MAGNETIC PROPERTIES OF THE 2D t–t'–HUBBARD MODEL

U. Trapper¹, H. Fehske² and D. Ihle¹

¹Institut für Theoretische Physik, Universität Leipzig, D–04109 Leipzig, Germany
²Physikalisches Institut, Universität Bayreuth, D–95440 Bayreuth, Germany

The two–dimensional (2D) t–t'–Hubbard model is studied within the slave–boson (SB) theory. At half–filling, a paramagnetic to antiferromagnetic phase transition of first order at a finite critical interaction strength $U_c(t'/t)$ is found. The dependences on U/t and t'/t of the sublattice magnetization and of the local magnetic moment are calculated. Our results reasonably agree with recent (Projector) Quantum Monte Carlo data. The SB ground–state phase diagram reveals a t'–induced electron–hole asymmetry, and, depending on the ratio t'/t, the antiferromagnetic or ferromagnetic phases are stable down to $U = 0$ at a critical hole doping.

The magnetic behaviour of strongly correlated itinerant electron systems, in particular of high–T_c cuprates, is frequently described on the basis of the one–band Hubbard model with nearest (t) and next–nearest neighbour hopping (t') [1–5]. In this work we explore the ground–state properties of the 2D t–t'–Hubbard model which can be expressed in the four–field SB representation [6] as

$$\mathcal{H} = \sum_{ij\sigma} t_{ij} \hat{z}_{i\sigma} \hat{z}_{j\sigma} f_{i\sigma} f_{j\sigma} + U \sum_i d_{i\uparrow} d_{i\downarrow}.$$ (1)

Neglecting charge–density–wave states, in the two–sublattice (AB) saddle–point approximation, the free energy per site is given by

$$f(n, T) = Ud^2 = \sum_{n=\pm} \lambda_n^{(2)} (p_n^2 + d^2) + \mu n$$
$$+ \frac{2}{\beta N} \sum_{\vec{k}\nu=\pm} \ln \left[1 - f(E_{\vec{k}\nu} - \mu) \right]$$ (2)

with the quasiparticle tight–binding bands

$$E_{\vec{k}\nu} = \frac{1}{2} \sum_{\eta} \left[\lambda_\eta^{(2)} + \frac{1}{2} q_\eta (\varepsilon_\vec{k} + \varepsilon_{\vec{k}-(\pi,\pi)}) \right]$$
$$+ \nu \sqrt{A^2 + \frac{1}{4} q_+ q_- (\varepsilon_\vec{k} - \varepsilon_{\vec{k}-(\pi,\pi)})^2},$$ (3)

where the \vec{k}–sum runs over the magnetic Brillouin zone, the $\lambda_\eta^{(2)}$ ensure the SB constraints, $A = \frac{1}{2} \sum_{\eta} |\lambda_\eta^{(2)}|$, $q_\eta = |z_\eta|^2$, and

$\varepsilon_{\vec{k}} = -2t \cos k_x \cos k_y - 4t' \cos k_x \cos k_y$.

At half–filling and $t' \neq 0$, we obtain a paramagnetic (PM)\Leftrightarrowantiferromagnetic (AFM) phase transition of first order at the critical interaction strength $U_c(t'/t)$ (see Fig. 1) which is accompanied by the opening of the indirect gap in the SB band structure (3) shown in Fig. 2. At $t'/t = -0.2$ we get $U_c/t = 2.63$ which reproduces

Fig. 1: U_c vs t' for the PM to AFM transition compared with HF (chain dashed) and QMC (\times) results. The insets show m_A and m_{loc} vs U at $t'/t = -0.2$ (solid) and -0.4 (dashed) together with the Projector QMC (\times) and spin–wave data (dotted) at $t'/t = -0.2$ taken from Ref. [4].
Fig. 2: Band dispersion $E_{k\nu} - \mu$ at $n = 1$ and $t'/t = -0.2$ for $U < U_c$ (a), $U = U_c$ (b), and $U > U_c$ (c).

the Quantum Monte Carlo (QMC) value [1]. This result may be explained by the shift of the logarithmic van Hove singularity for $t' \neq 0$. Note that in our SB calculation a metallic AFM ground state, as suggested recently in Ref. [3], does not exist. Of course, such a phase may be stabilized introducing additional hopping terms by hand [3].

As seen in Fig. 1, the sublattice magnetization $m_A = p_+^2 - p_-^2$ and the local magnetic moment $m_{loc} = \frac{1}{2}(n - 2d^2)$ reasonably agree with Projector QMC data at $t'/t = -0.2$ [4].

The SB ground-state phase diagram depicted in Fig. 3 reveals a pronounced t'-induced electron–hole asymmetry and the stability of the AFM state (at $t'/t = -0.2$) and of the ferromagnetic (FM) state (at $t'/t = -0.4$) down to $U = 0$ at the critical hole dopings 0.17 and 0.418, respectively. This qualitatively agrees with the Hartree–Fock (HF) calculation of Ref. [1], but contradicts the HF solution obtained in Ref. [5]. Compared with the HF results, the electron correlations incorporated in the SB approach reduce the stability regions of the long-range ordered phases in the favour of the PM phase.

In conclusion, the magnetic ground-state properties of the t–t'–Hubbard model are well described by our SB approach, in particular the weak–interaction limit is correctly reproduced.

This work was supported by the DFG under project SF–HTSL–SRO. U.T acknowledges the hospitality at the University Bayreuth. We thank M. Deeg for help with the computer work.

REFERENCES

1. H. Q. Lin and J. E. Hirsch, Phys. Rev. B 35, 3359 (1987).
2. U. Trapper, D. Ihle, and H. Fehske, Phys. Rev. B 52, R 11553 (1995); Int. J. Mod. Phys. B, accepted for publication (1996).
3. D. Duffy and A. Moreo, cond-mat/9604172.
4. R. E. Hetzel, P. Topalis, and K. W. Becker, Physica B, to be published (1996).
5. W. Brenig, J. Low Temp. Phys. 99, 319 (1995).
6. G. Kotliar and A. E. Ruckenstein, Phys. Rev. Lett 57, 1362 (1986)