QCD calculations for the LHC: status and prospects

GUDRUN HEINRICH

Max Planck Institute for Physics, Föhringer Ring 6, 80805 Munich, Germany

ABSTRACT

We briefly review the status of high precision QCD predictions available for LHC processes, focusing on corrections beyond NLO and ways to make the latter available in a convenient format. As a phenomenological example we discuss the two-loop corrections to Higgs boson pair production in gluon fusion.

PRESENTED AT

The Fifth Annual Conference on Large Hadron Collider Physics
Shanghai Jiao Tong University, Shanghai, China
May 15-20, 2017
1 Introduction

The LHC is collecting an impressive amount of data, entering a phase where many important measurements are limited by systematics rather than statistics. As signs of physics beyond the Standard Model may hide in small deviations from the expected result, it is of great importance to have the Standard Model predictions well under control. While next-to-leading order (NLO) predictions combined with parton showering are the state of the art, widely used by the experimental collaborations, the number of processes where an NLO description is not sufficient is increasing as the measurements gain in precision, stimulating remarkable progress in the theory community.

There are several ways to improve the precision of SM predictions. The most obvious one is to increase the order of the perturbative series in the strong coupling α_s. However, resumming large logarithms in certain kinematic regions and/or including electroweak corrections can sometimes be more important, as well as including quark mass effects. In addition, there are parametric uncertainties, for example due to limited precision on the value for α_s, M_W or m_{top}, as well as uncertainties related to the parton distribution functions (PDFs), and non-perturbative effects. In the following, a brief overview of some of these developments will be given.

2 Progress in perturbative QCD calculations

2.1 Building blocks of QCD corrections up to NNLO

As NLO QCD calculations matched to a parton shower are the state of the art, we will focus on developments beyond NLO QCD. At next-to-next-to leading order (NNLO), one can distinguish three basic contributions to the scattering amplitude: The two-loop virtual part \mathcal{A}^{VV}, the one-loop amplitude with one extra parton (compared to the Born configuration) that can become unresolved (soft or collinear) \mathcal{A}^{RV}, and the tree-level amplitude \mathcal{A}^{RR}, where two extra partons can become unresolved. For loop-induced processes, where the leading order already proceeds via a loop (e.g. Higgs boson production in gluon fusion), the counting of the loops is of course shifted, such that the NLO virtual amplitude already involves two-loop diagrams. If a QCD parton becomes unresolved, this entails infrared singularities which need to be isolated before any numerical integration over the phase space can be attempted.

2.2 NNLO double real radiation

The isolation of the infrared singularities from \mathcal{A}^{RR} was for a long time a bottleneck which hampered progress in the construction of fully differential Monte Carlo programs for NNLO predictions. This situation however changed drastically in the last few years, and partly can be traced back to the fact that insights about the universal infrared behaviour of QCD, partly gained from resummation or Soft-Collinear Effective Theory, were used conveniently to isolate the singular regions.

method	analytic integr. of subtraction terms	type/restrictions
antenna subtraction	yes	subtraction
q_T-subtraction	yes	slicing; colourless final states
N-jettiness	yes	slicing
sector-improved residue subtraction	no	subtraction
nested subtraction	no	subtraction
colourful subtraction	partly	subtraction; colourless initial states
projection to Born	yes	subtraction
The method of q_T-subtraction [2] or N-jettiness [3,4] has been employed to obtain NNLO results for LHC processes involving colourless final states or at most one jet [5,13,32]. The processes H+jet [33], Z+jet [34] and di-jets [35] at NNLO, as well as single jet inclusive and di-jet production in DIS [36,37] have been calculated based on antenna subtraction [1]. Top quark pair production at NNLO [38,39] has been calculated based on sector-improved residue subtraction, a variant of the latter also has been used for H+jet [24]. For H+2 jets in vector boson fusion [12] the “projection to Born” method has been used. A summary of schemes to treat unresolved real radiation at NNLO is given in Table 1.

2.3 Loop integrals and two-loop amplitudes

At two loops, many remarkable achievements can be reported, and an impressive number of differential NNLO results for $2 \to 2$ processes became available recently. The results for the production of two vector bosons rely on analytic calculations of two-loop four-point amplitudes with two massive/off-shell legs, which were the subject of groundbreaking analytical work [40–47].

The integrals entering top quark pair production at NNLO [38] have been calculated numerically [48], analytic results are partially available [49,50]. The NNLO corrections to top quark decay have been calculated in Refs. [51–53]. Classes of integrals with one additional mass scale appearing in the propagators also have been calculated in the context of massive Bhabha scattering [54], electron-muon scattering (with $m_e = 0, m_\mu \neq 0$) [55], and the mixed QCD-EW corrections to the Drell-Yan process [56,57].

The analytic calculation of two-loop four-point integrals with both massive propagators and massive/off-shell external legs is currently one of the most vibrant topics in the field of precision calculations. Such integrals are needed for example for the virtual NLO corrections to Higgs+jet or Higgs boson pair production in gluon fusion. Note that the NLO corrections to these processes involve two loops, as the leading order already proceeds via a loop. The analytic calculation of the two-loop integrals entering Higgs+jet and di-Higgs involves a new level of complexity due to the fact that the results contain new function classes, involving elliptic integrals, which complicate the calculation in various respects. Nonetheless, results for the planar case have been achieved [58,59]. In addition, the top-bottom interference effects in Higgs plus jet production have been calculated [60], based on the amplitudes calculated in Refs. [61,62]. Results for planar two-loop five-point integrals [63,64] and certain helicity amplitudes [64,67] also became available recently, as well as the two-loop six gluon all plus helicity amplitude [68]. A landmark in what concerns two-loop results based on a numerical unitarity method is the calculation of the full two-loop 4-gluon amplitudes presented in Ref. [69].

At the multi-loop front, among the most remarkable recent achievements are the five-loop QCD beta-function [70,73] and four-loop contributions to the cusp anomalous dimension and N3LO splitting functions [74,79], three-loop corrections to the heavy flavour Wilson coefficients in DIS with two different masses [80], new high precision calculations of the four-loop contribution to the electron g-2 in QED [81,82], and the N3LO calculations for Higgs boson production in gluon fusion [83,85] and in vector boson fusion [86].

2.4 Ntuples, grids and the strong coupling

The runtimes of NNLO programs (as well as NLO programs for multi-particle final states) which are capable of producing fully differential results are typically rather large, even when a cluster is used for parallelized computations. Therefore various frameworks have been developed which allow to perform scale- and PDF variations or the evaluation of the matrix elements at different α_s values without re-running the full code. The fastNLO [87,88] and Applgrid [89] frameworks, based on grids and an interpolation framework, have been developed for this purpose. Another possibility is to store all the relevant information needed for scale- and PDF variations in Ntuples [90,91]. This is a rather storage-intensive approach, which however does not require any interpolation.

FastNLO tables with NNLO QCD top-quark pair differential distributions have been presented in Ref. [92] and have proven very valuable for PDF extractions [93]. A recent determination of the strong coupling constant from H1 data [94], based on an NNLO calculation [36,37] is another prominent example of a successful application of the recently developed fastNLO/Applgrid interface to NNLO codes [95]. For other examples see also Refs. [96–98].
Recent measurements of α_s based on LHC data can be found in Refs. [99, 100], and a determination of α_s solely based on the total cross section for top quark pair production has been presented in Ref. [101]. The developments which led to the latest world average are summarized in Ref. [102].

2.5 Electroweak corrections

As the measurements at the LHC enter the percent level precision era, electroweak (EW) corrections become increasingly important. The need for automated tools to calculate NLO EW (and mixed QCD-EW) corrections has triggered impressive developments in the NLO community, see e.g. Refs. [103, 104] for a review. Recent results on NNLO QCD combined with NLO EW results for $t\bar{t}$ production have been presented in Ref. [105]. Other very recent achievements include the complete NLO corrections to W^+W^- production and its backgrounds [106], di-photon+jets [107], vector boson+jets [108, 109], di-bosons [110, 114], vector boson scattering [115], Ht [116], $W^+W^-b\bar{b}$ [117], dijet [118]. For more details, we refer to the contribution of J. Lindert in these proceedings.

2.6 N(N)LO+Parton shower

To review the field of NLO matching to parton showers and its extension to NNLO is beyond the scope of this writeup. Groundwork for the NNLO+PS matching has been laid e.g. in Refs. [119–123] and we will certainly see further developments in this direction.

2.7 Jets

Jet physics is a vast and vibrant field, which has seen very rapid progress in the past years, mainly due to the development of jet substructure and machine learning techniques. For a review we refer to Ref. [124] and the article of C. Biino in these proceedings.

3 Higgs boson pair production in gluon fusion

Higgs boson pair production in gluon fusion is one of the prime processes where physics beyond the Standard Model could manifest itself. The leading order for this process proceeds via top quark loops, where delicate cancellations occur between box diagrams and triangle diagrams, the latter involving the Higgs boson self-coupling λ. The NLO calculation for this process with the full top quark mass dependence is complicated by the occurrence of two-loop four-point integrals involving both m_H and m_t, which so far could not be calculated analytically. However, a numerical calculation, based on the program SecDec [125, 126], has been presented recently [127, 128]. It revealed that the full top quark mass dependence reduces the cross section by about 14% as compared to the Born-improved NLO HEFT approximation. The latter is based on “Higgs Effective Field Theory”, where the $m_t \to \infty$ limit has been taken to calculate the NLO corrections, and then the NLO result is rescaled by the Born amplitude in the full theory.

The exact top quark mass dependence alters the Higgs boson pair invariant mass distribution significantly in the high m_{hh} region, where the top quark loops can be resolved, see Fig. 1a. The FTapprox [129] result is obtained by keeping the full top quark mass dependence in the real radiation, while the virtual part is calculated in the Born-improved HEFT approximation.

The numerical results for the two-loop amplitude have been implemented in a two-dimensional grid depending on the Mandelstam invariants s and t, together with an interpolation procedure. This allows to combine the results with a parton shower [130] and to make the results publicly available [131, 132], which indeed already has been useful to validate other calculations [133]. The effect of the parton shower is moderate compared to the top quark mass effects, but still rather large for observables like the transverse momentum of the Higgs boson pair, p_T^{hh}, where NLO is the first non-trivial order to describe the tail of the distribution. In Fig. 1b we show the p_T^{hh} distribution, comparing fixed order results to results where a parton shower has been matched within the POWHEG [131, 134] plus Pythia8 [135] framework.
4 Summary

Precision calculations are of utmost importance in the current and planned LHC phases, as well as at future colliders, as the measurements will be precise enough to point to deviations from the Standard Model at the percent level. The past years have seen major advances in calculational techniques, both on the side of (multi-)loop amplitudes as well as on the real radiation side. These developments led to an impressive increase of fully differential NNLO predictions being available for $2 \rightarrow 2$ processes, and some N^3LO predictions for $2 \rightarrow 1$ processes.

In view of this rapid progress, it is necessary to develop efficient ways to make these results available to a wider community, e.g. for PDF fits, determinations of the strong coupling constant and inclusion into the experimental software. Ntuples or grids in various forms may offer a solution and already have been employed successfully. Finally, an example from Higgs boson pair production in gluon fusion is given, where numerical results for the two-loop amplitude were encoded in a grid framework that allowed the inclusion of the results in parton shower Monte Carlo programs.

It is encouraging to see that the community – both experiment and theory – is rapidly moving towards a description of the data where the previous state of the art – mostly NLO QCD predictions – is superseded in precision by various aspects, such as higher orders, resummation, electroweak corrections and quark mass effects.

ACKNOWLEDGEMENTS

I am grateful to my collaborators from the SecDec and GoSam collaborations for all the fruitful work and discussions. I also would like to thank the organisers of the LHCP2017 conference. This research was supported in part by the Research Executive Agency (REA) of the European Union under the Grant Agreement pitn-ga2012316704 (HiggsTools).

References

[1] A. Gehrmann-De Ridder, T. Gehrmann and E. W. N. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111].

Figure 1: (a) Fixed order predictions for the Higgs boson pair invariant mass distribution, comparing the full result to various approximations, (b) NLO+parton shower results for the transverse momentum distribution of the Higgs boson pair. Both predictions are for the LHC at $\sqrt{s} = 14$ TeV, using the PDF4LHC15 parton distribution functions [136].
[2] S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, *Phys. Rev. Lett.* **103** (2009) 082001.

[3] R. Boughezal, C. Focke, X. Liu and F. Petriello, W-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, *Phys. Rev. Lett.* **115** (2015) 062002.

[4] J. Gaunt, M. Stahlhofen, F. J. Tackmann and J. R. Walsh, N-jettiness Subtractions for NNLO QCD Calculations, *JHEP* **09** (2015) 058.

[5] G. Heinrich, A numerical method for NNLO calculations, *Nucl. Phys. Proc. Suppl.* **116** (2003) 368–372.

[6] M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, *Phys. Lett.* **B693** (2010) 259–268.

[7] R. Boughezal, K. Melnikov and F. Petriello, A subtraction scheme for NNLO computations, *Phys. Rev.* **D85** (2012) 034025.

[8] M. Czakon and D. Heynes, Four-dimensional formulation of the sector-improved residue subtraction scheme, *Nucl. Phys.* **B890** (2014) 152–227.

[9] F. Caola, K. Melnikov and R. Röntsch, Nested soft-collinear subtractions in NNLO QCD computations, *Eur. Phys. J.* **C77** (2017) 248.

[10] G. Somogyi, Z. Trocsanyi and V. Del Duca, A Subtraction scheme for computing QCD jet cross sections at NNLO: Regularization of doubly-real emissions, *JHEP* **01** (2007) 070.

[11] V. Del Duca, C. Duhr, A. Kardos, G. Somogyi and Z. Tresnyi, Three-Jet Production in Electron-Positron Collisions at Next-to-Next-to-Leading Order Accuracy, *Phys. Rev. Lett.* **117** (2016) 152004.

[12] M. Cacciari, F. A. Dreyer, A. Karlberg, G. P. Salam and G. Zanderighi, Fully Differential Vector-Boson-Fusion Higgs Production at Next-to-Next-to-Leading Order, *Phys. Rev. Lett.* **115** (2015) 082002.

[13] S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Diphoton production at hadron colliders: a fully-differential QCD calculation at NNLO, *Phys. Rev. Lett.* **108** (2012) 072001.

[14] G. Ferrera, M. Grazzini and F. Tramontano, Higher-order QCD effects for associated WH production and decay at the LHC, *JHEP* **04** (2014) 039.

[15] M. Grazzini, S. Kallweit, D. Rathlev and A. Torre, Zγ production at hadron colliders in NNLO QCD, *Phys. Lett.* **B731** (2014) 204–207.

[16] G. Ferrera, M. Grazzini and F. Tramontano, Associated ZH production at hadron colliders: the fully differential NNLO QCD calculation, *Phys. Lett.* **B740** (2015) 51–55.

[17] T. Gehrmann, M. Grazzini, S. Kallweit, P. Maierhöfer, A. von Manteuffel, S. Pozzorini et al., W+W− Production at Hadron Colliders in Next to Next to Leading Order QCD, *Phys. Rev. Lett.* **113** (2014) 212001.

[18] F. Cascioli, T. Gehrmann, M. Grazzini, S. Kallweit, P. Maierhöfer, A. von Manteuffel et al., ZZ production at hadron colliders in NNLO QCD, *Phys. Lett.* **B735** (2014) 311–313.

[19] M. Grazzini, S. Kallweit and D. Rathlev, Wγ and Zγ production at the LHC in NNLO QCD, *JHEP* **07** (2015) 085.
[20] J. M. Campbell, R. K. Ellis and C. Williams, Associated production of a Higgs boson at NNLO, *JHEP* 06 (2016) 179 [1601.00658].

[21] M. Grazzini, S. Kallweit, D. Rathlev and M. Wiesemann, $W^\pm Z$ production at hadron colliders in NNLO QCD, [1604.08576].

[22] M. Grazzini, S. Kallweit and D. Rathlev, ZZ production at the LHC: fiducial cross sections and distributions in NNLO QCD, *Phys. Lett.* B750 (2015) 407–410 [1507.06257].

[23] R. Boughezal, C. Focke, W. Giele, X. Liu and F. Petriello, Higgs boson production in association with a jet at NNLO using jettiness subtraction, *Phys. Lett.* B748 (2015) 5–8 [1505.03893].

[24] R. Boughezal, C. Focke, W. Giele, X. Liu and F. Petriello, Higgs boson production in association with a jet at next-to-next-to-leading order, *Phys. Rev. Lett.* 115 (2015) 082003 [1504.07922].

[25] R. Boughezal, J. M. Campbell, R. K. Ellis, C. Focke, W. Giele, X. Liu et al., Z-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, *Phys. Rev. Lett.* 116 (2016) 152001 [1512.01291].

[26] M. Grazzini, S. Kallweit, S. Pozzorini, D. Rathlev and M. Wiesemann, $W^\pm Z$ production at the LHC: fiducial cross sections and distributions in NNLO QCD, *JHEP* 05 (2017) 139 [1703.09065].

[27] F. Caola, K. Melnikov, R. Röntsch and L. Tancredi, QCD corrections to ZZ production in gluon fusion at the LHC, *Phys. Rev.* D92 (2015) 094028 [1509.06734].

[28] M. Grazzini, S. Kallweit, S. Pozzorini, D. Rathlev and M. Wiesemann, W^+W^- production at the LHC: fiducial cross sections and distributions in NNLO QCD, *JHEP* 05 (2017) 139 [1703.09065].

[29] R. Boughezal, J. M. Campbell, R. K. Ellis, C. Focke, W. Giele, X. Liu et al., Color singlet production at NNLO in MCFM, [1605.08011].

[30] J. M. Campbell, R. K. Ellis, M. Czakon and S. Kirchner, Two loop correction to interference in gg → ZZ, *JHEP* 08 (2016) 011 [1605.01380].

[31] M. Grazzini, S. Kallweit, D. Rathlev and M. Wiesemann, $W^\pm Z$ production at the LHC: fiducial cross sections and distributions in NNLO QCD, *JHEP* 05 (2017) 139 [1703.09065].

[32] H. T. Li, C. S. Li and J. Wang, Fully Differential Higgs Pair Production in Association With a Z Boson at Next-To-Next-To-Leading Order in QCD, [1710.02464].

[33] X. Chen, J. Cruz-Martinez, T. Gehrmann, E. W. N. Glover and M. Jaquier, NNLO QCD corrections to Higgs boson production at large transverse momentum, *JHEP* 10 (2016) 066 [1607.08817].

[34] A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, A. Huss and T. A. Morgan, NNLO QCD corrections for Drell-Yan p_T^Z and ϕ^* observables at the LHC, *JHEP* 11 (2016) 094 [1610.01843].

[35] J. Currie, A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, A. Huss and J. Pires, Precise predictions for dijet production at the LHC, [1705.10271].

[36] J. Currie, T. Gehrmann and J. Niehues, Precise QCD predictions for the production of dijet final states in deep inelastic scattering, *Phys. Rev. Lett.* 117 (2016) 042001 [1606.03991].

[37] J. Currie, T. Gehrmann, A. Huss and J. Niehues, NNLO QCD corrections to jet production in deep inelastic scattering, *JHEP* 07 (2017) 018 [1703.05977].

[38] M. Czakon, P. Fiedler and A. Mitov, Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through $O(\alpha_s^4)$, *Phys. Rev. Lett.* 110 (2013) 252004 [1303.6254].
[39] M. Czakon, D. Heymes and A. Mitov, High-precision differential predictions for top-quark pairs at the LHC, *Phys. Rev. Lett.* **116** (2016) 082003, [1511.00549].

[40] T. Gehrmann, L. Tancredi and E. Weihs, Two-loop master integrals for $q\bar{q} \to VV$: the planar topologies, *JHEP* **08** (2013) 070, [1306.6344].

[41] J. M. Henn, K. Melnikov and V. A. Smirnov, Two-loop planar master integrals for the production of off-shell vector bosons in hadron collisions, *JHEP* **05** (2014) 090, [1402.7078].

[42] T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, The two-loop master integrals for $q\bar{q} \to VV$, *JHEP* **06** (2014) 032, [1404.4853].

[43] C. G. Papadopoulos, J. M. Henn, K. Melnikov and V. A. Smirnov, Non-planar master integrals for the production of two off-shell vector bosons in hadron collisions, *JHEP* **05** (2014) 090, [1402.7078].

[44] F. Caola, J. M. Henn, K. Melnikov and V. A. Smirnov, Two-loop planar master integrals for the production of off-shell vector bosons in hadron collisions, *JHEP* **01** (2015) 072, [1404.4853].

[45] T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, The two-loop helicity amplitudes for $q\bar{q} \to V_1V_2 \to 4$ leptons, *JHEP* **09** (2015) 128, [1503.04812].

[46] A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for $gg \to V_1V_2 \to 4$ leptons, *JHEP* **06** (2015) 197, [1503.08835].

[47] F. Caola, J. M. Henn, K. Melnikov, A. V. Smirnov and V. A. Smirnov, Two-loop helicity amplitudes for the production of two off-shell electroweak bosons in gluon fusion, *JHEP* **06** (2015) 129, [1503.08759].

[48] P. Bärnreuther, M. Czakon and P. Fiedler, Virtual amplitudes and threshold behaviour of hadronic top-quark pair-production cross sections, *JHEP* **02** (2014) 078, [1312.6279].

[49] R. Bonciani, A. Ferroglia, T. Gehrmann, A. von Manteuffel and C. Studerus, Light-quark two-loop corrections to heavy-quark pair production in the gluon fusion channel, *JHEP* **12** (2013) 038, [1309.4450].

[50] G. Abelof, A. Gehrmann-De Ridder and I. Majer, Top quark pair production at NNLO in the quark-antiquark channel, *JHEP* **12** (2015) 074, [1506.04037].

[51] J. Gao and A. S. Papanastasiou, Top-quark pair-production and decay at high precision, *Phys. Rev.* **D96** (2017) 051501, [1705.08903].

[52] J. Gao, C. S. Li and H. X. Zhu, Top Quark Decay at Next-to-Next-to Leading Order in QCD, *Phys. Rev. Lett.* **110** (2013) 042001, [1210.2808].

[53] M. Brucherseifer, F. Caola and K. Melnikov, $O(\alpha_s^2)$ corrections to fully-differential top quark decays, *JHEP* **04** (2013) 059, [1301.7133].

[54] J. M. Henn and V. A. Smirnov, Analytic results for two-loop master integrals for Bhabha scattering I, *JHEP* **11** (2013) 041, [1307.4083].

[55] P. Mastrolia, M. Passera, A. Primo and U. Schubert, Master integrals for the NNLO virtual corrections to μ scattering in QED: the planar graphs, [1709.07435].

[56] R. Bonciani, S. Di Vita, P. Mastrolia and U. Schubert, Two-Loop Master Integrals for the mixed EW-QCD virtual corrections to Drell-Yan scattering, *JHEP* **09** (2016) 091, [1604.08581].

[57] A. von Manteuffel and R. M. Schabinger, Numerical Multi-Loop Calculations via Finite Integrals and One-Mass EW-QCD Drell-Yan Master Integrals, *JHEP* **04** (2017) 129, [1701.06583].
R. Bonciani, V. Del Duca, H. Frellesvig, J. M. Henn, F. Moriello and V. A. Smirnov, Two-loop planar master integrals for $\text{Higgs} \rightarrow 3$ partons with full heavy-quark mass dependence, *JHEP* **12** (2016) 096, [1609.06685].

A. Primo and L. Tancredi, On the maximal cut of Feynman integrals and the solution of their differential equations, *Nucl. Phys.* **B916** (2017) 94–116, [1610.08397].

J. M. Lindert, K. Melnikov, L. Tancredi and C. Wever, Top-bottom interference effects in Higgs plus jet production at the LHC, *Phys. Rev. Lett.* **118** (2017) 252002, [1703.03886].

K. Melnikov, L. Tancredi and C. Wever, Two-loop $gg \rightarrow Hg$ amplitude mediated by a nearly massless quark, *JHEP* **11** (2016) 104, [1610.03747].

K. Melnikov, L. Tancredi and C. Wever, Two-loop amplitudes for $qg \rightarrow Hq$ and $qq \rightarrow Hg$ mediated by a nearly massless quark, *Phys. Rev.* **D95** (2017) 054012, [1702.00426].

C. G. Papadopoulos, D. Tommasini and C. Wever, The Pentabox Master Integrals with the Simplified Differential Equations approach, *JHEP* **04** (2016) 078, [1511.09404].

T. Gehrmann, J. M. Henn and N. A. Lo Presti, Analytic form of the two-loop planar five-gluon all-plus-helicity amplitude in QCD, *Phys. Rev. Lett.* **116** (2016) 062001, [1511.05409].

S. Badger, H. Frellesvig and Y. Zhang, A Two-Loop Five-Gluon Helicity Amplitude in QCD, *JHEP* **12** (2013) 045, [1310.1051].

D. C. Dunbar and W. B. Perkins, Two-loop five-point all plus helicity Yang-Mills amplitude, *Phys. Rev.* **D93** (2016) 085029, [1603.07514].

D. C. Dunbar, G. R. Jehu and W. B. Perkins, Two-loop six gluon all plus helicity amplitude, *Phys. Rev. Lett.* **117** (2016) 061602, [1605.06351].

S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier, B. Page and M. Zeng, Two-Loop Four-Gluon Amplitudes with the Numerical Unitarity Method, [1703.05273].

P. A. Baikov, K. G. Chetyrkin and J. H. Khn, Five-Loop Running of the QCD coupling constant, *Phys. Rev. Lett.* **118** (2017) 082002, [1606.08659].

T. Luthe, A. Maier, P. Marquard and Y. Schroder, The five-loop Beta function for a general gauge group and anomalous dimensions beyond Feynman gauge, [1709.07718].

F. Herzog, B. Ruijl, T. Ueda, J. A. M. Vermaseren and A. Vogt, The five-loop beta function of Yang-Mills theory with fermions, *JHEP* **02** (2017) 090, [1701.01404].

K. G. Chetyrkin, G. Falcioni, F. Herzog and J. A. M. Vermaseren, Five-loop renormalisation of QCD in covariant gauges, [1709.08541].

J. Davies, A. Vogt, B. Ruijl, T. Ueda and J. A. M. Vermaseren, Large-n_f contributions to the four-loop splitting functions in QCD, *Nucl. Phys.* **B915** (2017) 335–362, [1610.07477].

A. von Manteuffel and R. M. Schabinger, Quark and gluon form factors to four-loop order in QCD: the N_f^3 contributions, *Phys. Rev.* **D95** (2017) 034030, [1611.00795].

J. Henn, A. V. Smirnov, V. A. Smirnov, M. Steinhauser and R. N. Lee, Four-loop photon quark form factor and cusp anomalous dimension in the large-N_c limit of QCD, *JHEP* **03** (2017) 139, [1612.04389].
[77] B. Ruijl, T. Ueda, J. A. M. Vermaseren and A. Vogt, *Four-loop QCD propagators and vertices with one vanishing external momentum*, JHEP 06 (2017) 040, 1703.08532.

[78] R. N. Lee, A. V. Smirnov, V. A. Smirnov and M. Steinhauser, *The α_s^2 contributions to fermionic four-loop form factors*, Phys. Rev. D96 (2017) 014008, 1705.06862.

[79] S. Moch, B. Ruijl, T. Ueda, J. A. M. Vermaseren and A. Vogt, *Four-Loop Non-Singlet Splitting Functions in the Planar Limit and Beyond*, 1707.08315.

[80] J. Ablinger, J. Blümlein, A. De Freitas, A. Hasselhuhn, C. Schneider and F. Wissbrock, *Three Loop Massive Operator Matrix Elements and Asymptotic Wilson Coefficients with Two Different Masses*, Nucl. Phys. B921 (2017) 585–688, 1705.07030.

[81] S. Laporta, *High-precision calculation of the 4-loop contribution to the electron $g-2$ in QED*, Phys. Lett. B772 (2017) 232–238, 1704.06996.

[82] P. Marquard, A. V. Smirnov, V. A. Smirnov, M. Steinhauser and D. Wellmann, $(g-2)_\mu$ at four loops in QED, in *International Workshop on e^+e^- Collisions from Phi to Psi (PHIPS17) Mainz, Germany, June 26-29, 2017*, 2017. 1708.07138.

[83] C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, *Higgs Boson Gluon-Fusion Production in QCD at Three Loops*, Phys. Rev. Lett. 114 (2015) 212001, 1503.06056.

[84] C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog et al., *High precision determination of the gluon fusion Higgs boson cross-section at the LHC*, JHEP 05 (2016) 058, 1602.00695.

[85] F. Dulat, B. Mistlberger and A. Pelloni, *Differential Higgs production at N3LO beyond threshold*, 1710.03016.

[86] F. A. Dreyer and A. Karlberg, *Vector-Boson Fusion Higgs Production at Three Loops in QCD*, Phys. Rev. Lett. 117 (2016) 072001, 1605.00840.

[87] T. Kluge, K. Rabbertz and M. Wobisch, *FastNLO: Fast pQCD calculations for PDF fits*, in *Deep inelastic scattering. Proceedings, 14th International Workshop, DIS 2006, Tsukuba, Japan, April 20-24, 2006*, pp. 483–486, 2006. hep-ph/0609285 DOI.

[88] D. Britzger, G. S. Klaus Rabbertz, F. Stober and M. Wobisch, *Recent Developments of the fastNLO Toolkit*, PoS DIS2015 (2015) 055.

[89] T. Carli, D. Clements, A. Cooper-Sarkar, C. Gwenlan, G. P. Salam, F. Siegert et al., *A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: The APPLGRID Project*, Eur. Phys. J. C66 (2010) 503–524, 0911.2985.

[90] Z. Bern, L. J. Dixon, F. Febres Cordero, S. Hche, H. Ita, D. A. Kosower et al., *Ntuples for NLO Events at Hadron Colliders*, Comput. Phys. Commun. 185 (2014) 1443–1460, 1310.7439.

[91] Maitre, Daniel and Heinrich, Gudrun and Johnson, Mark, *N(N)LO event files: applications and prospects*, in *13th DESY Workshop on Elementary Particle Physics: Loops and Legs in Quantum Field Theory (LL2016) Leipzig, Germany, April 24-29, 2016*, 1607.06259.

[92] M. Czakon, D. Heymes and A. Mitov, *fastNLO tables for NNLO top-quark pair differential distributions*, 1704.08551.

[93] M. Czakon, N. P. Hartland, A. Mitov, E. R. Nocera and J. Rojo, *Pinning down the large-x gluon with NNLO top-quark pair differential distributions*, JHEP 04 (2017) 044, 1611.08609.

[94] H1 collaboration, V. Andreev et al., *Determination of the strong coupling constant $\alpha_s(M_Z)$ in next-to-next-to-leading order QCD using H1 jet cross section measurements*, 1709.07251.
[95] D. Britzger, K. Rabbertz, G. Sieber, F. Stober and M. Wobisch. [http://fastnlo.hepforge.org/]

[96] L. Del Debbio, N. P. Hartland and S. Schumann, MCgrid: projecting cross section calculations on grids, *Comput. Phys. Commun.* **185** (2014) 2115–2126 [1312.4460].

[97] V. Bertone, R. Frederix, S. Frixione, J. Rojo and M. Sutton, aMCfast: automation of fast NLO computations for PDF fits, *JHEP* **08** (2014) 160 [1406.7693].

[98] J. Gao, Massive charged-current coefficient functions in deep-inelastic scattering at NNLO and impact on strange-quark distributions, [1710.04258].

[99] CMS collaboration, V. Khachatryan et al., Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range, *Eur. Phys. J.* **C75** (2015) 186 [1412.1633].

[100] ATLAS collaboration, M. Aaboud et al., Determination of the strong coupling constant \(\alpha_s\) from transverse energy-energy correlations in multijet events at \(\sqrt{s} = 8\) TeV using the ATLAS detector, [1707.02562].

[101] T. Klijnsma, S. Bethke, G. Dissertori and G. P. Salam, Determination of the strong coupling constant \(\alpha_s(m_Z)\) from measurements of the total cross section for top-antitop quark production, [1708.07495].

[102] S. Bethke, \(\alpha_s\) 2016, *Nucl. Part. Phys. Proc.* **282-284** (2017) 149–152.

[103] M. Chiesa, N. Greiner and F. Tramontano, Automation of electroweak corrections for LHC processes, *J. Phys.* **G43** (2016) 013002 [1507.08579].

[104] B. Biedermann, S. Brauer, A. Denner, M. Pellen, S. Schumann and J. M. Thompson, Automation of NLO QCD and EW corrections with Sherpa and Recola, *Eur. Phys. J.* **C77** (2017) 492 [1704.05783].

[105] M. Czakon, D. Heymes, A. Mitov, D. Pagani, I. Tsinikos and M. Zaro, Top-pair production at the LHC through NNLO QCD and NLO EW, [1705.04105].

[106] B. Biedermann, A. Denner and M. Pellen, Complete NLO corrections to \(W^+W^-\) scattering and its irreducible background at the LHC, [1708.00268].

[107] M. Chiesa, N. Greiner, M. Schönherr and F. Tramontano, Electroweak corrections to diphoton plus jets, [1706.09022].

[108] S. Kallweit, J. M. Lindert, P. Maierhöfer, S. Pozzorini and M. Schönherr, NLO electroweak automation and precise predictions for \(W^+\text{-multijet}\) production at the LHC, *JHEP* **04** (2015) 012 [1412.5157].

[109] J. M. Lindert et al., Precise predictions for \(V+jets\) dark matter backgrounds, [1705.04664].

[110] B. Biedermann, A. Denner, S. Dittmaier, L. Hofer and B. Jäger, Electroweak corrections to \(pp \to \mu^+\mu^-e^+e^-+X\) at the LHC: a Higgs background study, *Phys. Rev. Lett.* **116** (2016) 161803 [1601.07787].

[111] B. Biedermann, M. Billoni, A. Denner, S. Dittmaier, L. Hofer, B. Jäger et al., Next-to-leading-order electroweak corrections to \(pp \to W^+W^- \to 4\) leptons at the LHC, *JHEP* **06** (2016) 065 [1605.03419].

[112] B. Biedermann, A. Denner, S. Dittmaier, L. Hofer and B. Jäger, Next-to-leading-order electroweak corrections to the production of four charged leptons at the LHC, *JHEP* **01** (2017) 033 [1611.05338].

[113] S. Kallweit, J. M. Lindert, S. Pozzorini and M. Schönherr, NLO QCD+EW predictions for \(2\ell2\nu\) diboson signatures at the LHC, [1705.00598].
[114] B. Biedermann, A. Denner and L. Hofer, Next-to-leading-order electroweak corrections to the production of three charged leptons plus missing energy at the LHC, *JHEP* **10** (2017) 043, [1708.06938](https://arxiv.org/abs/1708.06938).

[115] B. Biedermann, A. Denner and M. Pellen, Large electroweak corrections to vector-boson scattering at the Large Hadron Collider, *Phys. Rev. Lett.* **118** (2017) 261801, [1611.02951](https://arxiv.org/abs/1611.02951).

[116] A. Denner, J.-N. Lang, M. Pellen and S. Uccirati, Higgs production in association with off-shell top-antitop pairs at NLO EW and QCD at the LHC, *JHEP* **02** (2017) 053, [1612.07138](https://arxiv.org/abs/1612.07138).

[117] A. Denner and M. Pellen, NLO electroweak corrections to off-shell top-antitop production with leptonic decays at the LHC, *JHEP* **08** (2016) 155, [1607.05571](https://arxiv.org/abs/1607.05571).

[118] R. Frederix, S. Frixione, V. Hirschi, D. Pagani, H.-S. Shao and M. Zaro, The complete NLO corrections to dijet hadroproduction, *JHEP* **04** (2017) 076, [1612.06548](https://arxiv.org/abs/1612.06548).

[119] L. Lonnblad and S. Prestel, Unitarising Matrix Element + Parton Shower merging, *JHEP* **02** (2013) 094, [1211.4827](https://arxiv.org/abs/1211.4827).

[120] K. Hamilton, P. Nason, E. Re and G. Zanderighi, NNLOPS simulation of Higgs boson production, *JHEP* **10** (2013) 222, [1309.0017](https://arxiv.org/abs/1309.0017).

[121] S. Alioli, C. W. Bauer, C. Berggren, F. J. Tackmann, J. R. Walsh and S. Zuberi, Matching Fully Differential NNLO Calculations and Parton Showers, *JHEP* **06** (2014) 089, [1311.0286](https://arxiv.org/abs/1311.0286).

[122] S. Höche, Y. Li and S. Prestel, Higgs-boson production through gluon fusion at NNLO QCD with parton showers, *Phys. Rev. D* **90** (2014) 054011, [1407.3773](https://arxiv.org/abs/1407.3773).

[123] S. Höche and S. Prestel, Triple collinear emissions in parton showers, [1705.00742](https://arxiv.org/abs/1705.00742).

[124] A. J. Larkoski, I. Moult and B. Nachman, Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning, [1709.04464](https://arxiv.org/abs/1709.04464).

[125] S. Borowka, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk and T. Zirke, SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop, *Comput. Phys. Commun.* **196** (2015) 470–491, [1502.06595](https://arxiv.org/abs/1502.06595).

[126] S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, J. Schlenk et al., pySecDec: a toolbox for the numerical evaluation of multi-scale integrals, *Comput. Phys. Commun.* **170** (2013) 222, [1309.0017](https://arxiv.org/abs/1309.0017).

[127] S. Borowka, N. Greiner, G. Heinrich, S. Jones, M. Kerner, J. Schlenk et al., Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence, *Phys. Rev. Lett.* **117** (2016) 012001, [1604.06447](https://arxiv.org/abs/1604.06447).

[128] S. Borowka, N. Greiner, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk et al., Full top quark mass dependence in Higgs boson pair production at NLO, *JHEP* **10** (2016) 107, [1608.04798](https://arxiv.org/abs/1608.04798).

[129] F. Maltoni, E. Vryonidou and M. Zaro, Top-quark mass effects in double and triple Higgs production in gluon-gluon fusion at NLO, *JHEP* **11** (2014) 079, [1408.6542](https://arxiv.org/abs/1408.6542).

[130] G. Heinrich, S. P. Jones, M. Kerner, G. Luisoni and E. Vryonidou, NLO predictions for Higgs boson pair production with full top quark mass dependence matched to parton showers, *JHEP* **08** (2017) 088, [1703.09252](https://arxiv.org/abs/1703.09252).

[131] http://powhegbox.mib.infn.it/, User-Processes-V2/ggHH, 2017.

[132] G. Heinrich, S. P. Jones, M. Kerner, G. Luisoni and E. Vryonidou, https://github.com/mppmu/hhgrid, 2017.
[133] R. Gröber, A. Maier and T. Rauh, *Reconstruction of top-quark mass effects in Higgs pair production and other gluon-fusion processes*, [1709.07799](https://arxiv.org/abs/1709.07799).

[134] S. Frixione, P. Nason and C. Oleari, *Matching NLO QCD computations with Parton Shower simulations: the POWHEG method*, JHEP **11** (2007) 070, [0709.2092](https://arxiv.org/abs/0709.2092).

[135] T. Sjostrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten et al., *An Introduction to PYTHIA 8.2*, Comput. Phys. Commun. **191** (2015) 159–177, [1410.3012](https://arxiv.org/abs/1410.3012).

[136] J. Butterworth et al., *PDF4LHC recommendations for LHC Run II*, J. Phys. **G43** (2016) 023001, [1510.03865](https://arxiv.org/abs/1510.03865).