Mechanisms and Therapeutic Targets of Cardiac Regeneration: Closing the Age Gap

Citation for published version:
Castellan, RFP & Meloni, M 2018, 'Mechanisms and Therapeutic Targets of Cardiac Regeneration: Closing the Age Gap', Frontiers in Cardiovascular Medicine, vol. 5. https://doi.org/10.3389/fcvm.2018.00007

Digital Object Identifier (DOI):
10.3389/fcvm.2018.00007

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Frontiers in Cardiovascular Medicine

Publisher Rights Statement:
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Mechanisms and Therapeutic Targets of Cardiac Regeneration: Closing the Age Gap

Raphael F. P. Castellan and Marco Meloni*

British Heart Foundation and University of Edinburgh Centre for Cardiovascular Science, Queen’s Medical Research Institute, Edinburgh, United Kingdom

While a regenerative response is limited in the mammalian adult heart, it has been recently shown that the neonatal mammalian heart possesses a marked but transient capacity for regeneration after cardiac injury, including myocardial infarction. These findings evidence that the mammalian heart still retains a regenerative capacity and highlights the concept that the expression of distinct molecular switches (that activate or inhibit cellular mechanisms regulating tissue development and regeneration) vary during different stages of life, indicating that cardiac regeneration is an age-dependent process. Thus, understanding the mechanisms underpinning regeneration in the neonatal-infarcted heart is crucial to develop new treatments aimed at improving cardiovascular regeneration in the adult.

The present review summarizes the current knowledge on the pathways and factors that are known to determine cardiac regeneration in the neonatal-infarcted heart. In particular, we will focus on the effects of microRNA manipulation in regulating cardiomyocyte proliferation and regeneration, as well as on the role of the Hippo signaling pathway and Meis1 in the regenerative response of the neonatal-infarcted heart. We will also briefly comment on the role of macrophages in scar formation of the adult-infarcted heart or their contribution for scar-free regeneration of the neonatal mouse heart after myocardial infarction. Although additional research is needed in order to identify other factors that regulate cardiovascular regeneration, these pathways represent potential therapeutic targets for rejuvenation of aging hearts and for improving regeneration of the adult-infarcted heart.

Keywords: cardiac regeneration, mechanisms, therapeutic, targets, aging

Cardiac remodeling and subsequent heart failure (HF) remain critical issues after myocardial infarction (MI). Following MI, the adult mammalian myocardium undergoes a complex remodeling process initiated by the death of billions of cells within the ischemic region (1). Those are mostly cardiomyocytes, endothelial cells, and fibroblasts. The adult mammalian-infarcted heart fails to regenerate the lost tissue. Instead, damaged myocardium is replaced by fibrotic tissue, leading to altered contractile function and eventually HF (2–4). The World Health Organization and the European Cardiovascular Disease Statistics indicate that cardiovascular disease causes over 4 million deaths in Europe each year, and more than 40% of these deaths are attributable to MI. Due to the considerable improvement in reperfusion techniques the survival rate of patients following MI has been dramatically improved (5, 6). However, HF is a frequent complication of MI and remains a major cause of morbidity and mortality worldwide (7). Indeed, within 5 years of first MI, 16% of men and 22% of women over 45 years of age will develop HF, and the incidence and prevalence of HF significantly increases in the elderly population (8, 9). With increasing survival post-MI and an
aging population, the prevalence of HF is expected to have risen 48% between 2012 and 2030 (8). Despite improvements in conven- 
tional treatments aimed at improving or re-establishing the 
revascularization of the infarcted myocardium (such as coronary 
artery bypass surgery or percutaneous coronary intervention), 
current therapies are limited (10, 11) and do not lead to regenera-
tion of the lost tissue. There is therefore an urgent need for novel 
therapies for the treatment of MI.

In this context, recent research has shown that whereas a 
regenerative response is limited in the adult mammalian heart, 
the adult zebrafish is able to regenerate lost or damaged cardiac 
tissue (12–15). Most importantly, additional studies have recently 
demonstrated that the neonatal mouse heart can fully regenerate 
after resection of the left ventricular (LV) apex, and after induct-
ion of MI at early stages (postnatal day 1, P1) (16–19). However, 
this regenerative capacity is only transient and is rapidly lost by 
7 days of age (18), indicating the existence of a “regenerative window” 
within the first week after birth in mice. Remarkably, 
newborn humans may also possess the intrinsic capacity to repair 
their heart after MI (19). Haubner et al. have recently observed 
full cardiac functional recovery within weeks after the occurrence 
of MI in a newborn child (19). While suggesting that the mam-
malian heart is able of regeneration, those findings also highlight 
the age-dependency of this process. This highlights the concept 
that the expression of distinct molecular switches activating or 
inhibiting cellular mechanisms regulating tissue regeneration vary 
during different stages of life. Thus, a better understand-
ing of the mechanisms that regulate complete cardiac repair 
and regeneration in the neonatal-infarcted heart could provide 
the basis for novel therapeutic approaches for cardiovascular 
regeneration following MI in the adult. This review illustrates the 
current understanding of the most important mechanisms that 
regulate cardiac regeneration in the neonatal mammalian heart 
and discusses the potential therapeutic targets that can be used 
in order to rejuvenate the adult-infarcted heart and improve its 
cardiac regeneration following MI.

CARDIAC REGENERATION: EVOLUTION 
AND DEVELOPMENT

Cardiac Regeneration in Lower 
Vertebrates

Organ regeneration has been the focus of scientific research for 
over a century. For example, the ability of salamanders to regrow 
an entire lost limb after amputation has been studied for decades 
and their capacity to regenerate also other damaged parts of their 
body is still of interest in the field of regenerative medicine. 
Cardiac regeneration was however only recently investigated 
formally in lower vertebrate models. Zebrafish imposed itself as a 
standard model of cardiac regeneration as a result of its straight-
forward genetic manipulation and short generation time (20, 21).

Zebrafish (Danio rerio), a member of the teleost infraclass of 
bony fish, was first reported to harbor potent cardiac regenerative 
capacities by Poss et al. (12). After surgical removal of about 20% 
of the ventricular myocardium of adult fish, the authors initially 
observed a rapid formation of a blood clot. This was replaced by 
a fibrin cap by 9 days post-resection. Over the next 60 days, the 
fibrin cap was shown to regress as cardiomyocytes replaced the 
resected area, resulting in the complete regeneration of the myo-
cardium. Using this resection model, the authors were also able 
to show evidence of cardiomyocyte proliferation and suggested 
that cell proliferation was essential to scar-free regeneration of 
the adult zebrafish heart. Subsequently, other studies using line-
age tracing and electron microscopy techniques demonstrated 
cardiomyocyte replenishment of the resected myocardium in 
the adult zebrafish occurred through existing cardiomyocyte 
de-differentiation and subsequent proliferation (15).

Cardiac Regeneration in Mammals

Mammalian models of cardiac regeneration were non-existent 
until the description by Porrello et al. that P1-old neonatal mice 
could fully regenerate their myocardium by 21 days follow-
ing apical resection (18). Subsequently, Porrello et al. (17) and 
Haubner et al. (16) developed a model of MI in P1-old mice by 
ligation of the left coronary artery. Similarly to what observed 
with the resection model, neonatal mice could regenerate the 
injured myocardium by 21 days following MI at P1. This was also 
accompanied by full recovery of cardiac function. Importantly, 
this regenerative capacity is only transient and is strictly limited 
to the first week after birth. In fact, neonatal mice undergoing MI 
at P7 were unable to regenerate the lost myocardium and instead 
formed a scar, similar to the adult heart (17).

Myocardial infarction in P1 mice was associated with 
increased markers of cell death (such as cleaved caspase 3), 
functional decrease in the days following injury, and decreased 
proportion of viable myocardium (16, 17). At day 3 post-MI, 
observed extensive cardiomyocyte loss and immune cell infiltra-
tion were observed (17). By day 7, a scar had formed within the 
injured myocardium. This scar was then gradually removed as the 
myocardium regenerated leading to minimal interstitial fibrosis 
by day 21 post-MI. Similar to the zebrafish, neonatal mice were 
shown to achieve cardiac regeneration through de-differentiation 
and proliferation of cardiomyocytes, rather than through a stem-
cell-based mechanism (16–18).

It is commonly believed that following injury, developmental 
pathways such as Wnt, Notch, and Hedgehog are re-activated in 
an effort to restore tissue integrity (22, 23). It is however very 
clear that successful regeneration is both age-dependent and 
organ-specific (12, 17, 24). In this context, the existence of a 
“regenerative window” within the first week after birth (at least 
in mice) support the idea that the post-natal heart still harbors regenerative capacities that could be promoted after injury to 
reduce the burden of MI.

The (Limited) Regenerative Capacity of the 
Human-Infarcted Heart

Even though the adult mammalian heart clearly lacks potent 
regenerative capacities, a study by Bergmann et al. showed that 
the adult human heart was able of slow cardiomyocyte renewal 
throughout life (25). This suggests that the adult mammalian 
heart retains some regenerative capacities that may be stimulated 
to improve the outcome following MI.
In contrast to the adult, newborn humans and infants seem to still harbor potent cardiac regenerative capacities. Indeed, a study by Fratz et al. reported very little myocardial scarring and normal function in adults having had cardiac corrective surgery for anomalous origin of the left coronary artery from the pulmonary artery (ALPACA) as children (26). Moreover, in a recent case report Haubner et al. have recently observed full cardiac recovery within weeks after the occurrence of MI in a newborn child (19).

MECHANISMS OF CARDIAC REGENERATION AND POTENTIAL THERAPEUTIC TARGETS

Achieving successful cardiac regeneration necessitate three key phenomena: cardiomyocyte replenishment, removal of interstitial fibrosis, and revascularization of the regenerated myocardium. Since the discovery of the neonatal mouse regenerative capacities, much work has focused on understanding the mechanisms behind it in the aim to identify targets to promote regeneration over scar formation in the adult myocardium following MI. Cardiomyocyte replenishment following neonatal MI is considered as the step limiting factor in achieving cardiac regeneration. To date, most of the research has therefore focused on the regulation of neonatal cardiomyocyte proliferation, and has identified several pathways and factors that are involved in the regulation of cardiomyocyte proliferation and that can be considered as potential therapeutic targets for improving cardiac regeneration in the adult-infarcted heart.

MicroRNAs (miRNAs)

Recent findings demonstrate that the regulation of cardiovascular development and regeneration is mediated by non-coding RNAs known as miRNAs (27–31). miRNAs are inhibitory regulators of gene expression, which act by binding to complementary mRNA transcripts for promoting either their degradation or translational repression (32). The expression of many miRNAs vary during different stages of life, reflecting their role as molecular switches that activate or inhibit cellular mechanisms that regulate cell and tissue development (33), including heart development (34).

In the neonatal mouse heart miRNAs have been linked to cardiomyocyte binucleation and cell cycle exit (35). miRNA expression profile performed in mouse cardiac ventricles isolated from P1 (within the regenerative window) and P10 (beyond the regenerative window) mice showed that 71 miRNAs are either up or downregulated during these developmental stages (35).

Notably, several large miRNA families (such as the miRNA-15, miRNA-30, and let-7 families) were upregulated in P10 cardiac ventricles, and miRNA-195 (a member of the miRNA-15 family) was shown to be the most highly upregulated miRNA. Cardiomyocyte-targeted overexpression of miRNA-195 was associated with cardiac developmental defects and reduced cardiomyocyte proliferation in P1 mice (35). In addition, cardiomyocyte-directed overexpression of miRNA-195 prevented cardiac regeneration of the neonatal mouse heart after induction of MI at P1. This was associated with decreased cardiomyocyte proliferation at day 7 post-MI, and impaired functional recovery and cardiomyocyte hypertrophy at day 21 post-MI (17).

Other miRNAs have been shown to regulate cardiomyocyte proliferation and regeneration. Eulalio et al. (36) performed a high-throughput functional screening to assess the miRNAs capable of promoting cardiomyocytes proliferation. They found that at least 40 miRNAs increased both DNA synthesis and cytokinesis in neonatal mouse and rat cardiomyocytes. miRNA-590 and miRNA-199 were further tested and showed to promote cell cycle re-entry of adult cardiomyocytes ex vivo. In addition, overexpression of either miRNA-199 or miRNA-590 in the heart of adult mice undergoing MI showed that both miRNAs induced cardiac regeneration and improved cardiac function (36).

Another study showed the involvement of the miRNA-17-92 cluster in cardiomyocytes proliferation of postnatal and adult hearts (37). Nkx2.5-mediated cardiac specific deletion of the miRNA-17-92 cluster resulted in partial embryonic lethality, and the miRNA-17-92 KO mice that survived had a smaller heart and a marked reduction of cardiomyocyte proliferation compared with littermate controls. On the other hand, cardiac specific conditional transgenic mice overexpressing the miRNA-17-92 cluster were characterized by a significant increased proliferation of cardiomyocytes during either embryonic or postnatal stages. Moreover, these mice showed a higher heart/body weight ratio and increased thickness of the ventricular wall. Additionally, induction of MI in adult transgenic mice overexpressing the miRNA-17-92 cluster resulted in the reduction of the cardiac scar size, increased cardiomyocyte proliferation, and improvement of cardiac function (37).

The miRNA-34a has also been demonstrated to regulate cell-cycle activity and death in cardiomyocytes (38). miRNA-34a expression in the heart is low in the early-postnatal period and it increases after P8 (beyond the regenerative window), and whereas overexpression of the miRNA-34a prevented cardiac regeneration in the neonatal mouse-infarcted heart, its inhibition improved cardiac function and repair in the adult-infarcted heart through the modulation of cell cycle and survival genes such as Bcl2, Cyclin D1, and Sirt1 (38).

The Hippo Signaling Pathway

The Hippo pathway has been demonstrated to be critically involved in cardiac development and regeneration and may represent a promising therapeutic target in the setting of MI. The pathway consists of a cascade of kinases controlling cell proliferation and organ size. Activation of the Hippo pathway leads to the phosphorylation of the transcriptional co-activators yes-associated protein (YAP) and WW domain-containing transcription regulator protein 1 (TAZ). This prevents their nuclear localization and, in the fetal mouse heart, restrains cardiomyocyte proliferation (39, 40). Inactivation of the pathway indeed leads to largely overgrown hearts with increased cardiomyocyte proliferation (40). Conversely, cardiac specific deletion of YAP is associated with decreased cardiomyocyte proliferation at P1 and the development of dilated cardiomyopathy in adults.

The Hippo/YAP axis also plays crucial roles following cardiac injury in both neonatal and adult mice. Cardiac specific deletion
of YAP abrogates the regenerative response of neonatal mice leading to the formation a fibrotic scar and functional impairment by day 27 post-MI. On the other hand, stabilization of YAP promotes proliferation of cardiomycocytes following injury in mice at P28, thus outside of the regenerative window, suggesting potential for the pathway to be manipulated to unlock cardiac regenerative capacities in the adult mammal. The Hippo pathway therefore represents a key modulator of cardiac regeneration and more specifically cardiomycyte replenishment.

Due to the emerging role of the pathway in controlling organ growth and size as well as its tumor suppressor capacities, pharmacological manipulation of the pathway has been the focus of a number of studies (41). Of interest, the small molecule inhibitor 9E1 has shown promising in vitro results in targeting mammalian STE20-like protein kinases (MSTs); kinases involved in the phosphorylation and thereby repression of YAP/TAZ. The use of such inhibitor in vivo is yet to be tested but may represent an avenue for the manipulation of the Hippo pathway with the aim to unlock cardiac regenerative capacities in the adult mammalian heart. Recently, deletion of the Hippo pathway component Salvador has been shown to increase vascularity and reduce fibrosis in the mouse-infarcted heart, leading to improved cardiac function (42). Moreover, gene therapy-mediated knockdown of Salvador in cardiomycocytes induced their proliferation improving cardiac function after MI, thus confirming the Hippo pathway as potential therapeutic target after MI.

Meis1

Meis1 belongs to the TALE family of homeodomain transcription factor and is well known for its role in hematopoiesis (43). Meis1 has been also shown to be essential for cardiac development (44, 45) and has recently been identified as being critical for postnatal cardiomycyte proliferation (46). Cardiomycocyte-specific deletion of Meis1 resulted in increased cardiomycyte proliferation and increased percentage of mononucleated cardiomycocytes postnatally (P14, beyond the regenerative window). On the other hand, induction of MI in P1-old cardiac-specific Meis1 overexpressing mice resulted in premature cell-cycle arrest and inhibition of cardiac regeneration, thus suggesting a role for Meis1 in cell-cycle activity and cardiomycocytes neucleation. Interestingly, miRNA-548c-3p, miRNA-509-3p, and miRNA23b-3p were shown to induce significant proliferation of adult rat cardiomycocytes through translational inhibition of Meis1 (47). Moreover, it was also recently shown that Tbx20 (a member of the Tbx1 subfamily of T-box genes which is required for cardiomyocyte proliferation during heart development) (48) can act as transcriptional repressor of Mes1 leading to increased proliferation of cardiomycocytes and preservation of cardiac function following MI in adult mice (49), thus confirming the key role of Meis1 in regulating cardiomycocyte proliferation and its promising potential as therapeutic target for cardiac regeneration post-MI.

Immune Response Signals

The immune system is actively involved in tissue growth during development and participates to tissue repair and regeneration after injury (including MI) (50–53). Following MI, necrotic cell death triggers an immune response characterized by the activation of inflammatory cells (mainly monocytes/macrophages) responsible for removing dead cells and debris, and for secreting cytokines and factors in order to attempt to restore the integrity of the injured heart (50–54). In the adult-infarcted heart this immune response participates in the activation of fibroblasts and proliferation of endothelial cells (55, 56). This leads to the formation of a fibrotic scar, thus preventing the rupture of the ventricular wall but contributing to a progressive impairment of cardiac function which eventually leads to HF (57).

On the other hand, macrophages are required for scar-free regeneration of the neonatal mouse heart following MI (53, 58). Interestingly, neonatal mice mobilize a subset of tissue-resident macrophages of yolk-sac origin immediately following genetic ablation of cardiomycocytes, whereas adult mice preferentially expand a population of bone-marrow-derived macrophages (59). Cardiac yolk-sac-derived macrophages have increased angiogenic capacities in vitro as compared with adult bone-marrow-derived macrophages (59). Such differences in the immune response and the intrinsic capacities of the cells involved may therefore participate in the regenerative capacities of the neonatal mouse (60). Recently, Quaife-Ryan et al. (61) published an extensive report on the transcriptional differences between neonatal and adult leukocytes following MI which may contribute to a regenerative or fibrotic phenotype. This study sets a stepping stone to in-depth characterization of the pathways involved during regeneration vs. fibrotic repair. Further studies should investigate the roles and interplay of the different leukocyte population during regeneration and fibrotic repair in order to identify targets for the promotion of regeneration. More information about the importance of immune modulation if cardiac repair and regeneration can be found in Zlatanova et al. (58).

Cardiac-Resident Stem/Progenitor Cells

The adult mouse heart possesses a resident population of c-kit+/Lin− cells expressing markers of cardiomycyte progenitors with clonogenic, self-renewing capacities and able to differentiate into several cell types including cardiomycocytes (62), and the c-kit+ cell population has been shown to act as cardiomycyte progenitors in the adult mouse following injury (63). Interestingly, also the human heart contains a population of c-kit+ cardiac-resident stem cells that can divide and differentiate into myocytes (64), but their regenerative potential decreases in the setting of chronic HF and is associated with decreased telomerase activity and cellular senescence (64). However, c-kit is expressed by a heterogeneous population (65, 66) and only a very small fraction of c-kit+ cells has the ability to differentiate into cardiomycocytes (66). In this context, however, although regeneration of the neonatal heart has been proposed to occur through de-differentiation of cardiomycocytes, the role (if any) of resident cardiac stem/progenitor cells in the neonatal heart regeneration has not been investigated.

CONCLUSION

The regeneration potential of essentially all tissues and organs, including the heart, is known to decrease during the aging process. The observation that the neonatal mouse heart possesses potent regenerative capacities has provided the field of cardiovascular
regeneration with a strong model for the identification of pathways and therapeutic targets for the promotion of regeneration over fibrotic repair following MI. As outlined in this review, a number of pathways and factors that regulate cardiovascular regeneration of the neonatal heart have been identified. These pathways represent potential therapeutic targets for rejuvenation of aging hearts and for improving regeneration of the adult-infarcted heart.

REFERENCES

1. Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance. *Annu Rev Physiol* (2010) 72:19–44. doi:10.1146/annurev.physiol.010908.163111
2. Bell DS. Heart failure: the frequent, forgotten, and often fatal complication of diabetes. *Diabetes Care* (2003) 26:2433–41. doi:10.2337/diacare.26.8.2433
3. Park M, Shen YT, Gaissert V, Heyndrickx GR, Bartunek J, Resuillo RR, et al. Apoptosis predominates in nonmyocytes in heart failure. *Am J Physiol Heart Circ Physiol* (2009) 297:H785–91. doi:10.1152/ajpheart.00310.2009
4. Sabah HN, Sharov VG, Lesch M, Goldberg S. Progression of heart failure: a role for cellular fibrosis. *Mol Cell Biochem* (1995) 147:29–34. doi:10.1007/BF00944770
5. Ezekowitz JA, Kaul P, Bakal JA, Armstrong PW, Walsh RC, McAlister FA. Declining in-hospital mortality and increasing heart failure incidence in elderly patients with first myocardial infarction. *J Am Coll Cardiol* (2009) 53:13–20. doi:10.1016/j.jacc.2008.08.067
6. Behfar A, Terzic A, Perez-Terzic CM. Regenerative principles enrich cardiac rehabilitation practice. *Am J Phys Med Rehabil* (2014) 93:S169–75. doi:10.1097/PHM.000000000000147
7. Rosamond W, Flegal K, Friday G, Forcie K, Go A, Greenland K, et al. Heart disease and stroke statistics – 2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. *Circulation* (2007) 115:e69–171. doi:10.1161/CIRCULATIONAHA.106.179918
8. Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. *Heart Disease and Stroke Statistics–2016 update: a report from the American Heart Association. Circulation* (2016) 133:e38–360. doi:10.1161/CIR.0000000000000350
9. Dharmarajan K, Rich MW. Epidemiology, pathophysiology, and prognosis of heart failure in older adults. *Heart Fail Clin* (2017) 13:417–26. doi:10.1016/j.hfc.2017.02.001
10. Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS); European Association for Percutaneous Cardiovascular Interventions (EAPCI), Wijns W, Kolh P, Danchin N, Di Mario C, et al. Guidelines on myocardial revascularization. *Eur Heart J* (2010) 31:2501–55. doi:10.1093/eurheartj/ehq277
11. Boyle AJ, Schulman SP, Hare JM, Oettgen P. Is stem cell therapy ready for infarcted heart. *Circ Res* (2011) 109:1566–73. doi:10.1161/CIRCRESAHA.111.303701
12. Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. *Forbes SJ, Rosenthal N. Preparing the ground for tissue regeneration: from development to disease. *Folia Histochem Cytochem* (1966) 4:395–472.
13. Oberpriller JO, Oberpriller JC. Response of the adult newt ventricle to injury. *J Exp Zool* (1974) 187:249–53. doi:10.1002/jex.1401870208
14. Major RJ, Poss KD. Zebrafish heart regeneration as a model for cardiac regeneration with a strong model for the identification of pathways and therapeutic targets for the promotion of regeneration over fibrotic repair following MI. As outlined in this review, a number of pathways and factors that regulate cardiovascular regeneration of the neonatal heart have been identified. These pathways represent potential therapeutic targets for rejuvenation of aging hearts and for improving regeneration of the adult-infarcted heart.

AUTHOR CONTRIBUTORS

RC and MM performed literature search and wrote the manuscript.

FUNDING

This work was supported by the British Heart Foundation UK Cardiovascular Regenerative Medicine Centre (to MM).
38. Yang Y, Cheng HW, Qiu Y, Dupe D, Noonan M, Lin YD, et al. MicroRNA-34a plays a key role in cardiac repair and regeneration following myocardial infarction. Circ Res (2015) 117:450–9. doi:10.1161/CIRCRESAHA.117.305962
39. Pan D. The hippo signaling pathway in development and cancer. Dev Cell (2010) 19:491–505. doi:10.1016/j.devcel.2010.09.011
40. Heallen T, Zhang M, Wang I, Bonilla-Claudio M, Klysik E, Johnson RL, et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science (2011) 332:458–61. doi:10.1126/science.1199010
41. Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov (2014) 13:63–79. doi:10.1038/nrd4161
42. Leach JP, Heallen T, Zhang M, Rahmani M, Morikawa Y, Hill MC, et al. Hippo pathway deficiency reverses systolic heart failure after myocardial infarction. Nature (2017) 550:260–4. doi:10.1038/nature24045
43. Argiropoulos B, Yung E, Humphries RK. Unraveling the crucial roles of Meis1 in leukemogenesis and normal hematopoiesis. Genes Dev (2007) 21:2845–9. doi:10.1101/gad.1619407
44. Paige SL, Thomas S, Stoick-Cooper CL, Wang H, Maves L, Sandstrom R, et al. A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. Cell (2012) 151:221–32. doi:10.1016/j.cell.2012.08.027
45. Wamstad JA, Alexander JM, Truty RM, Shrikumar A, Li F, Eilertson KE, et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell (2012) 151:206–20. doi:10.1016/j.cell.2012.07.035
46. Mahmoud AI, Kocabas F, Muralidhar SA, Kimura W, Koura AS, Thet S, et al. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature (2013) 497:249–53. doi:10.1038/nature12054
47. Pandey R, Yang Y, Jackson I, Ahmed RP. MicroRNAs regulating meis1 expression and inducing cardiomyocyte differentiation. Cardiovasc Regen Med (2016) 3:1468. doi:10.14800/crm.1468
48. Greulich F, Rudat C, Kispert A. Mechanisms of T-box gene function in the developing heart. Cardiovasc Res (2011) 91:212–22. doi:10.1093/cvr/cvr112
49. Xiang FL, Guo M, Uzeyr KE. Overexpression of Tbx20 in adult cardiomyocytes promotes proliferation and improves cardiac function after myocardial infarction. Circulation (2016) 133:1081–92. doi:10.1161/CIRCULATIONAHA.115.019357
50. Dai XM, Ryan GR, Hepel AI, Dominguez MG, Russell RG, Kapp S, et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood (2002) 99:111–20. doi:10.1182/blood.V99.1.111
51. Pollard JW. Trophic macrophages in development and disease. Nat Rev Immunol (2009) 9:239–70. doi:10.1038/nri2528
52. Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodeling. Nat Rev Cardiol (2014) 11(5):255–65. doi:10.1038/nrccardio.2014.28
53. Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, et al. Macrophages are required for neonatal heart regeneration. J Clin Invest (2014) 124:1382–92. doi:10.1172/JCI72181
54. Frangogiannis NG. Regulation of the inflammatory response in cardiac repair. Circ Res (2012) 110:159–73. doi:10.1161/CIRCRESAHA.111.243162
55. Nahrendorf M, Swinski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med (2007) 204:3037–47. doi:10.1084/jem.20070885
56. Murray PI, Wynn TA. Obstacles and opportunities for understanding macrophage polarization. J Leukoc Biol (2011) 89:557–63. doi:10.1189/jlb.0710409
57. Talman V, Ruskoaho H. Cardiac fibrosis in myocardial infarction—from repair and remodeling to regeneration. Cell Tissue Res (2016) 365:563–81. doi:10.1007/s00441-016-2431-9
58. Zlatanova I, Pinto C, Silvestre JS. Immune modulation of cardiac repair and regeneration: the art of mending broken hearts. Front Cardiovasc Med (2016) 3:40. doi:10.3389/fcvm.2016.00040
59. Pandey R, Thomas S, Stoick-Cooper CL, Wang H, Maves L, Sandstrom R, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Circ Res (2013) 114:763–76. doi:10.1161/S00029084.000687-1
56. Urbanek K, Torella D, Sheikh F, De Angelis A, Nurzynska D, Silvestri F, et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci U S A (2005) 102:8692–7. doi:10.1073/pnas.0500169102
57. Santini MP, Forte E, Harvey RP, Kovacic JC. Developmental origin and lineage plasticity of endogenous cardiac stem cells. Development (2016) 143:1242–58. doi:10.1242/dev.111591
58. Vicinanza C, Aquila I, Scalise M, Cristiano F, Marino F, Cianflone E, et al. Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell (2013) 154:827–42. doi:10.1016/j.cell.2013.07.039
59. Urbanek K, Torella D, Sheikh F, De Angelis A, Nurzynska D, Silvestri F, et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci U S A (2005) 102:8692–7. doi:10.1073/pnas.0500169102
60. Sattler S, Rosenthal N. The neonate versus adult mammalian immune system in cardiac repair and regeneration. Biochim Biophys Acta (2016) 1863:1813–21. doi:10.1016/j.bbamcr.2016.01.011
61. Quaife-Ryan GA, Sim CB, Ziemann M, Kaspi A, Rafaei H, Ramilison M, et al. Multi-cellular transcriptional analysis of mammalian heart regeneration. Circulation (2017) 136(12):1123–39. doi:10.1161/CIRCULATIONAHA.117.028528
62. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimienti S, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell (2003) 114:763–76. doi:10.1016/S0092-8674(03)00687-1
63. Ellison GM, Vicinanza C, Smith AJ, Aquila I, Leone A, Waring CD, et al. Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell (2013) 154:827–42. doi:10.1016/j.cell.2013.07.039
64. Frangogiannis NG. Regulation of the inflammatory response in cardiac repair. Circ Res (2012) 110:159–73. doi:10.1161/CIRCRESAHA.111.243162

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Castellan and Meloni. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.