Characterization, identification and expression profiling of genome-wide R-genes in melon and their putative roles in bacterial fruit blotch resistance

Md. Rafiqul Islam1,2, Mohammad Rashed Hossain1,3, Denison Michael Immanuel Jesse1, Hee-Jeong Jung1, Hoy-Taek Kim1, Jong-In Park1 and Ill-Sup Nou1*

Abstract

Background: Bacterial fruit blotch (BFB), a disease caused by *Acidovorax citrulli*, results in significant economic losses in melon. The causal QTLs and genes for resistance to this disease have yet to be identified. Resistance (R)-genes play vital roles in resistance to plant diseases. Since the complete genome sequence of melon is available and genome-wide identification of R-genes has been performed for this important crop, comprehensive expression profiling may lead to the identification of putative candidate genes that function in the response to BFB.

Results: We identified melon accessions that are resistant and susceptible to BFB through repeated bioassays and characterized all 70 R-genes in melon, including their gene structures, chromosomal locations, domain organizations, motif distributions, and syntenic relationships. Several disease resistance-related domains were identified, including NBS, TIR, LRR, CC, RLK, and DUF domains, and the genes were categorized based on the domains of their encoded proteins. In addition, we profiled the expression patterns of the genes in melon accessions with contrasting levels of BFB resistance at 12 h, 1 d, 3 d, and 6 d after inoculation with *A. citrulli*. Six R-genes exhibited consistent expression patterns (MELO3C023441, MELO3C016529, MELO3C022157, MELO3C022146, MELO3C025518, and MELO3C004303), with higher expression levels in the resistant vs. susceptible accession.

Conclusion: We identified six putative candidate R-genes against BFB in melon. Upon functional validation, these genes could be targeted for manipulation via breeding and biotechnological approaches to improve BFB resistance in melon in the future.

Keywords: BFB, Candidate gene, Expression, Resistance, Melon, NBS-LRR, qRT-PCR

* Correspondence: nis@scnu.ac.kr; nis@sunchon.ac.kr
1Department of Horticulture, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
Full list of author information is available at the end of the article

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Background
Melon (Cucumis melo L.) is a highly diversified eudicot diploid (2n = 2x = 24) cucurbitaceous crop with a genome size of approximately 375 Mb [1]. Melon is economically important and ranks as the 9th most cultivated horticultural crop in terms of worldwide production [2, 3]. Its sweet, musky-flavored, fleshy fruit is rich in vitamins, minerals, and health-promoting antioxidants, including ascorbic acid, carotene, folic acid, and potassium [4–6].

Melon is vulnerable to various biotic and abiotic stresses [7, 8]. Bacterial fruit blotch (BFB) is a devastating disease of melon caused by Acidovorax citrulli, an aerobic, mesophilic, gram-negative, rod-shaped seedborne bacterium belonging to the beta subdivision of the Proteobacteria [9]. BFB has been reported in many countries and poses a serious threat to melon, as well as other cucurbits including prickly paddy melon, citrus melon, cucumber, pumpkin, squash, several types of gourds, and watermelon [10–16]. BFB causes water-soaked lesions to form on cotyledons and leaves, leading to collapse and death. The lesions on fruits are small (~1 cm diameter), irregular, and often sunken, progressing through the rind. The lesions then become necrotic, causing decay and cracks in the fruit. These lesions expose the plant to secondary infections and cause A. citrulli to colonize the pulp, eventually allowing the seed to become contaminated [17]. BFB causes 80–100% losses in production under favorable environmental situations, especially during the rainy season and in regions with highly fluctuating temperatures [18, 19]. Although BFB is of great concern to farmers and seed companies, strategies for managing this disease are limited; chemical control measures are environmentally hazardous and only partially effective, and resistant commercial cultivars have not yet been developed [13, 20–24]. Host resistance represents the most cost effective and environmentally friendly approach for managing BFB [12]. However, no QTL or R-gene for this disease has thus far been identified in melon. Efforts to develop BFB-resistant melon genotypes would be greatly enhanced by the identification of functional R-genes.

Genomic studies have provided insight into the evolution of R-genes, which play important roles in the plant immune system in response to various pathogens and insects [25]. Plant R-genes encode proteins containing domains such as Nucleotide-binding site (NBS), Leucine-rich repeat (LRR), Toll/interleukin-1 receptor (TIR), Coiled-coil (CC), and Receptor-like kinase (RLK) domains [26–32]. These domains are involved in pathogen recognition, signaling, and plant innate immunity responses [26, 27, 29, 31–35]. R-genes have been identified in the genomes of plant species including watermelon [36], cucumber [25], rice [37, 38], Chinese cabbage [39], maize [40], wheat [41], Arabidopsis thaliana [42], and apple [43].

An improved assembly and annotation of the melon (Cucumis melo L.) reference genome identified 70 R-genes in melon [1, 44, 45]. In the current study, we investigated the expression patterns of R-genes throughout the melon genome in response to the BFB-causing bacterium A. citrulli in melon accessions contrasting in BFB resistance. The aim of this study was to identify putative candidate R-genes that confer resistance to BFB in melon.

Results
Genome-wide melon R-genes and their chromosomal distribution
The latest version (v3.6.1) of the whole-genome sequence of the melon double haploid line DHL90 was constructed using an improved assembly and annotation. This sequence contains 70 R-genes [1, 44]. We retrieved genomic information for these 70 R-genes, including their coding sequences and deduced amino acid sequences, from the cucurbit genome database (http://cucurbitgenomics.org). Detailed genomic information about these R-genes, including their locations on chromosomes, is provided in Table 1. Chromosomal mapping of the 70 R-genes revealed that they are distributed across all 12 melon chromosomes, with 1 to 12 genes per chromosome (Fig. 1; Table 1). Chromosome 9 (Chr09) contains the most R-genes (12), followed by Chr12 and Chr01 (10 and 9 genes, respectively). Chr11 contains the fewest R-genes (2), followed by Chr03 and Chr07 (3 genes each). The genes appear to be clustered, particularly in the telomere regions of chromosomes such as chr09, chr01, and chr04 (Fig. 1).

Gene structures, domain organizations, and motif distribution of R-genes in melon
We analyzed the exon–intron organizations and motif distribution of 70 melon R-genes by comparing their coding sequences with the corresponding genomic sequences using the online tool GSDFS2.0 (http://gsds.cbi.pku.edu.cn/). The highest number of exons (22) was in the gene MELO3C013803, followed by 18 in MELO3C007367 (Additional file 1: Fig. S1). Among the 70 R-genes, 21 were mono-exonic, while 12 and 4 genes were bi- and tri-exonic, respectively.

We analyzed the conserved domains of the 70 melon R-genes using the Conserved Domain Database (CDD) at https://www.ncbi.nlm.nih.gov/Structure/bwpsb/bwpsb.cgi. We detected several disease resistance-related domains encoded by these R-genes, such as NB-ARC (Nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4), LRR (Leucine-rich repeat), TIR (Toll/interleukin-1 receptor), CC (Coiled-coil), and RLK (Receptor-like kinase) domains. The R-genes were grouped into different classes based on
Table 1 Information about R-genes throughout the melon genome including chromosomal positions, lengths, and annotated descriptions

Sl.	Gene ID*	Chr. Number	Position on chromosome	CDS-length (bp)	Peptide length (AA)	Strand	Description
1	MELO3C023580.2	chr01	33,386,823 - 33,390,698	687	288	–	Disease-resistance protein RGA2-like
2	MELO3C023579.2	chr01	33,395,126 - 33,397,789	2664	887	–	Disease-resistance protein RGA2-like isoform X1
3	MELO3C023578.2	chr01	33,410,087 - 33,414,749	1158	385	–	Disease-resistance protein
4	MELO3C023577.2	chr01	33,419,963 - 33,423,566	2715	904	–	Disease-resistance protein RGA2-like
5	MELO3C023441.2	chr01	34,457,351 - 34,462,055	2766	921	–	Receptor-kinase, putative
6	MELO3C023440.2	chr01	34,462,521 - 34,463,915	1338	445	–	LRR receptor-like serine/threonine-protein kinase GSO2
7	MELO3C023439.2	chr01	34,468,416 - 34,473,193	3207	1068	–	LRR receptor-like serine/threonine-protein kinase GSO2
8	MELO3C023438.2	chr01	34,474,924 - 34,475,353	336	111	+	LRR receptor-like serine/threonine-protein kinase GSO2
9	MELO3C023437.2	chr01	34,475,729 - 34,476,367	354	117	+	Receptor-kinase, putative
10	MELO3C029319.2	chr02	4,111,584 - 4,115,605	717	238	+	NBS-LRR type resistance protein
11	MELO3C015353.2	chr02	985,162 - 987,242	1737	578	+	Disease-resistance protein RGA2-like
12	MELO3C015354.2	chr02	990,582 - 993,823	3240	1080	+	Disease-resistance protein RGA2-like
13	MELO3C010346.2	chr02	17,481,683 - 17,485,283	1593	530	+	TMV resistance protein N
14	MELO3C010827.2	chr03	25,752,437 - 25,757,292	4032	1343	–	TMV resistance protein N-like
15	MELO3C010826.2	chr03	25,759,169 - 25,763,794	3663	1054	–	Receptor-kinase, putative
16	MELO3C010825.2	chr03	25,760,299 - 25,764,770	3054	1071	–	Receptor-kinase, putative
17	MELO3C010824.2	chr03	25,761,364 - 25,765,770	6069	2022	–	Receptor-kinase, putative
18	MELO3C010823.2	chr03	25,762,463 - 25,766,100	3682	1197	+	Disease-resistance protein
19	MELO3C010822.2	chr03	25,763,521 - 25,768,061	3440	1146	+	Disease-resistance protein
20	MELO3C010821.2	chr03	25,764,582 - 25,769,122	3548	1182	+	Disease-resistance protein
21	MELO3C010820.2	chr03	25,765,643 - 25,769,163	3530	1180	+	Disease-resistance protein
22	MELO3C010819.2	chr03	25,766,704 - 25,770,244	3520	1180	+	Disease-resistance protein
23	MELO3C010818.2	chr03	25,767,765 - 25,771,305	3520	1180	+	Disease-resistance protein
24	MELO3C010817.2	chr03	25,768,826 - 25,772,366	3520	1180	+	Disease-resistance protein
25	MELO3C010816.2	chr03	25,769,887 - 25,773,427	3520	1180	+	Disease-resistance protein
26	MELO3C010815.2	chr03	25,770,948 - 25,774,488	3520	1180	+	Disease-resistance protein
27	MELO3C010814.2	chr03	25,771,999 - 25,775,539	3520	1180	+	Disease-resistance protein
28	MELO3C010813.2	chr03	25,772,060 - 25,775,600	3520	1180	+	Disease-resistance protein
29	MELO3C010812.2	chr03	25,773,121 - 25,776,661	3520	1180	+	Disease-resistance protein
30	MELO3C010811.2	chr03	25,774,182 - 25,777,722	3520	1180	+	Disease-resistance protein
31	MELO3C010810.2	chr03	25,775,243 - 25,778,783	3520	1180	+	Disease-resistance protein
32	MELO3C010809.2	chr03	25,776,294 - 25,780,834	3520	1180	+	Disease-resistance protein
33	MELO3C010808.2	chr03	25,777,355 - 25,780,995	3520	1180	+	Disease-resistance protein
34	MELO3C010807.2	chr03	25,778,406 - 25,781,946	3520	1180	+	Disease-resistance protein
35	MELO3C010806.2	chr03	25,779,467 - 25,783,007	3520	1180	+	Disease-resistance protein
36	MELO3C010805.2	chr03	25,780,528 - 25,784,068	3520	1180	+	Disease-resistance protein
37	MELO3C010804.2	chr03	25,781,589 - 25,785,129	3520	1180	+	Disease-resistance protein
38	MELO3C010803.2	chr03	25,782,650 - 25,786,190	3520	1180	+	Disease-resistance protein
39	MELO3C010802.2	chr03	25,783,701 - 25,787,241	3520	1180	+	Disease-resistance protein
40	MELO3C010801.2	chr03	25,784,762 - 25,788,302	3520	1180	+	Disease-resistance protein
41	MELO3C010800.2	chr03	25,785,823 - 25,789,363	3520	1180	+	Disease-resistance protein
42	MELO3C022157.2	chr09	665,753 - 668,864	2025	674	–	TMV resistance protein N-like isoform X1
the presence of the following conserved domains in their encoded proteins: (i) LRR, (ii) NBS-LRR, (iii) TIR, (iv) TIR-NBS-LRR, (v) NB-ARC, (vi) CC, (vii) RLK, and (viii) DUF (Table 2 and Additional file 1: Fig. S2). Thirty-seven genes encoded proteins with only LRR domains, seven encoded proteins with NB-ARC domains, two encoded proteins with TIR domains, and only one encodes a protein with a CC domain (Table 2). Twelve genes encoded three domains (TIR, NBS, and LRR), including MELO3C004288, MELO3C004289, MELO3C004311, MELO3C004313, MELO3C022154, MELO3C022152, MELO3C022146, MELO3C022145, MELO3C022144, MELO3C004309, MELO3C004259, and MELO3C004301. A list of the genes and a description of their domains is provided in Table 2.

We analyzed the conserved motifs of these 70 R-genes using the MEME Suite (http://meme-suite.org/tools/meme). A total of 20 conserved motifs were detected in these 70 R-genes, each comprising more than 14 amino acids. The greatest number of motifs was identified in the LRR domain-encoding gene MELO3C002394, whereas the fewest were detected in MELO3C029505, MELO3C023580, and MELO3C006801, which are LRR-

Sl. No.	Gene ID	Chr. Number	Position on chromosome	CDS-length (bp)	Peptide length (AA)	Strand	Description
43	MELO3C022154.2	chr09	681,564 689,908	3432	1143	–	TMV resistance protein N-like
44	MELO3C022152.2	chr09	700,743 713,705	4173	1390	+	TMV resistance protein N-like
45	MELO3C022146.2	chr09	762,107 767,613	2274	757	–	TMV resistance protein N-like
46	MELO3C022145.2	chr09	768,255 784,265	3807	1268	+	TMV resistance protein N-like
47	MELO3C022144.2	chr09	784,629 792,999	4902	1633	–	TMV resistance protein N-like
48	MELO3C0225516.2	chr09	6,632,514 6,659,697	4371	1,456	–	TMV resistance protein N-like
49	MELO3C0225519.2	chr09	6,674,960 6,677,738	762	253	–	Disease-resistance protein RGA2-like
50	MELO3C0225518.2	chr09	6,675,092 6,676,395	648	215	–	Disease-resistance protein RGA2-like
51	MELO3C005450.2	chr09	21,691,401 21,694,271	2790	929	–	LRR receptor-like kinase family protein
52	MELO3C005451.2	chr09	21,699,468 21,702,467	3000	999	–	LRR receptor-like kinase
53	MELO3C005452.2	chr09	21,708,265 21,711,353	28,17	938	–	LRR receptor-like kinase
54	MELO3C012268.2	chr10	1,574,521 1,579,615	4902	1,633	+	TMV resistance protein N-like
55	MELO3C012049.2	chr10	2,989,020 2,990,934	1869	622	+	Leaf rust 10 disease-resistance locus receptor-like protein kinase-like 1.2 isofrom X4
56	MELO3C012046.2	chr10	3,007,893 3,014,091	1503	500	–	Protein enhanced disease resistance 2
57	MELO3C034399.2	chr10	15,627,727 15,627,921	195	64	+	Disease-resistance protein At4g27190-like
58	MELO3C022580.2	chr10	16,222,411 16,222,859	447	148	–	Disease-resistance protein RGA2-like
59	MELO3C022447.2	chr11	33,758,671 33,762,610	3030	1009	–	Receptor-like protein
60	MELO3C022449.2	chr11	33,770,307 33,772,966	2145	714	–	Receptor-like protein
61	MELO3C002671.2	chr12	22,199,381 22,201,102	1350	449	+	LRR receptor-like kinase
62	MELO3C002667.2	chr12	22,209,961 22,215,123	3279	1092	+	LRR receptor-like kinase
63	MELO3C002666.2	chr12	22,219,699 22,226,478	3114	1037	+	LRR receptor-like kinase
64	MELO3C002506.2	chr12	23,598,469 23,607,646	2040	679	–	Receptor-like protein kinase
65	MELO3C002504.2	chr12	23,611,543 23,620,880	3870	1289	–	Cysteine-rich receptor-like protein kinase 28
66	MELO3C002501.2	chr12	23,633,920 23,636,908	1617	538	+	Cysteine-rich receptor-like protein kinase 26 isofrom X1
67	MELO3C002394.2	chr12	24,343,418 4,346,595	2385	794	–	LRR receptor-like kinase family protein
68	MELO3C002393.2	chr12	24,352,898 4,355,087	2190	729	–	LRR receptor-like kinase
69	MELO3C002392.2	chr12	24,358,807 24,361,890	3084	1027	–	LRR receptor-like serine/threonine-protein kinase GSO1
70	MELO3C002389.2	chr12	24,376,328 24,380,811	3786	1261	+	LRR receptor-like serine/threonine-protein kinase GSO1

Genomic information based on the reference Genome of Melon (DHL92) v3.6.1 retrieved from the Cucurbit Genomics Database (http://cucurbitgenomics.org)
CC-, and DUF-domain-encoding genes, respectively. The distribution of these conserved motifs, along with the motif sequences, is described in Fig. 2.

Microsynteny of melon R-genes with genes in the watermelon and cucumber genomes

We analyzed the microsyntenic relationships of the 70 R-genes from melon (Cucumis melo) with genes in the watermelon (Citrullus lanatus) and cucumber (Cucumis sativus) genomes using the Circos tool. Most R-genes from melon were homologous to R-genes from watermelon and cucumber. However, watermelon R-genes on chromosomes 11 and 12 lacked homologues in melon (Fig. 3). By contrast, all 70 R-genes in melon had homologues in all chromosomes of cucumber.

Expression profiles of melon R-genes in response to A. citrulli inoculation

We investigated the expression patterns of the 70 melon R-genes in the leaves of resistant and susceptible melon seedlings at 12 h, 1 d, 3 d, and 6 d of inoculation with A. citrulli strain NIHHS15–280 via qRT-PCR. Several genes showed differential expression in the resistant vs. susceptible accession at different time points. A general trend of low expression for these genes was observed in the susceptible accession (Fig. 4). On the contrary, most of the genes were significantly induced within 12 h of A. citrulli infection in the resistant accession and showed a general increase in expression in this accession. By contrast, in the susceptible accession, the expression of these genes fluctuated, with little or no expression at the 12 h time point. Heatmap analysis of the expression data identified a sub-cluster of six genes (MELO3C023441, MELO3C016529, MELO3C022157, MELO3C022146, MELO3C025518, and MELO3C004303) that showed contrasting trends of expression in the resistant vs. susceptible accession, with progressively increasing expression after inoculation with A. citrulli in the resistant but not the susceptible accession (Fig. 4). Extensive analysis of these six genes indicated that the expression of four genes (MELO3C023441, MELO3C016529, MELO3C022146, and MELO3C025518) increased in the resistant accession with increasing time after inoculation with A. citrulli (Fig. 5). In the susceptible accession, the expressions of these genes were very low in the initial hours after inoculation and did not show significant increase over time after
inoculation. In the resistant accession, the expression of these four genes (MELO3C023441, MELO3C004303, MELO3C022146, and MELO3C025518) peaked at 6 d after inoculation, with levels approximately 8-, 8-, 10-, and 7-fold those of the control samples, respectively. In the susceptible accession, the expression of two of these genes did not increase in response to *A. citrulli* inoculation, whereas the expression of two genes (MELO3C022157 and MELO3C016529) generally increased in response to inoculation, but to a lesser extent than in the resistant accession. The expression of these two genes increased until 3 d after inoculation (5-fold in MELO3C016529 and 2.5-fold in MELO3C022157), followed by a decrease to their lowest levels at 6 d post-inoculation (Fig. 5).

Discussion

Here, we identified *R*-genes with putative roles in resistance to BFB disease in melon by profiling the genome-wide expression patterns of *R*-genes from melon in response to inoculation with *A. citrulli*. Disease resistance in plants involves the interaction between specific disease resistance (*R*)-genes in plants and avirulence (*avr*) genes of the pathogen which is known as gene-for-gene model [55, 56]. Most plant *R*-genes belong to a superfamily of genes encoding proteins with an NBS or LRR domain, an N-terminal TIR or CC domain, or an RLK/RLP domain [29, 57]. A meta-analysis of the 314 cloned plant *R*-genes revealed that 191 (61%) such genes are NBS-LRR genes and 60 (19%) genes are RLKs/RLPs [58]. NBS domains bind to and hydrolyze adenosine triphosphate (ATP) or guanosine triphosphate (GTP) and are involved in signaling; LRR domains are highly adaptable structural domains that are responsible for protein–protein interactions and play an important role in plant–pathogen recognition [59]; TIR domains provide pathogen specificity and plant defense responses, while CC domains are involved in pathogen recognition and signaling; and RLK domains play roles in signaling and plant defense responses.

In melon, four resistance gene homologue sequences were previously reported that contained 14 TIR-NBS-LRR genes [60, 61]. A study of the first complete genome sequence of melon identified 411 putative *R*-genes, including 161 RLKs, 110 RLP (receptor-like proteins) genes, 19 RLK-GNK2 (kinases containing an additional antifungal protein ginkobilobin-2 domain) genes, and 81 genes containing canonical resistance domains, such as NBS, LRR, and TIR domains [1]. Among these genes, 25 were homologous to *Pto* genes from tomato and 15 were homologous to *Mlo* genes from barley [62, 63].

Table 2 *R*-genes throughout the melon genome categorized based on functional disease resistance-related domains

Sl	Domain	Function	Gene ID
1	Leucine-rich repeat (LRR)	Recognition of pathogen and Plant Defense [29, 46]	MELO3C023577.2, MELO3C023579.2, MELO3C015353.2, MELO3C015354.2, MELO3C017700.2, MELO3C017701.2, MELO3C025518.2, MELO3C009695.2, MELO3C006780.2, MELO3C023441.2, MELO3C023437.2, MELO3C023440.2, MELO3C023439.2, MELO3C023438.2, MELO3C004303.2, MELO3C025516.2, MELO3C010346.2, MELO3C005450.2, MELO3C002392.2, MELO3C002393.2, MELO3C0029505.2, MELO3C034399.2, MELO3C010827.2, MELO3C010826.2, MELO3C010825.2, MELO3C009179.2, MELO3C009177.2, MELO3C007367.2, MELO3C002666.2
2	Nucleotide-binding site leucine-rich repeat (NBS-LRR)	Resistance protein Signaling and Plant Defense [27, 33, 47]	MELO3C029319.2
3	Toll/interleukin-1 receptor homology (TIR)	TMV resistance protein N [34, 46]	MELO3C022157.2, MELO3C016529.2
4	Toll/interleukin-1 receptor homology nucleotide-binding site leucine-rich repeat (TIR-NBS-LRR)	Pathogen specificity and defense [29, 46, 48] [Nandety, 2013 #111]	MELO3C004288.2, MELO3C004289.2, MELO3C004311.2, MELO3C004313.2, MELO3C022154.2, MELO3C022152.2, MELO3C022146.2, MELO3C022145.2, MELO3C022144.2
5	Nucleotide-binding adaptor shared by APAF-1, R proteins and CED-4 (NB-ARC)	Molecular switch in activating defenses [28, 31]	MELO3C011703.2, MELO3C025519.2, MELO3C025580.2, MELO3C023578.2, MELO3C009694.2, MELO3C006932.2, MELO3C013803.2
6	Coiled-coil domain (CC)	Pathogen recognition and signaling [31, 32, 49]	MELO3C023580.2
7	Protein kinase (RLK)	Signaling and plant defense [35, 50–52]	MELO3C007354.2, MELO3C007358.2, MELO3C007360.2, MELO3C00506.2, MELO3C012268.2, MELO3C012049.2, MELO3C002504.2, MELO3C002501.2
8	Domain of unknown function (DUF)	Protein enhanced disease resistance 2-like [53, 54]	MELO3C006801.2, MELO3C012045.2
further improvements in the assembly and annotation of the melon (*Cucumis melo* L.) reference genome, 70 *R*-
genomes were ultimately identified in melon [44]. Our comprehensive *in-silico* analysis of the 70 melon
R-genes revealed that they encode proteins with several disease resistance-related domains, including LRR, NBS, TIR, NB-ARC, CC, RLK, and DUF domains (Table 2). These genes are distributed across all melon chromosomes, and some are clustered in the telomeric regions of a few chromosomes (Fig. 1). The clustering of *R*-genes is an evolutionarily conserved defense mechanism in plants wherein recombination in closely located genes creates new motif combinations, which generates novel resistance specificities and broadens plant resistance to different diseases [42, 64]. *R*-gene clusters that provide resistance to multiple diseases have been reported for angular leaf spot, downy mildew, and anthracnose diseases in cucumber [65] and for blackleg, *sclerotinia* stem rot, and clubroot diseases in *B. napus* [66–68] and *B. rapa* [66]. In melon, a 1 Mb region on chromosome five contains the highest density of *R*-genes [69]. In addition, a cluster of 13 TNL genes is located in the same region as the melon *Vat* resistance gene [70], and another cluster of 7 TNL genes is located in the region harboring the *Fom-1* resistance gene [71]. The *Vat* locus encodes a CC-NBS-LRR protein that confers resistance to aphid and aphid-mediated viruses in melon. The loss of two highly conserved LRRs is linked with susceptibility to these viruses [72]. In addition, the *Fusarium* wilt resistance locus *Fom-2* is a TIR-NBS-LRR gene [73]. Expression patterns of the genome-wide *R*-genes are thus studied to identify any potential candidate genes against *A. citrulli*.

Six melon genes were highly expressed in the BFB-resistant accession. Of these genes, three (MELO3C016529, MELO3C022157, and MELO3C022146) are TNL genes, two (MELO3C023441 and MELO3C025518) are LRR genes, and one (MELO3C005452) is an NBS-LRR gene (Table 2). These genes were highly expressed at 6 d after

Fig. 2 Conserved motifs in the *R*-genes of melon. Motifs are indicated by different colored rectangles. Motif sequences are provided in the legend.
inoculation (Fig. 5), which is consistent with our observation that BFB symptoms first appeared at 6–7 d in a susceptible accession [74].

Expression analysis upon infection with *A. citrulli* indicated a general trend of low expression for most *R*-genes in susceptible accession. By contrast, a set of genes including MELO3C023441, MELO3C004303, MELO3C022146, and MELO3C025518 were expressed at much higher levels, and MELO3C022157 and MELO3C016529 were expressed at relatively higher levels, (Fig. 5) in the resistant accession. Such higher expression in response to *A. citrulli* in the resistant accession indicates the potential involvement of these *R*-genes in BFB resistance in melon.

Several comparative transcriptomic studies have been reported in melon [75–77], but few studies have focused exclusively on expression profiling of *R*-genes against phytopathogenic agents in melon. For example, RNA-seq assessment of the changes in transcript levels at different time points in *Phytophthora capsici*-inoculated tissues of resistant and susceptible melon genotypes provided a basis for identifying candidate resistant genes [78]. Comparative transcriptome analysis identified ten genes that were differentially expressed in resistant and susceptible cultivars of melon in response to powdery mildew [79]. In addition, a study of the *MLO* (mildew resistance locus o) gene family in melon revealed candidate genes that might play roles in susceptibility to powdery mildew [80]. In watermelon, six NBS-encoding *R*-genes were identified as candidates for gummy stem blight (GSB) resistance [81, 82]. Finally, markers have been developed for detecting both GSB and BFB resistance in melon based on the sequence polymorphism in the TIR-NBS-LRR gene MELO3C022157 [81, 83]. Notably, all six candidate *R*-genes identified in the current study have corresponding homologues in watermelon and cucumber (Fig. 3).
Fig. 4 Heat map of the expression patterns of melon R-genes determined by qRT-PCR in BFB-resistant and -susceptible melon accessions at the indicated time points after inoculation with *A. citrulli*. The expression levels were normalized to that Actin (the expression levels of the Actin gene are shown in Additional file 1: Fig. S3). The values were obtained from the means of three biological replicates. Red and green represent the minimum and maximum values, respectively. The IDs of six putative R-genes are shown in pink on the right side of the figure. MELO3C002671 and MELO3C022447 were not expressed and are therefore not shown in the heatmap. The heat map was generated using the online tool Heatmapper (http://www.heatmapper.ca/expression/).

Fig. 5 Relative expression levels of six candidate R-genes in resistant and susceptible melon accessions at the indicated time points after inoculation with *A. citrulli*. Error bars represent standard errors of three individual observations. Different letters above the bars indicate significant differences, as determined by Tukey's pairwise comparison. Ct-control, h- hour, and d- day.
roles of these genes in BFB resistance in these two crops remain to be investigated.

Conclusions
We identified six putative candidate genes that might play roles in resistance to BFB in melon. This is the first report of candidate genes for BFB resistance in melon. Our findings provide a basis for further functional studies to validate the exact roles of these genes. In addition, causal sequence polymorphisms could be identified in these genes, leading to the development of markers for BFB resistance. Our findings will thus be useful for improving the BFB resistance trait in melon.

Methods
A. citrulli: collection, culture, and inoculum preparation
A. citrulli strain NIHHS15–280 was obtained from the National Institute of Horticultural and Herbal Science (NIHHS), South Korea. The bacterium was cultured on Petri plates containing 20 ml King’s B (KB) medium supplemented with 100 μg ml⁻¹ ampicillin for 36–48 h at 28 °C [84] until bacterial colonies formed. For all inoculations, a bacterial suspension was prepared by covering the culture plates with 5 ml of sterile, double distilled (DD) water and gently scraping the surface of the KB medium using an L-shaped rubber spreader to an optical density (OD) of 1.0 at 600 nm, as measured using a NanoDrop ND-1000 Spectrophotometer. The bacterial suspension was diluted to a final concentration of ~1 × 10⁶ colony forming units (cfu) mL⁻¹.

Plant materials, growth conditions, and bioassays
The BFB-resistant (PI 353814) and -susceptible (PI 614596) melon accessions [74, 85] used in this study were obtained from the U.S. National Plant Germplasm System (https://npgsweb.ars-grin.gov/gringlobal/search.aspx), USDA, USA. The seeds were sown in a commercial nursery soil mixture in 32-cell trays and grown in a controlled plant growth chamber at 25 ± 2 °C, 16 h day length, relative humidity of 60%, and a light intensity of 440 µmoles/m²/s at bench level. After 3 weeks, the plants were transferred to a greenhouse.

Two weeks after germination, the plants were trans-ferred to plastic pots and grown in a greenhouse at 24 ± 2 °C with a relative humidity of 90% where the plants were inoculated with A. citrulli. The resistance status of the accessions was reconfirmed via bioassay (Fig. 6) as previously reported with minor modifications [86]. Plants at the 3–5 true-leaf stage (4–5 weeks old) were sprayed with bacterial suspensions until runoff in a greenhouse at 22 ± 2 °C with a relative humidity of 96%. Plants were re-inoculated 3 d after the first inoculation to ensure that no plants had avoided inoculation and to eliminate false positives. Leaf samples from three biological replicates were collected at different time points (0 h, 12 h, 1 d, 3 d, and 6 d), immediately immersed in liquid nitrogen, and stored at −80 °C for RNA extraction and cDNA synthesis.

Total RNA isolation and cDNA synthesis
The melon leaves were ground to a powder in liquid nitrogen, and 100 mg of each sample with three biological replicates was subjected to total RNA extraction using the RNaseasy Mini kit (Qiagen, Valencia, CA) following the manufacturer’s instructions. First-strand cDNA was synthesized from total RNA with a SuperScript III First-Strand Synthesis System kit (Invitrogen, Gaithersburg, MD).

Identification and in silico analysis of melon R-genes
Genomic information for all 70 R-genes, as reported in the improved assembly and annotated genome of melon [44], was retrieved from the cucurbit genomic database (http://cucurbitgenomics.org) (Additional file 1: Table S1). The genes were subjected to a series of in silico analyses such as exon–intron structure, motif distribution, domain organization, chromosomal mapping, and microsynteny analyses (for specific analytical tools, see the Results section).

Primer design and quantitative RT-PCR analysis
Gene-specific primers for quantitative RT-PCR (qRT-PCR) were designed using Primer3Plus (https://primer3plus.com/cgibin/dev/primer3plus.cgi) (Table 1). The
expression patterns of the R-genes were analyzed by qRT-PCR in a LightCycler® instrument (Roche, Mannheim, Germany) following the manufacturer’s instructions. The reactions were performed in a 10 μL volume consisting of 5 μL of 2x qPCRBIO SyGreen Mix Lo-ROX (PCR Biosystems, London, UK), 5 pmol of primers, and cDNA template diluted to the appropriate concentrations. The PCR conditions were as follows: 5 min at 95 °C, followed by 3-step amplifications at 95 °C for 15 s, 56 °C for 15 s and 72 °C for 20 s for 45 cycles. The mean expression levels of relevant genes were calculated by the 2^−ΔΔCt method [87] using the average value of three reference genes [2, 8, 88] as internal control.

Statistical analysis
Analysis of variance (ANOVA) and significance tests were carried out using the normalized gene expression values with MINITAB17 software (Minitab Inc., State College, PA, USA). Tukey’s pairwise comparison test was employed to determine the mean separation of expression values. p values indicate statistically significant variations of expression.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12863-020-00885-9.

Additional file 1: Table S1. Details of the primers designed for expression profiling of melon R-genes. Figure S1. Exon–intron structures of R-genes in melon genome-wide. Light red rectangles and black lines indicate exons and introns, respectively. Figure S2. Domain structures of the 70 R-genes in melon. The conserved domains were identified using the NCBI Conserved Domain Database (CDD) (https://www.ncbi.nlm.nih.gov/Structure/bwpsp/bwpsp.cgi). Detailed descriptions of these domains are provided in Table 2. Specific domains in each protein are shown in the diagram. Figure S3. Gene expression profiles of resistant and susceptible melon accessions at different time points normalized to melon Actin expression (CmAct7, 149 bp), as determined by qRT-PCR analysis.

Abbreviations
A. citrulli: Acidovorax citrulli; BFR: Bacterial fruit blotch; R-genes: Resistance genes; avr: Avirulence; Fig: Figure; Chr: Chromosome; CDS: Coding Sequence; bp: Base pair; AA: Amino Acid; LRR: Leucine-rich repeat; NBS-LRR: Nucleotide-binding site leucine-rich repeat; TIR: Toll/interleukin-1 receptor homology; NBS-LRR- Toll/interleukin-1 receptor homology nucleotide-binding site leucine-rich-repeat; NB-ARC: Nucleotide-binding-adaptor shared by APAF-1, R proteins and CED-4; CC: Coiled-coil domain; RLK: Protein kinase; DUF: Domain of unknown function

Acknowledgments
We thank the U.S. National Plant Germplasm System, USA, Korean Agricultural Culture Collection, Korea, and National Institute of Horticultural and Herbal Science, Korea for providing the melon seeds and bacterial strains.

Authors’ contributions
M.R.I. designed and conducted the entire experiment, DNA extraction, performed wet lab experiments, analyzed the qRT-PCR data, interpreted the results, and wrote the first draft of the manuscript. D.M.I.J helped with the in silico analysis, performed the bioinformatics analysis, and constructed the Figs. H.-J.I. assisted with the bioassay and PCR assays. M.R.H comprehensively revised and finalized the manuscript. I.-S.N., H.-T.K. and J.-I.P. conceived and supervised the project. All authors read and approved the final draft of the manuscript.

Funding
This study was supported by the Golden Seed Project (Grant No. 213007–05–4-CG100) of the Ministry of Agriculture, Food and Rural Affairs (MAFRA), Republic of Korea.

Availability of data and materials
We declare that the dataset(s) supporting the conclusions of this article are encompassed within the article (and its additional file(s)).

Ethics approval and consent to participate
The authors declare that this study conforms with the current laws of the countries in which the experiments were performed.

Consent for publication
All of the authors of this manuscript give their consent to publish the findings in BMC Genetics.

Competing interests
The authors declare that there are no conflicts of interest to publish in this journal.

Author details
1Department of Horticulture, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea. 2Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh. 3Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.

Received: 25 February 2020 Accepted: 12 July 2020
Published online: 22 July 2020

References
1. García-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González VM, Hénaff E, Câmara F, Cazzuto L, Lowy E. The genome of melon (Cucumis melo L). PNAS. 2012;109(29):11872–7.
2. Kong Q, Gao L, Cao L, Liu Y, Saba H, Huang Y, Bie Z. Assessment of suitable reference genes for quantitative gene expression studies in melon fruits. Front Plant Sci. 2016;7:1178.
3. Fita A, Bowen HC, Hayden RM, Nuez F, Pico B, Hammond JP. Diversity in expression of phosphorus (P) responsive genes in Cucumis melo L. PLoS One. 2012;7(4):e35387.
4. Lester G, Eischen F. Beta-carotene content of postharvest orange-fleshed muskmelon fruit: effect of cultivar, growing location and fruit size. Plant Food Hum Nutr. 1996;49(3):191–7.
5. Lester GE, Crosby KM. Ascorbic acid, folic acid, and potassium content in postharvest green-flesh honeydew muskmelons: influence of cultivar, fruit size, soil type, and year. J Am Soc Hort Sci. 2002;127(5):843–4.
6. Lester GE. Antioxidant, sugar, mineral, and phytonutrient concentrations across edible fruit tissues of orange-fleshed honeydew melon (Cucumis melo L). J Agric Food Chem. 2008;56(10):3694–8.
7. Mascarel-Creus A, Cañizares J, Vilarasa-Blasi J, Mora-García S, Blanca J, González-Ibeas D, Saladié M, Roig C, Deleu W, Picó-Silvent B. An oligo-based microarray offer novel transcriptomic approaches for the analysis of pathogen resistance and fruit quality traits in melon (Cucumis melo L). BMC Genomics. 2009;10(1):467.
8. Kong Q, Yuan J, Niu P, Xie J, Jiang W, Huang Y, Bie Z. Screening suitable reference genes for normalization in reverse transcription quantitative real-time PCR analysis in melon. PLoS One. 2014;9(1):e87197.
9. Schaad NW, Postnikova E, Sechler A, Claffin LE, Vidaver AK, Jones JB, Agarkova I, Ignatov A, Dickstein E, Ramundo BA. Reclassification of subspecies of Acidovorax avenue as A. avenue (Manns 1905) Emend. A. cattleyae (Pavarino, 1911) comb. nov., A. citrulli Schaad et al., 1978 comb. nov., and proposal of A. oryzae sp. nov. Syst Appl Microbiol. 2012;35(8–9):434–46.
10. Silva GM, Souza RM, Yan L, Júnior RS, Medeiros FH, Walcott RR. Strains of the group I lineage of Acidovorax citrulli, the causal agent of bacterial fruit
bleotch of cucurbitaceous crops, are predominant in Brazil. Phytopathology. 2016;106(12):1486–94.

23. Burdman S, Kots N, Kitzman G, Kopelowitz J. Molecular, physiological, and host-range characterization of Acidovorax avenae subsp. citrulli isolates from watermelon and melon in Israel. Plant Dis. 2005;89(12):1359–47.

24. Hopkins DL, Thompson CM, Hilgren J, Lovic B. Wet seed treatment with peracetic acid for the control of bacterial fruit blotch and other seedborne diseases of watermelon. Plant Dis. 2003;87(12):1495–9.

25. Wan H, Yuan W, Bo K, Shen J, Pang X, Chen J. Genome-wide analysis of NBS-encoding disease resistance genes in cultivated watermelon genotypes for resistance to bacterial fruit blotch. Euphytica. 2014;201(1):8–14.

26. Jones JD. Plant disease resistance genes: structure, function and evolution. Curr Opin Biotechnol. 1996;7(2):149–59.

27. DeYoung BJ, Innes RW. Plant NBS-LRR proteins in pathogen sensing and adaptation. Genome Biol. 2013;15(14):1–10.

28. Curtis RJ. Leucine-rich repeat (LRR) receptors: insights from a complex class of signaling molecules. Curr Opin Plant Biol. 2002;5(6):303–11.

29. de Melo EA, Rosa de Lima RM, Laranjeira D, dos Santos LA, de Omena S. Adaptable guards. Genome Biol. 2006;7(4):155–64.

30. Song W, Wang B, Li X, Wei J, Chen L, Zhang D, Zhang W, Li R. Identification of immune related LRR-containing genes in maize (Zea mays L.) by genome-wide sequence analysis. Int J Genomics. 2015;2015:231358.

31. Van Ooijen G, Mayr G, Kasiem MM, Albrecht M, Cornelissen BJ, Takken FL. Structure-function analysis of the coiled-coil domain-containing proteins in plants: a genomic perspective. Trends Plant Sci. 2014;19(1):16–25.

32. Qi D, DeYoung BJ, Innes RW. Plant NBS-LRR proteins: a adaptable guards. Genome Biol. 2006;7(4):121–7.

33. McHale L, Tan X, Koehl P, Michelmore RW. Plant NBS-LRR proteins: a adaptable guards. Genome Biol. 2006;7(4):121–7.

34. Nandety RS, Caplan JL, Cavanaugh K, Perroud B, Wodziewski T, Michelmore RW, Meyers BC. The role of TIR-NBS and TIR-X proteins in plant basal defense responses. Plant Physiol. 2013;162(3):1459–72.

35. Wu Y, Zhou JM. Receptor-like kinases in plant innate immunity. J Integr Plant Biol. 2013;55(12):1271–86.
