Review paper on removal of heavy metal ions from industrial waste water effluent

Jayesh Mishra¹, R Seain 1 and D Singh¹

¹Department of Mechanical Engineering, ABES Engineering College, Ghaziabad, India

Abstract- Heavy metal ions is a major key of pollutions and it is one of the big environment issue today. To overcome this problem the handling of metal ions is necessary. In recent research, there are various techniques that has been used to examine the metals ions and overview the methods also. The technologies involves are- ion-exchanging, chemical precipitation, flotation, adsorption, membrane filtration, electro-chemical, coagulation-flocculation methods. It is find from experimental and literature survey article that membrane filtration, ion-exchange and adsorption are most common techniques used for the discourse of removal of metal ions from waste water effluent.

Keywords- Heavy metal ions, adsorption, waste water, removal, effluent.

INTRODUCTION- Environmental pollution has many forms like the water we use to drink, the air we use to breath, the ground where we cultivate our plants these are all contribute to health problems, and the major role plays heavy metals which are present in waste water. Atomic weight of heavy metal elements in between 63.8 to 200.5 and specific gravity is higher than 5.0 [1]. Here some of the common examples of metals including chromium (Cr), iron(Fe), copper(Cu), lead(Pb), zinc(Zn), mercury(Hg), nickle(Ni), cadmium(Cd), copper(Cu), thallium(Tl), and arsenic(Ar),cobalt(Co). These heavy metals are characterise into major 3 groups: harmful metals (Pb, Hg, Zn, Cr, Ni, As, Cu, Sn, Cd, Co) useful metals (As, Pd Ag, Pt, Au) and radio metals (such as Ra, Th, U) [2]. Discharge from industry contains different organic and inorganic pollutants among these a huge amount of toxic metal ions are found and which are hainful to human health and when it is discharge into aquatic area it also causes problem to flora and fauna [3] With the speedy development of industries like mining operations, paper industries, metal plating, fertilizer company, batteries, etc. these pollutants knowingly or unknowingly discharge into surrounding increasingly and as we know that heavy toxic metals are non- biodegradable & carcinogenic in nature. Heavy toxic metals are very harmful because this tends to bio-accumulate which sence that concentrations of chemical increase in an organism over time. Harmful metals is concern in examine of waste water effluent especially mercury, nickel, zinc, lead, copper [4]. For human health Zinc is essential but in very small quantity.

Zinc is a trace element and is essential for physiological operations of alive tissue & also perform biochemical functions. Excess of zinc causes health issues like stomach cramps, anemia, skin diseases, nausea and vomating[5].

Cu (copper) perform important metabolic work in animals body but extreme intake of Cu brings a serious issues concern like cramps, convulsions, vomiting, sometimes it causes unproductive death also [6]. Ni (Nickel) increases its extreme level brings dangerous conditions of kidney & lung problems and also gastrointestinal distress, skin problem and pulmonary Fibrosis [7]. Hg (Mercury) is neurotoxin that distroy central nervous system. Excess amount of Hg affects the kidney function, impairment of pulmonary, chest pain and dyspnea[8]. A known environmental calamity with heavy metals is Minamata disease and which is due to Mercury(Hg) pollution in Japan.
Lead damages the Central Nervous System. Pb also affects liver, reproductive system and kidney and also brain function and cellular processes. Symptoms be like extreme headache, weakness of muscles, insomina, anemia, dizziness, renal damage, irritation [9]. Chromium present in two states in aquatic environment that are Cr(III), Cr(VI). But we find that Cr(VI) is extreme dangerous to Cr(III). Cr(VI) damages human physiology and accumulate in the food and causes health issues and the symptoms are skin dermatitis and lung caecinoma [10].

TECHNOLOGIES ARE USED FOR TREATMENT OF HEAVY METAL IONS

1. Chemical Precipitation

This process is most efficient & common process used in companies [11] due to its simple techniques and inexpensiveness for operation. In Chemical precipitation – precipitates are formed when chemicals are combine with toxic metals ion. With the help of two process first one is filtration and second one is sedimentation the insoluble precipitates are separated. Hydroxide and sulfide chemical precipitation are the two process which comes in conventional precipitation.

![Diagram](image)

Figure 1. Removal of sludge from contaminated water by chemical precipitation.

1.1 Hydroxide chemical precipitation. The hydroxide precipitation is most common techniques used in chemical precipitation because of its control pH value and much low cost [12]. A different amount of hydroxides has used to find precipitation of toxic ions from contaminated water because of its low
cost and simple handling, lime is best suited choice for hydroxide chemical precipitation in companies [13].

Hydroxide chemical precipitation method takes Ca(OH)2 & NaOH for eliminating Cr(VI) & Cu(II) ions from contaminated water [14]. To increase the property of lime precipitation, the seed material we used is fly ash [15]. This carbonation treatment enhance the size of particle and gives better efficiency of toxic metals ion elimination. Although this process is large in use but it also has some major drawback first one is it creates disposal & dewatering problem because HCP gives high volume & small density muck [16] and the second thing is some hydroxide metals are amphoteric and compound metal cause some problems.

1.2 **Sulfide precipitation**-The most widely used method is Sulphide chemical precipitation, it is very effective for heavy metal ions treatment. The biggest advantage of this process is that its solubilities is lower than HCP process and it is not amphoteric in nature. So that’s why it removal efficiency of heavy metal ions is much more than hydroxide chemical precipitation. Ozverdi and Erdem (2006) examine for removal of Cd2+, Pb2+ and Cu2+ pyrite sulfide iron is used. Chemical precipitation exist when its pH is smaller than 3.0 because of H2S formation (Equ (a) and (b)) and adsorption process occurs when pH varies from range(3.1-6.0).

>[17] Dr. Mahmood M. Brbootl et al., used hydroxide precipitation for the removal of Iron (III), chromium (III), copper (II), Lead(II), Cadmium(II) and Nickel (II) from the aqu solution with the help of jar tester magnesia used as a precipitator.

>[18] The pH value range is 9.6 – 10 with MgO precipitant

The optimum value of MgO precipitant is 1.6 – 3.0 g/l.

2.0 Ion- exchange

Considering too much advantage second method is ion-exchange. This is widely used method for the treatment of industrial wastewater effluent. These advantages are its removal efficiency, treatment capacity is high, and high kinetics[19]. Resin of ion-exchange method, either natural solid or synthetic resin. It possesses some special capacity to replace its cations to the metal ions in the contaminated water. Synthetic resin is best used materials among all the material take part in ion-exchange method because it is very effective to eliminate the toxic metal ions from effluent [20].

The cation exchanger are acidic group of sulfonic (-SO3H) with strong acidic group and acidic group of carboxyl (-COOH) with week acidic resin. Heavy metals present in the solution are go through the cations col where heavy metal-ions are replaces for the H+ on the resins with below reaction process:

\[nR - SO3H + M^+ \rightarrow (R- SO3^-)n M^+ + nH^+ \] (a)
\[nR - COOH + M^+ \rightarrow (R- COOH^-)n M^+ + nH^+ \] (b)

Lots of researcher find that Zeolite possesses strong cation replace capability for toxic ions under variant circumstances [21]. In recent work studies some researcher also find that for better exchange capability of clinoptilolite the surface of it surrounded with amorphous iron-oxide [22]. Research
studies shows that for eliminating metal ions an ion exchange resin is used as zeolities and montmorillonites. But as compared to synthetic resins they are small in stock.

> [23] Alyuz and Veli initially well defined a most efficient techniques for the removal of unwanted metal ions from the contaminated water and that is ion-exchange method with a better efficiency.

> [24] Zagorodni describes the ion-exchange method for the elimination of heavy metal ions with the use of inorganic ion-exchanger material that is zeolite

> [25] Rathor et al., describes metal sulphide used as ion-exchanger for the better efficiency in removing heavy metal ions from the waste water effluent.

> [26] Fathima and Pandith et al describes hybrid techniques in which organic and inorganic are hybrid for high potential of removing heavy metal ions from the waste water effluent.

3.0 Adsorption

Considering economic technique for removal of heavy metal ions we go through the adsorption process, it is very effective method for treatment of wastewater effluent. The use of this technique is very flexible in nature. Sometimes adsorption is a reversible process, and for the desorptions process the adsorbent can be re-generated and here there are several adsorbents present for removal of heavy metal ions

3.1 Activated carbon adsorbents- The most common adsorbent used for removal of heavy metal ions is activated carbon adsorbents (ACA). It contains large volume of mesopore and micropore which gives large surface area this is the main advantage of this adsorbent. Many researchers find that activated carbon is the best adsorbent for eliminating toxic metal ions [27]. Due to exhaustion of coal the price of AC is increased so without affecting this factor we will use activated carbon composite and additives in place of ACA, Tannic acid[28], surfactants [29], additives of alginate [30], magnesium [31] and most important activated carbon composite can be effectively absorbents for heavy metal contaminants. Due to expensive source of AC adsorbent there is conversion of carbonaceous material into activated carbon for heavy metal removal.

3.2 Carbon nanotube adsorbents- In 1991 Iijima discovered CNT (carbon nanotube). He describes the properties of CNTs and also give basic idea of its application. Carbon nanotube gives the best results for eliminating toxic metal ions like cadmium [32], copper [33], lead [34], chromium [35], nickel [36] from the contaminated water. And carbon nanotube adsorption gives the excellent result of removal of these heavy metals. Carbon nanotubes are characterized into two groups (a) SWCNT single walled carbon nanotubes adsorbent & (b) MWCNT (multi walled carbon nanotubes adsorbent [37]. The procedure of carbon nanotube adsorbent are very complex in nature so the mechanism go through the chemical-interaction, electrostatic-attraction and sorption precipitation in-between the surface of functional-group and the heavy metal ions of the carbon nanotubes adsorbents [38]. Due to low capacity of sorption of metals it oxidized through KMnO4, HNO3 and NaClO solution to increase its capacities of removing toxic metal ions [39].

3.3 Low cost adsorbents- From the research it is found that instead of being expensiveness of activated carbon it is widely used adsorbent for removing metal ions. So, the researcher continue
studied to find the low cost adsorbent. More than hundreds of articles has been published for the low cost adsorbent and they are by-product of industrial waste, natural material and agricultural waste for the treatment of toxic metal ions. In 2008 Gupta & Bhattachar survey the two kaolinite and montmorillonite adsorbent for eliminating the toxic metal ions. Also in 2008 Sud et al. survey that agricultural byproduct waste is used as adsorbent for treatment of heavy metal ions through aqueous solutions. In 2008 Wan Ngah & Hanafiah survey that chemically plant waste used as adsorbent for eliminating of toxic metal ions. Many researchers examine that by product of industrial waste like diatomite (40), lignite (41), natural-zeolite (42), lignin (43), clino pyrrhotite (44), peat (45), aragonite-shells (46), kaolinite (47). In 2010 a researcher Jiang examine that from Longyan we find the kaolinite-clay and it is used for elimination of toxic metals from the contaminated water and the time is approx. 29-30 minutes was observed. In 2009 the two researcher Navia & Agoubordea investigated that sediments & saw-dust and sometimes the mix of both material used as adsorbent for the eliminations of Zn & Cu from the aqu soln. The adsorption capacities are 4.84, 2.57 & 5.58 mg per grm for Zn and for Cu it is 4.70, 2.30, 4.32 mg per gram.

3.4 Bio-adsorbents: The very new adsorbent is discovered for removal of toxic metals from aqu solu is bioadsorbent and the process is known as bioadsorption. This adsorbent is inexpensive in comparison to other adsorbents and it is highly effective for removal of metal ions these are the advantages of this adsorbent. It is best suitable adsorbent for the treatment of contaminated water. Bio-adsorbent are basically divided into three groups (48) they are; (a) microbial biomass { such as yeast, bacteria, fungi }, (b) non-living biomass { such as squid, shrimp, bark, krill, lignin, crab shell etc } and (c) alga biomass. There are different in-expensive bioadsorbents are sawdust [49], egg-shell [50], coffee-husk[51], citrus peel [52], potato peel [53], black gram husk [54], seed shells [55] and sugar beet pectin gels [56] etc for removal of heavy toxic metal ions. Algae is a renewable biomass which present in large amount in the earth zone which is used naturally for the treatment of waste water effluent. This low cost adsorbent possesses a lot of advantages like it is widely available in nature secondly it is low cost in nature and have high metal ions sorption capability [57]. Removal of heavy metal ions through bacteria from aqu solutions are Pseudomonas aeruginosa [58] and Escherichia coil [59] etc. Fungi & Yeast produces large biomass and they are easy to grow. Fungi bio-adsorbents are saccharomyces cerevisiae [60], Rhizopus arrhizus [61], Lentinus edodes [62], Lentinus edodes [63]. Renu, Madhu Agarwal et al., describes that for the removal of toxic metal ions the best suitable method is adsorption and the characterised it into two different parts that is (1) commercial adsorbent (2) bioadsorbent for removing copper, chromium, and cadmium.

> [64] In 2011 Fu and Wang discovered the most efficient techniques used for removing heavy metal ions that is adsorbton.

> [65] Gopalakrishnan et al., in 2015 describes the quality of nanomaterial which possesses the functional group, surface area is high and enhance active site due to these qualities the removing of heavy and unwanted metals ions can remove easily.

> [66] Renu et al., in 2017 describes adsorption techniques for the removal of toxic metal ions with the use of commercial adsorbent and bio-adsorbent which increase the removing capacity.

> [67] Sabry M. Shaheen et al., discover that with the help of zeolite in adsorption techniques the elimination of heavy metal ions will take place with better efficiency.
K. Singh et al., found that adsorbent like composite of carbon nanotubes, alumina, graphene sand composite, eggshell and many more are used to eliminate the toxic metal ions like copper, chromium, cadmium from the waste water effluent.

More Case Study Related To Adsorptions

Laxmipriya Panda et al., do excellent work towards removal of heavy metal ions with the use of waste ash from the industry and utilizes in the elimination of Cd$^{2+}$, Ni$^{2+}$, Co$^{2+}$, Pb$^{2+}$. And that ash is dolomitic which generates the geopolymer due to its volume and size enhancement it gives total 99% removal by archiving temperature = 343.3 K, ph = 7.9 and ion concentration = 9.9-10 ppm.

Bao-Lin Zhang gives knowledge about two adsorbent that is MoFs MIL-100(Fe) and second is Fe-BTc which works on removal of Cd and Pb. The performance rate of MoFs is higher than Fe-BTc with ph change from 2-7. These two adsorbent removes Pb more than 99.5% and Cd approx 99.2%. The noticeable thing is that here endothermic phenomena take place that is spontaneously change in entropy.

Researcher review here for the removal of Cr(VI) metal ions because of its high toxicity with the use of activated carbon such as Bentonite which plays excellent work towards removal of Cr(VI) and gives result like equilibrium time rate was 119-120 min with temperature rate is 35-40 degree celcius and ph is 2. Here concentration of chromium (VI) was found 200 mg/L.

4.0 Membrane filtration

Membrane filtration method have different types of membrane for treatment of waste water effluent. It is easy to operate with space saving and also possess high efficiency of metal removal. The membrane which used to eliminate ions from the contaminated water are reverse osmosis, electrodialysis, ultra-filtration, nano-filtration.

![Figure 2. Filtration of contaminated water through membrane filtration](image)

4.1 **Electrodialysis**- ED is the type of membrane filtration for the ions separation from solution by electric discharge through solu. Ion exchange membrane is used in electrodialysis process. The two exchanger works here one is anion exchanger and second one is cation exchanger. For the purpose of
drinking water and process-water from the sea-water and briny water electro-dialysis is widely used. Electrodialysis gives good result for separation of useful metal ions from the waste effluent and sea water [72]. Electrodialysis also gives the effectively result for the treatment of toxic metal ions removal. In 2007 the researcher Nataraj gives a working model for elimination of hexa-valent Cr ions by electrodialysis method using ion exchanger membrane, and the outcome gives the satisfactory result. In 2009 the researcher Cifuentes discover that electrodialysis is very effective for the elimination of copper and iron from the aqua solution. From a lot of experience were performed and then after researcher found that for improving the performance of cell the temperature and voltage will be increased and it is also find that with increase of flow rate the separation percentage will be decreased.

4.2 Reverse Osmosis - In this process the solution which is being purified will pass through the semi permeable membrane via eliminating the unwanted materials. Reverse osmosis is useful techniques for eliminates a large quantity of dissolved contaminants from water. 20 percent of universe desalination capacity is performed by reverse osmosis[73].

In 2009 the two researcher Dialynas & Diamadopoulos studied that efficiencies of elimination metal ions will increase when reverse osmosis is combine with bio-reactor membrane. But it has some disadvantages also like it consume high power because of pressure of pumping and second thing is its membrane restoration.

4.3 Nanofiltration - Between Reverse Osmosis and Ultra-Filteration the in-between process happens and that we known as NF (Nano-filtration). Nano-filtration is a worthfull techniques for the elimination of toxic metal ions like Cr[74], As [75], Ni [76], and Co [77] from contaminated water. Nanofiltration possess a lot of advantages like it consumes less power supply, its efficiency of eliminating toxic metal ions is comparatively high with other filtration process, it is easy to operate and more reliable in nature[78].

In 2010 a researcher Figoli reviewed that with the help of 2-commercial nano-filtration membranes {NF90 & N30F} the elimination of pentavalent As from the synthetic water occurs. And at the same time they found that pH is increases while temperature of operation is decrease gradually. Murthy & Chaudhari takes a year to examine the elimination process of toxic ions with the help of nano-filtration method and they reported the use of polyamide nano-filtration membrane for the removal of Ni ions from aqua solution of contaminated water [79]. and they also observe that the max removal of Ni ions is 97.9% and 92.0% for feed-concentration of 6 and 249 mg per L respectively and they also research on Cd and Ni rejection capability using nano-filtration membrane for removal of toxic heavy metal ions [80]. The outcome for the Cd and Ni rejection are 98.93% and 82.68% respectively for feed-concentration of 5.0 mg per L.

4.4 Ultrafiltration - For the rejection of colloidal and dissolved material from aqua solution a membrane techniques work on low trans-membrane pressure and that is known as UF (ultra-filtration). For obtaining high efficiency of metal removal the MEUF (micellar en-hanced ultra-filtration) and second one is PEUF (polymer en-hanced ultra-filtration) was come.

In 1980s a researcher Scamehorn et al., was initially discovered Micellar enhanced ultrafiltration for the treatment of dissolved and multi-valent toxic metal ions from aqua solution [81]. Efficiency of
metal rejection through micellar enhanced ultrafiltration totally dependent on the following parameters like concentration of metals to surfactants, pH of solution, ionic-strength and terms synchronize to membrane operation.

> [82] Hani Abu-Qudais use the part of membrane filtration that is reverse osmosis and nanofiltration for the removal of cadmium and copper from the waste water effluent.

> [83] Blocher, Dorda J et al., describes the hybrid techniques of separation of heavy metal ions from the contaminated water.

5.0 Flotation

Extensively used method for the removal of waste water treatment is flotation.

For the separation of toxic ions from the aqua solution with the help of attachment of bubble, mineral originated process we use flotation techniques. The main process of flotation are dissolved air-flotation, ion-flotation and precipitation are used for the treatment for waste water effluent.

Dissolved air flotation permit to bubbles of air to stuck on suspended-particle in the aqua solution, making a thin film of low density than solution where the toxic metal ions eliminate as a sludge formation [84]. dissolved air flotation proves that for the removal of ions it is the widest used techniques in 1990s [85].

Ion- flotation method is also very effective for the removal of metal ions from the contaminated water. Ion flotation process totally depend on im-parting metal ions in contaminated hydrophobic with the help of surfactants and through air bubbles these ion-metals eliminates from the contaminated solutions [86].

In 2008 the researcher Yuan et al., examined the capacity of ion-flotation to eliminate the cd, cu and pb from the dilute aqua soltn from the bio-derived tea (saponin). The max elimination of cu2+, pb2+ and cd2+ are 81.12%, 89.94% and 71.16% respectively.

Another process that is used for the removal of metal ions from the waste water effluent is Precipitate flotation it is type of flotation process with the help of air bubbles in the formation of precipitate. Under the observation of metal soltn concentration the formation of metal hydro-oxide occurs due to precipitation formation [87]. Elimination of Cr (III) from the dil aqua solution is carried because of precipitation flotation process and here ethanol is used as an-ionic collector [88]. And the excellent result come with accuracy of ph 7.99 and max removal of metal ions is 96.1%.

> [89] Mavrov V et al., discover the hybrid of flotation process for the removing of cadmium and copper toxic metal ions from the waste water effluent.

> [90] Blocher et al. in 2003 has also given the hybrid theory for removal process in which he combine the flotation and membrane filtration for the removal of zinc, copper, nickel from the waste water effluent.

> [91] In 2002 Rubio et al., used collector such as SOS and MIBC for the removal of cadmium and it gives result from 89.3% to 97.6%.
6.0 Electrochemical Treatment

In this method on a cathode surface the metallic ions are spread and by this procedure useful metals are recover in elemental state. But it has major disadvantages like it is very expensive techniques due to large electric consumptions. So, this process is not more in use but from last 2 decades it is widely used because of its modify basic properties [92]. And here we studied that different form of this technologies such as electrofloation (EF), electro-coagulation(EC) and electro-deposition (ED).

EC takes electrodes of AL or Fe to generate coagulate by mixing electrically either Al or Fe [93]. At the anode side there is generation of ions of metal take place and at the cathode side there is formation of hydrogen ion take place and these hydrogen gas (ions) help to flush out the flocculated particles from the aqua [94]. In 2008 the two researcher Heidmann and Calmano studied and examine the removing capability of Zn2+ , Ni2+ , Cu2+ , Ag+ with the help of electro-coagulation. For the examination of Hg2+ concentration of synthetic solution the electro-flotation method is also used [95]. The removing efficiency is greater than 99.7% when the gap between the electrode is nearly 3 cm and the current density varies from 2.6 to 3.123 Adm-2 and pH value of mercury ions varies from 3.1 to varies accordingly [96].

David Hasson et al., describes the removal techniques of phosphate with the use of electrochemical treatment is also described calcium and magnesium hardness. Electrochemical techniques is known for its high potential for the elimination of hard metal from the industrial wastewater.

Chaloempan Petsriprasit et al., describes electrochemical process with lots of advantage and disadvantage, it is the best suitable process for the removal of heavy metal ions from the industrial waste water effluent.

7.0 Electroflotation

EF (electro-flotation) is a process of liquid/solid separation in which pollutant comes at the surface of water solution in the form of gas bubbles of oxygen and hydrogen. Electro-flotation gives the good result in the removal process of toxic metal ions. The researcher survey the electro-flotation techniques with the help of Al electrode for the waste water treatment [98]. Using this method the metal ions like Ni , Zn , Fe , Co , pb can easily removes from waste water. And it gives 99.9% removal rate which is actually a excellent result of removal. In electro-flotation process with the use of hybrid electrode of Fe and with the use of micro- filtration , filter-paper and ultra-filtration test operate for increasing efficiency of Ni with or without use of any external source of oxygen [99].

Electro-deosition is a method which is used for the recovery of useful metal ions from contaminated water and it is totally different process. In this method there is no extra residue added for the separation of metal ions so, researcher say that it is very clean process for metal recovery [100]. The researcher found that ED is very useful technique for the recovery of useful metal ions from the waste water effluent [101].

8.0 Coagulation & Flocculation
Involving two processes: sedimentation & filtration to eliminate metal ions from contaminated water and the whole process is known as Coagulation and Flocculation method. The main work of coagulation is disturbing the colloid particles by making the forces neutral which keep them apart. There are examples of some coagulants like ferrous sulphate, aluminium and ferric chloride which give the excellent work of removing impurities and metal ions from waste water effluent and also form the precipitate of amorphous metal of hydroxide. In a research it is found that when coagulants like poly-aluminium chloride and ferric chloride mix with impure water of industries then this coagulants removes the impurities and toxic metal ions from the effluent [102].

![Flocculation Diagram]

Figure 3. Removal of heavy metal ions from waste water effluent through flocculation

Coagulation is very effective process for the removal of metal ions from the contaminated sources, suspended particle and hydrophobic collides are the major two objective of the coagulations. Sodium xanthogenate group works effectively in the eliminations of metal ions from waste water effluent [103]. The turbidity decreases and Ni2+ removal increases when the pH of water sample is increases.

Flocculation is a process in which we add attorney and due to this impurities which are present in aqua solution comes out in the form of flocs. When the suspended-particles are flocculated into big particle then the elimination of these large particle can be easily performed by a various techniques like flotation, filtration, straining. There are a lot of flocculants are available and they are macromolecule, polyaluminium chloride, poly-acrylamide, poly-ferric sulphate are most common used for the
elimination of toxic metal ions from the waste water effluent. A research is performed in which a new macro-molecule flocculent (mercaptoacetyl-chitosan) is invented through which not only turbidity remove but also metal ions also remove when this chitosan is react with mercaptoacetic acid [104]. The flocculants are formed to remove metal ions from contaminated water and they are ; N-carboxy-ethylated Chitosns two new { derivate of poly- ampholyte-chitosan} [105] and the second one is co-sodium xanthate { derivate of poly-acrylamide} [106]. A new method flocculation techniques comes in which without any additional process like filtration and centrifugation to separate the metal ions from effluent with the use of thermosenstive polymer [107]. And a new tannic type flocculant has been discovered for the elimination of metal ions [108].

From a research it is find that heavy metal ions are not completely eliminate from the wastewater through coagulation and flocculation method [109]. So, there is need of some other techniques to removes metal ions completely and that can be precipitation , flocculation and coagulation process to eliminate tungsten from the industrial waste water using ferric chloride as a agent [110]. With the use of aluminium composite (micro-alloyed) for the spontaneous reduction process take place and it also give the good result for removal of metal ions [111]

Summary of treatment of heavy metal ions removal

As we can see at the above techniques there is many different process which is used for removal of useless metal ions and impurities with many advantages and contain limitations also.

When the removal of metal ions from aqua solution then we go through the chemical precipitation process because of its easy operation and also low cost but this process is useful only for high concentration waste water and it is not effective for low concentration of waste water. Due to non-economical property of chemical precipitation it generates large amount of sludge which causes difficulties in metal removal process.

Ion-exchange is another techniques which is also used for the removal of impurities which is present in waste water but it can not properly work when the water concentration is low . It is expensive in nature and also cause pollution because of additional of resins so it is not used in large scale purpose.

Adsorption is widely used method for the removal of toxic metal ions from industrial waste water effluent. There are many varieties of low cost adsorbent present in market through which removal techniques may be performed in better way. It is very important point that what type of adsorbent is used for the removal process because the efficiency of removal process is totally depend upon the type of adsorbent is used. In adsorption method there is new type of adsorbent is introduce and that is bio-adsorbent.

Membrane-filtration is useful for high efficiency removal of metal ions but it consist of high cost, complexity in operation and sometimes generate a large amount of flux so their use is in liminated for removal process of metal ions.

Electro-chemical process take forward with the use of chemicals due to this agent it working properties improves and it does not produce sludges . It is very useful for the removal of heavy metal ions but it is not well developed technologies because it capital cost is high and consumes a large power capacity.
Flotation is also used for the elimination of toxic metal ions from the waste water effluent but it consists a lot of advantages like low detention time, efficiency of removal is high comparative to other techniques, metal sensitivity is high, overflow rate is high and operating cost is low but the more concentrated sludge is formed [112]. And also consist some disadvantage like high initial cost, maintenance cost is also high and operational cost is also high. Go through the coagulation-flocculation process for the removal of heavy metal ions the sludge produced in this process is good sludge and is useful for the elimination of metal ions using chemical consputions. Although all the process is used for the removal of metal ions from the contaminated water. The selection of process depends upon the following parameters like first check what is the concentration of solutions, what is the initial cost of method and what is the capital-investment of the process some more parameters like flexibility and reliability of the plant and the last one which is more important to know what is the environmental impact and considering all these things then after a suitable technique is used for the removal of toxic metal ions [113].

Conclusions

As we can see that day by day there is increase in environmental pollution and one of the reason is heavy metal ions pollution of waste water effluent. To overcome with these environment problem we adopt removal techniques like membrane filtration, ion-exchange, chemical precipitation, adsorption, flotation, coagulation-flocculation for the elimination of toxic metal ions from the contaminated water sources. But it is observe that adsorption process is the best suitable method among all the above techniques and it is examine under 180-200 articles survey. Adsorbent of low cost and bio-adsorbent is also very useful for the removal of heavy metal ions, adsorption is very effective and less expensive as compare to other process, it is more economical method for low concentration of treatment of waste water. Adsorption process gives 98-99.8% removal rate of heavy metal ions with maintain ph value and appropriate temperature rate.

References

[1] Anas Raklami, Abdel-ilah Tahiri, Noura Bechtaoui El Gharmali, Abdelhay 2021 Restoring the plant productivity of heavy metal-contaminated soil using phosphate sludge, marble waste, and beneficial microorganisms. Journal of Environmental Sciences Volume 99

[2] V. Balaram 2020 Microwave plasma atomic emission spectrometry (MP-AES) and its applications – A critical review. Microchemical Journal Volume 159, 105483

[3] Mehvish Hameed, Zulaykha Khurshid Dijoo, Rouf Ahmad Bhat, Irteza Qayoom. Concern and Threats of Heavy Metals’ Contamination on Aquatic Ecosystem. Bioremediation and Biotechnology, Vol 4 pp 1-19

[4] Summaira Sharaf, Muti-ur-Rehman Khan, Asim Aslam, Masood Rabbani, Aisha Sharf, Misbah Ijaz, Ahsan Anjum & Naqi Hussain. 2020 Environmental Science and Pollution Research (2020)
[5] Amjad Ali Maitlo, Wahid Bux Jatoi, Almas Fatima Memon, Amjad Hussain Soomro & Muhammad, Siddique Bhayo 2020. Biological Trace Element Research (2020) Published: 15 August 2020. Assessment of Zinc, Lead, Chromium, and Cobalt in Commonly Consumed Herbal Medicines in Sindh.

[6] Abdelghany Hefawy Abdelghany, Heba mohamed Elkhaiat 2015. The importance of copper and the effects of its deficiency and toxicity in animal health, January 2015. International Journal of Livestock Research DOI: 10.5455/ijlr.20151213101704

[7] Giuseppe Genchi, Alessia Carocci, Graziantonio Lauria, Maria Stefania Sinicropi, 2020. Human Health and Environmental Toxicology, Int J Environ Res Public Health. 2020 Feb; 17(3): 679. Published online 2020 Jan 21. doi: 10.3390/ijerph17030679

[8] A.N.Triantafillou MD, G.A.Patterson MDM.S.Pohl RN, P.A.Deloney RN, R.S.Sundaresan MD CL.Roper MD. 1995. Bilateral pneumectomy (volume reduction) for chronic obstructive pulmonary disease. The Journal of Thoracic and Cardiovascular Surgery Volume 109, Issue 1, January 1995, Pages 106-119

[9] Jayanta Kumar Biswas, Mahendra Rai, Monojit Mondal, Avinash P. Ingle 2018. The Flop Side of Using Heavy Metal(oids) in the Traditional Medicine: Toxic Insults and Injury to Human Health. Biomedical Applications of Metals pp 257-276

[10] Qiao YiChen, Anthony Murphy, Hong Sun, Max Costa. 2019. Molecular and epigenetic mechanisms of Cr(VI)-induced carcinogenesis. Toxicology and Applied Pharmacology Volume 377, 15 August 2019, 114636

[11] Haiming Huang, Jiahui Liu, Peng Zhang, Dingding Zhang, Faming Gao. 2017. Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation. Chemical Engineering Journal Volume 307, 1 January 2017, Pages 696-706

[12] Quanyuan Chen, Yuan Yao, Xinying Li, Jun Lu, Juan Zhou, Zhaolu Huang. 2018. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. Journal of Water Process Engineering Volume 26, December 2018, Pages 289-300

[13] W. Ashane M. Fernando, I.M.S.K. Ilankoon, Tauqir H. Syed, Mohan Yellishetty. 2018. Challenges and opportunities in the removal of sulphate ions in contaminated mine water: A review. Minerals Engineering Volume 117, March 2018, Pages 74-90

[14] Quanyuan Chen, Yuan Yao, Xinying Li, Jun Lu, Juan Zhou, Zhaolu Huang. 2018. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates Volume 26, December 2018, Pages 289-300

[15] Wei Zhou, Xiang Lu, Chongchong Qi, Meng Yang. 2020. Utilisation of ultrasonic treatment to improve the soil amelioration property of coal fly ash. Journal of Environmental Management Volume 276, 111311
[16] Zhiquan Huang , Lila R. Dahal, Sylvain Marsillac, Nikolas J. Podraza 2020 Real Time and Mapping Spectroscopic Ellipsometry of Hydrogenated Amorphous and Nanocrystalline Si Solar Cells. Spectroscopic Ellipsometry for Photovoltaics pp 255-315

[17] Ebrahim Tilahun Erkan Sahinkaya, Barış ÇaLLi 2018 A hybrid membrane gas absorption and bio-oxidation process for the removal of hydrogen sulfide from biogas. International Biodeterioration & Biodegradation Volume 127, Pages 69-76

[18] Xu Chen Yong Sik Ok, Dinesh Mohan, Charles U. Pittman Jr., Xiaomin Dou 2017 The stability and removal of water-dispersed CdSe/CdS core-shell quantum dots from water. Chemosphere Volume 185, Pages 926-933

[19] Xuhui Li, Weigang Zhu, Gengjian Meng, Chaosheng Zhang, Ruichao Guo 2020 Efficiency and kinetics of conventional pollutants and tetracyclines removal in integrated vertical-flow constructed wetlands enhanced by aeration. Journal of Environmental Management Volume 273, 111120

[20] Hao Peng, Jing Guo 2020 Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review. Published: 23 July 2020

[21] Mei Hong, Lingyun Yu, Yanding Wang, Jian Zhang, Zhuwen Chen, Lei Dong, Qijie Zan, Ruili Li 2019 Heavy metal adsorption with zeolites: The role of hierarchical pore architecture. Chemical Engineering Journal Volume 359, 1 March 2019, Pages 363-372

[22] Surases Wiriyathamcharoen, Sudipta Sarkar, Pijit Jiemvarangkul, Trung Thanh Nguyen, Wantana Klysubun, Surapol Padungthon 2020 Synthesis optimization of hybrid anion exchanger containing triethylamine functional groups and hydrated Fe(III) oxide nanoparticles for simultaneous nitrate and phosphate removal. Chemical Engineering Journal Volume 381, 1 February 2020, 122671

[23] Jiyeon Choi 2020 Won Sik Shin. Removal of Salicylic and Ibuprofen by Hexadecyltrimethylammonium-Modified Montmorillonite and Zeolite

[24] B. Senthil Rathi & P. Senthil Kumar 2020 Electrodeionization theory, mechanism and environmental applications. A review. Published: 20 April 2020

[25] Xianghong Fang, Zhonghui Xu, Yaodong Luo, Li Ren, Wei Hua 2016 Removal of Radionuclides from Laundry Wastewater Containing Organics and Suspended Solids Using Inorganic Ion Exchanger

[26] Weng Fu, Guozhao Ji, Huihuang Chen, Siyuan Yang, Bao Guo, Hong Yang, Zhiqiang Huang. 2020 Molybdenum sulphide modified chelating resin for toxic metal adsorption from acid mine wastewater

[27] Mahmoud O. Abd El-Magied 2018 Removal of nickel (II) ions from aqueous solutions using modified activated carbon: A kinetic and equilibrium study. Journal of Dispersion Science and Technology Volume 39, 2018 - Issue 6
[28] Somayeh Karandish 2019 An efficient solid phase extraction of Pb$^{2+}$ using tannic acid-coated cerium oxide nanoparticles followed by electrothermal atomic absorption spectrometry. Separation Science and Technology Volume 54, 2019

[29] JunZhao, XiangLiu, YapanWu Dong-ShengLi QichunZhang 2019 Surfactants as promising media in the field of metal-organic frameworks. Coordination Chemistry Reviews Volume 391, 15 July 2019, Pages 30-43

[30] KishoreGinjupalli, RamakrishnaAlla, TusharShaw 2018 Comparative evaluation of efficacy of Zinc oxide and Copper oxide nanoparticles as antimicrobial additives in alginate impression materials. materials today: PROCEEDINGS Volume 5, Issue 8, Part 3, 2018, Pages 16258-16266

[31] Fang-Zhen Teng 2017 Mineralogy and Geochemistry (2017) 82 (1): 219–287.

[32] XingXuanJae Y.Park 2018 A miniaturized and flexible cadmium and lead ion detection sensor based on micro-patterned reduced graphene oxide/carbon nanotube/bismuth composite electrodes. Sensors and Actuators B: Chemical Volume 255, Part 2, February 2018, Pages 1220-1227

[33] Anthony B. Dichiara Michael R. Webber William R. Gorman Reginald E. Rogers* 2015 Removal of Copper ions from Aqueous Solutions via Adsorption on Carbon Nanocomposites, Publication Date: June 30, 2015 DOI 10.1021/acsmi.5b04974

[34] Yan-Hui Li, Shuguang Wang, Jinquan Wei 2002 Lead Adsorption on Carbon Nanotubes, DOI: 10.1016/S0009-2614(02)00502-X

[35] Muataz Ali Atieh,1,2 Omer Yahya Bakather,1 Bassam S. Tawabini,3 Alaadin A. Bukhari,4 Mazen Khaled,5 Mamdouh Alharthi,1 Mohammed Fettouhi,5 and Faraj Ahmad Abuilaiwi 2010 Removal of Chromium (III) from Water by Using Modified and Nonmodified Carbon Nanotubes, Volume 2010 | Article ID 232378 | doi 10.1155/2010/232378

[36] Chungsying Lu, Chunti Liu 2006 Removal of nickel(II) from aqueous solution by carbon nanotubes, Journal of Chemical Technology & Biotechnology 81(12):1932 - 1940

[37] YiminHuang, XinqingLee, Florika C. Macazo, MatteoGrattieri RongCai, Shelley D. Mintee 2018 Fast and efficient removal of chromium (VI) anionic species by a reusable chitosan-modified multi-walled carbon nanotube composite. Chemical Engineering Journal Volume 339, 1 May 2018, Pages 259-267

[38] Abu Nasar, Fouzia Mashkoor 2019 Application of polyaniline-based adsorbents for dye removal from water and wastewater—a review Published: 05 January 2019

[39] Rajeev Kumar, Nazrul Haq 2014 Application of Carbon Nanotubes in Heavy Metals Remediation. Environmental Science and Technology Volume 44, 2014 - Issue 9

[40] AliErgün 2011 Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties of concrete. Construction and Building Materials Volume 25, Issue 2, February 2011, Pages 806-812
[41] Ioannis K.Oikonomopoulos, Maria Perraki, Nikolaos Tougiannidis, Theodora Perraki, Haino Uwe Kasper, Marcus Gurk 2015 Clays from Neogene Achlada lignite deposits in Florina basin (Western Macedonia, N. Greece): A prospective resource for the ceramics industry. Applied Clay Science Volume 103, January 2015, Pages 1-9

[42] R. Miandad, M. A. Barakat, M. Rehan 2017 Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts. Waste Management Volume 69, November 2017, Pages 66-78

[43] Atul V. Maldhure, J. D. Ekhe 2013 Pyrolysis of purified kraft lignin in the presence of AlCl₃ and ZnCl₂. Journal of Environmental Chemical Engineering Volume 1, Issue 4, December 2013, Pages 844-849

[44] Md. Juned K. Ahmed, M. Ahmaruzzaman 2016 A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions. Journal of Water Process Engineering Volume 10, April 2016, Pages 39-47

[45] T. Viraraghavan Florde Maria Alfaro 1998 Adsorption of phenol from wastewater by peat, fly ash and bentonite. Journal of Hazardous Materials Volume 57, Issues 1–3, January 1998, Pages 59-70

[46] Jutika Boro, Dhanapati Deka, Ashim J. Thakur 2012 A review on solid oxide derived from waste shells as catalyst for biodiesel production. Renewable and Sustainable Energy Reviews Volume 16, Issue 1, January 2012, Pages 904-910

[47] Jutika Boro, Dhanapati Deka, Ashim J. Thakur 2012 A review on solid oxide derived from waste shells as catalyst for biodiesel production. Renewable and Sustainable Energy Reviews Volume 16, Issue 1, January 2012, Pages 904-910

[48] Yingjie Dai, Qiya Sun, Wenshi Wang, Lu Lu Mei, Liu Jingjin, Li Shengshu, Yang 2018 Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere Volume 211, November 2018, Pages 235-253

[49] Tushar Kanti Sen, Sharmeen Afruze, H. M. Ang 2014 Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science Volume 209, July 2014, Pages 172-184

[50] Sharmeen Afruze, Tushar Sen, 2018 A Review on Heavy Metal Ions and Dye Adsorption from Water by Agricultural Solid Waste Adsorbents, June 2018 Water Air and Soil Pollution 229(7) DOI: 10.1007/s11270-018-3869-z

[51] Hernández Rodriguez, M., Yperman, J., Carleer, R., Maggen, J., Dadi, D., Gryglewicz, G., … Otero Calvis, A 2018 Adsorption of Ni(II) on spent coffee and coffee husk based activated carbon. Journal of Environmental Chemical Engineering, 6(1), 1161–1170. doi:10.1016/j.jece.2017.12.045

[52] Zhou, Y., Cao, S., Xi, C., Li, X., Zhang, L., Wang, G., & Chen, Z 2019 A novel Fe3O4/graphene oxide/citrus peel-derived bio-char based nanocomposite with enhanced adsorption affinity and sensitivity of ciprofloxacin and sparfloxacin. Bioresource Technology, 121951.
[53] S. Lairini1,2, K. El Mahtal1,2, Y. Miyah1, K. Tanji1, S. Guissi3, S. Boumchita1, F. Zerrouq1 2017 The adsorption of Crystal violet from aqueous solution by using potato peels (Solanum tuberosum): equilibrium and kinetic studies, JMES, 2017 Volume 8, Issue 9, Page 3252-3261

[54] Jirekar, D. B.; Ghumare Pramila; Mazahar Farooqui 2015 Kinetics and isotherm studies on crystal violet dye adsorption onto Black gram seed husk, International Journal of ChemTech Research 2015 Vol.7 No.1 pp.427-434 ref.22

[55] Yusuff, A. S. 2018 Optimization of adsorption of Cr(VI) from aqueous solution by Leucaena leucocephala seed shell activated carbon using design of experiment. Applied Water Science, 8(8). doi:10.1007/s13201-018-0850-3

[56] Mata, Y. N., Blázquez, M. L., Ballester, A., González, F., & Muñoz, J. A. 2009 Optimization of the continuous biosorption of copper with sugar-beet pectin gels. Journal of Environmental Management, 90(5), 1737–1743. doi:10.1016/j.jenvman.2008.11.028

[57] Abdel-Raouf, N., Al-Homaidan, A. A., & Ibraheem, I. B. M. 2012 Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257–275. doi:10.1016/j.sjbs.2012.04.005

[58] Chellaiah, E. R. 2018 Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview. Applied Water Science, 8(6). doi:10.1007/s13201-018-0796-5

[59] Ahmad Khosravi1 · Marzieh Javdan2 · Ghazal Yazdanpanah3 · Mohammad Malakootian, 2020 Removal of heavy metals by Escherichia coli (E. coli) biofilm placed on zeolite from aqueous solutions (case study: the wastewater of Kerman Bahonar Copper Complex), Applied Water Science (2020) 10:167 https://doi.org/10.1007/s13201-020-01257-5

[60] Shafiquzzaman Siddiquee1 *, Kobun Rovina1, Sujjat Al Azad2, Laila Naher3, Saallah Suryani1 and Pasicha Chaikaew4 2015 Heavy Metal Contaminants Removal from Wastewater Using the Potential Filamentous Fungi Biomass, J Microb Biochem Technol 2015, 7:6 DOI: 10.4172/1948-5948.1000243

[61] Manisha Shakya1; Pratibha Sharma2; Syeda Shaima Meryem3; Qaisar Mahmood4; and Arun Kumar5 2015 Heavy Metal Removal from Industrial Wastewater Using Fungi: Uptake Mechanism and Biochemical Aspects May 2015Journal of Environmental Engineering 2015(9) DOI: 10.1061/(ASCE)EE.1943-7870.0000983

[62] Bayramoglu and Arica in the year 2008 , low cost techniques used here which is bio-adsorption for the removal of heavy metal ions from the waste water , Bio-resource technologies 99.2766-2777 .

[63] Adriana Jazmín Legorreta-Castañeda, Carlos Alexander Lucho-Constantino , Rosa Icela Beltrán-Hernández, Claudia Coronel-Olivares and Gabriela A. Vázquez-Rodríguez, 2020 Biosorption of Water Pollutants by Fungal Pellets , Water 2020, 12, 1155; doi:10.3390/w12041155

[64] Fenglian Fu a,*, Qi Wang 2011 Removal of heavy metal ions from wastewaters , Journal of Environmental Management 92 (2011) 407e418Issue 12 doi:10.1080/027878826.2015.1109053
[65] Ranganathan Gopalakrishnan, Peter H. McMurry & Christopher J. Hogan, Jr, The Bipolar Diffusion Charging of Nanoparticles 2015 A Review and Development of Approaches for NonSpherical Particles, Aerosol Science and Technology Volume 49, 2015 -

[66] Renu; Madhu Agarwal; K. Singh 2017 Heavy metal removal from wastewater using various adsorbents 2017 Journal of Water Reuse and Desalination (2017) 7 (4): 387–419. doi.org/10.2166/wrd.2016.104

[67] Sabry M. Shaheen , Aly Soliman Derbalah , Farahat S. Moghamm 2012 Removal of Heavy Metals from Aqueous Solution by Zeolite in Competitive Sorption System, January 2012 International Journal of Environmental Science and Development DOI: 10.7763/IJESD.2012.V3.248

[68] Renu; Madhu Agarwal; K. Singh , Heavy metal removal from wastewater using various adsorbents 2017 Journal of Water Reuse and Desalination (2017) 7 (4): 387–419. doi.org/10.2166/wrd.2016.104

[69] LaxmiPriya Panda, Sandeep K. Jena, Swagat S. Rath & Pramila K. Misra 2020 Heavy metal removal from water by adsorption using a low-cost geopolymer, Environmental Science and Pollution Research volume 27, pages24284–24298(2020)

[70] Bao-Lin Zhang, Wei Qiu, Pan Pan, Wang Yu-Lei, Liu Jing, Zou Lu, Wang Jun Ma, 2020 Mechanism study about the adsorption of Pb(II) and Cd(II) with iron-trimesic metal-organic frameworks, Chemical Engineering Journal Volume 385, 1 April 2020, 123507

[71] Sujatha R. SivarethiNamoohan 2020 A critical review of Cr(VI) ion effect on mankind and its amputation through adsorption by activated carbon, Materialstoday Available online 23 July 2020

[72] Luigi Gurreri, Alessandro Tamburini * , Andrea Cipollina and Giorgio Micale 2020 Electrodielisis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspectives, Membranes 2020, 10, 146 ; doi:10.3390/membranes10070146

[73] Mathar Bdour 1,*, Zakariya Dalala 1, Mohammad Al-Addous 1, Atef Kharabsheh 2 and Hadi Khzouz 1, Mapping RO-Water Desalination System Powered by Standalone PV System for the Optimum Pressure and Energy Saving, Appl. Sci. 2020, 10, 2161; doi:10.3390/app10062161 w

[74] Jinyue Yang, Baohong Hou, "Jingkang Wang, Beiqian Tian, Jingtao Bi, Na Wang, Xin Li, and Xin Huang", 2020 Nanomaterials for the Removal of Heavy Metals from Wastewater, Nanomaterials (Basel). 2019 Mar; 9(3): 424, doi: 10.3390/nano9030424

[75] TA Siddique, Naba K. Dutta * and Namita Roy Choudhury 2020 Nanofiltration for Arsenic Removal: Challenges, Recent Developments, and Perspectives, Nanomaterials 2020, 10, 1323; doi:10.3390/nano10071323

[76] Tiago da Silva Arouche 2020 Rosely Maria dos Santos Cavaleiro,1,2 Phelipe Seiichi Martins Tanoue,1 Tais Sousa de Sa Pereira,1 Tarciso Andrade Filho,3 and Antonio Maia de Jesus Chaves Neto, Heavy Metals Nanofiltration Using Nanotube and Electric Field by Molecular Dynamics, Volume 2020 [Article ID 4063201 | 10.1155/2020/4063201
[77] Kwang-Ho Choo, Dae-Joong Kwon, Kwang-Won Lee and Sang-June Choi 2002 Selective Removal of Cobalt Species Using Nanofiltration Membranes, *Environ. Sci. Technol.* 2002, 36, 6, 1330–1336 Publication Date:February 7, 2002 doi.org/10.1021/es010724q

[78] Cristina-Veronica Gherasim, Petr Mikulášek 2014 Influence of operating variables on the removal of heavy metal ions from aqueous solutions by nanofiltration, *Desalination*, Volume 343, 16 June 2014, Pages 67-74

[79] B.A.M. Al-Rashdi, Daniel James Johnson, Nidal Hilal 2013 Removal of Heavy Metal Ions by Nanofiltration, April 2013 *Desalination* 315:2–17 DOI: 10.1016/j.desal.2012.05.022

[80] Murthy, Z.V.P., Chaudhari, L.B., 2009. Separation of binary heavy metals from aqueous solutions by nanofiltration and characterization of the membrane Using Spieglere Kedem model. Chem. Eng. J. 150, 181e187

[81] Mahnaz Afifi, Hosein Alizadeh Golestani, Shadi Sharifi, Shirin Kiani 2014 Wastewater treatment of raisins processing factory using micellar-enhanced ultrafiltration, January 2014 Desalination and water treatment 52(1-3), DOI: 10.1080/19443994.2013.782254

[82] Hani Abu-Qudais, Hassan Moussa 2004 Removal of Heavy Metals from Wastewater by Membrane Processes: A Comparative Study, April 2004 Desalination 164(2):105-110

[83] C Blöcher, J Dorda, V Mavrov, H Chmiel 2003 Hybrid flotation - Membrane filtration process for the removal of heavy metal ions from wastewater, September 2003 Water Research 37(16):4018-26 DOI: 10.1016/S0043-1354(03)00314-2

[84] Shahin Ahmadi1* and Ferdos Kord Mostafapour2 2017 Survey of Efficiency of Dissolved Air Flotation in Removal Penicillin G Potassium from Aqueous Solutions, 15(3): 1-11, 2017

[85] George Z. Kyzas, Kostas A. Matis 2018 Flotation in Water and Wastewater Treatment, *processes* 2018, 6(8), 116; doi.org/10.3390/pr6080116

[86] Hurriyet Polat, D Erdogan 2007 Heavy Metal Removal from Waste Waters by Ion Flotation, October 2007 Journal of Hazardous Materials 148(1-2):267-73, DOI: 10.1016/j.jhazmat.2007.02.013

[87] Jacek Namieśnik & Anna Rabajczyk, The speciation and physico-chemical forms of metals in surface waters and sediments, ISSN: 0954-2299 (Print) 2047-6523

[88] B.Y. Medina, M.L. Torem, L.M.S. de Mesquita 2005 On the kinetics of precipitate flotation of Cr III using sodium dodecylsulfate and ethanol, February 2005 Minerals Engineering 18(2):225-231DOI: 10.1016/j.mineng.2004.08.018

[89] V. Mavrov, St. Stamenov, Ekaterina Ivanova Todorova, H. Chmiel 2006 New hybrid electrocoagulation membrane process for removing selenium from industrial wastewater, November 2006 Desalination 201(1-3):290-296DOI: 10.1016/j.desal.2006.06.005
[90] C Blöcher, J Dorda, V Mavrov, H Chmiel 2003 Hybrid flotation - Membrane filtration process for the removal of heavy metal ions from wastewater, September 2003 Water Research 37(16):4018-26 DOI: 10.1016/S0043-1354(03)00314-2

[91] Rubio, Renu Bisht, Madhu Agarwal, Kailash Bahadur Singh 2017 Methodologies for removal of heavy metal ions from wastewater, October 2017 Interdisciplinary Environmental Review 18(2):124-142 DOI: 10.1504/IER.2017.10008828

[92] Thiện Khánh Trân, Hoang-Jyh Leu, Kuo-Feng Chiu, Chiu-Yue Lin 2017 Electrochemical treatment of heavy metal containing wastewater, March 2017 Journal- Chinese Chemical Society Taipei 64(5) DOI: 10.1002/jccs.201600266

[93] Mohammed Chafi, Gourich Bouchaib, Abdel hafid Essadki, Ch. Vial 2011 Comparision of Electrocoagulation Using Iron and Aluminium Electrodes With Chemical Coagulation for the Removal of a High Soluble Acid Dye, October 2011 Desalination 281(1):285-292 DOI: 10.1016/j.desal.2011.08.004

[94] Chen, G.H., 2004. Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 38, 11e41.

[95] Nanseu-Njiki, C.P., Tchamango, S.R., Ngom, P.C., Darchen, A., Ngameni, E., 2009. Mercury(II) removal from water by electrocoagulation using aluminium and iron electrodes. J. Hazard. Mater. 168, 1430e1436.

[96] David Hasson, Georgiy Sidorenko, Raphael Semiat 2011 Low electrode area electrochemical scale removal system, July 2011 Desalination and water treatment 31(1):35-41 DOI: 10.5004/dwt.2011.2389

[97] Chaloempan Petsripasit, Jirachaya Namboonmee, Mali Hunsom 2010 Application of the electrocoagulation technique for treating heavy metals containing wastewater from the pickling process of a billet plant, May 2010 Korean Journal of Chemical Engineering 27(3):854-861 DOI: 10.1007/s11814-010-0145-3

[98] Belkacem Merzouk, Khodir Madani, Sekki Abdelkrim 2008 Treatment characteristics of textile wastewater and removal of heavy metals using the electroflotation technique, August 2008 Desalination 228(1-3):245-254 DOI: 10.1016/j.desal.2007.10.013

[99] José Adilsonde CastroaRuide Góes Casqueiraba Angelo Gomesde Oliveirab 2015 Study of electroflotation method for treatment of wastewater from washing soil contaminated by heavy metals, Volume 4, Issue 2, April–June 2015, Pages 109-113

[100] D.-T. Chin 2002 Metal recovery from wastewater with an electrochemical method, March 2002 Chemical Engineering Education 36(2):144-149+155
[101] Anna Antonyová *1 and Peter Antony 2017 Electro-Flotation as the Method of the Water Treatment in Recycling Process of Contaminated Water as an Integral Part of the Reverse Logistics System , 21 December 2017 (03:55:44 CET), 10.20944/preprints201712.0147.v1

[102] Salman Hussein Abbas1*; Wail Hassan Ali2 2018 Electrocoagulation Technique Used To Treat Wastewater: A Review , American Journal of Engineering Research (AJER). Volume-7, Issue-10, pp-74-88

[103] Siti Nor Aishah Mohd-Salleh , Nur Shaylinda Mohd Zin , Norzila Othman 2019 A Review of Wastewater Treatment using Natural Material and Its Potential as Aid and Composite Coagulant , February 2019 Sains Malaysiana 48(1):155-164 DOI: 10.17576/jsm-2019-4801-18

[104] Cuiling Zhang , Cuiling Zhang, Qing Chang 2013 Preparation of mercaptoacetyl chitosan and its removal performance of copper ion and turbidity , December 2013 Desalination and water treatment 53(7):1-8 DOI: 10.1080/19443994.2013.870743

[105] Bratskaya, S.Y., Pestov, A.V., Yatluk, Y.G., Avramenko, V.A., 2009. Heavy metals removal by flocculation/precipitation using N-(2-carboxyethyl)chitosans. Colloid Surf. 339, 140e144.

[106] Duan, J.C., Lu, Q., Chen, R.W., Duan, Y.Q.,Wang, L.F., Gao, L., Pan, S.Y., 2010. Synthesis of a novel flocculant on the basis of crosslinked Konjac glucomannan-graftpolyacrylamide- co-sodium xanthate and its application in removal of Cu2þ ion. Carbohydr. Polym. 80, 436e441

[107] Chee Yang Teh† ,Pretty Mori Budiman† ,Katrina Pui Yee Shak† ,Ta Yeong Wu*† 2016 Recent Advancement of Coagulation–Flocculation and Its Application in Wastewater Treatment, nd. Eng. Chem. Res. 2016, 55, 16, 4363–43 , March 4, 2016

[108] J.Beltrán Heredia1,J.Sánchez Martín 2009 Removing heavy metals from polluted surface water with a tannin-based flocculant agent , Volume 165, Issues 1–3, 15 June 2009, Pages 1215-1218

[109] Kingsley Ogemdi Iwuozor 2019 Prospects and Challenges of Using Coagulation-Flocculation method in the treatment of Effluents , January 2019 Advanced Journal of Chemistry-Section A 2(2):105-127 10.29088/SAMI/AJCA.2019.2.105127

[110] Plattes, M., Bertrand, A., Schmitt, B., Sinner, J., Verstraeten, F., Welfring, J., 2007. Removal of tungsten oxyanions from industrial wastewater by precipitation, coagulation and flocculation processes. J. Hazard. Mater. 148, 613e615

[111] Bojic, A.L., Bojic, D., Andjelkovic, T., 2009. Removal of Cu2þ and Zn2þ from model wastewaters by spontaneous reductioncoagulation process in flow conditions. J. Hazard. Mater. 168, 813e819

[112] ShangyongLinab,RunqingLiua,MeirongWuab,YuehuaHub,WeiSunab,ZhizhongShic,HaishengHanc 2020 Minimizing beneficiation wastewater through internal reuse of process water in flotation circuit , Volume 245, 1 February 2020, 118898

[113] Kurniawan, T.A., Chan, G.Y.S., Lo, W.H., Babel, S., 2006. Physicochemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 118, 83e98