Engulfment pathways promote programmed cell death by enhancing the unequal segregation of apoptotic potential

Sayantan Chakraborty1, Eric J. Lambie1, Samik Bindu1,2, Tamara Mikeladze-Dvali1 & Barbara Conradt1

Components of the conserved engulfment pathways promote programmed cell death in Caenorhabditis elegans (C. elegans) through an unknown mechanism. Here we report that the phagocytic receptor CED-1 mEGF10 is required for the formation of a dorsal–ventral gradient of CED-3 caspase activity within the mother of a cell programmed to die and an increase in the level of CED-3 protein within its dying daughter. Furthermore, CED-1 becomes enriched on plasma membrane regions of neighbouring cells that appose the dorsal side of the mother, which later forms the dying daughter. Therefore, we propose that components of the engulfment pathways promote programmed cell death by enhancing the polar localization of apoptotic factors in mothers of cells programmed to die and the unequal segregation of apoptotic potential into dying and surviving daughters. Our findings reveal a novel function of the engulfment pathways and provide a better understanding of how apoptosis is initiated during C. elegans development.
D
during Caenorhabditis elegans (C. elegans) development, 131 somatic cells reproducibly undergo programmed cell death. Many of the cells that are programmed to die are the result of an asymmetric cell division and die within 30 min post cytokinesis. Furthermore, most of the 131 cell deaths are dependent on an evolutionary conserved, central cell death pathway, which is composed of the BH3-only protein EGL-1 (EGL, egg-laying defective), the Bcl-2-like protein CED-9 (CED, cell-death abnormal), the Apaf-1-like adaptor CED-4 and the caspase CED-3 (refs 3–5). The current model for how the life versus death decision is made during C. elegans development is that in cells programmed to live, CED-9 binds to a dimer of CED-4 thereby preventing apoptosis formation and CED-3 maturation. Conversely, in cells programmed to die, EGL-1 is synthesized and binds to CED-9, which results in CED-4 release, apoptosis formation and CED-3 maturation. Active CED-3 subsequently induces processes that are necessary for the regulated dismantling or ‘killing’ of the cell and the engulfment and degradation of the resulting cell corpse. For example, CED-3 caspase activates the Xkr8-like protein CED-8, which mediates the exposure of phosphatidylserine (PS) on the surface of the cell corpse. Exposed on the cell surface, PS acts as one of the probably several ‘eat me’ signals that are recognized by neighbouring cells and that lead to the activation of two conserved, partially redundant engulfment pathways in the neighbouring cells, the CED-1 mEGF10, CED-6 GULP, CED-7 ABC transporter, DYN-1 (DYN, Dynamin related) DYN1-dependent pathway and the CED-2 CrkII, CED-5 Dock180, CED-10 Rac, CED-12 ELMO-dependent pathway. The activation of these pathways initiates pseudopod extension, which eventually leads to the complete engulfment and degradation of the cell corpse by one of its neighbours. By recognizing PS on the surface of cell corpses, the mEGF10 (mEGF, multiple epidermal growth factor-like domains)-like receptor CED-1 acts as a phagocytic receptor and plays a critical role in the initiation of this process. Furthermore, during the engulfment process, CED-1 becomes enriched on those regions of the plasma membrane of the engulfing cell that appose the cell corpse.

The two engulfment pathways also contribute to the actual killing of cells programmed to die. Specifically, it was shown that mutating any component of the two pathways enhances the general cell-death defect (or ‘Ced phenotype’) of animals homozygous for weak loss-of-function mutations in egl-1, ced-4 or ced-3 (refs 16,17). This ‘killing function’ of the engulfment pathways acts in engulfing cells and hence, in a non-cell-autonomous manner. Furthermore, it affects a process or factor that acts downstream of ced-9 and that is independent of ced-8 (ref. 17). The mechanism and target of this killing function however, remains to be elucidated.

The two bilaterally symmetric NSM (neurosecretory motor-neuron) neuroblasts (NSMb) are born ~230 min after the fertilization of the C. elegans oocyte (referred to as ‘post-fertilization’). After 180 min (~410 min post fertilization), they divide asymmetrically and each gives rise to a small cell, the NSM sister cell (NSMc), and a large cell, the NSM2. The NSM survives and differentiates into a serotonergic motorneuron. The NSMc, however, undergoes programmed cell death in a manner that is dependent on the central egl-1, ced-9, ced-4, ced-3-dependent cell death pathway and forms a corpse within ~20 min after being generated. Using the apoptotic death of the NSMc as a paradigm, we present evidence that ced-1 promotes the death of the NSMc by contributing to the polar localization of apoptotic factors (including CED-3 caspase activity) within the NSMb and by enhancing the unequal segregation of apoptotic potential into the NSMc and NSM.

Therefore, our findings reveal a novel function of ced-1 and other components of the conserved engulfment pathways. Furthermore, within the context of apoptosis, ced-3 and ced-1 have been thought to act specifically within the dying cell and within the engulfing cell, respectively. Our findings reveal that in the NSM lineage, ced-3 and ced-1 also act earlier, regulating events that occur within the mother of a cell that is programmed to die and within the mother’s neighbours. In the context of the NSM lineage, the current model for how apoptotic cell death is initiated therefore needs to be reassessed.

Results

ced-1 promotes the death of the NSMc. Using a reporter for serotonergic neurons that is expressed in ‘undead’ NSM sister cells, we investigated whether the ced-1, ced-6, ced-7, dyn-1-dependent engulfment pathway promotes the apoptotic death of the NSMc. We found that a strong ced-1 loss-of-function mutation (e1735) greatly enhances the NSMc survival phenotype of animals homozygous for n2427, a weak loss-of-function mutation in the ced-3 caspase gene (from 13 to 55%; Fig. 1b). This demonstrates that ced-1 promotes the death of the NSMc.

ced-1 contributes to increase in CED-3 level in the NSMc. It was previously demonstrated that the killing function of the engulfment pathways affects a factor that acts downstream of ced-9, possibly ced-3 (ref. 17). To investigate when and where ced-1 could potentially affect ced-3 in the NSM lineage, we generated a functional, fosmid-based ced-3 reporter (Pced-3::gfp) (Supplementary Fig. 1) and analysed its expression in wild-type embryos. We observed ‘CED-3::GFP’ (representing both proCED-3::GFP and active CED-3::GFP) in the NSM neuroblast (NSMb) before its division into the NSMc and NSM (Fig. 2a, Supplementary Fig. 2). During NSMb division, CED-3::GFP was equally segregated into the NSMc and NSM so that the concentrations of CED-3::GFP in the two daughter cells after the completion of cytokinesis were almost identical (t = 0 min, Fig. 2a and Supplementary Fig. 2). However, starting 10 min post cytokinesis, CED-3::GFP concentration gradually increased in the NSMc (Fig. 2b). This increase reached a maximum 21 min post cytokinesis, by which time the NSMc had adopted the morphology typical of a cell corpse.

**Figure 1 | ced-1 promotes the death of the NSM sister cell.** (a) NSM lineage depicting the NSM neuroblast (NSMb), which is born ~233 min post fertilization (at 25 °C). The NSMb divides ~410 min post fertilization to give rise to the NSM, which is programmed to survive, and the NSM sister cell (NSMc), which is programmed to die at ~430 min; x indicates the time point of death. (b) Percent (%) NSMc survival scored in L4 larvae in various genetic backgrounds (n = 60–110). All strains analysed were homozygous for Pegl-1::his-24::gfp (bc1566).
(\(t = 21\) min, Fig. 2a and Supplementary Fig. 2). Conversely, starting 10 min post cytokinesis, CED-3::GFP concentration gradually decreased in the NSM (Fig. 2b). As a result, at 21 min post cytokinesis, the concentration of CED-3::GFP in the NSMsc was more than twofold higher than that in the NSM (Fig. 2b,g).

### Figure 2 | Dynamics of CED-3::GFP in the NSM lineage. (a,c,e) Left images: two-channel overlay projections of single plane confocal images of representative wild type (+/+) and ces-2(bc213) and ced-1(e1735) embryos at metaphase expressing \(P_{ced-3}:ced-3::gfp\) (bcIs109) and \(P_{pie-1}:mCherry::plc\) (ltIs44). Insets represent enlarged images of NSMnb (scale bar, 5 \(\mu\)m) at metaphase. White arrows point to NSMnb. Right images: single plane confocal images of NSMnb daughter cells at cytokinesis (\(t = 0\) min) and at the time point at which the NSMsc corpse became visible in +/+ and ced-1(e1735) with the help of mCherry::PLC\(\alpha\)PH (\(t = 21\) min post cytokinesis for +/+ and \(t = 20\) min post cytokinesis for ced-1(e1735); in ces-2(bc213) \(t = 20\) min was analysed as NSMsc does not form a corpse). Blue arrowheads point to the NSMsc and orange arrowheads point to the NSM. (b,d,f) Normalized means of CED-3::GFP concentration (CED-3::GFP pixels per cell volume) at various time points post cytokinesis (min) in NSMsc (blue) and NSM (orange) in wild type (+/+), ces-2(bc213) or ced-1(e1735), respectively (\(n = 8\)). (g) Ratios of CED-3::GFP concentrations in the NSMsc and in the NSM at final time point. (h) Comparison of CED-3::GFP concentrations in the NSMsc at final time point. Statistics were performed using Student’s t-test by comparing the respective means to wild type (**\(P \leq 0.01\) and ****\(P \leq 0.0001\)). Error bars denote the s.e.m.
Next, we asked whether ced-3 expression within the NSM lineage is affected by a loss-of-function mutation of the HLF (HLF, hepatic leukaemia factor)-like gene ces-2 (CES, cell-death specification), which affects the asymmetric division of the NSMnb and causes the generation of two cells of similar sizes, both of which survive\textsuperscript{18,24,25} (Supplementary Fig. 3). We found that in ces-2(b213) animals, the concentration of CED-3::GFP did not increase in the NSMsc post cytokinesis; instead, CED-3::GFP concentration gradually decreased in both the NSW and NSMsc (Fig. 2c,d; Supplementary Fig. 2). As a result, at 20 min post cytokinesis, the concentrations of CED-3::GFP in the NSMsc and NSW were almost identical (Fig. 2d,g). Finally, we analysed ced-1(e1735) animals and found that the increase of CED-3::GFP in the NSMsc was delayed compared with wild type (Fig. 2e,f; Supplementary Fig. 2). As in wild type, in ced-1(e1735) animals the division of the NSMnb occurs asymmetrically (Supplementary Fig. 3.). Moreover, the concentration of CED-3::GFP in the NSMsc at the time the NSMsc formed a corpse (20 min post cytokinesis) was significantly reduced (Fig. 2h). As a result, the concentration of CED-3::GFP in the NSMsc at this time point was <1.5-fold higher than that in the NSW (Fig. 2g). (In all genotypes analysed, the changes in NSW and NSMsc volume were comparable (Supplementary Fig. 4).)

Based on these observations we conclude that the level of CED-3 caspase increases specifically in the NSMsc and that this increase is at least in part dependent on ced-1 function.

**CED-1 becomes asymmetrically enriched around the NSMnb.**

It was previously demonstrated that the engulfment pathways act in a non-cell-autonomous manner to promote programmed cell death\textsuperscript{17}. To determine where and when the CED-1 receptor acts to contribute to the increase in CED-3::GFP in the NSMsc, we used a CED-1::GFP fusion protein (CED-1::GFP\textsuperscript{13}) to analyse the distribution of CED-1 in neighbours of the NSM lineage. To our surprise, at NSMnb metaphase we found that compared with the ventral side of the NSMnb, CED-1 was enriched 1.3-fold on the dorsal side of the NSMnb and that this enrichment is at least in part dependent on ced-1 function.

CED-1 enrichment on plasma membrane regions of engulfing cells is induced and mediated at least in part through PS, which is exhibited on the surface of cell corpses\textsuperscript{6,12}. To visualize PS on the surface of cells, we used a secreted AnnexinV::GFP fusion protein (sAnnxV::GFP), which binds to PS\textsuperscript{26}. We found that PS was present on the surface of the NSMsc but not on the dorsal side of the NSMnb (Fig. 3e). This suggests that differential localization of PS on the NSMnb is not what drives enrichment of CED-1 on the dorsal neighbouring cells. To further test this idea, we used a strong loss-of-function mutation of the gene ced-8 and, hence, mediated most probably by a signal other than PS. Interestingly, it was previously shown that the killing function of the engulfment pathways is independent of ced-8 function\textsuperscript{17}.

**Engulfment genes contribute to CED-3 activity gradient.**

Our findings demonstrate that ced-3 is expressed in the NSMnb and ced-3 function is required for the enrichment of CED-1 on plasma membrane regions of cells apposing the dorsal side of the NSMnb. To visualize CED-3 caspase activity in the NSMnb and to determine its spatial distribution along the dorsal–ventral axis of the NSMnb, we developed an assay based on TAC-1 (TAC, TACC protein family), a component of the pericentriolar material (PCM)\textsuperscript{27–29}. TAC-1 has a caspase cleavage site and is a substrate of CED-3 in vitro (Supplementary Fig. 6a). When expressing a GFP::TAC-1 fusion protein in the NSMnb, we observed that at metaphase, there is asymmetry in the amount of GFP::TAC-1 that is associated with the PCMs of the two centrosomes. Specifically, compared with the PCM of the centrosome located in the dorsal part of the NSMnb, there was on average 1.3-fold more GFP::TAC-1 associated with the PCM of the centrosome located in the ventral part of the NSMnb (Fig. 4a,b). The loss of ced-3 (including the ced-3 active site mutation n2433) resulted in an increase in the amount of GFP::TAC-1 associated with the PCM of the centrosome located dorsally (Supplementary Fig. 6b) and thereby disrupted the asymmetry between the amount of GFP::TAC-1 associated with the dorsal and ventral centrosomes of the NSMnb at metaphase reflects a gradient of CED-3 caspase activity within the cell. Higher levels of CED-3 caspase activity are present in the dorsal part of the NSMnb, which subsequently gives rise to the NSMsc.

Next we asked whether this dorsal–ventral gradient of CED-3 caspase activity is dependent on ces-2 function. We found that in ces-2 mutants, the gradient is disrupted (ratio of 1.03 and 1.04, respectively; Fig. 4a,b). Furthermore, a non-cleavable mutant GFP::TAC-1 protein, GFP::TAC-1(D251A), exhibited a ratio in a wild-type background similar to the ratio found for cleavable, wild-type GFP::TAC-1 in a ced-3 mutant background (ratio of 1.11; Supplementary Fig. 6c,d). Based on these observations we propose that truncated GFP::TAC-1 (GFP::TAC-1(D251A C-terminus)) that is generated by ced-3-dependent cleavage, no longer associates with the PCM. Hence, we infer that the asymmetry between the amount of GFP signal associated with the dorsal and ventral centrosomes of the NSMnb at metaphase reflects a gradient of CED-3 caspase activity within the cell.
death pathway that act downstream of ces-2 HLF, dnj-11 Zrf and ces-1 Snail and upstream of ced-3, that is, egl-1 BH3-only, ced-9 Bcl-2 and ced-4 Apaf-1. As shown in Fig. 4b, the gradient is disrupted by mutations in any of these three genes (ratios of 1.04, 1.07 and 1.08, respectively). (Like mutations in ced-3, mutations in egl-1, ced-9 and ced-4 do not affect the asymmetric division of the NSMnb (Supplementary Fig. 3).) This also demonstrates that the central cell death pathway is already active (at least to a certain degree) in the NSMnb.

To our surprise, we also found that the loss of ced-1 disrupted the gradient of CED-3 caspase activity in the NSMnb (ratio of 1.05; Fig. 4a,b). Similarly, the loss of the CrkII-like adaptor gene ced-2, a component of the ced-2, ced-5, ced-10, ced-12-dependent engulfment pathway34,35 or the GULP-like adaptor gene ced-6, another component of the ced-1, ced-6, ced-7, dyn-1-dependent engulfment pathway11,36 also disrupted the gradient (ratios of 1.06 and 1.04, respectively; Fig. 4a,b). Therefore, components of both engulfment pathways are also required for the establishment of the dorsal–ventral gradient of CED-3 caspase activity in the NSMnb. Finally, the gradient is not affected by ced-8(n1891) (ratio of 1.24; Fig. 4b). Since ced-8 is also not required for the asymmetric enrichment of CED-1 around the NSMnb (Fig. 3a), this finding is consistent with the notion that the asymmetric enrichment of CED-1 around the NSMnb is critical for the
Discussion

Based on our observations, we conclude that it is not the process of engulfment per se that promotes the apoptotic death of the NSMsc. Instead, we propose that a previously undescribed signalling function of components of the two engulfment pathways acts in a non-cell-autonomous manner to promote the polarization of the NSMnb and the unequal segregation of apoptotic potential. Specifically, we propose that CED-3 caspase activity, which is already present in the NSMnb (and which is inherited by the NSMsc) then enhances an aspect of NSMnb polarity that is necessary for the establishment of a gradient of apoptotic potential along the dorsal–ventral axis of the NSMnb. During NSMnb division, this gradient results in the unequal segregation of apoptotic potential (Fig. 5). For example, compared with the NSM, more CED-3 caspase activity may appear to be higher than that in ventral neighbours (Supplementary Fig. 7.) This model is consistent with previous findings that suggest that the killing function of the engulfment pathways acts in engulfing cells17. However, we cannot completely rule out the possibility that the two engulfment pathways are activated in the dorsal part of the NSMnb, rather than in the dorsal neighbours of the NSMnb. Through a mechanism that remains to be determined, the activation of the engulfment pathways in the dorsal neighbours (or, alternatively, the dorsal part of the NSMnb) then enhances an aspect of NSMnb polarity that is necessary for the establishment of a gradient of apoptotic potential along the dorsal–ventral axis of the NSMnb. During NSMnb division, this gradient results in the unequal segregation of apoptotic potential (Fig. 5). For example, compared with the NSM, more CED-3 caspase activity may segregate into the NSMsc. This notion is supported by the observation that the loss of ced-3 affects the dissociation of GFP::TAC-1 specifically from the PCM of the dorsal centrosome, which is inherited by the NSMsc (Supplementary Fig. 8). Furthermore, we speculate that gradients of factors other than CED-3 caspase activity are also established, and that these are responsible for the increase in CED-3::GFP observed in the

Figure 4 | A gradient of CED-3 caspase activity exists in the NSMnb. (a) Maximum intensity single channel and overlay projections of confocal images of representative NSMnb at metaphase in wild type (+/+), ces-2(bc213), ces-3(n717), ced-1(e1735), ced-6(n1813) and ced-2(n1994) embryos expressing Ppie-1::gfp::tac-1 (bcls104) and Ppie-1::mCherry::plc (lits44) (scale bar, 5 μm). Orange arrowheads indicate the PCM in the ventral part of the NSMnb and blue arrowheads indicate the PCM in the dorsal part of the NSMnb. (b) Ratios of GFP::TAC-1 pixels associated with the ventral and dorsal PCM in individual NSMnb cells at metaphase in various genetic backgrounds (wild type (+/+), ced-3(n717), ced-3(n718), ced-3(n2433), ces-2(bc213), ced-1(e1735), ced-2(n1994), ced-6(n1813) and ced-8(n1891)) (n = 8–19). The mean ratio is given (top). For comparison, the dotted line indicates mean ratio of wild type (ratio of 1.3). Mean ratios were analysed using the Student’s t-test (**P ≤ 0.01, ***P ≤ 0.001 and ****P ≤ 0.0001). All statistical analyses were done in comparisons to wild type.
programmed cell deaths that occur during *C. elegans* development (Fig. 1b)\(^6,16,17\). Hence, it is necessary for the robustness of the essentially invariant pattern of programmed cell death observed during *C. elegans* development\(^1,2\). Our observation that the central cell death pathway and the engulfment pathways are active earlier in the NSM lineage than previously anticipated also necessitates a reassessment of how the apoptotic death of the NSMsc is initiated\(^3,5,18,20\).

In addition, our findings raise the question of whether apoptotic potential is also segregated in an unequal manner in other cells that divide asymmetrically, such as stem cells, and whether the novel signalling function of components of the engulfment pathways described here is evolutionarily conserved. Previous studies have demonstrated that macrophage-mediated cell killing is an important aspect of mammalian development. During the development of the rat eye results in the inappropriate survival of vascular endothelial cells\(^37,38\). Moreover, resident macrophages of the brain (that is, microglia) promote killing of developing neurons\(^39\). The molecular mechanisms underlying these phenomena remain unknown. Therefore, it will be interesting to determine whether functional homologues of components of the two *C. elegans* engulfment pathways are functionally involved in the aforementioned mammalian contexts.

---

**Methods**

**Strains.** Mutations used in this study are listed below and have been previously described\(^40\), except where noted otherwise: LGI: *ced-1(n1735)*\(^34,\) *ces-2(n703)*\(^36,\) *ces-2(bca213)*\(^18,\) LGII: *bci-1 [Pmax;gfp::tac-1]* and *bci-4 [Pmax;gfp::tac-1(D251A)]* (this study). LGIII: *csh-20(a9y)*\(^39,\) *ced-6(n1890)*\(^42,\) *ced-4(n1162)*\(^43,\) *bci-66 [Pph-1;his-24::gfp]*\(^35,\) *ced-8(n1809)*\(^41,\) *ced-9(n1950)*\(^44,\) *n2433, n2435*, *dpy-11(eba27)*\(^18,\) LGIV: *egl-1(n1084n3082)*\(^44,\) *en-11 [Pceh;ces-2bc::gfp]*\(^13,\) *en-34 [Pceh;ces-2bc::gfp]* (this study), *bcIs109* [Pced-3::gfp] (this study), *bci-104 [Pmax;gfp::tac-1]*\(^7,\) The strain N2 (Bristol) was used as wild type. Strains were grown on (Nematode growth medium) plates seeded with *E. coli* strain OP50 and maintained at 15 °C essentially as described\(^46\).

**Pced-3::gfp fosmid construction.** To generate a *ced-3::gfp* reporter a recombineering technique was used\(^47\) (Supplementary Fig. 1). The fosmid WRM0610cE07 was obtained from Source BioScience UK Limited. It was transformed into *E. coli* strain SW105 followed by a heat shock to induce the expression of the *CED-3* 3′ leader. Red recombinase. The electro-competent cells containing the fosmid of interest and the recombineering cassette were then allowed to take up a cassette containing the gfp sequence as well as the selectable marker galk, which is flanked by *fr* sites, the targets of Flp recombinase. The whole cassette was PCR amplified from pBALU1 using the primer sets o1860 (5′-CGGTCCATCTGCAAAAGCATTTCCGGACCCAGCTATCATAATTTCCATGATGTAAGGAGAGAAACTTTACAC-3′) and o1861 (5′-AACCAGCGCTTTAGTTGGTGATCAGCATCGGAAAGATCTACATCACCTCTTTGTATGATCAGCATGACTGTTGGTGCATCG-3′) as described\(^48\). This primer set was designed in a way that the gfp tag was inserted at the C-terminal end of *ced-3* in exon 8. Recombinants stably maintaining the galk cassette were selected in a minimal medium with galkose. The second recombinase, Flpase (Flp) was then induced by the addition of arabinose, thus resulting in the removal of the galk Marker. Following this, the fosmid (pBC1378) was isolated and electroporated into the *E. coli* strain EPI300 for amplification and maintenance.

**Germline transformation.** Transgenic animals were obtained by microinjecting as described\(^44\). The *Pced-3::gfp* fosmid (pBC1378) (0.5 ng µl\(^-1\)) was co-injected into N2 with the plasmid pPR4 (150 ng µl\(^-1\)), which contains the rol-6(n1006) allele, which causes a dominant Rol phenotype\(^49\). Three lines expressing extrachromosomal arrays were obtained, one of which was used to stably integrate the array into the genome by ultraviolet radiation. Three integrated lines were obtained. The integrated allele used for our studies was named *bci-109* and backcrossed twice to wild type. *bci-109* can restore the wild-type phenotype in a *ced-3* (n717) mutant (Supplementary Fig. 1b).

**TAC-1 biochemistry.** The *C. elegans* *tac-1* cDNA was cloned 3′ of the open-reading frame encoding GST by inserting it into the EcoNI site in the bacterial expression plasmid pGEKX-4T-3. The resulting plasmid (pBC1385) was transformed into *E. coli* BL21 (DE3) cells for TAC-1::GST expression. Extraction

---

**Figure 5 | Components of engulfment pathways promote the apoptotic death of the NSMsc.** A molecular model for how components of the engulfment pathways promote NSMsc apoptosis (see text for details). CED-3 caspase activity present in the mother of the NSMsc, the NSMnb, produces a signal (orange arrow) that results in the engulfment of CED-1 on the plasma membranes of neighboring cells apposing the dorsal side of the NSMnb. This signal is independent of *ced-8* and PS. We speculate that the dorsal neighbouring cells are primed to receive this signal via a prior symmetry-breaking event, depicted here as somewhat higher expression level of CED-1 in the dorsal neighbours (Supplementary Fig. 7). CED-1 enrichment on the plasma membranes of the dorsal neighbours leads to the activation of components of the two engulfment pathways in these cells. A signal from these neighbours (brown arrow), which is dependent on the functions of components of the two engulfment pathways, subsequently promotes the generation of a gradient of ‘apoptotic potential’ (including a gradient of CED-3 caspase activity) along the dorsal–ventral axis of the NSMnb. During NSMnb division, this gradient causes the unequal segregation of apoptotic potential. As a result, the small dorsal daughter cell, the NSMsc, inherits a higher concentration of this potential. The higher concentration is reflected in a higher level of CED-3 caspase activity and an increase in CED-3 concentration in the NSMsc, both of which contribute to the apoptotic death of the NSMsc within ~20 min post cytokinesis, at which time point the NSMsc corpse is engulfed by a neighbouring cell (Fig. 2a).

---

**Supplementary information**

**NATURE COMMUNICATIONS** | DOI: 10.1038/ncomms10126 | www.nature.com/naturecommunications

---

7
of TAC-1::GST fusion protein was performed as previously described. Bacteria containing pBC1385 (50 µl culture) were grown to an absorbance of 0.6 and TAC-1::GST was expressed with 1 mg IPTG for 2 h at 37 °C. Cells were collected, resuspended in 1 ml NETN buffer (20 mM Tris-HCl pH 8.0, 0.5% NP-40, 100 mM NaCl, and a cocktail of protease inhibitor (Roche)) and lysed by sonication. Debris was sedimented by centrifugation and the supernatant was used for the in vitro cleavage assay.

**CED-3 protein fused to a FLAG octapeptide at its C terminus was obtained from PET-CED-3 plasmid (gift from H. R. Horvitz) expressed in E. coli BL21 (DE3) cells. CED-3 lysate was obtained as previously described.** The GST-fusion expressing PET-CED-3 was grown in a 50 ml log-phase culture to an absorbance of 0.6 and CED-3 expression was induced with 1 mM IPTG for 2 h at RT. Cells were collected, resuspended in 1 ml of CED-3 buffer (50 mM Tris-HCl pH 8.0, 0.5 mM EDTA, 0.5 mM sucrose, 5% glycerol and supplementary protease inhibitors) and lysed by sonication. Debris was sedimented by centrifugation and the resulting supernatant was used for the in vitro cleavage assay.

For the in vitro TAC-1::GST cleavage assay, 20 µl of TAC-1::GST bound glutathione agarose beads (see above) were incubated with 10 µl of CED-3 lysate (see above) and 10 µl of CED-3 buffer (final reaction volume of 40 µl). In parallel, two control reactions were set up, one without CED-3 lysate and one with CED-3 lysate in which the activity of CED-3 had been inhibited. To inhibit the catalytic activity of CED-3, 10 μl of the CED-3 lysate was pre-incubated for 20 min at 37 °C with 5 mM of an inhibitor (iodoacetic acid) as described. The cleavage reaction was carried out for 1 h at 37 °C and the reaction was terminated by adding an equal volume of 2× Laemmli buffer. To analyse the cleavage reaction, a western blot was performed using CED-3 antibodies (1:1000) available at Developmental Studies Hybridoma Bank and the horseradish peroxidase-conjugated goat anti-mouse secondary antibody (1:1,000) (Bio-Rad – catalogue #170-6516). The blot was developed using a Chemiluminescence (Amersham) kit and detected using ChemiDoc XR+ (Bio-Rad).

**GFP::TAC-1 and GFP::TAC-1(D251A) strain construction.** GFP::TAC-1 was PCR amplified from bcs1/t4, which was obtained from the strain BC1477. Both plasmids were injected separately into the heat shock promoter, embryos were incubated at 33 °C. Debris was sedimented by centrifugation and the resulting supernatant was used for the in vitro cleavage assay.

**GFP::TAC-1 analysis**. On confocal acquisition of CED-3::GFP or GFP::TAC-1::FLAG embryos (as described above), a region of interest with a constant area was enclosed either side of the cell and dividing it by the length of the respective cell boundary. Post NSM cell cytokinesis (~20 min post cytokinesis), ‘CED-1::GFP pixels/length’ was obtained by summing up the pixels surrounding the cell boundary of either daughter cell and dividing it by its circumference.

**CED-3::GFP analysis**. NSM cell volume analysis. For confocal acquisition of CED-3::GFP or GFP::TAC-1::FLAG embryos (as described above), a region of interest could be drawn around the ‘dorsal’ or ‘ventral’ cell volume of interest. The dorsal or ventral side of the NSM cell was determined by summing up the pixels on the cell boundary of either daughter cell and dividing it by its circumference. The dorsal or ventral side of the NSM cell was determined by summing up the pixels on the cell boundary of either daughter cell and dividing it by its circumference.

**NSM longevity in C. elegans.** For confocal acquisition of CED-3::GFP embryos as described above, the centre plane of the NSMn (at metaphase or 5 min before metaphase), the NSM or the NSMc (both ~20 min post cytokinesis) was identified and used for analysis. The cell boundaries of NSMn, NSM and NSMc were visualized with mCherry::PLCAH. The dorsal (‘d’) and ventral (‘v’) side of the NSMn was marked based on the position of the NSM daughter cells post cytokinesis. The CED-1::GFP::TAC-1 pixels/length’ was obtained by summing up the pixels on the cell boundary of either daughter cell and dividing it by its circumference.

**References**

1. Sulston, J. E. & Horvitz, H. R. Post-embryonic cell lineages of the nematode, *Caenorhabditis elegans*. *Dev. Biol.* 56, 110–116 (1977).

2. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode *Caenorhabditis elegans*. *Dev. Biol.* 100, 64–119 (1983).

3. Conradt, B. Genetic control of programmed cell death during animal development. *Annu. Rev. Genet.* 43, 493–523 (2009).

4. Horvitz, H. R. Worms, life, and death (Nobel lecture). *Chembiochem* 4, 697–711 (2003).

5. Lettre, G. & Hengartner, M. O. Developmental apoptosis in *C. elegans*: a complex CEDnario. *Nat. Rev. Mol. Cell. Biol.* 7, 97–108 (2006).

6. Chen, Y. Z., Mapes, J., Lee, E. S., Sken-Gaar, R. R. & Yue, D. Caspase-mediated activation of *Caenorhabditis elegans* CED-8 promotes apoptosis and phosphatidylinositol externalization. *Nat. Commun.* 4, 2726 (2013).

7. Stanfield, G. M. & Horvitz, H. R. The cell-death gene controls the timing of programmed cell death. *Mol. Cell. Biol.* 33, 2923–2939 (2013).

8. Suzuki, Y., Ito, K., Imanishi, E., Horvitz, H. R. & Nagata, S. Xκ-related protein 8 and CED-8 promote phosphatidylinositol exposure in apoptotic cells. *Science* 341, 403–406 (2013).

9. Hochreiter-Hufford, A. & Ravichandran, K. S. Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. *Cold Spring Harb. Perspect. Biol.* 5, a008748 (2013).

10. Lu, N. & Zhou, Z. Membrane trafficking and phagosome maturation during the clearance of apoptotic cells. *Int. Rev. Cell. Mol. Biol.* 293, 269–309 (2012).

11. Ellis, R. E., Jacobson, D. M. & Horvitz, H. R. Genes required for the engulfment of cell corpses in *C. elegans*. *Cell* 104, 43–56 (2001).

12. Zhou, H., Hartwig, E. & Horvitz, H. R. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in *C. elegans*. *Cell* 104, 43–56 (2001).

13. Zhou, Z., Hartwig, E. & Horvitz, H. R. CED-1 promotes cell corpse engulfment in *C. elegans*. *Cell* 129, 79–94 (2007).

14. Zhou, Z., Hartwig, E. & Horvitz, H. R. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in *C. elegans*. *Cell* 104, 43–56 (2001).

15. Yu, X., Odera, S., Chuang, C. H., Lu, N. & Zhou, Z. C. elegans Dynamin mediates the signaling of phagocytic receptor CED-1 for the engulfment and degradation of apoptotic cells. *Dev. Cell.* 10, 743–757 (2006).

16. Hoepfner, D. J., Hengartner, M. O. & Schnabel, R. Engulfment gene cooperates with the ced-3 gene to promote cell death in *Caenorhabditis elegans*. *Nature* 412, 202–206 (2001).

17. Reddien, P. W., Cameron, S. & Horvitz, H. R. Phagocytosis promotes programmed cell death in *C. elegans*. *Nature* 412, 198–202 (2001).
18. Hatzold, J. & Conradt, B. Control of apoptosis by asymmetric cell division. PLoS Biol. 6, e84 (2008).

19. Sze, J. Y., Victor, M., Loer, C., Shi, Y. & Ruvkun, G. Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesizing mutant. Nature 403, 560–564 (2000).

20. Thellmann, M., Hatzold, J. & Conradt, B. The Snail-like CES-1 protein of C. elegans can block the expression of the BH3-only cell-death activator gene egl-1 by antagonizing the function of bHLH proteins. Development 130, 4057–4071 (2003).

21. Ellis, H. M. & Horvitz, H. R. Genetic control of programmed cell death in the nematode C. elegans. Cell 44, 817–829 (1986).

22. Shaham, S., Reddien, P. W., Davies, B. & Horvitz, H. R. Mutational analysis of the Caenorhabditis elegans cell-death gene ced-3. Genetics 153, 1655–1671 (1999).

23. Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M. & Horvitz, H. R. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75, 641–652 (1993).

24. Ellis, R. E. & Horvitz, H. R. Two C. elegans genes control the programmed deaths of specific cells in the pharynx. Development 112, 591–603 (1991).

25. Metzstein, M. M., Hengartner, M. O., Tsung, N., Ellis, R. E. & Horvitz, H. R. Transcriptional regulator of programmed cell death encoded by Caenorhabditis elegans gene ces-2. Nature 382, 545–547 (1996).

26. Mapes, J. et al. CED-1, CED-7, and TTR 52 regulate surface phosphatidylserine expression on apoptotic and phagocytic cells. Curr. Biol. 22, 1267–1275 (2012).

27. Bellanger, J. M. & Gonczy, P. TAC-1 and ZYG-9 form a complex that promotes microtubule assembly in C. elegans embryos. Curr. Biol. 13, 1488–1498 (2003).

28. Le Bot, N., Tsai, M. C., Andrews, R. K. & Ahringer, J. TAC-1, a regulator of programmed cell death in patterning of the vasculature. Nature 437, 1073–1083 (1996).

29. Hadwiger, G., Dour, S., Arur, S., Fox, P. & Nonet, M. L. A monoclonal antibody cocktail for C. elegans PloS One 5, e10161 (2010).

30. Xue, D., Shaham, S. & Horvitz, H. R. The Caenorhabditis elegans cell-death gene CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. Genes Dev. 10, 1073–1083 (1996).

31. Hedgcock, E. M., Sulston, J. E. & Thomson, J. N. Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 280, 1277–1279 (1983).

32. Reddien, P. W. & Horvitz, H. R. C. elegans cell death induction gene ced-1 encodes a snail zinc finger protein. Mol. Cell. 4, 309–319 (1999).

33. Liu, H., Strauss, T. J., Potts, M. B. & Cameron, S. Direct regulation of egl-1 and of programmed cell death by the Hox protein MAB-5 and by CEH-20, a C. elegans homolog of Pbx1. Development 133, 641–650 (2006).

34. Schwartz, H. T. & Horvitz, H. R. The C. elegans protein CED-30 protects male-specific neurons from apoptosis independently of the Bel-2 homolog CED-9. Genes Dev. 21, 3181–3194 (2007).

35. Peden, E., Kimberly, E., Gengyo-Ando, K., Mitani, S. & Xue, D. Control of sex-specific apoptosis in C. elegans by the BxH homeodomain protein CED-30 and the transcriptional repressor UNC-17/Groucho. Genetics 171, 3193–3207 (2007).

36. Hedgecock, E. M., Sulston, J. E. & Thomson, J. N. Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 220, 1277–1279 (1983).

37. Reddien, P. W. & Horvitz, H. R. C. elegans CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nat. Cell Biol. 2, 131–136 (2000).

38. Liu, Q. A. & Hengartner, M. O. Candidate adaptor protein CED-6 promotes the engulfment of apoptotic cells in C. elegans. Cell 93, 961–972 (1998).

39. Lobov, I. B. et al. WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature 437, 417–421 (2005).

40. Rao, S. et al. Obligatory participation of macrophages in an angiopoietin-2-mediated cell death switch. Development 134, 4449–4458 (2007).

41. Marin-Teva, J. L. et al. Microglia promote the death of developing Purkinje cells. Neuron 41, 535–547 (2004).

42. Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R. in C. elegans II (eds Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.) (Cold Spring Harbor, 1997).

43. Takacs-Vellai, K. et al. Transcriptional control of Notch signaling by a HOX and a PBR/EXD protein during vulval development in C. elegans. Dev. Biol. 302, 661–669 (2007).

44. Hengartner, M. O., Ellis, R. E. & Horvitz, H. R. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356, 494–499 (1992).

45. Yuan, J. & Horvitz, H. R. The C. elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116, 309–320 (1992).