Supplementary file 4

Article title Complications after surgical management of proximal humeral fractures: a systematic review of event terms and definitions
Journal name BMC Musculoskeletal Disorders
Author names Alispahic N, Brorson S, Bahrs C, Joeris A, Steinitz A, Audigé L
Corresponding author Laurent Audigé, Schulthess Klinik, CH-8008 Zurich, Switzerland
e-mail address laurent.audige@kws.ch

Extracted definitions related to specific event terms

Malunion

Authors	Year	Term Used	Definition	Adapted from	Cited by
Sohn et al.	2014	Malreduction	Head-shaft angle $< 120^\circ$ or $> 140^\circ$, measured on immediate postoperative radiographs	Brunner et al. 2009	Sohn et al. 2017
Bahrs et al.	2015	Malunion	Residual bone deformities at time of follow-up after healing measured on AP and axillary radiographic views (varus / valgus angulation on the AP view [±15°] AND/OR anteversion or retroversion on the axillary view [±15°]) AND/OR tuberosity displacement with reference to the opposite side, with or without tuberosity displacement of > 5 mm	Bahrs et al. 2010	
Okike et al.	2015	Malunion	Healing in varus, valgus or translation alone		
Gracitelli et al.	2016	Varus malunion	Neck-shaft angle $\leq 110^\circ$		
Esenyel et al.	2017	Tuberosity malposition (hemiarthroplasty)	Tuberosity position of more than 5 mm above or more than 10 mm below the prosthetic head		
Hao et al.	2017	Varus malunion	Neck-shaft angle $\leq 110^\circ$		
Villodre-Jimenez et al.	2017	Arm lengthening > 20 mm	Difference in the acromion-epicondyle distance in the radiographic checks of the operated arm compared to the contralateral arm	Lädermann et al. 2009	

† not from the initial literature search
Delayed healing / nonunion

Authors	Year	Term Used	Definition	Adapted from	Cited by
Vannabouathong et al. 31	2011	Nonunion	Absence of callus uniting the main fracture fragments in 3 of the 4 bone cortices		Gracitelli et al. 2016 19
Papakonstantinou et al. 38	2017	Delayed union / nonunion	Delayed union = Union between 61 and 89 days; it is defined as prolonged after 90 days. Nonunion = When fractures had not united by 90 days	Sheck et al. 1982 42	

Secondary fracture displacement

Authors	Year	Term Used	Definition	Adapted from	Cited by
Platzer et al. 40 †	2005	Tuberosity displacement	Displacement >5mm.	Park et al. 1997 39	Kancherla et al. 2017
Ockert et al. 35 †	2010	Secondary varus displacement	Displacement >10° or the CCD angle (centrum collum diaphyseal angle)		Handoll et al. 2015 21
Bahrs et al. 7	2015	Secondary fracture displacement	Secondary fracture displacement at follow-up (defined as > 5° difference of CCD angle or > 5 mm secondary fracture displacement of the greater tuberosity under consideration of the radiographs after fracture stabilization and FU for AP and axillary views and for tuberosity displacement for the AP view).	Brunner et al. 2009 11	
				Helwig et al. 2009 23	
				Roderer et al. 2011 41	
Doursounian et al. 15	2016	Displacement of the humeral head	More than 10% displacement in the diameter of the humeral head (i.e. 5 mm for 50 mm diameter).	Acklin et al. 2013 2	
Doursounian et al. 15	2016	Displacement of the tuberosities	30° or more change in angle of a bone fragment	Sohn et al. 2014 47	
Gonc et al. 18	2016	Varus progression	Head-shaft angle < 130° postoperatively is considered a sign of varus progression		
Gracitelli et al. 19	2016	Loss of reduction of humeral head	Change of the neck shaft angle ≥ 10°		
Secondary fracture displacement (continued)

Authors	Year	Term Used	Definition	Adapted from	Cited by
Gracitelli et al. 19	2016	Loss of reduction of the greater tuberosity	Displacement of the greater tuberosity ≥ 0.5 cm		
Hao et al. 22	2017	Loss of reduction in tuberositäes	Displacement of a tuberosity > 5 mm		
Shukla et al. 44	2017	Varus re-collapse	In patients with an initial varus fracture pattern, neck-shaft angle < 120° as measured on an anteroposterior radiograph with 20° of external rotation.	Agudelo et al. 2007 4	
Sohn et al. 46	2017	Varus collapse	Significantly progressive change of the head-shaft angle with < 120° from the immediate postoperative radiograph to the final follow-up evaluation	Brunner et al. 2009 11	
Wolfensperger et al. 55	2017	Displacement	Migration > 5 mm compared with the postoperative radiographs	Kralinger et al. 2004 29	

† not from the initial literature search

Humeral head necrosis

Authors	Year	Term Used	Definition	Adapted from	Cited by
Fjalestad et al. 17	2012	Avascular necrosis	Classification system:		
2 = no changes;
1 = changes to normal trabecular organization < 50% of humeral head;
0 = > 50% or partial collapse | Fjalestad et al. 2014 16
Handoll et al. 2015 21 | |
Implant failure

Authors	Year	Term Used	Definition	Adapted from	Cited by
Haasters et al. 2016	2016	Loss of fixation	Decreased head-shaft angulation of > 10° in the anteroposterior or lateral plane.	Acklin et al. 2012 1	
Vijayvargiya et al. 52	2016	Failure	Backing out of the screw, plate breakage / pull-out, malunion, nonunion or avascular necrosis of humeral head.		

Screw perforation/cut out

Authors	Year	Term Used	Definition	Adapted from	Cited by
Clavert et al. 13	2010	Screw cutout	Results through high plate position and inadequate screw length	Agudelo et al. 2007 2	Bohsali et al. 2017 9
Lopiz et al. 31	2014	Protrusion of the osteosynthesis material	Subacromial protrusion with impingement or articular intrusion of the screws	Owsley et al. 2008 37	Handoll et al. 2015 21
Spross et al. 48	2014	Secondary screw cut-out	Locked screws do not allow any slip back and the screw tips slowly protrude through the head fragment into the joint, also known as secondary screw cut-out.	Naranja et al. 2000 33	Ayoub et al. 2017 5
Konighausen et al. 28	2015	Secondary perforation (Sekundäre Perforation)	Resintering of separate screws after loss of reduction (Nachsintern einzelner Schrauben bei Repositionsverlust)	Jost et al. 2013 25	
Konighausen et al. 28	2015	Primary screw perforation (primäre Schraubenperforation)	Intraoperative overlooked iatrogenic screw protrusion (Intraoperativ übersehene Schraubenüberstände, Iatrogen bedingt)		
Aguado et al. 3	2016	Screw joint penetration	Screw going into the joint		
Brunner et al. 12	2017	Primary screw perforation (primäre Schraubenperforation)	Already intraoperative apparent screw joint perforation (intraoperativ bereits ersichtliche intraartikuläre Perforation)	Brunner et al. 2009 11	Südkamp et al. 2009 49
Notching (specific radiological parameter of the reversed prosthesis)

Authors	Year	Term Used	Definition	Adapted from	Cited by
Hernandez et al.	2015	Notching	Notching is the erosion of the scapular neck secondary to its contact with	Sirveaux et al. 2004	
			the humeral component of the implant during upper extremity adduction.		
Obert et al.	2016	Groove	A groove on the lower side of the neck of the scapula classified according	Sirveaux et al. 2004	Valenti et al. 2001
			to 1) Sirveaux Classification 2) Nerot Classification		

Stiffness

Authors	Year	Term Used	Definition	Adapted from	Cited by
Sohn et al.	2014	Shoulder stiffness	Limitation of active and passive motion compared to the contralateral	Shin et al. 2013	Sohn et al. 2017
			shoulder in at least two directions (forward flexion < 120° or 50%		
			restriction of external rotation and internal rotation compared to the		
			contralateral side)		
Bonnevialle et al.	2016	Stiffness	A passive anterior elevation of less than 80°, associated or not with		
			a passive external rotation of the elbow at the side of less than 10° at		
			the final follow-up was considered to be stiffness.		

Nerve lesion

Authors	Year	Term Used	Definition	Adapted from	Cited by
Westphal et al.	2017	Axillary nerve lesion	Electromyography findings were defined as suspect when the distal latency		
			was longer or the amplitude was reduced by more than 50% compared with		
			the healthy shoulder.		
References

1. Acklin Y, Sommer C. Plate fixation of proximal humerus fractures using the minimally invasive anterolateral delta split approach. Oper Orthop Traumatol 2012;24:61-73.
2. Acklin YP, Stoffel K, Sommer C. A prospective analysis of the functional and radiological outcomes of minimally invasive plating in proximal humerus fractures. Injury 2013;44:456-460. doi: 10.1016/j.injury.2012.09.010
3. Aguado HJ, Mingo J, Torres M, Alvarez-Ramos A, Martin-Ferrero MA. Minimally invasive polyaxial locking plate osteosynthesis for 3–4 part proximal humeral fractures: our institutional experience. Injury 2016;47:522-528.
4. Agudelo J, Schurmann M, Stahel P, Helwig P, Morgan SJ, Zechel W et al. Analysis of efficacy and failure in proximal humerus fractures treated with locking plates. J Orthop Trauma 2007;21:676-681. doi: 10.1097/BOT.0b013e31815bb09d
5. Ayoub MA, Gad H, El-Tantawy A, Atef A, Seleem OA. Geriatric complex proximal humeral fracture: intraoperative locking plate problems and proposed solutions. Current Orthopaedic Practice 2017;28:70-78. doi: 10.1097/BCO.0000000000000456
6. Bahrs C, Badke A, Rolauffs B, Weise K, Ziplies S, Dietz K et al. Long-term results after non-plate head-preserving fixation of proximal humeral fractures. Int Orthop 2010;34:883-889. doi: 10.1007/s00264-009-0848-4
7. Bahrs C, Kuhle L, Blumenstock G, Stockle U, Rolauffs B, Freude T. Which parameters affect medium- to long-term results after angular stable plate fixation for proximal humeral fractures? J Shoulder Elbow Surg 2015;24:727-732. doi: http://dx.doi.org/10.1016/j.jse.2014.08.009
8. Baulot E, Valenti P, Garaud P, Boileau P, Neyton L, Sirveaux F et al. Résultats des prothèses inversées. Revue de Chirurgie Orthopédique et Réparatrice de l'Appareil Moteur 2007;93:63-92. doi: 10.1016/s0035-1040(07)92712-9
9. Bohsali K, A. Bois, and M. Wirth,. Fractures of the Proximal Humerus, in. In: C.A. Rockwood ea, Editors., editor. Rockwood and Matsen's the shoulder. Elsevier, Inc.; 2017. p. 183-242.
10. Bonnevialle N, Tournier C, Clavert P, Ohl X, Sirveaux F, Saragaglia D et al. Hemiarthroplasty versus reverse shoulder arthroplasty in 4-part displaced fractures of the proximal humerus: Multicenter retrospective study. Orthop Traumatol Surg Res 2016;102:569-573. doi: 10.1016/j.otsr.2016.02.014
11. Brunner F, Sommer C, Bahrs C, Heuwinkel R, Hafner C, Rillmann P et al. Open reduction and internal fixation of proximal humerus fractures using a proximal humeral locked plate: a prospective multicenter analysis. J Orthop Trauma 2009;23:163-172. doi: 10.1097/BOT.0b013e3181920e5b
12. Brunner U. Kopferhaltende Therapie der proximalen Humerusfraktur. In: Habermeyer P, Lichtenberg S, Loew M, Magosch P, Martetschläger F, Tauber M, editors. Schulterchirurgie. München: Elsevier GmbH; 2017. p. 484-534.
13. Clavert P, Adam P, Bevort A, Bonomet F, Kempf JF. Pitfalls and complications with locking plate for proximal humerus fracture. J Shoulder Elbow Surg 2010;19:489-494. doi: 10.1016/j.jse.2009.09.005
14. CZ. E. Proximal Humerus Fractures. In: Huri G PN, editors., editor. The Shoulder; 2017.
15. Doursounian L, Le Sant A, Mauprivez R, Miquel A, Beauthier-Landauer V. Open reduction and internal fixation of three- and four-part proximal humeral fractures by intra-focal distraction: observational study of twenty five cases. Int Orthop 2016;40:2373-2382. doi: 10.1007/s00264-015-3109-8
16. Fjalestad T, Hole MØ. Displaced proximal humeral fractures: operative versus non-operative treatment—a 2-year extension of a randomized controlled trial. Eur J Orthop Surg Traumatol 2014;24:1067-1073.
17. Fjalestad T, Hole MO, Hovden IA, Blucher J, Stromsoe K. Surgical treatment with an angular stable plate for complex displaced proximal humeral fractures in elderly patients: a randomized controlled trial. J Orthop Trauma 2012;26:98-106. doi: 10.1097/BOT.0b013e31821c2e15
Goncu U, Atabek M, Teker K, Tanriover A. Minimally invasive plate osteosynthesis with PHILOS plate for proximal humerus fractures. Acta Orthop Traumatol Turc 2017;51:17-22. doi: 10.1016/j.aott.2016.10.003

Gracitelli ME, Malavolta EA, Assuncao JH, Kojima KE, dos Reis PR, Silva JS et al. Locking intramedullary nails compared with locking plates for two- and three-part proximal humeral surgical neck fractures: a randomized controlled trial. J Shoulder Elbow Surg 2016;25:695-703. doi: 10.1016/j.jse.2016.02.003

Haasters F, Siebenbürger G, Helfen T, Daferner M, Böcker W, Ockert B. Complications of locked plating for proximal humeral fractures—are we getting any better? J Shoulder Elbow Surg 2016;25:e295-e303.

Handoll HH, Brorson S. Interventions for treating proximal humeral fractures in adults. Cochrane Database Syst Rev 2015:CD000434. doi: 10.1002/14651858.CD000434.pub4

Hao TD, Huat AWT. Surgical technique and early outcomes of intramedullary nailing of displaced proximal humeral fractures in an Asian population using a contemporary straight nail design. J Orthop Surg (Hong Kong) 2017;25:2309499017713934. doi: https://dx.doi.org/10.1177/2309499017713934

Helwig P, Bahrs C, Epple B, Oehm J, Eingartner C, Weise K. Does fixed-angle plate osteosynthesis solve the problems of a fractured proximal humerus? A prospective series of 87 patients. Acta Orthop 2009;80:92-96.

Hernández-Elena J, de la Red-Gallego MÁ, Garcés-Zarzalejo C, Pascual-Carra MA, Pérez-Aguilar MD, Rodríguez-López T et al. Treatment of proximal humeral fractures by reverse shoulder arthroplasty: Mid-term evaluation of functional results and Notching. Revista Española de Cirugía Ortopédica y Traumatología (English Edition) 2015;59:413-420. doi: 10.1016/j.recote.2015.09.005

Jost B, Spross C, Grehn H, Gerber C. Locking plate fixation of fractures of the proximal humerus: analysis of complications, revision strategies and outcome. J Shoulder Elbow Surg 2013;22:542-549. doi: 10.1016/j.jse.2012.06.008

Kancherla VK, Singh A, Anakwenze OA. Management of Acute Proximal Humeral Fractures. J Am Acad Orthop Surg 2017;25:42-52. doi: 10.5435/JAAOS-D-15-00240

Klein M, Juschka M, Hinkenjann B, Schergier B, Oстерерmann PA. Treatment of comminuted fractures of the proximal humerus in elderly patients with the Delta III reverse fracture prosthesis. J Orthop Trauma 2008;22:698-704. doi: 10.1097/BOT.0b013e31818af4e0

Königshausen M, Thierbach A, Kübler L, Gessmann J, Godry H, Goethner M et al. Surgical treatment of 3-and 4-part fractures of the humeral head using a polyaxial-locking plate: results and patient satisfaction. Z Orthop Unfall 2015;153:51-58.

Kralinger F, Schaiger R, Wambacher M, Farrell E, Menth-Chiari W, Lajtai G et al. Outcome after primary hemiarthroplasty for fracture of the head of the humerus. A retrospective multicentre study of 167 patients. J Bone Joint Surg Br 2004;86:217-219.

Ladermann A, Williams MD, Melis B, Hoffmeyer P, Walch G. Objective evaluation of lengthening in reverse shoulder arthroplasty. J Shoulder Elbow Surg 2009;18:588-595. doi: 10.1016/j.jse.2009.03.012

Lopiz Y, Garcia-Coiradas J, Garcia-Fernandez C, Marco F. Proximal humerus nailing: a randomized clinical trial between curvilinear and straight nails. J Shoulder Elbow Surg 2014;23:369-376.

Mattiassi G, Marcovici LL, Krifter RM, Ortmaier R, Wegerer P, Kroepfl A. Delta III reverse shoulder arthroplasty in the treatment of complex 3- and 4-part fractures of the proximal humerus: 6 to 42 months of follow up. BMC Musculoskelet Disord 2013;14:231. doi: 10.1186/1471-2474-14-231

Naranja RJ, Jr., Iannotti JP. Displaced three- and four-part proximal humerus fractures: evaluation and management. J Am Acad Orthop Surg 2000;8:373-382.
Vannabouathong C, Sprague S, Bhandari M. Guidelines for fracture healing assessments in clinical trials. Part I: definitions and endpoint committees. Injury 2011;42:314-316. doi: 10.1016/j.injury.2010.11.048

Vijayvargiya M, Pathak A, Gaur S. Outcome Analysis of Locking Plate Fixation in Proximal Humerus Fracture. J Clin Diagn Res 2016;10:RC01-05. doi: 10.7860/JCDR/2016/18122.8281

Villodre-Jimenez J, Estrems-Diaz V, Diranzo-Garcia J, Bru-Pomer A. Reverse shoulder arthroplasty in 3 and 4 part proximal humeral fractures in patients aged more than 65 years: Results and complications. Rev Esp Cir Ortop Traumatol 2017;61:43-50. doi: https://dx.doi.org/10.1016/j.recot.2016.09.005

Westphal T, Woischnik S, Adolf D, Feistner H, Piatek S. Axillary nerve lesions after open reduction and internal fixation of proximal humeral fractures through an extended lateral deltoid-split approach: electrophysiological findings. J Shoulder Elbow Surg 2017;26:464-471.

Wolfensperger F, Gruninger P, Dietrich M, Vollink M, Benninger E, Schlappi M et al. Reverse shoulder arthroplasty for complex fractures of the proximal humerus in elderly patients: impact on the level of independency, early function, and pain medication. J Shoulder Elbow Surg 2017;26:1462-1468. doi: 10.1016/j.jse.2017.01.021