INTRODUCTION

Kvatha one of the most popular Kalpana among five basic Kalpanas widely used therapeutically (to cure the different ailment) as well as pharmaceutically (used to prepare the different dosage forms like Ghana, vati, syrup, etc. Although a clear description is not available in Vedic literature, a detailed description is present in all Samhitas regarding its preparation, amount of water, and reduction in volume of liquid. Kvatha Kalpana may be defined as a Kalpana in which a specific quantity of Kvatha Dravya is taken and specific amount of water is used as menstruum and applying specific quantum of heat, the volume of water is reduced to specific amount and then by filtering Kvatha can be obtained [1].

Trikantakadi kvatha (TK) is an aqueous extract hence it is always questioned against its stability period. Hence, that modification in the dosage form was attempted in the present study and modified dosage forms such as TK syrup (TKS), Trikantakadi tincture (TT), and TK Ghana Vati (TKGV) were prepared. To ensure the stability period of prepared dosage form, the stability study was done and compared the observed value of all the physicochemical properties with the previous data.

CHRONICLED APPRAISAL

Reference is cited for Kvatha Dravya along with nature and various proportion of water taken for the preparation of kvatha (aqueous extract) (Table 1a). In Ayurveda Sar Sangraha and Rasatantrasara Va Sidhapatyogam Sangraha mentioned the use of TK in Asmari, Mutrakricha, Mutraghat and to remove the kidney stones outside the body (Table 1b) [7,8].

METHODS

All the raw herbs are collected from the local market of Jalandhar and authentication is carried out by Dr. Satwinderjeet Kaur, Head, Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab, with ref. no. 1088, dated 18.10.2016. Microscopic analysis of raw materials was studied according to the methods of the Quality Standard of Indian Medicinal Plant (Tables 2 – Figs. 1-6 and Table 3 – Figs. 7-12) [9].

Method of preparation

Preparation of TK

TK was prepared according to the procedure mentioned in the Ayurveda Sar Sangraha [7].

TKS

500 g of sugar candy powder was added to previously prepared TK (1000 ml) Citric acid (0.1 g), propylparaben (2 g), and methylparaben (2 g) were used as a preservative.

TKGV

Granules were prepared from 80 g of TKG and mix 80 g of a mixture of herbal drugs (TK) powder for making the tablet 550 mg by adding

Reference book	Nature of drugs/quantity of drugs	Quantity of water	Reduction up to
Charaka Samhita [2]	+ tula (48 g)	16 times	1/8th
Sushruta Samhita [3]	-	16 times	1/4th
Astanga Samhagha [4]	-	8 times	1/4th
Sharangdhara Samhita [5]	Madhyam	16 times	1/8th
Yogaratangini [6]	-	26 times	1/8th
Table 1b: Literature review on TK

Name of drugs	Common name	B. N. and family	Part used	A. S. S.	R. Va S. S.	Quantity
Gokshura	Gokhru	Tribulus terrestris Linn.	Fruit	+	+	1 Part
Amaltaas ka gudha (pulp)	Girimaal, Amaltaas	Cassia fistula Linn.	Fruit pulp	+	+	1 Part
Darbhamoola	Doob	Gynodon daucylon Linn.	Root	+	+	1 Part
Damasha/javasha	Javasa	Alhagi camelorum (Bieb). Desv.	Whole part	+	+	1 Part
Pashan bheda	Silphara, Pakhanabheda	Bergenia ligulata (Haw.) Sternb. Saxifragaceae	Root	+	+	1 Part
Harar	Harad, Harre	Terminalia chebula Retz. Combretaceae	Fruit	+	+	1 Part
Kaasmoold	Kasa, Kans	Saccharum spontaneum Linn. Poaceae	Root	+	+	1 Part
Pitpapda	Dhangajra	Fumaria vaillantii Lmn. Fumaraceae	Whole plant	+	-	1 Part

B.N: Botanical name, R. Va S. S.: Rasatantrasara Va Sidhaprayoga Sangraha, A. S. S.: Ayurveda Sar Sangraha, TK: Trikantakadi kvatha

Table 2: Microscopical characters of Raw materials

Table 3: Microscopical characters of TK churna

Table 4: Master formula of formulations

Formulations	Quantity	Ingredients (g)	Other excipients (%)	
TK		G 62.5	A 62.5, D 62.5, J 62.5, P 62.5, H 62.5, Pa 62.5, K 62.5	Nil
TKS		G 62.5	A 62.5, D 62.5, J 62.5, P 62.5, H 62.5, Pa 62.5, K 62.5	Preservative (50 S, 0.01 CA, 0.2 PP and MP) (% w/v)
TKGV		G 20	A 20, D 20, J 20, P 20, H 20, Pa 20, K 20	Gum acacia-4 (% w/w)
TT		G 25	A 25, D 25, J 25	Ethanol-15 (% v/v)

TK: Trikantakadi kwatha, TKS: Trikantakadi kwatha syrup, TKGV: Trikantakadi kwatha Ghana vati, TT: Trikantakadi tincture, G: Gokshura, A: Amaltaas, D: Darbhamoola, J: Javasa, P: Pashanabheda, H: Harar, Pa: Parpata, K: Kaasmoold, S: Sugar, CA: Citric acid, PP: Propylparaben, MP: Methylparaben
6.4 g of gum acacia as binding agent and were compressed into tablet form [10].

TT

850 ml (water) and 150 ml (ethanol) were taken together, and then, 200 g of TK Draya added. The entire wort was kept for extraction for the time period of 14 days (Table 4) [11].

Characterization of formulation

Determination of organoleptic characteristics such as color, odor, taste, and state of prepared formulations was carried out (Table 5 – Figs. 13-16). All the physicochemical parameters of prepared formulations were carried out, and results of the experiment are asserted in Tables 6 and 7 [12-14]. Phytochemical analysis and thin-layer chromatography (TLC) of formulation were performed.

Table 5: Organoleptic characters of formulations

Organoleptic character	TK	TKS	TT	TKGV
Color	Dark brown	Dark brown	Brown	Dull brownish
Odor	Characteristics	Characteristics	Alcoholic fragrance	Characteristics
State	Liquid	Liquid	Liquid	Solid
Taste	Tikta, kashaya	Madhura, tikta	Kashaya, tikta	Kashaya, tikta

Fig. 13: Trikantakadi Kvatha
Fig. 14: Trikantakadi Kvatha syrup
Fig. 15: Trikantakadi tincture
Fig. 16: Trikantakadi Kvatha Ghana Vati

Table 6: Physicochemical parameters of formulations

Parameters	Batch	Kvatha	Syrup	Tincture							
Total ash (% w/w)		K1	K2	K3 Avg.	S1	S2	S3 Avg.	T1	T2	T3 Avg.	
Acid insoluble ash (% w/w)	0.3	0.4	0.5	0.4	0.1	0.1	0.2	0.13	0.5	0.5	0.5
Total solid content (% w/v)	19.32	19.31	19.33	19.32	41.82	43.58	41.98	42.47	3.5	3.2	3.24
pH meter	4.77	4.77	4.78	4.77	4.58	4.59	4.59	4.58	4.76	4.75	4.76
Sp. Gravity at 25°C (g/ml)	1.028	1.029	1.028	1.028	1.208	1.179	1.181	1.189	1.003	1.004	1.003
Viscosity (millipoise)	1.379	1.350	1.352	1.351	1.346	1.347	1.347	1.346	1.35	1.35	1.34
Refractive index at room temp.	1.351	1.352	1.352	1.351	1.346	1.347	1.347	1.346	1.35	1.35	1.34
Alcohol content	NA	NA	NA	NA	NA	NA	NA	3	3	3	3
Total acidity (%v/v) titrimetric method	NA	NA	NA	NA	0.047	0.048	0.047	0.047	0.029	0.027	0.029
Total sugar (%v/v)	NA	NA	NA	NA	8.46	8.45	8.45	8.45	10.6	10.5	10.4
Reducing sugar (%v/v)	NA	NA	NA	NA	2.77	2.88	3.15	2.9	2.77	3.01	2.78
Non-reducing sugar (%v/v)	NA	NA	NA	NA	5.40	5.52	5.80	5.57	7.43	7.88	7.88

NA: Not applicable

Table 7: Test for tablets

Parameters	Observed result
Appearance	Dull-brownish color, smooth surface
Shape	Round
Hardness	4 kg/inch²
Thickness and diameter	4 mm, 10.5 mm
Friability	1.001% w/w
Weight variation	1.8% w/w
Disintegration time	14 minutes

54
Stability study of TKS, TT, and TKGV at accelerated temperature conditions was performed (Table 10) [16].

OBSERVATION AND RESULT

Pharmacognostic, physicochemical, phytochemical parameters of all the raw ingredients and formulations were studied, it showed that all the chemical compounds that were present in the Kwath (TK) were also present in other prepared dosage form. Stability studies of various prepared dosage forms of *trikantakadi kwath* was done for the time period of three days and during the stability studies of the various physicochemical, phytochemical and Thin Layer Chromatographic studies were done within the specific interval of time. Stability studies showed no significant variation when compared the observed results of accelerated temperature conditions data with the previous data.

Method for stability study

Stability study was performed by keeping the prepared samples at accelerated temperature conditions. Nine samples of each prepared dosage forms were taken and kept it at accelerated temperature of 4°C and room temperature of 47°C. The samples were tested for the physicochemical properties like color, odor, pH, specific gravity, friability, weight variation, hardness, etc. at the interval of 24 hrs, 48 hrs, and 72 hrs to observing the changes in physicochemical properties (Table 10).

DISCUSSION

TK was prepared by classical method mentioned in literature and converted into TKS, TKGV, and TT. Precaution should be taken during the processing of formulations. TT placed at dark place in airtight container. Physicochemical (Tables 6 and 7) and phytochemical investigation (Table 8) not showed any remarkable changes in physicochemical properties when compared with the previous data (Tables 6-8). Hence, these results may make some improvement in stability and shelf life degradation studies.

CONCLUSION

TK is a polyherbal formulation used for treating the Ashmari, Mutraghat, and Mutakricha. Using stander TK as base, various conventional dosage forms can be prepared. Physicochemical, phytochemical parameters, and TLC showed all chemical compounds that present in the Kwath are also present in other prepared dosage form. Stability studies showed no remarkable variation with physicochemical properties when comparing the observed values, which done in the interval of 24 hrs, 48 hrs, and 72 hrs.
Table 10: Stability studies through Physicochemical parameters of TKS, TT, and TKGV

Sample code	Time duration (in hour)	Temperature (°C)	Physicochemical parameters												
			C	O	Ts	pH	Sp.	R	V	Tu	H	Ha	F	W	D.T.
SA1	24 hrs	4°C	NC	NC	NC	4.58	1.18	1.346	5.6	X	Y	NA	NA	NA	NA
TA1			NC	NC	NC	4.76	1.00	1.342	1.3	X	Y	NA	NA	NA	NA
TaA1		Room temperature	NC	NC	NA	4.76	1.00	1.342	1.3	X	Y	NA	NA	NA	1.001
SA2		Room temperature	NC	NC	NA	4.58	1.18	1.346	5.6	X	Y	NA	NA	NA	NA
TA2			NC	NC	NA	4.76	1.00	1.342	1.3	X	Y	NA	NA	NA	NA
TaA2			NC	NC	NA	4.58	1.17	1.346	5.6	X	Y	NA	NA	NA	NA
SA3	47°C		NC	NC	NA	4.76	1.00	1.342	1.3	X	Y	NA	NA	NA	NA
TA3			NC	NC	NA	4.76	1.00	1.342	1.3	X	Y	NA	NA	NA	NA
TaA3			NC	NC	NA	4.58	1.17	1.346	5.6	X	Y	NA	NA	NA	NA
SB1	48 hrs	4°C	NC	NC	NA	4.58	1.17	1.346	5.6	X	Y	NA	NA	NA	NA
TB1			NC	NC	NA	4.76	1.00	1.342	1.3	X	Y	NA	NA	NA	NA
TaB1			NC	NC	NA	4.58	1.17	1.346	5.6	X	Y	NA	NA	NA	NA
SB2		Room temperature	NC	NC	NA	4.58	1.17	1.346	5.6	X	Y	NA	NA	NA	NA
TB2			NC	NC	NA	4.76	1.00	1.342	1.3	X	Y	NA	NA	NA	NA
TaB2			NC	NC	NA	4.58	1.18	1.346	5.6	X	Y	NA	NA	NA	NA
SB3	47°C		NC	NC	NA	4.76	1.00	1.342	1.3	X	Y	NA	NA	NA	NA
TB3			NC	NC	NA	4.58	1.18	1.346	5.6	X	Y	NA	NA	NA	NA
TaB3			NC	NC	NA	4.76	1.00	1.342	1.3	X	Y	NA	NA	NA	NA
SC1	72 hrs	4°C	NC	NC	NA	4.58	1.17	1.346	5.6	X	Y	NA	NA	NA	NA
TC1			NC	NC	NA	4.76	1.00	1.342	1.3	X	Y	NA	NA	NA	NA
TaC1			NC	NC	NA	4.58	1.17	1.346	5.6	X	Y	NA	NA	NA	NA
SC2		Room temperature	NC	NC	NA	4.76	1.00	1.342	1.3	X	Y	NA	NA	NA	NA
TC2			NC	NC	NA	4.58	1.17	1.346	5.6	X	Y	NA	NA	NA	NA
TaC2			NC	NC	NA	4.76	1.00	1.342	1.3	X	Y	NA	NA	NA	NA
SC3	47°C		NC	NC	NA	4.58	1.18	1.346	5.6	X	Y	NA	NA	NA	NA
TC3			NC	NC	NA	4.76	1.00	1.342	1.3	X	Y	NA	NA	NA	NA
TaC3			NC	NC	NA	4.58	1.18	1.346	5.6	X	Y	NA	NA	NA	NA

C: Color; O: Odor; Ts: Taste; Sp.: Specific gravity at room temperature [g/ml]; R: Refractive index at room temperature; V: Viscosity (milliPoise); Tu: Turbidity; H: Homogeneity; Ha: Hardness (Kg/inch square); F: Friability (%w/w); W: Weight variation (%w/w); D.T.: Disintegration time (minute); S: Syrup; T: Tincture; Ta: Tablet; C: Color; O: Odor; Ts: Taste; Sp.: Specific gravity at room temperature [g/ml]; R: Refractive index at room temperature; V: Viscosity (milliPoise); Tu: Turbidity; H: Homogeneity; Ha: Hardness (Kg/inch square); F: Friability (%w/w); W: Weight variation (%w/w); D.T.: Disintegration time (minute); S: Syrup; T: Tincture; Ta: Tablet;

72 hrs. Hence, shelf life and all other related issue of Kvatha may be solve by converting Kvatha into most convenient dosage formed as per requirement.

ACKNOWLEDGMENT

The authors are grateful to Lovely Professional University, Phagwara, for providing the necessary infrastructure and resources to carry out this research project.

REFERENCES

1. Tripathi B, editor. Sharanagadhar Samhita with “Dipika Hindi Commentary”. Madhyam Khand. Ch. 9. Varanasi: Chaukhamba Subharti Prakashan; 2008.
2. Shastri S. Agnivesha Charaka Samhita, Sutra Sthana 4/6. Varanasi: Chaukhamba Bharti Academy; 2006. p. 71.
3. Sushruta. Sushruta Samhita, Chikitsa Sthana 31/8. Varanasi: Chaukhamba Sanskrit Sanshan; 2005.
4. Tripathi RD. Astanga Sangraha, Sutra Sthana 178/103. Varanasi: Chaukhamba Sanskrit Pratishthan; 2003.
5. Pandit Sarangadhara. Sarangadhara Samhita, Madhyam Khand 2/3. Varanasi: Chaukhamba Subharti Prakashan; 2010. p. 133-4.
6. Jha CB. Yogatarangini 18/20. Varanasi: Chaukhamba Vidyabhavan; 2003. p. 76.
7. Narayan SR. Ayurveda Sar Samghara, Reprint. 11th ed. New Delhi: Vaidyanatha Ayurved Bhavan; 2011. p. 707.
8. Krishna G. Rasatantrasaar Va Siddhaprya Yagam, 1st Part. Ajmair: Krishna Gopal Ayurved Bhavan; 2005. p. 704.
9. Gupta AK, Tandan N, Sharma M: Quality Standard of Indian Medicinal Plants. Vol I, II, IV, VII, VIII. New Delhi: Indian Council of Medicinal Research; 2003, 2005, 2006, 2008, 2010.
10. Bharat DK, Patgiri BJ, Prajapati PK. Standard manufacturing procedure for syrup and tablet forms of Jwadhara Dhasamani. Int J Res Ayurveda 2010;3(12):255-9.
11. Lean L, Lieberman HA, Kaning JL. The Theory and Practice of Industrial Pharmacy. 3rd ed. Bombay: Varghese Publishing House; 1987.
12. Anonymous. Protocol for Testing Ayurveda, Siddha and Unani medicines. Ghaziaibad: Government of India, Ministry of Health and Family Welfare, Department of AYUSH, PLIM; 2006.
13. Anonymous. The Ayurvedic Pharmacopoeia of India Part-I, Appendix-2,3,5. 1st ed., Vol. VI. New Delhi: Government of India, Ministry of Health and Family Welfare Department of AYUSH; 2008.
14. Khar RK, Vyas SP, Ahmad FJ, Jain GK, Lachman L, Lieberman HA. The Theory and Practice of Industrial Pharmacy. 4th ed. Philippines: CBS Publishers & Distributors Pvt Ltd.; 2014.
15. Kokate CK, Practical Pharmacognosy. New Delhi: Vallabh Prakashan; 1994.
16. Kumar SP, Prasan ND. Development and evaluation of polyherbal syrup from some herbs used as expectorant. World J Pharm Pharm Sci 2013;2(5):3848-53.