Article

Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion

Hari Mohan Srivastava 1,2,3,4,* , Ahmad Motamednezhad 5 and Safa Salehian 6

Citation: Srivastava, H.M.; Motamednezhad, A.; Salehian, S. Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion. Axioms 2021, 10, 27. https://doi.org/10.3390/axioms10010027

Abstract: In this paper, we introduce a new comprehensive subclass $\Sigma_B(\lambda, \mu, \beta)$ of meromorphic bi-univalent functions in the open unit disk U. We also find the upper bounds for the initial Taylor-Maclaurin coefficients $|b_0|, |b_1|$ and $|b_2|$ for functions in this comprehensive subclass. Moreover, we obtain estimates for the general coefficients $|b_n| (n \geq 1)$ for functions in the subclass $\Sigma_B(\lambda, \mu, \beta)$ by making use of the Faber polynomial expansion method. The results presented in this paper would generalize and improve several recent works on the subject.

Keywords: analytic functions; univalent and bi-univalent functions; meromorphic bi-univalent functions; coefficient estimates; Faber polynomial expansion; meromorphic bi-Bazilevič functions of order β and type μ; meromorphic bi-starlike functions of order β

1. Introduction

Let A denote the class of functions f of the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic in the open unit disk

$$U = \{z : z \in \mathbb{C} \text{ and } |z| < 1}\}.$$

We also let S be the class of functions $f \in A$ which are univalent in U.

It is well known that every function $f \in S$ has an inverse f^{-1}, which is defined by

$$f^{-1}(f(z)) = z \quad (z \in U)$$

and

$$f(f^{-1}(w)) = w \quad (|w| < r_0(f); \quad r_0(f) \geq \frac{1}{4}).$$

If f and f^{-1} are univalent in U, then f is said to be bi-univalent in U. We denote by σ_B the class of bi-univalent functions in U. For a brief history and interesting examples of functions in the class σ_B, see the pioneering work [1]. In fact, this widely-cited work...
by Srivastava et al. [1] actually revived the study of analytic and bi-univalent functions in recent years, and it has also led to a flood of papers on the subject by (for example) Srivastava et al. [2–14] and by others [15,16].

In this paper, let \(\Sigma \) be the family of meromorphic univalent functions \(f \) of the following form:

\[
f(z) = z + b_0 + \sum_{n=1}^{\infty} \frac{b_n}{z^n},
\]

which are defined on the domain

\[
\Delta = \{ z : z \in \mathbb{C} \text{ and } 1 < |z| < \infty \}.
\]

Since a function \(f \in \Sigma \) is univalent, it has an inverse \(f^{-1} \) that satisfies the following relationship:

\[
f^{-1}(f(z)) = z \quad (z \in \Delta)
\]

and

\[
f(f^{-1}(w)) = w \quad (M < |w| < \infty; \ M > 0).
\]

Furthermore, the inverse function \(f^{-1} \) has a series expansion of the form [17]:

\[
g(w) = f^{-1}(w) = w + \sum_{n=0}^{\infty} \frac{B_n}{w^n} \quad (M < |w| < \infty).
\]

A function \(f \in \Sigma \) is said to be meromorphic bi-univalent if both \(f \) and \(f^{-1} \) are meromorphic univalent in \(\Delta \). The family of all meromorphic bi-univalent functions in \(\Delta \) of the form (2) is denoted by \(\Sigma_M \). A simple calculation shows that (see also [18,19])

\[
g(w) = f^{-1}(w) = w - b_0 - b_1 w - b_2 + b_0 b_1 \frac{b_2}{w^2} - \cdots.
\]

Moreover, the coefficients of \(g = f^{-1} \) can be given in terms of the Faber polynomial [20] (see also [21–23]) as follows:

\[
g(w) = f^{-1}(w) = w - b_0 - \sum_{n=1}^{\infty} \frac{1}{n} K_{n+1}^n \frac{1}{w^n} \quad (w \in \Delta),
\]

where

\[
K_{n+1}^n = nb_0^{n-1}b_1 + n(n-1)b_0^{n-2}b_2 + \frac{1}{2} n(n-1)(n-2)b_0^{n-3}(b_3 + b_1^2) + \frac{n(n-1)(n-2)(n-3)}{3!} b_0^{n-4}(b_4 + 3b_1b_2) + \sum_{j=5}^{n} b_0^{n-j}V_j
\]

and \(V_j \) (with \(5 \leq j \leq n \)) is a homogeneous polynomial of degree \(j \) in the variables \(b_1, b_2, \ldots, b_n \).

Estimates on the coefficients of meromorphic univalent functions were widely investigated in the literature. For example, Schiffer [24] obtained the estimate \(|b_2| \leq 2/3 \) for meromorphic univalent functions \(f \in \Sigma \) with \(b_0 = 0 \) and Duren [25] proved that

\[
|b_n| \leq \frac{2}{n+1} \quad (f \in \Sigma; \ b_k = 0; \ 1 \leq k < \frac{n}{2}).
\]

Many researchers introduced and studied subclasses of meromorphic bi-univalent functions (see, for instance, Janani et al. [26], Orhan et al. [27] and others [28–30]).
Recently, Srivastava et al. [31] introduced a new class \(\Sigma_B^* (\lambda, \beta) \) of meromorphic bi-univalent functions and obtained the estimates on the initial Taylor–Maclaurin coefficients \(|b_0|\) and \(|b_1|\) for functions in this class.

Definition 1 (see [31]). A function \(f \in \Sigma_M \), given by (2), is said to be in the class \(\Sigma_B^* (\lambda, \beta) \) \((\lambda \geq 1; 0 \leq \beta < 1)\), if the following conditions are satisfied:

\[
\Re\left(\frac{z(f'(z))^\lambda}{f(z)} \right) > \beta
\]

and

\[
\Re\left(\frac{w(g'(w))^\lambda}{g(w)} \right) > \beta,
\]

where the function \(g \), given by (3) is the inverse of \(f \) and \(z, w \in \Delta \).

Theorem 1 (see [31]). Let the function \(f \in \Sigma_M \), given by (2), be in the class \(\Sigma_B^* (\lambda, \beta) \). Then,

\[
|b_0| \leq 2(1 - \beta) \quad \text{and} \quad |b_1| \leq \frac{2(1 - \beta)\sqrt{4\beta^2 - 8\beta + 5}}{1 + \lambda}.
\]

In this paper, we introduce a new comprehensive subclass \(\Sigma_B (\lambda, \mu, \beta) \) of the meromorphic bi-univalent function class \(\Sigma_M \). We also obtain estimates for the initial Taylor–Maclaurin coefficients \(b_0, b_1 \) and \(b_2 \) for functions in this subclass. Furthermore, we find estimates for the general coefficients \(b_n \) \((n \geq 1)\) for functions in this comprehensive subclass \(\Sigma_B (\lambda, \mu, \beta) \) by using the Faber polynomials [20]. Our results for the meromorphic bi-univalent function subclass \(\Sigma_B (\lambda, \mu, \beta) \) would generalize and improve some recent works by Srivastava et al. [31], Hamidi et al. [32] and Jahangiri et al. [33] (see also the recent works [34,35]).

2. Preliminary Results

For finding the coefficients of functions belonging to the function class \(\Sigma_B (\lambda, \mu, \beta) \), we need the following lemmas and remarks.

Lemma 1 (see [21,22]). Let \(f \) be the function given by

\[
f(z) = z + b_0 + \frac{b_1}{z} + \frac{b_2}{z^2} + \cdots
\]

be a meromorphic univalent function defined on the domain \(\Delta \). Then, for any \(\rho \in \mathbb{R} \), there are polynomials \(K_n^\rho \) such that

\[
\left(\frac{f(z)}{z} \right)^\rho = 1 + \sum_{n=1}^{\infty} K_n^\rho (b_0, b_1, \cdots, b_{n-1}) \frac{z^n}{2^n},
\]

where

\[
K_n^\rho (b_0, b_1, \cdots, b_{n-1}) = \rho b_{n-1} + \frac{\rho (\rho - 1)}{2} D_n^2 + \frac{\rho !}{(\rho - 3)! 3!} D_n^3 + \cdots + \frac{\rho !}{(\rho - n)! n!} D_n^n
\]

and

\[
D_n^k (x_1, x_2, \cdots, x_{n-k+1}) = \sum \frac{k! (\mu_1)_{\mu_1} \cdots (\mu_{n-k+1})_{\mu_{n-k+1}}}{\mu_1! \cdots \mu_{n-k+1}!},
\]
in which the sum is taken over all non-negative integers \(\mu_1, \cdots, \mu_{n-k+1} \) such that
\[
\begin{align*}
\mu_1 + \mu_2 + \cdots + \mu_{n-k+1} &= k \\
\mu_1 + 2\mu_2 + \cdots + (n - k + 1)\mu_{n-k+1} &= n.
\end{align*}
\]

The first three terms of \(K_n^\rho \) are given by
\[
K_1^\rho(b_0) = \rho b_0,
\]
\[
K_2^\rho(b_0, b_1) = \rho b_1 + \frac{\rho(\rho-1)}{2} b_0^2
\]
and
\[
K_3^\rho(b_0, b_1, b_2) = \rho b_2 + \rho(\rho-1)b_0b_1 + \frac{\rho(\rho-1)(\rho-2)}{3!} b_0^3.
\]

Remark 1. In the special case when
\[
b_0 = b_1 = \cdots = b_{n-1} = 0,
\]
it is easily seen that
\[
K_i^\rho(b_0, \cdots, b_{i-1}) = 0 \quad (1 \leq i \leq n)
\]
and
\[
K_{n+1}^\rho(b_0, b_1, \cdots, b_n) = \rho b_n.
\]

Lemma 2 (see [21,22]). Let \(f \) be the function given by
\[
f(z) = z + b_0 + \frac{b_1}{z} + \frac{b_2}{z^2} + \cdots
\]
be a meromorphic univalent function defined on the domain \(\Delta \). Then, the Faber polynomials \(F_n \) of \(f(z) \) are given by
\[
\frac{zf'(z)}{f(z)} = 1 + \sum_{n=1}^{\infty} \frac{F_n(b_0, b_1, \cdots, b_{n-1})}{z^n},
\]
where \(F_n(b_0, b_1, \cdots, b_{n-1}) \) is a homogeneous polynomial of degree \(n \).

Remark 2 (see [36]). For any integer \(n \geq 1 \), the polynomials \(F_n(b_0, b_1, \cdots, b_{n-1}) \) are given by
\[
F_n(b_0, b_1, \cdots, b_{n-1}) = \sum_{i_1 + 2i_2 + \cdots + n_i = n} A_{(i_1, i_2, \cdots, i_n)} b_0^{i_0} b_1^{i_1} \cdots b_{n-1}^{i_n},
\]
where
\[
A_{(i_1, i_2, \cdots, i_n)} := (-1)^n + 2 + \cdots + (n+1)! \frac{(i_1 + i_2 + \cdots + i_n - 1)!n}{i_1!i_2! \cdots i_n!}.
\]

The first three terms of \(F_n \) are given by
\[
F_1(b_0) = -b_0,
\]
\[
F_2(b_0, b_1) = b_0^2 - 2b_1
\]
and
\[
F_3(b_0, b_1, b_2) = -b_0^3 + 3b_0b_1 - 3b_2.
\]

Remark 3. In the special case when \(b_0 = b_1 = \cdots = b_{n-1} = 0 \), it is readily observed that
\[
F_i(b_0, \cdots, b_{i-1}) = 0 \quad (1 \leq i \leq n)
\]
Proof. By using Lemmas 1 and 2, we have

\[
\left(\frac{zf'(z)}{f(z)} \right)^{\lambda} \left(\frac{f(z)}{z} \right)^{\mu} = 1 + \sum_{n=1}^{\infty} \frac{L_n(b_0, b_1, \ldots, b_{n-1})}{z^n},
\]

where

\[
L_n(b_0, b_1, \ldots, b_{n-1}) = \sum_{i=0}^{n} K_{n-i}^\lambda (F_1, \ldots, F_{n-i}) K_i^\mu (b_0, \ldots, b_{i-1}) \quad (K_0^\lambda = K_0^\mu = 1)
\]

and \(F_n = F_n(b_0, b_1, \ldots, b_{n-1})\) is given by (5).

Remark 4. In the special case when \(b_0 = b_1 = \cdots = b_{n-1} = 0\), we easily find that

\[
L_i(b_0, \ldots, b_{i-1}) = 0 \quad (1 \leq i \leq n)
\]

Proof. By using Lemmas 1 and 2, we have

\[
\left(\frac{zf'(z)}{f(z)} \right)^{\lambda} \left(\frac{f(z)}{z} \right)^{\mu} = \left(1 + \sum_{m=1}^{\infty} \frac{F_m(b_0, b_1, \ldots, b_{m-1})}{z^m} \right)^{\lambda} \cdot \left(1 + \sum_{m=1}^{\infty} \frac{K_m^\mu (b_0, b_1, \ldots, b_{m-1})}{z^m} \right).
\]

In addition, by applying Lemma 1 once again, we obtain

\[
\left(\frac{zf'(z)}{f(z)} \right)^{\lambda} \left(\frac{f(z)}{z} \right)^{\mu} = \left(1 + \sum_{m=1}^{\infty} \frac{K_m^\lambda (F_1, \ldots, F_m)}{z^m} \right)^{\lambda} \cdot \left(1 + \sum_{m=1}^{\infty} \frac{K_m^\mu (b_0, \ldots, b_{m-1})}{z^m} \right)
\]

\[
= 1 + \sum_{n=1}^{\infty} \sum_{i=0}^{n} K_{n-i}^\lambda (F_1, \ldots, F_{n-i}) K_i^\mu (b_0, \ldots, b_{i-1}) \frac{1}{z^n}
\]

\[
(K_0^\lambda = K_0^\mu = 1).
\]

Our demonstration of Lemma 3 is thus completed. \(\square\)

The first three terms of \(L_n\) are given by

\[
L_1(b_0) = (\mu - \lambda) b_0,
\]

\[
L_2(b_0, b_1) = \frac{\lambda(1 + \lambda - 2\mu) + \mu(\mu - 1)}{2} b_0^2 + (\mu - 2\lambda) b_1
\]

and

\[
L_3(b_0, b_1, b_2) = \left(\frac{\lambda(2 - \mu)(\mu - \lambda)}{2} + \frac{\mu(\mu - 1)(\mu - 2)}{6} - \lambda(\lambda - 1)(\lambda - 2) \right) b_0^3
\]

\[
+ [\lambda(2\lambda + 1) + \mu(\mu - 3\lambda - 1)] b_0 b_1 + (\mu - 3\lambda) b_2.
\]

Remark 4. In the special case when \(b_0 = b_1 = \cdots = b_{n-1} = 0\), we easily find that

\[
L_i(b_0, \ldots, b_{i-1}) = 0 \quad (1 \leq i \leq n)
\]
Axioms 2021, 10, 27

Let f be a meromorphic bi-univalent function.

Lemma 2. By putting

- $\lambda = 1$
- $\mu = 0$
- $\beta = 1$

we have subclasses of meromorphic bi-univalent functions. For example, we have the following special cases:

- $\Sigma_b(1, 0, 1)$
- $\Sigma_b(0, 1, 1)$
- $\Sigma_b(1, 1, 1)$

Definition 2. A function $f \in \Sigma_M$, given by (2), is said to be in the class

\[\Sigma_b(\lambda, \mu, \beta) \quad (\lambda \geq 1; \mu \geq 0; 0 \leq \beta < 1) \]

of meromorphic bi-univalent functions of order β and type μ, if the following conditions are satisfied:

- $\Re\left(\left(\frac{zf'(z)}{f(z)}\right)^{\lambda} \left(\frac{f(z)}{z}\right)^{\mu}\right) > \beta$
- $\Re\left(\left(\frac{wg'(w)}{g(w)}\right)^{\lambda} \left(\frac{g(w)}{w}\right)^{\mu}\right) > \beta$

where the function g given by (4), is the inverse of f and $z, w \in \Delta$.

Remark 5. There are several choices of the parameters λ and μ which would provide interesting subclasses of meromorphic bi-univalent functions. For example, we have the following special cases:

- By putting $\lambda = 1$ and $0 \leq \mu < 1$, the class $\Sigma_b(1, \mu, 1)$ reduces to the subclass $B(\beta, \mu)$ of meromorphic bi-Bazilevič functions of order β and type μ.
- By putting $\lambda = 1$ and $\mu = 0$, the class $\Sigma_b(1, 0, 1)$ reduces to the class $\Sigma_b(1)$.
- By putting $\mu = \lambda - 1$, the class $\Sigma_b(\lambda, \mu, 1)$ reduces to the class $\Sigma_b^1(\lambda, 1)$ in Definition 1.

Theorem 2. Let $f \in \Sigma_b(\lambda, \mu, \beta)$. If $b_0 = b_1 = \cdots = b_{n-1} = 0$, then

\[|b_n| \leq \frac{2(1 - \beta)}{|(n+1)\lambda - \mu|} \quad (n \geq 1). \]

Proof. By using Lemma 3 for the meromorphic bi-univalent function f given by

\[f(z) = z + b_0 + \sum_{n=1}^{\infty} \frac{b_n}{n^\lambda}, \]

we have

\[\left(\frac{zf'(z)}{f(z)}\right)^{\lambda} \left(\frac{f(z)}{z}\right)^{\mu} = 1 + \sum_{n=0}^{\infty} L_{n+1}(b_0, b_1, \cdots, b_n) \frac{z^{n+1}}{z^{n+1}}. \]
Similarly, for its inverse map \(g \) given by
\[
g(w) = f^{-1}(w) = w + B_0 + \sum_{n=1}^{\infty} \frac{B_n}{w^n}.
\]
we find that
\[
\left(\frac{wg'(w)}{g(w)} \right)^\lambda \left(\frac{g(w)}{w} \right)^\mu = 1 + \sum_{n=0}^{\infty} \frac{L_{n+1}(B_0, B_1, \cdots, B_n)}{w^{n+1}}.
\]
(7)

Furthermore, since \(f \in \Sigma_B(\lambda, \mu, \beta) \), by using Definition 2, there exist two positive real-part functions
\[
c(z) = 1 + \sum_{n=1}^{\infty} c_n z^{-n}
\]
and
\[
d(w) = 1 + \sum_{n=1}^{\infty} d_n w^{-n}
\]
for which
\[\Re(c(z)) > 0 \quad \text{and} \quad \Re(d(w)) > 0 \quad (z, w \in \Delta),\]
such that
\[
\left(\frac{zf'(z)}{f(z)} \right)^\lambda \left(\frac{f(z)}{z} \right)^\mu = 1 + (1 - \beta) \sum_{n=0}^{\infty} K_{n+1}^1(c_1, c_2, \cdots, c_{n+1}) \frac{1}{z^{n+1}}
\]
(8)
and
\[
\left(\frac{wg'(w)}{g(w)} \right)^\lambda \left(\frac{g(w)}{w} \right)^\mu = 1 + (1 - \beta) \sum_{n=0}^{\infty} K_{n+1}^1(d_1, d_2, \cdots, d_{n+1}) \frac{1}{w^{n+1}}
\]
(9)
Upon equating the corresponding coefficients in (6) and (8), we get
\[
L_{n+1}(b_0, b_1, \cdots, b_n) = (1 - \beta) K_{n+1}^1(c_1, c_2, \cdots, c_{n+1}).
\]
(10)
Similarly, from (7) and (9), we obtain
\[
L_{n+1}(B_0, B_1, \cdots, B_n) = (1 - \beta) K_{n+1}^1(d_1, d_2, \cdots, d_{n+1}).
\]
(11)
Now, since \(b_i = 0 \) \((0 \leq i \leq n - 1)\), we have
\[
B_i = 0 \quad (0 \leq i \leq n - 1) \quad \text{and} \quad B_n = -b_n.
\]
Hence, by using Remark 4, Equations (10) and (11) can be rewritten as follows:
\[
(\mu - (n + 1)\lambda)b_n = (1 - \beta)c_{n+1}
\]
(12)
and
\[
-(\mu - (n + 1)\lambda)b_n = (1 - \beta)d_{n+1},
\]
(13)
respectively. Thus, from (12) and (13), we find that
\[
2(\mu - (n + 1)\lambda)b_n = (1 - \beta)(c_{n+1} - d_{n+1}).
\]
Finally, by applying Lemma 4, we get
\[
|b_n| = \frac{(1 - \beta)|c_{n+1} - d_{n+1}|}{2|n + 1|\lambda - \mu} \leq \frac{2(1 - \beta)}{|(n + 1)\lambda - \mu|}
\]
which completes the proof of Theorem 2 \(\square \)
Theorem 3. Let the function $f \in \mathcal{M}$, given by (2), be in the class

$$\Sigma_B(\lambda, \mu, \beta) \quad (\lambda \geq 1; \mu \geq 0; 0 \leq \beta < 1).$$

Then,

$$|b_0| \leq \min \left\{ \frac{2(1-\beta)}{|\mu-\lambda|}, 2 \sqrt{\frac{1-\beta}{|\lambda(1+\lambda-2\mu)+\mu(\mu-1)|}} \right\},$$

and

$$|b_1| \leq \frac{2(1-\beta)}{|\mu-2\lambda|},$$

and

$$|b_2| \leq \frac{2\left[|\lambda(2\lambda+4)+\mu(\mu-3\lambda-2)|+|\lambda(2\lambda+1)+\mu(\mu-3\lambda-1)|\right](1-\beta)}{|(\mu-3\lambda)(\mu-\lambda)|^3} + \frac{8|T(\mu, \lambda)|(1-\beta)^3}{|(\mu-3\lambda)(\mu-\lambda)|^3},$$

where

$$T(\mu, \lambda) = \frac{\lambda(2-\mu)(\mu-\lambda)}{2} + \frac{\mu(\mu-1)(\mu-2) - \lambda(\lambda-1)(\lambda-2)}{6}.$$

Proof. By putting $n = 0, 1, 2$ in (10), we get

$$(\mu-\lambda)b_0 = (1-\beta)c_1, \quad (14)$$

$$\frac{\lambda(1+\lambda-2\mu)+\mu(\mu-1)}{2}b_0^2 + (\mu-2\lambda)b_1 = (1-\beta)c_2 \quad (15)$$

and

$$T(\mu, \lambda)b_0^3 + [\lambda(2\lambda+1)+\mu(\mu-3\lambda-1)]b_0b_1 + (\mu-3\lambda)b_2 = (1-\beta)c_3. \quad (16)$$

Similarly, by putting $n = 0, 1, 2$ in (11), we have

$$-(\mu-\lambda)b_0 = (1-\beta)d_1, \quad (17)$$

$$\frac{\lambda(1+\lambda-2\mu)+\mu(\mu-1)}{2}b_0^2 - (\mu-2\lambda)b_1 = (1-\beta)d_2 \quad (18)$$

and

$$-T(\mu, \lambda)b_0^3 + (\lambda(2\lambda+4)+\mu(\mu-3\lambda-2))b_0b_1 - (\mu-3\lambda)b_2 = (1-\beta)d_3. \quad (19)$$

Clearly, from (14) and (17), we get

$$c_1 = -d_1 \quad (20)$$

and

$$b_0 = \frac{(1-\beta)c_1}{\mu-\lambda}. \quad (21)$$

Adding (15) and (18), we obtain

$$b_0^2 = \frac{(1-\beta)(c_2 + d_2)}{\lambda(1+\lambda-2\mu)+\mu(\mu-1)}. \quad (22)$$
In view of the Equations (21) and (22), by applying Lemma 4, we get
\[
|b_0| \leq \frac{2(1 - \beta)}{|\mu - \lambda|} \quad \text{and} \quad |b_0|^2 \leq \frac{4(1 - \beta)}{|\lambda(1 + \lambda - 2\mu + \mu(\mu - 1))|},
\]
respectively. Thus, we get the desired estimate on the coefficient $|b_0|$.

Next, in order to find the bound on the coefficient $|b_1|$, we subtract (18) from (15). We thus obtain
\[
b_1 = \frac{(1 - \beta)(c_2 - d_2)}{2(\mu - 2\lambda)}.
\]
(23)

Applying Lemma 4 once again, we get
\[
|b_1| \leq \frac{2(1 - \beta)}{|\mu - 2\lambda|}.
\]

Finally, in order to determine the bound on $|b_2|$, we consider the sum of the Equations (16) and (19) with $c_1 = -d_1$. This yields
\[
\lambda b_1 b_1 = \frac{(1 - \beta)(c_3 + d_3)}{\lambda(4\lambda + 5) + \mu(2\mu - 6\lambda - 3)}.
\]
(24)

Subtracting (19) from (16) with $c_1 = -d_1$, we obtain
\[
2(\mu - 3\lambda)b_2 + (\mu - 3\lambda)b_1b_1 + 2T(\mu, \lambda)b_0^2 = (1 - \beta)(c_3 - d_3).
\]
(25)

In addition, by using (21) and (24) in (25), we get
\[
b_2 = \frac{(1 - \beta)(c_3 - d_3)}{2(\mu - 3\lambda)} - \frac{(1 - \beta)(c_3 + d_3)}{2(\lambda(4\lambda + 5) + \mu(2\mu - 6\lambda - 3))} - \frac{T(\mu, \lambda)(1 - \beta)^3c_3^3}{(\mu - 3\lambda)(\mu - \lambda)^3}.
\]

Hence,
\[
b_2 = \frac{[\lambda(2\lambda + 4) + \mu(\mu - 3\lambda - 2)]c_3 - [\lambda(2\lambda + 1) + \mu(\mu - 3\lambda - 1)]d_3}{(\mu - 3\lambda)[\lambda(4\lambda + 5) + \mu(2\mu - 6\lambda - 3)]} (1 - \beta)
\]
\[- \frac{T(\mu, \lambda)(1 - \beta)^3c_3^3}{(\mu - 3\lambda)(\mu - \lambda)^3}.
\]

Thus, by applying Lemma 4 once again, we get
\[
|b_2| \leq \frac{2[|\lambda(2\lambda + 4) + \mu(\mu - 3\lambda - 2)| + |\lambda(2\lambda + 1) + \mu(\mu - 3\lambda - 1)|]}{|(\mu - 3\lambda)[\lambda(4\lambda + 5) + \mu(2\mu - 6\lambda - 3)]|} (1 - \beta)
\]
\[+ \frac{8|T(\mu, \lambda)(1 - \beta)^3c_3^3}{|(\mu - 3\lambda)(\mu - \lambda)^3|}.
\]

This completes the proof of Theorem 3. □

4. A Set of Corollaries and Consequences

By setting $\lambda = 1$ and $0 \leq \mu < 1$ in Theorem 2, we have the following result.

Corollary 1. Let the function $f \in \mathcal{M}$, given by (2), be in the subclass $\mathcal{B}(\beta, \mu)$ of meromorphic bi-Bazilevič functions of order β and type μ. If
\[
b_0 = b_1 = \cdots = b_{n-1} = 0,
\]
then
\[
|b_n| \leq \frac{2(1 - \beta)}{n + 1 - \mu} \quad (n \geq 1).
\]
Remark 6. The estimate of $|b_n|$, given in Corollary 1, is the same as the corresponding estimate given by Hamidi et al. [38] Corollary 3.3.

By setting $\mu = 0$ in Corollary 1, we have the following result.

Corollary 2. Let the function $f \in M$, given by (2), be in the subclass $\Sigma_0^*(\beta)$ of meromorphic bi-starlike functions of order β. If

$$b_0 = b_1 = \cdots = b_{n-1} = 0,$$

then

$$|b_n| \leq \frac{2(1-\beta)}{n+1} \quad (n \geq 1).$$

Remark 7. The estimate of $|b_n|$, given in Corollary 2, is the same as the corresponding estimate given by Hamidi et al. [38] Corollary 3.4.

By setting $\mu = \lambda - 1$ in Theorem 2, we have the following result.

Corollary 3. Let the function $f \in M$, given by (2), be in the subclass $\Sigma_{B^*}(\lambda, \beta)$. If

$$b_0 = b_1 = \cdots = b_{n-1} = 0,$$

then

$$|b_n| \leq \frac{2(1-\beta)}{n\lambda + 1} \quad (n \geq 1).$$

Remark 8. Corollary 3 is a generalization of a result presented in Theorem 1, which was proved by Srivastava et al. [31].

By setting $\lambda = 1$ and $0 \leq \mu < 1$ in Theorem 3, we have the following result.

Corollary 4. Let the function $f \in M$, given by (2), be in the subclass $B(\beta, \mu)$ of meromorphic bi-Bazilevič functions of order β and type μ. Then,

$$|b_0| \leq \begin{cases} \sqrt{\frac{4(1-\beta)}{(1-\mu)(2-\mu)}} & (0 \leq \beta \leq \frac{1}{2-\mu}), \\ \frac{2(1-\beta)}{1-\mu} & (\frac{1}{2-\mu} \leq \beta < 1), \end{cases}$$

and

$$|b_1| \leq \frac{2(1-\beta)}{2-\mu}.$$

Remark 9. Corollary 4 also contains the estimate of the Taylor–Maclaurin coefficient $|b_2|$ of functions in the subclass $B(\beta, \mu)$ (see [33]).

By setting $\mu = 0$ in Corollary 4, we have the following result.
Corollary 5. Let the function \(f \in \mathcal{M} \), given by (2), be in the subclass \(\Sigma^*_B(\beta) \) of meromorphic bi-starlike functions of order \(\beta \). Then,

\[
|b_0| \leq \begin{cases}
\sqrt{2(1-\beta)} & (0 \leq \beta \leq \frac{1}{2}) \\
2(1-\beta) & \left(\frac{1}{2} \leq \beta < 1 \right),
\end{cases}
\]

and

\[
|b_1| \leq 1 - \beta
\]

\[
|b_2| \leq \frac{2(1-\beta)}{3} + \frac{8(1-\beta)^3}{3}.
\]

Remark 10. Corollary 5 not only improves the estimate of the Taylor–Maclaurin coefficient \(|b_0| \), which was given by Hamidi et al. [32] Theorem 2, but it also provides an improvement of the known estimate of the Taylor–Maclaurin coefficient \(|b_2| \) of functions in the subclass \(\Sigma^*_B(\beta) \). Furthermore, the estimate of \(|b_0| \), presented in Corollary 5, is the same as the corresponding estimate given by Hamidi et al. [38] Corollary 3.5.

By setting \(\mu = \lambda - 1 \) in Theorem 3, we have the following result.

Corollary 6. Let the function \(f \in \mathcal{M} \), given by (2), be in the subclass \(\Sigma_B^*(\lambda, \beta) \). Then,

\[
|b_0| \leq \begin{cases}
\sqrt{2(1-\beta)} & (0 \leq \beta \leq \frac{1}{2}) \\
2(1-\beta) & \left(\frac{1}{2} \leq \beta < 1 \right),
\end{cases}
\]

and

\[
|b_1| \leq \frac{2(1-\beta)}{\lambda + 1}
\]

and

\[
|b_2| \leq \frac{2(1-\beta)}{2\lambda + 1} + \frac{8(1-\beta)^3}{2\lambda + 1}.
\]

Remark 11. Corollary 6 improves the estimates of the Taylor–Maclaurin coefficients \(|b_0| \) and \(|b_1| \) in Theorem 1 of Srivastava et al. [31]. In fact, it also provides an improvement of the known estimate of the Taylor–Maclaurin coefficient \(|b_2| \) of functions in the subclass \(\Sigma_B^*(\lambda, \beta) \).

Remark 12. In his recently-published survey-cum-expository review article, Srivastava [39] demonstrated how the theories of the basic (or q-) calculus and the fractional q-calculus have significantly encouraged and motivated further developments in Geometric Function Theory of Complex Analysis (see, for example, [8,40–42]). This direction of research is applicable also to the results which we have presented in this article. However, as pointed out by Srivastava [39] (p. 340), any further attempts to easily (and possibly trivially) translate the suggested q-results into the corresponding \((p, q)\)-results (with \(0 < |q| < p \leq 1\)) would obviously be inconsequential because the additional parameter \(p \) is redundant.

Author Contributions: All three authors contributed equally to this investigation. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
References

1. Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. *Appl. Math. Lett.* 2010, 23, 1188–1192.

2. Çağlar, M.; Deniz, E.; Srivastava, H.M. Second Hankel determinant for certain subclasses of bi-univalent functions. *Turk. J. Math.* 2017, 41, 694–706.

3. Srivastava, H.M.; Bansal, D. Coefficient estimates for a subclass of analytic and bi-univalent functions. *J. Egypt. Math. Soc.* 2015, 23, 242–246.

4. Srivastava, H.M.; Bulut, S.; Çağlar, M.; Yagmur, N. Coefficient estimates for a general subclass of analytic and bi-univalent functions. *Filomat* 2013, 27, 831–842.

5. Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficient estimates for some general subclasses of analytic and bi-univalent functions. *Afrika Mat.* 2017, 28, 693–706.

6. Srivastava, H.M.; Gaboury, S.; Ghanim, F. Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions. *Acta Math. Sci. Ser. B Engl. Ed.* 2016, 36, 863–871.

7. Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions. *Acta Univ. Apulensis Math. Inform.* 2015, 23, 153–164.

8. Srivastava, H.M.; Khan, S.; Ahmad, Q.Z.; Khan, N.; Hussain, S. The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator. *Stud. Univ. Babeş-Bolyai Math.* 2018, 63, 419–436.

9. Srivastava, H.M.; Sakar, F.M.; Ö. Güney, H. Some general coefficient estimates for a new class of bi-univalent functions defined by a linear combination. *Filomat* 2018, 34, 1313–1322.

10. Srivastava, H.M.; Sivasubramanian, S.; Sivakumar, R. Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions. *Tbilisi Math. J.* 2014, 7, 1–10.

11. Srivastava, H.M.; Sümer Eker, S.; Ali, R.M. Coefficient bounds for a certain class of analytic and bi-univalent functions. *Filomat* 2015, 29, 1839–1845.

12. Srivastava, H.M.; Sümer Eker, S.; Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator. *Bull. Iran. Math. Soc.* 2018, 44, 149–157.

13. Srivastava, H.M.; Wanas, A.K. Initial Maclaurin coefficient bounds for new subclasses of analytic and bi-univalent functions. *Turk. J. Math.* 2016, 40, 937–946.

14. Srivastava, H.M.; Wanas, A.K.; Murugusundaramoorthy, G. A certain family of bi-univalent functions defined by subordination. *Surveys Math. Appl.* 2011, 16, 93–105.

15. Zireh, A.; Adegani, E.A.; Bulut, S. Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination. *Bull. Belg. Math. Soc. Simon Stevin* 2016, 23, 487–504.

16. Zireh, A.; Adegani, E.A.; Bidkham, M. Faber polynomial coefficient estimates for subclass of bi-univalent functions defined by quasi-subordinate. *Math. Slovaca* 2018, 18, 639–678.

17. Panigrahi, T. Coefficient bounds for certain subclasses of meromorphic and bi-univalent functions. *Bull. Korean Math. Soc.* 2013, 50, 1531–1538.

18. Schober, G. Coefficients of inverses of meromorphic univalent functions. *Proc. Am. Math. Soc.* 1977, 67, 111–116.

19. Xiao, H.-G.; Xu, Q.-H. Coefficient estimates for three generalized classes of meromorphic and bi-univalent functions. *Filomat* 2015, 29, 1601–1612.

20. Faber, G. Über polynomische Entwickelungen. *Math. Ann.* 1903, 57, 389–408.

21. Airault, H.; Bouali, A. Differential calculus on the Faber polynomials. *Bull. Sci. Math.* 2006, 130, 179–222.

22. Airault, H.; Ren, J. An algebra of differential operators and generating functions on the set of univalent functions. *Bull. Sci. Math.* 2002, 126, 343–367.

23. Todorov, P.G. On the Faber polynomials of the univalent functions of class Σ. *J. Math. Anal. Appl.* 1991, 162, 268–276.

24. Schiffer, M. Sur un problème déxtremum de la représentation conforme, *Bull. Soc. Math. Fr.* 1938, 66, 48–55.

25. Duren, P.L. Coefficients of meromorphic schlicht functions. *Am. Math. Soc.* 1971, 80, 169–172.

26. Janani, T.; Murugusundaramoorthy, G. Coefficient estimates of meromorphic bi-starlike functions of complex order. *Int. J. Anal. Appl.* 2014, 4, 68–77.

27. Orhan, H.; Magesh, N.; Balaji, V.K. Initial coefficient bounds for certain classes of meromorphic bi-univalent functions. *Asian-Eur. J. Math.* 2014, 7, 1–9.

28. Motamednezhad, A.; Salehian, S. Faber polynomial coefficient estimates for certain subclass of meromorphic bi-univalent functions. *Commun. Korean Math. Soc.* 2018, 33, 1229–1237.

29. Salehian, S.; Zireh, A. Coefficient estimates for certain subclass of meromorphic and bi-univalent functions. *Commun. Korean Math. Soc.* 2017, 32, 389–397.

30. Zireh, A.; Salehian, S. Initial coefficient bounds for certain class of meromorphic bi-univalent functions. *Acta Univ. Sapient. Math.* 2019, 11, 224–235.

31. Srivastava, H.M.; Joshi, S.B.; Joshi, S.S.; Pawar, H. Coefficient estimates for certain subclasses of meromorphically bi-univalent functions. *Palest. J. Math.* 2016, 5, 250–258.
32. Hamidi, S.G.; Halim, S.A.; Jahangiri, J.M. Faber polynomials coefficient estimates for meromorphic bi-starlike functions. *Int. J. Math. Math. Sci.* 2013, 2013, 498199.

33. Jahangiri, J.M.; Hamidi, S.G. Coefficients of meromorphic bi-Bazilević functions. *J. Complex Anal.* 2014, 2014, 63917.

34. Srivastava, H.M.; Motamednezhad, A.; Adegan, E.A. Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator. *Mathematics* 2020, 8, 172.

35. Srivastava, H.M.; Murugusundaramoorthy, G.; El-Deeb, S.M. Faber polynomial coefficient estimates of bi-close-to-convex functions connected with the Borel distribution of the Mittag-Leffler type. *J. Nonlinear Var. Anal.* 2021 5, 103–118.

36. Bouali, A. Faber polynomials, Cayley-Hamilton equation and Newton symmetric functions. *Bull. Sci. Math.* 2006, 130, 49–70.

37. Pommerenke, C. *Univalent Functions*, 1st ed.; Vandenhoeck und Ruprecht: Göttingen, Germany, 1975.

38. Hamidi, S.G.; Janani, T.; Murugusundaramoorthy, G.; Jahangiri, J.M. Coefficient estimates for certain classes of meromorphic bi-univalent functions. *C. R. Acad. Sci. Paris. Ser. I* 2014, 352, 277–282.

39. Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. *Iran. J. Sci. Technol. Trans. A Sci.* 2020, 44, 327–344.

40. Khan, B.; Srivastava, H.M.; Tahir, M.; Darus, H.; Ahmad, Q.Z.; Khan, N. Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. *AIMS Mathematics* 2021, 6, 1024–1039.

41. Srivastava, H.M.; Altunkaya, S.; Yalcin, S. Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator. *Filomat* 2018, 32, 503–516.

42. Srivastava, H.M.; El-Deeb, S.M. The Faber polynomial expansion method and the Taylor–Maclaurin coefficient estimates of bi-close-to-convex functions connected with the q-convolution. *AIMS Math.* 2020, 5, 7087–7106.