Excitonic structure and charge separation in the heliobacterial reaction center probed by multispectral multidimensional spectroscopy

Yin Song1, Riley Sechrist1, Hoang H. Nguyen1, William Johnson2, Darius Abramavicius3, Kevin E. Redding2,4 & Jennifer P. Ogilvie1✉

Photochemical reaction centers are the engines that drive photosynthesis. The reaction center from heliobacteria (HbRC) has been proposed to most closely resemble the common ancestor of photosynthetic reaction centers, motivating a detailed understanding of its structure-function relationship. The recent elucidation of the HbRC crystal structure motivates advanced spectroscopic studies of its excitonic structure and charge separation mechanism. We perform multispectral two-dimensional electronic spectroscopy of the HbRC and corresponding numerical simulations, resolving the electronic structure and testing and refining recent excitonic models. Through extensive examination of the kinetic data by lifetime density analysis and global target analysis, we reveal that charge separation proceeds via a single pathway in which the distinct A0 chlorophyll a pigment is the primary electron acceptor. In addition, we find strong delocalization of the charge separation intermediate. Our findings have general implications for the understanding of photosynthetic charge separation mechanisms, and how they might be tuned to achieve different functional goals.
Photosynthesis drives life on Earth by converting solar energy into chemical energy\(^1\). In photosynthesis, light is absorbed by the antenna pigments, which transfer their excitation energy to the photochemical reaction center (RC)\(^2\). The primary energy conversion step, charge separation (CS), takes place in the RC\(^2\), driving the subsequent chemical reactions for synthesizing high-energy chemical compounds. All RCs are believed to have evolved from a common homodimeric ancestor RC, in which a dimer of a single polypeptide binds the redox-active cofactors\(^3\). Until recently, the crystal structures of the existing homodimeric RCs were unknown\(^4\), hindering mechanistic understanding of these systems. Recently, the crystal structure of the heliobacterial RC (HbRC) from *Heliobacterium modesticaldum*, was characterized by Gisriel and coworkers\(^5\). The HbRC has been proposed to be the RC most similar to the common ancestor of all photosynthetic RCs\(^4,5\). Furthermore, it is the simplest known RC and structural analog to the photosystem I (PSI) RC, and possesses three chemically distinct pigments.

The HbRC binds 54 BChl g, four BChl g' (the 13\(^\text{a}\)-ster-ochromical isomer), two 8\(^\text{1}\)-hydroxychlorophyll \(a'\) (8\(^\text{1}\)-OH Chl a), two carotenoids (4,4\(^\text{a}\)-diaponeurosperone), and one [4Fe-4S] cluster\(^6\). The majority of the BChl g pigments serve as an antenna to direct excitation to the homodimer core, which serves as the electron transfer domain, depicted in Fig. 1. Throughout this paper we adopt the language commonly used in discussing RCs, where we reserve the term RC for the electron transfer domain, and the other pigments are collectively referred to as the “antenna”. The homodimeric RC consists of two symmetric branches, each containing a BChl g (Acc) and Chl a (A\(_0\)), arranged about the central symmetry axis running between the BChl g' dimer (P\(_{800}\)) and [4Fe-4S] cluster (F\(_X\))\(^6\). A structure-based excitonic model of the full HbRC was recently proposed by Kimura and Itoh\(^8\). They reported that the HbRC pigments form 58 excitonic states with 0–0 transition energies spanning 771 to 812 nm and two excitonic states with dominant absorption peaks centered at 667 nm. Until now, this model has not been tested by advanced experimental techniques.

In comparison to other RCs, the HbRC combines Chl a and BChl g, which possess distinct spectroscopic properties and redox potentials, making it a particularly appealing system for spectroscopic studies of its primary CS processes and structure-function relationship. Energy transfer and CS in the HbRC have been studied by several groups\(^9,19\), with the early work reviewed by Neerken et al\(^15\). In light of previous proposals of the CS mechanism and the new structure, Gisriel et al. proposed two possible charge-separation mechanisms: one in which Acc acts as the initial electron acceptor, and another in which Acc acts as the initial electron donor\(^6\), with CS occurring with equal probability along either branch of the homodimer\(^6\).

Two-dimensional electronic spectroscopy (2DES) has proven to be a powerful tool to study photoexcited dynamics in a variety of systems including light-harvesting complexes\(^20,22\), photosynthetic RCs\(^23,24\), and solar cells\(^25,26\). In 2DES, a pair of pump pulses prepare an excited state population, the evolution of which is monitored by a probe pulse as a function of “waiting time” \(T\). The 2DES spectrum at \(T = 0\) is a frequency-frequency map that directly highlights correlations between photoexcited and photodetected states via cross-peaks induced by excitonic interactions. The \(T\)-dependence of the 2DES spectra reveals the evolution of excited state populations, enabling the testing of kinetic models and the identification of spectroscopic fingerprints of reaction intermediates. Thus, 2DES is closely related to transient absorption spectroscopy, but provides simultaneous time and frequency resolution by opening an additional dimension, resolving the same third order material response of the system with respect to the excitation frequency. Here we have applied 2DES to the HbRC, revealing excitonic correlations between Acc, A\(_0\), and P\(_{800}\) and refining the proposed excitonic structure. We find that CS in the HbRC proceeds via a two-step process in which A\(_0\) acts as the primary electron acceptor. Moreover, our results suggest that the hole is initially delocalized over Acc and P\(_{800}\) immediately after the primary CS event, but later becomes localized at P\(_{800}^+\).

Results

To probe the HbRC excitonic structure and accentuate CS processes originating from RC excitation, we excited the ~590–720 nm region, spanning the \(Q_\text{a}, A_0\) Chl and vibronic shoulder of \(Q_\text{y}\) BChl g transitions. The multispectral probes in our recently developed 2DES instrument\(^27\) access both \(Q_\text{a}\) and \(Q_\text{y}\) of Chls and BChls, providing dynamical information about energy transfer and CS processes. We also performed complementary 2DES studies with excitation of the BChl g \(Q_\text{y}\) region.

Excitonic structure of the HbRC

Figure 1b displays 2DES absorptive spectra of the HbRC at 77 K, in which the sample was treated with sodium dithionite to reduce the F\(_X\) cluster. This blocks forward electron transfer from A\(_0\) to F\(_X\), resulting in charge recombination of the P\(_{800}\)\(^-\)A\(_0\)~ state in ~15 ns\(^10\). At \(T = 0\) ps, the 2D absorptive spectrum, which combines rephasing and non-rephasing contributions, provides insight into the HbRC’s excitonic structure and tests the current structure-based excitonic model\(^8\). We note that the term “exciton” is often reserved for strongly-mixed, delocalized states. Here we use the term more broadly to describe the eigenstates of the singly-excited manifold of the coupled HbRC system. The diagonal peak at 668 nm is consistent with photoexcitation of the highest energy RC excitons assigned to two states, primarily involving A\(_0\) with some participation from Acc\(^8\). The presence of cross peaks in the region \(\lambda_{\text{exc}} = 668 \text{ nm} \) and \(\lambda_{\text{det}} = 770–800 \text{ nm} \) (denoted CP1) is key to understanding the pigment composition of the excitonic states in the crowded BChl \(Q_\text{y}\) region. The model of Kimura and Itoh\(^8\) predicts roughly three states in the 760–800 nm region that involve participation from A\(_0\) and could therefore produce CP1 in the \(T = 0\) 2D spectrum. These states, as well as the other RC excitons from the Kimura model, are indicated by solid red lines in the linear absorption spectrum shown in Fig. 1b (right panel). To test the Kimura exciton model, we simulated the 2DES absorptive spectrum in the CP1 region. The simulations employ the harmonic bath model within the modified Redfield approach to account for the spectral lineshape. Optical response functions are obtained within the adiabatic limit during electronic coherence periods: diagonal system–bath fluctuations in the eigenstate representation are included using the second-order cumulant expansion, and the corresponding off-diagonal fluctuations are included within the Markovian second-order perturbation theory\(^28,29\). Static site energy fluctuations are included by ensemble averaging over Gaussian site energy disorder. All simulation parameters are provided in the Supplementary Note 6. The resulting “slice spectrum”, which plots the detection frequency dependence at a specific excitation wavelength, is shown in Fig. 1c at \(T = 0\) ps for excitation of A\(_0\). The slice spectrum reveals excitonic correlations that can be observed in transient absorption measurements of systems that exhibit ultrafast excited state evolution. The two cross peaks in the BChl \(Q_\text{y}\) band provide firm evidence for excitonic correlation, but are red-shifted relative to the experimental data, indicating that refinement of the excitonic parameters is needed to capture the tuning of pigment site energies by the protein environment, which is not included in the Kimura exciton model\(^8\). We find better agreement between experiment and theory by shifting the site energy of Acc from
12,739 cm$^{-1}$ (785 nm) to 13,150 cm$^{-1}$ (760 nm) (see Fig. 1d). We also note that due to strict C$_2$ symmetry of the HbRC, excitonic states are delocalized between the symmetric pigments, and, hence, some are suppressed, while others become superradiant. Although some of the couplings for pigments across the branches of the RC are relatively weak (such as 14 cm$^{-1}$ between A$_0$ pigments), each of the RC pigments is coupled to at least one neighbor with considerable coupling strength (~200–300 cm$^{-1}$), yielding the delocalized exciton states of the system. Site-energy disorder removes the strict C$_2$ symmetry of the RC, inducing a competing localization effect. We note that some peaks involving the A$_0$ pigments do not appear in the simulated 2DES, due to a combination of their low oscillator strength, and competing overlapping contributions of the ground-state bleach (GSB), stimulated emission and excited state absorption (ESA) signals. Our simulations assume a three-state model for the Q$_y$ transitions and include doubly-excited states of the isolated pigments. However, they only approximately account for the ESA contributions. For example, electrochromic (Stark) shifts due to excitations of neighboring pigments are neglected in the present modeling. The broad ESA features are unlikely to affect the cross-peak positions that we use here to assess the Kimura exciton model. Further refinement of Kimura’s model with respect to 2DES and other measurements will be the subject of future work. Further simulation details are given in Supplementary Note 6 of the Supplementary Information (SI).

Charge separation in the HbRC. While both the RC and the antenna excitons are simultaneously excited in this experiment, the spectral signatures are separated along the excitation and detection wavelengths. This enables investigation of the CS...
mechanism(s) initiated by direct excitation of the RC or excitation of the antenna. The 2DES spectra in Fig. 2 show that by 0.5 ps the 668-nm diagonal peak has largely decayed, accompanied by the rise of two cross peaks at 794 nm and 814 nm. We interpret these signatures as redistribution of energy within the RC and equilibration with the antenna. The contribution of antenna excitons to these cross peaks is evident in the similarity of the cross-peak structure at an excitation wavelength of 690 nm, which corresponds to predominantly antenna excitation. At 946 ps, the 2DES absorptive spectrum has become excitation wavelength independent, suggesting that excitons have been converted to the final charge-separated state (CSS) — $P_{800}^{-}A_{0}^{+}$, as reported in previous studies. In this 2D spectrum, a derivative lineshape near 575 nm (Q$_x$ band of BChl g) shown in Fig. 2b is induced by the Stark effect. These features are fingerprints for the charge-separated state.

Fig. 2 2DES probes the photoexcited dynamics in the HbRC at 77 K. a 2DES absorptive spectra at 0.05, 0.5, 10, and 946 ps. Alongside the 2D absorptive spectra are the experimental absorption spectrum and the simulated stick spectrum (red lines) of Kimura et al. The dashed lines in the 2DES and the gray lines in the absorption spectrum indicate the various peak positions discussed in the main text. The experimental absorption spectrum is divided into three color-coded regions based on their dominant contributions (i.e., red—the Bchl Q$_y$ band; green—the Chl Q$_y$ band; blue—the Bchl Q$_x$ band). The contour levels are -1:$0.1:1$ of the maximum amplitude. b The slice spectra under excitation at 668 nm (dashed) and 690 nm (dashed) at various T extracted from the 2DES absorptive spectra. The derivative lineshapes at 573, 578 nm and the blue-shifted A_{0} peak at 666 nm (inset) are induced by the Stark effect. These features are fingerprints for the charge-separated state.
the overlap of the GSB of A_0^- and the Stark shift of the neutral A_0 in the other branch, similar to previous studies, that observed the Stark shift associated with the formation of $P_{800}^{A_0^-}$. We support our assignment with simulations of the Stark shift detailed in the Supplementary Note 7. Two other GSB peaks at $\lambda_{\text{det}} = 794$ and 807 nm decay with A_0^- and can thereby be assigned to the upper and the lower excitonic peaks of $P_{800}^{A_0^-}$. To make full use of the rich information from 2DES, we used a combination of lifetime density analysis (LDA) to obtain an overview of the kinetics, followed by global-target analysis (GTA) to test specific kinetic models. LDA fits the data using exponential functions with a continuous distribution of time constants. As no prior knowledge is required for this analysis, this approach is well suited to systems like the HbRC, in which multiple relaxation pathways are expected. Lifetime density maps (LDMs) that reveal the kinetics following RC and antenna excitation are shown in Supplementary Figs. 3 and 4, respectively. LDM reveals the Stark lineshapes of the BChl Qx peak (Supplementary Fig. 3b) at 1.7 and 230 ps, which identify two-time-windows for CS. At 1.7 ps, the Stark lineshape of the BChl g Qx peak (Supplementary Fig. 3 panels b1–b2), does not yet exhibit the clear signatures of $P_{800}^{A_0^-}$. (i.e., peaks at 666, 794, and 807 nm), suggesting that an intermediate CSS exists on this timescale. The decay of the GSB of A_0^- on this timescale is consistent with the participation of A_0^- in the intermediate CSS and suggests that it is the primary electron acceptor. The LDMs for antenna excitation are consistent with this assignment, leading us to propose the following CS mechanism for the HbRC: Upon direct excitation of the RC: (RC)* \rightarrow relaxed (RC)* \rightarrow intermediate CSS \rightarrow $P_{800}^{A_0^-}$ Upon antenna excitation: (Antenna exciton)* \rightarrow relaxed (Antenna exciton) \rightarrow (RC)* \rightarrow intermediate CSS \rightarrow $P_{800}^{A_0^-}$ With this approximate CS mechanism, we turn to global-target analysis of the 2DES data to test and refine this initial model and extract spectroscopic signatures of the intermediates. This is often used in kinetic analysis of transient absorption spectroscopy and has been applied in 2DES studies. This approach fits the data using a trial kinetic model and produces a set of species-associated spectra (SAS) and rate constants. Guided by the LDA analysis and the revised Kimura model, we considered multiple kinetic models before arriving at the one presented in Fig. 3a. Further justification of our choice is given in Supplementary Note 4, where we discuss a subset of alternative models, including ones that incorporate additional and alternative CS pathways. The Fig. 3a model provides the best fit to the 2D data and produces SAS with spectroscopic characteristics consistent with the target model. In this model, two RC excitons and two antenna excitons are excited by our broadband pulses, after which downhill energy transfer precedes rapid CS via a single intermediate CSS. Species RC1, with GSB peaks at $\lambda_{\text{det}} = 668$ and 780 nm, and an ESA peak at $\lambda_{\text{det}} = 810$ nm, is assigned to the highest energy RC exciton (i.e., A_0). This assignment is consistent with the presence of GSB peaks in the $T = 0$ 2DES spectrum and is further supported by the large coupling strength of $200–300$ cm$^{-1}$ between A_0 and Acc, in the Kimura model. Our proposed shift of Acc’s site energy suggests a stronger degree of participation from P_{800} in this RC exciton compared to the Kimura model. After photoexcitation, RC1 transitions to the relaxed RC exciton—RC2 with a time constant of 0.09 ps. RC2 exhibits GSB peaks at $\lambda_{\text{det}} = 668$ and 790 nm. RC2 was not observed with excitation at 690 nm (see Supplementary Fig. 6), leading us to infer that RC2 is also an RC excitonic state. Consistent with the Kimura model, we attribute RC2 to a lower energy RC exciton involving some degree of participation from all RC pigments (P_{800}AccA_0^-). We note that RC2 exhibits a weak first-
Another debate concerns the difference in CS mechanisms upon excitation of the RC and antenna domains. Initially, a one-step CS mechanism (i.e., hole transfer from A0 to P800 or electron transfer from P800 to A0) was used to describe CS for both RC and antenna excitation. However, the one-step mechanism cannot explain the multiple time scales observed for CS, or “uphill” CS from the lowest energy antenna exciton.

To resolve these issues, Chiou et al. proposed a two-step mechanism in which A0 is the primary acceptor. Without knowledge of the location of A0 and its coupling to other pigments, the feasibility of this mechanism, and the relationship to CS mechanisms in other RCs, were unclear.

Upon resolution of the HbRC structure, Gisriel et al. proposed two different two-step CS mechanisms for the HbRC. In the first, Acc acts as the primary electron acceptor, similar to the dominant mechanism proposed for the purple bacterial RC. In the second, Acc acts as the primary electron donor, with A0 playing the role of primary electron acceptor in analogy to PSI and the dominant mechanism in both PSI and PSII. The LDA and global-target analysis of our 2DES data strongly favor the latter mechanism. Regardless of initial excitation, RC and antenna excitons both transition to a common intermediate CSS (CSI), in which A0 is the primary electron acceptor and the hole wavefunction is delocalized over Acc and P800. We cannot entirely rule out additional CS intermediates obscured by spectral congestion in the BChl Qy region and overlapping time scales of energy equilibration and primary CS. However, our extensive consideration of other target models consistently found that any intermediates exhibiting the hallmark of a CSS also involved A0.

The mechanism we have proposed makes good chemical and biological sense. We have argued that the ancestral homodimeric RC used quinones as terminal electron acceptors to couple light-driven electron transfer to proton pumping across the membrane, driving ATP production. Inherent inefficiencies of quinone

Fig. 3 Target analysis of the HbRC reveals the kinetic map and insights into the participating states during CS. **a** The kinetic model in which CS proceeds via a two-step mechanism with A0 as the primary electron acceptor, independent of whether the initial excitation occurs within the RC or antenna domains. The vertical arrows indicate species that can be generated by direct photoexcitation. **b** The species-associated spectra obtained from the global-target analysis. The dashed lines in SASs indicate various peak positions as shown in Figs. 1–2 and discussed in the main text. The contour levels are −1:0:1:1 of the maximum amplitude.
reduction in this RC drove the evolution of type I and type II RCs. While type II RCs became heterodimeric and specialized the two branches, type I RCs added the F'_X cluster to catalyze semiquinone dismutation; the subsequent switch to reducing ferredoxin necessitated a more reducing cluster as well as an upstream donor (A_o) with much lower reduction potential. This explains why all type I RCs use a version of Chl a in the A_o site due to the considerably lower reduction potentials of chlorins, including A_o, compared to bacteriochlorins. However, the use of Chl a as A_o places serious constraints on the CS mechanism (see Supplementary Fig. 14). It would be very difficult for Acc-BChl to act as an effective electron donor to A_o (Chl), rendering the “purple bacterial RC model” unlikely. This means that the excited state of BChl g, which has a significantly lower potential than the ground state, must be used as the primary donor to A_o. Our data are most consistent with a model in which the primary donor is actually an excited state delocalized across several BChl g (P_g and Acc). This mechanism may protect the HbRC from wasting energy through charge recombination reactions: delocalization of the hole moves cation delocalization away from A_o in the initial CSS, which should serve to slow charge recombination of the initial radical ion pair. This may be especially important for anoxygenic type I RCs, in which the redox gradient from BChl to Chl a is more reducing than the ground state in ~15 ns. The redox gradient from (B)Chl to (B)Pheo is downhill due to the considerably lower reduction potentials of chlorins, including A_o, compared to bacteriochlorins. However, the use of Chl a as A_o places serious constraints on the CS mechanism (see Supplementary Fig. 14). It would be very difficult for Acc-BChl to act as an effective electron donor to A_o (Chl), rendering the “purple bacterial RC model” unlikely. This means that the excited state of BChl g, which has a significantly lower potential than the ground state, must be used as the primary donor to A_o. Our data are most consistent with a model in which the primary donor is actually an excited state delocalized across several BChl g (P_g and Acc). This mechanism may protect the HbRC from wasting energy through charge recombination reactions: delocalization of the hole moves cation delocalization away from A_o in the initial CSS, which should serve to slow charge recombination of the initial radical ion pair. This may be especially important for anoxygenic type I RCs, in which the redox gradient from BChl to Chl a would be uphill if not for the use of the excited state. In contrast, the redox gradient from (B)Chl to (B)Pheo is downhill in type II RCs, as a (B)Chl is always more reducing than the corresponding (B)Pheo. The subsequent step of localizing the hole to the P_g BChl dimer would be a natural consequence of its higher reduction potential, enabling the special pair to stabilize the hole and place it near the external side for reduction by the external donor (cytochrome c).

In conclusion, multispectral 2DES has provided insight into the excitonic structure and CS mechanism of the HbRC. Independent of whether the initial excitation occurred in the RC or antenna domain, our extensive kinetic analysis revealed A_o as the primary electron acceptor, with an intermediate CSS delocalized over P_g, Acc, and A_o. The use of delocalization across the special pair and accessory pigments could well be a general strategy used by other photochemical RCs. The HbRC presents an especially tractable probe geometry 2DES setup (see Supplementary Note 5 for further details). The pump pulse was compressed to 12 fs. A two-phase cycling scheme was used to remove scattering and background signals. A shutter added in the probe arm removed residual scattering from the pump. In the experiments, the pulse energy of the pump pulses was ~40 nJ and the beam waist (1/e^2 for both pump and probe were ~200 μm. 2D experiments were performed under the magic-angle condition and at least three times to ensure reproducibility. The data was analyzed using home-written Matlab scripts. The chirp of the probe pulse was corrected using a third-order polynomial function as described previously. The LDA was performed using the OPTIMUS software. The global-target analysis was implemented using CarpetView3D (Light Conversion). Fluence dependence studies were also conducted to avoid the exciton–exciton, exciton–charge, and charge–charge annihilation (Supplementary Fig. 12).

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Materials availability

The Ic1 strain of Heliobacterium modesticaldum is available from K.E.R. upon request.

Received: 25 November 2020; Accepted: 9 April 2021;
Published online: 14 May 2021

References

1. Savikhin, S. In Photosystem I: The Light-Driven Plastocyanin:Ferredoxin Oxidoreductase (ed. John, H. G.) (Springer, 2006).
2. Blankenship, R. E. Molecular Mechanisms of Photosynthesis (Blackwell Science Ltd, 2002).
3. Mirkovic, T. et al. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. 117, 249–293 (2017).
4. Khadka, R., Adeolu, M., Blankenship, R. E. & Gupta, R. S. Novel insights into the origin and diversification of photosynthesis based on analyses of conserved indels in the core reaction center proteins. Photosynth. Res. 131, 159–171 (2017).
5. Olsen, J. M. & Blankenship, R. E. Thinking About the Evolution of Photosynthesis. Photosynth. Res. 80, 373–386 (2004).
6. Gisriel, C. et al. Structure of a symmetric photosynthetic reaction center–photosystem. Science 357, 1021–1025 (2017).
7. Orf, G. S., Gisriel, C. & Redding, K. E. Evolution of photosynthetic reaction centers: insights from the structure of the heliobacterial reaction center. Photosynth. Res. 138, 11–37 (2018).
8. Kimura, A. & Inok, S. Theoretical model of exciton states and ultrafast energy transfer in heliobacterial type I homodimeric reaction center. J. Phys. Chem. B. 122, 11852–11859 (2018).
9. Lin, S., Chou, H. C., Kleinherenbrink, F. A. & Blankenship, R. E. Time-resolved spectroscopy of energy and electron transfer processes in the photosynthetic bacterium Heliobacillus mobilis. Biofísica J. 66, 437–445 (1994).
10. Ferlez, B. et al. Thermodynamics of the electron acceptors in Heliobacterium modesticaldum: an exemplar of an early homodimeric type I photosynthetic reaction center. Biochemistry 55, 2358–2370 (2016).
11. Chauvet, A. et al. Temporal and spectral characterization of the photosynthetic reaction center from Heliobacterium modesticaldum. Photosynth. Res. 116, 1–9 (2013).
12. Nuijs, A. M., Dorssen, R. J. V., Duyvenga, I. N. M. & Amesz, J. Excited states and primary photochemical reactions in the photosynthetic bacterium Heliobacterium Chlorum. Proc. Natl Acad. Sci. USA. 82, 6885 (1985).
13. Vannooort, P. L., Gormin, D. A., Aartsma, T. J. & Amesz, J. Energy-transfer and primary charge separation in Heliobacterium Chlorum studied by picosecond time-resolved transient absorption-spectroscopy. Biochim. Biophys. Acta 1140, 15–19 (2002).
14. Neerken, S., Aartsma, T. J. & Amesz, J. Pathways of energy transformation in antenna reaction center complexes of Heliobacillus mobilis. Biochemistry 39, 3297–3303 (2000).
15. Neerken, S. & Amesz, J. The antenna reaction center complex of heliobacteria: composition, energy conversion and electron transfer. Biochim. Biophys. Acta 1507, 278–290 (2010).
16. Chiou, H.-C., Lin, S. & Blankenship, R. E. Time-resolved spectroscopy of energy transfer and trapping upon selective excitation in membranes of Heliobacillus mobilis at low temperature. J. Phys. Chem. B101, 4136–4141 (1997).
17. Alldri, M. A. et al. Redox conditions affect ultrafast exciton transport in photosynthetic pigment-protein complexes. J. Phys. Chem. Lett. 9, 89–95 (2018).
%WEBP%