ON A GENERALIZATION OF DEURING’S RESULTS

KEN-ICHI SUGIYAMA

Department of Mathematics and Informatics, Faculty of Science, Chiba University, 1-33 Yayoi-cho Inage-ku, Chiba 263-8522, Japan
e-mail address : sugiyama@math.s.chiba-u.ac.jp

Abstract. Using the Dieudonné theory we will study a reduction of an abelian variety with complex multiplication at a prime. Our results may be regarded as generalization of the classical theorem due to Deuring for CM-elliptic curves. We will also discuss a sufficient condition for a prime at which the reduction of a CM-curve is maximal.

Key words: complex multiplication, a maximal curve over a finite field.
AMS classification 2010: 11G10, 11G15, 11G20, 11G30, 14F30, 14F40, 14G50, 14H40.

1. Introduction

Let E be an elliptic curve over the field of rational numbers \mathbb{Q} with complex multiplication (which will be abbreviated by CM) by the integer ring of an imaginary quadratic field K that has a non-singular reduction E_p at a prime p. The classical Deuring’s theorem states that it is ordinary or supersingular according to whether p completely splits or remains prime in K, respectively. It is known that E_p is ordinary (resp. supersingular) if and only if the p-divisible group $E_p[p^\infty]$ is \mathbb{L} (resp. $G_{1,1}$) (see §2 for details). Suppose that E_p is supersingular. If p is greater than 3 the characteristic polynomial of the p-th power Frobenius on an l-adic Tate module $(l \neq p)$ is $t^2 + p$ and the number of \mathbb{F}_{p^2}-rational points attains the Hasse-Weil upper bound:

$$|E_p(\mathbb{F}_{p^2})| = 1 + p^2 + 2p,$$

where $|\cdot|$ stands for cardinality. In this report we will generalize these results to a proper smooth curve over \mathbb{Q} of a higher genus with CM.

Let us first explain terminologies used in the paper. Let X be an object defined over a field F. The base change over an extension F' of F is denoted by $X \otimes_F F'$. If $F' = \overline{F}$, the algebraic closure, it is simply described by \overline{X}. Let V be a proper smooth variety defined over $\mathbb{F}_q (q = p^f)$. Then $\Phi_{V,q}(t)$ stands for the characteristic polynomial of the q-th power Frobenius on $H^1_{et}(\overline{V}, \mathbb{Q}_l)$ ($l \neq p$).

Let k be a field of characteristic p. An abelian variety A of dimension g over k will be called supersingular (resp. superspecial) if \overline{A} is isogeneous (resp. isomorphic) to a
product of supersingular elliptic curves and ordinary if the group of p-torsion points $[\bar{A}]$ is isomorphic to $\left(\mathbb{Z}/p\mathbb{Z}\right)^9$. We mention that A has CM (or sometimes CM by \mathcal{O}_K) if there is a finite extension k' of k such that the endomorphism ring of $A \otimes_k k'$ contains the integer ring \mathcal{O}_K of a CM-field K satisfying $[K : \mathbb{Q}] = 2g$. Let K_0 be the maximal totally real subfield and $[K_0 : \mathbb{Q}] = g$. We assume that p is unramified in K and let

$$(1) \quad p = \mathfrak{P}_1 \cdots \mathfrak{P}_t$$

be the prime factorization in K_0.

Theorem 1.1. Let A be an abelian variety of dimension g defined over a finite field k of characteristic p endowed with CM by \mathcal{O}_K. Suppose that every \mathfrak{P}_i of (1) remains prime in K. Then A is supersingular. If moreover $t = g$ (i.e. p completely splits in K_0) it is superspecial.

If $p \geq 5$ this determines the characteristic polynomial of A. In fact suppose that the assumptions of **Theorem 1.1** are satisfied. Then there is a positive integer m so that $A \otimes_k \mathbb{F}_{p^m}$ is isogeneous to a product of supersingular elliptic curves $\{E_i\}_{1 \leq i \leq g}$ defined over \mathbb{F}_{p^m} and $\Phi_{A,p^m}(t) = \prod_{i=1}^g \Phi_{E_i,p^m}(t)$. Since $p \geq 5$, $\Phi_{E_i,p^m}(t)$ is one of the following (20)

$$(t^2 + p^m), \quad t^2 \pm p^m t + p^m, \quad t^2 \pm 2p^m t + p^m,$$

where the last two occur when m is even.

Theorem 1.2. Let A be an abelian variety of dimension g defined over a finite field k of characteristic p endowed with CM by \mathcal{O}_K. Suppose that p completely splits in K then A is ordinary.

Theorem 1.3. Let A be an abelian variety over \mathbb{F}_p of dimension g with CM by \mathcal{O}_K and we assume that the following conditions are satisfied:

1. p completely splits in the maximal totally real subfield K_0:

$$p = \mathfrak{P}_1 \cdots \mathfrak{P}_g,$$

and that each prime \mathfrak{P}_i remains prime in K.

2. The action of \mathcal{O}_{K_0} is defined over \mathbb{F}_p.

Then A is a product of supersingular elliptic curve $\{E_i\}_{1 \leq i \leq g}$,

$$A = E_1 \times \cdots \times E_g,$$

over \mathbb{F}_p. If moreover p is greater than 3 we have $\Phi_{A,p}(t) = (t^2 + p)^g$.

A projective smooth curve C of genus g defined over a number field F is called a CM-curve if the endomorphism ring of the Jacobian variety $\text{Jac}(C)$ contains \mathcal{O}_K, where K is a CM-field satisfying $[K : \mathbb{Q}] = 2g$. We call a finite prime v of F is good if the reduction C_v is nonsingular. A good prime v is mentioned ordinary (resp. supersingular, superspecial) if so is $\text{Jac}(C_v)$. **Theorem 1.1, Theorem 1.2, Theorem 1.3** and the Hasse-Weil’s formula yield the following consequence, which generalizes the Deuring’s results.
Theorem 1.4. Let C be a proper smooth curve of genus g over \mathbb{Q} with CM by \mathcal{O}_K and p a good prime.

1. If p completely splits in K, C_p is ordinary.
2. Let $p = \mathfrak{P}_1 \cdots \mathfrak{P}_t$ be the prime factorization in K_0. If every \mathfrak{P}_i remains prime in K, C_p is supersingular. If moreover $t = g$ (i.e. p completely splits in K_0) it is superspecial.
3. Suppose that $t = g$ in (2) and that either the following (a) or (b) is satisfied.
 - (a) The action of \mathcal{O}_K on $\text{Jac}(C)$ is defined over K_0.
 - (b) The action of \mathcal{O}_K on $\text{Jac}(C)$ is defined over K.

 Then $\text{Jac}(C_p)$ is a product of supersingular elliptic curves over \mathbb{F}_p. If moreover $p \geq 5$, the number of \mathbb{F}_p-points attains the Hasse-Weil upper bound:
 $$|C(\mathbb{F}_p^2)| = 1 + p^2 + 2 gp.$$

The following corollaries are special cases of this theorem. Let C be the curve in Theorem 1.4.

Corollary 1.1. Suppose that K is a cyclotomic field $\mathbb{Q}(\zeta_N)$ where ζ_N is a primitive N-th root of unity that satisfies $\phi(N) = 2g$, where ϕ is the Euler function.

1. If $p \equiv 1(N)$, C_p is ordinary.
2. Suppose that there is a positive integer h with $p^h \equiv -1(N)$. Then C_p is supersingular.
3. If $p \equiv -1(N)$, $\text{Jac}(C_p)$ is a product of supersingular elliptic curves over \mathbb{F}_p. If moreover $p \geq 5$,
 $$|C(\mathbb{F}_p^2)| = 1 + p^2 + 2 gp.$$

Corollary 1.2. Suppose that $K = \mathbb{Q}(\zeta_M + \zeta_M^{-1}, \zeta_d)$, where M is a positive integer satisfying $\phi(M) = 2g$ and $d = 3$ or 4.

1. Assume that $p \equiv 1(d)$ and that $p \equiv \pm 1(M)$. Then C_p is ordinary.
2. If $p \equiv -1(d)$, C_p is supersingular.
3. Suppose that $p \equiv -1(d)$ and that $p \equiv \pm 1(M)$. Then $\text{Jac}(C_p)$ is a product of supersingular elliptic curves over \mathbb{F}_p and if moreover $p \geq 5$,
 $$|C(\mathbb{F}_p^2)| = 1 + p^2 + 2 gp.$$

In the final section we will show several curves over \mathbb{F}_p whose the number of \mathbb{F}_p-points attains the Hasse-Weil’s upper bound. We hope that our theorems may offer a new construction of such a maximal curve, i.e. the number of \mathbb{F}_p-points attains the Hasse-Weil’s upper bound.

Let us briefly explain how the theorems will be proved. We will reduce a problem of an abelian variety to one of the p-divisible group. For simplicity suppose that p completely splits in K_0, $p = \mathfrak{P}_1 \cdots \mathfrak{P}_g$. Then completion $(\mathcal{O}_{K_0})_{\mathfrak{P}_i}$ is isomorphic to \mathbb{Z}_p and

$$\mathcal{O}_{K_0} \otimes_{\mathbb{Z}} \mathbb{Z}_p \simeq (\mathcal{O}_{K_0})_{\mathfrak{P}_1} \times \cdots \times (\mathcal{O}_{K_0})_{\mathfrak{P}_g}, \quad (\mathcal{O}_{K_0})_{\mathfrak{P}_i} \simeq \mathbb{Z}_p.$$
Since $\mathcal{A}[p^\infty]$ is naturally acted by $O_{K_0} \otimes \mathbb{Z}_p$ this yields a decomposition,

$$\mathcal{A}[p^\infty] = G_{\mathfrak{P}_1} \times \cdots \times G_{\mathfrak{P}_g},$$

by the Dieudonné theory and it will proved that the height of $G_{\mathfrak{P}_i}$ is two for all i. In order to determine them we will study the action of the Frobenius and the Verschiebung on the Dieudonné module of each factor. This will connect a type of $G_{\mathfrak{P}_i}$ and a decomposing pattern of \mathfrak{P}_i in K. In fact using the classification of p-divisible group we will show that $G_{\mathfrak{P}_i}$ is isomorphic to $G_{1,1}$ or $G_{1,0} \times G_{0,1}$ according to whether \mathfrak{P}_i remains prime or completely splits in K, respectively (Lemma 3.1 and Lemma 3.2). Now Theorem 1.1 and Theorem 1.2 will follow from the facts that relate the type of \mathcal{A} and the shape of $\mathcal{A}[p^\infty]$ (2, 14, 13, 17, 19, see Fact 2.2, Fact 2.3 and Fact 2.4 below). In order to prove Theorem 1.3 it is sufficient to show that the product in Theorem 1.1 is defined over \mathbb{F}_p. We will deduce it from the corresponding decomposition of the p-divisible group (Proposition 4.1) and Theorem 1.4 will be a consequence of preceding theorems. But a little care is needed to show (3) and here the assumption that C_p is a reduction of a curve over \mathbb{Q} is necessary. That is we have to check that the action of O_{K_0} on $\text{Jac}(C_p)$ is defined over \mathbb{F}_p. Since a simple observation shows that (b) implies (a), we may assume that (a) is satisfied. Let J be the Neron’s model of $\text{Jac}(C)$ over \mathbb{Z}_p, which is an abelian scheme. We claim the action of O_{K_0} is defined over \mathbb{Z}_p. By the Neron’s mapping property our claim is true if the action on the generic fiber $\text{Jac}(C) \otimes \mathbb{Q}_p$ is defined over \mathbb{Q}_p. This will be checked by the faithful representation of O_{K_0} on the cotangent space of $\text{Jac}(C) \otimes \mathbb{Q}_p$ at the origin, which is identified with $H^0(C, \Omega^1) \otimes \mathbb{Q}_p$. Now consider the special fiber and the rationality of the action will be obtained.

Let us mention precedent results that generalize Deuring’s results. Let A be an abelian surface with CM by the integer ring of a cyclic quartic CM-field K defined over a number field and A_v its reduction at a good prime v over p. Goren[5] has shown that if p completely splits in K_0, $p = \mathfrak{P}_1\mathfrak{P}_2$ and if each \mathfrak{P}_i remains prime in K, \mathcal{A}_p is a product of supersingular elliptic curves. This coincides with Theorem 1.1. But he has also proved that \mathcal{A}_p is simple and ordinary (resp. isogeneous but not isomorphic to a product of supersingular elliptic curves) if p completely splits (resp. remains prime) in K. Using the Kraft’s diagrams, Zaytsev[21] has completely determined p-torsion group of an abelian variety over a finite field k (Char $k = p$) with the dimension less than 4. Our Theorem 1.1 and Theorem 1.2 are contained in his results if the dimension of the abelian variety is less than 4.

Acknowledgement. The author appreciates Professor A. Zaytsev for his interest and useful remarks. He is also grateful for the generous referee who points out several mistakes and kindly suggests many improvements. This research is partially supported by JSPS grants Kiban(C)22540068.
2. A review of p-divisible groups.

In this section we summarize facts of p-divisible groups and the Dieudonné functor which will be used later. The references are [3], [6], [9], [11], [12] and [15]. Throughout the section k will be a field of characteristic p.

Definition 2.1. Let h be a nonnegative integer. A p-divisible group G of height $h(G) = h$ over k is an inductive system of finite group schemes $G_i \to \text{Spec} k$, $(i \geq 1)$, satisfying

1. the dimension of the coordinate ring $k[G_i]$ over k equals to p^{h-i},
2. p^i annihilates G_i,
3. there are inclusions $G_i \hookrightarrow G_{i+1}$ such that
 \[G_{i+1}[p^i] = G_i, \]

and we denote
\[G = \lim_{\to} G_i. \]

Remark 2.1. Let Γ be a finite group scheme over k. The order is defined to be the dimension of the coordinate ring $k[\Gamma]$ and is described by $|\Gamma|$.

In the definition,
\[X[f] = \text{Ker}[X \xrightarrow{f} X], \]
for an endomorphism f of a group scheme X and note that $G_{i+j}/G_i = G_j$. Let Z be a connected commutative formal smooth group scheme of finite type over k. Then $\{Z[p^i]\}_i$ is a p-divisible group and the *dimension* is defined to be one of Z. It is equal to the order of the kernel of the Frobenius on Z ([3] Chapter 3). Here are examples of p-divisible groups.

1. $\mathbb{G}_m[p^\infty] := \lim_{\to} \mathbb{G}_m[p^n]$, whose height and dimension are 1.
2. $\mathbb{Q}_p/\mathbb{Z}_p := \lim_{\to} \mathbb{Z}/p^n\mathbb{Z}$, is the étale p-divisible group of height one:
3. Let A be an abelian variety over k of dimension g. Then
 \[A[p^\infty] := \lim_{\to} A[p^n], \]
is a p-divisible group of height $2g$.

Let $G = \lim_{\to} G_i$ be a p-divisible group. Then so is the collection of the Cartier dual $G' := \lim_{\to} G'_{i}$ and called the *Serre dual*. For example $\mathbb{Q}_p/\mathbb{Z}_p$ and $\mathbb{G}_m[p^\infty]$ are Serre dual to each other. Taking the Serre dual induces an involution of the category of p-divisible groups.
From now on we assume that k is a perfect field of characteristic p. Let W be the Witt group scheme defined over k of ∞-length. It is isomorphic to a product of infinite affine lines as a scheme

$$\prod_{n \geq 0} \mathbb{A}^1 = \text{Spec}[x_0, x_1, \ldots],$$

and we denote a point x by $x = (x_0, x_1, \ldots)$. The Frobenius F and the Verschiebung V which are endomorphism of W are defined to be

$$F((x_0, x_1, \ldots)) = (x_0^p, x_1^p, \ldots), \quad V((x_0, x_1, \ldots)) = (0, x_0, x_1, \ldots),$$

and since $F V = V F = p$,

$$p((x_0, x_1, \ldots)) = (0, x_0^p, x_1^p, \ldots).$$

For positive integer n let W_n denote the additive group scheme of Witt vectors of length n. It is isomorphic to $W/V W$ and the collection of all $\{W_n\}$ forms a direct system by the natural inclusions.

Let $W(k)$ be the ring of Witt vectors whose coefficients are in k. The Frobenius induces the ring homomorphism and will be denoted by σ. Let $D(k)$ be a non-commutative algebra whose coefficient ring is $W(k)$, which is generated by semi-linear operators F and V with the relations

$$FV = VF = p, \quad F \lambda = \lambda^\sigma F, \quad \lambda V = V \lambda^\sigma, \quad \forall \lambda \in W(k).$$

Consider the torsion $W(k)$-module

$$T := W(k)[\frac{1}{p}]/W(k).$$

Then the functor

$$N \mapsto N^* := \text{Hom}_{W(k)}(N, T),$$

defines an anti-equivalence from the abelian category of finite length $W(k)$-modules to itself and

$$N \simeq (N^*)^*,$$

We define the actions of F and V on N^* is defined as

$$(Fl)(n) := \sigma(l(Vn)), \quad (Vl)(n) := \sigma^{-1}(l(Fn)), \quad l \in N^*, n \in N.$$ Let Γ be an affine unipotent group over k. The the Dieudonné module of Γ is defined to be

$$M(\Gamma) := \lim_{n \to \infty} \text{Hom}(\Gamma, W_n).$$

Here "Hom" is taken in the category of affine unipotent group schemes over k. It is a contra-variant functor from the category of the affine unipotent group over k to that of all $D(k)$-modules killed by a power of V and induces an anti-equivalence between them. Γ is algebraic (resp. finite) if and only if $M(\Gamma)$ is a finitely generated $D(k)$-module (resp. a $W(k)$-module of finite length). By restriction it induces an anti-equivalence between the category of finite unipotent étale (resp. infinitesimal) groups over k and that of $D(k)$-modules which are $W(k)$-module of finite length, killed by a power of V and on which
F is bijective (resp. killed by a power of F). Finally the Dieudonné module of a finite infinitesimal multiplicative group Γ is defined by
\[M(\Gamma) := M(\Gamma^\vee)^*. \]
Then the functor M induces an anti-equivalence between the abelian category of finite commutative group schemes over k of a p-power order to that of left \(D(k) \)-modules of finite length. It is known that the length of \(M(\Gamma) \) is equal to \(\log_p |\Gamma| \). Here are some examples.

Example 2.1.

1. Let \(W_n^m \) be the kernel of \(F^m \) on \(W_n \). Then
 \[M(W_n^m) = D(k)/(D(k)F^m + D(k)V^n). \]
2. \(M(\mathbb{Z}/p\mathbb{Z}) \) (resp. \(M(\mathbb{G}_m[p]) \)) is isomorphic to \(k \) with \(F = 1, V = 0 \) (resp. \(F = 0, V = 1 \)).
3. Let \(E \) be a supersingular elliptic curve over \(k \), then
 \[M(E[p]) = D(k) \otimes W(k) k/D(k) \otimes W(k) k(F - V). \]

We define the Dieudonné module of a \(p \)-divisible group \(G = \lim_{i \to \infty} G_i \) as
\[M(G) := \lim_{i \to \infty} M(G_i), \]
which is a \(D(k) \)-module by definition. It is a free \(W(k) \)-module with rank \(h(G) \). In this way the Dieudonné functor \(M \) gives a contra-equivalence between the category of \(p \)-divisible groups defined over \(k \) and one of \(D(k) \)-modules that are free over \(W(k) \) with finite rank. For a pair of coprime integers \((d, c) \) so that \(d > 0, c \geq 0 \) the \(p \)-divisible group \(G_{d,c} \) is defined to be
\[G_{d,c} := \ker[F^c - V^d : W[p^\infty] \to W[p^\infty]], \]
where \(W[p^\infty] := \lim_{n \to \infty} W[p^n] \). Its Dieudonné module is
\[M(G_{d,c}) = D(k)/D(k)(F^c - V^d), \]
and the dimension and the height are \(d \) and \(c+d \), respectively. One sees that \(G_{1,0} \simeq \mathbb{G}_m[p^\infty] \) and it is convenient to set \(G_{0,1} := \mathbb{Q}_p/\mathbb{Z}_p \). Then \(G_{c,d} = (G_{d,c})^\vee \) for every pair of coprime non-negative integer \((d, c) \neq (0, 0) \). Temporally we assume that \(k \) is algebraically closed. Then \(G_{d,c} \) is characterized by the height \(h = c + d \) and the slope \(d/h = d/(c + d) \). A \(p \)-divisible group \(G \) over \(k \) is mentioned simple if any epimorphism from \(G \) is either an isogeny or the structure morphism (here an isogeny is a homomorphism whose kernel and cokernel are finite). Then \(G_{d,c} \) is simple and conversely any simple \(p \)-divisible group is isomorphic to a certain \(G_{d,c} \). Note that a simple \(p \)-divisible group \(G \) is isomorphic to \(G_{d,c} \) if and only if there is a pair of non-negative integer \((m, n) \neq (0, 0) \) so that
\[G[F^m] = G[V^n], \quad \frac{n}{m+n} = \frac{d}{c+d}. \]
In fact (2) shows that \(G \simeq G_{d,c} \) if and only if
\[M(G)/V^nM(G) = M(G)/F^mM(G), \]
for a pair of non-negative integer \((m, n) \neq (0, 0) \) satisfying \(d/(c + d) = n/(m + n) \) and this is equivalent to (3). Here are \(p \)-divisible groups whose height is less than 3 (3, p.93):
(1) \(h(G) = 0 \) iff \(G = 0 \).
(2) If \(h(G) = 1 \), then \(G = G_{1,0} \) or \(G_{0,1} \).
(3) If \(h(G) = 2 \), \(G \) is the one of the followings,
\[G^2_{1,0}, \ G_{1,0} \times G_{0,1}, \ G^2_{0,1}, \ G_{1,1}. \]

Set \(\mathbb{L} = G_{1,0} \times G_{0,1} \). Then \(G_{1,1} \) (resp. \(\mathbb{L} \)) is isomorphic to the \(p \)-divisible group of a supersingular (resp. an ordinary) elliptic curve. Let \(X \) and \(Y \) be \(p \)-divisible groups. If there is an isogeny between them we say that they are isogeneous and describe as \(X \sim Y \).

This notion defines an equivalence relation on the set of \(p \)-divisible groups.

Fact 2.1. ([3], p.85 or [9], p.35) Let \(G \) be a \(p \)-divisible group over an algebraically closed field \(k \). Then there is an isogeny:
\[G \sim G_{1,0}^f \times G_{0,1}^f \times \prod_i G_{d_i,c_i}, \]
where \(\{d_i, c_i\}_i \) are pairs of positive coprime integers.

Let \(A \) be an abelian variety over \(k \) of dimension \(g \) and set \(\overline{A} := A \otimes_k \overline{k} \). We define \(p \)-rank \(f(A) = f \) as an integer such that \(A[p](\overline{k}) \simeq (\mathbb{Z}/p\mathbb{Z})^f \), which equals to \(\dim_{\overline{k}} \text{Hom}(\mathbb{G}_m[p], \overline{A}[p]) \).

Let \(\alpha_p \) be a finite group scheme defined by \(\alpha_p := \text{Spec} \overline{k}[x]/(x^p) \). The \textit{a-number} is defined to be \(a(A) := \dim_{\overline{k}} \text{Hom}(\alpha_p, \overline{A}[p]) \). It is known that \(0 \leq f(A) \leq g \) and that \(0 \leq a(A) + f(A) \leq g \). We say \(A \) ordinary if \(f(A) = g \).

Fact 2.2. ([2]) Let \(A \) be an abelian variety over \(k \) of dimension \(g \). Then the following are equivalent:

1. \(A \) is ordinary,
2. \(A[p]\infty \simeq \mathbb{L}^g \).

This is well-known if \(g = 1 \). In fact let \(E \) be an elliptic curve defined over an algebraic closed field of characteristic \(p \). Since there is an exact sequence
\[0 \to \alpha_p \to G_{1,1}[p] \to \alpha_p \to 0, \]
the previous classification of \(p \)-divisible group of height 2 shows that \(a(E) = 1 \) if and only \(E \) is supersingular. This observation is generalized to a higher dimensional abelian varieties. The following fact is due to Deligne, Oort, Shioda and Tate.

Fact 2.3. ([14], [17], [19]) Let \(A \) an abelian variety over an algebraic closed field \(k \) with dimension \(g \). If
\[A[p]\infty \simeq G_{1,1}^g, \]
then \(A \) is supersingular.

Fact 2.4. ([13] Theorem 2) Let \(A \) an abelian variety over an algebraic closed field \(k \) of with dimension \(g \). If
\[a(A) = g, \]
then \(A \) is superspecial.
Let A be an abelian variety over k of dimension g. We denote the Dieudonné module of $A[p^{\infty}]$ by $T_p(A)$, which is a free $W(k)$-module of rank $2g$.

Fact 2.5. ([11] Theorem 6) Let A and B are abelian varieties over a finite field k. Then

$$\text{Hom}_k(A, B) \otimes_{\mathbb{Z}} \mathbb{Z}_p \simeq \text{Hom}_{D(k)}(T_p(B), T_p(A)).$$

3. The p-divisible group of an abelian variety with CM

Let k be a finite field of characteristic p with $[k : \mathbb{F}_p] = r$ and A an abelian variety over k of dimension g endowed with CM by \mathcal{O}_K. We fix an imbedding of the CM-field K into \mathbb{C} and denote the restriction of the complex conjugation to K by $"r"$. We assume that $\text{End}_k(A) = \text{End}_k(\overline{A})$ and denote it by R. We first note that F^r and V^r are contained in \mathcal{O}_K. In fact here is a proof after [21] Lemma 3.2. Set $\pi_F := F^r$ and $\pi_V := V^r$. The assumption is equivalent to that π_F and π_V are contained in the center C of $R \otimes \mathbb{Z}$. Since the commutant of K in $R \otimes \mathbb{Z}$ is itself ([10] S4 Corollary 1), C is contained in K and $\pi_F, \pi_V \in \mathcal{O}_K = K \cap R$. It is known that π_F is a q-Weil number ($q = p^r$) and $\pi_F \cdot \pi_F' = p^r$ ([12] Theorem 3.2 and Proposition 2.2). On the other hand since $FV = VF = p$, $\pi_F \cdot \pi_V = F^rV^r = p^r$. Therefore $(\pi_F' - \pi_V)\pi_F = 0$ and because π_F is surjective we conclude $\pi_F' = \pi_V$.

For simplicity we will denote π_F and π_V by π and π', respectively. As we have seen in (3) a simple p-divisible group is characterized by its slope. Since $\pi = F^r$ and $\pi' = V^r$ are contained in \mathcal{O}_K, we will obtain an information of the Dieudonné module of a simple component of $A[p^{\infty}]$ from the behavior of $\{\pi, \pi'\}$ in $\mathcal{O}_K \otimes \mathbb{Z} \mathbb{Z}_p$ with help of Fact 2.5. This is our strategy.

We assume that p is unramified in K and let

$$p = \mathfrak{P}_1 \cdots \mathfrak{P}_t,$$

be the prime factorization in K_0 so that \mathfrak{P}_i remains prime (resp. completely splits) in K for $1 \leq i \leq s$ (resp. $s + 1 \leq i \leq t$). Thus

$$p = \mathfrak{P}_1 \cdots \mathfrak{P}_s \mathfrak{P}_{s+1} \mathfrak{P}_{s+1}' \cdots \mathfrak{P}_t \mathfrak{P}_t',$$

in K. We set $\mathcal{P}_{\text{inert}} := \{\mathfrak{P}_1, \ldots, \mathfrak{P}_s\}$ and $\mathcal{P}_{\text{split}} := \{\mathfrak{P}_s+1, \ldots, \mathfrak{P}_t\}$, where $f(\mathfrak{P}/p)$ is the inertia degree. Similarly $\mathcal{P}_{\text{split}} := \{\mathfrak{P}_s+1, \ldots, \mathfrak{P}_t\}$ and $\mathcal{P}_{\text{split}} := \{\mathfrak{P}_s+1, \ldots, \mathfrak{P}_t\}$. By (5),

$$\mathcal{O}_K \otimes \mathbb{Z} \mathbb{Z}_p \simeq W(F_{\mathfrak{P}_1}) \times \cdots \times W(F_{\mathfrak{P}_s}) \times \{W(F_{\mathfrak{P}_{s+1}}) \times W(F_{\mathfrak{P}_{s+1}'})\} \times \cdots \times \{W(F_{\mathfrak{P}_t}) \times W(F_{\mathfrak{P}_t'})\},$$

where $F_{\mathfrak{P}}$ is the residue field. Using this we define e_i to be an idempotent of $\mathcal{O}_K \otimes \mathbb{Z} \mathbb{Z}_p$ which corresponds to $0, 0, 1, 0, \ldots, 0$ in RHS, where "1" is placed at the i-th from the left. Remember that since the height of $A[p^{\infty}]$ is $2g$, $T_p(A)$ is a free $W(k)$-module of rank $2g$. Moreover by Fact 2.5 it has a faithful action of $\mathcal{O}_K \otimes \mathbb{Z} W(k)$. The following lemma is a consequence of these facts.
Lemma 3.1. $e_i T_p(A)$ is a $D(k)$-module that is free over $W(k)$ with rank $f(\hat{\mathfrak{p}}_i/p)$.

Proof. Note that, by Fact 2.5, $e_i T_p(A)$ is a $D(k)$-module which is free over $W(k)$ and we only have to identify the rank. By the decomposition we find that $e_i(\mathcal{O}_K \otimes_{\mathbb{Z}} W(k)) \simeq W(\mathbb{F}_{\hat{\mathfrak{p}}_i}) \otimes_{\mathbb{Z}_p} W(k)$, which is a product of complete discrete valuation rings

$$e_i(\mathcal{O}_K \otimes_{\mathbb{Z}} W(k)) \simeq R^{(1)}_i \times \cdots \times R^{(\nu(j))}_i,$$

so that every component is free and has a finite rank over $W(k)$. Let e_j be an element of $e_i(\mathcal{O}_K \otimes_{\mathbb{Z}} W(k))$ that corresponds to $(0, \cdots, 0, 1, 0, \cdots, 0)$ in RHS as before and set

$$M_j^{(j)} = e_j(e_i T_p(A)).$$

It is a non-zero free $R^{(j)}_i$-module because the action of $\mathcal{O}_K \otimes_{\mathbb{Z}} W(k)$ on $T_p(A)$ is faithful. Let $\mu_i(j)$ be its rank and

$$T_p(A) \simeq \bigoplus_i \bigoplus_j (R^{(j)}_i)^{\mu_i(j)}, \quad \mu_i(j) \geq 1.$$

Since $\mathcal{O}_K \otimes_{\mathbb{Z}} W(k) \simeq \prod_i \prod_j R^{(j)}_i$ and since rank$_{W(k)} T_p(A) = \text{rank}_{W(k)} \mathcal{O}_K \otimes_{\mathbb{Z}} W(k) = 2g$ we find that $\mu_i(j) = 1$ for all i and j. Therefore

$$\text{rank}_{W(k)} e_i T_p(A) = \sum_j \text{rank}_{W(k)} R^{(j)}_i = \text{rank}_{W(k)} W(\mathbb{F}_{\hat{\mathfrak{p}}_i}) \otimes_{\mathbb{Z}_p} W(k) = f(\hat{\mathfrak{p}}_i/p).$$

Since the Dieudonné functor M gives the anti-equivalence, there is a p-divisible subgroup G_i of $A[p^\infty]$ such that

$$M(G_i) = e_i T_p(A).$$

Set $\Gamma_j := G_{s+(2j-1)} \times G_{s+2j}$ $(1 \leq j \leq t-s)$ and

$$A[p^\infty] = G_1 \times \cdots \times G_s \times \Gamma_1 \times \cdots \times \Gamma_{t-s}. \quad (6)$$

For a prime factor \mathfrak{p} of p in K we denote the corresponding factor of $A[p^\infty]$ by $G_{\mathfrak{p}}$. For a prime \mathfrak{p} of K_0 dividing p we define p-divisible subgroup $G_\mathfrak{p}$ of $A[p^\infty]$ as follows. If \mathfrak{p} is contained in $\mathcal{P}_{\text{inert}}$ define $G_{\mathfrak{p}} := G_{\hat{\mathfrak{p}}}$ where $\hat{\mathfrak{p}}$ is the unique prime of K over \mathfrak{p}. Since $\mathbb{F}_{\mathfrak{p}} \simeq \mathbb{F}_{p^f(\mathfrak{p}/p)}$ we see that by Lemma 3.1

$$h(G_\mathfrak{p}) = \text{rank}_{W(\mathfrak{p})} M(G_{\hat{\mathfrak{p}}}) = 2f(\mathfrak{p}/p). \quad (7)$$

On the other hand if it splits: $\mathfrak{p} = \hat{\mathfrak{p}} \times \mathfrak{p}'$, we define $G_{\mathfrak{p}} := G_{\hat{\mathfrak{p}}} \times G_{\mathfrak{p}'}$. Since $\mathbb{F}_{\hat{\mathfrak{p}}} \simeq \mathbb{F}_{\mathfrak{p}'} \simeq \mathbb{F}_{p^f(\mathfrak{p}/p)}$, a similar observation shows

$$h(G_{\mathfrak{p}}) = h(G_{\hat{\mathfrak{p}}}) = f(\mathfrak{p}/p), \quad h(G_{\mathfrak{p}'}) = h(G_{\hat{\mathfrak{p}}}) + h(G_{\mathfrak{p}'}) = 2f(\mathfrak{p}/p). \quad (8)$$

Lemma 3.2. For $\mathfrak{p} \in \mathcal{P}_{\text{split}}$, $G_{\mathfrak{p}}$ is isomorphic to \mathbb{L}.
Proof. By (8), \(h(G_{\mathfrak{P}}) = h(G_{\mathfrak{P}'})) = 1 \) and the classification of \(p \)-divisible groups shows that \(G_{\mathfrak{P}} \) or \(G_{\mathfrak{P}'} \) is one of \(\{ G_{1,0}, G_{0,1} \} \). Remember that \(G_{1,0} \) (resp. \(G_{0,1} \)) is characterized by the fact \(V \) (resp. \(F \)) is an isomorphism on \(\mathbb{M}(G_{1,0}) \) (resp. \(\mathbb{M}(G_{0,1}) \)). Let

\[
(F') = (\pi) = \mathfrak{P}^a(\mathfrak{P}')^a \delta, \quad (\delta, \mathfrak{P}) = (\delta, \mathfrak{P}') = 1,
\]

be the factorization. Then

\[
(V') = (\pi') = \mathfrak{P}'^a(\mathfrak{P}')^a \delta',
\]

and

\[
(p') = (F'V') = (\pi \pi') = (\mathfrak{P} \mathfrak{P}')^a + a' \delta'.
\]

By (5), \(r = a + a' \). Suppose that \(G_{\mathfrak{P}} = G_{1,0} \). This implies that \(V \) is an isomorphism on \(\mathbb{M}(G_{\mathfrak{P}}) \) and so is \(\pi' \) (note that the slope of a \(p \)-divisible group is invariant under a base change). Since the action of \(\mathcal{O}_K \) on \(\mathbb{M}(G_{\mathfrak{P}}) \) (resp. \(\mathbb{M}(G_{\mathfrak{P}'}) \)) factors through an imbedding \(\mathcal{O}_K \hookrightarrow \mathcal{O}_{K,\mathfrak{P}} \simeq \mathbb{Z}_p \) (resp. \(\mathcal{O}_K \hookrightarrow \mathcal{O}_{K,\mathfrak{P}'} \simeq \mathbb{Z}_p \)), \(\pi' \) should be a unit in \(\mathcal{O}_{K,\mathfrak{P}} \) and so \(a' = 0 \). Therefore \((V') = (\mathfrak{P}')^a \delta' \) and \((F') = \mathfrak{P}' \delta' \), which implies that \(F' \) is an isomorphism on \(\mathbb{M}(G_{\mathfrak{P}'}) \). Hence \(\mathcal{G}_{\mathfrak{P}'_1} \simeq \mathbb{M}_{0,1} \) and \(\mathcal{G}_{\mathfrak{P}'_2} \simeq \mathbb{M}_{1,0} \times \mathbb{M}_{0,1} = \mathbb{L} \). In the case of \(\mathcal{G}_{\mathfrak{P}} = G_{0,1} \) the proof is similar.

\[\square \]

Lemma 3.3. For \(\mathfrak{P} \in \mathcal{P}_{\text{inert}} \), \(\mathcal{G}_{\mathfrak{P}} \) is isogeneous to \(G_{1,1}^{f(\mathfrak{P}/p)} \).

Proof. By Fact 2.1 \(\mathcal{G}_{\mathfrak{P}} \) is isogeneous to \(\prod G_{d,c} \). Using (3) we will show all simple factors are isomorphic to \(G_{1,1} \). Let

\[
(F') = (\pi) = \mathfrak{P}^a \delta, \quad (\delta, \mathfrak{P}) = 1,
\]

be the factorization. Since \(\mathfrak{P}' = \mathfrak{P} \),

\[
(V') = (\pi') = \mathfrak{P}'^a \delta', \quad (\delta, \mathfrak{P}') = 1,
\]

and

\[
(9) \quad \mathcal{G}_{\mathfrak{P}}[F'] = \mathcal{G}_{\mathfrak{P}}[V'].
\]

Let \(G \) be a simple factor of \(\mathcal{G}_{\mathfrak{P}} \). Then (9) shows

\[
G[F'] = G[V'],
\]

and \(G = G_{1,1} \) by (3). Thus \(\mathcal{G}_{\mathfrak{P}} \) is isogeneous to \(G_{1,1}^{f_1} \) and

\[
h(G_{\mathfrak{P}}) = 2f,
\]

which implies the claim by (7).

\[\square \]

Set \(\mathcal{P} = \mathcal{P}_{\text{inert}} \cup \mathcal{P}_{\text{split}} = \{ \mathfrak{P}_1, \cdots, \mathfrak{P}_t \} \).

Proposition 3.1. \((1) \) Suppose \(\mathcal{P} = \mathcal{P}_{\text{inert}} \). Then \(A \) is supersingular.

\((2) \) The \(a \)-number of \(A \) is greater than or equal to \(|\mathcal{P}_{\text{inert}}| \).
Suppose that $P = P_{\text{inert}}^f \cup P_{\text{split}}^f = 1$.

Then

$$a(A) = |P_{\text{inert}}^f|, \quad f(A) = |P_{\text{split}}^f|.$$

In particular if $P = P_{\text{inert}}^f$ (resp. $P = P_{\text{split}}^f$) A is superspecial (resp. ordinary).

Proof. (1) is an immediate consequence of Lemma 3.3 and Fact 2.3. If necessary arranging the indices, $P_{\text{inert}}^f = \{P_1, \ldots, P_r\}$ ($r \leq s$) and we consider a subgroup $G_{\mathfrak{p}_i} \times \cdots \times G_{\mathfrak{p}_r}$ of $A[p^\infty]$. By (7) and Lemma 3.3 $\overline{G}_{\mathfrak{p}_i}$ is isomorphic to $G_{1,1}$ for $1 \leq \forall i \leq r$. Therefore $\overline{A}[p]$ contains $G_{1,1}[p]^s$ and by (4),

$$a(A) = \dim \overline{\mathbb{F}}_p \text{ Hom}(\alpha, \overline{A}[p]) \geq \dim \overline{\mathbb{F}}_p \text{ Hom}(\alpha_p, G_{1,1}[p]^s) = r.$$

Finally we prove (3). Set $s = |P_{\text{inert}}^f|$ and $g - s = |P_{\text{split}}^f|$. Lemma 3.2 and Lemma 3.3 show that the product (6) becomes

$$\overline{A}[p^\infty] \simeq G_{1,1}^1 \times \mathbb{L}^{g-s},$$

which implies $a(A) = |P_{\text{inert}}^f|$ and $f(A) = |P_{\text{split}}^f|$. The last statement follows from Fact 2.2 and Fact 2.4, respectively.

□

Now Theorem 1.1 and Theorem 1.2 are direct consequences of Proposition 3.1.

Corollary 3.1. Suppose that K is a Galois extension of \mathbb{Q}.

1. If P_{inert}^f is not empty, A is supersingular.

2. Suppose that p completely splits in K_0. If it completely splits even in K, A is ordinary and otherwise A is superspecial.

4. **Rationality**

Let A be an abelian variety over \mathbb{F}_p which satisfies the assumption of Theorem 1.3. The completion $(\mathcal{O}_K)_0 \otimes_{\mathbb{Z}} \mathbb{F}_p$ of \mathcal{O}_K at \mathfrak{p}_i is isomorphic to \mathbb{Z}_p and

$$(10) \quad \mathcal{O}_K \otimes_{\mathbb{Z}} \mathbb{Z}_p \simeq \mathbb{Z}_p \times \cdots \times \mathbb{Z}_p, \quad \alpha = (\alpha_1, \ldots, \alpha_g).$$

Let e_i^0 be the idempotent in $\mathcal{O}_K \otimes_{\mathbb{Z}} \mathbb{Z}_p$ which corresponds to $0, 1, 0, \ldots, 0, 1$ in RHS of (10) (where ”1” is placed at the i-th from the left, as before) and G_i^0 a p-divisible subgroup of $A[p^\infty]$ such that $\mathbb{M}(G_i^0) = e_i^0 T_p(A)$. Then

$$(11) \quad A[p^\infty] = G_1^0 \times \cdots \times G_g^0,$$

and since the action of $\mathcal{O}_K \otimes_{\mathbb{Z}} \mathbb{Z}_p$ on $A[p^\infty]$ defined over \mathbb{F}_p, so is the product. The following lemma is clear from Lemma 3.3 (see also the proof of Proposition 3.1).

Lemma 4.1. G_i^0 is isomorphic to $G_{1,1}$ for all i.

Proposition 4.1. Let J be an abelian variety of dimension g over \mathbb{F}_p so that
\[J[p^\infty] = G_1 \times \cdots \times G_g, \]
over \mathbb{F}_p, where G_i is a p-divisible group defined over \mathbb{F}_p with $\overline{G_i} \simeq G_{1,1}$ ($\forall i$). Then it is a product of supersingular elliptic curve \(\{E_i\}_{1 \leq i \leq g} \)
over \mathbb{F}_p. If moreover p is greater than 3, $\Phi_{J,p}(t) = (t^2 + p)^g$.

Proof. By (4) the a-number of J is g and, by Fact 2.4,
\[J \otimes_{\mathbb{F}_p} \overline{\mathbb{F}}_p \simeq E_1 \times \cdots \times E_g, \]
where E_i is a supersingular elliptic curve ($\forall i$). A simple consideration shows that, if necessary changing indices, we may assume that $G_i = E_i[p^\infty]$. Let ϕ be the p-th power Frobenius. Since J is defined over \mathbb{F}_p we have the diagram:
\[
\begin{array}{ccc}
E_i & \xrightarrow{\phi} & E_i^\phi \\
\nu_i \downarrow & & \nu_i^\phi \downarrow \\
J & \xrightarrow{\phi} & J,
\end{array}
\]
where ν_i is the imbedding. Take the p-divisible groups and
\[
\begin{array}{ccc}
E_i[p^\infty] & \xrightarrow{\phi} & E_i^\phi[p^\infty] \\
\nu_i[p^\infty] & \downarrow & \nu_i^\phi[p^\infty] \\
J[p^\infty] & \xrightarrow{\phi} & J[p^\infty].
\end{array}
\]
Since by the assumption all $\{E_i[p^\infty](= G_i)\}_i$ and $\{\nu_i[p^\infty]\}_i$ are defined over \mathbb{F}_p, $E_i[p^\infty] = E_i^\phi[p^\infty]$ and $\nu_i[p^\infty] = \nu_i^\phi[p^\infty]$ ($\forall i$). Thus $E_i = E_i^\phi$ and $\nu_i = \nu_i^\phi$, which shows that each component $\{E_i\}_i$ and the product are defined over \mathbb{F}_p. The last claim follows from the well-known fact that the characteristic polynomial of p-power Frobenius of a supersingular elliptic curve over \mathbb{F}_p is $t^2 + p$ if $p \geq 5$ ([18]).

\[\square \]

Theorem 1.3 follows from (11), Lemma 4.1 and Proposition 4.1.

Let F be a field of characteristic 0 and A an abelian variety over F of dimension g. Fix a base $\{\omega_1, \cdots, \omega_g\}$ of $H^0(A, \Omega^1)$ over F and we consider the faithful representation,
\[\rho : \text{End}_{\overline{\mathbb{F}}}(A) \to M_g(\overline{F}), \]
deﬁned by
\[\alpha^* \omega = \omega \cdot \rho(\alpha), \quad \omega = (\omega_1, \cdots, \omega_g). \]
This is compatible with the action of $\text{Gal}(\overline{F}/F)$ and the faithfulness of ρ yields,
\[\text{End}_F(A) = \{ \alpha \in \text{End}_{\overline{\mathbb{F}}}(A) : \rho(\alpha) \in M_g(F) \}. \]
Remark 4.1. \(\rho \) may be identified with the representation on the cotangent space of \(A \) at the origin.

Proof of Theorem 1.4. (1) and (2) are consequences of Theorem 1.2 and Theorem 1.1, respectively. Let us show (3). We first claim that (b) implies (a). Take a base \(\{ \omega_1, \cdots, \omega_g \} \) of \(H^0(\text{Jac}(C), \Omega^1) \) over \(\mathbb{Q} \) and consider the representation \(\rho \). The assumption that the action of \(\mathcal{O}_K \) is defined over \(K \) implies \(\rho(\mathcal{O}_K) \subset M_g(K) \) by (12). Since \(\rho \) is compatible with action of Galois group, take the invariant part of the complex conjugation and \(\rho(\mathcal{O}_{K_0}) \subset M_g(K_0) \). Thus, by (12), \(\mathcal{O}_{K_0} \) is contained in \(\text{End}_{K_0}(\text{Jac}(C) \otimes_{\mathbb{Q}} K_0) \). Now we show that (a) implies the claim. Let \(\mathcal{J} \) be the Neron’s model of \(\text{Jac}(C) \) over \(\mathbb{Z}_p \), which is an abelian scheme. Since \(p \) completely splits in \(K_0 \), \(Z_\rho \simeq (\mathcal{O}_{K_0})_{\mathfrak{P}_i} \) (here we have used the notation of Theorem 1.3). Together with (12) this implies that the action of \(\mathcal{O}_{K_0} \) on \(\mathcal{J} \) is defined over \(\mathbb{Z}_p \). In fact by the Neron’s mapping property of \(\mathcal{J} \) ([I], §1 Proposition 8) it is sufficient to show that the action of \(\mathcal{O}_{K_0} \) on the generic fiber \(\text{Jac}(C) \otimes_{\mathbb{Q}} \mathbb{Q}_p \) is defined over \(\mathbb{Q}_p \). Since \((K_0)_{\mathfrak{P}_i} \simeq \mathbb{Q}_p \), the image \(\rho(\mathcal{O}_{K_0}) \) is contained in \(M_g((K_0)_{\mathfrak{P}_i}) \simeq M_g(\mathbb{Q}_p) \) and (12) shows that \(\mathcal{O}_{K_0} \subset \text{End}_{\mathbb{Q}_p}(\text{Jac}(C) \otimes_{\mathbb{Q}} \mathbb{Q}_p) \). Take the special fiber and \(\text{Jac}(C_p) \) satisfies the assumption of Theorem 1.3. Therefore \(\text{Jac}(C_p) \) is a product of supersingular elliptic curves defined over \(\mathbb{F}_p \). Suppose that \(p \) is greater than 3. Since \(\Phi_{\text{Jac}(C_p), p}(t) = (t^2 + p)^g \) the eigenvalues of the action of the \(p \)-th power Frobenius on \(H^1_{et}(\overline{\mathcal{C}_p}, \mathbb{Q}_l) \) is \(\{ \sqrt{-p}, -\sqrt{-p} \} \). Use the Grothendieck-Lefschetz trace formula ([I10], Theorem 12.3) and

\[
|C_p(\mathbb{F}_p^2)| = 1 + p^2 - \text{Tr}[\text{Fr}_{p^2} : H^1_{et}(\overline{\mathcal{C}_p}, \mathbb{Q}_l)] = 1 + p^2 + 2gp.
\]

□

Proof of Corollaries. We first show Corollary 1.1. \(K_0 \) is \(\mathbb{Q}(\zeta_N + \zeta_N^{-1}) \) and the sequence

\[
1 \to \text{Gal}(K/K_0) \simeq \{ \pm 1 \} \to \text{Gal}(K/\mathbb{Q}) \simeq (\mathbb{Z}/(N))^{\times} \to \text{Gal}(K_0/\mathbb{Q}) \to 1,
\]

shows that \(p \equiv -1(N) \) iff \(p \) completely splits in \(K_0 \) and every prime factor of \(p \) in \(K_0 \) remains prime in \(K \). On the other hand \(p \equiv 1(N) \) iff \(p \) completely splits in \(K \). An existence of a positive integer \(h \) with \(p^h \equiv -1(N) \) implies that every prime factor of \(p \) in \(K_0 \) remains prime in \(K \). Now the desired claims follow from Theorem 1.4. In the case of Corollary 1.2 observe \(K_0 = \mathbb{Q}(\zeta_M + \zeta_M^{-1}) \) and

\[
\text{Gal}(K/\mathbb{Q}) \simeq \text{Gal}(\mathbb{Q}(\zeta_M + \zeta_M^{-1})/\mathbb{Q}) \times \text{Gal}(\mathbb{Q}(\zeta_d)/\mathbb{Q}).
\]

This is isomorphic to \(((\mathbb{Z}/(M))^{\times}/\{ \pm 1 \}) \times \{ \pm 1 \} \) and the proof is similar.

\[\square\]

5. Examples

Example 5.1. ([I]) Let \(l \) be an odd prime and we define a curve \(C(l) \) to be the smooth projective model of

\[
y^l = x(1-x),
\]

over \(\mathbb{Q} \). The genus is \((l-1)/2 \) and an \(l \)-th primitive root of unity \(\zeta_l \) acts by

\[
\zeta_l(x) = x, \quad \zeta_l(y) = \zeta_l y.
\]
Since it is defined over \(K := \mathbb{Q}(\zeta_l) \), so is the action of \(\mathbb{Z}[\zeta_l] \) on \(\text{Jac}(C(l)) \). Thus \(C(l) \) satisfies the assumption **Theorem 1.4**. It is also known that there is a \(\mathbb{Q} \)-rational base \(\{ \omega_1, \ldots, \omega_{(l-1)/l} \} \) of \(H^0(C(l), \Omega^1) \) satisfying
\[
(\zeta_l)^*(\omega_i) = \zeta_l^{\mu_i}, \quad 0 \leq \mu_i \leq l - 1,
\]
(\text{\[7\] \text{\$1 \text{ Theorem 7.1} \]}). Let \(p \) be a good prime so that \(p^h \equiv -1(l) \) for a certain positive integer \(h \). Set \(q = p^h \) and let \(F_{q+1} \) denote the Fermat curve, \(X^{q+1} + Y^{q+1} = 1 \).

By
\[
x = X^{q+1}, \quad y = (XY)^{q+1},
\]
we have a surjective morphism defined over \(\mathbb{Q} \),
\[
\pi : F_{q+1} \to C(l),
\]
and \(H^1_{et}(C(l)_p \otimes_{\mathbb{F}_p} \mathbb{F}_p, \mathbb{Q}_l) \) is a Galois submodule of \(H^1_{et}((F_{q+1})_p \otimes_{\mathbb{F}_p} \mathbb{F}_p, \mathbb{Q}_l) \). On the other hand \(|F_{q+1}(\mathbb{F}_{p^2})| \) attains the Hasse-Weil upper bound \(1 + p^2 + 2gp \) and
\[
\Phi_{F_{q+1}, p}(t) = (t^2 + p)^g
\]
where \(g = q(q - 1)/2 \) is the genus of \(F_{q+1} \) (\text{\[8\] \text{Example 6.3.6} \]). Thus \(\Phi_{C(l), p}(t) = (t^2 + p)^{(l-1)/2} \) and
\[
|C(l)_p(\mathbb{F}_{p^2})| = 1 + p^2 + (l - 1)p,
\]
if there is a positive integer \(h \) such that \(p^h \equiv -1(l) \). **Corollary 1.1** recovers this observation if \(h = 1 \) but otherwise it only states that \(C(l) \) has a supersingular reduction. Therefore **Corollary 1.1** is only a sufficient condition for a prime \(p \) at which the reduction of a CM-curve is \(\mathbb{F}_{p^2} \)-maximal, i.e. the number of \(\mathbb{F}_{p^2} \)-points attains the Hasse-Weil upper bound.

Example 5.2. (\text{\[9\] \text{Example 2.3} \}) Let us consider a curve
\[
C : y^3 = x(x^7 + 1),
\]
that has automorphisms
\[
(x, y) \xrightarrow{\zeta_7} (\zeta_7^3 x, \zeta_7 y), \quad (x, y) \xrightarrow{\zeta_3} (x, \zeta_3 y),
\]
and the involution,
\[
\tau : (x, y) \mapsto \left(\frac{1}{x}, \frac{y}{x^3} \right).
\]
The quotient \(C/\langle \tau \rangle \) has a smooth model
\[
X : 2y^3 = x^4 - 2 \cdot 7^2 x^2 + 2 \cdot 7^2 x - 7^3,
\]
of genus 3 and the endomorphism ring of \(\text{Jac}(X) \) is the integer ring \(\mathcal{O}_K \) of \(K := \mathbb{Q}(\zeta_7 + \zeta_7^{-1}, \zeta_3) \). Therefore \(X \) is a CM-curve. A base of \(H^0(X, \Omega^1) \) is given by
\[
\frac{(1 - x)dx}{y}, \quad \frac{(1 - x^4)dx}{y^2}, \quad \frac{(x - x^3)dx}{y^2},
\]
which are eigenvectors of the action of $\zeta_7 + \zeta_7^{-1}$ whose eigenvalues are contained in $K_0 = \mathbb{Q}(\zeta_7 + \zeta_7^{-1})$. Hence by (12) the action of O_{K_0} on Jac(X) is defined over K_0 and X satisfies the assumption of Theorem 1.4. By Corollary 1.2 we see that a good prime p is supersingular if $p \equiv -1(3)$. Moreover it is superspecial if $p \equiv \pm 1(7)$ and $p \equiv -1(3)$. On the other hand, using [4], one can determine $\Phi_{X,p}(t)$. In fact they have shown that Jac(C) is isogeneous to Jac$(X)^2 \times E$ where E is a CM-elliptic curve whose defining equation is $x^3 = y(y + 1)$.

Fact 5.1. ([4] Corollary 3.1 and Corollary 3.2)

1. For $p \equiv 2, 5, 11, 17 (21)$,
 \[\Phi_{C,p}(t) = (t^4 - pt^2 + p^2)^2(t^2 + p)^3. \]
2. For $p \equiv 8, 20 (21)$,
 \[\Phi_{C,p}(t) = (t^2 + p)^7. \]

Since X has genus 3 the degree of $\Phi_{X,p}(t)$ should be six and therefore

- If $p \equiv 2, 5, 11, 17 (21)$,
 \[\Phi_{X,p}(t) = (t^4 - pt^2 + p^2)(t^2 + p), \]

- If $p \equiv 8, 20 (21)$,
 \[\Phi_{X,p}(t) = (t^2 + p)^3. \]

These coincide with the above results of Corollary 1.2 (see the discussion after Theorem 1.1). Moreover in the second case Jac(X_p) is a product of supersingular elliptic curves over \mathbb{F}_p and $|X_p(\mathbb{F}_p^2)| = 1 + p^2 + 6p$.

Example 5.3.([4] Example 2.1) Remember that the n-th Chebyshev polynomial U_n is defined by the recursive relation,

\[U_{n+1}(x) = xU_n(x) - U_{n-1}(x), \quad U_0(x) = 2, \quad U_1(x) = x. \]

For a prime $l \geq 5$ we define a curve X_l as

\[X(l) : y^2 = U_l(x). \]

The genus is $(l - 1)/2$ and it is the quotient of a hyperelliptic curve

\[Y(l) : y^2 = x(x^{2l} + 1), \]

by the involution

\[\tau : (x, y) \mapsto \left(\frac{1}{x}, \frac{y}{x^{l+1}} \right). \]

Set $K = \mathbb{Q}(\zeta_l + \zeta_l^{-1}, \zeta_4)$ and $K_0 = \mathbb{Q}(\zeta_l + \zeta_l^{-1})$. The automorphisms of $Y(l)$:

\[(x, y) \overset{\zeta_l}{\mapsto} (\zeta_l^2 x, \zeta_l y), \quad (x, y) \overset{\zeta_4}{\mapsto} (-x, \zeta_4 y), \]
induce an action of O_K on $\text{Jac}(X(l))$. The authors have shown that $H^0(X(l), \Omega^1)$ has a \mathbb{Q}-rational base $\{\omega_1, \ldots, \omega_{(l-1)/2}\}$ satisfying

$$(\zeta_l + \zeta_l^{-1})^{i} \omega_i = (\zeta_l^i + \zeta_l^{-i})\omega_1, \quad 1 \leq i \leq \frac{l-1}{2}.$$

By (12) this implies that the action of O_{K_0} on the Jacobian is defined over K_0. Thus $X(l)$ satisfies the assumption of Theorem 1.4. Corollary 1.2 shows that a good prime p satisfying $p \equiv -1(4)$ is supersingular. If moreover $p \equiv -1(4)$ and $p \equiv \pm 1(l)$, $\text{Jac}(X(l)_p)$ is a product of supersingular elliptic curves over \mathbb{F}_p and $|X(l)_p(\mathbb{F}_{p^2})|$ attains the Hasse-Weil upper bound $1 + p^2 + (l - 1)p$.

References

[1] S. Bosch, W. Lütkebohmert and M. Raynaud, Néron Model. A series of Modern Surveys in Mathematics, 21, Springer-Verlag, 1990.
[2] P. Deligne, Variétés abéliennes ordinaire sur un corps fini, . Inventiones Math. 2:238–243, 1967.
[3] M. Demazure, Lectures on p-divisible groups. Lecture Notes in Mathematics, Springer-Verlag, 1972.
[4] B. van Geemen, K. Koike and A. Weng, Quotient of Fermat curves and a Hecke character. Finite Fields and Their Appl., 11:6–29, 2005.
[5] E. Z. Goren, On certain reduction problems concerning abelian surfaces. Manuscripta Math., 94:33–43, 1997.
[6] A. Grothendieck, Groupes de Barsotti-Tate et cristaux de Diuedonné. Sém. Math. Sup. 45, Presses de l’Univ. de Montreal, 1970.
[7] S. Lang, Complex multiplication. A Series of Comprehensive Studies in Mathematics 255, Springer-Verlag, 1983.
[8] H.W. Lenstra and F. Oort, Simple abelian varieties having a prescribed formal isogeny type. J. Pure Appl. Algebra., 4:47–53, 1974.
[9] Yu.I. Manin, The theory of commutative formal groups over fields of finite characteristic. Russ. Math. Surv., 18:1-80, 1963.
[10] J.S. Milne, Etale Cohomology. Princeton Math. Series, 33, 1980.
[11] J.S. Milne and W.C. Waterhouse, Abelian varieties over finite fields. Proc. Symp. Pure Math., 20:53–64, 1971.
[12] F. Oort, Abelian varieties over finite fields. Lecture note of Summer school in Göttingen, June, 2007.
[13] F. Oort, Which abelian surfaces are products of elliptic curves. Math. Ann., 214:35–47, 1975.
[14] F. Oort, Subvarieties of moduli spaces. Invent. Math., 24:95–119, 1974.
[15] R. Pink, Finite group schemes. Lecture course in WS 2004/05., 2005.
[16] J. P. Serre and J. Tate, Good reductions of abelian varieties. Annals of Math., 88:492–517, 1968.
[17] T. Shioda, Supersingular K3 surfaces. Lect. Notes Math., 732:564–591, 1979.
[18] H. Stichtenoth, Algebraic function fields and codes. Springer-Verlag, Berlin, 1993.
[19] J. Tate, Endomorphism of abelian varieties over finite fields. Inventiones Math., 2:134–144, 1966.
[20] W.C. Waterhouse, Abelian varieties over finite fields. Ann. Sc. Ec. Norm. Sup., 4-2:521–560, 1969.
[21] A. Zaytsev, Generalization of Deuring reduction theorem. arXiv [math.AG], 1209.5207v1.