Research Article

Flexible Bus Route Optimization Scheduling Model

Ji-yang Sun,1 Yan-yan Chen,2 Jian-ling Huang,3 Pan-yi Wei,1 and Cheng-cheng Song1

1Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China
2Center of Cooperative Innovation for Beijing Metropolitan Transportation, Beijing 100124, China
3Beijing Transportation Information Center, Beijing 100161, China

Correspondence should be addressed to Pan-yi Wei; weipanyi@foxmail.com

Received 28 June 2020; Revised 7 December 2020; Accepted 28 January 2021; Published 27 February 2021

A flexible bus route optimization scheduling model that considers the dynamic changes of passenger demand is proposed to address the large difference in demand for flexible bus passengers and real-time variability. This model uses the heuristic algorithm based on gravity model to determine the following: passenger booking; vehicle passenger capacity; team known conditions such as size, according to the dynamic changes of passenger demand for real-time iterative update shuttle travel time; vehicle operating costs (vehicle); and time cost for passengers (passengers waiting time for the vehicle, actual time of arrival, and the difference between expected and actual times of arrival) before minimization as the target. Finally, the practicabilities of the model and algorithm are verified by an example. Analysis results show that for 102 travel demands of 15 randomly generated demand points, completing all services requires 17–21 vehicles with average travel time of 24.59 minutes each. The solution time of 100 groups of data is within 25 seconds and the average calculation time is 12.04 seconds. Under the premise of real-time adjustment of connection planning time, this optimization model can thus better meet the dynamic demand of passengers compared with the current scenario. The model effectively reduces the planning path error, shortens the travel distance and passenger travel time, and achieves better results than the flexible bus scheduling model that ignores changes of connection travel time.

1. Introduction

How to realize optimal scheduling is the main problem faced by urban public transport operation and management. A good bus scheduling system can quickly optimize and adjust the line operation plan according to the travel needs of passengers. In addition, this system can improve the line service rate, reduce running time, and reduce travel time cost of passengers [1–3]. The traditional bus route optimization method is mainly designed based on experience, long-term observation, or IC card data statistical analysis. The objective is to extend, shorten, add, or delete certain lines, adjusting to the optimization and priority that meet the passenger demand of large passenger flow site. This method is mainly suitable for fixed-line bus route optimization with long cycle adjustment [4–7]. The emergence of flexible buses provides the possibility for dynamic optimization and adjustment of routes [7–10]. Vincent et al. [11] proposed a mixed-integer linear programming model and a variable neighborhood search to deal with the flexible vehicle and crew scheduling problem, by solving the problem that urban bus transport agencies have to assign their resources (vehicles and drivers) to cover timetables generated at the tactical level. Giorgio et al. [12] explored the potential contribution that the public transport agency can make to the emerging mobility as a service (MaaS) paradigm through the integration of regular collective transport services with complementary flexible transport schemes and other forms of shared-use transport. Nourbakhsh and Ouyang [13] presented an alternative flexible-route transit system in which each bus is allowed to travel across a predetermined area to serve passengers, analyzed the agency and user cost components of this proposed system in idealized square cities, and sought the optimum network layout, service area of each bus, and bus...
2. Problem Description and Modeling

2.1. Problem Description. A flexible bus is a demand-based transportation system that can gather individual passengers’ travel needs and provide personalized transportation services. Under the "dynamic real-time” demand mode, which is the focus of this study, the flexible bus system has high requirements on algorithm and operation cost control. The following assumptions, parameter selection, and modeling are carried out to establish a reasonable and appropriate model. Several factors such as passenger demand and operating cost are likewise considered.

2.2. Model Assumptions. The following assumptions are proposed, with (1) and (2) as dynamic hypotheses and (3)–(6) as static hypotheses:

(1) Passenger reservation demand changes dynamically at each station.
(2) The travel time between stations is dynamic.
(3) Location of each site is known.
(4) After booking, the time for each passenger to arrive at the target station is known.
(5) The service time for passengers to board the train is constant.
(6) The passenger-carrying capacity of the transfer vehicle is known.

2.3. Model Parameters. Table 1 shows the definition and description of the input and decision variables in the model.

2.4. Model Presentation. The coordination scheduling optimization model can be expressed as the following nonlinear programming model.

$$\min \left[\sum_{j \in H \cup D} \sum_{i \in D \cup K} c_{ij} Y_{ijk} + \sum_{r \in K} a_r + \sum_{r \in K} \sum_{k \in K} \sum_{t \in T} (X_{rit} T_t - e_r) \right].$$

(1)

Equation (1) is the objective equation, which includes the minimization of the sum of three factors: (1) travel time of all vehicles to reduce operating costs; (2) sum of waiting time of all passengers in each station; and (3) sum of waiting time of all passengers in the target station. The latter two are determined to reduce the passenger time cost.

$$\sum_{j \in H \cup D} \sum_{k \in K} Y_{ijk} \geq 1, \quad \forall i \in H,$$

(2)

$$\sum_{j \in H \cup D \cup K} Y_{ijk} \leq V, \quad \forall i \in H.$$

(3)

Constraints (2) and (3) indicate that for each demand point, at least one vehicle service and at most V vehicle service are available.
\(i \in H \)
\(k \in K \)
\(Y_{ijk} \leq V, \forall j \in D. \)

(4)

Constraint (4) means that at most \(V \) vehicles participate in the operation.

\[\sum_{j \in H \cup D} Y_{ijk} - \sum_{p \in H} Y_{pik} \geq 0, \quad \forall i \in H, k \in K. \]

(5)

Constraint (5) indicates that in addition to the first demand point of each vehicle service, the number of vehicles entering should be equal to that leaving to serve the other demand points.

\[U_{ik} - U_{jk} + |H| \times Y_{ijk} \leq |H| - 1, \quad \forall i, j \in H \cup D, k \in K. \]

(6)

Constraint (6) avoids loops in the vehicle path.

\[\sum_{i \in H} \sum_{j \in D} Y_{ijk} \geq 1, \quad \forall k \in K, \]

(7)

\[\sum_{i \in H} \sum_{j \in D} Y_{ijk} \leq 0, \quad \forall k \in K. \]

(8)

Constraints (7) and (8) ensure that each vehicle delivers passengers to their final destination.

\[\sum_{r \in R \cap t} X_{rkt} \leq Q_k, \quad \forall k \in K. \]

(9)

Constraint (9) ensures that the capacity of each feeder vehicle does not exceed its rated capacity to ensure the service level.

\[\sum_{k \in K \cap t} \sum_{r \in R} X_{rkt} = 1, \quad \forall r \in R. \]

(10)

Constraint (10) means that any requirement can only be served by one vehicle.

\[\sum_{m \in T \cap [t]} X_{skm} - (1 - X_{rkt})M \leq 0, \quad \forall r, s \in R, \forall k \in K, \forall t \in T. \]

(11)

Constraint (11) indicates that a transfer vehicle can only connect passengers at one departure time of a target station.

\[\sum_{r \in R \cap k \in K \cap t} X_{rkt} = N. \]

(12)

Constraint (12) guarantees that all demand served is equal to the known reservation demand.
\[a_r + c_{p,p} - a_s + Y_{p,p,k} \leq M, \quad \forall r, s \in R, \forall k \in K, \quad (13) \]
\[a_s - a_r - c_{p,p} + Y_{p,p,k} \leq M, \quad \forall r, s \in R, \forall k \in K. \quad (14) \]

Constraints (13) and (14) indicate that if two stations are successively served by a transfer vehicle, then the arrival time of demand in the latter station is equal to the sum of the travel time of demand in the previous demand point and the travel time between the two demand points.

\[a_r + c_{p,j} - a_s + Y_{p,p,k} \leq M, \quad \forall r \in R, \forall k \in K, \forall j \in D, \quad (15) \]
\[a_s - a_r - c_{p,j} + Y_{p,p,k} \leq M, \quad \forall r \in R, \forall k \in K, \forall j \in D. \quad (16) \]

Constraints (15) and (16) indicate that the time for the passenger to reach the target station at the last demand station of the connecting vehicle is equal to the sum of the travel time of the vehicle to reach the demand point and the travel time between the two demand points.

\[e_r \leq \sum_{k \in K} \sum_{t \in T} X_{rkt} T_t, \quad \forall r \in R. \quad (17) \]

Constraint (17) ensures that the vehicle arrives at the target station no later than the departure time of the target station.

3. Model Solution

The flexible bus route optimization scheduling problem for multiobjective stations is a typical NP-hard problem. As the problem scale expands, the computation likewise increases exponentially. Therefore, this kind of problem is usually solved by heuristic algorithm that can guarantee calculation speed and accuracy. Inspired by the law of universal gravitation, the present study proposes a heuristic algorithm that first generates the initial solution on the basis of the gravity model.

3.2. Generating Initial Vehicle Path Solution on the Basis of the Gravity Model

The path search problem is transformed into the iterative problem of the site selection chain, which is most attractive to the current site based on the gravity model algorithm. The gravity between the two sites is defined as follows.

\[F_{ij} = \frac{N_i N_j}{c_{ij}} \quad (18) \]

where \(N_i \) is the number of passengers at station \(i \) and \(c_{ij} \) is the travel time between station \(i \) and station \(j \). The higher value of \(F_{ij} \) means that the two stations have more passengers and less travel cost, thus needing priority service. Therefore, station \(j \) should be set as the next station of station \(i \).

Given the rated vehicle carrying capacity, the steps of the gravity model algorithm to generate the initial path solution are as follows.

Step 1: determine the vehicle starting point. Initial \(k = 1 \). Randomly select one station with passenger boarding requirements as the starting point of vehicle \(k \).

Step 2: determine if similar passengers are not serviced. If so, proceed to Step 3. Otherwise, proceed to Step 5.

Step 3: search for the next site. The most attractive station \(X \) is that between the current station and that in the boarding station with similar passengers. Station \(X \) is then added to the route selection chain, and the number of passengers is calculated after the vehicle arrives at the station, and the time to arrive at the target site after joining station \(X \).

Step 4: determine whether the vehicle route is reasonable after joining station \(X \). If the number of passengers served by the current vehicle does not exceed the on-board capacity \(Q_k \) and the time to reach the target station does not exceed the time required by passengers, then station \(X \) shall be taken as a new starting point. Thus, Step 5 is skipped. Otherwise, proceed to Step 5.
Step 5: determine if all classes of passengers are served. If several passengers are not scheduled, then the next car should be dispatched, \(k = k + 1 \) and go back to Step 1. Otherwise, all current initial paths are output, and the initial vehicle path solution generation algorithm based on the gravity model is completed.

3.3. Vehicle Routing Optimization Based on Station Equilibrium and Exchange. This section introduces the route optimization algorithm between and within routes to further improve the route quality and passenger service level. Notably, Steps 1 and 2 of the algorithm belong to inter-vehicle path optimization. During their execution, multiple feasible route solutions may be searched. If only the current optimal set of solutions is saved during the search and Step 3 is performed, the final route result may not be optimal. Therefore, the proposed algorithm saves all feasible solution groups found in Steps 1 and 2, and Step 3 is performed for each feasible solution group. Moreover, the objective function of all route solution groups is comprehensively evaluated so as to find the final optimal solution.

Step 1: first, the number of stations between the vehicles serving the target site and taking the same time to reach the target site is equalized. Service stations are checked for any imbalance in this number. If found, then on the premise of meeting the requirements of vehicle capacity and time to reach the target site, several vehicle routes that need to pass through more sites are transferred to the vehicle routes that need to pass through fewer sites. Thus, reasonable site sequence is arranged.

Step 2: the path between vehicles that serve the target site and those that need the same amount of time to reach the target site is optimized. The main application between the two routes is the exchange of two sites and search for better routes. In the process of exchange optimization, vehicle capacity and time to reach the target site are guaranteed.

Step 3: route of each car is internally optimized. The order of the two stops is exchanged mainly within the same vehicle route to evaluate whether the objective function value is reduced. If so, then site order is exchanged. Otherwise, this exchange is abandoned. After a certain number of attempts, the algorithm is terminated and the final route result is output.

Step 4: considering the dynamic variation characteristics of passenger demand and the variation characteristics of travel time between stations, the requirements of each station are collected and recalculated every five minutes, and Steps 1–3 above are repeated.

After the above four steps, the objective function of the route scheduling model can be optimized on the premise of ensuring that passengers arrive at the target station according to the expected time. The entire service time can be reduced and the route of each vehicle is more reasonable than before. In addition, the running cost of vehicles and waiting time of passengers can be reduced while service quality and efficiency can be improved.

4. Case Analysis

Huilongguan District of Beijing is a densely populated area of commuters, with large travel demand during peak hours, and the travel time of travelers with different work nature.
Table 2: Constant variables in the case.

Variable	Variable name	Number of variables	Unit
H	Number of demand points	15	Unit
D	Number of target stations	3	Unit
Q	Vehicle rated passenger capacity	7	Person
V	Fleet size/vehicle	18	Car
W	Expected arrival time/minute	30/40/50	Minute
F	Passenger arrival and boarding time/minute	0.5	Minute

Table 3: The quantity demanded at the initial moment.

(a) Passenger demand with target station 1

Passenger number	Departure station	Target station	Expected arrival time/minute
1	1	1	30
2	1	1	50
3	1	1	50
4	2	1	30
5	2	1	50
6	3	1	30
7	3	1	40
8	4	1	30
9	5	1	30
10	5	1	40
11	5	1	50
12	5	1	50
13	6	1	30
14	6	1	40
15	7	1	30
16	7	1	50
17	7	1	50
18	8	1	30
19	8	1	40
20	9	1	40
21	10	1	40
22	10	1	50
23	11	1	40
24	11	1	50
25	12	1	30
26	12	1	50
27	13	1	30
28	14	1	40
29	14	1	40
30	15	1	40

(b) Passenger demand with target station 2

Passenger number	Departure station	Target station	Expected arrival time/minute
31	1	2	30
32	1	2	50
33	2	2	30
34	2	2	50
35	3	2	30
36	3	2	40
37	3	2	50
38	4	2	30
39	5	2	30
40	5	2	40
41	5	2	50
42	6	2	30
43	6	2	40
44	6	2	50
45	7	2	30
46	7	2	50
and commuting distance varies greatly. Therefore, it is suitable to be used as a case study of demand responsive flexible public transport model. In order to facilitate the model analysis, this paper abstracts the Huilongguan regional public transport network and retains the network topology.

A small network is used as case solution to verify the accuracy and applicability of the above model. Table 2 shows the input parameter of the constant variable of a small network, whereas Table 3 shows the passenger demand of each station at the initial moment. Table 4 shows the travel time matrix between stations at the initial time, where \(H \) is the demand point and \(D \) is the target station.

Using the heuristic algorithm proposed in this paper to solve the numerical case of demand at the initial moment obtains the service path of each vehicle, number of passengers served, and objective function corresponding to each path, as shown in Table 5.

Then, with the dynamic change of passenger demand and travel time between stations, the above path planning
results do not meet the current passenger demand and real situation. Thus, new path planning was needed. At this point, the reservation platform updates the travel time between the new passenger demand and the connecting vehicle station after the first five minutes of the summary. Table 6 shows the quantity demanded within the first five minutes after the initial moment. Table 7 shows the case network travel time matrix at the first five minutes. Table 8 shows the vehicle service path results for the first five minutes.

Then, such platforms are solved again using the method described in Section 2.2. Figure 2 shows the schematic diagram of vehicle routing results.

According to the calculation results in Table 8, Figure 2 shows the network topology of some vehicle driving paths. As Table 8 has a lot of contents, three groups of routes are
Table 6: The quantity demanded within the first 5 minutes.

Passenger number	Departure station	Target station	Expected arrival time/minute
(a) Passenger demand with target station 1			
1	1	1	30
2	1	1	50
3	1	1	50
4	2	1	30
5	2	1	50
6	3	1	30
7	3	1	40
8	4	1	30
9	5	1	30
10	5	1	30
11	5	1	30
12	5	1	30
13	5	1	40
14	5	1	50
15	5	1	50
16	6	1	30
17	6	1	40
18	7	1	30
19	7	1	50
20	7	1	50
21	8	1	30
22	8	1	40
23	9	1	40
24	10	1	40
25	10	1	50
26	11	1	40
27	11	1	50
28	12	1	30
29	12	1	50
30	13	1	30
31	14	1	40
32	14	1	40
33	15	1	40
34	15	1	50
(b) Passenger demand with target station 2			
35	1	2	30
36	1	2	50
37	2	2	30
38	2	2	50
39	2	2	50
40	3	2	30
41	3	2	40
42	3	2	50
43	4	2	30
44	5	2	30
45	5	2	40
46	5	2	50
47	6	2	30
48	6	2	40
49	6	2	50
50	7	2	30
51	7	2	50
52	8	2	30
53	8	2	40
54	8	2	50
55	9	2	40
56	10	2	40
57	10	2	40
58	10	2	50
selected and displayed according to the passenger destination; with D_1 as the destination, we show the path $5-2-3-12-4-D_1$; with D_2 as the destination, we show the paths $5-13-6-3-12-7-D_2$; with D_3 as the destination, we show the path $8-10-2-D_3$.

A total of 102 travel demands of 15 randomly generated demand points in 100 groups are tested by the model. The objective is to further verify the algorithm’s reliability, with the existing constant variables and the travel time matrix table of the case network unchanged. Figures 3–5 show the test results. Under the given conditions, all the 102 travel demands are completed, the number of vehicles required is 17–21, and the total travel time of 84% vehicles is 552–624 minutes (as shown in Figure 3). Moreover, the average travel time of each vehicle is 24.59 minutes, indicating that the travel time of vehicles solved by the heuristic algorithm is

Passenger number	Departure station	Target station	Expected arrival time/minute
59	11	2	40
60	11	2	40
61	12	2	50
62	12	2	50
63	12	2	30
64	13	2	40
65	14	2	40
66	15	2	40
67	1	3	30
68	1	3	30
69	1	3	50
70	1	3	50
71	2	3	30
72	2	3	40
73	2	3	50
74	3	3	30
75	3	3	40
76	3	3	50
77	4	3	30
78	5	3	30
79	5	3	40
80	5	3	50
81	5	3	50
82	6	3	30
83	6	3	40
84	7	3	30
85	7	3	50
86	8	3	30
87	8	3	40
88	8	3	50
89	9	3	40
90	10	3	40
91	10	3	50
92	11	3	40
93	12	3	30
94	12	3	50
95	12	3	50
96	13	3	30
97	13	3	30
98	14	3	40
99	15	3	40
100	15	3	40
101	15	3	40
102	15	3	40
Table 7: Case network travel time matrix at the first 5 minutes.

| | H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 | H9 | H10 | H11 | H12 | H13 | H14 | H15 | D1 | D2 | D3 |
|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|----|----|----|
| H1 | 0 | 7 | 8 | 9 | 5 | 7 | 7 | 4 | 9 | 6 | 4 | 3 | 7 | 6 | 5 | 5 | 3 | 3 |
| H2 | 6 | 0 | 3 | 5 | 4 | 9 | 7 | 9 | 3 | 4 | 3 | 4 | 3 | 8 | 3 | 7 | 9 | 7 |
| H3 | 6 | 8 | 0 | 7 | 5 | 4 | 3 | 5 | 8 | 5 | 4 | 8 | 3 | 7 | 8 | 6 | 5 | 3 |
| H4 | 9 | 5 | 7 | 0 | 9 | 3 | 6 | 5 | 5 | 6 | 3 | 8 | 5 | 5 | 8 | 9 | 4 | 9 |
| H5 | 8 | 5 | 8 | 8 | 0 | 6 | 9 | 8 | 9 | 7 | 3 | 3 | 7 | 4 | 6 | 6 | 4 | 3 |
| H6 | 5 | 3 | 4 | 9 | 5 | 0 | 5 | 6 | 6 | 4 | 9 | 5 | 7 | 8 | 9 | 8 | 4 | 7 |
| H7 | 7 | 8 | 4 | 5 | 7 | 8 | 0 | 9 | 5 | 7 | 7 | 8 | 7 | 4 | 5 | 8 | 8 | 3 |
| H8 | 7 | 5 | 6 | 5 | 5 | 5 | 8 | 0 | 3 | 6 | 5 | 4 | 6 | 6 | 5 | 4 | 5 | 8 |
| H9 | 9 | 6 | 5 | 7 | 8 | 8 | 3 | 4 | 0 | 7 | 3 | 4 | 7 | 4 | 5 | 3 | 3 | 3 |
| H10| 9 | 3 | 9 | 5 | 8 | 6 | 5 | 3 | 6 | 0 | 7 | 4 | 6 | 9 | 8 | 6 | 8 | 6 |
| H11| 9 | 8 | 4 | 3 | 9 | 9 | 6 | 5 | 7 | 5 | 0 | 3 | 3 | 7 | 3 | 9 | 5 | 7 |
| H12| 7 | 3 | 4 | 9 | 4 | 9 | 9 | 7 | 6 | 3 | 0 | 3 | 9 | 9 | 3 | 9 | 9 | 9 |
| H13| 7 | 3 | 5 | 6 | 7 | 4 | 7 | 8 | 3 | 8 | 7 | 8 | 0 | 3 | 7 | 6 | 3 | 5 |
| H14| 4 | 8 | 6 | 5 | 7 | 7 | 6 | 8 | 5 | 9 | 7 | 8 | 9 | 0 | 4 | 6 | 5 | 8 |
| H15| 6 | 3 | 9 | 4 | 8 | 4 | 9 | 6 | 7 | 6 | 3 | 3 | 9 | 6 | 0 | 7 | 6 | 5 |

Table 8: Vehicle service path results for the first 5 minutes.

Passenger number	Vehicle path	Number of passengers served	Expected arrival time/minute	The target function value corresponding to the path
1	5-2-3-12-4-D1	2-1-1-1-1	30	84
2	13-1-7-8-6-5-D1	1-1-1-1-2	30	132
3	14-3-11-15-10-D1	2-1-1-1-1	40	123
4	8-5-6-9-D1	1-1-1-1	40	109
5	1-2-10-D1	2-1-1	50	156
6	7-11-15-12-5-D1	2-1-1-1-2	50	259
7	5-13-6-3-12-7-D2	1-1-1-1-1	30	102
8	4-1-8-2-D1	1-1-1-1	30	72
9	6-15-3-9-11-D2	1-2-1-1-1	40	130
10	8-14-10-5-10-D2	1-1-1-1-1	40	131
11	7-2-6-1-3-D2	1-1-1-1-1	50	163
12	12-8-10-5-2-D2	2-1-1-1-1	50	191
13	5-2-12-7-3-D3	1-1-1-1-1	30	85
14	4-8-6-1-13-1-D3	1-1-1-1-1	30	95
15	15-10-6-9-14-D3	2-1-1-1-1	40	135
16	3-8-15-11-5-13-2-D3	1-2-1-1-1-1	40	175
17	8-10-2-D3	1-1-1	50	125
18	12-5-7-1-3-D3	2-2-1-2-1	50	288

Figure 2: The schematic diagram of vehicle routing results.
relatively stable. Although the demand distribution is highly uncertain, stable and reliable results are still generated due to the high robustness of the model and algorithm. The total objective function value remains mostly concentrated between 2888 and 3146 under the influence of demand changes (as shown in Figure 4). At the same time, the solution time of all 100 groups of data is less than 1.6 seconds, and the calculation time is 1.03 seconds on average (as shown in Figure 5). Thus, the algorithm proposed in this study is applicable to the actual system and the vehicle path optimization and collaborative scheduling can be completed within the limited time window of reservation and service provision.

5. Conclusion

This study investigates the flexible bus route optimization scheduling problem. The proposed model is dynamically constructed on the basis of passenger needs and “many-to-many” flexible bus system (i.e., multiple flexible stations corresponding to multiple target sites). Moreover, the routes are considered according to the dynamic changes of passenger demand and real-time updated shuttle travel time. The routes are established to maximize passenger services, minimize travel time for all passengers, and minimize operating time for all vehicles. The example shows that the flexible bus route optimization scheduling model in
response to dynamic demand can give more reasonable route optimization scheme and optimize passenger travel and vehicle operation cost compared with the model which ignores the change of passenger demand and takes the connection travel time as a fixed value.

In addition, we select more parameters in modeling and consider more factors, such as passenger demand, operating cost, etc., to make our solution to be nearer to the reality of the flexible bus system. At the same time, we focus on the actual travel demand for flexible bus scheduling in Hui-longguan District of Beijing and establish the flexible bus scheduling model for multiple flexible stations and multiple target sites, which has more practicability than the “many-to-one” (i.e., multiple flexible stations corresponding to one target site) scheduling model.

For future research, we will select more areas to use our proposed flexible bus route optimization scheduling method, and then we will continually evaluate the effectiveness of the model for urban public transport operation and management and optimize the model and parameters.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request, and the reader can use MATLAB for verification.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] M. Flusberg, “An innovative public transportation system for a small city: the Merrill, Wisconsin, case study,” Transportation Research Record, vol. 606, pp. 54–59, 1976.

[2] Y. Lei, P.-q. Lin, and K.-b. Yao, “The network scheduling model and its solution algorithm of internet customized shuttle bus,” Journal of Transportation Systems Engineering and Information Technology, vol. 17, no. 1, pp. 157–163, 2017.

[3] L. Yun, Y.-s. Jiang, and X.-m. Song, “Introduction of mobility allowance shuttle transit system (MAST) and the summary of its research progress,” Journal of Transportation Engineering and Information, vol. 7, no. 4, pp. 79–83, 2009.

[4] Y. Shen and H.-f. Guan, “Study on demand responsive transport system and implementation issues,” Traffic & Transportation, vol. 12, pp. 75–78, 2010.

[5] C. Peng and N. Yu, “Optimal design of demand adaptive paired-line hybrid transit: case of radial route structure,” Transportation Research Part E: Logistics & Transportation Review, vol. 110, pp. 71–89, 2018.

[6] G. Chen, Locating Flexible Feeder Buses Stations to Connect Urban Railway Systems, Shandong University, Shandong, China, 2015.

[7] C. Avishevi, “Integrated smart feeder/shuttle transit service: simulation of new routing strategies,” Journal of Advanced Transportation, vol. 47, pp. 595–618, 2013.

[8] S.-l Pan, J. Yu, X.-l Lu, and N. Zou, “Review of flexible transit service,” Urban Transport of China, vol. 2, pp. 62–68, 2014.

[9] A. Pratelli and P. Schoen, “A mathematical programming model for the bus deviation route problem,” Journal of the Operational Research Society, vol. 52, no. 5, pp. 494–502, 2001.

[10] Y.-w Lei, P.-q Lin, and K.-b Yao, “The network scheduling model and its solution algorithm of internet customized shuttle bus,” Journal of Transportation Systems Engineering and Information Technology, vol. 17, no. 1, pp. 157–163, 2017.

[11] B. Vincent, J. I.-R Omar, and A. R.-S Yasmin, “Vehicle and Crew scheduling for flexible bus transportation systems,” Transportation Research Part B: Methodological, vol. 112, pp. 216–229, 2018.

[12] A. Giorgio, D. N. John, and B. Marco, “Enabling intermodal urban transport through complementary services: from flexible mobility services to the shared use mobility agency,” Transportation Research Part B: Methodological, vol. 1, no. 46, pp. 204–216, 2012.

[13] S. K. Pandey and D. N. John, “Flexible transit services: a new market opportunity for public transport,” Research in Transportation Economics, vol. 1, no. 25, pp. 39–45, 2009.

[14] B. Jenny and D. N. John, “A case study of flexible solutions to transport demand in a deregulated environment,” Journal of Transport Geography, vol. 4, no. 15, pp. 262–273, 2007.

[15] L. Quadrifoglio and M. Dessouky, “Insertion heuristic for scheduling mobility allowance shuttle transit (MAST) services: sensitivity to service area,” Computer-Aided Systems in Public Transport, Springer Series: Lecture Notes in Economics and Mathematical Systems, Berlin, Germany, 2007.

[16] L. Quadrifoglio and M. Dessouky, “Sensitivity analyses over the service area for mobility allowance shuttle transit (MAST) services,” Computer-Aided Systems in Public Transport, Springer Series: Lecture Notes in Economics and Mathematical Systems, Berlin, Germany, 2008.

[17] X. Fu, Y. Gu, and Z. Liu, “Scheduling activity and travel patterns in multi-modal transit networks with customized bus services,” Journal of Transportation Systems Engineering and Information Technology, vol. 19, no. 4, pp. 20–27, 2019.

[18] D. Koffman, Operational Experiences with Flexible Transit Services: A Synthesis of Transit Practice, Transportation Research Board, Washington DC, USA, 2015.

[19] K. Tsibouchi, “Adapted scheduling algorithm for on-demand bus system,” International Journal of Intelligent Transportation Systems Research, vol. 10, no. 2, pp. 82–92, 2013.

[20] J. Xiong, Optimal Microcirculation System of Community Shuttle Linked with Metro Service, Beijing Jiaotong University, Beijing, China, 2015.

[21] Q.-f. Li, P. Chen, and Y. Nie, “Finding optimal hyperpaths in large transit networks with realistic headway distributions,” European Journal of Operational Research, vol. 240, no. 1, pp. 98–108, 2015.

[22] P. Chen and Y. Nie, “Optimal transit routing with partial online information,” Transportation Research Part B: Methodological, vol. 72, pp. 40–58, 2015.

[23] L. Quadrifoglio and M. Dessouky, “Enhancing urban transport through complementary services,” urban transport through complementary services: from flexible mobility services to the shared use mobility agency,” Transportation Research Part B: Methodological, vol. 1, no. 46, pp. 204–216, 2012.

[24] S. Pan, The Design Theory and Methodology of Flesaxible Microcirculation Transit System Oriented on the Transfer Station, Shandong University, Shandong, China, 2015.

[25] X. Guo, Research of Real-Time Custom Bus System Based on Demand Response, Beijing Jiaotong University, Beijing, China, 2016.