Remarks on the Cauchy functional equation and variations of it

Daniel Reem

ICMC, University of São Paulo, São Carlos, Brazil

E-mail: dream@icmc.usp.br

http://w3.impa.br/~dream

June 19, 2015

The 53rd International Symposium on Functional Equations, Krynica-Zdrój, Poland
The Cauchy functional equation
\[f(x + y) = f(x) + f(y), \]

Fundamental in the theory of functional equations
Has many applications in various scientific domains
Has been extensively investigated by many people during the last 200 years (some are in the audience)

Remarks on the Cauchy equation
June 19, 2015
Well-known background

- The Cauchy functional equation

\[f(x + y) = f(x) + f(y), \]
Well-known background

- The Cauchy functional equation

\[f(x + y) = f(x) + f(y), \]

- Fundamental in the theory of functional equations
Well-known background

- The Cauchy functional equation
 \[f(x + y) = f(x) + f(y), \]
- Fundamental in the theory of functional equations
- Has many applications in various scientific domains
The Cauchy functional equation

\[f(x + y) = f(x) + f(y), \]

Fundamental in the theory of functional equations

Has many applications in various scientific domains

Has been extensively investigated by many people during the last 200 years (some are in the audience)
Background: Domain and range of \(f \) and the variables

Positive orthant

Subsets of \(\mathbb{R}^2 \)

Locally compact Polish groups

Banach spaces
Background: Domain and range of \(f \) and the variables

- \(\mathbb{R} \)
Background: Domain and range of f and the variables

- \mathbb{R}
- \mathbb{R}^n
Background: Domain and range of f and the variables

- \mathbb{R}
- \mathbb{R}^n
- Positive orthant
Background: Domain and range of f and the variables

- \mathbb{R}
- \mathbb{R}^n
- Positive orthant
- Subsets of \mathbb{R}^{2n}
Background: Domain and range of f and the variables

- \mathbb{R}
- \mathbb{R}^n
- Positive orthant
- Subsets of \mathbb{R}^{2n}
- Locally compact Polish groups
Background: Domain and range of f and the variables

- \mathbb{R}
- \mathbb{R}^n
- Positive orthant
- Subsets of \mathbb{R}^{2n}
- Locally compact Polish groups
- Banach spaces
Background: Domain and range of f and the variables

- \mathbb{R}
- \mathbb{R}^n
- Positive orthant
- Subsets of \mathbb{R}^{2n}
- Locally compact Polish groups
- Banach spaces
- More
Background: Regularity conditions on f
Background: Regularity conditions on f

- Continuity
Background: Regularity conditions on f

- Continuity
- Monotonicity
Background: Regularity conditions on f

- Continuity
- Monotonicity
- Integrability
Background: Regularity conditions on f

- Continuity
- Monotonicity
- Integrability
- Lebesgue Measurability
Background: Regularity conditions on f

- Continuity
- Monotonicity
- Integrability
- Lebesgue Measurability
- Chirstensen Measurability
Background: Regularity conditions on f

- Continuity
- Monotonicity
- Integrability
- Lebesgue Measurability
- Christensen Measurability
- Boundedness on certain subsets
Background: Regularity conditions on f

- Continuity
- Monotonicity
- Integrability
- Lebesgue Measurability
- Christensen Measurability
- Boundedness on certain subsets
- Algebraic conditions
Background: Regularity conditions on f

- Continuity
- Monotonicity
- Integrability
- Lebesgue Measurability
- Christensen Measurability
- Boundedness on certain subsets
- Algebraic conditions
- Topological conditions
Background: Regularity conditions on f

- Continuity
- Monotonicity
- Integrability
- Lebesgue Measurability
- Christensen Measurability
- Boundedness on certain subsets
- Algebraic conditions
- Topological conditions
- More
Common consequence of regularity conditions

Frequently, if \(f \) satisfies a regularity condition, then \(f \) is linear.
Common consequence of regularity conditions

Phenomenon

Frequently, if f satisfies a regularity condition, then f is linear.
Stability

Definition

$\epsilon > 0$ is given

A function f satisfies the following inequality

$$|f(x + y) - f(x) - f(y)| \leq \epsilon$$

is called an ϵ-additive function.

Phenomenon

In various settings an ϵ-additive function is an ϵ-perturbation of a (unique) pure additive function g:

$$|f(x) - g(x)| \leq \epsilon, \forall x.$$
Stability

Definition

- $\epsilon > 0$ is given
Stability

Definition

- $\epsilon > 0$ is given
- A function f satisfies the following inequality
 \[|f(x + y) - f(x) - f(y)| \leq \epsilon \quad \forall x, y \]

is called an ϵ-additive function.
Stability

Definition

- $\epsilon > 0$ is given

- A function f satisfies the following inequality

$$|f(x + y) - f(x) - f(y)| \leq \epsilon \quad \forall x, y$$

is called an ϵ-additive function.

Phenomenon

In various settings an ϵ-additive function is an ϵ-perturbation of a (unique) pure additive function g:

Daniel Reem (ICMC)
Stability

Definition

- \(\epsilon > 0 \) is given
- A function \(f \) satisfies the following inequality
 \[|f(x + y) - f(x) - f(y)| \leq \epsilon \quad \forall x, y \]

is called an \(\epsilon \)-additive function.

Phenomenon

In various settings an \(\epsilon \)-additive function is an \(\epsilon \)-perturbation of a (unique) pure additive function \(g \):

\[|f(x) - g(x)| \leq \epsilon, \quad \forall x. \]
Results: schematic description

Solvability and stability of the Cauchy equation relative to subsets of multi-dimensional Euclidean spaces and tori. New regularity conditions, e.g., e^{if} is locally measurable.

New approach: initial value approach. The analysis is extended to related equations, e.g.,:
- Cauchy's equation on restricted domains
- The multiplicative Cauchy equation,
- The Jensen equation,
- The Pexider equation.

Remarks on the Cauchy equation
June 19, 2015
Solvability and stability of the Cauchy equation relative to subsets of multi-dimensional Euclidean spaces and tori.
Solvability and stability of the Cauchy equation relative to subsets of multi-dimensional Euclidean spaces and tori.

New regularity conditions, e.g., e^{if} is locally measurable.
Solvability and stability of the Cauchy equation relative to subsets of multi-dimensional Euclidean spaces and tori.

New regularity conditions, e.g., e^{if} is locally measurable.

New approach: initial value approach.
Solvability and stability of the Cauchy equation relative to subsets of multi-dimensional Euclidean spaces and tori.

New regularity conditions, e.g., e^{if} is locally measurable

New approach: initial value approach.

The analysis is extended to related equations, e.g.,:
Solvability and stability of the Cauchy equation relative to subsets of multi-dimensional Euclidean spaces and tori.

New regularity conditions, e.g., e^{if} is locally measurable

New approach: initial value approach.

The analysis is extended to related equations, e.g.,:
 - Cauchy’s equation on restricted domains
Solvability and stability of the Cauchy equation relative to subsets of multi-dimensional Euclidean spaces and tori.

New regularity conditions, e.g., e^{if} is locally measurable.

New approach: initial value approach.

The analysis is extended to related equations, e.g.:
- Cauchy’s equation on restricted domains
- The multiplicative Cauchy equation,
Solvability and stability of the Cauchy equation relative to subsets of multi-dimensional Euclidean spaces and tori.

New regularity conditions, e.g., e^{if} is locally measurable.

New approach: initial value approach.

The analysis is extended to related equations, e.g.,:
- Cauchy’s equation on restricted domains
- The multiplicative Cauchy equation,
- The Jensen equation,
Solvability and stability of the Cauchy equation relative to subsets of multi-dimensional Euclidean spaces and tori.

New regularity conditions, e.g., \(e^{if} \) is locally measurable

New approach: initial value approach.

The analysis is extended to related equations, e.g.,:
- Cauchy’s equation on restricted domains
- The multiplicative Cauchy equation,
- The Jensen equation,
- The Pexider equation.
Theorem

If $f : \mathbb{R}^n \to \mathbb{R}$ satisfies the Cauchy equation and e is locally measurable, i.e., measurable on a hypercube, then there exists some $c \in \mathbb{R}^n$ such that $f(x) = c \cdot x$ for all $x \in \mathbb{R}^n$.

Remark

This regularity condition is strictly weaker than merely measurability of f.
Theorem

If $f : \mathbb{R}^n \to \mathbb{R}$ satisfies the Cauchy equation and $e^{i f}$ is locally measurable, i.e., measurable on a hypercube, then there exists some $c \in \mathbb{R}^n$ such that $f(x) = c \cdot x$ for all $x \in \mathbb{R}^n$.

Remark

This regularity condition is strictly weaker than merely measurability of f.

Daniel Reem (ICMC)
Remarks on the Cauchy equation
June 19, 2015
Theorem

If \(f : \mathbb{R}^n \to \mathbb{R} \) satisfies the Cauchy equation and \(e^{if} \) is locally measurable, i.e., measurable on a hypercube, then there exists some \(c \in \mathbb{R}^n \) such that \(f(x) = c \cdot x \) for all \(x \in \mathbb{R}^n \).

Remark

This regularity condition is strictly weaker than merely measurability of \(f \).
Proof: Approach 1

Theorems about automatic continuity from measurability and the description of measurable characters

Daniel Reem (ICMC)

Remarks on the Cauchy equation

June 19, 2015
1 Theorems about automatic continuity from measurability and the description of measurable characters
Proof 2: Initial value approach

Let $c \in \mathbb{R}^n$ be the unique solution to

$$c \cdot u_k = f(u_k), \quad k = 1, \ldots, n.$$

One solution to Cauchy's equation is $g_1 = f$, another is $g_2(x) = c \cdot x$.

Because Cauchy's equation is linear, to show that f is linear it suffices to show that if g is additive and U-periodic, i.e.,

$$g(x+y) = g(x) + g(y), \quad \forall x, y \in \mathbb{R}^n,$$

then $g(u_k) = 0, \quad k = 1, \ldots, n$,

then $g \equiv 0$.

Can be done by elementary but a bit technical arguments.
Proof 2: Initial value approach

- \(U := \{ u_1, \ldots, u_n \} \) a basis generating the cube

Let \(c \in \mathbb{R}^n \) be the unique solution to
\[
 c \cdot u_k = f(u_k), \quad k = 1, \ldots, n.
\]
One solution to Cauchy's equation is \(g_1 = f \), another is \(g_2(x) = c \cdot x \).
Because Cauchy's equation is linear, to show that \(f \) is linear it suffices to show that if \(g \) is additive and \(U \)-periodic, i.e.,
\[
g(x + y) = g(x) + g(y) \quad \forall x, y \in \mathbb{R}^n,
\]
then
\[
g(u_k) = 0, \quad k = 1, \ldots, n,
\]
then \(g \equiv 0 \).
Can be done by elementary but a bit technical arguments.
Proof 2: Initial value approach

- $U := \{u_1, \ldots, u_n\}$ a basis generating the cube
- Let $c \in \mathbb{R}^n$ be the unique solution to
 \[c \cdot u_k = f(u_k), \quad k = 1, \ldots, n. \]
Proof 2: Initial value approach

- $U := \{u_1, \ldots, u_n\}$ a basis generating the cube
- Let $c \in \mathbb{R}^n$ be the unique solution to
 \[c \cdot u_k = f(u_k), \; k = 1, \ldots, n. \]

- One solution to Cauchy’s equation is $g_1 = f$, another is $g_2(x) = c \cdot x$.
Proof 2: Initial value approach

- \(U := \{u_1, \ldots, u_n\} \) a basis generating the cube
- Let \(c \in \mathbb{R}^n \) be the unique solution to
 \[
 c \cdot u_k = f(u_k), \quad k = 1, \ldots, n.
 \]

One solution to Cauchy’s equation is \(g_1 = f \), another is \(g_2(x) = c \cdot x \).

Because Cauchy’s equation is linear, to show that \(f \) is linear it suffices to show that if \(g \) is additive and \(U \)-periodic, i.e.,
Proof 2: Initial value approach

- \(U := \{u_1, \ldots, u_n\} \) a basis generating the cube
- Let \(c \in \mathbb{R}^n \) be the unique solution to

\[
c \cdot u_k = f(u_k), \quad k = 1, \ldots, n.
\]

One solution to Cauchy’s equation is \(g_1 = f \), another is \(g_2(x) = c \cdot x \).

Because Cauchy’s equation is linear, to show that \(f \) is linear it suffices to show that if \(g \) is additive and \(U \)-periodic, i.e.,

\[
g(x + y) = g(x) + g(y) \quad \forall x, y \in \mathbb{R}^n,
\]

\[
g(u_k) = 0, \quad k = 1, \ldots, n,
\]
Proof 2: Initial value approach

- $U := \{u_1, \ldots, u_n\}$ a basis generating the cube
- Let $c \in \mathbb{R}^n$ be the unique solution to
 \[c \cdot u_k = f(u_k), \; k = 1, \ldots, n. \]

One solution to Cauchy’s equation is $g_1 = f$, another is $g_2(x) = c \cdot x$.

Because Cauchy’s equation is linear, to show that f is linear it suffices to show that if g is additive and U-periodic, i.e.,
 \[g(x + y) = g(x) + g(y) \quad \forall x, y \in \mathbb{R}^n, \]
 \[g(u_k) = 0, \; k = 1, \ldots, n, \]
then $g \equiv 0$.

Can be done by elementary but a bit technical arguments.
Proof 2: Initial value approach

- $U := \{u_1, \ldots, u_n\}$ a basis generating the cube
- Let $c \in \mathbb{R}^n$ be the unique solution to
 \[c \cdot u_k = f(u_k), \ k = 1, \ldots, n. \]

One solution to Cauchy’s equation is $g_1 = f$, another is $g_2(x) = c \cdot x$.

Because Cauchy’s equation is linear, to show that f is linear it suffices to show that if g is additive and U-periodic, i.e.,
\[g(x + y) = g(x) + g(y) \quad \forall x, y \in \mathbb{R}^n, \]
\[g(u_k) = 0, \quad k = 1, \ldots, n, \]
then $g \equiv 0$.

Can be done by elementary but a bit technical arguments.
Corollaries of the initial value approach

Corollary

There exists \(2^{\text{card}(\mathbb{R})} \) non-constant functions \(f : \mathbb{R} \to \mathbb{R} \), each of them has \(\text{card}(\mathbb{R}) \) linearly independent (over \(\mathbb{Q} \)) periods.

Corollary

If \(f : \mathbb{R}^n \to \mathbb{R} \) solves the Cauchy equation and satisfies an abstract regularity condition which significantly generalizes the condition that \(e^{ift} \) is locally measurable, then \(f \) is linear.

The regularity condition is related to a complex mean.
Corollaries of the initial value approach

Corollary

There exists $2^{\text{card}(\mathbb{R})}$ non-constant functions $f : \mathbb{R} \to \mathbb{R}$, each of them has $\text{card}(\mathbb{R})$ linearly independent (over \mathbb{Q}) periods.
Corollaries of the initial value approach

Corollary

There exists $2^\text{card}(\mathbb{R})$ non-constant functions $f : \mathbb{R} \to \mathbb{R}$, each of them has $\text{card}(\mathbb{R})$ linearly independent (over \mathbb{Q}) periods.

Corollary

If $f : \mathbb{R}^n \to \mathbb{R}$ solves the Cauchy equation and satisfies an abstract regularity condition which significantly generalizes the condition that e^{if} is locally measurable, then f is linear.
Corollaries of the initial value approach

Corollary

There exists $2^{\text{card}(\mathbb{R})}$ non-constant functions $f : \mathbb{R} \to \mathbb{R}$, each of them has $\text{card}(\mathbb{R})$ linearly independent (over \mathbb{Q}) periods.

Corollary

If $f : \mathbb{R}^n \to \mathbb{R}$ solves the Cauchy equation and satisfies an abstract regularity condition which significantly generalizes the condition that e^{if} is locally measurable, then f is linear. The regularity condition is related to a complex mean.
Theorem

Given an additive homomorphism f from a finite dimensional topological torus to \mathbb{R}, if e is (Haar) measurable, then $f \equiv 0$.

Remarks on the Cauchy equation

June 19, 2015 12 / 23
Theorem

Given an additive homomorphism f from a finite dimensional topological torus to \mathbb{R}, if e^{if} is (Haar) measurable, then $f \equiv 0$.
Definition \((G, +)\) is a group, \(S \subseteq G\). \(S\) strongly generates \(G\) if for all \(x_1, x_2 \in G\) there exist \(s_1, s_2, t_1, t_2 \in S\) such that \(x_i = s_i - t_i\), \(i = 1, 2\) and such that \(s_1 + s_2 \in S, t_1 + t_2 \in S\).
Definition

\[(G, +) \text{ is a group, } S \subseteq G. \]
Definition

- \((G, +)\) is a group, \(S \subseteq G\).
- \(S\) strongly generates \(G\) if for all \(x_1, x_2 \in G\) there exist \(s_1, s_2, t_1, t_2 \in S\) such that \(x_i = s_i - t_i, i = 1, 2\) and such that \(s_1 + s_2 \in S, t_1 + t_2 \in S\).
Examples of \(S \subseteq \mathbb{R}^n \) which strongly generate \(\mathbb{R}^n \) and containing hypercubes:

orthants (with or without the origin), halfspaces,

\[S = \bigcup_{m=1}^{\infty} [10^m, 5 \cdot 10^m) \]
Examples of $S \subseteq \mathbb{R}^n$ which strongly generate \mathbb{R}^n and containing hypercubes:
Examples of $S \subseteq \mathbb{R}^n$ which strongly generate \mathbb{R}^n and containing hypercubes:

- orthants (with or without the origin),
Examples of $S \subseteq \mathbb{R}^n$ which strongly generate \mathbb{R}^n and containing hypercubes:

- orthants (with or without the origin),
- halfspaces,
Examples of $S \subseteq \mathbb{R}^n$ which strongly generate \mathbb{R}^n and containing hypercubes:

- orthants (with or without the origin),
- halfspaces,
- $S = \bigcup_{m=1}^{\infty} [10^m, 5 \cdot 10^m)^n$.
Theorem

Suppose that $S \subseteq \mathbb{R}^n$ strongly generates \mathbb{R}^n or S convex with nonempty interior. Let $A \subseteq \mathbb{R}^n$ satisfy $S \cup (S + S) \subseteq A$. Let $f : A \to \mathbb{R}$ and assume that f satisfies

$$f(x + y) = f(x) + f(y), \quad \forall (x, y) \in S^2.$$

If S contains a hypercube I on which f is measurable, then there exists $c \in \mathbb{R}^n$ such that $f(x) = c \cdot x$ for each $x \in S$.

Daniel Reem (ICMC)
Suppose that $S \subseteq \mathbb{R}^n$ strongly generates \mathbb{R}^n or S convex with nonempty interior. Let $A \subseteq \mathbb{R}^n$ satisfy $S \cup (S + S) \subseteq A$. Let $f : A \to \mathbb{R}$ and assume that f satisfies

$$f(x + y) = f(x) + f(y), \quad \forall (x, y) \in S^2.$$
Theorem

Suppose that \(S \subseteq \mathbb{R}^n \) strongly generates \(\mathbb{R}^n \) or \(S \) convex with nonempty interior. Let \(A \subseteq \mathbb{R}^n \) satisfy \(S \cup (S + S) \subseteq A \). Let \(f : A \to \mathbb{R} \) and assume that \(f \) satisfies

\[
f(x + y) = f(x) + f(y), \quad \forall (x, y) \in S^2.
\]

If \(S \) contains a hypercube \(I \) on which \(e^{if} \) is measurable, then there exists \(c \in \mathbb{R}^n \) such that \(f(x) = c \cdot x \) for each \(x \in S \).
Theorem

Let $S \subseteq \mathbb{R}^n$. Let $A \subseteq \mathbb{R}^n$ satisfy $S \cup (S + S) \subseteq A$. Suppose that $f : A \to \mathbb{R}$ is a positive function satisfying $f(x + y) = f(x)f(y) \forall (x, y) \in S^2$.

Assume also that either S is a convex subset having a nonempty interior and f is measurable on S, or S strongly generates \mathbb{R}^n and it contains a hypercube I on which f is measurable.

Then there exists $c \in \mathbb{R}^n$ such that $f(x) = e^{c \cdot x}$ for each $x \in S$.

Daniel Reem (ICMC)
Remarks on the Cauchy equation
June 19, 2015 16 / 23
Theorem

Let $S \subseteq \mathbb{R}^n$. Let $A \subseteq \mathbb{R}^n$ satisfy $S \cup (S + S) \subseteq A$. Suppose that $f : A \to \mathbb{R}$ is a positive function satisfying

$$f(x + y) = f(x)f(y) \quad \forall (x, y) \in S^2.$$

Assume also that either S is a convex subset having a nonempty interior and f is measurable on S, or S strongly generates \mathbb{R}^n and it contains a hypercube I on which f is measurable.

Then there exists $c \in \mathbb{R}^n$ such that $f(x) = e^{c \cdot x}$ for each $x \in S$.

Daniel Reem (ICMC)
Remarks on the Cauchy equation
June 19, 2015 16 / 23
Theorem

Let $S \subseteq \mathbb{R}^n$. Let $A \subseteq \mathbb{R}^n$ satisfy $S \cup (S + S) \subseteq A$. Suppose that $f : A \to \mathbb{R}$ is a **positive** function satisfying

$$f(x + y) = f(x)f(y) \quad \forall (x, y) \in S^2.$$

Assume also that either

- S is a convex subset having a nonempty interior and f is measurable on S,
- S strongly generates \mathbb{R}^n and it contains a hypercube I on which f is measurable.

Then there exists $c \in \mathbb{R}^n$ such that $f(x) = e^{c \cdot x}$ for each $x \in S$.

Daniel Reem (ICMC)
Remarks on the Cauchy equation
June 19, 2015 16 / 23
Let $S \subseteq \mathbb{R}^n$. Let $A \subseteq \mathbb{R}^n$ satisfy $S \cup (S + S) \subseteq A$. Suppose that $f : A \to \mathbb{R}$ is a \textbf{positive} function satisfying

$$f(x + y) = f(x)f(y) \quad \forall (x, y) \in S^2.$$

Assume also that either

- S is a convex subset having a nonempty interior and f^i is measurable on S, or
- S strongly generates \mathbb{R}^n and it contains a hypercube I on which f^i is measurable.
Results: the multiplicative Cauchy’s equation

Theorem

Let $S \subseteq \mathbb{R}^n$. Let $A \subseteq \mathbb{R}^n$ satisfy $S \cup (S + S) \subseteq A$. Suppose that $f : A \to \mathbb{R}$ is a positive function satisfying

$$f(x + y) = f(x)f(y) \quad \forall (x, y) \in S^2.$$

Assume also that either

- S is a convex subset having a nonempty interior and f^i is measurable on S, or
- S strongly generates \mathbb{R}^n and it contains a hypercube I on which f^i is measurable.

Then there exists $c \in \mathbb{R}^n$ such that $f(x) = e^{c \cdot x}$ for each $x \in S$.

Daniel Reem (ICMC)
Let S be a convex subset of \mathbb{R}^n and assume that its interior is nonempty. Suppose that $f : S \to \mathbb{R}$ satisfies
\[f(x + y) = f(x) + f(y) \]
for all $(x, y) \in S^2$. If f is measurable on S, then there exist $c \in \mathbb{R}^n$ and $b \in \mathbb{R}$ such that $f(x) = c \cdot x + b$ for each $x \in S$.
Theorem

Let S be a convex subset of \mathbb{R}^n and assume that its interior is nonempty. Suppose that $f : S \to \mathbb{R}$ satisfies

$$f \left(\frac{x + y}{2} \right) = \frac{f(x) + f(y)}{2}$$

for all $(x, y) \in S^2$.
Theorem

Let S be a convex subset of \mathbb{R}^n and assume that its interior is nonempty. Suppose that $f : S \rightarrow \mathbb{R}$ satisfies

$$f \left(\frac{x + y}{2} \right) = \frac{f(x) + f(y)}{2}$$

for all $(x, y) \in S^2$. If e^{if} is measurable on S, then there exist $c \in \mathbb{R}^n$ and $b \in \mathbb{R}$ such that $f(x) = c \cdot x + b$ for each $x \in S$.
Theorem

Let $S \subseteq \mathbb{R}^n$ be a semigroup satisfying $0 \in S$. Assume that $f: S \to \mathbb{R}$, $g: S \to \mathbb{R}$, $h: S \to \mathbb{R}$ satisfy

$$f(x + y) = g(x) + h(y), \quad \forall (x, y) \in S^2.$$

Suppose that S generates \mathbb{R}^n and it contains a hypercube I on which a complex exponent of one of the given functions is measurable. Then there exist $c \in \mathbb{R}^n$ and constants $a, b \in \mathbb{R}$ such that

$$f(x) = c \cdot x + a,$$

$$g(x) = c \cdot x + a,$$

$$h(x) = c \cdot x + b$$

for all $x \in S$.
Theorem

Let $S \subseteq \mathbb{R}^n$ be a semigroup satisfying $0 \in S$. Assume that $f : S \to \mathbb{R}$, $g : S \to \mathbb{R}$, $h : S \to \mathbb{R}$ satisfy

$$f(x + y) = g(x) + h(y), \ \forall \ (x, y) \in S^2.$$
Let $S \subseteq \mathbb{R}^n$ be a semigroup satisfying $0 \in S$. Assume that $f : S \to \mathbb{R}, g : S \to \mathbb{R}, h : S \to \mathbb{R}$ satisfy

$$f(x + y) = g(x) + h(y), \quad \forall (x, y) \in S^2.$$

Suppose that S generates \mathbb{R}^n and it contains a hypercube I on which a complex exponent of one of the given functions is measurable. Then there exist $c \in \mathbb{R}^n$ and constants $a, b \in \mathbb{R}$ such that $f(x) = c \cdot x + a + b$, $g(x) = c \cdot x + a$, and $h(x) = c \cdot x + b$ for all $x \in S$.
Theorem

Let $S \subseteq \mathbb{R}^n$ be a semigroup which satisfies $\mathbb{R}^n = S - S$ and containing a hypercube I. Suppose that $f : S \to \mathbb{R}$ is an ϵ-additive function, and $x \mapsto e^{(mx)/m}$ is Lebesgue measurable on I for infinitely many positive integers m.

Then there exists $c \in \mathbb{R}^n$ such that $|f(x) - c \cdot x| \leq \epsilon$, $\forall x \in S$.
Theorem

Let $S \subseteq \mathbb{R}^n$ be a semigroup which satisfies $\mathbb{R}^n = S - S$ and containing a hypercube I. Suppose that $f : S \rightarrow \mathbb{R}$ is an ϵ-additive function, and $x \mapsto e^{mx}/m$ is Lebesgue measurable on I for infinitely many positive integers m.

Then there exists $c \in \mathbb{R}^n$ such that $|f(x) - c \cdot x| \leq \epsilon$, $\forall x \in S$.
Theorem

Let $S \subseteq \mathbb{R}^n$ be a semigroup which satisfies $\mathbb{R}^n = S - S$ and containing a hypercube I. Suppose that

- $f : S \rightarrow \mathbb{R}$ is an ε-additive function, and
- x^{m} / m is Lebesgue measurable on I for infinitely many positive integers m.

Then there exists $c \in \mathbb{R}^n$ such that $|f(x) - c \cdot x| \leq \varepsilon$, $\forall x \in S$.

Daniel Reem (ICMC)

Remarks on the Cauchy equation
June 19, 2015 19 / 23
Results: stability

Theorem

Let $S \subseteq \mathbb{R}^n$ be a semigroup which satisfies $\mathbb{R}^n = S - S$ and containing a hypercube I. Suppose that

- $f : S \rightarrow \mathbb{R}$ is an ϵ-additive function, and
- $x \mapsto e^{if(mx)/m}$ is Lebesgue measurable on I for infinitely many positive integers m.

Then there exists $c \in \mathbb{R}^n$ such that $|f(x) - c \cdot x| \leq \epsilon, \forall x \in S$.
Theorem

Let $S \subseteq \mathbb{R}^n$ be a semigroup which satisfies $\mathbb{R}^n = S - S$ and containing a hypercube I. Suppose that $f : S \to \mathbb{R}$ is an ϵ-additive function, and

- $x \mapsto e^{if(mx)/m}$ is Lebesgue measurable on I for infinitely many positive integers m.

Then there exists $c \in \mathbb{R}^n$ such that

$$|f(x) - c \cdot x| \leq \epsilon, \quad \forall x \in S.$$
Theorem

Let $S \subseteq \mathbb{R}^n$ be a semigroup which satisfies $\mathbb{R}^n = S - S$ and containing a hypercube I. Suppose that

- $f : S \rightarrow \mathbb{R}$ is an ϵ-additive function, and
- $x \mapsto e^{i f(mx)/m}$ is Lebesgue measurable on I for infinitely many positive integers m.

Then there exists $c \in \mathbb{R}^n$ such that

$$|f(x) - c \cdot x| \leq \epsilon, \quad \forall x \in S.$$
The End
The End

The slideshow and the paper can be found online
Appendix: abstract regularity condition

A is a set of real functions defined on \mathbb{R}^n. B is a set of complex functions containing $\{e^{ig} : g \in A\}$. There exist a functional $F : B \rightarrow \mathbb{C}$ such that several conditions hold. Under the above assumptions, if $f \in A$ and it satisfies the Cauchy equation, then $f(x) = c \cdot x$ for some $c \in \mathbb{R}^n$.
Appendix: abstract regularity condition

- A is a set of real functions defined on \mathbb{R}^n

There exist a functional $F: B \rightarrow \mathbb{C}$ such that several conditions hold.

Under the above assumptions, if $f \in A$ and it satisfies the Cauchy equation, then $f(x) = c \cdot x$ for some $c \in \mathbb{R}^n$.
Appendix: abstract regularity condition

- A is a set of real functions defined on \mathbb{R}^n
- B is a set of complex functions containing $\{e^{ig} : g \in A\}$
Appendix: abstract regularity condition

- A is a set of real functions defined on \mathbb{R}^n
- B is a set of complex functions containing $\{e^{ig} : g \in A\}$
- There exist a functional $F : B \to \mathbb{C}$ such that several conditions (next slide) hold
Appendix: abstract regularity condition

- A is a set of real functions defined on \mathbb{R}^n
- B is a set of complex functions containing $\{e^{ig} : g \in A\}$
- There exist a functional $F : B \to \mathbb{C}$ such that several conditions (next slide) hold
- Under the above assumptions, if $f \in A$ and it satisfies the Cauchy equation, then $f(x) = c \cdot x$ for some $c \in \mathbb{R}^n$
Appendix (Cont.): the conditions on A, B, F

1. For all $\beta \in C$, $|\beta| = 1$ and $h \in B$ we have $\beta h \in B$ and $F(\beta h) = \beta F(h)$.

2. A contains all the affine functions from \mathbb{R}^n to \mathbb{R}.

3. A is closed under addition and under multiplication by positive rationals.

4. There exists a basis $\{u_1, \ldots, u_n\}$ in \mathbb{R}^n such that for all U-periodic $g \in A$ (i.e., satisfying the relation $g(x + u_k) = g(x)$ for all $x \in \mathbb{R}^n$ and $k \in \{1, \ldots, n\}$), the functions $gy(x) := g(x + y)$, $x \in \mathbb{R}^n$, are in A for each $y \in \mathbb{R}^n$, and $F(e^{igy}) = F(e^{igy})$.

5. For each $g \in A$ there exists $\alpha > 0$ rational such that $F(e^{i\alpha g}) \neq 0$.

Daniel Reem (ICMC)
Remarks on the Cauchy equation
June 19, 2015
22 / 23
Appendix (Cont.): the conditions on A, B, F

1. $F : B \rightarrow \mathbb{C}$
Appendix (Cont.): the conditions on A, B, F

1. $F : B \to \mathbb{C}$

2. For all $\beta \in \mathbb{C}, |\beta| = 1$ and $h \in B$ we have $\beta h \in B$ and $F(\beta h) = \beta F(h)$;
Appendix (Cont.): the conditions on A, B, F

1. $F : B \rightarrow \mathbb{C}$

2. For all $\beta \in \mathbb{C}, |\beta| = 1$ and $h \in B$ we have $\beta h \in B$ and $F(\beta h) = \beta F(h);$

3. A contains all the affine functions from \mathbb{R}^n to $\mathbb{R};$

Daniel Reem (ICMC)
Remarks on the Cauchy equation
June 19, 2015
Appendix (Cont.): the conditions on A, B, F

1. $F : B \rightarrow \mathbb{C}$

2. For all $\beta \in \mathbb{C}$, $|\beta| = 1$ and $h \in B$ we have $\beta h \in B$ and $F(\beta h) = \beta F(h)$;

3. A contains all the affine functions from \mathbb{R}^n to \mathbb{R};

4. A is closed under addition and under multiplication by positive rationals;
Appendix (Cont.): the conditions on A, B, F

1. $F : B \to \mathbb{C}$

2. For all $\beta \in \mathbb{C}, |\beta| = 1$ and $h \in B$ we have $\beta h \in B$ and $F(\beta h) = \beta F(h)$;

3. A contains all the affine functions from \mathbb{R}^n to \mathbb{R};

4. A is closed under addition and under multiplication by positive rationals;

5. there exists a basis $\{u_1, \ldots, u_n\}$ in \mathbb{R}^n such that for all U-periodic $g \in A$ (i.e., satisfying the relation $g(x + u_k) = g(x)$ for all $x \in \mathbb{R}^n$ and $k \in \{1, \ldots, n\}$),
1. $F : B \to \mathbb{C}$

2. For all $\beta \in \mathbb{C}$, $|\beta| = 1$ and $h \in B$ we have $\beta h \in B$ and $F(\beta h) = \beta F(h)$;

3. A contains all the affine functions from \mathbb{R}^n to \mathbb{R};

4. A is closed under addition and under multiplication by positive rationals;

5. there exists a basis $\{u_1, \ldots, u_n\}$ in \mathbb{R}^n such that for all U-periodic $g \in A$ (i.e., satisfying the relation $g(x + u_k) = g(x)$ for all $x \in \mathbb{R}^n$ and $k \in \{1, \ldots, n\}$),
 - the functions $g_y(x) := g(x + y), x \in \mathbb{R}^n$ are in A for each $y \in \mathbb{R}^n$, and
Appendix (Cont.): the conditions on A, B, F

1. $F : B \rightarrow \mathbb{C}$

2. For all $\beta \in \mathbb{C}$, $|\beta| = 1$ and $h \in B$ we have $\beta h \in B$ and $F(\beta h) = \beta F(h)$;

3. A contains all the affine functions from \mathbb{R}^n to \mathbb{R};

4. A is closed under addition and under multiplication by positive rationals;

5. there exists a basis $\{u_1, \ldots, u_n\}$ in \mathbb{R}^n such that for all U-periodic $g \in A$ (i.e., satisfying the relation $g(x + u_k) = g(x)$ for all $x \in \mathbb{R}^n$ and $k \in \{1, \ldots, n\}$),
 - the functions $g_y(x) := g(x + y), x \in \mathbb{R}^n$ are in A for each $y \in \mathbb{R}^n$, and
 - $F(e^{ig_y}) = F(e^{ig})$;
Appendix (Cont.): the conditions on A, B, F

1. $F : B \rightarrow \mathbb{C}$

2. For all $\beta \in \mathbb{C}$, $|\beta| = 1$ and $h \in B$ we have $\beta h \in B$ and $F(\beta h) = \beta F(h)$;

3. A contains all the affine functions from \mathbb{R}^n to \mathbb{R};

4. A is closed under addition and under multiplication by positive rationals;

5. There exists a basis $\{u_1, \ldots, u_n\}$ in \mathbb{R}^n such that for all U-periodic $g \in A$ (i.e., satisfying the relation $g(x + u_k) = g(x)$ for all $x \in \mathbb{R}^n$ and $k \in \{1, \ldots, n\}$),
 - the functions $g_y(x) := g(x + y), x \in \mathbb{R}^n$ are in A for each $y \in \mathbb{R}^n$, and
 - $F(e^{ig_y}) = F(e^{ig})$;

6. For each $g \in A$ there exists $\alpha > 0$ rational such that $F(e^{i\alpha g}) \neq 0$.
Example

\[A := \{ f : \mathbb{R}^n \to \mathbb{R} : \text{if is measurable} \} \]

\[B = \{ e \in g : g \in A \} \]

\[F(\mathbf{u}) = \int_I u(x) \, dx \]
(Condition (6) is not immediate)

Problem

Any "essentially different" examples of \((A, B, F)\)?

Problem

Any example of \((A, B, F)\) in an infinite dimensional setting?

If yes, then this generalizes many of the previous results to such a setting.
Example

- $A := \{ f : \mathbb{R}^n \to \mathbb{R} : e^{if} \text{ is measurable} \}$
Appendix (Cont.): examples and open problems

Example

- $A := \{ f : \mathbb{R}^n \rightarrow \mathbb{R} : e^{if} \text{ is measurable} \}$
- $B = \{ e^{ig} : g \in A \}$
Example

- $A := \{ f : \mathbb{R}^n \to \mathbb{R} : e^{if} \text{ is measurable} \}$
- $B = \{ e^{ig} : g \in A \}$
- $F(u) = \int_I u(x)dx$
Example

- $A := \{ f : \mathbb{R}^n \to \mathbb{R} : e^{if} \text{ is measurable} \}$
- $B = \{ e^{ig} : g \in A \}$
- $F(u) = \int_I u(x)dx$

(Condition (6) is not immediate)
Appendix (Cont.): examples and open problems

Example

- $A := \{ f : \mathbb{R}^n \to \mathbb{R} : e^{if} \text{ is measurable} \}$
- $B = \{ e^{ig} : g \in A \}$
- $F(u) = \int_I u(x)dx$

(Condition (6) is not immediate)

Problem

Any “essentially different” examples of (A, B, F)?
Example

- \(A := \{ f : \mathbb{R}^n \to \mathbb{R} : e^{if} \text{ is measurable} \} \)
- \(B = \{ e^{ig} : g \in A \} \)
- \(F(u) = \int_I u(x) \, dx \)

(Condition (6) is not immediate)

Problem

Any “essentially different” examples of \((A, B, F)\)?

Problem

Any example of \((A, B, F)\) in an infinite dimensional setting?
Appendix (Cont.): examples and open problems

Example

- $A := \{ f : \mathbb{R}^n \to \mathbb{R} : e^{if} \text{ is measurable} \}$
- $B = \{ e^{ig} : g \in A \}$
- $F(u) = \int_I u(x) dx$

(Condition (6) is not immediate)

Problem

Any “essentially different” examples of (A, B, F)?

Problem

Any example of (A, B, F) in an infinite dimensional setting? If yes, then this generalizes many of the previous results to such a setting.