Phylogenetic Findings Suggest Possible New Habitat and Routes of Infection of Human Eumycetoma

de Hoog, G.S.; Abdalla Ahmed, S.; Najafzadeh, M.J.; Sutton, D.A.; Keisari, M.S.; Fahal, A.H.; Eberhart, U.; Verkley, G.J.; Xin, L.; Stielow, B.; van de Sande, W.W.J.

Published in:
PLOS Neglected Tropical Diseases

DOI:
10.1371/journal.pntd.0002229

Link to publication

Citation for published version (APA):
de Hoog, G. S., Abdalla Ahmed, S., Najafzadeh, M. J., Sutton, D. A., Keisari, M. S., Fahal, A. H., ... van de Sande, W. W. J. (2013). Phylogenetic Findings Suggest Possible New Habitat and Routes of Infection of Human Eumycetoma. PLOS Neglected Tropical Diseases, 7(5), e2229. DOI: 10.1371/journal.pntd.0002229

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

Download date: 10 Dec 2018
Phylogenetic Findings Suggest Possible New Habitat and Routes of Infection of Human Eumyctoma

G. Sybren de Hoog1,2,3,4, Sarah A. Ahmed1,2,5*, Mohammad J. Najafzadeh6, Deanna A. Sutton7, Maryam Saradeghi Keisari1, Ahmed H. Fahal6, Ursula Eberhardt1, Gerard J. Verkleij1, Lian Xin9, Benjamin Stielow1, Wendy W. J. van de Sande10

Introduction

Eumycetoma is a traumatic fungal infection in tropical and subtropical areas that may lead to severe disability. Madurella mycetomatis is one of the prevalent etiologic agents in arid Northeastern Africa. The source of infection has not been clarified. Subcutaneous inoculation from plant thorns has been hypothesized, but attempts to detect the fungus in relevant material have remained unsuccessful. The present study aims to find clues to reveal the natural habitat of Madurella species using a phylogenetic approach, i.e., by comparison of neighboring taxa with known ecology. Four species of Madurella were included in a large data set of species of Chaetomium, Chaetomium, Thielavia, and Papulaspora (n = 128) using sequences of the universal fungal barcode gene rDNA ITS and the partial LSU gene sequence. Our study demonstrates that Madurella species are nested within the Chaetomiaceae, a family of fungi that mainly inhabit animal dung, enriched soil, and indoor environments. We hypothesize that cattle dung, ubiquitously present in rural East Africa, plays a significant role in the ecology of Madurella. If cow dung is an essential factor in inoculation by Madurella, preventative measures may involve the use of appropriate footwear in addition to restructuring of villages to reduce the frequency of contact with etiologic agents of mycetoma. On the other hand, the Chaetomiaceae possess a hidden clinical potential which needs to be explored.
Eumycetoma caused by Madurella mycetomatis is a common subcutaneous, mutilating fungal infection endemic in arid climate zones. Still there are many controversies on the route of infection, but traumatic inoculation of the subcutaneous tissue with the thorn or soil causative organism through minor skin trauma is a popular theory. This is due to the fact that, the origin and natural habitat of Madurella species, the prevalent mycetoma agents are still unknown. In order to predict the natural habitat of M. mycetomatis we investigated its phylogenetic relationships to species with known ecology. Two genes phylogeny based on LSU and ITS was performed for the species of the genus Madurella and representative genera from the family of Chaetomiaceae. Our findings confirmed that Madurella species are phylogenetically member of the family Chaetomiaceae. Members of this family are often found in dung and manure-enriched soil. We therefore suggest that animal dung, abundantly present in endemic villages, could be a possible niche for Madurella and plays an essential role in the onset of eumycetoma. This will help in understanding the origin of the disease and could be a base for future in depth study to investigate the presence of Madurella in dung from endemic areas.

identified as ‘Papulaspora’. Still no form of propagation, either sexual or clonal, is known for these fungi, except for some occasional, undiagnostic phialide-like cells [5]. There are many more causative agents of subcutaneous disorders which lack identifiable sporulation in culture. Today, identification options of such poorly structured fungi have increased with the development of molecular diagnostics. It has become clear that non-sporulating fungi are phylogenetically quite diverse. The melanized species causing black-grain mycetoma worldwide belong to at least two different orders of ascomycetes: the Sordariales and the Pleosporales [6].

In the present study we apply morphology-independent techniques to classify sterile agents of mycetoma in a phylogenetic scaffold of the fungi. This should lead to a better understanding of their ecology and pathology. Non-sporulating clinical isolates, provisionally deposited in two reference laboratories under the generic names Madurella and Papulaspora, were analyzed using the universal fungal barcode gene rDNA partial large subunit (LSU) and the internal transcribed spacer (ITS) regions. Since Madurella mycetomatis is a member of the order Sordariales, Madurella pseudomycetomatis, M. fahali and M. tropicana most likely belong to the same order [7]. Phylogenies based on the mitochondrial genome confirmed the relationship to the Sordariales. Shared synteny was observed of genes and tRNAs in the mitochondrial genomes of M. mycetomatis and Chaetomium thermophilum [8]. Chaetomium is a large genus of Sordariales with more than 100 described species [9], but only very few species have been sequenced yet. In the present study we sequenced reference and additional clinical isolates of Chaetomium (ITS and LSU). Further members of the family Chaetomiaceae (Sordariales), including representatives of the genera Achaetomium, Aporothielavia, Chaetomidium, and Thielavia were selected to build up a framework of neighboring species to Madurella. Notably nearly all these fungi are ascosporulating only, producing elaborate fruiting bodies which cannot be expressed in human host tissue. Loss of the fruiting body thus immediately leads to sterile, Madurella-like cultures, rather than to a conidial counterpart as is the case in the majority of filamentous fungi. Comparison of ecological habitats of Chaetomiaceae was done in order to predict aspects of possible sources and routes of transmission of Madurella species.
Materials and Methods

Strains analysed

The analysis consists of 128 strains among which 60 strains of *Chaetomiaceae* contain presently available ex-type strains of described species deposited in the CBS culture collection. A total of 13 sterile filamentous isolates identified as *Madurella*, and one meristematic isolate, phenotypically identified as *Papulaspora* sp. were analyzed. The set was complemented with 54 clinical strains identified in this study (Supporting information; Table S1). All clinical isolates included in our study were previously isolated from human sources and were taken from the CBS reference collection. Information on strains can be found at www.cbs.knaw.nl.

DNA extraction

About 10 mm³ fungal mass grown on agar surface were scraped in 2 ml screw cap vial containing 490 μl CTAB-buffer (2% CTAB, 100 mM Tris-HCL, 20 mM EDTA, 1.4 M NaCl) and 6–10 acid washed glass beads. In the subsequent step 10 μl of proteinase K (50 mg/ml) were added and the extraction buffer containing the sample vortexed for 2–5 minutes. The vials were incubated at 60°C for 60 minutes and vortexed again to ensure homogeneity of the sample. 500 μl of SEVAG (Chloroform: Isoamylalcohol 24:1) were added and the vials inverted repeatedly for at least two minutes. Vials were centrifuged at 14000 rpm (Eppendorf 5417R, Hamburg, Germany) for 10 minutes and the supernatant collected. The precipitated total nucleic acids were re-suspended in new sterile vials with 0.55 volumes of ice cold 2-propanol and inverted several times. The precipitated total nucleic acids were centrifuged at 14000 rpm for 10 minutes. Finally, the pellets were washed with 70% ethanol, air-dried and re-suspended in 100 μl TE buffer.

PCR and sequencing

The internal transcribed spacer (ITS) was amplified using the primers V9G and LS266 [10]. The resulting amplicons were bidirectionally sequenced with primers ITS1 and ITS4 [11]. The partial large ribosomal subunit (28S) was amplified with primer LR0R and LR5 and sequenced with the same primers [12]. A life Technologies Corp. 3730XL Sanger laboratory capillary electrophoresis system was used to retrieve the sequence data.

Alignment and phylogenetic analysis

Trace files retrieved from bidirectional sequencing, were assembled and manually edited using Lasergene Seqman (DNASTAR, USA). A selection of 89 strains from the total data set was used for inferring the phylogenetic tree. Sequences were aligned with MUSCLE using the EMBL-EBI web server http://www.ebi.ac.uk/Tools/msa/muscle/. A concatenated alignment was assembled for complete ITS (ITS1-5.8S-ITS2) and partial LSU sequences.

Bayesian and maximum likelihood analysis were performed with MrBayes v. 3.1.2 [13], and RAxML 7.2.8 respectively [14,15]. MrBayes was run for 1 000 000 generations; one tree was saved per 100 of generations and burn-in was set for 25% of the saved trees. The 50% majority consensus tree was calculated and the final tree was edited using MEGA v. 5.05 [16]. Maximum likelihood was conducted using the CIPRES website (www.phylo.org), and GTR (General Time Reversible) model of nucleotide substitution was used; it is the only nucleotide substitution model in the RAxML software.

Results

Phylogenetic analysis

The analyzed data set comprised representative strains of the *Chaetomiaceae* [Sordariaceae] of both clinical and environmental origins (Supporting information; Table S1).

Alignment of the combined genes sequences (ITS, LSU) consisted of 1,356 total characters in which 1029 were constant and 307 were variable. In our two-gene phylogeny most basal and internal branches show high Bayesian inference posterior probability values (BII PP) and maximum-likelihood bootstrap support (ML BS) respectively (Fig. 2). However, some internal branches of the *Chaetomiaceae* ingroup tree (split 0.88/-) comprising several clusters, e.g. for *C. atrobrunneum* and *C. nigricolor* (1.0/100), *Chaetomium* “sp. 1”, *C. lucknowense*, *Thielavia terricola* and *T. fragilis* (0.96/46) as well as *C. erectum* and *C. faniola* (1.0/100), could not be fully resolved into dichotomies. The ingroup tree comprised a monophyletic cluster with four *Madurella* species with 1.0, 85% BII PP and ML BS, respectively, basal to *Thielavia sub thermophila* (0.93/66). *Madurella* clustered within a large clade containing mostly environmental *Chaetomium* species which were distant from the type species of *Chaetomium* (C. globosum; Fig. 2). *Madurella fahalii* was identified as the closest taxon to the *Chaetomiaceae* at 6.0% ITS divergence from *Chaetomium nigricolor*. *Papulaspora* sp., known from three clinical isolates and identified by it is ex-type strain, was resolved basal to the grade comprising the *Chaetomium/Chaetomium/Thielavia/Madurella* clades.

Sequence identity and classification

The data set contained 38 ex-type and authentic strains. Twenty-two of these were usable to define each as OTU’s (Operational taxonomical unit), while 16 were found to be identical to other described species defined by an ex-type isolate. Seven species, as delimited by sequence data, comprised more than one ex-type strain having identical sequences, rendering these species as provisional synonyms. Groups of isolates identified as the classical species *Chaetomium globosum*, described in the 19th century without deposition of live material, did not contain an ex-type strain. In total, 29 *Chaetomium* species were judged to be distinct at the LSU/ITS level (Fig. 2), each being separated by several point mutations. Eight strains originating from clinical resources did not show identity to any known *Chaetomium* species and were therefore reported as ‘unknown *Chaetomium* sp.’ Three clinical isolates described as ‘*Chaetomium* sp.’, which had provisionally been identified as ‘*Papulaspora* sp.’ on the basis of phenotypic characters, were found within the *Chaetomium* grade (Fig. 2, Supporting information; Table S1).

All *Achaetomium* species were found to be synonyms of known *Chaetomium* species including ex-type strains of *Achaetomium nepalense*, *A. thermophilum*, and *A. strumarium*.

Strain origin

The origins of 128 strains analyzed are summarized in Table S1 (supporting information). A large quantity (40.6%; n = 52), were of environmental origin; about 7.0% (n = 9) were derived from animal dung, mainly of herbivores such as antelopes, goats, elephants, hares and rodents, but also of carnivores such as foxes. A percentage of 16.4% (n = 21) originated from soil either mixed with dung or decayed plant material, or from rhizosphere; 10.9% (n = 9) were derived from human sources and were taken from the CBS reference collection. About 10 mm³ fungal mass grown on agar surface were scraped in 2 ml screw cap vial containing 490 μl CTAB-buffer (2% CTAB, 100 mM Tris-HCL, 20 mM EDTA, 1.4 M NaCl) and 6–10 acid washed glass beads. In the subsequent step 10 μl of proteinase K (50 mg/ml) were added and the extraction buffer containing the sample vortexed for 2–5 minutes. The vials were incubated at 60°C for 60 minutes and vortexed again to ensure homogeneity of the sample. 500 μl of SEVAG (Chloroform: Isoamylalcohol 24:1) were added and the vials inverted repeatedly for at least two minutes. Vials were centrifuged at 14000 rpm (Eppendorf 5417R, Hamburg, Germany) for 10 minutes and the supernatant collected. The precipitated total nucleic acids were re-suspended in new sterile vials with 0.55 volumes of ice cold 2-propanol and inverted several times. The precipitated total nucleic acids were centrifuged at 14000 rpm for 10 minutes. Finally, the pellets were washed with 70% ethanol, air-dried and re-suspended in 100 μl TE buffer.

Alignment and phylogenetic analysis

Trace files retrieved from bidirectional sequencing, were assembled and manually edited using Lasergene Seqman (DNASTAR, USA). A selection of 89 strains from the total data set was used for inferring the phylogenetic tree. Sequences were aligned with MUSCLE using the EMBL-EBI web server http://www.ebi.ac.uk/Tools/msa/muscle/. A concatenated alignment was assembled for complete ITS (ITS1-5.8S-ITS2) and partial LSU sequences.

Bayesian and maximum likelihood analysis were performed with MrBayes v. 3.1.2 [13], and RAxML 7.2.8 respectively [14,15]. MrBayes was run for 1 000 000 generations; one tree was saved per 100 of generations and burn-in was set for 25% of the saved trees. The 50% majority consensus tree was calculated and the final tree was edited using MEGA v. 5.05 [16]. Maximum likelihood was conducted using the CIPRES website (www.phylo.org), and GTR (General Time Reversible) model of nucleotide substitution was used; it is the only nucleotide substitution model in the RAxML software.

A total of 54.7% (n = 70) of the overall analyzed strains were from clinical samples. Forty-five out of 112 *Chaetomiaceae* strains of
Chaetomium, *Chaetomidium* and *Thielavia* were infection-related, of which 49 strains originated from humans and 5 were veterinary isolates. Five out of eight strains identified as *C. atrobrunneum* were obtained from deep localizations including sputum, bronchial lavages and brain. *Chaetomium globosum* was frequently isolated from clinical or veterinary sources (24 strains where information about the origin was available).

In general, the clinical isolates were predominately isolated from the respiratory tract (9.4%, n = 12), possibly as asymptomatic colonizers. A large number of strains (22.7%, n = 29) were isolated from superficial samples including skin, hair, nails and eyes. Five isolates (3.9%) were derived from brain of four humans and one horse, and five (3.9%) strains were recovered from blood and lymph nodes. Infections reported as being subcutaneous were exceptional (0.78%, n = 1 from a wound); none of these were associated with production of grains in tissue.

Within the *Chaetomium* grade, one unnamed ‘*Chaetomium sp. 1*’ and four *Madurella* species were exclusively from clinical origin. Strains of ‘*Chaetomium sp. 1*’ were mainly associated with eye infections. All 13 strains identified as *Madurella* were derived from rural patients with subcutaneous eumycetoma with grain production.

Discussion

The genus *Madurella*, comprising the species *M. mycetomatis*, *M. pseudomyctomatis*, *M. fahalii* and *M. tropicana*, was found to cluster within the *Chaetomiaceae*. In contrast to *Madurella*, most species of this family are able to produce elaborate fruiting bodies with characteristically shaped setae and ascospores. The impressive morphology of the ascomata suggests that species should be easily distinguishable by microscopic morphology, using the available classical, richly illustrated monographs [9,17]. However, judging from our phylogenetic data (Fig. 2), molecular taxonomy matches poorly with morphology. At the generic level, the distinction between *Chaetomium*, *Achaetomium*, *Chaetomidium* and *Thielavia* is ambiguous, since several species of these genera clustered amidst *Chaetomium* species. Sometimes several ex-type strains of described taxa were found to have identical ITS sequences, suggesting that names should be reduced to synonymy. It may be concluded that molecular classification of *Chaetomiaceae* is significantly different from conventional taxonomy and extensive revision is needed at generic as well as at species levels. The position of *Madurella* as a derived clade within the family is unambiguous, and unexpected.

Most members of the *Chaetomiaceae* lack anamorph sporulation, or some scattered, undiagnostic phialides are present at most [9]. Thus, if strains lose the ability to produce their elaborate ascomata, they cannot be recognized as a *Chaetomium* species by morphological means, as in *Madurella*. Most of the clinical *Chaetomium* strains analyzed in the course of this study produced ascomata in culture, but some had remained sterile. The clinical strains of *Chaetomium* were responsible for cutaneous or systemic phaeohyphomycoses, but never produced eumycetoma. In contrast, strains of the *Madurella* subcluster, with four different molecular siblings, were consistently associated with eumycetoma. They were all sterile or produced some undiagnostic, phialide-like cells. Large structures resembling fruiting bodies were occasionally observed in *Madurella* (Fig. 5), but these did not have the ability to produce ascospores. The *Madurella* clade is morphologically not so
A consistent human pathogen is thus introduced in the family Chaetomiaceae. Traditionally, most species of the family were considered to be insignificant as agents of human disease. Of the ~100 Chaetomium species described to date only five have repeatedly been associated with infection [5]. The majority of Chaetomium clinical strains analyzed in this study were probably transient colonizers or agents of mild superficial disorders. Twenty seven were involved in onychomycosis or cutaneous and eye infections in otherwise healthy individuals. This matches with literature data [18,19]. In our data, Chaetomium globosum showed a definite bias towards superficial infection, with 17 out of 29 strains analyzed (supporting information; table S1). The species is able to degrade keratin by production of extracellular keratinases [20]. Fatal, disseminated and cerebral infections by Chaetomiumaceae have also been reported. In the literature about 20 deep and disseminated cases were described, nearly all in immunocompromised and severely debilitated patients [21,22]. Several Chaetomium-like fungi thus show rather pronounced pathology, sometimes with species-specific predilections.

The role of mammal dung and dung-enriched soil is one of the most interesting aspects of mycetoma. M. mycetomatis is probably a coprophilic fungus. A consistent human pathogen is thus introduced in the family Chaetomiaceae. Chaetomium homopilatum is one of the prime ecological niches of the order Chaetomiaceae. Chaetomium homopilatum is a common fungus in the arid climate zone of Northeastern Africa and are exclusively known from human mycetoma.

By providing insight into the taxonomic position and possible natural habitat of Madurella species changes our view regarding routes of infection and prevalent risk factors for human mycetoma. The Gezira region in the Sudan is highly endemic for eumycetoma by M. mycetomatis [1]. Most inhabitants live on cattle and camel husbandry and agriculture [38]. Local villages are characterized by an abundance of cattle, goats, sheep, dogs, chickens and donkeys [39]. Cows are raised mainly for their milk and are kept in pens surrounded by walls made of mud or thorny bushes. The floors of the pens are paved with dry feces, thorns and trash [39], and some human settlements are made of dried cow dung. The family house is usually in direct contact with the pen. Inhabitants of the villages mostly are barefoot among the thorny bushes. Traumatic introduction of coprophilic fungi via thorn pricks is thus a plausible scenario. Given the low frequency of Madurella on thorns, contamination of dung and its role as an adjuvant in inoculation seems likely. If cow dung is an essential factor in inoculation by M. mycetomatis, preventative measures may involve the use of appropriate footwear in addition to restructuring of villages by stricter separation of animal husbandry and human settlement to reduce the frequency of contact with mycetoma etiologic agents.

Supporting Information

Table S1 Name, reported type strains, source, origin, and GenBank accession numbers for the analysed strains. dH: [G.S. de Hoog working collection] UTHSC [University of Texas Health Science Center]. All type strains marked with [T].

Author Contributions

Conceived and designed the experiments: GSdH MJN WWJvdS. Performed the experiments: SAA MJN MSK UE LX BS. Analyzed the data: SAA MJN BS. Contributed reagents/materials/analysis tools: DAS AHF GJV MJN. Wrote the paper: GSdH WWJvdS SAA DAS AHF BS.

References

1. Abbott P. (1956). Mycetoma in the Sudan. Trans R Soc Trop Med Hyg 50:11–14; discussion, 24-30.
2. Fahal AH, Suliman SH (1994) Clinical presentation of mycetoma. Sudan Med J 32:46–66.
3. Fahal AH, Hassan MA (1992) Mycetoma. Br J Surg 79:1138–1141.
4. Ahmed AO, Adelmann D, Fahal A, Verbrugh H, van Belkum A, de Hoog GS (2002) Environmental occurrence of Madurella mycetomatis, the major agent of human eumycetoma in Sudan. J Clin Microbiol 40:1031–1036.
5. de Hoog GS, Guarro J, Denk J, Figueras MJ, editors (2000) Atlas of Clinical Fungi. 2nd edition. Washington, D.C.: American Society of Microbiology Press.
6. de Hoog GS, Adelmann D, Alamed AOA, Belkum A (2004) Phylogeny and typification of *Maudia* species with a comparison of other agents of eumycetoma. *Mycoses* 47:121–130.
7. de Hoog GS, van Diepeningen AD, Mahgouh el-S, van de Sande WW (2012) New species of *Maudia*, causative agents of black-grain mycetoma. *J Clin Microbiol* 50:988–994.
8. van de Sande WW (2012) Phylogenetic analysis of the complete mitochondrial genome of *Maudia* species confirms its taxonomic position within the order Sordariales. *PLoS One* 7:e30654.
9. von Arx JA, Guarro J, Figueras MJ (1996) The Ascomycete genera *Chactomium*. *Bih Nova Hedw* 84:1–162.
10. Gerrits van den Ende AHG, de Hoog GS (1999) Variability and molecular diagnostics of the neurotropic species *Cladophialophora bantiana*. *Stud Mycol* 43:152–162.
11. White T J, Bruns T, Lee S, Taylor J W (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H., Gelfand, J. J., Sninsky, and T. J. White (Eds.), PCR protocols: a guide to methods and applications. New York Academic Press, Inc., New York, 315–322.
12. Vávralys R, Here J M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. *J Bacteriol* 172:4238–4246.
13. Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19:1572–1574.
14. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* 22:2688–2690.
15. Stamatakis A, Hoover P, Rougemont J. (2008) A rapid bootstrap algorithm for the RAxML Web servers. *Syst Biol* 57:758–771.
16. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol Biol Evol* 28:2731–2739.
17. Ames LM (1961) A Monograph of the *Chaetomiaceae*. US Army Res Develop Ser 2:1–125.
18. Hattori N, Adachi M, Kaneko T, Shimozuma M, Ichinohe M, Iozumi K (2000) Chromoblastomycosis caused by *Chaetomium fuscum* a case report from Western Panama. *Br J Dermatol* 157:1023–1029.
19. Lin Y, Li X et al. (1995) First Case of Phaeohyphomycosis Caused by *Chaetomium fuscum* in China. *Chin J Dermatol* 20:367–369.
20. Kaul S, Sumbali G (1999) Production of extracellular keratinases by *Chaetomium globosum* species. *FEMS Microbiol Lett* 169:295–298.
21. Badali H, Chander J, Gupta A, Rani H, Punia RS, De Hoog GS, Mei JF (2011) Fatal cerebral phaeohyphomycosis in an immunocompetent individual due to *Thielavia subtomentosa*. *J Clin Microbiol* 49:2336–2341.
22. Guppy KH, Thomas C, Thomas K, Anderson D (1998) Cerebral fungal infections in the immunocompromised host: a literature review and a new pathogen—*Chaetomium atrorubrum*: case report. *Neurosurgery* 43:1463–1469.
23. Piepenbring M, Caceres MOA, Espino EAA, Kirchner R, Schofer H (2007) Chromoblastomycosis caused by *Chaetomium fuscum*: a case report from Western Panama. *Br J Dermatol* 157:1023–1029.
24. Abbot SP, Sigler L, McLean R, McGough DA, Rinaldi MG, et al. (1995) Fatal cerebral mycoses caused by the ascomycete *Chaetomium strumarium*. *J Clin Microbiol* 33:2692–2690.
25. Rether J, Erkel G, Anke T, Sterner O (2004) Inhibition of inducible TNF-alpha expression by oxaspirodion, a novel spiro-compound from the ascomycete *Chactomium saphireus*. *Biol Chem* 385:829–834.
26. Ghan T-M, Chiu M (2007) Sch 215766, a novel chemokine receptor CCR-5 inhibitor from *Chaetomium globosum*. *J Antimicrob Chemother* 60:524–529.
27. Abbott SP, Sigler L, McLean R, McGough DA, Rinaldi MG, et al. (1995) Fatal cerebral mycoses caused by the ascomycete *Chaetomium strumarium*. *J Clin Microbiol* 33:2692–2690.
28. Aribandi M, Bazan Ii C, Rinaldi MG (2005) Magnetic resonance imaging findings in fatal primary cerebral infection due to *Chaetomium strumarium*. *Australas Radiol* 49:166–169.
29. Zhang N, Castlebury LA, Miller AN, Huhndorf SM, Schoch CL, et al. (2006) An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. *Mycologia* 98:1076–1087.
30. Carter A, Khan RS (1982) New and interesting *Chaetomium* species from East Africa. *Can J Bot* 60:1253–1262.
31. Aghamirian MR, Ghiasian SA (2009) Isolation and characterization of medically important aerobic actinomycetes in soil of Iran (2006–2007). *Open Microbiol J* 3:53–57.
32. Segretain G, Mariat F (1968) Recherches sur la presence d’agents de mycetomes dans le sol et sur les épines du Sénégal et de la Mauritanie. *Bull Soc Pathol Exot* 61:194–202.
33. Aedo L (1952) The isolation of *Allochroa boydii* shear, an etiologic agent of mycetomas, from soil. *Am J Trop Med Hyg* 1:227–238.
34. Giagnani HC, Palival-Joshi A, Rahman H, Pathye AA, Singh TS, Das TK, Khanal B, Bajaj R, Rao S, Chukhiani R (2007) Occurrence of pathogenic fungi in soil of burrows of rats and of other sites in bamboo plantations in India and Nepal. *Mycoses* 50:507–511.
35. Harun A, Gilgado F, Chen SC, Meyer W (2010) Abundance of *Pseudallescheria* and *Scedosporium* species in the Australian urban environment suggests a possible source for scedosporiosis including the colonization of airways in cystic fibrosis. *Med Mycol* 48 Suppl 1:97–100.
36. Fahal AH (2006) *Mycetoma* — clinicopathological monograph. Khartoum University Press, Khartoum, Sudan.
37. Thrumalachar M J, Padhye AA (1968) Isolation of *Maudia mycetomi* from soil in India. *Hindustan Antibiot Bull* 10:314–318.
38. Braunisch G (1964) Change and Continuity in the Gezira Region of the Sudan. *Exot* 61:194–202.
39. Aghamirian MR, Ghiasian SA (2009) Isolation and characterization of medically important aerobic actinomycetes in soil of Iran (2006–2007). *Open Microbiol J* 3:53–57.
40. Segretain G, Mariat F (1968) Recherches sur la presence d’agents de mycetomes dans le sol et sur les épines du Sénégal et de la Mauritanie. *Bull Soc Pathol Exot* 61:194–202.
41. Aedo L (1952) The isolation of *Allochroa boydii* shear, an etiologic agent of mycetomas, from soil. *Am J Trop Med Hyg* 1:227–238.
42. Giagnani HC, Palival-Joshi A, Rahman H, Pathye AA, Singh TS, Das TK, Khanal B, Bajaj R, Rao S, Chukhiani R (2007) Occurrence of pathogenic fungi in soil of burrows of rats and of other sites in bamboo plantations in India and Nepal. *Mycoses* 50:507–511.
43. Harun A, Gilgado F, Chen SC, Meyer W (2010) Abundance of *Pseudallescheria* and *Scedosporium* species in the Australian urban environment suggests a possible source for scedosporiosis including the colonization of airways in cystic fibrosis. *Med Mycol* 48 Suppl 1:97–100.
44. Fahal AH (2006) *Mycetoma* — clinicopathological monograph. Khartoum University Press, Khartoum, Sudan.
45. Thrumalachar M J, Padhye AA (1968) Isolation of *Maudia mycetomi* from soil in India. *Hindustan Antibiot Bull* 10:314–318.
46. Braunisch G (1964) Change and Continuity in the Gezira Region of the Sudan. *Exot* 61:194–202.