Nanotechnology for cardiovascular diseases

Qinqin Hu,1,2,3 Zheyan Fang,1,3 Junbo Ge,1,2,* and Hua Li1,2,*

*Correspondence: ge.junbo@zs-hospital.sh.cn (J.G.); lihua199988@hotmail.com (H.L.)

Received: November 17, 2021; Revised: January 30, 2022; Accepted: January 30, 2022; Published Online: February 2, 2022; https://doi.org/10.1016/j.xinn.2022.100214
© 2022 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

GRAPHICAL ABSTRACT

PUBLIC SUMMARY

- Nanotechnology represents new viable approaches for diagnosis and treatment of cardiovascular diseases, the leading cause of morbidity and mortality worldwide.

- Nanotechnology-assisted biosensing and molecular imaging can improve the sensitivity and specificity in the diagnosis of cardiovascular diseases.

- Nanomaterials enable targeted drug delivery or directly exert therapeutic action for cardiovascular system, based on their physicochemical properties and surface modification.
Cardiovascular diseases have become the major killers in today’s world, among which coronary artery diseases (CADs) make the greatest contributions to morbidity and mortality. Although state-of-the-art technologies have increased our knowledge of the cardiovascular system, the current diagnosis and treatment modalities for CADs still have limitations. As an emerging cross-disciplinary approach, nanotechnology has shown great potential for clinical use. In this review, recent advances in nanotechnology in the diagnosis of CADs will first be elucidated. Both the sensitivity and specificity of biosensors for biomarker detection and molecular imaging strategies, such as magnetic resonance imaging, optical imaging, nuclear scintigraphy, and multimodal imaging strategies, have been greatly increased with the assistance of nanomaterials. Second, various nanomaterials, such as liposomes, polymers (PLGA), inorganic nanoparticles (AuNPs, MnO2, etc.), natural nanoparticles (HDL, HA), and biomimetic nanoparticles (cell-membrane coating) will be discussed as engineered as drug (chemicals, proteins, peptides, and nucleic acids) carriers targeting pathological sites based on their optimal physicochemical properties and surface modification potential. Finally, some of these nanomaterials themselves are regarded as pharmaceuticals for the treatment of atherosclerosis because of their intrinsic antioxidative/anti-inflammatory and photoelectric/photothermal characteristics in a complex plaque microenvironment. In summary, novel nanotechnology-based research in the process of clinical transformation could continue to expand the horizon of nanoscale technologies in the diagnosis and therapy of CADs in the foreseeable future.

INTRODUCTION

Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality in both the developed and developing world. With an estimated 17.9 million deaths annually, CVDs contribute 32% of all global deaths, of which 85% are due to heart attack or stroke. The most common cause of CVDs is atherosclerosis, a progressive disease involving the deleterious accumulation of lipids and fibrins within the arterial wall and a maladaptive immune response and dysregulation of cholesterol metabolism, initiating the formation of atherosclerotic plaques. The branches off the aortic root, namely, the left and right coronary arteries, supply oxygen-rich blood to the myocardium. Atherosclerotic lesions in the coronary arteries can cause luminal obstruction and stenosis, resulting in myocardial ischemia, hypoxia, and even necrosis, known as coronary atherosclerotic heart diseases or coronary artery disease (CADs). In addition to effective control of cardiovascular risk factors, early diagnosis is crucial to prevent CADs. Thanks to innovations in modern technology and the discovery of related biomarkers, there have been considerable advances in diagnostic methods in clinical practice, such as electrocardiography (ECG) and imaging techniques to evaluate abnormal cardiovascular conditions. In clinical treatment, medication can improve the long-term prognosis and prevent acute cardiovascular events. For example, evidence-based pharmacotherapies such as β-blockers, lipid-lowering drugs, ACE inhibitors, angiotensin receptor blockers, and low-dose aspirin are recommended in clinical guidelines for long-term secondary prevention. Moreover, the ischemia caused by thrombotic occlusion in acute cardiovascular events such as acute myocardial infarction (AMI) can be rescued by timely recanalization via thrombolytic therapy, stent implantation, or conventional recanalization surgery such as coronary artery bypass grafting. With advances in the understanding of CADs, increasing numbers of clinical approaches and preclinical studies have continued to be used to prevent or delay myocardial dysfunction in recent decades. However, the high mortality rates of CADs and consequent heart failure indicate that the current diagnosis and treatment methods still face great challenges.

Compared with bulk materials, nanomaterials have a high ratio of surface area to volume as well as tunable optical, electronic, magnetic, mechanical, catalytic, thermal, and biological properties, and they can be engineered to have different sizes, shapes, chemical compositions, surface modifications, and hollow or solid structures. These properties enable researchers to design novel diagnostic and therapeutic platforms at the molecular level that can outperform traditional modalities. In this review, based on summarizing the traditional diagnosis and treatment methods (Document S1), we first introduce the recent advances in the use of nanomaterials for the accurate diagnosis of CADs. Then, we provide a brief overview of the targeting strategies for nanomaterials to specifically recognize pathological sites, followed by a detailed summary of cutting-edge research on nanomaterial-based drug delivery systems and targeting inhibitors for the treatment of CVDs.

NANOTECHNOLOGY APPROACHES TO DETECT CADs

Nanotechnology-based approaches to detect CAD biomarkers

The early diagnosis of CADs increases the chance for successful treatment and potential cure, giving patients better prognoses and extended survival times. CAD-related biomarkers, such as cardiac troponins (cTns), myoglobin (Myo), creatinine kinase MB (CK-MB), C-reactive protein (CRP), and a series of miRNAs, are released into the bloodstream when the heart is damaged or stressed.

Therefore, one promising approach for the early diagnosis of CADs is to develop precise, specific, simple, stable, and rapid analyses of blood for such molecules. Mass spectrometry is frequently used for identifying potential biomarkers of CADs but is limited by sensitivity and specificity due to the low levels of biomarkers in human plasma. In view of these reasons, combining nanotechnologies with biosensors might serve as a promising solution for the diagnosis of early-stage CADs. The former can provide high-affinity binding to targeted molecules and reduce nonspecific adsorption via surface modification or structure optimization; the latter consists of two parts: a biological sensing element for recognizing targets and a transducer for converting data into electrical signals.

In this article, Tables 1 and S1 summarize biosensing methods for the rapid detection of important biomarkers with the assistance of nanomaterials. Protein targets are first sensed by recognition molecules such as antibodies, aptamers, or molecularly imprinted polymers, and the sensing is then quantitatively detected by various methods, including electrochemistry (EC), electrochemiluminescence (ECL), fluorescence methods (FL), colorimetry, surface-enhanced Raman scattering (SERS), and surface plasmon resonance technology (SPR). Nanomaterials with excellent optoelectronic properties greatly improve the detection sensitivity by orders of magnitude. With ZnSnO3 perovskite nanomaterial-decorated glassy carbon electrodes, Singh et al. designed a label-free EC biosensor to detect Tnt, which exhibited superbentomolar detection sensitivity owing to the ferroelectric property of ZnSnO3. Another similar example is the use of a gold triangular nanoprism (AuTNP)-based localized SPR biosensor to monitor CtnT in plasma, serum, and urine. The CtnT assay achieved an attomolar (≈15 a.m.) limit of detection (LOD), making it at least 50-fold more sensitive than other label-free techniques. The shape of nanomaterials is another of the key features to optimize for sensitive detection. EI-Safty et al. designed a label-free SERS sensor composed of 3D silver anisotropic nano-pinetree array-modified indium tin oxide (Ag NPT/ITO) substrates for the detection of Myo. Ag NPT/ITO displayed the highest SERS performance among nanostructure shapes (nanogaggregates, nanorods, and nanobranches), which was attributed to the presence of numerous hotspots, particularly in the junctions between the central rod and side.
arms. Dual-hybrid or multihybrid nanostructure materials can inherit the advantages of multiple structures, successfully achieving signal amplification.\textsuperscript{17,20,41} Ren’s group proposed an ultrasensitive sandwich-type electrochemical immunoassay with TiO$_2$-PPy-Au as the substrate material and TB-Au@CO-Fs as signal labels for the quantitative detection of cTnI.\textsuperscript{16} With the help of hybrid nanomaterials to improve electron transfer, the above sensor showed a linear range from 0.5 pg/mL to 10.0 ng/mL and a low LOD of 0.17 pg/mL. Besides, CdTe@IRMOF-3@C$_{24}$ nanocomposites also enlarge cTnI detection signals (Figure 1A).\textsuperscript{42} Because of the high surface area to volume ratio, nanomaterials, especially those with porous structures, are able to load large amounts of recognition elements (such as antibodies or aptamers) and transducer elements, resulting in signal cascade amplification.\textsuperscript{19,23,29,43} Accordingly, Zhang et al. prepared nano-diamond hybrid hydrogen-substituted graphdiyne (HsSDY@NDs) to fabricate electrochemical aptasensors for detecting Myo and cTnI (Figure 1B).\textsuperscript{29} Similar research was reported by Zhao et al., who synthesized Pd@Au nanocube-doped mesoporous silica nanoparticles (RMSNs) constructed according to this principle showed strong ECL signals, significantly outperforming conventional fluorescent detection (>3 orders of magnitude) (Figure 1C).\textsuperscript{42} Similarly, Zhang et al. used magnetic Fe$_3$O$_4$ nanoparticles as nanocarriers to load large amounts of natural horseradish peroxidase (HRP), HRP-mimicking Au@Pt nanoyzymes, and G-quadruplex/hemin DNAzyme, which generated markedly enhanced EC signals because of the cocatalytic effects of the various enzymes.\textsuperscript{29} In addition, the replacement of bioenzymes with nanoyzymes could not only ensure high sensitivity but also further improve the repeatability and stability of assays for clinical samples.\textsuperscript{19,46}

Recently, nanotechnology-based multimodel or multi-target and point-of-care testing (POCT) assays have emerged for detecting CAD biomarkers, helping to assess the disease process more accurately, rapidly, and conveniently.\textsuperscript{18,24,25,28,44,46} Previous studies found that ratiometric ECL could eliminate environmental interference and allow precise measurement. Yang’s group prepared AuNP-modified graphitic phase carbon nitride nanosheets (Au-CNNs) that acted as donors, which matched well with the adsorption of acceptor GPRu-Au (Au-loaded graphene oxide/polyethyleneimine) and ultimately showed high stability and a low LOD (Figure 1D).\textsuperscript{18} In addition, to achieve simultaneous detection in different periods of AMI, a microfluidic paper-based device (Figure 1E)\textsuperscript{44} was prepared. This device was designed by Kim et al. to detect tenbin V, a biomarker of myocardial infarction. In order to improve the quality of medical services and meeting the healthcare needs of remote districts. At present, a series of POCT methods have been designed to detect CAD biomarkers with the help of paper-based or microfluidic portable devices and the signal amplification features of nanomaterials (such as ZnO nanowires, Au@AgPtnPs, core-shell upconversion nanoparticles, and TiO$_2$ nanofibers).\textsuperscript{24,25,29,27} It has been noted that the time from collecting blood samples to the readouts of detection results can be less than 20 min. Regrettably, POCT methods currently still have LODs in the ng/mL range, which needs to be improved further.

In addition to protein biomarkers, noncoding RNAs, especially microRNAs (such as miR-133a and miR-499), are proposed to be novel biomarkers of myocardial injury.\textsuperscript{13} Li’s laboratory has made outstanding contributions in the

### Table 1. Nanotechnology-based biosensors to detect biomarkers of CADs

| Biomarkers | Recognition elements | Nanomaterials | Methods | Linear range | LOD | Time (min) | Samples | Ref |
|------------|----------------------|--------------|---------|--------------|-----|------------|---------|-----|
| Cardiac troponins (cTns) | antibody | AuNP-Hep-xGnP | DPV | 0.050–0.35 ng/mL | 0.016 ng/mL | 20 | whole blood | 15 |
| | Au NPs@CO-Fs | EC | 0.5 pg/mL–10 ng/mL | 0.17 pg/mL | _ | whole blood | 16 |
| | Ag/CoS nanofoam | ECL | 0.1 fg/mL ~ 100 pg/mL | 0.03 fg/mL | _ | _ | _ | 17 |
| aptamer | DNA nanotetrahedron and MOF | EC | 0.05–100 ng/mL | 16 pg/mL | _ | human serum | 19 |
| | DNA nanotetrahedron and Fe$_3$O$_4$/PDDA/Au@Pt | EC | 0.01–100 ng/mL | 7.5 pg/mL | _ | human serum | 20 |
| Myoglobin | antibody | Ag NPT/ITO | SERS | 10 ng/mL ~ 5 ng/mL | 10 ng/mL | _ | buffer, urine | 23 |
| | Pt-staining AuNPs | colorimetry | 5.74–150 ng/mL | 5.47 ng/mL | _ | _ | _ | 24 |
| | UCNPs | FL-LFA | 0.5–400 ng/mL | 0.21 ng/mL | _ | 10 clinical samples | 25 |
| | | aptamer | AuNPs/BNNSs | EC | 0.1–100 µg/mL | 34.6 ng/mL | _ | human serum | 26 |
| CK-MB | antibody | polypropylene@B$_2$WO$_6$ | PEC | 0.5–2000 ng/mL | 0.16 ng/mL | _ | human blood | 27 |
| Multitargets | antibody (cTnI, CRP) | TiO$_2$ nanofibrous | ELISA | 10 pg/mL ~ 100 ng/mL | 37 pg/mL | _ | spiked in whole blood | 28 |
| | aptamer (Myo, cTnI) | HsSDY@NDs | EIS | 10 fg/mL ~ 1 ng/mL | 9.04 fg/mL | _ | human serum | 29 |
| miRNAs | complementary strands | hollow Ag/Au NS | SERS with CHA | 1 fM ~ 10 nM | 0.306 fM | _ | human blood | 30 |
| | | AuNPs@G4-SNAzyme | ECL with CHA | 1 fM ~ 1 nM | 0.4 fM | _ | human serum | 31 |
| | | G4/MOFzymes | CL | 10 a.m.–10 p.m. | 2.17 a.m. | _ | 1 human serum | 32 |

DPV (differential pulse voltammetry); EC (electrochemistry); ECL (electrochemiluminescence); CL (chemiluminescence); PEC (photoelectrochemistry); CV (cyclic voltammetry); EIS (electrochemical impedance spectroscopy); MIP (molecular imprinted polymer); LFA (lateral flow assay); CHA (chain hybridization amplification); SERS (surface-enhanced Raman spectroscopy); SNAzyme (spherical nucleic acid enzymes).
Figure 1. Schemes of nanotechnology-based biosensors for detection of CADs biomarkers. (A) CdTe@IRMOF-3@CdTe nanocomposites to enlarge ECL signals. The strong ECL emission was achieved from isoreticular metal-organic framework (IRMOF) accelerator enriched quantum dots (CdTe), which were applied as an efficient ECL signal tag for trace cTnI detection. IRMOF allowed for encapsulating large amounts of CdTe, and functioned as a novel co-reactant accelerator for promoting the conversion of $S_2O_8^{2-}$ into $SO_4^{2-}$, further boosting the ECL emission of CdTe. IRMOF@CdTe-based immunosensor eventually performed a wide response range from 1.1 fg/mL to 11 ng/mL and a very low detection limit (0.46 fg/mL) (copyright American Chemical Society, 2018). (B) HsGDY@NDs-based aptasensors for detecting Myo and cTnI. The large surface and porous structure of HsGDY@NDs could absorb larger amounts of aptamer strands, giving low detection limits of 6.29 and 9.04 fg/mL for Myo and cTnI, respectively (copyright Elsevier Ltd., 2021). (C) Construction of RMSNs-based ECL-LFI strip for rapid, portable, and sensitive diagnosis. The RMSNs-based ECL-lateral flow immunosensor (ECL-LFI) enabled highly sensitive detection of cTnI-spiked human serum within 20 min at femtomolar levels ($\approx 0.81$ pg/mL) (copyright Wiley-VCH, 2020). (D) Ratiometric ECL-RET double-model detection of cTnI. Based on nanomaterials’ features, a dual-wavelength ratiometric ECL resonance energy transfer (ECL-RET) sensing platform was developed for the detection of cTnI, showing high stability and low LOD (3.94 fg/mL) (copyright American Chemical Society, 2019). (E) uPAD for multi-target detection. With advantages of stability and sensitivity, the nanomaterials, including AuNPs, AgNPs, and gold urchin NPs, were used as optical labels to provide visible color signals (copyright Elsevier Ltd., 2019). (F) Increase of catalytic activity with G4/MOFzymes for POCT of target miRNAs. The interfaced G4 DNAzymes on MOFs (G4/MOFzymes) were produced by targeting miRNA-triggered rolling circle amplification (RCA) reactions, which displayed an about 100-fold higher catalytic activity than those in solution. By using the G4/MOFzyme catalysts in the luminol/$H_2O_2$ CL system, sensitive detection of myocardial infarction (AMI)-related two miRNAs (low to 1 fM seen with naked eyes) was achieved in human serum with a smartphone as a portable imaging detector (copyright American Chemical Society, 2020).
Table 2. Nanomaterial-based noninvasive molecular imaging for the diagnosis of CADs

| Imaging modality | Nanoprobes | Sizes and shapes | Functions of nanoprobes | Targeting moieties | Targeted molecules/cells | Information provided | Ref |
|------------------|------------|------------------|------------------------|-------------------|-------------------------|---------------------|-----|
| MRI              | Gd-TPP<sub>1880</sub>/LMWF<sub>8775</sub> CNPs | ∼240 nm, spheric | P-selectin targeting, cell penetrating, and Gd-DTPA loading | LMWF | P-selectin on activated ECs and platelets | visualization of inflammatory endothelial cells | 55 |
| Optical imaging  | Ag<sub>2</sub>S-AngII | ∼10 nm spheric | NIR-II fluorescence signals, loading AngII for high targeting MI in minutes | AngII | AT1R in MI tissues | visualization of hearts damaged after MI and ischemic myocardial tissues | 56 |
| Nuclear scintigraphy | 64Cu-CANF-comb | ∼16 nm, comb-like | loading 64Cu for PET imaging, high targeting | CANF | NPRC | assessing the pathological function of NPRC and vulnerability of plaques | 57,58 |
| PAI              | PdB-CD36 NPs | ∼50 nm, spheric | providing PA signals and high targeting | CD36 antibody | inflammatory cells | reflecting the inflammation levels in atherosclerotic plaques | 59 |
| Multimodal imaging strategies | | | | | |
| PAI/SPECT/CT | Pd@Au-PEG-FA | ∼31 nm, nanosheet-like | providing PAI, SPECT, and CT signals, high targeting, low background | folic acid | FR on activated macrophages | imaging activated macrophages and vulnerable plaques | 60 |
| PAI/MRI/ultrasound | EWVDV-Fe-Ink-PFH NPs | ∼387.1 nm, spheric | providing PAI, MRI, and US signals, high targeting | EWVDV peptide | P-selectin on activated platelets | imaging thrombi | 61 |
| OCT/IR          | IR-QD      | ∼5 nm, spheric | providing OCT and PL signals | NA | NA | NA | 62 |
| XEL/MRI         | XEL-NCs    | ∼21.9 nm, spheric | providing XEL and MRI signals, background-free and turn-on properties | peptide | Thrombin | Monitor thrombosis progression | 63 |

**Nanotechnology-assisted molecular imaging for CAD diagnosis**

In this section, we will demonstrate the critical function of nanotechnology in different imaging strategies and the information on CADs provided by nanomaterial-based molecular imaging, as summarized in Tables 2 and S2.

**Magnetic resonance imaging.** Magnetic resonance imaging (MRI), as a mainstream noninvasive imaging technique, is suitable for characterizing abnormal blood vessel walls with plaques and thrombi. Compared with positron emission tomography (PET) or computed tomography (CT), MRI does not employ ionizing radiation, unlike ultrasound and optical methods, which cannot provide deep tissue penetration. MRI also has advantages over PET because of its much higher spatial resolution (submillimeter). Benefiting from this advantage, three-dimensional time of flight (3D TOF) and fast spin-echo (3D FSE) magnetic resonance angiography imaging were recently utilized to image carotid atherosclerotic plaques, and the lipid core volume, fibrous cap thickness, and hemorrhage volume were well determined. In addition, with the help of stress calculations and tissue strength assessment based on multicontrast MRI and MR-inflammation imaging, plaque rupture risk potential could be fully evaluated. However, one of the drawbacks of MRI is the much lower sensitivity of contrast agent detection compared with nuclear techniques. Hence, designing sensitive and specific probes for abundant accumulation at vessel lesions is critical for promoting the application of MRI in the diagnosis of CADs. Recently, MR–dedicated contrast agents, especially Gd-based and iron oxide nanoparticles, have been explored for the molecular imaging of atherosclerosis and thrombosis. Due to their own characteristics, nanoparticles based on Gd or iron oxide show clear contrast effects in T<sub>1</sub> and T<sub>2</sub> weighted MR images. Therefore, these targeted Gd-based and iron oxide nanoparticles have shown that MRI can be performed with sensitivity feasible for the diagnosis of atherosclerotic plaque formation, major components, and related diseases such as inflammation, paving the way for future clinical applications.

Recently, Zhang et al. designed highly sensitive magnetic iron oxide nanocubes (MIONs) to detect myocardial infarction (MI) via MRI (Figure 2A). In experiments, the zwiterionic biodegradable copolymer poly(lactide) poly(carboxybetaine) (PLA-PCB, PP), accompanied by phosphatydilserine (PS), provided superior colloidal stability, long blood circulation, and a low T<sub>2</sub> signal for nanocubes to overcome the hydrophobic properties and insufficient delivery of MIONs as MRI contrast agents. PS can bind to PS receptors on the macrophage surface during early inflammation in MI. Similarly, engineered hybrid metal oxide–peptide amphiphile micelles (HMO-Ms) were constructed for potential use in MRI of vulnerable plaques (antibodies, peptides, or ligands), greatly increase the specificity of accumulation of MRI nanoprobes in ruptured or rupture-prone lesions and confer a longer circulation time. Therefore, these targeted Gd-based and iron oxide nanoparticles have shown that MRI can be performed with sensitivity feasible for the diagnosis of atherosclerotic plaque formation, major components, and related diseases such as inflammation, paving the way for future clinical applications.
Figure 2. Various nanotechnology-based molecular imaging methods

(A) PP/PS@MIONs used in MRI imaging of MI. With external magnetic field-induced targeting and PS targeting, the PP/PS@MIONs nanosystem enhanced the accumulation in infarcted area, showing accurate MRI-based visualization of MI at an early stage. (This is an open access article distributed under the terms of the Creative Commons Attribution [CC BY-NC] license.)

(B) Platelet membrane-coated nanoparticles for magnetic resonance imaging activated endothelium, collagen, and form cells in plaques. Biomimetic PNP could not only bind to advanced plaques but also probe the pre-atherosclerotic lesions (copyright American Chemical Society, 2018).

(C) T1/T2 dual-mode MRI for detecting thrombus. cRGD@MLP-Gd exhibits a T2 contrast enhancement at 1 h after intravenous administration, followed by a visibly larger T1 contrast enhancement at the thrombus site (copyright Royal Society of Chemistry, 2020).

(D) "Off-on" nanoprobe P-ICG2-PS-Lip for optical imaging of macrophages in vulnerable plaques. Note that the peptide-ICG2 was optically silent under normal conditions but activated in the presence of the lysosomal enzyme, cathepsin B. The NIRF fluorescent signal of P-ICG2-PS-Lip was successfully observed at the plaques on the artery walls (copyright Elsevier Ltd., 2020).

(E) NIR-II nanoprobe used in optical imaging of MI. With the analysis of time course experiments, the AngII-Ag2S NDs could specifically accumulate at the ischemic myocardial tissues after intravenous injection within a few minutes, which opens a new avenue toward cost-effective, fast, and accurate in vivo imaging of the ischemic myocardium after AMI (copyright Wiley-VCH, 2020).

(F) 99mTc-HFn nanotracer for PET imaging of vulnerable plaques. The specific uptake of 99mTc-HFn in plaques enabled quantitative measuring of the vulnerable and early active plaques as well as dynamic changes of inflammation during plaque progression (copyright American Chemical Society, 2018).

(G) OPN/Ti3C2/ICG nanoprobe for accurate PAI of vulnerable plaques. OPN/Ti3C2/ICG possessed enhanced PA performance and high specificity to foam cells in vulnerable atherosclerotic plaques (copyright Wiley-VCH, 2020).
offering potential for the early diagnosis of thrombosis in atherosclerosis. Zhou et al. explored profin-1 antibody (PFN1)-loaded paramagnetic iron oxide nanoparticles in a complex with low-pH-sensitive cycloexetrin (PFN1-Cy3-MNPs) for the MRI of atherosclerosis.\(^{68,70,74}\) Platelets are involved in different stages of atherosclerosis progression, such as endothelial inflammation and immune cell recruitment. Therefore, platelet membrane-coated nanoparticles (PNPs) incorporating lipid-chelated Gd were synthesized by Zhang’s group.\(^{75}\) Live MRI imaging showed that the biomimetic PNPs could not only bind to advanced plaques but also probe preatherosclerotic lesions (Figure 2B). Based on the same principle, self-assembled complex nanoparticles (CNPs) composed of polymerized low-molecular-weight fucoaid (LMWF8775) and a thermolysin-hydrolyzed protease (TPP1880) were successfully prepared for imaging activated or inflamed endothelial cells with P-selectin overexpression. Compared with free Gd-DTPA, CNPs loaded with Gd contrast agent showed better T1 relaxivity and selectively accumulated in activated HUVECs with increased MRI intensity and reduced cytotoxicity.\(^{72,73}\) Recently, the same principle was also applied to PPI peptide-functionalized, glutathione-biocalyzed gold/gadolinium-based nanoparticles (GSH-PPI-Au/Gd-NPs) synthesized by Li et al.\(^{74}\) The PPI peptides could specifically bind to class AI scavenger receptors (SR-AI) on foamy macrophages, and GSH molecules could endow the nanoparticles with superior stability, negligible cytotoxicity, and excellent biocompatibility. These novel nanoparticles integrated T1 signal amplification, precise macrophage targeting, and systematic clearance capabilities for the noninvasive characterization of vulnerable plaques of early-stage atherosclerosis.

To achieve highly accurate CAD diagnosis, researchers have attempted to combine complementary information obtained from multiple imaging techniques.\(^{94}\) However, differences in the depth of penetration and spatial/time resolution of various imaging devices may lead to difficulties and discrepancies when matching images, resulting in interpretation inaccuracies.\(^{94}\) For this reason, the development of dual imaging strategies employing a single technique and instrumental system would provide significant advantages. Whitaker’s group generated ultrasmall magnetic dual-contrast iron oxide nanoparticles (DCIONs) by a high-temperature coprecipitation method, which acted as both an efficient positive and negative dual-contrast agents for MRI.\(^{76,77}\) After tagging with a single-chain antibody (scFv), DCIONs could specifically bind to GPIb/IIa receptors on activated platelets. In the presence of scFv-DCIONs, thrombi were highlighted in T1-weighted imaging by a bright/positive signal and in T2-weighted imaging by a dark/negative signal generated around their surface. The duality of T1 and T2 conferred MRI stronger contrast and a smaller T1/T2 ratio, which greatly increased the sensitivity and accuracy of diagnosis. Similarly, cyclic RGD-functionalized liposomes (cRGD@MLP-Gd) encapsulated with Gd-DTPA and SPIO were prepared by Li’s group (Figure 2C).\(^{78,79}\) In their experiment, the dynamic T1/T2 dual-mode property not only made cRGD@MLP-Gd actively bind to thrombi but also potentially enabled the monitoring of rupture-prone atherosclerotic lesions.

**Optical imaging.** Optical imaging technology has made great improvements in biomedical research. The prominent features of spatial resolution (micrometer-range), high sensitivity of (sub)cellular localization, lack of radiation, and cost effectiveness features make it attractive for the imaging atherosclerotic plaques and clots.\(^{80,91}\) However, the poor penetration depth of light (from millimeters to several centimeters) and undesirable overlap with autofluorescence in plaque tissues reduce the potential application of optical imaging platforms in the clinic. Fortunately, NIR-I, with reduced tissue autofluorescence background and scattering and enhanced tissue penetration, presents an exciting method for the identification of atherosclerotic lesions at the molecular level.\(^{92-94}\)

NIR-I dyes, with emission peaks in the range of 700–900 nm, have higher signal-to-background ratios than visible probes.\(^{93,94}\) Functional nanoparticles (such as polymeric nanoparticles, liposomes, and iron oxide nanoparticles) can serve as carriers to transport NIR-I dyes to plaque sites or can be designed as activated fluorescent “off-on” switches for NIRF imaging of atherosclerotic plaques or thrombi. Cy5.5-labeled hyaluronan nanoparticles (HA-NPs) were synthesized to investigate the endothelial barrier integrity and the enhanced permeability and retention (EPR) effect during atherosclerosis progression in ApoE−/− mice.\(^{97}\) The results showed that HA-NPs first entered the plaque via endothelial junctions, then distributed throughout the ECM and were eventually engulfed by plaque-associated macrophages. These features enabled HA-NPs to reflect the different stages of plaque progression during the treatment. Experiments with similar principles showed that a multivalent nucleic acid-scavenging nanoprobe (Dex-T0) synthesized through the conjugation of fluorochrome thiazole orange (TO) and polymer dextran carrier (40 kDa) was able to identify MI injury effectively with fluorescence reflectance imaging.\(^{98}\) Activatable fluorescent “off-on” probes have already been designed in recent years for the targeted molecular imaging of plaques and thrombi, which could further reduce the background and increase the specificity of diagnosis. Ogawa et al. synthesized a fluorescent switch-on nanoprobe, peptide-IGG2 encapsulated in a phosphatidylserine (P-I1CG2)-lip, for the specific imaging of macrophages in vulnerable plaques (Figure 2D).\(^{97}\) Similarly, thrombin-activatable fluorescent peptide (TAP)-incorporated silica-coated gold nanoparticles (TAP-SO2@AuNPs) were developed for the direct imaging of thrombi.\(^{99}\) The TAP-SO2@AuNPs showed a quenched NIRF signal under normal conditions due to the excellent quenching effect of SO2@AuNPs. In the presence of thrombin in vitro, a 30.31-fold higher NIRF intensity was rapidly recovered because of the thrombin-specific cleavage of TAP molecules on the SO2@AuNP surface. Additionally, TAP-SO2@AuNPs successfully accumulated in thrombi by size-dependent capture and clearly distinguished thrombotic lesions from peripheral tissues in NIR/micro-CT imaging.

The emergence and development of new technologies have led to novel fluorescence nanoparticles emitting in the second NIR window (NIR-II, 1,000–1,700 nm), which allows NIRF imaging to visualize deep tissues with an unprecedented degree of clarity for diagnosis or surgical guidance.\(^{100-103}\) Some novel biofunctionalized NIR-II nanoparticles, such as quantum dots (QDs),\(^{56,104,105}\) single-walled carbon nanotubes (SWNTs),\(^{106,107}\) and rare earth-based upconversion nanoparticles (UCNPs),\(^{106-108}\) have been reported for the in vivo imaging of atherosclerosis or AMI, which will help to expedite the clinical transition of NIR imaging. Although differentiating vulnerable plaques from stable plaques remains challenging in the clinic, Gao et al. developed highly luminescent, macrophage-specific core@shell-structured NaGdF4:Yb, Er@NaGdF4 nanoprobes (UCNP-anti-OPN probe) to visualize vulnerable atherosclerotic plaques.\(^{98}\) The core@shell structure maximized the contrast-enhancing performance, and the luminescence intensity of the core was well preserved after surface Pegylation through the ligand exchange process. In addition, surface Pegylation enabled the covalent conjugation of antibody-sensing osteopontin (OPN), which is a secreted biomarker associated with macrophages and foamy macrophages that can be used to identify vulnerable plaques. This UCNP-anti-OPN nanoprobe produced different optical signals between vulnerable and stable plaques by lowering shear stress and oscillatory shear stress, implying that the probe and imaging strategy were potentially useful for the precise diagnosis of atherosclerotic plaques. In a study of MI, Nuria Fernández et al. employed angiogenin II (AngII)-functionalized Ag3S nanodots (AngII-Ag3S NDs) for NIR-II in vivo imaging of ischemic myocardium after AMI (Figure 2E).\(^{56}\) This method of fast and precise localization of ischemic tissues in the myocardium after AMI is needed by clinicians as the first step toward accurate and efficient therapy.

**Nuclear scintigraphy.** Among various imaging technologies, radionuclide-based molecular imaging has been widely exploited for the diagnosis of atherosclerosis due to its high sensitivity, quantification, functional detection, noninvasive nature, and well-established pathways for human translation.\(^{111,112}\) With outstanding capacities, PET shows 2–3 times better spatial resolution than SPECT and allows the detection of picomolar concentrations of nucleic acids.\(^{113}\) 18F-fluorodeoxyglucose (18F-FDG)-based PET, which can detect vascular inflammation and macrophage burden, has been proposed as the noninvasive gold standard for atherosclerotic plaque vulnerability identification.\(^{114}\) However, its limited spatial resolution (~2 mm) and high myocardial metabolic uptake (resulting in a lack of specificity for atherosclerosis) have restricted the scope of the clinical application of 18F-FDG PET. In particular, the small size of vascular plaques requires a higher accumulation of focal, targeted, and specific 18F-FDG. Therefore, radiotracers that are more specific for inflammation and better suited for vascular lesion imaging are of intense interest for the sophisticated characterization of atherosclerosis.

To overcome these shortcomings of existing radiotracers, biofunctional nanoprobe labeled with radionuclides and targeting elements have been proposed. Liu’s group constructed a poly(methyl methacrylate)-core/polyethylene glycol-shell amphiphilic comb-like nanoparticle conjugated with viral macrophage
inflammatory protein-II (MIP-II).\textsuperscript{115} After radiolabeling with $^{64}$Cu, the biofunctional nanoparticles sensitively and specifically detected chemokine receptors in both mouse vascular injury models and atherosclerosis models. In the process of plaque formation, chemokine receptors are upregulated in macrophages.\textsuperscript{116,117} Thus, the $^{64}$Cu-MIP-II-comb nanoprobe for PET imaging could be able to identify plaque progression.\textsuperscript{115} Another successful example was the bioengineering of natural heavy-chain ferritin (HFn) nanocages radiolabeled with technetium 99m ($^{99m}$Tc-HFn) for the SPECT/CT imaging of vulnerable atherosclerotic plaques.\textsuperscript{82} This focal $^{99m}$Tc-HFn uptake in vivo was observed in atherosclerotic plaques with multiple high-risk features such as macrophage infiltration and active calcification and in early active ongoing lesions with intense macrophage infiltration (Figure 2F). It was superior to the noninvasive gold standard $^{18}$F-FDG and the promising calcification activity imaging agent $^{18}$F-NaF due to its high sensitivity and specificity for the quantitative detection of early plaques. Notably, HFn nanocages exist naturally in humans and are composed of nontoxic globular proteins (8–12 nm) that do not activate inflammatory or immunological responses.\textsuperscript{118}

Apart from targeting macrophages, foam cells (Figure 2G) in plaques, natriuretic peptides, and their natriuretic peptide receptors have been largely neglected as potential targets for the imaging or therapy of atherosclerosis.\textsuperscript{119} Relevant research has demonstrated that the clearance receptor (NPRC) acts as a biomarker for atherosclerosis in both human coronary arteries and animal models.\textsuperscript{120} Thanks to that foundation, Pamela K. Woodard et al. conjugated NPRC binding peptide and C-type atrial natriuretic factor (CANF) to produce well-defined comb nanoparticles (CANF-comb) for the PET imaging of atherosclerosis in a mouse apoE−/−model.\textsuperscript{57} In that experiment, 25% $^{64}$Cu-CANF-comb could efficiently bind to upregulated NPRC located on atherosclerotic plaques, exhibiting impressive sensitivity and targeting specificity during the progression of atherosclerotic plaques. Furthermore, the imaging ability and clinical transformation potential of $^{64}$Cu-CANF-Comb nanoparticles were verified for the imaging of complex atheromatous plaques in a rabbit double injury-induced atherosclerosis model and ex vivo human CEA (carotid endarterectomy) specimens.\textsuperscript{121}

**Multimodal imaging strategies.** Each single imaging modality possesses its own unique merits and intrinsic drawbacks. In clinical diagnosis, MRI shows excellent high spatial resolution but low sensitivity, and NIF imaging is attractive due to its high sensitivity, low background, and low cost but has unsatisfactory tissue penetration depth. PET imaging provides brilliant sensitivity but involves ion radiation and has only low spatial resolution. Therefore, multimodality fusion is currently an important trend in imaging technology. The combination of multiple imaging modalities yields complementary diagnostic information and offers synergistic advantages over a single imaging modality,\textsuperscript{70,126–128} resulting in more sensitive and accurate detection of CADs.\textsuperscript{129}

The first mentioned multimodal fusion is the nanoparticle-based PET/MRI dual-modal imaging method,\textsuperscript{127–131} which displays excellent potential with high resolution from MRI and deep tissue penetration from PET. Accordingly, Kelhier et al. described a modified polyglucose nanoparticle,\textsuperscript{132} $^{18}$F-Macroflor, with high avidity for macrophages, which was enriched in cardiac and plaque macrophages to increase PET signals in infarcts or atherosclerotic plaques in mice or rabbits (Figure 3A).\textsuperscript{127} These dual-modal imaging data might provide information on orthogonal biomarkers that reflect macrophage biology in the future. In addition to macrophages, myeloid cells also participate in a complex immune response in ischemic heart disease. Mulder’s group reported an imaging approach based on myeloid cell-specific and multimodal nanotracers.\textsuperscript{131} The nanotracers are derived from high-density lipoprotein with a perfluoro-crown ether payload (19F-HDL) and labeled with zirconium-89 and fluorophores, which could allow MRI, PET, and optical imaging simultaneously (Figure 3B). This multimodality imaging approach will be a valuable addition to the immunology toolbox, enabling the dynamic study of complex myeloid cell behavior. Besides, the combination of MRI and optical imaging for dual-modal imaging could effectively relieve their respective drawbacks: the low sensitivity of MRI and the poor tissue penetration and spatial resolution of optical imaging (Document S2).\textsuperscript{106,132–138}

A recently emerged biomedical imaging modality is photoacoustic imaging (PAI), which relies on the broadband acoustical waves generated from the interaction between nanosecond pulsed light and photobosbers in tissues.\textsuperscript{139} PAI shares a common signal detection regimen with ultrasound imaging; therefore, it could combine high spatial resolution and traditional ultrasound depth penetration from selective optical absorption.\textsuperscript{140} Different types of nanostructures have been used to date for the PAI detection of CADs,\textsuperscript{139} including CuS nanoparticles,\textsuperscript{141} gold nanocages,\textsuperscript{142} gold nanorods,\textsuperscript{143} and graphene oxide.\textsuperscript{144} Ge and his colleagues evaluated the feasibility of identifying vulnerable atherosclerotic plaques at the molecular level in vivo with noninvasive PAI nanoprobes.\textsuperscript{83} They succeeded in fabricating osteopontin antibody (OPN Ab) and ICG (NIR fluorescence molecules) coassembled Ti$_2$C$_2$ nanosheets (OPN Ab/Ti$_2$C$_2$/ICG), which possessed enhanced PA performance and high specificity for foam cells in vulnerable atherosclerotic plaques (Figure 2G). Moreover, targeted nanomaterial-based PA imaging usually coordinates with other imaging techniques, such as MRI, optical imaging, ultrasound, SPECT, and CT, to achieve more accurate detection of atherosclerotic plaques and thrombosis progression.\textsuperscript{60,139,145,146} For example, folate-conjugated 2D Pd@Au nanomaterials (Pd@Au-PEG-FA) were used to image folate receptor-positive activated macrophages, a prominent component in advanced vulnerable plaques.\textsuperscript{60} After injection of Pd@Au-PEG-FA, strong signals were detected in vivo with SPECT, CT, and PA imaging in heavy atherosclerotic plaques, which were significantly higher than those of normal aortas (Figure 3C).

In addition to the above multimodal strategies, other nanomaterial-based combined schemes for the diagnosis of CADs, including optical coherence tomography (OCT)/infrared luminescence (IR) and X-ray-excited luminescence (XEL)/MRI, have also been reported.\textsuperscript{62,147} For instance, IR-QDs emitting in the third infrared biological window (1.55–1.87 μm) were synthesized for intra-coronary OCT/IR multimodal imaging.\textsuperscript{147} Under single-line laser excitation at 1.3 μm, the IR-QDs could provide simultaneous backscattering contrast and efficient luminescence at 1.6 μm, which was confirmed in both aqueous suspensions and tissues by using IC-OCT clinical equipment. Recently, Yang’s group developed thrombin-activatable scintillating nanoprobes for the background-free NIR-XEL imaging of thrombosis in vivo.\textsuperscript{55} These nanoprobes were constructed from bright XEL-emitting lanthanide-doped scintillator nanocrystals (NCs) and thrombin cleavable dye-peptide conjugates (Figure 3D). Because the nanoprobes were also compatible with MRI, XEL/MR dual-modal imaging could be performed to confirm the imaging accuracy and realize the practical monitoring of thrombosis progression.

In summary, the construction of advanced nanoprobes for molecular imaging could offer versatile tools for target-specific visualization of the biological processes of atherogenesis: inflammatory infiltration, fibrotic response, formation of vulnerable plaques, and thrombosis. Although great progress has been made, the clinical translation of nanoprobe-based molecular imaging remains a challenge. First, the biocompatibility, pharmacokinetics, and safety of nanoprobes in vivo should be investigated clearly and deeply. Second, large-scale manufacturing of nanoprobes with controlled physicochemical properties is the foundation of promoting their application in the clinic. Third, research on the fates of nanoprobes in complex plaque microenvironments and biomarkers of the pathological changes in vulnerable plaques and thrombosis will continue to be the focus in the diagnosis and treatment of CADs in the future.

**NANOTECHNOLOGY APPROACHES FOR THERAPY OF CADs**

In this section, we will discuss nanotechnology approaches applied in the treatment of CADs based on nanomaterials’ physicochemical property and surface modification. The nanotechnology’s application in medical tissue engineering will be given in Document S3 and Figure S1.

**Nanomaterials as smart carriers for drug delivery**

Generally, smart nanocarriers encapsulate two parts: targeting moieties and therapeutic drugs. Therefore, targeting moieties, including peptides, antibodies, ligands, and cell membranes, could drive the nanoplatforms to the lesion microenvironment and target the components of interest (Figure 4). Owing to their high capacity and easy modification, diverse therapeutic drugs, such as chemicals, proteins, peptides, and nucleic acids, have previously been loaded into nanocarriers. Tables 3 and S3 summarize recently reported nanocarriers to deliver different drugs in detail.

**Nanocarriers to deliver chemical drugs and plant monomers**

Small-molecule drugs, such as statins, are widely prescribed medicines for lowering the risks of CAD.\textsuperscript{139} However, systemic delivery of these chemical drugs can potentially induce dose-dependent adverse effects such as hepatotoxicity and myopathy.\textsuperscript{139} To overcome these issues, various nanocarriers have been synthesized to deliver small-molecule drugs targeting atherosclerotic plaques or thrombi. The specific
Figure 3. Multimode imaging strategies for specific and accurate detection of atherosclerotic plaques and thrombi (A) Macroflor nanotracer for PET/MRI to visualize atherosclerosis. In PET/MRI experiment, 18F-Macroflor PET imaging detected changes in macrophage population size, while molecular MRI reported on increasing or resolving inflammation (copyright Springer Nature, 2017). (B) 89Zr-19F-HDL nanotracer to monitor myeloid cell dynamic in atherosclerotic mice with myocardial infarction with PET/MRI. With the 89Zr label, the short-term dynamics and biodistribution of myeloid cells in vivo could be monitored at high levels of sensitivity by PET. Optical imaging could be used to study the associated cell subsets at a cellular level. The incorporated fluorine core allowed the nanotracer to quantify (by MRI) the myeloid cell dynamics up to 28 days post-injection, which remedied the physical decay of PET signals. With the integrative strengths of multimodal imaging, in atherosclerotic mice with myocardial infarction, the nanotracer displayed rapid myeloid cell egress from the spleen and bone marrow and their accumulation in atherosclerotic plaques and at the myocardial infarct site (*P < 0.05, **P < 0.01 and NS, no significance, two-sided Mann–Whitney U-test) (copyright Springer Nature, 2020). (C) Folate-conjugated 2D Pd@Au nanomaterials (Pd@Au-PEG-FA) for SPECT, CT, and PA imaging in heavy atherosclerotic plaques. CT helped to restrict the pathological depiction more accurately. With synergistic effects from high sensitivity of SPECT and high resolution of CT, Pd@Au-PEG-FA produced strong PA signals that could provide structural imaging information of cardiac vasculature with high temporal and spatial precision (copyright Springer Nature, 2020). (D) Thrombin-activatable scintillating nanoprobes for NIR-XEL imaging of in vivo thrombosis. Such nanoprobes showed XEL-off originally and enabled robust thrombin-activated turn-on XEL, which conferred XEL imaging background-free attribute and allowed it for detecting the early thrombosis on the basis of in situ elevated thrombin levels (copyright Wiley-VCH, 2021).
accumulation of such drugs at lesions could increase their bioavailability and therapeutic effects.\textsuperscript{128,148–150,160–163} Nanoparticles of the bioactive polymer hyaluronan (HA) with atorvastatin cores (HA-ATV-NPs) were synthesized to specifically bind with CD44, a cell surface receptor overexpressed on cells in atherosclerotic plaques.\textsuperscript{164} The HA-ATV-NPs exhibited significantly higher anti-inflammatory effects on macrophages than ATV alone both \textit{in vitro} and \textit{in vivo}.\textsuperscript{148} Simvastatin was loaded via a core/shell, cargo-switching nanoparticle (CSNP) composed of methyl-\textbeta-cyclodextrin (cyclodextrin, core) and phospholipids (shell) (Figure 5A).\textsuperscript{165} Because cholesterol shows a higher affinity for cyclodextrin than for statins, systemically injected CSNPs could target atherosclerotic plaques, release statins, and scavenge cholesterol through cargo switching.\textsuperscript{165} In an \textit{in vivo} experiment, CSNP effectively prevented atherogenesis and caused the regression of established plaques.\textsuperscript{165} In addition to targeted accumulation, another major hurdle for the clinical application of nanodrugs is that most nanoparticles are taken up and removed by the reticuloendothelial system (RES) before reaching the target sites. To better escape RES clearance and achieve controlled payload release at plaque sites, Gao et al. developed macrophage membrane-coated reactive oxygen species (ROS)-responsive nanoparticles (MM-NPs) to encapsulate atorvastatin (MM-AT-NPs).\textsuperscript{149} This biomimetic drug delivery system could not only prevent the clearance of NPs from the RES but also guide NPs to inflammatory tissues, enabling the specific release of atorvastatin after ROS activation. The inflammatory cytokine sequestration effect of the macrophage membrane further improved the therapeutic efficacy of MM-AT-NPs in atherosclerosis.\textsuperscript{149} In addition to lipid-lowering drugs, anti-inflammatory medicines such as rapamycin and paclitaxel (PTX) can slow the progression of atherosclerosis through the inhibition of macrophage migration, smooth muscle

Figure 4. Multiple smart nanoplatforms targeting the lesion in the progression of atherosclerosis The surface modification of nanoplatforms via peptides, antibodies, ligands, and cell membranes could target different cells or components in the plaque to achieve precise delivery of chemicals, proteins, peptides, or nucleic acids and finally release these cargos to exert therapeutic effects.
cell proliferation, and neovascularization. One good and workable solutions have been proposed to counteract the poor bioavailability and high toxicity of nanocarriers when taken by mouth. One of those solutions was the synthesis of macrophages and decreased the levels of proinflammatory cytokines, resulting in changes in the plaque morphology. Another similar study indicated that macrophage membrane-coated nanoparticles with rapamycin cargos could also accumulate at activated endothelial cells, followed by effective suppression of macrophage phagocytosis and atherosclerosis progression in vivo (Figure 5B). In terms of high affinity, platelets display inherent affinity for atherosclerotic plaques via different mechanisms, such as adhesion and aggregation.

Based on this, Song et al. developed PNPs encapsulating rapamycin, which could target atherosclerotic lesions and stabilize atherosclerotic plaques. With higher biocompatibility, EPR, and longer half-life, the red blood cell (RBC) membrane has also been utilized to cloak nanoparticles. Similarly, RBC membrane-coated PLGA could precisely deliver rapamycin to atherosclerotic plaques to attenuate the progression of atherosclerosis. Compared with systemic delivery, local delivery of drugs with nanomaterial assistance would show better clinical effects, which could prevent restenosis after balloon angioplasty and reduce late adverse events of drug-eluting stents, such as late stent thrombosis. Zhang’s group designed a pH-sensitive and ROS-responsive β-cyclodextrin nanoplatorm (Ox-bCD NPs) to deliver rapamycin to inflamed sites. These dual-responsive NPs could passively target the injured vascular wall and then inhibit the proliferation and migration of VSMCs by releasing rapamycin. The arterial restenosis rat model experiment showed that after intravenous injection of Ox-bCD NPs, the arterial restenosis rate was significantly inhibited. Therefore, rapamycin nanocarriers could be used as potential therapeutic agents for the treatment of atherosclerosis. The authors concluded that the development of rapamycin nanocarriers represents a significant advancement in the field of atherosclerosis therapy.

In conclusion, the use of nanocarriers for the delivery of rapamycin offers several advantages over traditional delivery methods, including improved therapeutic efficacy, reduced toxicity, and enhanced patient compliance. These advances in nanocarrier technology have the potential to revolutionize the treatment of atherosclerosis, offering new hope for patients with this complex and multifaceted disease.
cytokines. Hence, it is promising to attenuate atherosclerosis progression via the efficient delivery of molecular inhibitors or agonists with nanocarriers to regulate targeting monocytes/macrophages. By virtue of the natural affinity to macrophages, novel reconstituted HDL nanoparticles were fabricated to deliver a small-molecule inhibitor (SMI 6877002) (Figure 5C). The results showed that inhibitors could moderate CD40/CD40 ligand signaling in monocytes and macrophages by blocking the interaction between CD40 and tumor necrosis factor receptor-associated factor 6 (TRAF6). Tang et al. established a combinatorial library of 17 HDL-mimicking hybrid nanoparticles and optimized their physicochemical properties to increase the targeting ability of a liver X receptor agonist (GW3965). Among them, the nanoparticle with a POPC-dominant phospholipid composition, a long blood half-life, and a small size of 30 nm was the most effective in reducing plaque volumes and the number of macrophages. Such CD4-TRAF6 blocking nanoimmunotherapy strategy could effectively inhibit monocyte recruitment and decrease plaque inflammation, as well as avoid the immune toxicity. Scale bar, 100 μm (P < 0.05) (copyright Elsevier Ltd., 2018).

Figure 5. Nanocarriers to deliver chemical drugs (A) Cargo-switching CSNP to deliver statins, showing antiatherogenic effects and regression of atherosclerotic plaques. The scale bar indicates 200 μm (***P < 0.001, one-way ANOVA and Tukey’s multiple comparison test) (copyright American Chemical Society, 2020). (B) MM/RAPNP fabrication and its treatment for atherosclerosis in ApoE−/− mice. MM/RAPNP could effectively suppress macrophage phagocytosis and atherosclerosis progression in vivo (**P < 0.01, ***P < 0.001 and ns, no significance) (This is an open access article distributed under the terms of the Creative Commons Attribution [CC BY-NC] license). (C) rHDL-6877002 for reducing plaque volumes and the number of macrophages. Such CD4-TRAF6 blocking nanoimmunotherapy strategy could effectively inhibit monocyte recruitment and decrease plaque inflammation, as well as avoid the immune toxicity. Scale bar, 100 μm (P < 0.05) (copyright Elsevier Ltd., 2018).
most favorable and could abolish GW3965’s liver toxicity while remaining effective on atherosclerotic plaque macrophages. With collagen IV targeting ligand modification, these hybrid nanoparticles further improved the specific accumulation of GW3965 at atherosclerotic lesion sites. Compared with the PBS group, mice administered Col IV-GW-NPs exhibited substantially reduced macrophage content (~30%) without increased hepatic lipid biosynthesis or hyperlipidemia. Tetsuya Matoba’s group produced PLGA nanoparticles containing a chemical inhibitor of TLR4 intracellular domain-TAK-242 or piritiglizone (PPARc agonist). The experimental data showed that both nanomedicines could effectively suppress inflammatory monocyte recruitment, promote the polarization of macrophages toward the M2 phenotype, and antagonize monocyte/macrophage-mediated acute inflammation after ischemia/reperfusion injury. SIRT1, as a molecule linked to the mTOR signaling pathway and autophagy, has the potential to prevent atherosclerosis. To specifically deliver the Sirt1 activator SRT1720 to vulnerable atherosclerotic plaques, novel theragnostic nanomedicines (NMs) targeting OPN peptides (ICG/SRT@HSA-pept-NMs) were designed. After intravenous injection into atherosclerotic mice, NMs were found to accumulate substantially at the lesions and achieve antithrombotic effects by preventing VSMC phenotypic switching.

The controlled and sustained release of metabolic gas molecules (such as H2S and NO) by nanocarrier-loaded substrates has therapeutic potential for the reversal of various cardiovascular pathophysiological processes. A successful application of gas molecules was the use of mesoporous iron oxide nanoparticle-loaded diallyl trisulfoxide as an H2S sustained-release system, with excellent attenuation of ischemia/reperfusion-induced myocardial injury in a mouse model. According to the same theory, Jonathan et al. synthesized NO-delivering HDL-like particles (SNO-HDL NPs), which could reduce ischemia/reperfusion injury in vivo in a mouse kidney transplant model and atherosclerotic plaque burden in a mouse model of atherosclerosis. Traditional Chinese medicine (TCM) has long been an effective complementary and alternative approach in China to the primary or secondary prevention of cardiovascular disease. However, the physicochemical properties of TCMs, including low solubility, poor stability, and short half-life, limit their widespread clinical application. Fortunately, targeted delivery with nanocarriers such as inorganic metal nanoparticles and solid-lipid nanoparticles could effectively enhance the solubility and bioavailability of TCM, introducing new opportunities in CVD treatment.

**Nanocarriers to deliver proteins and peptides.** With further understanding of the pathological mechanisms and etology of CVDs, coupled with rapid advances in materials engineering and biological techniques, many researchers took the opportunity to target atherosclerotic lesions with therapeutic proteins and peptides through nanoplatform-based drug delivery systems. For instance, with the assistance of poly(D-lactic) (PLA) and poly lacto-co-glycolic acid (PLGA) polymer NPs, interleukin 10 (IL-10) could be transported to atherosclerotic plaques via leaky endothelial junctions and bound to exposed collagen IV. Moreover, the targeted NP polymer could provide controlled release of IL-10, resulting in increased cap size and decreased necrotic core size.

**Nanocarriers to deliver nucleic acids.** As an emerging therapeutic strategy, gene therapy has shown great potential in treating cardiovascular diseases. RNAi is a gene silencing modality that inhibits the expression of cell-specific genes or directly degrades their mRNA, showing promising performance in CVD intervention.

Small interfering RNA (siRNA) can be utilized to mediate posttranscriptional regulation by binding to mRNA in a sequence-specific manner. However, the clinical translation of siRNA therapeutics has been limited by several factors, including cytotoxicity, nuclease degradation and off-target effects, in recent years. Benefiting from recent studies of the high targeting and stability of multifunctional nanocarriers in circulation, siRNA nanomedicines could rapidly penetrate disrupted plaque endothelial barriers and downregulate the expression of target genes locally, attenuating plaque inflammation in lesions. The recruitment of arterial leukocytes triggered by adhesion molecules is one of the key points in the progression of atherosclerosis. To better inhibit recruitment, polymeric endothelial-avid nanoparticles encapsulating siRNAs were developed to simultaneously silence five essential adhesion molecules. With the protection of the above nanoparticles, the siRNAs could avoid degradation in serum and help prevent severe complications after acute MI. In vivo, the low-molecular-weight ionizable polymer 7C1 was used to specifically deliver siRNA to the endothelium to achieve efficient gene silencing in nonhuman primates, moving one step closer to the clinical translation of RNAi nanotherapy in atherosclerosis. Recently, Sh’s group first reported an siRNA NP platform targeting the plaque-de-stabilizing macrophage molecule C26/calmodulin-dependent protein kinase (CAMKII). Compared with control siRNA NPs, atherosclerotic mice treated with siCamk2g NPs showed decreased Camkii and increased MerTK expression in macrophages, improved phagocytosis of apoptotic cells (efferocytosis), decreased necrotic core area, and increased fibrous cap thickness. They designed a lipid-polymer delivery nanoplatform to address the limitations of systemic siRNA delivery (Figure 6A): cationic G0-C14 could effectively absorb the siRNA and enable its escape from late endosomes, whereas PLGA polymer was used to encapsulate the siRNA/OO-C14 complexes, protect the siRNA from serum nuclease degradation, and guarantee good biocompatibility. ATP-responsive nanocarriers to deliver siRNAs to lesions showed better selectivity and stability in circulation. Jiang et al. synthesized ATP-responsive low-molecular-weight polyethyleneimine (LUMW-PEI)-based supramolecular assembly to deliver SR-A siRNA via energy-dependent endocytosis to knock down SR-A mRNA and inhibit uptake of oxidized LDL. After that, the same group fabricated a multifunctional core-shell nanoplatform with SR-A siRNA/catalase/ATP-responsive cationic carrier ternary polyplexes as the core and recombiant HDL modified with PS as the shell, which dynamically enhanced the targeting of macrophage CD36 in the plaques by establishing a positive feedback loop via the reciprocal regulation of SR-A and CD36. After 4 weeks of repeated administration in vivo, positive feedback-enabled accumulation of the nanomedicines in the atherosclerotic plaques increased 3.3-fold, resulting in reduced plaque areas by 65.8% and decreased macrophages by 57.3%.

MicroRNAs are small noncoding RNAs that regulate gene expression posttranscriptionally by translational inhibition or degradation of target mRNA by binding to 3’-untranslated regions (UTRs). Given that miRNAs are involved in multiple pathological processes, they might act as promising targets in the diagnosis and therapy of CVD progression. However, miRNA-based therapies still face enormous challenges because of immune responses, degradation tendencies, off-target effects and toxicity, which could be solved through recent developments in nanotechnology-based drug delivery systems due to their high transfection efficacy, good resistance to nuclear enzymes, and flexible design for specific targeting.

Nguyen et al. developed 150- to 200-nm chitosan nanoparticles (chNPs) via the ionic gelation method with tripolyphosphate (TPP) as a cross-linker. These chNPs were utilized to deliver miR-33 mimics to macrophages and downregulate the expression of its target gene ABCA1 both in vitro and in vivo, leading to decreased cholesterol efflux to apoA1 and reverse cholesterol transport (RCT). In contrast, when efflux-promoting miRNAs were delivered via chNPs, ABCA1 expression and cholesterol efflux into the RCT pathway were improved. This research indicated that miRNAs could be efficiently delivered to macrophages via nanoparticles to regulate ABCA1 expression and cholesterol efflux (Figure 6B). Furthermore, to make full use of cell surface nano-engineered technology and the advantages of graphene quantum dots (GQDs), such as miniature size, biocompatibility, and low cytotoxicity, Zhou’s group developed a monocyte-C18PQGQDs-miR223 nanoplatform. In this experiment, disulfide bond-linked GQDs-miRNA223 were grafted onto the monocyte membrane through C18-peptide (C18P) with a hydrophobic end. After entering the interior of the atherosclerotic plaques, GQDs-miR223 were taken up by macrophages and achieved disulfide linkage cleavage in the lysosome. The released miRNA223 cargos ultimately translocated to the nucleus, resulting in significant degradation of target mRNA and relieving plaque burden. Similarly, Deborah et al. synthesized miR-145 micelles targeting C-C chemokine receptor 2 (CCR2), which is highly expressed on monocytes and macrophages, and improved phagocytosis (efferocytosis) of apoptotic cells. These studies have shown that synthetic miRNA can be posttranscriptionally regulated by miRNAs if miRNA complementary sequences are inserted into the 5’ or 3’ UTR. These miRNA switches would allow the specific inhibition of the VSMCs and inflammatory cells that drive restenosis while sparing the injured endothelium. Lockhart...
et al. synthesized pSRHH nanoparticles loaded with the cyclin-dependent kinase inhibitor p27Kip1 miRNA switch containing the complementary target sequence of miR-126 at its 5’ UTR. This cell-selective nanotherapy significantly reduced neointima formation after wire injury and allowed reendothelialization in vivo, exhibiting potential capacity for treating neointimal hyperplasia, atherosclerosis, and restenosis.

**Nanomaterials themselves act as therapeutic drugs**

Ingeniously designed nanomaterials serve as vehicles for the targeted delivery of different therapeutics to atherosclerotic plaques and thrombi in many studies. Recent evidence has indicated that nanomaterials with intrinsic antioxidant and anti-inflammatory activities are promising next-generation therapies for the treatment of atherosclerosis, given the critical role of ROS in the pathogenesis of atherosclerosis and other inflammatory diseases. Hu’s group covalently conjugated the superoxide dismutase mimetic agent Tempol and the hydrogen peroxide-eliminating compound phenylboronic acid pinacol ester onto a cyclic polysaccharide β-cycloDEXter (TPCD), which was easily assembled into TPCD NPs and worked as a broad-spectrum ROS-eliminating nanomaterial. Related research showed that TPCD NPs significantly attenuated ROS-induced inflammation and cell apoptosis in macrophages by eliminating over-produced intracellular ROS and effectively inhibited foam cell formation in macrophages and VSMCs by decreasing the internalization of oxidized LDL (Figure 7A). Antioxidant nanopolymers could also be used in antithrombotic therapy as a supplement to traditional thrombolytic agents due to fibrin aggregation and the elevated H2O2 level in thrombi. A fibrin-targeted imaging and antithrombotic nanomedicine (FTIAN) was constructed from NIR fluorescent dye-linked boronate antioxidant polymers and fibrin-targeting lipopeptides. This FTIAN could precisely image thrombi and inhibit thrombus formation by...

---

**Figure 6. Nanocarriers for delivering therapeutic nucleic acids**

(A) Fabrication and silencing efficacy of S2P50-siCamK2g NPs. The lipid-PEG surface was used to stabilize the NPs, achieve an increased circulating lifetime, and avoid rapid clearance. Besides, the plate macrophage-targeting peptide (S2P) was incorporated on the lipid-PEG layer, which further increases the specificity of targeting; treatment of WD-fed Ldlr−/− mice with S2P50-siCamK2g-loaded NPs lowers plaque necrosis and increases lesional efferocytosis. The scale bar indicates 200 μm (*p < 0.05, one-way ANOVA) (copyright American Association for the Advancement of Science, 2020). (B) Schematic illustration of miRNA mimic-loaded chitosan nanoparticles prepared using the ionic gelation method; in vivo treatment with chitosan nanoparticles containing miR-33 inhibits RCT. The injection of miR-33 NP resulted in the reduction of cholesterol efflux to apoA1 and reverse cholesterol transport (RCT) (*p < 0.05, **p < 0.01, Student’s t test) (copyright American Chemical Society, 2019).
In addition to the above polymer nanomaterials, metal-based inorganic nanomaterials also exhibit antioxidant properties and show promise for attenuating atherosclerosis progression. Optimal Se intake has been confirmed to prevent atherosclerosis due to its function of maintaining redox homeostasis and depressing oxidative stress. However, the intricate Se species and the narrow safety window for Se intake limit the clinical utilization of Se supplementation. To address the above problems, selenium nanoparticles (SeNPs) were developed, which showed high biological activity and bioavailability, low toxicity, and controlled release. In vivo results indicated that SeNPs significantly reduced the lipid peroxidation level and simultaneously increased the NO level and the activities of glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase in the serum and liver.

Another example is the finding that nanosilver has been an innate antiplatelet property. Nanosilver can effectively prevent integrin-mediated platelet responses by accumulating within platelet granules and reducing interplatelet proximity. Accordingly, gold (Au) and silver-gold alloy (Ag-Au) nanoparticles were green-synthesized as anticoagulant and thrombolytic agents by Ojo et al.

**Figure 7. Nanomaterial themselves act as therapeutic drugs**

(A) Engineering of a broad-spectrum ROS-scavenging TPCD nanoparticle for targeted therapy of atherosclerosis. After intravenous administration, TPCD NPs accumulated in atherosclerotic lesions in ApoE−/− mice by passive targeting, significantly inhibited the development of atherosclerosis, as well as stabilized advanced plaques. Scale bar, 200 μm (*P < 0.05, **P < 0.001) (copyright American Chemical Society, 2018). (B) CuS-TRPV1 switch for photothermal activation of TRPV1 signaling to reduce atherosclerotic lesions. With the photothermal property of CuS NPs, the TRPV1 channels opened, triggered calcium ions (Ca2+) influx after NIR irradiation, leading to autophagy activation, cholesterol efflux, and impede foam cell formation (**P < 0.01 for CuS-TRPV1 + Laser vs. PBS, #P < 0.05 for Cap vs. PBS, &P < 0.05 for CuS-TRPV1 + Laser vs. Cap, Student’s t-test) (copyright Springer Nature, 2018).

Nanomaterial-assisted photodynamic therapy (PDT) and photothermal therapy (PTT) have emerged as promising therapeutic strategies for atherosclerosis and its related diseases. PDT has three key components: a photosensitizer, light, and molecular oxygen. To address the notable drawback of the shallow penetration of the traditional photosensitizer chlorin e6 (Ce6), upconversion nanoparticles composed of photosensitizer Ce6 and silica nanoparticles (UCNP-Ce6) were developed with enhanced penetration depth. The novel UCNP-Ce6 also exhibited high hydrophilicity, good biocompatibility, and favorable optical properties. Experimental results demonstrated that UCNP-Ce6-mediated PDT promoted cholesterol efflux by activating the autophagic process, which occurs in part through the ROS/Pi3K/Akt/mTOR signaling pathway via ROS generation. PTT is a minimally invasive, local treatment modality with minimal toxicity. It depends mainly on triggering a photosensitizer by electromagnetic radiation, such as radio frequency, NIR, or visible light, to convert this energy into heat. The temperature increase via PTT kills the cells in lesions. Copper sulfide NPs conjugated with transient receptor potential vanilloid subfamily 1 (TRPV1) monoclonal antibody (CuS-TRPV1) were designed and worked as a photothermal switch for...
specific binding to TRPV1 on the surface of VSMCs (Figure 7B). Because of the photothermal property of CuS NPs, TRPV1 channels opened and triggered calcium ion (Ca^{2+}) influx after NIR irradiation, leading to autophagy activation and cholesterol efflux and impeding foam cell formation.141 Furthermore, the research results indicated that CuS-TRPV1 reduced lipid storage and plaque formation in vivo with no obvious long-term toxicity, which suggested that CuS-TRPV1 has potential as a therapeutic tool to locally and temporally attenuate atherosclerosis.141 Nanomaterial-mediated PTT for macrophage ablation has also shown promise in treating atherosclerosis.230,231 Accordingly, semiconductor nanomaterial MoO_{2} nanoclusters were synthesized and used for the first time in PTT for inflammatory macrophage (M_{\text{\theta}})-mediated atherosclerosis.234 After optimizing the amount of nanomedicine and the treatment time, MoO_{2}-mediated PTT exerted the maximum ablation effect on M_{\text{\theta}} and minimal damage to endothelial cells without requiring additional target moieties. In animal models, MoO_{2}-based PTT also showed an excellent therapeutic effect on atherosclerosis by eliminating M_{\text{\theta}} with no significant side effects. Recently, to improve biosafety and ameliorate the thrombolytic effect, Yang’s group explored dual-modal photothermal/photodynamic (PTT/PDT) thrombolysis.235 They first fabricated RGD-modified mesoporous carbon nanospheres with porphyrin-like metal centers (RGD-PMCS), which could initiate site-specific thrombolysis by hyperthermia and ROS under NIR laser irradiation. Compared with single photothermal thrombolysis, RGD-PMCS-based dual-modal PTT/PDT thrombolysis could greatly increase the efficiency of thrombus breaking (87.9%) and prevent re-embolization into tiny fragments. This research demonstrated that dual-modal PTT/PDT provides a rapid, safe, and effective method for thrombolysis. Besides, nanomaterial-assisted high-intensity focused ultrasound or low-intensity focused ultrasound recently has been applied in novel thrombolytic strategy (Document S6).236–238

CONCLUSIONS AND PERSPECTIVES

Nanomaterials have been involved in the development of more precise biosensors to detect CAD biomarkers because of their size, increased diagnostic sensitivity, and shortened diagnostic time. In the future, nano-biosensors may be useful in portable devices applied in hospitals, households, ambulances, or chest pain centers. Second, compared with traditional imaging agents, nanomaterial-based molecular probes can specifically accumulate at atherosclerotic lesions through modification with different target moieties on the surface of nanoplatforms. Such purposeful aggregations coupled with the high loading capacity or photoelectromagnetic properties of nanomaterials as well as multimodal imaging techniques will further improve the sensitivity and accuracy of imaging diagnosis in CADs. Beyond high-resolution imaging, nanotechnology has also taken an active part in the therapy of CADs (especially vulnerable plaques and thrombi) by different strategies, such as the repair of injured endothelium, anti-inflammation, antioxidation, and blockage of platelet recruitment.239,240 In most cases, nanomaterials have served as multifunctional vehicles to deliver various therapeutic drugs, including chemicals, proteins, peptides, and nucleic acids. These nanocarriers not only have brilliant specificity endowed by target moieties but also increase drug bioavailability and protect the drugs from enzymolysis and clearance in the circulation. Moreover, the natural ROS scavenging and photodynamic or photothermal properties of nanomaterials still provide direct therapeutic strategies for CADs and intravascular implants. Despite all this, nanotechnology has a long way to go from translational medicine to clinical application. (1) In clinical diagnosis, novel biomarkers must be screened for nanomaterial-based biosensors and molecular imaging approaches to estimate atherosclerosis progression. (2) In terms of treatment strategy, the biocompatibility, pharmacokinetics, and safety of nanomaterials in vivo should be carefully evaluated in both small (such as mice and rabbits) and large animal models (such as pigs and nonhuman primates) to obtain approval for clinical trials.241 The fates of nanomedicines in complex plaque microenvironments and the interactions between nanomedicines and various components also need great attention. (3) Last but not least, the large-scale manufacturing of nanomedicines with controlled and stable physiochemical properties should be the key to the whole industrial operation due to the basic position of nanomedicines in clinical application.

REFERENCES

1. Benjamin, E.J., Muntner, P., Alonso, A., et al. (2019). Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 139, e56–e528.
2. Celermajer, D.S., Chow, C.K., Marjoni, E., et al. (2012). Cardiovascular disease in the developing world: prevalence, patterns, and the potential of early disease detection. J. Am. Coll. Cardiol. 60, 1207–1216.
3. World Health Organization. (2021). Cardiovascular Diseases (CVDs) (Geneva: World Health Organization).
4. Virani, S.S., Alonso, A., Aparicio, H.J., et al. (2021). Heart disease and stroke statistics-2021 update. Circulation 143, e524–e574.
5. Linde, J.J., Kelbæk, H., Hansen, T.F., et al. (2020). Coronary CT angiography in patients with non-ST-segment elevation acute coronary syndrome. J. Am. Coll. Cardiol. 75, 453–463.
6. Kyu, H.H., Abate, D., Abate, K.H., et al. (2018). Global, regional, and national disability-adjusted life-years (DALYS) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet 392, 1859–1922.
7. Arbab-Zadeh, A., and Fuster, V. (2019). From detecting the vulnerable plaque to managing the vulnerable patient. JACC state-of-the-art review. J. Am. Coll. Cardiol. 74, 1582–1593.
8. Daghem, M., Bing, R., Fayad, Z.A., et al. (2020). Noninvasive imaging to assess atherosclerosis and progression. Circ. Res. 128, 1339–1356.
9. Anderson, J., Adams, C., Antman, E., et al. (2013). 2012 ACCF/AHA focused update incorporated into the ACCF/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation 127, e565–828.
10. Zanato, N., Talamini, L., Zapp, E., et al. (2017). Label-free electrochemical immunosensor for cardiac troponin T based on exfoliated graphene nanoplates decorated with gold nanoparticles. Electroanalysis 29, 1820–1827.
11. Ziaei, B., and Forozan, G.C. (2016). Epidemiology and aetiology of heart failure. Nat. Rev. Cardiol. 13, 368–378.
12. Meng, H., Leong, W., Leong, K.W., et al. (2018). Walking the line: the fate of nanomaterials at biocompatible, pharmacokinetics, and safety of nanomaterials in vivo should be carefully evaluated in both small (such as mice and rabbits) and large animal models (such as pigs and nonhuman primates) to obtain approval for clinical trials.241 The fates of nanomedicines in complex plaque microenvironments and the interactions between nanomedicines and various components also need great attention. (3) Last but not least, the large-scale manufacturing of nanomedicines with controlled and stable physiochemical properties should be the key to the whole industrial operation due to the basic position of nanomedicines in clinical application.

REFERENCES

1. Benjamin, E.J., Muntner, P., Alonso, A., et al. (2019). Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 139, e56–e528.
29. Wang, C., Li, J., Kang, M., et al. (2021). Nanodiamonds and hydrogen-substituted graphdiyne heteroanodestructure for the sensitive impedimetric aptasensing of myocardial infarction and cardiac troponin I. Anal. Chem. Acta 1141, 110–119.
30. Sun, Y., and Li, T. (2018). Composition-tunable hollow Au/Ag SERS nanoparticles coupled with target-catalyzed polymerization for multiplex determination of DNA. Anal. Chem. Anal. Chem. 90, 11614–11621.
31. Sun, Y., Wang, Q., Mi, L., et al. (2019). Target-induced payload amplification for spherical nucleic acid enzyme (SNAsyme)-catalyzed electrochemical biosensing of circulating microRNAs. ACS Appl. Mater. Inter. 12, 7879–7887.
32. Shi, C., Xie, H., Ma, Y., et al. (2020). Nanoscale technologies in highly sensitive diagnosis of cardiovascular diseases. Front. Bioeng. Biotechnol. 8, 531.
33. Surya, S.G., Majhi, S.M., Agarwal, D.K., et al. (2020). A label-free aptasensor FET based on Au nanoparticles decorated C3G04 nanorods and a SWCNT layer for detection of cardiac troponin T protein. J. Mater. Chem. B 8, 18–26.
34. Chi, H., Chen, J., Shanghai, J., et al. (2010). T-shaped Cds sensitized graphene/Cu2MoS4 composite for the photoelectrochemical immobilization of cardiac troponin I. Biosens. Bioelectron. 123, 1–7.
35. Ma, Y., Dong, Y.-X., Wang, B., et al. (2020). CDS-Mn sensitized 2D/2D heterostructured g-C3N4-MoS2 with excellent photoelectrochemical performance for ultrafast electrochemical sensing platforms. Talanta 207, 120288.
36. Qiu, X., Dong, Y., Wang, M., et al. (2018). C-dots assisted synthesis of gold nanoparticles as labels to catalyze copper deposition for ultrasensitive electrochemical sensing of proteins. Sci. China Chem. 61, 476–482.
37. Singh, N., Rai, A., Ali, M.A., et al. (2019). A hollow nanosphere-based microfluidic biosensor for biomonitoring of cardiac troponin I. J. Mater. Chem. B 7, 3826–3839.
38. Supraj, P., Sudarshan, V., Tripathy, S., et al. (2019). Label free electrochemical detection of cardiac biomarker troponin T using ZnSn3O5 perovskite nanomaterials. Anal. Methods 11, 771–781.
39. Liyanage, T., Sangha, A., and Sardar, R. (2017). Achieving biosensing at attomolar concentrations of cardiac troponin T in human biofluids by developing a label-free nanoplasmonic analytical assay. Analyst 142, 2442–2450.
40. Gupta, A., Sharma, S.K., Pachauri, V., et al. (2021). Sensitive impedimetric detection of troponin I with metal–organic framework composite electrode. RSC Adv. 11, 2167–2174.
41. Yang, X., Yu, Y.-Q., Peng, L.-Z., et al. (2018). Strong electrochemical biosensing from MOF accelerated enriched quantum dots for enhanced sensing of trace cTnI. Anal. Chem. 90, 3995–4002.
42. Hong, D., Jo, E.J., Kim, K., et al. (2020). Ru(bpy)3 2+–loaded mesoporous silica nanoparticles as electrochemiluminescent probes of a lateral flow immunoassay for highly sensitive and quantitative detection of Troponin I. Small 16, 2004535.
43. Lim, W.Y., Thevarajah, M.T., Goh, B.T., et al. (2019). Paper microfluidic device for early diagnosis and prognosis of acute myocardial infarction via quantitative multiplex cardiac biomarker detection. Biosens. Bioelectron. 128, 176–185.
44. Zhang, X.-L., Li, J., Li, Y., et al. (2019). Ultrasensitive sandwich-type immunoassay for cardiac troponin I based on enhanced electrocatalytic reduction of H2O2 using β-cyclodextrin-functionalized 3D porous graphene-supported Au@Au nanocubes. J. Mater. Chem. B 7, 1460–1468.
45. Mao, L., Liao, J., Liao, Q., et al. (2019). A nanomize-linked immunosorbent assay for dual-modal colorimetric and ratiometric fluorescent detection of cardiac troponin I. Sensor. Actuator. B Chem. 288, 60–64.
46. Guo, X., Wang, J., Wu, M., et al. (2018). Signal-enhanced detection of multiplexed cardiac biomarkers by a paper-based fluorogenic immunodevice integrated with zinc oxide nano-wires. Anal. Chem. 91, 9300–9307.
47. Nechaeva, N.L., Sorokin, O.N., Konstantinova, T.S., et al. (2021). Simultaneous express immunosensing of multiple cardiac biomarkers with an automatic platform in human plasma. Talanta 224, 121860.
48. Chen, X., and Liang, Y. (2021). Colorimetric sensing strategy for multiplexed detection of proteins based on three DNA-gold nanoparticle conjugates sensors. Sensor. Actuator. B Chem. 329, 129202.
49. Xin, Y., Yang, R., Qu, Y., et al. (2020). Novel, highly sensitive, and specific assay to monitor acute myocardial infarction (AMI) by the determination of cardiac Troponin-I (cTnI) and heart-type fatty acid binding protein (h-FABP) by a colloidal gold-based immunochromatographic test strip. Anal. Lett. 55, 1329–1350.
50. Ji, J., Lu, W., Zhu, Y., et al. (2019). Porous hydrogel-encapsulated photonics barcodes for multiplex detection of cardiovascular biomarkers. ACS Sensors 4, 1384–1390.
51. Singh, N., Ali, M.A., Rai, P., et al. (2020). Dual-modality microfluidic biosensor based on nanoengineered mesoporous graphene hydrogels. Lab Chip 20, 760–777.
52. Sun, Y., Li, J., and Hu, Y. (2019). Target-catalyzed self-growing spherical nucleic acid enzyme (SNAsyme) as a dual amplifier for ultrasensitive chromo-electrochemical microRNA detection. ACS Sensors 4, 3219–3226.
53. Sun, Y., Shi, L., Wang, Q., et al. (2019). Spherical nucleic acid enzyme (SNAsyme) boosted chemiluminescence miRNA imaging using a smartphone. Anal. Chem. 91, 3652–3658.
54. Cheng, T.M., LL.R, Kao, Y.C.J., et al. (2020). Synthesis and characterization of Gd-SGTP/fluorocarbon/peptide complex nanoparticle and in vitro magnetic resonance imaging of inflamed vascular tissue. J. Mater. Chem. B 8, 13482–13490.
55. Mateos, S., Lifante, J., Li, C.Y., et al. (2020). Instantaneous in vivo imaging of acute myocardial infarct by NIR-II luminescent nanodots. Small 16, 10.
148. Hossaini Nasr, S., Rashidjahandabadi, Z., Ramadan, S., et al. (2020). Effective atherosclerotic plaque inflammation inhibition with targeted drug delivery by hyaluronan conjugated atorvastatin nanoparticles. Nanoscale 12, 9541–9556.

149. Gao, C., Huang, Q., Liu, C., et al. (2020). Treatment of atherosclerosis by macrophage-bioimprinted nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat. Commun. 11, 2622.

150. Boada, C., Zinger, A., Tsao, C., et al. (2020). Ramapycin-loaded biomimetic nanoparticles reverse vascular inflammation. Circ. Res. 126, 25–37.

151. Qiu, J., Cai, G., Liu, K., et al. (2017). αv(3)β(3) integrin receptor specific peptide modified, salvinianic acid B and panax notoginsenoside R1 loaded nanomedicine for the combination therapy of acute myocardial ischemia. Biomed. Pharmacother. 95, 1418–1426.

152. Lameijer, M., Bindenep, T., van Leent, M., et al. (2018). Efficacy and safety assessment of a TRAF6-targeted nanoinmunotherapy in atherosclerotic mice and non-human primates. Nat. Biomed. Eng. 2, 279–292.

153. Seijkens, T., Van Tiel, C., Kusters, P., et al. (2018). Targeting CD40-Induced TRAF6 signaling in macrophages reduces atherosclerosis. J. Am. Coll. Cardiol. 71, 527–542.

154. Rink, J.S., Sun, W., Misener, S., et al. (2018). Nitric oxide-delivering high-density lipoprotein-like nanoparticles as a biomimetic nanovascular therapy for diseases. ACS Appl. Mater. Inter. 10, 6904–6916.

155. Tao, W., Yurdagul, A., Kong, N., et al. (2020). siRNA nanoparticles targeting CeA MKIty in leishmanial macrophages improve atherosclerotic plaque stability in mice. Sci. Transl. Med. 12, eaay1063.

156. Chen, D.D., Poon, C., Wang, J., et al. (2021). mir-145 micelles mitigate atherosclerosis by modulating vascular smooth muscle cell phenotype. Biomaterials 273, 120810.

157. Lockhart, J.H., VanWye, J., Banerjee, R., et al. (2021). Self-assembled miRNA-switch nanoparticles driven by transcription factor binding. Adv. Mater. 34, e2103204.

158. Liao, J., and Laufs, U. (2005). Pleiotropic effects of statins. Annu. Rev. Pharmacol. Toxicol. 45, 89–118.

159. Armitage, J. (2007). The safety of statins in clinical practice. Lancet 370, 1781–1790.

160. Wang, Y., Zhang, K., Li, T., et al. (2021). Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications. Theranostics 11, 164–180.

161. Kim, H., Kumar, S., Kang, D.W., et al. (2020). Affinity-driven design of cargo-switching nanoparticles to leverage a cholesterol-rich microenvironment for atherosclerosis therapy. ACS Nano 14, 6519–6531.

162. Wang, Y., Zhang, K., Qin, X., et al. (2019). Biomimetic nanotherapies: red blood cell based core-shell structured nanocomplexes for atherosclerosis management. Adv. Sci. (Weinheim, Baden-Wurttemberg, Germany) 6, 1900172.

163. Wang, B., Chen, G., Urabe, G., et al. (2018). A paradigm of endothelium-protective and stent-free anti-restenotic therapy using biomimetic nanocomposites. Biomaterials 178, 293–301.

164. Toole, B.P. (2004). Hyaluronan: from extracellular glue to pericellular cue. Nat. Rev. Cancer 4, 528–539.

165. Choirdar, L., Gébe, A., Putaux, J.L., et al. (2006). Nanoparticles of beta-cyclodextrin esters obtained by self-assembling of biotransfered beta-cyclodextrins. Biomacromolecules 7, 515–520.

166. Kurd, A., Martinet, W., and De Meyer, G.R.Y. (2018). mTOR inhibition and cardiovascular diseases: dyslipidemia and atherosclerosis. Transplantation 102, s44–s46.

167. Weber, C., and Noels, H. (2011). Atherosclerosis: current pathogenesis and therapeutic options. Nat. Med. 17, 1410–1422.

168. Colombo, A., Drzewiecki, J., Banning, A., et al. (2003). Randomized study to assess the feasibility of stent-based therapy against coronary artery lesions. Circulation 108, 788–794.

169. Fava, C., and Montagnana, M. (2018). Atherosclerosis is an inflammatory disease. Semin. Thromb. Hemost. 44, 888–900.

170. Feng, S., Hu, Y., Zhang, X., et al. (2016). Nanoparticles responsive to the inflammatory microenvironment towards activated endothelium as versatile tools for theranostic drug delivery. Nanoscale 8, 6519–6531.

171. Williams, K., and Tabas, I. (1999). Atherosclerosis. Nature 400(6740), 1928–1932.

172. Liao, J., and Laufs, U. (2005). Pleiotropic effects of statins. Annu. Rev. Pharmacol. Toxicol. 45, 89–118.

173. Seijkens, T., Van Tiel, C., Kusters, P., et al. (2018). Targeting CD40-Induced TRAF6 signaling in macrophages reduces atherosclerosis. J. Am. Coll. Cardiol. 71, 527–542.

174. Zhang, L., Wang, Z., Zhang, Y., et al. (2018). Erythrocyte membrane cloaked metal-organic framework nanoparticles as biomimetic nanoractor for stavation-activated colon cancer therapy. ACS Nano 12, 10201–10211.

175. Stone, G., Moses, J., Ellis, S., et al. (2007). Safety and efficacy of sirolimus- and paclitaxel-eluting coronary stents. New Engl. J. Med. 355, 998–1008.

176. Stefanis, G.G., and Holmes, D.R., Jr. (2013). Drug-eluting coronary artery stents. New Engl. J. Med. 368, 254–265.

177. Betala, J., Bae, S., Langan, E., et al. (2020). Ex vivo combinatorial therapy of sirolimus and heparin by nanocarrier inhibits restenosis after balloon angioplasty. Nanomedicine (London, England) 15, 1205–1220.

178. Betala, J., Bae, S., Langan, E., et al. (2020). Nanoparticles responsive to the inflammatory microenvironment for targeted treatment of arterial restenosis. Biomaterials 105, 167–184.

179. Feng, S., Hu, Y., Peng, S., et al. (2016). Nanoparticles responsive to the inflammatory microenvironment for targeted treatment of arterial restenosis. Biomaterials 105, 167–184.

180. Dou, Y., Chen, Y., Zhang, X., et al. (2017). Non-proinflammatory and responsive nanoplatforms for targeted treatment of atherosclerosis. Biomaterials 143, 93–108.

181. Zhang, Y., Xie, H., Xiong, T., et al. (2018). A new therapeutic target of VEGF gene and paclitaxel for restenosis inhibition in atherosclerosis. ACS Appl. Mater. Inter. 9, 72572–72582.

182. Swirski, F.K., and Nahrendorf, M. (2013). Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339, 161–166.

183. Wynn, T.A., Chawla, A., and Pollard, J.W. (2013). Macrophage biology in development, homeostasis and disease. Nature 494, 445–455.

184. stage 2. (2018). Advent. Mater. 34, e2103204.

185. Wang, J., Xia, F., and Li, Y. (2020). A new therapeutic target against atherosclerosis, inhibited by endothelial nitric oxide. Int. J. Mol. Sci. 19, 3248.

186. Kamaly, N., Friedman, G., Fojas, J.J., et al. (2016). Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis. ACS Nano 10, 5280–5292.

187. Tadion-Strappas, M., Robinson, M., Le Voclec, M., et al. (2015). Development of lipoprotein(a) siRNAs for mechanism of action studies in non-human primate models of atherosclerosis. J. Cardiovasc. Transl. Res. 8, 84–93.

188. Chi, X., Gatt, P., and Papoian, T. (2017). Safety of antiosenile antioligo nucleotide and siRNA-based therapeutics. Drug Discov. Today 22, 823–833.
209. Thennoozhi, R., Lee, J.S., Park, N.Y., et al. (2020). Gene therapy options as new treatment for inherited peripheral neuropathy. Exp. Neurol. 29, 177–188.

210. Pan, H., Palekar, R.U., Hou, K.K., et al. (2018). Anti-JNK2 peptide-siRNA nanostructures improve plaque endothelium and reduce thrombotic risk in atherosclerotic mice. Int. J. Nanomed. 13, 5187–5205.

211. Sager, H., Dutta, P., Dahlman, J., et al. (2016). RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. Sci. Transl. Med. 8, 342ra830.

212. Khan, O.F., Kowalski, P.S., Doloff, J.C., et al. (2018). Endothelial siRNA delivery in nonhuman primates using ionizable low-weight polymer nanoparticles. Sci. Adv. 4, eaar8409.

213. Jiang, C., Qi, Z., Jia, H., et al. (2019). ATP-responsive low-molecular-weight polyethyleneamine-based supramolecular assembly via host-guest interaction for gene delivery. Biomacromolecules 20, 478–489.

214. Huang, C.K., Kafert-Kasting, S., and Thum, T. (2020). Preclinical and clinical development of nanotheranostic agent for thrombus imaging and thrombolysis. Acta Biomater. 91, 35–50.

215. Shrivastava, S., Bera, T., Singh, S., et al. (2009). Characterization of antiplatelet properties of silver nanoparticles. ACS Nano 3, 1357–1364.

216. Guo, L., Xiao, J., Liu, H., et al. (2020). Selenium nanoparticles alleviate hypertension and vascular injury in ApoE-deficient mice by regulating cholesterol metabolism and reducing oxidative stress. Metallomics 12, 204–217.

217. Ling, H., Fabbri, M., and Calin, G.A. (2013). microRNAs and other non-coding RNAs as targets for antiangiogenic and anti-inflammatory effects on macrophages. Biomacromolecules 18, 2286–2295.

218. Li, J., Zhao, Y., Zhou, X., et al. (2017). Biofunctional polymer-lipid hybrid high-density lipoprotein nanoparticles loading anti-miR155 for combined antitherapeutic effects on macrophages. Biomacromolecules 18, 3275–3283.

219. Benstoem, C., Goetzneich, A., Kraemer, S., et al. (2015). Selenium and its supplementation in cardiovascular disease—what do we know? Nutrients 7, 3094–3118.

220. Yang, W., and Zhou, Y. (2017). Effect of pulse repetition frequency of high-intensity focused ultrasound on in vitro thrombolysis. Ultrason. Sonochem. 41, 578–586.

221. Wu, Y., Zhang, R., Tran, H.D.N., et al. (2021). Chitosan nanococktails containing both ceria nanodots and carbon nanoparticles for site-specific dual-modality photothermal/photodynamic therapy. Adv. Sci. (Weinheim, Baden-Wurttemberg, Germany) 8, 1901378.

222. Wu, Y., Zhang, R., Tran, H.D.N., et al. (2021). Chitosan nanococktails containing both ceria and superparamagnetic iron oxide nanoparticles for reactive oxygen species-related theranostics. ACS Appl. Nano Mater. 4, 3604–3618.

223. Sager, H., Dutta, P., Dahlman, J., et al. (2016). RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. Sci. Transl. Med. 8, 342ra830.

224. Khan, O.F., Kowalski, P.S., Doloff, J.C., et al. (2018). Endothelial siRNA delivery in nonhuman primates using ionizable low-weight polymer nanoparticles. Sci. Adv. 4, eaar8409.

225. Ling, H., Fabbri, M., and Calin, G.A. (2013). microRNAs and other non-coding RNAs as targets for antiangiogenic and anti-inflammatory effects on macrophages. Biomacromolecules 18, 2286–2295.

226. Li, J., Zhao, Y., Zhou, X., et al. (2017). Biofunctional polymer-lipid hybrid high-density lipoprotein nanoparticles loading anti-miR155 for combined antitherapeutic effects on macrophages. Biomacromolecules 18, 3275–3283.

227. Benstoem, C., Goetzneich, A., Kraemer, S., et al. (2015). Selenium and its supplementation in cardiovascular disease—what do we know? Nutrients 7, 3094–3118.

228. Guo, L., Xiao, J., Liu, H., et al. (2020). Selenium nanoparticles alleviate hypertension and vascular injury in ApoE-deficient mice by regulating cholesterol metabolism and reducing oxidative stress. Metallomics 12, 204–217.

229. Shrivastava, S., Bera, T., Singh, S., et al. (2009). Characterization of antiplatelet properties of silver nanoparticles. ACS Nano 3, 1357–1364.