Braid Groups of the Sun Graph

Alice Neels and Stephen Privitera

November 21, 2018

Abstract

In this article we calculate the n-string braid groups of certain non-contractible graphs. We use techniques from the work of A. Abrams, F. Connolly and M. Doig combined with Van Kampen’s Theorem to prove these results.

1 Introduction and Statement of Results

Recently, there has been some interest in the braid groups of a graph G (see for example [1], [2], [3], [4], [5], [6]). These groups, $B_n(G,c)$, were calculated indirectly in [6] in the case where G is a star. Doig critically extends this result in [5] by providing explicit generators for $B_n(G,c)$ for any star G. In [4], Connolly and Doig provide a method of calculating $B_n(T,c)$ where T is a linear tree. Their method seems limited to the realm of contractible graphs (trees).

In this paper we exhibit a free basis of order n for $B_n(L_1,c)$ for a certain non-contractible graph L_1. We also provide an explicit free basis of order $n + 1$ for $B_2(L_n,c)$ for certain non-contractible graphs L_n with n nodes.

We define L_n and configuration spaces and braid groups as follows:

Definition 1.1. (Sun Graph)

Define $A_j = \{re^{2ij\pi/n} : 1 \leq r \leq 2\}$ for each j, $0 \leq j < n$. We then define the n-ray sun graph as $L_n = S^1 \cup A_0 \cup A_1 \cup ... \cup A_{n-1}$.

Fig. 1: Example Sun Graphs

\begin{center}
\begin{tabular}{ccc}
\hspace{2cm} & \hspace{2cm} \\
L_1 & L_2 & L_8
\end{tabular}
\end{center}

Definition 1.2. (Configuration Space and Braid Group)

Let X be a space. The n-point configuration space of X is
\[
U_n^{top}(X) = \{ c \subset X : |c| = n \},
\]
given the quotient topology from the natural surjection
\[
p : X^n - \Delta \to U_n^{top}(X)
\]
\[
(x_1, x_2, ..., x_n) \mapsto \{ x_1, x_2, ..., x_n \}
\]
where \(\Delta = \{ (x_1, x_2, ..., x_n) \in X^n : x_i = x_j \text{ for some } i \neq j \} \) is the fat diagonal of \(X^n \). The \(n \)-string braid group of \(X \) is
\[
B_n(X, c) = \pi_1(U_n^{top}(X), c)
\]
where \(c \in U_n^{top}(X) \).

In order to establish our results, we will need a version of Van Kampen’s theorem to compute \(\pi_1(A \cup B) \) when \(A \cap B \) is not path connected. This seems to be a well known folk theorem, but no explicit reference is available. For the reader’s convenience, the theorem and a proof are given in the Appendix.

This paper was funded by the NSF grant 0354132. It is the result of our work at the Notre Dame Research Experience for Undergraduates in Mathematics for the summer of 2005. We would like to thank our advisor, Frank Connolly for his advice and support. The authors would also like to thank Naomi Jocnowitz for her invaluable encouragement, advice and patience.

2 A discussion of generators of \(B_n(S_3) \)

Let \(S_3 \) denote the graph on 4 vertices with one vertex \(v_0 \) of degree 3 and three vertices \(v_1, v_2 \) and \(v_3 \) of degree one. Label the arms of \(S_3 \) as \(A_j = [v_0, v_j] \) for \(j = 1, 2, 3 \).

Fig. 2: \(S_3 \)

\[
\begin{array}{c}
v_3 \\
A_3 \\
v_0 \\
A_2 \\
A_1 \\
v_1
\end{array}
\]

As we later make repeated use of embeddings of \(S_3 \) into \(L_n \), it is not necessary to specify the generators of \(B_n(S_3) \). We later use the images of these generators to give us generators of \(B_n(L_n) \).

In [4], Connolly and Doig construct a one-dimensional deformation retract, \(D_n(S_3) \), of \(U_n^{top}(S_3) \). A vertex \(c \) in \(D_n(S_3) \) is uniquely determined by the
quantities \(a_i = |A_i \cap c| \). Therefore, we may represent each vertex by its 3-tuple, \((a_1, a_2, a_3)\). We classify vertices as type I and type II following Construction 2.2 of [4]. If \(c \) is a type I vertex, then \(a_1 + a_2 + a_3 = n + 2 \) with \(a_i < 0 \forall i \). If \(c \) is a type II vertex, then \(a_1 + a_2 + a_3 = n \) with \(a_i \geq 0 \forall i \). Let \(c^{(n)} \) be the configuration \((n, 1, 1)\).

Doig [5] and Connolly-Doig [4] prove that \(B_n(S_3, c^{(n)}) \) is a free group on \(\binom{n}{2} \) generators. In [4], Connolly and Doig construct an explicit a maximal tree \(T \) of the deformation retract \(D_n(S_3) \). We now exploit the work of Connolly-Doig to give an explicit set of free generators for \(B_n(S_3, c_3) \).

The edges in \(D_n(S_3) - T \) are those edges beginning at the type I vertex \((a_1, a_2, a_3)\) having \(a_3 > 1 \) and ending at the type II vertex \((a_1 - 1, a_2, a_3 - 1)\). We denote each such directed edge by \(e_{a_1, a_2, a_3} \), where \((a_1, a_2, a_3)\) is its associated type I vertex. Let \(\rho \) and \(\rho' \) be paths in \(T \) from the base vertex \((n, 1, 1) = c^{(n)} \) to the type I and type II vertices of \(e_{a_1, a_2, a_3} \), respectively. Then the edge \(e_{a_1, a_2, a_3} \) determines a loop, \(\sigma_{a_1, a_2, a_3} = \rho \cdot e_{a_1, a_2, a_3} \cdot \rho'^{-1} \). Because \(T \) is a maximal tree in the graph \(D_n(S_3) \), Van Kampen’s Theorem implies that the homotopy classes of these loops, \(\sigma_{a_1, a_2, a_3} \), form a free basis for \(B_n(S_3, c^{(n)}) \).

3 The n-string braid group of the 1-ray sun graph

In this section we make use of a result of Abrams to give a free basis for \(B_n(L_1, c) \). In [1], Abrams defines the combinatorial configuration space, \(UC_n(G) \), of a graph \(G \), and proves that this is a deformation retract of \(U_n^{top}(G) \). We define a slightly more general space, \(U_n(G) \).

Definition 3.1. (Discretized Configuration Space)

Let \(G \) be a graph with all edges of length \(\kappa \). Then the discretized configuration space, \(U_n(G) \), is defined as the subset of \(U_n^{top}(G) \) consisting of all configurations in which for any two points in the configuration we can find an open edge \(e \) between them.

When the distance between any two essential vertices on \(G \) is at least \(\kappa(n+1) \) and the length of any cycle in \(G \) is at least \(\kappa(n+1) \), Abrams (II) proves that \(UC_n(G) \) is a deformation retract of \(U_n^{top}(G) \). As we change only the standard edge length, this proof also shows that \(U_n(G) \) is a deformation retract of \(U_n^{top}(G) \).

Set \(\kappa = \pi/(2n - 1) \). Let \(L = S^1 \cup [1, 2\kappa(n - 1) + 1] \), a subset of \(C \). Clearly, \(L \approx L_1 \) and therefore \(B_n(L, c) = B_n(L_1, c') \) for any \(c \in U_n^{top}(L) \) and \(c' \in U_n^{top}(L_1) \). We make \(L \) into a graph by dividing \(S^1 \) into \(4n - 2 \) edges of length \(\kappa \) such that 1 is a vertex. We divide the ray into \(2n - 2 \) edges of length \(\kappa \).
We define \(I \subset S^1 \) to be the closed interval of length \(\kappa/2 \) centered at -1. We define \(Y = Cl_L(L - I) \). Let \(S_3 \) be as before. However, specify that each arm of \(S_3 \) has length \(2\kappa(n - 1) \). There is a natural injective, distance preserving map \(i: S_3 \to Y \) such that \(i(v_0) = 1 \) and \(i(A_1) = [1, 2\kappa(n - 1) + 1] \). The map \(i \) induces an injective map \(i_c: U_n(S_3) \to U_n(L) \). We define \(c_n = i_c(c^{(n)}) \). Note that \(i_c(D_n(S_3)) \subset U_n(L) \), where the unit length for \(D_n(S_3) \) is taken to be 2\(\kappa \) (instead of 1 as in [5]).

Let \(\beta_0 \) be the homotopy class of the loop in \(U_n(L) \) at the base point \(c^n \) in which the point at 1 moves once counterclockwise around \(S^1 \) and the other points remain fixed. The map \(i_c \) induces a homomorphism \(i_c^*: B_n(S_3, c^{(n)}) \to B_n(L, c^n) \) of fundamental groups. Let \(\beta_i = i_c^*([\sigma_{i,n-i,2}]) \) for \(1 \leq i < n \), where \([\sigma_{i,n-i,2}] \) is a generator of \(B_n(S_3, c^{(n)}) \), as described in section 2.

The purpose of this section is to prove the following:

Theorem 3.1. \(B_n(L, c^n) = F(\beta_0, \beta_1, \ldots, \beta_{n-1}) \), the free group on the \(n \) letters \(\beta_0, \beta_1, \ldots, \beta_{n-1} \).

Proof. Define \(*_0 = \{x\} \cup c^{n-1} \) and \(*_1 = \{y\} \cup c^{n-1} \) where \(x \) and \(y \) are the uppermost and lowermost points in \(I \). Define \(A \) and \(B \) as follows:

\[
A = \{ c \in U_n(L) | c \cap I \neq \emptyset \} \\
B = U_n(L) \cap U_n^{top}(Y) \text{ where } Y = Cl_L(L - I)
\]

Notice that \(B \) contains all configurations in \(U_n(L) \) containing \(x \) or \(y \), and that at most one point can be in \(I \) in any given configuration in \(U_n(L) \) because the length of \(I \) is less than \(\kappa \). Note that \(U_n(L) = A \cup B \). We will apply the Generalized Van Kampen’s Theorem (see Appendix) to these sets.

We have \(A \cap B = C \cup D \), where:

\[
C = \{ c \in U_n(L) | x \in c \} \\
D = \{ c \in U_n(L) | y \in c \}
\]

Note that both \(C \) and \(D \) are deformation retracts of \(A \).
We note that $i_c(D_n(S_3))$ is a deformation retract of B. Therefore $\pi_1(B, *_0) \cong F(n)$ by the formula given in [5] for the n-string braid group of a 3-star.

Let τ be a path from $*_0$ to $c(n)$. Define $\beta_{i,j,k}$ to be the homotopy class $[\tau \sigma_{i,j,k} \tau^{-1}]$. The generators for $\pi_1(B, *_0)$ are $\beta_{i,j,k}$ where $i + j + k = n + 2$ and $k > 1$.

There a natural map $k : D_n(S_3) \to A$ given by $c \mapsto i_c(c) \cup \{x\}$. This map is a homotopy equivalence. Therefore $\pi_1(A, *_0) \cong B_{n-1}(S_3, c(n-1))$. By the formula given in Doig for the $n-1$-string braid group of a 3-star, $\pi_1(A, *_0) \cong F(n-1)$.

The generators for $\pi_1(A, *_0)$ are $\alpha_{i,j,k} = k_*([\sigma_{i,j,k}])$ where $i + j + k = n + 1$ and $k > 1$.

Since C and D are deformation retracts of A, we also have $\pi_1(C, *_0) \cong F(n-1)$ and $\pi_1(D, *_1) \cong F(n-1)$. The generators $\gamma_{i,j,k}$ for $\pi_1(C, *_0)$ and the generators $\delta_{i,j,k}$ for $\pi_1(D, *_1)$ are defined similarly to those of A.

Next, we must find paths t_A from $*_0$ to $*_1$ through A and t_B from $*_0$ to $*_1$ through B. These paths lead us to the maps

\[
\begin{align*}
j^A_0 : \pi_1(C, *_0) &\to \pi_1(A, *_0) \\
j^A_1 : \pi_1(D, *_1) &\to \pi_1(A, *_0) \\
j^B_0 : \pi_1(C, *_0) &\to \pi_1(B, *_0) \\
j^B_1 : \pi_1(D, *_1) &\to \pi_1(B, *_0)
\end{align*}
\]

Explicitly,

\[
\begin{align*}
j^A_0(\sigma) &= [\sigma] \\
j^A_1(\tau) &= [t_A^{-1}\tau t_A] \\
j^B_0(\sigma) &= [\sigma] \\
j^B_1(\tau) &= [t_B^{-1}\tau t_B]
\end{align*}
\]

Notice that the first two maps are isomorphisms. Clearly, because C and D are deformation retracts of A,

\[
\begin{align*}
j^A_0(\gamma_{i,j,k}) &= \alpha_{i,j,k} \\
j^A_1(\delta_{i,j,k}) &= \alpha_{i,j,k}
\end{align*}
\]

It follows from the definition of $\beta_{i,j,k}$ that

\[
\begin{align*}
j^B_0(\gamma_{i,j,k}) &= \beta_{i,j,k+1} \\
j^B_1(\delta_{i,j,k}) &= \beta_{i,j+1,k}
\end{align*}
\]
We apply Generalized Van Kampen’s Theorem now to \(U_n(L) = \mathcal{A} \cup \mathcal{B} \). We get
\[
B_n(L, *_0) \cong \frac{\pi_1(A, *_0) \ast \pi_1(B, *_0) \ast F(t)}{N},
\]
where \(N \) is the smallest normal group containing the \(\binom{n-1}{2} \) relations of the form
\[
\alpha_{i,j,k} \beta_{i,j,k+1}^{-1}
\]
and the \(\binom{n-1}{2} \) relations of the form
\[
\alpha_{i,j,k} t \beta_{i,j+1,k}^{-1} t^{-1}.
\]
We will first eliminate all \(\alpha_{i,j,k} \). For a given \(\alpha_{i,j,k} \), we have two relations involving \(\alpha_{i,j,k} \). They are:
\[
\alpha_{i,j,k} \beta_{i,j,k+1}^{-1}
\]
and
\[
\alpha_{i,j,k} t \beta_{i,j+1,k}^{-1} t^{-1}
\]
So we may eliminate each \(\alpha_{i,j,k} \). We are left with \(\binom{n-1}{2} \) relations of the form:
\[
\beta_{i,j,k+1} t \beta_{i,j+1,k}^{-1} t^{-1}
\]
Now eliminate the generators of the form \(\beta_{i,j,k+1} \). This will eliminate exactly \(\binom{n-1}{2} \) generators because \(k \geq 2 \).
We are left with \(n-1 \) generators of the form \(\beta_{i,j,2} \) where \(i + j = n \) and \(i, j \geq 1 \). Therefore \(B_n(L, *_0) \) has a free basis consisting of the \(n \) elements in \(\{ \beta_{i,j,2} | i + j = n \text{ and } i, j \geq 1 \} \cup \{ t \} \).
By a simple change of base point from \(*_0 \) to \(c^n \), we find that \(B_n(L, c^n) = F(t', \beta'_{1,n-1,2}, ..., \beta'_{n-1,1,2}) \) where \(t' = [\tau t \tau^{-1}] \) and \(\beta'_{i,n-i,2} = [\tau \beta_{i,n-i,2} \tau^{-1}] \) where \(\tau \) is some path from \(c^n \) to \(*_0 \).
Clearly, these are exactly the generators specified in our statement of the theorem. \(\square \)

4 The 2-Point Braid Group of the n-ray sun graph

Let \(L_n \) be as before. Let \(\zeta = e^{2\pi i/n} \). For each \(j, 0 \leq j < n \), define
\[
c_j = \{ \zeta^j, 2\zeta^j \}
\]
\[
L^j = S^1 \cup A_j
\]
\[
L^{-j} = Cl_{L_n}(L_n - A_j).
\]
Let t denote the loop given by $t(s) = \{e^{2\pi is}, 2\}$ for $0 \leq s \leq 2\pi$. Finally, define $c_* = \{1, \zeta\}$.

For each j, $0 \leq j < n$, there is an injection $i_j : S_3 \to L_n$ such that

\begin{align*}
 i_j(v_0) &= \zeta^j \\
 i_j([v_0, v_1]) &= A_j \\
 i_j([v_0, v_2]) &= [\zeta^j, \zeta^{j+1}] \\
 i_j([v_0, v_3]) &= [\zeta^j, \zeta^{j-1}]
\end{align*}

This map induces a map of configuration spaces $i'_j : U^{\text{top}}_n(S_3) \to U^{\text{top}}_n(L_n)$. From the above discussion, $B_2(S_3, c(2)) = F(\beta_{1,1,2})$. Let $\alpha_j = i'_j(\sigma_{1,1,2})$, where $\sigma_{1,1,2}$ is the loop in $U^{\text{top}}_n(S_3)$ described in section 2. We have the following theorem.

Theorem 4.1. Let τ_j be the obvious (counterclockwise) path from c_0 to c_j. Then the elements of the form $[\tau_j \alpha_j \tau_j^{-1}]$ together with $[\ell]$ form a free basis for the group $B_2(L_n, c_0)$.

Proof. The base case when $n = 1$ has already been established in the previous section. Now suppose that the theorem is true for all L_k with $k \leq n$. For the time being, we will work with the base configuration c_*. Define the following two sets:

\begin{align*}
 A &= U^{\text{top}}_2(L^{-0}) \cup U^{\text{top}}_2(L^{-1}) \\
 B &= \{ c \in U^{\text{top}}_2(L_n) | c \cap A_0 \neq \emptyset \text{ and } c \cap A_1 \neq \emptyset \}
\end{align*}

The sets B and $A \cap B$ are contractible subsets of $U^{\text{top}}_2(L_n)$. In fact, B is homeomorphic to $[0,1] \times [0,1]$, and $A \cap B$ is homeomorphic to $[0,1]$. By Van Kampen's theorem, it follows that $B_2(L_n, c_0) \cong \pi_1(A, c_0)$. Since A is path-connected, it is enough to compute $\pi_1(A, c_0)$.

Define the following sets:

\begin{align*}
 D &= U^{\text{top}}_2(L^{-0}) \\
 E &= U^{\text{top}}_2(L^{-1}).
\end{align*}

By the induction hypothesis applied to L_{n-1}, we know the free generators for $B_2(L_{n-1}, c_0)$ are of the form $[\tau_j \alpha_j \tau_j^{-1}]$ for $0 \leq j \leq n-1$ together with $[\ell]$. There
is a homeomorphism of \(L_{n-1} \) onto \(L^{-0} \) which maps \(A_j \subset L_{n-1} \) to \(A_{j+1} \subset L^{-0} \) for all \(j \). This homeomorphism induces a homeomorphism of \(U_2^{\text{top}}(L_{n-1}) \) onto \(D \), which in turn induces an isomorphism of fundamental groups \(B_2(L_{n-1}, c_0) \to B_2(L^{-0}, c_0) \). The isomorphism maps the generator \([\tau_j \alpha_j \tau_j^{-1}]\) in \(B_2(L_{n-1}, c_0) \) to \(\delta_{j+1} = [\tau_{j+1} \alpha_{j+1} \tau_{j+1}^{-1}] \) in \(B_2(L^{-0}, c_0) \). Similarly, there is a homeomorphism of \(L_{n-1} \) onto \(L^{-1} \) which maps \(A_j \subset L_{n-1} \) to \(A_{j+1} \subset L^{-1} \) for \(1 \leq j < n \) and maps \(A_0 \subset L_{n-1} \) to \(A_0 \subset L^{-1} \). This homeomorphism induces a homeomorphism of \(U_2^{\text{top}}(L_{n-1}) \) onto \(E \), which in turn induces an isomorphism of fundamental groups \(B_2(L_{n-1}, c_0) \to B_2(L^{-1}, c_0) \). The isomorphism maps the generator \([\tau_j \alpha_j \tau_j^{-1}]\) in \(B_2(L_{n-1}, c_0) \) to \(\epsilon_{j+1} = [\tau_{j+1} \alpha_{j+1} \tau_{j+1}^{-1}] \) for \(j > 0 \) and to \(\epsilon_0 = [\tau_0 \alpha_0 \tau_0^{-1}] \) for \(j = 0 \). Let the image of \([t]\) under these isomorphisms be denoted by \(\delta \in B_2(L^{-0}, c_0) \) and \(\epsilon \in B_2(L^{-1}, c_0) \).

Now consider \(D \cap E \). There is a homeomorphism between this space and \(U_2^{\text{top}}(L_{n-2}) \) which maps \(A_j \subset L_{n-1} \) to \(A_{j+2} \subset L^{-0} \) for all \(j \). The induced isomorphism of fundamental groups will send \([\tau_j \alpha_j \tau_j^{-1}]\) in \(B_2(L_{n-2}, c_0) \) to \(\gamma_{j+2} = [\tau_{j+2} \alpha_{j+2} \tau_{j+2}^{-1}] \) in \(B_2(L^0 \cap L^1, c_0) \). Let \(\gamma \) denote the image of \([t]\) under this isomorphism. Since

\[
\begin{align*}
\iota^D(\gamma_j) &= \delta_j \\
\iota^E(\gamma_j) &= \epsilon_j \\
\iota^D(\gamma) &= \delta \\
\iota^E(\gamma) &= \epsilon,
\end{align*}
\]

it follows by (Classical) Van Kampen’s Theorem that \(B_2(L_n, c_0) = F(\gamma_0, \delta_1, \delta_2, \ldots, \delta_{n-1}, t) \).

5 Appendix

Theorem 5.1. Generalized Van Kampen’s Theorem:

Let \(X \) be a polyhedron. Let \(A \) and \(B \) be subpolyhedra of \(X \) such that \(A \cup B = X \) and \(A \cap B = \bigcup_{i=0}^n C_i \) where each \(C_i \) is path connected and nonempty. Choose a base point \(c_i \in C_i \) for each \(C_i \). Find paths \(t_1^A, \ldots, t_n^A, t_1^B, \ldots, t_n^B \) such that \(t_i^A \) goes from \(c_0 \) to \(c_i \) in \(A \) and \(t_i^B \) goes from \(c_0 \) to \(c_i \) in \(B \). Let \(t_0^A = t_0^B \) be the constant path. The following maps of fundamental groups are induced by the inclusion of \(C_i \) into \(A \) and \(B \) followed by a base point change:

\[
\begin{align*}
j_i^A : \pi_1(C_i, c_i) &\to \pi_1(A, c_0) \\
&[\sigma] \mapsto [(t_i^A)^{-1} \sigma t_i^A] \\
j_i^B : \pi_1(C_i, c_i) &\to \pi_1(B, c_0) \\
&[\sigma] \mapsto [(t_i^B)^{-1} \sigma t_i^B]
\end{align*}
\]
Then there exists an isomorphism

\[\Phi : \frac{\pi_1(A, c_0) \ast \pi_1(B, c_0) \ast F(t_1, \ldots, t_n)}{N} \to \pi_1(X, c_0) \]

where the \(t_i \)'s are indeterminates and \(N \) is the smallest normal subgroup containing all words of the form \(j^A([\sigma]) (t_j j^B([\sigma]) t_i^{-1})^{-1} \) for \(0 \leq i \leq n \). \(t_0 \) is defined as the identity element of \(\pi_1(A, c_0) \ast \pi_1(B, c_0) \).

The map \(\Phi \) is specified by

\[\begin{align*}
\Phi(\alpha) &= i^A \alpha \text{ for all } \alpha \in \pi_1(A, c_0) \\
\Phi(\beta) &= i^B \beta \text{ for all } \beta \in \pi_1(B, c_0) \\
\Phi(t_i) &= [t_i^A(t_i^B)^{-1}] \text{ for } 1 \leq i \leq n
\end{align*} \]

where \(i^A \) and \(i^B \) are the homomorphisms induced by the inclusions of \(A \) and \(B \) into \(X \).

Proof. Let \(X \) be a polyhedron with subpolyhedra \(A \) and \(B \) such that \(X = A \cup B \) and \(A \cap B = \bigcup_{i=0}^n C_i \) where each \(C_i \) is path connected and nonempty. Let \(c_i \in C_i \) be base points.

Recall that an arc is a homeomorphic copy of the unit interval. Let \(t_i^A \subset A \) be arcs connecting \(c_0 \) to \(c_i \) in \(A \) and \(t_i^B \subset B \) be arcs connecting \(c_0 \) to \(c_i \) in \(B \) for \(1 \leq i \leq n \) such that \(t_i^A \cup t_i^B \approx S^1 \). We also require that \(A \cap (t_i^A \cup t_i^B) \) and \(B \cap (t_i^A \cup t_i^B) \) are arcs.

We will work by induction. Assume that the theorem holds for some \(n \geq 1 \). The base case \((n = 0)\) is obtained from Van Kampen’s Theorem.

Set

\[\begin{align*}
A' &= A \cup t_1^B \\
B' &= B \cup t_1^A
\end{align*} \]

Now \(A' \cup B' = X \), but \(A' \cap B' = C_1' \cup C_2 \cup \ldots \cup C_n \) where \(C_1' = C_0 \cup C_1 \cup t_1^A \cup t_1^B \). Note that \(A' \cap B' \) has one less component than \(A \cap B \).

We know that

\[\begin{align*}
\pi_1(A', c_0) &= \pi_1(A, c_0) \ast F(t) \\
\pi_1(B', c_0) &= \pi_1(B, c_0) \ast F(t) \\
\pi_1(C', c_0) &= \pi_1(C_0, c_0) \ast \pi_1(C_1 \cup t_1^A \cup t_1^B, c_0)
\end{align*} \]

Then we apply the inductive hypothesis to \(X \) as \(A' \cup B' \). The theorem follows. \(\square \)
Alice Neels is an undergraduate at Reed College and may be reached at neelsa@reed.edu. Stephen Privitera is an undergraduate at the University of Rochester and may be reached at sprivite@mail.rochester.edu.

References

[1] A. Abrams, *Configuration Spaces and Braid Groups of Graphs*, Ph.D. Thesis, University of California, Berkeley, 2000.

[2] A. Abrams, *Configuration Spaces of Colored Graphs* Geometriae Dedicata, vol. 92 (2002), pp. 185-194.

[3] A. Abrams and R. Ghrist, *Finding topology in a factory: configuration spaces*, Amer. Math. Monthly (109), 140-150, 2002.

[4] F. Connolly and M. Doig, *Braid Groups and Right Angled Artin Groups*, ArXiv preprint math.GT/0411368, 2004.

[5] M. Doig, *Stellar Braiding*, ArXiv preprint math.GT/0412531, 2004.

[6] R. Ghrist, *Configuration spaces and braid groups on graphs in robotics*, (posted, 10/98). In Braids, Links, and Mapping Class Groups: the Proceedings of Joan Birman’s 70th Birthday, AMS/IP Studies in Mathematics volume 24, 29-40, 2001. ArXiv preprint math.GT/9905023

[7] A. Hatcher, *Algebraic Topology* Cambridge University Press, 2002.