Prognostic value of CD155/TIGIT expression in patients with colorectal cancer

Daisuke Murakami1, Kenji Matsuda*1, Hiromitsu Iwamoto1, Yasuyuki Mitani1, Yuki Mizumoto1, Yuki Nakamura1, Ibu Matsuzaki2, Ryuta Iwamoto2, Yuichi Takahashi2, Fumiyoshi Kojima2, Shin-ichi Murata2, Hiroki Yamaue1

1 Second Department of Surgery, Wakayama Medical University, Wakayama, Japan, 2 Department of Human Pathology, Wakayama Medical University, Wakayama, Japan

* kmatsuda@wakayama-med.ac.jp

Abstract

Introduction
The interaction of CD155 with its ligand, the T cell immunoreceptor with Ig and ITIM domains (TIGIT), is being studied owing to its potential to act as a target in the treatment of various solid tumors. However, the relationship between CD155 and TIGIT in colorectal cancer (CRC) prognosis is not known. We hypothesized that the TIGIT–CD155 pathway suppresses the attack of T cells on tumors, thereby affecting CRC prognosis.

Methods
We examined the expression of CD155 and TIGIT using immunohistochemical staining in 100 consecutive patients with CRC who underwent complete resection of ≤ Stage III tumors at Wakayama Medical University Hospital between January and December 2013. We assessed the correlation between CD155 and TIGIT expressions and prognosis as well as the clinicopathological background of CD155 and TIGIT.

Results
Patients with high CD155 and TIGIT expressions showed worse prognosis than those with other levels of expression (p = 0.026). In multivariate analysis that also included the existing prognostic markers, high CD155 and TIGIT expressions were identified as independent poor prognostic factors.

Conclusions
The interaction between CD155 and TIGIT possibly plays an important role in the immunological mechanism of CRC. Therefore, it may be possible to effectively predict the postoperative prognosis of CRC by evaluating the combined expression of CD155 and TIGIT. The study findings suggest that CD155 and TIGIT can predict clinical outcomes, thereby contributing to the personalized care of CRC.
Introduction

Colorectal cancer (CRC), particularly colorectal adenocarcinoma, is an important neoplasm with high incidence and mortality [1]. The current treatment approach for CRC is tumorectomy at the early stage and chemotherapy and/or radiation therapy at the advanced stage [2]. In recent years, certain immune checkpoint molecules that belong to the CD28 superfamily, such as programmed cell death 1 (PD-1) and PD ligand 1 (PD-L1), have been reported as potential targets in CRC immunotherapy [3].

In the present study, we focused on the transmembrane protein CD155, which is a nectin-like molecule overexpressed in several cancers [4–6]. In malignant melanoma, CD155 deficiency upregulates the expression of DNAX accessory molecule 1 in CD8+ T cells and natural killer (NK) cells, which inhibit tumor growth and metastasis. Furthermore, in recent studies on hepatocellular carcinoma, CD155 was shown to be closely associated with disease exacerbation, indicating its potential for use as a prognostic marker [7, 8]. It has also been reported that CD155 functions as a prognostic factor of recurrence and overall survival in small cell lung cancer, pancreatic cancer, bile duct cancer, soft tissue sarcoma, and melanoma [9–13]. Moreover, several studies investigating tumor-expressing proteins have examined the role of the extrinsic regulators of cancer cells in the tumor microenvironment (TME) [14, 15]. For instance, the role of T cell immunoreceptor with Ig and ITIM domains (TIGIT) in T cell depletion during binding with CD155 is a focus of immune checkpoint research [16]. In particular, TIGIT overexpression is observed in several malignant tumors, including gastric cancer, non-invasive ductal carcinoma, and melanoma [17–19]. However, limited studies have been conducted on the interaction between CD155 and TIGIT in the context of CRC.

We hypothesized that the TIGIT–CD155 pathway suppresses T cell attack on tumors, thereby affecting prognosis. Thus, this study aimed to clarify the clinical importance of CD155 and TIGIT in CRC.

Materials and methods

Patients

The subjects comprised 100 consecutive patients who underwent surgical resection for ≤Stage III CRC at Wakayama Medical University Hospital between January and December 2013. We examined the patients’ clinicopathological features, including age, sex, histological grade, TNM staging, follow-up data, neutrophil/lymphocyte ratio (NLR), lymphocyte/monocyte ratio (LMR), modified Glasgow prognostic score (mGPS), CA19-9, and carcinoembryonic antigen (CEA). We did not use surgical specimens and clinicopathological data for research purposes. The study was approved by the Research Ethics Committee of Wakayama Medical University Hospital (approval number: 2747), and patients’ verbal consent was obtained. We recorded the patients’ clinicopathological features in the patient chart. Clinical specimens were stored and processed in the Department of Human Pathology, whereas clinical pathological data were stored in the Second Department of Surgery, Wakayama Medical University. All cases were followed up for >5 years and a maximum of 7 years.

Immunohistochemical staining

For the immunohistochemical staining of CD155 and TIGIT, 4-μm tissue sections, which were obtained by treating surgically removed patient tissues with 10% buffered formalin and paraffin, were used. The following primary antibodies were used: mouse monoclonal antibody CD155 (1:50, catalog no. sc-514623; Santa Cruz Biotechnology, CA, USA) and TIGIT (1:25,
catalog no. DIA-TG1; ONCODIANOVA, Hamburg, Germany); the antibodies were diluted with a primary antibody diluent (Leica Microsystems, Wetzlar, Germany).

BOND-III Automated Immunostainer (Leica Microsystems) was used for staining. For the antigen activation method, CD155 was thermally treated (at 100˚C) for 15 min with BOND Epitope Retrieval Solution 1 (Leica Microsystems), whereas TIGIT was thermally treated for 30 min with BOND Epitope Retrieval Solution 2 (Leica Microsystems). The treatment time for the primary antibody was 30 min. The BOND Polymer Refine Detection Kit (Leica Microsystems) was used for DAB staining. Fig 1 shows the outline of the immunohistochemical staining procedure.

Immunohistochemical evaluation

Immunohistochemical assessment was performed by two independent pathologists using an optical microscope (Olympus). The CD155 immunostaining intensity of the tumor was determined at a high-power field (200×). In particular, positive cells were defined as those in which the cytoplasm was intensely and clearly stained brown. Samples comprising ≥50% CD155+ tumor cells were classified as CD155-high, whereas those comprising <50% CD155+ tumor cells were classified as CD155-low [10]. Lymphocytes within the tumor were graded as follows: 0 = ≤10% positive lymphocytes; 1 = 11%–20% positive lymphocytes; 2 = 21%–50% positive lymphocytes; 3 = ≥50% positive lymphocytes; we classified 0 as TIGIT-low and 1–3 as TIGIT-high [20].

Statistical analyses

All statistical analyses were performed using BellCurve for Excel (Social Survey Research Information Co., Ltd). The relationship between CD155 expression in tumor cells, TIGIT expression in tumor-infiltrating immune cells, and clinicopathological features were analyzed via chi-square test. The survival rate was analyzed using the Kaplan–Meier method, and the
significance of the differences in the survival rate was evaluated using the log-rank test. The variation effect in terms of overall survival was calculated using the Cox regression model. P-values < 0.05 were considered statistically significant.

Results

A total of 100 patients with CRC who underwent radical resection were included in this study. Tables 1–3 summarize patient background. A total of 53 (53%) patients were aged > 70 years, and 47 (47%) patients were aged < 70 years. The study group comprised 55 males (55%) and 45 females (45%). With regard to T stage, 15 patients belonged to Tis/1a/1b and 85 belonged to T2/3/4. With regard to N stage, 61 patients belonged to N0 and 39 belonged to N1/2/3. The tumor site was the right colon in 26 cases and the left colon in 74 cases. The histological grade was well-differentiated adenocarcinoma (tub1) in 40 patients and other histological grades in the remaining 60 patients. The optimum cutoff values for NLR and LMR were 2.85 and 2.82, respectively. A total of 62 patients had an NLR of ≤2.85 and 38 had an NLR of >2.85. Eleven

Table 1. Patient background and CD155 expression level.
Category
Age (≥70/<70)
Sex
Male
Female
T stage
Tis/T1a/T1b
T2/T3/T4a/T4b
N stage
N0
N1/N2/N3
Location
Right
Left
Histological grade
Tub1
Others
NLR
≤2.85
>2.85
LMR
≤2.82
>2.82
mGPS
0
1 or 2
CEA
≤5 ng/mL
>5 ng/mL
CA19-9
≤37 U/mL
>37 U/mL

https://doi.org/10.1371/journal.pone.0265908.t001
patients had an LMR of ≤2.82 and 89 had an LMR of >2.82. A total of 79 patients had an mGPS of 0 and 21 had an mGPS of 1 or 2. Further, 63 patients had a preoperative CEA value of ≤5 ng/mL and 37 had a preoperative CEA value of >5 ng/mL. Finally, 93 patients had a preoperative CA19-9 value of ≤37 U/mL and 7 had a preoperative CA19-9 value of >37 U/mL.

CD155 was expressed in malignant CRC epithelial cells but not in normal glandular epithelium (Fig 2A). We also found that TIGIT was highly expressed in the lymphocytes of CRC tissues than in the lymphocytes of adjacent tissues (Fig 2B).

Figs 3 and 4 show the representative microscopic images of tumor-infiltrating lymphocytes (TILs) in CRC tissues stained with anti-CD155 and anti-TIGIT antibodies, respectively. Tables 1–3 show the overall distribution of CD155- and TIGIT-positive cells. In terms of CD155 expression, 68 patients (68%) had high expression and 32 (32%) had low expression. With regard to TIGIT expression, 79 patients (79%) had high expression and 21 (21%) had low expression. With regard to the combined expression of CD155 and TIGIT, 64 patients (64%) had high expression and 36 (36%) had other expression. All covariates (age, gender, T stage, N

Table 2. Patient background and TGIT expression level.

Category	TIGIT-high	TIGIT-low	P-value
Age (≥70/<70)	46/33	7/14	0.042
Sex			0.824
Male	43	12	
Female	36	9	
T stage			0.954
Tis/T1a/T1b	12	5	
T2/T3/T4a/T4b	67	27	
N stage			0.179
N0	46	23	
N1/N2/N3	33	9	
Location			0.155
Right	18	8	
Left	61	13	
Histological grade			0.841
Tub1	32	8	
Others	47	13	
NLR			0.606
≤2.85	50	12	
>2.85	29	9	
LMR			0.588
≤2.82	8	3	
>2.82	71	18	
mGPS			0.338
0	64	15	
1 or 2	15	6	
CEA			0.532
≤5 ng/mL	51	12	
>5 ng/mL	28	9	
CA19-9			0.141
≤37 U/mL	75	18	
>37 U/mL	4	3	

https://doi.org/10.1371/journal.pone.0265908.t002
The Kaplan–Meier survival curve revealed that patients with high CD155 expression had short overall survival (OS) (Fig 5). No significant difference was observed in the survival curves of the high and low TIGIT expression groups (Fig 6). In addition, when the prognostic value of the combined expression of CD155 and TIGIT in determining OS was analyzed, the OS of patients with high CD155 and TIGIT expression was found to be the lowest (Fig 7). The 5-year survival rate for patients with high CD155 expression was 70.7%, and the 5-year survival rate for those with low CD155 expression was 90.6%. The 5-year survival rate for patients with high TIGIT expression was 73.6%, and the 5-year survival rate for those with low CD155 expression was 90.5%. In addition, the 5-year survival rate for patients with high expression of both CD155 and TIGIT was 70.4%, and the 5-year survival rate for other patients was 88.9%.

Univariate Cox proportional hazards regression analysis for OS (Table 4) showed that patients with high CD155 and TIGIT expressions had a higher risk of death than other patients [hazard ratio (HR), 3.272; 95% confidence interval, 1.117–9.589; p = 0.031]. As per

Table 3. Patient background and CD155/TIGIT expression.

Category	CD155/TIGIT-high	Others	P-value
Age (≥70/<70)	40/24	23/13	0.890
Sex			0.738
Male	36	19	
Female	28	17	
T stage			0.816
Tis/T1a/T1b	10	5	
T2/T3/T4a/T4b	54	31	
N stage			0.194
N0	36	25	
N1/N2/N3	28	11	
Location			0.761
Right	16	10	
Left	48	26	
Histological grade			0.307
Tub1	28	12	
Others	36	24	
NLR			0.471
≤2.85	38	24	
>2.85	26	12	
LMR			0.979
≤2.82	7	4	
>2.82	57	32	
mGPS			0.822
0	51	28	
1or2	13	8	
CEA			0.248
≤5 ng/mL	43	20	
>5 ng/mL	21	16	
CA19-9			0.227
≤37 U/mL	61	32	
>37 U/mL	3	4	

https://doi.org/10.1371/journal.pone.0265908.t003
multivariate analysis (Table 5), in addition to lymph node metastasis and elevated CEA, high expressions of CD155 and TIGIT were independent prognostic predictors in patients with CRC. Taken together, these results suggest that a combined analysis of CD155 and TIGIT expressions represents an effective prognostic predictor of CRC.

Discussion

Tumor cells are involved with inhibitory T cell receptors; by weakening T cell function in TME and expressing several ligands, tumors escape from immune surveillance. Therefore, increasing the amount of TILs is important for improving anticancer treatment. Therefore, the use of immune checkpoint inhibitors, including cytotoxic T lymphocyte-associated antigen 4 and PD-1, has been evaluated in clinical trials and shown to prolong patient survival [21–24]. However, so far, their clinical tumor suppression effects appear to be limited. Therefore, we believe that it is necessary to search for new therapeutic targets. In addition, the role of biochemical and molecular markers in the diagnosis, prognosis, and treatment of malignant tumors in patients with various carcinomas is currently being emphasized [25, 26]. Hence, we...
focused on the recently reported CD155–TIGIT pathway. It has been reported that the combined expression level of CD155 and TIGIT correlates with the prognosis of lung adenocarcinoma, gastric cancer, hepatocellular carcinoma, and head and neck squamous cell carcinoma [27–30].

Few studies have examined the CRC-related prognosis using immunohistochemical staining, and it was hypothesized that similar correlation exists for CRC. In the present study, we evaluated the clinical importance of a recently discovered immunosuppressive ligand, CD155, as well as TIGIT for treating CRC.

Studies have shown that CD155 plays an extremely important role in the development of various malignant tumors, including melanoma, pancreatic cancer, human bile duct cancer, glioblastoma, breast cancer, and primary small cell carcinoma of the esophagus [7, 11, 31–33]. In the present study, CD155 overexpression was observed in 68% of tissues samples collected.
from patients with CRC, and it was clearly higher in the tumor regions than in the normal regions. Furthermore, CD155-high patients had notably worse prognosis than CD155-low patients. Studies have shown that the expression of CD155 contributes to the postoperative prognosis of patients with malignant tumors, including lung adenocarcinoma and soft tissue sarcoma [12, 29, 34]. Our data further highlight the importance of CD155 as a therapeutic target in CRC. However, the immunological role of CD155 is complex, and many immune cells other than CRC cells could be affected by treatments that target CD155. Thus, given that there is a chance that acquired immune deficiency, autoimmune disorders, or unknown adverse events could be induced by CD155-targeted therapy, further study is necessary.

TIGIT prevents autoimmune reaction and functions as a checkpoint molecule that helps balance the immune system [35]. In this study, TIGIT expression was clearly higher in the
tumor regions than in the normal regions. Although the expression of TIGIT alone was not associated with prognosis, prognosis was poor in patients with high expression levels of both CD155 and TIGIT.

In multivariate analysis, high expression of CD155 and TIGIT was also proved to be a prognostic marker along with other known prognostic markers. This finding suggests that poor postoperative prognosis can be determined by analyzing the combined expression of CD155 and TIGIT.

To date, limited studies have evaluated the expression of CD155 and TIGIT using immunohistochemical staining in patients with CRC. In the present study, we confirmed a significant difference in the survival curves based on the intensity of CD155 expression but not in those based on the expression of TIGIT alone. These differences are likely caused by other factors in TME, which could not be elucidated by immunohistochemical staining alone. In addition, Qu et al. showed that the high expression of CD155 is associated with good prognosis, which is contrary to our findings [36]. This suggests that it is necessary to standardize CD155 and TIGIT scoring patterns and detection methods to achieve a more reliable and reproducible prediction using the prognostic markers of CRC and other cancers. Furthermore in the multivariate analysis, significant differences were found in the \(N \) stages and CEA levels in addition to the high expression of both CD155 and TIGIT. For patients in the advanced stages of CRC, more research is needed to eliminate the effects of bias due to patient treatments.

In conclusion, by analyzing the combined expression of CD155 and TIGIT, it may be possible to effectively predict the postoperative prognosis of patients with CRC. Thus, this combined expression may have potential as a target for CRC therapy. Anti-TIGIT drugs are

Table 4. Univariate analysis for overall survival.

Category	HR (95% CI)	P-value
Age (≥70)	2.497 (1.035–6.023)	0.042
Sex (male)	1.722 (0.737–4.026)	0.210
T stage (T2, T3, T4a, T4b)	2.084 (0.490–8.867)	0.320
N stage (N1, N2, N3)	3.187 (1.393–7.291)	0.006
Location (right)	2.681 (0.800–8.992)	0.110
Histological grade (tub1)	0.689 (0.324–1.466)	0.333
CD155/TIGIT (high/high)	3.272 (1.117–9.589)	0.031
CEA (>5 ng/mL)	2.490 (1.114–5.566)	0.026
CA19-9 (>37 U/mL)	1.111 (0.261–4.731)	0.887
NLR (≥2.85)	2.709 (1.202–6.101)	0.016
LMR (≤2.82)	0.252 (0.100–0.639)	0.004
Modified GPS (1/2)	3.225 (1.431–7.264)	0.005

https://doi.org/10.1371/journal.pone.0265908.t004

Table 5. Multivariate analysis for overall survival.

Category	HR (95% CI)	P-value
Age (≥70)	2.299 (0.934–5.786)	0.077
N stage (N1, N2, N3)	3.623 (1.449–9.061)	0.006
CD155/TIGIT (high/high)	3.944 (1.221–12.736)	0.022
CEA (>5 ng/mL)	2.716 (1.148–6.429)	0.023
NLR (≥2.85)	1.201 (0.460–3.132)	0.708
LMR (≤2.82)	0.354 (0.112–1.117)	0.077
Modified GPS (1/2)	2.030 (0.774–5.324)	0.150

https://doi.org/10.1371/journal.pone.0265908.t005
currently being assessed in clinical trials. Furthermore, the group with high CD155 and TIGIT expressions showed poor prognosis. Thus, CD155 and TIGIT expressions may be useful prognostic markers. The study findings suggest that CD155 and TIGIT can predict clinical outcomes, thereby contributing to the development of personalized care for patients with CRC.

Acknowledgments
We gratefully acknowledge the work of past and present members of the Department of Human Pathology, Wakayama Medical University, Wakayama, Japan.

Author Contributions
Conceptualization: Daisuke Murakami, Kenji Matsuda.
Data curation: Daisuke Murakami, Hiromitsu Iwamoto.
Formal analysis: Daisuke Murakami, Shin-ichi Murata.
Funding acquisition: Daisuke Murakami, Yasuyuki Mitani.
Investigation: Daisuke Murakami, Yuki Mizumoto.
Methodology: Daisuke Murakami, Yuki Nakamura.
Project administration: Daisuke Murakami, Ibu Matsuzaki.
Resources: Daisuke Murakami, Ryuta Iwamoto.
Software: Daisuke Murakami, Yuichi Takahashi.
Supervision: Daisuke Murakami, Kenji Matsuda, Shin-ichi Murata.
Validation: Daisuke Murakami, Shin-ichi Murata.
Visualization: Daisuke Murakami, Fumiyoshi Kojima.
Writing – original draft: Daisuke Murakami.
Writing – review & editing: Daisuke Murakami, Kenji Matsuda, Hiroki Yamaue.

References
1. Bray FJ, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68: 394–424. https://doi.org/10.3322/caac.21492 PMID: 30207593
2. Venook A. Critical evaluation of current treatments in metastatic colorectal cancer. Oncologist. 2005; 10: 250–261. https://doi.org/10.1634/theoncologist.10-4-250 PMID: 15821245
3. Xiao Y, Freeman GJ. The microsatellite instable subset of colorectal cancer is a particularly good candidate for checkpoint blockade immunotherapy. Cancer Discov. 2015; 5: 16–18. https://doi.org/10.1158/2159-8290.CD-14-1397 PMID: 25583798
4. Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015; 348: 56–61. https://doi.org/10.1126/science.aaa8172 PMID: 25838373
5. Oda T, Ohka S, Nomoto A. Ligand stimulation of CD155alpha inhibits cell adhesion and enhances cell migration in fibroblasts. Biochem Biophys Res Commun. 2004; 319: 1253–1264. https://doi.org/10.1016/j.bbrc.2004.05.111 PMID: 15194502
6. Takai Y, Miyoshi J, Ikeda W, Ogita H. Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol. 2008; 9: 603–615. https://doi.org/10.1038/nrm2457 PMID: 18648374
7. Inozume T, Yaguchi T, Furuta J, Harada K, Kawakami Y, Shimada S. Melanoma cells control antimelanoma CTL responses via Interaction between TIGIT and CD155 in the effector phase. J Invest Dermatol. 2016; 136: 255–263. https://doi.org/10.1038/JID.2015.404 PMID: 26763445
8. Sun H, Huang Q, Huang M, Wen H, Lin R, Zheng M, et al. Human CD96 correlates to NK cell exhaustion and predicts the prognosis of human hepatocellular carcinoma. Hepatology. 2018; 70: 168–183.

9. Xu Y, Cui G, Jiang Z, Li N, Zhang X. Survival analysis with regard to PD-L1 and CD155 expression in human small cell lung cancer and a comparison with associated receptors. Oncol Lett. 2019; 17: 2960–2968. https://doi.org/10.3892/ol.2019.9910 PMID: 30854074

10. Nishiwada S, Sho M, Yasuda S, Shimada K, Yamato I, Akahori T, et al. Clinical significance of CD155 expression in human pancreatic cancer. Anticancer Res. 2015; 35: 2287–2297. PMID: 25862891

11. Huang DW, Huang M, Lin XS, Huang Q. CD155 expression and its correlation with clinicopathologic characteristics, angiogenesis, and prognosis in human cholangiocarcinoma. Onco Targets Ther. 2017; 10: 3817–3825. https://doi.org/10.2147/OTT.S141476 PMID: 28814880

12. Atsumi S, Matsumine A, Toyoda H, Niimi R, Iino T, Sudo A. Prognostic significance of CD155 mRNA expression in soft tissue sarcomas. Oncol Lett. 2013; 5: 1771–1776. https://doi.org/10.3892/ol.2013.1280 PMID: 23833639

13. Casado JG, Pawelec G, Morgado S, Sanchez-Correa B, Delgado E, Gayoso I, et al. Expression of adhesion molecules and ligands for activating and costimulatory receptors involved in cell-mediated cytotoxicity in a large panel of human melanoma cell lines. Cancer Immunol Immunother. 2009; 58: 1517–1526. https://doi.org/10.1007/s00262-009-0682-y PMID: 19259667

14. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144: 646–674. https://doi.org/10.1016/j.cell.2011.02.013 PMID: 21376230

15. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018; 553: 446–454. https://doi.org/10.1038/nature25183 PMID: 29364287

16. Dougall WC, Kurtulus S, Smyth MJ, Anderson AC. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy. Immunol Rev. 2017; 276: 112–120. https://doi.org/10.1111/imr.12518 PMID: 28258695

17. He W, Zhang H, Han F, Chen X, Lin R, Wang W, et al. CD155/TIGIT signaling regulates CD8(+) T-cell metabolism and promotes tumor progression in human gastric cancer. Cancer Res. 2017; 77: 6375–6388. https://doi.org/10.1158/0008-5472.CAN-17-0381 PMID: 28883004

18. Gil Del Alcazar CR, Huh SJ, Ekram MB, Trinh A, Liu LL, Beca F, et al. Immune escape in breast cancer during in situ to invasive carcinoma transition. Cancer Discov. 2017; 7: 1098–1115. https://doi.org/10.1158/2159-8290.CD-17-0222 PMID: 28652380

19. Chauvin JM, Pagliano O, Fourcade J, Sun Z, Wang H, Sander C, et al. TIGIT and PD-1 impair tumor antigen-specific CD8(+) T cells in melanoma patients. J Clin Investig. 2015; 125: 2046–2058. https://doi.org/10.1172/JCI80445 PMID: 25866972

20. Tang W, Pan X, Han D, Rong D, Zhang M, Yang L, et al. Clinical significance of CD8+ T cell immunoreceptor with Ig and ITIM domains+ in locally advanced gastric cancer treated with SOX regimen after D2 gastrectomy. Oncoimmunology. 2019; 8: e1593807. https://doi.org/10.1080/2162402X.2019.1593807 PMID: 31069158

21. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA. 2002; 99: 12293–12297. https://doi.org/10.1073/pnas.192461099 PMID: 12218188

22. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002; 8: 793–800. https://doi.org/10.1038/nm730 PMID: 12091876

23. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010; 363: 711–723. https://doi.org/10.1056/NEJMoa1003466 PMID: 20525992

24. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012; 366: 2443–2454. https://doi.org/10.1056/NEJMoa1200690 PMID: 22658127

25. Dina M, Rania E, Muhammad T., Dina A, Asmaa M. SOct4 expression in gastric carcinoma: association with tumor proliferation, angiogenesis and survival. J Egypt Natl Canc Inst. 2019; 31: 1–11. https://doi.org/10.1186/s43046-019-0002-3 PMID: 32372136

26. Muhammad T, Reham A, Mohammed H, Mohamed M, Sara A, Reham L, et al. Utility of serum neuropilin-1 and angiopoietin-2 as markers of hepatocellular carcinoma. J Investing Med. 2021; 69: 1222–1229.

27. Sun Y, Luo J, Chen Y, Cui J, Lei Y, Cui Y, et al. Combined evaluation of the expression status of CD155 and TIGIT plays an important role in the prognosis of LUAD (lung adenocarcinoma). Int Immunopharmacol. 2020; 80: 106198. https://doi.org/10.1016/j.intimp.2020.106198 PMID: 31954274
28. Xu D, Zhao E, Zhu C, Zhao W, Wang C, Zhang Z, et al. TIGIT and PD-1 may serve as potential prognostic biomarkers for gastric cancer. Immunobiology. 2020; 3: 151915. https://doi.org/10.1016/j.imbio.2020.151915 PMID: 32122675

29. Duan X, Liu J, Cui J, Ma B, Zhou Q, Yang X, et al. Expression of TIGIT/CD155 and correlations with clinical pathological features in human hepatocellular carcinoma. Mol Med Rep. 2019; 20: 3773–3781. https://doi.org/10.3892/mmr.2019.10641 PMID: 31485637

30. Wu L, Mao L, Liu JF, Chen L, Yu GT, Yang LL. Blockade of TIGIT/CD155 signaling reverses T-cell exhaustion and enhances antitumor capability in head and neck squamous cell carcinoma. Cancer Immunol Res. 2019; 7: 1700–1713. https://doi.org/10.1158/2326-6066.CIR-18-0725 PMID: 31387897

31. Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression—implications for anticancer therapy. Nat Rev Clin Oncol. 2019; 16: 356–371. https://doi.org/10.1038/s41571-019-0175-7 PMID: 30705439

32. Fang J, Chen F, Liu D, Gu F, Chen Z, Wang Y. Prognostic value of immune checkpoint molecules in breast cancer. Biosci Rep. 2020; 40: BSR20201054. https://doi.org/10.1042/BSR20201054 PMID: 32602545

33. Zhao K, Ma L, Feng L, Huang Z, Meng X, Yu J. CD155 overexpression correlates with poor prognosis in primary small cell carcinoma of the esophagus. Front Mol Biosci. 2021; 7: 608404. https://doi.org/10.3389/fmolb.2020.608404 PMID: 33490104

34. Nakai R, Maniwa Y, Tanaka Y, Nishio W, Yoshimura M, Okita Y, et al. Overexpression of Necl-5 correlates with unfavorable prognosis in patients with lung adenocarcinoma. Cancer Sci. 2010; 101: 1326–1330. https://doi.org/10.1111/j.1349-7006.2010.01530.x PMID: 20331633

35. Solomon BL, Garrido-Laguna I. TIGIT a novel immunotherapy target moving from bench to bedside. Cancer Immunol Immunother. 2018; 67: 1659–1667. https://doi.org/10.1007/s00262-018-2246-5 PMID: 30232519

36. Qu P, Huang X, Zhou X, Lu Z, Liu F, Shi Z, et al. Loss of CD155 expression predicts poor prognosis in hepatocellular carcinoma. Histopathology. 2015; 66: 706–714. https://doi.org/10.1111/his.12584 PMID: 25320021