Research Article

Graphical Structures of Cubic Intuitionistic Fuzzy Information

Sami Ullah Khan,¹ Naeem Jan,¹ Kifayat Ullah,² and Lazim Abdullah³

¹Department of Mathematics, Institute of Numerical Sciences, Gomal University D. I. Khan, Dera Ismail Khan, Pakistan
²Department of Mathematics, Riphah Institute of Computing and Applied Sciences, Riphah International University Lahore, Lahore 54000, Pakistan
³Department of Mathematics, Faculty of Ocean Engineering Technology and Informatics, University of Malaysia Terengganu, Kuala Nerus 2103, Malaysia

Correspondence should be addressed to Naeem Jan; naeem.phdma73@iiu.edu.pk

Received 20 March 2021; Revised 6 April 2021; Accepted 20 April 2021; Published 12 May 2021

1. Introduction

Jun et al. [1] proposed cubic set (CS) and started a new research area. A CS is a mixture of two concepts known as fuzzy set (FS) and interval-valued fuzzy set (IVFS). The concept of CS draws the attentions of researchers and some potential works in this direction have been done; for example, the idea of CS was proposed in semigroup theory by Khan et al. [2], as well as some KU-ideal by Yaqoob et al. [3], and KU-algebras are developed for CS by Lu and Ye [4]; the similarity measures of CSs have been proposed and applied in decision-making problem. The framework of cubic neutrosophic sets is proposed by Jun et al. [5], while some pattern recognition problems are solved using neutrosophic sets by Ali et al. [6]. The concept of cubic soft sets was proposed by Muhiuddin and Al-roqi [7], which was further utilized by Muhiuddin et al. [8]. The theory of G-algebras is studied by Jun and Khan in [9] and by Jana and Senapatı [10] along with the concepts of ideal in semigroups. Some other works in this direction are given in [11–14].

The theory of intuitionistic fuzzy set (IFS) was developed by Atanassov [15] as a generalization of FS by Rosenfeld [16]. An IFS described the membership and nonmembership degree of an element by two characteristic functions and can model phenomena of yes or no type easily. Garg and Kaur [17] initiated the concept of cubic intuitionistic fuzzy sets (CIFSs) and discussed their properties. Atanassov model of IFS provided a motivation for the concept of intuitionistic fuzzy graphs (IFGs) proposed by Kauffman and Rosenfeld [19, 20] after Zadeh’s exemplary work in [16]. FG theory has a potential role in application point of view as described by Chan and Cheung [21] who studied an approach to clustering algorithm using the concepts of FGs. Some FG problems are solved by a novel technique in [22, 23] by discussing the domination of FGs in pattern recognitions. Mathew and Sunitha [24] worked on fuzzy attribute graphs applied to Chinese character recognitions, and Bhattacharya [25] used FGs in image classifications and so forth. For some other works on FG, one may refer to [26–31].

The theory of IFG received great attention as Parvathi and Thamizhendhi [32] introduced the concept of strong IFGs; Akram and Dudek [33] discussed the order, degree,
and size of IFGs; Akram and Alshehri [34] developed operations for IFGs; Karunambigai [35] worked on the domination of IFGs; Pasi et al. [36] developed the theory of intuitionistic fuzzy hypergraphs; Karunambigai et al. [37] studied the concepts of trees and cycles for IFGs; Parvathi [38] developed the idea of balanced IFGs, a multicriteria and multiperson decision-making based on IFGs was discussed by Chountas [39]; Akram and Dudek [40] studied constant mappings on a universe of discourse and \(M_1 \) is a map on \([0, 1]\).

Definition 1 (see [13]). A FS on \(X \) is defined as
\[A = \{ u, (M_A (u)/u \in X) \}, \]where \(M_A (1/2) \) is a map on \([0, 1]\).

Definition 2 (see [20]). A pair \(\hat{G}^* = (\mathcal{Y}^*, E) \) is known as FG if

(i) \(\mathcal{Y}^* = \{M_i; i \in I\} \) and \(M_i: \mathcal{Y}^* \rightarrow [0, 1] \) is the association degree of \(M_i \in \mathcal{Y}^* \)

(ii) \(E = \{(u_i, u_j); (u_i, u_j) \in \mathcal{Y}^* \times \mathcal{Y}^* \} \quad \text{and} \quad M_2: \mathcal{Y}^* \times \mathcal{Y}^* \rightarrow [0, 1] \) where \(M_2 (u_i, u_j) \leq \min \{ M_1 (u_i), M_1 (u_j) \} \) for all \((u_i, u_j) \in E \).

Definition 3 (see [15]). An IFS \(A \) on \(X \) is defined as
\[A = \{ \langle u, M_A (u), \Pi_A (u) \rangle/u \in X \} \], where \(M_A \) and \(\Pi_A \) are mappings on \([0, 1]\) interval such that \(0 \leq M_A + \Pi_A \leq 1 \).

Definition 4 (see [18]). A pair \(\tilde{G}^* = (V, \tilde{E}) \) is known as IFG if

(i) \(V \) is the collection of nodes such that \(M_1 \) and \(\Pi_1 \) are mappings on unit intervals from \(V \) with a condition \(0 \leq M_1 (u) + \Pi_1 (u) \leq 1 \) for all \(u \in V, i \in I \)

(ii) \(E \subseteq \mathcal{Y}^* \times \mathcal{Y}^* \), where \(M_2 \) and \(\Pi_2 \) are mappings that associate some grade to each \((u_i, u_j) \in E \) from \([0, 1]\) interval such that \(M_2 (u_i, u_j) \leq \min \{ M_1 (u_i), M_1 (u_j) \} \) and \(\Pi_2 (u_i, u_j) \leq \max \{ \Pi_1 (u_i), \Pi_1 ((u_i)) \} \) with a condition \(0 \leq M_2 + \Pi_2 \leq 1 \).

Example 1. The graph in Figure 1 is an IFG having four vertices and four edges.

Definition 5 (see [33]). The complement of an IFG \(\hat{G}^* = (\mathcal{Y}^*, E) \) is \(\hat{G}^{c*} = (\mathcal{Y}^{c*}, E^{c*}) \), where

(i) \(\mathcal{Y}^{c*} = V \)

(ii) \(M_A (u)c = M_A (u), \Pi_A (u)c = \Pi_A (u) \forall u \in V \)

(iii) \(M_B (u_i, u_j)^{c*} = \min \{ M_B (u_i), M_B (u_j) \} - M_B (u_i, u_j), \Pi_B (u_i, u_j)^{c*} = \max \{ \Pi_B (u_i), \Pi_B (u_j) \} - \Pi_B (u_i, u_j), \)

for all \((u_i, u_j) \in E \).

Here \((u_i, M_A, \Pi_A) \) represent the vertices and \((e_{ij}, M_B, \Pi_B) \) represent the edges.

Definition 6 (see [32]). A pair \(\tilde{G}^* = (\mathcal{Y}, E) \) is known as strong IFG if

(i) \(\mathcal{Y} \) is the collection of nodes such that \(M_1 \) and \(\Pi_1 \) are mappings on unit intervals from \(\mathcal{Y} \) with a condition \(0 \leq M_1 (u) + \Pi_1 (u) \leq 1 \) for all \(u \in \mathcal{Y} \) \((i \in I)\)

(ii) \(E \subseteq \mathcal{Y} \times \mathcal{Y} \), where \(M_2 \) and \(\Pi_2 \) are mappings that associate some grade to each \((u_i, u_j) \in E \) from \([0, 1]\) interval such that \(M_2 (u_i, u_j) = \min \{ M_1 (u_i), M_1 (u_j) \} \) and \(\Pi_2 (u_i, u_j) = \max \{ \Pi_1 (u_i), \Pi_1 ((u_i)) \} \) with a condition \(0 \leq M_2 + \Pi_2 \leq 1 \).

Remark 1 (see [32]). If \(\hat{G}^* = (\mathcal{Y}, E) \) is an IFG, then by the above definition \((\hat{G}^{c*})^c = \hat{G}^* \) and it is called self-complementary.

Proposition 1 (see [32]). If \(\hat{G}^* \) is strong IFG, then it preserves self-complementary law.

Example 2. Figures 2(a) and 2(b) provide a verification of Proposition 1. Clearly \((\hat{G}^{c*})^c = \hat{G}^* \) is self-complementary.
Definition 7 (see [55]). A pair \(\mathcal{G} = (\mathcal{A}, \mathcal{B}) \) of a graph \(\mathcal{G}^* = (\mathcal{V}, E) \) is known as IVIFG, where \(\mathcal{A} = \{[\mathcal{M}_{\mathcal{AL}}, \mathcal{M}_{\mathcal{AU}}], [\mathcal{N}_{\mathcal{AL}}, \mathcal{N}_{\mathcal{AU}}]\} \) is IVFS on \(\mathcal{V} \), and \(\mathcal{B} = \{[\mathcal{M}_{\mathcal{BL}}, \mathcal{M}_{\mathcal{BU}}], [\mathcal{N}_{\mathcal{BL}}, \mathcal{N}_{\mathcal{BU}}]\} \) is the IVF relation on \(E \) satisfying the following conditions:

(i) \(\mathcal{V} = \{u_1, u_2, u_3, \ldots, u_n\} \) such that \(\mathcal{M}_{\mathcal{AL}}: \mathcal{V} \to [0,1], \mathcal{M}_{\mathcal{AU}}: \mathcal{V} \to [0,1] \) and \(\mathcal{N}_{\mathcal{AL}}: \mathcal{V} \to [0,1], \mathcal{N}_{\mathcal{AU}}: \mathcal{V} \to [0,1] \) represent the degrees of membership and nonmembership of the element \(u \in \mathcal{V} \), respectively, and \(0 \leq \mathcal{M}_{\mathcal{AL}} + \mathcal{M}_{\mathcal{AU}} \leq 1 \) for all \(u_i \in \mathcal{V} \) (i = 1, 2, \ldots, n)

(ii) The functions \(\mathcal{M}_{\mathcal{BL}}: \mathcal{V} \times \mathcal{V} \to [0,1], \mathcal{M}_{\mathcal{BU}}: \mathcal{V} \times \mathcal{V} \to [0,1], \mathcal{N}_{\mathcal{BL}}: \mathcal{V} \times \mathcal{V} \to [0,1], \mathcal{N}_{\mathcal{BU}}: \mathcal{V} \times \mathcal{V} \to [0,1] \) are such that \(\mathcal{M}_{\mathcal{BL}}(u, y) \leq \min(\mathcal{M}_{\mathcal{AL}}(u), \mathcal{M}_{\mathcal{AU}}(y)), \mathcal{N}_{\mathcal{BL}}(u, y) \leq \max(\mathcal{N}_{\mathcal{AL}}(u), \mathcal{N}_{\mathcal{AU}}(y)) \) \(\mathcal{M}_{\mathcal{BU}}(u, y) \leq \min(\mathcal{M}_{\mathcal{AL}}(u), \mathcal{M}_{\mathcal{AU}}(y)), \mathcal{N}_{\mathcal{BU}}(u, y) \leq \max(\mathcal{N}_{\mathcal{AL}}(u), \mathcal{N}_{\mathcal{AU}}(u)) \) for all \((u_i, y_j) \in E \) (i = 1, 2, \ldots, n)

Example 3. Let \(\mathcal{G}^* = (\mathcal{V}, E) \) be a graph, where \(\mathcal{V} = \{u_1, u_2, u_3\} \) is the set of vertices and \(E = \{u_1u_2, u_2u_3, u_3u_1\} \) is the set of edges.

3. Cubic Intuitionistic Fuzzy Graphs

In this section, we discussed the basic concept of CIFG-like complement of CIFG, degree of CIFG, and bridge and cut vertex of CIFG with the help of examples and several results (Figures 3 and 4).

Definition 8. A pair \(\mathcal{G} = (\mathcal{A}, \mathcal{B}) \) of a graph \(\mathcal{G}^* = (\mathcal{V}, E) \) is known as cubic IFG, where \(\mathcal{A} = \{[\mathcal{M}_{\mathcal{AL}}, \mathcal{M}_{\mathcal{AU}}], [\mathcal{N}_{\mathcal{AL}}, \mathcal{N}_{\mathcal{AU}}]\} \) is a cubic IFS on \(\mathcal{V} \), and \(\mathcal{B} = \{[\mathcal{M}_{\mathcal{BL}}, \mathcal{M}_{\mathcal{BU}}], [\mathcal{N}_{\mathcal{BL}}, \mathcal{N}_{\mathcal{BU}}]\} \) is the cubic IF relation on \(E \) satisfying the following conditions:

(iii) \(\mathcal{V} = \{u_1, u_2, u_3, \ldots, u_n\} \) such that \(\mathcal{M}_{\mathcal{AL}}: \mathcal{V} \to [0,1], \mathcal{M}_{\mathcal{AU}}: \mathcal{V} \to [0,1] \) and \(\mathcal{N}_{\mathcal{AL}}: \mathcal{V} \to [0,1], \mathcal{N}_{\mathcal{AU}}: \mathcal{V} \to [0,1] \) are such that \(\mathcal{M}_{\mathcal{BL}}(u, y) \leq \min(\mathcal{M}_{\mathcal{AL}}(u), \mathcal{M}_{\mathcal{AU}}(y)), \mathcal{N}_{\mathcal{BL}}(u, y) \leq \max(\mathcal{N}_{\mathcal{AL}}(u), \mathcal{N}_{\mathcal{AU}}(y)) \) for all \(u_i \in \mathcal{V} \) (i = 1, 2, \ldots, n)

(iv) The functions \(\mathcal{M}_{\mathcal{BL}}: \mathcal{V} \times \mathcal{V} \to [0,1], \mathcal{M}_{\mathcal{BU}}: \mathcal{V} \times \mathcal{V} \to [0,1], \mathcal{N}_{\mathcal{BL}}: \mathcal{V} \times \mathcal{V} \to [0,1], \mathcal{N}_{\mathcal{BU}}: \mathcal{V} \times \mathcal{V} \to [0,1] \) are such that \(\mathcal{M}_{\mathcal{BL}}(u, y) \leq \min(\mathcal{M}_{\mathcal{AL}}(u), \mathcal{M}_{\mathcal{AU}}(y)), \mathcal{N}_{\mathcal{BL}}(u, y) \leq \max(\mathcal{N}_{\mathcal{AL}}(u), \mathcal{N}_{\mathcal{AU}}(u)) \) for all \((u_i, y_j) \in E \) (i = 1, 2, \ldots, n)
Definition 9. A pair $\mathcal{G} = (A, \mathcal{B})$ of a graph $\mathcal{G}^* = (\mathcal{V}, E)$ is known as strong cubic IFG, where $A = \{ (M_{AL}, M_{AU}), (\mathcal{F}_{AL}, \mathcal{F}_{AU}) \}$ and $A_{\mathcal{B}} = \{ (M_{AL\mathcal{B}}, M_{AU\mathcal{B}}), (\mathcal{F}_{AL\mathcal{B}}, \mathcal{F}_{AU\mathcal{B}}) \}$ is a cubic IFS on \mathcal{V}, and $A = \{ (M_{AL}, M_{AU}), (\mathcal{F}_{AL}, \mathcal{F}_{AU}) \}$ is a cubic IF relation on E satisfying the following conditions:

(i) $\mathcal{V} = \{ u_i, u_j, \ldots, u_n \}$ such that $M_{AL}: \mathcal{V} \rightarrow [0, 1], M_{AU}: \mathcal{V} \rightarrow [0, 1]$ and $\mathcal{F}_{AL}: \mathcal{V} \rightarrow [0, 1]$ and $\mathcal{F}_{AU}: \mathcal{V} \rightarrow [0, 1]$ represent the degrees of membership and nonmembership of the element $u \in \mathcal{V}$, respectively, and $0 \leq M_{A} + \mathcal{F}_{A} \leq 1$ for all $u_i \in \mathcal{V}$ ($i = 1, 2, \ldots, n$)

(ii) The functions $M_{AL}: \mathcal{V} \times \mathcal{V} \rightarrow [0, 1], M_{AU}: \mathcal{V} \times \mathcal{V} \rightarrow [0, 1], \mathcal{F}_{AL}: \mathcal{V} \times \mathcal{V} \rightarrow [0, 1], \mathcal{F}_{AU}: \mathcal{V} \times \mathcal{V} \rightarrow [0, 1]$ and $M_{\mathcal{B}}: \mathcal{V} \times \mathcal{V} \rightarrow [0, 1], \mathcal{F}_{\mathcal{B}}: \mathcal{V} \times \mathcal{V} \rightarrow [0, 1]$ are such that $M_{\mathcal{B}L}(u, y) = \min (M_{AL}(u), M_{AL}(y)), M_{\mathcal{B}U}(u, y) = \max (\mathcal{F}_{AL}(u), \mathcal{F}_{AL}(y)), M_{\mathcal{B}U}(u, y) = \min (M_{AU}(u), M_{AU}(y))$, and $\mathcal{F}_{\mathcal{B}}(u, y) = \max (\mathcal{F}_{AU}(u), \mathcal{F}_{AU}(y))$ and $M_{\mathcal{B}}(u, y) = \min (M_{A}(u), M_{A}(y))$ and $\mathcal{F}_{\mathcal{B}}(u, y) = \max (M_{A}(u), M_{A}(y))$ such that $0 \leq M_{\mathcal{B}}(u, y) + \mathcal{F}_{\mathcal{B}}(u, y) \leq 1$ for all $(u_i, y_j) \in E$ ($i, j = 1, 2, \ldots, n$)

Definition 10. A cubic IFG $H = (\mathcal{V}', \mathcal{E}')$ is said to be cubic IFG subgraph of $\mathcal{G} = (\mathcal{V}, E)$ if $\mathcal{V} \subseteq \mathcal{V}'$ and $E' \subseteq E$. In other words, $M_{AL}', M_{AU}', \mathcal{F}_{AL}', \mathcal{F}_{AU}' \leq M_{AL}, M_{AU}, \mathcal{F}_{AL}, \mathcal{F}_{AU}$ and $(M_{AL}, \mathcal{F}_{AL}) \leq (M_{AL}, \mathcal{F}_{AL})$ and $(M_{AU}, \mathcal{F}_{AU}) \leq (M_{AU}, \mathcal{F}_{AU})$ for $i, j = 1, 2, \ldots, n$.

Definition 11. The order of cubic IFG $\mathcal{G}^* = (\mathcal{V}, \mathcal{E})$ is denoted and defined by

$$O(\mathcal{G}^*) = \left(\sum_{u \in \mathcal{V}} M_{AL}(u), \sum_{u \in \mathcal{V}} M_{AU}(u), \sum_{u \in \mathcal{V}} \mathcal{F}_{AL}(u), \sum_{u \in \mathcal{V}} \mathcal{F}_{AU}(u) \right), \left(\sum_{u \in \mathcal{V}} M_{AL}(u), \sum_{u \in \mathcal{V}} M_{AU}(u), \sum_{u \in \mathcal{V}} \mathcal{F}_{AL}(u), \sum_{u \in \mathcal{V}} \mathcal{F}_{AU}(u) \right),$$

and the size of cubic IFG is

$$S(\mathcal{G}) = \left(\sum_{u, y \in \mathcal{V}} M_{AL}(u, y), \sum_{u, y \in \mathcal{V}} M_{AU}(u, y), \sum_{u, y \in \mathcal{V}} \mathcal{F}_{AL}(u, y), \sum_{u, y \in \mathcal{V}} \mathcal{F}_{AU}(u, y) \right), \left(\sum_{u, y \in \mathcal{V}} M_{AL}(u, y), \sum_{u, y \in \mathcal{V}} M_{AU}(u, y), \sum_{u, y \in \mathcal{V}} \mathcal{F}_{AL}(u, y), \sum_{u, y \in \mathcal{V}} \mathcal{F}_{AU}(u, y) \right).$$
Definition 12. The degree of a vertex in a cubic IFG $\hat{G}^* = (\mathcal{V}, E)$ is defined and denoted by

$$d(u) = \left((dM_{AL}(u), dM_{AU}(u), d\bar{\Gamma}_{AL}(u), d\bar{\Gamma}_{AU}(u)), (d(M_{\bar{\Lambda}}(u), d(\Gamma_{\bar{\Lambda}}(u))) \right),$$

where

$$dM_{AL}(u) = \sum_{u \neq y \atop y \in V} M_{\bar{\Lambda}L}(u, y),$$

$$dM_{AU}(u) = \sum_{u \neq y \atop y \in V} M_{\bar{\Lambda}U}(u, y),$$

$$d\bar{\Gamma}_{AL}(u) = \sum_{u \neq y \atop y \in V} \bar{\Gamma}_{\Lambda L}(u, y),$$

$$d\bar{\Gamma}_{AU}(u) = \sum_{u \neq y \atop y \in V} \bar{\Gamma}_{\Lambda U}(u, y),$$

$$d(M_{\bar{\Lambda}}(u)) = \sum_{u \neq y \atop y \in V} M_{\bar{\Lambda}}(u, y),$$

$$d(\Gamma_{\bar{\Lambda}}(u)) = \sum_{u \neq y \atop y \in V} \Gamma_{\bar{\Lambda}}(u, y).$$

Example 5. Let Figure 5 be a graph $\hat{G}^* = (\mathcal{V}, E)$, where $\mathcal{V} = \{u_1, u_2, u_3, u_4\}$ is the set of vertices and $E = \{u_1u_2, u_2u_3, u_3u_4, u_4u_1\}$ is the set of edges.

The degrees of vertices are

$$d(u_1) = ([0.3, 0.6], [0.5, 0.8], (0.3, 0.8)),$$

$$d(u_2) = ([0.4, 0.7], [0.5, 0.8], (0.3, 0.8)),$$

$$d(u_3) = ([0.3, 0.7], [0.4, 0.8], (0.2, 0.8)),$$

$$d(u_4) = ([0.2, 0.6], [0.4, 0.8], (0.2, 0.9)).$$

Definition 13. The complement of a cubic IFG $\hat{G} = (A, \mathcal{R})$ on $G^* = (\mathcal{V}, E)$ is defined as follows.

(i) $\mathcal{X} = A$

(ii) $\mathcal{M} = \mathbf{M}$

(iii) $\mathbf{E} = \mathbf{E}$

iv) $\mathbf{M} = \mathbf{M}$

Proposition 2. $G = \overline{\hat{G}}$ if and if \hat{G} is strong cubic IF graph.

Proof. The proof is straightforward.

Definition 14. A strong IFG is said to be self-complementary if $\hat{G} \equiv \overline{\hat{G}}$, where $\overline{\hat{G}}$ is the complement of IFG \hat{G}.

Example 6. Let Figures 6 and 7 be two graphs of $\hat{G}^* = (\mathcal{V}, E)$, where $\mathcal{V} = \{u_1, u_2, u_3, u_4\}$ is the set of vertices and $E = \{u_1u_2, u_2u_3, u_3u_4, u_4u_1\}$ is the set of edges.

Clearly $\hat{G} = \overline{\hat{G}}$; hence, \hat{G} is self-complementary.

Definition 15. The power of edge relation in a cubic IFG is defined as

$$e_{ij}^1 = e_{ij}(\{M_{\bar{\Lambda}L}(u, v), M_{\bar{\Lambda}U}(u, v)\}, \{\bar{\Gamma}_{\bar{\Lambda}L}(u, v), \bar{\Gamma}_{\bar{\Lambda}U}(u, v)\})$$

$$e_{ij}^2 = e_{ij}^1 e_{ij}^1 = e_{ij}(\{M_{\bar{\Lambda}L}(u, v), M_{\bar{\Lambda}L}(u, v)\}, \{\bar{\Gamma}_{\bar{\Lambda}L}(u, v), \bar{\Gamma}_{\bar{\Lambda}L}(u, v)\})$$

$$e_{ij}^3 = e_{ij}^2 e_{ij}^1 = e_{ij}(\{M_{\bar{\Lambda}L}(u, v), M_{\bar{\Lambda}L}(u, v)\}, \{\bar{\Gamma}_{\bar{\Lambda}L}(u, v), \bar{\Gamma}_{\bar{\Lambda}U}(u, v)\}).$$

Also,

$$e_{ij}^0 = e_{ij}(\{M_{\bar{\Lambda}L}(u, v), M_{\bar{\Lambda}L}(u, v)\}, \{\bar{\Gamma}_{\bar{\Lambda}L}(u, v), \bar{\Gamma}_{\bar{\Lambda}L}(u, v)\}).$$

Here, $M_{\bar{\Lambda}L}(u, v) = \max\{M_{\bar{\Lambda}L}(u, v), M_{\bar{\Lambda}L}(u, v)\}$ and $\bar{\Gamma}_{\bar{\Lambda}L}(u, v) = \min\{\bar{\Gamma}_{\bar{\Lambda}L}(u, v), \bar{\Gamma}_{\bar{\Lambda}L}(u, v)\}$.
Definition 16. An edge in a cubic IFG $\tilde{G} = (\mathcal{V}, E)$ is said to be a bridge, if deleting that edge reduces the strength of connectedness between some pair of vertices.

Example 7. Let Figure 8 be a graph $\tilde{G} = (\mathcal{V}, E)$, where $\mathcal{V} = \{u_1, u_2, u_3, u_4\}$ is the set of vertices and $E = \{u_1u_2, u_2u_3, u_3u_4, u_4u_1\}$ is the set of edges.

The strength of (u_1, u_4) is $[0.1, 0.4), [0.3, 0.5), (0.1, 0.4)$, so (u_1, u_4) is a bridge because when deleting (u_1, u_4) the strength of the connectedness between u_1 and u_4 is decreased.

Theorem 1. If $\tilde{G} = (\mathcal{V}, E)$ is a cubic IFG, then for any two vertices y_i and y_j, the following are equivalent:

(i) (y_i, y_j) is a bridge

(ii) $[M_{\tilde{G}ijL}, M_{\tilde{G}ijU}]^\infty < [M_{\tilde{G}ijL}, M_{\tilde{G}ijU}], M'_{\tilde{G}ij} < M_{\tilde{G}ij}$ and $[\Pi_{\tilde{G}ijU}]^\infty > [\Pi_{\tilde{G}ijL}, \Pi_{\tilde{G}ijU}], \Pi'_{\tilde{G}ij} > \Pi_{\tilde{G}ij}$

(iii) (y_i, y_j) is not an edge of any cycle

Proof. (ii) \implies (i).

Consider $[M_{\tilde{G}ijL}, M_{\tilde{G}ijU}]^\infty < [M_{\tilde{G}ijL}, M_{\tilde{G}ijU}], M'_{\tilde{G}ij} < M_{\tilde{G}ij}$ and $[\Pi_{\tilde{G}ijU}]^\infty > [\Pi_{\tilde{G}ijL}, \Pi_{\tilde{G}ijU}], \Pi'_{\tilde{G}ij} > \Pi_{\tilde{G}ij}$ to show that (y_i, y_j) is a bridge; then $[M_{\tilde{G}ijL}, M_{\tilde{G}ijU}]^\infty = [M_{\tilde{G}ijL}, M_{\tilde{G}ijU}]^\infty \geq [M_{\tilde{G}ijL}, M_{\tilde{G}ijU}], M'_{\tilde{G}ij} = M'_{\tilde{G}ij} \geq M_{\tilde{G}ij}$ and $[\Pi_{\tilde{G}ijU}]^\infty \leq [\Pi_{\tilde{G}ijL}, \Pi_{\tilde{G}ijU}], \Pi'_{\tilde{G}ij} \leq \Pi_{\tilde{G}ij}$, which is a contradiction. Hence, (y_i, y_j) is a bridge.

(i) \implies (iii).

Suppose that (y_i, y_j) is a bridge to show that (y_i, y_j) is not an edge of any cycle. If (y_i, y_j) is an edge of cycle, then any path involving the edge (y_i, y_j) can be converted into a path not involving (y_i, y_j) by using the rest of the cycle as a path from y_i to y_j. This implies that (y_i, y_j) cannot be a bridge, which is a contradiction to our supposition. Hence, (y_i, y_j) is not an edge of any cycle.

(iii) \implies (i).

The proof is straightforward. \square

Definition 17. A vertex u_i in a cubic IFG \tilde{G} is said to be a cut-vertex if deleting a vertex u_i reduces the strength of connectedness between some pair of vertices.

Example 8. Consider a graph $\tilde{G} = (\mathcal{V}, E)$, where $\mathcal{V} = \{u_1, u_2, u_3, u_4, u_5\}$ is the set of vertices and $E = \{u_1u_2, u_2u_3, u_3u_4, u_4u_5, u_5u_1\}$ is the set of edges.

In Figure 9, u_1 is a cut-vertex.

4. Operations on Cubic IFG

In this section, the operations of CIFG-like Cartesian product of CIFG, union of CIFG, joint operation of CIFG, and so forth with the help of examples are discussed and some interesting results related to these operations are proved.
Definition 18. The Cartesian product $\tilde{G} = \tilde{G}_1 \times \tilde{G}_2 = (A_1 \times A_2, \mathcal{B}_1 \times \mathcal{B}_2)$ of two cubic IFGs $\tilde{G}_1 = (A_1, \mathcal{B}_1)$ and $\tilde{G}_2 = (A_2, \mathcal{B}_2)$ of the graphs $\tilde{G}_1^* = (\mathcal{V}_1, E_1)$ and $\tilde{G}_2^* = (\mathcal{V}_2, E_2)$ is defined as follows:

\[
\begin{align*}
(M_{AIL} \times M_{A2L})(u_1, u_2) &= \min(M_{A1L}(u_1), M_{A2L}(u_2)), \\
(M_{AIU} \times M_{A2U})(u_1, u_2) &= \min(M_{A1U}(u_1), M_{A2U}(u_2)), \\
(\lceil \mathcal{A} \rceil_{AIL} \times \lceil \mathcal{A} \rceil_{A2L})(u_1, u_2) &= \max(\lceil \mathcal{A} \rceil_{AIL}(u_1), \lceil \mathcal{A} \rceil_{A2L}(u_2)), \\
(\lceil \mathcal{A} \rceil_{AIU} \times \lceil \mathcal{A} \rceil_{A2U})(u_1, u_2) &= \max(\lceil \mathcal{A} \rceil_{AIU}(u_1), \lceil \mathcal{A} \rceil_{A2U}(u_2)), \\
(M_{A1} \times M_{A2})(u_1, u_2) &= \min(M_{A1}(u_1), M_{A2}(u_2)), \\
(\lceil \mathcal{A} \rceil_{AI} \times \lceil \mathcal{A} \rceil_{A2})(u_1, u_2) &= \max(\lceil \mathcal{A} \rceil_{AI}(u_1), \lceil \mathcal{A} \rceil_{A2}(u_2)), \quad \text{for all } u_1, u_2 \in \mathcal{V}.
\end{align*}
\]
Example 9. Let $\bar{G}^* = (\mathcal{V}, E)$ be a graph, where \mathcal{V} is the set of vertices and E is the set of edges; then the product of two cubic IFGs in Figures 10–12 is given below.

Consider $E = \{(u, u_2) \mid u, u_2 \in E_1, u \neq u_2\} \cup \{(u_1, y_2) \mid (y_2, z) \in E_2, u_1 y_1 \in E_1\}$.

Let $(u, u_2) \in E$; then

Proposition 3. If \bar{G}_1 and \bar{G}_2 are strong cubic IFGs, then the Cartesian product $\bar{G}_1 \times \bar{G}_2$ is also strong cubic IFG.

Proof. Suppose that \bar{G}_1 and \bar{G}_2 are strong cubic IFGs; then there exist $u_1, y_1 \in E_1$ such that

\[
\begin{align*}
M_{\bar{G}_1} (u_1, y_1) &= \min \{ M_{\bar{G}_1} (u_1), M_{\bar{G}_1} (y_1) \}, \\
\Omega_{\bar{G}_1} (u_1, y_1) &= \max \{ \Omega_{\bar{G}_1} (u_1), \Omega_{\bar{G}_1} (y_1) \}, \\
M_{\bar{G}_2} (u_1, y_1) &= \min \{ M_{\bar{G}_2} (u_1), M_{\bar{G}_2} (y_1) \}, \\
\Omega_{\bar{G}_2} (u_1, y_1) &= \max \{ \Omega_{\bar{G}_2} (u_1), \Omega_{\bar{G}_2} (y_1) \}, \\
M_{\bar{G}_1} (u_1, y_1) &= \min \{ M_{\bar{G}_1} (u_1), M_{\bar{G}_1} (y_1) \}, \\
\Omega_{\bar{G}_1} (u_1, y_1) &= \max \{ \Omega_{\bar{G}_1} (u_1), \Omega_{\bar{G}_1} (y_1) \}.
\end{align*}
\]

Example 9. Let $\bar{G}^* = (\mathcal{V}, E)$ be a graph, where \mathcal{V} is the set of vertices and E is the set of edges; then the product of two cubic IFGs in Figures 10–12 is given below.

Consider $E = \{(u, u_2) \mid (u, u_2) \in \mathcal{V}_1, u \neq u_2\} \cup \{(u_1, y_2) \mid (y_2, z) \in E_2, u_1 y_1 \in E_1\}$.

Let $(u, u_2) \in E$; then

Proposition 3. If \bar{G}_1 and \bar{G}_2 are strong cubic IFGs, then the Cartesian product $\bar{G}_1 \times \bar{G}_2$ is also strong cubic IFG.

Proof. Suppose that \bar{G}_1 and \bar{G}_2 are strong cubic IFGs; then there exist $u_1, y_1 \in E_1$ such that

\[
\begin{align*}
M_{\bar{G}_1} (u_1, y_1) &= \min \{ M_{\bar{G}_1} (u_1), M_{\bar{G}_1} (y_1) \}, \\
\Omega_{\bar{G}_1} (u_1, y_1) &= \max \{ \Omega_{\bar{G}_1} (u_1), \Omega_{\bar{G}_1} (y_1) \}, \\
M_{\bar{G}_2} (u_1, y_1) &= \min \{ M_{\bar{G}_2} (u_1), M_{\bar{G}_2} (y_1) \}, \\
\Omega_{\bar{G}_2} (u_1, y_1) &= \max \{ \Omega_{\bar{G}_2} (u_1), \Omega_{\bar{G}_2} (y_1) \}, \\
M_{\bar{G}_1} (u_1, y_1) &= \min \{ M_{\bar{G}_1} (u_1), M_{\bar{G}_1} (y_1) \}, \\
\Omega_{\bar{G}_1} (u_1, y_1) &= \max \{ \Omega_{\bar{G}_1} (u_1), \Omega_{\bar{G}_1} (y_1) \}.
\end{align*}
\]

Example 9. Let $\bar{G}^* = (\mathcal{V}, E)$ be a graph, where \mathcal{V} is the set of vertices and E is the set of edges; then the product of two cubic IFGs in Figures 10–12 is given below.
Similarly,

\[
(M_{\mathcal{I}L} \times M_{\mathcal{I}L})(u, u_2)(u, y_2) = \min(M_{\mathcal{I}L}(u), M_{\mathcal{I}L}(u_2)) = \min(M_{\mathcal{I}U}(u), M_{\mathcal{I}U}(u_2)), \\
(M_{\mathcal{I}L} \times M_{\mathcal{A}L})(u_1, u_2) = \min(M_{\mathcal{I}L}(u_1), M_{\mathcal{A}L}(u_2)), \\
(M_{\mathcal{I}L} \times M_{\mathcal{A}L})(u_1, u_2) = \min(M_{\mathcal{I}L}(u_1), M_{\mathcal{A}L}(u_2)), \\
(M_{\mathcal{A}L} \times M_{\mathcal{A}L})(u_1, y_2) = \min(M_{\mathcal{A}L}(u_1), M_{\mathcal{A}L}(y_2)), \\
(M_{\mathcal{A}L} \times M_{\mathcal{A}U})(u_1, y_2) = \min(M_{\mathcal{A}L}(u_1), M_{\mathcal{A}U}(y_2)), \\
(M_{\mathcal{A}L} \times M_{\mathcal{A}U})(u_1, y_2) = \min(M_{\mathcal{A}L}(u_1), M_{\mathcal{A}U}(y_2)),
\]

(13)

\[\min(M_{\mathcal{I}L}(u), M_{\mathcal{I}L}(u_2), M_{\mathcal{I}U}(u), M_{\mathcal{I}U}(u_2), M_{\mathcal{A}L}(u), M_{\mathcal{A}L}(u_2), M_{\mathcal{A}U}(u), M_{\mathcal{A}U}(u_2)).\]
Proposition 4. If $\tilde{G}_1 \times \tilde{G}_2$ is a strong cubic IFG, then at least \tilde{G}_1 or \tilde{G}_2 must be strong.

Proof. Suppose that \tilde{G}_1 and \tilde{G}_2 are not strong cubic IFGs, then there exist $u_i, y_i \in E_i$ such that
\begin{align*}
M_{\tilde{G}_1}(u_i, y_i) &< \min(M_{\tilde{G}_1}(u_i), M_{\tilde{G}_1}(y_i)), \\
\Omega_{\tilde{G}_1}(u_i, y_i) &> \max(\Omega_{\tilde{G}_1}(u_i), \Omega_{\tilde{G}_1}(y_i)), \\
M_{\tilde{G}_2}(u_i, y_i) &< \min(M_{\tilde{G}_2}(u_i), M_{\tilde{G}_2}(y_i)), \\
\Omega_{\tilde{G}_2}(u_i, y_i) &> \max(\Omega_{\tilde{G}_2}(u_i), \Omega_{\tilde{G}_2}(y_i)).
\end{align*}

(16)

Consider $E = \{(u, u_2)(u, y_2)/u_2 \in \mathcal{V}'_2, u_2 y_2 \in E_2\} \cup \{(u_1, z)(y_1, z)/z \in \mathcal{V}'_2, u_1, y_1 \in E_1\}$

Let $(u, u_2)(u, y_2) \in E$, then
\begin{align*}
(M_{\tilde{G}_1} \times M_{\tilde{G}_2})(u, u_2)(u, y_2) &= \min((M_{\tilde{G}_1} \times M_{\tilde{G}_2})(u, u_2), (M_{\tilde{G}_1} \times M_{\tilde{G}_2})(u, y_2)), \\
&M_{\tilde{G}_1}(u, u_2) = \min(M_{\tilde{G}_1}(u), M_{\tilde{G}_1}(y)) \\
&< \min(M_{\tilde{G}_1}(u), M_{\tilde{G}_1}(y_2)),
\end{align*}

(17)

Similarly,
\[(M_{\mathcal{G}_1} \times M_{\mathcal{G}_2}')(u, u_2)(u, y_2) = \min(M_{\mathcal{G}_1}(u), M_{\mathcal{G}_2}(u_2)), \]
\[(M_{\mathcal{G}_1} \times M_{\mathcal{G}_2})(u_1, u_2) = \min(M_{\mathcal{G}_1}(u_1), M_{\mathcal{G}_2}(u_2)), \]
\[(M_{\mathcal{G}_1} \times M_{A_{\mathcal{G}_2}})(u_1, u_2) = \min(M_{\mathcal{G}_1}(u_1), M_{A_{\mathcal{G}_2}}(u_2)).\]
Proposition 5. The composition $\tilde{G}_1 [\tilde{G}_2]$ of cubic IFG for the graphs G_1 and G_2 of the graphs G_1^* and G_2^* is a cubic IFG of $G_1 [G_2^*]$.

\begin{align}
(M_{A1L \cup A2L}) (u_1, u_2) (y_1, y_2) &= \min(M_{A1L} (u_1), M_{A2L} (y_1)), \\
(M_{A1U \cup A2U}) (u_1, u_2) (y_1, y_2) &= \min(M_{A1U} (u_1), M_{A2U} (y_1)), \\
(\Delta_{A1L} \cup \Delta_{A2L}) (u_1, u_2) (y_1, y_2) &= \max(\Delta_{A1L} (u_1), \Delta_{A2L} (y_1)), \\
(\Delta_{A1U} \cup \Delta_{A2U}) (u_1, u_2) (y_1, y_2) &= \max(\Delta_{A1U} (u_1), \Delta_{A2U} (y_1)), \\
(\Delta_{A1} \cap \Delta_{A2}) (u_1, u_2) (y_1, y_2) &= \min(\Delta_{A1} (u_1), \Delta_{A2} (y_1)),
\end{align}

for all $(u_1, u_2) (y_1, y_2) \in E^* - E.$

Example 10. Let $\tilde{G}^* = (\bar{V}, E)$ be a graph; then the compositions of two cubic IFGs in Figures 13–15 are given as follows.

\begin{align}
(M_{A1L} \cdot M_{A2L}) (u_1, z) (y_1, z) &= \min(M_{A1L} (u_1), M_{A2L} (z)), \\
(M_{A1U} \cdot M_{A2U}) (u_1, z) (y_1, z) &= \min(M_{A1U} (u_1), M_{A2U} (z)), \\
(\bar{\Delta}_{A1L} \cdot \bar{\Delta}_{A2L}) (u_1, z) (y_1, z) &= \max(\bar{\Delta}_{A1L} (u_1), \bar{\Delta}_{A2L} (z)), \\
(\bar{\Delta}_{A1U} \cdot \bar{\Delta}_{A2U}) (u_1, z) (y_1, z) &= \max(\bar{\Delta}_{A1U} (u_1), \bar{\Delta}_{A2U} (z)), \\
((M_{A1} \cdot M_{A2}) (u_1, z) (y_1, z) &= \min(M_{A1} (u_1), M_{A2} (z)), \\
(\bar{\Delta}_{A1} \cdot \bar{\Delta}_{A2}) (u_1, z) (y_1, z) &= \max(\bar{\Delta}_{A1} (u_1), \bar{\Delta}_{A2} (z)),
\end{align}

for all $z \in \bar{V}$ and $u_1 y_1 \in E_1.$

Definition 20. The union $\tilde{G}_1 \cdot \tilde{G}_2 = (A_1 \cup A_2, B_1 \cup B_2)$ of two cubic IFGs $G_1 = (A_1, B_1)$ and $G_2 = (A_2, B_2)$ of the graphs $G_1^* = (\bar{V}_1, E_1)$ and $G_2^* = (\bar{V}_2, E_2)$ is defined as follows:

\begin{align}
(M_{A1L \cup B1L}) (u) &= M_{A1L} (u), \\
(M_{A1U \cup B1U}) (u) &= M_{A1U} (u), \\
(M_{A1L \cup B1L}) (u) &= \max(M_{A1L} (u), M_{A2L} (u)), \\
(M_{A1U \cup B1U}) (u) &= \max(M_{A1U} (u), M_{A2U} (u)), \\
(\Delta_{A1L \cap B1L}) (u) &= \Delta_{A1L} (u), \\
(\Delta_{A1U \cap B1U}) (u) &= \Delta_{A1U} (u), \\
(\Delta_{A1L \cap B1L}) (u) &= \min(\Delta_{A1L} (u), \Delta_{A2L} (u)),
\end{align}

for all $u \in \bar{V}_1 \cap \bar{V}_2.$

Proof. The proof is straightforward. \hfill \Box
\((\{0.2,0.5\},\{0.3,0.6\},(0.3,0.6))\)

\((\{0.1,0.4\},\{0.3,0.6\},(0.3,0.6))\)

\((\{0.1,0.4\},\{0.2,0.5\},(0.4,0.2))\)

Figure 13: Cubic intuitionistic fuzzy graph.

\((\{0.3,0.2\},\{0.4,0.2\},(0.4,0.2))\)

\((\{0.1,0.2\},\{0.4,0.5\},(0.3,0.4))\)

\((\{0.1,0.4\},\{0.2,0.5\},(0.3,0.4))\)

Figure 14: Cubic intuitionistic fuzzy graph.

(iv)

\[
\begin{align*}
\bigl(\cap_{A1 U} \cap_{A2 U}\bigr)(u) &= \cap_{A1 U}(u), & \text{if } u \in V_1 - V_2, \\
\bigl(\cap_{A1 U} \cap_{A2 U}\bigr)(u) &= \cap_{A2 U}(u), & \text{if } u \in V_2 - V_1, \\
\bigl(\cap_{A1 U} \cap_{A2 U}\bigr)(u) &= \min\left(\cap_{A1 U}(u), \cap_{A2 U}(u)\right), & \text{if } u \in V_1 \cap V_2.
\end{align*}
\]

(v)

\[
\begin{align*}
\bigl(M_{A1} \cup M_{A2}\bigr)(u) &= M_{A1}(u), & \text{if } u \in V_1 - V_2, \\
\bigl(M_{A1} \cup M_{A2}\bigr)(u) &= M_{A2}(u), & \text{if } u \in V_2 - V_1, \\
\bigl(M_{A1} \cup M_{A2}\bigr)(u) &= \max\left(M_{A1}(u), M_{A2}(u)\right), & \text{if } u \in V_1 \cap V_2.
\end{align*}
\]
(vi) \[
\begin{align*}
\bigcap_{A1} \cap \bigcap_{A2} (u) &= \bigcap_{A1} (u), & \text{if } u \in \mathcal{V}_1 - \mathcal{V}_2, \\
\bigcap_{A1} \cap \bigcap_{A2} (u) &= \bigcap_{A2} (u), & \text{if } u \in \mathcal{V}_2 - \mathcal{V}_1, \\
\bigcap_{A1} \cap \bigcap_{A2} (u) &= \min(\bigcap_{A1} (u), \bigcap_{A2} (u)), & \text{if } u \in \mathcal{V}_1 \cap \mathcal{V}_2.
\end{align*}
\]

(vii) \[
\begin{align*}
(M_{\mathcal{G}1} \cup M_{\mathcal{G}2L})(u) &= M_{\mathcal{G}1L}(u), & \text{if } uy \in E_1 - E_2, \\
(M_{\mathcal{G}1} \cup M_{\mathcal{G}2L})(u) &= M_{\mathcal{G}2L}(u), & \text{if } uy \in E_2 - E_1, \\
(M_{\mathcal{G}1} \cup M_{\mathcal{G}2L})(u) &= \max(M_{\mathcal{G}1L}(u), M_{\mathcal{G}2L}(u)), & \text{if } y \in E_1 \cap E_2.
\end{align*}
\]

(viii) \[
\begin{align*}
(M_{\mathcal{G}1U} \cup M_{\mathcal{G}2U})(u) &= M_{\mathcal{G}1U}(u), & \text{if } uy \in E_1 - E_2, \\
(M_{\mathcal{G}1U} \cup M_{\mathcal{G}2U})(u) &= M_{\mathcal{G}2U}(u), & \text{if } uy \in E_2 - E_1, \\
(M_{\mathcal{G}1U} \cup M_{\mathcal{G}2U})(u) &= \max(M_{\mathcal{G}1U}(u), M_{\mathcal{G}2U}(u)), & \text{if } uy \in E_1 \cap E_2.
\end{align*}
\]

(ix) \[
\begin{align*}
\bigcap_{\mathcal{G}1L} \cap \bigcap_{\mathcal{G}2L}(u) &= \bigcap_{\mathcal{G}1L}(u), & \text{if } uy \in E_1 - E_2, \\
\bigcap_{\mathcal{G}1L} \cap \bigcap_{\mathcal{G}2L}(u) &= \bigcap_{\mathcal{G}2L}(u), & \text{if } uy \in E_2 - E_1, \\
\bigcap_{\mathcal{G}1L} \cap \bigcap_{\mathcal{G}2L}(u) &= \min(\bigcap_{\mathcal{G}1L}(u), \bigcap_{\mathcal{G}2L}(u)), & \text{if } uy \in E_1 \cap E_2.
\end{align*}
\]

(x) \[
\begin{align*}
\bigcap_{\mathcal{G}1U} \cap \bigcap_{\mathcal{G}2U}(u) &= \bigcap_{\mathcal{G}1U}(u), & \text{if } uy \in E_1 - E_2, \\
\bigcap_{\mathcal{G}1U} \cap \bigcap_{\mathcal{G}2U}(u) &= \bigcap_{\mathcal{G}2U}(u), & \text{if } uy \in E_2 - E_1, \\
\bigcap_{\mathcal{G}1U} \cap \bigcap_{\mathcal{G}2U}(u) &= \min(\bigcap_{\mathcal{G}1U}(u), \bigcap_{\mathcal{G}2U}(u)), & \text{if } uy \in E_1 \cap E_2.
\end{align*}
\]

(xi) \[
\begin{align*}
(M_{\mathcal{G}1} \cup M_{\mathcal{G}2})(u) &= M_{\mathcal{G}1}(u), & \text{if } uy \in E_1 - E_2, \\
(M_{\mathcal{G}1} \cup M_{\mathcal{G}2})(u) &= M_{\mathcal{G}2}(u), & \text{if } uy \in E_2 - E_1, \\
(M_{\mathcal{G}1} \cup M_{\mathcal{G}2})(u) &= \max(M_{\mathcal{G}1}(u), M_{\mathcal{G}2}(u)), & \text{if } uy \in E_1 \cap E_2.
\end{align*}
\]
Proposition 6. The union of two cubic IFGs is a cubic IFG.

Example 11. Let $\mathcal{G}^* = (\mathcal{V}, E)$ be a graph; then the union of two cubic IFGs is given below.

In Figures 16–18 the union of two CIFGs is defined.

Proof. Let $\tilde{G}_1 = (A_1, B_1)$ and $\tilde{G}_2 = (A_2, B_2)$ be the cubic IFGs \mathcal{G}^*_1 and \mathcal{G}^*_2, respectively. Then, we have to prove $\tilde{G}_1 \cup \tilde{G}_2 = (A_1 \cup A_2, B_1 \cup B_2)$ is a cubic IFG and of the graphs $\mathcal{G}^*_1 \cup \mathcal{G}^*_2$. As all the conditions of $A_1 \cup A_2$ are satisfied, we only have to verify the conditions of $B_1 \cup B_2$.

First assume that $uv \in E_1 \cap E_2$. Then,

\[
\begin{align*}
(M_{\#1L} \cup M_{\#2L})(uv) &= \max(M_{\#1L}(uv), M_{\#2L}(uv)) \\
&\leq \max(\min(M_{A1L}(u), M_{A2L}(y)), \min(M_{A2L}(u), M_{A1L}(y))) \\
&= \min(M_{A1L}(u), M_{A2L}(u)), \max(M_{A1L}(y), M_{A2L}(y)), \\
&= \min(M_{A1L} \cup M_{A2L})(u), (M_{A1L} \cup M_{A2L})(y), \\
(M_{\#1U} \cup M_{\#2U})(uv) &= \max(M_{\#1U}(uv), M_{\#2U}(uv)) \\
&\leq \max(\min(M_{A1U}(u), M_{A2U}(y)), \min(M_{A2U}(u), M_{A1U}(y))) \\
&= \min(M_{A1U}(u), M_{A2U}(u)), \max(M_{A1U}(y), M_{A2U}(y)) \\
&= \min(M_{A1U} \cup M_{A2U})(u), (M_{A1U} \cup M_{A2U})(y), \\
(\Omega_{\#1L} \cup \Omega_{\#2L})(uv) &= \min(\Omega_{\#1L}(uv), \Omega_{\#2L}(uv)) \\
&\leq \min(M_{A1L} \cup \Omega_{\#1L})(u), (M_{A1L} \cup M_{\#2L})(y), \\
&= \min(M_{A1L} \cup M_{\#2L})(u), (M_{A1L} \cup M_{A2L})(y), \\
(M_{\#1} \cup M_{\#2})(uv) &= \max(M_{\#1}(uv), M_{\#2}(uv)) \\
&\leq \max(\min(M_{A1}(u), M_{A2}(y)), \min(M_{A2}(u), M_{A1}(y))) \\
&= \min(M_{A1}(u), M_{A2}(u)), \max(M_{A1}(y), M_{A2}(y)) \\
&= \min(M_{A1} \cup M_{A2})(u), (M_{A1} \cup M_{A2})(y), \\
(\Omega_{\#1} \cup \Omega_{\#2})(uv) &= \min(\Omega_{\#1}(uv), \Omega_{\#2}(uv)) \\
&\leq \min(M_{A1} \cup \Omega_{\#1})(u), (M_{A1} \cup M_{\#2})(y), \\
&= \min(M_{A1} \cup M_{\#2})(u), (M_{A1} \cup M_{A2})(y), \\
&= \min(M_{A1} \cup M_{A2})(u), (M_{A1} \cup M_{A2})(y).
\end{align*}
\]
If \(uy \in E_1 \) and \(uy \notin E_2 \), then

\[
\begin{align*}
(M_{\mathcal{A}1} \cup M_{\mathcal{A}2})(uy) & \leq \min((M_{\mathcal{A}1L} \cup M_{\mathcal{A}2L})(u), (M_{\mathcal{A}1L} \cup M_{\mathcal{A}2L})(y)), \\
(M_{\mathcal{A}1} \cup M_{\mathcal{A}2})(uy) & \leq \min((M_{\mathcal{A}1U} \cup M_{\mathcal{A}2U})(u), (M_{\mathcal{A}1U} \cup M_{\mathcal{A}2U})(y)), \\
(\mathfrak{P}_{\mathcal{A}1L} \cup \mathfrak{P}_{\mathcal{A}2L})(uy) & \leq \max((\mathfrak{P}_{\mathcal{A}1L} \cup \mathfrak{P}_{\mathcal{A}2L})(u), (\mathfrak{P}_{\mathcal{A}1L} \cup \mathfrak{P}_{\mathcal{A}2L})(y)), \\
(\mathfrak{P}_{\mathcal{A}1U} \cup \mathfrak{P}_{\mathcal{A}2U})(uy) & \leq \max((\mathfrak{P}_{\mathcal{A}1U} \cup \mathfrak{P}_{\mathcal{A}2U})(u), (\mathfrak{P}_{\mathcal{A}1U} \cup \mathfrak{P}_{\mathcal{A}2U})(y)), \\
(M_{\mathcal{B}1} \cup M_{\mathcal{B}2})(uy) & \leq \min((M_{\mathcal{A}1} \cup M_{\mathcal{A}2})(u), (M_{\mathcal{A}1} \cup M_{\mathcal{A}2})(y)), \\
(\mathfrak{N}_{\mathcal{B}1} \cup \mathfrak{N}_{\mathcal{B}2})(uy) & \leq \max((\mathfrak{N}_{\mathcal{A}1} \cup \mathfrak{N}_{\mathcal{A}2})(u), (\mathfrak{N}_{\mathcal{A}1} \cup \mathfrak{N}_{\mathcal{A}2})(y)).
\end{align*}
\]

(38)
Figure 18: Union of cubic intuitionistic fuzzy graphs.

If \(u y \notin E_1 \) and \(u y \in E_2 \), then

\[
(M_{\mathcal{A}L} \cup M_{\mathcal{A}2})(u y) \leq \min((M_{\mathcal{A}1L} \cup M_{\mathcal{A}2L})(u), (M_{\mathcal{A}1U} \cup M_{\mathcal{A}2U})(y)),
\]

\[
(M_{\mathcal{A}1U} \cup M_{\mathcal{A}2U})(u y) \leq \min((M_{\mathcal{A}1U} \cup M_{\mathcal{A}2U})(u), (M_{\mathcal{A}1U} \cup M_{\mathcal{A}2U})(y)),
\]

\[
(\mathcal{A}1 \cup \mathcal{A}2)(u y) \leq \max((\mathcal{A}1 \cup \mathcal{A}2)(u), (\mathcal{A}1 \cup \mathcal{A}2)(y)),
\]

\[
(M_{\mathcal{A}1L} \cup M_{\mathcal{A}2L})(u y) \leq \min((M_{\mathcal{A}1L} \cup M_{\mathcal{A}2L})(u), (M_{\mathcal{A}1L} \cup M_{\mathcal{A}2L})(y)),
\]

\[
(\mathcal{A}1 \cup \mathcal{A}2)(u y) \leq \max((\mathcal{A}1 \cup \mathcal{A}2)(u), (\mathcal{A}1 \cup \mathcal{A}2)(y)).
\]

(39)

This completes the proof. \(\square \)

Definition 21. The joint \(\tilde{G}_1 \times \mathcal{G}_2 = (A_1 + A_2, \tilde{S}_1 + \tilde{S}_2) \) of two cubic IFGs \(\mathcal{G}_1 = (A_1, \tilde{S}_1) \) and \(\mathcal{G}_2 = (A_2, \tilde{S}_2) \) of the graphs \(\mathcal{G}_1^* = (\tilde{V}_1, E_1) \) and \(\mathcal{G}_2^* = (\tilde{V}_2, E_2) \) is defined as follows:

(i) \[
(M_{\mathcal{A}1L} + M_{\mathcal{A}2L})(u) = (M_{\mathcal{A}1L} \cup M_{\mathcal{A}2L})(u),
\]

\[
(M_{\mathcal{A}1U} + M_{\mathcal{A}2U})(u) = (M_{\mathcal{A}1U} \cup M_{\mathcal{A}2U})(u),
\]

\[
(\mathcal{A}1 + \mathcal{A}2)(u) = (\mathcal{A}1 \cup \mathcal{A}2)(u).
\]

(40)

If \(u \in \tilde{V}_1 \cup \tilde{V}_2 \),

(ii) \[
(M_{\mathcal{A}1L} + M_{\mathcal{A}2L})(u y) = (M_{\mathcal{A}1L} \cup M_{\mathcal{A}2L})(u y),
\]

\[
(M_{\mathcal{A}1U} + M_{\mathcal{A}2U})(u y) = (M_{\mathcal{A}1U} \cup M_{\mathcal{A}2U})(u y),
\]

\[
(\mathcal{A}1 \ cup \mathcal{A}2)(u y) = (\mathcal{A}1 \cup \mathcal{A}2)(u y).
\]

\[
(\mathcal{A}1 \cup \mathcal{A}2)(u y) = (\mathcal{A}1 \cup \mathcal{A}2)(u y),
\]

(41)

\[
(u y \in E_1 \cap E_2, \quad \text{and then}
\]

\[
(M_{\mathcal{A}1L} + M_{\mathcal{A}2L})(u y) = \min(M_{\mathcal{A}1L}(u), M_{\mathcal{A}2L}(y)),
\]

\[
(M_{\mathcal{A}1U} + M_{\mathcal{A}2U})(u y) = \min(M_{\mathcal{A}1U}(u), M_{\mathcal{A}2U}(y)),
\]

\[
(\mathcal{A}1 \cup \mathcal{A}2)(u y) = \max(\mathcal{A}1 \cup \mathcal{A}2)(u y),
\]

(42)

\[
(\mathcal{A}1 \cup \mathcal{A}2)(u y) = \max(\mathcal{A}1 \cup \mathcal{A}2)(u y),
\]

\(u y \in E' \), where \(E' \) is the set of all edges joining the nodes of \(\tilde{V}_1 \) and \(\tilde{V}_2 \).
The joint of two cubic IFGs is a cubic IFG.

Proof. Assume that $G_1 = (A_1, B_1)$ and $G_2 = (A_2, B_2)$ are two cubic IFGs of the graphs $G_1 = (\mathcal{V}_1, E_1)$ and $G_2 = (\mathcal{V}_2, E_2)$. Then, we have to prove $G_1 + G_2 = (A_1 + A_2, B_1 + B_2)$ is a cubic IFG. In view of proposition 6 it is sufficient to verify the case when $uy \in E_t$. In this case, we have

\[
(M_{u1} \cup M_{u2})(uy) = \min((M_{A1} (u), (M_{A2} (y)))
\]

\[
(M_{u1} \cup M_{u2})(uy) = \min((M_{A1} + M_{A2}) (u), (M_{A1} + M_{A2}) (y)),
\]

\[
(M_{u1} \cup M_{u2})(uy) = \min((M_{A1}(u), (M_{A2}(y)))
\]

\[
(M_{u1} \cup M_{u2})(uy) \leq \min((M_{A1} \cup M_{A2})(u), (M_{A1} \cup M_{A2})(y))
\]

\[
(M_{u1} \cup M_{u2})(uy) \leq \min((M_{A1} + M_{A2})(u), (M_{A1} + M_{A2})(y))
\]

\[
(\eta_{u1} \cup \eta_{u2})(uy) = \max((\eta_{A1}(u), (\eta_{A2}(y)))
\]

\[
(\eta_{u1} \cup \eta_{u2})(uy) \leq \max((\eta_{A1} \cup \eta_{A2})(u), (\eta_{A1} \cup \eta_{A2})(y))
\]

\[
(\eta_{u1} \cup \eta_{u2})(uy) \leq \max((\eta_{A1} + \eta_{A2})(u), (\eta_{A1} + \eta_{A2})(y))
\]

This completes the proof.

5. Application

In this section, we apply the concept of CIFGs in multi-attribute decision-making problem, where the selection of suitable subjects has been carried out.

There are many career options for the students of present times. Moreover, some of the courses are usually chosen where all the available choices remain superior and best choices until a single student has to choose a field of his interest by keeping in view his preferences. At the finishing of college level education requires selecting their first choice of career planning. During this time, pupils must be given enough information about choosing career according to their interest. According to the survey of random sample of 100 pupils of class X carried out in this part, pupils with favour of interests and no favouring of choices of a specific subject up to class X are measured and given below. Based on the data, cubic nonrational fuzzy graph is used as a tool as it makes the level of membership (interval-valued membership) (percentage of students who favour a subject or a pair of subjects) and level of nonmembership (interval-valued nonmembership) (percentage of students who disfavour a subject or a pair of subjects). Employing CIFS, the best subject’s combination may be evaluated that are the class having subjects that could be productive to most students and have best academic performance of most of the students.

Let $S = \{\text{English (E)}, \text{Language (L)}, \text{Maths (M)}, \text{Science (S)}, \text{Social Sciences (SS)}\}$ be the set of vertices. Tables 1 and 2 illustrate the percentages of students with interest/disinterest towards a subject or a pair of subjects.

Based on the above information, we generate an CIFG as follows (Figure 19).

In every vertex of the graph, the degree of membership shows the percentage of students with zeal for a specific subject and the degree of nonmembership is the percentage of students with no zeal in subject from a random sample of 100 students of class X chosen for survey. Also, the corners of graph of both membership and nonmembership show the favour and disfavour of students to study the combined subjects at higher secondary corner. From the given graph, the corner $(L - SS)$ possesses high degree of nonmembership, which shows that majority of pupils do not like to study the combined subjects Language and Social Science, and the corner $(M - S)$ possesses high degree of membership, which shows that majority of pupils have zeal for studying the
combined subjects of Math and Science. There is disfavour to study the combined subjects of Tamil and Math, which indicates that these subjects do not require to be combined. Therefore, a high (low) level of membership of any corner shows the high (low) weightage of combined subjects at higher studies.

Table 1: Subject combination.

Subject combination	Interest percentage	Disinterest percentage
E	[0.3, 0.4], 0.3	[0.4, 0.5], 0.7
L	[0.2, 0.4], 0.4	[0.55, 0.6], 0.6
M	[0.2, 0.3], 0.3	[0.6, 0.7], 0.5
S	[0.1, 0.4], 0.5	[0.5, 0.6], 0.4
SS	[0.2, 0.3], 0.7	[0.3, 0.6], 0.3

Table 2: Subjects combinations.

Subjects combination	Interest percentage	Disinterest percentage
E – M	[0.2, 0.3], 0.3	[0.6, 0.7], 0.7
E – L	[0.2, 0.4], 0.3	[0.55, 0.6], 0.7
E – S	[0.1, 0.4], 0.3	[0.5, 0.6], 0.7
E – SS	[0.2, 0.3], 0.3	[0.4, 0.6], 0.7
L – M	[0.2, 0.3], 0.3	[0.6, 0.7], 0.6
L – S	[0.1, 0.4], 0.4	[0.55, 0.6], 0.6
L – SS	[0.2, 0.3], 0.4	[0.55, 0.6], 0.6
M – S	[0.1, 0.3], 0.3	[0.6, 0.7], 0.5
M – SS	[0.2, 0.3], 0.3	[0.6, 0.7], 0.5
S – SS	[0.1, 0.3], 0.5	[0.5, 0.6], 0.4

Figure 19: Cubic intuitionistic fuzzy graph.

6. Comparison

Proposition 8. A cubic IFG is a generalization of cubic FG.

Proof. Let $G^* = (\mathcal{V}', E)$ be a cubic IFG. Then if we put the value of nonmembership of the vertex set and edge set as
zero in the IVFS and FS, then the cubic IFG reduces to cubic FG.

Proposition 9. An IVIFG is a generalization of IVFG.

Proof. Let \(\tilde{G} = (\mathcal{V},E) \) be an IVIFG. If we put the value of nonmembership of the vertex set and edge set as zero, then the IVIFG reduces to IVFG.

Proposition 10. An IFG is a generalization of FG.

Proof. Let \(\tilde{G} = (\mathcal{V},E) \) be an IFG. If we put the value of nonmembership of the vertex set and edge set as zero, then the IFG reduces to FG.

7. Conclusion

In this article, we developed a novel concept of CIFG as a generalization of IFGs. The graph theoretic terms like subgraphs, complements, degree of vertices, strength of graphs, paths, and cycle are briefly presented with the help of examples. Some related results and properties of the defined concepts are discussed. The generalization of CIFG is proved by some examples and remarks. A comparison of CIFG with IFG and other related concepts is given. The theory of CIFG is a generalization of IFG and can be applied to many real-life problems such as shortest path problem, communication problem, cluster analysis, and traffic signal problems. In the future, the graphs of the cubic Pythagorean fuzzy sets, cubic q-rung orthopair fuzzy sets, and cubic spherical fuzzy sets can be developed and different aggregation operators are defined for better decision-making.

Data Availability

No data were used in this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this article.

References

[1] Y. B. Jun, C. S. Kim, and K. O. Yang, “Cubic sets,” *Annals of Fuzzy Mathematics and Informatics*, vol. 4, no. 1, pp. 83–98, 2012.

[2] M. Khan, Y. B. Jun, M. Gulistan, and N. Yaqoob, “The generalized version of Jun’s cubic sets in semigroups,” *Journal of Intelligent & Fuzzy Systems*, vol. 28, no. 2, pp. 947–960, 2015.

[3] N. Yaqoob, S. M. Mostafa, and M. A. Ansari, “On cubic KU-ideals of KU-algebras,” *ISBN Algebra*, vol. 2013, 2013.

[4] Z. Lu and J. Ye, “Cosine measures of neutrosophic cubic sets for multiple attribute decision-making,” *Symmetry*, vol. 9, no. 7, p. 121, 2017.

[5] Y. B. Jun, F. Smarandache, and C. S. Kim, “Neutrosophic cubic sets,” *New Mathematics and Natural Computation*, vol. 13, no. 1, pp. 41–54, 2017.

[6] M. Ali, I. Deli, and F. Smarandache, “The theory of neutrosophic cubic sets and their applications in pattern recognition,” *Journal of Intelligent & Fuzzy Systems*, vol. 30, no. 4, pp. 1957–1963, 2016.

[7] G. Muniuddin and A. M. Al-roqi, “Cubic soft sets with applications in BCK/BCI-algebras,” *Annals of Fuzzy Mathematics and Informatics*, vol. 8, pp. 291–304, 2014.

[8] G. Muniuddin, F. Feng, and Y. B. Jun, “Subalgebras of BCK/BCI-algebras based on cubic soft sets,” *The Scientific World Journal*, vol. 2014, 2014.

[9] Y. B. Jun and A. Khan, “Cubic ideals in semigroups,” *Honam Mathematical Journal*, vol. 35, no. 4, pp. 607–623, 2013.

[10] C. Jana and T. Senapati, “Cubic G-subalgebras of G-algebras,” *Annals of Pure and Applied Mathematics*, vol. 10, no. 1, pp. 103–115, 2015.

[11] Y. Jun, S.-Z. Song, and S. Kim, “Cubic interval-valued intuitionistic fuzzy sets and their application in BCK/BCI-algebras,” *Axioms*, vol. 7, no. 1, p. 7, 2018.

[12] S. Pramanik et al., “Some operations and properties of neutrosophic cubic soft set,” *Global Journal of Research and Review*, vol. 4, no. 2, 2017.

[13] F. Mehmood, T. Mahmood, and Q. Khan, “Cubic hesitant fuzzy sets and their applications to multi criteria decision making,” *International Journal of Algebra and Statistics*, vol. 5, no. 1, pp. 19–51, 2016.

[14] T. Mahmood, F. Mehmood, and Q. Khan, “Some generalized aggregation operators for cubic hesitant fuzzy sets and their applications to multi criteria decision making,” *Journal of Mathematics* (ISSN 1016-2526), vol. 49, no. 1, pp. 31–49, 2017.

[15] K. T. Atanassov, “Intuitionistic fuzzy sets,” *Fuzzy Sets and Systems*, vol. 20, no. 1, pp. 87–96, 1986.

[16] L. A. Zadeh, “Fuzzy sets,” *Information and Control*, vol. 8, no. 3, pp. 338–353, 1965.

[17] H. Garg and G. Kaur, “Cubic intuitionistic fuzzy sets and its fundamental properties,” *Journal of Multiple-Valued Logic & Soft Computing*, vol. 33, no. 6, 2019.

[18] R. Parvathi and M. Karunambigai, “Intuitionistic fuzzy graphs,” in *Computational Intelligence, Theory and Applications*, pp. 139–150, Springer, New York, NY, USA, 2006.

[19] A. Kaufmann, *Introduction à la théorie des sous-ensembles flous à l'usage des ingénieurs: Éléments théoriques de base, Fuzzy Set Theory*, vol. 1, 1973.

[20] A. Rosenfeld, *Fuzzy Graphs*, in *Fuzzy Sets and Their Applications to Cognitive and Decision Processes*, pp. 77–95, Elsevier, Amsterdam, Netherlands, 1975.

[21] R. T. Yeh and S. Y. Bang, “Fuzzy relations, fuzzy graphs, and their applications to clustering analysis,” *Fuzzy Sets and Their Applications to Cognitive and Decision Processes*, vol. 1, pp. 125–149, 1975.

[22] M. Blue, B. Bush, and J. Puckett, “Unified approach to fuzzy graph problems,” *Fuzzy Sets and Systems*, vol. 125, no. 3, pp. 355–368, 2002.

[23] A. Somasundaram and S. Somasundaram, “Domination in fuzzy graphs - I,” *Pattern Recognition Letters*, vol. 19, no. 9, pp. 787–791, 1998.

[24] K. P. Chan and Y. S. Cheung, “Fuzzy-attribute graph with application to Chinese character recognition,” *IEEE Transactions on Systems, Man, and Cybernetics*, vol. 22, no. 1, pp. 153–160, 1992.

[25] D. Gómez, J. Montero, and J. Yáñez, “A coloring fuzzy graph approach for image classification,” *Information Sciences*, vol. 176, no. 24, pp. 3645–3657, 2006.

[26] M. Sunitha and A. Vijayakumar, “Complement of a fuzzy graph,” *Indian Journal of Pure and Applied Mathematics*, vol. 33, no. 9, pp. 1451–1464, 2002.
[27] S. Mathew and M. S. Sunitha, “Types of arcs in a fuzzy graph,” *Information Sciences*, vol. 179, no. 11, pp. 1760–1768, 2009.

[28] P. Bhattacharya, "Some remarks on fuzzy graphs." *Pattern Recognition Letters*, vol. 6, no. 5, pp. 297–302, 1987.

[29] K. R. Bhutani, “On automorphisms of fuzzy graphs,” *Pattern Recognition Letters*, vol. 9, no. 3, pp. 159–162, 1989.

[30] K. R. Bhutani and A. Rosenfeld, “Strong arcs in fuzzy graphs,” *Information Sciences*, vol. 152, pp. 319–322, 2003.

[31] J. N. Mordeson and P. Chang-Shyh, "Operations on fuzzy graphs," *Information Sciences*, vol. 79, no. 3-4, pp. 159–170, 1994.

[32] M. Akram and B. Davvaz, “Strong intuitionistic fuzzy graphs,” *Filomat*, vol. 26, no. 1, pp. 177–196, 2012.

[33] A. N. Gani and S. S. Begum, "Degree, order and size in intuitionistic fuzzy graphs," *Pattern Recognition Letters*, vol. 9, no. 3, pp. 11–16, 2010.

[34] R. Parvathi, M. Karunambigai, and K. T. Atanassov, “Operations on intuitionistic fuzzy graphs,” *Fuzzy Systems*, vol. 20, 2009.

[35] M. Akram and G. Thamizhendhi, "Domination in intuitionistic fuzzy graphs," *Notes on Intuitionistic Fuzzy Sets*, vol. 16, no. 2, pp. 39–49, 2010.

[36] M. Akram and W. A. Dudek, “Intuitionistic fuzzy hypergraphs with applications,” *Information Sciences*, vol. 218, pp. 182–193, 2013.

[37] M. Akram and N. Alshehri, "Intuitionistic fuzzy cycles and intuitionistic fuzzy trees," *The Scientific World Journal*, vol. 2014, 2014.

[38] M. G. Karunambigai, M. Akram, S. Sivasankar, and K. Palanivel, "Balanced intuitionistic fuzzy graphs," *Applied Mathematical Sciences*, vol. 7, no. 51, pp. 2501–2514, 2013.

[39] G. Pasi, R. Yager, and K. Atanassov, "Intuitionistic fuzzy graph interpretations of multi-person multi-criteria decision making: generalized net approach," in *Proceedings of the 2nd International IEEE Conference*, IEEE, New York, NY, USA, 2004.

[40] M. Karunambigai, R. Parvathi, and R. Buvaneswari, "Constant intuitionistic fuzzy graphs," *NIFS*, vol. 17, no. 1, pp. 37–47, 2011.

[41] R. Parvathi, S. Thilagavathi, and M. Karunambigai, "Intuitionistic fuzzy hypergraphs," *Cybernetics and Information Technologies*, vol. 9, no. 2, pp. 46–53, 2009.

[42] P. Chountas et al., "On intuitionistic fuzzy trees and their index matrix interpretation," *Notes on Intuitionistic Fuzzy Sets*, vol. 15, no. 4, pp. 52–56, 2009.

[43] M. Akram and W. A. Dudek, "Interval-valued fuzzy graphs," *Computers & Mathematics with Applications*, vol. 61, no. 2, pp. 289–299, 2011.

[44] S. Mathew, J. N. Mordeson, and D. S. Malik, "Interval-valued fuzzy graphs," *Fuzzy Graph Theory*, vol. 2018, pp. 231–269, 2018.

[45] H. Rashmanlou and Y. B. Jun, “Complete interval-valued fuzzy graphs,” *Annals of Fuzzy Mathematics and Informatics*, vol. 6, no. 3, pp. 677–687, 2013.

[46] M. Akram, "Interval-valued fuzzy line graphs," *Neural Computing and Applications*, vol. 21, no. 1, pp. 145–150, 2012.

[47] H. Rashmanlou and M. Pal, “Balanced interval-valued fuzzy graphs,” *Journal of Physical Science*, 2013.

[48] L. Xiao, S. Zhang, G. Wei et al., “Green supplier selection in steel industry with intuitionistic fuzzy Taxonomy method,” *Journal of Intelligent & Fuzzy Systems*, pp. 1–12, In press, 2020.

[49] M. Zhao, G. Wei, C. Wei, J. Wu, and Y. Wei, “Extended CPT-TODIM method for interval-valued intuitionistic fuzzy MAGDM and its application to urban ecological risk assessment,” *Journal of Intelligent & Fuzzy Systems*, vol. 40, no. 3, pp. 1–16, 2020.