Low birth weight (a global index of poor fetal development) has been associated with a range of mental health problems (including attention-deficit hyperactivity disorder (ADHD), autism, bipolar disorder, depression, schizophrenia and suicide), as well as lower intelligence and socioeconomic status \(^9\)-\(^11\) (see also the Introduction in the supplementary material available at https://doi.org/10.1192/bjp.2021.15). These findings are consistent with the developmental origins of health and disease (DOHaD) hypothesis,\(^12\),\(^13\) which states that adverse in utero and perinatal experiences may have long-lasting effects on adult health. Yet, the causal nature of these associations remains unclear. Birth weight is influenced by a range of intrauterine exposures and maternal conditions and behaviours, such as mental health and diet, exposure to tobacco and alcohol, toxins, pollution and socioeconomic adversity.\(^14\)-\(^20\) Those factors are likely to confound the association between birth weight and mental health and socioeconomic outcomes, because such confounding factors may cause a change in both birth weight and outcomes. Clarifying whether birth weight is a causal risk factor for mental, cognitive and socioeconomic problems is important for understanding their aetiology. Given that it is not possible to directly randomise birth weight to probe its causal role on later outcomes, the most robust evidence would come from quasi-experimental designs. Mendelian randomisation is a methodology that strengthens causal inference on the association between an exposure and an outcome using genetic variants as instruments.\(^21\)-\(^24\) Genetic variants are randomly allocated at conception and are relatively independent of environmental confounding factors; therefore this design mimics that of a randomised trial in which treatment is randomly allocated and confounding factors do not depend on treatment allocation (Fig. 1; see supplementary material Methods for details on Mendelian randomisation assumptions).\(^21\),\(^22\) A previous study that used Mendelian randomisation to investigate the role of birth weight in ADHD, major depressive disorder and schizophrenia found no evidence for a causal role of birth weight.\(^24\) However, a major limitation of that study was the inability to account for the confounding effect of maternal genotype, which can lead to incorrect Mendelian randomisation estimates.\(^25\),\(^26\) Maternal and individual (i.e. offspring) genotypes are correlated and any effect of intrauterine exposures or maternal behaviour influenced by the mother’s genetic make up may also result in an association between the offspring’s genotype and mental health outcomes (Fig. 1). However, new data from a recently published genome-wide association study (GWAS) of birth weight\(^26\) providing estimates of the association of single-nucleotide polymorphisms (SNPs) with birth weight after adjustment for the correlation between maternal and individual genotypes enable us, for the first time, to overcome this limitation. The present Mendelian randomisation study relies on summary statistics from the largest available GWASs to estimate the contribution of birth weight to mental health (including common psychiatric disorders and suicide attempt), cognitive (i.e. intelligence) and socioeconomic outcomes (including educational attainment, income and social deprivation).
**Method**

Data sources

This study relied on summary statistics from GWASs performed by international consortia (Table 1). Only GWASs of individuals of European ancestry were used, as genetic variants can be differently associated with a trait in different ancestry groups owing to specific linkage disequilibrium structures. All the GWASs had been adjusted for population stratification using ancestry-informed principal components, as well as for other main covariates (e.g. age and gender; see details in cited publications). All phenotypes were primarily measured among adult individuals and summary statistics were available only for both genders combined. We used the largest available non-overlapping exposure and outcome GWASs whenever possible, i.e. for all outcomes except for ADHD, intelligence and socioeconomic outcomes. However, this overlap is unlikely to bias the results (supplementary Methods). Power analysis is presented in the online material (supplementary Methods).

Birth weight

In total, \( n = 209 \) independent genome-wide significant SNPs associated with birth weight were identified by the largest GWAS meta-analysis conducted by the Early Growth Genetics (EGG) consortium and including the UK Biobank sample (\( n = 264\,498 \)).

---

**Table 1** Summary of genome-wide association studies used in the analyses

| Phenotype                               | Source GWAS or consortium | Sample size, \( n \) | SNPs, \( n \) | Phenotype assessment                                                                 |
|-----------------------------------------|---------------------------|----------------------|-------------|---------------------------------------------------------------------------------------|
| Birth weight                            | EGG, UKB                  | 264 498              | –           | –                                                                                     |
| ADHD                                    | PGC, IPSYCH, EAGLE        | 53 293               | 19 099     | 34 194                                                                                |
| Autism spectrum disorder                | PGC, IPSYCH               | 46 350               | 18 381     | 27 969                                                                                |
| Bipolar disorder                        | PGC                       | 46 582               | 20 352     | 31 358                                                                                |
| Major depressive disorder               | PGC                       | 173 005              | 59 851     | 113 154                                                                               |
| Obsessive-compulsive disorder           | IOCDF-GC, OCG-AS          | 97 25                | 26 888     | 70 377                                                                                |
| Post-traumatic stress disorder          | PGC                       | 9 537                | 2 424      | 7 113                                                                                 |
| Schizophrenia                           | CLOZUK, PGC               | 105 318              | 40 675     | 64 643                                                                                |
| Suicide attempt                         | IPSYCH                    | 50 264               | 6 024      | 4 424                                                                                 |
| Intelligence                            | SSGAC                     | 269 867              | –          | –                                                                                     |
| Educational attainment                  | SSGAC                     | 1 131 881            | –          | –                                                                                     |
| Income                                  | UKB                       | 96 900               | –          | –                                                                                     |
| Social deprivation                      | UKB                       | 112 005              | –          | –                                                                                     |

GWAS, genome-wide association study; SNP, single-nucleotide polymorphism; ADHD, attention-deficit hyperactivity disorder; EGG, Early Growth Genetics consortium; UKB, UK Biobank; PGC, Psychiatric Genomics Consortium; IPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research; EAGLE, Early Genetics and Lifecourse Epidemiology Consortium; IOCDF-GC, International Obsessive Compulsive Disorder Foundation Genetics Collaborative; OCG-AS, OCD Collaborative Genetics Association Studies; SSGAC, Social Science Genetic Association Consortium.

*a* The Townsend Deprivation Index is a measure of material deprivation incorporating information on unemployment, non-car ownership, non-home ownership and household overcrowding (higher values indicate higher social deprivation).
Among these GWAS significant variants, we selected 48 SNPs identified as having an effect on birth weight after adjusting for the correlated maternal effect on birth weight, and maintaining statistical significance at \( P < 1 \times 10^{-5} \). The mean \( F \)-statistic for these SNPs was 36 (median, 26; range, 19–182; supplementary Methods), suggesting that all SNPs were strong instruments according to the suggested threshold of \( F > 10 \). Birth weight (which had a mean of \( -3407 \) g and standard deviation of \( -464 \) g) was \( z \)-score transformed separately for males and females in the studies participating in the GWAS meta-analysis and adjusted for study-specific covariates, including gestational duration (where available).

### Outcomes

We obtained the estimates of associations between the birth weight instrument SNPs and our outcomes from the GWAS summary statistics. Whenever possible, instrument SNPs that were unavailable in the GWAS summary statistics of the outcome phenotype were replaced with overlapping proxy SNPs in linkage disequilibrium \( (r^2 > 0.80) \) identified using the LDproxy online tool (https://ldlink.ncbi.nlm.nih.gov/). The following outcomes were considered: (a) mental health outcomes (all binary variables): ADHD, autism spectrum disorder, bipolar disorder, major depressive disorder, obsessive–compulsive disorder, post-traumatic stress disorder (PTSD), schizophrenia and suicide attempt (i.e. hospital admission for a suicide attempt); (b) cognitive outcome: intelligence (measured as the general factor of intelligence \( g \) and primarily evaluating fluid domains of cognitive functioning); (c) socioeconomic outcomes: educational attainment (measured as years of education), household income (measured as total income before taxes using five income categories) and social deprivation (measured using the Townsend Social Deprivation Index). Details on phenotype assessment can be found in the individual publications.

### Data analysis

We conducted a two-sample Mendelian randomisation analysis in R version 3.6 for Mac using the TwoSampleMR, MendelianRandomization and MR-PRESSO packages. In two-sample Mendelian randomisation, causal estimates can be obtained using summary statistics from different samples (i.e. GWASs), one for the instrument/SNP-exposure association, another for the instrument/SNP-outcome association. The two data-sets were harmonised and the positive strand alleles were inferred using allele frequencies for palindromes (minor allele frequency up to 0.4) whenever possible. Analyses including and excluding the remaining palindromic SNPs were conducted, yielding consistent results. Therefore, we reported results using the full set of SNPs. For each SNP, the ratio between the SNP-exposure and the SNP-outcome association (Wald test) was calculated. Then, Wald estimates for single SNPs were combined using random-effect inverse-variance weighting (IVW) meta-analysis as the primary analysis. This method corresponds to a weighted regression of SNP-outcome effects on SNP-exposure effects, in which weights were based on a multiplicative random-effects model. Heterogeneity across the meta-analysed estimates, which may be indicative of horizontal pleiotropy (i.e. the fact that the same SNPs influence multiple traits, so the association between instrument SNPs and outcome could not be entirely explained by the exposure, but act through alternative pathways, violating instrumental variable assumptions) was quantified using the \( Q \)-statistic (a significant test suggests pleiotropy). A range of analyses were used to test the sensitivity of the IVW estimation. First, Mendelian randomisation-Egger (MR-Egger) regression, which relaxes the assumptions of Mendelian randomisation allowing for unbalanced pleiotropic effects. A major drawback of MR-Egger is the low power of this test; however, consistency in the direction and the size of the effect between the MR-Egger estimate and the IVW estimate can support the validity of the IVW analysis. We also used the intercept of the MR-Egger regression to test for the presence of unbalanced pleiotropy (a significant test suggests unbalanced pleiotropy). Second, we used the weighted median, which assumes that at least 50% of the total weight of the instrument comes from valid variants. It is more likely to give a valid causal estimate than the MR-Egger or the IVW method because it is more consistent with the true causal effect in the presence of up to 50% invalid variants. Third, we used the robust adjusted profile score (RAPS), which is an estimator that deals with weak instruments and is robust to pleiotropic effects.

We then performed four further analyses. First, MR-PRESSO (Mendelian Randomisation Pleiotropy Residual Sum and Outlier) was used to detect and correct for outliers that may reflect bias due to pleiotropy. Second, leave-one-out analyses, in which the analyses were repeated by excluding one SNP instrument at a time, were performed to identify whether a single SNP was driving the association. Outlier SNPs were excluded from the analysis. Third, we searched the PhenoScanner database (a curated database of publicly available results from large-scale genetic association studies) for each SNP instrument (and those in linkage disequilibrium within \( r^2 \geq 0.80 \)) to see whether they have been associated \( (P < 1 \times 10^{-5}) \) with traits likely to bias our analysis because of horizontal pleiotropy or because of their association with confounders of the exposure-outcome association. In that case, these SNPs would be excluded in sensitivity analyses. Fourth, we conducted a Steiger filtering analysis to investigate whether the specified direction of the association (birth weight predicting mental health, cognitive and social outcomes) is further supported. Associations were considered statistically significant at \( P < 0.05 \). Additionally, to account for the possibility of false-positive findings, we used the false discovery rate with a \( q \)-value <0.05.

### Ethical approval

This study is based on publicly available summary statistics from studies that had already obtained ethical approval; therefore, a separate ethical approval was not required.

### Results

#### Contribution of birth weight to mental health outcomes

We found evidence for a contribution of birth weight to ADHD, with an OR of 1.29 (95% CI 1.03–1.62; \( P = 0.027; q < 0.05 \)) per 1 s. d. unit decrease in birth weight (Fig. 2). No evidence of horizontal pleiotropy was detected (MR-Egger intercept, \( P = 0.653 \); supplementary Table 4), but the Q-statistic indicated the presence of significant heterogeneity \( (P = 0.002) \). However, the association was consistent across the Mendelian randomisation methods used as sensitivity analyses (MR-RAPS OR = 1.27; 95% CI 1.01–1.61; \( P = 0.045 \); weighted median OR = 1.34; 95% CI 1.00–1.81; \( P = 0.054 \); MR-Egger OR = 2.11; 95% CI 1.31–3.34; \( P = 0.001 \)) and the MR-PRESSO and leave-one-out procedures did not detect any outlier. Similarly, we found evidence for a contribution of birth weight to PTSD (OR = 1.69; 95% CI 1.06–2.71; \( P = 0.029; q < 0.05 \)), with consistent estimates across sensitivity analysis methods (MR-RAPS OR = 1.71; 95% CI 1.02–2.88; \( P = 0.044 \); weighted median OR = 2.09; 95% CI 0.98–4.44; \( P = 0.056 \); MR-Egger OR = 3.00; 95% CI 0.96–9.38; \( P = 0.050 \)) and no evidence for heterogeneity \( (Q\text{-statistic}; P = 0.481) \), unbalanced horizontal pleiotropy (MR-Egger intercept, \( P = 0.957 \)) and outliers influencing...
the results. We found no evidence supporting a contribution of birth weight to other psychiatric disorders, including autism spectrum disorder (OR = 1.03; 95% CI 0.85–1.24; \( P = 0.792 \)), bipolar disorder (OR = 0.93; 95% CI 0.77–1.13; \( P = 0.476 \)), major depressive disorder (OR = 1.00; 95% CI 0.90–1.12; \( P = 0.988 \)), obsessive–compulsive disorder (OR = 0.72; 95% CI 0.45–1.16; \( P = 0.175 \)) and schizophrenia (OR = 1.08; 95% CI 0.91–1.28; \( P = 0.386 \)). No unbalanced horizontal pleiotropy was detected for these outcomes; correcting for outlier SNPs detected for schizophrenia (rs1547669 and rs222857) did not alter the results. Furthermore, we found evidence supporting a contribution of birth weight to suicide attempt (OR = 1.39; 95% CI 1.05–1.84; \( P = 0.023 \); \( q < 0.05 \)). Consistent results were found in sensitivity analyses (MR-RAPS OR = 1.50; 95% CI 1.11–2.02; \( P = 0.008 \); weighted median OR = 1.82; 95% CI 1.21–2.76; \( P = 0.004 \); MR-Egger OR = 1.34; 95% CI 0.56–3.23; \( P = 0.247 \)) and we did not find evidence for heterogeneity (Q-statistic, \( P = 0.590 \)), unbalanced horizontal pleiotropy (MR-Egger intercept, \( P = 0.172 \)) and outliers.

**Contribution of birth weight to intelligence**

We found evidence for a contribution of birth weight to intelligence (\( \beta = −0.07 \); 95% CI \(-0.13 \) to \(-0.02 \); \( P = 0.010 \); \( q = 0.001 \); Fig. 3) after exclusion of one outlier SNP (rs1482852; supplementary Results). This result remained after correction for an additional outlier SNP detected by the MR-PRESSO procedure (rs4144829; \( \beta = −0.05 \); 95% CI \(-0.11 \) to \(-0.01 \); \( P = 0.036 \)). We did not find evidence for unbalanced horizontal pleiotropy (MR-Egger intercept,
P = 0.123), although there was significant heterogeneity according to the Q-statistic (P < 0.001).

### Contribution of birth weight to socioeconomic outcomes

We found evidence for a contribution of birth weight to educational attainment (β = –0.05; 95% CI –0.09 to –0.01; P = 0.011; q = 0.393), income (β = –0.08; 95% CI –0.15 to –0.02; P = 0.013; q = 0.039) and social deprivation (β = 0.08; 95% CI 0.03–0.13; P = 0.001; q = 0.006) (Fig. 3). MR-PRESSO detected outlier SNPs only for educational attainment (rs112139215, rs1129156, rs11698914, rs222857, rs4144829, rs7402983, rs7968682, rs8756), but outlier correction did not alter the results (β = –0.08; 95% CI –0.08 to –0.02; P = 0.005). Educational attainment showed significant heterogeneity (Q-statistic, P < 0.001). For income, we found evidence of both significant heterogeneity (Q-statistic, P = 0.011) and unbalanced pleiotropy (MR-Egger intercept, P = 0.024), but all sensitivity analyses yielded consistent results (weighted median: β = –0.09, 95% CI –0.17 to –0.00; P = 0.041; MR-Egger: β = –0.11; 95% CI –0.25 to 0.04; P = 0.139; MR-RAPS, β = –0.08; 95% CI –0.15 to –0.02; P = 0.015).

### Additional sensitivity analyses

Searching the PhenoScanner database for each SNP instrument revealed associations between these SNPs and other anthropometric (e.g. height), metabolic (e.g. basal metabolism), hypertensive (e.g. blood pressure) and lipoprotein (e.g. high-density lipoproteins) traits. It is unlikely that those traits could generate bias by violating instrumental variable assumptions. Steiger filtering analyses suggested that the genetic variants used were indeed instruments for the exposure rather than for the outcomes (supplementary Results).

### Discussion

Using a genetically informed instrumental variable approach to strengthen causal inference, this study investigated the contribution of birth weight to common psychiatric disorders, suicide attempt, and cognitive and socioeconomic outcomes. We found evidence supporting a role of birth weight in the pathway leading to ADHD, PTSD, suicide attempt, intelligence and socioeconomic outcomes (i.e. educational attainment, income and social deprivation), but not to the other examined mental health outcomes.

This study relied on a robust two-sample Mendelian randomisation design, the largest available GWAS summary statistics and multiple genetic instruments indexing birth weight. These features allowed our analyses to be well powered and to limit weak instrument bias.38 Furthermore, an innovative methodological feature is the use of genetic instruments adjusted for the correlated effect of maternal genotype. This approach has been previously applied to cardiometabolic outcomes39 but, to our knowledge, this is the first study relying on adjusted estimates to investigate the association of birth weight with mental health, cognitive and socioeconomic outcomes. As recently shown,28,29 a failure to account for this confounding effect may create bias in the causal estimates.

Previous observational46,47 within-sibling2 and twin48 studies suggested an association between low birth weight and ADHD. Consistently, our results also suggest a potential causal role of birth weight in the aetiology of ADHD.7,48 Both ADHD and autism spectrum disorder are neurodevelopmental disorders with childhood onset and both had been associated with low birth weight.7 However, our study found evidence for potentially causal contribution of birth weight only to ADHD, suggesting that the contribution of birth weight might be specific to ADHD rather than common to neurodevelopmental disorders. This suggestion deserves further investigations, especially in light of a recent genetically informed (within-sibling) study showing associations with both ADHD and autism, as well as with a common neurodevelopmental latent factor.39 Future GWASs of autism, with larger sample size, will also provide the opportunity to re-test the association between birth weight and autism with a more powered analysis.

We found evidence supporting a potential causal role of birth weight on suicide attempt, consistent with a recent meta-analysis46 but not with a within-sibling Swedish study,48 which failed to find an association of birth weight with suicide attempt in early adulthood. Differences between the studies’ populations (including age at suicide attempt assessment) and statistical power may explain these divergences. It is worth noting that we did not find evidence

### Fig. 3 Mendelian randomisation estimates for the association of birth weight with intelligence and socioeconomic outcomes. MR-Egger, Mendelian randomisation-Egger regression; RAPS, robust adjusted profile score; q, q-value from the false discovery rate.
for a contribution of birth weight to depression, the psychiatric disorder that most strongly relates to suicide. As suicide risk is the result of both specific factors and factors shared with major psychiatric disorders comorbid with suicide, our finding points to birth weight as a factor causally contributing to suicide risk beyond factors also associated with depression. To further probe the role of birth weight in the etiology of suicide, our finding needs to be replicated using suicide mortality, rather than suicide attempt, as an outcome. This will be possible when large-scale GWASs for suicide mortality become available.

Similarly, the documented association between birth weight and PTSD was in line with observational evidence on stress-related disorders, but not with a within-sibling study. However, the literature on this association is scarce and additional studies are needed.

Our study could not support the contribution of birth weight to other psychiatric disorders, including depression, bipolar disorder, obsessive–compulsive disorder and schizophrenia. These findings, in line with those of other quasi-experimental studies, are important, especially considering that available observational evidence was either contradictory (e.g. for depression) or suggested associations (e.g. for schizophrenia).

It is important to note that our study does not support a widespread contribution of birth weight to the general risk of psychopathology (i.e. the P-factor), but rather specific contributions to ADHD, PTSD and suicide attempt risk. However, future Mendelian randomisation investigations designed to specifically address this hypothesis may be informative to clarify the potential contribution of birth weight to common versus specific psychopathology factors. This effort may be facilitated by reliance on continuously measured outcomes (i.e. considering liability to psychopathology as a continuum) rather than on dichotomous outcomes as in the present study.

Inconsistent observational evidence was also available for the association of birth weight with socioeconomic outcomes, with some studies showing adult negative outcomes for low birthweight children compared with normal birth-weight children but others showing no differences. Our findings across various socioeconomic indices are consistent with a causal role of birth weight.

Finally, in line with observational studies showing lifelong negative cognitive consequences for children born with very low birth weight, this study found evidence supporting the hypothesis that the contribution of birth weight to intelligence may be causal. Additionally, as previous studies mainly focused on children with very low birth weight, our findings add to the literature by replicating these results in a sample of children with birth weight mostly within the normal range. Taken together, available evidence on the association between birth weight and cognitive outcomes suggests that compensation effects of cognitive abilities for children born with low birth weight would not be able to fully counteract the negative effects of low birth weight.

Implications
Future studies should attempt to clarify the putative causal mechanisms explaining the associations that we found. It has been suggested that restricted fetal growth has a negative impact on brain development and that this might be a mechanism explaining part of the association between birth weight and mental health and socioeconomic outcomes. For example, a study found alterations in the brain’s reactive system and white matter in very low birth-weight children, which was associated with lowered fluid intelligence and heightened anxiety. Future studies using quasi-experimental designs should be conducted to establish whether brain development lays on the causal path between birth weight and psychosocial outcomes, as well as to identify the brain regions implicated, which may differ across outcomes. Similarly, environmental mechanisms should be identified, as they might be potential targets for interventions aiming to promote mental and socioeconomic well-being among low birth-weight children.

Limitations
First, the phenotypes considered in this study rely on the definitions and samples used in the original GWASs, which are often highly heterogeneous regarding the recruited population, the definition of the phenotype and the assessment. Although this heterogeneity results from the need to use very large samples to identify small genetic effects, it may also influence our findings. However, studies such as those conducted in independent samples using polygenic scores derived from these GWASs seem to corroborate the validity of their phenotypes. Second, owing to data availability, this study is limited to individuals of European ancestry. Third, because a large proportion of individuals included in the birthweight GWASs had a birth weight within the normal range, the results of our analyses might not reflect the effect of extremely low/high birth weight on mental health, cognitive and social outcomes. Additionally, our analyses assume a linear relation between birth weight and outcomes.

Supplementary material
Supplementary material is available online at https://doi.org/10.1192/bjp.2021.15.

Data availability
This study is based on publicly available summary statistics.
Prevention and is a fellow of the Fonds de Recherche du Québec. Funders have no role in research Chair (Tier 2), receives funding from the American Foundation for Suicide Research. J.-B.P. is a fellow of MQ: Transforming Mental Health (MQ16IP16). G.T. holds a Canada Research Chair (Tier 2), receives funding from the American Foundation for Suicide Prevention and is a fellow of the Fonds de Recherche du Québec. Funders have no role in the study design, data analysis, interpretation of the data or writing of the manuscript.

References

1 Abel KM, Wicks S, Susser ES, Dalman C, Pedersen MG, Mortensen PB, et al. Birth weight, schizophrenia and adult mental disorder: is risk confined to the smallest babies? Arch Gen Psychiatry 2010; 67: 923–30.
2 Franz AP, Bolat GU, Bolat H, Matijasevic A, Santos IS, Silveira RC, et al. Attention-deficit/hyperactivity disorder and very preterm/very low birth weight: a meta-analysis. Pediatrics 2018; 141: e20171645.
3 Gunnell D, Rasmussen F, Fouskakis D, TyneHurst P, Harrison G. Patterns of fetal and childhood growth and the development of psychosis in young males: a cohort study. Am J Epidemiol 2003; 158: 291–300.
4 Lampi KM, Lehtonen L, Tran PL, Suominen A, Lehti V, Banerjee PN, et al. Risk of autism spectrum disorders in low birth weight and small for gestational age infants. J Pediatr 2012; 161: 830–6.
5 Loret de Mola C, de França GVA, de Quevedo LA, Horta BL. Low birth weight, fetal growth with general and specific mental health conditions. J Dev Orig Health Dis 2019; 10: 76–81.
6 Onofrio B, Almqvist C, Lichtenstein P. Association of maternal BMI and offspring psychiatric disorders: a systematic review and meta-analysis. Lancet Psychiatry 2015; 2: 174–81.
7 Pettersson E, Larsson H, D’Onofrio B, Almqvist C, Lichtenstein P. Association of fetal growth with general and specific mental health conditions. JAMA Psychiatry 2019; 76: 536–43.
8 Orri M, Gunnell D, Richard-Devantoy S, Bolanis D, Boruff J, Turecki G, et al. In-utero and perinatal influences on suicide risk: a systematic review and meta-analysis. Br J Psychiatry 2014; 205: 340–7.
9 Nosarti C, Reichenberg A, Murray RM, Cnncinsiu S, Lambre MP, Yin L, et al. Preterm birth and psychiatric disorders in young adult life. Arch Gen Psychiatry 2012; 69: 610–7.
10 Pettersson E, Larsson H, D’Onofrio B, Almqvist C, Lichtenstein P. Association of fetal growth with general and specific mental health conditions. JAMA Psychiatry 2019; 76: 536–43.
11 Jellinek C, Mikkonen I, Martikainen P, Latvala A, Yokoyama Y, Sund R, et al. Association between birth weight and educational attainment: an individual-based population-based analysis of twin cohorts. J Epidemiol Community Health 2018; 72: 832–7.
12 Flensborg-Madsen T, Mortensen EL. Birth weight and intelligence in young adulthood and midlife. Pediatrics 2017; 139: e20163161.
13 O’Donnell KJ, Meaney MJ. Fetal origins of mental health: the developmental origins of health and disease hypothesis. Am J Psychiatry 2017; 174: 319–28.
14 Schliz W, Phillips DW. Fetal origins of mental health: evidence and mechanisms. Brain Behav Immun 2009; 23: 905–16.
15 Thompson BL, Levitt P, Stannwood GD. Prenatal exposure to drugs: effects on brain development and implications for policy and education. Nat Rev Neurosci 2009; 10: 303–12.
16 Lewis AJ, Austin E, Galbally M. Prenatal maternal mental health and fetal growth restriction: a systematic review. J Dev Orig Health Dis 2016; 7: 416–28.
17 Aizer A, Currie J. The intergenerational transmission of inequality: maternal disadvantage and health at birth. Science 2014; 344: 856–61.
18 Dassi A, Corinai L, Pintus R, Fanos V. Exposure to tobacco smoke and low birth weight: from epidemiology to metabolomics. Expert Rev Proteomics 2015; 15: 647–56.
19 Englund-Oggel I, Brantsäter AL, Juodakis J, Haugen M, Melzer HM, Jacobson B, et al. Associations between maternal dietary patterns and infant birth weight, small and large for gestational age in the Norwegian Mother and Child Cohort Study. Eur J Clin Nutr 2019; 73: 1270–82.
20 Orri M, Russell A, Mars B, Turecki G, Gunnell D, Heron I, et al. Perinatal adversity profiles and suicide attempt in adolescence and young adulthood: longitudinal analyses from two 20-year birth cohorts. Psychol Med 2020 ahead of print; 6 Oct 2020. Available from: https://doi.org/10.1017/S0033291720002974.
21 Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 2013; 37: 658–65.
22 Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies: a gold, glossary and checklist for clinicians. BMJ 2018; 362: k500.
23 Pingault J-B, O’Reilly PF, Schoeler T, Floubdis GB, Ridjijk D, Feutdsize B. Using genetic data to strengthen causal inference in observational research. Nat Rev Genet 2019; 18: 566–80.
24 Arat F, Minica CC. Fetal origins of mental disorders? An answer based on Mendelian randomization. Twin Res Hum Genet 2018; 21: 485–94.
25 Worning NM, Freathy RM, Neale MC, Evans DM. Using structural equation modeling to jointly estimate maternal and fetal effects on birthweight in the UK Biobank. Int J Epidemiol 2019; 48: 351–65.
26 Worning NM, Beaumont RN, Horshosi M, Davy FR, Helgeland L, Laurin C, et al. Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nat Genet 2019; 51: 804.
27 Gage SH, Munafò MR, Davey Smith G. Causal inference in developmental origins of health and disease (DOHaD) Research. Ann Rev Psychol 2016; 67: 567–85.
28 Burgess S, Thompson SG. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol 2011; 40: 755–64.
29 Demontis D, Walters RK, Martin J, Matteihein M, Aids TD, Agerbo E, et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet 2019; 51: 63–75.
30 Grove J, Ripke S, Aids TD, Matteihein M, Walters RK, Won H, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet 2019; 51: 431–44.
31 Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet 2019; 51: 793–803.
32 Wray NR, Ripke S, Matteihein M, Trzaskowski M, Byrne EM, Abdelaloua A, et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet 2018; 50: 668–81.
33 International Obsessive Compulsive Disorder Foundation Genetics Collaborative (IOCDF-GC). Revealing the complex genetic architecture of obsessive-compulsive disorder using meta-analysis. Mol Psychiatry 2018; 23: 1181–8.
34 Duncan LE, Ratnakarathorn A, Axello AE, Almit LM, Amstadter AB, Ashley-Koch AE, et al. Largest GWAS of PTSD (n ~ 20,070) yields genetic overlap with schizophrenia and sex differences in heritability. Mol Psychiatry 2018; 23: 566–73.
35 Pardhaf AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S, Trabetsky V, et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet 2019; 51: 793–803.
36 Erlangsen A, Appadurai V, Wang Y, Turecki G, Mors O, Werthe G, et al. Genetics of suicide attempts in individuals with and without mental disorders: a population-based genome-wide association study. Mol Psychiatry 2020; 25: 2410–20.
37 Savage JE, Jensen PR, Stringer S, Watanabe K, Bryois J, de Leeuw CA, et al. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat Genet 2018; 50: 912–9.
38 Lee JI, Wedow R, Oklay B, Kang E, Maghian O, Zacher M, et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat Genet 2018; 50: 1112–17.
39 Hill WD, Hagenpaas SP, Marioni R, Harris SE, Liewald DCM, Davies G, et al. Molecular genetic contributions to social deprivation and household income in UK Biobank. Curr Biol 2016; 26: 3048–52.
40 R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2016 (https://www.R-project.org/).
41 Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR Base platform supports systematic causal inference across the human phenotype. eLife 2018; 7: e34468.
42 Yavorska OO, Burgess S. MendelianRandomization: R package for performing Mendelian randomization analyses using summarized data. Int J Epidemiol 2017; 46: 1734–9.
43 Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 2015; 44: 512–25.

Contribution of birth weight to mental health, cognitive and socioeconomic outcomes
In his American Notes (1842), Charles Dickens describes a visit to the State Hospital for the Insane in Boston which, he says, was an institution admirably conducted on enlightened principles of conciliation and kindness:

“Evince a desire to show some confidence, and repose some trust, even in mad people,” said the resident physician, as we walked along the galleries, his patients flocking round us un-restrained.”

Dickens notes with approval the beneficial influence of the physician’s wife, seated calmly with another lady and a couple of children, in one of the wards where patients worked, read and played at skittles. He notices an elderly female sitting by the chimneypiece and leaning her head against it with a great assumption of dignity and refinement of manner. A head which he said aloud, taking me by the hand, and advancing to the fantastic figure with great politeness this lady is the hostess of this mansion, Sir. It belongs to her. Nobody else has any right whatever to do with it. It is a large establishment, as you see, and requires a great number of attendants. She lives, you observe, in the slightest look or whisper, or any kind of aside to me: "This, said he aloud, taking me by the hand, and advancing to the fantastic figure with great politeness, ‘It is a large establishment, as you see, and requires a great number of attendants. She lives, you observe, in the least look or whisper, or any kind of aside to me. This lady is the mistress of this mansion. Sir, it belongs to her. Nobody else has anything whatever to do with it. It is a large establishment, as you see, and requires a great number of attendants. She lives, you observe, in the very first style. She is kind enough to receive my visits, and to permit my wife and family to reside here; for which it is hardly necessary to say, we are much indebted to her. She is exceedingly courteous, you perceive;” while he bowed condescendingly, “and will permit me to have the pleasure of introducing you: a gentleman from England, ma’am: newly arrived from England, after a very tempestuous passage. Mr. Dickens, – the lady of the house.”

Every patient in this asylum, Dickens says, sits down to dinner every day with a knife and fork, and in the midst of them sits the gentleman whose manner of dealing with his charges I have just described.

By contrast, reports of the Physician Superintendent of Littlemore Hospital, Oxford, some 80 years later: “I regret that I had to summarily dismiss Male Nurse Frank Johnson. He overstayed his leave and entered the hospital through a ward window on Dec 27.” “I regret that I have to report that on April 17th I summarily dismissed Night Nurse O’Hara for leaving knives about in the kitchen of the admission ward.” History’s arrow is not straight forward.

© The Author 2021. Published by Cambridge University Press on behalf of the Royal College of Psychiatrists