DAVIS’ CONVEXITY THEOREM AND EXTREMAL ELLIPSOIDS

MATTHIAS J. WEBER AND HANS-PETER SCHRÖCKER

Abstract. We give a variety of uniqueness results for minimal ellipsoids circumscribing and maximal ellipsoids inscribed into a convex body. Uniqueness follows from a convexity or concavity criterion on the function used to measure the size of the ellipsoid. Simple examples with non-unique minimal or maximal ellipsoids conclude this article.

1. Introduction

By a classic result in convex geometry the minimal volume ellipsoid enclosing a convex body $F \subset \mathbb{R}^d$ and the maximal volume ellipsoid inscribed into F are unique (John, 1948; Danzer et al., 1957). Both ellipsoids are important objects in convex geometry and have numerous applications in diverse fields of applied and pure mathematics (see for example Gruber and Höbinger, 1976; Berger, 1990; or the introductory sections of Kumar and Yıldırım, 2005; Todd and Yıldırım, 2007). More information on the role of ellipsoids in convex geometry can be found in Petty (1983) and Heil and Martini, 1993, Section 3).

In this article we are concerned with uniqueness results for minimal enclosing and maximal inscribed ellipsoids for further families of size functions. The basic ideas are similar to that of Danzer et al. (1957) and Schrocker (2008). The new results are found by applying them to diverse representations of ellipsoids with the help of symmetric matrices.

In this article we provide uniqueness results for minimal enclosing and maximal inscribed ellipsoids for further families of size functions. The basic ideas are similar to that of Danzer et al. (1957) and Schrocker (2008). The new results are found by applying them to diverse representations of ellipsoids with the help of symmetric matrices.

After recalling some basic concepts in Section 2 we define the notion of a “size function” and, in Section 3, present several different uniqueness results. In any case it is necessary to study a particular representation of ellipsoids and properties of an “in-between ellipsoid” in this representation. Finally, in Section 4 we describe a few examples of convex bodies and size functions with non-unique extremal ellipsoids.

2000 Mathematics Subject Classification. 52A27, 52A20 .
Key words and phrases. Minimal ellipsoid, maximal ellipsoid, Davis’ convexity theorem.
2. Preliminaries

With the help of a positive semi-definite symmetric matrix $A \in \mathbb{R}^{d \times d}$ and a vector $m \in \mathbb{R}^d$ an ellipsoid can be described as

$$E = \{x \in \mathbb{R}^d : (x - m)^T \cdot A \cdot (x - m) - 1 \leq 0\}.$$ \hspace{1cm} (1)

The interior of E is the set of all points x that strictly fulfill the defining inequality. In this article we generally admit degenerate ellipsoids with empty interior since they may appear as maximal inscribed ellipsoids. The interior is empty if A is only positive semi-definite and not positive definite. We call the ellipsoid singular if this is the case and regular otherwise.

The vector m is the coordinate vector of the ellipsoid center. A straight line incident with m and in direction of an eigenvector of A is called an ellipsoid axis, its semi-axis length a_i is related to the corresponding eigenvalue ν_i via $a_i = \nu_i^{-1/2}$.

Since A is symmetric and positive definite, there exist d pairwise orthogonal axes with real semi-axis lengths.

Note that Equation (1) is not the only possibility for describing ellipsoids. In Section 3 we will encounter several alternatives but all of them use a symmetric matrix and a vector as describing parameters.

There exist different notions for the “size” of an ellipsoid. A natural measure for the size is the ellipsoid’s volume, but we may also take the surface area, a quermass integral, a norm on the vector of semi-axis lengths etc. More generally, we consider a non-negative function f on the ordered vector of semi-axis lengths that satisfies a few basic requirements. By \mathbb{R}_{\geq} we denote the set of positive, by \mathbb{R}_{\geq} the set of non-negative reals; \mathbb{R}_{\geq}^d is the set of vectors $x = (x_1, \ldots, x_d)^T \in \mathbb{R}^d$ with entries $x_i \in \mathbb{R}_{\geq}$.

Definition 1. A function $f : \mathbb{R}_{\geq}^d \rightarrow \mathbb{R}_{\geq}$ is called *size function for an ellipsoid* if it is continuous, strictly monotone increasing in any of its arguments and symmetric, that is, $f(y) = f(x)$ whenever y is a permutation of x.

Denote by $e(A)$ the vector of eigenvalues of a symmetric matrix A, arranged in ascending order. Clearly, f can be extended to the space of symmetric, positive semi-definite matrices by letting $f(A) = f \circ e(A)$. Sometimes we will even write $f(E)$ when an ellipsoid E is described by a symmetric matrix A.

Note that f depends only on the eigenvalues of the symmetric matrix A. Hence, it is independent of the position and orientation of E.

3. Uniqueness results

The uniqueness proofs in this article all follow a certain scheme. We want to prove that there exists only one minimal enclosing ellipsoid (with respect to a certain size function f) of a convex body $F \subset \mathbb{R}^d$. Assuming existence of two minimizers E_0 and E_1 we construct an “in-between ellipsoid” E_λ that contains the common interior of E_0 and E_1 (and hence also the set F) and is strictly smaller (measured by the size function f) than E_0 and E_1. Uniqueness results for maximal inscribed ellipsoids can be obtained in similar fashion.

These type of proof requires the construction of an in-between ellipsoid E_λ that contains F (or is contained in F) and is strictly smaller (or larger) than E_0 and E_1. Different constructions of E_λ yield different uniqueness results.
3.1. **Image of the unit sphere.** An ellipsoid may be viewed as affine image of the unit ball:

\[E = \{ y \in \mathbb{R}^d : y = P \cdot x + t, \; x \in \mathbb{R}^d, \| x \| \leq 1 \}, \]

where \(P \in \mathbb{R}^{d \times d} \) is a (not necessarily regular) matrix and \(t \in \mathbb{R}^d \).

The matrix \(P \) is not uniquely determined by the ellipsoid. It is still possible to apply an automorphic transformation to the unit sphere before the map \(x \mapsto P \cdot x + t \) or an automorphic transformation to the resulting ellipsoid afterwards. By the left polar decomposition there exists a symmetric positive semi-definite matrix \(S \) and an orthogonal matrix \(U \) such that \(P = S \cdot U \). Hence, we may choose \(P \) to be symmetric and positive semi-definite.

The ordered vector of semi-axis lengths of \(E \) is

\[a = (a_1, \ldots, a_d)^T = (\nu_1, \ldots, \nu_d)^T, \]

where \(\nu_i, \; i = 1, \ldots, d \) are the eigenvalues of \(P \). In other words, we have \(a = e(P) \).

For reasons that will become clear in the course of this text we can also write this with the help of the function

\[w^p : \mathbb{R}^d \to \mathbb{R}^d, \quad (x_1, \ldots, x_d)^T \mapsto (|x_1|^p, \ldots, |x_d|^p)^T \]

as

\[a = w^1 \circ e(P) = e(P). \]

Definition 2 (in-between ellipsoid). We define the in-between ellipsoid \(E_\lambda \) to two ellipsoids \(E_0 \) and \(E_1 \) with respect to the representation (2) as

\[E_\lambda = \{ y \in \mathbb{R}^d : y = P_\lambda \cdot x + t_\lambda, \; \| x \| \leq 1 \}, \quad \lambda \in [0,1] \]

where

\[E_0 = \{ P_0 \cdot x + t_0 : \| x \| \leq 1 \}, \quad E_1 = \{ P_1 \cdot x + t_1 : \| x \| \leq 1 \}, \]

and

\[P_\lambda = (1 - \lambda)P_0 + \lambda P_1, \quad t_\lambda = (1 - \lambda)t_0 + \lambda t_1. \]

Note that \(P_\lambda \) is a symmetric, positive semi-definite matrix and \(E_\lambda \) is indeed an ellipsoid.

Lemma 3. The in-between ellipsoid \(E_\lambda, \; 0 \leq \lambda \leq 1, \) of two ellipsoids \(E_0 \) and \(E_1 \) is a subset of the convex hull of the two ellipsoids \(E_0 \) and \(E_1 \), that is

\[E_\lambda \subset \text{conv}(E_0, E_1). \]

Proof. Let \(x \) be an element of \(E_\lambda \). There exists \(y \) with \(\| y \| \leq 1 \) such that \(x = P_\lambda \cdot y + t_\lambda \). By the definition of \(P_\lambda \) and \(t_\lambda \) we can write

\[x = (1 - \lambda)(P_0 \cdot y + t_0) + \lambda(P_1 \cdot y + t_1) = (1 - \lambda)x_0 + \lambda x_1, \]

with \(x_0 \in E_0 \) and \(x_1 \in E_1 \). Hence, \(x \) is in the convex hull of \(E_0 \) and \(E_1 \) and we conclude \(E_\lambda \subset \text{conv}(E_0, E_1). \)

This lemma together with the following proposition already yields a first uniqueness result for minimal enclosing ellipsoids.

Proposition 4 (Davis’ Convexity Theorem). A convex, lower semi-continuous and symmetric function \(f \) of the eigenvalues of a symmetric matrix is (essentially strictly) convex on the set of symmetric matrices if and only if its restriction to the set of diagonal matrices is (essentially strictly) convex.
This proposition was stated and proved by Davis (1957) and extended to “essentially strict convexity” by Lewis (1996). In Proposition, "symmetric" means that the function f is independent of the order of its arguments. The precise definition of “essentially strict convexity” is rather technical and will be omitted since we will use only a weaker version of Lewis’ generalization.

We will apply Davis’ Convexity Theorem to size functions of ellipsoids. When proving uniqueness results for minimal ellipsoids we demand strict convexity of f on \mathbb{R}_d^+. For maximal inscribed ellipsoids we demand strict concavity on \mathbb{R}_d^\geq. Results of Lewis (1996) then guarantee strict convexity/concavity of $f \circ e$ on the spaces of symmetric matrices with eigenvalues in $\mathbb{R}_+, \mathbb{R}_\geq$, respectively.

Theorem 5. Let f be a size function for ellipsoids such that $f \circ w^1$ is strictly concave on \mathbb{R}_d^\geq. Further let $F \subset \mathbb{R}_d$ be a compact convex body. Among all ellipsoids that are contained in F there exists a unique ellipsoid that is maximal with respect to f.

Proof. The existence of a maximal (with respect to f) inscribed ellipsoid follows from the compactness of F and the continuity of $f \circ w^1$. This is explained in great detail in Danzer et al. (1957).

To proof uniqueness, we assume existence of two f-maximal ellipsoids E_0 and E_1, that is $f(E_0) = f(E_1)$, both contained in F. We compute the in-between ellipsoid E_λ for $0 < \lambda < 1$ as in (6). By Lemma 3 it is contained in the convex hull of E_0 and E_1 and therefore also in F. Looking at the size of the in-between ellipsoid we find

\begin{equation}
 f(E_\lambda) = f \circ w^1 \circ e(P_\lambda) = f \circ w^1 \circ e((1 - \lambda)P_0 + \lambda P_1).
\end{equation}

Because P_λ is a symmetric matrix, we can use Davis’ Convexity Theorem and find, by strict concavity of $f \circ w^1 \circ e$,

\begin{equation}
 f \circ w^1 \circ e((1 - \lambda)P_0 + \lambda P_1) > (1 - \lambda)f \circ w^1 \circ e(P_0) + \lambda f \circ w^1 \circ e(P_1)
\end{equation}

which is a contradiction. \hfill \Box

Remark 6. The maximal ellipsoids with respect to size functions can be computed by a convex program, similar to that described in Boyd and Vandenberghe (2004, Section 8.4.2).

3.2. Inverse image of the unit sphere.

In this section we view an ellipsoid as the set

\begin{equation}
 E = \{x \in \mathbb{R}_d^d : \|P \cdot x + t\| \leq 1\},
\end{equation}

where $P \in \mathbb{R}_d^{d \times d}$ and $t \in \mathbb{R}_d$, that is, as affine pre-image of the unit ball. Again, it is no loss of generality to assume that P is symmetric and positive semi-definite. Since we will use the representation (13) only for deriving uniqueness results for minimal ellipsoids we can even assume that P is positive definite. The ordered vector of semi-axis lengths of E is

\begin{equation}
 a = w^{-1} \circ e(P).
\end{equation}

Definition 7 (in-between ellipsoid). The in-between ellipsoid E_λ to two ellipsoids E_0 and E_1 with respect to the representation (13) is defined as

\begin{equation}
 E_\lambda = \{x \in \mathbb{R}_d : \|P_\lambda \cdot x + t_\lambda\| \leq 1\}, \quad \lambda \in [0, 1]
\end{equation}
Lemma 8. Let \(E_\lambda, 0 \leq \lambda \leq 1 \), be the in-between ellipsoid of two ellipsoids \(E_0 \) and \(E_1 \) defined as in Equations \((15) - (17)\). Then the in-between ellipsoid \(E_\lambda \) encloses the intersection of \(E_0 \) and \(E_1 \).

Proof. If the intersection of \(E_0 \) and \(E_1 \) is empty, nothing has to be shown. (Note that this case is irrelevant for the proof of the main Theorem 9 below.) Assume therefore that there exists \(x \in E_0 \cap E_1 \), that is,

\[
\|P_1 \cdot x + t_1\| \leq 1, \quad i \in \{0, 1\}. \tag{19}
\]

We then have

\[
1 = (1 - \lambda) \cdot 1 + \lambda \cdot 1 \geq (1 - \lambda)\|P_0 \cdot x + t_0\| + \lambda\|P_1 \cdot x + t_1\|. \tag{20}
\]

The triangle inequality implies

\[
(1 - \lambda)\|P_0 \cdot x + t_0\| + \lambda\|P_1 \cdot x + t_1\| \geq \|(1 - \lambda)(P_0 \cdot x + t_0) + \lambda(P_1 \cdot x + t_1)\| = \|(1 - \lambda)P_0 + \lambda P_1\) \cdot x + ((1 - \lambda)t_0 + \lambda t_1)\| = \|P_\lambda \cdot x + t_\lambda\|.
\]

Combining \((19)\) and \((20)\) we see that \(\|P_\lambda \cdot x + t_\lambda\| \leq 1\). This shows that \(x \in E_\lambda\). Hence \(E_0 \cap E_1 \subset E_\lambda\) and the proof is complete. \qed

Theorem 9. Let \(f \) be a size function for ellipsoids such that \(f \circ w^{-1} \) is strictly convex on \(\mathbb{R}^d_+ \). Further let \(F \subset \mathbb{R}^d \) be a compact convex body. Among all ellipsoids that contain \(F \) there exists a unique ellipsoid that is minimal with respect to \(f \).

Proof. The existence of a minimal (with respect to \(f \)) ellipsoid that encloses \(F \), follows from the compactness of \(F \) and the continuity of \(f \circ w^{-1} \) (see again Danzer et al. \((1957)\)).

To proof uniqueness, we assume existence of two \(f \)-minimal ellipsoids \(E_0 \) and \(E_1 \), that is \(f(E_0) = f(E_1) \), both containing \(F \). We compute the in-between ellipsoids \(E_\lambda \) for \(0 < \lambda < 1 \), as in \((15)\). By Lemma 8 it contains the common interior of \(E_0 \cap E_1 \) and hence also \(F \). Looking at the size of \(E_\lambda \) we find

\[
f(E_\lambda) = f \circ w^{-1} \circ e(P_\lambda) = f \circ w^{-1} \circ e((1 - \lambda)P_0 + \lambda P_1) \).
\]

Because \(P_\lambda \) is a symmetric matrix, we can use Davis’ Convexity Theorem (see Proposition 11 on page 23). It implies that \(f \circ w^{-1} \circ e \) is strictly convex. Therefore we can write

\[
f \circ w^{-1} \circ e((1 - \lambda)P_0 + \lambda P_1) < (1 - \lambda)f \circ w^{-1} \circ e(P_0) + \lambda f \circ w^{-1} \circ e(P_1).
\]

Because \(E_0 \) and \(E_1 \) have the same size it follows that

\[
f(E_\lambda) = f \circ w^{-1} \circ e(P_\lambda) < f \circ w^{-1} \circ e(P_0) = f(E_0) = f(E_1).
\]
We have now that the size of E_λ is smaller than the size of E_0 and E_1. Together with Lemma 8 this constitutes a contradiction to the assumed minimality of E_0 and E_1 and finishes the proof.

3.3. Extremal affine images of convex unit balls. It is easy to see that the proofs of Theorems 5 and 9 remain true if we replace the Euclidean unit ball by an arbitrary centrally symmetric convex body, centered at the origin, and measure its size by the volume. Hence, we can state a much more general result:

Theorem 10. The volume-minimal circumscribing affine image of an arbitrary convex unit ball to a compact convex body F is unique. The same is true for volume-maximal inscribed affine image of an arbitrary convex unit ball.

3.4. Algebraic equation. The maybe most straightforward way to represent a non-degenerate ellipsoid $E \subset \mathbb{R}^d$ uses the algebraic equation of E:

$$E = \{ x \in \mathbb{R}^d : (x - m)^T \cdot A \cdot (x - m) \leq 1 \},$$

with a symmetric, positive definite matrix $A \in \mathbb{R}^{d \times d}$ and $m \in \mathbb{R}^d$. The vector a of ordered semi-axis lengths of E is found as

$$a = w^{-1/2} \circ \varepsilon(A).$$

The equation of E can also be written with the help of a single matrix of dimension $(d+1) \times (d+1)$:

$$E = \{ X \in \mathbb{R}^{d+1} : X^T \cdot M \cdot X \leq 0 \},$$

where

$$X = \begin{pmatrix} 1 \\ x \end{pmatrix}, \quad M = \begin{pmatrix} -1 & -m^T \cdot A' \\ -A' \cdot m & A' \end{pmatrix} \quad \text{and} \quad A' = \frac{A}{1 - m^T \cdot A \cdot m}.$$

If we define the in-between ellipsoid E_λ to two ellipsoids E_0 and E_1 with respect to the representation (26) by building a convex sum of the two homogeneous matrices that define E_0 and E_1,

$$E_\lambda = \{ X \in \mathbb{R}^{d+1} : X^T \cdot M_\lambda \cdot X \leq 0 \}, \quad \lambda \in [0,1]$$

where

$$M_\lambda = (1 - \lambda)M_0 + \lambda M_1,$$

we arrive at the situation discussed in Schröcker (2008). The main uniqueness result is

Proposition 11. Let f be a size function and $f \circ w^{-1/2}$ be a strictly convex function on \mathbb{R}^d_*. Further let $F \subset \mathbb{R}^d$ be a compact convex body. Among all ellipsoids that contain F there exists a unique ellipsoid that is minimal with respect to f.

3.5. Dual equation. An ellipsoid can also be viewed as the set of hyperplanes that intersect the (point-set) ellipsoid in real points. Using hyperplane coordinates, this description is formally the same as in Section 3.4:

$$E = \{ u \in \mathbb{R}^d : (u - c)^T \cdot B \cdot (u - c) \leq 1 \},$$

where $B \in \mathbb{R}^{d \times d}$ is a symmetric, positive semi-definite matrix and $c \in \mathbb{R}^d$. In homogeneous form this is

$$E = \{ U \in \mathbb{R}^{d+1} : U^T \cdot N \cdot U \leq 0 \},$$
where
\[U = \begin{pmatrix} \frac{1}{w} \end{pmatrix}, \quad N = \begin{pmatrix} -1 & -c^T \cdot B' \\ -B' \cdot c & B' \end{pmatrix}, \quad \text{and} \quad B' = \frac{B}{1 - c^T \cdot B \cdot c}. \]

Translating the center of \(E \) to the origin, this description becomes
\[E_o = \{ U \in \mathbb{R}^{d+1} : U^T \cdot N_o \cdot U \leq 0 \}, \]

where
\[N_o = \begin{pmatrix} -1 & 0 \\ 0 & B' \cdot c \cdot c^T \cdot B + B' \end{pmatrix}. \]

In this representation, the vector of semi-axis lengths is
\[a = w^{1/2} \circ c(B' \cdot c \cdot c^T \cdot B' + B'). \]

Definition 12 (in-between ellipsoid). We define the in-between ellipsoid \(E_\lambda \) to two ellipsoids \(E_0 \) and \(E_1 \) with respect to the representation (31) by building the convex sum of the two defining homogeneous matrices:
\[E_\lambda = \{ U \in \mathbb{R}^{d+1} : U^T \cdot N_\lambda \cdot U \leq 0 \}, \quad \lambda \in [0, 1] \]

where
\[N_\lambda = (1 - \lambda)N_0 + \lambda N_1. \]

Note that we have no guarantee that \(E_\lambda \) is really an ellipsoid for all values \(\lambda \in [0, 1] \). It is, however, an ellipsoid at least in the vicinity of \(\lambda = 0 \) and \(\lambda = 1 \) and this is all we need. For reasons of simplicity we will not always mention this explicitly and still refer to \(E_\lambda \) as “in-between ellipsoid”.

Lemma 13. The in-between ellipsoid \(E_\lambda \) of two ellipsoids \(E_0 \) and \(E_1 \) lies inside the convex hull of \(E_0 \) and \(E_1 \), that is
\[E_\lambda \subset \text{conv}(E_0, E_1), \]

at least for values of \(\lambda \) in the vicinity of 0 and 1.

In order to prove Lemma 13 it is sufficient to consider the case \(d = 2 \). This can be seen as follows: Let \(x \) be a point in \(E_\lambda \) and take a plane \(\pi \) through \(x \) and the centers of \(E_0 \) and \(E_1 \), respectively. The in-between ellipsoid \(E_\lambda \) intersects \(\pi \) in an ellipse \(E'_\lambda \) that is obtained as in-between ellipse to \(\pi \cap E_0 \) and \(\pi \cap E_1 \). Hence, \(x \) lies in \(E_\lambda \) if and only if it lies in \(E'_\lambda \).

The proof for \(d = 2 \) can be carried out by straightforward computation. It requires, however, a case distinction, is rather technical and does not provide useful insight. Therefore, we omit it at this place. It will be published in the first author’s doctoral thesis.

Theorem 14. Let \(f \) be a size function for ellipsoids such that \(f \circ w^{1/2} \) is strictly concave on \(\mathbb{R}^d_+ \). Further let \(F \subset \mathbb{R}^d \) be a compact convex body. Among all ellipsoids with a fixed center that are inscribed into \(F \) there exists a unique ellipsoid that is maximal with respect to \(f \).

Once we have realized that we can describe \(E_0 \) and \(E_1 \) by homogeneous matrices
\[N_i = \begin{pmatrix} -1 & 0^T \\ 0 & B_i \end{pmatrix}, \quad i = 0, 1 \]

the proof is quite similar to the proof of Theorem 14.
Remark 15. The uniqueness results of Theorems 5, 9, and 14 also hold if we look for extremal ellipsoids only among ellipsoids with prescribed axes. Theorems 5 and 9 remain true if the center is prescribed.

4. Non-uniqueness results

In this section we give two simple examples of size functions and convex sets such that the corresponding extremal ellipsoids are not unique. In view of our results, the size functions lack a convexity or concavity property. While non-uniqueness in both examples is rather obvious we feel the need to publish them since we are not aware of a single similar counter-example. Only Behrend (1938) mentions the non-uniqueness of maximal inscribed circles. A trivial example is two congruent circles inscribed into their convex hull.

Minimal ellipsoids with non-convex size function. Denote by $F \subset \mathbb{R}^2$ the set of four points with coordinates $(\pm 1, \pm 1)$ and let f be the non-convex size function

$$f: \mathbb{R}^2_+ \to \mathbb{R}_+, \ (a, b) \mapsto \max\{a, b\} + 16 \min\{a, b\}.$$

If the f-minimal ellipse to F was unique it must have four axis of symmetry and therefore it must be the circle C through the points of F. But the size of the two ellipses E_1 and E_2

$$E_1: \left(\frac{32}{257} 2^4 - \frac{4}{257} 2^2 + \frac{1}{257}\right)x^2 + \left(-\frac{32}{257} 2^4 + \frac{4}{257} 2^2 + \frac{256}{257}\right)y^2 - 1 \leq 0$$

$$E_2: \left(-\frac{32}{257} 2^4 + \frac{4}{257} 2^2 + \frac{256}{257}\right)x^2 + \left(\frac{32}{257} 2^4 - \frac{4}{257} 2^2 + \frac{1}{257}\right)y^2 - 1 \leq 0$$

is smaller than the size of the circle (compare Figure 1):

$$f(E_1) = f(E_2) \approx 19.9248 < f(C) \approx 24.0416$$

The ellipses E_1 and E_2 are the minimizers of f among all ellipses E_λ through the four points of F. Figure 1 right, displays the plot of the size function for all ellipses in the pencil of conics spanned by these points.
Maximal ellipsoids with non-concave size function. Let \(F \subset \mathbb{R}^2 \) be the equilateral triangle with side length 1 (see Figure 2). The size function under consideration is the arc-length of an ellipse. We will demonstrate that the inscribed ellipse of maximal arc length is not unique. This is particularly interesting since the minimal arc-length enclosing ellipse is known to be unique, see Firey (1964); Gruber (2008); Schroecker (2008).

The arc-length of an ellipse with semi-axis length \(a \) and \(b \) can be expressed in terms of the complete elliptic integral of first kind

\[
f(a, b) = 4 \max\{a, b\} E(1 - \frac{\min\{a, b\}}{\max\{a, b\}})
\]

where

\[
E(k) = \int_0^1 \frac{\sqrt{1 - k^2 t^2}}{\sqrt{1 - t^2}} dt.
\]

If the maximal arc-length ellipse contained in \(F \) was unique it must share the triangle’s symmetries. Therefore, it must be the in-circle \(C \). But the arc-length of the ellipsoid \(E_s \) that degenerates to the triangle side on the \(x \)-axis is greater than that of the circle: \(f(E_s) = 2 > \pi/\sqrt{3} = f(C) \), see Figure 2. This shows that the maximal arc-length ellipse inscribed into an equilateral triangle is not unique. The plot in Figure 2, right, depicts the size function of the drawn inscribed ellipses. The circle corresponds to the kink in the graph.

5. Conclusion

We studied uniqueness results of minimal circumscribed and maximal inscribed ellipsoids. Uniqueness can be guaranteed if the function used for measuring the ellipsoid size satisfies a certain convexity or concavity condition. Summarizing our findings we can state that the minimal enclosing ellipsoid with respect to a size function \(f \) is unique if \(f \circ w^p \) is convex for \(p \in \{-1, -1/2\} \). The maximal inscribed ellipsoid is unique if \(f \circ w^p \) is concave for \(p = 1 \) or for \(p = 1/2 \) if the center is prescribed. Uniqueness for \(p = 1/2 \) under general assumptions is still an open question.

Acknowledgments

The authors gratefully acknowledge support of this research by the Austrian Science Foundation FWF under grant P21032.
References

F. Behrend. Über die kleinste umbeschriebene und die größte einbeschriebene Ellipse eines konvexen Bereiches. *Math. Ann.*, 115:397–411, 1938.

Marcel Berger. Convexity. *Amer. Math. Monthly*, 97(8):650–678, 1990.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

L. Danzer, D. Laugwitz, and H. Lenz. Über das Löwnersche Ellipsoid und sein Analogon unter den einem Eikörper einbeschriebenen Ellipsoiden. *Arch. Math.*, 8(3):214–219, 1957.

Ch. Davis. All convex invariant functions of Hermitian matrices. *Arch. Math.*, 8(4):276–278, 1957.

W. J. Firey. Some applications of means of convex bodies. *Pacific J. Math.*, 14(1):53–60, 1964.

P. M. Gruber and J. Höbinger. Kennzeichnungen von Ellipsoiden mit Anwendungen. In B. Fuchssteiner, U. Kulisch, D. Laugwitz, and R. Liedl, editors, *Jahrbuch Überblicke Mathematik 1976*, pages 9–29. Bibliographisches Institut Mannheim/Wien/Zürich, 1976.

Peter M. Gruber. Application of an idea of Voronoi to John type problems. *Adv. in Math.*, 218(2):309–351, 2008.

E. Heil and H. Martini. Special convex bodies. In P. M. Gruber and J. M. Wills, editors, *Handbook of Convex Geometry*, volume A, chapter 1.11, pages 347–385. North-Holland, Amsterdam-London-New York-Tokyo, 1993.

F. John. *Studies and essays. Courant anniversary volume*, chapter Extremum problems with inequalities as subsidiary conditions, pages 187–204. Interscience Publ. Inc., New York, 1948.

B. Klartag. On John-type ellipsoids. In *Geometric Aspects of Functional Analysis*, Lecture Notes in Mathematics, pages 149–158. Springer, Berlin, Heidelberg, 2004.

P. Kumar and E. A. Yıldırım. Minimum volume enclosing ellipsoids and core sets. *J. Optim. Theory Appl.*, 126(1):1–21, 2005.

A. S. Lewis. Convex analysis on the Hermitian matrices. *SIAM J. Optim.*, 6(1):164–177, 1996.

C. M. Petty. Ellipsoids. In P. M. Gruber and J. M. Wills, editors, *Convexity and Its Applications*, pages 264–276. Birkhäuser, Basel-Boston-Stuttgart, 1983.

Hans-Peter Schröcker. Uniqueness results for minimal enclosing ellipsoids. *Comput. Aided Geom. Design*, 25(9):756–762, 2008.

M. J. Todd and E. A. Yildirim. On Khachiyan’s algorithm for the computation of minimal volume enclosing ellipsoids. *Discrete Appl. Math.*, 155(13):1731–1744, 2007.