Matching Dependencies with Arbitrary Attribute Values: Semantics, Query Answering and Integrity Constraints

Jaffer Gardazi
University of Ottawa, SITE
Ottawa, Canada
jgard082@uottawa.ca

Leopoldo Bertossi†
Carleton University, SCS
Ottawa, Canada
bertossi@scs.carleton.ca

Iluju Kiringa
University of Ottawa, SITE
Ottawa, Canada
kiringa@site.uottawa.ca

ABSTRACT

Matching dependencies (MDs) were introduced to specify the identification or matching of certain attribute values in pairs of database tuples when some similarity conditions are satisfied. Their enforcement can be seen as a natural generalization of entity resolution. In what we call the pure case of MDs, any value from the underlying data domain can be used for the value in common that does the matching. We investigate the semantics and properties of data cleaning through the enforcement of matching dependencies for the pure case. We characterize the intended clean instances and also the clean answers to queries as those that are invariant under the cleaning process. The complexity of computing clean instances and clean answers to queries is investigated. Tractable and intractable cases depending on the MDs and queries are identified. Finally, we establish connections with database repairs under integrity constraints.

1. INTRODUCTION

A database instance may contain several tuples and values in them that refer to the same external entity that is being modeled through the database. In consequence, the database may be modeling the same entity in different forms, as different entities, which most likely is not the intended representation. This problem could be caused by errors in data, by data coming from different sources that use different formats or semantics, etc. In this case, the database is considered to contain dirty data, and it must undergo a cleansing process that goes through two interlinked phases: detecting tuples (or values therein) that should be matched or identified, and, of course, doing the actual matching. This problem is usually called entity resolution, data fusion, duplicate record detection, etc. Cf. [13, 10] for some recent surveys and [6] for recent work in this area.

Quite recently, and generalizing entity resolution, [14, 15] introduced matching dependencies (MDs), which are declarative specifications of matchings of attribute values that should hold under certain conditions. MDs help identify duplicate data and enforce their merging by exploiting semantic knowledge expressed.

Loosely speaking, an MD is a rule defined on a database which states that, for any pair of tuples from given relations within the database, if the values of certain attributes of the tuples are similar, then the values of another set of attributes should be considered to represent the same object. In consequence, they should take the same values. Here, similarity of values can mean equality or a domain-dependent similarity relationship, e.g. related to some metric, such as the edit distance.

Example 1. Consider the following database instance of a relation P.

Name	Phone	Address
John	723-9583	10-43 Oak St.
J. Smith	(750) 723-9583	43 Oak St. Ap. 10

Similarity of the names in the two tuples (as measured by, e.g. edit distance) is insufficient to establish that the tuples refer to the same person. This is because the last name is a common one, and only the first initial of one of the names is given. However, similarity of their phone and address values indicates that the two tuples may be duplicates. This is expressed by an MD which states that, if two tuples from P have similar address and phone, then the names should match. In the notation of MDs, this is expressed as

\[
P[\text{Phone}] \approx P[\text{Phone}] \land P[\text{Address}] \approx P[\text{Address}] \rightarrow P[\text{Name}] \equiv P[\text{Name}].
\]

The identification in [14, 15] of a new class of dependencies and their declarative formulation have become important additions to data cleaning research. In this work we investigate matching dependencies, starting from and refining the model-theoretic and dynamic semantics of MDs introduced in [15].

Any method of querying a dirty data source must address the issue of duplicate detection in order to obtain accurate answers. Typically, this is done by first cleaning the data by discarding or combining duplicate tuples and standardizing formats. The result will be a new database where the entity conflicts have been resolved. However, the entity resolution problem may have different solution instances (which we will
simply call **solutions**, i.e. different clean versions of the original database. The model-theoretic semantics that we propose and investigate defines and characterizes the class of solutions, i.e. of intended clean instances.

After a clean instance has been obtained, it can be queried as usual. However, the query answers will then depend on the particular solution at hand. So, it becomes relevant to characterize those query answers that are invariant under the different (sensible) ways of cleaning the data, i.e. that persist across the solutions. This is an interesting problem per se. However, it becomes crucial if one wants to obtain semantically clean answers while still querying the original dirty data source.

This kind of virtual cleaning and query answering on top of it have been investigated in the area of **consistent query answering** (CQA) [3], where, instead of MDs, classical integrity constraints (ICs) are considered, and database instances are repaired in order to restore consistency (cf. [9, 7, 11] for surveys of CQA). Virtual approaches to robust query answering under entity resolution and enforcement of matching dependencies are certainly unavoidable in virtual data integration systems.

In this paper we make the following contributions, among others:

1. We revisit the semantics of MDs introduced in [15], pointing out sensible and justified modifications of it. A new semantics for MD satisfaction is then proposed and formally developed.
2. Using the new MD semantics, we formally define the intended solutions for a given, initial instance, D_0, that may not satisfy a given set of MDs. They are called **minimally resolved instances** (MRIs) and are obtained through an iteration process that stepwise enforces the satisfaction of MDs until a stable instance is reached. The resulting instances minimally differ from D_0 in terms of number of changes of attribute values.

 This semantics (and the whole paper) considers the **pure case** introduced in [15], in the sense that the values than can be chosen to match attribute values are arbitrarily taken from the underlying data domains. No matching functions are considered, like in [6], for example (where entire tuples are merged, not individual attribute values).

3. We introduce the notion of **resolved answers** to a query posed to D_0. They are the answers that are invariant under the MRIs.

4. We investigate the computability and complexity of computing MRIs and resolved answers, identifying syntactic conditions on MDs and conjunctive queries under which the latter becomes tractable via query rewriting. The rewritten queries are allowed to contain counting and transitive closure (recursion).

5. We identify cases where computing (actually, deciding) resolved answers is coNP-complete.

6. We establish a connection between MRIs and database repairs under functional dependencies as found in CQA. In the latter case, the repairs consider, as usual, a notion of minimality based on deletion of whole tuples and comparison under set inclusion. This reduction allows us to profit from results in CQA, obtaining additional (in)tractability results for MDs.

This paper is organized as follows. Section 2 presents basic concepts and notations needed in the rest of the paper. Section 3 identifies some problems with the MD semantics, and refines it to address them. It also introduces the resolved instances and resolved answers to a query. Section 4 considers the problems of computing resolved instances and resolved query answers. Section 5 identifies queries and sets of MDs for which computing resolved answers becomes tractable via query rewriting. Section 6 establishes the connection with CQA. Section 7 presents some final conclusions.

2. PRELIMINARIES

In general terms, we consider a relational schema S that includes an enumerable infinite domain U. An instance D of S can be seen as a finite set of ground atoms of the form $R(t)$, where R is a database predicate in S, and t is a tuple of constants from U. We assume that each database tuple has an identifier, e.g. an extra attribute that acts as a key for the relation and is not subject to updates. In the following it will not be listed, unless necessary, as one of the attributes of a database predicate. It plays an auxiliary role only, to keep track of updates on the other attributes. $R(D)$ denotes the extension of R in D. We sometimes refer to attribute A of R by $R[A]$. If the ith attribute of predicate R is A, and t is a tuple $t = (c_1, \ldots, c_j) \in R(D)$, $t[A]$ denotes the value c_i. The symbol $\bar{t}[\bar{A}]$ denotes the vector whose entries are the values of the attributes in the vector \bar{A}. The attributes may have subdomains that are contained in U. Constants will be denoted by lower case letters at the beginning of the alphabet.

A matching dependency [14], involving predicates $R(A_1, \ldots, A_m) \rightarrow S(B_1, \ldots, B_n)$, is a rule of the form

\[\bigwedge_{i \in I, j \in J} R[A_i] \approx_{ij} S[B_j] \rightarrow \bigwedge_{i' \in I', j' \in J'} R[A_i'] = S[B_j]. \tag{1} \]

Here R and S could be the same predicate. I, I' and J, J' are fixed subsets of $\{1, \ldots, n\}$ and $\{1, \ldots, m\}$, resp. We assume that, when A_i, B_j are related via $\approx_{ij} \equiv \approx$ (in 1), they share the same (sub)domain, so their values can be compared by the domain-dependent binary similarity predicate, \approx_{ij} or can be identified, resp.

The similarity operators, generically denoted with \approx, are assumed to have the properties of: (a) Symmetry: If $x \approx y$, then $y \approx x$. (b) Equality subsumption: If $x = y$, then $x \approx y$. The MD in (1) is implicitly universally quantified in front and applied to pairs of tuples t_1, t_2 for R and S, resp. The expression $\bigwedge_{i \in I} R[A_i] \approx_{ij} S[B_j]$ states that the values of the attributes A_i in tuple t_1 are similar to those of attributes B_j in tuple t_2. If this holds, the expression $R[A_i] = S[B_j]$ indicates that, for the same tuples t_1 and t_2, $t_1[A_i]$ and $t_2[B_j]$ on the RHS should be updated so that they become the same, i.e. their values are identified or matched. However, the attribute values to be used for this matching are left unspecified by (1).

For abbreviation, we will sometimes write MDs as

\[R[\bar{A}] \approx S[\bar{B}] \rightarrow R[\bar{C}] = S[\bar{E}], \tag{2} \]

where \bar{A}, \bar{B}, \bar{C}, and \bar{D} represent the lists of attributes, (A_1, \ldots, A_m), (B_1, \ldots, B_n), (C_1, \ldots, C_l), and (E_1, \ldots, E_k), respectively. We refer to the pairs of attributes (A_i, B_j) and
Condition (b) in Definition 1 is used to avoid that the identification updates destroy the original similarities. Unfortunately, enforcing the requirement sometimes leads to counterintuitive results.

Example 2. Consider the following instance \(D \) with string-valued attributes, and MDs:

\[
\begin{array}{|c|c|c|c|}
\hline
R & A & B & C \\
\hline
a & c & g & a & c & ksp \\
\hline
S & E & F \\
\hline
h & msp & c \\
\hline
\end{array}
\]

\[
R[A] \approx R[A] \rightarrow R[C] \approx R[C] \quad (3)
\]

\[
R[C] \approx S[E] \rightarrow R[B] \approx S[F]
\quad (4)
\]

For two strings \(s_1 \) and \(s_2 \), \(s_1 \approx s_2 \) if the edit distance \(d \) between \(s_1 \) and \(s_2 \) satisfies \(d \leq 1 \). To produce an instance \(D' \) satisfying \((D, D') \vDash M \), the strings \(g \) and \(ksp \) must be changed to some common string \(s' \).

Because of the similarities \(h \approx g \) and \(ksp \approx msp \), \(s' \) must be similar to the \(E \) attribute values of the tuples in \(S \), by condition (b) of Definition 1 and MD (4). Clearly, there is no \(s' \) that is similar to both \(h \) and \(msp \). Therefore, at least one of \(h \) and \(msp \) must be modified to some new value in \(D' \).

Another problem with the semantics of MDs is that it allows duplicate resolution in instances that are already resolved. Intuitively, there is no reason to change the values in an instance that is stable for a set of MDs \(M \), because there is no reason to believe, on the basis of \(M \), that these values are in error. However, even if an instance \(D \) satisfies \((D, D) \vDash M \), it is always possible, by choosing different common values, to produce a different instance \(D' \) such that \((D, D') \vDash M \). This is illustrated in the next example.

Example 3. Let \(D \) be the instance below and the MD \(R[A] \approx R[A] \rightarrow R[B] = R[B] \).

\[
\begin{array}{|c|c|}
\hline
R & A & B \\
\hline
a & c \\
\hline
\end{array}
\]

Although \(D \) is stable, \((D, D') \vDash M \) is true for any \(D' \) where the \(B \) attribute values of the two tuples are the same. □

3.1 MD satisfaction

We now propose a new semantics for MD satisfaction that disallows unjustified attribute modifications. We keep condition (a) of Definition 1, while replacing condition (b) with a restriction on the possible updates that can be made.

Definition 2. Let \(D \) be an instance of schema \(S \), \(R \in S \), \(t_R \in R(D) \), \(C \) an attribute of \(R \), and \(M \) a set of MDs. Value \(t_R[C] \) is **modifiable** if there exist \(S \in S \), \(t_S \in S(D) \), an \(m \in M \) of the form \(R[A] \approx S[B] \rightarrow R[C] = S[E] \), and a corresponding pair \((C, E)\) of \((C, E)\), such that one of the following holds: 1. \(t_R[A] \approx t_S[B] \), but \(t_R[C] \neq t_S[E] \). 2. \(t_R[A] \approx t_S[B] \) and \(t_S[E] \) is modifiable.

Example 4. Consider two relations \(R \) and \(S \) with two MDs defined on them:

\[
\begin{array}{|c|c|c|}
\hline
R & A & B \\
\hline
t_0 & a_0 & b \\
t_1 & a_1 & b \\
t_2 & a_2 & b \\
\hline
S & C & E \\
\hline
t_3 & a_3 & c \\
t_4 & a_4 & c \\
t_5 & a_5 & c \\
\hline
\end{array}
\]

\[
m_1 : R[A] \approx R[A] \rightarrow R[B] = R[B],
\]

\[
m_2 : R[A] \approx R[C] \rightarrow R[B] = R[E].
\]

The following similarities hold on the distinct constants of \(R \) and \(S \): \(a_i \approx a_{i+1}^{mod-off} \), \(0 \leq i \leq 5 \). The values \(t_2[B] \) and \(t_3[E] \) are modifiable by condition 1 of Definition 2, \(m_2 \), \(a_2 \approx a_3 \), and \(t_2[B] \neq t_3[E] \). For the same reason, \(t_0[B] \) and \(t_5[E] \) are modifiable.

Value \(t_1[B] \) is modifiable by condition 2 of Definition 2, \(m_1 \), \(a_1 \approx a_2 \), and the fact that \(t_2[B] \) is modifiable. Similarly, \(t_4[E] \) is modifiable.

Definition 3. Let \(D, D' \) be instances for \(S \) with the same tuple ids. \(M \) a set of MDs, and \(m \in M \). \((D, D') \) satisfies \(M \), denoted \((D, D') \vDash M \), iff:

1. For any pair of tuples \(t_R \in R(D) \), \(t_S \in S(D) \), if there exists an MD in \(M \) in the form \(R[A] \approx S[B] \rightarrow R[C] = S[E] \) and \(t_R[A] \approx t_S[B] \), then for the corresponding tuples \(t_R'[D'] \) and \(t_S'[S'] \), it holds \(t_R'[C] = t_S'[E] \).
2. For any tuple \(t_R \in R(D) \) and any attribute \(G \) of \(R \), if \(t_R[G] \) is not modifiable, then \(t_R'[G] = t_R[G] \).

Notice that the notion of satisfaction of an MD is relative to a set of MDs to which the former belongs (due to the modifiability condition). Of course, for a single MD \(m \), we can consider the set \(M = \{ m \} \). Condition 2. captures a
natural default condition of persistence of values: those that have to be changed are changed only.

The definition of satisfaction of a set M of MDs, $(D, D') \models M$, is as usual. Also, as before, we define stable instance for M to mean $(D, D) \models M$. Except where otherwise noted, these are the notions of satisfaction and stability that we will use in the rest of this paper.

Example 5. Consider again example 4. The set of all D' such that $(D, D') \models M$ is the set of all instances obtained from D by changing all values of $R[B]$ and $S[E]$ to a common value, and leaving all other values unchanged. This is because the values of $R[B]$ and $S[E]$ are the only modifiable values, and these values must be equal by condition 1 of Definition 3 and the given similarities.

Condition 2 in Definition 3 on the set of updatable values does not prevent us from obtaining instances D' that enforce the MD, as the following theorem establishes.

Theorem 1. For any instance D and set of MDs M, there exists a D' such that $(D, D') \models M$. Moreover, for any attribute value that is changed from D to D', the new value can be chosen arbitrarily, as long as it is consistent with $(D, D') \models M$.

The new semantics introduced in Definition 3 solves the problems mentioned at the beginning of this section. Notice that it does not require additional changes to preserve similarities (if the original ones were broken). Furthermore, modifications of instances, unless required by the enforcement of matchings as specified by the MDs, are not allowed. Also notice that the instance D' in Theorem 1 is not guaranteed to be stable. We address this issue in the next section.

Moreover, as can be seen from the proof of Theorem 1, the new restriction imposed by Definition 3 is as strong as possible in the following sense: Any definition of MD satisfaction that includes condition 1 must allow the modification of the modifiable attributes (according to Definition 2). Otherwise, it is not possible to ensure, for arbitrary D, the existence of an instance D' with $(D, D') \models M$.

3.2 Resolved instances

According to the MD semantics in [15], although not explicitly stated there, a clean version D' of an instance D is an instance D' satisfying the conditions $(D, D') \models M$ and $(D', D') \models M$. Due to the natural restrictions on updates captured by the new semantics (cf. Definition 3), the existence of such a D' is not guaranteed. Essentially, this is because D' is the result of a series of updates. The MDs are applied to the original instance D to produce a new instance, which may have new pairs of similar values, forcing another application of the MDs, which in their turn produces another instance, and so on, until a stable instance D' is reached. The pair (D, D') may not satisfy M. However, we will be interested in those instances D' just mentioned. The idea is to relax the condition $(D, D') \models M$, and obtain a stable D' after an iterative process of MD enforcement, which at each step, say k, makes sure that $(D_{k-1}, D_k) \models M$.

Definition 4. Let D be a database instance and M a set of MDs. A resolved instance for D wrt M is an instance D', such that there is a finite (possibly empty) sequence of instances D_1, D_2, \ldots, D_n with: $(D, D_1) \models M, (D_1, D_2) \models M, \ldots, (D_{n-1}, D_n) \models M, (D_n, D') \models M$, and $(D', D') \models M$.

Note that, by Definition 3, for an instance D satisfying $(D, D) \models M$, it holds $(D, D') \models M$ if and only if $D' = D$. In this case, the only possible set of intermediate instances is the empty set and D is the only resolved instance. Thus, a resolved instance cannot be obtained by making changes to an instance that is already resolved.

Theorem 2. Given an instance D and a set M of MDs, there always exists a resolved instance of D with respect to M.

Example 6. Consider the following instance D of a relation R and set M of MDs:

$R(D)$	A	B	C
	a	b	d
	a	c	c
	a	b	e

Note that $(D, D_1) \not\models M$, because the value of the C attribute of the second tuple is not modifiable in D.

The notion of resolved instance is one step towards the characterization of the intended clean instances. However, it still leaves room for refinement. Actually, the resolved instances that are of most interest for us are those that are somehow closest to the original instance. This consideration leads to the concept of minimal resolved instance, which uses as a measure of change the number of values that were modified to obtain the clean database. In Example 6, instance D_2 is a minimal resolved instance, whereas D_1 is not.

Definition 5. Let D be an instance.

(a) $T_D := \{(t, A) | t \text{ is the id of a tuple in } D \text{ and } A \text{ is an attribute of the tuple}\}$.

(b) $f_D : T_D \rightarrow U$ is given by: $f_D(t, A) := \text{the value for } A \text{ in the tuple in } D \text{ with id } t$.

(c) For an instance D' with the same tuple ids as D: $S_{D, D'} := \{(t, A) \in T_D | f_D(t, A) \neq f_D'(t', A)\}$.

Intuitively, $S_{D, D'}$ is the set of all values changed in going from D to D'.

Definition 6. Let D be an instance and M a set of MDs. A minimally resolved instance (MRI) of D wrt M is a resolved instance D' such that $|S_{D, D'}|$ is minimum, i.e. there is no resolved instance D'' with $|S_{D, D''}| < |S_{D, D'}|$. We denote by $Res(D, M)$ the set of minimal resolved instances of D wrt the set M of MDs.

Example 7. Consider the instance below and the MD $R[A] \approx R[B] \Rightarrow S[D]$.

R	A	B
a_1	b_1	

S	C	D
c_1	d_1	

Assuming that \(a_1 \approx c_1 \), this instance has two minimal resolved instances, namely

\[
\begin{array}{ccc}
R & A & B \\
\hline
a_1 & d_1 \\
R & A & B \\
\hline
a_1 & b_1
\end{array}
\quad \begin{array}{ccc}
S & C & D \\
\hline
c_1 & d_1 \\
S & C & D \\
\hline
c_1 & b_1
\end{array}
\]

Considering that MDs concentrate on changes of attribute values, we consider that this notion of minimality is appropriate. The comparisons have to be made at the attribute value level. Notice that in CQA a few other notions of minimality and comparison of instances have been investigated [7].

3.3 Resolved answers

Let \(Q(\bar{x}) \) be a query expressed in the first-order language \(L(S) \) associated to schema \(S \). Now we are in position to characterize the admissible answers to \(Q \) from \(D \), as those that are invariant under the matching resolution process.

Definition 7. A tuple of constants \(\bar{a} \) is a resolved answer to \(Q(\bar{x}) \) wrt the set \(M \) of MDs, denoted \(D \models \bar{x} \models Q[\bar{a}] \), iff \(D' \models \bar{Q}[\bar{a}] \), for every \(D' \in \text{Res}(D, M) \). We denote with \(\text{ResAn}(D, Q, M) \) the set of resolved answers to \(Q \) from \(D \) wrt \(M \).

Example 8. (example 7 continued) The set of resolved answers to the query \(Q_1(x, y) : R(x, y) \) is empty since there are no tuples that are in the instance of \(R \) in all minimal resolved instances. On the other hand, the set of resolved answers to the query \(Q_2(x) : \exists y(R(x, y) \land (y = b_1 \lor y = d_1)) \) is \(\{a_1\} \).

In Section 4 we will study the complexity of the problem of computing the resolved answers, which we now formally introduce.

Definition 8. Given a schema \(S \), a query \(\bar{Q}(\bar{x}) \in L(S) \), and a set \(M \) of MDs, the Resolved Answer Problem (RAP) is the problem of deciding membership of the set

\[
\text{RA}_{\bar{Q}, M} := \{(D, \bar{a}) \mid \bar{a} \text{ is a resolved answer to } \bar{Q} \text{ from instance } D \text{ wrt } M\}.
\]

If \(Q \) is a boolean query, it is the problem of determining whether \(Q \) is true in all minimal resolved instances of \(D \).

4. COMPUTING RESOLVED INSTANCES AND ANSWERS

In this section, we consider the complexity of the \(\text{RA}_{\bar{Q}, M} \) problem introduced in the previous section. For this goal it is useful to associate a graph to the set of MDs. We need a few notions before introducing it.

Definition 9. A set \(M \) of MDs is in standard form if no two MDs in \(M \) have the same expression to the left of the arrow.

Notice that any set of MDs can be put in standard form by replacing subsets of MDs of the form \(\{R[\bar{A}] \approx S[B] \leadsto R[C_1], \ldots, R[\bar{A}] \approx S[B] \leadsto R[C_n] = S[E_n]\} \) by the single MD \(R[\bar{A}] \approx S[B] \leadsto R[C] = S[E] \), where the set of corresponding pairs of attributes of \((C, E) \) is the union of those of \((C_1, E_1), \ldots, (C_n, E_n)\). From now on, we will assume that all sets of MDs are in standard form.

For an MD \(m \), LHS(\(m \)) and RHS(\(m \)) denote the sets of attributes that appear to the left side and to right side of the arrow, respectively.

Definition 10. Let \(M \) be a set of MDs in standard form. The MD-graph of \(M \), denoted \(\text{MDG}(M) \), is a directed graph with a vertex labeled \(m \) for each \(m \in M \), and with an edge from \(m_1 \) to \(m_2 \) iff \(\text{RHS}(m_1) \cap \text{LHS}(m_2) \neq \emptyset \).

Example 9. Consider the set of MDs:

\[
\begin{align*}
m_1 &: R[A] \approx S[B] \rightarrow R[C] = S[D], \\
m_2 &: R[C] \approx S[D] \rightarrow R[A] = S[B], \\
m_3 &: S[E] \approx S[B] \rightarrow T[F] = T[F].
\end{align*}
\]

This has the MD-graph shown in Figure 1.

A set of MDs whose MD-graph contains edges is called interacting. Otherwise, it is non-interacting.

Definition 11. (a) A cycle \(C \) in an MD-graph \(\text{MDG}(M) \) is called a simple cycle if for each pair \((m_1, m_2)\) of successive vertices in \(C \), the corresponding pairs to the left of the arrow in \(m_2 \) are corresponding pairs to the right of the arrow in \(m_1 \), and do not occur elsewhere in \(m_1 \).

(b) A set \(M \) of MDs is simple-cycle if its MD-graph \(\text{MDG}(M) \) is a simple cycle.

Example 10. The following is a simple-cycle set of MDs.

\[
\begin{align*}
m_1 &: R[A] \approx S[B] \rightarrow R[C, F] = S[E, G], \\
m_2 &: R[C] \approx S[E] \land R[F] \approx S[G] \rightarrow R[A] = S[B].
\end{align*}
\]

The MD-graph is a cycle, because attributes in RHS(\(m_2 \)) are in LHS(\(m_1 \)), and vice-versa. This cycle is a simple cycle, because the corresponding pairs \((C, E)\) and \((F, G)\) to the right of the arrow in \(m_1 \) are corresponding pairs to the left of the arrow in \(m_2 \), and vice-versa.

For this class of MDs it is easy to characterize the form an MRI takes. This is first illustrated with an example.

Example 11. Consider the instance \(D \) (with tuple ids) and simple-cycle set of MDs.

	A	B	C
1	a_1	d_1	f
2	a_2	c_2	g
3	b_3	c_1	h
4	b_2	d_2	i

\[
R[A] \approx R[A] \rightarrow R[B] \equiv R[B], \\
R[B] \equiv R[B] \rightarrow R[A] = R[A].
\]

The only similarities are: \(a_i \approx a_j, b_i \approx b_j, d_i \approx d_j, c_i \approx c_j \), with \(i, j \in \{1, 2\} \). If the MDs are applied twice, successively, to the instance, one possible result is:
Definition 12. Let \(m \) be the MD \(R[\overline{A}] \approx S[\overline{B}] \rightarrow R[\overline{C}] \approx S[\overline{E}] \). The transitive closure, \(T^m \), of \(\approx \) is the transitive closure of the binary relation relation on tuples \(t_1[\overline{A}] \approx t_2[\overline{B}] \), where \(t_1 \in R \) and \(t_2 \in S \).

Notice that Definition 12 implies that the transitive closure of \(\approx \) is an equivalence relation on the tuples of \(R \) and \(S \). It therefore forms a partition of these tuples into disjoint equivalence classes.

Definition 13. For a set \(S \) of binary relations, the transitive closure, \(T^S \), of \(S \) is the transitive closure of the union of all relations in \(S \).

This definition can be applied, in particular, to the \(T^m \)'s in Definition 12, for several MDs. For the case in which \(S \) in Definition 13 is a set of equivalence relations, \(T^S \) is also an equivalence relation. These definitions are used in Algorithm ComputeMRI in Table 1.

Proposition 1. Algorithm ComputeMRI returns the set of all MRIs of \(D \) wrt a simple-cycle set \(M \) of MDs.

With some minor modifications to the \(T \) relation in Algorithm ComputeMRI, we can make the latter work also for sets of MDs whose vertices in the MD-graph can occur on more than one simple cycle, as shown in Figure 2. The following HSC class of sets of MDs extends the simple-cycle class.

Table 1: Algorithm ComputeMRI

| Input: A database instance \(D \) and a simple-cycle set \(M \) of MDs. |
| Output: Set of MRIs of \(D \) with respect to \(M \). |
| 1) For \(1 \leq j \leq n \) |
| 2) Compute \(T_j \), the transitive closure of \(\approx_j \) |
| 3) Compute the transitive closure \(T \) of the set \(\{T_j | 1 \leq j \leq n \} \) |
| 4) For each corresponding pair of attributes \((A,B) \) that appears in \(M \): |
| 5) For each equivalence class \(E \) defined by \(T \): |
| 6) Choose a value \(v \) from among the \(A \) and \(B \) attribute values of tuples in \(R \cap E \) and \(S \cap E \), respectively, such that no other value occurs more frequently |
| 7) For each tuple \(t \in E \): |
| 8) \(t[A] \leftarrow v \) if \(t \in R \) |
| 9) \(t[B] \leftarrow v \) if \(t \in S \) |
| 10) Repeat 4-9 for other choices of \(v \) to produce other MRIs |
| 11) Return the resulting set of MRIs |

In any stable instance, the pairs of values in the above tables must be equal. Clearly, this can only be the case if all values in the \(A \) and \(B \) columns are equal. This can be achieved with a single update, choosing any value as the common value. Thus, the MRIs of any instance are those with all values in the \(A \) and \(B \) columns set to their most common value. In the case of \(D \) above, there are 16 MRIs.

The Algorithm ComputeMRI below generalizes the idea presented in Example 11. It computes the set of all MRIs for the case of an arbitrary simple cycle. (The relevant definitions are given below).

Definition 12. Let \(m \) be the MD \(R[\overline{A}] \approx S[\overline{B}] \rightarrow R[\overline{C}] \approx S[\overline{E}] \). The transitive closure, \(T^m \), of \(\approx \) is the transitive closure of the binary relation relation on tuples \(t_1[\overline{A}] \approx t_2[\overline{B}] \), where \(t_1 \in R \) and \(t_2 \in S \).

Notice that Definition 12 implies that the transitive closure of \(\approx \) is an equivalence relation on the tuples of \(R \) and \(S \). It therefore forms a partition of these tuples into disjoint equivalence classes.

Definition 13. For a set \(S \) of binary relations, the transitive closure, \(T^S \), of \(S \) is the transitive closure of the union of all relations in \(S \).

This definition can be applied, in particular, to the \(T^m \)'s in Definition 12, for several MDs. For the case in which \(S \) in Definition 13 is a set of equivalence relations, \(T^S \) is also an equivalence relation. These definitions are used in Algorithm ComputeMRI in Table 1.

Proposition 1. Algorithm ComputeMRI returns the set of all MRIs of \(D \) wrt a simple-cycle set \(M \) of MDs.

With some minor modifications to the \(T \) relation in Algorithm ComputeMRI, we can make the latter work also for sets of MDs whose vertices in the MD-graph can occur on more than one simple cycle, as shown in Figure 2. The following HSC class of sets of MDs extends the simple-cycle class.

The modification involves using the tuple-attribute closure introduced in Definition 17, for the cases where the MD-graph has more than one connected component.

Example 12. Consider the relational predicate \(R[\overline{A}, B] \) and the MD \(m : R[\overline{A}] \approx R[\overline{A}] \rightarrow R[\overline{B}] \approx R[\overline{B}] \). Let \(D \) be an instance of \(R \) with tuples \(\{t_i | 1 \leq i \leq n \} \), for some even number \(n \), such that: (a) The values in \(D \) satisfy the similarities \(t_i[\overline{A}] \approx t_{i+1}[\overline{A}] \) for all even \(i \) with \(1 \leq i \leq n-1 \), and no others, and (b) \(t_i[\overline{B}] \neq t_{i+1}[\overline{B}] \) for all odd \(i \) with \(1 \leq i \leq n-1 \). It is clear that an MRI is obtained by setting the \(B \) attributes of \(t_i \) and \(t_{i+1} \) to either \(t_i[\overline{B}] \) or \(t_{i+1}[\overline{B}] \) for each odd \(i \) such that \(1 \leq i \leq n-1 \). The number of MRIs is the number of possible choices of such values, which is \(2^{n/2} \).

The MD in the previous example is HSC. Actually, the simple form of the MRIs for HSC sets can be used to obtain an upper bound for \(RA_{Q,4} \) that (under usual complexity-theoretic assumptions) is lower than exponential. This relies on the assumption that, if a resolved instance contains values outside the active domain of the original instance, then
those values are bounded above in length by a polynomial in the size of the original instance. This assumption is in accord with practical constraints on databases and any reasonable definition of similarity.

Theorem 3. For HSC sets of MDs, if resolved instances are restricted to contain values bounded in length by a polynomial in the length of the input, then problem RA_{Q,M} is in coNP for any first-order query Q. □

In this section, we established a complexity bound for RA_{Q,M} which holds for class of MDs with cyclic MD-graphs and all first-order queries. The bound follows from the simple form of the MRIs, as described by Algorithm ComputeMRI. In the next section, we further exploit this latter result to show that, for HSC sets and certain first-order queries, the resolved answers can be retrieved in polynomial time.

5. RESOLVED QUERY ANSWERING: TRACTABILITY AND REWRITING

In this section, we discuss tractable cases of RA_{Q,M}. In particular, we propose a query rewriting technique for obtaining the resolved answers for certain FO queries and MDs. In Section 6, we will relate RA_{Q,M} to consistent query answering (CQA) [7]. This connection and some known results in CQA will allow us to identify further tractable cases, but also to establish the intractability of RA_{Q,M} for certain classes of queries and MDs. The latter makes the tractability results obtained in this section even more relevant.

A possible approach to obtaining the resolved answers to a query Q from an instance D is to rewrite Q into a new query Q’ on the basis of Q and M. Q’ should be such that, when posed to D (as usual), it returns the resolved answers to Q from D. In this case, it is not necessary to explicitly compute the MRIs. If Q’ can be efficiently evaluated against D, then the resolved answers can also be efficiently computed and RA_{Q,M} becomes tractable. This methodology was proposed in [3] for CQA.

This section investigates this query rewriting approach to the computation of resolved answers for HSC sets of MDs. The input queries Q will be conjunctive queries with certain restrictions on the joins. However, the rewritten queries Q’ may involve aggregate operators (actually, Count), universal quantification, and Datalog rules (to specify the transitive closure). We will need to compute transitive closures and count the number of occurrences of values in order to enforce minimal change. In any case, the resulting query Q’ will still be evaluable in polynomial time in the size of D.

Specifically, the input queries we consider have the form Q(x) : ∃y(R(x, y) ∧ ∀z(R(z, y))). For tractability of RA_{Q,M}, we need additional restrictions on them.

Definition 15. (a) For a set M of MDs defined on schema S, the changeable attributes of S are those that appear to the right of the arrow in some m ∈ M. The other attributes of S are called unchangeable.

(b) Let Q be a conjunctive query and M a set of MDs. Query Q is an unchangeable attribute join conjunctive query (ucajCQ) if there are no bound, repeated variables in Q that correspond to changeable attributes. □

Example 13. Let M be the single MD R[A] ≈ R[A] → R[B] = R[B]. The query Q(x, z) : ∃y(R(x, y) ∧ R(z, y)) is not in the ucajCQ class, because it contains a bound, repeated variable (y) which corresponds to a changeable attribute (B). However, the query Q(y) : ∃x∃z(R(x, y) ∧ R(x, z)) is in ucajCQ, since the only bound, repeated variable (x) corresponds to an unchangeable attribute (A). □

In Section 6 we will encounter HSC MDs (even non-interacting MDs) and conjunctive queries outside ucajCQ for which RA_{Q,M} is intractable (cf. Theorem 5 below).

To incorporate counting into FO queries, we will use the operator Count(R) that returns the number of tuples in relation R (cf. [1]). Count will be applied to sets of tuples of the form {t ∈ C}, where t is a tuple of variables, and R is a FO condition whose free variables include those in t. Now we show a simple example of rewriting that uses Count.

Example 14. Consider a relation R, the MD R[A] ≈ R[A] → R[B] = R[B], and the query Q(x, y, z) : R(x, y, z). R and its (single) MRI are shown below.

R	A	B	C		
a	b	c1	a	b	c1
a	b	c2	a	b	c2
a	b	c3	a	b	c3

The set of resolved answers to Q is {(a1, b2, c1), (a1, b2, c2), (a1, b2, c3)}. It is not difficult to see that the following query returns the resolved answers (for any initial instance of R).

\[Q′(x, y, z) : \exists y′(\exists y′′(\text{Count}(x′, y, z′) \land T((x′, y′, z′) \land R(x′, y, z′)) > \text{Count}(x′, y′′, z′) \land T((x′, y′′, z′) \land R(x′, y′′, z′) \land y′′ \neq y'))]. \]

Intuitively, the first conjunct requires the existence of a tuple t with the same A and C attribute values as the answer. Since the values of these attributes are not changed when going from the original instance to an MRI, such a tuple must exist. However, the tuple is not required to have the same B attribute value as the answer tuple, because this attribute can be modified. For example, (a1, b2, c1) is a resolved answer, but is not in R. What makes it a resolved answer is the fact that it is in an equivalence class of T consisting of all three tuples in R for which b2 occurs more frequently as a B attribute value than any other value. This condition on resolved answers is expressed by the second conjunct. □

For simplicity, we present our query rewriting algorithm for non-interacting MDs, a special case of HSC sets of MDs where the connected components have only one vertex. The generalization to arbitrary HSC sets is straightforward, and the required modifications are indicated at the end of this section. First we require the following definitions.

Definition 16. Let M be a set of MDs on schema S. (a) Define a (symmetric) binary relation ≅, which relates attributes R[A], S[B] of S if there is an MD in M where R[A] ≈ S[B] appears to the right of the arrow.

(b) The attribute closure, T_{\text{at}}, of M is the binary relation on attributes defined as the reflexive, transitive closure of ≅.

(c) We use the notation E_{R[A]} to denote the equivalence class of T_{\text{at}} to which attribute R[A] belongs. □

Note that, in general, there will be pairs of attributes R[A], S[B] for which E_{R[A]} = E_{S[B]}.
Example 15. Let \(M \) be the set of MDs

\[
R[A] \approx_1 S[B] \rightarrow R[C] = S[D],
\]

\[
S[E] \approx T[F] \wedge S[G] \approx T[H] \rightarrow S[D, K] = T[J, L],
\]

\[
T[F] \approx_3 T[H] \rightarrow T[L, N] = T[M, P].
\]

The equivalence classes of \(T^i \) are \(E_{R[C]} = \{ R[C], S[D], T[J], T[K] \} \), \(E_{S[K]} = \{ S[K], T[L], T[M] \} \), and \(E_{T[N]} = \{ T[N], T[P] \} \). □

To describe the MRBs in this case, we need the transitive closure relation defined below.

Definition 17. Let \(m \) be the MD \(R[\bar{A}] \approx S[\bar{B}] \rightarrow R[\bar{C}] = S[\bar{E}] \).

(a) Let \(\approx' \) be the following binary relation on tuple-attribute pairs: \((t_1, C) \approx' (t_2, E) \) if \(t_1[\bar{A}] \approx t_2[\bar{B}] \) and \(C, E \) is a corresponding pair of \((\bar{C}, \bar{E}) \).

(b) The tuple-attribute closure \(T_{\approx'} \) of \(m \) is the reflexive, transitive closure of \(\approx' \).

We denote by \(TS \) the transitive closure of a set of tuple-attribute closures (cf. Definition 13). \(TS \) partitions the set of tuple/attribute pairs into disjoint equivalence classes.

To keep the notation simple, we omit parentheses delimiting tuples and tuple/attribute pairs when writing the arguments of \(TA \) and \(TS \). For example, for tuples \(t_2 = (a, b, c) \) and \(t_3 = (d, e, f) \) with attributes \(A \) and \(C \), respectively, \(TS(a, b, c, A), (d, e, f, C) \) is written as \(TS(a, b, c, A, d, e, f, C) \).

Algorithm Rewrite in Table 2, outputs a rewritten query \(Q' \) that returns the resolved answers to a given input conjunctive query \(Q \) and set of non-interacting MDs. This is done by separately rewriting each conjunct \(R_i(\bar{v}_i) \) in \(Q \). If \(R_i(\bar{v}_i) \) contains no free variables, then it is unchanged (line 5).

Otherwise, it is replaced with a conjunction involving the same atom and additional conjuncts which use the \(Count \) operator. The conjuncts involving \(Count \) express the condition that, for each changeable attribute value returned by the query, this value is more numerous than any other value in the same set of values that is equated by the MDs. The \(Count \) expressions contain new local variables as well as a new universally quantified variable \(v'_{iA} \).

Example 16. We illustrate the algorithm with predicates \(R[ABC], S[EFG], U[HI] \), the query \(Q(x, y, z) : \exists t, u, p, q (R(x, y, z) \wedge S(t, u, z) \wedge U(p, q)) \); and the MDs: \(R[A] \approx S[E] \rightarrow R[B] \approx S[F] \) and \(S[E] \approx U[H] \rightarrow S[F] \approx U[I] \).

Since the \(S \) and \(U \) atoms have no free variables holding the values of changeable attributes, these conjuncts remain unchanged (line 5). The only free variable holding the value of a changeable attribute is \(y \). Therefore, line 7 sets \(\bar{v}_i \) to \((x, y', z) \).

Variable \(y \) contains the value of attribute \(R[B] \). The equivalence class \(E_{R[B]} \) of \(T^i \) to which \(R[B] \) belongs is \(\{ R[B], S[U], U[I] \} \), so the loop at line 11 generates the atoms \(R(x', y, z'), R(x', y', z'), S(t', y, z'), S(t', y', z'), U(p', y), U(p', y') \). The rewritten query is obtained by replacing in \(Q \) the conjunct \(R(x, y, z) \) by \(\exists y (R(x, y', z) \wedge \forall y' [\text{Count}((x', y', z') \rightarrow TS(x, y', z, R[B], x', y', z') \wedge R(x', y', z') \wedge y' \neq y) + \text{Count}((t', y', z') \rightarrow TS(x, y', z, R[B], t', y', z') \wedge S[F] \wedge S(t', y', z') \wedge y' \neq y) + \text{Count}((p', y) \rightarrow TS(x, y', z, R[B], p', y', U[I]) \wedge U(p', y') \wedge y' \neq y)] \). □

Theorem 4. For a set \(M \) of non-interacting MDs and a query \(Q \) in the class \(ucajCQ \), the query \(Q' \) computed by Algorithm Rewrite returns the resolved answers to \(Q \) when posed to any instance. □

As expected, the rewriting algorithm that produced the rewritten query does not depend upon the dirty instance at hand, but only on the MDs and the input query, and runs in polynomial time.

Algorithm Rewrite can be easily adapted and extended to handle HSC sets of MDs. All that is required is a modification to the tuple-attribute closure in Definition 17, as follows: For an HSC set of MDs \(M \) and \(m \in M \), a pair of tuples \(t_1 \) and \(t_2 \) satisfies \((t_1, C) \approx' (t_2, E) \) if \(t_1[\bar{A}] \approx t_2[\bar{B}] \)
and \((C, E)\) appears as a corresponding pair to the right of the arrow in some MD in the same connected component of the MD graph as \(m\). Tuple-attribute closure is redefined as the transitive closure of this new relation. As with Theorem 4, the correctness proof is based on the simple form of the MRIs, and is proved using the same technique as in the proof of Proposition 1.

6. THE CQA CONNECTION

MDs can be seen as a new form of integrity constraint (IC). An instance \(D\) violates an MD \(m\) if there are unresolved duplicates, i.e. tuples \(t_1\) and \(t_2\) in \(D\) that satisfy the similarity condition of \(m\), but differ on some pair of attributes that are matched by \(m\). The instances that are consistent with a set of MDs \(M\) are resolved instances of themselves with respect to \(M\). Among classical ICs, the closest analogues of MDs are functional dependencies (FDs).

Given a database instance \(D\) and a set of ICs \(\Sigma\), possibly not satisfied by \(D\), consistent query answering (CQA) is the problem of characterizing and computing the answers to queries \(Q\) that are true in all the instances \(D'\) that are consistent with \(\Sigma\) and minimally differ from \(D\) [3]. The consistent instances \(D'\) are called repairs. Minimal difference can be defined in different ways. Most of the research in CQA has concentrated on the case where the symmetric difference of instances, as sets of tuples, is made minimal under set inclusion [3, 7, 11]. However, also the minimization of the cardinality of this difference has been investigated [20, 2]. Other forms of minimization measure the differences in attribute values between \(D\) and \(D'\) [17, 21, 16, 8]. Because of their practical importance, much work on CQA has been done for the case where \(\Sigma\) is a set of functional dependencies (FDs), in particular, key constraints (KCs) [12, 18, 23, 22, 24].

Actually, for a set of KCs \(K\) and repairs based on tuple deletions, a repair \(D'\) of an instance \(D\) can be characterized as a maximal subset of \(D\) that satisfies \(K\): \(D' \subseteq D\), \(D' \models K\) and there is no \(D''\) with \(D' \subsetneq D'' \subseteq D\), with \(D'' \models K\) [12].

Now, for a FO query \(Q(x)\) and a set of KCs \(K\), the consistent query answering problem is about deciding membership of the set

\[
CQA_{K, Q} = \{ (\bar{d}, \bar{a}) \mid \bar{a} \text{ is an answer to } Q \text{ in all repairs of } D \text{ with respect to } K \}.
\]

A \(\bar{a}\) satisfying the above is called a consistent answer to \(Q\) from \(D\).

Notice that this notion of minimality involved in repairs w.r.t. FDs is tuple and set-inclusion oriented, whereas the one related to MRIs (cf. Definition 6) is attribute and cardinality oriented. However, the connection can still be established. In particular, the following result can be obtained from [12, Thm. 3.3].

Theorem 5. Consider a relational predicate \(R[A, B, C]\), the MD

\[
m: R[A] = R[A] \rightarrow R[B, C] = R[B, C],
\]

and the query \(Q: \exists x \exists y \exists z (R(x, y, c) \land R(z, y', d) \land y = y').\) \(RA_{Q, (m)}\) is coNP-complete.

Notice that the conjunctive query in this result does not belong to the ucaijCQ class.

For certain classes of conjunctive queries and ICs consisting of a single KC per relation, CQA has been proved to be tractable. This is the case for the \(\mathcal{C}_{\text{forest}}\) class of conjunctive queries [18]. Actually, for this class there is a FO rewriting of the original query that returns the certain answers. \(\mathcal{C}_{\text{forest}}\) excludes repeated relations and allows joins only between non-key and key attributes. Similar results were subsequently proved for a larger class of queries that includes some queries with repeated relations and joins between non-key attributes [23, 22, 24]. The following result allows us to take advantage of tractability results for CQA in our MD setting.

Proposition 2. Let \(D\) be a database instance with a single relation \(R\). Let \(m\) be a MD of the form \(R[A] = R[A] \rightarrow R[B] = R[B]\), where the set of attributes of \(R\) is \(A \cup B\) and \(A \cap B = \emptyset\). Then there is a polynomial time reduction from \(RA_{Q, (m)}\) to \(CQA_{Q, (\kappa)}\), where \(\kappa\) is the key constraint \(A \rightarrow B\).

Proposition 2 can be easily generalized to several relations with one such MD defined on each. The reduction takes an instance \(D\) for \(RA_{Q, (m)}\) and produces an instance \(D'\) for \(CQA_{Q, (\kappa)}\). The schema of \(D'\) is the same for \(D\), but the extensions of the relational predicates in it are changed w.r.t. \(D\) by joining. Since definitions for those aggregations can be included (or inserted) in the query \(Q\), we obtain:

Theorem 6. Let \(S\) be a database schema with relational predicates \(R_i\), \(1 \leq i \leq n\) with a set \(K\) of KCs \(\kappa_i\): \(R_i[A_i] \rightarrow R_i[B_i]\), \(1 \leq i \leq n\). Let \(Q\) be a FO query, and suppose there exists a polynomial time computable FO query \(Q'\), such that \(Q'\) returns the consistent answers to \(Q\) from \(D\). Then there exists a polynomial time computable FO query \(Q''\) with aggregate that returns the resolved answers to \(Q\) from \(D\) w.r.t. the MDs \(m_i\): \(R_i[A_i] = R_i[A_i] \rightarrow R_i[B_i] \Rightarrow R_i[B_i]\), \(1 \leq i \leq n\).

The aggregation in \(Q''\) in Theorem 6 arises from the transformation of the instance that is used in the reduction in Proposition 2. We emphasize that \(Q''\) is not obtained using algorithm Rewrite from Section 5, which is not guaranteed to work for queries outside the class ucaijCQ. Rather, a first-order transformation of the \(R_i\) relations with Count is composed with \(Q''\) to produce \(Q''\). Similar to Algorithm Rewrite in Section 5, they are used to express the most frequently occurring values for the changeable attributes for a given set of tuples with identical values for the unchangeable attributes.

This theorem can be applied to decide/compute resolved answers through composition in those cases where a FO rewriting for CQA has been identified. In consequence, it extends the tractable cases identified in Section 5. They can be applied to queries that are not in ucaijCQ.

Example 17. The query \(Q : \exists x \exists y \exists z (R(x, y, z) \land S(y, z))\) is in the class \(\mathcal{C}_{\text{forest}}\) for relational predicates \(R[A, B]\) and \(S[C, E]\) and FDs \(A \rightarrow B\) and \(C \rightarrow E\). By Theorem 6 and the results in [18], this implies the existence of a polynomial time computable FO query with counting that returns the resolved answers to \(Q\) w.r.t. MDs \(R[A] = R[A] \rightarrow R[B] = R[B]\) and \(S[C] = S[C] \rightarrow S[E] = S[E]\). Notice that \(Q\) is not in ucaijCQ, since the bound variable \(y\) is associated with the changeable attribute \(R[B]\). □
7. CONCLUSIONS

In this paper we have proposed a revised semantics for matching dependency (MD) satisfaction wrt the one originally proposed in [15]. The main outcomes from that semantics are the notions of \textit{minimally resolved instance} (MRI) and \textit{resolved answers} (RAs) to queries. The former capture the intended, clean instances obtained after enforcing the MDs on a given instance. The latter are query answers that persist across all the MRIs, and can be considered as robust and semantically correct answers.

We investigated the new semantics, the MRIs and the RAs. We considered the existence of MRIs, their number, and the cost of computing them. Depending on syntactic criteria on MDs and queries, tractable and intractable cases of resolved query answering were identified. The tractable cases coincide with those where the original query can be rewritten into a new, polynomial-time evaluable query that returns the resolved answers when posed to the original instance. It is interesting that the rewritings make use of counting and recursion (for the transitive closure). The original queries considered in this paper are all conjunctive. We have obtained several tractability and intractability results. However, understanding the complexity landscape requires still much more research.

We established interesting connections between resolved query answering wrt MDs and consistent query answers. There are still many issues to explore in this direction, e.g. the possible use of logic programs with stable model semantics to specify the MRIs, so as it has been done with database repairs [4, 5, 19].

We have proposed some efficient algorithms for resolved query answering. Implementing them and experimentation are also left for future work. Notice that those algorithms use different forms of transitive closure. To avoid unacceptably slow query processing, it may be necessary to compute transitive closures off-line and store them. The use of Datalog with aggregate functions should also be investigated in this direction.

In this paper we have not considered cases where the matchings of attribute values, whenever prescribed by the MDs’ conditions, are made according to matching functions. This element adds an entirely new dimension to the semantics and the problems investigated here. It certainly deserves investigation.

8. REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu. \textit{Foundations of Databases}. Addison-Wesley, Don Mills, Ontario, 1995.

[2] F. Afrati and P. Kolaitis. Repair checking in inconsistent databases: Algorithms and complexity. In \textit{Proc. ICDT}, pages 31–41, 2009.

[3] M. Arenas, L. Bertossi, and J. Chomicki. Consistent query answers in inconsistent databases. In \textit{Proc. PODS}, pages 68–79, 1999.

[4] M. Arenas, L. Bertossi, and J. Chomicki. Answer sets for consistent query answering in inconsistent databases. \textit{Theory and Practice of Logic Programming}, 3(4-5):393–424, 2003.

[5] P. Barceló, L. Bertossi, and L. Bravo. Characterizing and computing semantically correct answers from databases with annotated logic and answer sets. In \textit{Semantics in Databases}, pages 7–33, 2003.

[6] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. Euijong Whang, and J. Widom. Swoosh: A generic approach to entity resolution. \textit{VLDB Journal}, 18(1):255–276, 2009.

[7] L. Bertossi. Consistent query answering in databases. \textit{ACM Sigmod Record}, 35(2):68–76, 2006.

[8] L. Bertossi, L. Bravo, E. Franconi, and A. Lopatenko. The complexity and approximation of fixed numerical attributes in databases under integrity constraints. \textit{Information Systems}, 33(4):407–434, 2008.

[9] L. Bertossi and J. Chomicki. Query answering in inconsistent databases. In \textit{Logics for Emerging Applications of Databases}, pages 43–83, Springer, 2003.

[10] J. Bleiholder and F. Naumann. Data fusion. \textit{ACM Computing Surveys}, 41(1):1–41, 2008.

[11] J. Chomicki. Consistent query answering: Five easy pieces. In \textit{Proc. ICDT}, pages 1–17, 2007.

[12] J. Chomicki and J. Marcinkowski. Minimal-change integrity maintenance using tuple deletions. \textit{Information and Computation}, 197(1/2):90–121, 2005.

[13] A. Elmagarmid, P. Ipeirotis, and V. Verykios. Duplicate record detection: A survey. \textit{IEEE Transactions on Knowledge and Data Engineering}, 19(1):1–16, 2007.

[14] J. Fan. Dependencies revisited for improving data quality. In \textit{Proc. PODS}, pages 159–170, 2008.

[15] J. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record matching rules. In \textit{Proc. VLDB}, pages 407–418, 2009.

[16] S. Flesca, F. Furfaro, and F. Parisi. Consistent query answers on numerical databases under aggregate constraints. In \textit{Proc. DBPL}, pages 279–294, 2005.

[17] E. Franconi, A. Laureti Palma, N. Leone, S. Perri, and F. Scarcello. Census data repair: A challenging application of disjunctive logic programming. In \textit{Proc. LPAR}, pages 561–578, 2001.

[18] A. Fuxman and R. Miller. First-order query rewriting for inconsistent databases. \textit{J. Computer and System Sciences}, 73(4):610–635, 2007.

[19] G. Greco, S. Greco, and E. Zumpano. A logical framework for querying and repairing inconsistent databases. \textit{IEEE Transactions on Knowledge and Data Engineering}, 15(6):1389–1408, 2003.

[20] A. Lopatenko and L. Bertossi. Complexity of consistent query answering in databases under cardinality-based and incremental repair semantics. In \textit{Proc. ICDT}, pages 179–193, 2007.

[21] J. Wijsen. Database repairing using updates. \textit{ACM Transactions on Database Systems}, 30(3):722–768, 2005.

[22] J. Wijsen. Consistent query answering under primary keys: A characterization of tractable cases. In \textit{Proc. ICDT}, pages 42–52, 2009.

[23] J. Wijsen. On the consistent rewriting of conjunctive queries under primary key constraints. \textit{Information
APPENDIX

A. AUXILIARY RESULTS AND PROOFS

Proof of Theorem 1: Consider an undirected graph G whose vertices are labelled by pairs (t, A), where t is a tuple identifier and A is an attribute of t. By definition of the graph S, there is an edge between two vertices (s, A) and (t, B) if and only if s and t satisfy the similarity condition of some MD d. Define the level of a vertex v as the maximum length of a path in G from the root node to v. By condition 1. of Definition 3, the attribute values represent equal pairs of unequal values according to the MDs. Specifically, if two tuples in a set have the same value in S, then their values are modified to a common value which is that of the pair with the highest level. This update is allowed by Theorem 1. In the case of a tie, the common value is chosen as the largest of the values according to the MDs.

Proof of Proposition 1: Consider an undirected graph G whose vertices are labelled by pairs (t, A), where t is a tuple identifier and A is an attribute of t. There is an edge from vertex (t, A) to (s, B) if and only if t and s satisfy the similarity condition of some MD d. Define the level of a vertex v as the maximum length of a path in G from the root node to v. By condition 1. of Definition 3, the attribute values represent equal pairs of unequal values according to the MDs. Specifically, if two tuples in a set have the same value in S, then their values are modified to a common value which is that of the pair with the highest level. This update is allowed by Theorem 1. In the case of a tie, the common value is chosen as the largest of the values according to the MDs.

Proof of Theorem 2: We give an algorithm to compute a resolved instance, and use a monotonicity property to show that it always terminates. For attribute domain d in D, consider the set S^d of pairs (t, A) such that attribute A of the tuple with identifier t has domain d. Let $\{S_1, S_2, \ldots, S_n\}$ be a partition of S^d into sets such that all tuple/attribute pairs in a set have the same value in D. Define the level of (t, A) to mean $|S_k|$ where $(t, A) \in S_k$.

The algorithm first applies all MDs in M to D by setting equal pairs of unequal values according to the MDs. Specifically, consider a connected component C of the graph in the proof of Theorem 1. If the values of $t[A]$ for all pairs (t, A) in C are not all the same, then their values are modified to a common value which is that of the pair with the highest level. This update is allowed by Theorem 1. In the case of a tie, the common value is chosen as the largest of the values according to the MDs.

Proof of Proposition 1: Consider an undirected graph G whose vertices are labelled by pairs (t, A), where t is a tuple identifier and A is an attribute of t. There is an edge from vertex (t, A) to (s, B) if and only if t and s satisfy the similarity condition of some MD d. Define the level of a vertex v as the maximum length of a path in G from the root node to v. By condition 1. of Definition 3, the attribute values represent equal pairs of unequal values according to the MDs. Specifically, if two tuples in a set have the same value in S, then their values are modified to a common value which is that of the pair with the highest level. This update is allowed by Theorem 1. In the case of a tie, the common value is chosen as the largest of the values according to the MDs.

Proof of Proposition 2: We give an algorithm to compute a resolved instance, and use a monotonicity property to show that it always terminates. For attribute domain d in D, consider the set S^d of pairs (t, A) such that attribute A of the tuple with identifier t has domain d. Let $\{S_1, S_2, \ldots, S_n\}$ be a partition of S^d into sets such that all tuple/attribute pairs in a set have the same value in D. Define the level of (t, A) to mean $|S_k|$ where $(t, A) \in S_k$.

The algorithm first applies all MDs in M to D by setting equal pairs of unequal values according to the MDs. Specifically, consider a connected component C of the graph in the proof of Theorem 1. If the values of $t[A]$ for all pairs (t, A) in C are not all the same, then their values are modified to a common value which is that of the pair with the highest level. This update is allowed by Theorem 1. In the case of a tie, the common value is chosen as the largest of the values according to the MDs.

Proof of Theorem 2: We give an algorithm to compute a resolved instance, and use a monotonicity property to show that it always terminates. For attribute domain d in D, consider the set S^d of pairs (t, A) such that attribute A of the tuple with identifier t has domain d. Let $\{S_1, S_2, \ldots, S_n\}$ be a partition of S^d into sets such that all tuple/attribute pairs in a set have the same value in D. Define the level of (t, A) to mean $|S_k|$ where $(t, A) \in S_k$.

The algorithm first applies all MDs in M to D by setting equal pairs of unequal values according to the MDs. Specifically, consider a connected component C of the graph in the proof of Theorem 1. If the values of $t[A]$ for all pairs (t, A) in C are not all the same, then their values are modified to a common value which is that of the pair with the highest level. This update is allowed by Theorem 1. In the case of a tie, the common value is chosen as the largest of the values according to the MDs.

Proof of Proposition 1: Consider an undirected graph G whose vertices are labelled by pairs (t, A), where t is a tuple identifier and A is an attribute of t. There is an edge from vertex (t, A) to (s, B) if and only if t and s satisfy the similarity condition of some MD d. Define the level of a vertex v as the maximum length of a path in G from the root node to v. By condition 1. of Definition 3, the attribute values represent equal pairs of unequal values according to the MDs. Specifically, if two tuples in a set have the same value in S, then their values are modified to a common value which is that of the pair with the highest level. This update is allowed by Theorem 1. In the case of a tie, the common value is chosen as the largest of the values according to the MDs.

Proof of Proposition 1: Consider an undirected graph G whose vertices are labelled by pairs (t, A), where t is a tuple identifier and A is an attribute of t. There is an edge from vertex (t, A) to (s, B) if and only if t and s satisfy the similarity condition of some MD d. Define the level of a vertex v as the maximum length of a path in G from the root node to v. By condition 1. of Definition 3, the attribute values represent equal pairs of unequal values according to the MDs. Specifically, if two tuples in a set have the same value in S, then their values are modified to a common value which is that of the pair with the highest level. This update is allowed by Theorem 1. In the case of a tie, the common value is chosen as the largest of the values according to the MDs.
that, for the instance
t holds that
the hypothesis,
other cases are similar. Then it must have been updated to
for the common value for the equivalence class of
for instances obtained after at most
and
show by induction on the number of updates that were made
intermediate instance
are resolved instances. That they are the MRIs will
be the transitive closure of the set
are matched instances. For any equivalence
total
the MDs does not change the instance. Therefore,
the MD’s does not change the instance. Therefore,
Let
for some vector of values
Let
a list of values chosen by
ComputeMRI
as the common values for the pair of attribute lists
for tuples in
. To obtain the instance output
ComputeMRI
for this choice of values,
D can be updated as follows. For the
update, if the values of the attributes
and
must be modified to achieve
and
take
where
is the equivalence class of
contains the equivalence class
for
. Note that such an
always exists, and the assignment of values is consistent since
overlapping equivalence classes
and
will be contained in the same equivalence class of
Then after
updates, the resulting instance satisfies
, with common values as chosen by
ComputeMRI.
We must show that the resolved instance produced by this update process is the same instance that
ComputeMRI
returns for the given choice of update values. For any intermediate instance
obtained in this update process, let
 denote the tuple in
with the same identifier as
. We will show by induction on the number of updates that were made to obtain
that for any
, whenever
holds that
. This implies that updates made to
for tuple
and attribute
can only set it equal to the common value for the equivalence class of
which to
belongs. Since
ComputeMRI
also sets
to this value, this will prove the theorem.
By definition of
, if 0 updates were used to obtain
, then
implies
implies
. Assume it is true for instances obtained after at most
updates. Let
be an instance obtained after
updates. Suppose for the sake of contradiction that there exist tuples
and
such that for some
,
but
. Since
implies
at least one of
and
was updated so that
. We will assume that only
was updated. The other cases are similar. Then it must have been updated to
or
for some
in
. For the instance
on which the update was performed, it holds that
and
. By the induction hypothesis,
and
, which by the transitivity of
implies
, a contradiction.

Proof of Theorem 3: If it can be verified in polynomial time that an instance is an MRI of a given instance wrt a set
of MDs, then
is in co-NP for any FO
. This is because, for a given instance
, verifying that it is an MRI, and verifying that
is not an answer to
for
. Algorithm
ComputeMRI
can easily be modified to produce such a polynomial time verifier: compute the transitive closure relation
but instead of setting values equal, check that they are equal in the candidate MRI.

Lemma 2. Let
be a non-interacting set of MDs of the form

Let
be the transitive closure of the set
, where
is the tuple-attribute closure of
. Then, for any instance
, an instance
obtained by updating modifiable values of
is a resolved instance of
iff whenever
holds true for every pair
of matched attributes in the MD.

Proof: Suppose
is a resolved instance. Since
is non-interacting, this implies
. It is a corollary of Lemma 1 that whenever
holds then
, for all
. The converse follows from the fact that, whenever a pair of tuples
and
satisfies the similarity condition of an MD,
, for every pair
of matched attributes in the MD.

Corollary 1. Let
be an instance and
be a set of non-interacting MDs. Let
be the transitive closure of the set of tuple-attribute closures of the MDs in
. Then the set of MRIs is obtained by setting, for each equivalence class
of
, the value of each attribute in
to a value that occurs in
at least as frequently as any other value in
.

Proof of Theorem 4: We express the query in the form

Let
and
denote the variable of
or
which holds the value of the
attribute in the
conject
. Denote this attribute by
. Note that, since variables and conjuncts can be repeated, it can happen that
is the same variable as
for
. Then the set
of
and
is the same attribute as
for
, or that
is the same as
for
. Let
and
denote the set of bound and free variables in
, respectively. Let
and
denote the variables in
holding the values of changeable and unchangeable attributes, respectively. Let
denote the rewritten query returned by algorithm
Rewrite,
which we express as

We show that, for any constant vector
,
true for an instance
iff
true for all MRIs of
.
Suppose that $Q'(\bar{a})$ is true for an instance D. Then there exists a b such that $Q'(\bar{a}, \bar{b})$. We will refer to this assignment of constants to variables as $A_{Q'}$. From the form of Q', it is apparent that, for any fixed i, there is a tuple $t_1 = \bar{e}_i \equiv (c_{i1}, c_{i2}, \ldots, c_{ip})$ such that $R_i(\bar{e}_i)$ is true in D with the following properties.

1. For all x_{ij} except those in $F \cap C$, c_{ij} is the value assigned to x_{ij} by $A_{Q'}$.

2. For all $x_{ij} \in F \cap C$, there is a tuple t_2 with attribute B such that $T(t_1, A_{ij}, t_2, B)$, where T is the transitive closure of the tuple-attribute closures of the MDs in M, such that the value of $t_2[B]$ is the value assigned to x_{ij} by $A_{Q'}$. Moreover, this value occurs more frequently than that of any other tuple/attribute pair in the same equivalence class of T.

For any given MRI D', consider the tuple t_1' in D' with the same identifier as t_1. Clearly, this tuple will have the same values as t_1 for all unchangeable attributes, which by 1., are the values assigned to the variables $x_{ij} \in U$. Also, by 2. and Corollary 1, for any j such that $x_{ij} \in F \cap C$ is free, the value of the j^{th} attribute of t_1' is that assigned to x_{ij} by $A_{Q'}$.

Thus, for each MRI D', there exists an assignment A_Q of constants to the x_{ij} that makes Q true, and this assignment agrees with $A_{Q'}$ on all $x_{ij} \not\in B \cap C$. This assignment is consistent in the sense that, if x_{ij} and x_{ik} are the same variable, they are assigned the same value. Indeed, for $x_{ij} \not\in B \cap C$, consistency follows from the consistency of $A_{Q'}$, and for $x_{ij} \in B \cap C$, it follows from the fact that the variable represented by x_{ij} occurs only once in Q, by assumption. Therefore, $Q(\bar{a})$ is true for all MRIs D', and \bar{a} is a resolved answer.

Conversely, suppose that a tuple \bar{a} is a resolved answer. Then, for any given MRI D' there is a satisfying assignment $A_{Q'}$ to the variables in Q such that \bar{z} as defined by (11) is assigned the value \bar{a}. We write Q' in the form

$$Q'(\bar{y}) \leftarrow \exists \bar{z} \wedge_{1 \leq i \leq m} Q_i(\bar{v}_i)$$

with Q_i the rewritten form of the i^{th} conjunct of Q. For any fixed i, let $t' = (\bar{c}_{i1}', \bar{c}_{i2}', \ldots, \bar{c}_{ip}')$ be a tuple in D' such that c_{ij}' is the constant assigned to x_{ij} by $A_{Q'}$.

We construct a satisfying assignment $A_{Q'}$ to the free and existentially quantified variables of Q' as follows. Consider the conjunct Q_i of Q' as given on line 16 of Rewrite. Assign to \bar{v}_i' the tuple t in D with the same identifier as t'. This fixes the values of all the variables except those $x_{ij} \in F \cap C$, which are set to c_{ij}'. It follows from Corollary 1 that $A_{Q'}$ satisfies Q'. Since A_Q and $A_{Q'}$ match on all variables that are not local to a single Q_i, $A_{Q'}$ is consistent. Therefore, \bar{a} is an answer for Q' on D.

Proof of Theorem 5: Hardness follows from the fact that, for the instance D resulting from the reduction in the proof of Theorem 3.3 in [12], the set of all repairs of D with respect to the given key constraint is the same as the set of MRIs with respect to (5). The key point is that attribute modification in this case generates duplicates which are subsequently eliminated from the instance, producing the same result as tuple deletion. Containment follows from Theorem 3.

Proof of Proposition 2: Take $\bar{A} = (A_1, \ldots, A_m)$ and $\bar{B} = (B_1, \ldots, B_n)$. For any tuple of constants \bar{k}, define $R^\bar{k}$ as follows. Let $B^\bar{k}_i$ denote the single attribute relation with attribute B_i whose tuples are the most frequently occurring values in $\pi_{B_i}R^\bar{k}$. That is, $a \in B^\bar{k}_i$ iff $a \in \pi_{B_i}R^\bar{k}$ and there is no $b \in \pi_{B_i}R^\bar{k}$ such that b occurs as the value of the B_i attribute in more tuples of $R^\bar{k}$ than a does. Note that $B^\bar{k}_i$ can be written as an expression involving R which is first order with a Count operator. The reduction produces (R', t) from (R, t), where

$$R' \equiv \bigcup_k \left[\pi_{\bar{A}}R^\bar{k} \times B^\bar{k}_1 \times \cdots B^\bar{k}_n \right]$$

The repairs of R' are obtained by keeping, for each set of tuples with the same key value, a single tuple with that key value and discarding all others. By Corollary A.1, in a MRI of D, the group G_k of tuples such that $\bar{A} = \bar{k}$ for some constant k has a common value for B also, and the set of possible values for B is the same as that of the tuple with key k in a repair of D. Since duplicates are eliminated from the MRIs, the set of MRIs of D is exactly the set of repairs of R'.

Proof of Theorem 6: Q'' is obtained by composing Q' with the transformation $R \rightarrow R'$, which is a first-order query with aggregation.