Review Article

Natural anti-inflammatory agents for pain relief

Joseph C. Maroon, Jeffrey W. Bost, Adara Maroon

Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, & Vanderbilt University, Nashville, TN, USA

E-mail: Joseph C. Maroon - maroonjc@upmc.edu; *Jeffrey W. Bost - bostj@upmc.edu; Adara Maroon - amaroon@sewickley.org

*Corresponding author

Received: 20 October 10 Accepted: 22 October 10 Published: 13 December 10

DOI: 10.4103/2152-7806.73804

This article is available from: http://www.surgicalneurologyint.com/content/1/1/80

This article may be cited as:

Maroon JC, Bost JW, Maroon A. Natural anti-inflammatory agents for pain relief Surg Neurol Int 2010;1:80

Available FREE in open access from: http://www.surgicalneurologyint.com/text.asp?2010/1/73804

Abstract

The use of both over-the-counter and prescription nonsteroidal medications is frequently recommended in a typical neurosurgical practice. But persistent long-term use safety concerns must be considered when prescribing these medications for chronic and degenerative pain conditions. This article is a literature review of the biochemical pathways of inflammatory pain, the potentially serious side effects of nonsteroidal drugs and commonly used and clinically studied natural alternative anti-inflammatory supplements. Although nonsteroidal medications can be effective, herbs and dietary supplements may offer a safer, and often an effective, alternative treatment for pain relief, especially for long-term use.

Key Words: Alternative treatments, inflammation, natural anti-inflammatories, pain

INTRODUCTION

Pain, heat, redness, and swelling (dolor, calor, rubor, tumor) are the classic manifestations of the inflammatory process. Abnormalities of the joints of the spine, associated muscles, tendons, ligaments and bone structural abnormalities can all result in pain and need for neurosurgical consultations. Typically, patients will not require immediate surgical intervention, and therefore require treatments to reduce pain and enhance quality of life activities.[71]

In most cases, the genesis of pain is inflammatory, regardless of the etiology. With the elucidation of the role of inflammatory cytokines, there is now a clear understanding of the pathways by which many anti-inflammatory drugs can alleviate inflammation and relieve pain.

The use of non-steroidal anti-inflammatory drug (NSAID) mediation is still the mainstay of most classically taught clinicians for joint and spine related inflammatory pain, despite their commonly known side effects [Table 1].

Table 1: The commonly known and documented side effects of steroid-based medications[106]

Side effects of steroid-based medications	Increased risk of infection	Impaired wound healing
Dermatitis	Increased appetite	
Fluid retention edema	Weight gain	
Fat deposits in face, chest, upper back and stomach	Worsening of previously acquired medical conditions	
Mood change	Depression	
Hypertension	Hyperglycemia	
Cushingoid-like state	Adrenal suppression and crisis	
Stomach ulcers	Cataracts	
Osteoporosis		

NSAID mechanisms are primarily through interaction with proinflammatory cytokines interleukin (IL)-1α, IL-1β, IL-6 and tumor necrosis factor (TNF-α). Increased concentrations of TNF-α are believed to cause the cardinal signs of inflammation to occur.[46]

These proinflammatory cytokines result in
INFLAMMATORY PATHWAYS

Prostaglandins act as short-lived localized hormones that can be released by any cell of the body during tissue, chemical, or traumatic injury, and can induce fever, inflammation, and pain, once they are present in the intercellular space. Thromboxanes, which are also hormone activators, can regulate blood vessel tone, platelet aggregation, and clot formation to increase the inflammatory response. \[^{92,82}\] The inflammatory pathway is a complex biochemical pathway which, once stimulated by injury, leads to the production of these and other inflammatory mediators whose initial effect is pain and tissue destruction, followed by healing and recovery. \[^{34,51}\]

A major component of the inflammatory pathway is called the arachidonic acid pathway because arachidonic acid is immediately released from traumatized cellular membranes. Membrane-based arachidonic acid is transformed into prostaglandins and thromboxanes partly through the enzymatic action of cyclooxygenase (COX). \[^{13,57}\]

There are two types of COX enzymes, COX-1 and COX-2. Both the enzymes act similarly, but selective inhibition (as accomplished by selective COX-2 inhibiting NSAIDs) can make a difference in terms of side effects.

Acetylsalicylic acid works by irreversibly disabling the COX enzymes to block the cascade [Figure 1]. NSAIDs have evolved from blocking both COX-1 and COX-2 to selectively only blocking COX-2 in order to inhibit the inflammatory response and reduce the production of inflammatory prostaglandins and thromboxanes. The major push to develop the selective COX-2 inhibitors has been the recognition of significant complications associated with the nonselective COX-1 and COX-2 NSAIDs. Nonselective NSAIDs’ major side effects include significant gastrointestinal upset, gastritis, ulceration, hemorrhage, and even death. By locking COX-1, which also normally acts to protect the gastrointestinal mucosa, nonselective NSAIDs and aspirin can cause significant gastric tissue damage. \[^{34,51,78,91,3,60,115}\]

Various studies have also shown that NSAIDs can delay muscle regeneration and may reduce ligament, tendon, and cartilage healing. \[^{4,11,77}\] Specifically, NSAIDs are believed to wipe out the entire inflammatory mediated proliferative phase of healing associated with WBC actions (days 0–4). A study of the effects of NSAIDs on acute hamstring injuries was done in humans by Reynolds et al., \[^{91}\] and these investigators concluded that patients who used NSAIDs did not experience a greater reduction of pain and soft-tissue swelling when compared with the placebo group. Interestingly enough, the authors noted that the NSAIDs’ group had worse pain associated with severe injuries compared with the placebo group.

The NSAIDs are also known to have adverse effects on kidney function. \[^{31}\] Dehydration or preexisting chronic renal failure or disease, resulting in stimulation of the renin–angiotensin system, may predispose certain populations to acute renal failure through inhibition of prostaglandin synthesis, which can occur when taking NSAIDs. \[^{31}\] The National Kidney Foundation asserts that approximately 10% of kidney failures per year are directly correlated to substantial overuse of NSAIDs.

Life-threatening side effects of selective COX-2 NSAIDs

In December 1998, celecoxib (Celebrex) was approved by the Food and Drug Administration (FDA) as the first selective COX-2 inhibitor for treatment of arthritis pain. \[^{92,11,22}\] Rofecoxib (Vioxx) was approved several months later, followed by valdecoxib (Bextra). \[^{92,28,67,79}\] These NSAIDs were designed to allow continued production of the gastrointestinally protective prostaglandins produced through the COX-1 enzyme system while blocking the COX-2 enzyme that produces the inflammatory prostaglandins. \[^{14,45,51,99}\]

Celebrex, Vioxx, and Bextra quickly became the mainstay for the treatment of chronic pain conditions related to inflammation. \[^{71}\] Within a few years, an estimated 15–20 million people in the US were using selective COX-2-inhibiting NSAIDs on a long-term basis. These drugs became the most commonly used pharmaceutical agent with more than 70 million NSAID prescriptions written each year and 30 billion over-the-counter NSAID...
NF-kB inflammatory pathways and cytokines

The NF-kB molecule is a transcription factor that controls the transcription of DNA for the perpetuation of the inflammatory immune response. It acts as a switch to turn inflammation on and off in the body. NF-kB has the ability to detect noxious stimuli, such as infectious agents, free radicals, and other cellular injuries, and then directs DNA to produce inflammatory cytokines. The NF-kB proteins are localized in the cytoplasm of the cell and are associated with a family of inhibitory proteins known as inhibitor of kB (IkB). The TNF-α, and especially IL-1β, can also directly stimulate enzymes known as matrix metalloproteinases, which break down extracellular collagen matrix, a hallmark of inflammatory joint disease. The IκB proteins are normally bound to NF-kB and block their nuclear localization signal. A variety of provoking stimuli can degrade the IκB and result in the nuclear translocation of NF-kB to be free to activate DNA synthesis of inflammatory cytokines [Figure 2].

Aspirin is now believed to target both the NF-kB and COX pathways. These agents inhibit the NF-kB pathway in endothelial cells and block NF-kB activation to inhibit leukocyte recruitment. NSAIDs have also been found to inhibit both the COX system and the NF-kB pathway. Immunosuppressant drugs also reduce nuclear expression of NF-kB. Research now indicates that blocking the activation of NF-kB along with other inflammation mediators is the major mechanism for reducing inflammation by natural compounds.

Examples of natural anti-inflammatory

Plant- and animal-derived nutraceutical preparations have been used for hundreds and even thousands of years to obtain effective pain relief. Herbal medications are becoming increasingly popular because of their relatively few side effects. Nevertheless, there are problems associated with these dietary supplements, and their use requires knowledge of their biological action, clinical studies (both affirmative and negative), and potential interactions with other nutraceutical products and prescription medications.

The evaluation of nutraceutical preparations with appropriately designed controlled studies has exploded in recent years. There is now a greater degree of confidence based on controlled study design and improved quality of the investigators that has strengthened positive findings found using natural compounds to treat diseases. It is important for healthcare practitioners to learn about these scientific studies to counsel patients who are taking various dietary supplements, herbs minerals and vitamins for both disease treatment and prevention.
Table 2: Several examples of inflammation triggering factors, pathway mediators and conditions modulated by natural compounds

Natural compounds and inflammatory pathway modulation	Inflammation triggers	Infection	Allergic immune response	Arachidonic acid	Leukotrienes	NO	Lipoygenase	TNF-α	Adhesion molecules	Reactive oxygen species (ROS)	Cytokines	Atherosclerosis	Thrombosis	Autoimmune response	Neurodegeneration
Inflammation triggers	Stress														
Radiation															
Trauma/injury															
Inflammatory diet															
Inflammatory pathways	NF-κB														
	IL-1,6														
	CRP														
	COX-1 and -2														
	Prostaglandins														
	Thromboxanes														
	Collagenase/MVP														
Conditions modulated	Pain														
	Inflammation														
	Insulin resistance														
	Cancer														

Quality considerations

The processes used to prepare herb-derived compounds pose complications when it comes to determining the quantity and concentration of the products.[30,63,102] The preparation processes are not standardized, and therefore, the extraction process and the type of plant used may affect the true concentration of the product. In addition, there is a lack of uniformity within and between manufacturers. Although dietary supplements are not held to the same rigorous testing and standards as pharmaceutically derived medications in the US, there are many regulations that still control their manufacture because these are food products.

The US governmental agencies, through the FDA and others, routinely inspect the manufacture of vitamins or supplements made in this country, as they do for any other food product.[30,63,74] Contaminants, such as the recently discovered high lead content found in various Ayurvedic preparations that were made by a Indian manufacturer and imported into the US,[30,63,74,102] are generally thought to be uncommon, but can be a concern when purchasing imported supplements.

Some manufacturers inflate nutraceutical products’ claims and may not cite possible side effects and potential drug interactions. Bleeding complications are associated with white willow bark, ginger, garlic, and others. Therefore, such medicinal preparations are not without risk. Products such as omega-3 essential fatty acids (EFAs) (O3) do have strong scientific support to be considered as an alternative and/or complementary agent to NSAIDs. Published studies have shown the effectiveness of O3 to successfully treat spine-related pain.[71] Capsaicin, oil of camphor, and other natural topical preparations are commonly used for muscle soreness and local application for painful traumatic injuries.[12,16,80] The subsequent sections will review many of these products and discuss their efficacy and safety issues. As with any drug or natural compounds, additional caution should be used when considering these treatments for children, pregnant or lactating mothers or any other clinical or disease condition that could increase possible side effect or complication.

Omega-3 EFAs (fish oil)

The use of fish oil (in the form of cod liver oil), an omega-3 EFA, for the treatment of muscular, skeletal, and discogenic diseases, can be traced back to the late 18th century as detailed by Curtis et al.[24,25] Unfortunately, because of the rapid onset of rancidity of this polyunsaturated oil when exposed to air, and hence its disconcerting odor, cod liver oil fell out of favor. With improved extraction techniques, such as using a protective nitrogen blanket and enhanced oxygen-free encapsulation methods, there is less chance of oxidation during the manufacturing process. The therapeutic benefits of fish oil can now be realized without the regurgitation and odor of previous products caused by peroxides and rancid tasting fish oil.[14]

Research has shown that the omega-3 polyunsaturated fatty acids are some of the most effective natural anti-inflammatory agents available.[12,23-25,27,50,85] With the discovery that vascular inflammation is the underlying cause of coronary artery disease, fish and fish oil supplements are now recommended by the American Heart Association for the prevention of this disease.[12,23-25,27,50,85] Countries that have the highest fish consumption also have a lower incidence of neurodegenerative disease and depression.[12,23-25,27,50,85] The biological basis for the effectiveness of fish oil in treating arthritis has been well documented with many positive clinical studies, when compared to traditional pharmaceutical anti-inflammatory agents.[12,23-25,27,50,85]

The active ingredients in fish oil, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), enhance the conversion of COX to prostaglandin E3. A natural anti-inflammatory agent, prostaglandin E3 competitively inhibits the effects of the arachidonic acid conversion to prostaglandin E2, a highly inflammatory substance. Prostaglandin E3 also inhibits the synthesis of TNF-α and IL-1b, both of which are inflammatory cytokines. The EPA and DHA can inhibit the 5-LOX pathway, which converts arachidonic acid to inflammatory leukotrienes, by competitive inhibition as well. When EPA and DHA are incorporated into articular cartridge chondrocyte cell membranes, there is a dose-dependent decrease in the
expression and activity of the proteoglycan-degrading aggrecanase enzymes.\[12,25-27,30,85]\n
Omega-3 EFA, found in fish oil, can directly reduce the degenerative enzymes, aggrecanase and matrix metalloproteinase, as well as IL-1, TNF-\(\alpha\), and COX-2, to reduce the inflammation in synovial cartilage. A recent study of 250 patients with cervical and lumbar disc disease, who were taking NSAIDs, revealed that 59% could substitute fish oil supplements as a natural anti-inflammatory agent for the NSAIDs.\[12,25-27,30,85]\n
The recommended dosage is a total of 1.5–5g of EPA and DHA per day, taken with meals.

Rare side effects include steatorrhea and occasional belching if the supplements are not taken with meals. Typically, persons on a regimen of anticoagulant medications should not take omega-3 EFAs because of the possibility of increasing the bleeding potential.

White willow bark

Bark from the white willow tree is one of the oldest herbal remedies for pain and inflammation, dating back to ancient Egyptian, Roman, Greek, and Indian civilizations, as an analgesic and antiinflammatory agent. Because of the gastric side effects of aspirin, there has been a resurgence in the use of white willow bark for the treatment of inflammatory syndromes. The mechanism of action of white willow bark is similar to that of aspirin which is a nonselective inhibitor of COX-1 and COX-2, used to block inflammatory prostaglandins.\[86\]

Various randomized, placebo-controlled studies comparing white willow bark with nonsteroidal agents have shown an efficacy comparable to these agents and aspirin. Salicin from white willow bark is converted to salicylic acid by the liver and is considered to have fewer side effects than aspirin. However, it is costlier than aspirin, and should not be used in children (to avoid the risk of Reye’s syndrome), or in patients with peptic ulcer disease, poorly controlled diabetes, hepatic or renal disorders, or other conditions in which aspirin would be contraindicated. The usual dose of white willow bark is 240 mg/day.\[18,19,33,41,64,69,99,100]\n
Curcumin (turmeric)

Curcumin is a naturally occurring yellow pigment derived from turmeric (Curcuma longa), a flowering plant of the ginger family. It has traditionally been used as a coloring material that has been used since ancient times. Curcumin is derived from the bark of the maritime pine

Curcumin is known to inhibit inflammation by suppressing NF-kB, restricting various activators of NF-kB as well as stemming its expression.

Curcumin has also been suggested as a treatment for colitis, chronic neurodegenerative diseases, arthritis, and cancer. In addition, it regulates the activity of several enzymes and cytokines by inhibiting both COX-1 and COX-2. Most studies to date have been performed in animals, but given the centuries of use of curcumin, as well as its now demonstrated activity in the NF-kB, COX-1, and COX-2 inflammatory pathways, it may be considered a viable natural alternative to nonsteroidal agents for the treatment of inflammation.

The usual dosage of standardized turmeric powder is 400–600 mg taken three times per day.\[31\] Side effects are few, but with extended use, this agent can cause stomach upset, and in extreme cases gastric ulcers may occur at very high doses. Caution should be used if the patient is taking anticoagulant medications or high doses of nonsteroidal drugs. Studies have shown that curcumin may be used in combination with lower doses of nonsteroidal medications.\[7,9,11,21,40,97,111,121]\n
Green tea

Green tea has long been recognized to have cardiovascular and cancer preventative characteristics due to its antioxidant properties. Its use in the treatment of arthritic disease as an anti-inflammatory agent has been recognized more recently. The constituents of green tea are polyphenolic compounds called catechins, and epigallocatechin-3 galate is the most abundant catechin in green tea.

Epigallocatechin-3 galate inhibits IL-1–induced proteoglycan release and type 2 collagen degradation in cartilage explants.\[84\] In human in vitro models, it also suppresses IL-1b and attenuates activation of the transcription factor NF-kB. Green tea also inhibits the aggrecanases which degrade cartilage.

Green tea research now demonstrates both anti-inflammatory and chondroprotective effects. Additionally, green tea research includes the “Asian paradox”, which theorizes that increased green tea consumption in Asia may lead to significant cardiovascular, neuroprotective and cancer prevention properties.\[113\] The usual recommendation is 3–4 cups of tea a day. Green tea extract has a typical dosage of 300–400 mg. Green tea can cause stomach irritation in some, and because of its caffeine content, a decaffeinated variety is also available; but the polyphenol content is currently unknown.\[2,49,53,108,112,117,120]\n
Pycnogenol (maritime pine bark)

Pycnogenol, like white willow bark, is a nutraceutical material that has been used since ancient times.
Boswellia serrata resin (Frankincense)

The *Boswellia* species are trees located in India, Ethiopia, Somalia, and the Arabian Peninsula, and they produce a gum resin called olibanum, better known in the western world as frankincense. This resin possesses anti-inflammatory, anti-arthritic, and analgesic properties. Boswellia can inhibit the leukotriene biosynthesis in neutrophilic granulocytes by inhibiting 5-LOX, thus affecting various inflammatory diseases that are perpetuated by leukotrienes. Clinically, the substance is used in the treatment of degenerative and inflammatory joint disorders. It reduces the total white blood cell count in joint fluid, and it also inhibits leukocyte elastase, which is released in rheumatoid arthritis. In one recent study, a statistically significant improvement in arthritis of the knee was shown after 8 weeks of treatment with 333 mg *B. serrata* extract taken three times a day. The treatment improved function, but radiographically there was no change in the affected joints.

A combination of *Boswellia* and curcumin showed superior efficacy and tolerability compared with nonsteroidal diclofenac for treating active osteoarthritis. Boswellia typically is given as an extract standardized to contain 30–40% boswellic acids (300–500 mg two or three times/day). *Boswellia* has been well tolerated in most studies, although some people may experience stomach discomfort, including nausea, acid reflux, or diarrhea.

Resveratrol

Resveratrol is a plant-based polyphenol molecule that is found in various concentrations of many different plant sources. The plant is called Japanese Knot weed or *Polygonum cuspidatum*, and the skins of red wine grapes are believed to have the most concentrated amounts of resveratrol. In plants, resveratrol is generally found in the plant skin and acts as a phytoalexin to protect the plant from infection, excessive UV radiation and aide in general plant defense. Resveratrol has also been found to have significant anti-mutation, anti-inflammatory, antioxidant and DNA protective actions, when consumed by animals and humans.

Most of the active research with resveratrol has been done in neuro and cardioprotection, but several studies are being reported on resveratrol’s use for arthritic joint pain. Elmali et al, reported in 2007 using animals that intra-articular injection of resveratrol protects cartilage and reduces the inflammatory reaction in simulated knee osteoarthritis. The anti-inflammatory properties of resveratrol have also been observed in experimental animal models with paw edema, which is attributed to suppression of inflammatory prostaglandin synthesis.

Resveratrol is also a potent and specific inhibitor of TNF-α and IL-1β-induced NF-kB activation. Resveratrol shows the anti-inflammatory properties as it suppresses COX-2 by blocking NF-kB activation.

Resveratrol is available commercially as a dietary supplement capsule, generally from the *P. cuspidatum* source. The *trans*-resveratrol is the active form, and although there is not an established dosing range, the typical dose is from 50 to 500 mg daily. Any significant side effect or safety issues with resveratrol have not been established, but due to an experimentally shown anti-platelet effect, caution should be exercised when taking other prescription or herbal anti-platelet or coagulation altering products.

Uncaria tomentosa (cat’s claw)

Uncaria tomentosa and *Uncaria guianensis* are Peruvian herbs derived from woody vines with small claw-like thorns (hence the vernacular name, cat’s claw) at the base of the leaf, which allow the plant to climb to heights of up to 100 ft. Traditionally, the bark of cat’s claw is used to treat arthritis, bursitis, and intestinal disorders. The active ingredients appear to be polyphenols (flavonoids, proanthocyanidins, and tannins), alkaloids, and steroids. Various studies indicate that this Peruvian herb induces a generalized reduction in proinflammatory mediators.
This has been shown to prevent the activation of the transcriptional factor NF-kB and it directly inhibits TNF-α production by up to 65–85%. It inhibits the expression of inducible genes associated with inflammation, specifically negating the expression of inducible nitric oxide synthase, and hence attenuates nitrous oxide production. Side effects may include nausea, although it has shown an impressive protective effect on indomethacin-induced enteritis in laboratory studies.

In general, toxicity and side effects are considered minimal. Two case reports of acute renal failure in a patient with lupus erythematosus have been recorded. Cat’s claw can be consumed as a tea (1000 mg root bark to 8 oz water), or as a dry, standardized extract in a capsule (20–60 mg daily).

Capsaicin (chili pepper)

Capsicum annum is a small spreading shrub which was originally cultivated in the tropical regions of the Americas but is now grown throughout the world, including the US. The small red fruit commonly used to accentuate chili owes its stinging pungency to the chemical, capsaicin. This was isolated by chemists more than a century ago and constitutes approximately 12% of the chili pepper. This fruit has been used for various medicinal purposes by the native peoples of the American tropics for hundreds of years.

Capsaicin produces highly selective regional anesthesia by causing degeneration of capsaicin-sensitive nociceptive nerve endings which can produce significant and long-lasting increases in nociceptive thresholds. Capsaicin potently activates transient receptor potential vanilloid 1, which is a main receptor underlying nociception. It also inhibits NF-kB, thus producing an anti-inflammatory effect. Capsaicin can cause a burning sensation when it comes in contact with human flesh, and also in the digestive tract. This herb is rarely used alone but is generally mixed into other natural anti-arthritic preparations. There are topical capsaicin formulations now available to treat post-herpetic neuralgia. Other uses have been studied for peripheral neuropathies and chronic musculoskeletal pain.

CONCLUSIONS

The human body’s natural response to injury results in inflammation-induced pain, swelling, and erythema. In order to reduce pain, anti-inflammatory agents such as NSAIDs act on the multiple inflammatory pathways, which, although often very effective, can have undesirable side effects such as gastric ulceration and, infrequently, myocardial infarction and stroke.

For centuries, natural anti-inflammatory compounds have been used to mediate the inflammatory process and often with fewer side effects. We have briefly reviewed several of the most commonly used plant- and animal-derived natural compounds that may possess similar effectiveness in treating the inflammatory reaction seen in both chronic and sub-acute pain syndromes encountered in a typical neurosurgical practice. Ongoing experiments and clinical trials should be continued to guide and provide their scientifically based effectiveness to reduce inflammation and promote wellness.

REFERENCES

1. Acebo E, Raton JA, Sautsa S, Eizaguirre X, Trébol I, Pérez JL. Allergic contact dermatitis from *Boswellia serrata* extract in a naturopathic cream. Am J Contact Dermat 2004;15:91-2.
2. Aguilera JL, Rojas P, Marcelo A, Plaza A, Bauer R, Reininger E, et al. Anti-inflammatory activity of two different extracts of *Uncaria tomentosa* (Rubiaceae). J Ethnopharmacol 2002;81:271-6.
3. Almekinders LC, Gilbert JA. Healing of experimental muscle strains and the effects of nonsteroidal anti-inflammatory medication. Am J Sports Med 1986;14:303-8.
4. Almekinders LC. Anti-inflammatory treatment of muscular injuries in sport. An update of recent studies. Sports Med 1999;28:383-8.
5. Anderssohn F, Suissa S, Garbe E. Use of first- and second-generation cyclooxygenase-2-selective nonsteroidal antiinflammatory drugs and risk of acute myocardial infarction. Circulation 2006;113:1950-7.
6. Boswellia serrata. Altern Med Rev 1998;3:306-7.
7. Araujo CC, Leon LL. Biological activities of *Curcuma longa*. L Mem Inst Oswaldo Cruz 2001;96:723-8.
8. Badria FA, El-Farahaty T, Shaban AA, Hawas SA, El-Batoty MF. Boswellia-curcumin preparation for treating knee osteoarthritis: A clinical evaluation. Alt Complement Ther 2002;8:341-8.
9. Banerjee M, Tripathi LM, Srivastava VM, Puri A, Shukla R. Modulation of inflammatory mediators by ibuprofen and curcumin treatment during chronic inflammation in rat. Immunopharmacol Immunotoxicol 2003;25:213-24.
10. Banno N, Akihisa T, Yasukawa K, Tokuda H, Tabata K, Nakamura Y, et al. Anti-inflammatory activities of the triterpene acids from the resin of *Boswellia carteri*. J Ethnopharmacol 2006;107:249-53.
11. Bengmark S. Curcumin, an atoxic antioxidant and natural NF-kB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: A shield against acute and chronic diseases. JPEN J Parenter Enteral Nutr 2006;30:45-51.
12. Bernstein JE, Bickers DR, Dahl MV, Roshal JY. Treatment of chronic postherpetic neuralgia with topical capsaicin. A preliminary study. J Am Acad Dermatol 1987;17:93-8.
13. Burton TM. Monsanto arthritis-pain drug, Celebrex, surpasses Viagra’s early sales success. The Wall Street Journal B: New York 1999.
14. Calder PC. N-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 2006;83:1505S-19.
15. Caterina MJ, Julius D. The vanilloid receptor: A molecular gateway to the pain pathway. Annu Rev Neurosci 2001;24:487-517.
16. Caterina MJ, Leffler A, Malmbarg AB, Martin WJ, Trafton J, Petersen-Verdugo CR, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000;288:306-13.
17. Cho KJ, Yun CH, Yoon DY, Cho YS, Rimbach G, Pack H. Effects of bioflavonoids extracted from the bark of *Pinus maritima* on proinflammatory cytokine interleukin-1 production in lipopolysaccharide-stimulated RAW 264.7. Toxicol Appl Pharmacol 2000;168:64-71.
18. Chrubasik S, Eisenberg E, Balan E, Weinberger T, Luzzati R, Conradt C. Treatment of low back pain exacerbations with willow bark extract: A
randomized double blind study. Am J Med 2000;9:9-14.
19. Chrubasik S, Knüzel O, Model A, Conradt C, Black A. Treatment of low back pain with a herbal or synthetic anti-rheumatic: A randomized controlled study. Willow bark extract for low back pain. Rheumatology 2001;40:1388-93.
20. Chung J, Lee KH, HorI Y, Willis WD. Effects of capsaicin applied to a peripheral nerve on the responses of primate spinal trigeminal tract cells. Brain Res 1985;329:27-38.
21. Claeson P, Pandhong A, Tuchinda P, Neutrakul V, Kanjanapothi D, Taylor WC, et al. Three non-phenolic diarylheptanoids with anti-inflammatory activity from Curcuma xanthorrhiza. Planta Med 1993;59:451-4.
22. Clemett D, Gas KL. Celcooxib: A review of its use in osteoarthritis, rheumatoid arthritis and acute pain. Drugs 2000;59:957-80.
23. Curtis CL, Harwood JL, Dent CM, Caterson I. Biological basis for the benefit of nutraceutical supplementation in arthritis. Drug Discov Today 2004;9:165-72.
24. Curtis CL, Hughes CE, Flannery CR, Little CB, Harwood JL, Caterson B. N-3 fatty acids specifically modulate catabolic factors involved in articular cartilage fatty acids specifically modulate catabolic factors. J Bio Chem 2000;275:721-4.
25. Curtis CL, Rees SG, Little CB, Flannery CR, Hughes CE, Wilson C, et al. Pathologic indicators of degradation and inflammation in human osteoarthritic cartilage are abrogated by exposure to n-3 fatty acids. Arthritis Rheum 2002;46:1544-53.
26. Graham DJ. COX-2 Inhibitors, Other NSAIDs, and Cardiovascular Risk: The Endurance of Common Sense. JAMA 2006;296:1653-6.
27. Duggal ML, Stamler J, Orencia AJ, Dyer AR, Liu K, Greenland P, et al. Fish consumption and the 30-year risk of fatal myocardial infarction. N Engl J Med 1997;336:1046-53.
28. Ehrich EW, Dalboi A, De Lepeleire I, Van Hecken A, Riendeau D, Yuan W, et al. Characterization of rofecoxib as a cyclooxygenase-2 isoinhibitor and demonstration of analgesia in the dental pain model. Clin Pharmacol Ther 1999;66:336-47.
29. Elmani N, Baysal O, Harma A, Ekanayka I, Mizra B. Effects of resveratrol in inflammatory arthritis. Inflammation 2007;30:1-6.
30. Ernst E. Adulteration of Chinese herbal medicines with synthetic drugs: A systematic review. J Intern Med 2002;252:107-13.
31. Farquhar B, Kenney WL. Anti-inflammatory drugs, kidney function, and outcomes of patients with chronic kidney disease. J Am Soc Nephrol 2009;20:2853-62.
32. Jancsó G, Jancsó-Gábor A. Direct evidence for an axonal site of action of capsaicin. Naunyn Schmiedebergs Arch Pharmacol 1980;313:91-4.
33. Fitzpatrick DF, Bing B, Rohdewald P. Endothelium-dependent vascular effects of an ethanolic Salix extract on the release of selected inflammatory mediators of immune responses. Annu Rev Immunol 2002;20:285-315.
34. Gilroy DW, Colville-Nash PR, Willis D, Chivers J, Paul-Clark MJ, Willoughby DA. Inducible cyclo-oxygenase may have anti-inflammatory properties. Nat Med 1999;5:696-701.
35. Grimm T, Chovanová Z, Muchová J, Symesová K, Liptáková A, Duracková Z, et al. Inhibition of NF-κB activation and MMP-9 secretion by plasma of human volunteers after ingestion of maritime pine bark extract (Pycnogenol). J Inflamm 2006;3:1.
36. Grimm T, Schäfer A, Höger P. Antioxidant activity and inhibition of matrix metalloproteinases by metabolites of maritime pine bark extract (Pycnogenol). Free Radic Biol Med 2004;36:811-22.
37. Gulati OP. Pycnogenol in venous disorders: A review. Eur J Drug Res 1999;7:8-13.
38. Gupta I, Gupta V, Parihar A, Gupta S, Luddke R, Safayhi H, et al. Effects of Boswellia serrato gum resin in patients with bronchial asthma: Results of a double-blind, placebo-controlled, 6-week clinical study. J Int Med Res 1998;26:314-8.
39. Haqqi TM, Anthony DD, Gupta S, Ahmad N, Lee MS, Kumar GK, et al. Prevention of collagen-induced arthritis in mice by a polyphenolic fraction from green tea. Proc Natl Acad Sci U S A 1999;96:4524-9.
40. Harris WS, von Schacky C. The Omega-3 Index: A new risk factor for death from coronary heart disease? Prev Med 2004;39:212-20.
41. Hegmann TA. Talk of two coxibs. JAMA 2005;18:14-7.
42. Hilti M. Timeline of pain reliever controversy, tracing the path on Cox-2, NSAID pain relievers. WebMD Medical News, 2005 Apr 7. Available from: http://arthritis.webmd.com/news/20050407/timeline-pain-reliever-controversy/ [Last accessed 2010 Aug 6].
43. Hollman PC, Feskens EJ, Katan MB. Tea flavonoids in cardiovascular disease and cancer epidemiology. Proc Soc Exp Biol Med 1999;220:198-202.
44. Holmes-McNary M, Baldwin AS Jr. Chemopreventive properties of trans-resveratrol are associated with inhibition of activation of the Ikappa B kinase. Cancer Res 2000;60:3477-83.
45. Holzer P. Capsaicin: Cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev 1991;43:143-201.
46. Hostanska K, Daum G, Saller R. Cytostatic and antiapoptosis inducing activity of boswellic acids toward malignant cell lines in vitro. Anticancer Res 2002;22:2853-62.
47. Jachak SM. Cyclooxygenase inhibitory natural products: Current status. Curr Med Chem 2006;13:659-78.
48. Jancsó G, Király E, Jancsó-Gábor A. Direct evidence for an axonal site of action of capsaicin. Naunyn Schmiedebergs Arch Pharmacol 1980;313:91-4.
49. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, et al. Chemopreventive activity of resveratrol, a natural product derived from grapes. Science 1997;275:218-20.
50. Maroon JC, Bost JW, Borden MK, Lorenz KM, Ross NA. Natural antiinflammatory agents for pain relief in athletes. Neurosurzg Focus 2006;21:E11.
51. Kepplering K, Laus G, Wurm M, Dierich MP, Thiemer H. Uncaria tomentosa (Vahl) DC. Ethnomedical use and new pharmacological, toxicological and botanical results. J Ethnopharmacol 1999;64:23-34.
52. Kimmatar K, Thawani V, Hingorani L, Khiyani R. Efficacy and tolerability of maritime pine bark extract, improves endothelial function of hypertensive patients. Life Sci 2004;75:855-62.
53. Malmstrom K, Daniels S, Kotey P, Seidenberg BC, Desjardins Pj. Comparison of rofecoxib and celecoxib, two cyclooxygenase-2 inhibitors, in postoperative dental pain: A randomized, placebo-and active-comparator-controlled clinical trial. Pain Med 2003;10:3-7.
54. Ko Rj. Adulterants in Asian patent medicines. N Engl J Med 1998;339:847-8.
55. Krivy N, Pavlotzky E, Chrubasik S, Eisenberg E, Brook G. Effect of salis cortex extract on human platelet aggregation. Planta Med 2001;67:209-12.
56. Liu F, Zhang Y, Lau BS. Pycnogenol improves learning impairment and memory deficit in senescence-accelerated mice. J Anti-aging Med 1999;2:349-55.
57. Liu X, Wei J, Zhou F, Würthwein G, Rohdewald P. Pycnogenol, French maritime pine bark extract, improves endothelial function of hypertensive patients. Life Sci 2004;74:855-62.
58. Lovelander L, Landøy G, Klaar J. Inducible cyclooxygenase may have anti-inflammatory properties. Nat Med 1999;5:696-701.
59. Grimm T, Chovanová Z, Muchová J, Symesová K, Liptáková A, Duracková Z, et al. Inhibition of NF-κB activation and MMP-9 secretion by plasma of human volunteers after ingestion of maritime pine bark extract (Pycnogenol). J Inflamm 2006;3:1.
60. Grimm T, Schäfer A, Höger P. Antioxidant activity and inhibition of matrix metalloproteinases by metabolites of maritime pine bark extract (Pycnogenol). Free Radic Biol Med 2004;36:811-22.
61. Gulati OP. Pycnogenol in venous disorders: A review. Eur J Drug Res 1999;7:8-13.
62. Gupta I, Gupta V, Parihar A, Gupta S, Luddke R, Safayhi H, et al. Effects of Boswellia serrata gum resin in patients with bronchial asthma: Results of a double-blind, placebo-controlled, 6-week clinical study. J Int Med Res 1998;26:314-8.
Surgical Neurology International 2010, 1:80

http://www.surgicalneurologyint.com/content/1/1/80

(Reply). Arthritis Rheum 2003;48:279-80.

Marianfeld R, Neumann M, Chupvilo S, Escher C, Knietz B, Avots A, et al. Cyclosporin A interferes with the inducible degradation of NF-kB inhibitors, but not with the processing of p105/NF-kB 1 in T cells. Eur J Immunol 1997;27:1601-9.

Maroon JC, Bost JW. Omega-3 fatty acids (fish oil) as an antiinflammatory: An alternative to nonsteroidal anti-inflammatory drugs for discogenic pain. Surg Neurol 2006;65:326-31.

Maroon JC. The Longevity Factor: How Resveratrol and Red Wine Activates Genes for a Longer and Healthier Life. New York: Simon and Schuster; 2009.

McGettigan P, Henry D. Cardiovascular risk and inhibition of cyclooxygenase: A systematic review of the observational studies of selective and nonselective inhibitors of cyclooxygenase 2. JAMA 2006;296:1633-44.

Meadows MV. Why drugs get pulled off the market. BMJ 1999;319:1279-89.

Miller MJ, Ahmed S, Bobrowski P, Haqqi TM. The chondroprotective actions of a natural product are associated with the activation of IGF-1 production by human chondrocytes despite the presence of IL-1b. BMC Complement Altern Med 2006;6:13.

Mix KS, Mengshol JA, Benbow U, Vincenti MP, Sporn MB, Brinkerhoff CE, et al. A synthetic triterpenoid selectively inhibits the induction of matrix metalloproteinases 1 and 13 by inflammatory cytokines. Arthritis Rheum 2001;44:1096-104.

Moncado S, Gryglewski R, Bunting S, Vane JR. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 1976;263:663-5.

Morrison BW, Christensen S, Yuan W, Brown J, Amlani S, Seidenberg B. Analgesic efficacy of the cyclooxygenase-2 specific inhibitor rofecoxib in post-dental surgery pain: A randomized, controlled trial. Clin Ther 1999;21:943-53.

Negr L, Lattanzi R, Giannini E, Colucci M, Margheriti F, Melchiorri P, et al. Impaired nociception and inflammatory pain sensation in mice lacking the prokineticin receptor PKR1: Focus on interaction between PKR1 and the capsacin receptor TRPV1 in pain behavior. J Neurosci 2006;26:6716-27.

Nelson AB, Lau BH, Ide N, Rong Y. Pycnogenol inhibits macrophage oxidative burst, lipoprotein oxidation, and hydroxyl radical-induced DNA damage. Drug Dev Ind Pharm 1998;24:139-44.

Abdul-Hadi O, Parvisj J, Austin MS, Viscusi E, Einhorn T. Nonsteroidal Anti-Inflammatory Drugs in Orthopaedics. J Bone Joint Surg 2009;91:2020-7.

Packer L, Rimbach G, Virgili F. Antioxidant activity and biologic properties of a procyanidin-rich extract from Pine (pinus maritima) bark, Pycnogenol. Free Radic Biol Med 1999;27:704-24.

Peng Q, Wei Z, Lau BH. Pycnogenol inhibits tumor necrosis factor-a-induced nuclear factor kappa B activation and adhesion molecule expression in human vascular endothelial cells. Cell Mol Life Sci 2000;57:834-41.

Popping J. Omega-3 essential fatty acids. Am J Health Syst Pharm 1999;56:719-20, 723-4.

Piscoya J, Rodriguez Z, Bustamante SA, Okahama NN, Miller MJ, Sandovol M, et al. Efficacy and safety of freeze-dried cat's claw in osteoarthritis of the knee: Mechanisms of action of the species Uncaria guianensis. Inflamm Res 2001;50:442-8.

Plummer SM, Holloway KA, Manson MM, Monks RJ, Kaptein A, Farrow S, et al. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kB activation via the NIK/IKK signalling complex. Oncogene 1999;18:6013-20.

Pusupislova E, Palecek J. Post-operative pain behavior in rats is reduced after administration of a standardised willow bark extract. Eur J Clin Pharmacol 1998;54:333-6.

Qin F, Chen QH. Green tea, the chemopreventive agent curcumin involves inhibition of NF-kappa B activation. Mutat Res 2001;480-481:243-68.

R. Aliment Pharmacol Ther 1998;12:1279-89.

Shao Y, Ho CT, Chin CK, Badmoe V, Ma W, Huang MT. Inhibitory activity of boswellic acids from Boswellia serrata against human leukemia HL-60 cells in culture. Planta Med 1998;64:328-31.

Sharma S, Thawani V, Hingorani L, Shrivastava M, Bhatte VR, Khiyani R. Pharmacokinetic study of 11-keto-beta-Boswellic acid. Phytomedicine 2004;11:255-60.

Sheng Y, Pero RW, Amiri A, Bryngeillson C. Induction of apoptosis and inhibition of proliferation in human tumor cells treated with extracts of Uncaria tenuissima. Anticancer Res 1998;18:3363-8.

Stanbury RM, Graham EM. Systemic corticosteroid therapy-side effects and their management. Br J Ophthalmol 1998;82:704-7.

Subbaramahiah K, Chung WJ, Michaluart P, Telang N, Tanabe I, Inoue H, et al. Rofecoxib inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. J Biol Chem 1998;273:21875-82.

Sumpio BE, Cordova AC, Berke-Schlessel DW, Qin F, Chen QH. Green tea, the “Asian paradox” and cardiovascular disease. J Am Coll Surg 2006;202:813-25.

Surn YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, et al. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: Down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res 2001;480:243-68.

Szalasi A, Blumberg PM. Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol Rev 1999;51:159-212.

Talalay P, Talalay P. The importance of using scientific principles in the development of medicinal agents from plants. Acad Med 2001;76:238-47.

Tijburg LB, Matern T, Foltz JD, Weisgerber UM, Katan MB. Tea flavonoids in cardiovascular diseases: A review. Crit Rev Food Sci Nutr 1997;37:771-85.

Tilley SL, Coffman TM, Koller BH. Modified messages: Modulation of inflammation in immune responses by prostaglandins and thromboxanes. J Clin Invest 2001;108:15-23.

Vane JR, Botting R. Inflammation and the mechanism of action of anti-inflammatory drugs. FASEB J 1987;1:89-96.

Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol 1971;231:232-5.

Vane JR. The fight against rheumatism: From willow bark to COX-1 sparing drugs. J Physiol Pharmacol 2000;51:573-86.

Vankemmelbeke MN, Jones GC, Fowles C, Ilic MZ, Handley CJ, Day AJ, et al. Inhibition of 5-lipoxgenase inhibitory activity. Br J Pharmacol 2000;117:651-5.

Wang C, Chung M, Lichtenstein A, Balik E, Kupelnick B, Devine D, et al. Effects of omega-3 fatty acids on cardiovascular disease. Evid Rep Technol Assess (Summ). 2004;94:1-8.

Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NK-k
B pathway in the treatment of inflammation and cancer. J Clin Invest 2001;107:135-42.

121. Yang CS, Wang ZY. Tea and cancer: A review. J Natl Cancer Inst 1993;85:1038-49.

122. Zandi E, Karin M. Bridging the gap: Composition, regulation, and physiological function of the Ik B kinase complex. Mol Cell Biol 1999;19:4547-51.

123. Zwillich T. Group calls for 2 arthritis drug bans, public citizen says Celebrex, Bextra share Vioxx's problems. Available from: http://arthritis.webmd.com/news/20050124/group-calls-2-arthritis-drug-bans [Last accessed on 2010 Aug 62].