Relationship between the atomic inversion and Wigner function for multimode multiphoton Jaynes-Cummings model

Faisal A. A. El-Orany

Department of Mathematics and Computer Science, Faculty of Science, Suez Canal University 41522, Ismailia, Egypt

In this paper we consider multimode multiphoton Jaynes-Cummings model, which consists of a two-level atom, initially prepared in an excited atomic state, interacting with N modes of electromagnetic field prepared in general pure quantum states. For this system we show that under certain conditions the evolution of the Wigner function at the phase space origin provides direct information on the corresponding atomic inversion. This relation is also valid even if the system includes Kerr-like nonlinearity, Stark shift effect, different types of the initial atomic state as well as moving atom. Furthermore, based on this fact we discuss for the single-mode case the possibility of detecting the atomic inversion by means of techniques similar to those used for Wigner function.

PACS numbers: 42.50.Dv, 42.50.-p

I. INTRODUCTION

Jaynes-Cummings model (JCM) has continued to be a subject of not only theoretical studies but also experimental investigation (e.g. see [2]). This model in the simplest form is described as a two-level-atomic system interacting with an electromagnetic field (for a review see, e.g. [3]). Many of quantum features of the JCM have been predicted and observed: among the most well known is the revival-collapse phenomenon (RCP) of the atomic inversion $\langle \hat{\sigma}_z(T) \rangle$ [4, 5]. RCP is arisen from the presence of multiple exchange of photons between the radiating atom and the cavity mode. Observation of RCP for $\langle \hat{\sigma}_z(T) \rangle$ has been performed using the one-atom mazer [2], which is more sophisticated than the dynamics of the JCM. In the same respect it has been shown that the measured probability of atomic inversion for specific interaction times turns out to be the symmetrically ordered characteristic function [6]. This scheme is closely related to the nonlinear atomic homodyne detection [7] in which an atom is coupled to two modes of the field, one acting as the signal mode and the other as the local oscillator mode. Furthermore, in [8] simple scheme,
which can slow down the usual exponential decay of upper state population in an atomic two-level system considerably based on an additional intense field with frequency lower than the total decay width of the atom, is given.

Multiphoton single-mode JCM has taken a considerable interest in the literature, e.g. \[9, 10, 11, 12\]. For instance, for this model the Heisenberg’s equations of motion for the atomic energy operator have been exactly solved \[9\]. Its phase variance can exhibit RCP about the long-time behavior \[10\]. Moreover, the investigation of this model against squeezed light has shown that the atomic inversion can display RCP for general squeezed input but not for squeezed vacuum \[11\]. The analysis of the the model against superposition of squeezed displaced number states, i.e. the most general case, is given in \[12\]. The multimode version of the JCM has been investigated, in particular, the two-mode JCM, e.g. \[13, 14\]. The most important result related to the two-mode JCM is that the atomic inversion exhibits revival-collapse pattern as well as secondary revivals, which are independent of the intensities of the initial modes \[14\]. Moreover, we can mention \[15\] in which the Hamiltonian for the multiphoton multimode JCM has been derived from the first-principle. Nevertheless, the generalizations of the JCM as a nonlinear version in both bosonic and fermonic variables is given in \[16\], where the exact wavefunction and energy levels are calculated.

Quasiprobability distribution functions are very useful tools in quantum mechanics since they can be used in the calculation of the correlation function of operators as classical-like integrals and in the transition to the classical physics. There are three types of such functions, namely, the Wigner W, the Husimi Q and the Glauber P functions \[17\]. These functions are not real probability function owing to the position-momentum uncertainty principle. Actually, the W function plays an exceptional role among all quasiprobability distributions for several reasons: It contains complete information about the state of the system (i.e. it carries the same information as the density operator or as the corresponding wave function). It provides proper marginal distributions for individual phase-space variables. It can be used to evaluate the symmetrically-ordered moments for the operators of the system. It is sensitive to the interference in phase space and consequently it provides a clear prediction to the possible occurrence of the nonclassical effects of the quantum mechanical system. In this respect, the W function can be used to analyse the decoherence of the quantum system, i.e. the process that limits the appearance of quantum effects and turns them into classical phenomena \[18, 19\]. It is worth mentioning that the decoherence is useful for applications which require keeping coherence in mesoscopic or macroscopic systems such as quantum computation \[20\]. Finally, the W function can be determined from the knowledge of the complete set of moments of system operators \[21\].
For the single-mode JCM with field prepared initially in coherent light it has been shown that there is a relation between the behavior of the Q distribution function and the occurrence of the RCP in $\langle \hat{\sigma}_z(T) \rangle$. For instance, the collapse of the Rabi oscillations in the evolution of $\langle \hat{\sigma}_z(T) \rangle$ is reflected in the behavior of the Q function as the splitting of the initial shifted Gaussian distribution into two distributions, which counter-rotate on a circle in the complex plane of the distribution. However, the revivals in $\langle \hat{\sigma}_z(T) \rangle$ correspond to the collision of the two peaks of the Q function to produce a single-peak distribution, which is similar to the initial one. It is worthwhile mentioning that such relation between the Q function and $\langle \hat{\sigma}_z(T) \rangle$ for JCM is remarkable only when the amplitude of the initial coherent light is very large. Additionally, the comparison between $\langle \hat{\sigma}_z(T) \rangle$ and the Q function has to be performed at the same specific values of the interaction time.

In this paper we give a new relation, which shows that the information stored in $\langle \hat{\sigma}_z(T) \rangle$ can be obtained from the evolution of the W function at the phase space origin (WOP). This relation depends on both the type of the initial state of the optical cavity field, the values of the transition parameters and the number of modes interacting with the two-level atom. The motivation of the work is two-fold:

(i) $\langle \hat{\sigma}_z(T) \rangle$ can be measured using techniques similar to those used for the W function.
(ii) $\langle \hat{\sigma}_z(T) \rangle$ can be used to provide information on the nonclassicality of the bosonic system.

Actually, these are novel results.

In this paper we consider the interaction of multiphoton N modes of the electromagnetic field with a two-level atom in terms of the multimode multiphoton Jaynes-Cummings model JCM. The hamiltonian controlling the system is given in the framework of rotating wave approximation. We also consider the optical cavity modes are initially prepared in general pure quantum states. For this system we seek the relation between the evolution of $\langle \hat{\sigma}_z(T) \rangle$ and WOP. This will be done in the following organization: In section 2 we give the basic relations and equations used throughout the paper. In section 3 we discuss the main results as well as we shed the light on how one can measure $\langle \hat{\sigma}_z(T) \rangle$ using techniques similar to those used for the W function. Conclusions and remarks are summarized in section 4.

II. BASIC RELATIONS AND EQUATIONS

In this section we give the basic relations and equations, which enable us to justify the relationship between $\langle \hat{\sigma}_z(T) \rangle$ and the W function for JCM. Firstly, within the dipole and rotating wave approximation (RWA) the general form of an idealized hamiltonian, which describes the interaction
of multiphoton N modes cavity field with a two-level atom (JCM) is

$$\hat{H} = \sum_{j=1}^{N} \omega_j \hat{a}_j^\dagger \hat{a}_j + \omega_a \hat{\sigma}_z + \lambda (\hat{\sigma}_+ \prod_{j=1}^{N} \hat{a}_j^{k_j} + \hat{\sigma}_- \prod_{j=1}^{N} \hat{a}_j^{k_j^\dagger}),$$

(1)

where the jth mode is designated by \hat{a}_j (\hat{a}_j^\dagger) the usual photon annihilation (creation) operator, the frequency ω_j and the transition parameter k_j. $\hat{\sigma}_\pm$ and $\hat{\sigma}_z$ are the Pauli spin operators describing the atomic system, ω_a is the atomic transition frequency and λ is the atom-field coupling constant.

The Hamiltonian can be written as the sum of the two operators:

$$\hat{C}_1 = \epsilon_1 \hat{\sigma}_z + \sum_{j=1}^{N} \omega_j \hat{a}_j^\dagger \hat{a}_j,$$

$$\hat{C}_2 = \Delta \hat{\sigma}_z + \lambda (\hat{\sigma}_+ \prod_{j=1}^{N} \hat{a}_j^{k_j} + \hat{\sigma}_- \prod_{j=1}^{N} \hat{a}_j^{k_j^\dagger}),$$

(2)

where

$$\epsilon_1 = \sum_{j=1}^{N} \kappa_j \omega_j, \quad \Delta = \omega_a - \epsilon_1$$

(3)

and Δ is the detuning parameter. Based on the standard commutation rules for the bosonic and Pauli operators, it is easy to prove that \hat{C}_1 and \hat{C}_2 are constants of motion and also they commute with each other. In the interaction picture the unitary evolution operator takes the form

$$\hat{U}_I(T,0) = \exp(-i \frac{T}{\lambda} \hat{C}_2)$$

$$= \sum_{n=0}^{\infty} \frac{(-i \frac{T}{\lambda} \hat{C}_2)^n}{n!}$$

$$= \sum_{n=0}^{\infty} \frac{(-i \frac{T}{\lambda} \hat{C}_2)^{2n}}{(2n)!} + \sum_{n=0}^{\infty} \frac{(-i \frac{T}{\lambda} \hat{C}_2)^{2n+1}}{(2n+1)!}$$

(4)

$$= \sum_{n=0}^{\infty} \frac{(-1)^n (T \hat{v})^{2n}}{(2n)!} - \frac{i}{\lambda \nu} \sum_{n=0}^{\infty} \frac{(-1)^n (T \hat{v})^{2n+1}}{(2n+1)!} \hat{C}_2$$

$$= \cos(T \hat{v}) - \frac{i \sin(T \hat{v})}{\lambda \nu} \hat{C}_2,$$

where

$$T = \lambda t, \quad \hat{v} = \frac{\Delta}{\lambda} + \hat{\sigma}_- \hat{\sigma}_+ \prod_{j=1}^{N} \hat{a}_j^{k_j} \hat{a}_j^{k_j^\dagger} + \hat{\sigma}_+ \hat{\sigma}_- \prod_{j=1}^{N} \hat{a}_j^{k_j^\dagger} \hat{a}_j^{k_j}.$$

For making the analysis quite general, we assume that the jth mode is initially prepared in a general pure quantum state given by

$$|\psi_j(0)\rangle = \sum_{n_j=0}^{\infty} C_{n_j}^{(j)} |n_j\rangle,$$

(6)
where \(C_{n_j}^{(j)} \) represents the probability amplitude for the state under consideration such that \(\sum_{n_j=0}^{\infty} |C_{n_j}^{(j)}|^2 = 1 \). We suppose that the atom is initially prepared in the excited atomic state \(|+\rangle\). Therefore, the initial state of the atom-field system can be expressed as

\[
|\Psi(0)\rangle = |\psi(0)\rangle \otimes |\psi_2(0)\rangle \otimes \cdots \otimes |\psi_N(0)\rangle \otimes |+\rangle
\]

(7)

where the vector notation in the index means that we have \(N \) summations, i.e. \(\mathbf{n} \equiv (n_1, n_2, \cdots, n_N) \), and the distribution \(F(n_1, n_2, \cdots, n_N) \) reads

\[
F(n_1, n_2, \cdots, n_N) = \prod_{j=1}^{N} C_{n_j}^{(j)}.
\]

(8)

From (7) and (8) one can easily obtain the dynamical wave function for the system in the interaction picture as

\[
|\Psi(T)\rangle = \hat{U}_I(T, 0)|\Psi(0)\rangle
\]

\[
= \sum_{\mathbf{n}=\mathbf{0}}^{\infty} F(n_1, n_2, \cdots, n_N)|+, n_1, n_2, \cdots, n_N\rangle \nonumber
\]

(9)

\[
- iG_2(n_1, n_2, \cdots, n_N, T)|-, n_1+k_1, \cdots, n_N+k_N\rangle,
\]

where

\[
h(n_1, n_2, \cdots, n_N; k_1, k_2, \cdots, k_N) = \prod_{j=1}^{N} \frac{(n_j+k_j)!}{n_j!} + \left(\frac{\Delta}{N} \right)^2,
\]

\[
G_1(n_1, n_2, \cdots, n_N, T) = \cos \left(T \sqrt{h(n_1, n_2, \cdots, n_N; k_1, k_2, \cdots, k_N)} \right)
\]

\[
- i \frac{\Delta}{N} \frac{\sin \left(T \sqrt{h(n_1, n_2, \cdots, n_N; k_1, k_2, \cdots, k_N)} \right)}{\sqrt{h(n_1, n_2, \cdots, n_N; k_1, k_2, \cdots, k_N)}}
\]

(10)

\[
G_2(n_1, n_2, \cdots, n_N, T) = - \frac{\sin \left(T \sqrt{h(n_1, n_2, \cdots, n_N; k_1, k_2, \cdots, k_N)} \right)}{\sqrt{h(n_1, n_2, \cdots, n_N; k_1, k_2, \cdots, k_N)}} \sqrt{\prod_{j=1}^{N} \frac{(n_j+k_j)!}{n_j!}}.
\]

The atomic inversion associated with (9) is

\[
\langle \sigma_z(T) \rangle = \sum_{\mathbf{n}=\mathbf{0}}^{\infty} |F(n_1, n_2, \cdots, n_N)|^2 \left[|G_1(n_1, n_2, \cdots, n_N, T)|^2 - |G_2(n_1, n_2, \cdots, n_N, T)|^2 \right].
\]

(11)
For reasons that will be clear shortly we write down the different forms for the W function. The basis of the W function for any quantum mechanical system is the W function of the number state $|n\rangle$ having the form

$$W_n(q,p) = \frac{(-1)^n}{\pi} \exp(-q^2 - p^2)L_n(2q^2 + 2p^2), \quad (12)$$

where $L_n(.)$ is the Laguerre polynomial of order n. Also the marginal position probability distribution for the number state $|n\rangle$ can be obtained from (12) as

$$P(q) = \int_{-\infty}^{\infty} W_n(q,p)dp = \frac{1}{\sqrt{\pi}} \frac{H_n(q)}{2^n n!} \exp(-\frac{q^2}{2}) \quad (13)$$

where $H_n(.)$ is the Hermite polynomial of order n. The corresponding form of the marginal momentum probability distribution is the same as (13) but q should be replaced by p. The N-mode dynamical W function can be defined up to a constant prefactor as

$$W(\beta, T) = \text{Tr} \left[\hat{\rho}(T) \hat{D}(\beta) \exp \left(i\pi \sum_{j=1}^{N} \hat{a}_j^\dagger \hat{a}_j \right) \hat{D}^{-1}(\beta) \right] \quad (14)$$

where $\beta = (\beta_1, \beta_2, \cdots, \beta_N) = (q_1, q_2, \cdots, q_N; p_1, p_2, \cdots, p_N)$ since $\beta_j = q_j + ip_j$. $\hat{\rho}(T)$ is the density matrix for the system under consideration and $\hat{D}(\beta)$ is the multimode displacement operator having the form

$$\hat{D}(\beta) = \exp \left[\sum_{j=1}^{N} (\hat{a}_j^\dagger \beta_j - \hat{a}_j \beta_j^\ast) \right]. \quad (15)$$

At the phase space origin (i.e. $\beta = 0$) the formula (14) reduces to

$$W(0, T) = \text{Tr} \left[\hat{\rho}(T) \exp \left(i\pi \sum_{j=1}^{N} \hat{a}_j^\dagger \hat{a}_j \right) \right]. \quad (16)$$

Formula (16) indicates that the main contribution for the W function at the phase space origin is resulted from the diagonal part of the density matrix of the quantum mechanical system. Comparing this situation with that of the atomic inversion one can conclude that there is a clear relationship between the evolution of WOP and the corresponding atomic inversion.

Now on substituting (9) into (16) and carrying out the expectation value we arrive at

$$W(0, T) = \sum_{n=0}^{\infty} |F(n_1, n_2, \cdots, n_N)|^2 (-1)^{n_1 + n_2 + \cdots + n_N} \left\{ |G_1(n_1, n_2, \cdots, n_N, T)|^2 \right.$$

$$+ (-1)^{k_1 + \cdots + k_N} |G_2(n_1, n_2, \cdots, n_N, T)|^2 \right\}. \quad (17)$$
Expression (17) and its consequences are the main results of the paper. Specifically, we show that for particular types of the initial states and particular values of the transition parameters k_j, expression (17) coincides with that of the corresponding atomic inversion. This will be discussed in the following section.

We proceed by connecting the present results with those of the homodyne tomography technique. Therefore, we give the mathematical relation between the N-mode W function and the corresponding distribution function $pr(q_1, \cdots, q_N, \theta_1, \cdots, \theta_N, T)$ (i.e. Radon transformation). Such relation is just the generalization of the single-mode case and can be expressed as

$$
pr(q_1, \cdots, q_N, \theta_1, \cdots, \theta_N, T) = \int_{-\infty}^{\infty} dp_1 \cdots \int_{-\infty}^{\infty} dp_N \times W(q_1 \cos \theta_1 - p_1 \sin \theta_1, q_1 \sin \theta_1 + p_1 \cos \theta_1, \cdots, q_N \cos \theta_N - p_N \sin \theta_N, q_N \sin \theta_N + p_N \cos \theta_N, T) = 18
$$

In (18) we have assumed that N modes can be delivered to N separate ideal balance homodyne detectors. At the phase space origin, i.e. $q_j = 0, \theta_j = 0, j = 1, \cdots, N$, the formula (18) becomes phase independent and reduces to

$$
pr(0, T) = \int_{-\infty}^{\infty} dp_1 \cdots \int_{-\infty}^{\infty} dp_N W(0, p_1, 0, p_2, \cdots, 0, p_N, T),
$$

where $W(0, p_1, 0, p_2, \cdots, 0, p_N, T)$ is the diagonal part of the W function, which is phase independent. On using (12) and (13) one can easily deduce $pr(0, T)(= P(0, T))$ given by (19) for the state vector (9) as

$$
P(0, T) = \sum_{n=0}^{\infty} |F(n_1, n_2, \cdots, n_N)|^2 \left\{ |G_1(n_1, n_2, \cdots, n_N, T)|^2 \prod_{j=1}^{N} \frac{H_{n_j}^2(0)}{2^{n_j} n_j!} \right. \left. + |G_2(n_1, n_2, \cdots, n_N, T)|^2 \prod_{j=1}^{N} \frac{H_{n_j+k_j}^2(0)}{2^{n_j+k_j} (n_j+k_j)!} \right\}.
$$

III. MAIN RESULTS

In this section we discuss two issues: (i) We investigate the results by making a comparative study among the behavior of $\langle \hat{\sigma}_z(T) \rangle, W(0, T)$ and $P(0, T)$, for the system under consideration. (ii) We argue how one can measure the atomic inversion via techniques similar to those used for the W function.
A. Investigation of the results

As we mentioned above we investigate the behavior of the quantities \(W(0, T) \) and \(P(0, T) \), and then compare such behavior with that of the corresponding \(\langle \hat{\sigma}_z(T) \rangle \).

We start the discussion with \(W(0, T) \), which is given by (17). It is obvious that when \(n_1 + n_2 + \cdots + n_N \) is even and \(k_1 + k_2 + \cdots + k_N \) is odd \(W(0, T) \) is identical with the atomic inversion of the system (c.f. (11)). In other words, the atomic inversion can be used to provide information on the nonclassicality of the dynamical bosonic system. For instance, when the evolution of \(\langle \hat{\sigma}_z(T) \rangle \) displays negative values, the JCM can exhibit nonclassical effects. Nevertheless, when \(k_1 + k_2 + \cdots + k_N \) is even number regardless of the value of \(n_1 + n_2 + \cdots + n_N \), the expression (17) becomes time independent (i.e. \(W(0, T) \) is localized) and can be factorized in the following sense

\[
W(0, T) = \prod_{j=1}^{N} W_j(0, 0),
\]

where \(W_j(0, 0) \) is the initial value of the \(W \) function of the \(j \)th mode at the phase space origin having the form

\[
W_j(0, 0) = \sum_{n_j=0}^{\infty} (-1)^{n_j} |C^{(j)}_{n_j}|^2.
\]

The expression (21) can be obtained, e.g., when the number of modes \(N \) is even and the transition parameters are symmetric, i.e. \(k_1 = k_2 = \cdots = k_N \). Moreover, expression (21) indicates that if the initial \(W \) function of only one of the modes has a negative value at the phase space origin whereas those of the others are positive, the system can provide nonclassical effects. This is a sufficient but not necessary condition.

Now we give a closer look at the behavior of the \(W(0, T) \) for the single-mode case, i.e. \(N = 1 \). In this case expression (17) reduces to

\[
W(0, T) = \sum_{n_1=0}^{\infty} |C^{(1)}_{n_1}|^2 (-1)^{n_1} \left\{ |G_1(n_1, T)|^2 + (-1)^{k_1} |G_2(n_1, T)|^2 \right\}.
\]

For odd transition parameter and initial even (odd) parity states, e.g. even (odd) coherent states, (23) gives

\[
W_{\pm}(0, T) = \pm \langle \sigma_z(T) \rangle,
\]

where ”+” and ”-” signs denote even and odd parity states, respectively. For \(\Delta = 0 \) expression (24) indicates that when the initial intensity of the radiation field is weak the system can exhibit
FIG. 1: The evolution of the atomic inversion \(\langle \hat{\sigma}_z(T) \rangle \) (a) and the \(W \) function \(W(0,T) \) (b) against the scaled time \(T \) for the single-mode case with \(k_1 = 1 \) and when the field and atom are initially prepared in the coherent state (with \(|\alpha| = 8 \)) and atomic excited state, respectively.

nonclassical effects periodically. Nevertheless, in the strong-intensity regime one has \(W(0,T) \simeq 0 \) (\(\neq 0 \)), which is associated with the occurrence of the collapse (revival) in \(\langle \hat{\sigma}_z(T) \rangle \). Consequently the \(W \) function exhibits nonclassical interference at the phase space origin only in the course of the revival times, i.e. the nonclassical effects most probable occur in the course of the revival time. However for the non-parity states the locations (in the interaction time domain) of collapses and revivals occurring in \(W(0,T) \) are interchanged compared to those in \(\langle \hat{\sigma}_z(T) \rangle \). This agrees with the fact that the JCM generates Schrödinger-cat states in the course of the collapse time \[12\]. We proceed by investigating the behavior of the \(W(0,T) \) for the standard JCM, i.e. \(k_1 = 1, \Delta=0 \) and the field is initially prepared in coherent light with amplitude \(|\alpha| \). In this case \[23\] reduces to

\[
W(0,T) = \exp(-|\alpha|^2) \sum_{n_1=0}^{\infty} \frac{|\alpha|^{2n_1}}{n_1!} (-1)^{n_1} \cos(2T\sqrt{n_1} + 1)
\]

\[= \exp(-|\alpha|^2) \sum_{n_1=0}^{\infty} \frac{|\alpha|^{2n_1}}{n_1!} \cos(2T\sqrt{n_1} + T + n_1\pi). \tag{25}\]

Expression \[25\] is identical with that of the corresponding atomic inversion but with additional factor, which is \((-1)^{n_1} \). This factor is responsible for the interchange of the "locations" of collapses and revivals occurring in \(W(0,T) \) compared to those exhibited in \(\langle \hat{\sigma}_z(T) \rangle \), as we mentioned above. This is remarkable in Figs. 1(a) and (b) where we have plotted \(\langle \hat{\sigma}_z(T) \rangle \) and \(W(0,T) \), respectively,
FIG. 2: The evolution of the $W(0, \tau)$ against the shifted-scaled time τ for the same situation as in Fig. 1(b).

for given values of the interaction parameters.

The evolution of the atomic inversion $\langle \hat{\sigma}_z(T) \rangle$ (a) and the W function $W(0, T)$ (b) against the scaled time T for the single-mode case with $k_1 = 1$ and when the field and atom are initially prepared in the coherent state (with $|\alpha| = 8$) and atomic excited state, respectively.

Also this can be emphasized by deducing the asymptotic form for (25) in the strong-intensity regime (i.e. $|\alpha|$ is large). By means of the harmonic approximation technique [27] (see equation (1a) in the appendix) and after straightforward calculations (25) can be expressed as

$$W(0, T) = \exp \left[-2\bar{n} \cos^2 \left(\frac{T}{2\bar{n}} \right) \cos \left(T(\bar{n} + \frac{1}{\bar{n}}) - \bar{n} \sin \left(\frac{T}{\bar{n}} \right) \right) \right], \quad (26)$$

where $\bar{n} = |\alpha|$. Expression (26) is similar to that of $\langle \hat{\sigma}_z(T) \rangle$ except cos(.) in the exponent should be replaced by sin(.). As a result of this fact the envelope function in (26) gives its maximum value at $T = \pi\bar{n}$, whereas, that of $\langle \hat{\sigma}_z(T) \rangle$ is maximum at $T = 2\pi\bar{n}$. From these arguments and information displayed in Figs. 1 one can conclude that $W(0, T)$ can give similar information on the corresponding atomic inversion provided that the interaction time T is replaced by $\tau \equiv T + \pi\bar{n}$.
FIG. 3: The probability distribution measured using homodyne tomography corresponding to the evolution of \(W(0, T) \) against both the scaled time \(T \) (a) and shifted-scaled time \(\tau \) (b) for the same situation as figure 1(b) and figure 2, respectively.

The behavior associated with this situation is given in Fig. 2. Comparison between Fig. 1(a) and Fig. 2 is instructive.

Now we turn the attention to the formula (20), which is related to the homodyne tomography. Firstly, it is worth reminding that the properties of the Hermite polynomial provide \(H_{2n+1}(0) = 0 \) and \(H_{2n}(0) \neq 0 \). These facts make the argument related to \(P(0, T) \) different from that given for \(W(0, T) \). For instance, when one of the modes is initially prepared in odd parity states (e.g., odd coherent states) and the associated transition parameter with this mode is an even number then \(P(0, T) = 0 \), however, this is not the case of the corresponding \(W \) function, where \(W(0, T) \neq 0 \). Also one can easily recognized that \(P(0, T) \neq 0 \) for different cases, e.g., when all modes are initially in even parity (non-parity) states regardless of the values of \(k_j \) or when all modes are initially in odd parity states provided that the transition parameters are odd numbers.

Similar to the treatment given for the \(W \) function we investigate \(P(0, T) \) of the single-mode case when the field is initially in coherent state, \(k_1 = 1 \) and \(\Delta = 0 \). Therefore, relation (20) can be expressed as
FIG. 4: The proposed setup for detecting $\langle \hat{\sigma}_z(T) \rangle$ of the single-mode JCM when the field is initially prepared in the coherent light pumped by the laser source. BS and PD denote beam splitter and photodetector, respectively. The two-level excited atom is localized in the microcavity as indicated. The initial state, detected state and local-oscillator state are denoted by $|\psi(0)\rangle$, $|\psi(T)\rangle$ and $|\alpha_L\rangle$, respectively.

$P(0,T) = \frac{1}{2} \sum_{n_1=0}^{\infty} P(n_1) \left\{ \frac{H_{n_1}^2(0)}{2^{n_1+1} n_1!} + \frac{H_{n_1+1}^2(0)}{2^{n_1+1} (n_1+1)!} \right\}$

$+ \left[\frac{H_{n_1}^2(0)}{2^{n_1+1} n_1!} - \frac{H_{n_1+1}^2(0)}{2^{n_1+1} (n_1+1)!} \right] \cos(2T \sqrt{n_1+1})\right\},$ \hspace{1cm} (27)

where $P(n_1)$ is the photon number distribution for coherent states. In the strong-intensity regime the asymptotic form for (27), which is corresponding to (26), is

$P(0,T) = \frac{1}{2} \exp(-|\alpha|^2) \left\{ I_0(|\alpha|^2) + I_1(|\alpha|^2) + \right\}$

$\right\}.$ \hspace{1cm} (28)

where $I_0(.)$ and $I_1(.)$ are the modified Bessel functions of the first kind of order zero and one, respectively. The derivation for (28) is given in the appendix. Expression (28) is periodic with period $2\pi \bar{n}$ where \bar{n} is an integer. Additionally, $P(0,T)$ gives its maximum values around $T = m \bar{n} \pi$ whenever m is an odd integer. We have plotted (27) in figures (3) against both the scaled time T (a) and the shifted-scaled time τ (b) for the same situations as those for figure 1(b) and figure 2, respectively. Comparison between Fig. 1(b) and Fig. 3(a) as well as Fig. 2 and Fig. 3(b) shows that RCP in $\langle \hat{\sigma}_z(T) \rangle$ can be observed via homodyne tomography. Of course, the evolution of $\langle \hat{\sigma}_z(T) \rangle$ and $P(0,T)$ possess different scales.

This problem can be solved easily by using (28) and the information displayed in Fig. 3(b). For instance, in the strong-intensity regime we can adopt the following relation

$\langle \hat{\sigma}_z(T) \rangle \equiv \frac{1}{P_{\max}} [P(0,\tau) - P(0,0)],$ \hspace{1cm} (29)
where
\[
P(0,0) = \exp(-|\alpha|^2)I_0(|\alpha|^2),
\]
\[
P_{\text{max}} = [I_0(|\alpha|^2) + I_1(|\alpha|^2)] \exp(-|\alpha|^2),
\]
where the subscript \(\text{max} \) stands for the maximum value of \(P(0,T) \). The explicit form for \(P_{\text{max}} \) can be obtained by analysing the behavior of \(P(0,T) \) around \(T = \pi \bar{n} \). Finally, the origin of the prefactor (i.e., \(1/P_{\text{max}} \)) in (29) can be understood as follows. \(P(0,T) \) carries complete information on \(\langle \hat{\sigma}_z(T) \rangle \) when it has not only similar behavior but also the same amplitude as \(\langle \hat{\sigma}_z(T) \rangle \). Thus we seek an amplification factor, say, \(\mu \) (i.e., \(\mu P(0,T) \equiv \langle \hat{\sigma}_z(T) \rangle \)) such that
\[
\mu P_{\text{max}} \equiv |\langle \hat{\sigma}_z(T) \rangle_{\text{max}}| = 1.
\]

B. Observation and measurement

In the first part of this section we have shown that under certain conditions there is a direct relation between \(\langle \hat{\sigma}_z(T) \rangle \) and \(W(0,T) \) for JCM. Such relation indicates that the atomic inversion can be detected via techniques similar to those used for the \(W \) function. This will be discussed in the following, in particular, for the single-mode JCM.

As it is well known there are different schemes proposed for measuring the \(W \) function, which are: Photon counting experiment \[28\], using simple experiment similar to that used in cavity QED and ion traps \[29, 30\], and tomographic reconstruction from data obtained in homodyne measurements \[31, 32\]. Here we argue how these techniques can be used for measuring \(\langle \hat{\sigma}_z(T) \rangle \).

(i) Measurement of the \(\langle \hat{\sigma}_z(T) \rangle \) using photon counting experiment: Photon counting method is based on the fact that the single-mode \(W \) function at the origin of the phase space can directly be measured by a photodetector facing this mode \[28\]. Hence \(\langle \hat{\sigma}_z(T) \rangle \) can be detected via this technique in the following sense (see Fig. 4). Generally, a mode prepared in a coherent state, which is pumped by a laser source, interacts firstly with the two-level excited localized atom—localized and/or very slow atom can be prepared by means of, e.g., laser-cooling technique \[33\]—hence the outgoing field is superimposed by a strong local-oscillator mode (\(|\alpha_L\rangle \)) via beam splitter whose transmissivity (reflectivity) is high (low). The measurement has to be performed only on one of the output ports of the beam splitter via the photodetector. It is worthwhile mentioning that the one-port measurement for the beam splitter can be performed using a conditional measurement technique in which no photons are measured in the free port, e.g., \[34\]. We proceed by considering
a perfect photodetector, i.e. its efficiency is unity. The probability $P(n_1, T)$ of the registration of n_1 photons at time T in the detector is given by

$$P(n_1, T) = \langle \frac{\hat{A}^{n_1}}{n_1!} \exp(-\hat{A}) \rangle, \quad (32)$$

where $\langle \rangle$ stands for normally-ordered operator, angle brackets mean expectation value (which is calculated in the framework of Schrödinger picture) and \hat{A} is the operator of the integrated flux of light onto the surface of the detector having the form

$$\hat{A} = (\sqrt{\tau}a^\dagger - \sqrt{1-\tau}\alpha_L^\dagger)(\sqrt{\tau}a - \sqrt{1-\tau}\alpha_L), \quad (33)$$

where τ is the transmissivity power of the beam splitter. The count statistics determined in the experiment is used to compute the following count generating function

$$G(\alpha, T) = \sum_{n_1=0}^{\infty} (-1)^{n_1} P(n_1, T)$$

$$= \langle \exp(-2\hat{A}) \rangle. \quad (34)$$

The second line in (34) is obtained by substituting (32) in the first line of this equation. It is evident that for $\Delta = 0$, $W(0, T)$ given by (23) can be expressed in the form (34), where, in this case, we have

$$P(n_1, T) = |C_{n_1}^{(1)}|^2 \left[\cos^2(T\sqrt{h(n_1, k_1)}) + \sin^2(T\sqrt{h(n_1, -k_1)}) \right]. \quad (35)$$

We proceed from the definition of the W function (16) and (34) the W function for the detected mode is proportional to $s = 1 - 1/\tau$ ordered quasidistribution function of the mode entering the beam splitter (which is not included in Fig. 4) as

$$G(\alpha, T) = \frac{1}{\tau} W \left(\sqrt{\frac{1-\tau}{\tau}} \alpha_L, \frac{\tau-1}{\tau}, T \right). \quad (36)$$

When the transmissivity of the beam splitter is near one the scanned quasidistribution is $W(0, T)$, i.e. the atomic inversion is detected. Here we assume that the interaction time in the microcavity and the detection time in the photodetector are equal since we are interested only in showing that $\langle \sigma_z(T) \rangle$ can be measured via photon counting technique. Nevertheless, in the realistic situation there is a time delay between the interaction and the detection processes. This problem can be solved by obtaining information on both the detector-microcavity distance and the velocity of the radiation field.
(ii) Measurement of the $\langle \hat{\sigma}_z(T) \rangle$ using cavity QED: In this technique, probes of the two-level atoms interact dispersively with the field under consideration—the source of the field in this case is the JCM to which we would like to measure $\langle \hat{\sigma}_z(T) \rangle$—causing a phase shift to the atomic wave function, which is proportional to the photon number. This phase shift can be revealed by Ramsey atomic interferometer \[35\]. Under certain conditions the final state of the atom measures the field parity at the phase space origin, i.e. $W(0,T)$. The experimental setup related to this proposal is given in \[29\] (see Fig. 1 in \[29\]) but with additional arrangements. For instance, in this setup we have to block the microwave generator, which makes displacement for the field under consideration since the interest is focused only on the behavior of the W function at the phase space origin.

(iii) Measurement of the $\langle \hat{\sigma}_z(T) \rangle$ using homodyne tomography arrangement: Generally single-mode homodyne tomography is based on the set of distributions $pr(q_1, \theta_1)$ measured by homodyne detection, i.e. the field to be measured beats with the local oscillator in a homodyne arrangement \[36, 37\]. Once obtained $pr(q_1, \theta_1)$ the W function can be reconstructed via inverse Radon transformation. At the phase space origin this relation reads

$$W(0,T) = \frac{1}{4\pi} \int_{-\infty}^{\infty} d\zeta \int_{-\infty}^{\infty} d\eta |pr(\zeta, T)\rangle \exp(i\eta\zeta),$$

where $pr(\zeta, T) = \langle \zeta | \hat{\rho} (T) | \zeta \rangle$. The value of the relative phase between the local oscillator and the signal field, which is assumed to be the field outgoing from the JCM microcavity, is zero. This can be arranged by moving a mirror on a piezoelectric translator \[38\]. It is worthwhile mentioning that $pr(\zeta, T)$ has been measured via this technique, e.g., in \[38\]. Also investigation for the random-phase states using homodyne tomography technique is given in \[39\].

Finally we conclude that the techniques (i) and (ii) can lead to a direct measurement of $\langle \hat{\sigma}_z(T) \rangle$. Also, they do not involve inversion algorithm and hence they should be much less sensitive to experimental errors than the tomographical technique. Furthermore, they can be, in principle, applied to the atomic inversion of the multimode JCM where the attention has to be focused on the measurement of the $\langle \hat{\sigma}_z(T) \rangle$ in its entangled form.

IV. CONCLUSIONS AND REMARKS

In this paper we have discussed the relation between both the evolution of the atomic inversion and the corresponding W function for multimode multiphoton JCM. We have shown that under certain conditions there is a direct relation between these two quantities, which is valid for resonance and off-resonance cases. Such relation suggests that the nonclassical effects stored in the radiation
field can be noticed through the behavior of \(\langle \hat{\sigma}_z(T) \rangle \). Furthermore, based on this relation we have discussed the possibility of detecting \(\langle \hat{\sigma}_z(T) \rangle \) for single-mode case using techniques similar to those applied to the \(W \) function.

The results given in this paper are valid to any JCM Hamiltonian provided that it has been deduced in the framework of rotating wave approximation. More illustratively, if in (1) the operators \(\prod_{j=1}^{N} \hat{a}_{j}^{k_j} \) are replaced by \(\hat{a}_{1}^{k_1} \hat{a}_{2}^{k_2} \hat{a}_{3}^{k_3} \hat{a}_{4}^{k_4} \cdots \), i.e. some of the annihilation operators are replaced by creation ones, the relation (17) will not be affected owing to the fact

\[
\langle n - k | \exp(i\pi \hat{a}^\dagger \hat{a}) | n - k \rangle \equiv \langle n + k | \exp(i\pi \hat{a}^\dagger \hat{a}) | n + k \rangle = (-1)^{n+k}. \tag{38}
\]

Moreover, the results are independent of the type of the initial atomic state (, i.e. if the atom is in the excited state, ground state or atomic superposition state). Basically expression (17) depends on the Fock state basis of the dynamical wave function, e.g. for the single-mode case it depends on \(|n\rangle, |n+k\rangle \) and \(|n-k\rangle \). Consequently, such relation still exists when Jaynes-Cummings Hamiltonian includes Kerr nonlinearity [40], Stark effect [41], intensity dependence [42] and atomic motion [43]. Furthermore, among all quasiprobability distribution functions such relation, i.e. (17), exists only for the \(W \) function. For instance, the evolution of the \(Q \) function at the phase space origin for single-mode JCM with initial coherent light and \(\Delta = 0 \) is given by

\[
Q(0,T) = \exp(-2|\alpha|^2) \cos^2(T\sqrt{k_1!}). \tag{39}
\]

It is obvious that in the strong-intensity regime \(Q(0,T) \to 0 \).

Finally, as it is well known, the \(W \) function is a global quantity which characterizes the full quantum state. Additionally, dealing with the \(W \) function at an isolated single point causes a difficulty in finding a proper normalization. Nevertheless, throughout the paper we have focused the attention on the behavior of WOP and its consistence with the behavior of \(\langle \hat{\sigma}_z(T) \rangle \). Therefore the normalization has no effect on the dynamical behavior of the system.

Appendix

In this appendix we derive the asymptotic form [28] for \(P(0,T) \). It is worth remembering that in the strong-intensity regime (, i.e. \(|\alpha| \gg 1\)) the argument of \(\cos(.) \) in (27) can be expressed as [27]:

\[
\sqrt{n+1} = \sqrt{\langle \hat{n} \rangle + n} + 1 - \langle \hat{n} \rangle \simeq \frac{1}{2} (\bar{n} + \frac{1}{\bar{n}} + \frac{n}{\bar{n}}), \tag{1a}
\]

where \(\bar{n} = \sqrt{\langle \hat{n}(0) \rangle} \).
Now we show how the different summations in (27) can be evaluated.
\[
\sum_{n=0}^{\infty} \frac{|\alpha|^{2n}}{n!} H_n^2(0) = \frac{1}{2\pi} \int_0^{2\pi} \sum_{n=0}^{\infty} \left(\frac{\alpha}{n!} \right)^n H_n(0) \sum_{m=0}^{\infty} \frac{(-\alpha)^m}{m!} H_m(0) d\phi, \tag{2a}
\]
where \(\alpha = |\alpha| \exp(i\phi) \). By means of the generating function of the Hermite polynomial the summations on the right hand side of (2a) can be carried out as
\[
\sum_{n=0}^{\infty} \frac{|\alpha|^{2n}}{n!} H_n^2(0) = \frac{1}{2\pi} \int_0^{2\pi} \exp[-|\alpha|^2 \cos(2\phi)] d\phi = I_0(|\alpha|^2), \tag{2b}
\]
where \(I_0(.) \) is the modified Bessel function of the first kind of order zero. The second summation we would like to evaluate is the following
\[
\sum_{n=0}^{\infty} \frac{|\alpha|^{2n}}{n!} H_n(0) = \sum_{m=0}^{\infty} \frac{|\alpha|^{2(m-1)}}{(m-1)!m!} H_m^2(0), \tag{3a}
\]
where the factorial \(-1!\) is \(\infty \). Summation (3a) can be reformulated as
\[
\sum_{n=0}^{\infty} \frac{|\alpha|^{2n}}{n!} H_n^2(0) = \sum_{m=0}^{\infty} \frac{|\alpha|^{2n}}{(m-1)!m!} H_m^2(0). \tag{3b}
\]
Using (2b), the right hand side of (3b) gives
\[
d \frac{d}{d|\alpha|^2} I_0(|\alpha|^2) = I_1(|\alpha|^2). \tag{3c}
\]

The terms including \(\cos(.) \) in the strong-intensity regime can be written as
\[
\sum_{n=0}^{\infty} \frac{|\alpha|^{2n}}{n!} H_n^2(0) \cos \left(T\left(\bar{n} + \frac{1}{n} + \frac{a}{n} \right) \right) = \text{Re} \left\{ \exp[iT(\bar{n} + \frac{1}{n})] \sum_{n=0}^{\infty} \frac{|\alpha|^{2n}}{n!} H_n^2(0) \exp(iT\frac{a}{n}) \right\}. \tag{4a}
\]
The summation on the right hand side of (4a) can be evaluated using procedures as those given above leading that
\[
\sum_{n=0}^{\infty} \frac{|\alpha|^{2n}}{n!} H_n^2(0) \cos \left(T\left(\bar{n} + \frac{1}{n} + \frac{a}{n} \right) \right) = \text{Re} \left\{ \exp[iT(\bar{n} + \frac{1}{n})] I_0(|\alpha|^2 \exp(iT\frac{a}{n}) \right\}. \tag{4b}
\]
Similarly the last summation in (27) can be performed.

Acknowledgement

I would like to thank Professors Z. Hradil (Department of Optics, Palacký University, Olomouc, Czech Republic) and M. G. D’Araino (Dipartimento di Fisica “A. Volta” via Bassi 6, I-27100 Pavia, Italy) for the interesting discussions about homodyne tomography. Also I thank Professor M. R. B. Wahiddin (Centre for Computational and Theoretical Sciences, Kulliyyah of Science, International Islamic University Malaysia, 53100 Kuala Lumpur, Malaysia) for his kind hospitality during my stay.

[1] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89.
[2] Rempe G, Walther H and Klein N 1987 Phys. Rev. Lett. 57 353.
[3] Stenholm S 1973 Phys. Rep. C 6 1; Shore B W and Knight P L 1993 J. Mod. Opt. 40 1195.
[4] Allen L and Eberly J H 1975 "Optical Resonance and Two-Level Atoms" (Wiley, New York).
[5] Eberly J H, Narozhny N B and Sanchez-Mondragon J J 1980 Phys. Rev. Lett. 44 1323; Narozhny N B, Sanchez-Mondragon J J and Eberly J H 1981 Phys. Rev. A 23 236; Yoo H I, Sanchez-Mondragon J J and Eberly J H 1981 J. Phys. A 14 1383; Yoo H I and Eberly J H 1981 Phys. Rep. 118 239.

[6] Kim M S, Antesberger G, Bodendorf C T and Walther H 1998 Phys. Rev. A 58 R65.

[7] Wilkens M and Meystre P 1991 Phys. Rev. A 43 3832.

[8] Evers J and Keitel C H 2002 Phys. Rev. Lett. 89 163601.

[9] Sukumar C V and Buck B 1981 Phys. Lett. 83A 211.

[10] Meng H X, Chai C L and Zhang Z M 1992 Phys. Rev. A 45 2131.

[11] Maqbool T and Razmi M S K 1991 Phys. Rev. A 44 6147.

[12] El-Orany F A A and Obada A-S 2002 J. Opt. B: Quant. Semiclass. 4 121.

[13] Gou S-C 1989 Phys. Rev. A 40 5116; Joshi A and Puri R R 1990 Phys. Rev. A 42 4336; Gou S-C 1993 Phys. Rev. A 48 3233; Napoli A and Messina A 1996 J. Mod. Opt. 43 649.

[14] Cardimona D A, Kovanis V, Sharma M P and Gavrielides A 1991 Phys. Rev. A 43 3710.

[15] Rosenhouse-Dantsker A 1992 J. Mod. Opt. 39 1471.

[16] Kochetov E A 1987 J. Phys. A: Math. Gen. 20 2433.

[17] Wigner E 1932 Phys. Rev. 40 749; Cahill K E and Glauber R J 1969 Phys. Rev. 177 1882; Hillery M, O’Connell R F, Scully M O and Winger E P 1984 Phys. Rep. 106 121.

[18] Ekert A and Jozsa R 1996 Rev. Mod. Phys. 68 733; Lo H-K, Popescu S and Spiller T 1998 ”Introduction to Quantum Computation and Information” (World Scientific: Singapore); Begie A, Braun D, Tregenna B and Knight P L 2000 Phys. Rev. Lett. 85 1762.

[19] El-Orany F A A 2002 Phys. Rev. A 65 043814.

[20] El-Orany F A A, Peﬁna J, Peﬁnová V and Abdalla M S 2002 J. Opt. B: Quant. Semiclass. Opt. 5 60; ibid 2003 J. Europ. Phys. D 22 141.

[21] Ekert A K and Knight P L 1991 Phys. Rev. A 43 3934.

[22] Eiselt J and Risken H 1989 Opt. Commun. 72 351.

[23] Eiselt J and Risken H 1991 Phys. Rev. A 43 346.

[24] Eiselt J and Risken H 1991 Phys. Rev. A 44 4623; Werner M J and Risken H 1991 Quant. Opt. 3 185.

[25] Miller C A, Hilsenbeck J and Risken H 1992 Phys. Rev. A 46 4323.

[26] Mubeen A M 1993 Phys. Rev. A 47 4384.

[27] Satyanarayana M V, Rice P, Vyas R and Carmichael H J 1989 J. Opt. Soc. Am. B 6 228.

[28] Banaszek K and Wódkiewicz k 1996 Phys. Rev. Lett. 76 4344; Wallentowitz S and Vogel W 1996 Phys. Rev. A 53 4528.

[29] Lutterbach L G and Davidovich L 1997 Phys. Rev. lett. 78 2547.

[30] Nogues G, Rauschenbeutel A, Osnaghi S, Bertet P, Brune M, Raimond J M, Haroche S, Lutterbach L G and Davidovich L 2000 Phys. Rev. A 62 054101.

[31] Vogel K and Risken H 1989 Phys. Rev. A 40 2847.

[32] Beck M, Smithey D T and Raymer M G 1993 Phys. Rev. A 48 890; Smithey D T, Beck M, Cooper J
and Raymer M G 1993 Phys. Rev. A 48 3159; Beck M, Smithey D T, Cooper J and Raymer M G 1993 Opt. Lett. 18 1259; Smithey D T, Beck M, Cooper J, Raymer M G and Faridani M B A 1993 Phys. Scr. T 48 35.

[33] Dalton B J, Ficek Z and Swain S 1999 J. Mod. Opt. 46 379.
[34] Dakna M, Köll L and Welsch D-G 1998 Opt. Commun. 145 309.
[35] Ramsey N F 1985 ”Molecular Beams” (Oxford University Press, New York).
[36] Yuen H P and Chan V W S 1983 Opt. Lett. 8 177.
[37] Leonhardt U 1997 ”Measuring the Quantum State of Light” (University Press: Cambridge).
[38] Smithey D T, Beck M, Raymer M G and Faridani A 1993 Phys. Rev. Lett. 70 1244.
[39] Leonhardt U and Jex I 1994 Phy. Rev. A 49 R1555.
[40] Du S-d and Gong C.-d 1994 Phy. Rev. A 50 779.
[41] Nasreen T 1994 J. Opt. Soc. Am. B 11 386.
[42] Singh S 1982 Phy. Rev. A 25 3206.
[43] Liu J-r and Wang Y-z 1996 Phy. Rev. A 54 2326, ibid 2444.