Monocytes give rise to mucosal, but not splenic, conventional dendritic cells

Chen Varol,1 Limor Landsman,1 Darin K. Fogg,3 Liat Greenshtein,1 Boaz Gildor,1 Raanan Margalit,1 Vyacheslav Kalchenko,2 Frederic Geissmann,3 and Steffen Jung1

1Department of Immunology and 2Department of Veterinary Resources, The Weizmann Institute of Science, 76100 Rehovot, Israel
3Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratory of Mononuclear Phagocyte Biology, Necker Enfants Malades Institute, and University of Paris Rene Descartes Medical School, Necker Enfants Malades Hospital, 75015 Paris, France

The online version of this article contains supplemental material.

Historically, the body-wide cellular network of peripheral mononuclear phagocytes (MPs) has been subdivided into macrophages (MΦs) and DCs, which were discovered toward the end of the 19th century and in the 1970s, respectively (1, 2). Both MΦs and DCs consist of multiple subpopulations largely defined by distinct anatomic location and phenotypes. MΦs include representatives in the serosa, lamina propria (lp), lung, brain (microglia), bone (osteoclasts), and liver (Kupffer cells; reference 3). DCs, on the other hand, have been divided into epidermal Langerhans cells, plasmacytoid DCs, and conventional CD11chigh DCs, which in mice are themselves composed of three subsets (CD4+CD8−, CD4−CD8−, and CD4−CD8+; reference 4). MPs are involved in tissue remodeling and homeostasis, as well as regulatory and stimulatory aspects of innate and adaptive immunity.

MPs arise from mesoderm-derived hematopoietic precursor cells, which in mammals are generated in two independent temporally and spatially separated waves (5). “Definitive” intra-embryonic hematopoiesis results in the generation of multipotent hematopoietic stem cells that eventually seed the BM. Certain MP populations, such as the brain microglia and epidermal Langerhans cells, are capable of self-renewal or are derived from tissue-resident precursors (6, 7). However, most other peripheral MP subsets of the adult, particularly the short-lived CD11chigh DC (8), are believed to rely on continuous replenishment from the BM-resident hematopoietic stem cells. The hematopoietic stem cell differentiation pathway into MPs includes several BM intermediates, such as the common myeloid precursors (9), granulocyte/MΦ precursors (9), and MΦ/DC precursors (MDPs; reference 10), characterized by their progressive loss of ability to give rise to other hematopoietic cell types.

Systemic dissemination into the peripheral MP pool is thought to be ensured by circulating blood monocytes (11). Human monocytes are long known to consist of discrete subpopulations (12), and, more recently, monocyte heterogeneity has also been established in the mouse (13–16) and rat (17). Circulating murine monocytes comprise two main subsets: Gr1high
CXCR1<sup>hfp</sup> CD62L<sup>hi</sup> CCR2<sup>hi</sup> and Gr1<sup>low</sup> CXCR1<sup>hfp</sup> CCR1<sup>hi</sup> CCR2<sup>low</sup>. Gr1<sup>hi</sup> “inflammatory” monocytes were shown to home preferentially to sites of inflammation, whereas Gr1<sup>low</sup> monocytes are believed to seed resting tissues in the steady state (15). However, the origin and biology of this intriguing short-lived leukocyte, which cannot be generated in vitro, remain poorly understood.

Here, we report the use of adoptive precursor transfer experiments in WT and MP-depleted recipient mice to study the origin, interrelation, and differentiation potential of murine BM and blood monocytes. Using intra bone cavity (IBC) transfer we establish the in vivo differentiation sequence from the recently reported MDP (10) to BM and blood monocytes and terminally differentiated peripheral MPs. Interestingly, monocytes appear to be dedicated to DC replenishment of nonlymphoid organs, such as the intestinal lp and the lung, whereas splenic DCs seem to arise from local precursors without a monocyic intermediate. Furthermore, we show that in the absence of inflammation, the Gr1<sup>hi</sup> blood monocyte subset efficiently shuttles back to the BM, converts into Gr1<sup>low</sup> monocytes, and thus contributes further to MP generation.

**RESULTS**

**MDPs give rise to BM and blood monocytes**

Taking advantage of a mouse strain that carries a replacement of the CX3CR1 chemokine receptor gene by a GFP reporter (CX3CR1<sup>hfp</sup> mice; reference 18), we recently reported the isolation of a novel proliferating clonogenic precursor (termed MDP) from murine BM that gives rise exclusively to MPs and DCs. When injected into the blood stream of recipient mice, MDPs expand and differentiate into splenic MPs and DCs (10). In this study, we sought to study the potential of MDPs to differentiate within their native BM microenviron-ment and give rise to BM and blood monocytes. We therefore revised our original adoptive MDP transfer approach by injecting the MDPs into the BM, i.e., the femoral bone cavity, of the recipient mice.

The BM of CX3CR1<sup>hfp</sup> donor mice contains three main distinct CD115<sup>+</sup> CXCR1/GFP<sup>+</sup> populations: CD117<sup>+</sup> CD11b<sup>−</sup> Gr1<sup>−</sup> cells (Fig. 1 A), which represent dedicated MDPs (GFP<sup>hfp</sup>; reference 10), and two discrete Gr1(Ly6C/G)<sup>high</sup> and Gr1(Ly6C/G)<sup>low</sup> subsets of CD11b<sup>+</sup> BM monocytes (19) that in CX3CR1<sup>hfp</sup> mice appear as GFP<sup>int</sup> and GFP<sup>high</sup>, respectively (Fig. 1 A). To study the interrelation of these populations, we isolated BM from heterozygote mutant CX3CR1<sup>hfp</sup> donor mice (CD45.1) and sorted MDPs to purity according to surface CD117 (cKit) and GFP expression, as well as the absence of CD11b and Gr1 markers (Fig. 1 B). MDPs were then injected into the right femoral bone cavity of unmanipulated WT mice (CD45.2). The recipient mice were killed at various time points after adoptive transfer and subjected to flow cytometry analysis of blood and BM. The differential allotypic CD45 marker of host and graft, in addition to the GFP label of the CX3CR1<sup>hfp</sup> cells, allowed detection of the graft. Analysis of the recipient BM at days 3 and 6 after transfer revealed the presence of GFP<sup>+</sup> CD45.1<sup>+</sup> cells expressing the surface marker CD11b (Fig. 1 C). As in the donor mice, CD11b<sup>−</sup> GFP<sup>+</sup> cells could be further subdivided according to Gr1 and CX3CR1/GFP expression (Fig. 1 C). Interestingly, Gr1<sup>high</sup> cells, and to a lesser extent Gr1<sup>low</sup> graft-derived cells, were detected also in the noninjected (left) recipient femur (Fig. 1 D). Analysis of the blood revealed the presence of GFP<sup>+</sup> graft-derived monocytes that were largely Gr1<sup>low</sup> (day 6; Fig. 1 E). These findings show that upon IBC transfer, MDPs are able to differentiate into both Gr1<sup>high</sup> and Gr1<sup>low</sup> BM monocytes. Given the small number of transferred MDPs (2.5 × 10<sup>4</sup> cells), this sequence likely involved proliferative expansion of the graft. To investigate the interrelation between the two BM monocyte subsets, we next isolated CD11b<sup>+</sup> Gr1<sup>high</sup> GFP<sup>int</sup> BM monocytes from the BM of CX3CR1<sup>hfp</sup> mice (CD45.1; Fig. 2 A) and performed an IBC transfer. Analysis of recipient mice days 1 and 3 after transfer revealed the presence of graft-derived Gr1<sup>low</sup> GFP<sup>high</sup> BM monocytes (Fig. 2 B). These findings suggest that Gr1<sup>high</sup> BM monocytes can serve as in vivo precursors of Gr1<sup>low</sup> BM monocytes, as has been reported for Gr1<sup>high</sup> blood monocytes (16, 20). It bears mention that at both time points, graft-derived monocytes were again detected in the noninjected...
Gr1<sup>high</sup> inflammatory monocytes shuttle between the blood and BM

The detection of graft-derived BM monocytes in the noninjected femur after the IBC transfer of MDPs and BM monocytes (Figs. 1D and 2C) suggested that grafted cells or their descendants had entered the circulation and shuttled between bone cavities. Furthermore, the rare graft-derived cells in the noninjected femur were mainly of the Gr1<sup>high</sup> phenotype. We previously reported that homing of the Gr1<sup>high</sup> CD62L<sup>+</sup>CCR2<sup>+</sup> monocyte subset was restricted to sites of inflammation. In the absence of the latter, adoptively transferred Gr1<sup>high</sup> blood monocytes, but not Gr1<sup>low</sup> blood monocytes, rapidly disappeared from the circulation of recipient mice (15). Our present results raise the possibility that this observation might have been due to the immediate and quantitative recruitment of the Gr1<sup>high</sup> blood monocytes to the recipient BM. To investigate this issue, we adoptively transferred Gr1<sup>high</sup> blood monocytes isolated by MACS from Rag<sup>−/−</sup>CX<sub>L</sub>CX<sub>R1<sup>high</sup></sub> mice (Fig. 3A) to the circulation of WT recipients.

Analysis of the recipient mice on day 4 revealed the abundant presence of grafted GFP<sup>+</sup> cells in the recipient BM (Fig. 3B), which were Gr1<sup>high</sup> and Gr1<sup>low</sup> (not depicted). In contrast and as previously reported (15), we failed to detect Gr1<sup>high</sup> monocytes in the recipient blood, although it contained a sizeable population of Gr1<sup>low</sup> monocytes (Fig. 3B). This indicates that in the absence of inflammation, Gr1<sup>high</sup> blood monocytes efficiently shuttle from the blood to the BM. These data also directly support the notion that Gr1<sup>high</sup> blood monocytes are in vivo precursors of Gr1<sup>low</sup> monocytes (16, 20). To further substantiate this point, we i.v. transferred Gr1<sup>high</sup> BM monocytes into recipient mice. Like the Gr1<sup>high</sup> blood monocytes, these cells rapidly homed to the recipient BM. Day 1 after transfer, graft-derived monocytes were mainly Gr1<sup>high</sup> in both the BM and blood compartments, whereas at day 3, the grafted cells had almost quantitatively converted into Gr1<sup>low</sup> monocytes (Fig. 3C and Table I). To confirm the BM homing of the i.v. injected Gr1<sup>high</sup> BM monocytes, we performed whole body optical imaging using the near-infrared lipophilic carbocyanine tracer DiR (21). Although most transferred DiR-labeled monocytes accumulated in the lung, liver, and spleen, grafted cells were also readily detectable in the BM (femora and cranium) of the recipient mice (Fig. 4, A–C). Independent intravital experiments with CFSE-labeled grafts suggested that Gr1<sup>high</sup> monocytes had indeed extravasated and entered the cranial BM parenchyma (Fig. 4D). These results show that Gr1<sup>high</sup> monocytes efficiently home to the BM. However, unlike senescent neutrophils that return to the BM to die (22), Gr1<sup>high</sup> monocytes recycle, differentiate into Gr1<sup>low</sup> monocytes, and can return to the blood to further contribute to the peripheral MP pool.

Table I. Distribution of adoptively transferred Gr1<sup>high</sup> BM monocyte grafts in the BM and blood compartment of recipient mice

| Total no. CD115<sup>+</sup> cells | % graft-derived CD115<sup>+</sup> cells | No. graft-derived CD115<sup>+</sup> cells |
|----------------------------------|----------------------------------------|---------------------------------------|
| Day 1                            |                                        |                                       |
| Blood                            | 1.6 × 10<sup>5</sup>                   | 1.6 (± 0.15)                          | 2.6 × 10<sup>3</sup>                   |
| BM                               | 5 × 10<sup>5</sup>                     | 0.17 (± 0.01)                         | 8.5 × 10<sup>3</sup>                   |
| Day 3                            |                                        |                                       |
| Blood                            | 0.6 (± 0.13)                           | 10<sup>3</sup>                        |                                       |
| BM                               | 0.05 (± 0.01)                          | 2.3 × 10<sup>3</sup>                  |                                       |
| Day 6                            |                                        |                                       |
| Blood                            | 0.15 (± 0.03)                          | 240                                   |                                       |
| BM                               | 0.033 (± 0.005)                        | 1.6 × 10<sup>4</sup>                  |                                       |

WT recipients of Gr1<sup>high</sup> BM monocytes (5 × 10<sup>5</sup> cells; purity: 96%) were analyzed by flow cytometry on days 1, 3, and 6 after i.v. transfer. Data correlate to Fig. 3C. Note that according to our calculation day 1 after transfer, a total of 17% of the grafted monocytes can be found in the recipient BM, whereas 0.52% of the cells are circulating in the recipient blood.

<sup>a</sup>Based on mouse phenome database (http://phenome.jax.org/pub-cgi/phenome/mpdcgi?rtn=docs/home).

<sup>b</sup>Based on reference 55. The percentage of CD115<sup>+</sup> cells of nucleated BM cells was determined to be 12% by flow cytometric analysis (not depicted).
Collectively, our results suggest that Gr1<sup>high</sup> BM and blood monocyte populations are linked. To investigate a potential functional overlap between these two populations, we tested Gr1<sup>high</sup> BM monocytes for a hallmark of their blood counterpart, e.g., the recruitment to sites of inflammation (13, 15, 23). Highlighting the dual homing potential of i.v. injected Gr1<sup>high</sup> BM monocytes, thioglycollate-induced inflammation caused the grafted cells to deviate from their

Figure 3. Gr1<sup>high</sup> blood and BM monocytes shuttle between blood and BM. (A) Flow cytometry analysis of a blood monocyte graft isolated from Rag<sup>−/−</sup> CX<sup>−/−</sup>CR1<sup>−/−</sup> mice. The GFP<sup>+</sup> cells are Ly6G<sup>+</sup> CX<sup>−/−</sup> CR1<sup>−/−</sup> granulocytes (reference 18). (B) Analysis of recipient BM and blood 4 d after adoptive cell transfer of Gr1<sup>high</sup> blood monocytes (10<sup>5</sup> cells). Note the presence of graft-derived (GFP<sup>+</sup>) Gr1<sup>low</sup> monocytes in the blood. Fractions of graft-derived GFP<sup>+</sup> cells of total CD115<sup>+</sup> cells in recipient BM (0.12%) and in recipient blood (0.76%). (C) Analysis of BM and blood of WT recipients of Gr1<sup>high</sup> BM monocytes (5 × 10<sup>5</sup> cells; purity: 96%) days 1 and 3 after i.v. transfer. Note the loss of Ly6C/G expression on grafted Gr1<sup>high</sup> BM monocytes. Bar diagrams summarize data obtained from three mice per time point. Note the difference of GFP intensity of BM and blood monocytes on day 1 (mean fluorescence intensity: 274.75 ± 13.9 vs. 376.6 ± 20.5; P = 0.003). (D) Flow cytometry analysis of BM and peritoneal cavity (PC) lavage of WT recipients of MACS-purified CD115<sup>+</sup> BM monocytes (10<sup>6</sup> cells; purity: 88%) that were left untreated or had been inoculated with thioglycollate. Note the recruitment of grafted Gr1<sup>high</sup> BM monocytes to the inflamed peritoneal cavity. The data are representative of at least two independent experiments per time point.
stead-state route (BM) to the peritoneal cavity (Fig. 3 D). This indicates further that Gr1 high BM and blood monocyte subsets have functional similarities.

MDPs, but not monocytes, can replenish splenic DCs

Upon i.v. transfer into irradiated and young nonirradiated recipient mice, MDPs give rise to splenic DCs (10), which are characterized by a frequent steady-state turnover (8). However, MDP differentiation into long-lived MPs, particularly of peripheral tissues, could have been hampered by the limited precursor input in the time window analyzed (10). We therefore sought to improve the engraftment of the MP compartments by depleting DCs and MΦs from the recipients before MDP transfer. To this end, we took advantage of CD11b–diphtheria toxin (DTx) receptor (DTR) transgenic mice, which harbor CD11b–expressing MPs, including MΦs and DCs that are sensitive to DTx and are hence depleted upon DTx treatment (24–27). In this conditional cell ablation system, targeted cells die by apoptosis and are removed without causing major inflammation (28). Their replenishment might therefore mimic steady-state conditions. BM chimeras generated by reconstitution of lethally irradiated WT mice with CD11c–DTx transgenic BM allow for extended MP depletion (29, 30). MDPs were isolated from CX3CR1gfp donor mice (CD45.1) and injected into DTx-treated BM chimeras. Analysis of the recipient 7 d after i.v. MDP transfer revealed the presence of graft-derived Gr1 high BM monocytes (Fig. 1 C), next investigated the potential of the monocytes to give rise to...
graff-derived (CD45.1 representative of two independent experiments. Interestingly, grafted Gr1<sup>high</sup> BM monocytes failed to give rise to CD11<sup>c<sub>high</sub></sup> splenic DCs but differentiated almost exclusively into the CD11<sup>b<sub>+</sub></sup> CD11<sup>ch</sup> population we had previously observed with the MDP graft (Fig. 5 A). Because MDPs are monocyte precursors but the latter do not generate splenic CD11<sup>c<sub>high</sub></sup> DCs, we next examined whether MDPs could give rise to splenic DCs without prior differentiation into monocytes, i.e., when placed directly in the spleen. As seen in Fig. 5 B, intra-splenic injection of BM MDPs into MP-depleted mice yielded CD11<sup>b<sub>+</sub></sup> and CD11<sup>b<sub>−</sub></sup> CD11<sup>c<sub>high</sub></sup> DCs. This suggests that local spleen-resident precursors, such as MDPs, might replenish the CD11<sup>c<sub>high</sub></sup> DC population without a monocyctic intermediate.

**Monocytes replenish intestinal lp and lung DCs**

Because monocytes are established DC precursors (3), we decided to investigate whether the grafted Gr1<sup>high</sup> BM monocytes can give rise to DCs in other nonlymphoid tissues. We first chose to study the seeding of the intestinal lp, which, as we recently reported, contains two discrete populations of CX<sub>3</sub>CR<sub>1<sup>+</sup></sub> lpDCs and CX<sub>3</sub>CR<sub>1<sup>−</sup></sub> lpMPs (27, 31). Both of these cell types are CD11<sup>c<sub>+</sub></sup> and hence DTx sensitive in CD11c<sup>+</sup> transgenic mice and [DTR→WT] mixed BM chimeras (27, 29). When transferred into untreated WT mice, Gr1<sup>high</sup> BM monocytes essentially failed to give rise to lpMP, as indicated by the absence of CD11<sup>c<sub>−</sub></sup> CD145<sup>1<sub>+</sub></sup> cells (Fig. 6 A). DTx-induced lpMP depletion in the [DTR→WT] recipients, however, promoted the efficient seeding of this peripheral tissue with graft-derived (CD45.1<sup>+</sup>) CX<sub>3</sub>CR<sub>1</sub>/GFP<sup>+</sup> lpDCs and CX<sub>3</sub>CR<sub>1</sub>/GFP<sup>−</sup> lpMPs (Fig. 6 A). lpMPs were also observed after the adoptive transfer of MDPs (Fig. 6 A). To address the potential role of inflammatory signals associated with our conditional ablation strategy in graft recruitment and differentiation, we repeated the experiment using a novel strain of mice that constitutively lacks CD11<sup>c<sub>−</sub></sup> lpMPs and was recently developed in our laboratory (to be described elsewhere). Flow cytometry and histological analysis of these recipient mice showed efficient engraftment of their lp with CD45.1<sup>+</sup> CX<sub>3</sub>CR<sub>1</sub>/GFP<sup>+</sup> lpDCs and CX<sub>3</sub>CR<sub>1</sub>/GFP<sup>−</sup> lpMPs (Fig. 6, A and B), arguing in favor of the homeostatic nature of this MP differentiation route. However, further experimentation will be needed to assess the contribution of the MΦ/DC depletion to the process. Notably, recruitment could also be mediated by constitutively expressed inflammatory signals present at the mucosal tissues. Further clarification of this issue will require the definition of the molecular parameters that guide the transferred cells to the lp. To extend our analysis to another nonlymphoid organ, we studied the lung parenchyma of CD11c-DTR transgenic recipient mice that were depleted of lung DCs by intra-tracheal DTx instillation (26). Grafted Gr1<sup>high</sup> BM monocytes gave efficient rise to lung DCs, which can be defined by coexpression of the CD11<sub>c</sub> and CD11<sub>b</sub> integrins, as well as of CX<sub>3</sub>CR<sub>1</sub> (32, 33, 56; Fig. 6 C).

Collectively, adoptively transferred monocytes fail to give rise to CD11<sup>c<sub>high</sub></sup> DCs in the spleen but efficiently do so in the intestinal lp and lung. These results suggest a differential contribution of monocytes and MDPs to the lymphoid and nonlymphoid DC compartment.

**DISCUSSION**

Here, we report three novel findings on the origin, interrelation, and fate of murine MPs. First, we establish that a recently reported MDP (10) differentiates in vivo into BM and blood monocytes. Second, we show that in the absence of

---

**Figure 6.** Monocytes are precursors of MPs in the intestine and lung. (A) Flow cytometry analysis of small intestinal lp cells isolated from a CX<sub>3</sub>CR1<sup>+/−</sup> donor mouse, as well as of WT, MP-depleted, and MP-deficient recipients of CX<sub>3</sub>CR1<sup>+/−</sup> Gr1<sup>+/−</sup> BM monocytes and MDPs (7 d after i.v. transfer of 8 × 10<sup>5</sup> CD11<sub>5</sub><sup>−</sup> CD11b<sup>−</sup> Gr1<sup>−</sup> monocytes [purity: 88%] or 8 × 10<sup>5</sup> CD11<sub>7</sub><sup>−</sup> CD11b<sup>−</sup> Gr1<sup>−</sup> MDPs [purity: 80%]). Note the presence of graft-derived (CD45.1<sup>−</sup>) CD11<sub>c</sub><sup>−</sup> CX<sub>3</sub>CR1/GFP<sup>+</sup> lpDCs and CD11<sub>ch</sub> CX<sub>3</sub>CR1/GFP<sup>−</sup> lpMPs in donors and MP-depleted and MP-deficient recipients of precursor grafts. The data are representative of three independent experiments. (B) Fluorescence microscopy analysis of small intestinal villi of mice constitutively lacking lpDCs and lpMPs with or without adoptive transfer of CX<sub>3</sub>CR1<sup>+/−</sup> BM monocytes (10<sup>6</sup> CD11<sub>5</sub><sup>−</sup> CD11b<sup>−</sup> Gr1<sup>−</sup> cells; purity: 85%). Note the presence of graft-derived CX<sub>3</sub>CR1/GFP<sup>−</sup> lpDCs in the live tissue of a BM monocyte recipient. Bar, 100 μm. The data are representative of three independent experiments. (C) Flow cytometry analysis of parenchymal lung cells isolated from CX<sub>3</sub>CR1<sup>+/−</sup> donor mouse, an MP-depleted mouse, and MP-depleted recipients of CX<sub>3</sub>CR1<sup>+/−</sup> Gr1<sup>+/−</sup> BM monocytes (7 d after i.v. transfer of 7.5 × 10<sup>5</sup> CD11<sub>5</sub><sup>−</sup> CD11b<sup>−</sup> Gr1<sup>−</sup> CD11b<sup>+</sup> cells; purity: 85%). Note the presence of graft-derived (CD45.1<sup>−</sup>) CD11<sub>c</sub><sup>−</sup> CD11b<sup>−</sup> CX<sub>3</sub>CR1/GFP<sup>−</sup> lung DCs in the graft recipient. The data are representative of two independent experiments.
inflammation, the previously reported Gr1<sup>high</sup> inflammatory monocyte subset (15) homes back to the BM, recycles, and takes further part in MP differentiation. Third, and most importantly, our data together with other recent studies (10, 34–36) establish that the spleen relies on a distinct nonmonocytic DC precursor input. In contrast, nonlymphoid tissues including the intestinal lp, lung, and epidermis—possibly most peripheral tissues—are seeded by monocytes for renewal of DCs. At least in some cases, however, the role of monocytes in reseeding tissue DCs is subordinate to local self-renewal (7).

Maintenance of most peripheral MPs is believed to require continuous replenishment from the BM. This includes the short-lived DC compartment (37), but also MΦs. However, the latter (38–40) and, more recently, splenic DCs (34, 41) were also reported to be capable of limited self-renewal. The link between the BM and peripheral MΦs or DCs is thought to be provided by circulating blood monocytes (Fig. S1, available at http://www.jem.org/cgi/content/full/jem.20061011/DC1). Despite this critical position in the MP differentiation pathway, the in vivo biology of this ephemeral MP intermediate (13, 15, 16, 35, 42, 43) remains poorly understood. Based on the expression of the chemokine receptors CX<sub>3</sub>CRI and CCR2, human and murine peripheral blood monocytes can be subdivided into two major populations (11). Furthermore, studies in the mouse suggested that these subsets are functionally distinguishable in that inflammatory CX<sub>3</sub>CRI<sup>low</sup> CCR2<sup>+</sup> Gr1 (Ly6C/G)<sup>low</sup> monocytes are preferentially recruited to sites of tissue damage, whereas CX<sub>3</sub>CRI<sup>high</sup> Gr1 (Ly6C/G)<sup>low</sup> cells extravasate spontaneously to resting tissues (15). Beyond this dichotomy, “monocytes” are likely to include additional minor subpopulations, as suggested by the recent identification of the Ly6C<sup>mid</sup> CCR7<sup>+</sup> CCR8<sup>+</sup> subset (16, 20), as well as subsets with novel proangiogenic activities (44, 45).

Monocytes are known to originate in the BM from a granulocyte-monoeloid precursor (9). More recently, we identified a BM-resident clonotypic MP progenitor that, as opposed to a granulocyte-monoeloid precursor, lost the potential to differentiate into granulocytes. Instead, when cultured under the appropriate in vitro conditions or transferred into recipient mice, the CX<sub>3</sub>CRI<sup>+</sup> CD117<sup>+</sup> Lin<sup>-</sup> cells expanded and gave rise exclusively to MΦs and DCs. They were hence named MDPs for MΦ/DC precursors (10). We now investigated the potential of MDPs to differentiate within their native BM microenvironment. Using IBC transfer, we showed that the CD11b<sup>−</sup> Gr1 (Ly6C/G)<sup>−</sup> MDPs differentiate into CD11b<sup>+</sup> Gr1 (Ly6C/G)<sup>high</sup> and CD11b<sup>+</sup> Gr1 (Ly6C/G)<sup>low</sup> BM monocytes, which have been previously reported and are potentially able to differentiate into MΦs (46, 47). The IBC transfer also allowed the detection of graft-derived peripheral blood monocytes. These data, together with the results obtained from subsequent IBC transfers of the Gr1<sup>high</sup> BM monocyte intermediate, document a sequence of myeloid differentiation from a BM-resident precursor via BM-resident intermediates to circulating blood monocytes (Fig. S1).

In most current schemes of myeloid differentiation, the blood monocyte appears as a “one-way intermediate” from the BM to the periphery (11). A most intriguing finding of our studies is, however, that blood monocytes efficiently home back to the BM (Fig. S1). Thus, after IBC transfer of MDPs, we unexpectedly retrieved graft-derived cells from the noninjected contra-lateral bone. Using IBC and i.v. engraftment of Gr1<sup>high</sup> BM monocytes, we directly showed that this cell population is responsible for the inter-BM translocation. The i.v. transfer of blood monocytes further revealed that the BM homing potential is inherent to all Gr1<sup>high</sup> monocytes. We previously reported that Gr1<sup>high</sup> blood monocytes are dedicated to migrate to sites of inflammation but in the absence of the latter disappeared from the circulation of recipient mice (15). Our present results strongly suggest that the grafted Gr1<sup>high</sup> inflammatory monocytes in these studies had shuttled back to the BM. Furthermore, they might also provide an explanation for the reported loss of grafted monocytes in other studies (16). Importantly, Gr1<sup>high</sup> BM and blood monocytes that returned to the BM converted into Gr1<sup>low</sup> monocytes and contributed further to MP generation (see below). Peripheral blood monocyte shuttling to the BM likely plays a role in antigen acquisition (43). Furthermore, it will have to be taken in consideration when interpreting the results of parabiosis experiments. Murine blood monocytes ingest *Listeria monocytogenes* upon in vivo challenge and critically contribute to dissemination of the bacteria to the brain (48). Moreover, circulating phagocytes have been implied in the systemic spreading of *Salmonella typhimurium* after oral challenge (49). Blood monocyte shuttling to the BM could be exploited by pathogens to reach this immuno-privileged compartment and establish persistent infection or latency.

Sunderkotter et al. (16) reported that Ly6C<sup>high</sup> blood monocytes differentiate into Ly6C<sup>low</sup> monocytes. Together with the identification of a Ly6C<sup>mid</sup> CCR7<sup>+</sup> CCR8<sup>+</sup> monocyte subset in the blood, this led to the suggestion that monocyte conversion occurs within the circulation (16, 20). Our Gr1 (Ly6C/G)<sup>high</sup> BM and blood monocyte transfer studies provide further direct evidence that this monocyte subset acts as an efficient precursor pool of Gr1<sup>low</sup> BM and blood monocytes. However, given the kinetics of the BM monocyte subset appearance after IBC transfer and the efficient BM homing of the i.v injected Gr1<sup>high</sup> monocytes, our results suggest that the BM is a major site of monocyte conversion. This could also explain the reported transient loss of fluorochrome-labeled Ly6C<sup>high</sup> blood monocytes and their reappearance as Ly6C<sup>low</sup> cells (16).

We recently noted that adoptively transferred monocytes fail to differentiate into splenic DCs (10). We have now substantiated this observation by using the conditional depletion of splenic host DCs, thereby boosting replenishment of the DC compartment by grafted cells. Strikingly, adoptively transferred monocytes efficiently seeded the recipient spleen with CD11c<sup>int</sup> progenies but did not give rise to splenic CD11c<sup>high</sup> DCs. In contrast, in the same MP-depleted mice, the grafted Gr1<sup>high</sup> monocytes efficiently reconstituted the small
intestinal lp with lpDCs and lpMΦs (27). Furthermore, grafted Gr1<sup>high</sup> monocytes also gave rise to DCs in another nonlymphoid tissue, the lung. Importantly, the conversion of Gr1<sup>high</sup> monocytes into Gr1<sup>low</sup> cells precludes drawing the conclusion that the Gr1<sup>high</sup> monocyte subset is the direct precursor of the intestinal and lung DCs in the present study. Notably, Yrlid et al. (17) recently reported that in the rat, the CCR2<sup>high</sup> monocyte subset has the potential to differentiate into intestinal lymph DCs (17), and we observed the generation of lung DCs from adoptively transferred fractionated Gr1<sup>low</sup> blood monocytes (unpublished data).

Recent studies indicate that steady-state DC maintenance in lymphoid organs might be independent of monocyte input, and that spleen DCs have the potential for self-renewal or rely on local precursors (34, 41). The i.v. and intra-splenic transfer of MDPs shows that BM MDPs can give rise to splenic CD11<sup>c</sup><sup>high</sup> DCs, including both CD11b<sup>+</sup> and CD11b<sup>−</sup> cells. These findings suggest that spleen-resident precursors might give rise to steady-state DCs in the spleen without a monocytes intermediate. Interestingly, such a cell with DC differentiation potential has recently been reported by Naik et al. (36), and it will be important to establish the link of these so-called “pre-DCs” to the MDP.

The heterogeneity of the body-wide MΦ/DC network and the emerging differential in vivo functions of distinct MΦ/DC subsets (24, 50) suggest that manipulation of the MP system might be of therapeutic value. Rather than transferring terminally differentiated MPs, which cannot faithfully be generated in vitro and are unlikely to reach the desired physiological microenvironment, MP system manipulation could rely on precursor differentiation in their physiological context. Such strategies will, however, require an in-depth understanding of the underlying MP differentiation pathways. In our study, we have established two sequences of in vivo MP differentiation using recipient mice in which we conditionally ablated defined MPs in lymphoid and nonlymphoid organs. We show that adoptively transferred MDPs (10) can reconstitute DCs in the spleen and intestinal lp, whereas engraftment with monocytes allows efficient seeding of nonlymphoid tissues with MΦs and DCs. Importantly, grafted Gr1 (Ly6C/G)<sup>high</sup> monocytes efficiently home to the BM and enter physiological differentiation pathways. Combined with the recent progress in our understanding of the molecular checkpoints of MP precursor differentiation (51–54), genetically modified precursor grafts might allow the development of strategies for the manipulation of the peripheral MP pool.

**MATERIALS AND METHODS**

**Animals.** This study involved the use of WT, heterozygote mutant CX<sub>3</sub>CR1<sup>178/178</sup> (18), and CD11c<sup>-</sup>−DTR transgenic mice (B6.FVB-Tg [IggaxDTR/GFP<sup>57Lan/j]; reference 24], all of which were backcrossed against a C57BL/6 background. Whole body imaging was performed on CD1<sup>+</sup> nude recipients. Recipient mice that constitutively lack CD11c<sup>high</sup> MPs were described elsewhere. Mixed [DTR→WT] BM chimeras for conditional MP ablation were generated as reported previously (29). In brief, C57BL/6 WT mice were exposed to a single lethal dose of 950 rad total body irradiation, followed by i.v. transfer of 5 × 10<sup>6</sup> CD11c<sup>-</sup>−DTR transgenic BM cells. The mice were allowed to rest for 8 wk before use. For systemic MP depletion, DTR transgenic BM chimeras were inoculated intraperitoneally every other day with DTx (D-2918; Sigma-Aldrich) at 8 ng/g body weight (29). For pulmonary MP depletion, we intratracheally installed 100 ng DTx (26 and unpublished data). Peritoneal sterile inflammation was induced by injection of thioglycollate (Difco). All mice were maintained under specific pathogen-free conditions and handled according to protocols approved by the Weizmann Institute Animal Care Committee as per international guidelines.

**Isolation of MDP and BM monocyte precursor grafts.** BM cells were harvested from the femora and tibiae of CX<sub>3</sub>CR1<sup>178/178</sup>−−CD45.1 mice and enriched for mononuclear cells on a Ficoll density gradient. The cells were then immunostained with anti–CD117-PE, anti–CD11b-PECy7/PerCP, and anti–Gr1-APC fluorochrome-conjugated antibodies. MDP cells were identified as CX<sub>3</sub>CR1 (GFP), CD117 (cKit) positive cells negative for CD11b and Gr1 markers. These cells were purified by high speed sorting using a FACS Arria (Becton Dickinson) and injected i.v. into congenic CD45.2 WT mice or DTx-treated mixed [DTR→WT] BM chimeras. Gr1<sup>high</sup> BM monocytes were isolated by high speed sorting of the Gr1<sup>high</sup>CD11b<sup>−</sup>CD115<sup>+</sup> BM cell fraction. For IVIS and intravital microscopy experiments, the monocyte graft was isolated through MACS enrichment using biotinylated anti-CD115 antibodies and streptavidin-coupled magnetic beads (Miltenyi Biotec).

**Adoptive transfer procedure.** If not indicated otherwise, 0.2 ml PBS containing the respective cell populations was injected into the tail vein. For spleen and IBC transfer, mice were anesthetized with a mixture containing 15% xylazin (20 mg/ml; Vitamed) and 85% ketaset (100 mg/ml; Fort Dodge Animal Health). Cells were injected directly into the spleen (20 μl vol) or into the BM cavity (~5 μl vol) using a U-100 insulin syringe (with a 30-G needle; Becton Dickinson). For IBC transfer, the knee side of the femur was pierced in advance with a 27-G 1/2 needle.

**Analysis of recipient mice and flow cytometry.** lp cells were isolated as described previously (27). Fluorochrome-labeled monoclonal antibodies were purchased from BD Biosciences or eBioscience and used according to the manufacturer’s instructions. Cells were analyzed with a FACS Calibur cytometer (Becton Dickinson) using CELLQuest software (Becton Dickinson).

**Whole body and fluorescent imaging.** Isolated mice were labeled ex vivo with the near infrared lipopolysaccharide dye 1,1′-dioctadecyl-3,3′,3′,3′-tetramethylindotricarbocyanine iodide (DiR; Invitrogen) for 1 h (21). Labeled cells were injected i.v. into CD1<sup>+</sup> nude mice. DiR-labeled monocyte localization within the intact animal, as well as isolated within organs, was assessed using the IVIS 100 Series Imaging System (Xenogen). The excitation (Ex) and emission (Em) filter sets were 710–760 and 810–760 nm, respectively. For intravital microscopy imaging, monocytes were labeled with the intracellular fluorescent dye, CFSE (Invitrogen). Monocytes in the cranial were visualized using a Zoom Stereo Microscope SZX-RL-2 (Olympus) equipped with a fluorescence illuminator and a CCD camera PixelleyQE (PCO). The Ex and Em filter for fluorescence in the near-infrared spectrum were: Ex 460–490/ Em 510–550 nm (green channel) and Ex 520–550 nm/Em 580–630 nm (red channel). The Ex 710–750/Em 780–830 nm filter set was used for fluorescence in the near-infrared spectrum. Images were acquired using camera-controlling software (Canware; PCO) with Imagel 1.330 software.

**Online supplemental material.** Fig. S1 shows a scheme summarizing our current understanding of the origins and context-dependent fate of murine monocyte subsets. It is available at http://www.jem.org/cgi/content/full/jem.20061011/DC1.

We thank Drs. R. Alon, Y. Pewzner-Jung, and A. Mahler for critical reading of the manuscript; R. Krauthgamer, E. Ariel, and A. Sharp for help with flow cytometry; and Y. Chermesh and O. Amram for animal husbandry.
REFERENCES
1. Metchnikoff, E. 1887. Ueber den Kampf der Zellen gegen Erythrophilen, ein Beitrag zur Phagocytolithese. Arch. Pathol. Anat. (Vichrov's Archive) 107:209–249.
2. Steinman, R.M., and Z.A. Cohn. 1973. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 137:1142–1162.
3. Taylor, P.R., L. Martinez-Pomares, M. Stacey, H.H. Lin, G.D. Brown, and A. Cumano. 2002. The hare and the tortoise: an embryonic haematopoietic race. Nature 414:1142–1143.
4. Godin, I., and A. Cumano. 2002. The role of CC chemokine receptor 2 in alveolar monocyte and lymph dendritic cell precursors that are distinct from monocytes. J. Exp. Med. 194:1361–1373.
5. Hickey, W.F., K. Vass, and H. Lassmann. 1992. Bone marrow-derived neutrophil immigration in intact mice. J. Exp. Med. 172:4410–4417.
6. Palframan, R.T., S. Jung, G. Cheng, W. Weninger, Y. Luo, M. Dorf, and S. Gordon. 2005. Macrophage receptors and immune recognition. Annu. Rev. Immunol. 23:901–944.
7. Berry, J.A., H.L. Berzofsky, J.S. Duff, J. Lohmeyer, M. Glauche, M. Bogunovic, P. Aucouturier, D.R. Littman, B.J. Rollins, H. Zweerink, A. Rot, and U.H. von Andrian. 2001. Intrinsic lymphotoxin-beta receptor requirement for homing of monocyte-derived dendritic cells to lymph nodes. J. Exp. Med. 194:1361–1373.
8. Kalcherko, V., S. Shivtiel, V. Malina, K. Lapid, S. Haramati, A. Brill, T. Lapidot, and A. Harnach. 2006. Use of liposomal near infrared dye in whole body optical imaging of hematopoietic cell homing. J. Biomed. Opt. 11:050507.
9. de Bruin, M.F., W.A. Sieker, J.C. van der Lee, J.S. Voerman, W. van Ewijk, and P.J. Leenen. 1994. Distinct mouse bone marrow macrophage precursors identified by differential expression of ER-MP12 and ER-MP20 antigens. Eur. J. Immunol. 24:2279–2284.
10. Qu, C., E.W. Edwards, F. Tacke, V. Angeli, J. Llodra, G. Sanchez-Schmitz, A. Garin, N.S. Haque, W. Peters, N. van Rooijen, et al. 2004. Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes. J. Exp. Med. 200:1231–1241.
11. Collazo, N., D. Venn, P. Sheedy, W. Peters, N. van Rooijen, et al. 2004. Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes. J. Exp. Med. 200:1231–1241.
12. Fogg, D.K., C. Sibon, C. Miled, S. Jung, P. Aucouturier, D.R. Littman, B.A. McCormick, X. Gu, L. Landsman, S. Jung, B.N. Lambrecht. 2005. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17:211–220.
13. Probst, H.C., K. Tschanne, B. Odermatt, R. Schwendener, R.M. Zinkernagel, and M. Van Den Broek. 2005. Histological analysis of CD11c-DTR/GFP mice after in vivo depletion of dendritic cells. Clin. Exp. Immunol. 141:398–404.
14. van Ruit, L.S., S. Jung, A. Kleinjan, N. Vos, M. Willart, C. Duez, H.C. Hoogsteden, and B.N. Lambrecht. 2005. In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J. Exp. Med. 201:981–991.
15. Vallon-Eberhard, A., L. Landsman, N. Yogev, B. Verrier, and S. Jung. 2006. Transepithelial pathogen uptake into the small intestinal lamina propria. J. Immunol. 176:2465–2469.
16. Bennett, C.L., E. van Rijn, S. Jung, K. Inaba, R.M. Steinman, M.L. Riemens, and B.E. Clausen. 2005. Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J. Cell Biol. 169:569–576.
17. Zaft, T., A. Sapoznikov, R. Krauthgamer, D.R. Littman, and S. Jung. 2005. CD11c(high) dendritic cell ablation impairs lymphopenia-driven proliferation of naive and memory CD8+ T cells. J. Immunol. 175:6428–6435.
18. Zou, H., J.R. Butcher, R. O'Garra, and A. O'Garra. 2003. Chemokine activity acting via CXCChemR2 and CXCChemR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 19:583–593.
19. Henderson, R.B., J.A. Hobbs, M. Mathies, and N. Hogg. 2003. Rapid recruitment of inflammatory monocytes is independent of neutrophil migration. Blood 102:328–335.
20. van Rijn, S., J. Jung, A. Kleinjan, N. Vos, M. Willart, C. Hoogsteden, and B.N. Lambrecht. 2005. In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J. Exp. Med. 201:981–991.
21. Kalcherko, V., S. Shivtiel, V. Malina, K. Lapid, S. Haramati, A. Brill, T. Lapidot, and A. Harnach. 2006. Use of liposomal near infrared dye in whole body optical imaging of hematopoietic cell homing. J. Biomed. Opt. 11:050507.
37. Kamath, A.T., J. Pooley, M.A. O’Keeffe, D. Vremec, Y. Zhan, A.M. Lew, A. D’Amico, L. Wu, D.F. Tough, and K. Shortman. 2000. The development, maturation, and turnover rate of mouse spleen dendritic cell populations. J. Immunol. 165:6762–6770.
38. Tarling, J.D., H.S. Lin, and S. Hsu. 1987. Self-renewal of pulmonary alveolar macrophages: evidence from radiation chimera studies. J. Leukoc. Biol. 42:443–446.
39. van Furth, R., and M.M. Diesselhoff-den Dulk. 1984. Dual origin of mouse spleen macrophages. J. Exp. Med. 160:1273–1283.
40. Mebius, R.E., G. Martens, J. Breve, F.G. Delemarre, and G. Kraal. 1991. Is early repopulation of macrophage-depleted lymph node independent of blood monocyte immigration? Eur. J. Immunol. 21:3041–3044.
41. Zhang, M., H. Tang, Z. Guo, H. An, X. Zhu, W. Song, J. Guo, X. Huang, T. Chen, J. Wang, and X. Cao. 2004. Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat. Immunol. 5:1124–1133.
42. Randolph, G.J., K. Inaba, D.F. Robbani, R.M. Steinman, and W.A. Muller. 1999. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity. 11:753–761.
43. Tacke, F., F. Ginhoux, C. Jakubzick, N. van Rooijen, M. Merad, and G.J. Randolph. 2006. Immature monocytes acquire antigens from other cells in the bone marrow and present them to T cells after maturing in the periphery. J. Exp. Med. 203:583–597.
44. De Palma, M., M.A. Venneri, R. Galli, L.S. Sergi, L.S. Politi, M. Sampaioes, and L. Naldini. 2005. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell. 8:211–226.
45. Grunewald, M., I. Avraham, Y. Dor, E. Bachar-Lustig, A. Itin, S. Yung, S. Chimeni, L. Landsman, R. Abramovitch, and E. Kesht. 2006. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell. 124:175–189.
46. Nikolic, T., M.F. de Brujin, M.B. Lutz, and P.J. Leenen. 2003. Developmental stages of myeloid dendritic cells in mouse bone marrow. Int. Immunol. 15:515–524.
47. Leon, B., G. Martinez del Hoyo, V. Parrillas, H.H. Vargas, P. Sanchez-Mateos, N. Longo, M. Lopez-Bravo, and C. Ardavin. 2004. Dendritic cell differentiation potential of mouse monocytes: monocytes represent immediate precursors of CD8− and CD8+ splenic dendritic cells. Blood. 103:2668–2676.
48. Drevets, D.A., M.J. Dillon, J.S. Schawang, N. Van Rooijen, J. Ehren, C. Sunderkotter, and P.J. Leenen. 2004. The Ly-6Chigh monocyte subpopulation transports Listeria monocytes into the brain during systemic infection of mice. J. Immunol. 172:4418–4424.
49. Vazquez-Torres, A., J. Jones-Carson, A.J. Baumler, S. Falkow, R. Valdivia, W. Brown, M. Le, R. Berggren, W.T. Parks, and F.C. Fang. 1999. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature. 401:804–808.
50. Cailhier, J.F., M. Partolina, S. Vuthoori, S. Wu, K. Ko, S. Watson, J. Savill, J. Hughes, and R.A. Lang. 2005. Conditional macrophage ablation demonstrates that resident macrophages initiate acute peritoneal inflammation. J. Immunol. 174:2336–2342.
51. Bakri, Y., S. Sarrazin, U.P. Mayer, S. Tillmanns, C. Nerlov, A. Boned, and M.H. Sieweke. 2005. Balance of MaFb and PU.1 specifies alternative macrophage or dendritic cell fate. Blood. 105:2707–2716.
52. Aliberti, J., O. Schulz, D.J. Pennington, H. Tsuchimura, C. Reis e Sousa, K. Ozato, and A. Sher. 2003. Essential role for ICSBP in the in vivo development of murine CD11c+ dendritic cells. Blood. 101:305–310.
53. Ichikawa, E., S. Hida, Y. Omatu, S. Shimoyama, K. Takahara, S. Miyagawa, K. Inaba, and S. Taki. 2004. Defective development of splenic and epidermal CD4+ dendritic cells in mice deficient for IFN regulatory factor-2. Proc. Natl. Acad. Sci. USA. 101:3909–3914.
54. Lu, R., and P.M. Pitha. 2001. Monocyte differentiation to macrophage requires interferon regulatory factor 7. J. Biol. Chem. 276:45491–45496.
55. Colvin, G.A., J.F. Lambert, M. Abedi, C.C. Hsieh, J.E. Carlson, F.M. Stewart, and P.J. Quensenberry. 2004. Murine marrow cellularity and the concept of stem cell competition: geographic and quantitative determinants in stem cell biology. Leukemia. 18:575–583.
56. Landsman, L., C. Varol, and S. Jung. 2007. Distinct differentiation potential of blood monocyte subsets in the lung. J. Immunol. In press.