Pancreatic cancer (PC) is one among the most lethal diseases in the U.S. and worldwide. As per estimations by the American Cancer Society, nearly 57,600 new cases were diagnosed with 47,050 deaths recorded in the U.S. for the year 2020, making it the third most lethal cancer after colorectal cancer and lung cancers\(^1\). PC ranks as the seventh most lethal cancer in both men and women, per GLOBOCAN estimations\(^3\). The survival rate is only for 5 years, as 75–88% of patients were diagnosed with PC only already had advanced or metastatic cancers\(^1,3\). The advances in pre-operative management, diagnosis, and therapies include radio- and chemo-therapies were made relevant to treat advanced stage of PC but are with only modest outcome. Consequently, advanced screening, diagnosis, and therapeutic strategies for PC patient are required for the researchers and clinicians to get better impact.

The evidence that regular aggressive treatments increase the lifespan of patients with PC is limited. The heterogeneity of PC negatively impacts response to therapy. The array of therapies includes surgery, chemoradiotherapy, immunotherapy, medications, hormonal therapy, and nutritional therapy. At present, PC can only be effectively controlled by few chemotherapy drugs. Gemcitabine, a widely studied cytotoxic drug for PC since 1997, is suggested as first-line chemotherapy for PC patients\(^4\). Gemcitabine is an analogue of pyrimidine nucleoside\(^5\). It was approved by U.S. Food and Drug Administration (FDA) in 1995 as an anti-neoplastic drug for solid type cancers,
including those of pancreas, lung, breast, and ovary as well as sarcoma and cholangiocarcinoma6,7. The cellular toxic function of gemcitabine is associated with suppressing the ribonucleotide reductase (RNRs) to terminate DNA replication, thereby disrupting DNA synthesis and interrupting progression of cell cycle8,9. Compared with the other nucleoside analogs, gemcitabine has unique pharmacokinetics. However, as it is a broadly used drug, almost all PC patients eventually develop resistance to this drug. Numerous cellular pathways, enzymes of nucleotide metabolism, and various transcriptional factors have been associated with sensitivity as well as resistance to gemcitabine. At present, combination therapy with gemcitabine has shown promising results but no significant improvement in survival rates. So far, gemcitabine with erlotinib (tyrosine kinase inhibitor), irinotecan (topoisomerase inhibitor), cisplatin, and oxaliplatin (platinum agent) is FDA-approved combination therapies. But unfortunately, they have a modest benefit of <1 year of the overall survival of PC patients10. Although gemcitabine either used alone or in combination regimens has become a regular drug for the treatment of PC, the progression of free survival interval range from weeks to months11. Due to PC’s propensity to invade, metastasize, recur, and develop drug resistance, overcoming the gemcitabine resistance has become a great issue.

2. Gemcitabine

Gemcitabine is a first-line drug for the treatment of PC, as it has demonstrated increased efficacy when compared with 5-fluorouracil (5-FU)12. The combination regimen of gemcitabine and nab-paclitaxel was found to be effective in treating PC. Although these therapeutic drugs are found effective for advanced metastatic stages, patients still develop chemoresistance and toxic side effects, which limit the effectiveness of chemotherapy. A varied number of aberrant transcription factors are more or less involved in the development of chemoresistance against chemotherapeutic drugs like gemcitabine13,14. For instance, hypoxia inducible factor-1 alpha (HIF-1\textalpha) is associated with chemotherapeutic drugs by inhibiting tumor-promoting or -inhibiting proteins would enhance the efficacy of the chemotherapy drug. The combination therapy with other chemodrugs was always found effective. Therefore, combining the chemotherapy drugs with phytochemicals is highly encouraged as it sensitizes the PC cells to gemcitabine and enhances efficacy of the drug. For instance, resveratrol in combination with gemcitabine synergistically downregulates the expression of vascular endothelial growth factor B (VEGF-B) to decrease the phosphorylated levels of Bcl-2-associated X protein (Bax) and glycogen synthase kinase 3 beta (GSK3\beta)15. Thus, resveratrol can efficiently and synergistically enhance the efficacy of chemotherapy drugs by inhibiting the tumor-promoting factors more effectively.

2.1. Chemical structure of gemcitabine

Gemcitabine (dFDC, C9H12F2N3O4, molecular weight: 263.2 g/mol), is a nucleoside analog and one of the most promising cytotoxic drugs (Figure 1)16. Its anti-neoplastic activity depends on various inhibitory functions of DNA synthesis and cell cycle suppression17. As compared with cytosine arabinoside (Ara-C; pyrimidine analogue), gemcitabine exhibits an array of unique functions and a narrow range of activity, which is associated with its metabolism, pharmacology at cellular level, and mode of action18,24,25. The fluorine subunits on the second spot of the furanose ring of gemcitabine makes up the active site (Figure 1).

2.2. Transport of gemcitabine in PC cells

As the hydrophilic nature of gemcitabine makes diffusion across the cellular membrane difficult, effective movement into cells requires a specialized integral transport19. In humans, two nucleoside transporter families exist: the human equilibrative nucleoside transporter (hENT) and the human concentrative nucleoside transporter (hCNT), which are differentiated by the SLC29 and SLC28 gene families27,28. Various nucleoside analog, including gemcitabine, utilize these transporters to enter cells.
2.3. hCNT

It is a nucleoside drug import pump encoded by the SLC28 gene family, and uses the inwardly directed sodium gradient through ubiquitous sodium-potassium ATPase pump to transport the substances into cells[39]. The SLC28 family consists of three distinct proteins: CNT-1, CNT-2, and CNT-3[40]. Each of which has different affinity and specificity. While CNT-1 mainly transports adenosine and pyrimidine nucleosides, such as gemcitabine, CNT-2 transports uridine and purines, and CNT-3 transports both pyrimidines and purines[31,32].

2.4. hENT

It is encoded by a SLC29 gene family and consists of four different hENTs encoded by four different genes[33]. The hENTs facilitate the transport of nucleosides into the cells using concentration gradients. Both hENT1 and hENT2 are ubiquitous in plasma membranes; they facilitate transport of both purines and pyrimidine, and hENT2 transports nucleobases as well[33]. The hENT3 transporter is broadly circulated and moves both pyrimidines and purines, but has mostly intracellular functions with slight apparent significance on nucleoside transport across the plasma membrane (e.g., mitochondrial and lysosomal membranes)[34,36]. hENT4 also transports monoamines and adenosine in the heart and brain[37].

Gemcitabine transported into cells with hCNT1, hCNT3, hENT1, and with decreased affinity with hENT2[38]. Therefore, these membrane nucleoside transporters show a key role in the clinical efficiency of gemcitabine[39]. Clinical studies and in vitro studies have confirmed that defects in these nucleoside transporters are associated with gemcitabine resistance and decreased survival[40-43]. As an example, in PC patients with elevated hENT1 protein levels, gemcitabine therapy resulted in increased survival. Research by Santini et al. suggests that hENT1 acts as prognostic biomarker for gemcitabine treatment, as patients with enhanced hENT1 expression exhibited improved survival[41]. Similar conclusions can be drawn from various clinical studies that show how deficiencies in hENT1 correlate with resistance to gemcitabine-based therapy[42,44-46]. Nevertheless, cells can become sensitized to gemcitabine when transfection with hCNT3 gene through sonoporation ultrasound and microtubule method, as hCNT3 greatly enhances the gemcitabine uptake[47].

3. Metabolism of gemcitabine

Once gemcitabine reaches the cell, it is phosphorylated in the cytoplasm by the rate limiting enzyme deoxycytidine kinase (dCK) into gemcitabine monophosphate (dFdCMP). It is then phosphorylated by uridine monophosphate-cytidine monophosphate (UMP-CMP) kinase to produce gemcitabine diphosphate (dFdCDP) and gemcitabine triphosphate (dFdCTP)[48,49]. These active metabolites associated with DNA replication inhibition. dFdCTP competes with deoxycytidine triphosphate (dCTP) for integration into the DNA chain. After dFdCTP is attached to the DNA strand, it inhibits the polymerase, and two phosphates are cutoff to eliminate dFdCMP from the strand[50]. This allows for the addition of one nucleotide phosphate to the DNA strand before DNA replication termination can occur[8,9]. This unique method of blocking the DNA synthesis by dFdCMP is termed as “masked chain termination.” These molecular actions are important to gemcitabine-induced programmed death. On the other hand, dFdCDP suppresses the RNRs that changes cytidine diphosphate (CDP) to deoxycytidine diphosphate (dCDP), to reduce dCTP levels and facilitate integration of dFdCTP into DNA[50]. Several preclinical tumor models demonstrate that increased dFdCTP intracellular accumulation and integration of DNA are involved with high gemcitabine sensitivity, as it inhibits the de novo synthesis[51]. Moreover, clonogenic survival tests revealed that enhanced gemcitabine concentrations led to reduced cell viability, thereby indicating a longer period of time for intracellular release of active metabolites of gemcitabine[9]. Various factors, such as (i) dosing time, (ii) hENT1 cell transport, (iii) dCK phosphorylation, (iv) single nucleotide polymorphisms (SNPs) in cytidine deaminase (CDA) and dCK, and (v) CDA degradation, influence the cytotoxicity of gemcitabine and intracellular accumulation of active metabolites.

4. Mechanism of gemcitabine

Gemcitabine’s mechanism of action involves DNA synthesis inhibition. Once dFdCTP has been incorporated to DNA, polymerase enzyme incorporates a single deoxynucleotide, which inhibits the chain elongation. Thus, gemcitabine appears at the non-terminal position and stops the DNA polymerase (Figure 2). This unique mechanism of incorporation is called masked chain termination. It is
also suppresses gemcitabine removal by inhibiting DNA proofreading enzymes\[52\].

Another notable mode of action of gemcitabine is self-potentiation, which describes how drug metabolites increase the cytotoxicity of the drugs through suppression of enzymes associated with the deoxynucleotide metabolism through self-potentiation. Deoxycytidylate deaminase is directly suppressed with dFdCTP and indirectly with dFdCDP\[50\] (Figure 2). RNRs catalyzes the synthesis of ribonucleotides. As RNRs allow for rapidly dividing cells, they are a potential therapeutic target for anti-viral and anti-cancer treatments\[53\]. The function of dCK is mainly regulated by the dCTP, which reduces the deoxynucleoside triphosphate (dTTP) pool to stimulate phosphorylation of dFDC. Thus, with an increased ratio of dCTP and dFdCTP, dFdCTP can be more readily incorporated into DNA\[54\]. Gemcitabine triggers p38-MAPK to stimulate programmed cell death in the occurrence of cellular stress\[55\]. Kopper et al.\[56\] studies suggest that MK2, a p38-MAPK effector, is essential for gemcitabine-induced apoptosis.

5. Signaling pathways regulating gemcitabine resistance and mechanism

Genesis of signaling cascades is a result of various receptors and stimuli. Inside a cell, multiple signaling pathways make up an interconnecting network in formation of the complex by the signaling cascades network. Mostly, chemotherapy failure is a result of intrinsic or acquired resistance and subsequent tumor reoccurrence. However, the precise mechanism of the chemo resistance is fragmentary. A number of genes influence chemoresistance, including the signaling cascades p53, PI3K/Akt, epidermal growth factor receptor (EGFR), NF-κB, RAS/RAF/MAPK, p16/CDKN2A, SMAD4, Notch, and sonic Hedgehog (Hh) pathways. These muted pathways either directly or indirectly impact pancreatic tumor chemo sensitivity\[57\].

5.1. RAS/RAF/MAPK pathway

Induction of cell death through caspases can occur by mediated with the RAS/RAF/MAPK pathway in several ways. Therefore, aberrant activation of this pathway contributes to tumor growth, resistance, and development. The cytotoxic function of gemcitabine is mainly associated with the induction of p38, which results in MAPK caspase-mediated apoptosis. On the other hand, resistance to the gemcitabine increases survival pathway activity, leading to tumor development\[58,59\].

Fructose-1,6-bisphosphatase-1 (FBP-1)-derived peptide inhibitor, a negative modulator of the MAPK pathway, enhances gemcitabine sensitivity in pancreatic ductal adenocarcinoma by inhibition of the ERK activation\[60\]. Thymoquinone, which is an inhibitor of the Akt/mTOR/pS6K pathway, increases cisplatin and oxaliplatin sensitivity in PC as well as gemcitabine sensitivity\[61\]. Src tyrosine kinase pathway in PC is activated by Kras. This amplification loop of Src/Erb2 stimulates Akt and provides

Figure 2. Mechanism of gemcitabine action. Gemcitabine acts as an anticancer agent a series of phosphorylation’s in PC cells. Gemcitabine forms dFdCTP by three kinase enzymes, dCK, dFdCMP, and dFdCDP. dFdCTP is an important active metabolite that exhibits the anticancer effects by incorporating with the DNA. Suppressing RNRs also reduces the intracellular dNTPs, thereby resulting in enhancement of the activity of dCKs and increases the amount of gemcitabine to its active metabolites. dCK, deoxycytidine kinase; dFdCMP, gemcitabine diphosphate; dFdCTP, gemcitabine triphosphate; dCTP, deoxycytidine triphosphate; NMPK, nucleoside monophosphate kinase; NDPK, nucleoside diphosphate kinase; RNR, ribonucleotide reductase; hENT, human equilibrative nucleoside transporter; and hCNT, human concentrative nucleoside transporter.
resistance to gemcitabine. As practically documented, most acquired gemcitabine resistance is attributable to the Kras over-activity. Overamplified Kras promotes carcinogenesis and resistance to gemcitabine\cite{62,63}. In several cancers, epithelial–mesenchymal transition (EMT) is associated with the various functions such as chemotherapy resistance and metastasis. For example, an Akt target is stabilized by GSK3β\cite{64}. Zidovudine (a thymidine analogue) enhances gemcitabine efficacy by suppressing the EMT and modifying the Akt/GSK3β pathway\cite{65}. In addition, zidovudine increases the equilibrative nucleoside transporter 1 (ENT1) function, permitting the drug entry into the cell. This study suggested that gemcitabine combination could be a new treatment for the PC patients\cite{66}.

5.2. p53 pathway

Tumor suppressor p53 plays a significant role in activating the DNA damage and cellular responses to genetic abnormalities. Mutated Tp53 is associated with the gain-of-function activity, including hyperproliferation, genomic instability, and chemoresistance\cite{67}. Studies revealed that muted p53 promotes cell-cycle dysregulation, alters the apoptosis signaling, and increases learned resistance to gemcitabine in PC\cite{68}. In fact, muted p53 induces chemoresistance by enhancing cyclin-dependent kinase 1 (CDK1) and CCNB1 expression, leading to hyperproliferation. Nevertheless, immediate treatment of PC cells with gemcitabine combined with RITA (reactivating p53 and inducing tumor apoptosis) and CP-31398 abates the tumor growth by G1 phase arrest and enhances the gemcitabine sensitivity by inducing apoptosis\cite{69}.

5.3. Notch signaling pathway

Notch signaling pathway activity in PC is correlated with resistance to conventional drug gemcitabine. Recently, a research explained that upregulated Notch signaling pathway develops gemcitabine insensitivity in PC cells. Furthermore, inhibition of the Notch signaling by thymoquinone enhances the gemcitabine efficacy in PC cells\cite{70}. Moreover, overexpression of Notch signaling pathway enhances the cancer stem cell (CSC) activity, which leads to resistance to gemcitabine and progression of metastasis in PC cells\cite{71}. Activation of Notch associated with gemcitabine resistance to PC cells by regulating the EMT\cite{72,73}. This signaling plays an essential function in resistance to conventional drugs, as they affect CSCs and EMT.

5.4. TGF-β signaling

TGF-β is associated with EMT phenotype and resistance to gemcitabine in PC\cite{74}. Upregulation of TGF-β expression identified in many cancers, including those of pancreas, prostate and lung as well as squamous cell cancers\cite{75,76}. Furthermore, barbamide improves the effectiveness of gemcitabine in PC cells by suppressing the tumor proliferation and induction of apoptosis through activating the TGF-β/Smad signaling cascade\cite{77}. Recently, research showed that small interfering RNA (siRNA)-mediated SET binding factor 2 (SBF2) silencing can significantly suppress proliferation and induce apoptosis of PC cells by downregulating TGF-β/Smad pathways\cite{78}.

5.5. EGFR pathway

EGFR is essential for several biological processes such as cell-cycle progression, migration, and adhesion. However, aberration in EGFR pathway is concerned in cancer progression and drug resistance\cite{79}. Normal activation of EGFR by ligands induces auto-phosphorylation in tyrosine molecules positioned on the intracellular domains of the receptor. The stimulated tyrosine kinase in turn phosphorylates and triggers intracellular signaling cascades including Ras-MPK and PI3K/Akt. The suppression of tyrosine phosphorylation leads decreased proliferation and angiogenesis in tumor cells. Although preclinical studies demonstrated that EGFR stimulates pancreatic tumorigenesis, a study by Moore et al. revealed that gemcitabine improves survival in advanced pancreatic patients by adding the EGFR-targeting erlotinib\cite{80}. Further, another study revealed that inhibition of hexosamine biosynthetic pathway (HBP) enhances the gemcitabine sensitivity in PC cells through unfolded protein response (UPR) and regulation of the EGFR-Akt pathway\cite{81}. However, this disruption stimulates a cascade of events that impacts the cellular redox homeostasis and glycan synthesis by HBP pathway, leading to the overall changes in protein expression, glycation, and functional effects. This protein modification induces tumor resistance cells and secreted exosomes intricately involved in the decreased cell proliferation and boosted tumor cell chemosensitivity. Downstream pathways and proteins of EGFR, such as MAPK pathway, AKT-mTOR pathway, and redox enzymes, were reduced in response to dysregulation of glutamine metabolic pathway in PC\cite{82}. Based on the data, the studies concluded that EGFR is an effective target that could help improve gemcitabine efficacy.

5.6. HSPs

They are chaperon proteins that regulate cellular responses to various stressors. Some HSPs have multifunctional cytoprotection activity against anti-inflammatory and antioxidant actions\cite{83}. Some HSPs are act as activators for gemcitabine-induced cell death process. There are various reports describing HSP90, HSP70, and HSP27 overexpressed in several cancers, including PC\cite{84}. Overexpression of HSP27 in PC cells induces gemcitabine resistance, while treating with the KNK437 and AHCC (active hexose correlated compound) enhances the gemcitabine cytotoxic effect by downregulating the HSP-27\cite{85,86}. Therefore, HSPs play a significant role in association to the gemcitabine resistance in PC cells.
5.7. Tumor microenvironment

PC cells produce different types of CXC chemokines into the tumor environment: CXC ligand (CXCL)-1, CXCL-2, CXCL-5, CXCL-8, CXCL-10, CXCL-12, and CXCL-14. PC cells typically produce chemokine from the NF-кB signaling cascade. These are constitutively expressed in most of the PC patients. CXCL-12 and CXC chemokine receptor (CXCR)-4 are highly active in tumor stroma crosstalk. Studies revealed that treatment of PC cells upregulates CXCL-12 to induce ERK and Akt signaling cascade activation and promote resistance to gemcitabine. In contrast, suppression of CXCR-4 increases the gemcitabine-induced cell death[89]. PC cells upregulate CXCLs/CXCR-2 axis to stimulate various signaling cascades, including p38/ERK, PI3K, and JAK, to modulate cell migration and survival. In addition, the CXCR-2 receptor for IL-8 plays a significant role in recruiting the neutrophils at the inflammatory sites[85].

Another frequently debated pathway in tumor microenvironment of PC is the Hh pathway, which is overexpressed throughout PC oncogenic development[84]. Hh pathway is a significant cascade for morphogenesis during embryonic stages that is continuously reactive in different types of cancers[87]. Inhibition of the Hh pathway enhances the intra-tumoral vascular volume, which improves sensitization to gemcitabine. Similarly, in vitro studies suggest that gemcitabine-resistant cells can be sensitized with inhibition of Hh signaling cascade combination through histone deacetylase[88]. This enhances the survival rate by inhibiting the Hh signaling pathway[89]. Therefore, gemcitabine combined treatment with Hh signaling cascade inhibitors may overcome chemoresistance in PC.

In PC, tumor associated macrophages (TAMs) are associated with resistance to gemcitabine, as activation of cytidine deaminase induces the caspase-3 pathway to metabolize gemcitabine into inactive form[90]. In addition, TAMs were identified to inhibit antitumor immune responses. Conversely, TAM chemotaxis to the PC stroma was suppressed by C-C chemokine receptor type 2 (CCR2)/colony-stimulating factor 1 (CSF1) or CCR2[90,92]. Data suggest that inhibiting tumor-stromal interaction may enhance the drug efficacy in PC.

5.8. NF-кB pathway

NF-кB is found aberrantly activated in PC and contributes to proliferation, migration, metastasis, and EMT[93]. The NF-кB activation also promotes the secretion of VEGF and CXCL-8[84]. Similarly, STAT3 also induces lymphatic metastasis through the activation of VEGF-C in PC[95]. They also induce the expression of other angiogenic inducing factors, such as IL-8, as well as EMT-related genes, such as matrix metalloproteinase (MMP)-2 and MMP-9, which are essential for metastasis[90].

In PC, NF-кB induces chemoresistance to gemcitabine[97]. Blocking of the p65 subunit decreases the NF-кB pathway, and thus suppresses the cyclin-D1, Bcl-2, VEGF, and caspase-3 stimulation. Gemcitabine could potentially combine with p65 siRNA to suppress growth of PC[97,98]. Various pathways that suppress the NF-кB pathway reduce gemcitabine resistance in PC.

5.9. HIF-1α pathway

A number of studies confirmed that HIF-1α is associated with gemcitabine resistance through signaling pathways of DNA damage, autophagy, p53, apoptosis, and drug efflux. Hypoxia decreases the pH levels and forms acidic microenvironment, which leads to multidrug resistance. This includes reduced amount of drug caused by increased functions of multidrug transporter p-glycoprotein, decreased apoptosis, ion trapping, and genetic mutations[99].

In normal oxygen conditions, HIF-1α has half-life in cytoplasm of <5 min. However, in hypoxic conditions, HIF-1α stabilizes and escapes degradation to enter the nucleus. In nucleus, HIF-1α dimerizes with HIF-1β to form the transcriptional factor HIF-1[100], which combines with HREs to activate the transcription of various O2-dependent genes[101]. Oxygen deficiency creates stressful environment to promote apoptosis in hypoxic regions[102].

Tumor cells can survive in hypoxic environment, and hypoxia itself can stimulate adaptive cellular responses involved in tumor progression. Various HIF-1α-associated biological activities are helpful for tumor development, including induction of angiogenesis and apoptosis, alterations in metabolism, stimulation of migration to escape hostile regions, and resistance to therapy[103,104].

HIF-1α, a transcriptional factor, not only plays a significant role in PC, but is also associated with various cancers. Hence, understanding the relation and its function in PC progression and metastasis can aid in the future in find out therapies. As mentioned above, PCs are highly aggressive tumors with a poor 5-year survival rate. The late-stage diagnosis and surgical removal of primary PC tumors often ends in disease reoccurrence. Further, the radiation and first-line gemcitabine-based chemotherapy of advanced and metastatic PC patients show improved survival rate.

Hypoxia-activated growth factors play a significant role in PC proliferation and survival. Assuming that cell proliferation is associated with synthesis of nucleic acid, protein, and lipid, it is crucial to reorganize metabolic functions to support proliferation of inactive cells[105]. For example, when oxygen level decreases, the rate of glycolysis increases to maintains energy production. Similarly, enhanced rate of glycolysis is an important element for upregulated HIF-1α function. Initially, it has been testified that glioma cells are classified by a positive feedback loop associated HIF-1α activation, lactic acid, and pyruvic acid[106-108]. This research demonstrated that with blocking of HIF-1α, proliferating cell nuclear antigen (PCNA) expression levels decrease and the contributory
effect of HIF-1α on cell proliferation vanished. In vitro studies recommended that during hypoxic situations, pG1 cells grow at a faster rate. On inhibiting the HIF-1 expression by siRNA, pG2 cells became more sensitive to hypoxic situation, and demonstrated slow growth under normal and hypoxic milieu[109]. A study by Wie et al. described that HIF-1 under hypoxic situation promotes PC cell proliferation. In vivo studies explained that pG2 cells inhibited by HIF-1 could not generate tumor under hypoxic microenvironment due to the reduced resistance to hypoxia. Under normoxia, tumors resulting from pG1 cells outnumbered those acquired from pG2 cells, indicating a unique feature of HIF-1 on PC proliferation under hypoxia and normoxia[110].

HIF-1α also plays a crucial role in regulating the expression of VEGF[111]. HIF-1α is the transcription factor commonly upregulated under hypoxic conditions, and then translocates into nucleus through mucin 1 (MUC1). They together maintain crosstalk to promote glucose metabolism and impart resistance in PC against gemcitabine[113]. Pyruvate kinase muscle isozyme (PKM2) in PC upregulates the expression of HIF-1α and NF-κB-p65 to induce VEGF-A expression[112]. Furthermore, HIF-1α also maintains crosstalk with STAT3 to mediate angiogenesis through VEGF expression and the autocrine IL-6/HIF-1α/STAT3 loop[113]. HSP90 chaperon in PC also promotes angiogenesis via the upregulation of STAT3 and HIF-1α. In addition to VEGF secretion, HIF-1α promotes the platelet derived growth factor A (PDGF-A) expression[114], while MMP-2 and MMP-9[115] play crucial role in promoting angiogenesis and metastasis. HIF-1α is the downstream molecule of mTOR pathway regulated by glucagon like peptide-1 (GLP-1) receptor[116]. Moreover, the hyperglycemia promotes the overexpression of HIF-1α to upregulate MMP-9, induce hypoxic tumor microenvironment and promote PC progression. The previous studies have demonstrated that HIF-1α mediates EMT, angiogenesis, and metastasis in PC under hypoxia. In addition, hyperglycemia under hypoxic conditions promotes HIF-1α expression in PC cells to induce the expression of its downstream molecule, VEGF[117]. Moreover, HIF-1α inhibits the expression of E-cadherin by inducing the complex of metastasis associated protein 2/HDAC1 complex[118]. The complex binds to the promoter of E-cadherin to inhibit it and promote EMT. E-cadherin plays a crucial role in epithelial cell polarity and maintains cell-cell adhesion[119]. In addition, HIF-1α also promotes Twist protein and zeste homolog 2 (EZH2) expression, to inhibit the transcription of E-cadherin via binding to its promoter[120]. Thus, HIF-1α serves as an EMT promoter to induce metastasis in PC cell. HIF-1α also intervenes with other proteins, including lncRNA-BX111887, to promote activation of zinc finger E-box binding protein 1 and thereby EMT (ZEB1)[121], miRNA-142 downregulation is positively correlated with poor prognosis in PC patients, as its downregulation induces HIF-1α expression and promotes EMT in PC cells[122]. HIF-1α also maintains crosstalk with the Wnt/β-catenin signaling cascades that promote the transcription of HIF-1α. HIF-2α then complexes with β-catenin to enhance β-catenin transcription. However, there is no competition interaction detected between HIF-1α/β-catenin/HIF-2α but the interaction between HIF-2α/β-catenin promotes tumor invasion and angiogenesis in PC[123].

6. Conclusion
PC exhibits a delayed response to the chemotherapy. The chances of recurrence are high and survival rate is very low due to the activation of multiple transcriptional proteins and signaling cascades associated with inflammation, abnormal cell cycle activity, metabolism, and loss of apoptotic activity. Gemcitabine, which is a FDA-approved drug, is currently used to treat patients diagnosed with advanced stages of PC. However, gemcitabine exhibits poor prognosis due to the resistance developed during the initial treatment. Thus, identifying effective therapies and preventive agents is vital towards successful PC treatment. Since diet is a major contributing factor for PC, it would be beneficial to examine dietary bioactive compounds or synthetic small molecules. Due to their nontoxic and multitargeted nature, dietary compounds could potentially play a beneficial role in improving efficiency of gemcitabine.

Conflict of interest
The authors declare no conflict of interest.

Author contributions
G.S. and G.P.N. conceived the idea of this review and wrote the paper. P.S., A.A., and G.P.N. reviewed and edited drafts of the paper. All authors have read and agree to the published version of the manuscript.

References
1. Siegel RL, Miller KD, Sauer AG, et al., 2020, Colorectal Cancer Statistics, 2020. CA Cancer J Clin, 70:7–30. DOI: 10.3322/caac.21601.
2. Feng RM, Zong YN, Cao SM, et al., 2019, Current Cancer Situation in China: Good or Bad News from the 2018 Global Cancer Statistics? Cancer Commun, 39:22. DOI: 10.1186/s40880-019-0368-6.
3. Cokkinides V, Albano J, Samuels A, et al., 2005, American Cancer Society: Cancer Facts and Figures. Atlanta: American Cancer Society.
4. Rosemurgy AS, Serafini FM, 2000, New Directions in Systemic Therapy of Pancreatic Cancer. Cancer Control, 7:437–44. DOI: 10.1177/107327480000700506.
5. Kong W, Engel K, Wang J, 2004, (Section A: Molecular,
Structural, and Cellular Biology of Drug Transporters) Mammalian Nucleoside Transporters. Curr Drug Metab, 5:63–84. DOI: 10.2174/1389200043489162.

6. Voutsadakis IA, 2011, Molecular Predictors of Gemcitabine Response in Pancreatic Cancer. World J Gastrointest Oncol, 3:153. DOI: 10.4251/wjgo.v3.i11.153.

7. Nagourney RA, Flamm M, Link J, et al., 2008, Carboplatin Plus Gemcitabine Repeating Doublet Therapy in Recurrent Breast Cancer. Clin Breast Cancer, 8:432–5. DOI: 10.3816/cbc.2008.n.052.

8. Mini E, Nobili S, Caciagli B, et al., 2006, Cellular Pharmacology of Gemcitabine. Ann Oncol, 17:v7–v12. DOI: 10.1093/annonc/mdj941.

9. Huang P, Chubb S, Hertel LW, et al., 1991, Action of 2', 2'-difluorodeoxyctydine on DNA Synthesis. Cancer Res, 51:6110–7.

10. Jin SF, Fan ZK, Pan L, et al., 2017, Gemcitabine-based Combination Therapy Compared with Gemcitabine Alone for Advanced Pancreatic Cancer: A Meta-analysis of Nine Randomized Controlled Trials. Hepatobiliary Pancreat Dis Int, 16:236–44. DOI: 10.1016/s1499-3872(17)60022-5.

11. Stathopoulos GP, Androulakis N, Souglakos J, et al., 2018, Present Treatment and Future Expectations in Advanced Pancreatic Cancer. Anticancer Res, 28:1303–8.

12. Burtis HR, Moore MJ, Andersen J, et al., 1997, Improvements in Survival and Clinical Benefit with Gemcitabine as First-line Therapy for Patients with Advanced Pancreas Cancer: A Randomized Controlled Trial. J Clin Oncol, 15:2403–13. DOI: 10.1200/jco.1997.15.6.2403.

13. Shukla SK, Purohit V, Mehla K, et al., 2017, MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer. Cancer Cell, 32:71–87. e77. DOI: 10.1016/j.ccell.2017.06.004.

14. Dauer P, Nomura A, Saluja A, et al., 2017, Microenvironment in Determining Chemo-resistance in Pancreatic Cancer: Neighborhood Matters. Pancreatology, 17:7-12. DOI: 10.1016/j.pan.2016.12.010.

15. Chand S, O’Hayer K, Blanco FF, et al., 2016, The Landscape of Pancreatic Cancer Therapeutic Resistance Mechanisms. Int J Biol Sci, 12:273. DOI: 10.7150/ijbs.14951.

16. He X, Wang J, Wei W, et al., 2016, Hypoxia Regulates ABCG2 Activity through the Activation of ERK1/2/HIF-1α and Contributes to Chemoresistance in Pancreatic Cancer Cells. Cancer Biol Ther, 17:188–98. DOI: 10.1080/15384047.2016.1139228.

17. Nagaraju GP, Zakka KM, Landry JC, et al., 2019, Inhibition of HSP90 Overcomes Resistance to Chemotherapy and Radiotherapy in Pancreatic Cancer. Int J Cancer, 145:1529–37. DOI: 10.1002/ijc.32227.

18. Arora S, Bhardwaj A, Singh S, et al., 2013, An Undesired Effect of Chemotherapy Gemcitabine Promotes Pancreatic Cancer Cell Invasiveness through Reactive Oxygen Species-dependent, Nuclear Factor κB-and Hypoxia-inducible Factor 1α-mediated up-Regulation of CXCR4. J Biol Chem, 288:21197–207. DOI: 10.1158/1538-7445.am2013-4794.

19. Cheng ZX, Wang DW, Liu T, et al., 2014, Effects of the HIF-1α and NF-κB loop on Epithelial-mesenchymal Transition and Chemoresistance Induced by Hypoxia in Pancreatic Cancer Cells. Oncol Rep, 31:1891–8. DOI: 10.3892/or.2014.3022.

20. Zhao T, Jin F, Di Xiao HW, et al., 2020, IL-37/STAT3/HIF-1α Negative Feedback Signaling Drives Gemcitabine Resistance in Pancreatic Cancer. Theranostics, 10:4088. DOI: 10.7150/thno.42416.

21. Luo G, Xia X, Wang X, et al., 2018, miR-301a Plays a Pivotal Role in Hypoxia-induced Gemcitabine Resistance in Pancreatic Cancer. Exp Cell Res, 369:120–8. DOI: 10.1016/j.yexcr.2018.05.013.

22. Yang Y, Tian W, Yang L, et al., 2020, Gemcitabine Potentiates Anti-tumor Effect of Reseratrol on Pancreatic Cancer Via Down-regulation of VEGF-B. J Cancer Res Clin Oncol, 147:93–103. DOI: 10.1007/s00432-020-03384-7.

23. Reddy LH, Khoury H, Paci A, et al., 2008, Squalenoylation Favorably Modifies the In Vivo Pharmacokinetics and Biodistribution of Gemcitabine in Mice. Drug Metab Dispos, 36:1570–7. DOI: 10.1124/dmd.108.020735.

24. Gandhi V, Plunkett W, 1990, Modulatory Activity of 2', 2'-difluorodeoxyctydine on the Phosphorylation and Cytotoxicity of Arabinosyl Nucleosides. Cancer Res, 50:3675–80.

25. Hertel LW, Boder GB, Kroin JS, et al., 1997, Action of 2', 2'-difluorodeoxycytidine on DNA Synthesis. Cancer Res, 58:4349–57.

26. Mackey JR, Baldwin SA, Young JD, et al., 1998, Nucleoside Transport and its Significance for Anticancer Drug Resistance. Drug Resist Updates, 1:310–24. DOI: 10.1016/s1368-7646(98)80047-2.

27. Mackey JR, Mani RS, Selner M, et al., 1998, Functional Nucleoside Transporters are Required for Gemcitabine Influx and Manifestation of Toxicity in Cancer Cell Lines, Cancer Res, 58:4349–57.

28. Young JD, Yao SY, Baldwin JM, et al., 2013, The Human Concentrative and Equilibrative Nucleoside Transporter Families, SLC28 and SLC29. Mol Aspects Med, 34:529–47.
29. Ritzel M, Yao S, Huang M, et al., 1997, Molecular Cloning and Functional Expression of cDNAs Encoding a Human Na+–nucleoside Cotransporter (hCNT1). *Am J Physiol Cell Physiol.*, 272:C707–14. DOI: 10.1152/ajpcell.1997.272.2.c707.

30. Smith KM, Slugoski MD, Loewen SK, et al., 2005, The Broadly Selective Human Na+/nucleoside Cotransporter (hCNT3) Exhibits Novel Cation-coupled Nucleoside Transport Characteristics. *J Biol Chem.*, 280:25436–49. DOI: 10.1074/jbc.m409454200.

31. Gray JH, Owen RP, Giacomini KM, 2004, The Concentrative Nucleoside Transporter Family, SLC28. *Pflügers Archiv*, 447:728–34. DOI: 10.1007/s00424-003-1107-y.

32. Lostao MP, Mata JF, Larrazo IM, et al., 2000, Electrogenic Uptake of Nucleosides and Nucleoside-derived Drugs by the Human Nucleoside Transporter 1 (hCNT1) Expressed in Xenopus Laevis Oocytes. *FEBS Lett.*, 481:137–40. DOI: 10.1016/s0014-5793(00)01983-9.

33. Barnes K, Dobrzynski H, Poppolo S, et al., 2006, Distribution and Functional Characterization of Equilibrative Nucleoside Transporter-4, a Novel Cardiac Adenosine Transporter Activated at Acidic pH. *Circ Res.*, 99:510–9. DOI: 10.1161/01.res.0000238359.18495.42.

34. Baldwin SA, Yao SY, Hyde RJ, et al., 2005, Functional Characterization of Novel Human and Mouse Equilibrative Nucleoside Transporters (hENT3 and mENT3) Located in Intracellular Membranes. *J Biol Chem.*, 280:15880–7. DOI: 10.1074/jbc.m409454200.

35. Hyde R, Abidi F, Griffiths M, et al., 2000, Probing the Structure/Function Relationships of Human Equilibrative Nucleoside Transporters Using Site-directed Mutagenesis. *Drug Dev Res.*, 50:38. DOI: 10.1042/bst028a093b.

36. Govindarajan R, Leung GP, Zhou M, et al., 2009, Facilitated Mitochondrial Import of Antiviral and Anticancer Nucleoside Drugs by Human Equilibrative Nucleoside Transporter-3. *J Biol Physiol Gastrointest Liver Physiol.*, 296:G910–22. DOI: 10.1152/ajpgi.90672.2008.

37. Zhou M, Duan H, Engel K, et al., 2010, Adenosine Transport by Plasma Membrane Monoamine Transporter: Reinvestigation and Comparison with Organic Cations. *Drug Metab Dispos.*, 38:1798–805. DOI: 10.1124/dmd.110.032987.

38. Damaraju VL, Mowles D, Yao S, et al., 2012, Role of Human Nucleoside Transporters in the Uptake and Cytotoxicity of Azacitidine and Decitabine. *Nucleosides Nucleotides Nucleic Acids*, 31:236–55. DOI: 10.1080/15257770.2011.652330.

39. de Sousa Cavalcante L, Monteiro G, 2014, Gemcitabine: Metabolism and Molecular Mechanisms of Action, Sensitivity and Chemoresistance in Pancreatic Cancer. *Eur J Pharmacol.*, 741:8–16. DOI: 10.1016/j.ejphar.2014.07.041.

40. DeGorter M, Xia C, Yang J, et al., 2012, Drug Transporters in Drug Efficacy and Toxicity. *Ann Rev Pharmacol Toxicol.*, 52:249–73. DOI: 10.1146/annurev-pharmtox-010611-134529.

41. Santini D, Schiavon G, Vincenzi B, et al., 2011, Human Equilibrative Nucleoside Transporter 1 (hENT1) Levels Predict Response to Gemcitabine in Patients with Biliary Tract Cancer (BTC). *Curr Cancer Drug Targets*, 11:123–9. DOI: 10.2174/156800911793743600.

42. Spratlin J, Sangha R, Glubrecht D, et al., 2004, The Absence of Human Equilibrative Nucleoside Transporter 1 is Associated with Reduced Survival in Patients with Gemcitabine-treated Pancreas Adenocarcinoma. *Clin Cancer Res.*, 10:6956–61. DOI: 10.1187/1078-0432.ccr-04-0224.

43. Achiwa H, Oguri T, Sato S, et al., Determinants of Sensitivity and Resistance to Gemcitabine: The Roles of Human Equilibrative Nucleoside Transporter 1 and Deoxycytidine Kinase in Non-Small Cell Lung Cancer. *Cancer Sci.*, 95:753–57. DOI: 10.1111/j.1349-7006.2004.tb03257.x.

44. Maréchal R, Mackey JR, Lai R, et al., 2009, Human Equilibrative Nucleoside Transporter 1 and Human Concentrative Nucleoside Transporter 3 Predict Survival after Adjuvant Gemcitabine Therapy in Resected Pancreatic Adenocarcinoma. *Clin Cancer Res.*, 15:2913–9. DOI: 10.1158/1078-0432.ccr-08-2080.

45. Giovannetti E, Del Tacka M, Mey V, et al., 2006, Transcription Analysis of Human Equilibrative Nucleoside Transporter-1 Predicts Survival in Pancreas Cancer Patients Treated with Gemcitabine. *Cancer Res.*, 66:3928–35. DOI: 10.1185/0008-5472.can-05-4203.

46. Michalski C, Erkan M, Sauliuniaite D, et al., 2008, *Ex Vivo* Chemosensitivity Testing and Gene Expression Profiling Predict Response towards Adjuvant Gemcitabine Treatment in Pancreatic Cancer. *Br J Cancer*, 99:760–7. DOI: 10.1038/sj.bjc.6604529.

47. Paproski RJ, Yao SY, Favis N, et al., 2013, Human Concentrative Nucleoside Transporter 3 Transfection with Ultrasound and Microbubbles in Nucleoside Transport Deficient HEK293 Cells Greatly Increases Gemcitabine Uptake. *PLoS One*, 8:e56423. DOI: 10.1371/journal.pone.0056423.

48. Galmarini C, Mackey J, Dumontet C, 2001, Nucleoside
Analogues: Mechanisms of Drug Resistance and Reversal Strategies. Leukemia, 15:875–90. DOI: 10.1038/sj.leu.2402114.

49. Veltkamp SA, Beijnen JH, Schellens JH, 2008, Prolonged Versus Standard Gemcitabine Infusion: Translation of Molecular Pharmacology to New Treatment Strategy. Oncologist, 13:261–76. DOI: 10.1634/theoncologist.2007-0215.

50. Heinemann V, Xu YZ, Chubb S, et al., 1992, Cellular Elimination of 2', 2'-Difluorodeoxycytidine 5'-triphosphate: A Mechanism of Self-potentiation. Cancer Res, 52:533–9.

51. Van Haperen VW, Veerman G, Boven E, et al., 1994, Schedule Dependence of Sensitivity to 2', 2'-difluorodeoxycytidine (Gemcitabine) in Relation to Accumulation and Retention of its Triphosphate in Solid Tumour Cell Lines and Solid Tumours. Biochem Pharmacol, 48:1327–39. DOI: 10.1016/0006-2952(94)90554-1.

52. Plunkett W, Huang P, Gandhi V, 1995, Preclinical Characteristics of Gemcitabine. Anticancer Drugs, 6:7–13. DOI: 10.1097/00001813-199512006-00002.

53. Szekeres T, Fritz-Tszezeres M, Elford HL, et al., 1997, The Enzyme Ribonucleotide Reductase: Target for Antitumor and Anti-HIV Therapy. Crit Rev Clin Lab Sci, 34:503–28. DOI: 10.3109/10408369709006424.

54. Sarup JC, Johnson MA, Verhoef V, et al., 1989, Regulation of Purine Deoxyribonucleoside Phosphorlyation by Deoxycytidine Kinase from Human Leukemic Blast Cells. Biochem Pharmacol, 38:2601–07. DOI: 10.1016/0006-2952(89)90544-3.

55. Habiro A, Tanno S, Koizumi K, et al., 2004, Involvement of p38 Mitogen-activated Protein Kinase in Gemcitabine-induced Apoptosis in Human Pancreatic Cancer Cells. Biochem Biophys Res Commun, 316:71–7. DOI: 10.1016/j.bbrc.2004.02.017.

56. Köpper F, Bierwirth C, Schön M, et al., 2013, Damage-induced DNA Replication Stalling Relies on MAPK-activated Protein Kinase 2 Activity. Proc Natl Acad Sci, 110:16856–61. DOI: 10.1073/pnas.1304355110.

57. Wang Z, Li Y, Ahmad A, et al., 2011, Pancreatic Cancer: Understanding and Overcoming Chemoresistance. Nat Rev Gastroenterol Hepatol, 8:27. DOI: 10.1038/nrgastro.2010.188.

58. Yoon H, Min JK, Lee JW, et al., 2011, Acquisition of Chemoresistance in Intrahepatic Cholangiocarcinoma Cells by Activation of AKT and Extracellular Signal-regulated Kinase (ERK) 1/2. Biochem Biophys Res Commun, 405:333–7. DOI: 10.1016/j.bbrc.2010.11.130.

59. Ng SS, Tsao MS, Chow S, et al., 2000, Inhibition of Phosphatidylinositol 3-kinase Enhances Gemcitabine-induced Apoptosis in Human Pancreatic Cancer Cells. Cancer Res, 60:5451–5.

60. Jin X, Pan Y, Wang L, et al., 2017, Fructose-1,6-bisphosphatase Inhibits ERK Activation and Bypasses Gemcitabine Resistance in Pancreatic Cancer by Blocking IQGAP1–MAPK Interaction. Cancer Res, 77:4328–41. DOI: 10.1158/0008-5472.can-16-3143.

61. Mu GG, Zhang L, Li HY, et al., 2015, Thymoquinone Pretreatment Overcomes the Insensitivity and Potentiates the Antitumor Effect of Gemcitabine Through Abrogation of Notch1, PI3K/Akt/mTOR Regulated Signaling Pathways in Pancreatic Cancer. Dig Dis Sci, 60:1067–80. DOI: 10.1007/s10620-014-3394-x.

62. Akada M, Crnogorac-Jurcevic T, Lattimore S, et al., 2005, Intrinsic Chemoresistance to Gemcitabine is Associated with Decreased Expression of BNIP3 in Pancreatic Cancer. Clin Cancer Res, 11:3094–101. DOI: 10.1158/1078-0432.ccr-04-1785.

63. Giroux V, Iovanna J, Dagorn JC, 2006, Probing the Human Kinome for Kinases Involved in Pancreatic Cancer Cell Survival and Gemcitabine Resistance. FASEB J, 20:1982–91. DOI: 10.1096/fj.06-6239com.

64. Garraway LA, Jänne PA, 2012, Circumventing Cancer Drug Resistance in the Era of Personalized Medicine. Cancer Discov, 2:214-26. DOI: 10.1158/2159-8290.cd-12-0012.

65. Namba T, Kodama R, Moritomo S, et al., 2015, Zidovudine, an Anti-viral Drug, Resensitizes Gemcitabine-resistant Pancreatic Cancer Cells to Gemcitabine by Inhibition of the Akt-GSK3 β-Snail Pathway. Cell Death Dis, 6:e1795. DOI: 10.1038/cddis.2015.172.

66. Goggins M, Kern SE, Offerhaus J, et al., 1999, Progress in Cancer Genetics: Lessons from Pancreatic Cancer. Ann Oncol, 10:S4–8. DOI: 10.1093/annonc/10.suppl_4.s4.

67. Galmarini CM, Clarke ML, Falette N, et al., 2002, Expression of a Non-functional p53 Affects the Sensitivity of Cancer Cells to Gemcitabine. Int J Cancer, 97:439–45. DOI: 10.1002/ijc.1628.

68. Fiorini C, Cordani M, Padroni C, et al., 2015, Mutant p53 Stuimulates Chemoresistance of Pancreatic Adenocarcinoma Cells to Gemcitabine. Biochim Biophys Acta, 1853:89–100. DOI: 10.1016/j.bbamcr.2014.10.003.

69. Lee JY, Song SY, Park JY, 2014, Notch Pathway Activation is Associated with Pancreatic Cancer Treatment Failure. Panreatology, 14:48–53. DOI: 10.1016/j.pan.2013.11.011.

70. Wang Z, Li Y, Kong D, et al., 2009, Acquisition of Epithelial-mesenchymal Transition Phenotype of Gemcitabine-resistant Pancreatic Cancer Cells is Linked with Activation
of the Notch Signaling Pathway. Cancer Res, 69:2400–7. DOI: 10.1158/0008-5472.can-08-4312.

71. Bao B, Wang Z, Ali S, et al., 2011, Notch-1 Induces Epithelial-mesenchymal Transition Consistent with Cancer Stem Cell Phenotype in Pancreatic Cancer Cells. Cancer Lett, 307:26–36. DOI: 10.1016/j.canlet.2011.03.012.

72. Xu M, He J, Li J, et al., 2017, Methyl-CpG-binding Domain 3 Inhibits Epithelial-Mesenchymal Transition in Pancreatic Cancer Cells Via TGF-β1-Smad Signalling. Br J Cancer, 116:91–9. DOI: 10.1038/bjc.2016.397.

73. Wang J, Chen Y, Xiang F, et al., 2018, Suppression of TGF-β1 Enhances Chemosensitivity of Cisplatin-resistant Lung Cancer Cells through the Inhibition of Drug-resistant Proteins. Artif Cells Nanomed Biotechnol, 46:1505–12. DOI: 10.1080/21691401.2017.1374285.

74. Oshimori N, Oriystian D, Fuchs E, 2015, TGF-β Promotes Heterogeneity and Drug Resistance in Squamous Cell Carcinoma. Cell, 160:963–76. DOI: 10.1016/j.cell.2015.01.043.

75. Jin X, Wu Y, 2014, Berbamine Enhances the Antineoplastic Activity of Gemcitabine in Pancreatic Cancer Cells by Activating Transforming Growth Factor-β1-Smad Signaling. Anat Rec (Hoboken), 297:802–9. DOI: 10.1002/ar.22897.

76. Long J, Liu Z, Wu X, et al., 2016, siRNA-Mediated SBF2 Silencing May Inhibit Pancreatic Cancer Cells via Attenuation of the TGF-β Signaling Pathway. Technol Cancer Res Treatment, 15:308–13. DOI: 10.1177/1533034615580724.

77. Fischer T, Najjar A, Totzke F, et al., 2018, Discovery of Novel Dual Inhibitors of Receptor Tyrosine Kinases EGFR and PDGFR-β Related to Anticancer Drug Resistance. J Enzyme Inhib Med Chem, 33:1–8. DOI: 10.1080/14756366.2017.1370583.

78. Moore MJ, Goldstein D, Hamm J, et al., 2007, Erlotinib Plus Gemcitabine Compared with Gemcitabine Alone in Patients with Advanced Pancreatic Cancer: A Phase III Trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol, 25:1960–6. DOI: 10.1200/jco.2006.07.9525.

79. Ricciardiello F, Gang Y, Palorini R, et al., 2020, Chiara Donna, Hexosamine Pathway Inhibition Overcomes Pancreatic Cancer Resistance to Gemcitabine through Unfolded Protein Response and EGFR-Akt Pathway Modulation. Oncogene, 39:4103–17. DOI: 10.1038/s41388-020-1260-1.

80. Chen R, Lai LA, Sullivan Y, et al., 2017, Disrupting Glutamine Metabolic Pathways to Sensitize Gemcitabine-resistant Pancreatic Cancer. Sci Rep, 7:7950. DOI: 10.1038/s41598-017-08436-6.

81. Mymrikov EV, Sein-Nebi AS, Gusev NB, 2011, Large Potentials of Small Heat Shock Proteins. Physiol Rev, 91:1123–59. DOI: 10.1152/physrev.00023.2010.

82. Hyun JJ, Lee HS, Keum B, et al., 2013, Expression of Heat Shock Protein 70 Modulates the Chemoresponsiveness of Pancreatic Cancer. Gut Liver, 7:739–46. DOI: 10.5009/gnl.2013.7.6.739.

83. Taba K, Kuramitsu Y, Ryozawa S, et al., 2011, KKN437 Downregulates Heat Shock Protein 27 of Pancreatic Cancer Cells and Enhances the Cytotoxic Effect of Gemcitabine. Chemotherapy, 57:12–6. DOI: 10.1159/000321019.

84. Suenaga S, Kuramitsu Y, Kaino S, et al., 2014, Active Hexose-correlated Compound Down-regulates HSP27 of Pancreatic Cancer Cells, and Helps the Cytotoxic Effect of Gemcitabine. Anticancer Res, 34:141–6. DOI: 10.1097/mpa.0b013e3181773970.

85. Cheng Y, Ma X, Wei Y, et al., 2019, Potential Roles and Targeted Therapy of the CXCLs/CXCR2 Axis in Cancer and Inflammatory Diseases. Biochim Biophys Acta, 1871:289–312. DOI: 10.1016/j.bbcan.2019.01.005.

86. Wang H, Ning Z, Li Y, et al., 2016, Bufalin Suppresses Cancer Stem-like Cells in Gemcitabine-resistant Pancreatic Cancer Cells Via Hedgehog Signaling. Mol Med Rep, 14:1907–14. DOI: 10.3892/mmr.2016.5471.

87. Onishi H, Katano M, 2011, Hedgehog Signaling Pathway as a Therapeutic Target in Various Types of Cancer. Cancer Sci, 102:1756–60. DOI: 10.1111/j.1349-7006.2011.02010.x.

88. Olive KP, Jacobetz MA, Davidson CJ, et al., 2009, Inhibition of Hedgehog Signaling Enhances Delivery of Chemotherapy in a Mouse Model of Pancreatic Cancer. Science, 324:1457–61. DOI: 10.1126/science.1171362.

89. De Jesus-Acosta A, Sugar EA, O’Dwyer PJ, et al., 2020, Phase 2 Study of Vismodegib, a Hedgehog Inhibitor, Combined with Gemcitabine and Nab-paclitaxel in Patients with Untreated Metastatic Pancreatic Adenocarcinoma. Br J Cancer, 122:498–505. DOI: 10.1038/s41416-019-0683-3.

90. Weizman N, Krelin Y, Shabtay-Orbach A, et al., 2014, Macrophages Mediate Gemcitabine Resistance of Pancreatic Adenocarcinoma by Upregulating Cytidine Deaminase. Oncogene, 33:3812–9. DOI: 10.1038/onc.2013.357.

91. Mitchem JB, Brennan DJ, Knollhoff BL, et al., 2013, Targeting Tumor-infiltrating Macrophages Decreases Tumor-initiating Cells, Relieves Immunosuppression, and Improves Chemotherapeutic Responses. Cancer Res, 73:1128–41. DOI: 10.1158/0008-5472.can-12-2731.

92. Ijichi H, Chytà A, Gorska AE, et al., 2011, Inhibiting Cxcr2 Disrupts Tumor-stromal Interactions and Improves Survival in a Mouse Model of Pancreatic Ductal Adenocarcinoma. J Clin Invest, 121:4106–17. DOI: 10.1172/jci42754.
Srivani G, et al.

93. Carbone C, Melisi D, 2012, NF-kB as a Target for Pancreatic Cancer Therapy. *Expert Opin Ther Targets*, 16:S1–10. DOI: 10.1517/14728222.2011.645806.

94. Saito K, Matsuo Y, Imafuji H, et al., 2018, Xanthohumol Inhibits Angiogenesis by Suppressing Nuclear Factor-kB Activation in Pancreatic Cancer. *Cancer Sci*, 109:132–40. DOI: 10.1111/cas.13441.

95. Huang C, Huang R, Chang W, et al., The Expression and Clinical Significance of pSTAT3, VEGF and VEGF-C in Pancreatic Adenocarcinoma. *Neoplasma*, 59:52. DOI: 10.4149/ne_2012_007.

96. Huang C, Jiang T, Zhu L, et al., 2011, STAT3-targeting RNA Interference Inhibits Pancreatic Cancer Angiogenesis *In Vitro and In Vivo*. *Int J Oncol*, 38:1637–44. DOI: 10.3892/ijo.2011.1000.

97. Zhang Z, Duan Q, Zhao H, et al., 2016, Gemcitabine Treatment Promotes Pancreatic Cancer Stemness through the Nox/ROS/NF-kB/STAT3 Signaling Cascade. *Cancer Lett*, 382:53–63. DOI: 10.1016/j.canlet.2016.08.023.

98. Pan X, Arumugam T, Yamamoto T, et al., 2008, Nuclear Factor-kB p65/relA Silencing Induces Apoptosis and Increases Gemcitabine Effectiveness in a Subset of Pancreatic Cancer Cells. *Clin Cancer Res*, 14:8143–51. DOI: 10.1158/1078-0432.ccr-07-5987.

99. Jing X, Yang F, Shao C, et al., 2019, Role of Hypoxia in Cancer Therapy by Regulating the Tumor Microenvironment. *Mol Cancer*, 18:157. DOI: 10.1186/s12943-019-1089-9.

100. Srivani G, Behera SK, Dariya B, et al., 2020, Resveratrol Binds and Inhibits Transcription Factor HIF-1α in Pancreatic Cancer. *Exp Cell Res*, 394:112126. DOI: 10.1016/j.yexcr.2020.112126.

101. Srivani G, Behera SK, Dariya B, et al., 2020, HIF-1α and RKIP: A Computational Approach for Pancreatic Cancer Therapy. *Mol Cell Biochem*, 472:95–103. DOI: 10.1007/s11010-020-03788-6.

102. Zimna A, Kurpisz M, 2015, Hypoxia-inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies. *Biomed Res Int*, 2015:549412. DOI: 10.1155/2015/549412.

103. Luo D, Wang Z, Wu J, et al., 2014, The Role of Hypoxia Inducible Factor-1 in Hepatocellular Carcinoma. *Biomed Res Int*, 2014:409272. DOI: 10.1155/2014/409272.

104. Karakashev SV, Reginato MJ, 2015, Progress toward Overcoming Hypoxia-induced Resistance to Solid Tumor Therapy. *Cancer Manag Res*, 7:253. DOI: 10.2147/cmar.s8285.

105. DeBerardinis RJ, Lums JJJ, Hatzivassiliou G, et al., 2008, The Biology of Cancer: Metabolic Reprogramming Fuels Cell Growth and Proliferation. *Cell Metab*, 7:11–20. DOI: 10.1016/j.cmet.2007.10.002.

106. Semenza GL, 2012, Hypoxia-inducible Factors in Physiology and Medicine. *Cell*, 148:399–408. DOI: 10.1016/j.cell.2012.01.021.

107. Semenza GL, 2010, HIF-1: Upstream and Downstream of Cancer Metabolism. *Curr Opin Genet Dev*, 20:51–6. DOI: 10.1016/j.gde.2009.10.009.

108. Bartrons R, Caro J, 2007, Hypoxia, Glucose Metabolism and the Warburg’s Effect. *J Bioenerg Biomembr*, 39:223–9. DOI: 10.1007/s10863-007-9080-3.

109. Denko NC, 2008, Hypoxia, HIF1 and Glucose Metabolism in the Solid Tumour. *Nat Rev Cancer*, 8:705–13. DOI: 10.1038/nrc2468.

110. McGuigan A, Kelly P, Turkington RC, et al., 2018, Pancreatic Cancer: A Review of Clinical Diagnosis, Epidemiology, Treatment and Outcomes. *World J Gastroenterol*, 24:4846–61. DOI: 10.3748/wjg.v24.i43.4846.

111. Zhang W, Xiong Z, Wei T, et al., 2018, Nuclear Factor 90 Promotes Angiogenesis by Regulating HIF-1α/VEGF-A Expression through the PI3K/Akt Signaling Pathway in Human Cervical Cancer. *Cell Death Dis*, 9:1–13. DOI: 10.1038/s41419-018-0334-2.

112. Azoitei N, Becher A, Steinestel K, et al., 2016, PKM2 Promotes Tumor Angiogenesis by Regulating HIF-1α through NF-kB Activation. *Mol Cancer*, 15:3. DOI: 10.1186/s12943-015-0490-2.

113. Lang SA, Moser C, Gaumann A, et al., 2007, Targeting Heat Shock Protein 90 in Pancreatic Cancer Impairs Insulin-like Growth Factor-I Receptor Signaling, Disrupts an Interleukin-6/signal-transducer and Activator of Transcription 3/hypoxia-inducible Factor-1α Autocrine Loop, and Reduces Orthotopic Tumor Growth. *Clin Cancer Res*, 13:6459–68. DOI: 10.1158/1078-0432.ccr-11-1104.

114. Sahraei M, Roy LD, Curry JM, et al., 2012, MUC1 Regulates PDGFA Expression during Pancreatic Cancer Progression. *Oncogene*, 31:4935–45. DOI: 10.1038/onc.2011.651.

115. Shan T, Ma J, Ma Q, Guo K, et al., 2013, β2-AR-HIF-1α: A Novel Regulatory Axis for Stress-induced Pancreatic Tumor Growth and Angiogenesis. *Curr Mol Med*, 13:1023–34. DOI: 10.2174/15665524013139990055.

116. Carlessi R, Chen Y, Rowlands J, et al., 2017, GLP-1 Receptor Signalling Promotes β-Cell Glucose Metabolism via mTOR-dependent HIF-1α Activation. *Sci Rep*, 7:1–13. DOI: 10.1038/s41598-017-02838-2.

117. Li W, Liu H, Qian W, et al., 2018, Hyperglycemia Aggravates Microenvironment Hypoxia and Promotes the Metastatic Ability of Pancreatic Cancer. *Comput Struct...
118. Zhu S, Deng S, He C, et al., 2018, Reciprocal Loop of Hypoxia-inducible Factor-1α (HIF-1α) and Metastasis-Associated Protein 2 (MTA2) Contributes to the Progression of Pancreatic Carcinoma by Suppressing E-cadherin Transcription. *J Pathol.*, 245:349–60. DOI: 10.1002/path.5089.

119. Kourtidis A, Lu R, Pence LJ, et al., 2017, A Central Role for Cadherin Signaling in Cancer. *Exp Cell Res.*, 358:78–85. DOI: 10.1016/j.yexcr.2017.04.006.

120. Chen S, Chen JZ, Zhang JQ, et al., 2016, Hypoxia Induces TWIST-activated Epithelial-Mesenchymal Transition and Proliferation of Pancreatic Cancer Cells *In Vitro* and in Nude Mice. *Cancer Lett.*, 383:73–84. DOI: 10.1016/j.canlet.2016.09.027.

121. Deng SJ, Chen HY, Ye Z, et al., 2018, Hypoxia-induced LncRNA-BX111 Promotes Metastasis and Progression of Pancreatic Cancer through Regulating ZEB1 Transcription. *Oncogene*, 37:5811–28. DOI: 10.1038/s41388-018-0382-1.

122. Lu Y, Ji N, Wei W, et al., 2017, MiR-142 Modulates Human Pancreatic Cancer Proliferation and Invasion by Targeting Hypoxia-Inducible Factor 1 (HIF-1α) in the Tumor Microenvironments. *Biol Open*, 6:252–9. DOI: 10.1242/bio.021774.

123. Zhang Q, Lou Y, Zhang J, et al., 2017, Hypoxia-inducible Factor-2α Promotes Tumor Progression and has Crosstalk with Wnt/β-catenin Signaling in Pancreatic Cancer. *Mol Cancer*, 16:119. DOI: 10.1186/s12943-017-0689-5.