Breast MRI during pregnancy and lactation: clinical challenges and technical advances

Noam Nissan1,2*, Ethan Bauer3, Efi Efraim Moss Massasa4 and Miri Sklair-Levy1,2

Abstract
The breast experiences substantial changes in morphology and function during pregnancy and lactation which affects its imaging properties and may reduce the visibility of a concurrent pathological process. The high incidence of benign gestational-related entities may further add complexity to the clinical and radiological evaluation of the breast during the period. Consequently, pregnancy-associated breast cancer (PABC) is often a delayed diagnosis and carries a poor prognosis. This state-of-the-art pictorial review illustrates how despite currently being underutilized, technical advances and new clinical evidence support the use of unenhanced breast MRI during pregnancy and both unenhanced and dynamic-contrast enhanced (DCE) during lactation, to serve as effective supplementary modalities in the diagnostic work-up of PABC.

Keywords: Pregnancy, Lactation, Breast MRI, Pregnancy-associated breast cancer, PABC

Key points
- Diffusion MRI may serve as a standalone modality during pregnancy.
- DCE MRI of the breast remains of significant value during lactation.
- Unenhanced DTI may increase PABC lesion conspicuity as compared with DCE.
- Non-fat suppressed T2 images can improve the delineating of non-mass DCIS lesions.
- Increased utilization of MRI may facilitate an earlier PABC diagnosis.

Background
Pregnancy-associated breast cancer (PABC) is traditionally defined as breast cancer diagnosed during pregnancy, in the first year postpartum, or anytime during lactation [1], and typically represents a high-grade luminal b-like invasive ductal carcinoma [2]. Although it is a rare circumstance, occurring in 0.3 in 1000 pregnancies [3], breast cancer stands among the most common types of malignancies occurring during pregnancy and its incidence is on the rise in developed countries as more women delay childbearing [4, 5]. The diagnosis of PABC could be challenging because of the unique physiological changes that the breast undergoes [6], which may mask a concurrent malignant transformation both clinically and radiologically, while also dictating restrictions on the imaging work-up [7]. Ultimately, PABC is more likely to be diagnosed with an advanced disease than non-pregnant patients [8], and consequently, is associated with a poorer prognosis [9], being the most common cause of cancer-related mortality in gestational women and associated with a mortality rate that is 50% higher when compared to non-PABC [10].

Magnetic resonance imaging (MRI) and in particular, its workhorse sequence, dynamic contrast-enhanced (DCE) MRI, continues to serve in the mainstay of breast cancer diagnostic workup [11–13], and to expand in potential indications [14–16], owing to its high sensitivity for breast cancer detection and its unparalleled negative predictive value compared with conventional imaging.
Physiological changes of the breast

Throughout pregnancy, the breast undergoes a series of unique structural and functional alterations in preparation for its eventual biological role in lactation. Within this process, called lactogenesis, the mammary gland grows with developed glandular tissue at the expense of shrunken adipose and connective tissues [29]. Regulated by key hormones, lactogenesis is composed from two stages, which is necessary for the breast in order to synthesize and secrete milk [30]. Secretory initiation takes place in the second trimester of pregnancy. In the postpartum period, secretory activation, the second stage of lactogenesis, begins and is followed with milk secretion which is triggered by the fall of progesterone blood levels [31]. The colostrum is temporarily enriched with protein and electrolytes and following several days of breastfeeding, turns into a mature, lipid-rich, and stable mother's milk [32].

Both clinical and radiological evaluation of the breast are influenced by the physiological changes during pregnancy and lactation. Clinically, breast examination can be challenging due to the enlarged size of the breasts, their tenderness, and especially their harder, more nodular consistency [33]. Imaging-wise, each of the various radiological modalities is hampered by the various changes in the breast properties. Owing to its harmless nature and excellent utility in focal evaluation of palpable findings [34], there is consensus that US represents the most appropriate and thus, the first-line imaging modality for breast evaluation during pregnancy and lactation [35]. The role of mammography is relatively diminished during pregnancy and lactation due to the increased mammographic density of the breast parenchyma and concerns related to radiation exposure for the fetus [19]. It should be mentioned though, that in many centers, mammography is considered generally safe during pregnancy and lactation, since the radiation dose from a bilateral two view mammogram is <3 mGy per view, equivalent to 7 weeks of background radiation [36]. The increased mammographic density (Fig. 1) may well reduce the sensitivity of screen-detected tumors [37], although mammography may still be useful in the detection of suspicious micro-calcifications. Therefore, mammography serves as an adjunct to US [27]. During lactation, patients are advised to nurse or pump immediately before undergoing mammography in order to decrease parenchymal density related to retained milk [6]. Rarely, mammography can also exhibit a unique form of scattered micro-calcifications, secondary to gestational (pregnancy) or secretory (lactation) hyperplasia, which may add further complexity for mammographic evaluation (Fig. 1) [38, 39].

These physiological changes of the breast are also reflected on the various MRI pulse sequences. Since contrast enhanced breast MRI scans are not performed during pregnancy, reports on breast MRI of pregnant patients have been limited to examinations performed prior to elected abortion [40] or using unenhanced protocol [41]. Breast MRI studies of the lactating breast are more common and include both DCE, as well as unenhanced sequences [40, 42–52]. The main MRI features of the breast during pregnancy and lactation are increased fibroglandular tissue [47] and increased vascularity, which is manifested by marked BPE [40, 42, 43, 49–52] and results in false positive coloring on DCE computer aided diagnosis (CAD) mapping (Fig. 2).

Further characterization of the lactating breast has been afforded by additional MRI sequences. On MR spectroscopy, a total choline peak, an established breast cancer biomarker [53], was evident in exams of most healthy lactating volunteers, thus limiting its clinical role in this population [44]. On diffusion-weighted imaging (DWI), the measured apparent diffusion coefficient (ADC) of the lactating breast was found to be decreased
relative to normal values among premenopausal, non-lactating, and healthy volunteers. This phenomenon is most likely due to the increased viscosity of the lipid-rich milk [45], although the ADC is still higher than the malignant spectrum of values [44, 45, 47, 48].

Advanced diffusion MRI models were also used to investigate the unique features of the breast during pregnancy and lactation. Intra-voxel incoherent motion (IVIM), a bi-exponential diffusion model, is based on acquiring multiple diffusion weightings in the fast and slow regimes in order to separate the fast perfusion-based “pseudo-diffusion” component from the slow diffusion process [54]. Using IVIM analysis, the lactating breast, as anticipated, has shown to exhibit increased perfusion fraction [48], due to the pronounced vascularity of the breast parenchyma [42] and the high metabolic demand during breastfeeding [55]. Another approach could be found in diffusion tensor imaging (DTI), which is based on applying diffusion gradients to characterize tissue microstructure. These gradients go in multiple directions in order to map spatial information of the diffusion hindrance and restriction that goes beyond cellular density [56]. DTI properties among healthy, pregnant examinees resembled the measurements among non-pregnant, premenopausal examinees, with relatively high values of diffusivity, as expected for dense breasts [41]. Besides decreased diffusivity, DTI studies of the lactating breast also reported reduced anisotropy [45, 46], probably owing to the physiological transient increase in the diameter of the lactiferous ducts [57]. Furthermore, DTI has enabled the characterization of the underlying ductal-tree architecture of the lactating breast, as demonstrated by the diffusion Eigen-vectors mapping. This is clearly illustrated by the predominance of diffusivity directed to the nipple with “duct-like,” linear, and branching vectors of the first eigenvalue [30, 46, 58] (Fig. 3).

Benign breast disease of pregnancy and lactation

Benign entities account for the vast majority of findings among patients presenting with a palpable breast mass during pregnancy and lactation [6]. In a study that evaluated the diagnostic workup of 164 lesions among pregnant, lactating, and postpartum women, Robbins and co-authors reported that most of the cases appeared during lactation (65%), and breast cancer accounted for only 2.4% of cases (4/164), even though cancer constituted 10% of the eventual biopsies [59]. Benign conditions, however, are more common and are either the same as those observed in non-pregnant women [60] or breast abnormalities distinctive for pregnancy and lactation [61]. Examples of these mimickers include, though not exclusively, galactocele, lactating adenoma, fibroadenoma, duct ectasia, mastitis, and abscess [62], along with common contemporary mimickers that affect breast imaging, such as vaccination induced lymphadenopathy [63]. Their presentation, with focus on their MRI
characteristics, will be discussed below. In addition, a summary of the typical MRI features of the common breast lesions during pregnancy and lactation is provided in Table 1.

Galactocele

A galactocele, a Greek term meaning “milky pouch,” is a milk collection retained within the fibroglandular tissue because of duct obstruction. This etiology usually regresses spontaneously on follow-up and is the most common benign breast mass among lactating patients [64]. Characterized with a cyst-like formation, a galactocele is often surrounded by a fibrous capsule with variable luminal morphology depending on the distribution of its contents: fat, protein and fluid [61]. Mostly encountered after cessation of breast-feeding, galactoceles can also be present earlier, occasionally even in the third trimester of pregnancy [6]. Similar to other pregnancy-associated breast lumps, the typical clinical manifestation is a painless, palpable mass, arising upon breastfeeding cessation [60]. From the imaging perspective, galactoceles are mostly described according to its sonographic appearance [65]; usually as round or oval in shape, with variable echogenicity which most likely increases as the lesion ages and a characteristic fat-fluid level [66]. MRI features of galactocele are hardly described in the literature, as US is sufficient for its diagnostic work-up. Recently, Rosas et al. provided MR images showing a cyst with a thin septa, heterogeneous content, and fat-fluid level, which is compatible with the diagnosis [19] (Fig. 4).
Lactating adenoma represents a benign stromal alteration with a tendency to regress upon breastfeeding cessation [67]. Lactating adenoma is the most prevalent breast lesion occurring during pregnancy, usually appearing during the third trimester or during lactation, as a painless, palpable, and mobile breast lump [68]. Typical US features of lactating adenoma favor a benign mass, including a solid, ovoid, well-defined, and wider-than-taller lesion with homogeneous and hypoechoic appearance alongside posterior acoustic enhancement [69]. On MRI, lactating adenoma has been described as fibroadenoma-like; a well circumscribed mass, containing hypointense septa, causing

Table 1 A summary of the MRI features of common breast entities during pregnancy and lactation

Entity	MRI features
Galactocele	Non-fat-suppressed T1-weighted and fat-suppressed T2-weighted images could determine the diagnosis among lactating patients with a cystic lesion including a thin septa, heterogeneous content, and fat-fluid level
Lactating adenoma	Morphology-wise resembles a fibroadenoma-like lesion; a well circumscribed mass, containing hypointense septa, causing mass effect on adjacent parenchyma and the main galactiferous ducts of the NAC. On DCE, a benign kinetic curve of persistent enhancement may appear.
Fibroadenoma	Morphology-wise, usually exhibits a benign shape on unenhanced sequences, including a sharp contour without signs of infiltration. On DCE, typically exhibits benign patterns of a persistent kinetic curve.
Duct-ectasia	Fat-suppressed T1 and T2-weighted images may display an enlarged ductal structure, depending on if its content is composed of protein or fluids, respectively. A unilateral duct dilatation may be an indicator of malignancy and could enhance on DCE, therefore requiring a further diagnostic workup.
Mastitis and Abscess	MRI is not indicated during acute mastitis, however, if symptoms persist despite optimal treatment, MRI may be performed to rule out an inflammatory breast cancer. On DCE these two differentials may exhibit an overlapping suspicious features, thus clinical correlation and tissue sampling may be indicated.
PABC	During pregnancy—unenhanced DWI/DTI could determine the diagnosis. During lactation—DCE is of value, despite BPE limitations. DWI/DTI can improve tumor conspicuity. Hypo-intensity on T2 weighted images can assist in delineation of NME lesion, like DCIS. Post-weaning—BPE drops, and DCE utility returns to optimum.

Fig. 4 Galactocele. Non-fat-suppressed axial T1-weighted (panel A) and sagittal fat-suppressed T2-weighted (panel B) images of lactating patient with galactocele are presented. Note: a cyst with thin septa, heterogeneous content, and fat-fluid level is exhibited and compatible with galactocele diagnosis. Reproduced with permission from Radiologia Brasileira [19].
mass effect by displacing the adjacent normal breast parenchyma and the main galactiferous ducts of the nipple-areolar complex [70]. Herein, we present another representative MRI case of a biopsy-confirmed lactating adenoma. Our findings suggest that lactating adenoma may exhibit benign features of enhancement kinetics on DCE MRI (Fig. 5).

Fibroadenoma
Fibroadenomas are composed of epithelium and stroma and account for the most common benign tumor detected in young females [71]. Interestingly, before pregnancy, fibroadenomas may remain latent and asymptomatic until becoming clinically apparent as a new-onset palpable mass after hormonally stimulated growth [6]. Clinically, fibroadenomas, which are often multiple and bilateral, usually present as a painless firm, mobile, and rubbery mass. Less frequently, fibroadenomas may experience a tremendous growth spurt, resulting in central infarction, and then becoming tender [72]. On mammography, fibroadenomas often appear as a well-defined round or oval mass which may also exhibit pathognomonic benign calcifications, making a further imaging work-up unnecessary [73]. On US, fibroadenomas among pregnant or lactating women is the same as among the general population, exhibiting a circumscribed, wider-than-taller oval or round mass [74]. Infarcted or complexed fibroadenomas may show suspicious features such as irregular margins and internal cystic changes that warrant biopsy [75]. On MRI, fibroadenomas usually exhibit a benign morphology on unenhanced sequences, including a sharp contour without signs of infiltration [76]. Additionally, they exhibit benign DCE patterns such as a persistent kinetic curve [77] and a high extracellular volume fraction with low to moderate microvascular permeability [78]. A representative case of a growing fibroadenoma is given in Fig. 6.

Duct ectasia
Duct ectasia of the breast is among the benign processes that may affect the nipple-areolar complex during pregnancy and lactation [79]. The clinical course of duct ectasia ranges from asymptomatic to symptoms such as nipple discharge, nipple retraction, a palpable mass, and mastalgia [80]. Depending on the degree of dilatation as well as the mammographic density, duct ectasia may be visible at mammography as dense tubular structures converging on the nipple-areolar complex [81]. Sonographically, it appears as anechoic, smooth-walled, and branching structures that taper peripherally [82]. On MRI, the ductal structures may be visible on fat-suppressed T1 and T2-weighted images depending on if its contents are composed of protein or fluids, respectively. Despite being regarded as benign, a unilateral duct dilatation may be an indicator of malignancy and hence, the importance of its diagnostic work-up [83]. An illustrative case of duct ectasia mimicking malignancy is shown in Fig. 7.

Mastitis and abscess
Mastitis is a common infectious condition that may affect up to one-third of lactating women [84] and is among the leading medical causes of premature breastfeeding cessation [85]. Among the most common complications are mastitis that are abscesses with a purulent collection. Its pathophysiology is thought to be related to transmission of oral bacterial from the infant to the mother’s lactiferous ducts. Maternal risk factors that were identified include previous mastitis during breastfeeding, cesarean section, breast trauma, latch problems, milk

Fig. 5 MRI of lactating adenoma. MR images of patient presented with palpable mass on the left breast 2 months after breastfeeding cessation are presented. T2 weighted image showed a hypo-intense mass (a), which exhibits a gradual enhancement and early and late DCE (b, c), below the signal intensity threshold for suspicious findings on CAD (d). Despite these benign features, the patient underwent vacuum-assisted biopsy which revealed lactating adenoma.
overproduction, blocked duct, and more [86]. Clinically, mastitis presents with focal mastalgia, edema, and erythema which may be accompanied fever and elevated blood test inflammatory markers. Focused US is indicated to rule out abscess when the infection is refractory to antibiotics, or for therapeutic guided-aspiration of the abscess [87]. Sonographically, it typically is characterized by an area of fluid collection with thin septations or debris, thickened walls, uncircumscribed margins and posterior acoustic enhancement [60]. With that regards, another related entity worth mentioning is granulomatous mastitis (GM), a rare benign inflammatory breast disease that affects mostly women of childbearing age with a history of breastfeeding and may mimic both abscess and carcinoma [88]. Breast MRI is not indicated during acute mastitis; however, when mastitis symptoms persist despite well-managed medical treatment, MRI may be performed. The main differential diagnosis of exclusion is inflammatory breast cancer [89], notwithstanding overlapping enhancement features of the two entities [90]. Herein, we present two cases in which MRI was utilized during for mastitis evaluation (Fig. 8) and abscess monitoring (Fig. 9).

Pregnancy-associated breast cancer (PABC)

Pregnancy

During pregnancy, breast DCE-MRI is contraindicated due to the increased risk of a broad set of rheumatological, inflammatory, or dermal conditions, as well as stillbirth or neonatal death, associated with gadolinium-based contrast agents used during the MRI [22]. The lone report on breast DCE-MRI during pregnancy was composed of PABC patients who elected to undergo abortion [40]. Despite the lack of supportive evidence for improved maternal outcomes for pregnant breast cancer patients undergoing therapeutic abortion [91], an elective

Fig. 6 Growing fibroadenoma during lactation. DCE-MRI subtracted images of a 26 years BRCA 1 carrier scanned twice within 18 months of routine surveillance, before conception and during lactation are presented. On baseline MRI (a), a 1.3 cm well-defined enhancing oval mass is visible on top of minimal background parenchymal enhancement (BPE 0). Yet, on follow-up during lactation, a 1.8 cm is hardly visible on DCE, due to the marked physiological BPE (grade 3) (b). The lesion enlargement and a personal history of phyllodes tumor prompt a US-guided biopsy which reassured fibroadenoma histology.
abortion remains frequent in patients diagnosed in the first trimester [92]. In these patients, DCE-MRI can aid in improved pre-operative assessment, providing additional diagnostic information regarding tumor size, extent of disease and contralateral involvement compared to mammography and US, in up to 28% of cases [40]. A representative MRI of a pregnant breast cancer patient who elected to undergo abortion is given in Fig. 10, showing the tumor extent superimposed on the notable pregnancy-associated BPE.

Moreover, the first attempt to utilize unenhanced diffusion MRI as a standalone modality for pregnant patients at high risk or with newly diagnosed PABC was recently reported [37]. This work demonstrated the feasibility and tolerability of breast MRI in the prone position among pregnant patients, although most cases involved pregnant women in the first and second trimesters. In order to decrease any gravitational pressure from the belly, extra pillows were placed underneath the women to assist with pelvic lifting. In terms of diagnostic performance, diffusivity maps were useful in detecting nine out of 11 lesions and excluded malignancy in 14 high-risk patients; however, the maps were unable to detect two 7 mm lesions, as anticipated under the technical limitations of this modality [93]. Representative cases of unenhanced MRI in pregnant breast cancer patients are shown in Fig. 11 [94], highlighting the potential diagnostic advantages of this approach.

An interesting and unusual case we encountered was of a pregnant patient with newly diagnosed mucinous breast carcinoma who underwent MRI prior to elected abortion. Pure mucinous carcinoma typically appears on MRI as a circumscribed mass with extremely high signal intensity on fat-saturated T2-weighted imaging and a benign-appearing persistent enhancement curve [94, 95]. As demonstrated in Fig. 12, the palpable lesion on the left breast was not detected on DCE and CAD images because of concurrence of its benign-like kinetic features and the marked surrounding BPE. Yet, the lesions were clearly visible on fat-suppressed T2-weighted images, therefore stressing the importance of acquiring broad protocol in diagnostic breast MRI.

Unenhanced diffusion MRI is also gaining recognition in the diagnostic workup of PABC for the systemic staging of pregnant patients, when the use of PET/CT is discouraged [95]. For this purpose, a whole-body MRI relying on DWI with background suppression (DWIBS) sequence has been applied [96]. This emerging MRI technique can provide non-invasive information regarding the extent of disease and distant metastasis and often provides diagnostic value that changes the patient management [97, 98].

Lactation

Breast MRI is much more common during lactation, due to the fact that injection of gadolinium-based contrast agent is considered safe for administration [20]. Past studies evaluating the gadolinium excretion into breast milk revealed that less than 0.04% of the administered dose reaches the milk [99], and, of that amount, only 0.8% is actually absorbed by the infant [100]. Accordingly, some authors openly assert that lactating patients should not be advised to suspend breastfeeding at all, given that the risks associated with interrupting breastfeeding outweigh the negligible amount of contrast media [101]. More conservative approaches suggest the option...
Fig. 8 Mastitis. Unenhanced MR images of 37-year-old pregnant patient with refractory mastitis are presented. The patient presented with breast edema, erythema and pruritus and blinded subcutaneous punch biopsies revealed adenosis on pathology. Because of continuous symptoms despite treatment, we were requested to perform MRI without contrast injection to rule out underlying inflammatory carcinoma. T2 weighted image revealed thickened skin (a) (yellow line), while no focal restriction was noted on ADC map (b).

Fig. 9 Abscess. MRI of 31-year-old patient with a history of recurrent breast mastitis and abscesses during several separate lactation periods is presented, this time in aspiration-confirmed breast abscess post weaning. Subtracted DCE (a) MIP (c) and CAD (d) reveal large rim enhancing regions with high T2 signal (b), compatible with an abscess.
of abstaining from breastfeeding for a period of 12–24 h if this is the preference of an informed mother [102]. Since the excretion of gadolinium to breast milk has been shown to reach its peak after approximately 4 h [103], if lactating patients have concerns about breastfeeding, the authors advise to pump and dump the milk with continuation of nursing after 6 h.

The main concern regarding the use of breast MRI during lactation does not stem from safety worries, but rather reservations regarding its uncertain diagnostic performance. In light of the increased BPE, there are concerns that it may potentially obscure the presence of the underlying tumor [27]. Several publications reported that despite increased surrounding BPE, high sensitivity was observed in known PABC cases that underwent DCE-MRI [40, 49–51].

Herein, we present an assembly of representative cases, illustrating the spectrum of appearance and persevered diagnostic capabilities of breast MRI, even in lactating patients. The first case is a pre-operative MRI of a PABC patient who presented with a palpable mass after 3 months of lactation. IDC was diagnosed using US-guided biopsy, and MRI reassured the existence of a solitary lesion on top of the surrounding BPE (Fig. 13). Occasionally, the diagnostic workup of known, newly diagnosed PABC can get complicated by simultaneous benign lactation-related findings, as shown by Fig. 14. In this patient, a preoperative MRI performed in a lactating patient revealed the known 2.8 cm IDC, as well as another enhancing 0.9 cm lesion which warranted focused US and biopsy to reveal adenosis and lactating changes on pathology. This case demonstrated that an argument regarding reduced specificity of breast MRI during lactation could be claimed.

One noteworthy type of cancer that deserves a specific mention is ductal carcinoma in situ (DCIS), which often displays overlapping radiological and pathological features with lesions with uncertain malignant behavior [104]. Unlike invasive carcinomas that tend to present as a mass, DCE-MRI usually depicts DCIS as non-mass enhancement (NME) with a larger median span than mammography [105]. Taking into consideration the difficulty in unravelling BPE from NME [106], this casts doubt regarding the utility of breast MRI to detect DCIS during lactation could arise. Two representative newly diagnosed DCIS cases undergoing preoperative breast MRI during lactation are presented in Figs. 15 and 16. Both patients presented with palpable mass and mammography detected suspicious linear micro-calcifications in typical segmental distribution. DCE-MRI displayed NME in the tumor region, enhancing more vividly than the surrounding lactation-induced BPE. Interestingly, additional diagnostic value was provided by non-fat suppressed T2-weighted images, allowing better depiction of lesion morphology and margins (Fig. 15).
Occasionally, PABC can manifest as multi-centric carcinoma, which is difficult to fully estimate its extent using conventional imaging. A representative case of a lactating patient with newly diagnosed IDC which turned to comprise no less than seven distinct malignant ipsilateral lesions is presented in Fig. 17, highlighting the ability of DCE-MRI, as well as unenhanced DWI to portray the entire extent of disease. With that regards, a recent comparative study investigated tumor conspicuity in DCE-MRI and unenhanced DTI protocol among lactating patients with PABC [51]. On DCE-MRI, because of the marked BPE, tumor conspicuity was reduced by 60% as compared to non-lactating controls. On the contrary, an additional 138% increase in tumor conspicuity on DTI compared with DCE was observed, underscoring a clear advantage for unenhanced MRI to operate in the setting of lactation-induced BPE.

Since PABC is often a delayed diagnosis, it is associated with more advanced tumor size at the time of diagnosis compared to non-PABC [107] and eventually may lead to increased rates of mastectomy as the treatment of choice [108]. Therefore, it is not uncommon to encounter a large PABC lesion occupying a high portion of the breast size, as demonstrated in Figs. 18 and 19. These images show the complete extent of the enormous tumors which are clearly depicted on both DCE as well as on unenhanced DWI.

Fig. 11 Unenhanced diffusion MRI during pregnancy. T2, DWI, and DTI parametric maps of three PABC patients (A–C). T2-weighted, DWI and DTI-derived diagnostic parametric maps of λ_1, MD, and $\lambda_1-\lambda_3$ of three patients with newly diagnosed IDC are presented. The lesion appears bright on DWI (b 700 s/mm²). Using the parametric threshold, the lesion could be easily depicted on λ_1, and MD maps, as well as on $\lambda_1-\lambda_3$ map, compared with the measurements in the normal tissue. Reproduced with permission from Journal of the American College of Radiology.
Post-weaning
Considering the difficulty of interpretation of DCE-MRI with marked BPE and the high likelihood of lactation-related benign entities, some authors suggest that it may be reasonable to delay the examination until several months after weaning to minimize false-positive results that may lead to unnecessary biopsies [26]. Screening MRI was once recommended in the breastfeeding period for “women who are at very high-risk for breast cancer” [7], or within the first 6 months postpartum [109]. Others suggested waiting until 3 months after cessation of breastfeeding since the imaging changes should resolve by this time-span following lactation cessation [6]. Recently, the ACR guidelines recommended resuming MRI screening for patients over 30 years old if breastfeeding is continued for more than 6 months. Otherwise, the ACR recommends resuming annual high-risk screening MRI 6–8 weeks following cessation of breastfeeding [20]. All in all, despite the variance in the literature, based on our institutional experience, the authors advocate not to postpone pre-operative MRI of newly diagnosed lactating PABC patient. Usually, from the beginning of the diagnostic work-up and until pathological confirmation of the cancer, the patients often discontinue nursing, and even this interlude period of 1–2 weeks may be sufficient to decrease the level of BPE. Among patients who are diagnosed with breast cancer post-weaning, lactation-related BPE is no longer expected and the tumor can be clearly viewed by DCE (Fig. 20).

Summary and outlook
In light of the marked physiological changes that the breast undergoes during pregnancy and lactation, clinical and radiological evaluation of the breast becomes extremely challenging. Considering the high incidence of gestational-associated benign breast entities, it is no surprise that PABC is often a delayed diagnosis [110]. The delay could be attributed to either the patient, if they postpone seeking medical evaluation, the physician, if they provide a false-negative clinical assessment of the symptomatic breast, or an imaging-related delay, via a false-negative radiological evaluation [111]. Ultimately,
PABC is typically diagnosed only after clinical symptoms arise, most commonly as a large palpable mass [112]. Considering that PABC's prognosis is not inferior from that of non-PABC when adjusted for stage and age [113], it appears that the delay in diagnosis, rather than the gestational state and associated overexpressed vascular, hormonal and growth-factor mediators [114], is responsible for its poor prognosis. This demonstrates the unmet need to adapt new screening strategies for high-risk populations during this period [20, 109], as well as to develop and utilize advanced imaging tools for achieving early diagnosis.

While there is wide agreement that US should be the first-line modality for breast imaging during pregnancy and lactation, and that mammography may have a supplementary additive role, the role of MRI remains controversial in the diagnostic work-up of PABC. In this pictorial review, we have illustrated how gestational-related physiological and benign processes are translated to MRI. Moreover, we have demonstrated the promising utility of unenhanced MRI to serve as a standalone breast imaging modality during pregnancy, and the more established utility of both contrast enhanced and unenhanced breast MRI during lactation. Specifically, it appears that since most cases of PABC reach the radiological work-up with a large palpable mass, the opportunity to facilitate an earlier diagnosis of PABC could be found among high-risk patients and BRCA mutation carriers, which account for up to 35% of PABC cases [115]. In this population, action should be taken to investigate whether screening MRI can detect PABC with asymptomatic disease.

Unenhanced breast MRI using DWI variants has shown great strides to serve as a possible cost-effective, fast, and clinically effective alternative to DCE [116]. Nevertheless, several factors are still holding it from being fully integrated into daily practice [117]. Technically, breast DWI is prone to eddy currents, geometrical and intensity distortions, and echo planar...
imaging ghosts artifacts [93]. Clinically, lower sensitivity of breast DWI was noted in cases of sub-centimeter lesions [118, 119], as well as in NME lesions [120]. To overcome these drawbacks, several strategies were recently attempted in order to provide robustness to artifacts and improve image quality [121–125]. Spatial resolution was also improved by reaching up to sub-millimeter pixel resolution [126–128], eventually

Fig. 15 MRI of DCIS during lactation. Images of a 40-year-old PABC patient (lactating for 4 months) with DCIS confirmed on operation are presented. The patient underwent screening mammography with adjuvant breast US (not presented) due to the extremely dense breasts on mammography (BI-RADS D) (c). Mammography revealed suspicious pleomorphic micro-calcifications in segmental distribution along 6 cm in the left upper outer quadrant (c). Pre-operative MRI showed NME on top of the surrounding prominent lactation-induced BPE, typical for DCIS, in agreement with the calcifications location (a). Furthermore, an excellent tumor delineation was afforded by non-fat surpassed T2-weighted image, showing hypo-intense region in the tumor area (b)

Fig. 16 MRI of post-partum DCIS. Images of a 33-year-old PABC patient (lactating cessation a week prior to the MRI) diagnosed with left breast DCIS are presented. The patient palpate a lump in the left breast during the third trimester of pregnancy and underwent breast US (not presented) which depicted a benign appearing 9 mm oval mass. Upon follow-up 3 months later, post-partum, focal US depicted irregular mass with calcifications. Further diagnostic workup included US-guided biopsy, mammography which revealed extremely dense breast with segmental distribution of suspicious micro-calcifications in the inner-lower quadrant (b) and zoomed image (c), as well as breast MRI (a) which showed the characteristic NME of DCIS along 42 mm, in agreement with the mammographic findings, on top of the moderate background enhancement (BPE 2)
allowing for visibility of higher lesions [129] and greater morphological concordance between DWI and DCE [130]. Thus, the authors foresee an encouraging future for breast DWI in general, and in particular with PABC.

For DCE, it is safe to assume that during pregnancy it would remain unutilized. During lactation, however, the role of DCE may expand, possibly due to the implementation of novel acquisition schemes that may allow better separation between enhancing lesions and BPE. In recent years, developments in accelerated MRI using the application of compressed sensing [131] have allowed the faster acquisition of MRI data. This relies on exploiting sparsely under-sampled k-space in peripheral regions while continuously sampling the k-space center to enable high temporal resolution with preserved spatial resolution. Several sparse methods have been integrated to MRI protocols, including time-resolved angiography with stochastic trajectory (TWIST) [132] and golden-angle radial sparse parallel (GRASP) [133]. Optimization of sparse techniques to breast MRI has promoted the novel approach of ultrafast DCE with temporal resolution of less than 10 s during the initial wash-in phase, compared with a standard temporal resolution of up to 2 min in conventional MRI [134]. Analysis of the wash-in kinetics has been found to provide valuable information for lesion characterization [134–139] and since BPE usually exhibits slow early enhancement slope and persistent delayed enhancement [140], ultrafast sequence might therefore be suitable for early visualization of malignant lesions with minimization of lactation-induced BPE [141]. The accumulation of BPE along the early phases of wash-in during ultrafast breast DCE of healthy lactating patients

Fig. 17 MRI of multi-centric IDC during lactation. MRI of a 40-year-old PABC patient (lactating for 18 months) is presented. The woman presented with a palpable left breast mass and was referred to pre-operative MRI upon IDC diagnosis. Note: Several multifocal tumor foci are shown on the subtracted DCE MRI of the left breast (red arrow heads), surrounded by a moderate BPE (grade 2) (a, b). In agreement, diffusion weighted images (b = 700) revealed restricted tumor regions (c, d), though incomplete fat saturation artifacts are also presented on the right breast (yellow arrow heads). The entire multifocal tumor distribution could be further appreciated on MIP images of DCE and CAD (e and f, respectively).
is demonstrated in Fig. 21. Altogether, there is a clinical necessity of further studies on larger cohort of patients to evaluate the role of breast MRI during pregnancy and lactation, and in particular as a screening tool among high-risk populations during this period.

Conclusions

During pregnancy and lactation, the breast experiences substantial changes in morphology and function that affect its imaging properties and may reduce the visibility of concurrent pathological processes. Moreover, the high incidence of benign, gestational-related entities may further add complexity to the clinical and radiological evaluation of the breast during this period. Consequently, PABC is often a delayed diagnosis that carries a poor prognosis. Despite currently being underutilized, this state-of-the-art pictorial review illustrates how technical advances and new clinical evidence support the use of unenhanced breast MRI during pregnancy and both unenhanced and DCE during lactation. These modalities serve as effective supplementary options in the diagnostic work-up of PABC, especially among high-risk populations, with the aim to facilitate an earlier diagnosis.

Fig. 18 MRI of delayed diagnosed IDC during lactation. Axial subtraction DCE-MRI, CAD and ADC map of a 25-year-old PABC patient lactating for 8 months, with a 6.7 cm triple negative IDC on the right breast are presented. The massive lesion exhibited with an irregular rim enhancement concordant with triple negative IDC and is clearly visible on top of the surrounding mild BPE (a), with mostly persistent enhancement kinetic pattern (b) and decreased ADC values in margins of the lesions, with increased diffusivity in the central necrotic region (c).

Fig. 19 MRI of delayed diagnosed IDC during lactation. Axial subtraction DCE-MRI, CAD and ADC map of a lactating patient with a 7 cm IDC on the right breast are presented. The huge lesion exhibited vivid enhancement as compared to the mild BPE (a), with heterogeneous kinetic features (b) and decreased ADC values as compared with the surrounding parenchymal diffusivity (c).
Abbreviations
ACR: American college of radiology; ADC: Apparent diffusion coefficient; BPE: Background parenchymal enhancement; CAD: Computer aided diagnosis; DTI: Diffusion tensor imaging; DWI: Diffusion-weighted imaging; DCIS: Ductal carcinoma in situ; DWIBS: DWI with background suppression; DCE: Dynamic-contrast enhanced; GRASP: Golden-angle radial sparse parallel; GM: Granulomatous mastitis; IVIM: Intra-voxel incoherent motion; IDC: Invasive ductal carcinoma; MRI: Magnetic resonance imaging; NME: Non-mass enhancement;
PABC: Pregnancy associated breast cancer; TWIST: Time-resolved angiography with stochastic trajectory.

Author contributions
NN, EB, EEMM contributed to collecting data. NN, EB, EEMM and MSL contributed to manuscript preparation/editing, literature research, and study design. NN and MSL contributed to final approval. All authors read and approved the final manuscript.

Funding
This study was not supported by any funding.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

1 Radiology Department, Sheba Medical Center, 5265601 Tel Hashomer, Israel.
2 Sackler Medicine School, Tel Aviv University, Tel Aviv, Israel.
3 Sackler Medicine School, New-York Program, Tel Aviv University, Tel Aviv, Israel.
4 Joint Medicine School Program of Sheba Medical Center, St. George’s, University of London and the University of Nicossa, Sheba Medical Center, Tel Hashomer, Israel.

Received: 28 January 2022 Accepted: 21 March 2022
Published online: 09 April 2022

References

1. Keinan-Boker L, Lerner-Geva L, Kaufman B, Meirow D (2008) Pregnancy-associated breast cancer. Isr Med Assoc J 10(10):722–727
2. Genin AS, Lesieur B, Gligorov J, Antoine M, Selleret L, Rouzier R (2012) Pregnancy-associated breast cancers: Do they differ from other breast cancers in young women? Breast. https://doi.org/10.1016/j.breast.2012.05.002
3. Perez F, Bragg A, Whitman G (2021) Pregnancy associated breast cancer. J Clin Imaging Sci 11:1–6. https://doi.org/10.25259/JCIS_81_2021
4. Kieturakis AJ, Wahab RA, Vijapura C, Mahoney MC (2021) Current recommendations for breast imaging of the pregnant and lactating patient. AJR Am J Roentgenol 216(6):1462–1475
5. Ruiz R, Herreero C, Strasser-Weippel K et al (2017) Epidemiology and pathophysiology of pregnancy-associated breast cancer: a review. Breast 35:136–141
6. Vashi R, Hooley R, Butler R, Geisel J, Philpotts L (2013) Breast imaging of the pregnant and lactating patient: physiologic changes and common benign entities. AJR Am J Roentgenol 200:329–336. https://doi.org/10.2214/AJR.12.9845
7. Vashi R, Hooley R, Butler R, Geisel J, Philpotts L (2013) Breast imaging of the pregnant and lactating patient: imaging modalities and pregnancy-associated breast cancer. AJR Am J Roentgenol 200:321–328. https://doi.org/10.2214/AJR.12.9853
8. Johansson ALV, Andersson TML, Hsieh CC et al (2013) Stage at diagnosis and mortality in women with pregnancy-associated breast cancer (PABC). Breast Cancer Res Treat: https://doi.org/10.1007/s10549-013-2522-1
9. Shao C, Yu Z, Xiao J et al (2020) Prognosis of pregnancy-associated breast cancer: a meta-analysis. BMC Cancer. https://doi.org/10.1186/s12885-020-02748-8
10. Andrew O, Mullen LA, Harvey SC (2020) Pregnancy-associated breast cancer. Appl Radiol 12:9–17
11. Mann RM, Cho N, Moy L (2019) Breast MRI: state of the art. Radiology. https://doi.org/10.1148/radiol.2019182947
12. Scaranello AM (2021) What’s hot in breast MRI. Can Assoc Radiol J. https://doi.org/10.1177/08465371211030944
13. Sardanelli F, Boetes C, Borisch B et al (2010) Magnetic resonance imaging of the breast: recommendations from the EUSOMA working group. Eur J Cancer. https://doi.org/10.1016/j.ejca.2010.02.015
14. Comstock CE, Gatschen C, Neuwied GM et al (2020) Comparison of abbreviated breast MRI vs digital breast tomosynthesis for breast cancer detection among women with dense breasts undergoing screening. JAMA. https://doi.org/10.1001/jama.2020.0572
15. Bakker MF, de Lange SV, Pijnappel RM et al (2019) Supplemental MRI screening for women with extremely dense breast tissue. N Engl J Med 381:2091–2102. https://doi.org/10.1056/nejmoa1903986
16. Kuhl CK, Strobel K, Bieling H, Leutner C, Schild HH, Schrading S (2017) Supplemental breast MRI screening of women with average risk of breast cancer. Radiology. https://doi.org/10.1148/radiol.20161611444
17. Marino MA, Helibich T, Balzer P, Pinker-Doming K (2018) Multiparametric MRI of the breast: a review. J Magn Reson Imaging. https://doi.org/10.1002/jmri.25790
18. Mango VL, Goel A, Memis E, Kwak E, Ha R (2019) Breast MRI screening for average-risk women: a monte carlo simulation cost–benefit analysis. J Magn Reson Imaging. https://doi.org/10.1002/jmri.26334
19. Rosas CHS, Góes ACA, Saltão LM, Tanaka AM, Marques EF, Bitencourt AG (2020) Pregnancy-lactation cycle: How to use imaging methods for breast evaluation. Radiol Bras. https://doi.org/10.1590/S0100-39842019.0071
20. Carmichael H, Matsen C, Freer P et al (2017) Breast cancer screening of pregnant and breastfeeding women with BRCA mutations. Breast Cancer Res Treat 162(2):225–230
21. Mesurolle B, Sun S, Zhang M (2020) Utilization of breast MRI and breast MRI-guided biopsy in clinical practice: results of a survey in Quebec and France. Insights Imaging. https://doi.org/10.1186/s13244-020-00886-3
22. Ray JG, Vermeulen MJ, Bhataria A, Montanera WJ, Park AL (2016) Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA. https://doi.org/10.1001/jama.2016.12126
23. Sundgren PC, Leandor P (2011) Is administration of gadolinium-based contrast media to pregnant women and small children justified? J Magn Reson Imaging 34(4):750-757
24. Webb JAW, Thorson HS, Morales SK et al (2005) The use of iodinated and gadolinium contrast media during pregnancy and lactation. Eur Radiol. https://doi.org/10.1007/s00330-004-2583-y
25. Bovin G, De Korvin B, Marion J, Duvaufier R (2012) Is a breast MRI possible and indicated in case of suspicion of breast cancer during lactation? Diagn Interv Imaging 93:823–827
26. Johnson HM, Lewis TC, Mitchell KB (2020) Breast cancer screening during lactation: ensuring optimal surveillance for breastfeeding women. Obstet Gynecol 135:194–198. https://doi.org/10.1097/AOG.00000000000032600
27. diFlorio-Alexander RM, Slanetz PJ, Moya L et al (2018) ACR appropriate-ness Criteria® breast imaging of pregnant and lactating women. J Am Coll Radiol. https://doi.org/10.1016/j.jacr.2018.09.013
28. Partridge SC, Nissan N, Rahbar H, Kitsch AE, Sigmund EE (2016) Diffusion-weighted breast MRI: clinical applications and emerging techniques. J Magn Reson Imaging. https://doi.org/10.1002/jmri.25479
29. McManaman JL, Neville MC (2003) Mammary physiology and milk secretion. Adv Drug Deliv Rev 55(5):629–641
30. Neville MC, McFadden TB, Forsyth I (2002) Hormonal regulation of mammary differentiation and milk secretion. J Mammary Gland Biol Neoplasia 7:49–66
31. Kent JC (2007) How breastfeeding works. J Midwifery Women’s Health. https://doi.org/10.1111/j.1541-0391.2007.00407.x
32. Neville MC, Allen JC, Archer PC et al (1991) Studies in human lactation: milk volume and nutrient composition during weaning and lactogenesis. Am J Clin Nutr. https://doi.org/10.1093/ajcn/54.1.81
33. Langer A, Mohallem M, Berment H et al (2015) Breast lumps in preg-nant women. Diagn Interv Imaging 96:1077–1087
34. de Holanda AAR, Gonçalves AKS, de Medeiros RD, Oliveira AM, Maranhão TM (2016) Ultrasound findings of the physiological changes and pathophysiology of pregnancy-associated breast cancer: a review. Breast. https://doi.org/10.1016/j.breast.2016.01.003
most common breast diseases during pregnancy and lactation. Radiol Bras. https://doi.org/10.1590/0100-3984.2015.0076
35. Ayyappan AP, Kulkarni S, Crystal P (2010) Pregnancy-associated breast cancer: spectrum of imaging appearances. Br J Radiol. https://doi.org/10.1259/bjr/17982622
36. Yang WT, Dryden MJ, Gwyn K, Whitman GJ, Theriault R (2006) Imaging of breast cancer diagnosed and treated with chemotherapy during pregnancy. Radiology 239(1):52–60
37. Wanders JOP, Holland K, Veldhuis WB et al (2017) Volumetric breast density affects performance of digital screening mammography. Breast Cancer Res Treat. https://doi.org/10.1007/s10549-016-4090-7
38. Mercado CL, Koenigsberg TC, Hamele-Bena D, Smith SJ (2002) Calcifications associated with lactational changes of the breast: mammographic findings with histologic correlation. AJR Am J Roentgenol. https://doi.org/10.2214/ajr.179.3.1790685
39. Stucker DT, Ikeda DM, Hartman AR et al (2000) New bilateral microcalcifications at mammography in a postlactational woman: case report. AJR Am J Roentgenol. https://doi.org/10.2214/ajr.179.3.1790685
40. Myers KS, Green LA, Lebron L, Morris EA (2017) Imaging appearance and clinical impact of preoperative breast MRI in pregnancy-associated breast cancer. AJR Am J Roentgenol. 209:W1–W7. https://doi.org/10.2214/AJR.16.17124
41. Nissan N, Furman-Haran E, Allweiss T et al (2018) Noncontrast breast MRI during pregnancy using diffusion tensor imaging: a feasibility study. J Magn Reson Imaging. https://doi.org/10.1002/jmri.26228
42. Espinosa LA, Daniel BL, Vidasan S, Zakhour M, Ikeda DM, Herfkens RJ (2005) The lactating breast: contrast-enhanced MR imaging of normal tissue and cancer. Radiology 237:429–436. https://doi.org/10.1148/radiology.2374040837
43. Talele AG, Slanetz PJ, Edmister WB, Veh ED, Kopans DB (2003) The lactating breast: MR findings and literature review. Breast 2:237–240
44. Sah RG, Agarwal K, Sharma U, Parshad R, Seenu V, Jagannathan NR (2015) Characterization of malignant breast tissue of cancer patients and the normal breast tissue of healthy lactating women using diffusion MRI and in vivo 1H MR spectroscopy. J Magn Reson Imaging 41:169–174. https://doi.org/10.1002/jmri.24507
45. Nissan N, Furman-Haran E, Shapiro-Feinberg M, Grobfeld D, Degani H (2014) Diffusion-tensor MRI imaging of the breast: hormonal regulation. Radiology 271:672–680. https://doi.org/10.1148/radiol.14132084
46. Nissan N, Furman-Haran E, Feinberg-Shapiro M et al (2014) Tracking the mammary architectural features and detecting breast cancer with magnetic resonance diffusion tensor imaging. J Vis Exp. https://doi.org/10.3791/52048
47. Nissan N, Furman-Haran E, Shapiro-Feinberg M, Grobfeld D, Degani H (2017) Monitoring in-vivo the mammary gland microstructure during morphogenesis from lactation to post-weaning using diffusion tensor MRI. J Mammary Gland Biol Neoplasia. https://doi.org/10.1007/s10911-017-9833-x
48. Iima M, Katoaka M, Sakaguchi R et al (2018) Intravoxel incoherent motion (IVIM) and non-Gaussian diffusion MRI of the lactating breast. Eur J Radiol Open. 5:24–30. https://doi.org/10.1016/j.ejro.2018.01.003
49. Oh SW, Lim HS, Moon SM et al (2017) MR imaging characteristics of breast cancer diagnosed during lactation. Br J Radiol. https://doi.org/10.1259/bjr.20170203
50. Taron J, Fleischer P, Preibisch H, Nikolaciu K, Gruber I, Bahrs S (2019) Background parenchymal enhancement in pregnancy-associated breast cancer: A hindrance to diagnosis? Eur Radiol. https://doi.org/10.1007/s00330-018-5721-7
51. Nissan N, Allweiss T, Menes T et al (2020) Breast MRI during lactation: effects on tumor conspicuity using dynamic contrast-enhanced (DCE) in comparison with diffusion tensor imaging (DTI) parametric maps. Eur Radiol. https://doi.org/10.1007/s00330-019-06435-x
52. Nissan N, Sorin V, Bauer E et al (2021) MRI of the lactating breast: computer-aided diagnosis false positive rates and background parenchymal enhancement kinetic features. Acad Radiol. https://doi.org/10.1016/j.acra.2021.11.003
53. Sharma U, Jagannathan NR (2019) In vivo MR spectroscopy for breast cancer diagnosis. BJIR Open. https://doi.org/10.1259/bjr.20180040
54. Iima M, Le Bihan D (2016) Clinical intravoxel incoherent motion and diffusion MR imaging: past, present, and future. Radiology 278(1):13–32
55. Nissan N, Sandler I, Eifer M et al (2020) Physiologic and hypermetabolic breast 18-F FDG uptake on PET/CT during lactation. Eur Radiol. https://doi.org/10.1007/s00330-020-07081-4
56. Le Bihan D, Marguin JP, Poupon C et al (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging. https://doi.org/10.1002/jmri.1076
57. Geddes DT (2009) Ultrasound imaging of the lactating breast: Methodology and application. Int Breastfeed J 4:4
58. Solomon E, Liberman G, Nissan N, Frydman L (2017) Robust diffusion tensor imaging by spatiotemporal encoding: principles and in vivo demonstrations. Magn Reson Med. https://doi.org/10.1002/mrm.26197
59. Robbins J, Jeffries D, Roubidoux M, Helvie M (2011) Accuracy of diagnostic mammography and breast ultrasound during pregnancy and lactation. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.09.3662
60. Sabate JM, Clotet M, Turrubia S et al (2007) Radiologic evaluation of breast disorders related to pregnancy and lactation. Radiographics 27(Suppl 1):S101–S124. https://doi.org/10.1148/rg.27si075505
61. Parker S, Saetete M, Morgan M, Stein M, Winkler N (2017) Spectrum of pregnancy- and lactation-related benign breast findings. Curr Probl Diagn Radiol 46(6):432–440
62. Guirguis MS, Adrada B, Santiago L, Candelaria R, Aribas E (2021) Mimickers of breast malignancy: imaging findings, pathologic concordance and clinical management. Insights Imaging. https://doi.org/10.1007/s13244-020-01091-w
63. Faermann R, Nissan N, Haisthok-Neiman O et al (2021) COVID-19 vaccination induced lymphadenopathy in a specialized breast imaging clinic in Israel: analysis of 163 cases. Acad Radiol. https://doi.org/10.1016/j.acra.2021.06.003
64. Hogg JP, De Paredes ES, Magnant CM, Lage J (1999) Imaging and management of breast masses during pregnancy and lactation. Breast J. https://doi.org/10.1046/j.1524-4741.1999.98077.x
65. Ayyappan AP, Crystal P, Torabi A, Foley BJ, Fornage BD (2013) Imaging of fat-containing lesions of the breast: a pictorial essay. J Clin Ultrasound. https://doi.org/10.1002/jcu.22070
66. Sawhney S, Petkovska L, Ramadan S, Al-Muhtaseb S, Jain R, Sheikh M (2002) Sonographic appearances of galactoceles. J Clin Ultrasound. https://doi.org/10.1002/jcu.10038
67. Sumkin JH, Perrone AM, Harris KM, Nath MA (1998) Lactating adenoma: US features and literature review. Radiology. https://doi.org/10.1177/8756479398014001400216
68. Olfatbakhsh A, Ghohizadeh Z, Beheshtiyani T, Hoseinpour P (2016) Five-year study of patients with lactating adenoma and review of the five-year study of patients with lactating adenoma and review of the literature. Arch Breast Cancer 2:125–128. https://doi.org/10.1186/1746-1596-8-38
69. Sklair-Levy M, Sella T, Alweiss T, Craciun I, Libson E, Mally B (2008) Five-year study of patients with lactating adenoma and review of the five-year study of patients with lactating adenoma and review of the literature. Pathol. https://doi.org/10.1186/1746-1596-8-38
70. Sklair-Levy M, Sella T, Alweiss T, Craciun I, Libson E, Mally B (2008) Five-year study of patients with lactating adenoma and review of the five-year study of patients with lactating adenoma and review of the literature. Pathol. https://doi.org/10.1186/1746-1596-8-38
71. Incidence and management of complex fibroadenomas. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.09.3662
72. Brinck U, Fischer U, Karobowska M, Jutowski M, Schaufer E (1997) The variability of fibroadenoma in contrast-enhanced dynamic MR mammography. AJR Am J Roentgenol. https://doi.org/10.2214/ajr.168.5.9129437
stand-alone parameter: comparison with dynamic contrast-enhanced and multiparametric magnetic resonance imaging. Invest Radiol. https://doi.org/10.1097/RLI.000000000001000465

120. Avendano D, Marino MA, Leitthner D et al (2019) Limited role of DWI with apparent diffusion coefficient mapping in breast lesions presenting as non-mass enhancement on dynamic contrast-enhanced MRI. Breast Cancer Res. https://doi.org/10.1186/s13058-019-1208-y

121. Solomon E, Nissan N, Furman-Haran E et al (2015) Overcoming limitations in diffusion-weighted MRI of breast by spatio-temporal encoding. Magn Reson Med. https://doi.org/10.1002/mrm.25344

122. Solomon E, Nissan N, Schmidt R et al (2016) Removing silicone artifacts in diffusion-weighted breast MRI by means of shift-resolved spatiotemporal encoding. Magn Reson Med. https://doi.org/10.1002/mrm.25757

123. Hu Y, Ikeda DM, Pittman SM et al (2021) Multishot diffusion-weighted MRI of the breast with multiplexed sensitivity encoding (MUSE) and shot locally low-rank (shot-LLR) reconstructions. J Magn Reson Imaging. https://doi.org/10.1002/jmri.27383

124. Rodríguez-Soto AE, Fang LK, Holland D et al (2021) Correction of artifacts induced by B0 inhomogeneities in breast MRI using reduced-field-of-view echo-planar imaging and enhanced reversed polarity gradient method. J Magn Reson Imaging. https://doi.org/10.1002/jmri.27566

125. Hancu L, Lee SK, Hulsey K et al (2017) Distortion correction in diffusion-weighted imaging of the breast: performance assessment of prospective, retrospective, and combined (prospective + retrospective) approaches. Magn Reson Med. https://doi.org/10.1002/mrm.26328

126. Bogner W, Pinker K, Zoric O et al (2015) Bilateral diffusion-weighted MR imaging of breast tumors with submillimeter resolution using readout-segmented echo-planar imaging at 7 T. Radiology. https://doi.org/10.1148/radiol.14132940

127. McKay JA, Church AL, Rubin N et al (2020) A comparison of methods for high-spatial-resolution diffusion-weighted imaging in breast MRI. Radiology. https://doi.org/10.1148/RADIOL.2020200221

128. Solomon E, Liberman G, Nissan N, Furman-Haran E, Sklar-Levy M, Frydman L (2020) Diffusion-weighted breast MRI of malignancies with submillimeter resolution and immunity to artifacts by spatiotemporal encoding at 3T. Magn Reson Med. https://doi.org/10.1002/mrm.26313

129. Sanderink WBG, Teuwen J, Appelman L et al (2021) Comparison of simultaneous multi-slice single-shot DWI to readout-segmented echo-planar imaging at 7 T. Radiology. https://doi.org/10.1148/radiol.14132940

130. Otikovs M, Nissan N, Furman-Haran E et al (2021) Diffusivity in breast malignancies analyzed for b > 1000 s/mm2 at 1 mm in-plane resolution: Insight from Gaussian and non-Gaussian behaviors. J Magn Reson Imaging. https://doi.org/10.1002/jmri.27489

131. Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. https://doi.org/10.1002/mrm.21391

132. Le Y, Kipfer H, Majidi S, Holz S, Dale B, Geppert C, Kroeker R, Lin C (2013) Application of time-resolved angiography with stochastic trajectories (TWIST)-Dixon in dynamic contrast-enhanced (DCE) breast MRI. J Magn Reson Imaging 38(5):1033–1042

133. Feng L, Axell L, Chandarana H, Block KT, Sodickson DK, Otazo R (2016) XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn Reson Med 75(2):775–788

134. Mann RM, Mus RD, Van Zelst J, Geppert C, Karssemeijer N, Platel B (2014) A novel approach to contrast-enhanced breast magnetic resonance imaging for screening: high-resolution ultrafast dynamic imaging. Invest Radiol. https://doi.org/10.1097/RLI.0000000000000057

135. Yamaguchi K, Nakazono T, Egashira R et al (2021) Maximum slope of ultrafast dynamic contrast-enhanced MRI of the breast: comparisons with prognostic factors of breast cancer. Jpn J Radiol. https://doi.org/10.1007/s11604-020-01049-6

136. Vreemann S, Rodriguez-Ruiz A, Nickel D et al (2017) Compressed sensing for breast MRI: resolving the trade-off between spatial and temporal resolution. Invest Radiol. https://doi.org/10.1097/RLI.0000000000000394

137. Pellissier M, Ambarki K, Salleton J, Hennot P (2021) Maximum slope using ultrafast breast DCE-MRI at 1.5 Tesla: a potential tool for predicting breast lesion aggressiveness. Eur Radiol. https://doi.org/10.1007/s00330-021-08089-0

138. Onishi N, Sadinski M, Hughes MC et al (2020) Ultrafast dynamic contrast-enhanced breast MRI may generate prognostic imaging markers of breast cancer. Breast Cancer Res. https://doi.org/10.1186/s13058-020-01292-9

139. Oldrin G, Fedida B, Poujol J et al (2017) Abbreviated breast magnetic resonance protocol: value of high-resolution temporal dynamic sequence to improve lesion characterization. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2017.07.025

140. Bauer E, Levy MS, Domachevsky L, Anaby D, Nissan N (2021) Background parenchymal enhancement and uptake as breast cancer imaging biomarkers: a state-of-the-art review. Clin Imaging 83:41–50. https://doi.org/10.1016/j.clinimag.2021.11.021

141. Heacock L, Lewin AA, Toth HK, Moy L, Reig B (2021) Abbreviated MR imaging for breast cancer. Radiol Clin N Am 59(1):99–111

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.