Economic Evaluation of School Health Programmes: A Mapping Review (2005-2015)

Fernanda Piana Santos Lima de Oliveira1*, Galha Freire Moita2, Efigênia Ferreira e Ferreira3, Andreia Maria Araujo Drummond3, Andrea Maria Duarte Vargas3, Sônia Dias4 and Zulmira Hartz5

Affiliation
1Fipmoc University Center, Montes Claros, Brazil
2Fundação Oswaldo Cruz (FIOCRUZ), Brazil
3Faculty of Dentistry, Federal University of Minas Gerais, Brazil
4NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa and Comprehensive Health Research Center (CHRC), Portugal
5Institute of Hygiene and Tropical Medicine (IHMT), New University of Lisbon (UNL), Portugal

Corresponding author: Fernanda Piana Santos Lima de Oliveira, Fipmoc University Center, Montes Claros, Minas Gerais, Brazil, Tel: +55 (31) 98449-7715, E-mail: fernandapiana@gmail.com

Citation: Oliveira de FPSL, Moita GF, Ferreira EFE, Drummond AMA, Vargas AMD, Dias S and Hartz Z. Economic evaluation of school health programmes: a mapping review (2005-2015) (2020) Nursing and Health Care 5: 33-40.

Published: Oct 1, 2020
Accepted: Nov 23, 2020
Published: Nov 30, 2020

Copyright: © 2020 Oliveira de FPSL, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract
The economic evaluation has gained popularity in recent years but, to be useful, it must be conducted and reported accurately. The aim of this study was to perform a mapping review identifying published articles about economic evaluation of school health programmes, characterizing and qualifying what has been published, and discussing how these studies were conducted. The review was carried out in PubMed for studies published in the past decade. The search strategy included “cost”, “economic evaluation”, “school health services”, “school health”, “school health promotion” and “school health program”. Thirty-five studies were assessed. The studies addressed ten different countries and cost-effectiveness was the most economic evaluation used. The narrative synthesis gathered the selected studies in nine groups, demonstrating a high heterogeneity of methods and results in the economic analyzes performed. There is evidence that school health programmes can bring benefits to the target population and society. The gathered information in this article can contribute to performing economic evaluation studies and improving programmes.

Keywords: Cost, Economic evaluation, School health.

Abbreviations: MeSH- Medical Subject Headings, Economic evaluation, SBSP- School Based Sealant Programmes, NASBHC-National Assembly On School-Based Health Care, STDS-Sexually Transmitted Diseases, SBAT-School-Based Asthma Therapy.

Introduction
Economic evaluation in health is a tool used by planners to select an option that offers more advantages based on cost and results presented by intervention, programme or policy. Actions, costs, and consequences are analyzed assisting and contributing to the policy-decision process, providing information to new interventions and health technologies, enabling a resource projection to expand the benefits to a wider population [1]. The need for greater resources allocation in public health programmes, combined with the growing technological sophistication, increased the popularity of economic evaluations. According to Moodie, et al. [2] this popularity was due to the need to prove the efficiency of health programmes, providing information to policy makers when allocating resources for intervention proposals. However, economic evaluation should be conducted and reported accurately to contribute in the definition and value measurements of public health interventions. With the increasing number of publications about economic evaluation in health interventions, the monitoring related to the quality of such assessments became needed. The availability of data obtained from these evaluations has been limited, mostly due to the use of methods that have not been developed for economic analysis in health. Rigorous, high-quality assessments of economic evaluation should become usual, demonstrating conclusively the benefits and merits achieved by public health interventions, and inform the government and community if the investments resulted in any benefit. Among the interventions that need consistent evaluation, there is the School Health Programme. This type of programme consists of an important strategy to enhance learning and the health of children, adolescents and school community. The difficulty in estimating benefits is a challenge for the programmes and to the decision makers, as well as the management of the various funds mainly received from the health and education sectors. Therefore, the aim of this study was to perform a mapping review identifying published articles about the economic evaluation of school health programmes in the past decade, discuss how these studies were conducted and identifying gaps in the literature for further revisions or research to be planned [1-4].

Citation: Oliveira de FPSL, Moita GF, Ferreira EFE, Drummond AMA, Vargas AMD, Dias S and Hartz Z. Economic evaluation of school health programmes: a mapping review (2005-2015) (2020) Nursing and Health Care 5: 33-40.
Methods

A mapping review was carried out in August 2015. We screened the electronic database PubMed/Medline for studies published between August 6th, 2005 and August 3rd, 2015. Keyword and MeSH (Medical Subject Headings) searches were conducted to assess studies that performed an economic evaluation of school health programs. The search strategy included the terms “cost”, “economic evaluation”, “school health services”, “school health”, “school health promotion” and school health program. The language was restricted to English, Spanish and Portuguese. The articles selection and analyzes were conducted independently by two reviewers. The first selection was conducted by reading the title and abstract. Articles addressing economic evaluation of school health programmes and carried them out were included and studies that did not perform the economic evaluation and did not approach the topic of interest were excluded (Figure 1). Once the studies were selected for final analysis, the following data of each study was extracted: authors, the country where it was performed, intervention identification, type of economic evaluation used and the results through cost and effects measurement adopted (Chart 1).

Results

A flowchart describing the selection process is presented in Figure 1. Initially, 377 citations were identified from the past ten years. Thirty-five studies were qualified for the final review analysis.

The studies were performed in United States (57.15%), followed by United Kingdom (8.58%), Australia (8.58%), Spain (5.72%), Canada (5.72%), European countries combined (2.85%), Netherlands (2.85%), Sweden (2.85%), New Zealand (2.85%) and India (2.85%). The type of economic evaluation used by the studies were cost-effectiveness (51.42%), cost-benefit (17.15%), costs (14.28%), two types of economic analyzes combined (14.28%) and cost-consequence (2.8%). The authors, country, type of school health program, and economic evaluation used and the results through cost and effects measurement adopted are shown in Chart 1.

Chart 1: Selected studies on economic evaluation of school health programmes, 2015

The narrative synthesis gathered the selected studies in nine groups: (1) physical activity, healthy diet and obesity prevention; (2) reducing tobacco use among adolescents; (3) sex education, early pregnancy prevention and sexually transmitted diseases (STDs); (4) mental health and violence reduction; (5) preventive and clinical activities related to dental caries; (6) prevention of childhood asthma; (7) activities in school-based health centers; (8) partnerships for child health; (9) other studies represented by a single study of each theme such as: children immunization against influenza in schools, excessive sun exposure protection program and gardening and cooking.

Discussion

The present mapping review was performed to analyse articles published on economic evaluation of school health programmes. The School Health Programmes can provide one of the most effective means available for improving the health. The cost-effectiveness was the type of economic evaluation most used between the studies analyzed.

Phillips, et al. [3] discussed the feasibility and validity of economic valuation techniques to develop priorities in public health programmes. Health promoters and economists use different analyses principles, different methodologies, and this can lead to an adjustment failure between the data provided and the economic evaluation requirements. When the selected studies were reviewed related to physical activity, healthy diet and preventing obesity programmes. Studies support the benefits of childhood obesity prevention programmes through school interventions, affirming the high potential of prevention of the overweight in childhood. Eight studies described not only the complete methodology of the intervention programme but also, how the economic evaluation was performed.

Partnerships and involvement of the local community, as well as analysis of the context in which the program will be developed, results in greater impact and sustainability in relation to reducing costs and achieving positive changes in the community, children and their families. Interventions performed during regular school hours and those carried out through the extension of the school day with compulsory participation are more feasible in relation to reach and costs per student than pre and post school interventions. It is important to establish a method of cost-effectiveness analysis, which results in economic estimates, so that the proposed intervention is worth the money spent [2,4-15].

The approaches used should ensure that economic assessments can be compared for the purpose of deciding on the allocation of resources and products. The harmful effects of smoking are well known in the literature. Four studies were related to tobacco, which is responsible for thousands of deaths each year in the world, and a current international action to control its use exists. In recent years, tobacco prevention at school age and in schools programmes are widely adopted and have shown to be effective in reducing consumption and early progression.

All economic evaluation studies presented intervention programmes relatively low-priced to implement and with high gains to the tobacco user health. Prevention programmes of sexual and reproductive health are necessary among adolescents and young adults. The school age mother has strong tendency not to finish her studies, and the babies are more likely to be born with low weight and/or premature. Also, the prevention programmes for Sexually Transmitted Diseases (STDs) in schools are essential to establish safe sexual behavior before an unsafe occur, improving knowledge and attitudes [15-22].

The study by Key, et al. [20] behind the inclusion of social assistance services in school associated with integral health care for adolescent mothers and their children as an effective intervention in reducing early pregnancy. In the Terris-Prestholt, et al. [21] study an economist conducted the data collection, and a timeline was created to allocate the cost per component. The study by Ateka, et al. [22] revealed generous differences regarding the degree of benefits, i.e., the STD prevention program in schools, was more cost-effective for the feminine sex. The behavior issues among children, and young adults create personal and social problems related to criminal activity, illegal substance usage, early sexual initiation and sexually transmitted diseases [23].

Citation: Oliveira de FPSL, Moita GF, Ferreira EFE, Drummond AMA, Vargas AMD, Dias S and Hartz Z. Economic evaluation of school health programmes: a mapping review (2005-2015) (2020) Nursing and Health Care 5: 33-40.
Groups	Authors/ Country	Program Evaluated	Analyses Type	Results Evidence
		Food cooperative in schools to increase access, continuity and education in the consumption of fruits and vegetables.	Cost effectiveness	Collaboration with the food bank allowed access to fresh produce at a minimum cost of $ 4.31 / family / week, and the parent survey showed significant improvements in home-eating practices (p < 0.05).
	Reznik, et al. [12]	Physical activity in the classroom for kindergarten and first grade students.	Cost effectiveness	Students in the intervention group gave a significantly greater number of steps than the controls (p = 0.0048). The proportion of overweight students was higher in the control group (p = 0.07). Estimated intervention costs $ 1,500 USD for a school year. Two programs were significantly superior in scope and cost per student: extending the school day with compulsory attendance of physical education and offering breaks of short physical activity (10 minutes) during regular classroom hours.
	Babey, et al. [14]	School programs to increase physical activity	Cost effectiveness	The study resulted in a savings of 24.5% in healthy snacks, and improved snack quality, but was unable to cope with the price barriers associated with vegetables, was not sustainable.
	Beets, et al. [9]	Programme that include physical activity and educational support after classes for elementary school students, including lunch breaks.	Cost benefit	The proposed model resulted in estimates of long-term savings and health benefits at participating schools relative to non-participants, as well as guiding other cost-effectiveness analyzes of childhood obesity prevention programs.
	Pil, et al. [5]	A method to estimate the cost-effectiveness of the x-intervention: a obesity prevention program in European preschools.	Cost effectiveness Cost benefit	The program proved to be cost-effective when compared to similar interventions and is likely to be cost-effective when compared to health care and prevention activities funded by the local government health system.
	Rush, et al. [6]	Program to improve overall health and reduce the weight of school children.	Cost effectiveness Cost benefit	The intervention cost AUD0.34M ($0.31M; $0.38M) annually, and resulted in savings of 547 (104; 1209) BMI units and 10.2 (0.19; 21.6) DALYs. This translated to modest cost offsets of AUD27 311 (5803; $58 242) and a net cost per DALY saved of AUD29 798 (dominated; $0.26M).
	Moodie, et al. [2]	Programme of a healthy diet, physical activity, and healthy weight promotion in primary and preschools.	Cost effectiveness	The annual public funding to implement and maintain CSH totaled $344,514, which translates, on average, to $7,830 per school and $22.67 per student. Grants, donations and fundraising were mostly locally acquired. The value of volunteer support was estimated to be equivalent to the value of grants, donations and fundraising combined.
	Gesell, et al. [7]	Physical activity After School Programme (ASP) (childhood obesity).	Cost effectiveness	The intervention costs totaled 125,469.75€, representing 269.83€/year/child. The usual after - school care was estimated at 844.56€/year/child. Intervention children showed a decrease in triceps skinfold thickness (-1.25mm, 95% CI: -1.82 to 0.67; P <.001). Intervention children with body mass index (BMI) between the percentiles 25 and 75 showed a decrease in the percentage of body fat (-0.59%; 95% CI: -1.03 to 0.67; P <.001), and those with a BMI>75 showed a decrease in triceps skinfold thickness (-1.87mm; 95% CI: -3.43 to -0.32; P<0.001), and percentage of body fat (-0.67%; 95% CI: -1.32 to -0.01; P<.05).
	Ohinmaa, et al. [4]	Programmes of nutrition and physical activity in health promoting schools.	Cost	The program proved to be cost-effective when compared to similar interventions and is likely to be cost-effective when compared to health care and prevention activities funded by the local government health system.
	Moya Martínez, et al. [8]	Physical activity programme during free time at school.	Cost effectiveness	The intervention costs totaled 125,469.75€, representing 269.83€/year/child. The usual after - school care was estimated at 844.56€/year/child. Intervention children showed a decrease in triceps skinfold thickness (-1.25mm, 95% CI: -1.82 to 0.67; P <.001). Intervention children with body mass index (BMI) between the percentiles 25 and 75 showed a decrease in the percentage of body fat (-0.59%; 95% CI: -1.03 to 0.67; P <.001), and those with a BMI>75 showed a decrease in triceps skinfold thickness (-1.87mm; 95% CI: -3.43 to -0.32; P<0.001), and percentage of body fat (-0.67%; 95% CI: -1.32 to -0.01; P<.05).
	Moodie, et al. [10]	Programme of after school activities for the community.	Cost effectiveness	For 1 year, the intervention cost is Australian dollars (AUD) 40.3 million (95% uncertainty interval AUD 28.6 million; AUD 56.2 million), and resulted in an incremental saving of 450 (250; 770) DALYs. The resultant cost-offsets were AUD 3.7 million, producing a net cost per DALY saved of AUD 82,000 (95% uncertainty interval AUD 40,000; AUD 165,000). Although the program has intuitive appeal, it was not cost-effective under base-case modeling assumptions.
	Gelli, et al. [11]	Food education programme.	Cost effectiveness	The average yearly expenditure per child, standardized over a 200-day on-site feeding period and an average ration, excluding school-

Citation: Oliveira de FPSL, et al., *Nursing and Health Care*, 2020 PDF: 151, 5:1
Topic	Reference	Programme/Programme	Cost Effectiveness	Cost Benefit Effectiveness
Reducing tobacco use among adolescents	Brown, et al. [17]	Programme to prevent tobacco use among young people.	Cost effectiveness	
	Hollingworth, et al. [16]	Program to reduce tobacco use.	Cost effectiveness	
	Hormigo Amaro, et al. [19]	Scholar smoking prevention programme.	Cost benefit	Cost effectiveness
	Vijgen, et al. [18]	Programme to prevent tobacco use.	Cost effectiveness	
	Key, et al. [20]	Programme to prevent teenage pregnancy.	Cost benefit	
	Ateka, et al. [22]	Sexually transmitted disease (STD) prevention programme in public schools.	Cost effectiveness	
	Terris-Prestholt, et al. [21]	Sexual health programme for adolescents.	Cost	
	Kuo, et al. [24]	Mental health programme for adolescents.	Cost effectiveness	
	Foster, et al. [23]	Reduction of violence among children programme.	Cost effectiveness	
	Bertrand, et al. [27]	Simulation of types sealant application programme at school.	Cost effectiveness	
	Bailit, et al. [25]	Dental care programme at school.	Cost	
	Sköld, et al. [28]	Combination of results related to dental caries prevention programs. Fluoride Varnish Treatment (FVT) and	Cost benefit	

The results show that the costs per quality-adjusted life-year added, due to averted smoking, was $2057, even without including averted medical costs. If ignore student time, cost-effectiveness improves by roughly 10%. To put the cost-effectiveness of this smoking prevention program into context, it is over 24 times more cost-effective than dialysis in the USA, which costs $50,000 for a life-year.

Assuming an effectiveness of 1%, the program would achieve a total benefit of 1,558,311.46. The healthcare benefits per prevented smoker were 1997.57, and the indirect benefits per prevented smoker were 21,260.80. Given the total cost of the school-based program (68,526.03), the cost-benefit ratio was 22.74. The benefits of school-based tobacco prevention programs, in terms of healthcare costs and productivity losses avoided, are far greater than the costs.

Intervention costs per averted smoker: representing the short-term cost effectiveness of the different interventions, £2300. Intervention costs per life year/QALY gained; £14,100/€15,400. Intervention costs plus savings in the future costs of smoking-related diseases per life year/QALY gained, £11,200/€12,200. Intervention costs plus the total difference in future healthcare costs per life-year/QALY gained, £18,200/€19,900.

Subsequent births were more common in the comparison group (33%) than among subjects (17%) (p= .001), and survival curves were significantly different (p=0.007) (hazard ratio=2.5). Cost savings were calculated as $19,997 per birth avoided or $5,055 per month.

The program was cost saving for female and cost-effective for male participants when ethnicity adjusted HIV prevalence was used with the assumption of best case scenario. It remained cost-effective for female but not for male participants in the base case scenario. Using the unadjusted HIV prevalence, the program was only cost-effective for female participants in the best case scenario.

The 3-year economic costs of trial implementation were $879,032, of which ~70% were for the school-based component. Costs of initial development and startup were relatively substantial (~21% of total costs); however, annual costs per school child dropped from $16 in 1999 to $10 in 2001. The incremental scale-up cost is ~1/5 of ward trial implementation running costs.

Cost-effectiveness was estimated to be $416.90 per successful linkage when 5% of students screened positive, and $106.09 when 20% screened positive.

The analyses suggest that the likelihood of cost-effectiveness for reducing conduct disorder for those most at risk approaches 70%. This finding depends on a series of assumptions, such as the discount rate used to measure future program costs and benefits. A sensitivity analysis suggests that a 3% rate would produce very similar results.

A publicly funded program in the public sector was more cost-effective than a universal, publicly funded, private practice. However, the most cost-effective option varied, depending on the incidence of caries and the proportion of children identified as being at high-risk for caries.

The program is financially feasible in states when the ratio of Medicaid fees is 60.5% of mean national fees. Of the 13 states examined, one-third have adequate Medicaid fees to support the program.

The FVT program had a better outcome in reducing approximal caries than FMR, and costs were lower. The FVT was expected to result in cost containment compared to controls 3 years after the end of the preventive FVT program. The ratio benefits to costs

Citation: Oliveira de FPSL, Moita GF, Ferreira EFE, Drummond AMA, Vargas AMD, Dias S and Hartz Z. Economic evaluation of school health programmes: a mapping review (2005-2015) (2020) Nursing and Health Care 5: 33-40.
Partnerships for child health	Activities in school-based health centers	Prevention of childhood asthma
Schlitt, et al. [33] School-Based Health Centers (SBHC)	Tai, et al. [30] Preventive programmes for childhood asthma based on clinical care at school.	Noyes, et al. [29] Therapy-based program for asthma in schools.
Crowley, et al. [36] School-Community-University Partnerships to Enhance Resilience (PROSPER).	Atherly, et al. [31] Asthma educational Intervention program, designed to be adopted and implemented in a school environment.	Scherrer, et al. [26] Dental sealant programme in public schools.
Eckermann, et al. [35] Gardening and cooking program for students.	Reynolds, et al. [39] Educational Programme conducted in early childhood Child-Parent-Center (CPC).	Chart 1: Selected studies on economic evaluation of school health programmes, 2015.
Reynolds, et al. [39] Educational Programme conducted in early childhood Child-Parent-Center (CPC).	Atherly, et al. [31] Asthma educational Intervention program, designed to be adopted and implemented in a school environment.	Noyes, et al. [29] Therapy-based program for asthma in schools.
Kyle, et al. [38] A program that teaches children how to protect themselves from excessive sun exposure.	Chart 1: Selected studies on economic evaluation of school health programmes, 2015.	Scherrer, et al. [26] Dental sealant programme in public schools.

Fluoride Mouth Rinsing (FMR).

- For direct or indirect supervision, it is optimal to have only 1 dentist or no dentists. For general supervision, it is optimal to have the dentist and dental assistant to come on separate days to screen. The cost savings for adding an assistant and chair averaged over all of the program sizes and travel distances ranged from 4.50% (SE=0.89) to 10.94% (SE=0.56). Significant cost savings also result from reducing the required supervision level (8.72% [SE=1.61] to 29.96% [SE=1.67]). The cost of the practice act for the state of Wisconsin for 2003 was from $83,041 to $346,156, significantly more than its annual budget.

Chart 1: Selected studies on economic evaluation of school health programmes, 2015.

Citation: Oliveira de FPSL, Moita GF, Ferreira EFE, Drummond AMA, Vargas AMD, Dias S and Hartz Z. Economic evaluation of school health programmes: a mapping review (2005-2015) (2020) Nursing and Health Care 5: 33-40.
Kuo, et al. [24] evaluated the cost-effectiveness of a school-based mental health triage programme, to identify children in need of specific interventions, with a positive multiplicative ratio of uncovered costs per successful screening link. However, the costs associated with increasing the use of services and long-term effectiveness were not included. Foster, et al. [23] analyzed the cost-effectiveness of an intensive intervention programme with multiple components for the prevention of aggressiveness in young children, with early identification and treatment. The study estimated costs for overheads, and the program has proven to be cost-effective mainly for untreated and higher-risk populations, which are particularly costly to society. The studies that evaluated programmes of preventive and clinical activities related to dental care were conceptual and exploratory. Bailit, et al. [25] used national and international data to estimate expected revenues and expenses for the school-based programme operation in different states, aiming to reduce the disparities in access to dental care, concluding that the programmes were modeled with various restrictions over the practice to compare its efficiency. Bertrand, et al. [27] simulated a public funding programme of dental sealants in both the public and private sectors and compared these hypothetical situations. Skold, et al. [28] analyzed two studies on a prevention program using fluoride varnishes and a prevention program using fluoride mouthwash and combine the results with a longitudinal study of caries development in a normal dental care setting in schools.

Asthma is one of the most common chronic childhood diseases causing morbidity symptoms, impact on quality of life, limitations of physical activities, no attendance in schools and loss of working days by the caregivers of the children with the disease. The studies on prevention programmes for childhood asthma had different methodologies. Noyes, et al. [29] examined the cost-effectiveness of the School-Based Asthma Therapy (SBAT) programme in comparison to the usual care, and the administration of preventive medication was performed. Tai and Bame [30] examined the cost-effectiveness of a prevention programme for childhood asthma based on clinical care at schools, using eight public dollars to evaluate the costs of the implementation and the potential savings in reducing the acute emergency and ambulatory. Atherly, et al. [31] discussed an educational intervention programme on asthma, designed to be adopted and implemented in the school environment. All these authors considered that other studies are necessary to justify if these programmes results in benefits to compensate the additional expenditure, suggested that these programmes are profitable from a societal perspective, i.e., by measuring all costs and results incurred for society.

The School-Based Health Center-SBHC provide essential primary care for students within the schools. Due to its location, they allow overcoming barrier access such as transportation, lack of service, and the program has proven to be cost-effective mainly for untreated and higher-risk populations, which are particularly costly to society. The authors stated that there are efforts to evaluate these programmes in recent years even considering the challenges related to the difficulty and cost related to these assessments due to the large sample size, the need for sophisticated methodologies to isolate the effect of the intervention and the long-term follow-up. They also affirmed that there is a strong justification for increasing investments in health promotion for children and adolescents in the reproductive health areas, obesity prevention, mental health and substance use, trauma and violence, resulting in a significant decrease in morbidity in these areas. A few studies, in this mapping review, describe sensitivity analysis due to estimates analyses for costs and discount rates. According to Contandriopoulos, et al. [15] two important points that should be addressed in the economic evaluation studies are the update of costs and effects of the programme from time to time and the economic evaluation of school health programmes: a mapping review (2005-2015) (2020) Nursing and Health Care 5: 33-40.
sensitivity analysis. They are essential to measure the uncertainty impact on the results obtained, certifying its strength and testing its external validity. Guidelines to evaluate the quality of the economic evaluations studies have been published in the literature, to standardize a methodology that could facilitate comparison between the studies.

The published studies used different approaches to performing economic evaluations, which made the results difficult to compare. However, the use of these guidelines are not simple and requires an expert methodological and technical knowledge. The authors Cafray and Chatterji [41] described the development and testing of an effective and practical Internet-based cost survey designed by the authors of the National Assembly on School-Based Health Care (NASBHC) to capture the costs of school-based-health programmes.

The economic evaluation can be conducted from several points of view, whether is the target population, investor or society. This perspective will determine which costs should be considered to achieve the result [15].

The study showed that several forms were used in the estimation and decision of which cost should be included in calculations (direct, indirect, fixed, variable), with a lack of clarity about which perspective in the evaluation was performed. Although a high heterogeneity was presented in the selected studies, they still can contribute with the economic evaluation knowledge in school health programmes. There is an issue related to the selection method to perform an economic evaluation of health since it is not a property or a service, but a condition. Some health problems affect other people than those directly affected and, there is uncertainty about the occurrence of diseases. All these factors lead to uncertainties of the complicated solution, concerning to the resource amount that should be allocated to health, which services should be prioritized and financed, and who would be the beneficiaries [15].

It is necessary for an economic evaluation of credibility to precise definition and description, within a methodological accuracy that sustain their results. When executed with quality, they can help decision makers to choose programmes that save resources and future costs, also provide a projection of possible benefits.

Conclusion

The selected studies in this mapping review showed different methods, presentation of included and excluded costs and consequences. Some studies did not contain an explicit identification of the intervention, perspectives used for the analyzes, appropriate discounts for programmes that were meant for future periods, sensitivity analysis, incremental cost-effectiveness analysis, and also presented generalized results. This study was limited to present a synthesis of knowledge and relevant aspects to be considered in the economic evaluation of school health programmes since there are significant variations in conducting such evaluation. There is evidence that school health programmes can bring benefits to the target population and society.

Compliance with Ethical Standards

Ethical Approval: This article does not contain any studies with human participants or animals performed by any of the authors.

Funding: This research was supported by CAPES Foundation, Ministry of Education of Brazil, Brasilia- DF, 70.040-020, Brazil (BEX:10349/14-6); CNPq and FAPEMIG.

Conflicts of interest: none

References

1. Morgan M, Marílio R, Wright C, Bailey D and Hopcraft M. Economic evaluation of preventive dental programmes: what can they tell us? (2012) Community Dent Oral Epidemiol 2: 117-121. https://doi.org/10.1111/j.1600-0782.2012.00730.x

2. Moodie ML, Herbert JK, de Silva-Sanigorski AM, Maryoa HM, Keating CL, et al. The cost-effectiveness of a successful community-based obesity prevention program: The be active eat well program (2013) Obes 21: 2072-2080. https://doi.org/10.1002/oby.20472

3. Phillips CJ, Fordham R, Marsh K, Bertranou E, Davies S, et al. Exploring the role of economics in prioritization in public health: what do stakeholders think? (2011) Eur J Public Health 21: 578-584. https://doi.org/10.1093/eurpub/ckq121

4. Ohinmaa A, Langille JL, Jamieson S, Whitby C and Veugelers PJ. Costs of implementing and maintaining comprehensive school health: the case of the Annapolis Valley Health Promoting Schools program (2011) Can J Public Health 102: 451-454. https://doi.org/10.1007/BF03404198

5. Pil I, Putman K, Cardon G, De Bourdeaudhuij I, Manios Y, et al. Establishing a method to estimate the cost-effectiveness of a kindergarten-based, family-involved intervention to prevent obesity in early childhood. The ToyBox-study (2014) Obes Rev 3: 81-89. https://doi.org/10.1111/obr.12179

6. Rush E, Obolonkin V, McLennan S, Graham D, Harris JD, et al. Lifetime cost-effectiveness of a through-school nutrition and physical programme: Project Energize (2014) Obes Rev Clin Pract 8: 115-122. https://doi.org/10.1016/j.orec.2013.03.005

7. Gesell SB, Sommer EC, Lambert EW, Vides de Andrade AR, Whitaker L, et al. Comparative effectiveness of after-school programmes to increase physical activity (2013) J Obes. https://doi.org/10.1155/2013/576821

8. Moya MP, Sánchez LM, López BJ, Escribano SF, Notario PB, et al. Cost-effectiveness of an intervention to reduce overweight and obesity in 9-10-year-olds. The Cuenca study (2011) Gac Sanit 25: 198-204. https://doi.org/10.1590/S0213-40542011000300005

9. Beets MW, Tilley F, Turner-McGrievy G, Weaver RG and Jones S. Community partnership to address snack quality and cost in after-school programmes (2014) J Sch Health 84: 543-548. https://doi.org/10.1111/josh.12175

10. Moodie ML, Carter RC, Swinburn BA and Haby MM. The cost-effectiveness of Australia’s active after-School Communities program (2010) Obesity 18: 1585-1592. https://doi.org/10.1111/j.1040-0526.2010.00236.x

11. Gelli A, Al-Shaiba N and Espejo F. The costs and cost-efficiency of providing food through schools in areas of high food insecurity (2009) Food Nutr Bull 3: 68-76. https://doi.org/10.1177/156842660903000107

12. Reznik M, Wylie-Rosett J, Kim M and Ozuah PO. A classroom-based physical activity intervention for urban kindergarten and first-grade students: a feasibility study (2015) Child Obes 11: 314-324. https://doi.org/10.1089/cobi.2014.0090

13. Sharma S, Helfman L, Albus K and Chenag RJ, et al. Feasibility and acceptability of brighter bites: A food Co-Op in Schools to increase access, continuity and education of fruits and vegetables among low-income populations (2015) J Prim Prev 36: 281-286. https://doi.org/10.1007/s10935-015-0395-2

14. Babey SH, Wu S and Cohen D. How can schools help youth increase physical activity? An economic analysis comparing school-based programs (2014) Prev Med 69: 55-60. https://doi.org/10.1016/j.ypmed.2014.10.013

15. Contandriopoulos AP, Lachaine J and Brousselle A. Economic evaluation (2011) Brousselle A, Champagne F, Contandriopoulos AP, Hartz Z, et al. Rio de Janeiro Ficoucruz 9: 183-216.

16. Hollingworth W, Cohen D, Hawkins J, Hughes RA, Moore LA, et al. Reducing smoking in adolescents: cost-effectiveness results

Citation: Oliveira de FPSL, Moita GP, Ferreira EFE, Drummond AMA, Vargas AMD, Dias S and Hartz Z. Economic evaluation of school health programmes: a mapping review (2005-2015) (2020) Nursing and Health Care 5: 33-40.
from the cluster randomized ASSIST (A Stop Smoking In Schools Trial) (2012) Nicotine Tob Res 14: 161-168. https://doi.org/10.1093/ntr/nu2155
17. Brown HS, Stigler M, Perry C, Dhavan P, Arora M, et al. The cost-effectiveness of a school-based smoking prevention program in India (2013) Health Promot Int 28: 178-186. https://doi.org/10.1093/heapro/dar095
18. Vigen SM, van Baal PH, Hoogenveen RT, de Wit GA and Feenstra TL. Cost-effectiveness analyses of health promotion programmes: a case study of smoking prevention and cessation among Dutch students (2008) Health Educ Res 23: 310-318. https://doi.org/10.1093/her/cyn024
19. Hormigo AJ, García-Altés A, López MJ, Bartoll X, Nebot M, et al. Cost-benefit analysis of a school-based smoking prevention program (2009) Gac Sanit 23: 311-314. https://doi.org/10.1016/j.gaceta.2009.01.013
20. Key JD, Gebregziabher MG, Marsh LD and O'Rourke KM. Effectiveness of an intensive, school-based intervention for teen mothers (2008) J Adolesc Health 42: 394-400. https://doi.org/10.1016/j.jadohealth.2007.09.027
21. Terris-Prestholt F, Kumaranyake L, Obasi AI, Cleophas-Mazige B, Makokha M, et al. From trial intervention to scale-up: costs of an adolescent sexual health program in Mwanza, Tanzania (2006) Sex Transm Dis 10: 133-139. https://doi.org/10.1097/01.ola.0000200606.98181.42
22. Ateka GK and Lairson DR. School-based HIV/STD prevention programmes: do benefits justify costs? (2008) J Int Assoc Physicians AIDS Care 7: 46-51. https://doi.org/10.1177/1545109707304446
23. Foster EM and Jones D. Conduct Problems Prevention Research Group. Can a costly intervention be cost-effective? An analysis of violence prevention (2006) Arch Gen Psychiatry 63: 1284-1291. https://doi.org/10.1001/archpsyc.63.11.1284
24. Kuo E, Vander SA, McAuley E and Kernic MA. Cost-effectiveness of a school-based emotional health screening program (2009) J Sch Health 79: 277-285. https://doi.org/10.1111/j.1541-0260.2009.00410.x
25. Bailit H, Beazoglou T and Donaldowski M. Financial feasibility of a model school-based dental program in different states (2008) Public Health Rep 123: 761-767. https://doi.org/10.1177/003335490812300612
26. Scherrer CR, Griffin PM and Swann JL. Public health sealant delivery programmes: optimal delivery and the cost of practice acts (2007) Med Decis Making 27: 762-771. https://doi.org/10.1177/0272989X07302134
27. Bertrand E, Mallis M, Bai L, Rechmair D. Cost-effectiveness simulation of a universal publicly funded sealants application program (2011) J Public Health Dent 71: 38-45. https://doi.org/10.1111/j.1522-3159.2010.00200.x
28. Sköld UM, Petersson LG, Birkhed D and Norlund A. Cost-analysis of school-based fluoride varnish and fluoride rinsing programs (2008) Acta Odontol Scand 66: 286-292. https://doi.org/10.1080/00016350802293978
29. Noyes K, Bajorska A, Fisher S, Sauer J, Fagnano M, et al. Cost-effectiveness of the School-Based Asthma Therapy (SBAT) program (2013) Pediatrics 131: 709-717. https://doi.org/10.1542/peds.2012-1883
30. Tai T and Bame SI. Cost-benefit analysis of childhood asthma management through school-based clinic programmes (2011) J Community Health 36: 253-260. https://doi.org/10.1007/s10900-010-9305-y
31. Aitherly A, Nurmagambetov T, Williams S and Griffith M. An economic evaluation of the school-based “power breathing” asthma program (2009) J Asthma 46: 596-599. https://doi.org/10.1080/02770909093006257
32. Guo JJ, Wade TJ, Pan W and Keller KN. School-based health centers: cost-benefit analysis and impact on health care disparities (2010) Am J Public Health 100: 1617-1623. https://doi.org/10.2105/AJPH.2009.185181
33. Schiff H, Juszczak LJ and Eichner NH. Current status of state policies that support school-based health centers (2008) Public Health Rep 123: 731-738. https://doi.org/10.1177/003335490812300609
34. Jayaratne K, Kelaher M and Dunt D. Child Health Partnerships: a review of program characteristics, outcomes and their relationship (2010) BMC Health Serv Res 10: 172. https://doi.org/10.1186/1472-6963-10-172
35. Eckermann S, Dawber I, Yeatman H, Quinsey K and Morris D. Evaluating return on investment in a school based health promotion and prevention program: the investment multiplier for the Stephanie Alexander Kitchen Garden National Program (2014) Soc Sci Med 114: 103-112. https://doi.org/10.1016/j.socscimed.2014.05.056
36. Crowley DM, Jones DE, Greenberg MT, Feinberg ME and Splot RL. Resource consumption of a diffusion model for prevention programmes: the PROSPER delivery system (2012) J Adolesc Health 50: 256-263. https://doi.org/10.1016/j.jadohealth.2011.07.001
37. Schmer J, Li S, King JC, Nichol K and Mahadieva PJ. Benefits and costs of immunizing children against influenza at school: an economic analysis based on a large-cluster controlled clinical trial (2008) Health Aff (Millwood) 27: 96-104. https://doi.org/10.1377/hlthaff.f27.2.w96
38. Kyle JW, Hammitt JK, Lim HW, Geller AC, Hall-Jordan LH, et al. Economic evaluation of the US Environmental Protection Agency’s SunWise program: sun protection education for young children (2008) Pediatrics 121: e1074-1084. https://doi.org/10.1542/peds.2007-1400
39. Reynolds AJ, Temple JA, White BA, Ou SR and Robertson DL. Age 26 cost-benefit analysis of the child-parent center early education program (2011) Child Dev 82: 379-404. https://doi.org/10.1111/j.1467-8624.2010.01563.x
40. Aratani Y, Schwarz SW and Skinner C. The economic impact of adolescent health promotion policies and programs (2011) Adolesc Me State Art Rev 22: 367-386. https://doi.org/10.1177/0160286511413638
41. Caffrey MJ and Chatterji P. Developing an Internet-based survey to collect program cost data (2009) Eval Program Plann 32: 62-73. https://doi.org/10.1016/j.evalprogp.2008.08.009