Goresntein n-\mathcal{X}-injective and n-\mathcal{X}-flat modules with respect to a special finitely presented module

Mostafa Amini1,a, Arij Benkhadra2,b and Driss Bennis2,c

1. Department of Mathematics, Faculty of Sciences, Payame Noor University, Tehran, Iran.
2. Department of Mathematics, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.

 a. amini.pnu1356@gmail.com
 b. arijlyoussi@gmail.com
 c. driss.bennis@um5.ac.ma; driss_bennis@hotmail.com

Abstract. Let R be a ring, \mathcal{X} a class of R-modules and $n \geq 1$ an integer. In this paper, via special finitely presented modules, we introduce the concepts of Goresntein n-\mathcal{X}-injective and n-\mathcal{X}-flat modules. And aside, we obtain some equivalent properties of these modules on n-\mathcal{X}-coherent rings. Then, we investigate the relations among Goresntein n-\mathcal{X}-injective, n-\mathcal{X}-flat, injective and flat modules on \mathcal{X}-FC-rings (n-\mathcal{X}-coherent and n-\mathcal{X}-injective). Several known results are generalized to this new context.

Keywords: n-\mathcal{X}-coherent ring; Goresntein n-\mathcal{X}-injective module; Goresntein n-\mathcal{X}-flat module.

2010 Mathematics Subject Classification. 16D80, 16E05, 16E30, 16E65, 16P70
1 Introduction

In 1995, Enochs et al, introduced the concept of Gorenstein injective and Gorenstein flat modules. Then, these modules have became a vigorously active area of research. For background on Gorenstein homological modules, we refer the reader to [8, 9, 12]. In 2012, Gao and Wang introduced and studied in [10] Gorenstein \(FP \)-injective modules. They established various homological properties of Gorenstein \(FP \)-injective modules mainly over a coherent ring. For more details, see [13].

Recall, that the coherent rings were first appear in Chases paper [4] without being mentioned by name. The term coherent was first used by Bourbaki in [1]. Then, the \(n \)-coherent rings by Costa in [6] introduced. Let \(n \) be a non-negative integer and \(M \) a left \(R \)-module. Then \(M \) is said to be \(n \)-presented if there is an exact sequence \(F_n \to F_{n-1} \to \cdots \to F_1 \to F_0 \to M \to 0 \) of left \(R \)-modules, where each \(F_i \) is finitely generated free, and a ring \(R \) is called left \(n \)-coherent if every \(n \)-presented left \(R \)-module is \((n+1) \)-presented, and if \(n = 1 \), then \(R \) is a coherent ring, see ([6, 7]). Chen and Ding in [3] by using \(n \)-presented modules, introduced the \(n \)-FP-injective and \(n \)-flat modules. Bennis in [2] introduced the \(n \)-\(\mathcal{X} \)-injective and \(n \)-\(\mathcal{X} \)-flat modules and \(n \)-\(\mathcal{X} \)-coherent rings for any class \(\mathcal{X} \) of \(R \)-modules. Then in particular, in 2018, Zhao et al in [20] introduced the \(n \)-FP-gr-injective graded left modules, \(n \)-gr-flat graded right modules and left \(n \)-gr-coherent graded rings on a class of graded \(R \)-modules, and also they defined the special finitely presented graded left modules via projective resolutions of \(n \)-presented graded left modules, where if \(U \) is \(n \)-presented graded left module, then in the exact sequence \(F_n \to F_{n-1} \to \cdots \to F_1 \to F_0 \to U \to 0 \), \(K_{n-1} = \text{Im}(F_{n-1} \to F_{n-2}) \) is called special finitely presented. In this paper, we unify and extend various homological notions, including the one cited above, to a more general context. Namely, we define the special finitely presented modules via projective resolutions of \(n \)-presented left modules in a given \(\mathcal{X} \) of \(R \)-modules. Then, we introduce and study Gorenstein \(n \)-\(\mathcal{X} \)-injective and \(n \)-\(\mathcal{X} \)-flat modules with respect to special finitely presented modules.

The paper is organized as follows:

In Section 2, some fundamental concepts and some preliminary results are stated.

In Section 3, we give some characterizations of \(n \)-\(\mathcal{X} \)-injective and \(n \)-\(\mathcal{X} \)-flat modules.

In Section 4, we introduce the notions of Gorenstein \(n \)-\(\mathcal{X} \)-injective and \(n \)-\(\mathcal{X} \)-flat modules and generalize some results of [20] to the context of \(n \)-\(\mathcal{X} \)-injective and \(n \)-\(\mathcal{X} \)-flat modules and also of [10] to the context of Gorenstein \(n \)-\(\mathcal{X} \)-injective modules. Then we obtain some equivalent characterizations of Gorenstein \(n \)-\(\mathcal{X} \)-injective and \(\mathcal{X} \)-flat modules on \(n \)-\(\mathcal{X} \)-coherent ring.
In Section 5, we introduce and investigate n-\mathcal{X}-FC rings (n-\mathcal{X}-coherent and n-\mathcal{X}-injective) whose every left module is Gorenstein n-\mathcal{X}-injective and every Gorenstein n-\mathcal{X}-injective right module is Gorenstein n-\mathcal{X}-flat. Furthermore, examples are given which show that the Gorenstein m-\mathcal{X}-injectivity (resp., the m-\mathcal{X}-flatness) does not imply the Gorenstein n-\mathcal{X}-injectivity (resp., the n-\mathcal{X}-flatness) for any $m > n$.

2 Preliminaries

Throughout this paper R will be an associative (non necessarily commutative) ring with identity, and all modules will be unital left R-modules (unless specified otherwise).

In this section, some fundamental concepts and notations are stated.

Let n be a non-negative integer, M an left R-module and \mathcal{X} a class of left R-modules. Then, M is said to be Gorenstein injective (resp., Gorenstein flat) \cite{8,9} if there is an exact sequence $\cdots \rightarrow I_1 \rightarrow I_0 \rightarrow I^0 \rightarrow I^1 \rightarrow \cdots$ of injective (resp., flat) left modules with $M = \ker(I^0 \rightarrow I^1)$ such that $\text{Hom}(U, -)$ (resp., $U \otimes_R -$) leaves the sequence exact whenever U is an injective left (resp., right) module. The Gorenstein projective modules are defined dually.

M is said to be n-FP-injective \cite{3} if $\text{Ext}^n_R(U, M) = 0$ for any n-presented left R-module U. In case $n = 1$, n-FP-injective modules are nothing but the well-known FP-injective modules. A right module N is called n-flat if $\text{Tor}_n^R(U, N) = 0$ for any n-presented left R-module U.

M is said to be Gorenstein FP-injective \cite{10} if there is an exact sequence $E = \cdots \rightarrow E_1 \rightarrow E_0 \rightarrow E^0 \rightarrow E^1 \rightarrow \cdots$ with $M = \ker(E^0 \rightarrow E^1)$ such that $\text{Hom}_R(P, E)$ leaves this sequence exact whenever P is finitely presented with $\text{pd}_R(P) < \infty$.

A graded left R-module M is called n-FP-gr-injective \cite{20} if $\text{EXT}^n_R(N, M) = 0$ for any finitely n-presented graded left R-module N. A graded right R-module M is called n-gr-flat \cite{20} if $\text{Tor}_n^R(N, M) = 0$ for any finitely n-presented graded left R-module N. For more details about graded modules see \cite{11,14,15}.

From now on, \mathcal{X}_k is non empty and a class of k-presented left R-modules in a given \mathcal{X} for any $k \geq 0$.

An R-module M is said to be n-\mathcal{X}-injective \cite{2} if $\text{EXT}^n_R(U, M) = 0$ for any $U \in \mathcal{X}_n$. A right R-module N is called n-\mathcal{X}-flat \cite{2} if $\text{Tor}_n^R(U, N) = 0$ for any $U \in \mathcal{X}_n$. We use \mathcal{X}_n (resp., \mathcal{X}_n) to denote the class of all n-\mathcal{X}-injective left R-modules (resp., n-\mathcal{X}-flat right R-modules).
A ring R is called n-\mathcal{X}-coherent if every n-presented left R-modules in \mathcal{X} is $(n+1)$-presented. It is clear that when $n = 0$ (resp., $n = 1$) and \mathcal{X} is a class of all cyclic R-modules, then R is Noetherian (resp., coherent).

3 n-\mathcal{X}-injective, n-\mathcal{X}-flat and special \mathcal{X}-presented modules

In this section, first we give a general definition of [20, Definition 3.1] and several characterizations of n-\mathcal{X}-injective and n-\mathcal{X}-flat modules, and then we introduce the Gorenstein n-\mathcal{X}-injective and Gorenstein n-\mathcal{X}-flat modules.

Definition 3.1. Let $n \geq 0$ be an integer and $U \in \mathcal{X}_n$ for any class \mathcal{X} of left R-modules. Then the following exact sequence

$$F_n \to F_{n-1} \to \cdots \to F_1 \to F_0 \to U \to 0,$$

where each F_i is finitely generated free left R-module, exists.

Let $K_{n-1} = \text{Im}(F_{n-1} \to F_{n-2})$ and $K_n = \text{Im}(F_n \to F_{n-1})$. Then, the short exact sequence $0 \to K_n \to F_n \to K_{n-1} \to 0$ is called special short exact sequence of $U \in \mathcal{X}_n$, where K_n and K_{n-1} are finitely generated and finitely presented, respectively. We call the modules K_n and K_{n-1} special \mathcal{X}-generated and special \mathcal{X}-presented left R-modules, respectively.

Also, a short exact sequence $0 \to A \to B \to C \to 0$ of left R-modules is called special \mathcal{X}-pure, if for every special \mathcal{X}-presented K_{n-1}, there exists the following exact sequence:

$$0 \to \text{Hom}_R(K_{n-1}, A) \to \text{Hom}_R(K_{n-1}, B) \to \text{Hom}_R(K_{n-1}, C) \to 0,$$

where A is said to be special \mathcal{X}-pure in B. Also, the exact sequence $0 \to C^* \to B^* \to A^* \to 0$ is called split special exact sequence. If M is an n-\mathcal{X}-injective (resp., flat), then $\text{Ext}_R^1(K_{n-1}, M) \cong \text{Ext}^n_R(U, M) = 0$ (resp., $\text{Tor}_R^1(K_{n-1}, M) \cong \text{Tor}_n^R(U, M) = 0$) for any $U \in \mathcal{X}_n$.

In particular, if \mathcal{X} is a class of graded left R-modules, then every special \mathcal{X}-generated and every special \mathcal{X}-presented module are special finitely generated and special finitely presented graded left R-modules, respectively. Also, every n-\mathcal{X}-injective left R-module and every n-\mathcal{X}-flat right R-module are n-FP-gr-injective and n-gr-flat, respectively, see [20].
Proposition 3.2. Let \mathcal{M} be a class of left R-modules and M a left R-module. Then the following statements are equivalent:

1. M is n-\mathcal{M}-injective;
2. Every the short exact sequence $0 \to M \to A \to C \to 0$ is special \mathcal{M}-pure;
3. M is special \mathcal{M}-pure in any injective left R-module containing it;
4. M is special \mathcal{M}-pure in $E(M)$.

Proof. (1) \implies (2) Let $U \in \mathcal{M}_n$. Then, there exists the following exact sequence

$$F_n \to F_{n-1} \to \cdots \to F_1 \to F_0 \to U \to 0,$$

where each F_i is finitely generated free left R-module. If $K_{n-1} = \text{Im}(F_{n-1} \to F_{n-2})$ is special \mathcal{M}-presented, then we have $\text{Ext}^1_R(K_{n-1}, M) \cong \text{Ext}^n_R(U, M) = 0$, since M is n-\mathcal{M}-injective. Hence (2) follows.

(2) \implies (3) There exists the short exact sequence $0 \to M \to E \to \frac{E}{M} \to 0$, where E is an injective R-module containing M. So by (2), M is special \mathcal{M}-pure in E.

(3) \implies (4) is trivial.

(4) \implies (1) Assume that $U \in \mathcal{M}_n$ and K_{n-1} is special \mathcal{M}-presented. By (4), the short exact sequence $0 \to M \to E(M) \to \frac{E(M)}{M} \to 0$ is special \mathcal{M}-pure. Therefore $\text{Ext}^1_R(K_{n-1}, M) = 0$, and so from $\text{Ext}^1_R(K_{n-1}, M) \cong \text{Ext}^n_R(U, M)$ we get that M is n-\mathcal{M}-injective.

The following lemma is a generalization of [18, Exercise 40].

Lemma 3.3. Let \mathcal{M} be a class of left R-modules. Then the following statements are equivalent:

1. The exact sequence $0 \to A \to B \to C \to 0$ of R-modules is special \mathcal{M}-pure;
2. The sequence $0 \to \text{Hom}_R(K_{n-1}, A) \to \text{Hom}_R(K_{n-1}, B) \to \text{Hom}_R(K_{n-1}, C) \to 0$, is exact for every special \mathcal{M}-presented K_{n-1};
3. The short sequence $0 \to C^* \to B^* \to A^* \to 0$ is split special exact sequence.

Proposition 3.4. Let \mathcal{M} be a class of left R-modules. Then:

1. Every special \mathcal{M}-pure submodule of an n-\mathcal{M}-flat right R-module is n-\mathcal{M}-flat.
Every special \mathcal{X}-pure submodule of a left R-module is n-\mathcal{X}-injective.

Proof. (1) Let A be a special \mathcal{X}-pure submodule of an n-\mathcal{X}-flat right R-module B. Then, by Lemma 3.3, the sequence $0 \to (\frac{B}{\mathcal{X}})^* \to B^* \to A^* \to 0$ is split special exact sequence. By [2, Lemma 2.8], B^* is n-\mathcal{X}-injective. Then from [2, lemma 2.7], and Lemma 3.3 we deduce that A is n-\mathcal{X}-flat.

(2) Let A be a special \mathcal{X}-pure submodule of a left R-module B. Then, the exact sequence $0 \to A \to B \to \frac{B}{\mathcal{X}} \to 0$ is special \mathcal{X}-pure. So, by Proposition 3.2, A is n-\mathcal{X}-injective.

Remark 3.5. (1) Every flat right R-module is n-\mathcal{X}-flat.

(2) Every injective left (resp., right) R-module is n-\mathcal{X}-injective.

(3) If $U \in \mathcal{X}_m$, then $U \in \mathcal{X}_n$ for any $m \geq n$.

Theorem 3.6. Let \mathcal{X} be a class of left R-modules and R a left n-\mathcal{X}-coherent ring. Then the following statements are equivalent:

(1) RR is n-\mathcal{X}-injective;

(2) For any left R-module, there is an epimorphism $\mathcal{X} \mathcal{X}$-cover;

(3) For any right R-module, there is a monomorphic $\mathcal{X} \mathcal{X}$-preenvelope;

(4) Every injective right R-module is n-\mathcal{X}-flat;

(5) Every 1-\mathcal{X}-injective right R-module is n-\mathcal{X}-flat.

(6) Every n-\mathcal{X}-injective right R-module is n-\mathcal{X}-flat.

(7) Every flat left R-module is n-\mathcal{X}-injective.

Proof. (1) \implies (3) By [2, Theorem 2.16], every right R-module N has an n-\mathcal{X}-flat preenvelope $f : N \to F$. By [2, Theorem 2.13], R^* is n-\mathcal{X}-flat, and so $\prod R^*$ is n-\mathcal{X}-flat by [2, Theorem 2.6]. On the other hand, R^* is a cogenerator. Therefore, exact sequence $0 \to N \to \prod R^*$ exists, and hence homomorphism $0 \to F \to \prod R^*$ such that $hf = g$, implies that f is monic.

(3) \implies (4) Let E be an injective right R-module. Then by (2), homomorphism $f : E \to F$ is a monic n-\mathcal{X}-flat preenvelope of E. So, the split exact sequence $0 \to E \to F \to \frac{F}{E} \to 0$ exists and implies that E is n-\mathcal{X}-flat.
The proof is similar to the one of (3) \Rightarrow (4).

(4) \Rightarrow (6) Let N be an $n\mathcal{X}$-injective right R-module. Then by Proposition 3.2 the exact sequence $0 \to N \to E(N) \to \frac{E(N)}{N} \to 0$ is special \mathcal{X}-pure. Since by (3), $E(N)$ is $n\mathcal{X}$-flat, then from Proposition 3.4 we deduce that N is $n\mathcal{X}$-flat.

(5) \Rightarrow (4) is clear by Remark 3.5.

(4) \Rightarrow (1) By (4), R^* is $n\mathcal{X}$-flat, since R^* is injective. So, R is $n\mathcal{X}$-injective by [2, Theorem 2.13].

(6 \Rightarrow 7) Let F be a flat left R-module, then F^* is injective, so F^* is $n\mathcal{X}$-flat by (6), and hence F is $n\mathcal{X}$-injective.

(7 \Rightarrow 2) For any R-module M, there is an $\mathcal{X}, \mathcal{X}_R$-cover $f : C \to M$. Note that RR is $n\mathcal{X}$-injective, so f is an epimorphism.

(2 \Rightarrow 1) By hypothesis, R has an epimorphism $\mathcal{X}, \mathcal{X}_R$-cover $f : D \to R$, then we have an exact sequence $0 \to Ker f \to D \to R \to 0$ with D is $n\mathcal{X}$-injective. Since R is projective, the sequence is split, then RR is $n\mathcal{X}$-injective as an R-module.

\begin{proposition}
Let \mathcal{X} be a class of left R-modules and R a left $n\mathcal{X}$-coherent ring. If $\{A_i\}_{i \in I}$ is family of R-modules, then $\bigoplus_{i \in I} A_i$ is $n\mathcal{X}$-injective if and only if every A_i is $n\mathcal{X}$-injective.
\end{proposition}

\begin{proof}
Assume that $U \in \mathcal{X}_n$. So, there exists a special exact sequence $0 \to K_n \to F_n \to K_{n-1} \to 0$ of \mathcal{X}_n. Since R is $n\mathcal{X}$-coherent, we conclude that $U \in \mathcal{X}_{n+1}$ and K_n is special \mathcal{X}-presented. So, if $\{A_i\}_{i \in I}$ is a family of $n\mathcal{X}$-injective left R-modules, we have that

$$\operatorname{Hom}(K_n, \bigoplus_{i \in I} A_i) \cong \bigoplus_{i \in I} \operatorname{Hom}(K_n, A_i);$$

one easily gets that

$$\operatorname{Ext}^n_R(U, \bigoplus_{i \in I} A_i) \cong \bigoplus_{i \in I} \operatorname{Ext}^1_R(K_n, A_i) \cong \bigoplus_{i \in I} \operatorname{Ext}^1_R(K_n, A_i) \cong \bigoplus_{i \in I} \operatorname{Ext}^n_R(U, A_i).$$

\end{proof}

\section{Gorenstein $n\mathcal{X}$-injective and $n\mathcal{X}$-flat modules}

Here, we start with the following definition of Gorenstein $n\mathcal{X}$-injective and Gorenstein $n\mathcal{X}$-flat modules. Then by using of results above, some characterizations of them are given.
Definition 4.1. Let R be a ring and \mathcal{X} a class of left R-modules. Then

(1) G is called Gorenstein n-\mathcal{X}-injective left R-module if there exists the following exact sequence of n-\mathcal{X}-injective left R-modules:

$$A = \cdots \rightarrow A_1 \rightarrow A_0 \rightarrow A^0 \rightarrow A^1 \rightarrow \cdots$$

with $G = \ker(A^0 \rightarrow A^1)$ such that $\text{Hom}_R(K_{n-1}, A)$ leaves this sequence exact whenever K_{n-1} is special \mathcal{X}_n-presented with $\text{pd}_R(K_{n-1}) < \infty$.

(1) G is called Gorenstein n-\mathcal{X}-flat right R-module if there exists the following exact sequence of n-\mathcal{X}-flat right R-modules:

$$F = \cdots \rightarrow F_1 \rightarrow F_0 \rightarrow F^0 \rightarrow F^1 \rightarrow \cdots$$

with $G = \ker(F^0 \rightarrow F^1)$ such that $K_{n-1} \otimes_R F$ leaves this sequence exact whenever K_{n-1} is special \mathcal{X}_n-presented with $\text{fd}_R(K_{n-1}) < \infty$.

For example, if \mathcal{X} is a class of all cyclic R-modules, then every Gorenstein 1-\mathcal{X}-injective left R-module is Gorenstein FP-injective, and every Gorenstein 1-\mathcal{X}-flat right R-module is Gorenstein flat, see [2, 10].

Remark 4.2. (1) Every n-\mathcal{X}-flat right R-module is Gorenstein n-\mathcal{X}-flat.

(2) Every n-\mathcal{X}-injective left R-module is Gorenstein n-\mathcal{X}-injective.

(3) In definition, one easily gets that each $\ker(A_i \rightarrow A_{i-1})$, $\ker(A^i \rightarrow A^{i+1})$ and $\ker(F_i \rightarrow F_{i-1})$, $K^i = \ker(F^i \rightarrow F^{i+1})$ are Gorenstein n-\mathcal{X}-injective and Gorenstein n-\mathcal{X}-flat, respectively.

Lemma 4.3. Let \mathcal{X} be a class of left R-modules and R a left n-\mathcal{X}-coherent ring. If K_{n-1} is a special \mathcal{X}-presented with $\text{fd}_R(K_{n-1}) < \infty$, then $\text{pd}_R(K_{n-1}) < \infty$.

Proof. If $\text{fd}_R(K_{n-1}) = m < \infty$, then there exists $U \in \mathcal{X}_n$ such that $\text{fd}_R(U) \leq n + m$. We show that $\text{pd}_R(U) \leq n + m$. Since R is an n-\mathcal{X}-coherent, the projective resolution $\cdots \rightarrow F_{n+1} \rightarrow F_n \rightarrow \cdots \rightarrow F_0 \rightarrow U \rightarrow 0$, where any F_i is finitely generated free, exists. On the other hand, above exact sequence is a flat resolution. So By [16 Proposition 8.17], $(n + m - 1)$-syzygy is flat. Hence, the exact sequence $0 \rightarrow K_{n+m-1} \rightarrow F_{n+m-1} \rightarrow \cdots \rightarrow F_0 \rightarrow U \rightarrow 0$ is a flat resolution.
Now, a simple observation shows that if \(n \geq m \) or \(n < m \), \(K_{n+m-1} \) is finitely presented and consequently by [16 Theorem 3.56], \(K_{n+m-1} \) is projective and so, \(\text{pd}_R(U) \leq n + m \) if and only if \(\text{pd}_R(K_{n-1}) \leq m \).

In the following theorem, we show that in the case of left \(n\mathcal{X} \)-coherent rings, Gorenstein \(n\mathcal{X} \)-flat and Gorenstein \(n\mathcal{X} \)-injective are determined via only the existence of the corresponding exact complexes.

Theorem 4.4. Let \(\mathcal{X} \) be a class of left \(R \)-modules and \(R \) a left \(n\mathcal{X} \)-coherent ring. Then

1. \(G \) is a Gorenstein \(n\mathcal{X} \)-flat right \(R \)-module if and only if there is an exact sequence

\[
F = \cdots \rightarrow F_1 \rightarrow F_0 \rightarrow F^0 \rightarrow F^1 \rightarrow \cdots
\]

of \(n\mathcal{X} \)-flat right \(R \)-modules such that \(G = \ker(F^0 \rightarrow F^1) \).

2. \(G \) is a Gorenstein \(n\mathcal{X} \)-injective left \(R \)-module if and only if there is an exact sequence

\[
A = \cdots \rightarrow A_1 \rightarrow A_0 \rightarrow A^0 \rightarrow A^1 \rightarrow \cdots
\]

of \(n\mathcal{X} \)-injective left \(R \)-modules such that \(G = \ker(A^0 \rightarrow A^1) \).

Proof. (1) \((\implies)\) follows by definition.

\((\Longleftarrow)\) By definition, it suffices to show that \(K_{n-1} \otimes_R F \) is exact for every special \(\mathcal{X} \)-presented \(K_{n-1} \) with \(\text{fd}_R(K_{n-1}) < \infty \). By Lemma 4.3, \(\text{pd}_R(K_{n-1}) < \infty \). Let \(\text{pd}_R(K_{n-1}) = m \). Then we use the induction on \(m \). The case \(m = 0 \) is clear. Assume that \(m \geq 1 \). There exists a special exact sequence \(0 \rightarrow K_n \rightarrow P_n \rightarrow K_{n-1} \rightarrow 0 \) of \(U \in \mathcal{X}_n \), where \(P_n \) is projective. Now, from the \(n\mathcal{X} \)-coherence of \(R \), we deduce that \(K_n \) is special \(\mathcal{X} \)-presented. Also, \(\text{pd}_R(K_n) \leq m - 1 \). So, the following short exact sequence of complexes exists:

\[
\cdots \rightarrow \text{ker}(f) \rightarrow K_n \rightarrow \text{coker}(f) \rightarrow \cdots
\]
By induction, $P_n \otimes_R F$ and $K_n \otimes_R F$ are exact, hence $K_{n-1} \otimes_R F$ is exact by [16, Theorem 6.10].

(2) (\Rightarrow) This is a direct consequence of the definition.

(\Leftarrow) Let K_{n-1} be a special X-presented with $\text{pd}_R(K_{n-1}) < \infty$. Then, similar proof to that of (1), $\text{Hom}_R(K_{n-1}, A)$ is exact and hence G is Gorenstein n-X-injective.

Corollary 4.5. Let \mathcal{X} be a class of left R-modules and R a left n-\mathcal{X}-coherent ring. Then, for any left R-module G, the following assertions are equivalent:

1. G is Gorenstein n-\mathcal{X}-injective;

2. There is an exact sequence $\cdots \to A_1 \to A_0 \to G \to 0$ of left R-modules, where every A_i is n-\mathcal{X}-injective;

3. There is a short exact sequence $0 \to L \to M \to G \to 0$ of left R-modules, where M is n-\mathcal{X}-injective and L is Gorenstein n-\mathcal{X}-injective.

Proof. (1) \Rightarrow (2) and (1) \Rightarrow (3) follow from the definition.

(2) \Rightarrow (1) For any module G, there is an exact sequence

$$0 \to G \to I^0 \to I^1 \to \cdots$$
where every I^i is injective for any $i \geq 0$. By Remark 3.5 each I^i is n-\mathcal{X}-injective. So, the exact sequence

$$\cdots \rightarrow A_1 \rightarrow A_0 \rightarrow I^0 \rightarrow I^1 \rightarrow \cdots$$

of n-\mathcal{X}-injective left modules exists, where $G = \ker(I^0 \rightarrow I^1)$. Therefore, G is Gorenstein n-\mathcal{X}-injective, by Theorem 4.4.

(3) \implies (2) Assume that the exact sequence

$$0 \rightarrow L \rightarrow M \rightarrow G \rightarrow 0 \quad (1)$$

exists, where M is n-\mathcal{X}-injective and L is Gorenstein n-\mathcal{X}-injective. Since L is Gorenstein n-\mathcal{X}-injective, there is an exact sequence

$$\cdots \rightarrow A'_2 \rightarrow A'_1 \rightarrow A'_0 \rightarrow L \rightarrow 0 \quad (2)$$

where every A'_i is n-\mathcal{X}-injective. Assembling the sequences (1) and (2), we get the exact sequence

$$\cdots \rightarrow A'_2 \rightarrow A'_1 \rightarrow A'_0 \rightarrow M \rightarrow G \rightarrow 0,$$

where M and A'_i are n-\mathcal{X}-injective, as desired.

\[\blacksquare\]

Corollary 4.6. Let \mathcal{X} be a class of left R-modules and R a left n-\mathcal{X}-coherent ring. Then for any right R-module G, following assertions are equivalent:

1. G is Gorenstein n-\mathcal{X}-flat;

2. There is an exact sequence $0 \rightarrow G \rightarrow B^0 \rightarrow B^1 \rightarrow \cdots$ of right R-modules, where every B^i is n-\mathcal{X}-flat;

3. There is a short exact sequence $0 \rightarrow G \rightarrow M \rightarrow L \rightarrow 0$ of right R-modules, where M is n-\mathcal{X}-flat and L is Gorenstein n-\mathcal{X}-flat.

Proof. (1) \implies (2) and (1) \implies (3) follow from definition.

(2) \implies (1) For any right R-module G, there is an exact sequence

$$\cdots \rightarrow P_1 \rightarrow P_0 \rightarrow G \rightarrow 0,$$

where any P_i is flat for any $i \geq 0$. By Remark 3.5, every P_i is n-\mathcal{X}-flat. Thus, the exact sequence

$$\cdots \rightarrow P_1 \rightarrow P_0 \rightarrow B^0 \rightarrow B^1 \rightarrow \cdots$$

11
of \(n-\mathcal{X} \)-flat right modules exists, where \(G = \ker(B^0 \to B^1) \). Therefore by Theorem 4.4, \(G \) is Gorenstein \(n-\mathcal{X} \)-flat.

(3) \(\implies \) (2) Assume that the exact sequence

\[
0 \to G \to M \to L \to 0 \quad (1)
\]

exists, where \(M \) is \(n-\mathcal{X} \)-flat and \(L \) is Gorenstein \(n-\mathcal{X} \)-flat. Since \(L \) is Gorenstein \(n-\mathcal{X} \)-flat, there is an exact sequence

\[
0 \to L \to (F^0)′ \to (F^1)′ \to (F^2)′ \to \cdots \quad (2)
\]

where every \((F^i)′\) is \(n-\mathcal{X} \)-flat. Assembling the sequences (1) and (2), we get the exact sequence

\[
0 \to G \to M \to (F^0)′ \to (F^1)′ \to (F^2)′ \to \cdots,
\]

where \(M \) and any \((F^i)′\) are \(n-\mathcal{X} \)-flat, as desired.

\[\square\]

Proposition 4.7. Let \(\mathcal{X} \) be a class of left \(R \)-modules. Then

(1) Every direct product of Gorenstein \(n-\mathcal{X} \)-injective left \(R \)-modules is a Gorenstein \(n-\mathcal{X} \)-injective \(R \)-module.

(2) Every direct sum of Gorenstein \(n-\mathcal{X} \)-flat right \(R \)-modules is a Gorenstein \(n-\mathcal{X} \)-flat \(R \)-module.

Proof. (1) Let \(U \in \mathcal{X}_n \) and let \(\{A_i\}_{i \in I} \) be a family of \(n-\mathcal{X} \)-injective left \(R \)-modules. Then by [2, Lemma 2.7], \(\prod A_i \) is \(n-\mathcal{X} \)-injective. So, if \(\{G_i\}_{i \in I} \) is a family of Gorenstein \(n-\mathcal{X} \)-injective left \(R \)-modules, then the following \(n-\mathcal{X} \)-injective complex

\[
A_i = \cdots \to (A_i)_1 \to (A_i)_0 \to (A_i)^0 \to (A_i)^1 \to \cdots,
\]

where \(G_i = \ker((A_i)^0 \to (A_i)^1) \), induces the following exact sequence of \(n-\mathcal{X} \)-injective \(R \)-modules:

\[
\prod_{i \in I} A_i = \cdots \to \prod_{i \in I} (A_i)_1 \to \prod_{i \in I} (A_i)_0 \to \prod_{i \in I} (A_i)^0 \to \prod_{i \in I} (A_i)^1 \to \cdots,
\]

where \(\prod_{i \in I} G_i = \ker(\prod_{i \in I} (A_i)^0 \to \prod_{i \in I} (A_i)^1) \). If \(K_{n-1} \) is special \(\mathcal{X} \)-presented, then

\[
\text{Hom}_R(K_{n-1}, \prod_{i \in I} A_i) \cong \prod_{i \in I} \text{Hom}_R(K_{n-1}, A_i).
\]
By hypothesis, \(\text{Hom}_R(K_{n-1}, A_1)\) is exact, and consequently \(\prod_{i \in I} G_i\) is Gorenstein \(n-\mathcal{X}\)-injective.

(2) Let \(U \in \mathcal{X}_n\) and let \(\{I_i\}_{i \in J}\) be a family of \(n-\mathcal{X}\)-flat right \(R\)-modules. Then by \cite[Lemma 2.7]{2}, \(\bigoplus_{i \in J} I_i\) is \(n-\mathcal{X}\)-flat. So, if \(\{G_i\}_{i \in J}\) is a family of Gorenstein \(n-\mathcal{X}\)-flat right \(R\)-modules, then the following \(n-\mathcal{X}\)-flat complex

\[
I_1 = \cdots \rightarrow (I_i)_1 \rightarrow (I_i)_0 \rightarrow (I_i)^0 \rightarrow (I_i)^1 \rightarrow \cdots,
\]

where \(G_i = \ker((I_i)^0 \rightarrow (I_i)^1)\), induces the following exact sequence of \(n-\mathcal{X}\)-flat right \(R\)-modules:

\[
\bigoplus_{i \in J} I_i = \cdots \rightarrow \bigoplus_{i \in J} (I_i)_1 \rightarrow \bigoplus_{i \in J} (I_i)_0 \rightarrow \bigoplus_{i \in J} (I_i)^0 \rightarrow \bigoplus_{i \in J} (I_i)^1 \rightarrow \cdots,
\]

where \(\bigoplus_{i \in J} G_i = \ker((\bigoplus_{i \in J} I_i)^0 \rightarrow (\bigoplus_{i \in J} I_i)^1)\). If \(K_{n-1}\) is special \(\mathcal{X}\)-presented, then

\[
(K_{n-1} \otimes_R \bigoplus_{i \in J} I_i) \cong \bigoplus_{i \in J} (K_{n-1} \otimes_R I_i).
\]

By hypothesis, \((K_{n-1} \otimes_R I_i)\) is exact, and consequently \(\bigoplus_{i \in J} G_i\) is Gorenstein \(n-\mathcal{X}\)-flat.

Next, we study the Gorenstein \(n-\mathcal{X}\)-injectivity and Gorenstein \(n-\mathcal{X}\)-flatness of modules in short exact sequences.

Proposition 4.8. Let \(\mathcal{X}\) be a class of left \(R\)-modules and \(R\) a left \(n-\mathcal{X}\)-coherent ring. Then

1. Let \(0 \rightarrow A \rightarrow G \rightarrow N \rightarrow 0\) be an exact sequence of left \(R\)-modules. If \(A\) and \(N\) are Gorenstein \(n-\mathcal{X}\)-injective, then \(G\) is Gorenstein \(n-\mathcal{X}\)-injective.

2. Let \(0 \rightarrow K \rightarrow G \rightarrow B \rightarrow 0\) be an exact sequence of right \(R\)-modules. If \(K\) and \(B\) are Gorenstein \(n-\mathcal{X}\)-flat, then \(G\) is Gorenstein \(n-\mathcal{X}\)-flat.

Proof. (1) Since \(A\) and \(N\) are Gorenstein \(n-\mathcal{X}\)-injective, by Corollary \[4.3\] there exists an exact sequences \(0 \rightarrow K \rightarrow A_0 \rightarrow A \rightarrow 0\) and \(0 \rightarrow L \rightarrow N_0 \rightarrow N \rightarrow 0\) of left \(R\)-modules, where \(A_0\) and \(N_0\) are \(n-\mathcal{X}\)-injective and also, \(K\) and \(L\) are Gorenstein \(n-\mathcal{X}\)-injective. Now, we consider the following commutative diagram:
The exactness of the middle horizontal sequence with A_0 and N_0 are n-\mathcal{X}-injective, implies that $A_0 \oplus N_0$ is n-\mathcal{X}-injective by [2, Lemma 2.7]. Also, $K \oplus L$ is Gorenstein n-\mathcal{X}-injective by Proposition 4.7(1). Hence from the middle vertical sequence and Corollary 4.6, we deduce that G is Gorenstein n-\mathcal{X}-injective.

(2) Since K and B are Gorenstein n-\mathcal{X}-flat, by Corollary 4.6 there exists an exact sequences

\[
0 \rightarrow K \rightarrow K_0 \rightarrow L_1 \rightarrow 0 \quad \text{and} \quad 0 \rightarrow B \rightarrow B_0 \rightarrow L'_1 \rightarrow 0
\]

of R-modules, where K_0 and B_0 are n-\mathcal{X}-flat and also, L_1 and L'_1 are Gorenstein n-\mathcal{X}-flat. Now, we consider the following commutative diagram:

\[
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow & \\
0 & K & G & B & 0 \\
\downarrow & \downarrow & \downarrow & \\
0 & K_0 & K_0 \oplus B_0 & B_0 & 0 \\
\downarrow & \downarrow & \downarrow & \\
0 & L_1 & L_1 \oplus L'_1 & L'_1 & 0 \\
\downarrow & \downarrow & \downarrow & \\
0 & 0 & 0 & 0
\end{array}
\]

The exactness of the middle horizontal sequence with K_0 and B_0 are n-\mathcal{X}-flat, implies that $K_0 \oplus B_0$ is n-\mathcal{X}-flat by [2, Lemma 2.7]. Also, $L_1 \oplus L'_1$ is Gorenstein n-\mathcal{X}-flat by Proposition 4.7(2). Hence from the middle vertical sequence and Corollary 4.6 we deduce that G is Gorenstein n-\mathcal{X}-flat.
The left n-\mathcal{X}-injective dimension of a left R-module M denoted by $\text{id}_{\mathcal{X}_n}(M)$ is defined to be the least non-negative integer m such that $\text{Ext}^{n+m+1}_R(U, M) = 0$ for any $U \in \mathcal{X}_n$. The left n-\mathcal{X}-flat dimension of a right R-module M denoted by $\text{fd}_{\mathcal{X}_n}(M)$ is defined to be the least non-negative integer m such that $\text{Tor}^{R}_{n+m+1}(U, M) = 0$ for any $U \in \mathcal{X}_n$. If G is Gorenstein n-\mathcal{X}-injective, then $\text{id}_{\mathcal{X}_n}(G) = m$ if there is an exact sequence

$$0 \to A_m \to \cdots \to A_1 \to A_0 \to G \to 0$$

or the exact sequence

$$0 \to G \to A^0 \to A^1 \to \cdots \to A^m \to 0$$

of n-\mathcal{X}-injective left R-modules. Similarly, if G is Gorenstein n-\mathcal{X}-flat and $\text{fd}_{\mathcal{X}_n}(G) = m$, then the above exact sequences for n-\mathcal{X}-flat right R-modules exists.

The following theorems are generalization of Corollaries 4.5 and 4.6 and Proposition 4.8.

Theorem 4.9. Let \mathcal{X} be a class of left R-modules that is closed under kernels of epimorphisms and R a left n-\mathcal{X}-coherent ring. Then, for every left R-module G, the following statements are equivalent:

1. G is Gorenstein n-\mathcal{X}-injective;
2. There exists the following n-\mathcal{X}-injective resolution of G:

$$\cdots \to A_2 \xrightarrow{f_2} A_1 \xrightarrow{f_1} A_0 \xrightarrow{f_0} G \to 0,$$

such that $\bigoplus_{i=0}^{\infty} \text{Im}(f_i)$ is Gorenstein n-\mathcal{X}-injective;
3. There exists an exact sequence

$$\cdots \to A_2 \xrightarrow{f_2} A_1 \xrightarrow{f_1} A_0 \xrightarrow{f_0} G \to 0$$

of left R-modules, where A_i has finite n-\mathcal{X}-injective dimension for any $i \geq 0$, such that $\bigoplus_{i=0}^{\infty} \text{Im}(f_i)$ is Gorenstein n-\mathcal{X}-injective.

Proof. (1) \implies (2) By Corollary 4.5, the exact sequence

$$\cdots \to A_2 \xrightarrow{f_2} A_1 \xrightarrow{f_1} A_0 \xrightarrow{f_0} G \to 0,$$
where every A_i is n-\mathcal{X}-injective, exists. Consider the following exact sequences:

\[\cdots \to A_2 \to A_1 \to A_0 \to \text{Im}(f_0) \to 0, \]
\[\cdots \to A_3 \to A_2 \to A_1 \to \text{Im}(f_1) \to 0, \]
\[\vdots \quad \vdots \quad \vdots \quad \vdots \]

By Proposition 3.7, $\bigoplus_{i \in I} A_i$ is n-\mathcal{X}-injective. Thus, there exists an exact sequence

\[\cdots \to \bigoplus_{i \geq 2} A_i \to \bigoplus_{i \geq 1} A_i \to \bigoplus_{i \geq 0} A_i \to \bigoplus_{i = 0}^\infty \text{Im}(f_i) \to 0 \]

of n-\mathcal{X}-injective left R-modules. Consequently, Corollary 4.5 implies that $\bigoplus_{i = 0}^\infty \text{Im}(f_i)$ is Gorenstein n-\mathcal{X}-injective.

(2) \implies (3) trivial.

(3) \implies (1) Let the exact sequence

\[0 \to \bigoplus_{i \geq 0} A_i \to \bigoplus_{i \geq 1} A_i \to \bigoplus_{i \geq 2} A_i \to \cdots \to A_0 \to f_0\cdot A \to G \to 0 \]

of left R-modules, where A_i has finite n-\mathcal{X}-injective dimension, exists. By Corollary 4.5, it is sufficient to prove that A_i is n-\mathcal{X}-injective for any $i \geq 0$. Consider, the short exact sequence

\[0 \to \text{Im}(f_{i+1}) \to A_i \to \text{Im}(f_i) \to 0 \]

for any $i \geq 0$. Therefore, the short exact sequence

\[0 \to \bigoplus_{i = 0}^\infty \text{Im}(f_{i+1}) \to \bigoplus_{i = 0}^\infty A_i \to \bigoplus_{i = 0}^\infty \text{Im}(f_i) \to 0 \]

exists. By (3) and Proposition 4.8(1), $\bigoplus_{i = 0}^\infty A_i$ is Gorenstein n-\mathcal{X}-injective. Also, $\bigoplus_{i = 0}^\infty A_i$ has finite n-\mathcal{X}-injective dimension. If $\text{id}_{\mathcal{X}_n}(\bigoplus_{i = 0}^\infty A_i) = k$, then there exists an n-\mathcal{X}-injective resolution of $\bigoplus_{i = 0}^\infty A_i$:

\[0 \to B_k \to B_{k-1} \to \cdots \to B_0 \to \bigoplus_{i \in I} A_i \to 0. \]

Let $L_{k-1} = \ker(B_{k-1} \to B_{k-2})$ and $U \in \mathcal{X}_n$. Then, the exact sequence $0 \to B_k \to B_{k-1} \to L_{k-1} \to 0$ induces the following exact sequence:

\[0 = \text{Ext}_R^n(U, B_{k-1}) \to \text{Ext}_R^n(U, L_{k-1}) \to \text{Ext}_R^{n+1}(U, B_k) \to \cdots . \]

By hypothesis, B_k is $(n + 1)$-\mathcal{X}-injective, and also $U \in \mathcal{X}_{n+1}$, since R is n-\mathcal{X}-coherent. So $\text{Ext}_R^{n+1}(U, B_k) = 0$, and hence $\text{Ext}_R^n(U, L_{k-1}) = 0$. Therefore L_{k-1} is n-\mathcal{X}-injective. Then with the same process, we get that $\bigoplus_{i = 0}^\infty A_i$ is n-\mathcal{X}-injective, and so by Proposition 3.7, A_i is n-\mathcal{X}-injective for any $i \geq 0$.

\[\square \]
For the following theorem, the proof is similar to that of (1) \(\Rightarrow\) (2), (2) \(\Rightarrow\) (3) and (3) \(\Rightarrow\) (1) in Theorem 4.9.

Theorem 4.10. Let \(\mathcal{X}\) be a class of left \(R\)-modules that is closed under kernels of epimorphisms and \(R\) a left \(n\)-\(\mathcal{X}\)-coherent ring. Then, for every right \(R\)-module \(G\), the following statements are equivalent:

1. \(G\) is \(G\)-Gorenstein \(n\)-\(\mathcal{X}\)-flat;

2. There exists the following right \(n\)-\(\mathcal{X}\)-flat resolution of \(G\):

\[
0 \to G \overset{f_0}{\to} I^0 \overset{f_1}{\to} I^1 \overset{f_2}{\to} \cdots,
\]

such that \(\bigoplus_{i=0}^{\infty} \text{Im}(f^i)\) is \(G\)-Gorenstein \(n\)-\(\mathcal{X}\)-flat;

3. There exists an exact sequence

\[
0 \to G \overset{f_0}{\to} I^0 \overset{f_1}{\to} I^1 \overset{f_2}{\to} \cdots,
\]

of right \(R\)-modules, where \(I_i\) has finite \(n\)-\(\mathcal{X}\)-flat dimension for any \(i \geq 0\), such that \(\bigoplus_{i=0}^{\infty} \text{Im}(f^i)\) is \(G\)-Gorenstein \(n\)-\(\mathcal{X}\)-flat.

5 \(\mathcal{X}\)-\(FC\)-rings

A ring \(R\) is called self left \(n\)-\(\mathcal{X}\)-injective if \(R\) is an \(n\)-\(\mathcal{X}\)-injective left \(R\)-module. A ring \(R\) is called left \(\mathcal{X}\)-\(FC\)-ring if \(R\) is self left \(n\)-\(\mathcal{X}\)-injective and left \(n\)-\(\mathcal{X}\)-coherent. In this section, we investigate properties of Gorenstein \(n\)-\(\mathcal{X}\)-injective and \(n\)-\(\mathcal{X}\)-flat modules over \(\mathcal{X}\)-\(FC\)-rings generalizing several classical results. Notice that the notion of \(\mathcal{X}\)-\(FC\)-ring generalizes the classical notions of quasi-Frobenius and \(FC\) (i.e., \(IF\)) rings.

It is well-known that quasi-Frobenius (resp., \(FC\)) rings can be seen as rings over which every modules are Gorenstein injective (resp., \(FP\)-injective). Here we extend this fact as well as other known ones.

Proposition 5.1. Let \(\mathcal{X}\) be a class of left \(R\)-modules. Then every left \(R\)-module is Gorenstein \(n\)-\(\mathcal{X}\)-injective if and only if every projective left \(R\)-module is \(n\)-\(\mathcal{X}\)-injective and for any left \(R\)-module \(N\), \(\text{Hom}_R(-, N)\) is exact with respect to all special short exact sequences of \(\mathcal{X}_n\) with modules of finite projective dimension.
Proof. \((\Rightarrow)\) Let \(M\) be a projective left \(R\)-module. Then by hypothesis, \(M\) is Gorenstein \(n\)-\(\mathcal{X}\)-injective. So, the following \(n\)-\(\mathcal{X}\)-injective resolution of \(M\) exists:
\[
\cdots \to A_1 \to A_0 \to M \to 0.
\]
Since \(M\) is projective, \(M\) is \(n\)-\(\mathcal{X}\)-injective as a direct summand of \(A_0\). Also, by hypothesis and Definition 4.1, \(\text{Hom}_R(-, N)\) is exact with respect to all special short exact sequences with modules of finite projective dimension, since every left \(R\)-module \(N\) is Gorenstein \(n\)-\(\mathcal{X}\)-injective.

\((\Leftarrow)\) Choose an injective resolution \(0 \to G \to E^0 \to E^1 \to \cdots\) of \(G\) and a projective resolution \(\cdots \to F_1 \to F_0 \to G \to 0\), where every \(F_i\) is \(n\)-\(\mathcal{X}\)-injective by hypothesis. Assembling these resolutions, we get, by Remark 3.5, the following \(n\)-\(\mathcal{X}\)-injective resolution:
\[
\mathbf{A} = \cdots \to F_1 \to F_0 \to E^0 \to E^1 \to \cdots ,
\]
where \(G = \ker(E^0 \to E^1)\), \(K^i = \ker(E^i \to E^{i+1})\) and \(K_i = \ker(F_i \to F_{i-1})\) for any \(i \geq 1\). Let \(K_{n-1}\) be a special \(\mathcal{X}\)-presented module with \(\text{pd}_R(K_{n-1}) < \infty\). Then by hypothesis, we have:
\[
\text{Ext}_R^1(K_{n-1}, G) = \text{Ext}_R^1(K_{n-1}, K_i) = \text{Ext}_R^1(K_{n-1}, K_i) = 0.
\]
So, \(\text{Hom}_R(K_{n-1}, A)\) is exact, and hence \(G\) is Gorenstein \(n\)-\(\mathcal{X}\)-injective. \(\blacksquare\)

Proposition 5.2. Let \(\mathcal{X}\) be a class of left \(R\)-modules. Then every right \(R\)-module is Gorenstein \(n\)-\(\mathcal{X}\)-flat if and only if every injective right \(R\)-module is \(n\)-\(\mathcal{X}\)-flat and for any \(R\)-module \(N\), \(- \otimes_R N\) is exact with respect to all special short exact sequences of \(\mathcal{X}\) with modules of finite projective dimension.

Proof. Similar to proof that of Proposition 5.1. \(\blacksquare\)

Theorem 5.3. Let \(\mathcal{X}\) be a class of left \(R\)-modules and \(R\) a left \(n\)-\(\mathcal{X}\)-coherent ring. Then, the following statements are equivalent:

1. Every left \(R\)-module is Gorenstein \(n\)-\(\mathcal{X}\)-injective;
2. Every projective left \(R\)-module is \(n\)-\(\mathcal{X}\)-injective;
3. \(R\) is self \(n\)-\(\mathcal{X}\)-injective.

18
Proof. (1) \implies (2) and (2) \implies (3) hold by Proposition 5.1.

(3) \implies (1) Let \(G \) be an \(R \)-module and \(\cdots \rightarrow F_1 \rightarrow F_0 \rightarrow G \rightarrow 0 \) be any free resolution of \(G \). Then by Proposition 3.7, each \(F_i \) is \(n \)-\(\mathcal{X} \)-injective. Hence Corollary 4.5 completes the proof. \(\blacksquare \)

Examples 5.4. Let \(R = k[x^3, x^2, x^2y, xy, y^2, y^3] \) be a ring and \(\mathcal{X} \) a class of all 1-presented left \(R \)-modules. We claim that \(R \) is not 1-\(\mathcal{X} \)-injective. Suppose to the contrary, \(R \) is 1-\(\mathcal{X} \)-injective. We have \(\frac{R}{Rx^2} \) is special \(\mathcal{X} \)-presented since \(Rx^2 \cong R \) is special \(\mathcal{X} \)-generated. Also, \(\text{pd}_R(\frac{R}{Rx^2}) < \infty \). So by Proposition 5.1 and Theorem 5.3, \(\frac{R}{Rx^2} \) is projective. Therefore, the exact sequence \(0 \rightarrow Rx^2 \rightarrow R \rightarrow \frac{R}{Rx^2} \rightarrow 0 \) splits. Thus, \(Rx^2 \) is a direct summand of \(R \) and so, \(x^2 \) is an idempotent, a contradiction.

Let \(\mathcal{X} \) be a class of graded left (right) \(R \)-modules. Then, a graded ring \(R \) will be called \(n \)-gr-regular if and only if it is \(n \)-\(\mathcal{X} \)-regular if and only if every \(n \)-presented left \(R \)-module in \(\mathcal{X} \) is projective if and only if every left \(R \)-module in \(\mathcal{X} \) is \(n \)-\(\mathcal{X} \)-injective if and only if every right \(R \)-module in \(\mathcal{X} \) is \(n \)-\(\mathcal{X} \)-flat. This is a generalization of [19, Proposition 3.11]. Notice that, when \(n = 1 \), then \(R \) is gr-regular if and only if 1-\(\mathcal{X} \)-regular, see [18].

The following example show that, for some class \(\mathcal{X} \) of \(R \)-modules and any \(m > n \), every Gorenstein \(n \)-\(\mathcal{X} \)-injective (resp., flat) is Gorenstein \(m \)-\(\mathcal{X} \)-injective (resp., flat), since by [20, Remark 3.5], every \(n \)-\(\mathcal{X} \)-injective (resp., flat) is \(m \)-\(\mathcal{X} \)-injective (resp., flat).

Examples 5.5. (1) Let \(R \) be a graded ring and \(\mathcal{X} \) a class of graded left \(R \)-module. Then for any \(m > n \), every Gorenstein \(n \)-\(\mathcal{X} \)-injective (resp., flat) is Gorenstein \(m \)-\(\mathcal{X} \)-injective (resp., flat), since by [20, Remark 3.5], every \(n \)-\(\mathcal{X} \)-injective (resp., flat) is \(m \)-\(\mathcal{X} \)-injective (resp., flat).

(2) Let \(R = k[X] \), where \(k \) is a field, and \(\mathcal{X} \) a class of graded left \(R \)-modules. Then by Remark 4.2 every graded let (resp., right) \(R \)-module is Gorenstein 2-\(\mathcal{X} \)-injective (resp., flat), since every 2-presented graded left \(R \)-module is projective. We claim that there is a graded left (resp., right) \(R \)-module \(L \) so that \(L \) is not Gorenstein 1-\(\mathcal{X} \)-injective (resp., flat). Suppose to the contrary, every graded left (resp., right) \(R \)-module is Gorenstein 1-\(\mathcal{X} \)-injective (resp., flat). If \(U \) is finitely presented graded left module, then the special exact sequence \(0 \rightarrow L \rightarrow F_0 \rightarrow U \rightarrow 0 \) of graded left modules exists. So by Proposition 5.1 (resp., Proposition 5.2), \(U \) is projective and it follows that \(R \) is 1-\(\mathcal{X} \)-regular or \(\mathcal{X} \)-regular, contradiction, see [20, Example 3.6].

Proposition 5.6. Let \(\mathcal{X} \) be a class of left \(R \)-modules. Then, the following statements hold:
(1) If G is a Gorenstein injective left R-module, then $\text{Hom}_R(−, G)$ is exact with respect to all special short exact sequences with modules of finite projective dimension.

(2) If G is a Gorenstein flat right R-module, then $− \otimes_R G$ is exact with respect to all special short exact sequences with modules of finite flat dimension.

Proof. (1) Let $0 \to K_n \to P_n \to K_{n-1} \to 0$ be a special short exact sequence of $U \in \mathcal{X}_n$. It is clear that $\text{pd}_R(U) = m < \infty$, since $\text{pd}_R(K_{n-1}) < \infty$. Also, let G be Gorenstein injective. Then, the following injective resolution of G exists:

$$0 \to N \to A_{m-1} \to \cdots \to A_0 \to G \to 0.$$

So, $\text{Ext}^{n+i}_R(U, A_j) = 0$ for every $0 \leq j \leq m-1$ and any $i \geq 0$. Thus, we deduce that $\text{Ext}^{n+i}_R(U, G) \cong \text{Ext}^{n+m+i}_R(U, N) = 0$ for any $i \geq 0$. So, $\text{Ext}^1_R(K_{n-1}, G) \cong \text{Ext}^n_R(U, G) = 0$.

(2) The proof is similar to the one above.

Now we can state the main result of this section.

Theorem 5.7. Let \mathcal{X} be a class of left R-modules and R a left n-\mathcal{X}-coherent ring. Then the following statements are equivalent:

1. R is self n-\mathcal{X}-injective;

2. Every Gorenstein n-\mathcal{X}-flat left R-module is Gorenstein n-\mathcal{X}-injective;

3. Every Gorenstein flat left R-module is Gorenstein n-\mathcal{X}-injective;

4. Every flat left R-module is Gorenstein n-\mathcal{X}-injective;

5. Every Gorenstein projective left R-module is Gorenstein n-\mathcal{X}-injective;

6. Every projective left R-module is Gorenstein n-\mathcal{X}-injective;

7. Every Gorenstein injective right R-module is Gorenstein n-\mathcal{X}-flat;

8. Every injective right R-module is Gorenstein n-\mathcal{X}-flat;

9. Every Gorenstein 1-\mathcal{X}-injective right R-module is Gorenstein n-\mathcal{X}-flat;

10. Every Gorenstein n-\mathcal{X}-injective right R-module is Gorenstein n-\mathcal{X}-flat.
Proof. (1) \implies (2), (1) \implies (3), (1) \implies (4), (1) \implies (5) and (1) \implies (6) follow immediately from Theorem 3.3.

(3) \implies (4), (4) \implies (6) and (5) \implies (6) are trivial.

(3) \implies (1) Assume that G is a projective left R-module. Then G is flat and so G is Gorenstein n-\mathcal{X}-injective by (3). So, similar to the proof of (3) \implies (1) of Proposition 5.1, G is n-\mathcal{X}-injective. Thus, the assertion follows from Theorem 3.3.

(6) \implies (1) This is similar to the proof of (3) \implies (1).

(1) \implies (9) By Theorem 3.6 every 1-\mathcal{X}'-injective right R-module is n-\mathcal{X}'-flat. Suppose that G is Gorenstein 1-\mathcal{X}'-injective. So, the exact sequence

$$M = \cdots \rightarrow M_1 \rightarrow M_0 \rightarrow M^0 \rightarrow M^1 \rightarrow \cdots,$$

of n-\mathcal{X}-flat right R-modules exists, where $G = \ker(M^0 \rightarrow M^1)$. Let K_{n-1} be special \mathcal{X}_n-presented with $\text{f.d.}(K_{n-1}) < \infty$. Then similar to the proof of Theorem 4.4(1), $K_{n-1} \otimes_R M$ is exact, and hence G is Gorenstein n-\mathcal{X}'-flat.

(9) \implies (7) By Remark 3.5 every injective right R-module is 1-\mathcal{X}-injective. So, if G is Gorenstein injective, then the exact sequence

$$E = \cdots \rightarrow E_1 \rightarrow E_0 \rightarrow E^0 \rightarrow E^1 \rightarrow \cdots$$

of 1-\mathcal{X}'-injective right R-modules exists, where $G = \ker(E^0 \rightarrow E^1)$. So, if $U \in \mathcal{X}_1$ with $\text{pd}(U) < \infty$, then U is special \mathcal{X}-presented and, by Corollary 5.6, $\text{Hom}_R(U, E)$ is exact. Therefore, G is Gorenstein 1-\mathcal{X}'-injective. Hence, (7) follows from (9).

(7) \implies (8) is trivial, since every injective R-module is Gorenstein injective.

(8) \implies (1) Let M be an injective right R-module. Since M is Gorenstein n-\mathcal{X}'-flat, we have a long exact sequence:

$$M = \cdots \rightarrow M_1 \rightarrow M_0 \rightarrow M^0 \rightarrow M^1 \rightarrow \cdots,$$

where any M_i is n-\mathcal{X}'-flat and $M = \ker(M^0 \rightarrow M^1)$. Then, the split exact sequence $0 \rightarrow M \rightarrow M^0 \rightarrow L \rightarrow 0$ implies that M is n-\mathcal{X}'-flat, and hence by Theorem 3.6 we deduce that R is self n-\mathcal{X}'-injective.

(1) \implies (10) Suppose that G is a Gorenstein n-\mathcal{X}'-injective right R-module. By Theorem 3.6(6), every n-\mathcal{X}'-injective right R-module is n-\mathcal{X}'-flat. Thus, the exact sequence

$$N = \cdots \rightarrow N_1 \rightarrow N_0 \rightarrow N^0 \rightarrow N^1 \rightarrow \cdots$$

21
of n-\mathcal{X}-flat right R-modules exists, where $G = \ker(N^0 \to N^1)$. Then similar to proof Theorem 4.3(1), (10) follows.

(10) \implies (7) is clear.

References

[1] N. Bourbaki, *Algèbre Homologique*, Chapitre 10, Masson, Paris (1980).

[2] D. Bennis, n-\mathcal{X}-coherent rings, *Int. Electron. J. Algebra* 7 (2010), 128-139.

[3] J. L. Chen and N. Ding, On n-coherent rings, *Comm. Algebra* 24 (1996), 3211-3216.

[4] S. U. Chase, Direct product of modules, *Trans. Amer. Math. Soc.* 97 (1960), 457-473.

[5] S. Crivei and B. Torrecillas, *On some monic covers and epic envelopes*, Arab. J. Sci. Eng. Sect. C, Theme Issue on Interactions of Algebraic and Coalgebraic Structures (Theory and Applications), 33 (2008), 123-135.

[6] D. L. Costa, Parameterizing families of non-Noetherian rings, *Comm. Algebra* 22 (1994), 3997-4011.

[7] D. E. Dobbs, S. Kabbaj and N. Mahdou, n-coherent rings and modules, *Lect. Notes Pure Appl. Math.* 185 (1997), 269-281.

[8] E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, *Math. Z.* 220 (1995), 611-633.

[9] E. E. Enochs, O. M. G. Jenda and B. Torrecillas, Gorenstein flat modules, *J. Nanjing Univ., Math. Biq.* 10 (1993), 1-9.

[10] Z. Gao and F. Wang, Coherent rings and Gorenstein FP-injective modules, *Comm. Algebra* 40 (2012), 1669-1679.

[11] Z. Gao, J. Peng and Chengdu, n-strongly Gorenstein graded modules, *Czech. Math. J.* 69 (2019), 155-73.

[12] H. Holm, Gorenstein homological dimensions, *J. Pure Appl. Algebra* 189 (2004), 167-193.
[13] L. Mao and N. Ding, Gorenstein FP-injective and Gorenstein flat modules, *Journal of Algebra and Its Applications* 7(4) (2008), 491-506.

[14] L. Mao, Strongly Gorenstein graded modules, *Front. Math. China* 12(1) (2017), 157-176.

[15] C. Năstăsescu, Some constructions over graded rings, *J. Algebra Appl.* 120 (1989), 119-138.

[16] J. Rotman, *An Introduction to Homological Algebra*, Universitext. Springer, New York, second edition, (2009).

[17] B. Stenström, Coherent rings and FP-injective modules, *J. London Math. Soc.* 2 (1970), 323-329.

[18] B. Stenström, *Rings of Quotients*, Springer-Verlag, Berlin, Heidelberg, New York (1975).

[19] X. Y. Yang and Z. K. Liu, FP-gr-injective modules, *Math. J. Okayama Univ.* 53 (2011), 83-100.

[20] T. Zhao, Z. Gao and Z. Huang, Relative FP-gr-injective and gr-flat modules, *Int. Algebra and Computation* 28 (2018), 959-977.