Thermorheological and magnetorheological effects on Marangoni-Ferroconvection with internal heat generation

S Maruthamanikandan1a, Nisha Mary Thomas2 and Soya Mathew3
1Department of Mathematics, School of Engineering, Presidency University, Irgalpur, Yelahanka, Bengaluru 560064, India
2Department of Sciences and Humanities, Faculty of Engineering, CHRIST (Deemed to be University), Bengaluru 560074, India
3Department of Mathematics, KristuJayanti College, Kothanur, Bangalore 560077, India
* E.Mail: amaruthamanikandan@presidencyuniversity.in

Abstract. Marangoni convective instability in a ferromagnetic fluid layer in the presence of a spatial heat source and viscosity variation is examined by means of the classical linear stability analysis. The higher order Rayleigh-Ritz technique is used to compute the critical Marangoni number. The effective viscosity of the ferromagnetic liquid is taken to be a quadratic function of both the temperature and magnetic field strength. It is shown that the ferromagnetic fluid is significantly influenced by the effect of viscosity variation and is more prone to instability in the presence of heat source compared to that when viscosity is constant. On comparing the corresponding results of heat source and heat sink it is found that heat sink works in tandem with the effect of viscosity variation if magnetic field dependence of viscosity dominates over temperature dependence. If the temperature dependence of viscosity dominates, the effects of viscosity variation and heat sink are mutually antagonistic.

1. Introduction
The manifestation of cellular convective instability in non-magnetic fluid layers heated from below is generally credited to the buoyancy and surface tension mechanisms. The buoyancy driven convection (usually known as Rayleigh-Bénard Convection (RBC)) preponderates the surface tension driven convection (typically referred to as Marangoni Convection (MC)) in the case of not-so-thin fluid layers under usual gravity conditions and it is the other way round for thin fluid layers under microgravity situations (Pearson [1]). Thermally and magnetically induced gradients of magnetization are also responsible for the convective motion transpiring in magnetic fluids besides the buoyancy and surface tension candidates. The idea of regulating the properties of magnetic fluids through a magnetic field has led to numerous fascinating applications (Popplewell[2], Berkovskii et al[3] and Hornet al[4]).

RBC in constant viscosity ferromagnetic fluids, Newtonian as well as non-Newtonian, is fairly well studied (Finlayson [14], Stiles and Kagan [15], Maruthamanikandan [16], Soya Mathew et al [17], Nisha Mary and Maruthamanikandan [18] and Vatani et al [19]). It has been corroborated by Finlayson...
that in very thin layers of magnetic liquids only magnetic forces contribute to convection and that the effect of buoyancy forces could be ignored in such layers. Schwab [20], Qin and Kaloni [21], Odenbach [22], Weilepp and Brand [23] and Geetha and Nanjundappa [24] have studied the surface tension effect on thermomagnetic convection in ferromagnetic fluid.

Technological and biomedical applications of magnetic liquids indicate that these liquids depend greatly on their rheological properties. Several studies such as those of Rosensweig et al [25], Shliomis [26], Kamiyama et al [27], Kobori and Yamaguchi [28] and Chen et al [29] specify that the effective viscosity of a ferromagnetic liquid is enhanced by the application of a magnetic field. This reversible effect, known as magnetorheological effect, is a consequence of the fact that the particles magnetize in the presence of a magnetic field and form chain-like clusters that align with the applied field. These chain-like alignments of the dispersed solid particles impede the motion of the liquid, thereby increasing the viscous characteristics of the suspension. The contemporary applications of the magnetorheological effect include dampers, brakes, pumps, clutches, valves, robotic control systems and the like (Carlsson et al [30]). Balauet et al [31] have pointed out through their experiments that magnetorheological effect is of importance significantly in water-based and kerosene-based solutions, and in physiological-solution-based magnetic liquids even for moderate strengths of applied magnetic field. This is more so in the extraterrestrial context. Prakash [32] studied the effects of magnetic field dependent viscosity and non-uniform basic temperature profiles on thermomagnetic convection in a horizontal layer of ferrofluid.

Another fact about the viscosity of any carrier liquid decreasing with temperature is also well known (Geetha and Nanjundappa [24], Platten and Legros [33], Severin and Herwig [34], Ramanathan and Muchikel [35] and Nanjundappa et al [36]) and is referred to as thermorheological effect. It is imperative therefore to envisage the importance of the MC problem in ferromagnetic liquids involving both magnetic field and temperature dependent effective viscosity. Apart from the rheological effects discussed earlier, the effect of volumetric internal heat source is also important in ferromagnetic liquids from the viewpoint of magnetocaloric pumping. In this paper we aim at studying the effect of internal heat generation on the threshold of MC in a variable viscosity ferromagnetic liquid with a vertical temperature gradient and a vertical magnetic field. The assumed strength of the magnetic field is such that the liquid does not exhibit any non-Newtonian characteristics. The report on the study culminates with an important exploration of the dissimilarity, for Marangoni convection, between heat source and heat sink problems.

2. Mathematical Formulation
Consider an infinite horizontal layer of a thin ferromagnetic liquid (with a free upper surface) that maintains a temperature gradient and a magnetic field \vec{H}_0 in the vertical direction. The gradient in temperature is by virtue of a prescribed temperature difference ΔT (> 0 for fluid heated from below) across the layer and a uniform distribution of heat source/sink of intensity \mathcal{S} in the liquid. The liquid is assumed to have an effective variable viscosity μ that depends on the magnitude of the magnetic field and the temperature. The upper boundary interface has a temperature and magnetic field dependent surface tension $\sigma (H,T) = \sigma_o + \sigma_H (H - H_o) - \sigma_T (T - T_a)$, (2.1)

where σ is the surface tension, $\sigma_o = \sigma (H_o, T_o)$, $\sigma_H = (\partial \sigma / \partial H)_{H_o, T_a}$, $\sigma_T = - (\partial \sigma / \partial T)_{H_o, T_a}$ and T_a is the constant average temperature. The system of equations associated with the Marangoni instability situation in a variable viscosity ferromagnetic liquid with uniform heat source is (Wilson [8], Finlayson [14] and Severin and Herwig [34])

$$\nabla \cdot \vec{q} = 0, \quad (2.2)$$
\[\rho_o \left[\frac{\partial \vec{q}}{\partial t} + (\vec{q} \cdot \nabla) \vec{q} \right] = -\nabla p + \mu_o (\vec{M} \cdot \nabla) \vec{H} + \nabla \cdot \left[\mu(H,T) \left(\nabla \vec{q} + \nabla \vec{q}^T \right) \right], \tag{2.3}\]

\[\rho_o C_{V,H} H - \mu_o \frac{\partial \vec{M}}{\partial T}, \quad \frac{dT}{dt} + \mu_o T \left(\frac{\partial \vec{M}}{\partial T} \right), \quad \frac{d\vec{H}}{dt} = k_i \nabla^2 T + S, \tag{2.4}\]

\[\vec{M} = \frac{\vec{H}}{H} M(H,T), \tag{2.5}\]

\[M = M_o + x_m(H - H_o) - K_1(T - T_a), \tag{2.6}\]

\[\nabla \cdot \vec{B} = 0, \quad \nabla \times \vec{H} = 0, \quad \vec{B} = \mu_o \left(\vec{H} + \vec{M} \right), \tag{2.7}\]

where \(\vec{q} = (u,v,w)\) is the fluid velocity, \(\rho_o\) is the density, \(t\) is the time, \(p\) is the pressure, \(\mu\) is the effective viscosity, \(\vec{H}\) is the magnetic field, \(\vec{B}\) is the magnetic induction, \(T\) is the temperature, \(\mu_o\) is the magnetic permeability, \(\vec{M}\) is the magnetization, \(k_i\) is the thermal conductivity, \(V\) is the vector differential operator, \(C_{V,H}\) is the specific heat at constant volume and magnetic field, \(M_o\) is the reference magnetization, \(x_m\) is the magnetic susceptibility, \(K_1\) is the pyromagnetic coefficient and \(\text{Tr}\) designates the transpose.

It is of interest to note that the well-known viscosity variation with temperature is a non-Boussinesq effect (Selak and Lebon[37]). Further, for a ferromagnetic liquid, we have one more non-Boussinesq influencing factor for the viscosity that arises only when the magnetic field is present. The effective viscosity is known to escalate due to the magnetic field in the case of these synthetic liquids (Chen et al[38]) owing to the reorientation of magnetic particles. There exist a number of correlations of viscosity-temperature and viscosity-magnetic field strength including linear, quadratic and exponential proportionalities. The quadratic and exponential viscosity variations have been brought in owing to the fact that the linear viscosity variation is inadequate in showing the destabilizing nature of temperature dependence of viscosity and stabilizing nature of magnetic field dependence of viscosity. The problem under consideration also necessitates a nonlinear viscosity variation rather than the linear one. In view of this we assume the effective viscosity \(\mu(H,T)\) to be a quadratic function of \(H\) and \(T\) in the form

\[\mu(H,T) = \mu_1 \left[1 + \delta_1 (H - H_o) + \delta_2 (H - H_o)^2 - \delta_3 (T - T_a) - \delta_4 (T - T_a)^2 \right], \tag{2.8}\]

where \(\delta_i\) \((i = 1, 2, 3, 4)\) are small positive quantities. We note that it suffices to take other quantities such as surface tension and magnetization as linear functions of temperature and magnetic field. Taking the basic state components of magnetization and magnetic field to be \([0, 0, M_b(z)]\) and \([0, 0, H_b(z)]\), the solution pertaining to the quiescent basic state reads

\[\vec{q}_b = \vec{0}, \quad T_b(z) = T_a - f(z), \quad p = p_b(z), \quad \mu_b(z) = \mu_1 \left[1 + V_1 f(z) - V_2 \{ f(z) \}^2 \right], \tag{2.9}\]

\[\vec{H}_b = \left[\begin{array}{c} H_o - \frac{K_1}{1 + x_m} f(z) \\ \hat{k} \end{array} \right], \quad \vec{M}_b = \left[\begin{array}{c} M_o + \frac{K_1}{1 + x_m} f(z) \\ \hat{k} \end{array} \right].\]
where \(V_1 = \delta_3 - \frac{\delta_1 K_1}{1 + \chi_m} \), \(V_2 = \delta_4 - \frac{\delta_2 K_1}{(1 + \chi_m)^2} \) and \(f(z) = (S z^2/2k_1) + (\Delta T z/d) - (S d^2/8k_1) \). In arriving at the above solution it has been assumed that \(T = T_o \) at \(z = d/2 \) and \(T = T_i (= T_o + \Delta T) \) at \(z = -d/2 \) where \(d \) is the thickness of the liquid layer. The dominance of magnetic dependency over temperature dependency of viscosity is signified by the condition \(V_1 < 0 \) and \(V_2 < 0 \), while \(V_1 > 0 \) and \(V_2 > 0 \) signifies dominance of temperature dependency.

We next study the stability of the system by resorting to the method of small perturbation (Finlayson [14]). Introducing the magnetic potential \(\Phi' \), eliminating the pressure \(p \) and incorporating the solution in equation (2.9), we obtain the following equations pertaining to the perturbed state

\[
\rho_o \frac{\partial}{\partial t} (\nabla^2 w') - \mu_b(z) \nabla^4 w' + D^2 \mu_b(z) \left(\nabla_1^2 - D^2 \right) w' - 2D \mu_b(z) \nabla^2 (Dw')
\]

\[
- \frac{\mu_o K_1^2}{1 + \chi_m} Df(z) \nabla_1^2 T' + \mu_o K_1 Df(z) \nabla_1^2 (D\Phi') = 0,
\]

\[
\left[\rho_o c - \frac{\mu_o K_1^2}{1 + \chi_m} f(z) \right] \frac{\partial T'}{\partial t} - \mu_o K_1 \left[T_o - f(z) \right] \frac{\partial}{\partial t} (D\Phi')
\]

\[
+ \left[\frac{\mu_o T_o K_1^2}{1 + \chi_m} - \rho_o c \right] Df(z) w' = k_1 \nabla_1^2 T',
\]

\[
(1 + \chi_m) D^2 \Phi' + \left[1 + \frac{M_o}{H_o} \right] \nabla_1^2 \Phi' - K_1 D T' = 0,
\]

where \(\rho_o c = \rho_o C_{V,H} + \mu_o K_1 H_o \) and \(D = \partial/\partial z \). A separable solution to equations (2.10) – (2.12) in the form of periodic waves reads

\[
\begin{bmatrix}
 w' \\
 T' \\
 \Phi'
\end{bmatrix}
= \exp \left[i \left(k_x x + k_y y \right) \right].
\]

Use of equation (2.13) in equations (2.10) – (2.12), we obtain

\[
\rho_o \left(D^2 - k^2 \right) \frac{\partial w}{\partial t} - \mu_b(z) \left(D^2 - k^2 \right)^2 w - D^2 \mu_b(z) \left(D^2 + k^2 \right) w
\]

\[
- 2D \mu_b(z) \left(D^2 - k^2 \right) Dw - \frac{\mu_o K_1}{1 + \chi_m} k^2 Df(z) \left[(1 + \chi_m) DT - K_1 T \right] = 0
\]
\[
\left[\rho_o c - \frac{\mu_o K^2_1}{1 + \chi_m} f(z) \right] \frac{\partial T}{\partial t} - \mu_o K_1 \left[T_a - f(z) \right] \frac{\partial (D\Phi)}{\partial t} + \left(\frac{\mu_o T_a K^2_1}{1 + \chi_m} - \rho_o c \right) Df(z)w - k_1 \left(D^2 - k^2 \right) T = 0
\]

\[
(1 + \chi_m) D^2 \Phi - \left(\frac{1 + M_o}{H_o} \right) k^2 \Phi - K_1 DT = 0,
\]

where the horizontal wavenumber \(k \) is defined as \(k^2 = k_x^2 + k_y^2 \). We next make equations (2.14)–(2.16) dimensionless by introducing the following definitions
\[
t^* = \frac{\kappa}{d^2} t, \quad z^* = \frac{z}{d}, \quad w^* = \frac{d}{\kappa} w, \quad T^* = \frac{T}{\Delta T}, \quad \Phi^* = \frac{(1 + \chi_m)}{K_1 \Delta T d} \Phi, \quad a^* = kd, \quad (2.17)
\]

where the quantities with asterisk are dimensionless. Equations (2.14)–(2.16), upon using equation (2.17), read
\[
\frac{1}{Pr} \left(D^2 - a^2 \right) \frac{\partial w}{\partial t} - \left[1 + \Gamma_1 g(z) - \Gamma_2 \left(g(z) \right)^2 \right] \left(D^2 - a^2 \right)^2 w
\]

\[
- 2 \left[\Gamma_1 Dg(z) - 2\Gamma_2 g(z)Dg(z) \right] \left(D^2 - a^2 \right) Dw - R_M a^2 Dg(z) \left[D\Phi - T \right] = 0,
\]

\[
\left[1 - M_2 \frac{\Delta T}{T_a} g(z) \right] \frac{\partial T}{\partial t} - M_2 \left[1 - \frac{\Delta T}{T_a} g(z) \right] \frac{\partial (D\Phi)}{\partial t}
\]

\[
= \left(D^2 - a^2 \right) T + \left(1 - M_2 \right) Dg(z)w,
\]

\[
(D^2 - M_3 a^2) \Phi - DT = 0,
\]

where \(g(z) = N_S z^2 + z - (N_S / 4) \) and the asterisks have been removed for simplicity. Thenon-dimensional parameters appearing in equations (2.18)–(2.20) are the Prandtl number \(Pr = \frac{H_1}{\rho_o \kappa} \), linear variable viscosity parameter \(\Gamma_1 = V_1 \Delta T \), quadratic variable viscosity parameter \(\Gamma_2 = V_2 (\Delta T)^2 \), the heat source (sink) parameter \(N_S = \frac{S d^2}{2 k_1 \Delta T} \), magnetic Rayleigh number \(R_M = \frac{\mu_o (K_1 \Delta T d)^2}{(1 + \chi_m) \mu_1 \kappa} \), the parameter defining ratio of thermal flux (due to magnetization) to magnetic flux \(M_2 = \frac{\mu_o K^2_1 T_a}{(1 + \chi_m) H_o} \), and the parameter measuring nonlinearity in magnetization \(M_3 = \frac{M_o + H_o}{(1 + \chi_m) H_o} \).

The Prandtl number, \(Pr \), is the ratio of the speed of propagation of momentum to that of heat transport. The heat source (sink) parameter \(N_S \) is the ratio of strength of the internal heat source to
external heating. The magnetic Rayleigh number R_M is the ratio of magnetic force to viscous dissipation. The parameter M_2, being equal to 10^{-6} (Finlayson[14]), shall be discarded in the subsequent analysis. Equations (2.18) – (2.20) are solved together with the following boundary conditions

$$w = \left[1 + I_1 \left\{ \frac{1}{2} - \right\} I_2 \left\{ g \left(\frac{1}{2} \right) \right\} \right] D^2 w + a^2 M \alpha T - a^2 M \alpha H D \Phi = DT = 0,$$

and

$$D \Phi + \frac{d \Phi}{dz} + T = 0 \text{ at } z = \frac{1}{2},$$

$$w = D w = T = D \Phi - \frac{d \Phi}{dz} = 0 \text{ at } z = -\frac{1}{2},$$

(2.21)

where $M = \frac{\tau_T \Delta T d}{\mu_1 \kappa}$ and $M_M = \frac{\tau_H K_1 \Delta T d}{(1 + \chi_m) \mu_1 \kappa}$ are the thermal and magnetic Marangoni numbers respectively. M_H is the ratio of thermorheological factors favouring fluid motion to forces opposing motion. Likewise M_M is the ratio of magnetorheological factors supporting fluid motion to forces opposing motion (which is assumed negligible in the further analysis). Since the occurrence of oscillatory instability is ruled out for the problem at hand (Lam and Bayazitoglu [6], Finlayson [14] and Weilepp and Brand [23]), the stability equations associated with the stationary instability therefore read

$$\left[1 + I_1 \left\{ \frac{1}{2} - \right\} I_2 \left\{ g(z) \right\} \right] (D^2 - a^2)^2 w$$

$$+ \left[I_1 D^2 g(z) - 2 I_2 \left\{ g(z) D^2 g(z) + \Phi g(z) \right\} \left(D^2 - a^2 \right) w \right]$$

$$+ 2 \left[I_1 D g(z) - 2 I_2 g(z) \Phi D g(z) \right] \left(D^2 - a^2 \right) D w + R_M a^2 D \Phi \left[D \Phi - T \right] = 0,$$

$$\left(D^2 - a^2 \right) T + D g(z) w = 0,$$

$$\left(D^2 - M^2 a^2 \right) \Phi - DT = 0.$$

(2.23)

(2.24)

3. Method of Solution

The system of equations (2.22) – (2.24) together with the conditions in equation (2.21) poses an eigenvalue problem for M with I_1, I_2, N_S, R_M, M_3 and χ_m as parameters. A closed form solution of the problem at hand is unlikely on account of the presence of variable coefficients in equations (2.22) and (2.23). We therefore employ the Rayleigh-Ritz technique to obtain the critical eigenvalue M_Tc and the corresponding critical wavenumber a_c. Accordingly $w(z)$, $T(z)$ and $\Phi(z)$ have expansions in the form $w(z) = \sum \alpha_i w_i(z)$, $T(z) = \sum \beta_i T_i(z)$ and $\Phi(z) = \sum \gamma_i \Phi_i(z)$ where α_i, β_i and γ_i are constants, and $w_i(z)$, $T_i(z)$ and $\Phi_i(z)$ are trial functions. We choose the trial functions $w_i = \left(z - \frac{1}{2} \right)^{i+1}$, $T_i = \left(z(z-1) - \frac{3}{4} \right)^{i+1}$ and $\Phi_i = z^i$ guided by the chosen boundary conditions and variational considerations.
4. Results and discussion

External regulation of rheological properties and thereby the control of surface tension driven instability in a variable viscosity ferromagnetic liquid in the presence of internal heat generation and vertical uniform magnetic field is studied. The critical values pertaining to stationary convection have been computed using the Rayleigh-Ritz technique. The results arrived at in the problem could be understood better if we observe the profile of the basic state temperature distribution which sheds light on the effect of heat source/sink on the stability of the system.

Figure 1. Plot of dimensionless basic state temperature profile $\theta(z)$ for different values of heat source/sink parameter N_S.

Figure 1 is a plot of z versus the basic state temperature distribution $\theta(z)$. We note that the curves are asymmetric about the lines $\theta=0$ and $z=0$ when $N_S \neq 0$. The asymmetry is obviously due to the variation in the parameter N_S. From Figure 1 it is clear that when $N_S = 1$, the highest temperature in the liquid layer occurs at the lower bounding surface, that is, at $z=-1/2$. As N_S increases beyond the value of 1, the location of the point of extrema approaches closer to $z=0$. Thus, when $N_S \geq 1$, the point of highest temperature always lies in the lower half of the layer, that is, in $-1/2 \leq z < 0$. It is therefore clear that the effect of increasing N_S is to hasten instability. On the other hand, when $N_S \leq -1$, the point of highest temperature always manifests in the upper half of the layer, that is, in the part $0 < z \leq 1/2$. Hence the effect of a decrease in N_S is to impede the Marangoni instability.

In arriving at the documented critical values, we have made use of a four-term Rayleigh-Ritz technique that ensures satisfactory convergence. As to the accuracy of the Rayleigh-Ritz technique, attention is paid to the case of MC in a constant viscosity non-magnetic liquid without internal heating. In this case, the Rayleigh-Ritz technique yields the critical values of $Ma_{tc} = 79.9$ and $ca = 2.0$, that are in excellent agreement with the existing values (Pearson [1]). It is also found, in the absence of viscosity variation and for $N_S \neq 0$, that the results compare very well with those obtained by Char and Chiang [7] for a non-magnetic liquid.

Figures 2 and 3 show the variation of Ma_{tc} with N_S, Γ_2 and R_M for magnetic field dominance of viscosity and temperature dominance of viscosity respectively. The destabilizing effect of increasing the magnetic Rayleigh number R_M is obvious from the figures. A striking result from
Figures 2 and 3 is that the thermorheological and magnetorheological effects are more pronounced for a uniform heat sink than for a uniform heat source.

The variation of critical wavenumber a_c with N_S, Γ_2 and R_M is shown in Figures 4 and 5. The results for an intermediate value of R_M are provided in Table 1. It is found that the qualitative effect of the magnetization parameter M_3 and the magnetic susceptibility χ_m on the onset of convection is akin to that in a constant viscosity ferromagnetic liquid (Finlayson [14]).
As can be seen from Table 1 the effect of heat sink enhances the destabilizing effect of M_3 on the system. Further, the convection cell size is vulnerable to the variations in N_S, 2Γ, R_M and M_3, and it is insensitive to the changes in χ_m so long as the magnetization parameter M_3 is sufficiently large.
Table 1. Critical values for a variable viscosity ferromagnetic liquid with internal heat source/sink for $R_M = 50$ and $\Gamma_1 = 0.5$.

N_S	χ_m	M_3	$\Gamma_2 = 0.5$	$\Gamma_2 = 1$	$\Gamma_2 = 1.5$			
			$M a_{TC}$	a_c	$M a_{TC}$	a_c	$M a_{TC}$	a_c
-2.5	1	25	952.78	1.18	868.15	1.14	777.47	1.08
			927.36	1.19	842.35	1.15	751.49	1.11
	5	25	956.83	1.18	872.23	1.14	781.54	1.08
			927.61	1.19	842.63	1.15	751.81	1.11
	1	25	194.89	1.73	175.44	1.72	155.34	1.71
-1.5	5	25	190.57	1.73	171.17	1.72	151.13	1.71
			195.66	1.73	176.20	1.72	156.10	1.71
	1	25	190.58	1.73	171.18	1.72	151.14	1.71
0	1	25	77.15	2.00	71.43	2.02	65.33	2.04
			74.52	2.00	68.79	2.01	62.69	2.02
	5	25	77.78	2.01	72.06	2.02	65.96	2.04
			74.54	1.99	68.82	2.01	62.72	2.02
	1	25	42.27	2.09	38.35	2.11	34.06	2.13
1.5			39.38	2.06	35.40	2.07	31.06	2.08
	5	25	43.08	2.10	39.16	2.12	34.88	2.14
			39.42	2.06	35.45	2.07	31.11	2.08
	1	25	28.77	2.10	23.56	2.12	17.19	2.14
2.5			25.40	2.07	19.96	2.08	13.22	2.09
	5	25	29.75	2.11	24.58	2.13	18.26	2.15
			25.47	2.07	20.02	2.08	13.29	2.09

5. Conclusions
The influence of temperature and magnetic field dependent effective viscosity of magnetic fluid on Marangoni convection with internal heat generation is studied. The following conclusions are arrived at from the study:

- Heat source and heat sink have reverse influence on magnetic fluid Marangoni instability.
- Thermorheological and magnetorheological effects are markedly pronounced when there is a uniform heat sink in the fluid layer.
- Convection cell size is noticeably sensitive to the effect of variable viscosity, internal heat generation and the fluid magnetization.

The problem is important in energy conversion devices and in microgravity application situations involving ferromagnetic liquids as working media.

References
[1] Pearson J R A 1958 On convection cells induced by surface tension J. Fluid Mech. 4 pp 489–500
[2] Popplewell J 1984 Technological applications of ferrofluids Phys. Tech. 15 pp 150–162
[3] Berkovskii B M Medvedev V F and Krakov M S 1993 Magnetic fluids: Engineering Applications (Oxford: Oxford Science Publications)
[4] Horng H E, Hong C Y, Yang S Y and Yang H C 2001 Novel properties and applications in magnetic fluids J. Phys. Chem. Solids 62 pp 1749–1764
[5] Nield D A 1964 Surface tension and buoyancy effects in cellular convection J. Fluid Mech.19 pp 341–352
[6] Lam T T and Bayazitoglu Y 1987 Effect of internal heat generation and variable viscosity on Marangoni convection Numer. Heat Trans .11 pp 165–182
[7] Char M I and Chiang Ko-Ta 1994 Stability analysis of Bénard-Marangoni convection in fluids with internal heat generation J. Phys. D: Appl. Phys .27 pp 748–755
[8] Wilson S K 1997 The effect of uniform internal heat generation on the onset of steady Marangoni convection in a horizontal layer of fluid Acta Mech .124 pp 63–78
[9] Gupta V K, Prasad R and Singh A K 2013 Effect of magnetic field on chaos in couple stress liquid saturated in porous medium Int. J. Energy Tech. 5 pp 1–9
[10] Eswaramoorthi S, Bhuvaneswari M, Sivasankaran S and Rajan S 2015 Effect of radiation on Rayleigh–Bénard convection in couple stress fluid with Maxwell–Cattaneo law Int. J. Appl. Engg. Res. 13 pp 2688–2693
[11] Finlayson B A 1970 Convective instability of ferromagnetic fluids J. Fluid Mech. 40 pp 753–767
[12] Stiles P J and Kagan M 1990 Thermoconvection instability of a horizontal layer of ferrofluid in a strong vertical magnetic field JMMM 85 pp 196–198
[13] Maruthamanikandan S 2003 Effect of radiation on Rayleigh–Bénard convection in ferrofluids Int. J. Appl. Mech. Engg. 8 pp 449–459
[14] Soya Mathew, Maruthamanikandan S and Smita S N 2013 Gravitational instability in a ferroinertial fluid saturated porous medium with non-classical heat conduction IOSR J. Math.6 pp 7–8
[15] Nisha Mary T and Maruthamanikandan S 2013 Effect of gravity modulation on the onset of ferroconvection in a densely packed porous layer IOSR J. Appl. Phys.3 pp 30–40
[16] Vatani A, Woodfield P L, Nam-Trung N and Dao D V 2018 Onset of thermomagnetic convection around a vertically oriented hot-wire in ferrofluid JMMM 456 pp 300–306
[17] Schwab L 1990 Thermal convection in ferrofluids under a free surface JMMM 85 pp 199–202
[18] Qin Y and Kaloni P N 1994 Nonlinear stability problem of a ferromagnetic fluid with surface tension effect Eur. J. Mech. B/Fluids 13 pp 305–321
[19] Odenbach S 1995 Microgravity experiments on thermomagnetic convection in magnetic fluids JMMM 149 pp 155–157
[20] Weilepp J and Brand H R 1996 Competition between the Bénard-Marangoni and the Rosensweig instability in magnetic fluids J. Phys. II (France) 6 pp 419–441
[21] Geetha B S and Nanjundappa C E 2018 Temperature dependent viscosity effect on buoyancy-surface tension driven convection in a rotating ferrofluid layer and submitted to Robin thermal boundary conditions Int. J. Sci. Engg. Res. 9 pp 82–90
[22] Rosensweig R E, Kaiser R and Miskolczy G 1969 Viscosity of magnetic fluid in a magnetic field J. Colloid. Interface Sci. 29 pp 680–688
[23] Shliomis M I 1972 Effective viscosity of magnetic suspensions Sov. Phys. JETP 34 pp 1291–1294
[24] Kamiyama S, Koike K and Wang ZS 1987 Rheological characteristics of magnetic fluids JSME Int. J. 30 pp 761–768
[28] Kobori I and Yamaguchi H 1994 Viscosity of suspension of HTSC particles J. Phys. Soc. Japan 63 pp 2691–2696
[29] Chen CY, Hong CY and Wang SW 2002 Magnetic flows in a tube with the effects of viscosity variation JMMM 252 pp 253–255
[30] Carlson D, Catanzarite D M and Clair K A 1996 Commercial magnetorheological fluid devices Int. J. Mod. Phys. B 10 pp 2857–2865
[31] Balau O, Bica D, Koneracka M, Kopcansky P, Resiga DS and Vekas L 2002 Rheological and magnetorheological behaviour of some magnetic fluids on polar and non-polar carrier liquids Int. J. Mod. Phys. B 16 pp 2765–2771
[32] Prakash H N 2018 Thermomagnetic convection in a ferrofluid layer: effects of non-uniform basic temperature profiles and MFD viscosity Comp. Appl. Math. J. 4 pp 15–26
[33] Platten K J and Legros J C 1984 Convection in liquids (Berlin: Springer).
[34] Severin J and Herwig H 1999 Onset of convection in the Rayleigh-Bénard flow with temperature dependent viscosity ZAMP 50 pp 375–386
[35] Ramanathan A and Muchikel N 2006 Effect of temperature dependent viscosity on ferroconvection in a porous medium Int. J. Appl. Mech. Engg. 11 pp 93–104
[36] Nanjundappa C E, Shivakumara I S and Arunkumar R 2013 Onset of Marangoni-Bénard ferroconvection with temperature dependent viscosity Microgravity Sci. Tech. 25 pp 103–112
[37] Selak R and Lebon G 1997 Rayleigh-Marangoni thermoconvective instability with non-Boussinesq corrections Int. J. Heat Mass Trans. 40 pp 785–798
[38] Chen CY, Hong CY and Chang LM 2003 Displacements of miscible magnetic fluids in a capillary tube Fluid Dynamics Res. 32 pp 85–98