1. Motivation

At asymptotically high baryon chemical potential (μ_B) and low temperature (T) – where QCD can be treated in a perturbative manner – the ground-state of quark matter is found to be that of a colour-superconductor (for a recent review see e.g. [1]). Unfortunately, the sign problem prevents us from using lattice QCD to determine the ground-state at the more moderate densities typical in the cores of compact (neutron) stars.

One way to proceed is to study model field theories such as the Nambu – Jona-Lasinio (NJL) model. This purely fermionic field theory, in which colour-neutral quarks interact via a four-point contact term, not only contains the same global symmetries as two flavour QCD, but can be simulated on the lattice even with $\mu_B \neq 0$. In [2] we show that the ground-state of the lattice model with $\mu_u = \mu_d = \mu_B$, i.e. with “up” and “down” quarks sharing a common Fermi surface, exhibits s-wave superfluidity via a standard BCS pairing between quarks of different flavours; i.e.

$$\langle ud \rangle \neq 0; \quad \Delta_{BCS} \neq 0.$$ \hfill (1)

Within the cores of compact stars, however, the Fermi momenta k_F^u and k_F^d are expected to be separate. A simple argument based on that of [3] suggests that for a two flavour Fermi liquid of massless quarks and electrons with $\mu_B = 400\text{MeV}$ and both weak equilibrium ($\mu_d = \mu_u + \mu_e$) and charge neutrality ($2n_u/3 - n_d/3 - n_e = 0$) enforced, all the Fermi momenta of the system are determined:

$$k_F^u = \mu_u = \mu_B - \mu_e/2 = 355.5\text{MeV},$$
$$k_F^d = \mu_d = \mu_B + \mu_e/2 = 444.5\text{MeV},$$
$$k_F^e = \mu_e = 89\text{MeV}.$$ \hfill (2)

The effect of separating the Fermi surfaces of pairing quarks in QCD should be to make the colour-superconducting phase less energetically favourable. Introducing $\mu_I \propto (\mu_u - \mu_d) \neq 0$ could prove a good method, therefore, to investigate the stability of the superfluid phase.

2. The Model

The action of the lattice NJL model (with $a \to 1$) is given by

$$S_{NJL} = \sum_{xy} \bar{\Psi}_x x M[\Phi, \mu_B, \mu_I]_{xy} \Psi_y + \frac{g}{2} \sum_x \text{Tr} \Phi_1^1 \Phi_1^1,$$ \hfill (3)

where $\Psi \equiv (u, d)^T$ is the $SU(2)$ doublet of staggered up and down quarks defined on lattice sites x and $\Phi \equiv \sigma + i \cdot \vec{\tau}$ is a matrix of bosonic auxiliary fields defined on dual sites \bar{x}. The fermion
kinetic matrix \(M_{xy} \) is defined in \(^2\) and we choose the same bare parameters used therein.

One can separate the Fermi surface of up and down quarks by simultaneously setting baryon chemical potential \(\mu_B \equiv (\mu_u + \mu_d)/2 \neq 0 \) and isospin chemical potential \(\mu_I \equiv (\mu_u - \mu_d)/2 \neq 0 \). With \(\mu_I = 0 \), \(\tau_2 M \tau_2 = M^* \), which is a sufficient condition to show that \(\det M \) is both real and positive \(^4\). With \(\mu_I \neq 0 \) however, this is no longer true such that once again we are faced with the sign problem.

The fact that physically the two scales are ordered \(\mu_I \lesssim \mu_B \) suggests that one may be able to apply techniques recently developed to study QCD with \(\mu_B \ll T \) \(^5\). First, however, we present the results of a partially quenched calculation.

3. Partially Quenched \(\mu_I \)

Whilst the primary motivation for investigating \(\mu_I \neq 0 \) is to study the superfluid phase which sets in at large \(\mu_B \), this requires one to introduce an explicit symmetry breaking parameter \((j)\); it is currently not clear how to study \(\mu_I \neq 0 \) in the \(j \to 0 \) limit \(^2\). Instead, we choose to study the chiral symmetry restoring phase transition with the aim of controlling the systematics of introducing \(\mu_I \neq 0 \).

The first step we take is to perform a “partially quenched” calculation in which \(\mu_I = 0 \) when generating the background fields and is made non-zero only during the measurement of fermion observables. In particular, we measure the up and down quark condensates

\[
\langle \bar{u}u \rangle, \langle \bar{d}d \rangle \equiv \frac{1}{V} \frac{\partial \ln \mathcal{Z}}{\partial m_{u,d}} = \frac{1}{2} \langle \text{tr}(1 \pm \tau_3)M^{-1} \rangle \tag{4}
\]

as functions of \(\mu_B \) for various \(\mu_I \) on a \(12^4 \) lattice. Some results are presented in Fig. 1.

The results agree qualitatively with those of mean-field studies of the model in which the introduction of a small but non-zero \(\mu_I \) is seen to suppress the up quark condensate and enhance the down quark condensates for various \(\mu_B \) on a \(12^4 \) lattice.

\[
n_{B,I} = \frac{1}{2V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_{B,I}} = \frac{1}{4} \langle \bar{u}\gamma_0 u \pm \bar{d}\gamma_0 d \rangle \tag{5}
\]

on a \(12^4 \) lattice at \(\mu_B = 0.6 \), which from Fig. 1 can be seen to be where the effect of having \(\mu_I \neq 0 \) is largest. In QCD, one can show that e.g. \(\langle \bar{u}\psi \psi \rangle \) expanded about \(\mu_B = 0 \) is analytic in \(\mu^2_B \), such that for small imaginary \(\mu_B \) the quantity remains real \(^6\). For our simulations, however, this is not the case, and measured quantities are, in general, complex. Therefore, we fit the data by the Taylor series

\[
\left(\frac{\langle \bar{u}u \rangle}{\langle \bar{d}d \rangle} \right) = \sum_{n=0}^{\infty} \left(\frac{A_n}{B_n} \right) \left(\frac{\tilde{\mu}_I}{\mu_B} \right)^n \tag{6}
\]
then analytically continue to real

and

each truncated at some suitable point. We can then analytically continue to real \(\mu_I \) using e.g.

\[
\left(\begin{array}{c} n_B \\ n_I \end{array} \right) = \sum_{n=0}^{\infty} \left(\begin{array}{c} C_n \\ D_n \end{array} \right) \left(\frac{\mu_I}{\mu_B} \right)^n,
\]

Figure 2 shows the real and imaginary parts of the condensates as functions of \(\mu_I \) with \(\mu_B = 0.6 \) on a 12\(^4 \) lattice.

![Figure 2](image-url)

Figure 3 shows the real and imaginary parts of \(\langle \bar{u}u \rangle \) and \(\langle \bar{d}d \rangle \) as functions of imaginary \(\mu_I \) with \(\mu_B = 0.6 \) on a 12\(^4 \) lattice.

![Figure 3](image-url)

Whilst these results are only preliminary, we have shown that we can calculate the coefficients in (6) and (7) as functions of \(\mu_I \) and in principle, reproduce reliable forms of the curves in Fig. 1. With this aim, we plan to repeat this exercise for various values of \(\mu_B \) in both the the chirally broken and restored phases on various lattice volumes. Also, whilst it is difficult to study the diquark condensate in the \(j \to 0 \) limit, it would be interesting to compare the response of \(\langle ud \rangle \) to \(\mu_I \) at fixed \(j \) to that of \(\langle \bar{\psi}\psi \rangle \) at fixed mass.

REFERENCES

1. D. H. Rischke, Prog. Part. Nucl. Phys. 52, 197 (2004).
2. S. J. Hands and D. N. Walters, Phys. Rev. D69, 076011 (2004).
3. M. G. Alford, J. Berges, and K. Rajagopal, Nucl. Phys. B571, 269 (2000).
4. S. J. Hands et al., Eur. Phys. J. C17, 285 (2000).
5. Z. Fodor and S. D. Katz, Phys. Lett. B534 87 (2002); Z. Fodor and S. D. Katz, JHEP 0203 014 (2002).
6. C. R. Allton et al., Phys. Rev. D66, 074507 (2002).
7. P. de Forcrand and O. Philipsen, Nucl. Phys. B642, 290 (2002); M. D’Elia and M.-P. Lombardo, Phys. Rev. D67, 014505 (2003).
8. D. Toublan and J. B. Kogut, Phys. Lett. B564, 212 (2003).
9. A. Barducci, R. Casalbuoni, G. Pettini, and L. Ravagli, Phys. Rev. D69, 096004 (2004).