Reconstruction of α-attractor supergravity models of inflation

Alessandro Di Marco, Paolo Cabella, and Nicola Vittorio

University of Rome - Tor Vergata, Via della Ricerca Scientifica 1
INFN Sezione di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma, Italy

In this paper, we apply reconstruction techniques to recover the potential parameters for a particular class of single-field models, the α-attractor (supergravity) models of inflation. This also allows to derive the inflaton vacuum expectation value at horizon crossing. We show how to use this value as one of the input variables to constrain the postaccelerated inflationary phase. We assume that the tensor-to-scalar ratio r is of the order of 10^{-3}, a level reachable by the expected sensitivity of the next-generation CMB experiments.

I. INTRODUCTION

Different cosmological observations [1–5] have converged by now to support ΛCDM as the concordance model of modern cosmology. This model, as all its possible other extensions, assumes as a paradigm the inflationary scenario. This is needed for two reasons: on one hand, to justify the observed flatness and isotropy of the Universe, as well as the absence of magnetic monopoles [6–10]; on the other hand, to exploit quantum mechanisms for explaining the origin of matter [11–15] and the production of those fluctuations responsible for the formation of the large scale structure of the Universe [16–28]. However, two general questions still need need to be investigated: the shape of the inflationary potential and its energy scale. The quantities related to these features are the scalar spectral-index, n_s, and the tensor-to-scalar ratio amplitude, r. The current estimations for these parameters provide $n_s = 0.968 \pm 0.006$ and $r_0.002 < 0.07$ at the 95% confidence level (see [4, 5]). Because of this, we have now a clear idea on the health state of some specific inflationary models: most of the minimally coupled power-law potentials are ruled out, while exponential potentials with a very flat region, seem to be favored by current data as outlined especially in [4]. Furthermore, there is still room to look into other aspects of inflation: the fundamental mechanism that induces the inflationary phase; the initial condition for the inflaton field, its nature and its mass m_{Φ} [29, 30], and the possibility for a multifield inflation and the induced non-Gaussianity in the cosmic microwave background (CMB) fluctuations [30]. In this paper we will consider a tensor-to-scalar ratio $r \approx 10^{-3}$, consistent with the expected sensitivity of the next-generation CMB experiments [31–41]. We will show the statistical information that can be derived on a very important class of inflationary potential, the so called α-attractor models of inflation. This class of models can be generated in different ways, although the most advanced version emerges from the supergravity context (see refs [42–47] for properties and details). It is important to stress that α-attractors include the first plateau-type potential, the Goncharov-Linde model [48], the Starobinsky modified gravity R^2 scenario [49, 50] and Higgs Inflation [51]. In particular we consider the E-model version of the α-attractor class. To reach this goal we have to reconstruct the inflationary potential. Among the different algorithms proposed in the literature [52–63], we will focus on the simple approach based on constraining the local shape of the potential during the pure accelerated phase. This is done by implementing a Taylor expansion around the vacuum expectation value of the inflaton field at horizon crossing, ϕ_*, and by connecting the coefficients of the expansion to the observables n_s and r (details in [52, 53]). In its simplicity, this procedure provides a model independent estimation of the inflationary potential around ϕ_*. Hereafter, we show that for α-attractor models it is possible to derive constraints also on the vacuum expectation value ϕ_*. Now, on one hand it is true that ϕ_* by itself is not important: the fundamental quantity that parameterizes the inflationary evolution and the cosmological variables is the number of e-foldings N_*. On the other hand, there could be a couple of reasons to constrain ϕ_*. First, this value could be of interest from the particle physics point of view. Secondly, as we shall see later, it is simpler to directly use ϕ_* as one of the input variables to constrain N_* and so, the reheating phase. In the following, we use the natural units of particle and cosmology $c = \hbar = k_B = 1$, unless otherwise indicated. The paper is organized as follows. In Sec. II, we review the general properties of inflation and of the slow roll dynamics. In Sec. III, we focus on the magnitude of ϕ_* in different inflationary models. In Sec. IV, we discuss the basics of the local potential reconstruction and we apply such a procedure to evaluate the parameters of the chosen inflationary models. Finally, the last section is dedicated to the discussion of our findings and to possible extensions of this work.

II. INFLATIONARY SLOW ROLL DYNAMICS AND ITS OBSERVABLES

Inflation is defined as an early accelerated expansion phase. Therefore, the evolution of the scale factor is almost nearly exponential $a(t) \sim e^{N}$, where N is the so-called number of e-foldings. Such a condition implies a nearly constant Hubble rate, $H(t)$, i.e., a nearly constant

alessandro.di.marcoroma2.infn.it
Hubble radius, $R_H = c/H$. The simplest scenario for inflation involves a neutral and homogeneous scalar field ϕ, called inflaton, that is minimally coupled to gravity with a canonical kinetic term. When such a field dominates, inflation occurs, giving rise to an accelerated expansion that occurred between $10^{-35}s$ and $10^{-32}s$ after the initial singularity, on an energy scale below the GUT scale ($E < 10^{16}$ GeV). The inflaton field evolves accordingly to a potential $V(\phi)$, characterized by an almost flat region. The cosmological action for early times is the following:

$$ S = \int d^4x \sqrt{-g} \left\{ \frac{1}{2} M_p^2 R - \frac{1}{2} g_{\mu\nu} \partial^\mu \phi \partial^\nu \phi - V(\phi) \right\} \tag{1} $$

where R is the Ricci scalar, $g_{\mu\nu}$ is the metric tensor, g its determinant and M_p the reduced Planck mass. The inflationary equations for a FRW flat Universe in the Hamilton-Jacobi formalism, are

$$ V(\phi) = 3 M_p^2 H^2(\phi) - 2 M_p^2 H'(\phi) \tag{2} $$

$$ \dot{\phi} = -2 M_p^2 H'(\phi) \tag{3} $$

where $'$ denotes derivative with respect to the scalar field. It is required that the sign of $\dot{\phi}$ does not change, in order to have a monotonic evolution of the field. Therefore, without loss of generality, we can choose $\dot{\phi} < 0$ so that $H' \geq 0$, or the opposite case. Inflation starts when the inflaton moves slowly through the almost flat region of the potential. In this phase, the kinetic term in the action is negligible with respect to the potential:

$$ \partial_\mu \dot{\phi} \partial^\mu \phi \ll V(\phi) \tag{4} $$

Afterwards, when the inflaton reaches the potential global minimum, the reheating phase can start (see [11–13] for more details). In this phase, the field oscillates and decays producing entropy.

Once the functional form of the potential is given, one can describe the inflaton dynamics via the Potential Slow Roll Parameters (PSRP), defined as follows:

$$ \epsilon_V(\phi) = \frac{M_p^2}{2} \left(\frac{V'(\phi)}{V(\phi)} \right)^2, \quad \eta_V(\phi) = M_p^2 \left(\frac{V''(\phi)}{V(\phi)} \right) \tag{5} $$

or alternatively, by the Hubble Slow Roll Parameters (HSRP)

$$ \epsilon(\phi) = 2 M_p^2 \left(\frac{H'(\phi)}{H(\phi)} \right)^2, \quad \eta(\phi) = 2 M_p^2 \left(\frac{H''(\phi)}{H(\phi)} \right) \tag{6} $$

To first order,

$$ \epsilon \simeq \epsilon_V, \quad \eta \simeq \eta_V - \epsilon_V. \tag{7} $$

For an exhaustive discussion on these two formalisms, on their properties and their relation we refer to reference [14]. Typically, inflation occurs when $\epsilon(\phi) < 1$ (or $\epsilon_V(\phi) \ll 1$) and finishes when $\epsilon \sim 1$.

Inflation also provides a solution for the origin of primordial perturbations. In the inflationary universe there are quantum fluctuations of thermal type with temperature equal to the Gibbons-Hawking temperature $T_H = H/2\pi$. These thermal fluctuations allow to treat the inflaton field as a quantum field $\hat{\phi}(x, t)$ with zero mean value in a macro time scale. Such a condition implies fluctuations on the stress-energy tensor and then, on the metric tensor. The cosmic acceleration due to inflation stretches fluctuations up to astronomical scales. At this stage, fluctuations freeze-out and become classical metric perturbations. At the end of inflation, the Hubble radius starts to grow, catching those perturbations that will produce the anisotropies of the CMB and the formation of the large scale structures.

Let us now consider the cosmological perturbation field $\delta(x, t)$, with power spectrum and spectral-index

$$ P(k) = \frac{k^3}{2\pi^2} |\delta(k)|^2 \tag{8} $$

$$ n(k) = \frac{dP(k)}{d\ln k} \tag{9} $$

where k is the wavenumber. The first one describes the presence of the perturbation on a given scale k while the second describes the variation of $\delta(k)$ with respect to the scale. Because of the homogeneity and isotropy of the FRW background, one can decompose the perturbations in scalar, vectors and tensors modes (SVT decomposition). In particular, inflation excites only the scalar and tensor modes. The most familiar form of the power spectrum for the scalar and tensor sector, to first order in the slow roll parameters, are

$$ P_s(k) = \frac{1}{8\pi^2 M_p^2} H^2 \bigg|_{k=aH} \tag{10} $$

$$ P_t(k) = \frac{2}{\pi} \frac{H^2}{M_p^2} \bigg|_{k=aH} \tag{11} $$

The corresponding spectral indices are defined as follows:

$$ n_s = 1 - 4\epsilon + 2\eta \tag{12} $$

$$ n_t = -2\epsilon \tag{13} $$

and the tensor-to-scalar ratio of the perturbation amplitudes is

$$ r = \frac{P_t(k)}{P_s(k)} = 16\epsilon = 8n_t. \tag{14} $$

Ref. in [16–25] while for the SVT-decomposition, see [26–28]. The quantities n_s and r can be computed for any given theoretical model and, then, compared with the ones estimated by the experiments. To do this, one can use Eq. (7) to express n_s and r in terms of the PSRP, providing the following familiar relations:

$$ n_s \sim 1 - 6\epsilon_V(\phi) + 2\eta_V(\phi), \quad r \sim 16\epsilon_V(\phi) \tag{15} $$

Note, that these quantities are functions of the scalar field because of Eq. (5) or Eq. (7). Their magnitudes are
evaluated by setting $\phi = \phi_*$, where ϕ_* is the value of inflaton field at horizon crossing epoch:

$$n_s = n_s(\phi_*), \quad r = r(\phi_*)$$ \hspace{1cm} (16)$$

In the following Section, we discuss how to compute such a value.

III. THE CLASSICAL TRAJECTORY: RELATION BETWEEN ϕ_* AND N_*.

The inflaton dynamics is quite interesting. In principle, once a particular potential is chosen, one can follow numerically the evolution of the function $\phi(t)$ by solving the system of Eq.(2) and Eq.(3). However, if the slow roll condition is satisfied, one can simplify the system with the following formula [65]

$$\Delta N = \frac{1}{M_p} \int_{\Delta \phi} d\phi \frac{1}{\sqrt{V(\phi)}}$$ \hspace{1cm} (17)$$

where the inflaton field can have, as discussed above, either positive or negative sign in its time derivative. Here, $\Delta \phi = |\phi - \phi_{\text{end}}|$ is the range of variation of the scalar field up to the final value ϕ_{end} and ΔN the related number of e-foldings. The solution of this integral represents the classical trajectory of motion that we can rewrite as

$$\phi = \phi(\phi_{\text{end}}, \Delta N)$$ \hspace{1cm} (18)$$

The inflationary trajectory is characterized by different phases which are worthy of attention: the initial conditions for both inflation and the cosmological fluctuations; the epochs of the horizon crossing and of the end of inflation. The end of inflation is quite simple to evaluate. In fact, it is sufficient to solve the algebraic broken-inflation condition $\epsilon(\phi_{\text{end}}) = 1$ to get the possible ϕ_{end}’s values. While the fundamental mechanism that induces the inflationary phase is actually unknown, one can still say something about the initial condition for inflation, ϕ_0. In particular, in the case of large field models, the inflationary trajectory is a “local” attractor solution in the ϕ_0-space, as summarized by Brandenberger in [29]. Such evidence suggests that the subsequent physical events, as the generation of cosmological perturbations, does not depend explicitly from ϕ_0 [30–32]. On the other hand, the generation of cosmological fluctuations in the inflationary background occurs at an epoch commonly associated with the Bunch-Davies vacuum condition, which is an attractor in the (state) space. This epoch it is also related to the so-called “trans-planckian” problem, as again suggested in [24]. Finally, the horizon-crossing of cosmological fluctuations occurs when the inflaton field explores the almost plateau region of the effective potential: as seen before, when the potential term is dominant [see Eq.(11)], the value of scalar field remains substantially the same, say ϕ_* say. The order of magnitude of ϕ_* depends on the inflationary potential $V(\phi)$ and from the number of e-foldings N_* before the end of inflation. From Eq.(18), we have

$$\phi_* = \phi_s(\phi_{\text{end}}, \beta_i, N_*)$$ \hspace{1cm} (19)$$

where β_i are the parameters describing the specific potential function. As shown in Eq.(10), the knowledge of ϕ_* is useful for calculating n_s and r. However, ϕ_* depends on N_* through Eq.(19). Then both n_s and r can be explicitly calculated once the fundamental parameter N_* is given. The most common prescription for an order-of-magnitude evaluation of ϕ_* (and also n_s and r) requires $N_* = 60$. In Fig.1 we show a nonexhaustive plot for ϕ_* (in units of M_p) in terms of the predicted r, for some one-parameters inflationary models. In particular, we present qualitative results for single power-law models, E-model version of the α-attractor class (see Sec. I for references) and axion monodromy inflation [60–68].

![Fig. 1. Inflaton field values at horizon crossing vs. tensor-to-scalar ratio for: monomial models with, $n = 2,3,4$ [8]; α-attractor models with $\alpha = 1/5,1/4,1/3,1/2,1$ [42–47]; axion monodromy models with $n = 2/5,2/3,1,4/3$ [60–68]. As expected, the value of the inflaton field increases if one moves toward large field scenarios.](image)

IV. RECONSTRUCTING THE α-ATTRACTION SUPERGRAVITY MODELS FROM NEXT-GENERATION CMB EXPERIMENTS

The simplest version of the potential reconstruction technique is based on a local constraint on the shape of the inflationary potential. In fact, during inflation [52]:

- The value of the inflaton field is approximately constant, since $\dot{\phi}^2 \ll V(\phi)$, and
- The observable modes are stretched out over the Hubble radius, R_H, when $N_* \sim 60$.

Therefore, it is possible to expand the potential around ϕ_*, the value of the inflaton field at the horizon crossing:

$$V(\phi) = V(\phi_*) + V'(\phi_*)(\phi - \phi_*) + \frac{1}{2}V''(\phi_*)(\phi - \phi_*)^2 +$$
At this point, one can write the coefficients of this expansion in terms of the slow roll parameters and, then, with respect to the observable quantities, \(n_s \) and \(r \). The weights of the polynomial form are given by the Hamilton-Jacobi equation [cf. Eq. (2)]. The expansion up to the second order in \(\Delta \phi \) is given by

\[
V(\phi) = \Lambda^4 \left[1 + d_1 \left(\frac{\Delta \phi}{M_p} \right) + \frac{1}{2} d_2 \left(\frac{\Delta \phi}{M_p} \right)^2 + \ldots \right]
\]

(20)

where, to first order in \(n_s \) and \(r \), one has

\[
\Lambda^4 = \frac{3}{2} \pi^2 M_p^4 P_s(k) r
\]

(21)

and

\[
d_1 = \frac{1}{2} \sqrt{\frac{r}{2}} \quad d_2 = \frac{1}{3} \left[\frac{9 r}{16} - \frac{3}{2} (1 - n_s) \right]
\]

(22)

Note that, the \(d_i \) are dimensionless quantities, as well as the ratio \(\Delta \phi / M_p \). These definitions provide a model-independent constraint on the shape of the inflaton potential, as they are directly connected with the first and second order derivatives of the potential. This formalism has been used for example by [53], for comparing theory with observations. Even if further approaches for the reconstruction problem have been discussed in the literature (refs in Sec. I), here we want to use this local analytical approach to constrain the parameters for a class of inflationary potentials.

The general recipe is the following. Let us consider a specific model of inflation with a potential \(V_{\beta_i}(\phi) \), where \(\beta_i \) is the set of parameters that modulates the potential function. We can expand this potential up to second order around \(\phi_* \):

\[
V(\phi) = \Lambda^4 \left[1 + c_1 \left(\frac{\Delta \phi}{M_p} \right) + \frac{1}{2} c_2 \left(\frac{\Delta \phi}{M_p} \right)^2 + \ldots \right]
\]

(23)

The coefficients \(c_1 \) and \(c_2 \) are both functions of the inflaton value, \(\phi_* \), and of the free parameters, \(\beta_i \): \(c_1 = c_1(\phi_*, \beta_i) \) and \(c_2 = c_2(\phi_*, \beta_i) \). By comparing the model-independent and the model-dependent expansion, we have

\[
c_1 = d_1, \quad c_2 = d_2.
\]

(24)

Using these relations, we can derive predictions for \(\phi_* \) and \(\beta_i \) in the form: \(\phi_* = \phi_*(n_s, r) \), \(\beta_i = \beta_i(n_s, r) \). The functional dependency of \(d_1 \) and \(d_2 \) on \(n_s \) and \(r \) is strongly model dependent. So, there may be cases in which it is not possible to write both \(\phi_* \) and \(\beta_i \) in terms of the cosmological observables.

An interesting class of inflationary models is the so-called \(\alpha \)-attractor class (see Sec. I for details and references). In particular, the E-model attractors are characterized by the following standard function:

\[
V(\phi) = \Lambda^4 \left(1 - e^{-b \phi / M_p} \right)^2, \quad b = \sqrt{\frac{2}{3 \alpha}}
\]

(25)

In the supergravity framework, the parameter \(\alpha \) is related to the Kähler curvature of the inflaton’s scalar manifold:

\[
R_K = -\frac{2}{3 \alpha}
\]

(26)

This is a fundamental parameter in the framework of attractor models. Let us now compute the quadratic Taylor expansion of \(V \):

\[
V(\phi) \simeq \Lambda^4 \left[c_0 + c_1 \left(\frac{\Delta \phi}{M_p} \right) + \frac{1}{2} c_2 \left(\frac{\Delta \phi}{M_p} \right)^2 \right].
\]

(27)

where

\[
c_0 = 1 - 2e^{-b \phi_*/M_p} \sim 1
\]

(28)

\[
c_1 = 2be^{-b \phi_*/M_p}
\]

(29)

\[
c_2 = -2b^2 e^{-b \phi_*/M_p}
\]

(30)

with \(\phi_*/M_p \gg 1 \). We can use these relations to evaluate \(\phi_* \) and \(\alpha \) from a given CMB experiment. From Eq. (24) it follows that

\[
\frac{d_2}{d_1} = -b
\]

(31)

Moreover, from Eq. (20), we get

\[
\frac{\phi_*}{M_p}(b, d_1) = -\frac{1}{b} \ln \left(\frac{d_1}{2b} \right).
\]

(32)

These equations provide information on the inflationary models, given \(n_s \) and \(r \) from CMB data. Since, current CMB experiments still do not provide a measurement on \(r \), this approach is by now not very effective. However, the situation should rapidly change in the near future, with a strong improvement on the knowledge of the tensor-to-scalar ratio. Having this in mind, we discuss what kind of constraints we may have on \(\alpha \)-attractor models, assuming that next-generation of CMB experiments will be able to probe a tensor-to-scalar ratio of the order of \(r \sim 10^{-3} \).

In the following, we simulate values of \(n_s \) and \(r \), randomly extracted from a gaussian multivariate distribution of the form

\[
G(n_s, r) = \frac{1}{\sqrt{4\pi^2 \sigma_{n_s}^4 \sigma_r^4 (1 - \rho^2)}} \exp \left(-\frac{Q^2}{2} \right)
\]

(33)

Here

\[
Q^2 = \frac{1}{1 - \rho^2} \left[\frac{(n_s - \mu_{n_s})^2}{\sigma_{n_s}^2} + \frac{(r - \mu_r)^2}{\sigma_r^2} - 2\rho \frac{(n_s - \mu_{n_s})(r - \mu_r)}{\sigma_{n_s} \sigma_r} \right]
\]

(34)

where \(\mu_{n_s}, \mu_r \) and \(\sigma_{n_s}, \sigma_r \) are mean and rms values of the scalar spectral-index and the tensor-to-scalar ratio, respectively, while \(\rho \) is the correlation coefficient. In particular, we use (consistently with current the PLANCK data) the values \(\mu_{n_s} = 0.968 \) and \(\sigma_{n_s} = 0.006 \), while for \(r \)
we choose three different values ($\mu_r = 0.001, 0.002, 0.003$) with $\sigma_r = 0.0001$. The correlation coefficient between n_s and r is fixed to be $p = 0.1$. We extract from the distribution of Eq.(33) pairs of values for n_s and r. For each extraction, we reconstruct the coefficients d_1 and d_2 from Eq.(22). Then, we use Eq.(31) and Eq.(32) to estimate α, ϕ_* and R_K, from a sample of $\approx 10^4$ draws. We note that, increasing r, the shape of the inflaton potential gets smoother, pushing ϕ_* to larger values, as shown in Fig.2.

![Renormalized Inflation Potential](image)

FIG. 2. Shape of the potentials normalized to the energy density Λ^4 and the relative inflaton value at horizon exit: the solid lines represent the three “mean” potential curves for the computed simulations. When the mean value of r increases, the curve is less steep. The dashed lines represent the three “mean” potential curves for the computed simulations.

The mean and standard deviation values for the distribution of ϕ_*, p and R_K are summarized in Tab.I and in Tab.II. The resulting mean and standard deviation values for the parameters ϕ_*, p and R_K are summarized in Tab.III, Tab.IV and in Tab.V. The Fig.6, Fig.7 and Fig.8 show the constraining power of a hypothetical cal CMB experiments of new generation. As expected in this inflationary scenario, when the mean values of the tensor-to-scalar ratio increase, the mean values of p and ϕ_* increase as well. Indeed, the distribution functions of the constrained parameters move to high values in the frequency plots. The mean value of R_K decreases (in modulus) in complete agreement with its definition Eq.(26).

r	d_1 mean value	d_1 1-σ value
0.001	0.01117	0.00056
0.002	0.01581	0.00039
0.003	0.01936	0.00032

TABLE I. Simulation results for the coefficients d_1 of the Taylor expansion. As we can see, the 1-σ value increases as the mean value of r gets larger.

r	d_2 mean value	d_2 1-σ value
0.001	-0.01583	0.00302
0.002	-0.01564	0.00302
0.003	-0.01545	0.00302

TABLE II. Simulation results for the coefficients d_2 of the Taylor expansion: the resulting 1-σ converges to the same value up to the 5th decimal place. The negative sign suggests that the shape of the inflationary potential about the horizon crossing moment is locally described by a parabola which opens downward.

The resulting distribution functions for ϕ_* are shown in Fig.6, Fig.7 and Fig.8 while those of $p = \ln \alpha$ are shown in Fig.6, Fig.7 and Fig.8. The mean and standard deviation values for the distribution of ϕ_*, p and R_K are summarized in Tab.I and in Tab.II. The resulting mean and standard deviation values for the parameters ϕ_*, p and R_K are summarized in Tab.III, Tab.IV and in Tab.V. The Fig.6, Fig.7 and Fig.8 show the constraining power of a hypothetical CMB experiments of new generation. As expected in this inflationary scenario, when the mean values of the tensor-to-scalar ratio increase, the mean values of p and ϕ_* increase as well. Indeed, the distribution functions of the constrained parameters move to high values in the frequency plots. The mean value of R_K decreases (in modulus) in complete agreement with its definition Eq.(26).

V. DISCUSSION AND PERSPECTIVES

In the previous section we reconstructed, the probability distributions for the vev ϕ_*, the parameter α and the scalar curvature R_K for the supergravity α-attractor models (E-model), starting from a set of observations for the main inflationary observables: the scalar spectral index, n_s, and the tensor-to-scalar ratio, r.

r	R_k mean value	R_k 1-σ value
0.001	-2.09	0.79
0.002	-1.01	0.38
0.003	-0.66	0.25

TABLE V. Simulation results for the scalar Kähler curvature. Here, the 1-σ value gets larger as r increases. In particular, it gets smaller as the value of R_K become larger.
As one can expect, the vacuum expectation value of the scalar field increases as r increases. The vacuum expectation value of α itself increases as r increases, recovering Starobinsky inflation $\alpha \sim 1$ for $r = 0.003$.
The advantage of this method stands on the fact that just the computations of V' and V'' are required. Then, the ratio c_1/c_2 provides information on α. Note, as remarked in Sec. II, that in the usual blind approach to reconstruct the inflationary potential, the coefficients d_1 and d_2 given by Eq.(22) seem do not depend on ϕ_*.

On the contrary, the main coefficients of the α-attractor potential expansion c_1 and c_2 given by Eq.(29),Eq.(31) are explicitly field dependent. So, one could ask how our procedure (i.e. matching c_1 and c_2 with d_1 and d_2) is consistent with the general results of the blind expression. Actually, the consistency is guaranteed by the fact that the coefficients of the α-attractor potential expansion c_1 and c_2 are evaluated at the moment of horizon exit as well as d_1 and d_2. In fact, in the blind reconstruction, the expansion is again performed around ϕ_*, but the dependence on ϕ_* is hidden in the choice of fixing (n_s,r) from given experimental results and the n_s and r do depend on the value of the field (via slow roll parameters) as shown in Eq. (15) and Eq. (16) of Sec. II. In our analysis it is clearly important to get an accurate estimate of ϕ_*: in fact, on the basis of Eq.(19), one can infer that changing N_* implies different values for ϕ_*. However, we can read this relation in the opposite sense: in each model of inflation, N_* is sensitive to ϕ_* and to the other free parameters of the model, α in our case. Therefore, one can conclude that an independent estimate of ϕ_* and α can provide information on N_*: $N_* = N_*(\phi_*, \alpha)$. In this respect, it is also possible to put bounds on any deviations from the most common assumed value $N_* = 60$.

Another important reason to explore this issue is that statistical information on α and ϕ_* may also imply information on post-inflationary physics. Indeed, distribution functions such as those previously reconstructed for α and ϕ_* can be used to provide a collection of possible post-inflationary energy density paths. This can be done by solving numerically the appropriate system of coupled differential equations. A discussion of this possibility is given in [60]. Moreover, N_* (algebraically connected with ϕ_*) depends on the physical events from inflation to recent epochs, i.e., from a non trivial collection of quantities, as also summarized in [61-74]. Usually, it is often expressed as

$$N_* = 67 - \ln \left(\frac{k_*}{a_0 H_0} \right) + \frac{1}{4} \ln \left(\frac{V_*^2}{M_p^2 \rho_{end}} \right) + \frac{1 - 3w_{eff}}{12(1 + w_{eff})} \ln \left(\frac{\rho_{reh}}{\rho_{end}} \right) - \frac{1}{12} \ln(g_{reh})$$

(35)

Here, $a_0 H_0$ is the actual Hubble scale, k_* is a pivot scale (typically of the order of 0.002 Mpc^{-1}), $V_* = \Lambda^4$ is the inflationary energy scale, ρ_{end} is the energy density at the end of inflation; $w_{eff} = p/\rho$ is the effective equation of state of the reheating fluid, ρ_{reh} is the energy density when reheating is completed and g_{reh} is the effective number of boson degrees of freedom at ρ_{reh}. However, from the complete expression of N_*, one can derive the number of e-foldings during reheating stage [72 [74]:

$$N_{reh} = \frac{4}{1 - 3w_{eff}} \left[-N_* - \ln \left(\frac{k_*}{a_0 H_0} \right) + \ln \left(\frac{T_0}{H_0} \right) \right]$$

$$+ \frac{4}{1 - 3w_{eff}} \left[\frac{1}{4} \ln \left(\frac{V_*^2}{M_p^2 \rho_{end}} \right) - \frac{1}{12} \ln(g_{reh}) \right]$$

$$+ \frac{4}{1 - 3w_{eff}} \left[\frac{1}{4} \ln \left(\frac{1}{9} \right) + \ln \left(\frac{43}{11} \right) \right]$$

(36)

So, once we know N_* from Eq.(19) we can put better constraints on several aspects of the reheating physics by Eq.(36). For example, we can derive distribution function for the reheating temperature realized in the E-model α-attractor framework, by the relation

$$T_{reh} = \left(\frac{40 V_{end} \rho_{reh}}{\pi^2 g_{reh}} \right)^{1/4} \exp \left[-\frac{3}{4} (1 + w_{eff}) N_{reh} \right]$$

(37)

An example of different reheating constraints can be found in [72 [74]. In a forthcoming paper, we plan to apply the reconstruction technique presented above to describe the α-attractor postaccelerated phase.

VI. CONCLUSIONS

In this paper, we have used the potential reconstruction method to evaluate the inflaton field at horizon
FIG. 9. Distribution function of the number of e-foldings before the end of inflation, N_\star, related to the α-attractor model with $r=0.003$ as a mean value of the tensor-to-scalar ratio. The result has been computed by the approximate solution of the classical equation of motion.

crossing and the potential parameter α of supergravity α-attractor models. We have shown the possible constraints that next-generation CMB experiments can provide. The method is applicable to different inflationary models and provides an estimate of ϕ_\ast completely independent by N_\star. In this sense, it is possible to use the vev as the input variable to estimate the number of e-foldings before the end of inflation and then, the postaccelerated physics. There were two reasons for choosing E-models. The first one lies in the capability of the model to interpolate a broad range of predictions for r. The second one is related to the capability of these attractor models to reproduce during the accelerated phase, for some values of α, the exponential potentials typically developed in the string inflation moduli context (see [75–79] for detailed papers).

ACKNOWLEDGMENTS

This work has been supported in part by the STaI “Uncovering Excellence” grant of the University of Rome “Tor Vergata”, CUP E82L15000300005. We are grateful to Nicola Bartolo, Sabino Matarrese and Dario Cannone for useful comments and discussions. A.D.M also thanks Michele Cicoli for discussion on the recent developments of string theories. P.C thanks L’isola che non c’è S.r.l for the support.

[1] G. F. Smoot, “Summary of Results from COBE”, (1999), arXiv:astro-ph/9902027
[2] C. J. MacTavish et al., “Cosmological Parameters from the 2003 flight of BOOMERANG”, Astrophys. J. 647 799, (2006), arXiv:astro-ph/0507503
[3] G. Hinshaw et al., “Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results”, (2012), arXiv:1212.5226 [astro-ph.CO]
[4] P. A. R. Ade et al., [Planck Collaboration], “Planck 2015 results. XX. Constraints on inflation” (2015), arXiv:1502.02114 [astro-ph.CO]
[5] P. A. R. Ade et al., [Planck Collaboration], “Planck 2015 results. XIII. Cosmological parameters” (2015), arXiv:1502.01589 [astro-ph.CO]
[6] A. Guth, “Inflationary Universe: A possible solution to the horizon and flatness problems”, Phys. Rev. D 23, 2 (1981)
[7] A. D. Linde, “A new inflationary Universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems”, Phys. Lett. B 108, 6 389-393 (1981)
[8] A. D. Linde, “Chaotic Inflation”, Phys. Lett. B 129, 3 4 (1983)
[9] S. W. Hawking and I. G. Moss, “Supercooled phase transition in the very early Universe”, Phys. Lett. B 110, 35-38 (1982)
[10] A. Albrecht and P. J. Steinhardt, “Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking”, Phys. Rev. Lett. 48, 1220 (1982)
[11] A. Albrecht, P. J. Steinhardt, M. S. Turner and F. Wilczek, “Reheating an Inflationary Universe”, Phys. Rev. Lett. 48, 20 (1982)
[12] L. F. Abbott, E. Farhi, M. B. Wise, “Particle production in the new inflationary cosmology”, Phys. Rev. Lett. B 117, 29-33 (1982)
[13] L. Kofman, A. D. Linde and A. Starobinsky, “Reheating after inflation”, Phys. Rev. Lett. 73 3195-3198, (1994)
[14] L. Kofman, “The Origin of Matter in the Universe: Reheating after Inflation”, (1996), arXiv:astro-ph/9605155
[15] L. Kofman, A. D. Linde and A. Starobinsky, “Towards the theory of reheating after inflation”, Phys. Rev. D 56, 3258 (1997)
[16] A. A. Starobinsky, “Spectrum of relict gravitational radiation and the early state of the Universe”, JETP Lett. 30, 683 (1979)
[17] V.F. Mukhanov and C.V. Chibisov, “Quantum fluctuations and a non singular Universe”, JETP Lett. 33, 532 (1981)
[18] V.F. Mukhanov and C.V. Chibisov, “Vacuum energy and large scale structure of the Universe”, JETP Lett. 83, 475 (1982)
[19] S. W. Hawking, “The development of irregularities in a single bubble inflationary Universe”, Phys. Lett. B 115, 295-297 (1982)
[20] A. A. Starobinsky, “Dynamics of phase transition in the new inflationary Universe scenario and generation of perturbations”, Phys. Lett. B 117, 175-178 (1982)
[21] A. Guth and S.-Y. Pi, “Fluctuations in the New Inflationary Universe”, Phys. Rev. Lett. 49, 1110 (1982)
[63] J. Norea, C. Wagner, L. Verde, H. V. Peiris and R. Etherer, “Bayesian Analysis of Inflation III: Slow Roll Reconstruction Using Model Selection”, Phys. Rev. D 86, 023505 (2012), arXiv:1202.0304 [astro-ph.CO]
[64] A. R. Liddle, P. Parsons and J. D. Barrow, “Formalising the Slow-Roll Approximation in Inflation”, Phys. Rev. D 50, 7222 (1994), arXiv:astro-ph/9408015
[65] J. Martin, C. Ringeval and V. Vennin, “Encyclopaedia Inflationaris”, Phys. Dark Univ. 5-6, 75-235 (2014), arXiv:1303.3787 [astro-ph.CO]
[66] E. Silverstein and A. Westphal, “Monodromy in the CMB: Gravity Waves and String Inflation”, Phys. Rev. D 78, 106003 (2008), arXiv:0803.3085 [hep-th]
[67] L. McAllister, E. Silverstein and A. Westphal, “Gravity Waves and Linear Inflation from Axion Monodromy”, Phys. Rev. D 82, 046003 (2010), arXiv:0808.0706 [hep-th]
[68] L. McAllister, E. Silverstein, A. Westphal and T. Wrase, “The Powers of Monodromy”, JHEP 1409, 123 (2014), arXiv:1405.3652 [hep-th]
[69] P. Creminelli, D. L. Nacir, M. Simonovi, G. Trevisan and M. Zaldarriaga, “ϕ^2 Inflation at its Endpoint”, Phys. Rev. D 90, 083513 (2014), arXiv:1405.6264 [astro-ph.CO]
[70] A. R. Liddle and S. M. Leach, “How long before the end of inflation were observable perturbations produced?”, Phys. Rev. D 68, 103503 (2003), arXiv:astro-ph/0305263
[71] J. Martin, C. Ringeval, “First CMB Constraints on the Inflationary Reheating Temperature”, Phys. Rev. D 82, 023511 (2010), arXiv:1004.5529
[72] L. Dai, M. Kamionkowski and J. Wang, “Reheating constraints to inflationary models”, Phys. Rev. Lett. 113, 041302 (2014), arXiv:1404.6704 [astro-ph.CO]
[73] J. Munoz, M. Kamionkowski, “Equation-of-state parameter for reheating”, Phys. Rev D 91, 043521 (2015), arXiv:1412.0656 [astro-ph.CO]
[74] Y. Ueno, K. Yamamoto, “Constraints on α-attractor inflation and reheating” Phys. Rev. D 93, 083524 (2016), arXiv:1602.07427 [astro-ph.CO]
[75] J.P. Conlon and F. Quevedo, “Kahler Moduli Inflation”, JHEP 0601, 146 (2006), arXiv:hep-th/0509012
[76] M. Cicoli, C. P. Burgess and F. Quevedo, “Fibre Inflation: Observable Gravity Waves from IIB String Compactifications”, JCAP 0903, 013 (2009), arXiv:0808.0691 [hep-th]
[77] M. Cicoli, F. G. Pedro, G. Tasinato, “Polyinstanton Inflation”, arXiv:1110.6182 [hep-th]
[78] C.P. Burgess, M. Cicoli and F. Quevedo, “String Inflation After Planck 2013”, JCAP 1311, 003 (2013), arXiv:1306.3512 [hep-th]
[79] C.P. Burgess, M. Cicoli, S. de Alwis and F. Quevedo, “Robust Inflation from Fibrous Strings”, arXiv:1603.06789 [hep-th]