Exogenous Hormone Use, Reproductive Factors and Risk of Intrahepatic Cholangiocarcinoma among Women: Results from Cohort Studies in the Liver Cancer Pooling Project and UK Biobank

Petrick, J., McMenamin, Ú., Zhang, X., Zeleniuch-Jacquotte, A., Wactawski-Wende, J., Simon, T. G., Sinha, R., Sesso, H. D., Schairer, C., Rosenberg, L., Rohan, T. E., Robien, K., Purdue, M. P., Poynter, J. N., Palmer, J. R., Lu, Y., Linet, M. S., Lee, I-M., Koshiol, J., ... McGlynn, K. A. (2020). Exogenous Hormone Use, Reproductive Factors and Risk of Intrahepatic Cholangiocarcinoma among Women: Results from Cohort Studies in the Liver Cancer Pooling Project and UK Biobank. British Journal of Cancer.

Published in:
British Journal of Cancer

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2020 The Authors.
This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Exogenous hormone use, reproductive factors and risk of intrahepatic cholangiocarcinoma among women: results from cohort studies in the Liver Cancer Pooling Project and the UK Biobank

Jessica L. Petrick1,2, Úna C. McMenamin3, Xuehong Zhang4, Anne Zeleniuch-Jacquotte5,6, Jean Wactawski-Wende7, Tracey G. Simon8, Rashmi Sinha1, Howard D. Sesso9,10, Catherine Schairer1, Lynn Rosenberg2, Thomas E. Rohan11, Kim Robien12, Mark P. Purdue1, Jenny N. Poynter13, Julie E. Buring9,10, I-Min Lee9,10, Jill Koshiol1, Cari M. Kitahara1, Victoria A. Kirsh15, Jonathan N. Hofmann1, Barry I. Graubard1, Edward Giovannucci9, J. Michael Gaziano10,16, Susan M. Gapstur17, Martha S. Linet1, Linda M. Liao1, I-Min Lee9,10, Jill Koshiol1, Cari M. Kitahara1, Victoria A. Kirsh15, Jonathan N. Hofmann1, Barry I. Graubard1, Edward Giovannucci9, J. Michael Gaziano10,16, Susan M. Gapstur17, Neal D. Freedman1, Andrea A. Florio1, Dawn Q. Chong18, Yu Chen5,19, Andrew T. Chan4,8,20, Julie E. Buring9,10, Laura E. Beane Freeman1, Jennifer W. Bea21, Christopher R. Cardwell3, Peter T. Campbell17 and Katherine A. McGlynn1

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) arises from cholangiocytes in the intrahepatic bile duct and is the second most common type of liver cancer. Cholangiocytes express both oestrogen receptor-α and -β, and oestrogens positively modulate cholangiocyte proliferation. Studies in women and men have reported higher circulating oestradiol is associated with increased ICC risk, further supporting a hormonal aetiology. However, no observational studies have examined the associations between exogenous hormone use and reproductive factors, as proxies of endogenous hormone levels, and risk of ICC.

METHODS: We harmonised data from 1,107,498 women who enrolled in 12 North American-based cohort studies (in the Liver Cancer Pooling Project, LCPP) and the UK Biobank between 1980–1998 and 2006–2010, respectively. Cox proportional hazards regression models were used to generate hazard ratios (HR) and 95% confidence intervals (CI). Then, meta-analytic techniques were used to combine the estimates from the LCPP (n = 180 cases) and the UK Biobank (n = 57 cases).

RESULTS: Hysterectomy was associated with a doubling of ICC risk (HR = 1.98, 95% CI: 1.27–3.09), compared to women aged 50–54 at natural menopause. Long-term oral contraceptive use (9+ years) was associated with a 62% increased ICC risk (HR = 1.62, 95% CI: 1.03–2.55). There was no association between ICC risk and other exogenous hormone use or reproductive factors.

CONCLUSIONS: This study suggests that hysterectomy and long-term oral contraceptive use may be associated with an increased ICC risk.

British Journal of Cancer https://doi.org/10.1038/s41416-020-0835-5

BACKGROUND
Intrahepatic cholangiocarcinoma (ICC) rates have been rapidly increasing in the US since the mid-1980s.1 Between 2001 and 2016, ICC rates among US women more than doubled from 0.6 to 1.4/100,000 person-years, respectively.2 ICC arises from cholangiocytes in the intrahepatic bile duct and is the second most common type of liver cancer in the US, accounting for 12% of primary liver cancers.3

1 Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA; 2 Slone Epidemiology Center, Boston University, Boston, MA, USA; 3 Centre for Public Health, Queen’s University Belfast, Belfast, Northern Ireland, UK; 4 Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, USA; 5 Department of Population Health, New York University School of Medicine, New York, NY, USA; 6 NYU Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA; 7 Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, USA; 8 Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; 9 Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; 10 Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA; 11 Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; 12 Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC, USA; 13 Division of Pediatric Epidemiology and Clinical Research and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; 14 Department of Population Health and Disease Prevention, Program in Public Health, University of California, Irvine, Irvine, CA, USA; 15 Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; 16 VA Boston Healthcare System, Boston, MA, USA; 17 Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA; 18 Division of Medical Oncology, National Cancer Centre, Singapore, Singapore; 19 Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA; 20 Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA and 21 Department of Medicine, University of Arizona, Tucson, AZ, USA

Correspondence: Jessica L. Petrick (jpetrick@bu.edu)

These authors contributed equally: Jessica L. Petrick, Úna C. McMenamin

Received: 10 September 2019 Revised: 5 March 2020 Accepted: 24 March 2020
Published online: 07 May 2020
As cholangiocytes express both oestrogen receptor-α and -β,
Nested case-control study of HBV/HCV
In the LCPP, 47 ICC cases that had a serum sample available were tested for determination of HBV and HCV serology status, in addition to 98 matched controls. To determine HBV status, hepatitis B surface antigen (HBsAg) was assayed using the Bio-Rad GS HBsAg 3.0 enzyme immunoassay (Bio-Rad Laboratories, Redmond, WA, USA). To determine HCV status, antibody to hepatitis C virus (anti-HCV) was assessed using the Ortho HCV Version 3.0 ELISA test system (Ortho-Clinical Diagnostics, Inc., Raritan, NJ, USA).

RESULTS
Participants averaged 13.0 years of follow-up (maximum 30.4 years) in the LCPP and 5.5 years of follow-up (maximum 8.5 years) in the UK Biobank. Table 1 summarises women participant characteristics, which were similar between the LCPP and the UK Biobank. For example, the mean ages of non-cases were 57.7 and 56.1 and cases were 61.9 and 60.3 years, respectively. Among the non-cases, there was a similar prevalence of non-smokers (51.0 vs. 56.1%) and individuals with a BMI ≥ 30 kg/m² (20.4 vs. 23.9%) in the LCPP and the UK Biobank, respectively. However, the LCPP had more post-menopausal non-cases (83.0 vs. 59.6%). In both the LCPP and the UK Biobank, ICC cases were more likely to be post-menopausal, to be current or past smokers, and to have a BMI ≥ 30 kg/m².

As shown in Table 2, there were null associations between age at menarche, parity, or age at first birth and risk of ICC. Similarly, there was a null association with ever use of oral contraceptives (HR = 1.12, 95% CI: 0.82–1.53). However, examining duration of oral contraceptive use, nine or more years of use was associated with 62% increased risk of ICC in the combined study population (HR = 1.62, 95% CI: 1.03–2.55), which was in the same direction in both LCPP (HR = 1.71, 95% CI: 1.01–2.89) and UK Biobank cohorts (HR = 1.38, 95% CI: 0.56–3.39).

There was no association with age at natural menopause, but there was a 2-fold increased risk of ICC associated with hysterectomy (HR = 1.98, 95% CI: 1.27–3.09), compared to women aged 50–54 at natural menopause, which was driven by the results from the LCPP (HR = 2.25, 95% CI: 1.38–3.65; Table 3). Further adjustment in the LCPP for MHT use did not substantially affect the estimate (HR = 2.15, 95% CI: 1.31–3.52), although women with hysterectomy were more likely to report MHT use —especially oestrogen-only MHT (Supplemental Table S2). There was no association with total fertile duration. Examining MHT use, including recency, duration, or route of administration, revealed no associations with ICC risk. However, there was a possible indication of increased risk of ICC and oestrogen-only therapy in post-menopausal women (HR = 1.44, 95% CI: 0.91–2.28).

Among the 47 ICC cases and 98 controls evaluated for HBV and HCV infections, one case (2.1%) and no controls were positive for HBsAg. For anti-HCV, no cases and three controls (3.1%) were positive. The viral results were not incorporated into the main analyses, as the results were only available for a small proportion of LCPP participants. In sensitivity analyses that dropping HBsAg (+) and anti-HCV(+) cases, the results did not differ from the analyses that included all cases (data not shown). Similarly, analyses that removed cases that developed in the first two years of follow-up were similar to those presented (data not shown).

DISCUSSION
In the present study, long-term oral contraceptive use was associated with a 62% increased ICC risk, and hysterectomy was associated with a doubling of risk. The other reproductive factors were not associated with risk of ICC.

This is the first study to date to examine exogenous hormone use, reproductive factors and ICC risk. Prior studies have been limited to examination of all primary liver cancer or HCC only, which is the dominant form of liver cancer and accounts for 75% of primary liver cancer cases.7 Thus, all prior examinations of exogenous hormone use and reproductive risk factors for liver cancer have been primarily driven by the aetiology of HCC. However, we discuss these prior results herein to highlight the similarities and differences in the aetiology of these two types of liver cancer. HCC is 2–3 times more common among men than women, although incidence rates of ICC are only 30% higher in men than in women.34 Reasons for reduced sex differences in ICC risk are unclear, but may be partially explained by oestrogenic factors increasing risk in women, as reported in the current study.

In 1999, the International Agency for Research on Cancer (IARC) concluded that there was sufficient evidence that oral contraceptives increased risk of liver cancer in the absence of viral infections.36 However, a meta-analysis reported a 55% increased risk of liver cancer only in case-control studies, but no association in cohort studies.37 The most recent 2018 IARC monograph concluded that there was still sufficient evidence that oestrogen-progesterone combination oral contraceptives cause liver cancer.38 While the recent IARC monograph acknowledged that there was no association found in cohort studies, the majority of these to-date have included small numbers of cases. The prior study of HCC in the LCPP showed an increased, but non-significant, risk of ICC with more than 6 years of oral contraceptive use,39 which is similar to the significant increased risk of ICC reported herein for nine or more years of oral contraceptive use.

The reported associations between MHT use and primary liver cancer risk have been inconsistent. A recent meta-analysis reported that MHT was associated with a 40% decreased risk of primary liver cancer across five studies.40 Inverse associations were also reported for oestrogen-only, as well as oestrogen-progesterone combination MHT. While there was significant heterogeneity between the studies in the meta-analysis. One of these studies examined MHT from prescription records and reported a 42% decreased risk of liver cancer.41 However, none of these studies were able to examine ICC independent of primary liver cancer. Our study reported that oestrogen-only MHT use in post-menopausal women was associated with a possible indication of increased risk of ICC, albeit non-significant, which was consistent in the cohorts in North America and the UK. However, the sample size was limited, and the UK Biobank only assessed type of MHT for women who reported ‘current’ MHT use at time of the questionnaire.

Experimental evidence suggests that oestrogen, potentially mediated through interleukin-6 (IL-6),10 or vascular endothelial growth factor (VEGF),8 promotes cholangiocarcinogenesis, while selective oestrogen receptor modulators can inhibit growth.8,10 Cholangiocytes can express both oestrogen receptor (ER)-α and β, whereas hepatocytes express only ER-α.42 In bile duct ligated rats, ER-β increased 5-fold in cholangiocytes, whereas ER-α decreased in both cholangiocytes and hepatocytes.43 Thus, the increased risk of ICC associated with oestrogen-only MHT use is biologically plausible through modulation of cholangiocyte proliferation.43,44 While statistical power was still somewhat limited to examine this hypothesis, both the LCPP and the UK Biobank reported nearly identical effect estimates for the oestrogen-only MHT—ICC association.

In epidemiologic investigations of circulating sex steroid hormones and ICC risk, two studies have reported higher levels of circulating oestradiol in both men and women cholangiocarcinoma cases compared to controls.11,12 One of these studies was based in the LCPP and reported that a doubling of circulating oestrogen levels in women was associated with a 40% increased ICC risk.12 Neither study reported associations with circulating androgen levels.

Of the reproductive factors, which have been utilised as proxies of hormone status, parity is the most well studied in
Age at baseline, mean (SD)	Liver Cancer Pooling Project	UK Biobank		
No. non-cases (N = 850,977)	No. ICC cases (N = 180)	No. non-cases (N = 256,284)	No. ICC cases (N = 57)	
No. (%)	No. (%)	No. (%)	No. (%)	
<50	153,709 (18.1)	9 (5.0)	62,807 (24.5)	5 (8.8)
50–59	286,553 (33.7)	52 (28.9)	88,718 (34.6)	19 (33.3)
60–69	332,574 (39.1)	97 (53.9)	103,704 (40.5)	31 (54.4)
≥70	78,141 (9.2)	22 (12.2)	1,055 (0.4)	2 (3.5)

Menopausal status	Liver Cancer Pooling Project	UK Biobank		
No. (%)	No. (%)	No. (%)	No. (%)	
Pre-menopausal	134,595 (15.8)	9 (5.0)	62,992 (24.6)	4 (7.0)
Post-menopausal	706,218 (83.0)	171 (95.0)	152,752 (59.6)	41 (71.9)
Missing	10,164 (1.2)	0 (0.0)	40,540 (15.8)	12 (21.1)

Alcohol intake	Liver Cancer Pooling Project	UK Biobank		
No. (%)	No. (%)	No. (%)	No. (%)	
Non-drinker	258,141 (30.3)	48 (26.7)	15,072 (5.9)	4 (7.0)
Quartile 1: ≤1.08 g/day	170,803 (20.1)	41 (22.8)	167,319 (65.3)	39 (68.4)
Quartile 2: 1.09–3.58 g/day	152,765 (18.0)	32 (17.8)	62,762 (24.5)	10 (17.5)
Quartile 3: 3.59–13.54 g/day	129,502 (15.2)	29 (16.1)	9251 (3.6)	4 (7.0)
Quartile 4: >13.54 g/day	98,621 (11.6)	21 (11.7)	1,880 (0.7)	0 (0.0)
Missing	41,145 (4.8)	9 (5.0)		

Smoking status	Liver Cancer Pooling Project	UK Biobank		
No. (%)	No. (%)	No. (%)	No. (%)	
Never	434,198 (51.0)	80 (44.4)	152,637 (59.6)	20 (35.1)
Former	284,799 (33.5)	75 (41.7)	79,316 (30.9)	29 (50.9)
Current	114,922 (13.5)	23 (12.8)	22,922 (8.9)	8 (14.0)
Missing	17,058 (2.0)	2 (1.1)	1409 (0.6)	0 (0.0)

BMI status (kg/m²)	Liver Cancer Pooling Project	UK Biobank		
No. (%)	No. (%)	No. (%)	No. (%)	
<25	387,573 (45.5)	59 (32.8)	101,363 (39.6)	22 (38.6)
25–29.9	260,561 (30.6)	67 (37.2)	92,241 (36.0)	20 (35.1)
≥30	173,376 (20.4)	45 (25.0)	61,324 (23.9)	15 (26.3)
Missing	29,467 (3.5)	9 (5.0)	1,356 (0.5)	0 (0.0)

Diabetes	Liver Cancer Pooling Project	UK Biobank		
No. (%)	No. (%)	No. (%)	No. (%)	
No	792,844 (93.2)	159 (88.3)	247,484 (96.6)	56 (98.3)
Yes	45,678 (5.4)	18 (10.0)	8800 (3.4)	1 (1.7)
Missing	12,455 (1.5)	3 (1.7)	0 (0.0)	0 (0.0)

Race	Liver Cancer Pooling Project	UK Biobank	
No. (%)	No. (%)	No. (%)	No. (%)
White	715,739 (84.1)	156 (86.7)	
Black	93,734 (11.0)	9 (5.0)	
Asian/Pacific Islander	11,297 (1.3)	4 (2.2)	
American Indian/Alaskan Native	2,032 (0.2)	0 0.0	
Other	19,336 (2.3)	7 (3.9)	
Missing	8,839 (1.0)	4 (2.2)	

Education	Liver Cancer Pooling Project	UK Biobank		
No. (%)	No. (%)	No. (%)	No. (%)	
High School or Less	45,659 (5.4)	12 (6.7)		
High School	184,586 (21.7)	32 (17.8)	73,038 (28.5)	10 (17.5)
Some College/Vocational	257,563 (30.3)	59 (32.8)		
College Degree	190,027 (22.3)	44 (24.4)	41,596 (16.2)	8 (14.0)
Graduate Degree	135,288 (15.9)	25 (13.9)	94,233 (36.8)	18 (31.6)
None of the above	42,439 (16.6)	7 (3.9)	94,233 (36.8)	20 (35.1)
Missing	37,854 (4.4)	8 (4.4)	4978 (1.9)	1 (1.8)
Table 2. Association between reproductive factors and intrahepatic cholangiocarcinoma in the Liver Cancer Pooling Project and the UK Biobank.

Reproductive Factors	Liver Cancer Pooling Project	UK Biobank	Combined							
	No. non-cases (N = 722,150)^a	No. ICC Cases (N = 154)^a	HR^b 95% CI	No. non-cases (N = 209,464)^a	No. ICC Cases (N = 44)^a	HR^c 95% CI	HR 95% CI			
Age at menarche										
<12	207,893	49	Referent	39,215	4	Referent	Referent			
12–13	366,443	72	0.73	0.50–1.07	89,034	23	2.59	0.89–7.51	0.84	0.59–1.20
14+	133,893	29	0.76	0.48–1.20	75,233	16	1.83	0.61–5.52	0.87	0.57–1.32
Missing	13,921	4	Referent	5,982	1					
p for trend							0.72	0.36		
Ever had children										
No	98,304	20	Referent	40,205	6	Referent	Referent			
Yes	611,875	134	0.87	0.54–1.39	169,121	38	1.14	0.47–2.73	0.92	0.61–1.41
Missing	11,971	0	Referent	138	0					
Number of children										
0	97,651	20	Referent	40,205	6	Referent	Referent			
1	78,487	12	0.67	0.33–1.37	28,182	7	1.37	0.46–4.09	0.83	0.46–1.50
2	185,348	38	0.83	0.48–1.44	91,323	18	1.05	0.41–2.67	0.88	0.55–1.41
3+	345,531	83	0.82	0.50–1.35	49,752	13	1.16	0.43–3.13	0.88	0.56–1.37
Missing	15,133	1	Referent	0	0					
p for trend							0.97	0.35		
Age at first birth (parous women)										
<21	105,544	19	Referent	19,734	5	Referent	Referent			
21–24	275,185	72	1.31	0.77–2.21	40,407	8	0.88	0.28–2.73	1.22	0.75–1.98
25–28	147,059	25	0.74	0.39–1.39	44,890	9	1.26	0.40–3.95	0.84	0.48–1.47
≥29	59,050	15	1.02	0.49–2.11	35,669	9	1.87	0.57–6.16	1.21	0.65–2.25
Missing	135,312	23	Referent	28,419	7					
p for trend							0.62	0.90		
Oral contraceptive use										
No	384,699	97	Referent	39,095	9	Referent	Referent			
Yes	331,664	57	1.06	0.75–1.48	169,887	35	1.46	0.68–3.16	1.12	0.82–1.53
Missing	5,787	0	Referent	480	0					
Duration of oral contraceptive use										
None	384,699	97	Referent	39,095	9	Referent	Referent			
<1 year	66,782	12	0.94	0.52–1.69	7,039	2	1.55	0.33–7.24	1.00	0.58–1.74
1–2.5 years	77,857	12	1.09	0.59–2.01	17,999	3	0.92	0.25–3.45	1.06	0.61–1.84
2.5–6 years	50,176	15	0.59	0.24–1.49	22,069	7	2.00	0.72–5.51	1.01	0.51–1.98
6–9 years	70,620	11	1.00	0.54–1.88	22,277	3	0.94	0.25–3.59	0.99	0.57–1.73
9+ years	61,781	17	1.71	1.01–2.89	78,287	14	1.38	0.56–3.69	1.07	0.46–3.25
Missing	10,235	0	Referent	22,696	6					
p for trend							0.14	0.46		

*aNumbers are for women with non-missing covariates.

^Adjusted for age (continuous), alcohol (g/day: none, ≤1.08, >1.08–3.58, >3.58–13.54, >13.54), BMI (kg/m²: <25, 25–29.9, ≥30), diabetes (yes, no), race (white, other), smoking (never, former, current), parent cohort study, menopausal status (pre-, post-menopausal), and education (<high school, high school, some college/vocational, college, graduate degree).

*Adjusted for age (continuous), alcohol (never, former, current light/occasional (<16 g/day), current heavy (≥16 g/day)), BMI (kg/m²: <25, 25–29.9, ≥30), smoking (never, former, current), menopausal status (pre-, post-menopausal), and education (<secondary school, secondary school, college, graduate degree).

Similarly, in two recent studies, medically recorded bilateral oophorectomy was associated with a 30–70% increased risk of non-alcoholic fatty liver disease.46,47 While the current study did not find an association with oophorectomy, there was an increased risk of ICC associated with hysterectomy. This could be due either to misclassified self-reported hysterectomy and oophorectomy status,46 whereby women that had an oophorectomy tend to misreport (i.e., report hysterectomy instead of oophorectomy), or to alterations in sex steroid hormones, which may contribute to the increased risk of ICC associated with hysterectomy.48
Age at menopause	Liver Cancer Pooling Project	UK Biobank	Combined							
	No. non-Cases \(N = 722,150\)	No. ICC Cases \(N = 154\)	HRb 95% CI	No. non-Cases \(N = 209,464\)	No. ICC Cases \(N = 44\)	HRc 95% CI	HR 95% CI			
Natural menopause										
<45	35,745	7	0.82	0.37–1.81	11,273	14	1.21	0.38–3.84	0.93	0.48–1.79
45–49	89,227	15	0.68	0.38–1.23	29,137	4	0.62	0.21–1.77	0.67	0.40–1.11
50–54	159,706	42	Referent	63,253	Referent	Referent				
≥55	35,001	7	0.67	0.30–1.49	20,114	7	1.53	0.61–3.85	0.96	0.52–1.75
p for trend 0.84										
Surgical menopause										
Bilateral oophorectomyd	54,645	12	0.84	0.43–1.63	687	0	–	–		
Hysterectomyd	100,694	36	2.25	1.38–3.65	15,809	5	1.11	0.39–3.13	1.98	1.27–3.09
Missing	131,173	30	7837	5						
Fertile Duration	341,659	80	1.02	0.97–1.07	135,777	34	0.97	0.91–1.03	1.00	0.96–1.04
Menopausal hormone therapy (MHT)										
Never	259,833	65	Referent	136,849	23	Referent	Referent			
Ever use	340,563	83	1.12	0.80–1.56	72,057	21	1.05	0.56–1.96	1.10	0.82–1.49
Missing	5,795	1	556	0						
Timing of use										
Never	241,746	63	Referent	136,849	23	Referent	Referent			
Former	81,684	22	0.92	0.56–1.50	63,593	19	1.05	0.55–2.01	0.97	0.65–1.43
Current	227,895	59	1.26	0.87–1.84	8464	2	1.04	0.24–4.47	1.25	0.87–1.78
Missing	54,866	5	556	0						
Duration of use										
None	130,549	36	Referent	136,849	23	Referent	Referent			
<5 years	55,378	11	0.79	0.42–1.52	23,845	5	0.84	0.31–2.26	0.80	0.47–1.37
5–9 years	37,442	12	1.30	0.66–2.55	16,452	2	0.45	0.10–1.97	1.09	0.59–2.02
≥10 years	66,548	16	0.72	0.35–1.47	13,717	7	1.53	0.62–3.76	0.97	0.55–1.70
Missing	231,499	58	18,599	7						
p for trend 0.64								0.05		
MHT typee										
None	153,760	35	Referent	136,849	23	Referent	Referent			
Estrogen only	125,090	38	1.44	0.90–2.31	2708	1	1.45	0.19–10.85	1.44	0.91–2.28
Combination	100,318	22	1.01	0.58–1.76	5735	1	0.79	0.11–5.95	0.99	0.58–1.69
Other MHT	15,982	1	0.34	0.05–2.54						
Missing	196,844	44	64,149	19						
MHT pill usagee										
None	87,966	24	Referent	136,849	23	Referent	Referent			
Used pills	118,376	36	1.06	0.63–1.79	6501	2	1.34	0.31–5.76	1.09	0.67–1.78
Other MHT	8,467	1	0.55	0.07–4.10	1879	0				
Missing	377,185	79	64,233	19						

*aNumbers are for women with non-missing covariates.

bAdjusted for age (continuous), alcohol (g/day: none, ≤1.08, >1.08–3.58, >3.58–13.54, >13.54), BMI (kg/m²: <25, 25–29.9, ≥30), diabetes (yes, no), race (white, other), smoking (never, former, current), parent cohort study, menopausal status (pre-, post-menopausal), and education (<high school, high school, some college/vocational, college, graduate degree).

cAdjusted for age (continuous), alcohol (never, former, current light/occasional (<16 g/day), current heavy (≥16 g/day)), BMI (kg/m²: <25, 25–29.9, ≥30), smoking (never, former, current), menopausal status (pre-, post-menopausal), and education (<secondary school, secondary school, college, graduate degree).

dReference group for oophorectomy and hysterectomy is females who had natural menopause aged between 50 and 54 years old.

eInformation on MHT type and pill usage only available for current MHT users at baseline in the UK Biobank.
particular decreased androgen levels, in hysterectomised women. 49 Additionally, women undergoing hysterectomy may be more likely to begin taking MHT. 50 We also report that MHT use, in particular oestrogen-only MHT use, is more common among women who report hysterectomy than in those who report natural menopause. However, the LCPP does not have information on age at hysterectomy. In the UK Biobank, only 26% of participants started taking MHT after hysterectomy (7% within 1-year post-hysterectomy); thus, MHT initiation is not strongly related to hysterectomy. Further, adjustment for MHT use did not substantially change the hysterectomy-ICC association. Alternatively, hysterectomy, which has been associated with weight gain and diabetes, may have indirect effects on ICC risk. 51,52 In a recent meta-analysis, we reported that excess adiposity and diabetes were both associated with a 50% increased ICC risk. 53 Thus, hysterectomy could be leading to weight gain or development of diabetes in women that places them at higher ICC risk.

The current report is the first study focused specifically on reproductive factors and ICC. The large population of over 1.1 million women available from combining the LCPP and the UK Biobank allowed for investigation of reproductive factors and exogenous hormonal exposures in relation to ICC risk, which is a rare tumour with incidence rates typically 1.0/100,000 or less. Further, as the baseline enrolment for cohorts in the LCPP was 1980–1998 and in the UK Biobank was 2006–2010, the associations reported in both studies suggest that secular trends did not have influential effects. This study included a wide geographic representation from North America and the UK. Additionally, the prospective design minimises recall bias. In addition, sensitivity analyses that excluded ICCs that developed in the first two years of follow-up supported the results of the main analysis.

Limitations include exposure capture, risk factor information, and generalisability. All exposures in the included cohorts were self-reported. Thus, some of the exposures, for example oophorectomy, may not be reported accurately compared to medical report. However, the majority of studies to date have relied on self-reported data. In particular, for oral contraceptive use, there are not currently good resources with prescription information and sufficient follow-up for any liver cancer outcome. Formulations of oral contraceptives have changed over time, which makes examining and definitively addressing the association between oral contraceptive use and ICC challenging. Additionally, there was no information on specific MHT formulations, and for the UK Biobank, type of MHT used was only available for women currently reporting MHT use at the time of questionnaire administration. As serum or plasma samples were only available for a small number of ICC cases, we were unable to include HBV or HCV as potential covariates. However, the prevalence of HBV and HCV in the general population of women in the US and UK is exceedingly low (≤1%). 54–56 Further, the UK Biobank is in the process of testing all participants for viral factors but the data are not yet publicly available. As these cohorts were established to examine all cancer types, and not specifically liver cancer, there is no information on pre-existing liver disease among the participants in the LCPP. Models are adjusted for diabetes, but diabetes type (1 or 2) is not captured in the majority of LCPP cohorts. However, type 2 diabetes accounts for 95% of diabetes diagnoses. 57 As this is an older population, diabetes is utilised as a proxy of type 2 diabetes. Finally, this is a population of primarily white post-menopausal women. Thus, the generalisability of these results to other racial/ethnic groups may not be assumed.

In summary, we report that long-term oral contraceptive use and hysterectomy are associated with an increased risk of ICC. Other reproductive factors were unrelated to risk. While intriguing, replication of these findings is warranted, ideally in populations with medical record data to avoid potential misclassification of exposures.

ACKNOWLEDGEMENTS

For the Black Women's Health Study, pathology data were obtained from several of the following state cancer registries (AZ, CA, CO, CT, DE, DC, FL, GA, IL, IN, KY, LA, MD, MA, MI, NJ, NY, NC, OK, PA, SC, TN, TX, VA), and results reported do not necessarily represent their views. For the Nurses' Health Study and the Health Professionals Follow-up Study, we would like to thank the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. We assume full responsibility for analyses and interpretation of these data. For NIH-AARP, the acknowledgement can be found at the following website: https://dietandhealth.cancer.gov/acknowledgement.html. For the Women's Health Initiative, the full list of investigators that have contributed can be found on the following website: https://www.whi.org/researchers/Documents%20of%20Write%20a%20Paper/WHI% 20Investigator%20Long%20List.pdf. The American Cancer Society funds the creation, maintenance, and updating of the Cancer Prevention Study-II cohort. The authors express sincere appreciation to all Cancer Prevention Study-II participants, and to each member of the study and biospecimen management group. We would like to acknowledge the contribution to this study from central cancer registries supported through the Centers for Disease Control and Prevention’s National Program of Cancer Registries and cancer registries supported by the National Cancer Institute’s Surveillance Epidemiology and End Results Program.

AUTHOR CONTRIBUTIONS

Study concept and design, acquisition of data, analysis and interpretation of data, drafting of the paper, critical revision of the paper for important intellectual content, and statistical analysis: J.L.P. and U.C.M.; interpretation of data and critical revision of the paper for important intellectual content: B.I.G.; design and collection data from individual cohort studies, design of the consortium, interpretation of data, and critical revision of the paper for important intellectual content: K.A.M.; design and collection of data: X.Z., A.Z-J., J.W.W., T.G.S., R.S., I.L., J.E.B., X.Z., A.T.C., C.R.C., P.T.C.; concept and design of the consortium, collection of data for the consortium, analysis and interpretation of data, and critical revision of the paper for important intellectual content: K.A.M. All authors approved the final draft submitted.

ADDITIONAL INFORMATION

Ethical approval and consent to participate in the LCPP, the individual cohorts were approved by the institutional review boards of the participating institutions; the LCPP was approved by the NIH Office of Human Subjects Research. The UK Biobank was approved by the North West Multi-Centre Research Ethics Committee. All participants provided written informed consent, and the study was performed in accordance with the Declaration of Helsinki.

Data availability Data can be obtained for legitimate research purposes. Access to LCPP data can be provided by submitting a request to Katherine McGlynn (mcglynnk@mail.nih.gov) or Peter Campbell (peter.campbell@cancer.org). UK Biobank data can be provided by submitting an application to the UK Biobank (https://www.ukbiobank.ac.uk/).

Competing interests The authors declare no competing interests.

Funding information Access to the UK Biobank was funded by a Cancer Research UK Population Research Postdoctoral Fellowship (U.C.M.). The LCPP was funded by the U.S. National Cancer Institute (I.L.P., A.A.F., L.E.B.F., J.N.H., C.M.K., N.D.F., B.I.G., J.K., L.M.L., M.S.L., M.P.P., C.S., R.S., K.A.M.). National Institutes of Health grants CA047988 (I.L., J.E.B.), CA128913 (J.L., J.E.B.), HL043851 (J.L., J.E.B.), HL080467 (J.L., J.E.B.), HL099355 (J.L., J.E.B.), K07 CA188126 (K.X.), DK098311 (A.T.C.), CA186107 (A.T.C.), CA87969 (A.T.C.), CA167552 (A.T.C.), P20 CA016087 (A.Z.), P30 CA200526 (A.Z.), UM1 CA164974 (L. Rosenberg, Jr. Palmer), R01 CA058420 (L.R., J.R.P.), and R01 CA39742 (K.R., J.N.P.). American Cancer Society Research Scholar Grant RSG-NEC-130476 (X.Z.). The WHI program (J.W.W., T.E.R., Y.L., J.W.B.) is funded by the National Institutes of Health contracts HHSN268201600018C, HHSN268201600019C, HHSN268201600020C, HHSN268201600033C and HHSN268201600040C. The HPFS and NHS programs (X. Z.) were support by the National Cancer Institute, National Institutes of Health grant numbers U10CA186107, P50CA127003, PO1CA87969 and UM1CA167552.

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-08355-5.
REFERENCES

1. Saha, S. K., Zhu, A. X., Fuchs, C. S. & Brooks, G. A. Forty-year trends in cholangiocarcinoma incidence in the U.S.: Intrahepatic disease on the rise. Oncologist 21, 594–599 (2016).

2. Surveillance, Epidemiology, and End Results (SEER) Program (https://www.seer.cancer.gov) SEER*Stat Database: National Program of Cancer Registries (NPCR) and SEER Incidence - U.S. Cancer Statistics Public Use Database, Nov 2018 Sub 2001 (2016), National Cancer Institute, DCCPS, Surveillance Research Program, released April 2019, based on the November 2018 submission.

3. Altekruse, S. F., Devesa, S. S., Dickie, L. A., McGlynn, K. A. & Klein, D. E. Histological classification of liver and intrahepatic bile duct cancers in SEER registries. J. registry Manag. 38, 201–205 (2011).

4. Alvaro, D., Alpini, G., Onori, P., Franchitto, A., Mancino, M. G., Glaser, S. et al. Estrogen Regulation of Cholangiocyte Proliferation. Madame Curie Bioscience Database. (Landes Bioscience, Austin, 2000).

5. Alvaro, D., Alpini, G., Onori, P., Franchitto, A., Mancino, M. G., Glaser, S. et al. Estrogen and insulin-like growth factor 1 modulate neoplastic cell growth in human cholangiocarcinoma. Am. J. Pathol. 169, 877–888 (2006).

6. Londen, W. T., Petrick, J. L., McGlynn, K. A. Liver Cancer, in Schottenfeld and Fraumeni cancer epidemiology and prevention, 4th edn (eds Thun M. J., Linet M. S., Cerhan J. R. & Haiman C.). Schottenfeld D.) pp xix, 1308 pages. (Oxford University Press: New York, 2018) pp xix, 1308 pages.

7. Mancino, A., Mancino, M. G., Glaser, S. S., Alpini, G., Bolognese, A., Izzo, L. et al. Estrogens stimulate the proliferation of human cholangiocarcinoma by inducing the expression and secretion of vascular endothelial growth factor. Dig. Liver Dis. 41, 156–163 (2009).

8. Sampson, L. K., Vickers, S. M., Ying, W. & Phillips, J. O. Tamoxifen-mediated growth suppression of human cholangiocarcinoma cell lines. Int. J. Cancer 67, 292–298 (1997).

9. Isc, K., Specht, S. M., Lunz, J. G. 3rd, Kang, L. I., Mizuguchi, Y. & Demetrius, A. J. Estrogen stimulates female biliary epithelial cell interleukin-6 expression in mice and humans. Hepatology 51, 869–880 (2010).

10. Hunsawong, T., Singsuksawat, E., In-chon, N., Chawengrattanachot, W., Thuwajit, C., Sripa, B. et al. Estrogen is increased in male cholangiocarcinoma patients’ serum and stimulates invasion in cholangiocarcinoma cell lines in vitro. J. Cancer Res Clin. Oncol. 138, 1311–1320 (2012).

11. Petrick J. L., Florio A. A., Zhang X., Zeleniuch-Jacquotte A., Wactawski-Wende J., Simin, J., Tamimi, R., Lagergren, J., Adami, H. O. & Brusselaers, N. Menopausal hormone therapy use and risk of primary liver cancer in the clinical surveillance of radiologic technologists. Int J. Cancer 119, 1681–1691 (2000).

12. Kwong, G. C., Liu, Y., Chen, N., Hao, F. B., Wang, K., Cheng, J. H. et al. Reproductive factors, menopausal hormone therapies and primary liver cancer risk: a systematic review and dose-response meta-analysis of observational studies. Medicine 94, e1619 (2015).

13. IARC. Combined Estrogen-Progesterone Contraceptives 100A (IARCPress, Lyon, 2018).

14. Alvaro, D., Mancino, K., Alpini, G., Franchitto, A., Alpini, G., Francis, H. et al. Estrogens and the pathophysiology of the biliary tree. Hepatology 51, 869–880 (2010).

15. Alvaro, D., Alpini, G., Onori, P., Franchitto, A., Mancino, M. G., Glaser, S. et al. Estrogen and insulin-like growth factor 1 modulate neoplastic cell growth in human cholangiocarcinoma. Am. J. Pathol. 169, 877–888 (2006).

16. Londen, W. T., Petrick, J. L., McGlynn, K. A. Liver Cancer, in Schottenfeld and Fraumeni cancer epidemiology and prevention, 4th edn (eds Thun M. J., Linet M. S., Cerhan J. R. & Haiman C.). Schottenfeld D.) pp xix, 1308 pages. (Oxford University Press: New York, 2018) pp xix, 1308 pages.

17. Mancino, A., Mancino, M. G., Glaser, S. S., Alpini, G., Bolognese, A., Izzo, L. et al. Estrogens stimulate the proliferation of human cholangiocarcinoma by inducing the expression and secretion of vascular endothelial growth factor. Dig. Liver Dis. 41, 156–163 (2009).

18. Sampson, L. K., Vickers, S. M., Ying, W. & Phillips, J. O. Tamoxifen-mediated growth inhibition of human cholangiocarcinoma. Cancer Res. 57, 1743–1749 (1997).

19. Isc, K., Specht, S. M., Lunz, J. G. 3rd, Kang, L. I., Mizuguchi, Y. & Demetrius, A. J. Estrogen stimulates female biliary epithelial cell interleukin-6 expression in mice and humans. Hepatology 51, 869–880 (2010).

20. Hunsawong, T., Singsuksawat, E., In-chon, N., Chawengrattanachot, W., Thuwajit, C., Sripa, B. et al. Estrogen is increased in male cholangiocarcinoma patients’ serum and stimulates invasion in cholangiocarcinoma cell lines in vitro. J. Cancer Res Clin. Oncol. 138, 1311–1320 (2012).

21. Petrick J. L., Florio A. A., Zhang X., Zeleniuch-Jacquotte A., Wactawski-Wende J., Simin, J., Tamimi, R., Lagergren, J., Adami, H. O. & Brusselaers, N. Menopausal hormone therapy and cancer risk: an overestimated risk? Eur. J. Cancer 40, 60–68 (2017).

22. Schatzkin, A., Subar, A. F., Thompson, F. E., Harlan, L. C., Tangrea, J., Hollenbeck, A. R. et al. Design and serendipity in establishing a large cohort with wide dietary intake distributions: the National Institutes of Health-American Association of Retired Persons Diet and Health Study. Am. J. Epidemiol. 154, 1119–1122 (2001).

23. Alavanja, M. C., Sandler, D. P., McMaster, S. B., Zahm, S. H., McDonnell, C. J., Lynch, C. F. et al. The agricultural health study. Environ. Health Percept. 104, 362–369 (1996).

24. Flood, A., Velie, E. M., Chatterjee, N., Subar, A. F., Thompson, F. E., Lacey, J. V. Jr. et al. Fruit and vegetable intakes and the risk of colorectal cancer in the Breast Cancer Detection Demonstration Project follow-up cohort. Am. J. Clin. Nutr. 75, 936–943 (2002).

25. Kramer, B. S., Gohagan, J., Prorok, P. C. & Smart, C. A National Cancer Institute sponsored screening trial for prostatic, lung, colorectal, and ovarian cancers. Cancer 71(Suppl. 2), 589–593 (1993).

26. Ruxkrode, M. R., Lee, I. M., Cook, N. R., Hennekens, C. H. & Buring, J. E. Baseline characteristics of participants in the Women’s Health Study. J. women health Gend.-based Med. 9, 19–27 (2000).

27. Toniolo, P. G., Pasterнак, B. S., Shore, R. E., Sonnenschein, E., Koenig, K. L., Rosenberg, C. et al. Endogenous hormones and breast cancer: a prospective cohort study. Breast Cancer Res. Treat. 18(Suppl. 1), 523–526 (1991).
47. Florio A. A., Graubard B. I., Yang B., Thistle J. E., Bradley M. C., McGlynn K. A. et al. Oophorectomy and risk of non-alcoholic fatty liver disease and primary liver cancer in the Clinical Practice Research Datalink. *Eur. J. Epidemiol.* https://doi.org/10.1007/s10654-019-00526-1 (2019).

48. Phipps, A. I. & Buist, D. S. Validation of self-reported history of hysterectomy and oophorectomy among women in an integrated group practice setting. *Menopause* **16**, 576–581 (2009).

49. Laughlin, G. A., Barnett-Connor, E., Kritz-Silverstein, D. & von Muhlen, D. Hysterectomy, oophorectomy, and endogenous sex hormone levels in older women: the Rancho Bernardo Study. *J. Clin. Endocrinol. Metab.* **85**, 645–651 (2000).

50. Haney, A. F. & Wild, R. A. Options for hormone therapy in women who have had a hysterectomy. *Menopause* **14**, 592–597 (2007).

51. Mooman, P. G., Schildkraut, J. M., Iversen, E. S., Myers, E. R., Gradison, M., Warren-White, N. et al. A prospective study of weight gain after premenopausal hysterectomy. *J. Women’s Health (Larchmt.)* **18**, 699–708 (2009). e-pub ahead of print 2009/05/19.

52. Appiah, D., Winters, S. J. & Hornung, C. A. Bilateral oophorectomy and the risk of incident diabetes in postmenopausal women. *Diabetes Care* **37**, 725–733 (2014).

53. Petrick, J. L., Thistle, J. E., Zeleniuch-Jacquotte, A., Zhang, X., Wactawski-Wende, J., Van Dyke, A. L. et al. Body mass index, diabetes and intrahepatic cholangio-carcinoma risk: The Liver Cancer Pooling Project and Meta-analysis. *Am. J. Gastroenterol.* **113**, 1494–1505 (2018).

54. Balogun, M. A., Ramsay, M. E., Hesketh, L. M., Andrews, N., Osborne, K. P., Gay, N. J. et al. The prevalence of hepatitis C in England and Wales. *J. Infect.* **45**, 219–226 (2002).

55. Roberts, H., Kruszon-Moran, D., Ly, K. N., Hughes, E., Iqbal, K., Jiles, R. B. et al. Prevalence of chronic hepatitis B virus (HBV) infection in U.S. households: National Health and Nutrition Examination Survey (NHANES), 1988-2012. *Hepatology* **63**, 388–397 (2016).

56. Alter M. J., Kruszon-Moran D., Nainan O. V., McQuillan G. M., Gao F. X., Moyer L. A. et al. The prevalence of hepatitis C virus infection in the United States, 1988 through 1994. *N. Engl. J. Med.* **341**, 556–562 (1999).

57. Centers for Disease Control and Prevention. *National Diabetes Statistics Report, 2017.* (Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services, Atlanta, 2017).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020.