.09, LO56.08, LO57.08, LO57.09, LO58.08, LO58.09, LO61.09, LO62.08, LO62.09, LO63.08, LO65.09, LO66.09, LO69.09, LO70.09, LO71.08, LO71.09, LO72.08, LO72.09, LO73.08, LO73.10, LO74.08, LO74.09, LO75.08, LO75.09, LO76.09, LO76.10, LO77.09, LO79.08, LO80.08, LO80.09, LO81.08, LO82.09, LO83.08, LO84.08, LO84.09, LO85.09, LO86.08, LO86.09, LO88.08, LO88.09, LO9.1207, LO90.09, LO91.09, LO92.08, LO92.09, LO93.09, LO94.08, LO95.09
		Pseudarchasteridae	Pseudarchaster discus Sladen, 1889
			DR03.0108, DR04.0209, LO61.09
Radiasteridae	Re	Radiaster elegans	Perrier, 1881
			DR09.1208
Valvatida	Ansa	Anseropoda antarctica	Fisher, 1940
			DR01.0108, DR04.0209, DR11.1208, LO10.1207, LO1003.09, LO14.08, LO33.09, LO69.08, LO8.09, LO89.10, LO92.09, LO93.09, LO94.09, LO94.10
	As	Asterina stellifera Môbius	1859
			DR10.0209, DR16.1208, LO33.09, LO93.08
	Tm	Tremaster mirabilis Verrill	1880
			DR01.1008, DR04.0210, DR04.1008, DR04.1208, DR07.0108, DR07.0209, DR09.1208, DR15.0108, LO10.1207, LO16.08, LO93.08
Ganeriidae	Cyv	Cycethra verrucosa	Philippi, 1857
			DR01.0209, DR01.1008
	Pd	Perknaster densus	Sladen, 1889
			DR02.0209, DR08.0210, DR09.1208, DR11.1008, DR16.1208, LO107.08, LO113.09, LO131.09, LO95.10, LO98.09
Goniasteridae	Cla	Cladaster analogus	Fisher, 1940
			LO10.1207, LO14.1207
	Cp	Ceramaster patagonicus	Sladen, 1889
			DR04.1008, DR06.1008, DR09.1008
	Hf	Hippasteria falklandica	Fisher, 1940
	Hp	Hippasteria phrygiana	Parelius, 1768
			DR04.0209, DR06.0210, DR08.1008, DR15.0108, LO24.08, LO33.09, LO60.09, LO61.09, LO65.09, LO71.08, LO78.10, LO8.09, LO86.08, LO88.08, LO88.09, LO9.1207
	Pd	Pillsburiaster calvus	Mah, 2011
			DR01.0108, DR01.1008, DR03.0108, DR03.1008, DR04.1208, DR05.0209, DR07.0108, DR07.0209, DR11.0209, DR11.1208, DR12.0209, DR12.1008, DR14.1208, DR15.0108, LO1002.08, LO1008.08, LO11.1207, LO12.0107, LO12.1207, LO122.09, LO37.10, LO4.1207, LO86.09, LO92.09, LO93.08, LO94.09, LO94.10, LO96.08, LO98.09
Odontasteridae	Ae	Acodontaster elongatus	Sladen, 1889
			LO10.1207, LO1008, LO5.10, LO56.10, LO58.08, LO60.09, LO61.09, LO62.10, LO93.10, LO94.10
	Op	Odontaster penicillatus	Philippi, 1870
			DR01.1008, DR04.1008, DR06.1208, DR08.1008, DR11.1208, LO10.1207, LO107.08, LO1008.08, LO121.09, LO17.08, LO49.08, LO55.09, LO60.08, LO61.09, LO85.09, LO86.08, LO9.1207, LO92.08, LO92.09, LO94.08, LO95.10
Poraniidae	Gra	Glabaster antarctica	E. A. Smith, 1876
			DR06.0210, LO61.09
Order	Family	Species	A Stations
------------	--------------	--	--
Solasteridae	Lphs	Lophaster stellans Sladen, 1889	DR01.0108, DR01.1008, DR03.0108, DR04.0209, DR04.1008, DR04.1208, DR05.0209, DR07.0108, DR08.0108, DR09.1008, DR10.0209, DR11.1208, DR12.0108, LO1.1207, LO10.1207/LO108.09, LO12.09, LO2.1207, LO33.09, LO36.08, LO36.10, LO4.1207, LO45.08, LO47.08, LO49.08, LO52.09, LO58.08, LO59.09, LO60.09, LO61.09, LO65.09, LO71.09, LO8.09, LO80.09, LO86.08, LO87.08, LO88.09, LO89.10, LO9.1207
	Plhl	*Paralophaster lorioli* Koehler, 1907	DR12.0209
	Sr	Solaster regularis Sladen, 1889	DR01.1008, DR04.0210, DR05.0210, DR07.0108, DR07.0209, DR12.1008, LO10.1207, LO108.08, LO12.09, LO14.08, LO16.08, LO2.1207, LO33.09, LO36.10, LO39.09, LO4.1207, LO47.08, LO5.10, LO51.09, LO53.09, LO61.09, LO77.08, LO89.08, LO89.10, LO9.1207, LO91.09, LO91.10, LO93.08, LO94.08
Spinulosida	Echinasteridae	Hro *Henricia obesa* Sladen, 1889	DR01.1008, DR07.0209
	Hrp	*Henricia pagenstecheri* Studer, 1885	DR01.1008, DR03.1008, DR04.1008, DR07.0209, DR09.0209, DR15.0108, DR16.0108, LO10.1207/LO108.08, LO11.1207, LO12.09, LO14.08, LO16.08, LO2.1207, LO33.09, LO36.10, LO39.09, LO4.1207, LO47.08, LO5.10, LO51.09, LO53.09, LO61.09, LO77.08, LO89.08, LO89.10, LO9.1207, LO91.09, LO91.10, LO93.08, LO94.08
	Hrs	*Henricia studeri* Perrier, 1891	DR01.1008, DR04.0210, DR04.1008, DR04.1208, DR05.0209, DR05.1008, DR06.0210, DR06.1008, DR06.1208, DR07.0209, DR08.1008, DR09.1008, DR09.1208, DR11.1208, DR12.1208, DR16.1208, LO10.1202, LO103.09, LO104.08, LO105.08, LO106.08, LO107.08, LO108.08, LO108.09, LO109.09, LO12.09, LO16.08, LO36.08, LO4.1207, LO47.08, LO5.10, LO51.09, LO53.09, LO59.09, LO60.08, LO69.09, LO71.08, LO89.05, LO89.06, LO89.10, LO99.08, LO92.09
	Hdf	*Henricia diffidens* Koehler, 1923	DR01.0209, DR09.1008, LO114.08, LO60.09, LO77.08, LO86.08, LO89.09, LO9.09, LO91.08, LO92.09, LO93.08, LO94.09, LO96.08
Velatida	Pterasteridae	Dc Diplopteraster clarki Bernasconi, 1937	LO78.10, LO79.10, LO85.09, LO87.10, LO89.10, LO9.10
	Dv	Diplopteraster verrucosus Sladen, 1882	DR03.0209, DR03.0210, DR09.0209, DR09.1008, DR11.1208, LO10.1207, LO104.09, LO2.1207, LO21.09, LO34.10, LO47.08, LO47.10, LO51.09, LO59.09, LO60.09, LO66.09, LO75.09, LO76.09, LO77.09, LO78.10, LO79.09, LO89.10, LO89.10, LO89.08, LO89.10, LO9.1207, LO92.08, LO92.09, LO93.08, LO94.09, LO94.08, LO94.09, LO96.08, LO96.08
	Hyp	Hymenaster pergamentaceus Sladen, 1882	LO68.09, LO69.10
	Pta	Pteraster affinis Smith, 1876	DR04.0210, DR04.1008, DR12.1008, LO10.1207/LO108.08, LO107.08, LO108.08, LO108.09, LO14.08, LO36.08, LO37.10, LO4.1207, LO47.08, LO5.10, LO58.09, LO61.09, LO65.09, LO66.09, LO71.09, LO73.09, LO77.09, LO89.08, LO89.09, LO85.09, LO91.09, LO92.08, LO93.09
	Ptm	Pteraster flabellifer Sladen, 1882	DR04.0209, DR05.1208, LO104.08, LO108.09, LO34.10, LO57.09, LO60.09, LO75.09, LO80.10, LO9.10, LO93.09
	Pts	Pteraster stellifer Sladen, 1882	DR04.0209, DR05.1208, LO104.08, LO108.09, LO34.10, LO57.09, LO60.09, LO75.09, LO80.10, LO9.10, LO93.09

In underline, new records.
more than 70 adambulacral plates broader than length; \textit{Radiaster notabilis} (Fisher 1913) (Batjan Islands Molucca Islands: Fisher 1913) presents scarce paxillae with 75 spines, and 13–14 adambulacral spines; \textit{Radiaster rowei} H.E.S Clark & D. G. McKnight 2000 (New Zealand: Clark and McKnight, 2000; Mah et al. 2009); \textit{Radiaster tizardi} (Sladen 1882) (North Atlantic Ocean: from Ireland to off Sahara, Grand Bank: Terranova (Clark and Downey, 1992; Murillo et al. 2016) presents moderate arm length (R/r = 2.2/1–3.0/1) and a large madreporite (Fig. 2m–o), while \textit{R. elegans} presents long arms and a small madreporite.

Order Valvatida Perrier 1884

Family Asterinidae Gray 1840

\textit{Anseropoda antarctica} Fisher 1940, new record (Fig. 3a–d).

\text{AphiaID: 172707}

\textbf{Diagnosis} Arms 5. The abactinal plates scalar, thin and imbricate, covered with granuliform spines and inconspicuous papular pores (Fig. 3a, b). Actinal and abactinal plates in decreasing size toward the marginal ones. Abactinal plates form a carinal series. Small superomarginal plates covered by granules. Small inferomarginal plates protrude to form the edge and are also covered by granules. Actinolateral plates in regular oblique series (Fig. 3c). Adambulacral plates with 6 spines on the furrow and joined by a membrane (Fig. 3d).

\textbf{Distribution} Tierra de Fuego, The Scotia Arc, South Shetland Islands. Present study: Argentine. New record: 29 specimens (Online Resource 1).

\textbf{Bathymetric range} 123–3510 m (USNM 1,122,403; USNM 1122101 from Invertebrate Collection Database, NMNH). Present study 111–1543 m.

\textbf{Remarks} Four species (\textit{A. antarctica} included) could be compared taking into account their distribution area: \textit{Anseropoda rosea} (Lamarck 1816) presents 16 arms: \textit{Anseropoda macropora} Fisher 1913 (shallow waters) presents

\begin{table}[h]
\centering
\caption{New bathymetric records}
\begin{tabular}{lll}
Species & Now & Present study \\
\hline
\textit{Acodontaster elongatus} (Sladen, 1889) & 64–641 & 116–824 \\
\textit{Antielaster australis} Fisher, 1940 & 79–480 & 135–1551 \\
\textit{Asterina stellifera} (Möbius, 1859) & 0–500 & 561–1530 \\
\textit{Cheiraster planeta} (Sladen, 1889) & 370–675 & 116–1820 \\
\textit{Cycethra verrucosa} (Philippi, 1857) & 2–675 & 139–1369 \\
\textit{Diplasterias brandti} (Bell, 1881) & 0–1120 & 108–1369 \\
\textit{Diplopteraster clarki} Bernasconi, 1937 & 82–177 & 136–861 \\
\textit{Diplopteraster verrucosa} (Sladen, 1882) & 0–950 & 108–1640 \\
\textit{Henricia diffdens} (Koehler, 1923) & 110–463 & 394–1369 \\
\textit{Henricia obesa} (Sladen, 1889) & 111–645 & 111–1432 \\
\textit{Henricia pagenstecheri} (Studer, 1885) & 2.5–550 & 139–1900 \\
\textit{Henricia studeri} (Perrier, 1891) & 30–770 & 139–1543 \\
\textit{Hipppaster phyrgiana} (Parelius, 1784) & 20–1275 & 394–1900 \\
\textit{Hymenaster pergamentaceus} Sladen, 1882 & 1784–5223 & 785–814 \\
\textit{Lobidiaster radisson} Loew in Lütken, 1871 & 0–641 & 109–772 \\
\textit{Leptychaster kerguelensis} E. A. Smith, 1876 & 17–182 & 116–1900 \\
\textit{Lethasterias australis} Fisher, 1923 & 81–539 & 111–1900 \\
\textit{Perknaster densus} Sladen, 1889 & 53–670 & 425–1543 \\
\textit{Smilasterias scalprifera} (Sladen, 1889) & 79–1077 & 111–1233 \\
\textit{Tremaster mirabilis} Verrill, 1880 & 145–1060 & 119–1900 \\
\textbf{Species} & \textbf{Now} & \textbf{Present study} \\
\hline
\end{tabular}
\end{table}
Family Goniasteridae Forbes 1841

Genus *Pillsburiaster* Halpern 1970

D. calvus Mah 2011, new record (Fig. 3e–h).
AphiaID: 559190

Diagnosis Abactinal plates covered by granules (Fig. 3e). Papulae present at radial region (Fig. 3f). Superomarginal plates convex and nude between 50% and 90% of surface (Fig. 3h). Inferomarginal plates convex with a low percentage of nude surface. Two to three spines in the adambulacral plate and 2 separated by a space on subadambulacral plates. Four to five oral spines (Fig. 3g).

Distribution The Scotia Arc. Present study: Argentina. New record: 84 specimens (Online Resource 1).

Bathymetric range 339–357 m (Mah 2011). Present study 139–1900 m.

Remarks This genus was cited as *Pillsburiaster* sp. by Brogger et al. (2013c; report submarine canyons survey, II/III B/O Puerto Deseado at Rio de la Plata, Argentine), but the specimens were not identified as *P. calvus*; therefore, the present record will be first recorded in Argentinian waters. Genus *Pillsburiaster* includes 4 species that should be taken in account related to *P. calvus*, 1 species recorded in the South Atlantic Ocean, *Pillsburiaster geographicus* Halpern, 1970 (Mexico and Gulf of Guinea), and 3 in New Zealand, *Pillsburiaster aoteanus* McKnight 1973, *Pillsburiaster maini* McKnight 1973 and *Pillsburiaster indutilis* McKnight 2006. These species are distinguished on the basis of the arrangement of their papular areas.

Family Solasteridae Viguier 1878

Genus *Paralophaster* Fisher 1940

P. lorioli (Koehler 1907), new record (Fig. 3i–m).
AphiaID: 234937

Diagnosis Abactinal surface with isolated paxillae, each with a short peduncle bearing 6–8 elongated spines (Fig. 3i, j). Marginal plates no more than 12 in each series. Large marginal spines in cluster arrangement (Fig. 3k, l). The actinal surface presents a blunt tuber-shaped prominence, with 4–5 spines with denticulations at their ends. Adambulacral plates with 3 spines in the furrow. They have 6 spines on the oral plate at their free edge (Fig. 3m).

Distribution The Scotia Arc, Antarctic Peninsula, Kerguelen, Ross Sea. Present study: Argentina. New record: 1 specimen (Online Resource 1).

Bathymetric range 104–294 m (USNM E 13,476; USNM E 13,474 from Invertebrate Collection Database, NMNH). Present study 1551 m.

Remarks *Paralophaster lorioli* could be confused with *Paralophaster antarcticus* (Koehler 1912). *Paralophaster lorioli* has few marginal plates, no more than 12 in each series with arrangement of few marginal spines in cluster, while *P. antarcticus* has more than 12 marginal plates that carry many spines much larger than the adjacent papillae.

Order Velatida Perrier 1884

Family Pterasteridae Perrier 1875

P. flabellifer Mortensen 1933, new record (Fig. 3n–q).
AphiaID: 178571

5 arms, 5 spines on the furrow, and *Anseropoda aoteaoa* McKnight 1973 (New Zealand) presents 5 arms, 5–7 furrow spines, and only one series of subadambulacral spines, rarely two.
Diagnosis R/r = 1.9/1, 6 arms, abactinal membrane thin, 5–6 slender paxillar spines, small osculum surrounded by a serial of spines forming a ridge that are not embedded in a web (Fig. 3n). The marginal fringe is evident thanks to the stout marginal spines (Fig. 3p), 6–7 adambulacral spines in unequal series like a fan webbed (Fig. 3q), 7 oral spines half of their length webbed, one hyaline, multi-tipped suboral spine (Fig. 3o).

Distribution Only one record in Cape Town (South Africa) and Durban. Present study. Argentine. New record: 1 specimen (Online Resource 1).

Bathymetric range 272–366 m (Clark and Downey 1992). Present study 723 m.

Remarks: Pteraster flabellifer could be confused with Pteraster obscurus (Perrier 1891), Pteraster stellifer Sladen 1882, Pteraster affinis Smith 1876, or Pteraster militaris (OF Müller 1776). Pteraster obscurus present the 6–8 arms, but paxillar columns bear numerous spines (more than 6), and a thick web where adambulacrual oral spines are webbed for totality of their length; its area of distribution restricted to the north Atlantic (boreal belt). Related to the other remarkably similar species distributed around Atlantic Ocean, P. stellifer and P. affinis, both with 5 arms, are species from the South Hemisphere; however, P. stellifer has a parchment-like supradorsal membrane, large actinolateral spines, and unwebbed oral spines. Although P. militaris evenly could have 6 arms, its distribution is restricted to the North Hemisphere. In any case, Clark discusses about the possibility that these three species (P. affinis, P. flabellifer, and P. militaris) “may eventually prove to favor only a subspecific relationship” (Clark and Downey 1992), based on results reported in Clark (1962).

Argentinian deep-sea asteroids new checklist

The new Argentinian deep-sea checklist consists of 64 asteroids species that emerge from 2198 records: 887 records from Atlantis surveys and 1311 records from publicly available datasets and literature (Table 4, Fig. 4). These results include the seven new records proposed in the present work.

The geographical distribution of Argentinian Deep-sea asteroids

Of the 64 species included in the new Argentinian Asteroid checklist (Table 4), 7 are exclusive for ADW (Asterina stellifera, Hymenaster pergamentaceus, Lethasterias australis, Perissasterias polyacantha, Plutonaster bifrons, Pteraster flabellifer and Radiaster elegans), and the rest are shared with nearby areas: 23 with SA, SAI, and M/FI, and 2 (Henricia diffidens and Odontaster roseus) only with Antarctica (SA were not included) (Fig. 5a).

Discussion

Reliability of the databases and Argentinian new asteroid checklist

Concerning the species composition in the study area, 64 species should be considered valid records in this area (Bernasconi 1937, 1962a, 1963, 1964a, 1966b, 1973a, 1973b, 1979; Gutt and Starmans 1998; Tablado and Maytia 1988; Orozitz and Tablado 1990; Bastida et al. 1992; Clark and Downey 1992; Gutt et al. 1999; Bremec et al. 2000; Rios et al. 2003; Zaiixo 2004; Bertness et al. 2006; Mutschke and Rios 2006; Mah 2011; Mah and Blake, 2012; Brogger et al. 2013a; Souto et al. 2014; Arribas et al. 2016; Fraysse et al. 2018; Moreau et al. 2018, 2021; Guillaumot et al. 2020; National Museum of Natural History (NMNH: Research and Collections Information System, Smithsonian Institution), but only 41 were captured. Consequently, 23 of these species were not reported (Table 4; Fig. 4). These absences could be due to various reasons, including: (1) samplers’ limitations or (2) more likely their low frequency, which makes them difficult to be capture. The latter reason could be directly related to the special features of canyons, morphology, granulometry, or even other biotic factors such as species composition (del Rio et al. 2012). A deeper ecological study will be published in the near future providing more useful information that allows us to explain these absences.

The distribution areas of Argentinian asteroids and their Antarctic connections

The first study approach focuses on the number of shared species in ADW and the remainder of the four entities (provinces/regions) defined as M/FI, SA, SAI, and A (discussed in Griffiths et al. 2009, based on Moore et al. 1999) (Fig. 5).

Under the geographical/countries limits and depth range that frame the present work, ADW shares 89.06% of species with these areas, and only ten species should be considered “Patagonian species” (ADW + M/FI) (Fig. 5a, e framed species list), and they are not present outside of this traditionally named area. Three of them correspond to our proposed new records (discussed above), and the remaining seven are: Cryptasterias brachiata and Lethasterias australis, endemic in Patagonian waters; Hymenaster pergamentaceus and Asterina stellifera, frequent only in the Southwest Atlantic Ocean; Anasterias spirabilis and Asterina fimbriata, species...
Table 4 Asteroid species recorded at Argentine

Species	Localization
Acodontaster capitatus (Koehler, 1912)	NRSA
Acodontaster conspicuus (Koehler, 1920)	NRSA
Anasterias antarctica (Lütken, 1857)	NRSA
Anasterias spirabilis (Bell, 1881)	NRSA
Anasterias studeri Perrier, 1891	NRSA
Asterina fimbriata Perrier, 1875	NRSA
Cheiraster (Luidiaster) gerlachei Ludwig, 1903	NRSA
Cosmasterias lurida (Philippi, 1858)	NRSA
Cryptasterias brachiata Koehler, 1923	NRSA
Echinaster (Othilia) brasiliensis Müller & Troschel, 1842	NRSA
Ganeria falklandica Gray, 1847	NRSA
Lysasterias perrieri (Studer, 1885)	NRSA
Neosmilaster steinemi (Studer, 1885)	NRSA
Odinella nutrix Fisher, 1940	NRSA
Oodontaster roseus Janosik & Halanych, 2010	NRSA
Par abolaster antarcticus (Koehler, 1912)	NRSA
Peribolaster folliculatus Sladen, 1889	NRSA
Perissasterias polyacantha H.L. Clark, 1923	NRSA
Perknaster sladeni (Perrier, 1891)	NRSA
Poraniopsis echinaster Perrier, 1891	RSA
Psilaster charcotti (Koehler, 1906)	RSA
Pteraster gibber (Sladen, 1882)	RSA
Remaster gourdoni Koehler, 1912	RSA
Acodontaster elongatus (sladen, 1889)	RSA
Anteliaster australis Fisher, 1940	RSA
Asterina stellifera (Möbius, 1859)	RSA
Bathybiaster liripes Sladen, 1889	RSA
Ceramaster patagonicus (Sladen, 1889)	RSA
Cheiraster planeta (Sladen, 1889)	RSA
Cladaster analogus Fisher, 1940	RSA
Ctenodiscus australis Loven in Lütken, 1871	RSA
Cycethra verrucosa (Philippi, 1857)	RSA
Dipasterias brandti (Bell, 1881)	RSA
Dipasterias brucei (Koehler, 1907)	RSA
Diplopteraster clarki Bernasconi, 1937	RSA
Diplopteraster verrucosus (Sladen, 1882)	RSA
Glabraster antarctica (E. A. Smith, 1876)	RSA
Henricia diffidens (Koehler, 1923)	RSA
Henricia obesa (Sladen, 1889)	RSA
Henricia pagenstecheri (Studer, 1885)	RSA RSA
Henricia studeri (Perrier, 1891)	RSA RSA
Hippasteria falklandica Fisher, 1940	RSA
Hippasteria phrygiana (Parelius, 1768)	RSA
Hymenaster pergamentaceus Sladen, 1882	RSA
Labidiaster radiosus Loven in Lütken, 1871	RSA
Leptychaster kerguelenensis E. A. Smith, 1876	RSA
Lethasterias australis Fisher, 1923	RSA
Lophostellus stellans Sladen, 1889	RSA
Odontaster penicillatus (Philippi, 1870)	RSA
Perknaster densus Sladen, 1889	RSA
Psalidaster mordax Fisher, 1940	RSA
living on the limit of the sub-Antarctic area; and *Perisasterias polyacantha*, which is frequent in Australia, rare in southern Africa, and very scarce in Argentine (Tablado and Maytia 1988; Brogger et al. 2013a).

Despite the number of ADW species present in the nearby waters, M/FI, SA, and SI altogether share only 35.93% of ADW species (Fig. 5a). However, when they were analyzed separately, we realized that ADW and SA share 81.25% of species, whereas M/FI shares a lower percentage (56.25%) despite their proximity (Fig. 5a). These results could support the idea that M/FI would be an independent entity, as supported by Figuerola et al. (2017) and Griffiths et al. (2009) in the case of Bryozoa. On the contrary, other authors defend the hypothesis that SA belongs to the Antarctic area [Longhurst 2007; Martin-Ledo and López-González 2014; Griffiths et al. 2009 (Pycnogonida; Bryozoa); Moreau et al 2017, among others] (Fig. 5b, 5c).

On the basis of the discussion presented above, only one hypothesis could adjust to our preliminary biogeographic results: ADW, M/FI, and SA should be considered sub-Antarctic, depending on whether SA could be a separated entity of Antarctica, based on the fact that ADW and SA share a greater number of species than any other (Fig. 5a) when the rest of the Antarctica region is included (Fig. 5d). Therefore, to confirm or refute this hypothesis (Rodríguez et al. 2007; Martin-Ledo and López-González 2014; Weir and Stanworth 2019; Moreau et al. 2017, among others), some considerations should be taken in account: (1) we should include more records from known surveys that did not incorporate public datasets (such as the BENTART projects, and others); (2) we need to analyze the benefit of including shallower species, or follow Watling et al. (2013), who opted for conducting their studies at the bathyal and abyssal provinces levels, depending on the focus; (3) and, finally, a deeper analysis should be carried out using different biogeographical methods that would be associated with environmental variables (our next target).

Table 4 (continued)

Species	Localization
Pseudarchaster discus Sladen, 1889	RSA
Pteraster affine Smith, 1876	RSA
Pteraster stellifer Sladen, 1882	RSA
Smilasterias scalprifera (Sladen, 1889)	RSA
Solaster regularis Sladen, 1889	RSA
Tremaster mirabilis Verrill, 1880	RSA
Anseropoda antarctica Fisher, 1940	RSA
Diplasterias octoradiata (Studer, 1885)	NR
Paralophaster lorioli (Koehler, 1907)	NR
Pillsburiaster calvus Mah, 2011	NR
Plutonaster bifrons (Wyville Thomson, 1873)	NR
Pteraster flabellifer Mortensen, 1933	NR
Radiaster elegans Perrier, 1881	NR

NRSA Species not recorded in study area, RSA recorded in study area, NR new record

Fig. 4 Results from records reliability study. Analysis of 64 valid species after reliability study—new checklist for Argentinian waters. See species list in Table 4
Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1007/s00300-022-03056-x.

Acknowledgements

We want to acknowledge ATLANTIC Team (Oceanographic Instituto Español de Oceanografía: IEO), especially Dr. José Luis del Río (IEO, Vigo) Principal Investigator (PI) of ATLANTIS Projects, and Dr. Javier Cristobo (IEO, Gijon) Epifauna Responsible for their support and their confidence in our achievements. We also acknowledge Dr. Araceli Muñoz, Geologist from TRAGSA-IEO for improving our bathymetry database, Dr. Pilar Ríos for her cooperation and support, and, finally, SELUMA Team for their patience and support in finishing this work. We also thank Christopher Mah and Narissa Bax for their comments and recommendations that helped us to improve the manuscript, and Sandra Meneaud from FGUMA Translation and Interpreting Service for the English review.

Author contributions

J.H.G. and M.E.M.C. contributed equally in conceiving, designing, and writing the manuscript and in research. M.E.M.C. is the senior author.

Funding

Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Funding for open access charge: Universidad de Málaga / CBUA. This work has been funded by ATLANTIS Projects [IEO, Secretary General of Maritime Fishing (SGP) and Economy and Competitity Ministry. Spanish Government (2007–2010)], Puente Projects (Mod.B5) funded by UMA, and Own Found from the Junta de Andalucía, research groups SELUMA.

Data availability

All data included in this paper will be sent to Antarctic Biodiversity Information Facility (AntBIF) after data are published. The material will be shared with different museums.

Code availability

Not applicable.

Declarations

Conflict of interest

The authors declare no conflicts of interest regarding this manuscript.

Ethical approval

None.
Consent to participate We obtained consent to participate.

Consent for publication We obtained consent for publication.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ahearn CG (1995) Catalog of the type specimens of seastars (Echinodermata: Asteroidea) in the National Museum of Natural History, Smithsonian Institution. Smithsonian Contr Zool 572:1–59. https://doi.org/10.5479/si.00810282.572

Alvarado JJ, Solís-Marín FA (2013) Echinoderm research and diversity in Latin America. Springer, Berlin

Arribas LP, Martínez MI, Brogger MI (2016) Echinoderms in San Matías Gulf, Southwestern Atlantic Ocean. Thalassas 32:11–18

Arribas LP, Bagur M, Palomo MG, Bigatti G (2017) Population biology of the sea star Anasterias minuta (Forcipulatida: Astereidae) threatened by anthropogenic activities in rocky intertidal shores of San Matías Gulf, Patagonia, Argentina. Rev Biol Trop 65:73–84

Bastida R, Roux A, Martínez DE (1992) Benthic communities of the Argentine continental shelf. Oceanol Acta 15:687–698

Berecoechea JJ, Brogger MI, Penchazadeh PE (2017) New evidence of brooding in the deep-sea brittle star Asteora marina (Lyman, 1876) from a South Western Atlantic Canyon. Deep Sea Res Part I 127:105–110. https://doi.org/10.1016/j.dsr.2017.08.007

Bernasconi I (1934) Los equinodermos de los mares argentinos. Observaciones sobre algunos “erizos de mar”, “estrellas de mar” y otras formas comunes en nuestro litoral. Bol Cent Naval 53:1–21

Bernasconi I (1935) Dos nuevas especies de Pteraster en la Argentina. Physis 11:482–483

Bernasconi I (1937) Asteroideos argentinos I. Familia Pterasteridae. An Mus Argentino de Cien Nat “Bernardino Rivadavia” 39:167–187

Bernasconi I (1941a) Dos nuevas especies argentinas de Luidia. Physis 19:117–118

Bernasconi I (1941b) Los equinodermos de la expedición del Buque Oceanográfico “Comodoro Rivadavia” ARA. Physis 19:37–49

Bernasconi I (1943) Los asteroideos sudamericanos de la familia Luidiidae. An Mus Argentino de Cien Nat “Bernardino Rivadavia” 61:1–20

Bernasconi I (1957) Equinodermos y asteroideos de la colección del Instituto Oceanográfico de la Universidad de San Pablo. Bol Inst Oceanogr 7:119–148

Bernasconi I (1961) Una Nueva Especie De Asteroide. Neotrop 7:1–2

Bernasconi I (1962a) Asteroideos argentinos. III. Familia Odontasteridae. Rev Mus Argentino Bernardino Rivadavia 8:27–58

Bernasconi I (1962b) Perkaster densus patagonicus nueva sub especie de la Argentina. Physis 23:257–258

Bernasconi I (1963) Asteroideos argentinos IV. Familia Goniasteridae. Rev Mus Argentino De Cien Nat Bernardino Rivadavia Cienc Zool 9:1–26

Bernasconi I (1964a) Asteroideos argentinos V. Familia Ganipteridae. Rev Mus Argentino De Cien Nat Bernardino Rivadavia Cienc Zool 9:59–89

Bernasconi I (1964b) Asteroideos argentinos. Claves para los órdenes, familias, subfamilias y géneros. Physis 24:241–277

Bernasconi I (1965) Nuevo género y nueva especie abisal de Goniatideridae (Echinodermata, Asteroidea). Physis 25:333–335

Bernasconi I (1966a) Descripción de una nueva especie de Calyptraeaster. (Asteroidea, Pterasteridae). Physis 26:95–99

Bernasconi I (1966b) Los equinodermos y asteroideos colectados por el buque oceanográfico R/V “Vema”, frente a las costas argentinas, uruguayas y sur de Chile. Rev Mus Argentino De Cien Nat Bernardino Rivadavia Zool 9:147–175

Bernasconi I (1972) Nuevas especies de Asteroidea: Bathydaster herwigii sp. nov. (Astropectinidae) y Calyptraeaster vitreus sp. nov. (Pterasteridae). Physis 31:9–14

Bernasconi I (1973a) Asteroideos argentinos VI. Familia Asteroidea. Rev Mus Argentino De Cien Nat Bernardino Rivadavia Hidrobiol 3:333–346

Bernasconi I (1973b) Los equinodermos colectados por el “Walter Herwig” en el Atlántico Sudoeste. Hidrobiol 3:287–334

Bernasconi I (1979) Asteroidea, coscinasteriinae de la argentina y antartida. Rev Mus Argentino De Cien Nat Bernardino Rivadavia Hidrobiol 5:241–249

Bernasconi I (1980) Asteroideos argentinos VII. Familia Echinasteridae Rev Mus Argentino De Cien Nat Bernardino Rivadavia Hidrobiol 4:247–258

Bernasconi I (1980) Asteroideos argentinos VIII. Rev Mus Argentino De Cien Nat Bernardino Rivadavia Hidrobiol 4:247–258

Bertness MD, Crain CM, Silitian BR, Bazterra MC, Reyna MV, Hidalgo F, Farina JK (2006) The community structure of western Atlantic Patagonian rocky shores. Ecol Monogr 76:439–460

Bremec C, Brey T, Lasta M, Valero J, Lucifora L (2000) Zygochloromya patagonica beds on the Argentinian shelf. Part I: energy flow through the scallop bed community. Arch Fish Mar Res 48:295–303

Briggs JC, Bowen BW (2012) A realignment of marine biogeographic provinces with particular reference to fish distributions. J Biogeogr 39:12–30

Brogger MI, O’Hara TD, (2015) Revision of some ophiuroid records (Echinodermata: Ophiuroidea) from Argentina. Zootaxa 3972:432–440

Brogger MI, Martinez MI, Penchazadeh PE (2010) Reproduction of the sea urchin Arbacia dufresnii (Echinoidea: Arbaciidae) from Golfo Nuevo, Argentina. J Mar Biol Assoc UK 90:1405–1409. https://doi.org/10.1017/S0025315410000448

Brogger MI, Gil DG, Rubilar T, Martinez MI, Díaz de Vivar E, Escobar M, Epherra L, Perez AF, Tablado A (2013a) Echinoderms from Argentina: biodiversity, distribution and current state of knowledge. In: Alvarado JJ, Solís-Marín FA (eds) Echinoderms research and diversity in Latin America. Springer, Berlin, pp 359–402

Brogger MI, Martinez MI, Zabala S, Penchazadeh PE (2013b) Reproduction of Ophioplucus januarii (Echinodermata: Ophiuroidea): a continuous breeder in northern Patagonia, Argentina. Aquat Biol 19:275–285. https://doi.org/10.3354/ab00537

Brogger MI, Berecoechea JJ, Flores J, Rivadeneira P, Martinez M (2013c) Diversidad de equinodermos de las campañas Talud Continental 2 y 3. In: Penchazadeh P, Informe de Campaña Cañon Submarino II/III B/O “Puerto desead”, CONICET, pp 43–50

De Broyer C, Koubbi P, Griffiths HJ, Raymond B, d’Udekem d’Acoz C, Van de Putte AP, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huetmann F, Post A, Ropert-Coudert Y (2014) Biogeographic Atlas of the Southern Ocean. SCAR, Cambridge

Campagnia C, Piola AR, Marin MR, Lewis M, Zajaczkowski U, Fernández T (2007) Deep divers in shallow seas: Southern elephant seals on the Patagonian shelf. Deep Sea Res Part I 54:1792–1814
Carames A, Martínez M, Concheyro A, Remírez M, Adamonis S (2019) Holothuroidea: new records from the Lower Cretaceous of the Agrio Formation, Neuquén Basin, Argentina. An integrated study with foraminifers and calcareous nanofossils. Alcheringa 43:580–596. https://doi.org/10.1080/03115518.2019.1641617

Clark AM (1962) Asteroidea. B.A.N.Z. Antarctic Research Expedition 1929–1931. Rep Ser B (zool Bot) 9:1–104

Clark AM, Downey ME (1992) Starfishes of the Atlantic. Chapman and Hall, London

Clark HES, McKnight DG (2000) The marine Fauna of New Zealand: Echinodermata: Asteroidea (Sea-stars). Order Paxillloida & Order Notomyotida. NIWA Biodivers Memoirs 116:1–196

Carames A, Martinez M, Concheyro A, Remírez M, Adamonis S Eleaume M, Hemery LG, Roux M, Améziane N (2014) Southern Del Río JL, Acosta J, Cristobo J, Martínez J, Parra S, Tel E, Viñas L, Danis B, Griffiths HJ, Jangoux M (2014) Asteroidea. In: De Broyer C, Fraysse CP, Calcagno JA, Perez AF (2018) Asteroidea of the southern Andes. CRC Press, San Diego

Cossi PF, Boy CC, Perez AF (2017) Pattern of energy allocation during the gametogenesis of the asteroid Cosmertasterias lurida (Forcipulatulida: Stichasteridae) from the Beagle Channel, Ushuaia, Argentina. Rev Biol Trop 65:197–206

Danis B, Griffiths HJ, Jangoux M (2014) Asteroidea. In: De Broyer C, Koubbi P, Griffiths HJ, Raymond B, d‘Udekerk d’Acoz C, Van de Putte AP, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huetmann F, Post A, Roptert-Coudert Y (eds) Biogeographic atlas of the Southern Ocean. SCAR, Cambridge, pp 208–213

Del Río JL, Acosta J, Cristobo J, Martínez J, Parra S, Tel E, Viñas L, Elvira E, Patrocino T, Rios P, Almón B, Blanco R, Murillo J, Polonia V, Fernández J, Cabanas JM, Gago JM, Gonzalez G, Cabrero A, Besada MV, Schultz F, Franco A, Bagiela J, Garcia X (2012) Estudios de los Ecosistemas Marinos Vulnerables en aguas internacionales del Atlántico sudoccidental. Proyecto Atlantis. Programa Pesquerias Lejanas. Temas de Oceanografia 6. IEO, Madrid

Eleaume M, Hemery LG, Roux M, Améziane N (2014) Southern Ocean Crinoids. In: De Broyer C, Koubbi P, Griffiths HJ, Raymond B, d’ Udekerk d’Acoz C, Van de Putte AP, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huetmann F, Post A, Roptert-Coudert Y (eds) Biogeographic atlas of the Southern Ocean. SCAR, Cambridge, pp 208–213

Epherra L, Crespi-Abril A, Meretta PE, Cledón M, Morsan EM, Rubilar T (2015) Morphological plasticity in the Aristotle’s lantern of Arbacia dufresnii (Pyschosomatoida: Arbaciae) off the Patagonian Coast. Rev Biol Trop 63:339–351

Epherra L, Martelli A, Morsan EM, Rubilar T (2017) Parámetros poblacionales del erizo de mar Arbacia dufresnii (Arbacioida, Arbaciae) en golfo de paragüeros invadidos por el alga Undaria pinnatifida (Laminariales, Alariaceae). Rev Biol Trop 65:101–112

Figueruela B, Barnes DKA, Brickle P, Brewin PE (2017) Bryozoan diversity around the Falkland and South Georgia provinces: overcoming Antarctic barriers. Mar Environ Res 126:81–94

Fisher WK (1913) Four new genera and fifty-eight new species of starfishes from the Philippine Islands, Celebes, and the Moluccas. Scientific results of the Philippine cruise of the Fisheries Steamer “Albatross” 1907–1910. Proc US Natl Mus 43:599–648

Flores JN, Brogger MI, Penchazsadeh PE (2019) Reproduction and development of the brooding sea urchin Austrocidaris canaliculata from deep-sea off Argentina. Deep Sea Res Part I 143:35–42. https://doi.org/10.1016/j.dsr.2018.11.012

Fraysse CP, Calcagno JA, Perez AF (2018) Asteroidea of the southern tip of South America, including Namuncurá Marine Protected Area at Burwood Bank and Tierra del Fuego Province, Argentina. Polar Biol 41:2423–2433

Fraysse CP, Boy CC, Becker YA, Calcagno JA, Perez AF (2020) Brooding in the Southern Ocean: the case of the Pterasterid Sea Star Diploptaster verrucosus (Sladen, 1882). Biol Bull 239:1–12. https://doi.org/10.1086/709664

Gil DG, Lopretto EC, Zaixso HE (2020) Reproductive timing and synchronized reproduction of the sea urchin Pseudoechinus magellanicus (Echinoidae: Temnopleuridae) in central Patagonia, Argentina. Mar Biol Res 16:311–326

Di Giorgio G, Rubilar T, Brogger MI (2015) Histological analysis after arm tip amputation in the brittle star Ophiopocops januarii (Echinodermata: Ophiuroidea). Rev Biol Trop 63:297–308. https://doi.org/10.15517/rbt.v63i2.23164

Griffiths HJ, Barnes DKA, Linse K (2009) Towards a generalized biogeography of the Southern Ocean benthos. J Biogeogr 36:162–177

Guillaumot C, Moreau C, Danis B, Saucède T (2020) Extrapolation in species distribution modelling. Application to Southern Ocean marine species. Prog Oceanogr 188:102438. https://doi.org/10.1016/j.pocean.2020.102438

Gutt J, Helsen E, Arntz WE, Buschmann A (1999) Biodiversity and community structure of the mega-epibenthos in the Magellan region (South America). Sci Mar 63:155–170

Gutt J, Starmans A (1998) Structure and biodiversity of megabenthos in the Weddell and Lazarev Seas (Anarctica): ecological role of physical parameters and biological interactions. Polar Biol 20:229–247. https://doi.org/10.1007/s003000050300

Hedgpeth JW (1969) Introduction to Antarctic zoogeography: Distribution of selected groups of marine invertebrates in waters south of 35° latitude. In: Bushnell VC, Hedgpeth JW (eds) Distribution of selected groups of marine invertebrates in waters south of 35° latitude. Antarctic Map Folio series. American Geographical Society, New York, pp 1–9

Hunter AW, Rushon AWA, Stone P (2016) Comments on the ophiurid family Protasteridae and description of a new genus from the Lower Devonian of the Fox Bay Formation, Falkland Islands. Alcheringa 40:429–442. https://doi.org/10.1080/03115518.2016.1218246

Longhurst AR (2007) Ecological geography of the sea, 2nd edn. Academic Press, San Diego

Mah CL (2011) Taxonomy of high-latitude Gonasteridae (Subantarctic & Antarctic): one new genus, and three new species with an overview and key to taxa. Zootaxa 2759:1–48

Mah CL (2018) New genera, species and occurrence records of Gonias- teridae (Asteroidea; Echinodermata) from the Indian Ocean. Zootaxa 4539:1–116

Mah CL, Blake DB (2012) Global diversity and phylogeny of the Asteroidea (Echinodermata). PLoS ONE 7:e35644

Mah CL, McKnight DG, Eagle MK, Pawson DL, Penchaszadeh MA (2012) Global diversity and phylogeny of the Asteroidea (Echinodermata). PLoS ONE 7:e35644

Mah CL, McKnight DG, Eagle MK, Pawson DL, Ameziane N, Vance DJ, Baker AN, Clark HES, Davey N (2009) Phyllum Echi- nodermata: sea stars, brittle stars, sea urchins, sea cucumbers, sea lilies. In: Gordon DP (ed) New Zealand inventory of biodiversity, vol 1. Kingdom Animalia. Radiata, Lophotrochozoa, Deuterostomia. Canterbury University Press, Christchurch, pp 371–400

Mah CL (2012) World Asteroidea Database. Asteroidea de Blainville, 1830. World Register of Marine Species. https://www.marin especies.org/aphia.php?p=taxdetails&id=123080

Martínez MI (2016) The sea cucumber Psolus patagonicus (Echinoder- mata: Holothuroidea) from the southwestern Atlantic: redescription of the holotype and a new synonym. Rev Mus Argentino De Cien Nat 18:237–241

Martínez MI, Brogger MI (2012) Thandarum hernandezi, a new genus and new species of sea cucumber family Sclerodactylidae (Echino- dermata: Holothuroidea: Dendrochirotida) from the Southwestern Atlantic Ocean. Zootaxa 3304:63–68

Martínez MI, Penchazsadeh PE (2017) A new species of brooding Psolidae (Echinodermata: Holothuroidea) from deep-sea off Argentina, Southwestern Atlantic Ocean. Deep Sea Res Part II 146:13–17

Martínez MI, Arribas LP, Berecocochea JJ, Brogger MI, Penchazsadeh PE (2015) Echinoderm diversity in the Southwestern Atlantic. Rev Biol Trop 63:115–120
