First observation of the P-wave spin-singlet bottomonium states $h_b(1P)$ and $h_b(2P)$

I. Adachi, H. Aihara, K. Arinstein, D. M. Asner, T. Auhev, T. Aziz, A. M. Bakich, E. Barberio, V. Bhardwaj, B. Bhuyan, A. Bondar, M. Braęko, T. E. Browder, P. Chang, A. Chen, P. Chen, B. G. Cheon, K. Chilikin, I.-S. Cho, K. Cho, Y. Choi, J. Dalseno, M. Danilov, Z. Drásal, S. Eidelman, D. Epifanov, S. Esen, J. E. Fast, M. Feindt, V. Gaur, N. Gabyshev, A. Garmash, Y. M. Goh, T. Hara, K. Hayasaka, H. Hayashii, Y. Hoshi, W.-S. Hou, Y. B. Hsiung, H. J. Hyn, T. Iijima, A. Ishikawa, M. Iwabuchi, Y. Iwasaki, T. Julius, J. H. Kang, N. Katayama, T. Kawasaki, H. Kichimi, H. O. Kim, J. B. Kim, K. T. Kim, M. J. Kim, Y. J. Kim, K. Kinoshita, B. R. Ko, N. Kobayashi, S. Kobitz, P. Križan, T. Kuhr, K. Kumita, A. Kuzmin, Y.-J. Kwon, J. S. Lange, S.-H. Lee, J. Li, J. Libby, C. Liu, D. Liventsev, R. Louvot, J. McNaughton, D. Matvienko, S. McOnie, K. Miyabayashi, H. Miyata, Y. Miyazaki, R. Mizuk, G. B. Mohanty, R. Mussa, Y. Nagasaka, E. Nakano, M. Nakao, H. Nakazawa, Z. Natkaniec, S. Neubauer, S. Nishida, K. Nishimura, O. Nitoh, T. Nozaki, T. Ohshima, S. Okuno, S. L. Olsen, Y. Onuki, P. Pakhlov, G. Pakhlova, H. Park, T. K. Pedlar, R. Pestotnik, M. Petrič, L. E. Piilonen, A. Poluektov, M. Ritter, M. Röhren, S. Ryu, H. Sahoo, Y. Sakai, T. Sanuki, O. Schneider, C. Schwanda, A. J. Schwartz, K. Senyo, M. E. Sevior, V. Shebalin, A. Shibata, J.-G. Shiu, B. Shwartz, F. Simon, P. Smerkol, Y.-S. Sohn, A. Sokolov, E. Solovieva, S. Stanič, M. Starič, M. Sumihama, G. Tatishvili, Y. Teramoto, K. Trabelsi, M. Uchida, S. Uehara, Y. Unno, S. Uno, S. E. Vahsen, G. Varner, K. E. Varvell, A. Vinokurova, C. H. Wang, X. L. Wang, Y. Watanabe, J. Wicht, E. Won, B. D. Yabsley, Y. Yamashita, V. Zhislishch, A. Zupanc

(The Belle Collaboration)

1) Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk 630090
2) Faculty of Mathematics and Physics, Charles University, Prague
3) University of Cincinnati, Cincinnati, Ohio 45221
4) Justus–Liebig–Universität Gießen, Gießen
5) Gifu University, Gifu
6) Hanyang University, Seoul
7) University of Hawaii, Honolulu, Hawaii 96822
8) High Energy Accelerator Research Organization (KEK), Tsukuba
9) Hiroshima Institute of Technology, Hiroshima
10) Indian Institute of Technology Guwahati, Guwahati
11) Indian Institute of Technology Madras, Madras
12) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
13) Institute of High Energy Physics, Vienna
14) Institute of High Energy Physics, Protvino
15) INFN - Sezione di Torino, Torino
16) Institute for Theoretical and Experimental Physics, Moscow
17) J. Stefan Institute, Ljubljana
18) Kanagawa University, Yokohama
19) Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie, Karlsruhe
20) Korea Institute of Science and Technology Information, Daedeon
21) Korea University, Seoul
22) Kyungpook National University, Taegu
23) École Polytechnique Fédérale de Lausanne (EPFL), Lausanne
24) Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana
25) Luther College, Decorah, Iowa 52101
26) University of Maribor, Maribor
27) Max-Planck-Institut für Physik, München
28) University of Melbourne, School of Physics, Victoria 3010
29) Nagoya University, Nagoya
30) Nara Women’s University, Nara
31) National Central University, Chung-li
32) National United University, Miao Li
33) Department of Physics, National Taiwan University, Taipei
34) H. Niewodniczanski Institute of Nuclear Physics, Krakow
35) Nippon Dental University, Niigata
36) Niigata University, Niigata
Belle Collaboration observed anomalously high rates for \(\Upsilon(5S) \) threshold \[4\]. Such a large rate was unexpected because \(\Upsilon(5S) \) is a component smaller than 0.2 \(\sqrt{s} \) in the \(\Upsilon(5S) \) region. We use a 121.4 fb\(^{-1} \) data sample collected near the peak of the \(\Upsilon(5S) \) resonance with significances of 5.5\(\sigma \) and 11.2\(\sigma \), respectively. We also report measurements of the cross sections for \(e^+e^- \to \Upsilon(nS)\pi^+\pi^- \) relative to that for \(e^+e^- \to \Upsilon(2S)\pi^+\pi^- \).

PACS numbers: 14.40.Pq, 13.25.Gv, 12.39.Pn

We report the first observation of the spin-singlet bottomonium states \(h_b(1P) \) and \(h_b(2P) \) produced in the reaction \(e^+e^- \to h_b(nP)\pi^+\pi^- \) using a 121.4 fb\(^{-1} \) data sample collected at energies near the \(\Upsilon(5S) \) resonance with the Belle detector at the KEKB asymmetric-energy e\(^+\)e\(^-\) collider. We determine \(M[h_b(1P)] = (9898.3 \pm 1.1^{+1.2}_{-1.0}) \text{ MeV}/c^2 \) and \(M[h_b(2P)] = (10259.8 \pm 0.6^{+1.4}_{-1.3}) \text{ MeV}/c^2 \), which correspond to P-wave hyperfine splittings \(\Delta M_{HF} = (+1.6 \pm 1.5) \text{ MeV}/c^2 \) and \((+0.5^{+1.5}_{-1.2}) \text{ MeV}/c^2 \), respectively. The \(h_b(1P) \) and \(h_b(2P) \) are observed with significances of 5.5\(\sigma \) and 11.2\(\sigma \), respectively. Bottomonium is the bound system of \(b\bar{b} \) quarks and is considered an excellent laboratory to study Quantum Chromodynamics (QCD) at low energies. The system is approximately non-relativistic due to the large \(b \) quark mass, and therefore the quark-antiquark QCD potential can be investigated via \(b\bar{b} \) spectroscopy \[1\]. The spin-singlet states \(h_b(nP) \) and \(\eta_b(nS) \) alone provide information concerning the spin-(or hyperfine) interaction in bottomonium. Measurements of the \(h_b(nP) \) masses provide unique access to the P-wave hyperfine splitting, \(\Delta M_{HF} = \langle M(n^3P_I) \rangle - M(n^1P_1) \), the difference between the spin-weighted average mass of the P-wave triplet states (\(\chi_{bJ}(nP) \) or \(n^3P_I \)) and that of the corresponding \(h_b(nP) \), or \(n^3P_I \). These splittings are predicted to be close to zero \[2\], and recent measurements of the \(h_b(1P) \) mass correspond to a P-wave hyperfine splitting that validates this expectation for the 1P level in charmonium: \(\Delta M_{HF} = (0.00 \pm 0.15) \text{ MeV}/c^2 \) \[2\].

Recently, the CLEO Collaboration observed the process \(e^+e^- \to h_c(1P)\pi^+\pi^- \) at a rate comparable to that for \(e^+e^- \to J/\psi\pi^+\pi^- \) in data taken above open charm threshold \[4\]. Such a large rate was unexpected because the production of \(h_c(1P) \) requires a c-quark spin-flip, while production of \(J/\psi \) does not. However, the Belle Collaboration observed anomalously high rates for \(e^+e^- \to \Upsilon(nS)\pi^+\pi^- \) \((n = 1, 2, 3) \) at energies near the \(\Upsilon(5S) \) mass \[5\]. Together, these observations motivate a search for \(e^+e^- \to \pi^+\pi^- h_b(nP) \) above open-bottom threshold at the \(\Upsilon(5S) \) resonance.

In this Letter, we report the first observation of the \(h_b(1P) \) and \(h_b(2P) \) produced via \(e^+e^- \to h_b(nP)\pi^+\pi^- \) in the \(\Upsilon(5S) \) region. We use a 121.4 fb\(^{-1} \) data sample collected near the peak of the \(\Upsilon(5S) \) resonance \((\sqrt{s} \approx 10.865 \text{ GeV}) \) with the Belle detector \[6\] at the KEKB asymmetric-energy e\(^+\)e\(^-\) collider \[7\].

We observe the \(h_b(nP) \) states in the \(\pi^+\pi^- \) missing mass spectrum of hadronic events. The \(\pi^+\pi^- \) missing mass is defined as \(M_{missing}^2 = (P_{\Upsilon(5S)} - P_{\pi^+\pi^-})^2 \), where \(P_{\Upsilon(5S)} \) is the 4-momentum of the \(\Upsilon(5S) \) determined from the beam momenta and \(P_{\pi^+\pi^-} \) is the 4-momentum of the \(\pi^+\pi^- \) system. The \(\pi^+\pi^- \) transitions between \(\Upsilon(nS) \) states provide high-statistics reference signals.

Our hadronic event selection requires a reconstructed primary vertex consistent with the run-averaged interaction point (IP), at least three high-quality charged tracks, a total visible energy greater than 0.2 \(\sqrt{s} \), a total neutral energy of \((0.1 - 0.8) \sqrt{s} \), more than one large-angle cluster in the electromagnetic calorimeter and that the total center-of-mass momentum have longitudinal component smaller than 0.5 \(\sqrt{s} \) \[8\]. The \(\pi^+\pi^- \) candidates are pairs of well reconstructed, oppositely charged tracks that are identified as pions and do not satisfy electron-identification criteria. Continuum \(e^+e^- \to q\bar{q} \) \((q = u, d, s, c) \) background is suppressed by requir-
ing the ratio of the second to zeroth Fox-Wolfram moments to satisfy \(R_2 < 0.3 \) [8]. The resulting \(M_{\text{miss}} \) spectrum, which is dominated by combinatoric \(\pi^+\pi^- \) pairs, is shown in Fig. 1

Prior to fitting the inclusive \(M_{\text{miss}} \) spectrum we study reference channels and peaking backgrounds arising from \(\pi^+\pi^- \) transitions between \(\Upsilon(nS) \) states. A high purity sample of such transitions is obtained by reconstructing \(\mu^+\mu^- \) pairs in the event in addition to the \(\pi^+\pi^- \) pair. For these studies the hadronic event selection criteria are not applied, while for the \(\mu^+\mu^- \) pair we use the same selection as was employed in Ref. 5. MC studies indicate that the shape of the peaks in \(M_{\text{miss}} \) is independent of whether the \(\pi^+\pi^- \) are reconstructed in the hadronic environment or in this much cleaner environment. In addition, to suppress radiative Bhabha events in which the photon converts, producing a fake \(\pi^+\pi^- \), we require that the opening angle between the candidate pions in the laboratory frame satisfies \(\cos \theta_{\pi^+\pi^-} < 0.95 \). In Fig. 2(a) we present the two-dimensional distribution of \(\mu^+\mu^- \) mass \(M_{\mu^+\mu^-} \) vs. \(M_{\text{miss}} \) for events satisfying these criteria.

Clear peaks are visible along a diagonal band, where \(M_{\mu^+\mu^-} \) is roughly equal to \(M_{\text{miss}} \), and correspond to fully reconstructed \(\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^- \rightarrow \mu^+\mu^-\pi^+\pi^- \) events. Also along the diagonal is a diffuse background of events that arise due to the process \(e^+e^- \rightarrow \mu^+\mu^- \gamma (\rightarrow e^+e^-) \), where the conversion pair is reconstructed as \(\pi^+\pi^- \), or from non-resonant \(e^+e^- \rightarrow \mu^+\mu^-\pi^+\pi^- \) events. Events from the band satisfying \(|M_{\text{miss}} - M_{\mu^+\mu^-}| < 150 \text{ MeV}/c^2 \) are projected onto the \(M_{\text{miss}} \) axis and fitted to the sum of a linear background and a Gaussian joined to a power-law tail on the high mass side. The high-side tail is due to Initial State Radiation (ISR) photons. This latter function is analogous to the well-known Crystal Ball function [10] but has the tail on the higher rather than lower side. We thus refer to it as a ‘reversed Crystal Ball’ (rCB) function. The fitted \(M_{\text{miss}} \) spectra from this band are shown in Figs. 2(b)-(d), and the resulting yields, masses and width of the rCB function for the \(\Upsilon(nS) \) states are displayed in Table I. The masses obtained are consistent with the world average values [11].

The structures in the horizontal band in Fig. 2(a), where \(M_{\mu^+\mu^-} \) is roughly equal to \(M[\Upsilon(1S)] \), arise from events in which a daughter \(\Upsilon(1S) \) in the event decays to \(\mu^+\mu^- \). In Figs. 2(e)-(f) we present \(M_{\text{miss}} \) projections from this band, subject to the requirement \(|M_{\mu^+\mu^-} - M[\Upsilon(1S)]| < 150 \text{ MeV}/c^2 \). The peaks at the \(\Upsilon(3S) \) and \(\Upsilon(2S) \) masses arise from events having \(\pi^+\pi^- \) transitions to \(\Upsilon(3S) \) or \(\Upsilon(2S) \), followed by inclusive production of \(\Upsilon(1S) \), and are fitted to rCB functions. Peaks at \(9.97 \text{ GeV}/c^2 \) and \(10.30 \text{ GeV}/c^2 \) arise from events in which a \(\Upsilon(3S) \) or \(\Upsilon(2S) \) is produced inclusively in \(\Upsilon(5S) \) decays or via ISR, and then decays to \(\Upsilon(1S)\pi^+\pi^- \), and are fitted to single and double Gaussians, respectively.

The threshold for inclusive \(K_S^0 \) production results in a sharp rise in the \(M_{\text{miss}} \) spectrum, due to \(K_S^0 \rightarrow \pi^+\pi^- \), very close to the mass of \(\Upsilon(3S) \). Rather than veto \(\pi^+\pi^- \) combinations with invariant masses near \(M(K_S^0) \), which significantly distorts the \(M_{\text{miss}} \) spectrum in the vicinity, we obtain the \(K_S^0 \) contamination by fitting the \(\pi^+\pi^- \) invariant mass corresponding to bins of \(M_{\text{miss}} \).

The \(M_{\text{miss}} \) spectrum is divided into three adjacent regions with boundaries at \(M_{\text{miss}} = 9.3, 9.8, 10.1 \) and \(10.45 \text{ GeV}/c^2 \) and fitted separately in each region. In the first two regions, we use a 6th-order Chebyshev polynomial, while in the third we use a 7th-order one. In the third region, prior to fitting, we subtract the contribution due to \(K_S^0 \rightarrow \pi^+\pi^- \) bin-by-bin. The signal component of the fit includes all signals seen in the \(\mu^+\mu^-\pi^+\pi^- \) data as well as those arising from \(\pi^+\pi^- \) transitions to \(h_0(nP) \) and \(\Upsilon(1D) \). We fit these additional signals using the tail parameters of the \(\Upsilon(2S) \) and fixed widths found by linear interpolation in mass from the widths of the exclusively-reconstructed \(\Upsilon(nS) \) peaks. The peak positions of all signals are floated, except that for \(\Upsilon(3S) \rightarrow \Upsilon(1S)\pi^+\pi^- \), which is poorly constrained by the fit. The confidence levels of the fits in the three regions are 3.0%, 0.5% and 0.4%, respectively. The \(M_{\text{miss}} \) spectrum, after subtraction of both the combinatoric and \(K_S^0 \rightarrow \pi^+\pi^- \) contributions is shown with the fitted signal functions overlaid in Fig. 3. The signal parameters are listed in Table II.

We studied several sources of systematic uncertainty.
The background polynomial order was increased by three, and the range of the fits performed were altered by up to 100 MeV/c². Different signal functions were used, including symmetric Gaussians and rCB functions with the width parameters left free. We altered our selection criteria: tightening the requirements on the proximity of track origin to the IP, increasing the minimum number of tracks to four, and imposing the \(\cos \theta_{\pi^+\pi^-} < 0.95 \) requirement used in the \(\mu^+\mu^-\pi^+\pi^- \) study. In Table III a summary of our systematic studies is presented.

The values in the table represent the maximal change of parameters under the variations explored. We estimate an additional 1 MeV/c² uncertainty in mass measurements based on the differences between the observed values of the fitted \(\Upsilon(nS) \) peak positions and their world averages. The total systematic uncertainties presented in Table III represent the sum in quadrature of all the contributions listed in Table III. The signal for the \(\Upsilon(1D) \) is marginal and therefore systematic uncertainties on its related measurements are not listed in the table. The significances of the \(h_b(1P) \) and \(h_b(2P) \) signals, with systematic uncertainties accounted for, are 5.5\(\sigma \) and 11.2\(\sigma \), respectively.
respectively.

The measured masses of \(h_b(1P) \) and \(h_b(2P) \) are

\[
M = (9898.3 \pm 1.1^{+1.0}_{-1.0}) \text{MeV}/c^2 \quad \text{and} \quad M = (10259.8 \pm 0.6^{+1.4}_{-0.5}) \text{MeV}/c^2,
\]

respectively. Using the world average masses of the \(\chi_{b,j}(nP) \) states, we determine the hyperfine splittings to be \(\Delta M_{\text{HF}} = (+1.6 \pm 1.5) \text{MeV}/c^2 \) and \((+0.5^{+1.6}_{-0.5}) \text{MeV}/c^2 \), respectively, where statistical and systematic uncertainties are combined in quadrature.

We also measure the ratio of cross sections for \(\Upsilon(2S) \rightarrow \Upsilon(5S) \rightarrow h_b(nP)\pi^+\pi^- \) relative to that for \(\Upsilon(2S) \rightarrow \Upsilon(2S)\pi^+\pi^- \). To determine the reconstruction efficiency, we use the results of resonant structure studies reported in Ref. [12] that revealed the existence of two charged bottomonium-like states, \(Z_b(10610) \) and \(Z_b(10650) \), through which the \(\pi^+\pi^- \) transitions we are studying primarily proceed. These studies indicate that the \(Z_b \) most likely have \(J^P = 1^+ \), and therefore in our simulations the \(\pi^+\pi^- \) transitions are generated accordingly. To estimate the systematic uncertainty in our reconstruction efficiencies, we use MC samples generated with all allowed quantum numbers with \(J \leq 2 \).

We find that the reconstruction efficiency for the \(\Upsilon(2S) \) is about 57%, and that those for the \(h_b(1P) \) and \(h_b(2P) \) relative to that for the \(\Upsilon(2S) \) are 0.913^{+0.013}_{-0.010} \) and 0.824^{+0.130}_{-0.013}, respectively. The efficiency of the \(R_2 < 0.3 \) requirement is estimated from data by measuring signal yields with \(R_2 > 0.3 \). For \(\Upsilon(2S) \), \(h_b(1P) \) and \(h_b(2P) \) we find 0.863 \pm 0.032, 0.723 \pm 0.068 and 0.796 \pm 0.043, respectively. From the yields and efficiencies described above, we determine the ratio of cross sections \(R \equiv \frac{\sigma(\Upsilon(2S)\pi^+\pi^-)}{\sigma(\Upsilon(2S)\pi^+\pi^-)} \) to be \(R = 0.46 \pm 0.08^{+0.07}_{-0.05} \) for the \(h_b(1P) \) and \(R = 0.77 \pm 0.08^{+0.22}_{-0.17} \) for the \(h_b(2P) \). Hence \(\Upsilon(5S) \rightarrow h_b(nP)\pi^+\pi^- \) and \(\Upsilon(5S) \rightarrow \Upsilon(2S)\pi^+\pi^- \) proceed at similar rates, despite the fact that the production of \(h_b(nP) \) requires a spin-flip of a b-quark.

The rate of \(\Upsilon(5S) \rightarrow h_b(nP)\pi^+\pi^- \) is much larger than the upper limit for that of \(\Upsilon(3S) \rightarrow h_b(nP)\pi^+\pi^- \) obtained by the BaBar Collaboration. \(\Upsilon(5S) \rightarrow (mS)\pi^+\pi^- \) with \(m = 1, 2, 3 \) are much larger than those for \(\Upsilon(nS) \rightarrow (mS)\pi^+\pi^- \) for \(n = 2, 3, 4 \). The only previous evidence for the \(h_b(1P) \) is a 3.0σ excess in \(\Upsilon(3S) \rightarrow h_b(1P) \) at \((9902 \pm 4) \text{MeV}/c^2 \) presented by BaBar[14].

We have also used 711 fb\(^{-1} \) of \(e^+e^- \) collisions at the \(\Upsilon(4S) \) resonance to search for \(\Upsilon(4S) \rightarrow h_b(1P)\pi^+\pi^- \) (\(h_b(2P) \) is kinematically forbidden). The overall efficiency, assuming the \(R_2 \) efficiency at \(\Upsilon(4S) \) to be the same as that at \(\Upsilon(5S) \), is 0.94^{+0.13}_{-0.09} \) relative to that for \(\Upsilon(5S) \rightarrow h_b(1P)\pi^+\pi^- \). From our observed yield of \((35 \pm 21^{+24}_{-15}) \times 10^3 \), we therefore set an upper limit on the ratio of \(\sigma(e^+e^- \rightarrow h_b(1P)\pi^+\pi^-) \) at the \(\Upsilon(4S) \) to that at the \(\Upsilon(5S) \) of 0.27 at 90% C.L.

In summary, we have observed the \(P \)-wave spin-singlet bottomonium states \(h_b(1P) \) and \(h_b(2P) \) in the reaction \(e^+e^- \rightarrow \Upsilon(5S)
\Upsilon(5S) \rightarrow \Upsilon(2S)\pi^+\pi^- \) are of comparable magnitude, indicating the production of \(h_b(nP) \) at the \(\Upsilon(5S) \) resonance must occur via a process that avoids the expected suppression related to heavy quark spin-flip.

We thank the KEKB group for excellent operation of the accelerator, the KEK cryogenics group for efficient solenoid operations, and the KEK computer group.
and the NII for valuable computing and SINET4 network support. We acknowledge support from MEXT, JSPS and Nagoya’s TLPRC (Japan); ARC and DIISR (Australia); NSFC (China); MSMT (Czechia); DST (India); MEST, NRF, NSDC of KISTI, and WCU (Korea); MNiSW (Poland); MES and RFAAE (Russia); ARRS (Slovenia); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE and NSF (USA).

[1] N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011).
[2] S. Godfrey and J. L. Rosner, Phys. Rev. D 66, 014012 (2002).
[3] S. Dobbs et al. (CLEO Collaboration), Phys. Rev. Lett. 101, 182003 (2008); M. Albikim et al. (BES Collaboration), Phys. Rev. Lett. 104, 132002 (2010).
[4] T. K. Pedlar et al. (CLEO Collaboration), Phys. Rev. Lett. 107, 041803 (2011).
[5] K.-F. Chen et al. (Belle Collaboration), Phys. Rev. Lett. 100, 112001 (2008).
[6] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 117 (2002).
[7] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res. Sect., A 499, 1 (2003), and other papers included in this Volume.
[8] K. Abe et al. (Belle Collaboration), Phys. Rev. D 64, 072001 (2001).
[8] G.C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[10] J. E. Gaiser, Ph. D. thesis, SLAC-R-255 (1982) (unpublished); T. Skwarnicki, Ph.D. thesis, DESY F31-86-02 (1986) (unpublished).
[11] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).
[12] I. Adachi et al. (Belle Collaboration). arXiv:1105.4583.
[13] J. P. Lees et al. (BaBar Collaboration). arXiv:1105.4234.
[14] J. P. Lees et al. (BaBar Collaboration). arXiv:1102.4565.