Chalcones: A review on synthesis and pharmacological activities

Kamya Goyal1, Rajwinder Kaur2, Anju Goyal2, Rajendra Awasth1

1Laureate Institute of Pharmacy, Jawalamukhi, Himachal Pradesh, India.
2Chitkara College of Pharmacy, Chitkara University, Rajpura, India.
3Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India.

INTRODUCTION

The chemistry of chalcone PGs is gaining intense research interest globally. The term “Chalcone” was coined by Kostanecki and Tambor (1899). Other names for chalcones are benzyl acetonaphone or benzylideneacetophenone. In the structure of a chalcone, two benzenoid rings are joined by an aliphatic chain of three carbons. Chalcone is an α, β-unsaturated ketonic compound consisting of two benzenoid rings with a wide variety of groups. Aromatic groups are connected to each other by three carbons, α, β-unsaturated ketonic system, highly electrophilic in nature having a linear structure (Awasthi et al., 2009; Cheng et al., 2000; Liu et al., 2001). They have ketoethylenic moiety (–CO–CH=CH–) in their structure. They have a conjugated double bond and an entirely delocalized π-electron-containing order on aromatic rings. Chalcones have been utilized as a precursor for the synthesis of compounds which possess pharmacological importance (Straub, 1995). The chalcones’ chemistry remains a major interest for scientists in the 21st century, producing a diversity of promising pharmacological activities like anti-inflammatory (Dhar et al., 2018; Fu et al., 2019; Gan et al., 2018; Li et al., 2017; Mahapatra et al., 2017; Md Idris et al., 2018; Sayed et al., 2018), analgesic (Fu et al., 2019), antigout as xanthine oxidase inhibitors (Hofmann et al., 2016), antihistaminic (Padaratz et al., 2009; Rossi and Avellino, 1957), anticancer (Gan et al., 2018; Hsieh et al., 2019; Khanapure et al., 2018; Özdemir et al., 2017; Pingaew et al., 2014; Sashidhara et al., 2010), antileishmanial (Insuasty et al., 2015), antimalarial (Pingaew et al., 2014), antiviral (Wan et al., 2015), antiulcer (Choudhary et al., 2012), antimicrobial (Benouda et al., 2019; Lal et al., 2018; Monga et al., 2014; Özdemir et al., 2017; Sayed et al., 2018), antioxidant (Bandgar et al., 2010), antibacterial (Balú et al., 2019; Emayavaramban et al., 2013; Gaur et al., 2014; Hsieh et al., 2012; Rammohan et al., 2020; Shukla et al., 2017), etc. Metochalcones increase bile secretion by stimulating the liver (Sahu et al., 2012) and sofalcone as an antiulcer agent, which increases the concentration of Prostaglandins from the mucosa causing a gastroprotection from Helicobacter pylori-induced ulcers (Higuchi et al., 2010). It is also found through clinical trials that hesperidin methylchalcone was tested and found effective for chronic peripheral venous lymhatic insufficiency (Beltramino et al., 1999, 2000) and hesperidin trimethylchalcone was found effective for trunk or branch varicosis (Weindorf and Schultz-Ehrenburg, 1987).
Chalcones have been known from earlier times to have an interesting moiety which is associated with a wide range of pharmacological activities. The majority of commonly found food chalcones are phloretin (Gerhauser, 2008; Mariadoss et al., 2019; Min et al., 2015) and its glucoside phloridzin, i.e., phloretin 2′-O-β-glucopyranoside which are present in apples, chalconaringenin in tomatoes (Echeverria et al., 2009; Kolot et al., 2019; Slimestad and Verheul, 2011), Arbutin in pears (Reiland and Slavin, 2015; Sasaki et al., 2014), and flavokavains in kava plants (Liu et al., 2018; Pinner et al., 2016). Chalcone possess a very good moiety due to which a variety of novel heterocyclic compounds with better pharmacological properties can be designed.

METHODS OF SYNTHESIS OF CHALCONES

Chalcones possess a simple moiety which makes its substitutions easy with simple and easy methods of synthesis. Currently, a wide range of schemes are available to synthesize various chalcone analogs.

Claisen–Schmidt’s condensation

It is a commonly employed and easy method (Scheme 1). In the method, chalcones are synthesize by condensing substituted or unsubstituted benzaldehyde with substituted or unsubstituted acetophenone with the use of bases or acids as catalysts in an appropriate solvent at about 50°C–100°C for few hours (Kaur and Narasimhan, 2018; Khanapure et al., 2018; Monga et al., 2014; Özdemir et al., 2017; Rahman et al., 2007; Reddy and Kathale, 2018). It is normally carried out in the liquid phase, but some syntheses occur in the solid phase, like resin was bound with acetophenone compounds and then reacted with benzaldehyde compounds (Mahapatra et al., 2015) or under solvent-free conditions such as catalytic condensation in the presence of triazabicyclodecene (Fringuelli et al., 2004). Additionally, microwave-assisted liquid and solvent-free condensation decrease synthesis time and elevate the production yield (Kakati and Sarma, 2011; Srivastava, 2008).

Carbonylative Heck’s coupling reaction

Chalcones have been synthesized by vinylation of aryl halide (such as phenyl halide) with styrene under carbon monoxide and the catalyst palladium can undergo carbonylative coupling (Bianco et al., 2003; Wu et al., 2010) (Scheme 2).

Suzuki–Miyaura’s coupling reaction

This coupling reaction takes place by combining benzoyl chloride and styryl boronic acid using Pd(PPh₃)₄, CsCO₃, and anhydrous toluene or by combining phenyl boronic acid and cinnamoyl chloride using Pd(PPh₃)₄, CsCO₃, and anhydrous toluene (Selepe and Van Heerden, 2013) (Scheme 3).

Sonogashira’s isomerization coupling

This reaction involves the synthesis of chalcones by the microwave coupling of the electron-insufficient group, like phenyl halide, and prop-2-yn-1-ol and catalyst PdCl₂(PPh₃)₄ and solvent like tetrahydrofuran (THF) (Braun et al., 2006; Takahashi et al., 1980) (Scheme 4).

Continuous-flow deuteration reaction

Ynones basically were synthesized by the process available in the literature by the reaction of benzoyl chloride and phenylacetylene under Sonogashira’s conditions and then for deuteration, which was carried out in an H-Cube system caused by replacing H₂O with D₂O as the deuterated source (Hsieh et al., 2015; Ötvös et al., 2016) (Scheme 5).

Solid acid catalyst-mediated reaction

Chalcones are prepared by using a solid acid catalyst which is heterogeneous in nature (Scheme 6). It involves the addition of aromatic aldehyde (such as benzaldehyde) and ethynyl benzene in ethylene dichloride solvent using a microwave condition and using ion-exchange resin, like amberlyst-15, as the solid acid catalyst (Rueping et al., 2011).

Coupling reaction

Chalcones are prepared by coupling benzaldehyde with phenylacetylene in hydrogen bromide and ionic liquids like BmimOTs (1-butyl-3-methyl-1H-imidazolium 4-methylbenzene-sulfonate) for about 12 hours at 100°C (Xu et al., 2004) (Scheme 7).
One-pot synthesis

It is an easy, efficient, and green method that allows the chalcone synthesis in a single reactor (Scheme 8). The reaction mixture consists of phenyl methanol and acetophenone with an oxidizing agent such as CrO₃. CrO₃ generates the benzaldehyde from phenyl methanol, which then involves the reaction with the acetophenone to give chalcone (Mahapatra et al., 2015).
Synthesis of chalcones using Schiff bases

Schiff bases result in aryl amino ketones, which in the presence of an acid lead to hydramine breakdown and produce products such as primary aromatic amine and chalcones (Abe et al., 2003; Gaonkar and Vignesh, 2017).

Microwave-assisted synthesis of chalcone

In this method, heterogeneous catalysts, such as K_2CO_3, $Ba(OH)_2$, p-Toluenesulfonic acid, $KF-Al_2O_3$, piperidine, and aqueous alkali, are employed to synthesize chalcones and their derivatives under microwave conditions (Blass, 2002; Gall et al., 1999; Mistry and Desai, 2004).

Ultrasound irradiation-assisted synthesis of chalcone

Ultrasound-assisted synthesis is another advantageous technique like microwave irradiation-assisted synthesis due to the fact that it completes the reaction within short period of time and yields a high percentage of products. For the synthesis of chalcones and their derivatives under ultrasound irradiation, heterogeneous catalysts like K_2CO_3, pulverized potassium hydroxide (KOH), NaOH, basic Al_2O_3, $KF-Al_2O_3$ are used productively (Adole et al., 2020; Calvino et al., 2006; Cancio et al., 2019; Li et al., 2002; Polo et al., 2019; Rammohan et al., 2020).

PHARMACOLOGICAL ACTIVITIES

Various chalcones and their derivatives have been synthesized and reported to have pharmacological activities like antimicrobial, antimalarial, anticancer, antifungal, anthelmintic, anti-inflammatory, anti-HIV, monoamine oxidase inhibition, antiangiogenic, antileishmanial activities, etc. A brief outline of some of the selected pharmacological activities is presented in the following sections.

Chalcone as an antimicrobial agent

α, β-unsaturated keto functions as highly reactive species, which shows nucleophilic conjugate addition of important protein due to which it shows antimicrobial activity.

The synthesis of a new chalone series with benzimidazolyl group was carried out to produce antimicrobial agents by condensing N-(4-(1H/benzo[d]imidazol-2-yl)phenyl)acetamide with benzaldehyde-related compounds using aqueous KOH at room temperature (Baviskar et al., 2009).

Novel nitrochalcones were synthesized to produce antimicrobial agents by condensing nitroacetophenone with some aromatic aldehydes by using a base at room temperature (Monga et al., 2014).

Chalcones AA (1–6) were prepared by Claisen–Schmidt’s condensation of 2-acetyl pyridine and aldehyde derivatives in diluted ethanolic KOH at room temperature (Prasad et al., 2008).
Physical properties of chalcones are presented in Table 1. Chalcones AB are synthesized by condensing aldehydes with o-hydroxy acetophenone, followed by reaction with I₂ and dimethyl sulfoxide (DMSO), which results in the synthesis of flavones and which shows antimicrobial property (Rathore et al., 2015).

Some of the novel fluorinated chalcones, AC, AD, AE (1–13), have been synthesized and tested for antitubercular activity for Mycobacterium tuberculosis H37Rv and antimicrobial activity for fungi and pathogenic bacteria (Burmaoglu et al., 2017).

Recently, chalcones AF (1–5) have been reported by the coupling of 1-(2,6-dichloro-4-trifluoromethyl-phenyl)-pyrolidine-2,5-dione, 1-(2,6-dichloro-4-trifluoromethyl-phenyl) piperidine-2,6-dione, and various aromatic aldehydes in the acetic acid. The resultant products had shown antimicrobial properties (Rajput and Sayyed, 2017).

Chalcones AG (1–10) were prepared by carrying out Claisen–Schmidt’s condensation between 2-acetyl-1-methylpyrrole and 5-(aryl)-furfural analogs. The consequential products were tested to possess antimicrobial activities for five pathogenic bacteria and four fungi (Özdemir et al., 2017).
A novel series of dehydroacetic acid chalcone-1,2,3-triazole analogs AH (1–16) was designed and synthesized. The synthesized compounds were evaluated for antimicrobial activities against four bacterial and two fungal strains (Lal et al., 2018).

![AH (1-16)](image)

Chalcones as anticancer agents

The synthesis of a novel sequence of 2',5'-dialkoxyl chalcones BA (1–10) was carried out by condensing various aromatic ketones with various suitable and substituted benzaldehydes. The compounds were evaluated to show antitumor and chemopreventive activities (Cheng et al., 2008).

![BA (1-10)](image)

Quinazolinone-Chalcone

A novel series of chalcones BB (1–12) with 3-aryl thiophene-2-aryl and hetero aryl moieties was prepared and tested to show in vitro anticancer property for human colon cancer cell lines (Venkataramireddy et al., 2016).

Compound	R	Compound	R
1	H	9	3-BrC₆H₄CH₂-
2	2-CH₃C₆H₄CH₂-	10	4-BrC₆H₄CH₂-
3	3-CH₃C₆H₄CH₂-	11	2-FC₆H₄CH₂-
4	4-CH₃C₆H₄CH₂-	12	3-FC₆H₄CH₂-
5	2-NO₂C₆H₄CH₂-	13	4-FC₆H₄CH₂-
6	3-NO₂C₆H₄CH₂-	14	4-OCH₃C₆H₄-
7	4-NO₂C₆H₄CH₂-	15	4-BrC₆H₄-
8	2-BrC₆H₄CH₂-	16	4-NO₂C₆H₄-

A new quinazolinone–chalcone derivative was prepared by condensing the substituted aromatic aldehyde and substituted aromatic ketone in Ba(OH)₂ and testing it for possessing anticancer activity (Wani et al., 2015).

Compd.	R	R₁	R₂	Compd.	R	R₁	R₂
1	O	Me	OCH₃	7	Me	H	OCH₁
2	MeO	H	OCH₃	8			
3	MeO	H	OCH₃	9			
4	Br	H	OCH₁	10			
5	I	H	OCH₁	11			
6	H	OCH₁	12				
Ngameni et al. (2013) synthesized O-allyl chalcones BC (1–8) by condensing O-allyl vanillin with various acetophenones and reported antiproliferative activity of the synthesized chalcone derivative.

\[
\begin{array}{cccc}
\text{Compd.} & R_1 & R_2 & R_3 \\
1 & H & H & H \\
2 & OMe & H & H \\
3 & Me & H & Me \\
4 & H & Me & H \\
5 & H & H & Me \\
6 & H & Me & H \\
7 & Me & H & Me \\
8 & Me & H & Me \\
\end{array}
\]

Novel derivatives of chalcones BD were prepared by condensing appropriate acetophenones and various benzaldehydes, followed by the reaction of the produced product (chalcone) with sodium acetate in ethanol to give flavanones BE, which were evaluated as antiproliferative agents (Ketabforoosh et al., 2014).

Chalcones as anti-inflammatory agents

A novel chalcone 20-hydroxy-3,4-dichlorochalcone was synthesized which was evaluated for anti-inflammatory activity (Won et al., 2005).

\[
\begin{array}{cc}
\text{NaOAc, EtOH} & \text{Reflux} \\
\end{array}
\]

R = H; R_1 = H, OMe, Cl, Br

Dichlochalcone

Fluorinated chalcone analog was prepared by Claisen–Schmidt’s condensation and by reacting with SOCl/EtOH, which possesses a powerful anti-inflammatory property (Hasan et al., 2012).
Chalcones as antioxidants

A sequence of novel derivatives of chalcones DA (1–6) with heterocyclic moiety was prepared by Claisen–Schmidt’s condensation of 2-acetyl-5-chlorothiophene and various benzaldehyde derivatives with a catalytic amount of NaOH and methanol as solvents at room temperature and evaluated as antioxidant agents (Kumar et al., 2013).

\[
\text{DA (1-6)}
\]

Compound	R₁	R₂	R₃	Compound	R₁	R₂	R₃
1	H	H	H	4	OCH₃	H	H
2	H	H	H	5	H	OCH₃	H
3	H	H	H	6	H	H	OCH₃

A new series of 2,4-dihydroxy chalcones DB (1–5) was prepared by the condensation of dihydroxy acetophenone and various benzaldehydes, followed by reaction with DMSO in the presence of iodine to give flavonoids DC (1–5), which were evaluated for antioxidant activity (Murti et al., 2013).

\[
\text{DB (1-5)}
\]

\[
\text{DC (1-5)}
\]

Chalcones as an antiepileptic

A new series of chalcones was prepared through Claisen–Schmidt’s condensation, which was further tested for antiepileptic property (Sharma et al., 2013).

\[
\text{DD}
\]

\[
\text{DE}
\]

\[
\text{DF}
\]

A new series of derivatives of chalcones was synthesized and tested for antioxidant activity (Wu et al., 2014).

where \(R_1 = \text{H, OCH}_3 \); \(R_2 = \text{CH}_3, \text{C}_2\text{H}_5, \text{H}_2\text{C=CH}, \text{Ph}, 4\text{-ClPh, 2-FPh, and Benzyl.} \)

A novel chalcone, i.e., glycyglabrone, was isolated from the roots of liquorice (Glycyrrhiza glabra), along with three known derivatives, viz. licoagrochalcone, licochalcone, and kanzonol. The obtained chalcones DD, DE, and DF were found to possess antioxidant property (Chen et al., 2017).

\[
\text{Chalcone derivatives}
\]
A new series of 3,5-diphenyl-2-pyrazoline-1-carboxamide analogs 1–20 were prepared by the reaction of substituted chalcones with semicarbazide hydrochloride, which were evaluated to be potent antiepileptic derivatives (Siddiqui et al., 2010).

(i) \(\text{CH}_3\text{OH} \), Conc. \(\text{H}_2\text{SO}_4 \), (ii) \(\text{NH}_2\text{NH}_2\cdot\text{H}_2\text{O} \), and (iii) \(\text{CH}_3\text{OH}; \text{Glacial acetic acid.} \)

Compound	\(R_1 \)	\(R_2 \)	Compound	\(R_1 \)	\(R_2 \)
1	H	H	6	4-N(Me)	4-OH
2	3-NO	H	7	3-N\(\text{O}_2 \)	4-Cl
3	4-Cl	H	8	4-N(Me)	4-F
4	4-Cl	4-OH	9	4-Cl	4-F
5	2-Cl	4-OH	10	4-N\(\text{O}_2 \)	4-F

Chalcones as antidiabetic agents

A novel series of chalcone-based aryl oxypropanolamine FA, FB, FC, and FD was synthesized and evaluated as powerful antidiabetic and antidysslipidemic agents (Shukla et al., 2017).

A new chalcone series EA (1–10) was synthesized which incorporated hydrazide derivatives and were evaluated as anticonvulsant agents (Kumar and Chauhan, 2015).

A new series of 60 derivatives of chalcone were synthesized having substitutions on Ring A or were unsubstituted by Claisen–Schmidt’s condensation of some aromatic ketones with various benzaldehydes in 50% w/v KOH/H\(_2\)O with solvent ethanol. Out of these 60 derivatives, 12 derivatives were found to be active as antidiabetic agents (Hsieh et al., 2012).

\(R_1 \) = H, OH, F, Cl, Br, I; \(R_2 \) = H, OMe, OBn, -OCH\(_3\)O-

A series of chalcone FE and its 2-pyrazoline analogs FF, FG, FH, FI, and FJ was prepared and tested to be antidiabetic agents (Emayavaramban et al., 2013).
A novel series of chalconeimines, FV, FW, FX, FY, and FZ, was prepared and evaluated for antidiabetic activity via *in-vitro* α-amylase inhibition activity (Balu et al., 2019).

Chalcones as antihypertensive agents

Novel chalcones GA (1–7) were synthesized, consisting of pyrimidine as the basic moiety, and tested to be potent antihypertensive agents (Bukhari et al., 2013).
Studies were carried out on vasorelaxant and antihypertensive properties of dihydrospinochalcone and isocordoin isolated from Lonchocarpus xuul (Avila-Villarreal et al., 2013).

Novel chalcones with quinoline in their structure GB were prepared and tested to have powerful antihypertensive moiety (Kumar et al., 2015).

Chalcones as antimalarial agents

Three aminoalkylated derivatives of chalcones HA (1–3) were synthesized by Claisen–Schmidt’s condensation between chloroacetophenone and vanillin. After this reaction, addition of the amine group was carried out through Mannich’s reaction. The synthesized derivatives were evaluated for antimalarial activity against Plasmodium falciparum strain (3D7) and molecular docking was also performed. Molecular docking and biological evaluation shows that compound HA2 was the most active derivative among the synthesized derivatives (Syahri et al., 2020).

CONCLUSION

From this review, it can be stated that chalcones and their derivatives show a wide spectrum of biological activities, viz anticancer, antimicrobial, anticonvulsant, antioxidant, anti-inflammatory activities, etc. That is why the attention of scientists has increased towards chalcones in searching for novel and biologically potent derivatives from them.

CONFLICT OF INTEREST

None.

FUNDING

None.

REFERENCES

Abe I, Sano Y, Takahashi Y, Noguchi H. Site-directed mutagenesis of benzalacetone synthase the role of PHE215 in plant type III polyketide synthases. J Biol Chem, 2003; 278(27):25218–26.

Adole VA, Jagdale BS, Pawar TB, Sagane AA. Ultrasound promoted stereoselective synthesis of 2,3-dihydrobenzofuran appended chalcones at ambient temperature. S Afr J Chem, 2020; 73:35–43.

Avila-Villarreal G, Hernández-Abreu O, Hidalgo-Figueroa S, Navarrete-Vázquez G, Escalante-Erosa F, Peña-Rodríguez LM, Villalobos-Molina R, Estrada-Soto S. Antihypertensive and vasorelaxant effects of dihydrospinochalcone-A isolated from lonchocarpus xuul lundell by NO production: computational and ex vivo approaches. Phytomedicine, 2013; 20(14):1241–6.

Awasthi SK, Mishra N, Kumar B, Sharma M, Bhattacharya A, Mishra LC, Bhasin VK. Potent antimalarial activity of newly synthesized substituted chalcone analogs in vitro. Med Chem Res, 2009; 18(4):407–20.

Balu P, Jas JS, Govindaraj M. Design and evaluation of chalconeimine derivatives as α-amylase inhibitors. Bioinformation, 2019; 15(7):523–9.

Bandgar BP, Gawande SS, Bodade RG, Totre JV, Kho bragade CN. Synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti-inflammatory and antioxidant agents. Bioorg Med Chem, 2010; 18(3):1364–70.

Baviskar BA, Baviskar BB, Shiradkar MR, Deokate UA, Khadabadi SS. Synthesis and antimicrobial activity of some vovel benzimidazolyl chalcones. Eur J Chem, 2009; 4(1):196–200.

Beltramino R, Penenory A, Buceta AM. An open-label, randomised multicentre study comparing the efficacy and safety of CYCLO 3 FORT versus hydroxylethylrutoside in chronic venous lymphatic insufficiency. Int Angiol, 1999; 18(4):337–42.

Benouda H, Bouchal B, Challiou A, Oulmadi A, Harit T, Malek F, Riahi A, Bellaoui M, Bouammaini B. Synthesis of a series of chalcones and related flavones and evaluation of their antibacterial and antifungal activities. Lett Drug Des Discov, 2019; 16(1):93–100.

Bianco A, Cavarischia C, Farina A, Guiso M, Marra C. A new synthesis of flavonoids via Heck reaction. Tetrahedron Lett, 2003; 44(51):9107–9.

Blass BE. KF/Al₂O₃ mediated organic synthesis. Tetrahedron, 2002; 46(58):9301–20.

Braun RU, Ansgore M, Mueller TJ. Coupling–isomerization synthesis of chalcones. Chemistry, 2006; 12(35):9081–94.

Bulbaci SN, Butt AM, Aminj W, Ahmad W, Shah VH, Trivedi AR. Synthesis and evaluation of chalcone analogues based pyrimidines as angiotensin converting enzyme inhibitors. Pak J Biol Sci, 2013; 16(21):1368–72.

Table 1. Physical properties of chalcone.

IUPAC name	trans-1,3-diaryl-2-propen-1-one
Molecular formula	C₁₅H₁₂O
Molar mass	208.26 g mol⁻¹
Exact mass	208.088815
Density	1.071 g/mol
Melting point	55°C–57°C
Boiling point	345°C–348°C
Burmaoglu S, Alguç O, Gobek A, Aktas Anıl D, Ulger M, Erturk BG, Kaplan E, Dogen A, Aslan G. Design of potent fluoro-substituted chalcones as antimicrobial agents. J Enzyme Inhib Med Chem, 2017; 32(1):490–5.

Calvino V, Picallo M, López-Peinado AJ, Martín-Aranda RM, Durán-Valle CJ. Ultrasound accelerated Claisen–Schmidt condensation: a green route to chalcones. Appl Surf Sci, 2006; 252(17):6071–4.

Cancio N, Costantino AR, Silbestri GF, Pereyra MT. Ultrasound-assisted syntheses of chalcones: experimental design and optimization. In Multidisciplinary Digital Publishing Institute Proceedings, Bahía Blanca, Argentina, 2019, 41(1), p 13.

Chen JJ, Cheng MJ, Shu CW, Sung PJ, Lin YP, Cheng LY, Wang SL, Chen LC. A new chalcone and antioxidant constituents of Glycyrrhiza glabra. Chem Nat Compd, 2017; 53(4):632–4.

2. Synthesis of new fluorinated chalcone derivative with anti-inflammatory properties. Phytomedicine, 2014; 21(4):415–22.

3. Cancer cell invasion and inflammation by inhibiting the NF-κB signaling pathway. Chem Commun, 1999; 29(20):3651–7.

4. β unsaturated ketones by acid-catalyzed solvent-free reactions. Synth Commun, 2004; (23):2756–7.

5. Supported TBD as an efficient and reusable catalyst under solvent-free conditions. Chem Commun, 2004; (23):2756–7.

6. Microwave assisted solvent free synthesis of 5-triaryl-2-pyrazolines in acetic acid solution under ultrasound irradiation. Adv Synth Catal, 2015; 32(1):490–5.

7. Design of potent fluoro-substituted chalcones as anti-inflammatory agents. J Med Chem, 2000; 11(10):851–4.

8. Choudhary AN, Kumar A, Juygul V. Design, synthesis and evaluation of chalcone derivatives as anti-inflammatory, antioxidant and antitumor agents. Lett Drug Des Discov, 2012; 9(5):479–88.

9. Highly selective continuous flow synthesis of potentially bioactive deuterated chalcone derivatives. Chemplushem, 2015; 80(5):859–64.

10. Muchefficacy of new caffeine-based chalcones, pyrazolines and pyrazolo[3,4-b][1,4] diazepines as potential antimalarial, antitrypanosomal and antileishmanial agents. Eur J Med Chem, 2015; 93:401–13.

11. Kakati D, Sarma JC. Microwave assisted solvent free synthesis of 1,3-diphenylpropenones. Chem Cent J, 2011; 5(1):8–12.

12. Kaur H, Narasimhan B. Synthesis, characterization, antimicrobial and antioxidant potential of diazyl chalcones. Curr Top Med Chem, 2018; 18(10):844–56.

13. Ketabforoosh SH, Khierollahi A, Safavi M, Esmati N, Ardestani SK, Emami S, Firoozpour L, Shafiee A, Foroumadi A. Synthesis and anti-cancer activity evaluation of new dimethoxylated chalcone & flavonane analogs. Arch Pharm (Weinheim), 2014; 347(11):853–60.

14. Khanapure S, Jagdale M, Bansode P, Choudhari P, Rashinkar G. Anticancer activity of ruthenocenyl chalcones and their molecular docking studies. J Mol Struct, 2018; 1173:142–7.

15. Kolot C, Rodriguez-Mateos A, Feliciano R, Bottermann K, Stahl W. Bioavailability of naringenin chalcone in humans after ingestion of cherry tomatoes. Int J Vitam Nutr Res, 2019; 90(5–6):411–6.

16. Kostanecki SV, Tambor J. Synthesis, characterization and biological evaluation of some novel chalcone derivatives containing imidazo[1,2-a]pyridine moiety. J Med Chem, 1899; 32:1921–9.

17. Kumar C, Loh WS, Ooi C, Quah C, Fun HK. Structural correlation of some heterocyclic chalcone analogues and evaluation of their antioxidant potential. Molecules, 2013; 18(10):11996–2011.

18. Kumar H, Devaraj V, Joshi R, Jadhao M, Ahirkar P, Prasath R, Bhavana P, Ghosh SK. Antihypertensive activity of graphene oxide nanocomposite and its specific binding interaction with a relevant target carrier protein. RSC Adv, 2015; 5(80):65496–513.

19. Kumar N, Chauhan LS. Synthesis and antiviral activity of some flavones incorporated hydrazide derivatives. Int J Pharm Clin Res, 2015; 7(4):317–22.

20. Lal K, Yadav P, Kamar A, Kamar A, Paul AK. Design, synthesis, characterization, antimicrobial evaluation and molecular modeling studies of some dehydroacetic acid-chalcone-1,2, 3-triazole hybrids. Bioorg Chem, 2018; 77:236–44.

21. Li J, Li D, Xu Y, Guo Z, Liu X, Yang H, Wu L, Wang L. Design, synthesis, biological evaluation, and molecular docking of chalcone derivatives as anti-inflammatory agents. Bioorg Med Chem Lett, 2017; 27(3):602–6.

22. Li JT, Yang WZ, Wang SX, Li SH, Li TS. Improved synthesis of chalcones under ultrasound irradiation. Ultrason Sonochem, 2002; 9(5):237–9.

23. Liu M, Wilairat P, Go ML. Antimalarial alkoxylated and hydroxylated chalcones: structure–activity relationship analysis. J Med Chem, 2001; 44(25):4443–52.
Liu Y, Lund JA, Murch SJ, Brown PN. Single-lab validation for determination of kavalactones and flavokavains in pipper methysticum (Kava). Planta Med, 2018; 84(16):1213–8.

Mahapatra DK, Bharti SK, Asati V. Chalcone derivatives: anti-inflammatory potential and molecular targets perspectives. Curr Top Med Chem, 2017; 17(28):3146–69.

Mahapatra DK, Bharti SK, Asati V. Chalcone scaffolds as anti-infective agents: structural and molecular target perspectives. Eur J Med Chem, 2015; 101:496–524.

Mariadoss AV, Vinyagam R, Rajanickam V, Sankaran V, Venkatesan S, David E. Pharmacological aspects and potential use of phloretin: a systemic review. Mini Rev Med Chem, 2019; 19(13):1060–7.

Md Idris MH, Amin SNM, Selvaraj M, Jamhari M, Kek TL. High-throughput structure-based drug design of Chalcones Scaffolds as dual inhibitor of cyclooxygenase-2 and microsomal prostaglandin E synthesis-1. J Pharm Sci Emerg Drugs, 2018; 6(1):1–14.

Min J, Li X, HuANG KE, Tang H, Ding X, Qi C, Qin X, Xu ZH. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways. Oncol Rep, 2015; 34(6):2871–9.

Mistry RN, Desai KR. Microwave studies on synthesis of some new heterocyclic chalcone and pyrimidine-2-thione derivatives and their antibacterial activity. Asian J Chem, 2004; 16(1):201.

Monga V, Goyal K, Steindel M, Malhotra M, Rajani DP, Rajani SD. Synthesis and evaluation of new chalcones, derived pyrazoline and cyclohexenone derivatives as potent antimicrobials, antitubercular and antileishmanial agents. Med Chem Res, 2014; 23(4):2019–32.

Murti Y, Goswam A, Mishra P. Synthesis and antioxidant activity of some chalcones and flavanoids. Inter J PharmTech Res, 2013; 5:811–8.

Ngameni B, Kuete V, Ambassua P, Justin K, Marlyse ML, Tchoukoua P. Synthesis and evaluation of antifungal activity of O-allyl chalcone derivatives. Med Chem, 2013; 3(3):233–7.

Ötvös S, Hsieh CT, Wu YC, Li JH, Chang FR, Fülop F. Continuous-flow synthesis of deuterium-labelled antiabetic chalcones: Studies towards the selective deuteration of the alkyone core. Molecules, 2016; 21(3):318–28.

Özdemir A, Alitmong MD, Sever B, Gençer HK, Kapkaç HA, Atlı Ö, Baysal M. A new series of pyrrole-based chalcones: synthesis and evaluation of antimicrobial activity, cytotoxicity and genotoxicity. Molecules, 2017; 22(12):2112.

Padaratz P, Fragasso M, De Campos-Buzzi F, Corrêa R, Niero R, Monache FD, Cechinel-Filho V. Antinociceptive activity of a new benzoferuranone derived from a chalcone. Basic Clin Pharmacol Toxicol, 2009; 105(4):257–61.

Pingaw R, Saeeke A, Mandi P, Nantasenamat C, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Synthesis, biological evaluation and molecular docking of novel chalcone–coumarin hybrids as anticancer and antimalarial agents. Euro J Med Chem, 2014; 85:65–76.

Pinner KD, Wales CT, V o HT, So N, Jacobs AT. Convenient synthesis of ethynylarenes and diethynylarenes. Synthesis, 2010(06):001–5.

Polo E, Ibarra-Arellano N, Prent-Peñaloza L, Morales-Bayuelo J, Baars H. Properties of chalconaringenin and rutin isolated from cherry tomatoes. J Agric Food Chem, 2011; 59(7):3180–5.

Rammohan A, Reddy JS, Sravya G, Rao CN, Zyryanov GV. Chalcone synthesis, properties and medicinal applications: a review. Environ Chem Lett, 2020; 18:433–58.

Rathore MM, Rajput PR, Parhate VV. Synthesis and antimicrobial activity of some chalcones and flavones. Int J Chem Phys Sci, 2015; (4):473–7.

Reddy AK, Kathale NE. Synthesis, Characterization and anti-inflammatory activity of chalcone derivatives linked with Apocynin and 5-nitrofuran moiety. Asian J Chem, 2018; 30(2):312–6.

Reiland H, Slavin J. Systematic review of pears and health. Nutr Today, 2015; 50(6):301–5.

Rossi GV, Avellino JD. An evaluation of the antihistaminic activity of a new series of chalcone derivatives. Am J Pharm Sci Support Public Health, 1957; 129(9):324–31.

Rueping M, Bootwicha T, Baars H, Sugiono E. Continuous-flow hydration-condensation reaction: Synthesis of α, β-unsaturated ketones from alkenes and aldehydes by using a heterogeneous solid acid catalyst. Beilstein J Org Chem, 2011; 7(1):1680–7.

Sahu NK, Balbhadra SS, Choudhary J, Kohli DV. Exploring pharmacological significance of chalcone scaffold: a review. Curr Med Chem, 2012; 19(2):209–25.

Sasaki C, Ichitan M, Kumimoto KK, Asada C, Nakamura Y. Extraction of arbutin and its comparative content in branches, leaves, stems and fruits of Japanese pear Pyrus pyrifolia cv. Kousui. Biosci Biotechnol Biochem, 2014; 78(5):874–7.

Sashidhara KV, Kumar A, Kumar M, Sarkar J, Sinha S. Synthesis and in vitro evaluation of novel coumarin–chalcone hybrids as potential anticancer agents. Bioorg Med Chem Lett, 2010; 20(24):7205–11.

Sayed M, Kamal El-Dean AM, Ahmed M, Hassanien R. Chalcone, characterization, and screening for anti-inflammatory and antimicrobial activity of novel indolyl chalcone derivatives. J Heterocycl Chem, 2018; 55(5):1166–75.

Selepe M, Van Heerden F. Application of the Suzuki-Miyaura reaction in the synthesis of flavonoids. Molecules, 2013; 18(4):7439–55.

Sharma CS, Shekhawat KS, Chauhan CS, Kumar N. Synthesis and anticonvulsant activity of some chalcone derivatives. J Chem Pharm Res, 2013; 5(10):450–4.

Shukla P, Satyanarayana M, Verma PC, Tiwari J, Dwivedi AP, Srivastava R, Rehuja N, Srivastava SP, Gautam S, Tamarak AK, Dwivedi AK. Chalcone-based arloxypropanolamine as a potential antidiabetic and antidiyslipidaemic agent.Curr Sci, 2017; 112:1675–89.

Siddiqui AA, Rahman MA, Shaharyar M, Mishra R. Synthesis and anticonvulsant activity of some substituted 3, 5-diphenyl-2-pyrazoline-1-carboxamide derivatives. Chem Sci J, 2010; 8:1–10.

Slimestad R, Verheul M. Properties of chalconaringenin and rutin isolated from cherry tomatoes. J Agric Food Chem, 2011; 59(7):3180–5.

Srivastava YK. Ecofriendly microwave assisted synthesis of some chalcones. Rasayan J Chem, 2008; 1(4):848–4.

Straub TS. Epoxidation of α, β-unsaturated ketones with sodium perborate. Tetrahedron Lett, 1995; 36(5):633–4.

Syahri J, Nasution H, Nurohmah BA, Purwono B, Yuanita E. Aminoalkylated chalcone: synthesis, biological evaluation, and docking simulation as potent antimalarial agents. J Appl Pharm Sci, 2020; 10(06):001–5.

Takahashi S, Kuroyama Y, Sonogashira K, Hagiwara N. A convenient synthesis of ethynylarenes and diethynylarenes. Synthesis, 1980; 1980(08):627–30.

Venkataramireddy V, Shankaraiah V, Rao AT, Kalyani C, Narasu ML, Varala R, Jayashree A. Synthesis and anti-cancer activity of novel 3-aryl thiophene-2-carbaldehydes and their aryl/heteroaryl chalcone derivatives. Rasayan J Chem, 2016; 9(1):31–9.

Wan Z, Hu D, Li P, Xie D, Gan X. Synthesis, antiviral bioactivity of novel 4-thioquinazoline derivatives containing chalcone moiety. Molecules, 2015; 20(7):11861–74.

Wani ZA, Pathania AS, Mahajan G, Behl A, Mintoo MJ, Guru SK, Viswanath A, Malik F, Kamal A, Mondhe DM. Anticancer activity

of a novel quinazolinone-chalcone derivative through cell cycle arrest in pancreatic cancer cell line. J Solid Tumors, 2015; 5(2):73–85.

Weindorf N, Schultz-Ehrenburg U. Controlled study of increasing venous tone in primary varicose veins by oral administration of Ruscus aculeatus and trimethylhespiridinchalcone. Z Hautkr, 1987; 62(1):28–38.

Won SJ, Liu CT, Tsao LT, Weng JR, Ko HH, Wang JP, Lin CN. Synthetic chalcones as potential anti-inflammatory and cancer chemopreventive agents. Eur J Med Chem, 2005; 40(1):103–12.

Wu JZ, Cheng CC, Shen LL, Wang ZK, Wu SB, Li WL, Chen SH, Zhou RF, Qiu PH. Synthetic chalcones with potent antioxidant ability on H$_2$O$_2$-induced apoptosis in PC12 cells. Int J Mol Sci, 2014; 15(10):18525–39.

Wu XF, Neumann H, Spannenberg A, Schulz T, Jiao H, Beller M. Development of a general palladium-catalyzed carbonylative Heck reaction of aryl halides. J Am Chem Soc, 2010; 132(41):14596–602.

Xu LW, Li L, Xia CG, Zhao PQ. Efficient coupling reactions of arylalkynes and aldehydes leading to the synthesis of enones. Helv Chim Acta, 2004; 87(12):3080–4.

Zhang XW, Zhao DH, Quan YC, Sun LP, Yin XM, Guan LP. Synthesis and evaluate of anti-inflammatory activity of substituted chalcone derivatives. Med Chem Res, 2010; 19(4):403–12.

How to cite this article:
Goyal K, Kaur R, Goyal A, Awasthi R. Chalcones: A review on synthesis and pharmacological activities. J Appl Pharm Sci, 2021; 11 (Supp 1):001–014.