Effects of age on the identification of emotions in facial expressions: A meta-analysis

Ana R Gonçalves, Carina Fernandes, Rita Pasion, Fernando Ferreira-Santos, Fernando Barbosa, João Marques-Teixeira

1 Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, Universidade do Porto, Porto, Portugal
2 Faculty of Medicine, Universidade do Porto, Porto, Portugal
3 Language Research Laboratory, Institute of Molecular Medicine, Faculty of Medicine, Universidade de Lisboa, Lisboa, Portugal

Corresponding Author: Ana R Gonçalves
Email address: a.s.ribeiro.g@gmail.com

Background. Emotion identification is a fundamental component of social cognition. Although it is well established that a general cognitive decline occurs with advancing age, the effects of age on emotion identification is still unclear. A meta-analysis by Ruffman and colleagues (2008) explored this issue, but much research has been published since then, reporting inconsistent findings.

Methods. To examine age differences in the identification of facial expressions of emotion, we conducted a meta-analysis of 24 empirical studies (N = 1033 older adults, N = 1135 younger adults) published after 2008. Additionally, a meta-regression analysis was conducted to identify potential moderators.

Results. Results show that older adults less accurately identify facial expressions of anger, sadness, fear, surprise, and happiness compared to younger adults, strengthening the results obtained by Ruffman et al. (2008). However, meta-regression analyses indicate that effect sizes are moderated by sample characteristics and stimulus features. Importantly, the estimated effect size for the identification of fear and disgust increased for larger differences in the number of years of formal education between the two groups.

Discussion: We discuss several factors that might explain the age-related differences in emotion identification and suggest how brain changes may account for the observed pattern. Furthermore, moderator effects are interpreted and discussed.
Effects of age on the identification of emotions in facial expressions: a meta-analysis

Ana R. Gonçalves¹, Carina Fernandes¹,²,³, Rita Pasion¹, Fernando Ferreira-Santos¹, Fernando Barbosa¹, João Marques-Teixeira¹

¹Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal

²Faculty of Medicine, University of Porto, Porto, Portugal

³Language Research Laboratory, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal

Corresponding author:

Ana Gonçalves¹

Email address: anasgoncalves@fpce.up.pt
Abstract

Background. Emotion identification is a fundamental component of social cognition. Although it is well established that a general cognitive decline occurs with advancing age, the effects of age on emotion identification is still unclear. A meta-analysis by Ruffman and colleagues (2008) explored this issue, but much research has been published since then, reporting inconsistent findings.

Methods. To examine age differences in the identification of facial expressions of emotion, we conducted a meta-analysis of 24 empirical studies ($N = 1033$ older adults, $N = 1135$ younger adults) published after 2008. Additionally, a meta-regression analysis was conducted to identify potential moderators.

Results. Results show that older adults less accurately identify facial expressions of anger, sadness, fear, surprise, and happiness compared to younger adults, strengthening the results obtained by Ruffman et al. (2008). However, meta-regression analyses indicate that effect sizes are moderated by sample characteristics and stimulus features. Importantly, the estimated effect size for the identification of fear and disgust increased for larger differences in the number of years of formal education between the two groups.

Discussion: We discuss several factors that might explain the age-related differences in emotion identification and suggest how brain changes may account for the observed pattern. Furthermore, moderator effects are interpreted and discussed.
Introduction

Emotion identification is defined as the “ability to visually analyze the configuration of
gestures, facial muscle orientations and movements in order to identify the emotion to which a particular
expression is most similar” (Wilhelm et al., 2014, p. 3) and is a central component of nonverbal
communication. The ability to accurately identify emotional expressions is essential for
successful interpersonal functioning throughout the life span (Carstensen, Gross, & Fung, 1997).
The interpretation of the emotions that others are experiencing is important to avoid conflict and
provide social support. Emotion identification ability is also fundamental to regulate behavior
such as selectively attending and approaching to positively stimuli to elicit positive feelings and
avoid negative ones (Gross, Richards, & John, 2006). Importantly, presenting facial emotional
stimuli is a valid and reliable approach in order to activate brain areas crucial for emotion
processing (Fusar-Poli et al., 2009) and emotion identification tasks have been used in studies
assessing emotional processing (Ebner & Johnson, 2009; Gonçalves et al., 2018; Grady,
Keightley, Hongwanishkul, Lee, & Hasher, 2007; Mienaltowski, Corballis, Blanchard-Fields,
Parks, & Hilimire, 2011; Williams et al., 2006).

A substantial body of research proposes an age-related “positivity effect” (Mather &
Carstensen, 2005), defined as a tendency for older adults to attend to, and better memorize
positive information relative to neutral and negative stimuli. According to the Socio-emotional
Selectivity Theory (Carstensen, Isaacowitz, & Charles, 1999), significant developmental changes
occur in older adults’ regulation and processing of affect. In this sense, the theory attributes the
“positivity effect” to a motivational shift toward emotional regulation goals (i.e., achieving
positive affect) as older adults begin to view their lifetime as limited (Carstensen et al., 1999).
An alternative theoretical account of the age-related positivity effect, the dynamic integration
theory, posits that greater cognitive demands required to process negative information lead older adults to automatically and preferentially process positive information (Labouvie-Vief, 2003).

A vast set of the literature shows emotion identification deficits in older adults (e.g. Isaacowitz et al., 2007; Sullivan and Ruffman, 2004). Furthermore, Ruffman and colleagues (2008) performed a meta-analysis to examine age differences in emotion identification across four modalities – faces, voices, bodies/contexts, and matching of faces to voices. Specifically in faces modality, Ruffman and colleagues (2008) found an age-related decline across all emotions, except for disgust. However, the mean effect sizes in the faces modality range from 0.07 to 0.34 across all emotions, reflecting inconsistencies among findings in the studies included. Following studies (García-Rodríguez et al., 2009; Orgeta, 2010; Suzuki & Akiyama, 2013) also reported inconsistent findings, showing an age-related decline only in the identification of anger and fear (García-Rodríguez et al., 2009) and anger and sadness (Orgeta, 2010), that raise again questions about the effects of age on emotion identification.

Human aging is accompanied by the decline of various cognitive abilities (for a review, see Salthouse, 2009). For example, sustained attention and working memory decrease with age (Gazzaley et al., 2007; Park et al., 1996). Importantly, these cognitive abilities seem to be relevant to the performance in emotion identification tasks (Lambrecht, Kreifelts, & Wildgruber, 2012). Furthermore, aging has been linked to a gradual reduction in visual acuity (Caban et al., 2005; Humes et al., 2009). Despite the well-known age-related decline in certain cognitive and sensory functions and its possible influence on emotion identification, the effects of age on emotion identification abilities remain unclear.
Analyzing studies published after 2008, the present meta-analysis aims to clarify whether age-related difficulties in identifying facial emotional expressions exist, quantify the magnitude of age effects observed and identify potential moderators.

There are several factors known to influence the identification of facial expressions. Specifically, studies focusing on emotional facial expressions support the idea of a female advantage in emotion identification (Hall & Matsumoto, 2004; Montagne et al., 2005; Williams et al., 2009). Furthermore, participants with no college education ($M_{age} = 35.5$, $SD = 13.1$, range = 19-69 years) were more likely to select the correct label for anger and sadness, than were those with a college degree ($M_{age} = 33.9$, $SD = 11.0$, range = 19-64 years). For fear and disgust, the opposite pattern was reported (Trauffer et al., 2013). Besides participants characteristics, stimulus features need to be considered when analyzing different studies of emotion perception. For instance, color has been reported to improve the perception of general emotional clues (Silver & Bilker, 2015). Additionally, dynamic stimuli can be more accurately recognized than the static ones as shown by behavioral studies (Ambadar, Schooler & Cohn, 2005). Considering that most real-word emotion recognition involves motion of the perceiver and the target rather than looking at pictures, using dynamic stimuli in research makes sense (Isaacowitz & Stanley, 2011). Another element that may contribute to the differential interpretation of static and dynamic facial expressions is motivation, particularly in older adults, since a static photo may create a perception of an overly artificial task, as well as very different from daily life, so that older adults may not engage sufficiently to perform well (Isaacowitz & Stanley, 2011). Given these evidences, the variables sex, level of education of participants, and stimulus features (virtual vs natural, color vs black and white, static vs dynamic) were tested as moderators of any age effects observed. We expected to find larger effects for larger differences in the mean years
of education between the groups to be compared, as well as for higher percentage of female participants and dynamic colored pictures of faces. With the present study, we will clarify how emotion identification of facial expressions changes along aging and identify potential moderators.

Materials & Methods

Literature search

A computer-based search of the PubMed, Web of Knowledge, and EBSCOhost (including the Academic Search Complete, PsycARTICLES, Psychology and Behavioral Sciences databases) was conducted in October 2017 by two researchers (ARG, CF). The search expression was “(aging OR ageing OR “older adults” OR elderly) AND (“emotion recognition*” OR “emotional processing” OR “emotion identification”)*”. The search was limited to titles and abstracts, published in English in the last nine years. In PubMed the filter “Humans” was also used. A total of 1580 non-duplicated articles were found. Additionally, the references of the included articles were searched manually to identify other relevant studies ($n = 20$).

Selection criteria

Studies assessing emotion identification in healthy younger ($20 \leq \text{mean age} \leq 35$) and older adults ($\text{mean age} \geq 55$ years old) were included (criterion 1). Also, only studies that allowed effect size data (i.e., sample sizes, means, and standard deviations) to be directly recorded, calculated, or measured (i.e., from a graph) were included. Authors were contacted if effect sizes could not be obtained from the published data. Ten studies that did not present descriptive statistics and the information requested was not provided, were excluded (criterion 2). Studies
that did not guarantee the neurological and psychological health of the participants, or had missing details about the participants’ inclusion criteria, were excluded (n = 13; criterion 3).

After screening for relevant studies (n = 1600), considering the title and abstract, two researchers (ARG, CF) read the full-text of the studies that were retained (n = 85) and, independently, decided their eligibility for further analysis. Disagreements were resolved by consensus. The inter-rater agreement Cohen’s kappa was used to compare agreement between the researchers, revealing an almost perfect agreement (k = .95).

Detailed information on the study selection process is described in the PRISMA Flow Diagram (Figure 1).

Recorded variables and data collection

The data of each paper were added to an extraction sheet, developed for this meta-analysis and refined when necessary.

When present, the following variables were extracted from each paper: (a) characteristics of the sample (sample groups, sample size, number of female participants, age, years of education); (b) emotion identification tasks and conditions; (c) descriptive statistics of participants’ performance; (d) significant statistical differences between younger and older adults’ performance.

Statistical analysis

The Standard Mean Difference (SMD), based on Hedges’ adjusted g formulation, was used to assess the association between the two variables of interest, i.e. how much age-groups’ performance differ on the emotion identification task. The SMD was pooled across studies to derive an estimate of the mean (i.e., effect size based on Hedges’ g), with each effect weighted for precision to correct for sampling error. To do so, a random-effects model was adopted.
Heterogeneity across the studies was tested using the I^2 and Q statistics. Methodological and sample characteristics of the studies included in the meta-analysis are detailed in Table 1. Publication bias was assessed by visual inspection of the funnel plot. Egger’s tests were used to estimate the severity of publication bias, with $p < .05$ considered statistically significant.

For each emotional expression, the unrestricted maximum likelihood random-effects meta-regression of the effect size was performed with sex (% female), differences in the level of education between older and younger adults, and stimulus features (virtual vs natural, color vs black and white, static vs dynamic) as moderators to determine whether these covariates influenced the effect size.

Statistical analyses were performed using Cochrane Collaboration Review Manager 5.3 (The Nordic Cochrane Centre, The Cochrane Collaboration, 2014) and SPSS version 22.0 (IBM Corp, 2013) software.

Results

The negative overall effect size for *age-group* across all emotions ($M = -1.80$) showed that facial expressions were less accurately identified by older adults (Table 2). For each effect size, a negative value indicates that older adults have performed worse than younger adults, whereas a positive value indicates the reverse. When analyzing data by emotion, the combined effect sizes showed that facial expressions of anger, sadness, fear, surprise, and happiness were less accurately identified by older adults (Table 2). Regarding the identification of facial expressions of disgust, no significant differences were found between older and younger adults (Table 2).
Significant heterogeneity was found for all emotions, indicating that the effects contributing to each of the estimates differ substantively. Effect sizes for individual studies are depicted in Table 3.

Egger’s regression tests showed no significant funnel plot asymmetry across emotional expressions, indicating the inexistence of publication bias.

The meta-regression analyses showed a significant association between participants’ performance by age-group and both sex and level of education as moderators on fear and disgust identification (Table 4). Specifically, differences in level of education are associated with effect sizes on the identification of fear and disgust expressions, with larger effects observed for larger differences in education. Regarding the moderator sex, larger effects are observed for higher percentages of female participants on the identification of fear and the opposite pattern (i.e., larger effects are observed for smaller percentages of female participants) is observed on the identification of disgust expression. A significant association was also found between stimulus features (virtual vs natural, color vs black and white, static vs dynamic) as moderator and performance by age-group on disgust identification. Concerning fear identification the association was marginally significant (Table 4). Whereas larger effects are observed for grayscale pictures of faces on the identification of disgust, larger effects are observed for virtual faces on the identification of fear.

Discussion

The present study aimed to identify potential age-related differences in identifying emotions in facial expressions and quantify the magnitude of the observed age effects. Using a meta-analytic approach with a random-effect model, our results showed that older adults
identified facial expressions of anger, sadness, fear, surprise, and happiness less accurately than younger adults. In contrast, identification of disgust appears to be preserved with age, as older and younger adults’ performance was similar in this case. The present results support those reported in a prior meta-analysis by Ruffman et al. (2008).

Taken together, our results are consistent with a general emotion identification decline associated with aging. Thus, this meta-analysis does not support a positivity bias in the identification of facial expressions of emotion, as impairments in this ability seem to extend to positive facial expressions, nor previous findings suggesting that aging is associated with a reduction in the negativity effect, rather than a positivity effect (Comblain et al., 2005; Denburg et al., 2003; Knight, Maines, & Robinson, 2002; Mather et al., 2004). Age-related positivity effects were found primarily in attention to, and recall and recognition memory for emotional images which could have implications for emotion identification (Isaacowitz & Stanley, 2011).

Therefore, several studies aimed to investigate whether age differences in emotion identification performance could also reflect positivity effects (e.g. Williams et al., 2006). Importantly, many tasks assessing identification accuracy for positive emotions are constrained by ceiling effects (due to the relative low difficulty of the task); however, in the present data, the typical ceiling effects in younger adults’ happiness recognition (e.g. Williams et al., 2006) seem to be absent.

Furthermore, our meta-regression results showed a significant association between sample characteristics, namely the proportion of female participants and the level of education, and participants’ performance by age-group on the identification of fear and disgust. Stimulus features were also found to be significantly associated with participant’s performance by age-group on disgust identification. Concerning fear identification, the association was marginally significant. Regarding the level of education, the effect size increases for larger differences in the
mean years of education between the two groups. This result is consistent with the pattern reported by Trauffer and colleagues (2013) in which participants with college education were more likely to select the correct label for fear and disgust, than were those with no college degree. According to the authors (Trauffer et al., 2013), the number of correct and incorrect responses is partially influenced by the tendency to use certain labels. For instance, sadness and anger have a broader meaning for preschoolers than for university undergraduates which matches with the more frequent use of these words by participants with no college education, compared to the ones with a college education (Trauffer et al., 2013). With respect to the moderator sex, the pattern of effects observed suggests that female participants had better performance than male participants when identifying fear expression and worst performance when identifying disgust. For the identification of fear, the result is consistent with the idea of a female advantage in overall emotion identification supported by studies focusing on emotional facial expressions (Hall & Matsumoto, 2004; Montagne et al., 2005; Williams et al., 2009). For the identification of disgust, the result may be explained by the higher value of within-group heterogeneity found in the analysis of disgust expression ($I^2_{disgust} = .880$ vs. $I^2_{fear} = .053$). Contrary to what was expected, the meta-regression results of stimulus features suggest that disgust was better identified on grayscale pictures and fear was better identified on virtual faces. However, it should be noted that the report of color to improve the perception of emotional clues (Silver & Bilker, 2015) refers to general emotional clues and not to one specific emotion. The better identification of fear on virtual faces may be explained by less variability in expressive features, compared to natural faces, which means by containing less noise (Dyck et al., 2008). Nevertheless, a note of caution should be added here. Results of regression-based methods may not be robust in the current meta-analysis, as such methods are more accurate with a larger number of studies.
Studies that explored the neural basis of emotion processing, either in younger or older adults, present evidence that brain changes might be responsible for alterations in emotion identification performance (Brassen, Gamer, & Büchel et al., 2011; Delgado et al., 2008; Ge et al., 2014; Murty et al., 2009; Urry et al., 2009). In particular, the prefrontal cortex and amygdala were found to be key players in the neural mechanisms underlying emotional regulation (Delgado et al., 2008; Murty et al., 2009). Mather and colleagues (2004) reported reduced amygdala activation for pictures of negative valence during their encoding in older adults. The authors suggested that the on-line reductions in response to negative pictures should cause disproportionately reduced subsequent memory for these negative stimuli. This pattern of amygdala activation was also found by Keightley and colleagues (2007). Our results regarding the identification of negative expressions, except for the identification of disgust, are consistent with the abovementioned evidence. Besides a general reduction of the amygdala response, according to Ruffman et al. (2008), the increased difficulty of older adults to recognize facial expressions of anger may be related to a functional decline in the orbitofrontal cortex, sadness to a decline in the cingulate cortex and amygdala, and fear to a decline in the amygdala. Nevertheless, the identification of neural circuits rather than specific brain regions might be more successful when trying to explain the differences found between younger and older adults’ performance (Almeida et al., 2016; Barrett & Wager, 2006; Clark-Polner, Johnson, & Barrett, 2016), including the identification of positive expressions.

Impairments in cognitive and sensory functions might also explain the changes in emotion identification across the lifespan. Aging is often accompanied by a decline in cognitive abilities (for review, see Salthouse, 2009), as well as by losses in visual and auditory acuity (Caban et al., 2005; Humes et al., 2009), which could hinder higher-level processes such as
language and perception (Sullivan & Ruffman, 2004). However, these sensory features have been reported to be poor predictors of the decline in visual or auditory emotional identification that occurs with aging (e.g., Lima et al., 2014; Ryan, Murray, & Ruffman, 2010). We could not examine these putative moderators due to a lack of consistent selection of cognitive ability measures and its reporting across studies. Future studies incorporating common measures of cognitive ability would allow addressing this issue.

As a final note, we highlight the ambiguity of emotion identification and emotion recognition concepts in the literature. Some studies used both terms interchangeably (e.g., Circelli, Clark, & Cronin-Golomb, 2013; Silver & Bilker, 2015), while others distinguished the terms and used specific tasks to assess emotion identification and emotion recognition separately (Benito et al., 2013; Mathersul et al., 2009; Wilhelm et al., 2014). It is essential to use these concepts uniformly in future studies. In this meta-analysis, we applied the term emotion identification as the “ability to visually analyze the configuration of facial muscle orientations and movements in order to identify the emotion to which a particular expression is most similar” (Wilhelm et al., 2014). We assume that the term emotion recognition emphasizes a focus on memory for facial expressions of emotion, i.e. the “ability to correctly encode, store, and retrieve information regarding emotional expressions from memory systems” (Wilhelm et al., 2014). The ambiguity in the use of these terms may lead to misunderstandings during the phase of literature search and in the interpretation of the published results. In this sense, future studies should pay more attention to this issue.

Conclusions
In sum, the present meta-analysis shows evidence of less accuracy of older adults in emotion identification, not supporting a positivity bias nor a reduction in the negativity effect. Meta-regression analyses suggest that effect sizes are moderated by sample characteristics such as sex, level of education, as well as stimulus features. Several factors might explain the age-related differences in emotion identification, but future studies are needed to explore whether and to what extent they are involved.
References

Almeida PR, Ferreira-Santos F, Chaves, P. L, Paiva TO, Barbosa F, Marques-Teixeira J. 2016. Perceived arousal of facial expressions of emotion modulates the N170, regardless of emotional category: Time domain and time–frequency dynamics. *International Journal of Psychophysiology* 99: 48-56. DOI: 10.1016/j.ijpsycho.2015.11.017

Ambadar Z, Schooler JW, Cohn JF. 2005. Deciphering the enigmatic face: the importance of facial dynamics in interpreting subtle facial expressions. *Psychological Science* 16: 403-410. DOI: 10.1111/j.0956-7976.2005.01548.x

*Baena E, Allen PA, Kaut KP, Hall RJ. 2010. On age differences in prefrontal function: The importance of emotional/cognitive integration. *Neuropsychologia*, 48: 319-333. DOI: 10.1016/j.neuropsychologia.2009.09.021

Barrett LF, Wager TD. 2006. The structure of emotion: evidence from neuroimaging studies. *Current Directions in Psychological Science* 15: 79-83. DOI: 10.1111/j.0963-7214.2006.00411.x

Benito A, Lahera G, Herrera S, Muncharaz R, Benito G, Fernández-Liria A, Montes JM. 2013. Deficits in recognition, identification, and discrimination of facial emotions in patients with bipolar disorder. *Revista Brasileira de Psiquiatria* 35: 435-438. DOI:10.1590/1516-4446-2013-1086

Brassen S, Gamer M, Büchel C. 2011. Anterior cingulate activation is related to a positivity bias and emotional stability in successful aging. *Biological Psychiatry* 70: 131-137. DOI:10.1016/j.biopsych.2010.10.013

Caban AJ, Lee DJ, Gómez-Marin O, Lam BL, Zheng DD. 2005. Prevalence of concurrent hearing and visual impairment in US adults: the national health interview survey, 1997-
Cacioppo JT, Berntson GG, Bechara A, Tranel D, Hawkley LC. 2011. Could an aging brain contribute to subjective well-being? The value added by a social neuroscience perspective. In: Todorov A, Fiske S, Prentice D, ed. Social Neuroscience: Toward Understanding the Underpinnings of the Social Mind. New York: Oxford University Press, p. 249.

Campbell A, Murray JE, Atkinson L, Ruffman T. 2015. Face age and eye gaze influence older adults’ emotion recognition. The Journals of Gerontology: Series B. Psychological Sciences and Social Sciences 0: 1-4. DOI:10.1093/geronb/gbv114

Campbell A, Ruffman T, Murray JE, Glue P. 2014. Oxytocin improves emotion recognition for older males. Neurobiology of Aging 35: 2246-2248. DOI: 10.1016/j.neurobiolaging.2014.04.021

Carstensen LL, Gross JJ, Fung HH. 1997. The social context of emotional experience. Annual Review of Gerontology and Geriatrics 17: 325-352.

Carstensen LL, Isaacowitz DM, Charles ST. 1999. Taking time seriously: a theory of socioemotional selectivity. American Psychologist 54: 165-181. DOI:10.1037/0003-066X.54.3.165

Carvalho C, Páris M, Lemos M, Peixoto B. 2014. Assessment of facial emotions recognition in aging and dementia. The development of a new tool. Biomedicine & Aging Pathology 4: 91-94. DOI: 10.1016/j.biomag.2014.01.003

Chaby L, Luherne-du Boullay V, Chetouani M, Plaza M. 2015. Compensating for age limits through emotional crossmodal integration. Frontiers in Psychology 6: 691. DOI:10.3389/fpsyg.2015.00691
Charles ST, Mather M, Carstensen LL. 2003. Aging and emotional memory: The forgettable nature of negative images for older adults. *Journal of Experimental Psychology: General* 132: 310-324. DOI: 10.1037/0096-3445.132.2.310

*Circelli KS, Clark US, Cronin-Golomb A. 2013. Visual scanning patterns and executive function in relation to facial emotion recognition in aging. *Neuropsychology, development, and cognition: Section B.* Aging, neuropsychology and cognition 20: 148-173. DOI:10.1080/13825585.2012.675427

Clark-Polner E, Johnson TD, Barrett LF. 2016. Multivoxel Pattern Analysis Does Not Provide Evidence to Support the Existence of Basic Emotions. *Cerebral Cortex*, 1-5. DOI: 10.1093/cercor/bhw028

Comblain C, D’Argembeau A, Van der Linden M. 2005. Phenomenal characteristics of autobiographical memories for emotional and neutral events in older and younger adults. *Experimental Aging Research* 31: 173-189. DOI: 10.1080/03610730590915010

D’Argembeau A, Van der Linden M. 2004. Identity but not expression memory for unfamiliar faces is affected by ageing. *Memory* 12: 644-654. DOI: 10.1080/09658210344000198

Delgado MR, Nearing KI, Ledoux JE, Phelps EA. 2008. Neural circuitry underlying the regulation of conditioned fear and its relation to extinction. *Neuron* 59: 829-838. DOI: 10.1016/j.neuron.2008.06.029

Denburg NL, Buchanan TW, Tranel D, Adolphs R. 2003. Evidence for preserved emotional memory in normal older persons. *Emotion* 3: 239-253. DOI:10.1037/1528-3542.3.3.239

Demenescu LR, Mathiak KA, Mathiak K. 2014. Age- and Gender-Related Variations of Emotion Recognition in Pseudowords and Faces. *Experimental Aging Research* 40: 187-207. DOI: 10.1080/0361073X.2014.882210
Dyck M, Winbeck M, Leiberg S, Chen Y, Gur RC, Mathiak K (2008) Recognition Profile of Emotions in Natural and Virtual Faces. *PLoS ONE* 3(11): e3628.
http://doi.org/10.1371/journal.pone.0003628

Ebner NC, He Y, Johnson MK. 2011. Age and Emotion Affect How We Look at a Face: Visual Scan Patterns Differ for Own-Age versus Other-Age Emotional Faces. *Cognition and Emotion* 25: 983-997. DOI:10.1080/02699931.2010.540817

Ebner NC, Johnson MK. 2009. Young and older emotional faces: Are there age group differences in expression identification and memory? *Emotion* 9: 329-339. DOI:10.1037/a0015179

*Ebner NC, Johnson MK, Fischer H. (2012). Neural mechanisms of reading facial emotions in young and older adults. *Frontiers in Psychology* 3: 223. DOI: 10.3389/fpsyg.2012.00223

*Ebner NC, Riediger M, Lindenberger U. 2010. FACES - a database of facial expressions in young, middle-aged, and older women and men: development and validation. *Behavior Research Methods* 42: 351-362. DOI: 10.3758/BRM.42.1.351

Fusar-Poli P, Placentino A, Carletti F, Landi P, Allen P, Surguladze S, ... Politi P. 2009. Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. *Journal of Psychiatry and Neuroscience* 34: 418-432.

Finkel D, Reynolds CA, McArdle JJ, Pedersen NL. 2007. Cohort differences in trajectories of cognitive aging. *The Journals of Gerontology: Series B*. Psychological Sciences and Social Sciences 62: 286-294.
García-Rodríguez B, Ellgring HB, Fusaria A, Frank A. 2009. The role of interference in identification of emotional facial expressions in normal ageing and dementia. *European Journal of Cognitive Psychology* 21: 428-444. DOI:10.1080/09541440802475793

García-Rodríguez B, Fusari A, Fernández-Guinea S, Frank A, Molina JA., Ellgring H. 2011. Decline of executive processes affects identification of emotional facial expression in aging. *Current Aging Science* 4 70-5. DOI: 10.2174/1874609811104010070

*García-Rodríguez B, Fusari A, Rodríguez B, Hernández JMZ, Ellgring H. 2009. Differential patterns of implicit emotional processing in Alzheimer’s disease and healthy aging. *Journal of Alzheimer’s Disease* 18: 541-551. DOI:10.3233/JAD-2009-1161

Gazzaley A, Sheridan MA, Cooney JW, D’Esposito M. 2007. Age-related deficits in component processes of working memory. *Neuropsychology* 21: 532-539. DOI:10.1037/0894-4105.21.5.532

Ge R, Fu Y, Wang D, Yao L, Long Z. 2014. Age-related alterations of brain network underlying the retrieval of emotional autobiographical memories: an fMRI study using independent component analysis. *Frontiers in Human Neuroscience* 8: 1-17. DOI:10.3389/fnhum.2014.00629

Gerstorf D, Ram N, Hoppmann C, Willis SL, Schaie KW. 2011. Cohort differences in cognitive aging and terminal decline in the Seattle Longitudinal Study. *Developmental Psychology* 47: 1026-41.DOI: 10.1037/a0023426

Gonçalves AR, Fernandes C, Pasion R, Ferreira-Santos F, Barbosa F, Marques-Teixeira J. 2018. Emotion identification and aging: behavioral and neural age-related changes. *Clinical Neurophysiology* 129: 1020-1029. DOI: 10.1016/j.clinph.2018.02.128
Grady CL, Keightley M, Hongwanishkul D, Lee W, Hasher L. 2007. The effect of age on memory for emotional faces. *Neuropsychology* 21: 371-380. DOI:10.1037/0894-4105.21.3.371

Gross JJ, Richards JM, John OP. 2006. Emotion regulation in everyday life. In: Snyder DK, Simpson JA, Hughes JN, ed. *Emotion regulation in couples and families: Pathways to dysfunction and health*. Washington, DC: American Psychological Association, 13-35.

Gunning-Dixon F, Gur RC, Perkins AC, Schroeder L, Turner T, Turetsky BI, . . . Gur RE. 2003. Age-related differences in brain activation during emotional face processing. *Neurobiology of Aging* 24: 285–295. DOI: 10.1016/S0197-4580(02)00099-4

*Halberstadt J, Ruffman T, Murray J, Taumoepeau M, Ryan M. 2011. Emotion perception explains age-related differences in the perception of social gaffes. *Psychology and Aging* 26: 133-136. DOI: 10.1037/a0021366

Hall JA, Matsumoto D. 2004. Gender differences in judgments of multiple emotions from facial expressions. *Emotion* 4: 201-206. DOI:10.1037/1528-3542.4.2.201

Hayes AM, Yasinski C. 2015. Pattern destabilization and emotional processing in cognitive therapy for personality disorders. *Frontiers in Psychology*. 6:107. DOI:10.3389/fpsyg.2015.00107.

Humes LE, Busey TA, Craig, JC, Kewley-Port D. 2009. The effects of age on sensory thresholds and temporal gap detection in hearing, vision, and touch. *Attention, Perception, & Psychophysics* 71: 860-871. DOI:10.3758/APP.71.4.860

Hunter EM, Phillips LH, Macpherson SE. 2010. Effects of age on cross-modal emotion perception. *Psychology and Aging* 25: 779-787. DOI: 10.1037/a0020528
Iidaka T, Okada T, Murata T, Omori M, Kosaka H, Sadato N, Yonekura Y. 2002. Age-related differences in the medial temporal lobe responses to emotional faces as revealed by fMRI. *Hippocampus* 12: 352-362. DOI:10.1002/hipo.1113

Irani F, Brensinger CM, Richard J, Calkins ME, Moberg PJ, Bilker W, . . . Gur RC. 2012. Computerized neurocognitive test performance in schizophrenia: a lifespan analysis. *American Journal of Geriatric Psychiatry* 20: 41-52. DOI: 10.1097/JGP.0b013e3182051a7d

Isaacowitz DM, Stanley JT. 2011. Bringing an Ecological Perspective to the Study of Aging and Recognition of Emotional Facial Expressions: Past, Current, and Future Methods. *Journal of Nonverbal Behavior* 35: 261-278. DOI: 10.1007/s10919-011-0113-6

Isaacowitz DM, Löckenhoff CE, Lane RD, Wright R, Sechrest L, Riedel R, Costa PT. 2007. Age differences in recognition of emotion in lexical stimuli and facial expressions. *Psychology and Aging* 22: 147-159. DOI: 10.1037/0882-7974.22.1.147

Keightley ML, Chiew KS, Winocur G, Grady CL. 2007. Age-related differences in brain activity underlying identification of emotional expressions in faces. *Social Cognitive and Affective Neuroscience* 2: 292-302. DOI: 10.1093/scan/nsm024

Kensinger EA, Piguet O, Krendl AC, Corkin S. 2005. Memory for contextual details: Effects of emotion and aging. *Psychology and Aging* 20: 241-250. DOI: 10.1037/0882-7974.20.2.241

Knight BG, Maines ML, Robinson GS. 2002. The effects of sad mood on memory in older adults: A test of the mood congruence effect. *Psychology and Aging* 17: 653-661. DOI: 10.1037/0882-7974.17.4.653
*Krendl AC, Ambady N. 2010. Older adults’ decoding of emotions: role of dynamic versus static cues and age-related cognitive decline. *Psychology and Aging* 25: 788-793. DOI: 10.1037/a0020607

*Krendl AC, Ambady N, Rule NO. 2014. Does aging impair first impression accuracy? Differentiating emotion recognition from complex social inferences. *Psychology and Aging* 29: 482-490. DOI: 10.1037/a0037146

Kunzmann U, Kupperbusch CS, Levenson RW. 2005. Behavioral inhibition and amplification during emotional arousal: a comparison of two age groups. *Psychology and Aging* 20: 144-158. DOI:10.1037/0882-7974.20.1.144

Labouvie-Vief G. 2003. Dynamic integration: affect, cognition, and the self in adulthood. *Current Directions in Psychological Science* 12: 201-206. DOI:10.1046/j.0963-7214.2003.01262.x

*Lambrecht L, Kreifelts B, Wildgruber D. 2012. Age-related decrease in recognition of emotional facial and prosodic expressions. *Emotion* 12: 529-539. DOI: 10.1037/a0026827

Leclerc CM, Kensinger EA. 2008. Age-related differences in medial pre-frontal in response to emotional images. *Cognitive, Affective, & Behavioral Neuroscience* 8: 153-164. DOI:10.3758/CABN.8.2.153

Leclerc CM, Kensinger EA. 2011. Neural processing of emotional pictures and words: a comparison of young and older adults. *Developmental Neuropsychology* 36: 519-538. DOI:10.1080/87565641.2010.549864

Leigland LA, Schulz LE, Janowsky JS. 2004. Age related changes in emotional memory. *Neurobiology of Aging* 25: 1117-1124. DOI: 10.1016/j.neurobiolaging.2003.10.015
Lima CF, Alves T, Scott SK, Castro SL. 2014. In the ear of the beholder: how age shapes emotion processing in nonverbal vocalizations. *Emotion* 14: 145-160. DOI:10.1037/a0034287

Mather M, Canli T, English T, Whitfield S, Wais P, Ochsner K, . . . Carstensen L L. 2004. Amygdala responses to emotionally valenced stimuli in older and younger adults. *Psychological Science* 15: 259-263. DOI: 10.1111/j.0956-7976.2004.00662.x

Mather M, Carstensen LL. 2003. Aging and attentional biases for emotional faces. *Psychological Science* 14: 409-415. DOI: 10.1111/1467-9280.01455

Mather M, Carstensen LL. 2005. Aging and motivated cognition: the positivity effect in attention and memory. *Trends in Cognitive Sciences* 9: 496-502. DOI:10.1016/j.tics.2005.08.005

Mather M, Knight M. 2005. Goal-directed memory: The role of cognitive control in older adults' emotional memory. *Psychology and Aging* 20: 554-570. DOI:10.1037/0882-7974.20.4.554

Mathersul D, Palmer DM, Gur RC, Gur RE, Cooper N, Gordon E, Williams LM. 2009. Explicit identification and implicit recognition of facial emotions: II. Core domains and relationships with general cognition. *Journal of Clinical and Experimental Neuropsychology* 31: 278-291. DOI: 10.1080/13803390802043619

Mienaltowski A, Corballis PM, Blanchard-Fields F, Parks NA, Hilimire MR. 2011. Anger management: Age differences in emotional modulation of visual processing. *Psychology and Aging* 26: 224-231. DOI:10.1037/a0021032

Montagne B, Kessels RPC, Frigerio E, de Haan EHF, Perrett DI. 2005. Sex differences in the perception of affective facial expressions: Do men really lack emotional sensitivity? *Cognitive Processing* 6: 136-141. doi:10.1007/s10339-005-0050-6
Murphy NA, Isaacowitz, DM. 2010. Age effects and gaze patterns in recognising emotional expressions: An in-depth look at gaze measures and covariates. *Cognition and Emotion* 24: 436-452. DOI: 10.1080/02699930802664623

Murty VP, Sambataro F, Das S, Tan HY, Callicott JH, Goldberg TE, . . . Mattay VS. 2009. Age-related alterations in simple declarative memory and the effect of negative stimulus valence. *Journal of Cognitive Neuroscience* 21: 1920-1933. DOI:10.1162/jocn.2009.21130

*Ngo N, Isaacowitz DM. 2015. Use of context in emotion perception: The role of top-down control, cue type, and perceiver's age. *Emotion* 15: 292-302. DOI: 10.1037/emo0000062

*Noh SR, Isaacowitz DM 2013. 'Emotional Faces in Context: Age Differences in Recognition Accuracy and Scanning Patterns'. *Emotion* 13: 238-249. DOI:10.1037/a0030234

*Orgeta V. 2010. Effects of age and task difficulty on recognition of facial affect. *The Journals of Gerontology: Series B. Psychological Sciences and Social Sciences* 65: 323-327. DOI:10.1093/geronb/gbq007

Ochsner KN, Gross JJ. 2005. The cognitive control of emotion. *Trends in Cognitive Sciences* 9: 242-249. DOI:10.1016/j.tics.2005.03.010

Park DC, Smith AD, Lautenschlager G, Earles JL, Frieske D, Zwahr M. 1996. Mediators of long-term memory performance across the life span. *Psychology and Aging* 11: 621-637. DOI:10.1037/0882-7974.11.4.621

Phillips LH, MacLean RDJ, Allen R. 2002. Age and the understanding of emotions: neuropsychological and sociocognitive perspectives. *The Journals of Gerontology: Series B. Psychological Sciences and Social Sciences* 57: 526-530. DOI: 10.1093/geronb/57.6.P526
Ruffman T, Halberstadt J, Murray J. 2009. Recognition of facial, auditory, and bodily emotions in older adults. *The Journals of Gerontology: Series B. Psychological Sciences and Social Sciences* 64: 696-703. DOI:10.1093/geronb/gbp072

Ruffman T, Henry JD, Livingstone V, Phillips LH. 2008. A meta-analytic review of emotion recognition and aging: implications for neuropsychological models of aging. *Neuroscience & Biobehavioral Reviews* 32: 863-881. DOI:10.1016/j.neubiorev.2008.01.001

Ruffman T, Murray J, Halberstadt J, Taumoeppeau M. 2010. Verbosity and emotion recognition in older adults. *Psychology and Aging* 25: 492-7. DOI: 10.1037/a0018247

Ryan M, Murray J, Ruffman T. 2010. Aging and the perception of emotion: processing vocal expressions alone and with faces. *Experimental Aging Research, 36*, 1-22. DOI:10.1080/03610730903418372

Salthouse TA. 2009. When does age-related cognitive decline begin? *Neurobiology of Aging*, 30, 507-514. DOI: 10.1016/j.neurobiolaging.2008.09.023.

*Sarabia-Cobo CM, Navas MJ, Ellgring H, García-Rodríguez B. 2015. Skilful communication: Emotional facial expressions recognition in very old adults. *International Journal of Nursing Studies* 54: 104-111. DOI: 10.1016/j.ijnurstu.2015.08.005

Schaffer SG, Wisniewski A, Dahdah M, Froming KB. 2009. The comprehensive affect testing system-abbreviated: effects of age on performance. *Archives of Clinical Neuropsychology* 24: 89-104. DOI: 10.1093/arclin/acp012

Silver H, Bilker WB. 2014. Social cognition in schizophrenia and healthy aging: differences and similarities. *Schizophrenia Research* 160: 157-62. DOI: 10.1016/j.schres.2014.11.002.
Silver H, Bilker WB. 2015. Colour influences perception of facial emotions but this effect is impaired in healthy ageing and schizophrenia. *Cognitive Neuropsychiatry* 20: 438-455. DOI: 10.1080/13546805.2015.1080157

St Jacques PL, Bessette-Symons B, Cabeza R. 2009. Functional neuroimaging studies of aging and emotion: fronto-amygdalar differences during emotional perception and episodic memory. *Journal of the International Neuropsychological Society* 15: 819-825. DOI:10.1017/S1355617709990439

Sullivan S, Campbell A, Hutton SB, Ruffman T. 2015. What’s good for the goose is not good for the gander: Age and gender differences in scanning emotion faces. *The Journals of Gerontology: Series B. Psychological Sciences and Social Sciences* 0: 1-6. DOI:10.1093/geronb/gbv033

Sullivan S, Ruffman T. 2004. Emotion recognition deficits in the elderly. *International Journal of Neuroscience* 114: 403-442. DOI:10.1080/00207450490270901

Sullivan S, Ruffman T, Hutton S. 2007. Age differences in emotion recognition skills and the visual scanning of emotion faces. *The Journals of Gerontology: Series B. Psychological Sciences and Social Sciences* 62: 53-60.

Suzuki T, Akiyama H. 2013. Cognitive aging explains age-related differences in face-based recognition of basic emotions except for anger and disgust. *Aging, Neuropsychology, and Cognition* 20: 253-270. DOI: 10.1080/13825585.2012.692761

Svärd J, Wiens S, Fischer H. 2012. Superior recognition performance for happy masked and unmasked faces in both younger and older adults. *Frontiers in Psychology* 3: 1-11. DOI: 10.3389/fpsyg.2012.00520
Trauffer N, Widen SC, Russell JA. 2013. Education and the attribution of emotion to facial expressions. *Psychological Topics* 22: 237-247.

Tsai JL, Levenson RW, Carstensen LL. 2000. Autonomic, subjective, and expressive responses to emotional films in older and younger Chinese Americans and European Americans. *Psychology and Aging* 15: 684-693. DOI:10.1037/0882-7974.15.4.684

Urry HL, van Reekum CM, Johnstone T, Davidson RJ. 2009. Individual differences in some (but not all) medial prefrontal regions reflect cognitive demand while regulating unpleasant emotion. *Neuroimage* 47: 852-863. DOI:10.1016/j.neuroimage.2009.05.069

Wilhelm O, Hildebrandt A, Manske K, Schacht A, Sommer W. 2014. Test battery for measuring the perception and recognition of facial expressions of emotion. *Frontiers in Psychology* 5: 1-23. DOI: 10.3389/fpsyg.2014.00404

Wong B, Cronin-Golomb A, Neargarder S. 2005. Patterns of visual scanning as predictors of emotion identification in normal aging. *Neuropsychology* 19: 739-749. DOI: 10.1037/0894-4105.19.6.739

Williams LM, Brown KJ, Palmer D, Liddell BJ, Kemp AH, Olivieri G, . . . Gordon, E. (2006). The mellow years?: Neural basis of improving emotional stability over age. *Journal of Neuroscience* 26: 6422-6430. DOI: 10.1523/JNEUROSCI.0022-06.2006

Williams LM, Mathersul D, Palmer DM, Gur RC, Gur RE, Gordon E. 2009. Explicit identification and implicit recognition of facial emotions: I. Age effects in males and females across 10 decades. *Journal of Clinical and Experimental Neuropsychology* 31: 257-77. DOI: 10.1080/13803390802255635

Zelinski EM, Kennison RF. 2007. Not your parents’ test scores: cohort reduces psychometric aging effects. *Psychology and Aging* 22: 546-557. DOI: 10.1037/0882-7974.22.3.546
Figure 1 (on next page)

PRISMA flow diagram.
Records identified through database searching (n = 2922)

Additional records identified through other sources (n = 20)

Records after duplicates removed (n = 1580 + 20)

Records screened (n = 1600)

Records excluded (n = 1515)

Full-text articles assessed for eligibility (n = 85)

Full-text articles excluded (n = 61)
 Criterion 1 (n = 38)
 Criterion 2 (n = 10)
 Criterion 3 (n = 13)

Studies included in quantitative synthesis (meta-analysis) (n = 24)
Table 1 (on next page)

Methodological and Sample Characteristics of Studies Included in the Meta-Analysis
Study	Condition	Paradigm	Stimuli	Sample size	Mean age	Mean years of education
Baena et al., 2010	Human faces	EIT	VHF	39 (39)	69.9	23.7
Campbell et al., 2015	Directed gaze/YF	EIT	FACC	32 (15)	71.0	20.4
Carvalho et al., 2014	EIT	FACC	17 (12)	67.6	25.8	13.6
Chaby et al., 2015	EIT	FACC	31 (17)	68.9	19.2	16.4
Circelli et al., 2013/ Study 1	EIT	GFAC	16 (9)	67.2	23.1	16.7
Ebner et al., 2010	YF	EIT	VHF	51 (24)	73.6	25.6
Ebner et al., 2012	YF	EIT	FACC	30 (17)	68.2	14.5
García-Rodríguez, Fusari et al., 2009	EIT	FACC	16 (8)	73.2	8.00	15.7
Halberstadt et al., 2011	Faces	EIT	GFAC	61 (36)	70.5	20.5
Hunter et al., 2010/ Study 1	EIT	VHF	25 (10)	67.0	22.6	15.4
Krendl et al., 2010/ Study 1	DANV A2	FACC	42 (29)	75.8	19.8	
Krendl et al., 2014	DANV A2M	FACC	30 (21)	70.7	23.1	16.2
Lambrecht et al., 2012	Visual stimulus	EIT	VFAC	17 (8)	72.0	19.3
Murphy and Isaacowitz, 2010		DANV A2	FACC	23 (15)	72.0	15.7
Ngo and Isaacowitz, 2015/ Study 1	Neutral context	EIT	FACC	30 (19)	72.0	19.3
Noh and Isaacowitz, 2013	Neutral context	EIT	GFAC	47 (39)	72.0	15.7
Orgeta, 2010	EIT	GFAC	40 (27)	69.7	22.4	14.0
Sarabia-Cobo et al., 2015	EIT	VHF	37 (21)	72.3	28.5	16.9
Silver and Bilker, 2015	Visual stimulus	EIT	FACC	39 (0)	72.0	15.8
Sullivan et al., 2015	EIT	FACC	58 (30)	70.0	20.0	
Suzuki and Akiyama, 2013	EIT	GFAC	36 (18)	69.4	21.4	14.2
Svärd et al., 2012	URT	GFAC	20 (10)	73.7	24.6	14.2
Williams et al., 2009	EEI	FACC	276 (140)	73.8	20.6	15.3

Note. Condition: YF = young faces; EIP = emotional intensity pronounced. Paradigm: EIT = emotion identification task; DANVA2 = DANVA2 adults face task; DANVA2 M = DANVA2 modified task; URT = unmasked recognition task; EEI = explicit emotion identification. Stimuli: VHF = virtual human faces; FACC = colour photos of human faces; GFAC = grey scale photos of human faces; VFAC = video sequences of human faces. Sample size: F = number of females.
Table 2 (on next page)

Age effects for recognition of different emotions
	M	K	N	F
Anger	-0.61***	21	1785	.76***
Sadness	-0.43***	18	1661	.64***
Fear	-0.62***	18	1606	.53**
Disgust	-0.04	16	1480	.88***
Surprise	-0.45***	9	621	.90***
Happiness	-0.19*	22	1832	.70***
Overall	-1.80***	24	1978	.98***

Note. M = mean effect size. K = number of independent studies contributing towards each respective mean effect size. A negative effect size denotes that older adults are worse than younger adults; a positive effect size indicates the reverse. N = number of participants. I^2 quantifies within-group heterogeneity. Significances are marked by * $p < .05$, ** $p < .01$, and *** $p < .001$.
Table 3 (on next page)

Effect Size Data for Individual Studies Included in the Meta-Analysis
Study	Sample size	Weight (%)	Effect size [95% CI]
Anger			
Campbell et al., 2015	64	4.9	-0.74 [-1.25, -0.23]
Carvalho et al., 2014	29	3.3	-1.32 [-2.14, -0.49]
Chaby et al., 2015	62	4.8	-0.87 [-1.40, -0.35]
Circelli et al., 2013	32	3.9	0.30 [0.40, 1.00]
Ebner et al., 2010	103	5.4	-0.87 [-1.27, -0.47]
Ebner et al., 2012	60	4.9	0.15 [-0.36, 0.65]
García-Rodríguez, Fusari et al., 2009	32	2.6	-2.84 [-3.86, -1.83]
Halberstadt et al., 2011	121	5.7	-0.51 [-0.88, -0.15]
Hunter et al., 2010/ Study 1	50	4.4	-1.00 [-1.59, -0.41]
Krendl et al., 2010/Study 1	78	5.2	-0.63 [-1.09, -0.17]
Krendl et al., 2014	62	4.8	-0.93 [-1.45, -0.40]
Lambrecht et al., 2012	33	3.6	-1.31 [-2.07, -0.55]
Murphy and Isaacowitz, 2010	64	4.7	-0.98 [-1.52, -0.44]
Ngo and Isaacowitz, 2015/ Study 1	61	4.8	-0.80 [-1.32, -0.27]
Noh and Isaacowitz, 2015	84	5.3	-0.41 [-0.85, 0.02]
Orgeta, 2010	80	5.3	0.00 [-0.44, 0.44]
Sarabia-Cobo et al., 2015	87	5.3	-0.51 [-0.95, -0.08]
Sullivan et al., 2015	118	5.7	-0.28 [-0.64, 0.08]
Suzuki and Akiyama, 2013	72	5.0	-0.72 [-1.20, -0.24]
Williams et al., 2009	452	6.4	-0.64 [-0.83, -0.44]
Ziaei et al., 2017	40	4.1	1.06 [0.39, 1.73]
Sadness			
Baena et al., 2010	78	5.9	-0.09 [-0.53, 0.36]
Campbell et al., 2015	64	5.4	-0.36 [-0.85, 0.14]
Carvalho et al., 2014	29	3.5	0.21 [-0.53, 0.95]
Chaby et al., 2015	62	5.1	-1.02 [-1.55, -0.49]
Circelli et al., 2013	32	3.8	-0.34 [-1.04, 0.36]
Ebner et al., 2010	103	6.5	-0.37 [-0.76, 0.02]
García-Rodríguez, Fusari et al., 2009	32	3.7	0.65 [-0.06, 1.37]
Halberstadt et al., 2011	121	6.8	-0.29 [-0.65, 0.07]
Hunter et al., 2010/ Study 1	50	4.6	-0.91 [-1.50, -0.33]
Krendl et al., 2010/Study 1	78	5.8	-0.48 [-0.93, -0.03]
Krendl et al., 2014	62	5.3	-0.57 [-1.08, -0.06]
Murphy and Isaacowitz, 2010	64	5.2	-0.61 [-1.14, -0.09]
Orgeta, 2010	80	5.5	-1.38 [-1.87, -0.89]
Sarabia-Cobo et al., 201	87	6.0	-0.47 [-0.90, -0.04]
Silver and Bilker, 2015	76	5.8	-0.56 [-1.02, -0.10]
Sullivan et al., 2015	118	6.8	-0.28 [-0.64, 0.08]
Suzuki and Akiyama, 2013	72	5.7	-0.54 [-1.01, -0.07]
Williams et al., 2009	452	8.6	-0.13 [-0.32, 0.06]
Fear			
Campbell et al., 2015	64	5.5	-0.46 [-0.96, 0.04]
Carvalho et al., 2014	29	3.3	-0.22 [-0.96, 0.52]
Chaby et al., 2015	62	5.4	-0.36 [-0.86, 0.15]
Circelli et al., 2013/ Study 1	32	3.6	-0.52 [-1.23, 0.18]
Ebner et al., 2010	103	6.9	-0.50 [-0.89, -0.11]
García-Rodríguez, Fusari et al., 2009	32	2.7	-1.93 [-2.79, -1.07]
Halberstadt et al., 2011	121	7.4	-0.07 [-0.43, 0.28]
Study	Sample size	Weight (%)	Effect size [95% CI]
-------------------------------	-------------	------------	-----------------------------
Hunter et al., 2010/ Study 1	50	4.7	-0.61 [-1.18, -0.04]
Krendl et al., 2010/Study 1	78	6.0	-0.60 [-1.06, -0.14]
Krendl et al., 2014	62	5.5	-0.10 [-0.59, 0.40]
Murphy and Isaacowitz, 2010	64	4.8	-1.23 [-1.79, -0.68]
Ngo and Isaacowitz, 2015/ Study 1	61	5.2	-0.75 [-1.27, -0.23]
Orgeta, 2010	80	6.1	-0.52 [-0.97, 0.08]
Sarabia-Cobo et al., 2015	87	6.0	-1.04 [-1.50, -0.59]
Sullivan et al., 2015	118	7.2	-0.65 [-1.02, -0.28]
Suzuki and Akiyama, 2013	72	5.6	-0.98 [-1.48, -0.49]
Svärd et al., 2012	39	4.0	-0.66 [-1.31, -0.02]
Williams et al., 2009	452	10.0	-0.64 [-0.83, -0.44]
Disgust			
Campbell et al., 2015	64	6.4	-0.39 [-0.88, 0.11]
Carvalho et al., 2014	29	6.0	-0.57 [-1.33, 0.18]
Chaby et al., 2015	62	5.5	0.92 [0.39, 1.44]
Circelli et al., 2013/ Study 1	32	6.1	0.31 [-0.39, 1.01]
Ebner et al., 2010	103	6.5	-0.56 [-0.95, -0.16]
García-Rodríguez, Fusari et al., 2009	32	5.9	-0.38 [-1.08, 0.32]
Halberstadt et al., 2011	121	6.5	0.72 [0.36, 1.09]
Hunter et al., 2010/ Study 1	50	6.3	-0.11 [-0.67, 0.44]
Lambrecht et al., 2012	33	6.0	-1.53 [-2.31, -0.74]
Ngo and Isaacowitz, 2015/ Study 1	61	6.1	-0.49 [-1.00, 0.02]
Noh and Isaacowitz, 2015	84	6.3	0.31 [-0.12, 0.75]
Orgeta, 2010	80	6.3	0.37 [-0.08, 0.81]
Sarabia-Cobo et al., 2015	87	6.4	-1.21 [-1.67, -0.74]
Sullivan et al., 2015	118	6.5	0.30 [-0.06, 0.66]
Suzuki and Akiyama, 2013	72	6.4	0.58 [0.11, 1.05]
Williams et al., 2009	452	6.6	0.62 [0.43, 0.81]
Surprise			
Carvalho et al., 2014	29	4.8	-0.62 [-1.38, 0.14]
Circelli et al., 2013	32	5.7	-0.02 [-0.72, 0.67]
García-Rodríguez, Fusari et al., 2009	32	3.5	2.08 [1.20, 2.96]
Halberstadt et al., 2011	121	21.6	0.00 [-0.36, 0.36]
Hunter et al., 2010/ Study 1	50	8.4	-0.67 [-1.24, -0.10]
Orgeta, 2010	80	15.0	-0.32 [-0.75, 0.11]
Sarabia-Cobo et al., 2015	87	9.2	-2.06 [-2.61, -1.51]
Sullivan et al., 2015	118	20.7	-0.39 [-0.76, -0.03]
Suzuki and Akiyama, 2013	72	11.2	-1.07 [-1.57, -0.58]
Happiness			
Baena et al., 2010	78	5.0	0.05 [-0.39, 0.49]
Campbell et al., 2015	64	4.7	0.00 [-0.49, 0.49]
Carvalho et al., 2014	29	3.3	0.17 [-0.57, 0.91]
Chaby et al., 2015	62	4.6	-0.14 [-0.64, 0.36]
Circelli et al., 2013	32	3.5	0.04 [-0.66, 0.73]
Ebner et al., 2010	103	5.3	-0.29 [-0.68, 0.10]
Ebner et al., 2012	60	4.5	0.37 [-0.14, 0.88]
García-Rodríguez, Fusari et al., 2009	32	3.5	-0.39 [-1.09, 0.31]
Halberstadt et al., 2011	121	5.5	-0.03 [-0.39, 0.33]
Hunter et al., 2010/ Study 1	50	4.2	-0.42 [-0.98, 0.14]
Krendl et al., 2010/Study 1	78	4.9	-0.47 [-0.93, -0.02]
Study	Sample size	Weight (%)	Effect size [95% CI]
------------------------------	-------------	------------	-----------------------------
Krendl et al., 2014	62	4.6	-0.40 [-0.91, 0.10]
Lambrecht et al., 2012	33	2.8	-1.95 [-2.79, -1.10]
Murphy and Isaacowitz, 2010	64	4.5	0.07 [-0.44, 0.58]
Orgeta, 2010	80	5.0	0.16 [-0.28, 0.60]
Sarabia-Cobo et al., 2015	87	5.1	-0.44 [-0.87, -0.01]
Silver and Bilker, 2015	76	4.9	-0.24 [-0.69, 0.21]
Sullivan et al., 2015	118	5.5	-0.38 [-0.75, -0.02]
Suzuki and Akiyama, 2013	72	4.6	1.07 [0.58, 1.57]
Svard et al., 2012	39	3.8	-0.61 [-1.26, 0.03]
Williams et al., 2009	452	6.5	-0.03 [-0.22, 0.15]
Ziaeai et al., 2017	40	3.6	-1.21 [-1.89, -0.53]
Table 4 (on next page)

Effect of moderators on the age-related differences in emotion recognition
	Q	df	p	Moderator	Z	p	β
Anger	1.28	3	.734				
Sadness	3.09	3	.377				
Fear	34.0	3	.000				

	Q	df	p	Moderator	Z	p	β
				Sex (%F)	2.06	.039	.35
				Mean Years of Educat. Dif.	4.12	.000	.78
				Stimulus	-1.86	.062	-.32
Disgust	22.4	3	.000				

	Q	df	p	Moderator	Z	p	β
				Sex (%F)	-2.28	.023	-.52
				Mean Years of Educat. Dif.	2.86	.004	.66
				Stimulus	2.40	.016	.55
Surprise	1.25	3	.742				
Happiness	0.54	3	.910				

Note: Moderator: %F = percentage of female.