CO-ADMINISTRATION OF GOKO HERBAL CLEANSER AND PARACETAMOL: A HERB-DRUG INTERACTION STUDY

Cecilia Nwadiuto Amadi*, Oghenetega Ruth Edevbie
Department of Experimental Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Port Harcourt, Rivers State, Nigeria.

ABSTRACT

Aim: The present study aimed to evaluate the effects of co-administering paracetamol and Goko cleanser® on the liver.
Method: Twenty rats divided into four different groups were used for this Study. Group one (control group) received distilled water only; Group two received paracetamol only (100mg/kg), Group three received Goko cleanser® only (2 mL/kg) and Group four received paracetamol and Goko cleanser® concomitantly for 3 days. Blood and liver samples were analyzed for biochemical and histopathological parameters respectively.
Results: Data obtained revealed a significant decrease (p<0.05) in the levels of the liver enzymes (ALT, AST, and GGT) in the Goko cleanser®-only group compared to control. A significant decrease in AST was also observed in paracetamol + Goko cleanser® group. No significant change in ALT, ALP and GGT levels in the paracetamol + Goko cleanser® groups was observed. Results of histology examination showed normal liver tissues with normal hepatocytes, sinusoids and central vein for both treated and control groups.
Conclusion: The significant reductions in the liver enzymes observed in the Goko cleanser®-only group indicated potential hepatoprotective effects which could be due to the presence of phenolic compounds which acted as antioxidants. The short-term co-administration of paracetamol and Goko cleanser® produced no liver toxicity. However, this is subject to further studies using pharmacokinetic analysis and also, a long-term study is strongly advocated.
Keywords: Goko cleanser, hepatotoxicity, herb-drug interaction, paracetamol;

INTRODUCTION

Phytochemicals in foods and herbs have been proven to be beneficial to human health. However, the heightened use of herbal medicines in recent times has come with growing concerns associated with the safety and toxicity profile. Phytochemical constituents can modulate the efficacy and toxic effects of drugs by influencing their metabolism and absorption by interacting with drug transporters and metabolizing enzyme. Co-morbidities of certain diseases have favoured polypharmacy hence posing an increased risk of drug interaction. This has resulted in the rise in the utilisation of herbal medicines in combination with conventional drugs. The concurrent intake of herbal and orthodox medicines raises concerns about herb-drug interactions and potential patient safety owing to unclear pharmacokinetic and pharmacodynamic mechanisms of these herbal medicines.

Current Page: 1 of 2
are quite little to result in an adverse reaction but when overdosed, it’s concentration increases which results in the depletion of glutathione resulting in hepatotoxicity and necrosis.11,12,13 In view of this, an overdose of acetaminophen results to hepatotoxicity amongst other side effects.14

Goko cleanser®sa herbal mixture claimed to be effective for various kinds of disease conditions such as, diabetes, infertility, blood clots, hepatitis, and erectile dysfunction. Its contents include: Vernonia amygdalina, Cajanus cajan, Zingiber officinaule, Allium sativum, Saccharum officinarum and caramel.15 A recent study has identified nephrotoxic effect of Goko cleanser in wistar rats.15,16 Current study aims to probe the effects of a co-administration of Goko cleanser® and paracetamol on the histology and biochemical parameters of the liver.

MATERIALS AND METHODS

Chemicals and Reagents

Distilled water, methylated spirit (JHD, China), Xylene, Diethyl ether(JHD Guangdong Guanghua Sci-Tech. Co. Ltd. Shantou, Guandong, China), 10% formalin, Goko cleanser® (Kayfahd herbaceuticals), Paracetamol 500mg tablets BP (Panadol® from Glaxo Smith Kline). All chemicals and reagents used in this study were of analytical grade.

Source of herbal formulation

The herbal formulation under study was obtained in August 2020, from Choba open market, Port Harcourt, Rivers State. The herbal formulation was manufactured by Kayfahd herbaceuticals. Exclusively for: Purity biz.com PCT Abuja, Nigeria.

Animals

A previous experimental design described by Ewing et al.14 was used for this study with little modifications. Twenty (20) healthy adult male rats (152.6 ± 20.6 g) were used for the experiment. The animals were kept in the animal house of the Department of Experimental Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Port Harcourt, Nigeria for a period of two weeks and fed with standard feed (Broiler finisher- Guinea feeds) ad libitum with free access to water before experiment. Animal ethics and proper handling methods following during experiments.

Animal experiment

The dosage for Goko cleanser® herbal mixture was chosen using its prescription label. Animals were randomly assigned to four groups (1-4) of five animals each. Group I received 0.3mL of distilled water orally daily for 3 days (control group). Group II animals received oral dose of paracetamol (100 mg/kg daily for 3 days). Dose of paracetamol was chosen based on results of LD\textsubscript{50} previously determined by Ewing et al.14 Animals in group III received oral dose of Goko cleanser® (2mL/kg daily for 3 days). Group IV animals received both paracetamol and Gokocleanser® orally at a dosage of 100 mg/kg and 2 mL/kg respectively concurrently daily for 3 days. A conventional/therapeutic usage of paracetamol and Goko cleanser® was mimicked with this experimental setup. Animals were then fasted overnight on the third day of treatment and sacrificed using ether anaesthesia on the fourth day.

Blood sampling and biochemical analysis

Samples of blood were collected via cardiac puncture and kept for 6 hours at a temperature of 4°C. Prior to biochemical analysis, blood samples were centrifuged at 3000 rpm for 10 minutes. Liver function was probed with commercial diagnostic kits (Randox laboratory kit, England) using serum levels of Glutamyl transferase (GGT), Alkaline phosphatase (ALP), Alanine amino transferase (ALT) and Aspartate amino transferase (AST).

Histopathological Examination

Liver sections were fixed in 10 % formalin for 6-12 hours. They were processed and examined for histological changes at the college of Health Sciences pathology facility. For light microscopy examination, liver tissues fixed in formalin were dehydrated using increasing grades of alcohol embedded in paraffin. Serial sections were taken and stained with H and E as per standard protocol. Stained sections were morphologically evaluated, and the pictures of the slides were taken for comparison.

Ethical issues

The study protocol was designed in line with the ethical principles of the International Committees for the Protection of Animal Rights Laboratory and approved by the research ethics Committee of the University of Port Harcourt, Rivers State, Nigeria.

Statistical analysis

Statistical analysis involved use of the Microsoft Excel. Results were expressed as the Mean ± SD. Analysis were done using one-way Anova and t-tests. P values below 5% were considered statistically significant (p < 0.05).

RESULTS

Biochemical analysis

In this study, enzyme concentrations were all within normal ranges. The rats treated with Goko cleanser® alone showed a significant (p<0.05) decrease in the concentrations of liver function markers, ALT, AST, and GGT enzymes compared to the control group, paracetamol-only group and Goko®-paracetamol group. However, there was a mild increase in the concentration of ALP in the Goko cleanser®-only and the paracetamol/Goko cleanser® groups when compared with the control. However, this increase was not statistically significant. Similarly, there was a non-significant increase in ALP, ALT and GGT in the Goko®-paracetamol interaction group compared to the control group. These results are shown in Figure 1.

Histopathology Results

Results of the histopathology analysis revealed no apparent distortions in the liver tissues from both control and treated groups. The liver tissues were histologically normal showing normal hepatocytes, sinusoids, central vein and portal triad.
Effects of Paracetamol-Goko Cleanser® Interaction on Rat Body Weights

The body weights of the rats were determined and are shown in Table 1. All animals exhibited increased body weights at the end of the experiment with significant difference (*p<0.05) between both control and Goko cleanser® groups.

![Figure 1: Effect of Paracetamol + Goko® interaction on liver enzymes; n=5, values are expressed as mean±SEM. * p<0.05 compared to control group]

DISCUSSION

Drug-herb interaction is a matter of concern especially in the developing countries, as herbal remedies are linked with complications such as liver toxicities with high incidence of mortalities and morbidities. The clinical presentation could range from asymptomatic cases with distorted liver function tests to more severe liver failure. Herbal remedies have become popular across the globe in primary healthcare, and some have been erroneously regarded as safe just because they are of natural source. In addition, these therapeutic products from medicinal plants are claimed to be safe without any toxic health effects, and thus widely utilized as self-medications. However, there are little or no proven scientific studies on the toxicity and adverse effect of these remedies.

Recent studies have reported that certain herbs have the potential to induce drug metabolizing enzymes and transporters. For example, a herbal preparation containing *Kaempferia parviflora* has been shown to induce CYP2E1 which is an enzyme that metabolizes paracetamol. Paracetamol (acetaminophen) is metabolized to give the major hepatotoxic product known as N-acetyl-p-benzoquinone imine (NAPQI). In view of this, Mekjaruskul and Sripanidkulchai investigated the combined use of *K. parviflora* extract with CYP2E1 paracetamol. Results obtained from that study provided a possible drug-herb interaction between *K. parviflora* and paracetamol leading to increased metabolism and possible enhanced levels of the metabolite NAPQI.

Besides the negative effects of drug-herb interaction, some studies have highlighted beneficial effects. For example, certain herbs have been shown to possess ameliorative effects against some drug-induced toxicity. In a study by Hamid et al., *Zingiber zerumbet* was documented to have protective activity against paracetamol-induced acute hepatotoxicity in rat model. Further to this, *Curcuma longa* extract was shown to protect the liver against carbon tetrachloride-induced liver injury. In addition, some herbs such as *Ginkgo biloba* have demonstrated beneficial synergistic effects that enhances the efficiency of haloperidol.

In the present study, the results obtained from biochemical analysis produced a reduction in the levels of liver enzymes in the Goko cleanser®-paracetamol group compared to control. These results are in agreement with the data obtained from histopathological examination, which showed normal liver tissues with normal hepatocytes, sinusoids, central vein and portal triad (portal vein, portal artery and bile duct). Goko cleanser® when administered alone and in

Groups	Initial Weight (g)	Final Weight (g)	% Body Weight Change
Control	125.6±5.8	138.4 ±8.4	10.2
Paracetamol	134±1.6	138.8 ±2.9	3.6
Goko cleanser®	145.6 ±3.4	151.8 ±4.7	4.1

Table 1: Showing the effects of paracetamol and Goko cleanser® interaction on rat body weights.
combination with paracetamol reduced the concentrations of ALT, AST and GGT significantly (p<0.05) compared to control and paracetamol-only groups. While AST levels were significantly reduced in group that received Goko cleanser® alone and paracetamol + Goko cleanser® concurrently, the AST level in the paracetamol- Goko cleanser® group was higher than the Goko cleanser® -only group suggestive of an elevation accruing from an interaction between paracetamol and Goko cleanser®. Furthermore, increased body weights of the animals across all treatment groups were suggestive of the absence of toxicities from the co-administration of paracetamol and Goko cleanser®.

Taken together, the significant reductions in the liver enzymes by Goko cleanser® indicated potential hepato-protective effects; this provides some level of support to the claims made by the manufacturer about Goko cleanser® being hepato-protective. The potential hepato-protective effect of Goko cleanser® could be attributable to the presence of flavonoids and other phenolic-like tannins contained in some of its constituent herbs. Flavonoids and tannins are plant-based antioxidants known to reduce the risk of occurrence of numerous human disease related to oxidative stress. Oxidative stress is known to play a foremost role in the progress of liver diseases. Earlier studies have highlighted the potential hepato-protective effects of flavonoids and other plant-based antioxidants in herbs. For instance, a study by Kim et al., demonstrated that extracts of *Alnus japonica* alleviated the acetaminophen induced hepatic injury in rats. These findings are in agreement with data obtained from our study.

CONCLUSION

From the results obtained from this study, no hepatotoxic effects were observed with short-term administration of paracetamol and Goko cleanser® at therapeutic doses in rats. Therefore, the study hypothesizes that a short-term co-administration of the duo poses no potential health risk, however this is subject to further studies. Specifically, pharmacokinetics studies and long-term co-administration studies are strongly advocated.

REFERENCES

1. Amadi CN, Mgbahurike AA. Selected food/herb–drug interactions: mechanisms and clinical relevance. American J Therap 2018; 25(4): e423-e433. https://doi.org/10.1097/MJT.0000000000000705
2. Rodríguez Fragoso L, Martínez Arismendi JL, Orozco Bustos D, et al. Potential risks resulting from fruit/vegetable–drug interactions: effects on drug metabolizing enzymes and drug transporters. J Food Sci 2011; 76(4): R112-R124. https://doi.org/10.1111/j.1750-3841.2011.02155.x
3. Amadi CN, Nwachukwu WI. The effects of oral administration of Cola nitida on the pharmacokinetic profile of metoclopramide in rabbits. BMC Pharmacol Toxicol 2020; 21(1):1-6. https://doi.org/10.1186/s40360-019-0379-6
4. Amadi C, Orisakwe O. Herb-induced liver injuries in developing nations: An update. Toxics 2018; 6(2): 24. https://doi.org/10.3390/toxics6020024
5. Amadi CN, Aghalibe PO. Evaluation of drug-diet interaction between Psidium guajava (Guava) fruit and Metoclopramide. J Drug Deliv Therap 2019; 9(2): 144-147. https://doi.org/10.1111/j.1750-3841.2011.02155.x
6. Amadi C, Barileela L. Effect of pineapple (*Ananas comosus*) and uziza (*Piper guineense*) extracts on fexofenadine bioavailability: possible role of p-glycoprotein (P-GP) and organic anion transporting polypeptides (OATPs). Int Res J Pharm 2018; 9(3): 17-21. https://doi.org/10.4155/tde-2020-0020

AUTHOR’S CONTRIBUTION

All authors analyzed the data, wrote the manuscript and reviewed it.
7. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 2013; 4: 177.
https://doi.org/10.3389/fphar.2013.00177

8. Francis E, Amaeze O, Aniyika E. (2018). Ruzu herbal bitters and glibenclamide tablets: dissolution and in vitro release kinetics studies. Nigerian J Pharm Res 2018; 13(2): 73-82.

9. Jin MJ, Han HK. Effect of pipeline, a major component of black pepper, on the intestinal absorption of fexofenadine and its implication on food–drug interaction. J Food Sci 2010; 75(3): H93-H96.
https://doi.org/10.1111/j.1750-3841.2010.01542.x

10. Amadi C, Orisakwe O, Roberts I. Elemental impurities in registered herbal supplements in Nigeria: a look at mercury, antimony and tin. Rasayan J Chem 2012; 5(2):220-228.

11. Hinson JA, Roberts DW, James LP. Mechanisms of acetaminophen-induced liver necrosis. In Adverse drug Reactions 2010; 369-405: Springer.
https://doi.org/10.1007/978-3-642-00663-0_12

12. Karbowiak A, Szalek E, Sobańska K, et al. The concomitant use of lapatinib and paracetamol—the risk of interaction. Inv New Drugs 2018; 36(5): 819-827.
https://doi.org/10.1007/s10637-018-0573-1

13. Tan SC, New LS, Chan EC. Prevention of acetaminophen (APAP)-induced hepatotoxicity by leflunomide via inhibition of APAP biotransformation to N-acetyl-p-benzoquinone imine. Toxicol Lett 2008; 180(3):174-181.

14. Ewing LE, McGill MR, Yee EU, et al. Paradoxical patterns of sinusoidal obstruction syndrome-like injury in aged female CD-1 mice triggered by cannabidiol-rich cannabis extract and acetaminophen co-administration. Molecules 2019; 24(12):2256.
https://doi.org/10.3390/organisms24122256

15. Nnadi OD. Biochemical effects of goko cleanser herbal mixture on the kidney of adult female wistar rats. Int Inv Sci J 2018; 2(04): 117-129.

16. Onyejike DN, Aladeyelu SO, Onyejike IM, Nwankwo OK. Histopathological of Goko Cleanser®(Herbal Mixture) on the kidney of adult female Wistar rats. Int J Innov Res Adv Studies 2018; 5(6): 254-262.

17. Vaghasiya Y, Shukla V, Chanda S. Acute oral toxicity study of Pluchea arguta boiss extract in mice. J Pharmacol Toxicol 2011; 6(2): 113-123.
https://doi.org/10.3923/jpt.2011.113.123

18. Jothy S, Zakaria Z, Chen Y, et al. Acute oral toxicity of methanolic seed extract of Casia fistula in mice. Molecules 2011; 16(6): 5268-5282.
https://doi.org/10.3390/molecules16065268

19. Mekjaruskul C, Sripanidkulchai B. In vivo effect of Kaempferia parviflora extract on pharmacokinetics of acetaminophen. Drug Chem Toxicol 2019; 1-7.
https://doi.org/10.1080/01480545.2018.1542435

20. Ward B, Alexander-Williams JM. Paracetamol revisited: a review of the pharmacokinetics and pharmacodynamics. Acute Pain 1999; 2(3): 139-149.
https://doi.org/10.1016/S1366-0071(99)80006-0

21. Hamid A, Lee LS, Karim SR, Jufri NF. Hepatoprotective effects of zerumbone against paracetamol-induced acute hepatotoxicity in rats. The Malaysian J Med Sci 2018; 25(2): 64. https://doi.org/10.21315/mjms2018.25.2.7

22. Samožilik I, Đaković-Svajcer K, Božin B, Mikov M. Herb drug interactions: the influence of essential oil of caraway (Carum carvi L.) on the pharmacokinetics of paracetamol. BMC Pharmacol Toxicol 2012;13:1-1: BioMed Central http://www.biomedcentral.com/1471-2253/13/1

23. Boros SP, Singh DP, Nivsarkar M. Understanding the relevance of herb–drug interaction studies with special focus on interplays: a prerequisite for integrative medicine. Porto Biomedical J 2019; 4(2).
https://doi.org/10.1016/j.pbj.2019.08.001

24. Mehrandish R, Rahimian A, Shahriari A. Heavy metals detoxification: A review of herbal compounds for chelation therapy in heavy metals toxicity. J Herbs Med Pharm 2019; 8(2): 69-77.
https://doi.org/10.15171/jhp.2019.12

25. Zhu R, Wang Y, Zhang L, Guo Q. Oxidative stress and liver disease. Hepatol Res 2012; 42(8): 741-749.
https://doi.org/10.1111/j.1877-034X.2012.00996.x

26. Kim ST, Kim JD, Ahn SH, et al. Hepatoprotective and antioxidant effects of Alnus japonica extracts on acetaminophen induced hepatotoxicity in rats. Phytother Res 2004; 18(12): 971-975.
https://doi.org/10.1002/ptr.1540