The Fierz convergence criterion: a controlled approach to strongly-interacting systems with small embedded clusters

Thomas Ayral, Jaksa Vucicevic, Olivier Parcollet

To cite this version:

Thomas Ayral, Jaksa Vucicevic, Olivier Parcollet. The Fierz convergence criterion: a controlled approach to strongly-interacting systems with small embedded clusters. t17/104. 14 pages. 2017. <cea-01550535>
The Fierz convergence criterion: a controlled approach to strongly-interacting systems with small embedded clusters

Thomas Ayral, 1, 2 Jaksa Vučičević, 2, 3 and Olivier Parcollet 2

1 Physics and Astronomy Department, Rutgers University, Piscataway, NJ 08854, USA
2 Institut de Physique Théorique (IPhT), CEA, CNRS, UMR 3681, 91191 Gif-sur-Yvette, France
3 Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregerovica 118, 11080 Belgrade, Serbia

We present an embedded-cluster method, based on the TRILEX formalism, that turns the Fierz ambiguity, inherent to approaches based on a bosonic decoupling of local fermionic interactions, into a convergence criterion. It is based on the approximation of the three-leg vertex by a coarse-grained vertex computed by solving a self-consistently determined multi-site effective impurity model. The computed self-energies are, by construction, continuous functions of momentum. We show that, in three interaction and doping regimes of parameters of the two-dimensional Hubbard model, these self-energies are very close to numerically exact benchmark results for clusters of size four only. We show that the Fierz parameter, which parametrizes the freedom in the Hubbard-Stratonovich decoupling, can be used as a quality control parameter. By contrast, the GW + extended dynamical mean field theory approximation with four cluster sites is shown to yield good results only in the weak-coupling regime and for a particular decoupling. Finally, we show that the vertex has spatially nonlocal components only at low energy.

Two major approaches have been put forth to fathom the nature of high-temperature superconductivity. Spin fluctuation theory 1–8, inspired by the early experiments on cuprate compounds, is based on the introduction of phenomenological bosonic fluctuations coupled to the electrons. It belongs to a larger class of methods, including the fluctuation-exchange (FLEX) 9 and GW approximations 10–11, or the Eliashberg theory of superconductivity. 12 In the Hubbard model, these methods can formally be obtained by decoupling the electronic interactions with Hubbard-Stratonovich bosons carrying charge, spin or pairing fluctuations. They are particularly well suited for describing the system’s long-range modes. However, they suffer from two main drawbacks: without an analog of Migdal’s theorem for spin fluctuations, they are quantitatively uncontrollable; worse, the results depend on the precise form of the bosonic fluctuations used to decouple the interaction term, an issue referred to as the “Fierz ambiguity” 13–18.

A second class of methods, following Anderson 19, puts primary emphasis on the fact that the undoped compounds are Mott insulators, where local physics plays a central role. Approaches like dynamical mean field theory (DMFT) 20 and its cluster extensions 21–25, which self-consistently map the lattice problem onto an effective problem describing a cluster of interacting atoms embedded in a noninteracting host, are tools of choice to examine Anderson’s idea. Cluster DMFT has indeed been shown to give a consistent qualitative picture of cuprate physics, including pseudogap and superconducting phases 26–54. Compared to fluctuation theories, it a priori comes with a control parameter, the size N_c of the embedded cluster. However, this is of limited practical use, since the convergence with N_c is non-monotonic for small N_c 33, requiring large N_c’s, which cannot be reached in interesting physical regimes due to the Monte-Carlo negative sign problem. Thus, converged cluster DMFT results can only be obtained at high temperatures. 55 There, detailed studies 56–58 point to the importance of (possibly long-ranged) spin fluctuations, calling for a unification of both classes of approaches. First steps in this direction have been accomplished by diagrammatic extensions of DMFT 59–80, and by the single-site TRILEX formalism 81, 82, which interpolates between long-range and Mott physics, and describes aspects of pseudogap physics and the d-wave superconducting dome. 83

In this Letter, we turn the Fierz ambiguity into a convergence criterion using the cluster extension of TRILEX. Like fluctuation approaches, it is based on the introduction of bosonic degrees of freedom. Like cluster DMFT, it self-consistently maps the corresponding electron-boson problem onto a cluster impurity problem. The latter is solved for its three-leg vertex, which is used as a cluster vertex correction to the self-energies. This approach remedies the deficiencies of fluctuation approaches by endowing them with a control parameter, thus curing the absence of a Migdal theorem. In some parameter regimes, it can solve the cluster DMFT large-N_c stalemate by instead requiring minimal sensitivity to the Fierz parameter as a convergence criterion of the solution.

To illustrate the method, we focus on the two-dimensional Hubbard model, the simplest model to describe high-temperature superconductors. It is defined
The cluster impurity model of TRILEX consists in self-consistently mapping the lattice problem defined in Eq. (1) onto an interacting cluster of impurities. We thus straightforwardly generalize the single-site impurity model of TRILEX to a cluster impurity model defined by the action:

\[S_{\text{imp}} = \int \int_{\tau' \tau} \sum_{i\sigma \tau' \sigma} c_{i\tau}^{\dagger} \left\{ -[g^{-1}]_{ij} (\tau - \tau') \right\} c_{j\sigma \tau'} + \frac{1}{2} \sum_{i\sigma \tau' \sigma} \sum_{ijl} n_{l\tau} \left\{ -[U^{-1}]_{ij} (\tau - \tau') \right\} n_{j\tau'} \]

The latin indices \(i, j = 1 \ldots N_c \) stand for the cluster positions \(R_i, R_j \) (shown in Fig. 1 along with the cluster momenta \(\{ K_i \}_{i=1 \ldots N_c} \)). \(c_{i\sigma \tau}^{\dagger} \) and \(c_{i\sigma \tau} \) are conjugate Grassmann fields, \(\tau \) denotes imaginary time \((\iota \omega) \) will later denote the corresponding fermionic [resp. bosonic] Matsubara frequencies), and \(n_{i\alpha}^{\dagger} \) denotes density \((\iota = 0) \) or spin \((\iota = x, y, z)\), i.e

\[n_{i\tau}^{\dagger} = \sum_{\alpha \sigma} c_{i\alpha \sigma \tau}^{\dagger} c_{i\alpha \sigma \tau} \text{ where } \sigma_{i\alpha \sigma \tau}^{\dagger} \text{ is the } 2 \times 2 \text{ identity matrix, } \sigma_{i\alpha \sigma \tau} \text{ is the Pauli matrices } (\iota = x, y, z). \]

Due to SU(2) invariance, \(U^x = U^y = U^z \): we introduce an index \(\eta \) to distinguish between the charge component \(U^\eta = \mu \) and the spin components \(U^{\eta = \tau} = U^{\eta = x} = U^{\eta = y} = U^z = U^y = U^z \).

This cluster impurity model is used to compute the cluster impurity vertex \(\lambda^{\eta}_{\text{imp}}(K, Q, \iota \omega, \iota \Omega) \) (all computational details are given in the Suppl. Mat.). Next, in the spirit of DCA, we want to use \(\lambda^{\eta}_{\text{imp}}(K, Q, \iota \omega, \iota \Omega) \) to approximate the momentum dependence of the lattice vertex \(\lambda^{\eta}_{\text{lat}}(\iota \omega, \iota \Omega) \) by a coarse-graining procedure. We recall that DCA consists in coarse-graining the cluster self-energy as \(\Sigma(k, \iota \omega) \approx \sum_{\Lambda} \theta(K) \sum_{\Lambda} \lambda^{\eta}_{\text{imp}}(K, \iota \omega, \iota \Omega) \), where \(\sum_{\Lambda} \lambda^{\eta}_{\text{imp}}(K, \iota \omega, \iota \Omega) \) is the cluster impurity self-energy, and \(\theta(K) = \sum_{\Lambda} \lambda^{\eta}_{\text{imp}}(K, \iota \omega, \iota \Omega) \) is not as straightforward. There are several possible coarse-grainings for the vertex. We choose the following two, which ensure that a constant vertex is coarse-grained as a constant:

\[\lambda^{\eta}_{\text{lat}}(\iota \omega, \iota \Omega) = \sum_{\Lambda} \theta(K) \lambda^{\eta}_{\text{imp}}(K, Q, \iota \omega, \iota \Omega) \]

\[\lambda^{\eta P}_{\text{lat}}(\iota \omega, \iota \Omega) = \sum_{\Lambda} \theta(K) \lambda^{\eta P}_{\text{imp}}(K, Q, \iota \omega, \iota \Omega) \]

We use it to compute the self-energy \(\Sigma(k, \iota \omega) \) and polarization \(P^{\eta}(q, \iota \Omega) \), given by the exact Hedin expressions:

\[\Sigma(k, \iota \omega) = -\sum_{\eta \iota \Omega} \sum_{q, \iota \Omega} G_{k+q, \iota \omega + \iota \Omega} W^{\eta}_{q, \iota \Omega} \lambda^{\eta}_{\text{imp}}(k, \iota \omega, \iota \Omega) \]

\[P^{\eta}(q, \iota \Omega) = 2 \sum_{k, \iota \omega} G_{k+q, \iota \omega + \iota \Omega} \lambda^{\eta}_{\text{imp}}(k, \iota \omega, \iota \Omega) \]

with \(m_{\text{eh}} = 1 \) and \(m_{\text{sp}} = 3 \). Using (3a) (resp. (3b)) for \(\Sigma \) (resp. \(P \)), we obtain:

\[\Sigma_k(\iota \omega) = -\sum_{\eta \Omega q, \iota \Omega} m_{\text{eh}} c_{k+q, \iota \omega + \iota \Omega} W^{\eta} W^{\eta} \lambda^{\eta}_{\text{imp}}(KQ, \iota \omega, \iota \Omega) \]

\[P^{\eta}(q, \iota \Omega) = 2 \sum_{k, \iota \omega} G_{k+q, \iota \omega + \iota \Omega} \lambda^{\eta}_{\text{imp}}(KQ, \iota \omega, \iota \Omega) \]

The colored patches \(P_{K} \) are of equal area.

Figure 1. Cluster geometry: real (left) and reciprocal (right) space, for \(N_c = 2 \) (top) and \(N_c = 4 \) (bottom). \(e_x \) and \(e_y \) (\(u_1 \) and \(u_2 \)) are the unit vectors of the Bravais (super)lattice. The colored patches \(P_{K} \) are of equal area.
with $X^K(i\omega) \equiv \theta_K(k)X(k, i\omega)$. As convolutions of continuous functions of k (G and W) with a piecewise-constant function (Λ), Σ and P are continuous in k by construction.

The (cluster) TRILEX algorithm aims at adjusting the cluster dynamical mean fields $G_{ij}(\tau)$ and $U^\eta_{ij}(\tau)$ so as to satisfy the self-consistency conditions:

$$G_{\text{imp}}(K, i\omega)[G, U] = G_K(i\omega) \quad (6a)$$
$$W^\eta_{\text{imp}}(Q, i\Omega)[G, U] = W_Q^\eta(i\Omega) \quad (6b)$$

The left-hand sides are computed by solving the impurity model. The right-hand sides are the patch-averaged lattice Green’s functions:

$$G_K(i\omega) \equiv \sum_{k \in P_K} G(k, i\omega) \quad (7a)$$
$$W_Q^\eta(i\Omega) \equiv \sum_{q \in P_Q} W^\eta(q, i\Omega) \quad (7b)$$

$G(k, i\omega)$ and $W(q, i\Omega)$ are given by Dyson equations:

$$G(k, i\omega) = \frac{1}{i\omega + \mu - \varepsilon(k) - \Sigma(k, i\omega)} \quad (8a)$$
$$W^\eta(q, i\Omega) = \frac{U^\eta}{1 - U^\eta P^\eta(q, i\Omega)} \quad (8b)$$

$\varepsilon(k)$ is the Fourier transform of t_{ij} ($\varepsilon(k) = 2t \cos(k_x) + \cos(k_y) + 4t' \cos(k_x) \cos(k_y)$), μ the chemical potential, and U^η the bare interaction in channel η.

The “Fierz parameter” α materializes the freedom in choosing the ratio of the charge and spin fluctuations. It reflects the fact (called Fierz ambiguity) that there is no unique way of decoupling the Hubbard interaction with Hubbard-Stratonovich bosons.

The determination of G and U^η satisfying Eq. (6a-6b) is done by forward recursion (see Suppl. Mat. B).

We have implemented this method and studied it in three physically distinct parameter regimes defined in

$$U^\text{ch} = (3\alpha - 1)U, \quad U^\text{sp} = (\alpha - 2/3)U \quad (9)$$

The “Fierz parameter” α materializes the freedom in choosing the ratio of the charge and spin fluctuations. It reflects the fact (called Fierz ambiguity) that there is no unique way of decoupling the Hubbard interaction with Hubbard-Stratonovich bosons.

The determination of G and U^η satisfying Eq. (6a-6b) is done by forward recursion (see Suppl. Mat. B).

We have implemented this method and studied it in three physically distinct parameter regimes defined in

$$U^\text{ch} = (3\alpha - 1)U, \quad U^\text{sp} = (\alpha - 2/3)U \quad (9)$$

The “Fierz parameter” α materializes the freedom in choosing the ratio of the charge and spin fluctuations. It reflects the fact (called Fierz ambiguity) that there is no unique way of decoupling the Hubbard interaction with Hubbard-Stratonovich bosons.

The determination of G and U^η satisfying Eq. (6a-6b) is done by forward recursion (see Suppl. Mat. B).

We have implemented this method and studied it in three physically distinct parameter regimes defined in

$$U^\text{ch} = (3\alpha - 1)U, \quad U^\text{sp} = (\alpha - 2/3)U \quad (9)$$
new small difference. As one increases N_c, i.e. as one relaxes the locality assumption, one expects that the difference between the curves obtained for different values of α becomes milder.

A first observation is that in this regime, there is an “optimal” value of α ($\alpha = 0.3$) where the results are independent of N_c, at least for the cluster sizes studied here. This shows that when spin fluctuations physics (for $\alpha = 0.3$, $U^{ck} \approx 0$) is a good phenomenological description (as expected at low U), there is an optimal decoupling where the exact physics is recovered even at the single-site level.

Next, we compare our results with exact determinant QMC results corresponding to $N_c = 16 \times 16$ sites. The agreement between the exact results and the cluster TRILEX results at $N_c = 4$ is very good both for the real and imaginary parts of the self-energy.

Finally, we compare our results with the self-energy obtained by the GW^{+}EDMFT method for $N_c = 4$. GW^{+}EDMFT can be regarded as a simplification of TRILEX with two further approximations to the nonlocal self-energy contribution: (i) a neglect of the frequency dependence of the vertex (justified in the weak-interaction limit) and (ii) a neglect of the intra-cluster spatial dependence of the vertex. The results obtained with GW^{+}EDMFT (with $N_c = 4$) can be explained in this light. They are, independently of α, quite close to the single-site TRILEX results (indeed, they are close to a single-site approximation (ii), and the frequency dependence of the vertex is somewhat weak in the low-U limit (i)). Second, they are different from the cluster TRILEX results and from the exact solution, except for the optimal value of α ($\alpha = 0.3$) where both methods give results close to the exact solution.

At point B (Fig. 4), the agreement between the converged (DCA) results and the real and imaginary parts of the self-energy, for all values of α (with more important deviations for $\alpha = 0.1$), is very good for $N_c = 4$. Contrary to the weak-coupling limit, no value of α in the single-site case matches the exact solution. This points to the importance of nonlocal corrections to the three-leg vertex. This observation is further corroborated by looking at the GW^{+}EDMFT curve. There, the agreement with the exact result is quite poor, while being similar to the single-site result, like in the weak-coupling limit (for $\alpha = 0.1$, a spin instability precludes convergence of GW^{+}EDMFT). This discrepancy shows that as interactions are increased, the frequency and momentum dependence of the vertex play a more and more important role in the nonlocal self-energy, as we will discuss below. These conclusions are also valid for local observables (see Suppl. Mat. D).

At strong-coupling point C (Fig. 5), similarly to the previous regimes, the $N_c = 4$ self-energy is almost independent of the Fierz parameter α, and in good agreement with the converged (DCA) solution (especially so for its real part). GW^{+}EDMFT at $N_c = 4$ is quite far from the exact result, as can be expected from the previous discussion.

Finally, we analyze the momentum and frequency de-
We have shown that the Fierz parameter α can be turned into a practical advantage in two ways: First and foremost, we have shown that proximity to the exact solution coincides with stability with respect to α. With this necessary condition, one can assess, at a given (possibly small) cluster size, the accuracy of the solution. Second, in some regimes, there exists an optimal value of α for which accurate results can be reached for smaller cluster sizes (even $N_c = 1$).

This Fierz convergence criterion, along with the relatively small cost of the method, paves the way to a controlled exploration of low-temperature phases such as the superconducting phase of the Hubbard model, where cluster DMFT methods cannot be converged in practice.

ACKNOWLEDGMENTS

We acknowledge useful discussions with M. Ferrero and A. Georges. We especially thank W. Wu for providing us determinant QMC numerical data for the benchmark results of point A and DCA data for point C, as well as J. LeBlanc for providing us the DCA data (from Ref. 55) for point B. This work is supported by the FP7/ERC, under Grant Agreement No. 278472-MottMetals. Part of this work was performed using HPC resources from GENCI-TGCC (Grant No. 2016-t2016056112). Our implementation is based on the TRIQS toolbox.56
Supplemental Material A: Fourier conventions and patching details

1. Spatial Fourier transforms

K and Q are cluster momenta.

\[f_K \equiv \frac{1}{N_c} \sum_{ij} e^{-iK(R_i-R_j)} f_{ij} \] \hspace{1cm} (A1)
\[g_{K,Q} \equiv \frac{1}{N_c} \sum_{ijk} e^{-iK(R_i-R_j)-iQ(R_k-R_j)} g_{ijk} \] \hspace{1cm} (A2)

where \(\sum \) is shorthand for \(\frac{1}{N_c} \sum_{n=1}^{N_c} \).

2. Temporal Fourier transforms

\(i\omega \) (resp. \(i\Omega \)) denotes fermionic (resp. bosonic) Matsubara frequencies, and are shorthand for \(i\omega_n = \frac{2n+1}{\beta} \pi \) (resp. \(i\Omega_{m} = \frac{2m}{\beta} \pi \)).

\[f_{i\omega} \equiv \int_0^\beta d\tau e^{i\omega\tau} f_{\tau} \] \hspace{1cm} (A3)
\[g_{i\omega,\Omega} \equiv \int_0^\beta d\tau d\tau' e^{i\omega\tau+i\Omega\tau'} g_{\tau,\tau'} \] \hspace{1cm} (A4)

b. Reciprocal transforms

We define:
\[f_\tau = \sum_{i\omega} e^{i\omega\tau} f_{i\omega} \]
\[g_{\tau,\tau'} = \sum_{i\omega} \sum_{\Omega} e^{-i\omega\tau-i\Omega\tau'} g_{i\omega,\Omega} \]

Here, \(\sum_{i\omega} f(i\omega) \) is shorthand for \(\frac{1}{\beta} \sum_{n=1}^{n_{\text{max}}-1} f(i\omega_n) \).

3. Patching and discretization

In DCA, the \(k \) integrals can be replaced with integrals on the density of states, e.g.

\[G_K(i\omega) = \sum_{k \in \mathcal{P}_K} \frac{1}{\omega + \mu - \varepsilon_k - \Sigma^{\text{imp}}(K,i\omega)} \]
\[= \int_{-\infty}^{\infty} d\varepsilon \frac{D_K(\varepsilon)}{\omega + \mu - \varepsilon - \Sigma^{\text{imp}}(K,i\omega)} \]

where \(D_K(\varepsilon) = \sum_{k \in \mathcal{P}_K} \delta(\varepsilon - \varepsilon_k) \) is the noninteracting density of states of patch \(K \), and where the number of \(k \) points in the computation of the density of states can virtually be pushed to infinity.

By contrast, in cluster TRILEX, the self-energy is a function of \(k \) instead of \(K \), forbidding this substitution and keeping the number of \(k \) points finite (but large due to the low cost of the computation of \(\Sigma(K,i\omega) \): we typically discretize the Brillouin zone in \(n_k \times n_k \) points, with \(n_k = 32 \)).

This requires extra care when defining the theta functions \(\theta_k(k) \) defined in a loose way in the main text. \(\theta_k(k) \) is precisely defined as the overlap of the area surrounding a given \(k \) point with the patch \(\mathcal{P}_k \), divided by the total area surrounding the \(k \) point. This area is illustrated in Fig. S.1 for the case \(n_k = 4 \). For instance, the \(k \) point of coordinates \((1,1)\) has \(\theta_{K=(0,0)}(1,1) = 1/4 \), while that of coordinates \((1,2)\) has \(\theta_{K=(0,\pi)}(1,2) = 1/2 \).
Correspondingly, $\sum_{\mathbf{k} \in \mathcal{P}_K} f_{\mathbf{k}}$ is precisely defined as

$$f_{\mathbf{k}} = \sum_{\mathbf{k} \in \mathcal{P}_K} f_{\mathbf{k}} = \frac{\sum_{n_k \times n_k} f(\mathbf{k}) \theta(\mathbf{k})}{\sum_{n_i = 1}^{n_k} \theta(\mathbf{k})} \quad (A5)$$

Supplemental Material B: Cluster Trilex Loop

As in Refs 81–83, we solve the cluster TRILEX equations by forward recursion, with the following steps (illustrated in Fig. S.2):

1. Start with a guess $\Sigma(\mathbf{k}, i\omega)$, $P^0(\mathbf{q}, i\Omega)$

2. Compute $G(\mathbf{k}, i\omega)$ and $W^\eta(\mathbf{q}, i\Omega)$ (Eqs (8)) and then $G(\mathbf{K}, i\omega)$ and $W^\eta(\mathbf{Q}, i\Omega)$ (Eqs. (7))

3. Compute $\mathcal{G}(\mathbf{K}, i\omega)$ and $\mathcal{U}^\eta(\mathbf{Q}, i\Omega)$ by substituting Eqs (6) into the impurity Dyson equations, i.e.

$$\mathcal{G}(\mathbf{K}, i\omega) = \left[G^{-1}_K(i\omega) + \Sigma_{\text{imp}}(\mathbf{K}, i\omega) \right]^{-1} \quad (B1a)$$

$$\mathcal{U}^\eta(\mathbf{Q}, i\Omega) = \left[W^\eta_Q(i\Omega) + P^\eta_{\text{imp}}(\mathbf{Q}, i\Omega) \right]^{-1} \quad (B1b)$$

4. Solve the impurity model, Eq. (2), for its exact vertex $\Lambda^\eta_{\text{imp}}(\mathbf{K}, \mathbf{Q}; i\omega, i\Omega)$ (see Section C for more details).

5. Compute $\Sigma(\mathbf{k}, i\omega)$ and $P^0(\mathbf{q}, i\Omega)$ (Eqs (5))

6. Go back to step 2 until convergence of Σ and P^0.

As in Refs 81 and 83, and as justified in Ref. 82 for the single-site impurity case, in the equations presented in the main text and in the loop presented above, we have implicitly approximated the impurity’s electron-boson vertex with the bare electron-boson vertex or, in other words, we have assumed the ζ function, introduced in Ref. 82, to be negligible.

Supplemental Material C: Solution of the Impurity Model

1. **Impurity solver**

The impurity model, defined by Eq. (2), is solved using a continuous-time quantum Monte-Carlo algorithm. Contrary to the single-site case, the densities n_i^τ are no longer good quantum numbers due to the intra-cluster hopping terms. This precludes the use of the hybridization expansion algorithms, which can be used with retarded interactions only if the operators involved in the retarded interactions are good quantum numbers, and in which only correlators between operators which are good quantum numbers can be easily measured. We therefore use an interaction-expansion (CT-INT) algorithm, described e.g. in Ref. 88. Here, for the measurement of the three-point function $\chi_{\text{imp}}^{\sigma\sigma'}(i, j, k; \tau, \tau')$ (defined in Eq. (C5) below), we use a straightforward operator-insertion method.

We observe that in all the parameter regimes studied in the main text (points A, B and C), the interactions $U^I_{ij}(\tau)$ are static and local to a very good approximation:

$$U^I_{ij}(\tau) \approx U^I \delta_{ij} \delta_\tau \quad (C1)$$

This is illustrated in Fig. S.3 for point B. Thus, in practice, we do not have to use the retarded interactions. This simplifies the numerical computation since the dependence of the Monte-Carlo sign problem on CT-INT’s density-shifting parameter $\alpha_s(s)$ (see e.g. Eq. (145) of Ref. 88) is less simple than in the case of static interactions.

2. **Computation of $G_{\text{imp}}(\mathbf{K}, i\omega)$ and $W_{\text{imp}}(\mathbf{Q}, i\Omega)$**

$G_{\text{imp}}(\mathbf{K}, i\omega)$ and $W_{\text{imp}}(\mathbf{Q}, i\Omega)$ are obtained by computing the spatial and temporal Fourier transforms (defined in Section A) $G_{\text{imp}}(\mathbf{K}, i\omega)$ and $\chi_{\text{imp}}^{\sigma\sigma'}(\mathbf{Q}, i\Omega)$ of the impurity’s Green’s function and density-density response functions:

$$G_{\text{imp}}(i, j; \tau) \equiv -\langle T c_i(\tau) c_j^\dagger(0) \rangle_{\text{imp}} \quad (C2a)$$

$$\chi_{\text{imp}}^{\sigma\sigma'}(i, j; \tau) \equiv \langle T n_{i\sigma}(\tau) n_{j\sigma'}(0) \rangle_{\text{imp}} \quad (C2b)$$
The vertex, written in cluster coordinates R_i, R_j, R_k, is then computed as:

$$
\Lambda_{ijk}^\eta(\omega, i\Omega) \equiv \sum_{pqr} G_{imp}^{-1}(p, j; i\omega + i\Omega) G_{imp}^{-1}(q, r; i\omega)
\times \left[1 - \mathcal{U}^\eta(i\Omega) \right]^{-1}_{kr} (i\Omega) \tilde{\chi}_{imp}^{3,\eta,\text{conn}}(q, p, r; i\omega, i\Omega)
$$

with the expression in the charge and spin channel:

$$
\tilde{\chi}_{imp}^{3,\eta,\text{conn}}(i, j, k; i\omega, i\Omega) \equiv \tilde{\chi}_{imp}^{3,\eta,\text{conn}}(i, j, k; i\omega, i\Omega) + G_{imp}(i, j; i\omega)n_i^\eta\delta_{i\Omega}
$$

$\Lambda_{ijk}^\eta(\omega, i\Omega)$ is then Fourier-transformed to $\Lambda_{imp}^\eta(K, Q; i\omega, i\Omega)$ (see Section A, Eq. (A2)).

In practice, instead of directly performing a temporal Fourier transform to compute $\tilde{\chi}_{imp}^{3,\sigma\sigma'}(i, j, k; i\omega, i\Omega)$ from $\tilde{\chi}_{imp}^{3,\sigma\sigma'}(i, j, k; i\omega, i\Omega)$, we first compute the connected component $\tilde{\chi}_{imp}^{3,\eta,\text{conn}}(i, j, k; i\omega, i\Omega)$ (defined in Eq. (C8), which is smooth and without discontinuities, perform a cubic spline interpolation of it, and then Fourier transform it to Matsubara frequencies. This allows us to use a small number (typically $n_\tau = 100$) of τ, τ' points in the measurement.

Supplemental Material D: Self-energy

1. Self-energy decomposition

In this section, we show that the coarse-grainings introduced for the vertex allow for a numerically convenient decomposition of Σ and P.

Following a procedure very similar to that described in section II.D.3 of Ref. 82, we decompose Eqs (5) as follows:

$$
\Sigma(k, i\omega) = \Sigma_{imp}(i, j = 0, 0; i\omega)
$$

$$
- \sum_{\eta} m_\eta \sum_{K, Q, q, \Omega} \hat{G}^{K+Q}_{k+q, i\omega + i\Omega} \hat{W}_{q, i\Omega}^\eta \Lambda_{imp}^\eta(K, Q; i\omega, i\Omega)
$$

$$
P_{\eta}(q, i\Omega) = P_{imp}^\eta(i, j = 0, 0; i\Omega)
$$

$$
+ 2 \sum_{K, q, i\omega} \hat{G}^{K+Q}_{k, i\omega} \hat{G}^{K}_{k, i\omega} \Lambda_{imp}^\eta(K, Q; i\omega, i\Omega)
$$

The vertex, written in cluster coordinates R_i, R_j, R_k, is then computed as:

$$
\Lambda_{ijk}^\eta(\omega, i\Omega) \equiv \sum_{pqr} G_{imp}^{-1}(p, j; i\omega + i\Omega) G_{imp}^{-1}(q, r; i\omega)
\times \left[1 - \mathcal{U}^\eta(i\Omega) \right]^{-1}_{kr} (i\Omega) \tilde{\chi}_{imp}^{3,\eta,\text{conn}}(q, p, r; i\omega, i\Omega)
$$

with the expression in the charge and spin channel:

$$
\tilde{\chi}_{imp}^{3,\eta,\text{conn}}(i, j, k; i\omega, i\Omega) \equiv \tilde{\chi}_{imp}^{3,\eta,\text{conn}}(i, j, k; i\omega, i\Omega) + G_{imp}(i, j; i\omega)n_i^\eta\delta_{i\Omega}
$$

$\Lambda_{ijk}^\eta(\omega, i\Omega)$ is then Fourier-transformed to $\Lambda_{imp}^\eta(K, Q; i\omega, i\Omega)$ (see Section A, Eq. (A2)).

In practice, instead of directly performing a temporal Fourier transform to compute $\tilde{\chi}_{imp}^{3,\sigma\sigma'}(i, j, k; i\omega, i\Omega)$ from $\tilde{\chi}_{imp}^{3,\sigma\sigma'}(i, j, k; i\omega, i\Omega)$, we first compute the connected component $\tilde{\chi}_{imp}^{3,\eta,\text{conn}}(i, j, k; i\omega, i\Omega)$ (defined in Eq. (C8), which is smooth and without discontinuities, perform a cubic spline interpolation of it, and then Fourier transform it to Matsubara frequencies. This allows us to use a small number (typically $n_\tau = 100$) of τ, τ' points in the measurement.
where we have defined the nonlocal components:

$$\hat{X}(k, i\omega) \equiv X(k, i\omega) - \sum_k X(k, i\omega)$$ (D2)

Indeed, decomposing Eq. (5a) using Eq. (D2), and expanding, one obtains four terms, two of which vanish. The two remaining terms are given in Eq. (D1a). The first term is given by \(\Sigma_{\text{imp}}(00, i\omega) \):

$$- \sum_{\eta} m_\eta \sum_{k, q, \delta, \Omega} \left\{ \sum_{k'} G_{\omega+i\Omega}(k') \theta_{k+q}(k') \right\} \times \left\{ \sum_{q'} W_{\omega+i\Omega}(q') \theta_{q'}(q') \right\} \Lambda^{\eta}_{\text{imp}}(K, Q; i\omega, i\Omega)$$ (D3)

$$= - \sum_{\eta} m_\eta \sum_{\delta, \Omega} \sum_{q, \delta} \{ G_{\omega+i\Omega}(k'+q') \} \{ W_{\omega+i\Omega}(q') \} \times \sum_{KQ} \theta_{k+q}(k'+q') \theta_{q'}(q') \Lambda^{\eta}_{\text{imp}}(K, Q; i\omega, i\Omega)$$ (D4)

$$= - \sum_{\eta} m_\eta \sum_{\delta, \Omega} \sum_{q, \delta} G_{\omega+i\Omega}(k'+q') W_{\omega+i\Omega}(q') \Lambda^{\eta}_{\text{imp}}(K, Q; i\omega, i\Omega)$$

$$= \sum_{KQ} \Sigma(K', i\omega)$$

$$= \Sigma(R = 0, i\omega)$$

$$= \Sigma_{\text{imp}}(00, i\omega)$$ (D5)

A similar result holds for \(P \).

In the second terms of Eqs (D1a-D1b), the summands decay fast for large Matsubara frequencies thanks to the fast decay of the nonlocal component \(G(k, i\omega) \) and \(W(q, i\Omega) \).

As in Ref. 82, we furthermore split \(\Lambda \) into a “regular part” \(\Lambda^{\eta\text{-reg}} \) which vanishes at large frequencies

$$\Lambda^{\eta\text{-reg}}_{ijkl}(i\omega, i\Omega) = \Lambda^{\eta}_{ijkl}(i\omega, i\Omega) - l_{ijkl}(i\Omega)$$ (D6)

and a remainder \(l(i\Omega) \) corresponding to the high-frequency asymptotics of the three-point function:

$$l_{ijkl}(i\Omega) = \sum_{p} \left[1 - U^{\eta} \chi_{kp}^{\eta-1}(i\Omega) \right] \delta_{ij}$$ (D7)

The term containing \(\Lambda^{\eta\text{-reg}}_{ijkl}(i\omega, i\Omega) \) has a quickly decaying summand thanks to \(G, W \) and \(\Lambda^{\text{reg}} \). We compute it in Matsubara frequencies and real space after a fast Fourier transform of \(G \) and \(W \). This is the bottleneck of the computation of the self-energy as it scales as \(O(N^2 \log N^2 \log N_{\omega}^2) \) (where \(N_{\omega} \) is the number of Matsubara frequencies used and \(N_k \) the number of \(k \) points in the discretized first Brillouin zone). The term containing \(l_{ijkl}(i\Omega) \) can be computed entirely in imaginary time and real space, with a computational complexity of \(O(N_{\omega} \log N_{\omega} N_k \log N_k N^2) \).

2. Continuity of the self-energy

In Fig. S.4, we show the lowest Matsubara component of the self-energy obtained in the dynamical cluster approximation (DCA) and the one obtained within cluster TRILEX, using Eq. (D1a). While the DCA self-energy is piecewise constant in the Brillouin zone (with discontinuities at the patch edges), the cluster TRILEX self-energy is continuous by construction, similarly to what is achieved by the DCA\(^+\) method\(^{89,90}\), but without arbitrary interpolation schemes.

3. Local components

In Fig. S.5, we display the local components \(G_{\text{loc}} \) and \(\Sigma_{\text{imp}} \) and compare them to benchmark results obtained with DCA (\(N_c = 50 \), Ref. 55). The \(N_c = 4 \) cluster
TRILEX data is the closest to the benchmark data, irrespective of the value of α.

Supplemental Material E: Vertex

1. Momentum dependence of the vertex

In Figures S.6 and S.7, we show the dependence of the vertex on the cluster momenta K and Q for points A and C (point B is shown in the main text).

2. Cluster-site dependence of the vertex

In Figures S.8, S.9 and S.10, we show all the inequivalent vertex components $\Lambda_{\text{imp}}(i, j, k; \omega, i\delta)$ for the three regimes of parameters (respectively point A, B and C) studied in the main text. While the largest component is the local component $(i, j, k = 0, 0, 0)$, some nonlocal components are non-negligible.

1. A. V. Chubukov, D. Pines, and J. Schmalian, in *Superconductivity* (Springer Berlin Heidelberg, Berlin, Heidelberg, 2002) Chap. 22, pp. 1349–1413.
2. F. Onufrieva and P. Pfeuty, Physical Review Letters 102, 207003 (2009).
3. M. A. Metlitski and S. Sachdev, Physical Review B 82, 075128 (2010).
4. K. B. Efetov, H. Meier, and C. Pépin, Nature Physics 9, 442 (2013).
5. F. Onufrieva and P. Pfeuty, Physical Review Letters 109, 257001 (2012).
6. D. J. Scalapino, Reviews of Modern Physics 84, 1383 (2012).
7. Y. Wang and A. Chubukov, Physical Review B 90, 035149 (2014).
8. Y. Wang, A. Abanov, B. L. Altshuler, E. A. Yuzbashyan, and A. V. Chubukov, Physical Review Letters 117, 157001 (2016).
9. N. Bickers and D. Scalapino, Annals of Physics 206251, 206 (1989).
10. L. Hedin, Physical Review 139, 796 (1965).
11. L. Hedin, Journal of Physics: Condensed Matter 489 (1999).
12. G. M. Eliashberg, Sov. Phys. JETP 11, 696 (1960).
13. J. Jaeckel and C. Wetterich, Physical Review D 68, 025020 (2003).
14. T. Baier, E. Bick, and C. Wetterich, Physical Review B 70, 125111 (2004).
15. L. Bartosch, H. Freire, J. J. R. Cardenas, and P. Kopietz, Journal of Physics: Condensed Matter 21, 305602 (2009).
16. K. Borejsza and N. Dupuis, Europhysics Letters (EPL) 63, 722 (2003).
17. K. Borejsza and N. Dupuis, Physical Review B 69, 085119 (2004).
18. N. Dupuis, Physical Review B 65, 245118 (2002).
19. P. W. Anderson, Science 255, 1196 (1987).
20. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Reviews of Modern Physics 68, 13 (1996).
21. M. H. Hettler, A. N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke, and H. R. Krishnamurthy, Physical Review B 58, R7475 (1998).
22. M. H. Hettler, M. Mukherjee, M. Jarrell, and H. R. Krishnamurthy, Physical Review B 61, 12739 (1999).
23. A. I. Lichtenstein and M. I. Katsnelson, Physical Review B 62, R9283 (2000).
24. G. Kotliar, S. Savrasov, G. Pålsson, and G. Biroli, Physical Review Letters 87, 186401 (2001).
25. T. A. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Reviews of Modern Physics 77, 1027 (2005).
26. B. Kyung, D. Sénéchal, and A.-M. S. Tremblay, Physical Review B 80, 205109 (2009).
27. G. Sordi, P. Sémon, K. Haule, and A.-M. S. Tremblay, Physical Review Letters 108, 216401 (2012).
28. M. Civelli, M. Capone, A. Georges, K. Haule, O. Parcollet, T. D. Stanescu, and G. Kotliar, Physical Review Letters 100, 046402 (2008).
Figure S.6. Weak-coupling parameters (Point A, $U/D = 0.5$, $\delta = 0\%$, $\beta D = 16$, $t^i = 0$, $\alpha = 0.5$). Same conventions as Fig. 2.

Figure S.7. Strong-coupling parameters (Point C, $U/D = 1.4$, $\delta = 4\%$, $\beta D = 8$, $t^i/t = -0.3$, $\alpha = 0.5$). Same conventions as Fig. 2.

29 M. Ferrero, O. Parcollet, A. Georges, G. Kotliar, and D. N. Basov, Physical Review B 82, 054502 (2010).
30 E. Gull, O. Parcollet, and A. J. Millis, Physical Review Letters 110, 216405 (2013).
31 A. Macridin, M. Jarrell, and T. A. Maier, Physical Review B 70, 113105 (2004).
32 T. A. Maier, M. Jarrell, A. Macridin, and C. Slezak, Physical Review Letters 92, 027005 (2004).
33 T. A. Maier, M. Jarrell, T. C. Schulthess, P. R. C. Kent, and J. B. White, Physical Review Letters 95, 237001 (2005).
34 T. Maier, M. Jarrell, and D. Scalapino, Physical Review Letters 96, 047005 (2006).
35 E. Gull, M. Ferrero, O. Parcollet, A. Georges, and A. J. Millis, Physical Review B 82, 155101 (2010).
36 S. X. Yang, H. Fotos, S. Q. Su, D. Galanakis, E. Khatami, J. H. She, J. Moreno, J. Zaanen, and M. Jarrell, Physical Review Letters 106, 047004 (2011).
37 A. Macridin and M. Jarrell, Physical Review B 78, 241101(R) (2008).
38 A. Macridin, M. Jarrell, T. Maier, P. R. C. Kent, and E. D’Azevedo, Physical Review Letters 97, 036401 (2006).
39 M. Jarrell, T. A. Maier, C. Huscroft, and S. Moukouri, Physical Review B 64, 195130 (2001).
40 O. Parcollet, G. Biroli, and G. Kotliar, Physical Review Letters 92, 226402 (2004).
41 P. Werner, E. Gull, O. Parcollet, and A. J. Millis, Physical Review B 80, 045120 (2009).
42 G. Biroli, O. Parcollet, and G. Kotliar, Physical Review B 69, 205108 (2004).
43 D. Bergeron, V. Hankevych, B. Kyung, and A.-M. S. Tremblay, Physical Review B 84, 085128 (2011).
44 B. Kyung, V. Hankevych, A.-M. Daré, and A.-M. Tremblay, Physical Review Letters 93, 147004 (2004).
45 B. Kyung, S. S. Kancharla, D. Sénéchal, A.-M. S. Tremblay, M. Civelli, and G. Kotliar, Physical Review B 73, 165114 (2006).
46 S. Okamoto, D. Sénéchal, M. Civelli, and A.-M. S. Tremblay, Physical Review B 82, 180511 (2010).
47 G. Sordi, K. Haule, and A.-M. S. Tremblay, Physical Review Letters 104, 226402 (2010).
48 G. Sordi, P. Sémon, K. Haule, and A.-M. S. Tremblay, Scientific Reports 2, 547 (2012).
49 M. Civelli, M. Capone, S. S. Kancharla, O. Parcollet, and G. Kotliar, Physical Review Letters 95, 106402 (2005).
50 M. Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet, G. Kotliar, and A. Georges, Europhysics Letters 85, 57009 (2008).
51 M. Ferrero, P. Cornaglia, L. De Leo, O. Parcollet, G. Kotliar, and A. Georges, Physical Review B 80, 064501 (2009).
52 E. Gull, O. Parcollet, P. Werner, and A. J. Millis, Physical Review B 80, 245102 (2009).
53 X. Chen, J. P. F. LeBlanc, and E. Gull, Physical Review Letters 115, 116402 (2015).
54 X. Chen, J. P. F. LeBlanc, and E. Gull, Nature Communications 8, 14986 (2017).
55 J. P. F. LeBlanc, A. E. Antipov, F. Becca, I. W. Bulik, G. K.-L. Chan, C.-M. Chung, Y. Deng, M. Ferrero, T. M. Henderson, C. A. Jiménez-Hoyos, E. Kozik, X.-W. Liu, A. J. Millis, N. V. Prokof’ev, M. Qin, G. E. Scuseria, H. Shi, B. V. Svistunov, L. F. Tocchio, I. S. Tupitsyn,
Figure S.8. Weak-coupling parameters (Point A, $U/D = 0.5$, $\delta = 0\%$, $\beta D = 16$, $t' = 0$), $\alpha = 0.5$. Impurity cluster vertex $\Lambda^0_{\text{imp}}(i, j, k; i\omega_n, i\Omega)$ in the charge (first two rows) and spin (last two rows) channels, at fixed fermionic Matsubara frequency ω_n. See Fig 1 for a definition of the cluster coordinates \mathbf{R}_i, \mathbf{R}_j and \mathbf{R}_k denoted by the indices i, j, k.

Figure S.9. Intermediate-coupling parameters (point B, $U/D = 1$, $\delta = 20\%$, $\beta D = 16$, $t' = 0$), $\alpha = 0.5$. Impurity cluster vertex $\Lambda^0_{\text{imp}}(i, j, k; i\omega_n, i\Omega)$ in the charge and spin channels, at fixed fermionic Matsubara frequency ω_n.
S. R. White, S. Zhang, B.-X. Zheng, Z. Zhu, and E. Gull, Physical Review X 5, 041041 (2015).

56 O. Gunnarsson, T. Schäfer, J. P. F. LeBlanc, E. Gull, J. Merino, G. Sangiovanni, G. Rohringer, and A. Toschi, Physical Review Letters 114, 236402 (2015).

57 O. Gunnarsson, T. Schäfer, J. P. F. LeBlanc, J. Merino, G. Sangiovanni, G. Rohringer, and A. Toschi, arXiv:1604.01614.

58 W. Wu, M. Ferrero, A. Georges, and E. Kozik, arXiv:1608.08402.

59 G. Rohringer, H. Hafermann, A. Toschi, A. A. Katanin, A. E. Antipov, M. I. Katsnelson, A. I. Lichtenstein, A. N. Rubtsov, and K. Held, arXiv:1705.00024.

60 S. Biermann, F. Aryasetiawan, and A. Georges, Physical Review Letters 90, 086402 (2003).

61 P. Sun and G. Kotliar, Physical Review B 66, 085120 (2002).

62 P. Sun and G. Kotliar, Physical Review Letters 92, 196402 (2004).

63 T. Ayral, P. Werner, and S. Biermann, Physical Review Letters 109, 226401 (2012).

64 T. Ayral, S. Biermann, and P. Werner, Physical Review B 87, 125149 (2013).

65 S. Biermann, Journal of physics: Condensed matter : an Institute of Physics journal 26, 173202 (2014).

66 T. Ayral, S. Biermann, P. Werner, and L. V. Bochnke, arXiv:1701.07718.

67 A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, Physical Review B 77, 033101 (2008).

68 A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, Annals of Physics 327, 1320 (2012).

69 E. G. C. P. van Loon, A. I. Lichtenstein, M. I. Katsnelson, O. Parcollet, and H. Hafermann, Physical Review B 90, 235135 (2014).

70 E. A. Stepanov, E. G. C. P. van Loon, A. A. Katanin, A. I. Lichtenstein, M. I. Katsnelson, and A. N. Rubtsov, Physical Review B 93, 045107 (2016).

71 A. Toschi, A. Katanin, and K. Held, Physical Review B 75, 045118 (2007).

72 A. Katanin, A. Toschi, and K. Held, Physical Review B 80, 075104 (2009).

73 T. Schäfer, F. Geles, D. Rost, G. Rohringer, E. Arrigoni, K. Held, N. Blümer, M. Aichhorn, and A. Toschi, Physical Review B 91, 125109 (2015).

74 A. Valli, T. Schäfer, P. Thunström, G. Rohringer, S. Andergassen, G. Sangiovanni, K. Held, and A. Toschi, Physical Review B 91, 115115 (2015).

75 G. Li, N. Wentzell, P. Pudleiner, P. Thunström, K. Held, and A. Toschi, Physical Review B 93, 165103 (2016).

76 G. Rohringer and A. Toschi, Physical Review B 94, 125144 (2016).

77 T. Ayral and O. Parcollet, Physical Review B 94, 075159 (2016).

78 H. Hafermann, S. Brener, A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, JETP Letters 86, 677 (2008).

79 C. Sležak, M. Jarrell, T. Maier, and J. Deiz, Journal of Physics: Condensed Matter 21, 435604 (2009).

80 S. X. Yang, H. Fotso, H. Hafermann, K. M. Tam, J. Moreno, T. Fruschke, and M. Jarrell, Physical Re-
view B 84, 155106 (2011).
81 T. Ayral and O. Parcollet, Physical Review B 92, 115109 (2015).
82 T. Ayral and O. Parcollet, Physical Review B 93, 235124 (2016).
83 J. Vučičević, T. Ayral, and O. Parcollet, arXiv:1705.08332.
84 H. Park, K. Haule, and G. Kotliar, Physical Review Letters 101, 186403 (2008).
85 R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Physical Review D 24, 2278 (1981).
86 O. Parcollet, M. Ferrero, T. Ayral, H. Hafermann, P. Seth, and I. S. Krivenko, Computer Physics Communications 196, 398 (2015).
87 A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Physical Review B 72, 035122 (2005).
88 E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer, and P. Werner, Reviews of Modern Physics 83, 349 (2011).
89 P. Staar, T. Maier, and T. C. Schulthess, Physical Review B 88, 115101 (2013).
90 P. Staar, T. Maier, and T. C. Schulthess, Physical Review B 89, 195133 (2014).