Bruhat and balanced graphs

Dedicated to Louis Billera on the occasion of his 70th birthday

RICHARD EHRENBORG and MARGARET A. READDY

Abstract

We generalize chain enumeration in graded partially ordered sets by relaxing the graded, poset and Eulerian requirements. The resulting balanced digraphs, which include the classical Eulerian posets having an R-labeling, implies the existence of the (non-homogeneous) cd-index, a key invariant for studying inequalities for the flag vector of polytopes. Mirroring Alexander duality for Eulerian posets, we show an analogue of Alexander duality for balanced digraphs. For Bruhat graphs of Coxeter groups, an important family of balanced graphs, our theory gives elementary proofs of the existence of the complete cd-index and its properties. We also introduce the rising and falling quasisymmetric functions of a labeled acyclic digraph and show they are Hopf algebra homomorphisms mapping balanced digraphs to the Stembridge peak algebra. We conjecture nonnegativity of the cd-index for acyclic digraphs having a balanced linear edge labeling.

1 Introduction

The cd-index is an important invariant for studying face incidence data of polytopes, and more generally, Eulerian posets. It is a non-commutative polynomial which removes all the linear redundancies which hold among the flag vector entries [2] as described by the generalized Dehn–Sommerville relations [1]. The discovery of its inherent coalgebraic structure and the techniques developed in [20] have been applied to settle many fundamental problems, including giving compact proofs of old results [1, 8], explicit and easier-to-compute expressions [7], versions of Stanley’s Gorenstein* conjecture [6, 8] leading up to a proof of the conjecture itself [17], and extending classical subspace arrangement results to other manifolds [16, 24].

Recall a partially ordered set (poset) is graded if its elements have a well-defined distance from the minimal element of the poset. Björner and Stanley [10] Theorem 2.7 showed that if a graded poset has a combinatorial labeling of its cover relations known as an R-labeling, one can determine the flag f-vector in terms of the labeling inherited by the maximal chains. When the poset is Eulerian, that is, every interval satisfies the Euler–Poincaré relation, one can reduce this information to the classical cd-index.

It is known that the (strong) Bruhat order on a Coxeter group forms an Eulerian poset [38]. Hence any interval has a cd-index which is homogeneous of degree one more than the length of the interval. By removing the adjacent rank assumption on the cover relation of the Bruhat order, a directed graph
known as the Bruhat graph is obtained which in effect allows “algebraic short cuts” between elements. Using the fact that the generalized Dehn–Sommerville relations hold for coefficients of polynomials arising in Kazhdan–Lusztig polynomials \cite{13} Theorem 8.4 and quasisymmetric functions, in \cite{5} it is shown the Bruhat graph has a non-homogeneous cd-index. It is exactly this paper which motivated us to look for an alternative setting to guarantee the existence of the cd-index.

By relaxing the graded, poset and Eulerian requirements, we study a general class of labeled directed graphs which satisfy a balanced condition. Recall a poset having an R-labeling demands that there be exactly one rising chain in each interval of the poset and, if the poset is Eulerian, exactly one falling chain in each interval. Our balanced condition states the number of rising paths of length \(k\) must equal the number of falling paths of length \(k\). This allows us to directly prove the existence of the cd-index for balanced graphs and capture the results for Bruhat graphs as an important special case.

The presentation we give is self-contained. To underscore the connection with posets, results which also hold for the ab- and cd-index of graded posets will be stated as separate remarks.

An overview of the paper is as follows. We introduce the notion of a labeled acyclic digraph in order to model poset structure in this more general setting. An interpretation of its chain enumeration is given in terms of directed paths in the graph. We then set the coalgebraic groundwork for flag enumeration in labeled acyclic digraphs. We show the ab-index of a labeled acyclic digraph is a coalgebra homeomorphism from the linear span of bounded labeled acyclic digraphs to the polynomial ring \(\mathbb{Z}\langle a, b \rangle\).

We introduce the \(\tilde{r}\) and \(\tilde{f}\) polynomials to \(q\)-enumerate the rising and falling chains in the intervals of a labeled digraph. These polynomials hark back to the theory of Coxeter groups and Kazhdan–Lusztig polynomials; see \cite{11} Chapter 5. The main result (Theorem 4.7) gives three equivalent statements which imply the (non-homogeneous) ab-index of an acyclic digraph can be written as a (non-homogeneous) cd-index. The key condition is that the number of rising paths of length \(k\) equals the number of falling paths of length \(k\). We include a second proof of one of the implications in Theorem 4.7 which uses Hochschild cohomology.

A theory that mimics the notion of an Eulerian poset would not be complete without Alexander duality. Recall that for an Eulerian poset \(P\) with decomposition \(S \cup T \cup \{\hat{0}, \hat{1}\}\), the celebrated Alexander duality states that the Möbius functions of the two posets \(S \cup \{\hat{0}, \hat{1}\}\) and \(T \cup \{\hat{0}, \hat{1}\}\) are equal up to the sign \((-1)^{\rho(P)-1}\). In Section 5 we introduce the notion of a restricted digraph. We state Alexander duality where the Möbius function is replaced by a signed sum over falling chains.

In Section 6 we review the basic set-up surrounding the ring of quasisymmetric functions. For a bounded labeled digraph we introduce the rising and falling quasisymmetric functions and relate these with a shift of the aforementioned rising and falling polynomials. We show the rising and falling quasisymmetric functions are Hopf algebra homeomorphisms from the Hopf algebra formed by the linear span of bounded labeled acyclic digraphs to the quasisymmetric functions. We reformulate Theorem 4.7 in terms of Stembridge’s peak algebra \cite{36}.

In Section 7 we apply our results to the important family of Bruhat graphs. Using the existence of a reflection ordering, introduced by Dyer \cite{14}, the existence of the cd-index of the Bruhat graph
and its properties follow.

Recall that the classical cd-index of the face lattice of a polytope, and more generally, any spherically-shellable poset, has non-negative coefficients \[35\]. Non-negativity also holds for Gorenstein* posets \[26\]. These results form two cornerstones for the research program of classifying all the linear inequalities satisfied by the cd-index. We conjecture non-negativity for the cd-index of a bounded labeled acyclic digraph equipped with a balanced edge labeling that is linear; see Conjecture \[8.4\].

We end with open questions in the concluding remarks.

2 Labeled graphs

We begin by introducing a class of directed graphs in order to relax the notion of grading in a graded partially ordered set (poset). For further details about posets, see \[34\, Chapter 3\]. Let \(G = (V, E)\) be a directed, acyclic and locally finite graph with multiple edges allowed. Recall that an acyclic graph does not have any directed cycles and the property of a graph being locally finite requires that there are a finite number of paths between any two vertices. Each directed edge \(e\) has a tail and a head, denoted respectively by \(\text{tail}(e)\) and \(\text{head}(e)\). View each directed edge as an arrow from its tail to its head. A directed path \(p\) of length \(k\) from a vertex \(x\) to a vertex \(y\) is a list of \(k\) directed edges \((e_1, e_2, \ldots, e_k)\) such that \(\text{tail}(e_1) = x, \text{head}(e_k) = y\) and \(\text{head}(e_i) = \text{tail}(e_{i+1})\) for \(i = 1, \ldots, k - 1\). We denote the length of a path \(p\) by \(\ell(p)\).

Since the graph is acyclic, it does not have any loops. Furthermore, the acyclicity condition implies there is a natural partial order on the vertices of \(G\) by defining the order relation \(x \lesssim y\) if there is a directed path from the vertex \(x\) to the vertex \(y\). It is straightforward to verify that this relation is reflexive, antisymmetric and transitive. Furthermore, it allows us to define the interval \([x, y]\) to be

\[[x, y] = \{ z \in V(G) : \text{there is a directed path from } x \text{ to } z \text{ and a directed path from } z \text{ to } y \}. \]

We view the interval \([x, y]\) as the vertex-induced subgraph of the digraph \(G\), where the edges have the same labels as in the digraph \(G\). The locally finite condition is now equivalent to that every interval \([x, y]\) in the graph has finite cardinality.

The most natural example of an acyclic digraph is to consider a (locally finite) poset \(P\) and to let the directed edges be the cover relations of the poset, in other words, the Hasse diagram of \(P\) is the digraph. When we draw the Hasse diagram of a poset we view its edges as being directed upward. Moreover, the fact the poset is locally finite implies that the associated digraph is locally finite.

Let \(\Lambda\) be a set with a relation \(\sim\), that is, there is a subset \(R \subseteq \Lambda \times \Lambda\) such that for \(i, j \in \Lambda\) we have \(i \sim j\) if and only if \((i, j) \in R\). A labeling of \(G\) is a function \(\lambda\) from the set of edges of \(G\) to the set \(\Lambda\). Let \(a\) and \(b\) be two non-commutative variables each of degree one. For a path \(p = (e_1, \ldots, e_k)\) of length \(k\), where \(k \geq 1\), we define the descent word \(u(p)\) to be the \(ab\)-monomial \(u(p) = u_1u_2 \cdots u_{k-1}\), where

\[u_i = \begin{cases} a & \text{if } \lambda(e_i) \sim \lambda(e_{i+1}), \\ b & \text{if } \lambda(e_i) \not\sim \lambda(e_{i+1}). \end{cases} \]
Observe that the descent word $u(p)$ has degree $k - 1$, that is, one less than the length of the path p. The **ab-index** of an interval $[x, y]$ is defined to be

$$\Psi([x, y]) = \sum_p u(p),$$

(2.1)

where the sum is over all directed paths p from x to y.

In the case when the relation on Λ is a linear order, the digraph is the Hasse diagram of a poset and every interval has a unique rising chain. This is the classical notion of R-labeling introduced by Björner and Stanley [10]. In keeping with the poset motivation, we will continue to use the terminology rising and falling in our more general setting. See the paper [12], where Björner and Wachs weakened the condition that Λ is a linear order to a partial order. As a remark, one can further loosen the condition on the relation on Λ so that the only labels which need to be compared are pairs of elements $(\lambda(e), \lambda(f))$ such that head$(e) = \text{tail}(f)$.

For graded posets with an R-labeling equation (2.1) gives a different definition of the notion of the **ab-index** of a poset. See [19, Lemma 3.1] for more details.

Given a labeled directed graph G, define the graph G^* by reversing all the edges, keeping the edge labeling the same, and reversing the relation \sim on Λ, that is, for $e \in E(G)$ we have head$_G(e) = \text{tail}_G(e)$ and tail$_G(e) = \text{head}_G(e)$. The labeling is given by $\lambda_G^*(e) = \lambda_G(e)$. Finally, the new relation Λ^* is given by $i \sim^* j$ if and only if $j \sim i$ for $i, j \in \Lambda$. For an **ab-monomial** $u = u_1u_2\cdots u_k$ define the reverse monomial by $u^* = u_k\cdots u_2u_1$ and extend linearly to an involution on the non-commutative polynomial ring $\mathbb{Z}(a, b)$. Observe that a path p from x to y in G corresponds to a path p^* from y to x in G^*. Moreover, the descent word of the path satisfies $u^*(p^*) = u(p)^*$. Finally this relation extends to the **ab-index** of the entire interval $[x, y]$, that is, $\Psi([x, y]^*) = \Psi([y, x]) = \Psi([x, y])^*$.

3 Coalgebras

Let $\mathbb{Z}(a, b)$ be the non-commutative polynomial ring in the degree 1 variables a and b with integer coefficients. On the ring $\mathbb{Z}(a, b)$ define a coproduct Δ by defining it on an **ab-monomial** $u_1u_2\cdots u_n$ by

$$\Delta(u_1u_2\cdots u_n) = \sum_{i=1}^n u_1\cdots u_{i-1} \otimes u_{i+1}\cdots u_n,$$

and extend by linearity to $\mathbb{Z}(a, b)$. This coproduct, together with the usual multiplication, does not form a bialgebra. Instead the Newtonian condition is satisfied:

$$\Delta(v \cdot w) = \sum_w v \cdot w(1) \otimes w(2) + \sum_v v(1) \otimes v(2) \cdot w.$$

(3.1)

Here we use the Sweedler notation for the coproduct [25, 37]. This gives the ring $\mathbb{Z}(a, b)$ a Newtonian coalgebra structure.

Theorem 3.1. For a labeled acyclic digraph G,

$$\Delta(\Psi([x, y])) = \sum_{x < z < y} \Psi([x, z]) \otimes \Psi([z, y]).$$
Finally, define the labeling where in the second to last equality e, f where the new edge \((\mathcal{V}, V)\) is defined by tail(((e, f) = \hat{1}_G, tail(f) = \hat{0}_H),

where the second to last equality \(p_1, p_2\) are paths in \([x, z]\), respectively \([z, y]\).

\[\Delta(\Psi([x, y])) = \sum_p \Delta(u(p))\]
\[= \sum_p \sum_{i=1}^{\ell(p)-1} u_1(p) \cdots u_{i-1}(p) \otimes u_{i+1}(p) \cdots u_{\ell(p)-1}(p)\]
\[= \sum_p \sum_{z \in i(p)} u(p|_{[x, z]}) \otimes u(p|_{[z, y]})\]
\[= \sum_{x < z < y} \sum_{p : z \in i(p)} u(p|_{[x, z]}) \otimes u(p|_{[z, y]})\]
\[= \sum_{x < z < y} \left(\sum_{p_1} u(p_1)\right) \otimes \left(\sum_{p_2} u(p_2)\right)\]
\[= \sum_{x < z < y} \Psi([x, z]) \otimes \Psi([z, y]),\]

where in the second to last equality \(p_1, p_2\) are paths in \([x, z]\), respectively \([z, y]\).

Remark 3.2. In the case of Bruhat graphs, Theorem 3.1 was stated in [5, Proposition 2.11].

An acyclic digraph \(G\) is bounded if has a unique source and a unique sink. Following poset notation, we denote the unique source by \(\hat{0}\) and the unique sink by \(\hat{1}\). For brevity, we let \(\Psi(G)\) denote \(\Psi([\hat{0}, \hat{1}])\).

For two bounded labeled acyclic digraphs \(G\) and \(H\) we define the product \(G * H\) as follows. We tacitly assume that \(V(G), V(H), E(G), E(H), \Lambda_G\) and \(\Lambda_H\) are disjoint. Let the vertex set of \(G * H\) be the disjoint union of \(V(G) - \{\hat{1}\}\) and \(V(H) - \{\hat{0}\}\), that is, \(V(G * H) = (V(G) - \{\hat{1}_G\}) \cup (V(H) - \{\hat{0}_H\})\). Let the edge set be

\[E(G * H) = \{e \in E(G) : \text{head}(e) \neq \hat{1}_G\}\]
\[\cup \{f \in E(H) : \text{tail}(f) \neq \hat{0}_H\}\]
\[\cup \{(e, f) \in E(G) \times E(H) : \text{head}(e) = \hat{1}_G, \text{tail}(f) = \hat{0}_H\},\]

where the new edge \((e, f)\) is defined by \(\text{tail}((e, f)) = \text{tail}(e)\) and \(\text{head}((e, f)) = \text{head}(f)\). Let the label set \(\Lambda\) be defined by \(\Lambda = \Lambda_G \cup \Lambda_H \cup \Lambda_G \times \Lambda_H\), with the relation on \(\Lambda\) given by the following four cases:

\[
\begin{array}{l}
\lambda \sim \mu \quad \text{if} \quad \lambda, \mu \in \Lambda_G, \lambda \sim_{\Lambda_G} \mu, \\
\lambda \sim (\mu_1, \mu_2) \quad \text{if} \quad \lambda, \mu_1 \in \Lambda_G, \mu_2 \in \Lambda_H, \lambda \sim_{\Lambda_G} \mu_1, \\
(\lambda_1, \lambda_2) \sim \mu \quad \text{if} \quad \lambda_1 \in \Lambda_G, \lambda_2, \mu \in \Lambda_H, \lambda_2 \sim_{\Lambda_H} \mu, \\
\lambda \sim \mu \quad \text{if} \quad \lambda, \mu \in \Lambda_H, \lambda \sim_{\Lambda_H} \mu.
\end{array}
\]

Finally, define the labeling \(\lambda : E(G * H) \rightarrow \Lambda\) by the three cases

\[
\begin{array}{ll}
\lambda(e) = \lambda_G(e) & \text{if} \quad e \in E(G), \\
\lambda((e, f)) = (\lambda_G(e), \lambda_H(f)) & \text{if} \quad (e, f) \in E(G) \times E(H), \\
\lambda(f) = \lambda_H(f) & \text{if} \quad f \in E(H).
\end{array}
\]

This product is the labeled analogue of the Stanley product of posets; see [35].
The descent word also factors as a monomial in \(w \) for homogeneous \(c \)-polynomials of degree \(n \) in \(G \), respectively \(H \). The descent word also factors as \(u(p) = u(p_1) \cdot u(p_2) \). By summing over all paths, the result follows. \(\square \)

Let \(\mathcal{G} \) be the linear span of bounded labeled acyclic digraphs with \(\hat{0} \neq \hat{1} \). The space \(\mathcal{G} \) is a Newtonian coalgebra with the product \(* \) and the coproduct

\[
\Delta(G) = \sum_{\hat{0} < z < \hat{1}} [\hat{0}, z] \otimes [z, \hat{1}].
\]

Theorems 3.1 and 3.3 imply the following corollary.

Corollary 3.4. The \(ab \)-index is a coalgebra homeomorphism from \(\mathcal{G} \) to \(\mathbb{Z}(a, b) \).

On the coalgebra \(\mathbb{Z}(a, b) \) define an involution \(u \mapsto \overline{u} \) by uniformly exchanging \(a \)'s and \(b \)'s. Observe this involution is a Newtonian coalgebra automorphism, that is, the product and the coproduct satisfy

\[
\overline{u} \cdot v = \overline{v} \cdot \overline{u} \quad \text{and} \quad \Delta(\overline{u}) = \sum_{u} \overline{u(1)} \cdot \overline{u(2)}.
\]

Define \(c = a + b \) and \(d = ab + ba \). Observe that \(\deg(c) = 1 \) and \(\deg(d) = 2 \). In what follows we need to consider a linear order on \(cd \)-monomials of degree \(n \). Let \(u \) and \(v \) be two \(cd \)-monomials \(u = c^{i_0}d^{i_1} \cdots d^{i_p} \) and \(v = c^{k_0}d^{k_1} \cdots d^{k_q} \). If \(u \) contains fewer occurrences of the variable \(d \) than \(v \) (that is, \(p < q \)), then set \(u < v \). If \(u \) contains the same number of occurrences of the variable \(d \) as \(v \) (\(p = q \)), and the vector \((i_0, i_1, \ldots, i_p) <_{\text{lex}} (j_0, j_1, \ldots, j_q) \) in lexicographic order \(<_{\text{lex}} \), then set \(u < v \).

Lemma 3.5. Let \(R \) be a ring and let \(S \) be a subring of \(R \). Then the following intersection holds:

\[
R(c, d) \cap S(a, b) = S(c, d).
\]

In other words, when any \(cd \)-polynomial \(w \) with coefficients in \(R \) is expanded as an \(ab \)-polynomial and has coefficients in the subring \(S \), then all the coefficients of \(w \), written as a \(cd \)-polynomial, already belong to the subring \(S \).

Proof. The containment \(R(c, d) \cap S(a, b) \supseteq S(c, d) \) is clear. It is enough to prove the reverse containment for homogeneous \(cd \)-polynomials of degree \(n \). To derive a contradiction, assume that there is a \(cd \)-polynomial \(w \) belonging to \(R(c, d) \cap S(a, b) \) but not to \(S(c, d) \). This means there is a \(cd \)-monomial in \(w \) whose coefficient does not lie in the subring \(S \). Let \(u = c^{i_0}d^{i_1} \cdots d^{i_p} \) be the first such \(cd \)-monomial in \(w \) with respect to the previously described linear order. Consider the \(ab \)-monomial...
Figure 1: Two balanced directed graphs where the relation on the labeled set \(\Lambda = \{1, 2, 3\} \) is the natural linear order. Their respective \(\mathbf{cd} \)-indexes are \(2 \cdot c + 3 \) and \(5 \cdot d \). These two examples show that the \(\mathbf{cd} \)-index of a graph is not necessarily homogeneous and that the coefficient of the \(c \)-power term is not necessarily 1.

\[
z = a^{i_0} b a^{i_1} b a \cdots b a^{i_p}.\] The \(ab \)-monomial \(z \) occurs when expanding \(u \) into an \(ab \)-polynomial. Observe that any other \(\mathbf{cd} \)-monomial \(v \) that has \(z \) occurring in its \(ab \)-expansion must satisfy \(v < u \) in the linear order. Note that the coefficient of \(z \) in the \(ab \)-polynomial \(w \) lies in the subring \(S \). This coefficient is the sum of certain coefficients of the \(\mathbf{cd} \)-polynomial \(w \) where all but one (the coefficient of \(u \)) belong to the subring \(S \). This contradicts the assumption that the coefficient of \(u \) does not belong to the subring. Hence the intersection holds.

4 The \(\mathbf{cd} \)-index

A directed path \(p = (e_1, e_2, \ldots, e_k) \) in a labeled digraph \(G \) is called rising if \(\lambda(e_i) \sim \lambda(e_{i+1}) \) for all \(i = 1, \ldots, k - 1 \). Similarly, a path \(p \) is called falling if \(\lambda(e_i) \not\sim \lambda(e_{i+1}) \) for all \(i = 1, \ldots, k - 1 \). For \(x < y \) let \(\tilde{r}_{x,y}(q) \) be the polynomial

\[
\tilde{r}_{x,y}(q) = \sum_p q^{\ell(p)-1},
\]

where the sum ranges over all rising paths \(p \) from \(x \) to \(y \). Similarly, let \(\tilde{f}_{x,y}(q) \) be the polynomial

\[
\tilde{f}_{x,y}(q) = \sum_p q^{\ell(p)-1},
\]

where the sum ranges over all falling paths \(p \) from \(x \) to \(y \).

Define two algebra maps \(\kappa \) and \(\lambda \) on \(\mathbb{Z}(a, b) \) by letting

\[
\kappa(a) = a - b, \quad \kappa(b) = 0, \quad \kappa(1) = 1, \\
\lambda(a) = 0, \quad \lambda(b) = b - a, \quad \lambda(1) = 1.
\]

The map \(\kappa \) appeared first in the paper \[20\], whereas the \(\lambda \) map is more recent; see \[33\]. Observe these two maps are related by \(\kappa(u) = \lambda(\overline{u}) \). The \(\kappa \) and \(\lambda \) maps allows one to recapture the \(\tilde{r} \)- and \(\tilde{f} \)-polynomials from the \(ab \)-index \(\Psi([x, y]) \) as follows.
Relation (i): $\alpha \sim \beta \sim \gamma$
$\gamma \not\sim \beta \not\sim \alpha$

Relation (ii): $\alpha \sim \beta \sim \alpha$
$\gamma \not\sim \beta \not\sim \gamma$

Figure 2: A labeled directed graph and two different relations on the label set $\Lambda = \{\alpha, \beta, \gamma\}$. Both relations yield a balanced graph. Relation (i) is the linear order and the cd-index is $ab + ba = d$, whereas relation (ii) gives the cd-index $aa + bb = c^2 - d$.

Lemma 4.1. For an interval $[x, y]$ in a labeled digraph G,
\[
\kappa(\Psi([x, y])) = \tilde{r}_{x,y}(a - b), \tag{4.1}
\]
\[
\lambda(\Psi([x, y])) = \tilde{f}_{x,y}(b - a). \tag{4.2}
\]

Proof. Since $\kappa(b) = 0$, the algebra map κ applied to an ab-monomial only preserves the pure a-terms, and then replaces each a with $a - b$. Hence $\kappa(\Psi([x, y]))$ enumerates the rising chains. A symmetric argument proves the second identity. \hfill \Box

Lemma 4.2. For any ab-polynomial u the following two identities hold:
\[
u = \kappa(u) + \sum_u \kappa(u^{(1)}) \cdot b \cdot u^{(2)}, \tag{4.3}
\]
\[
u = \lambda(u) + \sum_u \lambda(u^{(1)}) \cdot a \cdot u^{(2)}. \tag{4.4}
\]

Proof. Since equation (4.3) is linear in u, it is enough to prove it for ab-monomials. We proceed by induction on the degree of an ab-monomial. The three base cases $u = 1$, $u = a$ and $u = b$ are straightforward to verify. Assume now that equation (4.3) holds for the ab-monomials v and w. Then it also holds for the product $v \cdot w$ by the following calculation. The right-hand side of the identity (4.3) in the case $u = v \cdot w$ is equal to
\[
k(v \cdot w) + \sum_w \kappa(v \cdot w^{(1)}) \cdot b \cdot w^{(2)} + \sum_v \kappa(v^{(1)}) \cdot b \cdot v^{(2)} \cdot w
\]
\[
= \kappa(v) \cdot \left(\kappa(w) + \sum_w \kappa(w^{(1)}) \cdot b \cdot w^{(2)} \right) + \sum_v \kappa(v^{(1)}) \cdot b \cdot v^{(2)} \cdot w
\]
\[
= \kappa(v) \cdot w + \sum_v \kappa(v^{(1)}) \cdot b \cdot v^{(2)} \cdot w
\]
\[
= v \cdot w.
\]

The second identity (4.4) follows by applying the involution $u \mapsto \overline{u}$ and the relation $\overline{\kappa(u)} = \lambda(\overline{u})$. \hfill \Box
Remark 4.3. Equation (4.3) is really Stanley’s recursion [35] for the ab-index of a graded poset with rank function ρ, that is,

$$
\Psi([x, y]) = (a - b)^{\rho(x,y)-1} + \sum_{x < z < y} (a - b)^{\rho(x,z)-1} \cdot b \cdot \Psi([z, y]).
$$

This recursion follows directly by conditioning on the first non-zero element in a chain. Equation (4.3) can be proven by using that $\kappa(\Psi([x, y])) = (a - b)^{\rho(x,y)-1}$, the fact that the ab-index is a coalgebra homeomorphism [20], and that the ab-indexes of graded posets span $\mathbb{Z}(a, b)$.

Remark 4.4. The coalgebra $\mathbb{Z}(a, b)$ does not have a counit. Philosophically speaking, the two identities (4.3) and (4.4) are a replacement for the defining relation of the counit since they both allow us to recapture the polynomial u after applying the coproduct Δ.

Recall that the two non-commutative variables c and d are defined by $c = a + b$ and $d = a \cdot b + b \cdot a$, with c of degree 1 and d of degree 2. The next lemma shows that ab-polynomials of a certain form are indeed cd-polynomials.

Lemma 4.5. Let $p(x)$ and $q(x)$ be two polynomials in $\mathbb{Z}[x]$ such that their odd degree terms agree, that is, $p(x) - p(-x) = q(x) - q(-x)$. Then

$$
p(a - b) + q(b - a) \in \mathbb{Z}(c, d), \quad (4.5)$$
$$np(a - b) \cdot b + p(b - a) \cdot a \in \mathbb{Z}(c, d). \quad (4.6)
$$

Proof. First note that $(a - b)^{2k} = (b - a)^{2k} = (c^2 - 2 \cdot d)^k$ and $(a - b)^{2k+1} + (b - a)^{2k+1} = 0$. Hence by linearity it follows that the polynomial in (4.5) is a cd-polynomial for all polynomials $p(x)$ and $q(x)$. The fact that the polynomial in (4.6) is a cd-polynomial follows again by linearity and by considering the parity of the power of the monomial x^n. For even powers we have $(a - b)^{2k} \cdot b + (b - a)^{2k} \cdot a = (c^2 - 2 \cdot d)^k \cdot c$ and for odd powers we have $(a - b)^{2k+1} \cdot b + (b - a)^{2k+1} \cdot a = -(c^2 - 2 \cdot d)^{k+1}$. □

Remark 4.6. Equations (4.5) and (4.6) in Lemma 4.5 can be viewed as linearizations of statements due to Stanley [35].

We now come to the main result of this section.

Theorem 4.7. For a labeled acyclic digraph G, the following three statements are equivalent:

(i) For every interval $[x, y]$ in the digraph G and for every non-negative integer k, the number of rising paths from x to y of length k is equal to the number of falling paths from x to y of length k.

(ii) For every interval $[x, y]$ in the digraph G and for every even positive integer k, the number of rising paths from x to y of length k is equal to the number of falling paths from x to y of length k.

(iii) The ab-index of every interval $[x, y]$ in the digraph G, where $x < y$, is a polynomial in $\mathbb{Z}(c, d)$. 9
Definition 4.8. A labeled acyclic digraph \(G \) is said to be balanced if it satisfies condition (i) in Theorem 4.7. Such a labeling is called a balanced labeling or \(\mathcal{cd} \)-labeling for short.

A different way to express the balanced condition is that \(\tilde{r}_{x,y}(q) = \tilde{f}_{x,y}(q) \) for all pairs of elements \(x \) and \(y \) such that \(x < y \).

Example 4.9. See Figure 11 for two examples of balanced digraphs and their corresponding \(\mathcal{cd} \)-indexes. In Figure 2 we give a labeled digraph with two different relations on the underlying label set. Each yields a balanced digraph. Note the resulting \(\mathcal{cd} \)-indexes differ, with the second relation yielding a negative coefficient.

Remark 4.10. Condition (ii), that is, it suffices to check the balanced condition for paths of even length, has a corresponding statement for graded posets. A graded poset \(P \) of odd rank satisfying that every proper interval of \(P \) is also an Eulerian poset. See [34, Chapter 3, Exercise 69(c)].

Remark 4.11. Consider graded posets with an \(R \)-labeling. In this case, the balanced condition implies that the number of rising chains (namely 1) in an interval \([x, y]\) of rank \(k + 1 \) is equal to the number of falling chains, that is, \(1 = h_q([x, y]) = h_{t(1,\ldots,k)}([x, y]) \). By Hall’s theorem on the Möbius function, this can be stated as \(\mu(x, y) = (-1)^{\text{cd}(x,y)} \). Since this relation holds for all intervals \([x, y]\), this implies that the poset is Eulerian and hence the \(\mathcal{cd} \)-index exists. This is classical; see [2, 35]. This is reminiscent of the work in [9], where it was shown that if the Euler–Poincaré relation holds for every interval in a poset then the poset satisfies the generalized Dehn–Sommerville relations and has a \(\mathcal{cd} \)-index.

Proof of Theorem 4.7. The implication that \((i) \implies (ii) \) is clear. For \((iii) \implies (i) \), observe that the variables \(c \) and \(d \) are symmetric in \(a \) and \(b \). Hence \(\tilde{r}_{x,y}(q) = \Psi([x, y])_{a=q,b=0} = \Psi([x, y])_{c=q,d=0} = \Psi([x, y])_{a=0,b=q} = \tilde{f}_{x,y}(q) \).

Finally, assume that \((ii) \) is true and we will prove the existence of the \(\mathcal{cd} \)-index \((iii) \). The proof is by induction on the longest path in the interval \([x, y]\). The base case is when the length of the longest path is 1. In this case the \(\mathcal{cd} \)-index is just the number of edges between \(x \) and \(y \). Assume now that the \(\mathcal{cd} \)-index exists for all subintervals in \([x, y]\). Add equations (4.3) and (4.4) to obtain

\[
2 \cdot u = \kappa(u) + \lambda(u) + \sum_{u} (\kappa(u(1)) \cdot b + \lambda(u(1)) \cdot a) \cdot u_{(2)}.
\]

Now apply this equation to \(u = \Psi([x, y]) \), the \(\mathcal{ab} \)-index of the entire interval \([x, y]\). Since the \(\mathcal{ab} \)-index is a coalgebra homomorphism, we have that

\[
2 \cdot \Psi([x, y]) = \tilde{r}_{x,y}(a - b) + \tilde{f}_{x,y}(b - a) + \sum_{x < z < y} (\tilde{r}_{x,z}(a - b) \cdot b + \tilde{f}_{x,z}(b - a) \cdot a) \cdot \Psi([z, y]).
\]

By the induction hypothesis we know that \(\Psi([x, z]) \) and \(\Psi([z, y]) \) are both \(\mathcal{cd} \)-polynomials with integer coefficients. By the implication \((iii) \implies (i) \), we have that \(\tilde{r}_{x,z}(q) = \tilde{f}_{x,z}(q) \). Thus by Lemma 4.5 equation (4.5), we know that the term inside the summation sign is a \(\mathcal{cd} \)-polynomial with integer coefficients. Similarly, by Lemma 4.5 equation (4.5), the sum of the two terms outside the summation sign is a \(\mathcal{cd} \)-polynomial with integer coefficients. Hence the expression \(2 \cdot \Psi([x, y]) \) is a \(\mathcal{cd} \)-polynomial with integer coefficients. By Lemma 3.5 with \(R = \mathbb{Q} \) and \(S = \mathbb{Z} \), we conclude that the \(\mathcal{cd} \)-polynomial \(\Psi([x, y]) \) has integer coefficients.

\[\square \]
The coassociativity of the coproduct Δ implies that d with a coassociative coproduct Δ. Let A be a chain complex. In [21] the Hochschild cohomology is computed for the chain complex of Δ is coassociative, we also have $d_n \circ d_{n+1} = 0$, that is, d_n is the boundary map of a chain complex. In [21] the Hochschild cohomology is computed for the chain complex

$$
0 \rightarrow A \xrightarrow{d_1} A^\otimes 2 \xrightarrow{d_2} A^\otimes 3 \rightarrow \cdots \quad (4.7)
$$

when A is the Newtonian coalgebra $R \langle c, d \rangle$. Theorem 4.1 in [21] states when the ring R has 2 as a unit, the cohomology vanishes everywhere except in the bottom cohomology. Armed with this result, we can give a different proof.

Proof. Second proof of the implication (ii) \implies (iii) in Theorem 4.7. Let R be a ring that contains the integers and has 2 as a unit. (One such example is $R = \mathbb{Q}$.) The proof is again by induction on the longest path in the interval $[x, y]$. Since the ab-index is a coalgebra homeomorphism and by the induction hypothesis, we have that

$$
\Delta(\Psi([x, y])) = \sum_{x < z < y} \Psi([x, z]) \otimes \Psi([z, y]) \in R \langle c, d \rangle \otimes R \langle c, d \rangle.
$$

Since Δ is coassociative, we also have $d_2(\Delta(\Psi([x, y]))) = 0$, that is, the element $\Delta(\Psi([x, y])) = d_1(\Psi([x, y]))$ lies in the kernel of the map d_2. The chain complex (4.7) is exact at this point, so there is an element $w \in R \langle c, d \rangle$ such that $\Delta(w) = d_1(w) = \Delta(\Psi([x, y]))$. Hence w and $\Psi([x, y])$ differ by an element in the kernel of $\Delta : R \langle a, b \rangle \rightarrow R \langle a, b \rangle \otimes R \langle a, b \rangle$. The kernel of Δ is $R \langle a - b \rangle$, so we have that $\Psi([x, y]) - w = p(a - b)$ for some polynomial $p(x)$.

Let n be an odd positive integer. Condition (ii) states that the number of rising paths from x to y of length $n + 1$ is equal to the number of falling paths from x to y of length $n + 1$. This is equivalent to the condition that the coefficients of a^n and b^n in $\Psi([x, y])$ are identical. Since w is a cd-polynomial, the coefficients of a^n and b^n are also the same. Hence the coefficients of a^n and b^n in $p(a - b)$ are the same, proving that the polynomial p only has even degree terms, that is, $p(a - b)$ is a polynomial in the variable $(a - b)^2 = c^2 - 2d$. Hence $\Psi([x, y])$ belongs to $R \langle c, d \rangle$. Again by Lemma 3.5 we have $\Psi([x, y]) \in \mathbb{Z} \langle c, d \rangle$.

\[\square \]

Remark 4.12. The existence of the cd-index for Eulerian posets can be proved in a similar manner. Observe that for any interval $[x, y]$ we have that $\lambda(\Psi([x, y])) = (-1)^{\rho(x,y)} \cdot \mu(x,y) \cdot (b - a)^{\rho(x,y) - 1}$. Hence for an Eulerian interval $[x, y]$ we have that

$$
\begin{align*}
\kappa(\Psi([x, y])) &= (a - b)^{\rho(x,y) - 1}, \\
\lambda(\Psi([x, y])) &= (b - a)^{\rho(x,y) - 1}.
\end{align*}
$$

Now proceed as in the proof of Theorem 4.7.

A different way to prove the implication (ii) \implies (iii) in Theorem 4.7 is to use the homology techniques developed in [21]. Let R be a commutative ring with a unit and let A be an R-module with a coassociative coproduct Δ. Let $d_n : A^\otimes n \rightarrow A^\otimes (n+1)$ denote the map

$$
d_n = \sum_{i+j=n-1} (-1)^i \cdot id^\otimes i \cdot \Delta \cdot id^\otimes j.
$$

The coassociativity of the coproduct Δ implies that $d_n \circ d_{n+1} = 0$, that is, d_n is the boundary map of a chain complex. In [21] the Hochschild cohomology is computed for the chain complex

$$
0 \rightarrow A \xrightarrow{d_1} A^\otimes 2 \xrightarrow{d_2} A^\otimes 3 \rightarrow \cdots \quad (4.7)
$$

when A is the Newtonian coalgebra $R \langle c, d \rangle$. Theorem 4.1 in [21] states when the ring R has 2 as a unit, the cohomology vanishes everywhere except in the bottom cohomology. Armed with this result, we can give a different proof.
Figure 3: The Boolean algebra $G = B_3$ with its classical R-labeling $\lambda(I \rightarrow I \cup \{i\}) = i$, and the two restricted digraphs G_S and G_T, where $S = \{\{1\}, \{1, 3\}\}$ and $T = \{\{2\}, \{3\}, \{1, 2\}, \{2, 3\}\}$. Observe that G_S has no falling paths, whereas G_T has two falling paths of lengths 2 and 3.

5 Alexander duality

For a labeled acyclic digraph G with vertex set V, we define the restricted digraph G_S where S is a subset of $V - \{\hat{0}, \hat{1}\}$. The edge label set is given by

$$\Lambda^+ = \bigcup_{n \geq 1} \Lambda^n,$$

and the relation \sim on Λ^+ is $(\lambda_1, \ldots, \lambda_m) \sim (\mu_1, \ldots, \mu_n)$ if and only if $\lambda_m \sim \mu_1$. The vertex set of G_S is $S \cup \{\hat{0}, \hat{1}\}$. For every rising path $p = (e_1, \ldots, e_k)$ in the digraph G which starts and ends in $S \cup \{\hat{0}, \hat{1}\}$ but none of the intermediate vertices are in S, that is, $\text{tail}(e_1), \text{head}(e_k) \in S \cup \{\hat{0}, \hat{1}\}$ but $\text{head}(e_2), \ldots, \text{head}(e_{k-1}) \notin S$, let there be a directed edge in G_S from $\text{tail}(e_1)$ to $\text{head}(e_k)$ with the label $(\lambda(e_1), \ldots, \lambda(e_k))$ in Λ^+.

For two vertices x and y in the restricted graph G_S observe that the number of rising paths from x to y is the same as the number of rising paths in the graph G. This follows since a path in G_S corresponds to a path in G as follows. Let $p' = (e'_1, \ldots, e'_j)$ be a path in G_S. We obtain a path p in G by concatenating the rising paths that are associated with the edges e'_i. Furthermore the condition that the path p' is rising in G_S is exactly that the path p is rising in G, since the only condition that needs to be verified is that p is rising at the gluing vertices $\text{head}(e'_1), \ldots, \text{head}(e'_{j-1})$.

Let $\ell(G)$ denote the length of the longest path in the digraph G. We say that an acyclic digraph has the parity condition if the length of every path from the source $\hat{0}$ to the sink $\hat{1}$ has the same parity. Then in a digraph which has the parity condition the length of any path is congruent to $\ell(G)$ modulo 2.

We can now formulate Alexander duality for balanced digraphs.

Theorem 5.1 (Alexander duality for balanced digraphs). Let G be a balanced acyclic digraph that satisfies the parity condition. Let the vertex set have the partition $V = S \cup T \cup \{\hat{0}, \hat{1}\}$. Then the falling paths in the two restricted digraphs G_S and G_T satisfy the identity

$$\tilde{f}_{G_S}(-1) = (-1)^{\ell(G)-1} \cdot \tilde{f}_{G_T}(-1).$$
Before proving this theorem, we must establish one more result.

For a path \(p = (e_1, \ldots, e_k) \) in the digraph \(G \), let \(i(p) \) denote the set of interior vertices of the path, that is, \(i(p) = \{ \text{head}(e_1), \ldots, \text{head}(e_{k-1}) \} \). Note that \(|i(p)| = \ell(p) - 1 \). Furthermore, let \(\text{Asc}(p) \) and \(\text{Des}(p) \) denote the set of vertices where the path \(p \) has ascents, respectively, descents, that is,

\[
\text{Asc}(p) = \{ \text{head}(e_i) : \lambda(e_i) \sim \lambda(e_{i+1}) \},
\]

\[
\text{Des}(p) = \{ \text{head}(e_i) : \lambda(e_i) \not\sim \lambda(e_{i+1}) \}.
\]

Directly \(i(p) \) is the disjoint union of \(\text{Asc}(p) \) and \(\text{Des}(p) \).

Proposition 5.2. Let \(G \) be a labeled acyclic digraph such that in every interval the number of rising paths equals the number of falling paths. Let the vertex set of \(G \) have the partition \(V = S \cup T \cup \{0, \hat{1}\} \). Then the following two sums are equal:

\[
\sum_{\substack{\text{Asc}(p) \subseteq T \setminus \{x\} \\ \text{Des}(p) \subseteq S \cup \{x\} \setminus T}} (-1)^{|i(p) \cap S|} = \sum_{\substack{\text{Asc}(p) \subseteq S \setminus \{x\} \\ \text{Des}(p) \subseteq T \cup \{x\} \setminus T}} (-1)^{|i(p) \cap S|}.
\]

Proof. Let \(A(S) \) and \(B(S) \) denoted the left-hand side of the identity, respectively, the right-hand side. The proof is by double induction. First we induct over the longest path in the digraph. Here the induction base is \(\ell(G) = 1 \), that is, the graph consists only of the source and the sink. Each path has length 1 and is both rising and falling. Thus the statement is immediate.

Now assume that the statement holds for all digraphs of length less than \(\ell(G) \). We induct on the set \(S \). The induction basis is when \(S \) is empty. Then \(A(\emptyset) \) and \(B(\emptyset) \) are the number of rising, respectively, falling chains in the graph \(G \). The balanced condition implies that they are equal, completing the induction basis.

For the induction step, assume that \(A(S) = B(S) \) for a set \(S \). We will prove it for \(S \cup \{x\} \) where \(x \) is an element not in \(S \). Observe that

\[
A(S \cup \{x\}) - A(S) = \sum_{\substack{\text{Asc}(p) \subseteq T \setminus \{x\} \\ \text{Des}(p) \subseteq S \cup \{x\} \setminus T}} (-1)^{|i(p) \cap (S \cup \{x\})|} - \sum_{x \in \text{Asc}(p) \subseteq T} (-1)^{|i(p) \cap S|} \sum_{\text{Des}(p) \subseteq S} (-1)^{|i(p) \cap S|}.
\]

Combining these two sums we obtain a sum over all paths \(p \) through the vertex \(x \) such that \(\text{Asc}(p) - \{x\} \subseteq T \) and \(\text{Des}(p) - \{x\} \subseteq S \). That is, there is no condition on the path at the vertex \(x \). Hence any such path is the concatenation of a path \(p_1 \) in \([0, x]\) and a path \(p_2 \) in \([x, \hat{1}]\). Using that \(|i(p) \cap S| = |i(p_1) \cap S| + |i(p_2) \cap S| \), the difference \(A(S \cup \{x\}) - A(S) \) is given by

\[
A(S \cup \{x\}) - A(S) = - \sum_{\substack{\text{Asc}(p) \subseteq T \\ \text{Des}(p) \subseteq S \cup \{x\} \setminus T}} (-1)^{|i(p_1) \cap S|} \cdot \sum_{\substack{\text{Asc}(p) \subseteq T \\ \text{Des}(p) \subseteq S \cup \{x\} \setminus T}} (-1)^{|i(p_2) \cap S|}.
\]

\[
= -A_{[0, x]}(S \cap (0, x)) \cdot A_{[x, \hat{1}]}(S \cap (x, \hat{1})),
\]

13
where the first sum is over paths p_1 in $[0, x]$ and the second sum is over paths p_2 in $[x, 1]$. By applying
the first induction hypothesis to the smaller digraphs $[0, x]$ and $[x, 1]$ we have

$$A(S \cup \{x\}) - A(S) = -B_{[0,x]}(S \cap (\hat{0}, x)) \cdot B_{[x,1]}(S \cap (x, \hat{1}))$$

$$= - \sum_{a(p_1) \subseteq S} (-1)^{|i(p_1)\cap S|} \cdot \sum_{a(p_2) \subseteq S} (-1)^{|i(p_2)\cap S|}$$

$$= - \sum_{p \in (\hat{0}, x) \subseteq S} (-1)^{|i(p)\cap S|}$$

$$= \sum_{x \in \text{Asc}(p) \subseteq S \cup \{x\}} (-1)^{|i(p)\cap (S\cup\{x\})|} - \sum_{x \in \text{Des}(p) \subseteq T - \{x\}} (-1)^{|i(p)\cap S|}$$

$$= B(S \cup \{x\}) - B(S).$$

Hence $A(S \cup \{x\}) = B(S \cup \{x\})$ completing the induction. \qed

The statement of Proposition 5.2 is not symmetric in S as the following corollary illustrates. Also
note the assumptions in Proposition 5.2 are not as strict as the balanced condition.

Corollary 5.3. Let G be a labeled acyclic digraph such that in every interval the number of rising
paths equals the number of falling paths. Then following two alternating sums agree:

$$\sum_{p \text{ rising}} (-1)^{\ell(p)} = \sum_{p \text{ falling}} (-1)^{\ell(p)}.$$

Proof. Take $T = \emptyset$ in Proposition 5.2. \qed

Proof of Theorem 5.1. Expanding $\tilde{f}_{G_S}(-1)$ we have

$$\tilde{f}_{G_S}(-1) = \sum_{p'} (-1)^{\ell(p') - 1},$$

where the sum is over all falling paths p' in G_S. By replacing each edge in the path p' with
the associated rising path in G, we obtain a path p in the digraph G such that $\text{Asc}(p) \subseteq T$ and $\text{Des}(p) \subseteq S$. Hence

$$\tilde{f}_{G_S}(-1) = \sum_{\text{Asc}(p) \subseteq T} (-1)^{|i(p)\cap S|}.$$

By a symmetric argument we have

$$(-1)^{\ell(G) - 1} \cdot \tilde{f}_{G_T}(-1) = (-1)^{\ell(G) - 1} \cdot \sum_{\text{Asc}(p) \subseteq S} (-1)^{|i(p)\cap T|} = \sum_{\text{Asc}(p) \subseteq S} (-1)^{|i(p)\cap S|},$$

where we used the parity condition that $|i(p) \cap S| + |i(p) \cap T| = i(p) \equiv \ell(G) - 1 \mod 2$. The duality
result now follows from Proposition 5.2. \qed
Quasisymmetric functions

The connection between flag f-vectors of graded posets and quasisymmetric functions was developed in [15]. The associated theory for edge labeled posets and quasisymmetric functions appears in the paper [4]. The peak algebra was introduced in [36], and the link between the peak algebra and the quasisymmetric functions of Eulerian posets was made in [3]. In this section we extend the theory of labeled posets to labeled digraphs and reformulate Theorem 4.7 in terms of the peak algebra.

Let Σ_n denote the set of all compositions of n, that is, all sequences $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_m)$ of positive integers such that $\alpha_1 + \alpha_2 + \cdots + \alpha_m = n$. We form Σ_n into a poset by defining the cover relation $(\alpha_1, \ldots, \alpha_i + 1, \ldots, \alpha_m) \prec (\alpha_1, \ldots, \alpha_i, \alpha_i + 1, \ldots, \alpha_m)$. Observe that the minimal element is the composition (n) and the maximal element is the composition $(1, 1, \ldots, 1)$. In fact, for $n \geq 1$, the poset Σ_n is isomorphic to the Boolean algebra B_{n-1}. Note also that Σ_0 consists of the unique composition of the integer 0. Especially, note that each composition α in the poset Σ_n has a unique complement that we denote by α^c. To find the complement, write the composition using commas, plus signs and 1's, and exchange the commas and plus signs. As an example, the complement of $(3, 1, 2) = (1 + 1 + 1, 1, 1 + 1)$ is $(1, 1, 1 + 1 + 1) = (1, 1, 3)$. Finally, let $\Sigma = \bigcup_{n \geq 0} \Sigma_n$.

Consider the ring $\mathbb{Z}[[w_1, w_2, \ldots]]$ of power series with bounded degree. A function f in this ring is called quasisymmetric if for any sequence of positive integers $\alpha_1, \alpha_2, \ldots, \alpha_m$ we have

$$[w_{i_1}^{\alpha_1} \cdots w_{i_k}^{\alpha_m}] f = [w_{j_1}^{\alpha_1} \cdots w_{j_k}^{\alpha_m}] f$$

whenever $i_1 < \cdots < i_m$ and $j_1 < \cdots < j_m$, and where $[w^\alpha]f$ denotes the coefficient of w^α in f. Denote by $\text{QSym} \subseteq \mathbb{Z}[[w_1, w_2, \ldots]]$ the ring of quasisymmetric functions.

For a composition $\alpha = (\alpha_1, \ldots, \alpha_m)$ the monomial quasisymmetric function M_α is given by

$$M_\alpha = \sum_{i_1 < \cdots < i_m} w_{i_1}^{\alpha_1} \cdots w_{i_m}^{\alpha_m}.$$

The monomial quasisymmetric functions M_α indexed by the compositions α in Σ form a basis for the quasisymmetric functions. A different basis is given by the fundamental quasisymmetric functions L_α. For fixed composition α, the quasisymmetric function L_α is defined by the sum

$$L_\alpha = \sum_{\alpha \leq \beta} M_\beta.$$

The quasisymmetric functions also form a Hopf algebra where the coproduct is given by

$$\Delta(M_{(\alpha_1, \ldots, \alpha_m)}) = \sum_{i=0}^m M_{(\alpha_1, \ldots, \alpha_i)} \otimes M_{(\alpha_{i+1}, \ldots, \alpha_m)}.$$

A different way to view this coproduct is that it is equivalent to the substitution

$$\Delta(f(w_1, w_2, \ldots)) = f(w_1 \otimes 1, w_2 \otimes 1, \ldots, 1 \otimes w_1, 1 \otimes w_2, \ldots).$$

Malvenuto and Reutenauer [31] defined an automorphism ω on quasisymmetric functions by the relation

$$\omega(L_\alpha) = L_{\alpha^c}.$$

15
The involution ω on QSym corresponds to the involution $u \mapsto \pi$ in $\mathbb{Z}(a, b)$. The antipode on the Hopf algebra on quasisymmetric functions is given by

$$S(M_\alpha) = (-1)^n \cdot \omega(M_{\alpha^*}),$$

where $\alpha = (\alpha_1, \ldots, \alpha_m)$ is a composition of n and α^* denotes the reverse composition $(\alpha_m, \ldots, \alpha_1)$.

For a sequence of labels $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n)$ of length n, we define two compositions $\rho^R(\lambda)$ and $\rho^F(\lambda)$ of n. The composition $\rho^R(\lambda)$ records the rising runs in the sequence λ, that is, $\rho^R(\lambda) = (\rho_1, \rho_2, \ldots, \rho_m)$ if

$$\lambda_1 \sim \cdots \sim \lambda_{\rho_1} \not\sim \lambda_{\rho_1+1} \sim \cdots \sim \lambda_{\rho_1+\rho_2} \not\sim \lambda_{\rho_1+\rho_2+1} \sim \cdots \sim \lambda_{\rho_1+\rho_2+\rho_{m-1}} \not\sim \lambda_{\rho_1+\rho_2+\rho_{m-1}+1} \sim \cdots \sim \lambda_n.$$

Similarly, let $\rho^F(\lambda)$ record the falling runs in the sequence, that is, if $\rho^F = (\rho_1, \rho_2, \ldots, \rho_m)$ we have

$$\lambda_1 \not\sim \cdots \not\sim \lambda_{\rho_1} \sim \lambda_{\rho_1+1} \not\sim \cdots \not\sim \lambda_{\rho_1+\rho_2} \sim \lambda_{\rho_1+\rho_2+1} \not\sim \cdots \not\sim \lambda_{\rho_1+\rho_2+\rho_{m-1}} \sim \cdots \sim \lambda_{\rho_1+\rho_2+\rho_{m-1}+1} \not\sim \cdots \not\sim \lambda_n.$$

Observe that in the poset Σ_n the two compositions $\rho^R(\lambda)$ and $\rho^F(\lambda)$ are complements of each other, that is, $(\rho^R(\lambda))^c = \rho^F(\lambda)$.

For a bounded labeled digraph G define the **rising** and **falling quasisymmetric functions** $F^R(G)$ and $F^F(G)$ by

$$F^R(G) = \sum_p L_{\rho^R(\lambda(p))},$$

$$F^F(G) = \sum_p L_{\rho^F(\lambda(p))},$$

where each sum is over all paths p in the digraph G. Since the two compositions $\rho^R(\lambda)$ and $\rho^F(\lambda)$ are complements, directly we have that the two quasisymmetric functions are related by the automorphism ω, that is,

$$\omega(F^R(G)) = F^F(G).$$

Similar to the notion of the two polynomials $\tilde{R}_{x,y}(q)$ and $\tilde{F}_{x,y}(q)$, for $x \leq y$ define the two polynomials $\tilde{R}_{x,y}(q)$ and $\tilde{F}_{x,y}(q)$ by

$$\tilde{R}_{x,y}(q) = \sum_p q^{\ell(p)} \quad \text{and} \quad \tilde{F}_{x,y}(q) = \sum_p q^{\ell(p)},$$

where the sum ranges over all rising, respectively falling, paths from x to y. Directly we have the relations $\tilde{R}_{x,y}(q) = q \cdot \tilde{R}_{x,y}(q)$ and $\tilde{F}_{x,y}(q) = q \cdot \tilde{F}_{x,y}(q)$ for $x < y$.

Proposition 6.1. For a bounded labeled digraph G the two identities hold:

$$F^R(G)\big|_{\rho_{m+1} = \rho_{m+2} = \cdots = 0} = \sum_c \tilde{R}_{x_0,x_1}(w_1) \cdot \tilde{R}_{x_1,x_2}(w_2) \cdots \tilde{R}_{x_{m-1},x_m}(w_m),$$

$$F^F(G)\big|_{\rho_{m+1} = \rho_{m+2} = \cdots = 0} = \sum_c \tilde{F}_{x_0,x_1}(w_1) \cdot \tilde{F}_{x_1,x_2}(w_2) \cdots \tilde{F}_{x_{m-1},x_m}(w_m),$$

where each sum is over all multichains $c = \{\hat{0} = x_0 \leq x_1 \leq \cdots \leq x_m = \hat{1}\}$ of length m in the digraph G.

16
Proof. Both sides of equation (6.2) are a polynomial in \(w_1, w_2, \ldots, w_n\). Consider the coefficient of the monomial \(w_1^{i_1} w_2^{i_2} \cdots w_n^{i_m}\) on the right-hand side of equation (6.2), where \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_m)\) is a composition with \(m \leq n\) and \(1 \leq i_1 < i_2 < \cdots < i_m \leq n\). This counts the number of paths \(p = (e_1, e_2, \ldots, e_n)\) in the digraph \(G\) such that \(\alpha_1 + \alpha_2 + \cdots + \alpha_m = n\) and
\[
\begin{align*}
\lambda(e_1) &\sim \cdots \sim \lambda(e_{\alpha_1}), \\
\lambda(e_{\alpha_1+1}) &\sim \cdots \sim \lambda(e_{\alpha_1+\alpha_2}), \\
& \vdots \\
\lambda(e_{\alpha_1+\cdots+\alpha_{m-1}+1}) &\sim \cdots \sim \lambda(e_{\alpha_1+\cdots+\alpha_m}),
\end{align*}
\]
and where the relation between \(\lambda(e_{\alpha_1+\cdots+\alpha_i})\) and \(\lambda(e_{\alpha_1+\cdots+\alpha_{i+1}})\) is not known. In other words, this coefficient enumerates the number of paths \(p\) such that \(\rho^R(\lambda(p)) \leq \alpha\).

The coefficient of \(w_1^{i_1} w_2^{i_2} \cdots w_n^{i_m}\) in the left-hand side of equation (6.2) is the coefficient of \(M_\alpha\) in \(F^R(G)\). This coefficient is given by
\[
[M_\alpha] F^R(G) = [M_\alpha] \sum_p L^{R^\alpha(\lambda(p))} = [M_\alpha] \sum_p \sum_{\rho^R(\lambda(p)) \leq \alpha} M_\alpha.
\]
This is the number of paths \(p\) such that \(\rho^R(\lambda(p)) \leq \alpha\), proving the first identity. The second identity (6.3) follows by a symmetric argument.

Proposition 6.1 can be reformulated as follows.

Proposition 6.2. For a bounded labeled digraph \(G\) the two identities hold:
\[
\begin{align*}
F^R(G) &= \lim_{m \to \infty} \sum_c \widetilde{R}_{x_0,x_1}(w_1) \cdot \widetilde{R}_{x_1,x_2}(w_2) \cdots \widetilde{R}_{x_{m-1},x_m}(w_m), \\
F^F(G) &= \lim_{m \to \infty} \sum_c \widehat{F}_{x_0,x_1}(w_1) \cdot \widehat{F}_{x_1,x_2}(w_2) \cdots \widehat{F}_{x_{m-1},x_m}(w_m).
\end{align*}
\]

Define the Cartesian product \(G \times H\) of two digraphs \(G\) and \(H\) to be the digraph with vertex set \(V(G \times H) = V(G) \times V(H)\) and edge set \(E(G \times H) = E(G) \times E(H) \cup E(G) \times V(H)\), where the edges are defined by \(\text{tail}_{G \times H}((e, y)) = (\text{tail}_G(e), y),\) \(\text{head}_{G \times H}((e, y)) = (\text{head}_G(e), y),\) \(\text{tail}_{G \times H}((x, e)) = (x, \text{tail}_H(e))\) and \(\text{head}_{G \times H}((x, e)) = (x, \text{head}_H(e))\). Furthermore, for the Cartesian product of labeled digraphs, set \(\Lambda_{G \times H} = \Lambda_G \cup \Lambda_H\), where the relation is defined by \(\lambda \sim \mu\) if and only if one of the following cases hold: (i) \(\lambda, \mu \in \Lambda_G, \lambda \sim_{\Lambda_G} \mu\), (ii) \(\lambda \in \Lambda_G, \mu \in \Lambda_H\), (iii) \(\lambda, \mu \in \Lambda_H, \lambda \sim_{\Lambda_H} \mu\). Finally, the labels of the Cartesian product are defined by \(\lambda_{G \times H}((e, y)) = \lambda_G(e)\) and \(\lambda_{G \times H}((x, e)) = \lambda_H(e)\).

Observe that if both of the digraphs \(G\) and \(H\) are acyclic then their Cartesian product is acyclic. Similarly, if both digraphs are locally finite, then so is their product.

Lemma 6.3. For two labeled acyclic digraphs \(G\) and \(H\), the \(\widetilde{R}\)- and \(\widehat{F}\)-polynomials of the Cartesian product \(G \times H\) are given by
\[
\begin{align*}
\widetilde{R}_{(x,z),(y,w)}(q) &= \widetilde{R}_{x,y}(q) \cdot \widetilde{R}_{z,w}(q), \\
\widehat{F}_{(x,z),(y,w)}(q) &= \widehat{F}_{x,y}(q) \cdot \widehat{F}_{z,w}(q).
\end{align*}
\]
Proof. A rising chain in \(G \times H \) must first have labels from \(\Lambda_G \) and then labels from \(\Lambda_H \). Thus the only way to have a rising chain in the interval \([(x, z), (y, w)] \) is to first have a rising chain in \([(x, z), (y, z)] \cong [x, y] \) and then a rising chain in \([(y, z), (y, w)] \cong [z, w] \). Similarly, a falling chain must have the labels from \(\Lambda_H \) first and then from \(\Lambda_G \). □

Proposition 6.4. For two labeled acyclic digraphs \(G \) and \(H \), the \(F^R \) and \(F^F \) quasisymmetric functions of the interval \([(x, z), (y, w)] \) in the Cartesian product \(G \times H \) are given by

\[
F^R([(x, z), (y, w)]) = F^R([x, y]) \cdot F^R([z, w]),
\]

\[
F^F([(x, z), (y, w)]) = F^F([x, y]) \cdot F^F([z, w]).
\]

Proof. By equation (6.4) we have

\[
F^R([(x, z), (y, w)]) = \lim_{m \to \infty} \sum \tilde{R}_{(x_0, z_0), (x_1, z_1)}(w_1) \cdots \tilde{R}_{(x_{m-1}, z_{m-1}), (x_m, z_m)}(w_m)
\]

\[
= \lim_{m \to \infty} \sum \tilde{R}_{x_0, x_1}(w_1) \cdots \tilde{R}_{x_{m-1}, x_m}(w_m)
\]

\[
\cdot \tilde{R}_{z_0, z_1}(w_1) \cdots \tilde{R}_{z_{m-1}, z_m}(w_m)
\]

\[
= \lim_{m \to \infty} \left(\sum \tilde{R}_{x_0, x_1}(w_1) \cdots \tilde{R}_{x_{m-1}, x_m}(w_m) \right)
\]

\[
\cdot \left(\sum \tilde{R}_{z_0, z_1}(w_1) \cdots \tilde{R}_{z_{m-1}, z_m}(w_m) \right)
\]

\[
= \left(\lim_{m \to \infty} \sum \tilde{R}_{x_0, x_1}(w_1) \cdots \tilde{R}_{x_{m-1}, x_m}(w_m) \right)
\]

\[
\cdot \left(\lim_{m \to \infty} \sum \tilde{R}_{z_0, z_1}(w_1) \cdots \tilde{R}_{z_{m-1}, z_m}(w_m) \right)
\]

\[
= F^R([x, y]) \cdot F^R([z, w]),
\]

where the two first sums are over all multichains \((x, z) = (x_0, z_0) \leq (x_1, z_1) \leq (x_2, z_2) \leq \cdots \leq (x_m, z_m) = (y, w)\) and the remaining sums are over the multichains \(x = x_0 \leq x_1 \leq x_2 \leq \cdots \leq x_m = y\) and \(z = z_0 \leq z_1 \leq z_2 \leq \cdots \leq z_m = w\). The dual argument gives the second identity. □

Proposition 6.5. For \([x, y]\) an interval in a labeled acyclic digraph \(G \),

\[
\Delta(F^R([x, y])) = \sum_{x \leq z \leq y} F^R([x, z]) \otimes F^R([z, y]),
\]

\[
\Delta(F^F([x, y])) = \sum_{x \leq z \leq y} F^F([x, z]) \otimes F^F([z, y]).
\]
Proof. Using equation (6.4) we have

\[
\Delta(F^R([x, y])) = \lim_{m \to \infty} \sum_c \tilde{R}_{x_0,x_1}(w_1 \otimes 1) \cdots \tilde{R}_{x_{m-1},x_m}(w_m \otimes 1) \\
\quad \cdot \tilde{R}_{x_m,x_{m+1}}(1 \otimes w_1) \cdots \tilde{R}_{x_{2m-1},x_{2m}}(1 \otimes w_m)
\]

\[
= \lim_{m \to \infty} \sum_{x \leq z \leq y} \left(\sum_{c_1} \tilde{R}_{x_0,x_1}(w_1 \otimes 1) \cdots \tilde{R}_{x_{m-1},x_m}(w_m \otimes 1) \right) \\
\quad \cdot \left(\sum_{c_2} \tilde{R}_{x_m,x_{m+1}}(1 \otimes w_1) \cdots \tilde{R}_{x_{2m-1},x_{2m}}(1 \otimes w_m) \right)
\]

\[
= \lim_{m \to \infty} \sum_{x \leq z \leq y} \left(\sum_{c_1} \tilde{R}_{x_0,x_1}(w_1) \cdots \tilde{R}_{x_{m-1},x_m}(w_m) \right) \\
\quad \otimes \left(\sum_{c_2} \tilde{R}_{x_m,x_{m+1}}(w_1) \cdots \tilde{R}_{x_{2m-1},x_{2m}}(w_m) \right)
\]

\[
= \sum_{x \leq z \leq y} F^R([x, z]) \otimes F^R([z, y]),
\]

where in the first sum the chain \(c \) is \(\{x = x_0 \leq x_1 \leq \cdots \leq x_m \leq \cdots \leq x_{2m} = y\} \), \(z \) is the element \(x_m \) in the chain \(c \) and the chains \(c_1 \) and \(c_2 \) are the two chains \(\{x = x_0 \leq x_1 \leq \cdots \leq x_m = z\} \), respectively \(\{z = x_m \leq \cdots \leq x_{2m} = y\} \). A symmetric argument gives the second identity. \(\square \)

Let \(\mathcal{H} \) be the linear span of bounded labeled acyclic digraphs. The space \(\mathcal{H} \) is a Hopf algebra with the product given by the Cartesian product and the coproduct given by

\[
\Delta(G) = \sum_{0 \leq z \leq 1} [\hat{0}, z] \otimes [z, \hat{1}].
\]

We have the following corollary.

Corollary 6.6. The two quasisymmetric functions \(F^R \) and \(F^F \) are Hopf algebra homeomorphisms from \(\mathcal{H} \) to the quasisymmetric functions \(QSym \).

Proof. Follows directly from Proposition 6.5. \(\square \)

Generalizing [13, Lemma 5.1], we have the following lemma.

Lemma 6.7. For a labeled acyclic graph \(G \),

\[
\sum_{x \leq z \leq y} \tilde{R}_{x,z}(q) \cdot \tilde{F}_{z,y}(-q) = \delta_{x,y},
\]
Proof. Using the defining relation for the antipode S, we have that
\[
\delta_{x,y} = \sum_{x \leq z \leq y} F_R([x,z]) \cdot S(F_R([z,y]))
\]
\[
= \sum_{x \leq z \leq y} F_R([x,z]) \cdot \left(\omega(F_R([y,z]^*)) \right)_{w_1=-w_1,w_2=-w_2,...}
\]
\[
= \sum_{x \leq z \leq y} F_R([x,z]) \cdot \left(F^F([y,z]^*) \right)_{w_1=-w_1,w_2=-w_2,...}.
\]

Setting $w_1 = q$ and $w_2 = w_3 = \cdots = 0$ the result follows by Proposition \[6.1\] \qed

This lemma also has a direct bijective proof.

Second proof of Lemma \[6.7\]. Let $\mathcal{R}_{x,y}$ and $\mathcal{F}_{x,y}$ be the set of all rising, respectively falling, paths from x to y. Consider the disjoint union
\[
\mathcal{U}_{x,y} = \bigcup_{x \leq z \leq y} \mathcal{R}_{x,z} \cdot \mathcal{F}_{z,y}.
\]
In other words, $\mathcal{U}_{x,y}$ is the set of all pair of paths (p_1, p_2) such that p_1 is rising, p_2 is falling, and p_1 ends where p_2 starts. We would like to prove that
\[
\sum_{(p_1,p_2) \in \mathcal{U}_{x,y}} (-1)^{\ell(p_2)} \cdot q^{\ell(p_1)+\ell(p_2)} = \delta_{x,y}.
\]
When $x = y$ the result is immediate. We prove the case when $x < y$ by a sign-reversing involution σ.

Given a pair of paths (p_1, p_2) in $\mathcal{U}_{x,y}$ with $p_1 = (e_1, \ldots, e_i)$, $p_2 = (f_1, \ldots, f_j)$ and i and j not both equal to 0, define another pair of paths $\sigma(p_1, p_2) = (q_1, q_2)$ by the following four cases. Case (i): if $i = 0$, that is, $x = z$, let $q_1 = (f_1)$ and $q_2 = (f_2, \ldots, f_j)$. Case (ii): if $j = 0$, that is, $z = y$, let $q_1 = (e_1, \ldots, e_{i-1})$ and $q_2 = (e_i)$. Cases (iii) and (iv) are both when i and j are greater than 0. Compare the two labels $\lambda(e_i)$ and $\lambda(f_1)$ with the relation on Λ. Case (iii): if $\lambda(e_i) \sim \lambda(f_1)$ let the pair of paths be $q_1 = (e_1, \ldots, e_i, f_1)$ and $q_2 = (f_2, \ldots, f_j)$. Case (iv): otherwise, that is, $\lambda(e_i) \not\sim \lambda(f_1)$ let the pair of paths be $q_1 = (e_1, \ldots, e_{i-1})$ and $q_2 = (e_i, f_1, \ldots, f_j)$.

It is direct to verify that σ is an involution. Furthermore, one has that $\ell(p_1) + \ell(p_2) = \ell(q_1) + \ell(q_2)$ and that the lengths of p_2 and q_2 have different parity. Hence σ is a sign-reversing involution, proving the lemma. \qed

As corollary to Lemma \[6.7\] we have the following result. Compare with Exercise 5.11 in \[11\].

Corollary 6.8. For a balanced labeled acyclic graph G,
\[
\sum_{x \leq z \leq y} \tilde{R}_{x,z}(q) \cdot \tilde{R}_{z,y}(-q) = \delta_{x,y}.
\]

For a bipartite balanced labeled acyclic graph G,
\[
\sum_{x \leq z \leq y} (-1)^{\ell(z,y)} \cdot \bar{R}_{x,z}(q) \cdot \bar{R}_{z,y}(-q) = \delta_{x,y}.
\]
The quasi-symmetric functions F^R encode the same information of the labeled digraph G as the ab-index $\Psi(G)$. To make this more explicit, define the linear map $\gamma : \mathbb{Z}(a, b) \rightarrow \text{QSym}$ by

$$\gamma \left((a - b)^{a_1 - 1} \cdot b \cdot (a - b)^{a_2 - 1} \cdot b \cdot \cdots \cdot b \cdot (a - b)^{a_k - 1} \right) = M_a;$$

see [23, Section 3]. The map γ is a vector space isomorphism between $\mathbb{Z}(a, b)$ and the quasisymmetric function without a constant coefficient. Now we have for a digraph G the identity $\gamma(\Psi(G)) = F^R(G)$.

Stembridge [36] introduced a sub-Hopf algebra of the quasisymmetric functions QSym known as the peak algebra Π. It plays the same role as the subalgebra $\mathbb{Z}(c, d)$ of $\mathbb{Z}(a, b)$. Concretely, the peak algebra is the span of the constant quasisymmetric function 1 with the image of $\mathbb{Z}(c, d)$ under the map γ. Hence Theorem 4.7 can be reformulated as follows.

Theorem 6.9. For a labeled acyclic digraph G, the following are equivalent:

(i) For every interval $[x, y]$ in the digraph G and for every non-negative integer k, the number of rising paths from x to y of length k is equal to the number of falling paths from x to y of length k.

(ii) For every interval $[x, y]$ in the digraph G and for every even positive integer k, the number of rising paths from x to y of length k is equal to the number of falling paths from x to y of length k.

(iii) The F^R quasisymmetric function of every interval $[x, y]$ in the digraph G belongs to the peak algebra Π.

7 Application to Bruhat graphs

An important application of balanced labeled graphs is to the family of Bruhat graphs. In this section we give a brief overview of Bruhat graphs. For a more complete description of Coxeter systems, we refer the reader to the book of Björner and Brenti [11].

Let (W, S) be a Coxeter system, where W denotes a (finite or infinite) Coxeter group with generators S and $\ell(u)$ denotes the length of a group element u. Let T be the set of reflections, that is, $T = \{ w \cdot s \cdot w^{-1} : s \in S, w \in W \}$. The Bruhat graph has the group W as its vertex set and its set of labels Λ is the set of reflections T. The edges and their labeling are defined as follows. There is a directed edge from u to v labeled t if $u \cdot t = v$ and $\ell(u) < \ell(v)$. The underlying poset of the Bruhat graph is called the (strong) Bruhat order. It is important to note that every interval of the Bruhat order is Eulerian, that is, every interval $[x, y]$ has Möbius function given by $\mu(x, y) = (-1)^{\rho(y) - \rho(x)}$, where ρ denotes the rank function.

The motivation for studying the cd-index of Bruhat graphs is that cd-index of the interval $[u, v]$ determines the Kazhdan–Lusztig polynomial $P_{u,v}(q)$. See [5, Section 3]. The first step is to define the R-polynomials $R_{u,v}(q)$. See [11, Theorem 5.1.1] for further details.

Theorem 7.1. There is a unique family of polynomials $\{ R_{u,v}(q) \}_{u,v \in W}$ with integer coefficients satisfying the following conditions:

(i) $R_{u,v} = 0$ if $u \not\leq v$,
(ii) \(R_{u,v} = 1 \) if \(u = v \), and

(iii) If \(s \in S \) and \(\ell(v \cdot s) < \ell(v) \) then

\[
R_{u,v}(q) = \begin{cases}
R_{us,vs}(q) & \text{if } \ell(u \cdot s) < \ell(u), \\
q \cdot R_{us,vs}(q) + (q - 1) \cdot R_{u,vs}(q) & \text{if } \ell(u \cdot s) > \ell(u).
\end{cases}
\]

A combinatorial interpretation of the \(R \)-polynomials is given by Dyer [14]. See also [11, Proposition 5.3.1 and Theorem 5.3.4]. On the set of reflections there exists conditions for a total ordering. An ordering satisfying these conditions is called a reflection ordering. The fact that a reflection ordering exists follows from [11, Proposition 5.2.1]. Dyer’s interpretation is

\[
R_{u,v}(q) = q^{\ell(u,v)/2} \cdot \tilde{R}_{u,v} \left(q^{1/2} - q^{-1/2} \right),
\]

where the \(\tilde{R} \)-polynomials are defined in equation (6.1) with respect to a reflection ordering of the set of reflections \(T \).

We can now state and give a concise proof of the first main result from [5], namely the existence of the complete \(cd \)-index of the Bruhat order. We prefer to call it the \(cd \)-index of the Bruhat graph to distinguish it from the \(cd \)-index of the Bruhat order.

Theorem 7.2 (Billera–Brenti). For an interval \([u, v]\) in the Bruhat order, where \(u < v \), the following three conditions hold:

(i) The interval \([u, v]\) in the Bruhat graph has a \(cd \)-index \(\Psi([u, v]) \).

(ii) Restricting the \(cd \)-index \(\Psi([u, v]) \) to those terms of degree \(\ell(v) - \ell(u) - 1 \) equals the \(cd \)-index of the graded poset \([u, v]\).

(iii) The degree of a term in the \(cd \)-index \(\Psi([u, v]) \) is less than or equal to \(\ell(v) - \ell(u) - 1 \) and has the same parity as \(\ell(v) - \ell(u) - 1 \).

Proof. The reverse of a reflection ordering is also reflection ordering. Hence the number of rising chains of length \(k \) is equal to the number of falling chains of the same length. Thus part (i) follows from Theorem 4.7. Part (ii) follows from the fact that when one restricts the labeling to the poset structure of one interval \([u, v]\), that is, only considering the cover relations, the reflection ordering is an \(R \)-labeling. Part (iii) follows from the fact that the Bruhat graph is bipartite. \(\square \)

8 Balanced linear edge labelings

We call a edge labeling linear if the underlying relation \((\Lambda, \sim)\) is that of a linear order.

Theorem 8.1. Let \(u \) be a non-zero \(cd \)-polynomial with non-negative coefficients. Then there exists a bounded balanced labeled acyclic digraph \(G \) where the relation on the set of labels is a linear order and which satisfies \(\Psi(G) = w \).
In order to prove this theorem, we first need the following two lemmas.

Lemma 8.2. Let \(G_1 \) and \(G_2 \) be two bounded digraphs with balanced linear edge labeling. Let the underlying label sets be \(\Lambda_1 \), respectively \(\Lambda_2 \). Define a new bounded labeled digraph \(H \) by

\[
V(H) = V(G_1) \cup V(G_2),
\]

\[
E(H) = E(G_1) \cup E(G_2) \cup \{h_1, h_2\}
\]

where the new edges are \(\text{tail}(h_i) = \hat{1}_1 \) and \(\text{head}(h_i) = \hat{0}_2 \). Let the new label set be \(\Lambda = \Lambda_1 \cup \Lambda_2 \cup \{\mu_1, \mu_2\} \) and the linear order be any shuffling of \(\Lambda_1 \) and \(\Lambda_2 \) with the condition that the new labels \(\mu_1 \) and \(\mu_2 \) are the minimal, respectively the maximal, element of the linear order \(\Lambda \). Finally, let the labels of the new edges be \(\lambda(h_i) = \mu_i \). Then the digraph \(H \) has a balanced labeling which is linear, and its \textbf{cd-index} is given by

\[
\Psi(H) = \Psi(G_1) \cdot d \cdot \Psi(G_2).
\]

Proof. Every path \(p \) from \(\hat{0}_{G_1} = \hat{0}_H \) to \(\hat{1}_{G_2} = \hat{1}_H \) breaks into a path in \(G_1 \), a path in \(G_2 \) and one of the new edges \(h_1 \) or \(h_2 \). Observe that

\[
u(p) = u(p|G_1) \cdot v \cdot u(p|G_2),
\]

where \(v = \text{ba} \) if the new edge is \(h_1 \) and \(v = \text{ab} \) if the new edge is \(h_2 \). Hence summing over all paths we have

\[
\Psi(H) = \Psi(G_1) \cdot (\text{ba} + \text{ab}) \cdot \Psi(G_2).
\]

A similar argument shows that every interval of \(H \) has a \textbf{cd-index} and hence the labeling is balanced. \(\square \)

Lemma 8.3. Let \(G_1 \) and \(G_2 \) be two bounded digraphs with balanced linear edge labelings. Let \(H \) be the bounded digraph obtained by the disjoint union of \(G_1 \) and \(G_2 \) and identifying the minimal elements \(\hat{0}_{G_1} \) and \(\hat{0}_{G_2} \), and the maximal elements \(\hat{1}_{G_1} \) and \(\hat{1}_{G_2} \). Then \(H \) has a balanced linear edge labeling and its \textbf{cd-index} is the sum

\[
\Psi(H) = \Psi(G_1) + \Psi(G_2).
\]

Proof of Theorem 8.1. The strong Bruhat order on the dihedral group is the butterfly poset and hence its \textbf{cd-index} is \(c_n \). Hence by Lemma 8.2 for any \textbf{cd}-monomial \(v \) we can construct a bounded labeled acyclic digraph \(G \) with a balanced linear order such that \(\Psi(G) = v \). By Lemma 8.3 this can be extended to any non-negative \textbf{cd}-polynomial. \(\square \)

Theorem 8.1 motivates us to make the following conjecture.

Conjecture 8.4. The \textbf{cd-index} of a bounded labeled acyclic digraph \(G \) with a balanced linear edge labeling is non-negative.
9 Concluding remarks

We hope that Conjecture 8.4 can be proved using a combinatorial argument, such as the notion of shelling, or perhaps a more algebraic argument. See for instance Stanley’s shelling argument in proving the non-negativity of the cd-index of S-shellable spheres [35], Karu’s argument for the non-negativity of the toric g-vector of non-rational polytopes [26], and Karu’s argument for the non-negativity of cd-index of Gorenstein* posets [27]. New work of Karu [28] has shown the non-negativity conjecture for the cd-index of a Bruhat interval holds for monomials containing at most one d.

Understanding Bruhat graphs is important because of their relation to the Kazhdan–Lusztig polynomials [29, 30]. It has been shown by Billera and Brenti that knowing the cd-index of the Bruhat graph of a Coxeter group implies one knows, via a linear map, the Kazhdan–Lusztig polynomial of a Coxeter group [5]. Kazhdan–Lusztig polynomials can be extended to balanced graphs which satisfy the parity condition, that is, the lengths of all the paths in an interval has the same parity. For such a balanced graph, how much of the algebraic notion behind the Kazhdan–Lusztig polynomials can be generalized?

Reading [32] provided a recursive method to compute cd-index of any interval in the Bruhat order. Can his methods be extended to any interval in the Bruhat graph? Do they generalize to balanced graphs?

Returning our attention to graded posets and especially Eulerian posets, when do these posets possess a labeling. There are Eulerian poset which do not have an R-labeling; see [22]. What more can be said about Eulerian posets that have an R-labeling. For instance, do they have a non-negative cd-index?

Acknowledgements

We thank Louis Billera for his comments on an earlier version of this paper. The first author is partially supported by National Science Foundation grant 0902063. This work was partially supported by a grant from the Simons Foundation (#206001 to Margaret Readdy).

References

[1] M. Bayer and L. Billera, Generalized Dehn–Sommerville relations for polytopes, spheres and Eulerian partially ordered sets, Invent. Math. 79 (1985), 143–157.

[2] M. Bayer and A. Klapper, A new index for polytopes, Discrete Comput. Geom. 6 (1991), 33–47.

[3] N. Bergeron, S. Mykytiuk, F. Sottile and S. van Willigenburg, Noncommutative Pieri operators on posets, J. Combin. Theory Ser. A 91 (2000), 84–110.
[4] N. Bergeron and F. Sottile, Hopf algebra and edge-labeled posets, *J. of Alg.* 216 (1999), 641–651.

[5] L. J. Billera and F. Brenti, Quasisymmetric functions and Kazhdan–Lusztig polynomials, *Israel Jour. Math.* 184 (2011), 317–348.

[6] L. J. Billera and R. Ehrenborg, Monotonicity of the cd-index for polytopes, *Math. Z.* 233 (2000), 421–441.

[7] L. J. Billera, R. Ehrenborg, and M. Readdy, The c2d-index of oriented matroids, *J. Combin. Theory Ser. A* 80 (1997), 79–105.

[8] L. J. Billera, R. Ehrenborg, and M. Readdy, The cd-index of zonotopes and arrangements *Mathematical essays in honor of Gian-Carlo Rota* (B. Sagan and R. P. Stanley, eds.), Birkhäuser Boston, 1998, 23–40.

[9] L. J. Billera and N. Liu, Noncommutative enumeration in graded posets, *J. Algebraic Combin.* 12 (2000), 7–24.

[10] A. Björner, Shellable and Cohen–Macaulay partially ordered sets, *Trans. Amer. Math. Soc.* 260 (1980), 159–183.

[11] A. Björner and F. Brenti, “Combinatorics of Coxeter groups,” Springer, 2005.

[12] A. Björner and M. Wachs, Shellable nonpure complexes and posets. I., *Trans. Amer. Math. Soc.* 348 (1996), 1299–1327.

[13] F. Brenti, Lattice paths and Kazhdan–Lusztig polynomials, *Jour. Amer. Math. Soc.* 11 (1998), 229–259.

[14] M. J. Dyer, “Hecke algebras and reflections in Coxeter groups,” Doctoral dissertation, University of Sydney, 1987.

[15] R. Ehrenborg, On posets and Hopf algebras, *Adv. Math.* 119 (1996), 1–25.

[16] R. Ehrenborg, M. Goresky and M. Readdy, Euler flag enumeration of Whitney stratified spaces, preprint 2011. [arXiv:1201.3377v1 [math.CO]]

[17] R. Ehrenborg and K. Karu, Decomposition theorem for the cd-index of Gorenstein* posets, *J. Algebraic Combin.* 26 (2007), 225–251.

[18] R. Ehrenborg and M. Readdy, Sheffer posets and r-signed permutations, *Ann. Sci. Math. Québec* 19 (1995), 173–196.

[19] R. Ehrenborg and M. Readdy, The r-cubical lattice and a generalization of the cd-index, *European J. Combin.* 17 (1996), 709–725.

[20] R. Ehrenborg and M. Readdy, Coproducts and the cd-index, *J. Algebraic Combin.* 8 (1998), 273–299.

[21] R. Ehrenborg and M. Readdy, Homology of Newtonian coalgebras, *European J. Combin.* 23 (2002), 919–927.
[22] R. Ehrenborg and M. Readdy, On the non-existence of an R-labeling, *Order* **28** (2011), 437–442.

[23] R. Ehrenborg and M. Readdy, The Tchebyshev transforms of the first and second kind, *Ann. Comb.* **14** (2010), 211–244.

[24] R. Ehrenborg, M. Readdy and M. Slone, Affine and toric hyperplane arrangements, *Discrete Comput. Geom.* **41** (2009), 481–512.

[25] S. A. Joni and G.-C. Rota, Coalgebras and bialgebras in combinatorics, *Stud. Appl. Math.* **61** (1979), 93–139.

[26] K. Karu, Hard Lefschetz theorem for nonrational polytopes, *Invent. Math.* **157** (2004), 419–447.

[27] K. Karu, The cd-index of fans and posets, *Compos. Math.* **142** (2006), 701–718.

[28] K. Karu, On the complete cd-index of a Bruhat interval, preprint 2012. [arXiv:1201.5161v1 [math.CO]]

[29] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, *Invent. Math.* **53** (1979), 165–184.

[30] D. Kazhdan and G. Lusztig, Schubert varieties and Poincaré duality, *Proc. Sympos. Pure Math.* **34** (1980), 185–203.

[31] C. Malvenuto and C. Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra, *J. Algebra* **177** (1995), 967–982.

[32] N. Reading The cd-index of Bruhat intervals *Electron. J. Combin.* **11**(1)(2004), Research Paper 74, 25 pp. (electronic).

[33] M. Slone, “Homological combinatorics and extensions of the cd-index,” Doctoral dissertation, University of Kentucky, 2008.

[34] R. P. Stanley, “Enumerative combinatorics. Volume 1. Second edition,” Cambridge University Press, Cambridge, 2012.

[35] R. P. Stanley, Flag f-vectors and the cd-index, *Math. Z.* **216** (1994), 483–499.

[36] J. Stembridge, Enriched P-partitions, *Trans. Amer. Math. Soc.* **349** (1997), 763–788.

[37] M. Sweedler, “Hopf Algebras,” Benjamin, New York, 1969.

[38] D.-N. Verma, Möbius inversion for the Bruhat order on a Weyl group, *Ann. Sci. École Norm. Sup.* **4** (1971), 393–398.

R. Ehrenborg and M. Readdy, Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027, {jrge.readdy}@ms.uky.edu