CNNATT: Deep EEG & fNIRS Real-Time Decoding of bimanual forces

Pablo Ortega¹, Tong Zhao² and Aldo Faisal¹,²

Abstract—Non-invasive cortical neural interfaces have only achieved modest performance in cortical decoding of limb movements and their forces, compared to invasive brain-computer interfaces (BCIs). While non-invasive methodologies are safer, cheaper and vastly more accessible technologies, signals suffer from either poor resolution in the space domain (EEG) or the temporal domain (BOLD signal of functional Near Infrared Spectroscopy, fNIRS). The non-invasive BCI decoding of bimanual force generation and the continuous force signal has not been realised before and so we introduce an isometric grip force tracking task to evaluate the decoding. We find that combining EEG and fNIRS using deep neural networks works better than linear models to decode continuous grip force modulations produced by the left and the right hand. Our multi-modal deep learning decoder achieves 55.2 FV AF[%] in force reconstruction and improves the decoding performance by at least 15% over each individual modality. Our results show a way to achieve continuous hand force decoding using cortical signals obtained with non-invasive mobile brain imaging has immediate impact for rehabilitation, restoration and consumer applications.

I. INTRODUCTION

Brain computer interfaces (BCIs) offer an alternative way to interact with our environment. They are specially relevant for people whose natural ability to physically interact has been lost or damaged. There has been a lot of progress in the decoding of kinematic variables in BCI [1], [2], [3]. In contrast, human force decoding is less explored even though force is essential for safe and meaningful mechanical interactions [4]. In addition, force decoding can provide more generalisable BCI decoders [5] specially in changing dynamic conditions [6]. Even in the cases where the ultimate goal of a BCI is different from force decoding, understanding and exploiting signals that already exist in the brain might offer a more intuitive control than learning new ones [7]. Force control is specially relevant for the hands. As the specie with greatest hand dexterity we spend most of our day physically interacting with our environment through our hands. Indeed, for completely paralysed people the recovery of the hand function is the most relevant priority [8].

To enable intuitive BCI hand force control we first need to understand how to decode force from cortical signals in healthy humans. Invasive BCI have done a lot of progress in the force decoding field in humans [9] and monkeys [1]. More recently, invasive BCIs showed the advantages of non-linear approaches in force decoding [3]. However they have a low acceptance rate across potential users due to the several surgical procedures they require. In contrast, for non-invasive BCI, force decoding still remains relatively unexplored. Discrete force characteristics have been decoded from multi-modal (EEG and fNIRS) signals. In [10] two force levels (20% and 60% of the maximum voluntary contraction, MVC) were decoded and force detection was performed for the right foot. In [11] and [12] a similar multi-modal approach was used for the classification of force imageries. These studies showed that the combined use of fNIRS and EEG provided a significant advantage in classification of discrete force characteristics. In [13] EEG was used to decode unimanual force trajectories and reported a modest reconstruction performance (correlation ≈ 0.42). However, the multi-modal (EEG and fNIRS) approach has not yet been explored for the decoding of continuous force trajectories. Furthermore, to the best of our knowledge, no non-invasive BCI study has explored the simultaneous production of force with the right and the left hand despite bimanual interactions being more frequent in daily activities.

We use here a multi-modal system (fNIRS and EEG) to continuously decode bimanual force trajectories and explore the advantages that deep learning (DL) introduces in the fusion of signals with different neurophysiological origins.

II. METHODS AND MATERIALS

A. Protocol and task

Ten participants (N = 10) were asked to perform a bimanual isometric contraction task. We provided the force profile that each subject had to track with each hand with two characteristics (Fig. 1). First, both hands were either contracted or relaxed at the same time (relaxation vs contraction). Second, in the contraction state the hands had to
dynamically track four force profiles with different crest orders as that presented in Fig. 1. The dynamic force that each hand had to track was different and introduced contraction variability during the contraction state. The different way each hand was engaged during the dynamic force tracking enables a better representation of continuous control of force that corresponds to more natural bimanual manipulations.

The participants received visual feedback on the desired contraction trajectory they had to follow with each hand. Four conditions (one condition per force profile) were used. Each condition represented a different force trajectory which increased the variability of the brain signals and contractions recorded. All conditions lasted 10 s and all participants did 30 trials per condition. The order of the conditions was randomised but each condition was performed in blocks of 30 trials. The highest level of contraction was set to 25% MVC and the lowest to 10% MVC. The trajectories for both hands were designed so that the average of the contraction during the 10 s corresponded to 17.5% MVC. Each trial was followed by a randomised resting period uniformly distributed between 15 and 21 seconds, to avoid phasic constructive interference of systemic artefacts, e.g. Mayer waves, in the brain responses. The refreshing of the feedback in the screen was set to 100 Hz.

Participants were right-handed (confirmed by the Edinburgh inventory). The Imperial College Research Ethics Committee approved all procedures and all participants gave their written informed consent. The experiment complied with the Declaration of Helsinki for human experimentation and national and applicable international data protection rules.

B. Recordings

Twenty four \((N = 24)\) co-aligned EEG and fNIRS channels covered the bilateral sensorimotor cortex and were used as the brain signals from which to decode the force signals generated with each hand (Fig. 1).

The fNIRS signals were recorded using a NIRScout system (NIRx Medizintechnik GmbH, Berlin, Germany). We used a total of 12 optodes per hemisphere (10 sources and 8 detectors in total) sampling at 12.5 Hz.

EEG was recorded using 24 channels of an ActiChamp amplifier (BrainProducts, Berlin, Germany) operating at 4 kHz (running software BrainVision, v1.20.0801). EEG was first downsampled to 250 Hz (with anti-aliasing down-pass filtering). Notch filters were applied at the mains (50 Hz) and fNIRS (12.5 Hz) frequencies and their harmonics. EEG was finally high-pass filtered above 1 Hz using a 5th order Butterworth filter. ICA was then applied to automatically remove EOG artefacts rejecting 1 component when they had a correlation above 0.3 in absolute value.

Two grip force transducers (PowerLab 4/25T, ADInstruments, Castle Hill, Australia) were used to record the force generated by each hand simultaneously recording at 1 kHz. The force signals were first resampled to 250 Hz, then band-pass filtered between 0.01 and 10 Hz with a Butterworth filter of order 3 and then again high-pass filtered with an elliptical filter of order 1 above 0.01 Hz. Drift was further eliminated removing the linear drift per trial. Force measures were finally converted to contraction values using the recorded MVC before the experiment started.

C. Preprocessing

All channels were used in the analysis and needed pre-processing. Optical intensities were low-pass filtered below 0.25 Hz with a 7th order elliptical filter. Changes in optical densities per wavelength, \(\Delta OD_{t}(t)\), were obtained using Beer-Lambert’s law.

EEG was used to extract the power and phases in different EEG bands using the Hilbert transform. The following frequency bands were used: delta \((1 − 4 \text{ Hz})\), theta \((4 − 8 \text{ Hz})\), alpha \((8 − 13 \text{ Hz})\), beta \((13 − 30 \text{ Hz})\), low-gamma \((30 − 50 \text{ Hz})\), mid-gamma \((70 − 110 \text{ Hz})\) and high-gamma \((130 − 200)\). Finally, these EEG Hilbert features were resampled to 12.5 Hz to have the same sampling frequency than the fNIRS signals.

We additionally recorded the hemodynamic activity of the scalp skin on the forehead using a NONIN 8000R (Tilburg, The Netherlands). The skin hemodynamics reflect the variations of hemoglobin due to the heart and breathing activity but do not contain brain hemodynamic responses. We used scalp hemodynamics to discard that pulse and breathing were predictive of force. All epochs were extracted from 4 s before the “Go” instruction to 14 s after.

D. Decoding methods

The fNIRS, the EEG Hilbert features and force are resampled so all measures could be aligned in time. EEG Hilbert features and fNIRS are then used to build a linear and a deep learning (cnnatt) model to decode the bimanual force. Both decoders used 800 ms of brain signals (EEG Hilbert features and fNIRS signal) history to decode the bimanual force.

The decoding can be expressed as \(f_t = \phi(X_{t-800ms, \ldots, t})\) where \(f_t\) represents the vector of bimanual left (L) and right (R) forces \([f_{L,t}, f_{R,t}]^T\) at time \(t\), and \(X_{t-800ms, \ldots, t}\) the matrix of fNIRS and EEG features from \(t − 800\text{ms} \text{ to } t\).
Our deep learning CNNatt model has a more balanced dependence on both (inside vertical grey bar) dependent on fNIRS than EEG (outside the horizontal grey bar) while the perturbation of the time order of the signal. The linear decoding is more

Fig. 4. Comparison of sensitivity of the linear and CNNatt decoding to the perturbation of the time order of the signal. The linear decoding is more dependent on fNIRS than EEG (outside the horizontal grey bar) while the CNNatt model has a more balanced dependence on both (inside vertical grey bar).

The linear decoder was trained using the Lasso method. Our deep learning CNNatt model including CNN and attention layers (Fig. 2), was trained using the mean squared error loss, Adam optimiser and early stop techniques.

III. RESULTS

We evaluate the force reconstruction performance of our multi-modal decoding approach using the fraction of variance accounted for (FVAF[%]) of the signal. The fraction of variance accounted for (FVAF[%]) has a value between (−∞, 100%]. A 100% FVAF represents a total reconstruction. A 0% represents a reconstruction that is as good as using the average of the signal as predictor and negative FVAF[%] even worse reconstructions. We use EEG and fNIRS signals to decode bimanual force trajectories.

At the population level, the increase of reconstruction performance due to the combination of fNIRS and EEG (multi-modal, 48.5 FVAF[%]) is significant when compared to either EEG (33.5 FVAF[%]) or fNIRS (40 FVAF[%]) alone and achieves a maximum 15% increase in FVAF[%] for the multi-modal signals (Kruskal Wallis, Tukey corrected comparison on FVAF[%], \(p < 0.05 \)).

First, we compare the capabilities of a linear and deep learning model to reconstruct force in a real-time and causal way. As shown in figure 3 for both hands cnnatt achieves a better force reconstruction (left/right 54.2/55.6 FVAF[%]) than the linear model (left/right 46.9/49.9 FVAF[%]). Kruskal-Wallis, Tukey corrected comparison, \(p < 0.05 \). The crossed bars in the figure indicate the performance when the decoded hand is used as reconstruction of the opposite hand to test for hand decoding specificity. For both models, this leads to lower FVAF[%] suggesting that the decoding is specific of the hand (linear 45.4/47.8, cnnatt 52.0/54.0 FVAF[%], only significant for the right hand of cnnatt, Kruskal-Wallis test, \(p < 0.05 \)).

Second, to understand the dependency of each decoding approach (linear or cnnatt) to each of the multi-modal input features we perform a sensitivity analysis. Figure 4 shows the comparison of each model sensitivity to the perturbation of each input feature. The sensitivity is computed using a perturbation approach in which we randomly shuffle the time dimension of the input feature we want to analyse and measure its impact in the force decoding FVAF[%]. This test evaluates how important the temporal evolution of the features and their auto-correlation are for the decoding (in contrast to their amplitude distribution). To standardise this measure we compute the percent change in performance with a 0% change representing the performance of the unperturbed signals and 100% the maximum performance reduction when all features are perturbed. Namely, the higher the sensitivity to an input feature perturbation, the more dependant the model is on that feature for an accurate decoding.

As we can see in Figure 4 both models are sensitive to perturbations of any of the features (positive changes) but never to the same extent (100% level) as when all features are perturbed simultaneously. This shows that the temporal structure of the signal is important in the decoding and suggests that the decoding has a causal nature.

The comparison of the linear and the DL system shows that the latter strikes a better balance in its dependency between EEG and fNIRS signals, both inside the grey vertical bar (Fig. 4) multiple comparison of means, Tukey correction, \(p > 0.01 \) for the right hand and \(p < 0.01 \) for the left hand). In contrast, for a same dependency range (horizontal grey bar) the linear decoder has a much higher dependency in

Fig. 3. Fraction of variance accounted for (FVAF) by the linear and CNNatt force predictions using multi-modal (EEG & fNIRS) signals. Darker bars correspond to the right hand and brighter ones to the left hand. Patterned bars correspond to the FVAF[%] between the decoded hand and the opposite hand to test for specificity of hand decoding. The CNNatt model achieves a better performance compared to the linear model.
higher standard deviation, while the EEG Hilbert features the distribution of fNIRS amplitudes is centred and has a test, Tukey correction) which supports [13] and expands our approach can be directly mapped to data-
transfer learning [15] recently demonstrated in Deep EEG learning architecture (cnnatt). We show that our cnnatt deep learning model improves the bimanual force reconstruction in terms of FVAF[%] in 5 to 8 points compared to the linear system (Fig. [3]). Both models preserve the specificity to the decoded hand as shown by the decay of reconstruction performance when the FVAF[%] is computed in the opposite hand than the one the model was trained to decode.

Our sensitivity results show that the multi-modal linear decoder is more dependent on fNIRS than on EEG while DL better exploits all EEG bands (Fig. [3]). In particular, in combination with fNIRS, DL achieves a better exploitation of the delta and beta bands (p < 0.05, Kruskal-Wallis test, Tukey correction) which supports [13] and expands their results to the bimanual multi-modal case. We note that the distribution of fNIRS amplitudes is centred and has a higher standard deviation, while the EEG Hilbert features have a skewed and narrower distribution and the target force distribution is bimodal - which convolutional layers appear to capture en passant.

V. CONCLUSION

We used Deep Learning to solve the multi-modal sensor fusion and decoding problem and were able to decode continuous force generated in a dynamic bi-manual grip force task. Combining EEG and fNIRS is particularly challenging as signals differ by 3 orders of magnitude in time scale (ms vs s), thus we used the power of representational learning in deep learning. Previous approaches used the advantages of Gaussian Process regression to achieve efficient continuous multi-modal decoding [4], however signals there the EEG and MMG signals operated on similar timescales. Deep Learning is data-hungry and thus a challenge for BCI, however our approach can be directly mapped to data-efficiency improving meta-learning [14] and multi-subject transfer learning [15] recently demonstrated in Deep EEG BCI. We show that non-invasive human interfacing can overcome continuous decoding challenges usually thought the realm of invasive BCI. Combining EEG-fNIRS has direct implications in BCI for restoration of movement and robotic control [16], but also for real-world and consumer use [17],

REFERENCES

[1] J. M. Carmena, M. A. Lebedev, R. E. Crist, J. E. O’Doherty, D. M. Santucci, D. F. Dimitrov, P. G. Patil, C. S. Henriquez, and M. A. Nicolelis, “Learning to control a brain-machine interface for reaching and grasping by primates,” PLoS Biology, vol. 1, no. 2, pp. 193–208, 2003.
[2] A. K. Bansal, W. Truccolo, C. E. Vargas-Irwin, and J. P. Donoghue, “Decoding 3d reach and grasp from hybrid signals in motor and premotor cortices: spikes, multiunit activity, and local field potentials,” J. Neurophysiol., vol. 107, no. 5, pp. 1337–1355, 2012.
[3] S. Nauel, J. I. Glaser, K. P. Kording, E. J. Perreault, and L. E. Miller, “A muscle-activity-dependent gain between motor cortex and EMG,” J. Neurophysiol., vol. 121, no. 1, pp. 61–73, 2019.
[4] M. Xiloyannis, C. Gavriel, A. A. Thomik, and A. A. Faisal, “Gaussian process autoregression for simultaneous proportional multi-modal prosthetic control with natural hand kinematics,” IEEE Trans. Neural Syst. Rehab. Eng. (TNSRE), vol. 25, no. 10, pp. 1785–1801, 2017.
[5] A. Cherian, M. O. Krucou, and L. E. Miller, “Motor cortical prediction of EMG: Evidence that a kinetic brain-machine interface may be robust across altered movement dynamics,” J. Neurophysiol., vol. 106, no. 2, pp. 564–575, 2011.
[6] P. Y. Chhabbar and J. T. Francis, “Towards a naturalistic brain-machine interface: hybrid torque and position control allows generalization to novel dynamics,” PloS one, vol. 8, no. 1, pp. e52286, 2013.
[7] R. D. Flint, P. T. Wang, Z. A. Wright, C. E. King, M. O. Krucou, S. U. Scheute, J. M. Rosenow, F. F. Hsu, C. Y. Liu, J. J. Lin et al., “Extracting kinetic information from human motor cortical signals,” Neuroimage, vol. 101, pp. 695–703, 2014.
[8] K. D. Anderson, “Targeting recovery: priorities of the spinal cord-injured population,” J. Neurotrauma, vol. 21, no. 10, pp. 1371–1383, 2004.
[9] P. D. Ganzer, S. C. Colachis 4th, M. A. Schwemmer, D. A. Friedenberg, C. F. Dunlap, C. E. Swiftney, A. F. Jacobowitz, D. J. Weber, M. A. Bockbrader, and G. Sharma, “Restoring the sense of touch using a somatosensory demultiplexing neural interface,” Cell, 2020.
[10] M. H. Hansen, E. Kassebaum, M. A. Plocharska, M. Jochumsen, and E. N. Kamavuako, “Improved detection and force decoding through combined near-infrared spectroscopy and electroencephalographic measurements,” in Replace, Repair, Restore, Relieve—Bridging Clinical and Engineering Solutions in Neurorehabilitation, Springer, 2014, pp. 411–419.
[11] X. Yin, B. Xu, C. Jiang, Y. Fu, Z. Wang, H. Li, and G. Shi, “A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching,” J. Neural Eng., vol. 12, no. 3, p. 036004, 2015.
[12] Y. Fa, X. Xiong, C. Jiang, B. Xu, Y. Li, and H. Li, “Imagined hand clenching force and speed modulate brain activity and are classified by fNIRS combined with EEG,” IEEE Transactions on Neural Sys. and Rehab. Eng., vol. 25, no. 9, pp. 1641–1652, 2016.
[13] A. Y. Paek, A. Gailey, P. J. Parikh, M. Santello, and J. L. Contreras-Vidal, “Regression-based reconstruction of human grip force trajectories with noninvasive scalp electroencephalography,” J. Neural Eng., vol. 16, no. 6, p. 066030, 2019.
[14] D. Li, P. Ortega, X. Wei, and A. Faisal, “Meta-Learning EEG Motor Imagery Decoder for Brain Computer Interface,” IEEE Neural Engineering (NER), vol. 10, 2021.
[15] X. Wei, P. Ortega, and A. Faisal, “Inter-subject deep transfer learning for motor imagery EEG decoding,” IEEE Neural Engineering (NER), vol. 10, 2021.
[16] S. Dziemian, W. W. Abbott, and A. A. Faisal, “Gaze-based teleprosthetic enables intuitive continuous control of complex robot arm use: Writing & drawing,” in 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob). IEEE, 2016, pp. 1277–1282.
[17] S. Haar and A. A. Faisal, “Brain activity reveals multiple motor-learning mechanisms in a real-world task,” Frontiers in Human Neuroscience, vol. 14, p. 354, 2020.