Possible Triplet Electron Pairing and an Anisotropic Spin Susceptibility in Organic Superconductors (TMTSF)$_2$X

A. G. Lebed1,2, K. Machida1 and M. Ozaki3

1Department of Physics, Faculty of Science, Okayama University, Okayama, Japan
2Landau Institute for Theoretical Physics, 2 Kosygina Street, Moscow, Russia
3Department of Physics, Kochi University, Kochi, Japan

We argue that (TMTSF)$_2$PF$_6$ compound under pressure is likely a triplet superconductor with a vector order parameter $\mathbf{d}(\mathbf{k}) \equiv (d_a(\mathbf{k}) \neq 0, d_c(\mathbf{k}) = 0, d_d(\mathbf{k}) = 0); |d_a(\mathbf{k})| > |d_d(\mathbf{k})|$. It corresponds to an anisotropic spin susceptibility at $T = 0$: $\chi' = \chi_0$, where χ_0 is its value in a metallic phase. The spin quantization axis, z, is parallel to the so-called b'-axis. We show that the suggested order parameter explains why the upper critical field along the b'-axis exceeds all paramagnetic limiting fields, including that for a nonuniform superconducting state, whereas the upper critical field along the a-axis ($a \perp b'$) is limited by the Pauli paramagnetic effects [I. J. Lee, M. J. Naughton, G. M. Danner and P. M. Chaikin, Phys. Rev. Lett. 78, 3555 (1997)]. The triplet order parameter is in agreement with the recent Knight shift measurements by I. J. Lee et al. as well as with the early results on a destruction of superconductivity by nonmagnetic impurities and on the absence of the Hebel-Slichter peak in the NMR relaxation rate.

PACS numbers: 74.70.Kn, 74.20.-z, 74.60.Ec

Quasi-one-dimensional (Q1D) organic compounds (TMTSF)$_2$X ($X = $ PF$_6$, ClO$_4$, etc.) have been intensively investigated since the discovery of superconductivity$^{1-2}$ in the first organic superconductor (TMTSF)$_2$PF$_6$. From the beginning, it was clear that their properties are unusual. It was found$^{3-5}$ that superconductivity in (TMTSF)$_2$X ($X = $ PF$_6$, ClO$_4$) is destroyed by nonmagnetic impurities. This was interpreted in terms of a possible triplet pairing of electrons6. Another unusual feature, the absence of the Hebel-Slichter peak in the $1/T_1$ NMR data in (TMTSF)$_2$X ($X = $ PF$_6$, ClO$_4$)10,11,12, was prescribed13 to the existence of zeros of a superconducting order parameter on the Q1D Fermi surfaces (FS). As was stressed13, the early experiments$^{3-8,10,11}$ provided information only about an orbital part of the order parameter and could not distinguish between some triplet and singlet pairings2,13.

To reveal triplet superconductivity, experimental tests which probe a spin part of an order parameter are essential. Among them, are: a surviving of triplet superconductivity in Q1D case$^{14-17}$ at magnetic fields higher than both the upper orbital critical field and the Clogston paramagnetic limit18, observation of spin-wave excitations15, the Knight shift measurements12 and some others. Nowadays, interest in a possible triplet pairing has been renewed due to remarkable measurements of the upper critical fields (which are sensitive to a spin part of the order parameter) in (TMTSF)$_2$ClO$_4$ and in (TMTSF)$_2$PF$_6$ at $P \approx 6$ kbar by Naughton, Lee, Chaikin and Danner$^{19-21}$ and due to the theoretical analysis16 of these experiments. The experimental fields along b'-axis (which are 3 times bigger20,21 than the Clogston paramagnetic limit) were shown16 to be even bigger than the paramagnetic limit16,22 for the Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase23. Therefore, measurements$^{19-21}$ were interpreted$^{16,19-21}$ in term of triplet superconductivity. Recently, Lee et al.12 have found no change of the Knight shift for $H || b'$ in a superconducting phase of (TMTSF)$_2$PF$_6$ at $P \approx 6$ kbar. This is consistent with the results$^{16,19-21}$ and strongly supports the triplet scenario$^{16,19-21}$ of superconductivity.

The goals of our paper are: 1) To calculate the paramagnetic limited field along b'-axis, $H_{b'}^c$, for the LOFF phase in a Q1D superconductor, taking account of both the paramagnetic16 and orbital destructive effects against superconductivity. (We show that the calculated value of $H_{b'}^c$ is 4-5 times less than the experimental fields20,21 in (TMTSF)$_2$PF$_6$); 2) To demonstrate that the value of $H_{b'}^c$ becomes consistent with20,21 if we switch off the paramagnetic effects. (These indicate that an electron spin susceptibility along b'-axis, $\chi_{b'}$, at $T = 0$ is equal to its value in a metallic state, χ_0, which is a distinct feature of triplet superconductivity21,27); 3) To stress that the experimental critical fields20,21 along the conducting chains (i.e., along a-axis), H_{a}^c, are strongly paramagnetically limited and thus the corresponding electron spin susceptibility $\chi_a \ll \chi_0$ at $T = 0$; 4) To show that the above described properties are naturally explained within the framework of a triplet superconductivity scenario with the following vector order parameter frozen into the crystalline lattice (i.e., the case of strong spin-orbit coupling27):

$$\mathbf{d}(\mathbf{k}) = (d_a(\mathbf{k}) \neq 0, d_c(\mathbf{k}) = 0, d_d(\mathbf{k}) = 0); \ |d_a(\mathbf{k})| > |d_d(\mathbf{k})| \quad (1)$$

corresponding to the BCS-pair's wave function

$$\Psi(\mathbf{k}) = [-d_a(\mathbf{k}) + id_d(\mathbf{k})] | \uparrow \uparrow \rangle + [d_a(\mathbf{k}) + id_d(\mathbf{k})] | \downarrow \downarrow \rangle \quad (2)$$

and to the anisotropic spin susceptibility at $T = 0$:

$$\chi_{b'} = \chi_0 , \ \chi_a \ll \chi_0 \quad (3)$$

where $| \uparrow \rangle (| \downarrow \rangle)$ stands for a spin-up (spin-down) electron with respect to the quantization axis $z || b'$ [$a(x) \perp b'(x) \perp c'(y)$], the momentum \mathbf{k} defines the position on the FS, x is the easy axis for a spin direction in a spin-density-wave (SDW) phase of (TMTSF)$_2$PF$_6$. Thus, one may expect that the order parameter (1) is the most stable since it corresponds to the BCS pairs (2) only with $S_{b'} \equiv S_a = \pm 1$. At the end of the paper, we discuss some consequences of a
group theory classification of the possible triplet phases, including the most probable orbital part of the order parameter and a possibility to break the time reversal symmetry.

Q1D electron spectrum corresponds to two open sheets of the FS\cite{1,2}:

\[\epsilon^\pm(p) = \pm v_F (p_a \mp p_F) - 2t_0 \cos(p_b b) - 2t_c \cos(p_c c), \]

where \(\pm \) stands for the right (left) sheet of the FS; \(v_F = t_a a/\sqrt{2} \) and \(p_F \) are the Fermi velocity and Fermi momentum, respectively; \(t_a \approx 1600 \, K, \) \(t_c \approx 200 \, K \) and \(t_c \approx 5 \, K; \) \((\lambda = 1). \)

Singlet \((S = 0) \) and triplet \((S = 1) \) phases are characterized by the following wave functions of the BCS pair's\cite{27}:

\[\psi_S(k, r) = (\mid \uparrow \downarrow \rangle - \mid \downarrow \uparrow \rangle) \psi(k, r), \quad S = 0; \quad (5) \]

\[\psi_S(k, r) = \mid \uparrow \uparrow \rangle \langle \uparrow \downarrow |d_S(k, r) + id_T(k, r)| + \mid \downarrow \downarrow \rangle \langle \downarrow \uparrow |d_S(k, r) + id_T(k, r)|, \quad S = 1. \quad (6) \]

In Eqs. (5,6), \(S \) is the total spin of the BCS pair, \(r \) is its coordinate of a center of masses; \(\psi_S(k, r) = \psi_S(-k, r), \) \(d(k, r) = -d(-k, r). \)

At \(H \to 0, \) \(\psi(k, r) \) and \(d(k, r) \) do not depend on \(r. \) Electron spin susceptibility tensor, \(\chi_{ij}, \) at \(T = 0 \) for a singlet phase is \(\chi_{1,1} = 0 \) whereas for a triplet phase is given by\cite{27}:

\[\chi_{ij} \equiv \chi_0 \left(\delta_{i,j} - \frac{d^*_T(k) d_T(k)}{d^*_S(k) d_S(k)} \right) \quad (7) \]

where \(\delta_{i,j} = 1 \) if \(i = j \) and \(\delta_{i,j} = 0 \) if \(i \neq j; \) \(\langle d(k)^2 \rangle_k = 1, \) \(\langle \ldots \rangle_k \) means an averaging over the FS. Here, we consider only unitary triplet phases\cite{27} (i.e., \(d_S(k) d^*_T(k) = d^*_S(k) d_T(k) \)).

At first we consider the case \(H \parallel b'(z). \) In singlet phase (5), superconductivity is destroyed by paramagnetic effects in arbitrary directed magnetic field. In a triplet phase (6), as it follows from Eq. (7), \(d_{ij}(k) \equiv d_{ij}(k) \) component is responsible for the deviation of the spin susceptibility \(\chi_{ij} \equiv \chi_{zz} \) from \(\chi_0). \)

If \(d_{ij}(k) \neq 0 \) there exist two related phenomena: the paramagnetic destructive mechanism against superconductivity and a change of the Knight shift at \(T < T_c(H). \) Let us calculate the upper critical field for \(H \parallel b'. \) By using a common approach\cite{28} to the upper critical field of a clean superconductor\cite{29} with open electron orbits and with one-component order parameter, it is possible to prove that Eq. (5) of Ref. \cite{28}:

\[\Delta(x) = \frac{g}{2} \sqrt{2\pi T \Delta x} \int_{|x-x_1|>d} \frac{2\pi T d x_1}{\sqrt{2\pi T |x-x_1|}} J_0 \left(\frac{2\alpha B H(x-x_1) \Delta_S}{v_F} \right) \times J_0 \left(2 \alpha \left(\frac{2\pi T \Delta x}{2v_F} \right) \right) \Delta(x_1), \quad (8) \]

is extended to a singlet phase \(\psi_S(k, r) \equiv f(k) \Delta(x) \) as well as to the triplet phases \(d_1(k, r) \equiv (d_a = 1, d_c = 0, d_{ij} = 0) f(k) \Delta(x) \) and \(d_2(k, r) \equiv (d_a = 0, d_c = 0, d_{ij} = 1) f(k) \Delta(x). \) Here, \(\left< |f(k)|^2 \right>_k = 1; \) \(g \) is an effective electron interaction constant, \(d \) is a cutoff distance; \(\alpha = \sqrt{x_0}/t_a, \) \(\omega_c = e v_F H c / \gamma; \) \(\lambda = 4 \epsilon_c / \omega_c; \) \(\mu_B \) is a Bohr magneton, \(e \) and \(c \) are the electron charge and the velocity of light, correspondingly; \(\Delta_S = 0 \) for \(d_1 \)-triplet phase. By solving Eq. (8) numerically for \(S_a = 1, \alpha = 0.17, \) \(|dH^{b'}/dT|_{Tc} \approx 2 \, T/K, \)

\(v_F = 10^5 \, cm/sec, \) \(t_c \approx 3K, \) \(T_c(0) = 1.14 \, K, \) \(c^* = 13.6 \, A \) (see Refs. \cite{1,2,19,21,29}) we found that the calculated value of the paramagnetic limited critical field, \(H^{b'}_{\text{cr}} \approx 1.3 - 1.4 \, T, \) is 4.5 times less than the experimental one\cite{20,21,23} (see Fig. \ref{Fig3}).

A similar analysis for \(d_2 \)-triplet phase (which is not paramagnetically limited) shows that superconductivity survives at \(H^{b'}_{\text{cr}} \approx 6 \, T \) and \(T \approx 0.26 - 0.26 \, K \) in qualitative agreement with experiments\cite{20,21} (see Fig. \ref{Fig3}). On the basis of the calculation of \(H^{b'}_{\text{cr}} \) and \(H^{b'}_{\text{cr}}, \) we can conclude that \(|d_S(k)| \neq |d_T(k)| = 0 \) in Eq. (7) and thus \(\chi_{zz} \equiv \chi_{zz} \equiv 0. \) Note that the recent Knight shift measurements\cite{12} are also in favor of \(\chi_{zz} < \chi_0 \) below \(T_c(H). \)

If we consider the case \(H \parallel a(x) \) then \(d_a \equiv d_{zz} \)-component of the order parameter (6) is responsible for the destructive paramagnetic effects against superconductivity and for the change of the Knight shift at \(T < T_c(H). \) Let us calculate the critical field for \(H \parallel a \) in the \(d_1(k) \equiv (d_a \neq 0, d_c = 0, d_{ij} = 0) \) triplet phase (which is paramagnetically limited). The corresponding linearized gap equation can be obtained from the common Eq. (5) of Ref. \cite{28}:

\[\Delta(x) = \frac{g}{2} \int_{|x-x_1|>d} \frac{2\pi d x_1}{\sqrt{2\pi T |x-x_1|}} J_0 \left(\frac{2\pi T \Delta x}{2v_F} \right) \times J_0 \left(2 \alpha \left(\frac{2\pi T \Delta x}{2v_F} \right) \right) \Delta(x_1), \quad (9) \]

where \(\gamma = t_a a / (2t_u b) \) Numerical solution of Eq. (9) (with the same values of parameters as Eq. (8)) shows that the best fitting of the data\cite{20,21} at \(H \leq 1.5 \, T \) (see Fig. \ref{Fig3}) corresponds to \(S_a \approx 0.9 \) (i.e., \(d_a = 0.9, \chi_{zz} \approx 0.2 \chi_0 < \chi_0) \) and \(|dH^{b'}/dT|_{Tc} \approx 8 \, T/K. \) The latter is in good agreement with the experimental slopes\cite{20,21} \(|dH^{b'}/dT|_{Tc} \approx 2 \, T/K \) since the value of \(t_c/t_a \approx 8.5 \) is known\cite{29}. Note that the accuracy of our calculations does not allow us to distinguish between the triplet phases with \(d_a = 0 \) and \(|d_a| > |d_c|. \)

Summarizing, our analysis of the experimental critical fields\cite{20,21} measured in (TMTSF)_2PF_6 at \(P \approx 6 \, kbar \) has shown that paramagnetic destructive effects against superconductivity do not affect \(H^{b'} \) whereas \(H^{a} \) is paramagnetically limited at \(H \leq 1.5 \, T. \) These are naturally explained within a triplet scenario of superconductivity\cite{10,16,19,21} with the triplet order parameter (1). We suggest to measure the Knight shift along the \(a \)-axis at \(H \leq 1.5 \, T \) and \(T < T_c(H) \) to prove the order parameter (1). Note that temperature dependence of the critical field along \(a \)-axis, \(H^{a}(T), \) changes drastically\cite{20,21} at \(H \geq 1.5 \, T. \) We speculate that at \(H \geq 1.5 \, T \) there may appear a triplet phase with \(d(k) \perp H, \) which minimizes the magnetic contribution to the free energy\cite{30}. Nevertheless, we cannot completely exclude another possibility - the appearance of the LOFF state at \(H \geq 1.5 \, T \) for \(H \parallel a. \) Note that our theoretical analysis of the critical fields is based on the the Fermi-liquid picture\cite{29} proved at \(P \approx 6 \, kbar \) in (TMTSF)_2PF_6. At higher
pressures, $P \approx 9.8 \text{ kbar}$, the behavior of $(\text{TMTSF})_2\text{PF}_6$ may deviate from the Fermi liquid one31. At the end of the paper, we would like to make a few comments based on symmetry arguments. We classify the possible triplet phases in the case of strong spin-orbit coupling for orthorhombic (D_{2h}) and triclinic (C_{1}) point group symmetries (see Table I), where the matrix order parameter $\hat{\Delta}(k) = d_z(k)\tau_z$, $(\hat{\tau}_z = i\sigma_x\sigma_y; \hat{\sigma}_i$ are the Pauli matrices). As it seen from Table I, there are no degenerated orbital states, thus a time reversal symmetry is broken only if a nonunitary triplet phase appears27. In our particular case, this happens when $d_y(k)d_x^*(k) \neq d_x^*(k)d_y(k)$. Using the expression for a gap in a quasi-particle spectrum27, $\delta(k) = |d(k)|$ (the unitary case), it is possible to make sure that there are no generic phases with the lines of zeros on the FS in accordance with a common theorem32. This is in agreement with the experimental data26,33 which seem to be in favor of fully gapped FS and against the existence of isolated zeros on the FS32. Therefore, we speculate that the orbital part of the order parameter is likely $d_y(k) \sim d_y(k) \sim sgn(k_y)$ which corresponds to a fully gapped Q1D sheets of the FS. From Table I it is possible to conclude that, for a triclinic space group of $(\text{TMTSF})_2\text{PF}_6$, the most generic case is $d_y \neq 0$, $d_x \neq 0$ and $d_0 \neq 0$. However, it is known12,34 that the spin dependent interactions in a SDW phase of $(\text{TMTSF})_2\text{PF}_6$ (which has a common boundary with the superconducting phase) result in an alignment of spins along b'-axis. Therefore, it is natural to expect the form (1) for the superconducting order parameter corresponding to the absence of the BCS pairs with $\Delta_y = 0$ (see Eq. (2)).

One of us (A.G.L.) is thankful to Agterberg, N. N. Bagnet, K. Behnia, S. Brown, E. V. Brusse, P. M. Chaikin, T. Ishiguro, H. Fukuyama, I.J. Lee, P. Lee, Y. Maeno, V. P. Mineev, M. J. Naughton, K. Oshima, M. Sigrist, V. M. Yakovenko for useful discussions. A.G.L. is especially thankful to S. Brown, P. M. Chaikin, I. J. Lee and M. J. Naughton for fruitful and numerous discussions during a workshop organized by M. J. Naughton.

\begin{table}[h]
\centering
\begin{tabular}{ |c|c|c| }
\hline
Group & Representation & Order parameter $\Delta(k)$ \\
\hline
D_{2h} & A_{1u} & $Ak_\tau + Bk_y\tau_y + Ck_z\tau_z$ \\
 & B_{1u} & $Ak_\tau + Bk_y\tau_x$ \\
 & B_{2u} & $Ak_\tau + Bk_z\tau_x$ \\
 & B_{3u} & $Ak_\tau + Bk_y\tau_y$ \\
\hline
C_i & A_u & $Ak_\tau + Bk_y\tau_y + Ck_z\tau_z + Dk_y\tau_x$
& & $+ Fk_\tau + Gk_\tau + Hk_y\tau_y + Ik_\tau_y$ \\
\hline
\end{tabular}
\caption{Triplet order parameter $\hat{\Delta}(k)$ for D_{2h} and C_i groups. (A-I are constants)}
\end{table}

[1] D. Jerome and H. J. Schultz, Adv. Phys. 4, 299 (1982).
[2] T. Ishiguro, K. Yamaji and G. Saito, Organic Superconductors (Second Edition, Springer-Verlag, Heidelberg, 1998).
[3] M.-Y. Choi et al., Phys. Rev. B 25, 6208 (1982).
[4] R. L. Green et al., Molec. Crystals.-Liq. Crystals 79, 183 (1982).
[5] S. Bouffard et al., J. Phys. C15, 2951 (1982).
[6] S. Tomic et al., J. Phys. J. Phys. 44, C3-1075 (1983).
[7] C. Coulon et al., J. Phys. (Paris) 43, 1721 (1982).
[8] F. Tsobnang et al., Phys. Rev. B 49, 15110 (1994).
[9] A. A. Abrikosov, J. Low Temp. Phys. 53, 359 (1983).
[10] M. Takigawa et al., J. Phys. Soc. Jpn. 56, 873 (1987).
[11] K. Hiruma, Master Thesis, Gakushuin University, Tokyo, Japan (1998).
[12] I. J. Lee et al., preprint cond-mat/0001332.
[13] Y. Hasegawa and H. Fukuyama, J. Phys. Soc. Jpn. 56, 877 (1987).
[14] A. G. Lebed, Pis’ma Zh. Eksp. Teor. Fiz. 44, 89 (1986) [JETP Lett. 44, 114 (1986)].
[15] L. N. Burlachkov et al., Europhys. Lett. 4, 941 (1987).
[16] A. G. Lebed, Phys. Rev. B 59, R721 (1999).
[17] N. Dupuis et al., Phys. Rev. Lett. 70, 2613 (1993).
[18] A. M. Clogston, Phys. Rev. B 46, 643 (1985); B. S. Chandrasekhar, Appl. Phys. Lett. 9, 266 (1962).
[19] I. J. Lee et al., Synth. Metals 70, 747 (1995); Appl. Supercond. 2, 753 (1994).
[20] M. J. Naughton et al., Synth. Metals 85, 1481 (1997).
[21] I. J. Lee et al., Phys. Rev. Lett. 78, 3555 (1997).
[22] The paramagnetic limiting field in Q1D case16 differs from the Clogston limit18 due to the possibility of the LOFF state formation23.
[23] A. I. Larkin and Yu. V. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964) [Sov. Phys. JETP 20, 762 (1965)]; P. Fulde and R. Ferrell, Phys. Rev. 135A, 550 (1964).
[24] The other effects which can increase the paramagnetic limits seem to be weak. Indeed, spin-orbital scattering is not significant20,21,25; the specific heat jump is close to its weak coupling BCS value26.
[25] L. P. Gor’kov and D. Jerome, J. Phys. (Paris) Lett. 46, L643 (1985).
[26] P. Garinge et al., J. Phys. (Paris) Lett. 43, L147 (1982).
[27] V. P. Mineev and K. V. Samokhin, Introduction to Unconventional Superconductivity (Gordon and Breach, Amsterdam, 1999); M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).
[28] A. G. Lebed, J. of Superconductivity 12, 453 (1999).
[29] I. J. Lee and M. J. Naughton, Phys. Rev. B 58, R13343 (1998).
[30] K. Machida et al., J. Superconductivity 12, 557 (1999).
[31] G. M. Danner and P. M. Chaikin, Phys. Rev. Lett. 18, 4690 (1995).
[32] G. E. Volovik and L. P. Gor’kov, Zh. Eksp. Teor. Fiz. 88, 1412 (1985) [Sov. Phys. JETP 61, 843 (1985)]; E. I. Blount, Phys. Rev. B 32, 2935 (1985).
[33] S. Belin and K. Behnia, Phys. Rev. Lett. 79, 2125 (1997).
[34] J. M. Delrieu et al., J. Phys. (Paris) 47, 839 (1986); L. P. Le et al., Europhys. Lett. 15, 547 (1991).
FIG. 1. Circles stand for the critical magnetic fields along b'-axis: open circles show experimental curve20,21, a full circle corresponds to the calculated paramagnetically limited value of H_{b}' at $T = 0$ in a singlet superconductor whereas crossed circles show the calculated non-paramagnetically limited critical fields $H_{b}'(T)$ for a triplet order parameter (1). Triangles stand for the experimental critical fields20,21 along a-axis, $H_{a}'(T)$, ($a \perp b'$). In the inset, the experimental values20,21 of $H_{b}'(T)$ are shown in comparison with the calculated paramagnetically limited field (full line) for a triplet order parameter (1) (see the text).