Lake storage variation on the endorheic Tibetan Plateau and its attribution to climate change since the new millennium

Fangfang Yao¹, Jida Wang¹*, Kehan Yang², Chao Wang³, Blake Walter¹ and Jean-François Crétaux⁴

¹Department of Geography, Kansas State University, Manhattan, Kansas, USA

²Department of Geography, Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, Colorado, USA

³Department of Environmental Sciences, University of Puerto Rico, Rio Piedras, San Juan, Puerto Rico, USA

⁴Centre National d’Études Spatiales (CNES), Laboratoire d’Études en Géophysique et Océanographie Spatiales (LEGOS), 14 av Edouard Belin, F-31400 Toulouse, France

* Corresponding author: Jida Wang (jidawang@ksu.edu)

Supplementary Information

Contents
Supplementary Figure S1
Supplementary Tables S1–S2
Supplementary Figure S1

Figure S1. Base areas and minimum areas for 871 studied lakes. Lakes with extrapolated hypsometry are those with minimum areas less than base areas (red dots below the diagonal line).
Supplementary Table S1

Table S1. Detailed information of lakes used for volume validation (Source: Messager et al [4]).

Lake Name	Longitude	Latitude	Size (km²)	Total Volume (Gt)	Elevation (m)
SilingCo	89.05	31.78	1748.21	49.00	4539
NamCo	90.66	30.71	1961.90	87.12	4724
Ayakkum	89.43	37.56	616.65	6.16	3876
LexieWudan	90.21	35.74	220.80	3.68	4870
Aksayquin	79.82	35.22	165.96	1.59	4844
UlanUla	90.36	34.76	480.82	7.98	4855
Dogai Coring	89.00	34.55	360.11	6.63	4818
LumajangdongCo	81.64	34.05	346.93	15.64	4812
Namru	90.84	32.08	207.02	2.63	4568
Ngangla Ringco	83.05	31.57	497.66	5.00	4716
TarongCo	84.33	31.18	473.29	16.15	4567
Zhari Namco	85.64	30.95	957.20	23.95	4612
Tangra	86.50	30.95	824.31	99.01	4535
Dorsoi.pngco & Migriggyangzhamco	90.25	33.62	877.81	20.15	4936
Dogaicoring-Q*	89.26	35.32	208.99	1.33	4787
DagazeCo*	87.53	31.89	251.37	2.13	4465
PengCo*	90.97	31.51	148.02	1.81	4529
Xuelian*	90.23	34.11	40.22	0.23	5275

* lakes without ICESat hypsometry
Supplementary Table S2

Table S2. Summary of changes in lake water storage (LWS), P-ET (net precipitation, estimated from mascon data with GLDAS-modeled scale factors) and non-lake water storage (NLWS) across the CP. All uncertainties are 95% confidence intervals.

Periods	LWS	P-ET	NLWS		
	Gt yr⁻¹	Gt yr⁻¹	% of ∆LWS	Gt yr⁻¹	% of ∆LWS
Increasing P-ET period (2002–2012)	9.05 ± 0.65	6.89 ± 0.27	76.13 ± 5.83	-2.16 ± 0.70	-23.87 ± 8.08
Decreasing P-ET period (2013–2015)	-8.09 ± 3.37	-14.98 ± 2.03	185.17 ± 74.44	-6.89 ± 3.93	-85.17 ± 56.33
Entire study period (2002–2015)	7.34 ± 0.62	4.66 ± 0.18	63.49 ± 5.39	-2.68 ± 0.65	-36.51 ± 9.58