Numerical simulation of a class of space fractional bistable systems based on the Fourier spectral method

Haitao Liu¹, Wang Yulan², Li Cao³ and Wei Zhang⁴

Abstract
Nonlinear vibration arises everywhere in a bistable system. The bistable system has been widely applied in physics, biology, and chemistry. In this article, in order to numerically simulate a class of space fractional-order bistable system, we introduce a numerical approach based on the modified Fourier spectral method and fourth-order Runge-Kutta method. The fourth-order Runge-Kutta method is used in time, and the Fourier spectrum is used in space to approximate the solution of the space fractional-order bistable system. Numerical experiments are given to illustrate the effectiveness of this method.

Keywords
Space fractional bistable system, Fourier spectral method, fractional Laplacian, numerical simulation

Introduction
Fractional partial differential equations are becoming widely used as a suitable modeling approach for many fields in science and engineering.¹⁻⁶ We mainly study models arising in the application areas of theoretical biology, physics, and chemistry, modeled by some space fractional bistable systems

\[\frac{\partial u}{\partial t} = d_1 \Delta^\alpha x u + a_{11} u + a_{12} v + f(u, v), \]
\[\frac{\partial v}{\partial t} = d_1 \Delta^\alpha x v + a_{21} u + a_{22} v + g(u, v) \]

(1)

where \(u = u(x, y, t) \) and \(v = v(x, y, t) \) are unknown functions. \((x, y) \in \Omega = [a, b] \times [c, d], t > 0 \), the smooth boundary is \(\partial \Omega \). The parameters \(d_i, i = 1, 2 \in \mathbb{R}^+ \) are diffusion coefficients, and \(f(u, v) \) and \(g(u, v) \) are the reaction terms. The system (1) is subjected to some initial condition \(u(x, y, 0) = u_0(x, y), v(x, y, 0) = v_0(x, y) \), and the homogeneous Neumann boundary condition, namely, \(\frac{\partial u}{\partial n} \cdot \partial \Omega = \frac{\partial v}{\partial n} \cdot \partial \Omega = 0 \). The functions \(u(x, y, t) \) and \(v(x, y, t) \) are assumed to be a causal function of time, that is, vanishing for \(t < 0 \). The general response expression contains parameters describing the order of the fractional derivatives that can be varied to obtain various responses. In this article, we use the fractional Laplacian operator by the Riesz fractional derivatives as follows

¹Tianjin Xin Hua Vocational College, Tianjin, P. R. China
²School of Science, Inner Mongolia University of Technology, Hohhot, P. R. China
³School of Computer and Information, Inner Mongolia Medical University, Hohhot, P. R. China
⁴Institute of Economics and Management, Jining Normal University, Jining, P. R. China

Corresponding authors:
Wang Yulan, School of Science, Inner Mongolia University of Technology, Inner Mongolia, Hohhot 010059, P. R. China.
Email: wynei@163.com
Li Cao, School of Computer and Information, Inner Mongolia Medical University, Inner Mongolia, Hohhot, P. R. China.
Email: caolidd@sina.com.cn

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
\[\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{2} \cos \frac{\alpha \pi}{2} \frac{d_x u}{dx} + \frac{d_y u}{dy} \]

with \(D^\alpha_L u \) and \(D^\alpha_R u \) being the Riemann-Liouville fractional operators.

Many approaches are used to solve the reaction-diffusion system. These methods include the finite difference method, \(^7\) reproducing the kernel method (RKM), \(^8\)–\(^17\) variational iteration method (VIM), \(^18\)–\(^19\) homotopy perturbation methods (HPM), \(^20\)–\(^22\) etc. \(^23\)–\(^27\) There are few numerical methods for higher order space fractional reaction-diffusion system.

In this article, in order to numerically simulate space fractional-order reaction-diffusion system, we introduce a novel numerical approach based on the modified Fourier spectral method \(^28\)–\(^30\) and fourth-order Runge-Kutta method. Some patterns are shown by using this new approach, and the results have good agreement with theoretical results. Simulation results show the effectiveness of the method.

Bifurcation analysis of system

In this section, we give the Turing bifurcation conditions of system (1). We assume the equilibrium point of the non-diffusive system (1) is \(E^* = (u_0, v_0) \), so

\[a_{11} u_0 + a_{12} v_0 + f(u_0, v_0) = 0, \]

\[a_{11} u_0 + a_{12} v_0 + g(u_0, v_0) = 0 \]

(3)

Now, we do linear stability analysis of the equilibrium point \(E^* \). We evaluate the Jacobian matrix \(A_0 \) of the system at \(E^* \) as

\[g(t - \bar{u}) = \]

The characteristic roots for \(A_0 \) are given by

\[\lambda_{1,2}(0) = \frac{1}{2} \left[tr(A)_0 \pm \sqrt{[tr(A)_0]^2 - 4 \det(A)_0} \right] \]

(5)
For any integer \(N \geq 0 \), consider \(x_j = j \Delta x = \frac{2 \pi j}{N}, y_j = j \Delta y = \frac{2 \pi j}{N} L = b - a, j = 0, 1, \ldots, N - 1 \). \(u(x,y,t) \) is transformed into the discrete Fourier space as

\[
\hat{u}(k_x, k_y, t) = F(u) = \frac{1}{N^2} \sum_{j=0}^{N-1} \sum_{j=0}^{N-1} u(x_j, y_j, t) e^{-i(k_x x_j + k_y y_j)} - \frac{N}{2} \leq k_x, k_y \leq \frac{N}{2} - 1
\]
and the inverse formula is
\[
 u(x_j, y_j, t) = F^{-1} \left(\hat{u} \right) = \sum_{k=-N}^{N-1} \sum_{l=-N}^{N-1} \hat{u}(k, l, t) e^{-i(kx_j - ly_j)} \quad 0 \leq j \leq N - 1
\]

(9)

It is easy to know \(u(x_j, y_j, t) = F^{-1} \{ F[u(x, y, t)] \} \).

For system (1) with \(f(u, v) = r(a - u + u^2 v) \) and \(g(u, v) = r(b - u^2 v) \), using Fourier transform, we can get
\[
\frac{\partial \hat{u}}{\partial t} = d_1 (ik_x)^a + (ik_y)^a \hat{u} + a_{12} F \left\{ F^{-1} \left[\hat{u} \right] \right\} \rightleftharpoons a_{12} F \left\{ F^{-1} \left[\hat{v} \right] \right\} + r \left(a - F \left\{ F^{-1} \left[\hat{u} \right] + F^{-1} \left[\hat{u} \right]^2 F^{-1} \left[\hat{v} \right] \right\} \right)
\]
\[
\frac{\partial \hat{v}}{\partial t} = d_2 (ik_x)^a + (ik_y)^a \hat{u} + a_{22} F \left\{ F^{-1} \left[\hat{u} \right] \right\} \rightleftharpoons a_{22} F \left\{ F^{-1} \left[\hat{v} \right] \right\} + r \left(b - F \left\{ F^{-1} \left[\hat{u} \right]^2 F^{-1} \left[\hat{v} \right] \right\} \right)
\]

(10)

We use the fourth-order Runge-Kutta method to solve the ordinary differential equation (10) which is as follows
\[
k_1 = g \left(t_n - \tilde{u} \right),
\]
\[
k_2 = g \left(t_n + \frac{\tau}{2}, \tilde{u}_n + \frac{\tau k_1}{2} \right),
\]
\[
k_3 = g \left(t_n + \frac{\tau}{2}, \tilde{u}_n + \frac{\tau k_2}{2} \right),
\]
\[
k_4 = g \left(t_n + \tau, \tilde{u}_n + \tau k_3 \right),
\]
\[
\tilde{u}_{n+1} = \tilde{u}_n + \frac{\tau}{6} (k_1 + 2k_2 + 2k_3 + k_4)
\]

(11)
where \(\tau \) is step-size and \(g(t-u) = \frac{\partial u}{\partial t} \). For convenience of expression, we denote

\[
\mathbf{U} = \left(\tilde{u}_0(t), \tilde{u}_1(t), \ldots, \tilde{u}_{N-1}(t) \right)^T, \quad G(t, \mathbf{U}) = \left(g(\tilde{u}(t)), g(\tilde{u}(t)) \right)^T, \quad n = 1, \ldots, T
\]

Equation (10) is reduced to

\[
\frac{\partial \mathbf{U}}{\partial t} = G(t, \mathbf{U})
\]

Next, we can obtain the standard fourth-order Runge-Kutta formula

\[
K_1 = G(t_n - U_n),
\]
\[
K_2 = G(t_n + \frac{\tau}{2}, U_n + \frac{\tau K_1}{2}),
\]
\[
K_3 = G(t_n + \frac{\tau}{2}, U_n + \frac{\tau K_2}{2}),
\]
\[
K_4 = G(t_n + \tau, U_n + \tau K_3),
\]

\[
U_{n+1} = U_n + \frac{\tau}{6} (K_1 + 2K_2 + 2K_3 + K_4)
\]

Then, we can derive that by solving the following formula

\[
k_{j1} = g\left(t_n, \tilde{u}_{0,\alpha}, \tilde{u}_{1,\alpha}, \ldots, \tilde{u}_{N-1,\alpha} \right),
\]
\[
k_{j2} = g\left(t_n + \frac{\tau}{2}, \tilde{u}_{0,\alpha} + \frac{\tau k_{j1}}{2}, \tilde{u}_{1,\alpha} + \frac{\tau k_{j1}}{2}, \ldots, \tilde{u}_{N-1,\alpha} + \frac{\tau k_{j1}}{2} \right),
\]
\[
k_{j3} = g\left(t_n + \frac{\tau}{2}, \tilde{u}_{0,\alpha} + \frac{\tau k_{j2}}{2}, \tilde{u}_{1,\alpha} + \frac{\tau k_{j2}}{2}, \ldots, \tilde{u}_{N-1,\alpha} + \frac{\tau k_{j2}}{2} \right),
\]
\[
k_{j4} = g\left(t_n + \tau, \tilde{u}_{0,\alpha} + \tau k_{j3}, \tilde{u}_{1,\alpha} + \tau k_{j3}, \ldots, \tilde{u}_{N-1,\alpha} + \tau k_{j3} \right),
\]
\[
\tilde{u}_{j,\alpha+1} = \tilde{u}_{j,\alpha} + \frac{\tau}{6} (k_{j1} + 2k_{j2} + 2k_{j3} + k_{j4})
\]

Finally, we find the numerical solution using the inverse discrete Fourier transform.

Numerical simulation

In this section, numerical simulation of the fractional Gray-Scott (GS) model with a perturbation to the spatially homogeneous steady-state equation is obtained. The domain of interest is taken to be \(\Omega = [-1, 1]^2 \), discretized using \(N = 128 \) points in each spatial coordinate. On account of the evolution of the numerical solution, \(u \) is similar with that of the \(v \), but we will not present it in this article.
Numerical experiment Consider the following fractional Gray-Scott (GS)31 model:

\[
\frac{\partial u}{\partial t} = d_1 \left(\Delta^{\alpha} \right) u - uv^2 + F(1 - u),
\]

\[
\frac{\partial v}{\partial t} = d_2 \left(\Delta^{\alpha} \right) v - uv^2 + (F + k) v, \quad (x, y, t) \in \Omega \times [0, T]
\]

(16)

We take \(d_1 = 2 \times 10^{-5}, d_2 = 1 \times 10^{-5}, F = 0.045, k = 0.0625, u = \text{ones} (N), v = \text{zeros} (N), v(N/2, N/2 : N) = 0.5, v(N/2 - 1, 1 : N/2) = 1\), the numerical results are shown in Figures 1 and 2. We take \(d_1 = 2 \times 10^{-5}, d_2 = 1 \times 10^{-5}, F = 0.045, k = 0.0625, u = \text{ones} (N), v = \text{zeros} (N), v(N/2, N/2 : N) = 0.5, v(N/2 - 2, 1 : N/2) = 1\), the numerical results are shown in Figure 3. We take \(d_1 = 3 \times 10^{-5}, d_2 = 1 \times 10^{-5}, F = 0.015, k = 0.055, u = \text{ones} (N), v = \text{zeros} (N), v(N/2, N/2 : N) = 0.5, v(N/2 - 2, 1 : N/2) = 1\); the numerical results are shown in Figures 4–6.

Conclusion and remarks

In the article, a numerical method that combines the Fourier spectral method with the Runge-Kutta method is proposed to study a class of space fractional bistable system. This approach has general meanings and thus can be used to solve same types of nonlinear space fractional partial differential equations with periodic boundary condition in science and engineering. Some pattern formations are shown by using this new approach, and the results have good agreement with theoretical results. Simulation results show the effectiveness of the method.

All computations are performed by the MATLAB R2017b software.

Acknowledgments

The authors would like to express their thanks to the unknown referees for their careful reading and helpful comments.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work is supported by Inner Mongolia Natural Science Foundation under grant numbers (2021MS01009 and 2019MS07008).

ORCID iD

Wang Yulan https://orcid.org/0000-0001-5292-246X

References

1. Jena RM, Chakraverty S, Jena SK, et al. Analysis of time-fractional fuzzy vibration equation of large membranes using double parametric based Residual power series method. ZAMM-J Appl Math Mech 2021; 101: e202000165.
2. Fikret A, Aliyev NA, and Safarova YV. Mamedova solution of the problem of analytical construction of optimal regulators for a fractional order oscillatory system in the general case. J Appl Comput Mech 2021; 7: 970–976.
3. He JH and El-Dib YO. A tutorial introduction to the two-scale fractal calculus and its application to the fractal zhiber-shabat oscillator. Fractals 2021. DOI: 10.1142/S0218348X21502686
4. He JH, El-Dib YO, and Mady AA. Homotopy perturbation method for the fractal toda oscillator. Fractal Fract 2021; 5(3), 93.
5. Jena RM, Chakraverty S, Jena SK, et al. On the wave solutions of time-fractional Sawada-Kotera-Ito equation arising in shallow water. Math Methods Appl Sci 2021; 44: 583–592.
6. Jassim HK and Aal-Rkhais HA. Fractional sumudu decomposition method for solving PDEs of fractional order. J Appl Comput Mech 2021; 7: 302–311.
7. Wang Y-M and Zhang H-B. Higher-order compact finite difference method for systems of reaction-diffusion equations. J Comput Appl Math 2009; 233: 502–518.
8. Dai D-D, Ban T-T, Wang Y-L, et al. The piecewise reproducing kernel method for the time variable fractional order advection-reaction-diffusion equations. *Therm Sci* 2021; 25: 1261–1268.

9. Wang Y and Chaolu T. Using reproducing kernel for solving a class of singular weakly nonlinear boundary value problems. *Int J Comp Math* 2010; 87: 367–380.

10. Wang YL. An efficient computational method for a class of singularly perturbed delay parabolic partial differential equation. *Int J Comp Math* 2011; 88: 3496–3506.

11. Geng FZ and Wu XY. Reproducing kernel function-based Filon and Levin methods for solving highly oscillatory integral. *Appl Math Comput* 2021; 397: 125980.

12. Geng FZ and Wu XY. Reproducing kernel functions based univariate spline interpolation. *Appl Math Lett* 2021; 122: 107525.

13. Geng FZ and Qian SP. Modified reproducing kernel method for singularly perturbed boundary value problems with a delay. *Appl Math Model* 2015; 39: 5592–5597.

14. Wang YL, Jia LN, and Zhang HL. Numerical solution for a class of space-time fractional equation in reproducing. *Int J Comp Math* 2019; 96: 2100–2111.

15. Wang YL, Temuer CL, and Pang J. New algorithm for second-order boundary value problems of integro-differential equation. *J Comput Appl Math* 2009; 229: 1–6.

16. Wang YL, Du MJ, and Tan FG. Using reproducing kernel for solving a class of fractional partial differential equation with nonclassical conditions. *Appl Math Comput* 2013; 219: 5918–5925.

17. Wang YL, Su Lijuan LJ, and Cao XJ. Using reproducing kernel for solving a class of singularly perturbed problems. *Comput Math Appl* 2011; 61: 421–430.

18. He JH and Wu XH. Construction of solitary solution and compacton-like solution by variational iteration method. *Chaos Solitons Fractals* 2006; 29: 108–113.

19. He JH. Variational iteration method C a kind of non-linear analytical technique: some examples. *Int J Non-linear Mech* 1999; 34: 699–708.

20. He JH. A coupling method of a homotopy technique and a perturbation technique for nonlinear problems. *Int J Non-Linear Mech* 2000; 35: 37–43.

21. He JH. Homotopy perturbation method: a new nonlinear analytical technique. *Appl Math Comput* 2003; 135: 73–79.

22. He JH. New interpretation of homotopy perturbation method. *Int J Mod Phys B* 2006; 20: 2561–2668.

23. Tian D, He CH, and He JH. Fractal pull-in stability theory for microelectromechanical systems. *Front Phys* 2021; 9: 606011.

24. Tian D, Ain QT, and Anjum N. Fractal N/MEMS: from pull-in instability to pull-in stability. *Fractals* 2020; 29(2): 2150030. DOI: 10.1142/S0218348X21500304

25. He JH, Kou SJ, He CH, et al. Fractal oscillation and its frequency-amplitude property. *Fractals* 2021; 29(4): 2150105. DOI: 10.1142/S0218348X2150105X

26. He CH, Liu C, and Gepreel KA. Low frequency property of a fractal vibration model for a concrete beam. *Fractals* 2021; 29(5): 2150117–2150133. DOI: 10.1142/S0218348X21501176

27. He CH, Liu C, He JH, et al. Passive atmospheric water harvesting utilizing an ancient Chinese ink slab and its possible applications in modern architecture. *Facta Univers Series Mech Eng* 2021; 19(2): 229–239. DOI: 10.22190/FUME201203001H

28. Han C, Wang YL, and Li ZY. Numerical solutions of space fractional variable-coefficient KdV-modified KdV equation by Fourier spectral method. *Fractals* 2021. DOI: 10.1142/S0218348X21502467

29. Han C, Wang YL, and Li ZY. A high-precision numerical approach to solving space fractional Gray-Scott model. *Appl Math Lett* 2021; 125: 107759. DOI: 10.1016/j.aml.2021.107759

30. Pindza E and Owolabi KM. Fourier spectral method for higher order space fractional reaction-diffusion equations. *Commun Nonlinear Sci Numer Simul* 2016; 4: 112–128.

31. Gray P and Scott SK. Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms of multistability. *Chem Eng Sci* 1983; 38(1): 29–43.