APPENDIX TO DISCRETE LOCALITIES II:

\textit{p-local compact groups as localities}

Andrew Chermak and Alex Gonzalez

March 2022

Our aim in this appendix is to show that the \textit{p-local} compact groups, introduced in [BLO2] and further developed in [BLO3], [JLL] and elsewhere, may be viewed as proper localities of a certain kind - to be called compact localities. As a corollary to a result of Ran Levi and Assaf Libman [LL] (and with an improvement due to Remi Molinier [M]), we will show that if \(\mathcal{F} \) is the fusion system of a compact locality \((\mathcal{L}, \Delta, S)\) then, up to an isomorphism of partial groups which restricts to an automorphism of \(S \), \(\mathcal{L} \) is the unique compact locality on \(\mathcal{F} \) having \(\Delta \) as its set of objects. This result, and the formalism of compact localities, provide a bridge between the theory being developed in this series and a more well-established theory having a much more homotopy-theoretic flavor.

We shall be closely following the arguments in the appendix to [Ch1], where an equivalence was established between the “\textit{p-local finite groups}” introduced in [BLO1], and proper, finite, centric localities.

Recall from the Appendix A in Part I (or from any of the above references) that a \textit{p-torus} \(T \) is by definition the direct product of a finite number of copies of the Prüfer group \(\mathbb{Z}/(p^{\infty}) \). A group \(G \) is \textit{virtually p-toral} if there exists a \textit{p-torus} of finite index in \(G \). A virtually \textit{p-toral} \textit{p-group} is a \textit{discrete p-toral group}.

\textbf{Definition A.1.} The discrete locality \((\mathcal{L}, \Delta, S)\) on \(\mathcal{F} \) is \textit{compact} if:

1. \(\mathcal{L} \) is proper, and
2. \(N_{\mathcal{L}}(P) \) is virtually \textit{p-toral} for each subgroup \(P \in \Delta \).

We will show via A.7, A.22, and A.23 below that there is an equivalence between the notions of compact locality and \textit{p-local} compact group. We then obtain an existence/uniqueness theorem for compact localities, as a corollary to [LL].

The set of elements \(x \) in a \textit{p-torus} \(T \) such that \(x^p = 1 \) is an elementary abelian \textit{p-group} of finite order \(p^k \) where \(k \) is equal to the number of factors in any decomposition of \(T \) as a direct product of Prüfer groups. We refer to \(k \) as the \textit{rank} of \(T \), and write \(rk(T) = k \). The identity group is the \textit{p-torus} of rank 0.
Lemma A.2. Let G be a virtually p-toral group and let L be a discrete p-toral group.

(a) There is a unique p-torus T such that T has finite index in G; and then T contains every p-toral subgroup of G.
(b) All subgroups and homomorphic images of G are virtually p-toral, and all subgroups and homomorphic images of P are discrete p-toral.
(c) If X and Y are subgroups of P with $X < Y$ (X is a proper subgroup of Y) then $X < N_{Y}(X)$.

Proof. Let X be a p-torus contained in G. Then $T \cap X$ has finite index in X, and then $T \cap X = X$ since X is p-divisible. This proves (a). Now let H be a subgroup of G. As $T \leq G$ by (a), there is an isomorphism $HT/T \cong H/(H \cap T)$, and thus H is discrete p-toral. Let $N \leq G$. Then TN/N has finite index in G/N, and $TN/N \cong T/(N \cap T)$ where $T/(N \cap T)$ by p-divisibility. This proves (b). Point (c) is given by Lemma A.3(a) in the Appendix to Part I. □

We refer to the unique p-torus of finite index in the virtually p-toral group G as the maximal torus of G. If P is a discrete p-toral group with maximal torus T then (following [BLO2]) the order of P is defined to be the pair

$$|P| = (rk(P), |P/T|).$$

If Q is a discrete p-toral group with maximal torus U then we write

$$|P| < |Q|$$

if $(rk(P), |P/T|) < (rk(Q), |Q/U|)$ lexicographically (i.e. $rk(P) < rk(Q)$, or $rk(P) = rk(Q)$ and $|P/T| < |Q/T|$).

Corollary A.3. Let (\mathcal{L}, Δ, S) be a compact locality on \mathcal{F}, and let $(\mathcal{L}', \Delta', S)$ be an expansion or a restriction of \mathcal{L} to a proper locality. Then \mathcal{L}' is a compact locality on \mathcal{F}.

Proof. By 7.2(a) \mathcal{L}' is a proper locality on \mathcal{F}. Thus we need only verify that the condition (2) in the preceding definition holds with $(\mathcal{L}', \Delta', S)$ in the place of (\mathcal{L}, Δ, S). Here (2) is obvious if $\Delta' \subseteq \Delta$. By Zorn’s Lemma it suffices to consider the case where $(\mathcal{L}', \Delta', S)$ is an elementary expansion of (\mathcal{L}, Δ, S). That is, with $\mathcal{F} = S_{\mathcal{L}}(\mathcal{L})$, we may assume that $\Delta' = \Delta \cup R^{\mathcal{F}}$ for some $R \leq S$, and we may then take R to be fully normalized with respect to the stratification on \mathcal{F} induced from \mathcal{L}. Then $N_{\mathcal{L}'}(R)$ is a subgroup of $N_{\mathcal{L}}(Q)$ for some $Q \in \Delta$ by 7.1, and then A.2(b) shows that $N_{\mathcal{L}'}(R)$ is virtually p-toral, as required. □

Lemma A.4. Let P and Q be discrete p-toral groups.

(a) If $P \cong Q$ then $|P| = |Q|$.
(b) If $P \leq Q$ then $|P| \leq |Q|$, with equality if and only if $P = Q$.
(c) If $P \leq Q$ and Q is a p-torus, then either $P = Q$ or $rk(P) < rk(Q)$.
(d) Assume $P \leq Q$, set $P_{0} = P$, and recursively define P_{k} for $k > 0$ by $P_{k} = N_{Q}(P_{k-1})$. Set $B = \bigcup\{P_{k}\}_{k \geq 0}$. Then either $B = Q$ or $rk(B) < rk(P)$.

2
Proof. Points (a) and (b) are straightforward. Now let $P \leq Q$ and assume that Q is a p-torus. For any abelian p-group A and any $m > 0$ let A_m be the subgroup of A generated by elements of order dividing p^m. Assuming that P is a proper subgroup of Q, we find $Q_m \not\leq P$ for m sufficiently large, and then the rank of P_m is less than the rank of Q_m. This yields $rk(P) < rk(Q)$, and thus (c) holds.

In proving (d) let V be the maximal torus of B, and let V_0 the maximal torus of P_0. Then $V_0 \leq V$. Suppose that $rk(B) = rk(P)$. Then $V_0 = V$, so $|B : P|$ is finite, and so there exists k with $P_k = P_{k+1} = B$. Then $B = P$ by A.2(c), and thus (d) holds. □

Before we can begin working towards a correspondence between compact localities and p-local compact groups (and before we can state the definition of p-local compact group), we have first to sort out some potentially conflicting terminology concerning fusion systems. The difficulty here stems from our having already established some terminology in sections 2 and 8 of Part II, relating to stratified fusion systems. This terminology will be shown to agree with that of the cited references on p-local compact groups once the context has been narrowed down to the fusion systems associated with linking systems, but until that point has been reached there is a very real problem of confusion. For example, if $(\mathcal{F}, \Omega, \ast)$ is a stratified fusion system on a p-group S then we have the notion (II.2.7) of a subgroup $P \leq S$ being fully normalized or fully centralized in \mathcal{F}, but there is a quite different definition of these terms in [BLO2]; and there is a similar difficulty concerning saturation of fusion systems. Our solution is to slightly alter the terminology from [BLO2], in the manner of the following definition.

Definition A.5. Let \mathcal{F} be a fusion system over the discrete p-toral group S.

- A subgroup $P \leq S$ is fully order-centralized in \mathcal{F} if $|C_S(P)| \geq |C_S(Q)|$ for all $Q \in P^\mathcal{F}$.
- A subgroup $P \leq S$ is fully order-normalized in \mathcal{F} if $|N_S(P)| \geq |N_S(Q)|$ for all $Q \in P^\mathcal{F}$.
- \mathcal{F} is order-saturated if the following three conditions hold.

(I) For each $P \leq S$ the group $Out_\mathcal{F}(P)$ is finite. Moreover, if P is fully order-normalized in \mathcal{F}, then P is fully order-centralized in \mathcal{F}, and

$$Out_S(P) \in Syl_p(Out_\mathcal{F}(P)).$$

(II) If $P \leq S$ and $\phi \in Hom_\mathcal{F}(P, S)$ are such that $P\phi$ is fully order-centralized in \mathcal{F}, and if we set

$$N_\phi = \{g \in N_S(P) \mid \phi^{-1} \circ c_g \circ \phi \in Aut_S(P\phi)\},$$

then there exists $\overline{\phi} \in Hom_\mathcal{F}(N_\phi, S)$ such that $\phi = \overline{\phi} \mid p$.

(III) If $P_1 < P_2 < P_3 < \cdots$ is an increasing sequence of subgroups of S, with $P_\infty = \bigcup \{P_n\}_{n=1}^\infty$, and if $\phi : P_\infty \to S$ is a homomorphism such that $\phi \mid p_n \in Hom_\mathcal{F}(P_n, S)$ for all n, then $\phi \in Hom_\mathcal{F}(P_\infty, S)$.

By [BLO2, Lemma 1.6], if \mathcal{F} is a fusion system over a discrete p-toral group S, then for any subgroup $P \leq S$ there are upper bounds for $|N_S(Q)|$ and for $|C_S(Q)|$ taken over $Q \in P^\mathcal{F}$. Thus P has at least one fully order-normalized \mathcal{F}-conjugate and at least one fully order-centralized \mathcal{F}-conjugate.
Lemma A.6. Let (\mathcal{L}, Δ, S) be a compact locality on the order-saturated fusion system \mathcal{F}, and let $P \leq S$ be fully normalized in \mathcal{F} with respect to the stratification induced from \mathcal{L}.

(a) P is fully order-normalized in \mathcal{F}.
(b) $\text{Inn}(P) = O_p(\text{Aut}_\mathcal{F}(P))$ if and only if $P = O_p(N_\mathcal{F}(P))$.

Proof. As remarked above, there exists $Q \in P^\mathcal{F}$ such that Q is fully order-normalized in \mathcal{F}. Set $U = N_S(P)$ and $V = N_S(Q)$. As \mathcal{F} is order-saturated there then exists an \mathcal{F}-homomorphism $\phi : U \to V$ with $P\phi = Q$.

Set $\Omega = \Omega_S(\mathcal{L})$ and let (Ω, \ast) be the stratification on \mathcal{F} induced from \mathcal{L}. For $X \leq S$ write $\text{dim}(X)$ for $\text{dim}_\Omega(X)$. As P is fully normalized we have $\text{dim}(U) \geq \text{dim}(V)$, and then equality holds since $U\phi \leq V$. Let ψ be an extension of ϕ to an \mathcal{F}-homomorphism $U^* \to V^*$. Then $U^*\psi = V^*$ since $\text{dim}(U^*) = \text{dim}(U)$ and $\text{dim}(V^*) = \text{dim}(V)$. Then also $U\phi = V$ since $U = N_{U^*}(U)$ and $V = N_{V^*}(V)$. Thus (a) holds.

As \mathcal{F} is order-saturated there exists a subgroup \overline{P} of $N_S(P)$ such that $P \leq \overline{P}$ and $\text{Aut}_\mathcal{F}(P) = O_p(\text{Aut}_\mathcal{F}(P))$. Condition (II) in definition A.6 then yields $\overline{P} \trianglelefteq N_\mathcal{F}(P)$.

So, if $P = O_p(N_\mathcal{F}(P))$ then $P = \overline{P}$, and thus $\text{Inn}(P) = O_p(\text{Aut}_\mathcal{F}(P))$. Now set $R = O_p(N_\mathcal{F}(P))$ and notice that $\text{Aut}_R(P) \leq \text{Aut}_\mathcal{F}(P)$. Then $P = R$ if $P = \overline{P}$, and this completes the proof of (b). □

From now on, when speaking of the fusion system $\mathcal{F} = \mathcal{F}_S(\mathcal{L})$ of a compact locality, if we say that a subgroup $P \leq S$ is fully normalized in \mathcal{F} then we mean that P is fully normalized with respect to the stratification induced from \mathcal{L}; and similarly for “fully centralized”.

Lemma A.7. Let \mathcal{F} be a fusion system on the discrete p-toral group S. Assume:

1. \mathcal{F} is saturated (as defined in 8.2),
2. $\text{Out}_\mathcal{F}(P)$ is finite for all $P \leq S$.

Then \mathcal{F} is order-saturated. Further:

(a) A subgroup $P \leq S$ is fully order-normalized in \mathcal{F} if and only if P is fully normalized in \mathcal{F}.

(b) A subgroup $P \leq S$ is fully order-centralized in \mathcal{F} if and only if P is fully centralized in \mathcal{F}.

(c) Let T be the maximal torus of S. Let R be any subgroup of S such that R is a p-torus, let R' be an \mathcal{F}-conjugate of R, and let $\alpha : R \to R'$ be an \mathcal{F}-isomorphism. Then R and R' are subgroups of T, and α extends to an \mathcal{F}-automorphism of T.

Moreover, the conditions (1) and (2) obtain if \mathcal{F} is the fusion system of a compact locality.

Proof. Let $P \leq S$ be fully order-normalized in \mathcal{F}, and let $Q \in P^\mathcal{F}$ be fully normalized. Then there exists an \mathcal{F}-homomorphism $\phi : N_S(P) \to N_S(Q)$ with $P\phi = Q$. As $|N_S(P)| \geq |N_S(Q)|$ it follows from A.4 that $N_S(P)\phi = N_S(Q)$. Thus P is fully normalized in \mathcal{F}, and Q is fully order-normalized in \mathcal{F}. This yields (a), and (b) follows in similar fashion.

We next show that \mathcal{F} satisfies the condition (1) in A.5. In view of the hypothesis (2) it need only consider the case where P is fully order-normalized in \mathcal{F}. Then P is fully
Let $P(=F)$ with L for F (by (b)). By definition 8.2, P is fully automized, so $Out_{S}(P) \in Syl_p(Out_{F}(P))$ as required. The condition (II) in A.5 is satisfied since (by 8.2) F is receptive.

Before verifying condition (III) in A.5, we shall need to prove (c). Let R be any p-torus contained in S, let T be the maximal torus of S, and let $\alpha : R \to R'$ be an \mathcal{F}-isomorphism. Then R and R' are subgroups of T by A.2(a). Let $V \in R^F$ be fully centralized in \mathcal{F} and since $T \leq C_{S}(R)$ there exists an \mathcal{F}-automorphism $\beta : T \to T$ with $R'\beta = V$. Then $\alpha \circ \beta$ is an \mathcal{F}-isomorphism $R \to V$, and $\alpha \circ \beta$ extends to an \mathcal{F}-automorphism γ of T since V is receptive. Then $\gamma \circ \beta^{-1}$ is an extension of α to T, and so (c) holds.

We now turn to (III) in A.5. Let $\sigma = (P_i)_{i=1}^{\infty}$ be an increasing sequence of subgroups of S and let $\tau = (\phi_i)_{i=1}^{\infty}$ be a sequence of \mathcal{F}-homomorphisms, $\phi_i : P_i \to S$, such that $\phi_i = \phi_{i+1} |_{P_i}$ for all i. Let P be the union of the groups P_i and let $\phi : P \to S$ be the union of the mappings ϕ_i. For each infinite subset I of natural numbers, ϕ is then the union of the mappings ϕ_i for $i \in I$; so in order to prove that ϕ is an \mathcal{F}-homomorphism we are free to replace σ and τ by the sequences corresponding to I, and then to assume that $I = \mathbb{N}$. As \mathcal{F} is stratified we have $(P_i)^* = P^*$ for i sufficiently large, and so we may assume that $(P_i)^* = P^*$ for all i. Then each ϕ_i extends to an \mathcal{F}-homomorphism $P^* \to S$, which then restricts to an \mathcal{F}-homomorphism $\psi_i : P \to S$.

Let U be the maximal torus of P. Then $P = U \Gamma$ for n sufficiently large, and so we may assume $P = UP_1$. As $Aut_{\mathcal{F}}(T) = Out_{\mathcal{F}}(T)$ is finite, (c) implies that there are only finitely many \mathcal{F}-conjugates of U, and indeed that there exists an \mathcal{F}-homomorphism $\xi : U \to S$ and an infinite set I of natural numbers such that $\psi_i |_{U} = \xi$ for all $i \in I$. As $P = UP_1$ the set $\{\psi_i\}_{i \in I}$ then has a single element ψ, and ψ is then the union of the homomorphisms ϕ_i. Thus $\psi = \phi$, so ϕ is an \mathcal{F}-homomorphism, and (III) holds.

Finally, assume that we are given a compact locality (\mathcal{L}, Δ, S). Then \mathcal{L} is proper, so $\mathcal{F}_{S}(\mathcal{L})$ is saturated by 8.3(c). Thus, it only remains to show that the condition (2) holds for $\mathcal{F} = \mathcal{F}_{S}(\mathcal{L})$. By Theorem 7.2 there exists a proper expansion $(\mathcal{L}^{+}, \Delta^{+}, S)$ on \mathcal{F}, with $\mathcal{F}^c \subseteq \Delta^{+}$; and \mathcal{L}^{+} is then compact by A.3. Thus, we may assume $\mathcal{F}^c \subseteq \Delta$.

As (\mathcal{L}, Δ, S) is proper we may appeal to Theorem 7.2 to obtain a proper expansion $(\mathcal{L}^{+}, \Delta^{+}, S)$ on \mathcal{F}, with $\mathcal{F}^c \subseteq \Delta^{+}$. By construction, subgroups of \mathcal{L}^{+} are conjugates of subgroups of \mathcal{L}, and thus (2) holds and \mathcal{L}^{+} is compact. We may therefore replace \mathcal{L} with \mathcal{L}^{+} in the remainder of the proof. That is, we may assume that we have $\mathcal{F}^c \subseteq \Delta$. Let $P \leq S$ be fully normalized in \mathcal{F}. As \mathcal{F} is inductive, P is then fully centralized in \mathcal{F}. Set $X = C_{S}(P)P$. Then X is \mathcal{F}-centric, and so $X \in \Delta$. Set $H = N_{\mathcal{L}}(X)$. Every \mathcal{F}-automorphism of P extends to an \mathcal{F}-automorphism of X by receptivity, so

$$Aut_{\mathcal{F}}(P) = Aut_{N_{\mathcal{L}}(P)}(P).$$

Thus $Aut_{\mathcal{F}}(P)$ is a homomorphic image of the virtually p-toral group $N_{\mathcal{L}}(P)$. In particular every element of $Aut_{\mathcal{F}}(P)$ is of finite order. By [BLO2, Lemma 1.5(b)] every torsion subgroup of $Out(P)$ is finite, so we conclude that $Out_{\mathcal{F}}(P)$ is finite. That is, (2) holds, and the proof is complete. \Box

This completes the preliminaries concerning fusion systems. We next show how a compact locality (\mathcal{L}, Δ, S) on \mathcal{F} gives rise to a “transporter system” of a certain kind,
and then that this transporter system is a p-local compact group provided that Δ is the set F^c of F-centric subgroups of S. The definition of transporter system will be taken from [BLO3].

Let (\mathcal{L}, Δ, S) be any locality. For each $(P, Q) \in \Delta \times \Delta$ let $N_\mathcal{L}(P, Q)$ be the set of all $g \in \mathcal{L}$ such that $P \leq S_g$ and $P^g \leq Q$. There is then a category $\mathcal{T} = \mathcal{T}_\Delta(\mathcal{L})$ whose set of objects is Δ, and whose morphisms $g : P \to Q$ are triples (g, P, Q) such that $g \in N_\mathcal{L}(P, Q)$, with composition defined by

$$(g, P, Q) \circ (h, Q, R) = (gh, P, R).$$

In practice, the role of the objects P and Q will always be clear from the context, and we may therefore identify $\text{Mor}_\mathcal{T}(P, Q)$ with $N_\mathcal{L}(P, Q)$.

Let F be the fusion system $F_S(\mathcal{L})$, i.e. the fusion system on S generated by the conjugation maps $c_g : P \to Q$ with $P, Q \in \Delta$ and with $g \in N_\mathcal{L}(P, Q)$. There is then a functor

$$\rho : \mathcal{T} \to F$$

such that ρ is the inclusion map $\Delta \to \text{Sub}(S)$ on objects, and such that $\rho_{P, Q} : N_\mathcal{L}(P, Q) \to \text{Hom}_F(P, Q)$ is the map which sends g to the conjugation homomorphism $c_g : P \to Q$. We write ρ_p for the homomorphism $\rho_{P, P} : \text{Aut}_\mathcal{T}(P) \to \text{Aut}_F(P)$.

Since (S, Δ, S) is a locality we have the category $\mathcal{T}_\Delta(S)$; and there is a functor

$$\epsilon : \mathcal{T}_\Delta(S) \to \mathcal{T}$$

which is the identity map $\Delta \to \Delta$ on objects, and where $\epsilon_{P, Q}$ is the inclusion map $N_S(P, Q) \to N_\mathcal{L}(P, Q)$. We write ϵ_P for the inclusion $N_S(P) \to N_\mathcal{L}(P)$. Also, for $P, Q \in \Delta$ with $P \leq Q$, write $\iota_{P, Q}$ for $(1)_{\epsilon_P} \epsilon_{P, Q}$.

The definition from [BLO3] of a transporter system over a discrete p-toral group is embedded in the statement of the following result. We remind the reader that we always understand composition of morphisms in a category to be taken from left to right.

Proposition A.8. Let (\mathcal{L}, Δ, S) be a compact locality on \mathcal{F} and let

$$\mathcal{T}_\Delta(S) \xrightarrow{\epsilon} \mathcal{T} \xrightarrow{\rho} \mathcal{F}$$

be the pair of functors defined above. Then the following hold.

(A1) ϵ is the identity on objects and ρ is the inclusion on objects.

(A2) For each $P, Q \in \Delta$ the group $\ker(\rho_P)$ acts freely on $\text{Mor}_\mathcal{T}(P, Q)$ from the left (by composition), and $\rho_{P, Q}$ is the orbit map for this action. Also, $\ker(\rho_Q)$ acts freely on $\text{Mor}_\mathcal{T}(P, Q)$ from the right.

(B) For each $P, Q \in \Delta$ the map $\epsilon_{P, Q}$ is injective, and $\epsilon_{P, Q} \circ \rho_{P, Q}$ sends $g \in N_S(P, Q)$ to $c_g \in \text{Hom}_F(P, Q)$.

6
(C) For all \(\phi \in \text{Mor}_\mathcal{T}(P, Q) \) and all \(x \in P \), the following square commutes in \(\mathcal{T} \).

\[
\begin{array}{ccc}
P & \xrightarrow{\phi} & Q \\
(x) \in_P & \downarrow & \downarrow (x)(\rho(\phi) \circ \epsilon_Q) \\
P & \xrightarrow{\phi} & Q
\end{array}
\]

(I) Each \(\mathcal{F} \)-conjugacy class of subgroups in \(\Delta \) contains a subgroup \(P \) such that the image of \(N_S(P) \) under \(\epsilon_P \) is a Sylow \(p \)-subgroup of \(\text{Aut}_\mathcal{T}(P) \) \(\text{(i.e. a subgroup of finite index relatively prime to } p \text{)} \).

(II) Let \(\phi : P \to Q \) be a \(\mathcal{T} \)-isomorphism, and regard conjugation by \(\phi \) as a mapping \(c_\phi : \text{Aut}_\mathcal{T}(P) \to \text{Aut}_\mathcal{T}(Q) \). Let \(P \leq \overline{P} \leq S \) and \(Q \leq \overline{Q} \leq S \), be given, and suppose that \(c_\phi \) maps \((P) \epsilon_P \) into \((Q) \epsilon_Q \). Then there exists \(\phi \in \text{Mor}_\mathcal{T}(\overline{P}, \overline{Q}) \) such that \(\iota_{P, \overline{P}} \circ \overline{\phi} = \phi \circ \iota_{Q, \overline{Q}} \).

(III) Let \(P_1 \leq P_2 \leq P_3 \leq \cdots \) be an increasing sequence of members of \(\Delta \), and for each \(i \) let \(\psi_i : P_i \to S \) be a \(\mathcal{T} \)-homomorphism. Assume that \(\psi_i = \iota_{P_i, P_{i+1}} \circ \psi_{i+1} \) for all \(i \), and set \(P = \bigcup \{ P_i \}_{i=1}^{\infty} \). Then there exists \(\psi \in \text{Mor}_\mathcal{T}(P, S) \) such that \(\psi_i = \iota_{P_i, S} \circ \psi \) for all \(i \).

Proof. The condition (A1) is immediate from the definition of the functors \(\epsilon \) and \(\rho \). Under the identification of \(\text{Aut}_\mathcal{T}(P) \) with \(N_\mathcal{L}(P) \) we have composition in \(\text{Aut}_\mathcal{T}(P) \) given by group multiplication in \(N_\mathcal{L}(P), \text{Ker}(\rho_P) = C_\mathcal{L}(P) \), and similarly \(\text{Ker}(\rho_Q) = C_\mathcal{L}(Q) \). The actions defined in (A2) are then obviously free, and since \(\text{Aut}_\mathcal{F}(P) \cong N_\mathcal{L}(P) / C_\mathcal{L}(P) \) we obtain the conclusion of (A2).

The condition (B) is again immediate from the definition of \(\epsilon \). Now let \(g \in N_\mathcal{L}(P, Q) \) and let \(x \in P \). Regard \(g \) as a \(\mathcal{T} \)-homomorphism \(\phi : P \to Q \). Then \((x) \epsilon_P \circ \phi \) is simply the product \(xg \), while the composition \(\phi \circ ((x)(\rho(\phi) \circ \epsilon_Q)) \) is the product \(gx^g \). As \(gx = gx^g \) we have the required commutativity of the diagram in (C).

Each \(\mathcal{F} \)-conjugacy class of subgroups in \(\Delta \) contains a subgroup \(P \) such that \(N_S(P) \) is a Sylow \(p \)-subgroup of \(N_\mathcal{L}(P) \), by I.3.10. Thus (I) holds.

Again let \(g \in N_\mathcal{L}(P, Q) \) be a \(\mathcal{T} \)-isomorphism. Then \(P^g = Q \), and \(c_g \) is an isomorphism \(N_\mathcal{L}(P) \to N_\mathcal{L}(Q) \). If \(P \leq \overline{P} \leq S \) and \(Q \leq \overline{Q} \leq S \) with \(\overline{P} \leq \overline{Q} \leq S \), then \(g \in N_\mathcal{L}(\overline{P}, \overline{Q}) \), and in this way \(g \) is a \(\mathcal{T} \)-homomorphism \(\overline{\phi} : \overline{P} \to \overline{Q} \). That is, (II) holds.

Let \(\{ P_i \}_{i=1}^{\infty}, \{ \psi_i \}_{i=1}^{\infty} \), and \(P \) be given as in (III). Then \(\psi_i \), written in full detail, is a triple \((g_i, P_i, S) \) where \(P_i \leq S_{g_i} \). The “inclusion morphism” \(\iota_{P_i, P_{i+1}} \) is the triple \((1, P_i, P_{i+1}) \), and thus

\[
\iota_{P_i, P_{i+1}} \circ \psi_{i+1} = (g_{i+1}, P_i, S).
\]

The hypothesis of (III) therefore translates into the statement that the sequence \((g_i) \) is a constant sequence \((g) \) where \(P \leq S_g \). Taking \(\psi = (g, P, S) \) then yields the conclusion of (III). □
Definition A.9. Let \mathcal{F} be a fusion system over the discrete p-toral group S and let Δ be any \mathcal{F}-closed set of subgroups of S. A transporter system associated to \mathcal{F} consists of a category T with $\text{Ob}(T) = \Delta$, together with a pair of functors

$$\mathcal{T}_\Delta(S) \xleftarrow{\epsilon} T \xrightarrow{\rho} \mathcal{F},$$

which satisfy the conditions (A1), (A2), (B), (C), (I), (II), and (III) from the preceding proposition (where $\rho_P : \text{Aut}_T(P) \to \text{Aut}_\mathcal{F}(P)$ is an abbreviation for $\rho_{P,P}$, and where $\iota_{P,Q}$ is an abbreviation for $(1)\epsilon_{P,Q}$ if $P,Q \in \Delta$ with $P \leq Q$). Write ι_P for $\iota_{P,P}$.

The definitions of linking system and of p-local compact group may now be given as follows, by [BLO3, Corollary A.5].

Definition A.10. The transporter system

$$\mathcal{T}_\Delta(S) \xleftarrow{\epsilon} T \xrightarrow{\rho} \mathcal{F}$$

is a linking system associated with \mathcal{F} if the following conditions hold.

1. \mathcal{F} is order-saturated.
2. We have $P \in \Delta$ for each \mathcal{F}-centric subgroup $P \leq S$ such that $O_p(\text{Out}_\mathcal{F}(P)) = 1$.
3. For each P in Δ the kernel of the homomorphism $\rho_P : \text{Aut}_T(P) \to \text{Aut}_\mathcal{F}(P)$ is discrete p-toral.

In the special case that Δ is the set \mathcal{F}^c of all \mathcal{F}-centric subgroups of S we say that (ϵ, ρ) is a p-local compact group.

Proposition A.11. Let (\mathcal{L}, Δ, S) be a compact locality on \mathcal{F}, with $\Delta = \mathcal{F}^c$. Then the transporter system (ϵ, ρ) given by proposition A.8 is a p-local compact group.

Proof. We need only verify the conditions (1) and (3) in the preceding definition, since the hypothesis that $\Delta = \mathcal{F}^c$ yields the remaining requirements. Condition (1) is given by A.7. Now let $P \in \Delta$. There is then an isomorphism $\alpha : N_\mathcal{L}(P) \to \text{Aut}_T(P)$ given by $g \mapsto (g, P, P)$, and the kernel of ρ_P is then the image under α of $C_\mathcal{L}(P)$. As \mathcal{L} is proper and $P \in \mathcal{F}^c$, 6.9 yields $C_\mathcal{L}(P) = Z(P)$, and so (3) holds. \qed

Our goal now is to proceed in the opposite direction from that of the preceding result. Thus, starting with a p-local compact group, we aim now to construct a compact locality (\mathcal{L}, Δ, S).

In what follows we fix the p-local finite group $(\mathcal{T}_\Delta(S) \xleftarrow{\epsilon} T \xrightarrow{\rho} \mathcal{F})$, with the abbreviations ρ_P and $\iota_{P,Q}$ as earlier. Write ι_P for the identity morphism $\iota_{P,P}$ in $\text{Aut}_T(P)$. Condition A.9(B) implies that the image of $\iota_{P,P'}$ under ρ is the inclusion map $P \to P'$, so $\iota_{P,P'}$ is referred to as an inclusion morphism of T. This leads to the following definition.

Definition A.12. Let $P, Q, P', Q' \in \Delta$ with $P \leq P'$ and $Q \leq Q'$, and further let $\phi \in \text{Mor}_T(P, Q)$ and $\phi' \in \text{Mor}_T(P', Q')$. Then ϕ is an extension of ϕ', and ϕ' is a restriction of ϕ if

$$\iota_{P,P'} \circ \phi = \phi \circ \iota_{Q,Q'}. $$

The following result collects the basic properties concerning the transporter system (ϵ, ρ).
Lemma A.13.

(a) Let $P, Q, R \in \Delta$, and let

\[P \xrightarrow{\phi} Q \quad \text{and} \quad Q \xrightarrow{\psi} R \]

be \mathcal{F}-homomorphisms. Further, let $\psi \in \text{Mor}_\mathcal{T}(Q, R)$ with $\rho(\psi) = \overline{\psi}$, and let $\lambda \in \text{Mor}_\mathcal{T}(P, R)$ with $\rho(\lambda) = \overline{\phi} \circ \overline{\psi}$. Then there exists a unique $\phi \in \text{Mor}_\mathcal{T}(P, R)$ such that $\rho(\phi) = \overline{\phi}$ and such that $\lambda = \phi \circ \psi$.

(b) Let $\psi : P \to Q$ be a \mathcal{T}-morphism and let $P_0, Q_0 \in \Delta$ with $P_0 \leq P$ and with $Q_0 \leq Q$. Suppose that $\rho(\psi)$ maps P_0 into Q_0. There is then a unique \mathcal{T}-morphism $\psi_0 : P_0 \to Q_0$ such that ψ is an extension of ψ_0.

(c) A \mathcal{T}-homomorphism ϕ is a \mathcal{T}-isomorphism if and only if $\rho(\phi)$ is an \mathcal{F}-isomorphism.

(d) All morphisms of \mathcal{T} are both monomorphisms and epimorphisms in the categorical sense. That is, we have left and right cancellation for morphisms in \mathcal{T}.

(e) Let $\phi_0 : P_0 \to Q_0$ be a \mathcal{T}-morphism and let $P_0 \leq P \leq S$ and $Q_0 \leq Q \leq S$. Then there exists at most one extension of ϕ_0 to a \mathcal{T}-homomorphism $P \to Q$.

(f) Let $P, \overline{P}, Q, \overline{Q}$ be objects of \mathcal{T}, with $P \leq \overline{P}$ and with $Q \leq \overline{Q}$. Suppose that we are given a \mathcal{T}-isomorphism $\phi : P \to Q$ and an extension of ϕ to a \mathcal{T}-homomorphism $\overline{\phi} : \overline{P} \to \overline{Q}$. Then for each $x \in \overline{P}$ there is a commutative square:

\[
\begin{array}{ccc}
P & \xrightarrow{\phi} & Q \\
\downarrow x_{\delta_{P,P}} & & \downarrow y_{\delta_{Q,Q}} \\
\overline{P} & \xrightarrow{\overline{\phi}} & \overline{Q}
\end{array}
\]

where y is the image of x under $\rho(\overline{\phi})$.

(g) Every \mathcal{T}-morphism $\psi : P \to Q$ is the composite of a \mathcal{T}-isomorphism $\phi : P \to Q_0$ followed by an inclusion morphism $\iota_{Q_0, Q}$, where Q_0 is the image of P under $\rho(\psi)$.

Proof. Points (a) through (d) constitute [BLO3, Proposition A.2], and (e) follows from the left cancellation in (d). For (f) one may appeal to the proof of [OV, Lemma 3.3(d)], as that proof does not depend on the finiteness of S. Finally, let $\phi : P \to Q$ be a \mathcal{T}-homomorphism and let Q_0 be the image of P under $\rho(\phi)$. Then there exists a restriction of ϕ to a \mathcal{T}-homomorphism $\phi_0 : P \to Q_0$ by (b), and ϕ_0 is then a \mathcal{T}-isomorphism by (c). This yields (g). □

(A.14) By [BLO2, Section 3] it is a feature of an order-saturated fusion system \mathcal{F} over a discrete p-toral group S that there is a mapping $P \mapsto P^\bullet$ from $\text{Sub}(S)$ into $\text{Sub}(S)$ having the following properties.

1. $\{P^\bullet \mid P \leq S\}$ is \mathcal{F}-invariant, and is the union of a finite number of S-conjugacy classes of subgroups of S.
2. For subgroups $P \leq Q \leq S$ we have $P^\bullet \leq Q^\bullet$ and $(P^\bullet)^\bullet = P^\bullet$.
3. For all $P, Q \leq S$ we have $N_S(P, Q) \subseteq N_S(P^\bullet, Q^\bullet)$.
4. For all $P, Q \leq S$, each \mathcal{F}-homomorphism $\alpha : P \to Q$ extends to an \mathcal{F}-homomorphism $\alpha^\bullet : P^\bullet \to Q^\bullet$.

9
In fact, we will not need (4) here. Rather, what we require is the following result concerning p-local finite groups.

Lemma A.15. Let \mathcal{T}^\bullet be the full subcategory of \mathcal{T} whose set of objects is $\{P^\bullet \mid P \in \Delta\}$. Then there is a functor

$$(-)^\bullet : \mathcal{T} \to \mathcal{T}^\bullet,$$

having the following properties.

(a) $(-)^\bullet$ is the mapping $P \mapsto P^\bullet$ on objects $P \in \Delta$.

(b) $(-)^\bullet$ restricts to the identity functor on \mathcal{T}^\bullet.

(c) For all $P, Q \in \Delta$ and all $\phi \in \text{Mor}_\mathcal{T}(P, Q)$, the image ϕ^\bullet of ϕ under $(-)^\bullet$ is an extension of ϕ.

(d) If $\alpha : X \to Y$ and $\phi : P \to Q$ are \mathcal{T}-morphisms such that ϕ is an extension of α, then ϕ^\bullet is an extension of α^\bullet.

Proof. Points (a) through (c) are given by [JLL, Proposition 1.12]. By the same reference we have also the result that for all $X, P \in \Delta$ and all $g \in N_S(X, P)$ we have (in accord with A.14(3)) $\epsilon_{X,P}^\bullet = (g)\epsilon_{X^\bullet,P^\bullet}$. In particular, by taking $X \leq P$ and $g = 1$ we obtain $\iota_{X,P}^\bullet = \iota_{X^\bullet,P^\bullet}$. If α and ϕ are given as in (d), so that $\iota_{X,P} \circ \phi = \alpha \circ \iota_{Y,Q}$, the functoriality of $(-)^\bullet$ now yields $\iota_{X^\bullet,P^\bullet} \circ \phi^\bullet = \alpha^\bullet \circ \iota_{Y^\bullet,Q^\bullet}$. Thus (d) holds. □

Lemma A.16. Let $\phi_0 : P_0 \to Q_0$, $\phi : P \to Q$, and $\phi' : P' \to Q'$ be \mathcal{T}-isomorphisms, and suppose that both ϕ and ϕ' are extensions of ϕ_0.

(a) If $P = P'$ or if $Q = Q'$, then $\phi = \phi'$.

(b) There is a unique extension of ϕ_0 to an isomorphism $\psi : P \cap P' \to Q \cap Q'$, and both ϕ and ϕ' are extensions of ψ.

Proof. Assume that (a) is false. We may take $P = P'$, since the case where $Q = Q'$ will then follow by considering the inverses of the given \mathcal{T}-isomorphisms. Note that if $\phi^\bullet = (\phi')^\bullet$ then $\phi = \phi'$ by restriction. Since ϕ^\bullet and $(\phi')^\bullet$ are extensions of $(\phi_0)^\bullet$ by A.15(b), it therefore suffices to consider the case where $\phi_0, \phi,$ and ψ are \mathcal{T}^\bullet-isomorphisms. The finiteness condition A.14(1) then yields the existence of a counter-example (ϕ_0, ϕ, ϕ') to (a) in which $|P_0|$ is maximal.

Let $x \in N_P(P_0)$, let y be the image of x under $\rho(\phi)$, and let y' be the image of x under $\rho(\phi')$. We appeal to A.14(f) with $(P_0, Q_0, N_P(P_0), N_Q(Q_0))$ in the role of (P, Q, \bar{P}, \bar{Q}), and obtain

$$\phi_0^{-1} \circ (x) \epsilon_{P_0,P_0} \circ \phi_0 = (y) \epsilon_{Q_0,Q_0} = (y') \epsilon_{Q_0,Q_0}.$$

As ϵ_{Q_0,Q_0} is injective (by A.9(B)) we get $y = y'$, and thus $\rho(\phi)$ and $\rho(\phi')$ agree on $P_1 := N_P(P_0)$. Let Q_1 be the image of P_1 under $\rho(\phi)$. By A.13(b) there is a restriction $\phi_1 : P_1 \to Q_1$ of ϕ and a restriction $\phi'_1 : P_1 \to Q_1$ of ϕ', and then $\phi_1 = \phi'_1$ by A.13(e). Now (ϕ_1, ϕ, ϕ') is a counter-example to (a) with $|P_1| > |P_0|$, in violation of the maximality of $|P_0|$. This contradiction completes the proof of (a).

Set $X = P \cap P'$ and $Y = Q \cap Q'$. Then ϕ and ϕ' have restrictions $\psi : X \to (X)(\rho(\phi))$ and $\psi' : X \to (X)(\rho(\phi'))$ which, in turn, restrict to ϕ_0. Then (a) yields $\psi = \psi'$, and this establishes (b). □
Define a relation \uparrow on the set $\text{Iso}(\mathcal{T})$ \mathcal{T}-isomorphisms by $\phi \uparrow \phi'$ if ϕ' is an extension of ϕ. We may also write $\phi' \downarrow \phi$ to indicate that ϕ is a restriction of ϕ'.

Lemma A.17. The following hold.

(a) The relation \uparrow induces a partial order on $\text{Iso}(\mathcal{T})$.

(b) The relation \uparrow respects composition of morphisms. That is, if $\phi \uparrow \phi'$ and $\psi \uparrow \psi'$, and the compositions $\phi \circ \psi$ and $\phi' \circ \psi'$ are defined, then $(\phi \circ \psi) \uparrow (\phi' \circ \psi')$.

(c) For each \mathcal{T}-isomorphism α there exists a unique \mathcal{T}-isomorphism ϕ such that ϕ is maximal with respect to \uparrow and such that $\alpha \uparrow \phi$.

Proof. For points (a) and (b) we repeat the proof of [Che1, Lemma X.7]. The transitivity of \uparrow is immediate. Suppose that both $\phi \uparrow \phi'$ and $\phi \downarrow \phi''$, where $\phi \in \text{Iso}_{\mathcal{T}}(P,Q)$ and $\phi' \in \text{Iso}_{\mathcal{T}}(P',Q')$. Then $P = P'$, $Q = Q'$, $\iota_{P,P'} = \iota_P$, and $\iota_{Q,Q'} = \iota_Q$. Further, $\iota_P \phi' = \phi \circ \iota_Q$ and then $\phi' = \phi$ since ι_P and ι_Q are identity morphisms in \mathcal{T}. Thus (a) holds.

Suppose that we are given $\phi \uparrow \phi'$ and $\psi \uparrow \psi'$, with $\phi \circ \psi$ and $\phi' \circ \psi'$ defined on objects P and P' respectively. Set $Q = P\phi$ and $R = Q\psi$, and set $Q' = P'\phi'$ and $R' = Q'\psi'$. The following diagram, in which the vertical arrows are inclusion morphisms, demonstrates that $\phi \circ \psi \uparrow \phi' \circ \psi'$.

\[
\begin{array}{ccc}
P' & \rightarrow & Q' \\
\uparrow & & \uparrow \\
P & \rightarrow & Q
\end{array}
\begin{array}{c}
\phi' \downarrow \\
\phi \uparrow \\
\psi' \downarrow \\
\psi \uparrow \\
R' & \rightarrow & R
\end{array}
\]

This yields (b).

Let $\alpha \in \text{Iso}(\mathcal{T})$. The finiteness condition A.14(1), together with A.15(c,d), yields the existence of at least one \mathcal{T}-isomorphism ϕ such that $\alpha \uparrow \phi$ and such that ϕ is maximal with respect to \uparrow. Assuming now that α is a counter-example to (c), there then exists an \uparrow-maximal \mathcal{T}-isomorphism ϕ' with $\alpha \uparrow \phi'$ and with $\phi \neq \phi'$. Write $\alpha : X \rightarrow Y$, $\phi : P \rightarrow Q$, and $\phi' : P' \rightarrow Q'$. We may again apply A.14(1) in conjunction with A.15(c,d) in order to obtain such a triple (α, ϕ, ϕ') in which $|X|$ has been maximized.

Set $P_1 = N_P(X)$ and $Q_1 = N_Q(Y)$, and similarly define P'_1 and Q'_1. Set $X_1 = \langle P_1, P'_1 \rangle$ and $Y_1 = \langle Q_1, Q'_1 \rangle$. Let $\lambda : \text{Aut}_{\mathcal{T}}(P_0) \rightarrow \text{Aut}_{\mathcal{T}}(Q_0)$ be the isomorphism induced by conjugation by α. Then A.13(f) implies that λ maps $(X_1)_{\epsilon_{P_0}}$ to $(Y_1)_{\epsilon_{Q_0}}$. Condition (II) in the definition of transporter system then yields the existence of an extension of α to an isomorphism $\alpha_1 : X_1 \rightarrow Y_1$. Let ϕ_1 be the restriction of ϕ to an isomorphism $P_1 \rightarrow Q_1$. Then $\phi \downarrow \phi_1 \uparrow \alpha_1$. Let ψ be an \uparrow-maximal extension of α_1. If $\phi = \psi$ then $X_1 = X$, whence $P = X = P'$, and then A.16(a) yields $\phi = \phi'$. Thus $\phi \neq \psi$, so (ϕ_1, ϕ, ψ) provides a counter-example to (c). The maximality of $|X|$ then yields $X = N_P(X)$, and we again obtain $X = P$. Then $\phi = \alpha$, α is \uparrow-maximal, and again $\alpha = \phi'$. Thus we have a contradiction, proving (c). □

Let \equiv be the equivalence relation on $\text{Iso}(\mathcal{T})$ generated by \uparrow, and let

\[
\mathcal{L} = \text{Iso}(\mathcal{T})/\equiv
\]
Lemma A.18. Let $f \in \mathcal{L}$.

(a) There is a unique $\phi \in f$ such that ψ is \uparrow-maximal in the poset $\text{Iso}(\mathcal{T})$. Moreover, we then have $\alpha \uparrow \phi$ for all $\alpha \in f$, and ϕ^{-1} is the unique \uparrow-maximal member of $[\phi^{-1}]$.

(b) The unique maximal $\phi \in f$ is a \mathcal{T}^*-isomorphism.

(c) $f \cap \text{Iso}_\mathcal{T}(P,Q)$ has cardinality at most 1 for any $P,Q \in \text{Ob}(\mathcal{T})$.

Proof. There exists at least one \uparrow-maximal member $\phi \in f$ by A.14(1) with A.15(c,d). Suppose that ϕ and ϕ' are distinct \uparrow-maximal members of f. As $\phi \equiv \phi'$ there is a sequence $\sigma = (\psi_0, \cdots, \psi_n)$ of members of f with $\phi = \psi_0$, $\phi' = \psi_n$, and such that for all i with $1 \leq i \leq n$ we have either $\psi_{i-1} \uparrow \psi_i$ or $\psi_{i-1} \downarrow \psi_i$. Assume that the pair (ϕ, ϕ') has been chosen so that n is as small as possible. The maximality of ϕ implies $\phi \downarrow \psi_1$ and $\phi \uparrow \psi_2$ is not a restriction of ϕ. Since ψ_2 is the restriction of some maximal isomorphism (necessarily in f), we obtain $n = 2$. Thus $\phi \downarrow \psi_1 \uparrow \phi'$. As this violates A.17(c) we obtain the uniqueness asserted in (a). Moreover, A.17(c) then implies that each $\alpha \in f$ extends to ϕ. The inverse of any extension of α is an extension of α^{-1}, so (a) holds. Point (b) then follows from A.15(c).

In order to prove (c), let $\psi, \psi' \in f \cap \text{Iso}_\mathcal{T}(P,Q)$. Then both ψ and ψ' are restrictions of a single $\phi \in f$, by (a). Now A.13(b) yields $\psi = \psi'$. □

Define D to be the set of words $w = (f_1, \cdots, f_n) \in \mathcal{W}(\mathcal{L})$ such that there exists a sequence (ϕ_1, \cdots, ϕ_n) of \mathcal{T}-isomorphisms with $\phi_i \in f_i$, and a sequence (P_0, \cdots, P_n) of members of Δ, such that each ϕ_i is a \mathcal{T}-isomorphism $P_{i-1} \rightarrow P_i$. As in section I.2 we may say also that $w \in D$ via (P_0, \cdots, P_n), or via P_0. Define

$$\Pi : D \rightarrow \mathcal{L}$$

by $\Pi(w) = f$, where f is the unique maximal element of $[\phi_1 \circ \cdots \circ \phi_n]$ given by A.18(a). That Π is well-defined follows from A.17(b). Set $1 = [\iota_S]$, and for any $f \in \mathcal{L}$ let f^{-1} be the equivalence class of ϕ^{-1}, where ϕ is the unique maximal member of f.

Proposition A.19. \mathcal{L} with the above structures is a partial group. Moreover, the following hold.

(a) For any $x \in S$, the \equiv-class $[(x)\epsilon_S]$ is the set of all $(x)\epsilon_{P,Q}$ such that $P^x = Q$, and $(x)\epsilon_S$ is the maximal member of $[(x)\epsilon_S]$.

(b) $[\iota_S] = \{\iota_P \mid P \in \text{Ob}(\mathcal{T})\}$, and ι_S is the maximal member of its class.

(c) For any $\phi \in \text{Iso}(\mathcal{T})$, $[\phi^{-1}]$ is the set of inverses of the members of $[\phi]$.

Proof. We first check via definition I.1.1 that \mathcal{L} is a partial group. For any $f \in \mathcal{L}$ the word (f) of length 1 is in D since f is represented by a \mathcal{T}-isomorphism. If $w \in D$ and $w = u \circ v$ then it is immediate from the definition of D that both u and v are in D. Thus the condition I.1.1(1) in the definition of partial group is satisfied. By definition of
II we have \(\Pi(f) = f \) for \(f \in \mathcal{L} \), so I.1.1(2) holds. Condition I.1.1(3) is a straightforward consequence of associativity of composition of isomorphisms in \(\mathcal{T} \).

That the inversion map \(f \mapsto f^{-1} \) is an involutory bijection follows from A.18(a). Now let \(u = (f_1, \ldots, f_n) \in \mathcal{D} \) via \((P_0, \ldots, P_n)\), and set \(u^{-1} = (f_n^{-1}, \ldots, f_1^{-1}) \). Then \(u^{-1} \in \mathcal{D} \) via \((P_n, \ldots, P_0)\), so \(u^{-1} \circ u \in \mathcal{D} \). One obtains a representative in the class \(\Pi(u^{-1} \circ u) \) via a sequence of cancellations \(\phi_k^{-1} \circ \phi = \iota_{P_k} \), for representatives \(\phi_k \in f_i \), so \(\Pi(u^{-1} \circ u) \) is the equivalence class containing \(\iota_{P_0} \). Since \(\iota_{P_0} \uparrow \iota_S \), and since \(1 = [\iota_S] \) by definition, we get \(\Pi(u^{-1} \circ u) = 1 \). Thus I.1.1(4) holds in \(\mathcal{L} \), and \(\mathcal{L} \) is a partial group.

We now prove (a). Let \(P \leq P' \) and \(Q \leq Q' \) in \(\Delta \), and let \(x \) be an element of \(S \) such that \(P^x = Q \) and \((P')^x = Q' \). The functoriality of \(\epsilon \) yields

\[(1) \epsilon_{P,P'} \circ (x) \epsilon_{P',Q'} = (x) \epsilon_{P,Q'} = (x) \epsilon_{P,Q} \circ (1) \epsilon_{Q,Q'},\]

which means that \((x) \epsilon_{P,Q}(g) \uparrow (x) \epsilon_{P',Q'} \). In particular, we get \((x) \epsilon_{P,Q}(g) \uparrow (x) \epsilon_{S} \).

In order to complete the proof of (a), it now suffices to show that for any \(\phi \in Iso_{\mathcal{T}}(P,Q) \) with \((x) \epsilon_{S} \equiv \phi \), we have \(\phi = (x) \epsilon_{P,Q} \). Suppose false, and let \(\sigma = (\phi_1, \ldots, \phi_n) \) be a sequence of \(\mathcal{T} \)-isomorphisms with \(\phi = \phi_1 \), \((x) \epsilon_{S} = \phi_n \), and with either \(\phi_i \uparrow \phi_{i+1} \) or \(\phi_i \downarrow \phi_{i+1} \) for all \(i \) with \(1 \leq i < n \). Among all \((\phi, P, Q) \) with \(\phi \neq (x) \epsilon_{P,Q} \) and \((x) \epsilon_{S} \equiv \phi \), choose \((\phi, P, Q) \) so that the length of such a chain \(\sigma \) is as small as possible. Set \(\psi = \phi_2 \).

Then \(\psi = (x) \epsilon_{X,Y} \), where \(X \) and \(Y \) are objects of \(\mathcal{T} \) with \(X^x = Y \). Suppose \(\phi \uparrow \psi \).

Applying the functor \(\rho \) to the commutative diagram

\[
\begin{array}{ccc}
X & \xrightarrow{(x) \epsilon_{X,Y}} & Y \\
\downarrow \iota_{P,X} & & \downarrow \iota_{Q,Y} \\
P & \xrightarrow{\phi} & Q \\
\end{array}
\]

and applying condition (B) in the definition of transporter system to \(\rho(\epsilon_{X,Y}(g)) \), we conclude that \(\rho(\phi) \) is the restriction of \(c_0 \) to the homomorphism \(\rho(\phi) : P \to Q \). In particular, we get \(P^x = Q \), so that also \((x) \epsilon_{P,Q} \) is a restriction of \((x) \epsilon_{X,Y} \). Then \(\phi = (x) \epsilon_{P,Q} \) by A.13(d), and contrary to hypothesis. On the other hand, if \(\phi \downarrow \psi \), then \(\phi = (x) \epsilon_{P,Q} \) by A.16(a), again contrary to hypothesis. This completes the proof of (a), and then (b) is the special case of (a) given by \(x = 1 \).

Let \(f = [\phi] \) be an equivalence class, with \(\phi \) maximal in \(f \). One checks (by reversing pairs of arrows in the appropriate diagrams) that if \(\psi \) is a \(\mathcal{T} \)-isomorphism, and \(\psi \) is a restriction of \(\phi \), then the \(\mathcal{T} \)-isomorphism \(\psi^{-1} \) is a restriction of \(\phi^{-1} \). Point (c) follows from this observation. \(\square \)

Remark. In view of A.19(a) there will be no harm in writing \(x \) to denote the equivalence class \([x] \epsilon_S\), for \(x \in S \). That is to say that from now on we shall identify \(S \) with the image of \(S \) under the composition of \(\epsilon_S \) with the projection \(Iso(\mathcal{T}) \to \mathcal{L} \).
Lemma A.20. Let $\phi : Z \to W$ be a \mathcal{T}-isomorphism, maximal in its \equiv-class. Let X and Y be objects of \mathcal{T} contained in Z, and let U and V be the images of X and Y, respectively, under $\rho(\phi)$. Suppose that there exist elements x and x' in S such that the following diagram commutes.

$$
\begin{array}{ccc}
X & \xrightarrow{\phi|_{X \to U}} & U \\
\downarrow_{(x)\epsilon_{X,Y}} & & \downarrow_{(x')\epsilon_{U,V}} \\
Y & \xrightarrow{\phi|_{Y \to V}} & V
\end{array}
$$

(*)

Then $x \in Z$, and x' is the image of x under $\rho(\phi)$.

Proof. Let ϕ' be the composition (in right-hand notation)

$$
\phi' = (x^{-1})\epsilon_{Zx} \circ \phi \circ (x')\epsilon_{Wx'}.
$$

Thus, $\phi' \in Iso_\mathcal{T}(Z^x, W^{x'})$, and the commutativity of (*) yields $\phi \equiv \phi'$. The maximality of $\phi : Z \to W$ implies that $Z^x \subseteq Z$ and $W^{x'} \subseteq W$. That is, $x \in N_S(Z)$ and $x' \in N_S(W)$. There is then a commutative diagram as follows.

$$
\begin{array}{ccc}
Z & \xrightarrow{\phi} & W \\
\downarrow_{(x)\epsilon_{Z}} & & \downarrow_{(x')\epsilon_{W}} \\
Z & \xrightarrow{\phi} & W
\end{array}
$$

Condition (II) in the definition of transporter system implies that there is an extension of ϕ to a \mathcal{T}-isomorphism $\langle Z, x \rangle \to \langle W, x' \rangle$, and the maximality of ϕ then yields $x \in Z$ and $x' \in W$. Condition (C) in the definition of transporter system implies that x' is the image under $\rho(\phi)$ of g. \qed

Corollary A.21. Let $f \in \mathcal{L}$ and let $P \in \Delta$ with the property that, for all $x \in P$, $(f^{-1}, x, f) \in \mathcal{D}$ and $\Pi(f^{-1}, x, f) \in S$. Let Q be the set of all such products $\Pi(f^{-1}, x, f)$. Then $Q \in \Delta$ and there exists $\psi \in f$ such that $\psi \in Iso_\mathcal{T}(P, Q)$.

Proof. As $(f^{-1}, x, f) \in \mathcal{D}$ there exist $U, X, Y, V \in \Delta$ and representatives ψ and $\overline{\psi}$ of f such that

$$
\begin{array}{c}
U \xrightarrow{\overline{\psi}^{-1}} X \xrightarrow{(x)\epsilon_{X,Y}} Y \xrightarrow{\psi} V
\end{array}
$$

is a chain of \mathcal{T}-isomorphisms, and where the middle arrow in the diagram is given by A.19(a). As $\Pi(f^{-1}, x, f) \in S$ there exists $x' \in S$ such that $\overline{\psi}^{-1} \circ (x)\epsilon_{X,Y} \circ \psi = (x')\epsilon_{U,V}$. Let $\phi : Z \to W$ be the maximal element of f. Then A.20 implies that $x \in Z$, and x' is the image of x under $\rho(\phi)$. In particular, we have $P \leq Z$ and $Q \leq W$, and we may therefore take $X = Y = P$ and $U = V = Q$, obtaining $\psi \in Iso_\mathcal{T}(P, Q)$. \qed
Lemma A.22. Let $\psi : P \to Q$ be a \mathcal{T}-isomorphism, and let $f = [\psi]$ be the equivalence class of ψ. Then $(f^{-1}, x, f) \in D$ for all $x \in P$, and $P^f = Q$ in the partial group \mathcal{L}. Moreover, the conjugation map $(f^{-1}, x, f) \mapsto \Pi(f^{-1}, x, f)$ is equal to $\rho(\psi)$.

Proof. For any $x \in P$, we have the composable sequence

$$Q \xrightarrow{\psi^{-1}} P \xrightarrow{(x)\epsilon_P} P \xrightarrow{\psi} Q$$

of \mathcal{T}-isomorphisms, so (f^{-1}, x, f) is in D. By Condition (C) in the definition of transporter system then yields $\psi^{-1} \circ (x)\epsilon_P \circ \psi = (x')\epsilon_Q$, where $x' = (x)(\rho(\psi)) \in Q$. The class $[(x')\epsilon_Q]$ is the same as $[(x')\epsilon_S]$ by A.19(a); and we recall that we have introduced the convention to denote this class simply as x'. Thus $x^f = x'$, and so $P^f \subseteq Q$. Similarly $Q^{f^{-1}} \subseteq P$, from which one deduces that the conjugation map $c_f : P \to Q$ is surjective. Injectivity of c_f follows from left and right cancellation in the partial group \mathcal{L}, so $P^f = Q$. The final assertion of the lemma is given by the observation, made above, that $x' = (x)(\rho(\psi))$. □

Theorem A.23. Let $(\mathcal{T}_\Delta(S) \xrightarrow{\xi} \mathcal{T} \xrightarrow{\rho} \mathcal{F})$ be a p-local compact group, and let $\mathcal{L} = \text{Iso}(\mathcal{T})/\equiv$ be the partial group given by A.19. For $x \in S$, identify x with the \equiv-class of the \mathcal{T}-isomorphism $(x)\epsilon_S$ of S. Then (\mathcal{L}, Δ, S) is a compact locality on \mathcal{F}.

Proof. We have seen in A.19 that \mathcal{L} is a partial group, and the remark following A.19 shows how to identify S with its image under the composition of ϵ_S with the quotient map $\text{Iso}(\mathcal{T}) \to \mathcal{L}$. In order to show that (\mathcal{L}, Δ) is objective, begin with $w = (f_1, \cdots, f_n) \in D$. By definition, there exist representatives ψ_i of the classes ξ_i and a sequence (P_0, \cdots, P_n) of objects in Δ, such that each ψ_i is a \mathcal{T}-isomorphism $P_{i-1} \to P_i$. Then $P_{i-1}^{f_i} = P_i$ for all i, by A.22. Conversely, given $w = (f_1, \cdots, f_n) \in \mathcal{W}(\mathcal{L})$, and given $(P_0, \cdots, P_n) \in \mathcal{W}(\Delta)$ with $P_{i-1}^{f_i} = P_i$ for all i, it follows from A.21 that $w \in D$. Thus, (\mathcal{L}, Δ) satisfies the condition (O1) in the definition I.2.1 of objective partial group. Since $\Delta = \mathcal{F}^c$ is \mathcal{F}-closed we also have $w \in D$, and thus (\mathcal{L}, Δ) is objective. As Δ is a set of subgroups of S, (\mathcal{L}, Δ, S) is then a pre-locality (as defined in I.2.6).

The conjugation maps $c_g : S_g \to S$ for $g \in \mathcal{L}$ are \mathcal{F}-homomorphisms, by A.21 and A.9(C). Thus $\mathcal{F}_S(\mathcal{L})$ is a subsystem of \mathcal{F}. Assuming now that $\mathcal{F} \neq \mathcal{F}_S(\mathcal{L})$, there exists an \mathcal{F}-isomorphism $\beta : X \to Y$ such that β is not an $\mathcal{F}_S(\mathcal{L})$-homomorphism. By A.14(4) we may take $X = X^* \ast$ and $Y = Y^* \ast$, and by the finiteness condition in A.14(1) we may then assume that from among all \mathcal{F}-isomorphisms which are not $\mathcal{F}_S(\mathcal{L})$-homomorphisms, β has been chosen so that $|X|$ is as large as possible. If $X \in \Delta$ then $Y \in \Delta$ and the surjectivity of $p_{X,Y}$ (condition (A2) in definition A.9) implies that β is an $\mathcal{F}_S(\mathcal{L})$-homomorphism, so in fact $X \notin \Delta$. In particular $X < S$, and so $X < N_S(X)$. Similarly $Y < N_S(Y)$.

As \mathcal{F} is order-saturated there exists a fully order-normalized \mathcal{F}-conjugate Z of X, and there then exist \mathcal{F}-homomorphisms $\eta_1 : N_S(X) \to N_S(Z)$ and $\eta_2 : N_S(Y) \to N_S(Z)$ such that $X \eta_1 = Z = Y \eta_2$. Each η_i is an $\mathcal{F}_S(\mathcal{L})$-homomorphism by the maximality in the choice of X, and it then suffices to show that the \mathcal{F}-automorphism $\alpha = \eta_1^{-1} \circ \beta \circ \eta_2$ of Z is an $\mathcal{F}_S(\mathcal{L})$-homomorphism. As \mathcal{F} is order-receptive, α extends to an \mathcal{F}-automorphism
\(\pi \) of \(C_S(Z)Z \). But \(C_S(Z)Z \) is centric in \(\mathcal{F} \), so \(C_S(Z)Z \in \Delta \), and \(\pi \) is then an \(\mathcal{F}_S(\mathcal{L}) \)-homomorphism. The same is then true of \(\alpha \), and so we have shown that \(\mathcal{F} = \mathcal{F}_S(\mathcal{L}) \).

Set \(\Gamma = \{ P^* \mid P \leq S \} \). For \(P, Q \in \Gamma \) we have (by A.14(2))

\[
(P \cap Q)^* \leq P \cap Q^* = P \cap Q,
\]

and thus \(\Gamma \) is closed under finite intersections. Let \(g \in \mathcal{L} \) and let \(\psi : P \to Q \) be the unique \(\uparrow \)-maximal representative of \(g \). Then \(P = S_g \) by A.22, and then \(S_g \in \Gamma \) by A.15(c). We may prove by induction on the length of \(w \in \mathcal{W}(\mathcal{L}) \) that \(S_w \in \Gamma \). Namely, write \(w = (g) \circ v \) where \(g \in \mathcal{L} \) and \(v \in \mathcal{W}(\mathcal{L}) \) with \(S_v \in \Gamma \). Then \(S_w = (S_{g^{-1}} \cap S_v)^{g^{-1}} \in \Gamma \) since, as we have seen, \(\Gamma \) is closed with respect to finite intersections and since (by A.14(1)) \(\Gamma \) is \(\mathcal{F} \)-invariant. The finiteness condition in A.14(1) now implies that \(\bigcap \{ S_w \mid w \in X \} \in \Gamma \) for each non-empty subset \(X \) of \(\mathcal{W}(\mathcal{L}) \). This shows that the poset \(\Omega_S(\mathcal{L}) \) defined in I.2.11 is finite-dimensional.

Let \(P \in \Delta \) and let \(\alpha_P : \text{Aut}_T(P) \to N_\mathcal{L}(P) \) be the mapping \(\psi \mapsto [\psi] \). Then \(\alpha_P \) is a homomorphism by A.17(b), \(\alpha_P \) is injective by A.19(c), and \(\alpha_P \) is surjective by A.20. Thus \(\alpha_P \) is an isomorphism, and then condition (I) in definition A.9 implies that \(N_\mathcal{L}(P) \) is virtually \(p \)-toral. As \(\Omega_S(\mathcal{L}) \) is finite-dimensional, all subgroups of \(\mathcal{L} \) are then virtually \(p \)-toral by I.2.17. In particular, if \(\mathcal{S} \) is a \(p \)-subgroup of \(\mathcal{L} \) containing \(S \) then \(\mathcal{S} \) is discrete \(p \)-toral. If \(S < \mathcal{S} \) then A.2(c) yields \(S < N_\mathcal{S}(S) \), which is contrary to condition (I) in A.5. Thus \(S \) is a maximal \(p \)-subgroup of \(\mathcal{L} \), and we have established that \(\mathcal{L} \) is a locality on \(\mathcal{F} \). Notice that A.22 implies that \(\alpha_P \) restricts to an isomorphism \(\text{Ker}(\rho_P) \to C_\mathcal{L}(P) \). As \((\epsilon, \rho) \) is a \(p \)-local compact group, \(\text{Ker}(\rho_P) \) is a \(p \)-group, and thus \(N_\mathcal{L}(P) \) is of characteristic \(p \). That is, \(\mathcal{L} \) satisfies the condition (PL2) in the definition (6.7) of proper locality. Condition (PL1), that \(\mathcal{F}^{cr} \) be contained in \(\Delta \), is given by \(\Delta = \mathcal{F}^c \). Condition (PL3), that \(S \) has the normalizer-increasing property, is given by A.2(c). Thus \(\mathcal{L} \) is proper, and the proof is complete.

Theorem A.24. Let \((\mathcal{L}, \Delta, S) \) be a compact locality on \(\mathcal{F} \), such that \(\Delta \) is the set \(\mathcal{F}^c \) of \(\mathcal{F} \)-centric subgroups of \(S \). Let \((\mathcal{T}_\Delta(S) \xrightarrow{\imath} \mathcal{T} \xrightarrow{\pi} \mathcal{F}) \) be the \(\epsilon \)-local compact group constructed from \(\mathcal{L} \) as in A.8 and A.11, and let \((\mathcal{L}', \Delta, S) \) be the compact locality constructed from \((\epsilon, \rho) \) as in A.19 and A.23. Then the mapping

\[
\Phi : \mathcal{L} \to \mathcal{L}',
\]

which sends \(g \in \mathcal{L} \) to the \(\equiv \)-class of the \(\mathcal{T} \)-isomorphism \((g, S_g, S_{g^{-1}}) \) (and with the identifications given by the remark following A.19) is an isomorphism of partial groups which restricts to the identity map on \(S \).

Proof. Let \(\Phi^* : \mathcal{W}(\mathcal{L}) \to \mathcal{W}(\mathcal{L}') \) be the mapping induced by \(\Phi \), and let \(w = (g_1, \ldots, g_n) \in \mathcal{D}(\mathcal{L}) \) via \((P_0, \ldots, P_n) \), with \(P_0 = S_w \). We shall denote the \(\equiv \)-class of a \(\mathcal{T} \)-isomorphism \((g, P, Q) \) by \([g, P, Q] \). Then \(w\Phi^* = ([g_1, P_0, P_1], \ldots, [g_n, P_{n-1}, P_n]) \), and \(w\Phi^* \in \mathcal{D}(\mathcal{L}') \) via \((P_0, \ldots, P_n) \) by A.22. The definition of the product \(\Pi' \) in \(\mathcal{L}' \) then yields

\[
\Pi'(w\Phi^*) = [\pi(w), P_0, P_n] = (\Pi(w))\Phi,
\]
and thus \(\Phi \) is a homomorphism of partial groups.

Recall that for \(P, P' \in \Delta \) with \(P \leq P' \), we have \(\iota_{P, P'} = (1, P, P') \). It follows that the extensions of a \(T \)-isomorphism \((f, P, Q) \) are of the form \((f, P', Q') \), and this implies that \(\Phi \) is injective. Since \(L' = \text{Im}(\Phi) \) by definition, \(\Phi \) is a bijection, and we now leave it to the reader to verify that \(\Phi^{-1} \) is a homomorphism. For \(x \in S \) we have identified \(x \) with \([x, S, S]\), so \(\Phi \) restricts to the identity map on \(S \).

Theorem A.25. Let \((L, \Delta, S)\) and \((L', \Delta, S)\) be compact localities on \(F \), having the same set of objects. Then there exists an isomorphism \(\alpha : L \to L' \) of partial groups, such that \(P\alpha = P \) for all \(P \in \Delta \cap F^c \). In particular, \(\alpha \) restricts to an automorphism of \(S \).

Proof. By Theorem A1 we may assume without loss of generality that \(\Delta \) is equal to the set \(F^c \) of \(F \)-centric subgroups of \(S \). Let \((T_\Delta(S) \xrightarrow{\xi} T \xrightarrow{\rho} F)\) be the \(p \)-local compact group constructed from \((L, \Delta, S)\) via A.8 and A.11, and let \((T_\Delta(S) \xrightarrow{\xi'} T' \xrightarrow{\rho'} F)\) be the \(p \)-local compact group similarly constructed from \((L', \Delta, S)\).

Following [BLO2] (but with notation which reflects our preference for right-hand composition of morphisms), we define the **orbit category** \(\mathcal{O} = \mathcal{O}^c(F) \) to be the category whose set of objects is \(\Delta \), with \(\text{Mor}_{\mathcal{O}}(P, Q) = \text{Hom}_F(P, Q)/\text{Inn}(Q) \).

That is, the \(\mathcal{O} \)-morphisms \(P \to Q \) are the sets \([\phi] = \{ \phi \circ c_x \mid x \in Q \} \), where \(\phi \) is an \(F \)-homomorphism \(P \to Q \). If also \(\psi : Q \to R \) is an \(F \)-homomorphism then one has the well-defined composition \([\phi] \circ [\psi] = [\phi \circ \psi] \).

There is a contravariant functor
\[
\mathcal{Z} : \mathcal{O}^{\text{op}} \to \text{Ab}
\]
(where \(\text{Ab} \) is the category of abelian groups), given by \(\mathcal{Z}(P) = Z(P) \) on objects, and defined in the following way on \(\mathcal{O} \)-morphisms. If \(\phi : P \to Q \) is an \(F \)-homomorphism (with \(P \) and \(Q \) centric in \(F \)), then \(\mathcal{Z} \) sends the \(\mathcal{O} \)-homomorphism \([\phi]\) to the homomorphism \(Z(Q) \to Z(P) \) obtained as the composition of the inclusion map \(Z(Q) \to Z(P\phi) \) followed by the map \(\phi_0^{-1} : Z(P\phi) \to Z(P) \), where \(\phi_0 \) is the \(F \)-isomorphism \(P \to P\phi \) induced by \(\phi \). The main result of [LL] is: If \(F \) is saturated then the higher limit functors \(\lim_k^{\leftarrow}(Z) \) are trivial for all \(k \geq 2 \).

There is a direct analogy with the theory of group extensions, which establishes that the vanishing of \(\lim^3(-)(Z) \) implies the existence of a \(p \)-local compact group \((T_\Delta(S) \xrightarrow{\xi} T \xrightarrow{\rho} F)\). Such a \(p \)-local compact group can be viewed as an “extension” of \(\mathcal{O} \), in the sense that there is a functor
\[
T \xrightarrow{\sigma} \mathcal{O},
\]
such that σ induces the identity map $\text{Ob}(\mathcal{T}) \to \text{Ob}(\mathcal{O})$ (i.e. the identity map on Δ), and such that the image of a \mathcal{T}-morphism $\psi : P \to Q$ under σ is equal to $[\phi]$, where ϕ is the \mathcal{F}-homomorphism $(\psi)\rho$. The vanishing of $\lim_\leftarrow^2(\mathbb{Z})$ yields the uniqueness of this extension, up to isomorphism. That is, if $(\mathcal{T}_\Delta(S) \xrightarrow{\iota'} \mathcal{T}' \xrightarrow{\varphi'} \mathcal{F})$ is another p-local compact group, then there is an isomorphism $\beta : \mathcal{T} \to \mathcal{T}'$ of categories, such that the following diagram commutes:

\[
\begin{array}{ccc}
\mathcal{T} & \xrightarrow{\sigma} & \mathcal{O} \\
\downarrow{\beta} & & \downarrow{\quad} \\
\mathcal{T}' & \xrightarrow{\sigma'} & \mathcal{O}
\end{array}
\]

(and where σ' is the functor defined by obvious analogy with σ).

It is immediate from the commutativity of the diagram that β is the identity map on objects. Then for each $P \in \Delta$, β restricts to a group isomorphism $\beta_P : \text{Aut}_{\mathcal{T}}(P) \to \text{Aut}_{\mathcal{T}'}(P)$.

In particular, β maps the identity element ι_P to ι'_P, where $\iota_P = (1)\epsilon_P$ and where $\iota'_P = (1)\epsilon'$. Now let $P \leq Q$ in Δ. Then $\iota_{P,Q}$ is the unique (by A.13(d)) \mathcal{T}-morphism γ having the property that $\iota_P \circ \gamma = \iota_Q$. Similarly, letting $\iota'_{P,Q}$ denote the image of 1 under $\epsilon_{P,Q}$, then $\iota'_{P,Q}$ is the unique \mathcal{T}'-morphism γ' such that $\iota'_P \circ \gamma' = \iota'_Q$. Thus $(\iota_{P,Q})\beta = \iota'_{P,Q}$. Now let $\psi : P \to Q$ and $\bar{\psi} : \overline{P} \to \overline{Q}$ be \mathcal{T}-isomorphisms such that $\psi \uparrow \overline{\psi}$. That it, assume that $\iota_{P,\overline{P}} \circ \overline{\psi} = \psi \circ \iota_{Q,\overline{Q}}$. Applying β then yields $(\psi)\beta \uparrow (\overline{\psi})\beta$, and thus β induces a mapping $\alpha : \mathcal{L} \to \mathcal{L}'$ (on equivalence classes of isomorphisms). The product $\Pi(g_1, \cdots, g_n)$ in \mathcal{L} is the equivalence class of a composite of a sequence of representatives for (g_1, \cdots, g_n), so α is a homomorphism of partial groups. As β is invertible, α is then an isomorphism, as required. \square

Corollary A.26. Let \mathcal{F} be a fusion system on the discrete p-toral group S. Then the following conditions are equivalent.

1. \mathcal{F} is order-saturated (as defined in A.5).
2. \mathcal{F} is saturated (as defined in 8.2), and $\text{Out}_\mathcal{F}(P)$ is finite for every subgroup $P \leq S$.
3. \mathcal{F} is the fusion system of a compact locality.

Proof. If (3) holds then also (1) and (2) hold, by A.7. Thus it now suffices to show that (1) implies (3). Assume (1). By [LL] (and [M]) there exists a p-local compact group $(\mathcal{T}, \epsilon, \rho)$ over \mathcal{F}, and A.23 then yields (3). \square

References

[BLO1] C. Broto, R. Levi, and Bob Oliver, *The homotopy theory of fusion systems*, J. Amer. Math. Soc. **16** (2003), 779-856.
[BLO2] C. Broto, R. Levi, and Bob Oliver, *Discrete models for the p-local homotopy theory of compact Lie groups and p-compact groups*, Geometry and Topology **11** (2007), 315-427.
[BLO3] An algebraic model for finite loop spaces, Algebraic and Geometric Topology 14 (2014), 2925-2982.

[CG] Andrew Chermak and Alex Gonzales, Discrete localities I, (arXiv:) (2021).

[JLL] Fabien Junod, Ran Levi, and Assaf Libman, Unstable Adams operations on p-local compact groups, Alg. Geom. Topol. 12(1) (2012), 49-74.

[LL] Ran Levi and Assaf Libman, Existence and uniqueness of classifying spaces for fusion systems over discrete p-toral groups, J. of London Math. Soc. 91 (2015), 47-70.

[M] Remi Molinier, Control of fixed points over discrete p-toral groups, and existence and uniqueness of linking systems, J. of Alg. 499 (2018), 43-73.

[OV] Bob Oliver and Joana Ventura, Extensions of linking systems with p-group kernel, Math Annalen 338 (2007), 983-1043.

Mathematics Department, Kansas State University, Manhattan, KS 66506 (USA)
E-mail address: chermak@math.ksu.edu

Institut Arraona, 43 Praga Street, 08207 Sabadell (Spain)
E-mail address: agondem@gmail.com