Time-domain implementation of the optimal cross-correlation statistic for stochastic gravitational-wave background searches in pulsar timing data
Sydney J. Chamberlin, Jolien D. E. Creighton, Xavier Siemens, Paul Demorest, Justin Ellis, Larry R. Price, and Joseph D. Romano
Phys. Rev. D 91, 044048 — Published 27 February 2015
DOI: 10.1103/PhysRevD.91.044048
Time-domain Implementation of the Optimal Cross-Correlation Statistic for Stochastic Gravitational-Wave Background Searches in Pulsar Timing Data

Sydney J. Chamberlin,* Jolien D. E. Creighton,† and Xavier Siemens‡
Center for Gravitation, Cosmology, and Astrophysics, Department of Physics,
University of Wisconsin–Milwaukee, Milwaukee, Wisconsin 53201, USA

Paul Demorest§
National Radio Astronomy Observatory, Charlottesville, Virginia 22903 USA

Justin Ellis¶
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA

Larry R. Price††
LIGO Laboratory, California Institute of Technology, Pasadena, California 91125, USA

Joseph D. Romano‡‡
Department of Physics and Astronomy and Center for Gravitational-Wave Astronomy,
University of Texas at Brownsville, Brownsville, Texas 78520, USA

Supermassive black hole binaries, cosmic strings, relic gravitational waves from inflation, and first order phase transitions in the early universe are expected to contribute to a stochastic background of gravitational waves in the 10^{-9} Hz–10^{-7} Hz frequency band. Pulsar timing arrays (PTAs) exploit the high precision timing of radio pulsars to detect signals at such frequencies. Here we present a time-domain implementation of the optimal cross-correlation statistic for stochastic background searches in PTA data. Due to the irregular sampling typical of PTA data as well as the use of a timing model to predict the times-of-arrival of radio pulses, time-domain methods are better suited for gravitational wave data analysis of such data. We present a derivation of the optimal cross-correlation statistic starting from the likelihood function, a method to produce simulated stochastic background signals, and a rigorous derivation of the scaling laws for the signal-to-noise ratio of the cross-correlation statistic in the two relevant PTA regimes: the weak signal limit where instrumental noise dominates over the gravitational wave signal at all frequencies, and a second regime where the gravitational wave signal dominates at the lowest frequencies.

I. INTRODUCTION

Gravitational waves, a key prediction of Einstein’s theory of general relativity, are perturbations in the fabric of spacetime produced by the accelerated motion of massive objects. The direct detection of gravitational waves is likely to occur in the next few years, and promises to provide a new means to study the universe. A number of worldwide efforts aiming to detect gravitational waves are currently underway. At the low-frequency end of the detectable gravitational-wave spectrum (10^{-9} Hz–10^{-7} Hz), pulsar timing arrays (PTAs) exploit the remarkable high precision timing of radio pulsars to search for gravitational waves [1]. Pulsars have already been used to indirectly measure the effects of gravitational-wave emission through the Hulse-Taylor binary [2]. A direct detection of gravitational waves is possible with an array of precisely-timed pulsars: a gravitational wave propagating through spacetime affects the travel time of radio pulses from pulsars, and can be observed by searching for correlated deviations in the expected times-of-arrival of the radio pulses [3, 4].

The most likely source of gravitational waves at nanoHz frequencies are supermassive black hole binaries (SMBBHs) that form following the merger of massive galaxies [5–7]. The superposition of gravitational waves from all SMBBH mergers forms a stochastic background of gravitational waves [5, 6, 8–13]. Individual periodic signals [7, 14–17] and bursts [18, 19] can also be produced by SMBBH systems. In addition, cosmic strings [20–23], first order phase transitions in the early universe [24], and relic gravitational waves from inflation [25, 26] are potential sources of gravitational waves in the nanoHertz band.

A number of data analysis techniques have been developed and implemented to search for isotropic stochastic backgrounds of gravitational waves in PTA data [4, 16, 27–40]. More recently, these techniques have been generalized to searches for anisotropic backgrounds [41–44]. Additionally, a range of data analysis methods have been
developed to search for individual periodic sources that stand out over the stochastic background [7, 14, 15, 17, 45–53], bursts [54–58], and signals of unknown form [59].

In this paper we describe a practical time-domain implementation of the optimal cross-correlation statistic [31] that can be used to search for isotropic stochastic backgrounds. In Section II, we review the effect of a gravitational wave on the pulsar-Earth system, and the expected cross-correlations in the times-of-arrival of pulses from different pulsars. In Section III, we develop the formalism needed to implement the search for a stochastic background, including the timing model, and derive the optimal cross-correlation statistic from the likelihood ratio. In Section IV, we develop a procedure for injecting simulated stochastic background signals into PTA data, and in Section V, we describe the scaling laws that govern the expected signal-to-noise ratio of the cross-correlation statistic. We conclude in Section VI with a discussion of the practicality of implementing the statistics introduced in this paper for gravitational-wave searches. For reference, we will work in units where $c = G = 1$.

II. PRELIMINARIES

An array of pulsars can be used to search for a stochastic background of gravitational waves. Deviations from the expected times-of-arrival of pulses from different pulsars are correlated, and with enough timing precision these correlations are measurable. In this section we describe how the times-of-arrival of pulses from pulsars are affected by gravitational waves, and discuss the expected correlation of signals from different pulsars.

Gravitational waves induce a redshift in the signal from the pulsar that depends on the geometry of the pulsar-Earth system and the metric perturbation [4]. For a pulsar located in the direction of unit vector \hat{p} (that points from Earth to the pulsar), and a gravitational wave propagating in the direction $\hat{\Omega}$ (see Fig. 1), the redshift induced in the radio pulse is proportional to the change in the metric perturbation at the Earth, when the pulse is received, and at the pulsar, when the pulse is emitted [4, 31]

$$z(t, \hat{\Omega}) = \frac{1}{2} \frac{\hat{p}^i \hat{p}^j}{1 + \hat{\Omega} \cdot \hat{p}} \Delta h_{ij},$$

(1)

where

$$\Delta h_{ij} \equiv h_{ij}(t_e, \hat{\Omega}) - h_{ij}(t_p, \hat{\Omega}),$$

(2)

and i, j denote spatial components2. These terms are typically referred to as the Earth-term and the pulsar-term, respectively.

The total redshift is obtained by integrating Eq. (1) over all directions on the sky

$$z(t) = \int_{S^2} d\hat{\Omega} \, z(t, \hat{\Omega}).$$

(3)

It is important to point out that in pulsar timing the observable quantity is actually not the redshift, but the timing residual, which is just the integral of the redshift

$$r(t) = \int_0^t dt' \, z(t').$$

(4)

The metric perturbation in terms of the usual plane wave expansion is [60]

$$h_{ij}(t, \vec{x}) = \sum_A \int_{-\infty}^{\infty} df \int_{S^2} d\hat{\Omega} \, e^{i2\pi f (t - \hat{\Omega} \cdot \vec{x})} h_A(f, \hat{\Omega}) e_{ij}^A(\hat{\Omega}),$$

(5)

where f is the frequency of the gravitational wave, $A = +, \times$ labels the polarization modes, and $e_{ij}^A(\hat{\Omega})$ are the polarization tensors (see below). We can use this expansion to write a frequency-domain expression for the timing residuals produced by a gravitational wave traveling...
in the direction \(\hat{\Omega} \). Specifically,
\[
\tilde{r}(f, \hat{\Omega}) = \frac{1}{2 \pi i f} \left(1 - e^{-2\pi i f L (1 + \Omega \hat{\rho})} \right) \times \sum_A h_A(f, \hat{\Omega}) \left(e^{i \chi_{ij}(\hat{\Omega})} \frac{\hat{\rho} \hat{p}^j}{2(1 + \Omega \cdot \hat{\rho})} \right),
\]
where \(L \) is the pulsar-Earth distance. The pulsar term in Eq. (6), proportional to \(e^{-2\pi i f L (1 + \Omega \hat{\rho})} \), contributes to the expectation value in Eq. (11) only when we are dealing with the same pulsar (i.e., when \(I = J \)), and averages to zero for different pulsars [31].
In parts of this paper, we will refer not to \(\Omega_{gw}(f) \) but instead to the dimensionless gravitational wave amplitude \(A_{gw} \) (at reference frequency \(f_{1yr} = yr^{-1} \)) which appears in the expression for the characteristic strain
\[
h_c(f) = A_{gw} \left(\frac{f}{f_{1yr}} \right)^\alpha.
\]
The spectral index \(\alpha \) depends on the astrophysical source of the background. For example, a stochastic background produced by supermassive black hole binary systems has \(\alpha = -2/3 \) [5, 6]. The amplitude \(A_{gw} \) is related to the strain spectral density \(S_h(f) \) of the gravitational-wave background via:
\[
S_h(f) = \frac{h_c^2(f)}{f}.
\]
For one-sided power spectra, \(S_h(f) \) and \(A_{gw} \) are related to \(\Omega_{gw}(f) \) by
\[
S_h(f) = \frac{3H_0^2}{2\pi} \frac{\Omega_{gw}(f)}{f^3}, \quad \Omega_{gw}(f) = \frac{2\pi^2}{3H_0^2} A_{gw}^2 f^2 \left(\frac{f}{f_{1yr}} \right)^{2\alpha}.
\]
Note that in this paper we will work exclusively with one-sided spectra, which differs from the convention adopted in [62].

III. THE OPTIMAL CROSS-CORRELATION STATISTIC

A. Timing Model

In pulsar timing experiments the quantities that are directly measured are the times-of-arrival (TOAs) of radio pulses emitted from pulsars. These TOAs contain many terms of known functional form, including intrinsic pulsar parameters (pulsar period, spin-down, etc.), along with stochastic processes such as radiometer noise, pulse phase jitter, and possibly red noise either from interstellar medium (ISM) effects, intrinsic pulsar noise, and, potentially, a gravitational wave background.

Suppose that the TOAs for a pulsar are given by
\[
t_{obs} = t_{det}(\xi_{true}) + n,
\]
where \(t_{obs} \) are the \(N_{TOA} \) observed TOAs, \(t_{det} \) are the deterministic modeled TOAs parameterized by \(N_{par} \) timing model parameters \(\xi_{true} \), and \(n \) is the noise time series in the measurement which is assumed to be Gaussian with covariance matrix given by
\[
N = \langle nn^T \rangle = N_{white} + N_{red}
\]
where the $N_{\text{TOA}} \times N_{\text{TOA}}$ matrices $\mathbf{N}^{\text{white}}$ and \mathbf{N}^{red} are the contributions to the covariance matrix from the white and red noise processes, respectively. We will discuss the exact form of this covariance matrix in the next section. Assuming that estimates of the true timing model parameters ξ_{est} exist (either from information gained when discovering the pulsar or from past timing observations), we can form the pre-fit timing residuals as

$$\delta t_{\text{pre}} = t_{\text{obs}} - t_{\text{det}}(\xi_{\text{est}}) = t_{\text{det}}(\xi_{\text{true}}) + n - t_{\text{det}}(\xi_{\text{est}}).$$

(20)

As mentioned above, we will assume that the initial estimates for our timing model parameters are correct to some linear offset $\xi_{\text{est}} = \xi_{\text{true}} + \delta \xi$, for which the pre-fit residuals become

$$\delta t_{\text{pre}} = t_{\text{det}}(\xi_{\text{true}}) - t_{\text{det}}(\xi_{\text{true}} + \delta \xi) + n.$$

(21)

Expanding this solution around the true timing model parameters, we obtain

$$\delta t_{\text{pre}} = - \frac{\partial t_{\text{det}}}{\partial \xi}_{\xi=\xi_{\text{true}}} \delta \xi + n + O(\delta \xi^2)$$

$$\approx - \frac{\partial t_{\text{det}}}{\partial \xi}_{\xi=\xi_{\text{true}}} \delta \xi + n$$

$$= M \delta \xi + n,$$

where M is an $N_{\text{TOA}} \times N_{\text{par}}$ matrix, commonly referred to as the design matrix [63, 64]. Here we have assumed that our initial estimate of the model parameters is sufficiently close to the true values so that we can approximate this as a linear system of equations in $\delta \xi$. It is customary in standard pulsar timing analysis to obtain the best fit $\delta \xi$ values through a generalized least-squares minimization of the pre-fit residuals. The function that we seek to minimize is (see [65])

$$\chi^2 = \frac{1}{2} (\delta t_{\text{pre}} - M \delta \xi)^T \Sigma^{-1} (\delta t_{\text{pre}} - M \delta \xi).$$

(23)

Minimizing this function with respect to the parameter offsets $\delta \xi$ results in

$$\delta \xi_{\text{best}} = - (M^T \Sigma^{-1} M)^{-1} M^T \Sigma^{-1} \delta t_{\text{pre}}.$$

(24)

The post-fit residuals are then given by

$$\delta t_{\text{post}} = \delta t_{\text{pre}} - M \delta \xi_{\text{best}} = R \delta t_{\text{pre}},$$

(25)

where

$$R = I - M (M^T \Sigma^{-1} M)^{-1} M^T \Sigma^{-1}$$

(26)

is a an $N_{\text{TOA}} \times N_{\text{TOA}}$ oblique projection matrix that transforms pre-fit to post-fit residuals, and I is the identity matrix. All of the information about any noise source or stochastic gravitational-wave background is encoded in Σ. However, in most cases we have no a priori knowledge of this covariance matrix and therefore assume that it is given by $W = \text{diag}(\{\sigma_i^2\})$, where σ_i is the uncertainty of the ith TOA. Previous work [66] has used an iterative method to estimate the covariance matrix of the residuals and apply a generalized least squares fit. For this work we will only work with residuals that have been created using a weighted least squares fit. It should be noted that in standard pulsar timing packages such as TEMPO2 [65] this process must be iterated. In other words, the pre-fit residuals are formed with an initial guess of the parameters, and the chi-squared is then minimized to produce best estimates of the parameters. This may not be a good fit, however, as we have assumed that the pre-fit residuals are linear in the parameter offsets. Consequently, we form new parameter estimates from the best fit parameter offsets and iterate until the fit converges, with the reduced chi-squared serving as the goodness-of-fit parameter. For this reason, we must ensure that our timing model fit has converged prior to any gravitational-wave analysis.

B. Derivation of the optimal statistic

1. Likelihood function for a PTA

Much of the discussion in this section follows closely that of [40], with some of the details included here. We begin by assuming that our PTA consists of M pulsars, each with some intrinsic noise $n_i(t)$. Henceforth upper-case latin indices will label a pulsar and lowercase latin indices will label a particular TOA. Henceforth upper-case latin indices will label a pulsar and lowercase latin indices will label a particular TOA. Under the assumption that all intrinsic pulsar noise is Gaussian, we can write the full likelihood function for the PTA as

$$p(n|\tilde{\theta}) = \frac{1}{\sqrt{\det(2\pi \Sigma_n)}} \exp\left(-\frac{1}{2} n^T \Sigma_n^{-1} n\right),$$

(27)

where now we are using the full PTA noise time series that is just a concatenated length $M N_{\text{TOA}}$ column vector

$$n = \begin{bmatrix} n_1 \\ n_2 \\ \vdots \\ n_M \end{bmatrix},$$

(28)

Σ_n is the $M N_{\text{TOA}} \times M N_{\text{TOA}}$ covariance matrix and $\tilde{\theta}$ is a set of parameters that characterize the noise. The covariance matrix for the noise is the block matrix

$$\Sigma_n = \begin{bmatrix} N_1 & X_{12} & \ldots & X_{1M} \\ X_{21} & N_2 & \ldots & X_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ X_{M1} & X_{M2} & \ldots & N_M \end{bmatrix},$$

(29)

where

$$N_I = (n_I n_I^T),$$

(30)

$$X_{IJ} = (n_I n_J^T)|_{I \neq J},$$

(31)
where \(\chi_{IJ} \) are the Hellings and Downs coefficients for pulsar pair \(I, J \) defined in Eq. (12).

We now write the likelihood function for the timing residuals using Eqs. 22 and 27 as

\[
p(\delta t | \tilde{\theta}, \delta \xi) = \frac{\exp \left(-\frac{1}{2} (\delta t - M \delta \xi)^T \Sigma_n^{-1} (\delta t - M \delta \xi) \right)}{\sqrt{\text{det}(2\pi \Sigma_n)}}.
\]

where \(\delta t \) and \(\delta \xi \) are defined in an identical manner as \(n \) as the concatenated vector of residuals and timing parameters for each pulsar, respectively. Note that here we use \(\delta t \) instead of \(\delta t^{\text{pre}} \) since this process can be thought of as another step in the iterative process of timing (where the post-fit residuals are formed from the previous set of pre-fit residuals); instead of minimizing chi-squared using \(W \) as the noise covariance, we now use the full noise covariance matrix \(\Sigma_n \) and the full PTA dataset to maximize the likelihood. In [39] it was shown that this likelihood can be maximized analytically over the timing model parameters to give

\[
p(\delta t | \tilde{\theta}) = \frac{\exp \left(-\frac{1}{2} (\delta t^T G (G^T \Sigma_n G)^{-1} G^T \delta t) \right)}{\sqrt{\text{det}(2\pi \Sigma_n)}}.
\]

where \(G \) is an \(N_{\text{TOA}} \times (N_{\text{TOA}} - N_{\text{par}}) \) matrix. The matrix \(G^T \) spans the null space of \(M_I \) and will project the data onto a subspace orthogonal to the linearized timing model. The full PTA G-matrix is then

\[
G = \begin{bmatrix} G_1 & 0 & \ldots & 0 \\
0 & G_2 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & G_M \end{bmatrix}.
\]

For the remainder of paper we will use the following notation

\[
\begin{align*}
\mathbf{r}_I &= G_{I}^{T} \delta \mathbf{t}_{I} \\
\mathbf{P}_I &= G_{I}^{T} \mathbf{W}_I G_{I} \\
\mathbf{S}_{IJ} &= G_{I}^{T} X_{IJ} G_{J} \\
\Sigma &= G^{T} \Sigma_{n} G
\end{align*}
\]

with the likelihood function written as

\[
p(\mathbf{r} | \tilde{\theta}) = \frac{1}{\sqrt{\text{det}(2\pi \Sigma_n)}} \exp \left(-\frac{1}{2} (\mathbf{r}^{T} \Sigma^{-1} \mathbf{r}) \right).
\]

2. Time-Domain Optimal Statistic

In [31] some of us presented the optimal cross-correlation statistic in both the frequency and time domains, with a focus on the frequency-domain implementation. The non-stationarity that arises from the timing model fit (Eq. (26)), along with the irregular sampling that is typical of realistic PTA data sets, however, make frequency-domain techniques unsuitable for PTA gravitational-wave data analysis. Therefore in this paper we will focus on the time-domain implementation of the cross-correlation statistic. In [31] the time-domain derivation was done by constructing the likelihood ratio of a model that contained a stochastic gravitational-wave background and intrinsic noise to a model that contained only intrinsic noise. It was assumed that the amplitude of the intrinsic noise is much larger than the amplitude of the gravitational-wave background, and thus can be safely ignored in the auto-covariance matrices of the residuals. One can then perform an expansion of the
log-likelihood ratio in powers of a small order parameter taken to represent the amplitude of the background. This assumption can lead to a significant bias in the recovered amplitude of the gravitational-wave background if the background is sufficiently large.

Fortunately it is possible to carry out a nearly identical derivation that takes into account a potential non-negligible contribution of the stochastic background to the auto-covariance terms. In [40] it was shown that it is possible to expand the covariance matrix Σ in a Taylor series expansion in the Hellings and Downs coefficients (as opposed to an expansion in the amplitude of the background) to obtain a “first order” likelihood function. The log of this likelihood function can be written as

$$\ln p(\mathbf{r} | \bar{\theta}_\text{gw}) \approx -\frac{1}{2} \sum_{I=1}^M \left[\ln \text{tr} \mathbf{P}_I + r_I^T \mathbf{P}_I^{-1} r_I \right] - \sum_{IJ} r_I^T \mathbf{P}_I^{-1} \mathbf{S}_{IJ} \mathbf{P}_J^{-1} r_J \right]$$

where $\sum_{IJ} = \sum_{I=1}^M \sum_{J=1}^M$ is a sum over all unique pulsar pairs. Let us now assume that we have done a single pulsar noise analysis [39, 67] on each pulsar so that we know \mathbf{P}_I, and consider the following log-likelihood ratio

$$\ln \Lambda = \ln p(\mathbf{r} | \bar{\theta}_\text{gw}) - \ln p(\mathbf{r} | \bar{\theta}_\text{noise}).$$

Here $\bar{\theta}_\text{gw}$ are the parameters for a model with a spatially correlated gravitational-wave background component along with uncorrelated red and white noise components, which include the gravitational-wave background present in the pulsar term, ISM noise, radiometer noise, jitter noise, etc. The parameters $\bar{\theta}_\text{noise}$ are for a model with only spatially uncorrelated noise components. We treat the auto-covariance of each pulsar as a known measured quantity of the PTA data after the aforementioned noise analysis has been done. In this case, if we fix the spectral index to, say, the one corresponding to SMBBH backgrounds with a spectral index $\alpha = -2/3$, the only free parameter is the amplitude of the gravitational-wave background. Evaluating this log-likelihood ratio we have

$$\ln \Lambda = \frac{A_{gw}^2}{2} \sum_{IJ} r_I^T \mathbf{P}_I^{-1} \mathbf{S}_{IJ} \mathbf{P}_J^{-1} r_J,$$

where we have used the amplitude-independent cross-correlation matrix \mathbf{S}_{IJ} defined by

$$A_{gw}^2 \mathbf{S}_{IJ} = \langle r_I r_J^T \rangle = \mathbf{S}_{IJ}.$$

Notice that all terms that only include the auto-covariance matrices are cancelled by the noise model likelihood function. Note also that this expression is nearly identical to Eq. (75) of [31] with the caveat that now we are dealing exclusively with post-fit quantities and have allowed for a non-negligible contribution from the gravitational-wave background in the auto-covariance matrices. From Eq. (47) we define the optimal cross-correlation statistic for a PTA to be

$$\hat{A}^2 = \frac{\sum_{IJ} r_I^T \mathbf{P}_I^{-1} \mathbf{S}_{IJ} \mathbf{P}_J^{-1} r_J}{\sum_{IJ} \text{tr} \left[\mathbf{P}_I^{-1} \mathbf{S}_{IJ} \mathbf{P}_J^{-1} \right]},$$

where the normalization factor

$$N \equiv \left(\sum_{IJ} \text{tr} \left[\mathbf{P}_I^{-1} \mathbf{S}_{IJ} \mathbf{P}_J^{-1} \right] \right)^{-1}$$

is chosen so that on average $\langle \hat{A}^2 \rangle = A_{gw}^2$. This immediately follows from the observation that

$$\sum_{IJ} r_I^T \mathbf{P}_I^{-1} \mathbf{S}_{IJ} \mathbf{P}_J^{-1} r_J = \sum_{IJ} \text{tr} \left[\mathbf{P}_I^{-1} \mathbf{S}_{IJ} \mathbf{P}_J^{-1} \right],$$

where Eq. (48) was used in the second line.

In the absence of a cross-correlated signal (or if the signal is weak) the expectation value of \hat{A}^2 vanishes and its standard deviation is [31]

$$\sigma_0 = \left(\sum_{IJ} \text{tr} \left[\mathbf{P}_I^{-1} \mathbf{S}_{IJ} \mathbf{P}_J^{-1} \right] \right)^{-1/2},$$

so if in a particular realization we measure a value of the optimal statistic, the signal-to-noise ratio (SNR) for the power in the cross-correlations for that realization is

$$\hat{\rho} = \frac{\hat{A}^2}{\sigma_0} = \frac{\sum_{IJ} r_I^T \mathbf{P}_I^{-1} \mathbf{S}_{IJ} \mathbf{P}_J^{-1} r_J}{\left(\sum_{IJ} \text{tr} \left[\mathbf{P}_I^{-1} \mathbf{S}_{IJ} \mathbf{P}_J^{-1} \right] \right)^{1/2}},$$

with an expectation value over all realizations of

$$\langle \rho \rangle = A_{gw}^2 \left(\sum_{IJ} \text{tr} \left[\mathbf{P}_I^{-1} \mathbf{S}_{IJ} \mathbf{P}_J^{-1} \right] \right)^{-1/2}.$$

Note that this definition of the SNR measures the confidence (in standard deviations) with which we can reject the null hypothesis that there are no spatially correlated signals in our data. To clarify this a bit further we outline a standard frequentist hypothesis detection procedure:

1. Measure the optimal statistic value, \hat{A}^2 of Eq. (49), for our data set.

2. Compute the probability $p(\hat{A}^2 > \hat{A}^2_{\text{thresh}}, A_{gw} = 0)$, that is, the probability that our measurement of the optimal statistic, \hat{A}^2, is greater than some threshold value of the statistic, $\hat{A}^2_{\text{thresh}}$, assuming that the null hypothesis, $A_{gw} = 0$, is true.

4 By spatially correlated we mean that the correlation is parameterized by the Hellings and Downs curve.
3. If the aforementioned probability (sometimes called the p-value) is less than some value (this value is set to be a tolerable yet problem specific false-alarm probability (FAP)) then a detection is claimed.

Typically $\hat{A}_{\text{thresh}}^2$ is given by

$$\alpha = \int_{-\infty}^{\hat{A}_{\text{thresh}}^2} d\hat{A}^2 p(\hat{A}^2 | A_{\text{gw}} = 0), \quad (55)$$

where $\alpha = 1 - \text{FAP}$ and $p(\hat{A}^2 | A_{\text{gw}} = 0)$ is the probability distribution function of the optimal statistic given the null hypothesis. To a sufficiently good approximation, $p(\hat{A}^2 | A_{\text{gw}} = 0)$ can be described by a Gaussian distribution with zero mean and variance given by σ_0^2 (Eq. (52)), thus the probability $p(\hat{A}^2 > \hat{A}_{\text{thresh}}^2 | A_{\text{gw}} = 0)$ can be expressed in terms of standard deviations away from the mean. For example, if the \hat{A}^2 that we measure is 3 standard deviations (i.e 3-sigma) away from the mean (0 in this case) then this corresponds to a FAP of ~ 0.003 meaning that we can rule out the null hypothesis with $\sim 99.7\%$ confidence. Returning to Eq. (53) we see that the typical frequentist detection procedure mentioned above is contained in this definition of FAP. If we measure an SNR of 3, this carries the same meaning as the FAP above.

Figure 2 shows a histogram of the optimal statistic Eq. (49) in 10^4 simulations for PTA observations of $M = 36$ pulsars, with root-mean-squares (RMSs) $\sigma = 100$ ns, for an observational time $T = 5$ years, and a cadence $c = 20$ yr$^{-1}$. The black line shows the distribution of the statistic in the absence of a signal, and the gray curve shows the distribution in the presence of a signal with amplitude $A_{\text{gw}} = 10^{-14}$ (using the methods described below in Section IV). The standard deviation of the distribution in the absence of a signal is $\sigma_0 = 1.08 \times 10^{-29}$. As shown in the figure, in the absence of a signal the distribution is not quite Gaussian, but using the true cumulative distribution of the simulations and the 3-σ Gaussian distribution threshold gives a FAP of ~ 0.006.

The optimal statistic in Eq. (49) has also been used to analyze the data sets produced for the International PTA Mock Data Challenge. In this challenge, the optimal statistic was used to produce amplitude estimates for three closed data sets. These amplitudes were then compared to those from a first-order likelihood method (described in [40]). The amplitudes recovered using the optimal statistic were consistent with the first-order likelihood methods at the 95% level or better. Readers are encouraged to consult [68] for more details regarding the Mock Data Challenge and the results obtained using the optimal statistic.

IV. SIMULATED SIGNALS

In this section we describe a software injection procedure that can be used to produce simulated stochastic background signals in PTA data. As we have shown, if a stochastic gravitational-wave background is present, the cross-correlation of timing residuals is given by

$$\langle \tilde{r}_I(f) \tilde{r}_J(f') \rangle \propto |f|^{-5} \Omega_{\text{gw}}(f) \chi_{IJ}. \quad (56)$$

In the frequency domain it is possible to express the timing residuals as

$$r_I(f) = c(f) \sum_J H_{IJ} w_J(f), \quad (57)$$

where $w_I(f) = x_I(f) + iy_I(f)$ is a complex zero-mean white noise process, $c(f)$ is a real function that contains information about the spectral index and amplitude of the gravitational-wave spectrum (but does not depend on the pulsar pair), and H_{IJ} is a matrix that linearly combines the timing residuals in such a way as to simulate the expected spatial correlations in the signal, i.e. the Hellings and Downs coefficients.

If the processes x_I and y_I are zero-mean unit-variance processes $w_I(f)$ satisfies

$$\langle w_I(f) w_J(f') \rangle = \frac{2}{T} \delta(f - f') \delta_{IJ}, \quad (58)$$

where T is the length of observations, and we can use Eq. (56) to find $c(f)$ and H_{IJ}. Taking the ensemble average of Eq. (57) it is easy to show that

$$\langle \tilde{r}_I(f) \tilde{r}_J(f') \rangle = \frac{2}{T} c(f) c(f') H_{IJ} H_{IJ} \delta(f - f'), \quad (59)$$

which implies that

$$c^2(f) H_{IJ} H_{IJ} = \frac{TH_0^2}{32\pi^4} |f|^{-5} \Omega_{\text{gw}}(f) \chi_{IJ}. \quad (60)$$
In matrix notation the equation above can be written as
\[c^2(f) \mathbf{H} \mathbf{H}^T = \frac{TH^2}{32\pi^4} |f|^{-5} \Omega_{gw}(f) \chi. \] (61)

Relating the functions of frequency on either side of Eq. (61), we readily identify the function \(c(f) \) to be
\[c(f) = \left(\frac{TH^2}{32\pi^4} \Omega_{gw}(f) |f|^{-5} \right)^{1/2}, \] (62)
along with a condition for the matrix \(\mathbf{H} \),
\[\mathbf{H} \mathbf{H}^T = \chi \] (63)
which allows us to determine \(\mathbf{H} \) given \(\chi \) via a Cholesky decomposition.

To construct simulated timing residuals one can: (1) start with \(M \) random complex frequency series \(w_I(f) \), where \(M \) is the number of pulsars, (2) multiply these by \(c(f) \), (3) find the Hellings and Downs coefficients for all pulsar pairs and construct the matrix \(\chi \), (4) perform a Cholesky decomposition of \(\chi \) to find \(\mathbf{H} \), and (5) linearly combine the frequency series via Eq. (57) to find \(r_I(f) \) for each pulsar. Finally, after inverse Fourier transforming the gravitational-wave residuals, they can be added to real or simulated TOA data that contains additional uncorrelated white and red noise components.

V. SCALING LAWS FOR THE OPTIMAL CROSS-CORRELATION STATISTIC

In [62] the authors considered a simple scenario where pulsar timing residuals have just two noise components, a gravitational-wave red noise piece and a white-noise piece, which are the same for all pulsars in the PTA, namely
\[P_I(f) = P_g(f) + 2\sigma^2 \Delta t = bf^{-\gamma} + 2\sigma^2 \Delta t. \] (64)

Here all the frequency independent constants in Eq. (35) have been absorbed into the amplitude \(b \), the index \(\gamma = 3 - 2\alpha \) (recall that we are using one-sided power spectra in this paper, in contrast to [62]), and the white noise RMS is denoted by \(\sigma \).

In [62] it was shown that the SNR of the optimal cross-correlation scales in three different ways depending on the relative sizes of the gravitational-wave and white-noise components. Specifically the authors found scaling laws for the SNR in

(i) a weak signal regime where the white noise component of Eq. (64) is larger than the gravitational wave piece \((2\sigma^2 \Delta t \gg bf^{-\gamma}) \) at all relevant frequencies,

(ii) the opposite strong signal limit, where \(2\sigma^2 \Delta t \ll bf^{-\gamma} \) at all relevant frequencies, which turns out to be irrelevant for pulsar timing experiments, and, (iii) an intermediate regime between the two cases where the gravitational wave power spectrum dominates at low frequencies, and the white noise dominates at high frequencies.

Additionally, they found that the latter regime is likely already relevant to current pulsar timing experiments. In this section we will review the scaling laws for the optimal statistic, and introduce an improved derivation of the scaling law for the intermediate regime.

To derive the scaling laws we begin with the expression for the expected SNR of the cross-correlation statistic,
\[\langle \rho \rangle = A_{gw}^2 \left(\sum_{IJ} \text{tr} \left(P_I^{-1} \mathbf{S}_{IJ} P_J^{-1} \mathbf{S}_{JI} \right) \right)^{1/2}, \] (65)
which can be written in the frequency domain as [31]
\[\langle \rho \rangle = \left(2T \sum_{IJ} \chi_{IJ}^2 \int_0^{f_H} df \frac{P_I^2(f)}{P_I(f)P_J(f)} \right)^{1/2}. \] (66)
Since we are assuming that all pulsars have the same noise characteristics we can write
\[\langle \rho \rangle = \left(\sum_{IJ} \chi_{IJ}^2 \right)^{1/2} \left(2T \int_0^{f_H} df \frac{b^2f^{-2\gamma}}{(bf^{-\gamma} + 2\sigma^2 \Delta t)^2} \right)^{1/2}. \] (67)

In the weak signal regime, where \(2\sigma^2 \Delta t \gg bf^{-\gamma} \) for all frequencies of interest, i.e., \(f \in [f_L, f_H] \), the SNR is well approximated by
\[\langle \rho \rangle \approx \left(\sum_{IJ} \chi_{IJ}^2 \right)^{1/2} \frac{bc T^n}{2\sigma^2 \sqrt{\gamma - 1/2}}, \] (68)
where \(c = 1/\Delta t \) is the cadence.

In the intermediate regime we cannot use this approximation because at low frequencies the power in the gravitational-wave background is larger than the white noise level. Note that this happens when \(5T^n > 2\sigma^2 \Delta t \), and the condition on the white noise RMS is
\[\sigma < \frac{A}{\pi f_{1\text{yr}}^2} \sqrt{\frac{c T^n}{24}}. \] (69)

For pulsar timing experiment durations of \(T = 5 \text{ yr} \), cadence of \(c = 20 \text{ yr}^{-1} \), for a background with amplitude \(A = 10^{-15} \), and a spectral index like the one we expect for the SMBBH background \((\gamma = 13/3) \), the pulsar timing array is in the weak signal limit only if the pulsars have white noise RMSs greater than about 300 ns. There are already a handful of pulsars that are currently timed with better precisions than that (see, for example, [37]).

In this case the integral in Eq. (67) must evaluated generally. To do this, we write the integral as
\[\int_{f_L}^{f_H} df \ F(f) = \int_{f_L}^{f_H} df \ F(f) - \int_0^{f_L} df \ F(f) \] (70)
where for convenience we have written

\[F(f) = \frac{bf^{-2\gamma}}{(bf^{-\gamma} + 2\sigma^2 \Delta t)^2}. \]

(71)

The integrals on the right hand side of Eq. (70) have analytic solutions in terms of ordinary hypergeometric functions. To proceed, we evaluate the integral of \(F(f) \) over a generic interval \([0, f_*]\) which yields

\[
\int_0^{f_*} df F(f) = \frac{f_*}{\gamma} \left[\frac{1}{1 + \frac{2\sigma^2 \Delta t}{bf^{-\gamma}}} + (\gamma - 1) G \left(\frac{-2\sigma^2 \Delta t}{bf^{-\gamma}} \right) \right],
\]

(72)

where \(G(x) = {}_2F_1 \left(1, \gamma^{-1}, 1 + \gamma^{-1}, x \right) \). We can probe this solution in the context of Eq. (70) by replacing \(f_\ast \) with \(f_H \) or \(f_L \).

For the second integral on the right hand side of Eq. (70) where \(f_* = f_L = 1/T \), we have \((2\sigma^2 \Delta t)/(bf_H^{-\gamma}) \ll 1\) and the hypergeometric function can be approximated to be unity

\[2F_1 \left(1, \gamma^{-1}, 1 + \gamma^{-1}, -\frac{2\sigma^2 \Delta t}{bf_H^{-\gamma}} \right) \approx 1. \]

This simplifies Eq. (72) greatly, and the integral is easily evaluated as

\[
\int_0^{f_L} df F(f) \approx \frac{1}{T}.
\]

(73)

To evaluate the first integral in Eq. (70), we consider the case when \(f_* = f_H \) in Eq. (72). In this case, since \((2\sigma^2 \Delta t)/(bf_H^{-\gamma}) \gg 1\), the integral can be approximated as

\[
\int_0^{f_H} df F(f) \approx \frac{f_H}{\gamma} \left[\frac{bf_H^{-\gamma}}{2\sigma^2 \Delta t} + (\gamma - 1) G \left(\frac{-2\sigma^2 \Delta t}{bf_H^{-\gamma}} \right) \right].
\]

(74)

We can then use standard identities relating the hypergeometric function to inverses of their arguments (see, for example, Eq. (15.8.2) in [68]). Using these identities along with with Euler’s reflection formula we obtain

\[
\int_0^{f_H} df F(f) \approx \frac{f_H}{\gamma} \left[\frac{bf_H^{-\gamma}}{2\sigma^2 \Delta t} + (\gamma - 1) G \left(\frac{-2\sigma^2 \Delta t}{bf_H^{-\gamma}} \right) \right].
\]

(75)

Since \(bf_H^{-\gamma}/2\sigma^2 \Delta t \ll 1 \) both hypergeometric functions can be well approximated by unity. Additionally, since \(bf_H^{-\gamma}/2\sigma^2 \Delta t \ll (bf_H^{-\gamma}/2\sigma^2 \Delta t)^{1/\gamma} \) for \(\gamma > 1 \), the last term in Eq. (75) dominates and the expression can be simplified to

\[
\int_0^{f_H} df F(f) \approx \kappa(\gamma) \left(\frac{b}{2\sigma^2 \Delta t} \right)^{1/\gamma}
\]

(76)

with

\[
\kappa(\gamma) = \frac{(1 - \gamma) \Gamma(\gamma^{-1} - 1) \Gamma(2 - \gamma^{-1}) \Gamma(1 + \gamma^{-1})}{\gamma \Gamma(\gamma^{-1})}.
\]

(77)

Putting the results of Eq. (73) and Eq. (76) together, we arrive at the solution to the original problem posed in Eq. (70):

\[
\int_0^{f_H} df F(f) \approx \kappa(\gamma) \left(\frac{b}{2\sigma^2 \Delta t} \right)^{(1/\gamma)} - \frac{1}{T}.
\]

(78)

In terms of the cadence \(c = 1/\Delta t \) the average value of the SNR is therefore given by

\[
\langle \rho \rangle \approx \left(\sum \chi_{IJ}^2 \right)^{1/2} 2T \left(\kappa(\gamma) \left(\frac{bc}{2\sigma^2} \right)^{(1/\gamma)} - \frac{1}{T} \right)^{1/2}.
\]

(79)

At late times,

\[
\langle \rho \rangle \approx \left(\sum \chi_{IJ}^2 \right)^{1/2} 2T \kappa(\gamma) \left(\frac{bc}{2\sigma^2} \right)^{(1/\gamma)} \left(\frac{cA_{kw}^2}{2\sigma^2} \right)^{1/2} T^{1/2}.
\]

(80)

In [62] the authors approximated the integral in a less accurate (albeit more pedagogical) way: they found the frequency \(f_c = (bc/2\sigma^2)^{1/2} \) at which the gravitational wave red noise equals the white noise, and assumed the integral was gravitational wave dominated at frequencies
lower than f_r, and white noise dominated at frequencies higher than f_r. The integrals then become trivial. The result is the same as Eq. (79), but with a different value of the coefficient κ which was found to be $\kappa' = 2\gamma/(2\gamma - 1)$. In the approximation the integrand for the SNR is always over-estimated and the value of κ' is larger than what we have calculated for κ in this paper.

Figure 3 shows the average SNR versus time in years for PTA with 20 pulsars timed with a presicion of $\sigma = 50$ ns and a gravitational-wave background produced by SMBBHs ($\gamma = 13/3$) with an amplitude $A_{gw} = 10^{-15}$. The gray curve shows the SNR computed numerically using Eq. (65). For the timing model we have subtracted out a quadratic—i.e., we have fitted out a quadratic with the \mathbf{R} projection matrices in the time domain. The dotted curve shows the average SNR as computed in the weak-signal limit using Eq. (68). The dashed-dot curve shows the SNR in the intermediate regime at late times, Eq. (80). The dashed curve shows the SNR calculated using Eq. (79).

In this paper, we have presented a time-domain implementation of the optimal cross-correlation statistic for stochastic gravitational-wave background searches using PTA data, originally presented in [31]. The derivation and implementation described here extends that of [31] by taking the timing model into account in a natural and statistically well-motivated way by including the linear timing model directly into the likelihood function, allowing for analytic maximization of the timing model parameters. The time-domain implementation also allows one to fully model the noise and naturally deal with nonstationarities and irregular sampling of the data, which cannot be modeled in the frequency domain.

An alternative approach for analyzing PTA data for stochastic gravitational-wave backgrounds is to use Bayesian inference, as described in [33, 35, 40, 69, 70]. In the Bayesian approach, one constructs the posterior probability distributions for the noise and gravitational-wave signal parameters via Bayes’ theorem by specifying the likelihood function for the data given a set of model gravitational-wave and noise parameters and a prior distribution on the model parameters. By marginalizing over the model parameters, one also constructs the Bayesian evidence for various models, which allow for the construction of Bayes factors (ratio of Bayesian evidence) to determine which model is favored by the data.

While we believe that a Bayesian approach to the detection problem for stochastic backgrounds is preferred and indeed recommended, the frequentist cross-correlation statistic presented here has several advantages over the Bayesian approach. Firstly, the optimal statistic approach is computationally inexpensive as it involves only a single function call (given a set of modeled noise parameters), while the Bayesian method must explore a very large dimensional space leading to millions of likelihood evaluations. For current data sets, the optimal statistic can be evaluated in seconds while the full Bayesian approach can take weeks to run on a supercomputer.

Furthermore, the SNR as defined in this work is a good approximation to the Bayes factor comparing a model for a correlated gravitational-wave background to a model for an uncorrelated intrinsic red noise source. Thus the computationally inexpensive optimal statistic has proven invaluable in large scale simulations and projections of detector sensitivity as it allows us to test many different signal models and pulsar observation scenarios with relative ease, while full Bayesian simulations on this scale are unfeasible. In addition, the relationship between the optimal statistic SNR and the Bayes factors affords an analytically tractable environment from which to construct various scaling relations as shown in Figure 3.

The optimal statistic does have two major drawbacks that make it less desirable as a production-level detection statistic compared to the Bayes factor. Firstly, the point estimate of the amplitude of the gravitational-wave back-
ground depends on our ability to accurately model the total autocorrelated power for each pulsar. Typically this is done by modeling the noise for each pulsar independently and then including the maximum likelihood values in the auto-covariance matrices of the optimal statistic. If the signal is loud and the data does not contain any intrinsic red noise then this method will lead to biases. In low SNR scenarios the red noise due to the stochastic background may not be large enough to detect in an individual pulsar and will thus not enter the auto-covariance matrices used in the optimal statistic. This will lead to an inconsistency in the optimal statistic where it will still be able to detect cross-correlated power, but the point estimate of the amplitude will be biased low because the auto-covariance terms (from our single pulsar noise analysis) indicate that the red noise is very weak.

This problem does not arise in Bayesian analyses because the intrinsic pulsar noise and the stochastic background parameters are modeled simultaneously. This problem could be ameliorated by performing the initial noise modeling over all pulsars simultaneously and including a correlated gravitational-wave background component. These noise estimates (which will include a common gravitational-wave background term in the auto-covariance) could then be input to the optimal statistic.

Despite these drawbacks, the optimal cross-correlation statistic serves as a proxy for a full Bayesian search when performing computationally-intensive simulations and will also serve as a very useful cross-check when making detection statements on future PTA data.

Acknowledgments

We thank Eanna Flanagan for pointing out a sign error in [31], which has been corrected here. We also thank Chris Pankow and Madeline Wade for many useful comments and suggestions. We extend our gratitude to the members of the NANOGrav Data Analysis Working Group. The work of SJC, XS, and JAE was partially funded by the NSF through CAREER award number 0955929, PIRE award number 0968126, award number 0970074, and the Wisconsin Space Grant Consortium. JAE acknowledges support by NASA through Einstein Fellowship grant PF4-150120. JDR would like to acknowledge support from NSF awards HRD-0734800, HRD-1242090 and PHY-1205585.

Appendix A: Relation to Demorest et al. Cross-Correlation Statistic

Here we show that the optimal statistic, although derived in a different manner, is identical to the cross-correlation statistic presented in [37]. In the notation used in this work, the cross-correlation coefficients can be written as

$$\rho_{ij} = \frac{\mathbf{r}_i^T \mathbf{P}_i^{-1} \tilde{\mathbf{S}}_{ij} \mathbf{P}_j^{-1} \mathbf{r}_j}{\text{tr}[\mathbf{P}_i^{-1} \tilde{\mathbf{S}}_{ij} \mathbf{P}_j^{-1} \tilde{\mathbf{S}}_{jj}]}$$

(A1)

where \(\tilde{\mathbf{S}}_{ij}\) is defined so that \(A_{gw}^2 \chi_{ij} \tilde{\mathbf{S}}_{ij} = \mathbf{S}_{ij}\). The uncertainty on the correlation coefficients is

$$\sigma_{ij} = \left(\text{tr}[\mathbf{P}_i^{-1} \tilde{\mathbf{S}}_{ij} \mathbf{P}_j^{-1} \tilde{\mathbf{S}}_{jj}]\right)^{-1/2}.$$

(A2)

With these expressions we now have an estimate of the cross-correlation coefficients along with their uncertainty for each pulsar pair. Notice that only the spectral shape of the gravitational wave background is assumed. To determine an estimate of the gravitational wave background amplitude, the following chi-squared is minimized

$$\chi^2 = \sum_{ij} \left(\frac{\rho_{ij} - A_{gw}^2 \chi_{ij}}{\sigma_{ij}}\right)^2.$$

(A3)

The resulting best fit gravitational wave amplitude is

$$\hat{A}_{gw}^2 = \sum_{ij} \frac{\rho_{ij} \chi_{ij}}{\sigma_{ij}^2} \left/ \sum_{ij} \frac{\chi_{ij}^2}{\sigma_{ij}^2} \right.$$

(A4)

with variance

$$\sigma^2 = \left(\sum_{ij} \frac{\chi_{ij}^2}{\sigma_{ij}^2}\right)^{-1}.$$

(A5)

By using Eqs. A1 and A2 and by noting that \(\chi_{ij} \tilde{\mathbf{S}}_{ij} = \mathbf{S}_{ij}\), we obtain

$$\hat{A}_{gw}^2 = \frac{\sum_{ij} \mathbf{r}_i^T \mathbf{P}_i^{-1} \tilde{\mathbf{S}}_{ij} \mathbf{P}_j^{-1} \mathbf{r}_j}{\sum_{ij} \text{tr}[\mathbf{P}_i^{-1} \tilde{\mathbf{S}}_{ij} \mathbf{P}_j^{-1} \tilde{\mathbf{S}}_{jj}]}.$$

(A6)

which is identical to Eq. (49).

[1] G. Hobbs et al., Classical and Quantum Gravity 27, 084013 (2010), 0911.5206.
[2] R. A. Hulse and J. H. Taylor, Astrophys. J. Lett. 195, L51 (1975).
[3] M. V. Sazhin, Soviet Astron. 22, 36 (1978).
[4] S. Detweiler, Astrophys. J. 234, 1100 (1979).
[5] A. H. Jaffe and D. C. Backer, Astrophys. J. 583, 616 (2003), arXiv:astro-ph/0210148.
[6] A. Sesana, A. Vecchio, and C. N. Colacino, Mon. Not. R. Astron. Soc. 390, 192 (2008), 0804.4476.
S. T. Balan, arXiv:1210.3578 [astro-ph.IM] (2012).
[70] S. R. Taylor, J. R. Gair, and L. Lentati, arXiv:1210.3489 [astro-ph.IM] (2012).