Critical Lattice Size Limit for Synchronized Chaotic State in 1-D and 2-D Diffusively Coupled Map Lattices

P. Palaniyand† and Govindan Rangarajan‡

Department of Mathematics, Indian Institute of Science, Bangalore 560 012, India

(Dated: November 11, 2018)

PACS numbers: 05.45.Xt, 05.45.Ra

We consider diffusively coupled map lattices with \(P \) neighbors (where \(P \) is arbitrary) and study the stability of synchronized state. We show that there exists a critical lattice size beyond which the synchronized state is unstable. This generalizes earlier results for nearest neighbor coupling. We confirm the analytical results by performing numerical simulations on coupled map lattices with logistic map at each node. The above analysis is also extended to 2-dimensional \(P \)-neighbor diffusively coupled map lattices.

I. INTRODUCTION

In recent years, synchronization of coupled dynamical systems [1, 2, 3] has become an important area of research for their applications in a variety of fields including secure communications, cryptography, optics, neural networks, pattern formation, geophysics and population dynamics [4, 5, 6, 7]. In particular, the stability of synchronized state in coupled map lattices (CML) with various coupling schemes have been studied extensively [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. To be specific the CML with diffusively coupling has attracted considerable attention in recent studies. In such systems, the synchronized state is not stable when the number of nodes exceeds a certain critical limit and each node is coupled only with its nearest neighbor [11, 13]. In this paper, using the formalism put forth in Refs. [11, 13] we derive an exact analytic expression for this limit for more general case of \(P \)-neighbor coupling. Further, the results are verified through numerical simulations in coupled logistic map lattices. All the analysis are carried out in both 1D and 2D CMLs. Studies similar to our present work, but for coupled oscillators, are reported in Ref. [24, 25].

II. CRITICAL SIZE LIMIT IN 1D CASE

Consider 1-dimensional coupled map lattices with \(P \)-neighbor diffusive coupling represented by

\[
x_j(n + 1) = f(x_j(n)) + \frac{1}{2P} \sum_{p=1}^{P} a_p [f(x_{j+p}(n)) + f(x_{j-p}(n)) - 2f(x_j(n))],
\]

where \(x_j \) is a \(M \)-dimensional state vector, \(j \) represents the lattice site, \(L \) is the lattice size, \(a_p \) is the coupling strength between \(j \)th map and its \(p \)th neighbor, and the evolution of the map at \(j \)th site is described by \(f(x_j(n)) \). Also periodic boundary condition is imposed and the synchronized state (synchronization manifold) is defined by \(x_1(n) = x_2(n) = \cdots = x_L(n) = x(n) \). Since \(a_p \) is a very general coupling coefficient, the long range model proposed by Antenedo [8] can be incorporated into the above equation.

Linearizing (1) around \(x \) and performing the discrete spatial Fourier transform \(\eta(l) = \frac{1}{P} \sum_{j=1}^{L} \exp(-i2\pi jl/L) x_j(n) \), the resulting form after simplification (see Refs. [6, 12] for details) is

\[
\mu_i(l) = h_i + ln \left| 1 - \frac{2}{P} \sum_{p=1}^{P} a_p \sin^2(\pi pl/L) \right|,
\]

\[i = 1, 2, \ldots, M; \quad l = 0, 1, \ldots, L - 1.
\]

Here \(\mu_i(l) \)'s are the Lyapunov exponents corresponding to \(l \)th mode and \(h_i \)'s are the Lyapunov exponents of the isolated map ordered as \(h_1 \geq h_2 \geq \cdots \geq h_M \). The mode \(l = 0 \) corresponds to the synchronized state and the other modes represents its transverse variations. Hence \(\mu_1(l) \) gives the largest transverse Lyapunov exponent for the mode \(l \neq 0 \). Therefore the stability of synchronized state is ensured if \(\mu_1(l) < 0 \) for all \(l \neq 0 \). However, the symmetry in Fourier modes reduces this condition as \(\mu_1(l) < 0 \) for \(l = 1, 2, \ldots, L/2 \) if \(L \) is odd. Thus the stability condition reduces to

\[
\left| 1 - \frac{2}{P} \sum_{p=1}^{P} a_p \sin^2(\pi pl/L) \right| < \exp(-h_1),
\]

\[l = 1, 2, \ldots, L/2 \text{ or } (L - 1)/2,
\]

and this expression is also obtained in Ref. [6]. We use this condition to derive the expression for the critical lattice size limit in the rest of this paper.

Let \(\lambda_l = 1 - \frac{2}{P} \sum_{p=1}^{P} a_p \sin^2(\pi pl/L) \) and define \(\lambda_{\text{max}} = \max\{\lambda_l\} \), \(\lambda_{\text{min}} = \min\{\lambda_l\} \). Then the above stability condition can be rewritten as:

\[
\lambda_{\text{max}} < \exp(-h_1), \quad \lambda_{\text{min}} > -\exp(-h_1).
\]
terms of coupling coefficients, we get

\[a_p > \frac{1 - \exp(-h_1)}{2 \sin^2(\pi/L)}, \forall p. \] (6)

Combining the two inequalities \((6)\) and \((7)\), we get the well-known \([11, 13]\) final stability condition as:

\[\frac{1 - \exp(-h_1)}{2 \sin^2(\pi/L)} < a_p < \frac{1 + \exp(-h_1)}{2}, \forall p. \] (7)

As \(L\) becomes larger, the above stability range becomes smaller and at a particular critical value of \(L\), the range shrinks to zero. Beyond this critical value of \(L\), the stability condition \((7)\) is violated and hence the synchronized state can never be stable. At this critical value of \(L\), one can replace the inequalities by equality signs in Eq. \((7)\) and get

\[L_{1,1} = \text{Int} \left[\frac{\pi}{\sin^{-1}(\sqrt{\tanh(h_1/2)})} \right], \] (8)

where \(L_{1,1}\) is the maximum lattice size that can support synchronized chaos in an one-dimensional nearest neighbor diffusively coupled map lattice.

Let us now turn to the more general case of \(P\)-neighbor diffusively coupled map lattices for which no previous analytical results exist. However, similar results do exist for coupled oscillators \([24, 25]\) but they are in terms of numerically computed stability ranges whereas we give analytical expressions. After making use of some simple trigonometric relations, the expressions for \(\lambda'_i\) and \(\lambda''_i\) take the forms

\[\lambda'_i = 1 - \epsilon - \frac{\sin(P\pi l/L)\cos((P + 1)\pi l/L)}{P\sin(\pi l/L)} \] (9)

and

\[\lambda''_i = 1 - \epsilon' - \frac{\sin(P\pi l/L)\cos((P + 1)\pi l/L)}{P\sin(\pi l/L)} \] (10)

respectively, where \(\epsilon \leq a_p \leq \epsilon' \forall p\). The expression inside the square bracket takes its lowest value when \(l = 1\) and it takes its highest value for the mode \(l = l_h = \text{Int}[L_{1,1}/2]\), for all values of \(P\). Following the same procedure as in the nearest neighbor case, we finally get

\[\frac{1 - \exp(-h_1)}{1 - \sin(P\pi l_h/L)\cos((P + 1)\pi l_h/L)} < a_p < \frac{1 + \exp(-h_1)}{1 - \sin(P\pi l_h/L)\cos((P + 1)\pi l_h/L)} \] (11)

At this critical coupling strength \(\epsilon_c\) (\(a_p = \epsilon_c \forall p\)) the extremes values of \(a_p\) coincide and the above expression

FIG. 1: (a) The variation of \(L_{1,1}\) with \(h_1\), (b) the variation of \(L_{1,1}\) with \(P\), (c) the variation of \(\epsilon_c\) with \(P\) in one dimensional coupled logistic map lattices, obtained for \(r = 1.9\), and (d) the variation of \(L_{1,1}\) with \(P\) in one dimensional coupled logistic map lattices, obtained for \(r = 1.9\) (\(h_1 = 0.5554\)).
where \(l_h = \text{Int}[L_{1,1}/2] \) and \(L_{1,1} \) is given in Eq. (3). The critical lattice size limit \(L_{1,P} \) is obtained by solving the above transcendental equation numerically. In a special case of \(P = L/2 \) (or \(L - 1)/2 \) for odd \(L \) we get \(h_1 = 2 \tan^{-1}(1) \). This result indicates that the synchronized state is always possible for globally coupled map lattices as long as \(h_1 < \infty \). The dependence of \(L_{1,P} \) on the maximum Lyapunov exponent of the isolated map \((h_1) \) and the number of neighbors coupled \((P) \) are shown in Fig. \(\text{Fig. 1(a) and 1(b)} \). It is observed that \(L_{1,P} \) increases almost linearly with \(P \) for a particular value of \(h_1 \), and decays with \(h_1 \) for a particular value of \(P \). Also, all the results are confirmed numerically by considering the logistic map (defined by \(x(n+1) = 1 - r|x(n)|^2 \)) at each node. The variations of the critical coupling strength \(\epsilon_c \) and the critical size limit \(L_{1,P} \) with \(P \) (for \(r = 1.9 \)) are shown in Fig. \(\text{Fig. 1(c) and 1(d)} \).

III. CRITICAL SIZE LIMIT IN 2D CASE

Now we consider 2-dimensional coupled map lattices with \(P \)-neighbor diffusive coupling of the form

\[
x_{j,k}(n+1) = f(x_{j,k}(n)) + \frac{1}{4P} \sum_{p=1}^{P} \left\{ a_p \left[f(x_{j-p,k}(n)) + f(x_{j+p,k}(n)) - 2f(x_{j,k}(n)) \right] + b_p \left[f(x_{j,k-p}(n)) + f(x_{j,k+p}(n)) - 2f(x_{j,k}(n)) \right] \right\},
\]

where \(x_{j,k} \) is a \(M \)-dimensional state vector, \((j,k) \) represents the lattice sites, \(L \) is the lattice size, and \(a_p \) and \(b_p \) are the coupling strengths between \((j,k) \)th map and its \(p \)th neighbor along \(j \) and \(k \) directions, respectively.

In this case, the stability condition for synchronized state is

\[
1 - \frac{1}{P} \sum_{p=1}^{P} \left[a_p \sin^2(\pi pl/L) + b_p \sin^2(\pi pm/L) \right] < \exp(-h_1),
\]

where \(l, m = 0, 1, \ldots, L - 1, \ (l, m) \neq (0,0) \). If we define \(\nu_{l,m} = 1 - \frac{1}{P} \sum_{p=1}^{P} \left[a_p \sin^2(\pi pl/L) + b_p \sin^2(\pi pm/L) \right], \ (l, m) \neq (0,0), \ \nu_{\max} = \max \{ \nu_{l,m} \} \), and

\[
\nu_{\min} = \min \{ \nu_{l,m} \}
\]

then the above stability condition becomes:

\[
\nu_{\max} < \exp(-h_1), \ \nu_{\min} > - \exp(-h_1).
\]

Performing an analysis similar to the 1D case, we obtain the expression for critical lattice size limit for nearest neighbor coupling as

\[
L_{2,1} = \text{Int} \left[\frac{\pi}{\sin^{-1}(\sqrt{2}\tanh(h_1/2))} \right].
\]

In the case of \(P \)-neighbor diffusive coupling, we obtain the expression for the critical lattice size limit \(L_{2,P} \) as

\[
\frac{\sin(P\pi/L_{2,P})\cos((P+1)\pi/L_{2,P})}{\sin(\pi/L_{2,P})} = P \left[1 - 2\tanh(h_1/2) \right] \left(1 - \frac{\sin(P\pi l_h/L_{2,P})\cos((P+1)\pi l_h/L_{2,P})}{P\sin(\pi l_h/L_{2,P})} \right),
\]

where \(l_h = \text{Int}[L_{2,1}/2], \ L_{2,1} \) is the critical lattice size limit for 2-dimensional nearest neighbor diffusively cou-
tained by solving Eq. (17) numerically. The dependence of $L_{2,P}$ on the maximum Lyapunov exponent of the isolated map (h_1) and the number of neighbors coupled (P) are shown in Fig. 2(a) and 2(b). In our numerical verification, we have again considered logistic map at each node. The variations of the critical coupling strength ϵ_c and the critical size limit $L_{2,P}$ (for $r = 1.5$) with P are shown in Fig. 2(c) and 2(d).

IV. CONCLUSIONS

We have presented expressions for the critical lattice size limits ($L_{1,P}$ and $L_{2,P}$) for both 1 and 2-dimensional coupled map lattices with P neighbor coupling. In both the cases, the value of these critical size limits increase almost linearly with the number of coupled neighbors. In addition, all the above results were verified through numerical studies using coupled logistic map lattices. Moreover, as P increases to the global coupling limit we showed explicitly that the critical size limit tends to infinity. However, our results are not valid for discontinuous maps (for example, tent and Bernoulli maps considered in Refs. 9, 10) since the linear stability analysis used in this study requires the maps to be continuous.

Acknowledgments

This work was supported by grants from DRDO, UGC (under SAP-Phase IV). PP was also supported by DST (under FAST-TRACK Young Scientist Scheme). GR is associated with the Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore as a Honorary Faculty Member.

[1] L. M. Pecora and T. L. Carroll, Phys. Rev. Lett 64, 821 (1990).
[2] L. M. Pecora and T. L. Carroll, Phys. Rev. A 44, 2374 (1991).
[3] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A universal concept in nonlinear sciences (Cambridge University Press, Cambridge, 2001).
[4] K. M. Cuomo and A. V. Oppenheim, Phys. Rev. Lett 71, 65 (1993).
[5] P. Palaniyandi and M. Lakshmanan, Int. J. of Bifurcation and Chaos 7, 2031 (2001).
[6] G. Rangarajan, Y. Chen, and M. Ding, Phys. Lett A 310, 415 (2003).
[7] R.E. Amritkar and G. Rangarajan, Phys. Rev. Lett 96, 258102 (2006).
[8] C. Anteneodo, S. E. de S. Pinto, A. M. Batista, and R. L. Viana, Phys. Rev. E 68, 045202 (2003).
[9] F. Ginelli, R. Livi, A. Politi, and A. Torcini, Phys. Rev. E 67, 046217 (2003).
[10] M. Cencini and A. Torcini, Physica D 208, 191 (2005).
[11] G. Rangarajan and M. Ding, Phys. Lett A 296, 204 (2002).
[12] Y. Chen, G. Rangarajan, and M. Ding, Comm. Nonlin. Sci. and Num. Sim. 11, 934 (2006).
[13] Y. Chen, G. Rangarajan, and M. Ding, Phys. Rev. E 67, 026209 (2003).
[14] J. F. Heagy, T. L. Carroll, and L. M. Pecora, Phys. Rev. E 50, 1874 (1994).
[15] L. M. Pecora and T. L. Carroll, Phys. Rev. Lett 80, 2109 (1998).
[16] P. Palaniyandi, P. Muruganandam, and M. Lakshmanan, Phys. Rev. E 72, 037205 (2005).
[17] R. Brown and N. F. Rulkov, Phys. Rev. Lett 78, 4189 (1997).
[18] P. Glendinning, Phys. Lett. A 259, 129 (1999).
[19] N. F. Rulkov, A. R. Volkoskii, A. Rodriguez-lozano, E. D. ro, and M. G. Velarde, Int. J. Bifur. Chaos 2, 669 (1992).
[20] K. Kaneko, Prog. Theor. Phys. 72, 480 (1984).
[21] M. Zhan, G. Hu, J. Yang, Phys. Rev. E 62, 2963 (2000).
[22] V. N. Belykh, I. V. Belykh, and M. Hasler, Phys. Rev. E 62, 6332 (2000).
[23] V. N. Belykh, I. V. Belykh, and E. Mosekilde, Phys. Rev. E 63, 036216 (2001).
[24] M. Barahona and L. M. Pecora, Phys. Rev. Lett. 89, 054101 (2002).
[25] V. N. Belykh, I. V. Belykh, and M. Hasler, Physica D 195, 159 (2004).