Emergent Combined Intracranial Thrombolysis and Carotid Stenting in the Hyperacute Management of Stroke Patients with Severe Cervical Carotid Stenosis

BACKGROUND AND PURPOSE: The timely re-establishment of intracranial perfusion, the effective prevention of early recurrent strokes, and the limitation of the incidence of reperfusion injury are major factors that are key to successful treatment of patients with hyperacute stroke who had severe ipsilateral cervical internal carotid artery (ICA) stenosis. In an effort to reduce both the extent of ongoing neurologic injury and the risk of early recurrent stroke, we have adopted an aggressive combined endovascular approach of intracranial thrombolysis and cervical carotid stent placement during the hyperacute phase. We report on the results of 5 such consecutive patients who presented to our center from January 2003 through January 2005.

MATERIALS AND METHODS: From January 2003 through January 2005, 5 consecutive patients presented to our center with hyperacute strokes and severe ipsilateral cervical ICA stenosis. All were treated with emergent carotid stent placement and intra-arterial thrombolysis. The medical records were reviewed and summarized.

RESULTS: One patient died. The remaining 4 patients had an average hospital stay of 4 days (range, 3–6 days) and a mean National Institutes of Health Stroke Scale (NIHSS) score of 2 (range, 0–3) at the time of discharge. With a mean clinical follow-up of 11 months (range, 6–24 months), all had excellent functional outcome with a modified Rankin score of 0 or 1.

CONCLUSIONS: Data on emergent carotid stent placement in the hyperacute management of stroke are limited. The summarized experience in these 5 patients demonstrates the feasibility of this aggressive therapeutic strategy that may bring about a good outcome.
arterial (IA) thrombolysis could be initiated within 6 hours of onset of the stroke. Patients excluded from endovascular recanalization therapy met the following criteria: 1) any form of intracranial hemorrhage; 2) pregnant or lactating women; 3) major trauma within 3 months; 4) history of brain tumor, arteriovenous malformation, or aneurysm; 5) major surgeries within 14 days; and 6) severe systemic diseases with a life expectancy <3 months.

A subset of patients presenting with hyperacute strokes and ipsilateral cervical ICA stenosis (>90%) so severe as to preclude safe and ready intracranial access were included in this analysis. Five patients were identified. CT scans of the head were obtained at the time of the initial evaluation; none had preintervention acute neuroimaging evidence of hypopattenuation or hemorrhage. Endovascular interventions were performed with the patients under minimal sedation. Interval neurologic examinations were performed routinely. All 5 patients were treated emergently with carotid angioplasty and stent placement followed by intracranial thrombolysis. A 2-mm, low-profile balloon was used for angioplasty to minimize trauma to an unstable plaque. No heparin was used for the endovascular intervention. Postprocedure, all patients were treated with an intravenous (IV) bolus of abciximab followed by 12-hour IV infusion. All were placed on 1 aspirin (325 mg daily) and 1 clopidogrel (75 mg daily) without any loading dose. Postprocedure, all patients were managed in the Neuro Critical Care Unit. Systolic blood pressure was strictly controlled (within 120–130 mm Hg) for at least 48 hours postprocedure. All patients were followed up in both the Stroke Clinic and the Carotid Clinic.

Results
The Table summarizes the overall clinical characteristics, treatment, and outcomes of the 5 patients. The mean age of the patients was 62 years (range, 53–66 years). In all 5 patients, there were associated distal intracranial emboli in addition to the cervical ICA stenosis. None had clinical evidence of cardiac embolism. The intracranial artery occlusion occurred most likely because of an artery-to-artery embolism originating from the ipsilateral proximal high-grade ICA stenosis. The mean presenting NIHSS score was 14 (range, 7–22). None of the 5 patients had symptomatic intracranial hemorrhage postintervention.

Patient 5 (Table) presented with a NIHSS score of 21 despite administration of IV tissue plasminogen activator (tPA). The diagnostic angiogram showed a severe left cervical ICA stenosis (>95%) and an intracranial occlusion of the M1 and M2 segments. After successful intracranial thrombolysis and carotid stent placement, the patient recovered to a NIHSS score of 2 on hospital day 3. The patient was placed on aspirin (325 mg daily) and clopidogrel (75 mg daily) for secondary stroke prevention. The patient then acutely sustained a large groin hematoma, and the hemoglobin fell to 5.7 g/dL. The groin pseudoaneurysm was urgently treated with a percutaneous injection of thrombin. Aspirin and clopidogrel were discontinued. On hospital day 7, the patient experienced acute neurologic deterioration, presenting with aphasia and right hemiplegia from the left cervical ICA in-stent thrombosis. Despite aggressive interventions, the patient expired on hospital day 16. The major hemorrhage from the arterial puncture site in this patient may have been related to the combined use of aspirin and clopidogrel.10

The remaining 4 patients had an average hospital stay of 4 days (range, 3–5 days) and a mean NIHSS score of 2 (range, 0–3) at the time of discharge. All 4 patients were discharged to home. They had a mean clinical follow-up of 11 months (range, 6–24 months). All had excellent functional outcome with a modified Rankin score of 0 or 1. No restenosis was detected at a mean follow-up of 8 months (range, 3–18 months).

Illustrative Case
This 65-year-old man (patient 1, Table) presented with aphasia and right hemiplegia. Despite administration of IV tPA, the patient continued to have significant deficits, with an NIHSS score of 22. The diagnostic angiogram showed a severe left cervical ICA stenosis (Fig 1A) and distal ICA occlusion involving both the left M1 and A1 segments (T-lesion, Fig 1B). Carotid stent placement with a 5 × 20-mm Precise stent (Cordis, Miami Lakes, Fla) was performed emergently (Fig 1C), followed by the intracranial intraarterial administration of tPA (10.5 mg) and abciximab (25 mg) as seen in Fig 1D,E. Postprocedure, the patient received an IV bolus of abciximab followed by a 12-hour IV infusion. Clopidogrel was started the same night. The patient was discharged home on hospital day 4 with an NIHSS of 3. At his 6-month follow-up visit, the patient had no neurologic deficits, and the stent remained widely patent as shown on carotid Doppler.

Discussion
Patients with large-artery atherosclerosis, such as ICA stenosis, have a particularly high risk of early recurrent stroke (as high as 5% per week) in the first several weeks.1,2 The 2 major factors in determining the clinical outcomes of patients presenting with hyperacute strokes and severe ipsilateral ICA stenosis would be the timely re-establishment of the intracranial circulation and the effective prevention of early recurrent strokes.

The currently accepted management strategy for such patients is to emergently recanalize the intracranial circulation but delay the cervical ICA intervention for 4–6 weeks. This practice of delaying the cervical ICA intervention may have stemmed from the carotid endarterectomy data that showed increased perioperative complications when the procedure was performed in the acute phase (the initial 1–2 weeks after a stroke). Most of the data,11-14 however, were from the pre-CT era, and their relevance to the modern management of stroke needs to be seriously questioned. In addition, this surgical procedure does not address the intracranial pathologic lesion and therefore has a very limited role in the hyperacute management of stroke. The risk of reperfusion injury, a feared complication of carotid intervention in the acute phase, is poorly defined in the hyperacute phase in which cerebral ischemia may still be reversible.

Carotid stent placement has been newly established as an alternative treatment to carotid endarterectomy. It has a unique advantage to be incorporated as part of the endovascular intervention in the hyperacute management of patients who have suffered a stroke. Carotid stent placement may stabilize the vulnerable plaque in the hyperacute phase and reduce the risk of early recurrent stroke. In addition, when the residual lumen is <30% or <2 mm in the presence of carotid lesions, the distal perfusion pressure is significantly compro-
Clinical characteristics, treatments, and outcomes of 5 patients with stroke who had severe cervical carotid stenosis

Patient No.	Age/Sex	Comorbidities	Time from Ictus to Endovascular Treatment (hr:min)	NIHSS at Admission Site of Occlusion	Treatment	Complications	Length of Hospital Stay (days)	NIHSS at Discharge	Discharge Disposition	Outcome		
1 (65/M)	4	HTN, MI	4:22	L ICA >90% stenosis; L tICA, M1, and A1 segment occlusion (T lesion)	Yes	10.5 25	Yes 5 × 20 with 10% residual stenosis	None	4	3	Home 6 months: no restenosis; 6 months: mRS 0	
2 (63/M)	4	HTN	4:7	R ICA >95% stenosis; R M2 and M3 segment occlusion	No	5 No	Yes 7 × 30 with no residual stenosis	None	4	2	Home 6 months: no restenosis; 8 months: mRS 1	
3 (66/M)	5:09	HTN	11	L ICA >95% stenosis; L M1 segment occlusion	Yes	15 20 Yes	8 × 40 with 15% residual stenosis	None	3	0	Home 3 months: no restenosis; 6 months: mRS 0	
4 (53/M)	3:40	CAD, HTN	8	R ICA >95% stenosis; R M1, M2, and R A1, A2 segment occlusion	No	11 No Yes	6 × 40 with no residual stenosis	None	5	2	Home 18 months: no restenosis; 24 months: mRS 0	
5 (65/M)	5:13	None	21	L ICA >95% stenosis; L M1, M2 segment occlusion	Yes	3.5 No Yes	8 × 30 with 20% residual stenosis	R groin pseudoaneurysm; in-stent thrombosis; death	16	N/A	N/A	Death

Note: NIHSS indicates National Institutes of Health Stroke Scale; IV, intravenous; IA, intra-arterial; tPA, tissue plasminogen activator; L, left; R, right; ICA, internal carotid artery; HTN, hypertension; MI, myocardial infarction; tICA, terminal internal carotid artery; mRS, modified Rankin Scale; CAD, coronary artery disease.

CmRS scores are defined as follows: 0, no symptoms; 1, no significant disability despite symptoms—able to perform usual duties and activities; 2, slight disability—unable to perform all previous activities but able to look after own affairs without assistance; 3, moderate disability—requires some help, but able to walk without assistance; 4, moderately severe disability—unable to walk without assistance and unable to attend to own bodily needs without assistance; 5, severe disability—bedridden, incontinent, and requires constant nursing care and attention.
angiographic result after the carotid stent placement is shown in the midthrombolysis and the final recanalization phase are shown in Carotid stent placement may therefore augment many Fig 1.

In our experience, if a carotid stenosis is severe enough to compromise distal perfusion pressure, dilating the cervical ICA first would improve the chance of successful recanalization of intracranial occlusion. Varied combinations of pharmacologic therapy, mechanical clot disruption with a microcatheter, intracranial angioplasty or stent placement, and use of a clot retrieval device may further improve the success of recanalization. However, if a carotid stenosis is not severe enough to reduce distal perfusion pressure but acts as an embolic source, intracranial occlusion should be treated first. Performing secondary carotid stent placement should be balanced against the potentially increased procedure-related complications in a patient with a vulnerable plaque and ongoing ischemic injury to the brain. In addition, an alternative strategy with medical treatment (antiplatelet and anticoagulation agents) to reduce the risk of early recurrent stroke has proved benefits.
Conclusion
Data on emergent carotid stent placement in the management of hyperacute large-vessel ischemic stroke are limited. There are some emerging data on carotid stent placement in the acute phase after a stroke.20,21 The indications and complication profiles, however, are different when carotid stent placement is performed as a hyperacute intervention. Our summarized experience in these 5 patients strongly suggests the feasibility of this aggressive endovascular strategy that may bring about a good outcome. The small number of patients and the retrospective nature of our review defy any conclusive remarks. Our data are very preliminary and require further studies with rigorous scientific validity. As the technology continues to evolve and the endovascular treatment becomes more accessible, such combined multimodality hyperacute interventional treatment for large-vessel ischemic stroke may be the solution to this disease process that carries high rates of mortality and morbidity.

Acknowledgment
We thank JoAnna Gass for her assistance in the preparation of the manuscript.

References
1. Blaser T, Hofmann K, Buerger T, et al. Risk of stroke, transient ischemic attack, and vessel occlusion before endarterectomy in patients with symptomatic severe carotid stenosis. Stroke 2002;33:1057–62
2. Lovett JK, Coull AJ, Rothwell PM. Early risk of recurrence by subtype of ischemic stroke in population-based incidence studies. Neurology 2004;62:569–73
3. Kistler JP, Ropper AH, Heros RC. Therapy of ischemic cerebral vascular disease due to atherothrombosis (1). N Engl J Med 1984;311:27–34
4. Heo JH, Lee KY, Kim SH, et al. Immediate reocclusion following a successful thrombolysis in acute stroke: a pilot study. Neurology 2003;60:1684–87
5. Qureshi AI, Siddiqui AM, Kim SH, et al. Reocclusion of recanlized arteries during intra-arterial thrombolysis for acute ischemic stroke. AJNR Am J Neuroradiol 2004;25:322–28
6. Endovascular versus surgical treatment in patients with carotid stenosis in the Carotid and Vertebral Artery Transluminal Angioplasty Study (CAVATAS): a randomized trial. Lancet 2001;357:1729–37
7. Yadav JS, Wholey MH, Kuntz RE, et al. Protected carotid-artery stenting versus endarterectomy in high-risk patients. N Engl J Med 2004;351:1493–501
8. Wang H, Lanzino G, Fraser K, et al. Urgent endovascular treatment of acute symptomatic occlusion of the cervical internal carotid artery. J Neurosurg 2003;99:72–77
9. Sugg RM, Malkoff MD, Noser EA, et al. Endovascular recanalization of internal carotid artery occlusion in acute ischemic stroke. AJNR Am J Neuroradiol 2005;26:2591–94
10. Yusuf S, Zhao F, Mehta SR, et al. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med 2001;345:494–502
11. Caplan LR, Skillman J, Ojemann R, et al. Intracerebral hemorrhage following carotid endarterectomy: a hypertensive complication? Stroke 1978;9:457–60
12. Blaisdell WF, Claus RH, Galbraith JG, et al. Joint study of extracranial arterial occlusion. IV. A review of surgical considerations. JAMA 1969;209:1889–95
13. Brueckman ME, Fields WS, Crawford ES, et al. Cerebral hemorrhage in carotid artery surgery. Arch Neurol 1963;9:548–67
14. Wylie EI, Heim MF, Adams JE. Intracranial hemorrhage following surgical recanalization for treatment of acute strokes. J Neurosurg 1964:21:212–15
15. Fassbender K, Dempfle CE, Mielke O, et al. Changes in coagulation and fibrinolysis markers in acute ischemic stroke treated with recombinant tissue plasminogen activator. Stroke 1999;30:2101–04
16. Becker R. Dynamics of coronary thrombolysis and reocclusion. Clin Cardiol 1997;20(I Suppl 3):III2–5
17. Zhang L, Zhang ZG, Zhang R, et al. Adjuvant treatment with a glycoprotein IIb/IIIa receptor inhibitor increases the therapeutic window for low-dose tissue plasminogen activator administration in a rat model of embolic stroke. Circulation 2003;107:2837–43
18. Straub S, Junghans U, Iovancovic V, et al. Systemic thrombolysis with recombinant tissue plasminogen activator and tirofiban in acute middle cerebral artery occlusion. Stroke 2004;35:705–09
19. Rothwell PM, Eliasziw M, Gutnikov SA, et al. Endarterectomy for symptomatic carotid stenosis in relation to clinical subgroups and timing of surgery. Lancet 2004;363:915–24
20. Imai K, Mori T, Izumoto H, et al. Emergency carotid artery stent placement in patients with acute ischemic stroke. AJNR Am J Neuroradiol 2005;26:1249–58
21. Zaidat OO, Alexander MJ, Suarez JJ, et al. Early carotid artery stenting and angioplasty in patients with acute ischemic stroke. Neurosurgery 2004;55:1237–42; discussion 1242–43.