SPIN-ORBITAL MOTION: SYMMETRY AND DYNAMICS

A. Fedorova, M. Zeitlin, IPME, RAS, St. Petersburg, V.O. Bolshoj pr., 61, 199178, Russia *†

e-mail: zeitlin@math.ipme.ru

Abstract
We present the applications of variational–wavelet approach to nonlinear (rational) model for spin-orbital motion: orbital dynamics and Thomas-BMT equations for classical spin vector. We represent the solution of this dynamical system in framework of periodical wavelets via variational approach and multiresolution.

1 INTRODUCTION
In this paper we consider the applications of a new numerical-analytical technique which is based on the methods of local nonlinear harmonic analysis or wavelet analysis to the spin orbital motion. Wavelet analysis is a relatively novel set of mathematical methods, which gives us a possibility to work with well-localized bases in functional spaces and give for the general type of operators (differential, integral, pseudodifferential) in such bases the maximum sparse forms. Our approach in this paper is based on the generalization of variational-wavelet approach from [1]-[8], which allows us to consider not only polynomial but rational type of nonlinearities [9]. The solution has the following form

\[z(t) = z_{N}^{low}(t) + \sum_{j \geq N} z_{j}(\omega_{j} t), \quad \omega_{j} \sim 2^{j} \]

which corresponds to the full multiresolution expansion in all time scales. Formula (1) gives us expansion into a slow part \(z_{N}^{low} \) and fast oscillating parts for arbitrary \(N \). So, we may move from coarse scales of resolution to the finest one for obtaining more detailed information about our dynamical process. The first term in the RHS of equation (1) corresponds on the global level of function space decomposition to resolution space and the second one to detail space. In this way we give contribution to our full solution from each scale of resolution or each time scale. The same is correct for the contribution to power spectral density (energy spectrum): we can take into account contributions from each level/scale of resolution.

In part 2 we consider spin-orbital motion. In part 3 starting from variational formulation we construct via multiresolution analysis explicit representation for all dynamical variables in the base of compactly supported periodized wavelets. In part 4 we consider results of numerical calculations.

2 SPIN-ORBITAL MOTION
Let us consider the system of equations for orbital motion and Thomas-BMT equation for classical spin vector [10]:

\[\frac{dq}{dt} = \frac{\partial H_{orb}}{\partial p}, \quad \frac{dp}{dt} = -\frac{\partial H_{orb}}{\partial q}, \quad \frac{ds}{dt} = w \times s, \]

where

\[H_{orb} = \frac{1}{2} \sqrt{\pi^2 + m_0 c^2} + e \Phi, \]

\[w = -\frac{e}{m_0 c^\gamma} \left(\frac{G(\vec{\pi} \cdot \vec{B})}{1 + \gamma} \right) + \frac{e}{m_0^2 c^3 \gamma} G + \frac{G(\vec{\pi} \times E)}{1 + \gamma}, \]

\[q = (q_1, q_2, q_3), \quad p = (p_1, p_2, p_3) \] are canonical position and momentum, \(s = (s_1, s_2, s_3) \) is the classical spin vector of length \(h/2 \), \(\pi = (\pi_1, \pi_2, \pi_3) \) is kinetic momentum vector. We may introduce in 9-dimensional phase space \(z = (q, p, s) \) the Poisson brackets \(\{ f(z), g(z) \} = f_q g_p - f_p g_q + [f_s \times g_s] \cdot s \) and the Hamiltonian equations are \(\frac{dz}{dt} = \{ z, H \} \) with Hamiltonian

\[H = H_{orb}(q, p, t) + w(q, p, t) \cdot s. \]

More explicitly we have

\[\frac{dq}{dt} = \frac{\partial H_{orb}}{\partial p} + \frac{\partial (w \cdot s)}{\partial p}, \]

\[\frac{dp}{dt} = -\frac{\partial H_{orb}}{\partial q} - \frac{\partial (w \cdot s)}{\partial q}, \]

\[\frac{ds}{dt} = [w \times s] \]

We will consider this dynamical system in [11] via invariant approach, based on consideration of Lie-Poison structures on semidirect products. But from the point of view which we used in [9] we may consider the similar approximations and then we also arrive to some type of polynomial/rational dynamics.

3 VARIATIONAL WAVELET APPROACH FOR PERIODIC TRAJECTORIES
We start with extension of our approach to the case of periodic trajectories. The equations of motion corresponding to our problems may be formulated as a particular case of the general system of ordinary differential equations

\[dx_j/dt = f_j(x_j, t), \quad (i, j = 1, \ldots, n), \quad 0 \leq t \leq 1, \]

where \(f_i \) are not more than rational functions of dynamical variables \(x_j \) and have arbitrary dependence of time but with periodic boundary conditions. According to our variational approach we have the solution in the following form

\[x_i(t) = x_i(0) + \sum_k \lambda_k^i \varphi_k(t), \quad x_i(0) = x_i(1), \]
where λ^k_k are the roots of reduced algebraic systems of equations with the same degree of nonlinearity and $\varphi_k(t)$ corresponds to useful type of wavelet bases (frames). It should be noted that coefficients of reduced algebraic system are the solutions of additional linear problem and also depend on particular type of wavelet construction and type of bases.

Our constructions are based on multiresolution approach. Because affine group of translation and dilations is inside the approach, this method resembles the action of a microscope. We have contribution to final result from each scale of resolution from the whole infinite scale of spaces. More exactly, the closed subspace V_j corresponds to level j of resolution, or to scale j. We consider a J-regular multiresolution analysis of $L^2(\mathbb{R}^n)$ (of course, we may consider any different functional space) which is sequence of increasing closed subspaces V_j:

$$\ldots V_{-2} \subset V_{-1} \subset V_0 \subset V_1 \subset V_2 \subset \ldots$$

Then just as V_j is spanned by dilation and translations of the scaling function, so W_j are spanned by translations and dilation of the mother wavelet $\psi_{jk}(x)$, where

$$\psi_{jk}(x) = 2^{j/2} \psi(2^j x - k).$$

All expansions, which we use, are based on the following properties:

$$L^2(\mathbb{R}) = V_0 \bigoplus_{j=0}^{\infty} W_j$$

We need also to find in general situation objects

$$\Lambda^d_{\ell_1 \ell_2 \ldots \ell_n} = \int_{-\infty}^{\infty} \prod_{k \in \mathbb{Z}} \varphi^d_{\ell_k}(x) dx,$$

but now in the case of periodic boundary conditions. Now we consider the procedure of their calculations in case of periodic boundary conditions in the base of periodic wavelet functions on the interval $[0,1]$ and corresponding expansion (1) inside our variational approach. Periodization procedure gives us

$$\check{\psi}_{j,k}(x) = \sum_{\ell \in \mathbb{Z}} \psi_{j,k}(x-\ell)$$

$$\check{\varphi}_{j,k}(x) = \sum_{\ell \in \mathbb{Z}} \varphi_{j,k}(x-\ell)$$

So, $\check{\varphi}, \check{\psi}$ are periodic functions on the interval $[0,1]$. Because $\varphi_{j,k} = \varphi_{j,k'}$ if $k = k' \mod(2^j)$, we may consider only $0 \leq k \leq 2^j$ and as consequence our multiresolution has the form $\bigcup_{j \geq 0} V_j = L^2[0,1]$ with $V_j = \text{span}\{\varphi_{j,k}\}_{k=0}^{2^j-1}$. Then just as V_j is spanned by dilation and translations of the scaling function, so W_j are spanned by translations and dilation of the mother wavelet $\psi_{jk}(x)$, where

$$\psi_{jk}(x) = 2^{j/2} \psi(2^j x - k).$$

All expansions, which we use, are based on the following properties:

$$L^2(\mathbb{R}) = V_0 \bigoplus_{j=0}^{\infty} W_j$$

We need also to find in general situation objects

$$\Lambda^d_{\ell_1 \ell_2 \ldots \ell_n} = \int_{-\infty}^{\infty} \prod_{k \in \mathbb{Z}} \varphi^d_{\ell_k}(x) dx,$$

but now in the case of periodic boundary conditions. Now we consider the procedure of their calculations in case of periodic boundary conditions in the base of periodic wavelet functions on the interval $[0,1]$ and corresponding expansion (1) inside our variational approach. Periodization procedure gives us

$$\check{\psi}_{j,k}(x) = \sum_{\ell \in \mathbb{Z}} \psi_{j,k}(x-\ell)$$

$$\check{\varphi}_{j,k}(x) = \sum_{\ell \in \mathbb{Z}} \varphi_{j,k}(x-\ell)$$

So, $\check{\varphi}, \check{\psi}$ are periodic functions on the interval $[0,1]$. Because $\varphi_{j,k} = \varphi_{j,k'}$ if $k = k' \mod(2^j)$, we may consider only $0 \leq k \leq 2^j$ and as consequence our multiresolution has the form $\bigcup_{j \geq 0} V_j = L^2[0,1]$ with $V_j = \text{span}\{\varphi_{j,k}\}_{k=0}^{2^j-1}$. Integration by parts and periodicity gives useful relations between objects (9) in particular quadratic case ($d = d_1 + d_2$):

$$\Lambda^d_{\ell_1 \ell_2} = (-1)^{d_1} \Lambda^0_{\ell_1 k_2} \Lambda^{d_2}_{k_1 k_2} + (-1)^{d_2} \Lambda^0_{\ell_1 k_2} \Lambda^{d_1}_{k_1 k_2}$$

So, any 2-tuple can be represented by $\Lambda^d_{\ell_1 \ell_2}$. Then our second additional linear problem is reduced to the eigenvalue problem for $\Lambda^d_{\ell_1 \ell_2}$ by creating a system of 2^J homogeneous relations in $\Lambda^d_{\ell_1 \ell_2}$ and inhomogeneous equations. So, if we have dilation equation in the form $\varphi(x) = \sqrt{2} \sum_{k \in \mathbb{Z}} h_k \psi(2x-k)$, then we have the following homogeneous relations

$$\Lambda^d_{\ell_1 \ell_2} = 2^d \sum_{m=0}^{N-1} \sum_{\ell=0}^{N-1} h_m h_\ell \Lambda^d_{\ell_1+2k-m}$$

or in such form $A \lambda^d = d^d \lambda^d$, where $\lambda^d = \{\Lambda^d_{\ell_1 \ell_2}\}_{0 \leq k \leq 2^j}$.

Inhomogeneous equations are:

$$\sum_{\ell} M^d_{\ell} \lambda^d = d! 2^{-j/2},$$

where objects $M^d_{\ell}(|\ell| \leq N - 2)$ can be computed by recursive procedure

$$M^d_{\ell} = 2^{-j(2d+1)/2} \tilde{M}^d_{\ell},$$

$$\tilde{M}^d_{\ell} = \langle x^k, \varphi_{0,\ell} \rangle = \sum_{j=0}^{k} \binom{k}{j} n^{k-j} M^d_{0}, \quad M^d_{0} = 1.$$
to fast components (5 frequencies) as details for approxi-
mation. Then on Fig. 3, from bottom to top, we demon-
strate the summation of contributions from corresponding
levels of resolution given on Fig. 2 and as result we re-
store via 5 scales (frequencies) approximation our dynam-
ical process (top row on Fig. 3). The same decomposi-
tion/approximation we produce also on the level of power
spectral density in the process with noise (Fig. 4).

We would like to thank Professor James B. Rosenzweig
and Mrs. Melinda Laraneta for nice hospitality, help and
support during UCLA ICFA Workshop.

5 REFERENCES

[1] A.N. Fedorova and M.G. Zeitlin, 'Wavelets in Optimization
and Approximations', Math. and Comp. in Simulation, 46,
527, 1998.

[2] A.N. Fedorova and M.G. Zeitlin, 'Wavelet Approach to Me-
chanical Problems. Symplectic Group, Symplectic Topol-
ogy and Symplectic Scales', New Applications of Nonlin-
ear and Chaotic Dynamics in Mechanics, 31,101 (Kluwer,
1998).

[3] A.N. Fedorova and M.G. Zeitlin, 'Nonlinear Dynamics of
Accelerator via Wavelet Approach', CP405, 87 (American
Institute of Physics, 1997).

Los Alamos preprint, physics/9710035.

[4] A.N. Fedorova, M.G. Zeitlin and Z. Parsa, 'Wavelet Ap-
proach to Mechanical Problems. Symplectic Group, Symplectic
Topology and Symplectic Scales', New Applications of Nonlin-
ear and Chaotic Dynamics in Mechanics, 31,101 (Kluwer,
1998).

[5] A.N. Fedorova, M.G. Zeitlin and Z. Parsa, Proc. EPAC98,
930, 933 (Institute of Physics, 1998).

[6] A.N. Fedorova, M.G. Zeitlin and Z. Parsa, Variational Ap-
proach in Wavelet Framework to Polynomial Approxima-
tions of Nonlinear Accelerator Problems. CP468, 48 (A-
merican Institute of Physics, 1999).

Los Alamos preprint, physics/990262

[7] A.N. Fedorova, M.G. Zeitlin and Z. Parsa, Symmetry,
Hamiltonian Problems and Wavelets in Accelerator Physics.
CP468, 69 (American Institute of Physics, 1999).

Los Alamos preprint, physics/990263.

[8] A.N. Fedorova and M.G. Zeitlin, Nonlinear Accelerator
Problems via Wavelets, parts 1-8, Proc. PAC99, 1614, 1617,
1620, 2900, 2903, 2906, 2909, 2912 (IEEE/APS, New York,
1999).

Los Alamos preprints: physics/9904039, physics/9904040,
physics/9904041, physics/9904042, physics/9904043,
physics/9904045, physics/9904046, physics/9904047.

[9] A.N. Fedorova and M.G. Zeitlin, Los Alamos preprint:
physics/0003095.

[10] V. Balandin, NSF-ITP-96-155i.

[11] A.N. Fedorova, M.G. Zeitlin, in press

[12] G. Schlossnagle, J.M. Restrepo and G.K. Leaf, Technical
Report ANL-93/34.