AUTOMIZERS AS EXTENDED REFLECTION GROUPS

RAPHAËL ROUQUIER

1. Introduction

Broué, Malle and Michel have shown that the automizer of an abelian Sylow p-subgroup P in a finite simple Chevalley group is an irreducible complex reflection group (for p not too small and different from the defining characteristic) [BrMaMi, BrMi].

The aim is this note is to show that a suitable version of this property holds for general finite groups.

We give a simple direct proof, building on the Lehrer-Springer theory [LeSp], that the property above holds for simply connected simple algebraic groups G, provided p is not a torsion prime (Proposition 4.1): the automizer $E = N_G(P)/C_G(P)$ is a reflection group on $\Omega_1(P)$, the largest elementary abelian subgroup of P.

On the other hand, we show that the presence of p-torsion in the Schur multiplier of a finite group G prevents the subgroup of E generated by reflections from being irreducible (Proposition 3.5).

This suggests considering covering groups of finite simple groups or equivalently finite simple groups G such that $H^2(G, F_p) = 0$. We also need to allow p'-automorphisms and we now look for a description of the automizer as an extension of an irreducible reflection group W by a subgroup of $N_{GL(\Omega_1(P))}(W)/W$.

We actually need a slight generalization: $\Omega_1(P)$ should be viewed in some cases as a vector space over a larger finite field (for example in the case of $\text{PSL}_2(F_{p^n})$) and we need to allow field automorphisms.

As an example, the automizer of an 11-Sylow subgroup in the Monster is the 2-dimensional complex reflection group G_{16}.

I thank Richard Lyons and Geoff Robinson for useful discussions.

2. Notation and definitions

Let p be a prime. Given P an abelian group, we denote by $\Omega_1(P)$ the subgroup of P of elements of order 1 or p, i.e., the largest elementary abelian p-subgroup of P.

Let V be a free module of finite rank over a commutative algebra K. A reflection is an element $s \in \text{GL}_K(V)$ of finite order such that $V/\ker(s - 1)$ is a free K-module of rank 1 (note that we do not require $s^2 = 1$). A finite subgroup of $\text{GL}_K(V)$ is a reflection group if it is generated by reflections.

3. Main result and remarks

Let p be a prime and H a simple group such that the p-part of the Schur multiplier of H is trivial, i.e. $H^2(H, F_p) = 0$. Assume H has an abelian Sylow p-subgroup P. Let $\tilde{H} \leq \text{Aut}(H)$
be a finite group containing H and such that \tilde{H}/H is a Hall p'-subgroup of $\text{Out}(H)$. Let $E = N_{\tilde{H}}(P)/C_{\tilde{H}}(P)$.

Theorem 3.1. There is

- a finite field K
- an \mathbb{F}_p-subspace V of $\Omega_1(P)$ and an isomorphism of \mathbb{F}_p-vector spaces $K \otimes_{\mathbb{F}_p} V \cong \Omega_1(P)$
- a subgroup N of $\text{GL}_K(\Omega_1(P))$ and
- a subgroup Γ of $\text{Aut}(K)$

such that $E = N \rtimes \Gamma$, as subgroups of $\text{Aut}(\Omega_1(P))$, and such that the normal subgroup W of N generated by reflections acts irreducibly on $\Omega_1(P)$.

The theorem will be proven in \[\text{[4]}\]

Remark 3.2. Gorenstein and Lyons have shown that $N_{\tilde{H}}(P)/C_{\tilde{H}}(P)$ acts irreducibly on $\Omega_1(P)$ viewed as a vector space over \mathbb{F}_p and, as a consequence, P is homocyclic \[\text{[GoLy] (12.1)}\].

Note nevertheless that the subgroup of $N_{\tilde{H}}(P)/C_{\tilde{H}}(P)$ generated by reflections might not be irreducible in its action on $\Omega_1(P)$: this happens for example in the case $H = \mathfrak{A}_{2p}$, $p > 3$.

We can take $K = \mathbb{F}_p$ in Theorem 3.1 except for

- $\text{PSL}_d(p^n)$, $n > 1$: $K = \mathbb{F}_{p^n}$
- J_1 and $2G_2(q)$, $p = 2$: $K = \mathbb{F}_8$.

In those cases, $V = \mathbb{F}_p$ and $P = \Omega_1(P) = K$.

Note that the theorem is trivial when P is cyclic: one takes $K = \mathbb{F}_p$ and $N = E = W \subset \mathbb{F}_p^\times$.

Using the classification of finite simple groups, we deduce a statement about finite groups with abelian Sylow p-subgroups.

Corollary 3.3. Let G be a finite group with an abelian Sylow p-subgroup P. Let $H = O^p(G/O_p(G))$.

Assume the p-part of the Schur multiplier of H is trivial. Then, there is a finite group X containing H as a normal subgroup of p'-index and

- a product K of finite field extensions of \mathbb{F}_p
- an \mathbb{F}_p-subspace V of $\Omega_1(P)$ and an isomorphism of \mathbb{F}_p-vector spaces $K \otimes_{\mathbb{F}_p} V \cong \Omega_1(P)$
- a subgroup N of $\text{GL}_K(\Omega_1(P))$ and
- a subgroup Γ of $\text{Aut}(K)$

such that $N_X(P)/C_X(P) = N \rtimes \Gamma$, as subgroups of $\text{Aut}(\Omega_1(P))$, and such that denoting by W the normal subgroup of N generated by reflections, we have $\Omega_1(P)^W = 1$.

Proof. The case where H is simple is Theorem 3.1. In general, the classification of finite simple groups shows that there are finite simple groups H_1, \ldots, H_r such that $H = H_1 \times \cdots \times H_r$ (cf. eg \[\text{[FoHa] \text{§}5]}\]). Note that $O_p(H) = 1$, i.e., there is no non-trivial p-group as a direct factor of H, since $H^2(H, \mathbb{F}_p) = 0$. Now, we take $X = X_1 \times \cdots \times X_r$, where the X_i are associated with H_i. We put $K = K_1 \times \cdots \times K_r$, etc.

Following \[\text{[GoLy] Proof of (12.1)}\], we give now the list of possible finite simple groups H and primes p such that Sylow p-subgroups of H are abelian non-cyclic and the p-part of the
Schur multiplier of \(H \) is trivial. In the first case, instead of providing the group \(H \), we provide a group \(G \) such that \(H \leq G/O_{p'}(G) \leq \text{Aut}(H) \) and \(p \nmid [G/O_{p'}(G) : H] \).

- \(G = G^F \) where \(G \) is a simply connected simple algebraic group and \(F \) is an endomorphism of \(G \), a power of which is a Frobenius endomorphism defining a rational structure over a finite field with \(q \) elements, \(p \nmid q \) and \(p \) is not a torsion prime for \(G \)
- \(H = \mathfrak{A}_n \) and \(n < p^2 \)
- \(H = \text{PSL}_2(p^n) \)
- \(H = 2G_2(q) \), \(p = 2 \)
- \(H \) is sporadic

Assume \(K = \mathbb{F}_p \). We have \(V = \Omega_1(P) \) and \(\Gamma = 1 \). Furthermore, \(N = E \subset N_{\text{GL}(P)}(W) \). So, in this case, the theorem is equivalent to the statement that \(W \) acts irreducibly on \(P \). As a consequence, in order to show that the theorem holds, it is enough to prove the statement with \(H \) replaced by a group \(G \) as above.

Remark 3.4. The finite simple groups with an abelian Sylow \(p \)-subgroup such that the \(p \)-part of the Schur multiplier is non-trivial are the following (cf [AT1]):

- \(H = M_{22}, ON, \mathfrak{A}_6, \mathfrak{A}_7 \) and \(p = 3 \)
- \(H = \text{PSL}_2(q) \), \(q \equiv 3, 5 \pmod{8} \) and \(p = 2 \)
- \(H = \text{PSL}_3(q) \) and \(3|q - 1 \) or \(H = \text{PSU}_3(q) \) and \(3|q + 1 \) (here \(p = 3 \))

Note that the automizer of a Sylow 3-subgroup \(P \) in \(\text{Aut}(ON) = ON \cdot 2 \) does not contain any reflection (when \(P \) is viewed as a vector space over \(\mathbb{F}_3 \)). That automizer is not a subgroup of \(\text{GL}_2(9) \cdot 2 \) (extension by the Frobenius).

Note that the presence of \(p \)-torsion in the Schur multiplier is an obstruction to the irreducibility of the subgroup of the automizer generated by reflections on \(\Omega_1(P) \), viewed as a vector space over \(\mathbb{F}_p \).

Proposition 3.5. Let \(G \) be a finite group with an abelian Sylow \(p \)-subgroup \(P \). Let \(E = N_G(P)/C_G(P) \) and let \(W \) be the subgroup of \(E \) generated by reflections on \(\Omega_1(P) \), viewed as an \(\mathbb{F}_p \)-vector space. Assume \(p > 2 \).

If \(H^2(G, \mathbb{F}_p) \neq 0 \), then \(\Omega_1(P)^W \neq 0 \).

Proof. Let \(V = \Omega_1(P)^* \). We have \(H^2(G, \mathbb{F}_p) \simeq H^2(N_G(P), \mathbb{F}_p) \simeq H^2(P, \mathbb{F}_p)^E \). On the other hand, we have an isomorphism of \(\mathbb{F}_p \)-modules \(H^2(P, \mathbb{F}_p) \to V \oplus \Lambda^2(V) \), so \(H^2(G, \mathbb{F}_p) \simeq V^E \oplus \Lambda^2(V)^E \subset V^W \oplus \Lambda^2(V)^W \). By Solomon’s Theorem [So], we have \(\Lambda^2(V)^W \simeq \Lambda^2(V^W) \). The result follows.

Remark 3.6. Let \(W \) be a reflection group on a complex vector space \(L \), with minimal field of definition \(K \). The subgroup of the outer automorphism group of \(W \) of elements fixing the set of reflections has always a decomposition as a semi-direct product \((N_{\text{GL}(L)}(W)/W) \times \text{Gal}(K/\mathbb{Q}) \) as shown by Marin and Michel [MaMi].

Remark 3.7. It would be interesting to investigate if there is a version of Theorem 3.1 for non-principal blocks with abelian defect groups.

In a work in progress, we study automizers of maximal elementary abelian \(p \)-subgroups in covering groups of simple groups.
We run through the list of groups H (or G) as described above.

4.1. **Chevalley groups.** Let G be a connected and simply connected reductive algebraic group over an algebraic closure k of a finite field and endowed with an endomorphism F, a power of which is a Frobenius endomorphism. Let $G = G^F$. Assume p is invertible in k and p is not a torsion prime for G.

4.1.1. **Abelian p-subgroups.** Since p is not a torsion prime for G, every abelian p-subgroup Q of G is contained in an F-stable maximal torus T of G and $L = C_G(Q)$ is a Levi subgroup ([SpSt Corollary 5.10 and Theorem 5.8] and [GeHi Proposition 2.1]). Furthermore, $N_G(Q) = N_G(Q)C_G(Q)$ [SpSt Corollary 5.10], hence $N_G(Q)/C_G(Q) = N_G(Q)/C_G(Q)$.

Let $W = N_G(T)/T$, $X = \text{Hom}(T, G_m)$ and $Y = \text{Hom}(G_m, T)$. If G is simple, then the action of W on $C \otimes \mathbb{Z} X$ is irreducible.

We have a canonical map $N_W(Q) \to N_G(Q)/T$. Since $L \subset N_G(Q) \subset N_G(L)$, we obtain an isomorphism

$$N_W(Q)/C_W(Q) \xrightarrow{\sim} N_G(Q)/C_G(Q).$$

Given L an abelian group, we denote by L_{p^∞} the subgroup of p-elements of L. Let $\mu = k^\times$. We have an isomorphism

$$T_{p^\infty} \xrightarrow{\sim} \text{Hom}(X, \mu_{p^\infty}), \ t \mapsto (\chi \mapsto \chi(t)).$$

This provides an isomorphism

$$T_{p^\infty} \cong Y \otimes \mathbb{Z} \mu_{p^\infty}.$$

These isomorphisms are equivariant for the actions of W and F.

4.1.2. **Abelian Sylow p-subgroups.** Assume now $P = Q$ is a abelian Sylow p-subgroup of G. Let $V = Y \otimes \mathbb{F}_p$. We have $V^F \cong \Omega_1(P)$.

Proposition 4.1. The group $N_W(P)/C_W(P)$ is a reflection group on $\Omega_1(P)$. If G is simple, then this reflection group is irreducible.

Proof. Note that $N_W(P)/C_W(P)$ is a p'-group, since P is an abelian Sylow p-subgroup of G and $N_W(P)/C_W(P) \cong N_G(P)/C_G(P)$. So, the canonical map is an isomorphism

$$N_W(P)/C_W(P) \xrightarrow{\sim} N_W(\Omega_1(P))/C_W(\Omega_1(P)).$$

The proposition follows now from the next lemma by Lehrer-Springer theory [LeSp] extended to positive characteristic [Rou].

Lemma 4.2. We have $\dim V^F \geq \dim V_w^F$ for all $w \in W$.

Proof. Let $w \in N_G(T)$. By Lang’s Lemma, there is $x \in G$ such that $w = x^{-1}F(x)$. Given $t \in T$, we have $F(xtx^{-1}) = xwF(t)x^{-1}$. So, $xTtx^{-1}$ is F-stable and the isomorphism

$$T \cong xTtx^{-1} \quad t \mapsto xtx^{-1}$$

transfers the action of wF on the left to the action of F on the right. So,

$$V_w^F \cong (Y(xTtx^{-1}) \otimes \mathbb{F}_p)^F \cong \Omega_1((xTtx^{-1})^F).$$

The rank of that elementary abelian p-subgroup of G is at most the rank of P and we are done.
4.2. Alternating groups. Let $G = S_n$, $n > 7$. Put $n = pr + s$ with $0 \leq s \leq p - 1$ and $r < p$. We have $P \simeq (\mathbb{Z}/p)^r$. We put $K = F_p$, $N = W = F_p^\times \wr \mathfrak{S}_r$.

Remark 4.3. Note that when $n = 5$ and $p = 2$ or $n = 6, 7$ and $p = 3$, the p-part of the Schur multiplier is not trivial but the description above is still valid. Note though that when $n = 6$ and $p = 3$, then G contains S_6 as a subgroup of index 2. We have $K = F_3$, $W = F_8 \times \mathfrak{S}_2$, $N = E$, W is a Weyl group of type B_2 and $[N : W] = 2$.

4.3. PSL$_2$. Assume $H = \text{PSL}_2(K)$ for a finite field K of characteristic p. We have $W = N = K^\times$ and $\Gamma = \text{Gal}(K/F_p)$.

4.4. $2G_2(q)$. Assume $H = 2G_2(q)$ and $p = 2$. We have $K = F_8$, $W = N = K^\times$ and $\Gamma = \text{Gal}(K/F_2)$.

4.5. Sporadic groups. We refer to [BrMaRou] for the diagrams for complex reflection groups. For sporadic groups, we have $P = \Omega_1(P)$.

H	K	$\dim_k(P)$	W	N/W	Γ	diagram of W
J_1	F_8	1	F_8^\times	1	$\text{Gal}(F_8/F_2)$	(7)
$M_{11}, M_{23}, HS, 2$	F_3	2	B_2	2	1	\text{Diagram}
$J_2, 2, Su_2, 2$	F_5	2	G_2	2	1	\text{Diagram}
$He, 2, F_{122}, 2, F_{123}, F_{124}$	F_5	2	G_8	1	1	\text{Diagram}
$Co, 1$	F_7	2	G_{31}	1	1	\text{Diagram}
Th, BM	F_7	2	G_{31}	1	1	\text{Diagram}
M	F_{11}	2	G_{16}	1	1	\text{Diagram}

References

[At] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, “Atlas of finite groups”, Oxford University Press, 1985.
[BrMaMi] M. Broué, G. Malle and J. Michel, Generic blocks of finite reductive groups, Astérisque 212 (1993), 7–92.
[BrMaRou] M. Broué, G. Malle and R. Rouquier, Complex reflection groups, braid groups, Hecke algebras, J. reine angew. Math. 500 (1998), 127–190.
[BrMi] M. Broué and J. Michel, Blocs à groupes de défaut abéliens des groupes réductifs finis, Astérisque 212 (1993), 93–117.
[FoHa] P. Fong and M. Harris, On perfect isometries and isotypies in finite groups, Invent. Math. 114 (1993), 139–191.
[GeHi] M. Geck and G. Hiß, Basic sets of Brauer characters of finite groups of Lie type, J. reine angew. Math. 418 (1991), 173–188.
[GoLy] D. Gorenstein and R. Lyons, “The local structure of finite groups of characteristic 2 type”, Memoirs of the American Math. Soc. 276, 1983.
[LeSp] G.I. Lehrer and T.A. Springer, Reflection subquotients of unitary reflection groups, Canad. J. Math. 51 (1999), 1175-1193.
[MaMi] I. Marin and J. Michel, Automorphisms of complex reflection groups, Representation Theory, to appear, preprint [arxiv:math/0701266]
[Rou] R. Rouquier. Relative reflection groups and braid groups, in preparation.
[So] L. Solomon, Invariants of finite reflection groups, Nagoya J. of Math. 22 (1963), 57–64.
[SpSt] T.A. Springer and R. Steinberg, Conjugacy classes, in “Seminar on algebraic groups and related finite groups”, Lectures Notes in Mathematics 131, Springer Verlag, 1970.
Mathematical Institute, University of Oxford, 24-29 St Giles’, Oxford, OX1 3LB, UK
E-mail address: rouquier@maths.ox.ac.uk