Cell type-specific Nrf2 expression in MS lesions

Acta Neuropathologica

Simon Licht-Mayer¹, Isabella Wimmer¹, Sarah Traffehn², Imke Metz², Wolfgang Brück², Jan Bauer¹, Monika Bradl¹, Hans Lassmann¹

¹: Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Austria
²: Institute of Neuropathology, University of Göttingen, Germany

All correspondence to:
Prof. Dr. Hans Lassmann
Center for Brain Research
Medical University of Vienna
Spitalgasse 4
A-1090 Wien
Tel.: +43 1 40160 34200
Fax.: +43 1 40160 934203
e-mail: hans.lassmann@meduniwien.ac.at
Supplementary Figure 1:

Slowly expanding (smoldering) lesion in primary progressive multiple sclerosis (MS21) stained for KEAP1 (immunohistochemistry). a) KEAP1 reactivity is seen in cells at the active lesion edge (left), while only few cells are present in the inactive lesion center (x 100); b-d) Higher magnification images from the same tissue sections showing immunoreactivity exclusively in the cytoplasm, but no reactivity within the nucleus. Reactivity is seen in different cells, including astrocytes (b) and oligodendrocytes and macrophages (c). In the normal appearing white matter, distant from active lesions immunoreactivity within cells is very low (d); x: 1000.
Supplementary Table 1: Expression of Nrf2-responsive genes in multiple sclerosis

Expression	MS white matter	MS cortex						
	Fold-change	Fold-change						
	Control/PPWM/C	Initial/C/Active/C	MS/C/MS38/C					
Group 1								
PGD¹	11.1	-1.10	20.62	-1.35	-2.00	-1.38	NM_002631	Phosphogluconate dehydrogenase
GNA2B	6.0	2.27	12.60	3.25	-1.32	-1.67	NM_002070	Nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 2, transcript variant 1
FTH1³,⁴,⁵	8.8	1.45	6.04	1.41	1.40	2.23	NM_002032	Ferritin, heavy polypeptide 1
ERP29³	6.4	2.87	4.41	4.76	-1.99	-2.31	NM_006187	Endoplasmic reticulum protein 29, transcript variant 1
TXN³,⁴,⁵	7.2	1.60	4.02	1.23	7.09	17.71	NM_003329	Thioredoxin, transcript variant 1
ANKRD11	5.9	2.21	3.91	1.01	-1.57	-1.08	NM_013275	Ankyrin repeat domain 11
GATA3	12.5	1.25	3.41	1.93	-3.71	-4.21	NM_01002295	GATA binding protein 3, transcript variant 1
FTL³,⁴,⁵	4.2	5.02	3.34	3.47	-1.07	1.29	NM_000146	Ferritin, light polypeptide
HBG1	5.4	1.26	3.10	2.48	-1.04	-1.67	NM_006559	Hemoglobin, gamma A
BACH1	4.1	-1.11	2.64	-1.02	-1.66	-2.25	NM_106866	BTB and CNC homology 1, basic leucine zipper transcription factor 1, transcript variant 1
PPARG	7.9	-1.14	2.29	-1.04	-1.18	-1.40	NM_138711	Peroxisome proliferator-activated receptor gamma, transcript variant 3
GCS²	5.0	1.01	2.10	1.75	-1.05	-1.15	NM_006366	Gamma-glutamylcysteine synthetase
PRDX1³,⁴,⁵	10.4	-1.12	2.06	1.43	-2.52	-3.03	NM_002574	Peroxiredoxin 1, transcript variant 1
UNKL	10.0	4.00	1.96	1.42	-1.52	-1.35	NM_01037125	Unkempt homolog (Drosophila)-like, transcript variant 2
USP14²	4.1	1.38	1.93	1.20	-1.68	-1.43	NM_005151	Ubiquitin specific peptidase 14 (RNA-guanine transglycosylase), transcript variant 1
TALDO1	7.5	-1.68	1.72	-1.00	2.75	3.07	NM_006755	Transaldolase 1
FECH	6.3	1.02	1.71	1.47	1.78	1.70	NM_01012515	Ferrochelatase (FECH), transcript variant 1
AMB1	5.0	4.59	1.37	1.55	-2.82	-2.86	NM_001633	Alpha-1-microglobulin/bikunin precursor

Group 2

Expression	MS white matter	MS cortex						
	Fold-change	Fold-change						
	Control/PPWM/C	Initial/C/Active/C	MS/C/MS38/C					
TXNRD2	18.9	1.88	5.85	1.17	-1.53	-1.96	NM_006440	Thioridox reductase 2
CCT7	18.1	3.70	5.45	14.30	-5.54	-2.98	NM_006429	Chaperonin containing TCP1, subunit 7 (eta), transcript variant 1
OSGIN1	14.8	-1.42	5.32	-1.19	-1.04	-1.15	NM_182981	Oxidative stress induced growth inhibitor 1
GNPDA1	28.1	6.61	5.10	3.38	-3.69	-4.46	NM_005471	Glucosamine-6-phosphate deaminase 1
HMOI³,⁴,⁵	1689.4	-2.44	3.85	2.17	129.23	254.91	NM_002133	Heme oxygenase (decycling) 1
BMP10	22.6	2.64	2.70	-1.15	-1.09	-1.70	NM_014482	Bone morphogenetic protein 10
GSTP1³,⁴,⁵	22441.9	-4.92	2.40	1.78	4.09	4.54	NM_000852	Glutathione S-transferase pi 1
SLC3A2	124.2	-12.69	2.34	2.77	2.96	3.54	NM_001012662	Solute carrier family 3 (activators of dibasic and neutral amino acid transport), member 2, transcript variant 2
MT2A	201.9	-9.27	2.16	1.83	7.82	16.38	NM_005953	Metallothionein 2A
ALDH2²	14.6	-1.86	2.05	1.53	1.11	1.39	NM_000690	Aldehyde dehydrogenase 2 family (mitochondrial), transcript variant 1
CYP1A1	28.7	1.17	1.76	1.64	-1.61	-1.51	NM_000499	Cytochrome P450, family 1, subfamily A, polypeptide 1
SOD3	71.0	-1.96	1.63	-1.01	3.08	8.01	NM_003102	Superoxide dismutase 3, extracellular
Gene	Description	Fold Change	p-value	Fold Change				
----------------------	---	-------------	---------	-------------				
KIF3 family member C3, transcript variant 1	Kinesin family member C3, transcript variant 1	167.0	1.69	1.57				
VCP	Valosin containing protein	23.1	1.05	1.43				
ME1 family member	Malic enzyme, NADP(+)-dependent, cytosolic	90.7	-2.12	1.26				
HERPUD1 family member	Homocysteine-inducible, endoplasmic reticulum stress-inducible, ubiquitin-like domain member 1, transcript variant 1	121.3	-22.51	1.13				
IDH1	Isocitrate dehydrogenase 1 (NADP+), soluble	14.3	2.47	1.01				
MT1E	Metallothionein 1E	208.0	-3.20	-1.07				
CLPP	ClpP caseinolytic peptidase, ATP-dependent, proteolytic subunit homolog (E. coli)	86.1	-5.26	-1.15				
SOD1	Superoxide dismutase 1, soluble	102.9	-3.47	-1.24				
GPX2	Glutathione peroxidase 2 (gastrointestinal)	85.1	1.20	-1.26				
STIP1	Stress-induced-phosphoprotein 1 (STIP1)	13.2	-1.42	-1.29				
UNKL	Unkempt homolog (Drosophila)-like, transcript variant 1	157.5	-1.43	-1.35				
GSR	Glutathione reductase, transcript variant 1	10.2	1.02	-1.41				
UBB	Ubiquitin B	184.2	-1.12	-1.45				
SQSTM1	Sequestosome 1, transcript variant 1	8.8	4.41	-1.56				
RXRA	Retinoid X receptor, alpha	61.4	-1.97	-1.59				
GSTA3	Glutathione S-transferase alpha 3	75.2	-2.11	-1.64				
GPI	Glucose-6-phosphate isomerase, transcript variant 2	529.6	-12.10	-1.83				
FMO1	Flavin containing monoxygenase 1	403.4	-1.40	-1.85				
MT1A	Metallothionein 1A	167.0	-1.28	-1.97				
ETSI family member	V-ets erythroblastosis virus E26 oncogene homolog 1 (avian), transcript variant 2	10.3	-1.48	-2.00				
ABCG6	ATP-binding cassette, sub-family B (MDR/TAP), member 6	25.0	-2.15	-2.07				
HBE1	Hemoglobin, epsilon 1	46.5	-1.48	-2.08				
FKBP5	FK506 binding protein 5, transcript variant 1	21.5	-1.33	-3.04				
TFE3	Transcription factor binding to IGHM enhancer 3	908.7	1.20	-7.41				

Group 3

Gene	Description	Fold Change	p-value	Fold Change
SH3TC1 family variant 1	SH3 domain and tetratricopeptide repeats 1	4.0	1.02	1.48
CBR1 family member	Carbonyl reductase 1	4.6	2.05	1.45
NUP62 family member	Nucleoporin 62kDa, transcript variant 1	3.8	2.34	1.39
CAT family member	Catalase	5.0	1.60	1.37
NDUFAD1 family member 1	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, assembly factor 4	4.2	-1.03	1.27
CPEB3 family member	Cytoplasmic polyadenylation element binding protein 3, transcript variant 1	3.9	1.14	1.27
DNAJC1 family member 1	DNA (Hsp40) homolog, subfamily A, member 1	12.9	1.11	1.31
HST1H4H family member	Histone cluster 1, H4h	4.0	1.10	1.30
NQO2 family member	NAD(P)H dehydrogenase, quinone 2	3.8	-1.05	1.29
PPARGClB family member	Peroxisome proliferator-activated receptor gamma, coactivator 1 beta, transcript variant 1	4.1	1.05	1.29
RBX1 family member	Ring-box 1, E3 ubiquitin protein ligase	5.2	2.04	1.23
GCLC family member	Glutamate-cysteine ligase, catalytic subunit, transcript variant 1	3.8	1.02	1.20

Note: The values indicate fold change and p-value, with negative values indicating a decrease and positive values indicating an increase. The p-values indicate the significance of the change, with values below 0.05 considered significant.
Gene Symbol	Fold Change	Expression	Gene Symbol	Fold Change	Expression
GSTA5	3.7	1.21	CPEB2	5.2	-1.07
CPEB2	4.1	-1.01	G6PD	5.7	-1.36
G6PD	8.2	-1.18	AIFM2	4.1	1.08
AIFM2	3.8	1.18	UNKL	3.6	-1.01
UNKL	4.2	1.20	GSTA1	3.7	1.12
GSTA1	3.6	1.05	PIR	3.7	1.25
PIR	4.2	1.04	GDP2	3.7	1.25
GDP2	3.7	1.04	PPLAD1	5.9	-1.12
PPLAD1	3.7	1.11	NQO1	3.9	-1.02
NQO1	4.2	1.01	HTATIP2	3.9	-1.05
HTATIP2	4.2	-1.00	CUL3	4.8	1.07
CUL3	4.5	-1.05	BACH1	4.5	1.07
BACH1	4.5	-1.03	IAKR	4.5	-1.04
IAKR	4.1	-1.13	KEAP1	4.5	-1.04
KEAP1	5.5	-1.23	PSMA3	5.5	-1.34
PSMA3	10.2	1.02	GSTA2	5.9	1.11
GSTA2	7.0	-1.57	PPARGC1A	5.6	1.01
PPARGC1A	6.6	-1.63	HTATIP1	6.6	1.04
HTATIP1	7.0	-1.57	EPHX1	7.0	-1.57

The first column of the table gives the official gene symbols. Additionally, the respective literature is referenced in superscript numbers. In the second column, the mean basal expression levels within the normal white matter of control cases is depicted. The following three columns show the calculated gene expression fold-changes within the periplaque white matter (PP), initial (prephagocytic) lesions (I) and active demyelinating lesions (A) in comparison with the normal white matter of controls. Thereafter, the calculated gene expression fold-changes within active cortical lesions from all three evaluated MS cases (All) or a single MS case (MS15) in comparison with the normal grey matter of control cases are shown.

The Nrf2-responsive genes are categorized according to their basal expression in the NWM of controls and expression fold-changes in MS lesions in comparison with the respective control tissue. **Group 1** represents Nrf2-responsive genes that show a low basal expression in the NWM of controls, but were up-regulated in the zones of initial demyelination, while their expression was lower in the NAWM and the demyelinated part of the active lesion. The second pattern (**Group
2) consists of genes, which are expressed in high levels in the NWM of controls. Genes within group 3 show a very low basal expression in the NWM of controls and do not show any dynamic expression changes in MS lesions.
Supplementary References:

1. Chorley BN, Campbell MR, Wang X, Karaca M, Sambandan D, Bangura F, Xue P, Pi J, Kleeberger SR, Bell DA. Identification of novel Nrf2-regulated genes by ChIP-Seq: influence on retinoid X receptor alpha. Nucleic Acids Res. 2012 Aug;40(15):7416-29. doi: 10.1093/nar/gks409. Epub 2012 May 11.

2. Córdova EJ, Martínez-Hernández A, Uribe-Figueroa L, Centeno F, Morales-Marín M², Koneru H, Coleman MA, Orozco L. The Nrf2-KEAP1 pathway is an early responsive gene network in arsenic exposed lymphoblastoid cells. PLoS One. 2014 Feb 7;9(2):e88069. doi: 10.1371/journal.pone.0088069. eCollection 2014.

3. Taylor RC, Acquaah-Mensah G, Singhal M, Malhotra D, Biswal S. Network inference algorithms elucidate Nrf2 regulation of mouse lung oxidative stress. PLoS Comput Biol. 2008 Aug 29;4(8):e1000166. doi: 10.1371/journal.pcbi.1000166.

4. Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013 Dec;12(12):931-47. doi: 10.1038/nrd4002.

5. Niture SK, Khatri R, Jaiswal AK. Regulation of Nrf2-an update. Free Radic Biol Med. 2014 Jan;66:36-44. doi: 10.1016/j.freeradbiomed.2013.02.008. Epub 2013 Feb 19.

6. Jyrkkänen HK, Kuosmanen S, Heinäniemi M, Laitinen H, Kansanen E, Mella-Aho E, Leinonen H, Ylä-Herttuala S, Levonen AL. Novel insights into the regulation of antioxidant-response-element-mediated gene expression by electrophiles: induction of the transcriptional repressor BACH1 by Nrf2. Biochem J. 2011 Dec 1;440(2):167-74. doi: 10.1042/BJ20110526.

7. Cook AL, Vitale AM, Ravishankar S, Matigian N, Sutherland GT, Shan J, Sutharsan R, Perry C, Silburn PA, Mellick GD, Whitelaw ML, Wells CA, Mackay-Sim A, Wood SA. NRF2 activation restores disease related metabolic deficiencies in olfactory neurosphere-derived cells from patients with sporadic Parkinson’s disease. PLoS One. 2011;6(7):e21907. doi: 10.1371/journal.pone.0021907. Epub 2011 Jul 1.

8. Wilson LA, Gemin A, Espiritu R, Singh G. ets-1 is transcriptionally up-regulated by H2O2 via an antioxidant response element. FASEB J. 2005 Dec;19(14):2085-7. Epub 2005 Oct 18.

9. Malhotra D, Portales-Casamayor E, Singh A, Srivastava S, Arenillas D, Happel C, Shyr C, Wakabayashi N, Kensler TW, Wasserman WW, Biswal S. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. Nucleic Acids Res. 2010 Sep;38(17):5718-34. doi: 10.1093/nar/gkq212. Epub 2010 May 11.

10. Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S. Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res. 2002 Sep 15;62(18):5196-203.

11. Whitman SA, Long M, Wondrak GT, Zheng H, Zhang DD. Nrf2 modulates contractile and metabolic properties of skeletal muscle in streptozotocin-induced diabetic atrophy. Exp Cell Res. 2013 Oct 15;319(17):2673-83. doi: 10.1016/j.yexcr.2013.07.015. Epub 2013 Jul 27.