PRIMERA: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

Wen Xiao†∗, Iz Beltagy‡, Giuseppe Carenini†, Arman Cohan‡§

†University of British Columbia, Vancouver, Canada
‡Allen Institute for AI, Seattle, WA, USA
§Paul G. Allen School of Computer Science & Engineering, University of Washington

{xiaowen3,carenini}@cs.ubc.ca, {beltagy,armanc}@allenai.org

Abstract

We introduce PRIMERA, a pre-trained model for multi-document representation with a focus on summarization that reduces the need for dataset-specific architectures and large amounts of fine-tuning labeled data. PRIMERA uses our newly proposed pre-training objective designed to teach the model to connect and aggregate information across documents. It also uses efficient encoder-decoder transformers to simplify the processing of concatenated input documents. With extensive experiments on 6 multi-document summarization datasets from 3 different domains on zero-shot, few-shot and full-supervised settings, PRIMERA outperforms current state-of-the-art dataset-specific and pre-trained models on most of these settings with large margins.¹

1 Introduction

Multi-Document Summarization is the task of generating a summary from a cluster of related documents. State-of-the-art approaches to multi-document summarization are primarily either graph-based (Liao et al., 2018; Li et al., 2020; Pasunuru et al., 2021), leveraging graph neural networks to connect information between the documents, or hierarchical (Liu and Lapata, 2019a; Fabbri et al., 2019; Jin et al., 2020), building intermediate representations of individual documents and then aggregating information across. While effective, these models either require domain-specific additional information e.g. Abstract Meaning Representation (Liao et al., 2018), or discourses graphs (Christensen et al., 2013; Li et al., 2020), or use dataset-specific, customized architectures, making it difficult to leverage pretrained language models. Simultaneously, recent pretrained language models (typically encoder-decoder transformers) have shown the advantages of pretraining and transfer learning for generation and summarization (Raffel et al., 2020; Lewis et al., 2020; Beltagy et al., 2020; Zaheer et al., 2020). Yet, existing pretrained models either use single-document pretraining objectives or use encoder-only models that do not work for generation tasks like summarization (e.g., CDLM, Caciularu et al., 2021).

Therefore, we argue that these pretrained models are not necessarily the best fit for multi-document summarization. Alternatively, we propose a simple pretraining approach for multi-document summarization, reducing the need for dataset-specific architectures and large fine-tuning labeled data (See Figure 1 to compare with other pretrained models). Our method is designed to teach the model to identify and aggregate salient information across a “cluster” of related documents during pretraining. Specifically, our approach uses the Gap Sentence Generation objective (GSG) (Zhang et al., 2020), i.e. masking out several sentences from the input document, and recovering them in order in the decoder. We propose a novel strategy for GSG sentence masking which we call, Entity Pyramid, inspired by the Pyramid Evaluation method (Nenkova and Passonneau, 2004). With Entity Pyramid, we mask salient sentences in the entire cluster then train the model to generate them, encouraging it to find important information across documents and aggregate it in one summary.

We conduct extensive experiments on 6 multi-document summarization datasets from 3 different domains. We show that despite its simplic-
ity, PRIMERA achieves superior performance compared with prior state-of-the-art pretrained models, as well as dataset-specific models in both few-shot and full fine-tuning settings. PRIMERA performs particularly strong in zero- and few-shot settings, significantly outperforming prior state-of-the-art up to 5 Rouge-1 points with as few as 10 examples. Our contributions are summarized below:

1. We release PRIMERA, the first pretrained generation model for multi-document inputs with focus on summarization.
2. We propose Entity Pyramid, a novel pretraining strategy that trains the model to select and aggregate salient information from documents.
3. We extensively evaluate PRIMERA on 6 datasets from 3 different domains for zero-shot, few-shot and fully-supervised settings. We show that PRIMERA outperforms current state-of-the-art on most of these evaluations with large margins.

2 Model

In this section, we discuss our proposed model PRIMERA, a new pretrained general model for multi-document summarization. Unlike prior work, PRIMERA minimizes dataset-specific modeling by simply concatenating a set of documents and processing them with a general efficient encoder-decoder transformer model (§2.1). The underlying transformer model is pretrained on an unlabeled multi-document dataset, with a new entity-based sentence masking objective to capture the salient information within a set of related documents (§2.2).

2.1 Model Architecture and Input Structure

Our goal is to minimize dataset-specific modeling to leverage general pretrained transformer models for the multi-document task and make it easy to use in practice. Therefore, to summarize a set of related documents, we simply concatenate all the documents in a single long sequence, and process them with an encoder-decoder transformer model. Since the concatenated sequence is long, instead of more standard encoder-decoder transformers like BART (Lewis et al., 2020) and T5 (Raffel et al., 2020), we use the Longformer-Encoder-Decoder (LED) Model (Beltagy et al., 2020), an efficient transformer model with linear complexity with respect to the input length.\(^2\) LED uses a sparse local+global attention mechanism in the encoder self-attention side while using the full attention on decoder and cross-attention.

When concatenating, we add special document separator tokens \(<\text{doc-sep}>\) between the documents to make the model aware of the document boundaries (Figure 2). We also assign global attention to these tokens which the model can use to share information across documents (Caciularu et al., 2021) (see §5 for ablations of the effectiveness of this input structure and global attention).

2.2 Pretraining objective

In summarization, task-inspired pretraining objectives have been shown to provide gains over general-purpose pretrained transformers (PEGASUS; Zhang et al., 2020). In particular, PEGASUS introduces Gap Sentence Generation (GSQ) as a pretraining objective where some sentences are masked in the input and the model is tasked to generate them. Following PEGASUS, we use the GSG objective, but introduce a new masking strategy designed for multi-document summarization. As in GSG, we select and mask out \(m\) summary-like sentences from the input documents we want to summarize, i.e. every selected sentence is replaced by a...
The Principle method computes sentence salience and selects sentences using a score based on ROUGE score of each sentence, \[\text{Score}(s_i) = \text{ROUGE}(s_i, D/\{s_i\}) \]. Intuitively, this assigns a high score to the sentences that have a high overlap with the other sentences.

To address this limitation, we propose a new masking strategy inspired by the Pyramid Evaluation framework (Nenkova and Passonneau, 2004) which was originally developed for evaluating summaries with multiple human written references. Our strategy aims to select sentences that best represent the entire cluster of input documents.

2.2.1 Entity Pyramid Masking

Pyramid Evaluation The Pyramid Evaluation method (Nenkova and Passonneau, 2004) is based on the intuition that relevance of a unit of information can be determined by the number of references (i.e. gold standard) summaries that include it. The unit of information is called Summary Content Unit (SCU); words or phrases that represent single facts. These SCUs are first identified by human annotators in each reference summary, and they receive a score proportional to the number of reference summaries that contain them. A Pyramid Score for a candidate summary is then the normalized mean of the scores of the SCUs that it contains. One advantage of the Pyramid method is that it directly assesses the content quality.

Entity Pyramid Masking Inspired by how content saliency is measured in the Pyramid Evaluation, we hypothesize that a similar idea could be applied in multi-document summarization to identify salient sentences for masking. Specifically, for a cluster with multiple related documents, the more documents an SCU appears in, the more salient that information should be to the cluster. Therefore, it should be considered for inclusion in the pseudo-summary in our masked sentence generation objective. However, SCUs in the original Pyramid Evaluation are human-annotated, which is not feasible for large scale pretraining. As a proxy, we explore leveraging information expressed as named entities, since they are key building blocks in extracting information from text about events/objects and the relationships between their participants/parts (Jurafsky and Martin, 2009). Following the Pyramid...
As we aim to select the entities better representing (2021) that utilize additional information (like named entities, coref, discourse, or AMR) at fine-tuning and inference time. This is unlike some prior work (e.g. Pasunuru et al. (2021)) that utilize additional information (like named entities, coref, discourse, or AMR) at fine-tuning and inference time.

Figure 4: The Entity Pyramid Strategy to select salient sentences for masking. Pyramid entity is based on the frequency of entities in the documents. The most representative sentence are chosen based on Cluster ROUGE for each entity with frequency > 1, e.g. Sentence 10 in Document 2 for Entity 1.

Algorithm 1 Entity Pyramid Sentence Selection

Input: Document cluster
Entity Pyramid Estimation
frequency: 4

| Doc 1: (Entity 1, Entity 2, Entity 8) |
| Doc 2: (Entity 1, Entity 4, Entity 5) |
| Doc 3: (Entity 1, Entity 2, Entity 3, Entity 6, Entity 7) |
| Doc 4: (Entity 3, Entity 5, Entity 6, Entity 8) |

Sentence Selection
sentences to mask

| Doc 1: Sent 2, Sent 6, ... |
| Doc 2: Sent 10, ... |
| Doc 3: ... |
| Doc 4: / |

framework, we use the entity frequency in the cluster as a proxy for saliency. Concretely, as shown in Fig. 4, we have the following three steps to select salient sentences in our masking strategy:

1. **Entity Extraction**. We extract named entities using SpaCy (Honnibal et al., 2020).

2. **Entity Pyramid Estimation**. We then build an Entity Pyramid for estimating the salience of entities based on their document frequency, i.e. the number of documents each entity appears in.

3. **Sentence Selection**. Similar to the Pyramid evaluation framework, we identify salient sentences with respect to the cluster of related documents. Algorithm 1 shows the sentence selection procedure. As we aim to select the entities better representing the whole cluster instead of a single document, we first remove all entities from the Pyramid that appear only in one document. Next, we iteratively select entities from top of the pyramid to bottom (i.e., highest to lowest frequency), and then select sentences in the document that include the entity as the initial candidate set. Finally, within this candidate set, we find the most representative sentences to the cluster by measuring the content overlap of the sentence w.r.t documents other than the one it appears in. This final step supports the goal of our pre-training objective, namely to reconstruct sentences that can be recovered using information from other documents in the cluster, which encourages the model to better connect and aggregate information across multiple documents. Following Zhang et al. (2020) we use ROUGE scores (Lin, 2004) as a proxy for content overlap. For each sentence s_i, we specifically define a Cluster ROUGE score as $Score(s_i) = \sum_{doc_j \in C, s_i \notin doc_j} ROUGE(s_i, doc_j)$ Where C is the cluster of related documents.

Note that different from the importance heuristic defined in PEGASUS (Zhang et al., 2020), Entity Pyramid strategy favors sentences that are representative of more documents in the cluster than the exact matching between fewer documents (See Figure 3 for a qualitative example.). The benefit of our strategy is shown in an ablation study (\S5).

3 Experiment Goals

We aim to answer the following questions:

- Q1: How does PRIMERA perform, compared with existing pre-trained generation models in zero- and few-shot settings? See \S4.2.

- Q2: How does PRIMERA perform, compared with current state-of-the-art models, in the fully supervised setting? See \S4.5.

- Q3: How much is the contribution of each component in PRIMERA, i.e. input structure, pretraining, and masking strategy? See \S.

- Q4: What is the effect of our entity pyramid
strategy, compared with the strategy used in PEGASUS? See §5.

• Q5: Is PRIMERA able to capture salient information and generate fluent summaries? See §6.

With these goals, we explore the effectiveness of PRIMERA quantitatively on multi-document summarization benchmarks, verify the improvements by comparing PRIMERA with multiple existing pretrained models and SOTA models, and further validate the contribution of each component with carefully controlled ablations. An additional human evaluation is conducted to show PRIMERA is able to capture salient information and generate more fluent summaries.

4 Experiments

4.1 Experimental Setup

Implementation Details We use the Longformer-Encoder-Decoder (LED) (Beltagy et al., 2020) large as our model initialization, the length limits of input and output are 4096 and 1024, respectively, with sliding window size as $w = 512$ for local attention in the input. (More implementation details of pretraining process can be found in Appx §A)

Pretraining corpus For pretraining, our goal is to use a large resource where each instance is a set of related documents without any ground-truth summaries. The Newshead dataset (Gu et al., 2020) (row 1, Table 1) is an ideal choice; it is a relatively large dataset, where every news event is associated with multiple news articles.

Evaluation Datasets We evaluate our approach on wide variety of multi-document summarization datasets plus one single document dataset from various domains (News, Wikipedia, and Scientific literature). See Table 1 for dataset statistics and Appx. §B for details of each dataset.

Evaluation metrics Following previous works (Zhang et al., 2020), we use ROUGE scores (R-1, -2, and -L), which are the standard evaluation metrics, to evaluate the downstream task of multi-document summarization. For better readability, we use AVG ROUGE scores (R-1, -2, and -L) for evaluation in the few-shot setting.

4.2 Zero- and Few-shot Evaluation

Many existing works in adapting pretrained models for summarization require large amounts of fine-tuning data, which is often impractical for new domains. In contrast, since our pretraining strategy is mainly designed for multi-document summarization, we expect that our approach can quickly adapt to new datasets without the need for significant fine-tuning data. To test this hypothesis, we first provide evaluation results in zero and few-shot settings where the model is provided with no, or only a few (10 and 100) training examples. Obtaining such a small number of examples should be viable in practice for new datasets.

Comparison To better show the utility of our pretrained models, we compare with three state-of-the-art pretrained generation models: BART (Lewis et al., 2020)5, PEGASUS (Zhang et al., 2020) and Longformer-Encoder-Decoder(LED) (Beltagy et al., 2020). These pretrained models have been shown to outperform dataset-specific models in summarization (Lewis et al., 2020; Zhang et al., 2020), and because of pretraining, they are expected to also work well in the few-shot settings. As there is no prior work doing few-shot and zero-shot evaluations on all the datasets we consider, and also the results in the few-shot setting might be influenced by sampling variability (especially with only 10 examples) (Bragg et al., 2021), we run the same experiments for the compared models five times with different random seeds (shared with all the models), with the publicly available checkpoints.6

Similar to Pasunuru et al. (2021), the inputs of all the models are the concatenations of the documents within the clusters (in the same order), each document is truncated based on the input length limit divided by the total number of documents so we use https://github.com/google-research/google-research/tree/master/rouge with default stemmer settings.

5Pilot experiments comparing BART and T5 showed BART to outperform T5 on the few-shot evaluation of MultiNews (with AVG ROUGE of 23.5/26.4 (T5) v.s. 25.2/26.7 (BART) for 10/100 training examples, respectively). Thus, we are using BART as one of the baselines.

6Checkpoints from https://huggingface.co/models
that all documents are represented in the input. 7

To preserve the same format as the corresponding pretrained models, we set the length limit of output for BART and PEGASUS exactly as their pretrained settings on all of the datasets (except for the zero-shot experiments, the details can be found in Sec.4.3). Regarding length limit of inputs, we tune the baselines by experimenting with 512, 1024, 4096 on Multi-News dataset in few-shot settings. Thus to better control the length of generated summaries and for a fair comparison between all models, following Zhu et al. (2021), we set the length limit of the output at inference time to the average length of gold summaries.9 Exploring other approaches to controlling length at inference time (e.g., Wu et al., 2021) is an orthogonal direction, which we leave for future work.

Table 2 shows the performance comparison among all the models. Results indicate that our model achieves substantial improvements compared with all the three baselines on most of the datasets. As our model is pretrained on clusters of documents with longer input and output, the benefit is stronger on the dataset with longer summaries, e.g. Multi-News and arXiv. Comparing PEGASUS and BART models, as the objective of PEGASUS is designed mainly for summarization tasks, not surprisingly it has relatively better performances across different datasets. Interestingly, LED underperforms other models, plausibly since part of the positional embeddings (1k to 4k) are not pretrained. Encouragingly, our model performs the best, demonstrating the benefits of our pretraining strategy for multi-document summarization.

4.4 Few Shot Evaluation

Compared with the strict zero-shot scenario, few-shot experiments are closer to the practical scenarios, as it is arguably affordable to label dozens of examples for almost any application.

Table 2 shows the performance comparison among all the models. Results indicate that our model achieves substantial improvements compared with all the three baselines on most of the datasets. As our model is pretrained on clusters of documents with longer input and output, the benefit is stronger on the dataset with longer summaries, e.g. Multi-News and arXiv. Comparing PEGASUS and BART models, as the objective of PEGASUS is designed mainly for summarization tasks, not surprisingly it has relatively better performances across different datasets. Interestingly, LED underperforms other models, plausibly since part of the positional embeddings (1k to 4k) are not pretrained. Encouragingly, our model performs the best, demonstrating the benefits of our pretraining strategy for multi-document summarization.

4.4 Few Shot Evaluation

Compared with the strict zero-shot scenario, few-shot experiments are closer to the practical scenarios, as it is arguably affordable to label dozens of examples for almost any application.
We fine-tune all of the four models on different subsets with 10 and 100 examples, and the results are shown in Figure 5. (hyperparameter settings in Appx. §D.1) Since R-1, -2, and -L show the same trend, we only present the average of the three metrics in the figure for brevity (full ROUGE scores can be found in Appx. Table 8.) To show the generality, all the results of few-shot experiments are the average over 5 runs on different subsets (shared by all the models).

The result of each run is obtained by the ‘best’ model chosen based on the ROUGE scores on a randomly sampled few-shot validation set with the same number of examples as the training set, which is similar with Zhang et al. (2020). Note that their reported best models have been selected based on the whole validation set which may give PEGASUS some advantage. Nevertheless, we argue that sampling few-shot validation sets as we do here is closer to real few-shot scenarios (Bragg et al., 2021).

Our model outperforms all baselines on all of the datasets with 10 and 100 examples demonstrating the benefits of our pretraining strategy and input structure. Comparing the performances of our model with the different number of training data fed in, our model converges faster than other models with as few as 10 data examples.

4.5 Fully Supervised Evaluation

To show the advantage of our pretrained model when there is abundant training data, we also train the model with the full training set (hyperparameter settings can be found in Appx. §D.2). Table 3 shows the performance comparison with previous state-of-the-art\(^\text{10}\), along with the results of previous SOTA. We observe that PRIMERA achieves state-of-the-art results on Multi-News, WCEP, and arXiv, while slightly underperforming the prior work on Multi-XScience (R-1). One possible explanation is that in Multi-XScience clusters have less overlapping information than in the corpus on which PRIMERA was pretrained. In particular, the source documents in this dataset are the abstracts of all the publications cited in the related work paragraphs, which might be less similar to each other and the target related work (i.e., their summary). PRIMERA outperforms the LED model (State-of-the-art) on the arXiv dataset while using a sequence length 4x shorter (4K in PRIMERA v.s. 16K in LED), further showing that the pretraining and input structure of our model not only works for multi-document summarization, but can be also effective for summarizing single documents having multiple sections.

5 Ablation Study

We conduct ablation studies on the Multi-News dataset in few-shot setting, to validate the contribution of each component in our pretrained models.

Input structure: In Figure 6 (a) we observe the effectiveness of both pretraining and the input structure (\texttt{<doc-sep>} tokens between documents and global attention on them) and pretraining, (b) pretraining using PEGASUS vs our approach.

Sentence masking strategy: To isolate the effect of our proposed pretraining approach, we compare with a model with exactly the same architecture when pretrained on the same amount of data but using the PEGASUS (Zhang et al., 2020) masking strategy instead of ours. In other words, we keep all the other settings the same (e.g., data, length limit of input and output, pretraining dataset, input structure, as well as the separators) and only modify the pretraining masking strategy. We run the same experiments under zero-/few-shot scenar-

\[^{10}\text{We re-evaluate the generated summaries of the models from Lu et al. (2020) for Multi-XScience, as we use a different version of ROUGE.}\]
\[^{11}\text{Due to the lack of computational resources, we do not train the model on Wikisum.}\]

Table 3: Fully supervised results. Previous SOTA are from Pasunuru et al. (2021) for Multi-News, Lu et al. (2020) for Multi-XScience, as we use a different version of ROUGE. Note that their reported best models have been selected based on the whole validation set which may give PEGASUS some advantage. Nevertheless, we argue that sampling few-shot validation sets as we do here is closer to real few-shot scenarios (Bragg et al., 2021).

Datasets	Previous SOTA	PRIMERA
R-1	R-2	R-L
Multi-News	49.2 19.6 24.5	49.9 21.1 25.9
Multi-XScience	33.9 6.8 18.2	46.1 25.2 37.9
WCEP	35.4 15.1 25.6	47.6 20.8 42.6
arXiv	46.6 19.6 41.8	48.7 22.1 43.7

Figure 6: Ablation study with the few-shot setting on the Multi-News dataset regarding to (a) input Structure (\texttt{<doc-sep>} tokens between documents and global attention on them) and pretraining, (b) pretraining using PEGASUS vs our approach.
We also conduct human evaluations to validate the effectiveness of PRIMERA on DUC2007 and TAC2008 (Dang and Owczarzak, 2008) datasets in the few-shot setting (10/10/20 examples for train/valid/test). Both datasets consist of clusters of news articles, and DUC2007 contains longer inputs (25 v.s. 10 documents/cluster) and summaries (250 v.s. 100 words). Since the goal of our method is to enable the model to better aggregate information across documents, we evaluate the content quality of the generated summaries following the original Pyramid human evaluation framework (Nenkova and Passonneau, 2004). In addition, we also evaluate the fluency of generated summaries following the DUC guidelines.\footnote{https://www-nlpir.nist.gov/projects/duc/duc2007/quality-questions.txt}

6 Human Evaluation

We also conduct human evaluations to validate the effectiveness of PRIMERA on DUC2007 and TAC2008 (Dang and Owczarzak, 2008) datasets in the few-shot setting (10/10/20 examples for train/valid/test). Both datasets consist of clusters of news articles, and DUC2007 contains longer inputs (25 v.s. 10 documents/cluster) and summaries (250 v.s. 100 words). Since the goal of our method is to enable the model to better aggregate information across documents, we evaluate the content quality of the generated summaries following the original Pyramid human evaluation framework (Nenkova and Passonneau, 2004). In addition, we also evaluate the fluency of generated summaries following the DUC guidelines.\footnote{We recruited expert annotators with payment above average of the participants’ demographics.}

Settings Three annotators\footnote{We recruited expert annotators with payment above average of the participants’ demographics.} are hired to do both Pyramid Evaluation and Fluency evaluation, they harmonize the standards on one of the examples. Specifically, for each data example, we provide three anonymized system generated summaries, along with a list of SCUs. The annotators are asked to find all the covered SCUs for each summary, and score the fluency in terms of Grammaticality, Referential clarity and Structure & Coherence, according to DUC human evaluation guidelines, with a scale 1-5 (worst to best). They are also suggested to make comparison between three generated summaries into consideration when scoring the fluency. To control for the ordering effect of the given summaries, we re-order the three summaries for each data example, and ensure the chance of their appearance in different order is the same (e.g. BART appears as summary A for 7 times, B for 7 times and C for 6 times for both datasets). The instruction for human annotation can be found in Figure 7 and Figure 8 in the appendix. Annotators were aware that annotations will be used solely for computing aggregate human evaluation metrics and reporting in the scientific paper.

Compared Models We compare our model with LED and PEGASUS in human evaluations. Because PEGASUS is a task-specific model for abstractive summarization, and LED has the same architecture and length limits as our model with the parameters inherited from BART, which is more comparable with our model than vanilla BART.

Pyramid Evaluation Both TAC and DUC datasets include SCU (Summary Content Unit) annotations and weights identified by experienced annotators. We then ask 3 annotators to make a binary decision whether each SCU is covered in a candidate summary. Following Nenkova and Passonneau (2004), the raw score of each summary is then computed by the sum of weights of the covered SCUs, i.e. $S_r = \sum_{SCU} w_i I(SCU_i)$, where $I(SCU_i)$ is an indicator function on whether SCU_i is covered by the current summary, and w_i is the weight of SCU_i. In the original pyramid evaluation, the final score is computed by the ratio of S_r to the maximum possible weights with the same number of SCUs as in the generated summaries. However, the total number of SCUs of generated summaries is not available in the simplified annotations in our design. To take consideration of the length of generated summaries and make a fair comparison, instead, we compute Recall, Precision and F-1 score regarding lengths of both gold references and system generated summaries as

$$\begin{align*}
R &= \frac{S_r}{\text{len}(gold)} ; \\
P &= \frac{S_r}{\text{len}(sys)} ; \\
F_1 &= \frac{2 \cdot R \cdot P}{R + P}
\end{align*}$$

Fluency Evaluation Fluency results can be found in Table 5, and PRIMERA has the best performance on both datasets in terms of all aspects. Only
for Grammaticality PRIMERA’s top performance is matched by PEGASUS.

7 Related Work

Neural Multi-Document Summarization

These models can be categorized into two classes, graph-based models (Yasunaga et al., 2017; Liao et al., 2018; Li et al., 2020; Pasunuru et al., 2021) and hierarchical models (Liu and Lapata, 2019a; Fabbri et al., 2019; Jin et al., 2020). Graph-based models often require auxiliary information (e.g., AMR, discourse structure) to build an input graph, making them reliant on auxiliary models and less general. Hierarchical models are another class of models for multi-document summarization, examples of which include multi-head pooling and inter-paragraph attention (Liu and Lapata, 2019a), MMR-based attention (Fabbri et al., 2019; Mao et al., 2020), and attention across representations of different granularity (words, sentences, and documents) (Jin et al., 2020). Prior work has also shown the advantages of customized optimization in multi-document summarization (e.g., RL; Su et al., 2021). Such models are often dataset-specific and difficult to develop and adapt to other datasets or tasks.

Pretrained Models for Summarization

Pretrained language models have been successfully applied to summarization, e.g., BERTSUM (Liu and Lapata, 2019b), BART (Lewis et al., 2020), T5 (Raffel et al., 2020). Instead of regular language modeling objectives, PEGASUS (Zhang et al., 2020) introduced a pretraining objective with a focus on summarization, using Gap Sentence Generation, where the model is tasked to generate summary-worthy sentences, and Zou et al. (2020) proposed different pretraining objectives to reinstate the original document, specifically for summarization task as well. Contemporaneous work by Rothe et al. (2021) argued that task-specific pretraining does not always help for summarization, however, their experiments are limited to single-document summarization datasets. Pretraining on the titles of HTMLs has been recently shown to be useful for few-shot short-length single-document summarization as well (Aghajanyan et al., 2021). Goodwin et al. (2020) evaluate three state-of-the-art models (BART, PEGASUS, T5) on several multi-document summarization datasets with low-resource settings, showing that abstractive multi-document summarization remains challenging. Efficient pretrained transformers (e.g., Longformer (Beltagy et al., 2020) and BigBird (Zaheer et al., 2020) that can process long sequences have been also proven successful in summarization, typically by the ability to process long inputs, connecting information across the entire sequence. CDLM (Caciularu et al., 2021) is a follow-up work for pretraining the Longformer model in a cross-document setting using global attention on masked tokens during pretraining. However, this model only addresses encoder-specific tasks and it is not suitable for generation. In this work, we show how efficient transformers can be pretrained using a task-inspired pretraining objective for multi-document summarization. Our proposed method is also related to the PMI-based token masking Levine et al. (2020) which improves over random token masking outside summarization.

8 Conclusion and Future Work

In this paper, we present PRIMERA a pre-trained model for multi-document summarization. Unlike prior work, PRIMERA minimizes dataset-specific modeling by using a Longformer model pretrained with a novel entity-based sentence masking objective. The pretraining objective is designed to help the model connect and aggregate information across input documents. PRIMERA outperforms prior state-of-the-art pre-trained and dataset-specific models on 6 summarization datasets from 3 different domains, on zero, few-shot, and full fine-tuning setting. PRIMERA’s top performance is also revealed by human evaluation.

In zero-shot setting, we can only control the output length of generated summaries at inference time by specifying a length limit during decoding. Exploring a controllable generator in which the desired length can be injected as part of the input is a natural future direction. Besides the summarization task, we would like to explore using PRIMERA for other generation tasks with multiple documents as input, like multi-hop question answering.

Ethics Concern

While there is limited risk associated with our work, similar to existing state-of-the-art generation models, there is no guarantee that our model will always generate factual content. Therefore, caution must be exercised when the model is deployed in practical settings. Factuality is an open problem in existing generation models.
References

Armen Aghajanyan, Dmytro Okhonko, Mike Lewis, Mandar Joshi, Hu Xu, Gargi Ghosh, and Luke Zettlemoyer. 2021. HTLM: hyper-text pre-training and prompting of language models. CoRR, abs/2107.06955.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The long-document transformer. CoRR, abs/2004.05150.

Jonathan Bragg, Arman Cohan, Kyle Lo, and Iz Beltagy. 2021. Flex: Unifying evaluation for few-shot nlp. arXiv preprint arXiv:2107.07170.

Avi Caciularu, Arman Cohan, Iz Beltagy, Matthew Peters, Arie Cattan, and Ido Dagan. 2021. CDLM: Cross-document language modeling. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages 2648–2662, Punta Cana, Dominican Republic. Association for Computational Linguistics.

Janara Christensen, Mausam, Stephen Soderland, and Oren Etzioni. 2013. Towards coherent multi-document summarization. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 1163–1173, Atlanta, Georgia. Association for Computational Linguistics.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang, and Nazli Goharian. 2018. A discourse-aware attention model for abstractive summarization of long documents. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 615–621, New Orleans, Louisiana. Association for Computational Linguistics.

Hoa Trang Dang. 2005. Overview of duc 2005. In Proceedings of the document understanding conference, volume 2005, pages 1–12.

Hoa Trang Dang and Karolina Owczarzak. 2008. Overview of the tac 2008 update summarization task. Theory and Applications of Categories.

Alexander Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir Radev. 2019. Multi-news: A large-scale multi-document summarization dataset and abstractive hierarchical model. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1074–1084, Florence, Italy. Association for Computational Linguistics.

Sebastian Gehrmann, Yuntian Deng, and Alexander Rush. 2018. Bottom-up abstractive summarization. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4098–4109, Brussels, Belgium. Association for Computational Linguistics.

Demian Gholipour Ghalandari, Chris Hokamp, Nghia The Pham, John Glover, and Georgiana Ifrim. 2020. A large-scale multi-document summarization dataset from the Wikipedia current events portal. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 1302–1308, Online. Association for Computational Linguistics.

Travis Goodwin, Max Savery, and Dina Demner-Fushman. 2020. Flight of the PEGASUS? comparing transformers on few-shot and zero-shot multi-document abstractive summarization. In Proceedings of the 28th International Conference on Computational Linguistics, pages 5640–5646, Barcelona, Spain (Online). International Committee on Computational Linguistics.

Xiaotao Gu, Yuning Mao, Jiawei Han, Jialu Liu, You Wu, Cong Yu, Daniel Finnie, Hongkun Yu, Jiaqi Zhai, and Nicholas Zukoski. 2020. Generating representative headlines for news stories. In Proceedings of The Web Conference 2020, WWW ’20, page 1773–1784, New York, NY, USA. Association for Computing Machinery.

Chris Hokamp, Demian Gholipour Ghalandari, Nghia The Pham, and John Glover. 2020. Dyne: Dynamic ensemble decoding for multi-document summarization. CoRR, abs/2006.08748.

Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd. 2020. spaCy: Industrial-strength Natural Language Processing in Python.

Hanqi Jin, Tianming Wang, and Xiaojun Wan. 2020. Multi-granularity interaction network for extractive and abstractive multi-document summarization. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6244–6254, Online. Association for Computational Linguistics.

Dan Jurafsky and James H. Martin. 2009. Speech and language processing : an introduction to natural language processing, computational linguistics, and speech recognition. Pearson Prentice Hall, Upper Saddle River, N.J.

Yoav Levine, Barak Lenz, Opher Lieber, Omri Abend, Kevin Leyton-Brown, Moshe Tennenholtz, and Yoav Shoham. 2020. Pmi-masking: Principled masking of correlated spans. arXiv preprint arXiv:2010.01825.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART: Denoising sequence-to-sequence pretraining for natural language generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7871–7880, Online. Association for Computational Linguistics.
Wei Li, Xinyan Xiao, Jiachen Liu, Hua Wu, Haifeng Wang, and Junping Du. 2020. Leveraging graph to improve abstractive multi-document summarization. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6232–6243, Online. Association for Computational Linguistics.

Kexin Liao, Logan Lebanoff, and Fei Liu. 2018. Abstract Meaning Representation for multi-document summarization. In Proceedings of the 27th International Conference on Computational Linguistics, pages 1178–1190, Santa Fe, New Mexico, USA. Association for Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for automatic evaluation of summaries. In Text Summarization Branches Out, pages 74–81, Barcelona, Spain. Association for Computational Linguistics.

Peter J. Liu*, Mohammad Saleh*, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam Shazeer. 2018. Generating wikipedia by summarizing long sequences. In International Conference on Learning Representations.

Yang Liu and Mirella Lapata. 2019a. Hierarchical transformers for multi-document summarization. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5070–5081, Florence, Italy. Association for Computational Linguistics.

Yang Liu and Mirella Lapata. 2019b. Text summarization with pretrained encoders. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3730–3740, Hong Kong, China. Association for Computational Linguistics.

Yao Lu, Yue Dong, and Laurent Charlin. 2020. Multi-XScience: A large-scale dataset for extreme multi-document summarization of scientific articles. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 8068–8074, Online. Association for Computational Linguistics.

Yuning Mao, Yanru Qu, Yiqing Xie, Xiang Ren, and Jiawei Han. 2020. Multi-document summarization with maximal marginal relevance-guided reinforcement learning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1737–1751, Online. Association for Computational Linguistics.

Ani Nenkova and Rebecca Passonneau. 2004. Evaluating content selection in summarization: The pyramid method. In Proceedings of the Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics: HLT-NAACL 2004, pages 145–152, Boston, Massachusetts, USA. Association for Computational Linguistics.

Ramakanth Pasunuru, Mengwen Liu, Mohit Bansal, Sujith Ravi, and Markus Dreyer. 2021. Efficiently summarizing text and graph encodings of multi-document clusters. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 4768–4779, Online. Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67.

Sascha Rothe, Joshua Maynez, and Shashi Narayan. 2021. A thorough evaluation of task-specific pre-training for summarization. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 140–145, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.

Andy Su, Difei Su, John M Mulvey, and H Vincent Poor. 2021. Pobrl: Optimizing multi-document summarization by blending reinforcement learning policies. arXiv preprint arXiv:2105.08244.

Chien-Sheng Wu, Linqing Liu, Wenhao Liu, Pontus Stenetorp, and Caiming Xiong. 2021. Controllable abstractive dialogue summarization with sketch supervision. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 5108–5122, Online. Association for Computational Linguistics.

Michihiro Yasunaga, Rui Zhang, Kshitij Meelu, Ayush Pareek, Krishnan Srinivasan, and Dragomir Radev. 2017. Graph-based neural multi-document summarization. In Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 452–462, Vancouver, Canada. Association for Computational Linguistics.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanón, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. 2020. Big bird: Transformers for longer sequences. In Advances in Neural Information Processing Systems, volume 33, pages 17283–17297. Curran Associates, Inc.

Jinqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. 2020. PEGASUS: Pre-training with extracted gap-sentences for abstractive summarization. In Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 11328–11339. PMLR.

Chenguang Zhu, Ziyi Yang, Robert Gmyr, Michael Zeng, and Xuedong Huang. 2021. Leveraging Lead Bias for Zero-Shot Abstractive News Summarization, page 1462–1471. Association for Computing Machinery, New York, NY, USA.
Yanyan Zou, Xingxing Zhang, Wei Lu, Furu Wei, and Ming Zhou. 2020. Pre-training for abstractive document summarization by reinstating source text. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 3646–3660, Online. Association for Computational Linguistics.

A Implementation details of pre-training

As the multi-document summarization task has a higher compression ratio, defined as $\frac{\text{len}(\text{Summary})}{\text{len}(\text{Input})}$, (e.g. 12% for Multi-News dataset and 15% for Multi-Xscience dataset), we use 15% as the ratio of masked sentences for generation. In addition to this 15% masked sentences, following PEGASUS (Zhang et al., 2020), we also copy an additional 15% of the input sentences to the output without masking them in the input. This allows the model to also learn to copy information from the source directly and found to be useful by Zhang et al. (2020).

We pretrain the model for 100K steps, with early stopping, batch size of 16, Adam optimizer with a learning rate of $3e^{-5}$ following Beltagy et al. (2020), with 10K warmup steps and linear decay. The pretraining process takes likely 7 days on 4 A100 GPUs.

As the backbone of PRIMEA is the Longformer Encoder Decoder model (LED), it has the same number of parameters with LED (447M).

B Detailed Description on the Evaluation Datasets

The details of evaluation datasets can be found below.

Multi-News (Fabbri et al., 2019): A multi-document dataset with summaries written by professional editors from the newser.com.

Wikisum (Liu* et al., 2018) Each summary is a Wikipedia article, and the source documents are either citations in the reference section or the Web Search results of section titles. In our experiments, we use the data crawled by Liu and Lapata (2019a).

WCEP (Gholipour Ghalandari et al., 2020) is built based on news events from Wikipedia Current Events Portal and the references are obtained similar to Wikisum. There are at most 100 documents within each cluster in the original dataset, thus we remove all the duplicates and only keep up to 10 documents for each cluster based on the relevance score in the original dataset, which is similar to the WCEP-10 variant in the original paper.

Multi-X-Science (Lu et al., 2020) a multi-document summarization dataset created from scientific articles, the summaries are paragraphs of related work section, while source documents include the abstracts of the query and referred papers.

DUC benchmarks (Dang, 2005) include multi-document summarization datasets in the news domain, with 10-30 documents and 3-4 human-written summaries per cluster. Since these datasets are small, we use them primarily for a few-shot evaluation. We use DUC2003 for training (only one of the reference summaries for each document is used for training) and DUC2004 as test.

ArXiv (Cohan et al., 2018) is a single document summarization dataset in the scientific paper domain. Each document is a scientific paper, and the summary is the corresponding abstract. As each scientific paper consists of multiple sections, we treat each section as a separate document within a cluster in our experiments. This is to evaluate our model’s effectiveness on summarizing single documents having multiple sections.

C Details on Compared models

The details of compared models in the zero-/few-shot setting can be found below.

BART (Lewis et al., 2020) an encoder-decoder transformer model pretrained on the objective of reconstructing the corrupted documents in multiple ways, e.g. Token Deletion, Text Infilling, Sentence Rotation and etc.

PEGASUS (Zhang et al., 2020) a pretrained model designed for abstractive summarization as the downstream task, especially for the single document input. It is trained on the objective of Gap Sentence Generation on C4 (Raffel et al., 2020) and Hugenews datasets (Note that the pretraining data size in PEGASUS is magnitudes larger than ours). As it is only evaluated on one multi-document summarization dataset (Multi-news), we rerun the model on all the datasets. To verify the quality of our reproduction, the average ROUGE scores of our re-run model vs. (the ones reported on the paper) with 10 examples and 100 examples fed are 23.81 ± 0.79 vs. (24.13) and 25.86 ± 0.41 vs. (25.48), with minor differences plausibly resulting from different samplings.
We use Adam as the optimizer with linear scheduling of the input length in few-shot setting (10 data example) on the multi-news dataset. The results are the average over 5 runs on different subsets (the same seeds shared with all the other models in this paper).

Table 6: The ROUGE score (R-1/R-2/R-L) for pretrained models (BART and PEGASUS) with different input length limits (512/1024/4096) in the few-shot setting (10 data examples) on the multi-news dataset. The results are the average over 5 runs on different subsets (the same seeds shared with all the other models in this paper).

Length Limit	BART	PEGASUS				
	R-1	R-2	R-L	R-1	R-2	R-L
512	-	-	-	39.0	12.1	20.3
1024	42.3	13.7	19.7	37.6	10.7	18.8
4096	37.9	11.0	17.5	34.9	8.7	17.6

Longformer Encoder-Decoder (LED) (Beltagy et al., 2020) is the initial state of our model before pretraining. The parameters of LED are inherited from the BART model, and to enable the model to deal with longer input, the position embeddings are repeatedly copied from BART’s 1K position embeddings. It is different from our model with respect to both pretraining and input structure (document separators and global attentions), with global attention on the (<s>) token only and no document separators.

C.1 Detailed Experiment for Input Length Limit

We run an experiment to select the proper length limit for compared pretrained models, i.e. BART and PEGASUS. Specifically, we train both models with different input length limits (512/1024/4096) in the few-shot setting (with 10 data examples) on the multi-news dataset. Similar to the few-shot experiments described in §4.2, we train each model with specific input length limit for 5 times on different subsets, which are shared by all the models. As shown in Table 6, BART with length limit 1024 performs the best and PEGASUS with length limit 512 performs the best, thus in all our experiments, we use 1024 as the input length limit for BART and 512 for PEGASUS.

D Hyperparameters in Few-shot and Full Supervised Experiments

D.1 Few-shot Experiments

We use Adam as the optimizer with linear scheduled learning rate $3e - 5$ for BART, LED and our model, and use the default optimization settings of the few-shot experiments from Zhang et al. (2020), i.e. AdaFactor optimizer with scheduled learning rate $5e - 4$. For all the experiments with 10 examples, the batch size is 10, the models are trained for 200 steps, with warm-up as 20 steps. For the experiments with 100 examples, we use the same batch size, with the total step and warm-up step set to be 1000 and 100, respectively.

D.2 Fully Supervised Experiments

We use Adam as the optimizer with linear scheduled learning rate $3e - 5$, and batch size as 16 for all the datasets in the full supervised experiments. The number of steps and warm-up steps are set based on the size of the datasets. The details can be found in Table 7.

E Detailed Results in Few-shot Setting

The exact ROUGE scores in Figure 5 are shown in Table 8.

Table 7: Details of total steps and warm-up steps used in the few-shot setting.

Model	0 Examples	10 Examples	100 Examples
Multi-News			
BART	31.97/10.06/16.74	39.02/12.10/20.32	42.99/13.50/21.10
LED	26.10/8.90/13.06	42.30/13.74/19.71	44.23/14.77/21.02
Ours	39.09/13.91/19.19	44.02/15.54/22.03	46.01/16.76/22.91
Multi-Science			
BART	27.33/4.77/15.04	28.14/6.65/15.49	28.04/4.09/15.35
LED	15.21/3.49/8.61	27.80/4.74/14.90	31.17/3.21/16.45
Ours	26.90/4.98/14.09	28.36/4.72/15.29	31.25/4.52/16.84
WCEP	23.67/5.37/14.17	23.44/6.44/16.21	28.50/8.83/21.33
BART	15.80/4.60/9.13	28.95/8.88/20.80	32.97/3.81/25.01
LED	8.70/2.34/5.78	26.57/5.99/19.95	34.15/6.03/26.75
Ours	17.79/5.02/10.90	31.10/5.26/23.39	36.05/7.85/27.81
arXiv	25.76/4.74/17.27	31.10/5.22/17.90	36.30/5.55/20.83
BART	23.26/7.57/12.01	32.53/7.80/27.08	37.62/10.78/29.99
LED	13.94/3.76/8.35	36.51/11.60/26.68	40.09/13.74/22.34
Ours	29.14/8.64/15.82	41.13/8.13/23.02	43.42/15.85/24.07

Table 8: Detailed ROUGE scores (R-1/R-2/R-L) for all the datasets in the few-shot setting (corresponds to Figure 5).
F Detailed Analysis on Fully Supervised Experiments

To show the advantage of our pre-trained model when there is sufficient data, we also train the model with the full training set, and the results can be found in Table 9-12\(^{15}\), along with the results from previous works. Differently from the zero-/few-shot experiments, here we report the state-of-the-art results on different datasets, as they were presented in the corresponding original papers. Since we use the same train/valid/test set as in those prior works, we can perform a fair comparison, without re-running all those extremely time-consuming experiments.

Overall, our model achieves state-of-the-art on Multi-News (see Table 9), WCEP dataset (see Table 11) and arXiv dataset (see Table 12).

Models	R1	R2	RL
LEAD	27.46	4.57	-
BERTABS	31.56	5.02	-
BART	32.83	6.36	-
SCIBERTABS	32.12	5.59	-
SOTA(Pointer Generator)	34.11	5.76	18.2

Table 10: ROUGE scores of the previous models and our fully supervised model on the Multi-Xscience dataset. All the results are from Lu et al. (2020). * The ROUGE-L is not comparable as we have different settings on the settings of evaluation, see the gap between LEAD and LEAD(ours).

Models	R1	R2	RL
BERT-REG	35.0	13.5	25.5
SUBMODULAR+ABS	30.6	10.1	21.4
DynE (Hokamp et al., 2020)	35.4	15.1	25.6
Ours	46.08	32.31	37.86

Table 11: ROUGE scores of the previous models and our fully supervised model on the WCEP dataset.

WCEP As for the WCEP dataset, BERT-REG (Gholipour Ghalandari et al., 2020) is a Regression-based sentence ranking system with BERT embedding, which is used as extractive summarization method, while Submodular+Abs is a simple two-step abstractive summarization model with a submodular-based extractive summarizer followed by a bottom-up abstractive summarizer (Gehrmann et al., 2018). DynE is a BART-based abstractive approach, which is to ensemble multiple input, allowing single document summarization models to be directly leveraged on the multi-document summarization task. Our model outperforms all the models by a large margin, including the SOTA model DynE, and it may indicate that the plain structure is more effective than purely ensembling the output of single documents.

arXiv In addition to the experiments on multi-document summarization datasets, we also compare our fully supervised model with previous works on the arXiv dataset, with each section treated as a single document. All the models to be compared with are based on pre-trained models, and Bigbird-PEGASUS and LED utilize the pre-training of PEGASUS (Zaheer et al., 2020) and BART (Lewis et al., 2020), respectively. However, both Bigbird and LED apply more efficient attentions, which make the models able to take longer

\(^{15}\)Due to the lack of computational resources, we do not train the model on Wikisum.
Table 12: ROUGE scores of the previous models and our fully supervised model on the arXiv dataset. The result of PEGASUS and BigBird-PEGASUS are from (Zaheer et al., 2020), and the results of LED are from (Beltagy et al., 2020). The number in the parenthesis indicates the length limit of the input.

Models	R1	R2	RL
PEGASUS (1K)	44.21	16.95	38.83
Bigbird-PEGASUS (3k)	46.63	19.02	41.77
LED(4K)	44.40	17.94	39.76
LED(16K)	46.63	19.62	41.83
Ours(4k)	**47.58**	**20.75**	**42.57**

input (3k for BigBird, 4K and 16k for LED). Our model has a better performance than all the models, including LED(16K), which allows for the input 4 times longer than ours. It is worth mentioning that LED(4K) has the same structure as our model, with the same length limit of the input, and with the pre-training on multi-document datasets, our model is more than 3 ROUGE point better than it, which shows that the strategy not only works for multi-document summarization but can also effectively improve single-document summarization for long documents.

G Examples of Generated Summaries

We show an example (from Multi-News) of generated summaries by PRIMERA and compared models trained with different number of examples in Table 13. And we show an example from DUC2007 (which is one of the examples used for human evaluation) with generated summaries by PRIMERA and two compared models in Table 14, with all the models trained on 10 data examples from DUC2007.

H Software and Licenses

Our code is licensed under Apache License 2.0. Our framework dependencies are:

- HuggingFace Datasets, Apache 2.0
- NLTK, Apache 2.0
- Numpy, BSD 3-Clause "New" or "Revised"
- Spacy, MIT
- Transformers, Apache 2.0
- Pytorch, Misc
- Pytorch Lightning, Apache 2.0
- Longformer, Apache 2.0
- ROUGE, Apache 2.0

I Annotation Instructions for Human Evaluation

Figure 7 and Figure 8 shows the annotation instruction for human annotators.
Instruction on Human Annotations

Overview:

1- Content quality

The goal of this evaluation is to assess the content quality of a system generated summary based on human-written reference summaries. We will be using the Pyramid evaluation framework (Nenokva and Passonneau, 2004): https://aclanthology.org/N04-1019.pdf

The evaluation works like this. There are 3 things provided for each evaluation example:
1- The original documents
2- System generated summaries
3- A set of “information nuggets” or “facts” in the human-reference summaries. These are pre-annotated in the dataset and are atomic short phrases that refer to a specific piece of information in the documents. For example “Britain opted out of Euro system.” is an information nugget.

For annotation, we will simply go through the list of information nuggets and check if they appear in the system generated summary. A summary is considered good if it includes many of the information nuggets.

1. Documents (40 examples in total)
 a. Information nuggets:
 https://docs.google.com/spreadsheets/d/1Btbv-aaVpNDWTKOhQBcYABYzhKWAht6cGnD5ROlyquY/edit?usp=sharing
 b. Three summaries, A, B and C: See below

2. Annotations:
 a. For each summary, check all the information in the information checklist in the following way,
 i. If the information is covered in the summary, check the corresponding checkbox
 ii. Otherwise, leave it blank.

2- Fluency:

There are multiple candidate summaries (3) for each system and we would like to rank the summaries from most most fluent to least.

Specifically, for each summary, answer the following questions:

Figure 7: Annotation instruction for human annotators.
1. **Grammaticality** - The summary should have no datelines, system-internal formatting, capitalization errors or obviously ungrammatical sentences (e.g., fragments, missing components) that make the text difficult to read.
 5. Very Good
 4. Good
 3. Barely Acceptable
 2. Poor
 1. Very Poor

2. **Referential clarity** - It should be easy to identify who or what the pronouns and noun phrases in the summary are referring to. If a person or other entity is mentioned, it should be clear what their role in the story is. So, a reference would be unclear if an entity is referenced but its identity or relation to the story remains unclear.
 5. Very Good
 4. Good
 3. Barely Acceptable
 2. Poor
 1. Very Poor

3. **Structure and Coherence** - The summary should be well-structured and well-organized. The summary should not just be a heap of related information, but should build from sentence to sentence to a coherent body of information about a topic.
 5. Very Good
 4. Good
 3. Barely Acceptable
 2. Poor
 1. Very Poor

When assigning scores to each summary, please assign the scores relative to other summaries for that document set.

Figure 8: Annotation instruction for human annotators.
The U.S. Coast Guard says it’s looking for a man who has cost the service about $500,000 after responding to nearly 30 of his fake distress calls. The AP reports in a press release published Friday that the Coast Guard says the 28 calls have originated from around the area of Annapolis, Maryland. Each call involved the same male voice and used an emergency radio channel. The two most recent calls were made on the night of July 21 and the early morning of July 22. The Coast Guard also says hoax calls distract rescuers from real emergencies, putting both the public and the responding crews at risk. “Calls like these not only put our crews at risk, but they put the lives of the public at risk,” said Lt. Cmdr. Sara Wallace, who heads the response sector in Maryland. “Calls like these not only put our crews at risk, but they put the lives of the public at risk.” Anyone with information about the caller is asked to contact the Coast Guard’s regional command center at 410-576-2525 or email investigators at CGIS-Baltimore@uscg.mil.

The US Coast Guard is looking for a man who has cost the service about $500,000 after responding to nearly 30 of his fake distress calls. The Coast Guard also said such false distress alerts detract from their ability to respond to actual alerts. Anyone with information about the caller is asked to contact the Coast Guard’s regional command center at 410-576-2525 or email investigators at CGIS-Baltimore@uscg.mil.

The US Coast Guard says it’s looking for a man who has cost the service about $500,000 after responding to nearly 30 of his fake distress calls. The AP reports in a press release published Friday that the Coast Guard says the 28 calls have originated from around the area of Annapolis, Maryland. Each call involved the same male voice and used an emergency radio channel. The two most recent calls were made on the night of July 21 and the early morning of July 22. The Coast Guard also says hoax calls distract rescuers from real emergencies, putting both the public and the responding crews at risk. “Calls like these not only put our crews at risk, but they put the lives of the public at risk,” said Lt. Cmdr. Sara Wallace, who heads the response sector in Maryland. “Calls like these not only put our crews at risk, but they put the lives of the public at risk.” Anyone with information about the caller is asked to contact the Coast Guard’s regional command center at 410-576-2525 or email investigators at CGIS-Baltimore@uscg.mil.

Table 13: Generated summaries from PRIMERA and best baseline model (according ROUGE score on this example) trained with different number of training examples. The data used here is the #10 in the test set of Multi-News dataset on Huggingface.
In 1996, Congress passed the Line-Item Veto Act, which gave the president the power to cut individual projects from tax and spending bills without vetoing the entire legislation. The act was followed by the President’s line-item veto, which he used to trim $144 million dollars from a $248 billion dollars defense spending bill. He also used the veto power to block a congressional rejection of his line-item veto on 38 military construction projects. The bill was passed by the House and the President signed it into law. The veto was challenged by members of both parties who said it was unconstitutional because it gave the president unchecked power to rewrite legislation. The Supreme Court agreed on Friday to hear argument and decide the constitutionality of the president’s line-item veto. In 1998 the President used his line-item veto to cut $38 million from a military construction bill. In 1999 the President used his line-item veto to cut $54 million from a military spending bill. In 2000 the President used his line-item veto to cut $54 million from a defense spending bill. In January the President vetoed a tax and spending bill, which gave him the power to cut individual projects from tax and spending bills without vetoing the entire legislation. In February the President vetoed a spending bill, which gave him the power to cut individual projects from tax and spending bills without vetoing the entire legislation. In 1999 the President used his line-item veto to cut $38 million from a military construction bill. In 2000 the President used his line-item veto to cut $54 million from a defense spending bill. The bill was rejected by the House and the President vetoed it. In November the President used his line-item veto to trim $144 million dollars from a defense spending bill.

Table 14: Generated summaries from PRIMERA, PEGASUS and LED trained with 10 training examples, along with one (out of four) ground-truth summary. The data used here is D0730 in DUC2007.