The BigDAWG Architecture

Vijay Gadepally∗† Jennie Duggan‡ Aaron Elmore§, Jeremy Kepner∗† Samuel Madden† Tim Mattson‡ Michael Stonebraker§
∗MIT Lincoln Laboratory †MIT CSAIL ‡Northwestern University §University of Chicago ¶Intel

Abstract—BigDAWG is a polystore system designed to work on complex problems that naturally span across different processing or storage engines. BigDAWG provides an architecture that supports diverse database systems working with different data models, support for the competing notions of location transparency and semantic completeness via islands of information and a middleware that provides a uniform multi–island interface. In this article, we describe the current architecture of BigDAWG, its application on the MIMIC II medical dataset, and our plans for the mechanics of cross-system queries. During the presentation, we will also deliver a brief demonstration of the current version of BigDAWG.

I. INTRODUCTION

Enterprises today encounter many types of databases, data, and storage models. Developing analytics and applications that work across these different modalities is often limited by the incompatibility of systems or the difficulty of creating new connectors and translators between each one. For example, consider the MIMIC II dataset [1] which contains deidentified health data collected from thousands of critical care patients in an Intensive Care Unit (ICU). This publicly available dataset (http://mimic.physionet.org/) contains structured data such as demographics and medications; unstructured text such as doctor and nurse reports; and time–series data of physiological signals such as vital signs and electrocardiogram (ECG). Each of these components of the dataset can be efficiently organized into different styles of database engines. For example, the structured data in a relational database, the text notes in a key-value or graph database and the time–series data in an array database.

Analytices of the future will cross the boundaries of a single data modality, such as correlating information from a doctor’s note against the physiological measurements collected from a particular sensor. Such analytics call for the development of a new generation of federated databases that support access to different styles of database or storage engines. We refer to such a system as a polystore in order to distinguish it from traditional federated databases that largely supported access to multiple engines using the same data model.

As a part of the Intel Science and Technology Center (ISTC) on Big Data, we are developing BigDAWG, short for Big Data Analytics Working Group. The BigDAWG stack is designed to support many sizes, real-time streaming analytics, visualization interfaces, and multiple databases. The current version of BigDAWG [2] shows significant promise and has been used to develop a series of applications using the MIMIC II dataset. In this presentation, we will describe the current BigDAWG architecture and describe a series of polystore workloads developed for the MIMIC II dataset. We also describe our plans for the mechanics of implementing cross-system queries.

II. BIGDAWG ARCHITECTURE

The BigDAWG architecture consists of four distinct layers as described in Figure 1: database and storage engines; islands of information; API; and applications. In this section, we discuss the current status of each of these layers as well as how they are used with the MIMIC II dataset.

A. DATABASE AND STORAGE ENGINES

A key design feature of BigDAWG is the support of multiple database and storage engines. We believe that analytics of the future will depend on many, disparate data sources and BigDAWG is designed to address this need by leveraging many vertically-integrated data management systems.

For the MIMIC II dataset, we use the relational databases PostgreSQL and Myria [3] to store clinical data such as demographics and medications. BigDAWG uses the key-value store Apache Accumulo for freeform text data and to perform graph analytics [4]. For the historical waveform time-series data of various physiological signals, we use the array store SciDB [5]. Finally, for streaming timeseries data, our application uses the streaming database S-Store [6].

B. ISLANDS OF INFORMATION

The next layer of the BigDAWG stack is its islands of information. Islands allow users to trade off between semantic completeness (using the full power of an underlying database engine) and location transparency (the ability to access data without knowledge of the underlying engine). Each island has

![Fig. 1: The BigDAWG architecture.](image-url)
a data model, a query language or set of operators and one or more database engines for executing them. In the BigDAWG prototype, the user determines the scope of their query by specifying an island of information within which the query will be executed. Islands are a user-facing abstraction, and they are designed to reduce the challenges associated with incorporating a new database engine.

We currently support a number of islands. For example, the D4M island provides users with an associative array data model [7] to PostgreSQL, Accumulo, and SciDB. The Myria island provides iteration to the MyriaX, PostgreSQL and SciDB databases. We also support a number of degenerate islands that connect to a single database engine. Degenerate islands provide support for the full semantic power of a connected database at the expense of location transparency.

C. BigDAWG API

The BigDAWG interface provides a simple API to execute polystore queries. The API layer consists of server and client facing components. The server components incorporate the many possible islands which connect to database engines via lightweight connectors referred to as shims. The clients interact with these islands through the API via SCOPE and CAST operations. To specify a particular island of information, a user indicates a SCOPE in their query. A SCOPE allows users to control the data model and programming interface with which they wish their queries to be executed. A cross-island query may be composed of multiple SCOPEs. For queries that rely on cross-island interaction, BigDAWG also offers CAST operations that can automatically move data between database and storage engines – and subsequently between islands. We discuss the mechanics of these operations in greater detail in Section [11].

D. Applications and Visualizations

BigDAWG supports a variety of visualization platforms such as Vega [8] and D3 [9] which can be used to develop complex applications and analyitics. The current BigDAWG implementation was applied to the MIMIC II medical dataset to develop different applications and analyitics that require polystore support. The applications developed were:

1) Browsing: This screen provides an interface to the full MIMIC II dataset which is stored in different storage engines. This screen utilized the open source tool ScalaR [10].
2) **Something interesting**: This application uses SeeDB [11] to highlight interesting trends and anomalies in the dataset.
3) **Text Analytics**: This application performs topic modeling of the unstructured doctor and nurse notes directly in a key-value store database using Graphulo [4].
4) **Heavy Analytics**: This application looks for hemodynamically similar patients in a dataset by comparing the signatures of historical ECG waveforms using Myria.
5) **Streaming Analytics**: This application performs analytics on streaming time-series waveforms and can be used for ETL into another database such as SciDB.

III. EXECUTING POLYSTORE QUERIES

Efficient query execution is a key goal of the BigDAWG system. This aim is challenging because the data being queried is likely to be distributed among two or more disparate data management systems. In order to support different islands, efficient data movement is essential. Moreover, efficient execution depends on system parameters such as available resources or usage that are prone to change. In this section, we describe the simplest case where there is no replication, partitioned objects, expensive queries or attempts to move objects for load balancing. An execution plan for a query is then generated based on whether the query is in a training or production phase.

A. Training Phase

Training mode is typically used for execution of queries that are new (either the query is new or the system has changed significantly since the last time a particular query was run) or are believed to have been poorly executed. In the simplest case, the training phase consists of queries that arrive with a “training” tag. In the training phase, we allow the query execution engine to generate a good query plan using any number of available resources. First, the query preprocessor parses the query and scopes each piece of the query to a particular island. Pieces of the resulting subquery that are local to a particular storage engine are encapsulated into a container and given an identifying signature. For the remaining elements of the query (remainder), which correspond to cross-system predicates, we can generate a signature by looking at the structure of the remainder, the objects being reference and the constants in the query. If the remainder signature has been seen before, a query plan can be extracted. If not, the system decomposes the remainder to determine all possible query plans which are then sent to the monitor.

To execute the query, the monitor feeds the queries to the executor, plus all of the containers which are then passed to the appropriate underlying storage engine. For the cross-engine predicates, the executor decides how to perform each step. The executor runs each query, collects the total running time and other usage statistics and stores the information in the monitor database. This information can then be used to determine the best query plan in the production phase.

B. Production Phase

In the production phase, when a query is received it is first matched against the various signatures in the monitor database and the optimizer selects the closest one. The BigDAWG optimizer also compares the current usage statistics of the system and compares it against the usage statistics of the system when the training was performed. If there are large differences, the optimizer may select an alternate query plan that more closely resembles the current resources or system usage or recommend that the user rerun the query under the training phase under the current usage. In cases where the signature of the incoming query do not match with existing signatures, the optimizer may suggest the query run in training mode or construct a list of plans as done in the training phase.
and have the monitor pick one at random. The remaining plans can then be run in the background of the system when it is underutilized. Over time, these plans are added to the monitor database.

IV. CONCLUSION

In this article, we described the latest architecture of the BigDAWG system. A prototype version of the architecture has been built and applied to the MIMIC II dataset. We described a few of these applications and discuss our plan of attack for executing more complex cross-system and cross-island queries.

REFERENCES

[1] M. Saeed, M. Villarroel, A. T. Reisner, G. Clifford, L.-W. Lehman, G. Moody, T. Heldt, T. H. Kyaw, B. Moody, and R. G. Mark, “Multiparameter intelligent monitoring in intensive care ii (mimic-ii): a public-access intensive care unit database,” *Critical care medicine*, vol. 39, no. 5, p. 952, 2011.

[2] A. Elmore, J. Duggan, M. Stonebraker, M. Balazinska, U. Cetintemel, V. Gadepally, J. Heer, B. Howe, J. Kepner, T. Kraska et al., “A demonstration of the bigdawg polystore system,” *Proceedings of the VLDB Endowment*, vol. 8, no. 12, pp. 1906–1911, 2015.

[3] D. Halperin, V. Teixeira de Almeida, L. L. Choo, S. Chu, P. Koutris, D. Moritz, J. Ortiz, V. Ruamviboonsuk, J. Wang, A. Whitaker et al., “Demonstration of the myria big data management service,” in *Proceedings of the 2014 ACM SIGMOD international conference on Management of data*. ACM, 2014, pp. 881–884.

[4] D. Hutchison, J. Kepner, V. Gadepally, and A. Fuchs, “Graphulo implementation of server-side sparse matrix multiply in the accumulo database,” in *High Performance Extreme Computing Conference (HPEC), 2015 IEEE*. IEEE, 2015, pp. 1–7.

[5] M. Stonebraker, P. Brown, D. Zhang, and J. Becla, “Scidb: A database management system for applications with complex analytics,” *Computing in Science Engineering*, vol. 15, no. 3, pp. 54–62, May 2013.

[6] U. Cetintemel, J. Du, T. Kraska, S. Madden, D. Maier, J. Meehan, A. Pavlo, M. Stonebraker, E. Sutherland, N. Tabul et al., “S-store: A streaming newsql system for big velocity applications,” *Proceedings of the VLDB Endowment*, vol. 7, no. 13, pp. 1633–1636, 2014.

[7] V. Gadepally, J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun, L. Edwards, M. Hubbell, P. Michaleas, J. Mullen, A. Prout, A. Rosa, C. Yee, and A. Reuther, “D4m: Bringing associative arrays to database engines,” in *High Performance Extreme Computing Conference (HPEC), 2015 IEEE*, Sept 2015, pp. 1–6.

[8] A. Satyanarayana, R. Russell, J. Hoffswell, and J. Heer, “Reactive vega: A streaming dataflow architecture for declarative interactive visualization,” *Visualization and Computer Graphics, IEEE Transactions on*, vol. 22, no. 1, pp. 659–668, 2016.

[9] M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven documents,” *Visualization and Computer Graphics, IEEE Transactions on*, vol. 17, no. 12, pp. 2301–2309, 2011.

[10] L. Battle, M. Stonebraker, and R. Chang, “Dynamic reduction of query result sets for interactive visualization,” in *Big Data, 2013 IEEE International Conference on*. IEEE, 2013, pp. 1–8.

[11] M. Vartak, S. Madden, A. Parameswaran, and N. Polyzotis, “Seedb: automatically generating query visualizations,” *Proceedings of the VLDB Endowment*, vol. 7, no. 13, pp. 1581–1584, 2014.