Resolving the mass–anisotropy degeneracy of the spherically symmetric Jeans equation – II. Optimum smoothing and model validation

Foivos I. Diakogiannis,1* Geraint F. Lewis1 and Rodrigo A. Ibata2

1Sydney Institute for Astronomy, School of Physics, A28, University of Sydney, NSW 2006, Australia
2Observatoire Astronomique, Université de Strasbourg, CNRS, 11, rue de l Université, F-67000 Strasbourg, France

Accepted 2014 June 9. Received 2014 June 7; in original form 2014 January 14

ABSTRACT
The spherical Jeans equation is widely used to estimate the mass content of stellar systems with apparent spherical symmetry. However, this method suffers from a degeneracy between the assumed mass density and the kinematic anisotropy profile, \(\beta(r) \). In a previous work, we laid the theoretical foundations for an algorithm that combines smoothing B splines with equations from dynamics to remove this degeneracy. Specifically, our method reconstructs a unique kinematic profile of \(\sigma_r^2 \) and \(\sigma_\theta^2 \) for an assumed free functional form of the potential and mass density \((\Phi, \rho)\) and given a set of observed line-of-sight velocity dispersion measurements, \(\sigma_{los}^2 \). In Paper I, we demonstrated the efficiency of our algorithm with a very simple example and we commented on the need for optimum smoothing of the B-spline representation; this is in order to avoid unphysical variational behaviour when we have large uncertainty in our data. In the current contribution, we present a process of finding the optimum smoothing for a given data set by using information of the behaviour from known ideal theoretical models. Markov Chain Monte Carlo methods are used to explore the degeneracy in the dynamical modelling process. We validate our model through applications to synthetic data for systems with constant or variable mass-to-light ratio \(\Upsilon \). In all cases, we recover excellent fits of theoretical functions to observables and unique solutions. Our algorithm is a robust method for the removal of the mass–anisotropy degeneracy of the spherically symmetric Jeans equation for an assumed functional form of the mass density.

Key words: methods: miscellaneous – methods: statistical – galaxies: general – galaxies: kinematics and dynamics – galaxies: statistics.

1 INTRODUCTION
An open problem in modern theoretical galactic dynamics is the mass–anisotropy degeneracy of the spherically symmetric Jeans equation (hereafter SSJE). Specifically, there exists a degeneracy between an assumed mass density, \(\rho(r) \), and the anisotropy profile, \(\beta(r) \), of a self-gravitating system. That is, there are many pairs \((\rho(r), \beta(r))\) that describe equally well the observables (Merritt 1987). Binney & Mamon (1982) were the first to present a solution for the case of constant mass-to-light ratio. From a different perspective, in a previous work (Diakogiannis, Lewis & Ibata 2014, hereafter Paper I), we set the theoretical foundation for the removal of this anisotropy so that: for an assumed free functional form of the mass density and potential of a spherically symmetric system \((\rho(r), \Phi(r))\), we recover a unique kinematic profile for the second-order radial, \(\sigma_r^2 \), and tangential, \(\sigma_\theta^2 \), velocity moments. This is valid for both constant and variable mass-to-light ratio. In Paper I, we argued that, if we know the complete functional form of \(\sigma_{los}^2 \) and the mass density \(\rho(r) \), then it is possible by using some optimization method (e.g. Genetic Algorithms), to reconstruct a unique kinematic profile \(\sigma_r^2, \sigma_\theta^2 \) within any desired numerical accuracy; i.e. a unique decomposition of \(\sigma_{los}^2 \) to \(\sigma_r^2 \) and \(\sigma_\theta^2 \). For the case where we have a discrete data set, we can only speak of a unique family of profiles within some statistical uncertainty. This uniqueness follows from exploring parameter space with Markov Chain Monte Carlo (MCMC) methods and recovering unimodal marginalized distributions.

In the core of our method lies the representation of the radial velocity dispersion, \(\sigma_r^2 \), in a B-spline basis. B-spline functions (De Boor 1978) are used extensively in Computer-Aided Geometric Design (Farin 2002) and in statistical smoothing spline modelling techniques (Hastie, Tibshirani & Friedman 2001). In Paper I, we demonstrated our algorithm with a very simple example with fixed mass-to-light ratio \(\Upsilon \). In this paper, we validate our method by giving a variety of examples with constant or variable \(\Upsilon \). For the latter,

*E-mail: f.diakogiannis@physics.usyd.edu.au
1By the phrase ‘assumed free functional form’ we mean a specific mass profile, e.g. King, or Michie, with free parameters to be estimated from our algorithm.
we demonstrate the usage of our algorithm in a two-component system that consists of both stellar and dark matter populations. In Paper I, we also commented on the need for optimum smoothing, since there may be cases where our data have large errors and the resulting kinematic profile demonstrates unphysical variations. In the current contribution, we present an algorithm for optimum smoothing, based on information of the smoothness behaviour from ideal theoretical models.

The structure of our paper is as follows: in Section 2, we present for completeness a very short description of the most basic equations presented in Paper I. In Section 3, we describe the statistical inference methods we use as well as the algorithm for optimized smoothing. In Section 4, we present three detailed examples. In these, we reconstruct fully the mass content of the system and the kinematic profile, using synthetic data of brightness and line-of-sight velocity dispersion σ^2_{los}. In Section 5, we discuss various aspects of our results. Finally, in Section 6 we conclude our work.

2 MATHEMATICAL FORMULATION

In Paper I, we gave a detailed description of the mathematical formulation of our algorithm for the SSJE. For completeness, we repeat some very basic mathematical formulas that are related to our needs for the present analysis. The interested reader should consult Paper I and references therein for a complete understanding of our method.

2.1 B-spline functions

A B-spline function of order k is the linear combination of some constant coefficients α_i with the B-spline basis functions $B_{i,k}(x)$

$$f(x) = \sum_{i=1}^{n} \alpha_i B_{i,k}(x).$$

(1)

The $B_{i,k}(x)$ basis functions are known polynomial pieces of degree $k-1$, joined together in a special way as to ensure certain differentiability and smoothness criteria. These B-spline basis functions $B_{i,k}(x)$ are defined over a non-decreasing interval $\xi_0 \leq \xi_1 \leq \ldots \leq \xi_n$, that we call the knot sequence. Each of the ξ_i is called a knot. The distribution of knots ξ_i and the constant coefficients α_i regulate the geometric shape of $f(x)$. For a detailed description of B-spline functions, the reader should consult Paper I and references therein.

2.2 The SSJE

In Paper I, we demonstrated that if we represent the radial second order velocity moment, σ^2_{los}, in a B-spline basis defined over $[0, r]$, i.e.

$$\sigma^2_{los}(r) = \sum_{i=1}^{N_{coeff}} \alpha_i B_{i,1}(r),$$

(2)

then the line-of-sight velocity dispersion can be written in the form

$$\sigma^2_{los}(R) = \sum_{i} \alpha_i I_i(R) + C(R),$$

(3)

where we defined

$$I_i(R) = \frac{1}{\Sigma_i} \int_{r_i}^{r_{i+1}} \left(2r^2 + \rho^{(1)}R^2 \right) B_{i,k}(r) \frac{\rho R^2 B^{(1)}_{i,k}(r)}{\sqrt{r^2 - R^2}},$$

(4)

$$C(R) = \frac{1}{\Sigma} \int_{R}^{r} \frac{\rho(r) R^2}{\sqrt{r^2 - R^2}} \frac{d\Phi(r)}{dr},$$

(5)

where r_i is the tidal radius of the system. Quantities $\rho^{(1)}(r) = \frac{d\rho(r)}{dr}$ and $B^{(1)}_{i,k}(r) = \frac{dB_{i,k}(r)}{dr}$ represent the first derivative of the mass density and the B-spline basis function. Coefficients α_i define the shape of σ^2_{los} and affect the geometric shape of σ^2_{los}.

For a system that consists of both stellar and dark matter populations, the above formalism is generalized with the assumption that the mass density $\rho(r)$ is now the tracer stellar density, i.e. $\rho(r) \rightarrow \rho_*(r)$ and $\Sigma(R) \rightarrow \Sigma_*(R)$. The interaction of the stellar with the dark matter component is performed through the total potential

$$\frac{d\Phi_{tot}(r)}{dr} = GM_{tot} \frac{\rho_{tot}}{r^2} = \frac{G(M_\star + M_\bullet)}{r^2}.$$

(6)

where symbol \star corresponds to stellar population, and \bullet to dark matter.

2.3 Dynamical models

In the following sections, we will reconstruct, from synthetic data, the kinematic profile, i.e. σ^2_{los} and σ^2_{los} (once σ^2_{los} is known, σ^2_{los} can be found from the SSJE), of a stellar system in equilibrium. We will assume that the stellar mass content of this system is described from a King (1966) mass density $\rho(r)$. This is the only stellar density we are going to consider. For cases where we will consider also a cold dark matter component, we will use a Navarro, Frenk and White profile (Navarro, Frenk & White 1996, hereafter NFW). The quantity σ^2_{los} is going to be reconstructed from a B-spline function approximation, as discussed in previous sections; in Paper I, we gave a detailed description of the necessary functions that we use for our modelling. In short, a King mass model is defined through the parameters (w_0, ρ_0, r_0), where w_0 is the value of the transformed potential $w(r) = -\rho(r)/\sigma^2$ at the centre ($r = 0$), ρ_0 is the stellar core density of the cluster, and r_0 the King core radius; the interested reader should consult Paper I and references therein for more details.

The NFW profile reference is defined through the mass density

$$\rho_*(r) = \frac{r_0^2 \rho_{0\star}}{r(r^2 + r_0^2)^2},$$

(7)

where $\rho_{0\star}$ is a characteristic dark matter (hereafter DM) density and r_c a characteristic length.

3 STATISTICAL ANALYSIS

In this section, we will be using standard frequentist and Bayesian approaches to model fitting. We will interchange the use of these, according to what best suits our needs each time. Eventually, our model fits are going to be performed in a fully Bayesian context. The reader is directed to standard texts such as Hastie et al. (2001), Sivia & Skilling (2006) and Gregory (2010) for further details.

3.1 Likelihood function

In this section, we augment the formalism we developed in Paper I in order to account also for a smoothing penalty. The full data set of brightness, D_b, and kinematics, D_k, is $D = \{D_b, D_k\}$. The full posterior probability of our complete data set, including the penalty, is

$$P(\theta | D) \propto P(\theta) L(D | \theta) p(W | \lambda) p(\lambda),$$

(7)

where θ represents the vector of parameters needed to fully describe a given assumed physical model; the terms $P(\theta)$ and $L(D | \theta) = L(D_b | \theta) L(D_k | \theta)$ have the same mathematical form as in Paper I.
The term $p(W|\lambda)$ represents a smoothness penalty that we must apply to the shape of the σ_{los}^2 function such as to avoid variational behaviour. This is encoded in the W quantity which we shall define later. The $p(W|\lambda)$ penalty is governed by the set of values of the λ smoothing parameter. $p(\lambda)$ represents the distribution from which our smoothing parameter λ draws values and that we are going to determine later. We use the same MCMC algorithm as in Paper I.

3.2 Bayesian model selection

In Paper I, we described the necessary mathematical framework for Bayesian model inference. Model comparison is performed through the evaluation of Bayesian evidence Z. For this, we use MULTINEST (Feroz & Hobson 2008; Feroz, Hobson & Bridges 2009). In cases where the model complexity becomes too great, we are going to use the Bayesian Information Criterion (BIC) for the choice of optimum model. BIC is defined as

$$BIC = -2 \ln(\mathcal{L}(D|\hat{\theta})) + d \log(N),$$

where $d = \dim(\theta)$ is the total number of free parameters, N is the total number of data points and $\mathcal{L}(D|\hat{\theta})$ the maximum likelihood value as results from an MCMC run. $\hat{\theta}$ are the values of parameters, θ, that maximize the likelihood function, $\mathcal{L}(D|\theta)$. We can legitimately use BIC, since the posterior distribution belongs to the exponential family. When we perform model comparison using BIC, the most probable model is the one with smallest BIC value.

3.3 Smoothing penalty distributions

In this section, we are going to describe how we estimate our choice of probability distributions $p(W|\lambda)$ and $p(\lambda)$. By the term ‘smoothing’, we mean how ‘stiff’ or ‘non-flexible’ our resulting B-spline function must be. The probability distributions $p(W|\lambda)$ and $p(\lambda)$ govern this property of the resulting σ_{los}^2 function as well as of the $\psi(r) = \sigma_{los}^2(r)$ B-spline representation. We need smoothing penalty for cases where we have large errors and the B-spline function tends to follow the data in an unphysical way. We also need this penalty for cases of incomplete data: they do not span all distance $[0, r]$.

For the penalty function W, we choose the following scheme:

$$W = \int_0^\infty \left[q \left(\frac{d^2\sigma_{los}^2}{dR^2} \right)^2 + (1 - q) \left(\frac{d\sigma_{los}^2}{dR} \right)^2 \right] dR. \quad (9)$$

We penalize both the first (slope) and second (curvature) derivatives of the line-of-sight velocity dispersion. We choose to penalize $\sigma_{los}^2(R)$ and not $\psi = \sigma_{los}^2(r)$ since the former is compared directly to the data set. The parameter q lies in the range $q \in [0, 1]$ and describes at which percentage each of the derivatives of σ_{los}^2 participates in the penalty. Our choice, after a lot of trial and error, will be fixed at $q = 0.75$. That is, we assign the majority of the penalty to the second derivative, thus penalizing mainly the curvature of the curve, and not the slope.

In a full Bayesian context, we have

$$p(W|\lambda) = \lambda e^{-\lambda W}, \quad (10)$$

which is normalized in the range of all positive values $W \in [0, \infty)$

$$\int_0^\infty \lambda e^{-\lambda W} dW = 1. \quad (11)$$

See following section for definition of smoothness.

4 We emphasize that it is the choice of distribution (e.g. uniform, Gaussian, etc.) that must be fixed, not the knot sequence.

5 The motivation of our choice will be described in the next section.
for applications to real data sets. For example, calculate \(\alpha, \beta \) for a given number of coefficients and then apply this range to a B-spline function with a few more coefficients or a few more data points. We will demonstrate with an example, how altering the value of data points and keeping fixed the range of \(\lambda \) can result in a small bias in the estimates.

Consider the case where we create a small number of synthetic data from a model that depends on a single variable, say \(x \). These data are created from a reference value, say \(x_{\text{ref}} \), in which we add a random Gaussian noise \(N(0, \sigma_{\text{true}}) \) of given variance \(\sigma_{\text{true}}^2 \). We wish to recover this \(x_{\text{ref}} \) value, within some statistical uncertainty, through an MCMC scheme. That is, we wish to estimate a marginalized distribution of \(x \) values.

Assume that we define a likelihood that depends on \(x \) and also on some parameter \(\lambda \) that is not estimated from the MCMC. The value of this parameter affects the estimation of \(\langle x \rangle \) by inserting some unknown bias in the true mean \(\langle \rangle \text{true} = x_{\text{ref}} \) and by increasing the total variance of the true \(x \) values \(\sigma_{\text{true}}^2 \) by some unknown amount \(\text{Var} \). Then, this bias and variance will be in general a function of \(\lambda \), i.e. \(\text{Bias}(\lambda) \) and \(\text{Var}(\lambda) \). The relation between the true reference values of mean and variance and the estimated ones is

\[
\langle x \rangle = x_{\text{ref}} + \text{Bias}(\lambda) \tag{13}
\]

\[
\sigma^2 = \sigma_{\text{true}}^2 + \text{Var}(\lambda). \tag{14}
\]

We can see these relations schematically in Fig. 1. The histogram represents the estimates of each MCMC walk based on synthetic data points \(d \). These were created from the true value \(x_{\text{ref}} \) by adding Gaussian random noise. Overplotted is a Gaussian (red in colour version) from which we generated a synthetic data sample of values \(x_i \), centred on the (biased) mean value \(\langle x \rangle \). We show how the mean \(\langle x \rangle \) deviates from the true \(x_{\text{ref}} \) due to \(\text{Bias}(\lambda) \). We also plot the increase in variance \(\sigma^2 \) from the true \(\sigma_{\text{true}}^2 \) due to \(\text{Var}(\lambda) \).

![Figure 1](https://example.com/figure1.png)

Figure 1. The histogram represents the distribution of values from an MCMC walk that have a biased mean estimate, and a biased variance. The mean value \(\langle x \rangle \sim 20 \) differs from the correct \(x_{\text{ref}} \sim 15 \) by the amount: \(\text{Bias} = \langle x \rangle - x_{\text{ref}} \). The variance \(\sigma^2 \) of the histogram is increased by an amount \(\text{Var}(\lambda) \) according to \(\sigma^2 = \sigma_{\text{true}}^2 + \text{Var}(\lambda) \).

We wish to find which is the optimum \(\lambda \) value that gives the optimum trade-off between bias and variance in our estimates. We define as measure of this trade-off the average deviation of each of the MCMC walk points \(x_i \) from the reference value \(x_{\text{ref}} \)

\[
S(\lambda) = \frac{1}{N_{\text{MCMC}}} \sum_{i} (x_i - x_{\text{ref}})^2. \tag{15}
\]

Substituting equations (13) in (15) yields

\[
S(\lambda) = \frac{1}{N_{\text{MCMC}}} \sum_{i} [(x_i - \langle x \rangle)^2 - 2(x_i - \langle x \rangle)\text{Bias}(\lambda) + \text{Bias}^2(\lambda)],
\]

that is,

\[
S(\lambda) = \sigma^2 + \text{Bias}^2(\lambda), \tag{16}
\]

where \(\text{Bias}^2(\lambda) = \langle \text{Bias}(\lambda) \rangle^2 \), and we used

\[
\frac{1}{N_{\text{MCMC}}} \sum_{i} (x_i - \langle x \rangle)\text{Bias}(\lambda) = 0.
\]

In equation (16), \(\sigma^2(\lambda) \) can be further decomposed into the true variance \(\sigma_{\text{true}}^2 \) of the target distribution around its mean, that is inherent to the process by which we created the random sample, and a variance term \(\text{Var}(\lambda) \) that depends on the smoothing parameter \(\lambda \)

\[
S(\lambda) = \sigma_{\text{true}}^2 + \text{Var}(\lambda) + \text{Bias}^2(\lambda). \tag{17}
\]

That is, the deviation of the values \(x_i \) of the MCMC chains from the reference value, is some irreducible variance \(\sigma_{\text{true}}^2 \) that is inherent to the random process in which the data were created, and a part that results from the additional bias \(\text{Bias}(\lambda) \) and variance \(\text{Var}(\lambda) \) inserted by a wrong assumption on the value \(\lambda \). There is an interplay between \(\text{Var}(\lambda) \) and \(\text{Bias}(\lambda) \). As we increase \(\lambda \) parameter from zero, we expect the term \(\text{Var}(\lambda) + \text{Bias}^2(\lambda) \) to be reduced. However, beyond some value, while \(\text{Var}(\lambda) \) will continue decreasing, \(\text{Bias}(\lambda) \) will start rising and result in an overall increase \(^7\) in \(S(\lambda) \). Therefore, the optimum value of \(\lambda \) parameter is going to be the one that minimizes \(S(\lambda) \) in the estimates from the MCMC.

We are going to use this ‘variance’ \(S(\lambda) \) as a measure of optimum smoothing for the case of a B-spline representation of \(\sigma_n^2 \). For this case, we define

\[
S(\lambda) = \frac{1}{N_{\text{MCMC}}} \sum_{j} \left[\frac{1}{n} \sum_{i} (a_i - a_{i}^{\text{ref}})^2 \right]_j. \tag{18}
\]

The quantity inside the brackets corresponds to the average deviation \((a_i - a_{i}^{\text{ref}})^2 \) of all the coefficients \(a_i \) from their corresponding reference value, for each proposed value from the MCMC walk. We estimate each \(a_{i}^{\text{ref}} \) reference value that corresponds to the reference radial velocity dispersion \(\sigma_n^2(r)_{\text{ref}} \) of a known analytic model, through

\[
\sigma_n^2(r)_{\text{ref}} = \sum_{i} a_{i}^{\text{ref}} B_{i,k}(r). \tag{19}
\]

\(^6\) In general, we expect that a ‘stiff’ curve will have smaller variation in its estimates when fitting to a set of data. Quantity \(\text{Var}(\lambda) \) expresses exactly this fact.

\(^7\) (For a full discussion on the Bias–Variance trade-off see Hastie et al. 2001).
by convolving equation (19) with $B_{j,k}(r)$, i.e.

$$
\int_0^\infty \sigma^{\prime \prime}_\mu(r) B_{j,k}(r) \, dr = \sum_i a_i \int_0^\infty B_{j,k}(r) B_{j,k}(r) \, dr,
$$

where $j = 0, \ldots, n$. This results in a system of n equations for the n unknowns a_i which can be solved with standard linear algebra methods.

3.4.1 Determination of α, β parameters of the $p(\lambda|\alpha, \beta)$ distribution.

For model fits where we will use a penalty function, we choose to use seven a_i unknown coefficients, i.e. $n = 7 + 1$ and a uniform distribution of knot values. The order of the B-spline representation is set to $k = 5$.

The first thing we need is to determine a range of values λ that give optimum penalty. That is, create a set of λ_{est} estimated values that minimize the ‘measure of fitness’ $S(\lambda)$. Then, using these observed values as ‘data’ we need to estimate the values of α, β that go into the hyperprior $p(\lambda|\alpha, \beta)$ of the full posterior distribution (equation 7).

For the determination of a range of values based on the measure of optimum smoothing (equation 18), we use as likelihood $\mathcal{L}(\neq \mathcal{L})$ the functional form

$$
\mathcal{L}(\theta|D) \propto \mathcal{L}(D|\theta) p(W|\lambda),
$$

$$
\mathcal{L}(\theta|D) \propto \mathcal{L}_B \mathcal{L}_K \lambda e^{-\lambda W},
$$

i.e. we removed the unknown hyperprior distribution $p(\lambda|\mu_\lambda, \sigma_\lambda)$ and the prior probability $p(\theta)$. The former is not needed, since we are going to use a fixed λ for each MCMC evaluation, while the latter does not affect our calculations (it is constant and is simplified out in the MCMC process).

The steps of our algorithm in detail are as follows.

(i) Create a large number of training data sets, N_{Sample} from a known theoretical model.

(ii) For each of these data sets:

(a) For the range of λ values $[0, \lambda_{\text{max}}]$, keeping the mass model fixed, estimate the marginalized distributions of the a_i coefficients.

(b) Find the approximate value of λ that minimizes the ‘measure of fitness’ $S(\lambda)$ of the produced MCMC chains from the ideal model and store it as λ_{est}.

For the determination of α, β values, we assume that our estimate λ_{est}, from each random sample, has a Gaussian random error deviation from the true value λ_{true}. Then, we convolve this Gaussian error with the hyperprior $p(\lambda_{\text{true}}|\alpha, \beta)$, and integrate over all possible values of λ_{true}. The resulting function is going to be the distribution function that gives the hyperprior $p(\lambda_{\text{true}}|\alpha, \beta)$, and integrate over all possible values of λ_{true}. We use the mode values of the (α, β) distributions for the hyperprior.

The output of this MCMC is marginalized distributions of $\sigma_{\text{est}}, \alpha$ and β. We use the mode values of the (α, β) distributions for the hyperprior $p(\lambda|\alpha, \beta)$.

In Fig. 2, we plot the optimum smoothing measure $S(\lambda)$ for 30 randomly created independent samples. These random samples were created from an isotropic King profile (top-right panel) and a King mass model with Osipkov–Merritt anisotropy profile (top-left panel). The value of λ that approximately minimizes $S(\lambda)$, is somewhere in the interval $[0, 14]$. Observe that the lower boundary is steeper than the upper boundary. Based on this observation, and the fact that the convolution of the inverse Gamma distribution with a Gaussian is finite, we choose to draw λ values from the inverse Gamma distribution.

Recall equation (12) for the assumption on the hyperprior from which the λ distribution satisfies. In bottom panels, we plot the hyperprior $p(\lambda|\alpha, \beta)$ for the optimum values of α, β.

4 EXAMPLES

In this section, we are going to reconstruct models of stellar clusters from synthetic data for a variety of anisotropy $\beta(r)$ functions. For the notation of the total number n of unknown coefficients a_i, as mentioned earlier, we use the following scheme: based on the restriction that all the quantities that describe the cluster must be zero at the tidal radius, the final coefficient will be $a_n = 0$. This extra coefficient does not go into the likelihood analysis, hence we break the total number of coefficients to the sum of unknowns plus one which represents this last coefficient. We use this notation in captions of figures and in tables where we list Bayesian evidence or BIC values.

Our motivation is as follows: in general the King brightness profile gives a very good fit to observational data. Thus, it can be a good approximation to the mass model. However, the kinematic profile is not always adequate and can affect the mass measurements. So, we allow information from the line-of-sight velocity dispersion data to accurately reconstruct the shape of the B-spline representation of σ_z^2 and consequently σ_{est}^2. Eventually, the kinematic profile and the mass content of the cluster are fully reconstructed independently of the anisotropy of the system. This independence results from the flexibility of the smoothing spline representation of σ_z^2. We will see that we recover accurately in all cases the correct reference parameters of the mass model and the mass-to-light ratio and to a good accuracy the second moments of the radial and line-of-sight velocities. We find no degeneracy in our results, i.e. a unique kinematic profile is constructed for each example. Finally, the quality of our fits depends on the available data set.
We plot the value of the logarithm of the sum \(\psi \),

\[\log(S(r)) = \psi + k_n r_7^{10} + 443, \]

only, i.e. we do not account for the uncertainty and line-of-sight
\(\beta \equiv \text{ref} = 1 + c \). Right-hand panels
\(\beta_0 = 0.20 \) and \(\beta_1 = 0.19 \) for the case with no penalty, and \(\beta_2 = -0.21 \) in the hyperprior
\(\bar{\alpha} \) coefficients
\(0 \pm 1 \) is a free
Bayesian evidence for Osipkov–Merritt anisotropy and
fits with no penalty considered. In all panels, the yellow-shaded re-
ergions correspond to the 1
for the two fits; the top panel corresponds to the fit with no penalty,
while the bottom panel is the fit with penalty. In both cases, the ref-
erence values (vertical dashed curves) from which the synthetic data
were created are within the uncertainty range of the marginalized
distributions; the mass content of the model is fully reconstructed.

First, we fit our model to the synthetic data with no penalty. In
this example, we consider a King mass model and a kinematic
profile constructed from an Osipkov–Merritt anisotropy \(\beta(r) \) function
of the form

\[\beta(r) = Q \frac{r_2^2}{r_2^2 + r_7^2}. \]

(24)

For the creation of the synthetic data points, we use the same process as in Paper I. In this example, the mass-to-light ratio \(\lambda \) is a free parameter. The reference values for the creation of synthetic data we use are \(\{0\text{def} = 5, \ r_0^2 = 200, \ r_0^2 = 5, \ \lambda^0 = 10, \ Q = 0.25\} \). We use 14 synthetic data points and an increased error of 20 per cent of the true value. For the B-spline representation of \(\psi \equiv \sigma_z^2(r) \), we use uniform knot distribution in the interval \([0, r_1]\). Observe that this knot distribution is adaptive: for each proposed value of parameters \(w_0, \rho_0, r_0 \), the solution of Poisson equation yields a tidal radius \(r_1 \).

For this \(r_1 \), we construct a uniform knot distribution. This is repeated for each likelihood call in the MCMC.

First, we fit our model to the synthetic data with no penalty. In
this case, we use \(n = 5 + 1 \) coefficients, \(a_i \). Then, we fit including a penalty distribution as described in Section 3.4 and using \(n = 7 + 1 \) coefficients, \(a_i \). The values of \(\alpha, \beta \) in the hyperprior \(p(\lambda|\alpha, \beta) \) are the ones that correspond to the estimates from the King isotropic model (Section 3.4.1). We use a higher number of coefficients \(a_i \) in the case where we also consider a penalty in order to avoid a very ‘stiff’ \(\sigma_z^2 \) function and give greater fitting flexibility to our model. The parameters \(\alpha, \beta \) of the hyperprior were calculated for \(n = 7 + 1 \) coefficients \(a_i \); we list the values of Bayesian evidence in Table 1. The models that are favoured from Bayesian evidence are

\(n = 5 + 1 \) for the case with no penalty, and \(n = 7 + 1 \) for the case with penalty.

In Fig. 3, we plot the histograms of the mass model parameters
for the two fits; the top panel corresponds to the fit with no penalty,
while the bottom panel is the fit with penalty. In both cases, the reference values (vertical dashed curves) from which the synthetic data were created are within the uncertainty range of the marginalized distributions; the mass content of the model is fully reconstructed.

In Fig. 4, we plot the fits for the second moments of the line-of-sight and radial velocities; while left-hand panels correspond to the fits with no penalty considered. In all panels, the yellow-shaded regions correspond to the 1σ uncertainty interval of the unknown coefficients \(a_i \) only, i.e. we do not account for the uncertainty of the mass defining parameters \((w_0, \rho_0, r_0) \). Right-hand panels

Table 1. Bayesian evidence for Osipkov–Merritt anisotropy and King mass density.

Penalty	NDim	Number of coefficients	\(\ln(Z) \pm \delta \ln Z \)
No	9	\(n = 5 + 1 \)	\(-51.82 \pm 0.19\)
No	10	\(n = 6 + 1 \)	\(-52.86 \pm 0.19\)
Yes	12	\(n = 7 + 1 \)	\(-68.68 \pm 0.20\)
Yes	13	\(n = 8 + 1 \)	\(-71.58 \pm 0.21\)

Note: The order of the B-spline representation of \(\psi \equiv \sigma_z^2(r) \) was held fixed at \(k = 5 \). From left to right: first column describes if we used penalty or not. Second column is the total dimensionality of the model. Third column is the number of coefficients \(a_i \) and the fourth column is the value of Bayesian evidence. The highest value of \(\ln Z \) corresponds to the most probable model.
Figure 3. Histograms for the system with Osipkov–Merritt anisotropy $\beta_1 = Q \frac{w^2}{\rho^2}$, with $Q = 0.25$ and r_c the King core radius. The red dashed lines correspond to the reference values $\{w_0, \rho_0, r_c, \Upsilon\} = \{5, 200, 5, 10\}$ from which synthetic data were created. Top panel: marginalized distributions of the mass model parameters $\{w_0, \rho_0, r_c, \Upsilon\}$ for $n = 5 + 1$ coefficients a_i model, with no penalty. Bottom panel: the same mass model parameters, but now for the case of $n = 7 + 1$ coefficients a_i with smoothing penalty. For both cases, the reference values of the mass model are well within the boundaries of the estimated values.

correspond to fits with penalty; note that the fit takes into account the brightness synthetic profile as well, although we do not plot it here. Top-left panel is the line-of-sight velocity dispersion, σ_{los}, and the 14 synthetic data points we employed. We plot the highest likelihood profile as well as the true function, demonstrating that the fit is excellent. There is a small deviation close to the origin, since σ_{los} tends to follow the first data point. However, the uncertainty in the a_1 coefficient includes the true value of σ_{los}^2. The bottom-left panel is the corresponding σ_{los}^2 as estimated from the line-of-sight fit, although note that we have no data to compare directly to σ_{los}^2. This is estimated from the σ_{los} corresponding fit. Close to the origin, there is a deviation of the true σ_{los}^2 from the estimated one. This again is owing to the tendency of σ_{los}^2 to follow the first datum; however, the uncertainty interval of σ_{los}^2 encapsulates the true value. What is more important is that the mass content is fully reconstructed and is not affected by this small deviation. The top-right panel is the line-of-sight σ_{los} fit for the case where we add a smoothness penalty term to the likelihood. In this case, the fit is much better, since the first data point does not significantly influence the behaviour of the curve. In the bottom-right panel is the corresponding σ_{los}^2 fit, and both fits are excellent and closer to the true value than in the case with no penalty.

4.2 Sinusoidal anisotropy and King mass density

In this example, we consider again a King mass profile, and an anisotropy β function of the form

$$\beta(r) = -0.5 \sin \left(\frac{2\pi r}{r_c} \right).$$

We do not test the system for stability, or self-consistency, i.e. if it is possible to have a realization of a stellar distribution with such an anisotropy profile. We are interested to see if the mass estimate of the system is recovered completely, despite the ‘difficult’ anisotropy profile. Namely, the marginalized distributions of the parameters (w_0, ρ_0, r_c) and the mass-to-light ratio Υ. We construct our synthetic data in the same way as in the previous examples using 20 per cent error, again allowing the mass-to-light ratio to be a free parameter. The reference values we used for creation of synthetic data are $\{w_0, \rho_0, r_c, \Upsilon\} = \{5, 200, 5, 10\}$.

In Table 2, we list the Bayesian evidence for various fits of our model to synthetic data, with and without penalty. As in the previous example, the values of α, β in the hyperprior $p(\lambda|\alpha, \beta)$ are the ones that correspond to the estimates from the King isotropic model (Section 3.4.1). Bayesian inference favours the models with $n = 5 + 1$ for the case with no penalty, and $n = 7 + 1$ for the case with penalty.

In Fig. 5, we plot the line-of-sight velocity dispersion and the second-order radial velocity moment of these models; left-hand panels correspond to fits without penalty, while right-hand panels to fits with penalty. Yellow-shaded region corresponds to the 1σ uncertainty intervals of the coefficients a_i only, i.e. keeping the mass parameters (w_0, ρ_0, r_c) fixed at the highest likelihood values. Taking into account the variance of the mass model, the true uncertainty would be greater. For the case without penalty, we see that σ_{los}^2 follows the shape of the true curve, however around $r \approx 20$ deviates from the true value. Note that, if we included the variance of the mass model as well, the true curve will be overlapped by the uncertainty region of the model. The corresponding σ_{los}^2 highest likelihood fit fails to follow the slope of the true curve close to the origin. However, the true curve lies within the 1σ uncertainty, except very close to the origin. This is due to the small number of data points and larger errors in the synthetic data. With more data points or smaller errors, as we shall see, we get an excellent fit. This discrepancy is also due to the small number of coefficients, a_i, we used and the uniform knot distribution, which is far from optimum. We need more control points for the B-spline representation in regions of increased curvature. This is something that the uniform knot distribution fails to encapsulate with only $n = 5 + 1$ coefficients. The case where we consider penalty gives a much better σ_{los}^2 reconstruction. The small deviation in the origin is within the 1σ uncertainty of the a_i coefficients. The corresponding σ_{los}^2 plot again deviates close to $r = 0$. This is due to the bad quality of the data and the bad choice of knot distribution. However, the majority of the true curve is encompassed in the 1σ uncertainty. We discuss a method for overcoming the problem of the poor fit close to the origin in Section 5.

In Fig. 6, we plot the histograms of the corresponding mass model parameters, as well as the mass-to-light ratio Υ. Vertical dashed lines correspond to the reference values from which synthetic data were created, while the top panel corresponds to fit without penalty. The bottom panel corresponds to fit with penalty. Observe that in...
Figure 4. King mass model with Osipkov–Merritt anisotropy. Left-hand panels correspond to $n = 5 + 1$ coefficients a_i. Top-left panel: synthetic data, true and highest likelihood fit of σ_{los}^2. Bottom-left panel: corresponding σ_{rr}^2 fit and reference values. Yellow-shaded regions correspond to the 1\,\sigma uncertainty interval of the unknown coefficients a_i only, i.e. we do not account for the uncertainty of the mass defining parameters (w_0, ρ_0, r_c). Right-hand panels correspond to the same mass model and anisotropy; however, now we consider $n = 7 + 1$ coefficients a_i and the full posterior distribution with penalty $p(W|\lambda)$ and hyperprior $p(\lambda|\alpha, \beta)$ (equations 10 and 12).

Table 2. Bayesian evidence for system with sinusoidal anisotropy $\beta(r) = -\sin(2\pi r/r_t)$.

Penalty	NDim	Number of coefficients n	$\ln Z \pm \delta \ln Z$
No	9	$n = 5 + 1$	-51.46 ± 0.20
No	10	$n = 6 + 1$	-55.76 ± 0.20
Yes	12	$n = 7 + 1$	-71.93 ± 0.22
Yes	13	$n = 8 + 1$	-76.25 ± 0.22

Note: In this table, we list Bayesian evidence values estimated from MULTINEST. For all our fits, we used uniform knot distribution and a fixed order $k = 5$ of the B-spline basis. From left to right: first column describes if we used penalty or not in the corresponding fit. Second column is the total dimensionality of the model. Third refers to the number n of coefficients a_i of the $\psi \equiv \sigma_{rr}^2(r) = \sum_i B_{i,k}(r)$ representation. Third column is the value of Bayesian evidence as estimated from MULTINEST. The highest value of $\ln Z$ corresponds to the most probable model.

In order to verify that indeed the deviation from the true curve close to the origin is due to the data set, we recalculated our parameters with penalty using $n = 7 + 1$ coefficients a_i and 29 data points, again with 20 per cent error on the reference values. In Fig. 7, we plot the σ_{los}^2 (top panel) and corresponding σ_{rr}^2 (bottom panel) highest likelihood fits. Indeed in this case, the kinematic profile reconstruction is excellent, as we expected. We note that in order to have the most accurate mass model parameter estimates, we should have recalculated (α, β). Then, the penalty distribution would be fine-tuned for the larger data set. We should also perform Bayesian

all cases, the mass content of the system is reconstructed within the uncertainty of the parameters. In the top panel, we plot the marginalized distributions of two models, namely $n = 5 + 1$, and $n = 6 + 1$. The model with $n = 5 + 1$ coefficients a_i contains the reference values in the outer limits of the distributions for the case of ρ_0 and Y. This is due to the reduced flexibility of the model that introduces bias in the estimates. The small number of coefficients with a uniform knot distribution in combination with the bad quality of our data fail to describe accurately the region close to $r = 0$. The model with $n = 6 + 1$ that is more flexible recovers the reference values with a smaller uncertainty interval. Note that Bayesian inference penalizes any complexity resulting from higher number of dimensions. However, the difference in $\ln Z$ between competing models with no penalty is not decisive according to Jeffreys table (see Paper I for further details). That is, the model with $n = 6 + 1$ is acceptable, although less favoured. The model with penalty again gives a better fit and encapsulates the reference values in smaller uncertainty.
model selection again. However, this goes beyond our needs for this simple example: we only want to demonstrate that with greater number of data, we have a better fit to the kinematic profile and our algorithm can account for the increased curvature of σ_{rr}^2 close to the origin.

4.3 Osipkov–Merritt anisotropy and cold DM

In this example, we consider the case of a combined model that has both a stellar population and a DM component. The stellar component is described by a King profile, and the DM with an NFW profile. We create a sample of 14 data points with 10 per cent error, in the same way as in the previous examples. The reference values for the creation of synthetic data are $[w_0, \rho_0, r_0, \Sigma_0, r_s, Q] = [5, 200, 5, 20, 50, 0.5]$ and the functional form of the anisotropy $\beta(r)$ profile is

$$\beta(r) = \frac{Q}{r_p^2 + r^2},$$

where $r_p = 0.5(r_c^\text{ref} + r_s^\text{ref})$. For the brightness profile, we make the approximation that, for each solar mass M_\odot of the tracer mass density corresponds a solar luminosity L_\odot, i.e. $\Sigma_\odot(R) \approx J(R)$. As usual, we consider an adaptive uniform knot distribution, and the order of the B-spline approximation is again $k = 5$. The coefficients, a, β, of the hyperprior, $p(\lambda|\alpha, \beta)$, were estimated for optimum smoothing from synthetic data based on the Osipkov–Merritt anisotropy model as well as the isotropic King model (Section 3.4.1). That is, we combine information on smoothness from two distinct models with different anisotropy profiles. We do so in order to allow for more information to be encoded to our model.

For this example, we try several models with various numbers of B-spline coefficients a_i. We perform model selection using BIC since MULTINEST converges too slowly due to the higher dimensionality of parameter space. The results of the Bayesian inference can be seen in Table 3. When we do not consider a smoothing penalty the most probable model is the one with $n = 5 + 1$ coefficients a_i. The best-fitting model with penalty has $n = 8 + 1$ coefficients, a_i.

We plot the highest likelihood fits in Fig. 8: the left-hand panels correspond to $n = 5 + 1$ coefficients and no penalty. The top-left panel is the line-of-sight velocity dispersion data, the fit and the true profile; bottom-left panel is the corresponding σ_{rr}^2 fit, while right-hand panels correspond to profiles with $n = 8 + 1$ coefficients a_i and the full posterior distribution with penalty $p(W|\lambda)$ and hyperprior $p(\lambda|\alpha, \beta)$ (equations 10 and 12).
Heuristic text from the image:

Figure 6. Histograms for the system with sinusoidal anisotropy $\beta_2 = -\sin(\frac{2\pi}{R})$ and King mass density. The red dashed lines correspond to the reference values $(\omega_0, \rho_0, r_c, \Upsilon) = (5, 200, 5, 10)$ from which synthetic data were created. Top panel: marginalized distributions of the mass model parameters $(\omega_0, \rho_0, r_c, \Upsilon)$ for $n = 5 + 1$ (blue hatched histogram) and $n = 6 + 1$ (green hatched histogram) coefficients a_i model, with no penalty. The case with $n = 6 + 1$ has greater variance in all variables, and encapsulates better the reference value of the mass-to-light ratio. Bottom panel: the same mass model parameters, but now for the case of $n = 7 + 1$ coefficients a_i with smoothing penalty. In all cases, the mass content of the cluster is fully reconstructed, although in the $n = 5 + 1$ case with no penalty, for Υ this is in the total uncertainty of the parameter.

The top-right panel is the line-of-sight velocity dispersion data, true profile and highest likelihood fit, while bottom-right panel is the corresponding σ_{rr}^2 fit. In all figures, the yellow-shaded region corresponds to 1σ uncertainty of the coefficients a_i only, i.e. keeping the mass model fixed to the highest likelihood value.

Table 3. BIC for Osipkov–Merritt anisotropy and compound system with Stellar and DM components, for the case of 14 data points.

Penalty	NDim	Number of coefficients n	BIC
No	10	$n = 5 + 1$	183.457
No	11	$n = 6 + 1$	185.568
Yes	13	$n = 7 + 1$	333.683
Yes	14	$n = 8 + 1$	332.951
Yes	15	$n = 9 + 1$	350.699
Yes	16	$n = 10 + 1$	355.776

Note: The order of the B-spline representation of $\psi \equiv \sigma_{rr}^2(r)$ was held fixed at $k = 5$. From left to right: first column describes if we used penalty or not. Second column is the total dimensionality of the model. Third column is the number of coefficients a_i and the fourth column is the value of BIC. The smallest value of BIC corresponds to the most probable model.

In Fig. 9, we plot the histograms of the defining parameters of the mass models. Vertical dashed lines are the reference values from which we created the synthetic data. The top panel corresponds to the case with no penalty, and the bottom panel to the case with penalty. In both cases, the mass content of the cluster is fully recovered. This holds even for the case with no penalty where we did not have a good reconstruction of the σ_{rr}^2 profile.
Figure 8. Fits for the cases of King tracer mass model with DM and anisotropy parameter $\beta(r) = 0.5(\frac{r^2}{r^2 + r_p^2})$, where $r_p = (r_{c, r_0} + r_{c, r_0})/2$. For this example, we used 14 synthetic data points with 10 per cent error. Left-hand panels correspond to $n = 5 + 1$ coefficients a_i with no penalty. Top-left panel: synthetic data, true and highest likelihood fit of σ_{los}^2. Bottom-left panel: corresponding σ_{rr}^2 fit and true reference profile. Yellow-shaded regions correspond to the 1σ uncertainty interval of the unknown coefficients a_i only, i.e. we do not account for the uncertainty of the mass defining parameters (w_0, ρ_0, r_c, ρ_{c, r_0}). Right-hand panels correspond to the same mass model and anisotropy; however, now we consider $n = 8 + 1$ coefficients a_i and the full posterior distribution with penalty $p(W|\lambda)$ and hyperprior $p(\lambda|\alpha, \beta)$ (equations 10 and 12).

5 DISCUSSION

Having presented our method to its full extent, there are several issues to be addressed. A first comment to be made is on the mass profile. Why did we choose a King mass profile, and did not allow also for a B-spline representation of the mass density $\rho(r)$? We choose to model with a King profile, since this is in general a good approximation to real stellar systems and above all a simple mathematical construction. The case where the mass density is also allowed to have a free B-spline functional form requires a different mathematical formulation and presents different technical difficulties. This is a method under development that we will present in future work.

As regards to the knot distribution, our choice of using uniform knots is far from optimum. This is especially evident in our second example where we use a difficult sinusoidal anisotropy profile that has the greatest curvature close to the origin. Our algorithm can be substantially improved by the appropriate choice of knots. A very promising approach is to use Genetic Algorithms (Yoshimoto, Harada & Yoshimoto 2003) to identify the best knot distribution for a given data set. Then, use this distribution in an MCMC scheme according to what we described in order to recover uncertainties of the model defining parameters.

For models where we also include a smoothing penalty, we need to emphasize the importance of the correct procedure to obtain parameters (α, β) of the hyperprior distribution $p(\lambda|\alpha, \beta)$ (equation 12). Failure to do so can result in bias in the marginalized distributions of model parameters. This is similar to the bias inserted from the assumption of a specific $\beta(r)$ anisotropy profile. However, quantitatively this is much smaller due to the flexibility of the B-spline representation of $\sigma_{\theta\theta}^2$ even when we consider a smoothing penalty.

As an example of bias due to wrong (α, β) estimates, we will repeat the fit in the last example, where we considered also a DM component. Using the (α, β) parameters, we obtained from 14 data points for the cases of isotropic and Osipkov–Merritt anisotropy
In Fig. 1 coefficients a, β and p of the NFW + r_B for Osipkov–Merritt anisotropy and com-

Paper I = n coefficients with no penalty. Bottom panel: the corre-
ness with the same number of data points. Failure to do so affects
the relative contribution of $p(W|\lambda)$ and $p(\lambda|\alpha, \beta)$ to the resulting
value of $L(D|\theta)$. This happens because the likelihood product,
$L(D_0|\theta) L(D_k|\theta)$ (see Paper I), for a larger data set contains more
terms, each smaller than unity. Then, the quantities $p(W|\lambda)$ and
$p(\lambda|\alpha, \beta)$ must take a different range of values in order not to have
a larger effect on the resulting likelihood. The maximum value and
spread of the normalized $p(\lambda|\alpha, \beta)$ is regulated by the values of α, β.

Then, these define the relative contribution for a given number of
data points. Eventually, it is the MCMC process that chooses the
distribution of λ values, but a wrong assumption on this hyperprior
can introduce errors in the analysis.

In Table 4, we give the BIC values for a set of models with a
different number n of coefficients a_i. The most probable model re-

results for the case where $n = 10 + 1$. In Fig. 10, we plot the fit
of line-of-sight velocity dispersion σ_{los}^2 (top-left panel), the corre-
sponding radial velocity dispersion σ_{re}^2 (bottom-left panel) and the marginalized distributions of two of the defining parameters of the
mass model, namely the DM core density $\rho_{0\alpha}$ and r_c of the NFW
profile. The vertical red lines correspond to the reference values
from which we created the synthetic data. Observe that despite the
fact that we have an excellent fit for the σ_{los}^2 and σ_{re}^2 values, there
exists a small bias in the $(\rho_{0\alpha}, r_c)$ estimates. In this example, the
stellar model parameters were accurately recovered; however, we do
not plot them here since we only wish to demonstrate the effect
of incorrect penalty hyperprior with parameters that have biased
marginalized distributions.

As a methodology for obtaining accurate results, we propose
to always fit with and without penalty to real stellar systems, and
observe if there are discrepancies between resulting marginalized
distributions of mass model parameters. The penalty-free fit will
always reconstruct the mass content of a stellar system however
it may give unphysical variational σ_{los}^2 or σ_{re}^2 profiles. Then, the
corresponding penalized fit should result in marginalized distribu-
tions over approximately the same range and with approximately
the same variance.

Finally, we note that Bayesian inference for model selection
heavily penalizes the complexity of the models that have a greater
number of coefficients and a penalty distribution $p(W|\lambda)p(\lambda|\alpha, \beta)$.
Specifically in all examples, Bayesian inference predicts decisively
that models with penalty should not be considered. However, in all
cases we demonstrated that fits with smoothing penalty give bet-
ter results. This is a drawback that results from our inadequacy to
include in the likelihood analysis (in the case where there is no
penalty), the information of smoothness that the various functions
of a physical system must satisfy. That is, Bayesian inference does
not have any information as to why we impose a smoothing penalty
distribution and penalizes it. This is also directly related to our prior
belief of the λ penalty parameter (equations 10 and 12).

6 CONCLUSIONS

In this work, we validate and expand the method developed in
Paper I. Namely, we address the issue of the mass–anisotropy degen-

eracy of the SSJE. We present an algorithm that combines smoothing
B-splines with dynamical equations of physical systems and recon-

structs accurately the kinematic profile and the mass content of
a stellar system. This is for a constant or variable mass-to-light
ratio Υ.

Based on the assumption that a realistic physical system must
have similar behaviour to ideal theoretical models in terms of
smoothness of the σ_{los}^2 function, we present a method for estimation
of the optimum smoothing penalty for a statistical model fitting
of the B-spline representation of σ_{los}^2. Furthermore, we demonstrate
with an example that incorrect smoothing penalty estimation can
lead to biases in the defining parameters of the mass models.
We present three examples of kinematic profile reconstruction from brightness and line-of-sight velocity dispersion observables. These are based on synthetic data that consist of 14 data points, each with a Gaussian random error on the reference value. The first two examples have a constant mass-to-light ratio Υ, while the third example consists of a composite structure with a stellar and a DM component. In all cases, we reconstruct completely the mass content of the system and the kinematic σ^2_{rr} and σ^2_{los} profile.

Thus, we removed the mass–anisotropy degeneracy to the level that for an assumed free functional form of the potential and mass density pair $(\Phi(r), \rho(r))$, and a given data set of brightness, J, and line-of-sight velocity dispersion observables, σ^2_{los}, we reconstruct a unique kinematic profile $(\sigma^2_{\text{rr}}, \sigma^2_{\text{tt}})$, within the statistical uncertainties. In Paper I, we argued that if one knows the complete functional form of the line-of-sight velocity dispersion σ^2_{los} and the mass density $^{10} \rho(r)$, then it is in principle possible to find a unique decomposition of σ^2_{los} to σ^2_{rr} and σ^2_{tt}. For the case of discrete data, we can speak only for a unique family of solutions within some statistical uncertainty. This uniqueness is identified through the unimodal marginalized distributions of the model parameters from the MCMC scheme.

ACKNOWLEDGEMENTS

FID acknowledges the University of Sydney International Scholarship for the support of his candidature. GFL acknowledges support from ARC Discovery Project (DP110100678) and Future Fellowship (FT100100268). The authors would like to thank Nick Bate as well as the anonymous referee for useful comments and suggestions on the manuscript.

REFERENCES

Binney J., Mamon G. A., 1982, MNRAS, 200, 361
De Boor C., 1978, Applied Mathematical Sciences. Springer-Verlag, Berlin
Diakogiannis F. I., Lewis G. F., Ibata R. A., 2014, MNRAS, in press (Paper I)
Farin G., 2002, Curves and Surfaces for CAGD: a Practical Guide, 5th edn.
Morgan Kaufmann Publishers Inc., San Francisco
Feroz F., Hobson M. P., 2008, MNRAS, 384, 449
Feroz F., Hobson M. P., Bridges M., 2009, MNRAS, 398, 1601

Figure 10. Fit for the case of King and DM component with Osipkov–Merritt anisotropy, and 29 data points. We choose the highest likelihood fit with $n = 10 + 1$ coefficients a_i. The top-left panel is the line-of-sight velocity dispersion σ^2_{los} reference profile, fit and synthetic data points. Bottom-left panel is the corresponding σ^2_{rr} reference profile and fit. Yellow-shaded region corresponds to 1σ confidence interval of the coefficients a_i only, i.e. keeping the mass models fixed to the highest likelihood values. In the right-hand panel, we plot the marginalized distributions of the (ρ_0, r_s) parameters of the NFW profile. The vertical red lines correspond to the reference values $(\rho_0^\text{ref}, r_s^\text{ref})$ from which synthetic data were created. Observe that using the wrong penalty parameters α, β of $p(\lambda | \alpha, \beta)$ induces bias, even in the case where we use a large number of coefficients a_i.

In general, the quality of our results depends on the quality of the data. That is, on the total number of binned brightness and σ^2_{los} observables and their corresponding errors. The method was demonstrated to give excellent results for as few as 14 binned data points and up to 20 per cent error in the reference value from which we created the synthetic data.
Gregory P., 2010, Bayesian Logical Data Analysis for the Physical Sciences. Cambridge Univ. Press, Cambridge
Hastie T., Tibshirani R., Friedman J., 2001, The Elements of Statistical Learning. Springer, New York
King I. R., 1966, AJ, 71, 64
Merritt D., 1987, ApJ, 313, 121
Michie R. W., 1963, MNRAS, 125, 127

Navarro J. F., Frenk C. S., White S. D. M., 1996, ApJ, 462, 563 (NFW)
Sivia D., Skilling J., 2006, Data analysis: a Bayesian Tutorial. Oxford Univ. Press, Oxford
Yoshimoto F., Harada T., Yoshimoto Y., 2003, Comput. Aided Des., 35, 751

This paper has been typeset from a TeX/LaTeX file prepared by the author.