Cosmic Microwave Background Constraints on Very Dark Photons

Anthony Fradette, Maxim Pospelov, Josef Pradler, Adam Ritz

2015

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

This article was originally published at:
http://dx.doi.org/10.1016/j.phpro.2014.12.081

Citation for this paper:
Fradette, A., Pospelov, M., Pradler, J. & Ritz, A. (2015). Cosmic Microwave Background Constraints on Very Dark Photons. Physics Procedia, 61, 689-693. https://doi.org/10.1016/j.phpro.2014.12.081
Cosmic Microwave Background Constraints on Very Dark Photons

Anthony Fradettea, Maxim Pospelovab, Josef Pradlerc, Adam Ritza

aDepartment of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
bPerimeter Institute for Theoretical Physics, Waterloo, ON N2J 2W9, Canada
cDepartment of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA

Abstract
We analyze the effects of a massive dark photon with $m_V > 1$ MeV on the Cosmic Microwave Background (CMB). We calculate the freeze-in abundance and derive limits on the parameter space from energy injections in the CMB. We find that for dark vectors in the mass range 1 MeV $< m_V \lesssim 300$ MeV, the model is already ruled out for effective electromagnetic coupling as low as $10^{-34} - 10^{-37}$.

Keywords:
Dark photons, Hidden sector, Cosmic Microwave Background

1. Introduction
It is well-known that the Standard Model (SM) does not explain all physics. Multiple phenomena, such as dark matter and neutrino oscillations, provide ample motivation to explore phenomenological studies of neutral hidden sectors, weakly coupled to the SM.

The marginal interaction of a kinetic mixing of a new U(1) massive vector V_μ with the electroweak neutral bosons through $B_{\mu\nu} V^{\mu\nu}$ could provide the leading coupling between the hidden sector and the SM. For masses lower than the weak scale, we can only consider the mixing with the photon, and the interaction with the SM is simply

$$\mathcal{L}_{\text{int}}^V = -\frac{\kappa}{2} F_{\mu\nu} V^{\mu\nu} = e \kappa V_\mu J^\mu_{\text{em}}.$$

The phenomenology of this model depends on the vector mass m_V and the kinetic coupling κ. For simplicity, we take the mass to be a fundamental parameter, it could instead come from a new Higgs mechanisms [1]. Here, we are interested in the range $m_V > 2 \times 511$ keV, so that production from and decays to electron positron pairs are allowed. We first calculate the freeze-in production abundance and then explore its consequences on the Cosmic Microwave Background (CMB). This work, along with Big Bang Nucleosynthesis (BBN) and other cosmological implications, are presented in more details in [2].
The sensitivity of the cosmological probes to this model is quite remarkable. The region of interest is given by lifetimes near the CMB emission epoch, and for $m_V < 220$ MeV is given by

$$\tau_V \approx \frac{3}{\alpha_{\text{eff}} m_V} = 0.6 \text{ mln yr} \times \frac{10 \text{ MeV}}{m_V} \times \frac{10^{-35}}{\alpha_{\text{eff}}},$$

where we defined the effective electromagnetic coupling $\alpha_{\text{eff}} = \alpha \kappa^2$. We can estimate the production cross section in $e^+e^- \rightarrow V\gamma$,

$$\sigma_{\text{prod}} \sim \frac{\pi \alpha \alpha_{\text{eff}}}{E_{\text{cm.}}^2} \sim 10^{-63} \text{ cm}^2,$$

with $E_{\text{cm.}} \sim 200$ MeV. These extremely low couplings are therefore undetectable in present-day production phenomena and as such we will refer to the dark vectors in this model as Very Dark Photons (VDP).

2. Freeze-in abundance of VDP

As a consequence of the low coupling to the SM, the production rate of the VDP is assumed to be sub-Hubble and V never achieves an equilibrium density. The dominant production channel is via pair coalescence of e^\pm or more generically charged leptons $\bar{l}l \rightarrow V$. The production rate is given by the Boltzmann equation

$$s\dot{Y}_V = n_V + 3Hn_V = \prod_{i=l,l',V} \int \left(\frac{d^3 p_i}{(2\pi)^3 2E_i} \right) N_i N_f (2\pi)^4 \delta^{(4)}(p_i + p_f - p_V) \sum |M_{l\bar{l}V}|^2,$$

where $Y_V = n_V/s$ is the number density per entropy density, the overdot represents a time derivative, H is the Hubble rate, $N_{i(l)} = [1 + \exp(-E_{i(l)}/T)]^{-1}$ is the Fermi-Dirac statistical distribution and

$$\sum |M_{l\bar{l}V}|^2 = 16\pi \alpha_{\text{eff}} m_V^2 \left(1 + \frac{2m^2_{l\bar{l}}}{m^2_V} \right)$$

is the matrix element of the interaction, summed both over initial and final spin degrees of freedom. The peak production rate per entropy appears at $T < m_V$ [3] and we can find an analytical result by neglecting the lepton mass and using the Maxwell-Boltzmann distribution instead. We find

$$s\dot{Y}^\ast_V = \frac{\alpha_{\text{eff}}}{2\pi^2} m^3_V TK_1(m_V/T), \quad Y^\ast_{V,f} = 0.24 \frac{\alpha_{\text{eff}} m^4_V}{(Hs)_{T=m_V}}$$

$K_1(m_V/T)$ is the modified Bessel function and in evaluating the final abundance from the electron channel $Y^\ast_{V,f}$, we have assumed $H(T)s(T)$ to be almost constant in the integration of \dot{Y}_V over time.

Considering the thermal mass of the virtual photon in the reaction $\bar{l}l \rightarrow \gamma^* \rightarrow V$, the production can be enhanced as the longitudinal and transverse mass of the virtual photon generate a resonant production when it can oscillate to an on-shell V [4, 5]. The resonance temperature has a parametrically high lower bound [3] $T_r \geq 3m^2_V/(2\pi \alpha) = (8m_V)^2$, which keeps its contribution sub-dominant, but can reach up to $\sim 30\%$ the value of the bulk production. Working in the same approximations as before, we find the analytic result

$$s\dot{Y} = \frac{\alpha_{\text{eff}}}{2\pi^2} m^3_V \int_{m_V}^{\infty} d\omega \sqrt{\omega^2 - m^2_V} e^{-\omega/T} \left[\frac{1}{3} \frac{m^4_V}{m^2_V - \Pi_\uparrow^l} + \frac{2}{3} \frac{m^4_V}{m^2_V - \Pi_\uparrow^f} \right], \quad \Delta Y_{f,r} \approx \Delta Y_T \approx 0.06 \frac{\alpha_{\text{eff}} m^4_V}{(Hs)_{T=m_V}},$$

where we used the narrow-width approximation and the real part of the polarization tensors can be found in [6]. In this limit, the imaginary part of $\Pi_{(l,f)}$ is $\Im \Pi_{(l,f)} = -\alpha m_V^2 (1 - \exp(-w/T))/3$, and the general statement is described in [7]. Due to its much higher resonance temperature, the longitudinal thermal production contribution is completely negligible, a contrasting behaviour with the stellar production, where the L-resonance dominates [4].
The VDPs are long-lived and cool down with the expansion of the Universe until $E_V = m_V$. This rest energy forms an accumulation of energy stored that will be released in the cosmic medium in the decay of the VDPs into e^\pm, μ^\pm, π^\pm pairs and other hadronic states. The energy stored per baryon is therefore

$$E_{p.b.} = m_V Y_{VJ} \frac{s}{n_{b,0}},$$

with $n_{b,0}/s_0 = 0.9 \times 10^{-10}$, the entropy-to-baryon ratio today. Without using approximations, we numerically calculate the VDP freeze-in abundance from the difference production channels and show the related energy stored in figure 1. The left panel demonstrates the fixed lifetime $\tau_V = 10^{14}$ s, with clear dips at the hadronic resonances from the lower value of α_{eff} to keep τ_V constant [8]. The right panel is for $\alpha_{eff} = 10^{-35}$.

We incorporated charged pions and free quarks by a crude step function at the quantum chromodynamics pseudo-critical temperature for energy density $T_c = 157$ MeV [9]. The charged pions are here treated with scalar quantum electrodynamics, we postpone the ρ-resonance production to [2].

If the VDPs decay after the beginning of recombination ($t \approx 10^{13}$ s), the energetic decay products can ionize hydrogen atoms, thus slowing down the recombination process. This modification of the last-scattering surface can have a noticeable imprint in the CMB. The energy injection damps the TT temperature correlations on small scale, while also increasing the TE and EE polarization spectra on the large scales [10, 11].

A generic energy injection from a decaying species can be parametrized as

$$\frac{dE}{dtdV} = 3\zeta m_p e^{-\Gamma_I},$$

with the energy output of each decay being $3\zeta m_p$. The energy is thermally distributed, with a fractional amount of $(1 - x_e)/3$ going to ionization, $(1 + 2x_e)/3$ heating the medium and the remainder used in excitations, where x_e is the ionized fraction. Using the codes CLASS [12] and MontePython [13], we extracted the 2σ limits on $\Gamma_I - \zeta$ from the WMAP 7-year [14] and SPT [15] data sets. The resulting constraints are shown on the left in figure 2, along with the WMAP 3-year and Planck forecast for its design precision, including polarization, curves from [11]. The different shape of the curves at small lifetimes comes from the fact that we used the exact cosmic time in the evaluation, as opposed to the matter-dominated approximation in [11].

Remains to determine the efficiency at which the energy stored in the VDPs can be deposited in ionization. The efficiency depends on the species, the decay products, the initial kinetic energy and the redshift [16, 17]. Ref [18] provides transfer functions, solving for the fractional amount of an injection energy deposited at subsequent redshifts. We can therefore compute an effective deposition efficiency f_{eff} by averaging over the range $800 < z < 1000$ [19]. On the right panel of figure 2, we show the overall f_{eff} along
its constituents. Both muons and pions contributions are $\sim 1/3$ due to the energy radiated away by the neutrinos.

With this, the $\zeta - \Gamma$ CMB constraints can be related to the VDP parameters with

$$\zeta = \frac{f_{\text{eff}}}{3} \frac{\Omega_V}{\Omega_b} = \frac{f_{\text{eff}}}{3} \frac{E_{\text{p.b.}}}{m_p}$$

and yield the exclusion region shown in figure 3.

4. Conclusion

We explored the CMB impact of a new U(1) vector kinetically mixing with the photon and mass above the electron threshold. We find a remarkable sensitivity, ruling out a region of parameter space far away from the scope of terrestrial experiments. Dark photons with $m_V < 1\text{MeV}$ have a three-photon decay and thus do not require such low couplings to live on cosmological timescales. As such, they have previously been studied as a potential candidate for dark matter [1, 3]. This work will be presented in more details, along with the ρ-resonance production and BBN constraints in [2].
5. Acknowledgements

This work was supported in part by NSERC, Canada, and research at the Perimeter Institute is supported in part by the Government of Canada through NSERC and by the Province of Ontario through MEDT. The work of AF is partially supported by the Province of Québec through FRQNT.

References

[1] M. Pospelov, A. Ritz, M. B. Voloshin, Bosonic super-WIMPs as keV-scale dark matter, Phys.Rev. D78 (2008) 115012. arXiv:0807.3279, doi:10.1103/PhysRevD.78.115012.

[2] A. Fradette, M. Pospelov, J. Pradler, A. Ritz (in preparation).

[3] J. Redondo, M. Postma, Massive hidden photons as lukewarm dark matter, JCAP 0902 (2009) 005. arXiv:0811.0326, doi:10.1088/1475-7516/2009/02/005.

[4] H. An, M. Pospelov, J. Pradler, New stellar constraints on dark photons, Phys.Lett. B725 (2013) 190–195. arXiv:1302.3884, doi:10.1016/j.physletb.2013.07.008.

[5] H. An, M. Pospelov, J. Pradler, Dark Matter Detectors as Dark Photon Helioscopes, Phys.Rev.Lett. 111 (2013) 041302. arXiv:1304.3461, doi:10.1103/PhysRevLett.111.041302.

[6] E. Braaten, D. Segel, Neutrino energy loss from the plasma process at all temperatures and densities, Phys.Rev. D48 (1993) 1478–1491. arXiv:hep-ph/9302213, doi:10.1103/PhysRevD.48.1478.

[7] H. A. Weldon, Simple Rules for Discontinuities in Finite Temperature Field Theory, Phys.Rev. D28 (1983) 2007. doi:10.1103/PhysRevD.28.2007.

[8] B. Batell, M. Pospelov, A. Ritz, Probing a Secluded U(1) at B-factories, Phys.Rev. D79 (2009) 115008. arXiv:0903.0363, doi:10.1103/PhysRevD.79.115008.

[9] H. An, M. Pospelov, J. Pradler, Is there still any T_c mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 1009 (2010) 073. arXiv:1005.3508, doi:10.1007/JHEP09(2010)073.

[10] E. Komatsu, et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys.J.Suppl. 192 (2011) 18. arXiv:1001.4538, doi:10.1088/0067-0049/192/2/18.

[11] R. Keisler, C. Reichardt, K. Aird, B. Benson, L. Bleem, et al., A Measurement of the Damping Tail of the Cosmic Microwave Background Power Spectrum with the South Pole Telescope, Astrophys.J. 743 (2011) 28. arXiv:1105.3182, doi:10.1088/0004-637X/743/1/28.

[12] T. R. Slatyer, N. Padmanabhan, D. P. Finkbeiner, CMB Constraints on WIMP Annihilation: Energy Absorption During the Recombination Epoch, Phys.Rev. D80 (2009) 043526. arXiv:0906.1197, doi:10.1103/PhysRevD.80.043526.

[13] N. Padmanabhan, D. P. Finkbeiner, Detecting dark matter annihilation with CMB polarization: Signatures and experimental prospects, Phys.Rev. D72 (2005) 023508. arXiv:astro-ph/0503486, doi:10.1103/PhysRevD.72.023508.

[14] T. R. Slatyer, Energy Injection And Absorption In The Cosmic Dark Ages, Phys.Rev. D87 (12) (2013) 123513. arXiv:1211.0283, doi:10.1103/PhysRevD.87.123513.

[15] J. M. Cline, P. Scott, Dark Matter CMB Constraints and Likelihoods for Poor Particle Physicists, JCAP 1303 (2013) 044. arXiv:1301.5908, doi:10.1088/1475-7516/2013/03/044, 10.1088/1475-7516/2013/05/E01.