Origin of metamagnetism in skyrmion host Cu$_2$OSeO$_3$

Harish Chandr Chauhan, Birendra Kumar & Subhasis Ghosh

Skyrmion host chiral Cu$_2$OSeO$_3$ has attracted researchers due to several intriguing properties. Observation of metamagnetism in low-temperature and low-field makes the magnetic properties of Cu$_2$OSeO$_3$ more complex. Here, we present an investigation on metamagnetism in Cu$_2$OSeO$_3$ by analyzing its structural and magnetic properties. Study of magnetic properties reveal spin-flip of one of the Cu$^{2+}$ ions, embedded in square pyramidal CuO$_5$ polyhedra, due to the development of strain in low-temperature and low-field regime. The spin-flip is found to be the main reason for field-induced first-order metamagnetic transition. Magnetic phase diagram of Cu$_2$OSeO$_3$ has been constructed with the help of magnetization analyses. It is argued that the metamagnetic hysteretic field region may be low-temperature skyrmion phase with additional spiral and tilted-conical phases. A tricritical point has been observed in the phase diagram at which first-order metamagnetic hysteretic field range ceases to exist.

Skyrmion, a vortex like spin-texture, has been observed in various magnetic systems having different crystal symmetries$^{1-14}$. Skyrmion host magnetic systems are good candidates for information carriers and magnetic memory devices$^{15-17}$. Generally, skyrmions are observed in centrosymmetric and noncentrosymmetric magnetic materials in a small window of applied field and temperature12,24. In centrosymmetric systems, magnetic critical points such as Lifshitz point40, tricritical point38,40, and triple point41.

In noncentrosymmetric systems, anisotropic interaction and Zeeman interaction, respectively.

$$\mathcal{H} = \mathcal{H}_{SEI} + \mathcal{H}_{DMI} + \mathcal{H}_d + \mathcal{H}_{Ani} + \mathcal{H}_{Zeeman}$$

$$= \sum_{ij} J_{ij} S_i S_j + \sum_{ij} D_{ij} (S_i \times S_j) + K_d \sum_{ij} \left(\frac{(S_i \cdot r_{ij})(S_j \cdot r_{ij})}{r_{ij}^3} - \frac{S_i \cdot S_j}{r_{ij}^2} \right) + \mathcal{H}_{Ani} = \mu_0 \mathbf{H} \cdot \mathbf{M}. \quad (1)$$

where \mathcal{H}_{SEI}, \mathcal{H}_{DMI}, \mathcal{H}_d, \mathcal{H}_{Ani} and \mathcal{H}_{Zeeman} are the Hamiltonian for SEI, DMI, dipole-dipole interaction13,22,23, anisotropic interaction and Zeeman interaction, respectively. J_{ij} is the coefficient of exchange interaction, D_{ij} is Dzyaloshinskii-Moriya vector and K_d is the coefficient of dipole-dipole interaction. The dipolar energy is effective in low dimension, such as two-dimension (2D)22, thin-films23 and layered systems23. In bulk systems, dipolar energy is negligibly small24. That is why, in noncentrosymmetric chiral cubic systems, dipolar energy is generally neglected leading to $K_d = 0$$^{25-27}$. In centrosymmetric magnetic systems $D_{ij} = 0$21. \mathcal{H}_{Ani} is highly dependent on the chosen system which is why expression for \mathcal{H}_{Ani} is not given$^{28-32}$. In Cu$_2$OSeO$_3$, magnetocrystalline anisotropy, with easy axis along [111], plays key role in various physical phenomena$^{33-37}$. The exchange coefficient J_{ij} also varies with chosen materials. For example, the physics of MnSi and FeGe are governed by single value of J while the physics of Cu$_2$OSeO$_3$ is governed by using at least four values of J depending on the chosen Cu$^{2+}$ ions$^{28-27}$. The magnetic phase diagram of several skyrmion host magnetic materials have been reported with the help of various techniques such as Lorentz transmission electron microscopy (LTEM)9, small-angle neutron scattering (SANS)9, specific heat9, magnetic susceptibility9 and magnetic isotherm9,40. A detailed investigation on different phases and phase transition between them has made it possible to explore the existence of various critical points such as Lifshitz point40, tricritical point40,46, and triple point40.

Cu$_2$OSeO$_3$ is the only known magnetic material in which the skyrmion phase has been observed in two different pockets of applied field and temperature$^{35,42-45}$. High-temperature skyrmion (HTS) phase has been

School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India. *email: subhasis.ghosh.jnu@gmail.com
observed in the vicinity of $T_C (\simeq 59 \text{ K})$, and the low-temperature skyrmion (LTS) phase has been observed in low-temperature regime ($T << T_C$). As discussed above, the competition among SEI, DMI, magnetocrystalline anisotropy, thermal energy and Zeeman energy give rise to skyrmion and other phases. So, it is natural to ask– How skyrmions emerge at two different pockets of applied field and temperature? Interestingly, the properties of HTS and LTS are different. The SANS results show– six-fold intensity pattern for HTS while ring plus six-fold intensity pattern for LTS phase [35,42,44]. The LTS phase has been observed only along $[100]$ direction hinting the lowering of cubic symmetry due to some structural deformation, such as the emergence of magnetoelastic anisotropy which leads to completely different scenario of competing energies. So, the Hamiltonian (Eq. 1) should be different for HTS and LTS phases. Moreover, similar SANS result (ring plus six-fold intensity pattern) has been observed for FD phase in MnSi [46,47]. It has been investigated that the FD phase is thermally induced chiral fluctuations caused by first-order Brazovskii transition [48]. However, the explained physics for LTS is completely different from the physics for FD phase in spite of having almost similar SANS results. It is concluded that rings intensity pattern may arise from thermodynamically stable skyrmionic correlation, which coexist with spiral and tilted-conical phases [42]. Also, the sudden jump in the magnetization isotherm with hysteresis has been observed in Cu$_2$OSeO$_3$ at low-temperature ($T << T_C$), and is known as metamagnetic transition [49]. More importantly, the LTS phase emerges in the metamagnetic hysteric field range (has been discussed in detail later). Bannenberg et al. [42] have explained the physics of different spin-textures with theoretical investigation by incorporating strength of cubic anisotropy. Here, the important question is– How does metamagnetic behavior appear in Cu$_2$OSeO$_3$? Thus, the observation of skyrmion in two different pockets of applied field and temperature, and several other novel magnetic phases, more importantly, the manipulation of skyrmions with an electric field [50], necessitates the further investigation of metamagnetism in Cu$_2$OSeO$_3$ [49]. Generally, the materials showing metamagnetism undergo first-order phase transition from the state of low magnetic moment to the state of the high magnetic moment in the presence of magnetic field [51–53]. Metamagnetism has been observed in various magnetic systems having different structural properties such as linear chain systems, two sublattice systems, four sublattice systems, garnets and mixed crystals [54]. Metamagnetic transitions have been observed in: (i) highly anisotropic systems due to local spin reversal, and (ii) isotropic or weak anisotropic systems due to the rotation of local spin directions [54]. Cu$_2$OSeO$_3$ has two types of CuO$_4$ polyhedra – square pyramidal and trigonal bipyramidal in the ratio of 3:1 – which leads to the formation of two sublattices [4]. As discussed above, formation of two sublattices causes the emergence of the magnetocrystalline anisotropy in the system with easy axis along $[111]$ [35–37]. Thus, below T_C, the phase transition and the critical phenomena will be facilitated by SEI, DMI and anisotropies. Also, there should exist a tricritical point at which metamagnetic behavior disappears, leading to a continuous variation of magnetization. The physics of the metamagnetic properties of Cu$_2$OSeO$_3$ with associated tricritical point has not been explored yet.

Here, we present investigation on the origin of metamagnetism by incorporating structural and magnetic analyses of skyrmion host Cu$_2$OSeO$_3$. It is found that spin-flip of one of Cu$^{2+}$ ions (embedded with aquare pyramidal polyhedra) is the main reason for metamagnetism. The possible spin textures of metamagnetic hysteretic field range has been discussed comprehensively. A complete phase diagram of Cu$_2$OSeO$_3$ has been presented. A tricritical point, where first-order metamagnetic hysteretic field range ceases to exist and second-order helical to conical phase transition emerges, has been found.

Experimental details

Cu$_2$OSeO$_3$ was grown using solid–state reaction method [49]. High purity CuO (Sigma Aldrich 99.999 %) and SeO$_2$ (Sigma Aldrich 99.999 %) were taken in the molar ratio of 2:1, respectively. The mixture of CuO and SeO$_2$ were ground together for at least 8 hrs to obtain the homogeneous mixture. After making pellets of the homogeneous mixture, the sample was sealed in an evacuated quartz tube, which was then placed into a muffle furnace and annealed at 600 °C with heating rate of 50 °C/hr. The sample was held at 600 °C for 5 weeks. The intermediate grinding was performed for phase purity of the sample. Figure 1 represents experimental procedure used for the synthesis of Cu$_2$OSeO$_3$ sample. The X-ray diffraction (XRD) data of Cu$_2$OSeO$_3$ were collected using Rigaku Miniflex 600 X-Ray Diffractometer with Cu–K$_\alpha$ radiation. Phase purity of the sample was confirmed using Rietveld refinement of the XRD data [49]. High precision magnetic measurements were performed using physical
properties measurement system. Field cooled (FC) and zero field cooled (ZFC) magnetization data were collected at 10, 20, 40 and 100 mT in warming mode. Four-quadrant field-dependent magnetization (M-H) isotherms were collected up to 250 mT at 2, 10, 20, 30, 40, 50, 57, 60, and 70 K. The step increment of the field was 1 mT. The magnetization data were recorded via following process: (i) first forward scan from 0 to 250 mT, (ii) first reverse scan from 250 to 0 mT, (iii) second forward scan from −250 to 250 mT, and (iv) second reverse scan from 250 to 0 mT. The analyses of Arrott-plots, susceptibility and phase diagram were carried out using the first-quadrant M-H isotherms of the second forward field scan.

Results and discussion

Structural analysis. The cubic crystal structure of Cu$_2$OSeO$_3$ with the lattice constant $a = 8.922$ Å was estimated from the room temperature XRD analysis using Rietveld refinement. Cu$_2$OSeO$_3$ lacks inversion symmetry and has 3-fold rotational symmetry along [111] direction. Here, square pyramidal (around Cu1) and trigonal bipyramidal (around Cu2) polyhedra are in the ratio of 3:1 as shown in Fig. 2a. The unequal ratio of Cu1 and Cu2 result in the formation of local ferrimagnetic ordering. Cu$_2$OSeO$_3$ has 3-fold rotational symmetry along [111] direction. Here, square pyramidal (around Cu1) and trigonal bipyramidal (around Cu2) polyhedra are in the ratio of 3:1 as shown in Fig. 2a. The unequal ratio of Cu1 and Cu2 result in the formation of local ferrimagnetic ordering.

Figure 2b shows a simple lattice chain of Cu−O−Cu atoms estimated from the crystal structure. These lattice chains exhibit in the form of trigonal pyramid in which each lattice chain resides at the edges of the pyramid. In a single unit cell of Cu$_2$OSeO$_3$ ($a = 8.922$ Å), each lattice chain consists of three Cu1 and one Cu2 atom. J$_1$ and J$_2$ are the superexchange couplings (Fig. 2b) between Cu atoms connected with corner-sharing CuO$_3$ polyhedra as shown in Fig. 2a. J$_1$ and J$_4$ are the superexchange couplings (Fig. 2b) between Cu atoms connected with edge-sharing CuO$_5$ polyhedra as shown in Fig. 2a. Zhang et al. suggested that the edge-sharing Cu−O−Cu atoms have weaker exchange interaction than the corner-sharing. This means J$_1$ and J$_2$ are stronger than J$_3$ and J$_4$. They have also indicated that the interaction between two identical atoms having different environment favors antiferromagnetic (AFM) exchange coupling while the interaction between two identical atoms having similar environment favors ferromagnetic (FM) exchange coupling as shown in Fig. 2b. Yang et al. have investigated the strengths of the superexchange couplings present in Cu$_2$OSeO$_3$. Following the above arguments and using the results of Yang et al., we can assign values to different superexchange couplings as J$_1 = -3.693$ meV, J$_2 = 6.534$ meV, J$_3 = -1.132$ meV, and J$_4 = 0.900$ meV. Other groups have also estimated the values of the exchange couplings. The estimated values from other groups are slightly different but the nature of the exchange couplings is same. It has been reported that the edge-sharing superexchange coupling may alter its coupling behavior (from weak FM to weak AFM and vice versa) in Cu$_2$OSeO$_3$.
helimagnetic spin textures in skyrmion host magnetic materials. The bifurcation in the FC and ZFC M-T isofields are observed till 40 mT (Fig. 3a). Such a typical bifurcation occurs when the applied magnetic field is not enough to break and align the randomly bound magnetic moments in the direction of field. This effect is generally observed due to the presence of magnetocrystalline anisotropy in the system. The strength of magnetocrystalline anisotropy decreases continuously with increasing temperature. In other words, the bifurcation width (ΔM), which is the difference between the magnetic moment of FC and ZFC M-T isofields, should decrease with increasing temperature. In helimagnetic materials, domain wall trapping causes bifurcation in the M-T isofields and formation of hysteresis around origin in the M-H isotherms. As observed in Fig. 3a, ΔM is less at 10 mT, and maximum at 20 mT. Also, ΔM increases with temperature at low applied field (Fig. 3c). Thus, the variation of ΔM is unusual in the context of magnetocrystalline anisotropy. This leads to the conclusion that there should exist some other anisotropy to compete with magnetocrystalline anisotropy. It seems that exchange anisotropy, which may cause spin-reversal, is locally effective at low-temperature and low-field in Cu$_2$OSeO$_3$.

The variation of FC and ZFC M-T taken at 10 mT is shown in Fig. 3c. In the vicinity of T_C, the cusp like behavior is observed due to the competitive effect of antisymmetric DMI and SEI. Similar kind of cusp has been observed in other chiral cubic B20 materials in which the physics is governed by single FM exchange coupling. The M-T taken at 10 mT (Fig. 3c) shows unusual variation in comparison with the M-T of other skyrmionic hosts B20 materials. In FC warming mode, the magnetic moment: (i) increases from 2 to 31 K, (ii) decreases from 31 to 55 K, (iii) further increases from 55 K to 57.7 K, and (iv) finally decreases to zero. This means the multiple superexchange couplings are causing such unusual variation. The ZFC M-T taken at 10 mT (Fig. 3c) also shows similar unusual variation. In the absence of external magnetic field, magnetocrystalline anisotropy plays an important role by driving the magnetic moment along the easy axes. The magnetization at 10 mT shows following temperature-dependence in ZFC warming mode. The magnetic moment: (i) increases from 2 to 29 K, (ii) decreases from 29 to 47 K, (iii) further increases from 47 to 57.7 K, and (iv) finally decreases to zero. Below 31 K, the FC M-T looks alike the M-T for weak AFM material. But, the variation of M-T does not reflect pure AFM variation due to presence of DMI, anisotropy energies and Zeeman energy. The above arguments lead to the conclusion that the crossover occurs from weak FM (in high temperature regime) to weak AFM (in low temperature regime) resulting small reduction in the magnetic moment. The crossover will occur only if one of the Cu spins get flipped which will cause change in effective anisotropies. The flipping of those spins, which are connected with weaker exchange couplings, is more favorable. So, the spins connected by J_3 and J_4 are most probable to get flipped resulting in the lowering of the magnetic moment. Mondal et al. have suggested that the change in the Cu–O–Cu bond angle may cause a crossover of the exchange coupling from FM to AFM and vice versa. The same crossover is possible in Cu$_2$OSeO$_3$ if strain develops at low temperature (see Fig. 2c). Bos et al. and Evans et al. have shown how strain indeed develops at low temperature in Cu$_2$OSeO$_3$. Thus,
the strain developed will actually cause change in effective anisotropies. The observed cusp has disappeared in the M-T taken at high fields (see Fig. 3a) due to ineffectiveness of DMI. The M-T taken at 20 mT also shows similar variation as discussed for the M-T taken at 10 mT. After a critical field (≈ 40 mT), usual variation in the M-T isofields, which are the confirmation of the FP ferrimagnetic ordering, have been observed. The M-H isotherms have been further analyzed to find out the critical-field and critical-temperature responsible for spin-flip. Field-dependent magnetization. The saturation magnetization of Cu$_2$OSeO$_3$ is ≈ 0.53 μ_B/Cu$^{2+}$ ion, which is approximately half of the magnetic moment of $S = 1/2$ spin state (1 μ_B) for each Cu$^{2+}$ ion. This confirms ferrimagnetic spin arrangement [3(up):1(down)] in Cu$_2$OSeO$_3$ in the FP region. Figure 4 shows the M-H isotherms taken up to 250 mT at various temperatures. The linear variation of magnetic moment is observed at small applied field up to H_1 (Fig. 4b). This is same as the variation of the magnetic moment observed for helical phase. The magnetic moment increases abruptly from H_1 to H_2 (Fig. 4b) forming hysteresis in between. This hysteretic field range decreases with increasing temperature and disappears above 40 K. The transition from the low magnetic moment (below H_1) to high magnetic moment (above H_2) with hysteresis between H_1 and H_2 is the characteristic feature of first-order metamagnetic transition. The sudden jump in the magnetic moment is possible only if some Cu spins are flipped in the direction of the applied field. Based on the strength of superexchange couplings, those Cu spins, which are connected with J_3 and J_4, are more likely to be flipped. This is possible only if strain develops in the low-temperature regime causing change in the effective anisotropies. As discussed before, the saturation magnetic moment is ≈0.53 μ_B/Cu$^{2+}$ due to 3(up):1(down) spin configuration above H_2. This implies that spins are antiferromagnetically coupled due to spin-flip below H_1 and 50 K. The schematic representation of spins is shown in Fig. 2c. The above points lead to the conclusion that Hamiltonian should be different below H_1 and 50 K. All these analyses indicate that spin at position A (Fig. 2b) is most likely to be flipped. All the above discussions are consistent with the M-T isofields as shown in Fig. 3. The phase between H_2 and H_3 is the conical phase. The magnetic properties of first-order phase transition indicate that the metamagnetic hysteretic field region may be a mixed phase consisting of both helical and conical spin textures or, some other new phase. In analogy to Ref.41, a small fraction of conical spin textures will start appearing after H_1, and will increase with increasing field till H_2. Below H_2, small fraction of the helical phase will remain while conical phase fraction will be dominating. Indeed, SANS results show coexistence of LTS phase with spiral and tilted-conical phases42. Similar SANS result has been observed for FD phase due to thermally induced chiral fluctuation46,47. In the analogy, field-induced continuous spin-flip may cause inhomogeneity in
LTS phase yielding ring intensity pattern along with six-fold intensity pattern in metamagnetic hysteretic field range. After H$_2$, conical phase will appear till H$_3$ as shown in the inset of Fig. 4b. Metamagnetic hysteretic phase (and hence metamagnetic transition) is observed below 50 K (see Fig. 4b). Second-order phase transition has been observed40 from helical to conical phase above 50 K. So the point (50 K, 9 mT) should be the tricritical point at which metamagnetic hysteretic field range ends, and direct helical to conical phase transitions starts. The M-H plot of Cu$_2$OSeO$_3$ at 57 K shows the emergence of field-induced HTS phase in the conical phase region4,8,39,40.

Arrott-plot and susceptibility.

Arrott-plot and susceptibility analyses have been further investigated to estimate the phase boundaries connecting different phases present in Cu$_2$OSeO$_3$. The Arrott relation72 is represented as

$$M^2 = A \left(\frac{\mu_0 H}{M} \right) + B,$$

where $A = \frac{1}{B}$ and $B = -\frac{a}{b}$ are constants. Arrott relation72 is widely used to determine T_C and order of phase transition using Bannerjee’s criteria73. Figure 5a shows the Arrott-plots obtained using M-H isotherms. As, it can be seen [inset (1) of Fig. 5a] that there exist multiple positive and negative slope regions. Arrott-plots show following properties.

(i) Positive slopes below H$_1$.
(ii) Negative slopes from H$_1$ to H$_2$.
(iii) An intermediate positive slope region has been observed between A$_1$ and A$_2$ in the negative slope regions (H$_1$ to H$_2$) of the Arrott-plot taken at 57 K as shown in the inset(2) of Fig. 5a. The phase between A$_1$ and A$_2$ is consistent with observed HTS phase.
(iv) Positive slopes above H$_2$.

The higher field positive slope regions (above H$_4$) can be divided further into two parts— slow varying slope regions (almost vertical lines in Fig. 5a) from H$_2$ to H$_3$, and almost constant slope regions above H$_3$. Now, let us first examine the susceptibility plots before going into detailed analysis of different phases appearing in Cu$_2$OSeO$_3$. The magnetic susceptibility plot (Fig. 5b), obtained from the first derivative of the M-H isotherms give a clear picture of various transitions. H$_1$, H$_2$, and H$_3$ are the inflection points on the susceptibility curves below 50 K. The phase boundaries determined from M-H (Fig. 4b) and susceptibility (Fig. 5b) are consistent. Below H$_1$, susceptibility varies linearly, which is consistent with the linear variation of M-H isotherms below H$_1$ as shown in Fig. 4. On comparison with SANS4 and LTEM results, the following observation can be made.

(i) Helical phase$^{1-8}$ is below H$_1$.

![Figure 5](https://example.com/figure5.png)

Figure 5. (a) Arrott-plots obtained from the first quadrant M-H isotherms recorded during second forward scan from -250 to 250 mT. Various positive and negative slope regions represent multiple phases observed in Cu$_2$OSeO$_3$. Inset shows the expanded view of the Arrott-plots. (b) Variation of magnetic susceptibility of Cu$_2$OSeO$_3$ estimated from the first derivative of the first quadrant M-H isotherms recorded during second forward scan from -250 to 250 mT. Symbols represent experimental data and solid lines are average fit to the experimental data. The phase below H$_1$ represents helical phase. Hysteretic phase region is observed between H$_1$ and H$_2$. Above H$_2$, conical phase formation is estimated. Above H$_3$, field-induced ferrimagnetic phase formation occurs. Flat or almost zero susceptibility value of 60 K curve indicates the paramagnetic phase region.
and HA. After H\textsubscript{A}, complete ordered ferrimagnetic phase can be observed with negligibly small DMI41. So, the phase boundary has been determined using Arrott-plots and susceptibility analyses. Helical phase is below H\textsubscript{S}. LTS phase with added spiral and tilted conical phase is between H\textsubscript{1} and H\textsubscript{2}. Conical phase is from H\textsubscript{2} to H\textsubscript{3}. HTS phase has been observed in the vicinity of T\textsubscript{C}, in conical phase region. Field-induced ferrimagnetic phase appears above H\textsubscript{3}. Here, H\textsubscript{4} is almost same as H\textsubscript{S}. H\textsubscript{4} represents the critical fields around which Arrott-plots change the slope from negative to positive. H\textsubscript{5} represents the critical fields above which DMI becomes ineffective. (b) Expanded view of the shaded (light-gray) region of (a). Detailed analysis of the shaded region has been done somewhere else40. Helical2, conical, HTS, FP ferrimagnetic, PM and FD phases are observed in the vicinity of T\textsubscript{C}. A tricritical point (TCP) is observed at (57.3 K, 33 mT) where first-order FD to conical phase transition transform into second-order conical to field polarized ferrimagnetic phase. Lifshitz point (LP) is observed at (58.8 K, 30 mT) where ordered (FP ferrimagnetic), disordered (PM) and incommensurate (FD) phases meet tangentially. Two triple points (TPs) are observed at [(57.88 K, 17 mT) and (57.90 K, 10.50 mT)] where first-order FD, HTS and conical phases meet. HTS: high-temperature skyrmion, LTS: low-temperature skyrmion, FP: field polarized, FD: fluctuation disordered.

(ii) Conical phase is from H\textsubscript{S} to H\textsubscript{3} having intermediate metamagnetic hysteretic field range from H\textsubscript{S} to H\textsubscript{2} in low temperature regime. H\textsubscript{2} is the critical field where susceptibility is observed to be maximum. The susceptibility pattern from H1 to H\textsubscript{3} is similar to the susceptibility for LTS phase43, which has been confirmed by SANS results42,44,45.

(iii) Dip in the susceptibility has been observed from A\textsubscript{1} to A\textsubscript{2} in the conical phase region. The phase between A\textsubscript{1} and A\textsubscript{2} is consistent with the HTS phase42-45.

(iv) Field induced ferrimagnetic phase appears above H\textsubscript{3}.

The phase boundaries, constructed using Arrott-plots and susceptibility isotherms, are deviating more in the low temperature regime. H3 and H4 are almost overlapping in the whole temperature regime. It can be seen that H5 is appearing in the conical phase region. With increasing temperature H3 and H5 get closer to each other. It seems that conical phase is stable till H\textsubscript{3} and may have different properties below and above H\textsubscript{3}. After H\textsubscript{3}, conical phase becomes unstable leading to formation of field induced ferrimagnetic phase having effective DMI till H\textsubscript{4}. After H\textsubscript{4}, complete ordered ferrimagnetic phase can be observed with negligibly small DMI41. So, the field-region from H\textsubscript{3} to H\textsubscript{4} may have mixed spin-textures of conical and field-induced-ferrimagnetic phases. And, spin-textures of conical and field-polarized-ferrimagnetic phases may have equal contribution at H\textsubscript{4}.

Phase diagram. Figure 6 represents magnetic phase diagram of Cu\textsubscript{2}OSeO\textsubscript{3} constructed using the above analyses. We have shown that spin-flip caused by the development of strain (refer to Fig. 2) may lead to different Hamiltonian below H\textsubscript{2} and below 50 K. Below H\textsubscript{3}, spins try to align antiferromagnetically, but, due to presence of other competing interactions (as discussed above), the antiferromagnetically coupled spins may also yield helical spin-textures. So, it is quite possible to have two kinds of helical spin textures45: (i) helical1 below 50 K, and (ii) helical2 above 50 K. Due to spiral spin texture, the two helical phases may have identical properties. The similar property may not be observed in the M-T isofields due to almost similar spin texture in helical1 and helical2 phases. Metamagnetic phase transition occurs from H\textsubscript{1} to H\textsubscript{3} yielding metamagnetic hysteretic field range. The spins of metamagnetic hysteretic field range may form helical or conical or mixed spin texture45. On comparison with previous reports42,45, it is found that the LTS phase emerges in the field range over which meta-
magnetic hysteresis has been observed. Due to discontinuous spin-flip, ring intensity pattern may be observed in SANS. This ring intensity pattern may be the measure of coexistence of other spin-textures, such as spiral and tilted-conical, in LTS phase. In analogy with FD phase\cite{19,20}, the metamagnetic hysteretic field range may have field-induced spin-fluctuation. After H_{A}\textsubscript{1}^{2}, the weakly bound Cu1 spins get flipped (Fig. 2) completely, and conical phase emerges due to presence of other competing energies. Thus, below H_{A}\textsubscript{1}^{2} and 50 K, the physics of Cu_{2}OSeO\textsubscript{3} will be governed by J\textsubscript{1} (strong FM), J\textsubscript{2} (strong AFM), and J\textsubscript{4} (weak AFM). Above H_{A}\textsubscript{1}^{2} and 50 K, the physics of Cu_{2}OSeO\textsubscript{3} will be governed by J\textsubscript{1} (strong FM), J\textsubscript{2} (strong AFM), J\textsubscript{1} (weak AFM), and J\textsubscript{4} (weak AFM). Below H_{A}\textsubscript{1}^{2}, Arrott-plots show negative slopes. So, it can be inferred that the conical phase may have different properties below and above H_{A}\textsubscript{1}^{2}. The conical phase continuously transforms into field polarized ferromagnetic phase around H_{A}\textsubscript{1}^{2}. It is possible that DMI may become ineffective above H_{A}\textsubscript{1}^{2} due to Zeeman energy and spin reorientation. And, DMI may become negligibly small (or zero) above H_{A}\textsubscript{1}^{2} leading to saturation magnetization as shown in Fig. 4. HTS phase has been observed in the conical phase in a small window of applied field and temperature46,54,47. The physics of the shaded region (53–61 K) has been explained comprehensively in previous reports48,49. A tricritical point (50 K, 9 mT) has been observed where metamagnetic hysteretic field range ceases to exist.

Conclusion

Investigation of the unusual variation of the magnetic moment of the M-T curves confirms the flipping of spins due to the development of strain which causes change in effective anisotropies at low temperature. The crossover from weak FM to weak AFM causes first-order metamagnetic transition leading to the formation of metamagnetic hysteretic field region between helical and conical spin textures. LTS phase with added spiral and tilted-conical phases may have been observed in the metamagnetic hysteretic field range. Arrott-plots analyses confirm that there may exist conical phases with different properties. Also, same (positive or negative) slope regions of Arrott-plots may represent different phases if the slopes vary with different rates. The point (~ 50 K, ~ 9 mT) leads to the tricritical point where first-order metamagnetic hysteretic phase ceases to exist and second-order helical to conical phase transition starts. Finally, a magnetic phase diagram of Cu_{2}OSeO\textsubscript{3} has been constructed using the above analyses. Further investigations are required to explore the physics of different properties of LTS phase when compared with HTS phase.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Received: 28 May 2022; Accepted: 7 September 2022

Published online: 24 September 2022

References

1. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915 (2009).
2. Wilhelm, H. et al. Precursor phenomena at the magnetic ordering of the cubic helimagnet FeGe. Phys. Rev. Lett. 107, 127203 (2011).
3. Münzer, W. et al. Skyrmion lattice in the doped semiconductor Fe\textsubscript{1−x}Co\textsubscript{x}Se. Phys. Rev. B 81, 041203(R) (2010).
4. Seki, S., Yu, X. Z., Ishiwata, S. & Tokura, Y. Observation of skyrmions in a multiferroic material. Science 336, 198 (2012).
5. Fujima, Y., Abe, N., Tokunaga, Y. & Arima, T. Thermodynamically stable skyrmion lattice at low temperatures in a bulk crystal of lanocur spinnel GaV\textsubscript{8}Se\textsubscript{6}. Phys. Rev. B 95, 180410(R) (2017).
6. Kézsmárks, I. et al. Néel-type skyrmion lattice with confined orientation in the polar semiconductor GaV\textsubscript{8}Se\textsubscript{6}. Nat. Mater. 14, 1116–1122 (2015).
7. Kurumaji, T. et al. Néel-Type skyrmion lattice in the tetragonal polar magnet VO\textsubscript{2}Se\textsubscript{2}. Phys. Rev. Lett. 119, 237201 (2017).
8. Adams, T. et al. Long-wavelength helimagnetic order and skyrmion lattice phase in Cu\textsubscript{2}OSeO\textsubscript{3}. Phys. Rev. Lett. 108, 237204 (2012).
9. Fert, A., Reynen, N. & Crons, V. Magnetic skyrmions: Advances in physics and potential applications. Nat. Rev. Mater. 2, 201731 (2017).
10. Jiang, W. et al. Skyrmions in magnetic multilayers. Rep. Prog. Phys. 70, 1–49 (2017).
11. Yu, X., Tokunaga, Y., Taguchi, Y. & Tokura, Y. Variation of topology in magnetic bubbles in a colossal magnetoresistive manganese. Adv. Mater. 29, 1603958 (2016).
12. Yu, X. et al. Magnetic stripes and skyrmions with helicity reversals. Proc. Natl. Acad. Sci. USA 109, 8856 (2012).
13. Yu, X. Z. et al. Biskyrmions states and their current-driven motion in a layered manganese. Nat. Commun. 5, 3198 (2014).
14. Qian, F. et al. Phase diagram and magnetic relaxation phenomena in Cu\textsubscript{2}OSeO\textsubscript{3}. Phys. Rev. B 94, 064418 (2016).
15. Pfleiderer, C. Surfaces get hairy. Nat. Phys. 7, 673 (2011).
16. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotech. 8, 899–911 (2013).
17. Fert, A., Cros, V. & Sampaio, I. Skyrmions on the track. Nat. Nanotech. 8, 152 (2013).
18. Tiwari, J. K., Chauhan, H. C., Kumar, B. & Ghosh, S. 3D-isling like ferromagnetism in skyrmionic bubble host infinite-layer La\textsubscript{0.5}Sr\textsubscript{0.5}CoO\textsubscript{2}MnO\textsubscript{3}, skyrmion perovskite. J. Phys.: Condens. Matter 32, 195803 (2020).
19. Tiwari, J. K., Kumar, B., Chauhan, H. C. & Ghosh, S. Critical scaling and magnetic phase diagram of bi-skyrmion host quasi-two-dimensional La\textsubscript{1−x}Sr\textsubscript{x}MnO\textsubscript{2} bi-layer manganese. J. Magn. Magn. Mater. 535, 168020 (2021).
20. Dzyaloshinskii, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241 (1958).
21. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960).
22. Sarata, N. et al. Critical exponents and scaling invariance in the absence of a critical point. Nat. Commun. 7, 13611 (2016).
23. Lin, Y. S., Grundy, P. J. & Geiss, E. A. Bubble domains in magnetostatically coupled garnet films. Appl. Phys. Lett. 23, 485 (1973).
24. Fang, Y., Wu, S., Zhu, Z. & Guo, G. Large magneto-optical effects and magnetic anisotropy energy in two-dimensional Cr\textsubscript{2}Ge\textsubscript{2}Te\textsubscript{6}. Phys. Rev. B 98, 125416 (2018).
25. Yang, J. H. et al. Strong Dzyaloshinskii–Moriya interaction and origin of ferroelectricity in Cu\textsubscript{2}OSeO\textsubscript{3}. Phys. Rev. Lett. 109, 107203 (2012).
26. Janson, O. et al. The quantum nature of skyrmions and half-skyrmions in Cu\textsubscript{2}OSeO\textsubscript{3}. Nat. Commun. 5, 5376 (2014).
27. Portnichenko, P. Y. et al. Magnon spectrum of the helimagnetic insulator Cu\textsubscript{2}OSeO\textsubscript{3}. Nat. Commun. 7, 10725 (2016).
28. Malozemoff, A. P. Heisenberg-to-Ising crossover in a random-field model with uniaxial anisotropy. Phys. Rev. B 37, 7673 (1988).
29. Malozemoff, A. P. Mechanisms of exchange anisotropy (invited). J. Appl. Phys. 63, 3874 (1988).
30. Daalderop, G. H. O., Kelly, P. J. & Schuurmans, M. F. H. Magnetocrystalline anisotropy and orbital moments in transition-metal compounds. Phys. Rev. B 44, 12054(R) (1991).
31. Hoffer, G. & Strnat, K. Magnetocrystalline anisotropy of YCo$_2$ and Y$_2$Co$_7$. IEEE 2, 487–489 (1966).
32. Daalderop, G. H. O., Kelly, P. J. & Schuurmans, M. F. H. First-principles calculation of the magnetocrystalline anisotropy energy of iron, cobalt, and nickel. Phys. Rev. B 41, 11919 (1990).
33. Dubowik, J. Erratum: Shape anisotropy of magnetic heterostructures [Phys. Rev. B 54, 1088 (1996)]. Phys. Rev. B 62, 727 (2000).
34. Lu, Y. et al. Shape-anisotropy-controlled magnetoresistive response in magnetic tunnel junctions. Appl. Phys. Lett. 70, 2610 (1997).
35. Qian, F. et al. New magnetic phase of the chiral skyrmion material Cu$_2$OSeO$_3$. Sci. Adv. 4, eaat7323 (2018).
36. White, J. S. et al. Electric field control of the skyrmion lattice in Cu$_2$OSeO$_3$. J. Phys. Condens. Matter 24, 432201 (2012).
37. Grigoriev, S. V., Sukhanov, A. S. & Maleev, S. V. From spiral to ferromagnetic structure in B20 compounds: Role of cubic anisotropy. Phys. Rev. B 91, 224429 (2015).
38. Bauer, A., Garst, M. & Pfeiffer, C. Specific heat of the skyrmion lattice phase and field-induced tricritical point in MnSi. Phys. Rev. Lett. 110, 177207 (2013).
39. Qian, F. et al. Phase diagram and magnetic relaxation phenomena in Cu$_2$OSeO$_3$. Phys. Rev. B 94, 064418 (2016).
40. Chauhan, H. C., Kumar, B., Tiwari, J. K. & Ghosh, S. Multiple phases with a tricritical point and a Lifshitz point in the skyrmion host Cu$_2$OSeO$_3$. Phys. Rev. B 100, 165143 (2019).
41. Chauhan, H. C., Kumar, B., Tiwari, A., Tiwari, J. K. & Ghosh, S. Different critical exponents on two sides of a transition: Observation of crossover from Ising to Heisenberg exchange in skyrmion host Cu$_2$OSeO$_3$. Phys. Rev. Lett. 128, 015703 (2022).
42. Bannenberg, L. J. et al. Multiple low-temperature skyrmionic states in a bulk chiral magnet. npj Quantum Mater. 4, 11 (2019).
43. Halder, M. et al. Thermodynamic evidence of a second skyrmion lattice phase and tilted conical phase in Cu$_2$OSeO$_3$. Phys. Rev. B 98, 144429 (2018).
44. Chacon, A. et al. Observation of two independent skyrmion phases in a chiral magnetic material. Nat. Phys. 14, 936–941 (2018).
45. Aqeel, A. et al. Microwave spectroscopy of the low-temperature skyrmion state in Cu$_2$OSeO$_3$. Phys. Rev. Lett. 126, 017202 (2021).
46. Kindervert, J. et al. Weak crystallization of fluctuating skyrmion textures in MnSi. Phys. Rev. X 9, 041059 (2019).
47. Janoschek, M. et al. Fluctuation-induced first-order phase transition in Dyzaloshinskii–Moriya helimagnets. Phys. Rev. B 87, 134407 (2013).
48. Brazovskii, S. A. Phase transition of an isotropic system to a nonuniform state. Sov. Phys. JETP 41, 85 (1975).
49. Bos, J. W. G., Colin, C. V. & Palstra, T. T. M. Magnetoelastic coupling in the cubic ferrimagnet Cu$_2$OSeO$_3$. Phys. Rev. B 78, 094416 (2008).
50. Seki, S. et al. Formation and rotation of skyrmion crystal in the chiral-lattice insulator Cu$_2$OSeO$_3$. Phys. Rev. B 85, 220406(R) (2012).
51. Liu, G. J. & Sun, J. R. Determination of the entropy changes in the compounds with a first-order magnetic transition. Appl. Phys. Lett. 90, 032507 (2007).
52. Deppe, M. et al. Pronounced first-order metamagnetic transition in the paramagnetic heavy-fermion system CeTiGe. Phys. Rev. B 85, 060401(R) (2012).
53. Zhang, Y. Q., Zhang, Z. D. & Aarts, J. Erratum: First-order nature of a metamagnetic transition and mechanism of giant magnetoresistance in Mn$_5$Sb$_{12}$Sn$_{48}$. [Phys. Rev. B 70, 132407 (2004)]. Phys. Rev. B 71, 229902 (2005).
54. Strzyjewski, E. & Giordano, N. Metamagnetism. Adv. Phys. 65(5), 487–650 (2006).
55. Zhang, F. et al. Super-exchange theory for polyvalent anion magnets. New J. Phys. 21, 053033 (2019).
56. Mondal, D. et al. Crossover from antiferromagnetic to ferromagnetic exchange coupling in a new family of bis-(μ-phenoxido) dicopper(II) complexes: A comprehensive magneto-structural correlation by experimental and theoretical study. ACS Omega 4, 10558 (2019).
57. Conduit, G. J., Green, A. G. & Simons, B. D. Inhomogeneous phase formation on the border of itinerant ferromagnetism. Phys. Rev. Lett. 103, 207201 (2009).
58. Joy, P. A., Kumar, P. S. A. & Date, S. K. The relationship between field-cooled and zero-field-cooled susceptibilities of some ordered magnetic systems. J. Phys.: Condens. Matter 10, 11049 (1998).
59. Wang, X. H., Peng, W. K. & Lew, W. S. Flux-closure chirality control and domain wall trapping in asymmetric magnetic ring. J. Appl. Phys. 106, 043905 (2009).
60. Shepley, P. M., Rushforth, A. W., Wang, M., Burnell, G. & Moore, T. A. Modification of perpendicular magnetic anisotropy and domain wall velocity in Pt/Co/Pt by voltage-induced strain. Sci. Rep. 5, 7921 (2015).
61. Seo, Soo-Man., Lee, Kyung-Jin., Jung, Soon-wook & Lee, Hyun-Woo. Controllable chirality switching of a moving domain wall by oblique magnetic field. Appl. Phys. Lett. 97, 032507 (2010).
62. Zhang, L. et al. Critical behavior of the single-crystal helimagnet MnSi. Phys. Rev. B 91, 024403 (2015).
63. Jiang, W., Zou, X. Z. & Williams, G. Scaling the anomalous Hall effect: A connection between transport and magnetism. Phys. Rev. B 82, 144424 (2010).
64. Zhang, L. et al. Critical phenomenon of the near room temperature skyrmion material FeGe. Sci. Rep. 6, 22397 (2016).
65. Mørtup, S. & Frandsen, C. Therminduced magnetization in nanoparticles of antiferromagnetic materials. Phys. Rev. Lett. 92, 217201 (2004).
66. Van Vleck, J. H. On the theory of antiferromagnetism. J. Chem. Phys. 9, 85 (1941).
67. Evans, D. M., Schiemer, J. A., Schmidt, M., Wilhelm, H. & Carpenter, M. A. Defect dynamics and strain coupling to magnetization in the cubic helimagnet Cu$_2$OSeO$_3$. Phys. Rev. B 85, 094426 (2017).
68. Belea, M. et al. Magnetoelastic effects in single crystals of the cubic ferrimagnetic helimagnet Cu$_2$OSeO$_3$. Phys. Rev. B 85, 224413 (2012).
69. Perry, R. S. et al. Multiple first-order metamagnetic transitions and quantum oscillations in ultrapure Sr$_2$Ru$_2$O$_4$. Phys. Rev. Lett. 92, 166602 (2004).
70. Lyubina, J., Nenkov, K., Schultz, L. & Gutleisch, O. Multiple metamagnetic transitions in the magnetic refrigerant La(Fe, Si)$_2$As. Phys. Rev. Lett. 101, 177203 (2008).
71. Gama, S. et al. A general approach to first order phase transitions and the anomalous behavior of coexisting phases in the magnetic case. Adv. Funct. Mater. 19, 942 (2009).
72. Arrott, A. Criterion for ferromagnetism from observations of magnetic isotherms. Phys. Rev. 108, 1394 (1957).
73. Banerjee, B. K. On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16 (1964).

Acknowledgements
We thank AIRF-JNU for providing facilities for PPMS and XRD measurements. H.C.C. acknowledges UGC-CSIR for financial support through fellowship. This project is partially supported by SERB, Department of Science and Technology, Government of India, through the project with SERB sanction order no. CRG/2021/000776.
Author contributions
S.G. conceived the problem. H.C.C. and B.K. performed the experiments. H.C.C. wrote the main manuscript text. All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022