Efficacy of experimental treatments compared with standard treatments in non-inferiority trials: a meta-analysis of randomized controlled trials

Darius Soonawala,1,2* Rutger A Middelburg,1 Matthias Egger,3 Jan P Vandenbroucke1 and Olaf M Dekkers1,4

1Department of Clinical Epidemiology, Leiden University Medical Centre, RC Leiden, The Netherlands, 2Department of Infectious Diseases, Leiden University Medical Centre, RC Leiden, The Netherlands, 3Institute of Social and Preventive Medicine, University of Bern, Berne, Switzerland and 4Department of Endocrinology and Metabolic Diseases, Leiden University Medical Centre, RC Leiden, The Netherlands

*Corresponding author. Department of Infectious Diseases C5-P, Leiden University Medical Centre, Albinusdreef 2, 2300 RC Leiden, The Netherlands. E-mail: d.soonawala@lumc.nl

Accepted 6 July 2010

Background There is concern that non-inferiority trials might be deliberately designed to conceal that a new treatment is less effective than a standard treatment. In order to test this hypothesis we performed a meta-analysis of non-inferiority trials to assess the average effect of experimental treatments compared with standard treatments.

Methods One hundred and seventy non-inferiority treatment trials published in 121 core clinical journals were included. The trials were identified through a search of PubMed (1991 to 20 February 2009). Combined relative risk (RR) from meta-analysis comparing experimental with standard treatments was the main outcome measure.

Results The 170 trials contributed a total of 175 independent comparisons of experimental with standard treatments. The combined RR for all 175 comparisons was 0.994 [95% confidence interval (CI) 0.978–1.010] using a random-effects model and 1.002 (95% CI 0.996–1.008) using a fixed-effects model. Of the 175 comparisons, experimental treatment was considered to be non-inferior in 130 (74%). The combined RR for these 130 comparisons was 0.995 (95% CI 0.983–1.006) and the point estimate favoured the experimental treatment in 58% (n = 76) and standard treatment in 42% (n = 54). The median non-inferiority margin (RR) pre-specified by trialists was 1.31 [inter-quartile range (IQR) 1.18–1.59].

Conclusion In this meta-analysis of non-inferiority trials the average RR comparing experimental with standard treatments was close to 1. The experimental treatments that gain a verdict of non-inferiority in published trials do not appear to be systematically less effective than the standard treatments. Importantly, publication bias and bias in the design and reporting of the studies cannot be ruled out and may have skewed the study results in favour of the...
Introduction

Non-inferiority trials are increasingly published in the medical literature, increasingly used in drug licensing and have at the same time come under increased scrutiny and criticism, up to the allegation that they are unethical.\(^{1-13}\) A verdict of ‘non-inferiority’ leaves readers with the impression that a new experimental treatment is as good as an established standard treatment and that the two can be used interchangeably. However, in such trials, non-inferiority is statistically accepted whenever an experimental treatment is unlikely to be worse than an established treatment by more than a pre-specified amount, the so-called non-inferiority margin. If a relatively wide margin is chosen, new treatments that are actually less beneficial might wrongly be considered as equally effective. This may lead to acceptance and use of new therapies that are actually less effective in a clinically relevant way.\(^{10,12}\)

There is concern that non-inferiority trials might be deliberately designed to conceal that a new treatment is somewhat less effective than a standard treatment.\(^{10,12}\) Systematic use of too-large non-inferiority margins or systematic biases of design, conduct or reporting of non-inferiority trials may skew results in favour of new treatments.\(^{14-19}\) In this meta-analysis we examined one type of systematic bias. If trialists systematically compare slightly less effective new treatments with standard treatments, the combined results from a meta-analysis of many trials in which experimental treatments gain a verdict of non-inferiority, would be expected to favour the standard treatment. In order to test this hypothesis, we performed a meta-analysis of non-inferiority trials published in clinical journals and assessed the average effect of experimental treatments compared with standard treatments. Importantly, the combined estimate from the meta-analysis will not be influenced by the choice of the non-inferiority margins.

Methods

Eligibility and search strategy

We searched for non-inferiority trials on 20 February 2009 using PubMed (National Library of Medicine) with the text words ‘noninferiority’ or ‘non inferiority’ or ‘equivalence’ combined with the text words ‘clinical trial’ or ‘trial’ or ‘trials’ or ‘study’ or ‘studies’, limiting the search to publications from 1991 onwards. The initial search was restricted to six general medicine journals (Annals of Internal Medicine, BMJ, JAMA, Lancet, New England Journal of Medicine and PLoS Medicine). In a second step the search was extended to include the other 115 journals included in PubMed’s selection of core clinical journals (see http://www.nlm.nih.gov/bsd/aim.html for a list of these journals). Although equivalence trials (trials that specify both a lower and an upper equivalence margin)\(^{20,21}\) were not eligible for inclusion, we included the term ‘equivalence’ in our search strategy in order not to miss non-inferiority trials that had been described as equivalence trials.

Study selection

All two-arm parallel group non-inferiority trials of an experimental treatment compared with standard therapy were included, independent of the intervention examined in the trial. Articles that were published electronically ahead of print were also considered.

Data extraction

The following information was extracted independently by two investigators (D.S. and R.M.): year of publication, journal, subject area (cardiovascular medicine, infectious diseases, obstetrics and gynaecology, rheumatology, surgery or other), primary endpoint, non-inferiority margin for primary endpoint, expected incidence of the primary endpoint in the standard arm and the point estimate for the comparison of experimental with standard treatment. The primary endpoint was classified into three categories: (i) mortality alone or as part of a combined endpoint; (ii) clinical disease; and (iii) surrogate endpoint (imaging or laboratory test). Disagreements were resolved in consultation with a third investigator (O.D.). If trials presented more than one primary endpoint, the endpoint for which the sample size had been calculated was used. If it was unclear for which endpoint sample size calculations were done, or if no such calculations were reported, one of the primary endpoints was randomly selected. In trials that included several non-inferiority comparisons using the same standard treatment, e.g. when testing two dosages of an experimental therapy, one comparison was selected at random and included in the analysis. If a study reported both intention-to-treat- and per-protocol analyses, the result used by the author to determine whether the intervention was non-inferior was extracted. If this was not clear, the per-protocol results were used. The funding source was independently classified by two investigators (D.S. and O.D.) as industry, public or mixed funding. The provision of
Data synthesis and analysis

The confidence intervals (CIs) and non-inferiority margins reported by the investigators were used to classify the results as superior, non-inferior, inconclusive or inferior according to the definitions given in the extension of the Consolidated Standards of Reporting Trials (CONSORT) statement to non-inferiority trials. Superiority was assumed if the experimental treatment was significantly \((P < 0.05)\) more efficacious than the standard treatment. Non-inferiority was assumed if the 95% CI did not include the non-inferiority margin. Results were classified as inconclusive if the 95% CI included the non-inferiority margin. Treatments were assumed to be inferior if the entire 95% CI was significantly worse than the non-inferiority margin.

Results of comparisons were expressed as ratio measures, which we call relative risks (RRs) throughout this article. If the trial reported risk ratios or hazard ratios (HRs) or odds ratios (ORs) from statistical models these were used in the analyses. For trials that reported risk differences, we calculated the risk ratio. For studies reporting continuous endpoints (e.g. blood pressure), results were converted to ORs using the method described by Hasselblad and Hedges, and the OR was then used in further calculations. This method assumes logistic distributions with equal variances in the two treatment groups. Under this assumption the natural logarithm of the OR equals a constant multiplied by the standardized difference between means. If needed, the inverse of the RR was calculated, so that ratios \(>1\) consistently indicated that the standard treatment performed worse than the experimental treatment. The RR from individual studies were combined using random-effects models. In addition to combining RRs for all studies, we performed stratified meta-analyses according to whether results were interpreted as inferior, non-inferior or superior, by type of effect measure, by type of endpoint, by source of funding, by journal and according to whether the judgement of the result was based on an intention-to-treat analysis or not. In a random-effects meta-regression model we analysed the influence of the source of funding.

Pre-specified non-inferiority margins were also expressed as RRs. Margins that were reported as a difference in incidence were converted to RR by dividing the expected incidence of the primary endpoint in the standard treatment arm plus (for morbidity or mortality) or minus (for beneficial endpoints) the pre-specified margin by the expected incidence of the primary endpoint in the standard treatment arm. For example, if the expected mortality rate in the standard treatment arm was 10% and the pre-specified margin was set at 2%, the margin converted to an RR of 1.2 \(\left(\frac{(10 + 2)}{10}\right)\). Margins could not be expressed as RR for studies that did not report the expected incidence, or studies reporting continuous endpoints. We examined the median and the distribution of non-inferiority margins and examined whether margins differed across the subgroups of trials mentioned above.

We compared the observed incidence of the primary endpoint in the group that received standard treatment with the expected incidence, as specified by the trialists. The result was expressed as a ratio. If needed, the inverse of this ratio was calculated, so that ratios \(<1\) consistently indicated that the standard treatment performed better than was expected at the design stage of the trial, and ratios \(>1\) indicated that the standard treatment performed worse than was expected. This ratio could not be calculated for studies that did not report separately the expected, or the observed incidence of the primary endpoint, or studies reporting continuous endpoints.

Statistical analyses were done in Comprehensive Meta-Analysis (version 2.0, Biostat, Englewood, NJ, USA) and Stata (version 10.0, Stata Corporation, College Station, TX, USA).

Results

Literature search and study characteristics

We identified 532 potentially eligible articles and excluded 362 studies for the reasons shown in Figure 1. A total of 170 studies, which were published in 43 different journals, were included (see Appendix Tables 1, 2 and 3 for bibliographic details available as supplementary data at IJE online). Five articles reported the results for two separate comparisons. In total, 175 comparisons were therefore included in the analyses. The oldest non-inferiority study in our selection dates from 1993. Seventy-eight percent of included studies date from 2004 onwards, reflecting an increase in non-inferiority trials in the past 5 years.

The characteristics of the 170 non-inferiority trials are described in Table 1. Of the general medical journals, the New England Journal of Medicine published the largest number of non-inferiority trials; our search found no non-inferiority trials in PLoS Medicine. Most trials were from cardiovascular medicine \((n = 47; 28\%)\) or infectious disease \((n = 43; 25\%)\). Other fields were obstetrics and gynaecology \((7\%)\), oncology \((6\%)\), rheumatology \((6\%)\), surgery \((5\%)\), psychiatry \((3\%)\), general medicine \((3\%)\), pulmonary medicine \((2\%)\), gastroenterology \((2\%)\), anaesthesiology \((1\%)\), intensive care medicine \((1\%)\) and neurology \((1\%)\). The majority reported risk differences \((n = 106; 61\%)\); 36 studies reported continuous endpoints, which were converted to ORs for the present analysis. Figure 2 shows the type of endpoint, number of participants, point estimate, CI and pre-specified margin
for 33 comparisons that were reported on the RR scale.
For 130 comparisons (74%), we considered the experimental treatment to be non-inferior according to the published criteria. Of note, in 6 of these 130 comparisons the authors deemed the experimental treatment to be clinically inferior based on a secondary endpoint. For 27 comparisons (15%) results were inconclusive, for 23 comparisons (9%) superior and for 3 comparisons (2%) inferior. In 20 instances our assessment differed from the authors’ verdict: in 9 instances we judged the result to be superior where the authors’ verdict was non-inferior, in 6 instances to be inconclusive as opposed to inferior and once to be non-inferior instead of inferior. The authors’ verdict was more favourable to the experimental treatment in four comparisons, each time judging the result to be non-inferior instead of inconclusive.

Meta-analysis
The funnel plot showed a symmetrical distribution of results around RR 1 (Figure 3). Forty-seven percent of comparisons (n = 82) had a point estimate >1 (favouring standard treatment) and 53% (n = 93) <1 (favouring experimental treatment). Of the 130 comparisons judged to be non-inferior, the point estimate favoured experimental treatment in 58% (n = 76) and standard treatment in 42% (n = 54). The combined RR for all 175 comparisons was 0.994 (95% CI 0.978–1.010) using a random-effects model and 1.002 (95% CI 0.966–1.008) using a fixed-effects model. The combined RR for comparisons judged to be non-inferior was 0.995 (95% CI 0.983–1.006). Table 2 shows stratified random-effects meta-analyses according to trial result, measure of effect, type of endpoint, source of funding, by two journal strata and according to whether the judgement of the result was based on an intention-to-treat strata or not. Using a random-effects model, the combined estimate for trials funded by industry was 0.978 (95% CI 0.956–1.000). The combined result for trials funded by public sources was 1.008 (95% CI 0.980–1.038). These two estimates did not differ significantly (P = 0.15 from random-effects meta-regression). All meta-analyses were also performed using a fixed-effects model and are presented in Appendix Table 4 available as supplementary data at IJE online. The main result and the results from the stratified analyses were similar for the random- and fixed-effects meta-analyses except for a difference in the result stratified by funding source.

Non-inferiority margins
The margin was expressed as an RR for 33 comparisons and could be converted from a risk difference to a RR for 91 comparisons. The median pre-specified non-inferiority margin was 1.31 [inter-quartile range (IQR) 1.18–1.59]. Stratified according to trial result, the median margin was 1.42 (range 1.21–4.75) for 3 comparisons judged to be inferior, 1.33 (IQR 1.14–1.51) for 23 comparisons judged to be inconclusive, 1.31 (IQR 1.19–1.59) for 92 comparisons judged to be non-inferior and 1.45 (IQR 1.20–1.75) for 6 comparisons judged to be superior. Stratified by type of endpoint the median margin was 1.34 (IQR 1.19–1.50) for comparisons that had mortality as (part of a combined) endpoint, 1.38 (IQR 1.20–1.70) for comparisons in which clinical disease was the endpoint.
The ratio of the observed and expected incidence of the primary endpoint in the group that received standard treatment could be calculated for 112 comparisons. Fifty-three percent of comparisons (n = 59) had a ratio <1, indicating that the standard treatment performed better than was expected at the design stage of the trial and 46% (n = 51) >1, indicating that the standard treatment performed worse than was expected. Two ratios were exactly 1. The mean ratio was 0.941 (95% CI 0.859–1.030), meaning that on average the chosen standard treatments performed slightly better than was estimated at the design stage of the trials. Stratified by source of funding, this ratio was 0.974 (95% CI 0.865–1.097) for 55 studies funded by industry and 0.906 (95% CI 0.760–1.080) for 31 studies funded by public sources. These two estimates did not differ significantly (P = 0.5 from t-test for equality of means).

Discussion

In this meta-analysis of trials using a non-inferiority design, experimental treatments were regarded as non-inferior to standard treatments in the majority of studies. The combined RR for these studies comparing experimental with standard treatments was close to 1. For non-inferiority trials published in core clinical journals, this finding contradicts the hypothesis that new treatments that gain a verdict of non-inferiority are systematically less effective than standard treatments.

Our study has several strengths and limitations. We aimed to include all the non-inferiority trials published in these journals, irrespective of the type of endpoints or measures of effect. We restricted the search to the group of core clinical journals, as defined in PubMed, which is the same group of journals as in the Abridged Index Medicus (AIM). This selection covers a wide range of journals from many clinical specialties. Our results may therefore be representative for non-inferiority trials published in other journals. However, external validity may be limited to higher quality journals. If non-AIM journals are of lower quality, the characteristics of non-inferiority trials published in those journals might be different. Furthermore, our search would have missed trials that do not mention the non-inferiority design in the abstract, the title or as a key word. The characteristics of such trials might also differ.

We examined two aspects of non-inferiority trials: first, we combined the results of a large number of non-inferiority trials in a meta-analysis; secondly, we examined the non-inferiority margins chosen by the
investigators. Importantly, the combined estimate from the meta-analysis will not be influenced by the choice of the non-inferiority margin. The combined estimate will be influenced by the efficaciousness of standard treatment. If the standard treatment is not effective, the experimental treatment is in fact tested against ‘placebo’ in a non-inferiority design. Although we did not assess whether the chosen standard treatment represented the best-available comparator, we did assess how standard treatments performed in view of what trialists had expected. On average, the standard treatments performed slightly better than was estimated at the design stage of the trials. Our study did not address other important issues pertaining to non-inferiority trials. For example, we did not assess whether a non-inferiority trial was the appropriate design to use (or whether a superiority design would have been more appropriate) or whether the choice of the non-inferiority margin that was used for the power calculation and statistical testing.

Figure 2 Results for 33 comparisons from 31 trials in which the result was expressed as an RR. Point estimates, CIs and non-inferiority margins (red lines, lighter gray in printed version) are shown.

Figure 3 Funnel plot of the standard error by the log RR for 175 comparisons. Treatment on the X-axis and standard error on the Y-axis. Bias would lead to an asymmetrical appearance of the funnel plot.
made clinical sense. The non-inferiority margin is often criticized as being arbitrary, unacceptably wide or even fraudulent. The selection of the non-inferiority margin should be based on a combination of statistical reasoning and clinical judgment. Others have reviewed the rationale for the size of the margins in non-inferiority trials. They found that the majority of trials did not justify the choice of the margin and that <20% reported a clinical consideration. An in-depth analysis of each trial with subject-matter knowledge on each topic would have been required to judge whether the choice of the margin was adequate. This was beyond the aim of the present analysis.

Does our meta-analysis rebuke some of the criticism aimed at non-inferiority trials? We found that the combined RR for all studies was close to 1. This contradicts the hypothesis that in non-inferiority trials the experimental treatment is generally less effective than the standard treatment. We believe that this is an important, reassuring finding, considering the criticism that has been levelled at non-inferiority trials. Several issues should nevertheless be considered when interpreting this result. First, current standards for drug approval stipulate that a new treatment should be better than placebo and (at least) non-inferior to the established options. This means that demonstrating non-inferiority can legally suffice for the licensing of a new drug. The underlying assumption is often that a ‘non-inferior’ treatment has added value regarding other properties, such as ease of use, lower costs or fewer adverse effects, which might offset a small loss in efficacy. Sometimes such superior properties, such as costs, are self-evident and do not have to be demonstrated in a trial. Claiming that an agent has less adverse

Table 2 Random-effects meta-analyses of 175 comparisons of experimental and standard treatments from 170 non-inferiority trials

Number of comparisons	RR (95% CI)	
Overall analysis	0.994 (0.978–1.010)	
Stratified analyses		
By result		
Result judged as inferior	3	2.255 (1.587–3.204)
Result judged as inconclusive	27	1.163 (1.102–1.227)
Result judged as non-inferior	130	0.995 (0.983–1.006)
Result judged as superior	15	0.694 (0.617–0.780)
By effect measure		
Risk difference	106	0.996 (0.982–1.010)
Ratio measure	33	1.012 (0.958–1.069)
Continuous	36	0.954 (0.826–1.101)
By type of endpoint		
Mortality as (part of a combined) endpoint	35	0.974 (0.935–1.015)
Clinical disease	81	0.998 (0.980–1.017)
Surrogate endpoint	59	1.000 (0.965–1.037)
By source of funding		
Industry	96	0.978 (0.956–1.000)
Public source	48	1.008 (0.980–1.038)
Mixed	20	1.035 (0.972–1.103)
Not reported	11	1.018 (0.930–1.113)
By journal		
N Engl J Med/Lancet/JAMA/BMJ/Ann Intern Med	87	0.990 (0.968–1.012)
Other journals	88	0.999 (0.976–1.023)
By the analysis used to judge the result		
Intention-to-treat analysis	95	1.002 (0.977–1.028)
Modified intention-to-treat- or per-protocol analysis	80	0.989 (0.969–1.009)

All meta-analyses mentioned here were performed using a random-effects model. All meta-analyses were also performed using a fixed-effects model and are shown in Appendix Table 4 available as supplementary data at IJE online. The main result and the results from the stratified analyses were similar for the random- and fixed-effects meta-analyses except for a difference in the result stratified by funding source.
effects should however be based on evidence. A separate analysis of the adverse event data, analyses of combined endpoints or a meta-analysis of several trials might be appropriate and informative to demonstrate superiority in this respect. Of the 175 comparisons in this meta-analysis, we considered the experimental treatment to be non-inferior in 130 (74%) and superior in 15 (9%). Although in 6 of these 145 comparisons the authors deemed the experimental treatment to be clinically inferior based on a secondary endpoint, the majority of published non-inferiority trials can be used to support the registration of a new treatment. The added value and safety of these treatments may not always be self-evident and may not always be demonstrated in the trial. The follow-up time and the sample size of trials are limited, making it improbable that rarer side effects or long-term side effects are detected.

Secondly, for superiority trials, it has repeatedly been described how the outcome may be skewed in favour of the experimental treatment by making convenient choices when designing the study or reporting or publishing the result. This may involve the choice of (the dosage of) the comparator drug, the choice of patients, endpoints or of the type of analysis. It may also involve selective reporting of data or changing the pre-specified endpoint after a study is completed. It is plausible that such mechanisms affect the results of non-inferiority trials. In other words, biased choices in study design and bias due to selective reporting of outcomes may make it more likely that an experimental treatment is considered non-inferior after completion of the trial. We did not have access to the study protocols of the included articles and relied on what was reported as the primary endpoint. We restricted our search to studies that have been published. Unpublished trials are more likely to favour standard treatment. Therefore, if publication bias would be an issue, our results might be skewed in favour of experimental treatments. All these potential sources of bias would remain unnoticed in our meta-analysis. Although the funnel plot showed a symmetrical distribution of results around RR 1, this does not rule out biases. This leaves the possibility that our finding of an overall RR close to unity is skewed in favour of experimental treatment. The finding that studies sponsored by industry were more likely to have results favouring sponsored treatments is in line with other reports. Systematic bias has been suggested as a possible explanation. Our finding could also be due to the play of chance.

Thirdly, the statistical verdict of non-inferiority permits licensing of a drug even if the trial result shows that it is somewhat less effective than standard. Therefore, some treatments that are approved based on non-inferiority testing may be less effective compared with the standard therapy with respect to the primary endpoint. A cascade of non-inferiority trials is possible, in which each next experimental treatment is slightly less effective than the previously established ‘standard’. After several generations of non-inferiority trials, ineffective interventions could be licensed, leading to deteriorating patient care. This outcome has been called ‘bio-creep’. Our results are relevant in this context. Our study showed that of the 130 comparisons judged to be non-inferior, the point estimate favoured the standard treatment in 42% of trials. Bio-creep could occur if two or three trials in succession belong to this 42% category and if each next trial adopts the previously demonstrated non-inferior treatment as the new active control treatment. Importantly, our study provided no empirical evidence for or against the existence of bio-creep.

In conclusion, the number of non-inferiority trials published in clinical journals has greatly increased. We found that the experimental treatments that gain a verdict of non-inferiority in trials published in core clinical journals are not systematically less effective than the standard treatments. Biases in design, reporting and publication cannot be ruled out and may have skewed the study results in favour of experimental treatments. Continued vigilance is required to assure that non-inferiority trials are used appropriately.

Supplementary data
Supplementary data are available at IJE online.

Acknowledgement
We acknowledge the contribution of Theo Stijnen, PhD, Professor of Medical Statistics, Department of Medical Statistics and Bioinformatics, Leiden University Medical Centre, for critical discussion of the analyses, and of J.W. Schoones, MA, Walaeus Library, Leiden University Medical Centre, for assistance with the search strategy.

Conflict of interest: None declared.
The combined RR from 170 randomized trials using a non-inferiority design and published in core clinical journals in recent years was close to 1, favouring neither the experimental nor the standard treatment.

In the majority of trials, the new treatments were considered to be non-inferior. For these trials the combined RR was also close to 1.

The experimental treatments that gain a verdict of non-inferiority do not, therefore, appear to be systematically less effective than the standard treatments.

The evidence from published non-inferiority trials might still be distorted by publication bias, or by a biased choice of standard treatments. Further studies are required to clarify the risk of bias in non-inferiority trials.

References

1. Ware JH, Antman EM. Equivalence trials. *N Engl J Med* 1997;337:1159–61.
2. Siegel JP. Equivalence and noninferiority trials. *Am Heart J* 2000;139:516–70.
3. Djulbegovic B, Clarke M. Scientific and ethical issues in equivalence trials. *JAMA* 2001;285:1206–8.
4. D’Agostino RB Sr, Massaro JM, Sullivan LM. Non-inferiority trials: design concepts and issues - the encounters of academic consultants in statistics. *Stat Med* 2003;22:169–86.
5. James Hung HM, Wang SJ, Tsong Y, Lawrence J, O’Neil RT. Some fundamental issues with non-inferiority testing in active controlled trials. *Stat Med* 2003;22:213–25.
6. Kaul S, Diamond GA, Weintraub WS. Trials and tribulations of non-inferiority: the ximelagatran experience. *J Am Coll Cardiol* 2005;46:1986–95.
7. Lange S, Freitag G. Choice of delta: requirements and reality – results of a systematic review. *Biom J* 2005;47:12–27.
8. Le Henanff A, Giraudeau B, Baron G, Ravaud P. Quality of reporting of noninferiority and equivalence randomized trials. *JAMA* 2006;295:1147–51.
9. Piaggio G, Elbourne DR, Altman DG, Pocock SJ, Evans SJ. Reporting of noninferiority and equivalence randomized trials: an extension of the CONSORT statement. *JAMA* 2006;295:1152–60.
10. Gotzsche PC. Lessons from and cautions about noninferiority and equivalence randomized trials. *JAMA* 2006;295:1172–74.
11. Fueglisteral P, Adamina M, Guller U. Non-inferiority trials in surgical oncology. *Ann Surg Oncol* 2007;14:1532–39.
12. Garattini S, Bertele’ V. Non-inferiority trials are unethical because they disregard patients’ interests. *Lancet* 2007;370:1875–77.
13. Kaul S, Diamond GA. Good enough: a primer on the analysis and interpretation of noninferiority trials. *Ann Intern Med* 2006;145:62–69.
14. Smith R. Medical journals are an extension of the marketing arm of pharmaceutical companies. *PLoS Med* 2005;2:e138.
15. Lexchin J, Bero LA, Djulbegovic B, Clark O. Pharmaceutical industry sponsorship and research outcome and quality: systematic review. *BMJ* 2003;326:1167–70.
16. Chan AW, Hrobjartsson A, Haahr MT, Gotzsche PC, Altman DG. Empirical evidence for selective reporting of outcomes in randomized trials: comparison of protocols to published articles. *JAMA* 2004;291:2457–65.
17. Turner EH, Matthews AM, Linardatos E, Tell RA, Rosenthal R. Selective publication of antidepressant trials and its influence on apparent efficacy. *N Engl J Med* 2008;358:252–60.
18. Mathieu S, Boutron I, Moher D, Altman DG, Ravaud P. Comparison of registered and published primary outcomes in randomized controlled trials. *JAMA* 2009;302:977–84.
19. Leucht S, Heres S, Hamann J, Kissling W. Pretrial medication bias in randomized antipsychotic drug trials. *Am J Psychiatry* 2007;164:1266–67.
20. Dunnett CW, Gent M. An alternative to the use of two-sided tests in clinical trials. *Stat Med* 1996;15:1729–38.
21. The International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). E9: statistical principles for clinical trials. *Federal Register* 1998;63:49583–98.
22. Hasselblad V, Hedges LV. Meta-analysis of screening and diagnostic tests. *Psychol Bull* 1995;117:167–78.
23. Carlier C, Coste J, Etchepare M, Periquet B, Amedee-Manesme O. A randomised controlled trial to test equivalence between retinyl palmitate and beta carotene for vitamin A deficiency. *BMJ* 1993;307:1106–10.
24. Committee for Medicinal Products for Human Use (CHMP) guideline on the choice of the non-inferiority margin. *Stat Med* 2006;25:1628–38.
25. Djulbegovic B, Lavecic M, Cantor A et al. The uncertainty principle and industry-sponsored research. *Lancet* 2000;356:635–38.
26. Ridker PM, Torres J. Reported outcomes in major cardiovascular clinical trials funded by for-profit and not-for-profit organizations: 2000–2005. *JAMA* 2006;295:2270–74.
27. Smith R. Medical journals are an extension of the marketing arm of pharmaceutical companies. *PLoS Med* 2005;2:e138.
28. Fleming TR. Current issues in non-inferiority trials. *Stat Med* 2008;27:317–32.
29. Oshansky B, Day JD, Moore S et al. Is dual-chamber programming inferior to single-chamber programming in an implantable cardioverter-defibrillator? Results of the INTRINSIC RV (Inhibition of Unnecessary RV Pacing With AVSH in ICDs) study. *Circulation* 2007;115:9–16.
30 Bousser MG, Bouthier J, Buller HR et al. Comparison of idraparinux with vitamin K antagonists for prevention of thromboembolism in patients with atrial fibrillation: a randomised, open-label, non-inferiority trial. Lancet 2008;371:315–21.

31 Agnelli G, Bergqvist D, Cohen AT, Gallus AS, Gent M. Randomized clinical trial of postoperative fondaparinux versus perioperative dalteparin for prevention of venous thromboembolism in high-risk abdominal surgery. Br J Surg 2005;92:1212–20.

32 Fleshman J, Sargent DJ, Green E et al. Laparoscopic colectomy for cancer is not inferior to open surgery based on 5-year data from the COST Study Group trial. Ann Surg 2007;246:655–62.

33 Tebbe U, Michels R, Adgey J. Randomized, double-blind study comparing saruplase with streptokinase therapy in acute myocardial infarction: the COMPASS Equivalence Trial. Comparison Trial of Saruplase and Streptokinase (COMASS) Investigators. J Am Coll Cardiol 1998;31:487–93.

34 A comparison of laparoscopically assisted and open colectomy for colon cancer. N Engl J Med 2004;350:2050–59.

35 Schellhammer PF, Sharifi R, Block NL et al. A controlled trial of bicalutamide versus flutamide, each in combination with luteinizing hormone-releasing hormone analogue therapy, in patients with advanced prostate carcinoma. Analysis of time to progression. CASODEX Combination Study Group. Cancer 1996;78:2164–69.

36 Twelves C, Wong A, Nowaki MP et al. Capecitabine as adjuvant treatment for stage III colon cancer. N Engl J Med 2005;352:2696–704.

37 Kitchener HC, Dunn G, Lawton V et al. Laparoscopic versus open colposuspension – results of a prospective randomised controlled trial. BJOG 2006;113:1007–13.

38 Blazing MA, de Lemos JA, White HD et al. Safety and efficacy of enoxaparin vs unfractionated heparin in patients with non-ST-segment elevation acute coronary syndromes who receive tirofiban and aspirin: a randomised controlled trial. JAMA 2004;292:55–64.

39 Cunningham D, Starling N, Rao S et al. Capecitabine and oxaliplatin for advanced esophagogastric cancer. N Engl J Med 2008;358:36–46.

40 Bozzetti F, Marubini E, Bonfanti G et al. Subtotal versus total gastrectomy for gastric cancer: five-year survival rates in a multicenter randomized Italian trial. Italian Gastrointestinal Tumor Study Group. Ann Surg 1999;230:170–78.

41 Lincoff AM, Bittl JA, Harrington RA et al. Bivalirudin and provisional glycoprotein IIb/IIIa blockade compared with heparin and planned glycoprotein IIb/IIIa blockade during percutaneous coronary intervention: REPLACE-2 randomized trial. JAMA 2003;289:853–63.

42 Packer M, Calliff RM, Konstam MA et al. Comparison of omapatrilat and enalapril in patients with chronic heart failure: the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE). Circulation 2002;106:920–26.

43 Willenheimer R, van Veldhuisen DJ, Silke B et al. Effect on survival and hospitalization of initiating treatment for chronic heart failure with bisoprolol followed by enalapril, as compared with the opposite sequence: results of the randomized Cardiac Insufficiency Bisoprolol Study (CIBIS) III. Circulation 2005;112:2426–35.

44 Buller HR, Cohen AT, Davidson B et al. Idraparinux versus standard therapy for venous thromboembolic disease. N Engl J Med 2007;357:1094–104.

45 Valgimigli M, Campo G, Percoco G et al. Comparison of angioplasty with infusion of tirofiban or abciximab and with implantation of sirolimus-eluting or uncoated stents for acute myocardial infarction: the MULTISTRATEGY randomized trial. JAMA 2008;299:1788–99.

46 Yusuf S, Mehta SR, Chrolavicius S et al. Comparison of fondaparinux and enoxaparin in acute coronary syndromes. N Engl J Med 2006;354:1464–76.

47 Sacco RL, Diener HC, Yusuf S et al. Aspirin and extended-release dipyridamole versus clopidogrel for recurrent stroke. N Engl J Med 2008;359:1238–51.

48 Kim ES, Hirsh V, Mok T et al. Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): a randomised phase III trial. Lancet 2008;372:1809–18.

49 El-Refaey H, Nooh R, O’Brien P et al. The misoprostol third stage of labour study: a randomised controlled comparison between orally administered misoprostol and standard management. BJOG 2000;107:1104–10.

50 Home PD, Pocock SJ, Beck-Nielsen H et al. Rosiglitazone evaluated for cardiovascular outcomes – an interim analysis. N Engl J Med 2007;357:28–38.

51 Carrozza JP Jr, Mumma M, Breall JA et al. Randomized evaluation of the TriActiv balloon-protection flush and extraction system for the treatment of saphenous vein graft disease. J Am Coll Cardiol 2005;46:1677–83.

52 Stone GW, Bertrand ME, Moses JW et al. Routine upstream initiation vs deferred selective use of glycoprotein IIb/IIIa inhibitors in acute coronary syndromes: the ACUITY Timing trial. JAMA 2007;297:591–602.

53 Cannon CP, Braunwald E, McCabe CH et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 2004;350:1495–504.

54 Schroder FH, Kurth KH, Fossa SD et al. Early versus delayed endocrine treatment of pN1–3 M0 prostate cancer without local treatment of the primary tumor: results of European Organisation for the Research and Treatment of Cancer 30846 – a phase III study. J Urol 2004;172:923–27.

55 Topol EJ, Moliterno DJ, Herrmann HC et al. Comparison of two platelet glycoprotein IIb/IIIa inhibitors, tirofiban and abciximab, for the prevention of ischemic events with percutaneous coronary revascularization. N Engl J Med 2001;344:1888–94.

56 Victor JC, Monto AS, Surdina TY et al. Hepatitis A vaccine versus immune globulin for postexposure prophylaxis. N Engl J Med 2007;357:1685–94.

57 Gulmezoglu AM, Villar J, Ngoc NT et al. WHO multicentre randomised trial of misoprostol in the management of the third stage of labour. Lancet 2001;357:689–95.

58 Shiffman ML, Suter F, Bacon BR et al. Peginterferon alfa-2a and ribavirin for 16 or 24 weeks in HCV genotype 2 or 3. N Engl J Med 2007;357:124–34.

59 Steiner MJ, Dominik R, Rountree RW, Nanda K, Dorflinger LJ. Contraceptive effectiveness of a polyurethane condom and a latex condom: a randomized controlled trial. Obstet Gynecol 2003;101:539–47.
dose, and sex effects on immune responses. Arch Intern Med 2008;168:2405–14.
75 Montini G, Rigon L, Zucchetta P et al. Prophylaxis after first febrile urinary tract infection in children? A multicenter, randomized, controlled, noninferiority trial. Pediatrics 2008;122:1064–71.
76 Stable E, Nammas W, Salameh L et al. The CIAO (Coronary Interventions Antiplaletet-based Only) Study: a randomized study comparing standard anticoagulation regimen to absence of anticoagulation for elective percutaneous coronary intervention. J Am Coll Cardiol 2008;52:1293–98.
77 Lennon DR, Farrell E, Martin DR, Stewart JM. Once-daily amoxicillin versus twice-daily penicillin V in group A beta-haemolytic streptococcal pharyngitis. Arch Dis Child 2008;93:474–78.
78 Barber MD, Kleeman S, Karram MM et al. Transobturator tape compared with tension-free vaginal tape for the treatment of stress urinary incontinence: a randomized controlled trial. Obstet Gynecol 2008;111:611–21.
79 Contant CM, Hop WCJ, van’t Sant HP et al. Mechanical bowel preparation for elective colorectal surgery: a multicentre randomised trial. Lancet 2007;370:2112–17.
80 Tauber E, Kollaritsch H, Korník M et al. Safety and immunogenicity of a Vero-cell-derived, inactivated Japanese encephalitis vaccine: a non-inferiority, phase III, randomised controlled trial. Lancet 2007;370:1847–53.
81 Eriksson BI, Dahl OE, Rosencher N et al. Dabigatran etexilate versus enoxaparin for prevention of venous thromboembolism after total hip replacement: a randomised, double-blind, non-inferiority trial. Lancet 2007;370:949–56.
82 Montini G, Toffolo A, Zucchetta P et al. Antibiotic treatment for pylonephritis in children: multicentre randomised controlled non-inferiority trial. BMJ 2007;335:386.
83 Sundar S, Jha TK, Thakur CP, Sinha PK, Bhattacharya SK. Injectable paromomycin for Visceral leishmaniasis in India. N Engl J Med 2007;356:2571–81.
84 von Hertzen H, Piaggio G, Huong NT et al. Efficacy of two intervals and two routes of administration of misoprostol for termination of early pregnancy: a randomised controlled equivalence trial. Lancet 2007;369:1938–46.
85 Kuse ER, Chetchtotsadik P, da Cunha CA et al. Micafungin versus liposomal amphotericin B for candidaemia and invasive candidosis: a phase III randomised double-blind trial. Lancet 2007;369:1519–27.
86 Lacroix J, Hebert PC, Hutchison JS et al. Transfusion strategies for patients in pediatric intensive care units. N Engl J Med 2007;356:1609–19.
87 Heijnen EM, Eijkemans MJ, De Klerk C et al. A mild treatment strategy for in-vitro fertilisation: a randomised non-inferiority trial. Lancet 2007;369:743–49.
88 Mauri L, Cox D, Hermiller J et al. The PROXIMAL trial: proximal protection during saphenous vein graft intervention using the Proxis Embolic Protection System: a randomized, prospective, multicenter clinical trial. J Am Coll Cardiol 2007;50:1442–49.
89 Heidegger T, Starzyk L, Villiger CR et al. Fiberoptic intubation and laryngeal morbidity: a randomized controlled trial. Anesthesiology 2007;107:585–90.
90 Barnhart KT, Rosenberg MJ, MacKay HT et al. Contraceptive efficacy of a novel spermicidal microbicide used
with a diaphragm: a randomized controlled trial. *Obstet Gynecol* 2007;110:577–86.

91. McEvoy JP, Lieberman JA, Perkins DO et al. Efficacy and tolerability of olanzapine, quetiapine, and risperidone in the treatment of early psychosis: a randomized, double-blind 52-week comparison. *Am J Psychiatry* 2007;164:1050–60.

92. Jones TK, Latson LA, Zahn E et al. Results of the U.S. multicenter pivotal study of the HELEX septal occluder for percutaneous closure of secundum atrial septal defects. *J Am Coll Cardiol* 2007;49:2215–21.

93. Heyde GS, Koch KT, de Winter RJ et al. Randomized trial comparing same-day discharge with overnight hospital stay after percutaneous coronary intervention: results of the Elective PCI in Outpatient Study (EPOS). *Circulation* 2007;115:2299–306.

94. Creinin MD, Schreiber CA, Bednarek P et al. Mifepristone and misoprostol administered simultaneously versus 24 hours apart for abortion: a randomized controlled trial. *Obstet Gynecol* 2007;109:885–94.

95. Brodie MJ, Perucca E, Ryvlin P, Ben-Menachem E, Meencke HJ. Comparison of levetiracetam and controlled-release carbamazepine in newly diagnosed epilepsy. *Neurology* 2007;68:402–8.

96. Kearon C, Ginsberg JS, Julian JA et al. Comparison of fixed-dose weight-adjusted unfractionated heparin and low-molecular-weight heparin for acute treatment of venous thromboembolism. *JAMA* 2006;296:935–42.

97. Fowler VG Jr, Boucher HW, Corey GR et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. *N Engl J Med* 2006;355:653–65.

98. Eron J Jr, Yeni P, Gatell JM et al. The KLEAN study of fosamprenavir-ritonavir versus lopinavir-ritonavir, each in combination with abacavir-lamivudine, for initial treatment of HIV infection over 48 weeks: a randomised non-inferiority trial. *Lancet* 2006;368:476–82.

99. el Moussaoui R, de Borgie CA, van den BP et al. Mifepristone and misoprostol administered simultaneously versus 24 hours apart for abortion: a randomized controlled trial. *Obstet Gynecol* 2007;109:885–94.

100. Brodie MJ, Perucca E, Ryvlin P, Ben-Menachem E, Meencke HJ. Comparison of levetiracetam and controlled-release carbamazepine in newly diagnosed epilepsy. *Neurology* 2007;68:402–8.

101. Kearon C, Ginsberg JS, Julian JA et al. Comparison of fixed-dose weight-adjusted unfractionated heparin and low-molecular-weight heparin for acute treatment of venous thromboembolism. *JAMA* 2006;296:935–42.

102. Fowler VG Jr, Boucher HW, Corey GR et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. *N Engl J Med* 2006;355:653–65.

103. van Mastrogi GA, Heijmans J, Severens JL et al. Short-stay intensive care after coronary artery bypass surgery: randomized clinical trial on safety and cost-effectiveness. *Crit Care Med* 2006;34:65–75.

104. Walter EB, Neuzil KM, Zhu Y et al. Influenza vaccine immunogenicity in 6- to 23-month-old children: are identical antigens necessary for priming? *Pediatrics* 2006;118:e570–78.

105. van Mastrogi GA, Heijmans J, Severens JL et al. Short-stay intensive care after coronary artery bypass surgery: randomized clinical trial on safety and cost-effectiveness. *Crit Care Med* 2006;34:65–75.

106. Petri M, Kim MY, Kalunian KC et al. Combined oral contraceptives in women with systemic lupus erythematosus. *N Engl J Med* 2005;353:2550–58.

107. Kulberg BJ, Sobel JD, Ruhnke M et al. Voriconazole versus a regimen of amphotericin B followed by fluconazole for candidaemia in non-neutropenic patients: a randomised non-inferiority trial. *Lancet* 2005;366:1435–42.

108. Riedner G, Ruzsizoka M, Todd J et al. Single-dose azithromycin versus penicillin G benzathine for the treatment of early syphilis. *N Engl J Med* 2005;353:1236–44.

109. Vincenti F, Larsen C, Durrbach A et al. Costimulation blockade with belatacept in renal transplantation. *N Engl J Med* 2005;353:770–81.

110. Nathan N, Borel T, Djibo A et al. Ceftriaxone as effective as long-acting chloramphenicol in short-course treatment of meningococcal meningitis during epidemics: a randomised non-inferiority study. *Lancet* 2005;366:308–13.

111. Oliver RT, Mason MD, Mead GM et al. Radiotherapy versus single-dose carboplatin in adjuvant treatment of stage I seminoma: a randomised trial. *Lancet* 2005;366:293–300.

112. Buyon JP, Petri MA, Kim MY et al. The effect of combined estrogen and progesterone hormone replacement therapy on disease activity in systemic lupus erythematosus: a randomized trial. *Ann Intern Med* 2005;142:953–62.

113. Albers GW, Diener HC, Frison L et al. Ximelagatran vs warfarin for stroke prevention in patients with nonvalvular atrial fibrillation: a randomized trial. *JAMA* 2005;293:690–98.

114. Fiessinger JN, Huisman MV, Davidson BL et al. Randomized trial comparing same-day discharge with overnight hospital stay after coronary artery bypass surgery: randomised trial on safety and cost-effectiveness. *Crit Care Med* 2006;34:65–75.

115. Fogarty C, de WR, Mandell L et al. Comparison of daptomycin and vancomycin versus penicillin G benzathine for the treatment of early syphilis. *N Engl J Med* 2005;353:1236–44.

116. Buyon JP, Petri MA, Kim MY et al. The effect of combined estrogen and progesterone hormone replacement therapy on disease activity in systemic lupus erythematosus: a randomized trial. *Ann Intern Med* 2005;142:953–62.

117. De GK, Rasmussen N, Bacon PA et al. Randomized trial of cyclophosphamide versus methotrexate for induction of remission in early systemic antineutrophil cytoplasmic antibody-associated vasculitis. *Arthritis Rheum* 2005;52:2461–69.

118. Leroy O, Saux P, Bedos JP, Caulin G et al. Comparison of levofloxacin and cefotaxime combined with ofloxacin for ICU patients with community-acquired pneumonia who do not require vasopressors. *Crit Care Med* 2005;33:1281–90.

119. Conrad SA, Gabrielli A, Margolis B et al. Randomized, double-blind comparison of immediate-release omeprazole oral suspension versus intravenous cimetidine for the prevention of upper gastrointestinal bleeding in critically ill patients. *Crit Care Med* 2005;33:760–65.
Efficacy of experimental treatments in non-inferiority trials

120 Sinha SK, Lacaze-Masmonteil T, Soler A et al. A multicenter, randomized, controlled trial of lincancaptant versus poractant alfa among very premature infants at high risk for respiratory distress syndrome. *Pediatrics* 2005;115:1030–38.

121 Yadav JS, Wholey MH, Kuntz RE et al. Protected carotid-artery stenting versus endarterectomy in high-risk patients. *N Engl J Med* 2004;351:1493–501.

122 de Kraker J, Graf N, van Tinteren H et al. Reduction of postoperative chemotherapy in children with stage I intermediate-risk and anaplastic Wilms’ tumour (SIOP 93–01 trial): a randomised controlled trial. *Lancet* 2004;364:1229–35.

123 Walsh TJ, Teppler H, Donowitz GR et al. Caspofungin versus liposomal amphotericin B for empirical antifungal therapy in patients with persistent fever and neutropenia. *N Engl J Med* 2004;351:1391–402.

124 Schmid C, Nkunku S, Merolle A, Vounatsou P, Burri C. Efficacy of 10-day melarsoprol schedule 2 years after treatment for late-stage gambiense sleeping sickness. *Lancet* 2004;364:789–90.

125 Kruis W, Fric P, Pokrotnieks J et al. Maintaining remission of ulcerative colitis with the probiotic *Escherichia coli Nissle 1917* is as effective as with standard mesalazine. *Gut* 2004;53:1617–23.

126 Conte PF, Guarneri V, Bruzzi P et al. Concomitant versus sequential administration of epirubicin and paclitaxel as first-line therapy in metastatic breast carcinoma: results for the Gruppo Oncologico Nord Ovest randomized trial. *Cancer* 2004;101:704–12.

127 McCullough J, Vesole DH, Benjamin RJ et al. Therapeutic efficacy and safety of platelets treated with a photochemical process for pathogen inactivation: the SPRINT Trial. *Blood* 2004;104:1534–41.

128 Creinin MD, Fox MC, Teal S et al. A randomized comparison of misoprostol 6 to 8 hours versus 24 hours after mifepristone for abortion. *Obstet Gynecol* 2004;103:851–9.

129 Vogel T, Verreault R, Gourdeau M et al. Optimal duration of antibiotic therapy for uncomplicated urinary tract infection in older women: a double-blind randomized controlled trial. *CMAJ* 2004;170:469–73.

130 Stellbrink C, Nixdorff U, Hofmann T et al. Safety and efficacy of enoxaparin compared with unfractionated heparin and oral anticoagulants for prevention of thromboembolic complications in cardiovascular of nonvalvular atrial fibrillation: the Anticoagulation in Cardioversion using Enoxaparin (ACE) trial. *Circulation* 2004;109:997–1003.

131 Buller HR, Davidson BL, Decousus H et al. Subcutaneous fondaparinux versus intravenous unfractionated heparin in the initial treatment of pulmonary embolism. *N Engl J Med* 2003;349:1695–702.

132 Lara LF, Cisneros G, Gurney M et al. One-day quadruple therapy compared with 7-day triple therapy for Helicobacter pylori infection. *Arch Intern Med* 2003;163:2079–84.

133 Stone GW, Rogers C, Hermiller J et al. Randomized comparison of distal protection with a filter-based catheter and a balloon occlusion and aspiration system during percutaneous intervention of diseased saphenous vein aorto-coronary bypass grafts. *Circulation* 2003;108:548–53.

134 Kleber FX, Witt C, Vogel G et al. Randomized comparison of enoxaparin with unfractionated heparin for the prevention of venous thromboembolism in medical patients with heart failure or severe respiratory disease. *Am Heart J* 2003;145:614–21.

135 Schiele F, Meneveau N, Gilard M et al. Intravascular ultrasound-guided balloon angioplasty compared with stent: immediate and 6-month results of the multicenter, randomized Balloon Equivalent to Stent Study (BEST). *Circulation* 2003;107:545–51.

136 Van Gelder I, Hagens VE, Bosker HA et al. A comparison of rate control and rhythm control in patients with recurrent persistent atrial fibrillation. *N Engl J Med* 2002;347:1834–40.

137 Brito FS Jr, Caixeta AM, Perin MA et al. Comparison of direct stenting versus stenting with predilation for the treatment of selected coronary narrowings. *Am J Cardiol* 2002;89:115–20.

138 Boogaerts M, Winston DJ, Bow EJ et al. Intravenous and oral itraconazole versus intravenous amphotericin B deoxycholate as empirical antifungal therapy for persistent fever in neutropenic patients with cancer who are receiving broad-spectrum antibacterial therapy. A randomized, controlled trial. *Ann Intern Med* 2001;135:412–22.

139 Ross AM, Molhoek P, Lundergan C et al. Randomized comparison of enoxaparin, a low-molecular-weight heparin, with unfractionated heparin adjunctive to recombinant tissue plasminogen activator thrombolysis and aspirin: second trial of Heparin and Aspirin Reperfusion Therapy (HART II). *Circulation* 2001;104:648–52.

140 Baim DS, Cutlip DE, Midei M et al. Final results of a randomized trial comparing the MULTI-LINK stent with the Palmaz-Schatz stent for narrowings in native coronary arteries. *Am J Cardiol* 2001;87:157–62.

141 Hogh B, Clarke PD, Canus D et al. Atovaquone-proguanil versus chloroquine-proguanil for malaria prophylaxis in non-immune travellers: a randomised, double-blind study. *Malarone International Study Team. Lancet* 2000;356:1888–94.

142 Lallemant M, Jourdain G, Le Coeur S et al. Reduction of immunogenicity and safety of two 17D yellow fever vaccines. *Am J trop Med Hyg* 1999;60:1045–50.
A comparison of oral misoprostol with vaginal misoprostol administration in second-trimester pregnancy termination for fetal abnormality. Obstet Gynecol 2003; 101:1294–99.

Drucker DJ, Buse JB, Taylor K et al. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet 2008; 372:1240–50.

Stone GW, Midei M, Newman W et al. Comparison of an everolimus-eluting stent and a paclitaxel-eluting stent in patients with coronary artery disease: a randomized trial. JAMA 2008; 299:1903–13.

Boutis K, Willan AR, Babyn P et al. A randomized, controlled trial of a removable brace versus casting in children with low-risk ankle fractures. Pediatrics 2007; 119:e1256–63.

Calderon Y, Haughey M, Bijur PE et al. An educational HIV pretest counseling video program for off-hours testing in the emergency department. Ann Emerg Med 2006; 48:21–27.

Delmas PD, Adami S, Strugala C et al. Intravenous ibandronate injections in postmenopausal women with osteoporosis: one-year results from the dosing intravenous administration study. Arthritis Rheum 2006; 54:1838–46.

Timmouth J, Kandel G, Tomlinson G et al. The effect of dairy product ingestion on human immunodeficiency virus-related diarrhea in a sample of predominantly gay men: a randomized, controlled, double-blind, crossover trial. Arch Intern Med 2006; 166:1178–83.

Szegedi A, Kohnen R, Dienel A, Kieser M. Acute treatment of moderate to severe depression with hypericum extract WS 5570 (St John’s wort): randomised controlled double blind non-inferiority trial versus paroxetine. BMJ 2005; 330:503.

Solomon SD, Appelbaum E, Manning WJ et al. Effect of the direct Renin inhibitor aliskiren, the Angiotensin receptor blocker losartan, or both on left ventricular mass in patients with hypertension and left ventricular hypertrophy. Circulation 2009; 119:530–37.

Bretzel RG, Nuber U, Landgraf W et al. Once-daily basal insulin glargine versus thrice-daily prandial insulin lispro in people with type 2 diabetes on oral hypoglycaemic agents (APOLLO): an open randomised controlled trial. Lancet 2008; 371:1073–84.

Dennehy PH, Bertrand HR, Silas PE et al. Coadministration of RIX4414 oral human rotavirus vaccine does not impact the immune responses to antigens contained in routine infant vaccines in the United States. Pediatrics 2008; 122:e1062–66.

Maltais F, Bourbeau J, Shapiro S et al. Effects of home-based pulmonary rehabilitation in patients with chronic obstructive pulmonary disease: a randomized trial. Ann Intern Med 2008; 149:869–78.

Eranti S, Mogg A, Pluck G et al. A randomized, controlled trial with 6-month follow-up of repetitive transcranial magnetic stimulation and electroconvulsive therapy for severe depression. Ann J Psychiatry 2007; 164:73–81.

Levin NW, Fishbane S, Canedo FV et al. Intravenous methoxy polyethylene glycol-epoetin beta for haemoglobin control in patients with chronic kidney disease who are on dialysis: a randomised non-inferiority trial (MAXIMA). Lancet 2007; 370:1415–21.

Willburger RE, Mysler E, Derbot J et al. Lumiracoxib 400mg once daily is comparable to indomethacin 50mg three times daily for the treatment of acute flares of gout. Rheumatology (Oxford) 2007; 46:1126–32.

Bingham CO III, Sebba AI, Rubin BR et al. Efficacy and safety of etoricoxib 30mg and celecoxib 200mg in the
efficacy of experimental treatments in non-inferiority trials

187 Dalton JD Jr, Schweinle JE. Randomized controlled non-inferiority trial to compare extended release acetaminophen and ibuprofen for the treatment of ankle sprains. *Ann Emerg Med* 2006;48:615–23.

188 Gayer S, Denham D, Alarakhia K et al. Ocular decompression devices: liquid mercury balloon vs the tungsten powder balloon. *Am J Ophthalmol* 2006;142:500–1.

189 Lovek K, Cox D, Haddock G et al. Telephone administered cognitive behaviour therapy for treatment of obsessive compulsive disorder: randomised controlled non-inferiority trial. *BMJ* 2006;333:883.

190 Mehilli J, Kastrati A, Wessely R et al. Randomized trial of a nonpolymer-based rapamycin-eluting stent versus a polymer-based paclitaxel-eluting stent for the reduction of late lumen loss. *Circulation* 2006;113:273–79.

191 Puhan MA, Busching G, Schunemann HJ et al. Interval versus continuous high-intensity exercise in chronic obstructive pulmonary disease: a randomized trial. *Ann Intern Med* 2006;145:816–25.

192 Roberts N, Boehm M, Bates M et al. Two-center prospective randomized controlled trial of Blake versus Portex drains after cardiac surgery. *J Thorac Cardiovasc Surg* 2006;132:1042–46.

193 Benecke R, Jost WH, Kanovsky P et al. A new botulinum toxin type A free of complexing proteins for treatment of cervical dystonia. *Neurology* 2005;64:1949–51.

194 Bobat R, Coovadia H, Stephen C et al. Safety and efficacy of zinc supplementation for children with HIV-1 infection in South Africa: a randomised double-blind placebo-controlled trial. *Lancet* 2005;366:1862–67.

195 Christenson LJ, Phillips PK, Weaver AL, Otley CC. Primary closure vs second-intention treatment of skin punch biopsy sites: a randomized trial. *Arch Dermatol* 2005;141:1093–99.

196 Garcia García ML, Wahn U, Gilles L et al. Montelukast, compared with fluticasone, for control of asthma among 6- to 14-year-old patients with mild asthma: the MOSAIC study. *Pediatrics* 2005;116:360–69.

197 Schnitzer TJ, Kivitz AJ, Lipetz RS, Sanders N, Hee A. Comparison of the COX-inhibiting nitric oxide donor AZD3582 and rofecoxib in treating the signs and symptoms of Osteoarthritis of the knee. *Arthritis Rheum* 2005;53:827–37.

198 Barnett AH, Bain SC, Bouter P et al. Angiotensin-receptor blockade versus converting-enzyme inhibition in type 2 diabetes and nephropathy. *N Engl J Med* 2004;351:1952–61.

199 Poor G, Strand V. Efficacy and safety of leflunomide 10 mg versus 20 mg once daily in patients with active rheumatoid arthritis: multinational double-blind, randomised trial. *Rheumatology (Oxford)* 2004;43:744–49.

200 Cooper C, Emkey RD, McDonald RH et al. Efficacy and safety of oral weekly ibandronate in the treatment of postmenopausal osteoporosis. *J Clin Endocrinol Metab* 2003;88:4609–15.

201 Gibofsky A, Williams GW, McKenna F, Fort JG. Comparing the efficacy of cyclooxygenase 2-specific inhibitors in treating osteoarthritis: appropriate trial design considerations and results of a randomized, placebo-controlled trial. *Arthritis Rheum* 2003;48:3102–11.

202 Mattsson LA, Christiansen C, Colau JC et al. Clinical equivalence of intranasal and oral 17beta-estradiol for postmenopausal symptoms. *Am J Obstet Gynecol* 2000;182:545–52.

203 Weiser M, Stroser W, Klein P. Homeopathic vs conventional treatment of vertigo: a randomized double-blind controlled clinical study. *Arch Otolaryngol Head Neck Surg* 1998;124:879–85.

204 Mintz PD, Bass NM, Petz LD et al. Photochemically treated fresh frozen plasma for transfusion of patients with acquired coagulopathy of liver disease. *Blood* 2006;107:3753–60.

205 Lim Y, Sia AT, Ocampo CE. Comparison of computer integrated patient controlled epidural analgesia vs. conventional patient controlled epidural analgesia for pain relief in labour. *Anaesthesia* 2006;61:339–44.

206 Dibra A, Kastrati A, Mehilli J et al. Paclitaxel-eluting or sirolimus-eluting stents to prevent restenosis in diabetic patients. *N Engl J Med* 2005;353:663–70.

207 Klaber Moffett JA, Jackson DA, Richmond S et al. Randomised trial of a brief physiotherapy intervention compared with usual physiotherapy for neck pain patients: outcomes and patients’ preference. *BMJ* 2005;330:75.