Disseminated Zoster Involving the Whole Body in an Immunocompetent Patient Complaining of Left Leg Radiating Pain and Weakness: A Case Report and Literature Review

Young-Seok Moon, MD¹, Wan-Jae Cho, MD², Youn-Sung Jung, MD¹, and Jun-Seok Lee, MD, PhD¹

Abstract

Introduction: Disseminated herpes zoster is defined as at least 20 skin lesions in multiple dermatomes. In particular, it has been reported mainly in patients with immunological defects. To our knowledge, there is no reported case of disseminated zoster in a non-immunocompromised patient with leg radiating pain and weakness. Case presentation: A 74-year-old man visited our hospital with left leg radiating pain and left hip pain. He had no underlying disease other than hypertension. Neurologic examination revealed radiating pain on the L4 dermatome of the left leg. The muscle power was grade 3 for the hip flexor and knee extensor, and grade 4 for the ankle dorsiflexor and big toe dorsiflexor of the left leg. There were no sensory changes or skin lesions on his left leg. Herniation of the nucleus pulposus of the lumbar spine was suspected and lumbar magnetic resonance imaging (MRI) was performed. However, no pathologic lesions were seen on lumbar MRI. On the third day of hospitalization, erythematous patches and vesicles were observed on the head, face, ear, neck, trunk, back, and both lower extremities. Herpes zoster infection was confirmed by polymerase chain reaction analysis. Treatment was performed with 250 mg of intravenous acyclovir every 8 hours for 6 days and 62.5 mg of intravenous methylprednisolone for 4 days. On the 13th day of hospitalization, the skin lesions and left leg radiating pain and weakness improved. Conclusion: We report the first case of disseminated herpes zoster involving the whole body in a non-immunocompromised patient complaining of left leg radiating pain and weakness. After treatment, both the patient's radiating pain and weakness improved.

Keywords
disseminated zoster, immunocompetent patient, radiating pain, weakness, case report

Submitted July 11, 2022. Revised August 10, 2022. Accepted July 27, 2022

Introduction

Herpes zoster is a common infection caused by the reactivation of the dormant varicella-zoster virus in the posterior dorsal root ganglion. The risk is increased in older and immunocompromised patients. Typical skin lesions occur over 50% of the chest, face, cervical, and...
Complications include post-herpetic neuralgia (10%), ocular complications (4%), and motor neuropathies (3%). These complications mainly occur in people with weakened immune systems. Herpes zoster usually occurs unilaterally within the distribution of a single cranial or spinal sensory nerve. Disseminated herpes zoster is defined as at least 20 skin lesions in multiple dermatomes. In particular, it has been reported mainly in patients with immunological impairments, such as human immunodeficiency virus infection, cancer, chemotherapy, immunological disorders, and bone marrow transplant recipients. To our knowledge, there is no reported case of disseminated zoster with leg radiating pain and weakness. Here, we report the first case of disseminated herpes zoster involving the whole body in a non-immunocompromised patient complaining of left leg radiating pain and weakness.

Case Presentation

A 74-year-old man visited the emergency department with left leg radiating pain and left hip pain that occurred 3 days earlier. He had no underlying diseases other than hypertension. The neurologic examination revealed radiating pain on the L4 dermatome of the left leg. The muscle power was grade 3 for the hip flexor and knee extensor, and grade 4 for the ankle dorsiflexor and big toe dorsiflexor of the left leg. There were no sensory changes or skin lesions on his left leg. Plain radiography of the lumbar spine showed intervertebral disc space narrowing at the L4-5 and L5-S1 levels. Plain radiography of the hip revealed no specific findings. The patient was admitted for pain control.

Herniation of the nucleus pulposus (HNP) of the lumbar spine was suspected and lumbar magnetic resonance imaging (MRI) was performed. However, there were no pathologic lesions on the lumbar MRI (Figure 1). A computed tomography (CT) scan of the lower extremity artery was performed to differentiate the symptoms from those of vascular problems, but there were no pathologic lesions. The initial laboratory examinations showed no specific findings. After admission, 25 mg of pethidine mixed with 500 mL of normal saline was administered intravenously to control pain, but the pain did not improve.

On the third day of hospitalization, erythematous patches and vesicles were observed on the head, face, ear, neck, trunk, back, and both lower extremities (Figure 2). A skin biopsy was performed for the vesiculopustular rash under the suspicion of disseminated herpes zoster. Herpes zoster infection was confirmed by polymerase chain reaction analysis. Treatment was performed with 250 mg of intravenous acyclovir every 8 hours for 6 days and 62.5 mg of intravenous methylprednisolone for 4 days. On the sixth day of admission, all of the lesions were covered with crust but the neuropathic pain persisted and gabapentin was prescribed for 6 days. On the 13th day of hospitalization, the skin lesions and left leg pain and weakness improved and he was discharged from the hospital. This study was approved by our Institutional Review Board in accordance with the Declaration of Helsinki.
Table 1. Disseminated Zoster in Immunocompetent Patient Reported in the Literature.

Author and year	Age	Sex	Underlying disease	Initial symptoms	Skin lesion location	Treatment	
Moriuchi et al. (1997)	37	M	None	Upper back vesicles and pain	Upper back, trunk, and extremities	IV acyclovir	
Gupta et al. (2005)	69	M	None	Forehead pain and vesicles	Chest, back, and upper and lower extremities	IV acyclovir	
Beby-Defaux et al. (2009)	28	M	None	Abdominal and lower back pain	Trunk and shoulder	IV acyclovir	
Kangath et al. (2013)	30	F	None	Headache and neck pain	Lower extremities	IV acyclovir	
Sun et al. (2013)	43	M	Chickenpox	Right trunk vesicles	Head, face, trunk, and extremities	IV acyclovir	
Yoon et al. (2013)	75	M	Diabetes mellitus Angina	External auricle vesicles and pain	Scalp, posterior neck, shoulder, upper arm, upper back	Oral acyclovir	
Takaoaka et al. (2013)	61	M	None	Right chest and back vesicles and pain	Right chest, back, left arm, abdomen	Oral valacyclovir	
Kashyap et al. (2013)	6	M	None	Vesicles and crusting	Left side of upper face and scalp, shoulder, trunk	Oral acyclovir	
Oladokun et al. (2013)	8	M	None	Headache and face vesicles	Face, chest, back, and upper and lower limbs	Oral acyclovir	
Goyal et al. (2013)	27	M	None	Headache and neck pain	Upper back and left arm	IV acyclovir	
Gomez et al. (2014)	95	F	Coronary artery disease Chronic obstructive pulmonary disease	Lower lip and face vesicles and pain	Face, oral mucosa, trunk, and upper and lower extremities	IV acyclovir	
Petrun et al. (2015)	74	M	Congestive heart failure Chronic obstructive pulmonary disease	Fever, headache, and fatigue	Face, scalp, trunk, and extremities	IV acyclovir	
Scotch et al. (2016)	53	F	None	Pruritic rash	Chest, face, abdomen, back, and arms	IV acyclovir	
Uchida et al. (2017)	88	M	Coronary artery disease Dizziness right face, arm, leg, and chest vesicles	Dizziness right face, arm, leg, and chest vesicles	Chest, extremities, face, and neck	IV acyclovir	
Rudinsky et al. (2017)	37	F	None	Neck erythematous rash	Head, neck, trunk, and extremities	IV acyclovir	
Lim et al. (2018)	64	M	Intracranial arteriovenous malformation Seizure	Intracranial arteriovenous malformation	Trunk, back, and upper limbs	IV acyclovir	
Drone et al. (2019)	67	F	Hypertension Diabetes mellitus	Painful left trunk rash	Left abdomen and back, face, and chest	IV acyclovir	
Chakraborty et al. (2020)	60	M	None	Right upper limb vesicles and pain	Trunk, back, face, and right upper extremities	IV acyclovir	
Chiriac et al. (2020)	67	M	Arterial hypertension Erythematous rash	Arterial hypertension	Erythematous rash	Trunk, face, and right inferior limb	Oral acyclovir
Oh et al. (2020)	86	M	Chickenpox	Confusion and right face swelling	Right face, trunk, and extremities	IV acyclovir	
Sohal et al. (2020)	40	M	Hypertension Migraine	Headache	Right thigh and gluteal region	IV acyclovir	
Matsuo et al. (2022)	78	F	None	Lower abdominal pain	Head, chest, abdomen, and back	IV acyclovir	

F, female; M, male; IV, intravenous.
Discussion

Disseminated cutaneous zoster rarely occurs in immunocompetent patients (2%), but it occurs in 15 – 30% of immunocompromised patients. In our case, the patient was a healthy patient with only hypertension as an underlying disease, and systemic zoster developed even though he was not immunosuppressed. Our patient had high blood pressure, and the only risk factor for developing zoster was an older age of 74 years. The median age of the reported immunocompetent disseminated herpes zoster patients was 65.4 years. When herpes zoster infection occurs, old age is one of the risk factors for complications such as zoster paresis, postherpetic neuralgia, and electrophysiological alterations in motor and sensory fibers. Therefore, even if there is no specific underlying disease in immunocompetent patients, it should be known that older age patients may develop disseminated zoster.

To date, a total of 22 immunocompetent patients have been reported to develop disseminated zoster. Most of the patients with disseminated zoster complained of headache, skin vesicle, dizziness, and pain in the face, trunk, and upper extremity as initial symptoms (Table 1). However, no patients complained of leg pain and weakness as initial symptoms, as in the patient in our case. In our case, we initially suspected lumbar HNP because the patient complained of radiating pain and weakness in the left leg. Generally, the symptoms of zoster are pain in the affected nerve root area first, followed by the development of vesicles in the skin segment dominated by the infected nerve root. Therefore, it is difficult to diagnose herpes zoster when the patient complains only of radiating pain and weakness without skin lesions. Once the patient complains of radiating pain in the lower extremities, spinal problems should be evaluated. However, if there is no spinal disease, the possibility of zoster should be considered even if there are no skin lesions.

Conclusion

We report the first case of disseminated herpes zoster involving the whole body in a non-immunocompromised patient complaining of left leg radiating pain and weakness. After treatment, both the patient’s radiating pain and weakness improved gradually.

Acknowledgments

We thank the patient for providing consent for reporting this case.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Ethics Approval

All consent procedures and details were approved by the Institutional Review Board of our institution (approval number: PC22ZESI0106).

Consent for Publication

Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor of this journal.

ORCID iD

Jun-Seok Lee https://orcid.org/0000-0003-4321-9611

References

1. Schmader K. Herpes zoster. Ann Intern Med. 2018;169(3): ITC19-ITC31. doi:10.7326/aitc201808070
2. Yawn BP, Saddier P, Wollan PC, St Sauver JL, Kurland MJ, Sy LS. A population-based study of the incidence and complication rates of herpes zoster before zoster vaccine introduction. Mayo Clin Proc. 2007;82(11):1341-1349. doi:10.4065/82.11.1341
3. Chiriac A, Chiriac AE, Podoleanu C, Stolnicu S. Disseminated cutaneous herpes zoster-A frequently misdiagnosed entity. Int Wound J. 2020;17(4):1089-1091. doi:10.1111/iwj.13370
4. Drone E, Ganti L. A case of disseminated zoster in an immunocompetent patient. Cureus. 2019;11(12):e6286. doi:10.7759/cureus.6286
5. Kim JB, Jung HJ, Lee JM, Im KS, Joo CH, Kim JW. Disseminated herpes zoster with a zoster paresis-induced femoral fracture. Geriatr Gerontol Int. 2012;12(1):168-171. doi:10.1111/j.1447-0594.2011.00739.x
6. Gupta S, Jain A, Gardiner C, Tyring SK. A rare case of disseminated cutaneous zoster in an immunocompetent patient. BMC Fam Pract. 2005;6:50. doi:10.1186/1471-2296-6-50
7. O’Toole EA, Mooney EE, Walsh JB, Sweeney EC, Barnes L. Disseminated herpes zoster in the elderly. Ir J Med Sci. 1997;166(3):141-142. doi:10.1007/bf02943592
8. Venkatesh SK, Lo LL. CT appearance of Varicella Zoster lesions in liver and spleen in an immunocompetent patient. J Clin Virol. 2006;36(4):303-305. doi:10.1016/j.jcv.2006.04.006
9. Moriuchi H, Moriuchi M, Sun CC, Trucksis M. Disseminated cutaneous zoster and aseptic meningitis in a previously healthy patient. J Infect. 1997;35(2):183-185. doi:10.1016/s0163-4453(97)91842-9
10. Beby-Defaux A, Brabant S, Chatellier D, et al. Disseminated varicella with multiorgan failure in an immunocompetent adult. *J Med Virol.* 2009;81(4):747-749. doi:10.1002/jmv.21447

11. Goyal H, Thakkar N, Bagheri F, Srivastava S. Herpes zoster meningitis with multidermatomal rash in an immunocompetent patient. *Am J Emerg Med.* 2013;31(11):1622.e1-2. doi:10.1016/j.ajem.2013.06.021

12. Kangath RV, Lindeman TE, Brust K. Herpes zoster as a cause of viral meningitis in immunocompetent patients. *BMJ Case Rep.* 2013;2013:bcr2012007575. doi:10.1136/bcr-2012-007575

13. Oladokun RE, Olomukoro CN, Owa AB. Disseminated herpes zoster ophthalmicus in an immunocompetent 8-year old boy. *Clin Pract.* 2013;3(2):e16. doi:10.4081/cp.2013.e16

14. Sun ZH, Guo YY, Li M, Yao ZR. Disseminated herpes zoster in immunocompetent patients not due to varicella-zoster virus gene mutation. *Chin Med J (Engl).* 2013;126(16):3193.

15. Takaoka Y, Miyachi Y, Yoshikawa Y, Tanioka M, Fujisawa A, Endo Y. Bilateral disseminated herpes zoster in an immunocompetent host. *Dermatol Online J.* 2013;19(2):13.

16. Yoon KJ, Kim SH, Lee EH, Choi JH. Disseminated herpes zoster in an immunocompetent elderly patient. *Korean J Pain.* 2013;26(2):195-198. doi:10.3344/kjp.2013.26.2.195

17. Gomez E, Chernev I. Disseminated cutaneous herpes zoster in an immunocompetent elderly patient. *Infect Dis Rep.* 2014;6(3):5513. doi:10.4081/idr.2014.5513

18. Kashyap S, Shanker V. Zoster ophthalmicus with dissemination in a six year old immunocompetent child. *Indian J Dermatol Venereol Leprol.* 2014;80(4):382. doi:10.4103/0378-6323.136997

19. Petrun B, Williams V, Brice S. Disseminated varicella-zoster virus in an immunocompetent adult. *Dermatol Online J.* 2015;21(3):13030/qt3czx99b.

20. Scotch AH, Hoss E, Orenstein R, Budavari AI. Disseminated varicella-zoster virus after vaccination in an immunocompetent patient. *J Am Osteopath Assoc.* 2016;116(6):402-405. doi:10.7556/jaoa.2016.082

21. Rudinsky DM, Jordan K. Disseminated herpes zoster causing acute respiratory distress syndrome in an immunocompetent patient. *BMJ Case Rep.* 2017;2017:bcr2017220542. doi:10.1136/bcr-2017-220542

22. Uchida K, Teske N, Christensen J. Disseminated zoster after trauma in an immunocompetent patient. *Am J Med.* 2017;130(12):e539-e540. doi:10.1016/j.amjmed.2017.06.021

23. Lim ZV, Tey H. Disseminated herpes simplex virus and varicella zoster virus co-infection in an immunocompetent patient. *Indian J Dermatol Venereol Leprol.* 2018;84(2):212-214. doi:10.4103/ijdvl.IJDVL_423_17

24. Chakraborty U, Chandra A, Sil A, Biswas SK. Elderly immunocompetent man presenting with disseminated cutaneous herpes zoster. *BMJ Case Rep.* 2020;13(8):e237480. doi:10.1136/bcr-2020-237480

25. Oh JH, Tummala S, Husnain MG. Disseminated herpes zoster with acute encephalitis in an immunocompetent elderly man. *BMJ Case Rep.* 2020;13(6):e232928. doi:10.1136/bcr-2019-232928

26. Sohal RJ, Sohal S, George T, Gilotra T. Varicella-zoster meningitis with hypoglycorrhachia in an immunocompetent patient presenting with disseminated varicella-zoster infection. *Cureus.* 2020;12(6):e8539. doi:10.7759/cureus.8539

27. Matsuo Y, Igarashi Y, Aoyama N, et al. Visceral disseminated varicella-zoster virus infection in an immunocompetent host. *Clin J Gastroenterol.* 2022;15(3):568-574. doi:10.1007/s12328-022-01607-7