The Effect of Aclidinium on Symptoms Including Cough in COPD: A Phase IV, DoubleBlind, Placebo-Controlled, Parallel-Group Study

Smith, J. A., McGarvey, L., Morice, A. H., Birring, S. S., Wedzicha, J. A., Notari, M., Zapata, A., Segarra, R., Seoane, B., & Jarreta, D. (2019). The Effect of Aclidinium on Symptoms Including Cough in COPD: A Phase IV, DoubleBlind, Placebo-Controlled, Parallel-Group Study. American Journal of Respiratory and Critical Care Medicine. https://doi.org/10.1164/rccm.201901-0048LE

Published in:
American Journal of Respiratory and Critical Care Medicine

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2019 American Thoracic Society. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date: 25. Jul. 2020
A Randomized Phase IV Study of the Effect of Aclidinium on Symptoms Including Cough in COPD

Jaclyn A. Smith¹, Lorcan McGarvey², Alyn H. Morice³, Surinder S. Birring⁴,⁵, Jadwiga A. Wedzicha⁶, Massimo Notari⁷, Antonio Zapata⁸, Rosa Segarra⁹, Beatriz Seoane⁹, Diana Jarreta⁹

¹Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK; ²Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK; ³Hull York Medical School, University of Hull, Castle Hill Hospital, Cottingham, UK; ⁴Centre for Human & Applied Physiological Sciences, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK; ⁵Department of Respiratory Medicine, King’s College Hospital, London, UK; ⁶Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK; ⁷A.Menarini Farmaceutica Internazionale s.r.l., Florence, Italy; ⁸Laboratorios Menarini, S.A. Badalona, Spain; ⁹R&D Centre, AstraZeneca PLC, Barcelona, Spain

Corresponding author:

Professor Jacky Smith MB ChB PhD FRCP
Division of Infection, Immunity and Respiratory Medicine
University of Manchester
2nd Floor Education and Research Centre
Manchester University NHS Foundation Trust
Southmoor Road
Manchester, M23 9LT
UK
Tel: +44 (0)161 291 5863
Fax: +44 (0)161 291 5730
Email: jacky.smith@manchester.ac.uk
Subject category: 9.14 COPD: Pharmacological Treatment

Publication type: Research Letter

Trial registration: NCT02375724

Authors’ contributions: All authors contributed to the conception and design of the study, data analysis/interpretation and revision of the manuscript for intellectual content, and provided final approval of the manuscript. JAS was the Principal Investigator of the study. All authors read and approved the final manuscript.

Word count: 998/1000

References: 10/10

Figure/Table: 1 Figure, 1 Table

[Authors: Please note the following restrictions for a Research Letter: letters should be no longer than 1000 words, with no more than 1 figure and 1 table (or 2 tables and no figures or 2 figures and no tables), and no more than 10 references. Figures should be single-paneled, not multi-paneled. Online supplemental material will not be accepted or posted. Research letters should not include abstracts, and the number of authors should not exceed ten]

[Authors: please note that due to the 1000 word count restriction, the analyses have been included in brief, only]
To the editor:

Cough and sputum production are very common and troublesome symptoms for patients with chronic obstructive pulmonary disease (COPD) (1) and are associated with lung function decline, increased exacerbation risk, and poor prognosis (2-4). To date, no clinical studies that have investigated the effect of treatment with a long-acting muscarinic antagonist (LAMA) on cough as a primary or secondary endpoint. Aclidinium is a LAMA approved as a twice-daily maintenance bronchodilator treatment for patients with COPD (5). This study assessed the efficacy of aclidinium on symptoms, including cough, in patients with moderate COPD. This was a phase IV, double-blind, placebo-controlled, parallel-group study (NCT02375724), in 30 centers across five European countries between March 23, 2015 and November 17, 2015. Patients were randomized 1:1 to receive aclidinium 400 µg or placebo twice daily, administered via a multidose, dry-powder inhaler (Genuair™/Pressair®a). The study comprised a 1- to 2-week run-in period followed by an 8-week treatment period. Patients were aged ≥40 years with moderate COPD (post-bronchodilator forced expiratory volume in 1 second (FEV₁) ≥50% and <80% predicted; FEV₁/forced vital capacity <70%). The primary endpoint was change from baseline in Evaluating-Respiratory Symptoms in COPD (E-RS:COPD™) total score over 8 weeks (minimal clinically important difference [MCID], 2.0)(6). Secondary efficacy endpoints were change from baseline in E-RS cough and sputum domain score over 8 weeks (MCID, 0.7)(6) and change from baseline in Leicester Cough Questionnaire (LCQ; MCID, 1.3)(7), at Week 8. Exploratory endpoints included change from baseline in COPD Assessment Test (CAT) score (MCID, 2.0)(8), cough severity visual analogue scale (VAS) score, E-RS total score and E-RS cough and sputum domain score at Weeks 4 and 8, and E-RS breathlessness (MCID, 0.1) and chest domain scores (MCID, 0.7)(6) at Weeks 4, 8, and over 8 weeks. A post hoc analysis stratified patients by baseline cough severity (VAS; >30 mm, more severe; ≤30 mm, less
severe) to assess impact of aclidinium on cough-related endpoints. All patients provided written informed consent; study protocols and amendments were approved by local ethics committees. The primary endpoint was analyzed using a mixed model for repeated measures. Overall, 269 patients were randomized; 135 received aclidinium and 134 received placebo. At baseline, 60% of patients were male, 64% were current smokers, mean age was 62 years, with mean post-bronchodilator FEV₁ 64.2% predicted. Mean baseline E-RS breathlessness, cough and sputum, and chest domain scores were 6.0, 3.7, and 2.9, respectively, and total E-RS was 12.5. Baseline CAT and LCQ scores were 19.4 and 14.5, respectively. Significant improvements in E-RS total score were observed with aclidinium versus placebo (Figure 1). Aclidinium significantly improved E-RS cough and sputum domain scores versus placebo at Week 8 but not at Week 4 or over 8 weeks (Table 1). For E-RS breathlessness domain score, aclidinium provided statistically significant improvements versus placebo at all time points (Table 1). Changes in LCQ total score for aclidinium versus placebo were not statistically significant at any time point (Table 1). Improvements in CAT and E-RS chest domain scores were numerical only (Table 1), as were changes in cough severity (VAS; Week 4, -0.7; Week 8, -1.1; over 8 Weeks, -0.9). In total, 264 patients were stratified by cough severity (more severe, 123 patients; less severe, 141 patients). In patients with more severe cough, significant improvements were observed in E-RS total score at Week 4, and cough and sputum domain scores at each time point (Table 1). Numerical differences versus placebo were observed in LCQ, and E-RS breathlessness and chest domains scores, at Weeks 4 or 8, in patients with more severe cough. Statistically significant improvements were seen for more severe cough patients versus placebo in CAT score at Weeks 4 and 8 (Table 1). No significant differences were observed for any outcome in patients with less severe cough. Overall, aclidinium significantly improved a range of daily COPD symptoms (including cough and sputum) versus placebo. Improvements in quality of life measures LCQ and CAT
did not reach statistical significance for aclidinium versus placebo in the total patient population. Baseline LCQ values in the total population suggested that the impact of symptoms on quality of life was minimal, possibly due to the number of patients with mild cough. Safety outcomes were consistent with those previously reported (9). Post hoc analyses showed that for patients with more severe cough, aclidinium provided greater improvements versus placebo in E-RS cough and sputum domain scores and CAT score. These patients had higher baseline CAT and E-RS total and domain scores than patients with less severe cough, and a mean LCQ of 12.7, indicating prominent cough symptoms. In contrast to the total population, when patients were stratified by cough severity there was a numerical trend towards improvement in LCQ in patients with more severe cough, versus less severe cough. This suggests baseline cough severity could be an important symptomatic marker for treatment response and VAS score may reflect some mechanisms driving cough and sputum production in COPD and specifically those most responsive to aclidinium treatment (10).

One limitation was that this study was powered for E-RS total score and E-RS cough and sputum domain, but not for CAT or LCQ scores. As quality of life instruments LCQ and CAT are designed to capture impact of a condition rather than severity, these tools may not be as sensitive to symptom changes as those specifically designed for symptom severity, such as E-RS. Additionally, only patients with moderate COPD were included, therefore further studies in a more severe COPD population would be beneficial.

In this study, which was one of the first studies to assess the effect of a LAMA on cough outcomes in patients with COPD, aclidinium 400 µg significantly improved a range of daily symptoms, including cough, in symptomatic patients with moderate COPD compared with placebo. Additionally, a subgroup of patients with more severe cough symptoms gained a distinct and early benefit from aclidinium in a number of cough-related endpoints. Therefore,
routine evaluation of cough symptoms in addition to breathlessness, may result in more effective treatment management in patients with moderate COPD.

Endnotes

a Registered trademark of AstraZeneca group of companies; for use within the USA as Pressair® and as Genuair™ within all other licensed territories.

b The E-RS™ is owned by Evidera. Permission to use this instrument may be obtained from Evidera (exactpro@evidera.com).

Acknowledgments

The authors would like to thank all of the patients and their families, the team of investigators, research nurses, and operations staff involved in this study. Medical writing support, under the direction of the authors, was provided by Richard Knight, PhD, of CMC CONNECT, a division of Complete Medical Communications Ltd, Macclesfield, UK, funded by AstraZeneca in accordance with Good Publication Practice (GPP3) guidelines (ref.Ann Intern Med 2015;163:461-464).
Competing interests

JAS has received consultancy fees and grant funding from AstraZeneca. LM has received speaker and consultancy fees from Almirall and AstraZeneca. AHM has received fees for lecturing from Almirall and AstraZeneca and has received grant funding from AstraZeneca. SSB has received consultancy fees from Almirall. JAW has received research grants from AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Johnson and Johnson and Novartis and has received meeting expenses from AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline and Novartis. MN is an employee of Menarini Farmaceutica Internazionale s.r.l., Florence, Italy. AZ is an employee of Laboratorios Menarini, S.A. Badalona, Spain. RS, BS, and DJ are employees of AstraZeneca.
References

1. Jones PW, Brusselle G, Dal Negro RW, Ferrer M, Kardos P, Levy ML, Perez T, Soler Cataluña JJ, van der Molen T, Adamek L, Banik N. Patient-centred assessment of COPD in primary care: experience from a cross-sectional study of health-related quality of life in Europe. Prim Care Respir J 2012;21:329-336.

2. Burgel PR, Nesme-Meyer P, Chanez P, Caillaud D, Carré P, Perez T, Roche N. Cough and sputum production are associated with frequent exacerbations and hospitalizations in COPD subjects. Chest 2009;135:975-982.

3. Lindberg A, Sawalha S, Hedman L, Larsson LG, Lundbäck B, Rönmark E. Subjects with COPD and productive cough have an increased risk for exacerbations and death. Respir Med 2015;109:88-95.

4. Putcha N, Drummond MB, Connett JE, Scanlon PD, Tashkin DP, Hansel NN, Wise RA. Chronic productive cough is associated with death in smokers with early COPD. COPD 2014;11:451-458.

5. Jones PW, Singh D, Bateman ED, Agusti A, Lamarca R, de Miquel G, Segarra R, Caracta C, Garcia Gil E. Efficacy and safety of twice-daily aclidinium bromide in COPD patients: the ATTAIN study. Eur Respir J 2012;40:830-836.

6. Leidy NK, Murray LT, Monz BU, Nelsen L, Goldman M, Jones PW, Dansie EJ, Sethi S. Measuring respiratory symptoms of COPD: performance of the EXACT-Respiratory Symptoms Tool (E-RS) in three clinical trials. Respir Res 2014;15:124.

7. Raj AA, Pavord DI, Birring SS. Clinical cough IV: what is the minimal important difference for the Leicester Cough Questionnaire? Handb Exp Pharmacol 2009;311-320.

8. Kon SSC, Canavan JL, Jones SE, Nolan CM, Clark AL, Dickson MJ, Haselden BM, Polkey MI, Man WD. Minimum clinically important difference for the COPD Assessment Test: a prospective analysis. Lancet Respir Med 2014;2:195-203.

9. Chapman KR, Beck E, Alcaide D, Garcia Gil E. Overall and cardiovascular safety of aclidinium bromide in patients with COPD: a pooled analysis of six Phase III, placebo-controlled, randomized studies. Chronic Obstr Pulm Dis 2015;3:435-445.

10. Calverley PM. Cough in chronic obstructive pulmonary disease: is it important and what are the effects of treatment? Cough 2013;9:17.
Figure 1. Change from baseline in E-RS total score for aclidinium 400 µg versus placebo (intent-to-treat population).

Data are least squares mean ± standard error.

E-RS = Evaluating-Respiratory Symptoms in COPD (E-RS:COPD™).

*P < 0.05 vs. placebo
Table 1. Summary of efficacy for aclidinium versus placebo (intent-to-treat population)

Change from baseline	Time point	Any VAS	Baseline cough VAS >30 mm (more severe)	Baseline cough VAS ≤30 mm (less severe)
E-RS total score	Week 4	-0.9 (0.4) *	-1.3 (0.6) *	-0.6 (0.6)
	Week 8	-1.1 (0.6) *	-1.2 (0.8)	-1.1 (0.8)
	Over 8 weeks	-1.0 (0.5) *	-1.2 (0.7)	-0.8 (0.6)
E-RS cough and sputum domain	Week 4	-0.1 (0.1)	-0.3 (0.2) *	0.1 (0.2)
	Week 8	-0.3 (0.2) *	-0.5 (0.2) *	-0.2 (0.2)
	Over 8 weeks	-0.2 (0.1)	-0.4 (0.2) *	-0.1 (0.2)
LCQ	Week 4	0.1 (0.3)	0.6 (0.4)	-0.1 (0.4)
	Week 8	-0.1 (0.3)	0.4 (0.4)	-0.4 (0.4)
CAT total score	Week 4	-0.7 (0.6)	-2.2 (0.8) *	0.5 (0.8)
	Week 8	-0.6 (0.6)	-2.3 (0.9) *	1.0 (0.9)
E-RS breathlessness domain	Week 4	-0.6 (0.2) *	-0.7 (0.3)	-0.5 (0.3)
	Week 8	-0.6 (0.3) *	-0.5 (0.4)	-0.7 (0.4)
	Over 8 weeks	-0.6 (0.3) *	-0.6 (0.4)	-0.6 (0.4)
E-RS chest symptoms domain	Week 4	-0.2 (0.1)	-0.3 (0.2)	-0.2 (0.2)
	Week 8	-0.2 (0.2)	-0.2 (0.2)	-0.2 (0.2)
	Over 8 weeks	-0.2 (0.1)	-0.3 (0.2)	-0.2 (0.2)

Data are least-squares mean change from baseline for aclidinium 400 µg vs placebo (± standard error).

Analyzed using a mixed model for repeated measures (covariates: baseline, and age; factors: treatment group, sex, smoking status, visit, and treatment-by-visit interaction.

*Treatment difference was greater than the minimal clinically important difference (8).

Definition of abbreviations: CAT = COPD Assessment Test; E-RS = Evaluating-Respiratory Symptoms in COPD (E-RS:COPD™); LCQ = Leicester Cough Questionnaire; VAS = visual analog scale.

* P<0.05