Due to the compartmentalization within scientific disciplines and the fact that modern scientific methods are extensively used in CAM research, it appears that there has been a huge disconnect between clinical studies and preclinical studies including authentication, quality control, pharmacology, and toxicology of CAM agents. In this special issue, we would like to promote a concept of “translation” in CAM research by bringing a cluster of translational work (25 papers) that utilized multidisciplinary teams and approaches towards a clear clinical goal.

One of the highlights in this special issue is that there are a number of articles describing or summarizing novel approaches that may address bottleneck issues in CAM research. K. Lan et al. propose a novel strategy to determine the pharmacokinetics of multicomponent pharmaceuticals, termed as polypharmacokinetics, where the dynamic concentration profile of bioavailable xenobiotics and metabolic response profile in animals are integrated. The application of this strategy may lead to the direct elucidation of the pharmacological and molecular mechanisms of the multicomponent herbal medicines. L. Wang et al. propose an expert consensus approach that can be applied in the clinical treatment of complex diseases using traditional Chinese medicine (TCM). In their study, a group of clinical experts were consulted three times with the use of TCMs to treat hypertension, which enables investigators to take advantage of both research and clinical experience of the experts while using a standard “typical symptoms” instead of classical pattern differentiation methods. To the same goal but with different approaches, J. Dai et al. introduce a macro-micro approach that combines pattern differentiation, clinical indicators, and metabolite markers to diagnose HBV-induced chronic hepatitis and nonalcoholic fatty liver disease.

More novel approaches are presented by Y. Gu et al., who propose a network flux model, using multitarget docking and network analysis, to screen molecules for antiplatelet aggregation, and X. Li et al., who provide a metabolomics-based approach to enhance the current quality control techniques for multicomponent herbal medicines.

T. Chen et al. evaluate various bioinformatics classifiers that are currently used in clinical-metabolomics studies and provide an expert opinion on the selection of classification tools based on their experimental evidence. Meanwhile, B. Zhao et al. introduce a novel strategy, in which stable-isotope labeled amino acids in cell culture were used as internal standards for clinical proteomic study, to achieve accurate quantitation of serum or urinary proteins.

Another unique feature of this issue is the extensive use of omics technologies in clinical and preclinical studies, highlighting the promise of dynamic and multiparametric profiling approach in CAM research. C. Lu et al. report a metabolomics study of hand-foot-and-mouth disease ($n = 18$), which reveals perturbation in lipid metabolism and inflammatory response in patients and showed beneficial
Evidence-Based Complementary and Alternative Medicine

C.-J. Lin et al. report a significant preventive effect of an ancient TCM, **Bai-Hu-Tang**, in an experimental model of sepsis in male Sprague-Dawley rats, highlighting the complementary treatment option with this TCM agent for clinical sepsis.

Several studies are included in this issue evaluating traditional medicines for improving neurological conditions. E.-Y. Jung et al. report a neuroprotective effect of a traditional herbal preparation, **Gugijihwang Tang**, in a trimethyltin-induced memory dysfunction rat model. Z.-G. Yao et al. report the significant therapeutic effect of an ancient TCM preparation, PN-1, the name and the ingredients of which are not released, on the learning and memory in a transgenic mouse model of Alzheimer's disease. D. Wan et al. use a phytochemical compound, catalpol, an iridoid glycosides compound extracted from **Rehmannia glutinosa** Libosch, to treat permanent middle cerebral artery occlusion mice model and report significant neuroprotective and memory enhancement effects of this molecule. E. J. Yang and S.-Mi. Choi found that bee venom treatment attenuates the dysfunction of the ubiquitin-proteasomal system in a symptomatic hSOD1G93A mice model of amyotrophic lateral sclerosis and suggest that this treatment may reduce motor neuron loss caused by misfolded protein aggregates in the mouse model.

In summary, these 25 papers represent exciting CAM research activities with translational strategies embedded in design and context. The articles cover a wide variety of topics, from novel modalities used for clinical studies to omics technologies and bioinformatics that will contribute to an improved understanding of mechanisms and pharmacology of the CAM treatments. We would like to thank all the authors and reviewers.