DEPLOYING ROBOTS WITH TWO SENSORS
IN $K_{1,6}$-FREE GRAPHS

Waseem Abbas
Magnus Egerstedt
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332, USA

Chun-Hung Liu
Robin Thomas
Peter Whalen
School of Mathematics
Georgia Institute of Technology
Atlanta, Georgia 30332-0160, USA

Abstract
Let G be a graph of minimum degree at least two with no induced subgraph isomorphic to $K_{1,6}$. We prove that if G is not isomorphic to one of eight exceptional graphs, then it is possible to assign two-element subsets of $\{1, 2, 3, 4, 5\}$ to the vertices of G in such a way that for every $i \in \{1, 2, 3, 4, 5\}$ and every vertex $v \in V(G)$ the label i is assigned to v or one of its neighbors. It follows that G has fractional domatic number at least $5/2$. This is motivated by a problem in robotics and generalizes a result of Fujita, Yamashita and Kameda who proved that the same conclusion holds for all 3-regular graphs.

1 Introduction

The problem under consideration in this paper is motivated by a problem encountered both in the multi-agent robotics and mobile sensor networks domains. Common to both of these two application areas is a collection of agents that are equipped with sensors of various types, used for tasks such as environmental modeling, exploration of unknown terrains, surveillance of

\footnote{Partially supported by NSF under Grant No. DMS-1202640.}
remote locations, and the establishment of sensor coverage for the purpose
of event detection. Due to the scale of the multi-robot network, the agents
have to act based on locally available information, and under various such dis-
tributed coordinated schemes, e.g., [1], the robots interact and communicate
with each other in order to gain the information needed to make informed
decisions. These interactions, in turn, define an information exchange net-
work that allows us to model the agents as vertices and information exchange
channels as edges in a graph. The inter-agent interactions moreover allow
the agents to complement each others’ resources and capabilities; thus en-
hancing the collective functionality of the system. As a result, the underlying
network topology of multi-robot networks plays a crucial role in achieving
the system level objectives within the network in a distributed manner.

As an example, consider an application in which a group of robots is de-
ployed at some remote location for the purpose of environmental moni-
toring. Each robot needs to obtain information about \(s \) different sensing modalities
(e.g., temperature, humidity, barometric pressure, and so on). However, owing
to certain constraints such as power limitations and hardware footprints,
an individual robot can have a maximum of \(r < s \) sensors installed on it. As
a result, the robots need to collect data concerning the remaining \(s - r \) sen-
sing modalities from neighboring robots through the information exchange
network. In other words, for every robot \(v \) and every type of sensor, either
or one of its neighboring robots must carry a sensor of that type.

As already stated, the multi-robot network can be modeled as a graph
\(G \), in which the vertex set represents robots, and the edges correspond to
the interactions among robots. Typically, a robot may transmit data to
other robots lying within a certain Euclidean distance, say \(R \), away from
it. Thus, an edge is formed between nodes \(v \) and \(u \) whenever \(\|v - u\| \leq R \).
This results in an \(R\)-disk proximity graph model of the network, which is the
typical model employed when studying multi-robot networks. As such, any
graph class under consideration must be rich enough to capture this model
for it to be relevant to robotics. In such a graph, a disk of radius \(R \), which
represents the transmission or interaction range of the node, is associated
with every node \(v \) that lies at the center of the disk. An edge exists between
\(v \) and all such nodes that lie within the disk of \(u \). \(R\)-disk graphs are one
of the most frequently used models for the analysis of the network topology
related aspects of multi-robot systems, wireless sensor networks, and other
ad-hoc networks (e.g., see [5]). \(R\)-disk graphs are geometric graphs as the
existence of edges between vertices depends on the geometric configuration of
vertices. However, the geometric property of such graphs can be translated into a graph theoretic one. In fact, it can be shown that R-disk graphs are indeed $K_{1,6}$-free, and this key observation motivates the study of $K_{1,6}$-free graphs in multi-agent robotics.

In this paper, we study what is the maximum number of sensors that can be accommodated in a multi-robot network if each robot can have at most two types of sensors. Our main result states that under some mild conditions, it is possible to assign two distinct labels to each vertex in a $K_{1,6}$-free graph such that a set of five distinct labels always exist in the closed neighborhood of every vertex in G.

The same problem arises in various situations of locating facilities in a network. Let us assume that every vertex of a graph can access only resources located at neighboring vertices or at the vertex itself. Now if some resource (such as a file, a printer or other service) must be accessible from every vertex of the graph, then copies of that resource need to be distributed over the network to form a “dominating set”. If every vertex of the graph has the capacity to accommodate at most r distinct resources, then asking for the maximum number of resources that can be made available to every vertex of the graph leads to the same mathematical question as the problem of the previous paragraph.

Let us be more precise now. By a graph we mean a finite, simple, undirected graph; that is, loops and parallel edges are not allowed. For a vertex v of a graph G, we denote the set of neighbors of v by $N(v)$, and define $N[v]$, the closed neighborhood of v, to be $N(v) \cup \{v\}$. Let $r \geq 1$ be an integer. Let f be a function that maps the vertices of G to r-element subsets of some set X. We define $R(f)$ to be the union of $f(v)$ over all vertices v of G. Following [4] we say that f is an r-configuration on G if for every $x \in R(f)$ and every vertex $v \in V(G)$ we have $x \in f(u)$ for some $u \in N[v]$. We define $D_r(G)$ to be the maximum of $|R(f)|$ over all r-configurations on G. Thus given a graph G and integer $r \geq 1$ the problems of the previous two paragraphs ask for the value of $D_r(G)$.

The parameter $D_1(G)$ is known in the literature as the domatic number of G. It was introduced by Cockayne and Hedetniemi [2] and has since then been the subject of a large number of publications. Obviously $D_1(G)$ is at most the minimum degree of G plus one, but testing whether $D_1(G) \geq k$ is NP-complete for all $k \geq 3$. (Testing $D_1(G) \geq 2$ is easy, because $D_1(G) \geq 2$ if and only if G has no isolated vertex.) A $(1 + o(1)) \ln n$-approximation algorithm for $D_1(G)$ was found by Feige, Halldörsson, Kortsarz and Srinivasan [3], who
also showed that their approximation factor is essentially best possible.
Fujita, Yamashita and Kameda proved in [4] that $D_2(G) \geq 5$ for all 3-regular graphs. The purpose of this article is to generalize their result to a larger class of graphs, as follows. We denote the cycle on n vertices by C_n. By $C_4 \cdot C_4$ we mean the graph obtained from two disjoint cycles on four vertices by identifying a vertex in the first cycle with a vertex in the second cycle. We denote by G_1, G_2, G_3, G_4 the graphs shown in Figure 1.

Theorem 1 Let G be a graph of minimum degree at least two with no induced subgraph isomorphic to $K_{1,6}$. If no component of G is isomorphic to a member of $\{C_4, C_7, C_4 \cdot C_4, K_{2,3}, G_i : 1 \leq i \leq 4\}$, then $D_2(G) \geq 5$.

As stated earlier, the generalization to $K_{1,6}$-free graphs is of interest in multi-agent robotics, because the class of $K_{1,6}$-free graphs includes the class of R-disk graphs.

For the sake of brevity let us define a configuration on a graph G to mean a 2-configuration f with $R(f) = \{1, 2, 3, 4, 5\}$. Thus the conclusion of Theorem 1 is equivalent to saying that G has a configuration. Our proof is algorithmic and gives a polynomial-time algorithm to find a configuration. We say that a graph G is configurable if it admits a configuration. Theorem 1 has the following two corollaries.

Corollary 2 If G is a connected graph of minimum degree at least two with no induced subgraph isomorphic to $K_{1,6}$, and G is not isomorphic to a member of $\{C_4, C_7, C_4 \cdot C_4, K_{2,3}, G_i : 1 \leq i \leq 4\}$, then for any positive integer r, $D_r(G) \geq \lceil 5r/2 \rceil$.

Proof. Since G has no isolated vertex, we have $D_1(G) \geq 1$. Thus G has a 1-configuration h with $R(h) = \{1, 2\}$. By Theorem 1 the graph G has a
configuration, say f. For $v \in V(G)$ we define $g(v)$ to be the set of all pairs (i, j), where $i \in f(v)$ and $j \in \{1, 2, \ldots, \lfloor r/2 \rfloor\}$, and let $g'(v) := g(v) \cup h(v)$. If r is even, then g is an r-configuration with $|R(g)| = 5r/2$, and if r is odd, then g' is an r-configuration with $|R(g')| = 5(r - 1)/2 + 2 = \lceil 5r/2 \rceil$, as desired.

In the context of R-disk graphs, which are widely used to model intercommunication and information exchange among nodes in multi-robot and wireless sensor networks, we can restate the above result using the fact that R-disk graphs are always $K_{1,6}$-free, and can never be isomorphic to $K_{2,3}$, as shown in [6].

Corollary 3 If G is a connected R-disk graph of minimum degree at least two, and G is not isomorphic to a member of $\{C_4, C_7, C_4 \cdot C_4, K_{2,3}, G_i : 1 \leq i \leq 4\}$, then for any positive integer r, $D_r(G) \geq \lceil 5r/2 \rceil$.

The fractional domatic number of a graph G, introduced in [7], is the supremum of a/b such that G has a b-configuration f with $|R(f)| = a$. This is the optimum of the LP relaxation of the domatic number problem, and that justifies the name. It follows that the supremum is attained. Theorem 1 implies that every graph that satisfies the hypotheses of the theorem has fractional domatic number at least $5/2$.

The paper is organized as follows. In Section 2 we prove some lemmas about extending a configuration from a subgraph of a graph. In section 3 we prove the main theorem under the additional hypothesis that no two vertices of degree at least three are adjacent. In section 4 we prove the main theorem and give two examples that show limitations to possible extensions.

2 Preliminary lemmas

An (α, β)-star is the graph obtained by identifying one end of each of α paths of length one and β paths of length two. In other words, the vertex-set may be labeled $\{w, x_i, y_j, z_j : 1 \leq i \leq \alpha, 1 \leq j \leq \beta\}$ so that the edge-set is $\{wx_i, wy_j, y_jz_j : 1 \leq i \leq \alpha, 1 \leq j \leq \beta\}$. Note that an $(\alpha, 0)$-star is isomorphic to $K_{1,\alpha}$. We denote by $[5]^2$ the set of all two-element subsets of $\{1, 2, 3, 4, 5\}$. If G is a graph, $f : V(G) \to [5]^2$, and $v \in V(G)$, then we say that v is satisfied with respect to f if $\bigcup_{u \in N[v]} f(u) = \{1, 2, 3, 4, 5\}$. When there is no danger of confusion we will omit the reference to f.

Lemma 4 Let \(v_1 v_2 v_3 v_4 \) be a path of length three, and \(f : \{v_1, v_4\} \to [5]^2 \) with \(f(v_1) \cap f(v_4) \) nonempty. If \(a, b \in \{1, 2, 3, 4, 5\} \setminus f(v_1), \) then \(f \) can be extended to \(\{v_1, v_2, v_3, v_4\} \) in such a way that \(v_2 \) and \(v_3 \) are satisfied and \(f(v_2) = \{a, b\}. \)

Proof. Without loss of generality, \(f(v_1) = \{1, 2\}, 1 \in f(v_4), \) and \(f(v_2) = \{a, b\} = \{3, 4\}. \) Then setting \(f(v_3) = \{2, 5\} \) completes the proof.

Lemma 5 Let \(H \) and \(S \) be disjoint subgraphs of a graph \(G, \) and let \(\alpha, \beta \geq 0 \) be integers such that either \(\alpha + 3\beta \leq 9 \) or \((\alpha, \beta) = (1, 3) \). Let \(H \) be configurable and let \(S \) be either a path of length at least two or an \((\alpha, \beta)\)-star. If every vertex of \(S \) of degree one is adjacent to some vertex of \(H, \) then the subgraph of \(G \) induced by \(V(H) \cup V(S) \) is configurable.

Proof. Let \(f \) be a configuration on \(H. \) First, suppose that \(S = v_1 v_2 \ldots v_k \) is a path of length at least two (so \(k \geq 3 \)), and that the ends of \(S \) are adjacent to vertices \(x, y \) of \(H. \) Note that \(x \) and \(y \) may be the same vertex. There are three cases depending on the cardinality of \(f(x) \cap f(y) \) and three cases depending on the residue of \(k \) modulo three. Without loss of generality we may assume that \(f(x) = f(y) = \{1, 2\}, \) or \(f(x) = \{1, 2\} \) and \(f(y) = \{1, 3\}, \) or \(f(x) = \{1, 2\} \) and \(f(y) = \{3, 4\}. \) Then \(f \) can be extended to \(V(H) \cup V(S) \) according to the following table, where \(t \) runs from 1 through \([k/3] - 1\).

\(k \pmod{3} \)	\(f(x) \)	\(f(v_{3t+1}) \)	\(f(v_{3t+2}) \)	\(f(v_{3t+3}) \)	\(f(v_{k-1}) \)	\(f(v_k) \)	\(f(y) \)
0	\{1, 2\}	\{1, 3\}	\{4, 5\}	\{2, 3\}	\(x \)	\(x \)	\{1, 2\}
1	\{1, 2\}	\{3, 4\}	\{1, 5\}	\{2, 4\}	\(x \)	\(x \)	\{1, 3\}
2	\{1, 2\}	\{3, 4\}	\{1, 5\}	\{2, 5\}	\(x \)	\(x \)	\{3, 4\}
0	\{1, 2\}	\{3, 4\}	\{1, 5\}	\{2, 4\}	\(x \)	\(x \)	\{3, 4\}
1	\{1, 2\}	\{3, 4\}	\{1, 5\}	\{2, 5\}	\(x \)	\(x \)	\{1, 3\}
2	\{1, 2\}	\{3, 4\}	\{1, 5\}	\{2, 5\}	\(x \)	\(x \)	\{3, 4\}

Now we assume that \(S \) is a \((\alpha, \beta)\)-star, where \(\alpha + \beta \geq 3, \alpha + 3\beta \leq 9, \) or \((\alpha, \beta) = (1, 3). \) Let \(V(S) = \{w, x_i, y_j, z_j : 1 \leq i \leq \alpha, 1 \leq j \leq \beta\}, \) \(E(S) = \{wx_i, wy_j, y_jz_j : 1 \leq i \leq \alpha, 1 \leq j \leq \beta\}, \) and \(x_i \) is adjacent to \(u_i, \) where \(u_i \) is in \(H, \) for all \(1 \leq i \leq \alpha, \) and \(z_j \) is adjacent to \(v_j, \) where \(v_j \) is in \(H, \) for all \(1 \leq i \leq \beta. \)
We say that u_i forbids the set $f(u_i)$ and that v_j forbids the three 2-element subsets of $[5] - f(v_j)$. We claim that there is an element of $[5]^2$ that is not forbidden by any u_i or v_j. Indeed, this is clear if $\alpha + 3\beta \leq 9$. But if $\beta = 3$, then the vertices v_1, v_2, v_3 collectively forbid at most eight sets, and hence the claim holds even when $\alpha = 1$ and $\beta = 3$. We define $f(w)$ to be an element of $[5]^2$ that is not forbidden by any u_i or v_j. Furthermore, if $\beta = 0$ and $|\bigcup_{i=1}^n f(u_i)| \leq 3$, then we choose $f(w)$ disjoint from every $f(u_i)$.

If $\beta \geq 1$, then we choose $f(x_i), f(y_j)$ and $f(z_j)$ for $i = 1, 2, \ldots, \alpha$ and $j = 1, 2, \ldots, \beta - 1$ in such a way that the vertices x_i, y_j, z_j are satisfied. Then w sees at least three values under f since any neighbor of w already assigned a value does not have the exact same assignment as w. So by Lemma 4 applied to the path $wy_\beta z_\beta v_\beta$ we can assign $f(y_\beta)$ and $f(z_\beta)$ in such a way that y_β, z_β and w are satisfied. This completes the case $\beta \geq 1$.

So we may assume $\beta = 0$. We assign $f(x_i)$ for $i = 1, 2, \ldots, \alpha$ such that x_i is satisfied, $f(x_i) \cap f(w) = \emptyset$, and, if possible, not all $f(x_i)$ are the same. Then w is satisfied, unless the sets $f(x_i)$ are all equal, and so from the symmetry we may assume that $f(w) = \{1, 2\}$ and $f(x_i) = \{3, 4\}$ for all $i = 1, 2, \ldots, \alpha$. But then the choice of $f(x_i)$ implies that $f(u_i) \subseteq \{1, 2, 5\}$, contrary to the choice of $f(w)$. ■

Lemma 6 Let G be a graph, and let $P = xv_1v_2v_3y$ be a path in G. If x is adjacent to y, then let $H := G \setminus \{v_1, v_2, v_3\}$; otherwise let H be the graph obtained from $G \setminus \{v_1, v_2, v_3\}$ by adding the edge xy. If H is configurable, then G is configurable.

Proof. Let f be a configuration on H. We shall extend f to $V(G)$. If $f(x) = f(y)$, say $f(x) = \{1, 2\}$, then $H \setminus xy$ is also configurable, so we can extend f to $V(G)$ by Lemma 3. So we may assume that $f(x) \neq f(y)$; that is, $|f(x) \cup f(y)| \geq 3$. Define $g : V(G) \rightarrow [5]^2$ by $g(v_1) = f(y), g(v_3) = f(x)$, let $g(v_2)$ be a 2-element subset of $[5]^2$ containing $\{1, 2, 3, 4, 5\} \setminus (f(x) \cup f(y))$, and let $g(v) = f(v)$ for all $v \in V(G) \setminus \{v_1, v_2, v_3\}$. Then it is clear that g is a configuration on G. ■

Let G be a graph and v a vertex of G. Let f be a function mapping $V(G)$ to $[5]^2$ and $c \in [5]$. Then we say that v is missing c if $c \not\in \bigcup_{u \in N[v]} f(u)$.

Lemma 7 Let H be C_4, C_7, or a configurable graph, and let u_0 be a vertex of H. Let G be a graph, where $V(G) = V(H) \cup \{u_i, w_j : 1 \leq i \leq k, 1 \leq j \leq m\}$.
and $E(G) = E(H) \cup \{ u_iu_{i+1}, u_kw_1, w_jw_{j+1}, w_mw_1 : 0 \leq i \leq k-1, 1 \leq j \leq m-1 \}$ for some nonnegative integer k and integer m with $m \geq 3$. Then G is configurable.

Proof. By Lemma 6 we may assume that $k = 0, 1$ or 2. Let C be the cycle $w_1w_2...w_mw_1$. Since H is C_4, C_7 or a configurable graph, we may satisfy every vertex of H except possibly u_0 and u_0 is missing at most two colors. So we may assume $f(u_0) = \{1, 2\}$ and that u_0 is missing 3 and 4. Similarly we may choose f on C in such a way that every vertex of C except possibly w_1 is satisfied, and that w_1 is missing at most two colors.

If $k = 0$ we choose f on C so that $f(w_1) = \{3, 4\}$ and the colors missing at w_1 are 1 and 2. If $k = 1$, we choose f on C so that $f(w_1) = \{2, 5\}$ and the colors missing at w_1 are 3 and 4. We set $f(u_1) = \{3, 4\}$. Finally, if $k = 2$, we choose f on C so that $f(w_1) = \{2, 3\}$ and the colors missing at w_1 are 1 and 5. We set $f(u_1) = \{3, 4\}$ and $f(u_2) = \{1, 5\}$. ■

Lemma 8 Let H be a configurable graph, and let f be a configuration on G. If G is obtained from H by either

- adding a vertex v and two edges vx and vy to H, where x, y are vertices of H and $f(x) \neq f(y)$, or
- adding two vertices u, v and three edges xu, uv, vy to H, where x, y are vertices of H and $f(x) \cap f(y) \neq \emptyset$,

then f can be extended to G.

Proof. This is easy to verify. ■

A graph G is said to be obtained from a graph H by *attaching* a path P if G is obtained from the disjoint union of H and P by adding two edges v_1x and v_ky, where v_1 and v_k are the ends of P, and x, y are vertices of H. A graph G is said to be obtained from a graph H by *adding* a path P if G is obtained from the disjoint union of H and P by identifying one end of P and x and identifying the other end of P and y, where x and y are distinct vertices of H.

Lemma 9 Let C be a cycle of length of five or six. If G is obtained from C by adding a path of length two or three between two nonadjacent vertices in C, then G is configurable.

8
Proof. Let \(C = v_1v_2...v_kv_1, \) and \(P \) be the path in \(G \setminus C \) where the end of \(P \) is adjacent to vertices \(u, v \) of \(C \) in \(G \). If \(C = C_5 \), then we define a function \(f : V(C) \to \mathbb{Z}/5 \mathbb{Z} \) by \(f(v_i) = \{ i, i + 3 \} \) for each \(i = 1, 2, 3, 4, 5 \), where the addition is modulo five. If \(C = C_6 \), then define \(f(v_1) = \{ 1, 3 \}, f(v_2) = \{ 2, 4 \}, f(v_3) = \{ 1, 5 \}, f(v_4) = \{ 2, 3 \}, f(v_5) = \{ 1, 4 \}, f(v_6) = \{ 2, 5 \} \). So \(f(x) \neq f(y) \) for all distinct vertices \(x, y \in C, \) and \(f(x) \cap f(y) \neq \emptyset \) for all nonadjacent two vertices \(x, y \in C \). Hence \(f \) can be extended to \(G \) by Lemma 8 since \(P \) is a path on one or two vertices.

Lemma 10 Let \(x, y \) be vertices of a configurable graph \(H, \) let \(C = v_1v_2...v_5v_1 \) be a cycle of length five, and let \(P = u_1u_2...u_p \) and \(Q = w_1w_2...w_q \) be paths, where \(p, q \in \{ 1, 2 \} \). Assume that \(H, C, P \) and \(Q \) are pairwise disjoint. If \(G \) is the graph with \(V(G) = V(H) \cup V(C) \cup V(P) \cup V(Q) \) and \(E(G) = E(H) \cup E(C) \cup E(P) \cup E(Q) \cup \{ xu_1, u_pv_1, yw_1, w_qv_3 \} \), then \(G \) is configurable.

Proof. Let \(f \) be a configuration on \(H \). We shall extend \(f \) to \(G \). If \(f(x) \cap f(y) \) is nonempty, say \(1 \in f(x) \cap f(y) \), then let \(a, b \) are two distinct numbers in \(\{ 1, 2, 3, 4, 5 \} \setminus (f(x) \cup f(y)) \), and define \(f(v_1) = \{ 1, a \} \) and \(f(v_3) = \{ 1, b \} \). If \(f(x) \) is disjoint from \(f(y) \), say \(f(x) = \{ 1, 2 \} \) and \(f(y) = \{ 3, 4 \} \), then define \(f(v_1) = \{ 1, 3 \} \) and \(f(v_3) = \{ 1, 4 \} \). Without loss of generality, we may assume that \(a = 3 \) and \(b = 4 \). Then we further define \(f(v_2) = \{ 2, 5 \}, f(v_4) = \{ 3, 5 \} \) and \(f(v_5) = \{ 2, 4 \} \) so that every vertex of \(C \) is satisfied. By Lemma 8 there is a way to define \(f \) on \(V(P) \cup V(Q) \) such that \(f \) is a configuration on \(G \).

Let us recall that the graph \(C_4 \cdot C_4 \) was defined in the Introduction.

Lemma 11 Let \(G \) be a graph obtained by attaching a path \(P = v_1v_2...v_k \) to a cycle \(C \) with \(v_1 \) adjacent to \(x \) and \(v_k \) adjacent to \(y \), for some vertices \(x, y \) in \(C \), where \(k \geq 3 \). If \(G \) is not isomorphic to \(C_4 \cdot C_4 \) or \(G_1 \), then \(G \) is configurable.

Proof. If \(x \) is adjacent to \(y \) in \(C \), then \(G \) is a cycle with a chord. So \(G \) is configurable when the cycle has length not four or seven. It is easy to check that \(G \) is configurable when the cycle has length four. And since \(G \) is not isomorphic to \(G_1 \), \(G \) is also configurable when the cycle has length seven by Lemma 8. So we may assume that \(x \) is not adjacent to \(y \) in \(C \). In other words, either \(x \) equals \(y \), or \(x \) and \(y \) are nonadjacent.

If the length of \(C \) is not four or seven, then this lemma follows directly from Lemma 8. So we may assume that the length of \(C = u_1u_2...u_{|C|}u_1 \) is...
four or seven. Also, we may assume that $3 \leq k \leq 5$ by Lemma 5. Without loss of generality, we assume that $x = u_1$.

Case 1: $C = C_4$ and $x = y$. Then $k = 4$ or 5 since G is not isomorphic to $C_4 \cdot C_4$. So G is isomorphic to the graph obtained by attaching a path of order three to C_5 or C_6, and hence G is configurable by Lemma 5.

Case 2: $C = C_4$ and $x \neq y$. We may assume that $y = u_3$. If $k = 3$ or 5, then $u_1v_1v_2...v_ku_3u_2u_1$ is a cycle of length six or eight, so it is configurable, and there is a configuration f on it. Then we can extend f to G by assigning that $f(u_3) = f(u_1)$, so G is configurable. If $k = 4$, then we define a configuration on G by $f(u_1) = \{1, 2\}, f(u_2) = \{3, 5\}, f(u_3) = \{3, 4\}, f(u_4) = \{2, 5\}, f(v_1) = \{1, 4\}, f(v_2) = \{3, 5\}, f(v_3) = \{2, 5\}, f(v_4) = \{1, 4\}$.

Case 3: $C = C_7$ and $x = y$. We may assume that $x = y = u_1$. If $k = 4$ or 5, then G is isomorphic to the graph obtained by attaching a path of order six to C_5 or C_6, so G is configurable by Lemma 5. If $k = 3$, then we can define a configuration on G by $f(u_1) = \{1, 2\}, f(u_2) = \{3, 4\}, f(u_3) = \{1, 5\}, f(u_4) = \{2, 3\}, f(u_5) = \{1, 4\}, f(u_6) = \{2, 5\}, f(u_7) = \{3, 4\}, f(v_1) = \{1, 5\}, f(v_2) = \{3, 4\}, f(v_3) = \{2, 5\}$.

Case 4: $C = C_7$, $x = u_1$ and $y = u_6$. If $k = 3$ or 5, then G is isomorphic to the graph obtained by attaching a path of order four to C_6 or C_8, so G is configurable by Lemma 5. If $k = 4$, then we can define a configuration on G by $f(u_1) = \{1, 2\}, f(u_2) = \{3, 4\}, f(u_3) = \{3, 5\}, f(u_4) = \{1, 2\}, f(u_5) = \{4, 5\}, f(u_6) = \{3, 4\}, f(u_7) = \{3, 5\}, f(v_1) = \{1, 5\}, f(v_2) = \{3, 4\}, f(v_3) = \{2, 5\}, f(v_4) = \{1, 2\}$.

Case 5: $C = C_7$, $x = u_1$ and $y = u_5$. If $k = 4$ or 5, then G is isomorphic to the graph obtained by attaching a path of order three to C_8 or C_9, so G is configurable by Lemma 5. If $k = 4$, then we can define a configuration on G by $f(u_1) = \{1, 2\}, f(u_2) = \{1, 3\}, f(u_3) = \{4, 5\}, f(u_4) = \{2, 3\}, f(u_5) = \{1, 2\}, f(u_6) = \{4, 5\}, f(u_7) = \{3, 4\}, f(v_1) = \{1, 5\}, f(v_2) = \{3, 4\}, f(v_3) = \{2, 5\}$.

Lemma 12 The graph $K_{2,4}$ is configurable.

Proof. Let $V(K_{2,4}) = \{x_1, x_2, y_1, y_2, y_3, y_4\}$, $E(K_{2,4}) = \{x_iy_j : 1 \leq i \leq 2, 1 \leq j \leq 4\}$. We define a configuration on $K_{2,4}$ by $f(x_1) = \{1, 2\}, f(x_2) = \{3, 4\}, f(y_1) = \{3, 5\}, f(y_2) = \{4, 5\}, f(y_3) = \{1, 5\}, f(y_4) = \{2, 5\}$.

Lemma 13 If a graph G is obtained from $C_4 \cdot C_4$ or $K_{2,3}$ by attaching a path, then G is configurable.
Proof. First, we assume that G obtained from $C_4 \cdot C_4$ by attaching a path $v_1v_2...v_k$, where v_1 is adjacent to x, v_k is adjacent to y for some vertices x, y in $C_4 \cdot C_4$. We write the vertex set of $C_4 \cdot C_4$ as $\{u_1, u_2, u_3, v, w_1, w_2, w_3\}$, where uvu_2u_3v and $vw_1w_2w_3v$ are the two cycles in $C_4 \cdot C_4$.

Case 1: $x = y$. By Lemma 6 we may assume that $k = 2, 3$ or 4. If $x = y = u_1$, then G can be obtained from C_3 or C_5 by consecutively attaching a path of order three when $k = 2$ or 4, and G has a spanning subgraph which is obtained from two disjoint C_4's by attaching a path of order two when $k = 4$, so G is configurable by Lemma 5 and Lemma 7. Similarly, G is configurable if both x and y are u_3, w_1 or w_3. If $x = y = v_2$ and $k = 2$ or 4, then G can be obtained from C_3 or C_5 by consecutively attaching a path of order three, so G is configurable by Lemma 5. If $x = y = u_2$ and $k = 3$, then we define a configuration on G as $f(v) = \{3, 4\}, f(w_1) = \{1, 2\}, f(w_2) = \{2, 5\}, f(w_3) = \{1, 4\}, f(u_1) = \{4, 5\}, f(u_2) = \{1, 2\}, f(u_3) = \{2, 5\}, f(v_1) = \{1, 3\}, f(v_2) = \{4, 5\}, f(v_3) = \{2, 3\}$. Similarly, G is configurable if $x = y = v_2$. If $x = y = v$ and $k = 2$ or 4, then G can be obtained from C_3 or C_5 by consecutively attaching a path of order three. If $x = y = v$ and $k = 3$, then we define a configuration by $f(v) = \{1, 2\}, f(u_1) = \{1, 3\}, f(u_2) = \{4, 5\}, f(u_3) = \{2, 3\}, f(v_1) = \{1, 4\}, f(v_2) = \{3, 5\}, f(v_3) = \{2, 4\}, f(w_1) = \{1, 5\}, f(w_2) = \{3, 4\}, f(w_3) = \{2, 5\}$.

Case 2: $x \neq y$. By Lemma 6, we may assume that $k = 0, 1, 2$. When $k = 0$, G is obtained by adding an edge xy to $C_4 \cdot C_4$, and it is easy to show that G is configurable. When $k = 1$, $x = v$, $y = u_2$, then define a configuration on G by $f(v) = \{1, 2\}, f(u_1) = \{4, 5\}, f(u_2) = \{3, 4\}, f(u_3) = \{1, 5\}, f(v_1) = \{2, 5\}, f(w_1) = \{1, 3\}, f(w_2) = \{4, 5\}, f(w_3) = \{2, 3\}$. Similarly, G is configurable if $k = 1$, $x = w_1$ and $y = w_3$. When $k = 1$ and x, y are not the case mentioned above, G has a spanning subgraph which is C_8, or it can be obtained from either C_5 by attaching a path, two disjoint C_4's by adding an edge, or C_5 by attaching paths of order one or two, so G is configurable by Lemma 5, Lemma 7 and Lemma 8.

Now, we assume that G obtained from $K_{2,3}$ by attaching a path $v_1v_2...v_k$, where v_1 is adjacent to x, v_k is adjacent to y for some vertices x, y in $C_4 \cdot C_4$. We write $V(K_{2,3}) = \{u_1, u_2, w_1, w_2, w_3\}$ and $E(K_{2,3}) = \{u_1w_j : i = 1, 2, j = 1, 2, 3\}$.

Case 3: $x = y$. By Lemma 6 we may assume that $k = 2, 3, 4$. Then G has a spanning subgraph which is obtained from either C_3 or C_5 by attaching a $(3,0)$-star, or $C_4 \cdot C_4$ by attaching a path, or a cycle by attaching a C_4, so G is configurable by Lemma 5, Lemma 7, Case 1 and Case 2.
Case 4: $x \neq y$. By Lemma 6, we may assume that $k = 0, 1, 2$. If $x = u_1$, $y = u_2$ and $k = 0$, then there is a configuration on G defined by $f(u_1) = \{1, 2\}, f(u_2) = \{3, 4\}, f(w_1) = f(w_2) = f(w_3) = \{1, 5\}$. For other cases, G contains a subgraph which is isomorphic to $K_{2, 4}$ or C_6, or it can be obtained from either C_3 by attaching a path of order three, $C_4 \cdot C_4$ by adding an edge, C_5 or C_6 by attaching paths of order one or two, so G is configurable by Lemma 5, Lemma 8, Lemma 12, Case 1 and Case 2.

3 A special case

For a vertex v of a graph G, we denote the degree of v by $\text{deg}_G(v)$.

Lemma 14 For every graph G, there is an orientation of $E(G)$ such that each vertex v has in-degree at least $\lfloor \text{deg}_G(v)/2 \rfloor$.

Proof. We proceed by induction on $|V(G)| + |E(G)|$. The lemma obviously holds for the null graph. If v is an isolated vertex of G, then the lemma follows by induction applied to $G \setminus v$. If there is a vertex v in G of degree one, then, letting u be the unique neighbor of v, there is an orientation of $G \setminus uv$ such that the in-degree of each vertex x is at least $\lfloor \text{deg}_{G \setminus \{uv\}}(x)/2 \rfloor$ by the induction hypothesis, and then we can obtain a desired orientation of G by orienting the edge uv from v to u. So we may assume that G has minimum degree at least two, and hence G contains a cycle $C = v_1v_2...v_kv_1$. By the induction hypothesis, there is an orientation of $G \setminus E(C)$ such that the in-degree of each vertex x is at least $\lfloor \text{deg}_{G \setminus E(C)}(x)/2 \rfloor$, and then we can obtain a desired orientation of G by orienting the edges of C to form a directed cycle. This completes the proof.

Note that the proof in Lemma 14 gives a linear-time algorithm to find such an orientation.

Lemma 15 Let H_1 and H_2 be graphs, let P be a path with at least one vertex, and let v_1 and v_2 be vertices of H_1 and H_2 respectively. Let G be the graph formed by taking the disjoint union of H_1, H_2, and P and identifying the first vertex of P with v_1 and the last vertex of P with v_2. Assume that f_1 and f_2 are functions mapping $V(H_1)$ and $V(H_2)$ to $[5]^2$, respectively, and that for $i = 1, 2$ the function f_i satisfies every vertex of H_i except possibly v_i. If $|\bigcup_{u \in N(v_1)} f_1(u)| \geq 4$ and $|\bigcup_{u \in N(v_2)} f_2(u)| \geq 3$, then G is configurable.

12
Proof. Let f' be the function defined to be f_1 on H_1 and f_2 on H_2. Then f' is a configuration for G except possibly on v_1 and v_2 and P. Suppose $|V(P)| \leq 2$. Then we can permute the colors on f_2 so that v_1 and v_2 are satisfied, so we are done. If $|V(P)| = 3$, we may assume $f(v_1) = \{1, 2\}$ and v_1 is not missing a number except possibly 3 and $f(v_2) = \{4, 5\}$ and v_2 is not missing a number other than possibly 3 and a number c. Then we set $f(u) = \{c, 3\}$ where u is the middle vertex of P. If $|V(P)| = 4$, we apply Lemma 4. If $|V(P)| \geq 5$, we can reduce to one of the previous cases by applying Lemma 6.

Lemma 16 Let G be a graph and v a vertex of G. If G is isomorphic to C_4, then there exists a function $f : V(G) \rightarrow [5]^2$ such that v is satisfied and $|\bigcup_{u \in N[v]} f(u)| \geq 3$. If G is isomorphic to $C_7, C_4 \cdot C_4$ or $K_{2,3}$, then there exists a function $f : V(G) \rightarrow [5]^2$ such that v is satisfied and $|\bigcup_{u \in N[v]} f(u)| \geq 4$.

Proof. This is easy to verify. ■

We are now ready to prove an important special case of Theorem 1.

Lemma 17 Let G be a connected graph of maximum degree at most five and of minimum degree at least two with no two vertices of degree at least three adjacent. If G is not C_4, C_7, $C_4 \cdot C_4$ or $K_{2,3}$, then G is configurable.

Proof. Let n be the order of G. Suppose that G is a minimum counterexample; that is, G is not configurable, but H is configurable for every graph H with $|V(H)| + |E(H)| < |V(G)| + |E(G)|$ that satisfies the conditions of the lemma.

We note first that we may assume G is 2-connected. Otherwise we apply Lemma 15 noting that each of the forbidden graphs except C_4 has the property that for every vertex v, it admits a function f that satisfies every vertex except v and $|\bigcup_{u \in N[v]} f(u)| = 4$ by Lemma 16. Since both graphs can’t be C_4 (since $C_4 \cdot C_4$ is forbidden and two C_4’s joined by a path are prevented by Lemma 7), we are done.

The proof of this lemma is organized as follows. We first prove structure properties of G in Claims 1-4. And the rest of the proof is dedicated to a construction of a configuration function of G. It will lead to a contradiction. Claim 1: G contains no C_4’s.
Proof of Claim 1: Suppose there is a cycle $C = v_1v_2v_3v_4v_1$ of four vertices in G. If there is only one vertex, say v_1, in C of degree at least three in G, then it is a cut-vertex which is impossible.

Hence there are two vertices in C of degree at least three. We may assume that the two vertices are v_1 and v_3. Let $G' = G \setminus \{v_2\}$. If G' is configurable, then there is a configuration f on G', and we can extend f to G by assigning $f(v_2) = f(v_4)$, contradicting the assumption that G is not configurable. Note that G' is a connected graph of maximum degree at most five and of minimum degree at least two with no two vertices of degree at least three adjacent. Since $|V(G')| + |E(G')| < |V(G)| + |E(G)|$, G' is isomorphic to C_4, C_7, $C_4 \cdot C_4$ or $K_{2,3}$. If G' is isomorphic to C_4, then G is isomorphic to $K_{2,3}$. If G' is isomorphic to C_7, then G is isomorphic to a graph obtained from C_4 by adding a path of length five, so G is configurable by Lemma 5. If G' is isomorphic to $K_{2,3}$, then G is $K_{2,4}$, and it is configurable by Lemma 8. So G' is isomorphic to $C_4 \cdot C_4$. Since v_4 is a vertex of degree two and it is a common neighbor of v_1 and v_3, we have that either v_1 or v_3 is the vertex of degree four in $C_4 \cdot C_4$. So G can be obtained from adding a path of length four to $K_{2,3}$, so G is configurable by Lemma 12.

Claim 2: If P is a path whose ends are of degree at least three in G and whose internal vertices are of degree two in G, then the number of internal vertices is at most two.

Proof of Claim 2: If the number of internal vertices of P is at least four, then consider the graph H which is obtained from G by replacing three consecutive degree two vertices in P by an edge. If H is configurable, G is also configurable by Lemma 6. So H is C_4, C_7, $C_4 \cdot C_4$ or $K_{2,3}$. But in this case, G can be obtained from C_4 by attaching a path of order at least three, so G is configurable by Lemma 11. If the number of internal vertices of P is three, then let H' be the graph obtained from P by deleting all internal vertices of P. Again, G is configurable by Lemma 6 if H' is configurable. So H' is C_4, C_7, $C_4 \cdot C_4$ or $K_{2,3}$. However, G is configurable by Lemma 11 and Lemma 13 in this case. □

Claim 3: There are no induced (α, β)-stars S in G, where $\alpha + \beta \geq 3$, and $\alpha + 3\beta \leq 9$ or $(\alpha, \beta) = (1, 3)$, such that $G \setminus S$ has minimum degree at least two.

Proof of Claim 3: Suppose there is an induced (α, β)-star S, where $\alpha + \beta \geq 3$, and $\alpha + 3\beta \leq 9$ or $(\alpha, \beta) = (1, 3)$, such that $G \setminus S$ has minimum degree at least two. Subject to this constraint, assume that $\alpha + \beta$ is as small as possible. Let $G' = G \setminus S$, and M_1, M_2, \ldots, M_k be components of G'. If every
component of G' is configurable, then G is configurable by Lemma \textcolor{red}{5}. So there is a component of G' which is not configurable, and hence this component is isomorphic to C_4, C_7, $C_4 \cdot C_4$ or $K_{2,3}$ by the minimality of G. But G contains no C_4’s by Claim 1, so the component is isomorphic to C_7. Without loss of generality, we may assume that M_1 is isomorphic to C_7 and write $M_1 = v_1v_2\ldots v_7v_1$.

If M_1 contains exactly one vertex of degree at least three in G, then G is configurable by Lemma \textcolor{red}{7} a contradiction. If M_1 contains exactly two vertices of degree at least three in G, then there is a path of length at least four whose ends are of degree at least three in G and whose internal vertices are of degree two in G, contradicting Claim 2. Hence there are three vertices in M_1 of degree at least three in G, and we may assume that they are v_1, v_3, v_5. Furthermore, if all v_1, v_3, v_5 have degree at least four in G, then $v_1 + v_3 + v_5 \geq 6$. Since $\alpha + 3\beta \leq 9$, we have that $\beta \leq 1$ and G contains a C_4, contradicting Claim 1. So at least one of v_1, v_3, v_5, say x, has degree three in G. Note that there is an (α, β)-star with center x and $\alpha + \beta = 3$ such that the graph obtained from G by deleting this (α, β)-star is still of minimum degree at least two, so S must also have that $\alpha + \beta = 3$ by the minimality of $\alpha + \beta$. So G' is C_7 as $\alpha + \beta = 3$. In other words, $(\alpha, \beta) = (0, 3), (1, 2), (2, 1)$ or $(3, 0)$.

If $(\alpha, \beta) = (3, 0)$, then G can be obtained from C_6 by attaching a $(2, 1)$-star, so G is configurable by Lemma \textcolor{red}{5}. So this is not a $(3,0)$-star. If $(\alpha, \beta) = (0, 3)$, then G is configurable since it can be obtained from C_8 by attaching a $(1, 2)$-star. If $(\alpha, \beta) = (1, 2)$, then G is configurable since G can be obtained from C_8 by attaching either a $(2, 1)$-star or $(3, 0)$-star. So $(\alpha, \beta) = (2, 1)$. Let $V(S) = \{a, b, c, d_1, d_2\}$ and $E(S) = \{ab, ac, ad_1, d_1d_2\}$. If d_2 is adjacent to v_1 or v_3, then G is configurable since it can be obtained from C_8 by attaching a $(1, 2)$-star. So d_2 is adjacent to v_3. Hence there is a configuration on G defined as $f(v_1) = \{1, 2\}, f(v_2) = \{4, 5\}, f(v_3) = \{1, 3\}, f(v_4) = \{4, 5\}, f(v_5) = \{1, 2\}, f(v_6) = \{3, 4\}, f(v_7) = \{3, 5\}, f(a) = \{1, 3\}, f(b) = f(c) = \{4, 5\}, f(d_1) = \{2, 5\}, f(d_2) = \{2, 4\}$. This proves Claim 3. \hfill \Box

Claim 4: G contains no C_6 with exactly two vertices of degree at least three that are diagonally opposite on the cycle.

Proof of Claim 4: Let $C = v_1v_2\ldots v_6v_1$ be a cycle of order six with v_1 and v_4 the two vertices of degree at least three in G. Since G has no adjacent vertices whose degrees are at least three, v_5 and v_6 have degree two in G. Let G' be the graph obtained by deleting v_5, v_6 from G, so G' is a graph of minimum degree at least two, maximum degree at most five, and there are no adjacent vertices whose degrees are at least three. If G' is not configurable,
then G' is C_4, C_7, $C_4 \cdot C_4$ or $K_{2,3}$ by the minimality of G. However, G contains no C_4’s, so G' is C_7 and it contains at most two vertices whose degrees in G are at least three. Hence, there is a path of order at least five whose internal vertices are of degree two, which contradicts to Claim 2. Consequently, G' is configurable and there is a configuration f on G', and we can extend f to G by defining $f(v_3) = f(v_3)$ and $f(v_6) = f(v_2)$. □

We now construct a configuration on G. Construct a graph H as follows: the vertices of H are the vertices of degree at least three in G, and xy is an edge in H if x and y have a common neighbor in G.

Claim 5: The maximum degree of H is at most two.

Proof of Claim 5: Suppose there is a vertex x of degree at least three in H. Let x_1, x_2, \ldots, x_k be the vertices of degree at least three such that there exist x-x_i paths of length two or three. Then the internal vertices of those x-x_i paths together with x form an (α, β)-star S with $\alpha \geq 3$. On the other hand, $\alpha + \beta$ is at most five since G is of maximum degree at most five. So S is an (α, β)-star with $\alpha + 3\beta \leq 9$. By Claim 3, $G \setminus S$ is not of minimum degree at least two. So the degree of x_i in $G \setminus S$ is at most one, for some $i = 1, 2, \ldots, k$. Since G contains no C_4’s and C_6 with exactly two diagonal vertices of degree at least three in G, the degree of x_i is exactly three. So there is an (α', β')-star S' centered at x_i with $\alpha' + 3\beta' \leq 9$ such that $G \setminus S'$ is of minimum degree two since $\alpha \geq 3$, which contradicts Claim 3. Hence, the maximum degree of H is at most two. □

By Claim 5, H is a disjoint union of isolated vertices, paths and cycles. Let H^2 be the graph obtained by adding edges xy to H for each pair of two vertices x, y which have distance exactly two between them in H, and then deleting multiple edges and loops. So H^2 has maximum degree at most four. Let H' be the graph that is obtained by deleting an edge which is in H^2 but not in H from each component of H^2 isomorphic to K_5. Hence, H' is 4-colorable by Brooks’ Theorem. Let $c : V(H') \to \{1, 2, 3, 4\}$ be a proper 4-coloring of H' such that $c(v) = 1$ for each isolated vertex v in H. Note that H^2 contains a component which is isomorphic to K_5 if and only if the component in H is isomorphic to C_5.

Define a function $f : V(H) \to [5]^2$ as $f(v) = \{c(v), 5\}$ for every vertex v in H. Let U be the set of vertices u such that u is a common neighbor of two vertices of degree at least three in G. Since no two vertices of degree at least three are adjacent, every vertex in U is of degree two in G. Now, we shall extend f to $V(H) \cup U$ by defining $f(u) = \{1, 2, 3, 4, 5\} \setminus (f(x) \cup f(y))$ for each vertex u in U, where x, y are the two neighbors of u in G. Note that if x, y
are the two neighbors of a vertex u in U, then $c(x) \neq c(y)$ since H' contains all edges in H, so $|f(x) \cup f(y)| = 3$, and f is well-defined on $V(H) \cup U$. It is clear that $\bigcup_{u \in N[v]} f(u) = \{1, 2, 3, 4, 5\}$ for each $u \in U$. Furthermore, if v is a vertex with degree at least two in H, and v is not in a component of H isomorphic to C_5, then neighbors of v in H receive different colors under c, so u is satisfied. Similarly, for each component of H which is isomorphic to C_5, there is a vertex w such that $|\bigcup_{u \in N[w] \cap (V(H) \cup U)} f(u)| = 4$ and each other vertex is satisfied.

Let W be the set of vertices w that are not satisfied. So each vertex v in W is either an isolated vertex in H, an end of a maximal path in H, or a vertex in a component of H which is isomorphic to C_5. Let $X = \{w \in W : w$ is an isolated vertex in $H\}$, and let Y be the set $W \setminus X$. Notice that $|\bigcup_{u \in N[w] \cap (V(H) \cup U)} f(u)| = 4$ when w is in Y. Now, construct a graph L, where $V(L)$ is equal to $V(H)$, and two vertices x, y in L are adjacent if there is a $x-y$ path of length three in G. Note that since no vertices of degree at least three are adjacent, the internal vertices of every $x-y$ path of length three in G are of degree two for each $xy \in E(L)$.

Claim 6: If w is in X, then the degree of w in L is at least four. If w is in Y, then the degree of w in L is at least two.

Proof of Claim 6: Let w be a vertex in $X \cup Y$. Let $x_1, x_2, ..., x_k$ be vertices of degree at least three in G such that there are $w-x_i$ paths in G of length two or three for each $i = 1, 2, ..., k$. Then the internal vertices of those $w-x_i$ paths together with w form an (α, β)-star S.

Suppose $w \in X$. Then $\alpha = 0$ and there is at most one path between w and each x_i since otherwise we violate Claim 4. But then $G \setminus S$ has minimum degree two, so by Claim 3, $\beta \geq 4$, so the degree of w in L is at least four.

Suppose $w \in Y$ and that $\beta \leq 1$. If w was not in a C_5 in H, then $\alpha = 1$, so the degree of w is only two. So we must have that w was in a C_5 in H, so $\alpha = 2$. Removing S must create a vertex of degree one by Claim 3, say x_1. So x_1 must have degree three and be part of a 5-cycle D in G with w. Since w is in a C_5 in H, G must have that x_1 has a path of length two to another vertex of degree at least three in G and that the graph H' obtained from G by removing D and the two degree two vertices that are adjacent to vertices of D is connected and of minimum degree two. If H' is configurable, then by Lemma 10, G would be as well, so H' must be C_7 which is impossible since it has at least one degree three vertex since G has at least five degree three vertices since w is in a C_5 in H. □
By Lemma 14, \(L \) then has an orientation in which each vertex of \(X \) has in-degree at least two and every vertex in \(Y \) has in-degree at least one. We use this to extend \(f \) to satisfy every vertex in \(G \). Each edge in \(L \) corresponds to a path of length three, \(x, v_1, v_2, y \) in \(G \) (where \(x \) is the tail of the edge in \(L \)). For each of these paths, let \(a, b \) be two colors not in \(\bigcup_{u \in N(x)} f(u) \) (if that many colors exist, otherwise arbitrarily add colors not in \(f(x) \)). Then assign \(f(v_1) = (a, b) \) and \(f(v_2) \) as given by Lemma 4.

Clearly at the end of this process each vertex of degree two is satisfied. Each vertex not in \(X \) or \(Y \) was already satisfied. Each vertex in \(X \) was the tail of two edges in \(L \), so sees up to four new colors, so is certainly satisfied. Each vertex in \(Y \) was only missing at most two colors, but was the tail of at least one edge in \(L \), so is now satisfied. ■

4 Main theorem

We now prove Theorem 18 which we restate in equivalent form.

Theorem 18 If \(G \) is a connected graph of minimum degree at least two with no induced subgraph isomorphic to \(K_{1,6} \), and \(G \) is not isomorphic to a member of \(\{ C_4, C_7, C_4 \cdot C_4, K_{2,3}, G_i : 1 \leq i \leq 4 \} \), then \(G \) is configurable.

Proof. We first prove the theorem for graphs on at most six vertices. It is easy to see that the theorem holds if \(|V(G)| \leq 4 \), so we assume that \(5 \leq |V(G)| \leq 6 \). If \(G \) contains \(C_6 \), then \(C_6 \) is a spanning subgraph of \(G \). Since \(C_6 \) is configurable, \(G \) is configurable. So we may assume that \(G \) does not contain \(C_6 \). If \(G \) contains \(C_5 \), then \(G \) contains a spanning subgraph that is obtained from \(C_5 \) by attaching a path on one vertex. Since \(G \) does not contain \(C_6 \), \(G \) is configurable by Lemma 9. Hence, we may assume that the longest cycle in \(G \) has length at most four.

Assume that \(G \) contains \(C_4 \). Since \(|V(G)| \leq 6 \), \(G \) is 2-edge-connected. So \(G \) contains a spanning subgraph that can be obtained from \(C_4 \) by consecutively attaching paths. If the first path we attached contains two vertices, then since \(G \) has no cycle of length greater than four, \(G \) contains a spanning subgraph that can be obtained from a triangle by attaching a path on three vertices and hence is configurable by Lemma 11. If the first path we attached has only one vertex, then since \(G \) does not contain \(C_5 \), \(G \) contains a spanning subgraph that can be obtained from a triangle by attaching two paths on one
vertex to different vertices or from $K_{2,3}$ by attaching a path on one vertex, so we are done by Lemmas 8 and 13.

Therefore, we may assume that every cycle in G is a triangle. If G is 2-edge-connected, then G can be obtained from C_3 by attaching a path on two vertices and hence is configurable by Lemma 8. If G is not 2-edge-connected, then G contains two disjoint triangles as a spanning subgraph, and hence G is configurable. This proves that the theorem holds for graphs on at most six vertices.

We now proceed by induction on $|V(G)| + |E(G)|$. We have shown the theorem holds for graphs on at most six vertices, so we may assume that the order of G is at least seven.

Suppose there is a vertex v of degree two in G such that v is in a $C_4 = vabev$ with degree of b also two. Note that G_i contains a spanning cycle of length seven for $1 \leq i \leq 4$. Suppose that the degree of a is also two. If c is not of degree three, then G is obtained by attaching a path on three vertices to a configurable graph or an exceptional graph, so G is configurable by Lemmas 5, 11 and 13. If c is of degree three, then G is obtained from a C_4 and a graph by attaching a path, where the ends of the path are adjacent to vertices in different components. Then G is configurable by Lemmas 7 and 15. So we may assume that a and c have degree at least three.

So we consider $G \setminus v$. If it has a configuration f, then G is configurable since we may extend f to $V(G)$ by assigning $f(v) = f(b)$. As the order of G is at least seven, $G \setminus v$ is not configurable only if $G \setminus v$ is $C_4 \cdot C_4$ or contains a spanning cycle of length seven. However, it is not hard to see that if $G \setminus v$ is $C_4 \cdot C_4$ or contains a spanning cycle of length seven, then G contains a spanning subgraph that can be obtained either from $C_4 \cdot C_4$ by attaching a path on one vertex or from C_4 by attaching a path on four vertices, so G is configurable by Lemmas 11 and 13. Hence we may assume that no four cycle has two vertices of degree two opposite one another.

Suppose there were three vertices x, y, z in G such that x, y, z form a triangle in G and the degree of y and z were exactly two. Assume that x is not of degree three. By the induction hypothesis, Lemma 8 and Lemma 13, G is configurable if $G \setminus \{y, z\}$ is not C_4 or contains C_7 as a spanning subgraph. But if $G \setminus \{y, z\}$ is C_4 or contains C_7 as a spanning subgraph, then G contains a spanning subgraph that can be obtained from C_4 by attaching a path with order at least three, so G is still configurable by Lemma 11. Similarly, if x is of degree three, then G is configurable by Lemma 13. Hence, we may assume that G has no triangles with two vertices of degree three.
Let G' be a spanning subgraph of G such that the minimum degree of G' is at least two and G' satisfies the following:

1. $|E(G')|$ is as small as possible,

2. subject to that, the number of triangles in G' is as small as possible, and

3. subject to that, the number of components in G' which are isomorphic to $C_4 \cdot C_4$ or $K_{2,3}$ is as small as possible.

We shall prove the following claims.

Note that by the minimality of $E(G')$, there are no two vertices of degree at least three adjacent to one another.

Claim 1: The maximum degree of G' is at most five.

Proof of Claim 1: Suppose that there is a vertex v of degree at least six in G'. As G is $K_{1,6}$-free, there are two vertices x, y adjacent to v in G' with x adjacent to y in G. Since the degree of v is at least three, x and y must have degree two in G'. If $xy \notin E(G')$, then the graph obtained by deleting xv, yv from G' and then adding xy into G' is still a spanning subgraph of G with minimum degree at least two, but it has fewer edges. So $xy \in E(G')$, in other words, v, x, y form a triangle in G'. Since x, y, v form a triangle in G and the degree of v is at least three, at least one of x and y has degree at least three in G. We may assume that the degree of x in G is at least three, and u is a neighbor of x in G other than y and v. As $xy, vx \in E(G')$ and the degree of x is two in G', $xu \notin E(G')$. So the graph obtained by deleting xv and adding xu has the same number of edges but it has fewer triangles than G', a contradiction. □

Since every component of G' is a connected graph of minimum degree at least two and of maximum degree at most five, and no vertices of degree at least three in G' are adjacent to one another, every component of G' is configurable except those that are isomorphic to C_4, C_7, $C_4 \cdot C_4$, or $K_{2,3}$ by Lemma 17. Also, it follows by a simple case checking that if a graph not containing C_7 as a spanning subgraph contains C_4, $C_4 \cdot C_4$ or $K_{2,3}$ as a spanning subgraph but not as an induced subgraph, then it is also configurable.

Now, we show that G is configurable. If $|V(G)| = 7$ but G is not configurable, then G contains C_7 as a spanning subgraph. We denote the C_7 by $v_0v_1...v_6$. If there exists i with $0 \leq i \leq 6$ such that $v_i v_{i+2}$ is an edge, where the index is computed modulo seven, then G contains a spanning subgraph.
that can be obtained from C_3 by adding a path on four vertices, so G is configurable by Lemma 11. Since G is not C_7 or G_1, G contains at least nine edges. If there exists i with $0 \leq i \leq 6$ such that $v_i v_{i+3}$ and $v_{i+1}v_{i+5}$ are edges of G, then G is configurable by Lemma 9. So G contains G_2 or G_3 as a subgraph but not an induced subgraph since G is not G_2 or G_3. In addition, adding an edge to G_2 or G_3 makes it configurable unless it creates G_4. But adding an edge to G_4 makes it configurable. This proves that G is configurable if G contains at most seven vertices. So we may assume that G has at least eight vertices.

Let H be a maximal configurable subgraph of G induced by a union of components of G'. Suppose that H is empty. Since G contains at least eight vertices, G' contains at least two components. Let H_1, H_2 be two components of G' adjacent in G and v_i be a vertex of H_i adjacent in G to H_{3-i} for $i = 1, 2$. By Lemma 16 for each $C_4, C_7, C_4 \cdot C_4$ and $K_{2,3}$, and for each of its vertices v, there exists a function f mapping the vertices to $[5]^2$ satisfying every vertex except possibly v, and v is missing at most two colors. Let f_1, f_2 be such a function defined on $V(H_1)$ and $V(H_2)$, respectively, such that v_1, v_2 are the only vertices missing some colors. Therefore, we can permute the colors in f_1 and f_2 such that $f_i(v_i)$ contains the colors which v_{3-i} missed for $i = 1, 2$. This proves that the subgraph of G induced by $V(H_1) \cup V(H_2)$ is configurable, so H is not empty.

If $H \neq G$, then let C be a component of G' disjoint from H but adjacent in G to H. By Lemma 16 for every $v \in V(C)$, there exists a function f mapping the vertices to $[5]^2$ satisfying every vertex except possibly v, and v is missing at most two colors. Therefore, the subgraph of G induced by $V(H) \cup V(C)$ is configurable by Lemma 15, contradicting the maximality of H. This proves that $H = G$ and G is configurable.

Note that our proof gives a polynomial-time algorithm to find a configuration of an n-vertex graph G if G is a $K_{1,6}$-free graph of minimum degree at least two, and no component of G is isomorphic to C_4, C_7, $C_4 \cdot C_4$ or $K_{2,3}$.

Now we shall show that the hypothesis that G be $K_{1,6}$-free cannot be replaced by assuming that G be $K_{1,9}$-free. We do so by exhibiting infinitely many examples that contain no induced $K_{1,9}$ but are not configurable. Let H' be the graph obtained from K_5 by replacing each edge xy by two internally disjoint paths $xu_{xy}y$ and xv_1v_2y, and H be the graph obtained from H' by deleting v_a and v_b, where a and b are two distinct vertices in the original K_5. So the maximum degree of H is eight, and there are exactly two vertices which
have degree seven. Suppose that H is configurable and f is a configuration on H. If x, y are distinct vertices in the original K_5, then $f(x) \neq f(y)$ for otherwise $\bigcup_{z \in N[u_{xy}]} f(z) \neq \{1, 2, 3, 4, 5\}$, and $f(x) \cap f(y)$ is nonempty for otherwise $\bigcup_{z \in N[v_x]} f(z)$ or $\bigcup_{z \in N[v_y]} f(z)$ is not $\{1, 2, 3, 4, 5\}$. But if S is a subset of $[5]^2$ such that every two members of S have a nonempty intersection, then the size of S is at most four, so $f(a) = f(b)$. However, this implies $\bigcup_{w \in N[u_{ab}]} f(w) \neq \{1, 2, 3, 4, 5\}$, a contradiction. Hence, H is not configurable.

For any positive integer k, let H_1, H_2, \ldots, H_k be graphs, where each of them is isomorphic to H, and a_i, b_i are the two vertices of degree seven of H_i for each $i = 1, 2, \ldots, k$. Let G be the graph obtained from $H_1 \cup H_2 \cup \cdots \cup H_k$ by adding the edges b_ia_{i+1} for all $i = 1, 2, \ldots, k-1$ and b_ka_1, so G is of maximum degree eight but not configurable.

![Figure 2: A complete graph K_5. H' is obtained by replacing every edge $xy \in E(K_5)$, by disjoint paths $xu_{xy}y$ and xv_xv_y. H is obtained from H', by deleting v_a and v_b, from two distinct vertices a and b. Note that every vertex of H that belongs to the original K_5 has degree eight, except a and b, that have degree seven.](image)

On the other hand, one might ask whether we can get rid of the assumption about forbidden subgraphs by assuming the minimum degree is large. However, the following examples show that for every integer $k > 0$, there is a graph G with minimum degree k that is not configurable. Let $n = 10k - 9$, let B be a set of size n, and let A be the set of all k-element subsets of B. Let G be the graph with vertex-set $A \cup B$ in which a vertex $S \in A$ is adjacent to each of its elements. By the pigeon hole principle there is a set S in A such that $f(b)$ are the same for all $b \in S$. But this implies that $|\bigcup_{v \in N[S]} f(v)| \leq 4$, a contradiction. So G is not configurable.
Acknowledgement. The authors thank Wayne Goddard for pointing out that the list of the exceptional graphs of the main theorem was incomplete in the first version of this paper.

References

[1] F. Bullo, J. Cortés, and S. Martinez, Distributed Control of Robotic Networks, Princeton University Press, Princeton NJ., 2009.

[2] E. J. Cockayne and S. T. Hedetniemi, Optimal domination in graphs, IEEE Trans. Circuits and Systems CAS-22 (1975), 855–857.

[3] U. Feige, M. Halldórsson, G. Kortsarz and A. Srinivasan, Approximating the domatic number, SIAM J. Comput. 32 (2002/03), 172–195.

[4] S. Fujita, M. Yamashita and T. Kameda, A study on r-configurations-A resource assignment problem on graphs, SIAM J. Discrete Math 13 (2000), 227–254.

[5] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Networks, Princeton University Press, Princeton NJ., 2010.

[6] E. J. van Leeuwen, Approximation algorithms for unit disk graphs, IEEE Intl. Workshop on Graph Theoretic Algorithms, Metz, France, (2005), 351–361.

[7] J. Suomela, Locality helps sleep scheduling, in Working Notes of the Workshop on World-Sensor-Web: Mobile Device-Centric Sensory Networks and Applications (WSW, Boulder, CO, USA, October 2006), 2006, 41–44.

This material is based upon work supported by the National Science Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.