Upper and lower estimates for numerical integration errors on spheres of arbitrary dimension

Peter Grabner1,*, Tetiana Stepanyuk1

\textit{Graz University of Technology, Institute of Analysis and Number Theory,}
\textit{Kopernikusgasse 24/II 8010, Graz, Austria}

\textbf{Abstract}
In this paper we study the worst-case error of numerical integration on the unit sphere $S^d \subset \mathbb{R}^{d+1}$, $d \geq 2$, for certain spaces of continuous functions on S^d. For the classical Sobolev spaces $H^s(S^d) \ (s > \frac{d}{2})$ upper and lower bounds for the worst case integration error have been obtained in \cite{2,10,12}. We investigate the behaviour for $s \to \frac{d}{2}$ by introducing spaces $H^{n-\gamma}(S^d)$ with an extra logarithmic weight. For these spaces we obtain similar upper and lower bounds for the worst case integration error.

\textit{Keywords:} Worst-case error, numerical integration, cubature rules, reproducing kernel, t-design, QMC design, sphere.

\textit{2010 MSC:} 41A55, 33C45, 41A63

\section{1. Introduction}
Let $S^d \subset \mathbb{R}^{d+1}$, where $d \geq 2$ denote the unit sphere in the Euclidean space \mathbb{R}^{d+1}. The integral of a continuous function $f : S^d \to \mathbb{R}$, denoted by

$$I(f) := \int_{S^d} f(x) d\sigma_d(x),$$

*Corresponding author

\textit{Email addresses:} peter.grabner@tugraz.at (Peter Grabner),
t.stepaniuk@tugraz.at (Tetiana Stepanyuk)

1The authors are supported by the Austrian Science Fund FWF project F5503 (part of the Special Research Program (SFB) “Quasi-Monte Carlo Methods: Theory and Applications”)
where $d\sigma_d(x)$ is the normalised surface (Lebesgue) measure on S^d (i.e., $\sigma_d(S^d) = 1$), is approximated by an N-point numerical integration rule $Q[X_N, \omega](f)$

$$Q[X_N, \omega](f) = Q[X_N, (\omega_j)_{j=1}^N](f) := \sum_{i=1}^N \omega_i f(x_i)$$

with nodes $x_1, \ldots, x_N \in S^d$ and associated weights $\omega_1, \ldots, \omega_N \in \mathbb{R}$. We will always assume that the weights satisfy the relation

$$\sum_{i=1}^N \omega_i = 1.$$

By $Q[X_N](f)$ we will denote the equal weight numerical integration rule:

$$Q[X_N](f) := \frac{1}{N} \sum_{i=1}^N f(x_i).$$

The worst-case (cubature) error of the cubature rule $Q[X_N, \omega]$ in a Banach space B of continuous functions on S^d with norm $\| \cdot \|_B$ is defined by

$$\text{wce}(Q[X_N, \omega]; B) := \sup_{f \in B, \| f \|_B \leq 1} |Q[X_N](f) - I(f)|. \quad (1)$$

In this work we consider reproducing kernel Hilbert spaces $H_2^d(\mathbb{R}^d)$, which interpolate the classical spaces $H^s(S^d)$ for $s \rightarrow \frac{d}{2}$, (see Section 2 for a precise definition).

The paper is organised as follows.

Section 2 provides necessary background for Jacobi polynomials, the spaces $H^s(S^d)$ and $H^d_2(\mathbb{R}^d)$, their associated reproducing kernels and an expression for the worst-case error.

In Section 3 we find upper and lower bounds of equal weight numerical integration over the unit sphere $S^d \subset \mathbb{R}^{d+1}$ for functions in the space $H^d_2(S^d)$, $\gamma > \frac{1}{2}$. In this section we consider sequences $X_N(t)$ of well-separated t-designs. Here we also assume that $t \asymp N^{\frac{d}{2}}$. Such t-designs exist by [3]. We write $a_n \asymp b_n$ to mean that there exist positive constants C_1 and C_2 independent of n such that $C_1 a_n \leq b_n \leq C_2 a_n$ for all n.

We show that

$$C_{d, \gamma} N^{-\frac{d}{2}} (\ln N)^{-\gamma} \leq \text{wce}(Q[X_N, \omega]; H^d_2(S^d)) \quad (2)$$
for all quadrature rules $Q[X_N, \omega]$ and provide examples of quadrature rules which satisfy

$$C^{(1)}_{d, \gamma} N^{-\frac{1}{2}} (\ln N)^{-\gamma + \frac{1}{2}} \leq \text{wce}(Q[X_N]; \mathbb{H}^{(\frac{d}{2}-\gamma)}(\mathbb{S}^d)) \leq C^{(2)}_{d, \gamma} N^{-\frac{1}{2}} (\ln N)^{-\gamma + \frac{1}{2}} ,$$

where the positive constants $C^{(1)}_{d, \gamma}$ and $C^{(2)}_{d, \gamma}$ depend only on d and γ, but are independent of the rule $Q[X_N]$ and the number of nodes N of the rule.

Here and further by $C_{\gamma,d}$, $C^{(1)}_{\gamma,d}$ and $C^{(2)}_{\gamma,d}$ we denote some positive constants, which depend only on d and γ and can be different in different relations.

The upper estimate of this result is an extension of results in [7, 12], where the upper bound for the worst-case error in the Sobolev space $\mathbb{H}^s(\mathbb{S}^d)$, $s > \frac{d}{2}$, (see Section 2 for a precise definition) of a sequence of cubature rules $Q[X_N]$ was found. In these papers the sequence $Q[X_N]$ integrates all spherical polynomials of degree $\leq t$ exactly and satisfies a certain local regularity property.

In Section 4 we show that the worst-case error for functions in the space $\mathbb{H}^{(\frac{d}{2}-\gamma)}(\mathbb{S}^d), \gamma > \frac{1}{2}$, for an arbitrary N-point cubature rule $Q[X_N, \omega]$ has the lower bound

$$\text{wce}(Q[X_N, \omega]; \mathbb{H}^{(\frac{d}{2}-\gamma)}(\mathbb{S}^d)) \geq C_{d,\gamma} N^{-\frac{1}{2}} (\ln N)^{-\gamma},$$

where the positive constant $C_{d,\gamma}$ depends only on d and γ, but is independent of the rule $Q[X_N]$ and the number of nodes N of the rule. On the basis of the estimate (3), we can make a conjecture that the order of convergence $O(N^{-\frac{1}{2}} (\ln N)^{-\gamma + \frac{1}{2}})$ is optimal for classes $\mathbb{H}^{(\frac{d}{2}-\gamma)}(\mathbb{S}^d)$.

In Section 5 we analyse QMC designs for $\mathbb{H}^{(\frac{d}{2}-\gamma)}(\mathbb{S}^d)$ and compare them with QMC designs for Sobolev spaces $\mathbb{H}^s(\mathbb{S}^d)$. We prove that if X_N is a sequence of QMC designs for Sobolev spaces $\mathbb{H}^s(\mathbb{S}^d)$, $s > \frac{d}{2}$, it is also a sequence of QMC designs for $\mathbb{H}^{(\frac{d}{2}-\gamma)}(\mathbb{S}^d)$ for all $\gamma > \frac{1}{2}$.

We remark here that J. Beck [1, 2] could show a lower bound for the spherical cap discrepancy of order $N^{-1/2-1/2d}$; he proved by probabilistic means that for every N there exists a point set X_N with discrepancy of order $N^{-1/2-1/2d} \sqrt{\log N}$. Beck’s lower bound can be reproved by using the techniques found by D. Bilyk and F. Dai [3], which we will refer to in more detail in Section 4. The $\sqrt{\log N}$-factor between the lower and the upper bound in (2) and (3) resembles the difference between Beck’s general lower bound and the upper bound achieved by a probabilistic construction.
2. Preliminaries

2.1. Background and basic notations

We denote the Euclidean inner product of x and y in \mathbb{R}^{d+1} by $\langle x, y \rangle$.

We use the Pochhammer symbol $(a)_n$, where $n \in \mathbb{N}_0$ and $a \in \mathbb{R}$, defined by

$$(a)_0 := 1, \quad (a)_n := a(a+1)\ldots(a+n-1) \quad \text{for} \quad n \in \mathbb{N},$$

which can be written in the terms of the gamma function $\Gamma(z)$ by means of

$$(a)_\ell = \frac{\Gamma(\ell + a)}{\Gamma(a)}. \quad (4)$$

The following asymptotic relation holds

$$\frac{\Gamma(z+a)}{\Gamma(z+b)} \sim z^{a-b} \quad \text{as} \quad z \to \infty \quad \text{in the sector} \quad |\arg z| \leq \pi - \delta \quad (5)$$

for $\delta > 0$. Here, $f(x) \sim g(x), x \to \infty$, means that

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1.$$

We denote, as usual, by $\{Y^{(d)}_{\ell,k} : k = 1, \ldots, Z(d, \ell)\}$ a collection of L_2-orthonormal real spherical harmonics (homogeneous harmonic polynomials in $d + 1$ variables restricted to S^d) of degree ℓ (see, e.g., [14]). The space of spherical harmonics of degree $\ell \in \mathbb{N}_0$ on S^d has the dimension

$$Z(d, 0) = 1, \quad Z(d, \ell) = (2\ell + d - 1) \frac{\Gamma(\ell + d - 1)}{\Gamma(d)\Gamma(\ell + 1)} \sim \frac{2}{\Gamma(d)} \ell^{d-1}, \quad \ell \to \infty. \quad (6)$$

Each spherical harmonic $Y^{(d)}_{\ell,k}$ of exact degree ℓ is an eigenfunction of the negative Laplace-Beltrami operator $-\Delta^*_d$ with eigenvalue

$$\lambda_\ell := \ell(\ell + d - 1). \quad (7)$$

The spherical harmonics of degree ℓ satisfy the addition theorem:

$$\sum_{k=1}^{Z(d,\ell)} Y^{(d)}_{\ell,k}(x) Y^{(d)}_{\ell,k}(y) = Z(d,\ell) P^{(d)}_{\ell}(\langle x, y \rangle), \quad (8)$$
where $P^{(d)}_{\ell}$ is the ℓ-th generalised Legendre polynomial, normalised by $P^{(d)}_{\ell}(1) = 1$ and orthogonal on the interval $[-1,1]$ with respect to the weight function $(1-t^2)^{d/2-1}$. These functions are zonal spherical harmonics on S^d. Notice that

$$Z(d, n) P^{(d)}_{\ell}(x) = \frac{n + \lambda}{\lambda} C_n^{\lambda}(x), \quad P^{(d)}_{\ell}(x) = \frac{n!}{(d/2)_n} P^{\lfloor d/2 \rfloor - 1/2}_{n}(x), \quad (9)$$

where $C_n^{\lambda}(x)$ is the n-th Gegenbauer polynomial with index $\lambda = \frac{d-1}{2}$ and $P^{\lfloor d/2 \rfloor - 1/2}_{n}(x)$ are the Jacobi polynomials with the indices $\alpha = \beta = \frac{d}{2} - 1$.

2.2. Jacobi polynomials

The Jacobi polynomials $P^{(\alpha, \beta)}_{\ell}(x)$ are the polynomials orthogonal over the interval $[-1,1]$ with respect to the weight function $w_{\alpha, \beta}(x) = (1-x)^{\alpha}(1+x)^{\beta}$ and normalised by the relation

$$P^{(\alpha, \beta)}_{\ell}(1) = \left(\frac{\ell + \alpha}{\ell}\right) = \frac{(1 + \alpha)_{\ell}}{\ell!} \sim \frac{1}{\Gamma(1 + \alpha)} \ell^{\alpha}, \quad \alpha, \beta > -1. \quad (10)$$

(see, e.g., [13, (5.2.1)]).

Also the following equality holds

$$P^{(\alpha, \beta)}_{\ell}(-x) = (-1)^{\ell} P^{(\beta, \alpha)}_{\ell}(x). \quad (11)$$

For fixed $\alpha, \beta > -1$ and $0 < \theta < \pi$, the following relation gives an asymptotic approximation for $\ell \to \infty$ (see, e.g., [17, Theorem 8.21.13])

$$P^{(\alpha, \beta)}_{\ell}(\cos \theta) \approx \frac{1}{\sqrt{\pi}} \ell^{-1/2} \left(\sin \frac{\theta}{2}\right)^{-\alpha-1/2} \left(\cos \frac{\theta}{2}\right)^{-\beta-1/2} \times \left\{ \cos \left(\ell + \frac{\alpha + \beta + 1}{2}\right) \theta - \frac{2\alpha + 1}{4 \pi} \right\} + O(\ell \sin \theta)^{-1} \right\}. \quad (12)$$

Thus, for $c_{\alpha, \beta} \ell^{-1} \leq \theta \leq \pi - c_{\alpha, \beta} \ell^{-1}$ the last asymptotic equality yields

$$|P^{(\alpha, \beta)}_{\ell}(\cos \theta)| \leq \tilde{c}_{\alpha, \beta} \ell^{-1/2}(\sin \theta)^{-\alpha-1/2} + \tilde{c}_{\alpha, \beta} \ell^{-3/2}(\sin \theta)^{-\alpha-3/2}, \quad \alpha \geq \beta. \quad (12)$$

If α, β are real and c is fixed positive constant, then as $\ell \to \infty$ (see, e.g., [13, (5.2.3)])

$$|P^{(\alpha, \beta)}_{\ell}(\cos \theta)| = \begin{cases} O\left(\theta^{-\frac{\alpha}{2}} \ell^{-\frac{1}{2}}\right) & \text{if } \frac{\pi}{2} \ell \leq \theta \leq \frac{\pi}{2}, \\ O\left(\ell^{\alpha}\right) & \text{if } 0 \leq \theta \leq \frac{\pi}{2}. \end{cases} \quad (13)$$
We will also use the formula (see, e.g., [17, (4.5.3)])

\[\sum_{\ell=0}^{n} \frac{2\ell + \alpha + \beta + 1}{\alpha + \beta + 1} \frac{(\alpha + \beta + 1)_{\ell}}{(\beta + 1)_{\ell}} P_\ell^{(\alpha,\beta)}(t) = \frac{(\alpha + \beta + 2)_n}{(\beta + 1)_n} P_n^{(\alpha+1,\beta)}(t). \quad (14) \]

Choosing \(\alpha = \beta = \frac{d}{2} - 1 \) and taking into account the relations (6) and (9), formula (14) also reads

\[\sum_{r=0}^{\ell} 2r + d - 1 \frac{(d-1)_r}{(d/2)_r} P_r^{(\frac{d}{2}-1,\frac{d}{2}-1)}(t) = \frac{(d)_{\ell}}{(d/2)_{\ell}} P_\ell^{(\frac{d}{2},\frac{d}{2})}(t). \quad (15) \]

Substituting \(\alpha = \frac{d}{2} - 1 + k \) and \(\beta = \frac{d}{2} - 1 \), formula (14) gives

\[\sum_{r=0}^{\ell} 2r + d - 1 + k \frac{(d-1+k)_r}{(d/2)_r} P_r^{(\frac{d}{2}+k,\frac{d}{2})}(t) = \frac{(d+k)_{\ell}}{(d/2)_{\ell}} P_\ell^{(\frac{d}{2}+k,\frac{d}{2})}(t). \quad (16) \]

For any integrable function \(f : [-1, 1] \to \mathbb{R} \) (see, e.g., [14])

\[\int_{\mathbb{S}^d} f(\langle x, y \rangle) d\sigma_d(x) = \frac{\Gamma(d+1)}{\sqrt{\pi} \Gamma(d/2)} \int_{-1}^{1} f(t)(1 - t^2)^{d/2 - 1} dt \quad \forall y \in \mathbb{S}^d. \quad (17) \]

For \(\alpha > 1 \) and \(L \in \mathbb{N}_0 \), we have (see, e.g., formula (2.18) in [7])

\[\int_{-1}^{1} P_\ell^{(\alpha+L,\alpha)}(t)(1 - t^2)^{\alpha} dt = 2^{2\alpha+1} \frac{(L)_{\ell}}{\ell!} \frac{\Gamma(\alpha + 1) \Gamma(\alpha + \ell + 1)}{\Gamma(2\alpha + \ell + 2)}. \quad (18) \]

This formula also can be easily derived with the help of Rodrigues’ formula (see, e.g., [17, (4.3.1)]).

In particular (17), (18) and (5) imply

\[\int_{\mathbb{S}^d} P_\ell^{(\frac{d}{2}+L,\frac{d}{2}-1)}(\langle x, y \rangle) d\sigma_d(x) = 2^{d-1} \frac{\Gamma(d+1)}{\sqrt{\pi}} \frac{(L+1)_{\ell}}{\ell!} \frac{\Gamma(\frac{d}{2} + L) \Gamma(\frac{d}{2} + \ell)}{\Gamma(d + \ell)} \times \frac{\Gamma(L + \ell + 1) \Gamma(\frac{d}{2} + \ell)}{\Gamma(\ell + 1) \Gamma(d + \ell)} \approx \ell^{L-\frac{d}{2}}. \quad (19) \]
2.3. The space of continuous functions on \mathbb{S}^d and representation of worst-case error

The Sobolev space $H^s(\mathbb{S}^d)$ for $s \geq 0$ consists of all functions $f \in L_2(\mathbb{S}^d)$ with finite norm

$$
\|f\|_{H^s} = \left(\sum_{\ell=0}^{\infty} \sum_{k=1}^{Z(d,\ell)} (1 + \lambda_\ell)^s |\hat{f}_{\ell,k}|^2 \right)^{\frac{1}{2}},
$$

(20)

where the Laplace-Fourier coefficients are given by the formula

$$
\hat{f}_{\ell,k} := (f, Y^{(d)}_{\ell,k})_{\mathbb{S}^d} = \int_{\mathbb{S}^d} f(x) Y^{(d)}_{\ell,k}(x) d\sigma_d(x).
$$

For $s > \frac{d}{2}$ the space $H^s(\mathbb{S}^d)$ is embedded into the space of continuous functions $C(\mathbb{S}^d)$. This fact also implies that point evaluation in $H^s(\mathbb{S}^d)$, $s > \frac{d}{2}$, is bounded and $H^s(\mathbb{S}^d)$, $s > \frac{d}{2}$, is a reproducing kernel Hilbert space.

In the row of papers [7, 8, 10–12], the worst-case error for Sobolev spaces $H^s(\mathbb{S}^d)$ in the case $s > \frac{d}{2}$ was studied. Our aim is to consider the class of functions, which are less smooth than functions from $H^s(\mathbb{S}^d)$, $s > \frac{d}{2}$.

We define the space $H^{(d,\gamma)}(\mathbb{S}^d)$ for $\gamma > \frac{1}{2}$ as the set of all functions $f \in L_2(\mathbb{S}^d)$ whose Laplace-Fourier coefficients satisfy

$$
\|f\|_{H^{(d,\gamma)}}^2 := \sum_{\ell=0}^{\infty} w_\ell(d, \gamma) \sum_{k=1}^{Z(d,\ell)} |\hat{f}_{\ell,k}|^2 < \infty,
$$

(21)

where

$$
w_\ell(d, \gamma) := (1 + \lambda_\ell)^{\frac{d}{2}} (\ln (3 + \lambda_\ell))^{2\gamma}.
$$

The space $H^{(d,\gamma)}(\mathbb{S}^d)$ is a Hilbert space with a corresponding inner product denoted by $(f, g)_{H^{(d,\gamma)}}$. For $\gamma > \frac{1}{2}$ the space $H^{(d,\gamma)}(\mathbb{S}^d)$ is embedded into the space of continuous functions $C(\mathbb{S}^d)$. Indeed, using the Cauchy-Schwarz inequality we can show in the same way as in [10], that for $f \in H^{(d,\gamma)}(\mathbb{S}^d)$

$$
\sup_{x \in \mathbb{S}^d} |f(x)| \leq C_{d,\gamma} \|f\|_{H^{(d,\gamma)}}.
$$

Embedding into $C(\mathbb{S}^d)$ implies that point evaluation in $H^{(d,\gamma)}(\mathbb{S}^d)$ with $\gamma > \frac{1}{2}$ is bounded, and consequently $H^{(d,\gamma)}(\mathbb{S}^d)$ is a reproducing kernel.
Hilbert space. That is to say there exists a kernel $K_{d,\gamma} : S^d \times S^d \to \mathbb{R}$, with the following properties: (i) $K_{d,\gamma}(x, y) = K_{d,\gamma}(y, x)$ for all $x, y \in S^d$; (ii) $K_{d,\gamma}(\cdot, x) \in \mathbb{H}^{(d/2)}(S^d)$ for all fixed $x \in \mathbb{H}^{(d/2)}(S^d)$; and (iii) the reproducing property

$$(f, K_{d,\gamma}(\cdot, x))_{\mathbb{H}^{(d/2)}(S^d)} = f(x) \quad \forall f \in \mathbb{H}^{(d/2)}(S^d) \quad \forall x \in S^d.$$

The reproducing kernel $K_{d,\gamma}$ in $\mathbb{H}^{(d/2)}(S^d)$ is given by

$$K_{d,\gamma}(x, y) = \sum_{\ell=0}^{\infty} w_{\ell}(d, \gamma)^{-1} Z(d, \ell) P_{\ell}^d(\langle x, y \rangle).$$

(22)

It is easily verified, that $K_{\gamma,d}$, defined by (22) has the reproducing kernel properties.

This kernel is a zonal function: $K_{\gamma,d}(x, y)$ depends only on the inner product $\langle x, y \rangle$.

Using arguments, as in (8) or (12), it is possible to write down an expression for the worst-case error. Indeed

$$\text{wce}(Q[X_N, \omega]; \mathbb{H}^{(d/2)}(S^d))^2 = \sum_{i,j=1}^{N} \omega_i \omega_j K_{d,\gamma}(x_i, x_j) - \int_{S^d} K_{d,\gamma}(x, y) d\sigma_d(y),$$

where we have used the reproducing property of $K_{d,\gamma}$.

Therefore,

$$\text{wce}(Q[X_N, \omega]; \mathbb{H}^{(d/2)}(S^d))^2 = \sum_{i,j=1}^{N} \omega_i \omega_j \tilde{K}_{d,\gamma}(x_i, x_j),$$

(23)

where

$$\tilde{K}_{d,\gamma}(x, y) = \sum_{\ell=1}^{\infty} w_{\ell}(d, \gamma)^{-1} Z(d, \ell) P_{\ell}^d(\langle x, y \rangle).$$

(24)

3. Upper and lower bounds for the worst-case error for well-separated t-designs

Definition 1. A spherical t-design is a finite subset $X_N \subset S^d$ with the characterising property that an equal weight integration rule with nodes from X_N integrates all polynomials p with degree $\leq t$ exactly; that is,$$\frac{1}{N} \sum_{x \in X_N} p(x) = \int_{S^d} p(x) d\sigma_d(x), \quad \deg(p) \leq t.$$
Here N is the number of points of the spherical design.

A concept of t-design was introduced in the paper [9] by Delsarte, Goethals and Seidel. There it was proved that the number of points for a t-design has to satisfy $N \geq C_d t^d$ for a positive constant C_d.

Bondarenko, Radchenko and Viazovska [4] proved that there always exist spherical t-designs with $N \approx t^d$ points. That is why in this section we always assume that

$$N = N(t) \approx t^d.$$ \hfill (25)

Then

$$\frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} P_{\ell}^{(d)}(\langle x_i, x_j \rangle) = 0, \quad \text{for } \ell = 1, \ldots, t.$$

Thus for such sequences $Q[X_{N(t)}]$ [23] simplifies to

$$\text{wce}(Q[X_{N(t)}]; \mathbb{H}^{(2)}(S^d))^2 = \frac{1}{N^2} \sum_{i,j=1}^{N} \sum_{\ell=t+1}^{\infty} w_{\ell}(d, \gamma)^{-1} Z(d, \ell) P_{\ell}^{(d)}(\langle x_i, x_j \rangle).$$ \hfill (26)

By a spherical cap $S(x; \varphi)$ of centre x and angular radius φ we mean

$$S(x; \varphi) := \{ y \in S^d | \langle x, y \rangle \geq \cos \varphi \}.$$

The normalised surface area of a spherical cap is given by

$$|S(x; \varphi)| = \frac{\Gamma((d+1)/2)}{\sqrt{\pi} \Gamma(d/2)} \int_{\cos \varphi}^{1} (1 - t^2)^{(d-1)/2} \, dt \asymp (1 - \cos \varphi)^{d/2} \quad \text{as } \varphi \to 0. \quad (27)$$

Here and in the sequel we use $|S|$ as a shorthand for $\sigma_d(S)$ for $S \subset S^d$.

Definition 2 (Property (R)). A sequence $(Q[X_{N(t)}, \omega])_{t \in \mathbb{N}}$ of numerical integration rules $Q[X_{N(t)}, \omega]$, which integrates all spherical polynomials of degree $\leq t$ exactly, that is

$$\sum_{j=1}^{N(t)} \omega_j p(x_j) = \int_{S^d} p(x) d\sigma_d(x), \quad \deg(p) \leq t.$$

is said to have property (R) (or to be “quadrature regular”), if there exist positive numbers c_1 and c_2 independent of t with $c_1 \leq \pi/2$, such that for all
\[t \geq 1 \] the weights \(\omega_j \) associated with the nodes \(x_j, j = 1, \ldots, N(t) \) of \(Q[X_N(t)] \) satisfy
\[
\sum_{j=1}^{N(t)} \left| \omega_j \right| \leq c_2 \left| S(x; c_1 t) \right| \quad \forall x \in \mathbb{S}^d.
\tag{28}
\]

Reimer [15] has shown that every sequence of positive weight cubature rules \(Q[X_{N(t)}, \omega]\), with \(Q[X_{N(t)}, \omega](p) = I(p) \) for all polynomials \(p \) with \(\deg p \leq t \) satisfies property (R) automatically with positive constants \(c_1 \) and \(c_2 \) depending only on \(d \).

Definition 3. A sequence of \(N \)-point sets \(X_N = \{x_1, \ldots, x_N\} \), is called well-separated if there exists a positive constant \(c_3 \) such that
\[
\min_{i \neq j} |x_i - x_j| > \frac{c_3}{N^{\frac{\gamma}{2}}}. \tag{29}
\]

It should be noticed, that a well-separated sequence \(X_N \) of numerical integration rules with equal weights \(\omega_i = \frac{1}{N} \) satisfies property (R), but not conversely. Indeed, from the inequality (29) it follows, that for all \(x_i, x_j \in X_{N(t)}, i \neq j \),
\[
\langle x_i, x_j \rangle < 1 - \frac{c_3^2}{2N^{\frac{\gamma}{2}}}
\]
Thus the spherical cap \(S\left(x_i; \arccos \left(1 - \frac{c_3^2}{2N^{\frac{\gamma}{2}}} \right)\right) \) contains no points of \(X_N \) in its interior, except of the point \(x_i \).

Using (27) we deduce the following estimate
\[
\frac{1}{N} \# \left\{ x_j \in X_{N(t)} \cap S(x; \frac{c_1}{t}) \right\} \leq \frac{1}{N} \left| S(x; \arccos \left(1 - \frac{c_3^2}{2N^{\frac{\gamma}{2}}} \right)\right) \ll \left| S(x; \frac{c_1}{t})\right|.
\]

Here we write \(a_n \ll b_n \) (\(a_n \gg b_n \)) to mean that there exists positive constant \(K \) independent of \(n \) such that \(a_n \leq K b_n \) (\(a_n \geq K b_n \)) for all \(n \).

Theorem 1. Let \(d \geq 2, \gamma > \frac{1}{2} \) be fixed, and \((X_{N(t)})_t \) be a sequence be a well-separated spherical \(t \)-designs, \(t \) and \(N(t) \) satisfy relation (25). Then there exist positive constants \(C_{d,\gamma}^{(1)} \) and \(C_{d,\gamma}^{(2)} \), such that
\[
C_{d,\gamma}^{(1)} N^{-\frac{1}{2}} (\ln N)^{-\gamma + \frac{1}{2}} \leq \wce(Q[X_N]; H^{(\frac{d}{2}-\gamma)}(\mathbb{S}^d)) \leq C_{d,\gamma}^{(2)} N^{-\frac{1}{2}} (\ln N)^{-\gamma + \frac{1}{2}}. \tag{30}
\]
The constants $C_{d,\gamma}^{(1)}$ and $C_{d,\gamma}^{(2)}$ depend only on d, γ and on the constants c_i, $i = 1, \ldots, 3$, from the relations (28) and (29).

In (30) and further in this section for brevity we write N instead $N(t)$ for the number of nodes in $X_{N(t)}$.

Theorem 1 is a consequence of the following lemmas:

Lemma 1. Let $d \geq 2$ and $\gamma > \frac{1}{2}$ be fixed. Then for any sequence X_N, $K \in \mathbb{N}_0$ and for any $n \in \mathbb{N}$ the following relation holds

$$
\frac{1}{N^2} \sum_{i,j=1}^{N} \sum_{\ell=n+1}^{\infty} w_{\ell}(d, \gamma)^{-1} Z(d, \ell) P_{\ell}^{(d)}((x_i, x_j))
\leq \frac{1}{N^2} \sum_{i,j=1}^{N} \sum_{\ell=n+1}^{\infty} \ell^{-\frac{d}{2}-K} (\ln \ell)^{-2\gamma} \ell^{(\frac{d}{2}+K-1, \frac{d}{2}-1)} ((x_i, x_j)).
$$

Lemma 2. Let $d \geq 2$ and $\gamma > \frac{1}{2}$ be fixed, let $(X_{N(t)})_t$ be a sequence of spherical t-designs, t and $N(t)$ satisfy relation (25). Then for any $K \in \mathbb{N}_0$ there exists a positive constant $C_{d,\gamma}$, such that

$$
\frac{1}{N^2} \sum_{i,j=1}^{N} \sum_{\ell=t+1}^{\infty} \ell^{-\frac{d}{2}-K} (\ln \ell)^{-2\gamma} \ell^{(\frac{d}{2}+K-1, \frac{d}{2}-1)} ((x_i, x_j)) - C_{d,\gamma}t^{-d} (\ln t)^{-2\gamma}
\leq \text{wce}(Q[X_N]; H(\frac{d}{2},\gamma))^2
\leq \frac{1}{N^2} \sum_{i,j=1}^{N} \sum_{\ell=t+1}^{\infty} \ell^{-\frac{d}{2}-K} (\ln \ell)^{-2\gamma} \ell^{(\frac{d}{2}+K-1, \frac{d}{2}-1)} ((x_i, x_j)).
$$

The constant $C_{d,\gamma}$ depends only on d and γ.

Lemma 3. Let $d \geq 2$ and $\gamma > \frac{1}{2}$ be fixed, $(X_{N(t)})_t$ be a well-separated sequence, t and $N(t)$ satisfy relation (25). Then for any $K > \frac{d}{2}$, $K \in \mathbb{N}$, there exist positive constants $C_{d,\gamma}^{(1)}$ and $C_{d,\gamma}^{(2)}$, such that

$$
C_{d,\gamma}^{(1)} N^{-1} (\ln N)^{-2\gamma+1}
\leq \frac{1}{N^2} \sum_{i,j=1}^{N} \sum_{\ell=t+1}^{\infty} \ell^{-\frac{d}{2}-K} (\ln \ell)^{-2\gamma} \ell^{(\frac{d}{2}+K-1, \frac{d}{2}-1)} ((x_i, x_j)) \leq C_{d,\gamma}^{(2)} N^{-1} (\ln N)^{-2\gamma+1}.
$$

The constants $C_{d,\gamma}^{(1)}$ and $C_{d,\gamma}^{(2)}$ depend only on d and γ.

11
Remark 1. Let $d \geq 2$, $\gamma > \frac{1}{2}$ be fixed and let the sequence $(X_N)_N$ have property (R). Then

\[
\frac{1}{N^2} \sum_{i,j=1}^{N} \sum_{\ell = \lfloor N^{\frac{1}{d}} \rfloor + 1}^{\infty} \ell^{-\frac{d}{2} - K} (\ln \ell)^{-2\gamma} P_{\ell}^{(\frac{d}{2} + K - 1, \frac{d}{2} - 1)}((x_i, x_j)) \ll N^{-1} (\ln N)^{-2\gamma + 1}.
\]

(34)

Lemma 1 and Remark 1 allow us to write down the following estimate.

Theorem 2. Let $d \geq 2$, $\gamma > \frac{1}{2}$ be fixed and let the sequence $(X_N)_N$ have property (R). Then

\[
\text{wce}(Q[X_N]; \mathbb{H}^{(\frac{d}{2}, \gamma)}(S^d))^2 = \frac{1}{N^2} \sum_{i,j=1}^{N} \sum_{\ell = 1}^{\lfloor N^{\frac{1}{d}} \rfloor} w_{\ell}(d, \gamma)^{-1} Z(d, \ell) P_{\ell}^{(d)}((x_i, x_j)) + O\left(\frac{1}{N (\ln N)^{2\gamma - 1}}\right).
\]

From the proofs of Lemmas 1–3 one can easily get an estimate.

Theorem 3. Let $d \geq 2$, $\gamma > \frac{1}{2}$ be fixed and let $(X_{N(t)})_t$ be a sequence of spherical t-designs. Then there exists a positive constant $C_{d, \gamma}$ such that

\[
\text{wce}(Q[X_N]; \mathbb{H}^{(\frac{d}{2}, \gamma)}(S^d)) \leq C_{d, \gamma} t^{-\frac{d}{2}} (\ln t)^{-\gamma + \frac{1}{2}}.
\]

(35)

The constant $C_{d, \gamma}$ depends only on d and γ.

Proof of Lemma 1. We write

\[
\Delta a_{\ell} := a_{\ell} - a_{\ell+1}.
\]

For all $K \in \mathbb{N}_0$ denote by $a_{\ell}^{(K)}$ the following quantity

\[
a_{\ell}^{(K)} = a_{\ell}^{(K)}(\gamma, d) := (1 + \lambda_{\ell})^{-\frac{d}{2} - K} (\ln (3 + \lambda_{\ell}))^{-2\gamma}.
\]

(36)
An application of Abel summation yields

\[
\frac{1}{N^2} \sum_{i,j=1}^{N} \sum_{\ell=n+1}^{\infty} a_{\ell}^{(0)} Z(d, \ell) P_{\ell}^{(d)}(\langle x_i, x_j \rangle) \]

\[
- \frac{1}{N^2} \sum_{i,j=1}^{N} \sum_{\ell=n+1}^{\infty} \Delta a_{\ell}^{(0)} \sum_{k=0}^{\ell} Z(d, k) P_{k}^{(d)}(\langle x_i, x_j \rangle) \]

\[
- a_{n+1}^{(0)} \sum_{k=0}^{n} Z(d, k) \frac{1}{N^2} \sum_{i,j=1}^{N} P_{k}^{(d)}(\langle x_i, x_j \rangle). \quad (37)
\]

Here and further we use that for all \(k, \ell \in \mathbb{N}_0\)

\[
\sum_{i,j=1}^{N} P_{\ell}^{(d/2 - 1 + k; d/2 - 1)}(\langle x_i, x_j \rangle) \geq 0, \quad (38)
\]

which follows from the fact that all coefficients in (15) and (16) are positive and the fact that \(P_{\ell}^{(d)}\) is a positive definite function in the sense of Schoenberg [16].

From (37) we obtain the following upper estimate

\[
\frac{1}{N^2} \sum_{i,j=1}^{N} \sum_{\ell=n+1}^{\infty} a_{\ell}^{(0)} Z(d, \ell) P_{\ell}^{(d)}(\langle x_i, x_j \rangle) \]

\[
\leq \frac{1}{N^2} \sum_{i,j=1}^{N} \sum_{\ell=n+1}^{\infty} \Delta a_{\ell}^{(0)} \sum_{k=0}^{\ell} Z(d, k) P_{k}^{(d)}(\langle x_i, x_j \rangle). \quad (39)
\]

Taking into account (15), applying Abel transform and formulas (16) and (36) \(K - 1\) times and using positive definiteness in every step we arrive at

\[
\frac{1}{N^2} \sum_{i,j=1}^{N} \sum_{\ell=n+1}^{\infty} a_{\ell}^{(K)} \frac{2\ell + d - 1 + K(d + K - 1)\ell}{d - 1 + K} P_{\ell}^{(d+K-1; d-1)}(\langle x_i, x_j \rangle). \quad (40)
\]
From formulas (4) and (5) we get
\[
\frac{(d + K - 1) \ell}{(d/2)\ell} = \frac{\Gamma\left(\frac{d}{2}\right)}{\Gamma(d + K - 1)} \frac{\Gamma(d + K - 1 + \ell)}{\Gamma\left(\frac{d}{2} + \ell\right)} \sim \frac{\Gamma\left(\frac{d}{2}\right)}{\Gamma(d + K - 1)} \ell^{\frac{d}{2} + K - 1}. \tag{41}
\]

Relations (36), (39)-(41) yield (31) and Lemma 1 is proved.

Proof of Lemma 2. The upper estimate in (32) follows from (31). Let us show that the lower estimate is true.

Rewriting the squared worst-case error as above using \(K \) times iterated Abel transform and formulas (15), (16), (36) and (38), we obtain

\[
\text{wce}(Q[X_N]; H(d^2, \gamma)(S^d))^2 \gg \frac{1}{N^2} \sum_{i,j=1}^N \sum_{\ell=t+1}^{\infty} a_{t+1}^{(K)} \frac{2\ell - d + 1 + K \ell (d + K - 1)}{d - 1 + K} P_{\ell}^{(\frac{d}{2} + K - 1)}(\langle x_i, x_j \rangle)
\]
\[
- \sum_{m=0}^{K-1} a_{t+1}^{(m)} \frac{1}{N^2} \sum_{i,j=1}^N \frac{(d + m)\ell}{(d/2)\ell} P_{\ell}^{(\frac{d}{2} + m, \frac{d}{2} - 1)}(\langle x_i, x_j \rangle). \tag{42}
\]

Because of the exactness of the numerical integration rule for polynomials of degree \(\leq t \) and of (19), we have

\[
\frac{1}{N} \sum_{i=1}^N P_{\ell}^{(\frac{d}{2} + m, \frac{d}{2} - 1)}(\langle x_i, x_j \rangle) = \int_{S^d} P_{\ell}^{(\frac{d}{2} + m, \frac{d}{2} - 1)}(\langle x_i, x_j \rangle) d\sigma_d(x)
\]
\[
= 2^{d-1} \frac{\Gamma\left(\frac{d+1}{2}\right) (m + 1)\ell \Gamma\left(\frac{d}{2} + t\right)}{t! \Gamma(d + t)} \approx \ell^{m-\frac{d}{2}}. \tag{43}
\]

From (11) and (36) we obtain the order estimate

\[
a_{t+1}^{(m)} (d + m)\ell \ell^{m-\frac{d}{2}} \approx t^{-d-2m} (\ln t)^{-2\gamma} t^{m+\frac{d}{2}} \ell^{m-\frac{d}{2}} = t^{-d} (\ln t)^{-2\gamma}. \tag{44}
\]

Formulas (11), (42) - (44) imply that

\[
\text{wce}(Q[X_N]; H(d^2, \gamma)(S^d))^2 \gg \frac{1}{N^2} \sum_{i,j=1}^N \sum_{\ell=t+1}^{\infty} \ell^{-\frac{d}{2} - K (\ln \ell)^{-2\gamma}} P_{\ell}^{(\frac{d}{2} + K - 1, \frac{d}{2} - 1)}(\langle x_i, x_j \rangle) - C_{d,\gamma} t^{-d} (\ln t)^{-2\gamma}. \tag{45}
\]
Thus, Lemma 2 is proved.

\textbf{Proof of Lemma 3.} For each \(i \in \{1, \ldots, N\}\) we divide the sphere \(S^d\) into an upper hemisphere \(H_i^+\) with 'north pole' \(x_i\) and a lower hemisphere \(H_i^-\):
\[
H_i^+ := \left\{ x \in S^d \mid \langle x_i, x \rangle \geq 0 \right\},
\]
\[
H_i^- := S^d \setminus H_i^+.
\]

Because the spherical cap \(S(x_i; \alpha_N)\), where \(\alpha_N := \arccos \left(1 - \frac{c^2}{8N^2}\right)\), contains no points of \(X_N\) in its interior, except for the point \(x_i\), we obtain
\[
\frac{1}{N^2} \sum_{i,j=1}^{N} \sum_{\ell=t+1}^{\infty} \ell^{-\frac{d}{2} - K} (\ln \ell)^{-2\gamma} P_{\ell}^{\left(\frac{d}{2} + K - 1, \frac{d}{2} - 1\right)}(\langle x_i, x_j \rangle)
\]
\[
= \frac{1}{N^2} \sum_{j=1}^{N} \sum_{i=1, x_i \in H_j^+ \setminus \{x_j; \alpha_N\}}^{N} \sum_{\ell=t+1}^{\infty} \ell^{-\frac{d}{2} - K} (\ln \ell)^{-2\gamma} P_{\ell}^{\left(\frac{d}{2} + K - 1, \frac{d}{2} - 1\right)}(\langle x_i, x_j \rangle)
\]
\[
\quad + \frac{1}{N^2} \sum_{j=1}^{N} \sum_{i=1, x_i \in S(-x_j; \alpha_N)}^{N} \sum_{\ell=t+1}^{\infty} \ell^{-\frac{d}{2} - K} (\ln \ell)^{-2\gamma} P_{\ell}^{\left(\frac{d}{2} + K - 1, \frac{d}{2} - 1\right)}(\langle x_i, x_j \rangle)
\]
\[
\quad + \frac{1}{N} \sum_{\ell=t+1}^{\infty} \ell^{-\frac{d}{2} - K} (\ln \ell)^{-2\gamma} P_{\ell}^{\left(\frac{d}{2} + K - 1, \frac{d}{2} - 1\right)}(1). \quad \text{(46)}
\]

From \((10)\) and the relation
\[
\sum_{j=n+1}^{\infty} \xi(j) = \int_{n}^{\infty} \xi(u) du + O(\xi(n)),
\]
which holds for any positive and decreasing function \(\xi(u), u \geq 1\), such that \(\int_{n}^{\infty} \xi(u) du < \infty\), we have
\[
\frac{1}{N} \sum_{\ell=t+1}^{\infty} \ell^{-\frac{d}{2} - K} (\ln \ell)^{-2\gamma} P_{\ell}^{\left(\frac{d}{2} + K - 1, \frac{d}{2} - 1\right)}(1) \sim \frac{1}{\Gamma\left(\frac{d}{2} + K\right)} \frac{1}{N} \sum_{\ell=t+1}^{\infty} \ell^{-1} (\ln \ell)^{-2\gamma}
\]
\[
= C_{d, \gamma} \left(\frac{1}{N} (\ln t)^{1-2\gamma} + O\left(\frac{1}{N} (\ln t)^{-2\gamma}\right)\right). \quad \text{(47)}
\]
Now we estimate the second term from the equality (46). An application of equality (11) yields

\[
\frac{1}{N^2} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{\ell=t+1}^{\infty} \ell^{-\frac{d}{2}-K}(\ln \ell)^{-2\gamma} P_{\ell}^{\frac{d}{2}+K-1,\frac{d}{2}-1}\left(\langle x_i, x_j \rangle\right)
\]

\[
= \frac{1}{N^2} \sum_{j=1}^{N} \sum_{i=1, x_i \in S(-x_j; \alpha_N)}^{N} \sum_{\ell=t+1}^{\infty} (-1)^\ell \ell^{-\frac{d}{2}-K}(\ln \ell)^{-2\gamma} P_{\ell}^{\frac{d}{2}-1,\frac{d}{2}+K-1}\left(-\langle x_i, x_j \rangle\right).
\]

(48)

If \(x_i \in S(-x_j; \alpha_N)\), then

\[- \langle x_i, x_j \rangle \geq \cos \alpha_N.\]

(49)

From the elementary estimates

\[\sin \theta \leq \theta \leq \frac{\pi}{2} \sin \theta, \quad 0 \leq \theta \leq \frac{\pi}{2},\]

we obtain

\[
\left(1 - \frac{c_3^2}{16N^2\pi}\right)^{\frac{1}{2}} \frac{c_3}{2N^{\frac{3}{2}}} \leq \alpha_N \leq \frac{\pi}{4} \left(1 - \frac{c_3^2}{16N^2\pi}\right)^{\frac{1}{2}} \frac{c_3}{N^{\frac{3}{2}}}.\]

(50)

As for the sequence \(X_N\), condition (23) holds, it means that the spherical cap \(S(-x_j; \alpha_N), j = 1, \ldots, N\), contains at most one point of the sequence \(X_N\). This fact and formulas (48)–(50) imply

\[
\left| \frac{1}{N^2} \sum_{j=1}^{N} \sum_{i=1, x_i \in S(-x_j; \alpha_N)}^{N} \sum_{\ell=t+1}^{\infty} \ell^{-\frac{d}{2}-K}(\ln \ell)^{-2\gamma} P_{\ell}^{\frac{d}{2}+K-1,\frac{d}{2}-1}\left(\langle x_i, x_j \rangle\right) \right|
\]

\[
\leq \frac{1}{N} \sum_{\ell=t+1}^{\infty} \ell^{-\frac{d}{2}-K}(\ln \ell)^{-2\gamma} \left| P_{\ell}^{\frac{d}{2}-1,\frac{d}{2}+K-1}\left(\cos \theta_N\right) \right|,
\]

(51)

for some \(\theta_N\) satisfying

\[0 \leq \theta_N \leq \frac{\pi}{4} \left(1 - \frac{c_3^2}{16N^2\pi}\right)^{\frac{1}{2}} \frac{c_3}{N^{\frac{3}{2}}}.\]

(52)
Let \(\theta_N > 0 \) and \(\ell^* \in \mathbb{N} \) is such that
\[
\frac{1}{\ell^* + 1} \leq \theta_N \leq \frac{1}{\ell^*},
\]
and \(\ell^* = \infty \), if \(\theta_N = 0 \).

Then, applying the estimates (13), (25) and (52), we get
\[
\frac{1}{N} \sum_{\ell=t+1}^{\infty} \ell^{-\frac{d-K}{2}} \ln \ell^{-2\gamma} P_{\ell}^{\left(\frac{d}{2}-1,\frac{d}{2}+K-1\right)}(\cos \theta_N) \ll \frac{1}{N} \sum_{\ell=t+1}^{\infty} \ell^{-\frac{d-K}{2}} \ln \ell^{-2\gamma} \ell^\frac{d}{2} - 1
\]
\[+ \frac{1}{N} \theta_N^{-\frac{1}{2}-\frac{d}{2}+1} \sum_{\ell=\ell^*+1}^{\infty} \ell^{-\frac{d-K}{2}} \ln \ell^{-2\gamma} \ell^{-\frac{1}{2}} \ll N^{-\frac{K}{2}-1} (\ln N)^{-2\gamma}. \tag{53} \]

Now let us show that
\[
\frac{1}{N^2} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{\ell=t+1}^{\infty} \ell^{-\frac{d-K}{2}} \ln \ell^{-2\gamma} P_{\ell}^{\left(\frac{d}{2}+K-1,\frac{d}{2}-1\right)}(\langle x_i, \pm x_j \rangle) \ll \frac{1}{N} \ln (t)^{-2\gamma}. \tag{54} \]

Using formula (12), we have that for \(0 < \theta < \pi \)
\[
|P_{\ell}^{\left(\frac{d}{2}+K-1,\frac{d}{2}-1\right)}(\cos \theta)| \ll \ell^{-\frac{d}{4}} (\sin \theta)^{-\frac{d}{4} - K + \frac{1}{2}} + \ell^{-\frac{d}{4}} (\sin \theta)^{-\frac{d}{4} - K - \frac{1}{2}}. \tag{55} \]

Then
\[
\left| \sum_{\ell=t+1}^{\infty} \ell^{-\frac{d-K}{2}} \ln \ell^{-2\gamma} P_{\ell}^{\left(\frac{d}{2}+K-1,\frac{d}{2}-1\right)}(\cos \theta) \right| \ll (\sin \theta)^{-\frac{d}{4} - K + \frac{1}{2}} \sum_{\ell=t+1}^{\infty} \ell^{-\frac{d-K}{2}} \ln \ell^{-2\gamma}
\]
\[+ (\sin \theta)^{-\frac{d}{2} - K - \frac{1}{2}} \sum_{\ell=t+1}^{\infty} \ell^{-\frac{d}{2} - K - \frac{3}{2}} \ln \ell^{-2\gamma}
\]
\[\ll (\sin \theta)^{-\frac{d}{4} - K + \frac{1}{2}} t^{-\frac{d}{2} - K + \frac{1}{2}} (\ln t)^{-2\gamma} + (\sin \theta)^{-\frac{d}{4} - K - \frac{1}{2}} t^{-\frac{d}{2} - K - \frac{1}{2}} (\ln t)^{-2\gamma}. \]

We define \(\theta_{ij}^\pm \in [0, \pi] \) by \(\cos \theta_{ij}^\pm := \langle x_i, \pm x_j \rangle \). Then \(\sin \theta_{ij}^+ = \sin \theta_{ij}^- \).
So,
\[
\left| \frac{1}{N^2} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{\ell=t+1}^{\infty} \ell^{-\frac{d}{2}-K} (\ln \ell)^{-2\gamma} P_{\ell}^{\left(\frac{d}{2}+K-1,\frac{d}{2}-1\right)} \left((x_i, x_j) \right) \right| \\
\ll t^{-\frac{d}{2}-K+\frac{1}{2}} (\ln t)^{-2\gamma} \frac{1}{N^2} \sum_{j=1}^{N} \sum_{i=1, x_i \in H^0 \setminus S(\pm x_j, \alpha_N)} (\sin \theta_{ij}^\pm)^{-\frac{d}{2}-K+\frac{1}{2}} \\
+ t^{-\frac{d}{2}-K-\frac{1}{2}} (\ln t)^{-2\gamma} \frac{1}{N^2} \sum_{j=1}^{N} \sum_{i=1, x_i \in H^0 \setminus S(\pm x_j, \alpha_N)} (\sin \theta_{ij}^\pm)^{-\frac{d}{2}-K-\frac{1}{2}}.
\tag{56}
\]

From [7, (3.30) and (3.33)], it follows that
\[
\frac{1}{N^2} \sum_{j=1}^{N} \sum_{i=1, x_i \in H^0 \setminus S(\pm x_j, \alpha_N)} (\sin \theta_{ij}^\pm)^{-\frac{d}{2}+\frac{1}{2}+k-L} \\
\ll 1 + n^{L+k-(d+1)/2}, \quad k = 0, 1, \ldots \quad \text{for } L > \frac{d+1}{2}.
\tag{57}
\]

Choosing \(K > \frac{d+1}{2}\), applying (25) and (57), we obtain
\[
\frac{1}{N^2} \sum_{j=1}^{N} \sum_{i=1, x_i \in H^0 \setminus S(\pm x_j, \alpha_N)} (\sin \theta_{ij}^\pm)^{-\frac{d}{2}-K+\frac{1}{2}} \ll 1 + (N^{\frac{1}{2}})^{K-\frac{d}{2}+\frac{1}{2}} \ll (N^{\frac{1}{2}})^{K-\frac{d}{2}+\frac{1}{2}}.
\tag{58}
\]

Formulas (25), (56) and (58) now imply that estimate (54) holds.

From (25), (47), (53) and (54) we obtain (33) and Lemma 3 is proved. \(\square\)

4. Lower bounds for the worst-case error

The main result of this section is the following theorem.

Theorem 4. Let \(d \geq 2\), \(\gamma > \frac{1}{2}\), \(Q[X_N, \omega]\) is an arbitrary \(N\)-point cubature rule. Then, there exists a positive constant \(C_{d,\gamma}\) such that
\[
\text{wce}(Q[X_N, \omega], \mathcal{H}^{\alpha}(S^d)) \geq C_{d,\gamma} N^{\frac{1}{2}} (\ln N)^{-\gamma}.
\tag{59}
\]

The constant \(C_{d,\gamma}\) depends only on \(d\) and \(\gamma\), but is independent of the rule \(Q[X_N, \omega]\) and the number of nodes \(N\) of the rule.
In [12] for case \(d = 2 \) and in [10] for all \(d \geq 2 \) the lower bound
\[
\text{wce}(Q[X_N, \omega]; \mathbb{H}^s(\mathbb{S}^d)) \gg N^{-\frac{d}{4}}
\]
was found.

Before we actually give the proof of Theorem 4, we formulate a packing result [10, Lemma 1].

Statement 1. Let \(d \geq 2 \). Then there exist constants \(\tilde{c}_1 > 0 \) and \(\tilde{c}_2 \geq 1 \) depending only on \(d \), such that for any \(N \in \mathbb{N} \), there exist \(N_0 \) points \(y_1, \ldots, y_{N_0} \) on \(\mathbb{S}^d \) and an angle \(\beta_N \), with
\[
\beta_N = \tilde{c}_1(2N)^{-\frac{1}{4}},
\]
\[
2N \leq N_0 \leq \tilde{c}_22N,
\]
such that the caps \(S(y_i; \beta_N) \), \(i = 1, \ldots, N_0 \) form a packing of \(\mathbb{S}^d \) (that is \(S(y_i; \beta_N) \) and \(S(y_j; \beta_N) \) with \(i \neq j \) touch at most at their boundaries).

As we consider a packing with \(2N \geq 2 \) caps in Statement 1, the angle \(\beta_N \) can be at most \(\frac{\pi}{2} \) (which is achieved for a packing with 2 caps with opposite centres).

Proof of Theorem 4. To prove the lower bound we will use the same 'fooling' function as in [10], that is a function which vanishes in all nodes of the cubature rule \(Q[X_N, \omega] \) but has large integral and small norm.

At the beginning we construct the function \(\Phi \in \mathbb{C}^\infty(\mathbb{R}) \) with the following properties: (i) \(\Phi(t) \geq 0 \) for all \(t \in \mathbb{R} \); (ii) \(\max_{t \in \mathbb{R}} \Phi(t) = \Phi(0) = 1 \); (iii) \(\Phi \) has the compact support \(\text{supp}(\Phi) = [-1, 1] \).

Statement 1 guarantees that there exist at least \(2N \) spherical caps \(S(y_i; \beta_N) \), which touch at most at their boundaries. Consequently, at least \(N \) of these spherical caps do not contain any node of the cubature rule in their interior.

We shift the argument of the function \(\Phi \) in such a way, that the support of the function will be \([\cos \beta_N, \cos \frac{\beta_N}{2}] \).

The scaled version of \(\Phi \) is given by
\[
\Phi_N(t) := \Phi \left(\frac{2t - \left(\cos \frac{\beta_N}{2} + \cos \beta_N \right)}{2 \sin \frac{3\beta_N}{4} \sin \frac{\beta_N}{4}} \right), \quad t \in \mathbb{R}.
\]

We define our 'fooling' function \(f_N \in \mathbb{C}^\infty(\mathbb{S}^d) \) by
\[
f_N(x) := \sum_{i=1}^{N} \Phi_N(\langle x, y_i \rangle), \quad x \in \mathbb{S}^d.
\]
In [10] it was proved that for all \(s \geq 0 \)
\[
\|f_N\|_{H^s} \leq C_{s,d} N^{\frac{s}{2}}.
\] (61)

The function \(f_N \) vanishes in all nodes of the cubature rule, that is, \(Q[X_N, \omega](f_N) = 0 \). And (see formula (33) of [10])
\[
I(f_N) \geq c_d.
\]

Hence,
\[
\text{wce}(Q[X_N, \omega]; \mathbb{H}^{(\frac{d}{2},\gamma)}(S^d)) \geq \left| Q[X_N, \omega] \left(\frac{f_N}{\|f_N\|_{H^{(\frac{d}{2},\gamma)}}} \right) - I \left(\frac{f_N}{\|f_N\|_{H^{(\frac{d}{2},\gamma)}}} \right) \right| = \frac{I(f_N)}{\|f_N\|_{H^{(\frac{d}{2},\gamma)}}} \gg \frac{1}{\|f_N\|_{H^{(\frac{d}{2},\gamma)}}}. \quad (62)
\]

The function \(\Phi_N \) can be expanded on \([-1, 1]\) into an \(L^2([-1, 1]) \) convergent Laplace series
\[
\Phi_N = \sum_{\ell=0}^{\infty} Z(d, \ell) \left(\int_{-1}^{1} \Phi_N(t) P^{(d)}_\ell(t) dt \right) P^{(d)}_\ell.
\]

Hence,
\[
f_N(x) = \sum_{i=1}^{N} \sum_{\ell=0}^{\infty} Z(d, \ell) \left(\int_{-1}^{1} \Phi_N(t) P^{(d)}_\ell(t) dt \right) P^{(d)}_\ell(\langle x, y_i \rangle).
\] (63)

Due to the definition (21), representation (63), the addition theorem (8) and inequality (61), we have the following estimate
\[
\|f_N\|_{H^s}^2 = \sum_{\ell=0}^{\infty} \left(\int_{-1}^{1} \Phi_N(t) P^{(d)}_\ell(t) dt \right)^2 (1 + \lambda \ell)^s Z(d, \ell) \sum_{i,j=1}^{N} P^{(d)}_\ell(\langle y_i, y_j \rangle) \ll N^{\frac{s}{2}},
\] (64)
which holds for \(s > 0 \) by [7].
The corresponding norm of the function f_N in $\mathbb{H}^{(d, \gamma)}$ has the form

$$
\|f_N\|^2_{\mathbb{H}^{(d, \gamma)}} = \sum_{\ell=0}^{\lfloor N^{\frac{d}{2}} \rfloor} \left(\int_{-1}^{1} \Phi_N(t) P_{\ell}^{(d)}(t) dt \right)^2 w_{\ell}(d, \gamma) Z(d, \ell) \sum_{i,j=1}^{N} P_{\ell}^{(d)}(\langle y_i, y_j \rangle)
$$

$$
+ \sum_{\ell=\lfloor N^{\frac{d}{2}} \rfloor + 1}^{\infty} \left(\int_{-1}^{1} \Phi_N(t) P_{\ell}^{(d)}(t) dt \right)^2 w_{\ell}(d, \gamma) Z(d, \ell) \sum_{i,j=1}^{N} P_{\ell}^{(d)}(\langle y_i, y_j \rangle).
$$

Taking into account (38) and setting $s = 1$ in (64), we obtain

$$
\sum_{\ell=0}^{\lfloor N^{\frac{d}{2}} \rfloor} \left(\int_{-1}^{1} \Phi_N(t) P_{\ell}^{(d)}(t) dt \right)^2 (1 + \lambda_\ell) Z(d, \ell) \sum_{i,j=1}^{N} P_{\ell}^{(d)}(\langle y_i, y_j \rangle) \ll N^{\frac{d}{2}}.
$$

Thus, (66) yields

$$
\sum_{\ell=0}^{\lfloor N^{\frac{d}{2}} \rfloor} \left(\int_{-1}^{1} \Phi_N(t) P_{\ell}^{(d)}(t) dt \right)^2 w_{\ell}(d, \gamma) Z(d, \ell) \sum_{i,j=1}^{N} P_{\ell}^{(d)}(\langle y_i, y_j \rangle)
$$

$$
\ll (N^{\frac{d}{2}})^{d-2} (\ln N)^{2\gamma} \sum_{\ell=0}^{\lfloor N^{\frac{d}{2}} \rfloor} \left(\int_{-1}^{1} \Phi_N(t) P_{\ell}^{(d)}(t) dt \right)^2 (1 + \lambda_\ell) Z(d, \ell) \sum_{i,j=1}^{N} P_{\ell}^{(d)}(\langle y_i, y_j \rangle)
$$

$$
\ll N (\ln N)^{2\gamma}.
$$

(67)

Setting $s = \frac{d+1}{2}$ in (64), we get

$$
\sum_{\ell=\lceil N^{\frac{d}{2}} \rceil + 1}^{\infty} \left(\int_{-1}^{1} \Phi_N(t) P_{\ell}^{(d)}(t) dt \right)^2 (1 + \lambda_\ell)^{\frac{d+1}{2}} Z(d, \ell) \sum_{i,j=1}^{N} P_{\ell}^{(d)}(\langle y_i, y_j \rangle) \ll N^{1+\frac{d}{2}}.
$$

(68)
Thus, (68) yields

\[\sum_{\ell = \lceil \frac{N}{2} \rceil + 1}^{\infty} \left(\int_{-1}^{1} \Phi_N(t) P_{\ell}^{(d)}(t) dt \right)^2 w_{\ell}(d, \gamma) Z(d, \ell) \sum_{i,j=1}^{N} P_{\ell}^{(d)}(\langle y_i, y_j \rangle) \]

\[\ll N^{-\frac{1}{2}} (\ln N)^{2\gamma} \sum_{\ell = \lceil \frac{N}{2} \rceil + 1}^{\infty} \left(\int_{-1}^{1} \Phi_N(t) P_{\ell}^{(d)}(t) dt \right)^2 (1 + \lambda_{\ell}) \frac{d+1}{d} Z(d, \ell) \sum_{i,j=1}^{N} P_{\ell}^{(d)}(\langle y_i, y_j \rangle) \]

\[\ll N (\ln N)^{2\gamma}. \] (69)

Estimates (65), (67) and (69) imply

\[\| f_N \|_{\tilde{L}^{2\gamma}} \ll N^{\frac{1}{2}} (\ln N)^{\gamma}. \] (70)

From (62) and (70) we obtain (59) and Theorem 4 is proved. \quad \Box

We should remark, that we can obtain Theorem 4 in the case of equal weights by simply applying [3, Theorem 4.2].

Let the zonal function \(F: F(x, y) = F(\langle x, y \rangle) \), \(x, y \in S^d \) be continuous on the segment \([-1, 1]\) and have the form

\[F(x, y) = \sum_{\ell=0}^{\infty} \hat{F}(d, \ell) Z(d, \ell) P_{\ell}^{(d)}(\langle x, y \rangle), \] (71)

where \(\hat{F}(d, \ell) \geq 0 \).

The following Statement 2 is [3, Theorem 4.2].

Statement 2. Let \(\lambda = \frac{d-1}{2} \). Assume that \(F \) satisfies relation (71). Then there exists positive constants \(c_d \) and \(C_d \) depending only on \(d \) and \(F \), such that for any \(N \in \mathbb{N} \) and a given set of \(N \) points \(X_N = \{x_1, ..., x_N\} \subset S^d \) the inequality

\[C_d \min_{1 \leq \ell \leq c_d N^{1/d}} \hat{F}(d, \ell) \leq \frac{1}{N^2} \sum_{j=1}^{N} \sum_{i=1}^{N} F(\langle x_i, x_j \rangle) - \hat{F}(d, 0) \] (72)

holds.
Applying this statement to \(F = \tilde{K}_{d,\gamma} \) gives

\[
\text{wce}(Q[X_N]; \mathbb{H}^{(\frac{d}{2},\gamma)}(\mathbb{S}^d))^2 = \sum_{i,j=1}^{N} \sum_{\ell=1}^{\infty} w_\ell^{-1}(d,\gamma) Z(d,\ell) P^{(d)}((x_i, x_j)) \geq C_d \min_{1 \leq \ell \leq c_d N^{1/d}} w_\ell^{-2}(d,\gamma) \gg C_d N^{-2\gamma}. \tag{73}
\]

And, therefore,

\[
\text{wce}(Q[X_N]; \mathbb{H}^{(\frac{d}{2},\gamma)}(\mathbb{S}^d)) \geq C_{d,\gamma} N^{-1/2} (\ln N)^{-\gamma}. \tag{74}
\]

In the same way, by applying (72), one can easily obtain estimate (60) in the case of equal weights.

5. QMC designs for \(\mathbb{H}^{(\frac{d}{2},\gamma)}(\mathbb{S}^d) \) and their properties

5.1. QMC designs for \(\mathbb{H}^{s}(\mathbb{S}^d) \) and \(\mathbb{H}^{(\frac{d}{2},\gamma)}(\mathbb{S}^d) \)

Let us formulate at the beginning the definition of QMC-designs for Sobolev spaces \(\mathbb{H}^{s}(\mathbb{S}^d) \) (see, e.g. [8]).

Definition 4. Given \(s > \frac{d}{2} \), a sequence \(X_N \) of \(N \)-point configurations on \(\mathbb{S}^d \) with \(N \to \infty \) is said to be a sequence of QMC designs for \(\mathbb{H}^{s}(\mathbb{S}^d) \) if there exists \(c(s, d) > 0 \), independent of \(N \), such that

\[
\sup_{f \in \mathbb{H}^{s}, \|f\|_{\mathbb{H}^{s}} \leq 1} \left| \frac{1}{N} \sum_{x \in X_N} f(x) - \int_{\mathbb{S}^d} f(x) d\sigma_d(x) \right| \leq \frac{c(s, d)}{N^{s}}. \tag{75}
\]

We define the notion of a sequence of QMC designs for \(\mathbb{H}^{(\frac{d}{2},\gamma)}(\mathbb{S}^d), \gamma > \frac{1}{2} \), as it was defined for Sobolev classes \(\mathbb{H}^{s}(\mathbb{S}^d), s > \frac{d}{2} \).

Definition 5. Given \(\gamma > \frac{1}{2} \), a sequence \((X_N)_N \) of \(N \)-point configurations on \(\mathbb{S}^d \) with \(N \to \infty \) is said to be a sequence of QMC designs for \(\mathbb{H}^{(\frac{d}{2},\gamma)}(\mathbb{S}^d) \) if there exists \(c(\gamma, d) > 0 \), independent of \(N \), such that

\[
\sup_{f \in \mathbb{H}^{(\frac{d}{2},\gamma)}, \|f\|_{\mathbb{H}^{(\frac{d}{2},\gamma)}} \leq 1} \left| \frac{1}{N} \sum_{x \in X_N} f(x) - \int_{\mathbb{S}^d} f(x) d\sigma_d(x) \right| \leq \frac{c(\gamma, d)}{N^{\frac{1}{2}} (\ln N)^{\gamma - \frac{1}{2}}} \tag{76}
\]
Theorem 5. Given $s > \frac{d}{2}$, let $(X_N)_N$ be a sequence of QMC designs for $H^s(S^d)$. Then $(X_N)_N$ is a sequence of QMC designs for $H^{(\frac{d}{2}, \gamma)}(S^d)$, for all $\gamma > \frac{1}{2}$.

Theorem 6. Given $\gamma > \frac{1}{2}$, let $(X_N)_N$ be a sequence of QMC designs for $H^{(\frac{d}{2}, \gamma)}$. Then $(X_N)_N$ is a sequence of QMC designs for $H^{(\frac{d}{2}, \gamma')} (S^d)$, for all $\frac{1}{2} < \gamma' \leq \gamma$.

We will prove here only Theorem 5. The proof of Theorem 6 follows the same lines as that of Theorem 5 with some additional estimations.

Proof of Theorem 5 is based on the following lemma.

Lemma 4. Assume that there exists a $\delta > 0$, such that

$$\text{wce}(Q[X_N]; H^s(S^d)) \ll N^{-\delta},$$

holds for some $s > \frac{d}{2}$. Then for $\gamma > \frac{1}{2}$ there exists a constant $C(d, s, \delta, \gamma)$ such that for all N

$$\text{wce}(Q[X_N]; H^{(\frac{d}{2}, \gamma)}(S^d)) < C(d, s, \delta, \gamma)[\text{wce}(Q[X_N]; H^s(S^d))]^{\frac{d}{2}}(\ln N)^{-\gamma + \frac{1}{2}}$$

holds.

Proof of Lemma 4. The proof of (78) goes along the lines as that of Lemma 26 in [8] and Theorem 3.1 in [6].

We write

$$\frac{1}{(1 + \lambda t)^2(\ln(3 + \lambda t))^{2\gamma}} = \int_0^\infty e^{-(1 + \lambda t)t} g(t)dt,$$

in terms of the Laplace transform of the function g given by the inverse Laplace transform

$$g(t) = g(d, \gamma, t) := \frac{1}{2\pi i} \int_{\frac{1}{2} - i\infty}^{\frac{1}{2} + i\infty} z^{-\frac{d}{2}}(\ln(z + 2))^{-2\gamma} e^{tz}dz.$$
First of all, let us show, that the function \(g \) satisfies
\[
|g(t)| \ll \begin{cases}
 t^{d-1}, & \text{if } t \geq 1, \\
 t^{d-1}(\ln \frac{1}{t})^{-2\gamma}, & \text{if } 0 < t < 1.
\end{cases}
\] (81)

Indeed, substituting \(tz = 1 + ix \) and integrating by parts, we obtain
\[
\frac{1}{2\pi i} \int_{\frac{1}{t} + i\infty}^{\frac{1}{t} - i\infty} z^{-\frac{d}{2}}(\ln(z + 2))^{-2\gamma} e^{tx} dz
\]
\[
= \frac{e}{2\pi} t^{d-1} \int_{-\infty}^{\infty} (1 + ix)^{-\frac{d}{2}} \left(\ln \left(2 + \frac{1 + ix}{t} \right) \right)^{-2\gamma} e^{ix} dx
\]
\[
= \frac{e}{2\pi} t^{d-1} \int_{-\infty}^{\infty} e^{ix} \left[\frac{d}{2}(1 + ix)^{-\frac{d}{2}-1} \left(\ln \left(2 + \frac{1 + ix}{t} \right) \right)^{-2\gamma} + 2\gamma(1 + ix)^{-\frac{d}{2}}(2t + 1 + ix)^{-1} \left(\ln \left(2 + \frac{1 + ix}{t} \right) \right)^{-2\gamma-1} \right] dx. \tag{82}
\]

For large values of \(t : t \geq 1 \) from (82) one can easily get \(|g(t)| \ll t^{d-1} \).
In turn, for small values of \(t : 0 < t < 1 \), the inequalities
\[
\left| \ln \left(2 + \frac{1 + ix}{t} \right) \right| > \ln \frac{1}{t}, \quad \left(\ln \frac{1}{t} \right)^{-2\gamma-1} < \left(\ln \frac{1}{t} \right)^{-2\gamma}, \quad 0 < t < 1,
\]
and relation (82) imply that \(|g(t)| \ll t^{d-1}(\ln \frac{1}{t})^{-2\gamma} \).

The representation of the worst-case error (23) allows to write
\[
\text{wce}(Q[X_N]; \mathbb{H}(\frac{d}{2},\gamma)(\mathbb{S}^d))^2 = \int_0^\infty e^{-t} g(t) h(t) dt, \tag{83}
\]
where
\[
h(t) = h(t; x_1, ..., x_N) := \frac{1}{N^2} \sum_{i,j=1}^N \tilde{H}(t, (x_i, x_j)), \tag{84}
\]
and \(\tilde{H} \) denotes the heat kernel with the constant term removed:
\[
1 + \tilde{H}(t, x, y) := \sum_{\ell=0}^\infty e^{-\lambda^t} Z(d, \ell) P^{(d)}_\ell((x, y)), \quad x, y \in \mathbb{S}^d. \tag{85}
\]
which is fundamental solution to the heat equation $\frac{\partial u}{\partial t} + \Delta u = 0$ on $\mathbb{R}_+ \times \mathbb{S}^d$.

The worst-case error for Sobolev spaces in terms of Laplace transform can be written in the form (see formula (46) in [8])

$$\text{wce}(Q[X_N]; \mathbb{H}^s(\mathbb{S}^d))^2 = \frac{1}{\Gamma(s)} \int_0^\infty e^{-t} t^{s-1} h(t) dt.$$ \hspace{1cm} (86)

Let $\varepsilon := [\text{wce}(Q[X_N]; \mathbb{H}^s(\mathbb{S}^d))]^\frac{1}{2}$, and $\varepsilon \ll N^{-\delta} < 1$ by assumption. The first inequality from (81) and (86) yield

$$\left| \int_1^\infty e^{-t} g(t) h(t) dt \right| \ll \int_1^\infty e^{-t} t^{\frac{d}{2}-1} h(t) dt \ll \frac{1}{\Gamma(s)} \int_0^\infty e^{-t} t^{s-1} h(t) dt = \varepsilon^s, \ s > \frac{d}{2}.$$ \hspace{1cm} (87)

Taking into account the second inequality from (81), (77) and (86), we get

$$\left| \int_{\frac{d}{2}}^1 e^{-t} g(t) h(t) dt \right| \ll \int_{\frac{d}{2}}^1 e^{-t} t^{\frac{d}{2}-1} \left(\ln \frac{1}{t} \right)^{-2\gamma} h(t) dt$$

$$\leq \left(\frac{\varepsilon}{2} \right)^{\frac{d}{2}-s} \left(\ln \left(\frac{2}{\varepsilon} \right) \right)^{-2\gamma} \int_{\frac{d}{2}}^1 e^{-t} t^{s-1} h(t) dt$$

$$\ll \varepsilon^{\frac{d}{2}-s} (\ln N)^{-2\gamma} \frac{1}{\Gamma(s)} \int_0^\infty e^{-t} t^{s-1} h(t) dt = \varepsilon^{\frac{d}{2}} (\ln N)^{-2\gamma}. \hspace{1cm} (88)$$

In [8] it was proved, that $h(t)$ is uniformly bounded on $[0, 1)$, and for $0 < t < \frac{d}{2}$ the following estimate holds

$$t^{\frac{d}{2}} h(t) \ll \varepsilon^{\frac{d}{2}}. \hspace{1cm} (89)$$
Applying \((81)\), relations \((77)\) and \((89)\), we arrive at the estimate
\[
\left| \int_0^\varepsilon e^{-t} g(t) dt \right| \ll \int_0^\varepsilon e^{-t} \frac{1}{t} \left(\ln \frac{1}{t} \right)^{-2\gamma} h(t) dt
\]
\[
\ll \varepsilon^\frac{d}{2} \int_0^\frac{\varepsilon}{2} e^{-t} \frac{1}{t} dt < \varepsilon^\frac{d}{2} \int_0^1 \left(\ln \frac{1}{t} \right)^{-2\gamma} h(t) dt
\]
\[
= \frac{1}{2\gamma - 1} \varepsilon^\frac{d}{2} \left(\ln \frac{2}{\varepsilon} \right)^{-2\gamma + 1} \ll \varepsilon^\frac{d}{2} \left(\ln N \right)^{-2\gamma + 1}.
\]
\[(90)\]

Formulas \((83)\), \((87)\), \((88)\) and \((90)\) imply
\[
\text{wce}(Q[X_N]; \mathbb{H}^{(d, \gamma)}(S^d))^2 < C(d, s, \gamma) \text{wce}(Q[X_N]; \mathbb{H}^{s}(S^d))^\frac{d}{2} \left(\ln N \right)^{-\gamma + \frac{1}{2}}
\]
\[
\ll (N^{-\frac{d}{2}}) \left(\ln N \right)^{-\gamma + \frac{1}{2}} = N^{-\frac{1}{2}} \left(\ln N \right)^{-\gamma + \frac{1}{2}}
\]
and Theorem 5 is proved.

\[\square\]

5.2. Examples of QMC designs for classes \(\mathbb{H}^{(d, \gamma)}(S^d)\)

In \[8\] it was shown, that the maximisers of the generalised sum of distances
\[
\sum_{i,j=1}^N |x_i - x_j|^{2s-d}, \quad N = 2, 3, 4, \ldots
\]
form a sequence of QMC designs for \(\mathbb{H}^{s}(S^d)\) for \(s\) in the interval \((\frac{d}{2}, \frac{d}{2} + 1)\).

Consequently, from this fact and from Theorem 5 we obtain the statement.
Theorem 7. Let $\gamma > \frac{1}{2}$ and $0 < \alpha < 2$. Then, the maximisers of generalised sum of distances

$$\sum_{i,j=1}^{N} |x_i - x_j|^\alpha, \quad N = 2, 3, 4, \ldots$$

form a sequence of QMC designs for $\mathbb{H}(\frac{d}{2}\gamma)(\mathbb{S}^d)$.

Theorem 8. If X_N^*, $N = 2, 3, \ldots$, minimise the energy functional

$$\sum_{i,j=1}^{N} \tilde{K}_{\gamma,d}(x_i, x_j),$$

where $\tilde{K}_{\gamma,d}(x, y)$ is defined by (22), then there exists $C_{d,\gamma} > 0$, such that for all $N \geq 2$

$$\text{wce}(Q[X_N^*]; \mathbb{H}(\frac{d}{2}\gamma)(\mathbb{S}^d)) \leq \frac{C_{d,\gamma}}{N^{\frac{1}{\gamma}}(\ln N)^{\gamma - \frac{1}{2}}}.$$

Consequently, X_N^* is a sequence of QMC designs for $\mathbb{H}(\frac{d}{2}\gamma)(\mathbb{S}^d)$.

References

[1] J. Beck, *Sums of distances between points on a sphere – an application of the theory of irregularities of distribution to discrete geometry*, Mathematika 31 (1984), 33–41.

[2] J. Beck and W. Chen, *Irregularities of distribution*, Tracts in Mathematics, vol. 89, Cambridge University Press, 1987.

[3] D. Bilyk and F. Dai, *Geodesic distance Riesz energy on the sphere*, arXiv:1612.08442v1, 2016.

[4] A. Bondarenko, D. Radchenko, and M. Viazovska, *Optimal asymptotic bounds for spherical designs*, Ann. of Math. (2) 178 (2013), no. 2, 443–452.

[5] ______, *Well-separated spherical designs*, Constr. Approx. 41 (2015), no. 1, 93–112.
[6] L. Brandolini, Ch. Choirat, L. Colzani, G. Gigante, R. Seri, and Travaglini G., *Quadrature rules and distribution of points on manifolds*, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13 (2014), no. 4, 889–923.

[7] J. S. Brauchart and K. Hesse, *Numerical integration over spheres of arbitrary dimension*, Constr. Approx. 25 (2007), no. 1, 41–71.

[8] J. S. Brauchart, E. B. Saff, I. H. Sloan, and R. S. Womersley, *QMC designs: optimal order quasi Monte Carlo integration schemes on the sphere*, Math. Comp. 83 (2014), no. 290, 2821–2851.

[9] P. Delsarte, J. M. Goethals, and J. J. Seidel, *Spherical codes and designs*, Geometriae Dedicata 6 (1977), no. 3, 363–388.

[10] K. Hesse, *A lower bound for the worst-case cubature error on spheres of arbitrary dimension*, Numer. Math. 103 (2006), no. 3, 413–433.

[11] K. Hesse and I. H. Sloan, *Optimal lower bounds for cubature error on the sphere S^2*, J. Complexity 21 (2005), no. 6, 790–803.

[12] _____, *Cubature over the sphere S^2 in Sobolev spaces of arbitrary order*, J. Approx. Theory 141 (2006), no. 2, 118–133.

[13] W. Magnus, F. Oberhettinger, and R. P. Soni, *Formulas and theorems for the special functions of mathematical physics*, Third enlarged edition. Die Grundlehren der mathematischen Wissenschaften, Band 52, Springer-Verlag New York, Inc., New York, 1966.

[14] Claus Müller, *Spherical harmonics*, Lecture Notes in Mathematics, vol. 17, Springer-Verlag, Berlin-New York, 1966.

[15] M. Reimer, *Hyperinterpolation on the sphere at the minimal projection order*, J. Approx. Theory 104 (2000), no. 2, 272–286.

[16] I. J. Schoenberg, *Positive definite functions on spheres*, Duke Math. J. 9 (1942), 96108.

[17] G. Szegő, *Orthogonal polynomials*, fourth ed., American Mathematical Society, Providence, R.I., 1975, American Mathematical Society, Colloquium Publications, Vol. XXIII.