GALEX J184559.8−413827: a new extreme helium star identified using SALT

C. Simon Jeffery

1 Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, UK
2 School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland

ABSTRACT

A high-resolution spectrum of the helium-rich ‘hot subdwarf’ GALEX J184559.8−413827 (J1845−4138) obtained with SALT HRS demonstrates it to be the first extreme helium (EHe) star to be discovered in nearly 40 years. A quantitative analysis demonstrates it to have an atmosphere described by \(T_{\text{eff}} = 26 170 \pm 750 \) K, \(\log g/cm^2 = 4.22 \pm 0.10 \), and a surface chemistry characterised by CNO-processed helium, a 1% contamination of hydrogen (by number), and a metallicity 0.4 dex subsolar. Its distance and position are consistent with membership of the Galactic bulge. Its sharp absorption lines place strong constraints on both the rotation and microturbulent velocities. Spectroscopically, J1845−4138 closely resembles the pulsating EHe star V652 Her, generally considered to be the product of a double helium white dwarf merger evolving to become a helium-rich sdO star.

Key words: stars: abundances, stars: fundamental parameters, stars: chemically peculiar, stars: individual (GALEX J184559.8−413827, V652 Her)

1 INTRODUCTION

Extreme helium stars (EHe) comprise some seventeen stars of spectral types equivalent to A and B but having weak or no hydrogen Balmer lines. In their place, relatively sharp and strong lines of neutral helium indicate low surface gravities and atmospheres dominated by helium. The next most abundant elements are carbon, nitrogen and oxygen, indicative of highly processed material exposed at the stellar surface. The first extreme helium star, HD124448, was identified by Popper (1942). This was followed by discoveries spanning some thirty years, many arising from spectroscopic surveys of luminous blue stars. All of these have been analysed spectroscopically in more or less detail, giving effective temperature and surface gravities; a full list is provided by Jeffery (2008), to which should be added BD+10\(^\circ\)2179 by Pandey & Lambert (2011) and Kupfer et al. (2017). Translating surface gravity into luminosity-to-mass ratio (\(L/M \)), the class covers a range of nearly 2 dex in \(L/M \), with the brightest members lying close to the Eddington limit. Hence, the fact that there have been no new luminous EHe discovered since about 1980 (Drilling & Hill 1986) is easily understood. With surveys of luminous blue stars complete to \(B = 12 \) for the Milky Way and for \(b = \pm 30^\circ \) and \(l = \pm 60^\circ \) (Drilling & Bergeron 1994; Drilling 1996), fainter EHe would either lie outside the Milky Way or be heavily obscured and reddened by its central bulge. At the least luminous end of their range, EHe stars have surface gravities similar to those seen on the main-sequence. The EHe appear to be substantially less numerous.

Since all of the classical EHe were discovered, there have been numerous spectroscopic surveys for faint blue stars (sometimes masquerading as quasar or galaxy surveys), including the Palomar-Green (Green et al. 1986), Hamburg quasar and Hamburg/ESO (Hagen et al. 1995; Wisotzki et al. 1996), Edinburgh-Cape (Stobie et al. 1997), HK (Beers et al. 1992), Sloan (York et al. 2000) and GALEX (Bianchi et al. 2014) surveys. Each adopted a scheme to classify the spectra of stellar objects and thereby identified many new and interesting stars. Drilling (1996) recognized that the class identified by Green et al. (1986) as sdOD (“pure He \(i \) absorption spectra, characterized by the weakness or absence of hydrogen Balmer lines and He \(ii \) 4686 while showing the singlet He \(i \) 4388 about equal in strength to the triplet He \(i \) 4471”), and by Moehler et al. (1990) as He-sdB, is the same definition as that given for extreme helium stars and binaries by Drilling & Hill (1986). Yet no new EHe stars were found.

The sdOD/He-sdB classification also embraces helium-
rich stars of higher surface gravity, i.e. helium-rich hot subdwarfs. Considerable effort has been spent on discovering and exploring these stars, with spectacular results. They turn out to fall into diverse groups, including the double subdwarf PG1544+488 (Schulz et al. 1991; Ahmad et al. 2004; Sener & Jeffery 2014), the binary CPD-20°1123 (Naslim et al. 2012), through the chemically-peculiar intermediate helium subdwarfs (Naslim et al. 2011, 2013; Jeffery et al. 2017), the low-gravity He-sdO stars and O(He) stars (Husfeld et al. 1989; Reindl et al. 2013) to the high-gravity extreme helium sdO stars (Greenstein & Sargent 1974; Dreizler et al. 1996; Stroer et al. 2007; Naslim et al. 2010; Justham et al. 2013; Zhang & Jeffery 2014). Drilling (1996) and Drilling et al. (2013) introduced an MK-like classification scheme which clearly distinguishes between helium-rich subdwarfs and extreme helium stars, but requires a resolution closer to 1.5 Å than the 10 Å of many surveys. Hence, survey spectra have rarely been classified using the Drilling scheme. Stars of interest to us have more frequently been classified as He-sdB, He-sdOB, or He-sdO.

Efforts to find more examples of some subclasses require high-resolution and high signal-to-noise spectra to identify weak and double lines. A spectroscopic survey of stars classified as helium-rich subdwarfs, especially He-sdB or sdOD using 8m class telescopes has been undertaken. This paper reports an observation of one such star obtained with the high-resolution spectrograph (HRS) on the Southern Africa Large Telescope (SALT) (Buckley et al. 2006; Bramall et al. 2011; Crane et al. 2014).

2 OBSERVATIONS

GALEX J184559.8−413827 (α2000 = 18°45′59.8″, δ2000 = 41°38′27″, V = 14.6: J1845−4138 hereafter) was identified to be a faint blue star from GALEX colours by Vennes et al. (2011). A flux-calibrated low-resolution spectrum obtained with the Faint Object Spectrograph and Camera mounted on the European Southern Observatory’s New Technology Telescope (EFOSC2/NTT) on 2008 October 21 was classified ‘He-sdB’, being dominated by neutral helium lines. A coarse analysis of the spectrum and colours yielded first an effective temperature Teff = 36 400 ± 3 200 K, surface gravity log g/cm s−2 = 5.75 ± 0.65, and surface helium-to-hydrogen ratio g/H > 10.0 (Vennes et al. 2011), and second Teff = 35 930±940 K, log g/cm s−2 = 5.75±0.27, log nH/nHe = 2.10+1.10−0.38 (Németh et al. 2012). Both studies used the same observations; the first used atmospheres comprising hydrogen and helium only, but in which departures from local thermodynamic equilibrium were considered (non-LTE), while the second used non-LTE models comprising hydrogen, helium, carbon, nitrogen and oxygen. The latter also provided weak upper limits for the CNO abundances relative to hydrogen of 15%, 75% and 22% respectively.

The ‘He-sdB’ classification led to the inclusion of J1845−4138 on a target list for observations of chemically-peculiar hot subdwarfs with the SALT HRS pipeline (Crawford et al. 2016). Flux calibration was not attempted. The wavelength ranges covered by the spectra are 3860 − 5519 Å and 5686 − 8711 Å respectively, the combined spectrum having a S/N ratio in the range 20 − 30 at a resolution of ≈ 37,000. The orders were rectified, mapped onto a common wavelength grid (equally spaced in log wavelength) and merged using an order-management tool written for échelle spectra by the author. Rectification at low exposure levels remains problematic, in the current case leading to problems at the blue end of the blue spectrum.

Fig. 1 shows that the He I absorption lines are readily apparent and everywhere stronger than the Balmer lines. He I 4686 Å, can be identified, but not the He II Picketing series. The He I lines are everywhere narrower than seen in helium-rich hot subdwarfs with log g ≥ 5, but less sharp than the lowest-gravity extreme helium stars. On the other hand the spectrum is remarkably similar to that of the better known EHe star V652 Her (Jeffery et al. 2013), including in particular the extremely rich spectrum of singly-ionized nitrogen (Fig. 1). The most marked difference is that He II 4686 Å is significantly stronger in J1845−4138, indicating a higher Teff. A detailed analysis to determine the surface properties more precisely is presented in the next section.

A single value for the heliocentric radial velocity of J1845−4138 was measured by comparing the observed spectrum obtained at 2017 03 17 02h 24m (Julian Date 2457828.6000) with the best-fit theoretical spectrum, yielding a value V = −57.6 ± 6.1 km s−1 (Kawka et al. 2015).

3 ANALYSIS

A grid of model atmospheres and theoretical spectra was prepared based on the approximate composition for V652 Her (Jeffery et al. 2000). The input composition for the model grid was checked for consistency with the measured abundances, and an iteration was carried out where necessary. The observed spectrum used to fit Teff and g was the order-merged spectrum direct from the rectification procedure. This procedure was carefully designed to preserve the profiles of broad lines, even where they extend over substantial fractions of an order or across order overlaps. Initial estimates for Teff and g were obtained using the Armagh LTH model atmosphere codes STERNES, SPECTRUM and SFT. Behara & Jeffery (2006; Jeffery et al. 2017).

1 A recent exception used tools in the Virtual Observatory (Pérez-Fernández et al. 2016).

2 PyHRS: http:// pysalt. salt.ac.za/

3 Local thermodynamic equilibrium was assumed throughout the analysis. Recent analyses of V652 Her and the EHe BD+10°2179 (Przybilla et al. 2005; Kupfer et al. 2017) showed departures from
GALEX J1845−4138: a new extreme helium star

Figure 1. Part of the renormalised SALT HRS spectrum of J1845−4138 (black) compared with the median spectrum of V652 Her near maximum radius obtained by Jeffery et al. (2015, red).

Table 1. Atmospheric abundances of J1845−4138, helium stars with similar L/M ratios, and the Sun. Abundances are given as log ϵ, normalised to log $\Sigma \mu \epsilon = 12.15$.

Star	log ϵ	H	He	C	N	O	Ne	Mg	Al	Si	P	S	A	Fe
J1845−4138	9.56	11.54	6.91	8.69	7.78	8.29	7.91	6.44	7.61	5.62	6.93	–	7.07	
V652 Her	9.61	11.54	7.29	8.69	7.58	7.95	7.80	6.12	7.47	6.42	7.05	6.64	1.2	
BX Cir	8.1	11.5	9.02	8.4	8.0	7.2	6.0	6.8	6.4	6.6	7.0	6.6	3	
LS IV+6°2	7.3	11.52	9.41	8.54	8.30	9.35	7.34	6.26	7.11	5.99	6.99	7.10	4	
HD144941	10.3	11.5	6.80	6.5	7.0	6.1	4.8	6.0	5.7	5				
Sun	12.0	10.93	8.43	7.83	8.69	7.93	7.60	6.45	7.51	5.45	7.12	6.40	7.50	

References. 1 Jeffery et al. (1999), 2: Jeffery et al. (2001), 3: Drilling et al. (1998), 4: Jeffery (1998), 5: Harrison & Jeffery (1997), 6: Jeffery & Harrison (1997). J1845−4138: value uncertain.

by finding the best-fit spectrum in a grid which covers the solution space ($T_{\text{eff}}/\text{kK}, \log g/\text{cm s}^{-2}, n_{\text{He}}/n_{\text{H}} = (20(2)30, 2.8(0.2)4.4, 99)$).

The observed spectrum was further renormalised using the best-fit model so as to facilitate the measurement of abundances from narrow and weak lines (Figs. 1–3). The renormalised spectrum was not used for measuring T_{eff} and g since the wings of the crucial HeI lines are significantly affected by this renormalisation process.

Inspection showed that many lines were significantly sharper in the observed spectrum than in the model, with some close lines resolved in the former and not the latter. The rotation velocity was already set to zero. The instrumental profile was reduced to 0.001˚A (full-width half-maximum), corresponding to the nominal value for medium resolution observations with HRS (37 000). In order to model the observed line splitting, the microturbulent velocity (ξ) in the model had to be reduced from 7 to 2 km s$^{-1}$. The value adopted for V652 Her was 9 km s$^{-1}$, but dynamical effects in the pulsating atmosphere probably contribute to this value. Since the microturbulent velocity contributes significantly to the metal line opacity due and hence to the temperature structure of the model atmospheres, a new model grid was computed.

The final surface properties measured for J1845−4138 are $T_{\text{eff}} = 26 170 \pm 750$ K and $\log g/\text{cm s}^{-2} = 4.22 \pm 0.10$, with $\xi = 2$ km s$^{-1}$. This is compared with other EHe stars in Fig. 3. An indication of the systematic error is obtained by the reduction in ξ, which produced shifts of 30 K and 0.03 dex respectively.

Atmospheric abundances were obtained from the renormalised spectrum by χ^2 minimisation, as in the analysis of UVO 0825+15 (Jeffery et al. 2017). Given the scatter seen in line-by-line analyses, and the greater noise in the current spectrum, the abundance errors are conservatively estimated at ±0.2 dex for each species. The best-fit abundances of observed species are given in Table 1 as log ϵ, normalised to log $\Sigma \mu \epsilon = 12.15$, where ϵ is the relative abundance by number of each species, and μ is its molecular weight. A partial atlas of the spectrum showing the best-fit model and marking the positions of all lines with equivalent widths in the model greater than 5 mA is shown in Figs. 1–3.

3.1 Previous work

The above measurements of T_{eff} and g are sufficiently discrepant from those by Vennes et al. (2011) and Németh et al. (2012) to require comment. Although the
EFOSC/NTT spectra is of very low resolution, it is sufficient to resolve the adjacent HeI 4713 Å and HeII 4686 Å lines, which provide a critical temperature diagnostic at these temperatures. The online plot of the Nemeth et al. (2012) fit to J1845–4138 shows both lines; although the fit is not perfect, the line ratio implies that the model at $T_{\text{eff}} = 36$ kK is consistent with the observation. The shape of the flux distribution is only a weak constraint since, for hot stars in the optical and near-ultraviolet, it is degenerate with the shape of interstellar extinction.

The key to the discrepancy lies in a large systematic difference between the degree of metal-line blanketing in the model atmospheres. Vennes et al. (2011) used non-LTE model atmospheres consisting of hydrogen and helium only. Nemeth et al. (2012) included carbon, nitrogen and oxygen, and obtained a very similar T_{eff}. The omission of opacity from other ions, especially iron-group elements, has a major impact on the temperature structure of the model photosphere. This impact is further enhanced in hydrogen-deficient atmospheres owing to the absence of the normally dominant hydrogen photoionisation and the halving of the electron-scattering opacity (recall that $\kappa_{\text{es}} = \kappa_{\text{es},0}/\mu_e = 0.20(1 + X)$, where μ_e is the number of nucleons per free electron and X is the hydrogen mass fraction). The STERNE3 models are fully line blanketed and include opacity contributions from all major ions through to the iron-group and beyond (Behara & Jeffery 2006).

The consequence is illustrated in Fig. 2 where three model classes including (1) non-LTE H + He only, (2) LTE H + He only, and (3) LTE H + He + solar metals are compared. Two models are compared in each class, having $T_{\text{eff}} = 26$ and 36 kK. The helium to hydrogen ratio is close to 100 in each case. The non-LTE models were taken from the grid of Nemeth et al. (2014). The LTE models were computed with the STERNE3 (Behara & Jeffery 2006). To enable a proper comparison, the emergent spectra include H and He lines only. It is instructive to find (at this resolution) only minor differences between the non-LTE and LTE spectra where no metals are included in the model atmosphere calculation. A very substantial shift in the He/HeII ionization balance occurs when metals are included. This is due to the backwarming effect of metal-line opacity which heats the lower layers of the atmosphere and increases the degree of ionization in the line forming region at a given T_{eff}. Hence HeII 4686 Å appears at much lower T_{eff} in fully-blanketed H-deficient models than it does in models which either have more hydrogen or lower metallicity. As demonstrated emphatically by Anderson & Grigsby (1991) when discussing diagnostics for the atmospheres of normal B stars, it is essential to include all opacity sources before considering departures from LTE except, possibly, at the very lowest surface gravities.

4 DISCUSSION

With $V = 14.6$, J1845–4138 is 4 magnitudes fainter than V652 Her. Its measured T_{eff} and g imply L/M approximately 3 times smaller. It is dangerous to infer a mass from putative evolutionary tracks for such stars. Jeffery (1988) discussed core-mass shell-luminosity relations for helium-shell stars, but even assuming a simple relation of the form $L \propto M^{4}$ is problematic since δ varies strongly with mass. Assuming $M \approx 0.5 M_{\odot}$, then $L \approx 350 L_{\odot}$ (with large errors). Also assuming extinction of 0.23 mag, for this position Schlafly & Finkbeiner (2011) and a bolometric correction -2.50 mag, appropriate for early B stars, yields a distance $d \approx 4.4$ kpc. With galactic coordinates $l = 354.1900$, $b = -16.6900$, this gives a location half way toward the Galactic bulge, with height $z \approx 1.4$ kpc below the plane.

The spectroscopic similarities with V652 Her argue for a similar evolutionary status; in that case the model most consistent with observations (including pulsations) is that of a post double helium white dwarf merger (Saio & Jeffery 2004; Zhang & Jeffery 2012). Tracks for models of such stars are shown in Fig. 3. If the same is true here, J1845–4138 will evolve to become a helium and nitrogen-rich hot sub-dwarf within 10^{6} y or so. The enrichment of nitrogen and depletion of carbon point to a highly CNO-processed helium surface; some hydrogen from surface layers of the progenitor.

4 http://stelweb.asu.cas.cz/~nemeth/work/galex/catalog/

5 http://www.ster.kuleuven.be/~petern/work/sdgrid/

6 http://irsa.ipac.caltech.edu/applications/DUST/
Figure 3. The $g-T_{\text{eff}}$ diagram for all known extreme helium stars, including J1845−4138. The positions of the Eddington limit (Thomson scattering: dashed), luminosity-to-mass contours (solar units: dotted) and lower boundaries for pulsation instability (metallicities $Z = 0.004$, 0.01, 0.03: dot-dashed) (Jeffery et al. 1999) are also shown. In the online version, variable EHe's are shown in purple (cool), blue (hot), green (V652 Her like variables). Non-variables are black. Data for T_{eff}, g are as in Jeffery (2008), except for BD+10°2179 (Kupfer et al. 2017). Post-merger evolution tracks for models of He+He white dwarf mergers (Zhang & Jeffery 2012; 0.30+0.25 and 0.30+0.30 M_{\odot}) are shown in maroon. Part of the post-flash track of a 0.46921 M_{\odot} "late hot flasher" (metallicity $Z = 0.01$) is shown in orange (Miller Bertolami et al. 2008).

white dwarfs has survived (Hall & Jeffery 2016). The photospheric iron abundance is subsolar (≈ 0.4 dex), but not low enough to be considered ‘metal-poor’. The merger of a CO white dwarf and a helium white dwarf is predicted to produce a carbon-rich surface, having negligible hydrogen (typically < 0.01% by number), and a much higher L/M ratio than observed in the current case (Saio & Jeffery 2002).

A second class of model which might apply to such stars includes the ‘late hot flasher’ models wherein helium-core ignition occurs some time after a star leaves the red giant branch (Brown et al. 2001; Miller Bertolami et al. 2008); if the remaining hydrogen envelope is sufficiently thin, flash-driven convection can enrich the surface with CNO-processed helium as well as carbon. The evolution track for a $Z = 0.01$, 0.46921 M_{\odot} model is shown in Fig. 3. Neither model satisfactorily accounts for the mass loss required for the star to leave the giant branch before helium ignition, unless assisted by a binary or planetary companion. (Brown et al. 2001) predicted high carbon abundances, Miller Bertolami et al. (2008) found a range of surface mixtures from (for example) high carbon (4% by mass, initial metallicity $Z = 0.01$), negligible nitrogen at high mass (0.47725 M_{\odot}), to moderate carbon (1.2%) and nitrogen (2.1%) at lower mass (0.46644 M_{\odot}), for models with deep mixing, of which the 0.47725 M_{\odot} model passes closest to the position of J1845−4138. There is no evidence that this class of models can produce pre-subdwarfs with CNO-cycled helium surfaces and without carbon enrichment.

There is a clear distinction between the nitrogen-rich, carbon-poor surface of J1845−4138 and the carbon-rich surfaces of all EHe’s other than V652 Her (Jeffery et al. 2011, Table 1), where the mean carbon abundance is ≈ 2.5 dex higher than in J1845−4138. The same is true of all RCrB stars, to which high luminosity EHe’s are thought to be related, though the difference here is ≈ 2 dex (ibid.). Three other relatively hot ‘high-gravity’ helium stars are shown in Fig. 3 and Table 4: LS IV+6°2 and BX Cir are both carbon-rich and hydrogen-poor relative to V652 Her and J1845−4138. HD144941 is more hydrogen-rich and extremely metal poor. It is not clear how or whether these stars are related to one another. Amongst helium-rich hot subdwarfs, there exists a range of carbon abundance from $\log \epsilon_C = 6.73 \pm 0.18$ (SB21) to 8.94 (BPS CS 29496−0010), whilst the nitrogen abundances are clustered around $\log \epsilon_N \approx 8.4$ (Hirsch & Heber 2004; Naslim et al. 2010).

The question of whether J1845−4138 also pulsates has yet to be determined; J1845−4138 lies outside the region where radial pulsations driven by the Z-bump opacity mechanism are predicted (Jeffery & Said 1994). Due to its smaller radius, any radial or p-mode pulsation period
must be shorter than that of V652 Her (0.108 d). There is no evidence of any periodic variability in the All Sky Automated Survey (ASAS) catalogue entry for this object (Pojmanski & Maciejewski 2002). Since the ASAS cadence is \(< 1 d^{-1}\), this is not a strong non-detection.

A remarkable property of J1845−4138 is the sharpness of its absorption lines. This places strong constraints on both the rotation velocity and the microturbulent velocity in the photosphere. One question posed by the hypothesis for its origin in a white dwarf merger origin is how J1845−4138 could have lost so much angular momentum during the immediate post-merger evolution. On the other hand, a significant number of helium-enriched subdwarf B stars are being identified with very low rotation velocities (Naslim et al. 2011, 2013; Jeffery et al. 2017).

5 CONCLUSION

SALT HRS observations of a faint-blue star previously classified He-sdB (Vennes et al. 2011) demonstrate it to be a nitrogen-rich EHe star similar to the pulsating EHe star V652 Her. J1845−4138 becomes the first EHe star to be discovered for nearly 40 years, indicative of the extreme rarity of these stars. Its surface is predominantly that of CNO-processed helium with some hydrogen contamination, pointing to a possible origin in a double helium white dwarf merger. The Galactic position and metallicity of J1845−4138 are compatible with membership of the bulge population. This discovery suggests that there are more EHe stars awaiting to be found, at least with relatively low luminosities. A higher signal-to-noise spectrum will allow abundances and other parameters to be refined further.

ACKNOWLEDGMENTS

The observation reported in this paper was obtained with the Southern African Large Telescope (SALT) under program 2016-2-SCI-008 (PI: Jeffery). The author is indebted to the hard work of the entire SALT team. He thanks Peter Németh for a copy of the reduced EFOSC/NTT spectrum of J1845−4138.

The Armagh Observatory is funded by direct grant form the Northern Ireland Dept of Communities. CSJ acknowledges support from the UK Science and Technology Facilities Council (STFC) Grant No. ST/M000834/1.

This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France.

REFERENCES

Ahmad A., Jeffery C. S., Fullerton A. W., 2004, A&A, 418, 275
Anderson L., Grigsby J. A., 1991, in Crivellari L., Hubeny I., Hummer D. G., eds, NATO Advanced Science Institutes (ASI) Series C Vol. 341 of NATO Advanced Science Institutes (ASI) Series C, Line Blanketing Without LTE - the Effect on Diagnostics for B-Type Stars. p. 365
Asplund M., Grevesse N., Sauval A. J., Scott P., 2009, ARA&A, 47, 481
Beers T. C., Doinidis S. P., Griffin K. E., Preston G. W., Shectman S. A., 1992, AJ, 103, 267
Bekhradnia N., Jeffery C. S., 2006, A&A, 451, 643
Bianchi L., Conti A., Shiao B., 2014, Advances in Space Research, 53, 900
Bramall D. G., Sharples R., Tyas L., et al. 2010, in Ground-based and Airborne Instrumentation for Astronomy III Vol. 7735 of Proc. SPIE, The SALT HRS spectrograph: final design, instrument capabilities, and operational modes, p. 77354F
Brown T. M., Sweigart A. V., Lanz T., Landsman W. B., Hubeny I., 2001, ApJ, 562, 368
Buckley D. A. H., Swart G. P., Meiring J. G., 2006, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 6267 of Proc. SPIE, Completion and commissioning of the Southern African Large Telescope. p. 62670Z
Šener H. T., Jeffery C. S., 2014, MNRAS, 440, 2676
Crause L. A., Sharples R. M., Bramall D. G., et al. 2014, in Ground-based and Airborne Instrumentation for Astronomy V Vol. 9147 of Proc. SPIE, Performance of the Southern African Large Telescope (SALT) High Resolution Spectrograph (HRS). p. 91476T
Crawford S. M., Crause L., Depagne É., et al. 2016, in Ground-based and Airborne Instrumentation for Astronomy VI Vol. 9908 of Proc. SPIE, Data reductions and data quality for the high resolution spectrograph on the Southern African Large Telescope. p. 99082L
Dreizler S., Heber U., Werner K., Moehler S., de Boer K. S., 1990, A&A, 235, 234
Drilling J. S., 1996, in Jeffery C. S., Heber U., eds, Hydrogen Deficient Stars Vol. 96 of Astronomical Society of the Pacific Conference Series, Basic data on hydrogen-deficient stars. p. 461
Drilling J. S., Bergeron L. E., 1995, PASP, 107, 846
Drilling J. S., Hill P. W., 1986, in Hunger K., Schönberger D., Kameswara Rao N., eds, Hydrogen Deficient Stars and Related Objects, Proceedings of IAU Colloq. 87 Vol. 128 of Astrophysics and Space Science Library, Appendix a : a Catalogue of Hydrogen Deficient Stars. D. Reidel Publishing Co, Dordrecht, p. 499
Drilling J. S., Jeffery C. S., Heber U., 1998, A&A, 329, 1019
Drilling J. S., Jeffery C. S., Heber U., Moehler S., Napierowski R., 2013, A&A, 551, A31
Green R. F., Schmidt M., Liebert J., 1986, ApJS, 61, 305
Greenstein J. L., Sargent A. I., 1974, ApJS, 28, 157
Hagen H.-J., Groote D., Engels D., Reimers D., 1995, A&AS, 111, 195
Hall P. D., Jeffery C. S., 2016, MNRAS, 463, 2756
Harrison P. M., Jeffery C. S., 1997, A&A, 323, 177
Hirsch H., Heber U., 2009, Journal of Physics Conference Series, 172, 012015
Husfeld D., Butler K., Heber U., Drilling J. S., 1989, A&A, 222, 150
Jeffery C. S., 1988, MNRAS, 235, 1287
Jeffery C. S., 1998, MNRAS, 294, 391
Jeffery C. S., 2008, Information Bulletin on Variable Stars, 5817, 1
Jeffery C. S., Baran A. S., Behara N. T., et al. 2017, MNRAS, 465, 3101
Jeffery C. S., Harrison P. M., 1997, A&A, 323, 393
APPENDIX A: SPECTRAL ATLAS FOR J1845−4138

Figures A.1 to A.3 contain a partial atlas of the SALT HRS spectrum of J1845−4138 with the best model fit and identifications of absorption lines.
Figure A.1. Parts of the observed SALT HRS spectrum of J1845$-$4138 (black histogram), and the best-fit model having $T_{\text{eff}} = 26,000$ K, $\log g/cm^2 s^{-2} = 4.2$, $n_{\text{H}}/n_{\text{He}} = 0.01$ and abundances shown in Table 1 (red polyline). Lines with theoretical equivalent widths greater than 5 mÅ are identified wherever possible. Apparently large bins in the observed spectrum correspond to major instrumental artefacts; other artefacts appear as very sharp regularly-spaced lines.
Figure A.2. As Fig. A.1 (contd.)
Figure A.3. As Fig. A.1 (contd.)