Damping of phase fluctuations in superfluid Bose gases

Philipp Lange and Peter Kopietz

Institut für Theoretische Physik, Universität Frankfurt,
Max-von-Laue Straße 1, 60438 Frankfurt, Germany

Andreas Kreisel
Department of Physics, University of Florida, Gainesville, FL 32611, USA
(Dated: May 2, 2014)

PACS numbers: 05.30.Jp, 02.30.Ik, 03.75.Kk

I. INTRODUCTION

It is well known\cite{14,15} that the perturbative treatment of fluctuation corrections to Bogoliubov’s mean-field theory\cite{5} for interacting bosons is plagued by infrared divergences. As a consequence, the anomalous part of the single-particle self-energy $\Sigma_A(0)$ at vanishing momentum and frequency is exactly zero\cite{2}, whereas Bogoliubov’s mean-field theory predicts that $\Sigma_A(0)$ is finite. To recover the exact result $\Sigma_A(0) = 0$ diagrammatically, infinite orders have to be re-summed using non-perturbative methods, such as the renormalization group\cite{16,17}.

If one is interested in long-wavelength and low-energy properties of the system, Popov’s quantum hydrodynamic approach\cite{11,12} offers an alternative parametrization of the fluctuations which does not lead to infrared divergences. In this approach one separates the low-energy from the high-energy modes and treats the low-energy sector within a gradient expansion for the phase and amplitude fluctuations. This hydrodynamic approach can also be used to study interacting bosons in one spatial dimension, where strong fluctuations prohibit the formation of a Bose-Einstein condensate\cite{13,15}, although the groundstate is superfluid. In fact, in one dimension the weak coupling expansion of thermodynamic quantities obtained within the hydrodynamic approach agrees with exact results for the Lieb-Liniger model\cite{13} up to the second order in the relevant dimensionless interaction parameter\cite{14}. On the other hand, the single-particle spectral function and the dynamic structure factor (spectral function for density fluctuations) of interacting bosons in one dimension have recently been shown to exhibit algebraic singularities\cite{16,17}. In principle it should be possible to reproduce these singularities within the hydrodynamic approach, but this requires a non-perturbative treatment of the interactions between amplitude and phase fluctuations which is beyond the scope of this work.

II. EFFECTIVE ACTION FOR PHASE FLUCTUATIONS

According to Popov\cite{12} the long-wavelength asymptotics of correlation functions of interacting bosons can be obtained from an effective long-wavelength hydrodynamic action involving a phase field $\varphi(r, \tau)$ and a conjugate density field $\rho(r, \tau)$. These are slowly varying functions of space r and the imaginary time τ, and are defined by writing the slowly varying part of the fundamental boson field as

$$\psi(r, \tau) = \sqrt{\rho(r, \tau)} e^{i\varphi(r, \tau)}. \quad (1)$$

Setting $\rho(r, \tau) = \rho_0 + \sigma(r, \tau)$, where

$$\rho_0 = \frac{1}{\beta V} \int d^D r \int d\tau \rho(r, \tau) \quad (2)$$

is the spatial and temporal average of the density field, and expanding the effective action of the slow part of the
where \(\beta \) is the inverse temperature, \(V \) is the volume of the system, and \(p(\mu, \rho_0) \) is the pressure as a function of the chemical potential \(\mu \) and the average density \(\rho_0 \), and \(S_2[\varphi, \sigma] \) contains fluctuation corrections up to second order in the derivatives,

\[
S_2[\varphi, \sigma] = \int_0^\beta d\tau \int d^D r \left[\frac{p_\mu (\nabla \varphi)^2}{2m} + p_{\mu\mu} \frac{(\partial_\tau \varphi)^2}{2} - ip_{\mu\rho_0} \partial_\tau \varphi - p_{\rho_0\rho_0} \frac{\sigma^2}{2} + \frac{(\nabla \rho)^2}{8m\rho_0} + \frac{(\nabla \varphi)^2\sigma}{2m} \right],
\]

(4)

Here \(m \) is the mass of the bosons and the coefficients \(p_\mu, p_{\mu\mu}, p_{\mu\rho_0} \) and \(p_{\rho_0\rho_0} \) are the partial derivatives of the pressure \(p(\mu, \rho_0) \) of a homogeneous system with chemical potential \(\mu \) and average density \(\rho_0 \). The last two terms on the right-hand side of Eq. (4) represent the kinetic energy of the slowly oscillating part of the boson field. A simple approximation for the pressure is\(^{12}\)

\[
p(\mu, \rho_0) \approx \mu \rho_0 - \frac{u_0}{2} \rho_0^2 = -\frac{u_0}{2} \left[(\rho_0 - \rho)^2 - \rho^2 \right],
\]

(5)

where \(u_0 \) is the two-body interactions in vacuum for vanishing external momenta\(^{13}\), and \(\rho = \mu/u_0 \) is the value of the fluctuating variable \(\rho_0 \) at the saddle point of the functional integral. In the thermodynamic limit and at zero temperature both \(\rho \) and \(\rho_0 \) can be identified with the total density of the bosons. Eq. (5) implies the following estimate for the relevant partial derivatives of the pressure,

\[
p_\mu \approx \rho = \mu/u_0,
\]

(6a)

\[
p_{\mu\mu} \approx 0,
\]

(6b)

\[
p_{\mu\rho_0} \approx 1,
\]

(6c)

\[
p_{\rho_0\rho_0} \approx -u_0.
\]

(6d)

The above hydrodynamic action describes long-wavelength fluctuations at length scales larger than some cutoff scale \(1/\Lambda_0 \). In momentum space we should therefore impose an ultraviolet cutoff \(\Lambda_0 \) on all integrations. In the weak coupling regime a reasonable choice of the cutoff is the inverse healing length \(\Lambda_0 = 2mc \), where \(c \) is the sound velocity defined below.

Introducing the Fourier transform of the fields in momentum-frequency space,

\[
\varphi(\mathbf{r}, \tau) = \int_K e^{i(\mathbf{k} \cdot \mathbf{r} - \omega \tau)} \varphi_K,
\]

(7a)

\[
\sigma(\mathbf{r}, \tau) = \int_K e^{i(\mathbf{k} \cdot \mathbf{r} - \omega \tau)} \sigma_K,
\]

(7b)

that the gradient contribution\(^1\) to the hydrodynamic action can be written as

\[
S_2[\varphi, \sigma] = \frac{1}{2} \int_K \left[\left(\frac{p_\mu}{m} k^2 + p_{\mu\mu}\omega^2 \right) \varphi_{-K} \varphi_K + p_{\mu\rho_0} \omega \left(\varphi_{-K} \sigma_K - \sigma_{-K} \varphi_K \right) \right. \nonumber + \left(-p_{\rho_0\rho_0} + \frac{k^2}{4m\rho_0} \right) \sigma_{-K} \sigma_K \left. \right] \nonumber - \frac{1}{2} \int_K \int_K \int_K \int_K \delta_{K_1+K_2+K_3,0} \frac{k_1 \cdot k_2}{m} \varphi_{K_1} \varphi_{K_2} \sigma_{K_3} \varphi_{K_4}.
\]

(8)

Here \(K = (k, i\omega) \) is a collective label for momenta \(k \) and bosonic Matsubara frequencies \(i\omega \), the integration symbols represent \(\int_K = (\beta V)^{-1} \sum_k \sum_\omega \), and the normalization of the delta-symbols is \(\delta_{K,K'} = \beta V \delta_{k,k'} \delta_{\omega,\omega'} \) where the \(\delta \)-symbols on the right-hand side are Kronecker-deltas. Since the hydrodynamic action\(^3\) is quadratic in the amplitude field \(\sigma \), we may carry out the functional integration over the \(\sigma \)-field,

\[
e^{-S_{\text{eff}}[\varphi]} = \int D[\sigma] e^{-S_2[\varphi, \sigma]}.
\]

(9)

The effective action of the phase field is

\[
S_{\text{eff}}[\varphi] = \frac{1}{2} \int_K G_0^{-1}(K) \varphi_{-K} \varphi_K \nonumber + \frac{1}{3!} \int_K \int_K \int_K \int_K \delta_{K_1+K_2+K_3,0} \Gamma_0^{(3)}(K_1, K_2, K_3) \varphi_{K_1} \varphi_{K_2} \varphi_{K_3} \nonumber + \frac{1}{4!} \int_K \int_K \int_K \int_K \int_K \int_K \int_K \int_K \Gamma_0^{(4)}(K_1, K_2, K_3, K_4) \varphi_{K_1} \varphi_{K_2} \varphi_{K_3} \varphi_{K_4}.
\]

(10)

where the inverse Gaussian propagator of the phase field is

\[
G_0^{-1}(K) = \frac{p_\mu}{m} k^2 + \left[p_{\mu\mu} + \frac{p_{\mu\rho_0}^2}{-p_{\rho_0\rho_0} + \frac{k^2}{4m\rho_0}} \right] \omega^2,
\]

(11)

and the properly symmetrized three-point and four-point vertices are

\[
\Gamma_0^{(3)}(K_1, K_2, K_3) = -p_{\mu\rho_0} \frac{k_1 \cdot k_2}{m} \frac{\omega_3}{-p_{\rho_0\rho_0} + \frac{k^2}{4m\rho_0}} \nonumber + (K_2 \leftrightarrow K_3) + (K_1 \leftrightarrow K_3),
\]

(12)

\[
\Gamma_0^{(4)}(K_1, K_2, K_3, K_4) = -\frac{(k_1 \cdot k_2)(k_3 \cdot k_4)}{m^2} \left(-p_{\rho_0\rho_0} + \frac{(k_1+k_2)^2}{4m\rho_0} \right) \nonumber + (K_2 \leftrightarrow K_3) + (K_2 \leftrightarrow K_4).
\]

(13)

Note that the non-Gaussian contributions to the effective hydrodynamic action\(^{10}\) of the phase fluctuations are generated by the term \((\nabla \varphi)^2 \sigma / (2m)\) associated with the coupling between amplitude and phase fluctuations in our original hydrodynamic action\(^4\).
III. DAMPING OF PHASE FLUCTUATIONS IN DIMENSIONS $D > 1$

Within the Gaussian approximation we obtain the energy dispersion E_k of the phase fluctuations from the condition $G_0^{-1}(k, E_k + i\eta) = 0$. Approximating the pressure derivatives by Eqs. (6a)-(6d), we obtain

$$G_0(K) = \frac{u_0(1 + k^2/k_0^2)}{\omega^2 + E_k^2}, \quad (14)$$

where E_k is the Bogoliubov dispersion,

$$E_k = c|k|\sqrt{1 + k^2/k_0^2}. \quad (15)$$

Here the sound velocity is given by

$$c = \sqrt{\frac{u_0\rho}{m}} = \sqrt{\frac{\mu}{m}}, \quad (16)$$

and the inverse healing length

$$k_0 = 2\pi c = 2\sqrt{\pi m\mu} \quad (17)$$

marks the crossover from the linear regime of a sound-like dispersion to the quadratic regime of quasi-free bosons. Note that the bare coupling can be written as

$$u_0 = \frac{mc^2}{\rho}, \quad (18)$$

which in one dimension has units of velocity. In fact, in $D = 1$ the dimensionless ratio $u_0/c = mc/\rho$ can be identified with the usual Lieb-Liniger parameter which is the relevant dimensionless interaction strength.

The interactions in our effective action (10) give rise to a momentum- and frequency dependent self-energy $\Sigma(K)$, so that the true inverse propagator of the phase fluctuations is

$$G^{-1}(K) = G_0^{-1}(K) + \Sigma(K). \quad (19)$$

The renormalized energy dispersion \tilde{E}_k of the phase mode and its damping γ_k are given by the solutions of $G^{-1}(k, \tilde{E}_k + i\gamma_k) = 0$. To first order in the quartic vertex $\Gamma_0^{(4)}$ and to second order in the cubic vertex $\Gamma_0^{(3)}$ the self-energy is $\Sigma(K) = \Sigma_1(K) + \Sigma_2(K)$, where

$$\Sigma_1(K) = \frac{1}{2} \int_{K'} G_0(K')\Gamma_0^{(4)}(K', -K', K, -K), \quad (20)$$

$$\Sigma_2(K) = -\frac{1}{2} \int_{K'} G_0(K')G_0(K' + K) \times \Gamma_0^{(3)}(K, -K - K', K')\Gamma_0^{(3)}(-K', K + K', -K). \quad (21)$$

The corresponding Feynman diagrams are shown in Fig. 1. To lowest order in perturbation theory the damping of the phase mode is given by

$$\gamma_k = -\frac{u_0(1 + k^2/k_0^2)}{2E_k} \Im\Sigma_2(k, E_k + i\eta), \quad (22)$$

where $\eta > 0$ is infinitesimal. Substituting $\Sigma_2(K)$ from Eq. (21) into Eq. (22) and using Eqs. (14) and (12) for G_0 and $\Gamma_0^{(3)}$, we obtain for $|k| \ll k_0$ after straightforward algebra

$$\gamma_k = \frac{\pi u_0}{16m^2} \int \frac{d^Dk'}{(2\pi)^D} \delta(E_k - E_{k'} - E_{k - k'})W_{k, k'}, \quad (23)$$

with

$$W_{k, k'} = \frac{|k^2 - k'^2|^2 + |k^2 - (k - k')^2|^2}{E_k E_{k'}} \frac{E_{k'} - E_k}{|k^2 - (k - k')^2|^2}. \quad (24)$$

Taking into account that the function $W_{k, k'}$ is multiplied by $\delta(E_k - E_{k'} - E_{k - k'})$, we may substitute under the integral sign for small momenta

$$W_{k, k'} \to \frac{9}{16c} |k||k'|||k - k'|. \quad (25)$$

The k'-integration can now be performed using D-dimensional spherical coordinates. For small external momentum k the loop momentum k' is almost parallel to k so that we may approximate

$$\delta(E_k - E_{k'} - E_{k - k'}) \approx \frac{k_0\delta(\vartheta - \sqrt{3}|k - k'|)}{\sqrt{3}|k||k'|}, \quad (26)$$

where ϑ is the angle between k and k'. We finally obtain in D dimensions

$$\frac{\gamma_k}{E_k} = A_D \frac{k_0^D}{2\pi^2} \left(\frac{|k|}{k_0}\right)^{2(D-1)}, \quad (27)$$

where the numerical coefficient A_D can be expressed in terms of Γ-functions as follows,

$$A_D = \frac{3^{D+1} \pi^2 - 2 \Gamma(D)}{2^{2D}\Gamma(D - 1/2)\Gamma(D + 1/2)}. \quad (28)$$
A graph of A_D as a function of the dimensionality D of the system is shown in Fig. 2. In $D = 3$ and $D = 2$, we obtain $A_3 = \frac{3}{160} \approx 0.0187$ and $A_2 = \frac{\sqrt{3}}{10} \approx 0.108$, while $A_D \sim \frac{3}{2^D} (D - 1) \rightarrow 0$ for $D \rightarrow 1$. In three dimensions, Eq. (27) agrees with the well-known Beliaev damping of phase fluctuations in one dimension, because the damping of intermediate states in our perturbative self-energy [21], we replace the Gaussian propagators on the right-hand side by the exact propagators $G(K)$ of the phase mode, for which we use the spectral representation

$$G(k, i\omega) = \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \frac{B(k, \omega')}{\omega'^2 + \omega^2},$$

where the spectral function

$$B(k, \omega) = 2\omega \text{Im} G(k, \omega + i\eta)$$

is real and positive. Retaining only the imaginary part of the self-energy, we find after analytic continuation that for frequencies close to $\pm E_k$ the spectral function can be approximated by

$$B(k, \omega) \approx \frac{u_0 \gamma(k, \omega)}{|\omega| - E_k^2 + \gamma^2(k, \omega)}.$$

where the damping function $\gamma(k, \omega)$ satisfies the integral equation

$$\gamma(k, \omega) = \frac{\text{sgn} \omega}{16m^2 u_0} \int \frac{dk'}{2\pi} \int |\omega'| d\omega' B(k', \omega') \times B(k - k', \omega - \omega') \left\{ \frac{[k^2 - (k')^2]^2}{|\omega| - \omega'} + \frac{|k^2 - (k - k')|^2 - [k^2 - (k - k')^2]^2}{|\omega|} \right\}.$$

To solve this non-linear integral equation, we make the ansatz [21]

$$\gamma(k, \omega) = \gamma_k f \left(\frac{|\omega| - E_k}{\gamma_k} \right),$$

where the on-shell damping is assumed to be of the form $\gamma_k = f_0 |k|^\alpha$, with some exponent α. The dimensionless function $f(z)$ is normalized such that $f(0) = 1$, so that the dimensionful constant f_0 determines the strength of the on-shell damping. The function $f(z)$ is expected to be strongly peaked to $z = 0$ and to decay as a power law for $|z| \gg 1$. After substituting the ansatz (33) into Eq. (32), we may scale out the k-dependence by introducing dimensionless integration variables $x = k'/k$ and $y = (\omega' - E_k')/\gamma_k$. It is then easy to see that our ansatz is only consistent if $\alpha = 2$. The constant f_0 is then given by

$$f_0 = \frac{3\sqrt{I_0[f]}}{4m} \sqrt{\frac{k_0}{2\pi \rho}},$$

where the function $f(z)$ satisfies the integral equation

$$f(z) = \frac{I_z[f]}{I_0[f]},$$

with the non-linear functional $I_z[f]$ given by

$$I_z[f] = \int_0^1 dx \frac{x}{1-x} \int_{-\infty}^{\infty} dy \frac{f(y) - f(x)}{y^2 + f^2(y)} \times \frac{1}{\left(1-x^2\right)^2} \left(\frac{1}{(1-x^2)} \right)^2.$$
and hence

$$\text{f}(z) = \frac{1}{1 + f_2 z^2}$$

with $f_2 = O(1)$, does lead to a rather fast convergence after a few iterations. The solution of the integral equation \([35]\) is represented by the solid line in Fig. 3. In fact, for $f_2 = 0.22$ the ansatz \([37]\) is already a reasonable approximation to the solution of Eq. \([35]\) in the regime $|z| \lesssim 5$. Because the quadratic z-dependence of the exact solution for small z is correctly described by Eq. \([37]\), this ansatz describes the spectral function in the vicinity of the quasi-particle peaks quite accurately. On the other hand, as shown in the inset of Fig. 3 for large $|z|$ the numerical solution of Eq. \([35]\) decays as $1/|z|$, which is not correctly described by our ansatz \([37]\). The tails of the spectral function are therefore better described by the interpolation formula

$$f(z) \approx \frac{1}{1 + f_1 |z|},$$

which for $f_1 \approx 0.58$ has the correct asymptotics for large $|z|$, but is less accurate than Eq. \([37]\) for small z.

Given our numerical solution $f(z)$ of the integral equation \([35]\), we obtain

$$I_0[f] \approx 0.78,$$

and hence

$$f_0 \approx \frac{0.66}{m} \sqrt{\frac{k_0}{2\pi \rho}}.$$
fied for \(|\omega| - E_k \lesssim E_k\) so that the result \([42]\) does not describe the asymptotics for \(|\omega| \to \infty\).

V. SUMMARY AND CONCLUSIONS

In summary, we have derived an effective action describing the dynamics of low-energy and long-wavelength phase fluctuations of superfluid bosons. Using this action, we have then calculated the leading momentum dependence of the damping of the phase fluctuations in arbitrary dimensions. For \(D > 1\) a simple perturbative calculation yields the usual Beliaev damping, which scales as \(|k|^{2D-1}\) in \(D\) dimensions. For \(D \to 1\) the prefactor of \(|k|^{2D-1}\) vanishes, and the damping is proportional to \(k^2\). We have obtained this result by taking the damping of the intermediate states in the loop integration self-consistently into account. In one dimension, we have also calculated the spectral function of phase fluctuations, which has a Lorentzian line-shape for frequencies close to the quasi-particle peaks associated with the sound mode, but for larger deviations from the peaks decays faster than a Lorentzian.

Since the vertices of the effective action for the phase fluctuations vanish for zero wavevectors or frequencies, we believe that higher orders in perturbation theory do not qualitatively modify our results. In particular, in one dimension the spectral function of phase fluctuations does not contain any algebraic singularity, in contrast to the spectral function of the amplitude fluctuations. We are not aware of experimental methods to directly measure the spectral function of phase fluctuations, so that we cannot compare our result for the spectral line-shape with experiments. However, for non-perturbative calculations of the single-particle Greens function of superfluid bosons one usually assumes that the Gaussian approximation is sufficient to calculate the propagator of the phase fluctuations. Our results imply that the Gaussian approximation is indeed well justified in this case, because the damping of the phase mode is small, so that in the superfluid state the phase fluctuations can propagate as well-defined quasi-particles, even in one dimension.

ACKNOWLEDGMENTS

We thank Aldo Isidori and André Kömpel for useful discussions. This work was financially supported by the DFG via SFB/TRR 49.

References

1. S. T. Beliaev, Zh. Eksp. Teor. Fiz. 34, 417 (1958), ibid. 433 (1958) [Sov. Phys. JETP 7, 289 (1958); ibid. 7, 299 (1958)].
2. J. Gavoret and P. Nozières, Ann. Phys. 28, 349 (1964).
3. H. Shi and A. Griffin, Phys. Rep. 304, 1 (1998).
4. J. O. Andersen, Rev. Mod. Phys. 76, 599 (2004).
5. N. N. Bogoliubov, Izv. Akad. Nauk SSSR, Ser. Fiz. 11, 77 (1947) [J. Phys. (Moscow) 11, 23 (1947)].
6. A. A. Nepomnyashchy and Yu. A. Nepomnyashchy, Pis’ma Zh. Eksp. Teor. Fiz. 21, 3 (1975) [JETP Lett. 21, 1 (1975)], and Zh. Eksp. Teor. Fiz. 75, 976 (1978) [Sov. Phys. JETP 48, 493 (1978)]; Yu. A. Nepomnyashchy, Zh. Eksp. Teor. Fiz. 85 1244 (1983) [Sov. Phys. JETP 58, 722 (1983)].
7. N. Dupuis, Phys. Rev. E 83, 031120 (2011).
8. C. Castellani, C. Di Castro, F. Pistolesi, and G. C. Strinati, Phys. Rev. Lett. 78, 1612 (1997); F. Pistolesi, C. Castellani, C. Di Castro, and G. C. Strinati, Phys. Rev. B 69, 024513 (2004).
9. A. Simmer, N. Hasselmann, and P. Kopietz, Phys. Rev. Lett. 102, 120601 (2009); Phys. Rev. A 82, 063632 (2010).
10. N. Dupuis, Phys. Rev. Lett. 102, 190401 (2009); Phys. Rev. A 80, 043627 (2009).
11. V. N. Popov, Teor. Mat. Fiz. 11, 354 (1972) [Theor. Math. Phys. 11, 565 (1972)].
12. V. N. Popov, Functional Integrals in Quantum Field Theory and Statistical Physics, (Kluwer, Dordrecht, 1983).
13. In three dimensions \(u_0\) can be identified with the bare interaction in the weak coupling limit. In reduced dimensions, \(u_0\) represents an effective coupling constant, taking the embedding of the system into a confining potential into account, as explained by M. Olshanii, Phys. Rev. Lett. 81, 938 (1998).
14. V. N. Popov, Teor. Mat. Fiz. 30, 346 (1977) [Theor. Math. Phys. 30, 222 (1977)].
15. E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963); E. H. Lieb, Phys. Rev. 130 1616 (1963).
16. M. Khodas, M. Pustilnik, A. Kamenev, and L. I. Glazman, Phys. Rev. Lett. 99, 110405 (2007).
17. A. Imambekov and L. I. Glazman, Phys. Rev. Lett. 100, 206805 (2008).
18. A. Kreisel, F. Sauri, N. Hasselmann, and P. Kopietz, Phys. Rev. B 78, 035127 (2008).
19. M. E. Zhiltomirsky and A. L. Chernyshev, arXiv:1205.5278v1 [cond-mat.str-el] (2012).
20. M.-C. Chung and A. Bhattachjee, New J. Phys. 11, 123012 (2009).
21. K. V. Samokhin, J. Phys.: Condens. Matter 10, L533 (1998).
22. A. F. Andreev, Zh. Eksp. Teor. Fiz. 78, 2064 (1980) [Sov. Phys. JETP 51, 1038 (1980)].
23. M. Pustilnik, M. Khodas, A. Kamenev, and L. I. Glazman, Phys. Rev. Lett. 96, 196405 (2006).