Actions of groups of diffeomorphisms on one-manifolds by C^1 diffeomorphisms

Shigenori Matsumoto

Abstract. Denote by $\text{Diff}^r_c(M)_0$ the identity component of the group of the compactly supported C^r diffeomorphisms of a connected C^∞ manifold M. We show that if $\dim(M) \geq 2$ and $r \neq \dim(M) + 1$, then any homomorphism from $\text{Diff}^r_c(M)_0$ to $\text{Diff}^1(\mathbb{R})$ or $\text{Diff}^1(S^1)$ is trivial.

1. Introduction

É. Ghys [G] asked if the group of diffeomorphisms of a manifold admits a nontrivial action on a lower dimensional manifold. A breakthrough towards this problem was obtained by K. Mann [M] for one dimensional target manifolds. Let M be a connected C^∞ manifold without boundary, compact or not. For $r = 0, 1, 2, \cdots, \infty$, denote by $\text{Diff}^r_c(M)_0$ the identity component of the group of the compactly supported C^r diffeomorphisms (homeomorphisms for $r = 0$) of M.

Theorem 1.1. (K. Mann) Any homomorphism from $\text{Diff}^r_c(M)_0$ to $\text{Diff}^2(S^1)$ or to $\text{Diff}^2(\mathbb{R})$ is trivial, provided $\dim(M) \geq 2$ and $r \neq \dim(M) + 1$.

For a simpler proof of this fact, see also [Ma2]. A natural question is whether it is possible to lower the differentiability of the target group. In fact for $r = 0$, E. Militon [Mi] obtained the final result.

Theorem 1.2. (E. Militon) Any homomorphism from $\text{Diff}^0_c(M)_0$ to $\text{Diff}^0(S^1)$ is trivial if $\dim(M) \geq 2$.

Notice that $\text{Diff}^0(\mathbb{R})$ can be considered to be a subgroup of $\text{Diff}^0(S^1)$. So we do not mention in the above theorem the case where the target group is $\text{Diff}^0(\mathbb{R})$.

Even for $r \geq 1$, we have:

Conjecture 1.3. Any homomorphism from $\text{Diff}^r_c(M)_0$ to $\text{Diff}^0(S^1)$ is trivial if $\dim(M) \geq 2$.

The purpose of this paper is to mark one step forward towards this conjecture.

Theorem 1.4. If $\dim(M) \geq 2$ and $r \neq \dim(M) + 1$, any homomorphism from $\text{Diff}^r_c(M)_0$ to $\text{Diff}^1(S^1)$ or $\text{Diff}^1(\mathbb{R})$ is trivial.

2010 Mathematics Subject Classification. Primary 57S05, secondary 22F05.
Key words and phrases. group of diffeomorphisms, action on the real line.

The author is partially supported by Grant-in-Aid for Scientific Research (C) No. 25400096.
Frequent use of the simplicity of the group $\text{Diff}^r_c(M)_0$ is made in the proof. The condition $r \neq \dim(M) + 1$ is needed for it. As for Theorem 1.1 the proof is built upon a theorem of Kopell and Szekeres about C^2 actions of abelian groups on a compact interval, while for Theorem 1.4 upon a theorem of Bonatti, Monteverde, Navas and Rivas about C^1 actions of solvable Baumslag-Solitar groups on a compact interval.

By virtue of the fragmentation lemma, Theorem 1.4 reduces to:

Theorem 1.5. For $n \geq 2$ and $r \neq n + 1$, any homomorphism from $\text{Diff}^r_c(\mathbb{R}^n)_0$ to $\text{Diff}^1(S^1)$ or $\text{Diff}^1(\mathbb{R})$ is trivial.

In Section 2, we show that the case of target group $\text{Diff}^1(S^1)$ can be reduced to the case $\text{Diff}^1(\mathbb{R})$. In Sections 3 and 4, we establish fixed point results for certain subgroups of $\text{Diff}^\infty(\mathbb{R}^n)_0$. In Section 5, we prove Theorem 1.5 following an argument of E. Militon [M]. Finally we give some sporadic results for $\text{Diff}^0(S^1)$ target in Section 6.

Acknowledgement: The author is grateful to Kathryn Mann and Andres Navas for helpful comments and conversations.

2. Reduction to the case $\text{Diff}^1(\mathbb{R})$

In this section, we show that Theorem 1.5 for the target group $\text{Diff}^1(S^1)$ is reduced to the case of $\text{Diff}^1(\mathbb{R})$.

Proposition 2.1. Let $r \neq n + 1$ and $n \geq 1$. Assume that $\Phi : \text{Diff}^r_c(\mathbb{R}^n)_0 \to \text{Diff}^0(S^1)$ is a nontrivial homomorphism. Then the global fixed point set is nonempty: $\text{Fix}(\Phi(\text{Diff}^r_c(\mathbb{R}^n)_0)) \neq \emptyset$.

This proposition enables us to conclude that the image of Φ is contained in the group of the homeomorphisms of \mathbb{R}. In particular, Theorem 1.5 for the target group $\text{Diff}^1(S^1)$ is reduced to the case of $\text{Diff}^1(\mathbb{R})$.

Denote $\mathcal{G} = \text{Diff}^r_c(\mathbb{R}^n)_0$. By the simplicity of the group \mathcal{G}, the homomorphism Φ in the proposition is injective and its image is contained in $\text{Diff}^0_c(S^1)$, the group of the orientation preserving homeomorphisms.

Let B_0 be the closed unit ball in \mathbb{R}^n centered at the origin. Define a family \mathcal{B} of the closed balls in \mathbb{R}^n by

$$\mathcal{B} = \{g(B_0) \mid g \in \mathcal{G}\}.$$

Also for $B \in \mathcal{B}$, let $\mathcal{G}(B) = \{g \in \mathcal{G} \mid \text{Supp}(g) \subset \text{Int}(B)\}$.

To show Proposition 2.1 it is sufficient to show the following.

Proposition 2.2. For any $B \in \mathcal{B}$, the fixed point set $\text{Fix}(\Phi(\mathcal{G}(B)))$ is nonempty.

In fact, choose an increasing sequence of balls, $\{B_k\}_{k \in \mathbb{N}} \subset \mathcal{B}$ such that $\bigcup_k B_k = \mathbb{R}^n$. Then we have $\mathcal{G} = \bigcup_k \mathcal{G}(B_k)$ and $\text{Fix}(\Phi(\mathcal{G})) = \bigcap_k \text{Fix}(\Phi(\mathcal{G}(B_k)))$. Therefore by the compactness of S^1, Proposition 2.1 follows from Proposition 2.2.

Now for any $B_1, B_2 \in \mathcal{B}$, the groups $\mathcal{G}(B_1)$ and $\mathcal{G}(B_2)$ are conjugate in \mathcal{G}. Therefore their images $\Phi(\mathcal{G}(B_1))$ and $\Phi(\mathcal{G}(B_2))$ are conjugate in $\text{Diff}^0(S^1)$. They are simple. Moreover if B_1 and B_2 are disjoint, any element of $\Phi(\mathcal{G}(B_1))$ commutes with any element of $\Phi(\mathcal{G}(B_2))$. Therefore Proposition 2.2 reduces to the following.
PROPOSITION 2.3. Let G_1 and G_2 be simple nonabelian subgroups of $\Diff^1(S^1)$. Assume that G_2 is conjugate to G_1 in $\Diff^1(S^1)$ and that any element of G_1 commutes with any element of G_2. Then there is a global fixed point of G_1: $\Fix(G_1) \neq \emptyset$.

PROOF. Let $X_2 \subset S^1$ be a minimal set of G_2. The set X_2 is either a finite set, a Cantor set or the whole of S^1. If X_2 is a singleton, then G_2 admits a fixed point. Since G_1 is conjugate to G_2, we have $\Fix(G_1) \neq \emptyset$, as is required. So assume for contradiction that X_2 is not a singleton.

First if X_2 is a finite set which is not a singleton, we get a nontrivial homomorphism from G_2 to a finite abelian group, contrary to the assumption of the simplicity. In the remaining case, it is well known, easy to show, that the minimal set is unique. That is, X_2 is contained in any nonempty G_2 invariant closed subset.

Let F_1 be the subset of G_1 formed by the elements g such that $\Fix(g) \neq \emptyset$. Let us show that there is a nontrivial element in F_1. Assume the contrary. Then G_1 acts freely on S^1. Consider the group \hat{G}_1 formed by any lift of any element of G_1 to the universal covering space $\R \to S^1$. Now \hat{G}_1 acts freely on \R. A theorem of H"older asserts that \hat{G}_1 is abelian. See [N] for a short proof, or [Th] for an even shorter proof. The canonical projection $\pi : \hat{G}_1 \to G_1$ is a group homomorphism, and $G_1 = \pi(\hat{G}_1)$ would be abelian, contrary to the assumption of the proposition.

Since G_1 and G_2 commutes, the fixed point set $\Fix(g)$ of any element $g \in F_1$ is G_2 invariant. Therefore we have

\[(1) \quad X_2 \subset \Fix(g) \text{ for any } g \in F_1. \]

This shows that F_1 is in fact a subgroup. By the very definition, F_1 is normal. Since G_1 is simple and F_1 is nontrivial, $F_1 = G_1$. Finally again by (1), $\Fix(G_1) \neq \emptyset$. Then the minimal set of G_1 must be a singleton. Since G_2 is conjugate to G_1, the minimal set X_2 of G_2 is also a singleton, contrary to the assumption. \hfill \Box

3. Fixed point set of $\Phi(G)$

Again consider $\mathcal{G} = \Diff^r(\R^n)_0$, where $n \geq 1$ and $r \neq n + 1$. We shall show Theorem 1.5 for the target group $\Diff^1(\R)$ by a contradiction. So let us assume that $\Phi : \mathcal{G} \to \Diff^1(\R)$ is a nontrivial homomorphism. By the simplicity of \mathcal{G}, Φ is injective and its image is contained in $\Diff^1_+(\R)$. For the purpose of showing Theorem 1.5 it is no loss of generality to assume the following.

ASSUMPTION 3.1. There is no global fixed point of $\Phi(\mathcal{G})$: $\Fix(\Phi(\mathcal{G})) = \emptyset$.

In fact, we only have to pass from \R to a connected component of $\R \setminus \Fix(\Phi(\mathcal{G}))$. This assumption will be made all the way until the end of the proof of Theorem 1.5.

We consider an embedding of Baumslag-Solitar group $\text{BS}(1, 2)$ into the group $\mathcal{G}(B)$. See Section 2 for the definition of $\mathcal{G}(B)$. Recall that

\[\text{BS}(1, 2) = \langle a, b \mid aba^{-1} = b^2 \rangle. \]

This group is a subgroup of GA, the group of the orientation preserving affine transformations of \R, where a corresponds to $x \mapsto 2x$, and b to $x \mapsto x + 1$. The group GA is a subgroup of $\Diff^1_+(\R)$. The group $\Diff^1_+(\R)$ acts on the circle at infinity S^1_{∞} of the Poincaré upper half plane, where GA is the isotropy subgroup of $\infty \in S^1_{\infty}$. Cutting S^1_{∞} at ∞, we get a C^∞ action of $\text{BS}(1, 2)$ on a compact interval, say $[-1, 1]$. This is called the affine action of $\text{BS}(1, 2)$.
They satsify ψ a compact interval I. Define a map $\phi \colon GL$ closed subsets of R. Let us show that it belongs to F. Since $Fix(\Phi(\mathcal{G}(B)))$ is nonempty, $\Phi(\mathcal{G}(B))$ orbit intersects the compact interval I. Since $Fix(\Phi(\mathcal{G}(B)))$ is nonempty, $\Phi(\mathcal{G}(B))$ orbit intersects the compact interval I. Now we follow the proof of Proposition 6.1 in [DKNP], to show that there is a unique minimal set X for $\Phi(\mathcal{G}(B))$. In fact we shall show a bit more: there is a nonempty $\Phi(\mathcal{G}(B))$ invariant closed subset X in R which has the property that any nonempty $\Phi(\mathcal{G}(B))$ invariant closed subset contains X.

The proof goes as follows. Let F be the family of nonempty $\Phi(\mathcal{G}(B))$ invariant closed subsets of R, and F_I the family of nonempty closed subsets Y in I such that $\Phi(\mathcal{G}(B))(Y) \cap I = Y$, where we denote

$$\Phi(\mathcal{G}(B))(Y) = \bigcup_{g \in \mathcal{G}(B)} \Phi(g)(Y).$$

Define a map $\phi : F \to F_I$ by $\phi(X) = X \cap I$, and $\psi : F_I \to F$ by $\psi(Y) = \Phi(\mathcal{G}(B))(Y)$. They satisfy $\psi \circ \phi = \phi \circ \psi = id$.

Let $\{Y_\alpha\}$ be a totally ordered set in F_I. Then the intersection $\cap_\alpha Y_\alpha$ is nonempty. Let us show that it belongs to F_I, namely,

$$\Phi(\mathcal{G}(B))(\cap_\alpha Y_\alpha) \cap I = \cap_\alpha Y_\alpha.$$

For the inclusion \subset, we have

$$\Phi(\mathcal{G}(B))(\cap_\alpha Y_\alpha) \cap I \subset (\cap_\alpha \Phi(\mathcal{G}(B))(Y_\alpha)) \cap I = \cap_\alpha (\Phi(\mathcal{G}(B))(Y_\alpha) \cap I) = \cap_\alpha Y_\alpha.$$
For the other inclusion, notice that
\[\cap_\alpha Y_\alpha \subset \Phi(\mathcal{G}(B))(\cap_\alpha Y_\alpha) \text{ and } \cap_\alpha Y_\alpha \subset I. \]

Therefore by Zorn’s lemma, there is a minimal element \(Y \in F_I \). The set \(Y \) is not finite. In fact, if it is finite, the set \(X = \psi(Y) \) in \(F \) is discrete, and there would be a nontrivial homomorphism from \(\Phi(\mathcal{G}(B)) \) to \(\mathbb{Z} \), contrary to the fact that \(\mathcal{G}(B) \), and hence \(\Phi(\mathcal{G}(B)) \), is simple.

Now the correspondence \(\phi \) and \(\psi \) preserve the inclusion. This shows that there is no nonempty \(\Phi(\mathcal{G}(B)) \) invariant closed proper subset of \(X = \psi(Y) \). In other words, any \(\Phi(\mathcal{G}(B)) \) orbit contained in \(X \) is dense in \(X \). Therefore \(X \) is either \(\mathbb{R} \) itself or a locally Cantor set. In the former case, any nonempty \(\Phi(\mathcal{G}(B)) \) invariant closed subset must be \(\mathbb{R} \) itself.

Let us show that in the latter case, \(X \) satisfies the desired property: \(X \) is contained in any nonempty \(\Phi(\mathcal{G}(B)) \) invariant closed subset. For this, we only need to show that the \(\Phi(\mathcal{G}(B)) \) orbit of any point \(x \) in \(\mathbb{R} \setminus X \) accumulates to a point in \(X \). In fact, if this is true, then any nonempty \(\Phi(\mathcal{G}(B)) \) invariant closed subset must intersect \(X \). But the intersection must be the whole \(X \) by the above remark.

Let \((a, b) \) be the connected component of \(\mathbb{R} \setminus X \) that contains \(x \). (If \(x \in X \), there is nothing to prove.) There is a sequence \(g_k \in \mathcal{G}(B) \) \((k \in \mathbb{N})\) such that \(\Phi(g_k)(a) \) accumulates to \(a \) and that \(\Phi(g_k)(a) \)'s are mutually distinct. Then the intervals \(\Phi(g_k)((a, b)) \) are mutually disjoint, and consequently \(\Phi(g_k)(x) \) converges to \(a \). This concludes the proof that \(X \) is contained in any nonempty \(\Phi(\mathcal{G}(B)) \) invariant closed subset.

Choose \(B' \in \mathcal{B} \) such that \(B' \cap B = \emptyset \). Any element of \(\mathcal{G}(B') \) commutes with any element of \(\mathcal{G}(B) \). Define \(\mathcal{F}(B') \) to be the subset of the group \(\mathcal{G}(B') \) consisting of those elements \(g \) such that \(\text{Fix}(\Phi(g)) \neq \emptyset \). By a theorem of H"older, there is a nontrivial element in \(\mathcal{F}(B') \). For any \(g \in \mathcal{F}(B') \), the set \(\text{Fix}(\Phi(g)) \) is closed, nonempty and invariant by \(\Phi(\mathcal{G}(B)) \) by the commutativity. Therefore we have

\[X \subset \text{Fix}(\Phi(g)) \text{ for any } g \in \mathcal{F}(B'). \]

This shows that \(\mathcal{F}(B') \) is a subgroup of \(\mathcal{G}(B') \), normal and nontrivial. Since \(\mathcal{G}(B') \) is simple, we have \(\mathcal{F}(B') = \mathcal{G}(B') \). Finally again by (3), we get \(\text{Fix}(\Phi(\mathcal{G}(B'))) \neq \emptyset \). Since \(\mathcal{G}(B) \) is conjugate to \(\mathcal{G}(B') \) and \(\mathcal{G} \) is a subgroup of \(\mathcal{G}(B) \), we have \(\text{Fix}(\Phi(\mathcal{G})) \neq \emptyset \), contrary to the assumption. The contradiction concludes the proof of Proposition 3.3. □

4. Fixed point set of \(\Phi(\mathcal{G}_B) \)

For \(B \in \mathcal{B} \), define a subgroup \(\mathcal{G}_B \) of \(\mathcal{G} \) by
\[\mathcal{G}_B = \{ g \in \mathcal{G} \mid g = \text{id in a neighbourhood of } B \}. \]
Let \(\Phi : \mathcal{G} \to \text{Diff}^1_+(\mathbb{R}) \) be a homomorphism satisfying Assumption 3.1. The purpose of this section is to show the following.

PROPOSITION 4.1. For any \(B \in \mathcal{B} \), the fixed point set \(\text{Fix}(\Phi(\mathcal{G}_B)) \) is nonempty.

PROOF. Any element of \(\Phi(\mathcal{G}(B)) \) commutes with any element of \(\Phi(\mathcal{G}_B) \). Let us denote \(F = \text{Fix}(\Phi(G)) \), which we have shown to be nonempty in Proposition 3.3. Clearly \(F \) is invariant by any element of \(\Phi(\mathcal{G}_B) \). We shall show that there is a fixed point of \(\Phi(\mathcal{G}_B) \) in \(F \). If \(F \) is bounded to the left or to the right, then the
extremal point will be a fixed point of \(\Phi(G_B) \). So we assume that \(F \) is unbounded towards both directions. That is, any connected component \(U \) of \(\mathbb{R} \setminus F \) is bounded.

Assume that there is \(g \in G_B \) such that \(\Phi(g)(U) \cap U = \emptyset \). (Otherwise \(\Phi(g)(U) = U \) for any \(g \in G_B \), and the proof will be complete.) There is a subgroup \(G' \) of \(G_B \) conjugate to \(G \). By some abuse, denote the generators of \(G' \) by \(a \) and \(b \). They satisfy \(aba^{-1} = b^2 \). Notice that finite products of conjugates of \(b^{\pm1} \) by elements of \(G_B \) form a normal subgroup of \(G_B \). Since \(G_B \) is simple, any element of \(G_B \) can be written as such a product. Writing the above element \(g \) this way, one finds a conjugate of \(b \) whose \(\Phi \)-image displaces \(U \). We may assume that \(\Phi(b)U \cap U = \emptyset \), passing from \(G' \) to its conjugate by an element of \(G_B \) if necessary. (The conjugate is still denoted by \(G' \).)

Let \(V \) be the component of \(\mathbb{R} \setminus \text{Fix}(\Phi(G')) \) that contains \(U \). Since \(G' \) is conjugate to \(G \), \(V \) is a bounded open interval and \(F \cap V \) is a closed nonempty proper subset of \(V \) invariant by \(\Phi(G') \). It is easy to show that \(\Phi(b)|_V \neq \text{id} \) implies that the action \(\Phi(G')|_V \) is faithful. By Theorem 3.2 any \(\Phi(G') \) orbit in \(V \) must be dense in \(V \). This contradicts the fact that \(F \cap V \) is invariant by \(\Phi(G') \). The proof is now complete. \(\blacksquare \)

5. Proof of Theorem 1.5

Again we assume that \(\Phi : G \to \text{Diff}_+^\circ(S^1) \) is a homomorphism satisfying Assumption 3.1. Our purpose here is to get a contradiction. We follow an argument in [Mi].

Lemma 5.1. Assume \(B \) and \(B' \) are mutually disjoint balls of \(\mathcal{B} \). Then any \(g \in G \) can be written as \(g = g_1 \circ g_2 \circ g_3 \), where \(g_1 \) and \(g_2 \) belongs to \(G_B \) and \(g_2 \) to \(G_B' \).

Proof. Take any \(g \in G \). Then there is an element \(g_1 \in G_B \) such that \(g_1^{-1} \circ g(B) \) is disjoint from \(B' \). Next, there is an element \(g_2 \in G_B' \) such that \(g_2^{-1} \circ g_1^{-1} \circ g \) is the identity in a neighbourhood of \(B \). Thus \(g_3 = g_2^{-1} \circ g_1^{-1} \circ g \) belongs to \(G_B \) and the proof is complete. \(\blacksquare \)

Lemma 5.2. Assume \(B \) and \(B' \) are mutually disjoint elements of \(\mathcal{B} \). If two points \(a \) and \(b \) \((a < b) \) belong to \(\text{Fix}(\Phi(G_B')) \), then \(\text{Fix}(\Phi(G_B')) \cap [a,b] = \emptyset \).

Proof. Assume a point \(c \) in \([a,b]\) belongs to \(\text{Fix}(\Phi(G_B')) \). Choose an arbitrary element \(g \in G \). There is a decomposition \(g = g_1 \circ g_2 \circ g_3 \) as in Lemma 5.1. Now \(\Phi(g_3)(a) = a \). Since \(\Phi(g_2)(c) = c \) and \(a \leq c \), we have \(\Phi(g_2) \circ \Phi(g_3)(a) \leq c \). Likewise \(\Phi(g)(a) = \Phi(g_1) \circ \Phi(g_2) \circ \Phi(g_3)(a) \leq b \). Since \(g \in G \) is arbitrary, the \(\Phi(G) \) orbit of \(a \) is bounded from the right. Then the supremum of the orbit must be a global fixed point, which is against Assumption 3.1. \(\Phi(G) \) has no global fixed point. \(\blacksquare \)

For any point \(x \in \mathbb{R}^n \), define a subgroup \(G_x \) of \(G \) by

\[
G_x = \{ g \in G \mid g \text{ is the identity in a neighbourhood of } x \}.
\]

Lemma 5.3. For any \(x \in \mathbb{R}^n \), the fixed point set \(\text{Fix}(\Phi(G_x)) \) is nonempty.

Proof. Notice that for any \(x \in \mathbb{R}^n \), there is an decreasing sequence \(\{B_k\} \) \((k \in \mathbb{N}) \) in \(\mathcal{B} \) such that \(\{x\} = \bigcap_k B_k \). Then \(G_{B_k} \) is an increasing sequence of subgroups of \(G \) such that \(\bigcup_k G_{B_k} = G_x \). Therefore the closed subsets \(\text{Fix}(\Phi(G_{B_k})) \)
ACTIONS OF GROUPS OF DIFFEOMORPHISMS ON ONE-MANIFOLDS

is decreasing and we have

\[\text{Fix}(\Phi(G)) = \bigcap_k \text{Fix}(\Phi(G_{B_k})). \]

Now it suffices to prove that \(\text{Fix}(\Phi(G)) \) is compact for \(B \in B \). Recall that we have already shown that \(\text{Fix}(\Phi(G)) \) is nonempty. Assume in way of contradiction that \(\sup \text{Fix}(\Phi(G)) = \infty \). (The other case can be dealt with similarly.) Choose \(B' \in B \) such that \(B \cap B' = \emptyset \). Notice that \(\Phi(G) \) consists of orientation preserving diffeomorphisms and \(\Phi(G_{B'}) \) is conjugate to \(\Phi(G_B) \) by such a diffeomorphism. Therefore we also have that \(\sup \text{Fix}(\Phi(G_{B'})) = \infty \). Now one can find points \(a, b \in \text{Fix}(\Phi(G)) \) and a point \(c \in \text{Fix}(\Phi(G_{B'})) \) such that \(a < c < b \). This is contrary to Lemma 5.2. □

We use the assumption \(n \geq 2 \) only in the sequel. Let \(D_0 \) be the unit compact disc centered at 0 in \(\mathbb{R}^{n-1} \subset \mathbb{R}^n \). Define a family \(D \) of closed subsets of \(\mathbb{R}^n \) by

\[D = \{ g(D_0) \mid g \in G \}. \]

For any \(D \in D \), define a subgroup \(G_D \) of \(G \) by

\[G_D = \{ g \in G \mid g \text{ is the identity in a neighbourhood of } D \}. \]

Lemma 5.3 implies that \(\text{Fix}(\Phi(G_D)) \neq \emptyset \) for any \(D \in D \).

Lemma 5.4. For any \(D \in D \), the set \(\text{Fix}(\Phi(D)) \) is a singleton.

Proof. First of all notice that for any \(D, D' \in D \) such that \(D \cap D' = \emptyset \), we have \(\text{Fix}(\Phi(G_D)) \cap \text{Fix}(\Phi(G_{D'})) = \emptyset \). In fact, as is easily shown, \(G_D \) and \(G_{D'} \) generate \(G \). Thus the point of the above intersection would be a global fixed point of \(G \), against Assumption 3.1. This shows that the interior \(\text{Int}(\text{Fix}(\Phi(G_D))) \) is empty. In fact, there are uncountably many mutually disjoint elements of \(D \), while mutually disjoint open subsets of \(\mathbb{R} \) are at most countable.

Assume that \(\text{Fix}(\Phi(G_D)) \) contains more than one points. Since \(\text{Int}(\text{Fix}(\Phi(G_D))) \) is empty, \(\text{Fix}(\Phi(G_D)) \) is not connected. To any \(D \in D \), assign a bounded component \(I_D \) of \(\mathbb{R} \setminus \text{Fix}(\Phi(G_D)) \) in an arbitrary way. This is possible by the axiom of choice. Notice that Lemmata 5.1 and 5.2 for the family \(B \) are valid for \(D \) as well. (No changes of the proofs are needed.) Consequently \(I_D \cap I_{D'} = \emptyset \) if \(D \cap D' = \emptyset \). Again this is contrary to the fact that there are uncountably many mutually disjoint elements of \(D \). □

Finally let us prove Theorem 5.2. Choose any element \(D \in D \) and distinct two points \(x_1, x_2 \in D \) that are contained in \(D \). Then since \(\text{Fix}(\Phi(G_D)) \) is a singleton and \(\text{Fix}(\Phi(G_{x_1})) \) is nonempty, we have \(\text{Fix}(\Phi(G_{x_1})) = \text{Fix}(\Phi(G_{x_2})) \). But \(G_{x_1} \) and \(G_{x_2} \) generate \(G \), and there would be a global fixed point of \(\Phi(G) \), against Assumption 3.1. The contradiction shows that the homomorphism \(\Phi \) must be trivial.

6. Sporadic results for \(\text{Diff}^0(S^1) \) target

Let \(M = L \times S^m \) be a closed \(n \)-dimensional manifold such that \(1 \leq m \leq n \). Then we have the following result.

Theorem 6.1. If \(n \geq 2 \) and \(r \neq n + 1 \), there is no nontrivial homomorphism from \(\text{Diff}^r(M)_0 \) to \(\text{Diff}^0(S^1) \).
Proof. Assume that $\Phi : \text{Diff}^r_c(M)_0 \to \text{Diff}^0(S^1)$ is a nontrivial homomorphism. The Lie group $PSL(2, \mathbb{R})$ acts on S^m as Möbius transformations. So it acts on $M = L \times S^m$, trivially on L-coordinates. Denote the inclusion by $\iota : PSL(2, \mathbb{R}) \to \text{Diff}^r_c(M)_0$. The simplicity of the group $\text{Diff}^r_c(M)_0$ shows that the homomorphism $\Phi \circ \iota : PSL(2, \mathbb{R}) \to \text{Diff}^0(S^1)$ is nontrivial.

Now Theorem 5.2 in [Ma2] asserts that the homomorphism $\Phi \circ \iota$ is the conjugation of the standard embedding $\iota_0 : PSL(2, \mathbb{R}) \to \text{Diff}^0(S^1)$ by a homeomorphism of S^1. It is no loss of generality to assume that $\Phi \circ \iota = \iota_0$, by changing Φ if necessary. If the dimension of L is positive, then $\text{Diff}^r_c(L)_0$ also acts on M, trivially on S^m-coordinates. Any element of the group $\Phi(\text{Diff}^r_c(L))$ must commute with any element of $PSL(2, \mathbb{R})$. But there is no nontrivial element in $\text{Diff}^r_c(S^1)$ which commutes with all the element of $PSL(2, \mathbb{R})$. A contradiction.

Let us consider the case where L is a singleton. Then there is an element g in $\text{Diff}^r(S^n)$, $n \geq 2$, which commutes with all the elements of $\iota(SO(2))$ and is not contained in $\iota(SO(2))$. But $\Phi \circ \iota(SO(2)) = SO(2)$, and any element in $\text{Diff}^0(S^1)$ which commutes with all the elements of $SO(2)$ must be an element of $SO(2)$, contradicting the injectivity of Φ.

Remark 6.2. There are a wider class of manifolds for which the above argument holds. For example, if M is the unit tangent bundle of a closed hyperbolic surface and if $r \neq 4$, then any homomorphism from $\text{Diff}^r_c(M)_0$ to $\text{Diff}^0(S^1)$ is trivial.

References

[BMNR] C. Bonatti, I. Monteverde, A. Navas and C. Rivas, Rigidity for C^1 actions on the interval arising from hyperbolicity I: solvable groups, [arXiv:1309.5277].
[CC] J. Cantwell and L. Conlon, An interesting class of C^1 foliations, Topology and its applications 126 (2002), 281-297.
[DKNP] B. Deroin, V. Kleptsyn, A. Navas and K. Parwani, Symmetric random walks on $\text{Homeo}^+(\mathbb{R})$, Ann. Probability 41 (2013), 2066-2089.
[G] É. Ghys, Prolongements des difféomorphismes de la sphère, L’Enseign. Math. 37 (1991), 45-59.
[GL] N. Guelman and I. Liousse, C^1-actions of Baumslag-Solitar groups on S^1, Algebraic & Geometric Topology 11 (2011), 1701-1707.
[M] K. Mann, Homomorphisms between diffeomorphism groups, To appear in Ergod. Th. Dyn. Sys.
[Ma1] S. Matsumoto, Numerical invariants for semiconjugacy of homeomorphisms of the circle, Proc. A. M. S. 98 (1986), 163-168.
[Ma2] S. Matsumoto, New proofs of theorems of Kathryn Mann, to appear in Kodai Math. J.
[Mi] E. Militon, Actions of groups of homeomorphisms on one-manifold, Arxiv: 1302.3737.
[N] A. Navas, On the dynamics of (left) orderable groups, Ann. l’inst. Fourier 60 (2010), 1685-1740.
[Th] W. P. Thurston, Three-manifolds, foliations and circles, I, Arxiv: 9712208.
[Ts] T. Tsuboi, Γ_1-structures avec une seule feuille, Astérisque 116 (1984), 222-234.