Homeomorphisms of $\overline{U} \times R$ and rotation number

Paul Fabel
Drawer MA
Mississippi State University
fabel@ra.msstate.edu

Abstract

Suppose $U \subset \mathbb{R}^2$ is bounded open and contractible and $H : \overline{U} \times R \rightarrow \overline{U} \times R$ is a homeomorphism leaving invariant $U \times R$. If ∂U is locally connected and not a simple closed curve H induces a homeomorphism of the solid cylinder leaving invariant sufficiently many vertical lines to determine a rotation number. If ∂U is not locally connected H admits a natural notion of rotation number despite a general absence of an induced homeomorphism of the solid cylinder.

1 Introduction

The following theorem, credited to Ursell and Young [11] is central to applications ([1], [3], [2], [4], [5], [9]) of prime end theory to dynamical systems:

Theorem 1 Suppose $U \subset \mathbb{R}^2$ is bounded open and contractible, $\psi : U \rightarrow int(D^2)$ is conformal, and $h : \overline{U} \rightarrow \overline{U}$ is a homeomorphism such that $h(U) = U$. Then $\psi h \psi^{-1}$ can be extended to a homeomorphism of D^2.

In particular if h is orientation preserving then $\psi h \psi^{-1}_{s1} : \partial D^2 \rightarrow \partial D^2$ determines a rotation number, measuring in a sense the average rotation by h of ∂U about U.

Specific examples of higher dimensional versions of Theorem 1 are in short supply despite a general criteria established in [4].

For example if ∂U is not locally connected, there is no corresponding version of Theorem 1 for domains $U \times R \subset \mathbb{R}^3$ with $\Psi : U \times R \rightarrow int(D^2) \times R$ defined via $\psi(u,t) = (\psi(u), t))$. Example 4 exhibits a homeomorphism $H : \overline{U} \times R \rightarrow \overline{U} \times R$ such that $H(U \times R) = U \times R$ but $\Psi H \Psi^{-1}$ cannot be extended to a homeomorphism of $D^2 \times R$.
The main result of this paper (Theorem 18) salvages a notion of rotation number for such homeomorphisms $H : \overline{U} \times R \to \overline{U} \times R$. The basic idea is that H preserves the circular order of a certain collection of sets, each of which can be understood as the product of R with an interval of accessible prime ends of U. If ∂U is not locally connected this provides enough information to determine a homeomorphism $g : S^1 \to S^1$ whose rotation number we declare to be that of H.

On the other hand a useful ‘3 dimensional prime end theory’ exists if ∂U is locally connected. Theorem 13 shows Ψ induces a homeomorphism of the (3 cell) two point compactification of $D^2 \times R$. Moreover if ∂U is not a simple closed curve of the cutpoints of ∂U help to determine a discrete collection of invariant boundary lines which in turn determine a rotation number.

Both notions of rotation number are invariant under topological conjugacy, and agree with the usual rotation number of h in the special case $H(u,t) = (h(u),t)$ where $h : \overline{U} \to \overline{U}$ is a homeomorphism such that $h(U) = U$.

2 Preliminaries

Suppose throughout this paper $U \subset R^2$ is bounded open and contractible, ∂U denotes $\overline{U}\setminus U$, $D^2 \subset R^2$ denotes the closed unit disk and $\psi : U \to \text{int}(D^2)$ is conformal. All function spaces will have the compact open topology.

Define $\Psi : U \times R \to \text{int}(D^2) \times R$ via $\Psi(u,t) = (\psi(u),t)$.

Let $D^3 = \{(x,y,z) \in R^3 | |\sqrt{x^2 + y^2 + z^2} - 1| \leq 1\}$, the standard 3 cell.

If $J \subset S^1$ is connected let $\text{int}(J) = J$ if $J = \{x\}$. Otherwise let $\text{int}(J)$ denote the union of all open intervals contained in J.

If Y is a topological space attach two points $\{\infty\}$ and $\{-\infty\}$ to $Y \times R$ creating $(Y \times J) \cup \{\infty, -\infty\}$ topologized such that $(y_n,t_n) \to \{\infty\}$ iff $t_n \to \infty$ and $(y_n,t_n) \to \{-\infty\}$ iff $t_n \to -\infty$.

In similar fashion we attach two points $\{\infty\}$ and $\{-\infty\}$ to $Y \times (-1,1)$ and create a new space $\overline{Y \times (-1,1)}$ topologized such that $(y_n,t_n) \to \{-\infty\}$ iff $t_n \to -1$ and $(y_n,t_n) \to \{\infty\}$ iff $t_n \to 1$.

3 The map $\phi : X^* \to D^2$

The following procedure creates a complete metric space X^* whose underlying set can be seen as the union of U and the accessible prime ends of U.

Define a metric $d^* : U \times U \to R$ such that $d^*(x,y) < \varepsilon$ iff there exists a map $f : [0,1] \to U$ such that $f(0) = x, f(1) = y$ and $\forall s,t \ |f(t) - f(s)| < \varepsilon$. Let (X^*, d^*) denote the metric completion of (U, d^*).
Let $\partial X^* = X^* \setminus U^*$.

Lemma 2 There exists a map $\phi : X^* \to D^2$ such that ϕ is uniformly continuous, one to one and $\phi(U^*) = \text{int}(D^2)$.

Proof. Let $\overline{id} : X^* \to \overline{U}$ denote the unique extension of the uniformly continuous identity map $id : U^* \to U$. Uniform continuity of $\psi(id)$ is essentially a consequence of Theorem 1 and is proved in Theorem 3.1 of [7]. Define $\phi : X^* \to D^2$ to be the unique continuous extension of $\psi(id)$. Suppose $x \neq y$ and $\{x, y\} \subset X^*$. If $\overline{id}(x) \neq \overline{id}(y)$ then $\{\overline{id}(x), \overline{id}(y)\} \subset \partial U$ and $\{x, y\} \subset \partial X^*$. Construct a closed topological disk $E \subset \overline{U}$ such that $\overline{id}(x) \in \partial E$ and $E \setminus \{\overline{id}(x)\} \subset U$. If $d^*(x, y) \neq 0$ then $\text{int}(E) \cap \partial U \neq \emptyset$ and $\overline{id}(x)$ and $\overline{id}(y)$ determine distinct prime ends. Let $z \in \partial E \setminus \{\overline{id}(x)\}$. By Theorem 2.15 [7] ψ determines a bijection between the prime ends of U and ∂D^2. In particular $\partial E \setminus \{z\}$ determines distinct endcuts which map under ψ to distinct points of ∂D^2. Hence ϕ is one to one. ■

Remark 3 The injective map $\phi : X^* \to D^2$ need not be an embedding. For example if $U \subset R^2$ is the region bounded by a ‘Warsaw circle’. The canonical map from $\partial X^* \to \partial D^2$ is a continuous bijection but not a homeomorphism.

4 Failure of homeomorphism extension

Example 4 Suppose $U \subset R^2$ is the interior of the standard Warsaw circle. There there exists $H \in G(U \times R)$ such that $\Psi H \Psi^{-1} : \text{int}(D^2) \times R \to \text{int}(D^2) \times R$ is not extendable to a homeomorphism of $D^2 \times R$.

Proof. Let $U \subset R^2$ be the interior of a standardly embedded Warsaw circle such that the impression of the bad prime end (the closed interval ‘limit bar’) is precisely $\partial U \cap (\{0\} \times R)$. Define a homeomorphism $H : U \times R \to U \times R$ via $H(x, y, t) = (x, y, y + t)$. Note $\Psi H \Psi^{-1}$ is not continuously extendable near the bad prime end since H is not level preserving on the impression of the bad prime end. ■

5 Homeomorphisms of S^1 and rotation number

The notion of rotation number of a homeomorphism of the unit circle dates back to Poincare. Its properties are derived in Devaney’s book [8] formally for diffeomorphisms but the proofs are valid for homeomorphisms. See also [8] for a helpful survey.
Theorem 5 Suppose \(g : S^1 \to S^1 \) is an orientation preserving homeomorphism, \(\Pi : R \to S^1 \) is the covering map \(\Pi(\theta) = e^{2\pi i \theta}, x \in R \) and \(G_1, G_2 : R \to R \) are homeomorphisms such that \(\Pi(G_1) = g\Pi \). Then the following limits exist and differ by an integer: \(\lim_{n \to \infty} \frac{G_n(x)}{n} \) and \(\lim_{n \to \infty} \frac{G_n(x)}{n} \). This number \((\mod 1)\) is the rotation number of \(g \) and is invariant under the choice of \(x \). If \(g \) reverses orientation, then \(g \) has two fixed points and we declare \(g \) to have rotation number 0. The rotation number of \(g \) is invariant under topological conjugacy (if \(h : S^1 \to S^1 \) is a homeomorphism and \(\hat{g}^* = hgh^{-1} \) then \(\text{rot}(\hat{g}^*) = \text{rot}(g) \)). Finally, \(\text{rot} \) is a continuous function on the space of homeomorphisms of \(S^1 \).

6 Sets with circular order and rotation number

Given 4 distinct points \(\{x_1, x_2, x_3, x_4\} \subset S^1 \) declare \(x_1 < x_2 < x_3 < x_4 \) if there exists a homeomorphism \(g : S^1 \to S^1 \) such that \(g(i^n) = n \).

Note it is allowed that \(g \) reverses orientation. Suppose \(\{J_1, J_2, J_3, J_4\} \) is a collection of distinct pairwise disjoint nonempty subsets of \(S^1 \). Declare \(J_1 < J_2 < J_3 < J_4 \) if \(x_1 < x_2 < x_3 < x_4 \) whenever \(x_i \in J_i \).

Suppose \(J \) is a proper connected subset of \(S^1 \). Define \(\text{int}(J) = J \) if \(J = \{x\} \) and define \(\text{int}(J) \) to be the largest open interval contained in \(J \) otherwise.

Definition 6 Suppose \(A^* \) is a collection pairwise disjoint subsets of \(S^1 \) and \(h : A^* \to A^* \) is a bijection. Then \(h \) is order preserving if there exists a homeomorphism \(g : S^1 \to S^1 \) such that \(g(J) = h(J) \) for each element \(J \in A^* \). The homeomorphism \(g \) is said to be compatible with \(h \). If \(\left|A^*\right| \geq 3 \) then declare \(h \) orientation preserving/reversing iff \(g \) is orientation preserving/reversing.

Lemma 7 Suppose \(A^* \) is a collection pairwise disjoint subsets of \(S^1 \) such that \(\left|A^*\right| \geq 4 \) and \(\bigcup_{J \in A^*} J \) is dense in \(S^1 \). Suppose \(J = \text{int}(J) \) for each \(J \in A^* \). Suppose \(h : A^* \to A^* \) is a bijection leaving invariant the set of nontrivial elements of \(A^* \). Then \(h \) is order preserving if and only if \(h(J_3) \) and \(h(J_4) \) belong to the same component of \(S^1 \{h(J_1) \cup h(J_2)\} \) whenever \(J_1 < J_2 < J_3 < J_4 \).

Proof. Suppose \(h \) is order preserving. Let \(g : S^1 \to S^1 \) be a homeomorphism such that \(g(J) = h(J) \) for each \(J \in A^* \). Suppose \(J_1 < J_2 < J_3 < J_4 \). Then \(J_3 \) and \(J_4 \) belong to the same component of \(S^1 \{J_1 \cup J_2\} \). Since \(g \) is a homeomorphism \(g(J_3) \) and \(g(J_4) \) belong to the same component of \(S^1 \{g(J_1) \cup g(J_2)\} \). The conclusion follows since \(g(J_3) = h(J_3) \). Conversely suppose \(h(J_3) \) and \(h(J_4) \) belong to the
same component of $S^1 \setminus \{h(J_1) \cup h(J_2)\}$ whenever $J_1 < J_2 < J_3 < J_4$.

Suppose $J_1 < J_2 < J_3 < J_4$. Then either $h(J_1) < h(J_2) < h(J_3) < h(J_4)$ or $h(J_1) < h(J_2) < h(J_4) < h(J_3)$. Suppose in order to obtain a contradiction that $h(J_1) < h(J_2) < h(J_4) < h(J_3)$. Then $h(J_2)$ and $h(J_3)$ lie in opposite components of $S^1 \setminus \{h(J_1) \cup h(J_4)\}$. On the other hand by hypothesis $J_4 < J_1 < J_2 < J_3$ and hence $h(J_2)$ and $h(J_3)$ lie in the same component of $S^1 \setminus \{h(J_1) \cup h(J_4)\}$ and we have a contradiction. Thus $h(J_1) < h(J_2) < h(J_3) < h(J_4)$ and globally the bijection h either preserves or reverses orientation. Let $g : S^1 \to S^1$ be the unique homeomorphism mapping J linearly onto $h(J)$ whenever J is a nontrivial component of A^\ast.

Lemma 8 Suppose A^\ast is a collection of pairwise disjoint connected subsets of S^1 such that $|A^\ast| \geq 3$ and $\cup_{J \in A^\ast} J$ is dense in S^1. Suppose $J = \text{int}(J)$ whenever $J \in A^\ast$ and suppose $h : A^\ast \to A^\ast$ is an order preserving bijection as demonstrated by the compatible orientation preserving homeomorphisms $g_1 : S^1 \to S^1$ and $g_2 : S^1 \to S^1$. Then g_1 and g_2 have the same rotation number.

Proof. Let $B \subset S^1$ denote the complement of the union of the open intervals of A^\ast. Then $B \neq \emptyset$, $g_1(B) = B$ and $g_{2|B} = g_{1|B}$. Thus there exists $b^\ast \in R$ and lifts $G_1 : R \to R$ and $G_2 : R \to R$ respectively of g_1 and g_2 such that $\pi(b^\ast) \in B$ and $G^n_1(b^\ast) = G^n_2(b^\ast) \forall n$. Hence by Theorem 5 g_1 and g_2 have the same rotation number.

7 **The order preserving bijection $h : A^\ast \to A^\ast$**

Define a surjection $p : D^2 \times [-1, 1] \to D^3$ via $p(x, y, t) = ((1 - |t|)x, (1 - |t|)y, t)$. Note p collapses $D^2 \times \{-1\}$ and $D^2 \times \{1\}$ to points and is otherwise injective.

Note the map $\Phi_{X^\ast \times (-1, 1)} : X^\ast \times (-1, 1) \to D^2 \times (-1, 1)$ defined such that $\Phi(x, t) = (\phi(x), t)$ can be continuously extended to an injective map $\Phi : X^\ast \times (-1, 1) \hookrightarrow D^2 \times (-1, 1)$ such that $\Phi(\infty) = \infty$ and $\Phi(-\infty) = -\infty$.

Define a metric on $X^\ast \times R$ via $d((x, t), (y, t)) = \max(d^*(x, y), |s - t|)$.

Define a set $A^\ast \subset 2^{|D^2|}$ such that $\beta \in A^\ast$ iff $\beta = \text{int}(\phi(X))$ for some path component $X \subset \partial X^\ast$.

Theorem 9 The homeomorphism $H : \overline{U} \times R \to \overline{U} \times R$ induces a canonical homeomorphism $H^* : X^\ast \times R \to X^\ast \times R$ such that $H^*(\partial X^\ast \times R) = \partial X^\ast \times R$ and such that H^* is extendable to a homeomorphism of $(X^\ast \times R) \cup \{\infty, -\infty\}$.
Proof. We first obtain, as follows, an induced homeomorphism $H^*: X^* \times R \to X^* \times R$ such that $H^*(U^* \times R) = U^* \times R$ and for each S and T there exists S' and T' such $H^*(X^* \times [S, T]) \cup H^{-1}(X^* \times [S, T]) \subset X^* \times [S', T']$. Suppose $\{(z_n, t_n)\}$ is Cauchy in $U^* \times R$. Since $\{t_n\}$ is Cauchy choose S and T such that $\forall n (z_n, t_n) \in X^* \times [S, T]$. Moreover for each n, m we may choose a path $\gamma_{nm} \subset U^* \times [S, T]$ such that γ_{nm} connects (z_n, t_n) to (z_m, t_m) and $\text{diam}(\gamma_{nm}) < 2d((z_n, t_n), (z_m, t_m))$. Hence $\lim_{n,m \to \infty} \text{diam}(\gamma_{nm}) = 0$. However, since $U \times [S, T]$ is compact, both $H_{\tau \times [S, T]}$ and $H_{\tau \times [S, T]}^{-1}$ are uniformly continuous. Thus $\lim_{n,m \to \infty} \text{diam}(H(\gamma_{nm})) = 0 = \lim_{n,m \to \infty} \text{diam}(H^{-1}(\gamma_{nm}))$. Hence H and H^{-1} preserve Cauchy sequences in $U^* \times R$ and thus are extendable to maps $H^*: X^* \times R \to X^* \times R$ and $(H^{-1})^*: X^* \times R \to X^* \times R$ such that $H^*((H^{-1})^*) = (H^{-1})^*H = id$. Since id is a bijection it follows that H^* and $(H^{-1})^*$ are bijections and hence homeomorphisms. By definition $H(U \times R) = H^{-1}(U \times R) = U \times R$. Since compact subsets of $\overline{U} \times R$ are bounded we may choose S' and T' such that the compactum $H(\overline{U} \times [S, T]) \cup H^{-1}(\overline{U} \times [S, T]) \subset \overline{U} \times [S', T']$. Note $\overline{U} \times [S, T]$ and hence $H(\overline{U} \times [S, T])$ separate $\overline{U} \times R$ into two components. Since $\overline{U} \times (T, \infty)$ is connected $H(\overline{U} \times (T, \infty))$ intersects and contains exactly one component of $(\overline{U} \times R)(\overline{U} \times [S', T'])$. Thus if $(z_n, t_n) \to \infty$ then $H(z_n, t_n)$ converges either to ∞ to $-\infty$. Thus both H^* and $(H^*)^{-1}$ are extendable to maps of $(X^* \times R) \cup \{-\infty, \infty\}$ and both must be homeomorphisms since $H^*(H^{-1})$ is fixes pointwise a dense set.

Corollary 10 The induced homeomorphism $H^*: X^* \times R \to X^* \times R$ induces a canonical homeomorphism $H^{**}: X^* \times (-1, 1) \to X^* \times (-1, 1)$ and a canonical bijection $h: A^* \to A^*$.

Proof. Let $H^*: X^* \times R \to X^* \times R$ be induced from $H: \overline{U} \times R \to \overline{U} \times R$ as in Theorem 9. Let $T: R \to (-1, 1)$ be any homeomorphism. Define a homeomorphism $H^{**}: X^* \times (-1, 1) \to X^* \times (-1, 1)$ such that $H^{**}(x, T(t)) = (y, T(s))$ if $H^*(x, t) = (y, s)$. Since $H^{**}(\partial X^* \times (-1, 1)) = \partial X^* \times (-1, 1)$ the homeomorphism H^{**} permutes the path components of $\partial X^* \times (-1, 1)$. Each path component of $\partial X^* \times (-1, 1)$ is of the form $X \times (-1, 1)$ where X is a path component of ∂X^*. By definition $\beta \in A^*$ iff there exists a path component $X \subset \partial X^*$ such that $\beta = int\phi(X)$. Thus we define a bijection $h: A^* \to A^*$ satisfying $h(\beta) = \gamma$ if $\beta = int\phi(X)$ and $H^{**}(X \times (-1, 1)) = Y \times (-1, 1)$ and $\gamma = int\phi(Y)$.

Lemma 11 Suppose $D \subset D^3$ is a topological disk such that $int(D) \subset int(D^3)$, and $\partial D \subset \partial D^3$. Suppose $\{(0, 0, 1), (0, 0, -1)\} \subset \partial D$ and suppose $\alpha: [0, 1] \to D^3 \setminus D$ satisfies $\alpha(t) \in int(D^3)$ iff $0 < t < 1$. Sup-
pose β_1 and β_2 are disjoint nonempty connected subsets of S^1. Suppose $\partial D \subset p((\beta_1 \cup \beta_2) \times [-1,1])$. Suppose $\{\alpha(0), \alpha(1)\} \cap p((\beta_1 \cup \beta_2) \times [-1,1]) = \emptyset$. Then $\pi_1(p^{-1}(\alpha(0), \alpha(1)))$ is contained in a single component of $S^1 \setminus \{\beta_1 \cup \beta_2\}$.

Proof. The topological disk D separates D^3 into two components and ∂D separates ∂D^3 into two components. Moreover the two components of $\partial D^3 \setminus \partial D$ are contained in distinct components of $D^3 \setminus D$. Hence, since $\text{int}(\alpha)$ is connected and $\text{int}(\alpha) \cap D = \emptyset$, $\partial \alpha$ belongs to a single component of $\partial D^3 \setminus \partial D$. Moreover $\partial D^3 \setminus p((\beta_1 \cup \beta_2) \times [-1,1])$ contains at most two components. No two of these components are contained in the same component of $\partial D^3 \setminus \partial D$. Thus $\{\alpha(0), \alpha(1)\}$ is contained in a single component of $\partial D^3 \setminus p((\beta_1 \cup \beta_2) \times [-1,1])$. Hence $\pi_1(p^{-1}(\alpha(0), \alpha(1)))$ is contained in a single component of $S^1 \setminus \{\beta_1 \cup \beta_2\}$. ■

Corollary 12 If $|A^-| \geq 4$ the bijection $h : A^- \to A^-$ is order preserving.

Proof. Suppose $\gamma_1 < \gamma_2 < \gamma_3 < \gamma_4$ and $\gamma_i \in A^-$. Choose 4 points $x_i \in X_i$. Let $\text{int} \phi X_i = \gamma_i$. Let $\lambda \subset X^*$ be an arc connecting x_1 to x_2 such that $\text{int}(\lambda) \subset U$. Let $A \subset X^*$ be an arc connecting x_3 to x_4 such that $\text{int}(A) \subset U$ and such that $A \cap \lambda = \emptyset$. Let $\Lambda = \{\infty, -\infty\} \cup (\lambda \times (-1,1)) \subset X^* \times (-1,1)$. Observe Λ is compact and homeomorphic to D^2. Let $D = p \Phi(H^* \Lambda)$. Let $\alpha = p \Phi(H^* (A \times \{0\}))$. Let $\beta_i = h(\gamma_i)$. Apply Lemma [14] to conclude β_3 and β_4 belong to the same component of $S^1 \setminus \{\beta_1 \cup \beta_2\}$. Thus by Lemma [4] h is order preserving. ■

8 Main results

Define $G(U) = \{H : \overline{U} \to \overline{U} | H \text{ is a homeomorphism and } H(U) = U\}$. Define $G(U \times R) = \{H : \overline{U \times R} \to \overline{U \times R} | H \text{ is a homeomorphism and } H(U \times R) = U \times R\}$.

Recalling Theorems [11] and [5] define $\text{rot}(h) : G(U) \to R$ such that $\text{rot}(h)$ is the rotation number of $\psi h \psi^{-1}$.s1.

8.1 The case ∂U is not locally connected

Suppose ∂U is not locally connected.

Recall the bijection $h : A^- \to A^-$ from Corollary [10]. Define a function $\text{Rot} : G(U \times R) \to R$ as follows.

If $|A^-| \geq 3$ recall Corollary [12] note h is order preserving, and define $\text{Rot}(H) = \text{Rot}(g)$ where $g : S^1 \to S^1$ is any homeomorphism compatible with h.

If $|A^-| \leq 2$ define $\text{Rot}(H) = 0$ if H is orientation reversing and fixes $\{\infty, -\infty\}$ pointwise or if H is orientation preserving and swaps
\{\infty, -\infty\}. Otherwise define Rot(H) to be 0 or \(\frac{1}{2}\) determined, respectively, by whether \(h = ID_A\) or not.

8.2 The case \(\partial U\) is locally connected

The case \(\partial U\) is locally connected deserves special treatment since \(U \times R\) admits a homeomorphism extension theorem analogous to Theorem 9 and seems to provide a useful model of ‘3 dimensional prime end theory’ in the sense of [11].

Theorem 13 Suppose \(\partial U\) is locally connected and \(H \in G(U \times R)\). Then \(\Psi H \Psi^{-1} : int(D^2) \times R \to int(D^2) \times R\) can be extended to a canonical homeomorphism of the 3 cell \((D^2 \times R) \cup \{\infty, -\infty\}\).

Proof. Since \(\partial U\) is locally connected the conformal map \(\psi^{-1} : int(D^2) \to U\) can be continuously extended to a surjective map \(\bar{\psi}^{-1} : D^2 \to \overline{U}\) (Theorem 2.1 p20 [10]). To show \(X^*\) is compact, it suffices, since \(X^*\) is complete, to show that each sequence in \(X^*\) has a Cauchy subsequence. Suppose \(y_n\) is a sequence in \(X^*\). Let \(x_n = \phi(y_n)\). Let \(\{x_{nk}\} \subset D^2\) be a Cauchy subsequence of \(\{x_n\}\). Consider the chords \([x_{nk}, x_{nk}]\] \(\subset D^2\). Since \(\bar{\psi}^{-1}\) is uniformly continuous, \(\text{diam} \ (\bar{\psi}^{-1}[x_{nk}, x_{nk}]) \to 0\). Hence \(d^*(y_{nk}, y_{nk}) \to 0\). Consequently \(X^*\) is compact and the injective map from Lemma 2 \(\phi : X^* \to D^2\) is a homeomorphism. Thus the homeomorphism from Theorem 9 \(H^* : X^* \times R \to X^* \times R\) induces a homeomorphism of \(D^2 \times R\) leaving invariant the ends \(\{\infty\}\) and \(\{-\infty\}\).

To see that \(H\) is canonical let \(j : U^* \times R \to U \times R\) denote identity. Suppose \(H_N \to H\) in \(G(U \times R)\). Note \(\{j^{-1}H_Nj\}\) is uniformly equicontinuous and converges pointwise to \(j^{-1}Hj\). Hence \(H_N^* \to H^*\) uniformly. Thus \(\Psi H_N^* (x) = \Psi H^* (x)\) uniformly.

To define rotation number when \(\partial U\) is locally connected we seek a nonempty proper totally disconnected set \(B^* \subset S^1\) such that \(B^* \times R\) is invariant under the induced homeomorphism \(\overline{\psi H \Psi^{-1}} : D^2 \times R \to D^2 \times R\).

The point \(x \in \partial U\) is a **cutpoint** if \(\partial U \setminus \{x\}\) not connected. Let \(f : D^2 \to \overline{U}\) denote the continuous extension of \(\psi^{-1}\). The map \(f\) is light since the prime ends of \(U\) are in bijective correspondence with points of \(S^1\) (Theorem 2.15 [10]). Let \(B = \{x \in S^1 | f(x)\) is a cutpoint of \(\partial U\}\).

Lemma 14 \(z \in B\) if and only if \(|f^{-1}(z)| \geq 2\).

Proof. If \(z \in \partial U\) and \(|f^{-1}(z)| = 1\) then \(z \notin B\) is since \(S^1 \setminus f^{-1}(z)\) is connected and hence \(f(S^1 \setminus f^{-1}(z)) = \partial U \setminus z\) is connected.

Suppose \(|f^{-1}(z)| \geq 2\) choose \(x \neq y\) such that \(f(y) = f(x) = z\). Let \([x, y] \subset D^2\) denote the chord from \(x\) to \(y\). If \(V\) is a component
Lemma 15 Suppose \(x \neq y, \{x, y\} \subset S^1 \) and \(z = f(x) = f(y) \). Suppose \(a \) and \(b \) lie in distinct components of \(S^1 \setminus \{x, y\} \). Suppose \(\{a, b\} \cap f^{-1}(z) = \emptyset \). Then \(f(a) \neq f(b) \).

Proof. The points \(a \) and \(b \) belong to the boundaries of distinct components of \(int(D^2) \setminus \{x, y\} \). These components in turn map into distinct complementary domains of the simple closed curve \(f([x, y]) \), since points of \(int(D^2) \) can approach the chord \([x, y]\) from distinct sides. By hypothesis \(\{f(a), f(b)\} \cap f([x, y]) = \emptyset \). Thus \(f(a) \) and \(f(b) \) belong to distinct components of \(f([x, y]) \) and in particular \(f(a) \neq f(b) \).

Lemma 16 If \(\partial U \) is not a simple closed curve then \(B \neq \emptyset \) and \(B \neq S^1 \).

Proof. If \(\partial U \) is not a simple closed curve then by Lemma 14 \(f \) is not one to one and hence \(B \neq \emptyset \). Let \(a_0 \subset S^1 \) be any closed interval with distinct endpoints \(x_0 \) and \(y_0 \) such that \(z_0 = f(x_0) = f(y_0) \). Proceeding recursively, if possible let \(\alpha_{n+1} \subset \alpha_n \setminus f^{-1}(z_n) \) be a closed interval with distinct endpoints \(x_{n+1} \) and \(y_{n+1} \) such that \(f(x_{n+1}) = f(y_{n+1}) \) and \(|x_{n+1} - y_{n+1}| < \frac{1}{n+1} \). Suppose the process never terminates. Let \(a = \lim x_n = \lim y_n \). Suppose \(f(b) = f(a) \). By Lemma 15 \(b \in \cap \alpha_n \). Thus \(b = a \) and by Lemma 12 \(a \notin B \). If the process terminates then there must exist a nontrivial open interval \((x, y) \subset \alpha_0 \) such that \(f_j \) is one to one and \(f(x) = f(y) \). Let \(a \in (x, y) \) and apply Lemma 15 to conclude \(a \notin B \).

Lemma 17 The following are equivalent. 1) \(b \notin B \). 2) Suppose \(g : S^1 \to U \times R \) satisfies \(g(1) = (f(b), t') \) and \(g(\theta) \in U \times R \) if \(\theta \neq 1 \). Then there exists a map \(G : D^2 \to U \times R \) such that \(G(z) \in U \times R \) whenever \(z \in int(D^2) \) and \(G_{S^1} = g \).

Proof. Let \(\pi_1 : U \times R \to U \) and \(\pi_2 : U \times R \to R \) denote the projection maps. Suppose \(b \notin B \) and \(g : S^1 \to U \times R \) satisfies \(\pi_1 g(1) = f(b) \) and \(g(\theta) \in U \times R \) if \(\theta \neq 1 \). By Lemma 12 \(|f^{-1}(f(b))| = 1 \) and hence the formula \(\alpha = f^{-1}(\pi_1 g) : S^1 \to D^2 \) determines a map. Let \(\beta : D^2 \to D^2 \) be a continuous extension of \(\alpha \) such that \(\beta(z) \in int(D^2) \) if \(z \in int(D^2) \). Define \(G' : D^2 \to U \) via \(G' = f(\beta) \). Since \(R \) is contractible extend \(\pi_2(g) : S^1 \to R \) to a map \(h : D^2 \to R \). Define \(G : D^2 \to U \times R \) via \(G(z) = (G'(z), h(z)) \).

Conversely suppose \(b \in B \). By Lemma 14 choose \(b' \in S^1 \) such that \(b' \neq b \) and \(f(b') = f(b) \). Let \([b, b'] \subset D^2 \) denote the chord. Let \(g' \)
map S^1 homeomorphically onto the simple closed curve $f([b,b']) \subset \overline{U}$ such that $g^*(1) = f(b) = f(b')$. Both components of $R^2 \backslash \text{im}(g^*)$ contain points of ∂U. Hence g^* is essential in $\{f(b)\} \cup (R^2 \backslash \partial U)$. In particular G cannot exist since $\pi_1(G)$ would show that g^* is inessential.

Since condition 2) is a topological property $B \times R$ maps onto itself under the induced homeomorphism $\Psi H^{-1} : D^2 \times R \rightarrow D^2 \times R$. It follows that if $B' = \{x \in S^1\} \{x\}$ is a component of B or x is an endpoint of a nontrivial interval of B then $B' \neq \emptyset$, B' is totally disconnected, and $\Psi H^{-1}(B' \times R) = B' \times R$. If $|B'| \neq 2$ let $g : S^1 \rightarrow S^1$ be any homeomorphism such that $g(x) = y$ whenever x and y are components of B' such that $\Psi H^{-1}(\{x\} \times R) = \{y\} \times R$. Define $\text{Rot}(H) = \text{rot}(g)$. If $|B'| = 2$ define $\text{Rot}(H) = 0$ if ΨH^{-1} is orientation reversing and fixes $\{\infty, -\infty\}$ pointwise or if ΨH^{-1} is orientation preserving and swaps $\{\infty, -\infty\}$. Otherwise define $\text{Rot}(H)$ to be 0 or $\frac{1}{2}$ determined, respectively, by whether ΨH^{-1} interchanges the lines of $B' \times R$ or not.

8.3 Main Theorem on rotation number over $U \times R$

Theorem 18 Suppose ∂U is not a simple closed curve. The function $\text{Rot} : G(U \times R) \rightarrow R$ is continuous. If $F, H \in G(\overline{U} \times R)$ then $\text{Rot}(H) = \text{Rot}(FHF^{-1})$. If there exists $h \in G(\overline{U})$ such that $\forall z, t H(z, t) = (h(z), t)$ then $\text{Rot}(H) = \text{rot}(h)$.

Proof. If $|A^-| \geq 3$ then by Corollary 12 Rot is well defined. Suppose $g, f : S^1 \rightarrow S^1$ are homeomorphisms compatible, respectively with H and F. Then fgf^{-1} is compatible with FGF^{-1}. Hence $\text{Rot}(H) = \text{rot}(g) = \text{rot}(fgf^{-1}) = \text{Rot}(FGF^{-1})$. For continuity of Rot suppose $H_n \rightarrow H$. Let $h_n : A^- \rightarrow A^-$ and $h : A^- \rightarrow A^-$ denote the corresponding order preserving bijections. If J is a nontrivial component of A^- then $h_n(J)$ is eventually constant. Construct compatible homeomorphisms $g_n : S^1 \rightarrow S^1$ and $g : S^1 \rightarrow S^1$ as in Lemma 7. Note eventually $g_n|J = g|J$ and hence $\text{rot}(g_n) = \text{rot}(g)$ eventually. If each component J of A^- is trivial then $g_n \rightarrow g$ pointwise on a dense set $A^- \subset S^1$ and hence $g_n \rightarrow g$ uniformly. Thus by Theorem 5 $\text{rot}(g_n) \rightarrow \text{rot}(g)$.

If ∂U is not locally connected and $|A^-| \leq 2$ the theorem follows from the definition of Rot.

If ∂U is locally connected the homeomorphism ΨH^{-1} varies continuously with H. The theorem follows from the definition of Rot and from Theorem 5. ■
References

[1] Alligood, Kathleen T.; Yorke, James A. Fractal basin boundaries and chaotic attractors. Chaos and fractals (Providence, RI, 1988), 41–55, Proc. Sympos. Appl. Math., 39, Amer. Math. Soc., Providence, RI, 1989.

[2] Barge, Marcy; Gillette, Richard M. Indecomposability and dynamics of invariant plane separating continua. Continuum theory and dynamical systems (Arcata, CA, 1989), 13–38, Contemp. Math., 117, Amer. Math. Soc., Providence, RI, 1991.

[3] Barge, Marcy Prime end rotation numbers associated with the Hénon maps. Continuum theory and dynamical systems, 15–33, Lecture Notes in Pure and Appl. Math., 149, Dekker, New York, 1993.

[4] Brechner, Beverly L.; Lee, Joo S. A three-dimensional prime end theory. Topology Proc. 20 (1995), 15–47.

[5] Cartwright, M. L.; Littlewood, J. E. Some fixed point theorems. Ann. of Math. (2) 54, (1951). 1–37.

[6] Devaney, Robert L. An introduction to chaotic dynamical systems. The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1986.

[7] Fabel, Paul Self-homeomorphisms of the 2-sphere which fix point-wise a nonseparating continuum. Fund. Math. 155 (1998), no. 3, 201–214.

[8] Franks, John Rotation numbers and instability sets. Bull. Amer. Math. Soc. (N.S.) 40 (2003), no. 3, 263–279 (electronic)

[9] Mayer, John C.; Oversteegen, Lex G. Denjoy meets rotation on an indecomposable cofrontier. Continuum theory and dynamical systems, 183–199, Lecture Notes in Pure and Appl. Math., 149, Dekker, New York, 1993.

[10] Pommerenke, Ch. Boundary behaviour of conformal maps. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 299. Springer-Verlag, Berlin, 1992.

[11] Ursell, H. D.; Young, L. C. Remarks on the theory of prime ends. Mem. Amer. Math. Soc.(1951). no. 3, 29 pp.