An in vitro investigation into the role of bone marrow-derived mesenchymal stem cells in the control of disc degeneration

JINQUAN HU1*, GUOYING DENG1*, YE TIAN1, YINGYAN PU2, PENG CAO1 and WEN YUAN1

1Department of Orthopedic Surgery, Changzheng Hospital, Shanghai 200023;
2Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of The Ministry of Education, Neuroscience Research Center of Changzheng Hospital, Second Military Medical University, Shanghai 200433, P.R. China

Received October 11, 2014; Accepted June 30, 2015

DOI: 10.3892/mmr.2015.4139

Abstract. Excessive apoptosis and high expression levels of interleukin-1β (IL-1β) in disc cells have been reported to serve important roles in intervertebral disc degeneration (IVDD). Previous studies investigating mesenchymal stem cells (MSCs) have indicated potential for their use in the treatment of IVDD. However, the therapeutic potential and anti-apoptotic ability of MSCs remains to be fully elucidated. The present study aimed to establish an in vitro model for bone marrow-derived MSC (BMSC) therapy by investigating the anti-apoptotic effects, in addition to the migration of BMSCs to nucleus pulposus (NP) cells stimulated by IL-1β. A co-culture system of BMSCs and NP cells was founded. Following inflammatory stimulation, the NP cells exhibited increased indexes for inflammation-induced degeneration. The degenerative and apoptotic indexes were significantly reduced when NP cells were co-cultured with BMSCs. Compared with the indirect co-culture group, the direct co-culture group exhibited an improved capacity for anti-apoptosis. In addition, IL-1β-stimulated NP cells attracted and mediated the migration of BMSCs. Mitochondrial transfer from BMSCs to NP cells by tunneling nanotubes was also observed. In conclusion, the anti-apoptosis and the migration, in addition to mitochondrial transfer associated with BMSC treatments in IVDD, were investigated in vitro in the present study. The interaction between stimulated NP cells and BMSCs is likely involved in to simulating the in vivo process of stem cell-mediated repair.

Introduction

Diseases resulting from the degeneration of the intervertebral discs have become increasing threats to quality of life due to a rapidly aging society (1). The abnormal apoptosis or age-associated apoptosis of nucleus pulposus (NP) cells is suggested to serve a key role in the development of degenerative disc diseases (2-4). High levels of interleukin-1β (IL-1β) are present in degenerating intervertebral discs and there is a positive response of intervertebral disc cells to IL-1β inhibition (5,6). This indicates that the inflammatory process, in particular the IL-1β-induced degradation of proteoglycans and type II collagen, results in damage to and accelerates the apoptosis of NP cells and annulus fibrosus cells, thereby leading to the development of degenerative disc diseases (5,7-10). Reducing inflammation and the deleterious impact of apoptosis is therefore critical for the treatment of degenerative disc diseases.

Due to their numerous advantages, including their abundance, high activity, low immunogenicity, marked proliferation, differentiation potential and nutrient secretion, mesenchymal stem cells (MSCs) have been widely used in general transplantation research, with positive effects (11-13). MSC transplantation, which exhibits beneficial effects in the treatment of degenerative disc diseases, including the inhibition of intervertebral disc degeneration (IVDD), has been reported to increase the number of cells in intervertebral discs and results in the partial recovery of intervertebral disc height (14-16). However, the specific effects and mechanisms of MSCs on NP cells remain to be fully elucidated. Although certain previous studies have used green fluorescent protein (GFP)-transfected cells as a means of distinguishing between cell types, it remains challenging to accurately separate transfected cells when assessing intercellular interactions (17). The complication of in vivo studies is whether the observed therapeutic effect arises from in situ cells being ‘nourished’ by BMSCs (12,18,19), or is instead an artifact of BMSCs, which exhibit high activity and differentiation potential (13). In vivo studies are therefore, inherently limited. In order to further investigate the mechanisms underlying MSC therapy at the cellular level, the present study used a Transwell assay involving non-contacting and contacting co-culture systems to simulate the in vivo paracrine interactions between cells and directed migration (20,21). Unlike previous studies, the

*Contributed equally

Key words: mesenchymal stem cells, disc degeneration, apoptosis, co-culture system, migration, tunneling nanotubes
anti-apoptotic and migratory capabilities, in addition to mitochondrial transfer through tunneling nanotube (TnT) formation of BMSCs were directly assessed in vitro. The present study was able to measure specific alterations in NP cells via paracrine mechanisms and mitochondrial transfer resulting from MSCs.

Materials and methods

Ethics statement. The male Sprague-Dawley rats (age, 3 months; weight, 250-300 g) used in the current study were provided by the Second Military Medical University Laboratory Animal Center (Shanghai, China). The rats were housed under a 12 h light/dark cycle at constant temperature (25°C) and humidity, with ad libitum access to food and water. All experiments were approved by the Animal Ethical Committee of the Second Military Medical University (no. 13071002114).

Isolation and culture of BMSCs and NP cells from Sprague-Dawley rats. Primary BMSCs were isolated and cultured, as described previously (16). The harvested cells were centrifuged at 500 x g for 10 min at 4°C and then resuspended in complete Dulbecco's modified Eagle's medium (DMEM)/F-12 with 10% fetal bovine serum (FBS), 100 µg/ml streptomycin and 100 U/ml penicillin (all purchased from Gibco Life Technologies, Carlsbad, CA, USA). Cells at passage 3 were subjected to flow cytometric analysis (Cytomics FC500; Beckman Coulter, Brea, CA, USA) to assess the expression of the surface markers, cluster of differentiation 29 (CD29), CD90, CD31 and CD45. The osteogenic and adipogenic differentiation potentials of the cells were also assessed by Alizarin red staining (Beyotime Institute of Biotechnology, Haimen, China) and Oil Red O staining (Beyotime Institute of Biotechnology).

The rat NP cells were isolated, as described previously (22). The NP cells were seeded into 60 mm tissue culture dishes and grown in complete culture medium at 37°C with 5% CO₂. The culture medium was replaced every 2-3 days. The cells were passaged by digestion with 0.25% trypsin (Gibco Life Technologies) and 0.1% Triton X-100 for 10 min and washed three times with phosphate-buffered saline (PBS) at each step. The cells were stained using the In Situ Cell Death Detection kit (Roche Diagnostics, Basel, Switzerland) for 1 h at 4°C, the cells were incubated with 3% H₂O₂ and 0.1% Triton X-100 for 10 min and washed three times with phosphate-buffered saline (PBS) at each step. The cells were stained using the In Situ Cell Death Detection kit (Roche Diagnostics) and counterstained with Hoechst 33258 (Beyotime Institute of Biotechnology), according to the manufacturer’s instructions. Apoptotic alterations were measured by fluorescence microscopy (BX51; Olympus, Tokyo, Japan).

Caspase-3 activity assay. Caspase-3 activity was determined using a Caspase-3 Activity kit (Beyotime Institute of Biotechnology), which is based on the caspase-3-mediated conversion of acetyl-Asp-Glu-Val-Asp p-nitroanilide into the yellow formazan product, p-nitroanilide, according to the manufacturer’s instructions. The activity of caspase-3 was quantified on a microplate spectrophotometer (Biotek Instruments, Inc., Winooski, VT, USA) at 405 nm. Caspase-3 activity was expressed as the fold-change in enzyme activity compared with that of synchronized cells.

Detection of apoptotic incidence by flow cytometry. Apoptotic incidence was detected using the Annexin V-Fluorescein Isothiocyanate (FITC) [Phycoerythrin (PE) for direct co-culture/prog:idium iodide (PI) Apoptosis Detection kit I (BD Pharmingen, San Diego, CA, USA), according to the manufacturer’s instructions. The samples were analyzed on a fluorescence activated cell sorter (Cytomics FC500; Beckman Coulter) within 1 h. Apoptotic cells, including annexin-positive/PI-negative in addition to double-positive
cells, were counted and represented as a percentage of the total cell count.

Detection of migration of BMSCs. The migratory ability of BMSCs was assessed using Transwell plates (Corning Inc., Corning, NY, USA), which were 6.5 mm in diameter with 8 µm pore filters. The BMSCs were harvested and equal numbers of cells were added to each group of Transwell plates. Following incubation for 24 h at 37˚C, the cells that had not migrated from the upper side of the filter were scraped off with a cotton swab and the filters were stained with Coomassie Blue (Beyotime Institute of Biotechnology). The number of cells that had migrated to the lower side of the filter were counted under a light microscope at a magnification of x400 in five randomly selected fields.

Staining cells and confocal microscopy. To trace intracellular exchange of mitochondria, GFP BMSCs were separately labeled with MitoTracker® Deep Red (Invitrogen Life Technologies), according to the manufacturer's instructions. Briefly, the cells were resuspended in pre-warmed (37˚C) staining solution, containing the MitoTracker® probe (50 nM) for 30 min in complete medium. Following staining, the cells were washed three times in PBS and resuspended in fresh pre-warmed medium and were directly added into IL-1β stimulated NP cells on glass slides for 24 h. Following the addition of the cells, the glass slides with two types of cells were washed with PBS and were labeled with DAPI (10 µg/ml, 5 min; Beyotime Institute of Biotechnology). Images were captured by confocal microscopy (TCS SP5; Leica Microsystems GmbH, Wetzlar, Germany) for 1 h and were subsequently analyzed by Leica LAS AF Lite_2.5.0_7266 software.

Statistical analysis. All statistical analyses were performed in triplicate. All data are presented as the mean ± standard error. Differences between the groups were analyzed by one way analysis of variance (*P<0.05, **P<0.01) using GraphPad Prism software, version 5.0 (GraphPad Software, Inc., La Jolla, CA, USA).

Results

Identification of isolated BMSCs. Flow cytometric analysis was used to detect CD90 (Fig. 1A), CD45 (Fig. 1B), CD29 (Fig. 1C) and CD90 (Fig. 1D) expression. BMSCs (>85%) were positive for CD29 and CD45, whereas <0.1% of BMSCs were positive for CD31 and CD45. Following 2 week induced differentiation, (E) osteogenic differentiation of the cells was examined by Alizarin red staining and (F) adipogenic differentiation was assessed by Oil Red O staining. BMSCs, bone marrow-derived mesenchymal stem cells; CD90, cluster of differentiation 90.
for the detection and quantification of apoptosis at the cellular level. The number of TUNEL-positive cells increased with inflammatory factors (20 ng/ml), whereas the number of TUNEL-positive cells was reduced in the co-culture group (Fig. 3A).

Co-culture of BMSCs with IL-1β-stimulated NP cells reduces the activity of caspase-3. The results of the caspase-3 activity assay demonstrated that compared with the normal group, the caspase-3 activities in the 20 and 50 ng/ml inflammatory factor treatment groups were significantly increased. In each indirect co-culture group, the caspase-3 activity was marginally lower compared with the no co-culture group (Fig. 3B).

Co-culture of BMSCs with IL-1β-stimulated NP cells reduces the apoptotic incidence. Flow cytometric analysis of annexin V-FITC PE/PI staining demonstrated that the level of apoptosis was significantly increased in the NP cells stimulated with inflammatory factors. In addition, the apoptotic rate increased in line with the increase in inflammatory factor concentration. These results indicated that co-culturing NP cells with BMSCs significantly reduced the apoptotic rate of different levels of IL-1β. This suggested that direct co-culture may have improved the anti-apoptotic effects compared with the indirect co-culture (Fig. 4A and B). Notably, the apoptotic rate of the added BMSCs in the direct co-culture group was markedly low (Fig. 4C).

Table I. Primer sequences used for reverse transcription-quantitative polymerase chain reaction.

Gene	Primer name	Sequence (5’-3’)
GAPDH	GAPDH-F	CCATCAACGACCCCCTTCATT
	GAPDH-R	ATTCTCAGCCTTGGACTGTGC
ADAMTS-4	ADAMTS-F	ACAATGGCTATGGAACACTGCTCT
	ADAMTS-R	TGAGGAACATGGCTTGAGTCAGGA
ADAMTS-5	ADAMTS-F	GTCCAAATGCACTTCAGCCACGAT
	ADAMTS-R	AATGTCAGTGGACTGCTGGTG
MMP-13	MMP-13-F	CCCTGGAGCCCTGATGTTT
	MMP-13-R	CTCCTGTTTGGGGTGCT
TIMP-1	TIMP-F	ATAGTGCTGCGCTGGGTG
	TIMP-R	TGATCGCTCTGATGCCTTC
Caspase-3	Caspase-3-F	ACAGAGCTGGACTGCGGTAT
	Caspase-3-R	TGCGGTAGTAAGTCACACGG

ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs; MMP, matrix metalloproteinase; TIMP-1, tissue inhibitor metalloproteinase 1; F, forward; R, reverse.
Figure 3. Apoptosis rate detection by TUNEL-staining and caspase-3 ELISA kit. (A) The apoptotic response of the nucleus pulposus cells without simulation was low. At 24 h following stimulation with IL-1β (20 ng/ml), the level of apoptosis was significantly increased and the indirect co-culture significantly reversed this increase. (B) Using the caspase-3 ELISA kit, comparable results were obtained with 20 and 50 ng/ml IL-1β (*P<0.05). IL-1β; interleukin-1β.

Figure 4. Evaluation of apoptotic incidence. (A) Following double staining with annexin V-fluorescein isothiocyanate (phycoerythrin for direct co-culture) and propidium iodide, 0 ng/ml resulted in a normal apoptosis rate of the NP cells. The apoptotic rates of the NP cells were increased following different levels of IL-1β stimulation, then were reduced when indirectly co-cultured with BMSCs, with a more marked reduction observed in the direct co-culture. (B) The apoptotic incidences of the NP cells in different groups were compared (*P<0.05). (C) The directly co-cultured BMSCs were minimally impacted. NP, nucleus pulposus; IL-1β, interleukin-1β; BMSCs, bone marrow-derived mesenchymal stem cells.
IL-1β stimulation of NP cells increases the migratory ability of the BMSCs. The number of cells, which migrated through the pores, were counted under 10 random high power fields for each group (Fig. 5A), which were then compared (Fig. 5B). Amongst all the groups, the differences between the negative control and IL-1β pre-induced groups were statistically significant. Cell damage resulting from IL-1β stimulation enhanced the migratory ability of BMSCs in a dose-dependent manner (*P<0.05). BMSCs, bone marrow-derived mesenchymal stem cells; IL-1β, interleukin-1β.

Mitochondrial transfer occurs between direct co-cultured NP cells and BMSCs. The arrows in Fig. 6 indicate that TnT-like structures were observed between BMSCs and NP cells by confocal microscopy. Mitochondria were clearly observed in the red fluorescence channel, transferring from relabeled GFP BMSCs to stimulated NP cells via TnTs (Fig. 6).

Discussion

In the present study, a novel model of BMSC intervention was established in IVDD and the anti-apoptotic ability of BMSCs in stimulated NP cells was observed to act via a paracrine mechanism. In addition, the migration driven by IL-1β stimulation and directed mitochondrial transfer was observed. IL-1β has been used to induce inflammatory responses in NP cells (6,9,24). Following stimulation with IL-1β for 24 h, the majority of degeneration indexes were increased and apoptosis was induced. To simulate in vivo MSC-mediated damage repair processes following inflammatory stimulation, Transwell chambers were used to physically separate the two cell types. The use of a Transwell chamber with a 0.4 μm pore size ensured that only secreted factors were easily passed through the pores, while preventing BMSCs from migrating
through the pores via amoeboid-like formations (20). Previous in vivo studies have reported that these intercellular interactions involve the indirect effects of cytokines, in addition to the influence of cell migration and direct cell to cell contacts (25,26). Through a series of experiments, the present study successfully simulated and confirmed the directional migration of BMSCs toward the inflammatory factor-stimulated cells. However, the model for BMSC migration failed to completely mimic MSC action in vivo and was only suitable to separately investigate the effects of BMSCs on damaged cells.

In addition to paracrine effects and migration, direct cell to cell communication must be addressed. The observation of TnTs between MSCs and other cell types has been reported by numerous previous studies (27,28). MSCs are capable of transferring mitochondria to cells with severely compromised mitochondrial function via TnTs (29). In the present study, only GFP BMSCs were pre-labeled with MitoTracker® Red following 24 h direct co-culture, however, the pre-simulated NP cells were labeled red. Due to the fact that mitochondrial transfer by TnTs was commonly observed in the present study between GFP BMSCs and NP cells, which had suffered cellular damage (identified by DAPI), it was suggested that migration of BMSCs may be directed and BMSCs may transfer mitochondria into cells with severe damage. Unfortunately, quantifying this is challenging and further investigation is required.

The co-culture model established in the present study demonstrated that BMSCs exert beneficial anti-apoptotic effects on inflammatory factor-stimulated NP cells via paracrine mechanisms. The anti-inflammatory and anti-apoptotic capacities of MSCs, in addition to their mechanisms of action, have been reported in other fields. MSCs co-cultured in inflammatory medium have been reported to inhibit the activation of nuclear factor-κB and thereby control a series of inflammatory reactions (30). It has been reported that MSCs secrete factors, including transforming growth factor-β and prostaglandin E2, which can inhibit the activation of lymphocytes, thereby also contributing to the suppression of inflammation (31-33). The paracrine-mediated anti-apoptotic effects are likely to be based on the activity of growth factors produced by MSCs, which are able to prevent oxidative stress by increasing the activity of antioxidant and normalizing mitochondrial function (34). Previous studies have demonstrated with in vivo and in vitro models that protein kinase B (Akt) was significantly increased in this model established in the present study simulates, in vivo mouse model and finite-element study. Spine (Phil a Pa 1976) 23: 2493-2506, 1998.

The present study was supported by the Shanghai Science and Technology Committee Project of International Cooperation (grant no. 13430721000) and the Joint Research Project on Major Diseases of Shanghai Health System (grant no. 2013ZYJB0502).

Acknowledgements

References

1. Waddell G: Low back pain: A twentieth century health care enigma. Spine (Phil a Pa 1976) 21: 2820-2825, 1996.
2. Ariga K, Miyamoto S, Nakase T, Okuda S, Meng W, Yonenobu K and Yoshikawa H: The relationship between apoptosis of endplate chondrocytes and aging and degeneration of the intervertebral disc. Spine (Phil a Pa 1976) 26: 2414-2420, 2001.
3. Lotz JC, Collou OK, Chin JR, Duskan NA and Liebenberg E: Compression-induced degeneration of the intervertebral disc: An in vivo mouse model and finite-element study. Spine (Phil a Pa 1976) 23: 2493-2506, 1998.
4. Yamada K, Sudo H, Iwaski S, Sasaki N, Higashi H, Kameda Y, Ito M, Takahata M, Abumi K, Minami A, et al: Caspase 3 silencing inhibits biomechanical overload-induced intervertebral disc degeneration. Am J Pathol 184: 753-764, 2014.
5. Le Maître CL, Freemont AJ and Hoyland JA: The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther 7: R73-R745, 2005.
6. Tian Y, Yuan W, Fujita N, Wang J, Wang H, Shapiro IM and Risbud MV: Inflammatory cytokines associated with degenerative disc disease control aggrecanase-1 (ADAMTS-4) expression in nucleus pulposus cells through MAPK and NF-κB. J. Orthop Res 26: 529-535, 2008.
16. Crevensten G, Walsh AJ, Ananthakrishnan D, Page P, Wahba GM, Lotz JC and Berven S: Intervertebral disc cell therapy for regeneration: Mesenchymal stem cell implantation in rat intervertebral discs. Ann Biomed Eng 32: 430-434, 2004.

17. Sakai D, Mochida J, Iwashina T, Watanabe T, Nakai T, Ando K and Hotta T: Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: Potential and limitations for stem cell therapy in disc regeneration. Spine (Phila Pa 1976) 30: 2379-2387, 2005.

18. Strassburg S, Richardson SM, Freemont AJ and Hoyland IA: Co-culture induces mesenchymal stem cell differentiation and modulation of the degenerate human nucleus pulposus cell phenotype. Regen Med 5: 701-711, 2010.

19. Bi B, Schmitt R, Israilova M, Nishio H and Cantley LG: Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol 18: 2486-2496, 2007.

20. Yang SH, Wu CC, Shih TT, Sun YH and Lin FH: In vitro study on interaction between human nucleus pulposus cells and mesenchymal stem cells through paracrine stimulation. Spine (Phila Pa 1976) 33: 1951-1957, 2008.

21. Li X, Zhang Y, Yeung SC, Liang Y, Liang X, Ding Y, Ip MS, Tse HF, Mak JC and Lian Q: Mitochondrial transfer of induced pluripotent stem cells-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette Smoke-induced damage. Am J Respir Cell Mol Biol 51: 455-465, 2014.

22. Risbud MV, Gattapalli A, Stokes DG, Hawkins D, Danielson KG, Schaer TP, Albert TJ and Shapiro IM: Nucleus pulposus cells express HIF-1 alpha under normoxic culture conditions: A metabolic adaptation to the intervertebral disc microenvironment. J Cell Biochem 98: 152-159, 2006.

23. Karaliotas GI, Mavridis K, Scorilas A and Babis GC: Quantitative analysis of the mRNA expression levels of BCL2 and BAX genes in human osteoarthritis and normal articular cartilage: An analysis of the mRNA expression levels of BCL2 and BAX genes in human osteoarthritis and normal articular cartilage: An investigation into their differential expression. Mol Med Rep 12: 4514-4521, 2015.

24. Smith LJ, Chiaro JA, Nerurkar NL, Cortes DH, Horava SD, Hebela NM, Mauck RL, Dodge GR and Elliott DM: Nucleus pulposus cells synthesize a functional extracellular matrix and respond to inflammatory cytokine challenge following long-term agarose culture. Eur Cell Mater 22: 291-301, 2011.

25. Wang Z, Wang Y, Gutkind JS, Wang Z, Wang F, Lu J, Niu G, Teng G and Chen X: Engineered mesenchymal stem cells with enhanced tropism and paracrine secretion of cytokines and growth factors to treat traumatic brain injury. Stem Cells 32: 456-467, 2015.

26. Kawai T, Katagiri W, Otsugi M, Sugimura Y, Hibi H and Ueda M: Secretomes from bone marrow-derived mesenchymal stromal cells enhance periodontal tissue regeneration. Cytotherapy 17: 369-381, 2015.

27. Figeac F, Lesault PF, Le Coz O, Damy T, Souktani R, Trebeau C, Schmitt A, Ribot J, Mounier R, Guguin A, et al: Nanotubular crosstalk with distressed cardiomyocytes stimulates the paracrine repair function of mesenchymal stem cells. Stem Cells 32: 216-230, 2014.

28. Vallabhaneni KC, Hailer H and Dummer I: Vascular smooth muscle cells initiate proliferation of mesenchymal stem cells by mitochondrial transfer via tunneling nanotubes. Stem Cells Dev 21: 3104-3113, 2012.

29. Gerdes HH, Bukoreshltiev NV and Barroso JF: Tunneling nanotubes: A new route for the exchange of components between animal cells. FEBS Lett 581: 2194-2201, 2007.

30. Yagi H, Soto-Gutierrez A, Navarro-Alvarez N, Nahmias Y, Goldwasser Y, Kitagawa Y, Tilles AW, Tompkins RG, Parekkadan B and Yarmish MJ: Paracrine activity of mesenchymal stem cells attenuates systemic inflammation via STNF1. Mol Ther 18: 1857-1864, 2010.

31. Aggarwal S and Pittenger MF: Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105: 1815-1822, 2005.

32. Groh ME, Maitra B, Szekely E and Kög ON: Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp Hematol 33: 928-934, 2005.

33. Ulivi V, Tasso R, Cancetta R and Descalzi F: Mesenchymal stem cell paracrine activity is modulated by platelet lysate: Induction of an inflammatory response and secretion of factors maintaining macrophages in a proinflammatory phenotype. Stem Cells Dev 23: 1858-1869, 2014.

34. García-Fernández M, Delgado G, Puche JE, González-Barón S and Castilla CortázAR: Low doses of insulin-like growth factor I improve insulin resistance, lipid metabolism and oxidative damage in aging rats. Endocrinology 149: 2433-2442, 2008.

35. Eliopoulos N, Zhao J, Bouchentouf M, Forner K, Birman E, Aggarwal S and Pittenger MF: Human mesenchymal stem cell paracrine activity is modulated by platelet lysate: Induction of an inflammatory response and secretion of factors maintaining macrophages in a proinflammatory phenotype. Stem Cells Dev 23: 1858-1869, 2014.

36. Kuwana H, Terada Y, Kobayashi T, Okado T, Penninger JM, Irie-Sasaki J, Sasaki Tand Sasaki S: The phosphoinositide-3 kinase gamma-Akt pathway mediates renal tubular injury in cisplatin nephrotoxicity. Kidney Int 73: 430-445, 2008.