Safety and Optimization of Metabolic Labeling of Endothelial Progenitor Cells for Tracking

Sang-Soo Han1, Hye-Eun Shim1, Soon-Jung Park2, Byoung-Chul Kim3, Dong-Eun Lee4, Hyung-Min Chung2, Sung-Hwan Moon2 & Sun-Woong Kang1,5

Metabolic labeling is one of the most powerful methods to label the live cell for in vitro and in vivo tracking. However, the cellular mechanisms by modified glycosylation due to metabolic agents are not fully understood. Therefore, metabolic labeling has not yet been widely used in EPC tracking and labeling. In this study, cell functional properties such as proliferation, migration and permeability and gene expression patterns of metabolic labeling agent-treated hUCB-EPCs were analyzed to demonstrate cellular effects of metabolic labeling agents. As the results, 10 μM Ac4ManNAz treatment had no effects on cellular function or gene regulations, however, higher concentration of Ac4ManNAz (>20 μM) led to the inhibition of functional properties (proliferation rate, viability and rate of endocytosis) and down-regulation of genes related to cell adhesion, PI3K/AKT, FGF and EGFR signaling pathways. Interestingly, the new blood vessel formation and angiogenic potential of hUCB-EPCs were not affected by Ac4ManNAz concentration. Based on our results, we suggest 10 μM as the optimal concentration of Ac4ManNAz for in vivo hUCB-EPC labeling and tracking. Additionally, we expect that our approach can be used for understanding the efficacy and safety of stem cell-based therapy in vivo.

Human umbilical cord blood-derived endothelial progenitor cells (hUCB-EPCs) have a great potential therapeutic impact in clinical trials of acute nervous system disorders, myocardial infarction and stroke1–3. hUCB-EPCs have been also used to investigate the repair of injured vessels and neovascularization or regeneration of ischemic tissues and have been used for therapeutic re-endothelialization of vein graft because of their ability to induce neovascularization under ischemic conditions4–6. Moreover, hUCB-EPC can be obtained without extensive surgical procedure7 and are immediately available, there are no risks to the donor and there is a low risk of transmitting infectious diseases8. For these reasons, currently, hUCB-EPCs are the preferred tool for animal- and patient-based studies than other forms of pluripotent hematopoietic stem cells and mesenchymal stem cells for transplantation9–11. However, many unknown factors, including their regenerative property, the fate of transplanted hUCB-EPCs, in vivo migration to the site of injury and in situ differentiation have yet to be exploited in more efficient ways to treat various diseases12–14.

For understanding biological mechanisms and the therapeutic effects of inoculated cells in vivo, cell labeling and tracking are very useful processes15. Although direct labeling with specific dyes or indirect labeling with genetic cell modifications and reporter genes16 have been used to observe unknown factors of transplanted hUCB-EPCs. These labeling methods have several safety and technical issues, such as photobleaching, quenching, sensitivity to pH changes and multiple labeling steps17. Recently, various techniques, including fluorescence, bioluminescence, positron emission tomography (PET), single photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI), have been developed and used for hUCB-EPC labeling and tracking18–21. Many studies have used MRI methods with iron oxide- and 19F-based probes12–23. Wang et al. and Willenbrock et al. reported that magnetically labeled hUCB-EPCs in a mouse model were detectable for more than 7 days post-transplantation and have many advantages such as a simple and low-cost labeling, an effective imaging window and good signal intensity24,25. However, MRI labeling is limited by the persistence of the in vivo signal even...
after death of the transplanted cells, such that the MRI signal does not correlate with the viability of transplanted cells. Metabolic labeling is the preferred labeling technique for tracking live cells because it has many advantages such as low background, correlation of cell survival and simple steps for cell labeling. In addition, the reaction produces very few toxic and non-toxic byproducts and therefore, metabolic labeling has advantages that apply to in vivo studies. Till now, the metabolic labeling technique in stem cells has been mostly used for detecting glycoprotein markers of mesenchymal stem cell differentiation, for identifying or isolating live colon cancer stem cells and for quantifying protein abundance in embryonic stem cells (ESCs). However, the cellular mechanisms by which modified glycosylation due to metabolic agents are not completely understood. Recently, Lee et al. reported that the metabolic labeling technique can stably label stem cells, but this study only focused on efficient labeling of stem cells.

In this study, to validate the safety and optimize the metabolic labeling method, we analyze cell functional properties, such as proliferation, migration and permeability and gene expression patterns of metabolic labeling agents-treated hUCB-EPCs. First, we screened the azido sugars for more efficient labeling of hUCB-EPCs. And then, we observed changes in basic cellular events including cell growth, migration, permeability and mitochondrial function. We analyzed transcriptomic changes by RNA-seq, functional characterization of hUCB-EPCs by observation of tube formation and marker gene expression using flow cytometric analysis.

Results

Screening of metabolic labeling agent for efficient labeling of hUCB-EPCs. Metabolic labeling method was described as the introduction of subtle modifications into monosaccharide precursors, such as in the case of introducing an azido group from azide-functionalized monosaccharides (tetra-acetylated N-azidoacetylmannosamine (Ac4ManNAz), tetra-acetylated N-azidoacetylgalactosamine (Ac4GalNAz), or tetra-acetylated N-azidoacyctylglucosamine (Ac4GlcNAz)) via post-translational modification (PTM). Once the azido group was introduced into cellular glycans, the glycosylation position and type of three azide-functionalized monosaccharides differed based on each sugar type. In detail, the Ac4ManNAz was metabolically converted to azido sialic acid derivative, which is used for N-linked glycosylation of cell surface proteins, whereas Ac4GlcNAz and Ac4GalNAz were predominantly used for O-linked glycosylation as a substitute for O-GlcNac and O-GalNac, which are attached to serine and threonine side chain of numerous intracellular proteins. When using metabolic labeling reagents, the choice of reagents was found to be very important for efficiently labeling the target cells. Thus, we first screened the metabolic labeling reagents for efficient labeling hUCB-EPCs.

Isolated hUCB-EPCs were treated with 10, 20, or 50 mM Ac4ManNAz, Ac4GlcNAz, or Ac4GalNAz, which can easily access the modified surface and intracellular proteins with the azido group via PTM. hUCB-EPCs treated with three azido sugars did not show changes or differences in cell morphology (Fig. 1A). To analyze the incorporation of azido groups, Western blot analysis was performed as described in materials and methods. Interestingly, Ac4ManNAz treatment resulted in a higher generation efficiency of the azido group than Ac4GalNAz and Ac4GlcNAz treatment (Fig. 1B). Azido groups were incorporated into cytosolic and membrane proteins on hUCB-EPCs treated with Ac4ManNAz and the rate of incorporation of labeled proteins gradually increased relative to Ac4ManNAz concentration. However, hUCB-EPCs treated with 50 mM Ac4GlcNAz or Ac4GalNAz generated only the modified proteins and Ac4GlcNAz treatment labeled membrane proteins. In addition, the generation of azido groups was determined by biorthogonal copper-free click chemistry with dye-labeled dibenzyl cyclooctyne (DBCO-Cy5) (Fig. 1C). Ac4ManNAz treatment resulted in higher labeling efficiency than Ac4GalNAz and Ac4GlcNAz, which was similar to results from the Western blot analysis. Thus, we finally selected Ac4ManNAz for metabolic labeling of hUCB-EPCs.

Bio-physiological effects of Ac4ManNAz-treated hUCB-EPCs. When hUCB-EPCs were treated with Ac4ManNAz, an abiotic azido group was introduced to native proteins by PTM. Additionally, Ac4ManNAz, which is an analog of ManNAz, was used as a carbon source. Generally, the carbon source concentration can impair many cellular functions such as cell proliferation, viability and permeability. Additionally, glycosylation of native proteins regulates their functions and kinetics and changes in glycosylation can alter cellular functions such as host cell surface interactions and modulation of cell signaling and gene expression. Thus, Ac4ManNAz labeling of hUCB-EPCs still introduces the possibility of altering cellular physiology.

To validate the influence of Ac4ManNAz on hUCB-EPCs, we firstly performed cytotoxic tests using CCK-8 assay and cell morphology assessment. Morphological study suggests that treatment of Ac4ManNAz did not affect significantly on cell morphology (Fig. 2A). However, the growth rate gradually decreased in hUCB-EPCs treated with >20 mM Ac4ManNAz (Fig. 2B) and cell viability data showed that treatment of >20 mM Ac4ManNAz significantly decreased cell viability, approximately 6.2% and 12.3% (p < 0.05) at the concentrations 20 mM and 50 mM of Ac4ManNAz as compared to control (Fig. 2C). We furthermore examined the effects of Ac4ManNAz using in vitro wound healing assay. The scratch wounds were almost the same size in each experimental group at 0 h; after 18 h, the difference in the reduction in wound size was not statistically significant in any Ac4ManNAz (10, 20 and 50 µM) treatment group (Fig. 3). In addition, we analyzed the permeability of hUCB-EPCs treated with Ac4ManNAz using liposome-mediated transfection of a pDNA3-eGFP plasmid and Qdot 525 probe. The results of the permeability test using eGFP showed no significant differences between the treated and untreated conditions (Fig. 4A,C). However, results from the Qdot analysis revealed a gradual decrease in the rate of endocytosis of hUCB-EPCs treated with >20 mM Ac4ManNAz (Fig. 4B,D). These results suggested that the membrane fusion was not changed; however, the rate of endocytosis was reduced in cells treated with >20 mM Ac4ManNAz.

Additionally, we conducted the reactive oxygen species (ROS) generation assay and assessment of mitochondrial membrane potential (∆Ψm) to analyze the apoptosis induction by Ac4ManNAz treatments. The Fig. 5A suggests that hUCB-EPCs treated with 50 µM Ac4ManNAz significantly increased ROS intensity as compared...
The quantitative measurement of ROS intensity was sustained increasingly to approximately 5.4% (*p < 0.05) at the concentrations 50 µM of Ac4ManNAz (Fig. 5C). The increased and decreased fluorescent intensity of red and green fluorescence caused by JC-1 indicates the change in mitochondrial membrane potential (ΔΨm). Result indicated that hUCB-EPCs treated with 50 µM of Ac4ManNAz reduced a red fluorescence (Fig. 5B). As shown from quantitative data, the Green/Red-fluorescence cells ratio were increased to 1.5% at 50 µM of Ac4ManNAz treatment (Fig. 5D). Although increased ROS generation and reduced of JC-1 red fluorescence indicated potent apoptotic activity of treatment of 50 µM Ac4ManNAz, these changes are not clear which of them are directly associated with hUCB-EPCs apoptosis. To prove this, we additionally analyzed the apoptotic effects of Ac4ManNAz by Annexin V staining (Fig. S1). As the results, apoptosis rates of hUCB-EPCs treated with higher concentration (more than 20 µM) of Ac4ManNAz were not changed compared with non-treated hUCB-EPCs. These results described that high concentration of Ac4ManNAz slightly modulated the generation of ROS and mitochondrial membrane potential, but these changes were not induced apoptosis.

Transcriptomic change in Ac4ManNAz-treated hUCB-EPCs. To additionally address the metabolic labeling effects, we explored the transcriptome patterns of hUCB-EPCs treated with various concentrations of Ac4ManNAz. mRNA from hUCB-EPCs treated with 10, 20 and 50 µM of Ac4ManNAz and untreated hUCB-EPCs was extracted and analyzed using the HiSeq2000 platform. Next, based on the expression levels of known genes, we identified 615 genes that were changed by 2-fold or more with a threshold of "p < 0.05 and FDR < 5". And then, to identify cellular functional process-related genes, we carried out GO term analysis. Interestingly, in accordance with the increase in Ac4ManNAz concentration on hUCB-EPCs, 468 genes related to cell adhesion, cytokine-cytokine receptor interaction, extracellular matrix (ECM)-receptor interaction and cancer pathway were down-regulated (Fig. 6).

Of note, treatment with 20 and 50 µM Ac4ManNAz resulted in considerable down-regulation of many genes in the cell functional pathways of hUCB-EPCs. In cell adhesion, genes related to primary interactions with the cell matrix (LAMC3, ITGA5, ITGA10, ITGB8, TNR, EGFR and RELN) and integrin (CAMs) (ICAM1 and VCAM1), primary roles in cell-cell interactions (SELE), cell-cell interaction-mediated MHC (HLA-B, HLA-F and CD34) and collagen proteins (COL1A1, COL3A1, COL4A1, COL5A1 and COL6A2) were significantly down-regulated (Fig. 6A). In addition, genes related to cytokine-cytokine receptor interaction and ECM-receptor interaction were also down-regulated. In detail, gene expression levels of chemotactic cytokines (chemokines) (CCL2, CX3CL1, CXCL2, CXCL6, CXCL10, CXCL11 and CXCR4), tumor necrosis factors (TNFs) (TNFSF4, TNFSF10, TNFSF15, TNFSF18 and TNFRSF21), integrins (ITGA5, ITGA10, ITGB8) and ECM proteins (FN1, TNR and THBS1) were
reduced by increasing the Ac4ManNAz concentration (Fig. 6B,C). Additionally, genes related to the regulation of cell cycle (CCNA1), cell growth, proliferation, apoptosis and the immune response (AKT3, STAT1, BIRC3, PTGS2, KIT, EGFR) were down-regulated (Fig. 6D). These results showed that Ac4ManNAz regulated a wide range of cell adhesion pathways and cell physiological pathways. In particular, these results also suggest that treatment >20 µM Ac4ManNAz induces the immune response and inhibits cell cycle progression, cell proliferation and cell adhesion. Interestingly, contrary to previous reports, Ac4ManNAz modulated cell biological functions.

Analysis of hUCB-EPC functions after Ac4ManNAz treatment. In our results regarding the effects of metabolic labeling on hUCB-EPCs, higher concentrations of Ac4ManNAz negatively affected cell growth, proliferation, adhesion and rate of endocytosis and induction of ROS generation and mitochondrial depolarization. Of note, results from the gene expression analysis revealed the down-regulated expression of integrins, which are important for stem cell proliferation and self-renewal regulated via PI3K and focal adhesion kinase (FAK) signaling pathways. Additionally, AKT3 gene, which is downstream of the PI3K and FAK signaling pathways, was down-regulated. However, interestingly, there was no significant change in the gene expression of cadherin, which is one of the most important molecules in stem cell pluripotency and stemness. Stem cells are known to have two important characteristics that distinguish them from other types of cells. First, all stem cells are unspecialized. Second, under certain biochemical cues, stem cells can be induced to differentiate. Thus, as it was unclear whether Ac4ManNAz affects hUCB-EPC functions, we conducted the tubule formation assay and immunophenotyping of marker genes to analyze these important characteristics of EPCs.

To define the effects of Ac4ManNAz on hUCB-EPC functions, we carried out a tube formation assay on Matrigel to determine the angiogenic potential. We observed tube-like structures 4 days after treating hUCB-EPCs with 0, 10, 20 or 50 µM Ac4ManNAz. The upper of Fig. 7A shows typical tube formation in all samples. One of the hallmarks of hUCB-EPCs is their ability to internalize ac-LDL via the “scavenger cell pathway” of LDL metabolism. At the endpoints of each protocol, we incubated our endothelial cultures with 1 µg/mL ac-LDL conjugated with a fluorescent dye (Fig. 7A lower). In addition, the expression of specific endothelial cell surface markers CD31 (PECAM-1) and CD144 (VE-cadherin) of hUCB-EPCs were analyzed by flow cytometry (Fig. 7B). Interestingly, these results showed that Ac4ManNAz does not affect the natural characteristics of hUCB-EPCs.
Discussion

Stem cell-based therapy holds great promise for repairing damage and injury of the human body; however, the safety and efficacy of stem cell in vivo conditions have not been fully confirmed. Additionally, although hUCB-EPCs have great potential as therapeutics for cardiovascular diseases including coronary artery disease and stroke, the roles, behavior and fate of hUCB-EPCs in vivo are not completely understood. Many cell labeling and tracking methods have been used and developed for hUCB-EPCs safety and efficacy in vivo. Metabolic labeling is one of the most powerful methods for cell labeling and tracking and has proven to be superior to other imaging approaches. However, metabolic labeling has not yet been widely used in stem cell tracking, because the introduction of abiotic azido groups in native proteins via PTM can potentially affect cell signaling pathways, cell adhesion, cell proliferation and the immune response. We previously reported the effects of metabolic labeling agents on cancer cells, showing that a higher concentration of Ac4ManNAz, which was recommended to achieve the best labeling efficiency, led to inhibition of basic cellular properties and down-regulation of many genes related to cell biological functions. Therefore, to successfully apply the metabolic labeling technique to EPC tracking and labeling, the effects of metabolic labeling agents must be demonstrated. Thus, in this study, we reported for the first time the effects and optimized conditions of a metabolic labeling agent in hUCB-EPCs.

Metabolic labeling agents are known to have three type of azido sugars (Ac4ManNAz, Ac4GalNAz and Ac4GlcNAz), which introduce the azido group onto a native protein using different glycosylation processes. Thus, we tested all azido sugars to screen for optimal metabolic labeling agents for hUCB-EPCs. As a result, treatments with Ac4GalNAz and Ac4GlcNAz showed weaker metabolic labeling efficiency than Ac4ManNAz. In addition, Ac4GlcNAz had very low labeling efficiency. Generally, O-glycosylated proteins are highly abundant in mammalian cells and Ac4GalNAz and Ac4GlcNAz use the endogenous salvage pathway to introduce the azido group via O-linked glycosylation, which synthesizes UDP-GalNAc and GlcNAc from GalNAc and GlcNAc. Although these modification pathways involving numerous proteins, including various enzymes and nuclear pore proteins, are well-defined, conjugating an azido group on GalNAc and GlcNAc could be affected by enzyme function. Indeed, the Bertozzi research group has shown that AGX1 encodes UDP-GlcNAc pyrophosphorylase, which is
the final enzyme in UDP-GalNAc and GlcNAc biosynthesis and has the greatest loss of catalytic efficiency with azide-functionalized substrate analogs55,56. However, our study was focused on the optimization of hUCB-EPC labeling using the metabolic labeling technique. Thus, we finally selected Ac4ManNAz.

In the manufacturer’s procedure, the treatment of 50 μM Ac4ManNAz as maximum level was recommended for the highest labeling efficiency. Also, many studies of cell or virus labeling and tracking was normally used in Ac4ManNAz concentration of 50 μM or more57,58. However, in our results, the decreased proliferation rate, viability, rate of endocytosis and induction of ROS generation and mitochondrial depolarization were caused by high concentration of Ac4ManNAz. The metabolic labeling agent Ac4ManNAz is composed of a sugar molecule (ManNAc) and an azido group, which are incorporated into cellular proteins. Therefore, Ac4ManNAz has the potential to affect metabolic flux and cellular mechanisms by addition of sugar molecules. Regarding this, in previous reports, a high concentration (1 mM) of ManNAc treatment in mouse ESCs induced switching of epigenetic factors from Sirt1/Ogt to Mgea5 at the Hcrt gene locus59. A high concentration (>1,000 μM) of Ac4ManNAc, which is a ManNAc analog without the azido group, dramatically increased cytotoxicity by inducing the accumulation of acetic acid in cells60. Additionally, we previously analyzed the effects of ManNAc treatment on the A549 cancer cell line, ManNAc treatment at the same concentration of metabolic labeling agents does not affect cellular function or proliferation52. Also, the carbon energy source in the EGM-2-MV BulletKit Medium is the

Figure 4. Analysis of cell permeability via transfection and Qdot 525 labeling in Ac4ManNAz-treated hUCB-EPCs. (A) Ac4ManNAz-treated hUCB-EPCs were transfected with pcDNA3-eGFP and GFP fluorescence and analyzed using fluorescence microscopy. (B) Confocal fluorescence images of live hUCB-EPC labeling with a Qdot 525 probe (green). Quantification of the transfection (C) and Qdot labeling (D) efficiency was conducted.
5 mM. Ac4ManNAz were used less than 50 μM, which is a lower concentration by 100-fold. So, the addition of Ac4ManNAz as carbon energy source shown the negligible effects. These reports suggested that, changes of cellular physiology and mechanisms on hUCB-EPCs were caused by introduction of the azido group derived from Ac4ManNAz onto a native protein.

Non-toxic labeling method of azide group was the strain-promoted azide alkyne click chemistry (SPAAC) reaction, which rely on the use of cyclooctynes derivatives such as bicyclo[6.1.0]nonyn (BCN), difluorooc- tyne (DIFO), dibenzylcyclooctyne (DIBO) and DBCO. These cyclooctynes derivatives have high selectivity of azide-functionalized biomolecules. However, several groups have recently reported that thiol-reactive group (-SH) can be conjugated with various cyclooctyne derivatives in the presence of high thiol concentrations as thiol-yne reaction, which can lead to issues associated with nonspecific background labeling and affected the efficiency of biomolecules. Nevertheless, in mammalian proteins, the occurrence frequency of cysteine

Figure 5. Analysis of reactive oxygen species (ROS) production and mitochondrial function in hUCB-EPCs treated with Ac4ManNAz. (A) hUCB-EPCs were treated with 0, 10, 20, or 50 μM Ac4ManNAz, and intracellular ROS levels were then measured using the fluorescent probe 2′, 7′-dichlorofluorescein-diacetate (DCFH-DA). (B) Changes in mitochondrial membrane potential (ΔΨm) were measured in hUCB-EPCs using the fluorescent probe JC-1. (C) Quantification of ROS generation are expressed as the percentage of fluorescence intensity relative to the control. (D) Value of mitochondrial membrane potential were expressed as % Green/Red fluorescence cells.
targets, which present the thiol group, is 3.3% and SPAAC reaction have the significantly higher reaction rates compared to thiol-yne reactions. For example, the BCN–azide reaction (10^{-11} \text{m}^{-1} \text{s}^{-1}) is approximately three orders of magnitude greater than the rate constant for the BCN–thiol reaction (10^{-4} \text{m}^{-1} \text{s}^{-1})^{64-66}. In addition, Chin Fen Teo et al. optimized the ratio of the reaction between azido-DBCO functionalities to the formation of thiol-DBCO product. These results shown that the reaction to proceed longer than 1 hour leads to increase the non-specific thiol-DBCO reaction and azido-DBCO specific reaction reaches completion within 1 hour^{67}. Based on these results, in our experiments, hUCB-EPCs were treated with metabolic labeling agents supplemented medium (10, 20 and 50 µM) for 72 hours and all metabolic labeling agents-treated hUCB-EPCs were incubated with DBCO-Cy5 (10 µM, final concentration) for 1 hour at 37 °C. Thus, our optimized labeling procedures can be provided when highly specific labeling of hUCB-EPCs is required, thereby reducing the artifacts.

Our results reveal that the highly modified glycosylation by Ac4ManNAz treatments in hUCB-EPCs lead to a change in the physiological and biochemical properties of these cells. Notably, treatments with >20 µM Ac4ManNAz resulted in decreased growth rate, viability and rate of endocytosis and induction of ROS generation and mitochondrial depolarization. These results were consistent with a change in the expression of genes related to cell adhesion. Higher concentrations of Ac4ManNAz down-regulated the expression of integrin, collagen and fibronectin. Generally, integrins play an important role in various cell-signaling events including PI3K/AKT and FAK signaling pathways^{68}, which help to regulate stem cell proliferation and self-renewal^{69}. Accordingly, genes related to the PI3K/AKT, FGF and EGFR signaling pathways, which regulated cell proliferation, apoptosis, survival and immune response, were down-regulated^{66,70}. Interestingly, expression of cadherins, which are cell adhesion molecules that actively contribute to cell death, survival and proliferation, was not inhibited.
by Ac4ManNAz treatments. The characterization of hUCB-EPCs were also not affected. Although treatments with >20 µM Ac4ManNAz led to negative outcomes in hUCB-EPCs, the effects of treatments with control or 10 µM Ac4ManNAz were not remarkably different. Additionally, it appears that 10 µM Ac4ManNAz provides sufficient labeling for tracking and monitoring hUCB-EPCs (Fig. S2). Thus, we emphasize the treatment of 10 µM Ac4ManNAz for labeling and tracking hUCB-EPCs as the optimal concentration because this concentration optimizes the proliferative capacity and functional property that are important for maximizing the use of EPCs as therapeutic agents.

In conclusion, this study described the optimal condition for the metabolic labeling technique for efficient labeling and tracking of hUCB-EPCs and the effects of metabolic labeling agents. Although high concentrations of Ac4ManNAz negatively affected hUCB-EPC properties, cell adhesion and cellular signaling pathways, 10 µM Ac4ManNAz showed the least adverse effects when compared to untreated hUCB-EPCs and this concentration provided sufficient labeling efficiency for cell labeling and tracking. Based on our results, we suggest 10 µM as the optimal concentration of Ac4ManNAz for in vivo cell labeling and tracking of hUCB-EPCs. Additionally, we expect that our approach can be used for understanding the efficacy and safety of stem cell-based therapy in vivo and to help determine the utility of stem cells in downstream experiments.

Methods

Ethic statement. All experiments were conducted in compliance with the relevant laws and institutional guidelines of the Korea Institute of Toxicology. The protocol was approved by the Committee on Biological Research of Korea Institute of Toxicology and Institutional Review Board (P01-201509-41-001).
hUCB-EPCs culture. hUCB-EPCs were purchased from AllCells (Alameda, CA, USA). hUCB-EPCs culture was performed as previously described\(^{7,12}\). Briefly, mononuclear cells (MNCs) were first isolated from fresh hUCB-EPCs by density gradient centrifugation using Ficoll reagent (GE Healthcare, Piscataway, NJ, USA). MNCs were plated on fibronectin-coated tissue culture plates at a density of 3–6 × 10^5 cells/well in EGM-2-MV BulletKit Medium (Lonza, Walkersville, MD, USA) and cells were maintained for 5–7 days and used as an enriched EPC population.

In vitro cell labeling and imaging. hUCB-EPCs (5 × 10^4 cells/35 mm glass-bottom dishes) were treated with Ac4ManNAz, Ac4GalNAz, or Ac4GlcNAz (Invitrogen, Carlsbad, CA, USA) supplemented medium (50 μM, final concentration of each) for 72 h. Cells were washed twice with Dulbecco’s phosphate-buffered saline (DPBS) and subsequently incubated with DBCO-Cy5 (10 μM, final concentration) for 1 h at 37 °C. Cells were then washed and fixed with 4% paraformaldehyde for 15 min. After fixation, nuclei were stained with DAPI solution (Invitrogen, Carlsbad, CA, USA). All cell images were obtained using a confocal laser scanning microscope (Leica Microsystems, Mannheim, Germany) equipped with a 405 diode (405 nm) and HeNe-Red (633 nm) lasers.

Western blot analysis. To confirm the introduction of azide (−N₃) in the hUCB-EPCs, each 10–50 μM of Ac4ManNAz-, Ac4GalNAz-, or Ac4GlcNAz-treated hUCB-EPCs (2 × 10⁶ cells/100 mm dish) were prepared. Cells were washed twice with DPBS, pH 7.4 and harvested to extract cellular protein. A subcellular protein fractionation kit (Thermo Fisher Scientific, Rockford, IL, USA) was used according to the manufacturer’s instructions for segregating proteins from different cellular compartments including cytosol, membrane, nucleus, chromatin and cytoskeletons. Protein lysate concentrations were individually determined by bicinchoninic acid (BCA) protein assay (Thermo Fisher Scientific, Rockford, IL, USA) and protein concentrations were adjusted to 1 mg/mL. Then, 100 μL of lysate was incubated with 5 mM phosphine-PEG3-biotin in DPBS for 6 h at 37 °C to assess specific interactions between phosphine and an azide group of the cellular protein. Samples were boiled with SDS loading buffer and reduced by 10% SPG-PAGE and proteins were transferred to Hybond-P membrane (Amersham, St. Albans, UK). After blocking with 5% bovine serum albumin in TBST (50 mM Tris∙HCl, 150 mM NaCl, 0.1% Tween-20, pH 7.4), the membrane was incubated in streptavidin-HRP (diluted 1:10,000 in TBST) overnight at 4 °C. Then, the membrane was washed three times with TBST and developed using ECL Western Blotting Substrate (Thermo Fisher Scientific, Rockford, IL, USA).

Cell viability and wound healing assay. To measure cell viability, hUCB-EPCs were seeded in 96-well plates (5 × 10³ cells/well) and incubated for 1 day. Cells were incubated with various concentrations of Ac4ManNAz (0 to 50 μM) for 3 days at 37 °C. Cell Counting Kit-8 solution (10 μL) (Dojindo Molecular Technologies Inc., Kumamoto, Japan) was then added to each well. After further incubation for 2 h at 37 °C, the absorbance of each well was measured at 450 nm using a microplate reader (VersaMax™, Molecular Devices Corp., Sunnyvale, CA, USA). For wound healing, a sterile pipette tip was used to clear a small area across the diameter of 10 cm dishes with confluent monolayers of untreated or Ac4ManNAz-treated hUCB-EPCs. Cell migration was measured and photographed from the wound/scratch edge after 18 h.

Analysis of reactive oxygen species (ROS) generation and mitochondrial membrane potential. Microscopic fluorescence imaging was used to study reactive oxygen species (ROS) generation in hUCB-EPCs after treatments to different concentrations of Ac4ManNAz. Cells (1 × 10⁵ per well) were seeded and were then treated to 0 μM, 10 μM, 20 μM and 50 μM concentrations of Ac4ManNAz for 3 days at 37 °C. Cells were incubated with 2,7-Dichlorodihydrofluorescein diacetate (DCF-DA) (10 mM) for 30 min at 37 °C. The reaction was stopped by the addition of 100 μL of phosphate-buffered saline (PBS) in each well. The plate was kept on a shaker for 10 min at room temperature in the dark. An inverted fluorescence microscope was used to visualize intracellular fluorescence of cells and to capture images. Mitochondrial membrane potential was measured using JC-1 dye (5′,6′,6′-tetraethylbenzimidazolyl-carbocyanine iodide; Life Technologies, Eugene, Oregon, USA) according to the manufacturer’s instructions. Briefly, hUCB-EPCs were grown in 24-well plate and treated with different concentrations of Ac4ManNAz. Ac4ManNAz-treated or untreated hUCB-EPCs were washed with PBS and stained with 10 μg/mL JC-1 dye for 15 min at 37 °C and fluorescence images were acquired.

Transfection and Qdot 525 labeling. hUCB-EPCs were transfected with 100 ng of pcDNA3-EGFP using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. In addition, 1 μM Qdot 525 (Thermo Fisher Scientific, Rockford, IL, USA) in medium was incubated for 4–6 h at 37 °C and hUCB-EPC samples were diluted in DPBS immediately before measurement. Then, we analyzed samples using fluorescence microscopy.

RNA-seq analysis. hUCB-EPCs were cultured with 0, 10 or 50 μM Ac4ManNAz and harvested. Total RNA was extracted with TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and the quantity and quality of total RNA were evaluated using a NanoDrop spectrophotometer (NanoDrop Technologies, Montchanin, DE, USA) and a 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). An RNA sequencing library was generated using TruSeq RNA Library Preparation Kit (Illumina, San Diego, CA, USA) according to the user’s instruction manual. Briefly, mRNA was separated from total RNA using Oligo (dt) beads and chemically fragmented. After double-strand cDNA synthesis of the fragmented mRNA, end-repair, adenylation of the 3’-end and sequencing adapter ligation were performed and followed by DNA purification with magnetic beads and PCR amplification. Finally, the amplified library was purified, quantified and then applied for template preparation. A HiSeq2000 platform was used to generate 99-bp paired-end sequencing reads (Illumina, San Diego, CA, USA). All 99-bp paired-end sequence reads were mapped to the human genome using TopHat version 2.0.4. Finally, we identified differentially expressed genes (DEgenes). To characterize the biological pathways related to differently...
expressed sequences and transcription factors, representative pathways were analyzed in the context of several databases such as KEGG (http://www.genome.ad.jp), BioCarta (http://www.biocarta.com) and Reactome (http://www.reactome.org), as suggested by MsigDB v4.0. Additionally, we used Fisher's exact test and FDR to examine mapping pathways (filtering options: \(p < 0.05 \) and FDR < 5). To identify cellular functional process-related genes, the DEgenes were subjected to gene ontology (GO) analysis using the Database for Annotation, Visualization and Integrated Discovery (DAVID), KEGG, BIOCARTA, REACTOME and Pathway Interaction Database (PID). We used a Gene Set Enrichment Analysis technique to identify statistically up- and down-regulated gene set.

In vitro tube formation assay. Functional characterization of hUCB-EPCs was performed using vascular tube formation and acetylated low-density lipoprotein (ac-LDL; Invitrogen, Carlsbad, CA, USA) uptake assays. For the vascular tube formation assay, 50 μl of Matrigel Basement Membrane Matrix (BD Biosciences, San Diego, CA, USA) was added to a 48-well plate and allowed to solidify at 37 °C for 30 min; 5 × 10^4 hUCB-EPCs were suspended in 100 μl of culture medium and plated onto the Matrigel layer. After 24 h, the medium was removed and the formation of vascular tube-like structures was assessed with an inverted microscope (Eclipse TS100; Nikon, Tokyo, Japan) and a digital camera system for imaging (Digital SLR Camera D300; Nikon, Tokyo, Japan). For the ac-LDL uptake assay, hUCB-EPCs were seeded onto glass coverslips in 24-well plates at a density of 5 × 10^4 cells/well in MV2 medium. When cells reached ~80% confluence, cultures were serum-deprived overnight in Iscove’s Modified Dulbecco’s Medium (IMDM, Sigma-Aldrich, St. Louis, MO, USA) supplemented with 2% lipoprotein-deficient serum from human plasma (Sigma-Aldrich, St. Louis, MO, USA) and then, the medium was replaced with IMDM supplemented with 100 μg/ml human ac-LDL. After 24 h, cells on coverslips were stained with Nile Red (Sigma-Aldrich, St. Louis, MO, USA) and examined by fluorescence microscopy with an inverted microscope (Eclipse TS100; Nikon, Tokyo, Japan) and a digital camera system for imaging (Digital SLR Camera D300; Nikon, Tokyo, Japan).

Flow Cytometry. To analyze hUCB-EPC marker genes, immunophenotyping was performed using the following monoclonal antibodies: anti-CD31-FITC (1:25, BD Biosciences, San Jose, CA, USA) and anti-CD144-PE (1:10, Beckman Coulter, Fullerton, CA, USA). Antibodies and matched isotype control (Beckman Coulter, Fullerton, CA, USA) were incubated for 30 min at 4 °C. Data were acquired and analyzed on a five-parameter flow cytometer (FACSCalibur, Becton Dickinson, San Jose, CA) with Weasel software (WEHI, Melbourne, Australia).

Statistical analysis. Experimental data are presented as a mean ± standard deviation and were analyzed using Analysis of Variance (ANOVA) tests. A value of \(p < 0.05 \) was considered statistically significant.

References

1. Ashara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967, https://doi.org/10.1126/science.275.5302.964 (1997).
2. Sukmawati, D. & Tanaka, R. Introduction to next generation of endothelial progenitor cell therapy: a promise in vascular medicine. Am J Transl Res 7, 411–421 (2015).
3. Zhao, Y. H. et al. Endothelial Progenitor Cells: Therapeutic Perspective for Ischemic Stroke. Cns Neurosci Ther 19, 67–75, https://doi.org/10.1111/cns.12040 (2013).
4. Mitchell, K. E. et al. Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells 21, 50–60 (2003).
5. Schmidt, D. et al. Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts. Ann Thorac Surg 78, 2094–2098, https://doi.org/10.1016/j.thorsur.2004.06.052 (2004).
6. Yang, H. M. et al. Therapeutic Efficacy of Human Embryonic Stem Cell-Derived Endothelial Cells in Humanized Mouse Models Harboring a Human Immune System. Arterioscler Throm Vasc Biol 33, 2839–2849, https://doi.org/10.1161/ATVaha.113.302462 (2013).
7. Ingram, D. A. et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104, 2752–2760, https://doi.org/10.1182/blood-2004-04-0034 (2004).
8. Rocha, V. & Gluckman, E. Improving outcomes of blood cord transplantation: HLA matching, cell dose and other graft- and transplantation-related factors. British journal of haematology 147, 262–274, https://doi.org/10.1111/j.1365-2457.2009.07883.x (2009).
9. Madambayan, G. & Rogers, I. Umbilical cord-derived stem cells for tissue therapy: current and future uses. Regenerative medicine 1, 777–787, https://doi.org/10.2217/17460751.1.6.777 (2006).
10. Bliss, T., Guzman, R., Daadi, M. & Steinberg, G. K. Cell transplantation therapy for stroke. Stroke 38, 817–826, https://doi.org/10.1161/01.STR.0000247888.25985.62 (2007).
11. Laughlin, M. J. et al. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. New Engl J Med 351, 2265–2275, https://doi.org/10.1056/NEJMoa041276 (2004).
12. Li, Y.-F. et al. Endothelial progenitor cells in ischemic stroke: an exploration from hypothesis to therapy. Journal of Hematology & Oncology 8, 33, https://doi.org/10.1186/s13045-015-0130-8 (2015).
13. Song, E., Lu, C.-W., Fang, L.-J. & Yang, W. Culture and identification of endothelial progenitor cells from human umbilical cord blood. International Journal of Ophthalmology 3, 49–53, https://doi.org/10.3980/j.issn.2222-3959.2010.01.11 (2010).
14. Sudchada, S. et al. CD14–/CD34+ is the founding population of umbilical cord blood-derived endothelial progenitor cells and angiogenesis is an important factor promoting the colony formation. Annals of Hematology 91, 321–329, https://doi.org/10.1007/s00277-010-1136-3-3 (2012).
15. Wang, J. & Jokerst, J. V. Stem Cell Imaging: Tools to Improve Cell Delivery and Viability. Stem Cells International 2016, 16, https://doi.org/10.1155/2016/9240562 (2016).
16. Kircher, M. F., Gambhar, S. S. & Grimm, J. Noninvasive cell-tracking methods. Nat Rev Clin Oncol 8, 677–688, http://www.nature.com/nrclinonc/journal/v8/n12/suppl/nrclinonc.2011.141_s1.html (2011).
17. Janic, R. & Arbab, S. A. Cord blood endothelial progenitor cells as therapeutic and imaging probes. Imaging in medicine 4, 477–490, https://doi.org/10.2217/imn.12.35 (2012).
18. Higuchi, T. et al. Reporter gene PET for monitoring survival of transplanted endothelial progenitor cells in the rat heart after pretreatment with VEGF and atorvastatin. J Nucl Med 50, 1881–1886, https://doi.org/10.2967/jnumed.109.067801 (2009).
19. Varma, N. R. et al. Endothelial Progenitor Cells (EPCs) as Gene Carrier System for Rat Model of Human Glioma. Plos One 7, https://doi.org/10.1371/journal.pone.0030310 (2012).
20. Schlechta, B. et al. Ex Vivo Expanded Umbilical Cord Blood Stem Cells Retain Capacity for Myocardial Regeneration. Circ J 74, 188–194, https://doi.org/10.1253/circj.CJ-09-0409 (2010).
21. Shi, H. et al. Tracking of CFSE-labeled endothelial progenitor cells in laser-injured mouse retina. *Chinese Med J-Peking* 124, 751–757, https://doi.org/10.3760/cma.j.issn.0366-6999.2011.05.022 (2011).

22. Arbab, A. S. et al. Labeling of cells with ferumoxides–protonate sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. *NMR in biomedicine* 18, 553–559, https://doi.org/10.1002/nbm.991 (2005).

23. Ju, S. et al. In vitro labeling and MRI of mesenchymal stem cells from human umbilical cord blood. *Magnetic resonance imaging* 24, 611–617, https://doi.org/10.1016/j.mri.2005.12.017 (2006).

24. Siow, T. Y., Chen, C. C., Lin, C. Y., Chen, J. Y. & Chang, C. MR phase imaging: sensitive and contrast-enhancing visualization in cellular imaging. *Magnetic resonance imaging* 30, 247–253, https://doi.org/10.1016/j.mri.2011.11.008 (2012).

25. Hu, S. L. et al. In vivo magnetic resonance imaging tracking of SPIO-labeled human umbilical cord mesenchymal stem cells. *Journal of cellular biochemistry* 113, 1005–1012, https://doi.org/10.1002/jcb.23432 (2012).

26. Wang, S. et al. Magnetic resonance imaging targeting of intracranial glioma xenografts by Resovist-labeled endothelial progenitor cells. *Journal of neuro-oncology* 105, 67–75, https://doi.org/10.1007/s10935-011-0969-6 (2011).

27. Willenbrock, S. et al. In vivo MRI of intraspinally injected SPIO-labeled human CD34+ cells in a transgenic mouse model of ALS. *In vivo (Athens, Greece)* 26, 31–38 (2012).

28. Mahmoudi, M. et al. Novel MRI Contrast Agent from Magnetotactic Bacteria Enables In Vivo Tracking of iPSC-derived Cardiomyocytes. *Sci Rep-Uk* 6, https://doi.org/10.1038/srep26966 (2016).

29. Diaz, S. & Varki, A. Metabolic radiolabeling of animal cell glycoconjugates. *Carr Proteot Protein Sci* Chapter 12, Unit12 12 12 12 11–55, https://doi.org/10.1074/j1411040864.s1020s57 (2009).

30. Lee, S. Y. et al. Non-invasive stem cell tracking in hindlimb ischemia animal model using bio-orthogonal copper-free click chemistry. *Biochem Bioph Res Co* 479, 779–786, https://doi.org/10.1016/j.bbrc.2016.09.132 (2016).

31. Hart, C., Chase, L. G., Hajivandi, M. & Agnew, B. Metabolic labeling and click chemistry detection of glycoprotein markers of mesenchymal stem cell differentiation. *Methods Mol Biol* 698, 459–484, https://doi.org/10.1007/978-1-60761-994-4_33 (2011).

32. Sun, L., Fu, H., Li, Y., Duan, X. & Li, Z. Rapid Recognition and Isolation of Live Colon Cancer Stem Cells by Using Metabolic Labeling of Azido Sugar and Magnetic Beads. *Analytical Chemistry* 88, 3953–3958, https://doi.org/10.1021/acs.analchem.6b00154 (2016).

33. Vogt, J. A. et al. Protein abundance quantification in embryonic stem cells using incomplete metabolic labeling with 15N amino acids, matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and analysis of relative isotope abundances of peptides. *Rapid communications in mass spectrometry: RCM* 17, 1273–1282, https://doi.org/10.1002/rcm.1045 (2003).

34. Kang, K. et al. Tissue-based metabolic labeling of polysialic acids in living primary hippocampal neurons. *Proceedings of the National Academy of Sciences* 112, E241–E248, https://doi.org/10.1073/pnas.1419683112 (2015).

35. Lee, S. et al. In vivo stem cell tracking with imageable nanoparticles that bind bioorthogonal chemical receptors on the stem cell surface. *Biomaterials* 139, 12–29, https://doi.org/10.1016/j.biomaterials.2017.05.050 (2017).

36. Agnew, B., Hart, C., Nyberg, T. & Lakshmanaswamy, R. In vivo metabolic labeling and detection of specific glycoprotein subclasses in a mouse breast cancer model. *Cancer Research* 67, 2465–2467 (2007).

37. Laughlin, S. T. & Bertozzi, C. R. Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization using Staudinger ligation. *Nat. Protocols* 2, 2930–2944 (2007).

38. Tian, Y. & Zhang, H. Characterization of disease-associated N-linked glycoproteins. *Proteomics* 13, 504–511, https://doi.org/10.1002/pmic.201200333 (2013).

39. Dube, D. H., Prescher, J. A., Quang, C. N. & Bertozzi, C. R. Probing mucin-type O-linked glycosylation in living animals. *The Journal of biological chemistry* 281, 9792–9800, https://doi.org/10.1074/jbc.M600192200 (2006).

40. Rodgers, S. J., Ferguson, D. T., Mitchell, C. A. & Oonos, I. M. Regulation of P3JK factor signalling in cancer by the phosphoinsitidase phosphatases. *Bioscience Rep* 37, https://doi.org/10.1042/BSR20160432 (2017).

41. Soncin, F. & Ward, C. M. The Function of E-Cadherin in Stem Cell Pluripotency and Self-Renewal. *Genes* 2, 229–259, https://doi.org/10.3390/genes2020029 (2011).

42. Li, L., Bennett, S. A. L. & Wang, L. Role of E-cadherin and other cell adhesion molecules in survival and differentiation of human pluripotent stem cells. *Cell Adhesion & Migration* 6, 59–70, https://doi.org/10.4161/cam.19583 (2012).

43. Bindu, H. & Srilatha, B. Potency of various types of stem cells and their transplantation. *J Stem Cell Res Ther* 6, 1007–1009, https://doi.org/10.4172/1177-2888.1000111 (2012).

44. Vojta, J. C., Via, D. P., Butterfield, C. E. & Zetter, B. R. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. *The Journal of cell biology* 99, 2034–2040 (1984).

45. Marks, D. W., Witten, C. M. & Calif, R. M. Clarifying Stem-Cell Therapy’s Benefits and Risks. *New Engl J Med* 376, 1007–1009, https://doi.org/10.1056/NEJMip1613723 (2017).

46. Adamiai, M., Madeja, Z. & Zaba-Surma, E. K. In Adult Stem Cell Therapies: Alternatives to Plasticity (ed Mariusz Z. Ratajczak) 35–85 (Springer New York, 2014).

47. Han, S.-S. et al. Physiological Effects of Ac4ManNAz and Optimization of Metabolic Labeling for Cell Tracking. *Theranostics* 11, 14846–14851, https://doi.org/10.7150/thno.17711 (2017).

48. Zeb, Z., Yehezkel, G. & Khalaila, I. Identification and Quantification of Protein Glycosylation. *International Journal of Carbohydrate Chemistry* 2012, 10, https://doi.org/10.1155/2012/640923 (2012).

49. Comer, F. I. & Hart, G. W. O-Glycosylation of Nuclear and Cytoplasmic Proteins: DYNAMIC INTERPLAY BETWEEN O-GlcNAc ANDO-PHOSPHATE. *Journal of Biological Chemistry* 275, 29179–29182, https://doi.org/10.1074/jbc.R000102000 (2000).

50. Hang, H. C., Yu, C., Kato, D. L. & Bertozzi, C. R. A metabolic analysis of mucin-type O-linked glycosylation. *Proceedings of the National Academy of Sciences* 100, 14846–14851, https://doi.org/10.1073/pnas.2335201100 (2003).

51. Vodacol, D. J., Hang, H. C., Kim, E. J., Hanover, J. A. & Bertozzi, C. R. A chemical approach for identifying O-GlcNAc-modified proteins in cells. *Proc Natl Acad Sci USA* 100, 9116–9121, https://doi.org/10.1073/pnas.1632821100 (2003).

52. Chang, P. Y. et al. Metabolic labeling of sialic acids in living animals with alkynyl sugars. *Bioconjug Chem* 26, 1868–1872, https://doi.org/10.1021/acs.bioconjchem.5b00310 (2015).

53. Hayakawa, H. et al. Epigenetic switching by the metabolism-sensing factors in the generation of orexin neurons from mouse embryonic stem cells. *The Journal of biological chemistry* 288, 17099–17110, https://doi.org/10.1074/jbc.M113.455899 (2013).
60. Chen, L. & Liang, J. F. Metabolic Monosaccharides Altered Cell Responses to Anticancer Drugs. *European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazie-Verfahrenstechnik e.V* **81**, 339–345, https://doi.org/10.1016/j.ejpb.2012.03.012 (2012).

61. Baskin, J. M. & Bertozzi, C. R. Bioorthogonal click chemistry: covalent labeling in living systems. *QSAR & Combinatorial Science* **26**, 1211–1219 (2007).

62. van Geel, R., Pruijn, G. J., van Delft, F. L. & Boelens, W. C. Preventing thiol-yne addition improves the specificity of strain-promoted azide-alkyne cycloaddition. *Bioconjugate chemistry* **23**, 392–398, https://doi.org/10.1021/bc500363k (2012).

63. Jewett, J. C., Sletten, E. M. & Bertozzi, C. R. Rapid Cu-Free Click Chemistry with Readily Synthesized Biarylazacycloctynones. *Journal of the American Chemical Society* **132**, 3688–3690, https://doi.org/10.1021/ja100014q (2010).

64. Tian, C. et al. Use of steric encumbrance to develop conjugated nanoporous polymers for metal-free catalytic hydrogenation. *Chemical Communications* **52**, 11919–11922, https://doi.org/10.1039/C6CC06372A (2016).

65. Dommerholt, J. et al. Readily accessible bicyclonynes for bioorthogonal labeling and three-dimensional imaging of living cells. *Angewandte Chemie (International ed. in English)* **49**, 9422–9425, https://doi.org/10.1002/anie.201003761 (2010).

66. Madl, C. M. & Heilshorn, S. C. Bioorthogonal Strategies for Engineering Extracellular Matrices. *Advanced Functional Materials* **28**, 1706046 (2018).

67. Teo, C. F. & Wells, L. Monitoring protein O-linked β-N-acetylglucosamine status via metabolic labeling and copper-free click chemistry. *Analytical biochemistry* **464**, 70–72 (2014).

68. Akiyama, S. K. Integrins in cell adhesion and signaling. *Human cell* **9**, 181–186 (1996).

69. Ellis, S. J. & Tanentzapf, G. Integrin-mediated adhesion and stem-cell-niche interactions. *Cell and Tissue Research* **339**, 121, https://doi.org/10.1007/s00441-009-0828-4 (2009).

70. Redmer, T. et al. E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming. *EMBO Reports* **12**, 720–726, https://doi.org/10.1038/embor.2011.88 (2011).

71. Finney, M. R. et al. Direct comparison of umbilical cord blood versus bone marrow-derived endothelial precursor cells in mediating neovascularization in response to vascular ischemia. *Biology of blood and marrow transplantation: journal of the American Society for Blood and Marrow Transplantation* **12**, 585–593, https://doi.org/10.1016/j.bbmt.2005.12.037 (2006).

72. Lee, M. J. et al. Enhancement of wound healing by secretory factors of endothelial precursor cells derived from human embryonic stem cells. *Cytotherapy* **13**, 165–178, https://doi.org/10.3109/14653249.2010.512632 (2011).

Acknowledgements
This work supported by grants (NRF-2017M3A9C7065685 and NRF-2016M3A9B4919616) from National Research Foundation funded by the Ministry of Science and ICT, Korea, and the Research Center for High Quality Livestock Products through Agriculture, Ministry of Agriculture, Food and Rural Affairs (Grant no. 715003-07). We thank Eun Hee Han (Korea Basic Science Institute) and Yong-Jin Kim (AMOREFPACIFIC) for technical support in analyses.

Author Contributions
S.-S.H. and H.-E.S. conceived the study and designed most experiments. H.-E.S. and S.-J.P. carried out isolation and in-vitro culture of hUCB-EPCs. S.-S.H. and H.-E.S. performed in-vitro cell labeling and an analysis of basic cellular properties. S.-S.H. and B.-C.K. analyzed the gene expression patterns of metabolic labeled hUCB-EPCs. D.-E.L. carried out the cell permeability analysis. S.-J.P., H.-M.C. and S.-W.M. analyzed the flow cytometry cellular properties. S.-S.H. and B.-C.K. analyzed the gene expression patterns of metabolic labeled hUCB-EPCs. S.-S.H. and H.-E.S. wrote the manuscript, which was reviewed and edited by the other co-authors.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-31594-0.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2018