Combining Experiments for Linear Dynamic Network Identification in the Presence of Nonlinearities

M. Schoukens¹, J.P. Noël², P.M.J. Van den Hof³

¹ Control Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
² Université de Liège, Quartier Polytech 1, Allée de la Découverte 9, 4000 Liège, Belgium

E-mail: m.schoukens@tue.nl

Abstract. In many practical applications it might be desirable to excite only one point at a time in an interconnection of multiple dynamic subsystems (e.g. large-scale system). Therefore multiple experiments need to be combined to successfully identify one or more subsystems in the network of subsystems. This paper illustrates how the identification of a linear subsystem of a dynamical network containing one or more nonlinear subsystems can result in biased estimates when multiple experiments are combined using the Best Linear Approximation (BLA) based approach.

1. Introduction

Large scale mechanical systems consisting of many components, the electrical grid, biological systems or industrial plant can be interpreted as the interconnection of multiple subsystems, i.e. a dynamic network setting.

The identification of linear dynamical networks has received quite some attention over the last years focusing on e.g. network structure detection [1, 2, 3], identification of one or more subsystems in the network [3, 4, 5, 6], input selection [7], and multiple noise frameworks [8, 6]. However, the identification of systems operating in a nonlinear dynamic network has received considerably less attention [9, 10, 11, 12].

In many practical applications it might be desirable to excite only one node at a time in a dynamic network, e.g. for safety reasons, limited actuation capabilities, or due to a geographical spread of the different nodes. Therefore multiple experiments need to be combined to successfully identify one or more subsystems in the network. This paper illustrates how the identification of a linear subsystem of a dynamical network containing one or more nonlinear subsystems can result in biased estimates when multiple experiments are combined using the Best Linear Approximation (BLA) based approach presented in [12].

A short introduction to nonlinear dynamic networks is given in Section 2. The BLA framework is discussed next in Section 3. Section 4 discusses how multiple experiments can be combined to estimate the subsystems in a dynamic network. A simulation example illustrates that effect of the presence of one or more nonlinearities in the dynamic network on the obtained estimates in Section 5.

2. Dynamic Networks

The dynamic networks considered here follow the same definitions and visualization as in [4, 13]. A dynamic network (see Figure 1) consists of a total of L nodes, representing internal variables of the network, which are interconnected with other nodes by (nonlinear) dynamic systems. A node signal, denoted $w_i(t)$, is obtained as the sum of the outputs of the incoming (nonlinear)
3. Best Linear Approximation

The BLA model of a nonlinear system is a linear time-invariant (LTI) approximation of the behavior of that system, best in least squares sense (Figure 2). For the open-loop, single-input single-output case, the BLA is defined as [14, 15, 16, 17]:

$$\text{arg min}_{G_{bla}} \left\{ \| \tilde{y}(t) - G(q)\tilde{u}(t) \|^2 \right\},$$

where $\tilde{u}(t) = u(t) - E_u \{ u(t) \}$, $\tilde{y}(t) = y(t) - E_{u,n_y} \{ y(t) \}$, and $E_{u,n_y} \{ \cdot \}$ denotes the expected value operator taken w.r.t. the random variations due to the input $u(t)$ and the output noise $n_y(t)$ and $G(q)$ belongs to the set of all possible LTI systems. The extension of the BLA framework to the dynamical network setting is presented in [12].

4. Combining Multiple Experiments

The indirect networked identification approach in the frequency domain, using multiple experiments M, is given in practice as follows. First, the FRF from the reference to the node is obtained: $S_{bla}(j\omega) = [R^H(j\omega)R(j\omega)]^{-1} R^H(j\omega)W(j\omega)$, where R^H denotes the Hermitian operator, and $R(j\omega), W(j\omega)$ are given by (for a 3-node network):

$$R(j\omega) = \begin{bmatrix} R_1^{[1]}(j\omega) & 0 & 0 \\ \vdots & \vdots & \vdots \\ R_1^{[M]}(j\omega) & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & R_3^{[M]}(j\omega) \\ \vdots & \vdots & \vdots \\ 0 & 0 & R_3^{[M]}(j\omega) \end{bmatrix}, \quad W(j\omega) = \begin{bmatrix} W_1^{[1]}(j\omega) & W_2^{[1]}(j\omega) & W_3^{[1]}(j\omega) \\ W_1^{[2]}(j\omega) & W_2^{[2]}(j\omega) & W_3^{[2]}(j\omega) \\ \vdots & \vdots & \vdots \\ W_1^{[M]}(j\omega) & W_2^{[M]}(j\omega) & W_3^{[M]}(j\omega) \end{bmatrix}.$$ \hfill (1)

Note that in the considered setting, only one reference signal is active simultaneously in each experiment, resulting in a sparse matrix $R(j\omega)$. $W(j\omega)$, unlike $R(j\omega)$, is typically not sparse, since, depending on the interconnections that are present in the network, each reference can evoke a response at each node in the network. In the purely linear case one could also combine the experiments by using the superposition principle.
The nonlinear subsystem F discussed below F_G in Figure 5, this reduces the bias on the estimate of module G to ensure that the nonlinearity is in a similar setpoint for all experiments, as can be observed while the nonlinear dynamic network is excited by reference signals with different power: subsystems connecting to the same node as the nonlinear subsystem, in this case node 3. Combining these measurements can lead to a bias on the estimates of the linear network module G. The clear presence of a bias on the estimate of the linear network module G the BLA framework is applied on a nonlinear dynamic network. Figure 4 indicates from [13, 17], an unbiased estimate is obtained, see Figure 3. Case 1: the proposed framework is tested on a linear dynamic network. As can be expected noise is present in the presented simulation example.

$$N = 4096 \text{ points per period.} \text{ The reference signals have each a standard deviation of } 0.$$ one reference signal is active simultaneously.

$$M = 20 \text{ realizations of the multisines are applied to the system for each reference signal, each realization contains } P = 2 \text{ steady state periods of } N = 4096 \text{ points per period.} \text{ The reference signals have each a standard deviation of 0.5. No noise is present in the presented simulation example.}$$

Case 1: the proposed framework is tested on a linear dynamic network. As can be expected from [13, 17], an unbiased estimate is obtained, see Figure 3.

Case 2: the BLA framework is applied on a nonlinear dynamic network. Figure 4 indicates the clear presence of a bias on the estimate of the linear network module G_{32}. The estimate of the network module G_{31} represents the linear approximation of the nonlinear system. The observed bias can be explained due to the different setpoints of the nonlinearity for the different experiments: each reference signal excites a different range of the nonlinear modul of the network. Combining these measurements can lead to a bias on the estimates of the linear subsystems connecting to the same node as the nonlinear subsystem, in this case node 3.

Case 3: the nonlinear dynamic network is excited by reference signals with different power: while r_1, r_3 have a std = 0.5, r_2 has a std of 4.5 in this setup. The different reference amplitudes used ensure that the nonlinearity is in a similar setpoint for all experiments, as can be observed in Figure 5, this reduces the bias on the estimate of module G_{32} significantly.

Figure 3. Case 1: linear dynamic network. Unbiased estimates are obtained: the true linear subsystems (green) and the estimates (blue) coincide.

A noiseless estimate of the node signals is obtained: $\hat{W}_j(j\omega) = \sum_{k=1}^{n_\omega} S_{bla,i,r_j}(q) R_k(j\omega)$. The networked BLA is now obtained in practice as: $\hat{G}_{bla,i}(j\omega) = [K_j(j\omega)G_j(j\omega)]^{-1} K_j(j\omega)W_i(j\omega)$, where $K_j(j\omega)$, $W_i(j\omega)$, $\hat{G}_{bla,i}(j\omega)$ are given by (the $j\omega$ notation is dropped for compactness):

$$K_j(j\omega) = \begin{bmatrix} W_1[1] & \ldots & W_1[1] \\ W_1[2] & \ldots & W_1[2] \\ \vdots & \ddots & \vdots \\ W_1[M] & \ldots & W_1[M] \end{bmatrix} , W_i(j\omega) = \begin{bmatrix} W_i[1] \\ W_i[2] \\ \vdots \\ W_i[M] \end{bmatrix} , \hat{G}_{bla,i}(j\omega) = \begin{bmatrix} \hat{G}_{bla,i,1} \\ \vdots \\ \hat{G}_{bla,i,M} \end{bmatrix} . \tag{2}$$

5. Simulation Example

The structure of the simulated system is visualized in Figure 1. The linear subsystems G_{21}, G_{32} and G_{13} are first order systems of the form:

$$x_{ij}(t + 1) = A_{ij}x_{ij}(t) + B_{ij}w_j(t) \quad A_{21} = 0.9, \quad B_{21} = 1.0, \quad C_{21} = 0.5$$

$$w_i(t) = C_{ij}x_{ij}(t), \quad A_{32} = 0.8, \quad B_{32} = 0.1, \quad C_{32} = 1.0$$

$$A_{13} = 0.3, \quad B_{13} = 1.0, \quad C_{13} = -0.9 \tag{3}$$

The nonlinear subsystem F_{31} is given by $w_2(t) = \text{tanh}(w_1(t - 1))$, in the linear simulation case discussed below F_{31} is replaced by a unit delay: $w_3(t) = w_1(t - 1)$.

The system is excited by three reference signals $r_1(t)$, $r_2(t)$ and $r_3(t)$. These signals are all three random phase multisine signals [17] exciting all the frequencies $|\omega|, j/2$ with a flat amplitude spectrum. The random phases are uniformly distributed between 0 and 2π. Only one reference signal is active simultaneously. $M = 20$ realizations of the multisines are applied to the system for each reference signal, each realization contains $P = 2$ steady state periods of $N = 4096$ points per period. The reference signals have each a standard deviation of 0.5. No noise is present in the presented simulation example.
Figure 4. Case 2: nonlinear dynamic network. A bias is observed between the true linear sub-systems (green) and the estimates (blue) for the G_{32} estimate.

Figure 5. Case 3: nonlinear dynamic network, varying reference amplitudes. The true linear sub-systems (green) and the estimates (blue) coincide.

6. Conclusion
While combining experiments for the estimation of dynamic modules in linear dynamic networks still leads to consistent estimates using the BLA-framework, a bias can be introduced on the BLA-framework estimates in case one or more of the network modules behaves nonlinear. This nonlinearity is caused by combining measurements where the nonlinearity operates in a different setpoint, leading to different approximations of this nonlinear behavior.

Acknowledgment
Maarten Schoukens is the holder of a H2020 Marie Sklodowska-Curie European Fellowship: this work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 798627. Furthermore, this work has received funding from the European Research Council (ERC), Advanced Research Grant SYSDYNET, under the European Unions Horizon 2020 research and innovation programme (grant agreement No 694504).

References
[1] Goncalves J and Warnick S 2008 IEEE Transactions on Automatic Control 53 1670–1674
[2] Materassi D and Innocenti G 2010 IEEE Transactions on Automatic Control 55 1860–1871
[3] Chiuso A and Pillonetto G 2012 Automatica 48 1553 – 1565
[4] Van den Hof P, Dankers A, Heuberger P and Bombois X 2013 Automatica, Vol. 49 2994–3006
[5] Linder J and Enqvist M 2017 Identification and prediction in dynamic networks with unobservable nodes 20th World Congress of the International Federation of Automatic Control pp 10574 – 10579
[6] Van den Hof P, Dankers A and Weerts H 2018 Computers & Chemical Engineering 109 23 – 29
[7] Dankers A, Van den Hof P, Bombois X and Heuberger P 2016 IEEE Transactions on Automatic Control 61 937–952
[8] Weerts H, Van den Hof P and Dankers A 2017 Identification of dynamic networks with rank-reduced process noise 20th World Congress of the International Federation of Automatic Control pp 10562 – 10567
[9] Yuan Y, Stan G, Warnick S and Goncalves J 2011 Automatica 47 1230 – 1235
[10] Cooman A, Broders P and Vandersteen G 2016 Distortion contribution analysis of strongly non-linear analog circuits 13th International SMACD Conference pp 1–4
[11] Pan W, Yuan Y, Ljung L, Goncalves J and Stan G 2017 IEEE Transactions on Control of Network Systems
[12] Schoukens M and Van den Hof P 2018 Detecting nonlinear modules in a dynamic network: A step-by-step procedure 18th IFAC Symposium on system identification (SYSID) (Stockholm, Sweden)
[13] Dankers A 2014 System Identification in Dynamic Networks Ph.D. thesis Eindhoven University of Technology
[14] Schoukens J, Dobrowiecki T and Pintelon R 1998 IEEE Transactions on Automatic Control 43 176–190
[15] Pintelon R and Schoukens J 2002 Mechanical Systems and Signal Processing 16 785–801
[16] Schoukens J, Lataire J, Pintelon R, Vandersteen G and Dobrowiecki T 2009 IEEE Transactions on Instrumentation and Measurement 58 1737–1745
[17] Pintelon R and Schoukens J 2012 System Identification: A Frequency Domain Approach 2nd ed (Hoboken, New Jersey: Wiley-IEEE Press)