The generalized Giambelli formula and polynomial CKP tau-functions

Victor Kac
Department of Mathematics,
Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139,
U.S.A
e-mail: kac@math.mit.edu

Johan van de Leur
Mathematical Institute,
Utrecht University,
P.O. Box 80010, 3508 TA Utrecht,
The Netherlands
e-mail: J.W.vandeLeur@uu.nl

Abstract
We find all polynomial tau-functions of the CKP hierarchy and its n-reductions. In particular, for n = 3 we find all polynomial tau-functions of the Kaup-Kupershmidt hierarchy.

1 Introduction
The concept of a tau-function of a hierarchy of soliton equations, developed by the Kyoto school in early 80’s (see [18],[3],[6]) is very useful for construction of solutions of these equations.

The geometric meaning of a tau-function is very simple: it is, up to a constant factor, a non-zero element of the orbit of a highest weight vector of a representation of an infinite-dimensional group [18],[3],[6],[12].

The first and the most famous example is the KP hierarchy, constructed as follows. Let $C\ell$ be the associative algebra on generators ψ^+_j and ψ^-_j, $j \in \frac{1}{2} + \mathbb{Z}$, subject to the relations

$$[\psi^+(z), \psi^-(w)]_+ = \delta(z - w), \quad [\psi^\pm(z), \psi^\pm(w)]_+ = 0,$$

where

$$\psi^\pm(z) = \sum_{i \in \frac{1}{2} + \mathbb{Z}} \psi^\pm_i z^{-i - \frac{1}{2}}$$

are the generating series, called the charged free fermionic fields, and $\delta(z - w) = z^{-1} \sum_{n \in \mathbb{Z}} (\frac{w}{z})^n$ is the formal delta function. Let F be an irreducible representation of the algebra $C\ell$, which admits a non-zero vector $|0\rangle$, such that

$$\psi^\pm_j |0\rangle = 0, \text{ for } j > 0.$$ (3)

Let GL_∞ be the group of matrices $(g_{ij})_{i,j \in \frac{1}{2} + \mathbb{Z}}$ with entries in \mathbb{C}, which are invertible and all, but a finite number of $g_{ij} - \delta_{ij}$, are 0. We obtain a representation R of this group on F by letting

$$R(I + aE_{ij}) = 1 + a\psi^+_i \psi^-_j, \quad i, j \in \frac{1}{2} + \mathbb{Z}, \quad a \in \mathbb{C}.$$ (4)
Defining the charge decomposition

\[F = \bigoplus_{m \in \mathbb{Z}} F^{(m)}, \]

(5)

by letting

\[
\text{charge}(\left|0\right\rangle) = 0 \text{ and } \text{charge}(\psi_j^\pm) = \pm 1,
\]

we see that each \(F^{(m)} \) is an irreducible highest weight module over \(GL_\infty \), and

\[
\left| \pm m \right\rangle = \psi_{-2m-1}^+ \cdots \psi_{-\frac{3}{2}}^+ \psi_{-\frac{1}{2}}^+ \left|0\right\rangle, \quad m \in \mathbb{Z}_{\geq 0},
\]

(6)

is a highest weight vector for \(F^{(\pm m)} \).

The KP hierarchy in the fermionic picture is defined as the following equation:

\[
\text{Res}_z \psi^+(z) \tau \otimes \psi^-(z) \tau = 0, \quad \tau \in F^{(0)},
\]

(7)

where \(\text{Res}_z \sum_i f_i z^i = f_{-1} \). It is easy to show \([12]\) that equation (7) holds for a non-zero \(\tau \in F^{(0)} \) if and only if \(\tau \) lies in the \(R(GL_\infty) \)-orbit of \(\left|0\right\rangle \).

A remarkable fact is that equation (7) can be converted in a collection of PDE’s, using bosonization of \(F \). For this one introduces the free bosonic field

\[
\alpha(z) = \sum_{n \in \mathbb{Z}} \alpha_n z^{-n-1} = : \psi^+(z) \psi^-(z) :,
\]

(8)

where, as usual, \(: \psi_i^+ \psi_j^- := \psi_i^+ \psi_j^- \) if \(i \leq j \), and \(= -\psi_j^- \psi_i^+ \) if \(i > j \). Then the \(\alpha_n \) satisfy the commutation relations of the infinite Heisenberg Lie algebra

\[
[\alpha_m, \alpha_n] = m \delta_{m,-n},
\]

(9)

and since \(\alpha_i |0\rangle = 0 \) for \(i \geq 0 \), there exists an isomorphism

\[\sigma : F \rightarrow \mathbb{C}[q, q^{-1}, t_1, t_2, \ldots], \]

called the bosonization of \(F \), which is uniquely determined by the following properties

\[
\sigma(\left|m\right\rangle) = q^m, \quad \sigma \alpha_0 \sigma^{-1} = q \frac{\partial}{\partial q}, \quad \sigma \alpha_{-i} \sigma^{-1} = it_i \text{ and } \sigma \alpha_i \sigma^{-1} = \frac{\partial}{\partial t_i} \text{ for } i > 0.
\]

(10)

Furthermore, since \([\alpha_k, \psi^\pm(z)] = \pm z^k \psi^\pm(z) \), one can identify, under the isomorphism \(\sigma \), the charged free fermions with the vertex operator

\[
\sigma \psi^\pm(z) \sigma^{-1} = q^{\pm 1} z^{\pm 1} \frac{\partial}{\partial m} \exp \left(\pm \sum_{i=1}^{\infty} t_i z^i \right) \exp \left(\mp \sum_{i=1}^{\infty} \frac{\partial}{\partial t_i} \frac{z^i}{i} \right).
\]

(11)

Then equation (7) gets converted to the KP hierarchy of bilinear PDE’s on \(\tau(t) \in \mathbb{C}[t_1, t_2, \ldots] \):

\[
\text{Res}_z \exp \left(\sum_{i=1}^{\infty} (t_i - t'_i) z^i \right) \exp \left(\sum_{i=1}^{\infty} \left(\frac{\partial}{\partial t'_i} - \frac{\partial}{\partial t_i} \right) \frac{z^{-i}}{i} \right) \tau(t) \tau(t') = 0.
\]

(12)
Here and further t' denotes another copy of $t = (t_1, t_2, \ldots)$.

Next, equation (12) can be rewritten in terms of Lax type equations via the dressing operators $P(t, \partial)$, where $\partial = \frac{\partial}{\partial t_1}$ [18]. This is a monic pseudodifferential operator, whose symbol is

$$P(t, z) = \exp(- \sum_{i \geq 1} \frac{z^{-i}}{i} \frac{\partial}{\partial t_i}) \tau(t).$$

The associated to $\tau(t)$ Lax operator $L(t, \partial)$ is defined as the pseudodifferential operator

$$L(t, \partial) = P(t, \partial) \circ \partial \circ P(t, \partial)^{-1}.$$ \hspace{1cm} (13)

Then equation (12) on the tau-function $\tau(t)$ is equivalent to the following hierarchy of Lax-Sato evolution PDE’s on $L(t, \partial) = \partial + \sum_{j>0} u_j(t) \partial^{-j}$:

$$\frac{\partial L(t, \partial)}{\partial t_k} = [(L(t, \partial)^k)_+, L(t, \partial)], \quad k = 1, 2, 3, \ldots, \hspace{1cm} (14)$$

where the subscript $+$, as usual, denotes the differential part of $L(t, \partial)^k$.

A famous result of Sato [18] is that all Schur polynomials $s_\lambda(t)$ are tau-functions of the KP hierarchy. Recall that the Schur polynomial $s_\lambda(t)$, associated to a partition $\lambda = (\lambda_1 \geq \cdots \geq \lambda_\ell > 0)$ is defined by the Jacobi-Trudi formula (see e.g. [17], Section I.3):

$$s_\lambda(t) = \det (s_{\lambda_i+j-i}(t))_{1 \leq i,j \leq \ell}, \hspace{1cm} (15)$$

where the elementary Schur polynomials $s_j(t)$ are defined by the generating series

$$\sum_{j=0}^{\infty} s_j(t) z^j = \exp \sum_{i=1}^{\infty} t_i z^i. \hspace{1cm} (16)$$

In our paper [9] we proved that all polynomial tau-functions of the KP hierarchy are, up to a constant factor, of the form

$$\tau_{\lambda,c}(t) = \det (s_{\lambda_i+j-i}(t_1 + c_{1i}, t_2 + c_{2i}, t_3 + c_{3i}, \ldots))_{1 \leq i,j \leq \ell}, \hspace{1cm} (17)$$

where $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell)$, and $c = (c_{ij})$ is a $(\lambda_1 + \ell - 1) \times \ell$ matrix over \mathbb{C}. We call equation (17) the generalized Jacobi-Trudi formula for polynomial KP tau-functions.

It is well known that, using the Frobenius notation $\lambda = (a_1, a_2, \ldots, a_k | b_1, b_2, \ldots, b_k)$ for the partition λ, one can write the Schur polynomial $s_\lambda(t)$ in the Giambelli form (see e.g. [17], Section I.3):

$$s_\lambda(t) = \det \left(\chi(a_i | b_j)(t; t) \right)_{1 \leq i,j \leq k}, \hspace{1cm} (18)$$

where

$$\chi(a | b)(t; t') := (-1)^b \sum_{n=0}^{b} s_{n+a+1}(t)s_{b-n}(-t'), \quad a, b \in \mathbb{Z}_{\geq 0}. \hspace{1cm} (19)$$
The first new result of the paper is Theorem 5 in Section 3, describing all polynomial KP tau-functions by the generalized Giambelli formula:

\[\tau_{\lambda,c,d}(t) = \det \left(\chi_{(a_i|b_j)}(t_1 + c_{11}, t_2 + c_{22}, \ldots; t_1 + d_{11}, t_2 + d_{22}, \ldots) \right)_{1 \leq i, j \leq k}, \quad (20) \]

where \(c = (c_{ij}) \) is a \((a_1 + b_1 + 1) \times k\) matrix over \(\mathbb{C} \) and \(d = (d_{ij}) \) is a \(b_1 \times k\) matrix over \(\mathbb{C} \).

In Section 4, using the Jacobi-Trudi formalism, as in [13], we construct more general KP tau-functions, and find a Jacobi-Trudi type formula for the wave function \(w^+(t, z) = P(t, \partial) \exp \sum_{i=1}^{\infty} t_i z^i \). We also find analogous formulas in the framework of the Giambelli formalism.

Our Theorem 9 describes, in particular, the polynomial tau-functions for the CKP hierarchy. Recall that the CKP hierarchy in the Lax-Sato form is the following hierarchy of evolution equations on the skew-adjoint pseudodifferential operator \(L(t_o, \partial) = \partial + \sum_{j>0} a_j(t_o) \partial^{-j} \), where \(t_o = (t_1, 0, t_3, 0, t_5, \ldots) \):

\[\frac{\partial L(t_o, \partial)}{\partial t_k} = [\left((L(t_o, \partial)^k)_+, L(t_o, \partial) \right], \quad k = 1, 3, 5, \ldots. \quad (21) \]

There are at least two ways to construct the corresponding tau-function. One is to use the construction of the metaplectic representation of the infinite symplectic group \(SP_{\infty} \) via symplectic bosons, as in [10] and [11]. However, in this paper we use another way, via the reduction of the representation of \(GL_{\infty} \) in \(F^{(0)} \) to \(SP_{\infty} \) (see also [14], [11]).

Let \(\mathbb{C}^{\infty} = \bigoplus_{i \in \mathbb{Z}+1} \mathbb{C} e_i \), so that \(GL_{\infty} \) is the group of automorphism of this vector space, leaving all but a finite number of the \(e_j \) fixed. Define a skew-symmetric bilinear form \((\cdot, \cdot)_C \) on \(\mathbb{C}^{\infty} \) by

\[(e_i, e_j)_C = (-1)^{i+j} \delta_{i,-j}. \quad (22) \]

Then \(SP_{\infty} \) is the subgroup of \(GL_{\infty} \), leaving this bilinear form invariant.

Define the automorphism \(\iota_C \) of the algebra \(C\ell \) by [6]

\[\iota_C(\psi^+_j) = (-1)^{j+\frac{1}{2}} \psi^+_j. \quad (23) \]

This automorphism induces an automorphism of the vector space \(F \), which we again denote by \(\iota_C \), by letting \(\iota_C([0]) = [0] \). The subspace \(F^{(0)} \) of \(F \) is \(\iota_C \)-invariant, and we denote by \(F^{(0)}_C \) the fixed point set of \(\iota_C \) in \(F^{(0)} \). An element \(\tau \) in the orbit \(R(SP_{\infty})[0] \) then satisfies the following equation (cf. [21])

\[\text{Res}_z \psi^+(z) \tau \otimes \psi^+(-z) \tau = 0, \quad (24) \]

which is called the CKP hierarchy in the fermionic picture. After bosonization equation (24) becomes (cf. [12]):

\[\text{Res}_{z=0} \exp \left(\sum_{i=1}^{\infty} (t_i + (-1)^i t'_i) z^i \right) \exp \left(-\sum_{i=1}^{\infty} \left(\frac{\partial}{\partial t_i} + (-1)^i \frac{\partial}{\partial t'_i} \right) \right) \tau(t) \tau(t') = 0. \quad (25) \]
A non-zero element $\tau(t) \in \mathbb{C}[t_1, t_2, \ldots]$, satisfying (25), is called a tau-function of the CKP hierarchy, if it satisfies
\[
\tau(t_1, t_2, t_3, t_4, \ldots) = \iota_C(\tau(t_1, t_2, t_3, t_4, \ldots)) = \tau(t_1, -t_2, t_3, -t_4, \ldots),
\]
(26)
since, under the bosonization we have
\[
\sigma : F_C^{(0)} \overset{\sim}{\rightarrow} B_C := \{f \in \mathbb{C}[t_1, t_2, \ldots] | \iota_C(f) = f\}.
\]
In order to obtain a skew-adjoint Lax operator $L(t_0, \partial)$ from $L(t, \partial)$, satisfying (13) (14), we substitute $t_{2j} = 0$, $j = 1, 2, 3, \ldots$, in the CKP tau-function $\tau(t_1)$.

Our Theorem 9 describes, in particular, all polynomial tau-functions of the CKP hierarchy in the Giambelli form. Namely, they correspond to self-conjugate partitions, which in the Frobenius notation are $\lambda = (a_1, a_2, \ldots, a_k | a_1, a_2, \ldots, a_k)$, and are of the form (20), where $d = \iota_C(\overline{c})$, \overline{c} consists of the first b_1 rows of c, and ι_C stands for changing the sign of even numbered rows of the matrix c; in addition, the matrix c must satisfy the constraint (75) in Section 5 (which holds for $c = 0$).

In Section 6 we prove Theorem 13 on polynomial tau-functions for the n-reduced CKP hierarchy, using the results on the polynomial tau-functions of the KP hierarchy and the n-reduced KP hierarchies. The 2-reduced CKP hierarchy (90) is just the KdV hierarchy. The 3-reduced CKP hierarchy is called the Kaup-Kupershmidt hierarchy. It is a hierarchy of evolution PDE’s on the function
\[
u(t_0) = 3\frac{\partial^2 \log \tau(t_0)}{\partial t_1^2},
\]
(27)
where $t_0 = (t_1, t_3, t_5, \ldots)$, written as Lax equations on the differential operator
\[
L(t_0, \partial) = \partial^3 + \nu \partial + \frac{1}{2} \nu_x, \quad \text{where } x = t_1,
\]
(28)
namely
\[
\frac{\partial L(t_0, \partial)}{\partial t_k} = [(L(t_0, \partial)^{1/2})_+, L(t_0, \partial)], \quad k = 1, 3, 5, \ldots
\]
(29)
If k is a multiple of 3, then $\frac{\partial \nu}{\partial t_k} = 0$, hence the first non-trivial equation is (29) for $k = 5$, and it is the Kaup-Kupershmidt equation (93) in section 6.

In the conclusion of the paper we compare our results on polynomial tau-functions of the CKP hierarchy with that of the BKP hierarchy, found in [10], [13], [15].

2 The KP hierarchy

First, we briefly recall the basics of the theory of the KP hierarchy, see [3], [6], [9], [12]. Consider the infinite matrix group GL_∞ (resp. its Lie algebra gl_∞) consisting of all infinite matrices $G = (g_{ij})_{i,j \in \mathbb{Z} + \mathbb{Z}}$ with entries in \mathbb{C}, which are invertible and all but a finite number of $g_{ij} - \delta_{ij}$ are 0 (resp. consisting of all matrices $g = (g_{ij})_{i,j \in \mathbb{Z} + \mathbb{Z}}$ for which are all but a finite number of g_{ij} are 0). Both act on the vector space $\mathbb{C}^\infty = \bigoplus_{j \in \mathbb{Z} + \mathbb{Z}} \mathbb{C} e_j$ via the usual formula $E_{ij}(e_k) = \delta_{jk} e_i$.
The semi-infinite wedge representation \([12, 9]\) \(F = \Lambda^{\frac{1}{2}}C^\infty\) is the vector space with a basis consisting of all semi-infinite monomials of the form \(e_{i_0} \wedge e_{i_1} \wedge e_{i_2} \ldots\), where \(i_0 > i_1 > i_2 > \ldots\) and \(i_{t+1} = i_t - 1\) for \(t > 0\). One defines the representation \(R\) of \(GL_\infty\) (resp. \(r\) of \(gl_\infty\)) on \(F\) by

\[
R(G)(e_{i_0} \wedge e_{i_1} \wedge e_{i_2} \wedge \cdots) = Ge_{i_0} \wedge Ge_{i_1} \wedge Ge_{i_2} \wedge \cdots,\quad G \in GL_\infty,
\]

\[
r(g)(e_{i_0} \wedge e_{i_1} \wedge e_{i_2} \wedge \cdots) = \sum_{j=0}^\infty e_{i_0} \wedge \cdots \wedge e_{i_{j-1}} \wedge ge_{i_j} \wedge e_{i_{j+1}} \wedge \cdots,\quad g \in gl_\infty,
\]

assuming the usual rules of the product \(\wedge\).

The representation \(r\) of the Lie algebra \(gl_\infty\) can be given in terms of a Clifford algebra as follows. Define the wedging and contracting operators \(\psi^+_j\) and \(\psi^-_j\) \((j \in \frac{1}{2} + \mathbb{Z})\) on \(F\) by

\[
\psi^+_j(e_{i_0} \wedge e_{i_1} \wedge \cdots) = e_{-j} \wedge e_{i_0} \wedge e_{i_1} \cdots,
\]

\[
\psi^-_j(e_{i_0} \wedge e_{i_1} \wedge \cdots) = \begin{cases} 0 & \text{if } j \neq i_s \text{ for all } s \\ (-1)^s e_{i_0} \wedge e_{i_1} \wedge \cdots \wedge e_{i_{s-1}} \wedge e_{i_{s+1}} \wedge \cdots & \text{if } j = i_s. \end{cases}
\]

Then \(r(E_{ij}) = \psi^+_i \psi^-_j\). These operators satisfy the relations (cf.(1)) \((i, j, s, \ell) \in \frac{1}{2} + \mathbb{Z}, \lambda, \mu = +, -)\):

\[
\psi^\lambda_j \psi^\mu_j + \psi^\mu_j \psi^\lambda_j = \delta_{\lambda, -\mu} \delta_{i, -j},
\]

hence they generate a Clifford algebra, which we denote by \(C\ell\). Introduce the following elements of \(F\) \((m \in \mathbb{Z})\):

\[
|m\rangle = e_{m-\frac{3}{2}} \wedge e_{m-\frac{1}{2}} \wedge e_{m-\frac{5}{2}} \wedge \cdots.
\]

It is clear that \(F\) is an irreducible \(C\ell\)-module such that the relations \((3)\) hold.

It will be convenient to define also the opposite spin module with vacuum vector \(\langle 0|\), where

\[
\langle 0| \psi^+_j = 0, \quad \text{for } j < 0,
\]

and for \(m > 0\) one defines

\[
\langle \pm m| = \langle 0| \psi^+_\pm \psi^+_\pm \cdots \psi^+_\pm m-\frac{1}{2}.
\]

The vacuum expectation value is defined on \(C\ell\) as \((a) = \langle 0|a|0\rangle\) and \(\langle 0|1|0\rangle = 1\). Recall the charge decomposition \((5)\) the space \(F^{(m)}\) is an irreducible highest weight \(g_\infty\)-module, where \(|m\rangle\) is its highest weight vector, i.e.

\[
r(E_{ij})|m\rangle = 0 \quad \text{for } i < j, \quad r(E_{ii})|m\rangle = 0 \quad (\text{resp. } = |m\rangle) \quad \text{if } i > m \quad (\text{resp. if } i < m).
\]

Let \(S\) be the following operator on \(F \otimes F\)

\[
S = \sum_{i \in \frac{1}{2} + \mathbb{Z}} \psi^+_i \otimes \psi^-_i
\]

and let \(\mathcal{O}_m = R(GL_\infty)|m\rangle \subset F^{(m)}\) be the \(GL_\infty\)-orbit of the highest weight vector \(|m\rangle\), then the following simple result holds
We obtain a representation \(\hat{\sigma} \) Heisenberg Lie algebra. Using this, one constructs the isomorphism (bosonization) has \([3],[6],[12]\)

\[
\alpha \text{ extension by a central element } K
\]

\(\text{Proposition 2} \ [8] \) Let \(f_m \in \mathcal{O}_m \) be an integer and let 0 \(\neq f_m \in F^{(m)} \). Then \(f_m \in \mathcal{O}_m \) if and only if

\[
S(f_m \otimes f_m) = 0. \tag{32}
\]

Equation (32) is called the KP hierarchy in the fermionic picture.

To each \(f_m = R(G)|m \rangle \in \mathcal{O}_m \) one associates a point in the Sato infinite Grassmannian which is the linear span of \(\{ Ge_i \mid i < m \} \subset \mathbb{C}^\infty \). Another way to describe this subspace is as a subspace of \(\Psi^+ \), where \(\Psi^\pm = \bigoplus_{i \in \frac{1}{2} + \mathbb{Z}} \mathbb{C} \psi_i^\pm \), defined as the annihilation space \(\text{Ann}_+ f_m \), where

\[
\text{Ann}_\pm f_m = \{ v^\pm \in \Psi^\pm | v^\pm f_m = 0 \}.
\]

The connection between the two subspaces \(\text{Ann}_+ f_m \) and \(\text{Ann}_- f_m \) is as follows (cf. (30)):

If \(Ge_j = \sum_{i \in \frac{1}{2} + \mathbb{Z}} G_{ij} e_i \), then \(G_{i,j} \psi_j^\pm = \sum_{i \in \frac{1}{2} + \mathbb{Z}} G_{ij} \psi_j^\pm \), and \(\text{Ann}_+ f_m \) is the linear span of \(\{ G \psi_j^\pm | i < m \} \). We find \(\text{Ann}_- f_m \) as follows (see e.g. [8], Lemma 2.4):

\(\text{Ann}_- f_m \) is the linear span of \(\{ G \psi_j^- | i > -m \} \), and letting \(G \psi_k^- = \sum_{i \in \frac{1}{2} + Z} H_{-i,k} \psi_i^- \), since \((G \psi_j^+, G \psi_k^-) = \delta_{jk} \), we find that the matrix \((H_{ij}) \) is the inverse transpose of \(G \).

Note that \(\text{Ann}_+ f_m = \text{Ann}_+ f_m \oplus \text{Ann}_- f_m \) is a maximal isotropic subspace of \(\Psi = \Psi^+ \oplus \Psi^- \), with respect to the symmetric bilinear form \((,)\), which defines the Clifford algebra \(C \ell = C \ell(\Psi) \),

\[
(\psi_i^+, \psi_j^-) = \delta_{i,-j}, \quad (\psi_i^+, \psi_j^+) = 0. \tag{33}
\]

\(\text{Proposition 2} \ [8] \) Let \(f_m \in \mathcal{O}_m \), and \(v^\pm \in \Psi^\pm \), such that \(v^\pm f_m \neq 0 \), then \(v^\pm f_m \in \mathcal{O}_{m \pm 1} \).

We can extend the above description to the Lie algebra \(a_\infty \), which is the central extension by a central element \(K \) of the Lie algebra of infinite matrices \((g_{ij}) \) such that \(g_{ij} = 0 \) if \(|i - j| > 0 \). The Lie bracket is given by \([g + \lambda K, h + \mu K] = gh - hg + C(g, h) K \), where \(C \) is the 2-cocycle given by

\[
C(E_{ij}, E_{ji}) = 1 = -C(E_{ji}, E_{ij}) \text{ if } i < 0 < j, \quad \text{and } C(E_{ij}, E_{kl}) = 0 \text{ otherwise.}
\]

We obtain a representation \(\hat{\sigma} \) of \(a_\infty \) on \(F^{(m)} \), by the formula

\[
\hat{\sigma}(E_{ij}) := \psi_i^+ \psi_j^-, \quad \hat{\sigma}(K) = 1.
\]

Recall the free bosonic field \(\alpha(z) = \sum_{n \in \mathbb{Z}} \alpha_n z^{-n-1} \), defined by \([8]\). Then the operators \(\alpha_n \) lie in \(\hat{\sigma}(a_\infty) \), and satisfy the commutation relations \([9]\) of the infinite Heisenberg Lie algebra. Using this, one constructs the isomorphism (bosonization) \(\sigma : F \rightarrow \mathbb{C}[q, q^{-1}, t_1, t_2, \ldots] \), uniquely defined by the properties \([10]\). Recall that one has \([3],[6],[12]\)

\[
\sigma \psi^\pm(z) \sigma^{-1} = q^{\pm z} z^{\pm \frac{\partial}{\partial q^\mp}} \exp \left(\pm \sum_{i=1}^\infty t_i z^i \right) \exp \left(\mp \sum_{i=1}^\infty \frac{\partial}{\partial t_i} z^i \right). \tag{34}
\]
Let \(f_m \) satisfy the KP hierarchy in the fermionic picture \(\{32\} \), and let \(\tau_m = \sigma(f_m) \), then \(\tau_m \) satisfies the following equation, called the KP hierarchy of bilinear equations on \(\tau_m(t) \in \mathbb{C}[t_1, t_2, \ldots] \):

\[
\text{Res}_{z=0} \exp \left(\sum_{i=1}^{\infty} (t_i - t'_i) z^i \right) \exp \left(\sum_{i=1}^{\infty} \left(\frac{\partial}{\partial t'_i} - \frac{\partial}{\partial t_i} \right) z^{-i} \right) \tau_m(t) \tau_m(t') = 0. \tag{35}
\]

A solution \(\tau_m(t) \) of (35) is called a tau-function of the KP hierarchy. A beautiful formula for the tau-function, corresponding to the point \(R(G)|m \), where \(G \in GL_{\infty} \), was given in \(\{3\} \):

\[
\tau_m(t) = \langle m | (\exp H(t)) G|m \rangle, \tag{36}
\]

where \(H(t) = \sum_{i=1}^{\infty} t_i \alpha_i \).

Remark 3 The totality of tau-functions is independent of \(m \). Namely if \(G \in GL_{\infty} \) and \(\Lambda = \sum_{i \in \mathbb{Z}} E_{i,i+1} \), then \(\Lambda^{-m} G \Lambda^m \in GL_{\infty} \) for any \(m \in \mathbb{Z} \), and

\[
\tau_m(t) = \langle m | \exp (H(t)) G|m \rangle = \langle 0 | \exp (H(t)) \Lambda^{-m} G \Lambda^m |0 \rangle.
\]

Let \(m = 0 \), and \(\tau(t) = \tau_0(t) \). Define the wave function \(w^+(t,z) \) and the adjoint wave function \(w^-(t,z) \) by

\[
w^\pm(t,z) = \frac{\langle \pm 1 | (\exp H(t)) \psi^\pm(z) G|0 \rangle}{\langle 0 | (\exp H(t)) G|0 \rangle}. \tag{37}
\]

Then

\[
w^\pm(t,z) = \frac{\sigma^1(\psi^\pm(z) \sigma^{-1}) \tau(t)}{\tau(t)} = \frac{\tau(t + [z^{-1}])}{\tau(t)} \exp \left(\pm \sum_{n=1}^{\infty} t_n z^n \right), \tag{38}
\]

where \([z^{-1}] = \left(\frac{z^{-1}}{1}, \frac{z^{-2}}{2}, \frac{z^{-3}}{3}, \ldots \right)\), and equation \(\{35\} \) is equivalent to the equation \(\{3\} \)

\[
\text{Res}_z w^+(t,z) w^-(s,z) = 0. \tag{39}
\]

One can write this in terms of monic pseudo-differential operators \(P^\pm(t, \partial) \) in \(\partial = \frac{\partial}{\partial t_1} \). Namely write \(\{3\} \)

\[
w^\pm(t,z) = P^\pm(t, \pm z) \exp \left(\pm \sum_{n=1}^{\infty} t_n z^n \right) \tag{40}
\]

then it is straightforward, see e.g. \(\{9\} \), Sections 3 and 4, to prove that \((k = 1, 2, 3, \ldots) \):

\[
P^-(t, \partial)^* = P^+(t, \partial)^{-1} \quad \text{and} \quad \frac{\partial P^+(t, \partial)}{\partial t_k} = -(P^+(t, \partial) \circ \partial^k \circ P^+(t, \partial)^{-1}) \circ P^+(t, \partial).
\]

Using these equations, one finds that the KP Lax-Sato pseudodifferential operator \(L(t, \partial) = P^+(t, \partial) \circ \partial \circ P^+(t, \partial)^{-1} \) satisfies the Lax-Sato evolution equations \(\{14\} \).
3 Polynomial KP tau-functions and the generalized Jacobi-Trudi and Giambelli formulas

Let Par_ℓ denote the set of partitions consisting of $\ell \in \mathbb{Z}_{\geq 0}$ non-zero parts, i.e. sequences of integers $\lambda = (\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_\ell > 0)$, and let $\lambda = (a_1, \ldots, a_k|b_1, \ldots, b_k)$ be the Frobenius notation for λ (see e.g. [17], Section I.1). Let $\text{Par} = \bigcup_{\ell=0}^\infty \text{Par}_\ell$.

Recall that the Schur polynomials are given by the Jacobi-Trudi formula (15). It is natural to call (41) the generalized Jacobi-Trudi formula for polynomial KP tau-functions. Similarly, the polynomial KP tau-functions can be given in the Giambelli form. Namely, we can restate Theorem 4 in the following form.

Theorem 4 All polynomial tau-functions of the KP hierarchy are, up to a constant factor, of the form

$$
\tau_{\lambda;c}(t) = \det (s_{\lambda_i+j-i}(t_1 + c_i t_2 + c_{i-1} t_3 + \ldots))_{1 \leq i,j \leq \ell},
$$

where $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell) \in \text{Par}_\ell$, $\ell \geq 0$, and $c_i = (c_{1i}, c_{2i}, c_{3i}, \ldots, c_{\lambda_i-1+i,1})$ for $i = 1, \ldots, \ell$, with $c_{ji} \in \mathbb{C}$ arbitrary.

It is natural to call (41) the generalized Jacobi-Trudi formula for polynomial KP tau-functions. Similarly, the polynomial KP tau-functions can be given in the Giambelli form. Namely, we can restate Theorem 4 in the following form.

Theorem 5 All polynomial tau-functions of the KP hierarchy are, up to a constant factor, of the form

$$
\tau_{\lambda;c,d}(t) = \det (\chi(a_{|b_i})(t_1 + c_1 t_2 + c_{2i} t_3 + \ldots, t_1 + d_1 t_2 + d_{2i} t_3 + \ldots))_{1 \leq i,j \leq k},
$$

where $\chi(a_{|b})$ is given by [19]. Here $\lambda = (a_1, a_2, \ldots, a_k|b_1, b_2, \ldots, b_k)$ is the Frobenius notation for $\lambda \in \text{Par}$, and $c_i = (c_{1i}, c_{2i}, c_{3i}, \ldots, c_{a_i+b_i+1,1})$, $d_i = (d_{1i}, d_{2i}, d_{3i}, \ldots, d_{b_i,i})$ for $i = 1, \ldots, k$, with $c_{ji}, d_{ji} \in \mathbb{C}$ arbitrary.

Since the Giambelli formula for Schur polynomials [18] is obtained from (42) by substituting $c_{ij} = d_{ij} = 0$ for all $1 \leq i \leq k$ and $j = 1, 2, \ldots$, we call formula (42) the generalized Giambelli formula for polynomial KP tau-functions.

Before giving the proof of Theorem 5, we will first state and prove a lemma, and discuss the ideas of the proof of Theorem 4 ([9], Theorem 16).

Lemma 6

(a) $\exp(H(t))|m\rangle = |m\rangle$, $m \in \mathbb{Z}$,

(b) $(\exp H(t))\psi^\pm(z) \exp(-H(t)) = \psi^\pm(z) \exp \left(\pm \sum_{k>0} t_k z^k \right)$,

(c) $\langle (\exp H(t)) \psi^+(y) \psi^-(z) \rangle = i_{y,z} \frac{1}{y-z} \exp \left(\sum_{k>0} t_k (y^k - z^k) \right)$,

(d) $\langle (\exp H(t)) \psi^+_{-1+i \frac{1}{2}} \psi^-_{-1-j \frac{1}{2}} \rangle = \sum_{\ell=0}^{j} s_{i+\ell+1}(t) s_{j-\ell}(-t)$,

(e) $\langle (\exp H(t)) \psi^+_{-1+i \frac{1}{2}} \psi^-_{-1-j \frac{1}{2}} \rangle = (-1)^j \chi(a|b)(t; t) = (-1)^j s_{(i+1,j)}(t)$.

9
Proof. (a) follows from the fact that all \(\alpha_k|0\) = 0 for all \(k > 0 \).
(b) follows from the fact that \(\alpha_k, \psi^\pm(z) \) = \(\pm z^k \psi^\pm(z) \).
(c) follows from (a), (b) and the fact that \(\langle \psi^+(y)\psi^-(z) \rangle = i_y z y^{-z} \).
(d) follows by taking the coefficient of \(y^i z^j \) in (c).
Finally, (e) follows from (d), the equality

\[
\psi^+_{-i-\frac{1}{2}} \psi^-_{-j-\frac{1}{2}} |0\rangle = (-1)^j e_{i+\frac{1}{2}} \wedge e_{-\frac{1}{2}} \wedge e_{-\frac{3}{2}} \wedge \cdots \wedge e_{-j-\frac{1}{2}} \wedge e_{-j-\frac{3}{2}} \wedge \cdots,
\]
and the fact that (cf. [2], Section 6)

\[
\sigma(e_{i+\frac{1}{2}} \wedge e_{-\frac{1}{2}} \wedge e_{-\frac{3}{2}} \wedge \cdots \wedge e_{-j-\frac{1}{2}} \wedge e_{-j-\frac{3}{2}} \wedge \cdots) = s_{(i+1,1)}(t).
\]

Since a tau-function is independent of the charge \(m \), see Remark [3] we may assume that \(m = 0 \). Then by the Bruhat decomposition of \(GL_\infty \), the \(GL_\infty \) orbit \(O_0 \) of \(|0\rangle \) is the disjoined union of Schubert cells:

\[
O_0 = \bigcup_{\lambda \in Par} R(U)f_\lambda,
\]
where

\[
f_\lambda = e_{\lambda_1-\frac{1}{2}} \wedge e_{\lambda_2-\frac{3}{2}} \wedge \cdots \wedge e_{\lambda_\ell-\ell+\frac{1}{2}} \wedge e_{-\ell-\frac{1}{2}} \wedge e_{-\ell-\frac{3}{2}} \wedge \cdots, \quad \lambda \in Par_\ell,
\]
and \(U \) is the subgroup of \(GL_\infty \) consisting of all upper-triangular matrices, with 1 on the diagonal.

Note that the elements \(f_\lambda \) form a basis of \(F^{(0)} \), and (see [12], Theorem 4.1) \(\sigma(f_\lambda) = s_\lambda(t) \).

Now let \(A = (a_{ij}) \in U \), then \(R(A)|-\ell\rangle = |-\ell\rangle \), for any \(\ell \in \mathbb{Z} \), since \(|-\ell\rangle \) is the highest weight vector of \(F^{(-\ell)} \). Thus

\[
R(A)f_\lambda = Ae_{\lambda_1-\frac{1}{2}} \wedge Ae_{\lambda_2-\frac{3}{2}} \wedge \cdots \wedge Ae_{\lambda_\ell-\ell+\frac{1}{2}} \wedge e_{-\ell-\frac{1}{2}} \wedge e_{-\ell-\frac{3}{2}} \wedge \cdots
\]

\[
= w_{\lambda_1-\frac{1}{2}} \wedge w_{\lambda_2-\frac{3}{2}} \wedge \cdots \wedge w_{\lambda_\ell-\ell+\frac{1}{2}} \wedge e_{-\ell-\frac{1}{2}} \wedge e_{-\ell-\frac{3}{2}} \wedge \cdots,
\]
where

\[
w_{\lambda_j-\frac{1}{2}} = e_{\lambda_j-\frac{1}{2}} + \sum_{i \leq \lambda_j-\frac{1}{2}} a_{ij} e_i.
\]
In fact we may obviously assume that

\[
w_{\lambda_j-\frac{1}{2}} = e_{\lambda_j-\frac{1}{2}} + \sum_{i = \frac{1}{2}-\ell}^{\lambda_j-\frac{1}{2}} a_{i,\lambda_j-\frac{1}{2}} e_i.
\]
Hence

\[
R(A)f_\lambda = w_{\lambda_1-\frac{1}{2}}^+ w_{\lambda_2-\frac{3}{2}}^+ \cdots w_{\lambda_\ell-\ell+\frac{1}{2}}^+ |-\ell\rangle,
\]
where
\[w^+_{\lambda_j-j+\frac{1}{2}} = \psi^+_{\lambda_j-1} - \lambda_j + \sum_{i \geq j+\frac{1}{2}-\lambda_j} a_{-i,\lambda_j-j+\frac{1}{2}} \psi^+_i, \quad (47) \]
and
\[w^+_{\lambda_j-j+\frac{1}{2}} = \text{Res}_z a_j(z) \psi^+(z), \quad \text{with} \quad a_j(z) = z^{j-\lambda_j-1} + \sum_{i \geq j+\frac{1}{2}-\lambda_j} a_{-i,\lambda_j-j+\frac{1}{2}} z^{i-\frac{1}{2}}. \]

Now we can find constants \(c_{\lambda_j-j+\frac{1}{2}} = (c_{1,\lambda_j-j+\frac{1}{2}}, c_{2,\lambda_j-j+\frac{1}{2}}, \ldots) \) such that
\[a_{\lambda_j-j+\frac{1}{2}}(z) = z^{j-\lambda_j-1} \exp \sum_{i=1}^{\infty} c_{i,\lambda_j-j+\frac{1}{2}} z^i, \]
thus
\[w^+_{\lambda_j-j+\frac{1}{2}} = \text{Res}_z z^{j-\lambda_j-1} \exp \left(\sum_{i=1}^{\infty} c_{i,\lambda_j-j+\frac{1}{2}} z^i \right) \psi^+(z). \quad (48) \]

Finally, using \([36]\), we find that (see \([13]\), Section 3)
\[
\sigma(w^+_{\lambda_1-\frac{1}{2}} w^+_{\lambda_2-\frac{1}{2}} \cdots w^+_{\lambda_\ell-\frac{1}{2}}| - \ell) = \langle 0 | \exp(H(t)) w^+_{\lambda_1-\frac{1}{2}} w^+_{\lambda_2-\frac{1}{2}} \cdots w^+_{\lambda_\ell-\frac{1}{2}} | - \ell \rangle
\]
\[= \text{Res}_{z_1} \cdots \text{Res}_{z_\ell} z_1^{\lambda_1} \cdots z_\ell^{\lambda_\ell-1} \exp \left(\sum_{j=1}^{\ell} \sum_{i=1}^{\infty} c_{i,j-\frac{1}{2}} z_j^i \right) \langle 0 | \exp(H(t)) z_1^\ell \cdots z_\ell^\ell | - \ell \rangle
\]
\[= \text{Res}_{z_1} \cdots \text{Res}_{z_\ell} z_1^{\lambda_1-\ell} z_2^{\lambda_2-\ell} \cdots z_\ell^{\lambda_\ell-\ell} \prod_{1 \leq j < k \leq \ell} (z_j - z_k) \exp \left(\sum_{j=1}^{\ell} \sum_{i=1}^{\infty} (t_i + c_{i,j-\frac{1}{2}}) z_j^i \right), \]
which is equal to \((41)\), where one has to replace \(c_j \) by \(c_{\lambda_j-j+\frac{1}{2}} \). In the above calculations we assume that \(|z_1| > |z_2| > \cdots > |z_\ell|\). It is clear from the above generalized Jacobi-Trudi formula \((41)\), that the constants \(c_{ij} \) for \(i > \lambda_j - j + \ell \) do not appear there, so we can choose them all equal to 0, which gives the restriction that \(c_j \in \mathbb{C}^{\lambda_j-j+\ell} \).

Proof of Theorem 5. We first rewrite \((41)\). Since
\[\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_\ell) = (a_1, a_2, \ldots, a_k | b_1, b_2, \ldots, b_k), \]
we find that
\[f_\lambda = \psi^+_{\frac{1}{2}-\lambda_1} \psi^+_{\frac{1}{2}-\lambda_2} \cdots \psi^+_{\frac{1}{2}-\lambda_\ell} \psi^-_{\frac{1}{2}-\epsilon} \psi^-_{\frac{1}{2}-\ell} \cdots \psi^-_{\frac{1}{2}} |0\rangle
\]
\[= \psi^+_{-a_1-\frac{1}{2}} \psi^+_{-a_2-\frac{1}{2}} \cdots \psi^+_{-a_k-\frac{1}{2}} |k+\frac{1}{2}-\lambda_{k+1} \cdots \psi^+_{\frac{1}{2}-\lambda_{\ell-1}} \psi^-_{\frac{1}{2}-\ell} \cdots \psi^-_{\frac{1}{2}-\frac{1}{2}} |0\rangle. \]

Observe that \(a_j = \lambda_j - j \geq 0 \), for \(j = 1, \ldots, k \) and \(\lambda_j - j < 0 \) for \(j > k \). We now move all \(\psi^+_{\frac{1}{2}-\lambda_j} \) with \(j > k \) to the right of all \(\psi^-_i \) with \(0 < i < \ell \). This has the effect that one removes all \(\psi^-_i \), for which \(i \) is equal to one of the \(j - \frac{1}{2} - \lambda_j \) for \(j > k \). This gives that \(f_\lambda \) is equal, up to a sign, which we may ignore, to
\[f_\lambda = \psi^+_{-a_1-\frac{1}{2}} \psi^+_{-a_2-\frac{1}{2}} \cdots \psi^+_{-a_k-\frac{1}{2}} \psi^-_{-b_1-\frac{1}{2}} \psi^-_{-b_2-\frac{1}{2}} \cdots \psi^-_{-b_k-\frac{1}{2}} |0\rangle. \quad (49) \]
Next we calculate $R(A)f_{\lambda}$ for $A \in U$. Clearly $A\psi_{-a_j-\frac{1}{2}} = A\psi_{-a_j-\frac{1}{2} - \lambda_j} = w^{+}_{\lambda_j-j+\frac{1}{2}}$ for $j = 1, \ldots, k$, where $w^{+}_{\lambda_j-j+\frac{1}{2}} = w^{+}_{a_j+\frac{1}{2}}$ is as in (17), and thus is equal (18).

Let $w^{+}_{-b_j-\frac{1}{2}} = A\psi_{-b_j-\frac{1}{2}}$, then there exist constants $c_{-b_j-\frac{1}{2}} = (c_{1,-b_j-\frac{1}{2}}, c_{2,-b_j-\frac{1}{2}}, \ldots)$, such that

$$w^{+}_{-b_j-\frac{1}{2}} = \psi_{-b_j-\frac{1}{2}} + \sum_{i \geq \frac{1}{2}-b_j} c_{i,-b_j-\frac{1}{2}} \psi^{+}_{i}$$

$$= \text{Res}_{z}(z^{-b_j-1} + \sum_{i \geq \frac{1}{2}-b_j} c_{i,-b_j-\frac{1}{2}} z^{i-\frac{1}{2}})\psi^{+}(z).$$

In a similar way as for the $w^{+}_{a_i+\frac{1}{2}}$, there exist constants $d_{-b_j-\frac{1}{2}} = (d_{1,-b_j-\frac{1}{2}}, d_{2,-b_j-\frac{1}{2}}, \ldots)$, such that

$$w^{-}_{-b_j-\frac{1}{2}} = \text{Res}_{z}z^{-b_j-1} \exp(-\sum_{i=1}^{\infty} d_{i,-b_j-\frac{1}{2}} z^{i})\psi^{-}(z). \quad (50)$$

Using (48) and (50), the relation between the constants c_i and d_{-j} is as follows. Since $(w^{+}_{i}, w^{-}_{j}) = \delta_{i,-j}$, we find that

$$\delta_{i,-j} = \text{Res}_{y} \text{Res}_{z} y^{-i-\frac{1}{2}} z^{-j-\frac{1}{2}} \exp\left(\sum_{a=1}^{\infty} c_{a,j} y^{a}\right) \exp\left(-\sum_{a=1}^{\infty} d_{a,-j} z^{a}\right) \psi^{+}(y) \psi^{-}(z)$$

$$= \text{Res}_{y} \text{Res}_{z} y^{-i-\frac{1}{2}} z^{-j-\frac{1}{2}} \exp\left(\sum_{a=1}^{\infty} c_{a,j} y^{a} - d_{a,-k} z^{a}\right) \delta(y - z)$$

$$= \text{Res}_{y} \text{Res}_{z} z^{-i-j-1} \exp\left(\sum_{a=1}^{\infty} (c_{a,j} - d_{a,-k}) z^{a}\right) \delta(y - z)$$

$$= \text{Res}_{z} z^{-i-j-1} \exp\left(\sum_{a=1}^{\infty} (c_{a,j} - d_{a,-k}) z^{a}\right)$$

$$= s_{i+j}(c_{i} - d_{-j}).$$

This means that we have a possible restriction on the constants $d_{-b_j-\frac{1}{2}}$ for $j = 1, \ldots, k$, viz.

$$s_{a_i+b_j+1}(c_{a_i+\frac{1}{2}} - d_{-b_j-\frac{1}{2}}) = 0 \quad \text{for } 1 \leq i, j \leq k.$$

Stated differently,

$$d_{a_i+b_j+1,-b_j-\frac{1}{2}} = s_{a_i+b_j+1}(c_{1,a_i+\frac{1}{2}} - d_{1,-b_j-\frac{1}{2}}, \ldots, c_{a_i+b_j,a_i+\frac{1}{2}} - d_{a_i+b_j,-b_j-\frac{1}{2}}, c_{a_i+b_j+1,a_i+\frac{1}{2}}). \quad (51)$$

Finally we calculate

$$\sigma(R(A)f_{\lambda}) = \langle 0 | (\exp H(t)) w^{+}_{a_1+\frac{1}{2}} \cdots w^{+}_{a_k+\frac{1}{2}} w^{-}_{-b_1-\frac{1}{2}} \cdots w^{-}_{-b_k-\frac{1}{2}} | 0 \rangle.$$

Using Wick’s theorem, this is equal, up to a sign, to

$$\det(\langle (\exp H(t)) w^{+}_{a_i+\frac{1}{2}} w^{-}_{-b_j-\frac{1}{2}} \rangle)_{1 \leq i,j \leq k}.$$
Now, using (48), (50), and Lemma 6 we find that in the domain $|y| > |z|$ we have

$$\langle (\exp H(t))w^+_{a_i+j_\frac{1}{2}}w^-_{b_j-\frac{1}{2}} \rangle =$$

Res$_y$Res$_z$ $y^{-a_i-1}z^{-b_j-1}$ $\exp(\sum_{r=1}^{\infty} c_{r,a_i+\frac{1}{2}}y^r - d_{r,-b_j-\frac{1}{2}}z^r) \langle (\exp H(t))\psi^+(y)\psi^-(z) \rangle =$

Res$_y$Res$_z$ $y^{-a_i-1}z^{-b_j-1} \frac{1}{y - z} \exp(\sum_{r>0} (t_r + c_{r,a_i+\frac{1}{2}})y^r - ((t_r + d_{r,-b_j-\frac{1}{2}})z^r) =$

Res$_y$Res$_z$ $\sum_{p,q,r=0}^{\infty} y^{p-r-a_i-2}z^{q+r-b_j-1} s_p(t + c_{a_i+\frac{1}{2}}) s_q(\psi^+(t + d_{b_j-\frac{1}{2}}) =$

$$\sum_{r=0}^{\infty} s_{r+a_i+1}(t + c_{a_i+1}) s_{b_j-r}(\psi^+(t + d_{b_j-\frac{1}{2}}) =$$

$$(-1)^{b_j} \chi_{a_i,b_j}(t + c_{a_i+\frac{1}{2}}; t + d_{b_j-\frac{1}{2}}).$$

Hence the tau-function $\sigma(R(A) f_\lambda)$ is equal to (12), where we replace the constants c_i (resp. d_i) by $c_{a_i+\frac{1}{2}}$ (resp. $d_{b_j-\frac{1}{2}}$).

Note that the constants $d_{m,-b_j-\frac{1}{2}}$ that appear in $\chi_{a_i,b_j}(t + c_{a_i+\frac{1}{2}}; t + d_{b_j-\frac{1}{2}})$ are $d_{1,-b_j-\frac{1}{2}}, \ldots, d_{b_j,-b_j-\frac{1}{2}}$, and the $d_{m,-b_j-\frac{1}{2}}$ with $m > b_j$ do not appear. However, looking at the restriction (51), we see that the first dependence of the constants $d_{m,-b_j-\frac{1}{2}}$ on $d_{r,-b_j-\frac{1}{2}}$ with $r < m$, and on the $c_{n,a_i+\frac{1}{2}}$ with $i = 1, \ldots, k$, $n = 1, 2, \ldots$, is for $m = a_k + b_j + 1 > b_j$. But since the only coefficients that appear in the tau-function are the $d_{m,-b_j-\frac{1}{2}}$ with $m \leq b_j$, the restriction (51) is void.

If we look at which elementary Schur polynomials appear in $\chi_{a_i,b_j}(t; t')$ we see that the constants c_{n_j} (resp. d_{n_j}) with $n > a_j + b_i + 1 = \lambda_j - j + \ell$ (resp. $n > b_j$) do not appear.

\[\square \]

4 More general tau-functions and the wave function of the KP hierarchy

Following [13], we can construct generating functions of tau-functions using the Jacobi-Trudi formalism. Namely, we consider, instead of $R(A) f_\lambda$, the element

$$\psi^+(z_1)\psi^+(z_2)\ldots\psi^+(z_\ell)\psi^-_{\frac{1}{2}-\ell}\psi^-_{\frac{1}{2}-\ell}\ldots\psi^-_{\frac{1}{2}} |0\rangle,$$

where we assume $|z_i| > |z_{i+1}|$ for all $i = 1, \ldots, \ell - 1$. Let

$$T(z_1, \ldots, z_\ell) = \prod_{1 \leq j < k \leq \ell} (z_j - z_k) \exp \left(\sum_{j=1}^{\ell} \sum_{n=1}^{\infty} t_n z_j^n \right)$$

$$= \det \left(z_i^{j-1} \exp \left(\sum_{n=1}^{\infty} t_n z_i^n \right) \right)_{1 \leq i, j \leq \ell}.$$

(52)
Then the corresponding tau-function is equal to

$$\langle 0 | (\exp H(t)) \psi^+(z_1) \cdots \psi^+(z_\ell) |-\ell \rangle = z_1^{-\ell} \cdots z_\ell^{-\ell} T(z_1, \ldots, z_\ell).$$

(53)

If we now take consecutive residues of $T(z_1, \ldots, z_\ell) \prod_{i=1}^\ell a_i(z_i)$, where $a_i(z)$ are some Laurent series in z, we obtain a tau-function:

$$\tau(t) = \text{Res}_{z_1} \cdots \text{Res}_{z_\ell} T(z_1, \ldots, z_\ell) \prod_{i=1}^\ell a_i(z_i).$$

(54)

These expressions are not polynomial in general. To obtain the polynomial tau-function of the previous section, we take

$$a_j(z) = z^{j-\ell-\lambda_j-1} \exp(\sum_{i=1}^\infty c_{i,\lambda_j-j+i/2} z^i).$$

(55)

But $T(y_1, \ldots, y_\ell)$ is also a tau-function, for this one chooses $a_i(z_i) = \delta(z_i - y_i)$. One can even construct the wave function $\langle 55 \rangle$ in this way. Assume $\tau(t)$ is given by $\langle 54 \rangle$, then

$$\tau(t) w^+(t, z) = \langle 1 | (\exp H(t)) \psi^+(z) w_1^+ \cdots w_\ell^+ | -\ell \rangle,$n

(56)

where, by $\langle 17 \rangle$, $w_j^+ = \text{Res}_{z_j} a_j(z_j) \psi^+(z_j)$, so that

$$\langle 1 | (\exp H(t)) \psi^+(z) \psi^+(z_1) \cdots \psi^+(z_\ell) | -\ell \rangle = z^{-\ell} z_1^{-\ell} \cdots z_\ell^{-\ell} T(z, z_1, \ldots, z_\ell).$$

Thus

$$\tau(t) w^+(t, z) = z^{-\ell} \text{Res}_{z_1} \cdots \text{Res}_{z_\ell} T(z, z_1, \ldots, z_\ell) \prod_{i=1}^\ell a_i(z_i),$$

(57)

and, using $\langle 54 \rangle$, the wave function is equal to

$$w^+(t, z) = z^{-\ell} \frac{\text{Res}_{z_1} \cdots \text{Res}_{z_\ell} T(z, z_1, \ldots, z_\ell) \prod_{i=1}^\ell a_i(z_i)}{\text{Res}_{z_1} \cdots \text{Res}_{z_\ell} T(z_1, \ldots, z_\ell) \prod_{i=1}^\ell a_i(z_i)}.$$

(58)

Taking all $a_j(z)$ as in $\langle 55 \rangle$, with $c_{\lambda_j-j+i/2}$ replaced by c_j, we obtain, as denominator of $w^+(t, z)$, the polynomial $\tau_\lambda(t)$ given by $\langle 41 \rangle$. Using $\langle 53 \rangle$ and $\langle 56 \rangle$, by Wick’s theorem we obtain the numerator of $\langle 58 \rangle$. Thus

$$w^+(t, z) = \frac{1}{\tau_\lambda(t)} \det \left(\begin{array}{cccc} e^{\sum_n t_n z^n} & z_1^{-\ell} e^{\sum_n t_n z^n} & \cdots & z_\ell^{-\ell} e^{\sum_n t_n z^n} \\ s_{\lambda_1-1}(t + c_1) & s_{\lambda_1}(t + c_1) & \cdots & s_{\lambda_1+\ell}(t + c_1) \\ s_{\lambda_2-2}(t + c_2) & s_{\lambda_2-1}(t + c_2) & \cdots & s_{\lambda_2+\ell-1}(t + c_1) \\ \vdots & \vdots & \ddots & \vdots \\ s_{\lambda_\ell-\ell}(t + c_\ell) & s_{\lambda_\ell-\ell+1}(t + c_\ell) & \cdots & s_{\lambda_\ell}(t + c_\ell) \end{array} \right).$$

(59)

We call this the Jacobi-Trudi formula for the wave function related to a polynomial tau-functions. Note that this implies that $\tau(t) w^+(t, z)$ is also a tau-function.
We now want to do a similar thing using the Giambelli formalism. For this we consider for \(|y_i| > |y_{i+1}|, |z_i| > |z_{i+1}|\) for all \(i = 1, \ldots, k - 1\), and \(|y_i| > |z_j|\) for \(1 \leq i, j \leq k\). Consider the element

\[
\psi^+(y_1)\psi^+(y_2) \ldots \psi^+(y_k)\psi^-(z_1)\psi^-(z_2) \ldots \psi^-(z_k)|0\rangle.
\]

We want to calculate the corresponding tau-function, i.e.

\[
\langle 0 | \exp((H(t))\psi^+(y_1)\psi^+(y_2) \ldots \psi^+(y_k)\psi^-(z_1)\psi^-(z_2) \ldots \psi^-(z_k)|0\rangle.
\]

Using Wick’s theorem, since we have fermions, we obtain a Pfaffian,

\[
Pf \begin{pmatrix} 0 & \langle 0 | \exp((H(t))\psi^+(y_i)\psi^-(z_j)|0\rangle)_{ij} \\ -\langle 0 | \exp((H(t))\psi^+(y_j)\psi^-(z_i)|0\rangle)_{ij} & 0 \end{pmatrix}_{1 \leq i, j \leq k},
\]

which is equal, up to sign, to

\[
S(y_1, \ldots, y_k; z_1, \ldots, z_k) = \det \left(\frac{\exp \left(\sum_{n=1}^{\infty} t_n (y^n_i - z^n_j) \right)}{y_i - z_j} \right)_{1 \leq i, j \leq k}. \tag{60}
\]

To obtain the polynomial tau-functions of the previous section, we take

\[
a_i(y) = y^{-a_i-1} \exp \left(\sum_{r=1}^{\infty} c_{r, a_i+\frac{1}{2}} y^r \right), \quad b_i(z) = z^{-b_i-1} \exp \left(-\sum_{r=1}^{\infty} d_{r, -b_i-\frac{1}{2}} z^r \right), \tag{61}
\]

and let

\[
\tau(t) = \text{Res}_{y_1} \cdots \text{Res}_{y_k} \text{Res}_{z_1} \cdots \text{Res}_{z_k} S(y_1, \ldots, y_k; z_1, \ldots, z_k) \prod_{i=1}^{k} a_i(y_i) b_j(z_j). \tag{62}
\]

The question we want to solve is: can we also express the wave function in this way using formula (60)? Recall that the wave function, multiplied by \(\tau(t)\) can be calculated, by multiplying \(\sigma^{-1}(\tau(t))\) by \(\psi^+(z)\) and then calculating \(\sigma\) of this. In other words

\[
\tau(t)w^+(t, z) = \langle -1 | (\exp H(t))\psi^+(z)R(G)|0\rangle.
\]
So we to calculate, for $|z| > |y_1| > \ldots > |y_k| > |z_1| > \ldots > |z_k|$:

\begin{align*}
\langle 1 | (\exp H(t)) \psi^+(z) \psi^+(y_1) \psi^+(y_2) \ldots \psi^+(y_k) \psi^-(z_1) \psi^-(z_2) \ldots \psi^-(z_k) | 0 \rangle \\
= \langle 0 | \psi^-_t (\exp H(t)) \psi^+(z) \psi^+(y_1) \psi^+(y_2) \ldots \psi^+(y_k) \psi^-(z_1) \psi^-(z_2) \ldots \psi^-(z_k) | 0 \rangle \\
= \exp \left(\sum_{n=1}^{\infty} t_n z^n \right) \exp \left(\sum_{i=1}^{k} \sum_{n=1}^{\infty} t_n (y_i^n - z_i^n) \right) \times \\
\langle 0 | \psi^-_t \psi^+(z) \psi^+(y_1) \psi^+(y_2) \ldots \psi^+(y_k) \psi^-(z_1) \psi^-(z_2) \ldots \psi^-(z_k) | 0 \rangle \\
= \pm \det \left(1 + \frac{1}{z - \frac{1}{y_1 - 1}} \cdot \frac{1}{z - \frac{1}{y_1 - 2}} \cdot \ldots \cdot \frac{1}{z - \frac{1}{y_1 - k}} \right) \exp \left(\sum_{i=1}^{k} \sum_{n=1}^{\infty} t_n (y_i^n - z_i^n) \right) \times \\
\langle 0 | \psi^-_t \psi^+(z) \psi^+(y_1) \psi^+(y_2) \ldots \psi^+(y_k) \psi^-(z_1) \psi^-(z_2) \ldots \psi^-(z_k) | 0 \rangle \\
= \pm z_0 S(z, y_1, \ldots, y_k; z_0, z_1, \ldots, z_k) |_{z_0 = \infty} \quad \text{for} \ |z_0| > |z|.
\end{align*}

In the 3th equality, we used Wick’s theorem and the observation that the Pfaffian, we obtain in this way, is of the form

$$
Pf \begin{pmatrix}
0 & A \\
A^T & 0
\end{pmatrix},
$$

and is equal, up to a sign, to det A. Hence, the wave function is equal to

$$
w^+(t, z) = -\frac{\text{Res}_{y_1} \cdots \text{Res}_{y_k} \text{Res}_{z_1} \cdots \text{Res}_{z_k} z_0 S(z, y_1, \ldots, y_k; z_0, z_1, \ldots, z_k) |_{z_0 = \infty} \prod_{i=1}^{k} \alpha_i(y_i) b_j(z_j)}{	ext{Res}_{y_1} \cdots \text{Res}_{y_k} \text{Res}_{z_1} \cdots \text{Res}_{z_k} S(y_1, \ldots, y_k; z_1, \ldots, z_k) \prod_{i=1}^{k} \alpha_i(y_i) b_j(z_j)} \\
= \frac{1}{\tau(t)} \exp \left(\sum_{n=1}^{\infty} t_n z^n \right) \times \\
\left(1 \cdot \chi(0 | b_1) ([z^{-1}] | t + d_1) \cdot \chi(0 | b_2) ([z^{-1}] | t + d_2) \cdots \chi(0 | b_k) ([z^{-1}] | t + d_k) \\
\frac{s_{a_1} (t + c_1)}{\chi(a_1 | b_1) (t + c_1; t + d_1) \cdot \chi(a_1 | b_2) (t + c_1; t + d_2) \cdots \chi(a_1 | b_k) (t + c_1; t + d_k)} \\
\vdots \\
\frac{s_{a_k} (t + c_k)}{\chi(a_k | b_1) (t + c_k; t + d_1) \cdot \chi(a_k | b_2) (t + c_k; t + d_2) \cdots \chi(a_k | b_k) (t + c_k; t + d_k)}
\right),
$$

(63)

Now, taking $a_i(z)$ and $b_i(z)$ as in (62), thus replacing $c_{a_i} + \frac{1}{b_i}$ by c_i and $d_{a_i} - \frac{1}{b_i}$ by d_i, we obtain the wave function corresponding to the tau-function given by (62):

$$
w^+(t, z) = \frac{1}{\tau(t)} \exp \left(\sum_{n=1}^{\infty} t_n z^n \right) \times \\
\left(1 \cdot \chi(0 | b_1) ([z^{-1}] | t + d_1) \cdot \chi(0 | b_2) ([z^{-1}] | t + d_2) \cdots \chi(0 | b_k) ([z^{-1}] | t + d_k) \\
\frac{s_{a_1} (t + c_1)}{\chi(a_1 | b_1) (t + c_1; t + d_1) \cdot \chi(a_1 | b_2) (t + c_1; t + d_2) \cdots \chi(a_1 | b_k) (t + c_1; t + d_k)} \\
\vdots \\
\frac{s_{a_k} (t + c_k)}{\chi(a_k | b_1) (t + c_k; t + d_1) \cdot \chi(a_k | b_2) (t + c_k; t + d_2) \cdots \chi(a_k | b_k) (t + c_k; t + d_k)}
\right),
$$

(64)
Here \(z^{-1} = (\frac{z^{-1}}{1}, \frac{z^{-2}}{2}, \frac{z^{-3}}{3}, \ldots) \), \(\chi_{(a|b)} \) is defined by (19), and \(\chi_{(0|b)}([z^{-1}]; t) = (-1)^b \sum_{j=0}^b z^j s_{b-j}(-t) \).

5 The formulation of the CKP hierarchy

The group \(SP_\infty \), the corresponding Lie algebra \(sp_\infty \) and its central extension \(c_\infty \) can be defined using the following bilinear form on \(\mathbb{C}^\infty \), see e.g. [1], Section 7.11:

\[
(e_i, e_j)_C = (-1)^{i+j} \delta_{i,-j}.
\]

Then

\[
SP_\infty = \{ G \in GL_\infty | (G(v), G(w))_C = (v, w)_C \text{ for all } v, w \in \mathbb{C}^\infty \},
\]

\[
sp_\infty = \{ g \in gl_\infty | (g(v), w)_C + (v, g(w))_C = 0 \text{ for all } v, w \in \mathbb{C}^\infty \},
\]

\[
c_\infty = \{ g + \lambda K \in a_\infty | (g(v), w)_C + (v, g(w))_C = 0 \text{ for all } v, w \in \mathbb{C}^\infty \},
\]

The elements \(C_{jk} = E_{-j,k} - (-1)^{j+k} E_{-k,j} \), with \(j \geq k \) form a basis of \(sp_\infty \).

Note that

\[
r(C_{jk}) = \psi_j^+ \psi_k^- - (-1)^{j+k} \psi_k^+ \psi_j^- \text{ and } \hat{r}(C_{jk}) =: \psi_j^+ \psi_k^- + (-1)^{j+k} : \psi_k^+ \psi_j^- :.
\]

This suggests to define an automorphism of the Clifford algebra \(C\ell \):

\[
\iota_C(\psi_j^+) = (-1)^{j+1} \psi_j^+.
\]

This induces via \(\hat{r} \) and the observation that \(\iota_C(\psi_j^+ \psi_k^-) = (-1)^{j+k} : \psi_j^+ \psi_k^- : = -(-1)^{j+k} : \psi_k^+ \psi_j^- : \) the following involution on \(a_\infty \):

\[
\iota_C(E_{-j,k}) = -(-1)^{j+k} E_{-k,j}, \quad \iota_C(K) = K,
\]

so that

\[
c_\infty = \{ g + \lambda K \in a_\infty | \iota_C(g) = g \}.
\]

Let us study this automorphism and its consequences a bit better. First of all \(\iota_C(\text{Ann}_\pm \{0\}) = \text{Ann}_\mp \{0\} \) and thus \(\iota_C(\text{Ann} \{0\}) = \text{Ann} \{0\} \), which makes it possible to define the automorphism also on the module \(F \), namely define \(\iota_C(\{0\}) = \{0\} \), and the rest is induced by (66). Since \(\iota_C(\psi^\pm(z)) = \pm \psi^\mp(-z) \), we see that \(\iota_C(F(m)) = F(-m) \) and we deduce that

\[
\iota_C(\alpha(z)) = \iota_C(\psi^+(z))\psi^-(z) =: \psi^+(z)\psi^-(z) =: \alpha(-z),
\]

and hence that \(\iota_C(\alpha_k) = -(-1)^k \alpha_k \). Moreover, \(\iota_C(\{m\}) = (-1)^{\frac{m(m-1)}{2}} \{ -m \} \). Using the bosonization \(\sigma : F \to B \), the automorphism \(\iota_C \) defines an automorphism, which we also denote by \(\iota_C \), of \(B \). Clearly \(\iota_C(1) = 1 \), and we get that the operators on \(B \) satisfy

\[
\iota_C(t_i) = -(-1)^i t_i, \quad \iota_C(\frac{\partial}{\partial t_i}) = -(-1)^i \frac{\partial}{\partial t_i}, \quad \iota_C(q \frac{\partial}{\partial q}) = -q \frac{\partial}{\partial q}, \quad \iota_C(g) = q^{-1}(-1)^{\frac{q}{2} \frac{\partial}{\partial q}}.
\]
In particular, \(F^{(0)} \) is \(\iota_C \) invariant, and

\[
F_C^{(0)} = \{ f \in F^{(0)} | \iota_C(f) = f \}
\]

is an invariant subspace for the representation \(\hat{\tau} \), restricted to \(c_\infty \). Hence we want to look at \(f \in \mathcal{O}_0 \) that satisfies the condition \(\iota_C(f) = f \). Let \(v^\pm \in \text{Ann}_f \) for such an \(f \), then \(v^\pm f = 0 \) and thus \(\iota_C(v^\pm f) = \iota_C(v^\pm) f = 0 \). Hence \(\iota_C(\text{Ann}_f) = \text{Ann}_f \). This makes it possible to define a skew-symmetric form on \(\Psi \), given by \(\omega(v, w) = (v, \iota_C(w)) \); more explicitly (cf. (65))

\[
\omega(\psi_i^+, \psi_j^+) = (\psi_i^+,-(1)^{i\pm\frac{1}{2}}\psi_j^+) = (1)^{i\pm\frac{1}{2}}\delta_{i,-j}, \quad \omega(\psi_i^+, \psi_j^-) = 0. \quad (67)
\]

So we find that \(\text{Ann}_f \) is a maximal isotropic subspace of \(\Psi = \Psi^+ \oplus \Psi^- \), with respect to both the symmetric bilinear form \((\cdot, \cdot) \) and the skew-symmetric \(\omega(\cdot, \cdot) \). Since \(f = G|0\rangle \in F^{(0)}_C \), we find that \(\text{Ann}_f|0\rangle \subset \Psi^\pm \) is maximal isotropic, and therefore also \(\text{Ann}_f \subset \Psi^\pm \) is maximal isotropic. Thus \(\text{Ann}_f \) (resp. \(\text{Ann}_f \)) is a Lagrangian subspace of \(\Psi \) (resp. \(\Psi^\pm \)).

Moreover, when applying the bosonization \(\sigma \) to such an element \(f \), we obtain a tau-function \(\tau(t) \), which satisfies

\[
\tau(t_1, t_2, t_3, t_4, \ldots) = \iota_C(\tau(t_1, t_2, t_3, t_4, \ldots)) = \tau(t_1, -t_2, t_3, -t_4, \ldots). \quad (68)
\]

Remark 7 Using formula (e) of Lemma 6 and (66), we find that

\[
\iota_C(\chi_{(ij)}(t, t)) = (1, t)(\exp H(t))\iota_C(\psi_i^+, \psi_j^- |0\rangle) = (1, t)(\exp H(t))\psi_i^+, \psi_j^- |0\rangle = \chi_{(ij)}(t, t).
\]

Hence, using the Giambelli formula (18), we find that \(\iota_C(s_\lambda(t)) = s_{\lambda'}(t) \), where \(\lambda' \) is the conjugate partition of \(\lambda \). Thus the only Schur polynomials that are invariant under \(\iota_C \) are the ones for which \(\lambda \) is self-conjugate.

Next apply \(1 \otimes \iota_C \) to (32) for \(m = 0 \), and assume that \(\iota_C(f_0) = (f_0) \). Then equation (32) turns into

\[
\text{Res}_z \psi^+(z)f_0 \otimes \psi^+(-z)f_0 = 0, \quad f_0 \in F^{(0)}_C. \quad (69)
\]

Letting \(\tau(t) = \sigma(f_0) \), gives, by (65), the following CKP hierarchy of equations on the tau-function:

\[
\text{Res}_z=0 \exp \left(\sum_{i=1}^{\infty} (t_j + (1)^{i}t'_j) z^i \right) \exp \left(-\sum_{i=1}^{\infty} \left(\frac{\partial}{\partial t_i} + (1)^{i} \frac{\partial}{\partial t'_i} \right) \frac{z^{-i}}{i} \right) \tau(t)\tau(t') dz = 0. \quad (70)
\]

A polynomial KdV tau-function is a KP tau-function that is independent of the even times \(t_{2j} \) for \(j = 1, 2, \ldots \), hence the automorphism \(\iota_C \) fixes this tau-function and we have the following
Corollary 8 A polynomial KdV tau-function is also a CKP tau-function.

This corollary does not hold for the non-polynomial KdV tau-functions, which can depend exponentially on the even times; such a tau-function is not fixed by \(\iota_C \).

Let \(a(z) = \sum_{i=-M}^N a_i z^{i-1} \) and \(v^\pm = \text{Res}_z a(z) \psi^\pm (\pm z) = \sum_{i=-M}^N (\pm 1)^i c_i \psi_{i+\frac{1}{2}}^\pm \).

Since \(\iota_C(v^\pm) = \pm v^\mp \), we have \(\iota_C(v^+ v^-) = -v^-v^+ = -(v^-, v^+) + v^+v^- = v^+v^- \), because \((v^-, v^+) = 0 \). Using this observation, we are now ready to prove the main result of this section.

Theorem 9 (a) Let \(v^+_1 \in \Psi^+ \) for \(i = 1, \ldots, k \), then

\[
\tau^{v^+_1,\ldots,v^+_k}(t) := \langle (\exp H(t)) v^+_1 \iota_C(v^+_1) v^+_2 \iota_C(v^+_2) \cdots v^+_k \iota_C(v^+_k) \rangle
\]

is a CKP tau-function. For

\[
v^+_j = \text{Res}_z z^{-a_j-1} \exp(\sum_{i=1}^\infty c_{i,j} z^i) \psi^+(z), \quad j = 1, \ldots, k,
\]

this tau-function is, up to a sign, equal to

\[
\det \left(T_{i,j}(t) \right)_{1 \leq i, j \leq k}, \quad \text{where } T_{i,j}(t) = \begin{cases}
\chi(a_i|a_j)(t + c_i; t + \iota_C(c_j)) & i \leq j, \\
\iota_C(\chi(a_j|a_i)(t + \iota_C(c_j); t + c_i)) & i > j,
\end{cases}
\]

for certain constants \(c_{a_j} \in \mathbb{C}, \ j = 1, \ldots, k, \ n = 1, 2, \ldots \). Here \(\chi(a|b)(s; t) \) is given by (19) \(c_j = (c_{1j}, c_{2j}, c_{3j}, \ldots, c_{a_j+a_1+1,j}) \) and \(\iota_C(c_j) = (c_{1j}, -c_{2j}, c_{3j}, \ldots, (-1)^{a_j+a_1} c_{a_j+a_1+1,j}) \) with \(j = 1, \ldots, k \).

(b) Any polynomial CKP tau-function is of the form (71) and hence, up to a constant factor, equal to (73).

(c) Any polynomial CKP tau-function is, up to a constant factor, equal to

\[
\tau(a_1,\ldots,a_k|a_1,\ldots,a_k)(t) = \det \left(\chi(a_i|a_j)(t + c_i; t + \iota_C(c_j)) \right)_{1 \leq i, j \leq k},
\]

where the constants \(c_j = (c_{1j}, c_{2j}, c_{3j}, \ldots, c_{a_j+a_1+1,j}) \) for \(1 \leq i < j \leq k \), must satisfy the following constraints:

\[
c_{a_i+a_j+1,j} = (-1)^{a_i+a_j} c_{a_i+a_j+1}(c_i, -c_{1j}, c_{2j}, c_{3j}, \ldots, c_{a_i+a_j+1}(a_i, \ldots), c_{a_i+a_j+1}(a_{i+1}, a_{i+2}, \ldots))
\]

(d) Any polynomial CKP tau-function satisfies the following equation:

\[
\sum_{k=0}^\infty s_k(\pm 2t_e) s_{k+1} T_{\tilde{\iota}_e} \tau(t) = 0,
\]

were \(t_e = (t_2, t_4, t_6, \ldots) \) and \(\tilde{\iota}_e = (\frac{\partial}{\partial t_2}, \frac{1}{2} \frac{\partial}{\partial t_4}, \frac{1}{3} \frac{\partial}{\partial t_6}, \ldots) \).
Proof. (a) It is obvious that $\tau^{v_1^+, \ldots, v_k^+}(t)$ is a CKP tau function. Let us calculate its explicit form for the v_j^+ given by (72). If

$$v_j^+ = \text{Res}_z b_j(z) \psi^+(z),$$

then $\iota_C(v_j^+) = \text{Res}_z b_j(z) \psi^-(z) = -\text{Res}_z b_j(-z) \psi^-(z),$

where we take

$$b_j(z) = z^{-a_j-1} \exp(\sum_{i=1}^{\infty} c_{i,j} z^i).$$

Then

$$b_j(-z) = (-z)^{-a_j-1} \exp(-\sum_{i=1}^{\infty} (-1)^i c_{i,j} z^i)$$

$$= (-1)^{a_j+1} z^{-a_j-1} \exp(-\sum_{i=1}^{\infty} \iota_C(c_{i,j}) z^i).$$

Since $\text{Res}_z b_j(z) \psi^\pm(z) = \psi^\pm|_{a_j}^{a_j} + \sum_{i>a_j} g_i \psi_i^\pm$ for some $g_i \in \mathbb{C}$ (cf. Lemma 0(e)), we find that $\lambda = (a_1, \ldots, a_k | a_1, \ldots, a_k).$ Using Wick's theorem, in the second equality below, we find that $\tau^{v_1^+, \ldots, v_k^+}(t)$, with v_j^+ given by (72), is equal, up to a possible sign, to

$$\langle (\exp H(t)) v_1^+ \iota_C(v_1^+) \cdots v_k + \iota_C(v_1^+) \rangle$$

$$= \text{Res}_{y_1} \text{Res}_{z_1} \cdots \text{Res}_{y_k} \text{Res}_{z_1} \langle \psi^+(y_1) \psi^-(z_1) \cdots \psi^+(y_k) \psi^-(z_k) \rangle \prod_{j=1}^{k} b_j(y_j) b_j(-z_j)$$

$$= \text{Res}_{y_1} \text{Res}_{z_1} \cdots \text{Res}_{y_k} \prod_{j=1}^{k} b_j(y_j) b_j(-z_j) \times$$

$$Pf \begin{pmatrix}
0 & 0 & \cdots & 0 & 0 \\
\frac{\sum_n t_n(y_1^n - z_1^n)}{y_1 - z_1} & 0 & \cdots & 0 & \frac{\sum_n t_n(y_1^n - z_k^n)}{y_1 - z_k} \\
0 & \frac{\sum_n t_n(y_2^n - z_1^n)}{y_2 - z_1} & \cdots & 0 & \frac{\sum_n t_n(y_2^n - z_k^n)}{y_2 - z_k} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & \frac{\sum_n t_n(y_k^n - z_k^n)}{y_k - z_k} \\
0 & 0 & \cdots & 0 & 0 \\
\end{pmatrix},$$

for $|y_1| > |z_1| > |y_2| > \cdots > |z_k|$. Next permuting rows and columns in the Pfaffian, this is equal to

$$\pm \text{Res}_{y_1} \text{Res}_{z_1} \cdots \text{Res}_{y_k} \prod_{j=1}^{k} b_j(y_j) b_j(-z_j) \det \left(\frac{\sum_n t_n(y_i^n - z_j^n)}{y_i - z_j} \right)_{1 \leq i,j \leq k}. \quad (77)$$
Using that for \(i \leq j \), thus \(|y_i| > |z_j| \), we have

\[
\text{Res}_{y_i} \text{Res}_{z_j} b_i(y_i)b_j(-z_j) \frac{e^{\sum_n t_n(y_i^n - z_j^n)}}{y_i - z_j} =
\]

\[
\text{Res}_{y_i} \text{Res}_{z_j} y_i^{-a_j-1}(-z_j)^{-a_j-1} \exp \sum_{k=1}^{\infty} c_{k,i}y_i^k \exp \sum_{l=1}^{\infty} c_{l,j}(-z_j)^l e^{\sum_n t_n(y_i^n - z_j^n)} \frac{e^{\sum_n t_n(y_i^n - z_j^n)}}{y_i - z_j} =
\]

\[
= (-1)^{a_j+1} \chi(a_{j|a_j})(t + c_i; t + \iota_C(c_j)),
\]

and that for \(i > j \), thus \(|y_i| < |z_j| \),

\[
\text{Res}_{z_j} \text{Res}_{y_i} b_i(y_i)b_j(-z_j) \frac{e^{\sum_n t_n(y_i^n - z_j^n)}}{y_i - z_j} = \pm \iota_C \chi(a_{j|a_i})(t + \iota_C(c_j); t + c_i)),
\]

we find that (77) is equal, up to some sign, to (73).

(b) Any polynomial CKP tau-function corresponds to a Lagrangian subspace
\(L \subset \Psi^+ \) with respect to \(\omega \); it is of the form

\[
L = \text{span}\{w^+_1, w^+_2, \ldots, w^+_k\} \oplus \bigoplus_{j > k} \mathbb{C} \psi^+_j.
\]

Since 0 = \(\omega(w^+_i, w^+_j) = (w^+_i, \iota_C(w^+_j)) \), we find that \(w^+_i \) and \(\iota_C(w^+_j) \) anticommute for all \(1 \leq i, j \leq k \). Hence, the corresponding tau-function is then equal, up to a constant factor, to \(\tau_{w^+_1, \ldots, w^+_k}(t) \). This proves part (b).

(c) Let \(\tau(t) \) be a polynomial CKP tau-function, i.e. \(\tau(t) \) is a KP tau-function that satisfies (68). This \(\tau \) is invariant under \(\iota_C \). We know from Section 3 that

\[
\sigma^{-1}(\tau(t)) = f = R(A)f_\lambda \in R(U)f_\lambda, \text{ for some partition } \lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell) = (a_1, \ldots, a_k|b_1, \ldots, b_k) \in \text{Par}_\ell. \text{ Thus } f \text{ is of the form (cf. (46))}
\]

\[
f = w^{\lambda_1 - 1} w^{\lambda_2 - 1} \cdots w^{\lambda_\ell - 1} - \ell), \tag{78}
\]

where

\[
w^{\lambda_j - j + \frac{1}{2}} = \psi^{\lambda_j - j + \frac{1}{2}} - \lambda_j + \sum_{j + \frac{1}{2} - \lambda_j \leq i < \ell} a_{-i, \lambda_j - j + \frac{1}{2}} \psi^+_i \tag{79}
\]

and

\[
a_1 = \lambda_1 - 1 > \cdots > a_k = \lambda_k - k \geq 0 > \lambda_{k+1} - k - 1 > \cdots > \lambda_\ell - \ell. \tag{80}
\]

Recall that

\[
\iota_C(w^{\lambda_j - j + \frac{1}{2}}) = (-1)^{\lambda_j - j} \psi^{\lambda_j - j + \frac{1}{2}} - \lambda_j + \sum_{j + \frac{1}{2} - \lambda_j \leq i < \ell} (-1)^{i + \frac{1}{2}} a_{-i, \lambda_j - j + \frac{1}{2}} \psi^+_i. \tag{81}
\]
Now let us study $\text{Ann} f$, which is a maximal isotropic subspace of Ψ. From (78), (51), and the fact that $\iota_C(\text{Ann} f) = \text{Ann} f$, we deduce that

$$\text{Ann}_+ f = \text{span}\{w^+_{\lambda_1-\frac{1}{2}}, w^+_{\lambda_2-\frac{1}{2}}, \ldots, w^+_{\lambda_i-\frac{1}{2}}, \psi^+_{\ell_{1}+\frac{1}{2}}, \psi^+_{\ell_{2}+\frac{1}{2}}, \psi^+_{\ell_{3}+\frac{1}{2}}, \ldots\},$$

$$\text{Ann}_- f = \text{span}\{\iota_C(w^+_{\lambda_1-\frac{1}{2}}), \iota_C(w^+_{\lambda_2-\frac{1}{2}}), \ldots, \iota_C(w^+_{\lambda_i-\frac{1}{2}}), \psi^-_{\ell_{1}+\frac{1}{2}}, \psi^-_{\ell_{2}+\frac{1}{2}}, \psi^-_{\ell_{3}+\frac{1}{2}}, \ldots\}.$$

Thus $(\psi^-_i, w^+_{\lambda_j-j+\frac{1}{2}}) = 0$ for all $i > \ell$, and $j = 1, \ldots, \ell$, which means that $a_{-\ell, \lambda_j} = 0$ for all $i < -\ell$. Therefore all $\lambda_j - j \leq \ell$, for $j = 1, \ldots, \ell$. In particular $a_1 \leq \ell$.

Next, consider the element

$$g = w^+_{\lambda_1-\frac{1}{2}} \iota_C(w^+_{\lambda_1-\frac{1}{2}})w^+_{\lambda_2-\frac{1}{2}} \iota_C(w^+_{\lambda_2-\frac{1}{2}}) \cdots w^+_{\lambda_k-\frac{1}{2}} \iota_C(w^+_{\lambda_k-\frac{1}{2}}) |0\rangle, \quad (82)$$

where k is determined by the Frobenius notation of λ. Note that this element is not equal to 0, because the subspace spanned by $w^+_{\lambda_1}, \iota_C(w^+_{\lambda_1}), \ldots, w^+_{\lambda_k}, \iota_C(w^+_{\lambda_k})$ is isotropic with respect to $\omega(\cdot, \cdot)$ and all elements $w^+_{\lambda_j-j+\frac{1}{2}}$ and $\iota_C(w^+_{\lambda_j-j+\frac{1}{2}})$ for $j = 1, \ldots, k$ do not annihilate $|0\rangle$. First of all consider $\psi^+_i g$ for $i > \ell$. Since $\psi^+_i \in \text{Ann}_+ f$, this element anticommutes with all $w^+_{\lambda_j-j+\ell}$ and $\iota_C(w^+_{\lambda_j-j+\ell})$ for $j = 1, \ldots, \ell$.

Thus

$$\psi^+_i g = w^+_{\lambda_1-\frac{1}{2}} \iota_C(w^+_{\lambda_1-\frac{1}{2}})w^+_{\lambda_2-\frac{1}{2}} \iota_C(w^+_{\lambda_2-\frac{1}{2}}) \cdots w^+_{\lambda_k-\frac{1}{2}} \iota_C(w^+_{\lambda_k-\frac{1}{2}}) \psi^+_i |0\rangle = 0.$$

Also $w^+_{\lambda_j-j+\frac{1}{2}}$ (resp. $\iota_C(w^+_{\lambda_j-j+\frac{1}{2}})$) anticommutes with $\iota_C(w^+_{\lambda_j-i+\frac{1}{2}})$ (resp. $w^+_{\lambda_j-i+\frac{1}{2}}$).

If $j \leq k$, then

$$w^+_{\lambda_j-j+\frac{1}{2}} = w^+_{\lambda_1-\frac{1}{2}} \iota_C(w^+_{\lambda_1-\frac{1}{2}}) \cdots w^+_{\lambda_j-j+\frac{1}{2}} \iota_C(w^+_{\lambda_j-j+\frac{1}{2}}) \cdots w^+_{\lambda_k-\frac{1}{2}} \iota_C(w^+_{\lambda_k-\frac{1}{2}}) |0\rangle = 0,$$

and similarly $\iota_C(w^+_{\lambda_j-j+\frac{1}{2}}) g = 0$ for $j \leq k$. Next, let $j > k$, then also

$$w^+_{\lambda_j-j+\frac{1}{2}} = w^+_{\lambda_1-\frac{1}{2}} \iota_C(w^+_{\lambda_1-\frac{1}{2}})w^+_{\lambda_2-\frac{1}{2}} \iota_C(w^+_{\lambda_2-\frac{1}{2}}) \cdots w^+_{\lambda_k-\frac{1}{2}} \iota_C(w^+_{\lambda_k-\frac{1}{2}}) w^+_{\lambda_j-j+\frac{1}{2}} |0\rangle = 0,$$

since $\lambda_j - j < 0$ and $w^+_{\lambda_j-j+\frac{1}{2}} = \psi^+_j - \psi^-_j + \sum_{i>j} a_{i, \lambda_j-j+\frac{1}{2}} \psi^+_i$, i.e. a linear combination of ψ^+_i with $i > 0$. This also holds for $\iota_C(w^+_{\lambda_j-j+\frac{1}{2}})$ for $j > k$. Hence $\text{Ann} f = \text{Ann} g$ and g must be a multiple of f. Therefore, $\tau(t) = \text{const} \tau w^+_{\lambda_1-\frac{1}{2}} w^+_{\lambda_2-\frac{1}{2}} \cdots w^+_{\lambda_k-\frac{1}{2}} (t)$, and $b_j = a_j$ for all $1 \leq j \leq k$. Hence λ is self-conjugate and equal to $(a_1, \ldots, a_k | a_1, \ldots, a_k)$, in the Frobenius notation.

Note that in this construction, the span of $w^+_{\lambda_1-\frac{1}{2}}, \ldots, w^+_{\lambda_k-\frac{1}{2}}$ is isotropic with respect to $\omega(\cdot, \cdot)$. This gives some restriction on the $a_{i, \lambda_j-j+\frac{1}{2}}$. For arbitrary vectors v^+_i, v^+_k, as in part (a) of the theorem, the linear span of the v^+_i does not have to be isotropic with respect to $\omega(\cdot, \cdot)$.
As in the previous section, we can write
\[
 w_{\lambda_j-j+\frac{1}{2}}^+ = v_{j-\frac{1}{2}-\lambda_j}^+ + \sum_{j+\frac{1}{2}-\lambda_j \leq i < \ell} a_{-i,\lambda_j-j+\frac{1}{2}} v_i^+
\]
\[
 = \text{Res}_z z^{j-\lambda_j-1} \psi^+(z) \exp\left(\sum_{i=1}^{\infty} c_{i,j} z^i\right),
\]
\[
 \iota_C(w_{\lambda_j-j+\frac{1}{2}}^+) = \text{Res}_z (-1)^{j-\lambda_j} z^{j-\lambda_j-1} \psi^-(z) \exp\left(-\sum_{i=1}^{\infty} \iota_C(c_{i,j}) z^i\right).
\]

For these isotropic \(w_{\lambda_j-j+\frac{1}{2}}^+\), we have that
\[
 \tau(t) = \langle (\exp H(t)) w_{\lambda_1-\frac{1}{2}}^+ \cdots w_{\lambda_k-\frac{1}{2}}^+ \iota_C(w_{\lambda_1-\frac{1}{2}}^+) \cdots \iota_C(w_{\lambda_k-\frac{1}{2}}^+) \rangle
\]
so we can apply Theorem \[5\] so that \(\tau(t)\) is given, up to a constant factor, by \[42\], with \(b_j = a_j = \lambda_j - j\) and \(d_j = \iota_C(c_j)\). But there are restrictions on the constants, namely, since \(\omega(w_{\lambda_i-i+\frac{1}{2}}^+, w_{\lambda_j-j+\frac{1}{2}}^+) = 0\) for \(1 \leq i < j \leq k\), we find that
\[
 0 = \omega(w_{\lambda_i-i+\frac{1}{2}}^+, w_{\lambda_j-j+\frac{1}{2}}^+)
\]
\[
 = \text{Res}_y \text{Res}_z y^{-a_i-1} z^{-a_j-1} \exp\left(\sum_{n=1}^{\infty} (c_{n,i} y^n - \iota_C(c_{n,j}) z^n)\right)(\psi^+(y), \psi^-(z))
\]
\[
 = \text{Res}_y \text{Res}_z y^{-a_i-a_j-2} \exp\left(\sum_{n=1}^{\infty} (c_{n,i} - \iota_C(c_{n,j})) y^n\right) \delta(y-z)
\]
\[
 = \text{Res}_y y^{-a_i-a_j-2} \exp\left(\sum_{n=1}^{\infty} (c_{n,i} - \iota_C(c_{n,j})) y^n\right)
\]
\[
 = s_{a_i+a_j+1}(c_i - \iota_C(c_j)).
\]

In other words, we obtain the restriction \[11\] for \(b_j = a_j\) and \(d_j = \iota_C(c_j)\), which means that we have to choose \(c_{a_i+a_j+1,j}\) for \(j > i\) as in \[15\]. (d) follows from Remark \[10\] below.

Remark 10 Following \[7\], \[2\], we can define \(\iota_C\) on \(\Psi = \Psi^+ \oplus \Psi^-\) as \(\text{ad } \Omega\), i.e. \(\iota_C(\psi_j^\pm) = \text{ad } \Omega(\psi_j^\pm)\) for
\[
 \Omega = \frac{1}{2}(\Omega_+ + \Omega_-), \quad \text{where } \Omega_\pm = \sum_{i \in \frac{1}{2} + \mathbb{Z}} (-1)^{i+\frac{1}{2}} \psi_i^\pm \psi_{-i}^\pm.
\]

Since \(\Omega|0\) = 0, we find that a CKP element \(f \in F^{(0)}\) of the form
\[
 f = v_1^+ \iota_C(v_1^+) v_2^+ \iota_C(v_2^+) \cdots v_k^+ \iota_C(v_k^+)|0\]
satisfies \(\Omega f = 0\). Since \(\Omega_\pm f \in F^{(\pm 2)}\), we must have that.
\[
 \Omega_\pm f = 0.
\]

(84)
Now applying σ to the above equations (84), and using that
\[
\Omega_+ = \text{Res}_z \psi^+(-z)\psi^+(z), \quad \Omega_- = \text{Res}_z \psi^-(z)\psi^-(z),
\]
we find that a polynomial CKP tau function $\tau(t)$ satisfies
\[
\text{Res}_z z \exp \left(\pm 2 \sum_{i=1}^{\infty} t_{2i} z^{2i} \right) \exp \left(\mp \sum_{i=1}^{\infty} \frac{\partial}{\partial t_{2i}} z^{-2i} \right) \tau(t) = 0,
\]
which is, in terms of the elementary Schur polynomials, equation (76).

Example 11 To show that the constraints (75) are non-trivial, we calculate an example explicitly. The smallest example where this constraint occurs, is for $\lambda = (2,2) = (1,0)|1,0)$. We have
\[
\tau_{(1,0)|1,0};c(t) = 1/12(12c_{21}c_{22} - 12c_{31}t_1 - 6c_{21}t_1^2 + 6c_{22}t_1^2 + t_1^4 - 2c_{11}^2(t_2 + t_1) + 6c_{11}(c_{12}^2 + 2c_{22} - c_{21})t_1 + c_{12}(t_1^3 - 2c_{21} - 2t_2)) + 12c_{21}t_2 + 12c_{22}t_2 + 12t_2^2 + 3c_{11}(c_{12}^2 + 2c_{22} - t_1^2 - 2t_2) + 3c_{12}(2c_{21} + t_1^2 + 2t_2) - 12t_1t_3 - 4c_{12}(3c_{31} - t_1^3 + 3t_3)).
\]
Calculating $\tau_{(1,0)|1,0};c(t) - \tau_{(1,0)|1,0};c(t_C(t))$, we find that
\[
\tau_{(1,0)|1,0};c(t) - \tau_{(1,0)|1,0};c(t_C(t)) = (c_{11}^2 - 2c_{11}c_{12} + c_{12}^2 + 2(c_{21} + c_{22}))t_2,
\]
and this term has to be 0 for a CKP tau-function. This happens if we choose
\[
c_{22} = -\left(\frac{1}{2}c_{11}^2 - c_{11}c_{12} + \frac{1}{2}c_{12}^2 + c_{21}\right) = -s_2(c_{11} - c_{12}, c_{21})
\]
which is exactly the constraint (75).

Let $\tau(t)$ be as in (73). We find in a similar way as we obtained (64), that the corresponding CKP wave function is given by
\[
w^+(t, z) = \frac{1}{\tau(t)} \exp \left(\sum_{n=1}^{\infty} t_n z^n \right) \times
\[
\det \begin{pmatrix}
1 & \chi_{(0)a_1}([z^{-1}]; t + \iota C(c_1)) & \cdots & \chi_{(0)a_k}([z^{-1}]; t + \iota C(c_k)) \\
\text{Res}_z(t + c_1) & T_{11}(t) & \cdots & T_{1k}(t) \\
\text{Res}_z(t + c_2) & T_{21}(t) & \cdots & T_{2k}(t) \\
\vdots & \vdots & & \vdots \\
\text{Res}_z(t + c_k) & T_{k1}(t) & \cdots & T_{kk}(t)
\end{pmatrix},
\]
where the $T_{ij}(t)$ are given by (73).

It follows from the bilinear identity (35) on the tau-function, that the wave function satisfies
\[
\text{Res}_z w^+(t, z) w^+(t', -z) = 0.
\]
Writing \(w^+(t, z) \) as in [40], we obtain as in [86]:

\[
0 = \text{Res}_z P^+(t, z)P^+(t', -z) \exp \left(\sum_{n=1}^{\infty} t_n z^n + t'_n (-z)^n \right)
\]

\[
= \text{Res}_z P^+(t, z)P^+(t' - z) \exp \left(\sum_{n=1}^{\infty} (t_n - \nu_C(t'_n))z^n \right),
\]

from which we deduce that \(P^+(t, \partial)^{-1} = P^+(\nu_C(t), \partial)^* \). This implies that, besides the Lax equations (14), the pseudodifferential operator \(L(t, \partial) = P^+(t, \partial) \circ \partial \circ P^+(t, \partial)^{-1} \) satisfies the condition

\[
L(t, \partial)^* = (P^+(t, \partial) \circ \partial \circ P^+(\nu_C(t), \partial)^*)^* = -L(\nu_C(t), \partial).
\]

It follows from (87) that the pseudodifferential operator \(L(t, \partial) \) is skew-adjoint if and only if \(L(t, \partial) \) satisfies the Krichever-Zabrodin condition [14]

\[
\left[\frac{\partial}{\partial t_{2n}}, L(t, \partial) \right] \bigg|_{t_{2n} = 0} = 0, \quad n = 1, 2, \ldots;
\]

in particular, if \(L(t, \partial) = L(t_o, \partial) \), where \(t_o = (t_1, 0, t_3, 0, t_5, \ldots) \). In the latter case the hierarchy (14) of Lax-Sato equations becomes

\[
\frac{\partial L(t_o, \partial)}{\partial t_k} = [(L(t_o, \partial)^k)_+, L(t_o, \partial)], \quad k = 1, 3, 5, \ldots,
\]

6 Reductions of the CKP hierarchy

Let \(n \) be a positive integer \(\geq 2 \). We want to study \(n \)-reductions of the CKP hierarchy, which means that we restrict \(c_\infty \) to the Lie algebra \(c_\infty \cap \hat{gl}_n \), where \(\hat{gl}_n = gl_n(\mathbb{C}[t, t^{-1}]) \oplus K \) is the subalgebra of \(a_\infty \), consisting of all \(n \)-periodic matrices \(g = (g_{ij})_{i,j \in \frac{1}{2} + \mathbb{Z}} \), i.e. \(g_{i+n,j+n} = g_{ij} \), together with \(K \). This intersection is equal to the affine Lie algebra \(sp_n \) if \(n \) is even, and to the twisted affine Lie algebra \(\hat{gl}_n^{(2)} \) if \(n \) is odd (see [8], page 977).

Let \(G \) be an element in the group \(G_n \), corresponding to this affine Lie algebra. Then \(G\psi_j^+G^{-1} = \sum_{j \in \frac{1}{2} + \mathbb{Z}} a_{ij} \psi_i^+ \), where \((a_{ij})_{i,j \in \frac{1}{2} + \mathbb{Z}} \) is periodic, i.e. \(a_{i+n,j+n} = a_{ij} \), and satisfies

\[
(-1)^{j+\frac{3}{2}} \delta_{j,-\ell} = \omega(\psi_j^+, \psi_{\ell}^+) = \sum_{i,k} a_{ij} a_{k\ell} \omega(\psi_i^+, \psi_k^+).
\]

Hence \(\sum_{i \in \frac{1}{2} + \mathbb{Z}} (-1)^{-i} a_{ij} a_{-i,\ell} = \) and thus also \(\sum_{j \in \frac{1}{2} + \mathbb{Z}} (-1)^{j+\frac{1}{2}} a_{ij} a_{\ell,-j} = \)
$(-1)^{i+\frac{1}{2}\delta_{i,-\ell}}$. Now let p be an arbitrary positive integer, then

\[
(G \otimes G) \sum_{j \in \frac{1}{i} + \mathbb{Z}} \psi_j^+ \otimes (-1)^{j-pn-\frac{1}{2}}\psi_{pn-j}^+
\]

\[
= \sum_{j \in \frac{1}{i} + \mathbb{Z}} (-1)^{j-pn-\frac{1}{2}}(G\psi_j^+ G^{-1})G \otimes (G\psi_{pn-j}^+ G^{-1})G
\]

\[
= \sum_{i,j,k \in \frac{1}{i} + \mathbb{Z}} (-1)^{j-pn-\frac{1}{2}}a_{ij}a_{k,pn-j}\psi_i^+ G \otimes \psi_k^+ G
\]

\[
= (-)^{pm-1} \sum_{i,k \in \frac{1}{i} + \mathbb{Z}} (-1)^{i+\frac{1}{2}\delta_{i,pn-k}}\psi_i^+ G \otimes \psi_k^+ G
\]

\[
= \sum_{i,k \in \frac{1}{i} + \mathbb{Z}} (-1)^{i-pn-\frac{1}{2}}\psi_i^+ G \otimes \psi_{pn-i}^+ G.
\]

Thus $G \otimes G$ commutes with the operator

\[
\sum_{j \in \frac{1}{i} + \mathbb{Z}} \psi_j^+ \otimes (-1)^{j-pn-\frac{1}{2}}\psi_{pn-j}^+.
\]

Since

\[
\sum_{j \in \frac{1}{i} + \mathbb{Z}} \psi_j^+ |0\rangle \otimes (-1)^{j-pn-\frac{1}{2}}\psi_{pn-j}^+ |0\rangle = 0,
\]

we find that

\[
\sum_{j \in \frac{1}{i} + \mathbb{Z}} \psi_j^+ G|0\rangle \otimes (-1)^{j-pn-\frac{1}{2}}\psi_{pn-j}^+ G|0\rangle = 0.
\]

Stated differently, we find that

\[
\text{Res}_z z^m \psi^+(z)f \otimes \psi^+(-z)f = 0 \quad \text{for} \quad f \in \mathcal{G}_n|0\rangle, \quad p = 0, 1, \ldots.
\]

The case $p = 0$ is the CKP hierarchy. Using the isomorphism σ, we obtain the n-reduced CKP hierarchy of bilinear equations on the tau-function ($p = 0, 1, 2, \ldots$):

\[
\text{Res}_{z=0} z^m \exp \left(\sum_{i} (t_i + (-1)^i t'_i) z^i \right) \exp \left(-\sum_{i} \left(\frac{\partial}{\partial t_i} + (-1)^i \frac{\partial}{\partial t'_i} \right) \frac{z^{-i}}{i} \right) \tau(t)\tau(t') = 0.
\]

(89)

Remark 12

(a) Since $\tau(t)$ is also an n-reduced KP tau function we find that $\frac{\partial \tau(t)}{\partial t_{pn}} = \text{const} \tau(t)$, which gives for polynomial tau-functions that $\frac{\partial \tau(t)}{\partial t_{pn}} = 0$.

(b) Note that the above equations (89) on the tau-function induce the following equations on the wave function $w^+(t,z)$:

\[
\text{Res}_z z^m w^+(t,z)w^+(t',-z) = 0, \quad p = 1, 2, \ldots.
\]
Taking $p = 1$, one deduces that a reduced Lax operator \mathcal{L}, which we define as $\mathcal{L}(t, \partial) = L(t, \partial)^n$, is an n-th order monic differential operator, satisfying

$$\frac{\partial \mathcal{L}(t, \partial)}{\partial t_k} = [\mathcal{L}(t, \partial)^n, \mathcal{L}(t, \partial)] \quad \text{and} \quad \mathcal{L}(t, \partial)^* = (-1)^n \mathcal{L}(iC(t), \partial), \quad (90)$$

where k is a positive integer. If k is divisible by n, the right-hand side of the first equation is 0. The second equation follows from $[\mathcal{S}_n]$. We prove this along the lines of the proof of Theorem 5 and Theorem 9, assuming that $\lambda \in \text{Par}_\ell$ is n-periodic and self-conjugate, lead to the following two conditions on the set $A^{(n)}_\lambda := \{a_1, a_2, \ldots, a_k\}$:

- If $a_j \in A^{(n)}_\lambda$, then either $a_j - n \in A^{(n)}_\lambda$ or $a_j - n < 0$.

- For all $a_i, a_j \in A^{(n)}_\lambda$, the integer $a_i + a_j + 1$ is not a multiple of n.

Note that if $a_i + a_j + 1 = kn$, for some positive integer k, then $a_i \in V^{(n)}_\lambda$ but $a_i - kn = -a_j - 1 \notin V^{(n)}_\lambda$.

We prove this along the lines of the proof of Theorem 5 and Theorem 9, assuming that $\lambda \in \text{Par}_\ell$ is n-periodic and self-conjugate. Then $\lambda = (a_1, \ldots, a_k|a_1, \ldots, a_k)$ in the Frobenius notation, and

$$f_\lambda = \pm \prod_{i=1}^{k} \psi_{-a_i - 1/2}^+ \psi_{-a_i - 1/2}^C(\psi_{-a_i - 1/2}^+ | 0).$$
Now let $G \in U$, such that $G\psi^+_jG^{-1} = \sum_i a_{ij}\psi^+_i$, where $A = (a_{ij})_{i,j \in \frac{1}{2}+\mathbb{Z}}$, satisfying the condition that $\sum_{i,j \in \frac{1}{2}+\mathbb{Z}} (-1)^{j-i}a_{i,j}a_{-i,-j} = (-1)^{j-i}\delta_{j,-\ell}$ (and thus also $\sum_{j \in \frac{1}{2}+\mathbb{Z}} (-1)^{j+\frac{1}{2}}a_{ij}a_{\ell,-j} = (-1)^{j+\frac{1}{2}}\delta_{i,-\ell}$) and $a_{i+n,j+n} = a_{ij}$. The first condition gives that the vectors

$$w^+_{-a_j-\frac{1}{2}} = G\psi^+_{-a_j-\frac{1}{2}}G^{-1} = \sum_{i \neq -a_j} a_{i,-a_j-\frac{1}{2}}\psi_i^+$$

for $j = 1, \ldots, k$ form an isotropic subspace of Ψ^+ with respect to $\omega(\cdot, \cdot)$. Next, we investigate

$$Gf_\lambda = w^+_{-a_1-\frac{1}{2}} \cdots w^+_{-a_k-\frac{1}{2}} t_C(w^+_{-a_1-\frac{1}{2}}) \cdots t_C(w^+_{-a_k-\frac{1}{2}})[0].$$

The n-periodicity of an element in U gives for $a_j - n \geq 0$, that $a_j - n = a_r$ for an $r > j$, and that $a_{i,-a_j-\frac{1}{2}}$ is equal to $a_{i+n,-a_r-\frac{1}{2}}$. Hence

$$w^+_{-a_j-\frac{1}{2}} = \psi^+_{-a_j-\frac{1}{2}} + \sum_{i \neq -a_j} a_{i,-a_j-\frac{1}{2}}\psi_i^+ = \psi^+_{-a_j-\frac{1}{2}} + \sum_{i \neq -a_j} a_{i+n,-a_r-\frac{1}{2}}\psi_i^+ = \psi^+_{-a_{i+n}-\frac{1}{2}} + \sum_{i \neq -a_r} a_{i,-a_r-\frac{1}{2}}\psi_{i+n}^+$$

So if we assume, as in the proof of Theorem 5 that

$$w^+_{-a_j-\frac{1}{2}} = \text{Res}_z z^{-a_j-1}\psi^+_j(z) \exp \left(\sum_{i=1}^{\infty} c_{i,a_j} z^i \right),$$

then

$$w^+_{-a_r-\frac{1}{2}} = w^+_{-a_j+n-\frac{1}{2}} = \text{Res}_z z^{-a_j+n-1}\psi^+_j(z) \exp \left(\sum_{i=1}^{\infty} c_{i,a_j} z^i \right).$$

This gives that there are at most m different vectors $c_{a_j} = (c_{1,a_j}, c_{2,a_j}, \ldots)$. So, instead of c_{a_j} we will write $c_{\overline{a_j}}$, where $\overline{a_j}$ stands for the congruence class of a_j modulo n. In a similar way as in Theorem 9, we obtain the restrictions on the constants. This gives

Theorem 13 Any polynomial n-reduced CKP tau-function is, up to a constant factor, equal to

$$\tau_{a_1, \ldots, a_k|a_1, \ldots, a_k; c}(t) = \det \left(\chi_{a_1|a_j}(t + c_{\overline{a_j}}; t + \tau_C(c_{\overline{a_j}})) \right)_{1 \leq i,j \leq k},$$

(91)

where $\lambda = (a_1, \ldots, a_k|a_1, \ldots, a_k)$ is n-periodic and $c_{\overline{a_j}} = (c_{1,\overline{a_j}}, c_{2,\overline{a_j}}, \ldots, c_{m_j,\overline{a_j}}) \in \mathbb{C}^{m_j+a_j+1}$. Here m_j is the largest integer among all a_1, \ldots, a_k, such that $m_j = \overline{a_j}$. We have the following restrictions on the constants for $1 \leq i < j \leq k$:

$$s_{a_i+a_j+1}(c_{1,\overline{a_i}} - c_{1,\overline{a_j}}, c_{2,\overline{a_i}} - c_{2,\overline{a_j}}, \ldots, c_{a_i+a_j,\overline{a_i}} - c_{a_i+a_j,\overline{a_j}} + (-1)^{a_i+a_j+1}c_{a_i+a_j+1,\overline{a_j}}) = 0.$$

(92)
It is easy to see that the $n = 2$-reduced CKP hierarchy \([90]\) coincides with the KdV hierarchy on the differential operator $L = \partial^2 + u$.

The next case, the $n = 3$-reduced CKP hierarchy, is called the Kaup-Kupershmidt hierarchy. It is the hierarchy \([29]\) of Lax equations on the differential operator L given by \([28]\). Since $(L^2_+)^+ = \partial^6 + \frac{5}{3}u\partial^3 + \frac{5}{2}u u_x \partial^2 + \frac{5}{18}(2u^2 + 7u_{xx})\partial + \frac{5}{9}(uu_x + u_{xxx})$, the first non-trivial such equation occurs for $k = 5$, and it gives

$$
\frac{\partial u}{\partial t_5} = -\frac{1}{18}(10u^2 u_x + 25u u_{xx} + 10uu_{xxx} + 2u_{xxxxx}), \quad (93)
$$

which is the Kaup-Kupershmidt equation (see e.g. \([5]\), Subsec. 11.3).

In this case there are, besides $\lambda = \emptyset$, two possible sets of self-conjugate partitions, which are 3-periodic, viz. $(m \in \mathbb{Z}_{\geq 0})$:

(1) $\lambda = (3m, 3m - 3, 3m - 6, \ldots, 3, 0|3m, 3m - 3, 3m - 6, \ldots, 3, 0),$

(2) $\lambda = (3m + 2, 3m - 1, 3m - 4, \ldots, 5, 2|3m + 2, 3m - 1, 3m - 4, \ldots, 5, 2). \quad (94)$

The corresponding CKP tau-functions are equal, up to a constant factor, to, respectively,

(1) $\det \left(\chi_{(3i|3j)}(t + c; t + \iota C(c)) \right)_{0 \leq i,j \leq m},$

(2) $\det \left(\chi_{(3i+2|3j+2)}(t + c; t + \iota C(c)) \right)_{0 \leq i,j \leq m},$

with the following constraints on the vector of constants $c = (c_1, c_2, c_3, \ldots)$

$$
c_{2k} = -\frac{1}{2} s_k(2c_2, 2c_4, 2c_6, \ldots, 2c_{2k-4}, 2c_{2k-2}, 0),
$$

for $k = 2, 5, 8, \ldots, 3m - 4, 3m - 1$, and $k = 4, 7, 10, \ldots, 3m - 2, 3m + 1$, respectively.

Recall that, by the second equation in \([91]\), $L(t, \partial)^* = -L(\iota(t), \partial)$. Hence, in order to obtain a skew-adjoint differential operator, one has to let all $t_{2i} = 0$, $i = 1, 2, 3, \ldots$. Also, there is only one vector of constants, viz. $c \in \mathbb{C}^{6m+1}$, and $c = \in \mathbb{C}^{6m+5}$, respectively.

Note that due to the equation \([27]\), which expresses u in terms of the tau-functions, the tau-functions (1) and (2) with $t = t_o$ produce rational solutions of the Kaup-Kupershmidt hierarchy.

7 Comparison with the polynomial solutions of BKP

It is interesting to compare the polynomial tau-functions of the CKP hierarchy and that of the BKP hierarchy. The first observation is that both tau-functions are parametrized more or less by the same kind of permutations. The ones of the CKP are parametrized by the self-conjugate partitions $\lambda = (a_1, \ldots, a_k|a_1, \ldots, a_k)$, where $a_1 > a_2 > \cdots > a_k \geq 0$. Hence $\mu := (a_1, a_2, \ldots, a_k)$ is an extended strict partition.

We use the word extended because we allow a_k to be zero. The polynomial solutions
of the BKP hierarchy are parametrized by the same set of extended strict partitions, with the only additional restriction that k has to be even.

The second observation is that the solutions are expressed in terms of the polynomials:

$$\chi_{M,N}(t, t') = (-1)^N \left(\frac{1}{2} s_M(t) s_N(-t') + \sum_{k=1}^{N} s_{M+k}(t) s_{N-k}(-t') \right)$$

$$= \chi_{(M,N)}(t, t') - (-1)^M \frac{1}{2} s_M(t) s_N(-t').$$

(95)

Namely, one has (see [10], [13] and [15])

Theorem 14 (a) All polynomial tau-functions of the BKP hierarchy are, up to a scalar factor of the form

$$\tau_{B\lambda}(t_o) = Pf \left(\chi_{\lambda,\lambda}(t_o + c_i, t_o + \iota_C(c_j)) \right)_{1 \leq i,j \leq 2^n},$$

(96)

where $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_{2n})$ is an extended strict partition, i.e. $\lambda_1 > \lambda_2 > \cdots \lambda_{2n} \geq 0$, where $t_o = (t_1, 0, t_3, 0, t_5, 0, \ldots)$ and $c_i = (c_{i_1}, c_{2i}, c_{3i}, \ldots)$ are arbitrary constants.

(b) This tau-function is the square root of a KP tau-function $\tau_{\lambda}(t_o)$, where

$$\chi = \begin{cases}
(\lambda_1 - 1, \lambda_2 - 1, \ldots, \lambda_{2n} - 1 | \lambda_1, \lambda_2, \ldots, \lambda_{2n}), & \text{if } \lambda_{2n} \neq 0 \text{ and } \\
(\lambda_1 - 1, \lambda_2 - 1, \ldots, \lambda_{2n-1} - 1 | \lambda_1, \lambda_2, \ldots, \lambda_{2n-1}), & \text{if } \lambda_{2n} = 0.
\end{cases}$$

Note the following:

- In the above BKP tau-function, the even times do not appear, but the even constants $c_{2k,i}$ do appear.

- The formulas look different from the ones for the BKP tau-function in e.g. [10], but here we have used the fact that

$$\sum_{j=0}^{\infty} (-1)^j s_j(t) z^j = \exp\left(\sum_{i=1}^{\infty} t_i (-z)^i \right) = \exp\left(- \sum_{i=1}^{\infty} \iota_C(t) z^i \right) = \sum_{j=0}^{\infty} s_j(-\iota_C(t)) z^j$$

- The square of $\tau_{B\lambda}(t_o)$ is equal to

$$\tau_{B\lambda}^2(t_o) = \pm \det \left(\chi_{\lambda,\lambda}(t_o + c_i, t_o + \iota_C(c_j)) \right)_{1 \leq i,j \leq 2^n}.$$

But since χ is not self-conjugate, this is never equal to a CKP tau-function where one puts the even times equal to 0, except when $\lambda = 0$, in that case $\tau_{0\lambda}^2(t_o) =$constant.
References

[1] Arthamonov, S. ; Harnad, J. ; Hurtubise, J. Lagrangian Grassmannians, CKP hierarchy and hyperdeterminantal relations. arXiv:2202.13991

[2] Arthamonov, S. ; Harnad, J. ; Hurtubise, J. Tau functions, infinite Grassmannians and lattice recurrences arXiv:2207.08054

[3] Date, E. ; Jimbo, M. ; Kashiwara, M. ; Miwa, T. Transformation groups for soliton equations, in: Nonlinear integrable systems—classical theory and quantum theory eds M. Jimbo and T. Miwa, World Scientific, (1983), 39–120.

[4] Date, E. ; Jimbo, M. ; Kashiwara, M. ; Miwa, T. KP hierarchies of orthogonal and symplectic type–Transformation groups for soliton equations VI. J.Phys. Soc. Japan 50 (1981), 3813–3818.

[5] De Sole, A. ; Kac, V. G. ; Valeri, D. Classical affine W-algebras and the associated integrable Hamiltonian hierarchies for classical Lie algebras. Commun. Math. Phys., 360(3), (2018). 851-918.

[6] Jimbo, M. ; Miwa, T. Solitons and infinite-dimensional Lie algebras. Publ. Res. Inst. Math. Sci. 19 (1983), no. 3, 943–1001.

[7] Kac, V.G. Infinite-dimensional Lie algebras (3rd ed.). Cambridge: Cambridge University Press. (1990). doi:10.1017/CBO9780511626234

[8] Kac, V. ; van de Leur, J. The geometry of spinors and the multicomponent BKP and DKP hierarchies. The bispectral problem (Montreal, PQ, 1997), 159–202, CRM Proc. Lecture Notes, 14, Amer. Math. Soc., Providence, RI, 1998.

[9] Kac, V.G. ; van de Leur, J. W. Equivalence of formulations of the MKP hierarchy and its polynomial tau-functions, Japanese Journal of Mathematics, Vol. 13 (2) (2018), 235–271.

[10] Kac, V.G. ; van de Leur, J.W. Polynomial tau-functions of BKP and DKP hierarchies, J. Math. Phys. 60 (2019); https://doi.org/10.1063/1.5085310

[11] Kac, V.G. ; van de Leur, J.W. Multicomponent KP type hierarchies and their reductions, associated to conjugacy classes of Weyl groups of classical Lie algebras. (To appear)

[12] Kac, V. G. ; Peterson, D. H. “Lectures on the infinite wedge representation and the MKP hierarchy,” Sem. Math. Sup., Vol. 102 (Presses Univ. Montreal, Montreal, 1986), 141–184.

[13] Kac, V.G. ; Rozhkovskaya, N. ; van de Leur, J. Polynomial tau-functions of the KP, BKP and the s-component KP hierarchies. J. Math. Phys. 62, 021702 (2021); https://doi.org/10.1063/5.0013017
[14] Krichever, I.; Zabrodin, A. Kadomtsev–Petviashvili turning points and CKP hierarchy, Comm. Math. Phys. 386 (2021), 1643—1683.

[15] van de Leur, J. BKP tau-functions as square roots of KP tau-functions. J. Phys. A: Math. Theor. (2022) 55 015202

[16] van de Leur, J.; Orlov, A.; Shiota, T. CKP hierarchy, bosonic tau function and bosonization formulae SIGMA (2012) volume 8, 036/1 – 036/28

[17] Macdonald, I.G. Symmetric functions and Hall polynomials, Clarendon Press, Oxford, (1995).

[18] Sato, S. Soliton equations as dynamical system on a infinite Grassmann manifold. RIMS, Kōkyūroku, 439 (1981), 30–46.