GAPS OF SMALLEST POSSIBLE ORDER BETWEEN PRIMES IN AN ARITHMETIC PROGRESSION

ROGER C. BAKER AND LIANGYI ZHAO

Abstract. Let $t \in \mathbb{N}, \eta > 0$. Suppose that x is a sufficiently large real number and q is a natural number with $q \leq x^{5/12 - \eta}$, q not a multiple of the conductor of the exceptional character χ^* (if it exists). Suppose further that,

$$\max\{p : p|q\} < \exp\left(\frac{\log x}{C \log \log x}\right) \text{ and } \prod_{p|q} p < x^\delta,$$

where C and δ are suitable positive constants depending on t and η. Let $\mathcal{A} = \{n \in (x/2, x) : n \equiv a \pmod{q}\}$.

We prove that there are primes $p_1 < p_2 < \cdots < p_t$ in \mathcal{A} with

$$p_t - p_1 \ll qt \exp\left(\frac{40t}{9 - 20\theta}\right).$$

Here $\theta = (\log q)/\log x$.

Key words and Phrases: GPY sieve, primes in arithmetic progressions, large values of Dirichlet polynomials, zeros of Dirichlet L-functions

2010 Mathematics Subject Classification: 11N13

1. Introduction

Let $t \in \mathbb{N}$ and $0 \leq \eta < 1$ be given. Suppose that x is a large positive real number, and that $q \in \mathbb{N}$ and $(a, q) = 1$, $q \leq x^{1 - \eta}$. Set

$$\mathcal{A} = \{n \in (x/2, x) : n \equiv a \pmod{q}\}.$$

It may be conjectured that there are primes $p_1 < p_2 < \cdots < p_t$ in \mathcal{A} with

$$p_t - p_1 \ll t^{3/5} \exp(4t).$$

J. Maynard [13] has recently refined the Goldston-Pintz-Yıldırım sieve to prove this in the case of $q = 1$, showing that

$$p_t - p_1 \ll t^{3/5} \exp(4t).$$

In this paper, we prove (1.1) for a certain class of q’s. To describe this class, we first specify what is meant by the exceptional character. (See [9, p. 95].) For a certain positive absolute constant c_1, there is at most one primitive real character χ^* to a modulus not exceeding x such that $L(\beta, \chi^*) = 0$ with $\beta \in \mathbb{R}$ and

$$\beta > 1 - \frac{c_1}{\log x}.$$

We shall write w for the conductor of χ^* (if χ^* exists).

The key ingredient of our work, besides Maynard’s method (in the form of a general theorem of Baker and Zhao [2]), is Chang’s zero-free region [4]. She shows that for $\chi \neq \chi^*$ a primitive character with conductor $r \leq x$,

$$\mathcal{P} = \mathcal{P}(r) = \max\{p : p|r\}, \quad r' = r'(r) = \prod_{p|r} p$$

Date: December 2, 2014.

1
and $K = \log r / \log r'$, there is a positive constant c_2 such that if $L(s, \chi) = 0$ for $|3s| < T$, then

$$\Re s < 1 - c_2 \min \left(\frac{1}{\log B}, \frac{\log r'}{\log 2K}, \frac{1}{(\log r')^{9/10}} \right).$$

We write $L = \log x$. Let ε be a sufficiently small positive constant. Furthermore, we shall write $H(q, B, \delta)$ for the property

$$(H(q, B, \delta)) \quad \mathcal{P}(q) < \exp \left(\frac{c_2 L}{B \log L} \right); \quad q' = \prod_{p \mid q} p^\delta; \quad w \nmid q.$$

Theorem 1. Let $\eta > 0$, $t \geq 1$ and let $q = x^\theta$, $0 < \theta \leq 5/12 - \eta$, $(a, q) = 1$. Let

$$K(\theta) = \begin{cases}
\frac{2}{1 - \theta} & \text{if } \theta < 2/5 - \varepsilon, \\
\frac{40\theta}{9 - 20\theta} & \text{if } \theta \geq 2/5 - \varepsilon.
\end{cases}$$

Suppose that q satisfies $H(q, B, \delta)$ with

$$B = \frac{C_1}{\eta} \exp \left(\frac{4t}{K(\theta)} \right), \quad \delta = \frac{C_2 \eta}{t + \log(1/\eta)} \exp \left(- \frac{4t}{K(\theta)} \right)$$

for suitable absolute positive constants C_1, C_2. There are primes $p_1 < \cdots < p_t$ in A with

$$p_t - p_1 < C_2 qt \exp (K(\theta)t).$$

Here C_2 is a positive absolute constant.

We shall deduce Theorem 1 from the following theorem of Bombieri-Vinogradov type. (See Section 6 for the details of this deduction.) Let

$$\psi(x; q, a) = \sum_{\substack{n \leq x \\ n \equiv a \mod q}} \Lambda(n),$$

where Λ is the von Mangoldt function.

Theorem 2. Suppose that $A > 1$, $\eta > 0$, $q = x^\theta$ with $\theta < 5/12 - \eta$, $\varepsilon > 0$ and that q satisfies $H(q, B, \delta)$ with B and δ satisfying

$$B > \frac{5}{6\eta} (A + 2), \quad \delta \log \frac{1}{\delta} < \frac{c_2}{B}.$$

Let v be the largest prime divisor of $w/(q, w)$ if χ^* exists and $v = 1$ otherwise. Then

$$\sum_{d \leq x^{L(\theta)}} \max_{(a, q) = 1} \left| \psi(x; qd, a) - \frac{x}{\varphi(qd)} \right| \ll \frac{x}{\varphi(q)} L^A.$$

Here $L(\theta) = 1/2 - \theta - \varepsilon$ if $\theta < 2/5 - \varepsilon$ and $L(\theta) = 9/20 - \theta - \varepsilon$ if $2/5 - \varepsilon < \theta \leq 5/12 - \eta$. The implied constant above depends on ε and A.

Theorem 2 is a refinement of the work of P. D. T. A. Elliott [17]. In [17], q is taken to be a power of a fixed integer while $\theta < 1/3$. Elliott used the work of H. Iwaniec [11] on the zero-free regions of L-functions; see [7] for the historical background on this topic.

For completeness, we also include an analog of the Barban-Davenport-Halberstam theorem ([5, Chapter 29]).

Theorem 3. Under the hypothesis of Theorem 2, we have

$$\sum_{d \leq Q/q} \sum_{a=1}^{\varphi(q)/d} \left(\psi(x; qd, a) - \frac{x}{\varphi(qd)} \right)^2 \ll \frac{xQL}{\varphi(q)}$$

whenever $xL^{-A} \leq Q \leq x$. The implied constant depends on η and A.
The reader will observe that the simpler condition
\[(1.6) \quad \prod_{p \mid q} \varphi(p) < \log C_3 x\]
with an absolute constant C_3, would give the conclusions of Theorems 1, 2 and 3 without any reference to the exceptional character. Moreover, a careful reading of our proof will show that the condition $(d, qv) = 1$ in Theorems 2 and 3 can be replaced by $(d, q) = 1$ when (1.6) holds.

2. Preliminary Lemmas

Let v be as in Theorem 1 throughout. Unless otherwise stated, implied constants depend on ε and, if A is present, on A.

For a Dirichlet character χ, we use $\hat{\chi}$ to denote the primitive character that induces χ. Moreover, let
\[
\sum'_{\chi \mod r} \quad \text{and} \quad \sum^*_{\chi \mod r}
\]
stand for, respectively, a sum restricted to nonprincipal characters modulo r and a sum restricted to primitive characters modulo r. As usual, let
\[
\psi(x, \chi) = \sum_{n \leq x} \Lambda(n) \chi(n).
\]

Lemma 1.

(i) We have, for $r < x$,
\[
\max_{(a, r) = 1} \left| \psi(x; r, a) - \frac{x}{\varphi(r)} \sum_{\chi \mod r} \psi(x, \chi) \right| \ll \frac{x}{\varphi(r)} \sum_{\chi \mod r} |\psi(x, \chi)| + \frac{x}{\varphi(r)} L A.
\]

(ii) For each of the characters χ in the above, we have
\[
|\psi(x, \chi)| - |\psi(x, \hat{\chi})| \ll L^2.
\]

(iii) We have
\[
\sum_{a=1}^{r} \left(\psi(x; r, a) - \frac{x}{\varphi(r)} \right)^2 \ll \frac{1}{\varphi(r)} \sum_{\chi \mod r} |\psi(x, \chi)|^2 + \frac{x^2}{\varphi(r)} L A.
\]

Proof. These are standard results. See, for example, pp. 162-163 and 169-170 in [5].

Lemma 2.

(i) For any natural number r and any complex-valued function F defined on Dirichlet characters, we have
\[(2.1) \quad \sum'_{\chi \mod r} F(\chi) = \sum_{r_1 | r} \sum^*_{\chi \mod r_1} F(\chi_1).
\]

(ii) Suppose further that $F \geq 0$ and $qD < x$. There exists $D_1 \leq D$ such that
\[(2.2) \quad \sum_{d \leq D} \sum_{(d, qv) = 1} \sum'_{\chi \mod qd} F(\chi) \ll \frac{LD}{D_1} \sum_{q_1 | q} \sum_{d_1 \leq D_1} \sum_{(d_1, qv) = 1} \sum^*_{\chi_1 \mod q_1 d_1} F(\chi_1).
\]

Proof. The equation (2.1) is immediate from allocating the conductors of $\hat{\chi}$ into classes corresponding to divisors of r. For (2.2), the left-hand side is
\[
\sum_{d \leq D} \sum_{(d, qv) = 1} \sum_{q_1 | q} \sum_{d_1 \leq D_1} \sum_{(d_1, qv) = 1} \sum_{\chi_1 \mod q_1 d_1} F(\chi_1) \ll \frac{LD}{D_1} \sum_{q_1 | q} \sum_{D_1 < d_1 \leq 2D_1} \sum_{\chi_1 \mod q_1 d_1} F(\chi_1)
\]
Lemma 3. Let $L = L(\theta)$ as in Theorem 2 and

$$R(x; r, a) = \sum_{n \leq x \atop n \equiv a \mod r} \Lambda(n) \log \frac{x}{n}.$$

Suppose that for $qD \ll x^L$ and some $A > 0$,

$$\sum_{D < d \leq 2D \atop (d, qv) = 1} \max_{(a, qd) = 1} \left| \frac{R(x; qd, a) - x}{\varphi(qd)} - \frac{x}{\varphi(q)^2 L^A + 1} \right| \ll \frac{x}{\varphi(q)^2 L^A + 1}.$$

Then for $qD \ll x^L$,

$$\sum_{D < d \leq 2D \atop (d, qv) = 1} \max_{(a, qd) = 1} \left| \frac{x}{\varphi(q)} - \frac{R(x; qd, a) - x}{\varphi(qd)} \right| \ll \frac{x}{\varphi(q)^2 L^A}.$$

Proof. We start with the identity

$$R(x; r, a) = \int_1^x \psi(y; r, a) \frac{dy}{y}.$$

This, together with the fact that $\psi(y; r, a)$ is nondecreasing in y, gives that for all $\lambda > 0$,

$$\frac{R(x; r, a) - R(x e^{-\lambda}; r, a)}{\lambda} = \frac{1}{\lambda} \int_{e^{-\lambda} x}^x \psi(y; r, a) \frac{dy}{y} \leq \psi(x; r, a) \leq \frac{1}{\lambda} \int_{e^{-\lambda} x}^x \psi(y; r, a) \frac{dy}{y} = \frac{R(x e^{-\lambda}; r, a) - R(x; r, a)}{\lambda}.$$

This leads to

$$\psi(x; r, a) - \frac{x}{\varphi(r)} \leq \frac{R(x; r, a) - x}{\lambda} - \frac{R(x; r, a) - x/\varphi(r)}{\lambda} + \left(\frac{e^\lambda - 1}{\lambda} - 1 \right) \frac{x}{\varphi(r)}$$

and

$$\psi(x; r, a) - \frac{x}{\varphi(r)} \geq \frac{R(x; r, a) - x}{\lambda} - \frac{R(x; r, a) - e^{-\lambda} x/\varphi(r)}{\lambda} + \left(1 - \frac{e^\lambda - 1}{\lambda} \right) \frac{x}{\varphi(r)}.$$

Take $\lambda = L^{-A-1}$ so that

$$\frac{e^\lambda - 1}{\lambda} - 1 \ll L^{-A-1} \quad \text{and} \quad \frac{1 - e^{-\lambda}}{\lambda} - 1 \ll L^{-A-1}.$$

We get, taking $D \ll x^L/q$, $r = qd$ and summing over $d \in (D, 2D]$, there is $\mu \in \{1, 0, -1\}$ for which

$$\sum_{D < d \leq 2D \atop (d, qv) = 1} \max_{(a, qd) = 1} \left| \psi(x; qd, a) - \frac{x}{\varphi(qd)} \right| \ll L^{A+1} \sum_{D < d \leq 2D \atop (d, qv) = 1} \max_{(a, qd) = 1} \left| R(e^\mu x; qd, a) - \frac{e^\mu x}{\varphi(qd)} \right| + \frac{e^\mu x}{\varphi(q)} \sum_{1 \leq d \leq 2D} \frac{1}{\varphi(d)} \ll \frac{x}{\varphi(q) L^A},$$

using (2.4).
In the following lemma, let \(\beta + i\gamma \) denote a zero of any of the Dirichlet \(L \)-functions \(L(s, \chi) \) with \(\chi \) a non-principal character modulo \(r \).

Lemma 4. Let \(r < x \). Then

\[
\sum_{\chi \mod r} \sum_{\beta \geq 1/2, |\gamma| < x^{1/2}} \left| \frac{x^\beta L^{(1+1)} + x^{1/2} r L^2 + x}{L^A} \right| \ll \sum_{\chi \mod r} \sum_{\beta \geq 1/2, |\gamma| < x^{1/2}} \left| \frac{x^\beta L^{(1+1)} + x^{1/2} r L^2 + x}{L^A} \right|
\]

Proof. This is a very slight variant of a result established by Elliott [7, pp. 248-249]. \(\square \)

Let \(N(\sigma, T, \chi) \) denote the number of zeros of \(L(s, \chi) \) in the rectangle \([\sigma, 1) \times [-T, T]\). We shall need the following zero density result.

Lemma 5. We have, for \(T \geq 1 \) \(1/2 \leq \sigma < 1 \)

\[
\sum_{\chi \mod r} N(\sigma, T, \chi) \ll (rT)^{12/5+\epsilon}(1-\sigma).
\]

Proof. This is obtained by combining the results of M. N. Huxley [10] and M. Jutila [12]. \(\square \)

Lemma 6. Let \(a_n (n = 1, \ldots, N) \) be complex numbers and

\[
T(\chi) = \sum_{n=1}^N a_n \chi(n).
\]

For any natural numbers \(r \) and \(D \), we have

\[
\sum_{r_1|r} \sum_{d \leq D} \sum_{(d, r_1) = 1} \frac{r_1 d}{\varphi(r_1 d)} \sum_{\chi \mod r_1 d} |T(\chi)|^2 \ll (N + rD^2) \sum_{n=1}^N |a_n|^2.
\]

Proof. This is a variant of Lemma 6.5 in [6]. Set

\[
S(x) = \sum_{n=1}^N a_n e(nx),
\]

where \(e(z) = \exp(2\pi i z) \). Let

\[
S = \left\{ \frac{j}{dr_1} : 1 \leq j \leq dr_1, (j, dr_1) = 1, d \leq D, (d, r_1) = 1, r_1|r \right\}.
\]

It is easy to see that

\[
|s - s'| \geq \frac{1}{rD^2}
\]

for all distinct \(s \) and \(s' \) in \(S \). From the classical large sieve inequality (see [5, Chapter 27]), we get

\[
\sum_{s \in S} |S(s)|^2 \ll (N + rD^2) \sum_{n=1}^N |a_n|^2.
\]

Now by standard techniques that relate multiplicative characters to additive ones (see (10) on page 160 of [5]), we get

\[
\sum_{\chi \mod r_1 d} \frac{r_1 d}{\varphi(r_1 d)} |T(\chi)|^2 \leq \sum_{j=1}^{r_1 d} \left| S \left(\frac{j}{r_1 d} \right) \right|^2.
\]

Now the lemma follows by summing over pairs of \(r_1 \) and \(d \) with \(r_1|r \) and \(d \leq D \) with \((d, r_1) = 1 \) in (2.6). \(\square \)
Lemma 7. Let $N \leq x$, $qD \leq x$ and \mathcal{U} be a set of non-principal characters to moduli qd with $d \leq D$, $(d, q) = 1$ and $q_1|q$. Suppose that, with $T(\chi)$ as in (2.4),

$$|T(\chi)| \geq V > 0$$

whenever $\chi \in \mathcal{U}$ and that $G = \sum_{n=1}^{N} |a_n|^2$. Then

$$\# \mathcal{U} \ll x^{5/20} \left(GV^{-2} N + G^3 V^{-6} NqD^2\right).$$

Proof. The contribution to $\# \mathcal{U}$ from a fixed $q_1|q$ is

$$\ll x^{5/20} \left(GV^{-2} N + G^3 V^{-6} Nq_1D^2\right)$$

by virtue of [10] Theorem 1. The lemma follows on summing over q_1 with $q_1|q$. ☐

Lemma 8. For $r \geq 3$ and $T \geq 1$,

$$\sum_{\chi \mod r}^{*} \left| L \left(\frac{1}{2} + it, \chi \right) \right|^4 dt \ll \varphi^*(r) T (\log rT)^4.$$

Proof. See [9] for a more precise form of this result. ☐

Lemma 9. Let $qD < x$, $N \leq x$, $|t| \leq x^2$ and

$$N(x, \chi) = \sum_{N < n \leq N'} \chi(n)n^{-s}$$

where N and N' are natural numbers with $N' \leq 2N$. Then

$$\sum_{q_1|q} \sum_{d \leq D} \sum_{\chi \mod q_1d}^{*} \left| N \left(\frac{1}{2} + it, \chi \right) \right|^4 \ll \varphi(q)D^2 \mathcal{L}^5 \left(1 + |t|\right).$$

Proof. Using Perron’s formula ([16] Lemma 3.12), we see that

$$N \left(\frac{1}{2} + it, \chi \right) = \int_{2 - ix^2}^{2 + ix^2} L \left(\frac{1}{2} + it + w, \chi \right) \left(\frac{(N' + 1/2)^w - (N + 1/2)^w}{w}\right) \mathrm{d}w + O(1).$$

By using the standard bounds for $L(s, \chi)$, we can move the line of integration to $[-ix^2, ix^2]$ at the cost of an error of size $O(1)$. By a splitting-up argument, it suffices to show that for $1 \leq T \leq x^2$ that

(2.7) $$\sum_{q_1|q} \sum_{d \leq D} \sum_{\chi \mod q_1d}^{*} \left(\frac{1}{T} \int_{T-1}^{2T} \left| L \left(\frac{1}{2} + it + iu, \chi \right) \right| \mathrm{d}u \right)^4 \ll \varphi(q)D^2 \mathcal{L}^4 \left(1 + |t|\right).$$

By Hölder’s inequality,

$$\left(\frac{1}{T} \int_{T-1}^{2T} \left| L \left(\frac{1}{2} + it + iu, \chi \right) \right| \mathrm{d}u \right)^4 \ll \frac{1}{T} \int_{T-1}^{2T} \left| L \left(\frac{1}{2} + it + iu, \chi \right) \right|^4 \mathrm{d}u.$$

Recalling Lemma 8 and (2.3), the left-hand side of (2.7) is

$$\ll \frac{1}{T} \sum_{q_1|q} \sum_{d \leq D} \sum_{\chi \mod q_1d}^{*} \int_{T-1+t}^{2T+t} \left| L \left(\frac{1}{2} + iv, \chi \right) \right|^4 \mathrm{d}v$$

$$\ll \frac{1}{T} \sum_{q_1|q} \sum_{d \leq D} \varphi^*(q_1d)\mathcal{L}^4(T + |t|) = \frac{\varphi(q)}{T} \sum_{d \leq D} \varphi^*(d)\mathcal{L}^4(T + |t|).$$

Now the lemma follows at once from this. ☐
GAPS OF SMALLEST POSSIBLE ORDER BETWEEN PRIMES IN AN ARITHMETIC PROGRESSION

Next, we have the Heath-Brown decomposition of the von Mangoldt function.

Lemma 10. Let \(f(n) \) be an arbitrary complex-valued function and \(k \in \mathbb{N} \). We can decompose the sum

\[
\sum_{n \leq x} \Lambda(n) f(n)
\]

into \(O(L^{2k}) \) sums of the form

\[
\sum_{n_i \in \{N_i, 2N_i\}} \log n_1 \mu(n_{k+1}) \cdots \mu(n_{2k}) f(n_1 \cdots n_{2k})
\]

in which \(N_i \geq 1 \), \(\prod_i N_i < x \) and \(2N_i \leq x^{1/k} \) if \(i > k \).

Proof. This is from [8]. \(\square \)

3. The Small Values of \(d \) in Theorem 2

Let \(C_4 \) be a suitable positive absolute constant. We deal with the natural numbers \(d \leq L^{2A+C_4} \) in Theorem 2 by proving the following lemma.

Lemma 11. Let \(q \) be as in Theorem 2. Then

\[
\sum_{\chi \mod q}^\prime |\psi(x, \chi)| \ll \frac{x}{L^{A+1}}.
\]

Proof. By Lemma 4, the left-hand side of (3.1) is

\[
\ll \frac{x}{L^{A+1}} + x^\sigma L^{A+3} \sum_{\chi \mod q}^\prime \sum_{\sigma \leq \beta < \sigma + L^{-1}} \frac{1}{|\beta + i\gamma|^2}
\]

for some \(\sigma \) with \(1/2 \leq \sigma < 1 \).

Chang’s zero-free region evidently does not require primitive \(\chi \), but only that \(\chi \) is not induced by \(\chi^* \). We use this to bound \(\sigma \). We clearly have, recalling \((H(q, B, \delta))\),

\[
B \log \frac{L}{\mathcal{L}} < \frac{c_2}{\log P}
\]

from the first inequality in (1.2). Moreover, if \(T = x^{1/2} \), then

\[
B \log \frac{L}{\mathcal{L}} < \frac{c_2}{(\log qT)^{9/10}}.
\]

Now we write \(q' = x^\gamma \) and \(q = x^\alpha \). Of course we have

\[
\frac{\log 2}{\mathcal{L}} \leq \gamma < \delta \quad \text{and} \quad \alpha < \frac{5}{12}.
\]

So, mindful that \(\delta \) is small and \(x \) is large, we get

\[
\gamma \log \left(\frac{2\alpha}{\gamma} \right) < \gamma \log \frac{1}{\gamma} < \delta \log \frac{1}{\delta} < \frac{c_2 \log \gamma \mathcal{L}}{B \log \mathcal{L}},
\]

which implies that

\[
\frac{B \log \mathcal{L}}{L} < \frac{c_2 \log \log q'}{(\log q') \log 2K}.
\]

Now the combination of (3.3), (3.4) and (3.5) gives that

\[
\frac{B \log \mathcal{L}}{L} < c_2 \min \left(\frac{1}{\log P^*}, \frac{\log \log q'}{(\log q') \log 2K}, \frac{1}{(\log qT)^{9/10}} \right).
\]
From (1.2), and since no \(\chi \pmod{q} \) is induced by \(\chi^* \),

\[
\sum'_{\chi \pmod{q}} \sum_{\sigma \leq \beta < \sigma + L^{-1}} \frac{1}{|\beta + i\gamma|^2}
\]

is empty if

\[\sigma \geq 1 - B \log L \frac{L}{L}.\]

Suppose now that \(\sigma < 1 - B \log L / L \) in (3.2). It suffices to show that

\[
S := \sum'_{\chi \pmod{q}} \sum_{\sigma \leq \beta < \sigma + L^{-1}} \frac{1}{|\beta + i\gamma|^2} \ll x^{1 - \sigma} L^{2A + 4}.
\]

Using Lemma 5,

\[
S \leq \sum'_{\chi} \sum_{j \geq 2, 2^{j-2} \leq x^{1/2}} 2^{-2j} N(\sigma, 2j+1, \chi) \ll \sum_{j \geq 0} 2^{-j/2} q^{(12/5 + \varepsilon)(1 - \sigma)} \ll x^{(12/5 + \varepsilon)(5/12 - \eta)(1 - \sigma)}.
\]

Therefore,

\[
S \ll x^{1 - \sigma} L^{2A + 4} \ll x^{-(12\eta/5 - \varepsilon)(1 - \sigma)} L^{2A + 4} \ll L^{2A + 4 - (12\eta/5 - \varepsilon)B} \ll 1.
\]

by (1.4). This completes the proof of the lemma.

\[\square\]

Lemma 12. Let \(q \) be as in Theorem 2. Then

\[
\sum_{d \leq L^{2A + C_4}} \max_{(d,q) = 1} \left| \psi(x; dq, a) - \frac{x}{\varphi(qd)} \right| \ll \frac{x \log L}{\varphi(q) L^A}.
\]

Proof. Note that since \(d \leq L^{2A + C_4} \) and \(q \) satisfies the bounds in Theorem 2 we have the bounds

\[
\max\{p : p|(dq)\} < \exp\left(\frac{c_2L}{B' \log L} \right)
\]

and

\[
\prod_{p|(dq)} p < x^{\delta'}
\]

with some positive constants \(B' \) and \(\delta' \) satisfying

\[B' > \frac{5}{6\eta'}(A + 2) \text{ with } 0 < \eta' < \eta, \quad \delta' \log \frac{1}{\delta'} < \frac{c}{B'} \]

We apply Lemma 11 with \(qd \) in place of \(q \) for \(d \leq L^{2A + C_4} \) and \((d, qv) = 1 \). Note that the condition \((d, qv) = 1 \) implies that no character to modulus \(dq \) is induced by \(\chi^* \). Moreover, \(qd \leq x^{5/12 - \eta'} \). Hence

\[
(3.6) \quad \sum'_{\chi \pmod{qd}} |\psi(x; \chi)| \ll \frac{x}{L^{A+1}}.
\]

Now

\[
\max_{(a,qd) = 1} \left| \psi(x; dq, a) - \frac{x}{\varphi(qd)} \right| \ll \frac{1}{\varphi(qd)} \sum'_{\chi \pmod{qd}} |\psi(x; \chi)| + \frac{x}{\varphi(qd) L^{A+1}} \ll \frac{x}{\varphi(q) \varphi(d) L^{A+1}}.
\]

Since

\[
\sum_{d \leq L^{2A + C_4}} \frac{1}{\varphi(q)} \ll \log L,
\]

we get the lemma by summing over \(d \).

\[\square\]
Recalling Lemma 3 it remains to show that
\[
\sum_{D < d \leq 2D \atop (d, q_1) = 1} \left| R(x; q_1d, a(d)) - \frac{x}{\varphi(q_1)} \right| \ll \frac{x}{\varphi(q_1) L^{2A + \varepsilon}}
\]
whenever \(L^{2A + C_4} < D \ll X^{L(0) - \varepsilon} \), for any sequence \(a(d) \) with \((a(d), dq_1) = 1 \).

Now
\[
R(x; q_1d, a(d)) = \frac{1}{\varphi(q_1)} \sum_{n \equiv y \mod q_1d} \Lambda(n) \sum_{n \leq x} \Lambda(n) \chi(n) \log \frac{x}{n},
\]
The contribution of \(\chi_0 \) to the last expression is
\[
\frac{1}{\varphi(q_1)} \int_1^x \sum_{n \equiv y \mod q_1d} \Lambda(n) \frac{dy}{y} = \frac{x}{\varphi(q_1)} \left(1 + O \left(L^{-(2A + 4)} \right) \right).
\]
Therefore,
\[
R(x; q_1d, a(d)) - \frac{x}{\varphi(q_1)} = \frac{1}{\varphi(q_1)} \sum'_{n \equiv y \mod q_1d} \chi_0(a(d)) \int_1^x \psi(y, \chi) \frac{dy}{y} + O \left(\frac{x}{\varphi(q_1) L^{2A + 4}} \right).
\]
By replacing \(\psi(y, \chi) \) by \(\psi(y, \hat{\chi}) \) in (4.1), we incur an error of size
\[
\ll L^3 \ll \frac{x}{\varphi(q_1) L^{2A + 4}}.
\]
Therefore, it suffices to show that
\[
\sum_{D < d \leq 2D \atop (d, q_1) = 1} \sum'_{n \equiv y \mod q_1d} \left| \int_1^x \psi(y, \hat{\chi}) \frac{dy}{y} \right| \ll \frac{x D}{L^{2A + 3}}.
\]
Now by virtue of (ii) of Lemma 2 the last sufficiency can be further reduced to showing for \(D_1 \leq D \) that
\[
S(D_1) := \sum_{q_1 \mid q} \sum_{D_1 < d \leq 2D_1 \atop (d, q_1) = 1} \sum^*_{n \equiv y \mod q_1d} \left| \int_1^x \psi(y, \hat{\chi}) \frac{dy}{y} \right| \ll \frac{x D_1}{L^{2A + 4}}.
\]
For brevity, we write \(\sum^\dagger \) in place of
\[
\sum_{q_1 \mid q} \sum_{D_1 < d \leq 2D_1 \atop (d, q_1) = 1} \sum^*_{n \equiv y \mod q_1d}.
\]
Recasting the absolute value signs as coefficients, we have
\[
S(D_1) = \sum^\dagger b(\chi) \int_1^x \psi(y, \chi) \frac{dy}{y} = \sum^\dagger b(\chi) \sum_{n \leq x} \Lambda(n) \chi(n) \log \frac{x}{n},
\]
Now applying Lemma 12 with \(k = 6 \) and
\[
f(n) = \sum^\dagger b(\chi) \chi(n) \log \frac{x}{n},
\]
we see that it suffices to show for each tuple \(N_1, \ldots, N_12 \) that
\[
\sum^\dagger b(\chi) \sum_{n_i \in [N_i, 2N_i] \atop n_1 \cdots n_{12} \leq x} a_1(n_1) \cdots a_{12}(n_{12}) \chi(n_1 \cdots n_{12}) \log \frac{x}{n_1 \cdots n_{12}} \ll \frac{x D_1}{L^{2A + 16}}.
\]
Using the formula
\[
\int_{1/2-i\infty}^{1/2+i\infty} y^s \frac{ds}{s^2} = \begin{cases} \log y, & \text{if } y > 1 \\ 0, & \text{if } 0 < y \leq 1 \end{cases}
\]
(cf. [14] p. 143), we need to show that
\[
\sum^{|t|} b(x) \int_{1/2-i\infty}^{1/2+i\infty} \frac{a_1(n_1) \cdots a_{12}(n_{12}) \chi(n_1 \cdots n_{12}) x^s ds}{s^2} \leq xD_1 \frac{L^{2A+16}}{2^A}.
\]
Now the condition \(n_1 \cdots n_{12} \leq x\) can be removed, since the integral vanishes otherwise. We also use a trivial estimate to discard the part of the integral with \(|3s| > x^2\). Thus our task is further reduced to showing that
\[
\sum^{|t|} b(x) \int_{-x^2} x^2 N_1 \left(\frac{1}{2} + it, \chi\right) \cdots N_{12} \left(\frac{1}{2} + it, \chi\right) \frac{x^{1/2+it}}{(1/2 + it)^2} dt \leq \frac{xD_1}{L^{2A+16}},
\]
where
\[
N_j(s, \chi) = \sum_{N_j < n \leq 2N_j} \frac{a_j(n) \chi(n)}{n^s}.
\]
To this end, it suffices to prove that
\[
\sum^{|t|} \left| N_1 \left(\frac{1}{2} + it, \chi\right) \cdots N_{12} \left(\frac{1}{2} + it, \chi\right) \right| \leq \frac{x^{1/2} D_1 (1 + |t|)}{L^{2A+16}}
\]
for \(|t| \leq x^2\). It is convenient to recall here that \(qD_1 \ll x^{1/2 - \epsilon}\) for all \(\theta\) and \(qD_1 \ll x^{9/20 - \epsilon}\) for \(\theta \geq 2/5 - \epsilon\).

Let us write \(x_0 = \prod_{i=1}^{12} N_i\) and \(N_i = x_0^{\alpha_i}\) so that \(\alpha_i \geq 0, \alpha_1 + \cdots + \alpha_{12} = 1\) and \(x_0 \leq x\).

For a Dirichlet polynomial
\[
N(s) = \sum_{N < n \leq zN} a_n \chi(n)n^{-s}
\]
for some absolute constant \(z \in \mathbb{R}\), we use the abbreviation, for \(p > 1\),
\[
\|N\|_p = \left(\sum^{|s|} \left| N \left(\frac{1}{2} + it, \chi\right) \right|^p \right)^{1/p}
\]
and
\[
\|N\|_\infty = \max \left\{ \left| N \left(\frac{1}{2} + it, \chi\right) \right| : \chi \text{ appears in } \sum^{|s|} \right\}.
\]
Lemma \[3\] possibly in conjunction with a partial summation to incorporate a \(\log n\) factor, gives that
\[
\|N_j\|_4^4 \ll qD_1^2 L^6 (1 + |t|) \ll D_1 x^{1/2 - 2\epsilon/3} (1 + |t|)
\]
if \(N_j > x^{1/6}\). If \(N_j \leq x^{1/6}\), we obtain similar bounds from Lemma \[4\] applied to \(T = N_j^2\). Indeed, in this case,
\[
\|N_j\|_4^4 \ll (N_j^2 + qD_1^2) L^2 \ll \begin{cases} \frac{D_1 x^{1/2 - 2\epsilon/3}}{qD_1^2} \text{ if } \theta \geq 1/3.
\end{cases}
\]

From now on, it is convenient to arrange \(N_1, \cdots, N_{12}\) so that
\[
N_1 \geq \cdots \geq N_{12}.
\]
The proof of (4.2) is divided into three cases.

Case 1. Suppose that \(N_1 N_2 \geq x_0^{1/2}\). Let \(M = N_3 \cdots N_{12}\). Then the left-hand side of (4.2) is
\[
\|MN_1 N_2\|_4 \leq \|M\|_2 \|N_1\|_4 \|N_2\|_4 \ll (M + qD_1^2)^{1/2} D_1^{1/2} x^{1/4 - \epsilon/3} (1 + |t|)^{1/2} \ll x^{1/4} D_1 x^{1/4 - \epsilon/3} (1 + |t|)^{1/2}.
\]
by Hölder’s inequality, Lemma \[3\] and (4.3). So (4.2) holds in Case 1.
Case 2. $N_1 N_2 < x_0^{1/2}$ and some sub-product $\prod_{i \in S} N_i$ (with $S \subseteq \{1, \ldots, 12\}$) satisfies

\begin{equation}
\label{eq:4.4}
x_0^{1/2} \leq N = \prod_{i \in S} N_i < x^{1 - \theta - \varepsilon}.
\end{equation}

Hence

\begin{equation}
M = \prod_{1 \leq i \leq 12} N_i \leq x_0^{1/2}.
\end{equation}

The left-hand side of (4.4) is, using Lemma 6 and with C_4 suitably chosen,

$$\|MN\|_1 \leq \|M\|_2 \|N\|_2 \ll (M + qD_1^{1/2})^{1/2} (N + qD_2^{1/2})^{1/2} L^{C_4/2} \ll (x_0^{1/2} + qD_2^2 + N^{1/2} q^{1/2} D_1) L^{C_4/2}.$$

We clearly have $x_0^{1/2} L^{C_4/2} \ll x^{1/2} D_1 L^{-2A-17}$ as $D \geq L^{2A+C_4}$ and $q D_2^2 L^{C_4/2} \ll x^{1/2} D_1 L^{-2A-17}$. Lastly, using (4.4),

$$N^{1/2} q^{1/2} D_1 L^{C_4/2} \ll x^{1/2-\varepsilon/2} D_1 L^{C_4/2} \ll x^{1/2} D_1 L^{-2A-17}.$$

So (4.2) also holds in Case 2.

We claim that if $\theta \leq 2/5 - \varepsilon$, then Case 1 or Case 2 must occur. Suppose not, then

$$\alpha_1 + \alpha_2 < \frac{1}{2}$$

and there is no sub-sum with

$$\frac{2}{5} \leq \sum_{i \in S} \alpha_i \leq \frac{3}{5}.$$

One can easily verify that this is impossible. See the details in Lemma 14 of [1].

Now we suppose that $2/5 - \varepsilon < \theta < 5/12$ and it still remains to consider

Case 3. $N_1 N_2 < x_0^{1/2}$ and no sub-product $\prod_{i \in S} N_i$ satisfies (4.4). Since $1 - \theta - \varepsilon \geq 7/12$, no sub-product $\prod_{i \in S} N_i$ lies in $[x_0^{5/12}, x_0^{7/12}]$. We start with a combinatorial lemma.

Lemma 13. Suppose that $\alpha_1 \geq \cdots \geq \alpha_{12} \geq 0$, $\alpha_1 + \cdots + \alpha_{12} = 1$, $\alpha_1 + \alpha_2 < 1/2$ and no sub-sum $\sum_{i \in S} \alpha_i$ for a set $S \subseteq \{1, \cdots, 12\}$ is in $[5/12, 7/12]$. Then $\alpha_5 > 1/6$ and

\begin{equation}
\alpha_1 + \alpha_2 + \alpha_6 + \alpha_7 + \cdots + \alpha_{12} < \frac{5}{12}.
\end{equation}

Proof. Clearly $\alpha_1 + \alpha_2 < 5/12$. Suppose that

\begin{equation}
\alpha_1 + \alpha_2 + \sum_{\alpha_i \leq 1/6} \alpha_i \geq \frac{5}{12}.
\end{equation}

Let s be the least sum $\alpha_1 + \alpha_2 + \sum_{i \in B} \alpha_i$, for some set $B \subseteq \{i : \alpha_i \leq 1/6\}$, that is greater than $5/12$. This implies that $5/12 \leq s < 5/12 + 1/6 = 7/12$, contradicting one of the conditions of the lemma. So (4.6) must be false.

We can write $\{i : \alpha_i < 1/6\}$ as $\{i : \alpha_i > t\}$ for some t with $1 \leq t \leq 12$. If $t \geq 6$, then by the previously-established falsehood of (4.6) and that the α_i’s are in descending order,

$$\alpha_1 + \cdots + \alpha_{12} > \frac{t}{6} \geq 1$$

which is false. If $t \leq 4$, then

$$\alpha_1 + \cdots + \alpha_{12} \leq \left(\alpha_1 + \alpha_2 + \sum_{i > t} \alpha_i\right) + (\alpha_3 + \alpha_4) < \frac{5}{12} + \frac{5}{12} < 1$$

which is also false. Therefore, $t = 5$ and both claims of the lemma are proved. \qed
By Lemma 13 in Case 3, we can partition $N_1 \cdots N_{12}$ into three parts M, N and N_5,

$$M(s, \chi) = N_1(s, \chi)N_2(s, \chi) \prod_{i \geq 6} N_i(s, \chi) = \sum_{M \leq m \leq M} \alpha_m \chi(m)m^{-s}$$

and

$$N(s, \chi) = N_3(s, \chi)N_4(s, \chi) = \sum_{N \leq n \leq N} \beta_n \chi(n)n^{-s},$$

where $M < \frac{5}{12}N$, $N < \frac{5}{12}N$, $N > \frac{1}{6}N$, $M \geq N$. So $MN \geq \frac{1}{2}N$.

We need the stronger assertion that

$$(4.7) \quad N_5 > x^{1/6-\epsilon}.$$

If this does not hold, then

$$x^{1/2} \leq MN_5 < x^{5/12}x^{1/6-\epsilon} < x^{1-\theta-\epsilon},$$

an impossibility in Case 3.

The utility of (4.7) stems partly from the following lemma.

Lemma 14. Let χ be a character modulo q_1d that appears in \sum^1. Then

$$\sum_{k \leq K} \chi(k) \ll K^{1-\epsilon/2}$$

whenever $K \geq x^{3/20}$.

Proof. By a theorem of D. A. Burgess [3], we have

$$\sum_{k \leq K} \chi(n) \ll (q_1d)^{1/9+\epsilon^2}K^{2/3} \ll x^{(9/20-\epsilon)(1/9+\epsilon^2)}K^{2/3} \ll K^{1-\epsilon/2},$$

completing the proof. \hfill \square

It is easy to obtain

$$(4.8) \quad \|N_5\|_\infty \ll N_5^{1/2}x^{-\epsilon/13}(1 + |t|)$$

from Lemma 14, (4.7) and a partial summation argument.

The contribution in (4.2) form χ with

$$\min \left\{ \left| M \left(\frac{1}{2} + it, \chi \right) \right|, \left| N \left(\frac{1}{2} + it, \chi \right) \right|, \left| N_5 \left(\frac{1}{2} + it, \chi \right) \right| \right\} < x^{-1}$$

is clearly

$$\ll \sum^\dagger 1 \ll x^{1/2-\epsilon}D_1.$$

Therefore, by a splitting-up argument, it suffices to show, for any U, V and W with

$$U \leq \|N_5\|_\infty, \quad V \leq \|M\|_\infty \quad \text{and} \quad W \leq \|N\|_\infty,$$

that

$$UVW \#A(U, V, W) \ll (1 + |t|)x^{1/2}D_1L^{-2A-20}.$$

Here

$$A(U, V, W) = \left\{ \chi : \chi \text{ appears in } \sum^\dagger, U < \left| N_5 \left(\frac{1}{2} + it, \chi \right) \right| \leq 2U, \right.$$

$$V < \left| M \left(\frac{1}{2} + it, \chi \right) \right| \leq 2V, \quad W < \left| N \left(\frac{1}{2} + it, \chi \right) \right| \leq 2W. \left. \right\}$$
Now let
\[P = \min \left\{ \frac{M + qD_1^2}{V^2}, \frac{N + qD_1^2}{W^2}, \frac{qD_1^2 M}{V^2}, \frac{qD_1^2 N}{W^2}, \frac{qD_1^2 N_5^2}{U^4} \right\}. \]

It is a consequence of Lemmas 6, 7 and the first inequality in (4.3) that
\[\#A(U, V, W) \ll P^{x_2/20}. \]

So it is enough to show that
\[UVWP \ll x^{1/2-\varepsilon/13} D_1(1 + |t|). \]

To do this, we consider four sub-cases, according to the size of P in comparison with those of $2V^{-2}M$ and $2W^{-2}N$.

(a) $P \leq 2V^{-2}M$ and $P \leq 2W^{-2}N$. In this case, (4.8) yields
\[UVWP \ll UVW(V^{-2}M)^{1/2}(W^{-2}N)^{1/2} \ll (MN)^{1/2}\|N_5\|_\infty \ll x^{1/2-\varepsilon/13}(1 + |t|), \]
as desired for (4.9).

(b) $P > 2V^{-2}M$ and $P > 2W^{-2}N$. Here, we have
\[P \leq 2 \min \left\{ qD_1^2 V^{-2}, qD_1^2 W^{-2}, qD_1^2 MV^{-6}, qD_1^2 NW^{-6}, (1 + |t|)qD_1^2 U^{-4}, N_5^2 U^{-4} \right\} + 2 \min \left\{ qD_1^2 V^{-2}, qD_1^2 W^{-2}, qD_1^2 MV^{-6}, qD_1^2 NW^{-6}, (1 + |t|)qD_1^2 U^{-4}, qD_1^2 N_5^2 U^{-12} \right\} \leq 2(qD_1^2 V^{-2})^{5/16}(qD_1^2 W^{-2})^{5/16}(qD_1^2 MV^{-6})^{1/16}(qD_1^2 NW^{-6})^{1/16} \left(\min \left\{ qD_1^2 U^{-4}, N_5^2 U^{-4} \right\} \right)^{1/4} (1 + |t|)^{1/4} + 2 \min \left\{ (qD_1^2 V^{-2})^{5/16}(qD_1^2 W^{-2})^{5/16}(qD_1^2 MV^{-6})^{1/16}(qD_1^2 NW^{-6})^{1/16}(qD_1^2 U^{-4})^{1/4}(1 + |t|)^{1/4}, (qD_1^2 V^{-2})^{7/16}(qD_1^2 W^{-2})^{7/16}(qD_1^2 MV^{-6})^{1/48}(qD_1^2 NW^{-6})^{1/48}(qD_1^2 N_5^2 U^{-12})^{1/12} \right\} \leq 2(1 + |t|)^{1/4}(UVW)^{-1}qD_1^2(MN)^{1/16} \left(\min \left\{ 1, (qD_1^2)^{-1/4}N_5^{1/2} \right\} + \min \left\{ 1, N_5^{1/6}(MN)^{-1/21} \right\} \right) \ll (1 + |t|)^{1/4}(UVW)^{-1} \left(x^{1/16}(qD_1^2)^{31/32} + x^{1/20}qD_1^2 \right). \]

Now, noting that
\[x^{1/16}(qD_1^2)^{31/32} \ll x^{1/16+31/32-9/20} D_1^{31/32} \ll x^{1/2-\varepsilon} D_1 \]
and
\[x^{1/20}qD_1^2 \ll x^{1/20+9/20-\varepsilon} D_1 \ll x^{1/2-\varepsilon} D_1, \]
we get that
\[P \ll (1 + |t|)^{1/4}(UVW)^{-1}x^{1/2-\varepsilon} D_1, \]
which gives (4.9).
(c) \(P > 2V^{-2}M \) and \(P \leq 2W^{-2}N \). Now we have
\[
P \leq 2 \min \left\{ qD_1^2V^{-2}, NW^{-2}, qD_2^2MV^{-6}, qD_1^2U^{-4}(1 + |t|), N_5^2U^{-4} \right\} + 2 \min \left\{ qD_1^2V^{-2}, NW^{-2}, qD_2^2MV^{-6}, qD_1^2U^{-4}(1 + |t|), qD_1^2N_5^2U^{-12} \right\}
\]
\[
\leq 2(qD_1^2V^{-2})^{1/8}(NW^{-2})^{1/2}(qD_2^2MV^{-6})^{1/8} \left(\min \left\{ qD_1^2U^{-4}, N_5^2U^{-4} \right\} \right)^{1/4} (1 + |t|)^{1/4} + 2 \min \left\{ (qD_1^2V^{-2})^{1/8}(NW^{-2})^{1/2}(qD_2^2MV^{-6})^{1/8}(qD_1^2U^{-4})^{1/4} (1 + |t|)^{1/4}, \right.
\]
\[
\left. (qD_1^2V^{-2})^{3/8}(NW^{-2})^{1/2}(qD_2^2MV^{-6})^{1/24}(qD_1^2N_5^2U^{-12})^{1/12} \right\}
\]
\[
\leq 2(1 + |t|)^{1/4}(UVW)^{-1}(qD_1^2N_5^{1/2})^{1/2} M^{1/8} \left(\min \left\{ 1, (qD_1^2)^{-1/4} N_5^{1/2} \right\} + \min \left\{ 1, N_5^{-1/6}M^{-1/12} \right\} \right)
\]
\[
\ll (1 + |t|)(UVW)^{-1} \left(x^{1/8}(qD_1^2)^{7/16}N^{3/8} + x^{1/12}(qD_1^2)^{1/2}N^{5/12} \right).
\]
To estimate these last two terms, we have
\[
x^{1/8}(qD_1^2)^{7/16}N^{3/8} \ll x^{1/8}(qD_1)^{7/16}D_1^{7/16}(x^{5/12})^{3/8} \ll x^{1/8+9/20}7/16+5/12 \ll 2x^{1/2-\varepsilon}D_1
\]
and
\[
x^{1/12}(qD_1^2)^{1/2}N^{5/12} \ll x^{1/12}(qD_1)^{1/2}D_1^{1/2}x^{25/144} \ll x^{1/12+9/40+25/144}D_1^{1/2} \ll x^{1/2-\varepsilon}D_1.
\]
These bounds lead to
\[
P \ll (1 + |t|)^{1/4}(UVW)^{-1}x^{1/2-\varepsilon}D_1,
\]
giving (4.19).

(d) \(P > 2W^{-2}N \) and \(P \leq 2V^{-2}M \). We proceed the same way as in subcase (c), interchanging the roles of \(M \) and \(N \).

This completes the proof of Theorem 2.

5. Proof of Theorem 3

From (iii) of Lemma 11 we get
\[
\sum_{d \leq Q/q} \sum_{a=1 \atop (a,dq)=1}^{dq} \left(\psi(x; dq, a) - \frac{x}{\varphi(qd)} \right)^2 \ll \sum_{d \leq Q/q} \frac{1}{\varphi(qd)} \sum_{\chi \mod dq} \left| \psi(x, \chi) \right|^2 + \frac{x^2}{\varphi(q) \mathcal{L}^2A} \sum_{d \leq Q/q} \frac{1}{\varphi^2(d)}.
\]
As the second term is \(\ll Qx\varphi(q)^{-1} \), it suffices to prove that
\[
\sum_{d_1 \leq Q/q} \frac{1}{\varphi(qd)} \sum_{\chi \mod dq} \left| \psi(x, \chi) \right|^2 \ll \frac{Qx\mathcal{L}}{\varphi(q)}.
\]
and that
\[
\sum_{d \leq Q/q} \frac{1}{\varphi(qd)} \sum_{\chi \mod dq} \left(\left| \psi(x, \chi) \right|^2 - \left| \psi(x, \chi) \right|^2 \right) \ll \frac{Qx\mathcal{L}}{\varphi(q)}.
\]
It is easy to see that, in (5.2),
\[
\left| \psi(x, \chi) \right|^2 - \left| \psi(x, \chi) \right|^2 \ll \left(\sum_{p^k \leq x} \log p \right) \left(\sum_{p^k \mid dq} \log p \right).
\]
The contribution to (5.2) from \(k \geq 2 \) is
\[
\ll \sum_{d \leq Q/q \atop (d,qv)=1} x^{1/2+\varepsilon} \ll \frac{Q x^{1/2+\varepsilon}}{q}
\]
which is acceptable. The contribution from \(k = 1 \) to (5.2) is
\[
\ll \sum_{d \leq Q/q \atop p|dq} \frac{1}{\varphi(d)} \sum_{q \leq x \atop q|d} \sum_{p \leq x} \log p \ll \frac{Q x}{q} \sum_{p \leq x} \log p \ll \frac{xQ \varphi(q)}{p} \ll \frac{xQ \varphi(q)}{2}\]
which is also acceptable. (Incidentally, the error term corresponding to (5.2) is treated incorrectly on page 170 of [5]; the above discussion corrects this minor error.)

It remains to prove (5.1) in the form
\[(5.3) \quad \sum_{q_1|q \atop (d_1,qv)=1} \frac{1}{\varphi(d_1)} \sum_{q \leq x} \sum_{\chi \mod dq_1} \sum^{*} \psi(x,\chi)|^2 \ll Q x \mathcal{L}.
\]
We split the sum over \(d_1 \) in (5.3) into dyadic sub-sums of the form \(\sum_{D<d_1 \leq 2D} \) where \(D \) takes on the values \(2^{-k}Q/q, k \geq 1 \) and \(2^{-k}Q/q > 1/2 \). Let \(\Sigma_D \) denote the contribution to (5.3) from a given \(D \). Hence
\[\Sigma_D \ll \left(\log \frac{Q}{qD} \right) \sum_{D<d_1 \leq 2D \atop (d_1,qv)=1} \frac{1}{\varphi(d_1)} \sum_{q_1|q \atop q \mod dq_1} \sum^{*} \psi(x,\chi)|^2 .\]
We first deal with the contributions from \(D \leq \mathcal{L}^{2A} \):
\[
\sum_{D \leq \mathcal{L}^{2A}} \Sigma_D \ll \mathcal{L} x \sum_{d_1 \leq \mathcal{L}^{2A} \atop (d_1,qv)=1} \frac{1}{\varphi(d_1)} \sum_{q_1|q \atop q \mod dq_1} \sum^{*} \psi(x,\chi)|^2
\ll \mathcal{L} x \sum_{d_1 \leq \mathcal{L}^{2A} \atop (d_1,qv)=1} \frac{1}{\varphi(d_1)} \sum_{\chi \mod dq} \left(|\psi(x,\chi)| + \mathcal{L}^2 \right) \ll \frac{x^2 \log \mathcal{L}}{\mathcal{L}^A} + x \varphi(q) \mathcal{L}^{2A+3} \ll Q x \mathcal{L},
\]
where we have used (ii) of Lemma [1] and (3.6). (Note that (3.6) still holds if \(A \) is enlarged slightly without violating (1.4), so we may disregard the factor \(\log \mathcal{L} \) in the calculation above.)

Now for the remaining \(D \)'s with \(D > \mathcal{L}^{2A} \), we use Lemma [6] and get
\[\Sigma_D \ll \frac{1}{D} \log \frac{Q}{qD} (x + qD^2) \sum_{n \leq x} \Lambda^2(n) \ll \frac{xe \log \mathcal{L}}{qD} (x + qD^2).
\]
Now we observe easily that
\[\sum_{D > \mathcal{L}^{2A}} \frac{x^2 \mathcal{L}}{D} \log \frac{Q}{qD} \ll \frac{x^2}{\mathcal{L}^A} \ll Q x
\]
and
\[\sum_{D > \mathcal{L}^{2A}} q x \mathcal{L} D \log \frac{Q}{qD} \ll qx \mathcal{L} \sum_{k \geq 1} \frac{k Q}{q2^k} \ll Q x \mathcal{L}.
\]
This completes the proof of Theorem [3].
6. Proof of Theorem 1

We say that a set \(\mathcal{H} = \{ h_1, \cdots, h_k \} \) of distinct non-negative integers is admissible if for every prime \(p \), there is an integer \(a_p \) such that

\[
a_p \not\equiv h \pmod{p}
\]

for all \(h \in \mathcal{H} \).

For a set of natural numbers \(\mathcal{A} \), we write \(X(\mathcal{A}; n) \) for the indicator function of \(\mathcal{A} \). For a smooth function \(F \) supported on

\[
\mathcal{R}_k = \{ (x_1, \cdots, x_k) \in [0, 1]^k : \sum_{i=1}^{k} x_i \leq 1 \}
\]

and \(1 \leq m \leq k \), let

\[
I_k(F) = \int_0^1 \cdots \int_0^1 F(t_1, \cdots, t_k)^2 dt_1 \cdots dt_k
\]

and

\[
J^{(m)}_k(F) = \int_0^1 \cdots \int_0^1 \left(\int_0^1 F(t_1, \cdots, t_k) dt_m \right)^2 dt_1 \cdots dt_{m-1} dt_{m+1} \cdots dt_k.
\]

Furthermore, set

\[
M_k = \sup_F \frac{\sum_{m=1}^{k} J^{(m)}_k(F)}{I_k(F)}
\]

where the supremum is taken over \(F \) described above with \(I_k(F) \neq 0 \), \(J^{(m)}_k(F) \neq 0 \) for \(m = 1, \cdots, k \). It is shown in [13] that

\[
M_k \geq \log k - 2 \log \log k + O(1).
\]

This bound is strengthened slightly in [15] to

\[
(6.1) \quad M_k \geq \log k + O(1).
\]

We now state a special case of [2, Theorem 1] for the integers \(q \) and \(a \) in the introduction. Set

\[
D_0 = \frac{\log \log(x/2)}{\log \log \log(x/2)}.
\]

Lemma 15. Let \(t, k \) be natural numbers and \(K \) be a positive constant such that

\[
M_k > \frac{2t - 2}{K}.
\]

Let \(\mathcal{H} = \{ h_1, \cdots, h_k \} \) be an admissible set with \(h_1 < \cdots < h_k \), with \(q|h_j \) for \(j = 1, \cdots, k \). Suppose that \(p|h_i - h_j \) with \(i \neq j \), \(p > D_0 \) implies \(p|q \). Let \(x \) be large in terms of \(k \) and

\[
\mathcal{A} = \left\{ n : \frac{x}{2} < q \leq x, n \equiv a \pmod{q} \right\} \quad \text{and} \quad \mathbb{P} = \{ p : p \in \mathcal{A} \}.
\]

Set

\[
Y = \frac{x}{2\varphi(q)} \quad \text{and} \quad Y_1 = \frac{1}{\varphi(q)} \int_{x/2}^{x} \frac{dt}{\log t}.
\]

Suppose that

\[
\sum_{d \leq x^k} \mu^2(q) \tau_{3k}(q) \left| \sum_{n \equiv b \pmod{qd}} X(\mathcal{A}; n) - \frac{Y}{d} \right| \ll \frac{Y}{L^{k+\epsilon}}
\]

where \(\tau_{3k}(q) \) is the third divisor function of \(q \) and \(\mu(q) \) is the Möbius function.
for any \(b_d \equiv a \pmod{q} \), and

\[
(6.3) \quad \sum_{d \leq x^\varepsilon} \mu^2(q) \tau_3(q) \sum_{n \equiv b_d \pmod{qd}} X((A + h_m) \cap \mathbb{P}; n) - \frac{Y_1}{\phi(d)} \ll \frac{Y}{L^A}
\]

for every integer \(b_d \equiv a \pmod{q} \) with \((b_d, q) = 1\). Then there are primes \(p_1 < \cdots < p_k \) in \(A \) satisfying

\[p_t - p_1 \leq h_k - h_1. \]

We remark that in Theorem 1 of [2], we have taken \(q_0 = q \) and \(q_1 = v \) if \(v > D_0 \); otherwise, \(v = 1 \). In both cases, the requirement \(\varphi(v) = v(1 + o(1)) \) is satisfied.

Proof of Theorem 1. We may suppose that \(t \) is sufficiently large. Suppose that \(q \) satisfies the hypothesis of Theorem 1. Let

\[A = \left\{ n \in \left(\frac{x}{2}, x \right] : n \equiv a \pmod{q} \right\} \]

and \(0 < h'_1 < \cdots < h'_k \) be an admissible set with

\[h'_k \ll k \log k. \]

Then \(\mathcal{H} = \{ h'_1, \cdots, h'_k \} \) is an admissible set for which \(p > D_0 \), \(p|h_i - h_j (i \neq j) \) implies \(p|q \). Further,

\[h'_k q - h'_1 q \ll qk \log k. \]

Here we choose the least \(k \) such that

\[M_k > \frac{2t - 2}{K(\theta)} \]

and hence \(M_k > \frac{2t - 2}{K(\theta)} - \varepsilon \) for a small \(\varepsilon > 0 \). Mindful of (6.1), we get

\[\log k \leq \frac{2t}{K(\theta)} + O(1), \]

from which we infer

\[k \ll \exp\left(\frac{2t}{K(\theta)} \right). \]

It now remains to verify that the hypotheses of Lemma 15 are satisfied with \(K = K(\theta) \).

The bound (6.2) presents no difficulty, as

\[\sum_{n \equiv b_d \pmod{dq}} X(A; n) = \frac{Y}{dq} + O(1). \]

To verify (6.3), we observe that for \((d, q) = 1\), \(b_d \equiv a \pmod{q} \) and \((b_d, dq) = 1\),

\[\sum_{n \equiv b_d \pmod{q}} X((A + h_m) \cap \mathbb{P}; n) = \sum_{p \equiv b_d \pmod{dq} \atop x/2 + h_m \leq p \leq x} 1. \]

Let

\[A = 10k^2 \], \[B = \frac{5}{6\eta}(A + 3) \]

and define \(\delta \) by

\[\delta = \frac{c_4}{B \log B} \]

where \(c_4 \) is a suitable absolute positive constant. Since

\[B < \frac{C_1}{\eta} \exp\left(\frac{4t}{K(\theta)} \right), \frac{\delta}{t + \log(1/\eta)} \exp\left(\frac{-4t}{K(\theta)} \right) \]
if C_1, c_3 are suitably chosen, the hypotheses of Theorem 2 concerning q are satisfied. Let

$$R_d = \left| \sum_{p \equiv b_d \mod dq, x/2 + h < p \leq x} 1 - \frac{Y_1}{\varphi(dq)} \right|.$$

We readily deduce from Theorem 2 that

$$\sum_{d \leq x^K} R_d \ll \frac{Y}{L^A};$$

compare the argument at the end of 7. Hence the Cauchy-Schwartz inequality together with the Brun-Titchmarsh inequality gives

$$\sum_{d \leq x^K} \mu^2(d)\tau_{3k}(d)R_d \leq \left(\sum_{d \leq x^K} \mu^2(d)\tau_{3k}(d)R_d \right)^{1/2} \left(\sum_{d \leq x^K} R_d \right)^{1/2} \ll Y \left(\sum_{d \leq x^K} \frac{\tau_{3k}(d)}{\varphi(d)} \right)^{1/2} L^{-A/2} \ll Y L^{(9k^2-A)/2} \ll Y L^{-(k+\varepsilon)}.$$

Now we may apply Lemma 15 and obtain primes $p_1 < \cdots < p_t$ in \mathcal{A} with

$$p_t - p_1 \leq (h'_k - h'_1)q \ll qk \log k \ll qt \exp \left(\frac{2t}{K(\theta)} \right).$$

This completes the proof of Theorem 1.

Acknowledgments. This work was done while L. Z. held a visiting position in the Department of Mathematics of Brigham Young University (BYU). He wishes to thank the warm hospitality of BYU during his thoroughly enjoyable stay in Provo.

References

[1] R. C. Baker, Primes in arithmetic progressions to spaced moduli, Acta Arith. 153 (2012), no. 2, 133–159.
[2] R. C. Baker and L. Zhao, Bounded gaps between primes in Beatty sequences, Preprint (2014). arXiv:1411.2989.
[3] D. A. Burgess, The character sum estimate with $r = 3$, J. London Math. Soc. 33 (1986), no. 2, 219–226.
[4] M.-C. Chang, Short character sums for composite moduli, J. Anal. Math. 123 (2014), 1–33.
[5] H. Davenport, Multiplicative Number Theory, Third Edition, Graduate Texts in Mathematics, Springer-Verlag, New York, 2000.
[6] P. D. T. A. Elliott, Arithmetic Functions and Integer Products, Die Grundlehren der mathematischen Wissenschaften, Springer-Verlag, New York, 1985.
[7] H. Iwaniec, Primes in progressions to modulus with a large power factor, Ramanujan J. 13 (2007), no. 1–3, 241–251.
[8] D. R. Heath-Brown, Prime numbers in short intervals and a generalized Vaughan identity, Canad. J. Math. 34 (1982), no. 6, 1365–1377.
[9] D. R. Heath-Brown and H. M. Bui, A note on the fourth moment of Dirichlet L-functions, Acta Arith. 141 (2010), no. 4, 335–344.
[10] M. N. Huxley, Large values of Dirichlet polynomials III, Acta Arith. 26 (1974/75), no. 4, 435–444.
[11] H. Iwaniec, On zeros of Dirichlet’s L series, Invent. Math. 23 (1974), 97–104.
[12] M. Jutila, On Lindau’s constant, Math. Scand. 41 (1977), 45–62.
[13] J. Maynard, Small gaps between primes, Ann. of Math. (2) 181 (2015), no. 1, 383–413.
[14] H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory I, Classical Theory, Cambridge University Press, 2007.
[15] D. H. J. Polymath, Variants of the Selberg sieve, and bounded intervals containing many primes, Preprint (2014). arXiv: 1407.4897.
[16] E. C. Titchmarsh, The theory of the Riemann zeta-function, Second Edition, Clarendon Press, Oxford, 1986.
[17] L. Zhao, Large sieve inequalities for special characters to prime square moduli, Funct. Approx. Comment. Math. 32 (2004), 99–106.
GAPS OF SMALLEST POSSIBLE ORDER BETWEEN PRIMES IN AN ARITHMETIC PROGRESSION

Roger C. Baker
Department of Mathematics
Brigham Young University
Provo, UT 84602 USA
Email: baker@math.byu.edu

Liangyi Zhao
Department of Mathematics
Brigham Young University
Provo, UT 84602 USA
Email: lzhao@math.byu.edu