Investigating new SNPs of CAST, CAPN and SCD genes in 5’UTR of Bali cattle

JAKARIA1,*, MOKHAMAD FAKHRUL ULUM2, DEWI LESTARI1, SAMUEL AKWILA1, DIAN ERMA WARU TIDOLF SIHITE1, RUDY PRIYANTO1, MULADNO1, CECE SUMANTRI1
1Department of Animal Production and Technology, Faculty of Animal Science, Institut Pertanian Bogor, Jl. Agatis, Dramaga, Bogor 16680, West Java, Indonesia. Tel./fax.: +62-21-8628379, *email: jakaria_karman@yahoo.co.id
2Department of Reproductive Clinics and Pathology, Faculty of Veterinary Medicine, Institut Pertanian Bogor, Jl. Agatis, Dramaga, Bogor 16680, West Java Indonesia

Abstract. Jakaria, Ulum MF, Lestari D, Akwila S, Sibite DEWT, Priyanto R, Muladno, Sumantri C. 2020. Investigating new SNPs of CAST, CAPN and SCD genes in 5’UTR of Bali cattle. Biodiversitas 21: 2971-2976. The present investigation aims to explore specific SNPs of Bali cattle, focusing mainly on CAST, CAPN, and SCD genes in 5’UTR. DNA of Bali cattle (25 individuals) from Breeding Centre of Bali cattle in Bali Province, Indonesia, were extracted according to the protocol of GenAID. Amplification of the CAST, CAPN, and SCD genes were designed using the Primer3 program based on reference sequences (access numbers AH014526.2, AH009246.3, and AY241932). Furthermore, the PCR product was sequenced through forward primer sequencing. The data sequence results were analyzed using the Bioedit, MEGA7, Popen 3.2, and DnaSP6 V6 programs. The results showed that SNPs were detected at g.921C>T and g.922T>G in 5’UTR for the CAST gene between the reference of GenBank AH014526.2 and Bali cattle, but it was monomorphic within the population. The high polymorphism of SNPs was found in g.232G>T for the CAPN gene and g.134A>d for the SCD gene. However, the SNP g.246C>del SCD gene was detected as monomorphic in this region. Moreover, this result shows that low nucleotide diversities (Pi) for CAST, CAPN, and SCD genes in 5’UTR of Bali cattle were 0.00422, 0.00632, and 0.00449, respectively. This finding was important for developing marker-assisted selection (MAS) to improve the meat quality of Bali cattle.

Keywords: Bali cattle, 5’UTR, meat quality, polymorphism

INTRODUCTION

Tenderness is a quantitative characteristic of meat, and it is modulated by two main factors, i.e., the environment and genetics. Genetically, some major genes are reported to account for meat tenderness, including calpastatin (CAST) and calpain (CAPN) (Corva et al. 2007; Shin et al. 2016), as well as the stearoyl CoA desaturase (SCD) gene that alters the composition of fatty acids (Taniguchi et al. 2004). Marbling, tenderness, and the composition of the fatty acids are major indicators of meat quality (Nogalski et al. 2018). They not only determine the economic value but also serve as basic criteria in marker-assisted selection (MAS) to improve the genetic profile of beef cattle (Pintos and Corva, 2011). With regard to the improvement of meat quality, many research studies have been conducted to find single nucleotide polymorphisms (SNPs) in the CAST (Putri et al. 2015; Enriquez-Valencia et al. 2017), CAPN (Lu et al. 2013; Pratiwi et al. 2016) and SCD genes Wahid et al. 2010; (Oh et al. 2013; Alwiyah et al. 2016). Exploration and utilization of single nucleotide polymorphisms (SNPs) as genetic markers have been widely applied in livestock-based industries, including breeding programs (Lu et al. 2018).

In live muscles, the activity of calpastatin, an inhibitor of calpain (Koohmaraie 1992), accounts for the alleviation of protein degradation, and at the same time, µ-calpain (Calpain 1) constitutes a main proteolytic enzyme that plays a significant role in the meat tendering process (Casas et al. 2006), thus increasing the meat tenderness (Nowak 2011). Stearoyl CoA desaturase (SCD) is an enzyme that is controlled by the SCD gene, which is involved in catalyzing and converting saturated fatty acid (SFA) to monounsaturated fatty acid (MUFA) in mammalian adipocytes (Taniguchi et al. 2004; Oh et al. 2013). The CAST, CAPN, and SCD genes are appropriate candidates that exert major effects on meat quality (Casas 2006; Kaplanova et al. 2013; Kaplanova et al. 2013; Leal-Gutiérrez et al. 2018); their genetic structure was composed of a promoter, 5’UTR, an open reading frame (ORF) and 3’UTR (Shafee and Lowe 2017). In cattle, the CAST gene was found to be located on chromosome 7, consisting of 35 exons and 34 introns (Raynaud et al. 2005), while the CAPN gene existed in chromosome 29 and was composed of 21 exons and 20 introns. The SCD gene was present on chromosome 26, having 6 exons and 5 introns (Taniguchi et al. 2004).

In basic gene structure, the 5’ untranslated region (5’UTR) is important for regulating translation to produce proteins (Shafee and Lowe 2017). It was reported to be a modulator of translation initiation, with a length of 53-218 nucleotides (Lepek et al. 2017). Specifically, 5’UTR existed prior to the start codon (ATG), in which the ribosome attached and transcription initiated (Mignone et al. 2002). This region also served in the modulation of gene expression (Araujo et al. 2012). Although 5’UTR has been
extensively researched in humans (Al-Zoubi et al. 2018; Lu et al. 2018), its investigation in livestock has scarcely been conducted. In current years, some researchers have initiated its exploration to collect more scientific evidence, including 5′UTR of the melanophilin (MLPH) gene in goats (Li et al. 2014), 5′UTR of the lactoferrin (LF) gene in dairy cows (Hajibemani et al. 2012), 5′UTR of the HSP70 gene in dairy cows (Öner et al. 2017) and 5′UTR of the EDG1 gene in Indonesian beef cattle, including Bali cattle (Sutikno et al. 2018). Based on previous research, there is a need to explore the 5′UTR region of the CAST, CAPN, and SCD genes, which are primarily associated with meat quality in Bali cattle (Bos javanicus), as an indigenous Indonesian cattle (Martojo 2012). Therefore, the purpose of this study was to investigate the SNPs of the CAST, CAPN, SCD genes in 5′UTR of Bali cattle.

MATERIALS AND METHODS

Animals
A total of 25 Bali cattle (age of 18 - 21 months) were collected from the Breeding Centre of Bali cattle in Bali Province, Indonesia. The Bali cattle used in this study did not have family relationships between individuals based on the data recording. The cattle were reared under an extensive system in a paddock, on a concentrate and pasture extensively researched in humans (Al-Zoubi et al. 2018; Lu et al. 2018), its investigation in livestock has scarcely been conducted. In current years, some researchers have initiated its exploration to collect more scientific evidence, including 5′UTR of the melanophilin (MLPH) gene in goats (Li et al. 2014), 5′UTR of the lactoferrin (LF) gene in dairy cows (Hajibemani et al. 2012), 5′UTR of the HSP70 gene in dairy cows (Öner et al. 2017) and 5′UTR of the EDG1 gene in Indonesian beef cattle, including Bali cattle (Sutikno et al. 2018). Based on previous research, there is a need to explore the 5′UTR region of the CAST, CAPN, and SCD genes, which are primarily associated with meat quality in Bali cattle (Bos javanicus), as an indigenous Indonesian cattle (Martojo 2012). Therefore, the purpose of this study was to investigate the SNPs of the CAST, CAPN, SCD genes in 5′UTR of Bali cattle.

DNA extraction and gene amplification
Blood samples were taken through the jugular vein by a veterinarian. The blood samples were preserved in EDTA. The DNA extraction was performed by a DNA extraction Kit (GenAID protocol). Furthermore, the extracted DNA was stored in a freezer (-20°C). The primer used to amplify the CAST, CAPN, and SCD genes were designed using Primer3, Multiple Primary Analyzer, and Primary Stats programs according to reference sequences with access numbers AH014526.2, AH009246.3, and AY241932 (Table 1).

| Genes | GenBank reference sequence | Primer sequences (5′ → 3′) | Targeted fragment | Product length (bp) |
|-------|---------------------------|---------------------------|-------------------|-------------------|
| CAST  | AH014526.2                | Forward 5′-AGG GTG TGA GTT GAA ACA AAC AG-3′ | 5′UTR             | 422               |
|       |                           | Reverse 5′-AGG CCA GGA AGG CTA AC-3′           |                   |                   |
| CAPN  | AH009246.3                | Forward 5′-CCC TTC CCA CCC AGA TAG G-3        | 5′UTR             | 478               |
|       |                           | Reverse 5′-GGA GAC CTA GAG GAA CA-3′          |                   |                   |
| SCD   | AY241932                  | Forward 5′-AGC CTT TAA ATC CCC AGC AGC-3′     | 5′UTR             | 300               |
|       |                           | Reverse 5′-AGT TCG CCC AGA AGC-3′             |                   |                   |

Sequencing and data analysis
The CAST, CAPN, and SCD genes from the PCR products were delivered to the 1st Base company in Selangor, Malaysia, for sequencing analysis. The sequencing used only the forward primer to detect the SNPs, especially in the region 5′UTR of the CAST, CAPN, and SCD genes. The CAST, CAPN, and SCD gene sequences were then analyzed using the BioEdit program (Hall 1999), while SNP identification was performed using the MEGA7 program (Tamura et al. 2013). The allele frequency was calculated using Popgen 3.2 (Yeh et al. 1997). Furthermore, analysis of the nucleotide diversity and nucleotide composition was conducted by the DnaSP v6 program (Rozas et al. 2017).

RESULTS AND DISCUSSION

Results
The results showed that PCR products were obtained at lengths of 422 bp, 478 bp, and 300 bp for the CAST, CAPN, and SCD genes, respectively, with annealing conditions at 55°C and 60°C (Figure 1). These genes were successfully sequenced in 8 cattle, 24 cattle and 16 cattle of the 25 cattle studied, respectively. The sequences of the CAST, CAPN and SCD genes in 5′UTR in Bali cattle revealed 6 SNPs, which were spread in different genes, as follows: 3 SNPs in the CAST gene, 1 SNP in the CAPN gene, and 2 SNPs in the SCD gene (Figures 2, 3 and 4), while the nucleotide diversity (Pi) was low (Table 2). The abundance of the G-C nucleotides in 5′UTR in the CAST, CAPN, and SCD genes was greater than that of the A-T nucleotides (Table 3).

This result suggested that the designed primer was suitable for amplifying the 5′UTR region for the CAST, CAPN, and SCD genes, which was by the length of the targeted fragment, although only several samples could be successfully sequenced. Based on the SNP detected, two SNPs demonstrated high polymorphisms in the population, i.e., SNP g.232G>T for the CAPN gene and SNP g.1890A>del for the SCD gene, while the remaining SNP was monomorphic to Bali cattle.

Table 1. Sequence of forward and reverse primers for the amplification of CAST, CAPN and SCD genes in 5′UTR of Bali cattle
Figure 1. PCR products for the CAST (A), CAPN (B) and SCD gene (C) after electrophoretic analysis on 1.5% agarose gel (M: 100 bp DNA ladder, 1-4: samples)

Figure 2. Locations of SNPs in 5’UTR in the CAST gene

Figure 3. Location of SNP in 5’UTR in the CAPN gene

Figure 4. Locations of SNPs in 5’UTR in the SCD gene
Table 2. SNP position and allele frequency for the CAST, CAPN and SCD gene in 5’UTR

| Gene (n) | Sequence length in 5’UTR (bp) | SNP                | Frequency | Nucleotide diversity (Pi) |
|---------|-------------------------------|--------------------|-----------|-------------------------|
| CAST (8) | 158                           | g.608T>C           | 0.00      | 1.00                    | 0.00422            |
|         |                               | g.699C>G           | 0.00      | 1.00                    |                     |
|         |                               | g.700A>G           | 0.00      | 1.00                    |                     |
| CAPN (24) | 76                           | g.232G>T           | 0.68      | 0.32                    | 0.00632             |
| SCD (16) | 144                           | g.1890A>del        | 0.19      | 0.81                    | 0.00449             |
|         |                               | g.1902C>del        | 1.00      | 0.00                    |                     |

Note: n: means number of samples; 1 and 2 represent SNPs

Table 3. Composition (%) of nucleotides in the CAST, CAPN and SCD genes in 5’UTR

| Gene | Sequence length in 5’UTR (bp) | T (U) | C | A | G | [A+T] | [C+G] |
|------|-----------------------------|------|---|---|---|------|------|
| CAST | 158                         | 11.4 | 48.7 | 8.2 | 31.6 | 19.7 | 80.3 |
| CAPN | 76                          | 17.1 | 22.4 | 22.4 | 38.2 | 39.5 | 60.5 |
| SCD  | 144                         | 15.3 | 34.0 | 22.9 | 27.8 | 38.2 | 61.8 |

Figure 5 Location and length of the 5’UTR sequence: CAST (A), CAPN (B) and SCD (C), according to sequence references of access numbers AH014526.2, AH009246.3 and AY241932

Discussion

It is noteworthy that the 5’UTR region was essential in its gene structure, and it was closely located from the start codon (ATG) (Shafee and Lowe 2017). That location and the length of the sequence for the CAST, CAPN, and SCD genes in 5’UTR varied, i.e., 158 bp, 77 bp, and 144 bp, respectively (Figure 5). Furthermore, this study confirmed that the positions of these genes in 5’UTR were relatively similar to those reported by Leppek et al. (2017), in which the sequence length in 5’UTR ranged from 53 to 218, with the average number of nucleotides in cattle reaching 111 nucleotides.

In the composition of the A-T and G-C nucleotides, the CAST gene had the greatest amount of (G-C), reaching up to 80.3%. The abundance of G-C in 5’UTR was meaningful since this nucleotide served as the controller in translation as well as the site in which transcription began. For this reason, the G-C nucleotide is required in large quantities. The region of 5’UTR was also recognized as microRNA (Gu et al. 2014), which essentially acts in the translation modulation (Shafee and Lowe 2017) and translation initiation (Leppek et al. 2017). SNP g.232G>T and g.1890A>del found in 5’UTR in the CAPN and SCD genes were present with high polymorphism in Bali cattle. The mutation type in the SNP g.232G>T for the CAPN gene was a transversion (G→T), which refers to purine and pyrimidine, and at the same time, another SNP (SNP g.1890A>del in SCD gene) was an in/del (A→del).

The diversity of the CAPN and SCD genes in Bali cattle is highly essential since these genes are responsible for the profiles of meat tenderness and fatty acids; thus, further investigation into this area could contribute to raising the economic value of Bali cattle. Previously, the crucial role of the CAPN and SCD genes was reported by Avilés et al. (2013), which found that μ-calpain constitutes a major proteolytic enzyme that contributes to meat tenderness, while Taniguchi et al. (2004) and Oh et al. (2013) asserted that the SCD gene enabled the catalysis and conversion of SFA into MUFA.

Previous study reported that the CAST, CAPN, and SCD genes are known as genetic markers used for meat quality (Cassar-Malek and Picard 2016), especially for tenderness and marbling scores (Kök and Atalay 2018), as well as fatty acids (Mannen 2012; Sevane et al. 2013). Lozano et al. (2016) reported that SNP CAPN316 and CAPN475 significantly affected the meat tenderness, while SNP CAST-T1 did not affect the commercial beef cattle
ACKNOWLEDGMENTS

This research is funded by Primary Research of Higher Education (PDUPS), Ministry of Research, Technology and Higher Education, Indonesia (Kemenristek Dikti) (Contract Number: 1757/IT.11/PN/2018). The authors thank the head of Bali Cattle Breeding Centre (BPTU-HPT) in Bali Province, Indonesia for the support and facilities provided during the research.

REFERENCES

Al-Zoubi MS, Al-Butayn K, Al Trad B, Alorjani M, Al Bashir S, Al-Zoubi R, Al-Khatib SM, Al Hamad M, Abd Al-Razaq M, Muhaidat R, Muttaka I. 2018. Polymorphisms of 5′-UTR of rad51 gene in prostate cancer. Ecol Genet 16: 24-29.

Alwiayah A, Naraini H, Agung PP, Jakarta J. 2016. Polymorphism stearoyl-CoA desaturase (SCD) gene and association with characteristics meat in Bali cattle. Trop Anim Sci J 41: 188-195.

Araujo PR, Yoon K, Ko D, Smith AD, Qiao M, Suresh U, Burns SC, Penalva LOF. 2012. Before it gets started: Regulating translation at the 5′-UTR. Comp. Funct. Genomics 2012: 1-8.

Asaf VNM, Kumar A, Rahman A, Sebastian R, Mohan V, Dewangan P, Panigrahi M. 2014. An overview on single nucleotide polymorphism studies in mastitis research. Vet World 7: 416-421.

Avilés C, Juárez M, Peña F, Domenech V, Clemente I, Molina A. 2013. Association of single nucleotide polymorphisms in CAPN1 and CAST genes with beef tenderness from Spanish commercial feedlots. Czech J Anim Sci 58: 479-487.

Casas E, White SN, Wheeler TL, Shuckelford SD, Koohmaraie M, Riley AD, Hagibemani M, Abd Al Hamad M, Abd Al Bashir S, Al Trad B, Alorjani M, Al Hamad M, Al Bashir S, Al-Zoubi R, Al-Khatib SM, Al Hamad M, Abd Al-Razaq M, Muhaidat R, Muttaka I. 2018. Polymorphisms of 5′-UTR of rad51 gene in prostate cancer. Ecol Genet 16: 24-29.

Alwiayah A, Naraini H, Agung PP, Jakarta J. 2016. Polymorphism stearoyl-CoA desaturase (SCD) gene and association with characteristics meat in Bali cattle. Trop Anim Sci J 41: 188-195.

Araujo PR, Yoon K, Ko D, Smith AD, Qiao M, Suresh U, Burns SC, Penalva LOF. 2012. Before it gets started: Regulating translation at the 5'-UTR. Comp. Funct. Genomics 2012: 1-8.

Asaf VNM, Kumar A, Rahman A, Sebastian R, Mohan V, Dewangan P, Panigrahi M. 2014. An overview on single nucleotide polymorphism studies in mastitis research. Vet World 7: 416-421.

Avilés C, Juárez M, Peña F, Domenech V, Clemente I, Molina A. 2013. Association of single nucleotide polymorphisms in CAPN1 and CAST genes with beef tenderness from Spanish commercial feedlots. Czech J Anim Sci 58: 479-487.

Casas E, White SN, Wheeler TL, Shuckelford SD, Koohmaraie M, Riley AD, Hagibemani M, Abd Al Hamad M, Abd Al Bashir S, Al Trad B, Alorjani M, Al Hamad M, Al Bashir S, Al-Zoubi R, Al-Khatib SM, Al Hamad M, Abd Al-Razaq M, Muhaidat R, Muttaka I. 2018. Polymorphisms of 5'-UTR of rad51 gene in prostate cancer. Ecol Genet 16: 24-29.

Alwiayah A, Naraini H, Agung PP, Jakarta J. 2016. Polymorphism stearoyl-CoA desaturase (SCD) gene and association with characteristics meat in Bali cattle. Trop Anim Sci J 41: 188-195.

Araujo PR, Yoon K, Ko D, Smith AD, Qiao M, Suresh U, Burns SC, Penalva LOF. 2012. Before it gets started: Regulating translation at the 5'-UTR. Comp. Funct. Genomics 2012: 1-8.

Asaf VNM, Kumar A, Rahman A, Sebastian R, Mohan V, Dewangan P, Panigrahi M. 2014. An overview on single nucleotide polymorphism studies in mastitis research. Vet World 7: 416-421.

Avilés C, Juárez M, Peña F, Domenech V, Clemente I, Molina A. 2013. Association of single nucleotide polymorphisms in CAPN1 and CAST genes with beef tenderness from Spanish commercial feedlots. Czech J Anim Sci 58: 479-487.

Casas E, White SN, Wheeler TL, Shuckelford SD, Koohmaraie M, Riley AD, Hagibemani M, Abd Al Hamad M, Abd Al Bashir S, Al Trad B, Alorjani M, Al Hamad M, Al Bashir S, Al-Zoubi R, Al-Khatib SM, Al Hamad M, Abd Al-Razaq M, Muhaidat R, Muttaka I. 2018. Polymorphisms of 5′-UTR of rad51 gene in prostate cancer. Ecol Genet 16: 24-29.
Leal-Gutiérrez JD, Elzo MA, Johnson DD, Scheffler TL, Scheffler JM, Mateescu RG. 2018. Association of μ-calpain and calpastatin polymorphisms with meat tenderness in a Brahman-Angus population. Front Genet 9: 56.

Leppek K, Das R, Barna M. 2017. Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol 19: 158-174.

Li L, Fu Q, Li X, Zhou R, Ren Y. 2014. Identification and characterization of SNP in 5'UTR of MLPH gene for goats with different coat colours. Anim Sci Pap Rep 32: 33-40.

Lozano MSR, Alfaro-Zavala S, Sifuentes-Rincón AM, Parra-Bracamonte GM, Braña VD, Medina RDM, Pérez LC, Rios RF, Sánchez EA, Torrescano UG, Figueroa SF. 2016. Meat Tenderness Genetic and Genomic Variation Sources in Commercial Beef Cattle. J Food Qual 39: 150-156.

Lu D, Sargolzaei M, Kelly M, Vander Voort G, Wang Z, Mandell I, Moore S, Plastow G, Miller SP. 2013. Genome-wide association analyses for carcass quality in crossbred beef cattle. BMC Genet 14:80. DOI: 10.1186/1471-2156-14-80.

Lu W, Wang J, Li C, Sun M, Hu R, Wang W. 2018. A novel mutation in 5'-UTR of makorin ring finger 3 gene associated with the familial precocious puberty. Acta Biochim. Biophys. Sin. 50: 1291-1293.

Mannen H. 2012. Genes associated with fatty acid composition of beef. Food Sci Technol Res 18: 1-6.

Martijo H. 2012. Indigenous Bali cattle is most suitable for sustainable small farming in Indonesia. Reprod Domest Anim 47: 10-14.

Mignone F, Gissi C, Liuni S, Pesole G. 2002. Untranslated regions of mRNAs. Genome Biol 3 (3): REVIEW00004. DOI: 10.1186/gb-2002-3-3-review0004.

Nogalski Z, Pogorzelska-Przybyłek P, Sobczuk-Szníl M, Nogalska A, Modzelewskas-Kapitułas M, Purwin C. 2018. Carcass characteristics and meat quality of bulls and steers slaughtered at two different ages. Ital J Anim Sci 17: 279-288.

Nowak D. 2011. Enzymes in tenderization of meat - the system of calpains and other systems - a review. Polish J Food Nutr Sci 61: 231-237.

Oh DY, Jin MH, Lee YS, Ha JJ, Kim BK, Yoo JS, Lee JY. 2013. Identification of stearoyl-CoA desaturase (SCD) gene interactions in Korean native cattle based on the multifactor-dimensionality reduction method. Asian-Australasian J Anim Sci 26: 1218-1228.

Öner Y, Keskin A, Üstüner H, Soykal D, Karakaş V. 2017. Genetic diversity of the 3' and 5' untranslated regions of the HSP70.1 gene between native Turkish and Holstein Friesian cattle breeds. S Afr J Anim Sci 47: 424-439.

Paramitasari KA, Sumantri C, Jakarta C. 2015. The genetic variability of prolactin and signal transducers and activators of transcription 5A (STAT5A) genes in Bali cattle. Media Peternakan 38: 1-11. [Indonesian]

Pintos D, Corva PM. 2011. Association between molecular markers for beef tenderness and growth traits in Argentinian Angus cattle. Anim Genet 42: 329-332.

Pratiwi N, Maskur, Priyanto R, Jakarta J. 2016. Novel SNP of calpain-1 (CAPN1) gene and its association with carcass and meat characteristics traits in Bali cattle. Trop Anim Sci J 41: 109-116.

Putri R, Priyanto R, Gunawan A, Jakarta J. 2015. Association of calpastatin (CAST) gene with growth traits and carcass characteristics in Bali cattle. Media Peternakan 38: 145-149. [Indonesian]

Raynaud P, Jayat-Vignoles C, Laforet MP, Levêziel H, Amarger V. 2005. Four promoters direct expression of the calpastatin gene. Arch. Biochem. Biophys. 437: 69-77.

Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Garcia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34: 3299-3302.

Said S, Putra WPB. 2018. Short communication: Novel single nucleotide polymorphisms (SNPS) in the 5’UTR of bovine heat shock protein 70 (hHSP 70) gene and its association with service per conception (S/C) of Pasundan cattle. Biodiversitas 19: 1622-1625.

Sevane N, Armstrong E, Cortés O, Wiener P, Wong RP, Dunning S. 2013. Association of bovine meat quality traits with genes included in the PPARG and PPARGC1A networks. Meat Sci 94: 328-335.

Shafee T, Lowe R. 2017. Eukaryotic and prokaryotic gene structure. Wiley J Med 4 (1): 2. DOI: 10.15347/wjem/2017002.

Shin Y, Jung H, Jung M, Yoo S, Subramaniam S, Markkandan K. 2016. Discovery of gene sources for economic traits in Hanwoo by whole-genome resequencing. Asian Australas. J Anim Sci 29: 1353-1362.

Sugimoto M, Baba T, Gotoh Y, Kawahara T, Sugimoto Y. 2016. Friend leukaemia integration 1 is associated with conception rate in Holsteins. Reprod Immunol 1: 7. DOI: 10.4172/2476-1974.100007.

Sugimoto M, Watanabe T, Sugimoto Y. 2012. The molecular effects of a polymorphism in the 5’UTR of solute carrier family 44, member 5 that is associated with birth weight in Holsteins. PLoS One 7: e41267. DOI: 10.1371/journal.pone.0041267.

Sumitno, Priyanto R, Sumantri C, Jakarta J. 2018. Polymorphism of ADIPOQ and EDGI genes in Indonesian beef cattle. J Indones Trop Anim Agric 43: 323-332.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30: 2725-2729.

Taniyuchi M, Utsumi T, Oyama K, Mannen H, Kobayashi M, Tanabe Y, Ogino A, Tsuji S. 2004. Genotype of stearoyl-CoA desaturase is associated with fatty acid composition in Japanese Black cattle. Mam. Genome 15: 142-148.

Wahid F, Shehzad A, Khan T, Kim YY. 2010. MicroRNAs: Synthesis, mechanism, function, and recent clinical trials. Biochim Biophys. Acta - Mol Cell Res. 1803: 1231-1243.

Weir K, Kühn C, Goldhammer T, Freny G, Schwerin M. 2005. The bovine PPARGC1A gene: Molecular characterization and association of an SNP with variation of milk fat synthesis. Physiol Genomics 21: 1-13. DOI: 10.1152/physiolgenomics.00103.2004.

Xu Y, Shi T, Zhou Y, Liu M, Klaus S, Lan X, Lei C, Chen H. 2018. A novel PAX7 10-bp indel variant modulates promoter activity, gene expression and contributes to different phenotypes of Chinese cattle. Sci Rep 8 (1): 1724. DOI: 10.1038/s41598-018-20177-8.

Yeh F, Yang RC, Boyle TJ, Ye ZA, Mao J. 1997. PPOGENE, The User-friendly Shareware for Population Genetic Analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada. Zulkarnain, Jakarta, Noor RR. 2010. Identification of genetic diversity of growth hormone receptor (GHR[Alu I]) gene in Bali cattle. Media Peternakan. 33: 81-87. [Indonesian]