A doubling construction for self-orthogonal codes

Vladimir D. Tonchev
Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan 49931, USA, tonchev@mtu.edu

Abstract
A simple construction of quaternary hermitian self-orthogonal codes with parameters \([2n + 1, k + 1]\) and \([2n + 2, k + 2]\) from a given pair of self-orthogonal \([n, k]\) codes, and its link to quantum codes is considered. As an application, an optimal quaternary linear \([28, 12, 6]\) dual containing code is found that yields a new optimal \([[28, 12, 6]]\) quantum code.

Key words: hermitian self-orthogonal code, quantum code
1991 MSC: 94B.

1 Introduction

We assume familiarity with the basics of classical error-correcting codes [1].

The hermitian inner product in \(GF(4)^n\) is defined as

\[
(x, y)_H = \sum_{i=1}^{n} x_i y_i^2 ,
\]

while the trace inner product in \(GF(4)^n\) is defined as

\[
(x, y)_T = \sum_{i=1}^{n} (x_i y_i^2 + x_i^2 y_i).
\]

A code \(C\) is self-orthogonal if \(C \subseteq C^\perp\), and self-dual if \(C = C^\perp\). A linear code \(C \subseteq GF(4)^n\) is self-orthogonal with respect to the trace product (2) if and only if it is self-orthogonal with respect to the hermitian product (1) [2].
An additive \((n, 2^k)\) code \(C\) over \(GF(4)\) is a subset of \(GF(4)^n\) consisting of \(2^k\) vectors which is closed under addition. An additive code is \textit{even} if the weight of every codeword is even, and otherwise \textit{odd}. Note that an even additive code is trace self-orthogonal, and a linear self-orthogonal code is even \cite{2}. If \(C\) is an \((n, 2^k)\) additive code with weight enumerator

\[W(x, y) = \sum_{j=0}^{n} A_j x^{n-j} y^j, \]

the weight enumerator of the trace-dual code \(C^\perp\) is given by

\[W^\perp = 2^{-k} W(x + 3y, x - y) \]

In \cite{2}, Calderbank, Rains, Shor and Sloane described a method for the construction of quantum error-correcting codes from additive codes that are self-orthogonal with respect to the trace product \cite{2}.

Theorem 1 \cite{2} An additive trace self-orthogonal \((n, 2^{n-k})\) code \(C\) such that there are no vectors of weight \(< d\) in \(C^\perp \setminus C\) yields a quantum code with parameters \([n, k, d]\).

A quantum code associated with an additive code \(C\) is \textit{pure} if there are no vectors of weight \(< d\) in \(C^\perp\); otherwise, the code is called \textit{impure}. A quantum code is called \textit{linear} if the associated additive code \(C\) is linear.

A table with lower and upper bounds on the minimum distance \(d\) for quantum \([n, k, d]\) codes of length \(n \leq 30\) is given in the paper by Calderbank, Rains, Shor and Sloane \cite{2}. An extended version of this table was compiled by Grassl \cite{3}. Bounds on the minimum distance of linear codes are available online at http://www.codetables.de.

2 A doubling construction

Lemma 2.1 Suppose that \(C_i\) \((i = 1, 2)\) is a linear hermitian self-orthogonal \([n, k]\) code over \(GF(4)\) with generator matrix \(G_i\), and \(x^{(i)} \in C_i^\perp\) is a vector of odd weight.
(a) The code C' with generator matrix

$$G' = \begin{pmatrix} G_1 & G_2 & \ldots \\ 0 & 0 & \ldots \\ x^{(1)} & 0 & \ldots & 0 & 1 \end{pmatrix}$$

is a hermitian self-orthogonal self-orthogonal $[2n + 1, k + 1]$ code with dual distance

$$d(C')^\perp \leq \min(d(C_{11}^\perp), d(C_2^\perp)),$$

where C_{11} is the code spanned by the rows of G_{11} given by (7):

$$G_{11} = \begin{pmatrix} 0 \\ G_1 & \ldots \\ 0 \\ x^{(1)} \end{pmatrix}.$$

(b) The code C'' with generator matrix

$$G'' = \begin{pmatrix} G_1 & G_2 & \ldots \\ 0 & 0 & \ldots \\ x^{(1)} & 0 & \ldots & 0 & 1 & 0 \\ 0 & \ldots & 0 & x^{(2)} & 0 & 1 \end{pmatrix}$$

is a hermitian self-orthogonal self-orthogonal $[2n + 2, k + 2]$ code with dual distance

$$d(C'')^\perp \leq \min(d(C_{11}^\perp), d(C_{22}^\perp)),$$

where C_{22} is the code spanned by the rows of G_{22} given by (10):

$$G_{22} = \begin{pmatrix} 0 \\ G_2 & \ldots \\ 0 \\ x^{(2)} \end{pmatrix}.$$

Proof. The self-orthogonality of C' and C'' follows from the fact that all rows of G' and G'' have even weights, and every two rows of G', as well as every two
rows of G'', are pairwise orthogonal. Since the weight of $x^{(1)}$ (resp. $x^{(2)}$) is odd, $x^{(1)}$ does not belong to C_1, and $x^{(2)}$ does not belong to C_2, and that implies the dimensions of C' and C''. The bounds (6), (9) on the dual distance follow trivially by the observation that every codeword of C_1^\perp (resp. C_2^\perp) extends to a codeword of $(C')^\perp$ (resp $(C'')^\perp$) by filling in all remaining coordinates with zeros. □

Using the connection to quantum codes described in Theorem 1, Lemma 2.1 implies the following.

Corollary 2.2 The existence of quaternary hermitian self-orthogonal $[n, k]$ codes C_i ($i = 1, 2$) satisfying the assumptions of Lemma 2.1 implies the existence of a pure quantum linear $[[2n + 1, 2n - 2k - 1, d']]$ code with $d' \leq \min(d(C_1^\perp), d(C_2^\perp))$, and a pure quantum linear $[[2n + 2, 2n - 2k - 2, d'']]$ code with $d'' \leq \min(d(C_1^\perp), d(C_2^\perp))$.

We will apply Lemma 2.1 and its Corollary 2.2 to some self-orthogonal codes of length $n = 2k + 1$ being shortened codes of self-dual $[2k + 2, k + 1]$ codes.

For example, the matrix

$$G_1 = \begin{pmatrix} 1 & 0 & 1 & \alpha \\ 0 & 1 & \alpha & 1 \end{pmatrix}$$

is the generator matrix of a self-orthogonal $[5, 2, 4]$ code C_1 over $GF(4) = \{0, 1, \alpha, \alpha^2\}$. The code C_1 is a shortened code of the unique (up to equivalence) self-dual $[6, 3, 4]$ code. Applying Lemma 2.1 with $C_2 = C_1$, $G_2 = G_1$, and $x^{(1)} = x^{(2)}$ being the all-one vector of length 5, gives a self-orthogonal $[11, 3]$ code C' with dual distance 3 and a self-orthogonal $[12, 4]$ code C'' with dual distance 4, which give optimal quantum $[[11, 5, 3]]$ and $[[12, 4, 4]]$ codes respectively via Corollary 2.2.

Similarly, a pair of self-orthogonal $[7, 3]$ codes obtained as shortened codes of the unique (up to equivalence) self-dual $[8, 4, 4]$ code can be used to obtain optimal quantum $[[15, 7, 3]]$ and $[[16, 6, 4]]$ codes.

The smallest parameters of a self-dual quaternary linear code that yields a quantum code with minimum distance $d \geq 5$ via Corollary 2.2 are $[14, 7, 6]$. The only such code, up to equivalence, is the quaternary extended quadratic residue code q_{14} [5, page 340]. We apply Lemma 2.1 using the pair of self-
orthogonal $[13, 6]$ codes C_1, C_2 generated by the following matrices:

\[
G_1 = \begin{pmatrix}
0000100210233 \\
3000010021023 \\
3300010021023 \\
2330001002102 \\
023300010021 \\
102330001002 \\
\end{pmatrix}, \quad
G_2 = \begin{pmatrix}
0000113023002 \\
200001130230 \\
020000113023 \\
300200011302 \\
230020001130 \\
230020001130 \\
\end{pmatrix},
\]

where for convenience, the elements α and α^2 of $GF(4)$ are written as 2 and 3 respectively. The matrices G_1, G_2 are circulant. The codes C_1, C_2 are cyclic and equivalent to a shortened code of q_{14}.

Choosing $x^{(1)} = x^{(2)}$ to be the all-one vector of length 13, we obtain the generator matrix G' of a self-orthogonal $[27, 7]$ code C' with dual distance 5, and the generator matrix G'' of a self-orthogonal $[28, 8]$ code with dual distance 6. The matrix G'' is available on line at

\protect\texttt{http://www.math.mtu.edu/~tonchev/gm28-8.html}

By Corollary 2.2, C' gives a pure optimal quantum $[[27, 13, 5]]$ code, while C'' gives a pure optimal quantum $[[28, 12, 6]]$ code.

An alternative geometric construction of a quantum code with the first parameters, $[[27, 13, 5]]$, was given by the author in [6]. To the best of our knowledge, the quantum code with the second parameters, $[[28, 12, 6]]$, is new (a quantum $[[28, 12, 5]]$ code was listed in [2]).

The weight distribution of the $[28, 8]$ code C'' is given in Table 2.3

\begin{table}[h]
\centering
\caption{Weight distribution of the $[28, 8]$ code C''}
\begin{tabular}{c c c c}
\hline
Weight & Frequency \\
\hline
0 & 1 \\
1 & 28 \\
2 & 70 \\
3 & 126 \\
4 & 156 \\
5 & 105 \\
6 & 42 \\
7 & 12 \\
8 & 2 \\
\hline
\end{tabular}
\end{table}
The weight enumerator of the dual $[28, 20]$ code $(C'')^\perp$ is
\[
1 + 6240y^6 + 37128y^7 + 314223y^8 + 2044848y^9 + 11883768y^{10} + \ldots
\]

We note that the code $(C'')^\perp$ is an optimal linear $[28, 8, 6]$ quaternary code: 6 is the largest possible minimum distance of a quaternary linear $[28, 8]$ code [3].

3 Acknowledgments

Magma [1] was used for some of the computations. The author wishes to thank the unknown referee for noticing some typos and discrepancies that were subsequently corrected.

References

[1] Bosma, W., Cannon, J.: Handbook of Magma Functions, Department of Mathematics, University of Sydney, 1994.

[2] A.R. Calderbank, E.M. Rains, P.W. Shor, and N.J.A. Sloane, Quantum error correction via codes over $GF(4)$, IEEE Trans. Information Theory 44 (1998), 1369-1387.

[3] M. Grassl, http://www.codetables.de

[4] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam 1977.
[5] G. Nebe, E. M. Rains, N. J. A. Sloane, *Self-Dual Codes and Invariant Theory*, Springer, Berlin, 2006.

[6] V.D. Tonchev, Quantum codes from caps, *Discrete Math.*, **308** (2008), 6368-6372.