Saponins from the Pericarp of *Albizia lebbeck* (Benth) L. and Their Biological Screening on Laboratory Animals

Basma G. Eid¹ and Nadia M. Sokkar²,³*

¹Pharmacology and Toxicology Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.

²Natural Products and Alternative Medicine Dept., Faculty of Pharmacy, King Abdulaziz University, Jeddah, 80200, Kingdom of Saudi Arabia.

³Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.

Authors' contributions

This work was carried out in collaboration between both authors. Author NS designed the study, wrote the protocol, performed the spectroscopic analysis, wrote the manuscript and revised it’s the final. Author BE carried out the biological experiment and shared in the final revision. Both authors read and approved the final manuscript.

ABSTRACT

**Aim:** *Albizia lebbeck* L. is widely used to treat many diseases. Saponins are one of the major constituents that are found in the tissues of the tree. The purpose of this study was aimed at the phytochemical and biological investigation of the saponins of the pericarp.

**Methodology:** 50% ethanol extract of the dried powdered pericarp of *A. lebbeck* was fractionated with different organic solvents and examined for their oxidative stress radical, anticonvulsant and analgesic effects. The highly potent fraction was subjected to chromatographic and spectroscopic analysis of its saponins.

**Results:** The n-butanol fraction expressed the best results regarding the biological activities. Chromatographic and spectroscopic analysis of this fraction revealed the identification of three oleanane-type saponins.

*Corresponding author: E-mail: nadiasokkar@yahoo.com;*
Conclusion: The present study constituted the first phytochemical analysis of the bioactive saponins content in the pericarp of *A. lebbeck*.

Graphical Abstract

Keywords: Albizia; HPLC; LC-MS/MS; NMR; saponins.

1. INTRODUCTION

Genus *Albizia* family Fabaceae consists mainly of deciduous woody trees. Saponins in genus *Albizia* are triterpenoidal type [1-3], and are biologically active as antitumor, immunomodulatory, antimitogenic [4] and spermicidal [5]. *Albizia lebbeck* L. is recognized as an ornamental plant in Egypt and a potent herbal remedy [6]. Its saponins are actively well known for their antipyretic, analgesic [7], nootropic and anxiolytic [8] activities.

In continuation to our studies on *A. lebbeck* tree [9,10], the biological activity was performed on the 50% ethanol extract and its fractions of the pericarp. A detailed phytochemical investigation of the highly potent saponins in n-butanol fraction pod was presented here; structures were based mainly on NMR and LC-MSn (n=2).

2. MATERIALS AND METHODS

2.1 Plant Material

Pericarps of *A. lebbeck* L. were harvested from trees grown in Agricultural Research Center (A.R.C), Egypt, during the year of 2019. Dr. Abd El Hafez, (A.R.C), verified the taxonomical identity. A plant sample (A-123) was kept at the Herbarium, Pharmacognosy Department, Faculty of Pharmacy, Cairo University.

2.2 Techniques

A Finnigan LCQ Advantage ion trap mass spectrometer (Thermo Finnigan, San Jose, CA, USA), connected to the Agilent 1100 HPLC instrument via ESI interface for the LC-MS/MS-ESI analysis of saponins. HPLC conditions; column, Phenomenex – An Aqua C18 125 A, 150 x 3 mm; detector, UV at 250 nm; flow rate, 1.0 mL/min; injection volume, 20 µL; mobile phase, acetonitrile/ water (50:50 v/v). ESI-MS conditions in the negative ion mode were: ions spray voltage, 4.5 kv; sheath gas, 60 arbitrary units; auxiliary gas, 15 units; capillary voltage, 5 V; capillary temperature, 320°C. The isolation width of precursor ions was 3.0 units. A Varian Unity Inova-600 (600 MHz for 1H and 150 MHz for 13C) was used for NMR spectra in pyridine, with TMS (tetramethylsilane) as internal standard. IR spectra were taken out on a Shimadzu –IR-435 spectrophotometer. TLC, silica gel 60 F254 plates; elution system, n-butanol-acetic acid-water (4:1:5 v/v/v) (S1) (saponins) and toluene-ethyl acetate (5:5 v/v) (S2) (sapogenin), spots were detected by p-anisaldehyde and heated at 105°C.

2.3 Solvents

Acetonitrile (HPLC grade, Merck), deionized H2O was treated with pure aqua RC655. Solvents and chemical reagents were of analytical grade (BDH).
2.4 Standards and Reagents
Vitamin E, glacial acetic acid and carbamazepine were kindly supplied from the NRC, Giza, Egypt.

2.5 Extraction
50% ethanol was used to extract air-dried and defatted (using petroleum ether) powdered pericarp (700 g) of *Albizia lebbeck* L. to give 71.5 g (10.1%) dry residue. A part of the residue was dissolved in water and portioned in succession with organic solvents. The dry yield was 15.7 g chloroform (CFP), 4.4 g ethyl acetate (EAFP) and 4.1 g butanol (BFP).

2.6 Sample for the Biology
The test samples (2 g, each) were dissolved separately in distilled water (20%, w/v) with tween 80 (few drops).

2.7 Animals
Male albino rats (130-150 g) of Sprague Dawley strain and albino mice (25-30 g) were employed in this study. They were fed a standard laboratory diet, and kept under standardized conditions with water given ad lib.

2.8 Preliminary Toxicity
LD$_{50}$ of 50% ethanol extract, CFP, EAFP and BFP were estimated based on OECD guidelines (2001) [11].

2.9 Antioxidant Activity
Glutathione in the blood was evaluated according to Beutler et al., (1963) [12]. Adult male albino rats (130-150 g) were split into seven groups (6 rats/group). Group 1 (control) received 1 ml saline orally, the groups (2-5) of mice received 50% alcoholic extract, CFP, EAFP and BFP respectively, orally one hour later (100 mg/kg b. wt., each); 0.6% acetic acid was administered intraperitoneally (0.2 ml/mice) in the groups. Mice were then individually placed in a clear plastic observational chamber, and the number of writhes/30 min was counted for each mouse.

2.11 Anticonvulsant Activity
This activity was carried out, using Frequently Pulse Shock Current apparatus. Male albino mice (25-30 g) were split into six groups (6 mice/group). Group 1 (control) and was given 1 ml saline orally, the groups (2-5) received the test samples. All doses were taken orally one hour before the experiment (100 mg/kg b. wt., each). Group 6 received carbamazepine. The stimulus duration was 0.2 second, the end-point was tonic hind limb extension, the maximum electric shock needed to emit a cry was determined.

2.12 Phytochemical Work
BFP (2 g/200 ml methanol) was dissolved in 5 times of its volume acetone where a precipitate was formed, isolated by centrifuging and purified by repeated dissolution and precipitation to give 250 mg dry powder. A portion of the powder (200 mg) was dissolved in 50% aqueous acetonitrile (20 ml) and injected in preparative HPLC, at 25°C. Fractions relevant to each peak were collected and concentrated to afford compounds: 1 (40 mg), 2 (38 mg) and 3 (35 mg).

NMR of compounds 1-3 (Tables 1 & 2).

Compounds 1-3 (8-10 mg, each) were separately refluxed with 2N HCl in 50% methanol (10 ml) for 2 h. The aglycone was extracted with chloroform and subjected to TLC (S1) and spectral analysis. The sugars were liberated after neutralization with Ag$_2$CO$_3$ and identified by comparison with authentics using GC [14].
3. RESULTS AND DISCUSSION

3.1 Biological Analysis

Toxicity study revealed that oral administration of the test samples in dose up to 1.3 g/kg. Blood glutathione (Fig. 1) was restored in diabetic animals following oral administration of the test samples. The BFP showed a significant antioxidant activity (3.57%). It may be attributed to the presence of compounds can produce stable free radicals and thus inhibit the auto-oxidation of co-existing substances acting as biological antioxidants [14]. The 50% alcoholic extract induced significant analgesic effect (Fig. 2), as it increased numbers of abdominal constrictions of mice by 61.09% followed by the BFP that increased the constrictions by 47.28%. Peripheral analgesic agents are known to specifically produce a constriction response of abdomen due to acetic acid. Prostaglandins are believed to underlie this response [15]. The 50% extract and BFP resulted in antinociceptive activity indicating that they may contain analgesic components which could be involved in modulation of the prostaglandin pathway.

50% alcoholic extract as well as the BFP and EAFP induced significant anticonvulsant effects (Fig. 3) through the increase of the % protection by: 241.66, 179.16% and 145.83, respectively. This activity may be attributed to fractions that resulted in an elevated level of serotonin and gamma-aminobutyric acid (GABA). In particular, these fractions exhibited a central nervous system depressant action [16].

Fig. 1. Antioxidant activity of the test samples of A. lebbeck L. and vitamin E in male albino rats (n=6)

Fig. 2. Effect of the test samples of Albizzia lebbeck L. and glacial acetic acid on numbers of abdominal constrictions in mice (n=6)
3.2 Phytochemical Investigation

The significant results of the BFP encouraged the authors for its phytochemical investigation. Previous work discussed saponins isolated from different tissues of *A. lebbeck* of echinocystic acid [3], acacic acid lactone [1] and oleanolic acid [2] aglycones. In the present study, the saponins were isolated by preparative HPLC. Their acid hydrolysis gave one aglycone; TLC (S2) showed one violet spot at Rf = 0.48 and its EIMS gave M+ at 470 (C_{30}H_{46}O_{14}), and fragments at m/z 452 (-H\_2O), 263 and 244. 1H NMR data (Table 1) were identical to that of acacic acid lactone [17].

Gas chromatography of the sugars alongside with authentics revealed the glucose, rhamnose, arabinose, xylose and quinovose.

LC-ESI-MS/MS (Fig. 4) of the saponin mixture showed (MS2, [M–H]+) at m/z 469 due to the (–) oligosaccharides and ions at m/z 243 and at m/z 206.7 relevant to the aglycone. LC-ESI-MS of peak 1 (Rt = 5.03) displayed a quasi-molecular ion peak at m/z 1661.72 [M – H]−, consistent with a molecular composition of C_{98}H_{132}O_{32}. The fragments: A at m/z [M–H– 328]− (–MT linked to methyl pentose), B at m/z 1530 [M–H–132]− (– terminal pentose), C at m/z 1398 [M–H–264]− (– two pentoses one of them was terminal) and D at 1235 [M–H– 426]− (– an oligosaccharide "a"). The fragments: m/z 1090 [1222.4–132]−, m/z 958 [1222.4–132], m/z 796 [1222.4–132–162]− (successive loss of two pentoses and one hexose of "a"). E at m/z 1384 [M–H–278]− (– pentose attached to a methyl hexose) while, F ion at m/z 1222.54 [M–H–440]− (– oligosaccharide "b"). LC-ESI-MS of peak 2 (Rt= 6.00) displayed an ion peak at m/z 1824.6 calculated for C_{88}H_{132}O_{32} and is more than 1 with 162 mu(terminal hexose). Fragments: B at m/z 1692.58, C at m/z 1560 and D at m/z 1326.61[M–H–588]− (– oligosaccharide "a"), A at m/z 1496, E at m/z 1546, F at m/z 1384, G at m/z 1662.60 [M – H – 126]−. Peak 3 (Rt = 7.37) has an ion peak at m/z 1691.50 calculated for C_{80}H_{124}O_{38} and a fragment at m/z 1560.55 (– terminal pentose at C-3). Structure elucidation of the isolated compounds was achieved by extensive spectroscopic mass and 1D- and 2D-NMR. The coupling constants indicated β-d-configuration for glup, xylp and quin and α-l-configuration for rhaps and arap [18]. D-configuration for glup, xylp and quin and L-configuration for rhaps and arap were assumed, according to those present in plant glycosides [19]. The sugars were identified as three pentoses: two β-xylopyranosyl (xylp, xylp′) and one α-arabinopyranosyl (arap); two deoxy sugars: α-rhamnopyranosyl (rhap) and β-quinovopyranosyl (quinp); two β-glucopyranosyl units (glup, glup′). 1H NMR spectrum (Table 1) of compound 1 showed seven anomeric proton signals at δ_{H} 5.83(s, H-rhap-1), 5.52 (d, J = 7.7 Hz, H-glup′-1), 5.42(d, J = 7.9 Hz, H-arap-1), 4.91 (d, J =7Hz, H-xylp′-1), 4.87(d, J = 7.6 Hz, H-quinp-1), 4.83(d, J = 6.6 Hz, H-glup-1), 4.72 (d, J=6.8 Hz, H-xylp-1), two methyl signals of the two deoxysugars at δ_{H} 1.09 (d, J=6.1 Hz), and 1.47(d, J=6.2 Hz). The anomeric protons are correlated in the HSQC spectrum with 13C-NMR signals at δ_{C} 104.6 (arap-1), 102.0 (glup-1), 101.0 (xylp′-1), 100.3 (xylp-1), 99.5 (rhap-1), 97.7

![Fig. 3. Anticonvulsant activity of the test samples of the pericarp of *A. lebbeck* L. and carbamazepine in mice (n=6)](image)
the oligosaccharides. HMQC spectrum identified the H and C signals re
C101.0; the connection C166.8 proved by HMBC correlations. The downfield and upfield shifts at δC 141.4 (trisubstituted C=C) of the oleanane (C12). NMR spectra in Tables 1 and 2 and results of COSY, TOCSY, HSQC, and HMBC NMR proved a 3β, 16α, 21β-trihydroxylan-12-en-28-
oic acid aglycone [20]. The interglycosidic linkages were figured out through the long range HMBC correlations. The downfield and upfield shifts at δC 89.5 (C-3) and δC 171.4 (C-28) showed HMBC correlation to the sugar positions H-glup-1 and H-glup'-1 at δH 4.83 (d, J = 6.6 Hz) and δH 5.52 (d, J = 7.7 Hz), respectively; also the shift at δC 79.4 (MT-C-6) and the anomeric protons of quip at δH 4.87 (d, J = 7.6 Hz) confirmed the glycosidic linkage of the suggested tridesmosidic glycoside (17) with an ester link at C-21 that appeared as downfield shift at δC 78.7 and proved by HMBC correlations to MT-C-1 at δC 166.8 [21]. 13C-NMR chemical shifts suggested the connections C-arap-1, C-arap-2, C-xylp-1, C-xylp'-1, to other sugars at δC 104.6, 81.4, 100.3, 101.0; the connection of C-rhap-4 at δC 81.4 and C-glup-6 and C-glup'-2, at δC 69.2 and 81.5, respectively, indicated their attachments [19]. HMBC spectrum identified the H and C signals correlation of the oligosaccharides, H-arap-1 / C- glup-6 at δH (d, 5.42, J = 7.9 Hz) / δC 69.2, H-
xylp-1 / C-arap-2 at δH 4.72 (d, J = 6.8 Hz) / δC 81.4 forming: xylose (1→2) arabinose (1→6) glucose of the oligosaccharide “a” [21]. H-arap-1 / C-

(quip-1). 92.2 (glup'-1) and the methyls of the two deoxy sugars showed signals at δC 18.0 (rhap-6) and 17.5 (quip-6) [17].

13C-NMR spectrum (Tables 1&2) of the aglycone showed signals at δC 166.8 (carbonyl ester), δC 142.4, 115.0 (a monosubstituted C=C), δC 130.2, 142.0 (a trisubstituted C=C) which corresponded to the monoterpene moiety (MT) and δC 123.5, 141.4 (trisubstituted C=C) of the oleanane (C-12). NMR spectra in Tables 1 and 2 and results of COSY, TOCSY, HSQC, and HMBC NMR proved a 3β, 16α, 21β-trihydroxylan-12-en-28-
oic acid aglycone [20]. The interglycosidic linkages were figured out through the long range HMBC correlations. The downfield and upfield shifts at δC 89.5 (C-3) and δC 171.4 (C-28) showed HMBC correlation to the sugar positions H-glup-1 and H-glup'-1 at δH 4.83 (d, J = 6.6 Hz) and δH 5.52 (d, J = 7.7 Hz), respectively; also the shift at δC 79.4 (MT-C-6) and the anomeric protons of quip at δH 4.87 (d, J = 7.6 Hz) confirmed the glycosidic linkage of the suggested tridesmosidic glycoside (17) with an ester link at C-21 that appeared as downfield shift at δC 78.7 and proved by HMBC correlations to MT-C-1 at δC 166.8 [21]. 13C-NMR chemical shifts suggested the connections C-arap-1, C-arap-2, C-xylp-1, C-xylp'-1, to other sugars at δC 104.6, 81.4, 100.3, 101.0; the connection of C-rhap-4 at δC 81.4 and C-glup-6 and C-glup'-2, at δC 69.2 and 81.5, respectively, indicated their attachments [19]. HMBC spectrum identified the H and C signals correlation of the oligosaccharides, H-arap-1 / C-glup-6 at δH (d, 5.42, J = 7.9 Hz) / δC 69.2, H-
xylp-1 / C-arap-2 at δH 4.72 (d, J = 6.8 Hz) / δC 81.4 forming: xylose (1→2) arabinose (1→6) glucose of the oligosaccharide “a” [21]. H-arap-1 / C-glup'-2 at δ 5.83s / δC 81.5, H-xylp'-1 / C-rhap-4 at δH 4.91 (d, J = 7Hz) / δC 84.4 forming: xylose (1→4) rhamnose (1→2) glucose of the oligosaccharide “b” [22]. Compound 1 is a julibrosides analogue [4, 23] the similarity lies in the aglycone structure with one MT group (with a monosaccharide at C-6) attached to the C-21, and differs in the oligosaccharides at the positions C-3 [xylose (1→4) rhamnose (1→2) glucose] and C-28 [xylose (1→4) rhamnose (1→2) glucose] of the triterpene.

Compound 2 (Table 1) is an analogue to 1 with the difference of the presence of the terminal glucp” in the oligosaccharide “a” at C-3. 1H-NMR showed its anomeric proton at δH 5.38 (d, J = 7.8Hz) which correlated in the HSQC spectrum with 13C-NMR spectrum of C-1 at δC 101.7. The HMBC suggested the attachment between H-glcp”-1 / C-glup-2 at δH 5.38 / δC 83.4.

NMR spectrum of 3 (Tables 1 & 2) showed a structure close to 1 and 2; their C-arap-2 showed more downfield shifts (δC 81.4 and 81.1, respectively) for the sugar substitutions than in 3 which appeared at δC 72.6 indicating its terminal position. The structure of “a” fragment is superimposable to that of the oligosaccharide chain attached to C-1 of kimoicosides isolated from Acacia concinna [20].

Fig. 4. Fragmentations of the saponinssaponins

188
### Table 1. NMR data of the aglycone

| Position | 1<sup>b</sup> | 2<sup>b</sup> | 3<sup>b</sup> |
|----------|---------------|---------------|---------------|
|          | δC (ppm)     | δH (J Hz)     | δC (ppm)     | δH (J Hz)     | δC (ppm)     | δH (J Hz)     |
| CH<sub>2</sub>1 | 38.2 1.55m   | 39.0 1.53m   | 38.1 1.56m   |
| CH<sub>2</sub>2 | 27.0 1.79m   | 27.1 1.78m   | 27.0 1.70m   |
| CH<sub>3</sub>3 | 89.5 3.35m   | 89.0 3.30m   | 89.2 3.33m   |
| C 4       | 41.6          | 41.5          | 41.8          |
| CH<sub>2</sub>5 | 56.1 0.80d (10.0) | 56.4 0.87d (10.0) | 56.5 0.87d (10.0) |
| CH<sub>2</sub>6 | 18.0 1.50m   | 18.8 1.50m   | 18.6 1.50m   |
| CH<sub>2</sub>7 | 33.3 1.39m   | 33.7 1.37m   | 33.0 1.39m   |
| C 8       | 40.1          | 41.4          | 41.0          |
| CH<sub>9</sub>10 | 47.2 1.65m   | 47.8 1.66m   | 48.4 1.66m   |
| C 10      | 36.0          | 36.4          | 36.5          |
| CH<sub>2</sub>11 | 23.4 2.21m   | 23.0 2.18m   | 23.8 2.20m   |
| CH 12     | 123.5 5.57m  | 123.0 5.54m  | 123.5 5.54m  |
| C 13      | 141.4         | 141.3         | 141.3         |
| C 14      | 41.6          | 41.4          | 41.5          |
| CH<sub>2</sub>15 | 35.1 1.50m   | 34.2 1.52m   | 34.1 1.50m   |
| CH 16     | 73.4 5.07brS | 73.4 5.10 brS | 73.0 5.12 brS |
| C 17      | 51.3          | 51.0          | 51.0          |
| CH 18     | 40.6 2.98m   | 41.0 2.94m   | 41.2 2.96m   |
| CH<sub>2</sub>19 | 47.8 2.58dd (12,11) | 48.3 2.57dd (12,14,11) | 48.5 2.59dd (12,10.5) |
|          |              |              | 1.75(11,5.4) | 1.85 (12, 5.5) | 1.80 (12, 5.5,0) |
| C 20      | 35.6          | 35.7          | 35.2          |
| CH 21     | 78.7 5.41dd (10.4,5.4) | 78.4 5.43dd(11.0, 5.0) | 78.4 5.40dd (10.8,5.0) |
| CH<sub>2</sub>22 | 35.3 2.07m,2.64 (10.4,5.0) | 35.5 2.10m2.64(11.0,4.8) | 35.0 2.102.68(10.5,4.8) |
| Me 23     | 28.0 1.16 s   | 28.2 1.14 s   | 28.2 1.12 s   |
| Me 24     | 16.5 0.91s    | 17.1 0.91 s   | 16.8 0.91 s   |
| Me 25     | 16.0 0.74s    | 16.2 0.79 s   | 16.2 0.75 s   |
| Me 26     | 17.0 0.92 s   | 17.5 0.92 s   | 17.1 0.92 s   |
| Me 27     | 27.7 1.65 s   | 27.8 1.68 s   | 27.7 1.68 s   |
| C 28      | 171.4         | 171.0         | 171.6         |
| Me 29     | 28.9 0.94 s   | 28.6 0.94 s   | 29.0 0.94 s   |
| Me 30     | 18.8 1.03s    | 18.4 1.02s    | 18.0 1.03s    |

*Fig. 5. Important HMBC correlations of Compound 2*
|     | 1   | 2                   | 3   |
|-----|-----|---------------------|-----|
|     | δC  | δH(J Hz)            | δC  | δH (J Hz) |
| MT- | 166.8 | -                    | 166.8 | -        |
| -2  | 130.2 | -                    | 131.2 | -        |
| -3  | 142.0 | 7.00t (7.3)          | 141.8 | 7.03t (7.3) |
| -4  | 22.8  | 2.30m                | 22.2  | 2.31m    |
| -5  | 40.8  | 1.70m                | 40.1  | 1.74m    |
| -6  | 79.4  | -                    | 82.1  | -        |
| -7  | 142.4 | 6.66dd (17.7, 11.0)  | 141.8 | 6.67dd (17.7, 11.0) |
| -8  | 115.0 | 5.12 dd (17.7, 0.8)  | 114.4 | 5.10dd (17.7, 1.1) |
| -9  | 12.0  | 4.34s                | 13.5  | 4.25s    |
| -10 | 22.4  | 1.36 s               | 23.1  | 1.35s    |
| quip| 97.7  | 4.87d(7.6)           | 98.0  | 4.87d(7.8) |
| -2  | 75.2  | 3.63 dd(7.8, 8.2)    | 75.4  | 3.64 dd(7.6, 8.1) |
| -3  | 75.0  | 4.28m                | 75.2  | 4.18m    |
| -4  | 74.0  | 5.25m                | 73.5  | 5.22m    |
| -5  | 69.4  | 3.64m                | 70.1  | 3.44m    |
| -6  | 17.5  | 1.08dd(6.1)          | 17.2  | 1.12d (6.0) |
| glup| 102.0 | 4.83d(6.6)           | 103.2 | 4.80d(6.6) |
| -2  | 78.8  | 4.02dd(7.8, 8.5)     | 83.4  | 4.02dd(7.8, 8.5) |
| -3  | 78.0  | 3.78m                | 78.1  | 3.55m    |
| -4  | 72.0  | 3.82m                | 72.4  | 3.42m    |
| -5  | 78.2  | 3.98m                | 78.4  | 3.94m    |
| -6  | 69.2  | 4.23m,4.52m          | 71.2  | 4.23m,4.53m |
| glu*p| -    | -                    | 101.7 | 5.38d(7.8) |
| -2  | -    | 79.7                 | 3.90m | -        |
| -3  | -    | 77.5                 | 3.85m | -        |
| -4  | -    | 71.5                 | 4.02m | -        |
| -5  | -    | 79.2                 | 3.93m | -        |
| -6  | -    | 61.4                 | 4.01m,4.2m | 62.8  | 4.05m,4.2m |
| xylp| 100.3 | 4.72d(6.8)           | 100.2 | 4.82d(6.8) |
| -2  | 74.7  | 4.02m                | 75.8  | 4.00m    |
| -3  | 78.8  | 4.08m                | 77.5  | 4.08m    |
| -4  | 70.0  | 4.02m                | 70.8  | 4.14m    |
| -5  | 66.0  | 3.57dd(10.4,11.7)/4.65m | 66.2  | 3.32dd(10.0,10.8)/4.61m |
| arap| 104.6 | 5.42d(7.9)           | 104.3 | 5.41d (7.9) |
| -2  | 81.4  | 4.40                 | 80.1  | 4.43     |
| -3  | 72.1  | 4.35                 | 72.4  | 4.31     |
| -4  | 70.4  | 4.02                 | 70.3  | 4.12     |
| -5  | 65.4  | 3.56, 4.65m          | 64.8  | 3.53, 4.65m |
| glu*p| 92.2  | 5.52d (7.7)          | 93.4  | 5.50d(7.7) |
| -2  | 81.5  | 3.80m                | 79.1  | 3.83m    |
| -3  | 78.4  | 3.96m                | 78.2  | 3.92m    |
| -4  | 70.4  | 4.28m                | 71.0  | 4.28m    |
| -5  | 78.5  | 3.60m                | 78.2  | 3.50m    |
| -6  | 68.2  | 4.00m/4.19m          | 68.1  | 4.00m/4.18m |
| rhap| 99.5  | 5.83br s             | 99.5  | 5.80 br s |
| -2  | 71.4  | 5.28br s             | 72.2  | 5.29 br s |
| -3  | 73.4  | 4.62 dd (3.9,9.2)    | 73.5  | 4.72 dd(3,4.8,9) |
| -4  | 81.4  | 4.69 dd(8.6, 9.4)    | 81.9  | 4.64 dd(8.3,9.2) |
| -5  | 67.5  | 4.41m                | 69.2  | 4.51m    |
| -6  | 18.0  | 1.47d(6.2)           | 18.4  | 1.54d (6.2) |
| xylp*p| 101.0 | 4.91d(7)             | 102.3 | 4.95d(7) |
| -2  | 76.1  | 4.42m                | 76.0  | 4.42m    |
| -3  | 79.2  | 4.41m                | 79.0  | 4.41m    |
| -4  | 70.2  | 4.42m                | 70.8  | 4.41m    |
| -5  | 66.3  | 3.52dd(8.9,10.0), 4.65m | 66.0  | 3.52dd(8.9,10.0), 4.65m |

**Assignments of the sugars based on HSQC-TOCSY and 13C NMR.**
4. CONCLUSION

This study constitutes an investigation of the saponins in the pericarp of A. lebbeck. They proved to have a valuable antioxidant, analgesic and anticonvulsant activities; through examination of the n-butanol fraction, containing them and having a complex structure of an acacic acid aglycone with oligosaccharide substitutions at C-3 and C-28 and by acyl groups at C-21. They are different from the Albiziahexosides previously isolated from leaves and the by-product of its degradation reaction albiziatroside A [2], Albiziaasaponins isolated from the bark [1] or echinocystic acid glycosides isolated from the seeds [3] of A. lebbeck. To our knowledge, this is the first investigation of saponins identification from the pericarp of A. lebbeck.

CONSENT

It is not applicable.

ETHICAL APPROVAL

The animal study was approved by the Research Ethics Committee, Faculty of Pharmacy, King Abdulaziz University, approval number PH-1442-74.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Pal BC, Achari B, Yoshikawa K, Arihara S. Saponins from Albizia lebbeck. Phytochemistry. 1995;38(5):1287-91.
2. Ueda M, Tokunaga T, Okazaki M, Sata NU, Ueda K, Yamamura S. Albiziahexoside: A potential source of bioactive saponin from the leaves of Albizia lebbeck. Nat Prod Res. 2003; 17(5):329-35.
3. Scott JP, Tinto WF, Reynolds WF. Tripenoidal saponins and prosapogenins from Albizia lebbeck (Leguminosae). Nat. Prod. Commun. 2008;3:1763-1770.
4. Lacaille-Dubois M.A.L.a.P., Note DE, Mitaïne-Offer AC. A review of acacic acid-type saponins from Leguminosae-Mimosoideae as potent cytotoxic and apoptosis inducing agents. Phytochem Rev. 2011;10:565-584.
5. Orwa C, Mutua A, Kindt R, Jamnadass R, Simons A. Agroforestry Database: a tree reference and selection guide; 2009.
6. Faisal M, Singh PP, Ichhiai R. Review on Albizia lebbeck a potent herbal drug. Int. Res. J. Pharm. 2012;3:63-68.
7. Farag M, El Gamal A, Kalil A, Al-Rehaily A, El Mirghany O, El Tahir K. Evaluation of some biological activities of Albizia lebbeck flowers. Pharmacol. Pharm. 2013;4:473-477.
8. Une HD, Sarveiya VP, Pal SC, Kasture VS, Kasture SB. Nootropic and anxiolytic activity of saponins of Albizia lebbeck L. leaves. Pharmacol. Biochem. Behav. 2001; 69:439-444.
9. El-Hawary S, El- Fouly K, Sokkar NM, Talaat Z. A Phytochemical profile of Albizia lebbeck (L.) Benth. cultivated in Egypt. Asian J Biochem. 2011;6:122-141.
10. Sokkar NM, El- Hawary SM, Slem AM, Talaat Z. The phenolic composition of the hepatoprotective and antioxidant fractions of Albizia lebbeck L. Quim. Nova. 2016; 39(8):973-978.
11. OECD. Guidelines for the testing of chemicals., in Test no. 423: acute oral toxicity-acute toxic class method., O.f.e.c.-o.a. development, Editor. Paris; 2001.
12. Beutler E, Yeh MK. Erythrocyte glutathione reductase. Blood. 1963;21:573-85.
13. Eliasson SG, Samet JM. Alloxan induced neuropathies: lipid changes in nerve and root fragments. Life Sci. 1969;8(9):493-8.
14. Soares JR, Dinis TC, Cunha AP, Almeida LM. Antioxidant activities of some extracts of Thymus zygis. Free Radic Res. 1997; 26(5):469-78.
15. Subedi NK, Rahman SM, Akbar MA. Analgesic and antipyretic activities of methanol extract and its fraction from the root of Schoenoplectus grossus. Evid Based Complement Alternat Med. 2016; 2016:3820704.
16. Wang ZJ, Heinbockel T. Essential oils and their constituents targeting the GABAergic system and sodium channels as treatment of neurological diseases. Molecules. 2018;23(5).
17. Zhou K, Cui JR, Zhao YY, Zhang RY, Zheng JH. A cytotoxic saponin with two monoterpenoids from Albizia julibrissin. Chinese Chem. Letters. 2000;11:39-42.
18. Agrawal PK. NMR spectroscopy in the structural elucidation of oligosaccharides
and glycosides. Phytochemistry. 1992; 31(10):3307-30.

19. Haddad M, Miyamoto T, Dubois MAL. New triterpenoidal saponins acylated with monoterpenic acid from Albizia adianthifolia. Hel Chim Acta. 2004;87: 1228-1237.

20. Tezuka Y, Honda K, Banskota AH, Thet MM, Kadota S. Kinmoonosides A-C, three new cytotoxic saponins from the fruits of Acacia concinna, a medicinal plant collected in myanmar. J Nat Prod. 2000; 63(12):1658-64.

21. Cao S, Norris A, Miller JS, Ratovoson F, Razafitsalama J, Andriantsiferana R, Rasamison VE, TenDyke K, Suh T, Kingston DG. Cytotoxic triterpenoid saponins of Albizia gummifera from the Madagascar rain forest. J Nat Prod. 2007; 70(3):361-6.

22. Krief S, Thoison O, Sevenet T, Wrangham RW, Lavaud C. Triterpenoid saponin anthranilates from Albizia grandibracteata leaves ingested by primates in Uganda. J Nat Prod. 2005;68(6):897-903.

23. Han L, Pan G, Wang Y, Song X, Gao X, Ma B, Kang L. Rapid profiling and identification of triterpenoid saponins in crude extracts from Albizia julibrissin Durazz. by ultra high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. J Pharm Biomed Anal. 2011;55(5):996-1009.