INTRODUCTION

Nowadays, fishborne zoonotic trematodes (FZT) including *Clonorchis sinensis* are the most important helminth group in the Republic of Korea (Korea) [1]. A team of Korean CDCP (Centers for Disease Control and Prevention) has performed the control project for zoonotic trematode infections in some endemic areas, especially, riverside areas of 7 major rivers, i.e., Han-gang (gang means river), Geum-gang, Mangyeong-gang, Yeongsan-gang, Tamjin-gang, Seomjin-gang and Nakdong-gang, in Korea [2-5]. The co-working groups of CDCP have also examined freshwater fishes, the infection sources of FZT, from the water systems of major rivers in Korea to reveal the infection status of zoonotic trematode metacercariae (ZTM) [6-13].

Many Korean workers have performed epidemiological surveys on the infection status of ZTM in freshwater fishes, the human infection sources, from a variety of ecological environments, i.e., river, stream, lake, pond and swamp, to estimate the endemicities of ZTM [6-14]. Especially, Cho et al. [6] investigated the infection status of *C. sinensis* metacercariae (CsMc) in freshwater fish from 3 wide regions, which were tentatively divided by the latitudinal levels of the Korean peninsula. Cho et al. [7] also surveyed on the infection status of ZTM in freshwater fish from Gangwon-do (do = Province), Korea. Sohn et al. [8] investigated the infection status of digenetic trematode metacercariae (DTM) including *C. sinensis* in freshwater fish from the water systems of Hantan-gang and Imjin-gang in northern regions of Korea. Sohn et al. [9] and Yoon et al. [10] reported the infection status of CsMc in freshwater fishes from the water systems of Seomjin-gang and Tamjin-gang. Sohn et al. [11,12] also reported the infection status of CsMc in fresh-
water fish from 2 highly endemic sites, Wi-cheon (cheon means stream) and Yang-cheon (branch streams of Nakdong-gang), in Gunwi-gun (gun = county), Gyeongsangbuk-do and Sancheong-gun, Gyeongsangnam-do, Korea. Recently, Sohn and Na [14] described the infection status of DTM in freshwater fishes from 2 visiting sites, Junam-jeosuji (jeosuji means reservoir) and Woopo-neup (neup means swamp), of migratory birds in Gyeongsangnam-do, Korea. Sohn et al. [13] also reported the infection status with DTM in fishes from coastal lakes in Gangwon-do, Korea.

Geum-gang is one of the major rivers in Korea, which originates in Jangsu-gun, Jeollabuk-do. It flows northward through Jeollabuk-do and Chungcheongbuk-do and then changes direction in the vicinity of Daejeon Metropolitan City, and flows southwest through Chungcheongnam-do and reaches the Yellow Sea near Gunsan-si, (si = city) Jeollabuk-do. This river has many tributary streams including Yugu-cheon and Nonsan-cheon [15]. On the other hand, several epidemiological studies have been performed to investigate the infection status of zoonotic trematodes, i.e., _C. sinensis_ and _Metagonimus_ spp., in the riverside areas of Geum-gang [16-21]. However, studies on the infections of ZTM in fish hosts were not enough. Kim [16] and Kim et al. [17] studied on the epidemiological and biological characteristics of _Metagonimus_ sp. fluke, which was prevalent in the adjacent areas of Geum-gang at 1980’s. Recently, Choe et al. [21] surveyed the infection status of DTM in 2 exotic fish species, _Micropterus salmoides_ and _Lepomis macrochirus_, and some species of freshwater fish from 2 sites of Geum-gang in Chungcheongbuk-do, Korea. The large-scale survey on the infection status with ZTM in a variety of fish species has not been conducted yet in the areas of Geum-gang. Therefore, in the present study, we investigated the infection status of ZTM in freshwater fishes from 6 sites of Geum-gang in Jeollabuk-do and Chungcheongnam-do for 4 years (2012-2015).

MATERIALS AND METHODS

Fish collection sites

We collected total 1,161 freshwater fishes in 6 local sites of Geum-gang, i.e., Juja-cheon (Latitude: 35.980225; Longitude: 127.393880) in Jinahn-gun, Jeollabuk-do, Geum-gang (35.975291; 127.556624) in Muju-gun, Jeollabuk-do, Geum-gang (36.1 14265; 127.587748) in Geumsan-gun, Yugu-cheon (36.537272; 126.948474) in Gongju-si, Ji-cheon (36.389576; 126.851738) in Cheongyang-gun, Nonsan-cheon (36.199058; 127.067899) in Nonsan-si, Chungcheongnam-do, for 4 years (2012-2015) (Fig. 1).

Fishes examined

Total 208 freshwater fish (18 species) from Juja-cheon in Jinahn-gun, Jeollabuk-do were examined in 2012. Species of fish examined (No. of fish) were _Zacco platypus_ (40), _Zacco temminckii_ (40), _Pungtungia herzi_ (25), _Hemibarbus longirostris_ (22), _Odontobutis platycephala_ (22), _Squalidus gracilis majimae_ (16), _Pseudogobio esocinus_ (10), _Acheilognathus koreensis_ (7), _Microphysogobio koeensis_ (5), _Iksookimia hugowolfeldi_ (3), _Liobagrus obesus_ (2), _Siliurus asotus_ (2), _Pseudobagrus koreanus_ (2), _Misgurnus anguillicaudatus_ (1), _Pseudopungtungia nigra_ (1), _Rhynochocypris oxycephalus_ (1), _Carassius auratus_ (1). In Geum-gang in Muju-gun, Jeollabuk-do, a total of 123
fishes (14 spp.) were examined in 2012. Species of fish examined (No. of fish) were *P. herzi* (35), *P. koreanus* (25), *Coreoperca herzi* (20), *Z. temminckii* (11), *P. esocinus* (10), *Pseudobagrus brevirostris* (10), *H. longirostris* (4), *Sarcocheilichthys variegatus wakayae* (2), *Acheilognathus lanceolatus* (1), *P. nigra* (1), *O. platypocephala* (1), *C. auratus* (1), *Pseudobagrus fulvidraco* (1), *Siniperca scherzeri* (1).

Total 386 freshwater fish (22 species) from Geum-gang in Geumsan-gun were examined for 3 years (2013-2015). Species of fish examined (No. of fish) were *P. esocinus* (76), *H. longirostris* (67), *Z. platypus* (38), *C. herzi* (38), *Z. temminckii* (33), *O. platypocephala* (23), *C. auratus* (20), *P. herzi* (15), *Acheilognathus yamatsutae* (11), *Liobagrus mediadiposalis* (10), *Acheilognathus majusculus* (10), *Squalidus japonicus coreanus* (10), *Sarcocheilichthys nigrinipnis morii* (8), *S. herzi* (7), *Coreoleuciscus splendidas* (5), *S. variegatus wakayae* (4), *Opsarichthys unicirrhis amurenensis* (4), *Hemibarbus laboe* (3), *Micropterus salmoides* (1), *S. gracilis majimae* (1), *Acanthorhodeus gracilis* (1), *Abbottina springeri* (1). In the Yugu-cheon in Gongju-si, a total of 311 fishes (14 spp.) were examined in 2013 and 2015. Species of fish examined (No. of fish) were *A. lanceolatus* (72), *Z. platypus* (59), *H. longirostris* (32), *P. esocinus* (28), *P. herzi* (22), *A. yamatsutae* (20), *O. unicirrhis amurenensis* (18), *C. auratus* (17), *Acheilognathus rhombetus* (15), *O. platypocephala* (10), *A. springeri* (7), *S. variegatus wakayae* (5), *H. laboe* (5), *S. gracilis majimae* (1).

Total 89 freshwater fish (13 spp.) from Ji-cheon in Cheongyang-gun were examined in 2014. Species of fish examined (No. of fish) were *Z. temminckii* (29), *H. longirostris* (13), *P. esocinus* (11), *S. scherzeri* (11), *A. koreensis* (10), *Z. platypus* (4), *P. herzi* (3), *C. auratus* (3), *S. nigrinipnis morii* (1), *O. platypocephala* (1), *Ibsookimia koreensis* (1), *P. koreanus* (1), *P. fulvidraco* (1). In the Nonsan-cheon in Nonsan-si, a total of 44 fishes (11 spp.) were examined in 2013. Species of fish examined (No. of fish) were *Lepomis macrochirus* (10), *C. auratus* (10), *O. unicirrhis amurenensis* (7), *Hemiculter eigenmannii* (6), *S. scherzeri* (3), *Pseudorasbora parva* (2), *M. salmoides* (2), *P. herzi* (1), *Hemiculter leucisculus* (1), *S. variegatus wakayae* (1), *P. esocinus* (1).

Method of fish examination

All collected fishes with ice were transferred to the laboratory of Department of Parasitology and Tropical Medicine, Gyeongsang National University College of Medicine, Jinju, Korea. Their length and weight were individually measured and identified the fish species [22]. Individual fish was finely ground in a mortar with pestle, the ground fish meat was mixed with artificial gastric juice, and the mixture was incubated at 36°C for about 2 hr. The digested material was filtered with 1 × 1 mm² of mesh, and washed with 0.85% saline until the supernatant became clear. The sediment was carefully examined under a stereomicroscope. The metacercariae of each species (only ZTM) were separately collected viewing from the general feature, and were counted to get hold of the prevalence (%) and intensity of infection (No. of ZTM per fish infected) by fish species [23,24].

RESULTS

The metacercariae of *C. sinensis* were detected in 122 (37.2%) out of 328 fishes in the positive fish species from 4 surveyed areas, i.e., Geum-gang in Muju-gun, Jeollabuk-do, and Geum-gang in Geumsan-gun, Ji-cheon in Cheongyang-gun and Nonsan-cheon in Nonsan-si, Chungcheongnam-do. Their mean intensity of infection was 43 per fish infected. Especially, in striped shiner, *P. herzi*, from Geum-gang in Muju-gun, Jeollabuk-do and in Geumsan-gun, Chungcheongnam-do, the prevalences were 97.1% and 100%, and the mean intensity of infection was 95 and 98 per fish infected. The infection status by the fish species and surveyed areas was shown in Table 1 in detail.

The metacercariae of *Metagonimus* spp. were found in 432 (51.7%) out of 835 fishes in the positive fish species from 6 surveyed areas, and their mean intensity of infection was 30 per fish infected. Especially, in goby minnow, *Pseudobagrus esocinus*, from Geum-gang in Geumsan-gun, Chungcheongnam-do, the prevalence was 98.7% and the mean intensity of infection was 86 per fish infected. The infection status by the fish species and surveyed areas was designated in Table 2 in detail.

The metacercariae of *Centrocestus armatus* were detected in 285 (75.0%) out of 380 fishes in the positive fish species from 6 surveyed areas, and their mean intensity of infection was 2,100 per fish infected. Especially, in pale chub, *Zacco platypus*, from Yugu-cheon in Gongju-si, and Geum-gang in Geumsan-gun, Chungcheongnam-do, the prevalences were 100% in each and the mean intensity of infection were more than 7,000 and 3,300 per fish infected. The infection status by the fish species and surveyed areas was revealed in Table 3 in detail.

The metacercariae of *Echinostoma* spp. were detected in 56 (19.7%) out of 284 fishes in the positive fish species from 5 surveyed areas, and their mean intensity of infection was 10 per fish infected. Especially, in Korean dark sleeper, *O. platypo-
Korean J Parasitol Vol. 59, No. 1: 23-33, February 2021

The metacercariae of *Clinostomum complanatum* were detected in 98 (57.3%) out of 171 fishes in the positive fish species from only 2 surveyed areas, i.e., Geum-gang in Geumsan-gun and Yugu-cheon in Gongju-si, Chungcheongnam-do. Their mean intensity of infection was 1 1 per fish infected. Especially, in Korean striped bitterling, *Acheilognathus yamatsutae*, from Yugu-cheon, the prevalence was 95.0% and the mean intensity of infection was 18 per fish infected. The infection status by the fish species and surveyed areas was designated in Table 5 in detail.

Table 1. Infection status of *Clonorchis sinensis* metacercariae (CsMc) in freshwater fish from Geum-gang in Jeollabuk-do and Chungcheongnam-do, Korea

Locality and fish sp.	No. of fish examined	No. (%) of fish infected	No. of CsMc detected	Range	Average
Geum-gang in Muju-gun, Jeollabuk-do					
Pungtungia herzi	35	34 (97.1)	1-141	95.2	
Sarcocheilichthys variegatus	2	2 (100)	6-11	8.5	
Siniperca scherzeri	1	1 (100)	-	2.0	
Subtotal	38	37 (97.4)	1-141	88.0	
Geum-gang in Geumsan-gun					
Pseudogobio esocinus	76	4 (5.3)	1-2	1.3	
Hemibarbus longirostris	67	19 (28.4)	1-2	1.2	
Zacco platypus	38	2 (5.3)	-	1.0	
Pungtungia herzi	15	15 (100)	3-924	98.1	
Acheilognathus yamatsutae	11	2 (18.2)	-	1.0	
Squalidus japonicus coreanus	10	8 (80.0)	1-15	4.6	
Sarcocheilichthys nigripinnis	8	7 (87.5)	1-69	14.4	
Coreoleuciscus splendidus	5	2 (40.0)	1-6	3.5	
Sarcocheilichthys variegatus	4	4 (100)	2-22	13.5	
Squalidus gracilis majiniae	1	1 (100)	-	28.0	
Subtotal	235	64 (27.2)	1-924	27.0	
Ji-cheon in Cheongyang-gun					
Hemibarbus longirostris	13	7 (53.9)	1-3	1.9	
Pseudogobio esocinus	11	1 (9.1)	-	3.0	
Siniperca scherzeri	11	2 (18.2)	1-2	1.5	
Pungtungia herzi	3	3 (100)	8-81	50.7	
Sarcocheilichthys nigripinnis	1	1 (100)	-	63.0	
Subtotal	39	14 (35.9)	1-81	16.7	
Nonsan-cheon in Nonsan-si					
Opsariichthys uncirostris	7	1 (14.3)	-	1.0	
Hemiculter eigenmanni	6	4 (66.7)	1-3	2.0	
Pseudorasbora parva	2	1 (50.0)	-	2.0	
Sarcocheilichthys variegatus	1	1 (100)	-	1.0	
Subtotal	16	7 (43.8)	1-3	1.7	
Total	328	122 (37.2)	1-924	42.9	

discussion

In the present study, more than 5 species of ZTM, i.e., *C. sinensis*, *Metagonimus* spp., *C. armatus*, *Echinostoma* spp. and *C. complanatum*, were detected in fishes from the water systems of Geum-gang, but their endemicities were not so high. The metacercariae of *C. sinensis* were found in fishes from 4 out of 6 survey regions, and their overall prevalence and intensity of infection were 37.2% and 43 per fish infected in positive fish species. *Metagonimus* spp. metacercariae were detected in 51.7% fishes in positive fish species from 6 all survey regions, but their mean intensity was about 30 per fish infected. The metacercariae of *C. armatus* were found in fishes from all 6 survey regions, and they were heavily infected in pale chubs, *Z. platypus*, from Yugu-cheon in Gongju-si and Geum-gang in...
Locality and fish sp.	No. of fish examined	No. (%) of fish infected	No. of MsMc detected	
		Range	Average	
Juja-cheon in Jinahn-gun, Jeollabuk-do				
Zacco platypus	40	22 (55.0)	1-25	6.0
Zacco temminckii	40	33 (82.5)	1-16	3.9
Pungtungia herzi	25	4 (16.0)	1-2	1.3
Hemibarbus longirostris	22	4 (18.2)	1-2	1.3
Squalus gracilis majimeae	16	3 (18.8)	1-8	3.7
Pseudogobio esocinus	10	1(10.0)	-	2.0
Microphysogobio koeensis	5	1 (20.0)	-	1.0
Subtotal	158	68 (43.0)	1-25	4.2
Geum-gang in Muju-gun, Jeollabuk-do				
Pungtungia herzi	35	2 (5.7)	1-2	1.5
Zacco temminckii	11	3 (27.3)	-	1.0
Pseudogobio esocinus	10	8 (80.0)	1-10	3.5
Hemibarbus longirostris	4	2 (50.0)	-	1.0
Subtotal	60	15 (25.0)	1-10	2.4
Geum-gang in Geumsan-gun				
Pseudogobio esocinus	76	75 (98.7)	1-457	85.7
Hemibarbus longirostris	67	66 (98.5)	1-82	18.4
Zacco platypus	38	37 (97.4)	7-275	74.3
Zacco temminckii	33	25 (75.8)	1-53	10.0
Pungtungia herzi	15	8 (53.3)	1-3	1.8
Acheilognathus yamatsutae	11	7 (63.6)	1-11	4.7
Acheilognathus majuscus	10	9 (90.0)	3-23	7.1
Squalus japonicus coreanus	10	4 (40.0)	1-3	2.3
Sarcocheilichthys nigripinnis	8	3 (37.5)	1-3	2.3
Opsarichthys uncirostris	4	4 (100)	1-2	52.0
Sarcocheilichthys variegatus	4	2 (50.0)	-	1.5
Acanthorhodeus gracilis	1	1 (100)	-	4.0
Subtotal	277	241 (87.0)	1-457	45.6
Yugu-cheon in Gongju-si				
Acheilognathus lanceolatus	72	1 (1.4)	-	1.0
Zacco platypus	59	37 (62.7)	1-6	2.9
Hemibarbus longirostris	32	9 (28.1)	1-14	3.3
Pungtungia herzi	22	1 (4.6)	-	1.0
Acheilognathus yamatsutae	20	1 (5.0)	-	1.0
Opsarichthys uncirostris	18	1 (5.6)	-	1.0
Carassius auratus	17	1 (5.9)	-	9.0
Acheilognathus rhombeus	15	1 (6.7)	-	1.0
Sarcocheilichthys variegatus	5	4 (80.0)	1-6	2.5
Subtotal	260	56 (21.5)	1-14	2.9
Ji-cheon in Cheongyang-gun				
Zacco temminckii	29	16 (55.2)	1-25	6.9
Hemibarbus longirostris	13	10 (76.9)	9-332	4.1
Pseudogobio esocinus	11	10 (90.9)	3-150	36.3
Zacco platypus	4	4 (100)	1-60	16.8
Pungtungia herzi	3	2 (66.7)	2-4	3.0
Carassius auratus	3	2 (66.7)	5-10	7.5
Pseudobagrus koreanus	1	1 (100)	-	1.0
Sarcocheilichthys nigripinnis	1	1 (100)	-	2.0
Subtotal	65	46 (69.2)	1-332	32.7

(Continued to the next page)
Geumsan-gun, Chungcheongnam-do. *Echinostoma* spp. metacercariae were detected in 19.7% fishes in positive fish species from 5 survey regions, and their mean intensity was about 10 per fish infected. However, the Korean dark sleepers, *O. platycephala*, from Yugu-cheon in Gongju-si were revealed 100% prevalence and about 48 metacercarial intensity. The metacercariae of *C. complanatum* were found in fishes from only 2 survey regions, Yugu-cheon in Gongju-si and Geum-gang in Geumsan-gun, Chungcheongnam-do. Especially, their endemicity was relatively high in fishes from Yugu-cheon in Gongju-si, Chungcheongnam-do.

The fish collection is one of the important factors in the

Table 2. Continued

Locality and fish sp.	No. of fish examined	No. (%) of fish infected	No. of MsMc detected	
			Range	Average
Nonsan-cheon in Nonsan-si				
Opsarichthys uncirostris	7	3 (42.9)	2-13	6.3
Hemiculter eigenmannii	6	1 (16.7)	-	1.0
Pseudorasbora parva	2	2 (100)	1-4	2.5
Subtotal	15	6 (40.0)	1-13	4.2
Total	835	432 (51.7)	1-457	30.1

Table 3. Infection status of *Centrocestus armatus* metacercariae (CaMc) in freshwater fish from Geum-gang in Jeollabuk-do and Chungcheongnam-do, Korea

Locality and fish sp.	No. of fish examined	No. (%) of fish infected	No. of CaMc detected	
			Range	Average
Juja-cheon in Jinhae-gun, Jeollabuk-do				
Zacco platypus	40	24 (60.0)	1-1,823	206
Zacco temmincki	40	40 (100)	26-1,336	246
Subtotal	124	22 (17.7)	1-13	2.2
Geum-gang in Muju-gun, Jeollabuk-do				
Zacco temmincki	11	11 (100)	13-506	225
Geum-gang in Geumsan-gun				
Zacco platypus	38	38 (100)	101-11,805	3,375
Zacco temmincki	33	33 (100)	24-3,706	436
Hemibarbus longirostris	26	3 (11.5)	1-2	1.3
Opsarichthys uncirostris	4	4 (100)	12-562	255
Pseudogobio esocinus	6	1 (16.7)	-	1.0
Acanthorhodeus gracilis	1	1 (100)	-	21.0
Subtotal	124	22 (17.7)	1-13	2.2
Yugu-cheon in Gongju-si				
Zacco platypus	59	59 (100)	2,000-43,340	7,019
Acheilognathus lanceolatus	32	5 (15.6)	1-49	12.0
Opsarichthys uncirostris	18	18 (100)	182-5,240	871
Acheilognathus rhombeus	15	1 (6.7)	-	4.0
Hemibarbus longirostris	7	2 (28.6)	1-2	1.5
Subtotal	131	85 (64.9)	1-43,340	5,057
Ji-cheon in Cheongyang-gun				
Pseudogobio esocinus	11	2 (18.2)	3-8	5.5
Zacco temmincki	29	29 (100)	7-509	98.6
Acheilognathus koreensis	10	10 (100)	27-456	192
Zacco platypus	4	4 (100)	128-1,637	754
Subtotal	43	43 (100)	7-1,637	181
Nonsan-cheon in Nonsan-si				
Opsarichthys uncirostris	7	2 (28.6)	1-2	1.5
Total	331	206 (62.2)	1-21,510	751
metacercarial surveys for the trematode epidemiology. Total 1,161 fishes in 41 species from 6 survey regions in the water systems of Geum-gang were examined in this study. The amount of fish samples was considerably different by the survey regions from 44 fishes in 11 species (Nonsan-cheon in Nonsan-si) to 386 fishes in 22 species (Geum-gang in Geum-

Locality and fish sp.	No. of fish examined	No. (%) of fish infected	No. of EsMc detected
Juja-cheon in Jinahn-gun, Jeollabuk-do			
Pungtungia herzi	25	1 (4.0)	
Geum-gang in Muju-gun, Jeollabuk-do			
Pungtungia herzi	35	5 (14.3)	1.2
Geum-gang in Geumsan-gun			
Pseudogobio esocinus	35	2 (5.7)	
Hemibarbus longirostris	26	3 (11.5)	
Coreoperca herzi	23	1 (4.3)	
Odontobutis platyccephala	22	8 (36.4)	1-13
Sarcocheilichthys nigripinnis	8	4 (50.0)	1-4
Pungtungia herzi	6	2 (33.3)	
Sarcocheilichthys variegatus	3	1 (33.3)	
Acanthorhodeus gracilis	1	1 (100)	
Subtotal	124	22 (17.7)	1-13
Yugu-cheon in Gongju-si			
Acheilognathus lanceolatus	32	2 (6.3)	
Pungtungia herzi	22	9 (40.9)	1-9
Pseudogobio esocinus	20	4 (20.0)	1-3
Odontobutis platyccephala	10	10 (100)	5-123
Sarcocheilichthys variegatus	5	1 (20.0)	
Subtotal	89	26 (29.2)	3-8
Ji-cheon in Cheongyang-gun			
Pseudogobio esocinus	11	2 (18.2)	3-8
Total	331	206 (62.2)	1-21,510

Locality and fish sp.	No. of fish examined	No. (%) of fish infected	No. of CcMc detected
Geum-gang in Geumsan-gun			
Squalidus japonicus coreanus	5	2 (40.0)	
Acheilognathus yamatsutae	7	3 (42.9)	
Hemibarbus longirostris	6	1 (16.7)	
Hemibarbus labeo	1	1 (100)	
Subtotal	19	7 (36.8)	1-2
Yugu-cheon in Gongju-si			
Acheilognathus lanceolatus	72	62 (86.1)	1-64
Hemibarbus longirostris	32	2 (6.3)	
Acheilognathus yamatsutae	20	19 (95.0)	1-61
Pungtungia herzi	17	5 (29.4)	1-18
Carassius auratus	10	2 (20.0)	4-27
Squalidus gracilis majimae	1	1 (100)	
Subtotal	152	91 (59.9)	1-64
Total	171	98 (57.3)	1-64
Furthermore, 28 (68.3%) fish species were examined with below 20 in numbers, and the fish species examined with over 50 fish individuals was only 9 (22.0%) species, i.e., *Z. platypus* (*n* = 141), *H. longirostris* (138), *P. esocinus* (136), *Z. temminckii* (113), *P. herzi* (101), *A. lanceolatus* (73), *C. herzi* (58), *O. platycephala* (57), and *C. auratus* (52). Accordingly, there are some differences in the fish collection by the survey regions and fish species in this study. These differences are unable to compare the infection status of ZTM by the survey regions in this study and previous studies. However, this study is able to reveal the general trends on the ZTM infections in fishes from the water systems of Geum-gang.

It has been known that the infection status of CsMc is showed a certain tendency in positive fish species from endemic sites, Wi-cheon in Gumi-gun, Gyeongsangbuk-do and Yang-cheon in Sancheong-gun, Gyeongsangnam-do, according to the subfamily groups, i.e., *Gobioninae*, *Acheilognathinae* and *Rasborinae*, in the *Cyprinidae* fish hosts [11,12]. In this study, 30 (73.2%) fish species were the members of order *Cypriniformes*, and 26 (86.7%) out of 30 species were belonging to the family *Cyprinidae* (13 species in *Gobioninae*, 6 species in *Acheilognathinae*, 3 species in *Rasborinae*, 2 species in *Cultrinae*, 1 species in *Leuciscinae* and 1 species in *Cyprinidae*) [22]. Among total 893 fish in family *Cyprinidae*, 454 (50.8%) ones were the members of *Gobioninae*, 147 (16.5%) were those of *Acheilognathinae*, 283 (31.7%) were those of *Rasborinae*, and 9 (1.0%) ones were those of other 3 subfamilies. A total of 122 (37.2%) out of 328 fish in 14 species, i.e., *P. herzi*, *S. variegatus*, *S. nigripinnis*, *S. japonicus coreanus*, *S. scherzeri*, *P. parva*, *P. esocinus*, *H. longirostris*, *H. eigennmanni*, *C. splendidus*, *A. yamatsutae*, *Z. platypus*, *O. uncirostris* and *S. cherzeri*, were infected with CsMc, and 119 (98.5%) fish in 13 (92.9%) species were the members of *Cyprinidae*. They all had been listed as the second intermediate hosts of *C. sinensis* in Korea [23,24].

On the other hand, the striped shinner, *P. herzi*, is to be known as an index fish species to check the endemicity of CsMc. Because of this fish species broadly lives in the water systems of Korea and is highly susceptible to CsMc. In this study, 52 (98.1%) out of 53 *P. herzi* (35 fish from Geum-gang in Juju-gun, Jeollabuk-do, 15 ones from Geum-gang in Geumsan-gun and 3 ones from Ji-cheon in Cheongyang-gun, Chungcheongnam-do) were infected with 93.5 CsMc per fish infected, whereas 48 (25 fish from Juja-cheon in Jinahn-gun, Jeollabuk-do, 22 ones from Yugu-cheon in Gongju-si and only one from Nonsan-cheon in Nonsan-si, Chungcheongnam-do) out of 101 *P. herzi* examined were negative with CsMc. The endemicities with CsMc were very low in other 13 fish species. Therefore, the infection tendency with CsMc could not show by the subfamily groups in the *Cyprinidae* fish hosts in this study.

The river basin of Geum-gang was known as the endemic area of metagonimiasis as well as clonorchiasis [16-20]. It was also known that metagonimiasis is caused by *M. miyatai* and the main infection sources of this endemic disease are chubs, *Z. platypus* and *Z. temminckii*, in this region [16-18]. In this study, the endemicity of *Metagonimus* spp. metacercariae was not so high in 2 chub fish species. Prevalences were about 71% (100/141 *Z. platypus* examined) and 68% (77/113 *Z. temminckii* examined), but infection intensities were about 31 and 6 per fish infected. High prevalence and low burden with *Metagonimus* spp. metacercariae in chubs like in this study were also shown in most of rivers and streams in Gangwon-do. However, chubs from Joyang-gang (Jeongseon-gun) and Hantan-gang (Cheorwon-gun) revealed somewhat higher endemicities for *Metagonimus* spp. metacercariae [7,8].

The chub fish species, *Z. platypus*, *Z. koreanus* and *Z. temminckii*, are known to be the susceptible fish hosts for *C. armatus* metacercariae (CaMc) in Korea [23-25]. In this study, the high endemicities with CaMc were shown in *Z. platypus* from Geum-gang (100% prevalence and over 3,300 CaMc intensity) in Geumsan-gun and Yugu-cheon (100% prevalence and over 7,000 CaMc intensity) in Gongju-si, Chungcheongnam-do. In a nation-wide survey of CaMc [25], the prevalences were very high, 93.7-100% (av. 97.1%), in chub fish species, *Zacco* spp., from all surveyed sites. However, their infection intensities were more or less different by the surveyed areas and fish species. They were most high in Nakdong-gang in Gyeongsangnam-do (av. 4,201), and followed by Geum-gang (2,343), Nakdong-gang in Gyeongsangbuk-do (1,623), Han-gang (1,564), Tamjin-gang (1,550), Yeongsan-gang (1,493), streams in the east coast (1,028), Seomjin-gang (488) and Mangyeong-gang and Dongjin-gang (170). And then they were slightly higher in *Z. platypus* (av. 2,109) than in *Z. temminckii* (1,567) [25].

Infection status of *Echinostoma* spp. metacercariae (EsMc) was not so high in freshwater fish from Geum-gang in this study. However, it (100% prevalence and about 48 EsMc intensity) was relatively high in Korean dark sleeper, *O. platycephala*, from Yugu-cheon in Gongju-si, Chungcheongnam-do. Ahn et al. [26] detected a total of 32 *Echinostoma hortense (= Isthmiocephala hortensis*) metacercariae (IhMc) in 10 (27.8%) out of 36
dark sleepers, *O. interrupta*, from Seom-gang in Wonseong-gun, Gangwon-do, Korea. Ahn and Ryang [27] found IhMc in 4 (22.2%) out of 18 dark sleepers from Namhan-gang in Gyeonggi-do and Gangwon-do. Lee et al. [28] detected IhMc in only 1 (2.3%) out of 44 *O. interrupta* from Cheongsong-gun, Gyeongsangbuk-do, Korea. Ryang [29] detected IhMc in 11 (20.3%) out of 54 dark sleepers from Chungju-ho (ho means lake) and the upper streams of Namhan-gang. Sohn et al. [8] reported relatively high prevalence (96.7%) and infection intensity (22 IhMc per fish infected) in 30 *O. platycephala* from Munsan-cheon in Paju-si, Gyeonggi-do. Recently, Sohn et al. [30] broadly surveyed the infection status with IhMc in dark sleepers, *Odontobutis* species, from some water systems of Korea. Infection status of IhMc in dark sleepers from Yugu-cheon was already included in Sohn et al. [30], and it was much higher than the findings of other previous studies [26-29].

In this study, *C. complanatum* metacercariae (CcMc) were detected in fishes from only 2 survey sites, Geum-gang in Geum-san-gun and Yugu-cheon in Gongju-si, Chungcheongnam-do. Overall prevalences in fishes from 2 sites were 36.8% and 59.9% in positive fish species, and intensities of infection were 1.1 and 12.1 per fish infected. Especially, in 2 species of bitterling, *Acheilognathus lanceolatus* and *A. yamatsutae*, from Yugu-cheon, prevalences were 86.1% and 95.0%, and intensities of infection were 11 and 18 per fish infected. Recently, Sohn et al. [31] broadly surveyed the infection status with CcMc in fishes from water systems of Nakdong-gang in Korea. In Sohn et al. [31], the infection tendency with CcMc was showed by the fish groups in fishes from Yang-cheon in Sancheong-gun Gyeongsangnam-do. The prevalence was most high in *Squalidus* spp. (97.7%) and followed by acheilognathinid fish (66.8%), *P. herzi* (52.0%), rasborinid fish (39.6%) and *Hemibarbus* spp. (25.9%). The intensity of infection was also most high in *Squalidus* spp. (av. 27 per fish infected) and followed by acheilognathinid fish (9), *P. herzi* (7), rasborinid fish (4), and *Hemibarbus* spp. (3). By the present study, 2 species of bitterling, *A. lanceolatus* and *A. yamatsutae*, from Yugu-cheon in Gongju-si, are to be heavily infected with CcMc as the members of acheilognathinid fish.

Conclusively, more than 5 species, i.e., *C. sinensis*, *Metagonimus* spp., *C. armatus*, *Echinostoma* spp. and *C. complanatum*, of ZTM were found in fishes from the water systems of Geum-gang in this study, but their overall endemicities were not so high. The endemicity of ZTM was variable and more or less different by the survey sites and fish species. The metacercariae of *C. sinensis* were relatively endemic in striped shiner, *P. herzi*, from Geum-gang in Muju-gun, Jeollabuk-do and in Geum-san-gun, Chungcheongnam-do. The metacercariae of *C. armatus* were highly endemic in pale chub, *Z. platypus*, from Yugu-cheon in Gongju-si, and Geum-gang in Geum-san-gun, Chungcheongnam-do. Echinostome metacercariae were prevalent in Korean dark sleeper, *O. platycephala*, from Yugu-cheon in Gongju-si. The metacercariae of *C. complanatum* were relatively endemic in 2 species of bitterling, *A. lanceolatus* and *A. yamatsutae*, from Yugu-cheon in Gongju-si, Chungcheongnam-do.

ACKNOWLEDGMENTS

This study was supported by an Anti-Communicable Diseases Control Program, 2013 (Studies on the biological resources of human infecting trematodes and their larval infections in intermediate hosts), 2014 (Investigation of fishborne parasites and acquisition of their biological resources in the southern regions of Korea), and 2015 (Investigation of fishborne parasites and acquisition of their biological resources in the eastern regions of Korea) of National Research Institute of Health (NRICH), Korea Centers for Disease Control and Prevention (KCDCP). We thank Jung-A Kim and Hee-Ju Kim, Department of Parasitology and Tropical Medicine, Gyeongsang National University College of Medicine, Jinju, Korea, for their help in fish examinations.

CONFLICT OF INTEREST

The authors have no conflicts of interest concerning the work reported in this paper.

REFERENCES

1. Korea Centers for Disease Control and Prevention. Korea National Institute of Health. National survey of the prevalence of intestinal parasitic infections in Korea, 2012. The 8th Report. Osong, Korea, 2013.

2. Cho SH, Lee KY, Lee BC, Cho PY, Cheun HI, Hong ST, Sohn WM, Kim TS. Prevalence of clonorchiasis in southern endemic areas of Korea in 2006. Korean J Parasitol 2008; 46: 133-137. https://doi.org/10.3347/kjp.2008.46.3.133

3. Kim HK, Cheun HI, Chung BS, Lee KY, Kim TS, Lee SE, Lee WJ, Cho SH. Prevalence of *Clonorchis sinensis* infections along the five major rivers in Republic of Korea, 2007. Public Health Res Perspect 2010; 1: 43-49. https://doi.org/10.1016/j.phrp.2010.12.010

4. June KJ, Cho SH, Lee WJ, Kim C, Park KS. Prevalence and risk fac-
tors of clonorchiasis among the populations served by primary healthcare posts along five major rivers in South Korea. Osong Public Health Res Perspect 2013; 4: 21-26. https://doi.org/10.1016/j.jphrp.2012.12.002

5. Jeong YI, Shin HE, Lee SE, Cheun HI, Ju JW, Kim JY, Park MY, Cho SH. Prevalence of Clonorchis sinensis infection among residents along 5 major rivers in the Republic of Korea. Korean J Parasitol 2016; 54: 215-219. https://doi.org/10.3347/kjp.2016.54.2.215

6. Cho SH, Sohn WM, Na BK, Kim TS, Kong Y, Eom K, Seok WS, Lee T. Prevalence of Clonorchis sinensis metacercariae in freshwater fish from three latitudinal regions of the Korean Peninsula. Korean J Parasitol 2011; 49: 385-398. https://doi.org/10.3347/kjp.2011.49.4.385

7. Cho SH, Lee WJ, Kim TS, Seok WS, Lee TJ, Jeong KI, Na BK, Sohn WM. Prevalence of zoonotic trematode metacercariae in freshwater fish from Gangwon-do, Korea. Korean J Parasitol 2014; 52: 399-412. https://doi.org/10.3347/kjp.2014.52.4.399

8. Sohn WM, Na BK, Cho SH, Lee SW, Choi SB, Seok WS. Trematode metacercariae in freshwater fish from water systems of Hantangang and Imjingang in Republic of Korea. Korean J Parasitol 2015; 53: 289-298. https://doi.org/10.3347/kjp.2015.53.3.289

9. Sohn WM, Na BK, Cho SH, Park MY, Kim CH, Hwang MA, No KW, Yoon KB, Lim HC. Prevalence of Clonorchis sinensis metacercariae in fish from water systems of Seomjin-gang (river). Korean J Parasitol 2017; 55: 305-312. https://doi.org/10.3347/kjp.2017.55.3.305

10. Yoon KB, Lim HC, Jeon DY, Park S, Cho SH, Ju JW, Shin SS, Na BK, Sohn WM. Infection status with Clonorchis sinensis metacercariae in fish from Tamjin-gang (river) in Jeollanam-do, Republic of Korea. Korean J Parasitol 2018; 56: 183-188. https://doi.org/10.3347/kjp.2018.56.2.183

11. Sohn WM, Na BK, Cho SH, Ju JW, Son DC. Prevalence and intensity of Clonorchis sinensis metacercariae in freshwater fish from Wicheon stream in Gunsan-gun, Yeongwonsaguk, Republic of Korea. Korean J Parasitol 2018; 56: 41-48. https://doi.org/10.3347/kjp.2018.56.1.41

12. Sohn WM, Na BK, Cho SH, Ju JW. Infection status with Clonorchis sinensis metacercariae in fish from Yangcheon (Stream) in Sancheong-gun, Yeongwonsan-dong, Korea. Korean J Parasitol 2019; 57: 145-152. https://doi.org/10.3347/kjp.2019.57.2.145

13. Sohn WM, Na BK, Cho SH, Lee SW. Infection status with digenetic trematode metacercariae in fishes from coastal lakes in Gangwon-do, Republic of Korea. Korean J Parasitol 2019; 57: 681-690. https://doi.org/10.3347/kjp.2019.57.6.681

14. Sohn WM, Na BK. Infections with digenetic trematode metacercariae in freshwater fishes from two visiting sites of migratory birds in Yeongwonsan-dong, Republic of Korea. Korean J Parasitol 2019; 57: 273-281. https://doi.org/10.3347/kjp.2019.57.3.273

15. Geum-gang in Jeollabuk-do and Chungcheongbuk-do (South Korea) in Wikipedia - The free ency¬clopedia: http://en.wikipe-dia.org

16. Kim CH. Study on the Metagonimus sp. in Gun river basin, Chugungnam-do, Korea. Korean J Parasitol 1980; 18: 215-228 (in Korean). https://doi.org/10.3347/kjp.1980.18.2.215

17. Kim CH, Kim NM, Lee CH, Park JS. Studies on the Metagonimus fluke in the Daecheeong reservoir and the upper stream of Gum river, Korea. Korean J Parasitol 1987; 25: 69-82 (in Korean). https://doi.org/10.3347/kjp.1987.25.1.69

18. Lee GS, Cho IS, Lee YH, Noi HJ, Shin DW, Lee SG, Lee TY. Epidemiological study of clonorchiasis and metagonimiasis along the Geum-gang (river) in Okcheon-gun (county), Korea. Korean J Parasitol 2002; 40: 9-16. https://doi.org/10.3347/kjp.2002.40.1.9

19. Park DS, Na SJ, Cho SH, Joon KI, Cho YC, Lee YH. Prevalence and risk factors of clonorchiasis among residents of riverside areas in Ju-mu-gun, Jeollabuk-do, Korea. Korean J Parasitol 2014; 52: 391-397. https://doi.org/10.3347/kjp.2014.52.4.391

20. Shin HE, Lee MR, Ju JW, Jeong BS, Park MY, Lee KS, Cho SH. Epidemiological and clinical parameters features of patients with clonorchiasis in the Geum River basin, Republic of Korea. Inter-discip Perspect Infect Dis. 2017; 2017: 7415301. https://doi.org/10.1155/2017/7415301

21. Cheo S, Park H, Lee D, Kang Y, Jeon HK, Eom KS. Infections with digenean trematode metacercariae in two invasive alien fish, Micropterus salmoides and Lepomis macrochirus, in two rivers in Chungcheongbuk-do, Republic of Korea. Korean J Parasitol 2018; 56: 509-513. https://doi.org/10.3347/kjp.2018.56.5.509

22. Kim IS, Kang EJ. Coloured Fishes of Korea. Seoul, Korea. Academy Publishing Company. 1993, pp. 1-477. (in Korean).

23. Sohn WM. Fish-borne zoonotic trematode metacercariae in the Republic of Korea. Korean J Parasitol 2009; 47 (suppl): 103-113. https://doi.org/10.3347/kjp.2009.47.S.S103

24. Sohn WM. Invertebrate Fauna of Korea Vol. 6, No. 1. Trematodes. Incheon, Korea. The National Institute of Biological Resources. 2013, pp. 1-125.

25. Sohn WM, Na BK, Cho SH, Ju JW, Kim CH, Yoon KB, Kim JD, Son DC, Lee SW. Infections with Centrocestus armatus metacercariae in fishes from water systems of major rivers in Republic of Korea. Korean J Parasitol 2018; 56: 341-349. https://doi.org/10.3347/kjp.2018.56.4.341

26. Ahn YK, Ryang VS, Chung PR, Lee KT. Echinostoma hortense metacercariae naturally encysted in Odontobutis obscura interrupta (a freshwater fish) and experimental infection to rats. Korean J Parasitol 1985; 23: 230-235 (in Korean). https://doi.org/10.3347/kjp.1985.23.2.230

27. Ahn YK, Ryang VS. Experimental and epidemiological studies on the life cycle of Echinostoma hortense Asada, 1926 (Trematoda: Echinostomidae). Korean J Parasitol 1986; 24: 121-136 (in Korean). https://doi.org/10.3347/kjp.1986.24.2.121

28. Lee SK, Chung NS, Ko IH, Sohn WM, Hong ST, Chai JY, Lee SH. An epidemiological survey of Echinostoma hortense infection in Chongsong-gun, Kyongbuk province. Korean J Parasitol 1988; 26: 199-206 (in Korean) https://doi.org/10.3347/kjp.1988.26.3.199.

29. Ryang VS. Studies on Echinostoma spp. in the Chungju Reservoir and upper stream of the Namhan River. Korean J Parasitol 1990; 28: 221-233 (in Korean). https://doi.org/10.3347/kjp.1990.28.4.221

30. Sohn WM, Na BK, Cho SH, Ju JW. Infections status of Isthmiophora hortensis metacercariae in dark sleepers, Odontobutis species, from some water systems of the Republic of Korea. Korean J Parasitol
31. Sohn WM, Na BK, Cho SH. Infection status with Clinostomum complanatum metacercariae in fish from water systems of Nakdong-gang (River) in Korea. Korean J Parasitol 2019; 57: 389-397. https://doi.org/10.3347/kjp.2019.57.4.389
