FDA *Escherichia coli* Identification (FDA-ECID) Microarray: a Pangenome Molecular Toolbox for Serotyping, Virulence Profiling, Molecular Epidemiology, and Phylogeny

Isha R. Patel, Jayanthi Gangiredla, David W. Lacher, Mark K. Mammel, Scott A. Jackson,* Keith A. Lampel, Christopher A. Elkins

Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA

ABSTRACT

Most *Escherichia coli* strains are nonpathogenic. However, for clinical diagnosis and food safety analysis, current identification methods for pathogenic *E. coli* either are time-consuming and/or provide limited information. Here, we utilized a custom DNA microarray with informative genetic features extracted from 368 sequence sets for rapid and high-throughput pathogen identification. The FDA *Escherichia coli* Identification (FDA-ECID) platform contains three sets of molecularly informative features that together stratify strain identification and relatedness. First, 53 known flagellin alleles, 103 alleles of *wzx* and *wzy*, and 5 alleles of *wzm* provide molecular serotyping utility. Second, 41,932 probe sets representing the pan-genome of *E. coli* provide strain-level gene content information. Third, approximately 125,000 single nucleotide polymorphisms (SNPs) of available whole-genome sequences (WGS) were distilled to 9,984 SNPs capable of recapitulating the *E. coli* phylogeny. We analyzed 103 diverse *E. coli* strains with available WGS data, including those associated with past foodborne illnesses, to determine robustness and accuracy. The array was able to accurately identify the molecular O and H serotypes, potentially correcting serological failures and providing better resolution for H-nontypeable/nonmotile phenotypes. In addition, molecular risk assessment was possible with key virulence marker identifications. Epidemiologically, each strain had a unique comparative genomic fingerprint that was extended to an additional 507 food and clinical isolates. Finally, a 99.7% phylogenetic concordance was established between microarray analysis and WGS using SNP-level data for advanced genome typing. Our study demonstrates FDA-ECID as a powerful tool for epidemiology and molecular risk assessment with the capacity to profile the global landscape and diversity of *E. coli*.

IMPORTANCE

This study describes a robust, state-of-the-art platform developed from available whole-genome sequences of *E. coli* and *Shigella* spp. by distilling useful signatures for epidemiology and molecular risk assessment into one assay. The FDA-ECID microarray contains features that enable comprehensive molecular serotyping and virulence profiling along with genome-scale genotyping and SNP analysis. Hence, it is a molecular toolbox that stratifies strain identification and pathogenic potential in the contexts of epidemiology and phylogeny. We applied this tool to strains from food, environmental, and clinical sources, resulting in significantly greater phylogenetic and strain-specific resolution than previously reported for available typing methods.

*Escherichia* spp. are Gram-negative, facultative anaerobes belonging to the *Enterobacteriaceae* family. Most *E. coli* strains are commensals and are found as part of the gut microbiota, benefiting their hosts by producing essential compounds, such as vitamin K2, and also by establishing a “colonization barrier effect” to prevent the invasion of pathogenic bacteria into intestinal cells. Long-standing phylogenetic analyses of *E. coli* suggest it can be divided, by the latest measure, into at least seven phylogroups: A, B1, B2, C, D, E, and F (1–3). In addition, five cryptic lineages of *Escherichia* that are phenotypically indistinguishable from *E. coli* under standard microbiological assays have been reported (4).

Pathogenic *E. coli* strains have evolved to adapt to humans as a host, and in some cases they colonize animal species asymmetrically; collectively they are intercalated across the phylogroups. The pathogenic *E. coli* serotypes have been further subdivided according to their typical sites of infection and clinical manifestations in humans (5, 6). A common means to identify pathogenic *E. coli* usually involves tests for major serotypes with a history of disease and key genetic virulence markers. As an example, Shiga toxin-producing *E. coli* (STEC) strains are capable of expressing Shiga toxin type 1 (Stx1) and/or type 2 (Stx2), potent cytotoxins encoded by the *stx*1 and *stx*2 genes, respectively. STEC strains that cause hemolytic uremic syndrome (HUS) in humans more often
produce Stx2, and there are several subtypes of stx that are responsible for differences in cytotoxicity (7–9). Additionally, STEC strains carry other virulence factors such as the intimin adhesin, an outer membrane protein essential for the formation of the characteristic attaching-and-effacing (A/E) lesion of enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) strains (10, 11). The 94-kDa intimin protein is encoded by the eae gene located on the locus of enterocyte effacement (LEE) pathogenicity island (12). This gene is highly polymorphic, with over 25 major allelic variants being reported (13). Another putative virulence marker is the plasmid-borne enterohemolysin gene (ehxA), which has been found in EHEC and STEC strains (14, 15) and has been used as an epidemiological marker in pathogenic strains (16, 17). The combination of overall genome content and virulence factors is variable in STEC (18). Indeed, there is a limited correlation between serotype and strains with pathogenic potential to cause human illness, whereas an accurate detection of stx subtypes, eae, and other virulence factors is a better indicator of virulence.

In the United States, foodborne illnesses affect about 48 million people annually (19). According to the CDC’s public health surveillance system, the bacteria most often implicated in foodborne diseases are Campylobacter, Listeria, Salmonella, STEC, Shigella, Vibrio, and Yersinia. As the prototypic EHEC serogroup, E. coli O157:H7 is a formidable pathogen; however, other serogroups, i.e., non-O157 STEC, have been implicated in several foodborne outbreaks, notably in fresh produce (20). In addition, STEC strains are commonly found in food, yet the ability to detect and identify these microbes in foods is challenging (21). Efforts to develop effective preventive measures, as well as rapid methods to identify these pathogens for outbreak response or surveillance programs, are critical components for public health safety.

A rapid, specific diagnostic test to distinguish pathogenic and nonpathogenic E. coli in food analytical laboratories has great practical value to prevent and respond to foodborne outbreaks. In this study, we exploited the rapidly evolving whole-genome sequence (WGS) technology and used 368 publically available E. coli and Shigella sequence sets to design the Food and Drug Administration Escherichia coli Identification (FDA-ECID) microarray. In a similar fashion, we previously designed and used a multigenome custom microarray to assess the total gene content of pathogenic E. coli in the 2011 O104:H4 outbreak (22). The basis for these initial efforts involved whole-genome genotyping of E. coli and was rooted in genomic discovery, but interestingly, in retrospect, it provided intrinsic epidemiological and phylogenetic signatures for strain-level discrimination. We expanded this concept here in the WGS era from basic gene content to incorporate molecular serotype and virulence determination with deep phylogenetic profiling of individual strains using WGS single nucleotide polymorphism (SNP)-level discrimination. This molecular toolbox can accurately resolve and stratify identification without a comparative reference using unique probe set design analysis strategies.

**MATERIALS AND METHODS**

**Bacterial strains.** A total of 610 isolates were examined in this study (see Table S1 in the supplemental material). This diverse collection of strains was selected to represent the range of genotypic variation within the species and includes both the E. coli reference (ECOR) and diarrheagenic E. coli (DEC) collections. All strains were grown in 3 ml of Luria broth and incubated overnight at 37°C with moderate shaking. A subset of 103 strains was selected for more in-depth analysis because of the availability of WGS data (Table 1).

**Microarray design.** A total of 368 E. coli and Shigella sequence sets were used to identify 55,918 annotated open reading frames, from which 41,932 probe sets were selected using Affymetrix’s probe set design software (Affymetrix, Santa Clara, CA). The sequence sets include 54 closed chromosomes, 47 closed plasmids, and 267 whole-genome shotgun sequences from GenBank (see Table S2 in the supplemental material). For each targeted genomic region, the design strategy created a probe set comprising, on average, 11 probe pairs. Each probe pair consists of one 25-mer oligomer that matches the reference sequence and a corresponding mismatch 25-mer that differs from the perfect match by a single nucleotide at the central (13th) position of the oligonucleotide (23). The probe set signal is the summation of the 11 individual probe pair signals in which the mismatch probe signal is used to correct for nonspecific hybridization.

We included 211 unique probe sets for identifying 152 O types and 54 probe sets for all known H types. Additionally, four and eight probe sets were included for the detection and/or allelic subtyping of stx1 and stx2, respectively. Where possible, probe sets were named with the GenBank reference sequence that was used for their design (see, e.g., stx in Table S3 in the supplemental material). Detection and subtyping of eae were accomplished using 48 probe sets for different regions of this highly diverse locus. DNA sequence similarity in the 3’ half of the eae gene, which corresponds to the extracellular domains of the intimin protein, was used to organize the probe sets into seven allele families: α (11 alleles), β (5 alleles), γ (8 alleles), ε (8 alleles), τ (3 alleles), λ (4 alleles), and ρ (3 alleles) (see Table S4 in the supplemental material). In order to detect any novel eae alleles not represented by the probe sets targeting the extracellular domains, we also included probe sets for the conserved transmembrane domain of the intimin protein. Probe sets for the detection of other virulence genes are included as part of the pan-genome.

Using the same 321 chromosomal members of the reference sequence sets, we identified ~125,000 conserved 25-mers, each containing a single central nucleotide polymorphism (SNP). Of these, we filtered the 10% most informative SNP sites by favoring SNPs which give a unique pattern of change over the 321 chromosomal sequences. Each of the 9,984 discriminatory SNP sites is based on the reference genome for K-12 MG1655 (GenBank accession number U00096.2) and is represented on the FDA-ECID microarray using an SNP-typing probe strategy.

**DNA isolation and microarray hybridization.** Total genomic DNA was extracted from 1 ml of culture using the Qiagen DNeasy kit. DNA extractions were performed with the Qiagen QIAcube instrument using the protocol for isolation of DNA from Gram-negative bacteria (Qiagen, Hilden, Germany). The eluted DNA was further purified and concentrated using Amicon Ultra-0.5 30K filters (Merck KGaA, Darmstadt, Germany). The eluted DNA was then 3'-end labeled with biotin-11-ddATP (PerkinElmer, Akron, OH) using 30 units of recombinant terminal deoxynucleotidyl transferase (TdT) (Affymetrix) and incubated at 37°C for 3 h. Next, 35 μl of 1.3X HybA, 65.8 μl of HybB, and 2.2 μl of B2 Oligo Control from the GeneChip GeneAtlas hybridization and stain kit (Affymetrix) were added to the labeled DNA, which was then incubated at 96°C for 10 min to denature the DNA. The digested DNA was then 3'-end labeled with biotin-11-ddATP (PerkinElmer, Akron, OH) using 30 units of recombinant terminal deoxynucleotidyl transferase (rTdT) (Affymetrix) and incubated at 37°C for 3 h. Next, 35 μl of 1.3X HybA, 65.8 μl of HybB, and 2.2 μl of B2 Oligo Control from the GeneChip GeneAtlas hybridization and stain kit (Affymetrix) were added to the labeled DNA, which was then incubated at 96°C for 10 min to denature the DNA and then cooled to 45°C for 2 min. To each of the four wells of the GeneAtlas hybridization tray, 120 μl of respective denatured sample was added, and the FDA-ECID array strip (with four arrays) was placed on the hybridization tray and incubated at 45°C for 16 h. Following hybridization, the arrays were washed and scanned using the Affymetrix GeneAtlas system according to the default settings in the GeneAtlas instrument control software.
| Strain | Groupa | GenBank ID | Other designation(s) | Serotypeb | O | H | STX1 | STX2 | eae | ehxAb |
|--------|--------|-----------|----------------------|------------|---|---|------|------|-----|-------|
| K-12   | A      | MG1655    | Rough                |            | 16| 16| 48   | 48   | -  | -  |
| EC1439 | A      | AIFV      | DEC 6A               |            | 111| 111| 112   | 12   | -  | -  |
| EC1440 | A      | AIFW      | DEC 6B               |            | 111| 111| 112   | 12   | -  | -  |
| EC1441 | A      | AFX       | DEC 6C               |            | 111| 111| 112   | 12   | -  | -  |
| EC1442 | A      | AIFY      | DEC 6D               |            | 111| 111| 4     | 4    | -  | -  |
| EC1443 | A      | AIFZ      | DEC 6E               |            | 111| 111| NM    | 4    | -  | -  |
| EC1445 | A      | AIGB      | DEC 7B               |            | 149| 157| 157   | NM   | 42 | 42   |
| EC1444 | B      | AIGA      | DEC 7A               |            | 157| 157| 157   | 43   | 43 | 43   |
| EC1446 | B      | AIGC      | DEC 7C               |            | 157| 157| 157   | 43   | 43 | 43   |
| EC1447 | B      | AIGD      | DEC 7D               |            | 157| 157| 157   | 43   | 43 | 43   |
| EC1448 | B      | AIGE      | DEC 7E               |            | 157| 157| 157   | NM   | 43 | 43   |
| EC1449 | B      | AIGF      | DEC 8A               |            | 111| 111| NM    | 8    | 8  | 8    |
| EC1450 | B      | AIGG      | DEC 8B               |            | 111| 111| 8     | 8    | 8  | 8    |
| EC1451 | B      | AIGH      | DEC 8C               |            | 111| 111| NM    | 11   | 11 | -    |
| EC1452 | B      | AIGI      | DEC 8D               |            | 111| 111| 11    | 11   | -  | -  |
| EC1453 | B      | AIGJ      | DEC 8E               |            | 111| 111| 8     | 8    | 8  | 8    |
| EC1454 | B      | AIGK      | DEC 9A               |            | 26 | 26 | 26    | 11   | 11 | -  |
| EC1455 | B      | AIGL      | DEC 9B               |            | 26 | 26 | 26    | NM   | 11 | -  |
| EC1456 | B      | AIGM      | DEC 9C               |            | 26 | 26 | 26    | NM   | 11 | -  |
| EC1457 | B      | AIGN      | DEC 9D               |            | 26 | 26 | 26    | 11   | 11 | -  |
| EC1458 | B      | AIGO      | DEC 9E               |            | 26 | 26 | 26    | 11   | 11 | -  |
| EC1459 | B      | AIGP      | DEC 10A              |            | 26 | 26 | 26    | 11   | 11 | -  |
| EC1460 | B      | AIGQ      | DEC 10B              |            | 26 | 26 | 26    | 11   | 11 | -  |
| EC1461 | B      | AIGR      | DEC 10C              |            | 26 | 26 | 26    | 11   | 11 | -  |
| EC1462 | B      | AIGS      | DEC 10D              |            | 26 | 26 | 26    | 11   | 11 | -  |
| EC1463 | B      | AIFJ      | DEC 10E              |            | 26 | 26 | 26    | 11   | 11 | -  |
| EC1464 | B      | AIGU      | DEC 10F              |            | 15 | 15 | 15    | NM   | 11 | -  |

Continued on following page
Gene-level probe set data summarization. The Robust MultiArray Averaging (RMA) function in the affy package of R-Bioconductor was utilized to carry out background subtractions, normalizations, and probe set summarizations, in batch, on the array-generated (.cel) data files (24, 25). The RMA summarized values were then used to perform hierarchical cluster (HC) analysis using average linkage clustering with a Pearson correlation measure of similarity. The MAS5.0 algorithm was also used by changing the default parameters to $t = 0.15$, $\alpha_1 = 0.05$, and $\alpha_2 = 0.05$ (the custom R script can be provided upon request) (23). MAS5 calls were useful in determining discrete individual gene presence or absence (sequence divergence) for molecular serotyping and virulence typing. HC analyses were performed using the number of probe sets greater than 3-fold different in their RMA intensity values. The reproducibility of the array was verified through triplicate runs of four reference strains (data not shown).

SNP data summarization. Affymetrix's GeneChip Sequence (GSEQ) analysis software was used to batch analyze the .cel files for the 103 strains with available WGS data, determining if each SNP on the array was a match to the reference sequence. A quality score was assigned to each position based on the respective hybridization intensity for both forward- and reverse-strand probes. Base calls and quality scores were determined using the haploid model system with a base reliability threshold of 0.5 and a quality score threshold of 1, respectively. Optimal threshold values for the base reliability and quality scores were determined by using WGS data for the same SNPs. For each data set (microarray and WGS), the 9,984 SNP sites were concatenated and neighbor-joining trees were constructed from a $p$ distance matrix using MEGA (26).

RESULTS

Molecular serotyping. The MAS5 calls (present or divergent) were used to determine the O and H types of the strains investigated. The reported serological serotype and the molecular serotype detected by the array as well as by WGS for the 103 strains

| Strain | Group | GenBank ID | Other designation(s) | Serotype | O | H | $stx_1$ | $stx_2$ | eae | $ehxA$ |
|--------|-------|------------|-----------------------|----------|---|---|--------|--------|-----|--------|
| EC1414 | B2    | AEX        | DEC 1C                |          | 55| 55| 55     | 6      | 6   | 6      | a     | a/0  |
| EC1415 | B2    | AYE        | DEC 1D                |          | 55| 55| 55     | 6      | 6   | 6      | a     | a/0  |
| EC1416 | B2    | AIEZ       | DEC 1E                |          | 55| 55| 55     | 6      | 6   | 6      | a     | a/0  |
| EC1417 | B2    | AIFA       | DEC 2A                |          | 55| 55| 55     | 6      | 6   | 6      | a     | a/0  |
| EC1418 | B2    | AIFB       | DEC 2B                |          | 55| 55| 55     | NT     | 6   | 6      | a     | a/0  |
| EC1419 | B2    | AIFC       | DEC 2C                |          | 55| 55| 55     | 6      | 6   | 6      | a     | a/0  |
| EC1420 | B2    | AIFD       | DEC 2D                |          | 55| 55| 55     | 6      | 6   | 6      | a     | a/0  |
| EC1421 | B2    | AIFE       | DEC 2E                |          | 55| 55| 55     | 6      | 6   | 6      | a     | a/0  |
| EC1422 | B2    | AIFF       | DEC 2F                |          | 55| 55| 55     | 6      | 6   | 6      | a     | a/0  |
| EC1423 | B2    | AIGF       | DEC 3A                |          | 55| 55| 55     | 6      | 6   | 6      | a     | a/0  |
| EC1424 | B2    | AIGF       | DEC 3B                |          | 55| 55| 55     | 6      | 6   | 6      | a     | a/0  |
| EC1425 | B2    | AIFH       | DEC 3C                |          | 55| 55| 55     | 6      | 6   | 6      | a     | a/0  |
| EC1426 | B2    | AIFI       | DEC 3D                |          | 55| 55| 55     | 6      | 6   | 6      | a     | a/0  |
| EC1427 | B2    | AIFJ       | DEC 3F                |          | 55| 55| 55     | 6      | 6   | 6      | a     | a/0  |

$^a$ E. coli phylogroup or cryptic lineage (CL).
$^b$ NA, not available; NM, nonmotile; NT, nontypeable.
$^c$ Not represented on the array.
$^d$ Negative in the WGS contigs but positive in the SRA reads.
with available WGS data are shown in Table 1. The O types determined via the array were in complete agreement with the WGS data. When comparing the traditional serological data to the molecular O serotypes determined by the array, three of the strains were identified with different O types by the array. As reported in our previous study (27), the molecular serotypes of strains DEC 7B and DEC 1A do not agree with their reported serological serotypes and are likely the result of the strains being either mislabeled or mistyped by serology. The third and final O-type inconsistency is the O rough phenotype of strain K-12 that was accurately typed as being O16 molecularly.

The serological serotypes for the strains that are from the cryptic lineages of *Escherichia* are not available, so comparisons between the two methodologies were not possible. The array was able to identify O types for 99 of the 103 strains, with the only strain being O type not represented on the array. Strain E24377A is reported to be O139:H28, but with the exception of the genes required for the dTDP-sugar biosynthesis pathway (*rmlBDAC*), the sequence of its O-antigen gene cluster is not homologous with that of the O-antigen gene cluster from the O139 type strain (GenBank accession no. DQ109552). Therefore, we refer to the variant O139 found in E24377A as O139v. The O types of the three remaining nontypeable strains (TW09231, TW09308, and TW11588) are also not represented on the array. Each of these three strains belongs to a different cryptic lineage of *Escherichia*, and the O-antigen gene clusters of strains TW09231, TW09308, and TW11588 are 93, 88, and 87% similar to O10, O139v, and O36, respectively, based on WGS data.

For the H types, 15 strains had differing results when comparing the array to traditional serology. The serological H types for 14 of these strains were unavailable due to nonmotility, whereas the molecular H types for all the *E. coli* strains were determined (Table 1). In comparison with WGS, the microarray correctly typed the molecular H types with the exception of the cryptic lineage 4 isolate TW11588. The WGS data show that this isolate carries a novel *fliC* allele that is approximately 90% homologous to the H5 and H56 *fliC* alleles represented on the array. Since this allele is outside the detectable limit of the array, strain TW11588 was classified as H nontypeable by the array. The O and H types identified via the array for the additional 507 strains in our database are listed in Table S1 in the supplemental material.

**Virulence profiling.** The RMA summarized intensities and *P* values were used to confirm the calls for the presence or absence of stx1, stx2, *eae*, and *ehxA* in each of the 103 strains examined (Table 1). Allelic variants of stx1 (stx1a, stx1c, and stx1d) can be accurately identified based on the MAS5 calls, but for stx2, the probe sets hybridized to multiple alleles because of the inherent mosaic nature of the stx2 subtypes attributable to recombination. Thus, while stx2 could be accurately detected by the array, allelic discrimination was more difficult. For the 103 strains examined, approximately 17% had stx2 and 22% had stx0. All of the stx2-positive strains examined possessed the stx2a allele, which was in agreement with the WGS data (Table 1). For stx0, the array was 100% accurate both in making a present call and in suggesting the possible combination of alleles that could be present. For example, strain EC4045 had some combination of the stx2ac/d alleles based on the array, and WGS data reported a combination of stx2a and stx2c.

Sixty-five strains (63%) were *eae* positive according to the array (Table 1). Of the seven *eae* allele families represented on the array, the γ family was most frequently observed among the 103 strains (45%), followed by β (37%), α (17%), and ε (1%). The remaining three families (λ, α, and ρ) were not found in any of the strains in this study. Finally, 27% of the strains in this study showed presence of *ehxA*, with three strains being discrepant between the array and WGS data (Table 1). Two of these strains, DEC 10A and DEC 10B, were *ehxA* negative according to their WGS contig assemblies but were *ehxA* positive when their raw reads from the sequence read archive (SRA) were analyzed, suggesting that one or more assembly parameters may have led to the false-negative result in the WGS contig data. The remaining discrepant strain, DEC 10E, was *ehxA* negative in both the WGS and SRA data, suggesting that the sequenced isolate possibly lost the plasmid carrying this locus.

**Whole-genome genotyping.** The resulting tree from the RMA data conserves general phylogroup distribution and is useful for rapidly capturing unique gene content with appropriate reference comparison. However, the RMA data-based tree cannot be used to infer deeper phylogenetic relationships, since the gene content profiles are an amalgamation of core and mobile genetic elements that distort evolutionary relationships (see Fig. S1 in the supplemental material). Our analysis of the 610 strains includes isolates implicated in different outbreaks; examples include (i) O157:H7 isolates believed to be linked with the 2009 cookie dough-associated outbreak, (ii) clinical, bovine, and environmental O157:H7 isolates implicated in the 2006 spinach-associated outbreak, and (iii) O104:H4 isolates from the 2011 sprout-associated outbreak in Germany.

(i) *E. coli* O157:H7 implicated in the 2009 cookie dough-associated outbreak. To determine whether a strain being tested has been previously observed in our database, hierarchical cluster (HC) analysis was performed on all strains investigated to date using the number of probe sets greater than 3-fold different in their RMA intensity values. HC analysis of the 610 strains in our database revealed that the three clinical isolates from the outbreak did not cluster with the food isolate (Fig. 1A). Analysis of the RMA data scatter plots indicated that the clinical isolates (EC1734, EC1736, and EC1737) are genotypically indistinguishable from one another, while the food isolate (EC1738) was considerably different (Fig. 1B). Our results agree with those of Neil et al. (28) that the food source was never identified. Examination of the differences between the clinical and food strains revealed an average of 578 probe set differences, 30% of which target regions that are annotated as being prophage encoded.

(ii) *E. coli* O157:H7 implicated in the 2006 spinach-associated outbreak. Most of the clinical isolates were genotypically indistinguishable via the array, with the exception of strains EC4076 and EC4115, which showed signal intensity differences in several prophage-associated probe sets (see Fig. S2 in the supplemental material). Based on high-resolution SNP analysis from WGS data, it has been reported that EC4076 has a prophage deletion and EC4115 is an outlier with strain-specific SNPs and a prophage duplication (29). In addition, Eppinger et al. found that the bovine isolate EC4206 was different from the clinical isolate EC4045 by two strain-specific SNPs (29). Unfortunately, the array probe set intensity data were not able to capture this difference, and EC4206 was genotypically indistinguishable from the clinical isolates.

(iii) *E. coli* O104:H4 implicated in the 2011 fenugreek sprout-associated outbreak. The two clinical isolates from the outbreak
FIG 1 Genotype analysis of the O157:H7 strains implicated in the 2009 cookie dough-associated outbreak. (A) Hierarchical cluster dendrogram generated using the number of probe sets that were greater than 3-fold different in 610 strains. Scale bars represent the number of probe set differences, and O157:H7 strains are enclosed by the gray box. Clinical and food strains from the outbreak are indicated by the red and blue circles, respectively. (B) Scatter plots generated using the RMA intensities from all 41,932 probe sets for comparing two clinical isolates (left) and a clinical isolate and a food isolate (right).
that were analyzed are indistinguishable based on the probe set intensity data (see Fig. S3 in the supplemental material). Based on HC and scatter plot analyses, two clinical strains from the Republic of Georgia in 2009 are the nearest neighbors to the German outbreak strain, with similar virulence markers (stx2, agg1C, and aggR) and <1% probe set differences. The O104:H4 reference isolate 55989 from the Central African Republic is more distant, with 3% of the total probe sets being different from the German outbreak strain. The probe set percent difference values obtained here for the O104:H4 strain using the FDA-ECID array are similar to those we obtained in a previous study using our FDA-ECSG array (22).

Evolutionary and phylogenetic classification based on SNP array data. In order to more easily view the relationships among the more distinct lineages, the 103 strains were binned into one of 24 groups on the basis of similarities of >99.5% for the WGS data at the 9,984 SNP loci. Phylogenetic trees were then constructed using the average pairwise distances among these 24 groups for both the array SNP data (Fig. 2A) and the corresponding WGS data (Fig. 2B). Both sets of data were capable of distinguishing among the major phylogroups present (A, B1, B2, and E), as well as four of the cryptic lineages of Escherichia. When the underlying distance matrices used to generate the trees were compared, a nearly 1-to-1 linear correspondence was observed, with the data sets being 99.7% correlated (Fig. 2C). However, the array was less effective in recapitulating the relationships among strains within the same clonal group (i.e., those at the >99.5% similarity level). As an example, phylogenetic trees were generated for the DEC 8, 9, and 10 strains (Fig. 3A and B). Branch lengths in the array SNP tree were considerably longer than those in the WGS SNP tree, suggesting errors in the array SNP calls outnumbered the actual SNP differences among the strains. This is supported by the number of variable sites within each data set: 108/9,984 for WGS versus 440/9,984 for the array. Comparison of the distance matrices used to generate the DEC 8/9/10 trees revealed a correlation of 41.5% between the array and WGS data (Fig. 3C). An analysis of the DEC 11 and 12 strains was also performed, with similar results (53 WGS versus 456 array variable sites and 54.4% correlation between data sets) (data not shown). The array and WGS SNP trees for the full 103 strains are available in Fig. S4 and S5 in the supplemental material, respectively.

DISCUSSION

Upon comprehensive evaluation of 103 strains of E. coli, the FDA-ECID microarray was demonstrated to be a rapid and reliable molecular typing tool capable of differentiating potential disease-causing strains of E. coli from nonpathogenic strains. The array was able to discriminate the strains beyond the level of serotype, including virulence profile and the core genetic backbone. The availability of this depth of information in a single rapid assay is crucial for source attribution and is critical for risk assessment based on the strains’ virulence profiles in order to recall implicated foods.

Comparative pan-genome analysis of E. coli pathotypes is rapidly becoming part of many outbreak investigations (30, 31). This level of analysis includes the core genome as well as the distinct genes. Unassembled WGS data in various forms have already been useful for the characterization of strains in outbreaks for E. coli (32). However, to be able to be used as an efficient and high-resolution standard typing method for routine outbreak surveil-

lance, further refinement is necessary. WGS is still laborious and time-consuming and continues to require substantial computer resources as well as bioinformatics training for compilation of useful data for routine surveillance (33, 34). Until the laboratory and bioinformatic limitations with WGS are overcome and it becomes useful as a standard practice, rapid molecular typing methods are still required to provide more information for a strain and species than routine typing.

The FDA-ECID array was designed for molecular serotyping and detection of virulence genes, as well as 41,932 genetic regions, enabling the array to provide genome-wide characterization of E. coli strains. The overall time from genomic DNA to analyzed data is less than 24 h, with only 2 h of actual hands-on time required. Current protocols for E. coli detection, isolation, and identification from foods include a combination of bacteriological culture-based enrichments, biochemical, immunological, and molecular methods, and serotyping using specific antisera (35). These methods are time-consuming, have logistical constraints when processing large numbers of samples, and may not be fully reliable due to limited sensitivity.

Molecular-based methods, such as PCR and immunological assays (36, 37), have been used to determine a limited number of E. coli serotypes. The major limitation of using PCR and Luminex-based assays for molecular serogrouping is the presence of over 220 O-antigen types in E. coli and Shigella spp. While other highly parallel molecular serotyping methods are available, they are limited in their number of targets relative to the microarray (500 Luminex targets versus 50,000 Affymetrix targets). Therefore, multiple independent assays would need to be performed for serotyping, virulence, and subtyping.

In a recent study, the significance of accurate identification of O types was noted by showing that the O-antigen cluster-based diversification of E. coli is lineage dependent (38). In combination, certain O and H types are associated with bacterial clones that cause specific kinds of disease (39). Therefore, serotype information can be used for evaluating the disease potential in humans along with virulence marker information during epidemiological outbreak investigations. The array was able to simultaneously assay for 152 O types and identified the O types for 99 of the 103 strains investigated in this study, with the four nontypable strains due to the lack of representation of their specific O types on the array. In a recent publication (27), we have shown the practical applications of this array for molecular serotyping of STEC isolated from fresh produce. In comparison to traditional serotyping, which may take from a few days to weeks to complete and is limited due to the number of available antisera as well as cross-reactivity issues, the FDA-ECID array was shown to be an effective alternative. The array was able to molecularly serotype produce STEC strains, many of which could not be serotyped or had only partial serotypes based on antisera.

The FDA-ECID array can also provide whole-genome content data and virulence markers for strain characterization which otherwise would need separate genome sequencing or gene-specific PCR assays to determine and confirm the presence or absence of specific virulence genes. Due to the significant variation in virulence content within a serotype, information on virulence markers carried by a strain is equally important. Molecular risk evaluation methods based on assessment of virulence markers have been used to predict if strains of E. coli might pose a significant threat to human health (40, 41). In this study, we showed how the array can
FIG 2 SNP analysis with the FDA-ECID microarray. (A) Neighbor-joining tree constructed using between-group averages for 9,984 SNPs as determined by the FDA-ECID microarray for 103 strains. (B) Neighbor-joining tree constructed using between-group averages from WGS data for the 9,984 SNPs represented on the FDA-ECID microarray for 103 strains. (C) Comparison of the distance matrices used to generate the trees in panels A and B.
be used for epidemiological investigations. For the 2009 O157:H7 cookie dough-associated outbreak, the array could accurately differentiate the clinical strain with a prophage variation compared to other clinical strains from the same outbreak. Finally, for the 2011 German O104:H4 outbreak, the array could accurately serotype and provide overall information on the genomic fingerprint as well as the strain’s virulence attributes, such as the combination of Shiga toxin and enteropathogenic features. This type of pan-genome analysis is extremely useful for epidemiological investigations.

To study evolutionary relationships of strains, phylogenetic grouping of E. coli has previously been used for classification of commensal strains from pathogenic strains. E. coli has been subdivided into four main phylogenetic groups (1) and three minor groups (3, 42). It has been shown recently that whole-genome phylogenies have different tree topologies from traditional multilocus sequence typing using seven housekeeping loci (18). Whole-genome-scale global analysis of genomic diversity by using either pan-genome data or SNP-level data can help elucidate the mechanisms that drive diversification. Phylogenies based on WGS data have been used to identify SNPs that are used to generate trees to show relationships of strains from an outbreak (43, 44). It has also been shown that a specific phylogenetic background is required for the acquisition of virulence factors located on pathogenicity islands and plasmids (45). Large portions of bacterial genomes are subject to rapid change through chromosome-integrated prophages or the acquisition or loss of plasmids resulting in longer branch lengths in the pan-genomic trees from closely related strains (46).

The genomic positions for the defined set of SNPs on the array were used to extract SNPs from WGS data for reference sequenced strains. The array is capable of detecting whether or not the test strain matches the reference strain at each SNP position. However, if the test strain does not match the reference, the current analysis method does not determine the actual nucleotide, but the SNP positions can be compared to those from other studies. When trees based on the WGS SNPs were compared to the experimental data, we found a 99.7% correlation for the between-group distances, indicating that the array SNPs accurately recapitulate the relationships determined by the WGS SNPs. The time required to run samples and determine the genotypic relationships of strains during an outbreak is significantly less when using a microarray (24 h) than when performing a 150-bp WGS run yielding 80x coverage (~48 h). Data processing and bioinformatic challenges are still a bottleneck for WGS data (47, 48), while the relationships between strains can be determined from a typical microarray run in less than an hour, thereby allowing for a rapid genome-scale analysis. Current approaches of sequencing microbial genomes at a high resolution are still relatively expensive and time-consuming. The Affymetrix microarray-based resequencing approach offers an alternative for collecting SNP information. This kind of comparative phylogenomic analysis is important when evaluating potential human health risk criteria.

A limitation of the FDA-ECID microarray in its current configuration is that of the over 220 named O types present within E. coli and Shigella, only the 152 O types with sequence data available when the array was designed are represented. Sequence information for the complete set of reference O types were recently made available, and we are looking into the feasibility of designing a second version of the array with all known O types. Thus, sequence information that was not available and therefore not included at the time...
of the design will not be able to be detected using the array. Another limitation of the array is that it can accurately and reliably discriminate different H1 and H12 sequences represented on the array. Similarly, we are unable to accurately discriminate stx, allelic subtypes and a few other virulence subtypes due to sequence similarity of the alleles.

In conclusion, the FDA-ECID array is a rationally designed, rapid, and easy-to-use E. coli genomeric characterization tool. It is the only method known so far that provides an opportunity to simultaneously test for the presence of 152 O types, 53 H types, and numerous virulence markers in less than 24 h. In addition, the SNP results presented suggest that the phylogeny based on 9,984 SNPs is enough to determine the lineage-dependent diversification of E. coli.

FUNDING INFORMATION
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. This work was performed as part of federal government employee duties for all authors.

REFERENCES
1. Herzer PJ, Inouye M, Whittam TS. 1996. Phylogenetic distribution of branched RNA-linked multicopy single-stranded DNA among natural isolates of Escherichia coli. J Bacteriol 178:6175–6181.
2. Clermont O, Oller M, Hoede C, Diancourt L, Brisse S, Keroudeau M, Glodt J, Picard B, Oswald E, Denanur E. 2011. Animal and human pathogenic Escherichia coli strains share common genetic backgrounds. Infect Genet Evol 11:654–662. http://dx.doi.org/10.1016/j.meegid.2011.02.005.
3. Clermont O, Christenson JK, Denanur E, Gordon DM. 2013. The Clermont Escherichia coli phyla-typing method revisited: improvement of specificity and detection of new phylogroups. Environ Microbiol Rep 5:58–65. http://dx.doi.org/10.1111/1758-2229.12019.
4. Walk ST, Alm EW, Gordon DM, Ram JL, Toranzos GA, Tiedje JM, Whittam TS. 2009. Cryptic lineages of the genus Escherichia. Appl Environ Microbiol 75:6534–6544. http://dx.doi.org/10.1128/AEM.01262-09.
5. Fukiya S, Mizoguchi H, Tobe T, Mori H. 2004. Extensive genomic diversity in pathogenic Escherichia coli and Shigella strains revealed by comparative genomic hybridization microarray. J Bacteriol 186:3911–3921. http://dx.doi.org/10.1128/JB.186.12.3911-3921.2004.
6. Anjum MF, Lucchini S, Thompson A, Hinton JC, Woodward MJ. 2003. Comparative genomic indexing reveals the phylogenetics of Escherichia coli pathogens. Infect Immun 71:4674–4683. http://dx.doi.org/10.1128 /IAI.71.8.4674-4683.2003.
7. Scheutz F, Teel LD, Beutin L, Pierard D, Buvens G, Karch H, Mellmann A, Caprioli A, Tozzoli R, Morabito S, Strockbine NA, Melton-Celsa AR, Sanchez M, Persson O, Brien AD. 2012. Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J Clin Microbiol 50:2951–2963. http://dx.doi.org/10.1128/JCM.00860-12.
8. Persson S, Olsen KE, Ethelberg S, Scheutz F. 2007. Subtyping method for Escherichia coli Shiga toxin (verocytotoxin) 2 variants and correlations to clinical manifestations. J Clin Microbiol 45:2020–2024. http://dx.doi.org/10.1128/JCM.02591-06.
9. Obrig TG, Karpman D. 2012. Shiga toxin pathogenesis: kidney complications and renal failure. Curr Top Microbiol Immunol 357:105–136. http://dx.doi.org/10.1007/82_2011_172.
10. Donnenberg MS, Tacket CO, Losonsky G, Frankel G, Nataro JP, Dougan G, Levine MM. 1998. Effect of prior experimental human enteropathogenic Escherichia coli infection on illness following homologous and heterologous rechallenge. Infect Immun 66:55–58.
11. Dean-Nystrom EA, Bosworth BT, Moon HW, O’Brien AD. 1998. Escherichia coli O157:H7 requires intimin for enteropathogenicity in calves. Infect Immun 66:4560–4563.
12. Nataro JP, Kaper JB. 1998. Diarrheagenic Escherichia coli. Clin Microbiol Rev 11:142–201.
13. Lacher DW, Steinssland H, Whittam TS. 2006. Allelic subtyping of the intimin locus (eae) of pathogenic Escherichia coli by fluorescent RFLP. FEMS Microbiol Lett 261:80–87. http://dx.doi.org/10.1111/j.1574-696x.2003.t0328.x.
14. Bettelheim KA. 2007. The non-O157 shiga-toxicigenic (verocytotoxigenic) Escherichia coli; under-rated pathogens. Crit Rev Microbiol 33:67–87. http://dx.doi.org/10.1080/10408410601172172.
15. Ethelberg S, Olsen KE, Scheutz F, Jensen C, Schiellerup P, Enberg J, Petersen AM, Olesen B, Gerner-Smidt P, Molbak K. 2004. Virulence factors for hemolytic uremic syndrome, Denmark. Emerg Infect Dis 10:842–847. http://dx.doi.org/10.3201/eid1005.030576.
16. Beutin L, Aleksic S, Zimmermann S, Gleier K. 1994. Virulence factors and phenotypical traits of verotoxigenic strains of Escherichia coli isolated from human patients in Germany. Med Microbiol Immunol 183:13–21.
17. Feng PC, Council T, Keys C, Monday SR. 2011. Virulence characterization of Shiga-toxicigenic Escherichia coli isolates from wholesale produce. Appl Environ Microbiol 77:343–345. http://dx.doi.org/10.1128/AEM.01872-10.
18. Steyert SR, Sahl JW, Fraser CM, Teel LD, Scheutz F, Rasko DA. 2012. Comparative genomics and stx phage characterization of LEE-negative Shiga toxin-producing Escherichia coli. Front Cell Infect Microbiol 2:133. http://dx.doi.org/10.3389/fcimb.2012.00133.
19. Scallan E, Griffin PM, Angulo FJ, Tauxe RV, Hockstra RM. 2011. Foodborne illness acquired in the United States—unspecified agents. Emerg Infect Dis 17:16–22. http://dx.doi.org/10.3201/eid1701.P21101.
20. Feng P. 2014. Shiga toxin-producing Escherichia coli (STEC) in fresh produce—a food safety dilemma. Microbiom Spectrum 2:EHEC-0010-2013.
21. Jackson SA, Patel JR, Barnabia T, LeClerc JE, Cebula TA. 2011. Investigating the global genomic diversity of Escherichia coli using a multi-genome DNA microarray platform with novel gene prediction strategies. BMC Genomics 12:349. http://dx.doi.org/10.1186/1471-2164-12-349.
22. Gautier I, Cope L, Bolstad BM, Irizarry RA. 2004. Affy—affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20:307–315. http://dx.doi.org/10.1093/bioinformatics/bth250.
23. Oshlack A, Smyth GK. 2010. DESeq: differential expression analysis for sequence count data. Genome Biol 11:50. http://dx.doi.org/10.1186/gb-2010-11-6-50.
24. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEAGAS: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. http://dx.doi.org/10.1093/molbev/msr121.
25. Lacher DW, Gangireddla J, Jackson SA, Elkins CA, Feng PC. 2014. Novel microarray design for molecular serotyping of Shiga toxin-producing Escherichia coli strains isolated from fresh produce. Appl Environ Microbiol 80:4677–4682. http://dx.doi.org/10.1128/AEM.01049-14.
26. Neil KP, Biggerstaff G, MacDonald JK, Trees E, Medus C, Musser KA, Stroika SG, Zink D, Sotir MJ. 2012. A novel vehicle for transmission of Escherichia coli O157:H7 to humans: multistate outbreak of E. coli O157:H7 infections associated with consumption of ready-to-bake commercial prepackaged cookie dough—United States, 2009. Clin Infect Dis 54:511–518. http://dx.doi.org/10.1093/cid/cis31.
27. Eppingstark M, Mammel MK, Leclerc J, Ravel J, Cebula TA. 2011. Genomic architecture of Escherichia coli O157:H7 outbreaks. Proc Natl Acad Sci U S A 108:20142–20147. http://dx.doi.org/10.1073/pnas.1107168108.
28. Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz F, Paxinos EE, Sebra R, Chin CS, Liopoulos D, Klammer A, Peluso P, Lee L, Kisyuk AO, Bullard J, Kasarskis A, Wang S, Eid J, Rank D, Redman JC, Steyert SR, Frimodt-Moller J, Struve C, Petersen AM, Kroглаf KA,.
Nataro JP, Schadt EE, Waldor MK. 2011. Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N Engl J Med 365:709–717. http://dx.doi.org/10.1056/NEJMoa1106920.

30. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L, Sicheritz-Ponten T, Ussery DW, Aarestrup FM, Lund O. 2012. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 50:1355–1361. http://dx.doi.org/10.1128/JCM.00694-11.

31. Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR, Rico A, Prior K, Szczepanowski R, Ji Y, Zhang W, McLaughlin SF, Henkhaus JK, Leopold B, Bialaszewska M, Prager R, Brzoska PM, Moore RL, Guenther S, Rothberg JM, Karch H. 2011. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One 6:e22751. http://dx.doi.org/10.1371/journal.pone.0022751.

32. Joensen KG, Schetz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM. 2014. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 52:1501–1510. http://dx.doi.org/10.1128/JCM.03617-13.

33. Pettengill JB, Luo Y, Davis S, Chen Y, Gonzalez-Escalona N, Ottesen A, Rand H, Allard MW, Strain E. 2014. An evaluation of alternative methods for constructing phylogenies from whole genome sequence data: a case study with Salmonella. Peer J 2:e620. http://dx.doi.org/10.7717/peerj.620.

34. Wang F, Yang Q, Kase JA, Meng J, Clotilde LM, Lin A, Ge B. 2013. Current trends in detecting non-O157 Shiga toxin-producing Escherichia coli in food. Foodborne Pathog Dis 10:665–677. http://dx.doi.org/10.1089 /fpd.2012.1448.

35. Tobias J, Vutukuru SR. 2012. Simple and rapid multiplex PCR for identification of the main human diarrheagenic Escherichia coli. Microbiol Res 167:564–570. http://dx.doi.org/10.1016/j.micres.2011.11.006.

36. Clotilde LM, Bernard CT Salvador A, Lin A, Lauzon CR, Muldoon M, Xu Y, Lindpaintner K, Carter JM. 2013. A 7-plex microbead-based immunoassay for serotyping Shiga toxin-producing Escherichia coli. J Microbiol Methods 92:226–230. http://dx.doi.org/10.1016/j.mimet.2012.11.023.

37. Iguchi A, Iyoda S, Kikuchi T, Ogura Y, Katsura K, Ohnishi M, Hayashi T, Thomson NR. 2015. A complete view of the genetic diversity of the Escherichia coli O-antigen biosynthesis gene cluster. DNA Res 22:101–107. http://dx.doi.org/10.1093/dnares/dau043.

38. Achtman M, Pluschke G. 1986. Clonal analysis of descent and virulence among selected Escherichia coli. Annu Rev Microbiol 40:185–210. http://dx.doi.org/10.1146/annurev.mi.40.100186.001153.

39. Brandt SM, King N, Cornelius AJ, Premaratne A, Besser TE, On SL. 2011. Molecular risk assessment and epidemiological typing of Shiga toxin-producing Escherichia coli by using a novel PCR binary typing system. Appl Environ Microbiol 77:2458–2470. http://dx.doi.org/10.1128/AEM.02332-10.

40. de Boer RF, Ferdous M, Ott A, Schepers HR, Wisselink GJ, Heck ME, Rossen JW, Kooistra-Smid AM. 2015. Assessing the public health risk of Shiga toxin-producing Escherichia coli by use of a rapid diagnostic screening algorithm. J Clin Microbiol 53:1588–1598. http://dx.doi.org/10.1128 /JCM.03590-14.

41. Tenaillon O, Skurnik D, Picard B, Denamur E. 2010. The population genomics of commensal Escherichia coli. Nat Rev Microbiol 8:207–217. http://dx.doi.org/10.1038/nrmicro2298.

42. Underwood AP, Dallman T, Thomson NR, Williams M, Harker K, Perry N, Adak B, Willshaw G, Cheasty T, Green J, Dougan G, Parkhill J, Wain J. 2013. Public health value of next-generation DNA sequencing of enterohemorrhagic Escherichia coli isolates from an outbreak. J Clin Microbiol 51:232–237. http://dx.doi.org/10.1128/JCM.01696-12.

43. Turabelidze G, Lawrence SJ, Gao H, Sodergren E, Weinstock GM, Abubucker S, Wylie T, Mitreva M, Shaikh N, Gautom R, Tarr PI. 2013. Precise dissection of an Escherichia coli O157:H7 outbreak by single nucleotide polymorphism analysis. J Clin Microbiol 51:3950–3954. http://dx.doi.org/10.1128/JCM.01930-13.

44. Escober-Paramo P, Clermont O, Blanc-Potard AB, Bui H, Le Bouguenec C, Denamur E. 2004. A specific genetic background is required for acquisition and expression of virulence factors in Escherichia coli. Mol Biol Evol 21:1085–1094. http://dx.doi.org/10.1093/molbev/msi118.

45. Lukjancenko O, Wassenaar TM, Ussery DW. 2010. Comparison of 61 sequenced Escherichia coli genomes. Microb Ecol 60:708–720. http://dx.doi.org/10.1111/j.1523-1908.2010.01463.x.

46. Fricke WF, Rasko DA. 2014. Bacterial genome sequencing in the clinic: bioinformatic challenges and solutions. Nat Rev Genet 15:49–55. http:// dx.doi.org/10.1038/nrg3624.