Homological mirror symmetry for Milnor fibers via moduli of A_∞-structures

Yankı Lekili1 | Kazushi Ueda2

1Department of Mathematics, Imperial College London, London, UK
2Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, Japan

Correspondence
Yankı Lekili, Department of Mathematics, Imperial College London, South Kensington, London SW7 2AZ, UK.
Email: y.lekili@imperial.ac.uk

Funding information
Royal Society, Grant/Award Number: URF/R180024; Grant-in-Aid for Scientific Research, Grant/Award Numbers: 15KT0105, 16K13743, 16H03930

Abstract
We show that the base spaces of the semiuniversal unfoldings of some weighted homogeneous singularities can be identified with moduli spaces of A_∞-structures on the trivial extension algebras of the endomorphism algebras of the tilting objects. The same algebras also appear in the Fukaya categories of their mirrors. Based on these identifications, we discuss applications to homological mirror symmetry for Milnor fibers, and give a proof of homological mirror symmetry for an n-dimensional affine hypersurface of degree $n + 2$ and the double cover of the n-dimensional affine space branched along a degree $2n + 2$ hypersurface. Along the way, we also give a proof of a conjecture of Seidel (Proceedings of the International Congress of Mathematicians, 2002) which may be of independent interest.

MSC 2020
53D37, 14J33, 18G70 (primary)

1 | INTRODUCTION

1.1 | Moduli of elliptic curves

Our basic starting point is an algebraic variety with an isolated singularity admitting a G_m-action. The primordial example is the cusp singularity defined by

$$\{(x, y) \in \mathbb{A}^2 \mid w(x, y) := x^3 + y^2 = 0\}.$$ (1.1)
The main construction that we study in this paper originates from \[47\], where the case of the cusp singularity was studied in detail. We recall this construction in order to ease the reader to our topic before discussing higher dimensional singularities with a \(\mathbb{G}_m\)-action.

The cuspidal curve (1.1) has a \(\mathbb{G}_m\)-action given by \(t \cdot (x, y) = (t^2 x, t^3 y)\). Thus, the coordinate ring gets a grading with \(\deg(x) = 2\) and \(\deg(y) = 3\). It can be compactified to the projective cone

\[
\{[x : y : z] \in \mathbb{P}(2, 3, 1) \mid w(x, y) = 0\}
\]

by adding one point.

The semiuniversal unfolding of \(w\) is given by

\[
\tilde{w}(x, y; u_4, u_6) := x^3 + y^2 + u_4 x + u_6,
\]

whose homogenization

\[
W(x, y, z; u_4, u_6) := x^3 + y^2 + u_4 x z^4 + u_6 z^6
\]

defines the Weierstrass family \(\pi_Y : \mathcal{Y} \to U := \text{Spec } \mathbb{k}[u_4, u_6]\) of curves in \(\mathbb{P}(2, 3, 1)\). Each curve \(Y_u := \pi_Y^{-1}(u)\) is of arithmetic genus 1 and comes with a point \(p := \{z = 0\}\) at infinity and a section

\[
\Omega_u := \text{Res } z dx \wedge dy / W(x, y, z, u_4, u_6)
\]

of the dualizing sheaf, which is given by \(dx/W_y = -dy/W_x\) on the affine part. The \(\mathbb{G}_m\)-action extends to the compactified family by

\[
t \cdot ([x : y : z]; u_4, u_6) = ([t^2 x : t^3 y : z]; t^4 u_4, t^6 u_6)
\]

which preserves the section \(z = 0\) and satisfies

\[
t^*(\Omega_{t \cdot u}) = t^{-1} \Omega_u.
\]

The curves \(Y_u\) are elliptic curves outside the discriminant

\[
\Delta := \{(u_4, u_6) \in U \mid 4u_4^2 - 27u_6^2 = 0\}.
\]

If \(u \in \Delta \setminus 0\), then \(Y_u\) is a rational curve with a single ordinary double point. Note that all curves above a \(\mathbb{G}_m\)-orbit are isomorphic.

The base space \(U\) can be identified with the moduli space of triples \((Y, p, \Omega)\) consisting of a reduced connected curve \(Y\) of arithmetic genus 1, a smooth marked point \(p\) on \(Y\) such that \(h^0(\mathcal{O}_Y(p)) = 1\) and \(\mathcal{O}_Y(p)\) is ample, and a non-zero section \(\Omega\) of the dualizing sheaf of \(Y\) (see \([49, \text{Theorem 1.4.2}]\)). Furthermore, we have an isomorphism

\[
\overline{M}_{1,1} \cong [(U \setminus 0)/\mathbb{G}_m] \quad (\cong \mathbb{P}(4, 6))
\]

with the moduli stack of stable curves of genus one with one marked point.
FIGURE 1 Quiver algebra description of A

1.2 Moduli of A_{∞}-structures

The condition that $\mathcal{O}_{Y_u}(p)$ is ample is equivalent to

$$S_u := \mathcal{O}_{Y_u} \oplus \mathcal{O}_p$$ (1.11)

being a generator of the perfect derived category $\text{perf } Y_u$. On the other hand, the fact that $h^0(\mathcal{O}_{Y_u}(p)) = 1$ implies that the isomorphism class of the Yoneda algebra

$$A := \text{End} (S_u)$$ (1.12)

as a graded algebra is independent of $u \in U$. Indeed, it is easy to show that for any u, there is a canonical isomorphism (where we use the fixed basis Ω_u of $H^0(\omega_{Y_u})$) between A and the degree 1 trivial extension algebra of the path algebra of the A_2-quiver. More concretely, this is given by the quiver with relations given in Figure 1.

Thus, considering the algebra A results in a dramatic loss of information hidden in $\text{perf } Y_u$, even though S_u is a generator. This is, of course, no surprise as we have forgotten to derive.

Recall that an A_{∞}-algebra A over k is a graded k-module with a collection $(\mu^d)_{d=1}^\infty$ of k-linear maps $\mu^d : A^{\otimes d} \to A[2-d]$ satisfying the A_{∞}-associativity equations

$$\sum_{m,n}(-1)^{|a_1|+\cdots+|a_n|}|a_n|^{-n}\mu^{d-m+1}(a_d,\ldots,a_{n+m+1},\mu^m(a_{n+m},\ldots,a_{n+1}),a_n,\ldots,a_1) = 0.$$ (1.13)

In particular, $\mu^1 : A \to A[1]$ is a differential, that is, $\mu^1 \circ \mu^1 = 0$, and the product

$$a_2 \cdot a_1 = (-1)^{|a_1|} \mu^2(a_2,a_1)$$ (1.14)

on A is associative up to homotopy.

A minimal A_{∞}-structure on a graded associative k-algebra A is an A_{∞}-structure $(\mu^k)_{k=1}^\infty$ on the graded vector space underlying A such that $\mu^1 = 0$ and μ^2 coincides with the given product on A. It is said to be formal if $\mu^k = 0$ for $k > 2$.

Recall that the Hochschild cochain complex of a graded algebra A has a bigrading, where $CC^{r+s}(A)_s$ consists of maps $A^{\otimes r} \to A[s]$. The space of first-order deformations of A as a graded algebra is given by $\text{HH}^2(A)_0$, and deformations to minimal A_{∞}-structures on A without changing μ^2 is controlled by $\text{HH}^2(A)_{<0} := \bigoplus_{i=1}^\infty \text{HH}^2(A)_{-i}$. Moreover, if $\text{HH}^1(A)_{<0}$ vanishes, then [65, Corollary 3.2.5] shows that the functor sending a k-algebra R to the set of gauge equivalence classes of minimal A_{∞}-structures on $A \otimes R$ is represented by an affine scheme $U_{\infty}(A)$, which is of finite type if $\dim \text{HH}^2(A)_{<0} < \infty$. There is a natural G_m-action on $U_{\infty}(A)$ given by

$$G_m \ni t : (\mu^d)_{d=2}^\infty \mapsto (t^{d-2}\mu^d)_{d=2}^\infty,$$ (1.15)

and the formal A_{∞} structure on A is the fixed point of this action.
Returning back to the Weierstrass family, as explained in [48], the natural dg enhancement \(\text{end}(S) \) of \(\text{End}(S) \) gives a family \(\mathcal{A} \) of minimal \(A_{\infty} \)-structures on \(A \) over \(U \), and hence a morphism
\[
U \to U_{\infty}(A).
\] (1.16)

We recall the following theorem from [48]. For simplicity, we state it over a field \(k \) with char \(k \neq 2, 3 \), see [48] for a more general statement.

Theorem 1.1. If char \(k \neq 2, 3 \), then (1.16) is a \(\mathbb{G}_m \)-equivariant isomorphism, sending the cuspidal curve \(Y_0 \) to the formal \(A_{\infty} \)-structure on \(A \).

There are two main ingredients that enter in the proof of this result.

(i) The formality of the \(A_{\infty} \)-algebra \(A_0 \) for the cuspidal curve \(Y_0 \).

(ii) One has \(\text{HH}^1(A)_{<0} = 0 \), so that \(U_{\infty}(A) \) is an affine scheme, and
\[
\text{HH}^2(A)_{<0} = k(4) \oplus k(6),
\] (1.17)

so that (1.16) induces an isomorphism on tangent spaces at the fixed points of the \(\mathbb{G}_m \)-action.

Here (1.17) means that \(\text{HH}^2(A)_s = k \) for \(s = -4, -6 \) and zero otherwise.

The Hochschild cohomology computation is done in two different ways in [47] and [48]. We will give yet another way in Section 3.4.

To elaborate on (i), first one shows the existence of a chain level \(\mathbb{G}_m \)-action by taking the Čech complex with respect to a \(\mathbb{G}_m \)-invariant affine cover. This gives a dg model for \(A_0 \). Then, one arranges a \(\mathbb{G}_m \)-equivariant homotopy to a minimal \(A_{\infty} \)-structure, which follows from the fact that one can choose chain level representatives of a basis of \(\text{End}(S_0) \) in such a way that each of them is in a 1-dimensional representation of \(\mathbb{G}_m \). Finally, to deduce formality, one shows that the weight of the \(\mathbb{G}_m \)-action on \(\text{End}(S_0) \) agrees with the cohomological grading. But \(\mu^d \) lowers the cohomological degree by \(d - 2 \), so any \(\mathbb{G}_m \)-equivariant \(A_{\infty} \)-structure must have vanishing \(\mu^d \) for \(d \neq 2 \).

Other examples of the above construction were subsequently studied in [49, 65], but all of these work with examples in dimension 1. In this paper, we begin to explore higher dimensions.

1.3 Application to homological mirror symmetry

Let \(\tilde{V} \) be a once-punctured torus viewed as a Weinstein manifold, and
\[
Z := \{ [x : y : z] \in \mathbb{P}(2, 3, 1) \mid x^3 + y^2 + xyz = 0 \}
\] (1.18)

be a rational curve with a single ordinary double point. Theorem 1.1 was obtained in [48] as a tool for proving a quasi-equivalence
\[
\mathcal{F}(\tilde{V}) \simeq \text{perf } Z
\] (1.19)
of pretriangulated \(A_{\infty} \)-categories over \(Z \) of the split-closed derived Fukaya category of compact exact Lagrangians in \(\tilde{V} \) and the perfect derived category of \(Z \). The strategy is first to identify
generators on both sides, and then match their endomorphism algebras as A_{∞}-algebras. It is often difficult to explicitly compute such A_{∞}-algebras, but even if one does, finding a quasi-isomorphism between two different chain models is usually a hard task. The computation of cohomology level structures (and matching them) is much easier, and knowing the moduli of A_{∞}-structures allows one to appeal to indirect methods to conclude the proof of the existence of a chain level isomorphism. Such a strategy was applied also for proving homological mirror symmetry in a number of other cases in dimension 1. Namely, in [49] a class of curve singularities $C_{1,n}$ for $n \geq 1$ were considered, where $C_{1,1}$ is the cuspidal curve, $C_{1,2}$ is tacnodal curve given by the equation $y^2 = yx^2$, and $C_{1,n}$ is the elliptic n-fold singularity given by n lines in \mathbb{A}^{n-1}. These are all the Gorenstein singularities of arithmetic genus one [76, appendix A]. Carrying out the above strategy has led to a proof of homological mirror symmetry for n-punctured tori [50].

The equivalence (1.19) is an instance of homological mirror symmetry at the large volume limit. The equivalence is known to extend to a formal neighborhood of this limit to give an equivalence

$$\mathcal{F}(\tilde{Y}) \simeq \text{perf } \tilde{\mathcal{Y}}$$

(1.20)

over $\mathbb{Z}[q]$ where \tilde{Y} is the compactification of Y and $\tilde{\mathcal{Y}}$ is the Tate elliptic curve, a formal neighborhood of the nodal curve Z (see [48] for a proof). A general strategy for proving homological mirror symmetry as in (1.20) introduced in [69] is to view the categories in (1.20) as deformations of the categories given in (1.19). Hence, in this context deducing homological mirror symmetry for the compact manifold \tilde{Y} from homological mirror symmetry for the Weinstein manifold \tilde{V} ultimately reduces to a problem in deformation theory.

1.4 New results and a general conjectural picture

In this paper, we lay out a program that aims to extend the above results to higher dimensions, leading to new homological mirror symmetry conjectures for higher dimensional Calabi–Yau manifolds at the large volume limit and in its formal neighborhood. It is based on the relation between homological mirror symmetry for Calabi–Yau manifolds and homological mirror symmetry for singularities, which goes back to [45, 58, 81].

A weighted homogeneous polynomial $w \in \mathbb{C}[x_1, \ldots, x_n]$ with an isolated critical point at the origin is invertible if there is an integer matrix $A = (a_{ij})_{i,j=1}^n$ with non-zero determinant such that

$$w = \sum_{i=1}^n \prod_{j=1}^n x_j^{a_{ij}}.$$

(1.21)

The corresponding weight system $(d_1, \ldots, d_n; h)$ satisfying $\gcd(d_1, \ldots, d_n, h) = 1$ is determined uniquely. (See the beginning of Section 2 for the definition of a weight system.)

The transpose of w is defined in [10] as

$$\bar{w} = \sum_{i=1}^n \prod_{j=1}^n x_j^{a_{ji}},$$

(1.22)

whose exponent matrix \bar{A} is the transpose matrix of A. We write $(d_1, d_2, \ldots, d_n; h)$ for the weight system associated with \bar{w}.
The group
\[\Gamma_w := \left\{ (t_1, \ldots, t_n) \in (\mathbb{G}_m)^n \mid t_1^{a_{11}} \cdots t_n^{a_{1n}} = \cdots = t_1^{a_{nn}} \right\} \] (1.23)
acts naturally on \(\mathbb{A}^n \). One has a homomorphism \(\phi : \mathbb{G}_m \to \Gamma_w \) sending \(t \in \mathbb{G}_m \) to \((t^{d_1}, \ldots, t^{d_n}) \in \Gamma_w \). Let \(\text{mf}([\mathbb{A}^n/\Gamma_w], w) \) be the idempotent completion of the dg category of \(\Gamma_w \)-equivariant matrix factorizations of \(w \).

Homological mirror symmetry conjecture for invertible polynomials is the following:

Conjecture 1.2. For any invertible polynomial \(w \), one has a quasi-equivalence
\[\text{mf} ([\mathbb{A}^n/\Gamma_w], w) \simeq \mathcal{W}(\tilde{w}). \] (1.24)

Here \(\mathcal{W}(\tilde{w}) \) is the partially wrapped Fukaya category of \(\tilde{w} \), which is quasi-equivalent to the Fukaya–Seidel category of (a Morisification of) \(\tilde{w} \). Conjecture 1.2 is stated for Brieskorn–Pham singularities in three variables in [80], for polynomials in 3 variables associated with a regular system of weights of dual type in the sense of Saito in [78] (with a prototype appearing earlier in [77]), and for invertible polynomials in three variables in [21]. It is proved for \(n = 2 \) in [37], and for Sebastiani–Thom sums of polynomials of type A and D in [27, 28].

The conjecture that \(\text{mf}([\mathbb{A}^n/\Gamma_w], w) \) has a full exceptional collection, which is implied by Conjecture 1.2, is stated in [38, Conjecture 1.4], and proved in [25].

The following conjecture is stated for \(n = 3 \) in [21]:

Conjecture 1.3. For any invertible polynomial \(w \), the category \(\text{mf}([\mathbb{A}^n/\Gamma_w], w) \) has a tilting object.

A slightly stronger conjecture that \(\text{mf}([\mathbb{A}^n/\Gamma_w], w) \) has a full strong exceptional collection, stated in [38, Conjecture 1.2], is known for \(n \leq 3 \) by [46], and for a class of invertible polynomials called of chain type by [38].

In view of [63, Theorem 16], one may also ask whether for an invertible polynomial \(w \), the derived category of coherent sheaves on the stack
\[X_w := \left[((\text{Spec} \mathbb{C}[x_1, \ldots, x_n]/(w)) \setminus 0)/\Gamma_w \right] \] (1.25)
has a tilting object. If \(w \) is of Brieskorn–Pham type, then \(X_w \) has a full strong exceptional collection of line bundles [39]. Note that \(X_w \) is always a smooth proper rational stack of Picard number one. It is known that for a smooth proper toric Deligne–Mumford stack of Picard number at most two, there exists a full strong exceptional collection of line bundles [12]. On the other hand, the stack \(X_w \) does not have a full strong exceptional collection of line bundles in general — a counterexample was given in [26].

We write (the Liouville completion of) the Milnor fiber of \(\tilde{w} \) as
\[\tilde{V}_w := \tilde{w}^{-1}(1) = \left\{ (x_1, \ldots, x_n) \in \mathbb{C}^n \mid \tilde{w} = 1 \right\}. \] (1.26)

The main conjecture that we introduce in this paper is the following:

Conjecture 1.4. For any invertible polynomial \(w \), one has a quasi-equivalence
\[\text{mf} ([\mathbb{A}^{n+1}/\Gamma_w], w + x_0 \cdots x_n) \simeq \mathcal{W}(\tilde{V}_w). \] (1.27)
The affine variety \tilde{V}_w is log Fano, log Calabi–Yau, or of log general type depending on whether $d_0 := h - \sum_{i=1}^n d_i$ is negative, zero, or positive, respectively. In dimension 2, the log Fano case corresponds to simple singularities which have a well-known ADE classification. Fukaya categories of their Milnor fiber are identified in [23, 24] with module categories of the corresponding (derived) preprojective algebras, and Conjecture 1.4 is proved in [52]. The log Calabi–Yau case follows from homological mirror symmetry for the wrapped Fukaya categories of the Milnor fibers of hypersurface cusp singularities proved in [42] by a variation of Orlov’s theorem. In this paper, we almost exclusively concentrate on the case of log general type. See, for example, [82, section 2] for more on this trichotomy in dimension 2.

In the log general type case, Orlov’s theorem gives an equivalence of the left-hand side of (1.27) with the derived category $\text{coh} Z_w$ of coherent sheaves on

$$ Z_w := [(\text{Spec} \mathbb{C}[x_0, \ldots, x_n] / (w + x_0x_1 \cdots x_n) \setminus 0) / \Gamma_w], $$

where the action of Γ_w comes from the identification

$$ \Gamma_w \cong \{(t_0, t_1, \ldots, t_n) \in (\mathbb{G}_m)^{n+1} \mid t_1^{a_1} \cdots t_n^{a_n} = \cdots = t_1^{a_n} \cdots t_n^{a_1} = t_0t_1 \cdots t_n\}. \quad (1.29) $$

Recall that an object X of $\text{coh} \ Z$ on a proper stack Z is perfect if and only if it is Ext-finite, that is, the dimension of $\bigoplus_{i \in \mathbb{Z}} \text{Hom}(X, Y)$ is finite for any object Y. It is reasonable to expect that the full subcategory of the wrapped Fukaya category $\mathcal{W}(\tilde{V}_w)$ consisting of Ext-finite objects is equivalent to the compact Fukaya category $\mathcal{F}(\tilde{V}_w)$, so that Conjecture 1.4 would imply

$$ \text{perf} \ Z_w \simeq \mathcal{F}(\tilde{V}_w). $$

The first instance of an equivalence of this form was obtained in [47] for $w = x_1^3 + x_2^2$ and recently Habermann proved this equivalence when w is an arbitrary invertible polynomial of two variables [36].

The way that the wrapped Floer cohomology can be infinite depends on the sign of d_0: it can be infinite in the negative cohomological degrees with finite graded pieces in the log Fano case, infinite in finite cohomological degrees in the log Calabi–Yau case, and infinite in the positive cohomological degrees with finite graded pieces in the log general type case. In the log Fano and log Calabi–Yau case, the quotient $\mathcal{W}(\tilde{V}_w) / \mathcal{F}(\tilde{V}_w)$ are generalized cluster categories (see, for example, [43, section 9] and references therein). In the log general type case, we make the following conjecture, which is a compact analog of [5, Conjecture 1.2]:

Conjecture 1.5. Let \tilde{X} be a smooth ample divisor in a Calabi–Yau manifold \tilde{Y} and $\tilde{V} := \tilde{Y} \setminus \tilde{X}$ be the complement. Then one has a quasi-equivalence

$$ \mathcal{W}(\tilde{V}) / \mathcal{F}(\tilde{V}) \simeq \mathcal{F}(\tilde{X}). $$

Conjecture 1.5 reduces homological mirror symmetry for the manifold \tilde{X} of general type to that for the affine manifold \tilde{V}. If $\tilde{d}_0 = 1$, then \tilde{V}_w admits a compactification to a Calabi–Yau orbifold \tilde{Y}_w such that $\tilde{X}_w := \tilde{Y}_w \setminus \tilde{V}_w$ is a smooth ample divisor, and Conjecture 1.4 together with Conjecture 1.5 implies

$$ D_{\text{sing}}^b (Z_w) \simeq \mathcal{F}(\tilde{X}_w). $$

(1.32)
Recall that the degree \(d\) trivial extension algebra (also known as the Frobenius completion of degree \(d\)) of a finite-dimensional \(k\)-algebra \(A^0\) has \(A^0 \oplus \text{Hom}_k(A^0, k)[-d]\) as the underlying graded vector space, and the multiplication is given by
\[
(a, f) \cdot (b, g) = (ab, a g + f b).
\] (1.33)

Theorem 1.6. Let \(w \in k[x_1, \ldots, x_n]\) be a weighted homogeneous polynomial and \(\Gamma\) be a subgroup of \(\Gamma_w\) containing \(\phi(\mathbb{G}_m)\) as a subgroup of finite index. Assume that

1. \(w\) has an isolated critical point at the origin,
2. \(d_0\) defined by (2.13) is positive,
3. \(mf([\mathbb{A}^n/\Gamma], w)\) has a tilting object \(E\), and
4. the pair \((w, \Gamma)\) does not have twisted deformations in the sense of Definition 3.3.

Let \(A^0\) be the endomorphism algebra of the tilting object \(E\) and \(A\) be the degree \(n - 1\) trivial extension algebra of \(A^0\). Then there is a \(\mathbb{G}_m\)-equivariant isomorphism
\[
U \sim \mathcal{V}_{\infty}(A)
\] (1.34)
of affine schemes from the affine subspace \(U\) of the base space \(\tilde{U}\) of the semiuniversal unfolding of \(w\) defined in Section 2 to the moduli space of \(A_\infty\)-structures on \(A\) sending the origin \(0 \in U\) to the formal \(A_\infty\)-structure on \(A\).

Although the existence of a tilting object and the non-existence of twisted deformations are restrictive assumptions on a pair \((w, \Gamma)\), there are many interesting examples where both of them holds. Conjecture 1.3 states that the former holds when \(w\) is an invertible polynomial and \(\Gamma = \Gamma_w\).

We will see examples where the latter holds in Sections 3.2–3.5.

To apply Theorem 1.6 to homological mirror symmetry, one needs to find a generator of the Fukaya category whose Yoneda algebra is isomorphic to \(A\). When \(w\) is a Sebastiani–Thom sum of polynomials of type A or D, that is, a decoupled sum of polynomials of the form \(x^{n+1}\) or \(x^2 y + y^{n-1}\), homological mirror symmetry for singularities \([27, 28]\) gives a collection \((S_i)_{i=1}^\mu\) of Lagrangian spheres in \(\mathcal{V}_w\) such that the Yoneda algebra of their direct sum \(S = \bigoplus_{i=1}^\mu S_i\) in the Fukaya category \(\mathcal{F}(\mathcal{V}_w)\) is isomorphic to the trivial extension algebra of the tensor product of the path algebras of the Dynkin quivers of the corresponding types. For example, the algebra \(A^0\) in the case of \(x^4 + y^4 + z^4\) is the path algebra of the quiver in Figure 2, with the relations that the composition of arrows along the sides of each small square commutes.

By combining the proof of a special case of [69, Conjecture 4] which states, under assumptions satisfied for \(\mathcal{V}_w\), an isomorphism
\[
\text{SH}^* (\mathcal{V}_w) \cong \text{HH}^* (\mathcal{F}(\mathcal{V}_w))
\] (1.35)
of the symplectic cohomology and the Hochschild cohomology of the Fukaya category, with the computation of the symplectic cohomology \(\text{SH}^*(\mathcal{V}_w)\) using a spectral sequence, originally due to McLean [59] and full detail of which was written later by Ganatra and Pomerleano [35] (who in addition proved that this spectral sequence is multiplicative), we show that the Yoneda \(A_\infty\)-algebra \(A\) of the generator of the Fukaya category is not formal. Hence, \(A\) can be identified with
a point in the moduli space
\[\mathcal{M}_\infty(A) := [(\mathcal{U}_\infty(A) \setminus \{0\})/\mathbb{G}_m] \] (1.36)
of non-formal \(A_\infty\)-structures. Conjecture 1.4 identifies exactly which point this is, and in order
to prove it, one has to distinguish points on \(\mathcal{M}_\infty(A)\) by computable invariants of \(\mathcal{F}(\mathcal{V}_w)\). For
\(w = x_1^{n+1} + x_2^{n+1} + \cdots + x_n^{n+1}\) and \(w = x_1^2 + x_2^{2n} + \cdots + x_n^{2n}\), this space is 1-dimensional, and we
can prove Conjecture 1.4 by computing the dimensions of the Hochschild cohomologies in this case:

Theorem 1.7.

(i) Let
\[\mathcal{V} := \{(x_1, x_2, \ldots, x_n) \in \mathbb{C}^n \mid x_1^{n+1} + x_2^{n+1} + \cdots + x_n^{n+1} = 1\} \] (1.37)
be the Milnor fiber considered as an exact symplectic manifold, and
\[K := \{[\text{diag}(t_0, t_1, \ldots, t_n)] \in \text{PGL}_{n+1}(\mathbb{C}) \mid t_1^{n+1} = \cdots = t_n^{n+1} = t_0 t_1 \cdots t_n = 1\} \] (1.38)
be a finite group acting on the projective hypersurface
\[Z := \{[x_0 : x_1 : \cdots : x_n] \in \mathbb{P}^n \mid x_1^{n+1} + x_2^{n+1} + \cdots + x_n^{n+1} + x_0 x_1 \cdots x_n = 0\}. \] (1.39)

Then we have quasi-equivalences
\[\mathcal{F}(\mathcal{V}) \simeq \text{perf } [Z/K] \] (1.40)
and
\[W(\tilde{V}) \simeq \text{coh}[Z/K] \]
(1.41)
of pretriangulated \(A_\infty \)-categories over \(\mathbb{C} \).

(ii) Let
\[\tilde{V} := \{ (x_1, x_2, \ldots, x_n) \in \mathbb{C}^n \mid x_1^2 + x_2^{2n} + \cdots + x_n^{2n} = 1 \} \]
(1.42)
be the Milnor fiber considered as an exact symplectic manifold, and
\[K := \{ \text{diag}(t_0, \ldots, t_n) \in \text{Aut}\mathbb{P} \mid t_1^2 = t_2^{2n} = \cdots = t_n^{2n} = t_0 t_1 \cdots t_n = 1 \} \]
(1.43)
be a finite group acting on the weighted projective hypersurface
\[Z := \{ [x_0 : x_1 : \cdots : x_n] \in \mathbb{P} \mid x_1^2 + x_2^{2n} + \cdots + x_n^{2n} + x_0 x_1 \cdots x_n = 0 \}, \]
(1.44)
where \(\mathbb{P} = \mathbb{P}(1, n, 1, \ldots, 1) \) is a weighted projective space considered as a smooth stack. Then we have quasi-equivalences
\[F(\tilde{V}) \simeq \text{perf}[Z/K] \]
(1.45)
and
\[W(\tilde{V}) \simeq \text{coh}[Z/K] \]
(1.46)
of pretriangulated \(A_\infty \)-categories over \(\mathbb{C} \).

1.5 The relation with results of Seidel and Sheridan

The large complex structure limits in Theorem 1.7 are different from those appearing in [71] and its generalizations [72, 73]. In his construction, Seidel removes the divisor \(\{ x_1 x_2 x_3 = 0 \} \) from the Milnor fiber \(\tilde{V} \) on the A-side and considers the reducible singular variety \(\{ x_0 x_1 x_2 x_3 = 0 \} \) instead of \(Z \) on the B-side (cf. [51, section 5]).

The generator used by Seidel in [71] is the direct sum of the vanishing cycles of the Lefschetz fibration \(\tilde{w} = x_1^{n+1} + \cdots + x_n^{n+1} : \mathbb{C}^{n+1} \to \mathbb{C} \), which is also an object of \(F(\tilde{Y}) \). The Yoneda algebra computed in \(F(\tilde{Y}) \) is a deformation [69] of the Yoneda algebra \(A \) computed in \(F(\tilde{V}) \), and hence isomorphic to it since \(\text{HH}^2(A_0) \cong 0 \), so that the Yoneda \(A_\infty \)-algebra computed in \(F(\tilde{Y}) \) is described by a Novikov ring-valued point of \(\mathcal{M}_\infty(A) \), which is the open-string mirror map.

The generator used by Sheridan in [72] is the cover of an immersed Lagrangian sphere in a pair of pants, which is shown to be the direct sum of vanishing cycles of the Lefschetz fibration \(\tilde{w}' := (\tilde{w} + 1)/(x_1 x_2 x_3) : (\mathbb{C}^\times)^3 \to \mathbb{C} \) mirror to the toric variety whose fan polytope is polar dual to that of \(\mathbb{P}^3 \). The generator used by Sheridan in [72] is the cover of an immersed Lagrangian sphere in a pair of pants, which is shown to be the direct sum of vanishing cycles of the Lefschetz fibration \(\tilde{w}' := (\tilde{w} + 1)/(x_1 \cdots x_n) : (\mathbb{C}^\times)^n \to \mathbb{C} \) in [62]. One has \(D := \tilde{V} \setminus (\tilde{w}')^{-1}(0) = D_1 \cup \cdots \cup D_n \), where \(D_i := \tilde{V} \cap \{ x_i = 0 \} \). Let \(F(\tilde{V}, D) \) be the relative Fukaya category, which is an \(A_\infty \)-category over \(\mathbb{C}[q_1, \ldots, q_n] \) whose objects are Lagrangian subman-
ifolds of $\tilde{V} \setminus \tilde{D}$ and compositions are counted with intersection numbers with \tilde{D}_i. Since \tilde{V} is Stein, the definition of $\mathcal{F}(\tilde{V}, \tilde{D})$ involves only the classical theory of pseudo-holomorphic maps, and the coefficient ring is a polynomial ring. The argument of Seidel and Sheridan shows that the idempotent-complete pretriangulated A_∞-category generated by the full subcategory of $\mathcal{F}(\tilde{V}, \tilde{D})$ consisting of the cover of the immersed Lagrangian sphere is equivalent to $\text{perf}[\mathcal{Z}/K]$ where $\mathcal{Z} := \text{Proj} \mathbb{C}[q_1, \ldots, q_n][x_1, \ldots, x_n]/(q_1x_1^{n+1} + \cdots + q_nx_n^{n+1} + x_0 \cdots x_n)$. This suggests generalizations of Conjecture 1.4 to more general partial compactifications of covers of a pair of pants.

Even if one’s goal is to prove homological mirror symmetry for a compact Calabi–Yau manifold over the Novikov field, it is useful not to go directly from a cover of a pair of pants to the compact Calabi–Yau, but to divide it into two steps, first to the Milnor fiber and then to the compact Calabi–Yau: The Fukaya category of a cover of a pair of pants has many deformations, but it is easy to control the deformation to the Milnor fiber, essentially because the Milnor fiber is Stein and the deformation is locally constant along a stratification of the base space. Once one comes to the Milnor fiber, and take the direct sum of vanishing cycles as a generator, then we can understand not only formal deformations but the global moduli space of A_∞-structures.

It is an interesting problem to obtain the same level of understanding for deformations of the Fukaya category of a cover of a pair of pants, which would have non-smoothing components in general.

1.6 Moduli of lattice polarized K3 surfaces

Special cases of the moduli space (1.36) give modular compactifications of moduli spaces of a certain class of lattice polarized K3 surfaces. The point is that the choice of a generator S and an isomorphism $\psi : \text{End } S \sim A$ with a fixed graded algebra A is a derived category analog of a choice of a lattice polarization. Similar identification of a choice of a full strong exceptional collection as an analog of a choice of a marking (an isomorphism of the Picard lattice with a fixed lattice) of a del Pezzo surface was a starting point of [1, 60].

Let P be a lattice, that is, a free abelian group equipped with a symmetric bilinear form. A P-polarized K3 surface is a pair (Y, j) of a K3 surface and a primitive lattice embedding $j : P \hookrightarrow \text{Pic } Y$. It follows from the global Torelli theorem and the surjectivity of the period map that the coarse moduli space of P-polarized K3 surfaces is the quotient of a symmetric domain of type IV by a discrete group. As an example, consider the case $P = E_8 \perp U$. This is the complement of U of the ‘half’ of the extended K3 lattice $E_8 \perp E_8 \perp U \perp U \perp U \perp U$, and as such is self-mirror, since mirror symmetry for lattice polarized K3 surfaces interchanges the algebraic lattice and the transcendental lattice inside the extended K3 lattice [19]. The Satake–Baily–Borel compactification of the coarse moduli space of $E_8 \perp U$-polarized K3 surfaces is known to be the 10-dimensional weighted projective space $\mathbf{P}(\mathbf{w})$ of weight $\mathbf{w} = (4, 10, 12, 16, 18, 22, 24, 28, 30, 36, 42)$ [13]. Similar descriptions exist for lattices coming from exceptional unimodal singularities by [56], which lead to a ‘striking’ ([57, p. 586]) conclusion that certain rings of meromorphic automorphic forms are polynomial rings. Theorem 1.6 together with the discussion in Section 3.5 gives an interpretation of the spectrum of all of these polynomial rings as moduli spaces of A_∞-structures. This is a K3 analog of the description of $\overline{\mathcal{M}}_{1,1}$ as moduli of A_∞-structures recalled in Section 1.1. Similarly, the coarse moduli space of (1.36) for the $n = 3$ case of Theorem 1.7(i) can be identified with the coarse moduli space of $E_8 \perp E_8 \perp \perp (-4)$-polarized K3 surfaces. This is a K3 analog of the Hesse pencil of cubic curves,
which are elliptic curves with level 3 structures. These examples are the first of infinite series, discussed in Section 3.4 and Section 3.2, respectively, where Theorem 1.6 applies.

1.7 | Sebastiani–Thom summation

Yet another motivation for Conjecture 1.4, besides moduli of A_{∞}-structures and partial compactifications of covers of a pair of pants, comes from a conjectural compatibility of Conjecture 1.2 and Conjecture 1.4 under the Sebastiani–Thom summation. Let $\tilde{w}_i: \mathbb{C}^{n_i} \to \mathbb{C}^1$ for $i = 1, 2$ be Lefschetz fibrations coming from transpositions of invertible polynomials $w_i: X_i := \mathbb{A}^{n_i} \to \mathbb{A}^1$ and

$$Y_i := \left\{ (x_{i,1}, \ldots, x_{i,n_i}) \in \mathbb{A}^{n_i} \mid x_{i,1} \cdots x_{i,n_i} = 0 \right\}$$

be the unions of coordinate hyperplanes. We also write the union of coordinate hyperplanes in $X := X_1 \times X_2$ as Y. Let $\tilde{w} = w_1 + w_2: \mathbb{A}^{n_1+n_2} \to \mathbb{A}^1$ be the Sebastiani–Thom sum of w_1 and w_2, and set

$$\Gamma := \left\{ ((t_1,0, \ldots, t_1,n_1),(t_2,0, \ldots, t_2,n_2)) \in \Gamma_1 \oplus \Gamma_2 \mid t_1,0 = t_2,0 \right\},$$

where $\Gamma_i := \Gamma_{w_i}$. It follows from [64] that

$$mf \left(\left[\mathbb{A}^{n_i+1} / w_i + x_{i,0} \cdots x_{i,n_i} \right], \Gamma_i \right) \simeq mf \left([Y_i / w_i], \Gamma_i \right).$$

The pushout diagram

$$\begin{array}{ccc}
Y_1 \times Y_2 & \longrightarrow & X_1 \times Y_2 \\
\downarrow & & \downarrow \\
Y_1 \times X_2 & \longrightarrow & Y
\end{array}$$

(1.50)

should induce the pushout diagram

$$\begin{array}{ccc}
mf ([Y_1 \times Y_2 / \Gamma], w) & \longrightarrow & mf ([Y_1 \times X_2 / \Gamma], w) \\
\downarrow & & \downarrow \\
mf ([X_1 \times Y_2 / \Gamma], w) & \longrightarrow & mf ([Y / \Gamma], w),
\end{array}$$

(1.51)

which gives

$$\begin{array}{ccc}
mf ([Y_1 / \Gamma_1], w_1) \otimes mf ([Y_2 / \Gamma_2], w_2) & \longrightarrow & mf ([Y_1 / \Gamma_1], w_1) \otimes mf ([X_2 / \Gamma_2], w_2) \\
\downarrow & & \downarrow \\
mf ([X_1 / \Gamma_1], w_1) \otimes mf ([Y_2 / \Gamma_2], w_2) & \longrightarrow & mf ([Y / \Gamma], w)
\end{array}$$

(1.52)
by the Sebastiani–Thom theorem for matrix factorizations [66]. This matches the pushout diagram

\[
\begin{array}{ccc}
\mathcal{W}(\hat{w}_1^{-1}(0)) \otimes \mathcal{W}(\hat{w}_2^{-1}(0)) & \longrightarrow & \mathcal{W}(\hat{w}_1^{-1}(0)) \otimes \mathcal{W}(\hat{w}_2) \\
\downarrow & & \downarrow \\
\mathcal{W}(\hat{w}_1) \otimes \mathcal{W}(\hat{w}_2^{-1}(0)) & \longrightarrow & \mathcal{W}\left((\hat{w}_1 + \hat{w}_2)^{-1}(0)\right)
\end{array}
\] (1.53)

coming from the cosheaf property of the wrapped Fukaya categories [33].

Remark 1.8. Similar compatibility exists for homological mirror symmetry for toric Fano manifolds and that for their toric boundaries giving large complex structure limits of their anticanonical Calabi–Yau hypersurfaces. If \(\hat{w}_i : (\mathbb{C}^\times)^{n_i} \to \mathbb{C}\) for \(i = 1, 2\) are mirror to toric Fano manifolds \(X_i\) with toric boundaries \(Y_i\) and \(\hat{w} := \hat{w}_1 + \hat{w}_2 : (\mathbb{C}^\times)^{n_1+n_2} \to \mathbb{C}\) is mirror to \(X := X_1 \times X_2\) with its toric boundary \(Y\), then one has the pushout diagram (1.50) inducing the pushout diagram

\[
\begin{array}{ccc}
\text{coh} Y_1 \otimes \text{coh} Y_2 & \longrightarrow & \text{coh} X_1 \otimes \text{coh} Y_2 \\
\downarrow & & \downarrow \\
\text{coh} Y_1 \otimes \text{coh} X_2 & \longrightarrow & \text{coh} Y
\end{array}
\] (1.54)

obtained from [29, Theorem 8.A.1.2] as explained in [30, section 1.1.2] (see also [61, section 2.4]).

This paper is organized as follows: In Section 2, we set up basic notations for weighted homogeneous polynomials and their semiuniversal unfoldings. In Section 3, we compute Hochschild cohomologies of (not necessarily smooth) proper algebraic stacks associated with weighted homogeneous polynomials using matrix factorizations. In Section 4, we give a generator \(S\) of \(\text{perf} \mathcal{Y}\), and prove the formality of end \(S_0\). We prove Theorem 1.6 in Section 5. In Section 6, we prove that \(\text{HH}^n(\mathcal{F}(|\mathcal{V}|))\) is isomorphic to the symplectic cohomology of \(\mathcal{V}\). In Section 7, we give computations of symplectic cohomology of \(\mathcal{V}\) and deduce the non-formality result in \(\mathcal{F}(\mathcal{V})\). Theorem 1.7 is proved in Section 8.

Through the rest of the paper, we will work over an algebraically closed field \(\mathbb{k}\) of characteristic 0. The bounded derived category of coherent sheaves, its full subcategory consisting of perfect complexes, and the unbounded derived category of quasi-coherent sheaves on an algebraic stack \(\mathcal{Y}\), considered as pretriangulated dg categories, will be denoted by coh \(\mathcal{Y}\), perf \(\mathcal{Y}\), and Qcoh \(\mathcal{Y}\), respectively. All Fukaya categories are completed with respect to cones and direct summands.

2 | WEIGHTED HYPERSURFACE SINGULARITIES

A weight system is a sequence \((d_1, \ldots, d_n; h)\) of positive integers satisfying

\[
h > \max\{d_1, \ldots, d_n\}.
\] (2.1)
We will always assume
\[\gcd(d_1, \ldots, d_n, h) = 1 \] (2.2)
in this paper. Let \(w(x_1, \ldots, x_n) \in k[x_1, \ldots, x_n] \) be a polynomial in \(n \) variables, which is weighted homogeneous of weight \((d_1, \ldots, d_n; h)\);
\[w\left(t^{d_1}x_1, \ldots, t^{d_n}x_n\right) = t^hw(x_1, \ldots, x_n), \quad t \in \mathbb{G}_m. \] (2.3)
It is written as the sum of monomials
\[w(x_1, \ldots, x_n) = \sum_{i=(i_1, \ldots, i_n) \in I_w} c_i x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n}, \quad c_i \in \mathbb{G}_m, \] (2.4)
where the index set \(I_w \) is a subset of the set of non-negative integers satisfying
\[d_1i_1 + d_2i_2 + \cdots + d_ni_n = h. \] (2.5)
We will always assume that \(w \) determines the weight system satisfying (2.2) uniquely.

Let \(\Gamma_w \) be the commutative algebraic group defined by
\[\Gamma_w := \{ (t_1, \ldots, t_{n+1}) \in \mathbb{G}_m^{n+1} \mid t_1^{i_1} t_2^{i_2} \cdots t_n^{i_n} = t_{n+1} \text{ for all } (i_1, \ldots, i_n) \in I_w \}. \] (2.6)
The group \(\hat{\Gamma}_w := \text{Hom}(\Gamma_w, \mathbb{G}_m) \) of characters of \(\Gamma_w \) is written as
\[\hat{\Gamma}_w = \mathbb{Z}X_1 \oplus \cdots \oplus \mathbb{Z}X_{n+1} / (i_1X_1 + \cdots + i_nX_n - X_{n+1})_{i \in I_w}, \] (2.7)
where \(X_i \in \hat{\Gamma}_w \) for \(1 \leq i \leq n+1 \) is defined by \((t_1, \ldots, t_{n+1}) \mapsto t_i \). Since the composition \(\Gamma_w \hookrightarrow \mathbb{G}_m^{n+1} \times \mathbb{G}_m \rightarrow \mathbb{G}_m^n \) with the first projection is injective, we will think of \(\Gamma_w \) as a subgroup of \(\mathbb{G}_m^n \), and set \(\chi_w := X_{n+1} \). The group \(\Gamma_w \) consists of diagonal transformations of \(\mathbb{A}_n \) which keeps \(w \) semi-invariant;
\[w(t \cdot (x_1, \ldots, x_n)) = \chi_w(t)w(x_1, \ldots, x_n), \quad t \in \Gamma_w. \] (2.8)

The injective homomorphism
\[\phi: \mathbb{G}_m \rightarrow \Gamma_w, \quad t \mapsto (t^{d_1}, \ldots, t^{d_n}) \] (2.9)
fits into the exact sequence
\[1 \rightarrow \mathbb{G}_m \xrightarrow{\phi} \Gamma_w \rightarrow \text{ker } \chi_w / \langle j_w \rangle \rightarrow 1, \] (2.10)
where \(j_w := (e^{2\pi \sqrt{-1}d_1/h}, \ldots, e^{2\pi \sqrt{-1}d_n/h}) \) is the grading element generating the cyclic group \(\text{ker } \chi_w \cap \phi(\mathbb{G}_m) \) of order \(h \).
Let Γ be a subgroup of Γ_w containing $\phi(G_m)$ as a subgroup of finite index. For such Γ, the kernel of $\chi := \chi_w|_{\Gamma}$ is a finite group, and such subgroups Γ are in bijection with finite subgroups of $\ker \chi_w$ containing the grading element j_w.

The group Γ acts naturally on the spectrum of $\overline{R} := k[x_1, \ldots, x_n]/(w)$, and we write the quotient stack of the complement of the origin 0 as

$$\mathcal{X} := \left(\text{Spec } R \setminus 0 \right)/\Gamma.$$ \hspace{1cm} (2.11)

We let Γ act on $\mathbb{A}^{n+1} := \text{Spec } k[x_0, \ldots, x_n]$ diagonally via $\chi_0 \oplus \cdots \oplus \chi_n$ where

$$\chi_0 := \chi - \chi_1 - \cdots - \chi_n.$$ \hspace{1cm} (2.12)

By abuse of notation, we write the image of w by the inclusion of $k[x_1, \ldots, x_n]$ to $k[x_0, \ldots, x_n]$ by the same symbol, and set $R := k[x_0, \ldots, x_n]/(w)$.

If

$$d_0 := h - d_1 - \cdots - d_n$$ \hspace{1cm} (2.13)

is positive, then $[(\mathbb{A}^{n+1} \setminus 0)/\Gamma]$ is proper, and hence so is its closed substack

$$Y_0 := [(\text{Spec } R \setminus 0)/\Gamma].$$ \hspace{1cm} (2.14)

Here, the subscript ‘0’ is placed in anticipation of the deformation that we will study later on. It is a projective cone over X, which is obtained from $V_0 := [\text{Spec } \overline{R} / \ker \chi_0]$ by adding X at infinity. The character of the Γ-action on the x_0 variable in (2.12) is chosen so that the dualizing sheaf of y_0 is trivial.

Assume that $w : \mathbb{A}^n \to \mathbb{A}$ has an isolated critical point at the origin. This is equivalent to the finiteness of the dimension μ, called the Milnor number of w, of the Jacobian algebra

$$\text{Jac}_w := k[x_1, \ldots, x_n]/(\partial_1 w, \ldots, \partial_n w).$$ \hspace{1cm} (2.15)

Let J_w be the set of exponents of monomials representing a basis of Jac_w, and

$$\tilde{w} := w(x_1, \ldots, x_n) + \sum_{j=(j_1, \ldots, j_n) \in J_w} u_j x_1^{j_1} \ldots x_n^{j_n} : \mathbb{A}^n \times \tilde{U} \to \mathbb{A}^1$$ \hspace{1cm} (2.16)

be a semiuniversal unfolding of w. The base space $\tilde{U} := \text{Spec } k[u_1, \ldots, u_\mu]$ is an affine space of dimension μ. Let U be the affine subspace of \tilde{U} defined by the condition that u_j may be non-zero only if there exists a positive integer w_j satisfying

$$\chi = w_j \chi_0 + j_1 \chi_1 + \cdots + j_n \chi_n.$$ \hspace{1cm} (2.17)

Let J be the set of $j \in J_w$ satisfying this condition. Then we have the family

$$\pi_{\mathcal{Y}} : \mathcal{Y} := \left(\text{W}^{-1}(0) \setminus (0 \times U)\right)/\Gamma \to U$$ \hspace{1cm} (2.18)
of stacks over U defined by
\[
W := w(x_1, \ldots, x_n) + \sum_{j \in J} u_j x_0^{w_j} x_1^{j_1} \cdots x_n^{j_n} : \mathbb{A}^{n+1} \times U \to \mathbb{A}^1,
\] (2.19)
whose fiber over $u \in U$ will be denoted by $W_u := \pi^{-1}(u)$. Here the action of Γ on $\mathbb{A}^{n+1} \times U$ in such a way that $\deg x_i = \chi_i$ for $i = 0, 1, \ldots, n$ and $\deg u_j = 0$ for all $j \in J_w$. The divisor at infinity defined by x_0 is isomorphic to $X \times U$. The relative dualizing sheaf $\omega_{Y/U}$ is identified with $\omega(W^{-1}(0) \setminus (0 \times U))$ considered as a Γ-equivariant coherent sheaf, which in turn is isomorphic to the restriction of $\omega(\mathbb{A}^{n+1} \times U)(\chi)$ to $W^{-1}(0) \setminus (0 \times U)$ since W is a section of $\mathcal{O}_{\mathbb{A}^{n+1} \times U}$ of degree χ. This sheaf is Γ-equivariantly trivial, and we fix its trivialization, which is unique up to scaling if $d_0 > 0$. In addition, there is a G_m-action on $\mathbb{A}^{n+1} \times U$ given by
\[
((x_0, x_1, \ldots, x_n), (u_j)_{j \in J}) \mapsto \left(t^{-1}x_0, x_1, \ldots, x_n, (t^{w_j}u_j)_{j \in J}\right),
\] (2.20)
which induces actions on Y and U which makes π_Y equivariant.

Example 2.1 (Tacnode). When $n = 2$ and $w = x^2 + y^4$, one has $(d_1, d_2; h) = (2, 1; 4)$ and
\[
\Gamma_w := \{(t_1, t_2) \in G_m^2 \mid t_1^2 = t_2^4\} \sim \mathbb{A}^{3} \times \mu_2, \quad (t_1, t_2) \mapsto (t_2, t_1 t_2^{-2}).
\] (2.21)
The image of the injective homomorphism
\[
\phi : G_m \to \Gamma_w, \quad t \mapsto (t^2, t)
\] (2.22)
is an index 2 subgroup isomorphic to G_m, so that there are two choices of Γ. By construction, we have the semi-invariance property
\[
w(t_1 x, t_2 y) = \chi(t_1, t_2) w(x, y),
\] (2.23)
where $\chi : \Gamma \to G_m$ is the character sending (t_1, t_2) to $t_1^2 = t_2^4$. A semiuniversal unfolding of w is given by
\[
\tilde{w}(x, y; u_2, u_3, u_4) = x^2 + y^4 + u_2 y^2 + u_3 y + u_4,
\] (2.24)
and one has
\[
w(x, y, z; u_2, u_3, u_4) = x^2 + y^4 + u_2 y^2 z^2 + u_3 y z^3 + u_4 z^4
\] (2.25)
if $\Gamma = \phi(G_m)$, and
\[
w(x, y, z; u_2, u_4) = x^2 + y^4 + u_2 y^2 z^2 + u_4 z^4
\] (2.26)
if $\Gamma = \Gamma_w$.

Example 2.2 (E_{12}-singularity). When $n = 3$ and $w(x, y, z) = x^2 + y^3 + z^7$, one has $(d_1, d_2, d_3; h) = (21, 14, 6; 42)$, $\Gamma_w \cong G_m$, $\text{Jac}_w = \mathbb{A}[x, y, z]/(2x, 3y^2, 7y^6)$, and $\mu = 12$. One can take
\[
J_w = \{(i, j, k) \in \mathbb{N}^3 \mid i = 0, j \leq 1, k \leq 5\},
\] (2.27)
so that a semiuniversal unfolding \(\tilde{w} : \mathbb{A}^3 \times \bar{U} \to \mathbb{A}^1 \) of \(w \) is given by
\[
\tilde{w} = x^2 + y^3 + z^7 + \sum_{j=0,1} \sum_{k=0,1,2,3,4,5} u_{j,k} y^j z^k.
\]
(2.28)

Since \(\phi(G_m) = \Gamma_w \), the choice of \(\Gamma \) is unique in this case. The integer
\[
w_{jk} = 42 - 14j - 6k
\]
(2.29)
is positive unless \((j, k) = (1, 5) \), so that \(U \subset \bar{U} \) is the 11-dimensional subspace defined by \(u_{15} = 0 \),
and \(W : \mathbb{A}^4 \times U \to \mathbb{A}^1 \) is given by
\[
W = x^2 + y^3 + z^7 + \sum_{(j,k) \neq (1,5)} u_{j,k} y^j z^k v^w_{j,k}.
\]
(2.30)

3 | HOCHSCHILD COHOMOLOGY VIA MATRIX FACTORIZATIONS

The Hochschild cohomology of a scheme \(Y \) (or more generally a perfect derived stack [8]) is defined as
\[
\text{HH}^*(Y) := \text{Ext}^*_{Y \times Y} (\mathcal{O}_\Delta, \mathcal{O}_\Delta),
\]
(3.1)
where \(\mathcal{O}_\Delta := \Delta_* \mathcal{O}_Y \) and \(\Delta : Y \to Y \times Y \) is the diagonal embedding. The right-hand side of (3.1) is isomorphic to the endomorphism
\[
\text{HH}^*(\text{Qcoh} Y) := \text{Hom}^*_{\text{Fun}^\text{L}(\text{Qcoh} Y, \text{Qcoh} Y)} (\text{id}_{\text{Qcoh} Y}, \text{id}_{\text{Qcoh} Y})
\]
(3.2)
of the identity in the \(\infty \)-category of colimit-preserving endofunctors of \(\text{Qcoh} Y \) [8, 79].

When \(Y \) is a smooth variety over \(k \) (see [3] for a partial extension to positive characteristics), one can compute the Hochschild cohomology by appealing to Hochschild–Kostant–Rosenberg isomorphism
\[
\text{HH}^n(Y) \cong \bigoplus_{p+q=n} H^p(Y, \Lambda^q T_Y).
\]
(3.3)
However, our main interest is in the case when \(Y \) is a singular stack. A generalization of the above decomposition to singular varieties is given by Buchweitz–Flenner [14] which states
\[
\text{HH}^n(Y) \cong \bigoplus_{p+q=n} \text{Ext}^p (\Lambda^q \mathcal{L}_Y, \mathcal{O}_Y),
\]
(3.4)
where \(\mathcal{L}_Y \) is the cotangent complex over \(k \) and \(\Lambda^q \) is the derived exterior product. However, it is not always straightforward to compute with this, even when \(Y \) is a variety. We will instead use another strategy which uses the function \(w \) more directly.

Let \(S := \text{Sym} V \) be the symmetric algebra over the vector space \(V := \text{span}\{x_0, x_1, \ldots, x_n\} \) of dimension \(n + 1 \), and \(\mathbb{A}^{n+1} = \text{Spec} S \) be the affine space. Let further \(\Gamma \) be a finite extension of
\(\mathbb{G}_m \) acting linearly on \(V, \chi \in \hat{\Gamma} := \text{Hom}(\Gamma, \mathbb{G}_m) \) be a character of \(\Gamma \), and \(W \in H^0(\mathcal{O}_{\mathbb{A}^{n+1}/\Gamma})(\chi) \cong (S \otimes \chi)^\Gamma \) be a non-zero element of weight \(\chi \). The quotient ring \(R := S/(W) \) inherits a \(\Gamma \)-action.

When \(\chi \) is isomorphic to the top exterior power of the dual \(V^\vee \) as a \(\Gamma \)-module, the bounded derived category \(\text{coh} \mathcal{Y} \) of coherent sheaves on the quotient stack \(\mathcal{Y} := [(\text{Spec } R \setminus \mathbf{0})/\Gamma] \) is quasi-equivalent to the idempotent-complete dg category \(\text{mf}(\mathbb{A}^{n+1}/\Gamma, W) \) of \(\Gamma \)-equivariant matrix factorizations;

\[
\text{coh} \mathcal{Y} \cong \text{mf}(\mathbb{A}^{n+1}/\Gamma, W). \tag{3.5}
\]

This is first proved by Orlov [63, Theorem 40] when \(\Gamma \cong \mathbb{G}_m \) in the context of triangulated categories. The generalization to a finite extension of \(\mathbb{G}_m \) is straightforward. The quasi-equivalence of dg categories can be found in [6, 16, 40, 74]. Note also that by [63, Theorem 39], \(\text{mf}(\mathbb{A}^{n+1}/\Gamma, W) \) is equivalent to the bounded stable derived category of the graded ring \(R \), denoted by \(D^\text{b}_{\text{sing}}(\text{gr } R) \). The equivalence (3.5) implies the isomorphism

\[
\HH^*(\mathcal{Y}) \cong \HH^*(\mathbb{A}^{n+1}, \Gamma, W), \tag{3.6}
\]

where the right-hand side is the Hochschild cohomology of the dg category \(\text{mf}(\mathbb{A}^{n+1}/\Gamma, W) \), which can be computed as follows:

\textbf{Theorem 3.1} [6, 16, 20, 67]. Let \(\Gamma \) be an abelian finite extension of \(\mathbb{G}_m \) acting linearly on \(\mathbb{A}^{n+1} = \text{Spec } S \), and \(W \in S \) be a non-zero element of degree \(\chi \in \hat{\Gamma} := \text{Hom}(\Gamma, \mathbb{G}_m) \). Assume that the singular locus of the zero set \(Z_{-W^\Box W} \) of the Sebastiani–Thom sum \((-W^\Box W) \) is contained in the product of the zero sets \(Z_W \times Z_W \). Then \(\HH^1(\mathbb{A}^{n+1}, \Gamma, W) \) is isomorphic to

\[
\left\{ \sum_{\gamma \in \ker \chi, \, l \geq 0} \left[\bigoplus_{t - \dim N_\gamma = 2u} H^{-2l}((dW_\gamma) \otimes \chi^{(u+1)} \otimes \Lambda^\dim N_\gamma N_\gamma^\vee) \right] \right\}^\Gamma. \tag{3.7}
\]

Here \(H^i(dW_\gamma) \) is the \(i \)th cohomology of the Koszul complex

\[
C^*(dW_\gamma) := \left\{ \cdots \to \Lambda^2 V_\gamma^\vee \otimes \chi^{\otimes(-2)} \otimes S_\gamma \to V_\gamma^\vee \otimes \chi^\vee \otimes S_\gamma \to S_\gamma \to S_\gamma \right\}, \tag{3.8}
\]

where the rightmost term \(S_\gamma \) sits in cohomological degree 0, and the differential is the contraction with

\[
dW_\gamma \in (V_\gamma \otimes \chi \otimes S_\gamma)^\Gamma. \tag{3.9}
\]

The vector space \(V_\gamma \) is the subspace of \(\gamma \)-invariant elements in \(V, S_\gamma \) is the symmetric algebra of \(V_\gamma \), \(W_\gamma \) is the restriction of \(W \) to \(\text{Spec } S_\gamma \), and \(N_\gamma \) is the complement of \(V_\gamma \) in \(V \) so that \(V \cong V_\gamma \oplus N_\gamma \).
as a Γ-module. The vector space on the right-hand side of (3.9) is the degree χ part of the space $\Omega_{S_\gamma} \cong V_\gamma \otimes S_\gamma$ of Kähler differentials of S_γ, and dW_γ is the exterior derivative of the polynomial W_γ. The 0th cohomology of the Koszul complex (3.8) is isomorphic to the Jacobi algebra Jac_{W_γ}. If W_γ has an isolated critical point at the origin, then the cohomology of (3.8) is concentrated in degree 0, so that only the summand

$$\left(\text{Jac}_{W_\gamma} \otimes \chi^\otimes u \otimes \Lambda^{\dim N_\gamma N^\vee_\gamma}\right)^\Gamma$$

with $l = 0$ contributes in (3.7).

The formula (3.7) is an adaptation of [6, Theorem 1.2], to which we refer the reader for a proof. The slight difference between [6, Theorem 1.2] and (3.7) comes from the convention for the Koszul complex; the latter is convenient in that when V has an additional \mathbb{G}_m-action, (3.7) is equivariant with respect to it.

If the Γ-action on V satisfies $\dim(S \otimes \rho)^\Gamma < \infty$ for any $\rho \in \hat{\Gamma}$, then one has

$$\dim \text{HH}^t(\mathbb{A}^{n+1}, W, \Gamma) < \infty$$

for any $t \in \mathbb{Z}$, since the Koszul complex (3.8) is bounded, the group $\text{ker} \chi$ is finite, each direct summand in (3.7) is finite-dimensional, and there are only finitely many u contributing to a fixed t.

We compute the Hochschild cohomologies in several classes of examples in Sections 3.1–3.7. The results in Sections 3.2–3.5 give examples where the condition (4) in Theorem 1.6 is satisfied, and the results in Sections 3.6 and 3.7 are used in the proof of Theorem 1.7 given in Section 8.

3.1 Cones over isolated hypersurface singularities

Let $w \in k[x_1, \ldots, x_n]$ be a weighted homogeneous polynomial of weight $(d_1, \ldots, d_n; h)$ satisfying $d_0 > 0$ and Γ be a subgroup of Γ_w containing $\hat{\phi}(\mathbb{G}_m)$ as a subgroup of finite index as in Section 2. Assume that w has an isolated critical point at the origin and let W be the image of w by the inclusion $k[x_1, \ldots, x_n] \hookrightarrow k[x_0, x_1, \ldots, x_n]$. Then $\mathfrak{y} := [(W^{-1}(0) \setminus 0) / \Gamma]$ has a \mathbb{G}_m-action given by $t \cdot [x_0 : x_1 : \cdots : x_n] = [tx_0 : x_1 : \cdots : x_n]$, which induces a \mathbb{G}_m-action on $\text{HH}^*(\mathfrak{y})$. Let $\text{HH}^*(\mathfrak{y})_{<0}$ be the negative weight part of this \mathbb{G}_m-action.

Since W does not contain the variable x_0, the Koszul complex $C^*(dW_\gamma)$ is isomorphic to the tensor product of $C^*(dW_\gamma)$ and the complex $\{kx_0^\vee \otimes \chi^\vee \otimes k[x_0] \to k[x_0]\}$ concentrated in cohomological degree $[-1, 0]$ with the zero differential if V_γ contains $kx_0 \subset V$, and to $C^*(dW_\gamma)$ otherwise. Only direct summands coming from $H^k(dW_\gamma)$ with $k = 0, -1$ contribute to (3.7) in the former case, and those with $k = 0$ in the latter case. Summands with $k = 0$ contribute

$$\left(\text{Jac}_{W_\gamma} \otimes k[x_0] \otimes \chi^\otimes u \otimes \Lambda^{\dim N_\gamma N^\vee_\gamma}\right)^\Gamma$$

(3.12)

to $\text{HH}^{2u + \dim N_\gamma}(\mathfrak{y})$, and those with $k = -1$ contribute

$$\left(kx_0^\vee \otimes \text{Jac}_{W_\gamma} \otimes k[x_0] \otimes \chi^\otimes u \otimes \Lambda^{\dim N_\gamma N^\vee_\gamma}\right)^\Gamma$$

(3.13)
to $\text{HH}^{2u + \dim N_\gamma + 1}(Y)$ since
\begin{equation}
H^{-1}(dW_\gamma) \cong kx_0^\vee \otimes \chi^\vee \otimes \text{Jac}_w \otimes k[x_0].
\end{equation}

Corollary 3.2. Under the above assumptions, one has $\text{HH}^0(Y) \cong k$, $\text{HH}^1(Y)_0 \not\cong 0$, and $\text{HH}^1(Y)_{<0} \cong 0$.

Proof. If $u \leq -1$, then (3.12) vanishes, and if $u = 0$, then (3.12) contribute to $\text{HH}^0(Y)$ only if $N_\gamma = 0$, where it is k. (3.12) cannot contribute to $\text{HH}^1(Y)$, since $\dim N_\gamma = 1$ is impossible for $\gamma = (t_0, t_1, \ldots, t_n) \in \Gamma$ because of the condition $t_0 \cdots t_n = 1$. One always has $u \geq -1$ in (3.13), and one can have $u = -1$ only if $N_\gamma = \text{span}\{x_1, \ldots, x_n\}$. Each such γ contributes $k(-1)$ to $\text{HH}^{n-1}(Y)$. The summand with $u = 0$ and $\gamma = 0$ contributes $(kx_0^\vee \otimes \text{Jac}_w \otimes k[x_0])^\Gamma$ to $\text{HH}^1(Y)$, which has non-negative G_m-weights. In particular, the element $x_0^\vee \otimes x_0$ gives a non-zero contribution to $\text{HH}^1(Y)_0$. Summands with $u = 0$ and $\gamma \neq 0$ or $u \geq 1$ contribute to $\text{HH}^{\geq 2}(Y)$. □

Definition 3.3. We say that the pair (w, Γ) does not have twisted deformations if $\text{HH}^2(Y)_{<0}$ comes only from the direct summand $(\text{Jac}_w \otimes k[x_0] \otimes \chi)^\Gamma$ corresponding to $u = 1$ and $\gamma = 0$ in (3.12).

This condition means that direct summands with $\gamma \neq 0$, called twisted sectors in string theory, do not contribute to $\text{HH}^2(Y)_{<0}$, so that all deformations corresponding to $\text{HH}^2(Y)_{<0}$ comes from deformations of the defining polynomial w, and one has $\dim \text{HH}^2(Y)_{<0} = \dim U$.

3.2 Projective hypersurfaces

Consider the case
\begin{equation}
w(x_1, \ldots, x_n) = x_1^{n+1} + \cdots + x_n^{n+1}
\end{equation}
with
\begin{equation}
(d_1, \ldots, d_n; h) = (1, \ldots, 1; n + 1)
\end{equation}
and
\begin{equation}
\Gamma = \{(t_0, \ldots, t_n) \in (G_m)^{n+1} | t_1^{n+1} = \cdots = t_n^{n+1} = t_0 \cdots t_n\}.
\end{equation}

This case appears in mirror symmetry for the Calabi–Yau hypersurface of degree $n + 1$ in \mathbb{P}^n, and gives the D_4-singularity $x^3 + y^3$ for $n = 2$. The group $\hat{\Gamma}$ of characters of Γ is isomorphic to $\mathbb{Z} \times (\mathbb{Z}/(n+1)\mathbb{Z})^{n-1}$, and we write the character $(t_0, \ldots, t_n) \mapsto t_1^{i_1} \cdots t_n^{i_n}$ for $(i_1, \ldots, i_n) \in \mathbb{Z} \times (\mathbb{Z}/(n+1)\mathbb{Z})^{n-1}$ as ρ_{i_1, \ldots, i_n}. One has $kx_0^\vee \cong \rho_1, \ldots, kx_1^\vee \cong \rho_{1,0,\ldots,0}, kx_2^\vee \cong \rho_{1,1,\ldots,0,\ldots,0}, \ldots, kx_n^\vee \cong \rho_{1,0,\ldots,0,\ldots,0}$, and $\ker \chi \cong (\mathbb{Z}/(n+1)\mathbb{Z})^n$.

When γ is the identity element, one has $V_\gamma = V$, $N_\gamma = 0$, $W_\gamma = w$ and
\begin{equation}
\text{Jac}_w \cong k[x_1, \ldots, x_n]/((n+1)x_1^n, \ldots, (n+1)x_n^n).
\end{equation}
The element
\begin{equation}
x_0^{(n+1)(u-i)+i} x_i^i \cdots x_n^i \in (\text{Jac}_w \otimes k[x_0] \otimes \chi \otimes u)^\Gamma
\end{equation}
for \(i = 0, \ldots, \min\{u, n-1\} \) contributes \(k((n+1)(u-i)+i) \) to \(HH^{2u} \), and the element

\[
x_0^\vee \otimes x_0^{(n+1)(u-i)+i+1} x_1^i \cdots x_n^i \in (x_0^\vee \otimes Jac_\gamma \otimes k[x_0] \otimes \chi^\otimes u)^\Gamma \tag{3.20}
\]

for \(i = 0, \ldots, \min\{u, n-1\} \) contributes \(k((n+1)(u-i)+i) \) to \(HH^{2u+1} \).

When \(V_\gamma = 0 \) and \(N_\gamma = V \), one has \(W_\gamma = 0 \) and the summand

\[
\left(\chi^\otimes u \otimes \Lambda^{\dim N_\gamma} N_\gamma^\vee \right)^\Gamma \cong k x_0^\vee \wedge \cdots \wedge x_n^\vee \tag{3.21}
\]

contributes \(k(-1) \) to \(HH^{2u+\dim N_\gamma} = HH^{-2+n+1} = HH^{n-1} \). The number \(v_1(n) \) of such \(\gamma \) is 2, 21, 204, ... for \(n = 2, 3, 4, \ldots \), respectively.

When \(V_\gamma = k x_0 \) and \(N_\gamma = k x_1 \oplus \cdots \oplus k x_n \), one has \(W_\gamma = 0 \) and the summand

\[
\left(\left(\chi^\otimes u \otimes \Lambda^{\dim N_\gamma} N_\gamma^\vee \right)^\Gamma \cong k x_0^{(n+1)(u+n)} \otimes x_1^\vee \wedge \cdots \wedge x_n^\vee \right.
\]

in \(HH^{2u+\dim N_\gamma} \) contributes \(k((n+1)(u+n)) \) to \(HH^{2u+n} \) for \(u \geq 0 \), and the summand

\[
\left(\left(\chi^\otimes u \otimes \Lambda^{\dim N_\gamma} N_\gamma^\vee \right)^\Gamma \cong k x_0^{(n+1)(u+n+1)} \otimes x_1^\vee \wedge \cdots \wedge x_n^\vee \right.
\]

in \(HH^{2u+\dim N_\gamma+1} \) contributes \(k((n+1)(u+n)) \) to \(HH^{2u+n+1} \) for \(u \geq -1 \). The number \(v_2(n) \) of such \(\gamma \) is 2, 6, 52, ... for \(n = 2, 3, 4, \ldots \), respectively.

Note that one has

\[
v_1(n) + v_2(n) = n^n, \tag{3.24}
\]

since the left-hand side is equal to is the number of elements of the set

\[
\{(t_1, \ldots, t_n) \in (G_m \setminus \{1\})^n \mid \gamma_{r+1} = \cdots = \gamma_{n+1} = 1\}. \tag{3.25}
\]

When \(V_\gamma = k x_0 \oplus \cdots \oplus k x_i \) and \(\Lambda^{\dim N_\gamma} N_\gamma^\vee = k x_{i+1}^\vee \wedge \cdots \wedge x_n^\vee \) for \(0 < i < n \), one has \(W_\gamma = x_i^{n+1} + \cdots + x_i^{n+1} \) and

\[
Jac_\gamma = k[x_0] \otimes \text{span} \{1, x_1, \ldots, x_i^{n-1}\} \otimes \cdots \otimes \text{span} \{1, x_i, \ldots, x_i^{n-1}\}. \tag{3.26}
\]

Since the weight of

\[
x_0^{k_0} \cdots x_i^{k_i} \otimes x_i^{\vee} \wedge \cdots \wedge x_n^\vee \in Jac_\gamma \otimes \Lambda^{\dim N_\gamma} N_\gamma^\vee
\]

for \((k_0, \ldots, k_i) \in \mathbb{N} \times \{0, \ldots, n-1\} \) can never be proportional to \(\chi \), one has

\[
\left(Jac_\gamma \otimes \chi^\otimes u \otimes \Lambda^{\dim N_\gamma} N_\gamma^\vee \right)^\Gamma \cong 0 \tag{3.28}
\]
for any \(u \in \mathbb{Z} \) and similarly for \((x_0^\vee \otimes \text{Jac}_y \otimes \chi^{\otimes u} \otimes \Lambda^{\dim N_r N_{\gamma}})^\Gamma\), so that such \(\gamma \) does not contribute to \(\text{HH}^* \). In total, one has

\[
\begin{align*}
\text{HH}^0(Y) & \cong \mathbb{k}, \\
\text{HH}^1(Y) & \cong \mathbb{k} \oplus \mathbb{k}(-1)^{\oplus 4}, \\
\text{HH}^{2i+2}(Y) & \cong \text{HH}^{2i+3}(Y) \cong \mathbb{k}(3i+1) \oplus \mathbb{k}(3i+2)^{\oplus 2} \oplus \mathbb{k}(3i+3) \quad \text{for } i \geq 0
\end{align*}
\]

for \(n = 2 \),

\[
\begin{align*}
\text{HH}^0(Y) & \cong \text{HH}^1(Y) \cong \mathbb{k}, \\
\text{HH}^2(Y) & \cong \mathbb{k}(-1)^{\oplus 27} \oplus \mathbb{k}(1) \oplus \mathbb{k}(4), \\
\text{HH}^3(Y) & \cong \mathbb{k}(1) \oplus \mathbb{k}(3)^{\oplus 6} \oplus \mathbb{k}(4), \\
\text{HH}^{2i+4}(Y) & \cong \mathbb{k}(4i+2) \oplus \mathbb{k}(4i+3)^{\oplus 6} \oplus \mathbb{k}(4i+5) \oplus \mathbb{k}(4i+8) \quad \text{for } i \geq 0, \\
\text{HH}^{2i+5}(Y) & \cong \mathbb{k}(4i+2) \oplus \mathbb{k}(4i+5) \oplus \mathbb{k}(4i+7)^{\oplus 6} \oplus \mathbb{k}(4i+8) \quad \text{for } i \geq 0
\end{align*}
\]

for \(n = 3 \),

\[
\begin{align*}
\text{HH}^0(Y) & \cong \text{HH}^1(Y) \cong \mathbb{k}, \\
\text{HH}^2(Y) & \cong \mathbb{k}(1) \oplus \mathbb{k}(5), \\
\text{HH}^3(Y) & \cong \mathbb{k}(-1)^{\oplus 256} \oplus \mathbb{k}(1) \oplus \mathbb{k}(5), \\
\text{HH}^4(Y) & \cong \text{HH}^5(Y) \cong \mathbb{k}(2) \oplus \mathbb{k}(4)^{\oplus 52} \oplus \mathbb{k}(6) \oplus \mathbb{k}(10), \\
\text{HH}^{2i+6}(Y) & \cong \text{HH}^{2i+7}(Y) \\
& \cong \mathbb{k}(5i+3) \oplus \mathbb{k}(5i+7) \oplus \mathbb{k}(5i+9)^{\oplus 52} \oplus \mathbb{k}(5i+11) \oplus \mathbb{k}(5i+15) \quad \text{for } i \geq 0
\end{align*}
\]

for \(n = 4 \), and so on.

For \(n = 2 \), there are twisted deformations where \(\text{HH}^2(Y)_{-2} \cong \mathbb{k}^{\oplus 2} \) comes from \(\gamma \neq 0 \), but there are no twisted deformations for all \(n \geq 3 \).

3.3 Double covers of projective spaces

Consider the case

\[
\mathbf{w}(x_1, \ldots, x_n) = x_1^2 + x_2^{2n} + \cdots + x_n^{2n}
\]

with

\[
(d_1, \ldots, d_n; h) = (n, 1, \ldots, 1; 2n)
\]

and

\[
\Gamma = \{ (t_0, \ldots, t_n) \in (\mathbb{G}_m)^{n+1} \mid t_1^2 = t_2^{2n} = \cdots = t_n^{2n} = t_0 \cdots t_n \}
\]
This case appears in mirror symmetry for the double cover of \mathbb{P}^{n-1} branched over a hypersurface of degree $2n$, and gives the tacnode singularity $x^2 + y^4$ for $n = 2$. One has $\hat{\Gamma} \cong \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times (\mathbb{Z}/2n\mathbb{Z})^{n-2}$ and $\ker \chi \cong \mathbb{Z}/2\mathbb{Z} \times (\mathbb{Z}/2n\mathbb{Z})^{n-1}$.

When γ is the identity element, one has $V_\gamma = V, N_\gamma = 0, W_\gamma = w$ and

$$\text{Jac}_w \cong k[x_1, \ldots, x_n]/(2x_1, 2nx_2^{2n-1}, \ldots, 2nx_n^{2n-1}).$$

(3.46)

The element

$$x_0^{2(u-1)n+2i} x_2^{2i} \cdots x_n^{2i} \in (\text{Jac}_w \otimes k[x_0] \otimes \chi^u)^\Gamma$$

(3.47)

for $i = 0, \ldots, \min\{u, n-1\}$ contributes $k(2(u-i)n+2i)$ to HH^{2u}, and the element

$$x_0^\vee \otimes x_0^{2(u-1)n+2i+1} x_2^{2i} \cdots x_n^{2i} \in (x_0^\vee \otimes \text{Jac}_w \otimes k[x_0] \otimes \chi^u)^\Gamma$$

(3.48)

for $i = 0, \ldots, \min\{u, n-1\}$ contributes $k(2(u-i)n+2i)$ to HH^{2u+1}.

When $V_\gamma = 0$ and $N_\gamma = V$, one has $W_\gamma = 0$ and the summand

$$\left(\chi^u \otimes \Lambda^\dim N_\gamma N_\gamma^\vee \right)^\Gamma \cong k x_0^\vee \wedge \cdots \wedge x_n^\vee$$

(3.49)

in $HH^{2u+\dim N_\gamma}$ contributes $k(-1)$ to $HH^{2u+\dim N_\gamma} = HH^{2+n+1} = HH^{n-1}$. The set of such γ is bijective with the set of $(i_0, i_2, \ldots, i_{n-1}) \in \{0, \ldots, 2n-1\}$ satisfying $i_0 + n + i_2 + \cdots + i_n \equiv 0$ modulo $2n$. The number $\nu_3(n)$ of such γ is $2, 21, 300, \ldots$ for $n = 2, 3, 4, \ldots$, respectively.

When $V_\gamma = kx_0$ and $N_\gamma = kx_1 \oplus \cdots \oplus kx_n$, one has $W_\gamma = 0$ and the summand

$$\left(\text{Jac}_w \otimes \chi^u \otimes \Lambda^\dim N_\gamma N_\gamma^\vee \right)^\Gamma \cong k x_0^{2nu+2n-1} \otimes x_1^\vee \wedge \cdots \wedge x_n^\vee$$

(3.50)

in $HH^{2u+\dim N_\gamma}$ contributes $k(2nu + 2n - 1)$ to HH^{2u+n} for $u \geq 0$, and the summand

$$\left(x_0^\vee \otimes \text{Jac}_w \otimes \chi^u \otimes \Lambda^\dim N_\gamma N_\gamma^\vee \right)^\Gamma \cong k x_0^\vee \otimes x_0^{2nu+2n} \otimes x_1^\vee \wedge \cdots \wedge x_n^\vee$$

(3.51)

in $HH^{2u+\dim N_\gamma+1}$ contributes $k(2nu + 2n - 1)$ to HH^{2u+n+1} for $u \geq -1$. The number $\nu_4(n)$ of such γ is $1, 4, 43, \ldots$ for $n = 2, 3, 4, \ldots$, respectively. One has

$$\nu_3(n) + \nu_4(n) = (2n-1)^{n-1}$$

(3.52)

just as in the case of $\nu_1(n) + \nu_2(n)$.

Other γ do not contribute, and the result is summarized as

$$HH^0(Y) \cong k,$$

(3.53)

$$HH^1(Y) \cong k \oplus k(-1)^{\oplus 3},$$

(3.54)

$$HH^{2i+2}(Y) \cong HH^{2i+3}(Y) \cong k(4i+2) \oplus k(4i+3) \oplus k(4i+4) \quad \text{for } i \geq 0$$

(3.55)
for $n = 2$,

$$\text{HH}^0(Y) \cong \text{HH}^1(Y) \cong \mathbb{k},$$

$$\text{HH}^2(Y) \cong \mathbb{k}(-1)^{25} \oplus \mathbb{k}(2) \oplus \mathbb{k}(6),$$

$$\text{HH}^3(Y) \cong \mathbb{k}(2) \oplus \mathbb{k}(5)^{24} \oplus \mathbb{k}(6),$$

$$\text{HH}^{2i+4}(Y) \cong \mathbb{k}(6i + 4) \oplus \mathbb{k}(6i + 5)^{24} \oplus \mathbb{k}(6i + 8) \oplus \mathbb{k}(6i + 12) \quad \text{for } i \geq 0,$$

$$\text{HH}^{2i+5}(Y) \cong \mathbb{k}(6i + 4) \oplus \mathbb{k}(6i + 8) \oplus \mathbb{k}(6i + 11)^{24} \oplus \mathbb{k}(6i + 12) \quad \text{for } i \geq 0$$

for $n = 3$,

$$\text{HH}^0(Y) \cong \text{HH}^1(Y) \cong \mathbb{k},$$

$$\text{HH}^2(Y) \cong \mathbb{k}(2) \oplus \mathbb{k}(8),$$

$$\text{HH}^3(Y) \cong \mathbb{k}(-1)^{256} \oplus \mathbb{k}(1) \oplus \mathbb{k}(5),$$

$$\text{HH}^4(Y) \cong \text{HH}^5(Y) \cong \mathbb{k}(4) \oplus \mathbb{k}(7)^{43} \oplus \mathbb{k}(10) \oplus \mathbb{k}(16),$$

$$\text{HH}^{2i+6}(Y) \cong \text{HH}^{2i+7}(Y) \cong \mathbb{k}(8i + 6) \oplus \mathbb{k}(8i + 12) \oplus \mathbb{k}(8i + 15)^{43} \oplus \mathbb{k}(8i + 18) \oplus \mathbb{k}(8i + 24) \quad \text{for } i \geq 0$$

for $n = 4$, and so on. There are twisted deformations for $n = 2$, but there are no twisted deformations for all $n \geq 3$.

3.4 Sylvester’s sequence

Consider the case $w(x_1, \ldots, x_n) = x_1^{s_1} + \cdots + x_n^{s_n}$ where $(s_i)_{i=1}^{\infty} = (2, 3, 7, 43, 1807, \ldots)$ is the Sylvester’s sequence defined by $s_i = 1 + s_1 \cdots s_{i-1}$. This case appears in mirror symmetry for the Calabi–Yau hypersurface in $\mathbb{P}(1, s_1, \ldots, s_n)$, and gives the cusp singularity $x^2 + y^3$ for $n = 2$. One has

$$(d_0, d_1, \ldots, d_n; h) = (1, h/s_1, \ldots, h/s_n; s_{n+1} - 1)$$

and $\phi : \mathbb{G}_m \to \Gamma$ is an isomorphism.

When γ is the identity element, one has $V_\gamma = V, N_\gamma = 0, W_\gamma = w$ and

$$\text{Jac}_w \cong \mathbb{k}[x_1, \ldots, x_n]/(s_1 x_1^{s_1-1}, \ldots, s_n x_n^{s_n-1}).$$

The monomial $x_0^{w_j + (u-1)h} x_1^{j_1} \cdots x_n^{j_n}$ from the summand

$$(\text{Jac}_w \otimes \mathbb{k}[x_0] \otimes \chi^\otimes u)^\Gamma$$

(3.69)
contributes $k(w_j + (u-1)h)$ to HH^{2u} for each $j = (j_1, \ldots, j_n)$ satisfying $0 < j_i < s_i - 1$ for $i = 1, \ldots, n$ and $w_j := h - d_1j_1 - \cdots - d_nj_n \geq -(u-1)h$. Such j also contributes $k(w_j + (u-1)h)$ to HH^{2u+1} just as in Section 3.2.

Each γ with $V_\gamma = 0$ contributes $k(-1)$ to HH^{n-1}. The set of such γ can be identified with the set of integers from 0 to $h-1$ prime to all s_i for $i = 1, \ldots, n$. The cardinality of this set is given by $2, 12, 504, \ldots$ for $n = 2, 3, 4, \ldots$, respectively.

One never has $V_\gamma = kx_0$ in this case. For any γ with $V_\gamma \neq 0$, V does not contribute to HH^* just as in Section 3.2.

The result is summarized as

\begin{align}
HH^0(Y) &\cong k,
\end{align}
\begin{align}
HH^1(Y) &\cong k \oplus k(-1)^{\Theta_2},
\end{align}
\begin{align}
HH^{2i+2}(Y) &\cong HH^{2i+3}(Y) \cong k(6i + 4) \oplus k(6i + 6) \quad \text{for } i \geq 0
\end{align}

for $n = 2$,

\begin{align}
HH^0(Y) &\cong k,
\end{align}
\begin{align}
HH^1(Y) &\cong k,
\end{align}
\begin{align}
HH^2(Y) &\cong k(-1)^{\Theta_12} \oplus k(w),
\end{align}
\begin{align}
HH^3(Y) &\cong k(w),
\end{align}
\begin{align}
HH^{2i+4}(Y) &\cong HH^{2i+5}(Y) \cong k(\bar{w} + 42(i + 1)) \quad \text{for } i \geq 0,
\end{align}

where $w = (4, 10, 12, 16, 18, 22, 24, 28, 30, 36, 42)$ and $\bar{w} = (-2, w)$ for $n = 3$, and so on. There are no twisted deformations for all $n \geq 2$.

3.5 Exceptional unimodal singularities

Consider the weighted homogeneous polynomials given in Table 1, which define Arnold’s 14 exceptional unimodal singularities [4, table 14]. We take $\Gamma = \phi(G_m)$. The Hilbert polynomial for the Jacobi ring

\begin{align}
Jac_w := k[x_1, x_2, x_3]/(\partial_1w, \partial_2w, \partial_3w)
\end{align}

is given by

\begin{align}
\frac{(1 - T^{h-d_1})(1 - T^{h-d_2})(1 - T^{h-d_3})}{(1 - T^{d_1})(1 - T^{d_2})(1 - T^{d_3})}.
\end{align}

We define a non-decreasing sequence $\bar{w} = (w_0 \leq \cdots \leq w_{\mu-1})$ of integers in such a way that (3.79) is equal to $\sum_{j=0}^{\mu-1} T^{h-w_j}$. Then one always has $w_0 = -2$, and $w := (w_j)_{j=1}^{\mu-1}$ is as in Table 1. The identity element $\gamma = id_{\bar{w}}$ contributes k to HH^0 and HH^1, $k(w)$ to HH^2 and HH^3, and $k(\bar{w} + (i+1)h)$ to
TABLE 1 Fourteen exceptional unimodal singularities

Name	Normal form	\((d_1, d_2, d_3; h)\)	\(\mu\)	\(w\)
\(Q_{10}\)	\(x^2z + y^3 + z^4\)	\((9,8,6;24)\)	10	\((4,6,7,10,12,15,16,18,24)\)
\(Q_{11}\)	\(x^2z + y^3 + yz^3\)	\((7,6,4;18)\)	11	\((2,4,5,6,8,10,11,12,14,18)\)
\(Q_{12}\)	\(x^2z + y^3 + z^3\)	\((6,5,3;15)\)	12	\((1,3,4,6,7,9,9,10,12,15)\)
\(Z_{11}\)	\(x^2 + y^3z + z^5\)	\((15,8,6;30)\)	11	\((4,6,10,12,14,16,18,22,24,30)\)
\(Z_{12}\)	\(x^2 + y^3z + yz^4\)	\((11,6,4;22)\)	12	\((2,4,6,8,10,12,14,16,18,22)\)
\(Z_{13}\)	\(x^2 + y^3z + z^6\)	\((9,5,3;18)\)	13	\((1,3,4,6,7,8,9,10,11,15,18)\)
\(S_{11}\)	\(x^2z + x^2y^2 + z^4\)	\((6,5,4;16)\)	11	\((2,3,4,6,7,8,10,11,12,16)\)
\(S_{12}\)	\(x^2z + xy^2 + yz^3\)	\((5,4,3;13)\)	12	\((1,2,3,4,5,6,7,8,9,10,13)\)
\(W_{12}\)	\(x^2 + y^4 + z^5\)	\((10,5,4;20)\)	12	\((2,3,6,7,8,10,12,15,16,20)\)
\(W_{13}\)	\(x^2 + y^4 + yz^4\)	\((8,4,3;16)\)	13	\((1,2,4,5,6,7,8,9,10,12,13,16)\)
\(E_{12}\)	\(x^2 + y^3 + z^7\)	\((21,14,6;42)\)	12	\((4,10,12,16,18,22,24,28,30,36,42)\)
\(E_{13}\)	\(x^2 + y^3 + yz^3\)	\((15,10,4;30)\)	13	\((2,6,8,10,12,14,16,18,20,22,26,30)\)
\(E_{14}\)	\(x^2 + y^3 + z^8\)	\((12,8,3;24)\)	14	\((1,4,6,7,9,10,12,13,15,16,18,21,24)\)
\(U_{12}\)	\(x^3 + y^3 + z^4\)	\((4,4,3;12)\)	12	\((1,2,2,4,5,5,6,8,8,9,12)\)

\(HH^{2i+4} \) and \(HH^{2i+5} \) for \(i \geq 0 \). By adding the term \(x^h \), one obtains a smooth Deligne–Mumford stack \(Y_1 \) derived-equivalent to a K3 surface. Since \(V_\gamma \) for \(\gamma \neq id_V \) does not contain the \(x_0 \)-axis, contributions from \(\gamma \neq id_V \) is the same for \(Y \) and \(Y_1 \). On the other hand, the rank of the total Hochschild cohomology of \(Y_1 \) is 24, and \(\gamma = id_V \) contributes \(k \) to \(HH^0(Y_1) \) via the element \(1 \in \text{Jac}_w \) of degree 0, \(k^{\oplus(\mu-2)} \) to \(HH^2(Y_1) \) via elements of degrees between 1 and \(h+1 \), and \(k \) to \(HH^4 \) via the element of degree \(h+2 \). It follows that \(\gamma \neq id_V \) contribute \(k^{\oplus(24-\mu)} \) to \(HH^2(Y_1) \). Since \(V_\gamma \) does not contain the \(x_0 \)-axis, each of these contributions contains \(x_0^\vee \) from \(\Lambda^{\dim N_\gamma N_\gamma} \), and hence the \(\mathbb{G}_m \)-weight for the contribution to \(HH^2(Y) \) is 1. This shows

\[
HH^0(Y) \cong k, \\
HH^1(Y) \cong k, \\
HH^2(Y) \cong k^{\oplus(24-\mu)} \oplus k(w), \\
HH^3(Y) \cong k(w), \\
HH^{2i+4}(Y) \cong HH^{2i+5}(Y) \cong k(\bar{w} + (i+1)h) \quad \text{for} \ i \geq 0.
\]

There are no twisted deformations in all these cases.

3.6 Cusp singularities

Consider the case

\[W(x_0, \ldots, x_n) = x_1^{n+1} + \cdots + x_n^{n+1} + x_0 \cdots x_n \quad (3.86) \]

with the same weight (3.16) and the group (3.17) as in Section 3.2.
When γ is the identity element, one has $V_\gamma = V$, $N_\gamma = 0$, and $W_\gamma = W$. The subring of S consisting of semi-invariants with respect to χ is equal to the invariant ring with respect to $\ker \chi \cong (\mu_{n+1})^n$. This ring is generated by $n + 2$ monomials $x_0^{n+1}, \ldots, x_n^{n+1}, x_0 \cdots x_n$ with one relation $x_0^{n+1} \cdots x_n^{n+1} = (x_0 \cdots x_n)^{n+1}$. The $n + 1$ monomials $x_1^{n+1}, \ldots, x_n^{n+1}, x_0 \cdots x_n$ are zero in Jac_W, so that

$$\dim \left(Jac_W \otimes \chi^{\otimes u} \right)_\Gamma = \begin{cases} 0 & u \leq -1, \\ 1 & u \geq 0. \end{cases} \quad (3.87)$$

The Grothendieck ring rep_Γ of finite-dimensional Γ-vector spaces can be identified with the group ring of $\hat{\Gamma}$, generated by $[x_0], \ldots, [x_n]$ and their inverses with relations $[x_0]^{n+1} = \cdots = [x_n]^{n+1} = [x_0] \cdots [x_n]$. The ring S is a $\hat{\Gamma}$-graded ring, and the class $[C^*(dW)]$ of the Koszul complex is an element of a suitable completion of rep_Γ given by

$$[C^*(dW)] = (1 + [x_0] + \cdots + [x_0]^{n-1}) \cdots (1 + [x_n] + \cdots + [x_n]^{n-1}). \quad (3.88)$$

Among n^{n+1} monomials in (3.88), only $[x_0]^i \cdots [x_n]^i$ for $i = 0, \ldots, n - 1$ are proportional to a power of $[\chi]$. By projecting to the subring generated by $T \coloneqq [x_0] \cdots [x_n]$, one obtains

$$\left[(C^*(dW))^\Gamma \right] = 1 + T + \cdots + T^{n-1}. \quad (3.89)$$

Since $(\partial_i W)_{i=0}^{n-1}$ is a regular sequence in S, the cohomology of the Koszul complex is concentrated in degree -1 and 0. It follows that

$$[Jac_W] - [H^{-1}(dW)] = 1 + T + \cdots + T^{n-1}, \quad (3.90)$$

so that

$$\dim \left(H^{-1}(dW) \otimes \chi^{\otimes (u+1)} \right)_\Gamma = \begin{cases} 0 & u \leq n - 2, \\ 1 & u \geq n - 1. \end{cases} \quad (3.91)$$

Hence, $\gamma = 0$ contributes k to HH^{2u} for $u \geq 0$ and HH^{2u+1} for $u \geq n - 1$.

Contributions from non-trivial γ is the same as in Section 3.2. The result is summarized as

$$\text{HH}^0(Y) \cong k, \quad (3.92)$$

$$\text{HH}^1(Y) \cong k^{\oplus 4}, \quad (3.93)$$

$$\text{HH}^{i+2}(Y) \cong k^{\oplus 3} \quad \text{for } i \geq 0 \quad (3.94)$$

for $n = 2$,

$$\text{HH}^0(Y) \cong k, \quad (3.95)$$

$$\text{HH}^1(Y) \cong 0, \quad (3.96)$$

$$\text{HH}^2(Y) \cong k^{\oplus 28}, \quad (3.97)$$
for \(n = 3 \),

\[
\begin{align*}
HH^0(Y) &\cong \mathbb{k}, \\
HH^1(Y) &\cong 0, \\
HH^2(Y) &\cong \mathbb{k}, \\
HH^3(Y) &\cong \mathbb{k}^{\oplus 256}, \\
HH^4(Y) &\cong \mathbb{k}^{\oplus 53}, \\
HH^5(Y) &\cong \mathbb{k}^{\oplus 52}, \\
HH^{6+i}(Y) &\cong \mathbb{k}^{\oplus 53} \quad \text{for } i \geq 0
\end{align*}
\]

for \(n = 4 \), and so on.
Similarly, the case

\[W(x_0, \ldots, x_n) = x_1^2 + x_2^{2n} + \cdots + x_{n+1}^{2n} - (n+1)x_0 \cdots x_n \]

with the same weight (3.44) and the group (3.45) as in Section 3.3 gives

\[
\begin{align*}
HH^0(Y) &\cong \mathbb{k}, \\
HH^1(Y) &\cong \mathbb{k}^{\oplus 3}, \\
HH^{i+2}(Y) &\cong \mathbb{k}^{\oplus 2} \quad \text{for } i \geq 0
\end{align*}
\]

for \(n = 2 \),

\[
\begin{align*}
HH^0(Y) &\cong \mathbb{k}, \\
HH^1(Y) &\cong 0, \\
HH^2(Y) &\cong \mathbb{k}^{\oplus 26}, \\
HH^3(Y) &\cong \mathbb{k}^{\oplus 4}, \\
HH^{4+i}(Y) &\cong \mathbb{k}^{\oplus 5} \quad \text{for } i \geq 0
\end{align*}
\]

for \(n = 3 \), and so on.

3.7 Ordinary double points

Consider the case \(W(x_0, x_1, \ldots, x_{n+1}) = x_0^{n+1} + \cdots + x_{n+1}^{n+1} - (n+1)x_0 \cdots x_n \) with the same weight (3.16) and the group (3.17) as in Section 3.2.
When γ is the identity element, one has $V_\gamma = V$, $N_\gamma = 0$, and $W_\gamma = W$. The generators $x_0^{n+1}, \ldots, x_n^{n+1}, x_0 \cdots x_n$ of the invariant ring $S^\text{ker} \chi$ belongs to the same class in Jac_W, so that

$$\dim \left(H^0(dW) \otimes \chi \otimes k \right)^\Gamma = \begin{cases} 0 & k \leq -1, \\ 1 & k \geq 0 \end{cases}. \quad (3.116)$$

The same reasoning as in Section 3.6 shows that $\gamma = 0$ contributes k to HH^{2i} for $i \geq 0$ and HH^{2i+1} for $i \geq 2$.

Contributions from non-trivial γ is the same as in Section 3.6, except that the coordinate x_0 behaves exactly the same way as other coordinates. The result is summarized as

$$\text{HH}^0(y) \cong k, \quad (3.117)$$
$$\text{HH}^1(y) \cong k^\oplus 2, \quad (3.118)$$
$$\text{HH}^{i+2}(y) \cong k \quad \text{for } i \geq 0 \quad (3.119)$$

for $n = 2$,

$$\text{HH}^0(y) \cong k, \quad (3.120)$$
$$\text{HH}^1(y) \cong 0, \quad (3.121)$$
$$\text{HH}^2(y) \cong k^\oplus 2^2, \quad (3.122)$$
$$\text{HH}^3(y) \cong 0, \quad (3.123)$$
$$\text{HH}^{4+i}(y) \cong k \quad \text{for } i \geq 0 \quad (3.124)$$

for $n = 3$,

$$\text{HH}^0(y) \cong k, \quad (3.125)$$
$$\text{HH}^1(y) \cong 0, \quad (3.126)$$
$$\text{HH}^2(y) \cong k, \quad (3.127)$$
$$\text{HH}^3(y) \cong k^\oplus 2^4, \quad (3.128)$$
$$\text{HH}^4(y) \cong k, \quad (3.129)$$
$$\text{HH}^5(y) \cong 0, \quad (3.130)$$
$$\text{HH}^{6+i}(y) \cong k \quad \text{for } i \geq 0 \quad (3.131)$$

for $n = 4$, and so on.

Similarly, the case

$$W(x_0, \ldots, x_n) = x_1^2 + x_2^{2n} + \cdots + x_n^{2n} + x_0^{2n} - n x_0^2 x_2^2 \cdots x_n^2 \quad (3.132)$$
with the same weight \((3.44)\) and the group \((3.45)\) as in Section 3.3 gives

\[
\begin{align*}
\text{HH}^0(Y) &\cong k, \\
\text{HH}^1(Y) &\cong k^{\oplus 2}, \\
\text{HH}^{i+2}(Y) &\cong k \quad \text{for } i \geq 0
\end{align*}
\]

for \(n = 2\),

\[
\begin{align*}
\text{HH}^0(Y) &\cong k, \\
\text{HH}^1(Y) &\cong 0, \\
\text{HH}^2(Y) &\cong k^{\oplus 22}, \\
\text{HH}^3(Y) &\cong 0, \\
\text{HH}^{4+i}(Y) &\cong k \quad \text{for } i \geq 0
\end{align*}
\]

for \(n = 3\), and so on.

\section{Generators and Formality}

We use the same notation as in Section 2 (see \((2.18)\) and \((2.19)\) in particular), and assume the existence of a tilting object \(E\) of \(\text{mf}([\mathbb{A}^n/\Gamma], w)\). Here, an object \(E\) of \(\text{mf}([\mathbb{A}^n/\Gamma], w)\) is \textit{tilting} if the cohomologies of the endomorphism dg algebra \(\text{End} E\) is concentrated in cohomological degree 0 and \(\text{mf}([\mathbb{A}^n/\Gamma], w)\) is generated by \(E\) by shifts, cones, and direct summands. Let \(\mathcal{E}\) be the pullback of \(E\) to \(\text{mf}([\mathbb{A}^n_U/\Gamma], w)\), so that one has \(\text{End}(\mathcal{E}) \cong A^0 \otimes k\) where \(k := k[U]\) is the coordinate ring of \(U\) and \(A^0 := \text{End} E\). Let further \(S\) be the pushforward of \(E\) to \(\text{mf}([\mathbb{A}^{n+1}_U/\Gamma], W)\), considered as an object of \(\text{coh} \mathcal{Y}\) via a variation

\[
\text{mf} ([\mathbb{A}^{n+1}_U/\Gamma], W) \cong \text{coh} \mathcal{Y}
\]

of \([63, \text{Theorems} 16]\), which can be proved by a straightforward adaptation of the original proof (see the proof of Theorem 4.1). The relation between pushforward of matrix factorizations and Orlov’s theorem is discussed in \([45]\).

\textbf{Theorem 4.1.} The object \(S\) split-generates \(\text{perf} \mathcal{Y}\).

\textit{Proof.} For the simplicity of notation, we assume \(\Gamma \cong \mathbb{G}_m\), so that \(\mathcal{Y}\) is an anti-canonical hypersurface in \(\mathbb{P} := \mathbb{P}^n_U(d_0, \ldots, d_n)\); the extension to the general case is straightforward (cf., for example, \([80, \text{section} 3]\)). We write \(R := k[x_0, \ldots, x_n]/(W)\) and \(\overline{R} := k[x_1, \ldots, x_n]/(w) \cong R/(x_0) \cong \overline{R} \otimes k\). We will work with \(D^b_{\text{sing}} (\text{gr} \overline{R})\) and \(D^b_{\text{sing}} (\text{gr} R)\) instead of \(\text{mf}([\mathbb{A}^n_U/\Gamma], w)\) and \(\text{mf}([\mathbb{A}^{n+1}_U/\Gamma], W)\), which are equivalent by \([63, \text{Theorem} 39]\). Here \(D^b_{\text{sing}} (\text{gr} R)\) is the quotient of \(D^b \text{gr} R\) by the full subcategory consisting of bounded complexes of projective modules, denoted by \(D^b_{\text{sing}} (\text{gr} R)\) in \([63]\), and similarly for \(D^b_{\text{sing}} (\text{gr} \overline{R})\). Since the object \(\overline{R}/(x_1, \ldots, x_n)\) of \(D^b_{\text{sing}} (\text{gr} \overline{R})\) can be described as a
cone constructed out of \(\mathcal{E}\), and its pushforward to \(D^b_{\text{sing}}(\text{gr } R)\) is \(R/m\) where \(m := (x_0, \ldots, x_n)\), it suffices to show that the images of \(R/m(i)\) for \(i \in \mathbb{Z}\) under the equivalence

\[
D^b_{\text{sing}}(\text{gr } R) \cong \text{coh } \mathcal{Y}
\]

(4.2)
split-generate perf \(\mathcal{Y}\). Since \(R\) is the quotient of a polynomial ring in \(n + 1\) variables by the ideal generated by a homogeneous polynomial whose degree is the sum of degrees of the variables, one has

\[
\text{hom}_R(R/m(-i), R(j)) = \begin{cases}
 k[-n] & i = -j, \\
 0 & \text{otherwise}.
\end{cases}
\]

(4.3)

Now [63, Lemma 15] gives semiorthogonal decompositions

\[
D^b(\text{gr } R_{\geq 0}) = \langle D_0, S_{\geq 0} \rangle = \langle P_{\geq 0}, T_0 \rangle,
\]

(4.4)
and the proof of [63, Theorem 16] gives equivalences

\[
D_0 \cong \text{coh } \mathcal{Y}, \quad T_0 \cong D^b_{\text{sing}}(\text{gr } R),
\]

(4.5)
and an equality

\[
D_0 = T_0,
\]

(4.6)
where \(D^b(\text{gr } R_{\geq 0})\) is the derived category of finitely generated non-negatively graded \(R\)-modules, and \(S_{\geq 0}\) and \(P_{\geq 0}\) are its full subcategories generated by torsion modules (that is, modules \(M\) such that \(m^k M = 0\) for some \(k \in \mathbb{N}\) which may depend on \(M\)) and free modules, respectively. To send an object \(Z \in D^b_{\text{sing}}(\text{gr } R)\) by the equivalence

\[
D^b_{\text{sing}}(\text{gr } R) \cong T_0 = D_0 \cong \text{coh } \mathcal{Y},
\]

(4.7)
we
(1) find an object \(Z \in D^b(\text{gr } R_{\geq 0})\) which goes to \(\overline{Z}\) by the localization functor \(D^b(\text{gr } R_{\geq 0}) \rightarrow D^b_{\text{sing}}(\text{gr } R)\),
(2) take the semiorthogonal component \(M\) of \(Z\), that is, find a distinguished triangle

\[
M \rightarrow Z \rightarrow N \rightarrow M[1]
\]

(4.8)
such that \(M \in T_0 = P_{\geq 0}\) and \(N \in P_{\geq 0}\), and
(3) take the image \(M\) of \(M\) by the localization functor \(\pi : D^b(\text{gr } R_{\geq 0}) \rightarrow \text{coh } \mathcal{Y}\).

If we start with \(Z_i = (R/m)(-i)[-n + 1]\) for \(0 \leq i < h\), then

\[
\text{Cone } ((R/m)(-i)[-n] \rightarrow R(-i))
\]

(4.9)
belongs to \(S_{\geq 1}^\perp\), which is equal to \(\perp P_{\geq 1}\) in the semiorthogonal decomposition

\[
D^b(\text{gr } R_{\geq 0}) = \langle P_{\geq 0}, T_0 \rangle = \langle P_{\geq 1}, R(-i + 1), R(-i + 2), \ldots, R, T_0 \rangle.
\]

(4.10)
Since \((R/m)(−i)\) is orthogonal to \(R(−i + 1), ..., R\) and its image in \(\text{coh } Y\) is zero, the image \(M_{i} \in D^{b}\text{coh } Y\) of the semiorthogonal component \(M_{i} \in T_{0} = D_{0}\) of \(Z_{i}\) is isomorphic to the image of the semiorthogonal component of \(R(−i)\).

Let \(T := k[x_{0}, ..., x_{n}]\) be the coordinate ring of the ambient space \(P\). The fact that \(\text{deg } W = h\) implies the existence of an isomorphism

\[
\text{hom}_{gr R}(R(−i), R(−j)) \cong \text{hom}_{gr T}(T(−i), T(−j))
\]

of \(k\)-modules for \(0 \leq j \leq i < h\), so that the operation of taking the semiorthogonal component of \(R(−i)\) is the same as that for the polynomial ring \(T\). The resulting object \(M_{i}\) is the restriction to \(Y\) of the object \(F_{i}\) in \(\text{coh } P\) obtained by mutating \(O_{P}(−i)\) across \(O_{P}(−i + 1), ..., O_{P}(−1)\). Since mutation preserves fullness of the collection, the collection \((F_{i})_{i=0}^{h-1}\) is full by [7]. Now [71, Lemma 5.4] shows \(\bigoplus_{i=0}^{h-1} M_{i}\) split-generates \(\text{perf } Y\).

It follows from [81, Theorem 1.1] that a choice of a section of \(\omega_{\mathbb{A}^{n+1}}_{U}/U(\chi)\) gives an isomorphism \(\text{End}(S) \cong A \otimes O_{U}\), where \(A\) is the degree \(n − 1\) trivial extension algebra of \(A^{0}\). (The definition of the trivial extension algebra is recalled in Section 1; see (1.33).) Let \(A\) be the minimal model of the Yoneda \(d\)g algebra \(\text{end}(S)\), so that one has a quasi-equivalence

\[
\text{Qcoh } Y \cong \text{Mod}(A)
\]

of \(k\)-linear pretriangulated \(A_{\infty}\)-categories.

Let \(A_{0} := A \otimes_{k} k\) be the \(A_{\infty}\)-algebra over \(k\) obtained by restricting \(A\) to the origin \(0 \in U\). By using a \(\mathbb{G}_{m}\)-action, we can prove the following:

Theorem 4.2. \(A_{0}\) is formal.

Proof. We fix a \(\mathbb{G}_{m}\)-equivariant structure on \(S_{0}\) with respect to the \(\mathbb{G}_{m}\)-action \((x_{0}, x_{1}, ..., x_{n}) \mapsto (\alpha x_{0}, x_{1}, ..., x_{n})\) on \(\mathbb{A}^{n+1}\) in such a way that \(\text{End}^{0}(S_{0}) \cong \text{End}^{0}(E)\) is \(\mathbb{G}_{m}\)-invariant (this is possible since \(S_{0}\) is obtained by pushforward from an object on the \(\mathbb{G}_{m}\)-invariant subspace). Note that \(\omega_{\mathbb{A}^{n+1}}(\chi)\) is isomorphic to \(O_{\mathbb{A}^{n+1}}\) as a \(\Gamma\)-module, but has weight \(1\) with respect to the \(\mathbb{G}_{m}\)-action. It follows that the weight for the \(\mathbb{G}_{m}\)-action on \(\text{End}^{n-1}(S_{0}) \cong (\text{End}^{0}(E))^{\vee}\) is one. This shows that the cohomological degree on the \(\mathbb{N}\)-graded algebra \(\text{End}^{n}(S_{0})\) is \((n − 1)\) times the \(\mathbb{G}_{m}\)-weight. Since the group \(\mathbb{G}_{m}\) is reductive, the chain homotopy to transfer the \(d\)g structure on \(\text{end}(S_{0})\) to the minimal model \(A_{0}\) can be chosen to be \(\mathbb{G}_{m}\)-equivariant, so that the resulting \(A_{\infty}\)-operations are \(\mathbb{G}_{m}\)-equivariant. Since the \(A_{\infty}\)-operation \(\mu^{d}\) has the cohomological degree \(2 − d\) and the cohomological degree is proportional to the \(\mathbb{G}_{m}\)-weight, one must have \(\mu^{d} = 0\) for \(d \neq 2\).

As a result, we have an isomorphism

\[
\text{HH}^{*}(A) \cong \text{HH}^{*}(Y_{0})
\]

of graded vector spaces. Moreover, the proof of Theorem 4.2 shows that the ‘cohomological degree minus length’ grading on the left-hand side is mapped to \((n − 1)\) times the weight of the \(\mathbb{G}_{m}\)-action.
5 | MODULI OF A_∞-STRUCTURES

We prove Theorem 1.6 in this section.

Proof of Theorem 1.6. We use the same notations as in Section 4. Corollary 3.2 and (4.12) together with [65, Corollary 3.2.5] shows that the moduli functor of A_∞-structures on A is represented by an affine scheme $U_\infty(A)$. We define the morphism (1.34) as the classifying morphism for the family A of minimal A_∞-structures on A over U. We consider the \mathbb{G}_m-action on \mathcal{V} as in (2.20), and equip S with the \mathbb{G}_m-equivariant structure such that $\text{End}(S)$ is \mathbb{G}_m-equivariantly isomorphic to $A \otimes \mathbb{k}$, where the \mathbb{G}_m-weight on A is proportional to the cohomological grading as in the proof of Theorem 4.2. Then the dg algebra $\text{End}(S)$ is also \mathbb{G}_m-equivariant, and so is the A_∞-algebra A. This means that the morphism (1.34) is \mathbb{G}_m-equivariant.

To prove that φ is an isomorphism, first assume that $d_0 = 1$ and $G := \Gamma/\phi(\mathbb{G}_m)$ is the trivial group. Recall from [56, section (A.5)] that an \overline{R}-polarized scheme consists of a projective scheme Y, an ample Weil divisor $X \subset Y$, and an isomorphism $R/tR \cong \overline{R}$ of graded \mathbb{k}-algebras, where $R := \bigoplus_{i=0}^\infty H^0(\mathcal{O}_Y(iX))$ and $t \in R_1$ is the element corresponding to 1. It is shown in [56, Proposition A.6] that U is the fine moduli space of \overline{R}-polarized schemes, and the universal family is given by the coarse moduli scheme \mathcal{V} of \mathcal{Y}. We will show that one can reconstruct the family \mathcal{V} of \overline{R}-polarized schemes from the family A of A_∞-algebras. Then the fine moduli interpretation of U gives a morphism ψ from the image of φ to U such that $\psi \circ \varphi = \text{id}_U$. This implies that the map on tangent spaces induced by φ is an injection, and hence an isomorphism since $\dim U = \dim H^0(A, \mathcal{V}) \geq \dim U_\infty(A)$. Since φ is a \mathbb{G}_m-equivariant morphism from an affine space to an affine scheme with good \mathbb{G}_m-actions inducing an isomorphism on tangent spaces, it is an isomorphism of schemes.

To reconstruct the family $\mathcal{V} \to U$ of schemes from the family A of A_∞-algebras, first note from Theorem 4.1 that $\mathcal{O}_{\mathcal{Y}}(i)$ for any $i \in \mathbb{Z}$ can be described as a particular object obtained from the generator S by taking shifts, cones, and direct summands. This allows one to reconstruct the \mathcal{Z}-algebra $(\text{Hom}_0(\mathcal{O}_{\mathcal{Y}}(i), \mathcal{O}_{\mathcal{Y}}(j)))_{i,j \in \mathbb{Z}}$ up to isomorphism from A. Recall that

- a \mathcal{Z}-algebra as defined in [11] is a category whose set of objects is identified with \mathcal{Z},
- a module over a \mathcal{Z}-algebra C is a contravariant functor from C to the category of vector spaces,
- the category $\text{Gr} C$ of C-modules is a Grothendieck category,
- a C-module is torsion if it is a colimit of modules M satisfying $M(i) = 0$ for $i \ll 0$,
- the category $\text{Qgr} C$ is defined as the quotient $\text{Gr} C/\text{Tor} C$ of $\text{Gr} C$ by the full subcategory $\text{Tor} C$ consisting of torsion modules,
- a \mathcal{Z}-graded algebra $B = \bigoplus_{i \in \mathbb{Z}} B_i$ gives a \mathcal{Z}-algebra $\hat{B} = \bigoplus_{i,j \in \mathbb{Z}} \hat{B}_{i,j}$ by $\hat{B}_{i,j} = B_{i-j}$, and
- one has $\text{Qgr} \hat{B} \cong \text{Qgr} B$ for any \mathcal{Z}-graded algebra B.

See, for example, [83, section 2] and references therein for more on \mathcal{Z}-algebras and their Qgr. Note that $\text{Hom}_0(\mathcal{O}_{\mathcal{Y}}(i), \mathcal{O}_{\mathcal{Y}}(j)) \cong \text{Hom}_0(\mathcal{O}_{\mathcal{Y}}(i), \mathcal{O}_{\mathcal{Y}}(j))$ for any $i,j \in \mathbb{Z}$. The abelian category $\text{Qcoh} \mathcal{Y}$ can be reconstructed from the \mathcal{Z}-algebra $(\text{Hom}_0(\mathcal{O}_{\mathcal{Y}}(i), \mathcal{O}_{\mathcal{Y}}(j)))_{i,j \in \mathbb{Z}}$ (since $\text{Qcoh} \mathcal{Y}$ is the Qgr of the graded ring $\bigoplus_{i \in \mathbb{Z}} H^0(\mathcal{O}_{\mathcal{Y}}(i))$, and $(\text{Hom}_0(\mathcal{O}_{\mathcal{Y}}(i), \mathcal{O}_{\mathcal{Y}}(j)))_{i,j \in \mathbb{Z}}$ is isomorphic to the \mathcal{Z}-algebra associated with this graded ring), which in turn allows the reconstruction of \mathcal{Y} by the Gabriel–Rosenberg reconstruction theorem. This allows us to recover the monoidal structure on $\text{Qcoh} \mathcal{Y}$, and hence the \mathcal{Z}-graded ring $\bigoplus_{i \in \mathbb{Z}} H^0(\mathcal{O}_{\mathcal{Y}}(i))$, from the A_∞-algebra A.

Since coh \mathfrak{X} is a semiorthogonal summand of $\text{mf}([\mathbb{A}^n/\Gamma], \mathbb{w})$ by [63, Theorem 16] and the isomorphism $\text{End} E \cong A^0$ is given, one has a fixed isomorphism of the homogeneous coordinate ring.
of the divisor $X \times U$ at infinity with $\overline{R} \otimes O_U$. This concludes the reconstruction of the family of A_∞-algebras in the case when $d_0 = 1$ and $\Gamma = \phi(G_m)$.

When $\Gamma \supseteq \phi(G_m)$, then $G := \Gamma/\phi(G_m)$ acts on \overline{R}, and hence on X. The affine space U, defined in Section 2 as the fixed locus of the natural G-action on the positive part of \overline{U}, is the fine moduli scheme of \overline{R}-polarized schemes equipped with a G-action extending that on X by [56, Theorem A.2]. Now one can run exactly the same argument as above to show that φ is an isomorphism.

The generalization to the case where $d_0 \neq 1$ is completely parallel to the generalization to the case where $\Gamma \supseteq \phi(G_m)$ given above; if one introduces a variable t of degree 1 and set $x_0 = t^{d_0}$, then U is the fixed locus of the μ_{d_0}-action on the positive part of \overline{U} induced by $\mu_{d_0} \ni \zeta : (x_1, \ldots, x_n) \mapsto (\zeta^{d_1}x_1, \ldots, \zeta^{d_n}x_n)$. \qed

6 | HOCHSCHILDCOHOMOLOGY OF THE FUKAYA CATEGORY OF THE MILNOR FIBER

For an object a of an A_∞-category \mathcal{A}, the left Yoneda module $\mathcal{Y}^l_a \in \text{Mod } \mathcal{A}^{\text{op}}$ is defined on objects by

$$\mathcal{Y}^l_a(x) = \text{hom}_{\mathcal{A}}(a, x). \quad (6.1)$$

The right Yoneda module $\mathcal{Y}^r_a \in \text{Mod } \mathcal{A}$ is defined similarly by

$$\mathcal{Y}^r_a(x) = \text{hom}_{\mathcal{A}}(x, a). \quad (6.2)$$

The functors

$$\mathcal{Y}^l : \mathcal{A}^{\text{op}} \to \text{Mod } \mathcal{A}^{\text{op}}, \quad a \mapsto \mathcal{Y}^l_a \quad (6.3)$$

and

$$\mathcal{Y}^r : \mathcal{A} \to \text{Mod } \mathcal{A}, \quad a \mapsto \mathcal{Y}^r_a \quad (6.4)$$

are full and faithful by the Yoneda lemma.

An $(\mathcal{A}, \mathcal{B})$-bimodule X defines functors

$$(-) \otimes_{\mathcal{A}} X : \text{Mod } \mathcal{A} \to \text{Mod } \mathcal{B} \quad (6.5)$$

and

$$X \otimes_{\mathcal{B}} (-) : \text{Mod } \mathcal{B}^{\text{op}} \to \text{Mod } \mathcal{A}^{\text{op}}. \quad (6.6)$$

For a functor $F : \mathcal{A} \to \mathcal{B}$, the graph bimodule Γ_F is the $(\mathcal{A}, \mathcal{B})$-bimodule defined on objects by

$$\Gamma_F(b, a) = \text{hom}_{\mathcal{B}}(b, F(a)) \quad (6.7)$$

for $a \in \mathcal{A}$ and $b \in \mathcal{B}$. One has

$$\mathcal{Y}^r_a \otimes_{\mathcal{A}} \Gamma_F \simeq \mathcal{Y}^F_{(a)} \quad (6.8)$$
and
\[(\Gamma_F \otimes_{\mathcal{B}} \mathcal{Y}^I_b)(a) \simeq \text{hom}_{\mathcal{B}}(b, F(a)).\] (6.9)

Note that (6.9) implies
\[\Gamma_F \otimes_{\mathcal{B}} \mathcal{Y}^I_{F(a)} \simeq \mathcal{Y}^I_a\] (6.10)
if \(F\) is full and faithful.

The Hochschild cohomology of an \(A_\infty\)-category \(\mathcal{A}\) is defined as the endomorphism of the diagonal bimodule, which in turn is defined as the graph bimodule \(\Delta_{\mathcal{A}} := \Gamma_{\text{id}_{\mathcal{A}}}\) of the identity functor \(\text{id}_{\mathcal{A}}\).

Theorem 6.1 [44, Theorem 4.6(b)]. Let \(X\) be an \((\mathcal{A}, \mathcal{B})\)-bimodule. If the functors
\[\mathcal{Y}^r(-) \otimes_{\mathcal{A}} X : \mathcal{A} \to \text{Mod } \mathcal{B}\] (6.11)
and
\[X \otimes_{\mathcal{B}} \mathcal{Y}^l(-) : \mathcal{B}^{\text{op}} \to \text{Mod } \mathcal{A}^{\text{op}}\] (6.12)
are full and faithful, then there exists an isomorphism
\[\text{HH}^*(\mathcal{A}) \simeq \text{HH}^*(\mathcal{B})\] (6.13)
of graded vector spaces.

See [44] and references therein for more on history, background, and enhancement of Theorem 6.1.

Let \(V\) be the Milnor fiber of a weighted homogeneous polynomial \(\tilde{w} : \mathbb{C}^n \to \mathbb{C}\) with an isolated critical point at the origin. The Fukaya category \(\mathcal{F}(\tilde{V})\) is a full subcategory of the wrapped Fukaya category \(\mathcal{W}(\tilde{V})\). Let \((S_i)^\mu\) be a distinguished basis of vanishing cycles, and \(\mathcal{S}\) be the full subcategory of \(\mathcal{F}(\tilde{V})\) consisting of \((S_i)^\mu\). We assume
\[d_0 := \tilde{h} - d_1 - \cdots - d_{n} \neq 0.\] (6.14)

It is shown in [68, 4.c] that
\[\left(T_{S_1} \circ \cdots \circ T_{S_\mu}\right)^{\tilde{h}} = [2d_0],\] (6.15)
where \(T_S\) is the twist functor defined on objects as the cone of the evaluation morphism;
\[x \mapsto T_{S}(x) := \text{Cone} \left(\text{hom}(S, x) \otimes S \overset{\text{ev}}{\longrightarrow} x\right).\] (6.16)

It follows by [71, Lemma 5.4] that \(\mathcal{S}\) split-generates \(\mathcal{F}(\tilde{V})\), so that
\[\mathcal{F}(\tilde{V}) \cong \text{perf } \mathcal{S}\] (6.17)
and hence
\[\text{HH}^*(\mathcal{F}(\mathcal{V})) \cong \text{HH}^*(\mathcal{S}). \] (6.18)

Theorem 6.2. Under the assumption (6.14), one has an isomorphism
\[\text{HH}^*(\mathcal{W}(\mathcal{V})) \cong \text{HH}^*(\mathcal{S}). \] (6.19)

Theorem 6.2 fails without (6.14); one can take \(\mathbf{w} = x^2 + y^2 \) as a counter-example.

Recall that a Liouville manifold is said to be *non-degenerate* if there is a finite collection of Lagrangians such that the open-closed map from the Hochschild homology of the full subcategory of the wrapped Fukaya category consisting of them to the symplectic cohomology hits the identity element [2]. Any Weinstein manifold is non-degenerate [15, 32].

Theorem 6.3 [31]. If \(\mathcal{V} \) is a non-degenerate Liouville manifold, then one has
\[\text{SH}^*(\mathcal{V}) \cong \text{HH}^*(\mathcal{W}(\mathcal{V})). \] (6.20)

Theorem 6.2 combined with Theorem 6.3 gives a proof of [69, Conjecture 4] in our case:

Corollary 6.4. Under the assumption (6.14), one has an isomorphism
\[\text{SH}^*(\mathcal{V}) \cong \text{HH}^*(\mathcal{F}(\mathcal{V})). \] (6.21)

To prove Theorem 6.2, we apply Theorem 6.1 to the case where \(\mathcal{A} = \mathcal{S}, \mathcal{B} = \mathcal{W}(\mathcal{V}), \) and \(X \) is the graph of the inclusion functor. To show that the functor (6.12) is full and faithful, we use the following proposition:

Proposition 6.5. Let \(\mathcal{A} \) be an \(\mathcal{A}_\infty \)-category whose set of objects consists of finitely many spherical objects \(S_1, \ldots, S_\mu \), and \(\mathcal{B} \) be another \(\mathcal{A}_\infty \)-category equipped with a full and faithful functor \(F: \mathcal{A} \to \mathcal{B} \). Assume the following.

(i) For any \(S \in \mathcal{A} \) and any \(L \in \mathcal{B} \), the complex \(\text{hom}(L, F(S)) \) of \(\mathbf{k} \)-modules is perfect.

(ii) There exist a positive (respectively, negative) integer \(m \) and an isomorphism
\[T_{F(S_\mu)} \circ \cdots \circ T_{F(S_1)} \simeq [m] \] (6.22)
of endofunctors on \(\mathcal{B} \).

(ii) For any \(K, L \in \mathcal{B} \), the complex \(\text{hom}(K, L) \) is bounded below (respectively, above).

Then the functor
\[\Gamma_F \otimes_{\mathcal{B}} \mathcal{Y}^l(-): \mathcal{B}^{op} \to \text{Mod} \mathcal{A}^{op} \] (6.23)
is full and faithful.
Proof. Set
\[G := \Gamma_F \otimes_{\mathcal{B}} (-) : \text{Mod } \mathcal{B}^{\text{op}} \to \text{Mod } \mathcal{A}^{\text{op}}. \tag{6.24} \]

We henceforth sometimes omit \(\mathcal{B} \) and \(F \) to avoid unnecessarily heavy notations. Recall that the dual twist functor, defined on objects as the shifted cone of the coevaluation morphism
\[x \mapsto T^\vee_S(x) := \text{Cone} \left(x \xrightarrow{\text{ev}^\vee} \text{hom}(x, S)^\vee \otimes S \right)[-1], \tag{6.25} \]
is inverse to the twist functor. For any \(K \in \mathcal{B} \), one has distinguished triangles
\[\cdots \xrightarrow{T^\vee_{S_{\mu-1}} \circ T^\vee_{S_\mu}(K)} \xrightarrow{\text{hom} \left(T^\vee_{S_\mu}(K), S_{\mu-1} \right)^\vee \otimes S_{\mu-1}} \xrightarrow{\text{hom} \left(K, S_\mu \right)^\vee \otimes S_\mu} K \tag{6.26} \]
in \(\text{Mod } \mathcal{B} \). The octahedral axiom and (6.22) give a distinguished triangle
\[K[-m] \xrightarrow{\phi} K \to K_1 \to K[-m + 1] \tag{6.27} \]
for some \(K_1 \in \text{perf } \mathcal{A} \). The shift
\[K[-2m] \xrightarrow{\phi[-m]} K[-m] \to K_1[-m] \to K[-2m + 1] \tag{6.28} \]
of (6.27) and the octahedral axiom give an object \(K_2 \in \text{perf } \mathcal{A} \) and distinguished triangles
\[K[-2m] \xrightarrow{\phi \circ \phi[-m]} K \to K_2 \to K[-2m + 1] \tag{6.29} \]
and
\[K_1[-m] \to K_2 \xrightarrow{\psi_1} K_1 \to K_1[-m + 1]. \tag{6.30} \]
By iteration, one obtains a sequence
\[\cdots \xrightarrow{\psi_2} K_2 \xrightarrow{\psi_1} K_1 \tag{6.31} \]
and distinguished triangles
\[K[-im] \xrightarrow{\phi_0 \cdots \omega \phi[-(i-1)m]} K \xrightarrow{\eta_i} K_i \to K[-im + 1] \tag{6.32} \]
and
\[K_1[-im] \to K_{i+1} \xrightarrow{\psi_i} K_i \to K_1[-im + 1] \tag{6.33} \]
for \(i = 1, 2, \ldots \). For any \(S \in \mathcal{A} \) and any \(j \in \mathbb{Z} \), one has isomorphisms
\[
(-) \circ \psi_i : \text{hom}^i(K_i, S) \xrightarrow{\sim} \text{hom}^i(K_{i+1}, S)
\]
\((6.34) \)
and
\[
(-) \circ \eta_i : \text{hom}^i(K_i, S) \xrightarrow{\sim} \text{hom}^i(K, S)
\]
\((6.35) \)
for \(i \gg 1 \) because of Assumption (i), so that
\[
\text{colim}_i \text{hom}(K_i, S) \simeq \text{hom}(K, S)
\]
\((6.36) \)
and hence
\[
\text{colim}_i \mathcal{L}(K_i) \simeq G \circ \mathcal{L}(K)
\]
\((6.37) \)
in \(\text{Mod} \mathcal{A}^{\text{op}} \) by (6.10). Now for any \(L \in \mathcal{B} \), one has
\[
\text{hom}_{\text{Mod} \mathcal{A}^{\text{op}}} (G \circ \mathcal{L}(K), G \circ \mathcal{L}(L)) \simeq \text{hom}_{\text{Mod} \mathcal{A}^{\text{op}}} (\text{colim}_i \mathcal{L}(K_i), G \circ \mathcal{L}(L))
\]
\((6.38) \)
\[
\simeq \lim_i \text{hom}_{\text{Mod} \mathcal{A}^{\text{op}}} (\mathcal{L}(K_i), G \circ \mathcal{L}(L))
\]
\((6.39) \)
\[
\simeq \lim_i \text{hom}_{\mathcal{B}^{\text{op}}} (\mathcal{L} \circ F(K_i), \mathcal{L}(L))
\]
\((6.40) \)
\[
\simeq \lim_i \text{hom}_{\mathcal{B}^{\text{op}}} (F(K_i), L)
\]
\((6.41) \)
\[
\simeq \text{hom}_{\mathcal{B}^{\text{op}}} (K, L)
\]
\((6.42) \)
where (6.42) comes from the isomorphisms
\[
\psi_i \circ (-) : \text{hom}^i(L, F(K_{i+1})) \xrightarrow{\sim} \text{hom}^i(L, F(K_i))
\]
\((6.43) \)
and
\[
\eta_i \circ (-) : \text{hom}^i(L, K) \xrightarrow{\sim} \text{hom}^i(L, F(K_i))
\]
\((6.44) \)
for any \(j \) and sufficiently large \(i \) depending on \(j \), which in turn come from Assumption (iii) using the distinguished triangles (6.32) and (6.33).

Assumption (iii) in Proposition 6.5 is satisfied in our case by the following lemma:

Lemma 6.6. Let \(\mathcal{V} \) be the Milnor fiber of a weighted homogeneous isolated hypersurface singularity. If \(d_0 \) is positive (respectively, negative), then for any \(K, L \in \mathcal{W}(\mathcal{V}) \), the complex \(\text{hom}(K, L) \) is bounded below (respectively, above).

Proof. By applying a small Hamiltonian isotopy to \(K \) and \(L \) if necessary, one may assume that a basis of \(\text{hom}(K, L) \) consists of intersection points in the interior of the Liouville domain and
Hamiltonian chords in the symplectization end. The former is finite and hence their Maslov indices are bounded. The latter correspond bijectively to Reeb chords between Legendrians on the contact boundary. The contact boundary can be identified with the link of the weighted homogeneous singularity in such a way that the Reeb flow on the link is the circle action acting on the coordinates with weights \((d_1, d_2, ..., d_n)\) (see [68, 4.c]). The Reeb flow is periodic; the time one Reeb flow is the identity, corresponding to going around the \(S^1\) once. We say a Reeb chord is short (respectively, long) if the length is less than or equal to (respectively, greater than) one. Because the Reeb flow is periodic, every long Reeb chord is a concatenation of a short Reeb chord and a Reeb orbit. The set of Reeb chords form non-degenerate Morse–Bott components, and only finitely many components consists of short chords. Any component consisting of long chords is obtained from a component consisting of short chords by concatenating Reeb orbits. In [68, Lemma 4.15], the index cost of going around the circle once was computed to be \(2d_0\). Since \(d_0 \neq 0\) by assumption, additivity of Maslov index implies that the complex \(\text{hom}(K, L)\) is bounded below (respectively, above) if \(d_0\) is positive (respectively, negative). □

Corollary 6.7. Let \(\mathcal{V}\) be the Milnor fiber of a weighted homogeneous isolated hypersurface singularity satisfying (6.14). Then there exists an isomorphism

\[
\text{HH}^*(\mathcal{W}(\mathcal{V})) \cong \text{HH}^*(\mathcal{F}(\mathcal{V})).
\]

(6.45)

Remark 6.8. Proposition 6.5 and Lemma 6.6 give a full and faithful functor \(\mathcal{W}(\mathcal{V})^{\text{op}} \to \text{Mod} \mathcal{F}(\mathcal{V})^{\text{op}}\). By using right modules instead of left modules, one can obtain a full and faithful functor \(\mathcal{W}(\mathcal{V}) \to \text{Mod} \mathcal{F}(\mathcal{V})\). Note that there exists a full and faithful functor \(\text{coh} X \to \text{Qcoh} X \cong \text{Mod}(\text{perf} X)\) for a perfect stack \(X\).

Remark 6.9. An isomorphism

\[
\text{HH}^*(\text{coh} X) \cong \text{HH}^*(\text{perf} X)
\]

(6.46)

similar to (6.45) exists for a derived stack \(X\) of finite type over a perfect field [66, Corollary B.5.1(i)].

Remark 6.10. Combined with the isomorphism

\[
\text{HH}^*(\mathcal{W}(\mathcal{V})) \cong \text{HH}^*_{n-n}(\mathcal{W}(\mathcal{V}))
\]

(6.47)

induced by a smooth Calabi–Yau structure on \(\mathcal{W}(\mathcal{V})\) and the isomorphism

\[
\text{HH}^*(\mathcal{F}(\mathcal{V})) \cong \text{HH}^*_{n-n}(\mathcal{F}(\mathcal{V}))^\vee
\]

(6.48)

induced by a proper Calabi–Yau structure on \(\mathcal{F}(\mathcal{V})\), (6.45) gives an isomorphism

\[
\text{HH}^*_{n}(\mathcal{W}(\mathcal{V})) \cong \text{HH}^*_{n}(\mathcal{F}(\mathcal{V}))^\vee.
\]

(6.49)

The appearance of the linear dual in (6.49) is consistent with the fact that \(\mathcal{F}(\mathcal{V})\) and \(\mathcal{W}(\mathcal{V})\) are not Morita equivalent.
Theorem 6.11. In addition to (6.14), assume that the full exceptional collection \((S_i)_{i=1}^\mu\) in \(\mathcal{F}(\hat{\omega})\) is strong, and that there exists a sequence \((L_i)_{i=1}^\mu\) of objects generating \(\mathcal{W}(\hat{V})\) such that
\[
\dim_k \text{hom}^*(L_i, S_j) = \delta_{ij}, \quad 1 \leq i, j \leq \mu,
\]
where \(\delta_{ij}\) is the Kronecker delta. Then there exist equivalences
\[
\text{Fun}^{\text{ex}}(\mathcal{F}(\hat{V}), \text{perf } k) \simeq \mathcal{W}(\hat{V}),
\]
\[
\text{Fun}^{\text{ex}}(\mathcal{W}(\hat{V}), \text{perf } k) \simeq \mathcal{F}(\hat{V}).
\]

Proof. Let \(\mathcal{F} := \text{end}(\bigoplus_{i=1}^\mu S_i)\) and \(\mathcal{W} := \text{end}(\bigoplus_{i=1}^\mu L_i)\) be the endomorphism \(A_\infty\)-algebras of the generators, which are augmented over the semisimple ring \(k := k^\times \mu\) because of (6.50). The assumption (6.50) should be understood as a Koszul duality between \(\mathcal{F}\) and \(\mathcal{W}\);
\[
\mathcal{F} \simeq \text{hom}_{\mathcal{W}}(k, k),
\]
\[
\mathcal{W}^{\text{op}} \simeq \text{hom}_{\mathcal{F}^{\text{op}}}(k, k).
\]
The quasi-isomorphism (6.53) is obtained as the composition of the sequence
\[
\mathcal{F} := \text{end}_{\mathcal{F}(\hat{V})} \left(\bigoplus_{i=1}^\mu S_i \right)
\]
\[
\simeq \text{end}_{\mathcal{W}(\hat{V})} \left(\bigoplus_{i=1}^\mu S_i \right)
\]
\[
\simeq \text{end}_{\mathcal{W}}(k)
\]
of quasi-isomorphisms, where (6.57) comes from the fact that the functor
\[
\text{hom}_{\mathcal{W}(\hat{V})} \left(\bigoplus_{i=1}^\mu L_i, - \right) : \mathcal{W}(\hat{V}) \to \text{Mod } \mathcal{W}
\]
is fully faithful since \(\bigoplus_{i=1}^\mu L_i\) generates \(\mathcal{W}(\hat{V})\) and sends \(\bigoplus_{i=1}^\mu S_i\) to \(k\). The quasi-isomorphism (6.54) is obtained similarly using Proposition 6.5.

It follows from [79, Theorem 7.2] that the \(k\)-linear \(\infty\)-category of exact functors on the left-hand side of (6.51) is equivalent to the full subcategory of \(\text{Mod } \mathcal{F}\) consisting of \(\mathcal{F}\)-modules which are perfect as \(k\)-modules. Since the cohomology algebra of \(\mathcal{F}\) is the trivial extension algebra of the total morphism algebra of a strong exceptional collection, the augmentation ideal of \(\mathcal{F} \simeq \text{end}_{\mathcal{W}}(k)\) is nilpotent. It follows that the full subcategory of \(\text{Mod } \mathcal{F}\) consisting of \(\mathcal{F}\)-modules which are perfect as \(k\)-modules is generated by \(k\), and hence is equivalent to \(\text{perf } \mathcal{W} \simeq \mathcal{W}(\hat{V})\), which is generated by \(\bigoplus_{i=1}^\mu L_i\).

For any \(K \in \text{Fun}^{\text{ex}}(\mathcal{W}(\hat{V}), \text{perf } k)\) (which can be identified with a \(\mathcal{W}\)-module which is perfect as a \(k\)-module), the smoothness of \(\mathcal{W}(\hat{V})\) shown in [31, Theorem 1.2] implies that the cohomology
of end\((K)\) is bounded. If follows that the morphism \(\phi \circ \ldots \circ \phi[-(i-1)m] : K[-im] \to K\) in (6.32) is zero for \(i \gg 1\), so that \(K\) is a direct summand of an object \(K_i\) of \(F(\tilde{V})\), and hence \(K\) itself is an object \(F(\tilde{V})\) by our convention that all Fukaya categories are idempotent-completed. This shows (6.52), and Theorem 6.11 is proved.

\[
\square
\]

Remark 6.12. Koszul duality between endomorphism algebras of generators of compact and wrapped Fukaya category have been observed in [22, 23, 53–55, 75].

7 SYMPLECTIC COHOMOLOGY OF THE MILNOR FIBER

In this section, we recall a spectral sequence converging to \(\text{SH}^*(\tilde{V})\) associated to a normal crossings compactification of \(\tilde{V}\) due to [35, 59]. It is based on a standard model of the Reeb flow in a neighborhood of compactification divisor and can be perceived as an elaborate version of the standard Morse–Bott model discussed in [70] when the compactification divisor is smooth. See also [34] and [17] for related results.

Let \(\tilde{Y}\) be a smooth projective variety containing an affine variety with \(c_1(\tilde{V}) = 0\) in such a way that \(\tilde{D} := \tilde{Y} \setminus \tilde{V}\) is a normal crossing divisor;

\[
\tilde{D} = \bigcup_{i \in I} \tilde{D}_i. \tag{7.1}
\]

For \(J \subset I\), we set \(\tilde{D}_J = \cap_{i \in J} \tilde{D}_i\), and also set \(\tilde{D}_\emptyset = \tilde{V}\).

Choose a sequence \(\kappa = (\kappa_i)_{i \in I}\) of positive integers such that the divisor \(\sum_{i \in I} \kappa_i \tilde{D}_i\) on \(\tilde{Y}\) is ample. Let \((c_i)_{i \in I}\) be another sequence of integers such that \(\sum_{i \in I} c_i \tilde{D}_i\) is linearly equivalent to the canonical divisor of \(\tilde{Y}\). When \(\tilde{Y}\) is a Calabi–Yau manifold, one can set \(c_i = 0\) for all \(i \in I\).

Still following [35, 59], for each \(J \subset I\), we let \(\tilde{N} \tilde{D}_J\) be a small tubular neighborhood of \(\tilde{D}_J\) such that \(\tilde{N} \tilde{D}_J \cap \tilde{D}_{J'}\) is a tubular neighborhood of \(\tilde{D}_{J \cup J'}\) for all \(J' \subset I\). Moreover, we require that the boundary \(\partial \tilde{N} \tilde{D}_J\) intersects \(\tilde{D}_{J'}\) for all \(J' \subset I\). Next, we let

\[
\tilde{N} \tilde{D}_J = \tilde{N} \tilde{D}_J \setminus \cup_{i \in I} \tilde{D}_i \tag{7.2}
\]

be the punctured tubular neighborhood.

Theorem 7.1 ([35, 59] (see also [34, Remark 3.17])). There is a cohomological spectral sequence converging to \(\text{SH}^*(\tilde{V})\) with \(E_1\)-page given by

\[
E_1^{p,q} = \bigoplus_{\{(k_i)_{i \in I} \in \mathbb{Z}_{\geq 0}^I \mid \sum k_i \kappa_i = -p\}} H^{p+q-2} \bigg(\sum_{i \in I} k_i (c_i + 1) \left(\tilde{N} \tilde{D}_{(k_i)} \right) \bigg), \tag{7.3}
\]

where \(J_{(k_i)} = \{i \in I \mid k_i \neq 0\}\).

Since \(k_i\) is positive for all \(i\), for each \(p\), we have \(E_1^{p,q} \neq 0\) only for finitely many \(q\), and is a finite sum of finite-dimensional vector spaces. Moreover, if \(c_i > -1\) for all \(i\), then the spectral sequence is regular.
We will apply this spectral sequence to deduce $\text{SH}^1(\hat{V}) = 0$, where \hat{V} is the Milnor fiber of a weighted homogeneous singularity.

Corollary 7.2. Let \hat{V} be the Milnor fiber of a weighted homogeneous polynomial with an isolated critical point at the origin, $d_0 > 0$ and $\dim \hat{V} \geq 2$, admitting a compactification to a Calabi–Yau manifold by adding a normal crossing divisor. One has $\text{SH}^i(\hat{V}) = 0$ for $i < 0$, $\text{SH}^0(\hat{V}) = \mathbb{C}$, and $\text{SH}^1(\hat{V}) = 0$.

Proof. Since \hat{V} is simply connected, we do not get any contribution from $H^1(\hat{V}) = 0$. The vanishing of c_i and the positivity of κ_i imply that the orbits coming from the normal crossing divisor contribute to $\text{SH}^i(\hat{V})$ for $i \geq 2$.

Now we can prove a generalization of the non-formality result in [47], which corresponds to the case $w = x^2 + y^3$.

Theorem 7.3. Under the same assumption as Corollary 7.2, A is not formal.

Proof. By Corollary 3.2, we have $\text{HH}^1(A) \neq 0$. On the other hand, we know by Corollary 6.4 that $\text{HH}^1(A, A)$ is isomorphic to $\text{SH}^1(\hat{V})$, which is zero by Corollary 7.2. Hence, we conclude that A is not formal.

A non-zero element of $\text{HH}^1(A)$ is given by the Euler derivation defined by

$$\text{eu}(x) = \text{deg}(x)x.$$ \hfill (7.4)

Recall that for any A_∞-algebra \mathcal{A} with $\text{H}^*(\mathcal{A}) = A$, there exists a length spectral sequence converging to $\text{HH}^*(\mathcal{A})$ with E_2-page given by $E_2^{p,q} = \text{HH}^{p+q}(A)_q$. It is shown in [71, eq. 3.14] that the class of the Euler vector field is killed by the differential on E_2 if \mathcal{A} is non-formal.

In dimension 2, Theorem 7.3 can also be proved as follows: If A is formal, then $\text{HH}^*(A) \cong \text{HH}^*(Y_0)$ has a dilation since the BV operator on $\text{HH}^*(Y_0)$ induced by the holomorphic volume form sends $\text{eu}/2 \in \text{HH}^1$ to $1 \in \text{HH}^0$. On the other hand, $\text{SH}^*(\hat{V})$ cannot have a dilation due to the existence of an exact Lagrangian torus in \hat{V} proved in [41]. Note that this argument uses that the BV operator on $\text{SH}^*(\hat{V})$ agrees with BV operator on $\text{HH}^*(A)$, which holds since any two BV operators differ by an invertible element in HH^0, which is of rank 1 in our case.

We give computations of the spectral sequence in a few examples.

7.1 The affine quartic surface

Let $\hat{V} = w^{-1}(-1)$ be the Milnor fiber of the quartic polynomial $w(x, y, z) = x^4 + y^4 + z^4$, which can be compactified to a quartic K3 surface \hat{Y} in \mathbb{P}^3 by adding a smooth curve \hat{D} of genus 3. We can take $\kappa = 1$ and $c = 0$, so that the E_1-page of the resulting spectral sequence is given in Table 2.

We immediately conclude that $\text{SH}^0(\hat{V}) = \mathbb{C}$, $\text{SH}^1(\hat{V}) = 0$, $\text{SH}^2(\hat{V}) = \mathbb{C}^{28}$, $\text{SH}^3(\hat{V}) = \mathbb{C}^6$, and $\text{SH}^i(\hat{V}) = \mathbb{C}^6$ or \mathbb{C}^7 for $i > 3$.
TABLE 2 \(E_1 \)-page of the spectral sequence for \(x^4 + y^4 + z^4 \)

q	\(\mathbb{C}^6 \)	0	0	0	\vdots
0	\(\mathbb{C} \)	\(\mathbb{C} \)	0	0	9
0	\(\mathbb{C}^6 \)	0	0	8	
0	\(\mathbb{C}^6 \)	0	0	7	
0	\(\mathbb{C} \)	\(\mathbb{C} \)	0	6	
0	0	\(\mathbb{C}^6 \)	0	5	
0	0	\(\mathbb{C}^6 \)	0	4	
0	0	\(\mathbb{C} \)	0	3	
0	0	0	\(\mathbb{C} \)	2	
p	\(\cdots \)	-2	-1	0	

More generally, let \(\tilde{V} = \mathbf{w}^{-1}(-1) \) for the polynomial

\[
\mathbf{w}(x_1, \ldots, x_n) = x_1^{n+1} + \cdots + x_n^{n+1}
\]

(7.5)

which compactifies to a Calabi–Yau hypersurface of degree \(n + 1 \) in \(\mathbb{P}^n \) by looking at the zero set of \(\mathbf{W}(x_0, x_1, \ldots, x_n) = x_0^{n+1} + \cdots + x_n^{n+1} \) in \(\mathbb{P}^n \). The smooth divisor at infinity \(\tilde{D} \) is defined by \(\mathbf{w} = 0 \) in \(\mathbb{P}^n = \{ x_0 = 0 \} \). By standard arguments (cf. [18]) we can compute the cohomology of \(\tilde{D} \) as follows:

\[
H^*(\tilde{D}) = \begin{cases}
\mathbb{C} & *= 2k, \text{ for } 0 \leq 2k < (n-2) \\
\mathbb{C} & *= n-2,
\mathbb{C} & *= 2k \text{ for } (n-2) < 2k \leq 2(n-2).
\end{cases}
\]

(7.6)

In view of the Lefschetz hyperplane theorem, the only non-trivial part of the computation is the Betti number \(b_{n-2}(\tilde{D}) \). This can be computed via the formula \(b_{n-2}(\tilde{D}) = (-1)^n(\chi(\tilde{D}) - 2\lfloor \frac{n-1}{2} \rfloor) \) and the Euler characteristic can in turn be computed via Chern classes to be \(\frac{1}{n+1}((-1)^n(n^n + n(n + 1) - 1)) \).

The circle bundle \(N\tilde{D} \) has Euler class \((n + 1) \) times the hyperplane class. This implies via the Leray–Serre spectral sequence that the cohomology of \(N\tilde{D} \) is given by

\[
H^*(N\tilde{D}) = \begin{cases}
\mathbb{C} & *= 0 \\
\mathbb{C} & *= n-2, n-1 \\
\mathbb{C} & *= 2n.
\end{cases}
\]

(7.7)

As for the Milnor fiber, the homotopy type is given as a wedge of \(\mu \) spheres where Milnor number \(\mu = n^n \) for \(\mathbf{w} \). Thus, we have

\[
H^*(\tilde{V}) = \begin{cases}
\mathbb{C} & *= 0, \\
\mathbb{C} & *= n - 1.
\end{cases}
\]

(7.8)
Table 3

q	E₁-page of the spectral sequence for \(x^2 + y^6 + z^6 \)				
\(\mathbb{C}^4 \)	0	0	0	\(\vdots \)	
	\(\mathbb{C} \)	\(\mathbb{C} \)	0	0	9
	0	\(\mathbb{C}^4 \)	0	0	8
	0	\(\mathbb{C}^4 \)	0	0	7
	0	\(\mathbb{C} \)	\(\mathbb{C} \)	0	6
	0	0	\(\mathbb{C}^4 \)	0	5
	0	0	\(\mathbb{C}^4 \)	0	4
	0	0	\(\mathbb{C} \)	0	3
	0	0	0	\(\mathbb{C}^5 \)	2
	0	0	0	0	1
	0	0	0	\(\mathbb{C} \)	0

| p | \(\ldots \) | −2 | −1 | 0 |

In constructing the spectral sequence we can, as before, take \(\kappa = 1 \) and \(c = 0 \). From the spectral sequence, we can immediately conclude that for \(n > 3 \), we have \(SH^0(\tilde{V}) = \mathbb{C}, SH^1(\tilde{V}) = 0, SH^2(\tilde{V}) = \mathbb{C}^2, \) and \(SH^{n-1}(\tilde{V}) = \mathbb{C}^n \) or \(\mathbb{C}^{n-1} \).

7.2 The double cover of the plane branched along a sextic

Let \(\tilde{V} = w^{-1}(-1) \) be the Milnor fiber of the polynomial \(w(x, y, z) = x^2 + y^6 + z^6 \), which can be compactified to the double cover \(\tilde{Y} \) of \(\mathbb{P}^2 \) branched along a smooth sextic curve by adding a smooth curve \(\tilde{D} \) of genus 2. We can take \(\kappa = 1 \) and \(c = 0 \), so that the \(E_1 \)-page of the resulting spectral sequence is given in Table 3.

We immediately conclude that \(SH^0(\tilde{V}) = \mathbb{C}, SH^1(\tilde{V}) = 0, SH^2(\tilde{V}) = \mathbb{C}^26, SH^3(\tilde{V}) = \mathbb{C}^4, \) and \(SH^i(\tilde{V}) = \mathbb{C}^4 \) or \(\mathbb{C}^5 \) for \(i > 3 \).

More generally, let \(\tilde{V} = w^{-1}(-1) \) for the polynomial

\[
\text{w}(x_1, \ldots, x_n) = x_1^2 + x_2^{2n} + \cdots + x_n^{2n}
\]

which compactifies to a Calabi-Yau hypersurface in \(\mathbb{P}(n, 1, 1, \ldots, 1) \) by looking at the zero set of \(\text{W}(x_0, x_1, \ldots, x_n) = x_0^{2n} + x_1^2 + x_2^{2n} + \cdots + x_n^{2n} \) in \(\mathbb{P}(1, n, 1, 1, \ldots, 1) \). The smooth divisor at infinity \(\tilde{D} \) is defined by \(\text{w} = 0 \) in \(\mathbb{P}(n, 1, 1, \ldots, 1) = \{x_0 = 0\} \). By standard arguments (cf. [18]) we can compute the cohomology of \(\tilde{D} \) as follows:

\[
H^i(\tilde{D}) = \begin{cases}
\mathbb{C} & *=2k, \text{ for } 0 \leq 2k < (n-2) \\
\mathbb{C}^{(2n-1)n-1/(2n)}+(-1)^n+1 & *=n-2, \\
\mathbb{C} & *=2k \text{ for } (n-2) \leq 2k \leq 2(n-2).
\end{cases}
\]

(7.10)

In view of the Lefschetz hyperplane theorem, the only non-trivial part of the computation is the Betti number \(b_{n-2}(\tilde{D}) \). This can be computed via the formula \(b_{n-2}(\tilde{D}) = (-1)^n(\chi(\tilde{D}) - 2[n - 1/2]) \) and the Euler characteristic can in turn be computed via Chern classes to be \(1/2n((-1)^n(2n - 1)n^{-1} + 2n(n - 1) + 1) \).
The circle bundle $N\mathcal{D}$ has Euler class $2n$ times the hyperplane class. This implies via the Leray–Serre spectral sequence that the cohomology of $N\mathcal{D}$ is given by

$$H^*(N\mathcal{D}) = \begin{cases} C & * = 0 \\ C(\frac{(2n-1)^n}{2n})^{\frac{n}{2}} & * = n - 2, n - 1 \\ C & * = 2n. \end{cases} \quad (7.11)$$

As for the Milnor fiber, the homotopy type is given as a wedge of μ spheres where Milnor number $\mu = (2n - 1)^{n-1}$ for w. Thus, we have

$$H^*(\mathcal{V}) = \begin{cases} C & * = 0, \\ C(2n-1)^{n-1} & * = n - 1. \end{cases} \quad (7.12)$$

In constructing the spectral sequence we can, as before, take $\kappa = 1$ and $c = 0$. From the spectral sequence, we can immediately conclude that for $n > 3$, we have $SH^0(\mathcal{V}) = C, SH^1(\mathcal{V}) = 0, SH^2(\mathcal{V}) = C$ and $SH^{n-1}(\mathcal{V}) = C(2n-1)^{n-1}$ or $C(2n-1)^{n-1}-1$.

8 | HOMOLOGICAL MIRROR SYMMETRY FOR MILNOR FIBERS

We prove Theorem 1.7 in this section.

Proof of Theorem 1.7. Let $\mathcal{V} := \{(x_1, ..., x_n) \in \mathbb{C}^n \mid x_1^{n+1} + ... + x_n^{n+1} = 1\}$ be the Milnor fiber of $w = x_1^{n+1} + ... + x_n^{n+1}$. A distinguished basis $(S_i)_{i=1}^n$ of vanishing cycles generates the compact Fukaya category of \mathcal{V}, and the cohomology A of the total morphism A_∞-algebra $A := \bigoplus_{i,j=1}^n \text{hom}(S_i, S_j)$ is the degree $n-1$ trivial extension algebra of the tensor product $\mathfrak{A}_n^{\text{Dynkin}}$ of the Dynkin quiver \mathfrak{A}_n of type A_n. The A_∞-algebra A is not formal by Theorem 7.3, and $HH^*(A)$ is isomorphic to $SH^*(\mathcal{V})$ computed in Section 7.1.

The graded algebra A also appears as the cohomology of the Yoneda dg algebra A_u of a generator S_u of the quotient stack $\{\text{Spec } \mathcal{S}_u \setminus 0\}/\Gamma$ for $S_u := \langle x_0, ..., x_n \rangle/(x_1^{n+1} + ... + x_n^{n+1} + u_1 x_0 ... x_n + u_{n+1} x_0^{n+1})$ and $\Gamma := \{(t_1, ..., t_n) \in \mathbb{G}_m^n \mid t_1^{n+1} = ... = t_{n+1}^{n+1}\}$. The moduli space $U_\infty(A)$ of minimal A_∞-structures on A is identified with U.

To identify $u \in U$ satisfying $A \simeq A_u$, we compare $HH^*(A_u)$ and $HH^*(A) \cong SH^*(\mathcal{V})$ as graded vector spaces. Since $SH^*(\mathcal{V})$ is infinite-dimensional over k, the mirror y_u must be singular. Up to the action of G_m on U, there are precisely two non-zero $u \in U$ such that y_u is singular, that is, $(u_1, u_{n+1}) = (1, 0)$ and $(-n - 1, 1)$. The Hochschild cohomologies of these singular stacks are computed in Sections 3.6 and 3.7. Comparing this with $SH^*(\mathcal{V})$ computed in Section 7.1, we conclude that the mirror of \mathcal{V} is the stack associated with $(u_1, u_{n+1}) = (1, 0)$.

The equivalence (1.41) follows from (1.40), (6.51), and

$$\text{Fun}_{\text{cx}}(\text{perf}[Z/K], \text{perf } k) \simeq \text{coh}[Z/K] \quad (8.1)$$

in [9, Remark 1.1.6.(ii)]. The assumption (6.50) for Brieskorn–Pham singularities is proved in [55, section 2.1].
The proof for $\tilde{V} := \{(x_1, \ldots, x_n) \in \mathbb{C}^n \mid x_1^2 + x_2^{2n} + \cdots + x_n^{2n} = 1\}$ goes along the same lines. The cohomology A of the total morphism A_{∞}-algebra of a distinguished basis of vanishing cycles is given by the degree $n - 1$ trivial extension algebra of $\mathfrak{g}^{\otimes (n-1)}$. The moduli space $U_\infty(A)$ of minimal A_{∞}-structures is identified with $U := \text{Spec } \mathbb{C}[u_2, u_{2n}]$ parameterizing $Y_\mathfrak{g} := [(\text{Spec } S_\mathfrak{g} \setminus 0)/\Gamma]$ for $S_\mathfrak{g} := \mathbb{C}[x_0, \ldots, x_n]/(x_1^2 + x_2^{2n} + \cdots + x_n^{2n} + u_2 x_0^2 + u_{2n} x_0^{2n} + u_2 x_0^2 x_2^{2n} \cdots x_n^{2n})$ and $\Gamma := \{(t_1, \ldots, t_n) \in \mathbb{C}^n \mid t_1^2 = t_2^{2n} = \cdots = t_n^{2n}\}$. There are precisely two non-zero $u \in U$ up to the action of \mathbb{G}_m such that $Y_\mathfrak{g}$ is singular, that is, $(u_2, u_{2n}) = (1, 0)$ and $(1, -n)$. The Hochschild cohomologies of these singular stacks are computed in Sections 3.6 and 3.7. Comparing this with $\text{SH}^*(\tilde{V})$ computed in Section 7.2, we conclude that the mirror of \tilde{V} is the stack associated with $(u_2, u_{2n}) = (1, 0)$.

\section*{Acknowledgement}

We are grateful to the referee for their careful reading and corrections. In particular, Section 6 has been thoroughly revised to address referee’s comments. Yanki Lekili is partially supported by the Royal Society URF\#R180024. Kazushi Ueda is partially supported by Grant-in-Aid for Scientific Research (15KT0105, 16K13743, 16H03930).

\section*{Journal Information}

The Journal of Topology is wholly owned and managed by the London Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission. All surplus income from its publishing programme is used to support mathematicians and mathematics research in the form of research grants, conference grants, prizes, initiatives for early career researchers and the promotion of mathematics.

\section*{References}

1. T. Abdelgadir, S. Okawa, and K. Ueda, \textit{Compact moduli of noncommutative projective planes}, arXiv:1411.7770.

2. M. Abouzaid, \textit{A geometric criterion for generating the Fukaya category}, Publ. Math. Inst. Hautes Études Sci. \textbf{112} (2010), 191–240.

3. B. Antieau and G. Vezzosi, \textit{A remark on the Hochschild–Kostant–Rosenberg theorem in characteristic p}, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) \textbf{20} (2020), no. 3, 1135–1145.

4. V. I. Arnol’d, \textit{Local normal forms of functions}, Invent. Math. \textbf{35} (1976), 87–109.

5. D. Auroux, \textit{Speculations on homological mirror symmetry for hypersurfaces in $(\mathbb{C}^*)^n$}, Surveys in differential geometry, vol. 22, International Press, Somerville, MA, 2018, pp. 1–47.

6. M. Ballard, D. Favero, and L. Katzarkov, \textit{A category of kernels for equivariant factorizations and its implications for Hodge theory}, Publ. Math. Inst. Hautes Études Sci. \textbf{120} (2014), 1–111.

7. A. A. Beilinson, \textit{Coherent sheaves on \mathbb{P}^n and problems in linear algebra}, Funktsional. Anal. i Prilozhen. \textbf{12} (1978), no. 3, 68–69.

8. D. Ben-Zvi, J. Francis, and D. Nadler, \textit{Integral transforms and Drinfeld centers in derived algebraic geometry}, J. Amer. Math. Soc. \textbf{23} (2010), no. 4, 909–966.

9. D. Ben-Zvi, D. Nadler, and A. Preygel, \textit{Integral transforms for coherent sheaves}, J. Eur. Math. Soc. \textbf{19} (2017), no. 12, 3763–3812.

10. P. Berglund and T. Hübsch, \textit{A generalized construction of mirror manifolds}, Nuclear Phys. B \textbf{393} (1993), no. 1–2, 377–391.

11. A. I. Bondal and A. E. Polishchuk, \textit{Homological properties of associative algebras: the method of helices}, Izv. Ross. Akad. Nauk Ser. Mat. \textbf{57} (1993), no. 2, 3–50; translation in Russian Acad. Sci. Izv. Math. \textbf{42} (1994), no. 2, 219–260.

12. L. Borisov and Z. Hua, \textit{On the conjecture of King for smooth toric Deligne-Mumford stacks}, Adv. Math. \textbf{221} (2009), no. 1, 277–301.

13. E. Brieskorn, \textit{The unfolding of exceptional singularities}, Nova Acta Leopoldina Nr. \textbf{240} (1981), 65–93.
14. R. O. Buchweitz and H. Flenner, *The global decomposition theorem for Hochschild (co-)homology of singular spaces via the Atiyah-Chern character*, Adv. Math. 217 (2008), 243–281.

15. B. Chantraine, G. Dimitroglou Rizell, P. Ghiggini, R. Golovko, *Geometric generation of the wrapped Fukaya category of Weinstein manifolds and sectors*, arXiv:1712.09126.

16. A. Căldăraru and J. Tu, *Curved A_{∞} algebras and Landau-Ginzburg models*, New York J. Math. 19 (2013), 305–342.

17. L. Diogo and S. Lisi, *Symplectic homology of complements of smooth divisors*, J. Topol. 12 (2019), no. 3, 967–1030.

18. I. V. Dolgachev, *Weighted projective varieties, Group actions and vector fields*, Vancouver, BC, 1981, pp. 34–71, Lecture Notes in Mathematics, vol. 956, Springer, Berlin, 1982.

19. I. V. Dolgachev, *Mirror symmetry for lattice polarized K3 surfaces*, J. Math. Sci. 81 (1996), no. 3, 2599–2630.

20. T. Dyckerhoff, *Compact generators in categories of matrix factorizations*, Duke Math. J. 159 (2011), no. 2, 223–274.

21. W. Ebeling and A. Takahashi, *Strange duality of weighted homogeneous polynomials*, Compos. Math. 147 (2011), no. 5, 1413–1433.

22. T. Ekholm and Y. Lekili, *Duality between Lagrangian and Legendrian invariants*, To appear in Geom. Topol.

23. T. Etnę and Y. Lekili, *Koszul duality patterns in Floer theory*, Geom. Topol. 21 (2017), no. 6, 3313–3389.

24. T. Etnę and Y. Lekili, *Fukaya categories of plumbings and multiplicative preprojective algebras*, Quantum Topol., arXiv:1703.04515.

25. D. Favero, D. Kaplan, and T. Kelly, *Exceptional collections for mirrors of invertible polynomials*, arXiv:2001.06500.

26. D. Favero, D. Kaplan, and T. Kelly, *A maximally-graded invertible cubic threefold that does not admit a full exceptional collection of line bundles*, arXiv:2004.04982.

27. M. Futaki and K. Ueda, *Homological mirror symmetry for Brieskorn-Pham singularities*, Selecta Math. (N.S.) 17 (2011), no. 2, 435–452.

28. M. Futaki and K. Ueda, *Homological mirror symmetry for singularities of type D*, Math. Z. 273 (2013), no. 3–4, 633–652.

29. D. Gaitsgory and N. Rozenblyum, *A study in derived algebraic geometry*, vol. II: Deformations, Lie theory and formal geometry. Mathematical Surveys and Monographs, vol. 221, Amer. Math. Soc, Providence, RI, 2017, xxxv+436 pp.

30. B. Gammage and V. Shende, *Mirror symmetry for very affine hypersurfaces*, arXiv:1707.02959.

31. S. Ganatra, *Symplectic cohomology and duality for the wrapped Fukaya category*, Ph.D. thesis, Massachusetts Institute of Technology, 2012.

32. S. Ganatra, J. Pardon, and V. Shende, *Covariantly functorial wrapped Floer theory on Liouville sectors*, Publ. Math. Inst. Hautes Études Sci. 131 (2020), 73–200.

33. S. Ganatra, J. Pardon, and V. Shende, *Sectorial descent for wrapped Fukaya categories*, arXiv:1809.03427.

34. S. Ganatra and D. Pomerleano, *A Log PSS morphism with applications to Lagrangian embeddings*, J. Topol. 14 (2021), no. 1, 291–368.

35. S. Ganatra and D. Pomerleano, *Symplectic cohomology rings of affine varieties in the topological limit*, Geom. Funct. Anal. 30 (2020), no. 2, 334–456.

36. M. Habermann, *Homological Mirror Symmetry for invertible polynomials in two variables*, Quantum Topol. 13 (2022), no. 2, 207–253

37. M. Habermann and J. Smith, *Homological Berglund-Hübsch mirror symmetry for curve singularities*, J. Symplectic Geom. 18 (2020), no. 6, 1515–1574.

38. Y. Hirano and G. Ouchi, *Derived factorization categories of non-Thom–Sebastiani-type sum of potentials*, arXiv:1809.09940.

39. A. Ishii and K. Ueda, *A note on derived categories of Fermat varieties. Derived categories in algebraic geometry*, 103–110, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012.

40. M. U. Isik, *Equivalence of the derived category of a variety with a singularity category*, Int. Math. Res. Not. 12 (2013), 2787–2808.

41. A. Keating, *Lagrangian tori in four-dimensional Milnor fibres*, Geom. Funct. Anal. 25 (2015), no. 6, 1822–1901.

42. A. Keating, *Homological mirror symmetry for hypersurface cusp singularities*, Sel. Math. New Ser. 24 (2018), 1411–1452.
43. B. Keller, *Cluster algebras, quiver representations and triangulated categories*, London Math. Soc. Lecture Note Ser. 375 (2010), 76–160.

44. B. Keller, *Derived invariance of higher structures on the Hochschild complex* (2018). https://webusers.imj-prg.fr/~bernhard.keller/publ/dih.pdf.

45. M. Kobayashi, M. Mase, and K. Ueda, *A note on exceptional unimodal singularities and K3 surfaces*, Int. Math. Res. Not. 2013, no. 7, 1665–1690.

46. O. Kravets, *Categories of singularities of invertible polynomial*, arXiv:1911.09859.

47. Y. Lekili and T. Perutz, *Fukaya categories of the torus and Dehn surgery*, Proc. Natl. Acad. Sci. USA 108 (2011), no. 20, 8106–8113.

48. Y. Lekili and A. Polishchuk, *Homological mirror symmetry for higher dimensional pair of pants*, Compos. Math. 156 (2020), no. 7, 1310–1347.

49. Y. Li, *Koszul duality via suspending Lefschetz fibrations*, J. Topol. 12 (2019), no. 4, 1174–1245.

50. Y. Li, *Exact Calabi-Yau categories and odd-dimensional Lagrangian spheres*, arXiv:1907.09257.

51. Y. Li, *Nonexistence of exact Lagrangian tori in affine conic bundles over \(\mathbb{C}^n \)*, arXiv:2104.10050.

52. E. Looijenga, *The smoothing components of a triangle singularity. II.*, Math. Ann. 269 (1984), no. 3, 357–387.

53. E. Looijenga, *Compactifications defined by arrangements. II. Locally symmetric varieties of type IV*, Duke Math. J. 119 (2003), no. 3, 527–588.

54. Y. Lekili and K. Ueda, *A note on bimodal singularities and mirror symmetry*, Manuscripta Math. 146 (2015), no. 1–2, 153–177.

55. M. McLean, *Talk at SFT VIII workshop at Humboldt University*. http://www.math.stonybrook.edu/~markmclean/talks/spectralsequencealltogether.pdf, 2016.

56. I. Mori, S. Okawa, and K. Ueda, *Moduli of noncommutative Hirzebruch surfaces*, arXiv:1903.06457.

57. D. Nadler, *Wrapped microlocal sheaves on pairs of pants*, arXiv:1604.00114.

58. Y. Nohara and K. Ueda, *Homological mirror symmetry for the quintic 3-fold*, Geom. Topol. 16 (2012), no. 4, 1967–2001.

59. D. Orlov, *Derived categories of coherent sheaves and triangulated categories of singularities*, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin, vol. II, Progr. Math., vol. 270, Birkhäuser Boston Inc., Boston, MA, 2009, pp. 503–531.

60. D. Orlov, *Triangulated categories of singularities, and equivalences between Landau-Ginzburg models*, Mat. Sb. 197 (2006), no. 12, 117–132; translation in Sb. Math. 197 (2006), no. 11–12, 1827–1840.

61. A. Polishchuk, *Moduli of curves as moduli of \(\mathcal{A}_\infty \) structures*, Duke Math. J. 166 (2017), no. 15, 2871–2924.

62. A. Preygel, *Thom-Sebastiani & duality for matrix factorizations*, arXiv:1101.5834.

63. E. Segal, *The closed state space of affine Landau-Ginzburg B-models*, J. Noncommut. Geom. 7 (2013), no. 3, 857–883.

64. N. Sheridan, *Homological mirror symmetry for Calabi–Yau hypersurfaces in projective space*, Invent. Math. 199 (2015), no. 1, 1–186.

65. N. Sheridan and I. Smith, *Homological mirror symmetry for generalized Greene–Plesser mirrors*, Invent. Math. 224 (2021), no. 2, 627–682.

66. I. Shipman, *A geometric approach to Orlov’s theorem*, Compos. Math. 148 (2012), 1365–1389.
75. I. Smith and M. Wemyss, *Double bubble plumbings and two-curve flops*, arXiv:2010.10114.
76. D. I. Smyth, *Modular compactifications of the space of pointed elliptic curves I*, Compos. Math. **147** (2011), no. 3, 877–913.
77. A. Takahashi, *Weighted projective lines associated to regular systems of weights of dual type*, arXiv:0711.3907v1.
78. A. Takahashi, *Weighted projective lines associated to regular systems of weights of dual type. New developments in algebraic geometry, integrable systems and mirror symmetry* (RIMS, Kyoto, 2008), Adv. Stud. Pure Math., vol. 59, Math. Soc. Japan, Tokyo, 2010, pp. 371–388.
79. B. Toën, *The homotopy theory of dg-categories and derived Morita theory*, Invent. Math. **167** (2007), no. 3, 615–667.
80. K. Ueda, *Homological mirror symmetry and simple elliptic singularities*, arXiv:math/0604361.
81. K. Ueda, *Hyperplane sections and stable derived categories*, Proc. Amer. Math. Soc. **142** (2014), no. 9, 3019–3028.
82. K. Ueda, *Mirror symmetry and K3 surfaces*, Handbook for mirror symmetry of Calabi–Yau and Fano manifolds, Adv. Lect. Math., vol. 47, Int. Press, Boston, MA, 2019, pp. 483–512.
83. M. Van den Bergh, *Noncommutative quadrics*, Int. Math. Res. Not. **2011**, no. 17, 3983–4026.