Abstract. In this paper we study a symmetry group of vector space. Basis manifold is a homogeneous space of a symmetry group. This concept leads us to the definition of active and passive transformations on basis manifold. Active transformation can be expressed as a transformation of vector space. Passive transformation gives ability to define concepts of invariance and of geometrical object.

1. Introduction

This paper was written under the great influence of the book [1]. The studying of a homogenous space of a group of symmetry of a vector space leads us to the definition of a basis of this space and a basis manifold. We introduce two types of transformation of a basis manifold: active and passive transformations. The difference between them is that the active transformation can be expressed as a transformation of an original space. As it is shown in [1] passive transformation gives ability to define concepts of invariance and of geometrical object.

Two opposite points of view about a geometrical object meet in definition 6.3. On the one hand we determine coordinates of the geometrical object relative to a given basis and introduce the law of transition of coordinates during transformation of the basis. At the same time we study the set of coordinates of the geometrical object relative to different bases as a single whole. This gives us an opportunity to study the geometrical object without using coordinates.

2. Representation of Group

Definition 2.1. We call the map
\[t : M \rightarrow M \]
non-singular transformation, if there exists inverse map. \(\square \)

Definition 2.2. Transformations is left-side transformations if it acts from left
\[u' = tu \]
We denote \(\text{l}(M) \) the set of left-side non-singular transformations of set \(M \). \(\square \)

Definition 2.3. Transformations is right-side transformations if it acts from right
\[u' = ut \]
We denote \(\text{r}(M) \) the set of right-side non-singular transformations of set \(M \). \(\square \)

We denote \(\delta \) identical transformation.

Key words and phrases. vector space, differential geometry, basis, geometrical object.

Aleks.Kleyn@MailAPS.org.
Definition 2.4. Let G be group. We call map

$$f : G \to l(M)$$

left-side representation of group G in set M if map f holds

$$f(ab)u = f(a)(f(b)u) \quad (2.2)$$

$$f(e) = \delta \quad (2.3)$$

Definition 2.5. Let G be group. We call map

$$f : G \to r(M)$$

right-side representation of group G in set M if map f holds

$$uf(ab) = (uf(a))f(b) \quad (2.5)$$

$$f(e) = \delta \quad (2.6)$$

Any statement which holds for left-side representation of group holds also for right-side representation. For this reason we use the common term representation of group and use notation for left-side representation in case when it does not lead to misunderstanding.

Theorem 2.6. For any $g \in G$

$$f(g^{-1}) = f(g)^{-1} \quad (2.7)$$

Proof. Since (2.2) and (2.3), we have

$$u = \delta u = f(gg^{-1})u = f(g)(f(g^{-1})u)$$

This completes the proof.

Theorem 2.7. Let $l(M)$ be a group with respect to multiplication

$$t_1t_2u = t_1(t_2u) \quad (2.8)$$

and δ be unit of group $l(M)$. Let map (2.1) be a homomorphism of group

$$f(ab) = f(a)f(b) \quad (2.9)$$

Then this map is representation of group G which we call left-side covariant representation.

Proof. Since f is homomorphism of group, we have $f(e) = \delta$.

Since (2.8) and (2.9), we have

$$f(ab)u = (f(a)f(b))u = f(a)(f(b)u)$$

According definition 2.4 f is representation.

Theorem 2.8. Let $r(M)$ be a group with respect to multiplication

$$u(t_1t_2) = (ut_1)t_2 \quad (2.10)$$

and δ be unit of group $r(M)$. Let map (2.4) be a homomorphism of group

$$f(ab) = f(a)f(b) \quad (2.11)$$

Then this map is representation of group G which we call right-side covariant representation.
Proof. Since \(f \) is homomorphism of group, we have \(f(e) = \delta \).
Since (2.10) and (2.11), we have
\[
u f(ab) = u(f(a)f(b)) = (uf(a))f(b)
\]
According definition 2.5 \(f \) is representation. \(\square \)

Theorem 2.9. Let \(l(M) \) be a group with respect to multiplication
(2.12) \(t_2 t_1 = t_1 t_2 u \)
and \(\delta \) be unit of group \(l(M) \). Let map (2.1) be an antihomomorphism of group
(2.13) \(f(ba) = f(a)f(b) \)
Then this map is representation of group \(G \) which we call left-side contravariant representation.

Proof. Since \(f \) is antihomomorphism of group, we have \(f(e) = \delta \).
Since (2.12) and (2.13), we have
\[
f(ab)u = (f(b)f(a))u = f(a)(f(b)u)
\]
According definition 2.4 \(f \) is representation. \(\square \)

Theorem 2.10. Let \(r(M) \) be a group with respect to multiplication
(2.14) \(u(t_2 t_1) = (ut_1)t_2 \)
and \(\delta \) be unit of group \(r(M) \). Let map (2.4) be an antihomomorphism of group
(2.15) \(f(ba) = f(a)f(b) \)
Then this map is representation of group \(G \) which we call right-side contravariant representation.

Proof. Since \(f \) is antihomomorphism of group, we have \(f(e) = \delta \).
Since (2.14) and (2.15), we have
\[
u f(ab) = u(f(b)f(a)) = (uf(a))f(b)
\]
According definition 2.5 \(f \) is representation. \(\square \)

Example 2.11. The group operation determines two different representations on the group: the left shift which we introduce by the equation
(2.16) \(b' = L(a)b = ab \)
and the right shift which we introduce by the equation
(2.17) \(b' = R(a)b = ba \)
\(\square \)

Theorem 2.12. Let representation
\[
u' = f(a)u
\]
be covariant representation. Then representation
\[
u' = h(a)u = f(a^{-1})u
\]
is contravariant representation.
Proof. Statement follows from chain of equations
\[h(ab) = f((ab)^{-1}) = f(b^{-1}a^{-1}) = f(b^{-1})f(a^{-1}) = h(b)h(a) \]

Definition 2.13. Let \(f \) be representation of the group \(G \) in set \(M \). For any \(v \in M \) we define orbit of representation of the group \(G \) as set
\[O(v, g \in G, f(g)v) = \{ w = f(g)v : g \in G \} \]

Since \(f(e) = \delta \) we have \(v \in O(v, g \in G, f(g)v) \).

Theorem 2.14. Suppose
(2.18) \(v \in O(u, g \in G, f(g)u) \)
Then
\[O(u, g \in G, f(g)u) = O(v, g \in G, f(g)v) \]
Proof. From (2.18) it follows that there exists \(a \in G \) such that
(2.19) \(v = f(a)u \)
Suppose \(w \in O(v, g \in G, f(g)v) \). Then there exists \(b \in G \) such that
(2.20) \(w = f(b)v \)
If we substitute (2.19) into (2.20) we get
(2.21) \(w = f(b)(f(a)u) \)
Since (2.2), we see that from (2.21) it follows that \(w \in O(u, g \in G, f(g)u) \). Thus
\[O(v, g \in G, f(g)v) \subseteq O(u, g \in G, f(g)u) \]
Since (2.7), we see that from (2.19) it follows that
(2.22) \(u = f(a)^{-1}v = f(a^{-1})v \)
From (2.22) it follows that \(u \in O(v, g \in G, f(g)v) \) and therefore
\[O(u, g \in G, f(g)u) \subseteq O(v, g \in G, f(g)v) \]
This completes the proof.

Theorem 2.15. Suppose \(f_1 \) is representation of group \(G \) in set \(M_1 \) and \(f_2 \) is representation of group \(G \) in set \(M_2 \). Then we introduce direct product of representations \(f_1 \) and \(f_2 \) of group
\[f = f_1 \otimes f_2 : G \rightarrow M_1 \otimes M_2 \]
\[f(g) = (f_1(g), f_2(g)) \]
Proof. To show that \(f \) is a representation, it is enough to prove that \(f \) satisfies the definition 2.4.
\[f(e) = (f_1(e), f_2(e)) = (\delta_1, \delta_2) = \delta \]
\[f(ab)u = (f_1(ab)u_1, f_2(ab)u_2) \]
\[= (f_1(a)(f_1(b)u_1), f_2(a)(f_2(b)u_2)) \]
\[= f(a)(f_1(b)u_1, f_2(b)u_2) \]
\[= f(a)(f(b)u) \]
3. Single Transitive Representation of Group

Definition 3.1. We call kernel of inefficiency of representation of group G a set

$$K_f = \{ g \in G : f(g) = \delta \}$$

If $K_f = \{ e \}$ we call representation of group G effective.

Theorem 3.2. A kernel of inefficiency is a subgroup of group G.

Proof. Assume $f(a_1) = \delta$ and $f(a_2) = \delta$. Then

$$f(a_1a_2)u = f(a_1)(f(a_2)u) = u$$
$$f(a^{-1}) = f^{-1}(a) = \delta$$

If an action is not effective we can switch to an effective one by changing group $G_1 = G|K_f$ using factorization by the kernel of inefficiency. This means that we can study only an effective action.

Definition 3.3. We call a representation of group transitive if for any $a, b \in V$ exists such g that

$$a = f(g)b$$

We call a representation of group single transitive if it is transitive and effective.

Theorem 3.4. Representation is single transitive if and only if for any $a, b \in V$ exists one and only one $g \in G$ such that $a = f(g)b$

Definition 3.5. We call a space V homogeneous space of group G if we have single transitive representation of group G on V.

Theorem 3.6. If we define a single transitive representation f of the group G on the manifold A then we can uniquely define coordinates on A using coordinates on the group G.

If f is a covariant representation than $f(a)$ is equivalent to the left shift $L(a)$ on the group G. If f is a contravariant representation than $f(a)$ is equivalent to the right shift $R(a)$ on the group G.

Proof. We select a point $v \in A$ and define coordinates of a point $w \in A$ as coordinates of the transformation a such that $w = f(a)v$. Coordinates defined this way are unique up to choice of an initial point $v \in A$ because the action is effective.

If f is a covariant representation we will use the notation

$$f(a)v = av$$

Because the notation

$$f(a)(f(b)v) = a(bv) = (ab)v = f(ab)v$$

is compatible with the group structure we see that the covariant representation f is equivalent to the left shift.

If f is a contravariant representation we will use the notation

$$f(a)v = va$$
Because the notation
\[f(a)(f(b)v) = (vb)a = v(ba) = f(ba)v \]
is compatible with the group structure we see that the contravariant representation \(f \) is equivalent to the right shift. \(\square \)

Theorem 3.7. Left and right shifts on group \(G \) are commuting.

Proof. This is the consequence of the associativity on the group \(G \)
\[(L(a)R(b))c = a(cb) = (ac)b = (R(b)L(a))c \]
\(\square \)

Theorem 3.8. If we defined a single transitive representation \(f \) on the manifold \(A \) then we can uniquely define a single transitive representation \(h \) such that diagram

\[
\begin{align*}
M & \xrightarrow{h(a)} M \\
\downarrow f(b) & \quad \downarrow f(b) \\
M & \xrightarrow{h(a)} M
\end{align*}
\]
is commutative for any \(a, b \in G \). \(^1 \)

Proof. We use group coordinates for points \(v \in A \). For the simplicity we assume that \(f \) is a covariant representation. Then according to theorem 3.6 we can write the left shift \(L(a) \) instead of the transformation \(f(a) \).

Let points \(v_0, v \in A \). Then we can find one and only one \(a \in G \) such that \(v = v_0 a = R(a)v_0 \)
We assume \(h(a) = R(a) \)
For some \(b \in G \) we have \(w_0 = f(b)v_0 = L(b)v_0 \) \(w = f(b)v = L(b)v \)
According to theorem 3.7 the diagram

\[
\begin{align*}
v_0 & \xrightarrow{h(a)=R(a)} v \\
\downarrow f(b)=L(b) & \quad \downarrow f(b)=L(b) \\
w_0 & \xrightarrow{h(a)=R(a)} w
\end{align*}
\]
is commutative.

Changing \(b \) we get that \(w_0 \) is an arbitrary point of \(A \).

We see from the diagram that if \(v_0 = v \) than \(w_0 = w \) and therefore \(h(e) = \delta \). On other hand if \(v_0 \neq v \) then \(w_0 \neq w \) because the representation \(f \) is single transitive. Therefore the representation \(h \) is effective.

In the same way we can show that for given \(w_0 \) we can find \(a \) such that \(w = h(a)w_0 \). Therefore the representation is single transitive.

\(^1 \)The theorem 3.8 is really very interesting. However its meaning becomes more clear when we apply this theorem to basis manifold, see section 5.
In general the representation \(f \) is not commutative and therefore the representation \(h \) is different from the representation \(f \). In the same way we can create a representation \(f \) using the representation \(h \).

Remark 3.9. It is clear that transformations \(L(a) \) and \(R(a) \) are different until the group \(G \) is nonabelian. However they both are maps onto. Theorem 3.8 states that if both right and left shift presentations exist on the manifold \(A \) we can define two commuting representations on the manifold \(A \). The left shift or the right shift only cannot present both types of representation. To understand why it is so let us change diagram (3.1) and assume \(h(a)v_0 = L(a)v_0 = v \) instead of \(h(a)v_0 = R(a)v_0 = v \) and let us see what expression \(h(a) \) has at the point \(w_0 \). The diagram

\[
\begin{array}{c}
v_0 \xrightarrow{h(a)=L(a)} v \\
\downarrow f(b)=L(b) \quad \downarrow f(b)=L(b) \\
w_0 \xrightarrow{h(a)} w
\end{array}
\]

is equivalent to the diagram

\[
\begin{array}{c}
v_0 \xrightarrow{h(a)=L(a)} v \\
\downarrow f^{-1}(b)=L(b^{-1}) \quad \downarrow f(b)=L(b) \\
w_0 \xrightarrow{h(a)} w
\end{array}
\]

and we have \(w = bv = ba v_0 = bab^{-1}w_0 \). Therefore

\[h(a)w_0 = (bab^{-1})w_0 \]

We see that the representation of \(h \) depends on its argument.

4. Linear Representation of Group

Suppose we introduce additional structure on set \(M \). Then we create an additional requirement for the representation of group.

Since we introduce continuity on set \(M \), we suppose that transformation \(u' = f(a)u \)
is continuous in \(u \). Therefore, we get

\[\left| \frac{\partial u'}{\partial u} \right| \neq 0 \]

Suppose \(M \) is a group. Then representations of left and right shifts have great importance.

Definition 4.1. Let \(M \) be vector space \(V \) over field \(F \). We call the representation of group \(G \) in vector space \(V \) **linear representation** if \(f(a) \) is homomorphism of space \(V \) for any \(a \in G \).

Remark 4.2. Let transformation \(f(a) \) be linear homogeneous transformation. \(f_2^1(a) \) are elements of the matrix of transformation. We usually assume that the lower index enumerates rows in the matrix and the upper index enumerates columns.

According to the matrix product rule we can present coordinates of a vector as a row of a matrix. We call such vector a **row vector**. We can also study a vector
Basis Manifold

Aleks Kleyn

whose coordinates form a column of a matrix. We call such vector a **column vector**.

Left-side linear representation in column vector space

\[u' = f(a)u \quad u'_\alpha = f_\alpha^\beta(a)u_\beta \quad a \in G \]

is **covariant representation**

\[u''_\gamma = f_\gamma^\beta(ba)u_\beta = f_\gamma^\beta(b)f_\alpha^\beta(a)u_\beta = (f_\gamma^\beta(b)f_\alpha^\beta(a))u_\beta \]

Left-side linear representation in row vector space

\[u' = f(a)u \quad u'^\alpha = f_\alpha^\beta(a)u_\beta \quad a \in G \]

is **contravariant representation**

\[u''^\gamma = f^\gamma_\beta(ba)u_\beta = f^\gamma_\beta(b)f^\alpha_\beta(a)u_\beta = (f^\gamma_\beta(b)f^\alpha_\beta(a))u_\beta \]

Right-side representation in column vector space

\[u' = uf(a) \quad u'_\alpha = u_\beta f_\beta^\alpha(a) \quad a \in G \]

is **contravariant representation**

\[u''_\gamma = uf_\gamma^\beta(ab) = (u_\beta f_\beta^\alpha(a))f_\gamma^\beta(b) = u_\beta(f_\gamma^\beta(b)f_\alpha^\beta(a)) \]

Right-side representation in row vector space

\[u' = uf(a) \quad u'^\alpha = u^\beta f^\beta_\alpha(a) \quad a \in G \]

is **covariant representation**

\[u''^\gamma = u^\beta f^\gamma_\beta(ab) = (u^\beta f^\gamma_\beta(a))f^\gamma_\beta(b) = u^\beta(f^\gamma_\beta(a)f^\alpha_\beta(b)) \]

\[\square \]

Remark 4.3. Studying linear representations we clearly use tensor notation. We can use only upper index and notation \(u^\bullet_\alpha\) instead of \(u_\alpha\). Then we can write the transformation of this object in the form

\[u'^{\bullet_\alpha} = f^{\bullet_\beta}_\alpha \cdot u^\bullet_\beta \]

This way we can hide the difference between covariant and contravariant representations. This similarity goes as far as we need.

\[\square \]

5. Basis in Vector Space

Assume we have vector space \(V\) and contravariant right-side effective linear representation of group \(G = G(V)\). We usually call group \(G(V)\) **symmetry group**. Without loss of generality we identify element \(g\) of group \(G\) with corresponding transformation of representation and write its action on vector \(v \in V\) as \(vg\).

This point of view allows introduction of two types of coordinates for element \(g\) of group \(G\). We can either use coordinates defined on the group, or introduce coordinates as elements of the matrix of the corresponding transformation. The former type of coordinates is more effective when we study properties of group \(G\). The latter type of coordinates contains redundant data; however, it may be more convenient when we study representation of group \(G\). The latter type of coordinates is called **coordinates of representation**.

A maximal set of linearly independent vectors \(\mathbf{e} = <e^{(i)}_i>\) is called a **basis**. In case when we want to show clearly that this is the basis in vector \(V\) we use notation \(\mathbf{e}_V\).
Any homomorphism of the vector space maps one basis into another. Thus we can extend a covariant representation of the symmetry group to the set of bases. We write the action of element \(g \) of group \(G \) on basis \(\vec{e} \) as \(R(g)\vec{e} \). However not every two bases can be mapped by a transformation from the symmetry group because not every nonsingular linear transformation belongs to the representation of group \(G \). Therefore, we can present the set of bases as a union of orbits of group \(G \).

Properties of basis depend on the symmetry group. We can select basis vectors of which are in a relationship which is invariant relative to symmetry group. In this case all bases from orbit \(O(\vec{e}, g \in G, R(g)\vec{e}) \) have vectors which satisfy the same relationship. Such a basis we call \(G \)-basis. In each particular case we need to prove the existence of a basis with certain properties. If such a basis does not exist we can choose an arbitrary basis.

Definition 5.1. We call orbit \(O(\vec{e}, g \in G, R(g)\vec{e}) \) of the selected basis \(\vec{e} \) the **basis manifold** \(B(V) \) of vector space \(V \).

Theorem 5.2. Representation of group \(G \) on basis manifold is single transitive representation.

Proof. According to definition 5.1 at least one transformation of representation is defined for any two bases. To prove this theorem it is sufficient to show that this transformation is unique.

Consider elements \(g_1, g_2 \) of group \(G \) and a basis \(\vec{e} \) such that
\[
R_{g_1}\vec{e} = R_{g_2}\vec{e} \tag{5.1}
\]
From (5.1) it follows that
\[
R_{g_2^{-1}}R_{g_1}\vec{e} = R_{g_1g_2^{-1}}\vec{e} = \vec{e} \tag{5.2}
\]
Because any vector has a unique expansion relative to basis \(\vec{e} \) it follows from (5.2) that \(R_{g_1g_2^{-1}} \) is an identical transformation of vector space \(V \). \(g_1 = g_2 \) because representation of group \(G \) is effective on vector space \(V \). Statement of the theorem follows from this.

Theorem 5.2 means that the basis manifold \(B(V) \) is a homogenous space of group \(G \). We constructed contravariant right-side single transitive linear representation of group \(G \) on the basis manifold. Such representation is called **active representation**. A corresponding transformation on the basis manifold is called **active transformation** ([2]) because the homomorphism of the vector space induced this transformation.

According to theorem 3.6 because basis manifold \(B(V) \) is a homogenous space of group \(G \) we can introduce on \(B(V) \) two types of coordinates defined on group \(G \). In both cases coordinates of basis \(\vec{e} \) are coordinates of the homomorphism mapping a fixed basis \(\vec{e}_0 \) to the basis \(\vec{e} \). Coordinates of representation are called **standard coordinates of basis**. We can show that standard coordinates \(e_k \) of basis \(\vec{e} \) for certain value of \(k \) are coordinates of vectors \(\vec{e}_k \in \vec{e} \) relative to a fixed basis \(\vec{e}_0 \).

Basis \(\vec{e} \) creates coordinates in \(V \). In different types of space it may be done in different ways. In affine space if node of basis is point \(A \) than point \(B \) has the same coordinates as vector \(\vec{AB} \) relative basis \(\vec{e} \). In a general case we introduce coordinates of a vector as coordinates relative to the selected basis. Using only bases of type \(G \) means using of specific coordinates on \(\mathcal{A}_n \). To distinguish them we call this **G-coordinates**. We also call the space \(V \) with such coordinates **G-space**.
According to theorem 3.8 another representation, commuting with passive, exists on the basis manifold. As we see from remark 3.9 transformation of this representation is different from a passive transformation and cannot be reduced to transformation of space \(V \). To emphasize the difference this transformation is called a **passive transformation** of vector space \(V \) and the representation is called **passive representation**. We write the passive transformation of basis \(\overrightarrow{e} \), defined by element \(g \in G \), as \(L(g)\overrightarrow{e} \).

5.1. Basis in Affine Space.

We identify vectors of the affine space \(A_n \) with pair of points \(\overrightarrow{AB} \). All vectors that have a common beginning \(A \) create a vector space that we call a tangent vector space \(T_AA_n \). A topology that \(A_n \) inherits from the map \(A_n \rightarrow R^n \) allows us to study smooth transformations of \(A_n \) and their derivatives. More particularly, the derivative of transformation \(f \) maps the vector space \(T_AA_n \) into \(T_{f(A)}A_n \). If \(f \) is linear then its derivative is the same at every point. Introducing coordinates \(A^1, ..., A^n \) of a point \(A \in A_n \) we can write a linear transformation as

\[
A'^i = P^i_j A^j + R^i \quad \text{det} \ P \neq 0
\]

(5.3)

Derivative of this transformation is defined by matrix \(||P^i_j|| \), and does not depend on point \(A \). Vector \((R^1, ..., R^n) \) expresses displacement in affine space. Set of transformations (5.3) is the group Lie which we denote as \(GL(A_n) \) and call **affine transformation group**.

Definition 5.3. Affine basis \(\overrightarrow{\overrightarrow{e}} = \overrightarrow{O, \overrightarrow{A_i}} > \) is set of linear independent vectors \(\overrightarrow{e}_i = \overrightarrow{OA}_i = (e^1_i, ..., e^n_i) \) with common start point \(O = (O^1, ..., O^n) \). □

Definition 5.4. Basis manifold \(B(A_n) \) of affine space is set of bases of this space. □

An active transformation is called **affine transformation**. A passive transformation is called **quasi affine transformation**.

If we do not concern about starting point of a vector we see little different type of space which we call central affine space \(CA_n \). In the central affine space we can identify all tangent spaces and denote them \(TC_A \). If we assume that the start point of vector is origin \(O \) of coordinate system in space then we can identify any point \(A \in CA_n \) with the vector \(a = \overrightarrow{OA} \). This leads to identification of \(CA_n \) and \(TC_A \). Now transformation is simply map

\[
a'^i = P^i_j a^j \quad \text{det} \ P \neq 0
\]

and such transformations build up Lie group \(GL_n \).

Definition 5.5. Central affine basis \(\overrightarrow{\overrightarrow{c}} = < \overrightarrow{C_i} > \) is set of linearly independent vectors \(\overrightarrow{c}_i = (c^1_i, ..., c^n_i) \). □

Definition 5.6. Basis manifold \(B(CA_n) \) of central affine space is set of bases of this space. □

5.2. Basis in Euclid Space.

When we introduce a metric in a central affine space we get a new geometry because we can measure a distance and a length of vector. If a metric is positive defined we call the space Euclid \(E_n \) otherwise we call the space pseudo Euclid \(E_{nm} \).
Transformations that preserve length form Lie group \(SO(n) \) for Euclid space and Lie group \(SO(n, m) \) for pseudo Euclid space where \(n \) and \(m \) number of positive and negative terms in metrics.

Definition 5.7. Orthonormal basis \(\mathbf{\bar{\mathcal{F}}} = (\mathbf{\bar{e}}_i) \) is set of linearly independent vectors \(\mathbf{\bar{e}}_i = (e^1_i, ..., e^n_i) \) such that length of each vector is 1 and different vectors are orthogonal.

We can prove existence of orthonormal basis using Gram-Schmidt orthogonalization procedure.

Definition 5.8. Basis manifold \(B(\mathcal{E}_n) \) of Euclid space is set of orthonormal bases of this space.

A active transformation is called movement. An passive transformation is called quasi movement.

6. Geometrical Object of Vector Space

An active transformation changes bases and vectors uniformly and coordinates of vector relative basis do not change. A passive transformation changes only the basis and it leads to change of coordinates of vector relative to basis.

Let passive transformation \(L(a) \in G \) defined by matrix \((a^j_i)\) maps basis \(\mathbf{\bar{e}} = (e^i_j) \) into basis \(\mathbf{\bar{e}'} = (e'^i_j) \in \mathcal{B}(\mathcal{V}) \)

\[(6.1)\]
\[e'_j = a^j_i e_i\]

Let vector \(v \in \mathcal{V} \) have expansion \n\[(6.2)\]
\[v = v^i e_i\]

relative to basis \(\mathbf{\bar{e}} \) and have expansion

\[(6.3)\]
\[v = v'^i e'_i\]

relative to basis \(\mathbf{\bar{e}'} \). From (6.1) and (6.3) it follows that

\[(6.4)\]
\[v = v'^j a^j_i e_i\]

Comparing (6.2) and (6.4) we get

\[(6.5)\]
\[v^i = v'^j a^j_i\]

Because \(a^j_i \) is nonsingular matrix we get from (6.5)

\[(6.6)\]
\[v'^i = v^j a^{-1}_i^j\]

Coordinate transformation (6.6) does not depend on vector \(v \) or basis \(\mathbf{\bar{e}}, \) but is defined only by coordinates of vector \(v \) relative basis \(\mathbf{\bar{e}}. \)

Suppose we select basis \(\mathbf{\bar{e}}. \) Then the set of coordinates \((v'^i)\) relative to this basis forms a vector space \(\tilde{\mathcal{V}} \) isomorphic to vector space \(\mathcal{V} \). This vector space is called coordinate vector space. This isomorphism is called coordinate isomorphism. Denote by \(\delta_k^i = (\delta_k^j) \) the image of vector \(e_k \in \mathbf{\bar{e}} \) under this.

Theorem 6.1. Coordinate transformations (6.6) form right-side contravariant effective linear representation of group \(G \) which is called coordinate representation.
Proof. Suppose we have two consecutive passive transformations \(L(a) \) and \(L(b) \). Coordinate transformation (6.6) corresponds to passive transformation \(L(a) \). Coordinate transformation (6.7)
\[
v'^{jk} = v^{ik} b^{-1} i
\]
corresponds to passive transformation \(L_b \). Product of coordinate transformations (6.6) and (6.7) has form
\[
v'^{jk} = v^{ij} a^{-1} j b^{-1} i = v^{i} (ba)^{-1} j
\]
and is coordinate transformation corresponding to passive transformation \(L_{ba} \). It proves that coordinate transformations form contravariant right-side linear representation of group \(G \).

Suppose coordinate transformation does not change vectors \(\delta_k \). Then unit of group \(G \) corresponds to it because representation is single transitive. Therefore, coordinate representation is effective. □

Let homomorphism of group \(G \) to the group of passive transformations of vector space \(W \) be coordinated with symmetry group of vector space \(V \). This means that passive transformation \(L(a) \) of vector space \(W \) corresponds to passive transformation \(L(a) \) of vector space \(V \).
\[
E'_\alpha = A_\beta^\alpha (a) E_\beta
\]
Then coordinate transformation in \(W \) gets form
\[
w'^{\alpha} = w^{\beta} A(a^{-1})^{\alpha}_{\beta} = w^{\beta} A(a)^{-1}_{\beta}
\]

Definition 6.2. Orbit
\[
\mathcal{O}((w, \bar{e}_V), a \in G, (wA(a)^{-1}, L(a)\bar{e}_V))
\]
is called geometrical object in coordinate representation defined in vector space \(V \). For any basis \(\bar{e}_V = L(a)\bar{e}_V \) corresponding point (6.10) of orbit defines coordinates of geometrical object relative basis \(\bar{e}_V \).

Definition 6.3. Orbit
\[
\mathcal{O}((w, \bar{e}_W, \bar{e}_V), a \in G, (wA(a)^{-1}, L(a)\bar{e}_W, L(a)\bar{e}_V))
\]
is called geometrical object defined in vector space \(V \). For any basis \(\bar{e}_V = L(a)\bar{e}_V \) corresponding point (6.10) of orbit defines coordinates of a geometrical object relative to basis \(\bar{e}_V \) and the corresponding vector
\[
w = w'^{\alpha} E'_\alpha
\]
is called representative of geometrical object in basis \(\bar{e}_V \). □

We also say that \(w \) is a geometrical object of type \(A \)

Since a geometrical object is an orbit of representation, we see that according to theorem 2.14 the definition of the geometrical object is a proper definition.

Definition 6.2 introduces a geometrical object in coordinate space. We assume in definition 6.3 that we selected a basis in vector space \(W \). This allows using a representative of the geometrical object instead of its coordinates.

Theorem 6.4 (invariance principle). Representative of geometrical object does not depend on selection of basis \(\bar{e}_V \).
Proof. To define representative of geometrical object, we need to select basis e_V, basis $e_W = (E_\alpha)$ and coordinates of geometrical object w^α. Corresponding representative of geometrical object has form

$$w = w^\alpha E_\alpha$$

Suppose we map basis e_V to basis e'_V by passive transformation $L(a)$. According building this forms passive transformation (6.9) and coordinate transformation (6.10). Corresponding representative of geometrical object has form

$$w' = w'^\alpha E'_\alpha = w^\beta A(a)^{-1\gamma_\beta} A_\alpha^\gamma(a) E_\gamma = w'^\beta E'_\beta = w$$

Therefore representative of geometrical object is invariant relative selection of basis. □

Definition 6.5. Let

$$w_1 = w_1^\alpha E_\alpha$$
$$w_2 = w_2^\alpha E_\alpha$$

be geometrical objects of the same type defined in vector space V. Geometrical object

$$w = (w_1^\alpha + w_2^\alpha) E_\alpha$$

is called sum

$$w = w_1 + w_2$$

of geometrical objects w_1 and w_2. □

Definition 6.6. Let

$$w_1 = w_1^\alpha E_\alpha$$

be geometrical object defined in vector space V over field F. Geometrical object

$$w_2 = (kw_1^\alpha) E_\alpha$$

is called product

$$w_2 = kw_1$$

of geometrical object w_1 and constant $k \in F$. □

Theorem 6.7. Geometrical objects of type A defined in vector space V over field F form vector space over field F.

Proof. The statement of the theorem follows from immediate verification of the properties of vector space. □

7. References

[1] P. K. Rashevsky, Riemann Geometry and Tensor Calculus, Moscow, Nauka, 1967

[2] Granino A. Korn, Theresa M. Korn, Mathematical Handbook for Scientists and Engineer, McGraw-Hill Book Company, New York, San Francisco, Toronto, London, Sydney, 1968
active representation
active transformation on basis manifold
affine basis
affine transformation group
affine transformation on basis manifold
basis manifold of affine space
basis manifold of central affine space
basis manifold of Euclid space
basis manifold of vector space
basis of vector space
central affine basis
column vector
coordinate isomorphism
coordinate representation of group in vector space
coordinate vector space
coordinates of geometrical object
coordinates of geometrical object in coordinate representation
coordinates of representation
direct product of representations of group
effective representation of group

g-basis of vector space
g-coordinates of basis
geometrical object in coordinate representation
geometrical object in vector space
geometrical object of type A in vector space
g-space
homogeneous space of group
invariance principle in vector space
kernel of inefficiency of representation of group
left shift on group
left-side contravariant representation of group
left-side covariant representation of group
left-side representation of group
left-side transformation
linear representation of group
nonsingular transformation
orbit of representation of group
orthonormal basis
passive representation
passive transformation on basis manifold
product of geometrical object and constant in vector space
quasi affine transformation on basis manifold
quasi movement on basis manifold
representation of group
representative of geometrical object in vector space
right shift on group
right-side contravariant representation of group
right-side covariant representation of group
right-side representation of group
right-side transformation
row vector
single transitive representation of group
standard coordinates of basis
sum of geometrical objects in vector space
symmetry group
transitive representation of group
9. Special Symbols and Notations

\(A_n \) affine space 10

\(B(A_n) \) basis manifold of affine space 10

\(B(V) \) basis manifold of vector space \(V \) 9

\(B(CA_n) \) basis manifold of central affine space 10

\(B(\mathcal{E}_n) \) basis manifold of Euclid space 11

\(CA_n \) central affine space 10

\(\mathbb{F} = \langle O, \eta_i \rangle \) affine basis 10

\(\mathbb{F} \) basis of vector space 8

\(\mathbb{F}_V \) basis in vector space \(V \) 8

\(\mathbb{F} = \langle \eta_i \rangle \) central affine basis 10

\(\mathcal{E}_n \) Euclid space 10

\(\mathcal{E}_{sym} \) pseudo Euclid space 10

\(\mathbb{F} = \langle \eta_i \rangle \) orthonormal basis 11

\(e^i_k \) standard coordinates of basis 9

\(\eta_k \) vector of basis 9

\(GL(A_n) \) affine transformation group 10

\(G(V) \) group of homomorphisms of vector space \(V \) 8

\(L(a)b \) left shift 3

\(L(g)e \) passive transformation 10

\(l(M) \) set of left-side nonsingular transformations of set \(M \) 1

\(\mathcal{O}(w, \mathbb{F}_V), a \in G, (wA(a)^{-1}, L(a)\mathbb{F}_V) \)
The geometrical object in coordinate representation 12

\(\mathcal{O}(w, \mathbb{F}_V, \mathbb{F}_V), a \in G, (wA(a)^{-1}, L(a)\mathbb{F}_V, L(a)\mathbb{F}_V) \)
The geometrical object 12

\(\mathcal{O}(v, g \in G, f(g)v = \{w = f(g)v : g \in G\} \)
The orbit of representation of the group \(G \) 4

\(R(g)e \) active transformation 9

\(R(a)b \) right shift 3

\(r(M) \) set of right-side nonsingular transformations of set \(M \) 1

\(\hat{\mathcal{V}} \) coordinate vector space 11

\((v^i) \) coordinates in vector space 11

\(V \) vector space 8

\(\delta \) identical transformation 1

\(\eta_k = (\delta^i_k) \) image of vector \(\eta_k \in \mathbb{F} \) under isomorphism to coordinate vector space 11
Многообразие базисов

Александр Клейн

Аннотация. В этой статье мы изучаем группу симметрий векторного пространства. Многообразие базисов является однородным пространством группы симметрий. Это приводит к определению активного и пассивного преобразований на многообразии базисов. Активное преобразование связано с преобразованием векторного пространства. Пассивное преобразование даёт возможность определить понятия инвариантности и геометрического объекта.

1. Введение

Эта статья была написана под большим влиянием книги [1]. Изучение однородного пространства группы симметрий векторного пространства ведёт нас к определению базиса этого пространства и многообразия базисов. Мы вводим два типа преобразований многообразия базисов: активные и пассивные преобразования. Различие между ними состоит в том, что активное преобразование может быть выражено как преобразование исходного пространства. Как показано в [1], пассивное преобразование даёт возможность определить понятия инвариантности и геометрического объекта.

Мы имели две противоположные точки зрения на геометрический объект. С одной стороны мы фиксируем координаты геометрического объекта относительно заданного базиса и указываем закон преобразования координат при замене базиса. В то же время мы рассматриваем всю совокупность координат геометрического объекта относительно различных базисов как единое целое. Это даёт нам возможность бескоординатного изучения геометрического объекта.

2. Представление

Определение 2.1. Мы будем называть отображение

\[t : M \to M \]

невырожденным преобразованием, если существует обратное отображение. \(\square \)

Определение 2.2. Преобразование называется левосторонним преобразованием если оно действует слева

\[u' = tu \]

Мы будем обозначать \(l(M) \) множество левосторонних невырожденных преобразований множества \(M \). \(\square \)

Key words and phrases. векторное пространство, дифференциальная геометрия, базис, геометрический объект.

AleksKlein@Mail.RU, 12 Aug 2007
Определение 2.3. Преобразование называется правосторонним преобразованием если оно действует справа

\[u' = ut \]

Мы будем обозначать \(r(M) \) множество правосторонних невырожденных преобразований множества \(M \).

Мы будем обозначать \(\delta \) тождественное преобразование.

Определение 2.4. Пусть \(G \) - группа. Мы будем называть отображение

(2.1) \[f : G \to l(M) \]

левосторонним представлением группы \(G \) в множестве \(M \), если отображение \(f \) удовлетворяет условиям

(2.2) \[f(ab)u = f(a)(f(b)u) \]

(2.3) \[f(e) = \delta \]

Определение 2.5. Пусть \(G \) - группа. Мы будем называть отображение

(2.4) \[f : G \to r(M) \]

правосторонним представлением группы \(G \) в множестве \(M \), если отображение \(f \) удовлетворяет условиям

(2.5) \[uf(ab) = (uf(a))f(b) \]

(2.6) \[f(e) = \delta \]

Любое утверждение, справедливое для левостороннего представления группы, будет справедливо для правостороннего представления. Поэтому мы будем пользоваться общим термином представление группы и будем пользоваться обозначениями для левостороннего представления в тех случаях, когда это не вызывает недоразумений.

Теорема 2.6. Для любого \(g \in G \)

(2.7) \[f(g^{-1}) = f(g)^{-1} \]

Доказательство. На основании (2.2) и (2.3), мы можем записать

\[u = \delta u = f(gg^{-1})u = f(g)(f(g^{-1})u) \]

Это завершает доказательство.

Теорема 2.7. Пусть \(l(M) \) - группа относительно умножения

(2.8) \[(t_1t_2)u = t_1(t_2u) \]

и \(\delta \) - единица группы \(l(M) \). Если отображение (2.1) является гомоморфизмом группы

(2.9) \[f(ab) = f(a)f(b) \]

то это отображение является представлением группы \(G \), которое мы будем называть левосторонним ковариантным представлением.
Доказательство. Так как \(f \) - гомоморфизм группы, то \(f(e) = \delta \).
Согласно (2.8) и (2.9)

\[
f(ab)u = (f(a)f(b))u = f(a)(f(b)u)
\]

Согласно определению 2.4 \(f \) является представлением. \(\square \)

Теорема 2.8. Пусть \(r(M) \) - группа относительно умножения
(2.10)

\[
u(t_1t_2) = (ut_1)t_2
\]

и \(\delta \) - единица группы \(r(M) \). Если отображение (2.4) является гомоморфизмом группы
(2.11)

\[
f(ab) = f(a)f(b)
\]
то это отображение является представлением группы \(G \), которое мы будем называть правосторонним ковариантным представлением.

Доказательство. Так как \(f \) - гомоморфизм группы, то \(f(e) = \delta \).
Согласно (2.10) и (2.11)

\[
u f(ab) = u(f(a)f(b)) = (uf(a))f(b)
\]

Согласно определению 2.5 \(f \) является представлением. \(\square \)

Теорема 2.9. Пусть \(l(M) \) - группа относительно умножения
(2.12)

\[(t_2t_1)u = t_1(t_2u)\]

и \(\delta \) - единица группы \(l(M) \). Если отображение (2.1) является гомоморфизмом группы
(2.13)

\[
f(ab)u = f(a)f(b)
\]
то это отображение является представлением группы \(G \), которое мы будем называть левосторонним ковариантным представлением.

Доказательство. Так как \(f \) - гомоморфизм группы, то \(f(e) = \delta \).
Согласно (2.12) и (2.13)

\[
f(ab)u = (f(b)f(a))u = f(a)(f(b)u)
\]

Согласно определению 2.4 \(f \) является представлением. \(\square \)

Теорема 2.10. Пусть \(r(M) \) - группа относительно умножения
(2.14)

\[u(t_2t_1) = (ut_1)t_2\]

и \(\delta \) - единица группы \(r(M) \). Если отображение (2.4) является гомоморфизмом группы
(2.15)

\[
f(ab)u = f(a)f(b)
\]
то это отображение является представлением группы \(G \), которое мы будем называть правосторонним ковариантным представлением.

Доказательство. Так как \(f \) - гомоморфизм группы, то \(f(e) = \delta \).
Согласно (2.14) и (2.15)

\[
u f(ab) = u(f(b)f(a)) = (uf(a))f(b)
\]

Согласно определению 2.5 \(f \) является представлением. \(\square \)
Александр Клейн
Многообразие базисов

Пример 2.11. Групповая операция определяет два различных представления на группе: левый сдвиг, который мы определяем равенством

\[(2.16)\]
\[b' = L(a)b = ab\]

и правый сдвиг, который мы определяем равенством

\[(2.17)\]
\[b' = R(a)b = ba\]

\[\square\]

Теорема 2.12. Пусть представление

\[u' = f(a)u\]

является ковариантным представлением. Тогда представление

\[u' = h(a)u = f(a^{-1})u\]

является контравариантным представлением.

Доказательство. Утверждение следует из цепочки равенств

\[h(ab) = f((ab)^{-1}) = f(b^{-1}a^{-1}) = f(b^{-1})f(a^{-1}) = h(b)h(a)\]

\[\square\]

Определение 2.13. Пусть \(f\) - представление группы \(G\) в множестве \(M\). Для любого \(v \in M\) мы определяем орбиту представления группы \(G\) как множество

\[O(v, g \in G, f(g)v) = \{w = f(g)v : g \in G\}\]

\[\square\]

Так как \(f(e) = \delta\), то \(v \in O(v, g \in G, f(g)v)\).

Теорема 2.14. Если

\[(2.18)\]
\[v \in O(u, g \in G, f(g)u)\]

то

\[O(u, g \in G, f(g)u) = O(v, g \in G, f(g)v)\]

Доказательство. Из (2.18) следует существование \(a \in G\) такого, что

\[(2.19)\]
\[v = f(a)u\]

Если \(w \in O(v, g \in G, f(g)v)\), то существует \(b \in G\) такой, что

\[(2.20)\]
\[w = f(b)v\]

Подставив (2.19) в (2.20), мы получим

\[(2.21)\]
\[w = f(b)(f(a)u)\]

На основании (2.2) из (2.21) следует, что \(w \in O(u, g \in G, f(g)u)\). Таким образом,

\[O(v, g \in G, f(g)v) \subseteq O(u, g \in G, f(g)u)\]

На основании (2.7) из (2.19) следует, что

\[(2.22)\]
\[u = f(a)^{-1}v = f(a^{-1})v\]

Равенство (2.22) означает, что \(u \in O(v, g \in G, f(g)v)\) и, следовательно,

\[O(u, g \in G, f(g)u) \subseteq O(v, g \in G, f(g)v)\]

Это завершает доказательство.

\[\square\]
Теорема 2.15. Если определены представление \(f_1 \) группы \(G \) в множестве \(M_1 \) и представление \(f_2 \) группы \(G \) в множестве \(M_2 \), то мы можем определить прямое произведение представлений \(f_1 \) и \(f_2 \) группы

\[
 f = f_1 \otimes f_2 : G \rightarrow M_1 \otimes M_2
\]

\[
 f(g) = (f_1(g), f_2(g))
\]

Доказательство. Чтобы показать, что \(f \) является представлением, достаточно показать, что \(f \) удовлетворяет определению 2.4.

\[
 f(e) = (f_1(e), f_2(e)) = (\delta_1, \delta_2) = \delta
\]

\[
 f(ab)u = (f_1(ab)u_1, f_2(ab)u_2)
\]

\[
 = (f_1(a)(f_1(b)u_1), f_2(a)(f_2(b)u_2))
\]

\[
 = f(a)(f_1(b)u_1, f_2(b)u_2)
\]

\[
 = f(a)(f(b)u)
\]

3. Однотранзитивное представление

Определение 3.1. Мы будем называть ядром неэффективности представления группы \(G \) множество

\[
 K_f = \{ g \in G : f(g) = \delta \}
\]

Если \(K_f = \{ e \} \), мы будем называть представление группы \(G \) эффективным.

Теорема 3.2. Ядро неэффективности - это подгруппа группы \(G \).

Доказательство. Допустим \(f(a_1) = \delta \) и \(f(a_2) = \delta \). Тогда

\[
 f(a_1a_2)u = f(a_1)(f(a_2)u) = u
\]

\[
 f(a^{-1}) = f^{-1}(a) = \delta
\]

Если действие не эффективно, мы можем перейти к эффективному, заменив группой \(G_1 = G/K_f \), пользуясь факторизацией по ядру неэффективности. Это означает, что мы можем изучать только эффективное действие.

Определение 3.3. Мы будем называть представление группы транзитивным, если для любых \(a, b \in V \) существует такое \(g \), что

\[
 a = f(g)b
\]

Мы будем называть представление группы однотранзитивным, если оно транзитивно и эффективно.

Теорема 3.4. Представление однотранзитивно тогда и только тогда, когда для любых \(a, b \in V \) существует одно и только одно \(g \in G \) такое, что \(a = f(g)b \).

Определение 3.5. Мы будем называть пространство \(V \) однородным пространством группы \(G \), если мы имеем однотранзитивное представление группы \(G \) на \(V \).
Теорема 3.6. Если мы определим однотрактационное представление f группы G на многообразии A, то мы можем однозначно определить координаты на A, пользуясь координатами на группе G.

Если f - ковариантное представление, то $f(a)$ эквивалентно левому сдвигу $L(a)$ на группе G. Если f = контравариантное представление, то $f(a)$ эквивалентно правому сдвигу $R(a)$ на группе G.

Доказательство. Мы выберем точку $v \in A$ и определим координаты точки $w \in A$ как координаты преобразования a такого, что $w = f(a)v$. Координаты, определённые таким образом, однозначны с точностью до выбора начальной точки $v \in A$, так как действие эффективно.

Если f - ковариантное представление, мы будем пользоваться записью

$$f(a)v = av$$

Так как запись

$$f(a)(f(b)v) = a(bv) = (ab)v = f(ab)v$$

совместима с групповой структурой, мы видим, что ковариантное представление f эквивалентно левому сдвигу.

Если f - контравариантное представление, мы будем пользоваться записью

$$f(a)v = va$$

Так как запись

$$f(a)(f(b)v) = (vb)a = v(ba) = f(ba)v$$

совместима с групповой структурой, мы видим, что контравариантное представление f эквивалентно правому сдвигу.

Теорема 3.7. Левый и правый сдвиги на группе G перестановочны.

Доказательство. Это следствие ассоциативности группы G

$$(L(a)R(b))c = a(cb) = (ac)b = (R(b)L(a))c$$

\square

Теорема 3.8. Если мы определили однотрактационное представление f на многообразии A, то мы можем однозначно определить однотрактационное представление h такое, что диаграмма

$$\begin{array}{ccc}
M & \xrightarrow{h(a)} & M \\
| & f(b) & | \\
M & \xrightarrow{h(a)} & M
\end{array}$$

коммутативна для любых $a, b \in G$.

Доказательство. Мы будем пользоваться групповыми координатами для точек $v \in A$. Для простоты мы предположим, что f - ковариантное представление. Тогда согласно теореме 3.6 мы можем записать левый сдвиг $L(a)$ вместо преобразования $f(a)$.

\square

1Теорема 3.8 на самом деле очень интересна. Тем не менее её смысл становится более ясным, когда мы приложим эту теорему к многообразию базисов, смотри секцию 5.
Пусть точки $v_0, v \in A$. Тогда мы можем найти одно и только одно $a \in G$ такое, что

$$v = v_0 a = R(a) v_0$$

Мы предположим

$$h(a) = R(a)$$

Существует $b \in G$ такое, что

$$w_0 = f(b) v_0 = L(b) v_0 \quad w = f(b) v = L(b) v$$

Согласно теореме 3.7 диаграмма

(3.1)

кому мутативна.

Изменяя b мы получим, что w_0 - это произвольная точка, принадлежащая A.

Мы видим из диаграммы, что если $v_0 = v$ than $w_0 = w$ и следовательно $h(e) = \delta$. С другой стороны, если $v_0 \neq v$, то $w_0 \neq w$ потому, что представление f однотранзитивно. Следовательно представление h эффективно.

Таким же образом мы можем показать, что для данного w_0 мы можем найти a такое, что $w = h(a) w_0$. Следовательно представление однотранзитивно.

В общем случае, представление f не коммутативно и следовательно представление h отлично от представления f. Таким же образом мы можем создать представление f, пользуясь представлением h. □

Замечание 3.9. Очевидно, что преобразования $L(a)$ и $R(a)$ отличаются, если группа G неабелева. Тем не менее, они являются отображениями на. Теорема 3.8 утверждает, что, если оба представления правого и левого сдвига существуют на многообразии A, то мы можем определить два перестановочных представления на многообразии A. Тогда левый или правый сдвиг не может представлять оба типа представления. Чтобы понять почему это так, мы можем изменить диаграмму (3.1) и предположить $h(a) v_0 = L(a) v_0 = v$ вместо $h(a) v_0 = R(a) v_0 = v$ и проанализировать, какое выражение $h(a)$ имеет в точке w_0. Диаграмма

эквивалентна диаграмме
и мы имеем \(w = bv = babv_0 = bab^{-1}w_0 \). Следовательно
\[
h(a)w_0 = (bab^{-1})w_0
\]
Мы видим, что представление \(h \) зависит от его аргумента. □

4. Линейное представление

Если на множестве \(M \) определена дополнительная структура, мы предъявляем к представлению группы дополнительные требования.

Если на множестве \(M \) определено понятие непрерывности, то мы полагаем, что преобразование
\[
 u' = f(a)u
\]
непрерывно по \(u \) и, следовательно,
\[
\frac{\partial u'}{\partial u} \neq 0
\]

Если \(M \) - группа, то большое значение имеют представления левых и правых сдвигов.

Определение 4.1. Пусть \(M \) - векторное пространство \(V \) над полем \(F \). Мы будем называть представление группы \(G \) в векторном пространстве \(V \) **линейным представлением**, если \(f(a) \) - гомоморфизм пространства \(V \) для любого \(a \in G \).

Замечание 4.2. Допустим, преобразование \(f(a) \) является линейным однородным преобразованием. \(f_\gamma^\alpha(a) \) являются элементами матрицы преобразования. Мы обычно полагаем, что нижний индекс перечисляет строки в матрице и верхний индекс перечисляет столбцы.

Согласно закону умножения матриц мы можем представить координаты вектора как строку матрицы. Мы будем называть такой вектор **вектор-строкой**. Мы можем так же рассматривать вектор, координаты которого формируют столбец матрицы и будем называть такой вектор **вектор-столбцом**.

Левостороннее линейное представление в пространстве вектор-столбцов
\[
 u' = f(a)u \quad u'_\alpha = f_\alpha^\beta(a)u_\beta \quad a \in G
\]
является ковариантным представлением
\[
u'_\gamma = f_\gamma^\beta(b)a)u_\beta = f_\gamma^\beta(b)(f_\gamma^\alpha(a)u_\beta) = (f_\gamma^\alpha(b)f_\alpha^\beta(a))u_\beta
\]

Левостороннее линейное представление в пространстве вектор-строк
\[
 u' = f(a)u \quad u'^\alpha = f_\gamma^\alpha(a)u_\beta \quad a \in G
\]
является контравариантным представлением
\[
u'^\gamma = f_\gamma^\beta(b)a)u_\beta = f_\gamma^\beta(b)(f_\gamma^\alpha(a)u_\beta) = (f_\gamma^\alpha(b)f_\alpha^\beta(a))u_\beta
\]

Правостороннее линейное представление в пространстве вектор-столбцов
\[
 u' = uf(a) \quad u'_\alpha = u_\beta f_\beta^\alpha(a) \quad a \in G
\]
является контравариантным представлением
\[
u'_\gamma = u_\beta f_\gamma^\beta(ab) = (u_\beta f_\alpha^\beta(a))f_\gamma^\beta(b) = u_\beta(f_\gamma^\alpha(b)f_\alpha^\beta(a))
\]

Правостороннее линейное представление в пространстве вектор-строк
\[
 u' = uf(a) \quad u'^\alpha = u_\beta f_\beta^\alpha(a) \quad a \in G
\]
является ковариантым представлением
\[u^{\alpha} = u^d f^\alpha_d(ab) = (u^d f^\alpha_d(a)) f^\alpha_d(b) = u^d(f^\alpha_d(a)f^\alpha_d(b)) \]

Замечание 4.3. При изучении линейного представления мы явно будем пользоваться тензорной записью. Мы можем пользоваться только верхним индексом и записью \(u^\alpha \) вместо \(u_\alpha \). Тогда мы можем записать преобразование этого объекта в виде
\[u^{\alpha} = f^{\alpha\beta} u^\beta \]
Таким образом мы можем спрятать различие между ковариантным и котрансформанным представлениями. Эта сходимость идёт сколь угодно далеко.

5. Базис в векторном пространстве

Пусть мы имеем векторное пространство \(\mathcal{V} \) и ковариантное правостороннее эффективное линейное представление группы \(G = G(\mathcal{V}) \). Мы обычно будем называть группу \(G(\mathcal{V}) \) группы симметрии. Не нарушая общности, мы будем отождествлять элемент \(g \) группы \(G \) с соответствующим преобразованием представления и записывать его действие на вектор \(v \in \mathcal{V} \) в виде \(g v \).

Эта точка зрения позволяет определить два типа координат для элемента \(g \) группы \(G \). Мы можем либо пользоваться координатами, определёнными на группе, либо определить координаты как элементы матрицы соответствующего преобразования. Первая форма координат более эффективна, когда мы изучаем свойства группы \(G \). Вторая форма координат содержит избыточную информацию, но бывает более удобна, когда мы изучаем представление группы \(G \). Мы будем называть вторую форму координат координатами представления.

Мы будем называть максимальное множество линейно независимых векторов \(\mathcal{F} = \{ e_i \} \) базисом. В этом случае, когда мы хотим явно указать, что это базис пространства \(\mathcal{V} \), мы будем пользоваться обозначением \(\mathcal{F}_\mathcal{V} \).

Любой гомоморфизм векторного пространства отображает один базис на другой. Таким образом, мы можем распространить ковариантное представление группы симметрии на множество базисов. Мы будем записывать действие элемента \(g \) группы \(G \) на базис \(\mathcal{F} \) в виде \(R(g) \mathcal{F} \). Тем не менее, не всякие два базиса могут быть связаны преобразованием группы симметрии потому, что не всякое невреждённое линейное преобразование принадлежит представлению группы \(G \). Таким образом, множество базисов можно представить как объединение орбит группы \(G \).

Свойства базиса зависят от группы симметрии. Мы можем выбрать базисы \(\mathcal{F} \), векторы которых находятся в отношении, которое инвариантно относительно группы симметрии. В этом случае все базисы из орбиты \(O(\mathcal{F}, g \in G, R(g) \mathcal{F}) \) имеют векторы, которые удовлетворяют одному и тому же отношению. Такой базис мы будем называть \(G \)-базисом. В каждом конкретном случае мы должны доказать существование базиса с искомыми свойствами. Если подобного типа базиса не существует, мы можем выбрать произвольный базис.

Определение 5.1. Мы будем называть орбиту \(O(\mathcal{F}, g \in G, R(g) \mathcal{F}) \) выбранного базиса \(\mathcal{F} \) многообразием базисов \(B(\mathcal{V}) \) векторного пространства \(\mathcal{V} \).
Теорема 5.2. Представление группы G на многообразии базисов однотранзитивно.

Доказательство. Согласно определению 5.1 любые два базиса связаны по крайней мере одним преобразованием представления. Для доказательства теоремы достаточно показать, что это преобразование определено однозначно.

Допустим элементы g_1, g_2 группы G и базис \mathbf{e} таковы, что

$$(5.1) \quad R_{g_1} \mathbf{e} = R_{g_2} \mathbf{e}$$

Из (5.1) следует

$$(5.2) \quad R_{g_2^{-1}} R_{g_1} \mathbf{e} = R_{g_1 g_2^{-1}} \mathbf{e} = \mathbf{e}$$

Так как любой вектор имеет единственное разложение относительно базиса \mathbf{e}, то из (5.2) следует, что $R_{g_1 g_2^{-1}}$ тождественное преобразование векторного пространства \mathcal{V}. Так как представление группы G эффективно на векторном пространстве \mathcal{V}, то $g_1 = g_2$. Отсюда следует утверждение теоремы. \square

Из теоремы 5.2 следует, что многообразие базисов $\mathcal{B}(\mathcal{V})$ является однородным пространством группы G. Мы построили контравариантное правостороннее однотранзитивное линейное представление группы G на многообразии базисов. Мы будем называть это представление активным представлением, а соответствующее преобразование на многообразие базисов активным преобразованием ([2]) потому, что гомоморфизм векторного пространства породил это преобразование.

Согласно теореме 3.6, так как многообразие базисов $\mathcal{B}(\mathcal{V})$ - однородное пространство группы G, мы можем определить на $\mathcal{B}(\mathcal{V})$ две формы координат, определённые на группе G. В обоих случаях координаты базиса \mathbf{e} - это координаты гомоморфизма, отображающего заданный базис \mathbf{e}_0 в базис \mathbf{e}. Координаты представления называются стандартными координатами базиса. Нетрудно показать, что стандартные координаты e^i_k базиса \mathbf{e} при заданном значении k являются координатами вектора $\mathbf{e}_k \in \mathbf{e}$ относительно заданного базиса \mathbf{e}_0.

Базис \mathbf{e} ворождат координаты на \mathcal{V}. В различных типах пространства это может быть сделано различным образом. В аффинном пространстве, если вершина базиса является точкой A, то точка B имеет те же координаты, что и вектор AB относительно базиса \mathbf{e}. В общем случае мы вводим координаты вектора как координаты относительно выбранного базиса. Использование только G-пространства означает использование специальных координат на A_n. Для того, чтобы отличать их, мы будем называть их G-координатами. Мы также будем называть пространство \mathcal{V} с такими координатами G-пространством.

Согласно теореме 3.8, на многообразии базисов существует другое представление, переставляющее с равными. Как мы видим из замечания 3.9 преобразование этого представления отличается от равнозвенного преобразования и не может быть сведено к преобразованию пространства \mathcal{V}. Чтобы подчеркнуть различие, это преобразование называется пассивным преобразованием векторного пространства \mathcal{V}, а представление называется пассивным представлением. Мы будем записывать пассивное преобразование базиса \mathbf{e}, порождённое элементом $g \in G$, в виде $L(g)\mathbf{e}$.
5.1. Базис в аффинном пространстве. Мы отождествляем векторы аффинного пространства \(A_n \) с парой точек \(AB \). Все векторы, которые имеют общее начало \(A \) порождают векторное пространство, которое мы будем называть касательным векторным пространством \(T_A A_n \).

Топология, которую \(A_n \) наследует из отображения \(A_n \rightarrow \mathbb{R}^n \), позволяет нам изучать непрерывные преобразования пространства \(A_n \) и их производные. Более того, производная преобразования \(f \) отображает векторное пространство \(T_A A_n \) в \(T_{f(A)} A_n \). Если \(f \) линейно, то его производная одна и та же в каждой точке. Введя координаты \(A^1, ..., A^n \) точки \(A \in A_n \), мы можем записать линейное преобразование как

\[
A^i = P^j_i A^j + R^i
\]

(5.3) \(\det P \neq 0 \)

Производная этого преобразования определена матрицей \(||P^j_i|| \) и не зависит от точки \(A \). Вектор \((R^1, ..., R^n) \) выражает смещение в аффинном пространстве. Множество преобразований (5.3) - это группа Ли, которую мы обозначим \(GL(A_n) \) и будем называть \textit{групой аффинных преобразований}.

Определение 5.3. Аффинный базис \(\mathbf{\bar{F}} = \langle O, \bar{\tau}_i \rangle \) - это множество линейно независимых векторов \(\bar{\tau}_i = OA_i = (e^1_i, ..., e^n_i) \) с общей начальной точкой \(O = (O^1, ..., O^n) \).

Определение 5.4. Многообразие базисов \(\mathcal{B}(A_n) \) аффинного пространства - это множество базисов этого пространства.

Мы будем называть активное преобразование \textit{аффинным преобразованием}. Мы будем называть пассивное преобразование \textit{квазиаффинным преобразованием}.

Если мы не заботимся о начальной точке вектора, мы получим несколько отличный тип пространства, которое мы будем называть \textit{центро-аффинным пространством} \(CA_n \). В центро-аффинном пространстве мы можем идентифицировать все касательные пространства и обозначить их \(TC A_n \). Если мы предположим, что начальная точка вектора - это начало \(O \) координатной системы в пространстве, то мы можем отождествить любую точку \(A \in CA_n \) с вектором \(a = OA \). Это ведёт к идентификации \(CA_n \) и \(TC A_n \). Теперь преобразование - это просто отображение

\[
a^i = P^j_i a^j \quad \det P \neq 0
\]

и такие преобразования порождают группу Ли \(GL_n \).

Определение 5.5. Центро-аффинный базис \(\mathbf{\bar{F}} = \langle \bar{\tau}_i \rangle \) - это множество линейно независимых векторов \(\bar{\tau}_i = (e^1_i, ..., e^n_i) \).

Определение 5.6. Многообразие базисов \(\mathcal{B}(CA_n) \) \textit{центро-аффинного пространства} - это множество базисов этого пространства.

5.2. Базис в евклидовом пространстве. Когда мы определяем метрику в центро-аффинном пространстве, мы получаем новую геометрию потому, что мы можем измерять расстояние и длину вектора. Если метрика положительно определена, мы будем называть пространство евклидовым \(E_n \), в противном случае мы будем называть пространство псевдоевклидовым \(E_{nm} \).

Александр Клейн
Многообразие базисов
Александр Клейн
Многообразие базисов

Преобразования, которые сохраняют длину, образуют группу Ли $SO(n)$ для евклидова пространства и группу Ли $SO(n, m)$ для псевдевклидова пространства, где n и m числа положительных и отрицательных слагаемых в метрике.

Определение 5.7. Ортогональный базис $\mathfrak{F} = \langle \mathfrak{F} \rangle$ - это множество линейно независимых векторов $\mathfrak{F}_i = (e_1^i, ..., e_n^i)$ таких, что длина каждого вектора равна 1 и различные векторы ортогональны.

Существование ортогонального базиса доказывается с помощью процесса ортогонализации Грама–Шмидта.

Определение 5.8. Многообразие базисов $\mathcal{B}(\mathcal{E}_n)$ евклидова пространства - это множество ортогональных базисов этого пространства.

Мы будем называть активное преобразование движениеем, Мы будем называть пассивное преобразование квазидвижением.

6. Геометрический объект

Активное преобразование изменяет базисы и векторы согласовано и координаты вектора относительно базиса не меняются. Пассивное преобразование меняет только базис, и это ведёт к изменению координат вектора относительно базиса.

Допустим пассивное преобразование $L(a) \in G$, заданное матрицей (a^i_j), отображает базис $\mathfrak{F} = \langle e_i \rangle \in \mathcal{B}(\mathcal{V})$ в базис $\mathfrak{F}' = \langle e'_i \rangle \in \mathcal{B}(\mathcal{V})$

$$e'_j = a^j_i e_i$$

Допустим вектор $v \in \mathcal{V}$ имеет разложение

$$v = v^i e_i$$

относительно базиса \mathfrak{F} и имеет разложение

$$v = v'^i e'_i$$

относительно базиса \mathfrak{F}'. Из (6.1) и (6.3) следует, что

$$v = v'^i a^i_j e_i$$

Сравнивая (6.2) и (6.4) получаем, что

$$v^i = v'^j a^i_j$$

Так как a^i_j - невырожденная матрица, то из (6.5) следует

$$v'^i = v^j a^{-1} j^i$$

Преобразование координат (6.6) не зависит от вектора v или базиса \mathfrak{F}, а определено исключительно координатами вектора v относительно базиса \mathfrak{F}.

Если мы фиксируем базис \mathfrak{F}, то множество координат (v'^i) относительно этого базиса порождает векторное пространство \mathcal{V}, изоморфное векторному пространству \mathcal{V}. Это векторное пространство называется координатным векторным пространством, а изоморфизм координатным изоморфизмом. Мы будем обозначать $\mathfrak{F}_k = (\delta^i_k)$ образ вектора $e_k \in \mathfrak{F}$ при этом изоморфизме.

Теорема 6.1. Преобразования координат (6.6) порождают контравариантное правостороннее эффективное линейное представление группы G, называемое координатным представлением.
Доказательство. Допустим мы имеем два последовательных пассивных преобразования \(L(a) \) и \(L(b) \). Преобразование координат (6.6) соответствует пассивному преобразованию \(L(a) \). Преобразование координат

\[v'^{nk} = v'^{n}b^{-1} \]

соответствует пассивному преобразованию \(L(b) \). Произведение преобразований координат (6.6) и (6.7) имеет вид

\[v'^{nk} = v^{j}a^{-1}b^{-1}k = v^{j}(ba)^{-1}k \]

и является координационным преобразованием, соответствующим пассивному преобразованию \(L_{ba} \). Это доказывает, что преобразования координат порождают контравариантное правостороннее линейное представление группы \(G \).

Если координационное преобразование не изменяет векторы \(\delta_k \), то ему соответствует единица группы \(G \), так как пассивное представление однотранзитивно. Следовательно, координационное представление эффективно.

Предположим, что гомоморфизм группы \(G \) в группу пассивных преобразований векторного пространства \(W \) согласован с группой симметрий векторного пространства \(V \). Это означает, что пассивному преобразованию \(L(a) \) векторного пространства \(V \) соответствует пассивное преобразование \(L(a) \) векторного пространства \(W \).

(6.9) \[E'^{\alpha}_{\alpha} = A^{\beta}_{\alpha}(a)E_{\beta} \]

Тогда координационное преобразование в \(W \) принимает вид

(6.10) \[w'^{\alpha} = w^{\beta}A(a^{-1})^{\alpha}_{\beta} = w^{\beta}(a^{-1})^{\alpha}_{\beta} \]

Определение 6.2. Мы будем называть орбitty

\[O((w, \mathbb{F}_V), a \in G, (wA(a)^{-1}, L(a)\mathbb{F}_V)) \]

геометрическим объектом в координатном представлении, определённым в векторном пространстве \(V \). Для любого базиса \(\mathbb{F}_V = L(a)\mathbb{F}_V \) соответствующая точка (6.10) орбиты определяет координаты геометрического объекта относительно базиса \(\mathbb{F}_V \).

Определение 6.3. Мы будем называть орбиты

\[O((w, \mathbb{F}_W, \mathbb{F}_V), a \in G, (wA(a)^{-1}, L(a)\mathbb{F}_W, L(a)\mathbb{F}_V)) \]

геометрическим объектом, определённым в векторном пространстве \(V \). Для любого базиса \(\mathbb{F}_V = L(a)\mathbb{F}_V \) соответствующая точка (6.10) орбиты определяет координаты геометрического объекта относительно базиса \(\mathbb{F}_V \) и соответствующий вектор

\[w = w'^{\alpha}E'^{\alpha}_{\alpha} \]

называется представителем геометрического объекта в базисе \(\mathbb{F}_V \).

Мы будем также говорить, что \(w \) - это геометрический объект типа \(A \) так как геометрический объект - это орбита представления, то согласно теореме 2.14 определение геометрического объекта корректно.

Определение 6.2 строит геометрический объект в координатном пространстве. Определение 6.3 предполагает, что мы выбрали базис в векторном пространстве \(W \). Это позволяет использовать вместо его координат.
Теорема 6.4 (принцип инвариантности). Представитель геометрического объекта не зависит от выбора базис \(\mathcal{E}_V \). Докажательство. Чтобы определить представителя геометрического объекта, мы должны выбрать базис \(\mathcal{E}_V \), базис \(\mathcal{E}_{V'} = (E_\alpha) \) и координаты геометрического объекта \(w^\alpha \). Соответствующий представитель геометрического объекта имеет вид
\[w = w^\alpha E_\alpha \]
Базис \(\mathcal{E}_{V'} \) связан с базисом \(\mathcal{E}_V \) пассивным преобразованием \(L(a) \). Согласно построению это порождает пассивное преобразование (6.9) и координатное преобразование (6.10). Соответствующий представитель геометрического объекта имеет вид
\[w' = w^\alpha E'_\alpha = w^\beta A(a)^{-1}_\beta A'_\gamma(a)E_\gamma = w'^\beta E'_\beta = w \]
Следовательно, представитель геометрического объекта инвариантен относительно выбора базиса. □

Определение 6.5. Пусть
\[w_1 = w_1^\alpha E_\alpha \]
\[w_2 = w_2^\alpha E_\alpha \]
геометрические объекты одного и того же типа, определёнными в векторном пространстве \(V \). Геометрический объект
\[w = (w_1^\alpha + w_2^\alpha)E_\alpha \]
называется суммой
\[w = w_1 + w_2 \]
геометрических объектов \(w_1 \) и \(w_2 \). □

Определение 6.6. Пусть
\[w_2 = w_2^\alpha E_\alpha \]
геометрический объект, определённый в векторном пространстве \(V \) над полем \(F \). Геометрический объект
\[w_2 = (k w_1^\gamma)E_\gamma \]
называется произведением
\[w_2 = kw_1 \]
геометрического объекта \(w_1 \) и константы \(k \in F \). □

Теорема 6.7. Геометрические объекты типа \(A \), определённые в векторном пространстве \(V \) над полем \(F \), образуют векторное пространство над полем \(F \).

Докажательство. Утверждение теоремы следует из непосредственной проверки свойств векторного пространства. □

7. Список литературы

[1] П. К. Рашевский, Риманова геометрия и тензорный анализ, М., Нauка, 1967
[2] Г. Корн, Т. Корн. Справочник по математике для научных работников и инженеров, М., Наука, 1974
8. ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

G-базис векторного пространства 9
G-координаты базиса 10
G-пространство 10
активное представление 10
активное преобразование на многообразии базисов 10
аффинное преобразование на многообразии базисов 11
аффинный базис 11
базис векторного пространства 9
вектор-столбец 8
вектор-строка 8
группа симметрии 9
геометрический объект в векторном пространстве 13
геометрический объект в координатном представлении 13
геометрический объект типа A в векторном пространстве 13
группа аффинных преобразований 11
квазиаффинное преобразование на многообразии базисов 11
квазидвижение на многообразии базисов 12
координатное векторное пространство 12
координатное представление группы в векторном пространстве 12
координатный изоморфизм 12
координаты геометрического объекта 13
координаты геометрического объекта в координатном представлении 13
координаты представления 9
левостороннее ковариантное представление группы 2
левостороннее контравариантное представление группы 3
левостороннее представление группы 2
левостороннее преобразование 1
лётный сдвиг на группе 4
линейное представление группы 8
многообразие базисов аффинного пространства 11
многообразие базисов векторного пространства 9
многообразие базисов евклидова пространства 12
многообразие базисов центро-аффинного пространства 11
невырожденное преобразование 1
однородное пространство группы 5
однотранзитивное представление группы 5
орбита представления группы 4
ортонормальный базис 12
пассивное представление 10
пассивное преобразование на многообразии базисов 10
правостороннее ковариантное представление группы 3
правостороннее контравариантное представление группы 3
правостороннее представление группы 2
правостороннее преобразование 2
правый сдвиг на группе 4
представитель геометрического объекта в векторном пространстве 13
представление группы 2
принцип инвариантности в векторном пространстве 14
произведение геометрического объекта и константы в векторном пространстве 14
прямое произведение представлений группы 5
стандартные координаты базиса 10
сумма геометрических объектов в векторном пространстве 14
транзитивное представление группы 5
центро-аффинный базис 11
эффективное представление группы 5
ядро неэффективности представления группы 5
9. Специальные символы и обозначения

A_n аффинное пространство 11

$B(A_n)$ многообразие базисов аффинного пространства 11

$B(V)$ многообразие базисов векторного пространства V 9

$B(CA_n)$ многообразие базисов центро-аффинного пространства 11

$B(\mathcal{E}_n)$ многообразие базисов евклидова пространства 12

CA_n центро-аффинное пространство 11

$\mathbb{F} = \langle \mathcal{O}, \tau_i \rangle$ аффинный базис 11

\mathbb{F} базис векторного пространства 9

\mathbb{F}_V базис в векторном пространстве V 9

$\mathbb{F} = \langle \tau_i \rangle$ центро-аффинный базис 11

\mathcal{E}_n евклидово пространство 11

\mathcal{E}_{nm} псевдоевклидово пространство 11

$\mathbb{F} = \langle \tau_i \rangle$ ортонормальный базис 12

e^i_1 стандартные координаты базиса 10

τ_k вектор базиса 10

$GL(A_n)$ группа аффинных преобразований 11

$G(V)$ группа гомоморфизмов векторного пространства V 9

$L(a)b$ левый сдвиг 4

$L(g)\mathbb{F}$ пассивное преобразование 10

$l(M)$ множество левосторонних неокружённых преобразований множества M 1

$O((w, \tau_Y), a \in G, (wA(a)^{-1}, L(a)\tau_Y))$ геометрический объект в координатном представлении 13

$O((w, \tau_Y, \tau_Y), a \in G, (wA(a)^{-1}, L(a)\tau_Y, L(a)\tau_Y))$ геометрический объект 13

$O(v, g \in G, f(g)v = \{w = f(g)v : g \in G\}$ орбита представления группы G 4

$R(g)\mathbb{F}$ активное преобразование 9

$R(a)b$ правый сдвиг 4

$r(M)$ множество правосторонних неокружённых преобразований множества M 2