ON THE GENUS OF A CYCLIC PLANE CURVE OVER A FINITE FIELD

FABIO PASTICCI

ABSTRACT. Cyclic curves, i.e. curves fixed by a cyclic collineation group, play a central role in the investigation of cyclic arcs in Desarguesian projective planes. In this paper, the genus of a cyclic curve arising from a cyclic k-arc of Singer type is computed.

Key words: Projective Plane, Cyclic Arc, Singer Group, Algebraic Curve.
AMS subject classification: 14H37 (51E20)

1. Introduction

Let $PG(2,q)$ be the projective plane over the finite field \mathbb{F}_q, $q = p^h$ for some prime p and some $h \in \mathbb{N}$. A k-arc in $PG(2,q)$, $k \geq 3$ is a set of k points, every 3 of which are not collinear. A k-arc in $PG(2,q)$ is said to be complete if and only if it cannot be extended to a $(k+1)$-arc by a point of $PG(2,q)$. A k-arc is called cyclic [7] if it consists of the points of a point orbit under a cyclic collineation group G of $PG(2,q)$. A cyclic k-arc is said to be of Singer type if it consists of a point orbit under a subgroup of a cyclic Singer group of $PG(2,q)$.

An essential tool in the investigation of k-arcs is the following result due to B. Segre (see [12]).

If q is odd, then there exists a plane curve Γ' in the dual plane of $PG(2,q)$ such that:

1. Γ' is defined over \mathbb{F}_q.
2. The degree of Γ' is $2t$, with $t = q - k + 2$ being the number of 1-secants through a point of K.
3. The kt 1-secants of K belong to Γ'.
4. Each 1-secant ℓ of K through a point $P \in K$ is counted twice in the intersection of Γ' with ℓ_P, where ℓ_P denotes the line corresponding to P in the dual plane.
5. The curve Γ' contains no 2-secant of K.
6. The irreducible components of Γ' have multiplicity at most 2, and Γ' has at least one component of multiplicity 1.
7. If $k > \frac{2}{3}(q + 2)$, then there exists a unique curve in the dual plane of $PG(2,\mathbb{F}_q)$ satisfying properties (2), (3), (4), (5).

[12]

This research was performed within the activity of GNSAGA of the Italian INDAM, with the financial support of the Italian Ministry MIUR, project “Strutture geometriche, combinatoriche e loro applicazioni”, PRIN 2006-2007.
The investigation of the algebraic envelope of a cyclic k–arc of Singer type was initiated by Cossidente and Korchmáros in 1998 [4], and continued by Giulietti in [7]. In [7] the terminology of cyclic curve is introduced to denote the algebraic plane curve defined over \mathbb{F}_q corresponding to the algebraic envelope of a cyclic k–arc of Singer type.

In this paper we deal with the problem of computing the genus of a cyclic curve. Our main result is the following:

Theorem 1.1. Let C be a cyclic curve of order $n = 2(q - k + 2) = 2t$. If $k \geq q - \sqrt{2q + \frac{1}{4} + \frac{a}{2}}, k^2 - k + 1 \neq 0 \pmod{p}$, and C is irreducible of genus g, then C is singular and either $g = 2(t - 1)(t - 2)$ or $g = \frac{(t-1)(t-2)}{2}$ holds.

2. Preliminaries on Singer cycles

Let \mathbb{F}_{q^3} be a cubic extension of \mathbb{F}_q. Following Singer [16], we identify the projective plane $PG(2, q)$ with $\mathbb{F}_{q^3} \mod \mathbb{F}_q$. This means that points of $PG(2, q)$ are non-zero elements of \mathbb{F}_{q^3} and two elements $x, y \in \mathbb{F}_{q^3}$ represent the same point of $PG(2, q)$ if and only if $x/y \in \mathbb{F}_q$. Let ω be a primitive element of \mathbb{F}_{q^3} and its minimal polynomial over \mathbb{F}_q.

The matrix

$$
C = \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
c & b & a
\end{pmatrix}
$$

induces a linear collineation ϕ of $PG(2, q)$ of order $q^2 + q + 1$ called a Singer cycle of $PGL(3, \mathbb{F}_q)$. All Singer cycles of $PGL(3, \mathbb{F}_q)$ form a single conjugacy class and the matrix C is conjugate in $GL(3, \mathbb{F}_q)$ to the diagonal matrix

$$
D = \begin{pmatrix}
\omega & 0 & 0 \\
\omega^2 & \omega^q & 0 \\
0 & 0 & \omega^{q^2}
\end{pmatrix}
$$

by the matrix

$$
E = \begin{pmatrix}
1 & 1 & 1 \\
\omega & \omega^q & \omega^{q^2} \\
\omega^2 & \omega^{2q} & \omega^{2q^2}
\end{pmatrix}
$$

Let σ denote the linear collineation of $PG(2, q^3)$ induced by D. It fixes the points $E_0 = (1, 0, 0)$, $E_1 = (0, 1, 0)$ and $E_2 = (0, 0, 1)$. The linear collineation T of $PG(2, q^3)$ defined by
has order 3 and acts on the points \(E_0, E_1, E_2 \) as the cycle \((E_0 \ E_1 \ E_2)\).

Proposition 2.1. Cyclic Singer groups of \(PG(2, q) \) are equivalent under conjugation by the elements of \(PGL(3, q) \).

Proof. See [19] and [12], Corollary 4 to Theorem. 4.2.1. \(\square \)

Definition 2.2. A \(k \)-arc of Singer type in \(PG(2, q) \) is a \(k \)-arc which consists of a point orbit under a subgroup of a cyclic Singer group of \(PG(2, q) \).

From now on \(K \) will be a \(k \)-arc of Singer type in \(PG(2, q) \); obviously, \(k \) divides \(q^2 + q + 1 \).

Since by Proposition 2.1 two orbits of the same size under subgroups of cyclic Singer groups are projectively equivalent, we will assume without loss of generality that

\[
K = \{ 1, \omega^{\frac{q^2+q+1}{k}}, \ldots, \omega^{(k-1)\frac{q^2+q+1}{k}} \}.
\]

Let \(K \) be a \(k \)-arc of \(PG(2, q) \), we consider the unique envelope \(\Gamma' \) of \(K \) as a plane algebraic curve in \(PG(2, \overline{F}_q) \) defined over \(F_q \) and we will denote it by \(\Gamma'_{2t} \).

Following [7], we will study a curve \(C_{2t} \) projectively equivalent to \(\Gamma'_{2t} \) in \(PG(2, q^3) \). Let \(\phi = [L] \) be the element of \(PGL(3, q^3) \) such that

\[
LBL^{-1} = \begin{pmatrix}
\omega^q & 0 & 0 \\
0 & \omega^q & 0 \\
0 & 0 & \omega
\end{pmatrix}
\]

and \(\phi(1, 0, 0) = (1, 1, 1) \). Let \(\Pi \) be the image of \(PG(2, q) \) by \(\phi \); \(\Pi \) is a subplane of \(PG(2, q^3) \) isomorphic to \(PG(2, q) \). We can consider \(\alpha := \phi \sigma \varphi^{-1} \), collineation of \(\Pi \); we have that if \(a := \omega^{q-1} \), then

\[
\alpha : \begin{cases}
\rho x'_1 = ax_1 \\
\rho x'_2 = a^{q+1} x_2 \\
\rho x'_3 = x_3
\end{cases}, \quad \rho \in \overline{F}_q^*.
\]

So the points of \(\Pi \) are those in the orbit of \((1, 1, 1)\) under the action of \(< \alpha > \):

\[
\Pi = \{(a^i, a^{i(q+1)}, 1) \mid i = 0, 1, \ldots, q^2 + q \}.
\]

By 2.1 \(K \) is fixed by \(\sigma^{\frac{q^2+q+1}{k}} \) and \(\tau \), where \(\tau \) is defined by \(\tau(\omega^i) := \omega^{qi} \). We are interested in \(\beta := \varphi \sigma^{\frac{q^2+q+1}{k}} \varphi^{-1} \) and \(\delta := \varphi \tau \varphi^{-1} \), collineations of \(\Pi \). We have that if \(b := a^{\frac{q^2+q+1}{k}} \) then

\[
\beta : \begin{cases}
\rho x'_1 = bx_1 \\
\rho x'_2 = b^{q+1} x_2 \\
\rho x'_3 = x_3
\end{cases}, \quad \rho \in \overline{F}_q^*
\]

and

\[
\delta : \begin{cases}
\rho x'_1 = x_1^q \\
\rho x'_2 = x_2^q \\
\rho x'_3 = x_3^q
\end{cases}, \quad \rho \in \overline{F}_q^*.
\]
δ is a non-linear collineation of $PG(2, q^3)$, but it acts on Π as μ^{-1}, where μ is defined by

$$
\mu : \begin{cases}
\rho x'_1 = x_3 \\
\rho x'_2 = x_1 \\
\rho x'_3 = x_2
\end{cases}, \quad \rho \in \mathbb{F}_{q^3}^*.
$$

In [7] the following proposition is proved.

Proposition 2.3. Let Γ_{2t} be the algebraic curve associated to the envelope of K and let C_{2t} be its image by φ. Then C_{2t} has the following properties:

1. it is preserved by β;
2. it is preserved by μ;
3. it has degree $2(q - k + 2)$;
4. it has no fundamental line as a component;
5. it is defined over \mathbb{F}_q.

Definition 2.4. Let ω be a primitive element of \mathbb{F}_{q^3}, k be a divisor of $q^2 + q + 1$ such that $k > \frac{2}{3}(q + 2)$, and suppose β and μ defined as above. An algebraic plane curve defined over \mathbb{F}_q is called cyclic if it satisfies (1), (2), (3), (4) of Proposition 2.3.

For the rest of the section C will denote a cyclic curve of degree $n = 2(q - k + 2)$.

Proposition 2.5. Each vertex of the fundamental triangle is a 2-fold cuspidal point of C such that one of the fundamental line through the vertex is the tangent and has intersection multiplicity $n - 2$ with C at the vertex, namely, letting $A_1 := (1, 0, 0)$, $A_2 := (0, 1, 0)$, $A_3 := (0, 0, 1)$,

$$
I(A_2; C \cap \{x_1 = 0\}) = I(A_3; C \cap \{x_2 = 0\}) = I(A_1; C \cap \{x_3 = 0\}) = n - 2.
$$

Besides, the only two possibilities for branches of C centered at A_i ($i = 0, 1, 2$) are the following:

1. there exist two linear branches (not necessarily distinct) centered at A_i and the tangent meets each of them with multiplicity $\frac{n}{2} - 1$;
2. there exists a unique quadratic branch centered at A_i.

Proof. See [4], Prop. 5. □

Note that $< \mu >$ preserves C and acts transitively on the vertices of the fundamental triangle; so the number of branches through A_i and their characteristics do not depend on i. According to [7], if (1) of the above Proposition holds, then C is said to be cyclic of the first type, otherwise of the second type.

3. ON THE GENUS OF A CYCLIC CURVE

In this section we will prove that if $k \geq q - \sqrt{\frac{2}{3}q + \frac{1}{4} + \frac{9}{4}}$ and if the envelope of the k-arc of Singer type K in $PG(2, q)$ is irreducible, than we can establish its genus. More precisely the following theorem holds (the notation will be as in Section 2).
Theorem 3.1. Let \mathcal{C} be a cyclic curve of order $n = 2(q - k + 2) = 2t$, as defined in Section 2. If $k \geq q - \sqrt{\frac{2}{3}q + \frac{3}{4} + \frac{9}{4}}$, $k^2 - k + 1 \not\equiv 0 \mod p$, and \mathcal{C} is irreducible of genus g, then

- if \mathcal{C} is of the first type then $2g - 2 = 4t^2 - 12t + 6$;
- if \mathcal{C} is of the second type then $2g - 2 = t^2 - 3t$.

Through the rest of the section we will prove Theorem 3.1. Let \mathcal{C} be a cyclic curve and let $g(x, y) = 0$ its minimal equation. Let $g(x, y) = \varphi_j(x, y) + \ldots + \varphi_n(x, y)$, φ_u homogeneous of degree u; we will denote the generic term of $\varphi_u(x, y)$ by $a_{s, u}x^s y^{u-1}$. In [4] the following four lemmas are proved.

Lemma 3.2. For every m, $(0 \leq m \leq n)$, $g(x, y)$ has at most one term of degree m.

Lemma 3.3. For every l, $(0 \leq l \leq n)$, $g(x, y)$ has at most one term of degree l in x and at most one term of degree $n - l$ in y.

Lemma 3.4. For any two integers l, m $(0 \leq l \leq m \leq n)$, we have

$$a_{l, m-l} = \epsilon a_{n-m, l} = \epsilon^2 a_{m-l, n-m},$$

with $\epsilon^3 = 1$.

Lemma 3.5. Let $a_{l, m-l}x^l y^{m-l}$ be a term of $g(x, y)$ different from zero; then

$$m \equiv (s - 1)l + 2 \mod k.$$

Now we can prove the following proposition.

Proposition 3.6. Let \mathcal{C} be a cyclic curve of order $n = 2(q - k + 2) = 2t$. If $k \geq q - \sqrt{\frac{2}{3}q + \frac{3}{4} + \frac{9}{4}}$ then \mathcal{C} has equation

$$g(x, y) = y^2 + \epsilon_1 x^2 y^{2t-2} + \epsilon_2 x^{2t-2} + c(x^t y^{l-1} + \epsilon_2 x^{t-1} y + \epsilon_2 xy^l) = 0,$$

with $\epsilon_1^3 = \epsilon_2^3 = 1$.

Proof. For any term $a_{l, m-l}x^l y^{m-l}$ of $g(x, y)$ there exist by Lemma 3.4 two other terms of $g(x, y)$ of type $a_{n-m, l}x^{n-m} y^l$ and $a_{m-l, n-m}x^{m-l} y^{n-m}$. By permutating indexes we may assume that $0 \leq l \leq \frac{1}{3}n$; so

$$(t-1)l + 2 \leq \frac{2}{3}(t-1)t + 2;$$

the hypothesis concerning k yields $\frac{2}{3}(t-1)t + 2 \leq k$. By Lemma 3.5 we have $m = (t-1)l + 2$ and since $m \leq 2t$ we have $l \leq 2$. So the couple $(l, m-l)$ is equal to $(0, 2)$, $(1, t)$ or $(2, 2t-2)$ and the proposition is proved (use Lemma 3.4 again).

We will compute the genus of \mathcal{C} by applying the famous Hurwitz Theorem. Let $\mathcal{L} := \overline{\mathbb{F}}_q$ and let $\Sigma = \mathcal{L}(\mathcal{C})$ the field of rational functions of \mathcal{C}. Let x and y be elements of Σ such that $\Sigma = \mathcal{L}(x, y)$. Following Seidenberg’s book approach to algebraic curves (see [15]) we
define a rational transformation \(\Phi \) of \(C \) in \(PG(2, \mathcal{L}) \) by choosing two elements \(x' \) and \(y' \) in \(\Sigma \):

\[
x' := \frac{y}{x^t-1}, \quad y' := \frac{y'^{-1}}{x^{t-2}}.
\]

The image \(C' \) of \(C \) by \(\Phi \) is a plane algebraic curve of genus 0; for \(x' \) and \(y' \) satisfy

\[
x'^2 + \epsilon_1 y'^2 + \epsilon_2 y' + c \epsilon_2 x' y' + \epsilon c^2 x^t y' = 0,
\]

so \(C' \) is a conic or a line. Let \(\Sigma' = \mathcal{L}(x', y') \).

Lemma 3.7. The degree \([\Sigma : \Sigma'] \) of the extension \(\Sigma : \Sigma' \) is \(t^2 - 3t + 3 \) or \(2(t^2 - 3t + 3) \).

Proof. Note that the only branches of \(C \) whose image by \(\Phi \) is centered at a point of the line \(y' = 0 \) are those centered at \(A_3 \). If \(C \) is of the first type, then at \(A_3 \) are centered two branches \(\gamma_1, \gamma_2 \) of \(C \) with \(\gamma_1 = (\tau, a_0 \tau^{\frac{3}{t}} - 1 + \ldots), \gamma_2 = (\tau, a'_0 \tau^{\frac{3}{t}} - 1 + \ldots) \) and \(a_0, a'_0 \neq 0 \); \(\gamma_1 \) and \(\gamma_2 \) are transformed by \(\Phi \) in \(\gamma'_1 \) and \(\gamma'_2 \), branches with (imprimitive) representations \((a_0 + \ldots), \tau^{t^2-3t+3} (a_0 + \ldots)^{-1}\) and \((a'_0 + \ldots), \tau^{t^2-3t+3} (a'_0 + \ldots)^{-1}\) respectively. Since \(\gamma'_1 \) and \(\gamma'_2 \) are branches of a conic or a line, their intersection multiplicity \(I \) with the line \(y' = 0 \) has to be 1 or 2; but \(t^2 - 3t + 3 \) is odd so \(I = 1 \) and the ramification index of \(\gamma_1 \) and \(\gamma_2 \) with respect to \(\Phi \) is \(t^2 - 3t + 3 \). Therefore \([\Sigma : \Sigma'] = t^2 - 3t + 3 \) or \([\Sigma : \Sigma'] = 2(t^2 - 3t + 3) \) according to whether \(\gamma'_1 \) and \(\gamma'_2 \) are distinct or not. If \(C \) is of the second type, then at \(A_3 \) is centered exactly one branch \(\gamma \) of \(C \) with \(\gamma = (\tau^2, b_0 \tau^{n-2} + \ldots), b_0 \neq 0 \). \(\gamma \) is transformed by \(\Phi \) in \(\gamma' \) whose (imprimitive) representation is of type \((a_0 + \ldots), \tau^{2(t^2-3t+3)} (a_0 + \ldots)^{-1}\); the ramification index of \(\gamma \) is equal to the degree of \(\Sigma : \Sigma' \) since \(\gamma \) is the only branch over \(\gamma' \); it can be \(2(t^2 - 3t + 3) \) or \(t^2 - 3t + 3 \) as before and so we are done. \(\square \)

We will calculate the order of the different \(D \) of \(\Sigma : \Sigma' \). We recall that \(D \) is the divisor of \(\Sigma \)

\[
D := \sum \gamma D_{\gamma}
\]

where \(\gamma \) runs in the set of all branches of \(C \) and \(D_{\gamma} \) is defined as follows: if \((\gamma_1(\tau), \gamma_2(\tau)) \) is a primitive representation of \(\gamma \) and if \((\psi_1(z), \psi_2(z)) \) is a primitive representation of \(\gamma' \), the image of \(\gamma \) by \(\Phi \), with \(z = z(\tau) = \tau^2 + \ldots \) and \((\psi_1(z(\tau)), \psi_2(z(\tau))) = (\Phi(\gamma_1(\tau), \gamma_2(\tau))) \), then

\[
D_{\gamma} = \text{ord}_\tau \frac{dz}{d\tau}.
\]

Lemma 3.8. Let \(u \) be an element of \(\mathcal{L} \) such that \(u^{t^2-3t+3} = 1 \). Then the linear collineation of \(PG(2, \mathcal{L}) \) \(\eta \) defined by

\[
\eta : \begin{cases}
\rho x_1' = u x_1 \\
\rho x_2' = u^{-1} x_2, & \rho \in \mathcal{L}^*
\end{cases}
\]

preserves \(C \).

Proof. The proof is a simple computation. \(\square \)

Lemma 3.9. If \(k^2 - k + 1 \neq 0 \mod p \) then there exist exactly \(t^2 - 3t + 3 \) distinct elements \(u \) in \(\mathcal{L} \) such that \(u^{t^2-3t+3} = 1 \).
Proof. The polynomial $X^{t^2-3t+3} - 1$ is inseparable in $\mathcal{L}[X]$ since the characteristic p of \mathcal{L} does not divide $t^2 - 3t + 3$; for $t^2 - 3t + 3 = k^2 - k + 1 \mod p$. □

Proposition 3.10. If $k^2 - k + 1 \neq 0 \mod p$ then $[\Sigma : \Sigma'] = t^2 - 3t + 3$ and the order of the different D of $\Sigma : \Sigma'$ is $6(t^2 - 3t + 2)$ or $3(t^2 - 3t + 2)$ according to whether \mathcal{C} is of the first type or not.

Proof. Let γ be a branch of \mathcal{C} centered at a point (x_0, y_0) not belonging to any fundamental line and let γ' be its image by Φ; γ' is centered at $(x_1, y_1) := \left(\frac{y}{x^{t-1}}, \frac{y^{t-1}}{x^t}\right)$. For every u in \mathcal{L} such that $u^{t^2-3t+3} = 1$ the point $Q := (ux_0, u^{t-1}y_0)$ is a point of \mathcal{C} and every branch centered at Q has as image γ', the only branch of \mathcal{C}' centered at (x_1, y_1). Moreover, it is easy to see that all the branches of \mathcal{C} that lie over γ' are centered at points of type $(ux_0, u^{t-1}y_0)$ with $u^{t^2-3t+3} = 1$. So the set of branches γ' of \mathcal{C}' such that there exist exactly $t^2 - 3t + 3$ distinct branches of \mathcal{C} that lie over γ' is infinite; for otherwise there would be an infinite set of singular points of \mathcal{C}. Suppose $[\Sigma : \Sigma'] = 2(t^2 - 3t + 3)$; then there exist an infinite set of branches γ of \mathcal{C} such that D_γ is greater than 0, a contradiction. So by Lemma 3.7 the first part of the statement is proved. Now it is clear that if γ is a branch of \mathcal{C} centered at a point not belonging to any fundamental line then $D_\gamma = 0$; on the other hand, if γ is centered at a vertex of the fundamental triangle, we have that (with notation as before Lemma 3.8) $z(\tau) = \tau^{t^2-3t+3} + \ldots$ so

$$\frac{dz}{d\tau} = (t^2 - 3t + 3)\tau^{t^2-3t+2} + \ldots;$$

since p does not divide $t^2 - 3t + 3$ we have $\text{ord} \frac{dz}{d\tau} = t^2 - 3t + 2$ and we are done. □

We recall the statement of the Hurwitz Theorem.

Theorem 3.11. Let \mathcal{G} be an irreducible algebraic curve over the algebraically closed field \mathcal{L} and let \mathcal{G}' be the image of \mathcal{G} by a rational transformation. Let $\Sigma := \mathcal{L}(\mathcal{G})$ and $\Sigma' := \mathcal{L}(\mathcal{G}')$, $\Sigma' \subseteq \Sigma$. Let D be the different of $\Sigma : \Sigma'$, g be the genus of \mathcal{G} and g' be the genus of \mathcal{G}'. Then

$$(3.1) \quad 2g - 2 = [\Sigma : \Sigma'](2g' - 2) + \text{ord}(D).$$

Finally we prove the main result of the section.

Proof. (Theorem 3.1) We apply (3.1) and Proposition 3.10 so we have that if \mathcal{C} is of the first type then

$$2g - 2 = (t^2 - 3t + 3)(-2) + 6(t^2 - 3t + 2) = 4t^2 - 12t + 6,$$

otherwise

$$2g - 2 = (t^2 - 3t + 3)(-2) + 3(t^2 - 3t + 2) = t^2 - 3t.$$
References

[1] E. BOROS, T. SZÖNYI, On the sharpness of a theorem of B. Segre, Combinatorica, 6, 1986, 261-268.
[2] R.C. BOSE, Mathematical theory of the symmetrical factorial design, Sankhya, 8, 1947, 107-166.
[3] A. COSSIDENTE, A new proof of the existence of \((q^2 - q + 1)\)-arcs in \(PG(2,q^2)\), Journal of Geometry, 53, 1995, 37-40.
[4] A. COSSIDENTE, G. KORCHMÁROS, The algebraic envelope associated to a complete arc, Supplementi ai Rendiconti del Circolo Matematico di Palermo, Serie II, 51, 1998, 9-24.
[5] G.L. EBERT Partitioning projective geometries into caps, Canadian J. of Math., 37, 1985, 1163-1175.
[6] J.C. FISHER, J.W.P. HIRSCHFELD, J.A. THAS, Complete arcs in planes of square order, Ann. Discrete Math., 30, 1986, 243-250.
[7] M. GIULIETTI, On cyclic \(k\)-arcs of Singer type in \(PG(2,q)\), Discrete Math. 255, 2002, no. 1-3, 135-144.
[8] M. GIULIETTI, F. PAMBIANCO, F. TORRES, E. UGHI, On large complete arcs: odd case, in preparation.
[9] J.W.P. HIRSCHFELD, G. KORCHMÁROS, Embedding an arc into a conic in a finite plane, Finite Fields Appl., 2, 1996, 274-292.
[10] J.W.P. HIRSCHFELD, G. KORCHMÁROS, On the number of rational points on an algebraic curve over a finite field, Bull. Belg. Math. Soc., 5, 1998, 1-28.
[11] J.W.P. HIRSCHFELD, Cyclic projectivities in \(PG(n,q)\), Teorie Combinatorie, Accad. Nazionale Lincei, Roma, 1, 1973, 201-211.
[12] J.W.P. HIRSCHFELD, Projective geometry over finite fields, Clarendon Press, Oxford, 1979.
[13] B.C. KESTENBAND, Unital intersections in finite finite projective planes, Geom. Dedicata, 11, 1981, 107-117.
[14] B. SEGRE, Ovals in a finite projective plane, Canadian J. of Math., 7, 1955, 414-416.
[15] A. SEIDENBERG, Elements of the theory of algebraic curves, Addison-Wesley, 1968.
[16] J. SINGER, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc., 43, 1938, 377-385.
[17] K.O. STÖHR, J.F. VOLOCH, Weierstrass points and curves over finite fields, Proc. London Math. Soc., 52, 1986, 1-19.
[18] L. STORME, H. VAN MALDEGHEM Cyclic arcs in \(PG(2,q)\), J. Alg. Combin., 3, 1994, 113-128.
[19] T. SZÖNYI, On Cyclic caps in projective spaces, Designs, Codes and Cryptography, 8, 1996, 327-332.

Dipartimento di Matematica e Informatica Università degli Studi di Perugia, 06123 Perugia, Italy

E-mail address: pasticci@dipmat.unipg.it