Nuclear in-medium effects on η dynamics in proton–nucleus collisions

Jie Chen1,2 · Zhao-Qing Feng1,3 · Jian-Song Wang1

Abstract The dynamics of the η meson produced in proton-induced nuclear reactions via the decay of $N^*(1535)$ has been investigated within the Lanzhou quantum molecular dynamics transport model. The in-medium modifications of the η production in dense nuclear matter are included in the model, in which an attractive η-nucleon potential is implemented. The impact of the η optical potential on the η dynamics is investigated. It is found that the attractive potential leads to the reduction in high-momentum (kinetic energy) production from the spectra of momentum distributions and inclusive cross sections and increasing the reabsorption process by surrounding nucleons.

Keywords LQMD model · η Production · In-medium effects · Proton–nucleus collisions

1 Introduction

The in-medium properties of hadrons are one of the topical issues in nuclear physics, in particular related to chiral symmetry restoration, phase transition from quark–gluon plasma to hadrons, nuclear equations of state (EoS), structure of neutron stars, etc. [1–3]. Theoretically, because of the asymptotic freedom of quantum chromodynamics (QCD), it is hard to directly obtain the in-medium properties of hadrons from QCD. Therefore, many effective field models have been used. Heavy-ion collisions in terrestrial laboratories provide a way to study the in-medium properties of hadrons in dense nuclear matter and to extract the high-density behavior of the nuclear symmetry energy (isospin asymmetric part of EoS) [4]. To understand the experimental data from heavy-ion collisions and hadron-induced reactions, microscopic transport models are necessary. The properties of hadrons in a nuclear medium are related to the issues of the interaction potential between the hadron and nucleon, in-medium corrections of cross sections on hadrons and resonance productions, reabsorption processes, etc.

The properties of η in the nuclear medium have been investigated by several approaches, such as the quark–meson coupling (QMC) model [5, 6], the chiral perturbation theory (ChPT) [7–9], the relativistic mean-field theory (RMF) [8], the chiral unitary approach [10]. Up until now, the strength of the η optical potential at normal nuclear density is not well refined, i.e., in the range from -20 to -90 MeV predicted by different models [9]. Measurements of η production in proton–nucleus collisions were taken in experiments [11, 12]. In this work, the dynamics of η in proton and heavy-ion-induced nuclear reactions are to be investigated within an isospin and momentum-
dependent transport model (Lanzhou quantum molecular
dynamics transport model) [13–15]. The impacts of the η-
nucleon potential and symmetry energy on particle emis-

sions, decays of resonances, mean-field potentials, and

The article is organized as follows. In Sect. 2, we give a
brief description of the LQMD model. The in-medium
effects on η production are discussed in Sect. 3. Conclu-
sions are summarized in Sect. 4.

2 Model description

It is well known that the wave function for each nucleon
in the QMD-like models is represented by a Gaussian wave
packet as follows [16]

\[\psi_i(r, t) = \frac{1}{(2\pi L)^{3/4}} \exp \left[\frac{-(r - r_i(t))^2}{4L} \right] \exp \left(\frac{i\mathbf{p}_i(t) \cdot r}{\hbar} \right), \]

(1)

Here, \(r_i(t) \) and \(\mathbf{p}_i(t) \) are the centers of the \(i \)th nucleon in the
coordinate and momentum space, respectively. The \(L \) is the
square of the Gaussian wave packet width, which depends on
the mass number of the nucleus being in the form of
\(L = (0.92 + 0.08A^{1/3})^2 \text{ fm}^2 \) [17]. The total \(N \)-body wave
function is assumed to be the direct product of the coherent
states, where antisymmetrization is neglected. After per-
forming a Wigner transformation for Eq. (1), we get the
Wigner density as:

\[f(r, \mathbf{p}, t) = \sum_i f_i(r, \mathbf{p}, t) \]

(2)

with

\[f_i(r, \mathbf{p}, t) = \frac{1}{(\pi\hbar)^3} \exp \left[\frac{-(r - r_i(t))^2}{2L} \right] \exp \left(\frac{-(\mathbf{p} - \mathbf{p}_i(t))^2}{\hbar^2} \right), \]

(3)

Then, the density distributions in the coordinate and
momentum space are given by:

\[\rho(r, t) = \sum_i \frac{1}{(2\pi L)^{3/2}} \exp \left[\frac{-(r - r_i(t))^2}{2L} \right], \]

\[g(\mathbf{p}, t) = \sum_i \left(\frac{2L}{\pi\hbar^2} \right)^{3/2} \exp \left[\frac{-(\mathbf{p} - \mathbf{p}_i(t))^2}{\hbar^2} \right], \]

(4)

(5)

respectively, where the sum runs over all nucleons in the
reaction systems.

In the LQMD model, the dynamics of the resonances
[\(\Lambda(1232), N^*(1440), N^*(1535) \)], hyperons (\(\Lambda, \Sigma, \Xi, \Omega \)), and
mesons (\(\pi, \eta, K, \bar{K} \)) are described via hadron-hadron colli-
sions, decays of resonances, mean-field potentials, and
corrections on threshold energies of elementary cross sec-
tions [14, 18]. The temporal evolutions of the baryons (nu-
cleons and resonances) and mesons in the reaction system
under the self-consistently generated mean-field are gov-
erned by Hamilton’s equations of motion, which read as

\[\dot{p}_i = -\frac{\partial H}{\partial r_i}, \quad \dot{r}_i = \frac{\partial H}{\partial p_i}, \]

(6)

The Hamiltonian of baryons consists of the relativistic
energy, the effective interaction potential, and the
momentum-dependent part as follows:

\[H_B = \sum_i \sqrt{p_i^2 + m_i^2} + U_{\text{int}} + U_{\text{mom}}. \]

(7)

Here, the \(p_i \) and \(m_i \) represent the momentum and the mass
of the baryons.

The effective interaction potential is composed of the
Coulomb interaction and the local interaction potential

\[U_{\text{int}} = U_{\text{Coul}} + U_{\text{loc}}. \]

(8)

The Coulomb interaction potential is written as

\[U_{\text{Coul}} = \frac{1}{2} \sum_{ij \neq i} e_i e_j \frac{|r_{ij}|}{r_{ij}} \ln \left(\frac{r_{ij}}{\sqrt{4L}} \right), \]

where the \(e_i \) is the charge number, including protons and
charged resonances. \(r_{ij} = |r_i - r_j| \) is the relative distance
between two charged particles.

The local interaction potential is derived from the
Skyrme energy-density functional in the form of

\[U_{\text{loc}} = \int V_{\text{loc}}(\rho(r)) \text{d}r. \]

The energy-density functional reads

\[V_{\text{loc}}(\rho) = \frac{\rho^2}{2\rho_0} + \frac{\beta}{1 + \gamma} \rho_0^{1+\gamma} + E_{\text{sym}}(\rho) \rho\delta^2 + \frac{g_{\text{sur}}}{2\rho_0} (\nabla \rho)^2 \]

\[+ \frac{g_{\text{iso}}}{2\rho_0} \left(\nabla (\rho_n - \rho_p) \right)^2, \]

(9)

where the \(\rho_n, \rho_p, \) and \(\rho = \rho_n + \rho_p \) are the neutron, proton,
and total densities, respectively, and the \(\delta = (\rho_n - \rho_p)/(\rho_n + \rho_p) \) is the
isospin asymmetry. The coefficients \(\alpha, \beta, \gamma, g_{\text{sur}}, g_{\text{iso}} \),
and \(\rho_0 \) are set to values of \(-215.7 \text{ MeV}, \)
\(142.4 \text{ MeV}, 1.322, 23 \text{ MeV fm}^2, \) and \(0.16 \text{ fm}^{-3} \), respectively.
A Skyrme-type momentum-dependent potential is used in the
LQMD model [13]

\[U_{\text{mom}} = \frac{1}{2\rho_0} \sum_{ij \neq i} \sum_{\tau, \tau'} C_{\tau, \tau'} \delta_{\tau, \tau'} \delta_{\tau, \tau'} \int \int \text{d}p \text{d}p' \text{d}r \]

\[\times f_i(r, \mathbf{p}, t) \left(\ln \left(\frac{1}{\mathbf{p} - \mathbf{p}'^2} + 1 \right) \right)^2 f_i(r, \mathbf{p}, t), \]

(10)

Here, \(C_{\tau, \tau'} = C_{\text{mom}}(1 + x), \quad C_{\tau, \tau'} = C_{\text{mom}}(1 - x) \quad (\tau \neq \tau'), \)
and the isospin symbols \(\tau(\tau') \) represent a proton or neutron.
The optical potential momentum dependence of the Fig. 1

The parameters in-medium effects on nuclear in-medium effects on the optical potential will influence the using a Monte Carlo procedure, in which the probability to but decreases with the strength of the potential increases with the baryon density, a compression modulus of \(K = 230 \text{ MeV} \) for isospin symmetric nuclear matter is concluded in the LQMD model. The parameters follows:

\[
\rho_i = \frac{m^*_i}{m^*} > m^*_p \text{ in the nuclear medium. A}
\]

The Hamiltonian of the \(\eta \) meson is constructed as follows:

\[H_\eta = \sum_{i=1}^{N_\eta} \sqrt{m^2_\eta + \mathbf{p}_i^2} + V^\text{opt}_\eta(\mathbf{p}_i, \rho_i). \tag{12} \]

The optical potential \(V^\text{opt}_\eta \) is

\[V^\text{opt}_\eta = \sqrt{m^2_\eta} + \mathbf{p}_i^2 - \sqrt{m^2_\eta + \mathbf{p}_i^2}. \tag{13} \]

The effective mass of the \(\eta \) meson in the nuclear medium reads [8]

\[m^*_\eta = \left(\sqrt{m^2_\eta - \frac{\Sigma_N}{2} \rho_s} \right) / \left(1 + \frac{\Sigma_N}{2} \rho_s \right). \tag{14} \]

Here, the pion decay constant \(f_\pi = 92.4 \text{ MeV} \), \(\Sigma_{NN} = 280 \text{ MeV} \), \(\kappa = 0.4 \text{ fm} \), the \(\eta \) mass \(m_\eta = 547 \text{ MeV} \) and \(\rho_s \) being the scalar nucleon density. The value of \(V^\text{opt}_\eta = -94 \text{ MeV} \) is obtained with zero momentum and saturation density, \(\rho = \rho_0 \). Shown in Fig. 1 is the optical potential as functions of momentum and baryon density, respectively. The strength of the potential increases with the baryon density, but decreases with the \(\eta \) momentum. It is shown that the potential will influence the \(\eta \) dynamics in dense nuclear matter.

The scattering in two-particle collisions is performed by using a Monte Carlo procedure, in which the probability to be a channel in a collision is calculated by the contribution of the channel cross section to the total cross section. The primary products in nucleon–nucleon (NN) collisions are the resonances of \(\Delta(1232) \), \(N^*(1440) \), and \(N^*(1535) \). We have included the reaction channels as follows:

\[
\begin{align*}
NN &\leftrightarrow N\Delta, \quad NN \leftrightarrow NN^*, \quad NN \leftrightarrow \Delta\Delta, \Delta \leftrightarrow N\pi, \\
N^* &\leftrightarrow N\pi, \quad NN \leftrightarrow NN\pi(s - \text{state}), \quad N^*(1535) \leftrightarrow N\eta
\end{align*}
\]

The cross sections for \(N^*(1535) \) production can be estimated from the empirical \(\eta \) yields [19], such as \(\sigma(pp(nn) \rightarrow NN^*(1535)) \approx 2\sigma(pp(nn) \rightarrow pp(nn)\eta) = (a) \ 0.34s_r/(0.253 + s_r^2), \quad (b) \ 0.4s_r/(0.552 + s_r^2), \quad \text{and} \quad \text{(c) } \ 0.204s_r/(0.058 + s_r^2) \text{ in mb and } s_r = \sqrt{s} - \sqrt{s_0} \text{ with } \sqrt{s} \text{ being the invariant energy in GeV and } \sqrt{s_0} = 2m_N + m_\eta = 2.424 \text{ GeV [18]}. \text{ Case (b) is used in this work. The } np \text{ cross sections are about three times larger than that for } nn \text{ or } np. \text{ We have taken a constant width of } \Gamma = 150 \text{ MeV for the } N^*(1535) \text{ decay, and } N^*(1535) \text{ has half probabilities decaying into the } \eta \text{ meson and half to } \pi. \]

3 Results and discussion

At the considered energies in this work, the \(\eta \) meson is produced from the decay of \(N^*(1535) \). Therefore, the properties of \(N^*(1535) \) in nuclear medium are dominant on the \(\eta \) dynamics. We managed the mean-field potential for \(N^* (1535) \), similarly to the nucleons, \(\pi^0 \) and \(\eta \) have similar properties in the nuclear medium. Both of the mesons are neutral particles and decay from \(N^*(1535) \) with the same probability. In this work, we did not include the isospin, density, and momentum-dependent pion-nucleon potential in Ref. [18]. The \(\eta/\pi^0 \) ratios in heavy-ion collisions are calculated as a test of our approach. The values in light (\(^{12}\text{C} + ^{12}\text{C} \)), intermediate-mass (\(^{40}\text{Ar} + ^{50}\text{Ca}, ^{86}\text{Kr} + ^{90}\text{Zr} \)), and heavy symmetric (\(^{197}\text{Au} + ^{197}\text{Au} \)) systems are compared with the available data from the two-arm photon spectrometer (TAPS) collaboration [20], as shown in

![Fig. 1 The density and momentum dependence of the \(\eta \) optical potential](image-url)
Table 1. Basically, the calculations are consistent with the available data. The ratios increase with participating numbers of colliding partners and incident energies.

E_{Beam} (A GeV)	Systems	Data (%)	Calculated values (%)
1.0	C + C	0.57 ± 0.14	1.186
1.0	Ar + Ca	1.3 ± 0.8	1.321
1.0	Kr + Zr	1.3 ± 0.6	1.663
1.0	Au + Au	1.4 ± 0.6	2.087
1.5	Ar + Ca	2.2 ± 0.4	2.823

The extraction of the in-medium properties of η in proton-induced reactions has advantages in comparison to heavy-ion collisions, in which particles are produced around the saturation densities ($0.8\rho_0 \sim 1.2\rho_0$) [21–23]. The in-medium properties of η are related to the issues of resonance production in the nuclear medium, i.e., N^* (1535), resonance-nucleon and η-nucleon potentials. Here, we concentrate on the η-nucleon interaction from proton–nucleus collisions and its impact on η production near threshold energies ($E_{\text{th}}(\eta) = 1.26$ GeV). Shown in Fig. 2 is the rapidity distributions in collisions of protons on 12C and 40Ca at the kinetic energy of 1.5 GeV. It should be noticed that the η-nucleon potential enhances the backward η emissions. The transverse momentum spectra are

Fig. 2 Rapidity distributions in proton-induced reactions at incident energy of 1.5 GeV. The solid and dashed lines are shown for guiding eyes.

Fig. 3 Transverse momentum distributions in proton-induced reactions at incident energy of 1.5 GeV.

Fig. 4 Kinetic-energy spectra of invariant cross sections in collisions of protons on 12C and 40Ca at incident energy of 1.5 GeV, respectively. The solid lines are shown for guiding eyes.
calculated, as shown in Fig. 3. The high-momentum yields are reduced because of the enhancement of reabsorption process in \(\eta\)-nucleon scattering with the eta potential. Similar structure is also found from the kinetic-energy spectra of invariant cross sections, as shown in Fig. 4. The effect becomes more pronounced with increasing mass numbers of target nuclei because of larger collision probabilities between \(\eta\) and nucleons. The invariant spectra become steeper with the potential for both cases, which show a lower local temperature and longer interaction time of the \(\eta\) meson in the nuclear medium after inclusion of the \(\eta\)-nucleon potential. The strength of the \(\eta\)-nucleon potential is not well refined as of now, which is of significance in the formation of possible \(\eta\)-bound states (\(\eta\)-nucleus). The results would be helpful for extracting the \(\eta\)-nucleon potential from proton–nucleus collisions in the near future.

4 Conclusion

The dynamics of the \(\eta\) meson produced in proton-induced nuclear reactions have been investigated within the LQMD transport model. The \(\eta\) mesons are produced via the decay of \(N^+(1535)\). The reabsorption of \(\eta\) and \(N^+(1535)\) by surrounding nucleons dominates the \(\eta\) distributions in phase space. The attractive \(\eta\)-nucleon potential enhances the reabsorption process in the nuclear medium, which leads to the reduction in forward emissions. The yields of \(\eta\) in collisions of protons on nuclei at high momenta (kinetic energies) are reduced with the \(\eta\)-nucleon potential. The effect becomes more pronounced by increasing the mass numbers of target nuclei.

References

1. B.E. Gibson, E.V. Hungerford III, A survey of hypernuclear physics. Phys. Rep. 257, 349–388 (1995). doi:10.1016/0370-1573(94)00114-1
2. E. Friedman, A. Gal, In-medium nuclear interactions of low-energy hadrons. Phys. Rep. 452, 89–153 (2007). doi:10.1016/j.physrep.2007.08.002
3. A.W. Steiner, M. Prakash, J.M. Lattimer, P.J. Ellis, Isospin asymmetry in nuclei and neutron stars. Phys. Rep. 411, 325–375 (2005). doi:10.1016/j.physrep.2005.02.004
4. B.A. Li, L.W. Chen, C.M. Ko, Recent progress and new challenges in isospin physics with heavy-ion reactions. Phys. Rep. 464, 113–281 (2008). doi:10.1016/j.physrep.2008.04.005
5. H.C. Chiang, E. Oset, L.C. Liu, Width of bound \(\eta\) in nuclei. Phys. Rev. C 44, 738–746 (1991). doi:10.1103/PhysRevC.44.738
6. K. Tsushima, D.H. Lu, A.W. Thomas, K. Saito, Are \(\eta\)-and \(\omega\)-nuclear states bound? Phys. Lett. B 443, 26–32 (1998). doi:10.1016/S0370-2693(98)01336-7
7. T. Wass, W. Weise, S-wave interactions of \(\pi\) and \(\eta\) mesons in nuclear matter. Nucl. Phys. A 625, 287–306 (1997). doi:10.1016/S0375-9474(97)00487-9
8. X.H. Zhong et al., \(\eta\) mesons in nuclear matter. Phys. Rev. C 73, 015205 (2006). doi:10.1103/PhysRevC.73.015205
9. P.Z. Ning, Strangeness Nuclear Physics (Science Press, Beijing, China, 2008)
10. T. Inoue, E. Oset, \(\eta\) in the nuclear medium within a chiral unitary approach. Nucl. Phys. A 710, 354–370 (2002). doi:10.1016/S0375-9474(02)01167-3
11. E. Chiavassa et al., The reaction \(p^7C \rightarrow \eta X\) from \(T_p=800\) MeV to \(T_p=1500\) MeV. Europhys. Lett. 41, 365–369 (1998)
12. G. Agakishiev et al., Inclusive pion and \(\eta\) production in \(p+N\) collisions at 3.5 GeV beam energy. Phys. Rev. C 88, 024904 (2013). doi:10.1103/PhysRevC.88.024904
13. Z.Q. Feng, Momentum dependence of the symmetry potential and its influence on nuclear reactions. Phys. Rev. C 84, 024610 (2011). doi:10.1103/PhysRevC.84.024610
14. Z.Q. Feng, Nuclear in-medium effects and collective flows in heavy-ion collisions at intermediate energies. Phys. Rev. C 85, 014604 (2012). doi:10.1103/PhysRevC.85.014604
15. Z.Q. Feng, Effective mass splitting of neutron and proton and isospin emission in heavy-ion collisions. Nucl. Phys. A 878, 3–13 (2012). doi:10.1016/j.nuclphysa.2012.01.014
16. J. Aichelin, “Quantum” molecular dynamics: a dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions. Phys. Rep. 202, 233–360 (1991)
17. Z.Q. Feng et al., Dynamical analysis on heavy-ion fusion reactions near Coulomb barrier. Nucl. Phys. A 802, 91–106 (2008). doi:10.1016/j.nuclphysa.2008.01.022
18. Z.Q. Feng et al., In-medium and isospin effects on particle production near threshold energies in heavy-ion collisions. Phys. Rev. C 92, 044604 (2015). doi:10.1103/PhysRevC.92.044604
19. Wolf Gy, W. Cassing, U. Mosel, \(\eta\) and dilepton production in heavy-ion reactions. Nucl. Phys. A 552, 549–570 (1993). doi:10.1016/0375-9474(93)90285-6
20. R. Averbeck et al., Neutral pions and \(\eta\) mesons as probes of the hadronic fireball in nucleus-nucleus collisions around 1A GeV. Phys. Rev. C 67, 024903 (2003). doi:10.1103/PhysRevC.67.024903
21. Z.Q. Feng, W.J. Xie, G.M. Jin, Nuclear in-medium effects of strange particles in proton-nucleus collisions. Phys. Rev. C 90, 064604 (2014). doi:10.1103/PhysRevC.90.064604
22. Z.Q. Feng, Nuclear dynamics induced by antiprotons. Nucl. Sci. Tech. 26, S20512 (2015). doi:10.15388/j.1001-8042/nst.26.S20512
23. A.B. Larionov, Antiproton–nucleus reactions at intermediate energies. Nucl. Sci. Tech. 26, S20506 (2015). doi:10.15388/j.1001-8042/nst.26.S20506