Each n-by-n matrix with $n > 1$ is a sum of 5 coninvolutory matrices

Ma. Nerissa M. Abarab, Dennis I. Merino1,*, Vyacheslav I. Rabanovichc, Vladimir V. Sergeichukc, John Patrick Sta. Mariab

aInstitute of Mathematics, University of the Philippines, Diliman, Quezon City 1101, Philippines.

bDepartment of Mathematics, Southeastern Louisiana University, Hammond, LA 70402-0687, USA.

cInstitute of Mathematics, Tereshchenkivska 3, Kiev, Ukraine

Abstract

An $n \times n$ complex matrix A is called coninvolutory if $\bar{A}A = I_n$ and skew-coninvolutory if $\bar{A}A = -I_n$ (which implies that n is even). We prove that each matrix of size $n \times n$ with $n > 1$ is a sum of 5 coninvolutory matrices and each matrix of size $2m \times 2m$ is a sum of 5 skew-coninvolutory matrices.

We also prove that each square complex matrix is a sum of a coninvolutory matrix and a condiagonalizable matrix. A matrix M is called condiagonalizable if $M = \bar{S}^{-1}DS$ in which S is nonsingular and D is diagonal.

Keywords: Coninvolutary matrices, Skew-coninvolutory matrices, Condiagonalizable matrices
2000 MSC: 15A21, 15A23

1. Introduction

An $n \times n$ complex matrix A is called coninvolutory if $\bar{A}A = I_n$ and skew-coninvolutory if $\bar{A}A = -I_n$ (and so n is even since $\det(\bar{A}A) \geq 0$). We prove that each matrix of size $n \times n$ with $n \geq 2$ is a sum of 5 coninvolutory matrices and each matrix of size $2m \times 2m$ is a sum of 5 skew-coninvolutory matrices.
These results are somewhat unexpected since the set of matrices that are sums of involutory matrices is very restricted. Indeed, if $A^2 = I_n$ and J is the Jordan form of A, then $J^2 = I_n$, $J = \text{diag}(1, \ldots, 1, -1, \ldots, -1)$, and so $\text{trace}(A) = \text{trace}(J)$ is an integer. Thus, if a matrix is a sum of involutory matrices, then its trace is an integer. Wu [7, Corollary 3] and Spiegel [5, Theorem 5] prove that an $n \times n$ matrix can be decomposed into a sum of involutory matrices if and only if its trace is an integer being even if n is even.

We also prove that each square complex matrix is a sum of a coninvolutory matrix and a condiagonalizable matrix. A matrix is condiagonalizable if it can be written in the form $S^{-1}DS$ in which S is nonsingular and D is diagonal; the set of condiagonalizable matrices is described in [2, Theorem 4.6.11].

Similar problems are discussed in Wu’s survey [8]. Wu [8] shows that each matrix is a sum of unitary matrices and discusses the number of summands (see also [3]). Wu [7] establishes that M is a sum of idempotent matrices if and only if $\text{trace}(M)$ is an integer and $\text{trace}(M) \geq \text{rank}(M)$. Rabanovich [4] proves that every square complex matrix is a linear combination of three idempotent matrices. Abara, Merino, and Paras [1] study coninvolutory and skew-coninvolutory matrices.

2. Each matrix is a sum of a coninvolutory matrix and a condiagonalizable matrix

Two matrices A and B over a field \mathbb{F} are similar (or, more accurately, \mathbb{F}-similar) if there exists a nonsingular matrix S over \mathbb{F} such that $S^{-1}AS = B$. A matrix A is diagonalizable if it is similar to a diagonal matrix. Two complex matrices A and B are consimilar if there exists a nonsingular matrix S such that $S^{-1}AS = B$; a canonical form under consimilarity is given in [2, Theorem 4.6.12]. A complex matrix A is real-condiagonalizable if it is consimilar to a diagonal real matrix.

By the statement (b) of the following theorem, each square complex matrix is a sum of two condiagonalizable matrices, one of which may be taken to be coninvolutory.

Theorem 1. (a) Each square matrix over an infinite field is a sum of an involutory matrix and a diagonalizable matrix.

(b) Each square complex matrix is a sum of a coninvolutory matrix and a real-condiagonalizable matrix.
Each square complex matrix is consimilar to $I_n + D$, in which D is a real-condiagonalizable matrix.

Each square complex matrix is consimilar to $C + D$, in which C is coninvolutory and D is a diagonal real matrix.

Proof. The theorem is trivial for 1×1 matrices.

Let \mathbb{F} be any field. The *companion matrix of a polynomial*

$$f(x) = x^m - a_1x^{m-1} - \cdots - a_m \in \mathbb{F}[x]$$

is the matrix

$$F(f) := \begin{bmatrix} 0 & 0 & a_m \\ 1 & \ddots & \vdots \\ \vdots & 0 & a_2 \\ 0 & 1 & a_1 \end{bmatrix} \in \mathbb{F}^{n \times m};$$

its characteristic polynomial is $f(x)$. By [6, Section 12.5],

each $A \in \mathbb{F}^{n \times n}$ is \mathbb{F}-similar to a direct sum of companion matrices whose characteristic polynomials are powers of prime polynomials; this direct sum is uniquely determined by A, up to permutations of summands.

Moreover,

if $f, g \in \mathbb{F}[x]$ are relatively prime, then $F(f) \oplus F(g)$ is \mathbb{F}-similar to $F(fg)$.

(a) Let A be a matrix of size $n \times n$ with $n \geq 1$ over an infinite field \mathbb{F}. It is similar to a direct sum of companion matrices:

$$SAS^{-1} = B = F_1 \oplus \cdots \oplus F_t,$$

S is nonsingular.

If $B = C + D$ is the sum of an involutory matrix C and a diagonalizable matrix D, then $A = S^{-1}CS + S^{-1}DS$ is also the sum of an involutory matrix and a diagonalizable matrix. Thus, it suffices to prove the statement (a) for B. Moreover, it suffices to prove it for an arbitrary companion matrix \mathbb{F}.

3
Each matrix
\[
G = \begin{bmatrix}
1 & 0 & b_m \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1 & b_2 \\
0 & \cdots & 0 & -1
\end{bmatrix} \in \mathbb{F}^{m \times m}
\]
is involutory. Changing \(b_2, \ldots, b_m\), we get
\[
F(f) - G + I_m = \begin{bmatrix}
0 & 0 & c_m \\
1 & \ddots & \vdots \\
\vdots & \ddots & 0 & c_2 \\
0 & \cdots & 0 & a_1 + 2
\end{bmatrix}
\]
with arbitrary \(c_2, \ldots, c_m \in \mathbb{F}\). For each pairwise unequal \(\lambda_1, \ldots, \lambda_m \in \mathbb{F}\) such that \(\lambda_1 + \cdots + \lambda_m = a_1 + 2 = \text{trace}(F(f) - G + I_m)\), we can take \(G\) such that the characteristic polynomial of \(F(f) - G + I_m\) is equal to
\[
x^m - (a_1 + 2)x^{m-1} - c_2x^{m-2} - \cdots - c_m = (x - \lambda_1) \cdots (x - \lambda_m).
\]
Thus,
\[
F(f) - G + I_m \text{ is } \mathbb{F}\text{-similar to } \text{diag}(\lambda_1, \ldots, \lambda_m),
\]
and so the matrix \(F(f) - G\) is diagonalizable.

(b) Let us prove the statement (b) for \(A \in \mathbb{C}^{n \times n}\) with \(n > 1\). By [2, Corollary 4.6.15],
\[
\text{each square complex matrix is consimilar to a real matrix},
\]
hence \(A = \tilde{S}^{-1}BS\) for some \(B \in \mathbb{R}^{n \times n}\) and nonsingular \(S \in \mathbb{C}^{n \times n}\). By the statement (a), \(B = C + D\), in which \(C \in \mathbb{R}^{n \times n}\) is involutory and \(D \in \mathbb{R}^{n \times n}\) is real-diagonalizable. Then \(D = R^{-1}ER\), in which \(R \in \mathbb{R}^{n \times n}\) is nonsingular and \(E \in \mathbb{R}^{n \times n}\) is diagonal. Thus, \(A = \tilde{S}^{-1}CS + (RS)^{-1}E(RS)\) is a sum of a coninvolutory matrix and a real-condiagonalizable matrix.

(c) Let \(A \in \mathbb{C}^{n \times n}\) with \(n > 1\). By (b), \(A = C + D\), in which \(C\) is coninvolutory and \(D\) is real-condiagonalizable. By [2, Lemma 4.6.9], \(C\) is coninvolutory if and only if there exists a nonsingular \(S\) such that \(C = \tilde{S}^{-1}S\) (that is, \(C\) is consimilar to the identity). Then \(\tilde{S}AS^{-1} = I_n + SDS^{-1}\), in which \(\tilde{S}DS^{-1}\) is real-condiagonalizable.

(d) This statement follows from (b). \(\square\)
Corollary 2. Each \(m \times m \) companion matrix with \(m \geq 2 \) is \(\mathbb{F} \)-similar to \(G + \text{diag}(\mu_1, \ldots, \mu_m) \), in which \(G \) is involutory and \(\mu_1, \ldots, \mu_m \in \mathbb{F} \) are arbitrary pairwise unequal numbers such that \(\mu_1 + \cdots + \mu_m = a_1 + 2 - m \).

We get this corollary from (1) by taking \(\text{diag}(\mu_1, \ldots, \mu_m) := \text{diag}(\lambda_1, \ldots, \lambda_m) - I \).

3. Each \(n \times n \) matrix with \(n > 1 \) is a sum of 5 coninvolutory matrices

Theorem 3. Each \(n \times n \) complex matrix with \(n \geq 2 \) is a sum of 4 coninvolutory matrices if \(n = 2 \) and 5 coninvolutory matrices if \(n \geq 2 \).

Proof. Let us prove the theorem for \(M \in \mathbb{C}^{n \times n} \). By (5), \(M = \bar{S}^{-1}AS \) for some \(A \in \mathbb{R}^{n \times n} \) and a nonsingular \(S \). If \(A = C_1 + \cdots + C_k \) is a sum of coninvolutory matrices, then \(M = \bar{S}^{-1}C_1S + \cdots + \bar{S}^{-1}C_kS \) is also a sum of coninvolutory matrices.

Thus, it suffices to prove Theorem 3 for \(A \in \mathbb{R}^{n \times n} \).

Case 1: \(n = 2 \). By [2, Theorem 3.4.1.5], each \(2 \times 2 \) real matrix is \(\mathbb{R} \)-similar to one of the matrices

\[
\begin{bmatrix}
a & 0 \\
0 & b
\end{bmatrix}, \quad
\begin{bmatrix}
a & 1 \\
0 & a
\end{bmatrix}, \quad
\begin{bmatrix}
a & b \\
-b & a
\end{bmatrix} \quad (b > 0), \quad a, b \in \mathbb{R}.
\] (6)

(i) The first matrix is a sum of 4 coninvolutory matrices since it is represented in the form

\[
\begin{bmatrix}
a & 0 \\
0 & b
\end{bmatrix} = \begin{bmatrix}
(a - b)/2 & 0 \\
0 & (a + b)/2
\end{bmatrix} + \begin{bmatrix}
(a + b)/2 & 0 \\
0 & (a + b)/2
\end{bmatrix}
\] and each summand is a sum of two coninvolutory matrices because

\[
\begin{bmatrix}
2c & 0 \\
0 & -2c
\end{bmatrix} = \begin{bmatrix}
c & 1 \\
(1 - c^2) & -c
\end{bmatrix} + \begin{bmatrix}
c & -1 \\
(1 - c^2) & -c
\end{bmatrix}
\] and

\[
\begin{bmatrix}
2c & 0 \\
0 & 2c
\end{bmatrix} = \begin{bmatrix}
c & i \\
(1 - c^2)i & c
\end{bmatrix} + \begin{bmatrix}
c & -i \\
(1 - c^2)i & c
\end{bmatrix}
\] (7)
are sums of two coninvolutory matrices for all \(c \in \mathbb{R} \).
(ii) The second matrix is a sum of 4 coninvolutory matrices since
\[
\begin{bmatrix}
a & 1 \\
0 & a
\end{bmatrix}
= \begin{bmatrix}
a & 0 \\
0 & a
\end{bmatrix}
+ \begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
\]
and each summand is a sum of two coninvolutory matrices: the first due to [7] and the second due to
\[
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
= \begin{bmatrix}
1 & 1 \\
0 & -1
\end{bmatrix}
+ \begin{bmatrix}
-1 & 0 \\
0 & 1
\end{bmatrix}.
\]

(iii) The third matrix is a sum of 4 coninvolutory matrices since
\[
\begin{bmatrix}
a & b \\
-b & a
\end{bmatrix}
= \begin{bmatrix}
a & 0 \\
0 & a
\end{bmatrix}
+ \begin{bmatrix}
0 & b \\
-b & 0
\end{bmatrix}
\]
and each summand is a sum of two coninvolutory matrices due to [7] and
\[
\begin{bmatrix}
0 & b \\
-b & 0
\end{bmatrix}
= \begin{bmatrix}
1 & b \\
0 & -1
\end{bmatrix}
+ \begin{bmatrix}
-1 & 0 \\
0 & 1
\end{bmatrix}.
\]

Thus, each 2 \times 2 matrix A is a sum of 4 coninvolutory matrices. Applying this statement to \(A - I_2 \), we get that \(A = I_2 + (A - I_2) \) is also a sum of 5 coninvolutory matrices.

Case 2: \(n \) is even. By Theorem [1(d)], A is consimilar to \(C + D \), where C is coninvolutory and D is a diagonal real matrix, which proves Theorem [3] in this case due to Case 1 since D is a direct sum of 2 \times 2 matrices.

Case 3: \(n \) is odd. By [2], A is \(\mathbb{R} \)-similar to a direct sum
\[
B = F(f_1) \oplus \cdots \oplus F(f_t), \quad f_i(x) = x^{m_i} - a_{i1}x^{m_i-1} - \cdots - a_{im} \in \mathbb{R}[x]. \quad (8)
\]
We can suppose that \(m_1 > 1 \). Indeed, if \(m_i > 1 \) for some \(i \), then we interchange \(F(f_1) \) and \(F(f_i) \). Let \(m_1 = \cdots = m_t = 1 \) and let \(a_{11} \neq 0 \) (if \(B = 0 \), then \(B = I + (-I) \) is the sum of involutory matrices). If \(a_{11} = a_{21}, \) then we replace \(a_{11} \) by \(-a_{11} \) using the consimilarity of \([a_{11}]\) and \([-a_{11}]\). By [3], \(F(f_1) \oplus F(f_2) = [a_{11}] \oplus [a_{21}] \) is \(\mathbb{R} \)-similar to \(F((x-a_{11})(x-a_{21})) \).

We obtain B of the form \(F(f_1) \oplus C \) with \(m_1 > 1 \). By Corollary [2], \(F(f_1) \) is \(\mathbb{R} \)-similar to \(G + \text{diag}(\mu_1, \ldots, \mu_{m_1}) \), in which G is a real involutory matrix and \(\mu_1, \ldots, \mu_{m_1} \in \mathbb{R} \) are arbitrary pairwise unequal numbers such that \(\mu_1 + \cdots + \mu_{m_1} = a_{11} + 2 - m_1 \).
We take \(\mu_1 = 2 \) (and then \(\mu_2 = -2 \)) if \(f_1(x) = x^2 - a_{12} \). We take \(\mu_1 = 0 \) if \(f_1(x) \neq x^2 - a_{12} \). Applying Theorem 3(d) to the other direct summands \(F(f_2), \ldots, F(f_t) \), we find that \(B \) is \(\mathbb{R} \)-similar to

\[
\begin{bmatrix}
G & 0 \\
0 & C
\end{bmatrix} + \begin{bmatrix}
\mu_1 & 0 \\
0 & D
\end{bmatrix},
\]

in which the first summand is coninvolutory and the second is a diagonal real matrix. By Case 1,

\[D = C_1 + C_2 + C_3 + C_4, \]

in which \(C_1, C_2, C_3, C_4 \) are coninvolutory matrices. Then

\[
\begin{bmatrix}
\mu_1 & 0 \\
0 & D
\end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & C_1 \end{bmatrix} + \begin{bmatrix} \mu_1 - 1 & 0 \\ 0 & C_2 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & C_3 \end{bmatrix} + \begin{bmatrix} -1 & 0 \\ 0 & C_4 \end{bmatrix}
\]

is a sum of 4 coninvolutory matrices. \(\square \)

4. Each \(2m \times 2m \) matrix is a sum of 5 skew-coninvolutory matrices

We recall that an \(n \times n \) complex matrix \(A \) is called skew-coninvolutory if \(\bar{A}A = -I_n \) (and so \(n \) is even since \(\det(\bar{A}A) \geq 0 \)).

Theorem 4. Each \(2m \times 2m \) complex matrix is a sum of at most 5 skew-coninvolutory matrices.

Proof. Let us prove the theorem for \(A \in \mathbb{C}^{2m \times 2m} \). If \(A = \bar{S}^{-1}BS \) and \(B = C_1 + \cdots + C_k \) is a sum of skew-coninvolutory matrices, then \(A = \bar{S}^{-1}C_1S + \cdots + \bar{S}^{-1}C_kS \) is a sum of skew-coninvolutory matrices too. Thus, it suffices to prove the theorem for any matrix that is consimilar to \(A \).

By [2, Theorem 4.6.12], each square complex matrix is consimilar to a direct sum, uniquely determined up to permutation of summands, of matrices of the following two types:

\[
J_n(\lambda) := \begin{bmatrix}
\lambda & 1 & & 0 \\
& \lambda & & \\
& & \ddots & \\
0 & & & \lambda
\end{bmatrix} \quad (n \text{-by-} n, \ \lambda \in \mathbb{R}, \ \lambda \geq 0) \tag{9}
\]

and

\[
H_{2m}(\mu) := \begin{bmatrix}
0 & I_n \\
J_n(\mu) & 0
\end{bmatrix} \quad (\mu \in \mathbb{C}, \ \mu < 0 \text{ if } \mu \in \mathbb{R}) \tag{10}
\]
Thus, we suppose that A is a direct sum of matrices of these types.

Case 1: A is diagonal. Then A is a sum of 4 skew-coninvolutory matrices since A is a direct sum of m real diagonal 2-by-2 matrices and each real diagonal 2-by-2 matrix is represented in the form

$$\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} = \begin{bmatrix} (a-b)/2 & 0 \\ 0 & -(a-b)/2 \end{bmatrix} + \begin{bmatrix} (a+b)/2 & 0 \\ 0 & (a+b)/2 \end{bmatrix}$$

in which each summand is a sum of two skew-coninvolutory matrices because

$$\begin{bmatrix} 2c & 0 \\ 0 & -2c \end{bmatrix} = \begin{bmatrix} c & -1 \\ (1+c^2) & -c \end{bmatrix} + \begin{bmatrix} c & 1 \\ -(1+c^2) & -c \end{bmatrix}$$

and

$$\begin{bmatrix} 2c & 0 \\ 0 & 2c \end{bmatrix} = \begin{bmatrix} c & -i \\ (1+c^2)i & c \end{bmatrix} + \begin{bmatrix} c & i \\ -(1+c^2)i & c \end{bmatrix}$$

(11)

are sums of two skew-coninvolutory matrices for all $c \in \mathbb{R}$.

Case 2: A is a direct sum of matrices of type [9]. Then it has the form

$$A = \begin{bmatrix} \lambda_1 & \varepsilon_1 & 0 \\ & \lambda_2 & \ddots \\ & & \ddots & \varepsilon_{2m-1} \\ & & & \lambda_{2m} \end{bmatrix}$$

in which all $\lambda_i \geq 0$ and all $\varepsilon_i \in \{0, 1\}$.

Represent A in the form $A = C + D$, in which

$$C := \begin{bmatrix} c_1 \\ -1 + c_1^2 & 1-c_1 \end{bmatrix} \oplus \cdots \oplus \begin{bmatrix} c_m \\ -1 + c_m^2 & 1-c_m \end{bmatrix}, \quad \text{all } c_i \in \mathbb{R},$$

is a skew-coninvolutory matrix. Let us show that c_1, \ldots, c_m can be chosen such that all eigenvalues of D are distinct real numbers.

The matrix D is upper block-triangular with the diagonal blocks

$$D_1 := \begin{bmatrix} \lambda_1 - c_1 & \varepsilon_1 - 1 \\ 1 - c_1^2 & \lambda_2 + c_1 \end{bmatrix}, \ldots, D_m := \begin{bmatrix} \lambda_{2m-1} - c_m & \varepsilon_{2m-1} - 1 \\ 1 - c_m^2 & \lambda_{2m} + c_m \end{bmatrix}.$$
Let \(c_1, \ldots, c_{k-1} \) have been chosen such that the eigenvalues of \(D_1, \ldots, D_{k-1} \) are distinct real numbers \(\nu_1, \ldots, \nu_{2k-2} \). Depending on \(\varepsilon_{2k-1} \in \{0, 1\} \), the matrix \(D_k \) is

\[
\begin{bmatrix}
\lambda_{2k-1} - c_k & -1 \\
1 - c_k^2 & \lambda_{2k} + c_k
\end{bmatrix}
\quad \text{or} \quad
\begin{bmatrix}
\lambda_{2k} - c_k & 0 \\
1 - c_k^2 & \lambda_{2k} + c_k
\end{bmatrix}.
\]

(12)

- Let \(D_k \) be the first matrix in (12). Its characteristic polynomial is

\[
\chi_k(x) = x^2 - \text{trace}(D_k)x + \det(D_k)
= x^2 - (\lambda_{2k-1} + \lambda_{2k})x + (\lambda_{2k-1} - c_k)(\lambda_{2k} + c_k) + 1 - c_k^2.
\]

Its discriminant is

\[
\Delta_k = (\lambda_{2k-1} + \lambda_{2k})^2 - 4[\lambda_{2k-1}\lambda_{2k} + (\lambda_{2k-1} - \lambda_{2k})c_k - 2c_k^2 + 1]
= (\lambda_{2k-1} - \lambda_{2k})^2 + 4(-\lambda_{2k-1} + \lambda_{2k})c_k + 8c_k^2 - 4.
\]

For a sufficiently large \(c_k \), \(\Delta_k > 0 \) and so the roots of \(\chi_k(x) \) are some distinct real numbers \(\nu_{2k-1} \) and \(\nu_{2k} \). Since

\[\nu_{2k-1} + \nu_{2k} = \text{trace}(D_k) = \lambda_{2k-1} + \lambda_{2k},\]

we have

\[\det(D_k) = \nu_{2k-1}\nu_{2k} = \nu_{2k-1}(\lambda_{2k-1} + \lambda_{2k} - \nu_{2k-1})
= (\lambda_{2k-1} + \lambda_{2k} - \nu_{2k})\nu_{2k}.
\]

Taking \(c_k \) such that

\[\det(D_k) \neq \nu_i(\lambda_{2k-1} + \lambda_{2k} - \nu_i) \quad \text{for all} \ i = 1, \ldots, 2k-2,\]

we get \(\nu_{2k-1} \) and \(\nu_{2k} \) that are not equal to \(\nu_1, \ldots, \nu_{2k-2} \).

- Let \(D_k \) be the second matrix in (12). Then its eigenvalues are \(\lambda_{2k} - c_k \) and \(\lambda_{2k} + c_k \). We choose a nonzero real \(c_k \) such that these eigenvalues are not equal to \(\nu_1, \ldots, \nu_{2k-2} \).

We have constructed the real skew-coninvolutory matrix \(C \) such that \(A = C + D \), in which \(D \) is a real matrix with distinct eigenvalues \(\nu_1, \ldots, \nu_{2m} \in \mathbb{R} \). Since \(D \) is \(\mathbb{R} \)-similar to a diagonal matrix and by Case 1, \(D \) is a sum of 4 skew-coninvolutory matrices.
Case 3: A is a direct sum of matrices of types (9) and (10). Due to Case 2, it suffices to prove that each matrix $H_{2m}(\mu)$ is a sum of 5 skew-coninvolutory matrices. Write

$$
\begin{bmatrix}
0 & I_n \\
J_n(\mu) & 0
\end{bmatrix} = \begin{bmatrix}
0 & I_n \\
-I_n & 0
\end{bmatrix} + \begin{bmatrix}
0 & 0 \\
J_n(\mu) + I_n & 0
\end{bmatrix}.
$$

The first summand is a skew-coninvolutory matrix, and so we need to proof that the second summand is a sum of 4 skew-coninvolutory matrices. By \[1\], there exists a nonsingular S such that $B := \bar{S}^{-1}(J_n(\mu) + I_n)S$ is a real matrix. Then the second summand is consimilar to a real matrix:

$$
\begin{bmatrix}
S^{-1} & 0 \\
0 & S^{-1}
\end{bmatrix} \begin{bmatrix}
0 & 0 \\
J_n(\mu) + I_n & 0
\end{bmatrix} \begin{bmatrix}
S & 0 \\
0 & S
\end{bmatrix} = \begin{bmatrix}
0 & 0 \\
B & 0
\end{bmatrix},
$$

which is the sum of two coninvolutory matrices:

$$
\begin{bmatrix}
0 & 0 \\
B & 0
\end{bmatrix} = \begin{bmatrix}
I_n & 0 \\
0 & -I_n
\end{bmatrix} + \begin{bmatrix}
-I_n & 0 \\
0 & I_n
\end{bmatrix}. \tag{13}
$$

By \[2\] Lemma 4.6.9, each coninvolutory matrix is consimilar to the identity matrix. Hence, each summand in (13) is consimilar to I_{2n}, which is a sum of two skew-coninvolutory matrices due to (11). Thus, the matrix (13) is a sum of 4 skew-coninvolutory matrices.

Acknowledgments

The work of V.V. Sergeichuk was done during his visit to the University of São Paulo supported by FAPESP, grant 2015/05864-9.

References

[1] M.N.M. Abara, D.I. Merino, A.T. Paras, Skew-coninvolutory matrices, Linear Algebra Appl. 426 (2007) 540–557.

[2] R.A. Horn, C.R. Johnson, Matrix Analysis, 2nd ed., Cambridge UP, Cambridge, 2013.

[3] D.I. Merino, The sum of orthogonal matrices, Linear Algebra Appl. 436 (2012) 1960–1968.
[4] V. Rabanovich, Every matrix is a linear combination of three idempotents, Linear Algebra Appl. 390 (2004) 137–143.

[5] E. Spiegel, Sums of projections, Linear Algebra Appl. 187 (1993) 239–249.

[6] B.L. van der Waerden, Algebra, vol. II, Springer, 2003.

[7] P.Y. Wu, Sums of idempotent matrices, Linear Algebra Appl. 142 (1990) 43–54.

[8] P.Y. Wu, Additive combinations of special operators, in: Functional Analysis and Operator Theory (Warsaw, 1992), Banach Center Publ., 30, Polish Acad. Sci., Warsaw, 1994, pp. 337–361.