Caenorhabditis elegans as a Biological Model for Multilevel Biomarker Analysis in Environmental Toxicology and Risk Assessment

Jinhee Choi
Faculty of Environmental Engineering, College of Urban Science, University of Seoul, Seoul 130-743, Korea

(Received September 2, 2008; Revised November 18, 2008; Accepted November 19, 2008)

INTRODUCTION

The reduction in point source pollution and the ban of some persistent chemicals have had positive effects on the level of environmental pollution over the last few decades. However, non-point source pollution by organic (e.g. pesticides, dioxins) and inorganic (e.g. heavy metals) compounds is still a global matter of concern. Moreover, numerous new industrial compounds have been synthesized for commercial and industrial purposes, which have generated environmental concerns, due to their high production and widespread use. Despite of the dramatic increase in the use of these chemicals, little information is available on their potential toxic effects on human and environmental health. The potential harmful effects on human and environmental health should be identified for the safe use of these chemicals. However, pollutions induced by these chemicals are caused by a complex mixture of compounds, making the exhaustive analyses of the contaminants present in polluted environments impossible, which limit the possibility of intensive toxicological studies (Risso-de-Faverney et al., 2001). Therefore, rapid and sensitive tools are needed for screening hazardous properties of such chemicals prior to intensive toxicological investigation and risk assessment. Short-term bio assay systems would appear to be relevant for the preliminary screening of the potential effects of environmental chemicals on human and environmental health. Identification of suitable biological model is therefore, required, for the development of effective toxicity screening system. Various factors need to be considered for selecting a model system for this purpose, including knowledge of its biochemistry, physiology and of its deme ecology, the availability of laboratory rearing protocols, etc. The soil nematode, Caenorhabditis elegans fulfills those criteria. C. elegans is a ubiquitously distributed free-living nematode that lives mainly in the liquid phase of soils. It is the first multicellular organism to have its genome completely sequenced. The genome showed an unexpectedly high level of conservation with the vertebrate genome, which makes C. elegans an ideal system for biological studies, such as those in genetics, molecular biology, neurobiology, and development biology (Brenner, 1974; Bettinger et al., 2004; Leacock and Reinke, 2006; Schafer, 2006; Schroeder, 2006; Antoshechkin and Sternberg, 2007). These same features have led to
an increasing use of *C. elegans* in toxicology, as well as, in environmental toxicology (Leung et al., 2008). In this review, multilevel biomarkers and the use of *C. elegans* as a model for this approach will be discussed in the context of environmental toxicology and risk assessment. *C. elegans* as a screening model system for prediction of mammalian toxicity will also be discussed.

Multilevel biomarker in environmental toxicology and risk assessment. In environmental toxicology and ecotoxicology, substantial efforts have been devoted to developing and applying biomarkers for early warning indicators that respond before measurable effects on individuals and populations occur and also for identifying the causes of observed population- and community-level effects. Advances in molecular biology are extending the biomarker at the gene level (i.e., ecotoxicogenomics), whereas older biomarkers focused on measures of organism physiology or biochemistry. However, the extent to which biomarkers are able to provide unambiguous and ecologically relevant indicators of exposure to or effects of toxicants remains highly controversial (Forbes et al., 2006). Although biomarkers can be helpful for gaining insight regarding the mechanisms causing observed effects of chemicals on whole-organism performance and may, in some cases, provide useful indicators of exposure, individual biomarker responses can not provide useful predictions of relevant ecological effects. Suites of biomarkers are only likely to provide increased predictability if they can be used in a comprehensive mechanistic model that integrates them into a measure of fitness (Forbes et al., 2006). Recently, gene expression as an environmental stress response has been increasingly used in ecotoxicology, as it offers high sensitivity and mechanistic values to diagnose environmental contamination (Snell et al., 2003; Lee et al., 2006; Roh et al., 2006, 2007; Poynton et al., 2007). Genes up- or down-regulated in response to acute stress may predict chronic effects on individuals and populations before any such effect is apparent. Thus components and sometimes pathways that underlie physiological processes can be identified and investigated and aid further understanding of the mode of action of stressors. Stressor-specific signatures in gene expression profiles could offer a diagnostic approach to identify the cause of pollution event (Heckmann et al., 2008). However, relating such laboratory measurements to ecological effects represents a substantial challenge that can only be met by investigation of response at all scales (molecular, individual organism and community level) with an appropriate group of organisms. Pollutant-induced molecular-, bio-

c-chemical effects may potentially have consequences at higher levels of biological organization, such as changes in population dynamics or in biological diversity at both the intra- and interspecific levels and such changes may have adverse ecological consequences (Caquet et al., 2000). Therefore, multilevel biomarker approach, evaluating different biological responses ranging from molecular to population/community level, would be more conservative for useful environmental monitoring (Lagadic et al., 1994; Russo and Lagadic, 2000; Choi et al., 2002; Lee and Choi, 2006; Lee et al., 2008).

The multilevel biomarker concept is originally based on the fact that biological responses of an organism in natural environment progresses through homeostasis, compensatory and repair phases, as the exposure level or duration increases (Depledge, 1994). While an organism is exposed to contaminants, physiological compensatory mechanisms become active and changes in physiological processes or functions occur, which indicate that exposure has occurred. If the exposure persists or the level of exposure increases, these compensatory mechanisms become overwhelmed, damages occur, and physiological repair mechanisms become active. Under natural environmental conditions, as an organism progresses through these phases, the energy allocated for natural maintenance is reduced as more energy is needed for compensatory response and repair. The organism weakens and may be quickly eliminated from the population. Therefore, *in situ* survey of populations may not allow to detect diseased organisms even though exposure and effects have occurred (Newman and Jagoe, 1996). In the context of the multiple-response paradigm, the objective is not to quantitatively measure the amounts of different toxicants, but to determine where an organism is located on the continuum between homeostasis and disease. Responses indicate whether the organism is challenged but readily coping with toxicant stress (compensatory phase) or is deeply stressed and needs to use its energy resources to repair damages. This approach is essential to determine the general health status of the organism; moreover, it makes possible to extrapolate the relationship between responses at different levels of biological organization (Fossi et al., 2000).

C. elegans as a model for environmental toxicology. *C. elegans* is a good animal model for developing multilevel biomarker and multiscale analysis in ecotoxicology. Due to its abundance in soil ecosystems, its convenient handling in the laboratory, and its sensitivity to different kinds of stresses, *C. elegans* is frequently used in ecotoxicological studies utilizing vari-
C. elegans as a Model in Environmental Toxicology

Different exposure media, including soil and water (Pereideny and Williams, 2000; Williams et al., 2000; Boyd and Williams, 2003; Roh et al., 2006, 2007; Roh and Choi, 2008). As an in vivo model, C. elegans enables the detection of endpoints from molecular level to field level ecosystem (Fig. 1). C. elegans research area for multiscale analysis covers from neural level to field-based field-based ecotoxicology. The use of the responses of stress-related gene expression, functional genomics, transgenic bio sensors has considerable potential for sensitive diagnosis of environmental contamination, and that C. elegans seems to be a good biological model for this approach: 1) Development of molecular tools includes study of nematode genomics and metabolomics in relation to environmental change, development of suitable biomarkers for environmental risk assessment, and development of nematode biosensors, etc. 2) Laboratory toxicity study using C. elegans covers estimation and optimisation of sub-lethal toxicity endpoints for risk assessment. 3) Field based nematode ecotoxicology area is to understand how nematode communities respond to environmental change in ecosystems, and how these

![Diagram showing the detection of endpoints from molecular level to field level ecosystem](image)

Fig. 1. Potential use of C. elegans as a model for environmental toxicology.

Molecular tools for biomarkers	Laboratory toxicity assays	Field based ecotoxicology
- Testing of biosensor nematode strains in samples from appropriate field sites in terrestrial, freshwater and marine habitats.	- Evaluation of the predictive value of established toxicity assays in environmental risk assessment.	- Nematode community analyses as tools in risk assessment of environmental changes.
- Investigation on the genotoxic effects of toxicants.	- Comparison of variation of biological responses in laboratory established microcosms.	- Determination of the relationship between complexity of nematode communities and food web complexity, functioning and stability.
- Correlation of toxicity assays with genetic fingerprint profiles of populations.	- Optimisation of whole sediment toxicity testing.	- Linking of the field test to laboratory studies to measure communities.
- Usage of DNA arrays for gene expression analysis in response to environmental changes.	- Standardisation of laboratory assays with nematodes for contaminated soils/sediments and pure chemicals spiked into reference soils.	- Standardisation of protocols and methods in nematode community analyses.
- Standardised robust molecular protocols for environmental quality analyses.	- Whole sediment exposure to pollutants to compare whole organism and molecular methods.	- Improved and optimised tools for environmental risk assessment.
- Development of suitable biomarkers & biosensors for monitoring environmental changes.	- Measurement of nematode fitness under varying short term pollution or other stresses.	- Development of quantitative indices for nematode community analyses.
- Validation of transgenic.	- Validation of transgenic.	- Improvement of understanding of ecosystem function.
- C. elegans using field samples.	- C. elegans using field samples.	- Optimised risk assessment toxicity assays.
- Optimised risk assessment toxicity assays.	- Optimised risk assessment toxicity assays.	- Optimised risk assessment toxicity assays.

Table 1. Multiscale research area using C. elegans and the nematode

Molecular tools for biomarkers	Laboratory toxicity assays	Field based ecotoxicology
- Testing of biosensor nematode strains in samples from appropriate field sites in terrestrial, freshwater and marine habitats.	- Evaluation of the predictive value of established toxicity assays in environmental risk assessment.	- Nematode community analyses as tools in risk assessment of environmental changes.
- Investigation on the genotoxic effects of toxicants.	- Comparison of variation of biological responses in laboratory established microcosms.	- Determination of the relationship between complexity of nematode communities and food web complexity, functioning and stability.
- Correlation of toxicity assays with genetic fingerprint profiles of populations.	- Optimisation of whole sediment toxicity testing.	- Linking of the field test to laboratory studies to measure communities.
- Usage of DNA arrays for gene expression analysis in response to environmental changes.	- Standardisation of laboratory assays with nematodes for contaminated soils/sediments and pure chemicals spiked into reference soils.	- Standardisation of protocols and methods in nematode community analyses.
- Standardised robust molecular protocols for environmental quality analyses.	- Whole sediment exposure to pollutants to compare whole organism and molecular methods.	- Improved and optimised tools for environmental risk assessment.
- Development of suitable biomarkers & biosensors for monitoring environmental changes.	- Measurement of nematode fitness under varying short term pollution or other stresses.	- Development of quantitative indices for nematode community analyses.
- Validation of transgenic.	- Validation of transgenic.	- Improvement of understanding of ecosystem function.
- C. elegans using field samples.	- C. elegans using field samples.	- Optimised risk assessment toxicity assays.
- Optimised risk assessment toxicity assays.	- Optimised risk assessment toxicity assays.	- Optimised risk assessment toxicity assays.
responses can in turn indicate changes in ecosystem function (Table 1). Even though, *C. elegans* is a suitable model for multiscale analysis from molecular to organism/population level, the range of *C. elegans* studies in environmental toxicology have been focused mostly on organism-level endpoints, such as mortality.

Table 2. Summary of chemical toxicity tests performed on *C. elegans*

Chemicals	Toxic endpoints	References
CdCl₂	lethality	Williams and Dusenbery, 1990; Dhawan et al., 2000; Barsyte et al., 2001; Ura et al., 2002; Chu et al., 2005; Ibiam and Grant, 2005; Roh et al., 2006.
behavior, feeding behavior	Dhawan et al., 2000; Anderson et al., 2001; Ibiam and Grant, 2005.	
growth	Anderson et al., 2001; Ibiam and Grant, 2005; Stürzenbaum, 2007; Harada et al., 2007; Dong et al., 2008.	
reproduction development	Anderson et al., 2001; Swain et al., 2004; Ibiam and Grant, 2005; Hughes and Stürzenbaum, 2007; Harada et al., 2007; Dong et al., 2008.	
life span	Swain et al., 2004; Harada et al., 2007; Hughes and Stürzenbaum, 2007.	
sequence/functional analysis	Dong et al., 2008.	
RNA/DNA ratio	Ibiam and Grant, 2005.	
gene expression	Barsyte et al., 2001; Liao et al., 2002; Swain et al., 2004; Roh et al., 2006; Cui et al., 2007.	
microarray/GO/KEGG	Cui et al., 2007.	
Pb(NO₃)₂/PbCl₂	lethality	Williams and Dusenbery, 1990; Dhawan et al., 2000; Roh et al., 2006.
behavior, feeding behavior	Dhawan et al., 2000; Anderson et al., 2001.	
movement, growth, reproduction	Anderson et al., 2001; Ibiam and Grant, 2005.	
gene expression	Roh et al., 2006.	
RNA/DNA ratio	Ibiam and Grant, 2005.	
K₂Cr₂O₇	lethality	Williams and Dusenbery, 1990; Roh et al., 2006.
gene expression	Roh et al., 2006.	
NaAsO₂	lethality	Williams and Dusenbery, 1990; Roh et al., 2006.
stress-related gene expression	Roh et al., 2006.	
CuCl₂/CuSO₄	lethality	Williams and Dusenbery, 1990; Dhawan et al., 2000; Barsyte et al., 2001; Ibiam and Grant, 2005.
behavior/feeding behavior	Dhawan et al., 2000; Anderson et al., 2001.	
growth, reproduction, lifespan	Anderson et al., 2001; Ibiam and Grant, 2005; Harada et al., 2007.	
RNA/DNA ratio	Ibiam and Grant, 2005.	
Al(NO₃)₃	lethality, behavior	Williams and Dusenbery, 1990; Dhawan et al., 2000.
ZnCl₂/ZnSO₄	lethality	Williams and Dusenbery, 1990; Dhawan et al., 2000; Ibiam and Grant, 2005.
behavior	Dhawan et al., 2000.	
RNA/DNA ratio	Ibiam and Grant, 2005.	
BaCl₂	body size, life span, DAF-16::GFP hsp-16.2, SOD, catalase activity	Wang et al., 2008.
DEHP	lethality, growth, reproduction microarray, gene expression	Roh et al., 2007.
Chlortypyridos	lethality, growth, reproduction enzyme activity, gene expression	Roh and Choi, 2008.
Nano-Platinum	lifespan, oxidative stress resistance	Kim et al., 2008.
behavior, growth, or reproduction. Most of chemical toxicity tests performed on *C. elegans* listed in Table 2.

Gene expression. The application of DNA microarrays to toxicogenomics links toxicological effects of exposure with expression profiles of several thousand genes. The gene expression profiles are altered during toxicity, as either a direct or indirect result of toxicant exposure and the comparison of numerous specific expression profiles facilitates the differentiation between intoxication and true responses to environmental stressors. The application of microarrays provides the means to identify complex pathways and strategies that an exposed organism applies in response to environmental stressors. Gene expression profiles obtained by DNA microarrays are also believed to provide amore comprehensive, sensitive and characteristic insight into toxicity than typical toxicological parameters such as morphological changes, altered reproductive capacity or mortality. In addition to these classical (eco)toxicological parameters, (eco)toxicogenomics is a powerful tool that unravels mechanistic processes, reveals novel modes of action, and provides the opportunity to get a dynamic picture of biological systems and the ability to comprehensively dissect different states of biological activities in cells, tissues or whole organisms (Steinberg *et al.*, 2008). Due to the availability of the whole genome sequence, *C. elegans* has long been subject to gene expression studies. Microarrays using *C. elegans* have been conducted on steroid hormones (Custodia *et al.*, 2001), Polychlorinated biphenyls (PCBs; Menzel *et al.*, 2007), di(2-ethylhexyl)phthalate (DEHP; Roh *et al.*, 2007) and cadmium (Cui *et al.*, 2007). Among those chemicals, effect of cadmium has been most intensively investigated. The DNA microarray experiments on cadmium by Cui *et al.* (2007) identified 237 up-regulated and 53 downregulated genes that significantly changed following either 4 h or 24 h exposure to cadmium. These genes were clustered into early and late response genes. The former encompasses pathways, which regulate the localization and transportation of different chemical species (in particular metal ions). Recently, the functional relations of gene expression and phenotypic response have been widely investigated (Dong *et al.*, 2005; Roh *et al.*, 2007; Roh and Choi, 2008).

Functional genomics. *C. elegans* is an attractive animal model for the study of the ecotoxicological relevance of chemical-induced gene-level responses (Menzel *et al.*, 2005; Reichert and Menzel, 2005). Functional genomic tools, such as, mutant and RNAi, can offer the possibility to assess the physiological meaning of up- or down-regulated gene expression by chemical exposure and can provide indicators of the toxic mode of action from the level of a single gene to that of the whole organism (Menzel *et al.*, 2007). The results of gene expression analysis can be validated in vivo using mutational approaches in *C. elegans* (Kwon *et al.*, 2004; Menzel *et al.*, 2007). A rich collection of mutant makes *C. elegans* a particularly attractive animal model. Sensitive mutants can be used to improve the sensitivity of toxic response and thus have high potential for screening a toxicity of chemicals in a relatively short time (Chu *et al.*, 2005). Mutant *C. elegans* can be used to confirm the role of specific molecular targets based on gene expression analysis (Menzel *et al.*, 2007).

Biosensor. Transgenic *C. elegans* biosensor has been developed to monitor environmental stress. The use of transgenic animals is not a new approach in environmental toxicology. Fish transgenic model has been developed and received much attention and its promising capability was demonstrated (Jones *et al.*, 1996; Kurauchi *et al.*, 2005; Scholz *et al.*, 2005; Stringham and Candido, 2005). Nonetheless, most of the protocols require skills-based, long, and costly experiments, which make them difficult to adapt for the rapid routine assessment of field samples. *C. elegans* allows the preparation of a large number of staged and genetically homogeneous animals in the laboratory in a short time. The advantage of a rich collection of gene engineering approaches and well-established transgenesis approaches also presents a shortcut to the development of a sensitive biosensor that other organism models cannot surpass. Indeed, different promoters (e.g., hsp and mt) and alternative reporters (e.g., GFP, beta-galactosidase, and luciferase) have been tested in different transgenic designs (Roessjadi 1994; Yoshimi *et al.*, 2002; Chu *et al.*, 2005). Bioavailability and toxicity of a wide range of pollutants have been investigated using transgenic *C. elegans* biosensors (Power and de Pomerai, 1999; Lagido *et al.*, 2001; Dengg and van Meel, 2004; Roh *et al.*, 2006, 2007). Sensitivity of *C. elegans* to many heavy metals is similar to that of mammals (Williams and Dusenbery, 1988) indicating potential for evaluating toxicity to humans. *C. elegans* biosensors represent a more complex level of biological organisation and a higher trophic level than the bacterial and yeast luminescent biosensors already available (Paton *et al.*, 1997; Hollis *et al.*, 2000). This is pertinent when predicting toxicity to humans or implications for environmental health, as this approach can be used more generally to evaluate *C. elegans* metabolic status (Lagido *et al.*, 2001).
C. elegans as a screening model for prediction of mammalian toxicity. Recently, the growing awareness of the possibility of using wildlife animals as sentinels for human environmentally-induced diseases has created a demand for biomarkers that are nonlethal and correlate with adverse effects in humans (Kendall et al., 2001). Links between wildlife and human health can serve as a premise for extrapolation in risk assessment. Indeed, humans share many cellular and subcellular mechanisms with wildlife species. Humans and wildlife also overlap in their environments and may therefore be exposed to the same contaminants. There is evidence to suggest that when highly conserved systems are targeted by environmental toxicants, both ecosystem and human health suffer (Kendall et al., 2001). Biomonitoring organisms have long been used as a means of warning people of unsafe environments. There is increasing evidence that this is the case both at the level of genetic and physiological similarity, and at the level of actual toxicity data. The role of *C. elegans* is particularly valuable in this regard. *C. elegans* is considered an ideal system for understanding mammalian pathology, including toxicity. Because, many of the basic physiological processes and stress responses that are observed in higher organisms are conserved in *C. elegans*. Moreover, the genome of *C. elegans* shows an unexpectedly high level of conservation with the vertebrate genome (Brenner, 1974; Bettinger et al., 2004; Leacock et al., 2006; Schaffer, 2006; Schroeder, 2006). Therefore, by conducting molecular analyses of the response of conserved pathways to in vivo chemical exposure, toxicity data obtained in *C. elegans* may provide an insight into the mammalian toxicity.

Conserved genome and signaling pathways are particularly interesting as an alternative model for prediction of mammalian toxicity. *C. elegans* homologues have been identified for 60–80% of human genes (Kal-eta and Hengartner 2006). Many signal transduction pathways are conserved in nematodes and vertebrates (i.e. Wnt pathway via β-catenin; Receptor serine/threonine kinase pathway; Receptor tyrosine kinase; Notch-Delta pathway; Receptor-linked cytoplasmic tyrosine kinase pathway; Apoptosis pathway; Receptor protein tyrosine phosphatase pathway; G-protein coupled receptor pathway; Integrin pathway; Cadherin pathway; Gap junction pathway; Ligand-gated cation channel pathway) (NRC, 2000; Leung et al., 2008). Pathways relevant to oxidative stress, such as, the p38 MAPK and AKT signaling cascades, the ubiquitin–proteasome pathway, and the oxidative stress response pathway are also conserved in the worm (Leiers et al., 2003; Grad and Lemire, 2004; Ayadevara et al., 2005; Inoue et al., 2005; Kipreos, 2005; Gami et al., 2006; Daitoku and Fukamizu, 2007; Wang et al., 2007; Ayadevara et al., 2008; Tulet et al., 2008). Additionally, the main neurotransmitter systems (cholinergic, GABAergic, glutamatergic, dopaminergic, and serotonergic) and their genetic networks (from neurotransmitter metabolism to vesicle cycling and synaptic transmission) are phylogenetically conserved from nematodes to vertebrates, which allows for findings from *C. elegans* to be extrapolated and further confirmed in vertebrate systems (Leung et al., 2008).

Moreover, genome-wide screening, which can serve as a hypothesis-finding tool, providing a direction for further mechanistic investigation, is possible in *C. elegans* using forward genetics, DNA microarrays, or genome-wide RNAi. This approach is particularly useful for studying any toxicant with a poorly understood mechanism of action. Forward genetics screen, a useful method in mechanistic toxicology, is efficient in *C. elegans* because the mutants can cover genes expressed in a variety of tissues. A genome-wide RNAi screen, typically assesses a number of physiological parameters at the same time thereby facilitating the interpretation of screening results, are also being used for discovering gene function (Leung et al., 2008).

The use of *C. elegans* as a predictive model for human toxicity was studied by estimating LC50 values of heavy metals exposure (Williams and Dusenbery, 1988), and by investigating the behavioral toxicity of

Fig. 2. Potential use of *C. elegans* as an alternative animal model for initial screening of chemical toxicity.
organophosphorous pesticides (Anderson et al., 2004; Cole et al., 2004). Several other studies have also validated a number of C. elegans-based assays for predicting neurological and developmental toxicity in mammalian species (Khanna et al., 1997; Dhawan et al., 1999; Williams et al., 2000; Anderson et al., 2004). Comparative toxicity study with C. elegans has been most exploited to date, using neurologically active chemicals (Leung et al., 2008). Overall results from comparative toxicity studies suggest that C. elegans may react to chemicals with enough similarity to mammals to be useful as a first-round screening agent for toxicity (Fig. 2).

Concluding remarks. To better diagnose environmental quality, multilevel biomarkers-based approach, which permits better understanding of the impact of pollutants on organisms, should be implemented in environmental monitoring procedures. Moreover, the interconnections between ecologic heath and human health should not be overlooked. What is needed, in the future, are new and innovative approaches that integrate effects across different levels of biological complexity and provide a clear understanding of all the hazards posed by environmental pollution, not only to ecological systems but for human health as well. C. elegans seems to be a powerful model for this approach. Especially, as complement system to in vitro and in vivo vertebrate models, C. elegans seems to have a high potential to be a good candidate for an alternative animal model for mammalian toxicity screening study.

REFERENCES

Anderson, G.L., Boyd, W.A. and Williams, P.L. (2001). Assessment of sublethal endpoints for toxicity testing with the nematode Caenorhabditis elegans. *Environ. Toxicol. Chem.*, **20**, 833-838.

Anderson, G.L., Cole, R.D. and Williams, P.L. (2004). Assessing behavioral toxicity with Caenorhabditis elegans. *Environ. Toxicol. Chem.*, **23**, 1235-1240.

Antoshechkin, I. and Sternberg, P.W. (2007). The versatile worm: genetic and genomic resources for Caenorhabditis elegans research. *Nat. Rev. Genet.*, **8**, 518-532.

Ayyadevara, S., Alla, R., Thaden, J.J. and Shmooolker Reis, R.J. (2003). Remarkable longevity and stress resistance of nematode P57K-null mutants. *Aging Cell*, **7**, 13-22.

Ayyadevara, S., Dandapat, A., Singh, S.P., Benes, H., Zmirik, L., Reis, R.J. and Zmirik, P. (2005). Lifespan extension in hypomorphic daf-2 mutants of Caenorhabditis elegans is partially mediated by glutathione transferase CeGSTP2-2. *Aging Cell*, **4**, 259-307.

Bartsyte, D., Lovejoy, D.A. and Lithgow, G.J. (2001). Longevity and heavy metal resistance in daf-2 and age-1 long-lived mutants of Caenorhabditis elegans. *FASEB J.*, **15**, 627-634.

Bettinger, J.C., Camell, L., Davies, A.G. and McIntire, S.L. (2004). The use of Caenorhabditis elegans in molecular neuropharmacology. *Int. Rev. Neurobiol.*, **62**, 195-212.

Bongers, T. and Ferris, H. (1999). Nematode community structure as a biondicator in environmental monitoring. *Trends Ecol. Evol.*, **14**, 224-228.

Boyd, W.A. and Williams, P.L. (2003). Comparison of the sensitivity of three nematode species to copper and their utility in aquatic and soil toxicity tests. *Environ. Toxicol. Chem.*, **22**, 2768-2774.

Brenner, S. (1974). The genetics of Caenorhabditis elegans. *Genetics*, **77**, 91-94.

Caquet, T., Lagadic, L. and Sheffield, S.R. (2000). Mesocosms in ecotoxicology (1): Outdoor aquatic systems. *Rev. Environ. Contam. Toxicol.*, **165**, 1-38.

Choi, J., Caquet, T. and Roche, H. (2002). Multilevel effects of sublethal fenitrothion exposure in *Chironomus riparius* Mg. (Diptera, Chironomidae) larvae. *Environ. Toxicol. Chem.*, **21**, 2725-2730.

Chu, K.W., Chan, S.K. and Chow, K.L. (2005). Improvement of heavy metal stress and toxicity assays by coupling a transgenic reporter in a mutant nematode strain. *Aquat. Toxicol.*, **74**, 320-332.

Cole, R.D., Anderson, G.L. and Williams, P.L. (2004). The nematode Caenorhabditis elegans as a model of organophosphate-induced mammalian neurotoxicity. *Toxicol. Appl. Pharmacol.*, **194**, 246-255.

Committee on Developmental Toxicology, Board on Environmental Studies and Toxicology, National Research Council (2000). *Scientific Frontiers in Developmental Toxicology and Risk Assessment*. *National Research Council*, pp. 1-354.

Custodio, N., Won, S.J., Novillo, A., Wieland, M., Li, C. and Callard, I.P. (2001). Caenorhabditis elegans as an environmental monitor using DNA microarray analysis. *Ann. N.Y. Acad. Sci.*, **948**, 32-42.

Cui, Y., McBride, S.J., Boyd, W.A., Alper, S. and Freedman, J.H. (2007). Toxicogenomic analysis of *Caenorhabditis elegans* reveals novel genes and pathways involved in the resistance to cadmium toxicity. *Genome Biol.*, **8**, R122.

Daitoku, H. and Fukamiya, A. (2007). FOXO transcription factors in the regulatory networks of longevity. *J. Biochem.*, **141**, 769-774.

Dengg, M. and van Meel, J.C. (2004). *Caenorhabditis elegans* as model system for rapid toxicity assessment of pharmaceutical compounds. *J. Pharmacol. Toxicol. Methods*, **50**, 9-14.

Depledge, M.H. (1994). Genotypic toxicity: implications for individuals and populations. *Environ. Health Perspect.*, **12**, 101-104.

Dhawan, R., Dusenbery, D.B. and Williams, P.L. (1999). Comparison of lethality, reproduction, and behavior as toxicological endpoints in the nematode *Caenorhabditis elegans*. *J. Toxicol. Environ. Health A.*, **58**, 451-462.

Dhawan, R., Dusenbery, D.B. and Williams, P.L. (2000). A comparison of metal-induced lethality and behavioral responses in the nematode *Caenorhabditis elegans*. *Environ. Toxicol. Chem.*, **19**, 3061-3067.
Dong, J., Boyd, W.A. and Freedman, J.H. (2008). Molecular characterization of two homologs of the Caenorhabditis elegans cadmium-responsive gene cdr-1: cdr-4 and cdr-6. J. Mol. Biol., 376, 621-633.

Dong, J., Song, M.O. and Freedman, J.H. (2005). Identification and characterization of a family of Caenorhabditis elegans genes that is homologous to the cadmium-responsive gene cdr-1. Biochim. Biophys. Acta., 1727, 16-26.

Forbes, V.E., Palmqvist, A. and Bach, L. (2006). The use and misuse of biomarkers in ecotoxicology. Environ. Toxicol. Chem., 25, 272-280.

Fossi, M.C., Casini, S., Savelli, C., Corbetti, C., Franchi, E., Mattei, N., Sanchez-Hernandez, J.C., Corsi, Bamber, I., Depledge, S. and Depledge, M.H. (2000). Biomarker responses at different levels of biological organisation in crabs (Carcinus aestuarii) experimentally exposed to benzo(α)pyrene. Chemosphere, 40, 861-874.

Gami, M.S., Iser, W.B., Hanselman, K.B. and Wollock, C.A. (2005). Activated AKT/PKB signaling in C. elegans uncouples temporally distinct outputs of DAF-2/insulin-like signaling. B.M.C. Dev. Biol., 6, 45.

Grad, I.L. and Lemire, B.D. (2004). Mitochondrial complex I mutations in Caenorhabditis elegans produce cytochrome c oxidase deficiency, oxidative stress and vitamin-responsive lactic acidosis. Hum. Mol. Genet., 13, 303-314.

Harada, H., Kurauchi, M., Hayashi, R. and Eki, T. (2007). Shortened lifespan of nematode Caenorhabditis elegans after prolonged exposure to heavy metals and detergents. Ecotoxicol. Environ. Saf., 66, 378-383.

Heckmann, L.H., Silby, R.M., Connolly, R., Hooper, H.L., Hutchinson, T.H., Maund, S.J., Hill, C.J., Bouetard, A. and Callaghan, A. (2008). Systems biology meets stress ecology: linking molecular and organismal stress responses in Daphnia magna. Genome Biology, 9, R40.

Hollie, R.P., Kilham, K. and Glover, L.A. (2000). Design and application of a biosensor for monitoring toxicity of compounds to eukaryotes. Appl. Environ. Microbiol., 66, 1676-1679.

Hughs, S. and Stuibenbaum, S.R. (2007). Single and double metallothionein knockouts in the nematode C. elegans reveals cadmium dependent and independent toxic effects on life history traits. Environ. Pollut., 145, 356-400.

Ibiam, U. and Grant, A. (2005). DNA/DNA ratios as a subthal endpoint for large-scale toxicity tests with the nematode Caenorhabditis elegans. Environ. Toxicol. Chem., 24, 1155-1159.

Inoue, H., Hisamoto, N., An, J.H., Oliveira, R.P., Nishida, E., Blackwell, T.K. and Matsumoto, K. (2005). The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes Dev., 19, 2278-2283.

Jones, D., Stringham, E.G., Babich, S.L. and Candido, E.P. (1996). Transgenic strains of the nematode C. elegans in biomonitoring and toxicology: Effects of capatan and related compounds on the stress response. Toxicology, 108, 119-127.

Kalella, T. and Hengartner, M.O. (2006). Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov., 5, 387-398.

Kendall, G., Cooper, H.J., Hepinstall, J., Derrick, P.J., Walton, D.J. and Peterson, I.R. (2001). Specific electrochemical nitration of horse heart myoglobin. Arch. Biochem. Biophys., 392, 169-179.

Khanna, N., Cressman, C.P. 3rd., Tatara, C.P. and Williams, P.L. (1997). Tolerance of the nematode Caenorhabditis elegans to pH, salinity, and hardness in aquatic media. Arch. Environ. Contam. Toxicol., 32, 110-114.

Kim, J., Takahashi, M., Shimizu, T., Shirasawa, T., Kajita, M., Kanayama, A. and Miyamoto, Y. (2006). Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans. Mech. Ageing Dev., 129, 322-331.

Kireocos, E.T. (2005). Ubiquitin-mediated pathways in C. elegans. WormBook, 1, 1-24.

Kurauchi, K., Nakamura, T., Tsutsumi, M., Horii, H., Kurihara, R., Hashimoto, S., Ohnuma, R., Yamamoto, Y., Matsuoka, S., Kawai, S., Hirata, T. and Kinosita, M. (2005). In vivo visual reporter system for detection of estrogen-like substances by transgenic medaka. Environ. Sci. Technol., 39, 2762-2766.

Kwon, J.Y., Hong, M., Choi, M.S., Kang, S., Duke, K., Kim, S., Lee, S. and Lee, J. (2004). Ethanol-response genes and their regulation analyzed by a microarray and comparative genomic approach in the nematode Caenorhabditis elegans. Genetics, 83, 600-614.

Lagadic, L., Caquet, T. and Ramade, F. (1994). The role of biomarkers in environmental assessment (5). Invertebrate populations and communities. Ecotoxicology, 3, 193-208.

Lagido, C., Pettitt, J., Porter, A.J., Paton, G.I. and Glover, L.A. (2001). Development and application of bioluminescent Caenorhabditis elegans as multicellular eukaryotic biosensors. FEBS Lett., 23, 36-39.

Leacock, S.W. and Reinke, V. (2006). Expression profiling of MAP kinase-mediated mitotic progression in Caenorhabditis elegans. PLoS. Genet., 10, e174.

Lee, S.B. and Choi, J. (2006). Multilevel evaluation of nonylphenol toxicity in fourth-instar larvae of Chironomus riparius (Diptera, Chironomidae). Environ. Toxicol. Chem., 25, 3003-3014.

Lee, S.M., Lee, S.B., Park, C.H. and Choi, J. (2006). Expression of heat shock protein and hemoglobin genes in Chironomus tentans (Diptera, Chironomidae) larvae exposed to various environmental pollutants: a potential biomarker of freshwater monitoring. Chemosphere, 65, 1084-1087.

Lee, S.W., Park, K., Hong, J. and Choi, J. (2008). Ecotoxicological evaluation of octachlorostyrene in fourth instar larvae of Chironomus riparius (Diptera, Chironomidae). Environ. Toxicol. Chem., 27, 1118-1127.

Leiers, B., Kampfatter, A., Greveling, C.G., Link, C.D., Johnsson, T.E. and Henke-Dührsen, K. (2003). A stress-responsive glutathione S-transferase confers resistance to oxidative stress in Caenorhabditis elegans. Free Radic. Biol. Med., 34, 1405-1415.

Leung, M.C., Williams, P.L., Benedetto, A., Au, C., Helmcke, K.J., Aeschner, M. and Meyer, J.N. (2003). Caenorhabditis elegans: an Emerging Model in Biomedical and Environmental Toxicology. Toxicol. Sci., published.

Liao, Y.H., Dong, J. and Freedman, J.H. (2002). Molecular
characterization of a novel, cadmium-inducible gene from the nematode Caenorhabditis elegans. J. Biol. Chem., 277, 42049-42059.

Menzel, R., Rodel, M., Kulas, J. and Steinberg, C.E. (2005). CYP35: Xenobiotically induced gene expression in the nematode Caenorhabditis elegans. Arch. Biochem. Biophys., 438, 93-102.

Menzel, R., Yeo, H.L., Rienau, S., Li, S., Steinberg, C.E. and Stürzenbaum, S.R. (2007). Cytochrome P450s and short-chain dehydrogenases mediate the toxicogenic response of PCB52 in the nematode Caenorhabditis elegans. J. Mol. Biol., 370, 1-13.

Newman, M.C. and Jagoe, C.H. (1995). Ecotoxicology: a hierarchical treatment, Savannah River series on environmental sciences, Boca Raton, pp. 411.

Peredney, C.L. and Williams, P.L. (2000). Utility of Caenorhabditis elegans for assessing heavy metal contamination in artificial soil. Arch. Environ. Contam. Toxicol., 39, 113-118.

Paton, G.I., Ratrarry, E.A.S., Campbell, C.D., Menssen, H., Cresser, M.S., Glover, L.A. and Killham, K. (1997). In: Biomarkers of Soil Health (Pankhurst, C.S., Double, B. and Gupta, V., Eds.), Wallingford, UK: CAB International, pp. 397-418.

Power, R.S. and de Pomera, D.I. (1999). Effect of single and paired metal inputs in soil on a stress-inducible transgenic nematode. Arch. Environ. Contam. Toxicol., 37, 503-511.

Poynton, H.C., Varshavsky, J.R., Chang, B., Cavigliolo, G., Chan, S., Holman, P.S., Logninov, A.V., Bauer, D.J., Komachi, K., Thiel, E.C., Perkins, E.J., Hughes, O. and Vulpes, C.D. (2007). Daphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity. Environ. Sci. Technol., 41, 1044-1050.

Reichert, K. and Menzel, R. (2005). Expression profiling of five different xenobiotics using a Caenorhabditis elegans whole-genome microarray. Chemosphere, 61, 229-237.

Risso-de Faverney, C., Devaux, A., Lafaurie, M., Girard, J.P. and and Rahmani, R. (2001). Toxic effects of wastewaters collected at upstream and downstream sites of a purification station in cultures of rainbow trout hepatocytes. Arch. Environ. Contam. Toxicol., 41, 129-141.

Roesijadi, G. (1994). Metallothionein induction as a measure of response to metal exposure in aquatic animal. Envir. Health Perspect, 12, 91-95.

Roh, J.Y. and Choi, J. (2008). Ecotoxical evaluation of chlorpyrifos exposure on the nematode Caenorhabditis elegans. Ecotoxicol. Environ. Saf., doi:10.1016.

Roh, J.Y., Jung, J.H., Lee, J.Y. and Choi, J. (2007). Toxic effects of di(2-ethylhexyl)phthalate on mortality, growth, reproduction and stress-related gene expression in the soil nematode Caenorhabditis elegans. Toxicology, 237, 126-133.

Roh, J.Y., Lee, J. and Choi, J. (2006). Assessment of stress-related gene expression in the heavy metal-exposed nematode Caenorhabditis elegans: a potential biomarker for metal-induced toxicity monitoring and environmental risk assessment. Environ. Toxicol. Chem., 25, 2946-2956.

Russo, J. and Lagaic, L. (2000). Effects of parasitism and pesticide exposure on characteristics and functions of hemocyte populations in the freshwater snail Lymnaea palustris. (Gastropoda, Pulmonata). Cell Biol. Toxicol., 16, 15-30.

Schafer, W.R. (2009). Neurophysiological methods in C. elegans: an introduction. WormBook, 2, 1-4.

Scholz, S., Kuraschi, K., Kinosita, M., Oshima, Y., Ozato, K., Schirmer, K. and Wakamatsu, Y. (2005). Analysis of estrogentic effects by quantification of green fluorescent protein in juvenile fish of a transgenic medaka. Environ. Toxicol. Chem., 24, 2553-2561.

Schroeder, F.C. (2006). Small molecule signalling in Caenorhabditis elegans. ACS Chem. Biol., 1, 196-200.

Snell, T.W., Brogdon, S.E. and Morgan, M.B. (2003). Gene expression profiling in ecotoxicology. Ecotoxicology, 12, 475-483.

Steinberg, C.E., Stürzenbaum, S.R. and Menzel, R. (2008). Genes and environment - Striking the fine balance between sophisticated biomonitoring and true functional environmental genomics. Sci. Total Environ., pp. 142-161.

Stringham, E.G. and Candido, E.P. (1994). Transgenic hsp16-lacZ strains of the soil nematode Caenorhabditis elegans as biological monitors of environmental stress. Environ. Toxicol. Chem., 13, 1211-1220.

Swain, S.C., Keusekotten, K., Baumeister, R. and Stürzenbaum, S.R. (2004). C elegans metallothioneins: new insights into the phenotypic effects of cadmium toxicosis. J. Biol. Chem., 341, 951-959.

Tullet, J.M., Hertweck, M., An, J.H., Baker, J., Hvangs, J.Y., Liu, S., Oliveira, R.P., Baumeister, R. and Blackwell, T.K. (2006). Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell, 132, 1025-1038.

Ura, K., Kai, T., Sakata, S., Iuchi, T. and Arizono, K. (2002). Aquatic acute toxicity testing using the nematode Caenorhabditis elegans. J. Health Sci., 48, 583-586.

Wang, D.Y. and Wang, Y. (2008). Phenotypic and behavioral defects caused by barium exposure in nematode Caenorhabditis elegans. Arch. Environ. Contam. Toxicol., 54, 447-453.

Wang, Y.M., Pu, P. and Le, W.D. (2007). ATP depletion is the major cause of MPP+ induced dopamine neuronal death and worm lethality in alpha-synuclein transgenic C. elegans. Neurosci. Bull., 23, 329-335.

Williams, P.L., Anderson, G.L., Johnstone, J.L., Nunn, A.D., Tweedle, M.F. and Vedeckis, P. (2000). Caenorhabditis elegans as an alternative animal species. J. Toxicol. Environ. Health, A., 61, 641-647.

Williams, P.L. and Dusenbery, D.B. (1988). Using the nematode Caenorhabditis elegans to predict mammalian acute lethality to metallic salts. Toxicol. Ind. Health, 4, 469-478.

Williams, P.L. and Dusenbery, D.B. (1989). Aquatic toxicity testing using the nematode Caenorhabditis elegans. Environ. Toxicol. Chem., 9, 1285-1290.

Yoshimi, T., Minowa, K., Karouma-Remier, N.K., Watanabe, C., Sugaya, Y. and Miura, T. (2002). Activation of stress-induced gene by insecticides in the midge, Chironomus yoshimai sp. J. Biochem. Mol. Toxicol., 16, 10-17.