Effect of ball bearing misalignment on dynamic characteristics of rotor system

Baogang Wen¹, Meiling Wang², Qingkai Han³, Changxin Yu⁴

1. School of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian, 116034, PR China, wbg_dlut@163.com
2. College of Locomotive and Rolling stock Engineering, Dalian Jiaotong University, Dalian, 116028, PR China, meilingcc@163.com
3. School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 116024, PR China, qk.han@hotmail.com
4. Wafangdian Bearing Group Corp, Wafangdian, 116300, China, yucx@zwz-bearing.com

* Corresponding author: Tel.: +86-411-84106065; E-mail address: meilingcc@163.com

Abstract. A theoretical model with 5 degrees of freedom (DOF) is derived for a rigid rotor system supported by two ball bearings considering the changes of the bearing stiffness due to misalignment. And then radial and axial vibrations of the rotor system and its bearing reactions under different misaligned offsets are investigated with theoretical and numerical analysis. Then, the effects of misalignment on the vibrations of rotor and the bearing, the variation of stiffness and reaction characteristics of the misaligned ball bearing are predicted theoretically. It is concluded that angular misalignment may cause axial vibration and parallel misalignment can bring out extra moment loads for misaligned bearing.

Keywords. Rotor system; bearing misalignment; bearing stiffness; theoretical model

1. Introduction

Bearing is one of the important basic parts in the major equipment, such as aero-engine, turbo-machinery and so on[1, 2]. Its performance will directly affect the rotor dynamics, even the security of the whole equipment[3-5]. Misalignment of bearing is present because of improper assembly and thermal distortion, resulting in abnormal vibration and excessive preload[6]. However, perfect alignment cannot be obtained. The need for understanding the phenomena is important to practical engineers for the purpose of trouble shooting. There are two types of misalignment: coupling misalignment and bearing misalignment. Recently, the majority of the misalignment studies is about coupling misalignment, discussed the effects of its structure[7, 8] and type on the vibration of connected rotor system[9, 10], and evaluated the 2× vibration response as to be the characteristic feature of misalignment[11-15]. Hussain and Redmond[16, 17] pointed coupling misalignment is a source of both torsional and lateral excitations, of which angular misalignment may generate purely static forces and displacements. References[18, 19] showed that super-harmonic components are the most remarkable in the vibration spectrum for a hyper-static shaft-line with rigid coupling misalignment.
As to the bearing misalignment, no much work has been reported, and the corresponding dynamic mechanism is still unclear and insufficient. In this paper, a dynamic model of a misaligned rigid rotor system with 5 DOF is deduced based on Lagrangian theory, in which the variation of bearing stiffness due to the un-concentricity of supports is taken into account. The effects of misalignment are analyzed theoretically on the vibration of the rotor and bearing, the stiffness and reaction force of the misaligned bearing.

2. Motion equations of rigid rotor system with misaligned ball bearing

As the rigid rotor system shown in figure 1(a) with misaligned bearing, an angular tilt is present for the shaft and offset are available for its right bearing B2, which refer to the angular and parallel misalignment, respectively. In addition, the upward point of bearing B1 may yaw around its initial position (Letting the deflection angle). A moving coordinate system O2X2Y2Z2 is introduced to illustrate the misaligned rotor system. At any time t, the relationship between OXYZ, and O2X2Y2Z2 is shown in figure 1(b).

![Figure1.Misaligned rotor system](image)

The equations of motion of misaligned rotor system are obtained following the Lagrangian theory, in which assumptions adopted are as follows: (1) the rotor is rigid and represented by one concentrated mass point; (2) bending and axial vibrations without torsional vibration of the rotor system are considered; (3) variable stiffness of misaligned bearing are considered; (4) shaft rotating speed is constant.

The vector \(\mathbf{q} = \{ x, y, z, \theta_y, \theta_z \}^T \) of concentrated mass point D in the fixed coordinate system OXYZ is chosen as the generalized displacement vector, including three translational DOF and two rotational DOF around Y- and Z- axes. From the perspective of the rigidity assumption, rotational displacements of points on rotor are all \(\theta_y, \theta_z \).

2.1 Kinetic and potential energy

The kinetic energy of the rotor system shown in figure 1 is easily computed as a sum of the translational kinetic energy \(T_t \) and rotational kinetic energy \(T_r \),

\[
T_t = \frac{1}{2} m (\ddot{x}^2 + \dot{y}^2 + \dot{z}^2) = \frac{1}{2} m \left[(\dot{x} + \alpha \dot{e} \Omega \sin(\Omega t + \Psi_0))^2 + (\dot{y} - \epsilon \dot{e} \Omega \sin(\Omega t + \Psi_0))^2 + (\dot{z} + \epsilon \dot{e} \Omega \cos(\Omega t + \Psi_0))^2 \right]
\]

\[
T_r = \frac{1}{2} \left[J_p (\dot{\theta}_y + \dot{\theta}_z)^2 + J_d [(-\dot{\theta}_y \sin(\Omega t + \theta_y) \cos(\Omega t))^2 + (\dot{\theta}_z \cos(\Omega t + \theta_y) \sin(\Omega t))^2 \right]
\]

where \(m, J_p, J_d \) are the mass, polar moment of inertia and diameter moment of inertia respectively, \(\Omega \) is the rotating speed of rotor, \(e \) and \(\Psi_0 \) are the eccentricity and initial phase angle.
The total potential energy of the rotor system is a sum of potential energy of the two supports U_1 and U_2, both of which are

$$U_1 = \frac{1}{2} q_{b1}^T K q_{b1}, \quad U_2 = \frac{1}{2} q_{b2}^T K q_{b2}$$ \hspace{1cm} (3)

Where K is a 5×5 stiffness matrix of the bearing, and its diagonal elements can be represented by K_1-K_5 if ignoring the cross stiffness coefficients. q_{b1} and q_{b2} are the generalized displacement vectors at the two support points, respectively. In the misaligned condition, the relationships among q_{b1}, q_{b2} and q can be expressed as

$$q_{b1} = R B_1 R^T q + S_{b1}, \quad q_{b2} = R B_2 R^T q + S_{b2}$$ \hspace{1cm} (4)

where $R = \begin{bmatrix} 1 & -\alpha & 0 & 0 & 0 \\ \alpha & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$, R^T is the transpose matrix of R, $B_1 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -a \\ 0 & 0 & 1 & a & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$, $B_2 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & b \\ 0 & 0 & 1 & -b & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$, $S_{b1} = \begin{bmatrix} 0 \\ -\alpha^2 \delta \cos \phi \\ 0 \\ -a \delta \sin \phi \\ a \delta \cos \phi \end{bmatrix}$, $S_{b2} = \begin{bmatrix} 0 \\ -\alpha^2 \delta \cos \phi \\ 0 \\ b \delta \sin \phi \\ -b \delta \cos \phi \end{bmatrix}$, a and b are the distances between D and B1, B2 respectively.

2.2 Stiffness matrix of the misaligned bearing

As to the rotor system shown in figure 1, an angular tilt α and offset δ are present for the misaligned bearing bringing out extra preloads. So the displacements of the misaligned bearing (in figure 2) can be represented by the axial and radial displacements δ^x, δ and angular displacement α respectively.

![Figure 2. Sketch of misaligned ball bearing](image-url)
Under combined loads condition, the rolling bearing stiffness matrix (ignoring cross stiffness) K_{lim} with 5 degrees of freedom [20, 21] is

$$
K_{lim} = \begin{bmatrix}
K_{11} & 0 & 0 & 0 & 0 \\
0 & K_{22} & 0 & 0 & 0 \\
0 & 0 & K_{33} & 0 & 0 \\
0 & 0 & 0 & K_{44} & 0 \\
0 & 0 & 0 & 0 & K_{55}
\end{bmatrix}
$$

(5)

Where $K_{11} \sim K_{55}$ are bearing translational stiffness coefficients in three directions and rotational coefficients around Y- and Z- axes, respectively.

2.3 Motion equations

The total kinetic energy of the rotor system is a sum of translational kinetic energy and rotational kinetic energy, namely, $T=T_1+T_2$. Total potential energy is a sum of elastic potential energy at two elastic supports, namely, $U=U_1+U_2$. By introducing these into Lagrangian equation and performing the relevant derivatives, the equations of motion of misaligned rotor system with 5-DOF are readily obtained

$$
M\ddot{q} + G\dot{q} + K_{eg}q = Q
$$

(6)

Where, M, G, K_{eg}, Q are mass matrix, gyroscopic matrix, stiffness matrix, generalized excitation force vector respectively.

$$
K_{eg} = RB_i^7R^7KR_iR_i^7 + RB_i^7R^7KR_iR_i^7
$$

(7)

In addition, by differentiating Lagrangian equation on, an algebraic equation is obtained to determine the angular position of the support point, which is related to y, θ_1, θ_2, namely
3. Results and discussions

In order to investigate the influences of misalignment on the stiffness, vibration and reaction forces of bearings, numerical simulations are conducted with the fourth-order variable step Runge-Kutta method, based on the dynamic model of misaligned rotor system (Eqs. (6), (9)) in the above section. The initial calculation conditions in simulations are as follows: the rotating speed is constant as 2400r/min (40Hz). The basic parameters of rotor system and the angular ball bearing of type 71906 are shown in Tables 1-2.

\[
2\alpha^2 K_3 y \sin \phi + (b-a)(\alpha^2 K_4 + K_3)i \sin \phi + (b-a)K_4 \theta \cos \phi + \cdots
\]

\[+(a^2 + b^2)\delta(K_4 - K_3) \sin \phi \cos \phi = 0 \tag{9}\]

Parameters	Value
Length of rotor	0.480m
Diameter of rotor	0.036m
Young modulus of rotor	2.06×10^{11}Pa
Poisson ratio of rotor	0.3
Mass of rotor	6Kg
Imbalance of rotor	6×10^{-3}kg.m
Density of rotor	7.85×10^{3}kg/m³

Parameters	Value
Diameter of inner ring Di	0.030 m
Diameter of outer ring Do	0.047m
Width	0.009m
Diameter of roller	0.004 m
Contact angle α0	15°
No. of roller m	16
Load-deformation index n	3/2
Load deformation coefficient Kn	N/m^6
Axial preload	500N

As to the rotor with a length of 480mm and maximum elevation adjustment of 3mm on one side, the maximum angle misalignment amount obtained is about 0.00625rad (0.35°). Thus, the \(\delta = 0\text{mm}, \alpha = 0\text{–}1\degree\) angular misalignment varying case is selected for the further simulation analysis. And also, the \(\alpha = 0\degree, \delta = 0\text{–}1\text{mm}\) parallel misalignment varying condition is adopted to grasp the effects of misalignment.

3.1 Changes of the stiffness of the misaligned bearing

An angular tilt and offset are available for misaligned bearing, resulting uneven and additional displacement loads, which will bring out the variation of stiffness of the misaligned bearing. An error ratio of bearing stiffness is defined to illustrate the variation,

\[
err_K = \frac{\Delta K}{K_{\text{norm}}} \times 100\% \tag{10}\]

Where \(\Delta K\) is additional stiffness caused by misalignment, \(K_{\text{norm}}\) is the stiffness under normal state. Based on the proposed misaligned bearing model (Eq. (5)), variation of bearing stiffness is discussed under two cases mentioned above. The proposed error ratios of three translational stiffness coefficients of the bearing are altering along misalignment, as shown in Fig.3.
As seen from figure 3, misalignment has a strong influence on the stiffness coefficients of bearing. Because the misalignment can directly result in uneven and additional displacement loads for misaligned bearing.

3.2 Vibration analysis of the misaligned rotor system
With the angular misalignment varying from 0° to 1° and the parallel misalignment varying from 0 mm to 1 mm, the radial vibrations of the rotor and misaligned bearing are analyzed. The vibration response amplitudes of the rotor and bearing with angular and parallel misalignment are obtained, as shown in figure 4.
Figure 4. Variation in amplitudes of vibration responses for the rotor (a-b) and misaligned bearing (c-d) with angular and parallel misalignment.

For both two cases, the radial vibration amplitudes of the rotor and misaligned bearing decrease slightly with increasing misalignment in the range of variation of $\alpha = 0\text{ to } 1^\circ$, $\delta = 0\text{ to } 1\text{ mm}$, but the variation is not very evident.

3.3 Bearing reaction forces due to misalignment

The generalized reaction load F about the misaligned bearing can be easily obtained

$$F = K q_b$$ \hspace{1cm} (11)

Where K is a 5×5 stiffness matrix of the bearing, as mentioned above. q_b denotes the generalized displacement vectors at the support point with 5 DOF. Accordingly, the generalized reaction load F can be written as $\{F_x, F_y, F_z, M_y, M_z\}$, in which F_x denotes the axial force. And the force F_y and the moment M_z are in Y-direction, the force F_z and M_y are in Z-direction. The changes of the generalized reaction forces of the misaligned bearing along with the misalignment increments are shown in Fig.5.
As shown in Figure 5, the radial reaction forces F_y, F_z and the moments M_y, M_z of the misaligned rotor system do not change significantly, but the axial force F_x greatly increases, as the angular misalignment increasing in the range of variation of $\alpha = 0 \degree$ to $1 \degree$. However, when the parallel misalignment varying from 0mm to 1mm, the translational forces F_x, F_y, F_z and the moment M_y, M_z, decrease slightly, and the moment M_z around Z-axis increase sharply. It is, therefore, deemed angular misalignment as the cause of axial vibration and parallel misalignment as extra moment loads for misaligned bearing.
4. Conclusions
The dynamic model of a misaligned rigid rotor system with 5 DOF is deduced by means of Lagrangian approach. The effects of misalignment are investigated numerically on the vibration responses of rotor and bearing, the stiffness and reaction force of the misaligned bearing. The obtained results on such a rigid rotor system with misaligned ball bearing reveal that the vibration of the rotor system seems not to be sensitive to the misalignment, which has a strong influence on the stiffness coefficients of bearing. The transverse vibration amplitudes of rotor and bearing will decrease along the misaligned value, but the variations are not evident. And the axial and radial stiffness coefficient increases greatly with the value of angular and parallel misalignment. But the reaction loads change seriously attributed to the misaligned bearing. The angular misalignment can bring out extra axial force, and the parallel misalignment can give rise to additional moment loads.

Acknowledgements
This work was financially supported by the National Natural Science Foundation of China (Grant No: 51905069) and the Natural Science Foundation of Liaoning Province (No.: 20180550792 and 2019-ZD-0088) and the High-level Talents of Dalian City (No.: 2018RQ18)

Conflict of interest
The Authors declare that there is no conflict of interest.

References
[1] Zhang C 2020 The Life Prediction of Bearing for Metro Fan Based on EMD Denoise and LSTM Network Chinese Journal of Turbomachinery 62 77-82
[2] Wang F and Liu Y 2016 Solution and Analysis of Bearing Overburning in the Side of Cantilever Centrifugal Fan Impellers Chinese Journal of Turbomachinery 58 91-6
[3] Wu P and Zhao X 2019 Incipient Fault Detection of Rolling Bearing Based on Fuzzy Entropy and Fractal Dimension Chinese Journal of Turbomachinery S1 71-9
[4] Allaire P, Dimond T and Cao J 2019 Bearing Fix for Large Sub-synchronous Vibration in Steam Turbine-gearbox-generator System Chinese Journal of Turbomachinery 59 39-44
[5] Du G, Wang Y and Yang G 2019 Rotor Dynamics Research of a 165kW Helium Blower with AMBs Chinese Journal of Turbomachinery 61 34-8
[6] Piotrowski J 2007 Shaft Alignment Handbook (3rd edition): Marcel Dekker Inc.)
[7] Gibbons C 1976 Coupling Misalignment Forces. In: Proceedings of 5th Turbomachinery Symposium, pp 111-6
[8] Palazzolo A, Locke S and Calistrat M 1992 Gear Coupling Misalignment Induced Forces and Their Effects on Machinery Vibration. In: Proceedings of the 21st Turbomachinery Symposium, pp 83-96
[9] Xu M and Marangoni R 1994 Vibration analysis of a motor-flexible coupling-rotor system subject to misalignment and unbalance, part I: theoretical model and analysis Journal of Sound and Vibration 176 663-79
[10] Xu M and Marangoni R 1994 Vibration analysis of a motor-flexible coupling-rotor system subject to misalignment and unbalance, part II: experimental validation Journal of Sound and Vibration 176 681-91
[11] Sekhar A and Prabhu B 1995 Effects of coupling misalignment on vibrations of rotating machinery Journal of Sound and Vibration 185 655-71
[12] Ganeriwala S, Patel S and Hartung H 1999 The truth behind misalignment vibration spectra of rotating machinery. In: Proceedings of Intentional Modal Analysis Conference, pp 2078-205
[13] Lee Y and Lee C 1999 Modelling and vibration analysis of misaligned rotor-ball bearing systems Journal of Sound and Vibration 224 17-32
[14] Lees A 2007 Misalignment in rigidly coupled rotors Journal of Sound and Vibration 305
[15] Hu W, Miah H and Feng N 2000 A rig for testing lateral misalignment effects in a flexible rotor supported on three or more hydrodynamic journal bearings Tribol Int 33 197-204
[16] Hussain K and Redmond I 2002 Dynamic response of two rotors connected by rigid type mechanical coupling with parallel misalignment Journal of Sound and Vibration 249 483-98
[17] Redmond I 2010 Study of a misaligned flexibly coupled shaft system having nonlinear bearings and cyclic coupling stiffness-Theoretical model and analysis Journal of Sound and Vibration 329 700-20
[18] Hariharan V and Srinivasan P 2011 Vibration analysis of parallel misaligned shaft with ball bearing system Journal of Science & Technology 33 61-8
[19] Pennacchi P, Vania A and Chatterton S 2012 Nonlinear effects caused by coupling misalignment in rotors equipped with journal bearings Mechanical Systems and Signal Processing 30 306-22
[20] Lim T and Singh R 1990 Vibration transmission through rolling element bearings, Part I: bearing stiffness formulation Journal of Sound and Vibration 139 179-99
[21] Lim T and Singh R 1990 Vibration transmission through rolling element bearings, Part II: system studies Journal of Sound and Vibration 139 201-25