The effect of national and international multiple affiliations on citation impact

Sichao Tong¹, Ting Yue¹,², Zhesi Shen¹, Liying Yang¹*

¹. National Science Library, Chinese Academy of Sciences, Beijing, 100190, China

². Department of Library, Information and Archives Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100049, China

*corresponding author: yangly@mail.las.ac.cn

Sichao Tong’s ORCID: 0000-0003-0658-9963

Zhesi Shen’s ORCID: 0000-0001-8414-7912

Abstract

Researchers affiliated with multiple institutions are increasingly seen in current scientific environment. In this paper we systematically analyze the multi-affiliated authorship and its effect on citation impact, with focus on the scientific output of research collaboration. By considering the nationality of each institutions, we further differentiate the national multi-affiliated authorship and international multi-affiliated authorship and reveal their different patterns across disciplines and countries. We observe a large share of publications with multi-affiliated authorship (45.6%) in research collaboration, with a larger share of publications containing national multi-affiliated authorship in medicine related and biology related disciplines, and a larger share of publications containing international type in Space Science, Physics and Geosciences. To a country-based view, we distinguish between domestic and foreign
multi-affiliated authorship to a specific country. Taking G7 and BRICS countries as samples from different S&T level, we find that the domestic national multi-affiliated authorship relate to more on citation impact for most disciplines of G7 countries, while domestic international multi-affiliated authorships are more positively influential for most BRICS countries.

Keywords:
National multi-affiliated authorship; International multi-affiliated authorship; Citation impact; Collaboration

1. Introduction

Researchers affiliated with multiple institutions are increasingly seen in current scientific environment, e.g., Huang and Chang (2018) show that 87.3% publications are written by multi-institutional authors in genetics and 50.4% in high-energy physics respectively. Hottenrott, Rose and Lawson (2019) find there is a growing trend of multi-affiliated authors, the share is 8% in 1996, and it goes up to 13% in 2018. With direct links with several institutions, a researcher can be consequently recognized as a bridge between institutions, facilitating idea exchange and research collaboration (ESF, 2013; Hottenrott & Lawson, 2017). ESF (2013) also present multiple affiliations is an effective scheme in research collaboration, comparing with general project duration or longer period position, it's more attractive to frontline researchers based on its flexibility. Furthermore, researchers with multiple affiliations are more often found in highly cited publications, regarding to those tested fields and
countries, implying their positive influence on scientific impact (Hottenrott & Lawson, 2017; Huang & Chang, 2018; Sanfilippo, Hewitt, & Mackey, 2018). Therefore, studying multi-affiliated researchers' effect on the scientific output of research collaboration is also important, when exploring their influence in facilitating research collaboration.

Naturally, multiple affiliations can also happen among institutions from one country or several countries, whereas current explorations seldom take it into account, in this study, we will classify multi-affiliated researchers by whether they have multiple affiliations within the same country.

From these above, this study will explore scientific outputs with multi-affiliated authorship, among collaborative output, by considering both national multiple affiliations within a same country, and international multiple affiliations within several countries. The following two research questions will be mainly explored in this study:

- Taking scientific output with multi-affiliated authorship as the background, are there any heterogeneities exist by disciplines, or by countries?
- Regarding to the multi-affiliated authorship's effect on citation impact, among collaborative output, are there any difference between multi-affiliated authorship within the same country or from different countries?

2. Data and methods

2.1 Data
To investigate the effect of multi-affiliated authorship on citation counts in collaboration, we retrieved collaborative publications co-authored by two or more institutions published between 2013 and 2015 with all author address records. Only publications of the Web of Science document types "Article" and "Review" are included in the data collection. A manual institutional disambiguation was undertaken. For citations, we use a 3-year citation window, i.e., for papers published in 2013, the cumulative citations during 2013-2015 are considered.

The ESI classification system is used here to see the different multiple affiliation patterns across disciplines. Publications are categorized into 19 disciplines ("Economics & Business”, “Multidisciplinary” and “Social Sciences, General” are excluded), as listed in Table 1. We also aggregate medicine related disciplines, biology related disciplines and engineering related disciplines, respectively, which result in 10 broader science fields.

| Table 1. The mapping of 19 disciplines considered. |
|----------|---------------------------------|-----------------|
| Field | Discipline | Discipline (Abbreviation) |
| Space Science | Space Science | SPA |
| Medicine related | Neuroscience & Behavior | NEU |
| | Psychiatry/Psychology | PSY |
| | Immunology | IMM |
| | Clinical Medicine | CLI |
| | Pharmacology & Toxicology | PHA |
| Physics | Physics | PHY |
| Biology related | Molecular Biology & Genetics | MOL |
| | Biology & Biochemistry | BIO |
Countries from Group of G7 (Canada, France, Germany, Italy, Japan, the United Kingdom, and the USA) and BRICS (Brazil, China, India, Russia, and South Africa) are used to compare the differences between multiple affiliations patterns (Table 2).

Table 2. Sample countries.

Country Name	Abbreviation
G7 Group	
Canada	CA
Germany	DE
France	FR
United Kingdom	GB
Italy	IT
Japan	JP
USA	US
BRICS Group	
Brazil	BR
China	CN
India	IN
Russia	RU
South Africa	ZA

2.2 Classification of authorship and publications
For multi-affiliated authorship, there are three types of author in our dataset:

- **NM**: the national multi-affiliated author, who is affiliated with two or more institutions from one country.
- **IM**: the international multi-affiliated author, who is affiliated with two or more institutions from two or more countries.
- **S**: the single-affiliated author.

Given this, we propose a classification to define multiple affiliations at the level of publication, to analyze their scientific output and citation impact in research collaboration:

- **P_M**: the publication with multi-affiliated authorship. Based on the types of included multi-affiliated authorship, **P_M** can be classified further,
 - **P_NM**: the publication with national multi-affiliated authorship.
 - **P_IM**: the publication with international multi-affiliated authorship.

(It should be noted especially that there is overlap between **P_NM** and **P_IM**, namely some publications may have both NM authorship and IM authorship.)

- **P_NoM**: the publication without multi-affiliated authorship.

In summary, 59.3% of all publications are institutionally collaborative publications, to be considered as the total scientific output of research collaboration in this study.

Based on the classification above, Table 3 presents a general overview of the number of publications in different groups. From Table 3, we can see nearly half (45.6%) of the publications include multi-affiliated authorships. There are 35.4% publications out
of total publications having NM authorship, which is larger than the share of publications with IM authorship (14.3%).

Table 3. Number and share of publications with multi-affiliated authorship.

	Total	P_M	P_NM	P_IM	P_NoM
Pubs	2,137,885	976,036	755,850	305,479	1,161,849
Share	-	45.6%	35.4%	14.3%	54.4%

(Note: *Total* is total institutionally collaborative publications. *Share* is share of publications out of total institutionally collaborative publications.)

2.3 Regression analysis

We perform a regression analysis to reveal the effects of multi-affiliated authors on citation counts. Considering the over-dispersed and high skewed citation count data, we utilize a Negative Binomial Regression Model (Hereinafter referred to as NBRM (Bornmann & Daniel, 2006; Bornmann, Schier, Marx, & Daniel, 2012)) with the citation count (TC) of each paper as the dependent variable. To investigate the effect of NM and IM on citations, we use the following two independent variables:

- **NM_mark**: equals 1 if the paper has at least one NM author; otherwise 0.
- **IM_mark**: equals 1 if the paper has at least one IM author; otherwise 0.

We also consider several publication-related factors which may affect citation counts as control variables (Peters & Vanraan, 1994; Glänzel, 2001; Aksnes, 2003; Bornmann & Daniel, 2008; Schmoch & Schubert, 2008; Sooryamoorthy, 2009; Persson, 2010; Vieira & Gomes, 2010; Gazni & Didegah, 2011; Didegah & Thelwall, 2013), including the number of institutions, the number of countries, the number of...
references and the number of authors, for each publication. Those factors associated with citation counts are defined as control variables:

- N_ins: number of institutions
- N_c: number of countries
- N.refs: number of references
- N.a: number of authors.

The Python statsmodels package (Seabold & Perktold, 2010) is used to estimate the regression coefficients. When conducting regression, we only consider publications with 10 or less authors, to avoid the effects of those extra large groups and the possible high correlation between number of authors and number of institutions (Table S2 in SM for number of records used in regression). Variance Inflation Factor test shows there is absence of multicollinearity among these independent variables. For codes and detailed parameter estimations, please refer to the Codes availability section in Supplementary Materials. We also consider several regression models, and similar phenomena are obtained. For details please refer to the Regression Models section in Supplementary Materials.

3. Results

3.1 Discipline-based analysis

This section reports the heterogeneities by discipline, involving share of publications and effect on citation impact of collaborative publications, regarding to the national type and international type multi-affiliated authorship.
3.1.1 Statistics of multi-affiliated publications

![Figure 1](image.png)

Figure 1. Share of publications containing multi-affiliated authorship of each discipline.

Figure 1 shows the share of P_M of given disciplines. From Fig. 1 we can see in research collaboration, SPA, medicine related disciplines and biology related disciplines have relatively higher share of publications with multi-affiliated authorship, while engineering related disciplines and MATH have lower share. 61.2% of SPA's publications contain multi-affiliated authorship, while MATH has the smallest share of multi-affiliated publications (25.2%).
Figure 2 visualizes both share of publications containing NM authorship, and share of publications containing IM authorship among research collaboration, in different disciplines. Specific values are provided in Table A1 in Appendix.

We can see that in all disciplines, the shares of P_NM are larger than P_IM. For most medicine and biology related disciplines, there is a big gap (over 20%) between the share of P_NM and P_IM, e.g., in PSY, the proportion of P_NM and P_IM are 50.3% and 14.5%, respectively. For SPA, compared to other disciplines, its share of P_IM is the largest, and the difference between the share of those two types is not significant. Among these disciplines, MATH, ENG and COM have relative smaller shares in both of P_NM and P_IM.

3.1.2 Effect of multi-affiliated authorship on citation impact

Previous studies (Hottenrott & Lawson, 2017; Huang & Chang, 2018; Sanfilippo, Hewitt, & Mackey, 2018) indicate that publications which contain multi-affiliated
authorship have a larger probability of receiving more citations. Among scientific output of collaboration, we also observe the same phenomenon based on the NBRM result, here we focus on the effect of national and international multiple affiliation on citation impact.

Table 4 presents the results of the NBRM regression showing the size of effects of each observed factor on citation counts. For each independent variable, we report the percent changes in expected citation count for a unit increase in that variable (Long & Freese, 2006). For example, in Chemistry for the variable "NM_mark", the result shows that including national multi-affiliated authorships increases the expected number of citations by about 16.9% when keeping other variables consistent. Please refer to the Codes availability section in Supplementary Materials, for the raw regression coefficients.
Table 4. Expected percent change of citations affected by each variable, here we mainly analyze national multi-affiliated authorship's effect and international multi-affiliated authorship's effect. We calculate the percent change in expected citation count for a unit increase in each variable.

Field	Discipline (Abbreviation)	NM_mark	IM_mark	N.refs	N.ins	N.c	N_a	R-Squared
Space Science	SPA	-2.8	4.6**	1.3***	2.8***	2.7**	1.2**	0.15
Medicine related	NEU	5.9***	2.8*	1.1***	-0.6	13.2***	5.2***	0.13
	PSY	9.3***	0.6	2.1***	-0.3	12.1***	6.8***	0.17
	IMM	8.0***	3.7*	1.2***	1.1*	11.4***	2.4***	0.14
	CLI	8.9***	-2.7***	1.8***	2.7***	19.2***	7.4***	0.14
	PHA	9.6***	2.1	1.1***	-1.0*	12.3***	4.3***	0.14
Physics	PHY	14.7***	14.3***	2.2***	-5.8***	23.1***	6.7***	0.13
Biology related	MOL	16.7***	13.8***	1.3***	-4.9***	14.1***	5.8***	0.12
	BIO	14.5***	6.7***	1.0***	-4.5***	15.6***	3.8***	0.09
	MIC	5.9***	1.2	1.4***	-0.8	14.4***	3.8***	0.16
	PLA	9.1***	0.9	2.2***	-2.4***	17.7***	5.4***	0.21
Environment/Ecology	ENV	8.8***	5.6***	1.7***	-2.0***	14.8***	6.3***	0.14
Geosciences	GEO	3.1***	8.2***	1.4***	0.1	9.2***	4.9***	0.13
Chemistry	CHE	16.9***	15.2***	1.6***	-10.9***	17.0***	8.1***	0.16
Subject	Code	Value 1	Value 2	Value 3	Value 4	Value 5	Value 6	
--------------------------	------	---------	---------	---------	---------	---------	---------	
Agricultural Sciences	AGR	12.4***	13.4***	2.3***	-5.9***	17.6***	6.1***	
Engineering related	MATE	15.2***	19.3***	2.8***	-12.1***	14.7***	14.4***	
	COM	7.1***	-3.2*	3.5***	0.5	30.9***	5.1***	
	ENG	11.1***	10.3***	3.3***	-4.2***	22.5***	5.9***	
Mathematics	MATH	4.2**	13.8***	3.9***	0.6	18.1***	4.9***	

(Note: *p < 0.05; **p < 0.01; and ***p < 0.001)
In Table 4, for NM authorship, the values of coefficient in NEU, IMM, CLI, MOL, BIO and COM, are 5.9%, 8%, 8.9%, 16.7%, 14.5% and 7.1%, respectively, while the corresponding values of coefficient for IM authorship are 2.8%, 3.7%, -2.7%, 13.8%, 6.7% and -3.2%. We can find that NM authorship’s participation is associated with a much greater number of citations, comparing to IM authorship’s participation in most medicine related and biology related disciplines, COM as well shows similarly. In PHY and CHE, MATE, ENG and MOL, both NM and IM authorship’s participations have significant positive influence on the citations, the value of coefficients are over 10%. In the disciplines of GEO and MATH, IM authorship’s participation relates to much more citations, than NM authorship.

3.2 Country-based analysis

From the perspective of a certain country, the multi-affiliated authors seem to be more complicated. They can simultaneously have this country's affiliation(s), and other countries' affiliation(s). Accordingly, the multi-affiliated authorship is likely to belong to different types, in terms of those two countries. Therefore, for a certain country, the authorship could be classified into 6 types: NM_Domestic, NM_Foreign, IM_Domestic, IM_Foreign, S_Domestic and S_Foreign. An illustration for the classifications (taking country A for example) is shown in Figure 3.
Figure. 3 Authorship classification for country A.

For different types of authorship (the domestic multi-affiliated authors and foreign multi-affiliated authors), the effect on citation impact may show difference. Here we focus on each country's domestic multi-affiliated authorship. Taking country A as an example, it has two kinds of the collaborative publication containing domestic multi-affiliated authorship below:

- P_NM_Domestic: publication with country A's domestic national multi-affiliated authorship.
- P_IM_Domestic: publication with country A's domestic international multi-affiliated authorship.

3.2.1 Statistics of multi-affiliated publications

Figure. 4 presents the shares of different collaborative publication groups for the country sample, G7 and BRICS.
Figure 4. Share of different publications groups contain domestic multi-affiliated authorship, for G7 and BRICS countries.

For France, China and Russia, the share of P_NM_Domestic (over 33%) is much higher than other countries, while the value of other countries are basically below 27%. South Africa shows an extremely larger share of P_IM_Domestic, approaching to 35.1%. We investigate the detailed information for the institutions of France. The P_NM_Domestic of France's Top 3 institutions accounts for 42.8%, 39.0% and 27.2%, respectively, in the total collaborative publications, which are much higher than other countries (please refer to Table A2 in Appendix).

In the comparison of P_NM_Domestic and P_IM_Domestic for each country, we can see that: the majority of countries have bigger share of P_NM_Domestic, while the United Kingdom and South Africa show extremely larger share of P_IM_Domestic (the United Kingdom: P_IM_Domestic’s share is 24.8% and P_NM_Domestic’s share is 14.9%; South Africa: P_IM_Domestic’s share is 35.1% and P_NM_Domestic’s share is 20.6%). In South Africa and the United Kingdom, the share of P_IM_Domestic for their Top 3 institutions are over 20%, while for other countries,
the share for their Top 3 institutions are all below 20% (please refer to Table A3 in Appendix). Canada and Germany show slight difference between the shares of these two publication types.

We then go to the field level to explore the detailed share in different fields, for the G7 and BRICS countries, the two 12×19 matrices represented in the figure sets from Figure 5 visualize the normalized share by discipline, of these countries.
Figure 5. Relative share of (a) national multi-affiliated authors and (b) international multi-affiliated authors by discipline, for G7 and BRICS countries. Each square represents the ratio of one country's share of P_IM_Domestic (or P_NM_Domestic) compared with the global baseline of the column discipline. The color of Each square is related to the value of normalized share: the blue color means value is higher than world average, the red color means value is lower than world average, the darker the color is, the larger/smaller the value is. For the original share, please refer to the Table A4 & Table A5 in Appendix.
As shown in Figure 5(a), regarding to P_NM_Domestic, France stands out in the 12 countries, it almost has values larger than 1 among all discipline. China and Russia have more disciplines with normalized share higher than global average, comparing to other countries (except France). They have high value in engineering related disciplines (COM and ENG), PHY and CHE, as well as MATH. India and South Africa have high values in AGR. Italy has relative high value in PHY (1.3).

The Figure 5(b) shows normalized shares of P_IM_Domestic, South Africa stands out with high value in all disciplines. Canada, Germany, France and the United Kingdom have above global average shares in most disciplines. Brazil has its highest value in PSY, the lowest value in AGR. India has below average values for most disciplines.

3.2.2 Effect of multi-affiliated authorship on citation impact

We fit the NBRM, to predict the effects on citations of collaborative publications, with regard to each observed factor, for G7 and BRICS countries, Table 5 mainly presents the effect of domestic multi-affiliated authorship (NM_Domestic and IM_Domestic) by disciplines.
Table 5. Expected percent change of citations affected by domestic multi-affiliated authorship by discipline, for (a) G7 and (b) BRICS countries, here we still use NM_mark and IM_mark, to represent NM_Domestic and IM_Domestic's participation, respectively.

(a) G7:

Discipline	CA	DE	FR	GB	IT	JP	US							
	NM_mark	IM_mark												
SPA	-14.4	4.1	18.0***	7.8*	-0.8	9.0*	-4.5	1.3	12.3*	4.4	3.1	12.9*	9.0**	1.3
NEU	-1.2	-4.4	5.7*	2.6	22.8***	2.3	15.5***	-0.7	3.4	-5.7	3.1	11.5*	5.3***	1.4
PSY	18.7**	-8.8	3.0	0.3	12.3	-5.4	20.2***	-4.9	3.8	9.9	-3.2	4.0	7.4**	-2.5
IMM	-0.7	-1.1	-7.1	2.7	6.6	4.8	-2.8	-2.0	12.2	-2.1	26.6***	-10.0	7.4**	1.8
CLI	4.9*	-11.6***	13.7***	-5.8**	11.5***	-4.2	13.5***	-1.5	6.8***	-1.9	-3.3	5.2	5.3***	-8.2***
PHA	2.1	-9.0	6.5	3.5	-1.4	14.8*	21.6***	-7.6	10.8*	0.9	-5.3	-0.6	6.5**	1.2
PHY	58.7**	11.7***	19.8***	4.9**	1.6	7.9***	-4.6	-2.9	24.3***	13.8***	36.0***	14.3***	20.0***	15.4***
MOL	15.8**	-7.1	21.0***	29.0***	5.7	0.6	20.0***	0.7	17.0**	10.7	60.0***	3.0	18.8***	14.3***
BIO	6.1	-6.2	24.3***	4.1	6.9	-3.3	23.9***	-1.1	3.5	5.2	11.4***	-3.7	15.3***	0.4
MIC	-0.6	3.3	10.1	0.5	10.0	-7.6	13.1	2.1	-3.2	-9.7	9.3	10.5	5.3	-2.4
PLA	-0.8	-7.0*	10.4**	-1.7	13.0***	-1.8	9.5*	0.1	2.0	-2.7	22.8***	-8.1	-0.5	3.2
ENV	-0.2	-1.8	19.3***	8.8**	6.5	0.6	7.2	2.4	4.0	-3.4	-1.5	-1.3	11.3***	3.6
Discipline	BR	CN	IN	RU	ZA									
------------	----	----	----	----	----									
GEO	13.5	-0.5	12.1**	6.9*	0.9	-0.1	9.0*	11.0***	4.3	-0.1	3.5	7.5	10.9***	2.9
CHE	4.6	-4.5	13.4***	9.8***	6.0**	-3.0	7.3	0.1	8.6**	4.0	52.9***	12.7***	16.8***	9.3***
AGR	15.6*	18.6**	6.6	6.3	18.4***	17.2**	6.4	-5.6	5.2	20.9**	0.9	-2.0	12.2***	21.3***
MATE	16.8*	-6.0	24.2***	15.7***	18.8***	-0.2	6.8	3.5	8.7	8.8	51.0***	15.3***	24.4***	23.4***
COM	46.9**	-9.3*	5.6	3.5	-13.3**	-2.5	-19.2*	23.7***	7.0	8.3	-21.3*	22.1**	2.1	-11.1***
ENG	-0.7	-1.2	50.6***	6.2	8.4**	11.0***	-4.2	12.7***	8.4*	-0.1	19.5***	-0.3	11.6***	11.7***
MATH	16.1	9.8	-20.6*	27.3***	-1.3	-12.2*	9.5	3.1	-3.3	39.1***	-9.5	19.0	0.2	17.2***

(b) BRICS

Discipline	BR	CN	IN	RU	ZA						
SPA	-14.0	-5.1	-9.1	25.0***	18.0	3.6	-6.0	15.5*	-22.5	0.3	
NEU	1.9	3.0	0.1	19.0***	-2.8	-4.9	-10.7	69.7***	-6.0	23.5	
PSY	19.9	45.8**	1.3	0.3	-27.7	107.9*	49.5	39.5	-14.3	-10.2	
IMM	-8.2	17.6	6.2	16.9**	-13.5	11.2	-7.9	-3.7	-10.3	9.2	
CLI	5.6*	6.6	6.0***	11.5***	2.3	-4.5	-0.0	30.6**	6.7	-6.4	
PHA	-5.1	31.9**	3.9	17.6***	21.8***	4.2	17.5	55.5**	-7.5	-4.8	
PHY	-4.6	17.5***	8.9***	24.5***	4.8	5.2	16.6***	32.6***	20.4	18.3*	
Subject	Value 1	Value 2	Value 3	Value 4	Value 5	Value 6	Value 7	Value 8	Value 9	Value 10	Value 11
---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	----------	----------
MOL	17.3*	31.2**	-5.0	13.8***	6.2	20.7	21.3*	53.3***	15.8	89.7***	
BIO	5.0	15.7*	4.3*	24.0***	1.0	3.6	6.9	18.2*	-4.6	14.0	
MIC	8.4	25.6**	-2.3	6.6	-8.4	-17.3	5.2	24.2	-11.3	17.1	
PLA	11.7***	8.2	-4.3	14.8***	12.3*	-6.6	12.4	19.5*	-0.8	-2.5	
ENV	1.6	10.0	2.6	9.7***	-7.7	-1.2	11.4	29.4*	6.8	-7.9	
GEO	-1.4	17.4	-8.0***	9.0***	18.2*	8.8	10.0	26.0***	11.5	20.7*	
CHE	6.5	19.3***	12.7***	21.4***	12.1***	20.0***	27.8***	24.4***	25.0*	17.7**	
AGR	46.4***	25.4***	-3.2	15.7***	-48.7***	0.2	-2.2	70.7**	-15.5	16.9	
MATE	6.8	38.0***	3.4**	21.3***	16.9***	10.4*	43.6***	24.9***	11.0	13.8	
COM	-9.7	6.4	-4.4*	1.0	-15.6	-36.8***	14.7	1.5	62.3	-22.0	
ENG	17.9**	5.2	0.0	5.8***	9.1	-0.6	67.0***	20.4**	12.8	28.0**	
MATH	25.9	7.2	14.7***	13.2***	24.9	-7.8	11.5	10.9	31.2	-19.3	

(Note: *p < 0.05; **p < 0.01; and ***p < 0.001)
Among the significant coefficients presented in Table 5, the larger value, the higher the expected citation count for a publication. In Table 5(a), for G7 countries, regarding to the NM_Domestic authorship's coefficient, we can see there are statistically significant effect in many medicine related and biology related disciplines (e.g., for Germany, the values are 21% and 24.3% in MOL and BIO, for the United Kingdom, the values are 15.5%, 20.2%, 13.5%, 21.6%, 20% and 23.9% in the disciplines of NEU, PSY, CLI, PHA, MOL and BIO, etc.). Beyond that, we as well investigate a large coefficient in ENG (50.6%) of Germany, MATE (51%) of Japan. And the coefficient of NM_Domestic authorship is particularly large in the disciplines like PHY (58.7%) and COM (46.9%) of Canada. While we haven't investigated any significant effect for most tested units, regarding to the IM_Domestic authorship. Its positive effect mainly shows up in the disciplines like PHY, MOL, AGR and MAT among G7 countries.

In Table 5(b), for BRICS countries, far fewer citations are to be expected for a publication with the NM_Domestic authorship’s participation, than G7 countries. Especially in South Africa, we hardly investigate any obvious positive effects of the NM_Domestic authorship, on citations. But a positive effect can be still observed in countries like Brazil, China, India and Russia. Some cases stand out, e.g., with the NM_Domestic authorship, the expected citations of Brazil's publications in AGR increase by 46.4%. The expected citations of China's publications in CHE and MATH as well increase by 12.7% and 14.7%, respectively. Similar phenomena have been observed in India's PHA, Russia's CHE and ENG. Comparing with the NM_Domestic,
the IM_Domestic authorship is associated with a much greater number of citations for most disciplines in Brazil, China and Russia. And we see that although South Africa doesn’t show any significant association in many disciplines, with whether NM_Domestic or IM_Domestic authorship, it still has an extremely large increase (89.7%) related to the IM_Domestic authorship for publications in MOL.

By comparing NM_Domestic and IM_Domestic authorship, an interesting case is that of CLI, for Canada, Germany and the USA, the NM_Domestic authorship brings positive effects while IM_Domestic authorship brings negative effects on citations.

4. Conclusion and discussion

Through an exploration of collaborative publications with multi-affiliated authorship, we try to answer the questions presented previously in introduction section, mainly focus on the overview of scientific output based on collaboration, and how the two kinds of multi-affiliated authorship differently influence citation impact of collaboration in different disciplines, as well as in different sample countries.

As Hottenrott and Lawson (2017), Hottenrott, Rose and Lawson (2019), Huang and Chang (2018), Sanfilippo, Hewitt and Mackey (2018) explore in observed fields or journals, there is an increasing trend of multi-affiliation over years, we also observe a large share of collaborative publications with multi-affiliated authorship. This phenomenon as well show heterogeneities by discipline. Furthermore, we classify the multi-affiliated authorship in two types (national multi-affiliated author and international multi-affiliated author), and see medicine related and biology related
disciplines have larger share of publications with the former type. Since the
importance of hospital-university, a combination type of multiple affiliations, is
presented by Hottenrott, Rose and Lawson (2019), with regard to medicine related
research, we also take a brief look of it. From Figure A1 in Appendix, we can see that
hospital-university/college is a frequent combination of multiple affiliations in
medicine related disciplines, especially in the discipline of Clinical Medicine. While
the phenomenon of Space Science’s larger share for publications with international
multi-affiliated authorship, may be related to the big infrastructure collaboration all
over the world.

Previous studies (Hottenrott & Lawson, 2017; Huang & Chang, 2018; Sanfilippo,
Hewitt, & Mackey, 2018) indicate that multi-affiliated authorship play a positive role
on citation impact. We here employ NBRM, no merely observe the same
phenomenon, but also see how different national and international multi-affiliated
author effect on citation impact across fields. We find that in medicine related and
biology related disciplines, the national multi-affiliated authors are associated with
more citations than the international multi-affiliated author, while Space Science,
Geosciences and Mathematics show up the opposite phenomenon, the international
multi-affiliated authors relate to more citations.

We go further, try to explore their effect on citation impact for different S&T level
countries. It is worth mentioning that we also distinguish domestic multi-affiliated
authorship and foreign multi-affiliated authorship regarding to each specific country,
taking their different role into account, here we focus on the domestic part. We find
France has a very high share of publications with domestic national multi-affiliated authorship, with China and Russia following behind. For publications with domestic international multi-affiliated authorship, South Africa has the largest share among G7 and BRICS countries. Relating to this phenomenon, science policy might be a driving force. We find some connotations displayed in the human resources related documents of the French National Centre for Scientific Research (CNRS), the institution contributes mostly multi-affiliated publications (in our dataset) for France. Similar implications can be found in policies of foundation institutions of South Africa, e.g. the National Research Foundation (NRF).

We as well observe an interesting result in citation effect section, for most disciplines of G7 countries, the domestic national multi-affiliated authorship relates to more on citation impact, while domestic international multi-affiliated authorship is more positively influential in most BRICS countries. We investigate the affiliation links for BRICS countries, and find that more foreign affiliations come from G7 countries. Citation impact can be increased by collaborating with high R&D intensity or high S&T level countries (Bordons, Aparicio, & Costas, 2013; Bordons, Gonzalez-Albo, Aparicio, & Moreno, 2015; Bote, Olmeda-Gomez, & de Moya-Anegon, 2013; Glänzel, 2001), in our study, it has been explored that for BRICS countries, constructing affiliation links to high S&T level countries may also bring benefit to the impact of scientific output.

1 http://www.cnrs.fr/en/science-news/docs/HRS4R-en.pdf: HUMAN RESOURCES STRATEGY FOR RESEARCHERS.
2 https://www.nrf.ac.za/information-resources/annual-performance-plans: Annual Performance Plan.
Nevertheless, this study currently has several limitations. Discipline schema is one of them, we here use ESI category, the granularity may be too thick to observe some special fields which are not listed in this category. Another is that we only consider a short citation period (3-year citation window) in this study, the effect of multi-affiliated authorships on long-term citations needs further investigation. Despite these limitations above, our study enables an analysis of multi-affiliated researchers' effect on the scientific output of research collaboration, from 19 ESI disciplines, demonstrating their positive influence presented by ESF (2013), in facilitating cooperation. Multiple affiliation happening among one country or multiple countries are different, we therefore classify multiple affiliation by their affiliation combination, from national face or international face, investigate and compare these two multiple affiliation types in scientific production of research collaboration and effect on citation impact, fill the blank of research studying how citations are influenced by national versus international multi-affiliated authorship across science fields. Like general collaboration patterns linking to countries' different conditions (Garg, Kumar, & Bebi, 2018; Maisonobe, Eckert, Grossetti, Jegou, & Milard, 2016), we also take country's developing level into account, to see the share of production with the two types of multi-affiliated authorship, as well as which types are more influential for citation impact in G7 and BRICS countries across science fields. Considering different multiple affiliations links might have different influences on citation impact, we attempt to explore how scientific combinations happen among countries or institutions by multi-affiliated researchers, in our further research.
5. References

Aksnes, D. W. (2003). Characteristics of highly cited papers. Research Evaluation, 12(3), 159-170.

Bordons, M., Aparicio, J., & Costas, R. (2013). Heterogeneity of collaboration and its relationship with research impact in a biomedical field. Scientometrics, 96(2), 443-466.

Bordons, M., Gonzalez-Albo, B., Aparicio, J., & Moreno, L. (2015). The influence of R&D intensity of countries on the impact of international collaborative research: evidence from Spain. Scientometrics, 102(2), 1385-1400.

Bornmann, L., & Daniel, H. D. (2006). Selecting scientific excellence through committee peer review - A citation analysis of publications previously published to approval or rejection of post-doctoral research fellowship applicants. Scientometrics, 68(3), 427-440.

Bornmann, L., & Daniel, H. D. (2008). What do citation counts measure? A review of studies on citing behavior. Journal of Documentation, 64(1), 45-80.

Bornmann, L., Schier, H., Marx, W., & Daniel, H. D. (2012). What factors determine citation counts of publications in chemistry besides their quality? Journal of Informetrics, 6(1), 11-18.

Bote, V. P. G., Olmeda-Gomez, C., & de Moya-Anegon, F. (2013). Quantifying the benefits of international scientific collaboration. Journal of the American Society for Information Science and Technology, 64(2), 392-404.
Didegah, F., & Thelwall, M. (2013). Determinants of research citation impact in nanoscience and nanotechnology. Journal of the American Society for Information Science and Technology, 64(5), 1055-1064.

ESF. (2013). New concepts of researcher mobility—a comprehensive approach including combined/part-time positions. In Science Policy Briefing 49: Strasbourg: European Science Foundation.

Garg, K. C., Kumar, S., & Bebi. (2018). Collaboration patterns of Indian scientists in organic chemistry. Current Science, 114(6), 1174-1180.

Gazni, A., & Didegah, F. (2011). Investigating different types of research collaboration and citation impact: a case study of Harvard University's publications. Scientometrics, 87(2), 251-265.

Glänzel, W. (2001). National characteristics in international scientific co-authorship relations. Scientometrics, 51(1), 69-115.

Hottenrott, H., & Lawson, C. (2017). A first look at multiple institutional affiliations: a study of authors in Germany, Japan and the UK. Scientometrics, 111(1), 285-295.

Hottenrott, H., Rose, M., & Lawson, C. (2019). The Rise of Multiple Institutional Affiliations. arXiv:1912.05576.

Huang, M. H., & Chang, Y. W. (2018). Multi-institutional authorship in genetics and high-energy physics. Physica a-Statistical Mechanics and Its Applications, 505, 549-558.

Long, J. S. & Freese, J. (2006). Regression models for categorical dependent
variables using Stata (2nd ed.). College Station, TX, USA: Stata Press, Stata Corporation.

Maisonobe, M., Eckert, D., Grossetti, M., Jegou, L., & Milard, B. (2016). The world network of scientific collaborations between cities: domestic or international dynamics? Journal of Informetrics, 10(4), 1025-1036.

Persson, O. (2010). Are highly cited papers more international? Scientometrics, 83(2), 397-401.

Peters, H. P. F., & Vanraan, A. F. J. (1994). On Determinants of Citation Scores - a Case-Study in Chemical-Engineering. Journal of the American Society for Information Science, 45(1), 39-49.

Sanfilippo, P., Hewitt, A. W., & Mackey, D. A. (2018). Plurality in multi-disciplinary research: multiple institutional affiliations are associated with increased citations. Peerj, 6.

Schmoch, U., & Schubert, T. (2008). Are international co-publications an indicator for quality of scientific research? Scientometrics, 74(3), 361-377.

Seabold, S., & Perktold, J. (2010). Statsmodels: Econometric and statistical modeling with python. Proceedings of the 9th Python in Science Conference.

Sooryamoorthy, R. (2009). Do types of collaboration change citation? Collaboration and citation patterns of South African science publications. Scientometrics, 81(1), 177-193.

Vieira, E. S., & Gomes, J. A. N. F. (2010). Citations to scientific articles: Its distribution and dependence on the article features. Journal of Informetrics,
6. Appendix

Table A1. Share of publications with multi-affiliated authorship by ESI disciplines.

Field	Discipline (Abbreviation)	P_{NM}	P_{IM}
Space Science	SPA	41.9%	33.9%
Medicine related	NEU	51.3%	16.8%
	PSY	50.3%	14.5%
	IMM	48.3%	15.9%
	CLI	45.0%	10.3%
	PHA	37.1%	11.4%
Physics	PHY	35.0%	20.4%
Biology related	MOL	45.9%	17.5%
	BIO	39.7%	14.7%
	MIC	39.2%	14.9%
	PLA	29.6%	14.8%
Environment/Ecology	ENV	31.5%	17.8%
Geosciences	GEO	30.2%	18.0%
Chemistry	CHE	32.2%	13.9%
Agricultural Sciences	AGR	27.1%	12.2%
Engineering related	MATE	29.8%	14.3%
	COM	21.6%	12.4%
	ENG	20.5%	11.7%
Mathematics	MATH	15.8%	10.7%

Table A2. Number of publications containing NM_Domestic, by discipline, for each country's Top 3 (ranked with regard to Publications with NM_Domestic) institutions.
Region	Institution	Rank	Contribution
Canada	UNIVERSITY OF TORONTO	1472	8.0%
	UNIVERSITY OF BRITISH COLUMBIA	1073	9.7%
	MCGILL UNIVERSITY	732	7.6%
Germany	MAX PLANCK SOCIETY	3073	14.4%
	HELMHOLTZ ASSOCIATION	2331	21.9%
	UNIVERSITY OF MUNICH	1267	14.9%
France	CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS)	8951	42.8%
	INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM)	3629	39.0%
	PIERRE & MARIE CURIE UNIVERSITY - PARIS 6	3412	27.2%
United Kingdom	UNIVERSITY COLLEGE LONDON	1760	10.8%
	IMPERIAL COLLEGE LONDON	1297	10.2%
	UNIVERSITY OF OXFORD	1289	8.4%
Italy	ISTITUTO NAZIONALE DI FISICA NUCLEARE	2835	53.9%
	CONSIGLIO NAZIONALE DELLE RICERCHE (CNR)	1862	17.0%
	UNIVERSITY OF MILAN	1271	15.8%
Japan	UNIVERSITY OF TOKYO	1283	7.9%
	JAPAN SCIENCE & TECHNOLOGY AGENCY (JST)	1268	19.1%
	RIKEN	701	13.8%
USA	HARVARD UNIVERSITY	4504	12.5%
Country	Institution	Publications	Share (%)
----------	--	--------------	-----------
BRICS	BRIGHAM AND WOMEN'S HOSPITAL	1678	26.1%
	STANFORD UNIVERSITY	1176	8.2%
Brazil	UNIVERSIDADE DE SAO PAULO	829	4.9%
	UNIVERSIDADE FEDERAL DO RIO DE JANEIRO	436	8.4%
	UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL	356	7.1%
China	CHINESE ACADEMY OF SCIENCES	4900	7.5%
	PEKING UNIVERSITY	957	7.1%
	SHANGHAI JIAO TONG UNIVERSITY	825	6.1%
India	COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH (CSIR) - INDIA	162	4.2%
	TATA INSTITUTE OF FUNDAMENTAL RESEARCH	94	7.1%
	INDIAN INSTITUTE OF SCIENCE (IISC) - BANGLORE	92	3.5%
Russia	RUSSIAN ACADEMY OF SCIENCES	3636	13.7%
	NOVOSIBIRSK STATE UNIVERSITY	886	30.9%
	LOMONOSOV MOSCOW STATE UNIVERSITY	867	13.1%
South Africa	UNIVERSITY OF CAPE TOWN	442	12.7%
	STELLENBOSCH UNIVERSITY	350	13.6%
	UNIVERSITY OF WITWATERSRAND	328	14.2%

(Note: Share (in total) is share of Publications with NM_Domestic, account for total institutionally collaborative publications.)
Table A3. Number of publications containing IM_Domestic, by discipline, for each country's Top 3 (ranked with regard to Publications with IM_Domestic) institutions.

Country	Institution	Publications with IM_Domestic	Share (in total)
G7	Canada		
	UNIVERSITY OF TORONTO	3102	16.9%
	UNIVERSITY OF BRITISH COLUMBIA	1868	16.9%
	MCGILL UNIVERSITY	1738	18.1%
Germany	MAX PLANCK SOCIETY	6962	32.6%
	HELMHOLTZ ASSOCIATION	1686	15.8%
	RUPRECHT KARL UNIVERSITY HEIDELBERG	1482	16.8%
France	CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS)	3157	15.1%
	PIERRE & MARIE CURIE UNIVERSITY - PARIS 6	2106	16.8%
	UNIVERSITY OF PARIS SUD - PARIS XI	1107	13.3%
United Kingdom	UNIVERSITY OF OXFORD	3839	25.1%
	UNIVERSITY COLLEGE LONDON	3560	21.8%
	UNIVERSITY OF CAMBRIDGE	3534	23.9%
Italy	ISTITUTO NAZIONALE DI FISICA NUCLEARE	1013	19.3%
	SAPIENZA UNIVERSITY ROME	984	10.3%
	UNIVERSITY OF PADUA	858	11.1%
Japan	UNIVERSITY OF TOKYO	1781	11.0%
Country	University	Rank	Percentage
---------	---	------	------------
United States	TOHOKU UNIVERSITY	1162	12.7%
	KYOTO UNIVERSITY	926	8.0%
	HARVARD UNIVERSITY	6824	18.9%
	UNIVERSITY OF CALIFORNIA BERKELEY	2240	17.4%
	STANFORD UNIVERSITY	2192	15.2%
Brazil	UNIVERSIDADE DE SAO PAULO	1870	11.1%
	UNIVERSIDADE ESTADUAL DE CAMPINAS	476	8.7%
	UNIVERSIDADE ESTADUAL PAULISTA	435	6.9%
China	CHINESE ACADEMY OF SCIENCES	7533	11.6%
	ZHEJIANG UNIVERSITY	1997	14.8%
	SHANGHAI JIAO TONG UNIVERSITY	1917	14.3%
India	INDIAN INSTITUTE OF SCIENCE (IISC) - BANGLORE	337	12.8%
	COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH (CSIR) - INDIA	227	5.8%
	INDIAN INSTITUTE OF TECHNOLOGY (IIT) - BOMBAY	168	10.9%
Russia	RUSSIAN ACADEMY OF SCIENCES	3430	13.0%
	LOMONOSOV MOSCOW STATE UNIVERSITY	1053	15.9%
	SAINT PETERSBURG STATE UNIVERSITY	549	19.0%
South Africa	UNIVERSITY OF KWAZULU NATAL	1010	40.6%
--------------	-----------------------------	------	------
	UNIVERSITY OF CAPE TOWN	988	28.5%
	UNIVERSITY OF PRETORIA	712	30.4%

(Note: Share (in total) is share of Publications with IM_Domestic, account for total institutionally collaborative publications.)
Table A4. P_NM share by discipline, for G7 and BRICS countries

NM	G7	BRICS										
	CA	DE	FR	GB	IT	JP	US	BR	CN	IN	RU	ZA
Space Science	12.2%	14.1%	29.2%	8.3%	33.0%	23.4%	23.5%	13.5%	26.5%	15.4%	26.7%	20.2%
Neuroscience & Behavior	30.6%	36.5%	58.5%	21.5%	43.3%	37.8%	36.6%	37.0%	32.0%	26.9%	30.9%	15.6%
Psychiatry/Psychology	36.4%	30.8%	57.5%	23.6%	35.1%	35.6%	35.9%	39.3%	31.3%	18.5%	20.0%	19.5%
Immunology	33.1%	28.4%	56.7%	21.2%	30.3%	29.8%	31.7%	39.9%	34.5%	21.2%	26.9%	31.2%
Clinical Medicine	29.6%	26.9%	54.2%	25.3%	31.3%	27.1%	34.4%	35.3%	31.1%	26.5%	28.2%	27.2%
Pharmacology & Toxicology	26.2%	20.6%	48.9%	16.4%	26.8%	27.5%	25.3%	29.9%	36.5%	20.8%	30.4%	17.4%
Physics	16.6%	21.5%	27.4%	8.6%	43.8%	25.6%	16.2%	16.9%	35.0%	14.6%	37.9%	18.9%
Molecular Biology & Genetics	22.4%	28.3%	53.9%	17.6%	36.1%	32.1%	28.8%	29.9%	33.3%	22.4%	46.8%	17.4%
Biology & Biochemistry	20.0%	25.8%	49.7%	14.7%	30.7%	32.2%	25.0%	28.9%	35.3%	21.5%	39.1%	13.4%
Microbiology	24.3%	22.5%	52.0%	14.1%	21.7%	25.3%	23.3%	28.2%	40.8%	17.4%	26.6%	25.2%
Plant & Animal Science	15.6%	17.3%	31.7%	12.6%	13.1%	23.0%	19.2%	18.8%	36.1%	18.8%	20.7%	26.4%
Environment/Ecology	15.2%	22.3%	33.1%	12.1%	13.9%	14.8%	19.6%	21.8%	33.8%	14.5%	19.5%	21.9%
Geosciences	9.9%	14.5%	25.8%	11.0%	19.1%	17.4%	18.2%	15.4%	31.3%	11.1%	27.5%	15.0%
Chemistry	10.3%	19.5%	33.2%	8.0%	26.1%	29.9%	14.5%	19.6%	38.4%	17.2%	36.3%	11.7%
IM	G7	BRICS										
---------------------------	-------------	-------------										
	CA	DE	FR	GB	IT	JP	US	BR	CN	IN	RU	ZA
Space Science	28.9%	38.8%	33.5%	35.7%	18.1%	24.7%	27.5%	35.6%	32.8%	15.6%	40.0%	50.0%
Neuroscience & Behavior	21.7%	26.4%	21.3%	33.9%	20.6%	14.1%	18.8%	20.7%	23.3%	11.7%	41.1%	45.9%
Psychiatry/Psychology	18.0%	24.8%	19.6%	26.9%	23.8%	16.5%	13.4%	22.9%	19.4%	16.0%	44.6%	33.5%
Immunology	17.5%	18.7%	18.4%	27.8%	12.9%	12.4%	18.5%	14.7%	20.0%	15.4%	20.5%	42.0%
Clinical Medicine	16.4%	16.2%	12.4%	19.0%	12.2%	8.3%	13.1%	11.8%	15.0%	9.5%	13.4%	29.3%
Pharmacology & Toxicology	18.3%	17.0%	15.6%	18.9%	10.5%	9.6%	15.9%	10.1%	12.4%	9.3%	15.1%	29.4%
Physics	31.2%	32.4%	25.6%	32.2%	24.9%	16.2%	26.8%	26.3%	19.3%	12.1%	29.0%	41.2%
Molecular Biology & Genetics	18.3%	21.8%	21.4%	28.3%	19.9%	15.3%	21.8%	19.7%	23.3%	13.9%	23.8%	39.6%
Biology & Biochemistry	20.6%	22.8%	19.9%	26.1%	13.5%	11.9%	20.1%	14.2%	17.6%	12.5%	23.1%	41.9%
Field	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	Total
------------------------------	------	------	------	------	------	------	------	------	------	------	------	-------
Microbiology	20.6%	18.9%	18.1%	25.2%	14.0%	17.5%	18.2%	15.2%	16.0%	10.6%	19.7%	38.4%
Plant & Animal Science	19.8%	22.8%	26.0%	26.8%	13.3%	12.0%	15.8%	9.1%	16.7%	11.4%	18.0%	34.9%
Environment/Ecology	22.9%	26.4%	29.5%	30.8%	16.9%	16.5%	18.4%	16.9%	19.0%	15.1%	16.3%	33.2%
Geosciences	20.1%	24.9%	26.5%	26.2%	14.7%	15.2%	18.6%	12.6%	21.2%	10.7%	15.6%	36.2%
Chemistry	25.1%	22.5%	21.4%	23.7%	15.6%	13.6%	21.4%	14.1%	13.4%	9.6%	13.2%	32.9%
Agricultural Sciences	21.2%	19.0%	21.1%	23.0%	9.5%	12.9%	16.2%	4.6%	18.7%	8.3%	16.1%	29.0%
Materials Science	22.6%	22.8%	21.2%	27.2%	16.0%	17.2%	24.9%	13.8%	15.9%	11.2%	16.3%	35.2%
Computer Science	19.0%	16.1%	17.5%	20.6%	12.6%	13.4%	14.1%	10.9%	14.2%	5.8%	26.3%	24.5%
Engineering	19.3%	15.4%	16.5%	21.3%	12.9%	11.1%	14.6%	7.9%	15.9%	5.8%	16.9%	27.2%
Mathematics	15.3%	12.3%	11.8%	14.3%	8.0%	6.6%	12.1%	8.4%	11.6%	5.7%	21.7%	35.3%
Figure A1. The combination of Hosp-Univ/Coll means the multiple affiliations combination between hospital type affiliations and university or college type affiliations. The bars present share of publications with the Hosp-Univ/Coll combination, in publications with multi-affiliated authors from hospital, of 5 frequent P_NM disciplines.