Semiinclusive DIS cross sections and spin asymmetries in the quantum statistical parton distributions approach

Claude Bourrely
Département de Physique, Faculté des Sciences de Luminy,
Université de la Méditerranée - Aix-Marseille II,
13288 Marseille, Cedex 09, France

Franco Buccella
Dipartimento di Scienze Fisiche, Università di Napoli,
Via Cintia, I-80126, Napoli and INFN, Sezione di Napoli, Italy

Jacques Soffer
Physics Department, Temple University
Barton Hall, 1900 N, 13th Street
Philadelphia, PA 19122-6082, USA

Abstract

We consider the extension of the statistical parton distributions to include their transverse momentum dependence and we take into account the effects of the Melosh-Wigner rotation for the polarized distributions. With a suitable choice of the fragmentation function, we make predictions for the recent semiinclusive Deep Inelastic Scattering data on the cross section and double longitudinal-spin asymmetries from JLab. We also give some predictions for future experiments on electron-neutron scattering.

Key words: Parton distributions; spin asymmetries; statistical approach

PACS numbers: 12.40.Ee, 13.60.Hb, 13.88.+e, 14.65.Bt

UNIV. NAPLES DSF/8/2010
1 Introduction

A new set of parton distribution functions (PDF) was constructed in the framework of a statistical approach of the nucleon \([1]\), and let us first recall very briefly, its main characteristic features. For quarks (antiquarks), the building blocks are the helicity dependent distributions \(q_{\pm}(x)\) (\(\bar{q}_{\pm}(x)\)) so this allows to describe simultaneously the unpolarized distributions \(q(x) = q_{+}(x) + q_{-}(x)\) and the helicity distributions \(\Delta q(x) = q_{+}(x) - q_{-}(x)\) (similarly for antiquarks). At the initial energy scale taken at \(Q_{0}^{2} = 4\text{GeV}^{2}\), these distributions are given by the sum of two terms, a quasi Fermi-Dirac function and a helicity independent diffractive contribution, which leads to a universal behavior at very low \(x\) for all flavors. The flavor asymmetry for the light sea, \(i.e.\ \bar{d}(x) > \bar{u}(x)\), observed in the data is built in. This is clearly understood in terms of the Pauli exclusion principle, based on the fact that the proton contains two \(u\) quarks and only one \(d\) quark. The chiral properties of QCD lead to strong relations between \(q(x)\) and \(\bar{q}(x)\). For example, it is found that the well established result \(\Delta u(x) > 0\) implies \(\Delta \bar{u}(x) > 0\) and similarly \(\Delta d(x) < 0\) leads to \(\Delta \bar{d}(x) < 0\). Concerning the gluon, the unpolarized distribution \(G(x, Q_{0}^{2})\) is given in terms of a quasi Bose-Einstein function, with only one free parameter, and for simplicity, one assumes zero gluon polarization, \(i.e.\ \Delta G(x, Q_{0}^{2}) = 0\), at the initial energy scale \(Q_{0}^{2}\). All unpolarized and polarized light quark distributions depend upon eight free parameters, which were determined in 2002 (see Ref. \([1]\)), from a next-to-leading order fit of a selected set of accurate DIS data. Concerning the strange quarks and antiquarks distributions, the statistical approach has been applied to calculate the strange quark asymmetry and the corresponding helicity distributions, which were found both negative at all \(x\) values \([2]\). More recently, new tests against experimental (unpolarized and polarized) data turned out to be very satisfactory, in particular in hadronic reactions, as reported in Refs. \([3, 4]\). The paper is organized as follows. In the next section we review the construction of the statistical distributions and we present an improved version of the extension to the transverse momentum dependence (TMD). In section 3, we will consider charged pion production in semiinclusive deep inelastic scattering (SIDIS), \(\ell N \rightarrow \ell H X\), a suitable reaction for testing our TMD distributions, more specifically, for the cross section and the longitudinal-spin asymmetry, by taking into account the effects of the Melosh-Wigner rotation. The results are given and discussed in section 4 and the last section is devoted to our concluding remarks.
2 The TMD parton distributions

2.1 The original longitudinal parton distributions

We now review some of the basic features of the statistical approach, as opposed to the standard polynomial type parametrizations of the PDF, based on Regge theory at low x and counting rules at large x. The fermion distributions are given by the sum of two terms, a quasi Fermi-Dirac function and a helicity independent diffractive contribution equal for all light quarks:

\begin{align}
 xq^h(x, Q_0^2) & = \frac{AX_{0\eta}^h x^b}{\exp[(x - X_{0\eta}^h)/\bar{x}] + 1} + \frac{A_{\bar{x}}\bar{x}^\bar{b}}{\exp(x/\bar{x}) + 1}, \\
 x\bar{q}^h(x, Q_0^2) & = \frac{\bar{A}(X_{0\eta}^{-h})^{-1}x^{2\bar{b}}}{\exp[(x + X_{0\eta}^{-h})/\bar{x}] + 1} + \frac{\bar{A}_{\bar{x}}\bar{x}^\bar{b}}{\exp(x/\bar{x}) + 1},
\end{align}

at the input energy scale $Q_0^2 = 4\text{GeV}^2$.

Notice the change of sign of the potentials and helicity for the antiquarks. The parameter \bar{x} plays the role of a universal temperature and $X_{0\eta}^\pm$ are the two thermodynamical potentials of the quark q, with helicity $h = \pm$. The eight free parameters in Eqs. (1,2) were determined at the input scale from the comparison with a selected set of very precise unpolarized and polarized DIS data. They have the following values

\begin{align}
 \bar{x} & = 0.09907, \quad b = 0.40962, \quad \bar{b} = -0.25347, \quad \bar{A} = 0.08318, \\
 X_{0u}^+ & = 0.46128, \quad X_{0d}^- = 0.29766, \quad X_{0\bar{u}}^- = 0.30174, \quad X_{0\bar{d}}^+ = 0.22775.
\end{align}

For the gluons we consider the black-body inspired expression

\begin{equation}
 xG(x, Q_0^2) = \frac{A_G x^{b_G}}{\exp(x/\bar{x}) - 1},
\end{equation}

a quasi Bose-Einstein function, with $b_G = 0.90$, the only free parameter\footnote{In Ref. \cite{1} we were assuming that, for very small x, $xG(x, Q_0^2)$ has the same behavior as $xq(x, Q_0^2)$, so we took $b_G = 1 + \bar{b}$. However this choice leads to a too much rapid rise of the gluon distribution, compared to its recent determination from HERA data, which requires $b_G = 0.90$.}. since $A_G = 20.53$ is determined by the momentum sum rule. We also assume

\begin{footnotesize}
\begin{itemize}
 \item $A_\pi = 1.74938$ and $\bar{A} = 1.90801$ are fixed by the following normalization conditions $u - \bar{u} = 2$, $d - \bar{d} = 1$.
\end{itemize}
\end{footnotesize}
that, at the input energy scale, the polarized gluon, distribution vanishes, so
\[x\Delta G(x, Q_0^2) = 0. \] (6)

For the strange quark distributions, the simple choice made in Ref. [1] was greatly improved in Ref. [2], but they will not be considered in this paper.

In Eqs. (1,2) the multiplicative factors \(X_{0q}^h \) and \((X_{0\bar{q}}^{-h})^{-1} \) in the numerators of the non-diffractive parts of \(q \)'s and \(\bar{q} \)'s distributions, imply a modification of the quantum statistical form, we were led to propose in order to agree with experimental data. The presence of these multiplicative factors was justified in our earlier attempt to generate the TMD [5], as we will explain now, with a considerable improvement.

2.2 The TMD statistical distributions revisited

Let us recall that the TMD of the non-diffractive part of a quark distribution \(q \) of helicity \(h \) (first term in Eq. (1)) was introduced by the following multiplicative term
\[\frac{1}{\exp[(k_T^2/x\mu^2-Y_{0q}^h)/\bar{x}] + 1}, \] (7)

where \(Y_{0q}^h \) is the thermodynamical potential associated to the quark transverse momentum \(k_T \) and \(1/\mu^2 \) is a Lagrange multiplier, whose value is determined by a transverse energy sum rule.

We notice that this term induces a non factorizable \(x \) and \(k_T \) dependence as it is assumed in some other parametrizations. In order to recover the original \(x \) distributions, the integration of (7) over \(k_T^2 \) gives the explicit factor
\[\int_0^\infty \frac{dk_T^2}{\exp[(k_T^2/x\mu^2-Y_{0q}^h)/\bar{x}] + 1} = -x\mu^2\bar{x}\text{Li}_1(-\exp[Y_{0q}^h/\bar{x}]). \] (8)

Here \(\text{Li}_1 \) denotes the polylogarithm function of order 1, which is known to arise from the integral of Fermi-Dirac distributions and is such that
\[-\text{Li}_1(-e^y) = \int_0^\infty \frac{d\omega}{e^{(\omega-y)} + 1} = \ln(1 + e^y). \] (9)

Similarly for an antiquark distribution \(\bar{q} \) of helicity \(-h\), according to the rules of the statistical approach, one should use the same potential with opposite sign, so one gets instead, \(x\mu^2\bar{x}\ln(1 + \exp[-Y_{0\bar{q}}^h/\bar{x}]) \). In Ref. [5], we made the
arbitrary simple choice $Y_{0q}^h = kX_{0q}^h$, with $k = 1.42$, which allows to recover the factor X_{0q}^h for quarks (see Eq. (11)), since for large values $^3\bar{x}$ of Y_{0q}^h/\bar{x}, one has $\text{Li}_1(-\exp[Y_{0q}^h/\bar{x}]) \sim Y_{0q}^h/\bar{x}$, which is proportional to X_{0q}^h. However this is not suitable to get the factor $[X_{0q}^h]^{-1}$ for antiquarks (see Eq. (22)), because $\text{Li}_1(-\exp[-Y_{0q}^h/\bar{x}]) \sim \exp[-Y_{0q}^h/\bar{x}]$ for large values of Y_{0q}^h/\bar{x}. In other words, the product $\ln(1 + \exp[Y_{0q}^h/\bar{x}]) \cdot \ln(1 + \exp[-Y_{0q}^h/\bar{x}])$ does not remain independent of Y_{0q}^h, as it should.

Actually, the division by \bar{x} of the argument of the exponential in the Fermi-Dirac expression was not necessary because for the transverse degrees of freedom, μ^2 plays the role of the temperature. This feature reflects the fact that one should not treat on equal footing longitudinal and transverse degrees of freedom. Therefore, for the sake of simplicity, we propose to replace Eq. (7) by

$$\frac{1}{\exp(k_2^2/\mu^2 - Y_{0q}^h) + 1},$$

(10)

with the corresponding integral over k_2^2, $\mu^2\ln(1 + \exp[Y_{0q}^h])$. Clearly this implies a different normalization for μ^2 and Y_{0q}^h. At high k_T, Eq. (10) has a Gaussian behavior, with a width proportional to $\mu\sqrt{\bar{x}}$, at variance with the usual factorization assumption of the dependences in x and k_T. The product $\ln(1 + \exp[Y_{0q}^h]) \cdot \ln(1 + \exp[-Y_{0q}^h])$ has its maximum $(\ln 2)^2$ for $Y_{0q}^h = 0$ and therefore it is stationary around this value.

So now in order to try to recover the factors X_{0q}^h and $(X_{0q}^{-h})^{-1}$ in Eqs. (12), we simply have to choose Y_{0q}^h such that $\ln(1 + \exp[Y_{0q}^h])$ is proportional to X_{0q}^h and more precisely such that

$$\ln(1 + \exp[Y_{0q}^h]) = kX_{0q}^h.$$ (11)

This way we recover exactly the factors X_{0q}^h introduced in Eq. (11) for the quarks. We take the proportionality factor $k = \ln 2/X_{0d}^+$, X_{0d}^+ being the lowest longitudinal potential, so with the value given in (11) we get $k = 3.05$. In order to get almost exactly $(X_{0q}^{-h})^{-1}$ for the antiquarks in Eq. (2), we also assume that the corresponding transverse potential Y_{0d}^+ is small and fixed to the value 0.01. So from Eq. (11), the values of the other three transverse potentials can be obtained and we finally have

$$Y_{0u}^+ = 1.122, \ Y_{0u}^- = 0.388, \ Y_{0d}^- = 0.409, \ Y_{0d}^+ = 0.010.$$ (12)

$^3\bar{x}$ has a small value according to Eq. (3) above.
These are different from the values obtained in Ref. [5] and will lead to different predictions for the TMD of the PDF. The non-diffractive contributions read now

$$xq^h(x, k_T^2) = \frac{F(x)}{\exp(x - X_{0q}^h)/\bar{x} + 1 \exp(k_T^2/x\mu^2 - Y_{0q}^h) + 1} \cdot (13)$$

$$x\bar{q}^h(x, k_T^2) = \frac{\bar{F}(x)}{\exp(x + X_{0q}^{-h})/\bar{x} + 1 \exp(k_T^2/x\mu^2 + Y_{0q}^{-h}) + 1} \cdot (14)$$

where

$$F(x) = \frac{Ax^{-b-1} X_{0q}^h}{\ln(1 + \exp Y_{0q}^h)\mu^2} = \frac{Ax^{-b-1}}{k\mu^2} .$$

(15)

Similarly for \bar{q} we have $\bar{F}(x) = \bar{A}x^{2b-1}/k\mu^2$. After this new determination of the transverse potentials, we will see later how we can determine μ^2, using the transverse energy sum rule.

As noted in Ref. [5], if p_z denotes the proton momentum, its energy can be approximated by

$$p_z \approx (p_z + M^2)/(2p_z),$$

where M is the proton mass. Similarly the energy of a massless parton, with transverse momentum k_T is, in the same approximation,

$$xp_z + k_T^2/(2xp_z).$$

Therefore all involved parton distributions denoted $p_i(x, k_T^2)$ must satisfy the momentum sum rule

$$\sum_i \int_0^1 dx \int xp_i(x, k_T^2)dk_T^2 = 1 \ .$$

(16)

and also the transverse energy sum rule

$$\sum_i \int_0^1 dx \int p_i(x, k_T^2)\frac{k_T^2}{x}dk_T^2 = M^2 .$$

(17)

The contribution of Eq. (13), for the quarks, to the sum rule Eq. (17) is given by:

$$\int k_T^2 xq^h(x, k_T^2)dxdk_T^2 = \int_0^1 F(x) x^2(x - X_{0q}^h)/\bar{x} + 1 \exp(k_T^2/x\mu^2 - Y_{0q}^h) + 1 \ .$$

(18)

and after the change of variable $\xi = k_T^2/x\mu^2$, we get

$$\mu^2 \int_0^1 \frac{\mu^2 F(x)dx}{\exp(x - X_{0q}^h)/\bar{x} + 1} \int_0^\infty \frac{\xi d\xi}{\exp(\xi - Y_{0q}^h) + 1} = \mu^2 I_1 \cdot I_2 ,$$

(19)
where
\[I_1 = \int_0^1 \frac{\mu^2 F(x) dx}{\exp \frac{x-x_{0q}^h}{x}+1} = \frac{P_{q^h}}{\ln (1 + \exp Y_{0q}^h)}, \] (20)

\(P_{q^h} \) is the number of parton of type \(q^h \), and
\[I_2 = \int_0^\infty \frac{\xi d\xi}{\exp(\xi - Y_{0q}^h) + 1} = \frac{\pi^2}{6} + \frac{(Y_{0q}^h)^2}{2} + \text{Li}_2(-\exp(-Y_{0q}^h)). \] (21)

Therefore in the limit \(Y_{0q}^h = 0 \) the contribution of a parton of type \(q^h \) is just \(\mu^2 P_{q^h} \pi^2 / (12 \ln 2) \), since \(\text{Li}_2(-1) = -\pi^2/12 \).

In a similar way for the contribution to the sum rule Eq. (17), from the non-diffractive part of the light antiquarks Eq. (14), we get
\[\mu^2 \int_0^1 \frac{\mu^2 \bar{F}(x) dx}{\exp \frac{x+x_{0q}^h}{x}+1} \int_0^\infty \frac{\xi d\xi}{\exp(\xi + Y_{0q}^{-h}) + 1} = \mu^2 \bar{I}_1 \cdot \bar{I}_2, \] (22)

where
\[\bar{I}_1 = \int_0^1 \frac{\mu^2 \bar{F}(x) dx}{\exp \frac{x+x_{0q}^h}{x}+1} = \frac{P_{\bar{q}^h}}{\ln (1 + \exp (-Y_{0q}^{-h}))}, \] (23)

\(P_{\bar{q}^h} \) is the number of parton of type \(\bar{q}^h \), and
\[\bar{I}_2 = \int_0^\infty \frac{\xi d\xi}{\exp(\xi + Y_{0q}^{-h}) + 1} = \frac{\pi^2}{6} + \frac{(Y_{0q}^{-h})^2}{2} + \text{Li}_2(-\exp(Y_{0q}^{-h})). \] (24)

Finally we turn to the universal diffractive contribution to quarks and antiquarks in Eqs. (12), namely \(xq_D(x, Q_0^2) = \tilde{A}x^{b}/[\exp(x/\bar{x}) + 1] \). Since \(\tilde{b} < 0 \) (see Eq. (3)), the introduction of the \(k_T^2 \) dependence cannot be done similarly to the non-diffractive contributions, because in the energy sum rule Eq. (17), it generates a singular behavior when \(x \to 0 \). Therefore in order to avoid this difficulty, as in Ref. [5], we modify our prescription by taking at the input energy scale
\[xq_D(x, k_T^2) = \frac{\tilde{A}x^{\tilde{b}-2}}{\ln 2 \mu^2} \left[\frac{1}{[\exp(x/\bar{x}) + 1]} \right] \left[\frac{1}{[\exp(k_T^2/x^2 \mu^2) + 1]} \right], \] (25)

whose \(k_T^2 \) fall off is stronger, because \(x\mu^2 \) is now replaced by \(x^2 \mu^2 \). Note that this is properly normalized to recover \(xq_D(x, Q_0^2) \) after integration over \(k_T^2 \).
We have checked that $xq^D(x, k_T^2)$ gives a negligible contribution to Eq. (17), as expected (See Appendix). Concerning the gluon, since it is parametrized by a quasi Bose-Einstein function, one has to introduce a non-zero potential Y_G, in contrast with the QCD equilibrium conditions, to avoid the singular behavior of $Li_1(\exp[-Y_G/\bar{x}])$, when $Y_G = 0$. The value of Y_G is not constrained, but by taking a very small Y_G, it does not affect the energy sum rule (See Appendix).

Clearly these regularisation procedures to the diffractive contribution and to the gluon are not fully satisfactory, but we will discuss them again in our concluding remarks (See Section 5). By summing up all contributions to the energy sum rule, one finally gets the value of μ^2, namely $\mu^2 = 0.198 \text{GeV}^2$.

2.3 The Melosh-Wigner transformation

So far in all our quark or antiquark TMD distributions (see Eqs. (13,14)), the label "'h'" stands for the helicity along the longitudinal momentum and not along the direction of the momentum, as normally defined for a genuine helicity. The basic effect of a transverse momentum $k_T \neq 0$ is the Melosh-Wigner rotation [7, 8], which mixes the components q^\pm in the following way

$$q^+ = \cos^2 \theta q^+ + \sin^2 \theta q^- \quad \text{and} \quad q^- = \cos^2 \theta q^- + \sin^2 \theta q^+,$$

where $2\theta = \text{Arctg}(\kappa k_T/xM)$, M is the proton mass and κ is a dimensionless parameter.

Consequently $q = q^+ + q^-$ remains unchanged $q' = q$, whereas we have

$$\Delta q' = (\cos^2 \theta - \sin^2 \theta) \Delta q = \cos 2\theta \Delta q = \cos \text{Arctg}(\kappa k_T/xM) \Delta q. \quad (27)$$

So we finally get

$$\Delta q' = \frac{1}{\sqrt{1 + (\kappa k_T/xM)^2}} \Delta q. \quad (28)$$

The effect of the Melosh-Wigner transformation on the double longitudinal-spin asymmetry will be discussed in Section 4.

2.4 The TMD distributions in the relativistic covariant approach

Covariant parton models have been widely discussed in the literature, but in some recent papers [9, 10], an analysis based on the requirements of symmetry, for the parton motion in the nucleon rest frame, leads to a different
method to generate the TMD of a given x-distribution. By using some input unpolarized distribution \(f(x) \), one can calculate the corresponding TMD distribution \(f(x, k_T^2) \), by means of its derivative, according to the following rule

\[
f(x, k_T^2) = \frac{1}{\pi M^2} \frac{d}{d\xi} \left(\frac{f(\xi)}{\xi} \right), \tag{29}
\]

where the variable \(\xi \) is defined as \(\xi = x(1 + k_T^2/x^2 M^2) \), \(M \) being the proton mass.

This method has been generalized for helicity distributions \(\Delta f(x) \) and in this case we have for the corresponding TMD distribution \(\Delta f(x, k_T^2) \)

\[
\Delta f(x, k_T^2) = \frac{2x - \xi}{\pi M^2 \xi^3} [3 \Delta f(\xi) + 2 \int_1^\xi \frac{\Delta f(y)}{y} dy - \xi \frac{d}{d\xi} \Delta f(\xi)]. \tag{30}
\]

It is interesting to recall that in Ref. [11], it was demonstrated that for the TMD PDF a factorized form \(f_1(x)f_2(k_T^2) \) is in contradiction with Lorentz structure, at least for zero strong interaction coupling \(g = 0 \). Using a rather different approach, they obtain results identical to the above ones.

We will show and discuss later the results one obtains from these formulas, using as input the \(x \)-dependent statistical PDF in Eqs. (1,2). In this approach as well as in ours, one gets distributions function of \(x \) and \(k_T^2/x \).

3 Cross section and spin asymmetry of pion production in polarized SIDIS

Following Ref. [12], we consider the polarized SIDIS, \(\ell N \to \ell H X \) in the simple quark-parton model, with unintegrated parton distributions. According to the standard notations for DIS variables, \(\ell \) and \(\ell' \) are, respectively, the four-momenta of the initial and the final state leptons, \(q = \ell - \ell' \) is the exchanged virtual photon momentum, \(P \) is the target nucleon momentum, \(P_H \) is the final hadron momentum, \(Q^2 = -q^2 \), \(x = Q^2/2P \cdot q \), \(y = P \cdot q/P \cdot \ell \), \(z = P \cdot P_H/P \cdot q \), \(Q^2 = xy(s - M^2) \) and \(s = (\ell + P)^2 \). We work in a frame with the \(z \)-axis along the virtual photon momentum direction and the \(x \)-axis in the lepton scattering plane, with positive direction chosen along the lepton transverse momentum. The produced hadron has transverse momentum \(p_T \) (For further details see Ref. [12]).

Keeping only twist-two contributions and terms up to \(\mathcal{O}(M/Q) \), the cross
section for SIDIS of longitudinally polarized leptons off a longitudinally polarized target can be written as:

\[
\frac{d^5 \sigma}{dx \, dy \, dz \, d^2 p_T} \rightarrow \frac{2\alpha^2}{s y^2} \left\{ \mathcal{H}_1 + \lambda S_L \mathcal{H}_2 \right\},
\]

(31)

where the arrows indicate the direction of the lepton (→) and target nucleon (⇐) polarizations, with respect to the lepton momentum; \(\lambda \) and \(S_L \) are the magnitudes of the longitudinal beam polarization and the longitudinal target polarization, respectively.

The two terms have the following simple partonic expressions

\[
\mathcal{H}_1(p_T) = \sum_q e_q^2 \int d^2 k_{Tq}(x, k_T) \pi y^2 \frac{\hat{s}^2 + \hat{t}^2}{Q^4} D^h_q(z, q_T),
\]

(32)

\[
\mathcal{H}_2(p_T) = \sum_q e_q^2 \int d^2 k_{Tq} \Delta q'(x, k_T) \pi y^2 \frac{\hat{s}^2 - \hat{t}^2}{Q^4} D^h_q(z, q_T),
\]

(33)

where \(p_T = q_T + zk_T \) and \(q_T \) is the intrinsic transverse momentum of the hadron \(H \) with respect to the fragmenting quark direction. Here \(\hat{s}, \hat{t} \) and \(\hat{u} \) are the Mandelstam variables for the subprocess \(\ell q \rightarrow \ell q \). Note that in Eq. (33) above, we have used Eq. (28), which takes into account the effect of the Melosh-Wigner rotation.

The first two contributions, Eqs. (32) and (33), give, respectively, the unpolarized cross section and the numerator of the double longitudinal-spin asymmetry \(A_1 \)

\[
\frac{d^5 \sigma}{dx \, dy \, dz \, d^2 p_T} = \frac{2\alpha^2}{s y^2} \mathcal{H}_1,
\]

\[
\frac{d^5 \sigma^{++}}{dx \, dy \, dz \, d^2 p_T} - \frac{d^5 \sigma^{-+}}{dx \, dy \, dz \, d^2 p_T} = \frac{4\alpha^2}{s y^2} \mathcal{H}_2,
\]

(34)

where +, − stand for helicity states. So we simply have \(A_1 = 2\mathcal{H}_2/\mathcal{H}_1 \).

The integrals in Eqs. (32,33) involve the following TMD fragmentation function [13]

\[
D^h_q(z, q_T) = D^h_q(z) \frac{1}{\pi \mu_D^2} \exp \left(-\frac{q_T^2}{\mu_D^2} \right),
\]

(35)

which is the standard factorized Gaussian model, since we have not yet generalized our statistical approach to the TMD fragmentation functions.
4 Results and discussion

In this section we will present all our results on the TMD unpolarized and polarized PDF, for light quarks and antiquarks, resulting from the two approaches considered above. We will discuss their specific features and the difference they lead to, in the calculation of the cross sections and the spin asymmetries for SIDIS pion production. All our results are given at $Q^2 = 2.37\text{GeV}^2$, the value corresponding to the CLAS data [14, 15], so we have performed a backward QCD evolution from our input energy scale $Q_0^2 = 4\text{GeV}^2$.

In Fig. 1 we show $xu(x, k_T, Q^2)$ and $xd(x, k_T, Q^2)$ as a function of k_T for different x values, using the TMD statistical PDF constructed in section 2.2. We have checked that in this x-region, the non-diffractive part of the quark distributions largely dominate. Similarly $x\Delta u(x, k_T, Q^2)$ and $x\Delta d(x, k_T, Q^2)$ are shown in Fig. 2 and we recall that they are independent of the diffractive contribution. It is clear that all these k_T distributions are close to a Gaussian behavior, but with a x-dependent width. The corresponding antiquark PDF are shown in Figs. 3 and 4 and in this case, we notice a much rapid fall off in k_T compare to the unpolarized PDF.

Now if one uses the procedure resulting from the relativistic covariant approach described in section 2.4, one obtains different TMD unpolarized and polarized PDF as shown in Figs. 5 and 6 for u and d quarks. By comparing them with Figs. 1 and 2 we see that their k_T fall off is much faster than in the previous case. The corresponding antiquark distributions are shown in Figs. 7 and 8.

Next, we turn to the calculation of the unpolarized cross section and the double longitudinal-spin asymmetry for pion production in polarized SIDIS. The cross section is directly related to H_1 (see Eq. (34)) and we show in Fig. 9 the results, on a proton target, from the two approaches, versus p_T^2, for different x-values. The parameter μ^2_D, which enters in the fragmentation function, Eq. (35), is a free parameter. In order to get the best description of the data of Ref. [14], it has been adjusted to the value $\mu^2_D = 0.155\text{GeV}^2$, a value slightly different from the one used in Ref. [6]. The agreement is better in the case of the relativistic covariant approach, which has a faster p_T^2 fall off. However it has a very little x-dependence, which is not known experimentally at the moment, unfortunately. We predict essentially the same result for π^- production and also for π^\pm production on a neutron target. However if we consider the ratio of the cross sections for the production of a
π\(^+\) from a neutron target over its production from a proton target, our prediction is shown in Fig. [10]. The calculation was done in the two approaches considered and the results are almost identical. At fixed \(p_T\), this ratio decreases with \(x\), following almost the trend of the ratio \(d(x)/u(x)\) (see Fig. 4 of Ref. [4]) and at fixed \(x\), it is essentially flat over \(p_T\), because the TMD of the pion fragmentation function is flavor independent. This prediction is worthwhile to check with future experiments.

Finally, let us consider the double longitudinal-spin asymmetry \(A_1\), defined above. The results of the calculation from both approaches, for \(\pi^{\pm,0}\) on a proton target are shown in Fig. [11] with the kinematic cuts corresponding to the JLab recent data [15]. Whereas the relativistic covariant approach leads to an asymmetry decreasing with \(p_T\), the statistical approach leads to a flat dependence in \(p_T\), in fairly good agreement with the data, and it gives the correct normalization. We note that this behavior, which was obtained with \(\kappa = 1.35\) in (28), is partly due to the effect of the Melosh-Wigner rotation. In both approaches this effect reduces \(A_1\), but it plays an essential role in the statistical approach because it compensates the effect of the \(k_T\) rising behavior of \(\Delta q\). For completeness, in view of future experiments, we have also calculated the asymmetry on a neutron target, which are displayed in Fig. [12]. For the production of \(\pi^+\), \(A_1\) is sensitive to \(\Delta d\) and this is the reason for a negative result. In this case, the predictions from the two approaches lead again to rather different results, which should be also compared to the predictions from Ref. [6].

Before closing this discussion we must come back to the effect of the Melosh-Wigner rotation. It is clear that the integral over \(k_T\) of \(\Delta q'\) (see Eq. (28)) is smaller than \(\Delta q(x)\). Therefore to solve this small mismatch, one should adjust the potentials, in such a way that \(X_{q+} - X_{q-}\) increases slightly, whereas \(X_{q+} + X_{q-}\) remains unchanged, since the Melosh-Wigner rotation does not affect the unpolarized distribution \(q\). This new improvement will be considered more seriously in future work, when we will have access to more precise data on the \(k_T\) dependence of the quark distributions, allowing also a good flavor separation between \(u\) and \(d\) quarks.

5 Concluding remarks

An important result of this work is the construction of a new set of TMD statistical distributions. This allows us to take into account, in a satisfactory
way, the multiplicative factors X_{0q}^h and $(X_{0q}^{-h})^{-1}$ in the numerators of the non-diffractive parts of q’s and \bar{q}’s distributions. We have introduced some thermodynamical potentials Y_{0q}^h, associated to the quark transverse momentum k_T, and related to X_{0q}^h by the simple relation $\ln(1 + \exp[Y_{0q}^h]) = kX_{0q}^h$. This approach involves a parameter μ^2, which plays the role of the temperature for the transverse degrees of freedom and whose value was determined by the transverse energy sum rule. The substitution $x \to x^2$, we had to make in the diffractive part of the quark (antiquark) distributions and in the gluon distribution \[4\], to avoid a singularity in the energy sum rule, remains an open problem at the moment. We can give the intuitive argument that gluons, as photons in a laser, are created mainly in the forward direction. The diffractive part, which comes from their conversion into $q\bar{q}$ pairs, as well as the gluons themselves, may thermalize only for the x degree of freedom.

We have calculated the p_T dependence of SIDIS cross sections and double longitudinal-spin asymmetries, taking into account the effects of the Melosh-Wigner rotation, for $\pi^{\pm,0}$ production by using this set of TMD parton distributions and another set coming from the relativistic covariant approach. These sets lead to different results, which were compared to recent experimental data. Both sets do not satisfy the usual factorization assumption of the dependence in x and k_T. We have made some predictions for future experiments with neutron targets, which will allow further tests of our results. Major progress in our understanding of the TMD PDF will be certainly achieved also by measurements at a future electron ion collider \[16\].

Appendix

Let us consider the contribution of the diffractive term to the energy sum rule. So by using Eq. (25), this contribution reads

\[
\int \frac{k_T^2}{x} q^D(x, k_T^2) dx dk_T^2 = \int_0^{1/\mu^2} \frac{Ax^b-2}{x^2 \ln 2 (\exp \frac{x}{\mu^2} + 1)} dx \int_0^{\infty} \frac{k_T^2 dk_T^2}{\exp \left(\frac{k_T^2}{x \mu^2} \right) + 1}, \tag{A.1}
\]

\[4\] Let us recall that, unlike the non-diffractive part, they didn’t require any multiplicative factor.
and after the change of variable $\xi = k_T^2/x^2\mu^2$, we get
\[
\mu^2 \int_0^1 \frac{Ax^b}{\exp \frac{\xi}{x} + 1} \int_0^\infty \frac{\xi d\xi}{\exp \xi + 1} = \frac{\mu^2 \pi^2 P_D}{12 \ln 2} \tag{A.2}
\]

One finds that $P_D = 0.0115$, so the contribution of the diffractive part to the sum rule is negligible.

Finally let us consider the case of the gluon. In order to recover its x-dependence (see Eq. (5)), we can write
\[
x G(x, k_T^2) = -A_G x^b \frac{1}{\exp \frac{x}{x} - 1 \mu^2 \ln (1 - \exp Y_G) \exp \left(\frac{k_T^2}{x^2 \mu^2} + Y_G \right) - 1}, \tag{A.3}
\]

because we had to introduce a small Y_G, otherwise $x G(x, k_T^2) = 0$. The contribution to the energy sum rule Eq. (17) is
\[
\int \frac{k_T^2}{x} G(x, k_T^2) dx dk_T^2 = -\int_0^1 \frac{A_G x^b \exp}{(\exp \frac{x}{x} - 1) \mu^2 \ln (1 - \exp Y_G) \exp \left(\frac{k_T^2}{x^2 \mu^2} + Y_G \right) - 1} dx \int_0^\infty \frac{k_T^2 dk_T^2}{\exp \left(\frac{k_T^2}{x^2 \mu^2} + Y_G \right) - 1}, \tag{A.4}
\]

and after the change of variable $\xi = k_T^2/x^2\mu^2$, we get
\[
-\mu^2 \int_0^1 \frac{A_G x^b \exp}{(\exp \frac{x}{x} - 1) \ln (1 - \exp Y_G) \exp (\xi + Y_G) - 1} dx \int_0^\infty \frac{\xi d\xi}{\exp (\xi + Y_G) - 1} = \mu^2 P_G \cdot I_G, \tag{A.5}
\]

with
\[
P_G = \int_0^1 \frac{A_G x^b \exp}{\exp \frac{x}{x} - 1} = 0.421 \tag{A.6}
\]

and
\[
I_G = -\frac{1}{\ln (1 - \exp Y_G)} \int_0^\infty \frac{\xi d\xi}{\exp (\xi + Y_G) - 1} = -\frac{\text{Li}_2 (\exp Y_G)}{\ln (1 - \exp Y_G)}. \tag{A.7}
\]

With $Y_G = 10^{-6}$, we find $I_G = 0.119$, so the contribution of the gluon to the energy sum rule is negligible.
References

[1] C. Bourrely, F. Buccella and J. Soffer, Eur. Phys. J. C 23 (2002) 487.
[2] C. Bourrely, F. Buccella and J. Soffer, Phys. Lett. B 648 (2007) 39.
[3] C. Bourrely, F. Buccella and J. Soffer, Mod. Phys. Lett. A 18 (2003) 771.
[4] C. Bourrely, F. Buccella and J. Soffer, Eur. Phys. J. C 41 (2005) 327.
[5] C. Bourrely, F. Buccella and J. Soffer, Mod. Phys. Lett. A 21 (2006) 143.
[6] M. Anselmino et al., Phys. Rev. D 74 (2006) 074015 and references therein.
[7] H.J. Melosh, Phys. Rev. D 9 (1974) 1095; E. Wigner, Ann. Math. 40 (1939) 149.
[8] F. Buccella, E. Celeghini, H. Kleinert, C.A. Savoy and E. Sorace, Nuovo Cimento A69 (1970) 133.
[9] P. Zavada, Eur. Phys. J. C 52 (2007) 121 and references therein.
[10] A.V. Efremov, P. Schweitzer, O.V. Teryaev and P. Zavada, Proceedings of XIII Workshop on High Energy Spin Physics DSPIN-09, Dubna, Russia, September 1-5, 2009, p.159 (Eds A.V. Efremov and S.V. Goloskokov). See also arXiv:0912.3380v3 [hep-ph] and arXiv:1008.3827v1 [hep-ph] and references therein.
[11] U. D’Alesio, E. Leader and F. Murgia, Phys. Rev. D 81 (2010) 036010.
[12] A. Kotzinian, Nucl. Phys. B 441 (1995) 234.
[13] S. Kretzer, Phys. Rev. D 62 (2000) 054010.
[14] M. Osipenko et al. (CLAS), Phys. Rev. D 80 (2009) 032004.
[15] H. Avakian et al. (CLAS), Phys. Rev. Lett. 105 (2010) 262002.
[16] M. Anselmino et al. Eur. Phys. J. A 47 (2011) 35.
Figure 1: The statistical distributions $xu(x, k_T, Q^2)$ (left) and $xd(x, k_T, Q^2)$ (right), calculated at $Q^2 = 2.37$ GeV2, versus k_T, for different x values: solid line $x = 0.2$, dashed line $x = 0.4$, dotted line $x = 0.6$.
Figure 2: The statistical distributions $x\Delta u(x, k_T, Q^2)$ (left) and $x\Delta d(x, k_T, Q^2)$ (right), calculated at $Q^2 = 2.37 \text{GeV}^2$, versus k_T, for different x values: solid line $x = 0.2$, dashed line $x = 0.4$, dotted line $x = 0.6$.
Figure 3: The statistical distributions $x\bar{u}(x, k_T, Q^2)$ (left) and $x\bar{d}(x, k_T, Q^2)$ (right), calculated at $Q^2 = 2.37$ GeV2, versus k_T, for different x values: solid line $x = 0.2$, dashed line $x = 0.4$, dotted line $x = 0.6$.
Figure 4: The statistical distributions $x\Delta\bar{u}(x, k_T, Q^2)$ (left) and $x\Delta\bar{d}(x, k_T, Q^2)$ (right), calculated at $Q^2 = 2.37\text{ GeV}^2$, versus k_T, for different x values: solid line $x = 0.2$, dashed line $x = 0.4$, dotted line $x = 0.6$.
Figure 5: The relativistic covariant distributions $xu(x, k_T, Q^2)$ (left) and $xd(x, k_T, Q^2)$ (right), calculated at $Q^2 = 2.37$ GeV2, versus k_T, for different x values: solid line $x = 0.2$, dashed line $x = 0.4$, dotted line $x = 0.6$.
Figure 6: The relativistic covariant distributions $x\Delta u(x, k_T, Q^2)$ (left) and $x\Delta d(x, k_T, Q^2)$ (right), calculated at $Q^2 = 2.37 \text{ GeV}^2$, versus k_T, for different x values: solid line $x = 0.2$, dashed line $x = 0.4$, dotted line $x = 0.6$.
Figure 7: The relativistic covariant distributions $x\bar{u}(x, k_T, Q^2)$ (left) and $xd(x, k_T, Q^2)$ (right), calculated at $Q^2 = 2.37$ GeV2, versus k_T, for different x values: solid line $x = 0.2$, dashed line $x = 0.4$, dotted line $x = 0.6$.
Figure 8: The relativistic covariant distributions $x\Delta \bar{u}(x, k_T, Q^2)$ (left) and $x\Delta \bar{d}(x, k_T, Q^2)$ (right), calculated at $Q^2 = 2.37$ GeV2, versus k_T, for different x values: solid line $x = 0.2$, dashed line $x = 0.4$, dotted line $x = 0.6$.
Figure 9: The p_T^2 dependence of the term H_1 at $Q^2 = 2.37\text{GeV}^2$ and $z = 0.30$ for π^+ production on a proton target. Comparison of the results of the statistical approach (left) and the relativistic covariant distributions (right). In both cases the solid lines are for $x = 0.20$, the dashed lines for $x = 0.40$ and the dotted lines for $x = 0.60$. The data are from Ref. [14] for $x = 0.24$ and the error bars are statistical only.
Figure 10: The p_T^2 dependence of the ratio $\mathcal{H}_1^\alpha/\mathcal{H}_1^\rho$ at $Q^2 = 2.37 \text{GeV}^2$ and $z = 0.30$ for π^+ production on a neutron and proton target. Solid line is for $x = 0.20$, dashed line for $x = 0.40$, dashed dotted line for $x = 0.60$ and dotted line for $x = 0.80$.
Figure 11: The double longitudinal-spin asymmetry A_1 for π^+ (top-left), π^- (top-right) and π^0 (bottom) production on a proton target, versus p_T, with the following kinematic cuts corresponding to the JLab data Ref. [15]: $0.12 < x < 0.48$, $0.4 < y < 0.85$ and $0.4 < z < 0.7$. The data displayed are those of Ref. [15] and the error bars are statistical only. The solid lines are the results from the statistical distributions and the dashed dotted lines without the inclusion of the Melosh-Wigner rotation. The dashed lines correspond to the relativistic covariant distributions and the dotted lines without the inclusion of the Melosh-Wigner rotation.
Figure 12: The double longitudinal-spin asymmetry A_1 for π^+ (left) and π^- (right) production on a neutron target, versus p_T, assuming the same kinematic cuts as for the proton target. The solid lines are the results from the statistical distributions and the dashed lines correspond to the relativistic covariant distributions.