Contribution of the simulation in the training of the 7th grade medical students in the insertion of the interval intra-uterine device

CURRENT STATUS: POSTED

Sibraogo Kiemtoré
Training and Research Unit in Health, University Joseph Ki-Zerbo, Ouagadougou, 03 BP 7021 Ouagadougou, Burkina Faso

s3kiemtore@yahoo.fr Corresponding Author
ORCiD: https://orcid.org/0000-0002-4470-5534

Issa Ouédraogo
School of Health Sciences, Polytechnic University of Ouahigouya, BP 36, Burkina Faso.

Rodrigue Sansan Sib
School of Health Sciences, Polytechnic University of Ouahigouya, BP 36, Burkina Faso

Evelyne Komboigo
Yalgado Ouedraogo Teaching Hospital, Ouagadougou, 03 BP 7022

Wendyam Charles Paulin Didier Kaboré
Institute of Research in Health Sciences, Ouagadougou BP 7192

Ali Ouédraogo
Training and Research Unit in Health Sciences, University Joseph Ki-Zerbo, Ouagadougou, 03 BP 7021, Burkina Faso

Blandine Bonané
Training and Research Unit in Health Sciences, University Joseph Ki-Zerbo, Ouagadougou, 03 BP 7021

DOI: 10.21203/rs.2.9767/v1

SUBJECT AREAS
Internal Medicine

KEYWORDS
insertion, IUD, simulation
Abstract
Introduction A simulation laboratory has been set up in the Department of Obstetrics and Gynaecology at Yalgado Ouedraogo Teaching Hospital. The objective of this study was to evaluate the role of the simulation in training of 7th grade students on interval IUD insertion. Material and method
This was an evaluation study of skills before and after training that included 38 students of 7th grade medicine. Pre-training knowledges and skills were compared to those based on training using the paired Student test with a 5% significance level. Perceptions and suggestions for improvement of training made by students were collected. Results The sex of the study participants was 1.1. Their average age was 26.8 ± 0.9 years. The training increased the average knowledges score from 48.2% to 93.0% (p<0.001). The average skills score increased from 34.4% to 92.8% (p<0.001). The 7th grade medicine students had a good perception of this training. Conclusion The training of 7th grade medicine students in IUD insertion using simulation had a positive impact on their knowledges and skills and was well appreciated.

Background
In Burkina Faso maternal and neonatal morbidity and mortality are high 1. One of the pillars retained by the country for the reduction of this health problem is family planning (FP). Among FP methods, the intrauterine device (IUD) offers the best cost-benefit ratio 2,3. Burkina Faso has opted to promote this method but its insertion requires a technical nature requiring quality training. Interval insertion of IUD is done after the first 42 days after delivery.

In the curriculum for general practitioners, a theoretical lesson followed by a practice in on family planning is given to students in grade 5. Then the students in grade 7 benefit from a clinical internship in obstetrics and gynaecology. Since 13 July 2018, the Department of Obstetrics and Gynaecology (DOG) at the Yalgado Ouedraogo University Hospital Center (UHC-YO) has been equipped with a skills’ laboratory. This laboratory provides an opportunity for students to acquire skills on anatomical models before practicing on real patients. The objective of this study was to evaluate the contribution of simulation in training 7th grade students on the interval IUD insertion. The specific objectives were to determine the impact of simulation in acquiring skills for interval IUD
insertion and to describe trainees' perceptions of simulation in skills acquisition.

Methods
This was an evaluation of an intervention study. The skills before and after training included 38 students of 7th grade medicine were analysed. It was a cross-sectional study that evaluated the impact of training using an anatomical model. It took place from 02 to 28 February 2019 in the skills’ laboratory in the DOG of UHC-YO. This skills’ laboratory has 5 stations to learn about fifteen clinical skills. The study involved 38 grade 7 students assigned to the DOG for their practical training. The variables collected were the socio-demographic characteristics of the students, the knowledge variables namely the ability to check the contraindications of IUD insertion: absence of pregnancy or uterine anomaly, cervical dysplasia, acute pelvic inflammatory disease, untreated acute cervicitis or vaginitis before insertion of the interval IUD. The participants’ knowledges of the equipment for interval IUD insertion, of the order of the gynaecological examination preceding the interval IUD insertion, the interval IUD insertion procedure, interval IUD efficacy were also collected. The variables used for the assessment of skills were the mastery of the steps of interval IUD insertion, the respect of the order of execution of the steps of the interval IUD insertion. The variables for assessing the perception of interest of the skills’ laboratory were the answers to the following statements: “the skills’ laboratory is a good learning tool» and «the skills lab helped me in acquiring proficiency for interval IUD insertion». The students had to use the Likert scale 4 as follows to give their views in relation to each of statements: not at all agree = 1 ; not agree = 2 ; neither disagree nor agree = 3 ; agree = 4 ; totally agree = 5.

After explaining to the students, the course of interval IUD training, a standardised cognitive pre-test was administered to them. Then each student was observed to insert an IUD on an anatomical model. Using the structured observational fiche, the teacher gave a score for the practice. The addition of the cognitive score and the observational score for interval IUD insertion allowed an overall score for each student. Then, the students were distributed into 4 groups of 12 to 13. Each group received a theoretical course recalling the mechanism of action of the copper IUD, the stages of its insertion and specific counseling to this contraception method. Using a standardization fiche, teachers
demonstrated the interval IUD insertion. Then by subgroup of 6, the students practiced for 4 hours under a teacher’s guide, always using the standardization fiche. After all students in all groups benefited the training, a theoretical and practical assessment using the same questionnaire and the same observational fiche was conducted.

Data collected from the study were recorded in the Microsoft Office Excel 2010 and subsequently analyzed using Epi Info version 7 software package. Performance scores obtained before and after training were compared using the paired Student’s t test. A difference was considered significant if p < 0.05. At the operational level, we defined:

- good performance level if overall score ≥ 85%.
- middle level performance if 50 < overall score < 65
- insufficient level of performance if overall score ≤ 50.

After obtaining informed written consent, the data were collected anonymous. The confidentiality of the data has been respected. Because the study is part of a normal training process for students and not a medical research involving human subjects, the agreement of the ethics committee is not required in accordance with Helsinki’s declaration.

Results

Study population socio-demographic characteristics

The students average age was 26.8 ± 0.9 years. The extreme ages were 25 and 29 years old. Among the 38 students, 20 (52.6%) were male. The sex ratio was therefore 1.1. In terms of nationality, there were 31 (81.6%) Burkinabe. Thirty students had completed their secondary education in Benin, four in Ivory Coast, two in Chad, and two in Cameroon.

Results of before formation assessment

Thirty-eight (38) 7th grade students participated in this initial assessment. The average score was 48.2% for theoretical knowledge with extremes of 22.2% and 88.9%. The mean score for the initial evaluation of interval IUD insertion on an anatomical model was 34.4%. The extreme scores were 0%
and 66.7%. The figure 1 shows the results of the answer to each theoretical question and practice per student on a color scale. Red is the most bad result and green to the best result. The intermediate results are in orange.

Results of after formation assessment

All the 38 grade 7 students took part in the training assessment. The mean for theoretical knowledge score was 93.0 ± 6.4 %. The extreme scores were 77.8 % and 100.0 %.

All 38 grade 7 students took part of after training assessment on infernal UID insertion using anatomical model. The average score was 92.8 % with extreme scores of 63.6 % and 100 %.

Figure 2 shows the results of the answer to each theoretical question and the practice per student on a colour scale.

Figure 3 compares the average scores by grade 7 student in the assessment of theoretical knowledges before and after training. The theoretical knowledge score was higher after training that before it. The difference was statistically significant. Figure 4 compares the average scores obtained by 7th grade students in the assessment of skills on anatomical model before and after training. The skills’ score was higher after training that before it. The difference was statistically significant.

Perceptions of training with anatomical model by 7th grade students.

Table 1 gives the responses of 7th grade students at the assertion "skills laboratory is a good learning tool". Ninety-seven-point four percent (97.4%) of 7th grade students either agreed or strongly agreed with the statement. Table 2 gives the responses of 7th grade students to the assertion "the skills’ laboratory helped me in acquiring skills for the interval IUD insertion". All 7th grade students were either agreed or strongly agreed with the statement.

Discussion

Strengths and weaknesses of the study

The purpose of this study was to evaluate the impact of the training on the improvement of trainees'
knowledge and skills on the insertion of the interval IUD. One of the weaknesses of the study is that it did not take into account all 7th grade students of the promotion. In fact, not all trainees are doing the Obstetrics Gynaecology stage at the same time. They are divided into several groups and each group does their internship for 3 months. Another weakness is the simulation tool used which does not allow a perfect reproduction of the reality of interval IUD insertion in a real woman. Despite these weaks, the study has a strength in that it has an analytical study which compared knowledge and skills of 7th grade students before and after training. In addition, the assessment was done by the same teachers thus reducing the risk of variability of appreciation.

Impact of training using simulation for skills’ acquisition.

Our study showed how a short theoretical training followed by the use of simulation on anatomical model can help the acquisition of knowledge and clinical skills. Martineau and al 5 have shown that learners’ feedback facilitates the learning of complex gestures. In our study, this feedback was made by peers (the other 7th grade students) and teachers. The use of the learning card has allowed the standardization of clinical competence. The initial level of knowledge and clinical skills of our 7th grade students was very insufficient and required a good training and supervision. The acquisition of complex gestural skills such as the insertion of an interval IUD requires progressive learning. According to the model of Fitts and Posner 6, the first phase is cognitive learning each elemental step of the skill. The theoretical presentation and the demonstration done by the teachers allowed this elementary learning of the steps of insertion of the interval IUD. This phase also requires the attention of the learner who must follow the steps and memorize them. The second phase is the assimilation that allows to move from the knowledge of the elementary stages to a sequence of coordinated elementary gestures. This phase therefore requires good concentration on the part of the learners and careful monitoring by the teachers. The third phase is that of automation. During this phase, the learner will progressively empower the sequence of elementary steps. In our study, the use of anatomical model probably facilitated these steps. Indeed, the anatomical model being an inanimate
object, the learner is less afraid of failing and harming the health of a person. The effectiveness of simulation in the acquisition of complex skills has been demonstrated by few studies 7-11. The dogma "observe, realize, teach" becomes "observe once, simulate many times, perform once with skill and teach everyone" 12,13. Our results have shown a clear improvement in knowledge and skills by using simulation on anatomical model. It is therefore essential that training be continued on humans in the family planning unit. This last phase of human training to achieve proficiency can be short because of prior training on an anatomical model. This teaching was punctual as part of the study. As the results suggest that it was beneficial, it would be interesting to do this type of training for all garde students for the main procedures in obstetrics and gynecology. Achieving this objective requires a great challenge of financial, material and human resources that are difficult to mobilize by african universities whose budgets are often very limited.

Currently, the assessment of medical students focuses on theoretical knowledge. The assessment on the procedures are not made or are considered erroneously acquired at the end of courses. In this context, the results of this study have two interests. First, its provided evidence that the simulation on anatomical model allows the acquisition of skills and must be developed. Secondly, it is usable for assessing the skills of students. For these reasons, the anatomical models can be used in the acquisition of skills in the curriculum of training and for evaluation as suggested Bashankaev et al and Munshi et al 14,15.

Perceptions of 7th grade students about the usefulness of the simulation.

The students of grade 7 had a good appreciation of the training by simulation using the anatomical model in the clinical skills laboratory. All recognized that this laboratory has been of great help to them in acquiring clinical skills. Other authors like Lemay et al, Nash and Harvey, Falloon, and Juhary also found that learners appreciate the use of simulators in their training 7,16-18. This positive perception by the learners is a factor of good attendance at teaching sessions. In our study, all 7th grade students who started training completed this.

Conclusion
Our study population included 7th grade students. The training of these students on the insertion of the IUD using an anatomical model allowed a clear improvement of their knowledge and skills. This training was well appreciated by these students. For these reasons, the simulation on anatomical models can be promoted in the medical schools. Simple anatomical models can be used in low-income countries.

Abbreviations

DOG = Department of Obstetrics and Gynaecology; FP = Family Planning; IUD = Intra Uterine Device; UHC-YO = University Hospital Center Yalgado Ouedraogo.

Declarations

Ethics approval and consent to participate: Not applicable.

Consent for publication: Not applicable.

Availability of data and materials. Data are available and can be sent by corresponding author on request.

Funding: Not applicable.

Authors’ contributions: SK and IO conceptualized the study design and defined the analytical model. SK and RSS drafted the manuscript. EK, AO, WCPDK and BB made useful critique of this manuscript. All authors read and approved the final manuscript.

Competing interests: The authors have no competing interests.

Acknowledgements: The authors thank Jhpiego for the building and equipment of competences’ laboratory in UHC-YO.

References

1. Institut National des Statistiques et de la Démographie (INSD). Enquête modulaire démographie et santé (EMDS) 2015 du Burkina Faso. Ouagadougou, Burkina Faso; 2016.

2. Cleland J, Ali M, Benova L, Daniele M. The promotion of intrauterine contraception in low- and middle-income countries: a narrative review. Contraception. 2017;95(6):519–28.

3. Jatlaoui TC, Riley HEM, Curtis KM. The safety of intrauterine devices among young women: a systematic review. Contraception. 2017;95(1):17–39.

4. Joshi A, Kale S, Chandel S, Pal D. Likert Scale: Explored and Explained. Br J Appl Sci Technol.
5. Martineau B, Mamede S, St-Onge C, Bergeron L. The Influence of Peer Feedback on the Acquisition of Physical-Examination Skills. Heal Prof Educ. 2016;2(2):106-13.

6. Fitts PM, Posner MI. Human performances. Greenwood. Université de l’État de Pennsylvanie, USA; 2011. 162 p.

7. Lemay DJ, Morin MM, Bazelais P, Doleck T. Modeling Students’ Perceptions of Simulation-Based Learning Using the Technology Acceptance Model. Clin Simul Nurs. 2018;20:28-37.

8. Grober ED, Hamstra SJ, Wanzel KR, Reznick RK, Matsumoto ED, Sidhu RS, et al. Laboratory based training in urological microsurgery with bench model simulators: a randomized controlled trial evaluating the durability of technical skill. J Urol. 2004;172(1):378-81.

9. Denadai R, Oshiiwa M, Saad-Hossne R. Does bench model fidelity interfere in the acquisition of suture skills by novice medical students? Rev Assoc Med Bras. 2012 Sep;58(5):600-6.

10. Tang KN. The importance of soft skills acquisition by teachers in higher education institutions. Kasetsart J Soc Sci. 2018;2-7.

11. Hofmann B. Why simulation can be efficient : on the preconditions of efficient learning in complex technology based practices. BMC Med Educ. 2009;9:48.

12. Bittner JG, Coverdill JE, Imam T, Deladisma AM, Edwards MA, Mellinger JD. Do Increased Training Requirements in Gastrointestinal Endoscopy and Advanced Laparoscopy Necessitate a Paradigm Shift? A Survey of Program Directors in Surgery. J Surg Educ. 2008;65(6):418-30.

13. Langhan TS. Formation par simulation pour les résidents en médecine d’urgence : c’est le temps d’aller de l’avant. CJEM. 2008;10:470-3.

14. Bashankaev B, Baido S, Wexner SD. Review of available methods of simulation training to facilitate surgical education. Surg Endosc. 2011;25:28-35.

15. Munshi F, Lababidi H, Alyousef S. Low- versus high-fidelity simulations in teaching and assessing clinical skills. J Taibah Univ Med Sci. 2015;10(1):12-5.

16. Juhary J. Making Sense of e-Learning and Simulations: The Misunderstood Perceptions. Procedia - Soc Behav Sci. 2013;67(November 2011):229-37.
17. Nash R, Harvey T. Student Nurse Perceptions Regarding Learning Transfer Following High-Fidelity Simulation. Clin Simul Nurs. 2017;13(10):471–7.

18. Falloon G. Using simulations to teach young students science concepts: An Experiential Learning theoretical analysis. Comput Educ. 2019;135:138–59.

Tables

Table 1: 7th grade students' responses to the statement "The skills' laboratory is a good learning tool".

Answers (Likert scale)	Numbers	Percentage
1	0	0
2	0	0
3	1	2.6
4	16	42.1
5	21	55.3
Total	38	100.0

Table 2: the 7th grade students' responses to the assertion "the skills laboratory helped me in acquiring competence for interval IUD insertion"

Answers (Likert scale)	Numbers	Percentage
1	0	0
2	0	0
3	0	0
4	10	26.3
5	28	73.7
Total	38	100.0%

Figures
Figure 1
Evaluation results by student and question before training.

Figure 2
Assessment results by student and by question after training

Figure 3
Mean of theoretical knowledge score of 7th grade students before and after training

Figure 4
Average score of skills on anatomical model of 7th grade students before and after training.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.
STROBE_checklist apport labo rempli.pdf