Research Article

Xuhua Liu* and Tin-Yau Tam

Extensions of Three Matrix Inequalities to Semisimple Lie Groups

Abstract: We give extensions of inequalities of Araki-Lieb-Thirring, Audenaert, and Simon, in the context of semisimple Lie groups.

Keywords: Araki-Lieb-Thirring inequality, positive definite matrices, semisimple Lie groups, log majorization, Kostant’s pre-order

MSC: 15A45, 15B48, 22E46

DOI 10.2478/spma-2014-0015
Received July 4, 2014; accepted September 14, 2014
Dedicated to In memory of our colleague Professor William Ullery who passed away on January 1, 2012.

1 Introduction

Let $\mathbb{C}^{n \times n}$ denote the vector space of $n \times n$ complex matrices. A norm $\| \cdot \|$ on $\mathbb{C}^{n \times n}$ is said to be unitarily invariant if $\| UAV \| = \| A \|$ for all unitary $U, V \in \mathbb{C}^{n \times n}$. For example, the spectral norm is unitarily invariant. The characterization of unitarily invariant norms in terms of symmetric gauge functions has been given by von Neumann [16] (see [3, p.91]).

A famous inequality with many applications is the Araki-Lieb-Thirring inequality [1, 9]:

Theorem 1.1. (Araki-Lieb-Thirring) Suppose $A, B \in \mathbb{C}^{n \times n}$ are positive semidefinite. If $r \geq 1$, then

$$\text{tr} (ABA)^r q \leq \text{tr} (A^r B^r A^r)^q,$$

(1.1)

for all $q \geq 0$. If $0 \leq r \leq 1$, the inequality is reversed.

For $A \in \mathbb{C}^{n \times n}$, let $|A| = (A^* A)^{1/2}$ denote the positive semidefinite part of A in the polar decomposition $A = U|A|$, where $U \in \mathbb{C}^{n \times n}$ is unitary. Audenaert [2] obtained the following inequality as a generalization of Araki-Lieb-Thirring inequality.

Theorem 1.2. (Audenaert [2, Proposition 3]) Suppose $A, B \in \mathbb{C}^{n \times n}$ with B Hermitian. If $r \geq 1$, then for any unitarily invariant norm $\| \cdot \|$:

$$\| ABA^r \| \leq \| A^r B^r A^r \| .$$

(1.2)

If $0 \leq r \leq 1$, the inequality is reversed.

The case $0 \leq r \leq 1$ in Theorem 1.2 is not stated in [2], but it can be derived by a similar method as for the case $r \geq 1$.

*Corresponding Author: Xuhua Liu: Department of Mathematics, The University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA, E-mail: Roy-Liu@utc.edu

Tin-Yau Tam: Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USA, E-mail: tamtiny@auburn.edu

© 2014 Xuhua Liu and Tin-Yau Tam, licensee De Gruyter Open.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
Let $|A| = (AA^*)^{1/2} = |A^*|$. So $A = |A^*|V$ is also a polar decomposition for some unitary $V \in \mathbb{C}_{n,n}$. Since ABA^* is Hermitian, (1.2) is equivalent to

$$
\| |ABA^*| \| = \| |ABA^*|' \| \leq \| |A^*|B|A| \| = \| |A^*|B|A| \|'.
$$

(1.3)

The following result of Simon [11, p.95] is also interesting (see [3, p.253, p.285] for historical remarks).

Theorem 1.3. (Simon [11]) Let $A, B \in \mathbb{C}_{n,n}$ such that the product AB is normal. For any unitarily invariant norm $\| \cdot \|$ on $\mathbb{C}_{n,n}$,

$$
\| AB \| \leq \| BA \|.
$$

(1.4)

Let $x = (x_1, x_2, \ldots, x_n)$ and $y = (y_1, y_2, \ldots, y_n)$ be in \mathbb{R}^n. Let $x^i = (x_{[1]}, x_{[2]}, \ldots, x_{[n]})$ denote a rearrangement of the components of x such that $x_{[1]} \geq x_{[2]} \geq \cdots \geq x_{[n]}$. We say that x is *majorized* by y, denoted by $x \prec y$, if

$$
\sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}, \quad k = 1, 2, \ldots, n - 1, \quad \text{and} \quad \sum_{i=1}^{n} x_{[i]} = \sum_{i=1}^{n} y_{[i]}.
$$

We say that x is *weakly majorized* by y, denoted by $x \prec_w y$, if the equality becomes inequality. An equivalent condition for $x \prec y$ is

$$
\text{conv } S_n \cdot x \subset \text{conv } S_n \cdot y,
$$

where $\text{conv } S_n \cdot x$ denotes the convex hull of the orbit of x under the action of the symmetric group $S_n ([6, 10])$. When x and y are nonnegative, we say that x is *log majorized* by y, denoted by $x \prec_{\log} y$, if

$$
\prod_{i=1}^{k} x_{[i]} \leq \prod_{i=1}^{k} y_{[i]}, \quad k = 1, 2, \ldots, n - 1, \quad \text{and} \quad \prod_{i=1}^{n} x_{[i]} = \prod_{i=1}^{n} y_{[i]}.
$$

In other words, when x and y are positive, we have $x \prec_{\log} y$ if and only if $\log x \prec y$.

For $X \in \mathbb{C}_{n,n}$, let $s(X)$ and $\lambda(X)$ be the vector of singular values of X in decreasing order and the vector of eigenvalues of X whose absolute values are in decreasing order, respectively. If $X, Y \in \mathbb{C}_{n,n}$, then $\| X \| \leq \| Y \|$ for all unitarily invariant norms $\| \cdot \|$ if and only if $s(X) \prec_w s(Y)$, according to Ky Fan’s Dominance Theorem (see [3, p.93]). Since both $|ABA^*|$ and $|A^*|B|A|$ are positive semidefinite, Theorem 1.2 amounts to say

$$
\lambda(|ABA^*|) \prec_w \lambda(|A^*|B|A|), \quad \text{if } r \geq 1.
$$

(1.5)

We are going to extend Theorem 1.1, Theorem 1.2, and Theorem 1.3 in the context of noncompact connected semisimple Lie groups. We need to be cautious since norm is a concept for vector spaces but not for groups. Indeed, there is another way to express the relationship between the vectors of eigenvalues of $|ABA^*|$ and $|A^*|B|A|$:

$$
\lambda(|ABA^*|) \prec_{\log} \lambda(|A^*|B|A|), \quad \text{if } r \geq 1.
$$

(1.6)

In fact, (1.5) and (1.6) are equivalent.

Theorem 1.4. Suppose $A, B \in \mathbb{C}_{n,n}$ with B Hermitian. If $r \geq 1$, the following statements are valid and are equivalent:

1. $\| |ABA^*|' \| \leq \| |A^*|B|A| \|'$ for all unitarily invariant norms $\| \cdot \|$ on $\mathbb{C}_{n,n}$.
2. $\lambda(|ABA^*|') \prec_w \lambda(|A^*|B|A|')$.
3. $\lambda(|ABA^*|') \prec_{\log} \lambda(|A^*|B|A|')$.

If $0 \leq r \leq 1$, the above inequalities are reversed.

Proof. It suffices to show that (2) and (3) are equivalent for $r \geq 1$. Notice that $a \prec_{\log} b$ implies $a \prec_w b$ for all nonnegative vectors $a, b \in \mathbb{R}^n$ [5, Proposition 1.3] or [17, Theorem 2.7]. So (3) implies (2). To establish the converse, we first notice that $\lambda_k(|ABA^*|') \leq \lambda_k(|A^*|B|A|')$. Then we use the kth compound matrix $C_k(\cdot)$ [10, p.502–504] argument. Note that if $M = UP$ (where $P = (A^*A)^{1/2}$ and U unitary) is the polar decomposition of
$M \in \mathbb{C}_{n,n}$, so is $C_k(M) = C_k(U)C_k(P)$. Since the kth compound matrix is multiplicative and respects complex conjugate transpose, we have

$$C_k(|ABA^*|') = |C_k(ABA^*)|^' = |C_k(A)C_k(B)C_k(A)|',$$

and

$$C_k(|A'|B'|A|') = [C_k(|A|)]'[C_k(|B|)]'[C_k(|A|)]' = |C_k(A)|' |C_k(B)|' |C_k(A)|'.$$

Moreover, for any positive semidefinite $Y \in \mathbb{C}_{n,n}$, the eigenvalues of $C_k(Y)$ are the $\binom{n}{2}$ products $\prod_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} \lambda_{i_k}(Y)$ of the eigenvalues $\lambda_i(Y) \geq \cdots \geq \lambda_n(Y)$ of Y. Thus

$$\prod_{1 \leq i \leq k} \lambda_i(|ABA^*|') = \lambda_i(C_k(|ABA^*|')) \leq \lambda_i(C_k(|A'|B'|A|')) = \prod_{1 \leq i \leq k} \lambda_i(|A'|B'|A|')$$

for $k = 1, \ldots, n$. They are equal when $k = n$ because $\det|ABA^*'| = \det(|A'|B'|A|')$.

Remark 1.5. It is claimed in [2] that Theorem 1.2 is a generalization of Theorem 1.1, but no proof is given there. We now offer a proof. If $A, B \in \mathbb{C}_{n,n}$ are positive semidefinite, so are $ABA^* = ABA$ and $|A'|B'|A|' = A'B'A'$. By Theorem 1.1 and Weyl-Horn's theorem [15], there exists a matrix in $\mathbb{C}_{n,n}$ with eigenvalues $\lambda_i(|ABA|') \geq \cdots \geq \lambda_n(|ABA|')$ and singular values $\lambda_1(|ABA') \geq \cdots \geq \lambda_n(|ABA')$. Theorem 1.1 then follows by [3, Theorem II.3.6].

Remark 1.6. Notice that (1.4) can be stated as any of the following forms:

$$||AB|| \leq ||BA||, \quad ||AB|| \leq ||BA||, \quad ||B^*A' AB|| \leq ||A'B^*BA||.$$

The group version of Theorem 1.3 takes the following stronger form: If $A, B \in \mathbb{C}_{n,n}$ are nonsingular with A normal, then

$$||A|| \leq ||BAB^{-1}||,$$

for all unitarily invariant norm. Here is a short proof: $s(A) = |\lambda(A)| = |\lambda(BAB^{-1})| \leq_w s(BAB^{-1}).$

The equivalent condition (1.6) is the one that suits our extensions. In other words, we will express our group results in terms Kostant’s pre-order instead of unitarily invariant norm or weak majorization. Kostant’s preorder and log majorization are equivalent when all matrices are nonsingular, as we will see this in Example 2.2.

2 Main results

Our goal is to establish a generalized form of (1.6) in the context of noncompact connected semisimple Lie groups. To do so, we need to introduce some basic concepts. The reader is referred to [4, 8] for the standard notation.

Let G be a noncompact connected semisimple Lie group with Lie algebra \mathfrak{g}, let $\Theta: G \to G$ be a nontrivial Lie group isomorphism with Θ^2 being the identity map on G, called a involution, and let K be the fixed point set of Θ, which is an analytic subgroup of G. The differential map $d\Theta: \mathfrak{g} \to \mathfrak{g}$ of Θ has eigenvalues ± 1. The eigenspace of $d\Theta$ corresponding to 1 is the Lie algebra \mathfrak{t} of K, and the eigenspace of $d\Theta$ corresponding to -1 is an $\text{Ad}K$-invariant subspace \mathfrak{p} of \mathfrak{g} complementary to \mathfrak{t}. Since G is semisimple, the Killing form B on \mathfrak{g} is nondegenerate. Let Θ be chosen such that B is negative definite on \mathfrak{t} and positive definite on \mathfrak{p}. This is equivalent to say that the bilinear form B_Θ defined by

$$B_\Theta(X, Y) = -B(X, d\Theta Y), \quad X, Y \in \mathfrak{g}$$

is an inner product on \mathfrak{g}. In this case, the decomposition $\mathfrak{g} = \mathfrak{t} + \mathfrak{p}$ is called Cartan decomposition of \mathfrak{g}, and $d\Theta$ is called Cartan involution of \mathfrak{g}, and Θ is called Cartan involution of G. Then the map $\mathfrak{p} \times K \to G$, $(X, k) \to$
g = \exp Xk, is a diffeomorphism, where \(\exp : X \rightarrow G \) is the Lie group exponential map ([4, VI. Theorem 1.1]). Let \(P := \{ e^X : X \in p \} \). Then every \(g \in G \) can be uniquely written as \(g = p(g)k(g) = pk \) with \(p = p(g) \in P \) and \(k = k(g) \in K \). The decomposition \(G = PK \) is called Cartan decomposition of \(G \). Let \(* : G \rightarrow G \) be the diffeomorphism defined by \(g^* = \Theta(g^{-1}) \). Then \(k^* = k^{-1} \) for \(k \in K \) and \(p^* = p \) for \(p \in P \). We remark that \(P \) is a subset of the fixed point set of \(\Theta \). An element \(g \in G \) is said to be normal if \(g \) and \(g^* \) commute.

An element \(X \in g \) is called real semisimple (resp., nilpotent) if \(\text{ad} X \) is diagonalizable over \(\mathbb{R} \) (resp., \(\text{ad} X \) is nilpotent). An element \(g \in G \) is called hyperbolic (resp., unipotent) if \(g = \exp X \) for some real semisimple (resp., nilpotent) \(X \in g \); in either case \(X \) is unique and we write \(X = \log g \). An element \(g \in G \) is called elliptic if \(\text{Ad} g \) is diagonalizable over \(\mathbb{C} \) with eigenvalues of modulus 1.

The following important result, due to Kostant [8], is called the complete multiplicative Jordan decomposition, abbreviated as CMJD.

Theorem 2.1. (Kostant [8, Proposition 2.1]) Each \(g \in G \) can be uniquely written as \(g = ehu \), where \(e \) is elliptic, \(h \) is hyperbolic, \(u \) is unipotent, and the three elements \(e, h, u \) commute.

Let \(a \) be a maximal abelian subspace of \(p \) and let \(A \) be the analytic subgroup generated by \(a \). We have \(p = \text{Ad}(K)a \) ([7, p. 378]). The Weyl group \(W \) of \((g, a) \) acts simply transitively on \(a \), and also on \(A \) through the exponential map \(\exp : a \rightarrow A \).

For any real semisimple element \(X \in g \), let \(W(X) \) denote the set of elements in \(a \) that are conjugate to \(X \):

\[
W(X) = \text{Ad} G(X) \cap a.
\]

It is known that \(W(X) \) is a single \(W \)-orbit in \(a \) ([8, Proposition 2.4]). Let \(\text{conv} W(X) \) be the convex hull in \(a \) generated by \(W(X) \). For any \(g \in G \), define

\[
A(g) := \exp \text{conv} W(\log h(g)),
\]

where \(h(g) \) is the hyperbolic component of \(g \) in its CMJD.

Kostant’s pre-order \(\prec \) on \(G \) ([8, p. 426]) is defined by setting \(f \prec g \) if

\[
A(f) \subset A(g).
\]

This pre-order induces a partial order on the conjugacy classes of \(G \).

Example 2.2. See [14, Proposition 2.2] for the example \(G = \text{SL}_n(\mathbb{C}) \) in which \(\prec \) becomes log majorization: For \(A, B \in \text{SL}_n(\mathbb{C}) \), \(A \prec B \) if and only if \(|\lambda(A)| \prec_\log |\lambda(B)| \), where \(|\lambda(A)| = (|\lambda_1(A)|, \ldots, |\lambda_n(A)|) \) with the components in decreasing order. When \(A \) and \(B \) are positive definite, \(\lambda(A) = \sigma(A) > 0 \) and \(\lambda(B) = \sigma(B) > 0 \), so \(A \prec B \) if and only if \(\lambda(A) \prec_\log \lambda(B) \).

Kostant’s pre-order does not depend on the choice of \(a \) due to the following result.

Theorem 2.3. (Kostant [8, Theorem 3.1]) Let \(f, g \in G \). Then \(f \prec g \) if and only if

\[
\rho(\pi(f)) \leq \rho(\pi(g))
\]

for any irreducible finite dimensional representation \(\pi \) of \(G \), where \(\rho(\pi(g)) \) denotes the spectral radius of the operator \(\pi(g) \).

The following is our first main result, as an extension of Theorem 1.2.

Theorem 2.4. Suppose \(g, h \in G \) and \(h^* = h \). If \(r \geq 1 \), then

\[
p^r(ggh^*) \prec p^r(g^*)p^r(h)p^r(g^*),
\]

where \(p^r(g) := [p(g)]^r \). If \(0 \leq r \leq 1 \), the inequality is reversed.
Proof. Let $G = PK$ be a Cartan decomposition of G. Let \hat{G} denote the set of all irreducible finite dimensional representations of G. For each $\pi \in \hat{G}$, let V_π be the representation space. We can fix once and for all an inner product on g such that $\pi(p) \in \text{Aut} V_\pi$ is positive definite for all $p \in P$ and $\pi(k) \in \text{Aut} V_\pi$ is unitary for all $k \in K$ [8, p.435]. For $g \in G$, let $g = pk$ be such that $p \in P$ and $k \in K$. Then $\pi(g) = \pi(p)\pi(k)$ is the polar decomposition of $\pi(g)$. Also, $\pi^* = k^{-1}p$ and thus $\pi(g^*) = [\pi(k)]^{-1}\pi(p)$. Thus we have

$$|\pi(g)| = (\pi(g)\pi^*(g))^{1/2} = \pi(p). \tag{2.2}$$

On the other hand, $\pi^*(g) = [\pi(g)]^* = (\pi(p)\pi(k))^* = [\pi(k)]^{-1}\pi(p)$.

In other words,

$$\pi^*(g) = \pi(g^*) \tag{2.3}$$

where $\pi^*(g)$ is the adjoint of $\pi(g) \in \text{Aut} V_\pi$. By Theorem 2.3 it suffices to show that for all $\pi \in \hat{G}$

$$\rho(\pi(p^*(ghg^*))) \leq \rho(\pi(p^*(g^*)p'(h)p^*(g^*))) \tag{2.4}$$

where $\rho(\cdot)$ denotes the spectral radius. From (2.2) and the fact that $\rho(g)$ is positive definite, we have

$$\|\pi(g)|| = \|\pi(g)|| = \rho(\pi(p)) \quad \text{for all } g \in G, \tag{2.5}$$

where $\|\cdot\|$ denotes the spectral norm on $\text{End} V_\pi$. Thus

$$\rho(\pi(p^*(ghg^*))) = \|\pi(p^*(ghg^*))\| \quad \text{by (2.5)}$$

$$= \|\pi^*(p^*(ghg^*))\| \quad \text{since } \pi \in \hat{G}$$

$$= \|\pi^*(ghg^*)\| \quad \text{by (2.2)}$$

$$= \|\pi(g)\pi(h)\pi^*(g)\| \quad \text{by (2.3)}$$

$$\leq \|\pi^*(g)|\pi(h)|\pi^*(g)| \| \quad \text{by (1.3)}$$

$$= \|\pi(g^*)|\pi(h)|\pi(g^*)| \| \quad \text{by (2.3)}$$

$$= \rho(\pi(g^*)|\pi(h)|\pi(g^*)|) \quad \text{since } |\pi(g^*)|^r|\pi(h)|^r|\pi(g^*)|^r \text{ is p.d.}$$

$$= \rho(\pi^*(p^*(g^*))\pi^*(p^*(h))\pi^*(p^*(g^*))) \quad \text{by (2.2)}$$

$$= \rho(\pi(p^*(g^*)p'(h)p^*(g^*))) \quad \text{since } \pi \in \hat{G}.$$

Thus (2.4) is established. The case $0 \leq r \leq 1$ is similar. \hfill \Box

We remark that similar technique was first used in [13].

The following is an extension of Theorem 1.1 in the context of semisimple Lie groups, i.e., we can obtain the result for $GL_n(\mathbb{C})$ by appropriate scaling on the semisimple Lie group $SL_n(\mathbb{C})$.

Theorem 2.5. Suppose $g, h \in G$ and $h^* = h$. If $r \geq 1$, then for any finite dimensional character χ of G,

$$\chi(p^*(ghg^*)) \leq \chi(p^*(g^*)p'(h)p^*(g^*)).$$

If $0 \leq r \leq 1$, then the inequality is reversed.

Proof. Since $p^*(ghg^*), p'(h)p^*(g) \in P$, they are both hyperbolic by [8, Proposition 6.2]. Then apply Theorem 2.4 and [8, Theorem 6.1] to have

$$\chi(p^*(ghg^*)) \leq \chi(p'(h)p^*(g)), \quad \text{if } r \geq 1.$$

The case $0 \leq r \leq 1$ is similar. \hfill \Box

Finally we want to extend Theorem 1.3 (in the form of (1.7)) in the context of semisimple Lie groups. The following theorem asserts that a normal element is the “smallest” in its conjugacy class.

Theorem 2.6. If $g, h \in G$ such that g is normal, then $p(g) \prec p(gh^{-1})$. In particular $\chi(p(g)) \leq \chi(p(gh^{-1}))$ for any finite dimensional character χ of G.

Proof. It is easy to see that g being normal implies that $\pi(g) \in \text{End } V_n$ is a normal operator for any finite dimensional representation π of G. Thus the spectral radius and the spectral norm of $\pi(g)$ are the same. For any $\pi \in \hat{G}$, by (1.7)

$$\rho(\pi(p(g))) = \|\pi(g)\| = \rho(\pi(g)) = \rho(\pi(h)\pi(g)\pi(h)^{-1}) \leq \|\pi(hgh^{-1})\| = \rho(p(hgh^{-1})),$$

where $\| \cdot \|$ denotes the spectral norm on $\text{End } V_n$. By Theorem 2.3 we have the desired result.

We remark the above relevant results are also true for the Cartan decomposition $G = KP$ with appropriate adjustment.

The following example shows that there are cases in which the pre-order is not necessarily log majorization.

Example 2.7. Let $G = \text{SO}_{2n}(\mathbb{C}) := \{ g \in \text{SL}_{2n}(\mathbb{C}) : g^Tg = 1 \}$. It is a connected noncompact simple Lie group \cite[p.449]{4} when $n \geq 2$ and its Lie algebra is

$$\mathfrak{g} := \mathfrak{so}_{2n}(\mathbb{C}) = \{ X \in \mathbb{C}_{2n \times n} : X^T = -X \}.$$

Fix a Cartan decomposition $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ with

$$\mathfrak{k} = \{ X \in \mathbb{R}_{2n \times n} : X^T = -X \}, \quad \mathfrak{p} = i\mathfrak{k},$$

that is, the corresponding Cartan involution on \mathfrak{g} is $d\Theta(Y) = -Y^*$ for all $Y \in \mathfrak{g}$ and on G is $\Theta(g) = (g^{-1})^*$ for all $g \in G$. So $K = \text{SO}(2n)$, the special orthogonal group. Pick

$$a = \left\{ \left(\begin{array}{cc} 0 & it_1 \\ -it_1 & 0 \end{array} \right) \oplus \left(\begin{array}{cc} 0 & it_2 \\ -it_2 & 0 \end{array} \right) \oplus \cdots \oplus \left(\begin{array}{cc} 0 & it_n \\ -it_n & 0 \end{array} \right) : t_1, \ldots, t_n \in \mathbb{R} \right\},$$

and

$$a^+ = \left\{ \left(\begin{array}{cc} 0 & it_1 \\ -it_1 & 0 \end{array} \right) \oplus \left(\begin{array}{cc} 0 & it_2 \\ -it_2 & 0 \end{array} \right) \oplus \cdots \oplus \left(\begin{array}{cc} 0 & it_n \\ -it_n & 0 \end{array} \right) : t_1 \geq \cdots \geq t_{n-1} \geq |t_n| \right\}.$$

Now

$$A^+ = \exp a^+,$$

$$A = \exp a, \quad p = \text{Ad}(K)a, \quad P = \exp p.$$

Notice that $\text{SO}_{2n}(\mathbb{C}) \subset \text{SL}_{2n}(\mathbb{C})$ and P is a subset of the set of $n \times n$ positive definite matrices in $\text{SL}_n(\mathbb{C})$. Each $f \in P$ is K-conjugate to a unique

$$f_+ = \left(\begin{array}{cc} \cosh f_1 & i \sinh f_1 \\ -i \sinh f_1 & \cosh f_1 \end{array} \right) \oplus \left(\begin{array}{cc} \cosh f_2 & i \sinh f_2 \\ -i \sinh f_2 & \cosh f_2 \end{array} \right) \oplus \cdots \oplus \left(\begin{array}{cc} \cosh f_n & i \sinh f_n \\ -i \sinh f_n & \cosh f_n \end{array} \right) \in A^+,$$

where $f_1 \geq \cdots \geq f_{n-1} \geq |f_n|$. Its eigenvalues are $e^{\xi_i}, e^{-\xi_i}, i = 1, \ldots, n$, which are the singular values of f. We now identify a with \mathbb{R}^n. With this identification, the Weyl group W acts on a in the following way:

$$(t_1, \ldots, t_n) \mapsto (xt_{\sigma(1)}, \ldots, xt_{\sigma(n)}),$$

in which the total number of negative sign is even. By definition, if $f, g \in P$, then $f \prec g$ means $f_+ \in \text{conv } Wg^+$, where $f_+, g_+ \in a^+$ are described as above. It means that \cite{12}

$$\sum_{i=1}^{n-1} f_i - |f_n| \prec w (g_1, \ldots, g_{n-1}, |g_n|),$$

$$\sum_{i=1}^{n-1} g_i - |g_n| \leq \sum_{i=1}^{n-1} f_i - |f_n|,$$
and in addition

\[\sum_{i=1}^{n-1} f_i + |f_n| \leq \sum_{i=1}^{n-1} g_i - |g_n|. \]

if one and only one of \(f_n \) and \(g_n \) is negative. This relation has more structure than the majorization that is the pre-order for \(\text{SL}_n(\mathbb{C}) \) on the algebra level while the group level description is log majorization.

References

[1] Araki, H., *On an inequality of Lieb and Thirring*, Lett. Math. Phys. 19 (1990), 167–170.
[2] Audenaert, K. M. R., *On the Araki-Lieb-Thirring Inequality*, Int. J. Inf. Syst. Sci. 4 (2008), 78–83.
[3] Bhatia, R., “Matrix Analysis”, Springer-Verlag, New Yor, 1997.
[4] Helgason, S., “Differential Geometry, Lie Groups, and Symmetric Spaces”, Academic Press, 1978.
[5] Hiai, F., *Log-majorizations and norm inequalities for exponential operators*, Linear Operators, Volume 38, p.119–181, Banach Center Publ., Polish Acad. Sci., Warsaw, 1997.
[6] Horn, A., *Doubly stochastic matrices and the diagonal of a rotation of matrix*, Amer. J. Math. 76 (1954), 620–630.
[7] Knapp, A. W., “Lie Groups beyond an Introduction”, 2nd ed., Birkhäuser, 2002.
[8] Kostant, B., *On convexity, the Weyl group and the Iwasawa decomposition*, Ann. Sci. École Norm. Sup. (4) 6 (1973), 413–455.
[9] Lieb, E., and Thirring, W., in *Studies in Mathematical Physics* (Eds. E. Lieb, B. Simon and A. Wightman), p.301–302, Princeton Press, 1976.
[10] Marshall, A. W., I. Olkin, and B. C. Arnold, “Inequalities: Theory of Majorization and its Applications (2nd ed.)”, Springer, 2011.
[11] Simon, B., “Trace Ideals and Their Applications”, London Mathematical Society Lecture Note Series, 35, Cambridge Univ. Press, 1979.
[12] Tam, T.Y., *Kostant’s convexity theorem and the compact classical groups*, Linear and Multilinear Algebra 43 (1997), 87–113.
[13] Tam, T.Y., and Huang, H., *An extension of Yamamoto’s theorem on the eigenvalues and singular values of a matrix*, Journal of Math. Soc. Japan, 58 (2006), 1197–1202.
[14] Tam, T.Y., *Some exponential inequalities for semisimple Lie groups*, A chapter of “Operators, Matrices and Analytic Functions”, 539–552, Oper. Theory Adv. Appl. 202, Birkhäuser Verlag, 2010.
[15] Tam, T.Y., *A. Horn’s result on matrices with prescribed singular values and eigenvalues*, Electron. J. Linear Algebra 21 (2010), 25–27.
[16] von Neumann, J., *Some matrix-inequalities and metrization of matric-space*, Tomsk. Univ. Rev., 1 (1937), 286–300.
[17] Zhan, X., “Matrix Inequality”, Lecture Notes in Mathematics 1790, Springer, Berlin, 2002.