Rescue therapies for seizure clusters: Pharmacology and target of treatments

Barry Gidal¹ | Kamil Detyniecki²

¹School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin, United States
²Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, United States

Abstract
The primary goal of treatment for seizure clusters is cessation of the cluster to avoid progression to more severe conditions, such as prolonged seizures and status epilepticus. Rescue therapies are key components of treatment plans for patients with seizure clusters. Three rescue therapies are approved in the United States for the treatment of seizure clusters: diazepam rectal gel, midazolam nasal spray, and diazepam nasal spray. This review characterizes the pharmacological function of rescue therapies for seizure clusters, as well as describing γ-aminobutyric acid A (GABA_A) receptor functions. GABA_A receptors are heteropentamers, consisting primarily of α1-6, β1-3, γ2, and δ subunits in the central nervous system. These subunits can traffic to and from the membrane to regulate membrane potential. Benzodiazepines, such as diazepam and midazolam, are positive allosteric modulators of GABA_A receptors, the activation of which leads to an increase in intracellular chloride, hyperpolarization of the cell membrane, and a reduction in excitation. GABA_A receptor subunit mutations, dysregulation of trafficking, and degradation are associated with epilepsy. Although benzodiazepines are effective GABA_A receptor modulators, individual formulations have unique profiles in practice. Diazepam rectal gel is an effective rescue therapy for seizure clusters; however, adults and adolescents may have social reservations regarding its administration. Intranasal delivery of midazolam or diazepam is a promising alternative to rectal administration because these formulations offer easy, socially acceptable administration and exhibit a rapid onset. Off-label benzodiazepines, such as orally disintegrating lorazepam and intranasal use of an intravenous formulation of midazolam via nasal atomizer, are less well characterized regarding bioavailability and tolerability compared with approved agents.

KEYWORDS
acute repetitive seizures, epilepsy, seizure emergency
INTRODUCTION

Rescue therapy is a critical component of seizure cluster management, both to reduce the risks of prolonged seizures and to prevent the progression to status epilepticus.1–3 Moreover, effective rescue therapy is important to reduce the need for emergency services as well as the clinical and quality-of-life burdens of seizure clusters for patients, family members, and caregivers/care partners (please see Kapur et al, Consequences: Bench to Home4 for further discussion on the impact of seizure clusters). Ideal rescue therapies should be easy and safe to administer, be effective at small doses (with a large therapeutic index), and exhibit rapid onset of action that can be sustained for several hours.5

Three rescue therapies are approved by the US Food and Drug Administration (FDA) for the acute treatment of intermittent, stereotypic episodes of frequent seizure activity (i.e., seizure clusters, acute repetitive seizures) that are distinct from the usual seizure pattern in patients with epilepsy (Table 1)6–8 (please see Haut and Nabbout, Recognizing Seizure Clusters in the Community: The Path to Uniformity and Individualization in Nomenclature and Definition9 for further discussion on seizure cluster definitions in this issue). Diazepam rectal gel (Diastat) was approved for patients ≥2 years of age in 1997.6 Midazolam nasal spray (Nayzilam) was approved in May 2019 for patients ≥12 years of age.7 Most recently, diazepam nasal spray (Valtoco) was approved in January 2020 for patients ≥6 years of age.8

Before FDA approval of diazepam rectal gel, parenteral diazepam, which was intended for use in emergency medical settings, may have been offered to caregivers for outpatient rectal administration, posing risks of dosing errors and safety concerns.10–12 The efficacy and safety of diazepam rectal gel for the treatment of seizure clusters were later established in pivotal clinical trials with randomized, double-blind, placebo-controlled designs collectively demonstrating significant reduction in seizure frequency along with acceptable safety and tolerability (with somnolence as the most common adverse event but without respiratory depression).12,13

Table 1 Approved treatments for seizure clusters

Treatment	Age and weight-based dosing		
Diazepam rectal gel	Age 2–5 years (0.5 mg/kg)	Age 6–11 years (0.3 mg/kg)	Age 12+ years (0.2 mg/kg)
6–10 kg, 5 mg	10–16 kg, 5 mg	14–25 kg, 5 mg	
11–15 kg, 7.5 mg	17–25 kg, 7.5 mg	26–37 kg, 7.5 mg	
16–20 kg, 10 mg	26–33 kg, 10 mg	38–50 kg, 10 mg	
21–25 kg, 12.5 mg	34–41 kg, 12.5 mg	51–62 kg, 12.5 mg	
26–30 kg, 15 mg	42–50 kg, 15 mg	63–75 kg, 15 mg	
31–35 kg, 17.5 mg	51–58 kg, 17.5 mg	76–87 kg, 17.5 mg	
36–44 kg, 20 mg	59–74 kg, 20 mg	88–111 kg, 20 mg	

Diazepam nasal spray	Age 6–11 years (0.3 mg/kg)	Age 12+ years (0.2 mg/kg)
10–18 kg, 5 mg	10–18 kg, 5 mg	14–27 kg, 5 mg
19–37 kg, 10 mg	19–37 kg, 10 mg	28–50 kg, 10 mg
38–55 kg, 15 mg*	38–55 kg, 15 mg*	51–75 kg, 15 mg*
56–74 kg, 20 mg*	56–74 kg, 20 mg*	76+ kg, 20 mg*

| **Midazolam nasal spray** | Age 12+ years |
| All weights, 5 mg |

*Administered using two sprayers from a single blister pack (i.e., two sprays of 7.5 mg for 15 mg total dose or two sprays of 10 mg for 20 mg total dose, one in each nostril).
Despite their ability to improve outcomes, including decreasing risk of progression to prolonged seizures and potential avoidance of emergency room admissions, rescue therapies designed for use by nonmedical caregivers have been historically underused in patients with seizure clusters, particularly in the adult population. Research efforts to develop intranasal formulations faced challenges related to pharmacology, solubility, and bioavailability, thus delaying the introduction of such formulations. Agents using other routes of administration have been used off-label for nonmedical caregiver use (e.g., oral or buccal benzodiazepines, such as midazolam syrup). Lorazepam tablets or liquid and clonazepam orally disintegrating tablets may have been prescribed to adolescents and adults to minimize social concerns in the period when the only approved treatment was rectal diazepam; however, these have not been formally established to be effective specifically for the treatment of seizure clusters in large, well-designed clinical trials. Moreover, oral benzodiazepines possess other challenges, such as the potential for aspiration and biting injury.

\section{Impact of Benzodiazepine Exposure on GABA Receptor Binding and Time to Effectiveness in Seizure Clusters}

\(\gamma\)-Aminobutyric acid A (GABA\(_A\)) receptors are heteropentameric chloride channels, of which eight subunits have been identified (\(\alpha, \beta, \gamma, \delta, \varepsilon, \pi, \theta, \) and \(\rho\)). GABA\(_A\) receptor activation leads to chloride influx, hyperpolarization of the neuronal cell membrane, and a reduction in excitation. Repetitive seizures can attenuate physiological function of GABA\(_A\) receptors through altered subunit localization and trafficking, as well as through disruptions to intracellular chloride homeostasis. Benzodiazepines, positive allosteric modulators of GABA\(_A\) receptors, are used therapeutically to attenuate the high levels of neuronal excitation that occur during a seizure. Physiological function of the GABA\(_A\) receptor is dependent on subunit subtype (e.g., \(\alpha_1, \alpha_2, \) and so on), whereas benzodiazepine-induced modulation of GABA\(_A\) can occur with receptors containing \(\alpha_1, \alpha_2, \alpha_3, \) or \(\alpha_5\) subunits, along with \(\beta\) and \(\gamma_2\) subunits (Figure 1). The type of \(\gamma_2\) isoform expressed (long \(\gamma_2L\) vs. short \(\gamma_2S\) forms) and its characteristics (e.g., phosphorylation status) can modulate GABA\(_A\) receptor currents, synaptic clustering and dispersion, internalization, trafficking, and degradation.

Anxiolytic-like effects are mediated through GABA\(_A\) receptors that contain \(\alpha_2, \alpha_3, \) and/or \(\alpha_5\) subunits but not \(\alpha_1\) subunits. In contrast, locomotor function is attenuated and sedation induced through GABA\(_A\) receptor activation when the \(\alpha_1\) subunit is present in the receptor complex; however, activation of \(\alpha_2, \alpha_3, \) and/or \(\alpha_5\) does not affect locomotor function or sedation.

The majority of benzodiazepines in clinical use are characterized by nitrogen bound to the first and fourth carbons of the diazepine ring (1,4-benzodiazepine, Figure 2A). An exception is the 1,5-benzodiazepine clonazepam (Figure 2B), commonly prescribed for Lennox–Gastaut and Dravet syndromes. Although 1,4- and 1,5-benzodiazepines are both positive allosteric modulators of GABA\(_A\) receptors, the benzodiazepine chemical structure and GABA\(_A\) receptor subunit expression may influence the physiological function of GABA\(_A\) receptors. For example, diazepam, a 1,4-benzodiazepine, elicited similar or marginally higher functional responses in recombinantly expressed human GABA\(_A\) receptors compared with clonazepam and its metabolite N-desmethylclonazepam. The small difference between benzodiazepines to potentiate GABA-induced GABA\(_A\) currents was attributed to the type of \(\alpha\) subunit expressed, with receptors containing \(\alpha_1\) or \(\alpha_2\) subunits exhibiting slightly lower GABA\(_A\) currents in response to clonazepam and N-desmethylclonazepam.

The anticonvulsant mechanism of action for benzodiazepines, although not fully elucidated, involves binding at the benzodiazepine site of the GABA\(_A\) receptor and resultant potentiation of GABAergic neurotransmission. Several factors are known to influence the central nervous system effects of benzodiazepines, including dosing, route of administration, and the presence or absence of other
therapies. Evidence derived from animal models and human studies collectively suggest that epilepsy as a condition (both acute and chronic states) can invoke changes in GABA_A receptor composition and function, which may contribute to tolerance or adverse effects to treatment. Benzodiazepine administration over time has also been associated with reductions in GABA_A receptor subunit expression in animal models, which could contribute to tolerance. However, in a post hoc analysis that examined tolerance effects of clobazam use in patients with Lennox-Gastaut syndrome over a 2-year period, only 12% of patients exhibited tolerance to treatment, as determined by an increase in dose ≥40% in combination with an increase in seizure rates. In addition, evidence suggests that tolerance to intermittent benzodiazepine exposure in patients with seizure clusters is infrequent.

3 | DEVELOPMENT OF APPROVED RESCUE MEDICATIONS

3.1 | Diazepam rectal gel

Diazepam rectal gel (Diastat, Bausch Health US, LLC) was the first rescue therapy approved by the FDA for acute treatment of seizure clusters in patients with epilepsy ≥2 years of age. This formulation is packaged as a prefilled, unit-dose delivery system. Doses range from 5 to 20 mg based on age and weight, with target doses of 0.5 mg/kg (patients ages 2–5 years), 0.3 mg/kg (6–11 years), and 0.2 mg/kg (≥12 years). If needed, a second dose can be administered after 4 h.

Two randomized, double-blind, placebo-controlled studies, including a total of 239 treated patients, showed reduced seizure frequency per hour (p < .001) with diazepam rectal gel. Four patients discontinued treatment owing to an adverse event (AE) in one study; two patients in the diazepam arm (lethargy, rash) and two patients in the placebo arm (sedation, seizure). There were no discontinuations owing to an AE in the other study, and no cases of respiratory depression were reported in either study.

In a long-term safety study (N = 149 treated; 48.3% were ≤11 years of age), 1578 seizure clusters were treated and ~48% of patients participated for ≥2 years. In 23% of treated seizure clusters, further seizures occurred within 12 h of dosing. There was limited provision for a second dose in this study. Somnolence was the most common AE (occurred in 17% of patients and was considered treatment related in 9% of patients), but the investigators noted that it was difficult to distinguish from postictal somnolence. No respiratory compromise or serious AEs were attributed to diazepam rectal gel, and three patients (2%) withdrew owing to AEs possibly related to treatment. When compared to treatment before enrollment in the study, caregivers and investigators were satisfied with diazepam rectal gel treatment at 12- and 24-month follow-up visits. However, despite the efficacy and safety of this rectal formulation, this route of administration is associated with social considerations, and alternative routes of administration were an unmet need, particularly for adolescents and adults.

3.2 | Midazolam nasal spray

Midazolam nasal spray (Nayzilam, UCB, Inc.) is approved by the FDA for the treatment of seizure clusters in patients ≥12 years of age. The drug is packaged in a single-use sprayer with a premeasured 5-mg dose (used for patients of all ages and weights). If needed to control an ongoing cluster, a second dose of midazolam nasal spray can be administered 10 min after the initial dose. For patients at risk of respiratory depression, a test dose is recommended, given under the supervision of a health care professional. The formulation includes the organic solvents ethanol, polyethylene glycol (PEG)-6, methyl ether, PEG-400, and propylene glycol to achieve solubility of the midazolam.

In a double-blind study, 292 patients received an open-label test dose (total of 10 mg of midazolam nasal spray) to assess safety, and 262 patients were subsequently randomized to receive midazolam or placebo, with 201 proceeding with the study drug. During the randomized comparative phase, the primary, composite end point of seizure termination within 10 min of dosing and no further seizures between 10 min and 6 h after treatment was significantly higher in the active drug group compared with placebo (53.7% vs. 34.4%; p = .0109). Thirteen patients discontinued the test dose phase owing to a drug-related treatment-emergent AE (eight owing to sedation-type AEs), including three patients with serious AEs. Two of these three patients had clinically meaningful respiratory depression. During the comparative phase, no patients discontinued owing to an AE, and none had respiratory depression.

\[\text{FIGURE 2 Chemical structures of (A) a 1,4-benzodiazepine (diazepam) and (B) a 1,5-benzodiazepine (clobazam).} \]
In the long-term safety study (N = 161 treated, 5.0% were <18 years of age), 1998 seizure clusters were treated across a median of 16.8 months.32 Second doses were used in 38.5% of clusters to treat seizures that did not terminate within 10 min or to treat other seizures that occurred 10 min to 6 h following the first dose. Fifty-seven patients (35.4%) experienced ≥1 treatment-related AE over the course of the trial (≥12 months). The most common AEs were nasal discomfort (12.4%) and somnolence (9.3%), and there were no reports of respiratory depression in the long-term safety study. Four patients (2.5%) experienced ≥1 serious AE, which was categorized as potentially treatment related (all classified as “unlikely related”), and two patients (1.2%) discontinued owing to treatment-related AEs (one case each of nasal discomfort and somnolence, both nonserious).32 Patient satisfaction and anxiety as assessed with questionnaires improved over time in patients who received midazolam nasal spray.37

3.3 | Diazepam nasal spray

Diazepam nasal spray (Valtoxo, Neurelis, Inc.) is approved by the FDA for the treatment of seizure clusters in patients ≥6 years of age.8 Diazepam nasal spray is provided in premeasured, single-use sprayers. Dose strengths are available in 5, 10, 15, and 20 mg based on patient age and weight, with target doses of 0.3 mg/kg for patients 6–11 years of age and 0.2 mg/kg for patients ≥12 years of age.8 The 15- and 20-mg doses both require use of two sprayers in a single blister pack to provide the full dose (i.e., two sprays of 7.5 or 10 mg; one in each nostril). A second dose may be administered if needed at least 4 h after the first dose, which would require a new blister pack. The formulation includes benzyl alcohol, dehydrated alcohol, n-dodecyl beta-D-maltoside (DDM), and vitamin E. The excipient DDM increases absorption across the mucosa.38 Vitamin E is used to promote the nonaqueous solubility of diazepam.39

In a pharmacokinetic study, intrapatient variability was found to be lower for patients receiving diazepam nasal spray compared with diazepam rectal gel (% geometric coefficient of variation of area under the curve, 42%–66% compared with 87%–172%).27 Respiratory depression was not reported in a pharmacokinetic study of patients with epilepsy who were treated with diazepam nasal spray, and it was not observed in previous studies of healthy subjects.39

The long-term safety study for diazepam nasal spray was published recently.40 A total of 163 patients (27.6% ≤12 years of age) were treated for 3853 seizure clusters, and a second dose was used for 12.6% of clusters within 24 h of the first dose. Of the second doses, 31.3% were administered 0–4 h after the first dose, with 46.2% occurring 0–6 h and 65.6% occurring 0–12 h after the first dose. Thirty patients (18.4%) experienced ≥1 treatment-related AE; among these, treatment-related nasal discomfort occurred in 6.1% of patients, whereas treatment-related somnolence occurred in 1.8% of patients. No patients withdrew owing to a treatment-related AE, there were no treatment-related serious AEs, and no cases of respiratory depression were observed.40 Analyses in subpopulations of this study based on frequency of use,41 use of concomitant benzodiazepines,42 and history or concomitant treatment of seasonal allergies or rhinitis43 reported results that were similar to those reported in the overall study. A survey conducted as part of the study found that patients and caregivers were satisfied with diazepam nasal spray and were more comfortable using it in public situations compared with diazepam rectal gel, and some patients (as young as 11 years) reported self-administration of diazepam nasal spray.44

4.1 | European Medicines Agency–approved treatments for prolonged acute convulsive seizures

Reflecting differences across geographic and regulatory jurisdictions, available agents are somewhat different in the European Union and are not approved specifically for the treatment of “seizure clusters” per se. For example, in the European Union, diazepam for rectal administration is formulated as a solution and is indicated for the treatment of epileptic convulsions when a rapid effect is required but when intravenous injection is impracticable or undesirable in patients ≥1 year of age.45–47 Another European Union option, buccal midazolam, is approved for the treatment of prolonged acute convulsive seizures in pediatric patients ages 3 months to <18 years, with age-based doses of 2.5, 5, 7.5, and 10 mg.48 In a randomized in-hospital study comparing rectal diazepam and buccal midazolam in children ages 7 months to 15 years, there were 219 episodes in 177 patients. Cessation of seizures between 10 min and 1 h without respiratory depression (primary end point) was higher for buccal midazolam (56% vs. 27%) than for rectal diazepam. Rates of respiratory depression were 5% and 6%, respectively.49

4.2 | Medications used off-label

Other agents that have been prescribed in the past include off-label oral benzodiazepines, such as orally
disintegrating lorazepam. This route of administration may affect absorption/bioavailability, and safety considerations include the potential for aspiration and a requirement that caregivers take precautions to reduce risk of biting injury.\(^3,16\) Midazolam for injection also has been administered with an atomizer as a nasal spray.\(^2,50\) The pH of the solution is \(\sim 3\) (compared with a more neutral 5–9 pH for the approved midazolam intranasal formulation), so it may lead to substantial patient discomfort.\(^16\) Agents designed for intravenous use are not optimal for nasal administration because of the relatively low concentrations used in intravenous formulations requiring large volumes in addition to the small surface area of the nasal cavity.\(^16\)

5 | CHARACTERISTICS OF RESCUE THERAPIES

5.1 | Routes of administration: Advantages and limitations

The different routes of administration for rescue therapy have potential advantages and disadvantages (Table 2).\(^16\) The recently approved intranasal formulations offer the opportunity for rapid administration relative to intravenous and rectal formulations, as well as improved patient/caregiver satisfaction and resultant usage relative to rectal formulations, without compromising efficacy or safety.\(^51\) The approved intranasal midazolam formulation uses several organic solvents to increase the solubility of midazolam while maintaining the pH in the range of 5–9.\(^7\) However, organic solvents may cause nasal irritation.\(^52,53\) The approved diazepam nasal spray formulation contains DDM (Intravail A3; 0.25% weight/volume concentration) to enhance nasal absorption and vitamin E as a solvent (organic solvents are not included).\(^16\) Vitamin E has also been shown to promote healing of nasal mucosal damage.\(^54\)

Although the intent of intranasal administration of any drug is to provide rapid systemic and/or direct nose-to-brain exposure, the potential role of mucociliary clearance needs to be considered. This system’s physiologic role is to remove foreign particles from the nasal cavity to prevent them from reaching the lungs. From a drug-delivery perspective, this ciliary action may result in a certain fraction of drug reaching the gastrointestinal (GI) tract.\(^55–57\) Indeed, it has been suggested that a certain fraction of intranasally administered midazolam is absorbed via the GI tract, in that there is a 3.7%–6.8% higher ratio of the metabolite 1-OH-midazolam to midazolam after intranasal administration compared with intravenous administration,\(^58\) which is suggestive of presystemic metabolism. GI absorption of structurally dissimilar drugs, such as sumatriptan, has also been suggested following intranasal administration.\(^59,60\) Currently, it is unknown if this process is clinically relevant or whether the benzodiazepine rate or extent of absorption would be impacted if intranasal agents were administered to patients in the fed versus fasting state.

Route of administration	Advantages	Disadvantages
Rectal	- Can administer relatively large dose volume - Relatively painless	- Inconsistent absorption and bioavailability - Limited medications can be delivered by this route - Poor social acceptability
Intranasal	- Quick and easy administration - Relatively fast absorption and onset of action - Patient cooperation not needed - Relatively painless - Avoids first-pass metabolism - Socially acceptable versus rectal route - Possible direct brain delivery of drug	- Need for delivery device (e.g., atomizer) - Possible CNS treatment-emergent adverse events - Variable absorption and bioavailability depending on mucosal health and specific benzodiazepine - Formulations require high drug concentration in a small volume - Nasal/throat discomfort, inflammation, lacrimation, abnormal taste - Need to enhance drug solubility
Buccal	- Easy to use - Can administer a relatively large dose volume - Painless - Avoids first-pass metabolism	- Limited medications can be delivered by this route - Potentially distasteful - Inconsistent absorption - Swallowing reduces buccal delivery - Difficult when patient is experiencing a seizure - Precautions to reduce risk of biting

Note: Adapted from Cloyd J, Haut S, Carrazana E, Rabinowicz AL. Overcoming the challenges of developing an intranasal diazepam rescue therapy for the treatment of seizure clusters. Epilepsia 2021;62 (4):846–56. Abbreviation: CNS, central nervous system.
The timing for onset of action of rescue therapies for seizure clusters may be determined by the drug plasma level associated with a reduction in spike counts, rather than the time to maximum plasma concentration (t_max) or other pharmacokinetic parameters. (Table 3) Early efforts to develop a rectal formulation of diazepam had detected a reduction in spike–wave activity after 10–20 min (per electroencephalography [EEG]) despite peak serum levels being achieved after 15–90 min, suggesting that the EEG response occurs much earlier than t_max. In a rodent model that utilized continuous diazepam infusion, an elevation in seizure threshold was associated with relatively low plasma concentrations of diazepam. Although brain electrical activity can exhibit responsiveness to low plasma concentrations of benzodiazepines before achieving maximal concentrations, the clinical efficacy of low concentrations to terminate or prevent seizures in humans is difficult to characterize owing to patient heterogeneity. Plasma concentrations of diazepam in excess of 200 ng/ml have been associated with successful termination of seizure clusters (serial seizures) in adult patients, as well as seizures and malarial-induced convulsions in pediatric patients.

In a phase 1 open-label crossover study of an intranasal midazolam formulation dosed at 2.5, 5.0, or 7.5 mg compared with midazolam intravenous solution (given intranasally or intravenously) in 25 healthy adults, t_max was rapid with midazolam nasal spray at 10–12 min across the three doses (values of 59, 73, and 93 ng/mL for the 2.5-, 5.0-, and 7.5-mg doses, respectively). The pharmacokinetics of the approved diazepam nasal spray have been assessed across several studies. In a randomized phase 1 crossover study comparing diazepam nasal spray (10-mg solution, the approved formulation) and an intranasal suspension versus intravenous diazepam nasal spray in 24 healthy adults, t_max occurred ~1 h after administration. In a subsequent study of oral diazepam conducted in healthy volunteers, a reduction in spike-wave activity after 10–20 min (per electroencephalography [EEG]) despite peak serum levels being achieved after 15–90 min, suggesting that the EEG response occurs much earlier than t_max. A subsequent response of oral diazepam conducted in healthy volunteers noted a similar response, with EEG effects (fraction of total EEG amplitude within 13–31 Hz) detected 15 min after administration, whereas t_max occurred ~1 h after administration, whereas t_max occurred ~1 h after administration. A subsequent study of oral diazepam conducted in healthy volunteers noted a similar response, with EEG effects (fraction of total EEG amplitude within 13–31 Hz) detected 15 min after administration, whereas t_max occurred ~1 h after administration.
In this trial, only 5.8% of clusters received a second dose in <6 h. Of note, this study design allowed for inclusion of patients who were receiving concomitant, chronic oral benzodiazepines, such as clobazam. Patients who received chronic concomitant benzodiazepines used a second dose of diazepam nasal spray to treat 12.5% of clusters. In an interim analysis, the use of second doses was generally similar between patients who received concomitant clobazam and those who did not. These data suggest that chronic exposure to a 1,5-benzodiazepine, such as clobazam, does not seem to result in an impaired response to diazepam nasal spray.

Onset and duration of action for the three FDA-approved rescue therapies have not been compared formally in a controlled study. Although pharmacokinetic characteristics of rescue therapies differ in individual studies (Table 3), the meaningfulness of these differences for control of seizure clusters is unclear. This remains an area for future investigation.

6 | FUTURE RESCUE THERAPIES

Prospective rescue therapies with different routes of administration and associated formulations are currently being investigated. Buccal diazepam film can be applied to the inner cheek, whereby the film dissolves and the diazepam is absorbed through the buccal mucosa. Buccal diazepam includes some of the same beneficial characteristics as nasal spray benzodiazepines (e.g., avoids first-pass metabolism), while possessing some unique challenges in the mode of delivery (e.g., clenching of the jaw, drooling, swallowing the drug/film). Moreover, the portion of diazepam that is swallowed is not absorbed as efficiently through the digestive system as it is through the buccal mucosa. Potential benefits include portability (can fit in a wallet), which is preferred by some patients.

Another investigational therapy, inhaled alprazolam, uses a route of administration that capitalizes on the pulmonary architecture (large surface area, extensive blood supply) for drug delivery and exhibits a high rate of absorption. In a proof-of-concept study, inhaled alprazolam reduced epileptiform activity in photosensitive patients, with effectiveness recorded at 2 min following administration, which is similar to IV administration of benzodiazepines, and can potentially be used to abort an ongoing seizure. In a phase 2b study, a greater proportion of patients with predictable seizure patterns who were treated with inhaled alprazolam experienced seizure cessation within 2 min of treatment as compared to those who received placebo control. Alprazolam is approved for use in anxiety disorders but has no indication in epilepsy at this time.
CONCLUSIONS

Benzodiazepines are effective at reducing seizure activity through GABA_A receptor activation, resulting in an increase in chloride conductance of the receptor and hyperpolarization of the neuronal cell membrane. Although the primary mechanism of action for benzodiazepines is well characterized, outcomes related to specific therapies can vary in real-world practice. Effective rescue therapies should exhibit high potency, rapid and extensive absorption, and consistent bioavailability, as well as a large therapeutic index. The route of administration and drug formulation largely affect the effectiveness of drug delivery, with key differences across rescue therapies. In addition to optimal formulations, the effectiveness of rescue therapies is dependent on the immediate actions of patients, family members, and caregivers, supported by education and an acute seizure action plan (please see Patel and Becker, Introduction to Use of an Acute Seizure Action Plan for Seizure Clusters and Guidance for Implementation in this issue). Future studies are needed that examine new drug formulations and routes of administration, as well as drugs that have been used successfully off-label for the treatment of seizure clusters. Other outcomes that examine rescue therapy efficacy to address a broader range of patient challenges, such as the ability to stop an ongoing seizure or to treat status epilepticus, have not been studied.

AUTHOR CONTRIBUTIONS

Writing—Original Draft Preparation: all authors developed the initial content outline for the manuscript. Writing—Review and editing: all authors provided critical review and revision. All authors approved the final version of this manuscript for submission to Epilepsia.

ACKNOWLEDGMENTS

Medical writing support was provided at the direction of the authors by Kirk W. Evanson, PhD, of The Curry Rockefeller Group, LLC (Tarrytown, NY), which also provided additional editorial assistance including formatting and proofreading. This support was funded by Neurelis, Inc. (San Diego, CA).

CONFLICT OF INTEREST

Dr Gidal is a consultant for Aquestive, Eisai Inc., Greenwich, Neurelis, Inc., and SK Life Science; is a member of the End Point Review Committee for Sunovion Pharmaceuticals Inc; and has a grant/contract with UCB, Inc. Dr Dety niecki is a consultant for Aquestive; Neurelis, Inc.; UCB; and Greenwich Biosciences. We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

REFERENCES

1. Haut SR, Shinnar S, Moshe SL, O’Dell C, Legatt AD. The association between seizure clustering and convulsive status epilepticus in patients with intractable complex partial seizures. Epilepsia. 1999;40(12):1832–4.
2. Jafarpour S, Hirsch LJ, Gainza-Lein M, Kellinghaus C, Dety niecki K. Seizure cluster: definition, prevalence, consequences, and management. Seizure. 2019;68:9–15.
3. Gidal B, Klein P, Hirsch LJ. Seizure clusters, rescue treatments, seizure action plans: unmet needs and emerging formulations. Epilepsy Behav. 2020;112:107391.
4. Kapur J, Long L, Dixon-Salazar T. Consequences: bench to home. Epilepsia. 2012;63(Suppl. 1):S14–S24.
5. Agarwal SK, Cloyd JC. Development of benzodiazepines for out-of-hospital management of seizure emergencies. Neur oClin Pract. 2015;5:1080–5.
6. Bausch Health US. LLC. Diastat® C-IV (diazepam rectal gel). Full Prescribing Information. Bausch Health US, LLC: Bridgewater, NJ, 2021.
7. UCB, Inc. NAYZILAM® (midazolam nasal spray). Full Prescribing Information. Smyrna, GA: UCB, Inc.; 2021.
8. Neurelis, Inc. Valto (diazepam nasal spray). Full Prescribing Information. San Diego, CA: Neurelis, Inc.; 2022.
9. Haut SR, Nabbout R. Recognizing seizures clusters in the community: the path to uniformity and individualization in nomenclature and definition. Epilepsia. 2022;63(Suppl. 1):S6–S13.
10. Kriel RL, Cloyd JC, Hadsall RS, Carlson AM, Floren KL, Jones-Saete CM. Home use of rectal diazepam for cluster and prolonged seizures: efficacy, adverse reactions, quality of life, and cost analysis. Pediatr Neurol. 1991;7(1):13–7.
11. Lombroso CT. Intermittent home treatment of status and clusters of seizures. Epilepsia. 1989;30(suppl 2):S11–4.
12. Cereghino JJ, Mitchell WG, Murphy J, Kriel RL, Rosenfeld WE, Trevathan E. Treating repetitive seizures with a rectal diazepam formulation: a randomized study. The north American Diastat study group. Neurology. 1998;51(5):1274–82.
13. Dreifuss FE, Rosman NP, Cloyd JC, Pellock JM, Kuzniecky RI, Lo WD, et al. A comparison of rectal diazepam gel and placebo for acute repetitive seizures. N Engl J Med. 1998;338(26):1869–75.
14. Tatum WO. Adult patient perceptions of emergency rectal medications for refractory seizures. Epilepsy Behav. 2002;3(6):535–8.
15. Terry D, Paolicchi J, Karm M. Acceptance of the use of diaze pam rectal gel in school and day care settings. J Child Neurol. 2007;22(9):1135–8.
16. Cloyd J, Hutt S, Carrazana E, Rabinowicz AL. Overcoming the challenges of developing an intranasal diazepam rescue therapy for the treatment of seizure clusters. Epilepsia. 2021;62(4):846–56.
17. Ghit A, Assal D, Al-Shami AS, Hussein DEE. GABA_A receptors: structure, function, pharmacology, and related disorders. J Genet Eng Biotechnol. 2021;19(1):123.
18. Goodkin HP, Joshi S, Mchdelishivili Z, Brar J, Kapur J. Subunit-specific trafficking of GABA_A receptors during status epilepti cus. J Neurosci. 2008;28(10):2527–38.
19. Naylor DE, Liu H, Wasterlain CG. Trafficking of GABAA receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. J Neurosci. 2005;25(34):7724–33.

20. Kapur J, Coulter DA. Experimental status epilepticus alters gamma-aminobutyric acid type A receptor function in CA1 pyramidal neurons. Ann Neurol. 1995;38(6):893–900.

21. Mohler H. GABAA receptor diversity and pharmacology. Cell Tissue Res. 2006;326(2):505–16.

22. Lorenz-Guentin JM, Bambino MJ, Jacob TC. γ2 GABAA receptor trafficking and the consequences of human genetic variation. Front Cell Neurosci. 2018;12:265.

23. Rowlett JK, Platt DM, Lelas S, Attack JR, Dawson GR. Different GABAA receptor subtypes mediate the anxiolytic, abuse-related, and motor effects of benzodiazepine-like drugs in primates. Proc Natl Acad Sci USA. 2005;102(3):915–20.

24. Sankar R. GABAA receptor physiology and its relationship to the mechanism of action of the 1,5-benzodiazepine clobazam. CNS Drugs. 2012;26(3):229–44.

25. Hammer H, Ebert B, Jensen HS, Jensen AA. Functional characterization of the 1,5-benzodiazepine clobazam and its major active metabolite N-desmethylclobazam at human GABAA receptors expressed in Xenopus laevis oocytes. PLoS One. 2015;10(3):e0120239.

26. Greenfield LJ Jr. Mechanisms of antiseizure drug activity at GABAA receptors. Seizure. 2013;22(8):589–600.

27. Hogan RE, Gidal BE, Koplowitz B, Koplowitz LP, Lowenthal RE, Carrazana E. Bioavailability and safety of diazepam intranasal solution compared to oral and rectal diazepam in healthy volunteers. Epilepsia. 2020;61(3):455–66.

28. Chen S, Huang X, Zeng XJ, Sieghart W, Tietz EI. Benzodiazepine-mediated regulation of alpha1, alpha2, beta1-3 and gamma2 GABAA receptor subunit proteins in the rat brain hippocampus and cortex. Neuroscience. 1999;93(1):33–44.

29. Kang I, Miller LG. Decreased GABAA receptor subunit mRNA concentrations following chronic lorazepam administration. Br J Pharmacol. 1991;103(2):1285–7.

30. Gidal BE, Wechsler RT, Sankar R, Montouris GD, White HS, Cloyd JC, et al. Deconstructing tolerance with clobazam: post hoc analyses from an open-label extension study. Neurology. 2016;87(17):1806–12.

31. Mitchell WG. Status epilepticus and acute repetitive seizures in children, adolescents, and young adults: etiology, outcome, and treatment. Epilepsia. 1996;37(suppl 1):S74–80.

32. Wheless JW, Meng TC, Van Ess PJ, Detyliecki K, Sequeira DJ, Pullman WE. Safety and efficacy of midazolam nasal spray in the outpatient treatment of patients with seizure clusters: an open-label extension trial. Epilepsia. 2019;60(9):1809–19.

33. Carrazana E, Tarquino D, Wheless JW, Hogan RE, Sperling MR, Cloyd JC, et al. Lack of observed tolerance to diazepam nasal spray (Valtoco®) after long-term rescue therapy in patients with epilepsy: interim results from a phase 3, open-label, repeat-dose safety study. Epilepsia. 2021;62(10):2485–95.

34. Pennich PA, Wheless JW, Guerra C, Cook DF, Carrazana E, et al. Examining the patient and caregiver experience with diazepam nasal spray for seizure clusters: results from an exit survey of a phase 3, open-label, repeat-dose safety study. Epilepsy Behav. 2021;118:107898.

35. Pellock JM. Safety of Diastat, a rectal gel formulation of diazepam for acute seizure treatment. Drug Saf. 2004;27(6):383–92.

36. Detyliecki K, Van Ess PJ, Sequeira DJ, Wheless JW, Meng TC, Pullman WE. Safety and efficacy of midazolam nasal spray in the outpatient treatment of patients with seizure clusters—a randomized, double-blind, placebo-controlled trial. Epilepsia. 2019;60(9):1797–808.

37. Fakhoury T, Chen L, Bass A, Brunnert M, Campos R, Meng TC, et al. Treatment satisfaction, anxiety level, and confidence about traveling with midazolam nasal spray in patients with seizure clusters: phase III, open-label extension trial (1704). Neurology. 2021;96(15 suppl):1704.

38. Rabinowicz AL, Carrazana E, Maggio ET. Improvement of intranasal drug delivery with Intravail® alkylsaccharide excipient as a mucosal absorption enhancer aiding in the treatment of conditions of the central nervous system. Drugs R&D. 2021;21(4):361–9.

39. Hogan RE, Tarquino D, Sperling MR, Klein P, Miller I, Segal EB, et al. Pharmacokinetics and safety of VALTOCO® (NRL-1; diazepam nasal spray) in patients with epilepsy during seizure (ictal/peri-ictal) and nonepileptic (interictal) conditions: a phase 1, open-label study. Epilepsia. 2020;61(5):935–43.

40. Lokhorst MA, Miller I, Hogan RE, Dlugos D, Biton V, Cascino GD, et al. Final results from a phase 3, long-term, open-label, repeat-dose safety study of diazepam nasal spray for seizure clusters in patients with epilepsy. Epilepsia. 2021;62(10):2485–95.

41. Miller I, Wheless JW, Hogan RE, Dlugos D, Biton V, Cascino GD, et al. Consistent safety and tolerability of Valtoco® (diazepam nasal spray) in relationship to usage frequency in patients with seizure clusters: interim results from a phase 3, long-term, open-label, repeat-dose safety study. Epilepsia Open. 2021;6(3):504–12.

42. Segal EB, Tarquino D, Miller I, Wheless JW, Dlugos D, Biton V, et al. Evaluation of diazepam nasal spray in patients with epilepsy concomitantly using maintenance benzodiazepines: an interim subgroup analysis from a phase 3, long-term, open-label safety study. Epilepsia. 2021;62(6):1442–50.

43. Vazquez B, Wheless J, Desai J, Rabinowicz AL, Carrazana E. Lack of observed impact of history or concomitant treatment of seasonal allergies or rhinitis on repeated doses of diazepam nasal spray administered per seizure episode in a day, safety, and tolerability: interim results from a phase 3, open-label, 12-month repeat-dose safety study. Epilepsy Behav. 2021;118:107898.

44. Pennich PA, Wheless JW, Guerra C, Cook DF, Carrazana E, et al. Examining the patient and caregiver experience with diazepam nasal spray for seizure clusters: results from an exit survey of a phase 3, open-label, repeat-dose safety study. Epilepsy Behav. 2021;121(1Pt A):108013.

45. Electronic Medicines Compendium. Diazepam RectTubes 10mg Rectal Solution. Datapharm Ltd. [cited 2021 September 7]. Available from: https://www.medicines.org.uk/emc/product/6799/smpc

46. Electronic Medicines Compendium. Diazepam Desitin 5 mg rectal solution. [cited 2021 September 8]. Available from: https://www.medicines.org.uk/emc/product/2997/smpc

47. Electronic Medicines Compendium. Stesolid Rectal Tubes 10mg. Datapharm Ltd. [cited 2021 September 10]. Available from: https://www.medicines.org.uk/emc/product/104/smpc

48. Shire Services BVBA. Buccolam summary of product characteristics (midazolam hydrochloride oromucosal solution).
Summary of product characteristics. Brussels, Belgium: Shire Pharmaceuticals; 2020.

49. McIntyre J, Robertson S, Norris E, Appleton R, Whitehouse WP, Phillips B, et al. Safety and efficacy of buccal midazolam versus rectal diazepam for emergency treatment of seizures in children: a randomised controlled trial. Lancet. 2005;366(9481):205–10.

50. Holsti M, Dudley N, Schunk J, Adelgais K, Greenberg R, Olsen C, et al. Intranasal midazolam vs rectal diazepam for the home treatment of acute seizures in pediatric patients with epilepsy. Arch Pediatr Adolesc Med. 2010;164(8):747–53.

51. Haut SR, Seinfeld S, Pellock J. Benzodiazepine use in seizure emergencies: a systematic review. Epilepsy Behav. 2016;63:109–17.

52. Ivaturi VD, Riss JR, Kriel RL, Cloyd JC. Pharmacokinetics and tolerability of intranasal diazepam and midazolam in healthy adult volunteers. Acta Neurol Scand. 2009;120(5):353–7.

53. Ivaturi VD, Riss JR, Siegel RA, Cloyd JC. Bioavailability and tolerability of intranasal diazepam in healthy adult volunteers. Epilepsy Res. 2009;84(2–3):120–6.

54. Testa D, Marcuccio G, Panin G, Bianco A, Tafuri D, Thyrion FZ, et al. Nasal mucosa healing after endoscopic sinus surgery in chronic rhinosinusitis of elderly patients: role of topic alphatocopherol acetate. Aging Clin Exp Res. 2017;29(suppl 1):191–5.

55. Erdo F, Bors LA, Parkas D, Bajza A, Gizurarson S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull. 2018;143:155–70.

56. Laffleur F, Bauer B. Progress in nasal drug delivery systems. Int J Pharm. 2021;607:120994.

57. Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective–a review. Drug Deliv Transl Res. 2013;3(1):42–62.

58. US Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s)—Midazolam Nasal Spray. [cited 2022 April 22]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/211321Orig1s000ClinPharmR.pdf

59. Fox AW. Onset of effect of 5-HT1B/1D agonists: a model with pharmacokinetic. Headache. 2004;44(2):142–7.

60. Duquesnoy C, Mamet JP, Sumner D, Fuseau E. Comparative clinical pharmacokinetics of single doses of sumatriptan following subcutaneous, oral, rectal and intranasal administration. Eur J Pharm Sci. 1998;6(2):99–104.

61. Milligan N, Dhillon S, Oxley J, Richens A. Absorption of diazepam from the rectum and its effect on interictal spikes in the EEG. Epilepsia. 1982;23(3):323–31.

62. Friedman D, et al. Pharmacokinetics and pharmacodynamics of oral diazepam: effect of dose, plasma concentration, and time. Clin Pharmacol Ther. 1992;52(2):139–50.

63. Dhir A, Rogawski MA. Determination of minimal steady-state plasma level of diazepam causing seizure threshold elevation in rats. Epilepsia. 2018;59(5):935–44.

64. Remy C, Jourdil N, Vilmelain D, Favel P, Genton P. Intrarectal diazepam in epileptic adults. Epilepsia. 1992;33(2):353–8.

65. Ogutu BR, Newton CR, Crawley J, Mucholi SN, Otieno GO, Edwards G, et al. Pharmacokinetics and anticonvulsant effects of diazepam in children with severe febrile convulsions. Br J Clin Pharmacol. 2002;53(1):49–57.

66. Agurell S, Berlin A, Ferngren H, Hellström B. Plasma levels of diazepam after parenteral and rectal administration in children. Epilepsia. 1975;16(2):277–83.

67. Bancke LL, Dworak HA, Rodvold KA, Halvorsen MB, Gidal BE. Pharmacokinetics, pharmacodynamics, and safety of USL261, a midazolam formulation optimized for intranasal delivery, in a randomized study with healthy volunteers. Epilepsia. 2015;56(11):1723–31.

68. Agarwal SK, Kriel RL, Brundage RC, Ivaturi VD, Cloyd JC. A pilot study assessing the bioavailability and pharmacokinetics of diazepam after intranasal and intravenous administration in healthy volunteers. Clin Pharmacol Drug Dev. 2020;9(6):719–27.

69. Seinfeld S, Gelfand MA, Heller AH, Buan C, Slatko G. Safety and tolerability associated with chronic intermittent use of diazepam buccal film in adult, adolescent, and pediatric patients with epilepsy. Epilepsia. 2020;61(11):2426–34.

70. Hua S. Advances in nanoparticulate drug delivery approaches for sublingual and buccal administration. Front Pharmacol. 2019;10:1328.

71. French JA, Wechsler R, Gelfand MA, Pollard JR, Vazquez B, Friedman D, et al. Inhaled alprazolam rapidly suppresses epileptic activity in photosensitive participants. Epilepsia. 2019;60(8):1602–9.

72. Lahat E, Goldman M, Barr J, Bistritzer T, Berkovitch M. Comparison of intranasal midazolam with intravenous diazepam for treating febrile seizures in children: prospective randomised study. BMJ. 2000;321(7253):83–6.

73. Almohaish S, Sandler M, Brophy GM. Time is brain: acute control of repetitive seizures and status epilepticus using alternative routes of administration of benzodiazepines. J Clin Med. 2021;10(8):1754.

How to cite this article: Gidal B, Detyniecki K. Rescue therapies for seizure clusters: Pharmacology and target of treatments. Epilepsia. 2022;63(Suppl 1): S34–S44. https://doi.org/10.1111/epi.17341