Prevalence, probability, and outcomes of typhoidal/non-typhoidal *Salmonella* and malaria co-infection among febrile patients: a systematic review and meta-analysis

Polrat Wilairatana¹, Wanida Mala², Wiyada Kwanhian Klangbud², Kwuntida Uthaisar Kotepui², Pongruj Rattaprasert³ & Manas Kotepui²*

The geographical overlaps of malaria parasites and *Salmonella* spp. can lead to co-infection of these two pathogens, especially in the tropics where malaria is endemic. Moreover, few literatures suggested that malaria infection was associated with *Salmonella* bacteremia. Therefore, this study quantified pooled prevalence of typhoidal/non-typhoidal *Salmonella* (NTS) and probability of typhoidal/NTS and malaria co-infection among febrile patients. The systematic review protocol was registered at PROSPERO (CRD42021252322). Studies on co-infection of typhoidal/NTS and malaria were searched in PubMed, Scopus, and Web of Science. The risk of bias of the included studies was assessed using the checklist for analytical cross-sectional studies developed by the Joanna Briggs Institute. Meta-analyses on the following criteria were performed: (1) pooled prevalence of typhoidal/NTS and malaria co-infection among febrile patients, (2) pooled prevalence of typhoidal/NTS among malaria patients, (3) pooled prevalence of malaria infections among patients with *Salmonella* spp. infection, and (4) probability of typhoidal/NTS and malaria co-infection among febrile patients. Additionally, the case fatality rate and mean difference of malarial parasitemia between typhoidal/NTS and malaria co-infection and *Plasmodium* monoinfection were also determined. The subgroup analyses of typhoidal/NTS, regions (Africa and Asia), countries, time (publication year), characteristics of participants, and diagnostic tests for identifying *Salmonella* spp. were also conducted. A sensitivity test was performed to determine the robustness of the study outcomes. Publication bias among the included studies was evaluated using the funnel plot and Egger's test. All analyses were performed using Stata version 15 (StataCorp LLC, Texas, USA) with a p-value < 0.05 indicating statistical significance. Eighty-one studies that met the eligibility criteria were included in the analyses. Of the 73,775 study participants, 4523 had typhoidal/NTS and malaria co-infections. The pooled prevalence rates of typhoidal/NTS and malaria co-infection among febrile patients were 14% (95% confidence interval [CI], 9–19%; I², 99.4%; 2971/17,720 cases) and 1% (95% CI 1–1%; I², 89.9%; 252/29,081 cases) using the Widal test and culture methods for identifying *Salmonella* spp., respectively. The pooled prevalence rates of typhoidal/NTS infection among patients with malaria were 31% (95% CI 23–39%; I², 99.5%; 3202/19,208 cases) and 3% (95% CI 2–3%; I², 86.8%; 407/40,426 cases) using the Widal test and culture methods for identifying *Salmonella* spp., respectively. The pooled prevalence rates of

¹Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. ²Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand. ³Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. *email: manas.ko@wu.ac.th
are classified into six serotypes, which are differentiated based on their antigenicity. Several enterica antigens. The Widal test is widely used in numerous countries where trained technicians and laboratory conducted using the Widal test. This test measures the antibody titers specific for countries are travelers returning from endemic areas. In developing countries, especially in Southeast Asia and Africa, NTS is endemic and is a global burden, contrary to typhoidal 12,14. Poor water quality, and household behaviors, including poor hygiene and consumption of unsafe food and untreated water, increase the risk of fecal–oral enteric infections, including typhoidal and NTS. The most recent meta-analysis revealed that typhoid transmission16. Among children in Africa, NTS is a leading cause of bacteremia, whereas typhoid fever has a relatively low burden. Another study demonstrated that typhoid fever is more common in older children with a period of fever, whereas non-typhoidal bacteremia frequently develops in younger children of poorly educated women or women with low socioeconomic status. People 11,12. Typhoid fever is an important cause of morbidity and mortality worldwide, with an estimated 16–33 million cases and 500,000 to 600,000 deaths annually. Typhoid is endemic in developing countries, especially Africa, whereas developed countries have a much lower incidence. The majority of patients in developed countries are travelers returning from endemic areas. In developing countries, especially in Southeast Asia and Africa, NTS is endemic and is a global burden, contrary to typhoidal Salmonella. The recent meta-analysis revealed that household behaviors, including poor hygiene and consumption of unsafe food and untreated water, increase the risk of typhoid transmission. Among children in Africa, NTS is a leading cause of bacteremia, whereas typhoid fever has a relatively low burden. Another study demonstrated that typhoid fever is more common in older children with a period of fever, whereas non-typhoidal bacteremia frequently develops in younger children of poorly educated women or women with low socioeconomic status.

For the diagnosis of typhoidal Salmonella infection, especially from blood, bacteriological culture is the gold standard. The sensitivity of the culture method depends on the blood volume, antibiotic treatment, affected individual, disease duration, and presence of bacteremia. Blood cultures have a sensitivity of 40–80%. Moreover, they are most sensitive in the first week of infection as circulating bacterial concentrations peak at that time. Stool and rectal swab cultures have lower sensitivity than blood cultures. However, sensitivity can be enhanced by culturing from three specimens or performing multiple cultures from a single stool specimen. Culture methods are less frequently employed in developing countries because of the high cost and requirements for good laboratory facilities and highly trained professionals. Serological diagnoses of infections are conducted using the Widal test. This test measures the antibody titers specific for Salmonella O (somatic) and H (flagella) antigens. The Widal test is widely used in numerous countries where trained technicians and laboratory facilities are limited. Other useful methods for the diagnosis of Salmonella infection include enzyme-linked immunosorbent assay (ELISA), which detects IgM and IgG antibodies against Salmonella surface molecules, and molecular methods, such as nested multiplex polymerase chain reaction (PCR) and real-time PCR, which target Salmonella virulence genes. The real-time PCR test is highly specific and sensitive and has faster turnaround times than culture methods.
The geographical overlaps of malarial parasites and typhoidal/NTS can lead to co-infection of these two pathogens, especially in the tropics where malaria is endemic. The overlap in the clinical symptoms of malaria and non-malaria febrile illness or co-infection of these two pathogens may lead to the misdiagnosis of one disease. Previous studies conducted in Africa demonstrated that bacteremia caused by NTS was associated with malaria parasitemia, recent malaria, anemia, severe malarial anemia, jaundice, and hypoglycemia. Previous studies also demonstrated that NTS infection is associated with more severe anemia and malaria compared with typhoidal Salmonella or other bacteremia infections. Another study demonstrated that NTS infections were associated with previous antimalarial treatment and malarial complications (severe anemia, jaundice, and hypoglycemia). Furthermore, a systematic review demonstrated a higher case fatality rate in children who were co-infected with NTS compared with those infected with malaria alone; however, the study had limitations on high heterogeneity between studies, inclusion of recent malaria infection, use of antigen-based rapid diagnostic tests (RDTs), study design, quality of microbiological data, and publication bias, making the meta-analysis potentially misleading. To the best of our knowledge, meta-analyses determining the association between malaria and typhoid/non-typhoid fever have not been well conducted, and information is not updated. Therefore, the present study aimed to quantify the pooled prevalence, probability, and outcome of typhoidal/NTS and malaria co-infection among febrile patients who were suspected of having these two diseases.

Methods

Protocol and registration. The protocol of systematic review was registered at PROSPERO (CRD42021252322) and conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement.

Search strategy. Potentially relevant articles in PubMed, Web of Science, and Scopus were searched using the combined search terms presented in Supplementary Table S1. The relevant search terms were retrieved from Medical Subject Headings to ensure the inclusion of all relevant studies. The searches were conducted from inception to April 27, 2021. Searches were limited to the English language, but the year of publication was not limited. Additional searches were performed by reviewing the reference lists of the included studies and Google Scholar to ensure that all potentially relevant studies were included in the meta-analysis.

Eligibility criteria. Observational studies in the English language that reported concurrent malaria and typhoidal/NTS infection were included in the study. Studies reporting data that could not be extracted, case-control studies, experimental studies, animal studies, case reports, and case series were excluded.

Study selection and data extraction. Potentially relevant articles were selected by two authors (MK, WM) using the eligibility criteria. First, the duplicates from the three databases were removed. Second, the remaining studies were screened for titles and abstracts, and any non-related studies were excluded. Third, the full texts of the remaining studies were examined, and any non-related studies were excluded with reasons. Then, the remaining studies were included in the systematic review and meta-analysis. Any disagreement on the study selection between the two authors was resolved by reaching a consensus after the discussion. Data extraction was performed by two authors (MK, WM) using the pilot standardized datasheets. The following information was obtained from each study: first author names, publication year, study sites (country and region), year the study was conducted, study design, characteristics of participants including age and sex, number of co-infections, number of malaria cases, number of typhoid/non-typhoid cases, number of case fatality in co-infection and Plasmodium monoinfection, diagnostic test for malaria, and diagnostic test for typhoid (best diagnostic test). Any disagreement on data extraction between the two authors was resolved by a third author (PW) for the final decision.

Risk of bias. The risk of bias of the included studies was evaluated using the checklist for analytical cross-sectional studies developed by the Joanna Briggs Institute. The checklist is comprised of eight categories (yes/no/unclear/not applicable answers) based on the design, conduct, and analysis. Studies with yes answers in all eight categories were considered to have low risk of bias (high quality), whereas those that complied with four to six categories were considered to have a moderate risk of bias (moderate quality). Any study that complied with less than four categories was considered to have a high risk of bias (low quality) and thus excluded from the present study. The risk of bias was evaluated by two authors (MK, WM). If the two authors disagreed on the risk of bias assessment, a third author (PW) was responsible for the final decision.

Outcomes. The outcomes of this study were as follows: (1) pooled prevalence of typhoidal/NTS and malaria co-infection among febrile patients, (2) pooled prevalence of typhoidal/NTS infection among patients with malaria, (3) pooled prevalence of malaria infection among patients with Salmonella spp. infection, (4) comparison of typhoidal/NTS infection among patients with severe and non-severe malaria, (5) association between malaria and typhoidal/NTS infections, (6) case fatality rate among patients with typhoidal/NTS and malaria co-infection, and (7) difference in mean parasitemia level between patients with typhoidal/NTS and malaria co-infection and those with Plasmodium spp. monoinfection.

Data synthesis. The pooled prevalence rate of typhoidal/NTS and malaria co-infection among febrile patients, typhoidal/NTS infection rate among patients with malaria, malaria infection rate among patients with Salmonella spp. infection, case fatality rate among patients with typhoidal/NTS and malaria co-infection, and
comparison of typhoidal/NTS infection rates among patients with severe and non-severe malaria were estimated using random-effect models, assuming heterogeneity of the included studies. The results of the individual studies are presented in the forest plots as the point estimates (prevalence in percentage) and 95% confidence interval (CI). The association between *Plasmodium* spp. and *Salmonella* spp. infections was determined using the random-effects model and expressed as odds ratio with 95% CI. The difference in mean parasitemia level between patients with typhoidal/NTS and malaria co-infection and *Plasmodium* spp. monoinfection was estimated using the random-effects model and expressed as weighted mean difference (WMD) with 95% CI. The heterogeneity among the included studies was assessed using Cochran’s Q and I² statistics. Cochran’s Q < 0.05 or I² > 50% indicated substantial heterogeneity among the included studies. If no substantial heterogeneity existed, the fixed-effects model was employed to estimate the effect size (pooled prevalence or pooled odds ratio). The subgroup analysis of typhoidal/NTS, regions (Africa and Asia), countries, time (publication year), characteristics of participants, and diagnostic tests for identifying *Salmonella* spp. were conducted to explore the source(s) of heterogeneity among the overall effect estimate. Sensitivity analyses of the probability of *Plasmodium* spp. and *Salmonella* spp. co-infection were performed using the random- and fixed-effects models after excluding outliers.

Publication bias. Publication bias among the included studies was evaluated using a funnel plot between the effect size (ES) and standard error of the ES (seES). A funnel plot with asymmetrical distribution indicated publication bias. Egger’s test was employed if the funnel plot asymmetry was caused by the small study effect. A contour-enhanced funnel plot was also utilized to find the possible causes of funnel plot asymmetry among the included studies. The significance of contour-enhanced funnel plots (p < 0.01) indicated that the cause of funnel plot asymmetry might be more likely other factors such as heterogeneity, selection bias, and quality of the included studies than publication bias.

Results

Search results. A total of 550 studies were retrieved from the three databases (168 from PubMed, 234 from Scopus, and 148 from Web of Science). After removal of 245 duplicated studies, the titles and abstracts of 305 studies were screened. After excluding 232 unrelated studies, 73 were retained for full-text examination. A total of 30 studies were excluded for the following reasons: 11 studies had no malaria and typhoid co-infection cases, 9 studies had no typhoidal cases, data could not be extracted from 4 studies, 3 were case–control studies, 1 was an experimental study, 1 was an animal study, and 1 study was a case report. Finally, 43 studies were included. Thirty-eight studies from additional searches of reference lists and Google Scholar were included. Thus, 81 studies met the eligibility criteria and thus included in the qualitative and quantitative analyses (Fig. 1).

Characteristics and quality of the included studies. The characteristics of the included studies are presented in Table 1. A total of 76 studies were cross-sectional or retrospective studies, whereas 5 were prospective studies. All studies were published between 1987 and 2021. In Africa, 61 studies (75.3%) were conducted; in Asia, 19 studies (23.4%); and in Europe, 1 study. The African studies were conducted in Nigeria (30/61, 49.2%)36–48, Cameroon (5/61, 8.2%)35,40,73,92,93, Ghana (5/61, 8.2%)31,53,56,76,85, Kenya (5/61, 6.2%)28,29,70,72,80, Tanzania (4/61, 6.56%)36,39,44,46, Malawi17,27,30, Burkina Faso34,80, Mozambique29, Sierra Leone36, the Democratic Republic of the Congo39, Ethiopia36, Gabon36, and Gambia31, and one study was conducted in Burkina Faso, Ethiopia, Ghana, Guinea-Bissau, Kenya, Madagascar, Senegal, South Africa, Sudan, and Tanzania42. The Asian studies were conducted in India (12/19, 63.2%)30,69–71,73,81,84,104–106, Pakistan (4/19, 21.1%)32,65,70,102, Myanmar36,38, and Vietnam36. One study was conducted in Sweden36.

Among the 81 studies included in the analysis, 49 studies (60.5%) enrolled febrile patients, 5–41,43–47,55–53,55,57,58,62,64–68,70–77,81,83,84,87,89,90,92,93,95,98,102–105, 8 studies enrolled pregnant women28,31,36,38,39,41–43,45–48,50–52,57,59,61,65–68,70,71,73–78,81–84,86–108, 6 studies enrolled patients with severe malaria30,54,63,70,80, 5 studies enrolled typhoid/non-typhoid-positive patients17,20,30,35,36,38,39,41–43,45–48,50–53,56,58,60,63–65,68,70,71,73–78,81–84,86–108, and 1 study enrolled children with pathogenic bacteria29. Co-infections with malaria and typhoidal/NTS were reported in 4,523 cases from 73,775 total patients enrolled in the 81 included studies. Co-infections with malaria and typhoidal *Salmonella* spp., including *S. typhi* and *S. paratyphi*, were reported in 3813 cases from 56 studies31,36,38,39,41–43,45–48,50–52,57,59,61,65–68,70,71,73–78,81–84,86–108. Co-infections with malaria and typhoidal *Salmonella* spp., including *S. typhi* and *S. paratyphi*, were reported in 707 cases from 18 studies17,27–31,44,53,56,60,62,69,72,79,80,84,85,93. Co-infections with malaria and NTSc were reported in 707 cases from 18 studies17,27–31,44,53,56,60,62,69,72,79,80,84,85,93. Co-infections with malaria and NTS were reported in 13 studies30,31,35,37,40,49,54,55,58,63,64,84,93.

Salmonella spp. infection was identified using blood cultures (39/81, 48.1%)17,20,27–31,37,38,44,47,49,50,54,56–58,50,54,62,63,66,68,89,71,72,74–77,81–83,85,89,90,104–106,108, Widal test (27/81, 33.3%)36,40,41,43,45,46,48,54,55,58,61,62,64–68,70–77,80–84,93,97,100–104,108, stool cultures (5/81, 6.17%)94,96,107, RDTs (4/81, 4.94%)35,42,73,91, and molecular methods (3/43, 6.98%)39,55,64. One study35 employed both blood and stool cultures. Some studies used combinations of methods to identify *Salmonella* spp. infection. However, only a definitive method was demonstrated in this qualitative analysis. For the identification of malaria, *Plasmodium* spp. infections were identified via microscopy alone (52/81, 64.2%)17,20,27–31,37,38,44,47,49,50,54,56–58,50,54,62,63,66,68,89,71,72,74–77,81–83,85,89,90,104–106,108, microscopy/RDT (16/81, 19.8%)20,41,44,49,54,56,61,66,68,71,74,78,88,91,100–104,108, RDT alone (5/81, 6.17%)17,37,73,76,101, molecular method35,56, microscopy/RDT/molecular method56,70, not specified4,61,68,70, and ELISA39.

Among the 81 studies included in the present study, 30 (37%) were rated as low risk of bias, whereas 51 studies had a moderate risk of bias (51/81, 63%). Studies with a high risk of bias were removed during the study selection (Supplementary Table S2).
Prevalence of typhoidal and NTS and malaria co-infections among febrile patients. The pooled prevalence rate of typhoidal/NTS and malaria co-infections among febrile patients was estimated from 50 studies. The studies were divided into four groups based on diagnostic tests for *Salmonella* spp. The results indicated that the pooled prevalence rates of typhoidal/NTS and malaria co-infections among febrile patients were 14% (95% CI 9–19%; I², 99.4%) using the Widal test, 1% (95% CI 0–2%; F₂, 81.6%) using blood culture, 1% (95% CI 0–2%; I², 81.6%) using RDTs, 1% (95% CI 0–1%; F₂, 0%) using a molecular method, 7% (95% CI 3–10%; F₂, 81.2%) using stool cultures, and 6% (95% CI 4–9%) using a combination of blood and stool cultures (Fig. 2).

When *Salmonella* spp. infections were detected using the Widal test, the highest prevalence rate of co-infections was noted in Cameroon (51%; 95% CI 45–58%) and Nigeria (21%; 95% CI 11–31%; F₂, 98.3%), whereas lower prevalence rates were detected in Sierra Leone (19%; 95% CI 18–20%), Ethiopia (6%; 95% CI 4–11%), Pakistan (6%; 95% CI 4–7%; F₂, 0%), Ghana (5%; 95% CI 3–8%; F₂, 99.7%), India (0%; 95% CI 0–1%; F₂, 99.7%), and Tanzania (4%; 95% CI 2–6%) (Fig. 3).

Among the studies using blood culture for the identification of *Salmonella* spp. infections, the highest prevalence of co-infection was reported in Burkina Faso, Ethiopia, Ghana, Guinea-Bissau, Kenya, Madagascar, Senegal, South Africa, Sudan, and Tanzania (5%; 95% CI 3–7%). Contrarily, lower prevalence was reported in Nigeria (2%; 95% CI 1–4%; F₂, 82%), India (1%; 95% CI 0–1%; F₂, 87.3%), Tanzania (1%; 95% CI 1–2%), Ghana (0%; 95% CI 0–1%), and Kenya (0%; 95% CI 0–1%) (Fig. 4).

Among the studies using the Widal test for the identification of *Salmonella* spp. infections, the highest prevalence of co-infections was noted in the studies that enrolled participants in all age groups (95% CI 20%; 95% CI 14–25%; F₂, 97.1%). The prevalence of co-infections was 4% in children (95% CI 2–6%; F₂, 99.7%), 8% in the not specified (NS) age group (95% CI 1–15%), and 4% in adults (95% CI 3–5%; F₂, 99%) (Fig. 5) when *Salmonella* spp. infections were detected using the Widal test. Among the studies using blood cultures for the identification of *Salmonella* spp. infections, the prevalence of co-infections was 1% in all age groups (95% CI 1–2%; F₂, 91.1%), 1% in the NS group (95% CI 0–1%; F₂, 46.1%), and 1% in children (95% CI 0–1%; F₂, 89.2%) (Fig. 6).

Subgroup analysis of typhoidal/NTS infection, regions (Africa and Asia), and time (publication year) was performed using the data from studies using blood culture for typhoidal/NTS identification. Results showed that the prevalence rates of malaria and...
Author	Study site	Year conducted	Study design	Participants	Age	No.			Salmo... with typhoid	Salmo... with non-typhoid	All malaria cases	Malaria w/o typhoid	Typhoid and other malaria	Test for typhoid	Test for typhoid
-------------------------	--------------	----------------	------------------	--------------	---------	-----									
Alhaji et al. (2019)	Nigeria	2016	Cross-sectional	508 febrile patients	1–40 years	246:264	115	115	6	278	163	40	Microscopy	Widal test	
Ackah-Baidoe et al.	Ghana	2018	Cross-sectional	512 febrile children	0–4 months (33) 1–15 years	38 years (3.8)	147:136	14	14	145	179	S. typhi and S. paratyphi A/B	Microscopy, RDT, IFA	Rapid diagnosis test	
Ali et al. (2020)	Nigeria	2020	Cross-sectional	510 febrile patients	0–24 months (25) 24–48 months (22) 49–72 months (7) 90–120 months (2) 120–160 months (2)	230:221	117	117	65	418	274	Microscopy	Widal test		
Almeida et al. (2017)	Guinea	2016	Cross-sectional	543 febrile patients	0–5 years (2), 5–10 years (3), 10–15 years (22), 15–20 years (15), 20–40 years (9)	16	16	10	147	91	56	Microscopy	Blood culture		
Almeida et al. (2016)	Guinea	2016	Cross-sectional	510 febrile patients	NS	NS	9	9	5	5	S. typhi (2), S. paratyphi (1).	Microscopy	Blood culture		
Ali et al. (2018)	Tanzania	2015	Cross-sectional	749 febrile patients	Mean, 3 years; range, 3–24	62:47	7	7	6	6	Molecular method	Molecular method			
Anjorin et al. (2018)	Cameroon	1997–1998	Cross-sectional	552 febrile children	Median, 5 years; range, 2–9 years	77:73	8	8	65	76	Male median age: 60 (2–81) males: 40 (10–120), females: 25 (10–70),	Microscopy	Widal test		
Asinu et al. (2010)	Nigeria	2010	Cross-sectional	504 pregnant women having influenza like illness	Mean, 28; 3 years; range, 18–45	14	14	14	34	NS	Rapid diagnostic test				
Aung et al. (2013)	Myanmar	2014	Cross-sectional	537 febrile children	<5 years	NS	12	12	202	173	9	Microscopy	Blood culture		
Basnet et al. (2011)	Nepal	2011	Cross-sectional	500 children with fever	<5 years	NS	8	6	78	77	NS	Microscopy	Blood culture		
Bedjaoui et al. (2010)	India	2010	Cross-sectional	736 febrile patients	<5 years	NS	8	6	78	77	NS	Microscopy	Blood culture		
Bhattacharya et al.	India	2008	Cross-sectional	577 febrile patients	Mean, 24; 7 years; range, 17–48	178:164	14	14	25	23	Microscopy	Blood culture			
Biggs et al. (2018)	Tanzania	2008–2017	Cross-sectional	4099 febrile children	Median 1.57 years; range, 0.2–5.14	1978:1649	13	13	2160	2142	S. typhi (61), Salmonella enterica (199)	Microscopy, RDT	Blood culture		
Bhime et al. (2009)	Ethiopia	2013	Cross-sectional	208 febrile patients	24.14±15.6 years; range, 0–48	120:88	13	13	73	66	20	Microscopy	Widal test		
Biruk et al. (2008)	Kenya	1998–2002	Cross-sectional	348 non-typhoidal Salmonella	Median 15 months (0–27)	14	14	14	0	112	ELISA	Blood culture			
Biruk et al. (2008)	Malawi	1998–2003	Cross-sectional	1994 Salmonella	Median 2 years (2.5–5.5)	244:234	170	170	244	244	Microscopy	Blood culture			
Chitsungo et al. (2015)	Zambia	2015	Cross-sectional	197 febrile patients	3–14 years	189:181	13	13	98	98	4	Microscopy	Blood culture		
Chukwuma et al. (2014)	Nigeria	2013–2015	Cross-sectional	598 pregnant women	5	5	5	5	5	5	Microscopy	Blood culture			
Edel et al. (2010)	Nigeria	2010–2013	Cross-sectional	510 febrile patients	10–40 years	63:57:80	11	11	61	61	30	Microscopy	Blood culture		
Ekhoosh et al. (2017)	Nigeria	2017	Cross-sectional	272 febrile patients	1 to 16 years	120:138	28	28	282	179	8	Microscopy	Blood culture		
Ehesan et al. (2010)	Nigeria	2010	Cross-sectional	272 febrile patients	NS	NS	2	2	143	143	28	Microscopy	Blood culture		
Enos et al. (2008)	Ghana	2008	Cross-sectional	25 children with fever	NS	NS	10	10	23	23	13	Microscopy	Blood culture		
Finer et al. (2013)	Nigeria	2010	Cross-sectional	25 malaria cases	NS	NS	1	1	25	25	2	Microscopy	Blood culture		
Foley et al. (2009)	Democratic Republic of the Congo	2012	Cross-sectional	154 S. typhi positive, 148 S. non-typhoidal salmonella	Median 16 months (0–39 months)	27:25	3	3	18	18	0	Microscopy	RDT	Blood culture	
Gobarran et al. (2008)	Malawi	1994–1999	Cross-sectional	214 non-typhoidal salmonella	<6 months	32	32	92	92	0	Microscopy	Blood culture	Continued		
Author	Study site	Year conducted	Study design	Participants	Age	Sex (M:F)	All co-infection	Salmoella spp. with typhoid	Salmonella spp. with non-typhoid	All malaria cases	Malaria without typhoid	Typhoid without malaria	Test for residents	Test for typhoid	
--------------------------------	---------------------	----------------	-------------------------	--------------	-----	-----------	-------------------	-----------------------------	-----------------------------	------------------	---------------------	----------------------	-------------------	------------------	
Shinkaya et al. (2019)**	Burkina Faso	2014	Cross-sectional study	260 Malaria cases	Median 19 (10–65 years)	140:140	61	91	6	289	192	NS	Microscopy	Widal test	
Igboh et al. (2010)**	Nigeria	2003	Cross-sectional study	236 Febrile Patients	NS	NS	3	3	164	160	1	Microscopy	Widal test		
Igboh et al. (2012)**	Nigeria	2012	Cross-sectional study	236 Febrile patients	NS	11:11	45	98	45	140	Microscopy	Widal test			
Jakar et al. (2012)**	Pakistan	2017	Cross-sectional study	546 Febrile patients	3–18 (15)	11–20 (16)	74:70	6	6	28	11	86	Microscopy	Widal test	
Nkeng et al. (2015)**	Nigeria	2014	Cross-sectional study	51,000 Febrile patients	1–19 years	2456	1841	6	101	11	104	Microscopy	Widal test		
Knecht et al. (2009)**	Nigeria	2013–2014	Cross-sectional study	75,000 Febrile patients	0–88 years	6213	1222	0	780	618	NS	Microscopy	Widal test		
Karlsson et al. (2009)**	India	2003	Cross-sectional study	700 Malaria cases	0–88 years	621	132	0	780	618	NS	Microscopy	Widal test		
Osu et al. (2016)**	Nigeria	2007–2012	Cross-sectional study	876 Febrile patients	≤15 years	26	77	1563	2580	0	Microscopy	Widal test			
Adewale et al. (2017)**	Nigeria	2014	Cross-sectional study	114 Patients with typhoidal/non-typhoidal salmonella	15	5	50	15	NS	5	Microscopy	Widal test			
Kohla et al. (2016)**	Benin	2012–2013	Cross-sectional study	731 Serum malaria	Median 19 (10–86)	143:143	19	12	11	731	478	9	Microscopy	Widal test	
Ugbab et al. (2016)**	Nigeria	2016	Cross-sectional study	216 Febrile patients	3–58 years	110:110	1	1	48	30	9	Microscopy	Widal test		
Ugbab et al. (2017)**	Nigeria	2015	Retrospective study	607 Febrile patients	1–75 years	375:375	136	136	0	235	97	30	Microscopy	Widal test	
Njolle et al. (2020)**	Nigeria	2016	Cross-sectional study	426 Pregnant women	21–30 years	129	12	0	120	111	10	Microscopy	Widal test		
Momah et al. (2020)**	Ghana	2016	Cross-sectional study	418 Febrile patients	≤16 years	262:198	4	4	125	105	0	Microscopy	Widal test		
Murti et al. (2010)**	Tanzania	2008–2009	Cross-sectional study	126 Children with parasitic bacillae	2 months to 14 years	14	3	31	0	5	5	218 Microscopy	Widal test		
Nsip et al. (2019)**	Cameroon	2018	Cross-sectional study	206 Febrile patients	9–88 years	12	12	0	186	174	14	Microscopy	Widal test		
Shinkaya et al. (2015)**	Ghana	2015–2016	Cross-sectional study	771 Malaria cases	≤15 years	1808:864	31	31	37	771	739	9	Microscopy	Widal test	
Njolle et al. (2018)**	Cameroon	2015	Cross-sectional study	306 Febrile patients	10 months–60 years	30:30	12	12	4	12	12	5	Microscopy	Widal test	
Njolle et al. (2018)**	Nigeria	2016	Cross-sectional study	708 Pregnant women	NS	NS	136	136	0	132	124	NS	Microscopy	Widal test	
Njolle et al. (2010)**	Nigeria	2007	Cross-sectional study	254 Febrile patients	0–78 years	125:125	14	14	5	14	14	5	Microscopy	Widal test	
Njolle et al. (2014)**	Nigeria	2014–2015	Cross-sectional study	47 Adults with F. hepatitis	Adults	NS	4	4	47	47	0	Microscopy	Widal test		
Oluwadare et al. (2010)**	Nigeria	2005	Cross-sectional study	308 Febrile patients	All age groups	146:146	127	127	180	180	0	Microscopy	Widal test		
Obiara et al. (2005)**	Nigeria	1997–1998	Cross-sectional study	278 Febrile patients	10–60 years	150:150	15	15	68	68	22	Microscopy	Widal test		
Onyeo et al. (2007)**	Nigeria	2015	Cross-sectional study	178 Pregnant women	10–45 years	170	170	0	172	172	0	Microscopy	Widal test		
Onyeo et al. (2007)**	Nigeria	2015	Cross-sectional study	208 Healthy individuals	1–68 years	52:46	18	18	54	54	11	Microscopy	Widal test		
Onyeo et al. (2015)**	Nigeria	2015	Cross-sectional study	208 Febrile patients	1–75 years	113:113	2	2	282	282	0	Microscopy	Widal test		
Okoh et al. (2015)**	Nigeria	2015	Cross-sectional study	208 Students	10–30 years	180:180	3	3	18	18	30	Microscopy	Widal test		
Okoh et al. (2018)**	Nigeria	2017	Cross-sectional study	317 Children with malaria	Mean 12.2 month (25)	101	101	954	954	0	954	954	Microscopy	Widal test	
Okoh et al. (2018)**	Nigeria	2015	Cross-sectional study	294 Pregnant women	≥20 to 60 years	290	0	0	16	8	78	Microscopy	Widal test		
Onyeo et al. (2015)**	Nigeria	2015	Cross-sectional study	250 Pregnant women	≥20 to 60 years	147	147	68	68	68	68	Microscopy	Widal test		
Onyeo et al. (2015)**	Nigeria	2015	Cross-sectional study	284 Pregnant women	≥20 to 60 years	116	116	55	55	55	55	Microscopy	Widal test		

Continued
Author	Study site	Year conducted	Study design	Participants	Age	Sex (M:F)	All co-infections	Salmonella spp. with typhoid	Salmonella spp. with non-typhoid	All malaria cases	Malaria without typhoid	Typhoid without malaria	Test for malaria	Test for typhoid
Park et al. (2014)	Malawi	1996–1997	Cross-sectional	27 Patients	0–70	10:17	3	0	0	0	0	0	Microscopy	RDT, Blood culture
Walsh et al. (2014)	Nigeria	2010–2012	Cross-sectional	24 Patients	0–60	12:16	1	2	0	0	0	0	Microscopy	RDT, Blood culture
Sur et al. (2006)	India	2004	Prospective	36 Patients	≤ 15	18:18	2	0	0	0	0	0	Microscopy	RDT, Blood culture
Shaikh et al. (2012)	Sweden	1995–2009	Cross-sectional	243 Patients	0–70	130:113	1	2	0	0	0	0	Microscopy	RDT, Blood culture
Quak et al. (2013)	India	2014–2015	Cross-sectional	100 Patients	0–60	50:50	10	2	0	0	0	0	Microscopy	RDT, Blood culture
Sale et al. (2016)	India	2014–2015	Cross-sectional	126 Patients	0–60	65:61	1	2	0	0	0	0	Microscopy	RDT, Blood culture
Raja et al. (2016)	India	2014–2015	Cross-sectional	200 Patients	0–60	100:100	1	2	0	0	0	0	Microscopy	RDT, Blood culture
Popoola et al. (2014)	Kenya	2005–2006	Cross-sectional	120 Patients	0–60	60:60	1	2	0	0	0	0	Microscopy	RDT, Blood culture
Park et al. (2014)	Nigeria	2010–2012	Cross-sectional	24 Patients	0–60	12:12	1	2	0	0	0	0	Microscopy	RDT, Blood culture
Park et al. (2014)	India	2014–2015	Cross-sectional	126 Patients	0–60	65:61	1	2	0	0	0	0	Microscopy	RDT, Blood culture
Park et al. (2014)	India	2014–2015	Cross-sectional	126 Patients	0–60	65:61	1	2	0	0	0	0	Microscopy	RDT, Blood culture
Park et al. (2014)	India	2014–2015	Cross-sectional	126 Patients	0–60	65:61	1	2	0	0	0	0	Microscopy	RDT, Blood culture
Park et al. (2014)	India	2014–2015	Cross-sectional	126 Patients	0–60	65:61	1	2	0	0	0	0	Microscopy	RDT, Blood culture

Table 1. Characteristics of the included studies. ELISA enzyme-linked immunosorbent assay, NS not specified, RDT rapid diagnostic test.
Figure 2. The pooled prevalence of typhoidal/NTS and malaria co-infection among febrile patients detected using diagnostic tests for Salmonella spp. ES proportion estimate (multiply 100 units for interpreted as prevalence estimate), CI confidence interval.
The pooled prevalence rate of typhoidal/NTS infection among malaria patients was estimated from 57 studies. The studies were divided into groups based on diagnostic tests for *Salmonella* spp. The pooled prevalence rates of typhoidal/NTS infection among patients with malaria were 31% (95% CI 23–39%; I², 99.5%) using the Widal test, 5% (95% CI 0–10%; I², 86.7%) using RDTs, 3% (95% CI 2–3%; I², 86.8%) using blood culture, 2% (95% CI 1 to 5%; I², 58.7%) using molecular methods, 12% (95% CI 5–19%; I², 86%) using stool cultures, and 27% (95% CI 17–39%) using a combination of blood and stool cultures.

Prevalence of typhoidal/NTS infections among patients with malaria.

The pooled prevalence rate of typhoidal/NTS infection among malaria patients was estimated from 57 studies. The studies were divided into groups based on diagnostic tests for *Salmonella* spp. The pooled prevalence rates of typhoidal/NTS infection among patients with malaria were 31% (95% CI 23–39%; I², 99.5%) using the Widal test, 5% (95% CI 0–10%; I², 86.7%) using RDTs, 3% (95% CI 2–3%; I², 86.8%) using blood culture, 2% (95% CI 1 to 5%; I², 58.7%) using molecular methods, 12% (95% CI 5–19%; I², 86%) using stool cultures, and 27% (95% CI 17–39%) using a combination of blood and stool cultures.

Among the studies using the Widal test for the identification of *Salmonella* spp. infections, the highest prevalence rate of typhoidal/NTS among patients with malaria was reported in Cameroon (90%; 95% CI 83–94%) and...
Figure 4. Pooled prevalence of typhoidal/NTS and malaria co-infection using blood cultures for the identification of *Salmonella* spp. infection stratified by countries. ES proportion estimate (multiply 100 units for interpreted as prevalence estimate), CI confidence interval, NS not specified.

Nigeria (37%; 95% CI 20–54%; I², 98.7%), whereas lower prevalence rates were reported in Burkina Faso (32%; 95% CI 27–38%), Pakistan (28%; 95% CI 8–47%; I², 89.9%), Sierra Leone (24%; 95% CI 23–25%), Ethiopia (18%; 95% CI 11–28%), Tanzania (13%; 95% CI 8–21%), Ghana (12%; 95% CI 6–19%; I², 99.9%), and India (1%; 95% CI 0–1%) (Fig. 12). Among the studies using hemoculture for the identification of *Salmonella* spp. infections, the highest prevalence rate of typhoidal/NTS among patients with malaria was reported in Nigeria (8%; 95% CI 1–2%; I², 89.3%), Tanzania (2%; 95% CI 2–3%), Ghana (1%; 95% CI 1–2%; I², 97.9%), Kenya (1%; 95% CI 1–1%; I², 98.5%), and Sweden (1%; 95% CI 0–1%) (Fig. 13).

Among the studies using the Widal test for the identification of *Salmonella* spp. infections, the prevalence rates of typhoidal/NTS among patients with malaria in all age groups were 38% (95% CI 29–48%; I², 98.5%), whereas lower prevalence rates were reported in Burkina Faso (32%; 95% CI 27–38%), Pakistan (28%; 95% CI 8–47%; I², 89.9%), Sierra Leone (24%; 95% CI 23–25%), Ethiopia (18%; 95% CI 11–28%), Tanzania (13%; 95% CI 8–21%), Ghana (12%; 95% CI 6–19%; I², 99.9%), and India (1%; 95% CI 0–1%) (Fig. 12). Among the studies using blood culture for the identification of *Salmonella* spp. infections, the prevalence rates of typhoidal/NTS among malarial patients were 8% in all age groups (95% CI 4–12%; I², 89%), whereas lower prevalence rates were reported in Myanmar (6%; 95% CI 1–11%; I², 98.4%), India (6%; 95% CI 3–10%; I², 89.3%), Tanzania (2%; 95% CI 2–3%), Ghana (1%; 95% CI 1–2%; I², 97.9%), Kenya (1%; 95% CI 1–1%; I², 98.5%), and Sweden (1%; 95% CI 0–1%) (Fig. 13).

Among the studies using blood culture for the identification of *Salmonella* spp. infections, the prevalence rates of typhoidal/NTS among patients with malaria in all age groups were 38% (95% CI 29–48%; I², 89.5%), 12% in children (95% CI 7–17%; I², 99.9%), 20% in the NS age group (95% CI 11–51%; I², 97.7%), and 11% in adults (95% CI 1–20%; I², 93.5%) (Fig. 14). Among the studies using blood culture for the identification of *Salmonella* spp. infections, the prevalence rates of typhoidal/NTS among malarial patients were 8% in all age groups (95% CI 5–11%; I², 91.3%), 1% in the NS age group (95% CI 1–4%; I², 69.2%), 3% in adults (95% CI 1–7%; I², 48%), and 2% in children (95% CI 1–3%; I², 87.8%) (Fig. 15). Subgroup analysis of age (≤ 3 years and 0–15 years) of NTS infection among patients with malaria was performed using the data of five studies. Results showed that the prevalence rates of NTS infection among patients with malaria were 2% in patients aged 0–15 years (95% CI 1–4%; I², 90.5%) and 1% in patients aged ≤ 3 years (95% CI 1–2%; I², 95.3%) (Fig. 16). Subgroup analysis of typhoidal/NTS, regions (Africa and Asia), and time (publication year) was performed using the data from studies using blood culture for typhoidal/NTS.
Results showed that the prevalence rates of typhoidal and NTS infection among patients with malaria were 6% (95% CI 3–8%; I², 86.9%) and 2% (95% CI 1–2%; I², 87.7%) (Fig. 17). Subgroup analysis of regions showed that the prevalence rates of typhoidal/NTS among patients with malaria were 2% in Africa (95% CI 1–3%; I², 87.5%), 6% in Asia (95% CI 3–9%; I², 86.7%), and 1% in Europe (95% CI 0–1%) (Fig. 18). Subgroup analysis of time showed that the prevalence rate of typhoidal Salmonella infection among patients with malaria was highest (17%) in 2016 (95% CI 1–33%; I², 95.6%), 8% in 2012 (95% CI 3–18%) and 7% in 2018 (95% CI 0–14%; I², 98.5%). The low prevalence of typhoidal Salmonella infection among patients with malaria was demonstrated in 2016 (13%), 2003 (2%), 2013 (2%), and 2009 (1%) (Fig. 19). Subgroup analysis of time showed that the prevalence rates of NTS infection among patients with malaria were highest in 2011 (4%), 2015 (3%), and 2014 (2%) and low in 2014 (2%), 2002 (1%), 2012 (1%), and 2016 (1%) (Fig. 20).

Comparison of typhoidal/NTS infections among patients with severe and non-severe malaria. The pooled prevalence rates of typhoidal/NTS infections among patients with severe and non-severe malaria were estimated using data from 24 studies that enrolled patients with non-severe malaria28,37,38,44,50,53,56–58,60,66,68,69,71,77,78,81,83,89,98,104–106,108 and 6 studies that enrolled patients with severe malaria. All 30 studies employed the blood culture method to identify Salmonella spp. infections. The pooled prevalence rates of typhoidal/NTS infection were 2% in patients with severe malaria (95% CI 1–3%; I², 91.5%) and 3% in patients with non-severe malaria (95% CI 2–3%; I², 86.8%) (Fig. 21).

Prevalence of malaria infections among patients with typhoidal/NTS infections. The pooled prevalence rate of malaria infections among patients with typhoidal Salmonella spp. infection was estimated from three studies20,31,49. The pooled prevalence rate of malaria infection in patients with typhoidal Salmonella
Overall ($I^2 = 89.88\%, p = 0.00$); Heterogeneity between groups: $p = 0.000$

Subtotal ($I^2 = 89.21\%, p = 0.00$)

- Singh et al., 2014
- Krumkamp et al., 2016
- Tabu et al., 2012
- Verma et al., 2014

Subtotal ($I^2 = 46.05\%, p = 0.10$)

- Sur et al., 2006
- Orok et al., 2016
- Edet et al., 2016
- Alhassan et al., 2012

Children (<15 years)

- Singh et al., 2014
- Krumkamp et al., 2016
- Tabu et al., 2012
- Verma et al., 2014

Adults

- Singh et al., 2014

NS

- Akinyemi et al., 2015
- Igbereghu et al., 2009
- Raja et al., 2016
- Samatha et al., 2015
- Tabu et al., 2012
- Verma et al., 2014

Subtotal ($I^2 = 46.05\%, p = 0.10$)

- Singh et al., 2014
- Krumkamp et al., 2016
- Tabu et al., 2012
- Verma et al., 2014

Overall ($I^2 = 89.88\%, p = 0.00$)

- 0.01 (0.00, 0.02) 45.46

Figure 6. Pooled prevalence of typhoidal/NTS and malaria co-infection using blood cultures for the identification of *Salmonella* spp. infection stratified by age groups. ES proportion estimate (multiply 100 units for interpreted as prevalence estimate), CI confidence interval, NS not specified.

Spp. was 17% in children (95% CI 6–29%; I^2, 33.3%) (Fig. 22). The pooled prevalence rate of malaria infection among patients with NTS, which was estimated from six studies17,20,27,29,31,49, was 43% in children (95% CI 32–53%; I^2, 89.1%) (Fig. 23).

Probability of *Plasmodium* spp. and *Salmonella* spp. co-infections. The probability of *Plasmodium* spp. and *Salmonella* spp. co-infections was estimated from 46 studies35–38,40,41,43–47,50–53,57,59,61,64–66,68,70,71,73,75,76,81,82,84,87,90–93,95–97,99–104,106,108, which reported the following parameters: total number of *Plasmodium* spp. and *Salmonella* spp. co-infections, total number of malaria, total number of malaria without typhoid, and total number of febrile patients without malaria/typhoid. *Plasmodium* spp. and *Salmonella* spp. co-infections in all age groups occurred by chance ($p = 0.126$; odds ratio, 1.51; 95% CI 0.89–2.58; I^2, 95.7%), whereas *Plasmodium* spp. and *Salmonella* spp. co-infections in children did not ($p < 0.0001$; odds ratio, 0.36; 95% CI 0.23–0.58; I^2, 73.9%). No association between *Plasmodium* spp. and *Salmonella* spp. infections was observed in the NS age group ($p = 0.24$; odds ratio, 0.40; 95% CI 0.09–1.85; I^2, 86%) or adults ($p = 0.799$; odds ratio, 1.14; 95% CI 0.41–3.16; I^2, 94%). Overall, *Plasmodium* spp. and *Salmonella* spp. co-infection occurred by chance ($p = 0.987$; odds ratio, 1.00; 95% CI 0.68–1.49; I^2, 95.2%) (Fig. 24). A significantly higher odds ratio of co-infection was reported in Nigeria7,59,82,90,97,101, Cameroon84, India105, and Pakistan102, whereas a significantly lower odds ratio of co-infection was found in Nigeria63,67,70, Ghana63,8, Tanzania8, Kenya8, and India81,7.

Outcomes of malaria and typhoidal/NTS co-infections. A limited number of studies reported clinical outcomes of patients with co-infections (Table S2). Five studies35,40,43,79,80,83 reported outcomes of co-infection. Among those studies, three studies35,40,83 reported outcomes of malaria and NTS co-infections, and one study35
Figure 7. Pooled prevalence of typhoidal/NTS and malaria co-infection using blood cultures for the identification of Salmonella spp. infection stratified by typhoidal/NTS infection. ES proportion estimate (multiply 100 units for interpreted as prevalence estimate), CI confidence interval, NS not specified.

reported outcomes of malaria and typhoid co-infections. The case fatality rate in patients with malaria and NTS co-infections was 16% (95% CI 9–24%; I^2, 89.1%; three studies), while one study29 reported the case fatality rate in patients with malaria and typhoidal Salmonella co-infections at 33% (95% CI 6–79%) (Supplementary Fig. S1). The difference in malarial parasitemia between co-infections and Plasmodium spp. monoinfection was estimated by two studies79,80. Results showed a higher mean of malarial parasitemia in patients with co-infections than those with Plasmodium spp. monoinfection (p, 0.023; WMD, 7926.7 parasites/µL of blood (95% CI 1091–14,762.3 parasites/µL of blood; I^2, 0%, two studies) (Supplementary Fig. S2). The study by Bassat et al.79 also showed a lower mean hematocrit in all, 0.54–1.10; I^2, 93.6%) (Supplementary Fig. S3). However, the use of a fixed-effects model in the meta-analysis showed a lower rate of respiratory distress in patients with co-infections (4/12, 33.3%) than those with Plasmodium spp. monoinfection (542/1328, 40.8%). The study by Bassat et al.79 also showed a lower mean hematocti in patients with co-infections (22.1 ± 9.3%, 12 cases) than those with Plasmodium spp. monoinfection (23.4 ± 8.4%, 1328 cases).

Sensitivity test. After excluding outliers40,82,104, the probability of Plasmodium spp. and Salmonella spp. co-infection was estimated from 43 studies$^{35–39,41,43–47,50–53,57,59,61–66,68,70,71,73,75,76,81,84,87,90–93,95–97,99–100,106,108}$. Overall, Plasmodium spp. and Salmonella spp. co-infection occurred by chance (p, 0.148; odds ratio, 0.77; 95% CI 0.54–1.10; I^2, 93.6%) (Supplementary Fig. S3). However, the use of a fixed-effects model in the meta-analysis indicated that Plasmodium spp. and Salmonella spp. co-infection did not occur by chance (p < 0.0001; odds ratio, 0.82; 95% CI 0.76–0.88; I^2, 93.6%) (Supplementary Fig. S4).

Publication bias. Publication bias among the 43 included studies used for determining the probability of Plasmodium spp. and Salmonella spp. co-infection was evaluated using a funnel plot and Egger’s test. The funnel plot exhibited an asymmetrical distribution of ES, and the seES was far from the middle line (no effect) (Supplementary Fig. S5). Egger’s test demonstrated no small study effect (p, 0.379; coefficient, 1.62; standard error,
Overall ($I^2 = 89.88\%, p = 0.00$); Heterogeneity between groups: $p = 0.006$

Study	ES (95% CI)	Weight (%)
Africa		
Akinyemi et al., 2007	0.07 (0.04, 0.11)	59
Akinyemi et al., 2015	0.03 (0.01, 0.07)	73
Alhassan et al., 2012	0.01 (0.01, 0.03)	2.77
Biggs et al., 2014	0.01 (0.01, 0.02)	8.04
Edet et al., 2016	0.11 (0.06, 0.19)	17
Igbeneghu et al., 2009	0.00 (0.00, 0.02)	5.28
Krumkamp et al., 2016	0.00 (0.00, 0.01)	9.50
Mbuh et al., 2003	0.00 (0.00, 0.03)	4.45
Nwuzo et al., 2009	0.06 (0.03, 0.09)	0.74
Mbuh et al., 2003	0.00 (0.00, 0.03)	3.46
Park et al., 2016	0.05 (0.03, 0.07)	1.54
Tabu et al., 2012	0.00 (0.00, 0.01)	9.39
Subtotal ($I^2 = 87.54\%, p = 0.00$)	0.01 (0.01, 0.02)	46.67

Asia		
Bhattacharya et al., 2013	0.00 (0.00, 0.00)	9.80
Raja et al., 2016	0.02 (0.01, 0.07)	7.99
Sharma et al., 2016	0.01 (0.00, 0.02)	5.87
Singh et al., 2014	0.02 (0.01, 0.02)	7.59
Snehanshu et al., 2014	0.03 (0.01, 0.06)	1.22
Sur et al., 2006	0.00 (0.00, 0.00)	9.75
Vats et al., 2018	0.01 (0.00, 0.03)	3.38
Verma et al., 2014	0.01 (0.01, 0.02)	5.46
Subtotal ($I^2 = 87.32\%, p = 0.00$)	0.01 (0.00, 0.01)	52.33

| Heterogeneity between groups: $p = 0.006$ | Overall ($I^2 = 89.88\%, p = 0.00$): | 0.01 (0.01, 0.01) | 100.00 |

Figure 8. Pooled prevalence of typhoidal/NTS and malaria co-infection using blood cultures for the identification of *Salmonella* spp. infection stratified by regions. ES proportion estimate (multiply 100 units for interpreted as prevalence estimate), CI confidence interval, NS not specified.

1.82; t, 0.89). A contour-enhanced funnel plot analysis revealed missing studies in the significant areas ($p < 0.01$) (Supplementary Fig. S6), indicating that the funnel plot asymmetry was likely due to factors such as heterogeneity, selection bias, and quality of the included studies rather than publication bias.

Discussion

The present meta-analysis revealed a high prevalence of malaria and typhoidal/NTS co-infections among febrile patients detected using the Widal test (14%) and a low prevalence of malaria and typhoidal/NTS co-infections among febrile patients detected using blood cultures (1%). Moreover, the meta-analysis demonstrated that the prevalence of typhoidal/NTS infection among patients with malaria using the Widal test was high (31%), whereas the prevalence of typhoid/non-typhoid using blood culture was low (3%). A high prevalence of malaria infections among patients with typhoidal *Salmonella* spp. infections (17%) and NTS (43%) was also detected. The highest prevalence of co-infections detected using the Widal test was observed in Cameroon15, followed by Nigeria37,57,83 and Sierra Leone5, compared with Ghana, India, Ethiopia, Tanzania, and Pakistan. In using blood cultures, the gold standard method for the identification of *Salmonella* spp., the results indicated that the highest prevalence of co-infection was reported in Nigeria37,57,83 compared with India, Tanzania, Ghana, and Kenya. Based on these results, typhoid/non-typhoid and malaria co-infection among febrile patients frequently occurred in Nigeria. In 2020, Nigeria accounted for the most malaria cases (27%) and malaria-related deaths (23%) worldwide1. Moreover, typhoid fever is a major disease in Nigeria due to increased urbanization, insufficient water supply, movement of immigrant workers, poor processing of human waste, and overuse of antibiotics. Due to the co-endemicity of these two pathogens, the possibility of co-infection might increase in this country.

Using the data from studies performing blood culture to identify typhoidal/NTS infection, the subgroup analysis of typhoidal/NTS infection demonstrated low prevalence of malaria and typhoid co-infections among febrile patients (1%) and low prevalence of typhoid among patients with malaria (6%). Moreover, the low prevalence of malaria and NTS co-infections among febrile patients (1%) and NTS infection among patients with malaria (2%)
was observed. The highest prevalence of malaria and typhoid co-infections among febrile patients was reported in Nigeria, suggesting that malaria and typhoid are indeed halo-endemic in this area\(^5\). In the meta-analysis of typhoid among patients with malaria, the highest prevalence of typhoid among patients with malaria was noted in Nigeria\(^38,57\). These results suggested an increasing episode of persistent fever among patients with *S. typhi* and *P. falciparum* infections in Nigeria. For NTS infection among patients with malaria, the prevalence was highest in Kenya, and NTS infection was the most common bacteremia in children with malaria\(^28\). The high rate of bacteremia in patients with malaria in Nigeria might be due to the high prevalence of NTS infections and malnutrition\(^28\).

Using the data from studies performing blood culture to identify typhoidal/NTS infection, the subgroup analysis of regions demonstrated that the prevalence of malaria and typhoidal/NTS co-infections were 1% in both Africa and Asia. However, the prevalence of typhoidal/NTS among patients with malaria was higher in Asia (6%) than those of Africa (2%). The difference in the prevalence of typhoidal/NTS co-infections between two regions might be caused by the heterogeneity of the prevalence estimates between two regions or real difference caused by environmental factors. For example, studies in India suggested that malaria and typhoid are endemic because of poor hygiene and environmental factors\(^104,108\). In Africa, although the pooled prevalence of typhoidal/NTS infection among patients with malaria was lower than those in Asia; the results of individual studies were heterogenous. For example, the high prevalence of typhoidal/NTS infection among patients with malaria were reported by four studies conducted in Nigeria\(^37,38,57,83\), while a lower prevalence was reported by other studies included in the meta-analysis.

Figure 9. Pooled prevalence of typhoidal and malaria co-infection using blood cultures for the identification of *Salmonella* spp. infection stratified by time (publication year). ES proportion estimate (multiply 100 units for interpreted as prevalence estimate), CI confidence interval, NS not specified.

Study	ES (95% CI)	Weight (%)
1. year 2003 Mboh et al., 2003	0.00 (0.00, 0.03)	5.67
2. year 2006 Sur et al., 2006	0.00 (0.00, 0.00)	15.34
3. year 2009 Igbeneghu et al., 2009 Nwuzo et al., 2009 Subtotal (*I^2 = 98.99%, p = 0.00*)	0.00 (0.00, 0.02) 0.06 (0.03, 0.09) 0.01 (-0.00, 0.01)	6.93 0.83 7.76
4. year 2012 Alhassan et al., 2012	0.01 (0.01, 0.03)	3.34
5. year 2013 Bhattacharya et al., 2013	0.00 (0.00, 0.00)	15.45
6. year 2014 Singh et al., 2014 Shehanthu et al., 2014 Verma et al., 2014 Subtotal (*I^2 = 83.15%, p = 0.00*)	0.03 (0.01, 0.06) 0.01 (0.01, 0.02) 0.01 (-0.00, 0.02)	1.39 7.22 23.34
7. year 2015 Akinyemi et al., 2015 Samatha et al., 2015 Subtotal (*I^2 = 91.58%, p = 0.00*)	0.03 (0.01, 0.07) 0.01 (0.00, 0.02) 0.01 (0.00, 0.01)	0.83 7.88 8.71
8. year 2016 Edet et al., 2016 Orok et al., 2016 Raju et al., 2016 Sharma et al., 2016 Subtotal (*I^2 = 72.80%, p = 0.01*)	0.11 (0.06, 0.19) 0.01 (0.00, 0.03) 0.02 (0.01, 0.07) 0.02 (0.01, 0.02) 0.02 (0.00, 0.03)	0.19 4.26 0.89 10.89 16.24
9. year 2018 Vats et al., 2018	0.01 (0.00, 0.03)	4.15
Heterogeneity between groups: p = 0.023 Overall (*I^2 = 84.84%, p = 0.00*)	0.01 (0.00, 0.01)	100.00
Using the data from studies performing blood culture to identify typhoidal/NTS infection, the subgroup analysis of time (year of publication) showed that the prevalence of malaria and typhoid co-infections among febrile patients, and typhoidal Salmonella infections among patients with malaria was highest in 2016, while lower prevalence was reported in before and after 2016. In 2016, three studies conducted in Nigeria and India reported the highest prevalence rates of typhoid among patients with malaria. The peak of typhoid among patients with malaria in 2016 was different from those of NTS infections among patients with malaria. The subgroup analysis showed that the peak prevalence rate of NTS infection among patients with malaria was highest in 2011, lower in 2012–2016, and 2001. These results indicated that the prevalence of NTS might decreased with time in 2011–2016, while the prevalence of typhoid among patients with malaria might not depend on time, which are needed to be further investigated.

Using the data from studies performing blood culture to identify typhoidal/NTS infection, the subgroup analysis of age of patients demonstrated that the prevalence rate of typhoidal/NTS infection among patients with malaria was higher in adults (3%) compared to that in children (2%). The previous study showed that peaks of NTS infection occurred in children aged < 2 years and adults aged 25–40 years, while the lower rate of NTS infection occurred in children aged less than 12 years old, and the proportion of hospitalization was decreased with age. These age groups were supported by the subgroup analysis of age that the prevalence of typhoidal/NTS was higher in adults than in children. Nevertheless, as the limitation of age information in studies reported typhoidal/NTS co-infections among febrile patients, the subgroups analysis of age might not represent the exact difference in the prevalence of typhoidal/NTS co-infections between adults and children.

The present meta-analysis demonstrated a wide gap in prevalence of malaria and typhoid/non-typhoid co-infections among febrile patients as measured by the Widal test and blood culture in analysis. The high rate of typhoid/non-typhoid and malaria co-infections detected using the Widal test and low rate of co-infections detected using blood cultures might be due to the lack of differentiation between Salmonella species/serotypes by the Widal test and cross-reactivity with other Enterobacteriaceae. Moreover, false-positive Widal tests have been reported in patients with malaria and other infections. The malaria Plasmodium may share similar strong immunogenic antigens with the typhoidal Salmonella (S. typhi); thus, Plasmodium infections could induce the generation of antibodies against S. typhi antigens, leading to cross-reactivity and false-positive results. Furthermore, malaria loading strongly correlated with Salmonella antibody titers in numerous studies. This cross-reaction of typhoidal/NTS antibodies with malarial antigen leads to overdiagnosis of typhoid fever. The Widal test also generates false-negative results if patients are tested during the early phase of typhoid fever.

Figure 10. Pooled prevalence of NTS and malaria co-infection using blood cultures for the identification of Salmonella spp. infection stratified by time (publication year). ES proportion estimate (multiply 100 units for interpreted as prevalence estimate), CI confidence interval, NS not specified.

Study	ES (95% CI)	Weight (%)	
1. year 2012	Tabu et al., 2012	0.00 (0.00, 0.01)	34.99
2. year 2014	Biggs et al., 2014	0.01 (0.01, 0.02)	29.56
3. year 2016	Krumkamp et al., 2016	0.00 (0.00, 0.01)	35.45
Overall (P² = 92.31%, p = 0.00)		0.01 (0.00, 0.01)	100.00
Figure 11. Prevalence of typhoidal/NTS infection among patients with malaria detected using diagnostic tests for *Salmonella* spp. ES: proportion estimate (multiply 100 units for interpreted as prevalence estimate), CI: confidence interval.
The high prevalence of typhoid fever may also be due to poor interpretation of the Widal test when diagnosing typhoid fever. Nevertheless, in Africa and other territories, the Widal test is the most common diagnostic tool used for typhoid fever, owing to its low cost, ease of performance, and minimal training and equipment requirements. Of note, false-positive results of the Widal tests in febrile patients suspected of having *Salmonella* spp. infection may lead to incorrect treatment for malaria parasites. Thus, careful interpretation of the Widal test for the diagnoses of typhoid fever in resource-poor countries is required, as the overdiagnosis of typhoid fever can lead to unnecessary treatment of patients with antibiotics, microbial resistance, and poor outcome. The use of Widal test alone for the diagnosis of typhoid fever will cause misdiagnoses.

Using blood cultures alone to identify *Salmonella* spp. infection may underestimate *Salmonella* spp. infections, as blood culture has a lower sensitivity compared with the Widal test. Negative blood culture test results may be noted in patients with acute disease before the antibody response. Based on the results of this study, the Widal test should not be used alone but in combination with blood/stool cultures. Therefore, a combination of the Widal test and blood and stool cultures is an excellent choice for diagnosing *Salmonella* spp. infection among febrile patients or patients with malaria. Although the high laboratory expenses for combination testing are difficult to overcome, the use of more than one diagnostic method to identify *Salmonella* spp. infections among patients with malaria is important to prevent incorrect treatment and misdiagnoses of malaria and *Salmonella* spp. infections and typhoidal/NTS infection among patients with malaria using the Widal test for the identification of *Salmonella* spp. infection stratified by countries. ES proportion estimate (multiply 100 units for interpreted as prevalence estimate), CI confidence interval.

Figure 12. Prevalence of typhoidal/NTS infection among patients with malaria using the Widal test for the identification of *Salmonella* spp. infection stratified by countries. ES proportion estimate (multiply 100 units for interpreted as prevalence estimate), CI confidence interval.

Study	ES (95% CI)	% Weight
Nigeria		
Abah et al., 2019	0.41 (0.36, 0.47)	4.78
Agwu et al., 2009	0.28 (0.24, 0.32)	4.84
Enabulele et al., 2016	0.03 (0.01, 0.06)	4.89
Eze et al., 2011	0.12 (0.04, 0.39)	4.35
Igharo et al., 2012	0.49 (0.39, 0.59)	4.52
Mike et al., 2017	0.58 (0.52, 0.65)	4.76
Odkamnoro et al., 2017	0.67 (0.60, 0.73)	4.74
Onyido et al., 2014	0.20 (0.11, 0.33)	4.47
Oshikhoumamie et al., 2021	0.50 (0.24, 0.76)	2.80
Salie et al., 2020	0.41 (0.32, 0.50)	4.80
Subtotal (I^2 = 98.68%, p = 0.00)	0.37 (0.20, 0.54)	44.75
Ghana		
Afoakwaah et al., 2011	0.25 (0.12, 0.45)	3.97
Anabire et al., 2018	0.11 (0.06, 0.19)	4.75
Subtotal (I^2 = 99.85%, p = 0.00)	0.12 (0.06, 0.19)	8.72
Cameroon		
Ammah et al., 1999	0.90 (0.83, 0.94)	4.79
India		
Bhalla et al., 2019	0.00 (0.00, 0.02)	4.90
Katyar et al., 2020	0.16 (0.13, 0.18)	4.88
Subtotal (I^2 = 99.85%, p = 0.00)	0.01 (0.00, 0.01)	9.79
Ethiopia		
Birhanie et al., 2014	0.18 (0.11, 0.28)	4.63
Tanzania		
Chipwaza et al., 2015	0.13 (0.08, 0.21)	4.74
Burkina Faso		
Ibrahim et al., 2019	0.32 (0.27, 0.38)	4.79
Pakistan		
Jalani et al., 2019	0.46 (0.26, 0.66)	3.57
Sajid et al., 2017	0.32 (0.22, 0.44)	4.45
Shalik et al., 2018	0.12 (0.09, 0.15)	4.87
Subtotal (I^2 = 89.90%, p = 0.00)	0.28 (0.08, 0.47)	12.90
Sierra Leone		
Kargbo et al., 2014	0.24 (0.23, 0.25)	4.90
Heterogeneity between groups: p = 0.000	0.31 (0.23, 0.39)	100.00
susceptibility. Increased free iron from hemolysis may also promote the survival of other acute febrile illnesses. Infections caused by typhoidal Salmonella, including *S. typhi* and *S. paratyphi*, and the associated serious complications require treatment with antibiotics, including chloramphenicol, cefixime, amoxicillin, trimethoprim/sulfamethoxazole, azithromycin, aztreonam, and cefotaxime, to prevent severe illness and death. NTS infections do not usually require treatment with antibiotics. However, complications, such as septicemia and meningitis, require treatment with ciprofloxacin, ceftriaxone, and ampicillin, according to the WHO. Presently, antibiotic resistance of *Salmonella* species is an emerging threat, so reliable diagnostic tests and appropriate treatments for typhoid/non-typhoid fever are important.

The present meta-analysis demonstrated that *Salmonella* spp. bacteremia developed in approximately 2% of patients with severe malaria. This occurrence was not much different from the *Salmonella* spp. bacteremia pooled prevalence of 3% in patients with non-severe malaria. Several mechanisms have been suggested to elucidate why patients with malaria may be predisposed to *Salmonella* spp. infection and bacteremia. First, immunosuppression occurs during malaria infection and treatment. Second, malaria can lead to hemolysis, which may predispose patients to infection with Gram-negative bacteria, such as typhoidal *Salmonella* spp. Third, changes in iron storage metabolism from malaria-induced hemolysis cause neutrophil dysfunction and increased susceptibility. Increased free iron from hemolysis may also promote the survival of *Salmonella* spp. Fourth, the sequestration of parasitized red blood cells in the intestine causes reduced blood flow in the mucosal gut barrier, which increases intestinal susceptibility to bacterial infection. The high rate of NTS bacteremia

Study	ES (95% CI)	% Weight
Nigeria	0.15 (0.09, 0.23)	1.19
Akinyemi et al., 2007	0.44 (0.19, 0.73)	0.06
Alhassan et al., 2012	0.08 (0.03, 0.18)	1.02
Edet et al., 2016	0.27 (0.16, 0.42)	0.33
Igbenoghnu et al., 2009	0.01 (0.00, 0.03)	7.73
Mbu et al., 2003	0.02 (0.00, 0.09)	3.64
Nwuzo et al., 2009	0.42 (0.27, 0.59)	0.21
Onok et al., 2016	0.01 (0.00, 0.04)	7.37
Subtotal (p² = 88.95%, p = 0.00)	0.08 (0.04, 0.12)	21.53
Myanmar	0.08 (0.01, 0.24)	0.88
Aung et al., 2018	0.06 (0.02, 0.14)	1.60
Nyen et al., 2015	0.06 (0.01, 0.11)	2.23
Subtotal (p² = 98.42%, p = 0.00)	0.02 (0.02, 0.03)	8.90
India	0.02 (0.01, 0.08)	4.07
Bhattacharya et al., 2013	0.20 (0.06, 0.51)	0.10
Raja et al., 2016	0.01 (0.01, 0.03)	7.59
Samatha et al., 2015	0.23 (0.18, 0.29)	1.60
Sharma et al., 2016	0.01 (0.00, 0.04)	7.45
Singh et al., 2014	0.14 (0.06, 0.29)	0.46
Shenhu et al., 2014	0.03 (0.01, 0.09)	3.19
Sur et al., 2006	0.10 (0.03, 0.25)	0.54
Vats et al., 2018	0.06 (0.03, 0.10)	24.99
Tanzania	0.02 (0.02, 0.03)	8.90
Biggs et al., 2014	0.01 (0.01, 0.02)	7.88
Nigeria	0.03 (0.02, 0.04)	17.07
Krukamp et al., 2016	0.01 (0.01, 0.02)	17.07
Nielsen et al., 2015	0.19 (0.18, 0.20)	17.07
Subtotal (p² = 98.47%, p = 0.00)	0.01 (0.01, 0.02)	17.07
Kenya	0.01 (0.01, 0.01)	9.40
Oundo et al., 2002	0.04 (0.03, 0.06)	6.79
Were et al., 2011	0.01 (0.01, 0.01)	16.18
Subtotal (p² = 98.47%, p = 0.00)	0.01 (0.01, 0.01)	16.18
Sweden	0.01 (0.00, 0.01)	9.09
Sandlund et al., 2012	0.03 (0.02, 0.03)	100.00

Figure 13. Prevalence of typhoidal/NTS infection among patients with malaria detected using blood cultures for the identification of *Salmonella* spp. infection stratified by countries. ES proportion estimate (multiply 100 units for interpreted as prevalence estimate), CI confidence interval.
Figure 14. Prevalence of typhoidal/NTS infection among patients with malaria using the Widal test for the identification of *Salmonella* spp. infection stratified by age groups. ES proportion estimate (multiply 100 units for interpreted as prevalence estimate), CI confidence interval, NS not specified.

is well described in patients with malaria-related severe anemia\(^{121}\). Severe anemia and hemolysis increase the iron level in the blood and tissues; therefore, pathogens can be actively transported, and iron acquisition is easier\(^{121}\). Based on our results, the increased risk of typhoidal *Salmonella* bacteremia in patients with severe malaria might reflect the high rate of parasite sequestration and vital organ dysfunction. Moreover, bacteremia cannot be excluded from patients with severe malaria; severe malaria is difficult to distinguish from bacterial sepsis\(^{56,85}\). Therefore, the WHO guidelines for malaria recommend that children with severe falciparum malaria in high-transmission areas should receive empirical broad-spectrum antibacterial therapy. However, empirical antibiotics should not be administered to adults with severe malaria unless there is clear evidence of bacterial infection\(^{122}\). In the low-transmission areas, WHO suggests that physicians should determine whether patients should receive antibiotics depending on the patient’s condition or parasitemia levels, but patients with severe malaria should not be routinely treated with antibiotics\(^{122,123}\). In addition to the WHO guidelines, two studies conducted in Myanmar\(^{56,78}\) stated that “clinicians should have a lower threshold for commencing empirical antibacterial therapy in adults diagnosed with falciparum malaria in these locations than is presently recommended.”

The present meta-analysis revealed that typhoidal/NTS and malaria co-infection did not occur by chance or that there was an association
between typhoid/non-typhoid and malaria co-infection in some way. Further studies are required to investigate this association.

The present meta-analysis of case fatality rate of patients with co-infection demonstrated the high rate of mortality (16%) without heterogeneity among the three included studies. These three studies enrolled patients with severe malaria and co-infected with NTS and indicated that both diseases facilitate the higher fatality rate than those of the malaria or NTS infection alone. Moreover, the meta-analysis of two studies showed a higher mean parasitemia level in patients with malaria and co-infected with NTS compared to those with malaria alone (without heterogeneity, 0%), but it is important to note the limitation in the number of included studies in the analysis. Therefore, there is a need to investigate if co-infection of malaria and NTS leads to poor outcome or demonstrated the association of both diseases.

This study had several limitations. First, most included studies were cross-sectional studies that determined the prevalence of typhoidal/non-typhoidal Salmonella spp. and malaria co-infection. Therefore, data were not available to determine the differences between co-infected patients and mono-infected patients. Second, the number of studies evaluating the occurrence of Salmonella spp. bacteremia in patients with severe malaria was limited; therefore, the pooled prevalence of Salmonella spp. bacteremia in patients with severe malaria might not represent all patients with severe malaria. Third, the heterogeneity among the included studies used to determine the probability of typhoidal/non-typhoidal Salmonella spp. and malaria co-infection was high; therefore, the association between typhoidal/non-typhoidal Salmonella spp. and malaria co-infection should be carefully interpreted with the results from the sensitivity test. Compared with the previous systematic review, the present study excluded studies with recent malaria infection; most included studies used microscopy rather than RDTs for malaria detection; and there was no publication bias among the included studies.

Figure 15. Prevalence of typhoidal/NTS infection among patients with malaria using blood cultures for the identification of Salmonella spp. Infection stratified by age groups. ES proportion estimate (multiply 100 units for interpreted as prevalence estimate), CI confidence interval, NS not specified.
In conclusion, whether typhoidal/non-typhoidal *Salmonella* spp. and malaria co-infection occurred by chance or not, healthcare providers must provide support to patients with nonspecific clinical symptoms of malaria or typhoidal/non-typhoidal diseases. In the present study, malaria associated with typhoidal/NTS infection in children and the high case fatality rate among few co-infected patients were highlighted. Future prospective longitudinal studies using the appropriate and confirmatory diagnosis for *Salmonella* spp. infections are highly recommended to ensure the real prevalence of co-infection and highlight the outcome of co-infection for providing adequate treatment of co-infections in febrile patients who live in areas where malaria is endemic like tropical Africa or India.
Study	ES (95% CI)	Weight (%)
Typhoid/NTS		
Akinyemi et al., 2007	0.15 (0.09, 0.23)	1.19
Nyein et al., 2015	0.06 (0.02, 0.14)	1.60
Subtotal (P^2 = 99.43%, p = 0.00)	0.10 (0.05, 0.14)	2.79
Typhoid		
Akinyemi et al., 2015	0.44 (0.19, 0.73)	0.08
Ahassan et al., 2012	0.08 (0.03, 0.18)	1.02
Aung et al., 2018	0.05 (0.01, 0.24)	0.63
Bhattacharya et al., 2013	0.02 (0.01, 0.08)	4.07
Edet et al., 2016	0.27 (0.16, 0.42)	0.33
Igbenehu et al., 2009	0.01 (0.00, 0.03)	7.73
Mbuh et al., 2003	0.02 (0.00, 0.09)	3.64
Nwuzo et al., 2009	0.42 (0.27, 0.59)	0.21
Okok et al., 2016	0.01 (0.00, 0.04)	7.37
Raja et al., 2016	0.20 (0.06, 0.51)	0.10
Samatha et al., 2015	0.01 (0.01, 0.03)	7.59
Sharma et al., 2016	0.23 (0.18, 0.29)	1.60
Singh et al., 2014	0.01 (0.00, 0.04)	7.45
Snehanshu et al., 2014	0.14 (0.06, 0.29)	0.46
Sur et al., 2006	0.03 (0.01, 0.09)	3.19
Vats et al., 2018	0.10 (0.03, 0.25)	0.54
Subtotal (P^2 = 86.93%, p = 0.00)	0.06 (0.03, 0.08)	45.97
NTS		
Biggs et al., 2014	0.02 (0.02, 0.03)	8.90
Krunkamp et al., 2016	0.01 (0.01, 0.02)	9.19
Nielsen et al., 2015	0.03 (0.02, 0.04)	7.88
Oundo et al., 2002	0.01 (0.01, 0.02)	9.40
Sandlund et al., 2012	0.01 (0.00, 0.01)	9.09
Were et al., 2011	0.04 (0.03, 0.06)	6.79
Subtotal (P^2 = 87.67%, p = 0.00)	0.02 (0.01, 0.02)	51.25
Heterogeneity between groups: p = 0.000		
Overall (P^2 = 86.84%, p = 0.00)	0.03 (0.02, 0.03)	100.00

Figure 17. Prevalence of typhoidal/NTS infection among patients with malaria using blood cultures for the identification of *Salmonella* spp. infection stratified by typhoidal/NTS infection. ES proportion estimate (multiply 100 units for interpreted as prevalence estimate), CI confidence interval, NS not specified.
Study	ES (95% CI)	Weight (%)
Africa		
Akinyemi et al., 2007	0.15 (0.09, 0.23)	1.19
Akinyemi et al., 2015	0.44 (0.19, 0.73)	0.06
Alhassan et al., 2012	0.08 (0.03, 0.18)	1.02
Biggs et al., 2014	0.02 (0.02, 0.03)	8.90
Edet et al., 2016	0.27 (0.16, 0.42)	0.53
Igbeneghu et al., 2009	0.01 (0.00, 0.03)	7.73
Krumkamp et al., 2016	0.01 (0.01, 0.02)	9.19
Mbu et al., 2003	0.02 (0.00, 0.09)	3.64
Nielsen et al., 2015	0.03 (0.02, 0.04)	7.88
Nwuzo et al., 2009	0.42 (0.27, 0.59)	0.21
Okoko et al., 2016	0.01 (0.00, 0.04)	7.57
Oundo et al., 2002	0.01 (0.01, 0.01)	9.40
Were et al., 2011	0.04 (0.03, 0.06)	6.79
Subtotal (I^2 = 87.53%, p = 0.00)	0.02 (0.01, 0.03)	63.68
Asia		
Aung et al., 2018	0.05 (0.01, 0.24)	0.63
Bhattacharya et al., 2013	0.02 (0.01, 0.08)	4.07
Nyin et al., 2015	0.06 (0.02, 0.14)	1.60
Raja et al., 2016	0.20 (0.06, 0.51)	0.10
Samatha et al., 2015	0.01 (0.01, 0.03)	7.59
Sharma et al., 2016	0.23 (0.18, 0.29)	1.60
Singh et al., 2014	0.01 (0.00, 0.04)	7.45
Snehanshu et al., 2014	0.14 (0.06, 0.29)	0.46
Sur et al., 2006	0.03 (0.01, 0.09)	3.19
Vats et al., 2018	0.10 (0.03, 0.25)	0.54
Subtotal (I^2 = 86.73%, p = 0.00)	0.08 (0.03, 0.09)	27.23
Europe		
Sandlund et al., 2012	0.01 (0.00, 0.01)	9.09
Heterogeneity between groups: p = 0.000	0.03 (0.02, 0.03)	100.00
Overall (I^2 = 86.84%, p = 0.00)	0.03 (0.02, 0.03)	100.00

Figure 18. Prevalence of typhoidal/NTS infection among patients with malaria using blood cultures for the identification of *Salmonella* spp. infection stratified by regions. *ES* proportion estimate (multiply 100 units for interpreted as prevalence estimate), *CI* confidence interval, *NS* not specified.
Figure 19. Prevalence of *Salmonella* spp. infection among patients with malaria using blood cultures for the identification of *Salmonella* spp. infection stratified by time (publication years). *ES* proportion estimate (multiply 100 units for interpreted as prevalence estimate), *CI* confidence interval, *NS* not specified.
Figure 20. Prevalence of NTS infection among patients with malaria using blood cultures for the identification of *Salmonella* spp. infection stratified by time (publication years). *ES* proportion estimate (multiply 100 units for interpreted as prevalence estimate), *CI* confidence interval, *NS* not specified.
Table 1

Study	ES (95% CI)	% Weight
Non-severe malaria		
Akinyemi et al., 2007	0.15 (0.09, 0.23)	0.71
Akinyemi et al., 2015	0.44 (0.19, 0.73)	0.03
Atahassen et al., 2012	0.08 (0.03, 0.18)	0.61
Aung et al., 2018	0.02 (0.01, 0.24)	0.38
Bhattacharyya et al., 2013	0.02 (0.01, 0.08)	2.61
Biggs et al., 2014	0.02 (0.02, 0.03)	6.42
Edet et al., 2016	0.27 (0.16, 0.42)	0.19
Igbinighi et al., 2009	0.01 (0.00, 0.03)	5.41
Krumkamp et al., 2016	0.01 (0.01, 0.02)	6.69
Mbuh et al., 2003	0.02 (0.00, 0.09)	2.31
Nielsen et al., 2015	0.03 (0.02, 0.04)	5.53
Nwuzo et al., 2009	0.42 (0.27, 0.59)	0.13
Nyen et al., 2015	0.06 (0.02, 0.14)	0.97
Ondu et al., 2002	0.01 (0.00, 0.04)	5.11
Raja et al., 2016	0.20 (0.06, 0.51)	0.06
Samatha et al., 2015	0.01 (0.01, 0.03)	5.29
Sandund et al., 2012	0.01 (0.00, 0.01)	6.59
Sharma et al., 2016	0.23 (0.18, 0.29)	0.97
Singh et al., 2014	0.01 (0.00, 0.04)	5.18
Snehanshu et al., 2014	0.14 (0.06, 0.29)	0.27
Sur et al., 2006	0.03 (0.01, 0.09)	2.00
Vats et al., 2018	0.10 (0.03, 0.28)	0.52
Were et al., 2011	0.04 (0.03, 0.06)	4.64
Subtotal (I² = 86.84%, p = 0.00)	0.03 (0.02, 0.03)	69.30

Severe malaria		
Bassat et al, 2009	0.01 (0.00, 0.01)	6.64
Berkley et al., 1999	0.01 (0.00, 0.02)	6.47
Bronzan et al, 2007	0.03 (0.02, 0.04)	6.09
Evans et al., 2004	0.43 (0.26, 0.63)	0.09
Matha et al., 2014	0.06 (0.03, 0.06)	4.76
Phu et al., 2020	0.00 (0.00, 0.01)	6.65
Subtotal (I² = 91.49%, p = 0.00)	0.02 (0.01, 0.03)	30.70

Figure 21

Pooled prevalence of typhoidal/NTS infection among patients with severe and non-severe malaria.

ES proportion estimate (multiply 100 units for interpreted as prevalence estimate), CI confidence interval.
Figure 22. Pooled prevalence of malaria infection among patients with typhoidal Salmonella spp. ES proportion estimate (multiply 100 units for interpreted as prevalence estimate), CI confidence interval.

Study	ES (95% CI)	Weight
Falay et al., 2016	0.31 (0.14, 0.56)	20.31
Mabey et al., 1987	0.11 (0.05, 0.23)	57.59
Mtove et al., 2010	0.21 (0.08, 0.48)	22.10
Overall (I^2 = 33.31%, p = 0.22)	0.17 (0.06, 0.29)	100.00

Figure 23. Pooled prevalence of malaria infection among patients with NTS. ES proportion estimate (multiply 100 units for interpreted as prevalence estimate), CI confidence interval.

Study	ES (95% CI)	Weight
Brent et al., 2006	0.33 (0.26, 0.40)	17.64
Falay et al., 2016	0.54 (0.45, 0.63)	16.65
Graham et al., 2000	0.37 (0.31, 0.44)	17.91
Mabey et al., 1987	0.42 (0.31, 0.54)	15.67
Mtove et al., 2010	0.69 (0.54, 0.80)	14.64
Walsh et al., 2000	0.25 (0.18, 0.33)	17.49
Overall (I^2 = 89.05%, p = 0.00)	0.43 (0.32, 0.53)	100.00
Data availability

All data related to the present study in this manuscript are available.

References

1. **WHO. World Malaria Report 2020 (WHO, 2020).**
2. Kuhn, K. G. et al. Detecting non-typhoid Salmonella in humans by ELISAs: A literature review. *J. Med. Microbiol.* **61**(Pt 1), 1–7 (2012).
3. Smith, S. I., Seriki, A. & Ajayi, A. Typhoidal and non-typhoidal Salmonella infections in Africa. *Eur. J. Clin. Microbiol. Infect. Dis.* **35**(12), 1913–1922 (2016).
4. Buckle, G. C., Walker, C. I. & Black, R. E. Typhoid fever and paratyphoid fever: Systematic review to estimate global morbidity and mortality for 2010. *J. Glob. Health* **2**(1), 010401 (2012).
Andino, A. & Hanning, I. Salmonella enterica: Survival, colonization, and virulence differences among serovars. Sci. World J. 2015, 520179 (2015).

Andrews, J. R. & Ryan, E. T. Diagnostics for invasive Salmonella infections: Current challenges and future directions. Vaccine. 33(Suppl 3), C8–C15 (2015).

Sanchez-Vargas, F. M., Abu-El-Haija, M. A. & Gomez-Duarte, O. G. Salmonella infections: An update on epidemiology, management, and prevention. Travel Med. Infect. Dis. 9(6), 263–277 (2011).

Ford, L. et al. Increasing incidence of Salmonella in Australia, 2000–2013. PLoS ONE 11(10), e0163899 (2016).

Crump, J. A., Sjolund-Karlsson, M., Gordon, M. A. & Parry, C. M. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive salmonella infections. Clin. Microbiol. Rev. 28(4), 901–937 (2015).

Bula-Rudas, F. J., Rathore, M. H. & Maraqa, N. F. Salmonella infections in childhood. Adv. Pediatr. 62(1), 29–58 (2015).

Barrett, F. C., Knudsen, J. D. & Johansen, I. S. Cases of typhoid fever in Copenhagen region: A retrospective study of presentation and relapse. BMC Res Notes 6, 315 (2013).

Bennett, S. D. et al. Assessment of water, sanitation and hygiene interventions in response to an outbreak of typhoid fever in Neno District, Malawi. PLoS ONE 13(2), e0193348 (2018).

Brockett, S. et al. Associations among water, sanitation, and hygiene, and food exposures and typhoid fever in case-control studies: A systematic review and meta-analysis. Am. J. Trop. Med. Hyg. 103(3), 1020–1031 (2020).

Graham, S. M., Walsh, A. L., Molyneux, E. M., Phiri, A. J. & Molyneux, M. E. Clinical presentation of non-typhoidal Salmonella bacteremia in Malawian children. Trans. R. Soc. Trop. Med. Hyg. 94(3), 310–314 (2000).

Mwene, E. & English, M. Typhoid fever in children in Africa. Trop. Med. Int. Health 13(4), 532–540 (2008).

Morpeth, S. C., Ramadhan, H. O. & Crump, J. A. Invasive non-Typhi Salmonella disease in Africa. Clin. Infect. Dis. 49(4), 606–611 (2009).

Mwene, G. et al. Invasive salmonellosis among children admitted to a rural Tanzanian hospital and a comparison with previous studies. PLoS ONE 5(2), e9244 (2010).

Siba, V. et al. Evaluation of serological diagnostic tests for typhoid fever in Papua New Guinea using a composite reference standard. Clin. Vaccine Immunol. 19(11), 1833–1837 (2012).

Kumar, P. & Kumar, R. Enteric fever. Indian J. Pediatr. 84(3), 227–230 (2017).

Wain, J. et al. Quantitation of bacteria in bone marrow from patients with typhoid fever: Relationship between counts and clinical features. J. Clin. Microbiol. 39(4), 1571–1576 (2001).

Wain, J. et al. Specimens and culture media for the laboratory diagnosis of typhoid fever. J. Infect. Dev. Ctries. 2(6), 469–474 (2008).

Beyene, G., Asrat, D., Mengistu, Y., Aseffa, A. & Wain, J. Typhoid fever in ethiopia. J. Infect. Dev. Ctries. 2(6), 448–453 (2008).

Prabagaran, S. R. et al. Molecular diagnosis of Salmonella typhi and its virulence in suspected typhoid blood samples through nested multiplex PCR. J. Microbiol. Methods 139, 150–154 (2017).

Walsh, A. L., Phiri, A. J., Graham, S. M., Molyneux, E. M. & Molyneux, M. E. Bacteremia in febrile Malawian children: Clinical and microbiological features. Pediatr. Infect. Dis. J. 19(4), 312–318 (2000).

Were, T. et al. Bacteremia in Kenyan children presenting with malaria. J. Clin. Microbiol. 49(2), 671–676 (2011).

Brent, A. J. et al. Salmonella bacteremia in Kenyan children. Pediatr. Infect. Dis. J. 25(3), 230–236 (2006).

Bronzan, R. N. et al. Bacteremia in Malawian children with severe malaria: Prevalence, etiology, HIV coinfection, and outcome. J. Infect. Dis. 195(6), 895–904 (2007).

Mabey, D. C., Brown, A. & Greenwood, B. M. Plasmodium falciparum malaria and Salmonella infections in Gambian children. J. Infect. Dis. 155(6), 1319–1321 (1987).

Church, J. & Maitland, K. Invasive bacterial co-infection in African children with Plasmodium falciparum malaria: A systematic review. BMC Med. 12, 31 (2014).

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6(7), e1000979 (2009).

Moola, S. M. Z. et al. Chapter 7: Systematic Reviews of Etiology and Risk [IBL, 2020].

Achondhu-Atijegbe, O. A. et al. Prevalence of malaria, typhoid, toxoplasmosis and rubella among febrile children in Cameroonian children. BMC Infect. Dis. 16(1), 658 (2016).

Agwu, E., Ihongbe, J. C., Okogun, G. R. & Inyang, N. J. High incidence of co-infection with Malaria and Typhoid in febrile HIV infected and AIDS patients in Ekpoma, Edo State, Nigeria. Braz. J. Microbiol. 40(2), 329–332 (2009).

Akinenyi, K. O., Bamiro, B. S. & Coker, A. O. Salmonellosis in Lagos, Nigeria: Incidence of Plasmodium falciparum-associated co-infection, patterns of antimicrobial resistance, and emergence of reduced susceptibility to fluoroquinolones. J. Health Popul. Nutr. 25(3), 351–358 (2007).

Akinenyi, K. O., Iwalokun, B. A., Alafe, O. O., Madub如有侵权。
48. Eze, E. A., Ukwah, B. N., Okafor, P. C. & Ugwu, K. O. Prevalence of malaria and typhoid co-infections in University of Nigeria, Nsukka District of Enugu State. Nigeria. Afr. J. Biotechnol. 10(11), 2135–2143 (2011).

49. Falay, D. et al. Microbiological, clinical and molecular findings of non-typhoidal Salmonella bloodstream infections associated with malaria, Oriental Province, Democratic Republic of the Congo. BMC Infect. Dis. https://doi.org/10.1186/s12879-016-1604-1 (2016).

50. Igbeneghu, C., Olisekodiaka, M. J. & Onuegbu, J. A. Malaria and typhoid fever among adult patients presenting with fever in Ibadan, southwest Nigeria. Int. J. Trop. Med. 4(3), 112–115 (2009).

51. Igharo, E. A., Osazuwa, F., Ajayi, S. A., Ebueku, A. & Igbinigie, O. Dual infection with typhoid and malaria in febrile patients in Ikare Akoko, Nigeria. Int. J. Trop. Med. 7(1), 49–52 (2012).

52. Jalani, H. A. et al. Prevalence and co-infection of Malaria and Typhoid in the local population of Faisalabad, Pakistan. Pak. J. Pharm. Sci. 32(1), 323–326 (2019).

53. Krumkamp, R. et al. Association between malaria and invasive non-typhoidal salmonella infection in a hospital study: Accounting for Berkson’s bias. Clin. Infect. Dis. 62(Suppl 1), S83–S89 (2016).

54. Maltha, J. et al. Frequency of severe malaria and invasive bacterial infections among children admitted to a rural hospital in Burkina Faso. PLoS ONE 9(2), e89103 (2014).

55. Mourembou, G. et al. Co-circulation of Plasmodium and bacterial DNAs in blood of febrile and afebrile children from urban and rural areas in Gabon. Am. J. Trop. Med. Hyg. 95(1), 123–132 (2016).

56. Nielsen, M. V. et al. Clinical indicators for bacterial co-infection in Ghanaian children with P. falciparum infection. PLoS ONE 10(4), e0122139 (2015).

57. Nwuzo, A. C., Onyeagba, R. A., Iroha, I. R., Nworie, O. & Oji, A. E. Parasitological, bacteriological, and cultural determination of prevalence of malaria parasite (Plasmodium falciparum) and typhoid fever co-infection in Abakaliki, Ebonyi State. Sci. Res. Essays 4(10), 966–971 (2009).

58. Nyen, P. P. et al. High frequency of clinically significant bacteremia in adults hospitalized with falciparum malaria. Open Forum Infect. Dis. 3(1), 028 (2016).

59. Odikamnorro, O. O. et al. Incidence of malaria/typhoid co-infection among adult population in Umwana community, Afikpo north local government area, Ebonyi State, Southeastern Nigeria. Afr. J. Infect. Dis. 12(1), 33–38 (2018).

60. Oundo, I. O. et al. Non-typhi salmonella in children with severe malaria. Afr. J. Med. Sci. 79(1), 633–639 (2002).

61. Pam, V. A., Landan, S., Adejobi, V. A., Pam, D. D. & Danjuma, K. Co-infection of malaria and typhoid fever among pregnant women attending antenatal clinics at general hospital, wuse, federal capital territory (FCT), Abuja, Nigeria. Niger. J. Parasitol. 39(2), 148–153 (2018).

62. Park, S. E. et al. The relationship between invasive non-typhoidal Salmonella disease, other bacterial bloodstream infections, and malaria in Sub-Saharan Africa. Clin. Infect. Dis. 62(Suppl 1), S23–S31 (2016).

63. Phu, N. H. et al. Concomitant bacteremia in adults with severe falciparum malaria. Clin. Infect. Dis. 71(9), E465–E470 (2020).

64. Popoola, O. et al. Bacteremia among febrile patients attending selected healthcare facilities in Ibadan, Nigeria. Clin. Infect. Dis. 69(Suppl 6), S466–S473 (2019).

65. Qureshi, A. W., Khan, Z. U., Khan, L., Mansoor, A. & Minhas, R. Prevalence of malaria, typhoid and co-infection in district dir (lower), Pakistan. Biosci. J. 35(1), 317–325 (2019).

66. Raja, J. M., Mary, A. & Usha, S. A study on dual infections in pyrexia cases. Int. J. Med. Res. Health Sci. 5(8), 150–155 (2016).

67. Ramya, T. G. & Sunita, B. R. Enteric fever cases showing concurrent seropositivity with dengue and malaria: A sero-diagnostic challenge. Microb. Res. 8(2), 4 (2017).

68. Samatha, P., Rao, K. C. & Sowmya, B. S. Malaria typhoid co-infection among febrile patients. J. Evol. Med. Dent. Sci. 4(65), 1132–1137 (2015).

69. Sandlund, J. et al. Bacterial coinfections in travelers with malaria: Rationale for antibiotic therapy. J. Clin. Microbiol. 51(1), 15–21 (2013).

70. Shaikh, S. et al. Malaria and typhoid fever: positive Widal test in malaria patients reported at tertiary care hospital. Indo Am. J. Pharm. Sci. 5(12), 1517–1527 (2018).

71. Singh, R., Singh, S. P. & Ahmad, N. A study of etiological pattern in an epidemic of acute febrile illness during monsoon in a tertiary health care institute of Uttarckhand, India. J. Clin. Diagn. Res. 8(6), 01–03 (2014).

72. Tabu, C. et al. Differing burden and epidemiology of non-Typhi Salmonella bacteremia in rural and urban Kenya, 2006–2009. PLoS ONE 7(2), e31237 (2012).

73. Thuanomd, S. B. et al. Seroprevalence of dengue virus among children presenting with febrile illness in some public health facilities in Cameroon. Pan Afr. Med. J. 31, 177 (2018).

74. Verma, D., Kishore, S. & Siddique, M. E. Comparative evaluation of various tests for diagnosis of concurrent malaria and typhoid fever in a tertiary care hospital of northern India. J. Clin. Diagn. Res. 8(5), 41–44 (2014).

75. Abah, A. E. F. P. Preliminary investigation of malaria, typhoid and their coinfection among febrile subjects in Port Harcourt, Rivers State Nigeria. Eur. J. Pharm. Sci. 6(5), 626–631 (2019).

76. Afoakwah, R. A. D., Boapong, J., Baidoo, M., Nwaefuna, E. & Tefe, P. Typhoid malaria coinfection in Ghana. Eur. J. Exp. Biol. 1(3), 1–6 (2011).

77. Alhassan, H. S. N., Manga, S., Abdullahi, K. & Hamid, K. Co-infection profile of Salmonella typhi and malaria parasite in Sokoto-Nigeria. Int. J. Eng. Sci. Technol. 2, 13–20 (2012).

78. Aung, N. M. et al. Antibiotic therapy in adults with malaria (ANTHEM): High rate of clinically significant bacteremia in hospitalized adults diagnosed with falciparum malaria. Am. J. Trop. Med. Hyg. 99(3), 688–696 (2018).

79. Bassat, Q. et al. Severe malaria and concomitant bacteremia in children admitted to a rural Mozambican hospital. Trop. Med. Int. Health 14(9), 1011–1019 (2009).

80. Berkley, J., Mwamuna, S., Bramham, K., Lowe, B. & Marsh, K. Bacteriaemia complicating severe malaria in children. Trans. R. Soc. Trop. Med. Hyg. 93(3), 283–286 (1999).

81. Bhattacharya, S. K. et al. Vivax malaria and bachaemia: A prospective study in Kolkata, India. Malaria J. 12, 176 (2013).

82. Chukwuma, O. G., Taiwo, S. O. & Adekeye, B. T. Prevalence of Plasmodium and Salmonella infections among pregnant women with fever, presented to three hospitals in Ogun and Lagos State, South-West Nigeria. Int. Blood Res. Rev. 24(2), 160–167 (2014).

83. Edet, U. O. E., Etok, C. A. & Ukanumoko, J. A. Prevalence of malaria and typhoid co-infection amongst residents of Uyo, Akwa Ibom State, Nigeria. Int. J. Infect. Dis. 17(1), 1–6 (2016).

84. Ekosobi, A. O. I. M. & Njoku, O. O. Co-infection of malaria and typhoid fever in a tropical community. Anim. Res. Int. 5, 888–891 (2017).

85. Evans, J. A. et al. High mortality of infant bacteremia clinically indistinguishable from severe malaria. QJM 97(9), 591–597 (2004).

86. Ibrahim, S. Y. S. et al. Malaria and typhoid fever coinfection in the Hospital University of Bobo-Dioulasso, Burkina Faso. J. Parasitol. Res. 1(1), 18–24 (2019).

87. Kargbo, M. S. M., Samurai, S. K., Meng, X. & Zou, F. The relative prevalence of typhoid and malaria in febrile patients in Freetown, Sierra Leone. Open J. Prev. Med. 4, 338–346 (2014).

88. Kativar, G. D. A. A., Khan, S., Chaudhary, B. C. & Sharma, M. Malaria or typhoid co-infection in a tertiary care hospital of Bareilly, Uttar Pradesh, India. Int. J. Community Med. Public Health 7(2), 578–583 (2020).
Abuga, K. M., Muriuki, J. M., Williams, T. N. & Atkinson, S. H. How severe anaemia might influence the risk of invasive bacterial infection. *Greener J. Epidemiol. Public Health* 5(3), 37–43 (2017).

Mohammed, H. I. M. I. & Sadig, H. A. Malaria and typhoid fever: Prevalence, co-infection and socio-demographic determinants among pregnant women attending antenatal care at a primary healthcare facility in Central Nigeria. *Int. J. Pathol. Res.* 5(4), 17–24 (2020).

Ndp, L. M. E. F., Kimbi, H. K., Njom, H. A. & Ndp, R. N. Co-infection of malaria and typhoid fever in feverish patients in the Kumba Health District, Southwest Cameroon: Public health implications. *Int. J. Trop. Dis. Health* 9(4), 1–11 (2015).

Njolle, A. B. T. B., Asaah, S., Forfuet, D. F. & Kamga, H. L. F. The prevalence of Salmonellosis in patients with malaria attending an urban hospital in Douala, Littoral region, Cameroon. *J. Adv. Med. Med. Res.* 32(2), 32–45 (2020).

Nwabueze, U.S.C.O.-O.A. Rate of malaria-typhoid co-infection among pregnant women attending antenatal clinics in Anambra State South-east Nigeria. *Int. J. Trop. Med. Public Health* 2(1), 1–11 (2013).

Ohanu, M. E., Mbah, A. U., Okonkwo, P. O. & Nwagbo, F. S. Interference by malaria in the diagnosis of typhoid using Widal test alone. *West Afr. J. Med.* 22(3), 250–252 (2003).

Omoya, F. O. A. O. Co-infection of malaria and typhoid fever among pregnant women attending primary health care centre, Ojo Local Government, Lagos, Nigeria. *Health Sci. J.* 11(2), 495 (2017).

Onyido, A. E. I. C. et al. Co-Infection of malaria and typhoid fever in Ekwulumili Community Anambra State, South-east Nigeria. *N. Y. Sci.* 7(7), 18–27 (2014).

Orok, D. U. A. et al. Prevalence of malaria and typhoid fever co-infection among febrile patients attending College of Health Technology Medical Centre in Calabar, Cross River State Nigeria. *Niger. Int. J. Curr. Microbiol. Appl. Sci.* 5(4), 825–835 (2016).

Oshiohchaymane, I. K. N. O., Israel, I. O. & Agumele, K.-l. Assessment of the prevalence of malaria and typhoid fever among apparently healthy undergraduates. *Int. J. Med. Sci. Public Health* 7(2), 13–17 (2017).

Ozumba, G. I., Adejobi, V. A. & Danjuma, K. Co-infection of malaria and typhoid fever among pregnant women attending antenatal clinics at Dalhatu Araf Specialist Hospital Laia, Nasarawa State, Nigeria. *J. Infect. Dis. Prev. Med.* 8, 55 (2020).

Pam, V. A. L. S. et al. The prevalence of malaria and typhoid co-infection in pregnant women attending antenatal in Wuse general hospital Abuja, Nigeria. *J. Vet. Adv.* 4(6), 39–50 (2015).

Sajid, M. Z. M. et al. Co-infection of malaria and typhoid in district Dir (Lower) Khyber Pakhtunkhwa, Pakistan. *J. Entomol. Zool. Stud.* 3(5), 912–914 (2017).

Sale, M. P. M., Adejedi, B. A. M. & Shehu, A. Prevalence of typhoid and malaria co-infection among patients attending a public hospital in Yola, Nigeria. *Int. J. Mosq. Res.* 7(3), 42–47 (2020).

Sharma, B. M. M., Gaind, R. & Pandey, K. Malaria and typhoid co-infection in India: A diagnostic difficulty. *J. Dent. Med. Sci.* 10(9), 101–104 (2016).

Snehanshu, S. H. P., Chandrim, S., Parul, C. & Chaudhary, B. Malaria and typhoid, do they coexist as an alternative diagnosis in tropics? A tertiary care hospital experience. *Int. J. Curr. Microbiol. Appl. Sci.* 3, 207–214 (2014).

Sur, D. et al. The malaria and typhoid fever burden in the slums of Kolkata, India: Data from a prospective community-based study. *Trans. R. Soc. Trop. Med. Hyg.* 108(8), 725–733 (2014).

Ukaegbu, C. O. N. A., Mawak, J. D. & Igwe, C. C. Incidence of concurrent malaria and typhoid fever infection in febrile patients in Jos, Plateau State Nigeria. *Int. J. Sci. Technol. Res.* 3(4), 157–161 (2014).

Vats, A. D. Incidence of co-infection of malaria and typhoid and their diagnostic dilemmas. *RAPL* 4(4), 10–12 (2018).

Akinremi, K. O. et al. Typhoid fever: Tracking the trend in Nigeria. *Amer. J. Trop. Med. Hyg.* 99, 41–48 (2017).

Gordon, M. A. Invasive nontyphoidal Salmonella disease: Epidemiology, pathogenesis and diagnosis. *Carr. Opin. Infect. Dis.* 24(5), 484–489 (2011).

Saha, S. et al. Epidemiology of typhoid and paratyphoid: Implications for vaccine policy. *Clin. Infect. Dis.* 68(Suppl 2), S117–S123 (2019).

Sundufu, A. J. M. & Foday, I. K. Role of co-infection with malaria parasites and Salmonella typhi in Bo City, Southern Sierra Leone. *Public Health Res.* 2(6), 204–207 (2012).

Sultana, S. et al. Evaluation of TH agglutinin titres of Widal test in the diagnosis of typhoid fever. *Mymensingh Med. J.* 23(1), 1–6 (2014).

Parry, C. M., Hien, T. T., Dougan, G., White, N. J. & Farrar, J. J. Typhoid fever. *N. Engl. J. Med.* 347(22), 1770–1782 (2002).

Alemu, A., Shiferaw, Y., Addis, Z., Mathews, B. & Birhan, W. Effect of malaria on HIV/AIDS transmission and progression. *Parasit. Vectors* 6, 18 (2013).

Cunnington, A. J., de Souza, J. B., Walther, M. & Riley, E. M. Malaria impairs resistance to Salmonella through heme- and heme oxygenase-dependent dysfunctional granulocyte mobilization. *Nat. Med.* 18(1), 120–127 (2012).

Cunnington, A. J. et al. Prolonged neutrophil dysfunction after *Plasmodium falciparum* malaria is related to hemolysis and heme oxygenase-1 induction. *J. Immunol. (Baltimore)* 189(11), 5336–5346 (2012).

Roux, C. M. et al. Both hemolytic anemia and malaria parasite-specific factors increase susceptibility to nontyphoidal *Salmonella enterica* serovar typhimurium infection in mice. *Infect. Immun.* 78(4), 1520–1527 (2010).

Seydel, K. B., Milner, D. A. Jr., Kamiza, S. B., Molyneux, M. E. & Taylor, T. E. The distribution and intensity of parasite sequestration in comatose Malawian children. *J. Infect. Dis.* 194(2), 208–215 (2006).

Olsson, R. A. & Johnston, E. H. Histopathologic changes and small-bowel absorption in falciparum malaria. *Am. J. Trop. Med. Hyg.* 18(3), 355–359 (1969).

Abuag, K. M., Murunzi, J. M., Williams, T. N. & Atkinson, S. H. How severe anaemia might influence the risk of invasive bacterial infections in African children. *Int. J. Mol. Sci.* 21(18), 6976 (2020).

WHO. WHO Guidelines for Malaria (WHO, 2021).

White, N. J. Reply to Aung et al. Clinical infectious diseases: An official publication of the Infectious Diseases Society of America 72(3), 536–538 (2021).

Acknowledgements

The authors would like to thank the New Strategic Research (P2P) project, Walailak University, Thailand, for providing partial funding for this study.

Author contributions

M.K., P.W. and W.M. carried out the study design, study selection, data extraction, and statistical analysis; and drafted the manuscript. W.K.K., K.U.K. and P.R. participated in approving the manuscript. All authors read and approved the final manuscript.
Funding
This research was partially supported by the New Strategic Research (P2P) project, Walailak University, Thailand. The funders had a role in the collection, analysis, and interpretation of the data.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-00611-0.
Correspondence and requests for materials should be addressed to M.K.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021