Learning Target-aware Representation for Visual Tracking via Informative Interactions

Mingzhe Guo1*, Zhipeng Zhang2*, Heng Fan3, Liping Jing1†, Yilin Lyu1, Bing Li2 and Weiming Hu2

1Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University
2NLPR, Institute of Automation, Chinese Academy of Sciences (CASIA)
3Department of Computer Science and Engineering, University of North Texas, Denton, TX USA
\{mingzheguo, yilinlyu, lj@bjtu.edu.cn, zhangzhipeng2017@ia.ac.cn, heng.fan@unt.edu, \{bli, wmhu\}@nlpr.ia.ac.cn

Abstract

We introduce a novel backbone architecture to improve target-perception ability of feature representation for tracking. Specifically, having observed that de facto frameworks perform feature matching simply using the outputs from backbone for target localization, there is no direct feedback from the matching module to the backbone network, especially the shallow layers. More concretely, only the matching module can directly access the target information (in the reference frame), while the representation learning of candidate frame is blind to the reference target. As a consequence, the accumulation effect of target-irrelevant interference in the shallow stages may degrade the feature quality of deeper layers. In this paper, we approach the problem from a different angle by conducting multiple branch-wise interactions inside the Siamese-like backbone networks (InBN). At the core of InBN is a general interaction modeler (GIM) that injects the prior knowledge of reference image to different stages of the backbone network, leading to better target-perception and robust distractor-resistance of candidate feature representation with negligible computation cost. The proposed GIM module and InBN mechanism are general and applicable to different backbone types including CNN and Transformer for improvements, as evidenced by our extensive experiments on multiple benchmarks. In particular, the CNN version (based on SiamCAR) improves the baseline with 3.2/6.9 absolute gains of SUC on LaSOT/TNL2K, respectively. The Transformer version obtains SUC scores of 65.7/52.0 on LaSOT/TNL2K, which are on par with recent state of the arts. Code and models will be released.

1 Introduction

As one of the most fundamental tasks in computer vision, visual object tracking (VOT) aims to estimate the trajectory of the designated target in a video sequence. Embracing the powerful deep networks as appearance modeling tools, unprecedented achievement has been witnessed in the past years in tracking community. One representative paradigm, namely two-stream network, has been widely adopted in recent tracking methods, e.g., Siamese and Correlation-Filter (CF) based approaches [Bertinetto et al., 2016; Li et al., 2018; Zhang and Peng, 2019; Wang et al., 2019; Danelljan et al., 2019; Bhat et al., 2019]. The consensus for constructing a robust two-stream tracker is to learn an informative visual representation, or in other words, “feature matters” [Wang and Yeung, 2013; Goroshin et al., 2020].

For tracking task, an informative feature requires the target representation clearly distinguishable from background and objects with similar semantics (i.e., distractors). Fortunately, other vision tasks, e.g. classification, detection and segmentation, also enjoy sharp contrast between background and objects. A new paradigm from the basic classification task, i.e., backbone network, can thus be seamlessly transferred to advance other fields. Object tracking also benefits from this bonus, where different backbone networks are introduced to learn strong visual representation [Zhang and Peng, 2019; Li et al., 2019]. But itch of scabies for tracking mostly at-
tributes to surrounding distractors. Besides better feature extractors, a tracking algorithm should also consider how to reinforce target-relevant representation as well as avoiding negative influence from distractors. Previous works, e.g., SiamAttn [Yu et al., 2020], try to alleviate this issue by injecting prior knowledge of the reference image (i.e., the first frame) to enhance features of candidate frame. However, only using the target-guided candidate feature for matching without direct feedback to backbone network is not enough. The potential problem is that the branch corresponding to the candidate image cannot well “sense” information of the reference target in its feature learning. Besides, the accumulation effect of target-irrelevant interference in the shallow stages may degrade the feature quality of deeper layers. In a nutshell, the under utilization of target information during representation learning may compromise the ability of filtering unrelated distractors, which results in inferior performance.

In this paper, we set out to address the aforementioned issues by proposing a mechanism called “interaction inside the backbone network (InBN)”. As discussed, the anaemic distractor-aware ability at the early learning stages blames on less exposure to prior information. Therefore, one intuitive but rational solution is to increase the branch-wise interaction frequency inside the backbone network of a two-stream paradigm. In our design, we take inspiration from recent arising vision Transformer architecture [Dosovitskiy et al., 2020], which is adept on modeling global visual relations [Luo et al., 2016; Wang et al., 2018] and can naturally process features from multi-modalities. The proposed general interaction modeler, dubbed as GIM, strengthens the representation of candidate image by learning its relation with reference representation. The relation learning is realized by the context-aware self-attention (CSA) and target-aware cross-attention (TCA) modules (as described later).

For the first time, we integrate the cross-processing modeler into different stages of a backbone network in visual tracking, which can continuously expose prior information to backbone modeling, as shown in Fig. 1. The multiple interactions pattern improves the distractor-aware ability of the early stages at a backbone network through feature aggregation in CSA and relation learning in TCA. Notably, the proposed method can not only adapt to a CNN network but also work well with a Transformer backbone. When equipping the transformer backbone with the proposed GIM and InBN mechanism, we surprisingly observe that complicated matching networks as in TransT [Chen et al., 2021] and AutoMatch [Zhang et al., 2021] are not necessary, where a simple cross-correlation can show promising results.

A series of experiments are conducted to prove the generality and effectiveness of the proposed LiBN and GIM. Taking SiamCAR [Guo et al., 2020] as the baseline tracker, we directly apply GIM and LiBN to its CNN backbone, achieving 3.2 points gains on LaSOT (53.9 vs 50.7). When employing Transformer backbone, our model further improves the performance to SUC of 65.7 on LaSOT.

The main contributions of this work are as follows:

- We present the first work demonstrating that information flow between reference and candidate frames can be realized inside the backbone network, which is clearly different from previous feature matching way that does not provide direct feedback to backbones in visual tracking.
- We prove the effectiveness of the proposed GIM module and InBN mechanism on both CNN and Transformer backbone networks, which makes it a general modeler to improve representation qualities in tracking.

2 Related Work

Visual Object Tracking. The Siamese network has been widely used in visual object tracking in recent years [Tao et al., 2016; Bertinetto et al., 2016; Li et al., 2018; Li et al., 2019; Zhu et al., 2018; Zhang et al., 2020; Zhang and Peng, 2019; Chen et al., 2021; Danelljan et al., 2019; Bhat et al., 2019]. SiamFC [Bertinetto et al., 2016] first adopts cross-correlation in the Siamese framework, which tracks a target by template matching. By exploiting the region proposal network (RPN) [Ren et al., 2015], SiamRPN [Li et al., 2018] and its variants [Guo et al., 2020; Yu et al., 2020] achieve more precise target scale estimation and fast speed. Later, further improvements upon Siamese trackers have been made, including enhancing feature representations by deeper convolutional backbones [Li et al., 2019; Zhang and Peng, 2019], designing more practical update mechanisms [Nam and Han, 2016; Zhang et al., 2019; Fu et al., 2021], introducing anchor-free regression to target estimation [Guo et al., 2020; Zhang et al., 2020], replacing cross-correlation with the automatically learned matching networks [Zhang et al., 2021], introducing vision Transformer [Chen et al., 2021], and so on. Another important branch, i.e., online trackers, always construct models with discriminative correlation filter [Danelljan et al., 2017; Danelljan et al., 2019; Bhat et al., 2019; Danelljan et al., 2020]. Despite of their success, only relying on a sole backbone to extract image representation without any interactive learning may introduce distractors and limit the tracking performance. In this work, we introduce a general interaction modeler to alleviate this issue.

Vision Transformer. Transformer is originally proposed in [Vaswani et al., 2017] for the task of machine translation. Recently it has been introduced into vision tasks and shows great potential [Dosovitskiy et al., 2020; Yuan et al., 2021; Wang et al., 2021b; Srinivas et al., 2021; Yang et al., 2021]. The core idea of Transformer is self-attention mechanism, which takes a sequence as the input, and builds similarity scores of each two feature vectors as attention weights to reinforce or suppress visual representations of corresponding positions. ViT [Dosovitskiy et al., 2020] adopts a convolution-free transformer architecture for image classification, which processes the input image into a sequence of patch tokens. In addition to classification, Transformer is also used in other vision tasks and achieves comparable performances, such as object detection [Carion et al., 2020; Zhu et al., 2020], semantic segmentation [Strudel et al., 2021], multiple object tracking [Sun et al., 2020; Meinhardt et al., 2021], etc. In visual tracking, TrDiMP [Wang et al., 2021a] uses transformer to learn temporal relations between frames, and TransT [Chen et al., 2021] employs cross-attention in matching process to
enhance semantic messages. Transformer is naturally suitable for processing multi-modality features. Surprisingly, no prior works in visual tracking consider building interactions inside the two-stream backbone network. The information in the reference image (or template image in some works) is crucial to explore more target-relevant clues and track targets in complex scenes, especially in the presence of similar distractors. Our work aims to narrow these gaps by proposing a general interaction modeler which promotes the representation of candidate image at different stages of the backbone network.

3 Tracking with General Interaction Modeler

In this section, we elaborate on the proposed General Interaction Modeler (GIM) and its integration to different backbone networks via the proposed InBN mechanism for improving representation learning in visual tracking.

3.1 General Interaction Modeler

General Interaction Modeler (GIM) contains three essential components including window process (WP), context-aware self-attention (CSA) module and target-aware cross-attention (TCA) module, as illustrated in Fig. 2. The WP module is designed to decrease computational complexity and meanwhile increase the local perception ability. The CSA module aggregates context information by global attention modeling. The TCA module enhances target-related features and suppresses distractor responses by injecting prior knowledge of the reference image to representation learning. In the following, we will detail each module one by one.

Local Perception via Window Process (WP)

Our GIM is built upon the Transformer-like structure as described above. The Achilles’ Heel is its quadratic cost for global attention learning and lack of local perception ability [Liu et al., 2021; Chu et al., 2021]. Motivated by recent vision transformers [Liu et al., 2021], we design the window process to merge feature vectors of non-overlapping local areas before attention modules.

Window process (WP) first partitions the input feature \(f \in \mathbb{R}^{B \times H \times W \times C} \) (\(B \) is the batch size) by performing non-overlapping \(\text{win} \times \text{win} \) windows (\(\text{win} = 7 \)) on it. Then each group containing \(\text{win}^2 \) feature vectors is regarded as a modeling unit and forms a new dimension with size of \(\text{f}_\text{group} \in \mathbb{R}^{B \times \text{win}^2 \times \frac{H}{\text{win}} \times \frac{W}{\text{win}} \times C} \). To fit the requirement of following attention modules, we flatten the spatial dimension of \(\text{f}_\text{group} \) to \(\text{f}_{WP} \in \mathbb{R}^{B \times \text{win}^2 \times \frac{H}{\text{win}} \times \frac{W}{\text{win}} \times \frac{C}{K}} \), whose sequence length is \(\frac{H}{\text{win}} \frac{W}{\text{win}} \). We perform attention on dimensions of \(\frac{H}{\text{win}} \frac{W}{\text{win}} \) and \(C \) instead of \(\text{win}^2 \) and \(C \) as in Swin-Trans [Liu et al., 2021], which ensures the feasibility to compute the cross-attention weights \(\text{W}_{\text{attn}} \in \mathbb{R}^{B \times \text{win}^2 \times \frac{H}{\text{win}} \times \frac{W}{\text{win}} \times \frac{C}{K}} \) with Einstein Summation Convention [Weisstein, 2014] (\(z \) and \(x \) represent the reference and candidate images respectively). By regarding each window as a computing unit and then modeling relations between different windows, local clues are used without affecting global receptive fields.

Context-aware Self-attention (CSA)

The proposed CSA aggregates context information by performing multi-head self-attention (MHSAs) on the partitioned input feature \(\text{f}_{WP} \). In particular, given an input feature sequence \(\text{f}_{seq} \in \mathbb{R}^{B \times H \times W \times C} \), the inner single-head attention function first maps it into query \(Q \in \mathbb{R}^{B \times N_Q \times d} \), key \(K \in \mathbb{R}^{B \times N_K \times d} \) and value \(V \in \mathbb{R}^{B \times N_V \times d} \) (\(N_Q, N_K \) and \(N_V \) are sequence lengths) with mapping weights \(\text{W}_Q, \text{W}_K, \text{W}_V \in \mathbb{R}^{C \times d} \), then performs dot-product on them,

\[
\text{Q} = \text{f}_{seq} \text{W}_Q, \text{K} = \text{f}_{seq} \text{W}_K, \text{V} = \text{f}_{seq} \text{W}_V,
\]

\[
\text{Attention}(\text{Q}, \text{K}, \text{V}) = \text{softmax}\left(\frac{\text{QK}^\top}{\sqrt{d}}\right) \text{V},
\]

where \(d \) is the number of channels. In our model, we directly split the features along channel dimension for multiple heads,
where $Q_i \in \mathbb{R}^{B \times N_Q \times \frac{d}{2}}$, $K_i \in \mathbb{R}^{B \times N_K \times \frac{d}{2}}$, $V_i \in \mathbb{R}^{B \times N_V \times \frac{d}{2}}$ are divided parts, and $W_{map} \in \mathbb{R}^{d \times C}$ is mapping weights. We employ $n = 4, C = 256$, and $d = 256$ to achieve real-time tracking speed without other specified.

CSAs are applied on features of both reference and candidate images. It computes similarity scores between each two positions and uses the scores as attention weights to aggregate context visual features. By considering f_{WP} as a sequence, the sequence length after WP is $\frac{HW}{win}$ instead of original HW, which has linear cost and promotes modeling speed. In a nutshell, the mechanism of CSA for the input $f_{WP} \in \mathbb{R}^{B \times win^2 \times \frac{HW}{win} \times C}$ can be summarized as

$$Q = f_{WP} W_Q, K = f_{WP} W_K, V = f_{WP} W_V, \quad f_{CSA} = f_{WP} + \text{MultiHead}(Q, K, V),$$

where $W_Q, W_K, W_V \in \mathbb{R}^{C \times d}$ are mapping weights, $f_{CSA} \in \mathbb{R}^{B \times win^2 \times \frac{HW}{win} \times C}$ is the output of CSA.

Target-aware Cross-attention (TCA)

As mentioned before, Siamese tracking is conducted on a two-stream network, which is different from the typical one-stream classification model. Therefore, it is reasonable to consider the interaction between these two branches during backbone design. In this work, we propose the target-aware cross-attention (TCA) to inject the reference information to the branch of the candidate image, which guides the backbone to perceive the target and filter irrelevant distractors.

For implementation, TCA takes two window-processed features ($f_{WP} \in \mathbb{R}^{B \times win^2 \times \frac{HW}{win} \times C}$ for candidate image and $f_{WP} \in \mathbb{R}^{B \times win^2 \times \frac{HW}{win} \times C}$ for reference image) as inputs and maps them to Q, K, and V respectively. Through multi-head attention, the contents in f_{WP} are refined by the prior knowledge in f_{WP}, where the target-related ones are strengthened and the irrelevant ones are suppressed. TCA is formulated as,

$$Q = f_{WP} W_Q, K = f_{WP} W_K, V = f_{WP} W_V, \quad f_{TCA} = f_{WP} + \text{MultiHead}(Q, K, V),$$

where $W_Q, W_K, W_V \in \mathbb{R}^{C \times d}$ are mapping weights, $f_{TCA} \in \mathbb{R}^{B \times win^2 \times \frac{HW}{win} \times C}$ is the output of TCA.

Here we analyze how WP could make the computation of attention learning linear complexity. Without loss of generality, we assume $H/\text{win} = 0$ and $W/\text{win} = 0$. Taking each window as the computing unit, the sequence length is $\frac{HW}{\text{win}}$. CSA or TCA first computes relations between feature vectors of the same position in different windows, and the computation cost is $O(\frac{H^2W^2}{\text{win}^2}d)$. Then the total cost for win^2 positions is $O(\frac{H^2W^2}{\text{win}^2}d)$. If we let $k_1 = \frac{H}{\text{win}}$ and $k_2 = \frac{W}{\text{win}}$, the cost can be computed as $O(k_1k_2HWd)$, which is significantly more efficient when $k_1 \ll H$ and $k_2 \ll W$ and grows linearly with HW if k_1 and k_2 are fixed.

3.2 Building Backbone Network

To demonstrate the generality and effectiveness of the proposed GIM, we follow the InBN mechanism and build two types of backbone networks for Siamese tracking, i.e., CNN and Transformer as shown in Tab. 1. To unleash the target-perception ability of shallow layers, we adopt a hierarchical design to employ the GIM, which is named as InBN mechanism. We arrange the proposed GIM to different stages of a tracking backbone to conduct multiple interactions. Based on the reference presentation of different resolutions, the network knows what target is the one being tracked, which eventually enhances target-related messages and suppresses distractors hierarchically.

For the CNN-based model, we take the ResNet-50 in Siamese CAR [Guo et al., 2020] as the basic CNN backbone. Following the InBN paradigm, we modify it by directly applying the GIM after each stage. The mapping layers are attached at each stage to unify the output feature dimensions to 256 (see more details in [Guo et al., 2020]).

For the Transformer-based model, we refer to the structure of Swin-Trans [Liu et al., 2021] to build two-stream backbone by stacking the GIMs. As illustrated in Tab. 1, the backbone network is divided into four stages, which contain 2, 2, 6, 2 GIMs, respectively. Notably, we only use the TCA module in the last GIM of each stage, which avoids bringing high computation costs. The InBN mechanism allows the backbone to enhance target-relevant presentation gradually by hierarchical interactions. To exploit hierarchical features in the backbone network as the baseline tracker Siamese CAR, we also design similar fusion module for TransInMo and TransInMo*.

![Table 1: Configurations of the built backbone with GIM and InBN.](image)
these features to the same resolution to align the spatial dimension. Finally, we concatenate all features along channel dimension and use a 1×1 linear transformation to shrink the channel number to 256.

3.3 Comparison with Other Tracking Backbones

To our best knowledge, this is the first tracking framework that considers branch-wise interactions inside the backbone network for better feature representation. As shown in Fig. 1, we categorize existing backbone networks in visual tracking into two types. The first one (see the first row in Fig. 1), which is employed in the most trackers, simply uses a backbone to extract feature representation and then performs matching without direct feedback for tracking. The lack of reference information makes it hard to robustly locate the target object. Differently, equipping with GIM with InBN mechanism, our backbone network (see the second row in Fig. 1) is able to not only perform multiple interactions to bridge the target information to candidate frame during feature learning, but also exploit global modeling to enrich target-related representation, resulting in improved feature representations in all layers for better performance, yet with negligible computation.

4 Experiments

4.1 Implementation Details

For CNN-based tracker, we apply the proposed Interaction Modeler to the baseline tracker SiamCAR [Guo et al., 2020] (named as CNNInMo). For transformer-based tracker (named as TransInMo), we build backbone network following the instructions in Sec. 3.2. A simple depth-wise correlation layer is used for feature matching. Two three-layer MLPs are respectively conducted for classification and regression heads, as similar in [Chen et al., 2021]. Moreover, we test the influence of complicated matching process by equipping TransInMo with the matching module from TransT [Chen et al., 2021] (named as TransInMo*). The training settings for CNNInMo follow the baseline tracker SiamCAR (we recommend the readers to [Guo et al., 2020] for more details). We train TransInMo and TransInMo* on the training splits of LaSOT [Fan et al., 2019], TrackingNet [Muller et al., 2018] and GOT-10k [Huang et al., 2019] and COCO [Lin et al., 2014] for 1000 epochs (1000 iterations with batch size of 80 per epoch). The AdamW [Loshchilov and Hutter, 2018] is used for network optimization, with an initial learning rate of $5e^{-5}$ for the transformer backbone and $5e^{-4}$ for other layers. We decrease the learning rate by a factor of 0.1 for each 400 epochs.

4.2 State-of-the-art Comparisons

We compare our methods with recent state-of-the-art trackers on six tracking benchmarks. The detailed comparison results on the LaSOT [Fan et al., 2019], TNL2K [Wang et al., 2021c], TrackingNet [Muller et al., 2018], UAV123 [Mueller et al., 2016], NFS [Kiani Galoogahi et al., 2017] and OTB100 [Wu et al., 2015] are reported in Tab. 2 and Tab. 3.
Table 2: Comparisons on LaSOT, TNL2K, UA V123 and NFS. The best three results are shown in red, green and blue fonts, respectively.

Method	Source	LaSOT	TNL2K	UAV123	NFS	FPS						
	AUC	P_{Norm}	P	AUC	P_{Norm}	P	AUC	P_{Norm}	P	FPS		
TransInMo*	Ours	65.7	76.0	70.7	52.0	58.5	52.7	69.0	89.0	66.8	80.2	34
TransInMo	Ours	65.3	74.6	69.9	51.5	57.8	52.6	68.2	90.5	66.4	80.7	67
TransT	CVPR2021	64.9	73.8	69.0	50.7	57.1	51.7	68.1	87.6	65.7	78.8	50
TrDiMP	CVPR2021	63.9	61.4	-	-	-	-	67.5	87.2	66.5	78.4	26
CNNInMo	Ours	53.9	61.6	53.9	42.2	48.6	41.9	62.9	81.8	56.0	68.5	47
SiamCAR	CVPR2020	50.7	60.0	51.0	35.3	43.6	38.4	61.4	76.0	52.9	65.7	52
AutoMatch	ICCV2021	58.3	-	59.9	47.2	-	43.5	63.9	-	60.6	-	50
Ocean	ECCV2020	56.0	65.1	56.6	38.4	45.4	37.7	62.1	-	55.3	-	58
KYS	ECCV2020	55.4	63.3	-	44.9	51.1	43.5	-	-	63.5	77.0	20
SiamFC++	AAAI2020	54.4	62.3	54.7	38.6	45.0	36.9	63.1	76.9	58.1	-	90
PrDiMP	CVPR2020	59.8	68.8	60.7	47.0	54.0	45.9	66.8	87.6	63.5	76.5	30
CGACD	CVPR2020	51.8	62.6	53.5	-	-	-	63.3	83.3	-	-	70
SiamAttn	CVPR2020	56.0	64.8	-	-	-	-	65.0	84.5	-	-	45
SiamBAN	CVPR2020	51.4	59.8	52.1	41.0	48.5	41.7	63.1	83.3	59.4	70.0	40
DiMP	ICCV2019	56.9	65.0	56.7	44.7	51.3	43.4	65.4	85.6	62.7	75.1	40
SiamPRN++	CVPR2019	49.6	56.9	49.1	41.3	48.2	41.2	61.3	80.7	50.8	50.9	35
ATOM	CVPR2019	51.5	57.6	50.5	40.1	46.5	39.2	65.0	85.8	59.0	69.4	30
SiamPRN	CVPR2018	49.6	56.9	49.1	32.9	36.2	28.1	55.7	71.0	48.8	56.7	160
ECO	ICCV2017	32.4	33.8	30.1	32.6	37.7	31.7	52.5	68.8	46.6	54.7	60
SiamFC	ECCV2016	33.6	42.0	33.9	29.5	45.0	28.6	48.5	64.8	-	-	58

Notably, CNNInMo runs at 47 fps on GTX2080Ti GPU, while TransInMo/TransInMo* run at 67/34 fps respectively.

LaSOT is a large-scale tracking benchmark containing 1,400 videos. We evaluate different tracking algorithms on its 280 testing videos. As reported in Tab. 2, when applying GIM and InBN to SiamCAR without any other modifications, CNNInMo obtains gains of 3.2/2.9 points on success (SUC) and precision (P) scores, respectively. This evidences the effectiveness of the proposed interaction module and mechanism. Our transformer version with simple cross-correlation matching outperforms recent state of the arts TransT [Chen et al., 2021] and TrDiMP [Wang et al., 2021a].

TNL2K is a recently proposed large-scale benchmark for tracking by natural language and bounding box initialization. We evaluate our tracker on its 700 testing videos. CNNInMo outperforms the baseline tracker SiamCAR for 6.9/3.5 points on SUC and precision, respectively.

UAV123 contains 123 aerial sequences captured from a UAV platform. As shown in Tab. 2, the proposed methods (Transformer versions) perform the best among all compared trackers. The CNN version CNNInMo exceeds 1.5 SUC points than the baseline tracker SiamCAR.

NFS consists of 100 challenging videos with fast-moving objects. We evaluate the proposed trackers on the 30 fps version, as presented in Tab. 2. TransInMo and TransInMo* obtain the best two performances on success and precision scores. CNNInMo is also superior to the baseline tracker SiamCAR, which shows that our method can improve the robustness of tracking fast-tracking moving targets.

TrackingNet and OTB100 We further evaluate the proposed trackers on TrackingNet and OTB100, as presented in Tab. 3.

Table 3: Results comparison on TrackingNet and OTB100.

Method	TrackingNet (AUC)	OTB100 (AUC)
TransInMo*	81.7	71.1
TransInMo	81.6	70.6
CNNInMo	72.1	70.3
TransT	81.4	69.4
SiamCAR	65.3	70.0

Table 4: Component-wise analysis of GIM on TransInMo*.

# NUM	Method	WP	TCA	LaSOT	FPS	
1	TransInMo*	√		61.1	64.9	30
2	TransInMo*	√		64.6	68.8	37
3	TransInMo*	√		63.2	68.0	27
4	TransInMo*	√		65.7	76.0	34

It shows that CNNInMo surpasses the baseline tracker SiamCAR for 6.8 points on TrackingNet. The TransInMo and TransInMo* are on par with (slightly better than) TransT on these two benchmarks.

4.3 Ablation Study

Components in GIM. As shown in Tab. 4, we analyze the influence of WP and TCA in GIM based on TransInMo*. CSA is the basic modeling layer in GIM, hence we only ablate the other two modules. WP aims at enhancing local perception ability and reducing the complexity of relation learning. Tab. 4 shows that without WP and TCA, the tracker obtains an AUC score of 61.1 on LaSOT. When integrating WP
Table 5: Ablation study on different matching settings.

# NUM	Method	DW	Matching in TransT	LaSOT	FPS				
			Encoder Layer Num	Decoder Layer Num	AUC	P	Norm	P	FPS
1	TransInMo	v	65.3	74.6	69.9	67			
2	TransInMo*	0	65.0	74.3	69.8	59			
3	TransInMo*	1	65.3	73.7	69.0	52			
4	TransInMo*	2	65.5	73.7	69.0	46			
5	TransInMo*	3	65.7	74.1	69.2	40			
6	TransInMo*	4	65.7	76.0	70.7	34			

Figure 4: Activation maps for CSA and TCA.

Figure 5: The influence of the Hanning window.

Activation Map Visualization.
To better understand our CSA and TCA, we visualize their activation maps in Fig. 4. As shown, when the target appearance changes heavily or similar distractors exist, the branch-wise interaction of TCA can help the backbone sense the target-relevant areas. Then self-attention of CSA employs the context messages to filter useless messages and focus on the target area.

Hanning Window Influence.
In Fig. 5, we present the influence of post-processing (i.e. Hanning window) used in our TransInMo* and TransT on two benchmarks. From Fig. 5, we observe that the proposed TransInMo* is more stable. In the case without post-processing (i.e. weight=0), our tracker still shows compelling performance, which indicates the effectiveness of feature representation learned by our backbone.

Visualization and Failure Cases.
As shown in Fig. 6, our TransInMo* delivers accurate tracking under deformation (the first row) and large scale variation (the second row). It demonstrates the resilience of our tracker and effectiveness of GIM and InBN in complex environments. In the third row, we also show the failure case of our tracker. In this case, the target is fully occluded for about 200 frames, causing our tracker could not get helpful messages from the reference representation and surrounding context. One possible solution for this circumstance is using global search when the target disappears for a long time. But this is beyond the topic of our paper. We leave this to future study.

Activation Map Visualization.
To better understand our CSA and TCA, we visualize their activation maps in Fig. 4. As shown, when the target appearance changes heavily or similar distractors exist, the branch-wise interaction of TCA can help the backbone sense the target-relevant areas. Then self-attention of CSA employs the context messages to filter useless messages and focus on the target area.

Hanning Window Influence.
In Fig. 5, we present the influence of post-processing (i.e. Hanning window) used in our TransInMo* and TransT on two benchmarks. From Fig. 5, we observe that the proposed TransInMo* is more stable. In the case without post-processing (i.e. weight=0), our tracker still shows compelling performance, which indicates the effectiveness of feature representation learned by our backbone.

Visualization and Failure Cases.
As shown in Fig. 6, our TransInMo* delivers accurate tracking under deformation (the first row) and large scale variation (the second row). It demonstrates the resilience of our tracker and effectiveness of GIM and InBN in complex environments. In the third row, we also show the failure case of our tracker. In this case, the target is fully occluded for about 200 frames, causing our tracker could not get helpful messages from the reference representation and surrounding context. One possible solution for this circumstance is using global search when the target disappears for a long time. But this is beyond the topic of our paper. We leave this to future study.

5 Conclusions
This work presents a novel mechanism that conducts branch-wise interactions inside the visual tracking backbone network (InBN) via the proposed general interaction modeler (GIM). The core idea is injecting target information into the representation learning of candidate frame and providing direct feedback to backbone network inference. We prove that both the CNN network and the Transformer backbone can enjoy bonus brought by InBN. The backbone network can build more robust feature representation under complex environments with the improved target-perception ability. Our method achieves compelling tracking performance by applying the backbones to Siamese tracking.
References

[Bertinetto et al., 2016] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi, and Philip HS Torr. Fully-convolutional siamese networks for object tracking. In European conference on computer vision, pages 850–865. Springer, 2016.

[Bhat et al., 2019] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte. Learning discriminative model prediction for tracking. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 6182–6191, 2019.

[Carion et al., 2020] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers. In European Conference on Computer Vision, pages 213–229. Springer, 2020.

[Chen et al., 2021] Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun Yang, and Huchuan Lu. Transformer tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8126–8135, 2021.

[Chu et al., 2021] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia, and Chunhua Shen. Twins: Revisiting spatial attention design in vision transformers. arXiv preprint arXiv:2104.13840, 2021.

[Danelljan et al., 2017] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg. ECO: Efficient convolution operators for tracking. In CVPR, 2017.

[Danelljan et al., 2019] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg. Atom: Accurate tracking by overlap maximization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4660–4669, 2019.

[Danelljan et al., 2020] Martin Danelljan, Luc Van Gool, and Radu Timofte. Probabilistic regression for visual tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7183–7192, 2020.

[Dosovitskiy et al., 2020] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[Fan et al., 2019] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Siija Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin Ling. LaSOT: A high-quality benchmark for large-scale single object tracking. In CVPR, 2019.

[Fu et al., 2021] Zhihong Fu, Qingjie Liu, Zehua Fu, and Yunhong Wang. Stmtrack: Template-free visual tracking with space-time memory networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13774–13783, 2021.

[Goroshin et al., 2020] Ross Goroshin, Jonathan Tompson, and Debidatta Dwibedi. An analysis of object representations in deep visual trackers. arXiv preprint arXiv:2001.02593, 2020.

[Guo et al., 2020] Dongyan Guo, Jun Wang, Ying Cui, Zhenhua Wang, and Shengyou C. SiamCAR: Siamese fully convolutional classification and regression for visual tracking. In CVPR, 2020.

[Huang et al., 2019] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A large high-diversity benchmark for generic object tracking in the wild. TPAMI, 2019.

[Kiani Galoogahi et al., 2017] Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva Ramanan, and Simon Lucey. Need for speed: A benchmark for higher frame rate object tracking. In ICCV, 2017.

[Li et al., 2018] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu. High performance visual tracking with siamese region proposal network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 8971–8980, 2018.

[Li et al., 2019] Lianghuai Shi, Wei Wu, Zhang Wang, Fangyi Zhang, Junliang Xing, and Junjie Yan. Siamese++: Evolution of siamese visual tracking with very deep networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4282–4291, 2019.

[Lin et al., 2014] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common objects in context. In ECCV, 2014.

[Liu et al., 2021] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030, 2021.

[Loshchilov and Hutter, 2018] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2018.

[Luo et al., 2016] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. Understanding the effective receptive field in deep convolutional neural networks. In Proceedings of the 30th International Conference on Neural Information Processing Systems, pages 4905–4913, 2016.

[Meinhardt et al., 2021] Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixe, and Christoph Feichtenhofer. Trackformer: Multi-object tracking with transformers. arXiv preprint arXiv:2101.02702, 2021.

[Mueller et al., 2016] Matthias Mueller, Neil Smith, and Bernard Ghanem. A benchmark and simulator for UAV tracking. In ECCV, 2016.

[Muller et al., 2018] Matthias Muller, Adel Bibi, Silvio Giancola, Salman Alsulahi, and Bernard Ghanem. TrackingNet: A large-scale dataset and benchmark for object tracking in the wild. In ECCV, 2018.
Hyeonseob Nam and Bohyung Han. Learning multi-domain convolutional neural networks for visual tracking. In CVPR, 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 2015.

Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, AmirSadeghian, Ian D. Reid, and Silvio Savarese. Generalized intersection over union: A metric and a loss for bounding box regression. In CVPR, 2019.

Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter Abeel, and Ashish Vaswani. Bottleneck transformers for visual recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16519–16529, 2021.

Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. Segments器: Transformer for semantic segmentation. arXiv preprint arXiv:2105.05633, 2021.

Peize Sun, Yi Jiang, Rufeng Zhang, Enze Xie, Jinkun Cao, Xinting Hu, Tao Kong, Zehuan Yuan, Changhui Wang, and Ping Luo. Transtrack: Multiple-object tracking with transformer. arXiv preprint arXiv:2012.15460, 2020.

Ran Tao, Efstratios Gavves, and Arnold WM Smeulders. Siamese instance search for tracking. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1420–1429, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pages 5998–6008, 2017.

Naiyan Wang and Dit Yan Yeung. Learning a deep compact image representation for visual tracking. NIPS, 2013.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 7794–7803, 2018.

Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and Philip HS Torr. Fast online object tracking and segmentation: A unifying approach. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1328–1338, 2019.

Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li. Transformer meets tracker: Exploiting temporal context for robust visual tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1571–1580, 2021.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. arXiv preprint arXiv:2102.12122, 2021.

Xiao Wang, Xiujun Shu, Zhipeng Zhang, Bo Jiang, Yaowei Wang, Yonghong Tian, and Feng Wu. Towards more flexible and accurate object tracking with natural language: Algorithms and benchmark. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13763–13773, 2021.

Eric W. Weisstein. Einstein summation. https://mathworld.wolfram.com/, 2014.

Yi Wu, Jongwoo Lim, and Ming Hsuan Yang. Object tracking benchmark. TPAMI, 2015.

Chenglin Yang, Yilin Wang, Jianming Zhang, He Zhang, Zijun Wei, Zhe Lin, and Alan Yuille. Lite vision transformer with enhanced self-attention. arXiv preprint arXiv:2112.10809, 2021.

Yuechen Yu, Yilei Xiong, Weilin Huang, and Matthew R Scott. Deformable siamese attention networks for visual object tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6728–6737, 2020.

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zihang Jiang, Francis EH Tay, Jiashi Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on imagenet. arXiv preprint arXiv:2101.11986, 2021.

Zhipeng Zhang and Houwen Peng. Deeper and wider siamese networks for real-time visual tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4591–4600, 2019.

Lichao Zhang, Abel Gonzalez-Garcia, Joost van de Weijer, Martin Danelljan, and Fahad Shahbaz Khan. Learning the model update for siamese trackers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 4010–4019, 2019.

Zhipeng Zhang, Houwen Peng, Jianlong Fu, Bing Li, and Weiming Hu. Ocean: Object-aware anchor-free tracking. arXiv preprint arXiv:2006.10721, 2020.

Zhipeng Zhang, Yihao Liu, Xiao Wang, Bing Li, and Weiming Hu. Learn to match: Automatic matching network design for visual tracking. arXiv preprint arXiv:2108.00803, 2021.

Zheng Zhu, Qiang Wang, Bo Li, Wei Wu, Junjie Yan, and Weiming Hu. Distractor-aware siamese networks for visual object tracking. In Proceedings of the European Conference on Computer Vision (ECCV), pages 101–117, 2018.

Zixzhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr: Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159, 2020.