A REPRESENTATION FORMULA RELATED TO
SCHRÖDINGER OPERATORS

SHIJUN ZHENG

Abstract. Let $H = -d^2/dx^2 + V$ be a Schrödinger operator
on the real line, where $V \in L^1 \cap L^2$. We define the perturbed
Fourier transform \mathcal{F} for H and show that \mathcal{F} is an isometry from
the absolute continuous subspace onto $L^2(\mathbb{R})$. This property allows
us to construct a kernel formula for the spectral operator $\varphi(H)$.

Schrödinger operator is a central subject in the mathematical study
of quantum mechanics. Consider the Schrödinger operator
$H = -\Delta + V$ on \mathbb{R}, where $\Delta = d^2/dx^2$ and the potential function V is real valued.
In Fourier analysis, it is well-known that a square integrable function
admits an expansion with exponentials as eigenfunctions of $-\Delta$. A
natural conjecture is that an L^2 function admits a similar expansion in
terms of “eigenfunctions” of H, a perturbation of the Laplacian (see
$[7]$, Ch.XI and the notes), under certain condition on V.

The three dimension analogue was proven true by T.Ikebe $[6]$, a
member of Kato’s school, in 1960. Later his result was extended by
Thor to the higher dimension case $[10]$. In one dimension, recent related
results can be found in e.g., Guerin-Holschneider $[5]$, Christ-Kiselev $[4]$ and Benedetto-Zheng $[3]$.

Throughout this paper we assume $V : \mathbb{R} \to \mathbb{R}$ is in $L^1 \cap L^2$. We shall
prove a one-dimensional version of Ikebe’s theorem for L^2 functions
(Theorem 1). Theorem 2 presents an integral formula for the kernel of
the spectral operator $\varphi(H)$ for a continuous function φ with compact
support. In a sequel to this paper we shall use this explicit formula to
study function spaces associated with H (see $[3]$).

The generalized eigenfunctions $e(x, \xi)$, $\xi \in \mathbb{R}$ of H satisfy

$$(-d^2/dx^2 + V(x))e(x, \xi) = \xi^2 e(x, \xi)$$

in the sense of distributions.

Date: November 9, 2018.

2000 Mathematics Subject Classification. Primary: 42C15; Secondary: 35P25.

Key words and phrases. spectral theory, Schrödinger operator.

The author is supported in part by DARPA (Defense Advanced Research
Projects Agency).
Definition. The perturbed Fourier transform \mathcal{F} on L^2 is given by

$$\mathcal{F}f(\xi) = \lim_{N \to \infty} (2\pi)^{-1/2} \int_{-N}^{N} f(x) e(x, \xi) \, dx,$$

where the convergence is in L^2 norm as $N \to \infty$. By Theorem 1, \mathcal{F} is a well-defined isometry from H_{ac} onto L^2.

Theorem 1. Suppose $V \in L^1 \cap L^2$. Then there exists a family of solutions $e(x, \xi), |\xi| \in [0, \infty) \setminus \mathcal{E}_0, \mathcal{E}_0$ being a bounded closed set of measure zero, to equation (1) with the following properties.

(i) If $f \in L^2$, then there exists an element $\tilde{f} \in L^2$ such that

$$\mathcal{F}f(\xi) = \tilde{f}(\xi) \quad \text{in } L^2.$$

(ii) The adjoint operator \mathcal{F}^* is given by

$$\mathcal{F}^*g = \lim_{N \to \infty} \sum_{i=1}^{N} (2\pi)^{-1/2} \int_{\alpha_i \leq \xi \leq \beta_i} g(\xi) e(x, \xi) \, d\xi$$

in L^2, where $[\alpha_i, \beta_i) \subset (0, \infty)$ are a countable collection of disjoint intervals with $[0, \infty) \setminus \mathcal{E}_0$ equal to $\cup_i [\alpha_i, \beta_i)$.

(iii) If $f \in L^2$, then $\|P_{ac}f\|_{L^2} = \|\tilde{f}\|_{L^2}$, where P_{ac} is the projection onto H_{ac}, the absolute continuous subspace in L^2.

(iv) $\mathcal{F} : L^2 \to L^2$ is a surjection. Moreover, $\mathcal{F}\mathcal{F}^* = Id$ and $\mathcal{F}^*\mathcal{F} = P_{ac}$.

(v) If $f \in D(H)$, then $(Hf)^\sim(\xi) = \xi^2 \tilde{f}(\xi)$ in L^2.

Remark 1. The proof is based on the ideas of [6] for 3D. We also use some simplifications as found in Reed and Simon [7] and Simon [8].

Remark 2. If $|e(x, \xi)| \leq C$ a.e. $(x, \xi) \in \mathbb{R}^2$, then we have a “better-looking” form in (ii) of the theorem

$$\mathcal{F}^*g = \lim_{N \to \infty} \sum_{i=1}^{N} (2\pi)^{-1/2} \int_{\alpha_i \leq \xi \leq \beta_i} g(\xi) e(x, \xi) \, d\xi.$$

If $H = \int \lambda dE_{\lambda}$ is the spectral resolution of H, define the spectral operator $\varphi(H) := \int \varphi(\lambda) dE_{\lambda}$ by functional calculus. We prove a representation formula for the integral kernel of $\varphi(H)$.
Let \(\{e_k\}_{k=1}^{\infty} \) be an orthonormal basis in \(\mathcal{H}_p \), the subspace of eigenfunctions in \(L^2 \) for \(H \) and let \(\lambda_k \) be the eigenvalue corresponding to \(e_k \).

Theorem 2. Let the operator \(H \) be as in Theorem 1. Suppose \(\varphi : \mathbb{R} \to \mathbb{C} \) is continuous and has a compact support disjoint from \(\mathcal{E}_0^2 := \{ \eta^2 : \eta \in \mathcal{E}_0 \} \). Then for \(f \in L^1 \cap L^2 \)

\[
\varphi(H)f(x) = \int_{-\infty}^{\infty} K(x, y)f(y) \, dy
\]

where \(K = K_{ac} + K_p \),

\[
K_{ac}(x, y) = (2\pi)^{-1} \int_{-\infty}^{\infty} \varphi(\xi^2)e(x, \xi)e(y, \xi) \, d\xi.
\]

and

\[
K_p(x, y) = \sum_k \varphi(\lambda_k)e_k(x)\overline{e_k(y)}.
\]

Remark 1. If \(|e(x, \xi)| \leq C \), a.e. \((x, \xi) \in \mathbb{R}^2 \), then, under the same condition the integral expression (3) is valid for any \(\varphi \in C(\mathbb{R}) \) with compact support.

Remark 2. When \(\varphi \) is smooth with rapid decay and \(V \) is compactly supported in \(\mathbb{R}^3 \), a formula of this type appeared in [9] by Tao.

References

[1] P. Alsholm, G. Schmidt, Spectral and scattering theory for Schrödinger operators, *Arch. Rational Mech. Anal.* **40** (1971), 281–311.

[2] J. J. Benedetto, *Harmonic Analysis and Applications*, CRC Press, Inc., Boca Raton, FL, 1997.

[3] J. J. Benedetto and S. Zheng, Besov spaces for the Schrödinger operator with barrier potential, submitted.

[4] M. Christ and A. Kiselev, One-Dimensional Schrödinger operators with slowly decaying potentials: spectra and asymptotics, or, *Baby Fourier Analysis Meets Toy Quantum Mechanics*, Notes for IPAM tutorial, 2001 Workshop on Oscillatory Integrals and Dispersive Equations.

[5] C.-A. Guerin, M. Holschneider, Time-dependent scattering on fractal measures, *J. Math. Physics* **39**(8), 1998.

[6] T. Ikebe, Eigenfunction expansions associated with the Schrödinger operators and their applications to scattering theory, *Arch. Rational Mech. Anal.* **5** (1960), 1–34. (Erratum, Remarks on the orthogonality of eigenfunctions for the Schrödinger operator on \(\mathbb{R}^n \), *J. Fac. Sci. Univ. Tokyo Sect.I* **17**, 1970)

[7] M. Reed and B. Simon, *Methods of Modern Mathematical Physics III: Scattering Theory*, Academic Press, New York, 1979.

[8] B. Simon, *Quantum Mechanics for Hamiltonians Defined as Quadratic Forms*, Princeton University Press, Princeton, New Jersey, 1971.
[9] T. Tao, Scattering for the 3D Schrödinger equation with compactly supported potential, *Preprint*.

[10] D. Thoe, Eigenfunction expansions associated with Schrödinger operators in \mathbb{R}^n, $n \geq 4$, *Arch. Rational Mech. Anal.* 26 (1967), 335–356.

Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803

E-mail address: szheng@math.lsu.edu

URL: http://www.math.lsu.edu/~szheng