ON THE BINARY HELIUM STAR DY CENTAURI: CHEMICAL COMPOSITION AND EVOLUTIONARY STATE

Gajendra Pandey1, N. Kameswara Rao1, C. Simon Jeffery2, and David L. Lambert3

1 Indian Institute of Astrophysics, Bangalore 560034, India; pandey@iiaap.res.in, nkrao@iiaap.res.in
2 Armagh Observatory, Collage Hill, Armagh BT61 9DG, UK; csj@arm.ac.uk
3 The W. J. McDonald Observatory and Department of Astronomy, University of Texas at Austin, Austin, TX 78712-1083, USA; dll@astro.as.utexas.edu

Received 2014 June 26; accepted 2014 July 28; published 2014 September 9

ABSTRACT

DY Cen has shown a steady fading of its visual light by about one magnitude in the last 40 yr, suggesting a secular increase in its effective temperature. We have conducted non-local thermodynamic equilibrium (LTE) and LTE abundance analyses to determine the star’s effective temperature, surface gravity, and chemical composition using high-resolution spectra obtained over two decades. The derived stellar parameters for three epochs suggest that DY Cen has evolved at a constant luminosity and has become hotter by about 5000 K in 23 yr. We show that the derived abundances remain unchanged for the three epochs. The derived abundances of the key elements, including F and Ne, are as observed for the extreme helium stars resulting from a merger of a He white dwarf with a C–O white dwarf. Thus DY Cen by chemical composition appears to also be a product of a merger of two white dwarfs. This appearance seems to be at odds with the recent suggestion that DY Cen is a single-lined spectroscopic binary.

Key words: stars: abundances – stars: atmospheres – stars: chemically peculiar – stars: evolution – stars: fundamental parameters – stars: individual (DY Cen)

1. INTRODUCTION

The hydrogen-deficient giant DY Centauri is commonly known as an R Coronae Borealis (RCB) variable (Hoffleit 1930), although no RCB-type activity has been observed since that reported in 1930. From its color, it was known to be significantly hotter than most other RCB stars (Kilkenny & Whitet 1984), while a high-resolution spectrum obtained in 1987 showed it to have an effective temperature and surface composition similar to that of the hotter extreme helium (EHe) stars (Jeffery & Heber 1993) (JH93), albeit with an apparently low iron abundance and a high (10%) hydrogen abundance. An identification of RCB and EHe stars with stars evolving on a post-white-dwarf merger track has become increasingly strong in recent years (Saio & Jeffery 2002; Pandey et al. 2006; Clayton et al. 2007; Jeffery et al. 2011); the assumption was that DY Cen also lies on this track.

Recent evidence suggests that this may not be so. The conclusion that DY Cen represents a substantially different type of star to the RCB and EHe stars was hinted at by De Marco et al. (2002), who highlighted a number of discrepant radial velocity measurements and demonstrated a systematic increase in V magnitude during an interval of some 80 yr. Rao et al. (2012) demonstrated that DY Cen is a single-lined spectroscopic binary with an orbital period of 39 d; all other EHe and RCB stars are single stars, as expected for a white-dwarf-merger origin. DY Cen and another “RCB” star with significant hydrogen, V854 Cen, show other differences to normal RCB stars.

2. SECULAR FADING OF DY CEN

Drilling (1986) noted that if the EHe and RCB stars share the same luminosity, they show a steady fading of the absolute visual magnitude toward a higher effective temperature (T_{eff}). The photometric variation of DY Cen with time was summarized by De Marco et al. (2002) and Rao et al. (2013), showing a fading in visual magnitude by about 1.3 magnitudes over the previous century with dramatic change in the nebular emission line fluxes, prompting the suggestion that it could be associated with a secular increase in effective temperature on a timescale of decades.

In order to calibrate the star’s fading, we have taken the theoretical spectral energy distributions (SEDs) for a grid of line-blanketed hydrogen-deficient model atmospheres (Behara & Jeffery 2006), computed with a chemical composition appropriate to that of DY Cen. Since the SED total flux is proportional to the fourth power of T_{eff}, each SED in the model grid was divided by this quantity in order to apply a constant luminosity approximation. Each SED was then convolved with the B- and V...

1. INTRODUCTION

The hydrogen-deficient giant DY Centauri is commonly known as an R Coronae Borealis (RCB) variable (Hoffleit 1930), although no RCB-type activity has been observed since that reported in 1930. From its color, it was known to be significantly hotter than most other RCB stars (Kilkenny & Whitet 1984), while a high-resolution spectrum obtained in 1987 showed it to have an effective temperature and surface composition similar to that of the hotter extreme helium (EHe) stars (Jeffery & Heber 1993) (JH93), albeit with an apparently low iron abundance and a high (10%) hydrogen abundance. An identification of RCB and EHe stars with stars evolving on a post-white-dwarf merger track has become increasingly strong in recent years (Saio & Jeffery 2002; Pandey et al. 2006; Clayton et al. 2007; Jeffery et al. 2011); the assumption was that DY Cen also lies on this track.

Recent evidence suggests that this may not be so. The conclusion that DY Cen represents a substantially different type of star to the RCB and EHe stars was hinted at by De Marco et al. (2002), who highlighted a number of discrepant radial velocity measurements and demonstrated a systematic increase in V magnitude during an interval of some 80 yr. Rao et al. (2012) demonstrated that DY Cen is a single-lined spectroscopic binary with an orbital period of 39 d; all other EHe and RCB stars are single stars, as expected for a white-dwarf-merger origin. DY Cen and another “RCB” star with significant hydrogen, V854 Cen, show other differences to normal RCB stars.

2. SECULAR FADING OF DY CEN

Drilling (1986) noted that if the EHe and RCB stars share the same luminosity, they show a steady fading of the absolute visual magnitude toward a higher effective temperature (T_{eff}). The photometric variation of DY Cen with time was summarized by De Marco et al. (2002) and Rao et al. (2013), showing a fading in visual magnitude by about 1.3 magnitudes over the previous century with dramatic change in the nebular emission line fluxes, prompting the suggestion that it could be associated with a secular increase in effective temperature on a timescale of decades.

In order to calibrate the star’s fading, we have taken the theoretical spectral energy distributions (SEDs) for a grid of line-blanketed hydrogen-deficient model atmospheres (Behara & Jeffery 2006), computed with a chemical composition appropriate to that of DY Cen. Since the SED total flux is proportional to the fourth power of T_{eff}, each SED in the model grid was divided by this quantity in order to apply a constant luminosity approximation. Each SED was then convolved with the B- and V...

1. INTRODUCTION

The hydrogen-deficient giant DY Centauri is commonly known as an R Coronae Borealis (RCB) variable (Hoffleit 1930), although no RCB-type activity has been observed since that reported in 1930. From its color, it was known to be significantly hotter than most other RCB stars (Kilkenny & Whitet 1984), while a high-resolution spectrum obtained in 1987 showed it to have an effective temperature and surface composition similar to that of the hotter extreme helium (EHe) stars (Jeffery & Heber 1993) (JH93), albeit with an apparently low iron abundance and a high (10%) hydrogen abundance. An identification of RCB and EHe stars with stars evolving on a post-white-dwarf merger track has become increasingly strong in recent years (Saio & Jeffery 2002; Pandey et al. 2006; Clayton et al. 2007; Jeffery et al. 2011); the assumption was that DY Cen also lies on this track.

Recent evidence suggests that this may not be so. The conclusion that DY Cen represents a substantially different type of star to the RCB and EHe stars was hinted at by De Marco et al. (2002), who highlighted a number of discrepant radial velocity measurements and demonstrated a systematic increase in V magnitude during an interval of some 80 yr. Rao et al. (2012) demonstrated that DY Cen is a single-lined spectroscopic binary with an orbital period of 39 d; all other EHe and RCB stars are single stars, as expected for a white-dwarf-merger origin. DY Cen and another “RCB” star with significant hydrogen, V854 Cen, show other differences to normal RCB stars.

2. SECULAR FADING OF DY CEN

Drilling (1986) noted that if the EHe and RCB stars share the same luminosity, they show a steady fading of the absolute visual magnitude toward a higher effective temperature (T_{eff}). The photometric variation of DY Cen with time was summarized by De Marco et al. (2002) and Rao et al. (2013), showing a fading in visual magnitude by about 1.3 magnitudes over the previous century with dramatic change in the nebular emission line fluxes, prompting the suggestion that it could be associated with a secular increase in effective temperature on a timescale of decades.

In order to calibrate the star’s fading, we have taken the theoretical spectral energy distributions (SEDs) for a grid of line-blanketed hydrogen-deficient model atmospheres (Behara & Jeffery 2006), computed with a chemical composition appropriate to that of DY Cen. Since the SED total flux is proportional to the fourth power of T_{eff}, each SED in the model grid was divided by this quantity in order to apply a constant luminosity approximation. Each SED was then convolved with the B- and
Figure 1. Lower panel: theoretical zero-point-corrected V magnitudes vs. T_{eff}. Observed V magnitudes are shown by filled circles with errors and epoch. The effective temperatures for the 1987 point are taken from spectroscopy. Upper panel: theoretical $B - V$ colors vs. T_{eff}.

V-band-filter response functions given in Table 2 of Bessell (1990), integrated to obtain the total flux in the V band, and converted to a magnitude.

An arbitrary zero point is obtained by comparing the theoretical V magnitude corresponding to $T_{\text{eff}} = 19,500$ K in 1987 May measured spectroscopically by JH93 with a mean value of $V = 12.784$ measured by Pollacco & Hill (1991) in 1987 May and June. The zero-point-corrected theoretical V magnitudes and the $B - V$ colors are shown as a function of T_{eff} in Figure 1, together with observed V magnitudes from 1930, 1970, 1987 (Hoffleit 1930; Marino & Walker 1971; Pollacco & Hill 1991), and 2007 (AAVSO4). Hoffleit’s photographic magnitudes are converted to V magnitude by a recipe given by De Marco et al. (2002).

Figure 1 suggests that if the luminosity has remained constant, an explanation for the secular fading of DY Cen can be provided by an increase in effective temperature from about 14,000 K in 1930 to about 25,000 K in 2010. It remains to be shown that this is the only explanation which can account for the observations.

In the following sections, high-resolution optical spectra from 1987 to 2010 are analyzed to determine if the star has evolved at constant luminosity with concomitant variations in effective temperature and surface gravity. In addition, the chemical composition of DY Cen is determined anew using the superior spectra now available.

3. OBSERVATIONS

High-resolution spectra of DY Cen are available from the nights of 1987 April 17, 2002 June 24, and several nights between 2010 February 27 and 2010 March 2. All spectra were obtained at maximum light, there having been no minima recorded over the period of these observations, according to visual estimates from AAVSO. The data were reduced using standard procedures appropriate to the instrument, as described by JH93 and Rao et al. (2012).

The 1987 spectrum was obtained with CASPEC, the Cassegrain échelle spectrograph on the 3.6 m telescope of the European Southern Observatory at La Silla, Chile. The spectrum covers the spectral range 4000–4900 Å at a (two-pixel) resolution of about 22,000. The spectrum was analyzed in detail by JH93.

The 2002 spectrum was obtained with UCLES, the University College échelle spectrograph on the 3.9 m Anglo-Australian Telescope at Siding Spring Observatory, Australia. The spectrum covers the spectral range 3800–5100 Å at a resolution of 100,000 with a signal-to-noise ratio (S/N) of 70, but when smoothed to the resolution of the 2010 UVES spectra the UCLES spectrum has a S/N comparable to that of the former. Further details were given by Rao et al. (2012).

Four spectra were acquired in 2010 February and March with UVES, the cross-dispersed échelle spectrograph (Dekker et al. 2000) on the Very Large Telescope of the European Southern Observatory at Cerro Paranal, Chile. A resolution $R \equiv \lambda/\Delta \lambda \approx 34,000$ was estimated from the telluric lines in the 5920 Å region. The available spectra cover the wavelength regions 3300–4500 Å and 5700–7500 Å. In the blue spectrum, the S/N exceeds 200 at the above wavelengths. The spectrum from 2010 February 27 was chosen for an abundance analysis because the lines were least affected by emission in the core, and the absorption line profiles are the most symmetric. Emission cores are prominent in hydrogen Balmer lines, He I lines, and

4 http://www.aavso.org
C II lines. The emission appears to be variable on a timescale of weeks, since the 2010 February 27 spectrum shows little or no core emission compared with the 2010 March 2 spectrum. Several nebular lines, including [O ii], [O iii], [N ii], and [S ii], are also present (Rao et al. 2013).

Spectra at all three epochs are dominated by photospheric absorption. The vast majority of lines arise from H i, He i, C ii, C iii, N ii, N iii, O i, O iii, Ne i, and Ne ii. A few lines from other ions are present, but care must be taken to account for blending of these lines with lines from the above species which dominate the spectrum. Lines were identified using the Revised Multiplet Table (RMT; Moore 1972), tables of spectra of H, C, N, and O (Moore 1993), and the NIST Atomic Spectra Database.5

The primary information required from these spectra are the effective temperature and surface gravity and the chemical composition of DY Cen at each epoch. Quantitative analysis is applied consistently to each spectrum.

4. QUANTITATIVE FINE ANALYSES

Determination of the atmospheric parameters and the chemical composition is based on line-blanketed model atmospheres. The effective temperature T_{eff} and surface gravity g are obtained from the intersection of loci in the T_{eff} versus log g plane. These loci include several expressing ionization equilibrium (e.g., C ii/C i, and O i/O ii) and others derived from fits to the Stark-broadened profiles of the He i lines, as illustrated below. The microturbulent velocity ξ is determined from the O ii lines spanning a range in equivalent width.

In principle, determination of chemical composition is an iterative process which concludes when the composition adopted in the computation of the model atmosphere equals the composition derived from a spectrum. Test calculations with models computed for C/He of 0.3%–1% and H/He of 0.0001 and 0.1 give essentially the same atmospheric structure and, thence, the same atmospheric parameters, including the composition.

For DY Cen, photoionization of neutral helium is the principal source of continuous opacity at optical wavelengths. Thus lines of another species, e.g., C ii/C i, are sensitive to the C/He ratio. The abundances are given as log $\epsilon(X)$ and normalized with respect to log $\Sigma_{\text{HXE}}(X) = 12.15$, where μ_X is the atomic weight of element X. With bound-free He transitions providing the opacity, the strength of the He i lines is not very temperature-sensitive; the excitation potential of the continuous opacity-providing levels is but slightly elevated with respect to the levels providing the observed lines. A similar consideration applies to many of the lines of other ions which have high excitation potentials but are similar to those of He providing continuous opacity.

Under DY Cen’s atmospheric conditions, the approximation of local thermodynamic equilibrium (LTE) is expected to fail for some species. In recognition of this failure, the abundance analyses were carried out for non-LTE model atmospheres and for non-LTE (and LTE) line formation for all major elements and some minor elements. Partially blanketed non-LTE model atmospheres were computed with the code TLUSTY (Hubeny 1988; Hubeny & Lanz 1995) using atomic data and model atoms provided on the TLUSTY home page.6 The microturbulence of $\xi = 10 \text{km s}^{-1}$ was used for computing the model atmospheres. These model atmospheres included both bound-free and bound–bound transitions of H, He, C, N, O, and Ne in NLTE. The adopted model atoms, with their number of levels given in brackets, are H i(9), He i(14), He ii(14), C i(8), C ii(11), C iii(12), C iv(13), N i(13), N ii(6), N iii(11), N iv(12), O i(22), O ii(29), O iii(29), Ne i(35), Ne ii(32), and Ne iii(34).

Other atoms were considered with lines analyzed in LTE except for the following, for which TLUSTY provides model atoms with the number of levels in brackets: Mg i(14), Si i(16), Si ii(12), Si iv(13), S i(14), S iii(20), Fe i(36), and Fe iii(50).

Model atmospheres in LTE were computed using TLUSTY and were also taken from an extensive grid of LTE models described by Behara & Jeffery (2006). The latter models were constructed using the fully line-blanketed LTE code STERNE (Behara & Jeffery 2006), which incorporates Opacity Project bound-free opacities for all important elements up to and including iron and bound–bound atomic transitions corresponding to some 10^6 lines by means of an opacity-sampling (OS) formalism (Behara & Jeffery 2006). As a starting approximation, a composition corresponding to that of JH93 was adopted, with the exception that the iron abundance was scaled to be solar relative to the silicon abundance. An important feature of the OS approach is that the microturbulent velocity ξ can easily be adjusted to be consistent with that measured from the observed spectrum. A large value of ξ was found by JH93 and confirmed by the present analyses (see below). A model grid was computed covering the ranges $T_{\text{eff}} = 16,000(1000)30,000$, K and log $g = 1.7(0.1)3.0$ cgs. Test calculations showed that LTE TLUSTY and LTE STERNE models for parameters applicable to DY Cen give essentially the same atmospheric parameters and elemental abundances. It is thus very likely that the non-LTE effects estimated from comparison of results for LTE and non-LTE TLUSTY atmospheres are representative of those that would be found from STERNE models were the latter available in a non-LTE variety.

An extensive LTE analysis of the blue optical spectrum of DY Cen was reported by JH93. Ionization equilibrium was used to establish the effective temperature T_{eff}. Stark-broadened neutral helium line profiles provided the surface gravity g, and abundances were obtained for 13 elements from H to Fe. In addition, the microturbulent velocity ξ and the projected rotation velocity $v_{\text{rot}} \sin i$ were measured from the O i lines. The approximation of LTE for the atomic-level populations was adopted throughout.

In the interim it has been shown that departures from LTE strongly affect the profiles, and especially the cores, of neutral helium lines in EHe stars of similar T_{eff} to DY Cen (Przybilla et al. 2005), and the lines of C, N, and O used to establish atmospheric parameters may also be affected by departures from LTE. Additionally, a complete treatment of line-blanking is important for the temperature stratification and, hence, the measurement of T_{eff} of hot He stars (Behara & Jeffery 2006), but tests show that the line-blanking adopted for TLUSTY models is a good approximation to complete line-blanking.

In this paper, we have used TLUSTY and SYNSPEC for calculating LTE and non-LTE model atmospheres and line profiles (Hubeny 1988; Hubeny et al. 1994; Hubeny & Lanz 1995). Stellar atmospheric parameters are determined from the CASPEC, UCLES, and UVES spectra on the assumption of non-LTE using the H i, He i, C ii, C iii, C iv, N ii, N iii, O ii, and O iii lines. Abundances of elements beyond O are determined from analyses of lines in the UVES spectra with occasional reference to the CASPEC spectrum and also to the UCLES spectrum, whose S/N is comparable to that of a UVES spectrum, when smoothed to the resolving power of a UVES spectrum. Adoption of the UVES spectrum for the “heavy” element analyses is

5 http://www.nist.gov/pml/data/asd.cfm
6 http://nova.astro.umd.edu/index.html
warranted by the superior quality of the UVES spectra relative to the CASPEC spectrum. Except where noted, the gf-values of the lines are taken from the NIST database. A few other sources consulted for gf-values are referenced in footnotes to the relevant tables.

For the elements H to Ne, identification of lines suitable for analysis is not a major issue. In particular, ions of C, N, and O are generally very well represented, and a good selection of clean lines is available. Moore (1993) is the primary source of wavelengths and classifications for these lines. Identifications of the few lines of “heavy” elements are discussed later. Hydrogen Balmer lines are subject to overlying variable emission. Emission swamps the absorption component in early Balmer lines: Hβ has a strong emission core in the UVES spectra, but strong absorption dominates the line in the CASPEC and UCLES spectra. Strong variable emission is also seen in some C II lines. Weak emission is the only signature of Balmer lines beyond H17 at 3697 Å in the UVES spectra. Neutral helium lines are well represented. Early lines in several series exhibit a P Cygni profile, e.g., R876.6 Å and 6678.1 Å. He I lines are traceable to the short wavelength limit of the UVES spectra. Emission components in H I, He I, C II, and other lines are likely attributable to the star’s extended atmosphere.

4.1. Non-LTE Analyses

Line profiles and theoretical equivalent widths were obtained for these model atmospheres using the companion non-LTE code SYNSPEC (Hubeny et al. 1994). Non-LTE abundances were derived by matching the observed absorption profile or its measured equivalent width with the SYNSPEC prediction. Note that features which are unresolved blends of two or more lines were synthesized and matched to the observed feature by adjustment of the abundances.

The procedure for determining the T_{eff}, log g, and ξ is a standard one. The microturbulent velocity ξ is estimated from the O II lines because they show a wide range in equivalent width. O II lines with similar lower excitation potentials (LEPs) were used to minimize the temperature dependence: O II lines were used with LEPs about 23, 26, and 28 eV. ξ is found by requiring the abundance to be independent of the measured equivalent width.

For pairs of ions of the same element, insistence upon ionization equilibrium provides a locus in the (T_{eff}, log g) plane. Available potential loci include C II/C III, C II/C IV, C III/C IV, and O II/O III. Not all of these loci are available for all spectra.

An additional locus is provided by fits to the strongest, cleanest He I line profiles with their Stark-broadened wings. Predicted line profiles depend on the electron densities and therefore on the temperature and surface gravity.

A final locus is the T_{eff} from photometry.

The effective temperature and surface gravity are found to be the best overall fit to the intersecting loci.

4.1.1. CASPEC 1987

From the 1987 CASPEC spectrum we re-determine the stellar parameters (T_{eff}, log g, ξ) using the non-LTE model atmospheres and the non-LTE line formation code as discussed in the above section. As described earlier, ξ is estimated from the O II lines. The T_{eff} and log g are then determined from the He I line profiles, the ionization balance for (C II, C III), and the photometric estimate of T_{eff}. For our analysis, we have used the line list given by JH93 with some additions to the C II and C III lines. Fits of synthetic spectra convolved with the instrumental profile with a FWHM of 0.2 Å according to JH93 give a projected rotational velocity of 20–25 km s$^{-1}$ from clean O II lines.

Note that for most of the CNO lines our measured equivalent widths are in good agreement with those of JH93. Hence we have used the JH93 equivalent widths and the most recent gf-values (see Section 4). Our non-LTE analysis gives the final model parameters: (T_{eff}, log g, ξ) = (19,400, 2.1, 20.0), in agreement with the stellar LTE parameters derived by JH93. The CNO lines given in Table 2 are used in this analysis. Observed profiles of the He I 4922 Å, 4471 Å, and 4388 Å line are shown in Figure 2 with predicted non-LTE profiles for non-LTE atmospheres of T_{eff} = 19,400 K and two different surface gravities. Predicted profiles include the convolution with the instrumental profile and the projected rotational velocity. At this effective temperature, the surface gravity log g ≥ 2.1 provides a good fit to these He I lines. For the final model, line-by-line non-LTE abundances (including the mean abundance) and the line-to-line scatter are given in Table 2. The lines giving significantly deviant abundances are marked by a question mark and are not included in estimating the mean. The abundance rms errors due to uncertainty in T_{eff} and log g from C II, C III, N II, N III, and O II are 0.06, 0.24, 0.08, 0.21, and 0.12 dex, respectively.

4.1.2. AAT/UCLES 2002

In our analysis of the AAT/UCLES spectrum, we have adopted the same procedure and nearly the same lines as for the CASPEC spectrum; the spectral bandpasses are almost identical. However, the UCLES spectrum is generally of higher quality, especially if coaddition of pixels is employed to reduce the resolving power to that of the UVES spectrum. The final derived stellar parameters are (T_{eff}, log g, ξ) = (23,000, 2.35, 23.0). The CNO lines given in Table 2, and the wings of the observed He I profiles at 4026 Å, 4922 Å, and 4388 Å (Figure 3) are used in this analysis. Synthetic profiles are convolved with the instrumental profile and with the projected rotational profile of 20–27 km s$^{-1}$ determined from a fit to clean O II lines. The abundance rms errors due to uncertainty in T_{eff} and log g from C II, C III, N II, N III, and O II are 0.05, 0.18, 0.08, 0.18, and 0.01 dex, respectively.

4.1.3. UVES 2010

Of the UVES spectra, the spectrum with photospheric absorption lines least affected by core emissions was used (2010 February 27). Table 3 of this paper lists the chosen lines of H, C, N, and O.

A microturbulent velocity $\xi = 24 \pm 3$ km s$^{-1}$ is obtained from the O II lines. Observed profiles of the He I 4009 Å and 4388 Å line are shown in Figure 4 with predicted non-LTE profiles for a non-LTE atmosphere of T_{eff} = 25,000 K and two different surface gravities. The predicted profiles have been convolved with the instrumental profile and the stellar rotation profile. A projected rotational velocity of about 40 km s$^{-1}$ is estimated by using unblended moderately strong lines. The best-fitting theoretical profile (log g = 2.50) provides one point on the T_{eff} – log g locus. The chosen lines are those least affected by emission.

To the mean of the loci from the He I profiles we add several loci from application of ionization equilibrium to C and O ions and the T_{eff} from photometry. Figure 5 shows these loci. Their intersection suggests that the best non-LTE model atmosphere has $T_{\text{eff}} = 24,800 \pm 600$ K and log g = 2.50 ± 0.12.
Figure 2. Observed CASPEC spectrum and theoretical NLTE He i line profiles calculated using the NLTE model $T_{\text{eff}} = 19,400$ K for two different log g values. See the key on the figure.

Figure 3. Observed UCLES spectrum and theoretical NLTE He i line profiles calculated using the NLTE model $T_{\text{eff}} = 23,000$ K for two different log g values. See the key on the figure.
Figure 4. Observed UVES spectrum and theoretical NLTE He i line profiles calculated using the NLTE model $T_{\text{eff}} = 25,000$ K for two different log g values. See the key on the figure.

Figure 5. T_{eff} vs. log g plane for CASPEC, UCLES, and UVES spectra, from left to right. Loci satisfying ionization equilibria are plotted, see the keys on the figure. The loci satisfying the optical He i line profiles are shown. The locus satisfying the optical H i line profile is also shown for the UVES spectrum. The cross shows the adopted NLTE model atmosphere parameters. The T_{eff} derived from photometry is shown by arrows.
Similarly to He I, the H I line profiles are affected by emissions. The H I observed profiles at 3722 Å, 3970 Å and 4340 Å were chosen for estimating the NLTE hydrogen abundance by spectrum synthesis. The line wings of the 3970 Å and 4340 Å profiles are mainly used for this purpose as their cores are severely affected by emissions. The hydrogen model atoms and line-broadening coefficients are from TLUSTY. Observed profiles of the 3722 Å, 4397 Å, and 4340 Å are shown in Figure 6 with predicted non-LTE profiles for a non-LTE atmosphere of $T_{\text{eff}} = 25,000$ K and $\log g = 2.5$ for three different hydrogen abundances.

The abundance analysis for all elements was conducted for the model atmosphere ($T_{\text{eff}}, \log g, \xi) = (25,000, 2.50, 24.0)$. The final photospheric line-by-line non-LTE and/or LTE abundances (including the mean abundance) and the line-to-line scatter are given in Tables 3 and 4. The lines giving significantly deviant abundances are marked by a question mark and are not included in estimating the mean. The abundance rms errors, due to uncertainty in T_{eff} and $\log g$, from C II, C III, C IV, N II, N III, O II, O III, and Ne II are 0.11, 0.14, 0.29, 0.09, 0.12, 0.08, 0.14, and 0.13 dex, respectively.

Similarly, we have also conducted the LTE analysis. The LTE TLUSTY models with the LTE line analysis give the final model parameters: ($T_{\text{eff}}, \log g, \xi) = (24,750, 2.65, 30.0)$. The LTE abundances for the best LTE TLUSTY model are given in Tables 3 and 4. The abundance rms errors, due to uncertainty in T_{eff} and $\log g$, are very similar to those estimated for the appropriate non-LTE model atmosphere.

4.1.4. Atmospheric Parameters—Summary

Results of the analysis of the He, C, N, and O lines for the CASPEC, UCLES, and UVES spectra are summarized in Table 1 and shown graphically in Figure 5 where the available loci are plotted together with the T_{eff} from the V-band photometry. The adopted T_{eff} and $\log g$ for each spectrum is shown by the cross in each panel. For a given spectrum, the cross is a good representation of each available locus and in fair to good agreement with the T_{eff} from the V-band photometry. These spectroscopic analyses show that DY Cen evolved to higher effective temperature and higher surface gravities between 1987 and 2010 following the trend suggested by photometry since early in the twentieth century (Figure 1).

The DY Cen’s derived stellar parameters for all three epochs (Figure 7) are plotted on Figure 6 of Saio & Jeffery (2002) for the merger products. This suggests that DY Cen has evolved at a constant luminosity corresponding to a 0.9 M_\odot model starting from 0.6–0.5 M_\odot CO WDs. DY Cen has become hotter by about 5000 K in 23 yr, i.e., at a rate of about $d(T_{\text{eff}})/dt$ (K/yr) = 2.34. This rate is higher when compared with the rates given by Saio & Jeffery (2002) in their Figure 7 for the merger products. Rao et al. (2012), based on their radial velocity measurements, noticed that DY Cen is a binary. It is possible that the binary companion, by interaction, is increasing DY Cen’s mass loss rate and, hence, enhancing its evolutionary rate as observed by Schönberner (1979).
5. CHEMICAL COMPOSITION

Since the dominant opacity across the optical is provided by neutral He atoms, the lines of an ion are sensitive to the abundance ratio of that element to helium. Abundances for element X—log \epsilon(X)—are normalized to log \Sigma \mu X \epsilon(X) = 12.15, where \mu X is the atomic weight of element X.

With the exception of neon, which is well represented by both the Ne i and Ne ii lines, the elements beyond C, N, and O provide either no or just a few detectable lines. Thus the accuracy of an elemental abundance depends in large part on secure identifications of stellar lines. In this regard, the higher quality of the UVES and (smoothed) UCLES spectra relative to the CASPEC spectrum has led to several revisions of the line identifications used by JH93 in their abundance analysis.

In the following, selected elements from H to Fe are discussed, and recommended abundances are derived. Recommendations are given in Table 5 where we also list the abundances from JH93 (their Table 2). The various RMT cited refer to Moore (1972).

Hydrogen. The H abundance from select Balmer lines in the UVES spectra is given in Table 3: the mean non-LTE abundance is 10.65, corresponding to a H/He ratio of 0.13 by number. Our analysis of H\beta, H\gamma, and H\delta in the CASPEC and UCLES spectra confirm this abundance with 10.6 \pm 0.1 and 10.7 \pm 0.1 from CASPEC and UCLES spectra, respectively. These H abundances are consistent with the LTE value of 10.76 \pm 0.20 obtained by JH93; the corrections for non-LTE effects are small. With this H/He ratio, DY Cen is among the most H-rich of the He-rich H-poor supergiants, including the EHe and RCB stars, as JH93 recognized.

Carbon. Carbon is represented by roughly equal numbers of C ii and C iii lines, and in the case of the UVES spectra by two C iv lines. Examination of the non-LTE abundances from the different ions in Tables 2 and 3 shows consistent results from the ions in the individual spectra. The unweighted means that suggest a quasi-constant abundance across the CASPEC, UCLES, and UVES spectra are 9.54 (CASPEC), 9.41 (UCLES), and 9.74 (UVES) for mean abundances of 9.57 from C ii lines and 9.54 from C iii lines. Given the errors of measurement and the line variability, including the appearance of emission components, the apparent variation of the C abundance is not considered a real effect. We adopt a mean C abundance of 9.55 or a C/He ratio of 1.0% by number.

Nitrogen. The N abundance is heavily dependent on the N ii lines, with a single N iii line providing supporting evidence. The two ions give very similar N non-LTE abundances, a comforting result in that the non-LTE corrections are quite different for the two ions. The mean abundances do not change significantly from the CASPEC, UCLES, and UVES spectra: log \epsilon(N) = 7.78 is adopted.

Oxygen. For the UVES spectra, the O abundance is based on roughly equal numbers of O ii and O iii lines, with good agreement between the non-LTE abundance from the two ions. The CASPEC and UCLES spectra from the O ii lines alone give a slightly lower O abundance than does the value from the UVES spectrum. The mean non-LTE abundance from the three sets of O ii lines log \epsilon(O) = 8.87.

Fluorine. A multiplet-by-multiplet search for F ii lines resulted in detections of two lines from RMT 3 (Figure 8): the strongest line, a blend of three components, is present and appears unblended at 3505.6 å; the next strongest line, also a...
Table 2
Measured Equivalent Widths (W_{λ}) and NLTE Photospheric Line Abundances for DY Cen CASPEC and UCLES Spectra

Line	χ (eV)	log gf	W_{λ}: CASPEC, AAT/UCLES (mÅ)	log ϵ(X)
H α 4101.734	10.199	−0.753	Synth	10.75
H α 4340.462	10.199	−0.447	Synth	10.72
H α 4861.323	10.199	−0.020	Synth	10.58
Mean...	10.70 ± 0.10	10.60 ± 0.10
C II 4017.272	22.899	−1.031	85, ...	9.65
C II 4021.166	22.899	−1.333	35, 40	9.46
C II 4321.657	23.116	−0.901	... 56	9.45
C II 4323.107	23.114	−1.105	49, 32	9.49
C II 4325.832	23.119	−0.373	...	9.38
C II 4326.164	23.116	−0.407	234, 184	9.48
C II 4372.375	24.656	+0.057\(^c\)	244, ...	9.56
C II 4372.501	24.658	+0.272\(^c\)	302, 225	9.69
C II 4374.281	24.654	+0.660\(^d\)	184, ...	9.38
C II 4376.382	24.656	+0.380\(^d\)	184, ...	9.38
Mean...	9.53 ± 0.11	9.43 ± 0.13
C IV 1462.877	40.064	+0.218	... 85	9.52
C IV 1466.900	40.010	+0.718	52, 150	9.63
C IV 1467.418	29.535	+0.070	261, 483	9.40
C IV 1465.473	29.535	−0.629	153, ...	9.62
C IV 1465.860	38.226	+0.044	... 90	9.43
Mean...	9.55 ± 0.13	9.39 ± 0.14
N II 2272.736	21.599	−0.061	74, 61	7.68
N II 2447.030	20.409	+0.221	216, 150	7.86
N II 2601.478	18.466	−0.452	192, 241	7.82
N II 2607.153	18.462	−0.522	174, 189	7.80
N II 2613.868	18.462	−0.692	... 163	8.08
N II 2630.539	18.483	+0.080	288, 300	7.74
N II 2643.086	18.483	−0.371	113, 198	7.34
N II 2788.138	20.654	−0.366	46, 48	7.47
Mean...	7.67 ± 0.20	7.88 ± 0.21
N III 2420.070	36.856	+0.250	12, 30	8.24\(^c\)
O I 4001.724	25.837	−0.302	...	7.85
O I 4004.990	25.837	−0.015	180, 242	8.84
O I 4153.298	25.837	+0.053	176, ...	8.95
O I 4317.139	22.966	−0.386	262, 344	8.79
O I 4319.630	22.979	−0.380	241, 357	8.71
O I 4336.859	22.979	−0.763	207, 240	8.99
O I 4345.560	22.979	−0.346	323, 376	8.97
O I 4349.426	22.999	+0.060	384, 550	8.74
O I 4366.895	22.999	−0.348	291, 396	8.85
O I 4414.899	23.442	+0.172	330, 514	8.47
O I 4416.975	23.419	−0.077	281, 418	8.56
O I 4452.378	23.442	−0.788	152, 209	8.76
O I 4461.632	22.979	−0.278	225, 373	8.56
O I 4673.733	22.979	−1.090	153, 245	9.04
O I 4676.235	22.999	−0.394	244, 358	8.75
O I 4696.353	22.999	−1.380	37, 95	8.41
O I 4705.346	26.249	+0.477	179, ...	8.16
O I 4906.830	26.305	−0.161	112, 235	8.47
O I 4924.529	26.305	+0.074	175, 300	8.53
O I 4941.072	26.554	−0.053	88, ...	9.07
O I 4943.005	26.561	+0.239	152, ...	9.25
Mean...	8.74 ± 0.27	8.84 ± 0.22

Notes.
\(^a\) (T_{eff}, log g, ξ) = (19,400, 2.10, 2.00).
\(^b\) (T_{eff}, log g, ξ) = (23,000, 2.35, 2.30).
\(^c\) Yan et al. (1987).
\(^d\) Wiese et al. (1966).
Table 3
Measured Equivalent Widths (W_{λ}) and NLTE/LTE Photospheric Line Abundances for the DY Cen UVES Spectrum

Line	χ (eV)	log gf	W_{λ} (mÅ)	log $\epsilon(X)$	NLTEa	LTEb
H i λ3721.939	10.199	-1.975	Synth	10.52		
H i λ3970.072	10.199	-0.993	Synth	10.72		
H i λ4340.462	10.199	-0.447	Synth	10.72		
Mean...	10.65 ± 0.12	10.76 ± 0.04	
C ii λ3581.757	22.529	-1.643	36	10.10	10.15	
C ii λ3952.057	24.278	-0.210^c	152	9.82	9.85	
C ii λ3977.250	24.372	-0.500^c	66	9.58	9.62	
C ii λ3980.317	24.373	-0.210^c	105	9.57	9.60	
C ii λ4017.272	22.899	-1.031^c	74	9.83	9.90	
C ii λ4021.166	22.899	-1.333^c	39	9.79	9.86	
C ii λ4313.106	23.116	-0.373	202	9.96	10.01	
C ii λ4321.657	23.116	-0.901	55	9.59	9.65	
C ii λ4323.107	23.114	-1.105	39	9.62	9.68	
C ii λ4374.281	24.654	$+0.660$	353	10.07	10.01	
Mean...	9.79 ± 0.20	9.83 ± 0.19	
C iii λ3885.938	39.852	$+0.205$	42	9.72	9.80	
C iii λ3886.145	39.852	-0.698	152	9.62	9.77	
C iii λ4056.061	40.197	$+0.265$	160	9.66	9.72	
C iii λ4162.877	40.064	$+0.218$	173	9.81	9.92	
C iii λ4186.900	40.010	$+0.918$	246	9.50	9.68	
C iii λ4382.897	39.852	-0.778	66	9.67	9.65	
C iii λ4383.533	39.852	-1.255	66	9.70	9.93	
C iii λ5826.420	40.197	$+0.416$	160	9.83	9.80	
C iii λ6550.770	40.197	-0.882	17	9.79 ± 0.10	9.70 ± 0.14	
Mean...	9.68 ± 0.11	9.78 ± 0.11	
C iv λ5801.310	37.548	-0.194	42	9.72	9.80	
C iv λ5811.970	37.548	-0.495	24	9.86	9.60	
Mean...	9.79 ± 0.10	9.70 ± 0.14	
N ii λ3341.140	18.497	-0.436	112	7.97	8.13	
N ii λ3955.851	18.466	-0.813	78	8.01	8.22	
N ii λ3994.997	18.497	$+0.208$	349	8.32?	8.42	
N ii λ4035.081	23.124	$+0.623^c$	85	7.75	7.87	
N ii λ4041.310	23.142	$+0.853^c$	135	7.82	7.93	
N ii λ4043.532	23.132	$+0.743^c$	78	7.58	7.70	
N ii λ4171.595	23.196	$+0.280^c$	35	7.64	7.77	
N ii λ4176.159	23.196	$+0.600^c$	65	7.64	7.76	
N ii λ4227.736	21.600	-0.061	50	7.78	7.93	
N ii λ4241.755	23.242	$+0.210^c$	103	7.69	7.92	
N ii λ4241.786	23.246	$+0.713^c$	103	7.69	7.92	
N ii λ4432.736	23.415	$+0.580^c$	80	7.83	7.95	
Mean...	7.77 ± 0.14	7.92 ± 0.16	
N iii λ4200.070	36.856	$+0.250$	42	7.78	8.42	
O i λ3305.003	25.849	-0.723	85	9.55?	9.16	
O i λ3306.451	25.837	-0.740	80	9.53?	9.14	
O i λ3377.146	25.286	-0.342	168	8.89	9.15	
O i λ3390.209	25.286	-0.044	212	8.92	9.07	
O i λ4307.223	28.510	-1.121	130	9.37	9.30	
O i λ4307.276	28.512	$+0.025$	130	9.37	9.30	
O i λ4309.706	28.512	-0.167	65	9.03	9.02	
O i λ4309.760	28.512	-1.121	65	9.03	9.02	
O i λ3739.761	26.305	-0.427	175	8.85	9.19	
O i λ3762.465	26.305	-0.580	154	8.92	9.23	
O i λ3882.194	25.664	-0.035	290	9.48?	9.15	
O i λ3893.518	25.638	-1.589	32	9.19		
O i λ3907.455	25.649	-0.925	105	9.39	9.11	
O i λ3911.958	25.661	$+0.000$	342	9.52?	9.16	
O i λ3912.117	25.661	-0.888	342	9.52?	9.16	
O i λ3945.038	23.419	-0.727	330	8.91	9.47?	
blend of three components, at 3503.1 Å is present; the multiplet’s weakest line at 3501.4 Å falls in the wing of a He I line. Lines from other multiplets are masked by stronger lines from other contributing ions. Table 4 shows that the two F I blends give similar LTE abundances with gf-values from the NIST Web site. The abundance log $\epsilon(F)$ = 7.0 is adopted. (F I lines are absent as expected—see Pandey’s (2006) collection of spectra of extreme helium stars.)

Neon. Neon is well represented by both Ne I and Ne II lines. Model atoms in SYNSPEC allow us to compute non-LTE (and LTE) Ne abundances for both the neutral and ionized lines. Neutral Ne is represented in DY Cen by several multiplets in the red. Five clean lines are given in Table 4 with gf-values from the NIST Web site. The equivalent widths of these lines are substantially smaller than those reported by JH93, and the stellar profiles appear to be composed of a blend of two equal

Line	χ (eV)	log gf	W_λ (mÅ)	log $\epsilon(X)$
O I λ3954.362	23.419	-0.396	423	8.80
O I λ3973.256	23.441	-0.015	585	8.83
O I λ3982.714	23.441	-0.703	340	8.90
O I λ4185.440	28.357	+0.604	240	8.96
O I λ4189.581	28.360	-0.828		
O I λ4189.794	28.360	+0.716	253	8.89
O I λ4192.512	28.509	-0.470	48	8.83
O I λ4196.273	28.512	-1.425		
O I λ4196.697	28.512	-0.726	63	9.13
O I λ4327.460	28.509	+0.057		
O I λ4327.649	28.509	-1.090	140	8.93
O I λ4336.859	22.979	-0.763	345	9.16
O I λ4345.560	22.979	-0.346	465	9.20
O I λ4349.426	22.998	+0.060	687	9.33
O I λ4366.895	22.999	-0.348	570	9.487
O I λ4395.955	26.248	-0.167	190	8.93
O I λ4405.978	26.248	-1.300	29	8.98
O I λ4414.899	23.441	+0.172	665	9.10
O I λ4416.975	23.419	-0.077	530	9.03
O I λ4452.378	23.442	-0.788	265	9.04
O I λ4443.010	28.358	-0.047	156	9.17
O I λ4448.191	28.361	+0.083	188	9.22
O I λ6641.031	23.419	-0.884	394	9.557
O I λ6721.388	23.441	-0.610	582	9.647

Mean...
O I λ3312.329	33.151	-0.644	36	8.93
O I λ3340.765	33.182	-0.482	56	9.04
O I λ3430.568	37.250	-0.902	18	9.15
O I λ3444.052	37.250	-0.427	34	9.02
O I λ3707.272	37.234	-0.121	31	8.70
O I λ3715.086	37.249	+0.149	56	8.82
O I λ3754.696	33.150	-0.099	126	8.83
O I λ3757.232	33.135	-0.452	86	8.88
O I λ3759.875	33.182	+0.162	157	8.73
O I λ3774.026	33.150	-0.601	60	8.81
O I λ3810.985	33.182	-1.810	8	8.79
O I λ3961.573	38.011	+0.314	60	9.05

Mean...

Notes.

- g-value.
- $T_{eff} = (25,000, 2.50, 24.00).$
- $T_{eff} = (24,750, 2.65, 30.0).$
- $T_{eff} = (24,750, 2.65, 30.0).$
- $Kurucz g$-value.

components or contaminated by weak central emission. The mean Ne abundance from Ne I lines is 8.7 and 9.5 from non-LTE and LTE analyses, respectively.

Ionized Ne provides many lines, and a large selection of the cleanest lines is provided in Table 4. The gf-values are taken from the NIST website if available or else from Kurucz’s website. For the UVES spectrum, the mean neon abundances from the Ne II lines are 8.4 ± 0.2 (LTE) and 8.0 ± 0.1 (non-LTE). These mean values are substantially lower than those from the Ne I lines: the difference is 0.7 dex for the non-LTE analyses. The Ne abundance from the Ne I lines is confirmed by reanalysis of the Ne I lines measured by Rao et al. (1993) and listed by JH93 off a spectrum from 1989.

Magnesium. In the bandpass of the UVES spectrum, the sole signature of magnesium is the Mg II 4481 Å feature. Atomic data for the feature composed of three unresolved lines are from...
Figure 8. Observed UVES spectrum and theoretical F \textsc{ii} line profiles calculated using the LTE model $T_{\text{eff}} = 24,750$ K and $\log g = 2.65$ for three different F abundances. See the key on the figure.

Kelleher & Podobedova’s (2008c) critical evaluation which also appears on the NIST Web site. The Mg abundances from the UVES spectrum are $\log \epsilon(\text{Mg}) = 6.8$ and 7.1 for non-LTE and LTE analyses, respectively.

The 4481 Å feature is also present on the CASPEC and UCLES spectra where its equivalent width is 256 mÅ and 176 mÅ, respectively, to be compared with 154 mÅ from the UVES spectrum. The feature when analyzed with the appropriate model atmosphere (Table 1) gives very similar non-LTE Mg abundances: namely, 6.70, 6.67, and 6.76 from the CASPEC, UCLES, and UVES spectra, respectively.

Aluminum. The aluminum abundance must be determined from the few available Al \textsc{iii} lines with $\log g f$-values taken from Kelleher & Podobedova (2008a)’s compilation, except that values for RMT 8 at 4480 Å not included by them are taken from Kurucz. Al \textsc{ii} and A \textsc{iv} lines are not expected to be detectable in the available spectra, an expectation confirmed by examination of the spectra.

For the UVES spectra, the Al abundance comes from the four features in Table 4. The Al LTE abundances from three detected lines are 6.07 from 3601.6 Å, 7.70 from 5722.7 Å, and 6.22 from the blend at 4480 Å. The large discrepancy between the 3601 Å and 5722 Å lines comes from two well-resolved lines and no known blend for either line. This discrepancy suggests serious non-LTE effects are present. A feature at 4149.9 Å is absent and sets an abundance upper limit of 5.1, a limit more than 1 dex below the abundance provided by the 3601.6 and 4480 Å lines. The 4149.9 Å feature is also not detectable on the CASPEC and UCLES spectra. Clearly, this limited set of Al \textsc{iii} lines gives apparently inconsistent Al abundances. Our adopted abundance is 6.1 based on the consistent 3601.6 and 4480 Å features.

JH93 chose three Al \textsc{iii} features from two multiplets with a third multiplet rejected because of a blend with an O \textsc{ii} line. In addition to the 4480 Å feature, they adopted RMT 3 with a line at 4512.6 Å and a blend near 4529 Å. Remeasurement and reanalysis of these three features from CASPEC and UCLES spectra confirms the 1993 result that they give consistent Al abundances and suggests that our adopted abundance is a reasonable choice.

Silicon. At the atmospheric conditions prevailing from 1987 to 2010, one expects to see lines from the ions Si$^+$, Si$^{2+}$ and Si$^{3+}$ depending on wavelength coverage of available spectra. Atomic data, including $g f$-values, are taken from the critical evaluation by Kelleher & Podobedova (2008b).

Si \textsc{ii}. The only Si \textsc{ii} lines on the CASPEC spectrum are from RMT 3 at 4130.89 Å and 4128.05 Å with $\log g f$-values of 0.57 and 0.36, respectively. JH93 reported these as absorption lines with equivalent widths of 273 mÅ and 268 mÅ, respectively. Inspection of these lines on the UVES spectra shows that both are blended to the red with stronger O \textsc{ii} lines; the Si \textsc{ii} equivalent widths attributed to the CASPEC spectrum probably refer to the blend of Si \textsc{ii} and O \textsc{ii} lines. Synthesis of the blends in the UVES spectrum gives the non-LTE Si abundance of 8.4 from both lines.

An advantage of the UVES spectra over the CASPEC and UCLES spectra is that greater wavelength coverage of the red spectrum includes Si \textsc{ii} lines from RMT 2 (6347 Å and 6371 Å) and RMT 4 (5978 Å and 5957 Å). These lines are in emission and not in absorption; the upper term of RMT 2 is the lower term for RMT 4. Application of LTE or non-LTE to absorption lines at 4128 Å and 4130 Å is of suspect validity given that these red multiplets appear in emission.
Table 4
Measured Equivalent Widths (W_λ) and NLTE/LTE Photospheric Line Abundances of F, Ne, and Heavier Elements for the DY Cen UVES Spectrum

Line	χ (eV)	$\log gf$	W_λ (mÅ)	log ϵ(X)	NLTEa	LTEb
Fe II λ3502.840	25.102	-0.400				
Fe II λ3502.964	25.102	$+0.187$				
Fe II λ3503.109	25.102	$+0.391$	42	6.90		
Fe II λ3505.368	25.104	-0.757				
Fe II λ3505.513	25.104	$+0.090$				
Fe II λ3505.628	25.104	$+0.676$	70	7.05		
Mean...	\cdots	\cdots	\cdots	\cdots	6.98 ± 0.11	
Ne I λ6143.063	16.619	-0.100	141	8.76	9.41	
Ne I λ6163.594	16.715	-0.620	70	8.70	9.54	
Ne I λ6266.495	16.715	-0.370	84	8.53	9.39	
Ne I λ6334.428	16.619	-0.320	115	8.87	9.50	
Ne I λ6402.246	16.619	$+0.330$	245	8.63	9.44	
Mean...	\cdots	\cdots	\cdots	\cdots	8.70 ± 0.13	9.46 ± 0.06
Ne II λ3309.739	27.783	-0.990	30	8.09	8.36	
Ne II λ3323.734	27.783	$+0.030$	152	7.87	8.47	
Ne II λ3327.152	27.233	-0.220	130	7.92	8.58	
Ne II λ3334.836	27.169	$+0.380$	235	7.72	8.61	
Ne II λ3444.396	27.270	-0.300	140	8.05	8.74	
Ne II λ3345.454	30.549	-0.030	73:	8.08	8.69	
Ne II λ3357.820	30.927	-0.290	37	8.15	8.59	
Ne II λ3378.217	27.659	-0.240	72	7.79	8.29	
Ne II λ3388.419	31.185	$+0.360$	54	7.93	8.23	
Ne II λ3417.689	31.121	$+0.350$	66	8.22	8.37	
Ne II λ3453.068	31.185	-0.480	30	8.11	8.44	
Ne II λ3481.933	27.783	-0.290	102	7.97	8.28	
Ne II λ3542.845	31.362	$+0.130$	82	7.93	8.48	
Ne II λ3557.803	27.859	-1.140	25	8.07	8.34	
Ne II λ3565.826	31.362	-0.330	32	8.01	8.38	
Ne II λ3568.500	30.549	$+0.330$	136	7.88	8.51	
Ne II λ3571.230	31.362	-0.320	45	8.17	8.55	
Ne II λ3574.611	30.549	$+0.170$	126	7.99	8.60	
Ne II λ3628.036	31.512	-0.320	20	7.95	8.18	
Ne II λ3643.928	27.783	-0.590	56	7.82	8.21	
Ne II λ3664.073	27.169	-0.250	172	7.92	8.58	
Ne II λ3694.212	27.169	$+0.090$	233	7.75	8.51	
Ne II λ3709.621	27.233	-0.340	170	7.93	8.61	
Ne II λ3766.258	27.233	-0.430	156	7.92	8.57	
Ne II λ3777.134	27.270	-0.440	190	8.06	8.76	
Mg II λ4481.126	8.863	$+0.479$				
Mg II λ4481.150	8.863	-0.553				
Mg II λ4481.325	8.863	$+0.594$	Synth	6.76	7.13	
Al II λ3601.650	14.376	$+0.01$				
Al II λ3601.927	14.374	-0.95	100	6.07		
Al II λ4149.913	20.55	$+0.63$	\leq8			
Al II λ4479.885	20.78	$+0.09$				
Al II λ4479.971	20.78	$+1.02$				
Al II λ4480.009	20.78	-0.53	95	6.22		
Al II λ5722.730	15.642	-0.07	252	7.14		
Mean...	\cdots	\cdots	\cdots	\cdots	6.15 ± 0.11	
Si II λ5739.734	19.722	-0.096	300	7.23	7.50	
Si ii. A search of the UVES spectra provided the well-resolved line at 5739.7 Å (RMT 4) with no obvious blends—see Table 4 for the LTE and non-LTE Si abundances. Another line at 3791.4 Å is blended with an O i line. Assuming that this line is solely due to Si ii gives Si abundances of 7.03 and 7.14 for LTE and non-LTE analyses, respectively. These values are about 0.6 dex less than the abundances from the 5739 Å line. Inclusion of the O i contribution to the 3791 Å line obviously increases the abundance difference between the 5739 Å and 3791 Å lines.

Two additional multiplets are present on the CASPEC and UCLES spectra and provide six clean lines well suited to abundance analysis: three lines of RMT 2 at 4552.6, 4567.8, and 4574.7 Å and three lines or blends of RMT 9 at 4829.1, 4819.7, and 4813.3 Å. (JH93 did not include these lines in their analysis.) These features give consistent abundances when analyzed with the appropriate model atmosphere: the mean non-LTE Si abundances are 6.86 (RMT 2) and 6.84 (RMT 9) for the CASPEC lines and 6.92 (RMT 2) and 6.75 (RMT 9) for the UCLES lines for the grand mean of 6.84.

Si iv. The two Si iv lines of RMT 1 were detected and analyzed by JH93. The weaker line at 4116.104 Å appears unblended. The stronger line at 4088.86 Å is blended with an O i line from RMT 48, as noted by Jeffery and Heber. These lines which appear also in the UCLES and UVES spectra are the only representatives of the Si i ion in the spectra.

Analysis of the 4116 Å line on the UVES spectrum gives Si abundances of log ε(Si) = 7.03 (LTE) and 6.69 (non-LTE). A consideration of the Si ii, Si iii, and Si iv lines discussed in this section suggests that the Si abundance is log ε(Si) ≃ 6.8 according to the suite of the CASPEC, UCLES, and UVES spectra. In drawing this conclusion, we give zero weight to the Si abundance from Si ii 4128 Å and 4130 Å on the grounds that the Si ii lines in the red spectrum are in emission, which feature is not accounted for by our non-LTE analysis. A concern is that the clean Si iii 5739 Å line gives a higher abundance of 7.2, and the blended Si iii 3791 Å line gives the upper limit of 6.6 when the line is assumed to be purely from the Si ii ion.

Phosphorus. A search of UVES spectra was conducted for the P ii, P iii, and P iv lines. No lines of P ii were found. Two lines of P iii and three lines of P iv were deemed potentially suitable for abundance analysis. Three lines of P iii were the basis for the P abundance reported by JH93.

P iii. Two lines appear to be unblended: 4080.09 Å from RMT 1 and 4222.20 Å from RMT 3. A second line from RMT 3 at 4246.72 Å was listed by JH93. However, this line is blended with the C iii and N ii lines. The NIST Web site’s log gf-values are from the evaluation by Wiese et al. (1969). Recent quantum calculations by Froese Fischer et al. (2006) give slightly different results: the 2006 values are 0.17 dex and 0.08 dex smaller for RMT 1 and 3, respectively. We adopt the 2006 calculations. Abundances are LTE estimates because TLUSTY does not include model P ions.

In the UVES spectrum, the 4080 Å line has a much smaller equivalent width than the 4222 Å lines (20 mÅ versus 157 mÅ).

Line	χ	log gf	Wχ	log ε(X)	
	(eV)		(mÅ)		
Si iv λ4116.104	24.050	−0.110	176	6.69	7.03
P iii λ4080.089	14.490	−0.310	20	5.33?	
P iii λ4222.198	14.610	+0.210	157	5.91	
Mean...	⋯	⋯	⋯	5.91 ± 0.00	
P iv λ3347.736	28.132	+0.25e	19	6.02	
P iv λ3364.467	28.132	+0.02e	12	6.01	
P iv λ4249.656	29.012	−0.13e	11	5.85	
Mean...	⋯	⋯	⋯	5.96 ± 0.10	
Si iii λ3324.854	17.745	+0.057	40	6.11	6.05
Si iii λ3656.560	18.187	−0.921	6	6.20	6.08
Si iii λ3661.942	18.192	−0.462	15	6.12	6.06
Si iii λ3717.771	18.244	−0.060	65	6.29	6.32
Si iii λ3778.903	18.193	−1.148	7	6.39	6.33
Mean...	⋯	⋯	⋯	6.22 ± 0.12	6.17 ± 0.14
Fe iii λ3603.888	11.210	−1.380	13	6.00	6.61
Fe iii λ4005.039	11.570	−1.760	⩽ 9	⩽ 6.10	⩽ 6.83
Fe iii λ4122.780	20.599	+0.360	⩽ 8	⩽ 6.40	⩽ 6.75
Fe iii λ4137.764	20.613	+0.630	⩽ 8	⩽ 6.00	⩽ 6.47
Fe iii λ4139.350	20.613	+0.520	⩽ 8	⩽ 6.20	⩽ 6.57
Fe iii λ4304.482	20.613	+1.000	⩽ 12	⩽ 6.80	⩽ 7.18
Fe iii λ4164.731	20.634	+0.920	⩽ 9	⩽ 5.90	⩽ 6.24
Fe iii λ4166.840	20.634	+0.410	⩽ 9	⩽ 6.40	⩽ 6.75
Mean...	⋯	⋯	⋯	6.00 ± 0.00	6.61 ± 0.00

Notes.

a (Teff, log g, ξ) = (25,000, 2.50, 24.0).
b (Teff, log g, ξ) = (24,750, 2.65, 30.0).
c Kurucz gf-value.
d Wiese et al. (1969).
e Froese Fischer et al. (2006).
and yields a lower P abundance (5.0 versus 5.99). The UCLES spectrum confirms this equivalent width difference. Yet the equivalent widths of the 4080 Å and 4222 Å lines listed by Jeffery and Heber from their CASPEC spectrum are almost identical. Examination of the CASPEC spectrum suggests that the 4080 Å feature measured previously was displaced by about 0.5 Å from the expected wavelength. In light of the agreement between the UVES and UCLES spectra, it would appear that the LTE analysis results in approximately a 0.5 dex abundance difference between the two lines. It does not appear that the 4222 Å line is contaminated by an unidentified line or that the 4080 Å is weakened by emission. Perhaps a non-LTE analysis would eliminate the 0.5 dex difference.

P_{iv}. Lines of RMT 1 and 2 appear to be present as weak lines. The strongest two lines of RMT 1—3347.72 Å and 3364.44 Å—are present, as is the single line of RMT 2 at 4249.57 Å. The latter line is too weak to be detected on either the CASPEC or UCLES spectra. The former two lines fall outside the CASPEC and UCLES bandpasses. The log gf-values given by NIST are quantum calculations (Zare 1967). More recent calculations (Froese Fischer et al. 2006) giving similar results are adopted in Table 4.

With the exception of the low P abundance from the P \equiv 4080 Å line, a P LTE abundance of 6.0 is indicated from one P \equiv and three P iv lines.

$Sulfur$. The S abundance given by JH93 was based on three S \equiv and two S iv lines. A reassessment of sulfur’s contribution to DY Cen’s spectrum was made using the UVES spectra. Atomic data were taken from Podobedova et al.’s (2009) critical evaluation.

S_{ii}. Inspection of the UVES spectra gave no convincing identifications of S \equiv lines. The likely strongest line—5453.855 Å from RMT 6—falls outside the bandpass of all available spectra. Several lines are not detectable on the UVES and/or the UCLES spectra and provide upper limits to the S abundance consistent with the abundance provided by the S \equiv lines. Three S \equiv lines were measured by JH93: two lines (4815.6 Å and 4716.3 Å) from RMT 9 and one (4162.7 Å) from RMT 44. On the UVES and UCLES spectra, the 4815.6 Å line is absent, the 4716.3 Å may be present, and the 4162.7 Å line is blended with a C \equiv line.

S_{iii}. The ion S$^{2+}$ is represented by a handful of weak lines. The two moderately strong lines from RMT 4 listed by Jeffery and Heber are badly blended. Table 4 details the selected lines providing abundance estimates; other lines from some of the multiplets are obviously present and might provide an abundance estimate were synthetic spectra computed. No line in Table 4 is of a strength to be detectable in the CASPEC spectrum.

The mean non-LTE sulfur abundance from the five S \equiv lines is log ϵ(S) = 6.2 after a negligible correction for non-LTE effects.

$Argon$. Leading lines of the lowest multiplets of Ar \equiv are absent. In particular, 4400.886 Å from RMT 1 with log gf = −0.28 is not detectable on the UVES spectra, and 4806.020 Å with log gf = 0.21 is not present on the UCLES spectrum. The LTE Ar abundances are log ϵ(Ar) \leq 7.2 and 6.6 from 4400 Å and 4806 Å, respectively. Our equivalent width limit for 4806 Å of 15 mÅ is similar to the measurement of 10 mÅ reported by JH93 from their CASPEC spectrum. All Ar \equiv lines within the bandpasses of available spectra are far below detection limits.

$Iron$. JH93 used two Fe \equiv lines from RMT 4 to derive the low Fe abundance log ϵ(Fe) = 5.04, i.e., 2.4 dex below the solar abundance. Our search of the UVES spectrum yielded upper limits and one weak line from multiplets 4, 36, 45, and 118. The log gf-values are taken from Kurucz.

Table 5

Element	Non-LTE	LTE	JH93	Suna
H	10.7	10.8	10.8	12.0
He	11.5	11.5	11.5	10.9
C	9.6	9.8	9.5	8.4
N	7.8	7.9	8.0	7.8
O	9.0	9.1	8.9	8.7
F	⋯	7.1	⋯	4.6
Ne$^+$	8.7	9.5	9.6	7.9
Ne$^{\equiv}$	8.0	8.4	⋯	⋯
Mg	6.7	7.1	7.3	7.6
Al	⋯	6.1	5.9	6.5
Si	6.8	7.0	8.1	7.5
P	⋯	6.0	5.8	5.4
S	6.2	6.2	7.1	7.1
Ar	⋯	\leq6.9	6.1	6.4
Fe	6.0	6.6	5.0	7.5

Note. aAsplund et al. (2009).

The leading line of RMT 4 at 4419.596 Å is coincident with an emission line with emission of comparable strength present on the UCLES spectrum and just possibly on the CASPEC spectrum. Emission may be present also at 4431.019 Å at a strength too weak to be seen in the UCLES spectrum: an absorption equivalent width is no stronger than 13 mÅ or the LTE abundance is less than log ϵ(Fe) = 7.0. This is one of the two lines used by Jeffery and Heber, who gave the equivalent width as 67 mÅ. Their other line at 4395.755 Å is blended with an O \equiv line. The RMT 4 line at 4352.577 Å is absent, with an equivalent width limit of 6 mÅ yielding the non-LTE Fe abundance limit log ϵ(Fe) \leq 7.2.

Multiplet RMT 36 provides a possible detection of the multiplet’s second strongest line: the line at 3603.888 Å has an equivalent width of 13 mÅ and gives the non-LTE abundance of log ϵ(Fe) = 6.0. Multiplets 45 and 118 provide useful upper limits to the Fe non-LTE abundance (see Table 4) in the range 6.0 to 6.4. In short, the adopted Fe non-LTE abundance is log ϵ(Fe) \leq 6.0.

A nagging concern about the abundance analysis is the 0.7 dex difference between the non-LTE Ne abundance provided by the red Ne \equiv and blue-ultraviolet Ne \equiv lines. The UVES spectra are the only available spectra of DY Cen to provide both Ne \equiv and Ne \equiv lines. The Ne \equiv lines analyzed by JH93 confirm our Ne abundance from these lines. One might attribute the 0.7 dex difference to an inadequate treatment of non-LTE effects in line formation in an atmosphere that fails to resemble the chosen theoretical atmosphere. One cannot help but notice that the red-Ne \equiv–blue-Ne \equiv difference is reproduced apparently in abundances from the selection of Al \equiv lines and Si \equiv lines (see Table 4). Are these differences unrelated non-LTE effects? Or is there a common wavelength effect such as an error in the modeling of the continuous opacity?

6. COMMENTARY ON DY CEN’S COMPOSITION

Table 5 summarizes the abundances. Columns two and three give our non-LTE and LTE abundances, respectively, and previous estimates by JH93 are given in column four. Composition of the solar photosphere is given in the final column (Asplund et al. 2009).

Comparison with Jeffery and Heber. A fair comparison involves the LTE abundance estimates. Inspection of Table 5 shows that the two determinations are in good agreement (i.e.,
differences of less than ±0.2 dex with the difference for C at 0.3 dex) except for three elements: −1.1 (Si), −0.9 (S) and +1.6 (Fe), where the numerical value is our LTE abundance minus their LTE abundance in dex. The principal reason for these differences appears to be found in differing choices of lines (see above).

Initial metallicity. DY Cen’s initial metallicity should be judged from elements most likely unaffected by nucleosynthetic processes whose products are now in the star’s atmosphere. This criterion identifies the sequence of heavy elements from Mg to Fe. For elements for which a non-LTE abundance was determinable, the differences (in dex) between abundance for DY Cen and the solar photosphere (Asplund et al. 2009) are −0.9 (Mg), −0.7 (Si), −0.9 (S), and −1.5 (Fe). A straight average of these four would give a metal deficiency of −1.0 dex. However, the Mg/Fe, Si/Fe, and S/Fe ratios could point to the origin of DY Cen in the Galactic thick disk and an initial Fe abundance of about −1.2 dex.

For the remaining heavy elements with a LTE abundance estimate only, the differences with the solar photosphere are somewhat confusing for Al and P: −0.3 (Al) and +0.6 (P); however, as discussed above, the available lines for both elements do not provide an entirely consistent set of LTE abundances. Non-LTE corrections for Al seem likely to drive the Al abundance downward and provide a difference with the solar photosphere more in line with the values for Mg, Si, and S. For an iron deficiency of 1.0 dex, the expected P abundance for the thick disk is about 4.7 (Caffau et al., 2011), i.e., a non-LTE correction of −1.3 dex is implied, or the chosen P iii and P iv lines are seriously blended.

Fluorine. The fluorine abundance is in line with the abundance found for EHe by Pandey (2006) from F i lines and for many RCB stars also from F i lines by Pandey et al. (2008). The overabundance relative to the solar photosphere is 2.5 dex or 2.7 dex if the recent redetermination of the solar F abundance is adopted (Maiorca et al. 2014).

In the case of the EHe and RCB stars, synthesis of F is identified with a hot phase as two low-mass white dwarfs merge—the double-degenerate (DD) scenario. In the competing scenario for forming a EHe or a RCB, a low-mass asymptotic giant branch experiences a final or a late He shell flash, but F synthesis is not expected in this case. This latter expectation seems confirmed by the case of Sakurai’s object (V4334 Sgr) for which Pandey et al. (2008) found an upper limit for the F abundance of 5.4 dex or about 1.6 dex less than the typical F abundance of EHe and most RCBs.

Comparison with EHe. Spectral classification supported by the general characteristics of the chemical composition suggest that DY Cen’s origin is closely related to that of the EHe whose origins in turn are supposed to be related to those of the RCB stars. Compilations of the compositions of EHe and RCBs (Pandey et al. 2006; Pandey & Lambert 2011; Jeffery et al. 2011) show that key nucleosynthetic signatures of EHe are shared with DY Cen, i.e., DY Cen has the typical C/He ratio (∼1%) and marked Ne and severe F overabundances of EHe. Similarity of nucleosynthetic signatures encourages the view that DY Cen and EHe share a common origin—a merger of a He and a C–O white dwarf (i.e., the double-degenerate (DD) scenario). This view is, perhaps, challenged by the exceptional H abundance of DY Cen which is 2 dex greater than the next most H-rich EHe and less seriously tested by DY Cen’s Fe abundance, which is among the lowest found for EHe. A severe challenge to the idea that DY Cen is a product of the DD scenario is the proposal by Rao et al. (2012) that the star is a spectroscopic binary with a low-mass unseen secondary which might be a He white dwarf or a low-mass (stripped?) main sequence star. Of course, one may suppose that DY Cen was originally a triple system which, thanks to a merger of two stars, is now a binary star.

Rao et al. (2012) suggest that DY Cen is a common-envelope system with the secondary presently embedded within the primary’s envelope. Theoretical studies of the formation of H-poor stars in binaries (e.g., Podsiadlowski 2008) sketch how binary systems of two normal stars may evolve through a common envelope to either a single or binary H-poor compact star and then evolve to a sdB star, a hot compact H-poor star approaching a white-dwarf cooling track. Atomic diffusion alters the surface composition of a sdB star, and therefore it is difficult to correlate sdB compositions with the composition of putative predecessors. Common-envelope systems leading to a sdB in a binary (e.g., Podsiadlowski (2008), Figure 2), in contrast to merger scenarios, do not experience nucleosynthesis resulting in overabundances of Ne and, in particular, F. Thus it would appear that a common envelope is insufficient to account for DY Cen, and a merger or similar event accompanied by nucleosynthesis is a necessary part of DY Cen’s history. Nonetheless, it should be noted that the majority of sdB stars are binaries, and several have periods in the 10–100 d range (Maxted et al. 2001; Copperwheat et al. 2011; Barlow et al. 2012).

7. CONCLUDING REMARKS

Judged solely by effective temperature, surface gravity, and chemical composition, DY Cen is an EHe, albeit one with an unusually large amount of hydrogen. This identification of DY Cen as an EHe is in conflict with the identification of the star as a spectroscopic binary (Rao et al. 2012) and both the generally accepted idea that EHe form by the merger of two white dwarfs and the observational (if tentative) conclusion from radial velocity studies that (other) EHe are single stars. Resolution of the conflict is expected to come from an intensive spectroscopic campaign covering about 120 d—three times the length of the orbital period found by Rao et al. Velocity and profile variations over this campaign should tease out the orbital velocity variation from those arising from atmospheric pulsations and wind instabilities.

We thank the referee Geoff Clayton for a constructive report. We would like to thank Anibal Garcia-Hernández for his support; the UVES observations were obtained with his collaboration. G.P. and N.K.R. would like to thank Simon Jeffery for his hospitality at Armagh Observatory during 2013 January to February when a part of this work was done. We thank Vincent Woolf, who obtained and reduced the 2002 AAT/UCLES spectrum. D.L.L. acknowledges the support of the Robert A. Welch Foundation of Houston, Texas, through grant F-634.

REFERENCES

Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481
Barlow, B. N., Wade, R. A., Liss, S. E., Østensen, R. H., & Van Winckel, H. 2012, ApJ, 758, 58
Behara, N. T., & Jeffery, C. S. 2006, A&A, 451, 643
Bessell, M. S. 1990, PASP, 102, 1181
Caffau, E., Bonifacio, P., Foraggio, R., & Steffen, M. 2011, A&A, 532, A98
Clayton, G. C., De Marco, O., Whitney, B. A., et al. 2011, AJ, 142, 54
Clayton, G. C., Geballe, T. R., Herwig, F., Fryer, C., & Asplund, M. 2007, ApJ, 662, 1220

The Astrophysical Journal, 793:76 (17pp), 2014 October 1

Pandey et al.
