Strongly Universal Hamiltonian Simulators

Leo Zhou (Harvard University) 🟢
& Dorit Aharonov (Hebrew University) 🌙

QIP – Feb 5, 2021
Analog Quantum Simulation: a promising application

Many-Body Localization & Time Crystals

[J. Smith et al., 2016]

Quantum Phase Transition

[M. Endres et al., 2016]

Quantum Chemistry

[C. Wang et al., 2019]

Feynman 1981] [Cirac Zoller 2012]
Some families of Hamiltonian are **Universal**: They can simulate all other Hamiltonians

Universal Hamiltonians

\[
\tilde{H} = \sum_{\langle i,j \rangle \in E} J_{ij} \tilde{S}_i \cdot \tilde{S}_j
\]

MBL

\[
H = \sum_{i,j} \frac{1}{|i-j|^{\alpha}} X_i X_j + \sum_i h_i Z_i
\]

SYK

\[
H = \sum_{i,j,k,\ell} J_{ijk\ell} \gamma_i \gamma_j \gamma_k \gamma_{\ell}
\]

Molecules

\[
H = \sum_{i,j} h_{ij} a_i^\dagger a_j + \sum_{i,j,k,\ell} V_{ijk\ell} a_i^\dagger a_j^\dagger a_k a_{\ell}
\]

[Cubitt Montanaro Piddock 2017]
What about **Resources**?

\[\tilde{H} = \sum_{\langle i, j \rangle \in E} J_{ij} \tilde{S}_i \cdot \tilde{S}_j \]

particles in simulator
\[\tilde{n} = \text{poly}(n) \]

Interaction energy
\[J_{ij} = \text{poly}(n) \]

[Cubitt Montanaro Piddock 2017]
What about Resources?

\[
\tilde{H} = \sum_{\{i,j\} \in E} J_{ij} \vec{S}_i \cdot \vec{S}_j
\]

particles in simulator
\[\tilde{n} = \text{poly}(n)\]

Interaction energy
\[J_{ij} = 2^{\text{poly}(n)}\]

“Weakly Universal” as it may require \(\exp(n)\) resources

[Cubitt Montanaro Piddock 2017]
Our Result:
There are simple **Strongly Universal Hamiltonians**

"**Strongly Universal**" = Universal + All resources are \(\text{poly}(n) \)
for any target Hamiltonian

vs. \(\exp(n) \) for some target Hamiltonian under weak universality

Implication: Analog quantum simulation are realistic for general systems
Overview

1) Defining Hamiltonian Simulation & Universality

2) Review of Previous Universal Hamiltonians

3) Main Results: Strongly Universal Hamiltonians
Defining Hamiltonian Simulation

We say \tilde{H} (Δ, η, ϵ)-simulates H if

$$\| \tilde{H}_{\leq \Delta} - \tilde{V} H \tilde{V}^\dagger \| \leq \epsilon$$

\tilde{V} is an (approximately) local isometry encoding

$$\| \tilde{V} - \bigotimes_i V_i \| \leq \eta$$

[Bravyi Hastings 2014] and [Cubitt Montanaro Piddock 2017]
Defining Universality and Translation-Invariance

Consider a family of Hamiltonians

\[\mathcal{F} = \left\{ \hat{H} = \sum_{\langle i, j \rangle \in E} J_{ij} \hat{h}(\phi_{ij})_{i,j} \right\} \]

Site-dependent parameter \(\phi_{ij} \)

Interaction energy

operator acting on site \((i, j)\)
Defining Universality and Translation-Invariance

Consider a family of Hamiltonians $\mathcal{F} = \{ \tilde{H} = \sum_{(i,j) \in E} J_{ij} \hat{h}(\phi_{ij})_{i,j} \}$

Weak and Strong Universality

\mathcal{F} is Weakly Universal if $\forall H \exists \tilde{H} \in \mathcal{F}$ such that $\tilde{H} (\Delta, \eta, \epsilon)$-simulates H

\mathcal{F} is Strongly Universal if weakly universal and $\| \tilde{H} \| \leq \text{poly}(n, \Delta, \eta^{-1}, \epsilon^{-1})$

Semi- and Full-Translation-Invariant (TI)

\mathcal{F} is Semi-TI if $\hat{h}(\phi_{ij}) = \hat{h}$ e.g.

$$\tilde{H} = X_1X_2 + 3X_2X_3 + \frac{1}{5}X_3X_4 + \cdots$$

\mathcal{F} is Full-TI if semi-TI and $J_{ij} = J$ e.g.

$$\tilde{H} = 12(X_1X_2 + X_2X_3 + X_3X_4 + \cdots)$$
Previous Results: Weak Universality

Any $O(1)$-local Hamiltonian
e.g. SYK model

$$H = \sum_{i,j,k,\ell} J_{i,j,k,\ell} \gamma_i \gamma_j \gamma_k \gamma_\ell$$

(Perturbative) Gadgets

2D, Semi-TI, Weakly Universal Hamiltonians
[Cubitt Piddock Montanaro 2017]

$$\tilde{H} = \sum_{\langle i,j \rangle \in E} J_{ij} \vec{S}_i \cdot \vec{S}_j$$

- **Degree-reduction** is necessary to map some Hamiltonians to finite-dimensional lattice
- Previous approach uses $O(\log n)$ rounds of perturbative gadgets: $J_{t+1} = [J_t \text{poly}(n)]^c$
 \rightarrow exponential overhead in energy $J_{\text{final}} = 2^{\text{poly}(n)}$
Our Results:
Strongly Universal Hamiltonians in 2D and 1D

2D square lattice, semi-translation-invariant

\[H = \sum_{\langle i, j \rangle \in E} J_{ij} \hat{h}_{i,j} \]

e.g.

\[\hat{h}_{ij} = X_i X_j + Y_i Y_j \text{ or } \vec{S}_i \cdot \vec{S}_j \]

1D, nearest-neighbor, 8-dimensional particles

\[\tilde{H} = \sum_i J_i \hat{h}_{i,i+1} \quad \|\hat{h}_{i,i+1}\| \leq 1 \]

\[\hat{h}_{i,i+1} \text{ enforces transition rules between configurations} \]

Preprint at bit.ly/universalHam
(and see arXiv on Monday)
Our Results vs. Previous Results

	Spatial dimension	Translation-Invariance	Interaction Energy	Particle Number
Cubitt et al. (2017)	2D	semi	exp(poly(n))	poly(n)
Piddock Bausch (2020)	2D	full	exp(poly(n))	exp(poly(n))
Kohler et al. (2020)	1D	full	exp(poly(n))	exp(poly(n))
Kohler et al. (2020)	1D	full*	exp(poly(n))	poly(n)
Our construction	2D	semi	poly(n)	poly(n)
Our construction	1D	none	poly(n)	poly(n)

- Our results are somewhat **tight** since general simulation with $O(1)$ interaction energy and constant degree is **impossible** [Aharonov Zhou 2018]
- strongly universal ⊈ weakly universal (information-theoretical arguments)
Key Ideas in our construction

1) **Non-perturbative** degree-reduction

Degree-reduction with perturbative gadgets requires $\exp(\text{poly}(n))$ energy

Degree-reduction with $O(1)$ interaction energy is impossible in general

Degree-reduction is possible with $\text{poly}(n)$ interaction energy! (via circuits)
Key Ideas in our construction

1) **Non-perturbative** degree-reduction (via circuits)

\[H = \sum_E E \left| \psi_E \right\rangle \langle \psi_E \right| \]

Perform degree-reduction on circuit

\[\left| +^m \right\rangle \xrightarrow{\text{QFT}^{-1}} \left| E \right\rangle \]

\[e^{iH\tau} \left| \psi_E \right\rangle \xrightarrow{\text{ancillas + swaps}} \tilde{H} \]
Key Ideas in our construction

1) **Non-perturbative** degree-reduction (via circuits)

\[
H = \sum_{E} E|\psi_{E}\rangle\langle\psi_{E}|
\]

\[|\psi_{E}\rangle \rightarrow e^{iH\tau} |\psi_{E}\rangle \rightarrow \begin{array}{c}
|+^{m}\rangle \rightarrow QFT^{-1} |E\rangle \rightarrow \tilde{H}
\end{array}\]

perform degree-reduction on circuit

2) Recover eigenvalue structure via **bit-wise energy penalty**

\[
|E\rangle = |E_1 E_2 \cdots E_s \cdots\rangle \quad H_{\text{pen}} = \sum_{b=1}^{s} 2^{-b} |1\rangle\langle 1|_{b} \otimes P_{\text{clock}}(t = T + b)
\]
Structure of Our Proof / Construction

Any $O(1)$-local Hamiltonian

Standard techniques (Trotterization ...)

Phase estimation circuit using NN gates in 1D

Non-perturbative degree-reduction + bit-wise energy penalty

2D “spatially sparse” Hamiltonian
Structure of Our Proof / Construction

Any $O(1)$-local Hamiltonian

Standard techniques (Trotterization ...

Phase estimation circuit using NN gates in 1D

Non-perturbative degree-reduction + bit-wise energy penalty

2D “spatially sparse” Hamiltonian

2D semi-TI Hamiltonian on a square lattice

gadgets

[Oliveira Terhal 2005]
[Piddock Montanaro 2015]
[Cubitt Montanaro Piddock 2017]
Structure of Our Proof / Construction

Any $O(1)$-local Hamiltonian

Standard techniques (Trotterization ...)

Phase estimation circuit using NN gates in 1D

Non-perturbative degree-reduction + bit-wise energy penalty

2D “spatially sparse” Hamiltonian

Modified 1D clock Hamiltonian + bit-wise penalty

1D NN Hamiltonian on 8-dimensional particles

2D semi-TI Hamiltonian on a square lattice

[Aharonov et al 2007]
[Hallgren Nagaj Narayanaswami 2013]
Summary

• We establish that strongly universal analog quantum simulation is possible – can efficiently simulate for any target Hamiltonian
 • 1D and 2D universal systems using poly(n) qubits and interaction energy
 • Tight since impossible to lower interaction energy to $O(1)$ [Aharonov Zhou 2018]

• Analog quantum simulation is relevant for many more systems than previously thought

Open Questions

• 1D semi-TI, strongly universal? Full-TI strongly universal? Fermions?
• Improve the overhead to experimentally relevant regimes?
• Better understand the effects of noise in analog simulation