ASCA DETECTION OF PULSED X-RAY EMISSION FROM PSR J0631+1036

KEN’ICHI TORI,1 Y. SAITO,2 F. NAGASE,3 T. YAMAGAMI,4 T. KAMAE,5 M. HIRAYAMA,4 N. KAWAI,1,5,6
I. SAKURAI,1 M. NAMIKI,4 S. SHIBATA,7 S. GUNJI,7 AND J. P. FINLEY8

Received 2000 July 27; accepted 2001 March 16; published 2001 April 12

ABSTRACT

ASCA’s long look at the 288 ms radio pulsar PSR J0631+1036 reveals coherent X-ray pulsation from this source for the first time. The source was first detected in a serendipitous Einstein observation and later identified as a radio pulsar. Possible pulsation in the γ-ray band has been detected in the Compton Gamma Ray Observatory EGRET data. The X-ray spectrum in the ASCA band is characterized by a hard power-law–type emission with a photon index of ≈2.3, when fitted with a single power-law function modified with absorption. An additional blackbody component of $kT = 0.14$ keV increases the quality of the spectral fit. The observed X-ray flux is 2.1×10^{-13} ergs s$^{-1}$ cm$^{-2}$ in the 1–10 keV band. We find that many characteristics of PSR J0631+1036 are similar to those of middle-aged γ-ray pulsars such as PSR B1055−52, PSR B0633+17 (Geminga), and PSR B0656+14.

Subject headings: pulsars; general — pulsars: individual (PSR J0631+1036) — stars: neutron — X-rays: stars

1. INTRODUCTION

Studies of rotation-powered pulsars in the X-ray band give us information about the evolution of their magnetospheric activities, about their surface temperatures, and about the interaction of the pulsar wind with the surrounding medium (e.g., Becker & Trümper 1997; Saito 1998). The most energetic Crab-like pulsars with spin-down powers of $\dot{E} \simeq 10^{37}$ ergs s$^{-1}$ show X-ray pulsations of magnetospheric origin. Most of them are associated with a supernova remnant and power synchrotron nebulae as a result of the shock interaction of the pulsar wind with the ambient medium. The Vela-like pulsars, characterized by their spin-down powers of 10^{36} ergs s$^{-1}$, are embedded in the extended synchrotron nebula; this often makes it difficult to study the neutron star itself. Older and weaker (10^{34} ergs s$^{-1}$) sources show pulsating blackbody-type spectra below $0.5–0.6$ keV as well as pulsating power-law–type spectra in the hard-energy band. Typical objects of this class are the Three Musketeers, PSR B1055−52, PSR B0656+14, and PSR B0633+17 (Geminga; e.g., Finley, Ógelman, & Kizilolgu 1992; Greiveldinger et al. 1996; Becker et al. 1999). Interestingly, these middle-aged ($\tau = 10^3–10^4$ yr) pulsars convert their spin-down power into high-energy γ-ray photons with higher efficiencies than is seen in younger pulsars (e.g., Thompson 1996; Kifune 1996).

The source studied herein, PSR J0631+1036, was discovered by the targeted searches for radio pulsars in unidentified Einstein X-ray sources (Zepka et al. 1996). The pulse period, $P = 0.288$ s, and its derivative, $\dot{P} = 1.0 \times 10^{-13}$ s$^{-1}$, give a characteristic age of $\tau = (P/2P^3) = 4.3 \times 10^4$ yr. The spin-down power is $\dot{E} = 5.4 \times 10^{34}$ ergs s$^{-1}$, where I_4 is the moment of inertia of the neutron star normalized to 10^{45} g cm2. This range of parameters is between the Vela-like pulsars and the Three Musketeers.

In the Einstein IPC data, about 50 photons were detected from the X-ray counterpart of the radio pulsar PSR J0631+1036. The spectral fit gave a blackbody temperature of $kT = 0.27 \pm 0.08$ keV, an absorption column of $N_H = (9 \pm 4) \times 10^{21}$ cm$^{-2}$, and an observed X-ray flux of $F_X = 1.9 \times 10^{-13}$ ergs s$^{-1}$ cm$^{-2}$ in the 0.16–3.5 keV band (Zepka et al. 1996). Unfortunately, the source was located on the support rib of the IPC field. This made the source position and source spectra rather uncertain. Later, the source was serendipitously observed in the field of view of the ROSAT Position Sensitive Proportional Counter (PSPC). Spectral analysis gave a best-fit blackbody temperature of $kT = 0.18 \pm 0.08$ keV, an absorption column of $N_H = (1.2 \pm 0.6) \times 10^{21}$ cm$^{-2}$, and an effective radius of the emitting region of approximately $R_{in} \approx 1$ km (Zepka et al. 1996). Again, the source was unfortunately shadowed by the detector-supporting ribs, making the obtained spectral parameters rather uncertain.

Interestingly, it was found that this source might be pulsating in the γ-ray energy band. Zepka et al. (1996) folded the arrival times of 267 counts from the Compton Gamma Ray Observatory EGRET at the expected pulse period. They found that the folded light curve was significantly displaced from uniform distribution at more than 99% confidence.

2. OBSERVATION

We have proposed and carried out the ASCA observation of PSR J0631+1036 during 1998 October 16–18. ASCA (Tanaka, Inoue, & Holt 1994) carries two kinds of X-ray detectors at the foci of four identical X-ray telescopes. The X-ray CCD camera (the Solid-State Imaging Spectrometer [SIS]; Burke et al. 1994) has the higher energy resolution and a relatively high detection efficiency in the soft-energy band. The time resolution of SIS is 4–16 s in the standard mode, which is not suitable for timing observations of fast pulsars. The imaging gas-scintillation proportional counter (the Gas Imaging Spectrometer [GIS]; Ohashi et al. 1996; Makishima et al. 1996) has a relatively high detection efficiency in the 1–10 keV band. Recently, the ASCA team has introduced a new operation mode called GF (Gamma Folding) mode, where all X-ray detectors are operated in the standard mode. The ASCA team is also preparing a new readout of the GIS detector, which will enable the GIS to cover the whole energy band with a time resolution of 1 s. Therefore, we have carried out the ASCA observation of PSR J0631+1036 in the GF mode.
efficiency in the hard-energy band and high time resolution. We operated the SIS in 1-CCD faint mode with a 4 s time resolution. Therefore, only pulse-phase–averaged spectroscopy could be made with the SIS. We operated the GIS in the PH mode and assigned a part of the telemetry bit to increase the time resolution reducing the spectral information. The resultant time resolution was 3.9 ms or better depending on the telemetry rate. We used screened event data according to the standard REV2 processing.\(^9\) The effective exposure time was 69.6 and 76.1 ks for SIS and GIS, respectively, and the net time span of the observation was \(T = 160\) ks.

3. ANALYSIS

3.1. Timing

We analyzed the GIS data in order to search for pulsations in the X-ray band. The GIS observation began at MJD 51,103.0185 and ended at MJD 51,104.8260. The data from GIS2 and GIS3 were co-added, yielding \(\approx 1100\) events within a 3' radius circular region for a total energy band of 0.7–7 keV, including background. The photon arrival times were barycentered, and a \(z^2\) test (Buccheri et al. 1983) and an epoch-folding search (e.g., Leahy et al. 1983) were applied, bracketing the expected period, \(P_{\text{exp}} = 0.28777671\) s at MJD 51,103.9305 (the middle time of the current ASCA observation at barycenter), from the radio ephemeris that was effective during the current observation (D. Nice 2000, private communication).

The left panel of Figure 1 shows the result of the \(z^2\) test. We can clearly see a peak at the expected pulse period. No similar peaks have been found in the background data with better statistics extracted from the same observation. We then applied the epoch-folding search. The events were folded into 6 bins, and \(\chi^2\)-values were calculated from each trial period. A significant peak is found (Fig. 1, right panel) at the period consistent with that obtained from the \(z^2\) test. The probabilities of finding higher peaks out of random fluctuations with a single trial are as low as \(1.8 \times 10^{-6}\) for the \(z^2\) test and as low as \(1.1 \times 10^{-6}\) for the folding search. Considering the reasonable number of independent trials (=18) as discussed below, the chance probabilities of finding higher peaks are \(3.2 \times 10^{-5}\) for the \(z^2\) test and \(2.0 \times 10^{-5}\) for the folding search. Therefore, we conclude that we have significantly detected X-ray pulsations from PSR J0631+1036 for the first time.

From folding search, the pulse period is determined to be \(P = 0.28777672(1)\) s at MJD 51,103.9305. Here the value in parentheses is a 90% confidence error to the last digit. We estimated this error by using the method of Leahy (1987), which gave tighter constraint than the nominal error of \(P^2/(2T) = 3 \times 10^{-7}\) s.

The detected pulse period is consistent with the effective radio ephemeris, while it is significantly shorter than the period \(P = 0.28777676\) s that was extrapolated from the previous radio ephemeris (Zepka et al. 1996) by \(\Delta P = -4 \times 10^{-7}\) s. This difference in period may not be ascribable to a finite value of negative \(\dot{P}\) since the corresponding value of \(\dot{P} = -3 \times 10^{-23}\) s\(^{-1}\) gives an unreasonably large braking index, \(n \approx 7 \times 10^2\). Although it is not known whether or not PSR J0631+1036 has recently had a glitch because of a lack of published results (e.g., Johnston & Galloway 1999), we consider that the value of \(\Delta P/P < 1.4 \times 10^{-6}\) is naturally interpreted as the result of glitch activity. The reasonable number of independent trials for the current timing analysis is then estimated by considering a large glitch of \(\Delta P/P < 10^{-5}\) during the 4.3 yr between the last published radio observation (Zepka et al. 1996) and the ASCA observation. The largest glitch ever observed would fall within the range considered here (Wang et al. 2000). Then the number of independent Fourier bins covering the period range \(P_{\text{exp}} - |\Delta P_{\text{exp}}| < P < P_{\text{exp}} + |\Delta P_{\text{exp}}|\) would be 18.

The top panel of Figure 2 shows the folded light curves in the total energy band. The pulse shape is singly peaked and sinusoidal. The pulse amplitude is 43\% ± 16\% of the source flux, excluding background. A comparison has been made of pulse profiles in different energy bands. The pulse amplitudes, derived by fitting the profiles with a sinusoidal curve, are 31\% - 13\% and 63\% ± 18\% in the 0.7–1.9 and 1.9–7 keV bands, respectively.

3.2. Spectrum

We analyzed the pulse-phase–averaged spectra by using both the SIS and GIS data. Spectra were extracted from circular regions of 3' radius. Background was subtracted from the same observation. For the SIS, events from the whole chip, excluding the circular region of 4' radius around the source, were used as background. For the GIS, events from circular regions of

\(^{9}\) See E. A. Pier’s 1997 ASCA getting started guide for revision 2 data, version 6.1 (available at ftp://legacy.gsfc.nasa.gov/asca/doc).
The blackbody is set free, kT is obtained with a single absorption component. When we fitted a blackbody plus power-law model, the emitting radius of each component was found to be consistent with each other within statistical errors. Therefore, we fixed the temperature at a value in the range of 1.7 ± 0.4, normalized at 1 keV with every 0.01 keV step. Then the minimum of χ^2/ dof was obtained with $kT = 0.14$ keV and $R_{bb} = (2.1^{+0.5}_{-0.3})d_1$ km. The χ^2/value with $kT = 0.14$ keV is thus smaller, and we consider this model to be the most suitable for the current ASCA data. Other spectral parameters for $kT = 0.14$ keV are the power-law photon index $\gamma = 1.9 \pm 0.4$, the normalization for the power-law component $6.3_2^{+0.4} \times 10^{-5}$ photons keV$^{-1}$ s$^{-1}$ cm$^{-2}$ at 1 keV, and the absorption column $N_H = (0.8 \pm 0.2) \times 10^{22}$ cm$^{-2}$. With this model, the total observed X-ray flux is $f_X = 2.1 \times 10^{-13}$ ergs s$^{-1}$ cm$^{-2}$, and the intrinsic flux is $f_X = 3.5 \times 10^{-13}$ ergs s$^{-1}$ cm$^{-2}$ in the 1–10 keV band. The corresponding luminosity is $4.2 \times 10^{39} d_1^{2} \Omega_{*}$ ergs s$^{-1}$. The blackbody component contributes 16% of the observed flux and 34% of the intrinsic flux.

We then examined the pulse-phase dependence of the spectral shape by using the GIS data. We divided the data into two subsets, the pulse-on (high-intensity) phase and the pulse-off (low-intensity) phase. The two phases are split at phase 0.0625 and 0.5625, respectively, in Figure 2. Since the statistics are limited, we fixed the absorption column at the best-fit value obtained from a single power-law model and fitted the spectra with a single power-law function. The photon indices were $\gamma = 2.5^{+0.5}_{-0.3}$ and $\gamma = 3.5^{+0.9}_{-1.0}$ for the pulse-on and pulse-off phases, respectively. Although a harder spectrum is suggested for a higher flux phase, the photon indices are consistent within statistical errors.

4. DISCUSSION

The overall properties of the multiwavelength spectrum of PSR J0631+1036 from radio to X-ray and γ-ray are similar to those of other γ-ray pulsars (Thompson 1996). They are radiating a large fraction (≥ 0.1) of their spin-down power in the γ-ray band. The X-ray luminosity $L_X = 4.2 \times 10^{39} d_1^{2} \Omega_{*}$ ergs s$^{-1}$ obtained from the two-component spectral fit is...
predictions are in good agreement with those observed, (Halpern & Wang 1997). These values are significantly larger above 1 keV (Ogelman & Finley 1993; also see Fig. 1, right panel) and the ~55% found for Geminga in the 1–4 keV band (Halpern & Wang 1997). These values are significantly larger than the pulse fraction of 14% ± 2% for PSR B0656+14 as measured by ROSAT (Finley et al. 1992). This might partly be due to the energy-dependent pulse fraction of PSR B0656+14.

The significant difference between the detected and extrapolated pulse periods may be understood as a result of glitch activity. Urama & Okeke (1999) have found that there exists a good correlation between young pulsars’ spin-down rates and glitch activity. They predict the interval between Vela-size glitches, as in the case of PSR B1758–23. Lyne et al. (2000) also found a good correlation between and the glitch spin-up rate, defined as the cumulative effect of a glitch on the frequency derivative. The relation \(\nu_{\text{glitch}} = -0.017 \nu \) leads to \(\Delta P = -2.4 \times 10^{-7} \) s for PSR J0631+1036 during a span of 4.3 yr, in reasonable agreement with that observed, \(\Delta P = -4 \times 10^{-7} \) s.

PSR J0631+1036 was first detected in the soft X-ray band since it is in the direction of the Galactic anticenter \((l, b) = (201°22', 0°45')\), where the interstellar absorption is much smaller than in the Galactic plane toward the Galactic center. Also, the detection of pulsed X-ray emission could only be made with the long-exposure time as performed with ASCA and by referring to the previously known radio period. This lesson suggests that there may be other similar sources hidden in the Galactic plane. Combined analyses of radio, X-ray, and unidentified \(\gamma \)-ray sources may be useful (e.g., Roberts, Romani, & Kawai 2001).

In summary, we have detected the pulsed X-ray emission from PSR J0631+1036 for the first time. The negative offset of the observed period from the extrapolated radio ephemeris is attributable to the accumulated change in period due to glitch activity. The X-ray spectrum is well described by a power-law plus blackbody model with an observed flux of \(f_x = 2.1 \times 10^{-13} \) erg s\(^{-1}\) cm\(^{-2}\) in the 1–10 keV band.

The authors thank David Nice for providing us with the radio ephemeris of PSR J0631+1036 prior to publication. The authors are grateful to all the members of the ASCA team for making the observation possible.

REFERENCES

Becker, W., Kawai, N., Brinkmann, W., & Mignani, R. 1999, A&A, 352, 532
Becker, W., & Trümper, J. 1997, A&A, 326, 682
Buccheri, R., et al. 1983, A&A, 128, 245
Burke, B. E., Mountain, R. W., Daniels, P. J., Cooper, M. J., & Dolat, V. S. 1994, IEEE Trans. Nucl. Sci., NS-41, 375
Finley, J. P., Ogelman, H., & Kiziloglu, Ü. 1992, ApJ, 394, L21
Greiveldinger, C., et al. 1996, ApJ, 465, L35
Halpern, J. P., & Wang, F. Y.-H. 1997, ApJ, 477, 905
Johnston, S., & Galloway, D. 1999, MNRS, 306, L50
Kaspi, V. M., Lyne, A. G., Manchester, R. N., Johnston, S., D’Amico, N., & Shemar, S. L. 1993, ApJ, 409, L57
Kifune, T. 1996, in IAU Colloq. 160, Pulsars: Problems and Progress, ed. S. Johnston, M. A. Walker, & M. Bailes (ASP Conf. Ser. 105; San Francisco: ASP), 339
Leahy, D. A. 1987, A&A, 180, 275
Leahy, D. A., Darbro, W., Eshner, R. F., Weisskopf, M. C., Kuhn, S., Sutherland, P. G., & Grindlay, J. E. 1983, ApJ, 266, 160
Lyne, A. G., Shemar, S. L., & Graham-Smith, F. 2000, MNRS, 315, 534
Makishima K., et al. 1996, PASJ, 48, 171
Ögelman, H., & Finley, J. P. 1993, ApJ, 413, L31
Ohashi, T., et al. 1996, PASJ, 48, 157
Roberts, M. S. E., Romani, R. W., & Kawai, N. 2001, ApJS, 133, 451
Saito, Y. 1998, Ph.D. thesis, Univ. Tokyo (ISAS Res. Note 643)
Tanaka, Y., Inoue, H., & Holt, S. S. 1994, PASJ, 46, L37
Thompson, D. J. 1996, in IAU Colloq. 160, Pulsars: Problems and Progress, ed. S. Johnston, M. A. Walker, & M. Bailes (ASP Conf. Ser. 105; San Francisco: ASP), 307
Urama, J. O., & Okeke, P. N. 1999, MNRS, 310, 313
Wang, N., Manchester, R. N., Pace, R. T., Bailes, M., Kaspi, V. M., Stappers, B. W., & Lyne, A. G. 2000, MNRS, 317, 843
Zepka, A., Cordes, J. M., Wasserman, I., & Lundgren, S. C. 1996, ApJ, 456, 305