Referências anatômicas na cirurgia do implante auditivo do tronco cerebral

Brazilian Journal of Otorhinolaryngology, vol. 71, num. 3, mayo-junio, 2005, pp. 282-286
Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial
São Paulo, Brasil

Disponível em: http://www.redalyc.org/articulo.oa?id=392437742004
Referências anatômicas na cirurgia do implante auditivo de tronco cerebral

Rubens Vuono Brito Neto¹, Ricardo Ferreira Bento², Alexandre Yasuda³, Guilherme Carvalhal Ribas⁴, Aldo Junqueira Rodrigues Jr.⁵

Resumo / Summary

O implante auditivo de tronco cerebral é uma opção os pacientes surdos que não têm a integridade das vias auditivas preservada. A cirurgia, por sua complexidade anatômica e funcional, requer treinamento específico em laboratório de anatomia por parte do cirurgião. **Objetivos**: Estudar a anatomia cirúrgica da cirurgia do implante auditivo de tronco cerebral. **Forma de estudo**: Estudo anatômico. **Material e Método**: Neste estudo dissecamos cadáver fresco preparado com solução corante injetada nas artérias e veias intra-cranianas. O local de inserção do eletrodo do implante auditivo de tronco cerebral foi estudado através do acesso translabyrinthico. **Resultados**: A técnica cirúrgica utilizada para a implantação do eletrodo de tronco cerebral é semelhante à utilizada na remoção do schwannoma vestibular. O complexo de núcleo coclear, composto pelo núcleo coclear ventral e dorsal, é o local para a colocação do eletrodo. O núcleo coclear ventral é o principal núcleo de transmissão de impulsos neurais do VIII par e seus axónios formam a principal via ascendente do nervo coclear. Tanto o núcleo ventral como o dorsal não são visíveis durante a cirurgia e sua localização depende de identificação de estruturas anatômicas adjacentes. **Conclusão**: A região de implantação do eletrodo do implante auditivo de tronco cerebral apresenta referências anatômicas que permitem sua fácil identificação durante a cirurgia.
INTRODUÇÃO

O implante auditivo de tronco cerebral foi desenvolvido para restaurar alguma audição útil em pacientes que apresentam ausência de nervo coclear bilateralmente. Foi desenvolvido primeiramente com um eletrodo monocanal no House Ear Institute (HEI), em Los Angeles, Califórnia. Este primeiro modelo foi utilizado em 25 pacientes entre 1979 e 1992 com resultados clínicos precários. A partir desta experiência foi desenvolvido o implante multicanal, em uma parceria do HEI, da Cochlear Corporation (Englewood, Colorado) e a Huntington Medical Research Institute (Pasadena, Califórnia). Apesar da primeira cirurgia para implantação de um eletrodo auditivo em tronco cerebral datar de 1979, apenas em outubro de 2000 houve aprovação para seu uso clínico.

Os pacientes que classicamente se beneficiam deste tipo de prótese auditiva eletrônica cirurgicamente implantável são aqueles com diagnóstico de neurofibromatose tipo 2 (NF-2), por apresentarem schwannomas vestibulares bilaterais ou crianças com aplasia congênita de nervo coclear. Atualmente a indicação do implanteauditivo de tronco cerebral se ampliou e pacientes com integridade neural do VIII par e impossibilidade de colocação de um implante coclear convencional, como portadores de cócleas ossificadas após meningite, são potenciais candidatos a esta cirurgia.

Este primeiro modelo foi utilizado em 25 pacientes entre 1979 e 1992 com resultados clínicos precários. A partir desta experiência foi desenvolvido o implante multicanal, em uma parceria do HEI, da Cochlear Corporation (Englewood, Colorado) e a Huntington Medical Research Institute (Pasadena, Califórnia). Apesar da primeira cirurgia para implantação de um eletrodo auditivo em tronco cerebral datar de 1979, apenas em outubro de 2000 houve aprovação para seu uso clínico.

Os pacientes que classicamente se beneficiam deste tipo de prótese auditiva eletrônica cirurgicamente implantável são aqueles com diagnóstico de neurofibromatose tipo 2 (NF-2), por apresentarem schwannomas vestibulares bilaterais ou crianças com aplasia congênita de nervo coclear. Atualmente a indicação do implante auditivo de tronco cerebral se ampliou e pacientes com integridade neural do VIII par e impossibilidade de colocação de um implante coclear convencional, como portadores de cócleas ossificadas após meningite, são potenciais candidatos a esta cirurgia.

Este primeiro modelo foi utilizado em 25 pacientes entre 1979 e 1992 com resultados clínicos precários. A partir desta experiência foi desenvolvido o implante multicanal, em uma parceria do HEI, da Cochlear Corporation (Englewood, Colorado) e a Huntington Medical Research Institute (Pasadena, Califórnia). Apesar da primeira cirurgia para implantação de um eletrodo auditivo em tronco cerebral datar de 1979, apenas em outubro de 2000 houve aprovação para seu uso clínico.

Os pacientes que classicamente se beneficiam deste tipo de prótese auditiva eletrônica cirurgicamente implantável são aqueles com diagnóstico de neurofibromatose tipo 2 (NF-2), por apresentarem schwannomas vestibulares bilaterais ou crianças com aplasia congênita de nervo coclear. Atualmente a indicação do implante auditivo de tronco cerebral se ampliou e pacientes com integridade neural do VIII par e impossibilidade de colocação de um implante coclear convencional, como portadores de cócleas ossificadas após meningite, são potenciais candidatos a esta cirurgia.

Os pacientes que classicamente se beneficiam deste tipo de prótese auditiva eletrônica cirurgicamente implantável são aqueles com diagnóstico de neurofibromatose tipo 2 (NF-2), por apresentarem schwannomas vestibulares bilaterais ou crianças com aplasia congênita de nervo coclear. Atualmente a indicação do implante auditivo de tronco cerebral se ampliou e pacientes com integridade neural do VIII par e impossibilidade de colocação de um implante coclear convencional, como portadores de cócleas ossificadas após meningite, são potenciais candidatos a esta cirurgia.

Os pacientes que classicamente se beneficiam deste tipo de prótese auditiva eletrônica cirurgicamente implantável são aqueles com diagnóstico de neurofibromatose tipo 2 (NF-2), por apresentarem schwannomas vestibulares bilaterais ou crianças com aplasia congênita de nervo coclear. Atualmente a indicação do implante auditivo de tronco cerebral se ampliou e pacientes com integridade neural do VIII par e impossibilidade de colocação de um implante coclear convencional, como portadores de cócleas ossificadas após meningite, são potenciais candidatos a esta cirurgia.
RESULTADOS

A técnica cirúrgica utilizada para a implantação do eletrodo de tronco cerebral é semelhante à utilizada na remoção do shwannoma vestibular. O complexo de núcleo coclear, composto pelo núcleo coclear ventral e dorsal, é o local para a colocação do eletrodo. O núcleo coclear ventral é o principal núcleo de transmissão de impulsos neurais do VIII par e seus axônios formam a principal via ascendente do nervo coclear. Tanto o núcleo ventral como o dorsal não são visíveis durante a cirurgia e sua localização depende de identificação de estruturas anatômicas adjacentes. A terminação lateral do quarto ventrículo, o forame de Luschka, se situa entre as saídas dos nervos glossofaríngeo e facial. Em se afastando o flóculus, o cirurgião visualiza uma depressão entre os pares cranianos mencionados, local onde se deve inserir o eletrodo (Figuras 1 e 2). Normalmente, apenas um coto do nervo coclear é identificado, podendo também ser usado como referência ao recesso lateral.

DISCUSSÃO

O conceito de implante auditivo de tronco cerebral é semelhante ao do implante coclear disponível atualmente, com a diferença de configuração do eletrodo, desenhado para ser introduzido no nível do nervo coclear e não na rampa timpânica da cóclea. Beneficiam-se deste tratamento pacientes que por motivos anatômicos ou funcionais não possam receber estímulos elétricos pela orelha interna. Em países sociologicamente avançados, a principal causa da perda estrutural das vias auditivas periféricas bilateralmente é a neurofibromatose tipo 2, cuja característica essencial é a de evoluir com shwannomas vestibulares bilaterais. Porém isto não ocorre no Brasil. Infelizmente as etiologias infecciosas ainda são responsáveis pela maioria dos casos de surdez, e, entre elas, a meningite certamente é a principal. Em dados a serem por nós publicados, observamos que 23,9% de todos os nossos casos já implantados com algum tipo de implante coclear multicanal são pacientes que perderam a audição após meningite.

Este fato é preocupante, uma vez que o prognóstico da função auditiva após a implantação está intimamente relacionado à quantidade de elementos neurais viáveis à implantação e ao correto posicionamento dos eletrodos na cóclea. A meningite contraria estes dois fatores. Primeiro, é a etiologia que mais leva à destruição de células ciliadas da cóclea e neurônios do nervo coclear e, em segundo, comumente leva a algum grau de ossificação da cápsula ótica. Observando nossos resultados em discriminação de sentenças, novamente em dados a serem publicados, vemos que os pacientes com meningite adquirem discriminação bastante inferior (média de 22% em sentenças em formato aberto) aos portadores de etiologias diversas (média de 82% em sentenças em formato aberto), resultados que os impossibilitam de manter conversação sem auxílio da leitura labial. Além da questão funcional, a meningite foi responsável por todos os nossos seis casos de falha técnica no posicionamento do eletrodo durante a cirurgia, com consequente explantação da unidade interna e necessidade de nova cirurgia para implantação de novos eletrodos. Este fator infeccioso amplia muito a necessidade de se tornar disponível uma alternativa ao implante coclear convencional no Brasil. Os pacientes com neurofibromatose tipo 2 são raros, mesmo em um serviço de referência.
como o Hospital das Clínicas da FMUSP. Não mais de seis casos por ano nos procuraram, alguns já sem indicação cirúrgica. Porém, levando em conta a evolução trágica mas lentamente progressiva desta doença, o impacto do restauro de alguma audição útil a estes pacientes é extremamente elevado. Por esta razão vemos o implante auditivo de tronco cerebral o próximo passo a ser realizado em nosso Grupo Otologia, o que faz obrigatório o estudo e desenvolvimento da técnica cirúrgica em laboratório de anatomia.

Em relação à via de acesso utilizada para a implantação dos eletrodos no tronco cerebral, duas são as principais: a via retrossigmoidea suboccipital e a via translabiríntica. Acreditamos que a via de acesso escolhida deva ser ampla o suficiente para permitir a correta identificação dos parâmetros anatômicos utilizados como referência ao correto posicionamento dos eletrodos, e a escolha entre estes dois acessos é feita conforme a experiência do cirurgião com cada um deles. A maioria dos otorrinolaringologistas, mesmo com o acesso translabiríntico, em cirurgias para exérese de schwannomas vestibulares grandes ou com audição deteriorada, e, portanto, em realizando a implantação no mesmo tempo cirúrgico, este acesso é o escolhido por nós. Apresenta as vantagens da identificação do nervo facial antes de sua imersão no tumor, evita a retração cerebelar mesmo em grandes tumores e oferece acesso direto ao forame de Luschka. Os pacientes submetidos à cirurgia por este acesso acordam bem e rapidamente, raramente tendo problemas anestésicos. As desvantagens são a exposição limitada dos pares cranianos bulbares e grandes vasos da fossa cerebral posterior, que se encontram posteriores ao tumor na via do cirurgião, e a possibilidade de variação anatômica do bulbo da jugular ou seio sigmóide, ou mesmo uma mastóide pequena, limitar muito o acesso. O acesso retrossigmoideo suboccipital é tradicionalmente o preferido dos neurocirurgiões. É bastante seguro e permite a exposição ampla da fossa cerebral posterior mostrando as relações do tumor com os pares cranianos bulbares e grandes vasos. Contudo requer retração cerebelar extensa e portanto desequilíbrio no pós-operatório, além de não permitir a identificação precoce do nervo facial. Em ambos os acessos, a identificação da emergência do nervo coclear no tronco cerebral e o plexo coróide deve ser realizada e suas posições marcadas, com o objetivo de referência ao posicionamento dos eletrodos.

O local de inserção do eletrodo do implante auditivo de tronco cerebral é o complexo do núcleo coclear, composto pelos núcleos dorsal e ventral, que corresponde ao local onde terminam os axônios do nervo coclear. O núcleo dorsal se localiza superioramente ao recesso lateral do quarto ventrículo, enquanto que o núcleo ventral se encontra encoberto pelo pedúnculo cerebelar médio. Portanto não são visíveis ao cirurgião e devem ser localizados através de referências anatômicas localizadas na superfície da ponte. Entre a emergência dos nervos facial e glossofaringeog se situa o recesso lateral ou forame de Luschka. O núcleo coclear dorsal (NCD) é o principal núcleo recebedor de axônios do nervo coclear e forma a principal via ascendente auditiva, porém o local preferível para colocação do eletrodo é o forame de Luschka onde se encontra o núcleo coclear ventral (NCV) e parte inferior do NCD, em razão de ser esta a região que se mostrou menos susceptível em originar estímulos não-auditivos, como estímulos dos nervos facial e glossofaringeog de regiões adjacentes como o fóculus e o cerebelog. A importância em se posicionar bem o eletrodo está em se evitar justamente os efeitos colaterais desta estimulação neural não auditiva. Eletrodos posicionados no forame de Luschka têm se mostrado eficazes em estimulação auditiva com efeitos colaterais mínimos, além de se mostrarem estáveis pelo fato do foram estarem em local espacialmente limitadog. Em nossa dissecação cirúrgica estudamos estas referências por acesso translabiríntico, ao qual estamos confortáveis tecnicamente. Não houve dificuldade em reconhecer com precisão o recesso lateral (forame de Luschka), a compressão bastante visível entre o feixe acústico-facial e os pares bulbares. É necessário lembrar que a exérese de grandes tumores leva a uma alteração da anatomia na região, principalmente em relação à emergência do VIII par na ponte, difícil de se reconhecer com a perda da integridade do nervo durante a cirurgia, e em presença de restos de aracnóide. A observação de regiões anatomicamente preservadas além do leito tumoral, distal ou proximal, e a eletromiografia intra-operatória sem dúvida são parâmetros úteis durante o procedimento de posicionamento dos eletrodos.

CONCLUSÃO

A região de implantação do eletrodo do implante auditivo de tronco cerebral apresenta referências anatômicas que permitem sua identificação durante a cirurgia. O estudo da técnica cirúrgica em laboratório de anatomia deve ser encorajado, principalmente em razão da importância de se conhecer com exatidão estas referências anatômicas pelo cirurgião.

REFERÊNCIAS BIBLIOGRÁFICAS

1. Shannon RV, Fayad J, Moore J, Lo WW, Otto S, Nelso RA. Auditory brainstem implant (ABI): Post surgical issues and performance. Otolaryngol Head Neck Surg 1993; 108: 634-42.
2. Toh EH, Luxford WM. Cochlear and brainstem implantation. Otolaryngol Clin N Am 2002; 35: 325-42.
3. Colletti V, Carner M, Fiorino F, Sacchetto L, Miorelli V, Orsi A, Gilurzo F, Pancini L. Hearing restoration with auditory brainstem implant (ABI): Post surgical issues and performance. Otolaryngol and Neurotology 2002; 23: 682-93.
4. Grayeli AB, Boucassa D, Kalamardes M, Ambert-Dahan E, Coudert C, Cyna-Gorse F, Sollmann WP, Rey A, Sterkers O. Auditory brainstem implant in bilateral and completely ossified cochleae. Otolaryngol and Neurotology 2003; 24: 79-82.
5. Nevison B, Laszig R, Sollmann WP, Lenarz T, Sterkers O, Ramdsen R, Fraysse B; Manrique M, Rask-Anderson H, Garcia-Ibanez E, Colletti V; Wallenberg E. Results from a European Clinical Investigation of the Nucleus Multichannel Auditory Brainstem Implant. Ear Hearing 2002; 23: 170-83.
6. Bento RF, Sanchez TG, Brito Neto RV. Critérios de indicação de implante coclear. Arq. Fund. Otorrinolaringol 1997; 1: 66-7.
7. Goffi Gómez MA, Bento RF, Brito Neto RV, Castilho AM, Peralta CO, Giorgi SB, Guedes MC, Tsuji RK. Critérios de seleção e avaliação médica e audiológica dos candidatos ao implante coclear: protocolo do HC-FMUSP. Arq Otorrinolaringol 2004; 8: 303-23.
8. Bento RF, Brito Neto RV, Castilho AM, Goffi Gomez MA, Giorgi SB, Guedes MC. Resultados auditivos com o implante coclear multicanal em pacientes submetidos a cirurgia no Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo. Rev Brasileira de Otorrinolaringologia 2004; 70: 632-7.
9. Briggs RJS, fagan P, Atlas M, Kaye AH, Sheehy J, Hollow R, Shaw S, Clark GM. Multichannel auditory brainstem implantation: the Australian experience. J Laryngol Otol 2000; 114: 46-9.
10. Vautrin R, Mertens P, Streichenberger N, Geruse P, Truy E. Abord et repérage oto-neuro-chirurgical des noyaux cochléairesw. Intérêt dans l’implantation auditive du tronc cerebral. Rev Laryngol Otol Rhinol 1998; 119: 171-6.
11. Sollmann WP, Laszig R, Marangos N. Surgical experiences in 58 cases using the Nucleus 22 multichannel auditory brainstem implant. J Laryngol Otol 2000; 114: 23-6.
12. Colletti V, Fiorino FG, Carner M, Miorelli V, Guida M, Colletti L. Auditory brainstem implant as a salvage treatment after unsuccessful cochlear implantation. Otology and Neurotology 2004; 25: 485-96.
13. Ebinger K, Otto S, Arcaroli J, Staller S, Arndt P. Multichanne auditory brainstem implant: US clinical trial results. J Laryngol Otol 2000; 114: 50-3.
14. Lenarz M, Mathiilies C, Shiedat AL, Frohne C, Rost U, llg A, Battmer RD, Sammi M, Lanerz T. Auditory brainstem implant part II: Subjective assessment of functional outcome, Otology and Neurotology 2000; 23: 691-7.