Electrosynthesis of Al(OH)₃ by Al(s)|KCl(aq)||KCl(s)|C(s) system

Linda Suyati*, Intan Dian Nur Fadilah¹, Didik Setiyono Widodo¹, Gunawan¹, W H Rahmanto¹

¹Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Semarang, Indonesia
* Correspondence email: linda_suyati@live.undip.ac.id

Abstract. Electrosynthesis of Al(OH)₃ by using Al(s)|KCl(aq)||KCl(aq)||KCl(s)|C(s) system had been done. The presence of electrolyte was much influenced to the electrolysis result. The purpose of this work was to investigate the purity of Al(OH)₃ compound with the presence of KCl concentration using XRD characterization. Electrolysis process was done in 2-compartment system, by using aluminium plate electrode as anode, carbon electrode as cathode, and electrolyte solutions of KCl were varied at the concentrations of 0.25; 0.30; 0.35; 0.40; 0.45 M. The electrolysis process was done at room temperature and potential of 12 V for 6 h. The electrolysis products were characterized using XRD and the best electrolysis result was determined its thermal property by using TGA-DSC. The result showed that electrolysis of Al(s)|KCl(aq)||KCl(aq)||KCl(s)|C(s) system with the variation of electrolyte concentration solutions gave white precipitations with the masses of 50.6; 51.8; 56.1; 64.9; 97.2 mg, respectively. The XRD characterization of the electrolysis product precipitates gave the best product as Al(OH)₃ when using KCl concentration of 0.3 M, while at KCl concentration of 0.45 M was resulted KAlOCl₂, and another variation KCl concentration gave a mixture product of Al(OH)₃ and KAlOCl₂. Thermal analysis result of the best electrolysis product using TGA-DSC showed the reduced total sample mass of 45.47 % and two endothermic peaks at 270.08°C as the transformation of Al(OH)₃ to AlOOH (boehmite) with the absorbed energy of 2.47 kJ/mol. At temperature of 660.28°C was the phase change of AlOOH (boehmite) to γ-Al₂O₃ with absorbed energy of 0.23 kJ/mol. Then, at temperature above 800°C there was no mass reduction, that meant it formed stable phase of Al₂O₃. To sum up, the purity of Al(OH)₃ compound was much influenced by KCl concentration and the increase of temperature transformed the Al(OH)₃ sample to AlOOH (boehmite) and γ-Al₂O₃.

1. Introduction
Al(OH)₃ is metal hydroxide that is much used as flame retardant additives for polymer due to its property in thermal degradation that absorbs heat (endothermic), releases water, and forms oxide film of Al₂O₃ at the surface of polymer [1]. Electrosynthesis is a part of electrolysis methods that uses electricity to produce chemical reactions, in this case that involving redox reaction, such as electrosynthesis of Al(OH)₃. The method has advantages such as using small amount of reactant, the process is simple and fast [2].

Synthesis of Al(OH)₃ was done by Tchomgui-Kamga et al. [3] with electrolysis method using 1-compartment system. An aluminium metal electrode with successive electrolyte solutions of Al₂(SO₄)₃, Al(NO₃)₃, AlCl₃, (NH₄)₂SO₄, NH₄Cl, (NH₄)HCO₃, Na₂SO₄, NaNO₃, NaCl, NaClO₄, Na₃C₂O₄, NaCH₃CO₂ were used in the system. The result of bayerite, Al(OH)₃, was found in all solutions, except...
ammonium salts. While boehmine, AlOOH, was resulted from ammonium salts. Shalaby et al. [4] did an electrolysis in 1-compartment system using aluminium anode in electrolyte solutions of NaCl, KCl, NaNO₃ and NaNO₂ with concentration variations of 0.5 to 5 g/L. The result was Al(OH)₃ and the higher electrolyte concentration increased the efficiency of the produced coagulation. In this work, we used different system as previous researches, since by using 1-compartment the main and side products will mix together and makes the product characterization difficult therefore, 2-compartment system was used[5, 6]. It contained aluminium as anode in one compartment and graphite as cathode in another compartment that was connected by salt bridge. Yan et al. [7] had done a synthesis by using 2-compartment system namely by separation of Al(OH)₃ and NaOH from NaAlOH₃ solution with titanium coated with ruthenium as the electrodes. Graphite has an advantage of its inertness, therefore it is not easy to be oxidized or reduced, while aluminium anode as Al³⁺ ion sources from its oxidation reaction. Electrolyte solution of KCl was used as in 1-compartment since it has a good conductivity, in this case the KCl concentrations were varied (0.25, 0.30, 0.35, 0.40, 0.45 M). The purpose of this work was to get Al(OH)₃ by electrosynthesis and to characterize the purity of the products using XRD as well as to get the thermal property of pure Al(OH)₃ using TGA-DSC.

2. Experiment methods
The solution of 200 mL KCl (concentrations of (0.25, 0.30, 0.35, 0.40, 0.45 M) was soaked to 2-compartment system. Aluminium electrode (9 cm x 4 cm) in anode compartment and 8 bar of graphite electrodes (from bateray) in cathode compartment with the distance among the electrodes was 2.5 cm. The two compartments were connected with salt bridge. The electrolysis was done for 6 h with potential of 12 V and the electrolysis obtained product was Al(OH)₃. Then, the product was filtered, dried and characterized using XRD (Shimadzu Maxima 7000) to know crystal products in Al(OH)₃ sample. TGA-DSC (Perkin Elmer 6000) was used to investigate the decomposition temperature and thermal property of the product.

3. Results and Discussion
In the electrolysis process, aluminium metal anode dissolve to form Al³⁺ [4], while graphite is inert and remains stable, therefore in cathode compartment water will reduce to hydrogen gas. The reduction and oxidation reactions that occur in electrolysis process as the following [4]:

\[
\begin{align*}
\text{Al}^{3+} (aq) + \text{H}_2\text{O} (aq) & \rightarrow \text{Al(OH)}^{2+}(aq) + \text{H}^+(aq) \\
\text{Al(OH)}^{2+} (aq) + \text{H}_2\text{O}(aq) & \rightarrow \text{Al(OH)}_2^+(aq) + \text{H}^+(aq) \\
\text{Al(OH)}_2^+ (aq) + \text{H}_2\text{O} (aq) & \rightarrow \text{Al(OH)}_3 (s) + \text{H}^+(aq)
\end{align*}
\]

Overall reaction:

\[
\text{Al}^{3+} (aq) + 3\text{H}_2\text{O}(aq) \rightarrow \text{Al(OH)}_3(s) + 3\text{H}^+(aq)
\]

The cation of K⁺ flows to cathode and reacts with OH⁻ from water reduction reaction to form KOH. The reaction as follow [8]:

\[
\text{K}^+(aq) + \text{OH}^-(aq) \rightarrow 2\text{KOH}(aq)
\]

The formation of KOH was proven by the increase of pH solution at cathode compartment.

3.1. Effect of KCl concentration to electrolysis products
The increase in KCl concentration will improve the current that flows through the electrolysis cell [9], as consequence it will improve the precipitate resulted. as in shown in Fig. 1.
3.2. Characterization of electrolysis products

3.2.1. X-ray Diffraction (XRD). The diffractograms of electrolysis precipitate products with the varied concentrations of KCl can be seen in Fig. 2. The XRD characterization of the high peaks of the sample found was compared with JCPDS database number 20-0011 and 73-0631 for Al(OH)$_3$ (bayerite) and KAlOCl$_2$ compounds, respectively.

The product resulted from electrolysis process with KCl concentration of 0.25 M was a mixture of Al(OH)$_3$ and KAlOCl$_2$ as shown by the peaks at 2θ of 41.16, 19.43, 21.98. JCPDS database number 20-0011 and 73-0631 for Al(OH)$_3$ and KAlOCl$_2$ have 2θ of 28.87, 50.77, 59.19 and 28.42, 40.63, 50.32, respectively. The product resulted from electrolysis in KCl 0.3 M was Al(OH)$_3$ shown by 8 peaks with 3 high peaks at 2θ of 40.79, 19.07, 20.60 as the peaks of Al(OH)$_3$. Electrolysis with KCl 0.35M produces a mixture of Al(OH)$_3$ and KAlOCl$_2$ confirmed by the peaks at 2θ of 40.86, 19.10, 20.71 as Al(OH)$_3$ and the presence of peaks at 2θ of 28.64, 66.57, 50.40 as KAlOCl$_2$. While the electrolysis with KCl 0.40M
also resulted a mixture of Al(OH)$_3$ and KAIoCl$_2$ supported by the peaks at 2θ of 40.52, 40.76, 20.63 as Al(OH)$_3$. The presence of KAIoCl$_2$ is shown at 2θ of 28.69, 40.85, 50.39. Finally, the compound resulted from the electrolysis with KCl 0.45M is a compound of KAIoCl$_2$. The presence of KAIoCl$_2$ is shown by 6 peaks with 2θ of 28.67, 40.88, 50.57 as KAIoCl$_2$. Therefore the electrolysis result in KCl 0.30 M gave Al(OH)$_3$ product as shown by 8 peaks of Al(OH)$_3$. In KCl 0.45 M as the highest concentration of KCl used is identified 6 peaks of KAIoCl$_2$. Meanwhile for other variation of KCl concentrations result a mixture of Al(OH)$_3$ and KAIoCl$_2$. The presence of Al$_2$O$_3$ as the result of aluminium anodation [9] will react with KAIoCl$_2$ to form KAIoCl$_3$. Consequently the electrolysis results in KCl 0.30 M as the product as shown by 8 peaks of Al(OH)$_3$. In KCl 0.45 M as the highest concentration of KCl used is identified 6 peaks of KAIoCl$_2$. Meanwhile for other variation of KCl concentrations result a mixture of Al(OH)$_3$ and KAIoCl$_2$. The presence of KAIoCl$_2$ can be possibly explain as follow. The KCl ion reacts with Al$^{3+}$ ion released from electrolysis of aluminium anode to form KAIoCl$_2$. The presence of Al$_2$O$_3$ as the result of aluminium anodation [9] will react with KAIoCl$_2$ to form KAIoCl$_3$ [10].

3.2.2. TGA-DSC. The electrosynthesis result from KCl 0.3 M as the product is Al(OH)$_3$ analyzed by XRD above, was characterized using TGA-DSC instrument with heating temperature from 50$^\circ$C to 950$^\circ$C with heating rate of 10$^\circ$C/min. Thermogram of the sample is depicted in Fig. 3.

DSC curve is formed two endothermic peaks and TGA curve shows the reduced mass of the sample. The sample mass loss is 45.47%. The hydroxyl release process occurs at temperature 100-350$^\circ$C [10], with first endothermic peak at 270.08$^\circ$C with absorbed energy of 31.74 J/g or 2.47 kJ/mol and the total energy absorbed is 231.79 mJ. The peak shows the transformation from Al(OH)$_3$ (bayerite) to AlOOH (boehmite) [11]. Transformation process is from AlOOH (boehmite) to γ-Al$_2$O$_3$ occurs at 550-800$^\circ$C [11] with second endothermic peak at 660.28$^\circ$C with absorbed energy of 2.99 J/g or 0.23 kJ/mol and total of absorbed energy is 21.89 mJ. At temperature above 800$^\circ$C there is no mass loss of the sample that shows the stable Al$_2$O$_3$ phase formation.

Theoretically, thermal decomposition process from Al(OH)$_3$ to Al$_2$O$_3$ absorbs energy of 173.61 kJ/mol, while from the characterization is 2.71 kJ/mol. This is due to the impurity that exists in the synthesis result of Al(OH)$_3$. In methane gas combustion, the released energy is 802.36 kJ/mol. Some moles of Al(OH)$_3$ can absorb the energy released and retard the combustion from methane.

Thermal analysis of Al(OH)$_3$ decomposition using TGA-DSC instrument occurs endothermically. The Al(OH)$_3$ decomposition that absorbs energy will increase the fire retardation due to water release from Al(OH)$_3$ and liquidifies the flammable gas. The decomposition reaction of Al(OH)$_3$ is as the following [12]:

\[
\text{Al(OH)}_3 \rightarrow \text{Al}_2\text{O}_3 + \text{H}_2\text{O} \tag{6}
\]

Beside that it also forms a thermally stable Al$_2$O$_3$ layer on the the flammable gas.

![Figure 3. Curve of TGA-DSC of Al(OH)$_3$](image-url)
4. Conclusion
White precipitates with different masses were formed for electrolysis processes using aluminium anode with varied KCl solutions. From purity analysis using XRD found that precipitate of Al(OH)$_3$ was found in electrolysis using KCl 0.3 M, while KAlOCl$_2$ was formed in the solution of KCl 0.45 M. The mixed compounds of Al(OH)$_3$ and KAlOCl$_2$ were formed in other variations of KCl concentrations. Thermal analysis using TGA-DSC for Al(OH)$_3$ from the electrolysis using KCl 0.3 M solution shows reduced mass total of 45.49 % and two endothermic peaks at 270.08°C as the transformation of Al(OH)$_3$ to AlOOH (boehmite) with absorbed energy of 2.47 kJ/mol, while at 660.28°C is the phase change of AlOOH (boehmite) to γ-Al$_2$O$_3$ with absorbed energy of 0.23 kJ/mol. At temperature above 800°C there is no mass loss of Al(OH)$_3$ sample due to the formation of thermally stable phase of Al$_2$O$_3$.

References
[1] Elbasuney S 2017 Novel multi-component flame retardant system based on nanoscopic aluminium-trihydroxide (ATH) Powder Technol. 305 538-45
[2] Woo S, Park J-H, Rhee C K, Lee J and Kim H 2012 Effect of thermal treatment on the aluminium hydroxide nanofibers synthesized by electrolysis of Al plates Microelectron. Eng. 89 89-91
[3] Tchomgui-Kamga E, Audebrand N and Darchen A 2013 Effect of co-existing ions during the preparation of alumina by electrolysis with aluminum soluble electrodes: structure and defluoridation activity of electro-synthesized adsorbents J. Hazard. Mater. 254 125-33
[4] Shalalby A, Nassef E, Mubark A and Hussein M 2014 Phosphate removal from wastewater by electrocoagulation using aluminium electrodes Am. J. Environ. Eng. Sci. 1 5 90-8
[5] Siskawati N, Widodo D S, Rahmanto W H and Suyati L 2018 Electrosynthesis of α-Fe2O3 in a Fe(s)/KCl(aq)∥H2O(aq)∥C(s) System J. Kim. Sains Apl. 21 4 182-6
[6] Hidayah F F, Suyati L and Nuryanto R 2010 Efek KOH terhadap Rendemen Magnesium Hidroksida pada Elektrolisis Sistem C || KOH || MgSO4,KCl || C J. Kim. Sains Apl. 13 3 76-9
[7] Yan H, Wu C and Wu Y 2015 Optimized process for separating NaOH from sodium aluminate solution: coupling of electrodialysis and electro-electrodialysis Ind. Eng. Chem. Res. 54 6 1876-86
[8] Svehla G 1990 Buku Teks Analisis Anorganik Kualitatif Makro dan Semimikro (Jakarta: PT, Kalman Media Pustaka)
[9] Wernick S, Pinner R and Sheasby P G 1987 Surface treatment and finishing of aluminum and its alloys: ASM International)
[10] MacDonald D D and Butler P 1973 The thermodynamics of the aluminium—water system at elevated temperatures Corros. Sci. 13 4 259-74
[11] Souza A D, Arruda C C, Fernandes L, Antunes M L, Kiyohara P K and Salomão R 2015 Characterization of aluminium hydroxide (Al(OH)$_3$) for use as a porogenic agent in castable ceramics J. Eur. Ceram. Soc. 35 2 803-12
[12] Lamouri S, Hamidouche M, Bouaouadjia N, Belhoucett H, Garnier V, Fantozzi G and Trelkat J F 2017 Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification Bol. Soc. Esp. Ceram. V 56 2 47-54