Design of Double Intelligent Parking Garage Based On Fischer Technology

Shaopeng Yang*, Longning Wangb, Yuqi Zhangc and Qing An*

College of Mechanical and Electronic Engineering, NORTHWEST A&F University, Xianyang, China

*Corresponding author e-mail: 1131838098@qq.com, *2115134249@qq.com, b871915527@qq.com, c1298947320@qq.com

Abstract. [Objective] In view of the ubiquitous parking problems in cities, a new double-deck intelligent parking garage with space saving and intelligent labor saving is designed [Method] Based on the idea of fischer creative technology, a two-layer intelligent parking garage is designed. The design of mechanical system and the production of physical model are completed by fischer model. The human-machine operation panel is compiled by ROBO PRO software. Button - type access mode is adopted, and it has the function of anti - slip and stable operation. At the same time, the optimal path algorithm can save time. [Results] The designed double-deck intelligent parking garage can achieve the expected movement requirements, and can remove the upper layer of vehicles while ensuring that the bottom layer of vehicles do not move. At the same time, the optimal path algorithm makes it a strong guarantee to pick up vehicles quickly. [Conclusion] The two-layer intelligent parking garage designed and built has reached the design requirements. The further improvement is to transform from the model of fischer to the real product, and the problem of load bearing of the parking garage must be solved.

1. Introduction

With the unprecedented economic growth in China, how to deal with the current environmental changes quickly has become the key to maintain stable economic growth. Among the numerous emerging urban environmental problems, how to solve the parking problem has become a problem that must be solved in the construction of a modern city.

At present, the current situation of parking in residential areas mainly includes: 1. The number of parking Spaces is far from meeting the demand; 2. The phenomenon of disorderly parking in the residential area occurs from time to time; 3. The parking in the community is dominated by single-storey parking Spaces; 4. Inconvenient parking and high technical requirements for drivers.

These problems are increasingly prominent, and it is urgent to improve the number of parking spaces in the unit area of the community. Based on the creative combination of fischer as the platform, mechanical principles, mechanical design and other pre-study courses, this paper designs a two-layer intelligent parking garage.
2. Design prototypes
On the basis of the existing parking garage, the first problem we solve is how to make an effective use of a transitional parking space in the three-dimensional garage (mainly refers to the parking space that cannot be taken by the upper layer vehicles after parking vehicles) (figure 1).

In order to solve the above problems, this paper designed a two-layer parking garage to solve this problem. It is mainly through the realization of the left and right lateral movement of the lower parking spaces and the vertical movement of the upper and lower parking spaces that all the parking spaces can move freely so as to ensure that the lower parking spaces can be full of vehicles without affecting the upper parking vehicles. (in this paper, the motion mode combining vertical movement up and down and lateral movement is called circular motion)

3. Structure and main parameters of the comet system
The two-layer intelligent parking garage based on fischer is shown in figure 2. The main power unit of the garage is the motor, each motor drives the screw connected to it to move, and then realizes the corresponding movement of the parking space. The efficiency of the screw transmission is $\eta=0.85$. The garage can be recycled flexibly, with novel structure and high degree of automation.

Item	Physical garage	Fischer model
Size(mm)	5116×4455×3500	220×191×150
The garage weight to bear	4600kg	1000g
The screw weight to bear	2300kg	500g
Control mode	PLC	TXT Controller
Drive way	Motor drive	Motor drive

Figure 1. The garage to compare

Figure 2. The fischer structure of two-layer intelligent parking garage
Firstly, the general functional model of the two-layer intelligent parking garage is established, and then the sub-functional structure is explained. The two-layer intelligent parking garage is mainly composed of three parts: Intelligent control module and its functions, Two layer clamping transfer module and the bottom layer clamping transfer module and vertical lifting module and bottom horizontal moving module.

3.1. Intelligent control module and its functions
The figure 3 is a touch-button operation panel, which is programmed and controlled by the TXT Controller and the limit switch to stop and take the car. At the same time, a switch button is set to select the position of taking the car. In order to achieve the expected mechanical movement, the two-layer intelligent parking garage needs to complete a series of complex actions through the intelligent control panel: find a parking space -- identify the position of the vehicle -- judge the path of the vehicle -- mechanism movement and so on. In the design of two-layer intelligent parking garage, the key to the competitiveness of the product is to judge the shortest running track of the car. Program flow is based on the user issued instructions or pre-implanted procedures to act, is the main function of the machine. The realization of the main function is about the path planning of the movement of the parking space in the garage and the coupling of the servo parts. Multiple limit switches (buttons) are connected to the input ports of I/O expansion plate 1 and 2, and motor signal motion state signal is connected to the output ports of I/O expansion plate 1 and 2. Coupled with the "ROBO controller", the USB serial port output signal is connected to the computer, and the corresponding ROBOPro graphical program is written to identify the execution state, optimize the vehicle access path, and precisely control the parking space to reach the specified position through the limit switch to meet the precision requirements.

![Figure 3. Intelligent control module](image)

The position of the four parking Spaces is mainly limited by the contact switch.

3.2. Two layer clamping transfer module and the bottom layer clamping transfer module
The two-layer clamping transmission module realizes the lateral movement of the two-layer vehicle through two symmetrical lead screw mechanisms, sprocket chains and rack and pinion.

When the base plate touches the limit switch of the clamping device, the clamping device starts to start. After the clamping action is completed, the base plate moves in translation under the action of the rack and pinion. When the limit switch is touched at the termination, the movement stops and the transposition action is completed.
When the motor (M2) receives the motion command, the clamping mechanism starts to move towards the garage. At the same time, the clamping mechanism on the other side of the garage starts to move towards the garage.

When the contact switch at the preset position is touched, the motor (M2) stops moving, and then the transmission gear, driven by the motor (M1), starts to drive the rack mounted carriage plate to move towards one side.

The bottom clamping transmission module is clamped and positioned by two symmetrical screw mechanisms, and the transposition operation of the bottom vehicle is realized through the combination of sprocket chain and rack and pinion. The mechanical principles of the two modules are the same.

3.3. Vertical lifting module and bottom horizontal moving module

Vertical modules by double screw mechanism to realize the vehicle vertical lift, (M3) receives the signal starts when the motor movement, the movement to double screw gearing system, thus sports support plate with screw up and down, in order to guarantee the running smoothness of the formation of the start and end position to prevent contact switch, when bottom touch contact switch (on behalf of the vehicle has reached the preset position), contact switch of the potential change and the change of signal back to the controller, and controller to send the motor to stop movement instruction;

The mechanical structure of the bottom horizontal moving module is the same as that of the vertical lifting module. It also realizes the horizontal movement of the bottom vehicle through the combination of screw and slider.

The base plate of the slider is fixed with the screw screw pair, and the horizontal movement of the bottom vehicle is realized through the rotation of the screw screw pair, and the horizontal movement of the bottom vehicle is precisely controlled by the contact switch.
4. Workflow
In order to ensure that the user can park and take the car quickly and conveniently, the process of parking and taking the car is shown in figure 6.

![Image of design flow chart of parking car]

Figure 6. Design flow chart of parking car

5. Working process and programming

5.1. Part of the parking
When the owner drives the car to waiting area, press the "stop" button, and the vehicle has priority to stay on the first floor. At the same time, the garage always keeps the parking position without vehicles. According to figure 1 as an example, the state of the parking space is state 1 at this time, and the vehicle is parked at the No. 4 parking space: the owner puts the car on the No. 4 parking plate, and the left vertical screw screw pair drives the No. 1 parking space to the upper left, and stops when it touches the limit switch; The upper clamping transmission device performs the tightening positioning movement. When the limit switch is touched, the movement stops.

![Image of parking state]

Figure 7. Parking state
The left lifting device drops, touches the limit switch of the lower left position, and the movement stops; The lower screw drive No.4 floors of tora are left to a lower left, vice driving on the left side of the vertical screw thread No.3 floors to the middle position, the lower clamping transmission device drives the No.4 floors of left to a lower left, the right side of the vertical screw drive to a lower right under the floors, touch the limit switch and stop motion, the lower screw drive bikes, No.4 floors of lorries and No.2 on the left, made the car movement to the lower left, clamping transmission device drives the No. 1 on the second floor plate right to the upper right, the right side of the lead screw drive No.1 supporting plate down to the middle position, the lower screw right, end of the parking, parking state for No.2 at this time.

5.2. Pickup part
When the owner takes the car, he/she will check the position of his/her car on the display screen and press the corresponding parking number button on the control panel. The car will move to the position of taking the car with the trailer board. For the vehicle with No.3 parking space, the optimal path algorithm is adopted, and the parking space moves from the initial position to the exit position.

6. Conclusion
The two-layer intelligent parking garage is safe, small, efficient and intelligent. It can be used to park and pick up cars with one key. Two-layer parking is adopted to realize the maximum utilization of space, which is both reliable and economical.

1. The two-level intelligent parking garage makes full use of the innovative intelligence. ROBOPro graphical programming is used to control the garage to complete the functions of finding parking space, identifying vehicle position, judging vehicle path and mechanism movement.

2. Compared with the actual mechanical structure, some mechanisms constructed by the model of the comet can not achieve the desired effect. For example, when the bottom screw is subjected to the weight of the vehicle, it moves slowly. Therefore, in the actual manufacturing process of the garage, should use the rack and pinion transmission, the parking force transferred to the shaft.

References
[1] Shizhihui, Wu Hewe, Chen Xin, et al. Bicycle parking device based on Fischer component [J]. Machinery management and development, 2018, (6): 9-11.
[2] Zhang Tao, Li Gaoxu, Zhou Jinliang, et al. Design of three-floor no-avoidance side parking device based on Fischer model [J]. Science & technology economic market, 2018, (7): 5-6.
[3] Six fish and one manual [z]. Beijing: Beijing zhongjiaoyi technology Co., LTD., 2005.
[4] Fischertechnik GmbH. Fischer creative combination model user manual [z]. Fischer Group of companies, 2009.
[5] Huang jichang, Xu Qiaoyu, Zhang Haigui. Practical organization atlas [M]. Beijing: China machine press, 2008.