Ondansetron use in nausea and vomiting during pregnancy: A
descriptive analysis of prescription patterns and patient
characteristics in UK general practice

Jim Slattery1 | Chantal Quinten1 | Gianmario Candore1 | Luis Pinheiro1 | Robert Flynn1,2 | Xavier Kurz1 | Hedvig Nordeng3,4

1Data Analytics Taskforce, European Medicines Agency, Amsterdam, The Netherlands
2Medicines Monitoring Unit, University of Dundee, Dundee, UK
3PharmacoEpidemiology and Drug Safety Research Group, Department of Pharmacy, and PharmaTox Strategic Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
4Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway

Aims: The objective of this study was to describe ondansetron drug utilization patterns during pregnancy to treat nausea and vomiting in pregnancy (NVP). Moreover, we aimed to describe the maternal factors associated with NVP and antiemetic use.

Methods: The data consist of pregnancies with a live birth(s) within an IMRD-UK registered GP practice. Descriptive statistics were used to investigate patterns of ondansetron use in pregnancy and to describe maternal characteristics associated with NVP and antiemetic drug utilization. We differentiate first- from second-line use during pregnancy using antiemetic prescription pathways.

Results: The dataset included 733,633 recorded complete pregnancies from 2005 to 2019. NVP diagnosis and ondansetron prescription prevalence increased from 2.7% and 0.1% in 2005 to 4.8% and 2.5% in 2019 respectively. Over the period 2015–2019, the most common oral daily dosages were 4 mg/d (8.5%), 8 mg/d (37.1%), 12 mg/d (37.5%) and between 16 and 24 mg/d (16.9%). Prescription of ondansetron was initiated during the first trimester of pregnancy in 40% of the cases and was moderately used as a first-line therapy (2.8%), but preferred choice of second-line therapy. Women with mental health disorders, asthma and/or prescribed folic acid were more likely to experience NVP and use antiemetics in pregnancy than their counterparts.

Conclusion: This study confirms that ondansetron is increasingly used off-label to treat NVP during pregnancy, also in the first trimester and before other prescription antiemetics have been prescribed. Several maternal comorbidities and folic acid use were more common among women experiencing NVP and using antiemetics, including ondansetron.

Keywords
antiemetics, hyperemesis gravidarum, IMRD-UK, nausea and vomiting in pregnancy, ondansetron

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2022 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.
INTRODUCTION

Nausea and vomiting affects up to 80% of pregnant women worldwide and is the most common medical condition in pregnancy. The symptoms of nausea and vomiting of pregnancy (NVP) vary in severity ranging from mild to a life-threatening condition. Hyperemesis gravidarum (HG) is among the latter, affecting 1% of the pregnant population and is characterized by persistent nausea and vomiting, dehydration, electrolyte and nutritional imbalances, and excessive weight loss. HG is the most common reason for hospitalization during the first part of pregnancy and is associated with an increased risk of preterm birth.

NVP usually manifests between 4 and 7 weeks of pregnancy, with the peak severity of hyperemesis occurring at around 11 weeks with 90% of NVP cases resolved by 20 weeks' pregnancy. Treatment of NVP is recommended when it impacts on daily life and functioning and if there is an increased risk of developing HG. The majority of clinical treatment guidelines recommend lifestyle and dietary changes as first-line management and if symptoms are severe or persist, pharmacological therapy is recommended, but universal national guidelines for treatment of NVP are lacking.

Ondansetron is a selective 5-HT3-receptor antagonist and is currently licensed in the EU for the management of nausea and vomiting associated with cytotoxic chemotherapy and radiation (adults and children aged >6 mo) and for the prevention or treatment of postoperative nausea and vomiting (adults and children aged >1 mo). Over recent years, it is increasingly used off-label in European countries as a treatment for severe NVP and to prevent progression to HG.

In the UK, the Royal College of Obstetricians and Gynaecologists (RCOG) guidance, last updated June 2016, recommend ondansetron as a second-line treatment for NVP. This RCOG NVP guidance recommends that the use of ondansetron should be limited to patients who are not adequately managed with alternative treatments and preferably used after the first trimester of pregnancy. The main recommendations do not concentrate on the absolute timing of exposure but rather on the prioritization of alternative treatments. The executive summary of recommendations includes a statement saying that there is evidence that ondansetron is safe and effective, but because data are limited it should be used as second-line therapy.

In the UK, the proportion of pregnancies with an ondansetron prescription during pregnancy rose from 0.25% in 2013 to approximately 1% in 2017. In the USA, ondansetron is 1 of the 8 drugs currently recommended by the 2018 clinical guidelines from the American College of Gynecology for the treatment of NVP. In 2014, it was the most common treatment for NVP in the US (25% of all pregnancies). Most clinical guidelines recommend reserving use of ondansetron for severe NVP, if other treatments have failed to provide sufficient NVP symptom relief and delaying use until after 10 weeks' gestation.

Studies have questioned the safety of ondansetron use in the first trimester of pregnancy. Two large studies from the USA have been published with conflicting results related to the risks of in utero exposure to ondansetron and various birth defects. Zambelli-Weiner and colleagues examined 864 083 mother–baby pairs of whom 73 471 (8.5%) had prescriptions for ondansetron during the first trimester. First trimester exposure to ondansetron was associated with an increased risk of cardiac defects (adjusted odds ratio [OR]: 1.52, 95% confidence interval [CI]: 1.35–1.70) and with a nonsignificant tendency to orofacial cleft defects (OR: 1.32, 95% CI 0.76–2.28). Huybrechts and colleagues examined 1 816 414 pregnancies of which 88 467 (4.9%) were exposed in the first trimester. They found an increased risk of oral clefts (adjusted relative risk [RR] 1.24, 95% CI 1.03–1.48; 3 additional cases per 10 000 women treated with ondansetron in the first trimester) but not cardiac defects (RR: 0.99, 95% CI 0.93–1.06).

After reviewing the available literature, the Pharmacovigilance Risk Assessment Committee (PRAC) at the European Medicines Agency (EMA) recommended in July 2019 that the Marketing Authorization Holders of ondansetron-containing medicinal products should update the summary of product characteristics indicating that ondansetron should not be used during the first trimester of pregnancy due to a potential small increased risk of oral clefts and conflicting findings on cardiac defects.

Given the debate and increasing ondansetron use, the aim of this study was to characterize the utilization patterns of antiemetics in
general, and ondansetron in specific for the treatment of NVP in a UK
general practice data base. This included differentiating first-line use
of ondansetron from second-line use using antiemetic prescription
pathways. In addition, we aimed to describe characteristics of women
who were more likely to experience NVP and require antiemetic treat-
ment. The overall aim of the study is to contribute to the debate
regarding pharmacological management of NVP. As clinical treatment
guidelines for NVP exist in countries other than the UK,11 the results
may stimulate future studies in the wider European population as well
as the establishment of international NVP guidelines.

2 | METHODS

2.1 | Data sources

Our study was based on data from General Practitioners (GPs) across
the UK recorded in the IQVIA Medical Research Data (IMRD)-UK (for-
merly known as THIN), release January 2020.20 The data have been
collected since 1987, covering about 6% of the UK population, and
are broadly generalizable to the whole UK population in terms of age,
derprivation and geographic distribution and linked via an anonymous
patient ID number allowing patients to be followed longitudinally over
time. Data on diagnoses are recorded as Read codes, a hierarchical
classification system,21 and prescriptions are mapped to ATC codes.

2.2 | Study cohort

The study period for this analysis ranged from 1 January 2005 to
31 December 2019. The study population consists of pregnancies
with a live birth within an IMRD-UK registered GP practice. Matching
was done as follows; all births in the dataset were clustered to identify
multiple births and were then attached to potential mothers by
matching them with mothers with the same family number and prac-
tice number and refining the match on the basis of clinical details that
have a credible temporal relationship to the birth (See Appendices for
further information).

2.3 | Indication

NVP was identified using clinical Read codes and classified as severe
NVP/HG or mild/moderate NVP as listed in Tables A1 and A2. In
total, 17 severe NVP/HG codes and 11 mild/moderate code were
used. These NVP codes were utilized to identify medications used as
off-label antiemetics.

2.4 | Exposure

The primary focus of this study is exposure to ondansetron during a
pregnancy. Table A3 provides the product codes for ondansetron in

\begin{table}[h]
\centering
\begin{tabular}{ll}
\hline
\textbf{Table 1} & Royal College of Obstetricians and Gynaecologists
\textit{Green-top Guideline No 69 (3)}
\hline
\textbf{First-line treatment of NVP} & \\
\hline
- Cyclizine 50 mg PO, IM or IV 8 hourly & \\
- Prochlorperazine 5–10 mg 6–8 hourly PO; 12.5 mg 8 hourly & \\
\hline
- Promethazine 12.5–25 mg 4–8 hourly PO, IM, IV or PR & \\
- Chlorpromazine 10–25 mg 4–6 hourly PO, IV or IM; or 50–100 mg 6–8 hourly PR & \\
\hline
\textbf{Second-line treatment of NVP} & \\
\hline
- Metoclopramide 5–10 mg 8 hourly PO, IV or IM (maximum 5 days duration) & \\
- Domperidone 10 mg 8 hourly PO; 30–60 mg 8 hourly PR & \\
- Ondansetron 4–8 mg 6–8 hourly PO; 8 mg over 15 minutes 12 hourly IV & \\
\hline
\textbf{Third-line treatment of NVP} & \\
\hline
- Corticosteroids: Hydrocortisone 100 mg twice daily IV and once & \\
clinical improvement occurs, convert to prednisolone 40–50 mg & \\
daily PO, with the dose gradually tapered until the lowest & \\
maintenance dose that controls the symptoms is reached & \\
\hline
\end{tabular}
\end{table}

IM = intramuscular; IV = intravenous; PO = by mouth; PR = by rectum.
aRoyal College of Obstetricians & Gynaecologists. The management of
nausea and vomiting of pregnancy and hyperemesis gravidarum.
Green-top guidelines no 69; 2016.

IMRD-UK. For this study we adopted the categorization of first-, second- and third-line treatments as recommendations by the Royal
College of Obstetricians and Gynaecologists for the treatment of NVP
and HG (Table 1) based on a treatment algorithm for NVP and HG as
identified in Appendix IV in the RCOG Guidelines.7 First-line treat-
ments included cyclizine, prochlorperazine, promethazine and/or
chlorpromazine. In addition to ondansetron, second-line treatments
included metoclopramide and/or domperidone. Third-line prescrip-
tions are reserved for hospitals and out of scope in this analysis.

First-line usage is defined when first prescription of ondansetron
within the pregnancy occurs without prior prescription of any other
antiemetic within the same pregnancy. Second-line usage occurs
when the first prescription of ondansetron within a pregnancy is pre-
ceded by a prescription of another antiemetic.

2.5 | Exposure time frames

Exposure to antiemetics was defined as the presence of at least 1 pre-
scription of the medications selected within each time frame. Time
frames of interest included the entire pregnancy, pregnancy trimesters
(trimester 1: 1–90 d after last menstrual period [LMP]; trimester 2: 91–180 d after LMP; trimester 3: >180 d after LMP).

2.6 | Covariates

Covariates to assess the characteristics of women with and without
antiemetic medication prescription fillings during pregnancy included
sociodemographic characteristics, comorbidities and comediations.
Sociodemographic characteristics included maternal age at delivery, body mass index, weight and height, sex of child, multiple births, smoking in pregnancy and prior folic acid. Comorbidities included psychosis, anxiety, asthma, depression, diabetes, eating disorder, epilepsy, hypothyroid, personality disorder. Folate is widely used in the UK from before conception to 12th week of pregnancy but will be supplied in most cases in low-dose form without prescription.

2.7 | Statistical analyses

Descriptive statistics were used to present births and severity of nausea and vomiting recorded during pregnancy and total number of pregnancies exposed to ondansetron over the period 2005–2019.

Mean observed daily doses were calculated for those prescriptions with known daily dose of solid ondansetron over the period 2015–2019 and compared with physician recommended daily dose. For most prescriptions, the prescribed quantity divided by the interval to the subsequent prescription was used as an estimate for daily dose.

Exposure time for each pregnancy was calculated based on the total amount of prescriptions during the pregnancy divided by the estimated daily dosage. For women with >1 prescription, their first exposure would be used in the calculation of the proportion of ondansetron prescriptions in the first trimester.

To evaluate whether treatment guidelines were followed to treat NVP, we assessed to which degree a first-line antiemetic had been prescribed prior to an ondansetron prescription for the treatment of NVP. We visualized this through prescription pathways (river plot). According to guidelines, ondansetron should be reserved as a second-line treatment, thus we assessed the proportion of the first prescription of ondansetron being preceded by a prescription of a first-line antiemetic (cyclizine, prochlorperazine, promethazine, chlorpromazine) through prescription pathways. In particular, this examined if products other than those nominated as first-line in this study were perceived as first-line in clinical practice. In this analyses, we restricted the analyses to pregnancies with at least 1 ondansetron prescription in pregnancy.

To characterize mothers with NVP, socio-demographic characteristics, comedication and comorbidities were further broken down and described (count, mean and standard deviation of continuous variables and proportion of categorical variables) for women with and without nausea.

Finally, we examined the presence of other underlying comorbidities potentially leading to nausea, and consequent exposure to ondansetron, in pregnancies through exposure to other medications (using ATC codes). We also looked at a period before pregnancy (7 to 1 mo before LMP) in order to see what changed when the woman became pregnant. The calculation is restricted to women whose clinical record extends from at least 213 days before the LMP date. All pregnancies with any prescription were included.

The statistical analyses were performed with SAS v9.4.

2.8 | Ethical permission

IMRD incorporates data from THIN, A Cegedim Database. Reference made to THIN is intended to be descriptive of the data asset licensed by IQVIA.

2.9 | Public and patient involvement

This study was endorsed by the EMA PRAC committee, which consists of patient and healthcare professional representatives.

3 | RESULTS

The study included 733,633 recorded pregnancies between 1 January 2005 and 31 December 2019. From 2005 to 2019 there was a steady increase in recorded NVP diagnosis in pregnancies from 3.6% in 2005 to 6.0% in 2019. Rates of severe NVP/HG almost doubled from 2.7% in 2005 to 4.8% in 2019 (Figure 1).

The prevalence of ondansetron prescription during pregnancies increased from 0.1% in 2005 to 2.5% in 2019 (Figure 2).

3.1 | Ondansetron formulations and daily dosages

The main administration form of ondansetron prescription between 2015–2019 (n = 12,712) was oral solid tablets (92.9%), followed by
oro-dispersible tablets (4.8%), suppositories (1.2%), oral liquids (1.1%) and injection (0.1%). For those prescriptions with known daily dosage of solid oral ondansetron (3871/12712; 30.5%), 8.5% of the prescriptions were for 4 mg, 37.1% for 8 mg, 37.5% for 12 mg and 16.9% between 16 and 24 mg. The median prescribed daily dose of ondansetron tablets was 11.5 mg. The observed daily doses (median of 7.3 mg) were lower than the physician recommended daily doses (4–8 mg 6–8 hourly by mouth; 8 mg over 15 minutes 12 hourly intravenous).

3.2 | Trimesters of exposure

Exposure time was calculated for 2391 out of the 2401 ondansetron exposed pregnancies over the period 2015–2019. For 10 pregnancies, the exact total amount of exposures could not be established. In total, 957 (40.0%) initiated exposure during the first trimester. Figure 3 shows the pattern of exposure time in the first trimester. The most usual pattern is fairly short (<15 d) durations in the second half in the first trimester of the pregnancy as indicated by the red density spot in the figure. Some women might have > 1 episode of exposure during a pregnancy. In our study, 89.3% of the women had 1 exposure; 9.2% had 2 exposures; 1.2% had 3 exposures and 0.3% had 4 exposures.

3.3 | Order of ondansetron prescriptions

In Figure 4, prescription pathways show the trend in the use of ondansetron in comparison with other commonly used antiemetics during pregnancy and the order in which they are used. The populating included 164 942 pregnancies with at least 1 ondansetron prescription in pregnancy. This diagram shows that ondansetron is rarely

FIGURE 2 Percentage of pregnancies (that result in live births) exposed to ondansetron, 2005–2019, IMRD-UK.

FIGURE 3 Start and end of ondansetron treatment episodes (calculated using the estimated daily dose and the prescribed quantities) in days from LMP, 2015–2019, IMRD-UK. Each point represents an episode of exposure to ondansetron in pregnancy. The colours indicate the density of points, red is the highest density and grey the lowest.
used as a first therapy (2.75%), but the preferred second choice of therapy for NVP in the UK. The figure shows that the first choice antiemetics for women giving birth between 2015 and 2019 in the UK was first-line antihistamines as defined by RCOG including cyclizine, prochlorperazine, promethazine and chlorpromazine (69.3%), other antihistamines including cinnarizine, chlorphenamine, cetirizine, levocetirizine, acrivastine, fexofenadine and desloratadine (18.1%), followed by second line not ondansetron including propulsives (8.6%) and other antiemetic including peppermint and antinauseants (1.3%).

3.4 | Factors related to ondansetron prescriptions

Table 2 shows maternal characteristics broken down by treated and untreated nausea compared with those with no recorded nausea. The characteristics of women treated for NVP tend to differ in several ways to women without NVP. Folic acid use tends to be higher, and women with multiple pregnancies and with female infants were more often diagnosed with NVP. Women with depression, anxiety, psychosis, asthma and those exposed to high dose of folic acid were also more likely to experience NVP. Our study also demonstrated that women with NVP tended to have a higher prior use of prescription drugs than women who did not have NVP.

4 | DISCUSSION

Our analysis, based on GP data across the UK, showed a steady increase in the reporting of both mild and severe NVP/HG and with a simultaneous increase in the prescription fills of ondansetron during pregnancies between 2005 and 2019. Prescription fills of ondansetron to treat NVP/HG are mainly used as a second-line treatment in the UK, with only limited use as first-line treatment (2.75%) and therefore in line with the RCOG guidelines. In total, 40% of ondansetron exposure started in the first trimester.

NVP tended to be more common in mothers with a higher body mass index, with a multiple pregnancy and with female infants. Women with underlying comorbidities such as depression, anxiety, psychosis, asthma and those exposed to high dose of folic acid were also more likely to experience NVP. Our study also demonstrated that women with NVP had a higher prior use of prescription drugs than women who did not have NVP.

The number of women with NVP, as reported by GPs in the UK, is considerably less than reported from prior questionnaire based studies. This could be explained by the fact in that the majority of NVP is mild to moderate and that women can self-manage it with OTC medication and lifestyle changes, so there is no need to see the GP about this. Nevertheless, the use of ondansetron to treat NVP in the UK has been increasing over recent years, although its proportion among commonly used antiemetics is still small compared to the USA. In Norway, by contrast, <1% of NVP cases were treated with ondansetron. These differences might reflect prescribing traditions and the availability of alternative products recommended in national guidelines.

Our findings confirm previous studies that twin pregnancies and pregnancies with female foetuses were more likely to have NVP. Although the risk of developing severe NVP is small, the impact of NVP and HG on hospital admission and psychological wellbeing is substantial with 18% of women reporting post-traumatic stress and some women expressing a desire to end their pregnancy as a consequence of NVP/HG. In a nationwide population-based cohort from the UK, however, no difference was observed in the proportion of women with subsequent pregnancies between women with and without HG in their first pregnancy.

Although ondansetron is mainly prescribed as second-line treatment for NVP in the UK, the prescription as first-line treatment should not be overlooked. RCOG guidelines provide recommendations for ondansetron to be used as second-line treatment, while it is notable that the UK summaries of product characteristics for all 4 first-line treatments (cyclizine, prochlorperazine, promethazine, chlorpromazine) recommend avoiding use in pregnant women. For promethazine and chlorpromazine this advice is qualified by the phrase “unless the physician considers it essential”. Our study has also shown that the observed daily doses (median 7.3 mg) are lower than the recommended daily doses by the clinicians (median 11.5 mg). Variation between recommended and observed doses appear to be influenced by underlying conditions such as anxiety or depression, making suboptimal management a clinical concern. Another element warranting...
Further investigation is that ondansetron is prescribed for up to 4 exposure episodes and may also be given for lengthy single exposures, indicating a long treatment duration.

Updated clinical guidelines for NVP are therefore essential in guiding clinicians on prescribing choices. Current clinical practice is based on clinical judgement with inconclusive evidence on the benefits and harms of ondansetron. Prescribing ondansetron and the risks associated with it should outweigh the risks caused to the mother and foetus from potential serious sequelae of NVP.

Our findings must be interpreted bearing in mind their limitations. For our analyses, we relied on primary care medical records extracted from general practices across the UK. This means that the researchers have limited information regarding the actual use of the prescribed product—although refills of the prescriptions may allow reasonable inferences to be made. Despite having the NVP diagnosis to identify antiemetic prescriptions in our study, we cannot exclude the possibility that these medications may also have been prescribed for other coinciding indications. Although it is fair to assume that a new prescription for 1 of these drugs, in association with a diagnosis of nausea, is given for this indication. Moreover, we could not include OTC antiemetics, which may have been used prior to prescription antiemetics. Consequently, our classification of first line treatments only refers to the prescribed antiemetics. The rates of ondansetron as first-line therapy may be lower in real life if OTC treatments had been captured. Finally, our study only focused on live births and did not include mild NVP.

A strength of our study was that women were followed longitudinally over time, which allowed us to describe the switching patterns over time in a real-world setting. It also allowed us to study the medical history of the women starting 7 months prior to the pregnancy and identify an increased use of other drugs among women with and without NVP. More importantly, given that the data are sourced from general practices around the UK, our findings can be considered externally valid to the UK population.

Table 2

Characteristics (continuous variables)	Any ondansetron	Other anti-nauseants	Untreated nausea	No nausea
Maternal age (y)	n	Mean (SD)	n	Mean (SD)
BMI (kg/m²)	2405	29.2 (5.5)	24 725	29.4 (5.7)
Weight (kg)	1575	26.8 (6.5)	16 828	26.8 (6.7)
Height (m)	1575	1.64 (0.07)	16 826	1.64 (0.07)

Characteristics (categorical variables)	Any ondansetron	Other anti-nauseants	Untreated nausea	No nausea
Sex of child	n	%	n	%
M	1162	48.3	12 193	49.3
F	1243	51.7	12 532	50.7
Multiple births	1 2350	97.7	24 245	98.1
≥ 2	55	2.3	480	1.9
Smoking in pregnancy	n	%	n	%
NK	620	25.8	5334	21.6
No	980	40.8	9723	39.3
Ex	484	20.1	5678	23.0
Yes	321	13.4	3990	16.1
Prescribed Folic acid	n	%	n	%
No	2196	91.3	22 907	92.7
Yes	209	8.7	1818	7.3

Comorbidities

	n	%	n	%	n	%	n	%	
Psychosis	Yes	139	7.4	1200	6.4	151	6.8	2996	3.5
Anxiety	Yes	182	9.7	1450	7.8	157	7.0	3666	4.3
Asthma	Yes	120	6.4	1314	7.1	121	5.4	3187	3.7
Depression	Yes	245	13.1	2088	11.2	235	10.5	5239	6.1
Diabetes	Yes	27	1.4	258	1.4	25	1.1	1026	1.2
Eating disorder	Yes	6	0.3	30	0.2	4	0.2	70	0.1
Epilepsy	Yes	4	0.2	19	0.1	4	0.2	68	0.1
Hypothyroid	Yes	5	0.3	79	0.4	7	0.3	407	0.5
Personality disorder	Yes	10	0.5	48	0.3	1	0.0	69	0.1

SD = standard deviation; BMI = body mass index; M = male; F = female; NK = not known; Ex = ex-smoker.
5 | CONCLUSION

Ondansetron is increasingly being prescribed off-label as a treatment for NVP/HG in the UK. Although it is rarely used as a first-line prescription antiemetic treatment, it is the preferred second-line option over other on-prescription antiemetics in pregnancy. In this study, we also found that women with NVP and ondansetron prescriptions differ from their counterparts with respect to prescribed folic acid, asthma and mental health disorders. These factors may also be related to the health of the mother and child and hence should be considered as potential confounders in aetiological studies of the effects of antiemetics on pregnancy outcomes.

ACKNOWLEDGEMENT

IQVIA Medical Research Data (IMRD) incorporates data from THIN, a Cegedim Database.

COMPETING INTERESTS

All authors reported no conflict of interest. H.N. is a member of the EMA PRAC. The other authors are employed by EMA.

CONTRIBUTORS

Conceptualization: J.S., G.C., L.P., R.F., X.K., H.N. Methodology: J.S., X.K., H.N. Analysis: J.S., R.F. Validation: J.S., C.Q., H.N. Supervision: J.S., X.K., H.N. Drafting the manuscript: J.S., C.Q., G.C., L.P., R.F., X.K., H.N.

DISCLAIMER

The views expressed in this article are the personal views of the author(s) and may not be understood or quoted as being made on behalf of or reflecting the position of the European Medicines Agency or 1 of its committees or working parties.

All authors critically reviewed the manuscript and approved the final version for submission.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were created or analysed in this study.

ORCID

Chantal Quinten https://orcid.org/0000-0003-2691-2326

REFERENCES

1. Matthews A, Haas DM, O’Mathuna DP, Dowswell T, Doyle M. Interventions for nausea and vomiting in early pregnancy. Cochrane Database Syst Rev. 2014;3:CD007575. doi:10.1002/14651858.CD007575.pub3
2. Einarson TR, Piwko C, Koren G. Quantifying the global rates of nausea and vomiting of pregnancy: a meta-analysis. J Popul Ther Clin Pharmacol. 2013;20(2):e171-e183.
3. Gazmararian JA, Petersen R, Jamieson DJ, et al. Hospitalizations during pregnancy among managed care enrollees. Obstet Gynecol. 2002;100(1):94-100.
4. Veenendaal MVE, van Abeelen AFM, Painter RC, van der Post JAM, Roseboom TJ. Consequences of hyperemesis gravidarum for offspring: a systematic review and meta-analysis. BJOG. 2011;118(11):1302-1313. doi:10.1111/j.1471-0528.2011.03023.x
5. The RCOG + NICE + Committee on Practice Bulletins-Obstetrics. ACOG Practice Bulletin No. 189: Nausea and vomiting of pregnancy. Obstet Gynecol. 2018;131(1):e15-e30. doi:10.1097/AOG.0000000000002456
6. Campbell K, Rowe H, Azzam H, Lane CA. The Management of Nausea and Vomiting of Pregnancy. J Obstet Gynaecol Can. 2016;38(12):1127-1137. doi:10.1016/j.jogc.2016.08.009
7. European Medicines Agency. https://www.ema.europa.eu/en/documents/prac-recommendation/prac-recommendations-signals-adopted-8-11-july-2019-prac-meeting_en.pdf. Accessed 22 October 2021.
8. Van Gelder M, Nordeng H. Antiemetic prescription fills during pregnancy: a drug utilization study among 762,437 pregnancies in Norway. Clin Epidemiol. 2021;13:161-174. doi:10.2147/CLEP.S287892
9. Royal College of Obstetricians & Gynaecologists. The management of nausea and vomiting of pregnancy and hyperemesis gravidarum. Green-top guidelines No. 69. June 2016.
10. Boelig RC, Barton SJ, Saccone G, Kelly AJ, Edwards SJ, Berghella V. Interventions for treating hyperemesis gravidarum: a Cochrane systematic review and meta-analysis. J Matern Fetal Neonatal Med. 2018;31(18):2492-2505. doi:10.1080/14767058.2017.1342805
11. Erick M, Cox JT, Mogensen KM. ACOG Practice Bulletin No. 189: Nausea And Vomiting Of Pregnancy. Obstet Gynecol. 2018;131(1):e15-e30. doi:10.1097/AOG.0000000000002456
12. Taylor LG, Bird ST, Sahin L, et al. Antiemetic use among pregnant women in the United States: the escalating use of ondansetron. Pharmacoepidemiol Drug Saf. 2017;26(5):592-596. doi:10.1002/pds.4185
13. The Norwegian Society of Obstetrics and Gynecology. Veileder i fødselshjelp [Obstetric guidelines issued by the Norwegian Society of Obstetrics and Gynaecology]; 2020;ePub. ISBN 978-82-692382-0-4.
14. Dormuth CR, Winquist B, Fisher A, et al. Comparison of Pregnancy Outcomes of Patients Treated with Ondansetron vs Alternative Antiemetic Medications in Multinational, Population-Based Cohort. JAMA Netw Open. 2021;4(4):e215329. doi:10.1001/jamanetworkopen.2021.5329
15. Lemon LS, Bodnar LM, Garrard W, et al. Ondansetron use in the first trimester of pregnancy and the risk of neonatal ventricular septal defect. Int J Epidemiol. 2020;49(2):e648-e656. doi:10.1093/ije/dyz255
16. Parker SE, Van Bennekom C, Anderka M, Mitchell AA. National birth defects prevention study. Ondansetron for treatment of nausea and vomiting of pregnancy and the risk of specific birth defects. Obstet Gynecol. 2018;132(2):385-394. doi:10.1097/AOG.0000000000002679
17. Zambrilli-Weiner A, Via C, Yen M, Weiner DJ, Kirby RS. First trimester ondansetron exposure of risk of structural birth defects. Reprod Toxicol. 2019;83:14-20. doi:10.1016/j.reprotox.2018.10.010
18. Huybrechts KF, Hernandez-Diaz S, Straub L, et al. Association of Maternal Frist-Trimester Ondansetron Use With Cardiac Malformations and Oral Clefts in Offspring. Jama. 2018;320(23):2429-2437. doi:10.1001/jama.2018.18307
19. See link https://www.ema.europa.eu/en/documents/prac-recommendation/prac-recommendations-signals-adopted-8-11-july-2019-prac-meeting_en.pdf. Accessed 22 December 2020.
20. Blak BT, Thompson M, Dattani H, Bourke A. Generalisability of The Health Improvement Network (THIN) database: demographics, chronic disease prevalence and mortality rates. Inform Prim Care. 2011;19(4):251-255. doi:10.14236/jhi.v1914.820
21. See link. https://digital.nhs.uk/services/terminology-and-classifications/read-codes. Assessed 22 October 2021.

22. Einarson TR, Piwko C, Koren G. Quantifying the global rates of nausea and vomiting of pregnancy: a meta analysis. *J Popul ther Clin Pharmacol*. 2013;20:e171-e183.

23. Vikanes A, Grijbovski AM, Vangen S, Gunnes N, Samuelsen SO, Magnus P. Maternal body composition, smoking, and hyperemesis gravidarum. *Ann Epidemiol*. 2010;20(8):592-598. doi:10.1016/j.annepidem.2010.05.009

24. Niemeijer MN, Grooten IJ, Vos N, et al. Diagnostic markers for hyperemesis gravidarum: a systematic review and metaanalysis. *Am J Obstet Gynecol*. 2014;211(2):150.e1-150.e15. doi:10.1016/j.ajog.2014.02.012

25. Christodoulou-Smith J, Gold IJ, Romero R, et al. Posttraumatic stress symptoms following pregnancy complicated by hyperemesis gravidarum. *J Matern Fetal Neonatal Med*. 2011;24(11):1307-1311. doi:10.3109/14767058.2011.582904

26. Fiaschi L, Nelson-Piercy C, Tata FL. Hospital admission for hyperemesis gravidarum: a nationwide study of occurrence, reoccurrence and risk factors among 8.2 million pregnancies. *Hum Reprod*. 2016;31(8):1675-1684. doi:10.1093/humrep/dew128

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher's website.

How to cite this article: Slattery J, Quinten C, Candore G, et al. Ondansetron use in nausea and vomiting during pregnancy: A descriptive analysis of prescription patterns and patient characteristics in UK general practice. *Br J Clin Pharmacol*. 2022;88(10):4526-4539. doi:10.1111/bcp.15370
APPENDIX A.

TABLE A1 Read codes used for nausea in pregnancy

Code	Description	Severity
L13.11	Hyperemesis gravidarum	1
L13..0	Excessive pregnancy vomiting	1
L130.00	Mild hyperemesis gravidarum	1
L130000	Mild hyperemesis unspecified	1
L13..12	Hyperemesis of pregnancy	1
L131.00	Hyperemesis gravidarum with metabolic	1
	disturbance	
L130200	Mild hyperemesis not delivered	1
L131z00	Hyperemesis gravidarum with metabolic	1
	disturbance unspecified	
L131000	Hyperemesis gravidarum with metabolic	1
	disturbance unspecified	
L131200	Hyperemesis gravidarum with metabolic	1
	disturbance—not del	
L130100	Mild hyperemesis—delivered	1
L132z00	Late pregnancy vomiting NOS	
L132000	Late pregnancy vomiting unspecified	1
L131100	Hyperemesis gravidarum with metabolic	1
	disturbance—delivery	
L132200	Late pregnancy vomiting—not del	1
L130.11	Morning sickness	2
L13z.0	Unspecified pregnancy vomiting	2
L13zz00	Unspecified pregnancy vomiting NOS	2
L13y.0	Other pregnancy vomiting	2
L13y00	Other pregnancy vomiting unspecified	2
L13z000	Unspecified pregnancy vomiting unspecified	2
L13y000	Other pregnancy vomiting unspecified	2
L13z200	Unspecified pregnancy vomiting—not del	2
L13y200	Other pregnancy vomiting—not del	2
L13z100	Unspecified pregnancy vomiting—delivered	2
L13y100	Other pregnancy vomiting—delivered	2

1 = severe NVP/HG; 2 = moderate or mild NVP; NOS = not otherwise specified.

TABLE A2 Codes for other nausea

Code	Description
198..00	Nausea
198..11	C/O—nausea
198..12	Nausea symptoms
1982.00	Nausea present
1983.00	Morning nausea
1984.00	Upset stomach
1984.11	Upset tummy
1982.00	Nausea NOS
199..00	Vomiting
199..11	C/O—vomiting
199..12	Emesis
199..14	Vomiting symptoms
1992.00	Vomiting
1992.12	Bilius attack
1993.00	Projectile vomiting
1994.00	Vomiting blood—fresh
1994.11	Blood in vomit—symptom
1995.00	Vomiting blood—coffee ground
1996.00	Vomiting—bile stained
1997.00	Retching
1992.00	Vomiting NOS

C/O = complaints of; NOS = not otherwise specified.
Code	Description			
52 684 979	Ondansetron 4 mg/5 mL oral solution sugar free			
66 569 979	Ondansetron 4 mg/5 mL oral solution sugar free			
81 572 998	Ondansetron 8 mg orodispersible tablets			
81 575 998	Ondansetron 4 mg orodispersible tablets			
82 188 998	Ondansetron 4 mg/5 mL oral solution sugar free			
82 637 978	Ondansetron 8 mg orodispersible films sugar free			
82 638 978	Ondansetron 8 mg orodispersible films sugar free			
82 639 978	Ondansetron 4 mg orodispersible films sugar free			
82 640 978	Ondansetron 4 mg orodispersible films sugar free			
85 762 998	Ondansetron 8 mg/4 mL solution for injection ampoules			
85 763 998	Ondansetron 4 mg/2 mL solution for injection ampoules			
85 765 998	Ondansetron 8 mg/4 mL solution for injection ampoules			
85 766 998	Ondansetron 4 mg/2 mL solution for injection ampoules			
85 865 998	Ondansetron 8 mg/4 mL solution for injection ampoules			
85 866 998	Ondansetron 4 mg/2 mL solution for injection ampoules			
85 867 998	Ondansetron 8 mg tablets			
85 868 998	Ondansetron 4 mg tablets			
86 326 979	Ondansetron 4 mg oral lyophilisates sugar free			
88 905 998	Ondansetron 16 mg suppositories			
88 907 998	Ondansetron 16 mg suppositories			
89 001 997	Ondansetron 8 mg oral lyophilisates sugar free			
89 001 998	Ondansetron 4 mg oral lyophilisates sugar free			
89 197 998	Ondansetron 4 mg/5 mL oral solution sugar free			
90 463 996	Ondansetron 8 mg oral lyophilisates sugar free			
90 463 997	Ondansetron 4 mg orodispersible tablets			
90 463 998	Ondansetron 4 mg/5 mL oral solution sugar free			
93 315 990	Ondansetron 8 mg/4 mL solution for injection ampoules			
93 546 996	Ondansetron 8 mg/4 mL solution for injection ampoules			
93 546 997	Ondansetron 8 mg tablets			
93 546 998	Ondansetron 4 mg tablets			
93 548 996	Ondansetron 8 mg/4 mL solution for injection ampoules			
93 548 997	Ondansetron 8 mg tablets			
93 548 998	Ondansetron 4 mg tablets			
95 834 979	Ondansetron 8 mg/4 mL solution for injection ampoules			
95 858 979	Ondansetron 4 mg tablets			
Drug Category	Before pregnancy	During pregnancy		
---	------------------	------------------		
	Women with nausea	Women with no nausea	Women with no nausea	Women with no nausea
	(n = 28,449)	(n = 611,019)	(n = 28,449)	(n = 611,019)
Antiemetics and antinauseants	NA	NA	699	1291
Vitamin B1, plain and in combination with vitamin B6 and B12	NA	NA	75	105
Propulsives	546	75	1,615	1,283
Antipsychotics	2,070	282	4,436	2,266
Antihistamines for systemic use	5,929	620	12,460	4,989
Electrolytes with carbohydrates	NA	NA	775	250
Antacids	NA	NA	541	79
Drugs for treatment of peptic ulcer	6,639	643	17,582	2,202
Drugs for constipation	4,048	374	10,234	1,268
Hypnotics and sedatives	1,395	158	617	74
Antidepressants	12,654	1,464	9,193	1,091
Antimigraine preparations	1,787	213	881	100
Other antibacterials	4,741	459	7,746	875
Drugs for functional gastrointestinal disorders	1,217	135	491	53
Antiregurgitants—old code	NA	NA	2,489	265
Corticosteroids for systemic use, plain	1,619	168	1,704	179
Direct acting antivirals	969	82	1,026	106
Other β-lactam antibacterials	750	64	5,957	606
Anxiolytics	2,242	226	1,138	114
Other analgesics and antipyretics	1,993	187	4,323	433
Tetracyclines	2,495	255	702	70
Opioids	7,206	752	8,326	826
Antimycotics for systemic use	1,749	136	575	57
Sulfonamides and trimethoprim	4,423	418	2,990	295
Calcium	NA	NA	708	68
Intestinal anti-infectives	NA	NA	719	68
Cough suppressants, excl. combinations with expectorants	1,161	111	2,785	262
Vitamin a and d, incl. combinations of the 2	823	68	1,391	129
Antiepileptics	1,609	173	1,208	111
Adrenergics, inhalants	6,608	635	8,858	805
Topical products for joint and muscular pain	1,413	147	1,385	123

(Continues)
	Before pregnancy	Women with nausea (n = 28,449)	Women with no nausea (n = 611,019)	During pregnancy	Women with no nausea (n = 28,449)	Women with no nausea (n = 611,019)
	Total n	Total n	Total n	Total n	Total n	Total n
Chemotherapeutics for topical use	NA	NA	694	61		
Vitamin B12 and folic acid	4951	416	23,951	2,067		
Other dermatological preparations	1194	90	1,244	107		
Decongestants and antiallergics	1033	101	1,690	145		
Beta blocking agents	2,429	249	2,055	176		
Bacterial and viral vaccines, combined	NA	NA	4,357	372		
Decongestants and other nasal preparations for topical use	4,012	365	5,892	503		
Anti-infectives	1,481	114	1,605	137		
Dermatologicals	872	56	1,425	121		
Anti-inflammatory and antirheumatic products, nonsteroids	8,238	803	2,916	247		
Beta-lactam antibacterials, penicillins	14,744	1,217	24,130	2,020		
Agents for treatment of hemorrhoids and anal fissures for topical use	15,567	113	5,110	424		
Anti-acne preparations for topical use	2,354	207	1,630	135		
Other antiasthmatics, inhalants	2,481	201	3,302	273		
Antiinfectives and antiseptics, excl. Combinations with corticosteroids	3,470	315	15,584	1,280		
Viral vaccines	848	68	3,442	282		
Iron preparations	3,273	275	29,337	2,354		
Antifungals for topical use	3,595	283	8,288	658		
Antibiotics for topical use	1,094	84	1,678	133		
Corticosteroids, plain	4,837	355	6,456	499		
Macrolides and lincosamides	3,523	323	3,215	247		
Emollients and protectives	4,173	332	6,853	503		
Throat preparations	1,278	108	976	65		
Insulins and analogues	NA	NA	1,953	130		
Progestogens	2,290	220	1,748	116		
Other vitamin products, combinations	NA	NA	960	63		
All other nontherapeutic products	NA	NA	4,416	289		
Antithrombotic agents	NA	NA	8,132	526		
Corticosteroids, combinations with antibiotics	NA	103	1,531	98		
	Before pregnancy		During pregnancy			
-------------------------------	------------------	----------	------------------	----------		
	Women with nausea (n = 28 449)	Women with no nausea (n = 611 019)	Women with no nausea (n = 28 449)	Women with no nausea (n = 611 019)		
Drugs used in addictive disorders	NA	NA	1269	76		
Hormonal contraceptives for systemic use	19 717	1 320	2844	167		
Thyroid preparations	2 796	156	3 309	179		
Quinolone antibacterials	464	56	NA	NA		
Belladonna and derivatives, plain	1 096	119	NA	NA		
Antifibrinolytics	929	111	NA	NA		
Anaesthetics, local	1 082	103	NA	NA		

NA = not available as not prescribed before or during pregnancy; No Nausea = no nausea diagnostic code in pregnancy; Nausea = corresponds to codes in Table 1 and Table 2 to Appendix.