Managing solar retinopathy with suprachoroidal triamcinolone acetonide injection in a young girl: a case report

Ameen Marashi1, Marwa Baba2 and Aya Zazo3*

Abstract
Background: Solar retinopathy is a disease that causes photochemical toxicity in the retinal fovea tissues, leading to an acute decrease of vision.

Case presentation: This case report is an interventional case of an asymptomatic 17-year-old Caucasian female with a history of suddenly decreased vision due to solar retinopathy. The patient was managed with a custom-made needle injection of triamcinolone acetonide in the suprachoroidal space. Four months post suprachoroidal injection showed an anatomical and functional improvement in the ellipsoid zone layer through optical coherence tomography signal reappearance. In addition, the best-corrected visual acuity had improved from 0.1 to 1.0 on the Snellen chart with the disappearance of the scotoma. However, there was a mild increase in intraocular pressure after this procedure, controlled with topical hypertensive eye drops.

Conclusion: Suprachoroidal triamcinolone acetonide injection using a custom-made needle showed both functional and anatomical improvement of macular changes post-solar retinopathy, with acceptable safety outcomes in a young female.

Keywords: Solar retinopathy, Suprachoroidal, Injection, Triamcinolone acetonide, Efficacy, Visual loss

Background
Solar retinopathy is an injury of retinal tissues owing to photochemical toxicity in the fovea, induced from solar or eclipse gazing, causing a reduction of central vision [1]. Patients who suffer from solar retinopathy may experience central scotoma, photophobia, and chromatopsia [2]. In addition, the absorbed sunlight to the melanin located in the retinal pigment epithelium (RPE) cells induces thermal and photochemical injury to the photoreceptors and RPE cells [3].

In our case, we report a young female suffering from solar retinopathy who presented to an ophthalmic clinic after central visual loss for 4 weeks.

Case presentation
A 17-year-old Caucasian female presented to a private ophthalmic clinic with a complaint of decreased vision for 6 weeks because the patient gazed at the sun to take a “selfie.” The patient never smoked, nor was she a regular user of alcohol. The patient was healthy and reported no significant prior medical or family history. One month ago, the patient was referred to a hospital where her best-corrected visual acuity (BCVA) was 0.1. The optical coherence tomography (OCT) scans showed an ellipsoid zone and interdigitation zone disruption, with an increased hyperreflectivity of the overlying tissues due to the inflammation process (Fig. 1A). However, no fundus images were available from her first clinical examination in the hospital.

When the patient visited the private clinic, the BCVA of her right eye was 0.4 (with refraction −0.75 × 173),
whereas the BCVA of her left eye was 1.0 (with refraction +1.75/−1.00 × 9). Clinical examination showed unremarkable features in the anterior segment of both eyes. Fundus examination showed a dull foveal reflex in the right eye, while the left eye was normal. OCT scans of the right eye showed ellipsoid zone and interdigitation zone disruption with hyperreflectivity of overlying tissues (Fig. 1B). However, the lesion was less intense than the acute phase. OCT scans of the left eye were normal.

After that, a consultation with the patient’s parents to do a suprachoroidal injection of triamcinolone with a custom-made needle was explained by declaring that this procedure may cause an elevation of intraocular pressure or/and form cataract, and informed consent from her parents was taken.

The next day, the suprachoroidal injection was done without any complications. After 1 week, the patient’s BCVA was 0.7, and the OCT image showed a signal of reappearance in the ellipsoid zone (Fig. 1C). After 12 weeks, the patient’s BCVA was 0.8. OCT imaging presented a resolution of the overlying increased reflectivity, with the presence of the ellipsoid zone integrity and persistent discontinuity of interdigitation zones (Fig. 1F). Four months of follow-up showed full recovery in the BCVA (1.0) and the retina (Fig. 1G).

During 12 weeks of follow-up, there were no vision-threatening complications. However, intraocular pressure (IOP) increased to 28 mmHg in the seventh week, and was controlled by topical eye drops (timolol) to be 15 mmHg.

The tools needed to make this injection manually are scissors, calipers, blade, Luer slip syringe, 30-gauge needle, irrigating cannula, and needle-nose pliers (Fig. 2A). First, we measured the needle’s full length, including the part embedded in the plastic; (Fig. 2B). Then, we prepared the plastic stopper by measuring 2.5 mm (less than 1 mm for the needle, and 1.5 mm was added) (Fig. 2C). First, however, the blade was used to cut the syringe according to the measurements (Fig. 2D). After that, we prepared the stopper’s rubber part by using scissors to
remove the rubber seal’s ramifications (Fig. 2E). Next, the rubber stopper was installed on the prepared plastic Luer slip, which will permit only 1000 microns from the 30-gauge needle to penetrate the sclera (Fig. 2F). Next, the needle-nose pliers were used to straighten the irrigating cannula (Fig. 2G), and they were impaled in the rubber seal through the rubber ring (Fig. 2H) and used as a guide to putting the 30-gauge needle out of the rubber seal (Fig. 2I). Finally, the plastic Luer slip was fixed to the plastic part of the 30-gauge needle (Fig. 2J).

After sterilizing the epidermis around the eye, we administered the suprachoroidal injection in sterile conditions, including eyelids and lashes. The injection site was in the temporal quadrant. We measured 4 mm from the limbus using calipers (Fig. 3A) and injected 0.1 ml triamcinolone inside the suprachoroidal space (SCS) (Fig. 3B). The needle was withdrawn obliquely from the eye (Fig. 3C).
Discussion and conclusion
In this case, solar retinopathy was confirmed with clinical examination and OCT, which showed disruption and discontinuity of the ellipsoid zone, interdigitation zone, and increased reflectivity of the overlying tissue at acute presentation.

Solar retinopathy has been reported as a self-limited disease with recovery within weeks; however, others reported some cases with persistent central scotoma and reduced vision [4, 5]. The variation in outcomes may be due to the difference between levels of damage in retinal tissues and the sun exposure duration [2].

In one study, Atmaca et al. evaluated 40 eyes after eclipse retinopathy, and only 35% regained vision of 20/20 spontaneously [6]. In our case, the patient did not spontaneously achieve full visual or anatomical recovery, and the treatment with suprachoroidal triamcinolone was decided.

There is no established treatment for solar retinopathy, and some reports suggested that steroid therapy could suppress the co-existing inflammatory reaction from photopic injury [7, 8]. Nakamura et al. reported the improvement of anatomical and functional outcomes after systemic prednisolone and posterior sub-tenon triamcinolone in more severe eye presentation, which suggested the role of steroids in suppressing inflammatory reaction shortening the clinical course in subacute solar retinopathy cases [9].

Our case showed an anatomic improvement, a resolution of overlying retinal tissue reaction, a reappearance of the ellipsoid zone’s signal, a persistent discontinuity of the interdigitation zone, and an improved vision to 1.0 within 4 months post-suprachoroidal injection of triamcinolone.

The purpose of this case report is to draw attention to the clinical efficacy of suprachoroidal triamcinolone injection in subacute solar retinopathy. First, however, a prospective randomized multi-center clinical trial with a larger sample and longer follow-up duration is needed.

Availability of data and materials
The datasets used and/or analyzed in the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
It is not required for case reports. Single case reports are exempt from ethical approval in our institution.

Consent for publication
Written informed consent was obtained from the patient’s legal guardian(s) for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Retina Specialist at Marashi Eye Clinic, Aleppo, Syria. 2 Ophthalmic Resident at Aleppo Eye Surgical Hospital, Aleppo, Syria. 3 Faculty of Medicine, University of Aleppo, Alhamadaniah Aleppo, Syria.

Received: 5 April 2021 Accepted: 20 October 2021 Published online: 02 December 2021

References
1. Youssef PN, Sheibani N, Albert DM. Retinal light toxicity. Eye. 2011;25(1):1–4. https://doi.org/10.1038/eye.2010.149.
2. Yannuzzi LA, Fisher YL, Krueger A, Slakter J. Solar retinopathy: a photobiological and geophysical analysis. Trans Am Ophthalmol Soc. 1987;85:120.
3. Tso MO, La Piana FG. The human fovea after sungazing. Transactions. Section on Ophthalmology. Am Acad Ophthalmol Otolaryngol. 1975;79(6):788–95.
4. Eke T, Wong SC. Resolution of visual symptoms in eclipse retinopathy. Lancet. 2001;358(9282):674.
5. Akay F, Toyran S, Oztas Z, Koksal S. Long-term choroidal thickness changes after acute solar retinopathy. Ophthalmic Surg Lasers Imaging Retina. 2015;46(7):738–42. https://doi.org/10.3928/23258160-20150730-08.
6. Atmaca LS, Idil A, Can D. Early and late visual prognosis in solar retinopathy. Graefes Arch Clin Exp Ophthalmol. 1995;233(12):801–4. https://doi.org/10.1007/BF00184094.
7. MacFaul PA. Visual prognosis after solar retinopathy. Br J Ophthalmol. 1969;53(8):534. https://doi.org/10.1136/bjo.53.8.534.
8. Shirley SY. Solar retinitis. Can Med Assoc J. 1963;89(3):134.
9. Nakamura M, Komatsu K, Katagiri S, Hayashi T, Nakano T. Reconstruction of photoreceptor outer layers after steroid therapy in solar retinopathy. Case Rep Ophthalmol Med. 2018;11:2018. https://doi.org/10.1155/2018/7850467.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations
SCS: Suprachoroidal space; OCT: Optical coherence tomography; BCVA: Best-corrected visual acuity; RPE: Retinal pigment epithelium; IOP: Intraocular pressure.

Acknowledgements
Not applicable.

Authors’ contributions
AM was the ophthalmic supervisor, managed the patient, and performed the intervention. MB collected the data, and drafted and revised the manuscript. AZ analyzed and interpreted the patient data and wrote the manuscript. All authors read and approved the final manuscript.

Funding
There are no sources of funding.