Abstract: Let X be a smooth projective variety over an algebraically closed field k. We repeat Bloch’s construction of a \mathbb{G}_m-biextension (torseur) E over $\text{CH}^p_{\text{hom}}(X) \times \text{CH}^q_{\text{hom}}(X)$ for $p+q = \dim(X)+1$. First we show that in characteristic zero E comes via pullback from the Poincaré biextension P over the corresponding product of intermediate Jacobians - as conjectured by Bloch and Murre. Then the relations between E and various equivalence relations for algebraic cycles are studied. In particular we reprove Murre’s theorem stating that Griffiths’ conjecture holds for codimension 2 cycles, i.e. every 2-codimensional cycle which is algebraically and incidence equivalent to zero has torsion Abel-Jacobi invariant.

Key Words: Biextensions, higher Chow groups, algebraic cycles, Abel-Jacobi maps, Deligne-Beilinson cohomology, incidence equivalence, Griffiths’ conjecture.
§ 0. Introduction

Let \(X \) be a compact Kähler manifold of dimension \(d \). If we fix two integers \(0 \leq p, q \leq d \) with \(p + q = d + 1 \), then the two Griffiths intermediate Jacobians \(\mathcal{J}^p(X) \) and \(\mathcal{J}^q(X) \) are mutually dual. The Poincaré line bundle \(P \) on \(\mathcal{J}^p(X) \times \mathcal{J}^q(X) \) minus its zero section, denoted by \(\mathbb{P} \), is a \(\mathbb{C}^* \)-torseur and in fact a biextension in the sense of Grothendieck (SGA 7) and [Mumford 69].

Any two disjoint homologically trivial cycles \(Z \in CH^p_{\text{hom}}(X) \), \(W \in CH^q_{\text{hom}}(X) \) define an element \(< Z, W > \in \mathbb{P} \), projecting onto the element \((\psi_p(Z), \psi_q(W)) \in \mathcal{J}^p(X) \times \mathcal{J}^q(X) \), where \(\psi \) is the Abel-Jacobi homomorphism.

Bloch has given another construction for a \(\mathbb{G}_m \)-torseur \(E \) over \(CH^p_{\text{hom}}(X) \times CH^q_{\text{hom}}(X) \) for a projective manifold \(X \) over an arbitrary field [Bloch 89]. He also conjectures, that \(E \) may be obtained as the pullback of \(\mathbb{P} \) via the Abel-Jacobi map in characteristic zero. We prove this:

Theorem 1. Let \(X \) be a smooth projective variety over \(\mathbb{C} \). Then \(E \) is the pullback of \(\mathbb{P} \) as torseurs under the Abel-Jacobi homomorphism.

The idea of proof is that the essential point in Bloch’s construction factors through Deligne cohomology.

Theorem 1 can be applied to shed some light on the relation between Abel-Jacobi equivalence and incidence equivalence of algebraic cycles. A cycle \(W \in CH^q_{\text{hom}}(X) \) is called *incidence equivalent* to zero (\(W \sim_{\text{inc}} 0 \)), if for all pairs \((T, B) \), with a smooth projective variety \(T \) and a cycle \(B \in CH^{d+1-q}(T \times X) \), the divisor \(B(W) = (pr_T)_*(B \cap pr_X^*(W)) \) is linearly equivalent to zero on \(T \) (see [Griffiths 69]).

It is easy to show that \(\psi(W) = 0 \) implies \(W \sim_{\text{inc}} 0 \). Griffiths conjectured, that the opposite is true modulo torsion if \(W \) is assumed to be algebraically equivalent to zero. It was known that this follows from the generalized Hodge conjecture of Grothendieck. Murre ([Murre 85]) has proved the conjecture for codimension two cycles. We show here, that theorem 1 has something to do with this problem. Denote by \(E^\text{alg}_W \) the restriction of \(E \) to the fiber over \(W \in CH^q_{\text{alg}}(X) \):

\[
1 \to \mathbb{C}^* \to E^\text{alg}_W \to CH^p_{\text{alg}}(X) \to 0
\]

We show:
Theorem 2. Let X be smooth projective over \mathbb{C} and W be algebraically equivalent to zero. Then E^alg_W is a split extension if and only if $W \sim_{\text{inc}} 0$.

Here the idea is that incidence equivalence reduces somehow to the situation of points and divisors, which is better understood than the general case. This result brings together the a priori different definitions of incidence equivalence occurring in the literature. Theorem 2 implies a condition for Griffiths’ conjecture:

Theorem 3. Let X be as above and $W \in CH^q_{\text{alg}}(X)$ be such that $\psi(N \cdot W)$ is contained in the dual of $\mathcal{J}^p_{\text{alg}}(X) = \psi(CH^p_{\text{alg}}(X))$ (an abelian subvariety) for some $N \in \mathbb{N}$. Then $W \sim_{\text{inc}} 0$ implies that $\psi(W)$ is torsion in $\mathcal{J}^q(X)$.

The condition follows again from Grothendieck’s generalized Hodge conjecture. But it holds always for codimension two cycles if and therefore we get another proof of Murre’s theorem ([Murre85]):

Corollary (Murre’s theorem).
Griffiths’ conjecture holds for codimension two cycles on a smooth projective manifold X over \mathbb{C}, i.e. for every cycle W on X, algebraically and incidence equivalent to zero, $\psi(W)$ is torsion in $\mathcal{J}^2(X)$.

It is easy to see that the proof of Griffiths’ conjecture would go through in any codimension p, if the adjoint Λ of the Lefschetz operator were again algebraic. This can be verified for several types of varieties e.g. rational-like varieties and abelian varieties and complete intersections in these. For a special case see [Griffiths-Schmid75].

The paper is organized as follows:

§ 1. The Poincaré biextension.
§ 2. Facts about higher Chow groups.
§ 3. Bloch’s construction.
§ 4. The pullback theorem.
§ 5. Abel-Jacobi versus incidence equivalence.

It is a pleasure to thank Jacob Murre for mentioning this problem to me and showing me his unpublished notes ([Murre]) during a visit at Leiden. Furthermore I am grateful to A. Collino, H. Esnault and D. Huybrechts for many helpful remarks and improvements.
Let us first discuss briefly the notion of biextension. We refer to [Mumford 69] and SGA 7 for further details: Let A, B, C be abelian groups. A biextension of $B \times C$ by A is a set E on which A acts freely, together with a quotient map $\pi : E \to B \times C$ and two laws of composition $+_1 : E \times B \to E$, $+_2 : E \times C \to E$ subject to the following conditions:

1. For all $b \in B$, $\pi^{-1}(b \times C)$ is an abelian group under $+_1$ and the following sequence is exact:

 $0 \to A \to \pi^{-1}(b \times C) \to C \to 0$

2. For all $c \in C$, $\pi^{-1}(B \times c)$ is an abelian group under $+_2$ and the following sequence is exact:

 $0 \to A \to \pi^{-1}(B \times c) \to B \to 0$

3. $+_1, +_2$ are compatible, i.e. for suitable $w, x, y, z \in E$ we have

 $$(w +_1 x) +_2 (y +_1 z) = (w +_2 y) +_1 (x +_2 z)$$

There is one prominent example which caused this definition to exist, namely the Poincaré biextension:

Let T be a compact complex torus of dimension n. There is a natural line bundle P (the Poincaré line bundle) on $T \times T^\vee$, where $T^\vee = \text{Pic}^0(T)$. As an element of $\text{Pic}(T \times T^\vee)$ it is usually normalized by the two conditions

1. $P|_{\{0\} \times T^\vee} \cong \mathcal{O}_{T^\vee}$
2. $P|_{T \times \{\lambda\}}$ represents $\lambda \in \text{Pic}^0(T) = T^\vee$

P is unique under these assumptions. Let $\mathbb{P} = P \setminus \text{zero section}$. Clearly \mathbb{C}^* acts freely on \mathbb{P}. \mathbb{P} is called Poincaré-biextension associated to T. The projection map $p : \mathbb{P} \to T \times T^\vee$ makes \mathbb{P} a \mathbb{C}^*-torseur over $T \times T^\vee$. For every $\lambda \in T^\vee$, the inverse image $p^{-1}(T \times \{\lambda\})$ is denoted by \mathbb{P}_λ and sits in the exact sequence

$$0 \to \mathbb{C}^* \to \mathbb{P}_\lambda \to T \to 0.$$

Then \mathbb{P}_λ is an extension of abelian groups. It is well known that

$$T^\vee = \text{Pic}^0(T) \cong \text{Ext}^1(T, \mathbb{C}^*)$$

in the category of complex analytic groups. \mathbb{P}_λ is exactly the extension of T by \mathbb{C}^* given by λ in this isomorphism. If D is any divisor on T with $c_1(\mathcal{O}(D)) = \lambda$ then we will write also \mathbb{P}_D instead of \mathbb{P}_λ and note that \mathbb{P}_D depends only on the class
on D in $\text{Pic}^0(T)$. Now let us consider a special case: Let X be a Kähler manifold of dimension d and p some integer. If we let $T = J^p(X)$ the p-th intermediate Jacobian of X

$$J^p(X) = \frac{H^{2p-1}(X, \mathbb{C})}{F^p \oplus H^{2p-1}(X, \mathbb{Z})}$$

then it follows by using Poincaré duality, that T^\vee is given by $J^q(X)$ where $q = d + 1 - p$. Let

$$\mathbb{P} \rightarrow T \times T^\vee = J^p(X) \times J^q(X)$$

be the Poincaré-biextension as defined above. If $W \subset CH^q_{\text{hom}}(X)$ with $\lambda = \psi(W) \in J^q(X)$ and $\mathbb{P}_W := \mathbb{P}_\lambda$ we remark that \mathbb{P}_W depends only on the Abel-Jacobi equivalence class of W, i.e. W is Abel-Jacobi equivalent to zero if and only if \mathbb{P}_W splits as an extension in $\text{Ext}^1(T, \mathbb{C}^*)$.

§ 2. Facts about higher Chow groups

Literature: [Bloch 86], [Murre] for this chapter. Before we repeat Bloch’s construction, we recall some properties of higher Chow groups as defined by Spencer Bloch.

Let X be a quasi-projective variety over \mathbb{C}. Denote by $\Delta^n = \text{Spec}(k[T_0, \ldots , T_n]/< \sum T_i = 1 >)$ which is isomorphic to affine space $\mathbb{A}^n_{\mathbb{C}}$. There are $n + 1$ natural faces isomorphic to Δ^n contained in Δ^n, defined by the vanishing of one of the coordinate functions t_i. Let $Z^r(X, n)$ be the free abelian group of cycles $Z \subset X \times \Delta^n$ of codimension r meeting all faces $X \times \Delta^m$ ($m < n$) properly. Then $CH^r(X, n)$ is defined as the n-th homology group of the complex

$$Z^r(X; \cdot) = (\ldots Z^r(X, n + 1) \xrightarrow{\partial} Z^r(X, n) \xrightarrow{\partial} Z^r(X, n - 1) \xrightarrow{\partial} \ldots \rightarrow Z^r(X, 0)).$$

The maps ∂ are given by alternating sums of restriction maps to faces. We will need the following properties:

1. $CH^*(X, *)$ are covariant (contravariant) functorial for proper (flat) morphisms.

2. If $W \subset X$ is closed, we have a long exact sequence

$$\ldots \rightarrow CH^*(X, W, n) \rightarrow CH^*(X, n) \rightarrow CH^*(W, n) \rightarrow CH^*(X, W, n - 1) \rightarrow \ldots$$

3. $CH^*(X, 0) = CH^*(X)$ (ordinary Chowgroups).
(4) There is a product for X smooth

$$CH^p(X, q) \otimes CH^r(X, s) \rightarrow CH^{p+r}(X, q + s).$$

(5) There are natural maps to Deligne-Beilinson cohomology, defined in Bloch’s article in Contemporary Math. 58 (1986):

$$c_D : CH^p(X, q) \rightarrow H_D^{2p-q}(X, \mathbb{Z}(p)).$$

(6) If X is proper (not necessarily smooth) and $\dim X = d$, then there is a natural surjective homomorphism

$$\epsilon : CH^{d+1}(X, 1) \rightarrow \mathbb{C}^*$$

factoring through Deligne-Beilinson cohomology

$$\epsilon : CH^{d+1}(X, 1) \rightarrow H_D^{2d+1}(X, \mathbb{Z}(d + 1)) \rightarrow \mathbb{C}^*$$

obtained as follows: Let $\pi : X \rightarrow \text{Spec} (\mathbb{C})$ be the natural morphism. Then ϵ is given by the direct image map $\pi_* : CH^{d+1}(X, 1) \rightarrow CH^1(\text{Spec} (\mathbb{C}), 1)$, since it is a straightforward exercise to show that

$$CH^1(\text{Spec} (\mathbb{C}), 1) \cong H_D^1(\text{Spec} (\mathbb{C}), \mathbb{Z}(1)) \cong \mathbb{C}/\mathbb{Z}(1)$$

via the classes in (5) and the latter group can be identified with \mathbb{C}^*. We claim:

(1) ϵ is surjective.

(2) It factors through Deligne-Beilinson cohomology.

Proof for (1) and (2)

(1): By definition $CH^1(\text{Spec} (\mathbb{C}), 1) = Z^1(\text{Spec} (\mathbb{C}), 1)/\text{Im}(\partial)$, since $Z^1(\text{Spec} (\mathbb{C}), 0) = 0$. In the same way $CH^{d+1}(X, 1) = Z^{d+1}(X, 1)/\text{Im}(\partial)$. Hence in both groups the elements are represented by finite sums of points. It is clear that the map $Z^{d+1}(X, 1) \rightarrow Z^1(\text{Spec} (\mathbb{C}), 1)$ induced by π_* is surjective. Hence we deduce (1).

(2): By the functorial properties of the Deligne-Beilinson classes we get a commutative diagram:

$$
\begin{array}{ccc}
CH^{d+1}(X, 1) & \xrightarrow{\pi_*} & CH^1(\text{Spec} (\mathbb{C}), 1) \\
\downarrow c_D & & \downarrow c_D \\
H_D^{2d+1}(X, \mathbb{Z}(d + 1)) & \xrightarrow{\pi_*} & H^1_D(\text{Spec} (\mathbb{C}), \mathbb{Z}(1))
\end{array}
$$

The right vertical arrow being the identity we get (2). \qed
§ 3. Bloch’s Construction

For this chapter we refer to [Bloch 89].

Let us describe Bloch’s construction in detail: Let \(X \) be smooth and projective over \(\mathbb{C} \) with \(\dim X = d \), and \(W \in \mathbb{Z}_{m-1}(X) = \mathbb{Z}^{d+1-m}(X) \) a cycle of dimension \(m - 1 \), which is homologous to zero, denoted by \(W \sim_{\text{hom}} 0 \) as usual. We will construct an extension

\[
1 \to \mathbb{C}^* \to E_W \to CH^m_{\text{hom}}(X) \to 0
\]

such that they can be glued together to give

\[
E = \bigcup E_W \to CH^m_{\text{hom}}(X) \times CH^{d+1-m}_{\text{hom}}(X)
\]

a biextension in the sense of § 1. To do this, Bloch first considers the map

\[
\Theta_W = \epsilon \circ (\cap W) : CH^m(X, 1) \to CH^{d+1}(X, 1) \to \mathbb{C}^*
\]

using properties (4) and (6) of higher Chow groups.

Lemma 1. If \(W \sim_{\text{hom}} 0 \), then \(\Theta_W \equiv 1 \).

Proof. Recall the following fact from Deligne-Beilinson cohomology ([Esnault-Viehweg 88]):

\(J^* \subset H^*_D(X, \mathbb{Z}(*)) \) is a square zero ideal, where

\[
J^* = \text{Ker}(H^*_D(X, \mathbb{Z}(*)) \to H^*_{\text{Betti}}(X, \mathbb{Z}(*)))
\]

Now look at the diagram

\[
\begin{array}{ccc}
CH^m(X, 1) & \xrightarrow{\cap W} & CH^{d+1}(X, 1) \\
\downarrow c_D & & \downarrow c_D \\
H^{2m-1}_D(X, \mathbb{Z}(m)) & \xrightarrow{\cap \rho(W)} & H^{2d+1}_D(X, \mathbb{Z}(d+1)) \\
\end{array}
\]

But \(W \sim_{\text{hom}} 0 \) implies \(c_D(W) \in J^*(X) \), and also \(H^{2m-1}_D(X, \mathbb{Z}(m)) \subset J^*(X) \). Hence the lemma follows. \(\square \)

To construct \(E_W \) consider the long exact sequence for the pair \((X, |W|)\):

\[
\ldots \to CH^m(X, 1) \to CH^m(|W|, 1) \to CH^m(X, |W|, 0) \to CH^m(X, 0) \to 0
\]

where \(|W| = \text{supp}(W) \) as usual. Since \(|W| \) is proper of dimension \(m - 1 \), we have a surjective map \(\epsilon : CH^m(|W|, 1) \to \mathbb{C}^* \) by property (6). But \(\Theta_W \equiv 1 \), hence \(\epsilon \) factors through

\[
A := \frac{CH^m(|W|, 1)}{\text{im} CH^m(X, 1)} \to \mathbb{C}^*.
\]
Consider the commutative diagram

\[
\begin{array}{ccccccccc}
0 & \rightarrow & A & \rightarrow & CH^m(X, |W|, 0) & \rightarrow & CH^m(X) & \rightarrow & 0 \\
& & \downarrow \varepsilon & & \downarrow & & \downarrow & & \\
1 & \rightarrow & C^* & \rightarrow & E_W & \rightarrow & CH^m(X) & \rightarrow & 0 \\
\end{array}
\]

where we have defined \(E_W \) as

\[
CH^m(X, |W|, 0) / i(\text{Ker}(\varepsilon))
\]

as the pushout of the upper line via \(\varepsilon \). By abuse of language, we also denote by \(E_W \) the restriction

\[
1 \rightarrow C^* \rightarrow E_W \rightarrow CH^m_{\text{hom}}(X) \rightarrow 0
\]

to \(CH^m_{\text{hom}}(X) \). Bloch proves several results for \(E_W \):

If \(W \) is rationally equivalent to \(W' \), then \(E_W \) is canonically isomorphic to \(E_W' \). In particular, if \(W \sim_{\text{rat}} 0 \), then \(E_W \) splits as an extension of groups. We prove a little bit more in § 4.

The \(E_W \) may be glued together, to obtain a \(C^* \)-torseur (biextension)

\[
E \rightarrow CH^m_{\text{hom}}(X) \times CH^{d+1-m}_{\text{hom}}(X)
\]

satisfying the axioms of § 1.

We refer the reader to [Bloch 89] for this construction, since we don’t use the full torseur \(E \) for our applications. In fact by our theorem 1 this follows from the statement for \(P \).

§ 4. The Pullback Theorem

Here we prove the main result of this paper. Let \(X \) be a smooth projective variety over \(\mathbb{C} \).

Lemma 2. If \(W \sim_{A,J} 0 \) (Abel-Jacobi equivalent to zero), then \(E_W \) splits.

Proof. We use the functorial Deligne-Beilinson classes \(c_D \) from (5), §2. Consider the commutative diagram

\[
\begin{array}{ccccccccc}
A & \rightarrow & CH^m_{\text{hom}}(X, |W|, 0) & \rightarrow & CH^m_{\text{hom}}(X) & \rightarrow & 0 \\
\downarrow c_D & & \downarrow & & \downarrow & & \\
H^{2m-1}_D(|W|; \mathbb{Z}(m)) & \rightarrow & H^{2m}_D(X, |W|; \mathbb{Z}(m))_{\text{hom}} & \rightarrow & J^m(X) & \rightarrow & 0 \\
\end{array}
\]

8
$\epsilon : A \to \mathbb{C}^*$ is surjective and by §2.(6) factors through

$$H^{2m-1}_D(|W|; \mathbb{Z}(m)) \to \bigoplus \mathbb{C}^* \to \mathbb{C}^*$$

by summation over all irreducible components of $|W|$. Define $K := \text{Ker}(A \to \mathbb{C}^*)$ and recalling that $E_W = CH^{m}_X(|W|, 0)/i(K)$ we obtain the diagram

$$\begin{array}{ccc}
T & \rightarrow & T' \\
\downarrow & & \downarrow \\
0 & \rightarrow & E_W \\
\downarrow \epsilon & & \downarrow \\
1 & \rightarrow & \mathbb{C}^* \\
\end{array}$$

where \mathbb{P}_W is as in § 1, $T = \text{Ker}(E_W \to \mathbb{P}_W)$ and $T' = \text{Ker}(CH^{m}_X \to \mathcal{J}^{m}(X))$. Since ϵ is an isomorphism, $T \cong T'$ by the snake lemma. It follows that E_W is - as an extension - the pullback of \mathbb{P}_W via the Abel-Jacobi map and therefore is split if W is Abel-Jacobi equivalent to zero. This proves the lemma.

As a corollary we get:

Theorem 1. E_W is the pullback of \mathbb{P}_W as extensions via the Abel-Jacobi map. In particular E is the pullback of \mathbb{P} as torseurs via the Abel-Jacobi map.

§ 5. Abel-Jacobi versus Incidence Equivalence

The notion of “incidence equivalence” was introduced by Griffiths ([Griffiths 69]). Let X be projective, smooth of dimension d over \mathbb{C}.

Definition: A cycle $W \in CH^{i}_X$ is called incidence equivalent to zero, i.e. $W \sim_{\text{inc}} 0$, if for all pairs (T, B) with T a smooth, projective variety and $B \in CH^{d+1-i}(T \times X)$,

$$B(W) := (pr_T)_*(B \cap pr_X^*W) = \{t \in T | B_t \cap W \neq \emptyset\}$$

is linearly equivalent to zero in $\text{Pic}^0(T)$.

Remark: $B(W)$ is a divisor by a dimension count and in $\text{Pic}^0(T)$, since $W \sim_{\text{hom}} 0$. If $i = 1$ we get back the notion of rational equivalence for divisors (= Abel-Jacobi equivalence).

Bloch defines $W \sim_{\text{inc}} 0$ if E_W is a split extension. However it is not a priori clear that this gives the same definition. See the discussion below.
Lemma 3. If $W \sim_{AJ} 0$, then also $W \sim_{inc} 0$.

Proof. B is a correspondence

$$CH^i_{hom}(X) \to CH^1_{hom}(T) = \text{Pic}^0(T)$$

via $W \mapsto B(W)$. Consider the diagram ($\psi =$ Abel-Jacobi homomorphism)

$$
\begin{array}{ccc}
CH^i_{hom}(X) & \xrightarrow{B} & CH^1_{hom}(T) = \text{Pic}^0(T) \\
\downarrow \psi & & \downarrow S \\
J^i(X) & \xrightarrow{J^B} & J^1(T)
\end{array}
$$

The claim follows. \[\square\]

Remark: Griffiths has conjectured, that the opposite is true modulo torsion for cycles algebraically equivalent to zero: If $W \sim_{inc} 0$, then for some $N \in \mathbb{N}$:

$$N \cdot W \sim A_{AJ} 0.$$

This is true for $i = 1, d$ without torsion and for $i = 2$ by [Murre 85]. In any case it follows from the generalized Hodge conjecture of Grothendieck, as we will see below.

In the remaining discussion let $i = d + 1 - m$ and W a cycle of dimension $m - 1$, hence codimension $d + 1 - m$ which is homologous to zero.

We want to investigate the relation between $W \sim_{inc} 0$ and the splitting of \mathbb{B}_W in the sense of [Bloch89]. To do this consider the action of the correspondence B on the higher Chow groups. $B(W) \in \text{Pic}^0(T)$ gives rise to the exact sequence

$$
A_{B(W)} = \frac{CH^i([B(W)], 1)}{\text{Im} \ CH^i(T, 1)} \to CH^i(T, |B(W)|, 0) \to CH^i(T) \to 0
$$

where $t = \dim T$ and the corresponding extension $\mathbb{E}_{B(W)}$ is sitting in

$$
1 \to \mathbb{C}^* \to \mathbb{E}_{B(W)} \to CH^i_{hom}(T) \to 0
$$

and is pulled back via the Albanese map from \mathbb{P}_W:

$$
1 \to \mathbb{C}^* \to \mathbb{P}_{B(W)} \to \text{Alb}(T) \to 0.
$$

The correspondence B induces maps $B^\sharp = B^{-1} : CH^i_{hom}(T) \to CH^m_{hom}(X)$ then giving rise to a commutative diagram

$$
\begin{array}{ccc}
0 & \rightarrow & A_{B(W)} \rightarrow CH^i(T, |B(W)|, 0) \rightarrow CH^i(T) \rightarrow 0 \\
\downarrow B^\sharp & & \downarrow B^\sharp \\
0 & \rightarrow & A_W \rightarrow CH^m(X, |W|, 0) \rightarrow CH^m(X) \rightarrow 0
\end{array}
$$

This can be seen as follows: By Chow’s moving lemma, cycles in $CH^m(X)$ and $CH^m(X, |W|)$ may be assumed to have support disjoint from W. The same holds for T and $B(W)$. Now if a zero cycle on T does not meet $B(W)$ then $B^\sharp(Z)$ will
not meet W. This explains the maps in the diagram. Everything commutes by the functorial properties of § 2.

We thus obtain a diagram

$$
\begin{array}{cccccc}
1 & \to & \mathbb{C}^\ast & \to & \mathbb{E}_{B(W)} & \to & CH^1_{\text{hom}}(T) & \to & 0 \\
\| & \downarrow & B^\sharp & \downarrow & B^\sharp & \downarrow & & \\
1 & \to & \mathbb{C}^\ast & \to & \mathbb{E}_W & \to & CH^m_{\text{hom}}(X) & \to & 0
\end{array}
$$

inducing the identity on \mathbb{C}^\ast, where we assumed that B is reduced without loss of generality.

This is the main input in order to prove:

Lemma 4. (a) If \mathbb{E}_W splits then also $\mathbb{E}_{B(W)}$ splits for all pairs (T, B).

(b) Assume additionally that $W \sim_{\text{alg}} 0$. Then:

$\mathbb{E}_{B(W)}$ splits for all pairs $(T, B) \iff \mathbb{E}_{W}^{\text{alg}}$ splits, where $\mathbb{E}_{W}^{\text{alg}}$ is the subextension

$$
1 \to \mathbb{C}^\ast \to \mathbb{E}_{W}^{\text{alg}} \to CH^m_{\text{alg}}(X) \to 0
$$

Proof. (a) follows directly from the commutative diagram for every pair (T, B). To prove (b) suppose $W \sim_{\text{alg}} 0$ and that $\mathbb{E}_{B(W)}$ splits for all pairs (T, B). We have to show that $\mathbb{E}_{W}^{\text{alg}}$ splits. Take (T, B) such that

$$
B^\sharp : \text{Alb}(T) \to J^m(X)
$$

parametrizes the whole image $J^m_{\text{alg}}(X)$ of the Abel-Jacobi map for cycles algebraically equivalent to zero. T can be chosen to be an abelian variety itself such that B^\sharp becomes an isogeny. It follows that the subextension

$$
1 \to \mathbb{C}^\ast \to \mathbb{P}_{W}^{\text{alg}} \to J^m_{\text{alg}}(X) \to 0
$$

of \mathbb{P} splits by the Deligne cohomology version of the commutative diagram above. Now by theorem 1 and its proof, the extension class of $\mathbb{E}_{W}^{\text{alg}}$ is pulled back from $\text{Ext}^1(\psi(CH^m_{\text{alg}}(X)), \mathbb{C}^\ast) = \text{Ext}^1(J^m_{\text{alg}}(X), \mathbb{C}^\ast)$. (b) follows.

As a corollary we get:

Theorem 2. Assume $W \sim_{\text{alg}} 0$. Then $W \sim_{\text{inc}} 0$ if and only if $\mathbb{E}_{W}^{\text{alg}}$ splits.

Proof. $W \sim_{\text{inc}} 0$ iff $B(W)$ is linearly equivalent to zero by definition, hence iff $\mathbb{P}_{B(W)}$ splits. But for divisors the splittings of \mathbb{E} and \mathbb{P} are equivalent (as one can see by restricting to suitable curve) and hence this holds if and only if $\mathbb{E}_{B(W)}$ splits. Hence by lemma 4 (b) we are finished.
It remains to discuss Griffiths’ conjecture: Let $W \sim_{\text{alg}} 0$. If $W \sim_{\text{inc}} 0$ then some multiple of W is Abel-Jacobi equivalent to zero. With the help of theorem 2 it is sufficient to show: If E_W splits, then for some $N \in \mathbb{N}$: $\mathbb{P}_{N \cdot W}$ splits.

Lemma 5. Suppose the generalized Hodge conjecture (GHC) holds for $J^m(X)$, i.e. the largest abelian subvariety $J^m_{\text{ab}}(X)$ of $J^m(X)$ is parametrized by algebraic cycles. Then for $W \in CH_{m-1}(X)$, $W \sim_{\text{alg}} 0$, we have: If E_W splits, then for some $N \in \mathbb{N}$, $\mathbb{P}_{N \cdot W}$ splits.

Proof. Remark that $J^m_{\text{ab}}(X)$ and $J^{d+1-m}_{\text{ab}}(X)$ are always dual to each other modulo isogeny, since the dual of a Hodge substructure is again one. Therefore GHC implies that $J^m_{\text{alg}}(X) = J^m_{\text{ab}}(X)$ and that $\psi(N \cdot W)$ lies in the dual abelian variety of $J^m_{\text{alg}}(X) = \psi(CH^m_{\text{alg}}(X))$ for some $N \in \mathbb{N}$. Hence it is sufficient to show that the extension

$$1 \to \mathbb{C}^* \to \mathbb{P}_{N \cdot W, \text{alg}} \to J^m_{\text{alg}}(X) \to 0$$

splits. This in turn is implied by the splitting of E_W and hence of $E^m_{N \cdot W}$ by the proof of lemma 4.

Actually we have proved more:

Theorem 3. Let $W \in CH_{m-1}(X)$ be algebraically equivalent to zero. Then if $\psi(N \cdot W)$ is contained in the dual of $J^m_{\text{alg}}(X)$, the splitting of E_W implies the splitting of $\mathbb{P}_{N \cdot W}$.

A little generalization of the argument in Lemma 5.2. of [Murre85] gives another proof of Murre’s theorem:

Corollary (Murre’s theorem).

Griffiths’ conjecture holds for codimension two cycles on a smooth projective manifold X over \mathbb{C}, i.e. for every cycle W on X, algebraicly and incidence equivalent to zero, $\psi(W)$ is torsion in $J^2(X)$.

Proof. We have to verify the assumptions of theorem 3. Let T be the universal cover (tangent space) of $J^2_{\text{alg}}(X)$ and $H^3_a(X) = T \oplus \tilde{T}$. This is a sub Hodge structure of $H^3(X, \mathbb{C})$ contained in $H^{1,2}(X) \oplus H^{2,1}(X)$. Now $\psi(W)$ is contained in the dual of $J^{d-1}_{\text{alg}}(X)$ ($d = \dim(X)$) if we can show that the cup product

$$H^3_a(X) \otimes H^{2d-3}_a(X) \to \mathbb{C}$$

has no left kernel. Let L be the Lefschetz operator, i.e. cup product with the hyperplane class. It is algebraic and hence maps $H^k_a(X)$ to $H^{k+2}_a(X)$.

12
Let us repeat the proof of Murre’s Lemma 5.2. for convenience. Assume there is a nonzero element $v \in H^3_a(X)$ in the left kernel and decompose it as $v = v_0 + L v_1$ according to Lefschetz decomposition. The v_k are primitive. In particular $v_1 \in H^1_a(X)$ which is the whole of $H^1(X, \mathbb{C})$. Hence $L v_1$ and v_0 are in $H^3_a(X)$. Now decompose $v_0 = w_1 + w_2$ into types $(1, 2)$ and $(2, 1)$. Since $H^{2p-1}_a(X)$ is a sub Hodge structure, w_1 and w_2 and their complex conjugates are again in $H^{2p-1}_a(X)$. By symmetry we may assume $w_1 \neq 0$ unless $v_0 = 0$. In the first case set $z := L^{d-3}(\bar{w}_1) \in H^{2d-3}_a(X)$, otherwise decompose $v_1 = y_1 + y_2$ into types with $y_1 \neq 0$ (by symmetry) and set $z := L^{d-2}(\bar{y}_1)$. Then for type reasons in the first case $v \cup z = v_0 \cup z = L^{d-3}(w_1 \cup \bar{w}_1) \neq 0$ by primitivity of w_1, a contradiction. In the second case $v \cup z = L v_1 \cup z = L^{d-1}(y_1 \cup \bar{y}_1) \neq 0$ by primitivity of y_1, a contradiction. □

Remark: It is easy to see that the proof of Griffiths’ conjecture would go through in any codimension p, if in the Lefschetz decomposition of $v \in H^{2p-1}_a(X)$ every term were again in $H^{2p-2k-1}_a(X)$. This can be verified for several types of varieties e.g. rational-like varieties and abelian varieties and complete intersections in these. For a special case see [Griffiths-Schmid75].
References

[Bloch 86] S. Bloch: Algebraic cycles and higher K-theory. Adv. in Math. 61, 167 - 304 (1986)

[Bloch 89] S. Bloch: Cycles and Biextensions, in Cont. Math. 83, 19 - 30 (1989)

[Carlson 85] J. Carlson: The geometry of the extension class of a mixed Hodge structure, in Proc. Bowdoin conference of the AMS Vol.2, 199-222 (1987)

[Esnault-Viehweg 88] H. Esnault, E. Viehweg: Deligne-Beilinson Cohomology, Perspectives in Mathematics, Vol. 4, Acad. Press, 43-91 (1988)

[Griffiths 69] Ph. Griffiths: Some results on algebraic cycles on algebraic manifolds, Proc. Bombay conference, 93 - 191 (1969)

[Griffiths-Schmid75] Ph. Griffiths, W. Schmid: Recent developments in Hodge theory, in Discrete subgroups of Liegroups, Bombay Coll. 1975, Oxford Univ. Press, 31-127 (1975)

[Hain 90] R. Hain: Biextensions and heights associated to curves of odd genus; Duke Math. J. 61, 859 - 898 (1990)

[Mumford 69] D. Mumford: Biextensions of formal groups, Proc. Bombay Colloquium 1968, Oxford Univ. Press, 307-322 (1969)

[Murre] unpublished notes

[Murre 85] J. Murre: Abel Jacobi equivalence versus incidence equivalence for algebraic cycles of codimension two, Topology 24 (3), 361 - 367 (1985)