Graphical Gaussian models associated to a homogeneous graph with permutation symmetries

Piotr Graczyk 1, Hideyuki Ishi 2, Bartosz Kołodziejek 3
1- Université d’Angers, France, piotr.graczyk@univ-angers.fr
2- Osaka Metropolitan University, Japan, hideyuki-ishi@omu.ac.jp
3- Warsaw University of Technology, Poland, b.kolodziejek@mini.pw.edu.pl

* Piotr Graczyk
† submitted to MaxEnt 2022: International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, IHP, Paris, July 18-22, 2022.
Version September 22, 2022 submitted to Entropy

Abstract: We consider multivariate centered Gaussian models for the random vector (Z_1, \ldots, Z_p), whose conditional structure is described by a homogeneous graph and which is invariant under the action of a permutation subgroup. The following paper concerns with model selection within colored graphical Gaussian models, when the underlying conditional dependency graph is known. We derive an analytic expression of the normalizing constant of the Diaconis–Ylvisaker conjugate prior for the precision parameter and perform Bayesian model selection in the class of graphical Gaussian models invariant by the action of a permutation subgroup. We illustrate our results with a toy example of dimension 5.

Keywords: Graphical models; Colored graphical models; Invariance; Permutation symmetry; Diaconis-Ylvisaker conjugate prior

1. Introduction

In the Graphical Gaussian model, conditional independencies among components of a random vector $Z = (Z_1, Z_2, \ldots, Z_p)$ obeying the multivariate centered Gaussian law $N(0, \Sigma)$ with an unknown covariance matrix $\Sigma \in \text{Sym}^+(p, \mathbb{R})$ are assigned by a simple undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where the set \mathcal{V} of vertices is enumerated as $\mathcal{V} = \{1, 2, \ldots, p\}$. Namely, if the vertices i and j are disconnected in the graph \mathcal{G}, then Z_i and Z_j are conditionally independent given other components Z_k, $k \neq i, j$. This property is equivalent to that the (i, j)-component of the precision matrix $K := \Sigma^{-1}$ equals 0. Following Højsgaard and Lauritzen [1], we impose the invariance on such a statistical model under the natural action of a permutation subgroup $\Gamma \subset S_p$ preserving the conditional independence structure of the model, which means that Γ is a subgroup of the automorphism group $\text{Aut}(\mathcal{G}) := \{ \sigma \in S_p; \sigma(i) \sim \sigma(j) \text{ if and only if } i \sim j \}$ of the graph \mathcal{G}, where $i \sim j$ means that there exists an edge between the vertices i and j. Such models are called RCOP graphical models. It is proved that, when the graph \mathcal{G} is homogeneous (i.e. decomposable and A_4-free, see [2]), the parameter set \mathcal{P}_0^Γ of precision matrices K of our invariant model forms a homogeneous cone. Therefore we can apply our previous results [3] about the Wishart laws on homogeneous cones to this situation. In particular, we obtain an exact analytic formula for the normalizing constant of the Diaconis-Ylvisaker conjugate prior of the precision matrix. In order to demonstrate our results, we work on the data set of the examination marks of 88 students in 5 different mathematical subjects reported in Mardia et al. [4], following Højsgaard and Lauritzen [1]. As is discussed in Whittaker [5] and Edwards [6], the data fit to the graphical Gaussian model from Fig. 1.
The Diaconis-Ylvisaker conjugate prior for K projection with respect to the trace inner product $\langle x, y \rangle$ attains its maximum value at $[8]$, for each D, see that, if P is the normalizing constant. As is already stated, the cone P equals $\Sigma^{-1} \in P \Gamma$.

The Diaconis-Ylvisaker conjugate prior for $K = \Sigma^{-1} \in P \Gamma$ is given by

$$ f(K; \delta, D) := \frac{1}{I^\Gamma_G(\delta, D)} e^{-\text{tr } K D / 2 (\det K)^{(\delta-2)/2}} 1_{P \Gamma}(K) $$

(1)

for hyperparameters $\delta > 2$ and $D \in \text{Sym}^+(p, \mathbb{R})$, where

$$ I^\Gamma_G(\delta, D) := \int_{P \Gamma} e^{-\text{tr } K D / 2 (\det K)^{(\delta-2)/2}} dK $$

is the normalizing constant. As is already stated, the cone $P \Gamma$ is homogeneous, which means that there exists a linear group $H \subset GL(Z \Gamma)$ acting on $P \Gamma$ transitively. Then, making use of our integral formula over $P \Gamma$, see (2), we can compute the normalizing constant $I^\Gamma_G(\delta, D)$.

In order to state the integral formula, we introduce some functions. Let Z be a linear subspace of $\text{Sym}(p, \mathbb{R})$ such that $P_Z := Z \cap \text{Sym}^+(p, \mathbb{R})$ is non-empty. Let $\pi_Z : \text{Sym}(p, \mathbb{R}) \to Z$ denote the orthogonal projection with respect to the trace inner product $\langle x, y \rangle := \text{tr } xy$, $x, y \in \text{Sym}(p, \mathbb{R})$, that is,

$$ \langle x, y \rangle = \langle x, \pi_Z(y) \rangle, \quad x \in Z, \ y \in \text{Sym}(p, \mathbb{R}). $$

Let P_Z^* be the dual cone of P_Z, that is, $P_Z^* : = \{ y \in Z ; \langle x, y \rangle > 0 \text{ for all } x \in P_Z^\perp \setminus \{0\} \}$. It is easy to see that, if $D \in \text{Sym}^+(p, \mathbb{R})$, then $\pi_Z(D) \in P_Z^*$. One can show that (see the proof of Proposition V.8 in [8]), for each $y \in P_Z^*$, there exists a unique $\psi(y) \in P_Z$ such that the function $P_Z \ni x \mapsto e^{-\langle x, y \rangle \text{det } x}$ attains its maximum value at $x = \psi(y)$, and that the map $\psi : P_Z^* \to P_Z$ equals the inverse map of

Figure 1. Conditional independence structure of examination marks.

We carry out Bayesian model selection in the spirit of Graczyk et al. [7] of the group Γ having the highest posterior probability among the ten possible groups preserving the graph above. We note that in [7] only complete graph G was allowed. Thanks to new formulas for the normalizing constant of Diaconis-Ylvisaker conjugate prior, we are able to generalize results of [7] to homogeneous graphs.

The authors are grateful to anonymous referees for their careful readings and valuable comments.

2. Main results

Let us describe our results in more detail. Let $Z \Gamma$ be the linear space consisting of symmetric matrices $K \in \text{Sym}(p, \mathbb{R})$ such that $K_{(i)(j)} = K_{ij}$ for all $\sigma \in \Gamma$ and $i, j \in \mathcal{V}$, and $K_{ij} = 0$ if $i \neq j$ and $i \neq j$. Then the cone $P \Gamma$ equals $Z \Gamma \cap \text{Sym}^+(p, \mathbb{R})$, so that our statistical model is the family of $N(0, \Sigma)$ with $\Sigma^{-1} \in P \Gamma$.
Theorem 1. If $Z = Z^\Gamma_G$, then one has
\[
\int_{p_Z} e^{-\langle x,y \rangle} (\det x)^\alpha \, dx = \gamma_G(\alpha) \varphi_G(y) \delta_G(y)^{-\alpha} \quad y \in p_Z, \, \alpha \geq 0.
\] (2)

We shall show Theorem 1 by using the homogeneity of $p^\Gamma_G = p_{Z^\Gamma_G}$ in our case, whereas we notice that the formula (2) is valid also for some non-homogeneous cases, e.g. the cone p_Z arising from uncolored decomposable graphical models [9].

Let γ^Γ_G, δ^Γ_G and φ^Γ_G denote the functions γ_Z, δ_Z and φ_Z respectively with $Z = Z^\Gamma_G$. Then we have
\[
i^\Gamma_G(\delta, D) = \gamma^\Gamma_G((\delta - 2)/2) \varphi^\Gamma_G(\pi_Z(D)/2) \delta^\Gamma_G(\pi_Z(D)/2)^{-(\delta-2)/2}.
\]

In our Bayesian model selection setting [7], for a fixed graph G, we suppose that a group Γ is distributed uniformly over all the possible subgroups of the automorphism group of the graph G. Given samples Z_1, Z_2, \ldots, Z_n, that is, the i.i.d. random vectors obeying $N(0, \Sigma)$ with $\Sigma^{-1} \in p^\Gamma_G$, we see that the posterior probability $P(\Gamma|Z_1, \ldots, Z_n)$ is proportional to $i^\Gamma_G(\delta + n, D + \sum_{i=1}^n Z_i Z_i^\top) / i^\Gamma_G(\delta, D)$, see [7, Eq. (30)].

3. Matrix realization of homogeneous cones

It is known that any homogeneous cone is linearly isomorphic to some p_Z, where $Z \subset \text{Sym}(p, \mathbb{R})$ is a linear subspace consisting of real symmetric matrices admitting certain specific block decomposition described below [10,11]. Let n_1, n_2, \ldots, n_r be positive integers such that $p = n_1 + n_2 + \ldots + n_r$. Let $V = \{ V_{ik} \}_{1 \leq k < l \leq r}$ be a family of linear spaces $V_{ik} \subset \text{Mat}(n_i, n_k; \mathbb{R})$ satisfying the following axioms:

(V1) $A \in V_{ik} \Rightarrow AA^\top \in \mathbb{R}^{n_i} (1 \leq k < l \leq r)$,
(V2) $A \in V_{ij}, B \in V_{kj} \Rightarrow AB^\top \in V_{ik} (1 \leq j < k < l \leq r)$,
(V3) $A \in V_{ik}, B \in V_{kj} \Rightarrow AB \in V_{ij} (1 \leq j < k < l \leq r)$.

Let Z_V be the linear space consisting of $x \in \text{Sym}(p, \mathbb{R})$ of the following form:
\[
x = \begin{pmatrix}
X_{11} & X_{12} & \cdots & X_{1r} \\
X_{21} & X_{22} & \cdots & X_{2r} \\
\vdots & \vdots & \ddots & \vdots \\
X_{r1} & X_{r2} & \cdots & X_{rr}
\end{pmatrix}
\]

$X_{kk} = x_{kk} I_{n_k}, x_{kk} \in \mathbb{R}, \, k = 1, \ldots, r,$

$X_{jk} \in V_{jk}, 1 \leq k < l \leq r.$

(3)
Let \(H_V \) be the set of \(p \times p \) lower triangular matrices \(T \) of the following form:

\[
T = \begin{pmatrix}
T_{11} & T_{12} & \cdots & T_{1r} \\
T_{21} & T_{22} & \cdots & T_{2r} \\
& & \ddots & \vdots \\
& & & T_{rr}
\end{pmatrix}
\]

\[
T_{kk} = t_{kk}I_{n_k}, \quad t_{kk} > 0, \quad k = 1, \ldots, r,
\]

\[
T_{lk} \in V_{lk}, \quad 1 \leq k < l \leq r. \quad (4)
\]

Then \(H_V \) forms a Lie group by (V3), and acts on \(Z_V \) linearly by \(\rho(T)x := TxT^\top, \ T \in H_V, \ x \in Z_V. \)

Moreover, the group \(H_V \) acts on the cone \(P_V := P_{Z_V} \) simply transitively by \(\rho \). We write \(\rho^*(T), \ T \in H_V, \) for the adjoint of the linear operator \(\rho(T) \) on \(Z_V \) with respect to the trace inner product, which means that \(\langle \rho(T)x, y \rangle = \langle x, \rho^*(T)y \rangle \) for \(x, y \in Z_V. \) Then we see that \(\rho^*(T)y = \pi_Z(T^\top y)T \) for \(y \in Z_V. \) Moreover, if \(y \in P_V^* := P_{Z_V}^* \), we have \(\psi_{Z_V}(\rho^*(T)y) = \rho(T^{-1})\psi_{Z_V}(y). \) Since \(\psi_{Z}(y) \in P_V \) for \(y \in P_V^* \), we can take a unique \(T_y \in H_V \) for which \(\psi_{Z}(y) = \rho(T_y^{-1})I_p. \) Then we have \(y = \rho^*(T_y)I_p \) because \(\rho(T_y^{-1})I_p = \rho(T_y^{-1})\psi_{Z}(I_p) = \psi_{Z}(\rho^*(T_y)I_p). \)

Lemma 1. For \(y \in P_{Z_V}^* \), one has \(\delta_{Z_V}(y) = (\det T_y)^{-2} \) and \(\varphi_{Z_V}(y) = (\det \rho(T_y))^{-1}. \)

Using Lemma 1 and a general theory about relatively invariant functions on a homogeneous cone (see e.g. [10, Section IV]), we can compute explicitly \(\delta_{Z_V} \) and \(\varphi_{Z_V}. \)

Put \(q_k := \sum_{l>k} \dim V_{lk} \) for \(k = 1, \ldots, r \) and \(N := \dim Z_V. \)

Theorem 2. (i) One has

\[
\gamma_{Z_V}(\alpha) = (2\pi)^{(N-r)/2} \prod_{k=1}^r \left(n_k^{-\alpha-n_k+1}/2 \Gamma(n_k \alpha + (q_k/2) + 1) \right).
\]

(ii) The equality (2) holds for \(Z = Z_V. \)

We give a sketch of the proof of Theorem 2. We denote by \((A|B) \) the trace inner product \(\text{tr} AB^\top \) of \(A, B \in V_{lk}. \) Then for an element \(x \in Z_V \) in (3), we have

\[
\langle x, x \rangle = \sum_{k=1}^r \left(n_k x_{kk}^2 \right) + 2 \sum_{1 \leq k < l \leq r} \langle X_{lk} | X_{lk} \rangle,
\]

so that \(dx = \prod_{k=1}^r (n_k^{1/2} dx_{kk}) \prod_{1 \leq k < l \leq r} (2^{\dim V_{lk}/2} dX_{lk}), \) where \(dX_{lk} \) stands for the Lebesgue measure on \(V_{lk} \) normalized by \((\cdot | \cdot). \) By the change of variable \(x = \rho(T)I_p \) with \(T \in H_V \) in (4), we get

\[
\gamma_{Z_V}(\alpha) = \prod_{k=1}^r \int_0^\infty e^{-n_k t_{kk}^{1/2} 2\\n_k^{1/2} t_{kk}^{2n_k\alpha+1} q_k} \frac{dt_{kk}}{t_{kk}} \int_{V_{lk}} e^{-(T_{lk} | T_{lk})} dT_{lk},
\]

so that \(\gamma_{Z_V}(\alpha) \) equals

\[
\prod_{k=1}^r \left(\int_0^\infty e^{-n_k t_{kk}^{1/2} 2\\n_k^{1/2} t_{kk}^{2n_k\alpha+1} q_k} \frac{dt_{kk}}{t_{kk}} \int_{V_{lk}} e^{-(T_{lk} | T_{lk})} dT_{lk} \right).
\]
As for (ii), we observe that $\langle x, y \rangle = \langle x, \rho^*(T_y)I_p \rangle = \langle \rho(T_y)x, I_p \rangle = \text{tr} \rho(T_y)x$. By the change of variable $x' = \rho(T_y)x$, we have

$$
\int_{\mathcal{P}_V} e^{-(x,y)} (\det x)^a \, dx = \int_{\mathcal{P}_V} e^{-(x',y)} (\det x') (\det T_y)^{-2} (\det \rho(T_y))^{-1} \, dx' = (\det T_y)^{-2a} (\det \rho(T_y))^{-1} \gamma_{Z_V}(\alpha),
$$

so that (2) follows from Lemma 1.

Theorem 3. For a homogeneous graph $G = (V, E)$ and a subgroup Γ of the automorphism group of G, there exists an orthogonal matrix $U \in O(p)$ such that $U^T Z^\Gamma_V U = Z_V$ with some $V = \{V_k\}_{1 \leq k \leq l}$.

The proof is omitted, it is based on a representation theory similarly as in [7] and uses a proper ordering of vertices. Theorem 3 together with Theorem 2 yields Theorem 1. Theorem 3 is very important from the practical point of view. The knowledge of the orthogonal matrix U allows to identify all parameters of the space Z_V (see (3)). However, the problem of finding a suitable U matrix is in general very complicated. In the next section we will consider the butterfly model from Fig. 1 and present the exact forms of the U matrices for all subgroups of $\text{Aut}(G)$.

4. Toy example

In what follows, let G be the five-vertex graph from Fig. 1. We use the cyclic representation of permutations on $V = \{1, \ldots, 5\}$. Then the group $\text{Aut}(G)$ is generated by $\sigma_1 := (1 \ 2)$, $\sigma_2 := (4 \ 5)$, and $\sigma_3 := (1 \ 4)(2 \ 5)$. Put $\tau := \sigma_2 \circ \sigma_3 = (1 \ 5 \ 2 \ 4)$. Then $\sigma_2 = \sigma_1 \circ \tau^2$ and $\sigma_3 = \sigma_1 \circ \tau^3$, so that $\text{Aut}(G)$ is generated by σ_1 and τ. Moreover, since the orders of σ_1 and τ are 2 and 4 respectively with $\sigma_1 \circ \tau \circ \sigma_1^{-1} = \tau^3$, the group $\text{Aut}(G)$ equals the dihedral group $\langle \sigma_1 \rangle \rtimes \langle \tau \rangle$ of order 8. Then all the subgroups of $\text{Aut}(G)$ are listed as:

- $\Gamma_1 := \{e\}$, $\Gamma_2 := \langle \sigma_1 \rangle$, $\Gamma_3 := \langle \sigma_1 \circ \tau \rangle$, $\Gamma_4 := \langle \sigma_1 \circ \tau^2 \rangle$, $\Gamma_5 := \langle \sigma_1 \circ \tau^3 \rangle$,
- $\Gamma_6 := \langle \tau^2 \rangle$, $\Gamma_7 := \langle \tau \rangle$, $\Gamma_8 := \langle \sigma_1, \tau^2 \rangle$, $\Gamma_9 := \langle \sigma_1 \circ \tau, \tau^2 \rangle$, $\Gamma_{10} := \text{Aut}(G)$.

(i) When $\Gamma = \Gamma_1$, then $x \in Z^\Gamma_G$ is of the form

$$
\begin{pmatrix}
 x_{11} & x_{21} & x_{31} & 0 & 0 \\
 x_{21} & x_{22} & x_{32} & 0 & 0 \\
 x_{31} & x_{32} & x_{33} & x_{43} & x_{53} \\
 0 & 0 & x_{43} & x_{44} & x_{54} \\
 0 & 0 & x_{53} & x_{54} & x_{55}
\end{pmatrix}.
$$

We give an orthogonal matrix U so that $U^T x U$ becomes of the form of matrix realization in the previous section (see Theorem 3) by

$$
U := \begin{pmatrix}
 1 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1 & 0
\end{pmatrix}, \quad U^T x U = \begin{pmatrix}
 x_{11} & x_{21} & 0 & 0 & x_{31} \\
 x_{21} & x_{22} & 0 & 0 & x_{32} \\
 0 & 0 & x_{44} & x_{54} & x_{43} \\
 0 & 0 & x_{54} & x_{55} & x_{53} \\
 x_{31} & x_{32} & x_{43} & x_{53} & x_{33}
\end{pmatrix}.
$$
In this case $N = 11$, $r = 5$, $n_1 = \ldots = n_5 = 1$, and V_{ik} ($1 \leq k < l \leq 5$) is \mathbb{R} or $\{0\}$. Since $\gamma^{U \cap Z, U}(a) = \gamma_Z(a)$ in general, we see from Theorem 2 (i) that

$$\gamma^{U}(a) = (2\pi)^3 \Gamma(a + 1) \Gamma(a + \frac{3}{2})\Gamma(a + 2).$$

Moreover, the functions $\delta^{\Gamma}_G(x)$ and $\varphi^{\Gamma}_G(x)$ are expressed respectively as

$$
\begin{vmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0
\end{vmatrix}^{-2}
\begin{vmatrix}
x_{11} & x_{21} & x_{31} & x_{33} & x_{43} & x_{53} \\
x_{21} & x_{22} & x_{32} & x_{33} & x_{43} & x_{44} \\
x_{31} & x_{32} & x_{33} & x_{53} & x_{54} & x_{55} \\
x_{33} & x_{34} & x_{35} & x_{53} & x_{54} & x_{55}
\end{vmatrix}^{-2}.
$$

For $i = 2, \ldots, 10$, clearly \mathcal{P}^{Γ}_G is a subset of $\mathcal{P}^{\Gamma}_{G'}$ and one can show that δ^{Γ}_G is equal to the restriction of $\delta^{\Gamma}_{G'}$ above to $\mathcal{P}^{\Gamma}_{G'}$.

(ii) When $\Gamma = \Gamma_2$, we describe respectively $x \in Z^{\Gamma}_G$, an orthogonal matrix U and $U^\top xU$ as

$$
\begin{bmatrix}
a & b & c & 0 & 0 \\
b & a & c & 0 & 0 \\
c & c & d & e & f \\
0 & 0 & e & g & h \\
0 & 0 & f & h & i
\end{bmatrix}
\begin{bmatrix}
1/\sqrt{2} & 1/\sqrt{2} & 0 & 0 & 0 \\
-1/\sqrt{2} & 1/\sqrt{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
\alpha - b & 0 & 0 & 0 & 0 \\
0 & a + b & 0 & 0 & \sqrt{2}c \\
0 & 0 & g & h & e \\
0 & 0 & h & i & f \\
0 & 0 & \sqrt{2}c & e & f & d
\end{bmatrix}.
$$

We have $\gamma^{\Gamma}_G(a) = (2\pi)^2 \Gamma(a + 1)^3 \Gamma(a + \frac{3}{2})\Gamma(a + 2)$, and

$$\varphi^{\Gamma}_G(x) = d(a - b)^{-1} \begin{vmatrix}
a + b & \sqrt{2}c & d \\
\sqrt{2}c & d & e \\
e & g & h \\
f & h & i
\end{vmatrix}^{-2}.$$

(iii) When $\Gamma = \Gamma_3$, we describe respectively $x \in Z^{\Gamma}_G$, an orthogonal matrix U and $U^\top xU$ as

$$
\begin{bmatrix}
a & d & e & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
e & f & c & g & g \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & g & h & i
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
a & 0 & d & 0 & e \\
0 & 0 & a & d & 0 \\
0 & b & 0 & 0 & f \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & e & f & f
\end{bmatrix}.
$$

Then $\gamma^{\Gamma}_G(a) = (2\pi)^{3/2} 2^{-4a - 5/2} \Gamma(2a + 2) \Gamma(2a + \frac{3}{2}) \Gamma(a + 1)$ and $\varphi^{\Gamma}_G(x) = \begin{bmatrix}
\alpha & d & e \\
\alpha & b & f \\
\alpha & e & c
\end{bmatrix}^{-2}$.

(iv) When $\Gamma = \Gamma_4$, we describe respectively $x \in Z^{\Gamma}_G$, an orthogonal matrix U and $U^\top xU$ as

$$
\begin{bmatrix}
a & d & e & 0 & 0 \\
d & b & f & 0 & 0 \\
e & f & c & g & g \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & g & h & i
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & -1/\sqrt{2} & 1/\sqrt{2} & 0
\end{bmatrix}
\begin{bmatrix}
a & d & 0 & 0 & e \\
0 & d & 0 & 0 & f \\
0 & 0 & h - i & 0 & 0 \\
0 & 0 & h + i & \sqrt{2}g & 0 \\
\sqrt{2} & 0 & 0 & \sqrt{2}g & c
\end{bmatrix}.$$
Then \(\gamma_G(\alpha) = \gamma_G^3(\alpha) = (2\pi)^2 \Gamma(\alpha + 1)^2 \Gamma(\alpha + 3/2) \Gamma(\alpha + 2) \), while \(\varphi_G^\Gamma(x) \) is equal to

\[
c(h - i)^{-1} \begin{vmatrix} h + i & \sqrt{2} g \\ \sqrt{2} g & c \end{vmatrix}^{-3/2} \begin{vmatrix} a & d & e \\ d & b & f \\ e & f & c \end{vmatrix}^{-2}.
\]

(v) When \(\Gamma = \Gamma_5 \), we describe respectively \(x \in \mathcal{Z}_G^\Gamma \), an orthogonal matrix \(\mathbf{U} \) and \(\mathbf{U}^\top \mathbf{x} \mathbf{U} \) as

\[
\begin{pmatrix} a & d & e & 0 \\ d & b & f & 0 \\ e & f & c & e \\ 0 & 0 & e & a \\ 0 & 0 & f & d \\ d & b & f & 0 \\ e & f & c & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} a & 0 & d & 0 \\ 0 & a & 0 & d \\ 0 & 0 & d & 0 \\ 0 & 0 & b & f \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & f \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} a & d & e \\ d & b & f \\ e & f & c \end{pmatrix}.
\]

Then \(\gamma_G^\Gamma(\alpha) = \gamma_G^R(\alpha) = (2\pi)^{3/2} \frac{4\alpha - 5/2}{\Gamma(2\alpha + 2) \Gamma(2\alpha + 3/2) \Gamma(\alpha + 1)} \) and \(\varphi_G^\Gamma(x) = \frac{|a - b - 1|}{a + b - 1} \frac{|f - g - 1|}{f + g - 1} \).

(vi) We have \(\mathcal{Z}_G^\Gamma = \mathcal{Z}_G^R \). When \(\Gamma = \Gamma_6 \) or \(\Gamma_8 \), we describe respectively \(x \in \mathcal{Z}_G^\Gamma \), an orthogonal matrix \(\mathbf{U} \) and \(\mathbf{U}^\top \mathbf{x} \mathbf{U} \) as

\[
\begin{pmatrix} a & b & c & 0 \\ b & a & c & 0 \\ c & a & d & e \\ 0 & 0 & e & f \\ 0 & 0 & e & g \\ 0 & 0 & e & f \\ 0 & 0 & g & f \end{pmatrix}, \quad \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 & 0 & 0 \\ -1/\sqrt{2} & 1/\sqrt{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & -1/\sqrt{2} & 1/\sqrt{2} & 0 \end{pmatrix}, \quad \begin{pmatrix} a - b & 0 & 0 & 0 \\ 0 & a + b & 0 & \sqrt{2} c \\ 0 & 0 & f - g & 0 \\ 0 & 0 & f + g & \sqrt{2} e \\ 0 & \sqrt{2} c & 0 & \sqrt{2} e \\ 0 & 0 & 0 & d \end{pmatrix}.
\]

Then \(\gamma_G^\Gamma(\alpha) = 2\pi \Gamma(\alpha + 1)^2 \Gamma(\alpha + 3/2)^2 \), and

\[
\varphi_G^\Gamma(x) = d(a - b)^{-1} (f - g)^{-1} \begin{vmatrix} a + b & \sqrt{2} c \\ \sqrt{2} c & d \end{vmatrix}^{-3/2} \begin{vmatrix} f + g & \sqrt{2} e \\ \sqrt{2} e & d \end{vmatrix}^{-3/2}.
\]
(vii) For \(\Gamma = \Gamma_7, \Gamma_9 \) or \(\Gamma_{10} \) the linear space \(Z_\Gamma^G \) is the same. We describe respectively \(x \in Z_\Gamma^G \), an orthogonal matrix \(U \) and \(U^T x U \) as

\[
\begin{pmatrix}
a & c & d & 0 & 0 \\c & a & d & 0 & 0 \\d & d & b & d & d \\0 & 0 & d & a & c \\0 & 0 & d & c & a
\end{pmatrix},
\begin{pmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} & 0 & 0 \\0 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 1 & 0 \\0 & 0 & 0 & 0 & 0 \\0 & 0 & 1/\sqrt{2} & 0 & 1/\sqrt{2}
\end{pmatrix},
\begin{pmatrix}
a - c & 0 & 0 & 0 & 0 \\0 & a - c & 0 & 0 & 0 \\0 & 0 & a + c & 0 & \sqrt{2}d \\0 & 0 & 0 & a + c & \sqrt{2}d \\0 & 0 & \sqrt{2}d & \sqrt{2}d & b
\end{pmatrix}.
\]

Then \(\gamma_\Gamma^G(a) = (2\pi)^{1/2}4^{-a} - 3/2 \Gamma(2\alpha + 1)\Gamma(2\alpha + 3/2)\Gamma(\alpha + 1) \) and \(\varphi_\Gamma^G(x) = (a - c)^{-1} \begin{vmatrix} a + c & \sqrt{2}d \\ \sqrt{2}d & b \end{vmatrix}^{-3/2} \).

5. Numerical example

We carry out Bayesian model selection in the spirit of Graczyk et al. [7]. For a fixed graph \(G \), we suppose that a group \(\Gamma \) is distributed uniformly over all possible subgroups of \(\text{Aut}(G) \). Given sample \(Z_1, \ldots, Z_n \) from \(N(0, \Sigma) \) with \(\Sigma^{-1} \in \mathcal{P}_\Gamma^G \), where \(K = \Sigma^{-1} \) follows the Diaconis-Ylvisaker conjugate prior (1) with hyperparameters \((\delta, D)\), then the posterior probability \(P(\Gamma|Z_1, \ldots, Z_n) \) is proportional to \(I_\Gamma^G(\delta + n, D + \sum_{i=1}^n Z_i Z_i^T) / I_\Gamma^G(\delta, D) \). In order to demonstrate our results, we work on the data set of the examination marks of 88 students in \(p = 5 \) different mathematical subjects. As was reported in [5] and [6], the data demonstrate an excellent fit to the graphical Gaussian model displayed in Fig. 1. Since the groups \(\Gamma = \Gamma_6, \Gamma_8 \) (similarly \(\Gamma_7, \Gamma_9 \) and \(\Gamma_{10} \)) impose the same symmetries on \(Z_\Gamma^G \), we consider Bayesian model selection within 7 different models: \(\Gamma_i \) for \(i = 1, 2, \ldots, 7 \). The five mathematical subjects are enumerated as in the graph presented in Fig. 1. As our method applies only to centered normal sample, as usual, we center the marks and consider a correction of the degrees of freedom \(n^* = 88 - 1 = 87 \). Then,

\[
\sum_{i=1}^n Z_i Z_i^T = \begin{pmatrix}
26601.82 & 11068.36 & 8837.41 & 9245.73 & 10214.23 \\
11068.36 & 15037.27 & 7408.68 & 8236.55 & 8614.05 \\
8837.41 & 7408.68 & 9821.08 & 9753.86 & 10602.74 \\
9245.73 & 8236.55 & 9753.86 & 19173.09 & 13531.59 \\
10214.23 & 8614.05 & 10602.74 & 13531.59 & 25904.72
\end{pmatrix}.
\]

We take usual hyperparameter \(\delta = 3 \) and \(D = d \cdot l_5 \) for \(d \in \{1, 10^2, 10^4\} \). Below we present a subgroup with the highest posterior probability \(p \).

\[
\begin{array}{c|c|c|c}
d = 1 & d = 100 & d = 10000 \\
\Gamma_7 (p = 1) & \Gamma_3 (p = 0.8) & \Gamma_1 (p = 0.75)
\end{array}
\]

Depending on the value of hyperparameter \(D \), the model with highest posterior probability is

- \(\Gamma_7 \), which corresponds to full symmetry as \(Z_\Gamma^G = Z_\Gamma^{\text{Aut}(G)} \),
- \(\Gamma_3 = \begin{pmatrix} 1 & 5 \\ 2 & 4 \end{pmatrix} \), which corresponds to invariance of the model to interchange (Mechanics, Vectors) \(\leftrightarrow \) (Statistics, Analysis),
• $\Gamma_1 = \{e\}$, which corresponds to no additional symmetry.

The hyperparameter δ has much less impact on model selection. We note that the same example was considered in [1], where the colored graphical models were introduced for the first time. The authors of [1], using a BIC criterion, point out that model Γ_3 (see [1, Fig. 8]) represents an excellent fit.

Fitted concentrations $\times 10^3$ for the examination marks assuming the model Γ_3 are presented below.\footnote{In [1, Table 6] erroneous entries are presented in the same table.}

	Mechanics	Vectors	Algebra	Analysis	Statistics
Mechanics	5.85	-2.23	-3.72	0	0
Vectors	-2.23	10.15	-5.88	0	0
Algebra	-3.72	-5.88	26.95	-5.88	-3.72
Analysis	0	0	-5.88	10.15	-2.23
Statistics	0	0	-3.72	-2.23	5.85

Funding: Research of P. Graczyk was supported by JST PRESTO. Research of H. Ishi was supported by JST PRESTO, KAKENHI 20K03657, and Osaka Central Advanced Mathematical Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849). Research of B. Kołodziejek was funded by (POB Cybersecurity and Data Science) of Warsaw University of Technology within the Excellence Initiative: Research University (IDUB) programme.

References

1. Højsgaard, S.; Lauritzen, S.L. Graphical Gaussian models with edge and vertex symmetries. *J. R. Stat. Soc. Ser. B Stat. Methodol.* 2008, 70, 1005–1027.
2. Letac, G.; Massam, H. Wishart distributions for decomposable graphs. *Ann. Statist.* 2007, 35, 1278–1323.
3. Graczyk, P.; Ishi, H.; Kołodziejek, B. Wishart laws and variance function on homogeneous cones. *Probab. Math. Statist.* 2019, 39, 337–360.
4. Mardia, K.V.; Kent, J.T.; Bibby, J.M. *Multivariate analysis; Probability and Mathematical Statistics: A Series of Monographs and Textbooks*, Academic Press [Harcourt Brace Jovananovich, Publishers], London-New York-Toronto, Ont., 1979; pp. xv+521.
5. Whittaker, J. *Graphical models in applied multivariate statistics; Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics*, John Wiley & Sons, Ltd., Chichester, 1990; pp. xiv+448.
6. Edwards, D. *Introduction to graphical modelling, second ed.; Springer Texts in Statistics*, Springer-Verlag, New York, 2000; pp. xvi+333.
7. Graczyk, P.; Ishi, H.; Kołodziejek, B.; Massam, H. Model selection in the space of Gaussian models invariant by symmetry. *Ann. Statist.* 2022, 50, 1747–1774.
8. Letac, G. Decomposable Graphs. In *Modern methods of multivariate statistics; Hermann*, 2014; Vol. 82, pp. 155–196.
9. Roverato, A. Cholesky decomposition of a hyper inverse Wishart matrix. *Biometrika* 2000, 87, 99–112.
10. Ishi, H. Homogeneous cones and their applications to statistics. In *Modern methods of multivariate statistics; Hermann*, 2014; Vol. 82, pp. 135–154.
11. Ishi, H. Matrix realization of a homogeneous cone. In *Geometric science of information; Springer*, Cham, 2015; Vol. 9389, *Lecture Notes in Comput. Sci.*, pp. 248–256.

© 2022 by the authors. Submitted to *Entropy* for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).