Acute kidney injury without need for dialysis, incidence, its impact on long-term stroke survival and progression to chronic kidney disease

Shrikant D Pande 1,2, Debajyoti Roy,2 Aye Aye Khine,1 May M Win,1 Lorecar Lolong,1 Ni Thu Shan,1 Pei Ting Tan,3 Tian Ming Tu4

ABSTRACT

Introduction Patients who had a stroke are at increased risk of sepsis, dehydration and fluctuations in blood pressure, which may result in acute kidney injury (AKI). The impact of AKI on long-term stroke survival has not been studied well.

Objective We aimed to identify incidence of AKI during acute stroke, follow-up period and its impact on long-term survival and development of chronic kidney disease (CKD).

Design, setting and participants Retrospective analysis of patients who had a stroke admitted at the rehabilitation facility in Changi General Hospital, Singapore, between June 2008 and May 2017, with median follow-up of 141 (95% CI 120 to 163) months.

Outcome measures and results of univariate analysis Total 681 patients, median age 63.6 years, 173 (28%) died during follow-up. Elevated blood urea (3.02, 95% CI 2.17 to 4.22; p<0.001) and creatinine (1.96, 95% CI 1.50 to 2.57; p<0.001) during stroke affected survival adversely.

Excluding patients with CKD, we analysed the remaining 617 patients. AKI was noted in 75 (12.15%) patients during the index admission, and it affected survival adversely (2.16, 95% CI 1.49 to 3.13; p<0.001). Of the patients with AKI, 21 of 75 (28%) progressed to CKD over a median follow-up of 40.7 months.

Conclusions We found AKI during stroke admission was associated with increased mortality as compared with those without AKI on univariate analysis. AKI without need of renal replacement therapy was also associated with progression to CKD in this cohort. This suggests that patients with AKI need to have their renal function monitored longitudinally for development of CKD.

INTRODUCTION

Stroke results in significant disabilities, long-term complications and requirement for long-term follow-up. Stroke is a major cause of mortality,1 and survival has been studied within various subgroups of strokes.2 The comorbidities independently have been shown to affect survival in these patients.3–4

Patients who had a stroke with more severe neurological deficit are at an increased risk of medical complications like urinary tract and chest infections, which in turn are associated with poor functional recovery.5–7

Dehydration, sepsis and fluctuations in blood pressure following stroke increases the risk of acute kidney injury (AKI) with consequently poor survival. Elderly patients with decreased estimated glomerular filtration rate (eGFR) are a population at increased risk of AKI.8–10

AKI is also known to progress to chronic kidney disease (CKD) and in those with preexisting CKD results in further deterioration in renal function.11 12 Coexistent diabetes mellitus (DM) and poorly controlled hypertension (HTN) in patients who had a stroke may also contribute to CKD.13 14

AKI not only is associated with increased mortality but also contributes to prolonged length of stay (LOS) and increased financial burden to the healthcare system.15 16

Although AKI is increasingly recognised as a significant risk factor, its impact on survival in patients who had a stroke and relationship with subsequent progression to CKD have not been studied adequately. Literature search revealed limited studies done on this subject, including only one prospective study.17

STRENGTHS AND LIMITATIONS OF THIS STUDY

⇒ All ethnic and socioeconomic groups are represented in the data.
⇒ This is the first study from Southeast Asia on long-term survival outcomes following stroke in relation to acute kidney injury (AKI).
⇒ The effect of AKI in the development of subsequent CKD is described.
⇒ Retrospective observational and single-centre study which may lead to potential selection bias and reporting bias.
⇒ Due to the retrospective nature of the study, we can not comment on the causes of AKI.
In the present study, we aimed to identify the incidence of AKI, its impact on long-term survival following strokes (ischaemic and haemorrhagic) and development of CKD.

METHODS

Patients
This is a retrospective analysis of patients who had a stroke (both infarction and spontaneous intracerebral haemorrhage) who had met the selection criteria of the study and were consecutively admitted to the neurorehabilitation facility at the Changi General Hospital from June 2008 to May 2017. The follow-up period ranged from 6 to 163 months. All the patients included in the current study were discharged from the rehabilitation facility and were followed up regularly as outpatients. The subsequent records of hospital admissions and follow-up changes in the general physical and neurological status and treatment regimens were available electronically and in paper format for all patients.

The exclusion criteria were (1) incomplete follow-up records including those patients who were repatriated to other countries, (2) patients less than 21 years of age (as per CIRB guideline), (3) transient ischaemic attacks, (4) pre-existent CKD, end-stage renal failure (ESRF) or patients on haemodialysis (HD).

Acute kidney injury
Only those patients whose baseline creatinine at least 3 months prior to admission was available were included. AKI was defined as an increase of >26.5 mmol/L over baseline within 48 hours as per the 2012 Kidney Disease: Improving Global Outcomes (KDIGO) criteria. Those with AKI which progressed to CKD during follow-up were documented.

Stroke and its subtypes were diagnosed by a stroke physician on admission based on clinical examination, brain imaging (CT, MRI and magnetic resonance angiography), ECG 12 leads, continuous monitor or Holter, carotid Doppler and echocardiogram. The patients were classified as per Oxfordshire classification (for stroke territory) and Trial of Org10172 in Acute Stroke Treatment (TOAST) for ischaemic strokes.

Patient and public involvement statement
Due to the retrospective nature of the study, this is not applicable.

Sampling procedure
All the electronic and paper medical records of the patients from the time stroke was diagnosed, follow-up visits and additional admissions were reviewed until May 2017. Last follow-up date of demise and renal function was 21 October 2019. The material was housed in the hospital's medical record database and in the records of the clinician at the neurorehabilitation facility. The data collected included demographic details, diagnosis, type of stroke (ischaemic and intracerebral bleed), and CT/MRI findings for stroke territory, admission electrolytes, lipid panel, full blood count, clotting profiles, premorbid medications and comorbidities. The treatment modalities included thrombolysis, medical treatments for raised intracranial pressure and neurosurgical interventions.

Statistical analysis
Categorical data are presented as frequency (percentage), and continuous data are presented as mean (SD) for normally distributed data and geometric mean and range for positively skewed data. Associations between mortality and demographic factors, clinical features, comorbidities and admission blood tests for the cohort of 617 patients were assessed using Cox proportional hazards regression. HRs and their associated 95% CIs are presented.

A two-tailed p value of <0.05 was statistically significant. The analysis was performed using the Statistical Package for the Social Sciences V.22.0.

RESULTS

Patient characteristics
A total of 617 (women: 36%) patients with a mean age of 63.6 years met the selection criteria. While 443 (70%) of the patients had ischaemic strokes, 190 (28%) of them had haemorrhagic strokes. The median follow-up period was 141 (95% CI 120 to 163) months, and 173 (28%) patients died during this period.

Univariate analysis: impaired urea, creatinine and its effect on survival
This included all 681 patients; raised blood urea (HR 3.02, 95% CI 2.17 to 4.22; p≤0.001) and elevated serum creatinine (HR 1.96, 95% CI 1.50 to 2.57; p≤0.001) at the stroke admission affected survival adversely in the long term (table 1).

AKI and survival
Of the 681 stroke patients, 617 met the selection criteria. AKI was noted in 75 (12.15%) patients during stroke admission. The univariate analysis of these patients showed that AKI was associated with poorer survival in the long term (2.16, 95% CI 1.49 to 3.13; p<0.001) (table 2).

AKI grading was documented 95% CIs are presented. A two-tailed p value <0.05 was statistically significant. The analysis was performed using the Statistical Package for the Social Sciences V.22.0.

Multivariable analysis
The multivariate cox regression analysis after adjustment for age and other comorbidities did not show AKI as an independent predictor for mortality (adjusted HR for AKI 1.30, 95% CI 0.79 to 2.16; p=0.305) (table 4).
Table 1 Univariate analysis of characteristics associated with progression to mortality (n=681)

Characteristic	N	Univariate HR (95% CI)	P value
Age (year)	681	1.08 (1.07 to 1.09)	<0.001
Gender			
Male	423	Reference	
Female	258	1.24 (0.94 to 1.63)	0.124
Ethnicity			
Chinese	447	Reference	
Indian	55	0.90 (0.51 to 1.59)	0.710
Malay	152	1.32 (0.97 to 1.80)	0.075
Others	27	0.66 (0.29 to 1.50)	0.323
Stroke: haemorrhagic versus ischaemic			
Haemorrhagic	191	Reference	
Ischaemic stroke	490	1.36 (0.99 to 1.88)	0.055
Cardioembolic stroke			
No	288	Reference	
Moderate risk	73	2.58 (1.65 to 4.02)	<0.001
High risk	185	3.75 (2.69 to 5.21)	<0.001
Artery size			
Small	187	Reference	0.018
Large	296	1.50 (1.07 to 2.09)	
Stroke classification			
LACS	323	Reference	
TACS	30	2.36 (1.33 to 4.16)	0.003
PACS	187	1.57 (1.13 to 2.17)	0.007
POCS	131	1.55 (1.08 to 2.21)	0.016
Undefined	10	2.00 (0.73 to 5.47)	0.175
Significance infection, Hep B, HIV			
No	668	Reference	
Yes	13	0.65 (0.21 to 2.04)	0.465
Cirrhosis			
No	669	Reference	
Yes	12	2.03 (0.90 to 4.58)	0.088
Malignancy			
No	622	Reference	
Yes	59	2.06 (1.42 to 2.98)	<0.001
Fracture neck of femur			
No	659	Reference	
Yes	22	0.80 (0.35 to 1.80)	0.590
Atrial fibrillation			
No	506	Reference	
Yes	175	2.39 (1.82 to 3.15)	<0.001
Recurrent cerebrovascular accidents: during follow-up			
No	613	Reference	
Yes	68	1.04 (0.68 to 1.59)	0.858
Peripheral vascular disease			
No	600	Reference	
Yes	81	1.68 (1.18 to 2.39)	0.004
Chronic obstructive pulmonary disease			
No	667	Reference	
Yes	14	2.10 (1.08 to 4.10)	0.029
Ischaemic heart disease			
No	465	Reference	<0.001
Yes	216	1.65 (1.26 to 2.16)	

Continued

Table 1 Continued

Characteristic	N	Univariate HR (95% CI)	P value
Hypertension			
No	168	Reference	
Yes	513	1.55 (1.10 to 2.18)	0.012
Diabetes mellitus			
No	412	Reference	
Yes	269	1.36 (1.04 to 1.78)	0.025
Known history of hyperlipidaemia			
No	383	Reference	
Yes	298	1.71 (1.31 to 2.24)	<0.001
Total cholesterol: LDL ratio			
No	324	Reference	
Yes	326	0.54 (0.40 to 0.71)	<0.001
Low sodium			
No	579	Reference	
Yes	102	1.90 (1.38 to 2.62)	<0.001
Patient with neurosurgical intervention for stroke			
No	626	Reference	
Yes	55	0.51 (0.27 to 0.96)	0.036
High potassium			
No	554	Reference	
Yes	127	0.68 (0.46 to 0.99)	0.044
High glucose			
No	681	Reference	0.018
Yes	681	1.03 (1.005 to 1.05)	
Haemoglobin			
No	681	Reference	<0.001
Yes	681	0.77 (0.72 to 0.83)	
White blood cell count			
No	681	Reference	0.009
Yes	681	0.94 (0.90 to 0.99)	
Platelet count			
No	680	Reference	0.093
Yes	680	0.99 (0.99 to 1.00)	
Raised blood urea			
No	602	Reference	<0.001
Yes	78	3.02 (2.17 to 4.22)	
Raised serum creatinine			
No	408	Reference	<0.001
Yes	273	1.96 (1.50 to 2.57)	
Thrombolysis with rTPA for ischaemic strokes only			
No	533	Reference	0.123
Yes	148	0.55 (0.26 to 1.17)	
Raised intracranial pressure and treatment received during stroke			
No	643	Reference	0.069
Yes	38	0.72 (0.50 to 1.03)	

DISCUSSION

In our retrospective cohort of 617 patients who had a stroke and followed up over a median period of 11.75 years, we noted AKI in 12.15% of the patients during the stroke admission. On follow-up, 28% of the patients with AKI subsequently progressed to CKD. Of the seventy-five patients with AKI, 49 (65%) were KDIGO grade 1 and 26
Open access

Table 2 Univariate of relationship of AKI to long-term stroke mortality

AKI at stroke admission	N	HR (95% CI)	P value
No	542	Reference	<0.001
Yes	75	2.16 (1.49 to 3.13)	

AKI, acute kidney injury.

(35%) were KDIGO grade 2. None of the patients with AKI required renal replacement therapy.

Patients with AKI who progressed to CKD were over a median duration of 40.7 months.

Due to retrospective nature of data collection, we are unable to comment on the underlying causes of AKI, which could be multifactorial, including infections, dehydration, nephrotoxic medications and contrast-induced nephropathy.

CKD and ESRF are often associated with HTN and DM. These patients are susceptible to vascular complications including stroke. The short-term and long-term survival in this group of people have been extensively studied in the past.

In contrast, AKI and its relationship have not been studied adequately, and only a few studies have reviewed its impact on patients who had a stroke. However, from available data, AKI has been shown to be a common complication following ischaemic and haemorrhagic strokes and causes increased mortality in ischaemic stroke.

Grosjean et al in their retrospective analysis found a higher incidence of AKI post stroke and its association with cardioembolic and haemorrhagic strokes and causes increased mortality in ischaemic stroke.

In contrast, AKI and its relationship have not been studied adequately, and only a few studies have reviewed its impact on patients who had a stroke. However, from available data, AKI has been shown to be a common complication following ischaemic and haemorrhagic strokes and causes increased mortality in ischaemic stroke.

Grosjean et al in their retrospective analysis found a higher incidence of AKI post stroke and its association with cardioembolic and haemorrhagic strokes. AKI was also associated with longer LOS, higher comorbidity index and worse disability score. Although the inpatient mortality was worse, the authors found that long-term survival over 19.2 months was not affected.

We are unable to draw conclusions on disability scores (functional independence measure (FIM)) and comorbidity index due to incomplete data. We did not include LOS as an outcome measure as has been reported earlier. The reason for this is that some of the patients who had a stroke are discharged to community hospital for further rehabilitation and others to nursing homes due to severity of stroke. As a result, it does not accurately reflect the inpatient stay.

Table 3 Association of AKI grading and progression to CKD

AKI at stroke	Total	Grade I	Grade II/III	P value
AKI at stroke	54 (72.0)	49 (70.0)	5 (100.0)	0.183
AKI at stroke progressing to CKD	21 (28.0)	21 (30.0)	0 (0.0)	

AKI, acute kidney injury; CKD, chronic kidney disease.

Table 4 Multivariable analysis of factors associated with long-term stroke mortality

Age (year)	Multivariate HR (95% CI)	P value
No	1.07 (1.05 to 1.09)	<0.001
Yes	1.30 (0.79 to 2.16)	0.305

Malignancy

| No | 1.64 (1.07 to 2.52) | 0.024 |
| Yes | Reference | |

Atrial fibrillation

| No | 1.23 (0.86 to 1.75) | 0.255 |
| Yes | Reference | |

Peripheral vascular disease

| No | 1.26 (0.81 to 1.94) | 0.304 |
| Yes | Reference | |

Chronic obstructive airway disease

| No | 1.43 (0.69 to 2.95) | 0.332 |
| Yes | Reference | |

Ischaemic heart disease

| No | 1.28 (0.91 to 1.80) | 0.159 |
| Yes | Reference | |

Hypertension

| No | 1.46 (0.80 to 1.75) | 0.040 |
| Yes | Reference | |

Diabetes mellitus

| No | 0.96 (0.65 to 1.43) | 0.854 |
| Yes | Reference | |

History of hyperlipidaemia

| No | 0.95 (0.68 to 1.33) | 0.776 |
| Yes | Reference | |

High cholesterol at stroke admission

| No | 0.62 (0.44 to 0.87) | 0.006 |
| Yes | Reference | |

Low sodium

| No | 1.39 (0.92 to 2.11) | 0.118 |
| Yes | Reference | |

Patient with neurosurgical intervention for stroke

| No | 1.09 (0.52 to 2.31) | 0.816 |
| Yes | Reference | |

High glucose

| No | 1.03 (0.99 to 1.07) | 0.185 |
| Yes | Reference | |

Hb

| No | 0.97 (0.88 to 1.06) | 0.475 |
| Yes | Reference | |

High creatinine

| No | 1.13 (0.75 to 1.71) | 0.568 |
| Yes | Reference | |

AKI, acute kidney injury.

AKI and its relationship with cardioembolic strokes have been studied, and the increased incidence of AKI in these patients is thought to be result of haemodynamic dysfunction associated with underlying atrial fibrillation.
admission, ischaemic heart disease (IHD), conge-
sis AKI was associated with increased cost, LOS and
Health Stroke Scale scores. The study also concluded
IHD, need further investigation in relation to AKI.

bidities associated with stroke, that is, AF, DM, HTN and
on poststroke sur-
tive kidney repair but persist in maladaptive repair that led

mitochondrial dysfunction, cell death and inflammation
explained from preclinical studies which suggest that
mechanism of AKI and long-term renal impairment
was explained from preclinical studies which suggest that
mitochondrial dysfunction, cell death and inflammation
as ‘pathogenic mechanisms which can resolve with adap-
tive kidney repair but persist in maladaptive repair that led
to progressive chronic disease.’ Literature search shows
only one prospective study by Tsagalis et al in patients
following stroke, where the authors studied AKI in 2155
subjects. They concluded that AKI is a powerful indicator
of 10-year mortality and cardiovascular events. Although
our data are a retrospective analysis, our findings on

univariate analysis suggest that AKI has impact on poor
survival following stroke.

Snarska et al in their study concluded that patients who
had haemorrhagic stroke with AKI had worse outcomes
as compared with those who had ischaemic stroke. The
authors also concluded to monitor renal function, hydra-
tion and avoidance of nephrotoxic drugs as preventive
strategy.

Currently, there are no pharmacological agents for
prevention of AKI. Edaravone, which is used for acute
ischaemic strokes, has been studied from the Fukuoka
Registry cohort. The authors observed that it has a protec-
tive effect against development of AKI in acute stroke.

Our study also suggested that each subsequent ad-
mision for medical or surgical reasons, that is, sepsis, surgery
followed by intensive care stay leads to additional insults
to kidney. Each insult to kidney leads to further deteriora-
tion of renal function with the end result being CKD and
ESRF. During these episodes of acute illness and hospi-
talisations, maintaining renal perfusion with close moni-
toring may help to prevent long-term renal damage.

In our previously published study of patients who had
a stroke with CKD and end-stage renal failure on HD, we
concluded that apart from increased morbidity and
recurrent hospitalisations, this group of patients had
severely reduced life expectancy.

CONCLUSIONS

In our study, we found AKI is common both during acute
admission for stroke as well as subsequent follow-up
period. Despite not requiring dialysis, these AKI episodes
were associated with poorer survival and subsequent
development of CKD.

Patients with AKI during stroke admission need to have
their renal function assessed periodically for development
of CKD. Acute stroke management strategies which
may prevent AKI include careful assessment of hydration
status, adequate and timely treatment of sepsis, avoidance
of nephrotoxic agents and indwelling catheters.

A multidisciplinary approach for prevention of AKI
with the renal team may be beneficial.

Modifiable risk factors such as DM and HTN need
careful management.

We are planning to conduct a prospective study to vali-
date our findings.

Acknowledgements The authors thank the staff of the clinical trials and research
unit of Changi General Hospital.

Contributors SDP, DR and TMT: concept, data, literature search and write-
up. AAK, MMW, LL and NTS: data collection and methodology. PTT: statistical analysis, tables,
graphs and editing. SDP accepts full responsibility for the work and the conduct
of the study, had access to the data and controlled the decision to publish. SDP is
acting as guarantor.

Funding The authors have not declared a specific grant for this research from any
funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient and public involvement Patients and/or the public were not involved in
the design, conduct, reporting or dissemination plans of this research.
Patient consent for publication Not applicable.

Ethics approval The Singhealth Centralised Institutional Review Board (CIRB) approved this study (2015/3112). Informed consent from the patients was waived due to the retrospective nature of the study. All methods were performed in accordance with Singhealth CIRB guidelines approved for data collection and storage.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article. No additional data is available.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD Shrikant D Pande http://orcid.org/0000-0003-2614-2931

REFERENCES

1. Lloyd-Jones D, Adams R, Carnethon M, et al. Heart disease and stroke statistics—2009 update: a report from the American heart association statistics and stroke statistics subcommittee. Circulation 2009;119:480–6.

2. Lakshminarayan K, Berger AK, Fuller CC, et al. Trends in 10-year survival of patients with stroke hospitalized between 1980 and 2000: the Minnesota stroke survey. Stroke 2014;45:2575–81.

3. Hardie K, Jamrozik K, Hankey GJ, et al. Trends in five-year survival and risk of recurrent stroke after first-ever stroke in the perth community stroke study. Cerebrovasc Dis 2005;19:179–85.

4. Hardie K, Hankey GJ, Jamrozik K, et al. Ten-year survival after first-ever stroke in the perth community stroke study. Stroke 2003;34:1842–6.

5. Boone M, Chillón J-M, Garcia-P Y, et al. Nihss and acute complications after anterior and posterior circulation strokes. Ther Clin Risk Manag 2012;8:87–93.

6. Aslanyan S, Weir CJ, Diener H-C, et al. Pneumonia and urinary tract infection after acute ischaemic stroke: a tertiary analysis of the gain international trial. Eur J Neurol 2004;11:49–53.

7. Bahouth MN, Gottesman RF, Szantlon SL. Primary ‘dehydration’ and acute stroke: a systematic research review. J Neurol 2018;265:2167–81.

8. Hommos MS, Glasscock RJ, Rule AD. Structural and functional changes in human kidneys with healthy aging. JASN 2017;28:2838–44.

9. Singh P, Rifkin DE, Blantz RC. Chronic kidney disease: an inherent risk factor for acute kidney injury?. CJASN 2010;5:1690–5.

10. Esposito C, Piali A, Mazzuollo T, et al. Renal function and functional reserve in healthy elderly individuals. J Nephrol 2007;20:617–25.

11. Gewin LS. Transforming growth factor-β in the acute kidney injury to chronic kidney disease transition. Nephron 2019;143:154–7.

12. Žuk A, Bonventre JV. Recent advances in acute kidney injury and its consequences and impact on chronic kidney disease. Curr Opin Nephrol Hypertens 2010;20:397–405.

13. Bang H, Vuppupuri S, Shoham DA, et al. Screening for occult renal disease (scored). Arch Intern Med 2007;167:374–81.

14. O’Donnell MJ, Xavier D, Liu L, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. The Lancet 2010;376:112–23.

15. Lameire NH, Bagga A, Cruz D, et al. Acute kidney injury: an increasing global concern. The Lancet 2013;382:170–9.

16. Chertow GM, Burdick E, Honour M, et al. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. JASN 2005;16:3965–70.

17. Tsagalis G, Akrivos T, Alevizaki M, et al. Long-Term prognosis of acute kidney injury after first acute stroke. CJASN 2009;4:616–22.

18. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2012;2.

19. Bammford J, Sandercock P, Dennis M, et al. Classification and natural history of clinically identifiable subtypes of cerebral infarction. The Lancet 1991;337:1521–6.

20. Madken RP, Karanjia PN, Adams HP, et al. Accuracy of initial stroke subtype diagnosis in the TOAST study, trial of ORG 10172 in acute stroke treatment. Neurology 1995;45:1975–9.

21. Zorrilla-Vaca A, Zial W, Connolly Jr JS, et al. Acute kidney injury following acute ischemic stroke and intracerebral hemorrhage: a meta-analysis of prevalence rate and mortality risk. Cerebrovasc Dis 2018;45:1–9.

22. Khatri M, Himmelfarb J, Adams D, et al. Acute kidney injury is associated with increased hospital mortality after stroke. J Stroke Cerebrovasc Dis 2014;23:25–30.

23. Covic A, Schiller A, Mardare N-G, et al. The impact of acute kidney injury on short-term survival in an eastern European population with stroke. Nephrol Dial Transplant 2008;23:2228–34.

24. Grosjean F, Tonani M, Maccarrone R, et al. Under-recognized post-stroke acute kidney injury: risk factors and relevance for stroke outcome of a frequent comorbidity. Int Urol Nephrol 2019;51:1597–604.

25. Bukowska A, Londeckel U, Krohn A, et al. Atrial fibrillation down-regulates renal neutral endopeptidase expression and induces pro-angiogenic pathways in the kidney. Europace 2008;10:1212–7.

26. Brodsky SV, Hebert LA. Anticoagulant-related nephropathy. J Am Coll Cardiol 2016;68:2284–6.

27. Wei C-C, Zhang S-T, Tan G, et al. Impact of anemia on in-hospital complications after ischemic stroke. Eur J Neurology 2018;25:768–74.

28. Darby PJ, Kim N, Hare GMT, et al. Anemia increases the risk of renal cortical and medullary hypoxia during cardiopulmonary bypass. Perfusion 2013;28:504–11.

29. Brezis M, Rosen S. Hypoxia of the renal medulla — its implications for disease. N Engl J Med 1995;332:647–55.

30. Arnold J, Ng KP, Sims D, et al. Incidence and impact on outcomes of acute kidney injury after a stroke: a systematic review and meta-analysis. BMC Nephrol 2018;19:283.

31. Snarska K, Kapica-Topczewska K, Bachorowska-Gajewska H, et al. Renal function predicts outcomes in patients with ischaemic stroke and haemorrhagic stroke. Kidney Blood Press Res 2016;41:424–33.

32. Kamouchi M, Sakai H, Kiyohara Y, et al. Acute kidney injury and edaravone in acute ischemic stroke: the Fukuoka stroke Registry. J Stroke Cerebrovasc Dis 2013;22:e470–6.

33. Pande SD, Morris J. Influence of chronic kidney disease and haemodialysis on stroke outcomes. Singapore Med J 2020;1–14.