RESEARCH ARTICLE
10.1029/2021EA001844

Key Points:
• Spectral bands are presented for remote detection of anhydrous carbonates and nitrates
• Mid-IR band center comparisons for the ν\text{3} vibration compared to the ν\text{2} and ν\text{4} vibrations enable identification of carbonate chemistry
• NIR band center comparisons for ~2.3 versus 2.5 μm, ~2.3 versus 4 μm, and ~3.4 versus 4 μm best enable identification of carbonate chemistry

Supporting Information:
Supporting Information may be found in the online version of this article.

Correspondence to:
J. L. Bishop,
jbishop@seti.org

Citation:
Bishop, J. L., King, S. J., Lane, M. D., Brown, A. J., Lafuente, B., Hiroi, T., et al. (2021). Spectral properties of anhydrous carbonates and nitrates. Earth and Space Science, 8, e2021EA001844. https://doi.org/10.1029/2021EA001844

Received 12 MAY 2021
Accepted 17 AUG 2021

Spectral Properties of Anhydrous Carbonates and Nitrates

J. L. Bishop1,2 ©, S. J. King1, M. D. Lane1, A. J. Brown4 ©, B. Lafuente1,2, T. Hiroi5, R. Roberts6, G. A. Swayze7, J.-F. Lin6 ©, and M. Sánchez Román8

1SETI Institute, Mountain View, CA, USA, 2NASA-Ames, Moffett Field, CA, USA, 3Fibernetics LLC, Lititz, PA, USA, 4Plancius Research LLC, Severna Park, MD, USA, 5Brown University, Providence, RI, USA, 6University of Texas at Austin, Austin, TX, USA, 7US Geological Survey, Denver, CO, USA, 8Free University, Amsterdam, The Netherlands

Abstract The spectral properties of anhydrous carbonates and nitrates are dominated by strong, sharp vibrational bands due to the CO\textsubscript{3}2− and NO\textsubscript{3}− anions observed as absorption bands in near-infrared spectra, as Reststrahlen features or absorption bands in mid-IR spectra, depending on particle size, and as peaks in Raman spectra. These spectral features provide a reliable means to identify the occurrence of carbonates and nitrates on planetary surfaces, which in turn contribute to our understanding of the environment and chemistry of planetary bodies. Four modes occur for carbonates and nitrates due to symmetric stretching (ν\text{1}), out-of-plane bending (ν\text{2}), asymmetric stretching (ν\text{3}), and in-plane bending (ν\text{4}). The vibrational absorptions of these spectral features vary with the mineral structure and the size of the cation, where the calcite-, dolomite-, aragonite-, and alkali-type structures result in different spectral features. Mid-IR bands for carbonates and nitrates occur from 1,040 to 1,105 cm-1 for ν\text{1}, from 810 to 906 cm-1 for ν\text{2}, from 1,275 to 1,590 cm-1 for ν\text{3}, and from 670 to 756 cm-1 for ν\text{4}. In Raman spectra the carbonate and nitrate absorptions are observed near 1,050–1,080 cm-1 for ν\text{1}, near 880 cm-1 for ν\text{2}, near 1,415–1,430 cm-1 for ν\text{3}, and near 680–700 cm-1 for ν\text{4}. NIR spectra include bands due to overtones and combinations at ~1.75, 1.9, 2.0, 2.3, 2.5, 3.4, 4.0, and 4.6 μm for carbonates and ~1.8, 2.0, 2.2, 2.4, 2.6, 3.5, 4.1, and 4.8 μm for nitrates. This study provides data for remote determination of carbonate and nitrate chemistry and will enable better characterization of these minerals on planetary bodies including Mars, Ceres, and Bennu.

Plain Language Summary Carbonates are widespread minerals on Earth and have been identified as well on Mars, Ceres, near Earth asteroid (101955) Bennu, and in carbonaceous meteorites. Understanding the spectral properties of carbonates enables detection and characterization of this important mineral group. Furthermore, identifying the specific type of carbonate on planetary surfaces can help us constrain the geochemical environment of these planets or bodies. The spectral properties of nitrates are presented here as well because nitrates exhibit similar spectral features to carbonates due to their similar mineral structures. Nitrates are yet to be detected on planets other than Earth, but nitrogen has been detected on bodies in our Solar System and nitrates may be detected once researchers have access to their spectral properties.

1. Introduction

Carbonates are abundant minerals on Earth, and have also been observed on Mars (Ehlmann et al., 2008), Ceres (Carrozzo et al., 2018), and asteroid (101955) Bennu (Kaplan et al., 2020). Calcite or aragonite have also been detected in cosmic particles inferred to originate from carbonaceous meteoroids disrupted in the upper atmosphere (De Angelis et al., 2011; Rietmeijer et al., 2016). Carbonates form under a variety of aqueous conditions, depending on the specific mineral, and hold clues to the geologic history of carbon and CO\textsubscript{2} cycling on planetary bodies (Grady & Wright, 2006; Martin, 2017). On Earth, carbonates are present in sedimentary, igneous, and metamorphic rocks and are ubiquitous across many regions of the planet (e.g., Deer et al., 1992). Calcite, dolomite, and aragonite are the most abundant carbonates on Earth (e.g., Deer et al., 1992), but Mg-rich carbonates appear to be more common on Mars (Ehlmann et al., 2008; McKay et al., 1996; Wray et al., 2016). Remote detection and characterization of carbonates has been performed on both Earth and Mars using reflectance and emission spectroscopy (Bandfield et al., 2003; Ehlmann et al., 2008; Goetz et al., 1985; Rockwell & Hofstra, 2008) and on Ceres and Bennu using reflectance...
spectroscopy (De Sanctis et al., 2016; Kaplan et al., 2020). Nitrates are less common on Earth and have not yet been identified on other planets, but their occurrence is an important source of nitrogen (N) for life (Summers, 2012) and they are an important source of fertilizer and explosives, and have been heavily mined in Chile and Peru (Ericksen, 1981).

Carbonates and nitrates form in a variety of anhydrous and hydrated forms (e.g., Adler & Kerr, 1963; Lippmann, 1973; Reeder, 1990a). Anhydrous carbonate spectra are dominated by the vibrational modes of the carbonate \(\text{CO}_3^{2-} \) anion and anhydrous nitrate spectra are similarly dominated by the vibrational modes of the nitrate \(\text{NO}_3^- \) anion. The size of the cations in these minerals determines the number of ions immediately surrounding it in the mineral structure, or the coordination number. Carbonates and nitrates containing smaller cations form a 6-fold coordination in the calcite and dolomite groups, while those minerals having larger cations form a 9-fold coordination in the aragonite (Weir & Lippincott, 1961) and alkali groups. The calcite group has a trigonal crystal system with rhombohedral habit and space group \(\text{R}\overline{3}\text{c} \) (Reeder, 1990b). The dolomite group is similar with a trigonal crystal system and rhombohedral habit, but has space group \(\text{R}\overline{3} \) because of reduced symmetry due to the presence of multiple cations (Reeder, 1990b). The aragonite group has an orthorhombic crystal system with space group \(\text{Pmcn} \) (Spee, 1990). Most carbonates have divalent cations, and for this study Fe is assumed to be present as \(\text{Fe}^{2+} \), which fits best in the carbonate lattice structure. Alkali earth carbonates, containing monovalent \(\text{Na}^+ \) or \(\text{K}^+ \) cations, have monoclinic crystal structures and natrite (\(\text{Na}_2\text{CO}_3 \)) may have 7-fold coordination (Zubkova et al., 2002), rather than 9-fold coordination. Nitrates are observed with trivalent cations as well as divalent cations and both ferric and ferrous nitrates are possible.

The \(\text{Ca}^{2+} \) cation can be found in both rhombohedral and orthorhombic structures as calcite and aragonite, while most other cations occur in only one group. The most common calcite group minerals include calcite (\(\text{CaCO}_3 \)), siderite (\(\text{FeCO}_3 \)), and magnesite (\(\text{MgCO}_3 \)). Other carbonates with less common cations also fall in this category: rhodochrosite (\(\text{MnCO}_3 \)), smithsonite (\(\text{ZnCO}_3 \)), and otavite (\(\text{CdCO}_3 \)). The carbonates dolomite (\(\text{CaMg(CO}_3\text{)}_2 \)) and ankerite (\(\text{Ca(Fe,Mg,Mn)(CO}_3\text{)}_2 \)) are very similar to the calcite group but have reduced symmetry due to mixed cations. Aragonite (\(\text{CaCO}_3 \)) is the most common carbonate with orthorhombic structure; others include cerussite (\(\text{PbCO}_3 \)), strontianite (\(\text{SrCO}_3 \)), and witherite (\(\text{BaCO}_3 \)). A complete list of anhydrous carbonate minerals can be found in Railsback (1999).

Four vibrations occur for anhydrous carbonates and nitrates in the mid-IR region due to symmetric and asymmetric vibrations of the \(\text{CO}_3^{2-} \) and \(\text{NO}_3^- \) anions (Table 1). These include the symmetric stretching vibration \((\nu_1) \), the out-of-plane bending vibration \((\nu_2) \), the asymmetric stretching vibration \((\nu_3) \), and the in-plane bending vibration \((\nu_4) \) (e.g., Adler & Kerr, 1963; Lane & Christensen, 1997; Scheetz & White, 1977; Weir & Lippincott, 1961; White, 1974). For the trigonal calcite and dolomite structures the \(\nu_1 \) band is not IR active (i.e., not predicted to occur, see Table 1), thus only three bands are observed in IR spectra. In contrast, the aragonite structure is orthorhombic and all four vibrations are IR active. Additionally, the \(\nu_3 \) and \(\nu_4 \) bands are split, resulting in six bands in IR spectra. In some cases a weak \(\nu_1 \) band is observed for trigonal
carbonates, likely due to structural perturbations. The ν_1, ν_2, and ν_4 modes are Raman active and these three vibrations are expected as peaks in spectra of calcite-type carbonates; however, the ν_2 peak is very weak and is not always observed (e.g., Buzgar et al., 2009; Gunasekaran et al., 2006; Krishnamurti, 1960). For Raman spectra of the aragonite-type carbonates, the ν_2 mode is often weakly observed and the ν_3 and ν_4 modes are typically split into two vibrations (e.g., Buzgar et al., 2009; Gunasekaran et al., 2006; Krishnamurti, 1960).

Early studies of mid-IR spectra of carbonates and nitrates were measured of mineral powders mixed with potassium bromide (KBr) salt (e.g., Adler & Kerr, 1963; Weir & Lippincott, 1961; White, 1974). This technique produced strong and sharp peaks and the KBr prevented the bands from becoming saturated. The spectral properties of numerous minerals were characterized in this way (Farmer, 1974) with a focus on the fundamental vibrations occurring from about 700 to 1,800 cm$^{-1}$ in order to probe mineral structures and correlate infrared vibrations with X-ray diffraction (XRD) parameters. Salisbury et al. (1987) investigated calcite from 400 to 4,000 cm$^{-1}$ using transmittance and reflectance spectroscopy and discovered the presence of multiple overtone and combination bands in the range 1,700–4,000 cm$^{-1}$ that are useful for identification of minerals. Furthermore, Salisbury et al. (1987) noted that the strength of these overtone and combination bands tends to increase with smaller particle size, while the strength of the fundamental bands decreases with smaller particle size. This trend was investigated for several carbonate minerals including calcite, dolomite, aragonite, and cerussite (Salisbury et al., 1991). Selected carbonate spectra from their study are shown in Figure 1 to illustrate comparisons of transmittance spectra with reflectance spectra of natural mineral surfaces, the 75–250 μm size fraction, and the <75 μm size fraction.

Near-infrared (NIR) reflectance spectra of anhydrous carbonates follow trends in band positions with cation type and structure (Bishop et al., 2017; Crowley, 1986, 1987; Gaffey, 1985, 1986, 1987; Hunt & Salisbury, 1971), while the spectral properties of hydrous carbonates are largely dominated by water bands, especially in the NIR region (Calvin et al., 1994; Harner & Gilmore, 2015). Nitrates follow similar trends (Bishop et al., 2017; Cloutis et al., 2016; Sutter et al., 2007; Wang et al., 2018). The spectral features depend on the mineral structure, as well as the size and charge of the cation. The most common carbonate cations include Ca$^{2+}$, Mg$^{2+}$, Fe$^{2+}$, Mn$^{2+}$, Sr$^{2+}$, Pb$^{2+}$, and Ba$^{2+}$. The effective ionic radius is a measure of the size of the cation in the mineral structure and depends on the size of the atom, number of electrons, and coordination number to the carbonate or nitrate ion (e.g., Shannon, 1976). These values are given for the electronic high spin states of several cations found in carbonates and nitrates (Shannon, 1976) and are listed in Table 2. Under ambient conditions the high spin state is favored for these cations in carbonate and nitrate minerals and a transition to the low spin state is observed at elevated pressures (e.g., Lin et al., 2012; Mattila et al., 2007). Ammonium nitrate (NH$_4$NO$_3$) crystallizes in a few polymorphic structures with the orthorhombic structure most common at room temperature and a trigonal structure possible at elevated temperatures (e.g., Hendricks et al., 1932; Théorêt & Sandorfy, 1964). The effective ionic radius is computed at 1.48 angstroms (Å) for the 6-fold form, at 1.54 Å for the 8-fold form, and at 1.67 Å for the 12-fold form (Sidey, 2016); thus, the effective ionic radius for the 9-fold orthorhombic structure is estimated at 1.6 Å (Table 2).

Rigorous spectroscopic analyses of carbonates and nitrates are essential for remote detection of these minerals on planetary surfaces. This study builds on previous measurements and analyses to present spectral data using multiple techniques over extended wavelength ranges for a significantly broader compositional range including several types of cations and mineral structures. Investigations of reflectance and emission spectra of carbonates and carbonate-bearing samples have been performed in the lab (e.g., Bishop et al., 2011; Bishop, Perry, et al., 2013; Clark et al., 1990; Ehlmann et al., 2008; Gaffey, 1986, 1987; Hunt & Salisbury, 1971; Lane, 1999; Lane & Christensen, 1997, 1998; Salisbury et al., 1991) to support their identification on Mars.

Carbonates have long been predicted to be present on that planet (e.g., Fanale et al., 1982; Gooding, 1978; McKay & Nedell, 1988; Pollack et al., 1987) and have been found at minor or trace abundances in several martian meteorites (e.g., Bishop, Mustard, et al., 1998; Bishop, Pieters, et al., 1998; Gooding et al., 1988; Kirschvink et al., 1997; McKay et al., 1996; Scott et al., 1998; Treiman et al., 1993). Early analyses of telescopic data suggested the presence of carbonates on Mars (Blaney & McCord, 1989; Calvin et al., 1994; Pollock et al., 1990). These early potential detections were confirmed by orbital detections of carbonates using spectra collected by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on the Mars Reconnaissance Orbiter mission (Ehlmann et al., 2008). However, detection of carbonates on Mars has been challenging because they are always mixed with other minerals and rocks at the CRISM
Carbonates could also be responsible for a mid-IR doublet near 1,390 and 1,580 cm$^{-1}$ in spectra of martian soil collected by the Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor mission (Bandfield et al., 2003), although this doublet could also be due to hydrated iron sulfates (Lane et al., 2004) or the ferric oxyhydroxide mineral ferrihydrite (Bishop & Murad, 2002).

The visible/near-infrared (VNIR) characterization of carbonates using spectral bands near 2.3, 2.5, and 3.4 μm in CRISM data have enabled mapping Mg-rich carbonates at Nili Fossae and Jezero crater (Brown et al., 2010, 2020; Ehlmann et al., 2008; Horgan et al., 2020; Viviano et al., 2013), dolomite at Libya Montes (Bishop, Tirsch, et al., 2013; Tirsch et al., 2018), and Ca- or Fe-rich carbonates at Leighton crater (Michalski & Niles, 2010), McLaughlin crater (Michalski et al., 2013) and Huygens crater (Wray et al., 2016). In situ analyses by the Spirit rover also identified Fe/Mg-carbonates on Mars (Morris et al., 2010) that were later observed in CRISM data over the site (Carter & Poulet, 2012). Additionally, small (<1 wt.%) abundances of fine-grained Fe- or Mg-bearing carbonates were assumed to be present at Gale crater to explain evolved gas results measured by the Sample Analysis at Mars instrument on the Mars Science Laboratory (MSL) rover Curiosity (Leshin et al., 2013; Ming et al., 2014).

Figure 1. Reflectance spectra of selected carbonates for <75 μm grains (green spectra), 75–250 μm grains (orange spectra), a natural mineral surface (red spectra), and transmittance spectra of KBr pellets (blue spectra). (a) Calcite, (b) Aragonite, (c) Dolomite, (d) Cerussite. Data from Salisbury et al. (1991).
Another reason detection of carbonates on Mars has been a challenge is due to the sparse and thin occurrences across the planet. Characterization of the composition of these carbonate outcrops requires a detailed understanding of the spectral properties of these minerals. Therefore, providing a comprehensive database of carbonate spectral features for remote identification was the motivation for this study. Nitrates follow related structural and spectral trends and may also be present on Mars and other Solar System bodies. For these reasons we added nitrates to this study as well. This work encompasses VNIR reflectance and mid-IR reflectance and emission spectra for comparison with orbital spectra of Mars and in situ data where available. Raman spectroscopy is included in this study because the Mars 2020 rover mission includes a Raman spectrometer (Beegle et al., 2015) that is probing sediments at Jezero crater in search of carbonates. The MSL rover possesses an XRD instrument (Blake et al., 2013) and is characterizing the mineralogy of Gale crater and may be able to identify carbonates or nitrates if sufficiently abundant. However, to date neither has been detected at Gale crater by the CHEmistry and MINeralogy (CheMin) XRD instrument (Rampe et al., 2020). The VNIR, mid-IR, Raman, and XRD data of carbonates and nitrates with a wide range of chemistries and structures presented here are intended to support coordinated identification and characterization of carbonates and nitrates on Mars and other planetary surfaces.

2. Materials and Methods

2.1. Samples

Anhydrous carbonate samples were collected over a number of years from multiple sources for this study (Bishop, Perry, et al., 2013; King et al., 2014; Lane & Bishop, 2019; Lane & Christensen, 1997; Lin et al., 2012) and their purity was confirmed by XRD and/or electron microprobe (Tables 3 and 4). Some carbonates were also acquired with variable abundances of Mg, Fe, and Mn cations (Lin et al., 2012; Liu et al., 2015). The magnesiosiderite sample was obtained from the Vargas Gem and Mineral Collection at the University of Texas at Austin (collection number: V3817), and has a chemical composition of (Fe0.65Mg0.33Mn0.02)CO3 as determined by microprobe analyses (Lin et al., 2012). Other carbonates were synthesized with a range of Ca, Mg, and Fe similar to those in a previous study (Romanek et al., 2009). Synthesis experiments were performed at 25°C–45°C and 1 atm total pressure inside an anaerobic chamber filled with a 4% H2/96% N2 gas mixture. Stock solutions (1.0 M) of NaHCO3, Fe(ClO4)2, Ca(ClO4)2, and Mg(ClO4)2 were prepared separately inside the chamber, from which individual solutions of the desired chemistry were made for each experimental run. The pH was adjusted to 8 in all of the experimental runs and the solid precipitates were recovered after 30 days for analysis by XRD and ICP-OES. Some carbonate samples are partially hydrated and tend to exhibit weaker, but still visible, fundamental vibration bands. However, the NIR overtones and combinations were typically more difficult to identify due to the strong hydration bands and disrupted mineral structure.

Several synthetic nitrate samples with different cations were obtained from Scholar Chemistry and Sigma Aldrich https://www.sigmaaldrich.com/. The mid-IR fundamental bands were investigated for each of these synthetic nitrates. However, only the anhydrous nitrates were studied in the NIR region because the hydrous nitrate spectra, similar to hydrous carbonate spectra, are dominated by water features rather than nitrate-related bands.

When sufficient sample material was available, multiple particle size separates were prepared for reflectance spectroscopy measurements. Elemental abundance for several newly acquired samples with sufficient material was determined at Bureau Veritas (formerly ACME labs) using X-ray Fluorescence (XRF) and is reported in Table 5.

Table 2: Effective Ionic Radii of Cations Typically Found in Carbonates and Nitrates

Cation	R (Å)	Charge	CN
Al	0.54	3	6
Fe	0.64	3	6
Mg	0.72	2	6
Cu	0.73	2	6
Zn	0.74	2	6
Co	0.74	2	6
Li	0.76	1	6
Fe	0.78	2	6
Mn	0.83	2	6
Cr	0.80	2	6
Ti	0.86	2	6
Ca	1.00	2	6
Na	1.02	1	6
NH4	1.48	1	6
Ca	1.18	2	9
Na	1.24	1	9
Sr	1.31	2	9
Pb	1.35	2	9
Ba	1.42	2	9
K	1.55	1	9
NH4	~1.6	1	9

Note. R is the effective ionic radius in Å; values for metals are from Shannon (1976) and for ammonia from Sidey (2016); CN is the coordination number; values given are for high spin state (favored).
Carbonate sample ID	Mineral name	Chemical formula	Structural type	Description	Location collected or synthesized
JB0551 (ML-C2)	Calcite	CaCO₃	Calcite	Pure by XRD, IR	Rodeo, Durango, Mexico, Lane and Christiansen (1997)
JB1457	Calcite	CaCO₃	Calcite	Pure by XRD, IR	Mazada, Israel
JB1458	Calcite	CaCO₃	Calcite	Pure by XRD, IR	Big Timber, Montana, USA
JB1460	Calcite	Ca₀.₉₈Mg₀.₀₂CO₃	Calcite	Trace organics	Somerset, England
HS194B	Calcite	CaCO₃	Calcite		Mexico, Salisbury et al. (1991)
HS488	Calcite	CaCO₃	Calcite		Kansas, Salisbury et al. (1991)
JB0946	Magnesite	Mg₆₀.₉₉Ca₄₉CO₃	Calcite	Pure by XRD, IR	Brumado Bahia, Brazil
JB1161	Magnesite	Mg₆₀.₉₉Fe₀.₀₂Ca₄₉CO₃	Calcite	Pure by XRD, IR	UT mineral collection, Lin et al. (2012)
JB825 (MS-C1)	Mg-calcite	Ca₆₀.₉₈Mg₆₀.₁₉Ca₄₉CO₃	Calcite	Partially hydrated	synthesized at 25°C, M. Sánchez Román
JB826 (MS-C2)	Mg-calcite	Ca₆₀.₉₈Mg₆₀.₁₉Ca₄₉CO₃	Calcite	Partially hydrated	synthesized at 35°C, M. Sánchez Román
JB827 (MS-C3)	Mg-calcite	Ca₆₀.₉₈Mg₆₀.₁₉Ca₄₉CO₃	Calcite	Partially hydrated	synthesized at 35°C, M. Sánchez Román
JB1162	Mg-siderite	Mg₆₀.₉₈Fe₀.₀₂Mn₄₉Ca₄₉CO₃	Dolomite	Pure by XRD, IR	UT mineral collection, Lin et al. (2012)
HS67	Rhodochrosite	MnCO₃	Calcite	Pink, 1% Fe	USGS Speclab
HS338	Rhodochrosite	MnCO₃	Calcite	Some Fe and Ca substitution, minor orthopyroxene, talc	USGS Speclab
JB1163	Siderite	Mg₆₀.₉₈Fe₀.₀₂Mn₄₉Ca₄₉CO₃	Calcite	Pure by XRD, IR	UT mineral collection, Lin et al. (2012)
JB1462	Siderite	Ca₆₀.₉₈Mg₆₀.₁₉Fe₀.₀₂Ca₄₉CO₃	Calcite	Possible minor pyrite	Nova Scotia, Canada
JB1463	Siderite	Ca₆₀.₉₈Mg₆₀.₁₉Fe₀.₀₂Ca₄₉CO₃	Calcite	Minor calcite, organics	Roxbury Iron Mine, CT, USA
ML-C49	Smithsonite	Zn₀.₉₁Ca₀.₀₃Fe₀.₀₄Mn₀.₀₂Mg₀.₂₂Ca₄₉CO₃	Calcite	Pure by XRD, IR	San Antonio Mine, Mexico, Lane and Christiansen (1997)
JB0778 (ML-C64)	Ankerite	Ca(Fe,Mg,Mn)(CO₃)₂	Dolomite	XRD shows minor calcite, Fe oxides, and silica admixtures	unknown, Lane and Christiansen (1997)
JB832 (MS-S28)	Ankerite	Ca₆₀.₉₈Mg₆₀.₁₉Fe₀.₀₂Ca₄₉CO₃	Dolomite	Partially hydrated	synthesized at 35°C, M. Sánchez Román
JB833 (MS-S29)	Ankerite	Ca₆₀.₉₈Mg₆₀.₁₉Fe₀.₀₂Ca₄₉CO₃	Dolomite	Partially hydrated	synthesized at 45°C, M. Sánchez Román
JB1461	Dolomite	Ca₆₀.₉₈Mg₆₀.₁₉Fe₀.₀₂Ca₄₉CO₃	Dolomite	97.3% dolomite, 2.7% calcite	Selasvann, Norway
NMNH R12596	Dolomite	Ca₆₀.₉₈Mg₆₀.₁₉Fe₀.₀₂Ca₄₉CO₃	Dolomite		Austria, Salisbury et al. (1991)
HS102B	Dolomite	Ca₆₀.₉₈Mg₆₀.₁₉Fe₀.₀₂Ca₄₉CO₃	Dolomite		Massachusetts, Salisbury et al. (1991)
Vergo-1	Dolomite	Ca₆₀.₉₈Mg₆₀.₁₉Fe₀.₀₂Ca₄₉CO₃	Dolomite		Indiana, Salisbury et al. (1991)
JB0779	Dolomite	Ca(Fe,Mg,Mn)(CO₃)₂	Dolomite	3% quartz	Copperopolis, CA, USA
JB829 (MS-S22)	Fe/Ca/Mg-carbonate	Ca₆₀.₉₈Mg₆₀.₁₉Fe₀.₀₂Ca₄₉CO₃	Dolomite	Partially hydrated	synthesized at 35°C, M. Sánchez Román
JB830 (MS-S25)	Fe/Ca-carbonate	Ca₆₀.₉₈Fe₀.₂₁Ca₄₉CO₃	Dolomite	Partially hydrated	synthesized at 35°C, M. Sánchez Román
JB831 (MS-S26)	Fe-dolomite	Ca₆₀.₉₈Fe₀.₂₁Ca₄₉CO₃	Dolomite	Partially hydrated, traces of aragonite	synthesized at 45°C, M. Sánchez Román
ML-C43	Kutnahorite	Ca₆₀.₉₈Mg₆₀.₁₉Fe₀.₀₂Mn₀.₀₂Zn₀.₀₂Ca₄₉CO₃	Dolomite	Pure by XRD, IR	Sterling Hill Mine, Ogdensburg, NJ, Lane and Christiansen (1997)
2.2. XRD

XRD analyses were performed for this study using a portable Terra field XRD unit (Olympus NDT) based on the same technology as CheMin on MSL *Curiosity* rover (Blake et al., 2012). Terra is a transmission XRD instrument using a direct detection charge-coupled device (CCD), a Co X-ray source with Kβ filter, and a

Table 3
Continued
Carbonate sample ID

ML-C23
JB1459
JB1640
JB1659 (ML-C70)
NMNH B10083
JB1745
Vergo-2
JB1658 (ML-C66)
HS272
HS273
JB1744

Note. Sample chemistry determined by microprobe, bulk oxide analyses, or solid solution ratios during synthesis; USGS Speclab data from: https://www.usgs.gov/labs/spec-lab/capabilities/spectral-library.

Table 4
List of Nitrate Samples Used in This Study
Nitrate sample ID
JB0994
JB1582
JB0995
JB1579
JB1583
JB0996
JB0997
JB1584
JB1581
JB0998
JB1586
JB0997
JB1587
JB1585
sample holder with a piezoelectric vibration system. This places the sample in motion during the analysis, allowing coarser-grained materials to be analyzed, and reducing preferred orientation effects (Sarrazin et al., 2005). Data were collected from 5 to 55 °θ, and identification of mineral phases was performed using the automated cloud-based application QAnalyze (https://www.qanalyze.com/) and the software Xpowder (www.xpowder.com), together with reference data supplied from the American Mineralogist Crystal Structure Database (Downs & Hall-Wallace, 2003).

Synchrotron XRD patterns were performed previously on samples investigated by Lin et al. (2012) and Liu et al. (2015).

2.3. Emission Spectroscopy

Emission spectra were acquired using a modified Nicolet Nexus 670 Fourier transform infrared (FTIR) interferometric spectrometer over the range 2,000–200 cm⁻¹ with 2 cm⁻¹ spectral sampling as in Lane and...
Christensen (1997, 1998) and Lane and Bishop (2019). Two blackbody targets (at \sim70°C and 100°C) were measured to determine the instrument response function and instrument temperature used for data calibration. The emissivity spectra of the minerals, heated to and kept at \sim70°C during measurement, were obtained by reducing the raw wavelength and temperature-dependent data according to the one-temperature procedure of Ruff et al. (1997), assuming that sample emissivity equals unity at the Christiansen feature (e.g., Logan et al., 1975; Salisbury, 1993).

2.4. Raman Spectroscopy

Raman spectra were measured in the Mineral Physics Laboratory at the University of Texas on selected samples. This system is equipped with a Coherent Verdi V2 laser with a 532 nm wavelength, an electron multiplying charge-coupled device, and a Shamrock spectrometer from Andor Technology (e.g., Lin et al., 2012). The laser power was limited to \sim50 mW to avoid overheating the samples. Multiple Raman spectra were acquired for several grains of each sample to test for purity and obtain the strongest signal.

2.5. Reflectance Spectroscopy

Reflectance spectra were acquired on bulk samples in a horizontal position for this study at Brown University’s Reflectance Experiment Laboratory (RELAB) using a bidirectional VNIR spectrometer under ambient conditions relative to Halon and a biconical Nicolet FTIR spectrometer in a controlled, dry environment relative to a rough gold surface as in previous studies (e.g., Bishop, Perry, et al., 2013). The bidirectional spectra were collected from 0.3 to 2.5 μm at 5 nm spectral sampling. Infrared reflectance spectra were measured with 2 cm$^{-1}$ spectral sampling from 1 to 50 μm in a controlled environment purged of H$_2$O and CO$_2$ for 10–12 h. Composite, absolute reflectance spectra were prepared by scaling the FTIR data to the bidirectional data near 1.2 μm. Size fractions <45, 45–75, 75–90, 90–125, 125–250, and >250 μm were measured for several samples, while only particulates <125 μm were run when sample volume was limited. For consistency across samples we typically used spectra of the <125 μm or 90–125 μm size fractions for the spectral analyses.

Additional FTIR reflectance spectra were collected at the USGS Spectroscopy Laboratory (Clark et al., 2007; Kokaly et al., 2017) or reported by Salisbury et al. (1991). Many of these samples were first characterized and investigated by Hunt and Salisbury (1971).

2.6. Continuum Removal

A continuum was removed from the carbonate spectra across the ranges 2.20–2.645 and 3.175–4.247 μm and from the nitrate spectra across the ranges 2.25–2.8 and 3.35–4.4 μm in order to facilitate comparison of the band shapes and strengths near 2.3–2.4, 2.5–2.6, 3.4–3.6, and 4–4.2 μm using a technique proposed in Brown (2006) and implemented in Brown et al. (2008). The carbonate bands in cerussite occur at longer wavelengths than the other carbonates and thus the nitrate spectral ranges were used for cerussite in the continuum removal process.

3. XRD of Carbonates and Nitrates

3.1. XRD Lab Measurements

XRD results are shown in Figure 2 for selected samples. The characteristic strongest (hkl) peaks for trigonal structure carbonates including dolomite, siderite, and calcite (Figure 2a), and the trigonal structure nitrate NaNO$_3$ (Figure 2c) correspond to the (012), (104), (006), (110), and (113) crystallographic planes (corresponding d-spacing values are listed in Table S1a). The characteristic strongest (hkl) peaks for orthorhombic structure carbonates, including aragonite, strontianite, and witherite (Figure 2b), and the orthorhombic structure nitrate KNO$_3$ (Figure 2d) correspond to (111), (021), (002), (102), (112), and (130) crystallographic planes (corresponding d-spacing values are listed in Table S1b). The diffraction patterns of carbonates and nitrates are well known and available in databases such as RRUFF (Lafuente et al., 2015). Peak positions for the carbonates and nitrates in our study are listed in Table S1.
3.2. XRD Synchrotron Measurements

Synchrotron XRD patterns were measured for the samples from the Lin et al. (2012) and Liu et al. (2015) studies. They observed lattice parameters of the siderite-rich sample as $a = 4.6909 \pm 0.0005$ Å and $c = 15.3687 \pm 0.0049$ Å and of the magnesiosiderite ($\text{Fe}_{0.65}\text{Mg}_{0.33}\text{Mn}_{0.02}\text{CO}_3$) sample as $a = 4.6753(\pm0.0012)$ Å and $c = 15.2794(\pm0.0030)$ Å under ambient conditions.

4. Fundamental Vibrations of Carbonates and Nitrates

4.1. Raman Spectra

Raman spectra were measured for selected carbonate and nitrate samples with different chemical compositions to confirm sample purity and compare Raman spectra with the NIR and mid-IR spectra. Raman spectra of calcite, siderite, dolomite, and aragonite are shown in Figures 3a and 3b as examples of carbonates and Raman spectra of NaNO$_3$, LiNO$_3$, KNO$_3$, Sr(NO$_3$)$_2$, and Pb(NO$_3$)$_2$ are shown in Figures 3c and 3d as examples of nitrates. Raman peaks are expected for ν_3 (near 1,400 cm$^{-1}$), ν_1 (near 1,100 cm$^{-1}$), and ν_4 (near 700 cm$^{-1}$) vibrations in spectra of the trigonal, 6-fold symmetry (calcite-type) structures (e.g., Buzgar et al., 2009; Gunasekaran et al., 2006; Krishnamurti, 1960) and this is what we observed in Figure 3a for the trigonal carbonates and in Figure 3c for the trigonal nitrates. The ν_3 peak is generally weak in our carbonate spectra, as observed previously (Gunasekaran et al., 2006). For the orthorhombic structures, a weak peak is sometimes observed for the ν_2 vibration near 800 cm$^{-1}$ and the ν_3 and ν_4 peaks are often split.
(e.g., Buzgar et al., 2009; Gunasekaran et al., 2006; Krishnamurti, 1960). This trend was observed for the orthorhombic nitrates in our study (Figure 3d). Besides the fundamental stretching and bending vibrations, peaks were observed in our Raman spectra due to lattice modes near 150–300 cm$^{-1}$ and due to a combination band near 1,600–1,700 cm$^{-1}$. Lattice vibrations occur due to libration and translational motions, termed L and T lattice modes (e.g., Urmos et al., 1991). Raman peak positions for the fundamental vibrations and L and T lattice modes are given in Table 6.

4.2. Mid-IR Emissivity Spectra

Mid-IR emissivity spectra are shown in Figure 4 for multiple carbonates from the calcite, dolomite, and aragonite type structures. These spectra were measured of coarse-grained samples (Lane & Bishop, 2019; Lane & Christensen, 1997) and exhibit downward bands (decreased emissivity) in most cases for the fundamental vibrations and lattice modes in emissivity spectra. The single-cation calcite-type trigonal structure spectra are shown in Figure 4a and are offset for clarity and ordered by the position of their symmetric stretching ($ν_3$) band and lattice vibration. This ordering of the spectra roughly compares with the size of the effective ionic radii of the cation (Table 2) from the smallest (Mg$^{2+}$) in magnesite to Fe$^{2+}$ in siderite to Mn$^{2+}$ in rhodochrosite and the largest (Ca$^{2+}$) in calcite, where the smaller cations have higher frequency modes.

Figure 3. Raman spectra of selected carbonates and nitrates. (a) Example trigonal structure carbonates from our study including dolomite, siderite, and calcite. (b) Aragonite, an orthorhombic structure carbonate. (c) LiNO$_3$ and NaNO$_3$ nitrates with trigonal structure. (d) Sr(NO$_3$)$_2$, Pb(NO$_3$)$_2$, and KNO$_3$ nitrates with orthorhombic structure. Spectra are offset for clarity.
Table 6
Raman Peaks in Wavenumbers (cm⁻¹) for Carbonates and Nitrates

Sample #	ν₁+ν₄	ν₁′	ν₁	ν₂	ν₄	ν₄′	lattice-L	lattice-T	Source
a. Carbonates									
Magnesite (Mg):	1763	1446	1094		738		330	214	Farsang et al. (2018)
Mg-siderite (Fe/Mg):	1090	736			303	195			Lin et al. (2012)
Siderite (Fe):	vw	vw	s	w					
JB1462F									
JB1463F	1798	1429	1086		734		286	185	this study
JB1466F	1724	1085	731	284	183				Farsang et al. (2018)
Rhodochrosite (Mn):	1727	1415	1086		718		290	185	Farsang et al. (2018)
Calcite (Ca):	vw	vw	s	w					
JB1457F	1749	1436	1086		712		281	154	this study
JB1458F	1750	1436	1086		711		281	154	this study
Dolomite (Ca,Fe,Mg):	vw	w	s	w					
JB1461F	1794	1443	1096		724		297	174	this study
Aragonite (Ca):									
JB1459F	1759	1442	1098	881	724		301	178	Farsang et al. (2018)
Strontianite (Sr):									
Witherite (Ba):									
Natrite (Na):									
K2CO3	1426	1374	1063		702	677	237		Buzgar & Apopei (2009)
b. Nitrates									
LiNO₃	vw	w	s	w					
JB1583	1675	1383	1069		734		236	122	this study
NaNO₃									
JB0997A	vw	w	s	w					
JB1584B	1669	1385	1067		724		186		this study
Sr(NO₃)₂	vw	vw	s	w					
vibrations and the larger cations have lower frequency vibrations. If these band positions depended only on the size of the cation, then smithsonite (Zn$^{2+}$) would be expected to have a vibration between that of magnesite and siderite. Therefore, other factors must be contributing to the vibrational energies for smithsonite. Potential other effects could include the cation's ability to accept electrons. In the case of Zn$^{2+}$, the addition of two electrons would fill the d orbital and form a stable electron shell, so Zn$^{2+}$ may pull the electrons from the oxygen atom in the CO$_2$$^{2-}$ group closer to it than expected based on its size, creating a tighter Zn-O bond and looser C-O bond and lower CO$_2$$^{2-}$ vibrational frequency. The ν_3 and ν_2 vibrations and the lattice mode have the strongest bands for the calcite-type spectra. The ν_1 vibration is not observed at all in emissivity spectra of these samples and the ν_4 vibration is tiny and shaped in an upward/downward derivative-type (zigzag) pattern due to anomalous dispersion that is enhanced for smaller particle sizes. The shape of the ν_3 band includes the greatest band depth near 1,500–1,600 cm$^{-1}$, with a much weaker shoulder near 1,400 cm$^{-1}$, which is closer to where the ν_3 vibration is observed in transmittance spectra of calcite-type carbonates (Weir & Lippincott, 1961; White, 1974). Specific molecular oscillators for calcite are identified in Lane (1999). The ν_3 band center in emission spectra varies from 1,572 cm$^{-1}$ for magnesite to 1,523 cm$^{-1}$ for calcite among the 6-fold single-cation trigonal structure carbonates, occurs near 1,530–1,550 cm$^{-1}$ for

Table 6

Sample #	ν_1+ν_4	ν_3	ν_1	ν_2	ν_4	lattice-L	lattice-T	Source
JB1585	1629	1404	1056		737	182	108	this study
Pb(NO$_3$)$_2$	vw	vw	s		vw		m	
JB1587	1611	1335	1046		731	160	123, 95	this study
KNO$_3$	vw	s			vw	vw		
JB998A	1358, 1344	1050			715	138		this study

Note. s, m, w, and vw refer to strong, medium, weak, and very weak bands.

Figure 4. Emissivity spectra of coarse-grained carbonates. (a) Spectra of the 6-fold single-cation calcite-type minerals with trigonal structure: magnesite, siderite, rhodochrosite, smithsonite, and calcite. (b) Spectra of the 6-fold multiple cation dolomite-type minerals with trigonal structure: mineraldolomite, dolomite, and kutnahorite. (c) Spectra of the 9-fold aragonite-type minerals with orthorhombic structure: aragonite, strontianite, witherite, and cerussite. Some spectra multiplied to facilitate comparison of the spectral features. Data from Lane and Christensen (1997) and Lane and Bishop (2019).
the 6-fold multiple cation dolomite-type minerals with trigonal structure, and varies from 1,505 cm\(^{-1}\) for aragonite to a doublet near 1,440 and 1,394 cm\(^{-1}\) for cerussite among the 9-fold minerals with orthorhombic structure.

Figure 4b includes emissivity spectra of multiple cation dolomite-type trigonal structure samples including minrecordite, dolomite, and kutnahorite. These spectra are similar to the calcite-type spectra, but the shape of the \(\nu_3\) band is closer to a doublet with a relatively stronger \(\sim 1,400\) cm\(^{-1}\) component compared to the deepest part of the band near 1,550 cm\(^{-1}\). For the aragonite-type orthorhombic structure samples, spectra of aragonite, strontianite, wetherite, and cerussite are shown in Figure 4c. The band center for the \(\nu_4\) vibration correlates well with cation size for aragonite (Ca\(^{2+}\)), strontianite (Sr\(^{2+}\)), and wetherite (Ba\(^{2+}\)), but occurs at a lower wavenumber for cerussite (Pb\(^{2+}\)). For these aragonite-group spectra, the \(\nu_4\) vibration occurs as a single band or as a doublet much closer together in intensity and wavenumber (\(\sim 40-50\) cm\(^{-1}\)) than the features observed for the calcite-group spectra, where the shoulder occurs at lower wavenumbers and is offset by 100 cm\(^{-1}\) or more. In addition, a weak \(\nu_3\) band is observed for strontianite and cerussite and the \(\nu_2\) band is also typically stronger than in the spectra of calcite-group spectra. The additional structure in the strontianite spectrum and the lower emissivity above \(\sim 1,800\) cm\(^{-1}\) differ from the other aragonite-type examples and are due to the onset of volume scattering effects that are related to decreased particle size (e.g., Lane & Christensen, 1998). This is termed Type II behavior in Lane (1999).

The size of carbonate grains (particles) plays an important role in the position and shape of their spectral features in emission and reflectance spectroscopy (Lane, 1999; Lane & Christensen, 1998; Salisbury & Wald, 1992). Spectral features for all minerals change shape when the particle size approaches the wavelength of the vibration (e.g., Aronson et al., 1966; Hunt & Vincent, 1968; Lyon, 1964; Moersch & Christensen, 1995; Mustard & Hays, 1997). Mineral hand samples or mineral grains larger than \(\sim 500\) μm typically behave as a consolidated sample with respect to the wavelength of light in infrared emission and reflectance spectroscopy and the spectral features of these coarse-grained minerals are dominated by surface scattering. In contrast, as the particle size decreases, the number of grain to air interfaces increases per unit volume, causing an increase in porosity and internal volume scattering of light. Thus, surface scattering dominates the spectral properties of mineral hand samples, rocks, and large particles, while volume scattering dominates the spectral properties of small particles or mineral grains.

Additionally, scattering of light in particulate mineral samples also depends on the difference between the optical properties of the mineral and the air (or other gas filling pore spaces). The real (n) and imaginary (k) indices of refraction control whether bands are observed in the spectra for mineral vibrations. Typically, an emissivity minimum or reflectance maximum is observed when \(n\) is small and \(k\) is large for coherent scattering termed “Type I” (Hunt & Vincent, 1968) or “Class 1” (Moersch & Christensen, 1995) behavior. Type I scattering is observed for the \(\nu_3\) band in carbonates and this band always occurs as an emissivity minimum or reflectance maximum, although the strength of the band varies with particle size. A different case occurs for the \(\nu_4\) and \(\nu_2\) vibrations in carbonates because these bands follow “Type II/Class 2” behavior (Hunt & Vincent, 1968; Moersch & Christensen, 1995) and have a small value of \(n\) but only somewhat large value of \(k\), resulting in lower absorption coefficients compared to the \(\nu_3\) vibration. For these vibrations, the spectral bands invert direction once the grain size decreases past a critical threshold where the particles become optically thin rather than optically thick (Lane, 1999). This trend is observed in Figure 5 for emissivity spectra of calcite, where the \(\nu_3\) band depth decreases with decreasing particle size, but remains as an emissivity minimum, while the \(\nu_2\) and \(\nu_4\) vibrations flip direction for the smaller particle sizes, occurring as peaks instead of dips in emissivity.

The contributions of \(n\) and \(k\) to both the shape and direction of the fundamental vibrations of minerals govern the differences between emissivity and reflectance spectra versus transmittance spectra (e.g., Lane & Bishop, 2019). For transmittance spectra the absorptions are controlled by the absorption coefficient that...
depends on k alone, which produces differences between some mineral spectra in transmittance versus reflectance and emissivity spectra. In the case of carbonates, band ν_3 occurs at a shorter wavelength ($\sim 6–7 \mu m$) than the other fundamental vibrations ($\sim 9–15 \mu m$) and surface scattering is most important, which is controlled by n. Bands ν_2 and ν_4 occur at longer wavelengths and volume scattering is initially more dominant as particle size decreases, which is largely dependent on k. For these reasons, the bands for the ν_2 and ν_4 vibrations are more likely to flip direction than the band for the ν_3 vibration in spectra of minerals.

Figure 6. Mid-IR reflectance spectra of carbonates and nitrates. (a) Spectra of the 6-fold calcite/dolomite-type carbonates: magnesite, dolomite, siderite, rhodochrosite, and calcite. (b) Spectra of the 9-fold aragonite-type carbonates: aragonite, strontianite, witherite, and cerussite, as well as the alkali carbonates natrite and K_2CO_3. (c) Spectra of the 6-fold calcite-type nitrates: $NaNO_3$ and $LiNO_3$. (d) Spectra of the 9-fold aragonite-type nitrates: KNO_3, $Ba(NO_3)_2$, $Sr(NO_3)_2$, and $Pb(NO_3)_2$. The carbonates have a particle size of 90–125 or <125 μm and the nitrates have <125 μm particle size. Cerussite is an exception with a particle size range of 74–250 μm (from Salisbury et al., 1991). The strontianite and witherite spectra are from the USGS spectral library and all other samples were measured at RELAB. The band centers are marked by gray lines, where solid lines refer to the bands in the top spectrum and dashed lines refer to the spectrum at the bottom in each group.
Table 7
Fundamental Band Centers Measured in Wavenumbers (cm\(^{-1}\)) for Carbonates and Nitrates

a. Carbonates with trigonal rhombohedral structure, 6-fold symmetry, and smaller cations

Sample #	Grain size	\(\nu_1 + \nu_2\)	\(\nu_1 + \nu_4\)	\(\nu_1^1\)	\(\nu_3\)	\(\nu_1\)	\(\nu_2\)	\(\nu_4\)	\(\nu_4^1\)	Lattice
Magnesite (Mg):										
JB0946E	<125 \(\mu\)m	1976	1830	1589	1434	1105	906	755	380	
JB1161B	45–125 \(\mu\)m	1977	1828	1589	1431	1106	906	756	374, 239	
Mg-siderite (Fe/Mg):										Transmittance
JB1162B	45–125 \(\mu\)m	1957	1816	1559	1419	1091	889	748	395, 260	
Siderite (Fe):										
JB1163B	45–125 \(\mu\)m	1946	1811	1540	–1410	1101	879	744	350, 247	
JB1462D	90–125 \(\mu\)m	1954	1814	1558	1408	1090	887	745	398, –260	
JB1463D	90–125 \(\mu\)m	1947	1810	1544	1403	1087	880	744	342, 245	
Rhodocrosite (Mn):										Transmittance
HS67	<250 \(\mu\)m	1948	1802	1547	1402	1088	881	731		
IIS338	74–250 \(\mu\)m	1948	1807	1545	1403	1087	879	732		
Mg-calcite (Ca/Mg):										Transmittance
JB0825	<250 \(\mu\)m	1962	1795	1574	1417	1084	870	720	~325	
JB0826	<250 \(\mu\)m	1963	1797	1586	1419	1086	873	723	~320	
JB0827	<250 \(\mu\)m	1963	1796	1584	1420	1086	873	724	~320	
Calcite (Ca):										
JB0551	90–125 \(\mu\)m	1959	1798	1537	–1425	1065	885	714		
JB1457D	90–125 \(\mu\)m	1960	1798	1543	–1420	1068	888	715	349, 227	
JB1458D	90–125 \(\mu\)m	1961	1798	1543	–1420	1067	888	716	350, 228	
JB1460	90–125 \(\mu\)m	1961	1798	1546	–1425	1084	889	717	351, 227	
IIS194B	74–250 \(\mu\)m	1961	1800	1539	–1420	1068	887	717		

b. Carbonates with trigonal rhombohedral structure, 6-fold symmetry, and mixed cations

Sample #	Grain size/ Sample info	\(\nu_1 + \nu_2\)	\(\nu_1 + \nu_4\)	\(\nu_1^1\)	\(\nu_3\)	\(\nu_1\)	\(\nu_2\)	\(\nu_4\)	\(\nu_4^1\)	Lattice
Dolomite (Ca,Fe,Mg):										
JB1461D	90–125 \(\mu\)m	1972	1817	1559	1424	1098	895	733	398, 155	
JB0779	<125 \(\mu\)m	1974	1817	1568	1425	1099	898	732	399, 154	
IIS102B	74–250 \(\mu\)m	1975	1821	1568	1427	1101	897	735	402	
Ankerite (Ca,Fe,Mg,Mn):										Transmittance
JB0778	<125 \(\mu\)m	1869	1796	1564	1446	1017	875	714	698	405, 233, 151
JB0832	<250 \(\mu\)m	1787	1141	1083	886	715	702			
JB0833	<250 \(\mu\)m	1788	1143	1083	875	715	702			
Fe-Ca-Mg carbonates:										
JB0829	<250 \(\mu\)m	<1955	1798	1392	1081	873	736	~310		
JB0830	<250 \(\mu\)m	<1955	1797	1393	1080	875	733	~310		
JB0831	<250 \(\mu\)m	<1955	1796	1391	1080	872	731	~320		
c. Carbonates with orthorhombic structure, 9-fold symmetry, and larger cations

Sample #	Grain size	$v_1 + v_2$	$v_1 + v_4$	v_1'	v_3	v_4	v_4'	Lattice
Aragonite (Ca):								
JB1459D	90–125 μm	1788	1550	−1475	1083	874	717	702, 285, 268
JB1640	90–125 μm	1788	1549	−1475	1083	873	717	702, 286, 268
JB1659	<125 μm	1787	1549	−1480	1083	875	715	700, 286, 268
NMNH B10083	74–250 μm	1789	1528	−1475	1084	875	718	702
								1550, 1430, 1087, 866, 715, 703 Transmittance
Strontianite (Sr):								
JB1658	<125 μm	1787	1549	−1475	1083	875	715	700, 413, 269
HS272	74–250 μm	1925	1776	1507	1077	868	710	703
								1496, 1074, 863, 845, 700 Transmittance
Witherite (Ba):								
HS273	74–250 μm	1962	1769	1525	1445	1075	879	713, 705, 556
								1470, 1060, 858, 845, 709, 695 Transmittance
Cerussite (Pb):								
Vergo-2	74–250 μm	1730	1445	1394	1055	840	711	688, 543
								1450, 1053, 840, 826, 678, 670 Transmittance

d. Carbonates with monoclinic structure and alkali cations

Sample #	Grain size	$v_1 + v_2$	$v_1 + v_4$	v_1'	v_3	v_4	v_4'	Lattice
Natrite (Na):								
JB1744	<250 μm	1957	1776	1540	1431	1078	885	703, 696, 559
Potassium carbonate (K):								
JB1745	<250 μm	1745	1485	1388	1061	894	721	701, 549

e. Nitrites with trigonal rhombohedral structure, 6-fold symmetry, and smaller cations

Sample #	Grain size	$v_1 + v_2$	$v_1 + v_4$	v_1'	v_3	v_4	v_4'	Lattice
Al(NO$_3$)$_2$·9H$_2$O								
JB0994A	<125 μm	1355	1046	816	720		−460	
Fe(NO$_3$)$_2$·9H$_2$O								
JB0995A	<125 μm	1382	1275	−1047	837	733	565, 419	
JB1579B	<250 μm	1399	1290	1057	837	732	567, 419	
Mg(NO$_3$)$_2$·9H$_2$O								
JB0996A	<125 μm	1880	1799	1469	1356	1057	832	733, 589, 454, 304
Cu(NO$_3$)$_2$·3H$_2$O								
JB1580	<250 μm	1346	1281	1051	−837	731	600, 488, 326	
Zn(NO$_3$)$_2$·6H$_2$O								
JB1581	<250 μm	1410	1359	1057	833	739	578, 420, 231	
LiNO$_3$								
JB1583	<250 μm	1904	1797	1479	1442	1069	838	738, 291, 156
								1420, 1068, 843, 738 Transmittance
NaNO$_3$								
JB0997A	<125 μm	1900	1788	1456	1433	1092	833	726, 657, 299, 154
JB1584B	<250 μm	1900	1792	1456	1437	1094	827	726, 657, 299, 157
								1395, 1068, 838, 727 Transmittance
4.3. Mid-IR Reflectance Spectra

Reflectivity (R) and emissivity (E) are related by Kirchhoff’s Law where $R = 1 - E$ under optimal circumstances (e.g., hemispherical or bidirectional off-axis reflectance), but in practice differences generally occur between reflectance spectra and emissivity spectra, especially for smooth surfaces or small particles (e.g., Lane & Bishop, 2019). Emissivity spectra can be measured of planetary surfaces in the mid-IR range but reflectance can only be measured at solar wavelengths. For this reason, reflectance spectra must be converted to emissivity spectra for comparison with remote sensing data. Reflectance spectra are typically easier to acquire in the lab and the spectra provide similar shapes and identical trends to emissivity spectra and thus can provide important information for planetary spectroscopy.

Mid-IR reflectance spectra are shown in Figure 6 for selected carbonates and nitrates. Spectra are offset for clarity and arranged in order of the wavelength positions of their ν_3 bands. Overall, similar patterns were observed for the fundamental vibrations of carbonates and nitrates, with the nitrate bands occurring at smaller wavenumbers (or longer wavelengths) than their associated carbonate bands. The ν_3 band is often observed as a doublet or main band with a shoulder in reflectance or emissivity spectra, while only one band is observed in transmittance spectra. Band centers were recorded for the reflectance spectra of these samples and both the band centers were provided where two bands were observed (Table 7). These two bands are termed ν_3' and ν_3, where ν_3' refers to the higher wavenumber (cm$^{-1}$) or shorter wavelength (μm) band and ν_3 refers to the band that is more similar to that observed in transmittance spectra.

Examples of the trigonal structure single cation calcite-type and multiple cation dolomite-type carbonates are grouped together in Figure 6a. The ν_3 band centers occur at 1,589 and 1,434 cm$^{-1}$ for magnesite and at 1,543 and 1,420 cm$^{-1}$ for calcite. The ν_2 band centers fall in between this range for the other trigonal structure carbonates and follow a trend of decreasing wavenumber (or increasing wavelength) from Mg$^{2+}$ to Fe$^{2+}$ to Mn$^{2+}$ to Ca$^{2+}$ as expected based on the size of the effective ionic radii (Table 2, Figure S1). Similarly, the ν_2 and ν_4 band centers shift from 906 and 755 cm$^{-1}$ for magnesite to 888 and 716 cm$^{-1}$ for calcite, and the primary lattice mode for magnesite occurs at 440 cm$^{-1}$ and is shifted toward smaller wavenumbers (or longer wavelengths) for calcite. The ν_1 band is observed only weakly, if at all, in reflectance spectra of trigonal structure carbonates. A full list of band centers is given in Table 7 for the mid-IR fundamental vibrations and lattice modes of the carbonates and nitrates studied here.

Sample #	Grain size	ν_1	ν_2	ν_3	ν_4	ν_4'	ν_3	ν_2	ν_4	ν_4'	Lattice
Ca(NO$_2$)$_3$·4H$_2$O	JB1578	$<$250 μm	1,874	1,802, 1,783	1,455	1,412	1,059	824	748	611, 328, 232	
Sr(NO$_2$)$_3$	JB1585	$<$250 μm	1,868	1,792	1,448	1,384	1,059	820	741	619, 559, 180	
Pb(NO$_2$)$_3$	JB1587	$<$250 μm	1,849	1,775	1,390	1,335	1,042	810	731	723	648, 579, 131
Ba(NO$_2$)$_3$	JB1586	$<$250 μm	1,861	1,778	1,427	1,371	1,051	821	733	656, 543, 178	
KNO$_3$	JB998A	$<$125 μm	1,875	1,763	1,444	1,424	1,049	824	715	696	667, 590, 150
NH$_4$NO$_3$	JB1582A	$<$125 μm	1,867	1,757	1,446	1,346	1,065	833	717	Transmittance	

Note. All band centers determined from reflectance spectra in this study; black numbers refer to upward peaks, blue numbers refer to downward bands, and red numbers indicate transmittance peaks from Weir and Lippincott (1961).
Reflectance spectra (not shown) were also acquired of several additional carbonates with mixed cations, including a high Mg dolomite, an Fe-bearing dolomite, a Mg-bearing siderite, and a Mg-bearing calcite. Many of these fall in the dolomite category with a mixture of Ca, Fe, and Mg cations. The band centers occurred at larger wavenumbers for the dolomite spectra that contain more Mg and at smaller wavenumbers for the samples with higher Fe abundance (Table 7). As expected, spectra of the Mg-bearing siderite and Mg-bearing calcite showed that the band centers for these mixed cation carbonates (Table 7) occurred at higher values than in the spectra of siderite and calcite, respectively.
Carbonates with orthorhombic structure illustrate a similar trend in band centers shifting toward smaller wavenumbers (or longer wavelengths) as the effective ionic radii of the cations increases, with the exception of cerussite (Figure S1). As observed in the emissivity spectra (Figure 4c), the shape of the ν₃ band in spectra of aragonite-type carbonates is more comparable to an asymmetric band than a doublet. The ν₁ bands were clearly present for these orthorhombic carbonates and complex features were often observed for the ν₂ and ν₄ bands. The lattice modes were present at lower wavenumbers that were often only partially observed due to the wavenumber constraints of the beam splitter at 200 cm⁻¹ that cut off these bands.

Reflectance spectra of the alkali carbonates with monoclinic structures (i.e., natrite [sodium carbonate] and potassium carbonate; Figure 6b) have a clear doublet of roughly equal intensity for the ν₃ bands, and include bands for the ν₁ vibration and also the lattice mode. The band positions for spectra of sodium and potassium carbonates follow the expected trends of decreasing wavenumbers for K⁺, which has a larger effective ionic radius than Na⁺ (Figure S1).

Reflectance spectra were measured of several trigonal structure nitrates, but many of these were hydrated and exhibited weaker NO₃ bands. Reflectance spectra are shown for lithium (Li) nitrate and sodium (Na) nitrate in Figure 6c, where the ν₁ band centers occur at 1,479 and 1,442 cm⁻¹ for the Li⁺ form and at 1,456 and 1,437 cm⁻¹ for the Na⁺ form, following the trend observed for carbonates where band centers shift toward smaller wavenumber values for larger cations. Reflectance spectra of ammonium nitrate (not shown) include the ν₁ doublet at 1,446 and 1,346 cm⁻¹, following the expected trend of decreasing frequency with increasing cation size because the effective ionic radius of NH₄⁺ is larger than that of Na⁺. The shape of the ν₁ bands in these nitrate spectra are different from the ν₁ bands in trigonal carbonate spectra, instead occurring as doublets with similar intensities and closer vibrational energies than observed for the carbonates. Bands were observed for the ν₂, ν₃, and ν₄ vibrations and also lattice modes for the trigonal structure nitrates (Table 7). Spectra of the orthorhombic nitrates (Figure 6d) are similar to spectra of the orthorhombic carbonates with parallel trends for all of the vibrations. The band positions for Pb nitrate also occur at smaller wavenumbers, as observed for Pb carbonate. Band centers listed in Table 7 are primarily for the reflectance spectra measured in this study, but are provided for transmittance spectra from the literature as well, when available.

Figure 8. Raman and IR nitrate bands versus structure and chemistry. (a) Comparison of the strongest Raman peaks due to the ν₁ stretching vibration and the L and T modes for several trigonal and orthorhombic nitrates. (b) Comparison of the mid-IR reflectance bands due to the ν₁, ν₂, ν₃, and ν₄ fundamental vibrations for several trigonal and orthorhombic nitrates. In each case the trigonal structure nitrates are marked by squares and the orthorhombic structure nitrates by triangles. Ammonium nitrate is marked with diamonds. Solid gray lines mark trends in the trigonal minerals, while dashed gray lines mark trends in the orthorhombic minerals.
4.4. Variations in the Fundamental Vibrations With Chemistry

The wavenumbers of the strongest bands in Raman, mid-IR transmittance, and mid-IR reflectance spectra exhibit trends with carbonate chemistry and structure (Figure 7). In Raman spectra the ν_4 band is strongest, in contrast to a stronger ν_2 band in mid-IR spectra. The position of this ν_2 band is compared with the positions of the ν_3 band and the L and T lattice modes in Figure 7a. These data are somewhat scattered and do not demonstrate clear trends in band position for ν_2, L, or T with ν_1. This illustrates that ν_2 vibrational energies are more complex than ν_4 vibrational energies and do not relate as directly to the effective ionic radii of the cations. The ν_1 values for dolomite-type carbonates cluster at higher wavenumbers, followed by magnesite, then calcite, and then finally by rhodochrosite and siderite with similar values at lower wavenumbers.

As observed for emissivity and reflectance spectra, the ν_3 band is strongest for transmittance spectra. The frequencies of the ν_1, ν_2, and ν_4 bands in transmittance spectra typically occurred at lower energies than expected relative to the reflectance and emission spectra, and the ν_1 position in transmittance spectra typically occurs between the values of the ν_1' and ν_4 bands in reflectance spectra (Table 7). The ν_1 band center in transmittance spectra is compared in Figure 7b with the band centers for the ν_1, ν_2, and ν_4 vibrations, when present, using values reported by Weir and Lippincott (1961) for several carbonate minerals and in Bötcher et al. (1992) for rhodochrosite. Different trends were observed for the trigonal carbonates and orthorhombic carbonates and in general the ν_1 vibrations of the orthorhombic carbonates occurred at a higher wavenumber than the ν_1 vibrations of the trigonal carbonates with the same or similar cations. For the calcite-type trigonal structure carbonates the ν_1 and ν_2 band positions did not vary much with decreasing ν_3 band position, but the ν_3 band values decreased with decreasing ν_1 band values from magnesite to siderite to calcite. For the aragonite-type orthorhombic structures the ν_1 band decreased in energy corresponding to decreasing energy of the ν_4 band and size of the effective ionic radii of the cation (Figure S1); however, the energies of the ν_2 and ν_4 bands followed this trend to a lesser degree and their band positions varied only slightly from aragonite to strotantiane to wetherite. Cerussite, the values of ν_2 and ν_4 occurred at lower energies than expected relative to the other orthorhombic carbonates, which may be due to the electronic configuration of the Pb$^{2+}$ cation.

A larger number of reflectance spectra was available for comparison in this study. These data are given in Figure 7c for the band positions of ν_1' (higher wavenumber band of the ν_1 doublet) compared to the other fundamental vibrations, and in Figure 7d for the ν_2 band positions compared to the ν_1 and ν_4 band positions as well as the $\nu_1 + \nu_2$ and $\nu_1 + \nu_4$ combination band positions. Similar trends were observed for the band positions of the ν_1' band in emissivity and reflectance spectra and the ν_1 band position in transmittance spectra compared to the effective ionic radii of the cations in the carbonates (Figure S1). The band positions were most consistent for magnesite-siderite-rhodochrosite-calcite in the trigonal structure carbonates, for aragonite-strotantianite-wetherite in the orthorhombic carbonates, and for natrite and potassium carbonate in the monoclinic alkali carbonates. Carbonates containing Zn$^{2+}$ (smithsonite) and Pb$^{2+}$ (cerussite) did not follow these trends, likely due to the electronic structures of these cations. For the trigonal carbonates a trend of slightly decreasing ν_2 and ν_4 vibrational energies was observed with decreasing ν_1' values, but the ν_2 and ν_4 trends are a bit scattered indicating a more complex association. For the orthorhombic carbonates, similar trends in slightly decreasing ν_2, ν_1, ν_4, and ν_4 band energies are observed with decreasing energies, following the expected trends for aragonite, strotantianite, and wetherite. The data for cerussite is not included because those bands all occur at much lower values and are off the scale of the plot. In general, the ν_2 and ν_4 band positions for aragonite group carbonates occur at lower energies than these bands for calcite group carbonates. In contrast to the ν_1 and ν_4 vibrational energies that are separated for the trigonal and orthorhombic carbonates, the ν_1 vibrational energies overlap for both groups, but the ν_1 band positions within each group are generally consistent with the effective ionic radii of the cations in the carbonates. In Figure 7d consistent trends in decreasing wavenumber are observed for the ν_2 and ν_4 bands with decreasing wavenumber of the ν_1 band for the trigonal structure carbonates. Similar lines are observed as well for the combination bands due to $\nu_1 + \nu_2$ and $\nu_1 + \nu_4$, providing confidence in these band assignments. For the calcite group these combination bands vary as expected from magnesite to siderite to rhodochrosite to calcite and the mixed cation dolomite group carbonates fall in the middle of this range. For the orthorhombic structure carbonates consistent trends are also observed for the ν_1 and ν_4 bands and the $\nu_1 + \nu_4$ combination band, but the $\nu_1 + \nu_2$ combination band is generally absent and if present it is very weak. In fact, this band
Figure 9. Visible/near-infrared reflectance spectra of carbonates and nitrates. (a) Spectra of the 6-fold calcite/dolomite-type carbonates: magnesite, dolomite, rhodochrosite, siderite, and calcite. (b) Spectra of the 9-fold aragonite-type carbonates: aragonite, strontianite, witherite, and cerussite, as well as the alkali carbonates natrite and K$_2$CO$_3$. (c) Spectra of the 6-fold calcite-type nitrates: NaNO$_3$ and LiNO$_3$. (d) Spectra of the 9-fold aragonite-type nitrates: KNO$_3$, Sr(NO$_3$)$_2$, Ba(NO$_3$)$_2$, and Pb(NO$_3$)$_2$. The carbonates have particle size 90–125 or <125 μm (74–250 μm for cerussite, from Salisbury et al., 1991) and the nitrates have particle size <125 μm. The strontianite and witherite spectra are from the USGS spectral library and all other samples were measured at RELAB. The band centers are marked by gray lines for selected features. The band center values reported are from the continuum-removed data where available, or estimated from the spectra in this figure.
Figure 10. Continuum removed near-infrared reflectance spectra of several carbonates and nitrates with different chemistries. (a) Trigonal structure calcite- and dolomite-type carbonates. (b) Rhombohedral structure aragonite-type carbonates. (c) Alkali carbonates. (d) Multiple grain sizes of calcite. (e) Multiple grain sizes of Mg/Fe-carbonate. (f) Nitrates. Gray lines are drawn to facilitate comparison of the data. Spectra of finer-grained size fractions (<125 or 45–125 μm) were typically used for panels (a, b, c, and f), while multiple size ranges are presented in panels (d and e). The continuum was removed across the regions 2.2–2.65 and 3.175–4.25 μm for the carbonate spectra and across the regions 2.25–2.8, and 3.35–4.4 μm for the nitrate spectra. The cerussite spectra were processed with the nitrate region for continuum removal because the cerussite bands occur at longer wavelengths than in spectra of other carbonates.
could be misidentified in the strontianite spectrum because the observed band position is inconsistent with that of the other carbonates, occurring at a lower than expected wavenumber.

The wavenumbers of the strongest fundamental bands exhibit trends with nitrate chemistry and structure as well (Figure 8). The \(\nu_1 \) band occurs at higher wavenumbers in Raman spectra for the trigonal structure nitrates than for the orthorhombic structure nitrates (Figure 8a). Apparent trends identified for these data occur from Li\(^+ \) to Na\(^+ \) for the trigonal nitrates and from Sr\(^{2+} \) to K\(^+ \) for the orthorhombic nitrates, but bands due to lead nitrate occur lower than expected based on the effective ionic radius of Pb\(^{2+} \). More data are available for reflectance spectra of orthorhombic nitrates in our study than orthorhombic carbonates and thus trends can be more readily determined (Figure 8b). In contrast to the spectra of carbonates, the band positions of the \(\nu'_3 \) vibration overlap for the trigonal and orthorhombic nitrates. Trigonal nitrates display trends of greatly decreasing \(\nu_3 \) wavenumbers, and slightly decreasing \(\nu_1, \nu_2, \) and \(\nu_4 \) wavenumbers with decreasing \(\nu'_3 \) values. For the orthorhombic nitrates, trends of greatly decreasing \(\nu_3 \) and \(\nu_4 \) wavenumbers and slightly decreasing \(\nu_1 \) and \(\nu_2 \) wavenumbers were observed with decreasing \(\nu'_3 \) values. Thus, these correlations indicate that the vibrational energies are internally consistent.

The mid-IR band centers did not correspond as well though with the effective ionic radii for the nitrates as for the carbonates (Figure 8b). However, general trends were consistent for the orthorhombic nitrates such that the frequencies decreased from Ca\(^{2+} \) to Sr\(^{2+} \) to Ba\(^{2+} \), as expected with their size. The band centers for lead nitrate have the lowest wavenumber values, as observed for carbonates, potentially due to the stable electronic configuration for Pb\(^{2+} \). NH\(_4\)\(^+ \) is thought to occur as an orthorhombic structure nitrate, although it can form 6-fold or 9-fold structures. The band centers we observed tend to fall closer to the trigonal data than the orthorhombic data, but there is enough spread in these datapoints that it is difficult to assign a specific type based on these data.

Interestingly, for the trigonal structure nitrates the smaller trivalent cations (Al\(^{3+} \) and Fe\(^{3+} \)) had lower wavenumber values than the intermediate-sized Mg\(^{2+} \) and Zn\(^{2+} \) cations, and the larger Li\(^+ \) and Na\(^+ \) cations had the highest wavenumber values. Apparently, the charge on the cations is playing a greater role than the cation size for nitrates in determining the bond strength and thus vibrational frequency. This could be due to the shape of the electronic orbitals or because the nitrate anion has three oxygen atoms sharing only one electron that is available for bonding with the cations. Cu\(^{2+} \) was an exception for this trend and copper nitrate has lower wavenumber values, similar to those of the trivalent cations, perhaps due to its electronic configuration.

5. Visible/NIR Reflectance Spectra of Carbonates and Nitrates

5.1. Visible/NIR Spectra

The NIR region is often defined as the wavelengths where volume scattering dominates the spectral properties rather than surface scattering, reflectance is high, and absorptions due to vibrations occur as downward bands. This spectral range includes features due to overtones of the fundamental \(\nu_3, \nu_1, \nu_2, \) and \(\nu_4 \) bands and their combination bands. The VNIR region includes electronic excitations as well due to first transition metals including Fe\(^{3+} \), Mn\(^{2+} \), or Cu\(^{2+} \) in carbonate and nitrate minerals. For this study the VNIR region is defined as \(\sim 0.3–5 \) μm. VNIR reflectance spectra of several anhydrous carbonates and nitrates are shown in Figure 9. A large number of spectral features are observed for these minerals, with the strongest carbonate bands occurring near 3.4–3.5 and 3.9–4 μm for most carbonates (Figures 9a and 9b) and near 3.5–3.7 and 4.1–4.2 μm for most nitrates (Figures 9c and 9d).

Salisbury et al. (1987) compared reflectance and transmittance spectra of calcite across the range 2.5–25 μm (400–4,000 cm\(^{-1}\)) and emphasized the importance of multiple carbonate overtone and combination bands for remote detection of carbonates. Their study illustrated how bands near 3.4 μm (\(\sim 2,900 \) cm\(^{-1}\)) and 4 μm (\(\sim 2,500 \) cm\(^{-1}\)) are much stronger and potentially easier to detect in remote sensing than some of the mid-IR bands. These VNIR reflectance spectra follow trends largely based on the effective ionic radii, as observed for the mid-IR bands; however, lead carbonate and lead nitrate spectral bands occur at longer wavelengths similar to the trend observed in the mid-IR region spectra.
Sample #	Grain size	Wavelength	Band	Depth	Wavelength	Band							
JB0946E	<125 µm	2.301	0.154	2.503	0.268	3.274	0.755	3.420	0.810	3.940	0.883		
JB1161B	45–125 µm	2.301	0.424	2.501	0.527			3.420	0.924	3.937	0.896		
JB1162B	45–125 µm	2.319	0.346	2.522	0.451			3.459	0.885	3.964	0.808		
JB1163B	45–125 µm	2.334	0.374	2.538	0.488			3.480	0.911	3.983	0.806		
HS67	<250 µm	2.363	0.171	2.553	0.286	3.360	0.637	3.512	0.720	4.013	0.833		
HS338	N/A	2.360	0.217	2.554	0.402	3.358	0.784	3.510	0.832	4.006	0.875		
JB0825	~<250 µm	2.516	0.074			3.462	0.310	3.964	0.575				
JB0826	~<250 µm	2.511	0.075	3.376	0.305	3.455	0.334	3.961	0.581				
JB0827	~<250 µm	2.514	0.085	3.376	0.334	3.455	0.365	3.961	0.629				
JB1457D	90–125 µm	2.340	0.260	2.537	0.260	3.352	0.774	3.478	0.821	3.980	0.901		
JB1458D	90–125 µm	2.341	0.264	2.537	0.413	3.316	0.739	3.455	0.786	3.810	0.782	3.961	0.856
JB1460D	90–125 µm	2.338	0.201	2.534	0.338	3.427	0.834	3.506	0.723	3.813	0.725	3.961	0.862
HS194B	74–250 µm	2.340	0.242	2.536	0.394	3.351	0.835	3.479	0.850	3.976	0.860		
HS48B	74–250 µm	2.338	0.248	2.535	0.384	3.351	0.657	3.479	0.683	3.979	0.734		
JB552	125–180 µm	2.342	0.321	2.539	0.517	3.355	0.865	3.477	0.880	3.979	0.898		
JB0779	<125 µm	2.322	0.117	2.516	0.202	3.311	0.639	3.452	0.716	3.807	0.663	3.958	0.814
JB1461D	90–125 µm	2.324	0.097	2.518	0.199	3.316	0.595	3.457	0.688	3.964	0.817		
HS102B	74–250 µm	2.325	0.163	2.514	0.298	3.308	0.741	3.449	0.766	3.804	0.750	3.951	0.801
NMNH R12596	74–250 µm	2.324	0.236	2.515	0.389	3.308	0.868	3.451	0.844	3.804	0.862	3.951	0.893
Salisbury/Vergo 3C	74–250 µm	2.322	0.205	2.515	0.337	3.310	0.832	3.451	0.864	3.806	0.845	3.951	0.891
JB829	~<250 µm	2.298	0.005	2.514	0.009	3.378	0.140	3.501	0.157	3.992	0.329		
JB832	~<250 µm	2.302	0.012	2.507	0.017	3.378	0.215	3.501	0.175	3.964	0.354		
Sample #	Grain size	Wavelength Band											
----------	------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------		
JB833	∼<250 µm	2.296	0.052	2.473	0.042	3.376	0.276	3.501	0.190	3.964	0.362		

Ankerite (Ca, Fe, Mg, Mn):

Sample #	Grain size	Wavelength Band									
JB0778	<125 µm	2.314	0.046	2.531	0.030	3.414	0.140	3.478	0.164	3.977	0.283
JB0830	<250 µm	2.306	0.009	2.507	0.017	3.418	0.203	3.501	0.196	3.983	0.392
JB0831	<250 µm	2.302	0.012	2.507	0.017	3.418	0.204	3.501	0.186	3.983	0.356

Carbonates with orthorhombic structure, 9-fold coordination, and larger cations

Aragonite (Ca):

Sample #	Grain size	Wavelength Band									
JB1459D	90–125 µm	2.318	0.146	2.522	0.303	3.352	0.840	3.478	0.870	3.980	0.912
JB1640D	90–125 µm	2.318	0.146	2.521	0.311	3.350	0.767	3.506	0.731	3.813	0.735
JB1659	<125 µm	2.319	0.092	2.522	0.197	3.351	0.627	3.506	0.575	3.813	0.591
NMNH B10083	74–250 µm	2.318	0.116	2.520	0.254	3.349	0.727	3.505	0.667	3.809	0.674

Strontianite (Sr):

Sample #	Grain size	Wavelength Band									
JB1658	<125 µm	2.347	0.158	2.556	0.258	3.474	0.819	3.861	0.657	4.023	0.878
HS272	74–250 µm	2.347	0.203	2.555	0.354	3.399	0.811	3.472	0.843	3.857	0.763
Cerrusite (Pb):											
Salisbury/Vergo 1C	74–250 µm	2.460	0.086	2.653	0.197	3.588	0.685	3.646	0.692	4.057	0.670
Witherite (Ba):											
HS273	74–250 µm	2.379	0.226	2.588	0.345	3.452	0.791	3.522	0.842	3.910	0.712

Carbonates with monoclinic structure, 9-fold coordination, and alkali cations

Natrite (Na):

Sample #	Grain size	Wavelength Band									
JB1744	<125 µm	2.353	0.081	2.550	0.145	3.377	0.567	3.506	0.708	3.867	0.555

Potassium carbonate (K):

Sample #	Grain size	Wavelength Band									
JB1745	<125 µm	2.397	0.047	2.599	0.092	3.468	0.314	3.571	0.415	3.971	0.372

Nitrates with trigonal rhombohedral structure and 6-fold coordination

LiNO₃:

Sample #	Grain size	Wavelength Band									
JB1583A	<125 µm	2.402	0.159	2.621	0.236	3.472	0.781	3.606	0.815	4.014	0.895
NaNO₃:											
JB997A	<125 µm	2.429	0.230	2.627	0.351	3.508	0.866	3.619	0.872	4.039	0.912
JB1584A	<125 µm	2.428	0.186	2.627	0.298	3.508	0.826	3.616	0.834	4.039	0.888

Nitrates with orthorhombic structure and 9-fold coordination

Sr(NO₃)₂:

Sample #	Grain size	Wavelength Band									
JB1585A	<125 µm	2.386	0.201	2.617	0.297	3.526	0.790	3.608	0.761	4.010	0.875
Pb(NO₃)₂:											
JB1587A	<125 µm	2.472	0.124	2.665	0.207	3.563	0.578	3.641	0.640	4.206	0.826
In order to more accurately determine the band centers of the most prominent NIR bands, we removed the continuum of these spectra using Mr. PRISM software (Brown & Storrie-Lombardi, 2006). The continuum is a curve in the baseline of the spectrum that can induce changes in the apparent position and band depth of spectral features. Removing this continuum better enables comparison of specific band properties among samples. Selected continuum-removed spectra of carbonates are shown in Figure 10 and the band centers and depths for several carbonates are listed in Table 8 to illustrate the trends in these bands with different cations. A full list of all continuum-removed NIR carbonate and nitrate spectra is provided in Table S2.

We prepared several comparison plots for the bands occurring near 2.3, 2.5, 3.4, and 4 µm in order to further investigate patterns of carbonate chemistry and structure using the wavelength positions of the band centers (Figure 11). These bands occur at 2.30, 2.50, 3.42, and 3.94 µm for most magnesites, near 2.33, 2.53, 3.48, and 3.97 µm for siderite, and near 2.34, 2.54, 3.47, and 3.97 µm for calcite (Figures 9–11, Table 8). These bands near 2.3 and 2.5 µm are consistent with previous measurements of carbonate minerals (Gaffey, 1987; Hunt & Salisbury, 1971). Rhodochrosite does not follow the expected trend, based on the effective ionic radius of Mn²⁺, for these bands because they appear at longer wavelengths (2.36, 2.55, 3.51, 4.01 µm). Gaffey (1987) observed the rhodochrosite band at 2.37 µm without removing the continuum, which is close to our continuum-removed value of 2.36 µm. The band near 3.4 µm is actually a doublet for most carbonates (Figures 9 and 10, Table 8) and we opted to use the deeper band of the doublet on the long wavelength side for these analyses to conform with past studies.

The dolomite-type carbonates typically form a cluster in between the values of calcite, siderite, and magnesite, consistent with the presence of Ca, Fe, and Mg cations in these carbonates. For the orthorhombic carbonates bands are observed at 2.32, 2.52, 3.51, and 3.96 µm for most aragonites, at 2.35, 2.56, 3.47, and 4.02 µm for strontianite, at 2.38, 2.59, 3.52, and 4.05 µm for witherite. For the alkali carbonates these bands are observed at 2.35, 2.55, 3.50, and 4.01 µm for natrite and at 2.40, 2.60, 3.58, and 4.08 µm for potassium carbonate. The bands near 2.3 and 2.5 µm are consistent with previous measurements of aragonite, strontianite, and witherite (Gaffey, 1987; Hunt & Salisbury, 1971). These bands appear at longer wavelengths than expected for cerussite based on the effective ionic radius of Pb²⁺ and occur at 2.43, 2.65, 3.65, and 4.15 µm, likely due to the electronic structure of the Pb²⁺ cation. Despite the monoclinic structure for alkali carbonates, their band positions follow the expected trend for the effective ionic radii of 9-fold coordinated cations in the orthorhombic structure aragonite group. Our band positions for natrite are roughly consistent with those found by De Angelis et al. (2019) for natrite at 2.34, 2.54, 3.49, and 3.99 µm. Their sample was hydrated at the time of measurement (including water bands near 2 and 3 µm), which could have disrupted the structure slightly. Hopkinson et al. (2018) observed a band at 2.35 µm for natrite, consistent with our spectra, and at 2.36 µm for potassium carbonate, at a shorter wavelength than we observed.

The NIR spectrum of NaNO₃ with trigonal structure (Figure 9c) includes bands at 2.43, 2.63, 2.87, 3.17, a doublet at 3.51 and 3.62, a broader band near 4.08, and an asymmetric band with a deep absorption at 4.76 µm. The NIR spectrum of LiNO₃ contains similar bands, but they are weakly expressed due to the presence of some H₂O in this sample that is disrupting the structure. Four nitrites with orthorhombic structure were measured and the NIR spectra (Figure 9d) exhibit multiple features, similar in shape to the orthorhombic carbonates, but offset toward longer wavelengths. A prominent trend is observed consistent with the effective ionic radii of Sr(NO₃)₂, Ba(NO₃)₂, and KNO₃, where the band centers shift toward longer wavelengths with increasing cation size. The band centers for KNO₃ occur at 2.47, 2.61, 2.91, 3.22, 3.66, 4.17, and 4.85 µm. The spectrum of Pb(NO₃)₂ contains bands closer to those observed in spectra of KNO₃ (i.e., shifted toward longer wavelengths than expected based on the effective ionic radius). This is similar to the band positions observed for cerussite (lead carbonate). Thus, it appears that the NIR spectra of many carbonates and nitrites follow similar trends with the size of the effective ionic radii of their cations, but the minerals containing Mn²⁺ and Pb²⁺ cations have bands at longer wavelengths than expected.

Comparison of the band centers near 2.3 and 2.5 µm produces clusters of carbonate minerals separated by chemistry. Slightly different trend lines are observed for trigonal, orthorhombic and
Figure 11. Near-infrared band center comparisons for carbonates. Clusters are identified for spectrally distinct groups. (a) ∼2.3 versus ∼2.5 μm, (b) ∼2.3 versus ∼3.4 μm, (c) ∼2.3 versus ∼4 μm, (d) ∼2.5 versus ∼3.4 μm, (e) ∼2.5 versus ∼4 μm, and (f) ∼3.4 versus ∼4 μm. Diamond symbols mark trigonal structure carbonates, circles mark mixed-cation trigonal structures, triangles mark orthorhombic structures, and squares mark monoclinic structures.
monoclinic carbonates (Figure 11a). A comparison of the bands near 2.3 and 3.4 µm shows related trends with chemistry and structure, but there is wider variance along the 3.4 µm axis and the aragonite-type carbonates do not exhibit a linear trend (Figure 11b). The CRISM spectral range for Mars includes the 3.4 µm band as well, although it is not as readily observed due to some thermal emission contributions in the spectra. Comparing the bands near 2.3 and 4 µm also has wider variance along the 4 µm axis (Figure 11c), and there is more separation between the calcite-type, aragonite-type, and alkali carbonates. Comparing the ~2.5 µm band center with the ~3.4 µm band center produces regular trends for the calcite-type carbonates, but not for the aragonite-type carbonates (Figure 11d). Comparing the band centers near 2.5 and 4 µm produces clusters of carbonates following patterns with the cations and mineral structures, but the variance is wide along the 4 µm axis (Figure 11e). A comparison of the ~3.4 and ~4 µm bands produces tight clusters of carbonates by chemistry (Figure 11f), similar to the ~2.3 versus ~2.5 µm comparison; however, the aragonite-type carbonates form a curving trend rather than a linear trend. Overall, comparisons of the ~2.3 versus ~2.5 µm band centers, the ~2.3 versus ~4 µm band centers, and the ~3.4 versus ~4 µm band centers would be most useful for identifying carbonate cations and structure remotely.

Band shape also varies with carbonate type (Brown et al., 2021). Carbonate bands in the continuum-removed spectra were fit using an asymmetric Gaussian model (Figure S2) in terms of frequency (rather than wavelength), as described in a previous study (Brown, 2006). Centroid, width, and asymmetry (Table S3) were then determined for the bands near 2.5 and 4 µm as outlined in Brown et al. (2010) for several carbonates in this study. These data include multiple grain sizes for some samples including calcite that exhibit a wider range of values at 4 µm. Comparisons of the centroid with the parameters width and asymmetry are shown in Figure 12. Both parameters produce distributions of the data useful for constraining the chemistry of carbonates in spectral data; however the centroid and parameters of the ~2.5 µm band cluster more tightly, which would better enable extraction of carbonate composition from these data. Comparisons of the centroid to the width and asymmetry parameters reveal separate clusters of data for many types of carbonates in our study (Figure 12). Clear patterns are observed in some cases that distinguish types of carbonate minerals and specific carbonate compositions by combining width or asymmetry parameters together with the band center. The accuracy would be improved by using data from both the bands near 2.5 and 4 µm.

The Fe²⁺ and Mn²⁺ electronic excitation bands in carbonate spectra arise from crystal field splitting, where a 3d electron transitions from the ground state to an excited state, and from electronic transfer between atoms (Burns, 1993). In the case of crystal field theory transitions for siderite an Fe²⁺ electron jumps from the $^{7}T_{2g}$ ground state to the $^{5}E_{g}$ excited state (e.g., Gaffey, 1987; Hunt & Salisbury, 1971; Lobanov et al., 2015) producing a deep, broad absorption band near 1.0–1.3 µm (Figure 13; Gaffey, 1987; Hunt & Salisbury, 1971). This band is nearly saturated in spectra of siderites with >40 wt.% FeO, but is observed as a weaker band in spectra of carbonates containing less Fe. This is observed for dolomite JB1461 (6.4 wt.% FeO) and dolomite JB779 (unknown FeO) with moderate crystal field theory bands, as well as for magnesite sample JB1161 (0.35 wt.% FeO) and magnesite sample JB946 (0.40 wt.% FeO) with weak crystal field theory bands (Figure 13). This Fe crystal field theory band can also be split due to the presence of Mg or other cations that disrupt the structure. Spectra of some of the Fe-bearing carbonates in Figure 13 exhibit two crystal field theory absorption minima near 1.04–1.08 µm and near 1.25–1.29 µm. Additional O²⁻ to Fe²⁺ charge transfer bands are observed below 0.8 µm.

For rhodochrosite spectra, crystal field splitting arises for an electronic transition in Mn²⁺ from the $^{6}A_{1g}$ ground state to multiple excited states giving rise to sharp absorptions in the range 0.3–0.55 µm (Gaffey, 1987; Hunt & Salisbury, 1971; Le Paillier-Malécot, 1973; Stevenson, 1968). These are observed at 0.311, 0.345, 0.409, 0.443, and 0.548 µm in spectra of two rhodochrosite spectra from the Hunt and Salisbury (1971) collection. Other siderite samples containing 1.3 and 2.7 wt.% MnO exhibit features in this region at different wavelengths attributed to crystal field theory bands of the disrupted structure of MnCO₃ in a siderite framework.
6. Band Assignments for Overtones and Combination Bands

6.1. Changes in Spectral Features With Particle Size and Chemistry

Investigating the spectral properties of carbonates containing both Fe and Mg cations is important because Fe/Mg-carbonate has been found in martian meteorites (e.g., Bishop, Mustard, et al., 1998; McKay et al., 1996) and is present on Mars in multiple locations (e.g., Bishop, Tirsch, et al., 2013; Brown et al., 2020; Ehlmann et al., 2008; Wray et al., 2016). In order to demonstrate changes in band position and spectral shape with particle size and chemistry, three trigonal carbonates were selected with variable Fe and Mg cations.

Figure 12. Band parameter comparisons for carbonates. (a) Band center versus width at ∼2.5 μm. (b) Band center versus asymmetry at ∼2.5 μm. (c) Band center versus width at ∼4 μm. (d) Band center versus asymmetry at ∼4 μm. Diamond symbols mark trigonal structure carbonates, circles mark mixed-cation trigonal structures, triangles mark orthorhombic structures, and squares mark monoclinic structures.
VNIR spectra are brighter for the finer grain sizes and bands are typically broader for the spectra of the coarser grain size fractions (Figure 14a). The Fe-rich samples also contain minor Mn, discussed above. The shape of the strong bands near 3.4 and 4 μm changes with grain size, such that broader and flatter features are observed for the coarser size fraction and narrower features with more structure are observed in the finer size fractions. Spectra of the Mg-rich carbonate have stronger bands than the samples containing more Fe. The band centers shift slightly toward longer wavelengths as the Fe concentration increases, similar to trends in the mid-IR region. For example, the bands at 2.300 and 2.501 μm in the magnesite spectrum shift to 2.319 and 2.522 μm for the Fe/Mg-carbonate spectrum and to 2.334 and 2.538 μm in the siderite spectrum.

Mid-IR spectra exhibit stronger Reststrahlen features for the coarser grained samples and more contrast near 1,700–2,000 cm⁻¹ for the finer grained samples (Figure 14b). The ν₃ vibration near 1,500 cm⁻¹ occurs as an upward peak for all spectra, contrasted by the ν₄ vibration near 750 cm⁻¹ that occurs as a downward band for all grain sizes. Finally, the ν₂ vibration near 900 cm⁻¹ occurs as a reflectance maximum for larger particle sizes and as a reflectance minimum for smaller particle sizes.

6.2. Comparing Calculated Overtones and Combination Bands With Measured Bands

Early spectral analyses by Schaefer et al. (1926) and Matossi (1928) used polarized light and prisms to measure the spectral properties of single crystals of magnesite, dolomite, calcite, siderite, witherite, and cerussite from 2 to 20 μm. Their analyses noted differences in the NIR band positions for different carbonates. Subsequent analyses by Hexter (1958a) using transmittance through calcite single crystals and group theory calculations produced potential band assignments for several NIR bands near 2.37 μm (3ν₃), 2.55 μm (2ν₃ + ν₁), 2.82 μm (2ν₁ + ν₃), 3.2 μm (ν₁ + ν₁ + ν₃), 3.5 μm (2ν₁), and 4 μm (ν₁ + ν₃). The ν₃ vibration occurs frequently in Hexter’s NIR assignments. This is expected because the ν₃ band is the dominant vibration in the mid-IR region. Later reflectance spectra of multiple carbonates by Hunt and Salisbury (1971) observed these NIR bands at slightly different wavelength values, likely due to the differences in scattering between transmittance and reflectance spectroscopy. Hunt and Salisbury (1971) modified the band assignments suggested by Matossi (1928) for a few strong NIR carbonate bands and added assignments for the bands at shorter wavelengths near 1.8–1.9 μm (3ν₁ + ν₃), ~2 μm (2ν₁ + 2ν₃), and ~2.1–2.2 μm (2ν₁ + ν₁ + ν₃). Gaffey (1986, 1987) analyzed NIR reflectance spectra of several carbonates from 0.35 to 2.55 μm, characterized the shape of the CO₃²⁻ overtone and combination bands, provided the crystal field theory bands for the electronic transitions for Fe- and Mn-bearing carbonates, and summarized the band assignments known at that time. Gunasekaran et al. (2006) measured Raman and IR spectra of calcite group carbonates and agreed with the band assignments proposed earlier (Hunt & Salisbury, 1971). The NIR spectral features of carbonates have also been described in summaries of the spectral properties of minerals (Bishop, 2019; Clark et al., 1990; Gaffey et al., 1993).

One complication for assigning the combinations of the fundamental vibrations for these NIR bands is that they rely heavily on the ν₁ vibration and that is measured at different vibrational energies, depending on the technique (see Table 7). Another complication is that the band shapes vary with particle size (Figures 1, 14 and 15). We calculated a large number of possible band assignments for 27 anhydrous carbonates and 7 anhydrous nitrates with different chemistries for bands occurring from ~1.8 to 5.5 μm by summing up the vibrational frequencies in wavenumbers to test the previously suggested band assignments and fill in gaps for additional features. The full band assignment comparison is given in Table S4 using measured fundamental vibrations for each sample. Overtones and combinations were also computed using transmittance spectra from Weir and Lippincott (1961) for comparison. Band assignments for magnesite, calcite,
and aragonite are presented in Table 9 and spectra of multiple particle sizes of calcite and aragonite are shown in Figure 15 from 150 to 4,600 cm\(^{-1}\) (\(\sim 2.2–66 \, \mu m\)) with potential band assignments marked near the spectral features. We calculated combination bands separately in many cases for the \(\nu_3\) vibration (reflectance maximum) and the \(\nu_3\) vibration (shoulder or secondary peak in reflectance) that is often more similar to the \(\nu_3\) absorption observed in transmittance spectra. Based on the positions of the NIR overtones and combinations observed in reflectance spectra it is necessary to use band assignments including both the \(\nu_3\) and \(\nu_3\) modes to fully explain these features. This also enabled more accurate band assignments that more fully describe the features observed in the NIR region. Similar plots illustrate these features for magnesite, Mg/Fe-carbonate, siderite, and dolomite in Figure S3. Many of the original band assignments from Hexter (1958a) and Hunt and Salisbury (1971) still hold (Table 9). However, these only describe a fraction of the NIR overtones and combination bands that are present in carbonate spectra. The Hunt and Salisbury (1971) study only had access to the spectra up to 2.5 \(\mu m\) and thus was not able to characterize the band near 2.5 \(\mu m\) or any of the bands at longer wavelengths. By viewing these spectra across the full range from \(\sim 2.2\) to 66 \(\mu m\) (150–4,600 cm\(^{-1}\)) with varying particle size, the associations among the NIR and mid-IR features are more clear and new band assignments were made here for features in the range 2.5–6 \(\mu m\) as well as for shoulders and smaller features below 2.5 \(\mu m\) that were not considered by Hunt and Salisbury (1971).

The spectral properties of nitrates are expected to follow similar trends to those of carbonates because the spectral properties of nitrates are similar to those of carbonates. Although much of the work on band assignments was performed using spectra of carbonates, a few band assignments were also investigated using spectra of nitrates (Hexter, 1958b; Weir & Lippincott, 1961). More recently, the NIR spectral properties of nitrates from the Atacama were investigated by Sutter et al. (2007) and Wang et al. (2018) from 0.35 to 2.5 \(\mu m\). Wang et al. (2018) also presented NIR reflectance spectra of several anhydrous and hydrated nitrates with different cations. Cloutis et al. (2016) measured reflectance spectra of nitrates and other compounds from

Figure 14. Visible/near-infrared and mid-IR reflectance spectra of two particle size fractions of carbonates with variable Mg and Fe abundances. (a) VNIR spectra from 0.35 to 5 \(\mu m\). (b) Mid-IR spectra from 200 to 2,000 cm\(^{-1}\) (5–50 \(\mu m\)). The magnesite JB1161 contains 0.005 Fe and 0.995 Mg site occupancies, while the Fe/Mg-carbonate JB1162 contains 0.65 Fe, 0.33 Mg, and 0.02 Mn site occupancies, and the siderite JB1163 contains 0.91 Fe, 0.06 Mg, and 0.03 Mn site occupancies. Spectra are offset for clarity, and gray lines mark features in the Mg-carbonate spectra.
0.35 to 20 μm. The nitrate spectra in these studies support our assumption that parallel band assignments for the nitrates are expected. As described above for carbonates, potential combination bands were computed for nitrates from the measured fundamental vibrations for each sample (Table S4). Overtones and combinations were also computed using transmittance spectra from Weir and Lippincott (1961) when available.

These potential calculated overtones and combination bands were compared to the observed NIR bands for three example nitrates: LiNO₃, NaNO₃, and KNO₃. However, overtone calculations for nitrates are more complex than those of carbonates due to the increased anharmonicity in the NO₃⁻ anion compared with the CO₃²⁻ anion. In general, the vibrational frequencies of overtones are less than the energy of the fundamental vibration and an anharmonicity constant \(\nu_0 = \nu_1/(1 - 2X) \) (e.g., Herzberg, 1945). This anharmonicity constant is higher for molecules with increased H-bonding (Sándorfy, 2006), is increased for molecules with very different masses (Siesler, 2017), and is low for heavier atoms (Bron & Hacker, 1973) in stable molecules (Bron, 1975). Calculations of the anharmonicity constant by Groh (1988) found a 3-fold increase for OH and CH vibrations compared with C=O vibrations and Gupta (2016) found negligible anharmonicity constants for CO vibrations. For these reasons, we opted not to use anharmonicity constants for our carbonate calculations. However, anharmonicity constants are as high as −86 cm⁻¹ for OH stretching vibrations in phyllosilicates (Petit et al., 2004) and in the range −30 to −50 cm⁻¹ for NO₃⁻ vibrations near 1,300 cm⁻¹ (Cheng & Steele, 2014). We tested several options for the NO₃⁻ band assignments related to those of carbonates and found that estimated anharmonicity constants of −60 cm⁻¹ worked well for the \(\nu_3 \) band (Table 10). Typically lower anharmonicity constants are needed for bands with lower frequencies, so we applied values of −40 cm⁻¹ for the \(\nu_1 \) band, and −20 cm⁻¹ for the \(\nu_2 \) and \(\nu_4 \) bands. These are estimates, but serve as examples to illustrate relationships between the fundamental nitrate vibrations and the calculated overtone and combination band absorptions observed in NIR spectra.

7. Implications for Spectroscopic Detection and Characterization of Carbonates and Nitrates

The laboratory data presented here are intended as a resource for remote detection of carbonates and nitrates on the Earth and planetary bodies, as well as for investigation of these minerals in laboratory samples. Carbonates have been identified in several locations across Mars with varying band shapes near 2.3 and 2.5 μm, indicating variations in the type of carbonates at different locations (Wray et al., 2016). One of the sites on Mars with the most abundant carbonate rocks occurs in the NE Syrtis—Nili Fossae region including Jezero crater, currently being explored by the Mars 2020 Perseverance rover. Specifically, carbonates are under investigation by Perseverance at Jezero crater using Raman spectroscopy collected by the Scanning Habitable Environments with Raman and Luminescence for Organics & Chemicals (SHERLOC) instrument (Beegle et al., 2015) and elemental data from the SuperCam instrument (Wiens et al., 2016). SuperCam will also collect NIR and Raman point spectra of selected outcrops that could be analyzed with the NIR and Raman data presented here. The Raman spectra of carbonates presented in this study will help characterize the type of carbonates present and identify variations in carbonate chemistry across the terrain visited by Perseverance. Coordinating the in situ Raman detections with orbital VNIR data from CRISM will help to further constrain the carbonate type. Recent advances in image calibration are enabling scientists to better resolve the spectral features of small surface outcrops (Itoh & Parente, 2021), and new algorithm development is supporting identification and mapping of these small outcrops (Saranathan & Parente, 2021). Applying new techniques to orbital CRISM images of Jezero crater is enabling refined characterization of carbonates and other minerals there (Parente et al., 2019).

CRISM detections of carbonates at Jezero crater and elsewhere on Mars rely heavily on the band positions near 2.3 and 2.5 μm (e.g., Brown et al., 2020; Ehlmann et al., 2008), but these band positions can be influenced by admixtures of Fe-rich phyllosilicates (Bishop, Perry, et al., 2013). Additionally, the carbonate band near 3.4 μm is not observed as consistently as the other diagnostic bands. However, with improvements in image calibration (Itoh & Parente, 2021; Seelos et al., 2016), oversampling to view smaller surface regions (Kreisch et al., 2017), and reduction in noise and thermal emission contributions (He et al., 2019), this feature is becoming better resolved in CRISM spectra. Palomba et al. (2009) also found evidence for
Mg-carbonate on Mars using the band near 3.9–4.0 μm in orbital spectra acquired by the Planet Fourier Spectrometer (PFS) onboard Mars Express, although this band is weak due to the wide surface footprint.

The band center comparisons reported here for the 2.3, 2.5, and 3.4 μm features are expected to support better estimates of the carbonate chemistry on Mars and its variation in surface outcrops. A summary of carbonate detections using CRISM spectra by Wray et al. (2016) noted that variations in the spectral bands are observed for carbonate outcrops at Nili Fossae, Libya Montes, Leighton crater, McLaughlin crater, and Huygens crater, and a closer look at these data may be warranted using the results from this study. NIR spectra of Fe- and Mg-bearing carbonates are also displayed in Figure 16a by varying cation abundances. Shifts are observed from 2.30 to 2.33 μm with increasing Fe abundance, as well as 2.50–2.53, 2.76–2.79, 3.27–3.36, 3.42–3.49, 3.79–3.84, and 3.94–4.0 μm for features observable by CRISM and other airborne spectrometers.

Carbonates are widespread on Ceres (De Sanctis et al., 2016) as detected by the visible and infrared mapping spectrometer (VIR) on the Dawn mission (De Sanctis et al., 2019). The position of the ~4 μm band in VIR spectra of Ceres varies from 3.95 to 4.01 μm, indicating a range of carbonate compositions (Carrozzo et al., 2018). The most abundant form of carbonates on Ceres includes Mg and Ca cations, but natrite and hydrous Na carbonates are also thought to be present in smaller outcrops (Carrozzo et al., 2018). The strong

Figure 15. Reflectance spectra across the near-infrared and mid-IR regions illustrating combination and overtone bands. Spectra are included for multiple grain sizes (<45, 45–75, 75–90, 90–125, 125–250, and >250 μm) of calcite JB1458 and aragonite JB1459 with the lighter colors corresponding to the finer size fractions. Possible overtone and combination bands are listed in relation to the fundamental stretching and bending vibrations.
band centered at 4.01 μm and weaker doublet at 3.4 and 3.5 μm in spectra collected at Ocator crater were attributed to natrite (Raponi et al., 2019), which is consistent with our results. The shape of the ~4 μm carbonate bands with doublet features near 3.81 and 3.96 μm (De Sanctis et al., 2018) most closely resembles the character of dolomite in our study. This feature varies with the abundance of Ca, Mg, and Fe in our

Table 9
Band Assignments for Magnesite, Calcite, and Aragonite

Magnesite JB0946	Calcite JB1458	Aragonite JB1459	Band Assignment	Source								
Meas.	Meas.	Calc.	Calc.	Meas.	Meas.	Calc.	Calc.	Meas.	Meas.	Calc.	Calc.	Band Assignment
μm	cm⁻¹	R	T	μm	cm⁻¹	R	T	μm	cm⁻¹	R	T	
1.85	5405	5407	5521	1.88	5319	5327	5383	1.90	5263	5508	5377	3νᵣ + ν₁
1.97	5076	5078	5130	2.00	5000	4974	5038	1.99	5025	5116	5034	2νᵣ + 2ν₁
2.13	4695	4680	4740	2.16	4630	4616	4626	2.16	4630	4698	4592	2νᵣ + 2ν₂
2.425	4759	4767	4612	4457	4383	4275	4273	2.318	4314	4425	4097	3νᵣ
2.3005	4347	4302	4434	2.3410	4272	4260	4296	2.318	4314	4425	4290	3νᵣ
2.5026	3996	4001	4011	2.5369	3942	3912	3906	2.5221	3965	3940	3877	2νᵣ + 2ν₄

Note. “Meas.” indicates measured bands, “Calc.” indicates calculated bands, R refers to reflectance, and T refers to transmittance, four digits provided for bands determined from CR data, two digits provided for bands determined from regular spectra; red data are the fundamental vibrations; blue data are wavelength values (in μm) converted from wavenumbers (in cm⁻¹).
samples; thus, the shape of this feature could be used for refined determination of carbonate chemistry. The NIR spectra shown in Figure 16b illustrate trends from magnesite to dolomite to calcite with several examples of carbonates with intermediate cation chemistries. The primary NIR bands for dolomite occur near 2.32, 2.52, 2.77, 3.31, 3.46, 3.81, and 3.96 μm.

Carbonates were also observed using OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS) data of near-Earth asteroid (101955) Bennu (Kaplan et al., 2020; Simon et al., 2020). A complex feature is observed near 3.4 μm in OVIRS spectra including multiple overlapping bands that vary with location across Bennu; this feature is attributed to a combination of organic material and carbonates (Simon et al., 2020). Thermal contributions increase toward 4 μm in these spectra increasing the challenge for characterizing the shape of the 4 μm band. The ∼3.4 μm band is particularly strong for spectra of the Nightingale crater region, where at least three different spectral shapes are observed, consistent with different carbonate chemistries (Kaplan et al., 2020). The pixel size for the OVIRS data is ∼20 m × 30 m, indicating that the outcrops containing carbonates and organics are sufficiently large to contribute spectrally to these pixels. Additional NIR and TIR spectral features observed at Bennu indicate the presence of phyllosilicates and magnetite, providing a mineral assemblage together with the carbonates that is consistent with carbonaceous chondrite meteorites (Hamilton et al., 2019).

Table 10
Table 10

LiNO₃ JB1583A <125 μm	NaN₃ JB584A <125 μm	KNO₃ JB998A <125 μm	Band	Source	
ν₁	**ν₂**	**ν₃**	**ν₄**	**ν₅**	**ν₆**
2.06 4850 4922 4876	2.07 4831 4962 4826	2.10 4764 4846 4840	2ν₁ -60 +2ν₂ -40		
2.22 4515 4583 4580	2.22 4505 4634 4558	2.25 4444 4477 4478	3ν₁ -2+40 +2ν₂ -20		
2.402 4163 4206 4140	2.428 4119 4191 4065	2.467 4054 4152 4140	3ν₁ -2+60		
2.621 3815 3836 3824	2.627 3807 3797 3778	2.673 3741 3767 3768	ν₁+2ν₂ -20+ν₄		
2.87 3484 3562 3518	2.87 3484 3540 3457	2.91 3436 3503 3494	2ν₃ -60+ν₁+ν₄		
3.17 3155 3249 3226	3.17 3155 3257 3190	3.22 3106 3188 3184	ν₁+ν₁+ν₂		
3.29 3040 3112 3122	3.30 3030 3066 3090	3.32 3012 3038 3042	2ν₁-20 +2ν₂-20		
3.29 3040 3018 3001	3.30 3030 2990 2960	3.32 3012 2963 2961	ν₁+ν₁+2ν₄		
3.472 2880 2898	3.508 2851 2852	3.599 2779 2828	2ν₁-60		
3.472 2880 2745 2754	3.508 2851 2748 2744	3.599 2779 2697 2704	ν₁+2ν₂		
3.606 2773 2824 2780	3.616 2765 2814 2730	3.657 2734 2788 2780	2ν₁-60 after Hexter (1958a)		
4.014 2491 2548	4.039 2476 2550	4.039 2476 2493	ν₁+ν₁		
4.089 2446 2511 2488	4.119 2428 2531 2463	4.175 2395 2473 2470	ν₁+ν₁ Hexter (1958a)		
4.64 2155 2180 2158	4.69 2132 2163 2122	4.66 2146 2139 2134	ν₁+ν₄		
4.74 2110 2098 2096	4.76 2101 2148 2096	4.85 2062 2058 2060	2ν₁-40		
Meas. 1904 1907 1911	**Calc.** 1900 1921 1906	**Meas.** 1875 1873 1877	ν₁+ν₂		
1979 1807 1806	1792 1820 1795	1763 1764 1764	ν₁+ν₄		

Note. “Meas.” indicates measured bands, “Calc.” indicates calculated bands, R refers to reflectance, and T refers to transmittance, four digits provided for bands determined from CR data, two digits provided for bands determined from regular spectra; estimated anharmonicity constants of −60 cm⁻¹ for ν₂, −40 cm⁻¹ for ν₃, −20 cm⁻¹ for ν₄, and −20 cm⁻¹ for ν₁ were applied; red data are the fundamental vibrations; blue data are wavelength values (in μm) converted from wavenumbers (in cm⁻¹).
Nitrates are abundant in the Atacama region of Chile and VNIR spectra have been used for characterization of nitrates there (Sutter et al., 2007; Wang et al., 2018). The band at 2.42 μm observed in Atacama rocks (Wang et al., 2018) is most consistent with NaNO₃ (Figure 9c). Using the changes in band positions observed for nitrates in this study, the chemistry of nitrates could be determined for nitrates observed in the Atacama, in lab samples, or on planetary surfaces if they are present.

8. Conclusions

The purpose of this study was to gain an understanding of the band assignments for VNIR spectral features in anhydrous carbonates and nitrates through comparison with the mid-IR and Raman spectra and mineral chemistry, as well as to provide a comprehensive database of carbonate and nitrate spectral features for remote identification of these minerals on planetary surfaces. The mid-IR spectra of anhydrous carbonates and nitrates are dominated by the ν_3 asymmetric stretching vibration of the CO$_3^{2-}$ and NO$_3^-$ anions near 1,275–1,590 cm$^{-1}$ (\sim6–8 μm) and lattice modes at 150–600 cm$^{-1}$ (\sim20–60 μm). Similarly, Raman spectra are
dominated by the v_1 symmetric stretching vibration near 1,050–1,080 cm$^{-1}$ (~9–10 μm), but also include noticeable bands due to lattice modes. Weak bands in IR and Raman spectra are also observed for the v_2 out-of-plane bending vibration and the v_3 in-plane bending vibration.

NIR reflectance features include overtones of the v_1 band and combinations of all four fundamental vibrations, even if they are not well expressed in mid-IR spectra. Previously proposed band assignments for NIR features were tested and new band assignments were recommended through comparison of related minerals with differing cation chemistries. Carbonates and nitrates include a large number of overlapping bands in the NIR region that form the characteristic shape of the NIR spectra of carbonate and nitrate minerals. The most important features for remote detection of carbonates are observed at ~2.3, 2.5, 3.4, 4.0, and 4.6 μm. These bands are shifted to slightly longer wavelengths for nitrates and occur at ~2.4, 2.6, 3.5, 4.1 and 4.8 μm.

Extended visible region bands are observed in Fe- and Mn-bearing carbonates due to electronic transitions. Siderites and other Fe-bearing carbonates exhibit a strong, broad crystal field theory band from ~1 to 1.3 μm that can be split into a doublet shape when other cations are present. The influence of Fe is nonlinear, with small amounts of Fe inducing a noticeable band in carbonate spectra. Multiple, sharp features are observed in rhodochrosite spectra from 0.3 to 0.55 μm. Related bands shifted toward longer wavelengths (~0.4–0.63 μm) are observed in siderites with minor Mn abundance. This is attributed to a disruption of the mineral structure due to the different size of the Fe$^{2+}$ cation, which is largely controlling the structure.

Multiple spectral features are characterized in this study for several types of carbonates and nitrates. Band centers of key NIR, mid-IR, and Raman features are coordinated to facilitate remote detections of these minerals on planetary surfaces. Band asymmetry and width are also compared with the band center for selected NIR features. Many of these band center comparisons and band feature comparisons produce clusters of data for distinct groups or types of carbonates and nitrates. In general the mid-IR and NIR band positions followed trends with the size of the effective ionic radii of the cation. One exception to this is the Pb$^{2+}$ cation in both carbonate and nitrate. This study provides reflectance spectra from 0.3 to ~50 μm of a large collection of carbonates and nitrates, accompanied by emissivity spectra, Raman spectra, and XRD for many of the samples. This data will support remote detection of carbonates and nitrates on planetary bodies and will enable better determination of carbonate chemistry on planetary bodies including Mars, Ceres, and Bennu.

Conflict of Interest
The authors declare no conflicts of interest relevant to this study.

Data Availability Statement
Raw spectral data are available at Brown University’s Reflectance Experiment Lab (RELAB): Milliken, R. (2020). RELAB Spectral Library Bundle. Geosciences Node. https://doi.org/10.17189/1519032 and the USGS Spectroscopy Lab at https://www.usgs.gov/labs/spec-lab. The continuum removed spectral data produced in this study are included as supplementary data files and are shared on the SETI Institute Data Repository at https://dmp.seti.org/jbishop/carbonates_xxii/ as well as at a unique, searchable public site at the Open Science Framework (OSF): https://osf.io/hr4u4c/. Any use of trade, firm, or product names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Detailed information about the band centers and band assignment calculations are provided in supporting online tables and figures.

References
Adler, H. H., & Kerr, P. F. (1963). Infrared spectra, symmetry and structure relations of some carbonate minerals. American Mineralogist, 48, 839–853. https://doi.org/10.2113/gsecongeo.58.6.839
Aronson, J. R., Emslie, A. G., & McLinden, H. G. (1966). Infrared Spectra from Fine Particulate Surfaces. Science, 152(3720), 345. https://doi.org/10.1126/science.152.3720.345-a
Bandfield, J. L., Glotch, T. D., & Christensen, P. R. (2003). Spectroscopic identification of carbonate minerals in the Martian dust. Science, 301, 1084–1087. https://doi.org/10.1126/science.1088054
Pollack, J. B., Roush, T. L., Witteborn, F., Bregman, J., Wooden, D., Stoker, C., et al. (1990). Thermal emission spectra of Mars (5.4–10.5 μm): Evidence for sulfates, carbonates, and hydrates. *Journal of Geophysical Research, 95*(B9), 14595–14627. https://doi.org/10.1029/JB095i09p14595

Railsback, L. B. (1999). Patterns in the compositions, properties, and geochemistry of carbonate minerals. *Carbonates and Evaporites, 14*, 1. https://doi.org/10.1016/S0378-3785(98)00014-4

Rampe, E. B., Blake, D. F., Brissett, T. F., Ming, D. W., Vaniman, D. T., Morris, R. V., et al. (2020). Mineralogy and geochemistry of sediments and their interaction with water on Mars: A review after six Earth years of exploration with Curiosity. *Geochemistry, 80* (2), 125605. https://doi.org/10.1016/j.gca.2020.125605

Raponi, A., De Sanctis, M. C., Carrozzo, F. G., Ciaranfi, M., Castillo-Rogez, J. C., Ammannito, E., et al. (2019). Mineralogy of Oxycrat craters on Ceres and insight into its evolution from the properties of carbonates, phyllosilicates, and chlorides. *Icarus, 320*, 83–96. https://doi.org/10.1016/j.icarus.2018.02.001

Reeder, R. J. (1990a). Carbonates: Mineralogy and chemistry (p. 399). Mineralogical Society of America.

Reeder, R. J. (1990b). Crystal chemistry of the rhombohedral carbonates. In R. J. Reeder (Ed.), *Carbonates: Mineralogy and chemistry* (pp. 1–47). Mineralogical Society of America.

Rietmeijer, F. J. M., Della Corte, V., Ferrari, M., Rotundi, A., & Brunetto, R. (2016). Laboratory analyses of meteoric debris in the upper stratosphere from settling bovine dust clouds. *Icarus, 266*, 217–234. https://doi.org/10.1016/j.icarus.2015.11.003

Rockwell, B. W., & Hofstra, A. H. (2008). Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data—Implications for geologic mapping and mineral resource investigations in well-studied and Frontier areas. *Geomaterials, 4*(1), 218–246. https://doi.org/10.1130/GSM001.022

Romanek, C. S., Jimenez-Lopez, C., Navarro, A. R., Sanchez-Román, M., Sahai, N., & Coleman, M. (2009). Inorganic synthesis of Fe-Ca-Mg carbonates at low temperature. *Geochemistry, Geophysics, Geosystems, 10*(14), 899–814. https://doi.org/10.1029/2008GC001953

Salisbury, J. W., & Wald, A. (1992). The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered samples. *Journal of Geophysical Research, 97*(B1), 702–710. https://doi.org/10.1029/90JB01007

Sarrazin, P., Blake, D. F., Chipera, S. J., Vaniman, D. T., & Bish, D. L. (2005). Field deployment of a portable X-ray diffraction/X-ray fluorescence instrument on Mars analog terrain. *Powder Diffraction, 20*(2), 128–133. https://doi.org/10.1151/1.1913719

Schefer, C., Bormuth, C., & Matossi, F. (1926). Das ultrarote Absorptionsspektrum der Carbonate. *Zeitschrift für Physik*, 39(9), 684–659. https://doi.org/10.1007/BF01322127

Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, *Acta Crystallographica Section A, 32*(5), 751–767. https://doi.org/10.1107/S0567739476001551

Sibley, V. (2016). On the effective ionic radii for ammonium. *American Mineralogist, 62*, 36–50. https://doi.org/10.1557/am.2015.396

Stern, R. C., & Kvarnstrom, B. E. (2017). Vibrational spectra of the alkaline earth doublet carbonates. *American Mineralogist, 60*, 201–216. Springer. https://doi.org/10.1557/am.2017.111

Stern, R. C., & Kvarnstrom, B. E. (2018). Vibrational spectra of the alkaline earth doublet carbonates. In R. C. Stern (Ed.), *Carbonates: Mineralogy and chemistry* (pp. 145–190). Mineralogical Society of America.

Stern, R. C., Kvarnstrom, B. E., & Morgan, M. F. (2015). PDS product sets—TERs and MTRDRs. Paper presented at the 47th Lunar and Planetary Science Conference (Abstract #1783).

Spera, J. A. (1990). Crustal chemistry and phase relations of orthorhombic carbonates. In R. J. Reeder (Ed.), *Carbonates: Mineralogy and chemistry* (pp. 9–26). Mineralogical Society of America.

Stover, J. B., Leinweber, R. F., Paulik, P. A., & Paulik, E. J. (1974). Application of IR and Raman spectroscopy to the analysis of mineral assemblages. *Journal of Geophysical Research, 79*(6), 964–977. https://doi.org/10.1029/JB079i006p00964

Tamblyn, R. P., & de Ronde, C. (2017). Near-infrared spectra, interpretation. In E. Garbe-Schönberg, R. W. Banfield, & J. M. Whitney (Eds.), *Encyclopedia of spectroscopy and spectrometry* (3rd ed., pp. 201–216). Academic Press. https://doi.org/10.1016/B978-0-12-409547-2.12173-0

Théorêt, A., & Sandorfy, C. (1964). Infrared spectra and crystalline phase transitions of ammonium nitrate. *Zeitschrift für Physik*, 187(1–2), 536–537. https://doi.org/10.1007/BF01322127

Theocharis, D., & Bish, D. J. (2017). Characterization of some biogenic carbonates with Raman spectroscopy. *American Mineralogist, 76*, 641–646.

Urroz, J. M., & Nelson, J. D. (1999). Infrared spectra and crystalline phase transitions of ammonium nitrate. *Canadian Journal of Chemistry, 77*(4), 57–62. https://doi.org/10.1139/v98-009

Viviano, C. E., Moersch, J. E., & McSween, H. Y. (2013). Implications for early hydrothermal environments on Mars through the spectral evidence for carbonation and chloritization reactions in the Nili Fossae region. *Journal of Geophysical Research: Planets, 118*(9), 1858–1872. https://doi.org/10.1002/jgre.20141

Viviano, C. E., Moersch, J. E., & McSween, H. Y. (2013). Implications for early hydrothermal environments on Mars through the spectral evidence for carbonation and chloritization reactions in the Nili Fossae region. *Journal of Geophysical Research: Planets, 118* (9), 1858–1872. https://doi.org/10.1002/jgre.20141
Wang, F., Bowen, B. B., Seo, J.-H., & Michalski, G. (2018). Laboratory and field characterization of visible to near-infrared spectral reflectance of nitrate minerals from the Atacama Desert, Chile, and implications for Mars. *American Mineralogist, 103*(2), 197–206. https://doi.org/10.2138/am-2018-6141

Weir, C. E., & Lippincott, E. R. (1961). Infrared studies of aragonite, calcite, and vaterite type structures in the borates, carbonates, and nitrates. *Journal of Research of the National Bureau of Standards, Section A: Physics and Chemistry, 65A*(3), 173–183. https://doi.org/10.6028/jres.065a.021

White, W. B. (1974). The carbonate minerals. In V. C. Farmer (Ed.), *The infrared spectra of minerals* (pp. 227–284). The Mineralogical Society.

Wiens, R., Maurice, S., McCabe, K., Cais, P., Anderson, R. B. & Beysac, O. et al. (2016). The SuperCam remote sensing instrument suite for Mars 2020. Paper presented at the 47th Lunar and Planetary Science Conference (Abstract #1322).

Wray, J. J., Murchie, S. L., Bishop, J. L., Ehlmann, B. L., Milliken, R. E., Wilhelm, M. B., et al. (2016). Orbital evidence for more widespread carbonate-bearing rocks on Mars. *Journal of Geophysical Research, 121*(4), 652–677. https://doi.org/10.1002/2015JE004972

Zubkova, N. V., Pushcharovsky, D. Y., Ivaldi, G., Ferraris, G., Pekov, I. V., & Chukanov, N. V. (2002). Crystal structure of natrite, γ-Na$_2$CO$_3$. *Neues Jahrbuch für Mineralogie—Monatshefte, 2002*(2), 85–96. https://doi.org/10.1127/0028-3649/2002/2002-0085