СРАВНИТЕЛЬНЫЙ АНАЛИЗ ХИРУРГИЧЕСКОГО ЛЕЧЕНИЯ ДЕТЕЙ ДОШКОЛЬНОГО ВОЗРАСТА С ВРОЖДЕННОЙ ДЕФОРМАЦИЕЙ ПОЗВОНОЧНИКА ПРИ ИЗОЛИРОВАННЫХ ПОЛУПОЗВОНКАХ ИЗ КОМБИНИРОВАННОГО И ДОРСАЛЬНОГО ДОСТУПОВ

© С.В. Виссарионов1, А.Р. Сюндюков2, Д.Н. Кокушин1, Н.О. Хусаинов1, М.А. Хардиков1

1 ФГБУ «Научно-исследовательский детский ортопедический институт им. Г.И. Турнера» Минздрава России, Санкт-Петербург; 2 ФГБУ «Федеральный центр травматологии, ортопедии и эндопротезирования» Минздрава России, Чебоксары

Для цитирования: Виссарионов С.В., Сюндюков А.Р., Кокушин Д.Н., и др. Сравнительный анализ хирургического лечения детей дошкольного возраста с врожденной деформацией позвоночника при изолированных полу позвонках из комбинированного и дорсального доступов // Ортопедия, травматология и восстановительная хирургия детского возраста. – 2019. – Т. 7. – Вып. 4. – С. 5–14. https://doi.org/10.17816/PTORS745-14

Поступила: 12.07.2019 Одобrena: 01.12.2019 Принята: 09.12.2019

Обоснование. В настоящее время проведено достаточно количество исследований, посвященных оценке результатов оперативного вмешательства и сравнительному анализу различных хирургических методик лечения детей с врожденной деформацией позвоночника. Однако не существует единого мнения в отношении выбора хирургического доступа к аномальному позвонку с учетом длительности операции, объема интраоперационной кровопотери, величины достигнутой коррекции в ходе вмешательства, протяженности металлофиксации и сохранения полученного результата в отдаленном периоде наблюдения.

Цель — выявить преимущества и недостатки дорсального и комбинированного доступов к хирургическому лечению детей дошкольного возраста с врожденной деформацией грудного и поясничного отделов позвоночника на фоне изолированного нарушения формирования позвонка.

Материалы и методы. Проведен ретроспективный анализ лечения 56 пациентов в возрасте до 5 лет с врожденными деформациями позвоночника на фоне изолированного полу позвонка в грудном и поясничном отделах позвоночника, которым выполняли однозаплатную экстирпацию полу позвонка из дорсального (1-я группа; n = 30) или комбинированного (2-я группа; n = 26) доступа.

Результаты. У всех пациентов было отмечено улучшение сагittalного и фронтального профилей позвоночника. Однако в отдаленном периоде у пациентов 1-й группы наблюдалось прогрессирование кифотического компонента деформации в поясничном отделе позвоночника с –19 до –8°, при этом величина коррекции сколиотического компонента искривления оставалась стабильной. Интраоперационная кровопотеря в 1-й группе пациентов была меньше (234 мл по сравнению с 319 мл во 2-й группе), при этом операции длились дольше (310 и 185 мин соответственно). В 1-й группе для коррекции деформации позвоночника использовали в среднем более протяженную металлоконструкцию по сравнению со 2-й группой.

Заключение. Коррекция врожденной деформации позвоночника у пациентов с единичным полу позвонком из комбинированного доступа позволяет достичь полноценного исправления врожденного искривления с фиксацией меньшего количества позвонков, при этом стабильный результат сохраняется в отдаленном периоде наблюдения в отличие от дорсального подхода. Изолированный дорсальный доступ к телу полу позвонка отличается меньшей интраоперационной кровопотерей по сравнению с комбинированным, однако время хирургического вмешательства в случае изолированного дорсального доступа больше.

Ключевые слова: врожденный сколиоз; моносегментарные пороки позвоночника; экстирпация полу позвонка; дорсальный доступ; комбинированный доступ; коррекция деформации; травматичность операции.
A COMPARATIVE ANALYSIS OF THE SURGICAL TREATMENT OF PRESCHOOL CHILDREN WITH CONGENITAL SPINAL DEFORMATION AND ISOLATED HEMIVERTEBRA FROM THE COMBINED AND DORSAL APPROACHES

© S.V. Vissarionov¹, A.R. Syundyukov², D.N. Kokushin¹, N.O. Khusainov¹, M.A. Khardikov¹

¹ The Turner Scientific Research Institute for Children’s Orthopedics, Saint-Petersburg, Russia; ² Federal Center for Traumatology, Orthopedics and Endoprosthetics, Cheboksary, Russia

Received: 12.07.2019 Revised: 01.12.2019 Accepted: 09.12.2019

For citation: Vissarionov SV, Syundyukov AR, Kokushin DN, et al. A comparative analysis of the surgical treatment of preschool children with congenital spinal deformity and isolated hemivertebra from the combined and dorsal approaches. Pediatric Traumatology, Orthopedics and Reconstructive Surgery. 2019;7(4):5-14. https://doi.org/10.17816/PTORS745-14

Background. Currently, there are many studies on the evaluation of the results of surgical intervention and the comparative analysis of various surgical techniques for treating children with congenital spinal deformities. However, there is no consensus regarding the choice of surgical access to the abnormal vertebra that considers the duration of surgery, the volume of intraoperative blood loss, the degree of correction achieved during the intervention, the length of metal fixation, and the preservation of the result in the long-term observation period.

Aim. The goal is to identify the advantages and disadvantages of the dorsal and combined approaches to the surgical treatment of preschool children with congenital deformities of the thoracic and lumbar spine against the background of an isolated violation of the vertebral formation.

Materials and methods. A retrospective analysis of 56 patients under the age of five with congenital spinal deformities and a history of an isolated hemivertebra in the thoracic and lumbar regions who underwent one-stage hemivertebral extrusion from a dorsal approach (1st group: n = 30) or from a combined approach (2nd group: n = 26) was conducted.

Results. All patients showed improvement in the sagittal and frontal profiles of the spine. However, during separation in the first group of patients, a progression of the kyphotic component of the deformity in the lumbar spine from −19° to −8° was noted, while the correction value of the curvature of the scoliotic component remained stable. Intraoperative blood loss in the first group of patients was less (234 mL) compared with that in the second group (319 mL), while the duration of surgery was longer (310 min and 185 min, respectively). On average, in the first group, a longer metal structure was used to correct the spinal deformity compared with the second group.

Conclusions. The correction of the patients’ congenital spinal deformities with a single hemivertebra from a combined access approach allows a complete correction of the congenital curvature, the fixation of a smaller number of vertebrae, and the maintenance of a stable result in the long-term observation period compared with the dorsal approach. Isolated dorsal access to the hemivertebral body is characterized by less intraoperative blood loss compared with the combined approach, although the length of surgical intervention is increased.

Keywords: congenital scoliosis; congenital kyphosis; monosegmental spinal malformations; hemivertebrae; hemivertebrae excision; posterior approach; combined approach; correction of the deformity; invasiveness of surgery.

Аномалии развития позвонков нередко служат причиной возникновения и прогрессирования врожденной деформации позвоночного столба в процессе роста и развития ребенка. Распространенность пороков развития позвонков составляет 1 на 1000 новорожденных [1]. Одним из наиболее часто встречающихся пороков развития позвоночника, приводящих к тяжелым и ригидным искривлениям уже в дошкольном возрасте, является нарушение формирования позвонка [2].

По мере развития детской вертебрологии разработаны различные варианты хирургических вмешательств и тактических подходов, направленных на коррекцию врожденного искривления при помощи многоопорной спинальной системы. В последние годы появились исследования, посвященные оценке результатов коррекции врожденной деформации при различных подходах и сравнительному анализу их эффективности, как отечественных, так и зарубежных авторов [3–6].

Анализируя работы, в которых рассматриваются оптимальный хирургический подход к телу аномального позвонка при оперативном лечении детей с данной патологией. Некоторые авторы до-казывают возможность оптимальной коррекции врожденной деформации позвоночника только из дорсального доступа [7–10], другие — утверждают, что наилучшие результаты дает вмешательство из комбинированного доступа (переднебокового и дорсального) [4, 11–14]. Одновременно с этим остается открытым вопрос протяженности
металлофиксации при различных вариантах хирургического подхода в лечении детей с врожденными искривлениями позвоночника. Один авторы считают, что коррекцию врожденной деформации необходимо проводить, фиксируя минимальное количество позвоночно-двигательных сегментов и стабилизируя только соседние позвонки относительно аномального [5, 15, 16], другие — утверждают, что исправление врожденной деформации необходимо осуществлять многоопорной металлоконструкцией с фиксацией позвонков, расположенных на протяжении нескольких позвоночно-двигательных сегментов выше и ниже поясничного позвонка [11]. Однако ни в одном исследовании не был проведен сравнительный анализ количества стабилизированных позвоночно-двигательных сегментов с помощью спинальной системы при различных хирургических доступах коррекции врожденной деформации у пациентов детского возраста.

Интраоперационная кровопотеря в ходе хирургического лечения детей с врожденными деформациями позвоночника, несмотря на совершенствование методик вмешательства и применение современных специальных средств для осуществления гемостаза во время операции, относится к неизбежным отрицательным явлениям. Из основных причин интраоперационной кровопотери при хирургической коррекции врожденного искривления позвоночного столба можно назвать травмирование мягких тканей, нарушение целостности задних костных структур позвоночника, кровотечение из сосудов позвоночного канала, повышение давления в сосудах системы нижней полой вены ввиду нефизиологического кровообращения в стадии декомпенсации. Таким образом, проблема выбора наиболее рационального хирургического доступа и его эффективности при коррекции врожденной деформации позвоночника у детей остается до конца не решенной.

Цель — выявление преимуществ и недостатков дорсального и комбинированного подходов к хирургическому лечению детей дошкольного возраста с врожденной деформацией грудного и поясничного отделов позвоночника на фоне изолированного нарушения формирования позвонка.

Материалы и методы

Дизайн исследования: сравнительное межгрупповое ретроспективное исследование с двуцентровым набором в группы.

Материалом исследования послужили истории болезней, результаты обследования и хирургического лечения 56 детей в возрасте от 1 года до 5 лет (26 мужского пола, 30 — женского) с врожденной деформацией позвоночника на фоне изолированного сегментированного полупозвонка грудного или поясничного отдела. Средний возраст пациентов составил 4 года 8 мес. У 34 пациентов полупозвонок располагался в грудном отделе (Th5–Th12), у 22 — в поясничном (L1–L4). В зависимости от хирургического доступа выделено две группы: пациентам 1-й группы (n = 30) хирургическое вмешательство проведено из дорсального доступа, пациентам 2-й группы (n = 26) — из комбинированного. Средний срок наблюдения в отдаленном периоде составил 5 лет 10 мес. (от 2 лет 3 мес. до 7 лет).

Критерии соответствия. Критерии включения: наличие единичного порока в грудном или поясничном отделе, отсутствие неврологических нарушений в клинической картине, одномоментная моносегментарная экстирпация полупозвонка и коррекция врожденной деформации металлоконструкцией, возраст пациентов на момент оперативного лечения от 1 года до 5 лет. Пациенты имели мезосоматический соматотип с гармоничным или дисгармоничным развитием. Было получено информированное согласие представителя пациента на участие в исследовании. Критерии исключения: многоточность оперативного лечения, множественные пороки развития позвоночника, наличие неврологических нарушений в клинической картине, патологические изменения со стороны спинного мозга по данным магнитно-резонансной томографии, соматические заболевания в стадии декомпенсации.

Условия проведения. Все дети получали оперативное лечение в плановом порядке в отделениях патологии позвоночника и нейрохирургии ФГБУ «НИДОИ им. Г.И. Турнера» Минздрава России и детском травматолого-ортопедическом отделении ФГБУ «Федеральный центр травматологии, ортопедии и эндопротезирования» Минздрава России (Чебоксары) с января 2011 по январь 2017 г. включительно в рамках договора о научно-практическом сотрудничестве, обеспечивающем возможность проведения операции специалистами одного учреждения в другом.

Методы исследования. Клинико-лабораторное обследование включало оценку ортодинамического и неврологического статусов. Кроме того, учитывали длительность оперативной сессии (в минутах), объем интраоперационной кровопотери (абсолютной в миллилитрах и относительной в процентах объема циркулирующей крови),
величину коррекции врожденной деформации в ходе операции, протяженность металлофиксации и стабильность результата лечения в отдаленном периоде наблюдения. У всех детей до операции оценивали анатомо-антропометрические параметры, показатели роста и веса.

Всем пациентам проводили лучевое обследование (рентгенографию в двух проекциях в положении стоя, мультиспиральную компьютерную томографию, магнитно-резонансную томографию) позвоночника до операции, после хирургического вмешательства и в отдаленном послеоперационном периоде в процессе динамического наблюдения с частотой 1 раз в 6 мес., а затем 1 раз в год. По рентгенограммам определяли локальный сколиотический и кифотический компонент деформации позвоночника по методу Кобба до операции, величину коррекции после нее и стабильность достигнутого результата в процессе дальнейшего развития ребенка.

Методика оперативного лечения заключалась в экстирпации единичного полупозвонка совместно с выше- и нижележащими межпозвонковыми дисками, коррекции врожденной деформации многоопорной транспедикулярной металлоконструкцией с последующим созданием заднего локального спондилодеза и корпородеза. Все операции выполнены одной хирургической бригадой.

Такой подход к включению пациентов в группу исследования обеспечивал получение более достоверных данных. При этом специалисты каждого учреждения вне зависимости друг от друга ежегодно выполняли несколько десятков подобных хирургических вмешательств у детей с врожденными деформациями позвоночника. Исследуемые группы формировали ретроспективно в зависимости от наличия рассматриваемого нозологического процесса.

Интраоперационную кровопотерю оценивали гравиметрическим методом и с помощью определения объема аспирированной крови. Объем циркулирующей крови (ОЦК) определялся по формуле: ОЦК = масса тела ребенка (кг) × коэффициент Х (для детей до 6 лет Х = 80 мл/кг) [20]. Для снижения интраоперационной кровопотери применяли биологические и технические кровосберегающие методики [1, 5, 21, 22].

Статистический анализ проводили с использованием программы Statistica 13 (StartSoftInk, США). Вычисляли среднее арифметическое (М) и отклонение среднего (±m). Проверку нормальности распределения параметров выполняли с помощью критерия образования, среднего абсолютного отклонения, размаха вариации, показателей асимметрии и эксцесса. Для определения статистической значимости различий парных измерений применяли парный t-критерий Стьюдента, результаты считали значимыми при р < 0,05. Для определения линейной связи использовали критерий корреляции Пирсона (r). Значимость различий между средними оценивали путем сравнения дисперсий.

Результаты

Пациенты были разделены на две группы в зависимости от варианта хирургического подхода к телу аномального позвонка, при этом пациенты обеих групп не отличались по возрасту и локализации полупозвонка (табл. 1).

У пациентов обеих групп локальное искривление в грудном или поясничном отделе проявлялось как сколиотическим, так и кифотическим компонентом деформации позвоночника (табл. 2). Показанием для хирургической коррекции искривления позвоночного столба являлась врожденная деформация позвоночника с локальным патологическим сколиозом более 20° в сочетании с кифотическим компонентом искривления более 8° в поясничном отделе и более 18° в грудном [15, 16]. Необходимо отметить, что значение сколиотического компонента деформации в обеих группах пациентов было практически одинаковым, при этом величина локального кифоза на уровне аномального позвонка у пациентов 2-й группы достоверно превышала этот показатель у пациен-

Таблица 1
Характеристика групп исследования по возрасту и локализации врожденного порока

Группа	Количество пациентов	Возраст на момент операции, мес.	Локализация полупозвонка	
			грудной отдел	поясничный отдел
1-я	30	36,5 ± 11,6	19	11
2-я	26	44,2 ± 10,4	15	11
В ходе исследования выявлена зависимость продолжительности хирургического вмешательства от доступа к телу аномального позвонка. При дорсальном подходе в среднем длительность операции составила 310 мин (мин 185; макс 460), а при комбинированном — 185 мин (мин 155; макс 230) (достоверное увеличение, \(p = 0,001 \)).

Объем кровопотери после хирургического вмешательства в 1-й группе пациентов составил 234 мл (мин 50; макс 600), что соответствует 16,7 % ОЦК, во 2-й группе — 319 мл (мин 140; макс 650), что составляет 20,2 % ОЦК. Кроме того, было обнаружено статистически достоверное уменьшение как абсолютной, так и относительной интраоперационной кровопотери в 1-й группе пациентов по сравнению с группой сравнения (\(p = 0,04 \) и \(p = 0,01 \) соответственно). Во 2-й группе объем интраоперационной кровопотери был достоверно выше при локализации порочного позвонка в грудном отделе, чем при расположении полупозвонка в поясничном отделе (\(p = 0,007 \)). Установлена выраженная обратная корреляционная зависимость между длительностью оперативной сессии и объемом кровопотери с высокой силой связи \((r = \, -0,871) \). Результаты длительности операции и объема кровопотери в ходе вмешательства представлены в табл. 3.

После хирургического вмешательства у пациентов обеих групп была достигнута радикальная коррекция как сколиотического, так и кифотического компонента деформации с восстановлением физиологических профилей позвоночника. Незначительная остаточная величина деформации, а также разница при измерении показателей коррекции между группами и в отдаленном периоде наблюдения укладывались в значения погрешности измерения. В результате операции удалось добиться восстановления сагittalного профиля деформированного позвоночно-двигательного сегмента (см. рисунок).
Однако в отдаленном периоде после операции в группе пациентов, оперированных только из дорсального доступа, отмечалось прогрессирование кифотического компонента деформации в поясничном отделе позвоночника с –19 до –8° \((p = 0,04)\), при этом величина коррекции сколиотического компонента искривления оставалась стабильной на протяжении всего периода. Одновременно с этим необходимо отметить, что у пациентов с использованием комбинированного подхода достигнутая коррекция деформации после операции сохранялась стабильной в отдаленном периоде наблюдения. В ходе операции у пациентов 1-й группы исправление было осуществлено за счет стабилизации большего количества позвонков по сравнению с больными группы сравнения. Данный результат связан с тем, что дорсальный доступ не позволял достаточно хорошо и полноценно обеспечить визуальный обзор и добраться полноценной мобильности в зоне вмешательства. Полученные результаты представлены в табл. 4.

В 1-й группе вертикализацию осуществляли в среднем на 5-е сутки после операции, а во 2-й группе — в среднем на 7-е сутки \((p = 0,02)\); постановку на ноги проводили по мере стабилизации состояния ребенка и купирования болевого синдрома.

Обсуждение

Современные тенденции в вертебрологии подразумевают все более широкое использование дорсального доступа в хирургии монопороков грудного и поясничного отделов позвоночника у детей [4]. Данные изменения связаны с эволюцией хирургической техники и внедрением современных педиатрических спинальных систем транспедикулярной фиксации. Как отечественные, так и зарубежные авторы основными преимуществами дорсального доступа считают уменьшение длительности оперативного вмешательства, интраоперационной кровопотери и периода реабилитации [3, 7, 10].

Рентгенограммы пациента К., 1 год 3 мес., с врожденным кифосколиозом на фоне заднебокового полупозвонка: а — до операции угол сколиоза — 26°, угол кифоза — 12°; б — через 1,5 года после операции из комбинированного подхода; в — через 6 лет после удаления металлопослойности

Группа	Локализация деформации	Количество блокированных позвонков в среднем	Послеоперационная деформация позвоночника, град	Деформация в отдаленном периоде наблюдения, град		
			локальный сколиотический компонент	локальный кифотический компонент	локальный сколиотический компонент	локальный кифотический компонент
1-я	грудной отдел	3,3	5	7	0	7
	поясничный отдел	3,1	5	–19	2	–8
2-я	грудной отдел	3,0	5	2	2	5
	поясничный отдел	2,8	8	–16	0	–16

Таблица 4

Динамика коррекции деформации позвоночника
В ходе исследования установлено, что в случае применения только дорсального доступа при коррекции врожденной деформации позвоночника на фоне изолированного нарушения формирования позвонка в грудном или поясничном отделе время хирургического вмешательства достоверно увеличивалось по сравнению с комбинированным подходом. Увеличение времени хирургического вмешательства при дорсальном подходе по сравнению с комбинированным доступом мы объясняем необходимостью дополнительной мобилизации дурального мешка с его содержимым для оптимальной визуализации подхода к аномальному позвонку. Расширенный дорсальный доступ с резекцией головки и проксимального участка ребра (костотрансверзэктомия) не обеспечивал полноценный визуальный обзор зоны вмешательства, что, безусловно, способствовало увеличению длительности операции. Ряд исследователей также подчеркивают недостатки дорсального подхода, среди которых выделяют отсутствие оптимального контроля за структурами позвоночного канала, невозможность резекции части диска на вогнутой стороне деформации [8]. С нашей точки зрения, ограниченность изолированного дорсального подхода обусловливает технические сложности при удалении дискового аппарата на стороне противоположной аномальному позвонку (что необходимо для до стижения полноценной мобильности в зоне порока), и сказывается на продолжительности хирургического вмешательства.

Отмечено, что абсолютное и относительное значение объема кровопотери было достоверно выше у пациентов с применением комбинированного подхода по сравнению с дорсальным. Это объяснялось прежде всего наличием двух доступов у пациентов 2-й группы по сравнению с пациентами 1-й группы. Необходимо отметить, что при использовании переднебокового подхода во время удаления замыкательной пластинки аномального позвонка, прилежащей к позвоночному каналу, и участка его основания дуги из сосудов дурального мешка возникало одномоментное массивное кровотечение. Кроме того, больший объем кровопотери у пациентов 2-й группы по сравнению с 1-й группой был обусловлен кровотечением, возникающим при удалении элементов связочного и дискового аппарата, который удавалось досконально удалить из переднебокового доступа, а также продолжавшимся кровотечением из переднебокового подхода у пациентов этой группы при использовании уже дорсального подхода и коррекции врожденной деформации. Выполнение экстирпации полупозвонка из комбинированного доступа с помощью традиционных технических средств при грудной локализации порока сопряжено с большей продолжительностью операции и кровопотерь в сравнении с поясничной.

При сопоставлении результатов нашего исследования с данными литературы анализируемые показатели совпадали. Так, K. Mladenov et al. считают, что дорсальный доступ предпочтителен с точки зрения минимизации интраоперационной кровопотери [23]. X. Peng et al. подчеркивают, что комбинированный подход позволяет сократить время оперативного вмешательства при достоверном увеличении кровопотери [7].

Минимальная фиксация участка позвоночника при исправлении врожденного искривления особенно актуальна и важна для пациентов младшей возрастной группы, что обусловлено сохранением потенций роста позвоночника [1, 5, 7]. Однако в настоящее время отсутствуют работы, посвященные сравнительному анализу протяженности транспедикулярной металлофиксации при коррекции врожденной деформации позвоночника, выполненной из дорсального и комбинированного доступов.

Наш подход к коррекции врожденной деформации позвоночника у детей дошкольного возраста заключается в радикальном исправлении искривления и стабилизации только вовлеченных позвонков [12, 14, 15]. Переднебоковой подход позвоночника при исправлении врожденного искривления особенно актуален и важен для пациентов младшей возрастной группы, что обусловлено сохранением потенций роста позвоночника [1, 5, 7]. Однако в настоящее время отсутствуют работы, посвященные сравнительному анализу протяженности транспедикулярной металлофиксации при коррекции врожденной деформации позвоночника, выполненной из дорсального и комбинированного доступов.
На наш взгляд, это объяснялось сложностью выполнения полноценного и стабильного корпордеза из дорсального подхода таким же способом, как у пациентов группы сравнения. Из переднебокового доступа удается создать и сформировать более надежный и стабильный корпордез путем установки аутотрансплантата враспор между интактными телами позвонков относительно аномального. Таким образом, в процессе развития у пациентов 1-й группы происходили проседание костного трансплантата и достоверная потеря коррекции кифотического компонента искривления по сравнению с результатом, достигнутым в ходе операции. Сравнительный анализ исследований, посвященных изучению жесткости различных вариантов стабилизации позвоночника, показывает, что изолированный задний спондилодез не позволяет в должной мере обеспечить полной иммобилизации позвоночника [24]. Возникающие патологические изменения в за-блокированных позвонках, а также чрезмерные нагрузки на контактные с этой зоной фиксации позвонки зачастую приводят к некоторому прогрессированию деформации позвоночника. При этом необходимо подчеркнуть, что использование межтелового аллотрансплантата позволяет сохранить достигнутую коррекцию деформации в отдаленном послеоперационном периоде.

Заключение

Таким образом, благодаря комбинированному подходу удается достичь полноценной коррекции врожденной деформации в грудном и поясничном отделах у пациентов дошкольного возраста с фиксацией меньшего количества позвонков по сравнению с дорсальным доступом. Изолированный дорсальный доступ при коррекции врожденной деформации позвоночника в грудном или поясничном отделе позвоночника у детей дошкольного возраста позволяет уменьшить объем кровопотери в ходе операции, при этом увеличивается время самого вмешательства по сравнению с комбинированным подходом. Кроме того, достигнутый результат в отдаленном послеоперационном периоде сохранялся в группе пациентов с применением комбинированного доступа за счет формирования надежного и выраженного переднего и заднего костных блоков.

Дополнительная информация

Источник финансирования. Исследование проведено в соответствии с государственным контрактом № К-27-НИР/111-1 на выполнение НИР в рамках программы Союзного государства на тему «Разработка новых спинальных систем с использованием технологий прототипирования в хирургическом лечении детей с тяжелыми врожденными деформациями и повреждениями позвоночника».

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Этническая экспертиза. Исследование одобрено этническим комитетом ФГБУ «НИДОИ им. Г.И. Турнера» Минздрава России (протокол № 4 от 27.11.2018). Пациенты и их представители дали информированное согласие на участие в исследовании и публикацию персональных данных.

Вклад авторов

С.В. Виссарионов — хирургическое лечение пациентов, формулировка цели, этапное и заключительное редактирование текста статьи.

А.Р. Сюндюков — хирургическое лечение пациентов, сбор данных.

Д.Н. Кокукин — хирургическое лечение пациентов, этапное редактирование текста статьи.

Н.О. Хусаинов — обзор литературы, оформление статьи.

М.А. Хардиков — сбор и анализ данных, написание текста статьи, оформление статьи.

Все авторы внесли существенный вклад в проведение исследования и подготовку статьи, прочли и одобрили финальную версию перед публикацией.

Литература

1. Feng Y, Hai Y, Zhao S, Zang L. Hemivertebra resection with posterior unilateral intervertebral fusion and transpedicular fixation for congenital scoliosis: results with at least 3 years of follow-up. Eur Spine J. 2016;25(10):3274-3281. https://doi.org/10.1007/s00586-016-4556-7.

2. Zhu X, Wei X, Chen J, et al. (2014). Posterior hemivertebra resection and monosegmental fusion in the treatment of congenital scoliosis. Ann R Coll Surg Engl. 2014;96(1):41-44. https://doi.org/10.1308/003588414x13824511650173.

3. Мушкин А.Ю., Наумов Д.Г., Уменушкина Е.Ю. Экстирпация грудных и поясничных полупозвонков у детей: как техника операции влияет на ее травматичность (предварительные результаты и обзор литературы)? // Травматология и ортопедия России. – 2018. – Т. 24. – № 3. – С. 83–90. [Mushkin AY, Naumov DG, Umenushkina EY. Thoracic and lumbar hemivertebra excision in pediatric patients: how does the operation technique influence on outcomes (cohort analysis and literature review)? Traumatology and Orthopedics of Russia. 2018;24(3):83-90. (In Russ.).] https://doi.org/10.21823/2311-2905-2018-24-3-83-90.
4. Рябых С.О., Филатов Е.Ю., Савин Д.М. Результаты экстирпации полупозвонков комбинированн
ным, дорсальным и педикюлярными доступами: систематический обзор // Хирургия позвоночни
ка. – 2017. – Т. 14. – № 1. – С. 14–23. [Ryabykh SO, Filatov EY, Savin DM. Results of hemivertebra ex
cision through combined, posterior and transpedi
cular approaches: systematic review. Spine surgery. 2017;14(1):14-23. (In Russ.). https://doi.org/10.14531/
sse2017.14-23.

5. Chang DG, Kim JH, Ha KY, et al. Posterior hemivertebra resection and short segment fusion with pedicle screw fixation for congenital scoliosis in children younger than 10 years. Spine. 2015;40(8):E484-E491. https://doi.org/10.1097/brs.0000000000000809.

6. Debnath U, Goel V, Harshavardhana N, Webb J. Congenital scoliosis – Quo vadis? Indian J Orthop. 2010;44(2):137-147. https://doi.org/10.4103/0019-5413.61997.

7. Peng X, Chen L, Zou X. Hemivertebra resection and correction in children aged 1 to 6 years. Spine. 2003;28(18):2132-2138. https://doi.org/10.1097/01.bpb.000084627.57308.4a.

8. Ruf M, Harms J. Posterior hemivertebra resection with transpedicular instrumentation: early correction in children aged 1 to 6 years. Spine. 2003;28(18):2132-2138. https://doi.org/10.1097/01.bpb.000084627.57308.4a.

9. Shono Y, Abumi K, Kaneda K. One-stage posterior hemivertebra resection and correction using segmental posterior instrumentation. Spine. 2001;26(7):752-757. https://doi.org/10.1097/00007632-200104100-00011.

10. Zhang J, Shengru W, Qiu G, et al. The efficacy and complications of posterior hemivertebra resection. Eur Spine J. 2011;20(10):1692-1702. https://doi.org/10.1007/s00586-011-1710-0.

11. Li S, Ou Y, Liu B, et al. Comparison of osteotomy versus non-osteotomy approach for congenital scoliosis: a retrospective study of three surgical techniques. ANZ J Surg. 2015;85(4):249-254. https://doi.org/10.1111/ans.12886.

12. Wang L, Song Y, Pei F, et al. Comparison of one-stage anteroposterior and posterior-alone hemivertebra resection combined with posterior correction for hemivertebrae deformity: Results of 60 patients. Indian J Orthop. 2011;45(6):492-499. https://doi.org/10.4103/0019-5413.87115.

13. Xu W, Yang S, Wu X, Claus C. Hemivertebra excision with short-segment spinal fusion through combined anterior and posterior approaches for congenital spinal deformities in children. J Pediatr Orthop B. 2010;19(6):545-550. https://doi.org/10.1097/bpob.0b013e32833cb887.

14. Yaszay B, O’Brien M, Shufflebarger HL, et al. Efficacy of hemivertebra resection for congenital scoliosis. Spine. 2011;36(24):2052-2060. https://doi.org/10.1097/brs.0b013e31823f44bb.

15. Виссарионов С.В., Кокушин Д.Н., Картавенко К.А., Ефремов А.М. Хирургическое лечение детей с врожденной деформацией поясничного и пояс

нично-крестцового отделов позвоночника // Хи

рурных позвоночника. – 2012. – № 3. – С. 33–37. [Vissarionov SV, Kokushin DN, Kartavenko KA, Efreme
v AM. Surgical treatment of children with congeni
tal deformity of the lumbar and lumbosacral spine. Spine surgery. 2012;(3):33-37. (In Russ.). https://doi.org/10.14531/ss2012.3.33-37.

16. Виссарионов С.В., Картавенко К.А., Кокушин Д.Н., Ефремов А.М. Хирургическое лечение детей с врожденной деформацией грудного отдела позво

ночника на фоне нарушения формирования позво

ников // Хирургия позвоночника. – 2013. – № 2. – С. 32–37. [Vissarionov SV, Kartavenko KA, Kokushin DN, Efremov AM. Surgical treatment of children with congeni
tal thoracic spine deformity associated with vertebral malformation. Spine surgery. 2013;(2):32-37. (In Russ.). https://doi.org/10.14531/
sse2013.2.32-37.

17. Захран Р.Г., Бернакевич А.И., Кулецов А.А., и др. Массивная кровопотеря при хирургии сколиоза // Адаптация различных систем организма при сколиотической деформации позвоночника. Методы лечения: Тезисы докладов международного симпо

зiuma. – М., 2003. – С. 28–30. [Zakharin RG, Ber

akевич AI, Kuleshov AA, et al. Massivnaya krovo
terya pri khirurgii skolioza. In: Adaptatsiya razlichnykh sistem organizma pri skolioticheskoy deformatsii poz

vonochnika. Metody lecheniya: Tezisy dokladov mezhdunarodnogo simposiuma. Moscow; 2003. P. 28-30. (In Russ.)]

18. Лебедева М.Н. Массивная кровопотеря как фактор риска в хирургии сколиоза: пути решения про

блемы // Хирургия позвоночника. – 2009. – № 4. – С. 70–79. Lebedeva MN. Massive blood loss as a risk factor in scoliosis surgery and ways for the problem solution. Spine surgery. 2009;(4):70-79. (In Russ.). https://doi.org/10.14531/ss2009.4.70-79.

19. Лебедева М.Н., Иванова А.А., Ефремов А.М., Васыра А.С. Патогенетические основы профилактики

развития повышенной кровопотери в хирургии идиопатического сколиоза // Хирургия позвоночника. – 2017. – Т. 14. – № 3. – С. 100–112. [Lebe
deva MN, Ivanova AA, Efratov AA, Vasyra AS. Pathogenetic foundations for prevention of increased blood loss in surgery for idiopathic scoliosis. Spine surgery. 2017;(4):100-112. (In Russ.)]. https://doi.org/10.14531/ss2017.3.100-112.

20. Национальный стандарт РФ ГОСТ Р 53470-2009 «Кровь донорская и ее компоненты. Руководство по применению компонентов донорской крови». – М., 2010. [National standard of the Russian Federation GOST R 53470-2009 "Krov" donskoy i ee kompo

nenty. Rukovodstvo po primeneniyu komponentov donorskoy krovi". Moscow; 2010. (In Russ.)]

21. Бирюкова Е.Е., Плетнев И.Н. Методы кровосбе

режения и крововосполнения при хирургической коррекции сколиотической деформации позвоночника // Тезисы докладов 13-й научно-практической конференции SICOT; Санкт-Петербург, 23–25 мая 2002 г. – СПб., 2002. – С. 19–20. [Biryukova EE, Pletnev IN. Metody kroivosbereninya i krovovospol

neniya pri khirurgicheskoj korrektsi skolioticheskoy
22. Imrie MN. A "simple" option in the surgical treatment of congenital scoliosis. Spine J. 2011;11(2):119-121. https://doi.org/10.1016/j.spinee.2010.12.007.

23. Mladenov K, Kunkel P, Stuecker R. Hemivertebra resection in children, results after single posterior approach and after combined anterior and posterior approach: a comparative study. Eur Spine J. 2011;21(3):506-513. https://doi.org/10.1007/s00586-011-2010-4.

24. White AA, Panjabi MM. Clinical Biomechanics of the Spine. 2nd ed. Philadelphia: Lippincott; 1990.