Are there infinitely many decompositions of the nucleon spin?

Masashi Wakamatsu, Osaka University
QCD Evolution Workshop 2013, JLab, USA

1. Introduction
2. Controversies of nucleon spin decomposition problem
3. Chen decomposition is not a GIE a la Stückelberg
4. What is needed to settle the controversies?
5. Evolution equation for gluon spin in general axial gauge
6. Summary
1. Introduction

current status and homework of nucleon spin problem

\[\frac{1}{2} = \frac{1}{2} \Delta \Sigma^Q + \Delta G + \text{Orbital Angular Momenta} \]

(1) \(\Delta \Sigma^Q \): fairly precisely determined! \(\sim 1/3 \)

(2) \(\Delta G \): likely to be small, but large uncertainties

\[\text{What carries the remaining } 2/3 \text{ of nucleon spin?} \]

\[\text{a fundamental question of QCD} \]

To answer this question unambiguously, we cannot avoid to clarify

- What is a precise (QCD) definition of each term of the decomposition?
- How can we extract individual term by means of direct measurements?

nucleon spin decomposition problem
Importance of gauge-invariance in nucleon spin decomposition problem

Because QCD is a color SU(3) gauge theory, the color gauge-invariance plays a crucially important role in the nucleon spin decomposition problem.

For, the general principle of physics dictates that

\[
\text{gauge-invariance} \text{ is a necessary condition of observability}!
\]

Unfortunately, it is quite a delicate problem, which is still under intense debate.

\[
\text{conflict} \downarrow
\]

Interpretation of the meaning of gauge-invariance!
2. Controversies of nucleon spin decomposition problem?

Two popular decompositions of the nucleon spin:

Jaffe-Manohar

\[J_{QCD} = \int \psi^\dagger \frac{1}{2} \Sigma \psi \, d^3 x \]
\[+ \int \psi^\dagger \mathbf{x} \times \frac{1}{i} \nabla \psi \, d^3 x \]
\[+ \int E^a \times A^a \, d^3 x \]
\[+ \int E^{ai} \mathbf{x} \times \nabla A^{ai} \, d^3 x \]

Each term is not separately gauge-invariant!

Ji

\[J_{QCD} = \int \psi^\dagger \frac{1}{2} \Sigma \psi \, d^3 x \]
\[+ \int \psi^\dagger \mathbf{x} \times \frac{1}{i} D \psi \, d^3 x \]
\[+ \int \mathbf{x} \times (E^a \times B^a) \, d^3 x \]

No further GI decomposition!
First, pay attention to the **difference** of quark OAM parts

\[L_Q(\text{JM}) \sim \psi^\dagger \mathbf{x} \times p \psi \quad \quad L_Q(\text{Ji}) \sim \psi^\dagger \mathbf{x} \times (p - g A) \psi \]

canonical OAM

not gauge invariant !

dynamical OAM

gauge invariant !

gauge principle

observables must be gauge-invariant !

- **Observability** of canonical OAM has long been questioned ?
- On the other hand, it has been shown that the **dynamical quark OAM** can be related to observables through **GPDs**. (X. Ji, 1997)
However, Chen et al. proposed a new gauge-invariant complete decomposition

X.-S. Chen et al., Phys. Rev. Lett. 103, 062001 (2009); 100, 232002 (2008).

basic idea

\[A^\mu = A^\mu_{\text{phys}} + A^\mu_{\text{pure}} \]

which is a sort of generalization of the decomposition of photon field in QED into the transverse and longitudinal components:

\[A_{\text{phys}} \Leftrightarrow A_\perp, \quad A_{\text{pure}} \Leftrightarrow A_\parallel \]

Their decomposition is given in the following form:

\[
J_{QCD} = \int \bar{\psi} \frac{1}{2} \sum \psi \; d^3x + \int \bar{\psi} \psi \left(p - g A_{\text{pure}} \right) \; d^3x \\
+ \int E^a \times A^a_{\text{phys}} \; d^3x + \int E^{aj} (x \times \nabla) A^{aj}_{\text{phys}} \; d^3x \\
= S'_q + L'_q + S'_G + L'_G
\]

- Each term is separately gauge-invariant!
- It reduces to gauge-variant Jaffe-Manohar decomposition in a particular gauge!

\[A_{\text{pure}} = 0, \quad A = A_{\text{phys}} \]
Soon after, we pointed out that the way of gauge-invariant decomposition of nucleon spin is not necessarily unique, and proposed another G.I. decomposition:

\[\mathbf{J}_{QCD} = \mathbf{S}_q + \mathbf{L}_q + \mathbf{S}_G + \mathbf{L}_G \]

where

\[\mathbf{S}_q = \int \psi^\dagger \frac{1}{2} \Sigma \psi \, d^3x \]
\[\mathbf{L}_q = \int \psi \mathbf{x} \times (\mathbf{p} - g \, \mathbf{A}) \psi \, d^3x = \mathbf{L}_q(\text{Ji}) \]
\[\mathbf{S}_G = \int \mathbf{E}_a \times \mathbf{A}^a_{\text{phys}} \, d^3x \quad \text{“potential angular momentum”} \]
\[\mathbf{L}_G = \int \mathbf{E}^{aj} (\mathbf{x} \times \nabla) \mathbf{A}^{aj}_{\text{phys}} \, d^3x + \int \rho^a (\mathbf{x} \times \mathbf{A}^a_{\text{phys}}) \, d^3x \]

The QED correspondent of \(\mathbf{L}_\text{pot} \) is the orbital angular momentum carried by electromagnetic potential, appearing in the famous Feynman paradox.

An arbitrariness of the spin decomposition arises, because this potential angular momentum term is solely gauge-invariant! Shifting it to the quark OAM part:

\[\mathbf{L}_q + \mathbf{L}_\text{pot} = \mathbf{L}_q' \quad \text{(Chen)} \]
\[\mathbf{L}_G - \mathbf{L}_\text{pot} = \mathbf{L}_G' \quad \text{(Chen)} \]
Further, we found that we can make a seemingly covariant extension of the 2 gauge-invariant decompositions of QCD angular momentum tensor.

Decomposition (I) & Decomposition (II)

[Remarks]

(1) The word “seemingly” is important here, because the decomposition

\[A^\mu(x) = A^\mu_{\text{phys}}(x) + A^\mu_{\text{pure}}(x), \]

which is a foundation of the above gauge-invariant decompositions, is intrinsically non-covariant or frame-dependent, as we shall see.

(2) Still, it is useful to find relations to high-energy DIS observables.

(3) It is useful also for perturbative calculations of Feynman diagrams.
Gauge-invariant decomposition (II) : “covariant” generalization of Chen et al’s

\[M_{QCD}^{\mu\nu\lambda} = M_{q-\text{spin}}^{\mu\nu\lambda} + M_{q-\text{OAM}}^{\mu\nu\lambda} + M_{g-\text{spin}}^{\mu\nu\lambda} + M_{g-\text{OAM}}^{\mu\nu\lambda} + \text{boost} + \text{total divergence} \]

with

\[M_{q-\text{spin}}^{\mu\nu\lambda} = \frac{1}{2} \varepsilon^{\mu\nu\lambda\sigma} \bar{\psi} \gamma_{\sigma} \gamma_{5} \psi \]

\[M_{q-\text{OAM}}^{\mu\nu\lambda} = \bar{\psi} \gamma^{\mu} (x^{\nu} i D_{\text{pure}}^{\lambda} - x^{\lambda} i D_{\text{pure}}^{\nu}) \psi \]

\[M_{g-\text{spin}}^{\mu\nu\lambda} = 2 \text{Tr} \left\{ F^{\mu\lambda} A_{\text{phys}}^{\nu} - F^{\mu\nu} A_{\text{phys}}^{\lambda} \right\} \]

\[M_{q-\text{OAM}}^{\mu\nu\lambda} = 2 \text{Tr} \left\{ F^{\mu\alpha} (x^{\nu} D_{\text{pure}}^{\lambda} - x^{\lambda} D_{\text{pure}}^{\nu}) A_{\alpha}^{\text{phys}} \right\} \]

[Remark]

This decomposition reduces to any ones of Bashinsky-Jaffe, of Chen et al., and of Jaffe-Manohar, after an appropriate gauge-fixing in a suitable Lorentz frame.
Gauge-invariant decomposition (I): “extension” of Ji’s decomposition

The difference with the decomposition (II) resides in **OAM parts**!

\[M_{\mu\nu\lambda} = M'_{\mu\nu\lambda} + M_{q-'spin} + M_{q-'OAM} + M_{g-'spin} + M_{g-'OAM} + \text{boost} + \text{total divergence} \]

with

- \[M_{q-'spin} \]
- \[M_{q-'OAM} \]
- \[M_{g-'spin} \]
- \[M_{g-'OAM} \]
- \[2 \text{Tr} \left[(D_\alpha F^{\alpha\mu}) (x^\nu A_{\text{phys}}^\lambda - x^\lambda A_{\text{phys}}^\nu) \right] \]

full covariant derivative

\[\overline{\psi} \gamma^\mu (x^\nu i D^\lambda - x^\lambda i D^\nu) \psi \neq M'_{q-'OAM} \]

“covariant” generalization of potential OAM!
[Our claim]

Basically, there are only 2 physically nonequivalent gauge-invariant decompositions (I) and (II) of the nucleon spin.

[Opposing claim]

Since the decomposition of the gauge field into its physical and pure-gauge components is not unique and there are infinitely many such decompositions, there are in principle infinitely many GI decompositions of the nucleon spin.
An argument in favor of the second claim:

- X. Ji, Y. Xu, and Y. Zhao, arXiv: 1205.0516 [hep-ph]

According to them, the Chen decomposition is a gauge-invariant extension (GIE) of the Jaffe-Manohar decomposition based on the Coulomb gauge, while the Bashinsky-Jaffe decomposition is a GIE of the Jaffe-Manohar decomposition based on the light-cone gauge.

Because the way of GIE with use of a path-dependent Wilson line is not unique, there is no need that the 2 decompositions give the same physical predictions.

This makes Ji reopen his longstanding claim that the gluon spin ΔG has a meaning only in the light-cone gauge, and it is not a gauge-invariant quantity in a true or traditional sense, although it is measurable in DIS scatterings.

One should recognize a self-contradiction inherent in this claim.
In fact, first remember the **fundamental proposition of physics**:

“Observables must be gauge-invariant!”

The **contraposition** of this proposition (it is always correct) is

“gauge-variant quantities cannot be observables!”

This dictates that, if ΔG is observable, it must be gauge-invariant!

[Caution]

Here we are using the word “**observables**” in a **strong sense**: they must be quantities that can be extracted **purely experimentally**, or model-independently.

(Ex.) Genuine observables in DIS processes are structure functions, whereas the PDFs are not genuine observables in a strict sense.

Structure functions : “**true**” observables

PDFs, TMD PDFs, etc. : “**quasi**” observables
Assume that the **Chen decomposition** and the **Bashinsky-Jaffe decompositions** are 2 physically inequivalent GIEs of the **Jaffe-Manohar decomposition**.

What is the meaning of extended gauge symmetries?

Are there plural color gauge symmetries in nature?

Our (standard ?) viewpoint

- The color gauge symmetry is an intrinsic property of QCD, which is **present from the beginning** and in principle there is **no need of extending it**.

- The gauge symmetry is rather freedoms **to be eliminated by gauge-fixing procedures** rather than to be obtained by extension.
Another argument in favor of the existence of infinitely many decompositions of the nucleon spin was given in

- C. Lorcé, arXiv : 1205.6483 ; Phys. Lett. B719 (2013) 185.

According to him, the Chen decomposition is a GIE based on Stückelberg trick.

There is a hidden symmetry called the Stückelberg symmetry, under which

\[A^\text{pure}_\mu(x) \rightarrow A^\text{pure}_\mu(x) + \frac{i}{g} U^\text{pure}_\mu(x) U^{-1}_0(x) [\partial_\mu U_0(x)] U^{-1}_\text{pure}(x) \]
\[A^\text{phys}_\mu(x) \rightarrow A^\text{phys}_\mu(x) - \frac{i}{g} U^\text{pure}_\mu(x) U^{-1}_0(x) [\partial_\mu U_0(x)] U^{-1}_\text{pure}(x) \]

Since this transformation leaves \(A_\mu(x) = A^\text{phys}_\mu(x) + A^\text{pure}_\mu(x) \) intact, there are infinitely many decompositions of \(A_\mu(x) \) into \(A^\text{phys}_\mu(x) \) and \(A^\text{pure}_\mu(x) \) and consequently infinitely many decompositions of the nucleon spin.

We claim and in fact showed that, in the QED case, the Chen decomposition is not a GIE based on the Stückelberg symmetry. See sect. III of

- M.W. ,Phys. Rev. D85 (2012) 114039.
3. Chen decomposition is not a GIE a la Stückelberg

As is well-known, the vector potential A of the photon field can be decomposed into transverse and longitudinal components as

$$A = A_\perp + A_\parallel$$

with the divergence-free and irrotational conditions:

$$\nabla \cdot A_\perp = 0, \quad \nabla \times A_\parallel = 0$$

This transverse-longitudinal decomposition is unique, once the Lorentz frame of reference is specified. Under a general gauge-transformation given by

$$A^0 \rightarrow A'^0 = A^0 - \frac{\partial}{\partial t} \omega(x), \quad A \rightarrow A' = A + \nabla \omega(x)$$

the transverse and longitudinal components transform as

$$A_\perp \rightarrow A'_\perp = A_\perp, \quad A_\parallel \rightarrow A'_\parallel + \nabla \omega(x)$$

indicating that A_\parallel carries unphysical gauge degrees of freedom!
Naturally, the transverse-longitudinal decomposition of the 3-vector potential is Lorentz-frame dependent. (Anyhow, the whole treatment above is non-covariant !)

It is true that a vector field that appears transverse in a certain Lorentz frame is not necessarily transverse in another Lorentz frame.

Nonetheless, the Lorentz-frame dependence of the transverse-longitudinal decomposition should not make any trouble, because one can start this decomposition in an arbitrarily chosen Lorentz frame.

There is nothing wrong with the non-covariant treatment in the last result!

After all, the gauge- and frame-independence of observables is the core of the celebrated Maxwell’s electrodynamics as a Lorentz-invariant gauge theory!
This QED example dictates that, as long as we are working in a chosen Lorentz frame, there is no arbitrariness in the decomposition $A^\mu = A^\mu_{phys} + A^\mu_{pure}$, as arising from the Stückelberg-like transformation of Lorčé.

Stückelberg transformation (in the abelian case)

\[
\begin{align*}
A^\mu_{pure}(x) & \to A^\mu_{pure,g}(x) = A^\mu_{pure}(x) - \partial_\mu C(x) \\
A^\mu_{phys}(x) & \to A^\mu_{phys,g}(x) = A^\mu_{phys}(x) + \partial_\mu C(x) \\
C(x) & : \text{ arbitrary function of space-time}
\end{align*}
\]

$A^\mu_{phys}(x) + A^\mu_{pure}(x) \rightarrow \text{invariant}$

infinitely many decompositions into $A^\mu_{phys}(x)$ and $A^\mu_{pure}(x)$

\[
\downarrow
\]

contradicts the unique nature of longitudinal-transverse decomposition

\[
A = A_\parallel + A_\perp \quad \text{with} \quad \nabla \times A_\parallel = 0, \quad \nabla \cdot A_\perp = 0
\]
In fact, under the Stückelberg

\[A_{\parallel} \rightarrow A_{\parallel}^g = A_{\parallel} - \nabla C(x) \]
\[A_{\perp} \rightarrow A_{\perp}^g = A_{\perp} + \nabla C(x) \]

we find that

\[\nabla \times A_{\parallel}^g = \nabla \times (A_{\parallel} - \nabla C(x)) = \nabla \times A_{\parallel} \quad (0.K.) \]

irrotational property of \(A_{\parallel} \) is preserved!

However, under it

\[\nabla \cdot A_{\perp}^g = \nabla \cdot (A_{\perp} + \nabla C(x)) = \nabla \cdot A_{\perp} + \Delta C(x) \]
\[\neq \nabla \cdot A_{\perp} \quad \text{unless} \quad \Delta C(x) = 0 \]

transversality condition is not preserved!

From \(\Delta C(x) = 0 \), we can take \(C'(x) = 0 \) without loss of generality!

No arbitrariness of Stückelberg transformation!

Although \(A_{\text{pure}}^\mu \) changes arbitrarily under the gauge-transformation, \(A_{\text{phys}}^\mu \) is essentially a unique object, constrained by the transversality condition.
4. What is needed to settle the controversies

We recall that the main criticism from the GIE approach with use of the Wilson-line is that the following decomposition is not unique at all, and there are infinitely many such decompositions arising from infinitely many choices of paths.

\[A^\mu(x) = A^\mu_{phys}(x) + A^\mu_{pure}(x) \]

Note however that, from a physical viewpoint, the massless gauge field has only 2 physical or transverse degrees of freedom, and other components are not independent dynamical degrees of freedom.

The standard gauge-fixing procedure is essentially the process of projecting out the 2 transverse or physical components of gauge field.

Corresponding to the fact that there exist many gauge-fixing procedures, the expression of \(A^\mu_{phys}(x) \) is not naturally unique.

Nevertheless, an important wisdom is that final physical predictions for gauge invariant quantities are independent of the choice of gauges!
[A hidden problem of the GIE approach]

DeWitt’s gauge invariant formulation of QED

For a given set of electron and photon fields \((\psi(x), A_\mu(x))\), he constructed a gauge-invariant set of those \((\psi'(x), A'_\mu(x))\) by

\[
\psi'(x) \equiv e^{i \Lambda(x)} \psi(x) \\
A'_\mu(x) \equiv A_\mu(x) + \partial_\mu \Lambda(x)
\]

with

\[
\Lambda(x) = - \int_{-\infty}^{0} A_\sigma(z) \frac{\partial z^\sigma}{\partial \xi} \, d\xi
\]

where \(z^\mu(x, \xi)\) is a path satisfying the boundary conditions:

\[
z^\mu(x, 0) = x^\mu, \quad z^\mu(x, -\infty) = \text{spatial infinity}
\]

The problem is that, while \((\psi'(x), A'_\mu(x))\) are gauge-invariant by construction, they are generally path-dependent!
The path-dependence can easily be convinced by considering the simplest case of constant-time paths, which amounts to taking

\[\Lambda(x) = - \int_{-\infty}^{x} A(x^0, z) \cdot dz \]

GI electron fields corresponding to 2 choices of paths

\[\psi'(x; L_1) = \exp \left[-i e \int_{L_1}^{x} A(x^0, z) \cdot dz \right] \psi(x) \]
\[\psi'(x; L_2) = \exp \left[-i e \int_{L_2}^{x} A(x^0, z) \cdot dz \right] \psi(x) \]

The relation

\[\psi'(x; L_1) = \exp \left[i e \left(\int_{L_1}^{x} - \int_{L_2}^{x} \right) A(x^0, z) \right] \psi'(x; L_2) \]

Closing the path to a loop \(L \) by a connection at spatial infinity

\[\psi'(x; L_1) = \exp \left[i e \oint_{L} A(x^0, z) \cdot dz \right] \psi'(x; L_2) \]
\[= \exp \left[i e \int_{S} (\nabla_z \times A(x^0, z)) \cdot dz \right] \psi'(x; L_2) \]
\[= \exp \left[i e \int_{S} B(x^0, z) \cdot dz \right] \psi'(x; L_2) \]

Since the magnetic flux does not vanish in general, \(\psi'(x) \) is path-dependent!
Why is the path-dependence a problem?

Path dependence \rightarrow Gauge dependence

Belinfante, Mandelstam, Rohrlich-Strocchi,

However, there are some interesting choices of the function $\Lambda(x)$, which leads to path-independent set of electron and photon fields $(\psi'(x), A'_{\mu}(x))$:

[Example 1]

$$\Lambda(x) = -\int_{-\infty}^{x} A_{\|}(x^0, z) \cdot dz$$

where $A_{\|}(x)$ is the longitudinal component of photon satisfying $\nabla \times A_{\|}(x) = 0$. Since

$$\oint_{L} A_{\|}(x^0, z) \cdot dz = \int \int_{S}(\nabla_z \times A_{\|}(x^0, z)) \cdot dS = 0$$

the electron field defined by

$$\psi'(x) = \exp \left[-ie \int_{-\infty}^{x} A_{\|}(x^0, z) \cdot dz \right] \psi(x)$$

is not only gauge-invariant but also path-independent!
If one remembers
\[A_\parallel(x) = \nabla \frac{1}{\sqrt{2}} \nabla \cdot A(x), \quad A_\perp(x) = A - A_\parallel(x) \]
on one can also write as
\[\psi'(x) = \exp \left[-e \int_{-\infty}^{x} \left(\nabla_z \frac{1}{\sqrt{2}} \nabla_z \cdot A(x^0, z) \right) \cdot dz \right] \psi(x) \]
\[= \exp \left[-ie \frac{\nabla \cdot A}{\sqrt{2}}(x) \right] \psi(x) \]

path-independence is self-evident!

Note that \(\psi'(x) \) is nothing but the GI physical electron introduced by Dirac!

Using the same function \(\Lambda(x) \), the GI potential \(A'_\mu(x) \) becomes
\[A'(x) = A_\perp(x) \]
\[A'^0(x) = A^0(x) + \int_{-\infty}^{x} A_\parallel(x^0, z) \cdot dz \]

One reconfirms that the physical component of the spatial part of the photon field is nothing but the familiar transverse component.
Using a constant 4-vector n^μ, we introduce the following decomposition:

$$A_\mu(x) = A_\mu^{\text{phys}}(x) + A_\mu^{\text{pure}}(x) \equiv (P_{\mu\nu} + Q_{\mu\nu}) A^\nu(x)$$

with

$$P_{\mu\nu} = g_{\mu\nu} - \frac{\partial_\mu n_\nu}{n \cdot \partial}, \quad Q_{\mu\nu} = \frac{\partial_\mu n_\nu}{n \cdot \partial}$$

These two components satisfy the important properties:

$$n^\mu A_\mu^{\text{phys}}(x) = 0, \quad \partial_\mu A_\nu^{\text{pure}}(x) - \partial_\nu A_\mu^{\text{pure}} = 0$$

Now, we propose to take

$$\Lambda(x) = - \int_{-\infty}^{x} A_\mu^{\text{pure}}(z) dz^\mu$$

and define the GI electron and photon fields by

$$\psi'(x) \equiv e^{i \Lambda(x)} \psi(x)$$

$$A_\mu'(x) \equiv A_\mu(x) + \partial_\mu \Lambda(x)$$
Note that, by using the Stokes theorem in 4 space-time dimension, we have

\[\int_L A_\mu^{\text{pure}}(z) \, dz^\mu = \frac{1}{2} \int \int_S (\partial_\mu A_\nu^{\text{pure}} - \partial_\nu A_\mu^{\text{pure}}) \, d\sigma^{\mu\nu} = 0 \]

so that \(\Lambda(x) \) turns out to be path-independent. In fact,

\[\Lambda(x) = -\int_{-\infty}^\infty \frac{\partial^z n_\nu}{n \cdot \partial^z} A^\nu(z) \, dz^\mu \]

\[= -\int_{-\infty}^x \partial^z \left\{ \frac{n \cdot A(z)}{n \cdot \partial^z} \right\} \, dz^\mu = \frac{n \cdot A(x)}{n \cdot \partial} \]

The GI electron and photon fields are then reduced to

\[\psi'(x) = e^{i \frac{n \cdot A(x)}{n \cdot \partial}} \psi(x) \]

\[A'_\mu(x) = \left(g_{\mu\nu} - \frac{\partial_\mu n_\nu}{n \cdot \partial} \right) A^\nu(x) = A_{\mu}^{\text{phys}}(x) \]

\[n^\mu A_{\mu}^{\text{phys}} = 0 \quad \Rightarrow \quad \text{gauge-fixing cond. in general axial gauge} \]
[Important remarks]

These two examples show that the form of $A^\text{phys}_\mu(x)$ is not in fact unique. It is expressed in several different forms, which is not unrelated to the fact that there are many gauge-fixing procedures corresponding to different Lorentz frame choice.

Nevertheless, standard belief is that, as far as we handle the gauge- and Lorentz-invariant quantity in a standard sense, the final prediction should be the same!

[Our central question]

Is the gluon spin term appearing in the longitudinal nucleon spin sum rule such a quantity with standard GI or not?

To answer this question, we must generalize the construction of $A^\text{phys}_\mu(x)$ to the nonabelian gauge theory.

We point out that, in the past, tremendous efforts have been made to figure out the 2 physical components of the gauge field.
Geometrical construction by Ivanov, Korchemsky, and Radyushkin (1985, 1986)

In their formulation, the gauge-covariant gluon field can be constructed in the form

\[A^g_{\mu}(x) = A_\nu(x_0) \frac{\partial x_0^\nu}{\partial x_\mu} - \int_{x_0}^{x} dz^\nu \frac{\partial z^\rho}{\partial x_\mu} W_C(x_0, z) F_{\nu\rho}(z ; A) W_C(z, x_0) \]

where

\[W_C(x, x_0) \equiv P \exp \left[i g \int_{x_0}^{x} dz^\mu A_\mu(z) \right] \]

is a Wilson line with \(z(s) \) being a path \(C \) in the 4-dimensional space-time with

\[z^\mu(s = 1) = x^\mu, \quad z^\mu(s = 0) = x_0^\mu \]

One should clearly keep in mind the fact that \(A^g_{\mu}(x) \) so constructed is generally dependent of the choice of path \(C \).

However, these authors clearly recognize the fact that the choice of path in the geometrical formulation corresponds to the choice of gauge-fixing procedure.
It was also shown that, with some natural choices of paths, the above way of fixing the gauge is equivalent to taking gauges satisfying the condition:

$$W_C(x, x_0) = P \exp \left[i g \int_{x_0}^{x} dz^\mu A^g_\mu(z) \right] = 1$$

This class of gauge is called the **contour gauge** and it is shown to have an attractive feature that they are **ghost-free**.

contour gauge ⊆ Fock-Schwinger, Hamilton, and axial gauges

The axial gauge corresponds to taking an infinitely long straight-path:

$$z^\mu(s) = x^\mu + s n^\mu \quad (0 < s < \infty)$$

with $$n^\mu$$ being a constant 4-vector characterizing the direction of path.

This gives

$$A^g_\mu(x) = n^\nu \int_0^\infty W^\dagger_C(x + n s, \infty) F_{\mu\nu}(x + n s ; A) W_C(x + n s, \infty)$$

with

$$W_C(x, \infty) = P \exp \left(i g \int_0^\infty ds n^\mu A_\mu(x + n s) \right)$$
Using \(F_{\nu \mu} = - F_{\mu \nu} \), one can easily convince that
\[
n^\mu A^g_\mu = 0
\]
This is nothing but the gauge-fixing condition in general axial gauge.

Since \(n^\mu \) is an arbitrary constant 4-vector, it contains several popular gauges:

\[
\begin{align*}
n^\mu &= (1, 0, 0, 0) \quad \Rightarrow \text{temporal gauge} \\
n^\mu &= (1, 0, 0, 1) / \sqrt{2} \quad \Rightarrow \text{light-cone gauge} \\
n^\mu &= (0, 0, 0, 1) \quad \Rightarrow \text{spatial axial gauge}
\end{align*}
\]

Since our main interest here is to show the traditional gauge-invariance of the evolution equation of the longitudinal gluon spin, we inspect the perturbative (lowest order) contents of the defining equation of \(A^\text{phys}_\mu (x) \equiv A^g_\mu (x) \)

\[
A^\text{phys}_\mu (x) \simeq n^\nu \int_0^\infty ds \left(\partial_\mu A_\nu (x + n s) - \partial_\nu A_\mu (x + n s) \right)
\]

Introducing the Fourier transform \(\tilde{A}_\mu (k) \) of \(A_\mu (x) \), we can show
\[
A^\text{phys}_\mu (x) \simeq n^\nu \int_0^\infty \int \frac{d^4 k}{(2 \pi)^4} e^{i k \cdot (x + n s)} \left(i k_\mu \tilde{A}_\nu (k) - i k_\nu \tilde{A}_\mu (k) \right)
\]

\[
= \int \frac{d^4 k}{(2 \pi)^4} \left(g_{\mu \nu} - \frac{k_\mu n_\nu}{k \cdot n} \right) \tilde{A}_\nu (k) = \left(g_{\mu \nu} - \frac{\partial_\mu n_\nu}{n \cdot \partial} \right) A^\nu (x)
\]
This gives the lowest order expression for the physical gluon propagator

\[\langle T (A_{\mu,a}^{phys}(x) A_{\nu,b}^{phys}(y)) \rangle(0) = \int \frac{d^4k}{(2\pi)^4} e^{ik(x-y)} \frac{-i\delta_{ab}}{k^2 + i\epsilon} P_{\mu\nu}(k) \]

with

\[P_{\mu\nu}(k) = g_{\mu\nu} - \frac{k_\mu n_\nu + n_\mu k_\nu}{k \cdot n} + \frac{n^2 k_\mu k_\nu}{(k \cdot n)^2} \]

free gluon propagator in general axial gauge

In this way, the path dependence or direction dependence in the geometric formulation is replaced by the gauge dependence in the general axial gauge.

In this setting, the gluon spin operator reduces to

\[M_{G-spin}^{\lambda\mu\nu} = 2 \text{Tr} \left[F^{\lambda\nu} A^{\mu} - F^{\lambda\mu} A^{\nu} \right] \]

where \(A^{\mu} \) in this expression should be regarded as the physical gluon field satisfying the general axial gauge condition \(n^{\mu} A_\mu = 0 \).
5. Evolution equation for the quark and gluon spin in general axial gauge

The starting covariant relation

\[\langle P s \mid M^{\lambda\mu\nu}(0) \mid P s \rangle = J_N \frac{P_\rho s_\sigma}{M_N^2} \left[2 P^\lambda \epsilon^{\nu\mu\rho\sigma} - P^\mu \epsilon^{\lambda\nu\rho\sigma} - P^\nu \epsilon^{\mu\lambda\rho\sigma} \right] \]

Without loss of generality, we can take as

\[P^\mu = (P^0, 0, 0, P^3) \quad \text{and} \quad s^\mu = (P^3, 0, 0, P^0) \quad \text{with} \quad P^0 = \sqrt{(P^3)^2 + M_N^2} \]

The **longitudinal nucleon spin sum rule** is obtained by setting \(\mu = 1, \nu = 2 \) and contracting with the constant 4-vector \(n_\lambda \), which gives

\[J_N = \frac{1}{2} = \frac{\langle P s \mid n_\lambda M^{\lambda12}(0) \mid P s \rangle}{2 P \cdot n} \]

An important fact is that this last equation is **no longer a covariant relation**.

The quantity \(n_\lambda \) appearing in this equation should then be identified with the 4-vector that characterizes the **Lorentz-frame**, in which the gauge-fixing condition \(n^\mu A_\mu = 0 \) is imposed.
We have calculated the 1-loop anomalous dimension of the above gluon spin operator, and found that it reproduces the commonly-known answer:

\[
\begin{pmatrix}
\Delta \gamma_{qq} & \Delta \gamma_{qG} \\
\Delta \gamma_{Gq} & \Delta \gamma_{GG}
\end{pmatrix}
= \begin{pmatrix}
0 & \frac{\alpha_s}{2\pi} \cdot \frac{3}{2} C_F \\
\frac{\alpha_s}{2\pi} \cdot \frac{11}{6} C_A - \frac{1}{3} n_f & 0
\end{pmatrix}
\]

irrespectively of the choice of \(n^{\mu} \)!

Although this is a proof within a restricted class of gauge, i.e. the general axial gauge, characterized by a constant 4-vector \(n^{\mu} \), it strongly indicates that the gluon spin term in the longitudinal nucleon spin sum rule is a gauge-invariant quantity in a true or traditional sense.

This is a welcome conclusion, because it means that there is no conceptual discrepancy between the observability of the nucleon spin decomposition (I) and the general principle of gauge invariance.

The spatial axial gauge choice \(n^{\mu} = (0, 0, 0, 1) \) may be particularly useful for lattice QCD calculation of \(\Delta G \), since it contains no time component.
Possible basis of lattice QCD calculation

\[\Delta G = \frac{\langle Ps | n_\lambda M_{G-s_{pin}}^{\lambda 12}(0) | Ps \rangle}{2 P \cdot n} \]

with

\[M_{G-s_{pin}}^{\lambda \mu \nu} = 2 \text{Tr} \left[F^{\lambda \nu} A^\mu - F^{\lambda \mu} A^\nu \right] \]

Here \(A^\mu \) in this expression is the physical gluon field satisfying the spatial axial gauge condition

\[n_\mu A^\mu = 0, \quad n^\mu = (0, 0, 0, 1) \]

with some appropriate boundary condition at

\[x^3 = \pm \infty \]
6. Conclusion

We have carried out a detailed comparison of the two fundamentally different approaches to the nucleon spin decomposition problems.

GIE approach \[\leftrightarrow\] gauge-fixing approach

If both give the same answer, there is no practical problem. However, if they give different answers, one must stop and think it over.

In my opinion, conceptually legitimate is the latter approach. For, there is only 1 color gauge symmetry of QCD, which is present from the start.

This gauge symmetry is rather freedoms to be eliminated by gauge-fixing procedures rather than to be gained by extension.

This general consideration gives a support to our claim that there are only 2 physically inequivalent GI decompositions (I) and (II) of the nucleon spin.
Nontrivial problems in the Coulomb gauge calculation of evolution matrix

- Lorentz-frame dependence?
- Role of instantaneous Coulomb interaction?
- Coulomb-gauge Ward-identity requires ghost field!
- Ambiguous nature of loop-integral?

Sophisticated regularization method like split dimensional regularization of Leibbrandt?

\[d^4 q = dq_4 d^3 q \Rightarrow d^2 \sigma d^2 \omega q \Big|_{\sigma \rightarrow (1/2)^+ \omega \rightarrow (3/2)^+} \]

- Might need some sophisticated limiting procedure?

Coulomb-gauge limit of interpolating gauge between the Coulomb gauge and the Landau gauge etc.?
Important remark

It may sound paradoxical, but what contains an extra interaction term is rather the "canonical" angular momentum than the "mechanical" angular momentum!

It is a wide-spread belief that, among the following two quantities:

$$L_{can} = r \times p \quad \iff \quad L_{mech} = r \times (p - eA_{\perp})$$

what is closer to physical image of orbital motion is the former, because the latter appears to contain an extra interaction term with the gauge field!

The fact is just opposite!

$$L^{\text{\"can\"}} = \begin{cases} L_{mech} \\ \sum_i m_i r_i \times \dot{r}_i \end{cases} + \sum_i r_i \times q_i A_{\perp}(r_i) \quad + \quad \int d^3r \, r \times (E_{\parallel} \times B_{\perp})$$

orbital motion!

- It is the "mechanical" angular momentum L_{mech} not the "canonical" angular momentum $L^{\text{\"can\"}}$ that has a natural physical interpretation as orbital motion of particles!

- It may sound paradoxical, but what contains an extra interaction term is rather the "canonical" angular momentum than the "mechanical" angular momentum!
Nuclear spin decomposition problem

It is not a well-defined problem, because of the ambiguities of nuclear force.

\[H = \sum_i \frac{p_i^2}{2m} + \sum_{i<j} V_{NN}(r_i - r_j) \]

To explain it, let us consider the deuteron, the simplest nucleus.

\[\psi_d(r) = E \psi_d(r) \]

\[\psi_d(r) = \left[u(r) + \frac{S_{12}(\vec{r})}{\sqrt{8}} w(r) \right] \frac{\chi}{\sqrt{4\pi}} \]

deuteron w.f. and S- and D-state probabilities

\[P_S = \int_0^\infty u^2(r) r^2 dr, \quad P_D = \int_0^\infty w^2(r) r^2 dr \]

angular momentum decomposition of deuteron spin

\[1 = \langle J_3 \rangle = \langle L_3 \rangle + \langle S_3 \rangle = \frac{3}{2} P_D + \left(P_S - \frac{1}{2} P_D \right) \]
We however know the fact that the **D-state probability is not a direct observable**!

- R.D. Amado, Phys. Rev. C20 (1979) 1473.
- J.L. Friar, Phys. Rev. C20 (1979) 325.

♣ **2-body unitary transformation** arising in the theory of meson-exchange currents can change the **D-state probability**, while keeping the deuteron observables intact.

♣ **The ultimate origin is arbitrariness of short range part of NN potential.**

 infinitely many phase-equivalent potential!

♣ The **D-state probability**, for instance, depends on the **cutoff of short range physics** in an **effective theory** of 2-nucleon system.

 • S.K. Bogner et al., Nucl. Phys. A784 (2007) 79.

 See the figure in the next page!
Deuteron **D-state probability** in an effective theory (Bogner et al., 2007)

![Graphs showing D-state probability, binding energy, and asymptotic D/S ratio](image)

Fig. 57. D-state probability P_D (left axis), binding energy E_d (lower right axis), and asymptotic D/S-state ratio η_d (upper right axis) of the deuteron as a function of the cutoff [6], starting from (a) the Argonne v_{18} [18] and (b) the N3LO NN potential of Ref. [20] using different smooth V_{lowk} regulators. Similar results are found with SRG evolution.

Note that the **asymptotic D/S ratio** corresponds to observables, although the **D-state probability** not!