Studies on preparation of ice-cream from jackfruit (Artocarpus heterophyllus) seed powder

VL Shinde, CD Pawar, OS Warang, VS Dandekar, MM Kulkarni, Josiya J and MS Joshi

DOI: https://doi.org/10.22271/chemi.2021.v9.i1al.11636

Abstract
The experiment was laid out in Completely Randomized Design with six treatments namely T_1 (5% skim milk powder + 95% constant ingredients), T_2 (1% jackfruit seed powder + 4% skim milk powder + 95% constant ingredients), T_3 (2% jackfruit seed powder + 3% skim milk powder + 95% constant ingredients), T_4 (3% jackfruit seed powder + 2% skim milk powder + 95% constant ingredients), T_5 (4% jackfruit seed powder + 1% skim milk powder + 95% constant ingredients) and T_6 (5% jackfruit seed powder + 5% constant ingredients) which were replicated four times. The treatment T_3 recorded maximum score for colour and appearance as well as flavour. Whereas, Treatment T_5 recorded maximum score for body and texture as well as overall acceptability. Treatment T_3 also recorded highest B:C ratio. on the basis of sensory evaluation treatment T_3 (4% jackfruit seed powder + 1% skim milk powder + 95% constant ingredients) was found to be best and recorded highest B:C ratio among six treatments. However, during the storage of five weeks this treatment has shown best results with respect to changes in chemical composition, sensory evaluation and even in microbial count.

Keywords: Jackfruit, Jackfruit seed powder, Ice-cream, B:C ratio, Skim milk powder

Introduction
The jackfruit (Artocarpus heterophyllus Lam.) is one of the important tropical fruits grown in the world and is believed to be native to India. Jackfruit belongs to the family Moraceae and to the genus Artocarpus which includes evergreen or deciduous trees. In India, the major area under jackfruit is in Kerala state and it was regarded as heavenly fruit in the ancient periods. It is grown in an area of 156000 ha with annual production of 1826000 MT and productivity of 12 MT per ha (Anonymous, 2017).

The edible bulbs of ripe jackfruit are usually consumed fresh or processed into canned products; 10-15 per cent of the total fruit weight is considered as its seed weight. Though the seeds are rich in carbohydrate and protein, jackfruit seed is used occasionally as a minor supplement in culinary recipes but are mostly wasted. The jackfruit seed flour is not only a rich source of protein, starch and dietary fibres but can also be regarded as an abundant yet cheap source of nutrients. Lectin, a class of glycoprotein found in jackfruit seed, has been reported to possess antibacterial, antifungal and anticarcinogenic properties. (Chowdhury et al., 2012) [2]

A number of products have been developed from raw, tender and ripe fruits and seeds. Now a days, the consumer’s trend has been moved towards the foods with more natural antioxidants, dietary fibers, natural colourants, minerals, vitamins, low calories, low cholesterol and low fat and free of synthetic additives etc.

Looking to the large postharvest losses in jackfruit, it is necessary to do research on innovative processed product from jackfruit. Hence, experiment of preparation of jackfruit seed powder ice-cream was conducted.

Material and Methods
The experiment was conducted during the period May, 2018 to Jan, 2019. Study was conducted at Pomology laboratory, Fruit processing unit of Department of Horticulture, College of Agriculture, Dapoli and Fruit Beverage Research Centre of Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, District- Ratnagiri. The experiment was laid out in
Completely Randomized Design with six treatments namely T₁ (5% skim milk powder + 95% constant ingredients), T₂ (1% jackfruit seed powder + 4% skim milk powder + 95% constant ingredients), T₃ (2% jackfruit seed powder + 3% skim milk powder + 95% constant ingredients), T₄ (3% jackfruit seed powder + 2% skim milk powder + 95% constant ingredients), T₅ (4% jackfruit seed powder + 1% skim milk powder + 95% constant ingredients) and T₆ (5% jackfruit seed powder + 95% constant ingredients) which were replicated four times. The experiment had a two phases i.e. Phase 1- Sensory qualities of fresh ice-cream and phase 2- Changes in organoleptic score, chemical composition and microbical count of most optimum level of ice-cream (T₅) during storage.

The recommended standards of ice-cream were maintained in a preparation of ice-cream. The seeds were removed from the ripe bulbs of soft flesh jackfruit and washed with 100 ppm chlorinated water. The seeds were dried in tray dryer at 60±2°C and then used for preparation of powder as given in The jackfruit seed powder ice cream having standard ingredients), T (1(W₅)) to week 5(W₅).

Treatments	Colour and appearance	Flavour	Body and texture	Overall acceptability
T₁	7.13	7.15	7.12	7.13
T₂	7.35	7.11	6.99	7.15
T₃	7.28	7.51	7.18	7.32
T₄	7.60	7.76	7.18	7.51
T₅	7.42	7.54	7.65	7.54
T₆	7.46	7.17	7.48	7.37
Mean	7.37	7.37	7.26	7.34
S.Em±	0.064	0.123	0.114	0.100
C.D. at 1%	0.207	0.398	0.367	0.324

The flavour of ice-cream differs significantly with respect to different treatments. Highest flavour score was recorded by treatment T₄ (7.76) which was at par with T₃ (7.54) and T₁ (7.51). Highest colour and appearance score recorded by treatment T₄ might be due to obtaining proper colour balance of white (milk) and brown (jackfruit seed powder).

Table 1: Sensory qualities of fresh ice-cream

Parameters	W₁	W₂	W₃	W₄	W₅
Total Solids (%)	36.62	36.17	35.71	35.60	35.21
Acidity (%)	0.21	0.22	0.225	0.235	0.24
Protein (%)	7.26	7.18	7.10	7.02	6.95
Fat (%)	10.20	9.96	9.90	9.84	9.80
Reducing sugars (%)	6.07	5.99	5.87	5.82	5.75
Total sugars (%)	26.76	24.41	23.66	20.42	19.38

Table 3: Changes in chemical composition of most optimum level of ice-cream (T₅) during storage

During storage of ice-cream total solids (%), protein (%), fat (%), reducing sugars (%) and total sugars (%) were gradually decreased from W₁ to W₅. The total solids decreased from 36.62 per cent (W₁) to 35.21 per cent (W₅), protein and fat decreased from 7.26 per cent (W₁) to 6.95 per cent (W₅) and 10.20 per cent (W₁) to 9.80 per cent (W₅) respectively. Similarly, reducing sugars and total sugars decreased from 6.07 per cent (W₁) to 5.75 percent (W₅) and 26.76 per cent (W₁) to 19.38 per cent (W₅) respectively. However, the acidity (%) was increased from 0.21 per cent (W₁) to 0.24 per cent (W₅).

During storage of ice-cream total solids (%), protein (%), fat (%), reducing sugars (%) and total sugars (%) were gradually decreased this might be due to formation of ice crystals in ice-
cream as the storage progresses which ultimately increases moisture. Increased microbial population survive on available food material present in ice-cream which causes to reduce total solids from ice-cream. This increased population of microbes also increases acidity of ice-cream. Murtaza et al. (2004) given chemical analysis of ice cream in which they found similar trend of chemical attributes as mentioned above. Similar findings were also reported by Naik (2017) while working on spirulina powder ice-cream.

Microbial analysis of most optimum level of ice-cream (T₃) at the end of storage period
Jackfruit seed powder ice-cream was analyzed for Standard Plate Count (SPC) and Escherichia coli counts. The results obtained are tabulated in Table 4.

Table 4: Microbial count of most optimum level of ice-cream (T₃) during storage

Treatment	SPC (10⁴ cfu/g)	E. Coli (10⁴ cfu/g)
T₃	2.04	N.D.

The mean value of standard plate count in ice cream was 2.04 x 10⁴ cfu/g and *E. coli* were not detected in ice cream. Similar results were found by Naik (2017) while working on spirulina powder ice-cream and also by Verma (1974) in standard plate counts and coliform count.

Production economics of jackfruit seed powder ice-cream
The data regarding production economics are given in table 5. Higher gross return and net profit of Rs. 375 and Rs. 127.74, respectively was found in T₅ and lowest gross return and net profit of Rs. 315 and Rs. 52.22, respectively was found in T₁. Benefit: cost ratio was maximum (1.52) in treatment T₅.

Table 5: Production economics of jackfruit seed powder ice-cream

Treatments	Total expenditure (Rs.)	Gross returns (Rs.)	Net profit (Rs.)	B:C ratio
T₁	262.78	315	52.22	1.20
T₂	258.55	315	56.05	1.22
T₃	255.05	345	89.55	1.35
T₄	251.44	375	126.86	1.49
T₅	247.26	375	127.74	1.52
T₆	243.38	345	101.62	1.42

Conclusion
The treatment T₁ (3% jackfruit seed powder + 2% skim milk powder + 95% constant ingredients) recorded maximum score for colour and appearance as well as flavour. Whereas, Treatment T₅ (4% jackfruit seed powder + 1% skim milk powder + 95% constant ingredients) recorded maximum score for body and texture as well as overall acceptability. Treatment T₅ (4% jackfruit seed powder + 1% skim milk powder + 95% constant ingredients) also recorded highest B:C ratio. on the basis of sensory evaluation treatment T₅ (4% jackfruit seed powder + 1% skim milk powder + 95% constant ingredients) was found to be best and recorded highest B:C ratio among six treatments. However, during the storage of five weeks this treatment has shown best results with respect to changes in chemical composition, sensory evaluation and even in microbial count.

References
1. Anonymous. Review committee meeting 2016-2017 of area and production of horticulture crops 2017.
2. Chowdhury AR, Bhattacharya AK, Chattopadhyay P. Studies on functional properties of raw and blended jackfruit seed flour for food application. Indian Journal of Natural Products and resources 2012;3(3):347-353.
3. De S. Outlines of Dairy Technology, Oxford University Press New Delhi, India 2011.
4. Mule SM. Studies on process standardization of probiotic ice-cream enriched with ginger (*zingiber officinale* L.) and aloe vera (*aloe barbadensis*) juice. Doctoral dissertation, DBSKKV, Dapoli 2018.
5. Murtaza MA, Mueenud DG, Nuzhat Huma M, Shabbir A, Shahid M. Quality evaluation of ice cream prepared with different stabilizers/emulsifier blends. Int. J Agri. and Biol 2004;6(1):65-67.
6. Naik PB. Process standardization of probiotic ice cream enriched with Spirulina powder. Doctoral dissertation, DBSKKV, Dapoli 2017.
7. Verma GS. Changes in microbial population during manufacture of ice-cream. Indian J Dairy Sci 1974;27(3):172-174.