Analysis of gene mutations involved in chloroquine resistance in *Plasmodium falciparum* parasites isolated from patients in the southwest of Saudi Arabia

Saad M. Bin Dajem, Ahmed Al-Qahtani

BACKGROUND AND OBJECTIVES: Chloroquine has been the drug of choice for the treatment of malaria for many decades. We aimed to examine the molecular basis of chloroquine resistance among *Plasmodium falciparum* isolates from the southwestern region of Saudi Arabia by analyzing the K76T and N86Y mutations in the PfCRT and PfMDR1 genes, respectively.

RESULTS: Of the 121 samples, 95 and 112 samples could be amplified for PfCRT K76T and PfMDR1 N86Y mutations, respectively. All of the samples amplified for the PfCRT K76T mutation were undigestible by ApoI, suggesting the presence of the K76T mutation. For the PfMDR1 N86Y mutation, 65/109 samples (59.6%) were digestible when treated with ApoI in a pattern, suggestive of the presence of the investigated wild allele (N86). However, 44/109 samples (40.4%) were digestible by ApoI, suggesting the presence of the mutated allele (Y) at position 86. DNA sequencing confirmed these results.

CONCLUSION: Surprisingly, all isolates exhibited the mutated allele at codon 76 (K76T) of PfCRT. However, the mutated mutant allele at codon 86 (N86Y) of PfMDR1 was found in 40.4% of the samples studied. To our knowledge, this is the first study that has investigated the existence of the mutation in the PfMDR1 gene in the country. This study will contribute to the development of new strategies for therapeutic intervention against malaria in Saudi Arabia.
Sudan, India, and Yemen, complicate the control of the disease.9,10 Chloroquine is the drug of choice for the treatment of complicated malaria cases. However, another combination of two drugs (sulfadoxine and pyrimethamine [SP]) is also effective against the disease. The current mainstream view of chloroquine antimalarial action is that chloroquine kills malaria parasites by binding to its target, a nonprotein molecule, ferriprotoporphyrin IX in lysosomes (food vacuoles) to form a toxic complex that lyases the parasites.11 The emergence and spread of chloroquine resistance (CQR) has been a problem for world health.12 In Saudi Arabia, the strategy to treat malaria cases was changed in 2008 by the Saudi health authorities with the introduction of artemisinin combination therapy (ACT) that consists of SP and artesiminin.13 Saudi Arabia is one of the few areas where Pfalciparum remained sensitive to chloroquine until the early 1990s despite the fact that CQR emerged in malaria-endemic countries close to Saudi Arabia, such as Iran, Pakistan, and East Africa where CQR was first reported in the early 1980s.14,35 A recent study examined a limited number of samples from the Jazan region for Pfalciparum chloroquine-resistant transporter (PfCRT) gene and found a CQR rate of 89.5%.16

Over the years, the emergence of drug-resistant parasites has hampered the efforts to control malaria worldwide. Since the late 1950s, reports of CQR have been documented in all endemic areas. Mutations in two genes, namely, PfCRT and Pfalciparum multidrug-resistant gene 1 (PfMDR1) have been implicated in resistance to chloroquine.17 Several point mutations in the PfCRT gene have been shown to correlate with resistance. Of these, only the mutation of lysine to threonine at the 76th position (K76T) in CRT is significantly found in resistant strains of malaria from different endemic areas of the world.18,19 Other mutations observed in the PfMDR1 gene were found to be strongly linked to CQR in various regions.20 Several field studies have related CQR to the mutation of aspargine to tyrosine at the 86th position (N86Y) of the MDR1 protein.21,22 In this study, we examined the presence of K76T and N86Y mutations in PfCRT and PfMDR1, respectively, among Pfalciparum parasites isolated from the southwestern region of Saudi Arabia.

PATIENTS AND METHODS

The cases studied in this report were individuals (n=121) suspected of malaria infection who visit the Malaria Center in Aseer and Jazan Provinces. Only malaria cases confirmed with blood microscopic examination were included in this study. Blood samples (nearly 50 µL) were collected by finger-pricking and three drops from each patient were blotted onto Whatman (3 mm) chromatography paper. The spotted blood samples were placed in plastic bags and transported to the laboratory. All patients who participated in this study signed a consent form and the study was approved by the Ethics Committee at King Khalid University, Abha, Saudi Arabia.

DNA was extracted from the spotted blood samples according to the method of Sakihama et al with some modifications.23 Briefly, filter papers containing blood spots were placed into 1.5 mL Eppendorf tubes and 0.5% saponin was added and incubated overnight at 4ºC. One hundred microliters of 5% Chelex-100 solution (Bio-Rad Laboratories, USA) were added to each tube and incubated at 100ºC for 5 minutes in a heating

Primers	Sequence (5’–3’)	Size (bp)	PCR conditions	
First round				
PfMDR1	OMDR1/F	TGGTGAAGATGGTGTTAACAGAGAGAG	660	94ºC, 3 min followed by 45 cycles (94ºC, 30 secs; 56ºC, 30 secs; 68ºC, 30 secs); 68ºC, 3 min
PfMDR1	OMDR1/R	TACCTTCTTAAATATGACACCAAGACAC	1389	
PfCRT	OCRT/F	CCGTAAAAATTAACACGCAC		
PfCRT	OCRT/R	CGGATGTACAAAATATAGTTAC		
Second round				
PfMDR1	IMDR1/F	GTCAACCGT6GATTTTTTATATGACACATTTA	560	94ºC, 3 min followed by 40 cycles (94ºC, 30 secs; 47ºC, 30 secs; 68ºC, 1 min); 64ºC, 3 mins
PfMDR1	IMDR1/R	AAAGATGTAACTCAGATCAAGAGAG		
PfCRT	ICRT/F	TGTGTCATGTTAAAACTTT	145	
PfCRT	ICRT/R	CAAAACATAAGTTACAATTTTG		

Table 1. Primers, expected molecular weight of amplicons, and the PCR conditions for genes investigated in this study.
block with vortexing every one minute. The supernatant was transferred to a new tube and stored at 4°C until further processing.

The primers used in this study were originally based on published data. A set of outer and inner primers was synthesized for the amplification of DNA fragments from PfCRT and PfMDR1 genes. Primer sequences, expected molecular weight of amplicons, and the PCR conditions are illustrated in Table 1. For digestions, aliquots of PfCRT and PfMDR1 PCR products were digested with 10 U of the restriction enzyme ApoI (New England Laboratories, USA), according to the manufacturer’s recommendations. All digested products were electrophoretically processed in 2% agarose gels and the bands were visualized with 1 µg/mL ethidium bromide under UV light. DNA sequencing was carried out at the DNA sequencing core facility at the Research Center of King Faisal Specialist Hospital and Research Center (KFSHRC), using BigDye Terminator v3.1 Cycle Sequencing Kit according to the manufacturer’s instructions (BigDye Terminator v3.1 Cycle Sequencing Kit, Applera, USA) and the sequences were analyzed using DNASTAR software.

RESULTS

Analysis of the PfCRT K76T codon
Of the 121 samples examined, 26 (21.5%) were not amplifiable but the remaining 95 samples (78.5%) gave amplification products (Table 2) and the amplicons of expected molecular weight (145 bp) were visualized after nested PCR (Figure 1a). None of the 95 amplified samples (100%) could be digested by ApoI, suggesting the presence of the mutation of interest (76T) that indicates chloroquine resistance (Figure 1b). DNA sequencing of the PCR products of these samples confirmed the results obtained by the PCR/RFLP method (Figure 1c).

Analysis of the PfMDR1 N86Y codon
Of the 121 samples analyzed, 112 samples (92.5%) yielded amplification products (Table 2) and the amplicons of expected molecular weight (560 bp) were visualized after nested PCR (Figure 2a). Of the total
samples examined, 9 (7.5%) were not amplifiable under the conditions used in this study. This suggested that these samples could have been misdiagnosed for malaria or that it could have been a form of malaria caused by a species other than *P. falciparum*. Of the 109 correctly amplified samples, 65 (59.6%) gave 250, 231, and 79 bp bands after ApoI digestion, indicating the presence of the wild-type 86N codon. On the other hand, 44 (40.4%) samples gave 481 and 97 bp bands after ApoI digestion, indicating the presence of the mutated 86Y codon (Figure 2b). The remaining three (of the 112 yielding amplification products) samples showed faint bands that were not appropriate for the digestion assay. DNA sequencing confirmed the results obtained by PCR/RFLP analysis (Figure 2c and 2d).

DISCUSSION

At present, there is little information on the association of genetic variation in *P. falciparum* parasites with drug resistance in Saudi Arabia. As many field and laboratory studies have investigated the association of CQR with specific mutations in codon 76 of the PfCRT gene and at codon 86 of the PfMDR1 gene, we aimed to investigate these mutations by PCR-RFLP and DNA sequencing technologies in isolates from the southwestern part of the country. Chloroquine was introduced in the 1940s as the drug of choice for malaria treatment.25 However, parasite resistance to chloroquine appeared after more than 60 years of intensive use. Extended parasite exposure to chloroquine has necessitated the exploration of the characteristics of *P. falciparum* population genetics in relation to resistance to chloroquine.

When the PfCRT gene was identified, many studies confirmed the presence of the K76T mutation in CQR parasites.27 The investigation of another gene, PfMDR1,28 revealed that a mutation at the 86th position was strongly linked to CQR in laboratory clones, even though it is not the sole requirement for CQR.29 Globally, it has been found that replacement of the lysine (a positively charged amino acid) in PfCRT with threonine (an uncharged amino acid) at position 76 confers resistance to chloroquine.30 The very high prevalence of the PfCRT 76T variant in our study is in agreement with the findings of other studies where clinical chloroquine treatment failure was evident.31 A study from Iran reported that PfCRT 76T was found in 99% of the investigated samples.32 In a recent prevalence study reported from Thailand, the PfCRT 76T allele frequency was found in 99.1% of the investigated samples.33 A molecular prevalence survey has shown that the prevalence of the PfCRT 76T mutation was over 90% in Yunnan province, China.34 A study of PfCRT point mutations and the level of CQR in *P. falciparum* isolates imported into Europe from Congo and Tanzania showed that the frequency of the 76T mutated allele was 71.4%.35 The presence of the PfCRT K76T mutation from Papua New Guinea was found to be 92.9%.36 A recent study from the Philippines describing *P. falciparum* isolates from three areas of the country showed that the frequency of the PfCRT 76T mutation was found to be 100% in Kalinga, 80% in Palawan, and 87% in Mindanao.37 Different PfCRT haplotypes have been reported from malarial isolates in endemic areas. The CQR-associated haplotype (amino acids from 72 to 76) detected in this study was the CVIET. This is considered the typical haplotype isolated from Southeast Asia and the African continent.38 Finding the same haplotypes in Saudi Arabia could be attributed to the continuous travel and human migration related to employment, tourism, or religious pilgrimage.39,40

Currently, mutations detected in PfMDR1 have been hypothesized to augment the level of resistance in CQR *P. falciparum* parasites.24,41 In our study, the PfMDR1 86Y allele frequencies were found to be 59.6% and 40.4% for the N86 allele. A similar find-

Gene	N	Wild Allele	Mutant Allele	Mutation (%)
PfCRT	95	76K (0/95)	76T (95/95)	100
PfMDR1	109	86N (65/109)	86Y (44/109)	40.4
ing was reported from Iran where it was found that PfMDR1 86Y appeared in 72% of the samples in the Sistan-Baluchistan Province. In Thailand, the PfMDR1 86N and 86Y alleles were identified in 75.5% and 20% of samples, respectively. Isolates from three distinct areas of the Philippines showed that the frequency of the PfMDR1 N86Y mutation was 39% in Kalinga town, 35% in Palawan town, and 93% in Mindanao town isolates. The PfMDR1 N86Y mutation was found in 23.1% of the isolates from Southeast Mindanao town isolates. The PfMDR1 N86Y mutation contributes more to CQR in the Babiker and colleagues reported that the PfMDR1 and 20% of samples, respectively. Isolates from three nation was found in 23.1% of the isolates from Southeast Mindanao town isolates. The PfMDR1 N86Y muta-
in Kalinga town, 35% in Palawan town, and 93% in Mindanao town isolates. The PfMDR1 N86Y mutation was found in 23.1% of the isolates from Southeast Mindanao town isolates. The PfMDR1 N86Y mutation was found in 23.1% of the isolates from Southeast Mindanao town isolates.

REFERENCES

1. Greenwood B, Mutabingwa T. Malaria in 2002. Nature 2002;416:670-2.
2. WHO. 2008. Available from: http://www.apps.who.int/malaria/wmr2008/malaria2008.pdf
3. Nahlen BL, Korenromp EL, Miller JM, Shibuya K. Malaria risk: estimating clinical episodes of malaria. Nature 2005;437:63.
4. WH0/ EMRO. 2006. Available from: http://www. emro.who.int/index.asp.
5. Malik GM, Seidi O, El-Taher A, Mohammed AS. Clinical Aspects of Malaria in the Asir Region, Saudi Arabia. Ann Saudi Med 2003;9:492-508.
6. Bashiru AM, Mandli AM, Bahnassy AA, Al-Shams MA, Bushati HA. Epidemiological profile of malaria in a university Hospital in the Eastern Re-
gion of Saudi Arabia. Saudi Med J 2001;22:133-8.
7. Al-Tawfiq JA. Epidemiology of travel-related malaria in a non-malarious area in Saudi Arabia. Saudi Med J 2006;27:86-9.
8. Ministry of Health. 2008 (annual statistics book), MOH. Saudi Arabia.
9. Alkalife IS. Imported Malaria infections diag-
nosed at the malaria referral laboratory in Riyadh, Saudi Arabia. Saudi Med J 2003;24:1068-72.
10. Ghalib HW, Al-Ghamdi S, Akoob M, Haridi AE, Agah AA, Al-Bissat I. Therapeutic efficacy of chloroquine against uncomplicated, plasmodium falci-
parum malaria in south-western Saudi Arabia. Ann Trop Med Parasitol 2001;95:773-9.
11. Fitch ED, Russell NV. Accelerated denatur-
ation of hemoglobin and the antimalarial action of chloroquine. Antimicrob Agents Chemother 2000:56:2415-9.
12. Bray PG, Munthung M, Hastings IM, Biagini GA, Saidu DK, Laksmanan V, et al. PCRRT and the trans-vacular proton electrochemical gradient: regulating the access of chloroquine to ferritoporphyrin IX. Mol Microbiol 2006;62:238-51.
13. Ashley EA, White NJ. Artemisinin-based com-
binations. Curr Opin Infect Dis 2005;18:531-6.
14. Abdel-Hameed AA. Antimalarial drug resistant in the Eastern Mediterranean Region. East Medi-
terr Health J 2003;9:492-508.
15. Alrajhi AA, Rahim L, Akoob M, Hazmi M. Chlo-
oroquine-Resistant Plasmodium falciaparum cere-
bral Malaria in achloroquine-Susceptible. J Infect Dis 1999;180:1738-41.
16. Al Harthi SA. Detection of drug resistance markers for chloroquine and pyrimethamine-sul-
fadoxine in Jazan area, Saudi Arabia using PCR and restriction digestion. J Egypt Soc Parasitol 2007;37:17-39.
17. Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT, et al. Mutations in the Pfalciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chlo-
roquine resistance. Mol Cell 2000;6:861-71.
18. Chen N, Kyle DE, Pasley C, Fowler EW, Baker J, Peters JM, et al. pfcr alleleic types with two novel amino acid mutations in chloroquine-resistant plasmodium falciaparum isolates from the Philip-
ippines. Antimicrob Agents Chemother 2003;47:3500-
5.
19. Heyton K, Su XZ. Genetic and biochemical as-
spects of drug resistance in malaria parasites. Curr Drug Targets Infect Disord 2004;4:1-10.
20. Foote SJ, Galatis D, Cowman AF. Amino acids in the dihydrofolate reductase-thymidylate syn-
thesase gene of plasmodium falciaparum associated with pyrimethamine resistance. Proc Natl Acad Sci USA 1990;87:3014-7.
21. Basco LK, Le Bras J, Rhodes Z, Wilson CM. Analysis of pfmdr1 and drug susceptibility in fresh isolates of Plasmodium falciaparum from subsaha-
ran Africa. Mol Biochem Parasitol 1995;74:157-66.
22. Nagesha HS, Din-Syaruddin, Casey GJ, Sus-
anti AF, Fryauff DJ, Reeder JC, et al. Mutations in the pfmdr, dfr1, dhs genes of Plasmodium falci-
parum are associated with in vivo-drug resistance in West Papua, Indonesia. Trans R Soc Trop Med Hyg 2001;95:43-9.
23. Sakihama K, Mitamura T, Kaneko A, Horii T, Tanabe K. Long PCR amplification of Plasmodium falciaparum DNA extracted from filter paper blots. Exp Parasitol 2001;97:50-4.
24. Ashley EA, White NJ. Artemisinin-based com-
binations as tools for surveillance, will help in malaria control, guide national malaria treatment policies, and monitor changes in parasite drug susceptibility follow-
ing changes in malaria drug treatment policy.

Acknowledgement

This study was fully supported by a grant from King Abdullah City for Science and Technology (KACST) (LR-
4-13). The authors thank Professor Mohammed N. Al-
Abdal for his critical revision of the manuscript and Damian Dela Cruz and Marie Bobol for expert technical assistance.

MUTATIONS IN P. FALCIPARUM

25. Vinayak S, Biswas S, Dev V, Kumar A, Ansari MA, Sharma YD. Prevalence of the K76T muta-
tion in the pfcr gene of Plasmodium falciaparum among chloroquine responders in India. Acta Trop 2003;87:287-93.
26. Duraisingham MT, Cowman AF. Contribution of the pfmdr1 gene to antimalarial drug-resistance. Acta Trop 2005;94:181-90.
27. Anderson TJ, Nair S, Qin H, Singlam S, Brock-
man A, Paiphun L, et al. Are transporter genes other than the chloroquine resistance locus (pfcr) and multidrug resistance gene (pfmdr) associated with antimalarial drug resistance? Antimicrob Agents Chemother 2005;49:2180-8.
28. Sanchez CP, Stein WD, Lanzer M. Is PfCRT a channel or a carrier? Two competing models ex-
plaining chloroquine resistance in Plasmodium falciaparum. Trends Parasitol 2007;23:332-8.
29. Dorsey G, Kanya MR, Singh A, Rosenthal PJ. Polymorphisms in the plasmodium falciaparum pfcr and pfmdr-1 genes and clinical response to chloroquine in Kampa, Uganda. J Infect Dis 2003;181:1417-20.
30. Ursing J, Zakeri S, Gill JP, Bjorkman A. Quino-
line resistance associated polymorphisms in the pfcr, pfmdr1 and pfmg genes of Plasmodium falciaparum in Iran. Acta Trop 2006;97:352-6.
31. Rungsinhirunrat K, Chaijareonkul W, Seoug-
orn A, Nie-Bangchang K, Thaithong S. Association between chloroquine resistance phenotypes and point mutations in pfcr and pfmdr1 in Plasmo-
dium falciaparum isolates from Thailand. Acta Trop 2009;109:37-40.
32. Yang Z, Zhang Z, Sun X, Wan W, Liu L, Zhan g X, et al. Molecular analysis of chloroquine resistance in Plasmodium falciaparum in Yunnan Province, China. Trop Med Int Health 2007;12:1501-60.
33. Severini C, Menegon M, Sainella AA, Paglia MG, Narciso P, Matteelli A, et al. Prevalence of pfcr point mutations and level of chloroquine re-
stance in Plasmodium falciaparum isolates from Africa. Infect Genet Evol 2006;6:262-8.
34. Mitta T, Kaneko A, Hombanje F, Hwahwian I, Takahashi N, Osawa H, et al. Role of pfmdr1 muta-
tions on chloroquine resistance in Plasmodium fal-
ciaparum isolates with pfcr K76T from Papua New Guinea. Acta Trop 2006;98:137-44.
35. Hatabu T, Ivagami M, Kawazu S, Taguchi N, Escueta AD, Villacorte EA, et al. Association of
molecular markers in Plasmodium falciparum crt and mdr1 with in vitro chloroquine resistance: A Philippine study. Parasitol Int 2009;58:166-70.

38. Cooper RA, Hartwig CL, Ferdig MT. Pfcrt is more than the Plasmodium falciparum chloroquine resistance gene: a functional and evolutionary perspective. Acta Trop 2005;94:170-80.

39. Vathsala PG, Pramanik A, Dhanasekaran S, Devi CU, Pillai CR, Subbarao SK, et al. Widespread occurrence of the Plasmodium falciparum chloroquine resistance transporter (pfcrt) gene haplotype swnt in P. falciparum malaria in India. Am J Trop Med Hyg 2004;70:256-9.

40. Pati SS, Mishra S, Mohanty S, Mohapatra DN, Sahu PK, Priyadarshi N, et al. Pfcrt haplotypes and in-vivo chloroquine response in Sundergarh district, Orissa, India. Trans R Soc Trop Med Hyg 2007;101:650-4.

41. Duraisingh MT, Drakeley CJ, Muller O, Bailey R, Snounou G, Targett GA, et al. Evidence for selection for the tyrosine-86 allele of the pfmdr1 gene of Plasmodium falciparum by chloroquine and amodiaquine. Parasitology 1997;114:205-11.

42. Jalousian F, Dalimi A, Samiei SM, Ghaffari-far F, Soleymanloo F, Naghizadeh R. Mutation in pfmdr1 gene in chloroquine-resistant Plasmodium falciparum isolates, Southeast Iran. Int J Infect Dis 2008;12:630-4.

43. Mawili-Mboumba DP, Kun JF, Lell B, Kremsner PG, Ntoumi F. Pfmdr1 alleles and response to ultra low dose mefloquine treatment in Gabonese patients. Antimicrob Agents Chemother 2002;46:166-70.

44. Babiker HA, Pringle SJ, Abdel-Muhain A, Mackinnon M, Hunt P, Walliker D. High level chloroquine resistance in Sudanese isolates of Plasmodium falciparum is associated with mutations in the chloroquine resistance transporter gene (pfcrt) and multidrug resistance gene (pfmdr1). J Infect Dis 2001;183:1535-8.

45. Abdel-Muhsin AM, Mackinnon MJ, Ali E, Nasir el-KA, Suleiman S, Ahmed S, et al. Evolution of Drug-Resistance Genes in Plasmodium falciparum in an Area of Seasonal Malaria Transmission in Eastern Sudan. J Infect Dis 2004;189:1239-44.