COGNITIVE NETWORKS:
BRAINS, INTERNET, AND CIVILIZATIONS

Dmitrii Yu. Manin,
Yuri I. Manin, Max–Planck–Institut für Mathematik, Bonn, Germany.

Abstract. In this short essay, we discuss some basic features of cognitive activity at several different space–time scales: from neural networks in the brain to civilisations. One motivation for such comparative study is its heuristic value. Attempts to better understand the functioning of “wetware” involved in cognitive activities of central nervous system by comparing it with a computing device have a long tradition. We suggest that comparison with Internet might be more adequate. We briefly touch upon such subjects as encoding, compression, and Saussurean trichotomy langue/langage/parole in various environments.

Keywords: Internet, servers, brain, neurons, neural networks, memory, language.

AMS 2010 Mathematics Subject Classification: 97C30 68M10 62M45

Introduction

In several recent research papers and surveys by neuroscientists (cf. [1], [29], and references therein), it was suggested that cognitive functions of the brain are performed using not only, and perhaps even not mainly, complex networks of interacting neurons (connectionist view), – but also on the level of individual, highly specialized neurons and their intracellular mechanisms. This argumentation went hand in hand with the critique of popular analogies between brains and computers, where neurons were supposed to work as, say, electronic logic gates.

In order to retain the heuristic power of computer science in cognitive neurobiology and simultaneously to keep the door open to such paradigm extension, we consider in this paper possible analogies between the brain and Internet, in which certain neurons and some specific neural networks are being compared with entire computers, in particular, with servers, that in fact do have a very rich internal hardware and software reflected in their functions in the net.

As so many basic ideas and technologies of the information age, the future role of the World Wide Web was presciently understood by Alan Turing. Although the
Internet of course did not yet exist then, according to a convincing interpretation by B. Jack Copeland ([4], p. 30), Turing’s definition and study of oracle machines in his PhD thesis (1938) introduced the notion that computability may involve getting “oracular” data from outside computers.

In this essay, we do not discuss any philosophical problems related to such comparisons (for possibly related discussions, see e. g. [14], [3], and references therein).

We simply try to suggest plausible and verifiable conjectures about functions, interconnections, and dynamics of various neural structures in the brain using the brain/Internet metaphor. Comparison with computer was already exploited in the enthusiastic book by Jeff Hawkins [11] (cf. further developments in [12], [10], [13]).

Another subject matter concerning us here is the cognitive activity of civilizations. Looking for cognitive network patterns at this level is not a standard preoccupation of the historians of culture and sciences, but one of us first engaged in this line of thinking when researching available data on the development of writing, cf. [24].

Our departure point is a simple remark: although WWW is very complex, the knowledge about its structure and functions is available on all levels since it is constructed and developed by means of engineering, cf. the first section below. Contrariwise, brains are products of evolution, we can observe their structure and functioning at various spatial and temporal scales, but we can only venture some guesses about their modes of data processing. AI might be and in fact was a great inspiration for such guesses.

Important role in this circle of ideas is played by the notion of information transmission. Generally, we imagine a source of data, which can be encoded, transferred as a message through a certain channel, received at the other, and then decoded to reconstruct the initial data.

Using a Saussurean terminology, we can say that protocols at the transmitter/receiver ends constitute a language (la langue), whereas each case of transmission is an act of speaking (la parole).

There are many mathematical models of information transmission materialized in the IT domain. What we want to stress in this note is the fact that actual transmission must often be relayed: data at the receiving end become, after re-encoding, data at the sender along another channel, and so on. This involves the rules and protocols of translation in linguistics. Usually, basic parts of such protocols are accessible as bilingual dictionaries, but even in human societies there
are exotic exceptions such as *drum languages* of various ethnic groups of Africa, New Guinea, etc.

Thus, there must exist many *neural languages*, each used in respective neural networks, and connected by numerous translating neurons/networks.

Finally, the speed with which the brain can solve cognitive problems related to speech generation and recognition (or such a marginal activity as playing chess) unambiguously testifies to the abundance of highly parallel processing in neural networks. Neural organization of such parallel processing must be a very essential logistical task. This was long ago recognized and described by neuroscientists dealing with mechanisms of visual perception.

Here we must stress that mathematical theory of *time complexity of parallel processing* practically does not exist, and in any case did not reach maturity comparable with those of *Kolmogorov complexity* and *polynomial time computations*.

Therefore a better understanding of high parallelism in the brain might serve as a useful heuristic tool for theoretical computer science as well: cf. [17] and many other studies of visual cortex.

Acknowledgements. Yu. I. Arshavski in his ample correspondence with Yu. Manin discussed and clarified for us various problems of modern neuroscience and the relevant problems of AI. Earlier articles by and email exchanges with Nora Esther Youngs, Carina Curto, and Vladimir Itskov were also very stimulating. We are cordially grateful to them.

This essay is organized as follows. After a brief survey of the global structure of WWW, we discuss the following subjects:

- Architecture of WWW and the role of search engines.
- Chips, computers, and servers vs neurons and neural networks.
- Kolmogorov–style compression vs. Charles Darwin–style compression.
- Miscellany.

Computer networks: Architecture

When describing the information pathways in computer networks, specifically, the Internet, one has to keep in mind that communication between network nodes
(individual devices, be that special-purpose servers, personal computers or network-enabled electronic devices) can be considered on several different levels (cf. the OSI model, [31] and [31] [OSI1] where the respective levels are called layers). From the lowest level concerned with transferring of raw bits between two neighboring devices to the highest level that operates in terms of such operations as remote file access or search engine queries, each layer has its own semantics and serves as a medium for the next higher layer. On the lowest levels of the hierarchy, each device can communicate only with its immediate neighbors. On the intermediate levels, the complexities of networking are hidden, and nodes can directly address their requests to specific other nodes (identified by IP addresses). Finally, on the highest levels, the notion of a network node is also hidden, and they operate in terms of services, such as a named file share or a particular search engine.

What makes this transparency possible is the existence of ”routing protocols” encapsulated in a special class of Internet servers called routers. Without getting into details, routers keep exchanging information they learn about network nodes existing in their neighborhood. Since the network configuration keeps changing (as nodes come up on and drop off the network, as new subnets are added and old ones reconfigured), the routing information is never complete, always to some extent outdated, and often contradictory. The robustness of communication between nodes is only achieved by the routers’ ability to retry delivery of lost messages using different routes. What is most interesting for us here is that even considered on this level, Internet possesses a (varying with time) map of itself, in particular of its own topology. This map is approximate, somewhat fuzzy, partially delayed, and decentralized. Perhaps it can be likened to the living organisms’ proprioception.

From the point of view of information processing, we should look at the application level of the OSI model. As in the brain, information enters the network through peripheral nodes, i.e., mostly consumer devices where people type in texts and upload images or videos. Some of it stays local, of course, but some of it travels on the network to be stored, transferred to other peripheral nodes (e.g. email) or, most interestingly, processed, digested, summarized, and transformed. We can discern several types of memory-like subsystems in the network.

1. **Storage systems.** These are places (server farms) built to provide the archival and backup functions to the users, such as DropBox or Google Drive. They are probably the least interesting type of network ”memory,” returning exactly what was put in there on a specific request to retrieve it.
2. Internet archives, such as the Wayback Machine. It crawls the web and stores the current copies of the sites it visits, without overwriting the older versions. Thus, it allows one to reconstruct the history of web’s dynamics, though in an unavoidably patchy form.

3. Internet search engines. Search engines started as simple keyword retrieval databases of the important information gleaned from the web but have evolved into powerful associative memory-type services. What’s most interesting about search engines is that they increasingly perform deep analysis of both the content they index and the search patterns of the users, attempting to serve ever more complex and fuzzy user queries. There is an understanding that to effectively respond to difficult informational queries, a search engine has to possess at least a rudimentary type of world knowledge, such as Google’s Knowledge Graph and similar systems developed by other search companies.

Note that a significant portion of world knowledge (perhaps, the vast majority) in such systems is harvested from the web, rather than being manually entered. Search engines perform many different analyses of the content they index, like news aggregation (do these two news articles talk about the same event? if so, who are the event actors?), sentiment analysis (is this a positive or negative news story?) or image recognition (what objects are in the photo?).

Search engines represent the kind of information storage that is inherently capable of self-reflection. As a rudimentary, but highly visible example consider several incidents where a search engine’s algorithms would make a funny or offensive mistake in response to a query, which would become a news item, and then very soon the results it would return to the same search query would prominently feature news about its own mistake in what could be perceived as a form of self-deprecating humor.

Neural systems:

experiments, measurements, and self–perception

The only direct information channel to one’s neural system for each human being is self-perception, including memory, emotions, conscious sensory perceptions (“I see” means “I know that I see”).

Objective information about neural systems of other people, but also of animals belonging to different species is obtained in laboratories and clinics, but this is an outsider’s information.
Bridging together insider’s and outsider’s views has always been and remains a great challenge. In particular, clinical and scientific interpretation of the data of psychology and psychiatry can be hopelessly caught in the trap of suggestion: cf. a very convincing study of the history of psychoanalysis in [2].

Attempts of such bridging based upon computer metaphor were numerous. Below we will briefly survey some of the conjectures summarized in Yu. M.’s paper of 1987 “On early development of speech and consciousness (phylogeny),” see [18], pp. 169–189.

Basically, it was conjectured that the brain contains inside a map of itself, and that some neural information channels in the central neural system:

- a) carry information about the mind itself, i.e., are reflexive;
- b) are capable of modelling states of the mind different from the current one, i.e. possess a modelling function;
- c) can influence the state of the whole mind and through that the behavior, i.e. possess controlling function. ([18], p. 179).

It was remarked also that that this reflection of the brain inside itself must be unavoidably coarse grained.

This is made much more precise in the already invoked above OSI (Open Systems Interconnection) models of the Internet, where both the notion of the network node and protocols of their communication are subdivided into “horizontal” layers (seven in [31] [OSI1]). The lowest layer represents the topology of physical medium transmitting “raw bit streams,” whereas the highest layer represents the most coarse-grained vision of the whole network. Each layer has its own communication language; each individual transaction (information transmission) on a particular layer can involve multiple transactions on the next lower layer and, in turn, serve as a part of a transaction on the next higher layer. Thus, information transmission of the highest layer data is mediated by multiple translations down to the lowest layer at the source, a corresponding translation up at the destination and potentially multiple partial up and down translations at the intermediate points.

We stress again that streams of bits on the wire directly represent only the lowest-level communication. In order to decode higher-level transactions, one would inevitably have to ascend the hierarchy of languages, aggregating multiple lower-layer conversations into a single higher-layer conversation: there is no way to directly jump from the lowest to the highest layer. The same is true about the
electrochemical messaging in the brain: individual trains of neuronal spikes do not
directly represent thought or perception patterns. This is of course well understood
by experimental neuroscientists who use expression "signature of . . . " in articles
summarizing their findings (cf. [16], [30]).

As WWW, the mind can contain several dynamical reflections of itself, differently
positioned with respect to the functions of mutual reflection and control. The
respective functional modes of the mind manifest themselves in a wide variety
of dissociative phenomena: multiple personalities, automatisms, fugues, hypnotic
phenomena, etc.

Concrete implementations of fragments of multilayered structure in the brain are
evident, for example, in the studies of processing of sensory information of different
modalities. The way from a sensory input to the appropriate neural network in
the respective projection area should be imagined as “vertical” information transfer
from lower layers up. On the other hand, integration of different modalities, storage
of the compressed form of this information etc. should involve a considerable role
of horizontal conversation.

In the human brain, anatomy of neocortex involves several (six) layers, and Jeff
Hawkins made a series of conjectures about storing and processing information
inside and between these layers (see [11], pp. 42, 237–245). In Yu. Arshavski’s
opinion (private communication), at least part of these conjectures can be or have
been experimentally verified, but the general association of these anatomical layers
with processing layers is hardly justified.

We believe that understanding of such phenomena as cognitive maps of spatial
environment [8], mirror neurons [9], or concept cells [27], [28], can benefit from a
purposeful search of WWW-like layers and decoding their languages (cf. [29], [1]).

Information about these layers might also enrich the current rigid juxtaposition
of “purely connectionist” paradigm and the “intracellular” paradigm, according
to which cognitive processes are primarily served by chemistry and genetics of
specialized cells rather than by firing of individual neurons connected into networks.
It seems clear that memory must involve chemistry and genetic structures and
cannot be based solely on network dynamics.

Information, compression, computation

Civilisational layer of cognition. In [20], one of us argued that cognitive
processes in the human brain might and ought to be theoretically considered also
at one level above the individual brain, namely, on the *civilizational layer*.

Nodes of this layer are individual brains but also, starting with early modernity, it is enriched with libraries, laboratories, research institutes, etc.

Comparison of this layer with (more formalized conceptually) layers involving primarily computers was based upon the following suggestion. Let us focus on physics, science that dominates today our understanding of the universe along the vast spectrum of spatiotemporal scales.

It is a common knowledge that physics discovers “laws of nature” that are expressed by compact mathematical formulas. These laws of nature can be then used for prediction/explanation of results of observations (say, in astronomy) and of experiments, and also for engineering projects.

It was suggested in [20] that each physical law might be considered as an *analogue of a computer program*. Such a program computes the *output* after accepting *results of observations as an input*. These outputs are “scientific predictions”. The classical example consists in predicting observable positions of planets using models by Ptolemy, Galileo, Newton, Einstein, etc.

This process might also involve other laws/programs, multiple relaying, encoding and decoding that converge at an additional civilisation layer node, etc.

As a contemporary example, consider the recent news that the international team of scientists using LIGO (Laser Interferometer Gravitational-Wave Observer) was able to detect gravitational waves and identify their source: two colliding black holes.

Roughly speaking, gravitational waves resonate with light waves, because high-frequency oscillations of space-time curvature (caused by gravity) cause the entire system of light-like geodesics (which in the first approximation determine the light propagation) to oscillate at the same frequency.

The basic “physical law” involved in this event consists of Einstein general relativity equations and its solutions of a special type (black holes).

At the node of observations, a large sample of other “physical laws” is invoked that determine engineering decisions needed to construct the big observational device called LIGO which detects very small frequency changes of laser beams using the interference techniques.

Finally, at all stages, actual computers are used, whose inputs and outputs represent “vertical” communication between an upper and a lower level involved in
Mathematical models in computer science: computability, complexity, polynomial time. It is well known that the mathematical theory of computability was created in the 1930s and 1940s in several different versions: Turing machines (engineering metaphor), Church's lambda–calculus (linguistic metaphor), Markov’s algorithms (conveyor belt metaphor), Kolmogorov–Uspensky’s algorithms (information flow chart metaphor), partial recursive functions (operadic metaphor) et al.

All these versions differ in many respects. First of all, their respective domains of inputs and outputs viewed as Bourbaki-style structures are different: finite sequences of bits (zeros and ones) for a Turing machine, finite words in an arbitrary fixed alphabet for a Markov’s algorithm, and words of a language which is the basic object of lambda–calculus. Second, programs for particular computations are formalized differently as well: a finite list of inner states of pairs (head, head input) for a Turing machine; a finite word expressing the sequence of basic operations on recursive functions together with their inputs etc.

Nevertheless, it was proved that all these constructions produce “one and the same” notion of computability, in a well-defined mathematical sense. One of the most remarkable events in the nascent computer science occurred when one of the founding fathers stated his famous “Church’s thesis”: the computability notion is absolute and does not depend on the chosen model of computation (if the latter is broad enough).

This thesis is not a mathematical theorem: it can be called an “experimental fact in the Platonic world of ideas.”

The next great discovery in this domain was that of “Kolmogorov complexity.”

If a model of computability and the suitable programming language are chosen, then one can prove the existence of the best compressing program U with the following properties.

(a) Let Q be an arbitrary object in the domain of this computability model or else, a description of a partial recursive function, U a semi-computable function. Define the complexity of Q with respect to U as the bit length of the shortest object P such that $U(P) = Q$ (or, respectively, Q is a program of computation of the same function). In other words, P taken as input of U produces Q as its output. Such a P always exists.
(b) There exists a class of optimal choices of U such that a different choice of the universal programming language and/or of another U leads only to a possible change of complexity (as function of Q) by a bounded additive constant.

Intuitively, this shortest object Q is best imagined as a *maximally compressed form of P*. Thus, we may say that Newton’s classical laws of celestial mechanics

$$F = G \frac{m_1 m_2}{r^2}, \quad a = \frac{F}{m}$$

are maximally Kolmogorov-compressed representations of programs that can calculate and predict future positions of celestial bodies, where observations of their current positions are taken as inputs.

Arguably, this Kolmogorov compression metaphor gives a widely applicable picture of scientific knowledge, when it is restricted to *one of many* timescales of natural phenomena: cf. [15] and the LIGO story.

In the papers [23] and [21], it was argued that brains actually also use neural codes allowing good compression of relevant information.

One set of arguments suggested that such a compression of, say, dictionary of the mother language in human brain can explain the well-known empirical observation, Zipf’s law.

This “law” (in fact, a keen and very general observation) states that if one ranges lexemes in the order of their decreasing frequency of usage in a representative corpus of texts, then the product of lexeme frequency by the lexeme rank is approximately constant. In [23] it was argued that a good mathematical model of such behaviour is furnished by the L. Levin’s probability distribution, if one postulates that Zipf’s ranking coincides with (an approximation to) Kolmogorov’s complexity ranking.

The fact that Kolmogorov complexity in strict mathematical sense itself is not computable cannot refute this conjecture. In fact, successive approximations to Kolmogorov complexity ranking can be obtained by a version of the well-known ranking algorithm.

Consider, for example, encoding and storing in the brain of the vocabulary of a mother language. We suggest that when a new lexeme is being encoded in a brain memory network, the length of this encoding (Zipf’s “effort”) is compared with lengths of previously encoded lexemes, and the lexeme acquires its temporary Zipf’s rank.
Another set of arguments combined the discussion of neural encoding of stimulus spaces in [6] with suggestions of [30] that dynamics in neural networks shows signatures of criticality. “Criticality” here means that, within a certain statistical model of the relevant network, this dynamics happens near a phase transition regime. But it was discovered in [25] that search for good error-correcting (“noise-resistant”) codes generally involves activity near a phase transition curve, even though the relevant statistical model does not coincide with the one in [30]: in fact, it again involves Kolmogorov complexity.

Stretching the metaphor further, we can also consider human communication occurring in natural language in the same light. A natural language message is usually treated as carrying information. But it also can be treated as a program that runs in the brain of the receiver and whose purpose is to create a certain mind state in it. This interpretation is particularly interesting for literary texts, especially poetry, because their purpose is not conveying information, but rather imparting an emotional state to the reader. It is customary to state that successful poetry compresses its language and, consequently, if one wants to fully explicate the “meaning” of a good poem, an extensive prose text has to be written. So perhaps the right way to conceptualize a great poem is to say that it represents a maximally Kolmogorov-compressed representation of the target mind state.

In the theoretical computer science, besides complexity as the length of a shortest program, an important role is played by various embodiments of the notion “length/time of computation.” From this viewpoint, we are interested in minimizing time necessary for producing the output from an input. The most accomplished theory here led to the so called “P/NP problem”. Roughly speaking, if there exists a computation of a function which requires time polynomially bounded by the length of input, can one also find this computation using polynomially bounded time?

More precisely, in a model of the universal NP problem we consider all Boolean polynomials F with arbitrary number of variables, and ask the question, whether a given polynomial takes value 1 for some values of its arguments.

If the answer for F is positive, this fact can be proved in polynomially bounded time (wrt the length of F) by starting with an appropriate Boolean vector x and then calculating the value $F(x) = 1$. But can we find this x or else find another proof that F takes value 1 in polynomially bounded time? This is the P/NP problem the answer to which answer is not known.
What is relevant for our discussion here is the fact that if we allow parallel computations in our models, such as parallel computation of all values of any given Boolean polynomial by starting with all inputs of given length simultaneously, then the P/NP problem will obviously have the answer P=NP. Thus, economy in computation time can be achieved by allowing multiple parallelism.

This, in addition to program compression, might be another crucial mathematical idea that materializes in large networks, both in brains and in civilizations.

Returning to the intuitive idea of compression, we want now to argue that there is another type of compression which we will call here “Darwinian compression.”

Darwinian compression. Charles Darwin’s Beagle voyage was one of the defining events in the development of human civilization because it has radically changed our collective self-perception.

Narrowing our focus to see better his method from the viewpoint of its cognitive characteristics, we can say that Darwin started with collecting a vast database of living creatures. The contemporary ideology of data mining could suggest us that his next step would be the search for correlations in this database and discovery of various degrees of their possible interrelationships. However, this kind of research was essentially done before Darwin: Carl Linné introduced the binary classification system (genus/species) and created the principles of taxonomy that are still widely used.

Darwin’s great breakthrough consisted in guessing how this diversity could have occurred and what factors could determine the origin, development and change of genera and species. The possibility to compress his intuition in just two words, “natural selection,” motivated our metaphor “Darwinian compression”.

But in reality, one cannot rigorously derive, say, the evolution theory from genomics: all our attempts and arguments are of vague qualitative nature, at best convincing us that the two sets of laws are compatible. A succinct and very expressive description of this baffling situation was given by Svante Pääbo in his book [26]: ‘The dirty little secret of genomics is that we still know next to nothing about how a genome translates into the particularities of a living and breathing individual.’ Hence we cannot say which genomes would define “the fittest” individuals that, according to the Darwinian metaphor, have better chances for survival and reproduction.

Attempts to fill this gap led to the development of “epigenetics,” which is studying factors and developmental processes that modify the activation of various genes
without changing the genetic code sequence of DNA: cf. [32]. Such epigenetic processes in a chromosome can lead to the appearance of stably heritable phenotype traits, which then can play their own specific roles in Darwinian evolution.

Another example of a scientific discovery of a similar cognitive type is the Periodic Table of chemical elements (Mendeleev 1869) which embodied a compression of a huge database of alchemical and later chemical observations, experiments, and guesses.

Both discoveries, evolution and periodic table, can be considered as a way of connecting various floors of scientific knowledge referring to various space-time/complexity/scales. Each floor is governed by its “laws” in the sense described above, which in principle should be used to generate the laws of the next floor.

But, as in the case of Darwinian evolution, one cannot rigorously derive the periodic table from the quantum theory of elementary particles and fields, and one cannot rigorously derive, say, observable properties of water, ice, and steam from the position of H and O in the periodic table.

More precisely, quantitative theory of atoms of the lightest elements consisting of a minimal number of elementary particles might be accessible (with the help of modern computation resources), but the whole structure of the table (including isotopes) and the very notion of molecules and their “chemical” properties, with its continuing extensions and ramifications all the way up to DNA encoding, remain the “upper-floor” science, not really reducible to the science “one floor below.”

This is why we find so naive (and potentially dangerous) the claim by Chris Anderson, Editor in Chief of the “Wired Magazine”, expressed in the title of the cover story “The End of Theory: The Data Deluge Makes the Scientific Method Obsolete” (summer 2008):

The new availability of huge amounts of data, along with statistical tools to crunch these numbers, offers a whole new way of understanding the world. Correlation supersedes causation, and science can advance even without coherent models, unified theories, or really any mechanical explanation at all. There’s no reason to cling to our old ways.

For more detailed arguments, cf. [22].

Addendum. Several weeks after completion and acceptance of this article for publication, our attention was drawn to the beautiful book [33]. It presents the history of humanity based upon the same metaphor as ours, but the book is much
wider in scope because it does not restrict itself to the study of only cognitive networks. The Great Silk Road and Plato’s Academy, Confucius and Martin Luther become routers and routes of the great web of civilizations.

We conclude this survey by the quotation from [33]:

“[...] cultural evolution is Lamarckian, that is, acquired traits and skills can be passed on over generations. Information – how to speak a language or how to make people trust you – is transmitted from brain to brain, from generation to generation, without the slow process of genetic mutation and natural selection. This accelerated pace of cultural evolution made it possible for some groups of humankind to get the jump on others and to destroy their structures and appropriate their resources. This does not often happen in biological evolution because it is slower: even the most complex creatures evolve so slowly that others usually have time to adapt.”

References

[1] Yu. I. Arshavsky. Neurons versus Networks: The interplay between individual neurons and neural networks in cognitive functions. The Neuroscientist, pp. 1–15, 2016.

[2] M. Borch-Jacobsen, S. Shamsadani. The Freud files. An inquiry into the history of psychoanalysis. Cambridge UP, 2012.

[3] B. J. Copeland. Turing’s O–Machines, Penrose, Searle, and the Brain. Analysis, vol. 58, pp. 128–138, 1998.

[4] B. J. Copeland. Turing. Pioneer of the information age. Oxford UP, 2012

[5] C. Curto, V. Itskov. Cell groups reveal structure of stimulus space. PLoS Computational Biology, vol. 4, issue 10, October 2008, 13 pp. (available online).

[6] C. Curto, V. Itskov, A. Veliz-Cuba, N. Youngs. The neural ring: An algebraic tool for analysing the intrinsic structure of neural codes. Bull. Math. Biology, 75(9), pp. 1571–1611, 2013.

[7] Space, time and number in the brain. Ed. by S. Dehaine, E. Brannon. Elsevier Academic Press, 2011.

[8] D. Derdikman, E. Moser. A manifold of spatial maps in the brain. in: [7], pp. 41–57.

[9] P. F. Ferrari, G. Rizzolatti. Mirror neuron research: the past and the future. Phil. Transactions B, June, 2014.
[10] D. George, J. Hawkins. *Towards a Mathematical Theory of Cortical Micro–circuits.* PLoS Computational Biology, vol. 5, issue 10, October 2009, 26 pp.

[11] J. Hawkins with S. Blakeslee. *On intelligence.* Times books, NY 2004, 261 pp.

[12] J. Hawkins, D. George and J. Niemasik. *Sequence memory for prediction, inference and behaviour.* Phil. Transactions of the Royal Society B, vol. 364, 2009, pp. 1203–1209.

[13] J. Hawkins, S. Ahmad. *Why Neurons Have Thousands of Synapses, a Theory of Sequence Memory in Neocortex.* Front. Neural Circuitsvol. vol 10, article 23, March 2016, 13 pp.

[14] R. Hersh. *Pluralism as Modelling and as Confusion.* (In this collection).

[15] G. ’t Hooft, St. Vandoren. *Time in powers of ten. Natural phenomena and their timescales.* World Scientific, 2014.

[16] P. Indefrey, W. J. M. Levelt. *The spatial and temporal signatures of word production components.* Cognition, 92, 2004, pp. 101–144

[17] Br. Knight, D. Manin, L. Sirovich. *Dynamical models of interacting neuron populations in visual cortex.* Robot Cybern., v. 54, 1996, pp. 4–8.

[18] Yu. I. Manin. *Mathematics as Metaphor. Selected essays.* American Math. Society, 2007.

[19] Yu. I. Manin. *Neural codes and homotopy types: mathematical models of place field recognition.* Moscow Math. Journal, vol. 15, Oct.–Dec. 2015, pp. 741–748 . Preprint arXiv:1501.00897

[20] Yu. I. Manin. *Cognition and Complexity.* In: M. Burgin, C.S. Calude (eds.). Information and Complexity. World Scientific Series in Information Studies, 2016, pp. 344–357.

[21] Yu. I. Manin. *Error–correcting codes and neural networks.* Selecta Math. New. Ser. (2016). doi:10.1007/s00029-016-0284-4 . 10 pp.

[22] Yu. I. Manin. *Kolmogorov complexity as a hidden factor of scientific discourse: from Newton’s law to data mining.* In: ”Complexity and Analogy in Science: Theoretical, Methodological and Epistemological Aspects”, Proceedings of the Plenary session of Pontifical Ac. Sci., November 5–7, 2012. Libreria Editrice Vaticana, 2015. Preprint arXiv:1301.0081.
[23] Yu. I. Manin. *Zipf’s law and L. Levin’s probability distributions.* Functional Analysis and its Applications, vol. 48, no. 2, 2014. DOI 10.107/s10688-014-0052-1. Preprint arXiv: 1301.0427

[24] Yu. I. Manin. *De Novo Artistic Activity, Origins of Logograms, and Mathematical Intuition.* In: Art in the Life of Mathematicians, Ed. Anna Kepes Szemerédi, AMS, 2015 pp. 187–208.

[25] Yu. I. Manin, M. Marcolli. *Error-correcting codes and phase transitions.* Mathematics in Computer Science, vol. 5 (2011), 133–170. Preprint mat.QA/0910.5135

[26] Svante Pääbo. *Neanderthal Man: In Search of Lost Genomes.* Basic Books, NY, 2014, 275 pp.

[27] R. Q. Quiroga. *Concept cells: the building blocks of declarative memory functions.* Nature reviews | Neuroscience, vol. 13, Aug. 2012, pp. 587–597.

[28] R. Q. Quiroga, L. Reddy, G. Kreiman, C. Koch, I. Fried. *Invariant visual representation by single neurons in the human brain.* Nature 435, 2005, pp. 1102–1107.

[29] D. A. Sakharov. *Cognitive pattern generators.* Lecture at the 6th International conference on cognitive science, 2014.

[30] G. Tkačik, T. Mora, O. Marre, D. Amodei, S. Palmer, M. Berry, W. Bialek. *Thermodynamics and signatures of criticality in a network of neurons.* Proc. Nat. Ac. Sci, 112(37):11, 2015, pp. 508–517.

[31] H. Zimmerman. *OSI Reference Model – the ISO model of architecture for open systems interconnection.* IEEE Transactions on Communications, 28 (4), 1980, pp. 425–432

[OSI1] https://en.wikipedia.org/wiki/OSI_mode
[OSI2] https://en.wikipedia.org/wiki/Wayback_Machine
[OSI3] https://en.wikipedia.org/wiki/Knowledge_Graph

[32] S. L. Berger, T. Couzarides, R. Shiekhattar, A. Shilatifard. *An operational definition of epigenetics.* Genes Dev., 23(7), 2009, pp. 781–783.

[33] J. R. McNeill and William H. McNeill. *The Human Web: a Bird’s-Eye View of World History.* Norton, 2003. xviii + 350 pp.