Lipoprotein profile and lipid metabolism of PXB-cells®, human primary hepatocytes from liver-humanized mice: proposal of novel in vitro system for screening anti-lipidemic drugs

Keishi Hata1, Sayaka Tomatsu1, Masaki Takahashi2, Akira Sasaki1, Yui Umekawa1, Kazuya Miyashita3, Kazumi Ogura3, Gen Toshima4, Masahiro Maeda3,4, Junichiro Takahashi4, and Masakazu Kakuni7
1 Akita Research Institute of Food & Brewing, 4-26 Sanuki, Araya-machi, Akita 010-1623, Japan; 2 PhoenixBio Co., Ltd., 3-4-1 Kagamiyama, Higashi-Hiroshima-Shi, Hiroshima 739-0046, Japan; 3 Immuno-Biological Laboratories Co., Ltd., 1091-1 Naka Aza-Higashida, Fujioka-Shi, Gunma 375-0005, Japan; and 4 Skylight Biotech Inc., 100-4 Sunada, Iijima-aza, Akita-Shi, Akita 011-0911, Japan

(Received 22 November 2019; and accepted 1 December 2019)

ABSTRACT
We investigated lipid metabolism in PXB-cells, which are human primary hepatocytes isolated from liver-humanized mice, and HepG2 and HuH-7 human hepatoma cell lines. Lipoprotein levels were higher in PXB-cells than in the 2 other cell lines, and PXB-cells mainly released triglycerides and cholesterol as very low density lipoprotein (VLDL), similar to actual liver tissue, whereas the major lipoprotein released from the 2 hepatoma cell lines was LDL. RT-PCR analysis demonstrated that the gene expression levels of apolipoprotein B100 (ApoB100), the apolipoprotein of VLDL/LDL, were similar in PXB-cells and HepG2 cells, while the overexpression of ApoC2, ApoC3, and ApoE, which are components of VLDL, but not LDL, was observed in PXB-cells. A protein immunoassay revealed that ApoB100 levels secreted from PXB-cells and HuH-7 cells were similar; however, ApoC3 levels were higher in PXB-cells than in the two other cell lines. We also examined the anti-lipidemic activities of fenofibrate using this assay system. Fenofibrate suppressed lipoprotein production from PXB-cells in a dose-dependent manner mainly by activating the β-oxidation pathway. These results suggest that PXB-cells produce high levels of lipoproteins and are suitable for screening anti-lipidemic agents.

Serum-insoluble lipids circulate in the bloodstream as lipoproteins, which are macromolecular complexes of free cholesterol, cholesterol esters, triglycerides, phospholipids, and apolipoproteins (Apo). Lipoproteins mainly produced in intestinal epithelial tissues and the liver are separated into 4 major classes based on their particle size and density. Chylomicrons (>80 nm) released in intestinal epithelium cells are transported to the liver through lymphatic vessels after their conversion to chylomicron remnants by lipoprotein lipase. Very low density lipoprotein (VLDL, 30–80 nm) and LDL (16–30 nm) with lipids and apolipoprotein B100 (ApoB100) are mainly synthesized in the liver and transport serum lipids to each tissue. High density lipoprotein (HDL, 8–16 nm) with ApoA is an important lipoprotein for the collection and transport of excess serum cholesterol. High levels of VLDL and LDL and/or low levels of HDL cause dyslipidemic diseases, such as hypercholesterolemia and hypertriglyceridemia, and are associated with an increased risk of atherosclerotic disease (11, 13, 24).

The attenuating activities of crude drugs or food-stuffs on metabolic syndrome have been examined (7, 10). In many cases, experimental animals, such as dyslipidemic mice/rats, have been used to screen anti-metabolic syndrome activities; however, studies using experimental animals are very expensive, and
difficulties are associated with simultaneously evaluating many test samples. We previously developed a novel system for evaluating anti-lipidemic agents by assessing lipoprotein profiles secreted from HepG2 human hepatoma cells (6). The anti-lipidemic effects of water shield extracts were demonstrated in the assay system, and their effects were confirmed in experimental animals and a pilot clinical study (20). However, a number of issues need to be resolved, such as differences in the lipoprotein profiles of hepatoma cells and human primary hepatocytes (18). PXB-cells are fresh hepatocytes isolated from humanized mouse livers repopulated completely with human hepatocytes by transplantation (14). Advances have been achieved in the application of PXB-cells to the study of drug metabolism and hepatitis virus infection (5, 25); however, their application to other fields, such as lipid/sugar metabolism, has progressed to a lesser extent. In the present study, we examined the lipoprotein profiles of PXB-cells and investigated whether they were suitable for screening anti-lipidemic activities in vitro. The results obtained suggest that PXB-cells produce high levels of lipoproteins and are suitable for screening anti-lipidemic agents.

MATERIALS AND METHODS

Cell lines. PXB-cells were isolated from humanized murine livers 16 weeks after transplantation according to a previously described procedure (Fig. 1), seeded at 4×10^5 cells in collagen-coated 24-well microplates (Day 0), and maintained in Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% FBS, 20 mM HEPES, 15 μg/mL L-proline, 0.25 μg/mL insulin, 50 nM dexamethasone, 44 mM NaHCO$_3$, 5 ng/mL EGF, 0.1 mM ascorbic acid 2-phosphate, 2% DMSO and antibiotics. The HepG2 and HuH-7 human hepatoma cell lines were from the RIKEN Cell BANK and maintained in DMEM containing 10% FBS and antibiotics.

Lipid assay. PXB-cells on Day 13, or hepatoma cells precultured for 20 h in collagen-coated 24-well microplates (4×10^5 cells, respectively), were incubated in 500 μL William’s E medium supplemented with Hepatocyte Maintenance Supplement Pack (CM-4000; Thermo Fisher Scientific, Waltham, MA, USA) for 2 days. Intracellular cholesterol and triglyceride levels were assessed using the Cholestest Cho Kit and TG Kit (Sekisui Medical, Tokyo, Japan), respectively, according to the laboratory procedure described in each manual. Culture media were subjected to a lipoprotein assay using LipoSEARCH® (22).

Real-time RT-PCR. Total RNA was isolated using the QuickGene RNA cultured cell kit S (Fujifilm...
Lipoprotein profile of PXB-cells

Wako, Osaka Japan). Template cDNA synthesis was performed with 5 μg of total RNA using the PrimeScript RT reagent Kit (Takara Bio, Kusatsu, Japan). In a fluorescent temperature cycler (CFX Connect™ Real-Time PCR Detection System; Bio-Rad Laboratories, Hercules, CA, USA), 2.5% of each RT reaction solution was amplified in 25 μL of 1 × SYBR Premix Ex Taq (Takara Bio) containing 0.2 μM of each primer. Samples were incubated in the thermal cycler for an initial denaturation at 95°C for 10 s, followed by 40 PCR cycles. Each cycle consisted of 95°C for 5 s and 60°C for 30 s. The relative expression level of each mRNA was normalized by the amount of glyceraldehyde-3-phosphate dehydrogenase mRNA. The primer sequences used in the present study were shown in Table 1.

Table 1

Gene name	Forward	Reverse
ACC	5'-TGATGTCAATATCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
ACOX1	5'-TCAACCCCGGAGCTGTTTAC-3'	5'-AGCGGGACATCTGTTGTTATGCCACAGTCC-3'
ACSL1	5'-AGGGGACATCTGTTGTTATGCCACAGTCC-3'	5'-AGGGGACATCTGTTGTTATGCCACAGTCC-3'
Angptl3	5'-CCAAAGACATCTGTTGTTATGCCACAGTCC-3'	5'-CCAAAGACATCTGTTGTTATGCCACAGTCC-3'
Angptl4	5'-GGCTGTTGTTATGCCACAGTCC-3'	5'-GGCTGTTGTTATGCCACAGTCC-3'
Angptl8	5'-GGCTGTTGTTATGCCACAGTCC-3'	5'-GGCTGTTGTTATGCCACAGTCC-3'
Albumin	5'-GGCTGTTGTTATGCCACAGTCC-3'	5'-GGCTGTTGTTATGCCACAGTCC-3'
ApoA1	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
ApoA2	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
ApoA5	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
ApoB100	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
ApoC2	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
ApoC3	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
ApoE	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
CACT	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
CYP1A2	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
CYP2C9	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
CYP2B6	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
CYP3A4	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
DGAT1	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
DGAT2	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
FAS	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
GAPDH	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
GPAM	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
HMCoAR	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
HTGL	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
Lipin1	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
MCAD	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
MGAT1	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
MGAT2	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
MGAT3	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
MTP	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
PPARα	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
PPARγ	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
SCD	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'
SREBP1c	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'	5'-TGATGTCAATCTCGTTTTCCTCCCCGCAGC-3'

Abbreviations: ACC, acetyl-CoA carboxylase; ACOX, peroxisomal acyl-coenzyme A oxidase; ACSL, long chain acyl-CoA synthase; Angptl, angiopoietin-like protein; Apo, apolipoprotein; CACT, carnitine acylcarnitine translocase; CYP, cytochrome P450; DGAT, diacylglycerol acyltransferase; FAS, fatty acid synthase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GPAM, glycerol-3-phosphate acyltransferase mitochondrial; HMCoAR, HMG-CoA reductase; HTGL, hepatic triglyceride lipase; MCAD, medium-chain acyl-coenzyme A dehydrogenase; MGAT, monoacylglycerol acyltransferase; PPAR, peroxisome proliferator-activated receptor; SCD, stearoyl-CoA desaturase; SREBP, sterol regulatory element-binding protein
Western blotting. Cell lysates were prepared using RIPA buffer (Nacalai Tesque, Kyoto, Japan). Cell lysates (10 μg/lane) were separated on 4–15% gradient SDS-polyacrylamide gels and transferred onto polyvinylidene fluoride membranes. After blocking with a Blocking Reagent (Nacalai Tesque), each membrane was incubated with anti-acyl-CoA synthetase long chain 1 (ACSL1, 1: 3,000; ab89854; Abcam, Cambridge, MA, USA), anti-monoglyceride acyl transferase-1 (MGAT1, 1: 3,000; ab38857; Abcam), anti-glycerol-3-phosphate acyltransferase 1, mitochondrial (GPAM, 1:8,000; sc-398135; Santa Cruz Biotechnology, Dallas, TX, USA), or anti-β-actin antibodies (1: 3,000; IMG-5142A; IMGENEX, San Diego, CA, USA). The membrane was incubated with horseradish peroxidase-conjugated anti-mouse IgG (1:30,000; W4021; Promega, Madison, WI, USA) or anti-rabbit IgG (1:30,000; W4011; Promega) as secondary antibodies at appropriate concentrations. The enzyme reaction was detected using an ECL prime Western Blotting Reagent (GE Healthcare Bio-Sciences, Piscataway, NJ, USA). Chemiluminescent signals were detected using a Light-Capture II imaging system (AE-6982/C/FC; ATTO, Tokyo, Japan) and CS Analyzer (ver. 3.0 software; ATTO).

ELISA. Angiopoietin-like proteins (Angptls), albumin, ApoB100, and ApoC3 in cultured media were measured using the Angptl3, 4, or 8 ELISA Kit (Immuno-Biological Laboratories, Fujioka, Japan), LZ-test “Eiken” U-ALB (Eiken Chemical, Tokyo, Japan), human ApoB100 assay kit (Immuno-Biological Laboratories), and human APOC3 ELISA Kit (Abcam), respectively, according to the laboratory procedure described in each manual.

Statistical analysis. Data are expressed as the mean ± standard deviation (SD). The significance of differences was analyzed using the Kruskal-Wallis test with Steel (Tables 3 and 5) and Steel-Dwass (Figs. 2 and 5) multiple comparison tests and the Mann-Whitney U-test (Table 4 and Fig. 7). A value of $P < 0.05$ was considered to be significant.

RESULTS & DISCUSSION

Hepatic properties of PXB-cells

To clarify the differentiation stages of PXB-cells and the 2 hepatoma cell lines, we briefly examined the expression of 5 hepatic markers at the mRNA and protein levels. The RT-PCR analysis revealed higher expression levels of albumin and 4 cytochrome P450 genes in PXB-cells than in the HepG2 and HuH-7 cell lines (Table 2). PAS staining showed the marked accumulation of glycogen, an important function in livers, in PXB-cells, and extracellular albumin levels were 11.1-fold higher in PXB-cells than in HepG2 cells ($P < 0.01$) and 5.0-fold higher than in HuH-7 cells ($P < 0.01$) (Fig. 2). These results suggested that PXB-cells maintained mature hepatocyte properties more stably than the 2 hepatoma cell lines.

Lipid-producing ability of PXB-cells

We previously developed an in vitro assay system to assess lipoprotein profiles from the human hepatoma cell line, HepG2 and used the assay system to screen anti-dyslipidemia activities in drugs and foodstuffs. We examined whether PXB-cells are more suitable for assessing lipoprotein profiles than hepatoma cells. Intra- and extracellular cholesterol and tri-
Lipoprotein profile of PXB-cells

37

synthase and stearoyl-CoA desaturase, which are enzymes involved in the fatty acid synthesis pathway, were higher in PXB-cells than in HepG2 cells, but similar to those in HuH-7 cells (Table 2). The gene expression levels of ACSL1, MGAT1, and GPAM in PXB-cells were markedly different from those in the other 2 cell lines (>10-fold vs both cells). The results of a Western blotting analysis showed that PXB-cells more strongly expressed these proteins, particularly ACSL1, than the 2 other hepatoma cells (Fig. 4). These results suggested that the transacylation step, but not fatty acid synthesis, is key for the higher triglyceride synthesis in PXB-cells.

Fig. 2 Hepatic properties of PXB-cells and hepatoma cell lines. A: PAS staining of PXB-cells (a), HepG2 cells (b), and HuH-7 (c) cells. Note that the marked accumulation of glycogen is observed in PXB-cells than in hepatoma cell lines. B: Extracellular albumin contents of PXB-cells (open bar), HepG2 cells (hatched bar), and HuH-7 cells (closed bar).

glyceride levels in the 3 hepatic cell lines were summarized in Table 3, and Fig. 3 shows the lipoprotein profiles in culture media. Intra- and extracellular cholesterol levels in PXB-cells were similar to those in HuH-7 cells and higher than those in HepG2 cells. When the gene expression levels of sterol regulatory element-binding protein2 and HMG CoA reductase — a transcriptional factor and key enzyme in cholesterogenesis — were examined, they in PXB-cells and HuH-7 cells were similar to those in HepG2 cells. The intracellular triglyceride content of PXB-cells was 5.8- and 1.2-fold higher than those of HepG2 and HuH-7 cells. The extracellular triglyceride content of PXB-cells was also higher, and, thus, we examined the expression levels of genes involved in triglyceride synthesis to clarify why PXB-cells possess a high capacity to produce triglycerides. The gene expression levels of fatty acid synthase and stearoyl-CoA desaturase, which are enzymes involved in the fatty acid synthesis pathway, were higher in PXB-cells than in HepG2 cells, but similar to those in HuH-7 cells (Table 2). The gene expression levels of ACSL1, MGAT1, and GPAM in PXB-cells were markedly different from those in the other 2 cell lines (>10-fold vs both cells). The results of a Western blotting analysis showed that PXB-cells more strongly expressed these proteins, particularly ACSL1, than the 2 other hepatoma cells (Fig. 4). These results suggested that the transacylation step, but not fatty acid synthesis, is key for the higher triglyceride synthesis in PXB-cells.

Major lipoprotein classes from PXB-cells

We previously reported that human primary hepatocytes mainly secreted VLDL-sized lipoproteins, and hepatoma cell lines mainly produced LDL-sized li-
Table 3 *Intra- and extracellular lipid contents of PXB-cells and 2 hepatoma cell lines*

	PXB-cells	HepG2 cells	HuH-7 cells
Cell number	0.3	0.9	0.5
Cholesterol (μg/10^6 cells)			
intracellular	41.5 ± 0.5	12.3 ± 0.1	41.0 ± 0.9
extracellular	5.0 ± 0.1	0.5	4.9 ± 0.1
VLDL fraction (> 30 nm)	4.1 ± 0.1	0.1	1.6
LDL fraction (16–30 nm)	0.5 ± 0.1	0.2	2.2
HDL fraction (8–16 nm)	0.3	0.3	1.1 ± 0.1
Triglycerides (μg/10^6 cells)			
intracellular	163.1 ± 4.6	28.2 ± 2.4	137.2 ± 3.6
extracellular	53.8 ± 1.0	1.2	12.1 ± 0.2
VLDL fraction (> 30 nm)	50.2 ± 1.0	0.1	5.3 ± 0.2
LDL fraction (16–30 nm)	3.1	0.5	6.3 ± 0.2
HDL fraction (8–16 nm)	0.5	0.6 ± 0.1	0.4

Hepatic cells at a density of 4 × 10^5 cells/ml (1 mL) were precultured in collagen-coated 24-well microplates for 20 h and then incubated in William’s E medium with CM4000 for 48 h. Triglyceride and cholesterol levels in cells and culture media were measured.

Fig. 3 Lipoprotein profiles from 3 hepatic cell lines. Three hepatic cell lines seeded on collagen-coated 24-well microplates were cultured in William’s E medium supplemented with CM-4000 for 48 h, and the levels of triglycerides and cholesterol in culture media were measured. Data are representative of 4 independent experiments.

Fig. 4 Expression of enzymes involved in the transacylation of PXB-cells. Proteins (10 μg/lane) in 3 hepatic cell lysates were separated by SDS-PAGE, followed by Western blotting with anti-ACSL1, MGAT1, and GPAM antibodies.

PXB-cells mainly released cholesterol and triglycerides in the VLDL fraction (Table 2 and Fig. 3) because these cells are primary hepatocytes. To clarify whether the major lipoproteins released from PXB-cells and the 2 hepatoma cell lines were VLDL and LDL, respectively, we measured the gene expression levels of Apo in the 3 cell lines. Apo were classified into 5 major classes, ApoA to ApoE (8, 17). ApoB100, which is encoded by the ApoB gene, is synthesized in hepatic tissues and a
Lipoprotein profile of PXB-cells

Fig. 5 ApoB100 and ApoC3 levels secreted from PXB-cells. Extracellular ApoB and ApoC contents of 3 hepatic cell lines were measured using the respective ELISA kits.

Results suggested that PXB-cells and HuH-7 cells release triglyceride-rich lipoproteins; however, PXB-cells produce both VLDL and LDL, similar to liver tissues, whereas the 2 other hepatoma cell lines synthesized LDL, but not VLDL.

Evaluation of anti-lipidemic agents by lipoprotein profiles of PXB-cells

The present study demonstrated that PXB-cells produce high levels of lipoproteins, similar to liver tissues; however, the responses of PXB-cells to anti-lipidemic agents remain unclear. Peroxisome proliferator-activated receptor alpha (PPARα) ligands, such as fenofibrate, have been shown to reduce plasma triglyceride levels by stimulating β-oxidation in the liver (2, 4). We examined the effects of fenofibrate on the lipoprotein profile of PXB-cells in order to clarify whether these cells are useful for screening anti-lipidemic activities in drugs. Table 4 and Fig. 6 show that fenofibrate reduced triglycerides and cholesterol levels in culture media in a dose-dependent manner. A real-time RT-PCR analysis demonstrated that fenofibrate at 50 μM did not affect the expression levels of genes involved in fatty acid synthesis and transacylation steps, such as FAS and diacylglycerol acyltransferases; however, it markedly increased those of peroxisomal acyl-coenzyme A oxidase 1, carnitine acylcarnitine translocase, and medium-chain acyl-CoA dehydrogenase, which are PPARα-regulated enzymes in β-oxidation, without affecting PPARα gene expression levels (Table 5). Furthermore, fenofibrate markedly increased the gene expression levels of ApoA2 and ApoA5, but not those of ApoB, ApoC2, or ApoC3. These results demon-

Table 4 Effects of fenofibrate on intra- and extracellular lipid contents of PXB-cells

	untreated	10	50	100
Cholesterol (μg/10⁶ cells)				
intracellular	26.0 ± 4.5	25.5 ± 1.9	21.5 ± 4.2	25.8 ± 1.2
extracellular	5.8 ± 0.3	5.4 ± 0.3	4.5 ± 0.3	3.9 ± 0.2
VLDL fraction	4.7 ± 0.3	4.3 ± 0.3	3.4 ± 0.2	2.6 ± 0.2
LDL fraction	0.8	0.7	0.7	0.8
HDL fraction	0.4 ± 0.1	0.4	0.4	0.5 ± 0.1
Triglycerides (μg/10⁶ cells)				
intracellular	175.7 ± 26.7	182.4 ± 23.5	185.0 ± 26.9	189.9 ± 29.2
extracellular	68.4 ± 2.9	61.0 ± 4.1	41.5 ± 2.8	27.7 ± 2.3
VLDL fraction	62.7 ± 2.8	55.4 ± 3.8	36.3 ± 2.7	23.6 ± 2.0
LDL fraction	5.1 ± 0.2	5.2 ± 0.3	4.3 ± 0.1	3.7 ± 0.2
HDL fraction	0.6 ± 0.1	0.5 ± 0.1	0.4	0.4

Data are expressed as the mean ± standard deviation (n = 4, *P < 0.05 vs untreated group).
strated that PXB-cells responded to fenofibrate in a known manner (16).

Angptls are a family of proteins that are structurally similar to angiopoietins, and its members are involved in angiogenesis, similar to angiopoietins (15). Since Angptl3, 4, and 8 from the liver are responsible for regulating the activities of plasma lipoprotein lipase/hepatic triglyceride lipase, and a deficiency (overexpression) in any one of these causes dyslipidemia, their roles in lipid metabolism have attracted a great deal of attention (1, 12, 19). The transcriptional regulation of these members is well known (3, 27), and Angptl4 (fatty-induced adipose factor, Fiaf) in mouse hepatocytes and human hepatoma cells is up-regulated by PPARα ligands (9); therefore, we herein examined the levels of the 3 Angptl members in fenofibrate-treated PXB-cells (Fig. 7). Fenofibrate at 50 μM induced Angptl4, as reported previously, at both the mRNA and extracellular protein levels. This agent had a negligible effect on Angptl3 and Angptl8 gene expression levels, and increased extracellular Angptl3 levels by 1.7-fold from those in untreated cells. It currently remains unclear whether fenofibrate up-regulates Angptl3 protein production and/or its secretion from PXB-cells. Further studies are needed to reveal including the involvement of Angptl members in post-secretory modifications to lipoprotein.

In the present study, we revealed some of the

Table 5 Effects of fenofibrate on the expression of genes involved in lipid metabolism in PXB-cells
Gene name

β-Oxidation
PPARα
ACOX1
CACT
MCAD
Apolipoprotein
ApoA1
ApoA2
ApoA5
ApoB100
ApoC2
ApoC3
ApoE
Lipid synthesis
PPARγ
SREBP1c
FAS
SCD
MGAT2
DGAT1
DGAT2
GPAM
SREBP2
HMGCosAR

PXB-cells were treated with or without 50 μM fenofibrate for 48 h, and RNA expression levels were analyzed. Data are expressed relative to untreated control cells and represent the mean ± SD (n = 4, *P < 0.05 vs the untreated group).
properties of lipid metabolism in PXB-cells using comparisons with well-differentiated hepatoma cells, and demonstrated that PXB-cells are suitable for lipid metabolism research, such as screening novel antilipidemic agents.

Acknowledgement
The study was supported in part by “Subsidies for projects to promote the enhancement of manufacturing technology for small and medium enterprises” from the Japan Ministry of Economy, Trade and Industry.

CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.

REFERENCES
1. Chi X, Britt EC, Shows HW, Hjelmaas AJ, Shetty SK, Cushing EM, Li W, Dou A, Zhang R and Davies BSJ (2017) ANGPTL8 promotes the ability of ANGPTL3 to bind and inhibit lipoprotein lipase. Mol Metab 6, 1137–1149.
2. Fruchart JC and Duriez P (2006) Mode of action of fibrates in the regulation of triglyceride and HDL-cholesterol metabolism. Drugs Today (Barc) 42, 39–64.
3. Fugier C, Toussaint JJ, Priceur X, Plateroti M, Samarut J and Delerive P (2006) The lipoprotein lipase inhibitor, ANGPTL3 is negatively regulated by thyroid hormone. J Biol Chem 281, 11553–11559.
4. Guo Q, Wang PR, Milot DP, Ippolito MC, Hernandez M, Burton CA, Wright SD and Chao Y (2001) Regulation of lipid metabolism and gene expression by fenofibrate in hampers. Biochim Biophys Acta 1533, 220–232.
5. Ishida Y, Yamasaki C, Yanagi A, Yoshizane Y, Fujikawa K, Wataki K, Abe H, Wakita T, Hayes N, Chayama K and Tateno C (2015) Novel robust in vitro hepatitis B virus infection model using fresh human hepatocytes isolated from humanized mice. Am J Pathol 185, 1275–1285.
6. Itoh M, Abe Y, Iwama Y, Kimura F, Satoh M, Shoji M, Takahashi J, Toshima G, Sasaki H, Hiwatashi H and Hata K (2009) HPLC analysis of lipoproteins in culture medium of hepatoma cells: an in vitro system for screening antihyperlipidemic drugs. Biotechnol Lett 31, 953–957.
7. Kohno M, HirotSuka M, Kito M and Matsuzawa Y (2006) Decreases in serum triacylglycerol and visceral fat mediated by dietary soybean beta-conglycinin. J Atheroscler Thromb 13, 247–255.
8. Mahley RW, Innerarity TL, Rall Jr SC and Weisgraber KH (1984) Plasma lipoproteins: apolipoprotein structure and function. J Lipid Res 25, 1277–1294.
9. Mandard S, Zandbergen F, Tan NS, Escher P, Patsouris D, Koenig W, Kleemann R, Bakker A, Veenman F, Wahl W, Müllet M and Kersten S (2004) The direct peroxisome proliferator-activated receptor target fasting-induced adipose factor (FIAF/PGAR/ANGPTL4) is present in blood plasma as a truncated protein that is increased by fenofibrate treatment. J Biol Chem 279, 34411–34420.
10. Matsumoto K, Yokoyama SI and Gato N (2010) Bile acid-binding activity of young persimmon (Diospyros kaki) fruit and its hypolipidemic effect in mice. Phytother Res 24, 205–210.
11. Miller GJ and Miller NE (1975) Plasma-high-density lipoprotein concentration and development of ischaemic heart-disease. Lancet 1, 16–19.
12. Nakajima K, Kobayashi J, Mabuchi H, Nakano T, Tokita Y, Nagamine T, Imamura S, Ai M, Otokozawa S and Schaefer EF (2010) Association of angiopoietin-like protein 3 with hepatic triglyceride lipase and lipoprotein lipase activities in human plasma. Ann Clin Biochem 47, 423–431.
13. National Cholesterol Education Program (1994) Second report of the expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel II). Circulation 89, 1333–1445.
14. Ohshita H and Tateno C (2017) Propagation of human hepatocytes in uPA/SCID mice: producing chimeric mice with humanized liver. Methods Mol Biol 1506, 91–100.
15. Oike Y, Yasunaga K and Suda T (2004) Angiopoietin-related angiopoietin-like proteins regulate angiogenesis. Int J Hema tol 80, 21–28.
16. Ramasamy C (2014) Recent advances in physiological lipoprotein metabolism. Clin Chem Lab 52, 1695–1727.
Maruya S, Kobayashi M and Hata K (2017) Lipoprotein profiles of hepatic cell lines at various stages of differentiation. *In Vitro Cell Dev Biol 53*, 93–95.

19. Sukonina V, Lookene A, Olivecrona T and Olivecrona G (2006) Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. *Proc Natl Acad Sci USA 103*, 17450–17455.

20. Takahashi J, Yoshima G, Matsumoto Y, Kimura F, Kiuchi T, Hamada K and Hata K (2011) *In vitro* screening for antihyperlipidemic activities in foodstuffs by evaluating lipoprotein profiles secreted from human hepatoma cells. *J Nat Med 65*, 670–674.

21. Yoshima G, Iwama Y, Kimura F, Matsumoto Y, Miura M, Takahashi J, Yasuda H, Arai N, Mizutani H, Hata K, Usui S and Okazaki M (2013) LipoSEARCH®; Analytical GP-HPLC method for lipoprotein profiling and its applications. *J Biol Macromol 13*, 21–32.

22. Wilson PW, Abbott RD and Castelli WP (1988) High density lipoprotein cholesterol and mortality. The Framingham Heart Study. *Arteriosclerosis 8*, 737–741.

23. Yamasaki C, Kataoka M, Kato Y, Kakuni M, Usuda S, Ohzone Y, Matsuda S, Adachi Y, Ninomiya S, Itamoto T, Asahara T, Yoshizato K and Tateno C (2010) *In vitro* evaluation of cytochrome P450 and glucuronidation activities in hepatocytes isolated from liver-humanized mice. *Drug Metab Pharmacokinet 25*, 539–550.

24. Zhang R (2016) The ANGPTL3-4-8 model, a molecular mechanism for triglyceride trafficking. *Open Biol 6*, 150272.