Factors associated with the access and continuum of vaccination services among children aged 12–23 months in the emerging regions of Ethiopia: evidence from the 2016 Ethiopian demography and health survey

Ayal Debie and Ayenew Molla Lakew

Abstract

Background: Child vaccination is an instrument for saving millions of lives. Only one in twenty children has access to childhood vaccination in hard to reach areas in developing countries. Although studies have been done on childhood vaccination, factors associated with access and continuum were not considered in Ethiopia. Therefore, this study aimed to identify the factors associated with the access and continuum of childhood vaccination in the emerging regions of Ethiopia based on the 2016 EDHS datasets.

Methods: The two-stage stratified sampling technique was used for the survey carried out on 642 mothers of children aged 12–23 months. Access is the provision of services in shorter waiting times and flexibly at all times and alternative methods of communication. Accordingly, continuum of care reflects the extent to which a series of discrete health care events are being experienced by people coherently and interconnected over time. As a result, access and continuum of childhood vaccination are determined using pentavalent-1 and measles vaccination status of children, respectively. A binary logistic regression model was fitted to identify the factors associated with access and continuum of the vaccination.
Background

The Expanded Programme for Immunization (EPI) was initiated by the World Health Organization (WHO) in 1974 [1]. The WHO advocated the availability of immunization for all children of the world by the year 1990 which was a vital step towards the achievement of health for all by the year 2000 [2]. Childhood vaccination is an instrument of saving millions of lives, but about 19.4 million children under the age of 1 year have not received basic vaccines [3]. Immunization prevents 2–3 million deaths every year, and the uptake of new vaccines has been increasing from time to time [3].

Childhood vaccination is effective in protecting children against vaccine-preventable diseases in low- and middle-income countries [4, 5]. In Sub-Saharan Africa and hard to reach (remote areas) of developing countries, only 50% of children and one in twenty had access to childhood vaccination, respectively [6]. In 2018, about 86%(116.3 million) of infants worldwide received three doses of DTP-3 /Penta-3 vaccine [3].

Childhood vaccination is one of the national child survival strategies planned to reach 90% of the measles vaccination coverage in 2010 [7]. In 2015, it was also one of the key intervention strategies to achieve the Health Sector Transformation Plan (HSTP) of Ethiopia [8]. The 2011 EDHS revealed that 66, 56, 64 and 24% of children received BCG, measles, pentavalent-1 and all the recommended vaccines, respectively [9], while the 2016 EDHS showed 69, 54, and 73% of children had BCG, measles, and pentavalent-1 vaccines, accordingly. In addition, 39 and 16% of children were fully vaccinated and never received any childhood vaccinations, respectively [10]. According to the 2016 EDHS report, childhood vaccination was low in the emerging regions of Ethiopia [10]. The vaccination status of children is used to monitor the performance of vaccination services at local, national and international levels to design strategies for the eradication, elimination, and control of vaccine-preventable diseases [11–13].

Although a few studies so far been done in different parts of Ethiopia, the social determinants of vaccination service utilization remain poorly analyzed, particularly in the emerging regions. Therefore, this study aimed to assess factors associated with the access and continuum of childhood vaccination service utilization among children aged 12–23 months in the emerging regions of Ethiopia based on the 2016 EDHS datasets.

Methods

Study settings

The 2016 Ethiopian Demographic and Health Survey (EDHS) was conducted in the nine national regional states and the two city administrations. The regions classified as emerging, Afar, Benishangul-Gumz, Gambella and Somali, are characterized by scattered pastoralists and semi-pastoralist societies suffering from extreme poverty. Absence of clear and detailed regulations, basic infrastructures and services are also their common characteristics [14, 15]. On the other hand, developed regions such as Amhara, Oromia, Southern Nations, Nationalities and Peoples (SNNP), Tigray and the city administrations, such as Addis Ababa, Dire Dawa and Harari regions are relatively more densely populated [15]. Ethiopia is one of the Sub-Saharan countries found in the horn of Africa with a total population of 73.5 million. The total population of the four emerging
regions was 6926, 933, with the largest in Somali (4,445, 219) and the least in Gambella (307,096). Similarly, the total number of children 0–4 years was 449,699 in Somali and 42,044 in Gambella [16].

Sampling design
The sampling frame used for the 2016 EDHS was the 2007 Population and Housing Census (PHC) of the Central Statistical Agency report of Ethiopia [16]. The sample for the 2016 EDHS was designed to provide estimates of the key indicators of the country as a whole, separately for urban and rural areas, and for each of the nine regions and the two city administrations. The sample was stratified and selected in two stages and each region was stratified into urban and rural areas. Samples of the Enumeration Areas (EAs) were selected independently in each stratum of two stages. Implicit stratification and proportional allocation were used at each lower administrative level.

In the first stage, EAs in urban and rural areas were selected with probability proportional to the EA size (based on the 2007 PHC) and with independent selection in each sampling stratum. A household listing operation was carried out in all of the selected EAs in 2015. The resulting lists of households served as sampling frames for the selection of households in the second stage. Segmentation was done for some of the selected EAs with large households, and only one segment was selected for the survey with a probability proportional to size. Household listing was conducted only in the selected segment, that is, the 2016 EDHS cluster was either an EA or a segment of an EA. In the second stage, the selection of the households per cluster was done using systematic sampling technique. In this study, the 2016 Ethiopian demographic and health survey childhood datasets of the four emerging regions, namely Afar, Benishangul-Gumz, Gambella and Somali were used for analysis.

All women aged 15–49 years and permanently lived in the area and slept in the selected households the night before the surveys were eligible [10]. Children 12–23 months are the source population and the study included 642 mothers and their children aged 12–23 months and data on both were extracted from the 2016 EDHS datasets. Potential independent variables such as socio-demographic, economic, fertility history and health service utilization were also extracted and further recoding of the selected variables was done to match and compare with other similar studies.

Measurement and variables
Access and continuum of childhood vaccination were the dependent variables of the study. Socio-demographic characteristics (age, residence, religion, and marital status), and obstetric history of the women, like places of delivery, birth order, antenatal care, postnatal check-ups in 2 months after birth, number of live children, sex of children, and marital status were the independent variables. Vaccination refers to the administration of antigenic material (a vaccine) to stimulate an individual’s immune system to develop adaptive immunity to a pathogen [17] and its coverage is defined as the proportion of a given population that has been vaccinated in a given time period [18]. A fully vaccinated child was expected to receive one dose of BCG, three doses of pentavalent, Pneumococcal Conjugate (PCV), Oral Polio Vaccines (OPV), two doses of Rotavirus and one dose of measles vaccines [19]. Each vaccine had five response categories, namely “no”, “vaccination date on the card”, “reported by mothers”, “vaccination marked on card” and “do not know”. The vaccination status of children was recoded as 0 and 1 for each antigen. “No” responses were recoded as “0” and labeled “not received the vaccine”, while the other responses “vaccination date on card, reported by mothers, vaccination marked on card” were recoded together as “1” and labeled “received the vaccine”. Besides, “do not know responses” were excluded from analysis. As a result, the vaccination status of children was recoded as “0” for “not vaccinated” and “1” for “vaccinated” for each antigen on the basis of the reports of women and information on the child vaccination card. Accordingly, access and the continuum of childhood vaccination were recoded as “0” for “no” and “1” for “yes” for each child. Access is the provision of services in shorter waiting times, more flexibly, electronically, by telephone or alternative methods of communication [20]. As a result, access to childhood vaccination was determined based on pentavalent-1 vaccination status of children. Continuum of care reflects the extent to which a series of discrete health care events are being experienced by people coherently and interconnected over time [20]. Thus, continuum of childhood vaccination was measured by measles vaccination status of children.

Data management and statistical analyses
The extracted EDHS data included socio-demographic characteristics of the women, obstetric history and service utilization child-specific information for all births in the past 5 years of women in the reproductive age group. The 2016 EDHS collected information on childhood vaccination status from vaccination cards and women’s verbal reports. The interviewer copied the vaccination dates directly into the questionnaire if the cards were available. However, the interviewer asked respondents to recall the vaccines given to their children when there were no vaccination cards. The cleaned and recoded data were analyzed using STATA version 14. Descriptive statistics such as means, medians, SDs, frequencies and proportions of variables were presented using graphs,
texts, and tables. Bivariable and multivariable logistic regression analyses were conducted to identify factors associated with access, utilization, and continuity of vaccination. Variables with p-values < 0.2 [21, 22] during the bivariable analyses were fitted into the multivariable logistic regression analyses. However, p-value of 0.2 did not mean that there was a 20% chance that the null hypothesis was correct [22, 23], rather variables with p-value of < 0.2 during the bivariable analyses might have a chance to be significantly associated with the outcome variable during the multivariable regression analyses. Adjusted Odds Ratio (AOR) and 95% Confidence Interval (CI) with p-value < 0.05 were used to identify variables associated with the outcome variables.

Results

Socio-demographic and economic characteristics
A total of 642 mothers/caregivers of children 12–23 months of age were included in these analyses. The mean age of the participants was 27.86 (± 6.31SD) years, and the median age was 28 years with an Inter Quartile Range (IQR) of 8 years. Furthermore, more than half of the participants were in the age range of 25–34 years; over two-thirds (68.2%) were Muslims; more than 80% (83.2%) lived in rural areas. Only 8.9 and 19.5% of the respondents and their husbands had secondary and above education, respectively. Similarly, 5.1% of the respondents and 13.2% of their husbands had professional jobs; 93.3% were married (Table 1).

Obstetric related characteristics of participants
More than half (57.5%) of the women received antenatal care services. Accordingly, 44 and 65.6% of the ANC users had four and/or more visits and started the service at the second trimester, respectively. Similarly, only 27.6 and 8.1% of the women had health facility delivery and PNC in 2 months of postpartum period, correspondingly. Nearly 27, 62 and 7% of the participants had ≥6, ≥3 and history of terminated pregnancy, respectively (Table 2).

Source of information, wealth status, and child characteristics
Of the children, 55.6% were female and 60.6% of the caregivers were in the poorest wealth status. The mean and median age of the children were 16.29 (± 3.29SD) months and 16 months with the IQR of 6 months, respectively. About 45% of the children were in the age range of 12–15 months. More than three-fourths (76.5%) of participants had no mobile phones, and almost 85% did not listen radio programs. Nearly 40 and 90% of children had average birth weights and wanted by their families, respectively (Table 3).

Table 1 Socio-demographic and economic characteristics of participants in emerging regions of Ethiopia, 2016

Variables	Frequency	Percent (%)
Age of the respondents in years		
15–24	198	30.8
25–34	329	51.2
≥35	115	18.0
Religion of the participants		
Orthodox	61	9.5
Protestant	116	18.1
Muslim	438	68.2
Others	27	4.2
Region of the respondents		
Afar	162	25.2
Somali	196	30.5
Benshangul Gumuz	152	23.7
Gambella	132	20.6
Residence of the participants		
Urban	108	16.8
Rural	534	83.2
Educational status of the respondents		
No education	458	71.3
Primary	127	19.8
Secondary and above	57	8.9
Sex of household head		
Male	426	66.4
Female	216	33.6
Husband education		
No	408	63.5
Primary	109	17.0
Secondary and above	125	19.5
Current marital status of the respondents		
Unmarried	43	6.7
Married	599	93.3
Husband occupation		
No work	93	14.5
Professional work	85	13.2
Agricultural	293	45.6
Others	171	26.6
Occupation of the respondents		
No work	418	65.1
Professional work	33	5.1
Agricultural	128	19.9
Others	63	9.8
Table 2 Obstetric related characteristics of participants in emerging regions of Ethiopia, 2016

Variables	Frequency	Percent (%)
ANC		
No	273	42.5
Yes	369	57.5
ANC number of visits (n = 369)		
1	39	10.6
2–3	168	45.5
≥ 4	162	43.9
First ANC visit started (n = 369)		
< 3 months	109	29.5
3–7 months	242	65.6
> 7 months	18	4.9
Place of delivery		
At home	465	72.4
At health facility	177	27.6
PNC within 2 months		
No	590	91.9
Yes	52	8.1
Place of PNC (n = 52)		
At home	15	28.8
At health facility	37	71.2
PNC performed by (n = 52)		
Doctor	6	11.5
Nurse	28	53.8
Midwife	3	5.8
HEW	15	28.9
Parity		
1	113	17.6
2–5	358	55.8
≥ 6	171	26.6
Number of living children		
1	119	18.5
2	125	19.5
≥ 3	398	62.0
Ever had history of terminated pregnancy		
No	598	93.1
Yes	44	6.9

Vaccination status of children

The vaccination status of children 12–23 months of age was analyzed for each antigen in the emerging regions of Ethiopia. Overall, 25.1% (95% CI: 21.80, 28.30) of the children were fully vaccinated in the region. About 57 and 47% of the children received BCG and measles vaccines, accordingly. Seventy-four-point-four and forty-seven-point 2% of children received OPV 1 and 3, respectively. About 62.0, 41.3, 55.8, 37.5, 52.8, and 45.3% had received Pentavalent 1, 2, PCV 1, 2, Rota 1 and 2, correspondingly. Furthermore, pentavalent and BCG to
measles dropout rates were 33.4 and 17.5%, respectively. As a result, access to childhood vaccination was 62% (95%CI: 58.40, 65.70) and the continuum of vaccination 46.9% with (95%CI: 43.30, 50.80) (Fig. 1).

Factors associated with access to vaccination
The binary logistic regression model showed that educational status of the mothers, residence, weight of children, ANC follow ups and places of birth were significantly associated with access to childhood vaccination. Mothers who lived in rural areas were 67% less likely (AOR = 0.33; 95%CI: 0.14,0.76) access to their children vaccination compared with that of mothers lived in urban areas. Accordingly, participants who had formal education were 1.99 times (AOR = 1.99; 95%CI: 1.20, 3.31) more likely to get access to vaccination for their children compared with women who had no formal education. On the other hand, children who had average birth weights were 1.67 times (AOR = 1.67; 95%CI: 1.03, 2.72) more likely to get access to vaccination compared with children who had more birth weights. The odds of childhood access to vaccination among women who had ANC follow ups were 4.13 times (AOR = 4.13; 95%CI: 2.75,6.19) higher than those of their counterparts. Women who gave their last birth at health facilities were 1.58 times (AOR = 1.58; 95%CI: 1.19, 2.82) more likely to have chances to access child vaccinations compared with women who gave birth at home. Similarly, women with middle (AOR = 2.79; 95%CI: 1.09, 7.14) and rich wealth (AOR = 1.57; 95%CI: 1.19, 3.14) had 2.79 and 1.57-times higher access to childhood vaccination compared with women in poor wealth status (Table 4).

Factors associated with the continuum of vaccination
Potential predictor variables associated with the continuum of vaccination services among children 12–23 months of age were identified using the multivariable logistic regression analyses. Children who had less birth weights were 49% less likely (AOR = 0.51; 95%CI: 0.33, 0.81) to continue vaccination services compared with children who had more birth weights. The odds of the continuum of childhood vaccination among women who had ANC follow ups were 3.68 times (AOR = 3.68; 95%CI: 2.48, 5.47) higher than women who had no ANC. Women in rich wealth status were 2.07 times (AOR = 2.07; 95%CI: 1.15, 3.71) more likely to continue childhood vaccination compared with women in poor wealth status (Table 5).

Discussion
Ethiopia was committed to improve the access and continuum of vaccination to achieve full vaccination via designing health policies and strategies, such as the construction of health posts, training and deployment of health extension workers. The country has also made great gains in decreasing childhood and under-five mortality by two-thirds since
1990 and meeting its Millennium Development Goal target [24]. However, attaining the Sustainable Development Goal for reducing under-5 mortality from 59 deaths in 2015 [25] to 25 deaths per 1000 live births in 2030 [26] will require improved child health services through ensuring the access and continuum of childhood vaccination services. Despite access to childhood vaccination in the country, many children do not receive the vaccines.

As a result, 25.1% (95%CI: 21.80, 28.30) of the children were fully vaccinated that does not lead in achieving the 2020 Health Sector Transformation Plan (HSTP). This finding was consistent with the 2011 EDHS report (24%) [9] and the Kenyan (22.6%) [27]. However, it was lower than those of studies done in Togo, Nigeria (63.7%) [28], Kwahu Afram Plains, Ghana (81.3%) [29], Jigjiga (36.6%) [30], Mecha (75.1%) [31], Ethiopia (38.3%) [32], Sekota

Table 4	Factors associated with access for childhood vaccination in emerging regions of Ethiopia, 2016							
Variables	Access to vaccination	COR (95%CI)	AOR (95% CI)	P-value				
	Yes	No						
ANC	No	100	173	1	1	7.26(5.08,10.38)	4.13(2.75,6.19)	0.0001
	Yes	298	71	1	1	2.46(1.62,3.73)	1.29(0.75, 2.19)	0.357
Own a mobile phone	No	282	209	1	1			
	Yes	116	35	1	1	0.61(0.35,1.05)	0.74(0.38, 1.44)	0.382
Wanted last child	No	51	20	1	1			
	Yes	347	224	1	1	1.50(0.77,2.93)	1.58(0.71, 3.53)	0.266
History of terminated pregnancy	No	367	231	1	1			
	Yes	31	13	1	1	1.50(0.77,2.93)	1.58(0.71, 3.53)	0.266
Listening radio	No	322	225	1	1			
	Yes	76	19	1	1	2.80(1.64,4.75)	1.87(0.98,3.49)	0.052
Place of delivery	At home	244	221	1	1			
	At health facility	154	23	6.07(3.77,9.75)	1.58(1.19, 2.82)	0.018		
Child size at birth	Large	112	63	1	1			
	Average	182	74	1	1	1.38(0.92,2.09)	1.67(1.03, 2.72)	0.039
	Small	104	107	0.55(0.36,0.82)	0.63(0.39, 1.03)	0.064		
PNC within 2 months	No	353	237	1	1			
	Yes	45	7	4.32(1.91,9.73)	1.63(0.64, 4.13)	0.306		
Wealth status	Poor	249	221	1	1			
	Middle	37	6	5.85(3.40,10.05)	2.79(1.09, 7.14)	0.032		
	Rich	112	17	5.47(2.27,13.21)	1.57(1.19, 3.14)	0.012		
Education of respondents	No formal education	245	213	1	1			
	Formal education	153	31	4.29(2.80,6.58)	1.99(1.20, 3.31)	0.007		
Residence	Urban	98	10	1	1			
	Rural	300	234	0.13(0.07,0.26)	0.33(0.14,0.76)	0.010		

*significant at p-value < 0.05, COR Crude Odds Ratio, AOR Adjusted Odds Ratio
Zuria (77.4%) [33], Areka town (75.4%) [34], Wonago (52.4%) [35], and Ambo (35.6%) [36]. However, it was higher than the results of studies in Amibara (8.3%) [37] and the 2005 EDHS report (20%) [38]. Accordingly, 62% (95%CI: 58.40, 65.70) of children aged 12–23 months of age had access to childhood vaccination. The finding was lower than those of studies done in Mecha (98.4%) [31], Jigjiga (73%) [30], Debre Markos (96.9%) [39], Wonago (99.0%) [35], Kwahu Afram Plains, Ghana (97.3%) [29], but higher than that of a study done in Ambo(36.9%) [36]. The continuum of childhood vaccination services in the current study was 46.9% (95%CI: 43.30, 50.80). The finding was lower than the results of studies done in Debre Markos (91.7%) [39], Ethiopia

Table 5 Factors associated with the continuum of childhood vaccination in emerging regions of Ethiopia, 2016

Variables	Continuum of vaccination	COR (95%CI)	AOR (95% CI)	p-value	
	Yes	No			
ANC					
No	66	207	1	1	
Yes	235	134	5.50(3.88,7.80)	3.68(2.48, 5.47) *	0.0001
Own a mobile phone					
No	213	278	1	1	
Yes	88	63	1.82(1.26, 2.64)	1.05(0.75, 1.84)	0.815
Parity					
1	64	49	1	1	
2–5	177	181	0.75(0.49, 1.15)	0.84(0.53, 1.39)	0.482
≥ 6	60	111	0.41(0.25, 0.67)	0.58(0.32, 1.05)	0.074
Place of delivery					
At home	177	288	1	1	
At health facility	124	53	3.81(2.62, 5.52)	1.44(0.89, 2.31)	0.136
History of terminated pregnancy					
No	277	321	1	1	
Yes	24	20	1.39(0.75, 2.57)	1.39(0.67, 2.88)	0.369
Child size at birth					
Large	90	85	1	1	
Average	142	114	1.18(0.80,1.73)	1.34(0.86, 2.08)	0.192
Small	69	142	0.46(0.30,0.69)	0.51(0.33, 0.81) *	0.004
PNC within 2 months					
No	263	327	1	1	
Yes	38	14	3.38(1.79, 6.36)	1.75(0.87, 3.62)	0.121
Wealth status					
Poor	184	286	1	1	
Middle	23	20	1.79(0.96, 3.35)	1.08(0.45, 1.83)	0.954
Rich	94	35	4.18(2.72, 6.42)	2.07(1.15, 3.71) *	0.015
Education of respondents					
No formal education	178	280	1	1	
Formal education	123	61	3.17(2.21, 4.55)	1.41(0.90, 2.21)	0.138
Sex of child					
Male	162	195	0.87(0.64,1.19)	0.81(0.56, 1.16)	0.271
Female	139	146	1	1	
Residence					
Urban	76	32	1	1	
Rural	225	309	0.31(0.20,0.48)	0.90(0.49,1.65)	0.721

*significant at p-value < 0.05, COR Crude Odds Ratio, AOR Adjusted Odds Ratio
Mothers who had low birth weight children negatively influenced childhood access and continuum of vaccination compared with mothers who had more birth weight children. The possible explanation might be that mothers who had low birth weight children could not take their child for vaccination sessions because they considered their children not normal and for fear of vaccine side effects. As these mothers might focus on improving their children’s weight, they could not give attention to other child health issues.

This study has a number of limitations. It lacks the effect of vaccine management system and service delivery related factors, like logistics, knowledge of clients, attitude and trained human resources as predictors of childhood vaccination. Besides, it did not cover infrastructure and human resources that might have contributed to the low access and continuum of vaccination. Moreover, the study did not address the reasons for low access and continuum of vaccination and the immune status of vaccinated children.

Conclusion

The overall full vaccination status of children was low compared with other findings in the country. Variables such as education of women, birth weight of children, attending ANC, giving birth at a health facility and wealth status were factors associated with access and the continuum of childhood vaccination. Therefore, enhancing women’s education and strengthening maternal healthcare services are of paramount importance for improving childhood vaccination status. Furthermore, the government has to design a compensation mechanism for costs relating to childhood vaccination. On top of that, researchers had better evaluate the immune status of vaccinated children and assess the vaccine cold chain management system to provide informed recommendation.

Abbreviations

ANC: Ante-Natal Care; AOR: Adjusted Odds Ratio; BCG: Bacilli Calamine Guerin; DPT: Diphtheria, Pertussis, and Tetanus; EA: Enumeration Area; EDHS: Ethiopia Demography Health Survey; EPI: Expanded program of immunization; IQR: Interquartile range; OPV: Oral Polio Vaccine; OR: Odds Ratio; PCV: Pneumococcal Conjugate Vaccine; PHC: Population and Housing Census; PNC: Post-Natal Care; SD: Standard Deviation; USD: United States Dollar; VPD: Vaccine-Preventable Diseases; WHO: World Health Organization

Acknowledgments

The authors would like to thank MEASURE DHS for sharing the data for further analysis. We are also grateful to thank others who are directly or indirectly involved during the preparation of this manuscript.

Authors' contributions

AD and AML conceived the study, involved in the study design, data analysis, drafted and critically reviewed the manuscript. Both authors read and approved the final manuscript.

Authors' information

AD is Assistant Professor of Health Service Management working as an instructor at Department of Health Systems and Policy, Institute of Public Health, University of Gondar, Gondar, Ethiopia. AML is a lecturer Biostatistics
The authors declare that they have no competing interests.

Competing interests
Not applicable as there is no image or other confidentiality related issues.

Consent for publication
Not applicable as there is no image or other confidentiality related issues.

Funding
This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Availability of data and materials
The datasets used during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
The 2016 EDHS data is available to the general public by request in different formats from the Measure DHS website https://www.measuredhs.com. We submitted a request to the Measure DHS by briefly stating the objectives of this analysis and thereafter received permission to download the children’s dataset in STATA format.

Consent for publication
Not applicable as there is no image or other confidentiality related issues.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Health Systems and Health Policy, Institute of Public Health, University of Gondar, P.O. Box: 196, Gondar, Ethiopia. 2Department of Epidemiology and Biostatistics, Institute of Public Health, University of Gondar, Gondar, Ethiopia.

Received: 26 September 2019 Accepted: 25 February 2020
Published online: 04 March 2020

References
1. Keja KCC, Hayden G, Henderson R. Expanded programme on immunization. World Health Stat Q. 1988;41(2):59–63. https://www.ncbi.nlm.nih.gov/pubmed.
2. Keja K, Chan C, Hayden G, Henderson RH. Expanded programme on immunization. World Health Stat Q. 1988;41(2):59–63.
3. World Health Organization: Immunization coverage, 2018. https://www.who.int.
4. Lee EHJ, Lewis RF, Makumbi I, Kekitiinwa A, Ediamu TD, Bazibu M, Braka F, Danielsson N, Fakakovikaetau T, Szegedi E. Improved immunization practices reduce childhood hepatitis B infection in Tonga. Vaccine. 2009;27(33):4462–4467.
5. Wolfson LIGF, Lee-Martin SP, Lydon P, Magan A, Tibouti A, et al. Estimating the costs of achieving the WHO-UNICEF global vaccination immunization vision and strategy, 2006-2015. Bull World Health Organ. PubMed. 200886(1):27–39.
6. World Health Organization: National Strategy for Child Survival in Ethiopia. https://extranet.who.int/nutrition/gina/print.pdf. 2005.
7. Health FDRMo. HSTP Health Sector Transformation Plan 2015/6–2019/20 (2008–2012 EFY). In: Federal Democratic Republic of Ethiopia Ministry of Health; 2015.
8. Central Statistical Agency Addis Ababa Ethiopia: Ethiopian demographic and Health Survey. 2011. https://dhsprogram.com/pubs.pdf. ICF international Calverton, Maryland, USA March, 2012 March, 2012.
9. Central Statistical Agency Addis Ababa Ethiopia: Ethiopian demographic and Health Survey. 2016. https://dhsprogram.com/pubs.pdf. ICF International Calverton, Maryland, USA ; July, 2017 July, 2017.
10. World Health Organisation: Immunization, vaccines and biologicals 2002–2003 highlights. 2005. https://apps.who.int/iris/handle/10665/92455. Accessed 25 Feb 2016.
11. World Health Organization: World Health Statistics, 2012: WHO; 2012; p176. 2012.
12. World Health Organization. Media centre, World health statistics. 2014. https://apps.who.int/iris/bitstream/handle/10665/112738/9789240692671_eng.pdf. Accessed 07 Nov 2016.
13. UNICEF: Emerging Regions Development Programme (ERDP): Programme Document. www.unicef.org/download/file/erdp54573prodnc0.pdf. Accessed 16 Dec 2019.
14. USAID: Health Logistics Quarterly: October 2017 - AIDSFree. https://aidsfree.usaid.gov/files/resources/2017/10/eth-lhs-oct-17.pdf. October 2017.
15. Central Statistical Agency of Ethiopia: Population census report. www.csa.gov.et/census-report/complete-report/census-2007. 2007.
16. World Health Organization: World Health organization Vaccination coverage cluster surveys: reference manual. https://www.who.int/Vaccination_coverage_cluster_survey_with_annexes. 2015.
17. World Health Organization. World Health Organization vaccination coverage cluster surveys: reference manual. World Health Organization, 2018.
18. World Health Organization: Immunization, vaccines, and biologicals: implementation research in immunization. 2017.
19. World Health Organisation: Integrated people_centered health services implementation support guidance, products and tools. 2008.
20. Tanha K, Mohammadi N, Janani L. P-value: what is and what is not. Med J Islam Repub Iran. 2017;31:65.
21. Kim J, Slang H. Three common misuses of P values. Dental Hypotheses. 201673(3):73.
22. Goodman S. A dirty dozen: twelve p-value misconceptions. In: Seminars in hematology. Elsevier; 2008. p. 135–40.
23. You DHL, Chen Y. Levels & Trends in Child Mortality: Report 2015. New York: United Nations Children’s Fund; 2014.
24. The World Bank: Mortality rate, under-5 (per 1,000 live births) | Data [Internet]. 2016 http://data.worldbank.org/indicator/SH.DYN.MORT?view=map. Accessed 8 Mar 2017.
25. United Nations: Sustainable Development Goal 3 [Internet]. 2016 https://sustainabledevelopment.un.org/sdgs3. (6 Oct 2016).
26. Ndiritu MCK, Ismail A, Chiphati S, Kamau T, Fegan G, Felkin DR, Newton CRJ, Scott JAG. Immunization coverage and risk factors for failure to immunize within the expanded programme on immunization in Kenya after introduction of new Haemophilus influenzae type b and hepatitis b virus antigens. BMC Public Health. 2006:6:132.
27. Andoh DE, et al. Predictors of incomplete immunization coverage among one to five years old children in Togo. BMC Public Health. 2016;16(1):968.
28. Emmanuel Tettey Sally BK Evaluation of access and utilization of EPI services amongst children 12–23 months in Kwahu Afram Plains, eastern region, Ghana. Pan Afr Med J. 2017.
29. Abdil Nur Mohamud AF, Works W, Kifie M, Sharma HR. Immunization coverage of 12–23 months old children and associated factors in Jigjiga District, Somali National Regional State, Ethiopia. BMC Public Health. 2014;14:865.
30. Ayal Debie BT. Assessment of fully vaccination coverage and associated factors among children aged 12-23 months in Meketa District, north West Ethiopia: a cross-sectional study. Sci J Public Health. 2014;2014:342-8. 2018.
31. Tamirat KS, Sisay MM. Full immunization coverage and its associated factors among children aged 12–23 months in Ethiopia: further analysis from the 2016 Ethiopian demographic and health survey. BMC Public Health. 2019; 19(1):1019.
32. Abadi Girmay AFD: Full Immunization Coverage and Associated Factors among Children Aged 12–23 Months in a Hard-to-Reach Areas of Ethiopia. Hindavi Int. J Pediatr. 2019;2019.
33. Robera Olana Fite LDH. Immunization coverage of 12 to 23 months old children in Ethiopia. J Public Health Epidemiol. 2019;11(1):31–7.
34. Hallu SAA, Johansson KA, Lindtjørn B. Low immunization coverage in Wonago District, southern Ethiopia: A communitybased cross-sectional study. Sci J Public Health. 2014;2014:342-8.
35. Hailu SAA, Johansson KA, Lindtjørn B. Low immunization coverage in Wonago District, southern Ethiopia: A communitybased cross-sectional study. Sci J Public Health. 2014;2014:342-8.
36. Etana BDW. Factors associated with complete immunization coverage in children aged 12-23 months in ambo Woreda, Central Ethiopia. BMC Public Health. 2012;12:1–9.
37. Moshashmao SBY. Magnitude and determinants of childhood vaccination among pastoral community in Arbirena District, Afar regional state, Ethiopia. Res J Med Sci Pub Health. 2013;1(3):22–35.
38. Central Statistical Agency Addis Ababa Ethiopia: Ethiopian Demographic and Health Survey.2005: CRC Macro Calverton, Maryland, USA. 2006.
39. Gaulu T, Dille A. Vaccination coverage and associated factors among children aged 12–23 months in debre markos town, Amhara regional state, Ethiopia. Adv Public Health. 2017;2017.
40. Lakew Y, Bekele A, Biadgilign S. Factors influencing full immunization coverage among 12–23 months of age children in Ethiopia: evidence from...
the national demographic and health survey in 2011. BMC Public Health. 2015;15(1):728.

41. Tesfaye TD, Temesgen WA, Kasa AS. Vaccination coverage and associated factors among children aged 12–23 months in Northwest Ethiopia. Hum Vaccin Immunother. 2018;14(18):2348–54.

42. Odusanya OOAE, Meurice FP, Ahonkhai V. Determinants of vaccination coverage in rural Nigeria. BMC Public Health. 2008;8:381.

43. Ayano B. Factors affecting fully immunization status of children aged 12–23 months in Haronn Town, South Ethiopia. J Pregnancy Child Health. 2015;2(185).

44. Abadura SA, Lerebo WT, Kulkami U, Mekonnen ZA. Individual and community level determinants of childhood full immunization in Ethiopia: a multilevel analysis. BMC Public Health. 2015;15(1):972.

45. Adedire EB, Ajayi I, Fawole OI, et al. Immunisation coverage and its determinants among children aged 12–23 months in atakumosa-west district, osun state Nigeria: a cross-sectional study. BMC Public Health. 2016;16(1).

46. Bbaale E. Factors influencing childhood immunization in Uganda. J Health Popul Nutr. 2013;31(1):118–27.

47. Kiptoo E, George K, Raphael N, Moses E. Factors influencing low immunization coverage among children between 12–23 months in east pokot, baringo country, kenya. Int J Vaccines Vaccination. 2015;1(2).

48. Animaw W, Taye W, Merdekios B, Tilahun M, Ayele G. Expanded program of immunization coverage and associated factors among children age 12–23 months in Arba Minch town and Zuria District, southern Ethiopia, 2013. BMC Public Health. 2014;14(1):646.

49. Tadesse H, Deribew A, Wolfie M. Predictors of defaulting from completion of child immunization in South Ethiopia, may 2008–a case control study. BMC Public Health. 2009;9(1):150.

50. Rahman M, Obaida-Nasrin S. Factors affecting acceptance of complete immunization coverage of children under five years in rural Bangladesh. Salud Publica Mex. 2010;52:134–40.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.