What are effective program characteristics of self-management interventions in patients with heart failure? An individual patient data meta-analysis

Nini H. Jonkman, MSca, Heleen Westland, RN, MSca, Rolf H.H. Groenwold, MD, PhDb, Susanna Ågren, RN, PhDc,d, Manuel Anguita, MD, PhDe, Lynda Blue, RNi, Pieta W.F. Bruggink-André de la Porte, MD, PhDg, Darren A. DeWalt, MD, MPHh, Paul L. Hebert, PhDi, Michele Heisler, MD, MPAj, Tiny Jaarsma, RN, PhDk, Gertrudis I.J.M. Kempen, PhDl, Marcia E. Leventhalm, Dirk J.A. Lok, MD, PhDo, Jan Mårtensson, RN, PhDn, Javier Muñizo,p, Haruka Otsu, RN, PhDq, Frank Peters-Klimm, MDr, Michael W. Rich, MDs, Barbara Riegel, RN, PhDt, Anna Strömberg, RN, PhDu, Ross T. Tsuyuki, BSc(Pharm), PharmD, MScv, Jaap C.A. Trappenburg, PhDa, Marieke J. Schuurmans, RN, PhDa, and Arno W. Hoes, MD, PhDb

aDepartment of Rehabilitation, Nursing Science and Sports, University Medical Center Utrecht, Utrecht, The Netherlands
bJulius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
cDepartment of Medical and Health Sciences and Department of Cardiothoracic Surgery, Linköping University, Linköping, Sweden
dDepartment of Medical and Health Sciences, Division of Nursing Science, Linköping University, Linköping, Sweden
eDepartment of Cardiology, Hospital Reina Sofia, Cordoba, Spain
fBritish Heart Foundation, Glasgow, UK
gDepartment of Cardiology, Deventer Hospital, Deventer, The Netherlands
hDivision of General Medicine and Clinical Epidemiology, University of North Carolina, Chapel Hill, NC
iDepartment of Health Services, University of Washington, Seattle, WA
jDepartment of Internal Medicine, University of Michigan, Ann Arbor, MI
kDepartment of Social and Welfare Studies, Linköping University, Linköping, Sweden
lDepartment of Health Services Research, CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands
mInstitute of Nursing Science, University of Basel, Basel, Switzerland
nDepartment of Nursing Science, Jönköping University, Jönköping, Sweden
oInstituto Universitario de Ciencias de la Salud, Universidad de A Coruña and INIBIC, A Coruña, Spain
pRed de Investigación Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
qGraduate Address for correspondence: Nini H. Jonkman, Department of Rehabilitation, Nursing Science & Sports, HP W01.121, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands., n.h.jonkman@vu.nl.

CONTRIBUTIONS

NHJ, HW, RHHG, TJ, JCAT, MJS, AWH participated in the design of the study. SA, MA, LB, PWFBA, DAD, PLH, MH, TJ, GIJKMEL, DJAL, JMårtensson, JMuniz, HO, FPK, MWR, BR, AS, and RTT contributed data to this study. NHJ and HW collected and merged the data. NHJ, HW, RHHG, JCAT, AWH, and MJS wrote the statistical analysis plan. NHJ and RHHG carried out the statistical analysis. All authors reviewed the statistical plan and the statistical analysis. NHJ wrote the draft of the manuscript. All authors contributed to critical revision of the manuscript. All authors approved the final version of the manuscript.

CONFLICT OF INTEREST

The authors declare the following interests: this work was supported by a grant from The Netherlands Organisation for Health Research and Development, ZonMw (grant number 520001002). DAD reports grants from NIH during the conduct of the study, outside the submitted work. MH reports grants from MDRTC during the conduct of the study, outside the submitted work. RTT reports investigator-initiated grants from Merck Canada Inc., AstraZeneca Canada, and personal fees from Merck Canada Inc., all outside the submitted work. The other authors declare no conflict of interest.
Abstract

Background—To identify those characteristics of self-management interventions in patients with heart failure (HF) that are effective in influencing health-related quality of life, mortality, and hospitalizations.

Methods and Results—Randomized trials on self-management interventions conducted between January 1985 and June 2013 were identified and individual patient data were requested for meta-analysis. Generalized mixed effects models and Cox proportional-hazard models including frailty terms were used to assess the relation between characteristics of interventions and health-related outcomes. Twenty randomized trials (5624 patients) were included. Longer intervention duration reduced mortality risk (hazard ratio 0.99, 95%CI 0.97–0.999 per month increase in duration), risk of HF-related hospitalization (hazard ratio 0.98, 95%CI 0.96–0.99), and HF-related hospitalization at 6 months (risk ratio 0.96, 95%CI 0.92–0.995). Although results were not consistent across outcomes, interventions comprising standardized training of interventionists, peer contact, log keeping, or goal-setting skills appeared less effective than interventions without these characteristics.

Conclusion—No specific program characteristics were consistently associated with better effects of self-management interventions, but longer duration seemed to improve the effect of self-management interventions on several outcomes. Future research using factorial trial designs and process evaluations is needed to understand the working mechanism of specific program characteristics of self-management interventions in HF patients.

Keywords
heart failure; individual patient data meta-analysis; self-management

INTRODUCTION

Heart failure (HF) is a major health concern. Its prevalence is steadily increasing and presently over 10% of the people 85 years and older have been diagnosed with HF.1 Patients suffering from HF are faced with lifestyle adjustment to prevent deterioration, daily medication intake, and monitoring symptom changes.2 Interventions to support patients’ self-management behavior generally aim to equip patients with skills to actively participate in the management of their chronic condition, through stimulating symptom monitoring and enhancing problem-solving and decision-making skills for medical treatment management and healthy lifestyle.3 Self-management interventions have received increasing attention as they have been shown to affect a range of outcomes, including all-cause hospitalization and
HF-related hospitalization.4,5 Despite favorable pooled effects, several recent large randomized trials have shown inconclusive results,6–8 raising new questions regarding the effectiveness of those interventions.

A possible explanation for the ambiguous findings across trials can be sought in the diversity of interventions being evaluated. Self-management interventions vary widely in terms of intensity, duration, content, and delivery.9 Analysis of multiple studies in a meta-analysis or meta-regression may provide insight into the program characteristics that are associated with better outcomes. This knowledge may contribute to the optimal design of effective self-management interventions.

Previous meta-analyses have tried to identify essential program characteristics by focusing on delivery of the intervention to patients. Interventions using face-to-face communication10 and a multidisciplinary team of interventionists10,11 were found to be more effective than interventions without these strategies. However, only a small selection of program characteristics was analyzed, isolated from other characteristics, thereby ignoring the possible impact of other characteristics on the outcome.12

Although aggregated data of studies allow for estimating global effects of program characteristics, using individual patient data (IPD) enables a uniform imputation of missing values and computation of treatment effects across studies.13 Analytic assumptions, such as uncertainties regarding program characteristics, can be checked with principal investigators, leading to a more reliable analysis.13 Our IPD meta-analysis aims to identify program characteristics of self-management interventions in patients with HF that affect HF-related quality of life (HF-QoL), mortality, all-cause, and HF-related hospitalization.

MATERIAL AND METHODS

Search strategy and study selection

This IPD meta-analysis only included studies of self-management interventions. All individual studies had received approval from their local ethics committees, and this IPD meta-analysis was exempted from the Medical Research Involving Human Subjects Act of the Netherlands by the Medical Ethics Research Committee of the University Medical Center Utrecht. To identify randomized trials on self-management interventions in patients with HF, the electronic databases of PubMed, EMBASE, Cochrane Central Register of Controlled Trials, PsycINFO and CINAHL were searched from January 1985 through June 2013 (for search syntax in PubMed see Supplementary material online, Table S1), as well as reference lists from systematic reviews.

Studies were selected by two independent researchers (N.H.J. and H.W.). Discrepancies were resolved through consensus with a third researcher (J.C.A.T.). Self-management interventions were defined as interventions providing HF-related information to patients and including at least two of the following characteristics: (1) stimulation of sign/symptom monitoring, (2) education on problem solving skills (i.e., self-treatment, stress/symptom management), and improvement of (3) medical treatment adherence, (4) physical activity, (5) dietary adherence, or (6) smoking cessation. Studies were included in the IPD meta-
analysis if they (1) fulfilled the requirements of the definition of self-management intervention, (2) had a randomized trial design, (3) included patients with a confirmed diagnosis of HF, (4) compared the self-management intervention to usual care or another self-management intervention, (5) reported data on one or more of the selected outcomes, (6) reported outcome assessment for at least 6 months follow-up, and (7) were reported in English, Dutch, French, German, Italian, Portuguese, or Spanish.

Data collection

The principal investigators of selected studies were invited to participate in this IPD meta-analysis and share their de-identified trial data. The complete list of all requested variables and details on collaboration with principal investigators are reported in the published study protocol.14 Data from each trial were checked on range, extreme values, internal consistency, missing values, and consistency with published reports.

Outcomes

To identify characteristics of effective self-management interventions across different health outcomes, this study focused on several main outcomes: HF-QoL at 6 and 12 month follow-up (as measured with Heart Failure Symptom Scale,15 Kansas City Cardiomyopathy Questionnaire,16 MacNew Heart Disease Health-related Quality of Life Instrument,17 or Minnesota Living With Heart Failure Questionnaire18), mortality (time to event, at 6 months, at 12 months), all-cause hospitalization (time to first event, at 6 months, at 12 months), and HF-related hospitalization (time to first event, at 6 months, at 12 months).

Program characteristics

A selection of program characteristics was identified as potential determinants of effective self-management interventions based on literature on self-management and behavior change and their presence across included studies:

1. Intensity: number of planned contacts between person who delivered the intervention and patient, including planned telephone contacts19
2. Duration: number of months that the intervention was planned to be delivered to the patient19
3. Standardized training: type of training given to person(s) who delivered the intervention to the patient (standardized protocolled training/heterogeneous non-protocolled training)20
4. Multidisciplinary team: type of interventionist(s) delivering the intervention to the patient (multidisciplinary team/single interventionist)10
5. Peer contact: contact with peer patients during the intervention, including remote contact such as telephone contact (yes/no)21,22
6. Keeping logs: stimulating patient to keep logs for monitoring symptoms (yes/no)23
7. Goal-setting skills: teaching patient goal-setting skills for management of the condition or behavior change (yes/no)21,22
8. Problem-solving skills: teaching patient problem-solving skills for management of the condition (yes/no)21,22

9. Seeking support: teaching patient skills for seeking support in social network, from caregivers, or from healthcare professionals (yes/no).21

Information on program characteristics was extracted for the intervention and control arms of all included studies, and confirmed by the principal investigators.

Statistical analysis

Original data from individual studies were merged to create one database. Missing values for baseline variables and outcomes were imputed within studies only using multiple imputation by chained equations (25 imputations),24 for an overview of missing values per study see Supplementary material online (Table S2). The imputed datasets were used for the primary analysis and results of imputed datasets were pooled using Rubin’s rules.25

All analyses were performed according to the intention-to-treat principle. Studies were analyzed using a one-stage approach, i.e., simultaneously analyzing all observations while accounting for clustering of observations and preserving randomization within studies.26 The continuous outcomes (HF-QoL at 6 and 12 months) were rescaled to ensure all scales were in similar direction. Effects were quantified by standardized mean differences (SMD) between intervention and control arms and analyzed using linear mixed effects models. Binary outcome data (mortality, all-cause, and HF-related hospitalization at 6 and 12 month follow-up) were analyzed with log-binomial mixed effects models, which estimated risk ratios (RRs). All mixed effects models included a random intercept and random slope for the treatment effect to take clustering within studies into account. For time-to-event endpoints, effects of self-management were quantified by estimating hazard ratios (HRs) using Cox proportional-hazard models, which included a frailty term for each study to account for clustering within studies. This frailty term was assumed to follow a normal distribution. The Cox proportional-hazard models were fitted using the frailty command from the R package survival.

As an intermediary step in the analysis, we estimated the main effects of the self-management interventions in general (i.e., without focusing on specific program characteristics). Main effects have been reported elsewhere,27 but are presented to enable a comparison of the effects of specific program characteristics with the overall effects.

The primary analysis comprised the identification of program characteristics of effective self-management interventions. Characteristics were evaluated one-by-one in separate analyses. One trial had two intervention arms5 and these were included as separate interventions in the analysis. To identify the effect of intensity and duration of interventions, the aforementioned models were repeated with the covariate for treatment (and random slope) being replaced by either intensity or duration of the intervention. Hence, the effects of intensity and duration were estimated irrespective of intervention arm. A different approach was applied for analyzing the binary program-specific characteristics. The studies were grouped according to the presence or absence of a binary program characteristic. Two regression models were then applied in parallel to estimate the treatment effect of self-
management within both sets of studies. Differences between the two estimated effects from the two sets of studies were tested using a Q-test for heterogeneity.\(^{28}\) Modification of the effects of program characteristics on clinical outcomes was considered statistically significant if this test yielded $P<0.05$. Only statistically significant findings from the primary analysis are presented to enable a direct comparison across the different endpoints.

Several sensitivity analyses were performed to assess robustness of findings from the primary univariable analysis (see Supplementary material online for details). All analyses were performed in R for Windows version 3.1.1 (R Development Core Team. Released 2013. Vienna, Austria: R Foundation for Statistical Computing).

RESULTS

Principal investigators of the 32 eligible studies were approached to participate in this IPD meta-analysis. Principal investigators of 20 studies responded positively and shared their de-identified trial data, representing 5624 patients in total.\(^{6,7,29–47}\) The investigators of five studies could not be contacted,\(^{8,48–51}\) four principal investigators were not willing to participate,\(^{52–55}\) and trial data of three studies were no longer available.\(^{56–58}\)

Baseline characteristics of HF patients are presented in Table 1. Variables were well-balanced over the intervention and control groups. The majority of patients were male (57%) and the average age was 69.7 years (SD 12.4). The mean left-ventricular ejection fraction was 39.2% (SD 18.2%) at baseline and most patients were in NYHA class II (39%) or III (37%). Median time since diagnosis of HF was 1.6 years (IQR 0.1–5.4).

Included interventions

Included studies have been presented previously\(^{27}\) and are described in Table 2. Studies were carried out between 1990 and 2007 in the United States,\(^{7,34,40–43}\) Netherlands,\(^{6,33,35,44}\) Sweden,\(^{29,37,46}\) Spain,\(^{30,31}\) Canada,\(^{47}\) Germany,\(^{39}\) Japan,\(^{38}\) Switzerland,\(^{36}\) and United Kingdom.\(^{32}\) Sample size ranged from 42\(^{36}\) to 1023 patients.\(^{6}\) Included interventions had an average intensity of 11.5 planned contacts (range 1.6–32) and duration of 8.7 months (range 0.5–18). Table 3 presents program characteristics per intervention. The majority of interventions (15/21) used a standardized protocol to train interventionists. Eight interventions (38%) involved a multidisciplinary team, two (10%) included contacts with peers, and nine (43%) used logs for symptom monitoring. Patients were taught goal-setting skills in five interventions (24%), problem-solving skills in six (29%), and seeking support in twelve interventions (57%).

Primary analysis of program characteristics

None of the program characteristics in self-management interventions was effective for all endpoints considered. However, several program characteristics showed an effect on one or more endpoints (Table 4). Figure 1 presents a forest plot for the effect on time to first all-cause hospitalization across different program characteristics. The duration of the interventions reduced risk on time to death, with a declining risk for each additional month of the intervention (HR 0.99, 95% CI 0.97–0.999). A similar effect was observed for time to
first HF-related hospitalization (HR 0.98, 95% CI 0.96–0.99) and HF-related hospitalization at 6 month follow-up (RR 0.96, 95% CI 0.92–0.995).

Interventions with standardized training of interventionists showed no treatment effects in contrast to favorable effects for interventions with heterogeneous training on time to first all-cause hospitalization (interaction P=0.001), all-cause hospitalization at 6 months (interaction P=0.009), at 12 months (interaction P=0.014), and time to first HF-related hospitalization (interaction P=0.022). Interventions with a multidisciplinary team showed no treatment effect on time to first HF-related hospitalization, while the interventions delivered by one person reduced the risk (interaction P=0.045). The one intervention comprising peer contact in the analysis of mortality showed an increased risk on time to death (HR 2.01, 95% CI 1.15–3.53) and mortality at 6 months (RR 1.88, 95% CI 0.89–3.96), while the interventions without peer contact reduced risk on time to death (HR 0.86, 95% CI 0.75–0.99, interaction P=0.004) and mortality at 6 months (RR 0.79, 95% CI 0.63–0.97, interaction P=0.028). Interventions including log keeping showed no effects while interventions without logs showed favorable effects on time to first all-cause hospitalization (interaction P ≤0.001), all-cause hospitalization at 12 months (interaction P=0.035), and time to first HF-related hospitalization (interaction P=0.001). Interventions including goal-setting skills showed a trend towards increased risk compared to risk reductions for interventions without goal-setting skills on time to first all-cause hospitalization (interaction P=0.023), all-cause hospitalization at 12 months (interaction P=0.006), and HF-related hospitalization at 12 months (interaction P=0.029).

Sensitivity analysis

Observational analysis of the data in a multivariable model confirmed the direction of effects, except for the effects of standardized training (HR 0.55, 95% CI 0.29–1.08) and multidisciplinary teams (HR 0.91, 95% CI 0.64–1.29) on time to HF-related hospitalization, now both appearing advantageous (see Supplementary material online, Table S3). The sensitivity analyses, consisting of a complete-case analysis, repeating the analyses by excluding the largest trial, and pooling the published main effects of studies without individual patient data available (see Supplementary material online, Table S4) yielded similar findings compared to the primary analysis.

Two post hoc sensitivity analyses were performed to check for possible confounding by a time effect, i.e. a possible decrease of treatment effects over time due to improvements in usual care. One post hoc analysis included only older studies (recruitment through 2000, N=10), while the second analysis included only recent studies (recruitment after 2000, N=10). Although effect sizes were more pronounced in the subset of older studies, the direction of the effects of program characteristics remained similar to the primary analysis (see Supplementary material online, Table S5).

DISCUSSION

This IPD meta-analysis contributes to the discussion on the optimal design of self-management interventions for patients with HF. Even analyzing 20 trials representing 5624 patients, we could not identify program characteristics that showed a consistent pattern in
modifying the effects of self-management interventions across all outcomes considered. However, longer duration of self-management interventions reduced the risk on mortality and HF-related hospitalization with 1–4% for each increasing month of the intervention. Unfavorable associations were observed for standardized training of interventionists, log keeping, goal-setting, and peer contact, but only on specific outcomes.

Meta-analyses of similar interventions have shown that the use of multidisciplinary teams10,11 and face-to-face contact10 improved outcomes in patients with HF. Our primary analysis suggested only that a longer duration of self-management interventions was more effective. It is likely that sustained contact over time with a healthcare professional who helps identify signs and symptoms of decompensation may support the patient’s self-management. A similar finding was reported by a meta-analysis of HF disease management programs, which found an association between longer follow-up of programs and reduced risk of mortality.59

In contrast to the previous meta-analyses,10,11 we found a less favorable effect of multidisciplinary teams compared to a single interventionist on time to first HF-related hospitalization. This effect disappeared after adjustment for other program characteristics, suggesting a correlation with the presence of other characteristics. Since this effect disappears, we do not believe our study contradicts the favorable association reported by previous meta-analyses. The other beneficial characteristic revealed by the prior meta-analysis, face-to-face contact,10 could not be analyzed in our study since it was known a priori that nearly all eligible interventions used face-to-face contact. Overall, the self-management interventions elicited favorable main effects on HF-QoL and HF-related hospitalization. These effects could not be attributed to any of the binary characteristics considered in our study. The face-to-face contact present in nearly all intervention arms might be a critical characteristic in explaining the favorable effects of self-management interventions and this possibility deserves attention in future research.

From earlier work on social cognitive theory21,22 and meta-regressions on effective behavior change techniques,20,23 we assumed that standardized training of interventionists, keeping logs for symptom-monitoring, goal-setting, and contact with peers would positively influence the effect of self-management interventions. However, our findings were counterintuitive and showed that self-management interventions comprising those characteristics resulted in less favorable outcomes than interventions without those characteristics. It may be that studies had commonalities on methodological aspects or on other characteristics which confounded our results,60 for example, additional (medical) care provided along with the self-management intervention. Inspection of other study characteristics and aggregate baseline variables in tables61 revealed that there was a tendency for the self-management program characteristics to be particularly present in more recently conducted studies. We hypothesized that treatment effects may have decreased over time, because usual care has evolved due to insights from research (i.e., new treatments, more comprehensive care protocols). Although the post hoc sensitivity analyses did not confirm this hypothesis, differences in usual care given to control patients or additional care given in the intervention arms might still be confounding factors for the observed effects.
The information on usual care was limited and we could not appropriately adjust for the wide diversity in usual care in our analysis.

Without a clear explanation for the unfavorable effects, it would be unjustified to recommend that self-management interventions should not comprise specific program characteristics. The large number of program characteristics analyzed increases the chance of false positive findings and any observed effect therefore should be considered explorative rather than confirmative. Considering the complex nature of self-management interventions, we might even question the extent that researchers should look at isolated program characteristics of complex self-management interventions in a meta-regression analysis, since the interventions were designed as a cohesive compilation instead of separate characteristics. Our findings support the notion that effectiveness of self-management interventions may not be attributable to specific program characteristics, but rather that certain types of interventions show a pattern of effects which is dependent on the context in which the intervention is delivered.

From this perspective, this IPD meta-analysis should be considered the first large effort towards identifying characteristics of effective self-management interventions in patients with HF. It applied a careful data collection and analysis, and the causal nature of effect modifiers was addressed by checking the primary findings on confounding factors. Nevertheless, several limitations are worth discussing. First, despite the inclusion of twenty studies and data on 5624 patients, the number of studies was too restricted for multivariable analysis using mixed effects models, limiting causal interpretation of our findings. Second, the use of meta-regression techniques required a categorization of program-specific features. This may have left room for interpretation of categories and may have created large, still heterogeneous sets of studies being grouped together (i.e., goal-setting in one study may have differed from that in another study). Underreporting of intervention details prevented us from creating detailed categories following existing taxonomies like the behavior change technique taxonomy, which deserves attention by future trials. Finally, fidelity to study protocols and adherence to interventions by patients was unknown in a majority of included studies. Process evaluations of behavioral interventions such as self-management interventions have shown that fidelity to study protocols is often compromised, consequently patients in the intervention groups might have actually received different program characteristics than assumed. The unavailability of these data prevented assessment of the impact of treatment compliance on the outcomes. This IPD meta-analysis highlights the need for incorporating the complexity of this type of intervention in the study design, e.g. through carefully defining intervention components, planning feasibility studies and process evaluations of intervention delivery alongside trials. This may contribute to a thorough understanding of how the intervention exerts its effects.

CONCLUSIONS

Despite the large numbers of patients included in this IPD meta-analysis, no specific program characteristics could be identified that were clearly associated with better outcomes of self-management interventions. There were indications that a longer duration positively modified the effects of self-management interventions on several outcomes, supporting
sustained contact over time between healthcare professionals and patients with HF. Advances in usual care for patients with HF over time may have confounded the effects observed. Future research using factorial trial designs and process evaluations is needed to assess adherence to self-management interventions and understand the mechanism whereby self-management interventions enhance clinical outcomes in patients with HF.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

FUNDING

This work was supported by the Dutch Ministry of Health, Welfare and Sports, ZonMw [grant number 520001002]. The funding source had no involvement in study design; in the collection, analysis and interpretation of data; in the writing of the report; nor in the decision to submit the article for publication.

References

1. Mosterd A, Hoes AW. Clinical epidemiology of heart failure. Heart. 2007; 93:1137–1146. [PubMed: 17699180]
2. McDonagh TA, Blue L, Clark AL, Dahlström U, Ekman I, Lainscak M, et al. European Society of Cardiology Heart Failure Association Standards for delivering heart failure care. Eur J Heart Fail. 2011; 13:235–241. DOI: 10.1093/eurjhf/hfq221 [PubMed: 21159794]
3. Barlow J, Wright C, Sheasby J, Turner A, Hainsworth J. Self-management approaches for people with chronic conditions: a review. Pat Educ Couns. 2002; 48:177–187.
4. Jovicic A, Holroyd-Leduc JM, Straus SE. Effects of self-management intervention on health outcomes of patients with heart failure: a systematic review of randomized controlled trials. BMC Cardiovasc Disord. 2006; 6:43. [PubMed: 17081306]
5. Ditewig JB, Blok H, Havers J, van Veenendaal H. Effectiveness of self-management interventions on mortality, hospital readmissions, chronic heart failure hospitalization rate and quality of life in patients with chronic heart failure: a systematic review. Patient Educ Couns. 2010; 78:297–315. DOI: 10.1016/j.pec.2010.01.016 [PubMed: 20202778]
6. Jaarsma T, van der Wal MH, Lesman-Leegte I, Luttik ML, Hogenhuis J, Veeger NJ, et al. Effect of moderate or intensive disease management program on outcome in patients with heart failure: Coordinating Study Evaluating Outcomes of Advising and Counseling in Heart Failure (COACH). Arch Intern Med. 2008; 168:316–324. DOI: 10.1001/archinternmed.2007.83 [PubMed: 18268174]
7. DeWalt DA, Schillinger D, Ruo B, Bibbins-Domingo K, Baker DW, Holmes GM, et al. Multisite randomized trial of a single-session versus multisession literacy-sensitive self-care intervention for patients with heart failure. Circulation. 2012; 125:2854–2862. DOI: 10.1161/CIRCULATIONAHA.111.081745 [PubMed: 22572916]
8. Powell LH, Calvin JE Jr, Richardson D, Janssen I, Mendes de Leon CF, Flynn KJ, et al. Self-management counseling in patients with heart failure: the heart failure adherence and retention randomized behavioral trial. JAMA. 2010; 304:1331–1338. DOI: 10.1001/jama.2010.1362 [PubMed: 20858878]
9. Krumholz HM, Currie PM, Riegel B, Phillips CO, Peterson ED, Smith RY, et al. A taxonomy for disease management: a scientific statement from the American Heart Association Disease Management Taxonomy Writing Group. Circulation. 2006; 114:1432–1445. [PubMed: 16952985]
10. Sochalski J, Jaarsma T, Krumholz HM, Laramee A, McMurray JJ, Naylor MD, et al. What works in chronic care management: the case of heart failure. Health Aff. 2009; 28:179–189. DOI: 10.1377/hlthaff.28.1.179
11. McAlister FA, Stewart S, Ferrua S, McMurray JJ. Multidisciplinary strategies for the management of heart failure patients at high risk for admission: a systematic review of randomized trials. J Am Coll Cardiol. 2004; 44:810–819. [PubMed: 15312864]

12. Clark AM, Thompson DR. What heart failure program works best? Wrong question, wrong assumptions. Eur J Heart Fail. 2010; 12:1271–1273. DOI: 10.1093/eurjhf/hfq164 [PubMed: 20870673]

13. Schmid CH, Stark PC, Berlin JA, Landais P, Lau J. Meta-regression detected associations between heterogeneous treatment effects and study-level, but not patient-level, factors. J Clin Epidemiol. 2004; 57:683–697. [PubMed: 15358396]

14. Jonkman NH, Westland H, Trappenburg JC, Groenwold RHH, Effing-Tijdhof TW, Troosters T, et al. Towards tailoring of self-management for patients with chronic heart failure or chronic obstructive pulmonary disease: a protocol for an individual patient data meta-analysis. BMJ Open. 2014; 4:e005220. doi: 10.1136/bmjopen-2014-005220

15. Baker DW, Brown J, Chan KS, Dracup KA, Keeler EB. A telephone survey to measure communication, education, self-management, and health status for patients with heart failure: the Improving Chronic Illness Care Evaluation (ICICE). J Card Fail. 2005; 11:36–42. [PubMed: 15704062]

16. Green CP, Porter CB, Bresnahan DR, Spertus JA. Development and evaluation of the Kansas City Cardiomyopathy Questionnaire: a new health status measure for heart failure. J Am Coll Cardiol. 2000; 35:1245–1255. [PubMed: 10758967]

17. Hofer S, Lim L, Guyatt G, Oldridge N. The MacNew Heart Disease health-related quality of life instrument: a summary. Health Qual Life Outcomes. 2004; 2:3. [PubMed: 14713315]

18. Rector TS, Kubo SH, Cohn JN. Patients’ self-assessment of their congestive heart failure. Part 2: content, reliability and validity of a new measure, the Minnesota Living with Heart Failure Questionnaire. Heart Failure. 1987; 3:198–209.

19. Conn VS, Cooper PS, Ruppar TM, Russell CL. Searching for the intervention in intervention research reports. J Nurs Scholarsh. 2008; 40:52–59. DOI: 10.1111/j.1547-5069.2007.00206.x [PubMed: 18302592]

20. Weingarten SR, Henning JM, Badamgarav E, Knight K, Hasselblad V, Gano A Jr, et al. Interventions used in disease management programs for patients with chronic illness—which ones work? Meta-analysis of published reports. BMJ. 2002; 325:925. [PubMed: 12399340]

21. Lorig KR, Holman H. Self-management education: history, definition, outcomes, and mechanisms. Ann Behav Med. 2003; 26:1–7. [PubMed: 12867348]

22. Bandura A. Health promotion by social cognitive means. Health Educ Behav. 2004; 31:143–164. [PubMed: 15090118]

23. Michie S, Abraham C, Whittington C, McAteer J, Gupta S. Effective techniques in healthy eating and physical activity interventions: a meta-regression. Health Psychol. 2009; 28:690–701. DOI: 10.1037/a0016136 [PubMed: 19916637]

24. Groothuis-Oudshoorn K, van Buuren S. MICE: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software. 2011; 45

25. Rubin, DB. Multiple imputation for non-response in surveys. New York: John Wiley & Sons; 1987.

26. Stewart GB, Altman DG, Askie LM, Duley L, Simmonds MC, Stewart LA. Statistical analysis of individual participant data meta-analyses: a comparison of methods and recommendations for practice. PLoS One. 2012; 7:e46042. doi: 10.1371/journal.pone.0046042 [PubMed: 23056232]

27. Jonkman NH, Westland H, Groenwold RHH, Ägren S, Atienza F, Blue L, et al. Do self-management interventions work in patients with heart failure? An individual patient data meta-analysis. Circulation. 2016; 133:1189–1198. DOI: 10.1161/CIRCULATIONAHA.115.018006 [PubMed: 26873943]

28. Borenstein, M.; Hedges, LV .; Higgins, JPT.; Rothstein, HR. Introduction to Meta-Analysis. Chichester: John Wiley & Sons; 2009.

29. Agren S, Evangelista LS, Hjelm C, Stromberg A. Dyads affected by chronic heart failure: a randomized study evaluating effects of education and psychosocial support to patients with heart failure and their partners. J Card Fail. 2012; 18:359–366. DOI: 10.1016/j.cardfail.2012.01.014 [PubMed: 22555264]
30. Aldamiz-Echevarría I, Muñiz J, Rodríguez-Fernández JA, Vidán-Martínez L, Silva-César M, Lamelo-Alfonsín F, et al. Randomized controlled clinical trial of a home care unit intervention to reduce readmission and death rates in patients discharged from hospital following admission for heart failure. Revista española de cardiología. 2007; 60:914–922. [PubMed: 17915147]

31. Atienza F, Anguita M, Martínez-Alzamora N, Osca J, Ojeda S, Almenar L, et al. Multicenter randomized trial of a comprehensive hospital discharge and outpatient heart failure management program. Eur J Heart Fail. 2004; 6:643–652. DOI: 10.1016/j.ejheart.2003.11.023 [PubMed: 15302014]

32. Blue L, Lang E, McMurray JJ, Davie AP, McDonagh TA, Murdoch DR, et al. Randomized controlled trial of specialist nurse intervention in heart failure. BMJ. 2001; 323:715–718. [PubMed: 11576977]

33. Bruggink-Andre de la Porte PW, Lok DJ, van Veldhuisen DJ, van Wijngaarden J, Cornel JH, Zuithoff NPA, et al. Added value of a physician-and-nurse-directed heart failure clinic: results from the Davenport-ALKmaar heart failure study. Heart. 2007; 93:819–825. [PubMed: 17065182]

34. Heisler M, Halasyamani L, Cowen ME, Davis MD, Resnicow K, Strawderman RL, et al. A Randomized Controlled Effectiveness Trial of Reciprocal Peer Support in Heart Failure. Circ Heart Fail. 2013; 6:246–253. DOI: 10.1161/CIRCHEARTFAILURE.112.000147 [PubMed: 23388114]

35. Jaarsma T, Halfens R, Huijer Abu-Saad H, Dracup K, Gorgels T, van Ree J, et al. Effects of education and support on self-care and resource utilization in patients with heart failure. Eur Heart J. 1999; 20:673–682. DOI: 10.1053/euhj.1998.1341 [PubMed: 10208788]

36. Leventhal ME, Denhaerynck K, Brunner-La Rocca HP, Burnand B, Conca-Zeller A, Bernasconi AT, et al. Swiss Interdisciplinary Management Program for Heart Failure (SWIM-HF): a randomized controlled trial study of an outpatient inter-professional management program for heart failure patients in Switzerland. Swiss Med Wkly. 2011; 141:w13171.doi: 10.4414/smw.2011.13171 [PubMed: 21384285]

37. Martensson J, Stromberg A, Dahlstrom U, Karlsson JE, Fridlund B. Patients with heart failure in primary health care: effects of a nurse-led intervention on health-related quality of life and depression. Eur J Heart Fail. 2005; 7:393–403. [PubMed: 15718180]

38. Otsu H, Moriyama M. Effectiveness of an educational self-management program for outpatients with chronic heart failure. Jpn J Nurs Sci. 2011; 8:140–152. DOI: 10.1111/j.1742-7924.2010.00166.x [PubMed: 22117578]

39. Peters-Klimm F, Campbell S, Hermann K, Kunz CU, Muller-Tasch T, Szecsenyi J. Case management for patients with chronic systolic heart failure in primary care: the HICMan exploratory randomized controlled trial. Trials. 2010; 11:56:doi: 10.1186/1745-6215-11-56 [PubMed: 20478035]

40. Rich MW, Beckham V, Wittenberg C, Leven CL, Freedland KE, Carney RM. A multidisciplinary intervention to prevent the readmission of elderly patients with congestive heart failure. N Engl J Med. 1995; 333:1190–1195. DOI: 10.1056/NEJM199511023331806 [PubMed: 7565975]

41. Riegel B, Carlson B, Kopp Z, LePetri B, Glaser D, Unger A. Effect of a standardized nurse case-management telephone intervention on resource use in patients with chronic heart failure. Arch Intern Med. 2002; 162:705–712. [PubMed: 11917276]

42. Riegel B, Carlson B, Glaser D, Romero T. Randomized controlled trial of telephone case management in Hispanics of Mexican origin with heart failure. J Card Fail. 2006; 12:211–219. [PubMed: 16624687]

43. Sisk JE, Hebert PL, Horowitz CR, McLaughlin MA, Wang JJ, Chassin MR. Effects of nurse management on the quality of heart failure care in minority communities: a randomized trial. Ann Intern Med. 2006; 145:273–283. [PubMed: 16908918]

44. Smeeulders ES, van Haastregt JC, Amhergen T, Janssen-Boyne JJ, van Eijk JT, Kempen GI. The impact of a self-management group program on health behaviour and healthcare utilization among congestive heart failure patients. Eur J Heart Fail. 2009; 11:609–616. DOI: 10.1093/eurjhf/hfp047 [PubMed: 19359326]

45. Smeeulders ES, van Haastregt JC, Amhergen T, Uszko-Lencer NH, Janssen-Boyne JJ, Gorgels AP, et al. Nurse-led self-management group program for patients with congestive heart failure:

J Card Fail. Author manuscript; available in PMC 2017 November 01.
randomized controlled trial. J Adv Nurs. 2010; 66:1487–1499. DOI: 10.1111/j.1365-2648.2010.05318.x [PubMed: 20492026]

46. Stromberg A, Martensson J, Fridlund B, Levin LA, Karlsson JE, Dahlstrom U. Nurse-led heart failure clinics improve survival and self-care behaviour in patients with heart failure: results from a prospective, randomized trial. Eur Heart J. 2003; 24:1014–1023. [PubMed: 12788301]

47. Tsuyuki RT, Fradette M, Johnson JA, Bungard TJ, Eurich DT, Ashton T, et al. A multicenter disease management program for hospitalized patients with heart failure. J Card Fail. 2004; 10:473–480. [PubMed: 15599837]

48. Cline CM, Israelsson BY, Willenheimer RB, Broms K, Erhardt LR. Cost effective management program for heart failure reduces hospitalization. Heart. 1998; 80:442–446. [PubMed: 9930041]

49. Ramachandran K, Husain N, Maikhuri R, Seth S, Vij A, Kumar M, et al. Impact of a comprehensive telephone-based disease management program on quality-of-life in patients with heart failure. Natl Med J India. 2007; 20:67–73. [PubMed: 17802984]

50. Doughty RN, Wright SP, Pearl A, Walsh HJ, Muncaster S, Whalley GA, et al. Randomized, controlled trial of integrated heart failure management: The Auckland Heart Failure Management Study. Eur Heart J. 2002; 23:139–146. DOI: 10.1053/euhj.2001.2712 [PubMed: 11785996]

51. Varma S, McElnay JC, Hughes CM, Passmore AP, Varma M. Pharmaceutical care of patients with congestive heart failure: interventions and outcomes. Pharmacotherapy. 1999; 19:860–869. [PubMed: 10417035]

52. Angermann CE, Stork S, Gelbrich G, Faller H, Jahns R, Frantz S, et al. Mode of action and effects of standardized collaborative disease management on mortality and morbidity in patients with systolic heart failure: the Interdisciplinary Network for Heart Failure (INH) study. Circ Heart Fail. 2012; 5:25–35. DOI: 10.1161/CIRCHEARTFAILURE.111.962969 [PubMed: 21956192]

53. Shively MJ, Gardetto NJ, Kodiath MF, Kelly A, Smith TL, Stepnowsky C, et al. Effect of Patient Activation on Self-Management in Patients With Heart Failure. J Cardiovasc Nurs. 2013; 1:20–34. DOI: 10.1097/JCN.0b013e3182399f9f

54. Shively M, Kodiath M, Smith TL, Kelly A, Bone P, Fetterly L, et al. Effect of behavioral management on quality of life in mild heart failure: a randomized controlled trial. Patient Educ Couns. 2005; 58:27–34. [PubMed: 15950833]

55. Wakefield BJ, Ward MM, Holman JE, Ray A, Scherubel M, Burns TL, et al. Evaluation of home telehealth following hospitalization for heart failure: a randomized trial. Telemed J E Health. 2008; 14:753–761. DOI: 10.1089/tmj.2007.0131 [PubMed: 18954244]

56. Bocchi EA, Cruz F, Guimaraes G, Pinho Moreira LF, Issa VS, Ferreira SM, et al. Long-term prospective, randomized, controlled study using repetitive education at six-month intervals and monitoring for adherence in heart failure outpatients: the REMADHE trial. Circ Heart Fail. 2008; 1:115–124. DOI: 10.1161/CIRCHEARTFAILURE.107.744870 [PubMed: 19808281]

57. Dewalt DA, Malone RM, Bryant ME, Kosnar MC, Corr KE, Rothman RL, et al. A heart failure self-management program for patients of all literacy levels: a randomized, controlled trial. BMC Health Serv Res. 2006; 6:30. [PubMed: 16533388]

58. Dunagan WC, Littenberg B, Ewald GA, Jones CA, Emery VB, Waterman BM, et al. Randomized trial of a nurse-administered, telephone-based disease management program for patients with heart failure. J Card Fail. 2005; 11:358–365. [PubMed: 15948086]

59. Gohler A, Januzzi JL, Worrell SS, Osterziel KJ, Gazelle GS, Dietz R, et al. A systematic meta-analysis of the efficacy and heterogeneity of disease management programs in congestive heart failure. J Card Fail. 2006; 12:554–67. [PubMed: 16952790]

60. Thompson SG, Higgins JP. How should meta-regression analyses be undertaken and interpreted? Stat Med. 2002; 21:1559–1573. [PubMed: 12111920]

61. Pigott T, Shepperd S. Identifying, documenting, and examining heterogeneity in systematic reviews of complex interventions. J Clin Epidemiol. 2013; 66:1244–1250. DOI: 10.1016/j.jclinepi.2013.06.013 [PubMed: 23953079]

62. Clark AM, Thirsk LM, Wiens KS, Ski CF, Thompson DR. How to research the mechanisms of non-pharmacological cardiac interventions. International Journal of Cardiology. 2015; 201:457–461. DOI: 10.1016/j.ijcard.2015.08.114 [PubMed: 26313866]
63. Michie S, Richardson M, Johnston M, Abraham C, Francis J, Hardeman W, et al. The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: building an international consensus for the reporting of behavior change interventions. Ann Behav Med. 2013; 46:81–95. DOI: 10.1007/s12160-013-9486-6 [PubMed: 23512568]

64. Hardeman W, Michie S, Fanshawe T, Prevost AT, Mcloughlin K, Kinmonth AL. Fidelity of delivery of a physical activity intervention: predictors and consequences. Psychol Health. 2008; 23:11–24. DOI: 10.1080/08870440701615948 [PubMed: 25159904]

65. Kennedy A, Rogers A, Bowen R, Lee V, Blakeman T, Gardner C, et al. Implementing, embedding and integrating self-management support tools for people with long-term conditions in primary care nursing: A qualitative study. Int J Nurs Stud. 2014; 51:1103–1113. DOI: 10.1016/j.ijnurstu.2013.11.008 [PubMed: 24373719]

66. Gelbrich G, Stork S, Kreissl-Kemmer S, Faller H, Prettin C, Heuschmann PU, et al. Effects of structured heart failure disease management on mortality and morbidity depend on patients’ mood: results from the Interdisciplinary Network for Heart Failure Study. Eur J Heart Fail. 2014; 16:1133–1141. DOI: 10.1002/ejhf.150 [PubMed: 25142121]
Figure 1.
Forest plot of effects of self-management interventions on time to first all-cause hospitalization with subgroup effects for program characteristics.
CI=confidence interval; HR=hazard ratio.
Table 1
Baseline characteristics of heart failure patients in control and self-management intervention arm included in the individual patient data meta-analysis.

Characteristic	Control (n=2674)	Intervention (n=2950)	Total (n=5624)
Sex			
Male	1505 (56.2)	1711 (58.0)	3126 (57.2)
Female	1169 (43.7)	1239 (42.0)	2408 (42.8)
Age - mean (SD)	69.9 (12.3)	69.6 (12.4)	69.7 (12.4)
Percentage LVEF - mean (SD)	39.7 (18.4)	38.7 (18.1)	39.2 (18.2)
NYHA Class			
NYHA I	190 (7.5)	168 (6.0)	358 (6.7)
NYHA II	951 (37.7)	1149 (41.0)	2100 (39.4)
NYHA III	899 (35.6)	1065 (38.0)	1964 (36.9)
NYHA IV	484 (19.2)	422 (15)	906 (17.0)
Years since diagnosis - median (IQR)	2.0 (0.1–6.0)	1.3 (0.1–5.2)	1.6 (0.1–5.4)
Level of education			
Primary education or below	807 (42.3)	910 (39.4)	1717 (40.7)
Secondary education	711 (37.3)	939 (40.6)	1650 (39.1)
Higher education	388 (20.4)	461 (20.0)	849 (20.1)
Living status			
Living with others	1064 (75.2)	1076 (73.2)	2140 (74.2)
Living alone	350 (24.8)	393 (26.8)	743 (25.8)
Clusters of comorbid conditions			
Cardiovascular	1354 (59.7)	1310 (52.3)	2664 (55.8)
Endocrine	870 (36.2)	932 (34.6)	1802 (35.4)
Neurological/psychiatric	343 (17.8)	389 (17.5)	732 (17.6)
Respiratory	506 (27.0)	558 (25.7)	1664 (26.3)
Renal/hepatic/gastrointestinal	303 (24.7)	377 (24.7)	680 (24.7)
Musculoskeletal	76 (11.7)	147 (14.1)	223 (13.2)

LVEF, left ventricular ejection fraction; NYHA, New York Heart Association.

Values are n (%), mean (SD) or median (interquartile range).
Table 2
Description of trials on self-management in heart failure patients included in the individual patient data meta-analysis.

Study	Country	Sample size	Start recruitment	Setting	Control group	Intervention group	Duration (months)³
Agren 2012²⁹	Sweden	155	2005	Clinic/hospital or home	Usual care (standard care in hospital and outpatient education and support)	3 individual sessions for patient and partner by nurse	3
Aldamiz 2007³⁰	Spain	279	2001	Clinic/hospital and home	Usual care (follow-up in primary healthcare)	4 home visits by nurse/physician	0.5
Atienza 2004¹¹	Spain	338	1999	Clinic/hospital	Usual care (discharge planning according to protocol)	1 individual session prior to discharge by nurse, 1 visit to physician, 3-monthly follow-up visits and tele-monitoring	12
Blue 2001²²	United Kingdom	165	1997	Clinic/hospital and home	Usual care (follow-up by admitting physician and in primary healthcare)	Home visits by nurse, follow-up telephone calls with intensity based on patient's need	12
Bruggink 2007³³	Netherlands	240	2000	Clinic/hospital	Usual care (including optimal application of medical therapy)	2 individual sessions by nurse/physician, 1 telephone call, follow-up 6 visits	12
DeWalt 2012⁷	United States	605	2007	Clinic/hospital	Enhanced usual care (1 initial session on self-management and educational manual)	1 individual session by trained health educator, follow-up multiple telephone calls	12
Heisler 201³⁴	United States	266	2007	Clinic/hospital and home	Enhanced usual care (1 group session on self-management and educational materials)	1 group session by lay peer tutor, weekly telephone contact with matched peer, follow-up 3 optional group sessions	6
Jaarsma 1999³⁵	Netherlands	179	1994	Clinic/hospital and home	Usual care (possibly including written/oral information)	1 home visit and 1 telephone call after discharge by nurse	0.5
Study	Country	Sample size	Start recruitment	Setting	Control group	Intervention group	Duration (months) *
------------	---------------	-------------	-------------------	--------------------------	---	---	-------------------
Jaarsma 2008⁶	Netherlands	1023	2002	Clinic/hospital	Usual care (standard management by cardiologist)	a. 2 individual session by cardiologist, 9 visits to nurse, possibility to contact nurse	18
						b. 2 individual sessions by cardiologist, 18 visits to nurse, 2 home visits, 2 multidisciplinary sessions, follow-up telephone contact by nurse	
Leventhal 2011³⁶	Switzerland	42	2003	Clinic/hospital and Home	Enhanced usual care (lifestyle recommendations and educational booklet)	1 home visit by nurse, educational booklet, follow-up 17 telephone calls	12
Martensson 2005³⁷	Sweden	153	1999	Home (recruited general practice)	Usual care (follow-up in multidisciplinary primary healthcare)	1 individual session by nurse, follow-up educational CD-ROM and telephone contact	12
Otsu 2011³⁸	Japan	102	2007	Clinic/hospital	Usual care (follow-up at a medical facility)	6 individual sessions by nurse	6
Peters-Klimm 2010³⁹	Germany	197	2006	Home (recruited general practice)	Usual care (follow-up in primary healthcare)	1 individual session by nurse/physician, follow-up 3 home visits and telephone calls	12
Rich 1995⁴⁰	United States	282	1990	Clinic/hospital and home	Usual care (follow-up by primary physician)	Daily visits by multidisciplinary professionals during hospitalization, follow-up home visits and telephone calls by nurse at decreasing intensity	3
Riegel 2002⁴¹	United States	358	1998	Telephonic case-management	Usual care (not standardized, possibly including education on heart failure management)	Telephone calls by nurse at decreasing intensity	6
Riegel 2006⁴²	United States	135	2002	Telephonic case-management	Usual care (not standardized, possibly including education on heart failure management)	Telephone calls by nurse at decreasing intensity	6
Study	Country	Sample size	Start recruitment	Setting	Control group	Intervention group	Duration (months)*
----------------------------	-------------	-------------	-------------------	---------------	--	--	-------------------
Sisk 2006⁴³	United States	406	1999	Clinic/hospital	Usual care (including federal guidelines on heart failure)	1 individual session by nurse, follow-up telephone calls	12
Smelanders 2009^{44,45}	Netherlands	317	2004	Clinic/hospital	Usual care (including regular check-ups with cardiologist and/or nurse specialist in outpatient clinic)	6 group sessions by lay peer tutor and nurse, booklet, follow-up telephone contact with co-participants	1.5
Stromberg 2003⁴⁶	Sweden	106	1997	Clinic/hospital	Usual care (follow-up in primary healthcare)	1 clinic visit shortly after discharge by nurse, individualised follow-up (face-to-face and/or telephone)	12
Tsuyuki 2004⁴⁷	Canada	276	1999	Clinic/hospital	Usual care (including general brochure on heart disease)	1 individual session by pharmacist, follow-up 7 telephone calls by nurse	6

*Duration of the self-management intervention evaluated in the study.
Table 3

Program characteristics of the different self-management interventions in patients with heart failure included in the individual patient data meta-analysis.

Study	Year recruitment	Standardised training	Multidisciplinary team	Peer contact	Keeping logs	Goal-setting skills	Problem-solving skills	Seeking support
Rich 1995⁴⁰	1990	X			X			X
Jaarsma 1999⁵	1994		X					X
Blue 2001²	1997	X						X
Stromberg 2003⁴⁶	1997	X						X
Riegel 2002⁴¹	1998	X						X
Sisk 2006⁴³	1999	X						X
Atienza 2004⁴¹	1999		X					
Tsuyuki 2004⁴⁷	1999	X						
Martensson 2005³⁷	1999		X					
Bruggink 2007³³	2000	X						
Aldaniz 2007³⁰	2001		X					
Jaarsma 2008a⁴	2002	X						
Jaarsma 2008b⁵	2002	X		X	X			
Riegel 2006⁴²	2002	X						X
Leventhal 2011³⁸	2003	X		X	X	X		
Smulders 2009^{44,45}	2004	X		X	X	X		
Agren 2012²⁹	2005		X	X	X	X		
Peters-Klimm 2010³⁹	2006	X		X	X	X		
DeWalt 2012⁷	2007	X		X			X	
Heisler 2013³⁴	2007	X		X	X			
Otzu 2011³⁸	2007	X		X				

* = Study comprised two different intervention arms.
Table 4
Effects of self-management interventions and characteristics in patients with heart failure included in the individual patient data meta-analysis.

Outcome	N studies	n patients	Analysis	Effect measure	Effect (95% CI)	P-value for heterogeneity
HF-related quality of life						
6 months follow-up	10	3419	Intervention effect	SMD	0.13 (0.00–0.26)	NA*
			No significant characteristic			
12 months follow-up	11	3356	Intervention effect	SMD	0.15 (0.00–0.30)	NA
			No significant characteristic			
Mortality						
Time to event	14	4312	Intervention effect	HR	0.91 (0.79–1.04)	NA
	14	4312	Duration (per month)	0.99 (0.97–0.999)	0.045	
	1	266	Peer contact	2.01 (1.15–3.53)	0.004	
	13	4046	No peer contact	0.86 (0.75–0.99)		
6 months follow-up	17	4985	Intervention effect	RR	0.83 (0.66–1.05)	NA
	17	4985	Intensity (per contact)	0.97 (0.94–0.99)	0.007	
	1	266	Peer contact	1.88 (0.89–3.96)	0.028	
	16	4719	No peer contact	0.79 (0.63–0.97)		
12 months follow-up	14	4204	Intervention effect	RR	0.86 (0.72–1.03)	NA
			No significant characteristic			
All-cause hospitalization						
Time to first event	12	3833	Intervention effect	HR	0.93 (0.85–1.03)	NA
	9	2976	Standardized training	1.01 (0.91–1.13)	0.001	
	3	857	Heterogeneous training	0.70 (0.57–0.85)		
	5	2186	Keeping logs	1.11 (0.97–1.26)	<0.001	
	7	1647	No logs	0.78 (0.68–0.90)		
	2	644	Goal-setting skills	1.26 (0.96–1.66)	0.023	
	10	3186	No goal-setting skills	0.90 (0.81–0.99)		
6 months follow-up	14	4329	Intervention effect	RR	0.92 (0.83–1.01)	NA
	10	3293	Standardized training	0.98 (0.89–1.08)	0.009	
	4	1036	Heterogeneous training	0.72 (0.58–0.89)		
12 months follow-up	13	4266	Intervention effect	RR	0.95 (0.87–1.04)	NA
Outcome	N studies	n patients	Analysis	Effect measure	Effect (95% CI)	P-value for heterogeneity
---------------------------------	-----------	------------	---------------------	----------------	-----------------------	--------------------------
Standardized training	9	3124			1.01 (0.92–1.12)	0.014
	4	1139			0.80 (0.69–0.94)	
	6	2389	Keeping logs		1.06 (0.93–1.20)	0.035
	7	1874	No logs		0.87 (0.78–0.99)	
	4	1161	Goal-setting skills		1.17 (0.98–1.39)	0.006
	9	3102	No goal-setting skills		0.89 (0.81–0.97)	
Heterogeneous training	4	1139				
Keeping logs	6	2389				
No logs	7	1874				
Goal-setting skills	4	1161				
No goal-setting skills	9	3102				
HF-related hospitalization						
Time to first event	10	3461	Intervention effect	HR	0.80 (0.69–0.92)	NA
	10	3461	Duration (per month)	HR	0.98 (0.96–0.99)	0.002
	7	2604	Standardized training		0.88 (0.75–1.04)	0.022
	3	857	Heterogeneous training		0.61 (0.46–0.80)	
	3	1202	Multidisciplinary team		1.01 (0.80–1.28)	0.045
	8	2598	Single interventionist		0.75 (0.64–0.88)	
	5	2186	Keeping logs		0.99 (0.82–1.20)	0.001
	5	1275	No logs		0.61 (0.49–0.76)	
6 months follow-up	12	3741	Intervention effect	RR	0.81 (0.66–0.99)	NA
	12	3741	Duration (per month)	RR	0.96 (0.92–0.995)	0.046
12 months follow-up	11	3503	Intervention effect	RR	0.82 (0.64–1.05)	NA
	3	844	Goal-setting skills		1.16 (0.84–1.61)	0.029
	8	2659	No goal-setting skills		0.72 (0.55–0.95)	

CI=confidence interval; HR=hazard ratio; RR=risk ratio; SMD=standardized mean difference.

Results are only presented if program characteristic showed an effect with P<0.05 in the primary analysis.

* Not applicable for main effects since reported P-values indicate test for heterogeneity for specific program characteristic.