Abstract

We calculate the divergences of the generating functional of quenched Chiral Perturbation Theory to one loop for a generic number of flavours. The flavour number dependence of our result enlightens the mechanism of quark loop cancellation in the quenched effective theory for any Green function or S matrix element. We also apply our results to $\pi\pi$ scattering and evaluate the coefficient of the chiral log in the S–wave scattering lengths for the quenched case.

PACS: 12.39.Fe, 12.38.Gc.

February 1997
Lattice simulations are at present the only available method to study in a quan-
titative way the nonperturbative regime of Quantum Chromodynamics. Although
theoretically well founded, the method is limited by a number of technical prob-
lems, and by the computing power which is not yet enough to fully cope with QCD,
despite continuous progress. One of the main technical difficulties is the implement-
tion of an efficient algorithm to evaluate the path integral over fermions, which
is at present very time consuming. The usual way to go around this problem has
been the use of the “quenched” approximation, i.e. setting to one the determinant
resulting from the integration over fermions. In the language of Feynman diagrams,
this approximation corresponds to neglecting quark loops.

Quenching is so widely used that it has become important to understand a priori
and in a quantitative way what is the effect introduced by this approximation [1]. A
very promising approach to this problem is, in our opinion, the effective Lagrangian
method proposed by Bernard and Golterman [2]. This is based on the observation
due to Morel (see Ref. [1]) that the quenched approximation to QCD can be de-
scribed by a Lagrangian where one adds to the usual quark fields a corresponding
number of ghost (complex) scalar fields, with the same kinetic term, and the same
coupling to gluons. The ghost fields exactly cancel the fermionic determinant. When
the quark masses are set to zero the quenched QCD Lagrangian has a larger sym-
metry than the usual $U(N)_L \times U(N)_R$, and must have a special fermionic character,
since it transforms bosons into fermions. This extended symmetry is described by
the graded group $U(N|N)_L \times U(N|N)_R$. Following exactly the same steps that lead
from the globally symmetric QCD Lagrangian in the chiral limit to Chiral Pertur-
bation Theory (CHPT) [3, 4], Bernard and Golterman have proposed an effective
Lagrangian that should describe the low energy regime of quenched QCD: quenched
CHPT (often qCHPT in the following). The basic new ingredient is the presence
of ghost fermion and boson fields that enter only inside loops. These are Goldstone
particles of the extended symmetry, and can be viewed as bound states formed
by a quark and a ghost–antiquark, or viceversa, and ghost–quark ghost–antiquark.
Also for these new fields the structure of the interaction is dictated by the graded
symmetry, which however leaves the coupling constants unconstrained. The main
advantage of this method is that one has in principle a systematic way to study the
modifications introduced by quenching: much as in CHPT, one can e.g. evaluate
unambiguously the chiral logs present in any observable quantity.

Quenched CHPT has been successful in showing that the chiral logs in the two
point function of the axial current to one loop disappear (i.e. both in F_π and M_π,
see Ref. [3]), and that the anomalous η' field is ill-defined, developing a double pole
in the propagator, as one would expect. The systematics of the cancellation of chiral
logs for two point functions has been further investigated in Ref. [5]. However, a general and strong argument in favour of the validity of this effective Lagrangian method is still missing. Such an argument could be produced if one were able to prove that the cancellation mechanism between pion and ghost loops is such that the pion loops that do not contain quark loops survive it (e.g. in $\pi\pi$ scattering the graph in Fig. 1a should remain whereas that in Fig. 1b not). This should be done in general, for any Green function or S matrix element.

Although at first sight this may seem difficult, there is in fact a straightforward way to do it. The idea is to develop a path integral formulation of quenched CHPT much on the same line as that of ordinary CHPT. There, Gasser and Leutwyler [4] have shown that, by using the background field method and heat kernel techniques, it is possible to derive in closed form the divergent part of the one loop generating functional. This is a chiral invariant Lagrangian at order p^4. The calculation was done in a general $SU(N)_R \times SU(N)_L$ theory, so that the N dependence of the divergent part of the one loop generating functional is explicit. In the result of Gasser and Leutwyler four different powers of N occur: N^k with $k = -2, -1, 0, 1$.

Let us disregard for the moment the negative powers – we shall discuss them later. If we consider the case of N degenerate quarks, the interpretation of the terms linear in N and constant is rather straightforward: they come from the pion loops that contain one quark loop or none at all, respectively. This conclusion is based on the simple observation that since the strong interaction is flavour-blind, each quark loop produces a factor N. Then, if quenched CHPT is working properly, the fermionic ghost loops have to cancel only the pion loops that give rise to a divergence proportional to N. Our main aim is to verify that this is exactly what happens.

For the sake of clarity we are going to ignore the presence of the $U(1)_A$ anomaly of QCD, in the following. Taking it into account would produce, as a main effect, a double pole in the η' [2]. How to cope with the diseases of this part of the theory has been extensively analyzed by Bernard and Golterman [2, 6] looking at various different observables. In the perturbative treatment of the path integral we are considering, these contributions simply add to the standard pion loop contributions, and we can safely put them aside for the moment [7].

The starting point of our calculation is the lowest order qCHPT Lagrangian, a graded symmetry generalization of the CHPT Lagrangian. This can be written as [8]:

$$L^{\text{qCHPT}}_2 = \frac{F^2}{4} \text{str} \left(D_\mu U_s D^\mu U_s^\dagger + \chi_s^\dagger U_s + U_s^\dagger \chi_s \right), \quad (1)$$

where \text{str} stands for the supertrace, the generalization of the trace to graded matrices (see Ref. [2] for details), $D^\mu U_s = \partial^\mu U_s - i r^\mu U_s + i U_s l_\mu$, $\chi_s = 2B_0(s_s + ip_s)$, and
the field U_s can be written as $U_s = \exp(\sqrt{2}i/F\Phi)$, where Φ is the hermitian non traceless block–matrix

$$
\Phi = \begin{pmatrix} \phi & \theta^\dagger \\ \theta & \tilde{\phi} \end{pmatrix}
$$

containing the physical pseudoscalar field ϕ, the ghost field $\tilde{\phi}$, both of bosonic nature, and the hybrid fields θ, θ^\dagger of fermionic nature. The scalar field s_s contains the quark mass matrix \mathcal{M} through:

$$
s_s = \begin{pmatrix} \mathcal{M} & 0 \\ 0 & \mathcal{M} \end{pmatrix} + \delta s_s
$$

and that for our purposes is taken diagonal: $\mathcal{M} = m_q 1$. All the Goldstone bosons will then have the same mass: $M^2 = 2B_0 m_q$. The Lagrangian in Eq. (1) contains the external fields r^μ_s, l^μ_s, s_s, p_s, which are generalizations of the standard external fields, in order to make the Lagrangian locally invariant under the group $U(N|N)_R \times U(N|N)_L$. However, since we are not interested in Green functions of the spurious fields, we directly set to zero all the corresponding spurious external fields. The generating functional will then become a function of the usual external fields only: $r^\mu = v^\mu + a^\mu$, $l^\mu = v^\mu - a^\mu$, s, p, which are all $N \times N$ matrices.

To calculate quantum corrections we expand the leading order action given by the Lagrangian in Eq. (1) in the vicinity of the classical solution which is determined by the external sources through the classical equations of motion. We define the classical solution as $\bar{U}_s \equiv u^2_s$ and describe the fluctuations around it as $U_s = u_s \exp(i \xi_s) u_s = u_s(1 + i \xi_s - 1/2 \xi_s^2 + \ldots) u_s$. To get the generating functional to one loop we need to expand the action in the ξ_s field up to second order. Skipping all the details we end up with the following gaussian integral (in Minkowski space-time):

$$
e^{iZ_{\text{CHPT one loop}}} = \int d\mu [U_s] \exp \left\{ i \int dx \frac{F^2}{4} \left[\xi_a D^{ab} \xi_b + 2 \xi^a_0 \bar{D}^a \xi_b + \bar{\xi}_a(\Box + M^2) \xi_a \right] \right\}
$$

$$
= N \frac{\det \bar{D}}{(\det D)^{1/2}},
$$

where we used the decomposition of the fields $\xi, \bar{\xi}, \zeta, \zeta^\dagger$ (quantum fluctuations corresponding to the classical fields ϕ, $\tilde{\phi}$, θ, θ^\dagger, respectively) in terms of the N^2 generators of each $U(N)$ flavour subgroup as $\xi = \xi^a \lambda_a$, with $\lambda_a = \lambda_a/\sqrt{2}$ for $a = 1, \ldots, N^2 - 1$ (the λ_a’s are the usual Gell–Mann matrices of $SU(N)$), and $\lambda_0 = \mathbf{1}/\sqrt{N}$. We remark that the scalar ghosts $\bar{\xi}$ decouple from the physical pions and the integral over them produces only an irrelevant constant. We also stress
that both differential operators D^{ab} and D^{ab} are now functions only of the standard external fields and the ϕ field at the classical solution, since we have put to zero all the spurious external fields. The differential operator D^{ab} is defined as follows

\[
D^{ab}\xi_b = -d_\mu d^\mu \xi^a + \hat{\sigma}^{ab}\xi_b ,
\]

where

\[
\hat{\Gamma}_\mu = -\langle \Gamma_\mu [\hat{\lambda}^a, \hat{\lambda}^b] \rangle , \quad \hat{\sigma}^{ab} = \frac{1}{4}\langle [u_\mu, \hat{\lambda}^a][u_\mu, \hat{\lambda}^b] \rangle - \frac{1}{4}\langle \{\hat{\lambda}^a, \hat{\lambda}^b\} \chi_+ \rangle .
\]

Let us recall some standard definitions in CHPT: $\Gamma_\mu = 1/2([u_\mu^\dagger, \partial_\mu u] - iu_\mu^\dagger r_\mu u - iu_\mu^\dagger u_\mu^\dagger)$, $u_\mu = iu_\mu^\dagger D_\mu Uu^\dagger$, and $\chi_+ = u^\dagger \chi u^\dagger + u \chi^\dagger u$. The differential operator \hat{D}^{ab} acting on the ghost field ζ is defined like in Eq. (3), but with barred quantities, given by

\[
\hat{\Gamma}_\mu^{ab} = -\langle \Gamma_\mu [\hat{\lambda}^a, \hat{\lambda}^b] \rangle , \quad \hat{\sigma}^{ab} = -\frac{1}{4}\langle (u_\mu u^\mu + \chi_+ + 4B_0 \mathcal{M}) \hat{\lambda}^a \hat{\lambda}^b \rangle ,
\]

where \mathcal{M} is again the quark mass matrix, which is also contained in the external scalar field $s = \mathcal{M} + \delta s$.

The divergent part of Eq. (2) can be derived in closed form by regularizing the determinants in d dimensions and using standard heat kernel techniques. The result reads:

\[
\frac{i}{2} \ln \det D = \frac{-1}{(4\pi)^2(d-4)} \int dx \left\{ \frac{N}{6} \langle \Gamma_\mu \Gamma^{\mu\nu} \rangle + \frac{1}{2} \left[\frac{1}{4} \langle u_\mu u_\nu \rangle \langle u^\mu u^\nu \rangle + \frac{1}{8} \langle u^\mu u^\mu \rangle^2 \right] \right\} + \ldots
\]

\[
i \ln \det \hat{D} = \frac{1}{(4\pi)^2(d-4)} \int dx \left[\frac{N}{6} \langle \Gamma_\mu \Gamma^{\mu\nu} \rangle + \frac{N}{16} \langle (u_\mu u^\mu + \chi_+ + 4B_0 \mathcal{M})^2 \rangle \right] + \ldots
\]

and their difference gives

\[
Z_{\text{CHPT}}^{\text{one loop}} = \frac{-1}{(4\pi)^2(d-4)} \int dx \left\{ \frac{1}{8} \langle u_\mu u_\nu \rangle \langle u^\mu u^\nu \rangle + \frac{1}{16} \langle u^\mu u^\mu \rangle^2 - \frac{1}{4} \langle u_\mu \rangle \langle u^\mu u^\nu \rangle \right. \\
- \frac{1}{4} \langle u_\mu \rangle \langle u^\mu \chi_+ \rangle + \frac{1}{8} \langle u_\mu u^\mu \rangle \langle \chi_+ \rangle + \frac{1}{16} \langle \chi_+ \rangle^2 \\
- \frac{N}{4} M^2 \langle u_\mu u^\mu \rangle - \frac{N}{4} M^2 \langle \chi_+ \rangle \right\} + \ldots
\]

(8)
The ellipses stand everywhere for the finite contributions to the one loop generating functional. Eq. (8) shows explicitly the flavour dependence of the qCHPT functional to one loop and the comparison with Eq. (6) provides the result we were after. We stress a few important points:

1. Last line of Eq. (6) contains extra contributions with respect to the $SU(N) \times SU(N)$ determinant of Gasser and Leutwyler [4], due to the presence of the singlet field. Two of those terms are proportional to $\langle u_\mu \rangle \equiv \nabla_\mu \phi_0$, and only contribute to processes with external singlet fields. The last two terms arise from loops with the singlet field running inside. These terms exactly remove the negative power dependence upon N in the rest of the expression. This shows that the presence of such terms in the $SU(N)$ theory can be understood as an effect of the $U(1)_A$ anomaly that decouples the singlet field.

2. The ζ field loop in Eq. (7) produces only contributions linear in N as expected, and cancels completely the terms linear in N of the full generating functional. We also note that the N dependence in Eq. (6) is not fully explicit. In fact, since the expansion of χ_+ in powers of ϕ starts with a constant term proportional to the quark mass matrix, its trace is proportional to N in the degenerate case we are considering here. The last two terms in Eq. (8) cancel this dependence in the final expression. This result shows that quenched CHPT does what it should do, i.e. it contains only the pion loops that do not contain quark loops.

3. Each pole at $d = 4$ produces a chiral logarithm after renormalization. A different way to present our result is to say that we have calculated the chiral logs of any Green function in qCHPT to one loop. We obtained that these are nonzero in general, though certainly different from those of the ordinary CHPT case. How different has to be investigated case by case, since it is not possible to identify a general behaviour from our result.

In particular, from Eq. (8) it is easy to verify the results already obtained by Bernard and Golterman [3] about the absence of chiral logs in the chiral condensates, pion masses and decay constants. The situation is different when one considers Green functions with more than two external legs. To see what happens in one concrete example, we consider the $\pi\pi$ scattering amplitude – also because there are lattice calculations of the two S-wave scattering lengths available, Ref. [9]. As we argued above, the presence of chiral logs even in the quenched theory has to be interpreted as due to diagrams with pion loops that do not contain quark loops. For the $\pi\pi$ scattering amplitude an example is given in Fig. [10].
Figure 1: Two examples of pion loop graphs contributing to $\pi\pi$ scattering in the quark–flow diagram picture (all lines are quark lines). Diagram (a) does not contain quark loops, whereas diagram (b) does.

The complete amplitude in quenched CHPT reads:

$$A_{\pi\pi}^{\text{CHPT}}(s, t, u) = \frac{s - M_{\pi}^2}{F_{\pi}^2} + \frac{1}{4F_{\pi}^2} \left\{ -\frac{1}{2} \left(L + \frac{1}{16\pi^2} \right) \left[3s^2 + (t - u)^2 \right]
ight. \right.$$

$$+ \ s^2 J(s) + (t - 2M_{\pi}^2)^2 J(t) + (u - 2M_{\pi}^2)^2 J(u)$$

$$+ \ c_1 M_{\pi}^4 + c_2 sM_{\pi}^2 + c_3^r(\mu)s^2 + c_4^r(\mu)(t - u)^2 \left\} \right.$$

$$+ S_{(m_0,\alpha)}(s, t, u) + O(p^6) \ , \tag{9}$$

where $J(q^2) = J(q^2) - J(0)$, with

$$J(q^2) = \frac{1}{i} \int \frac{d^d l}{(2\pi)^d} \frac{1}{(M^2 - l^2)(M^2 - (l - q)^2)} \ , \tag{10}$$

and $L = (16\pi^2)^{-1} \log \left(M_{\pi}^2/\mu^2 \right)$. The polynomial part with coefficients c_1, \ldots, c_4 comes from the counterterm Lagrangian at order p^4. $S_{(m_0,\alpha)}(s, t, u)$ is the renormalized contribution to the amplitude of the singlet loops with one (m_0 and α) vertex insertion on the singlet propagator. The effects and diseases of $S_{(m_0,\alpha)}(s, t, u)$ have been discussed in \[\text{[8, 10]} \]. F_{π} and M_{π} are the renormalized quenched values of F and M at order p^4. While F remains unchanged to one loop, M gets a one loop correction from (m_0 and α) vertex insertion which we included in $S_{(m_0,\alpha)}(s, t, u)$. Finite contributions to both F_{π} and M_{π} from the order p^4 Lagrangian are meant to be included in the renormalized polynomial part. Let us stress that the divergent part of the amplitude before renormalization, and the corresponding chiral logs in the renormalized amplitude Eq. (9) can also be obtained from the generating functional, Eq. (8), by expanding it in powers of the external fields for $N = 2$, and taking the coefficient of the relevant term. This offers a welcome check on the full calculation.
We focus now on the S–wave scattering lengths. In full CHPT it is well known that the chiral logs dominate the one loop correction at $\mu = 1$ GeV \cite{11}. In the quenched case, the coefficients of the chiral logs are:

$$a^0_{qCHPT} = \frac{7M^2_{\pi}}{32\pi F^2_{\pi}} \left\{ 1 + \frac{M^2_{\pi}}{F^2_{\pi}} \left(\frac{-22}{7} L + \ldots \right) + O(M^4_{\pi}) \right\},$$ \hspace{1cm} (11)$$

$$a^2_{qCHPT} = -\frac{M^2_{\pi}}{16\pi F^2_{\pi}} \left\{ 1 + \frac{M^2_{\pi}}{F^2_{\pi}} (2L + \ldots) + O(M^4_{\pi}) \right\},$$ \hspace{1cm} (12)$$

while in full CHPT the corresponding coefficients are: $-9/2$ for $I = 0$ and $3/2$ for $I = 2$ \cite{11}. In both cases the change in the correction due to quenching is of the order of 30%; however the one loop correction itself is roughly of this size in full CHPT (see Ref. \cite{11}), so that the overall relative change can be estimated to be around 10%. Of course this is not the whole story: we have not included the remaining analytic contributions from the regular part of the amplitude, the constants c_i’s in Eq. (9), and the contributions from the ill part of the amplitude, $S_{(m_0,0)}(s,t,u)$. As for the first point, if one assumes that quenching will not change the order of magnitude of the finite part of the $O(p^4)$ constants at $\mu = 1$ GeV (one could argue that some kind of Vector Meson Dominance should be valid also in the quenched case), one can conclude that those contributions should still produce a small correction.

The ill part of the amplitude is in principle more dangerous and requires a more careful treatment, as was done by Bernard and Golterman \cite{6}. They have shown in fact that this part dramatically changes the very method to compute the scattering lengths on the lattice: the Lüscher’s formula \cite{12} that relates finite volume effects to the S–wave scattering lengths is modified by quenching. However, the numerical analysis of this effect, adapted to the staggered fermions calculation by Fukugita et al. \cite{9} (the only calculation done with a pion mass small enough to justify the application of CHPT) indicates that this effect should be small. Putting the various pieces together, we can conclude that a complete analysis in qCHPT to one loop of the $\pi\pi$ scattering amplitude, seems to provide an explanation for the rather good agreement between the lattice calculation of S–wave scattering lengths done in Ref. \cite{9} and standard CHPT, as was pointed out by one of us in Ref. \cite{13}.

Let us summarize our results: we have calculated the divergent part of the generating functional of quenched CHPT to one loop, Eq. (8), and found that, for degenerate quark masses, it does not contain any explicit flavour number dependence. Arguing that for a non–anomalous theory this dependence may arise only through the presence of quark loops (become manifest here through pion loops), we conclude that quenched CHPT is working properly. In our opinion this result puts on a very solid basis quenched CHPT, the effective theory proposed by Bernard and Golterman \cite{2} to describe the low energy physics of quenched QCD. Our calculation
provides also the chiral logs of any Green function, and shows that these are nonzero in general. As an example we have discussed the case of the \(\pi \pi \) scattering amplitude and found that the coefficient of the chiral log of the two \(S \)-wave scattering lengths has been modified by 30\%, a rather modest effect.

Acknowledgements

It is a pleasure to thank G.M. de Divitiis, J. Gasser, M. Masetti and R. Petronzio for interesting discussions. We also thank J. Gasser and R. Petronzio for reading the manuscript.

References

[1] See for example:
 A. Morel, J. Phys. (Paris), 48, 111 (1987),
 S.R. Sharpe, Phys. Rev. D 46 3146 (1992).
[2] C.W. Bernard, and M.F.L. Golterman, Phys. Rev. D 46 853 (1992).
[3] J. Gasser, and H. Leutwyler, Ann. of Phys. (N.Y.) 158 142 (1984).
[4] J. Gasser, and H. Leutwyler, Nucl. Phys. B250, 465 (1985).
[5] C.W. Bernard, and M.F.L. Golterman, Phys. Rev. D 49 486 (1994).
[6] C.W. Bernard, and M.F.L. Golterman, Phys. Rev. D 53 476 (1996).
[7] G. Colangelo and E. Pallante, in preparation.
[8] We always use the subscript \(s \) to denote the graded symmetry version of a standard CHPT quantity.
[9] M. Fukugita, Y. Kuramashi, M. Okawa, H. Mino, and A. Ukawa, Phys. Rev. Lett. 71 2387 (1993); Phys. Rev. D 52 3003 (1995).
[10] C. Bernard et al., Nucl. Phys. B (Proc. Suppl.) 34 334 (1994).
[11] J. Gasser, and H. Leutwyler, Phys. Lett. 125B 325 (1983).
[12] M. Lüscher, Comm. Math. Phys. 105 153 (1986).
[13] G. Colangelo, hep–ph/9607205, Phys. Lett. B, in press.