Computing on Binary Strings

Tian-Ming Bu∗ Chen Yuan† Peng Zhang‡

September 23, 2011

Abstract

Many problems in Computer Science can be abstracted to the following question: given a set of objects and rules respectively, which new objects can be produced? In the paper, we consider a succinct version of the question: given a set of binary strings and several operations like conjunction and disjunction, which new binary strings can be generated? Although it is a fundamental problem, to the best of our knowledge, the problem hasn’t been studied yet. In this paper, an $O(m^2n)$ algorithm is presented to determine whether a string s is representable by a set W, where n is the number of strings in W and each string has the same length m. However, looking for the minimum subset from a set to represent a given string is shown to be NP-hard. Also, finding the smallest subset from a set to represent each string in the original set is NP-hard. We establish inapproximability results and approximation algorithms for them. In addition, we prove that counting the number of strings representable is $\#P$-complete. We then explore how the problems change when the operator negation is available. For example, if the operator negation can be used, the number is some power of 2. This difference maybe help us understand the problem more profoundly.

classification: algorithm design

∗Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, P.R.China. Email: tmbu@sei.ecnu.edu.cn.
†School of Computer Science, Fudan University, Shanghai, P.R.China. Email: ych04@hotmail.com.
‡Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, P.R.China. Email: arena.zp@gmail.com.
1 Introduction

The 24 Game is a popular card game in which the players randomly pick up 4 cards, then try to get 24 from the numbers on the cards through addition, subtraction, multiplication, or division. The idea behind the game may be abstracted to the following question: given a set of objects and rules respectively, which new objects can be produced? In Computer Science or other disciplines, many problems actually have the same idea. For example, in the proof theory, a fundamental question is to decide whether a proposition can be deduced from a given axiom system. The subset sum problem\footnote{\cite{subset_sum}}, deciding whether a specific number is a sum of a subset of the given integers, is another example of this kind, which has been proved \textit{NP}-complete.

In this paper, we consider a succinct version of the question: given a set of binary strings and several operations like \textit{conjunction} and \textit{disjunction}, which new binary strings can be generated? The problem can also be described in the language of set theory. Specifically, given an universal set and some subsets, which new sets can be generated by \textit{intersection} and \textit{union} operations? Clearly, the problem is intrinsic enough to have many theoretical and practical applications.

1.1 Our Contributions

\textbf{Decision problem:} For the decision problem to determine whether a string \(s\) can be generated from a given set of strings \(W\) by a formula with operators \textit{disjunction} and \textit{conjunction}, an \(O(m^2n)\) algorithm is present where \(n\) is the number of each string in \(W\) and \(m\) is the length of strings in \(W\). If the operator \textit{negation} is allowed, the algorithm still works.

\textbf{Optimization problem:} Whether the operator \textit{negation} is allowed or not, we prove that looking for the minimum subset from a set to represent a given string is \textit{NP}-hard by reducing the minimum set cover problem to it. Furthermore, an approximation algorithm is given through an approximation preserving reduction to the minimum set cover problem. Besides, we studied finding the smallest subset to have the same set of representable strings as the original set in section\footnote{\cite{approximation}}. This also showed to be \textit{NP}-hard and is asymptotically as hard to approximate as minimum set cover problem.

\textbf{Counting problem:} We prove that counting the number of strings representable by \(W\) through operators \textit{disjunction} and \textit{conjunction} is \#\textit{P}-complete through reducing the problem of counting the number of antichains to the problem of counting the number of upper sets to this problem. In addition, if the operator \textit{negation} can be used, based on the reduction, we show that the number equals \(2^{|U|}\), where \(U\) is the set of equivalent classes derived from \(W \cup \overline{W}\).

1.2 Related Work

To the best of our knowledge, the most related topic with this problem is Boolean algebra. However, the \textit{negation} operator which is indispensable in Boolean algebra, is not considered in this paper.
except for the last section. So no results in Boolean algebra can be used. In the last section, one of the studied problems is to count the number of strings representable by operators disjunction, conjunction and negation from some initial set \(W \). Because the set of generated strings constitutes a Boolean algebra, due to the representation theorem by M. H. Stone in [7] that every abstract Boolean algebra can be interpreted as a Boolean algebra of all subsets of some specially chosen universal set, and vice versa, the number of generated strings is in the form of power of 2. Our result (Theorem 7.2) further improves the theorem because just from the initial set we can give the exact number of strings representable.

The paper is organized as follows. Section 2 gives a more precise description of the problem. Some necessary notations are also introduced. In Section 3, the algorithm of deciding whether a string is representable is described in details. In Section 4, we prove that counting the number of strings representable is \#P-complete. Section 5 studies the optimization problem of looking for the minimum representation subset. The last section discusses the problems where the operator negation is allowed.

2 Notations

Given two binary strings with the same length, namely \(s_1, s_2 \), let \(s_1 \land s_2 \) (resp. \(s_1 \lor s_2 \)) be the binary string produced by bitwise AND \(\land \) (resp. OR \(\lor \)) of \(s_1 \) and \(s_2 \). Given a set of \(m \) bits long binary strings, namely, \(W = \{ s_1, s_2, \ldots, s_n \} \), \(s_i \in \{ 0, 1 \}^m \), if there is a formula \(\phi \) which calculates \(s \), with operators in \{\(\land, \lor \)\} and operands in some subset of \(W \), then we say the target string \(s \) is representable by \(W \) via formula \(\phi \), or simply \(s \) is representable. The binary-string representability problem (BSR), is to decide whether a binary string \(s \) is representable by a given string set \(W \) or not.

Let \(x \) denote any binary string, \(b^x_i \) denote the \(i \)th bit of \(x \). So, \(x = b^x_1 b^x_2 \cdots b^x_m \). Also, we define a function \(\text{Zero} : \text{Zero}(x) = \{ i \mid b^x_i = 0 \} \), from a binary string to a set of natural numbers which denotes the indices of bits with value 0 in the binary string. Similarly, \(\text{One}(x) \) denotes the indices of 1 valued bits of \(x \). Also, \(0 \) (resp. \(1 \)) denotes a binary string with no 1 (resp. 0) valued bits. That is, \(\text{One}(0) = \text{Zero}(1) = \emptyset \).

If all strings in the set \(W \) have the same value in some bit, obviously the generated string must have the same value in the same bit whatever the generation formula \(\phi \) is. So, without loss of generality, it is justifiable to assume \(\bigcap_{x \in W} \text{One}(x) = \emptyset \) and \(\bigcap_{x \in W} \text{Zero}(x) = \emptyset \) respectively.

In addition, \(T_i \) denotes the set of binary strings in \(W \) whose \(i \)th bit value is 0, i.e., \(T_i = \{ x \in W \mid b^x_i = 0 \} \). Let \(t_i = \bigvee_{x \in T_i} x \).
3 Binary-string Representability Problem

In this section, we will present an $O(m^2 n)$ algorithm to solve the binary-string representability problem.

Algorithm 1 Given (W, s), determine whether s is representable

1: function BINARY-STRING-REPRESENTABILITY(W, s)
2: if $s = 1$ then
3: if $(\bigvee_{x \in W} x = 1)$ then
4: return TRUE
5: else
6: return FALSE
7: for all $i \in \text{Zero}(s)$ do
8: compute t_i
9: if $(\bigwedge_{i \in \text{Zero}(s)} t_i = s)$ then
10: return TRUE
11: else
12: return FALSE

Next we prove the correctness of the algorithm.

Lemma 3.1. If there is a formula ϕ for s, there is an equivalent CNF ϕ_{CNF} for s, and any operands in ϕ_{CNF} is also in ϕ.

Proof. We prove it by induction on the number of operators in ϕ. If ϕ has no operators, it is a CNF. Now suppose each ϕ with less than n operands has an equivalent CNF. Given a ϕ with n operands, if the last operand is \wedge, namely $\phi = \phi_1 \wedge \phi_2$ where both ϕ_1 and ϕ_2 have less than n operands, then ϕ has an equivalent CNF since both ϕ_1 and ϕ_2 have equivalent CNFs respectively. If the last operand is \lor, namely $\phi = \phi_1 \lor \phi_2$, first we can write $\phi = \phi'_1 \lor \phi'_2$ where ϕ'_1 and ϕ'_2 are equivalent CNFs of ϕ_1 and ϕ_2 respectively. Then by applying distributivity iteratively, it is easy to see $\phi_{CNF} = \bigwedge_{i,j} (c_{11} \lor c_{2j})$ where c_{1i} and c_{2j} are conjunctive clauses of ϕ'_1 and ϕ'_2 respectively. \square

Theorem 3.2. Given (W, s) where $s \neq 1$, the following three propositions are equivalent.

1. s is representable by W.
2. $\forall i \in \text{Zero}(s), \text{One}(s) \subseteq \text{One}(t_i)$.
3. $\bigwedge_{i \in \text{Zero}(s)} t_i = s$.

Proof. (1) \Rightarrow (2): If s is representable by W, according to the lemma 3.1, there is an equivalent CNF formula ϕ_{CNF} for s. For any clause c of ϕ_{CNF}, $\text{One}(s) \subseteq \text{One}(c)$, otherwise, x cannot be generated from those conjuncts. For any $i \in \text{Zero}(s)$, clearly there is at least one clause c of
\(\phi_{CNF} \) with \(i \in \text{Zero}(c) \). According to \(t_i \)'s definition, this clause \(c \) satisfies \(\text{One}(c) \subseteq \text{One}(t_i) \). So, \(\text{One}(s) \subseteq \text{One}(c) \subseteq \text{One}(t_i) \).

(2) \(\Rightarrow \) (3): If \(\forall i \in \text{Zero}(s), \text{One}(s) \subseteq \text{One}(t_i) \), then \(\text{One}(s) \subseteq \bigcap_{i \in \text{Zero}(s)} \text{One}(t_i) \). On the other hand, \(\overline{\text{One}(s)} = \text{Zero}(s) \subseteq \bigcup_{i \in \text{Zero}(s)} \text{One}(t_i) \). Because \(\forall i \in \text{Zero}(s), i \in \text{Zero}(t_i) = \overline{\text{One}(t_i)} \). So, \(\text{One}(s) \supseteq \bigcap_{i \in \text{Zero}(s)} \text{One}(t_i) \). Therefore \(\text{One}(s) = \bigcap_{i \in \text{Zero}(s)} \text{One}(t_i) \). So \(s \) can be generated by the formula \(\bigwedge_{i \in \text{Zero}(s)} t_i \).

(3) \(\Rightarrow \) (1): Since \(\bigwedge_{i \in \text{Zero}(s)} t_i = s \), \(s \) is representable by \(W \).

Because 1 is representable if and only if \(\bigvee_{s \in W} s = 1 \) holds, together with Theorem 3.2, the algorithm is clearly correct. Furthermore, since lines 2–6 take \(O(mn) \), lines 7–8 take \(O(m^2n) \) and lines 9–12 take \(O(m^2) \), the whole running time of the algorithm is \(O(m^2n) \).

4 Number of Representable Strings

In this section, we will discuss the following counting problem: given \(W \), how many binary strings can be generated from \(W \)? We use \#BSR \ to denote this number. By reducing the problem of counting the number of antichains to the problem, we prove the problem is \#P-complete. Before giving the details, we introduce some concepts first.

Given the set \(\{1, \cdots, m\} \), we define an equivalence relation \(\sim \) on it, such that \(i \sim j \) if and only if \(T_i = T_j \). Let \(U = \{[1], \cdots, [m]\} \) where \([i] \) is the equivalence class of \(i \), represent the partition. Note that \(U \) is still a well defined set under this notation even if there may be several equivalence classes representing the same one. We use it to avoid more unnecessary symbols. Based on the partition \(U \), we define a binary relation \(\preceq_U \) such that \([i] \preceq_U [j] \) if and only if \(T_i \subseteq T_j \).

Lemma 4.1. \((U, \preceq_U)\) is a poset (partial ordered set).

Proof. Since \(T_i \subseteq T_i \), \([i] \preceq_U [i] \) (reflexivity). If \([i] \preceq_U [j] \) and \([j] \preceq_U [i] \), then \((T_i \subseteq T_j) \land (T_j \subseteq T_i) \). Thus \(T_i = T_j \) and \([i] = [j] \) (antisymmetry). If \([i] \preceq_U [j] \) and \([j] \preceq_U [k] \), then \((T_i \subseteq T_j) \land (T_j \subseteq T_k) \). Thus \([i] \preceq_U [k] \) (transitivity).

Definition 4.2 (upper set). For a poset \((X, \preceq)\), a subset \(A \subseteq X \) is an upper set if and only if \(\forall a \in A (a \preceq b \rightarrow b \in A) \).

Lemma 4.3. For any representable string \(s, i \in \text{Zero}(s) \) if and only if \([i] \subseteq \text{Zero}(s) \).

Proof. Clear, if \([i] \subseteq \text{Zero}(s) \), then \(i \in \text{Zero}(s) \). Now suppose \(i \in \text{Zero}(s) \). \(\forall j \in [i], T_j = T_i \) and \(t_j = t_i \). So \(j \in \text{Zero}(t_j) = \text{Zero}(t_i) \). Since \(s \) is representable and \(i \in \text{Zero}(s) \), according to Theorem 3.2 \(\text{One}(s) \subseteq \text{One}(t_i) \). Equivalently \(\text{Zero}(t_i) \subseteq \text{Zero}(s) \). Thus \(j \in \text{Zero}(t_i) \subseteq \text{Zero}(s) \). So \(j \in \text{Zero}(s) \).

Lemma 4.4. Given \(W \), the number of representable strings is the same as the number of upper sets of \((U, \preceq_U)\).
Proof. We will construct a bijective function from the set of representable strings to the set of upper sets. The bijective function is defined as follows: \(\text{Zero}^*(s) = \{i | i \in \text{Zero}(s)\} \). The domain of the function is the set of representable strings. Next we will prove the codomain of the function is the set of upper sets, and the function is bijective.

Clearly, 1 is representable since we assume \(\bigcap_{x \in W} \text{Zero}(x) = \emptyset \). \(\text{Zero}^*(1) = \emptyset \) which is surly an upper set of \((U, \leq_U)\). In the following proof, we will assume \(s \neq 1 \).

For each representable string \(s \), if \([i] \in \text{Zero}^*(s)\) and \([i] \leq_U [j]\), then \(T_i \subseteq T_j \). So One(\(t_j \)) \subseteq One(\(t_i \)) and Zero(\(t_i \)) \supseteq Zero(\(t_j \)). According to Theorem 3.2 since \(s \) is representable and \(i \in \text{Zero}(s) \), Zero(\(t_i \)) \subseteq Zero(s). So Zero(\(s \)) \supseteq Zero(\(t_i \)) \supseteq Zero(\(t_j \)). Since \(j \in \text{Zero}(\(t_j \)) \), \(j \in \text{Zero}(s) \) and \([j] \in \text{Zero}^*(s)\). This shows \(\text{Zero}^*(s) \) is an upper set for each \(s \) representable by \(W \).

According to the definition of the function \(\text{Zero}^*(\cdot) \) and Lemma 4.3 \(\bigcup_{X \in \text{Zero}^*(s)} X = \text{Zero}(s) \). So if \(\text{Zero}^*(s_1) = \text{Zero}^*(s_2) \), then \(\text{Zero}(s_1) = \text{Zero}(s_2) \). Thus \(s_1 = s_2 \). Therefore \(\text{Zero}^*(s) \) is injective.

If \(A \) is an nonempty upper set, we construct a string \(s \) with Zero(\(s \)) \(= \bigcup_{X \in A} X \). Clearly Zero(\(s) = A \). \(\forall i \in \text{Zero}(s) \), if \(j \in \text{Zero}(t_i) \), then \(T_i \subseteq T_j \) and \([i] \leq_U [j]\). Since \(A \) is an upper set and \(i \in \text{Zero}(s) \), \([i] \in \text{Zero}^*(s) = A \) and \([j] \in A \). Because Zero(\(s \)) \(= \bigcup_{X \in A} X \), \(j \in \text{Zero}(s) \). Consequently, if \(j \in \text{Zero}(t_i) \), \(j \in \text{Zero}(s) \). Therefore, \(\forall i \in \text{Zero}(s) \), Zero(\(t_i \)) \(\subseteq \text{Zero}(s) \). According to Theorem 3.2 \(s \) is representable. So the function is surjective.

Definition 4.5 (antichain). For a poset \((X, \leq)\), a subset \(A \subseteq X \) is an antichain if and only if \(\forall a, b \in A (a \neq b \rightarrow (a \not\leq b \land b \not\leq a)) \).

Lemma 4.6. Given any poset \((X, \leq)\), the number of upper sets is the same as the number of antichains.

Proof. Let Min(\(A \)) \(= \{a \in A | \forall b \in A (b \leq a \rightarrow b = a)\} \) denote the minimal elements of \(A \), where \(A \) is an upper set. It is clear that Min(\(A \)) is an antichain. We will show that Min(\(A \)) is a bijection from upper sets to antichains. For any two different upper sets, \(A_1 \) and \(A_2 \), without loss of generality, suppose \(a \in A_2 \setminus A_1 \). Then there exists \(a \)'s predecessor \(b \) such that \(b \in \text{Min}(A_2) \). However, any predecessor of \(a \) must not belong to \(A_1 \), otherwise \(a \in A_1 \). So \(b \not\in \text{Min}(A_1) \). Thus Min(\(A_1 \)) \(\neq \text{Min}(A_2) \). So this function is injective. If \(C \) is an antichain of \((X, \leq)\), let \(A = \{a \in X | \exists b \in C b \leq a \} \). Obviously \(A \) is an upper set. Thus the function is surjective. Because Min(\(\cdot \)) is bijective, the number of upper sets is the same as the number of antichains.

Theorem 4.7. \#BSR is \#P-complete.

Proof. Counting antichains (\#AC for short) of a poset is shown to be \#P-complete in [5]. To prove the theorem above, we construct a parsimonious reduction from \#AC to \#BSR. Given a poset \((P, \preceq_P)\) where \(P = \{1, \cdots, m\} \), let \(W = \{s_1, \cdots, s_m\} \) where \(\text{Zero}(s_i) = \{j | i \preceq_P j\} \). Thus \(T_i = \{s_k | i \in \text{Zero}(s_k)\} = \{s_k | k \preceq_P i\} \). If \(i \preceq_P j \), then if \(s_k \in T_i \), \(s_k \in T_j \) because of the transitivity of \(k \preceq_P i \) and \(i \preceq_P j \). So \(T_i \subseteq T_j \). On the other hand, if \(T_i \subseteq T_j \), since \(s_i \in T_i \), \(s_i \in T_j \). So \(i \preceq_P j \).
Therefore \(i \preceq_P j \equiv T_i \subseteq T_j \equiv [i] \preceq_U [j] \). This shows \((U, \preceq_U)\) is isomorphic to \((P, \preceq_P)\). So the number of antichains on \((P, \preceq_P)\) is the same as the number of antichains on \((U, \preceq_U)\). (The readers maybe have observed that actually the set \(U = \{1, \ldots, m\} \), namely \(\forall i \neq j, T_i \neq T_j \).) Clearly the set \(W \) can be constructed in polynomial time. Therefore, according to Lemma 4.4 and 4.6, the number of antichains of a poset \((P, \preceq_P)\) is the same as the number strings generated from the set \(W \). So \#BSR is \#P-complete.

\[\square \]

5 Minimum Representation Subset Problem

In Section 3 we study the problem to decide whether a string is representable by \(W \). In this part, we hope the string can be generated by as few strings as possible, if it is representable by \(W \). In other words, given \((W, s)\), we try to find the minimum representation subset from \(W \) to represent the string \(s \). We call it the minimum representation subset problem.

Theorem 5.1. The minimum representation subset problem is \(\mathcal{NP} \)-hard.

Proof. We reduce the minimum set cover problem to it. Given an instance \((U, S)\) where \(U = \{1, 2, \ldots, m\} \) is the universe, and \(S = \{S_1, \ldots, S_n\} \) is a family of subsets of \(U \), the minimum set cover problem is to look for the minimum subfamily \(C \subseteq S \) whose union is \(U \). We construct an instance of the minimum representation subset problem as follows. Keep \(m \) unchanged, let \(s = 1 \), \(W = \{s | \text{One}(s_i) = S_i\} \). Obviously, there is a subfamily of at most \(k \) sets whose union is \(U \) if and only if there is a set of at most \(k \) strings whose disjunction is \(1 \). Therefore, the minimum of \((U, S)\) is the same as the minimum of \((W, 1)\).

Clearly, the reduction in the proof can also be used directly to get a \((\ln m)\)-approximation algorithm for \((W, 1)\). For \((W, 0)\), we can look for the minimum representation subset of \((\overline{W}, 1)\) where \(\overline{W} \) is the set of negation of strings in \(W \). Because if \(s \) is representable by some set \(C \), then \(\overline{s} \) is representable by \(\overline{C} \) by applying DeMorgan’s laws, and vice versa.

Given \((W, s)\) where \(s \notin \{1, 0\} \), in the following, we will show a \((2 \ln \frac{n}{m})\)-approximation algorithm via an approximation preserving reduction to the minimum set cover problem. Let the universe be the Cartesian product of Zero\((s)\) and One\((s)\), i.e., \(U = \text{Zero}(s) \times \text{One}(s) \). Since \(s \notin \{1, 0\}, U \neq \emptyset \). For each \(s_i \in W \), we create a corresponding subset \(S_i \in S \) such that \(S_i = \text{Zero}(s_i) \times \text{One}(s_i) \). For a subfamily \(C \), we use \(C \) to denote the corresponding set of strings.

Lemma 5.2. \(C \) can cover \(U \) if and only if \(C \) can generate \(s \).

Proof. If \(C \) covers \(U \), \(\forall i \in \text{Zero}(s) \) we define \(C_i = \{X \in C \mid X \cap \{i\} \times \text{One}(s) \neq \emptyset\} \). Let \(C_i \) denote the corresponding subset of \(C_i \). By the construction, we know that \(C_i \subseteq \{x \in C \mid b^0_i = 0\} \). Since \(C \) covers \(U \), \(\forall i \in \text{Zero}(s), \{i\} \times \text{One}(s) \subseteq \bigcup_{X \in C_i} X \). Thus, \(\forall i \in \text{Zero}(s), \text{One}(s) \subseteq \text{One}(\bigvee_{X \in C_i} X) \subseteq \text{One}(\bigvee\{x \in C \mid b^0_i = 0\}) \). According to Theorem 3.2 \(s \) is representable by \(C \).
Conversely, if \(s \) is representable by \(C \), according to Theorem 3.2 \(\forall i \in \text{Zero}(s), \text{One}(s) \subseteq \text{One}(\bigvee_{x \in C} x) \), where \(C_i = \{ x \in C | b_i^T = 0 \} \). Let \(C_i \) be the corresponding subfamily. Then \(\forall i \in \text{Zero}(s), \{ i \} \times \text{One}(s) \subseteq \bigcup_{x \in C_i} x \). So \(C \) covers \(U \).

It is easy to see that the maximum cardinality of a set in \(S \) is no larger than \((\frac{m}{2})^2 \). Consequently, by running the greedy algorithm \[\mathcal{G} \] on \((U, S)\), we get a \((2 \ln \frac{m}{2}) \)-approximation algorithm for the minimum representation subset problem.

6 Minimum Spanning Subset Problem

In section 5 we study how to find the minimum subset which is enough to represent a given string \(s \). A natural generalization is asking for the minimum subset to represent every string in \(W \), i.e., find a minimum subset \(A \subseteq W \), so that each \(s \in W \) is representable by \(A \). We refer to this problem as Minimum Spanning Subset (MSS). This definition implies that, for any string \(s, s \) is representable by \(A \) if and only if \(s \) is representable by \(W \). In a sense, \(A \) has the same power of representation as \(W \). Let \(U^A \) be the counterpart of \(U \) defined on \(A \), and \(\preceq_{U^A} \) be the counterpart of \(\preceq_U \). According to Section 4.4, \(A \) has the same power of representation as \(W \) if and only if \(((U^A), \preceq_{U^A}) \) is equivalent as \(((U, \preceq_U)) \). To make the problem more clear, we rephrase it as a more independent problem, Minimum Compare Set.

Minimum Compare Set (MCS) Given a set of items, \(A = \{ a_1, a_2, \cdots, a_m \} \), and a collection \(B \) of subsets of \(A \), \(B = \{ b_1, b_2, \cdots, b_n \} \). A subset \(X \subseteq A \) is called a compare set for \((A, B)\) if and only if for any two sets in \(B \), say \(b_i, b_j, b_i \subseteq b_j \) if and only if \((b_i \cap X) \subseteq (b_j \cap X) \). The decision problem of a \(k \) sized compare set is denoted as \(\text{MCS}(A, B, k) \).

Each string in MSS corresponds to an item in MCS and vice versa, and each equivalence class of \(U \) in MSS corresponds to each subset in MCS and vice versa. So MCS is just a reformulation of MSS, they are actually the same problem. As we are going to reduce Minimum Set Cover (MSC) problem to MCS by a similar way introduced in [4], we define MSC again as follows.

Minimum Set Cover (MSC) Given a set of items, \(U = \{ u_1, u_2, \cdots, u_m \} \), and a collection \(\mathcal{F} \) of subsets of \(U \), \(\mathcal{F} = \{ f_1, f_2, \cdots, f_n \} \). A subcollection \(\mathcal{C} \subseteq \mathcal{F} \) is called a set cover for \((U, \mathcal{F})\) if and only if \(\bigcup_{f_i \in \mathcal{C}} f_i = U \). The decision problem of a \(k \) sized set cover for \((U, \mathcal{F})\) is denoted as \(\text{MSC}(U, \mathcal{F}, k) \).

Theorem 6.1. Minimum Compare Set is NP-complete.

Proof. Given any instance of MSC, e.g., \(\text{MSC}(U, \mathcal{F}, k) \), we create an instance of MCS, \(\text{MSC}(A, B, |U| + k) \), where \(|A| = |U| + |\mathcal{F}| \) and \(|B| = 2|U| \). For simplicity, let \(|U| = m, |\mathcal{F}| = n \). In MCS, \(a_1, a_2, \cdots, a_m \) correspond to sets with a single element, \(\{u_1\}, \{u_2\}, \cdots, \{u_m\} \), and \(a_{m+1}, \cdots, a_{m+n} \) correspond to sets \(f_1, \cdots, f_n \). There are \(2m \) subsets in MCS, the latter \(m \) subsets are \(\forall 1 \leq i \leq m b_i = a_i \cup \{ a_j | u_i \in f_j \} \). This completes the polynomial transformation and is illustrated in table 1a and table 1b. 1 in the table stands for containment, and
blank stands for non-containment. Now we claim that \(MCS(A, B, |\mathcal{U}| + k) \) is YES if and only if \(MSC(\mathcal{U}, \mathcal{F}, k) \) is YES. For simplicity, let \(LEFT = \{a_1, \cdots, a_m\} \), \(RIGHT = \{a_{m+1}, \cdots, a_{m+n}\} \), \(UP = \{b_1, \cdots, b_m\} \), \(LOW = \{b_{m+1}, \cdots, b_{2m}\} \). Now we make a key observation. \(LEFT \) must be selected, otherwise any \(b_i, b_j \in LOW \) cannot be compared. As long as \(LEFT \) is selected, any two sets in \(UP \) can be compared. Also, any two sets \(b_i \in UP, b_j \in LOW \) can be compared if and only if \(|i - j| \neq m \). The only pairs still needed to be compared are those \(b_i, b_j \) where \(|i - j| = m \). In order to compare \(b_i \) with \(b_{i+m}, 1 \leq i \leq m \), we have to make sure \(b_i \cap RIGHT \neq \emptyset \). This is exactly selecting a subset of \(RIGHT \) to hit each \(b_i, 1 \leq i \leq m \). To do this, just select \(k \) items in \(\{a_{m+1}, \cdots, a_{m+n}\} \) which correspond to the set cover in \(MSC(\mathcal{U}, \mathcal{F}, k) \).

\[
\begin{array}{c|c|c|c}
 & f_1 & f_2 & f_3 \\
\hline
u_1 & 1 & 1 & 1 \\
u_2 & 1 & 1 & 1 \\
u_3 & 1 & 1 & 1 \\
u_4 & 1 & 1 & 1 \\
\end{array}
\]

(a) \(MSC(\mathcal{U}, \mathcal{F}, k) \)

\[
\begin{array}{c|c|c|c|c|c|c|c}
 & a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & a_7 \\
\hline
b_1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
b_2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
b_3 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
b_4 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
b_5 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
b_6 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
b_7 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
b_8 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

(b) \(MCS(A, B, |\mathcal{U}| + k) \)

6.1 Approximation and Inapproximability of MCS

We first show that \(MCS(A, B, k) \) is \(O(\log |B|) \) approximable as a reduction to Hitting Set Problem. Specifically, if \(X \) is a compare set, then to compare any two subsets in \(B \), say \(b_i \) and \(b_j \), \(X \cap (b_i \setminus b_j) \neq \emptyset \) if \(b_i \setminus b_j \neq \emptyset \), and \(X \cap (b_j \setminus b_i) \neq \emptyset \) if \(b_j \setminus b_i \neq \emptyset \). We will carry over the inapproximability of \(MSC \) to \(MCS \) by scaling the reduction used in the NP-Complete proof.

Theorem 6.2. The \(MCS(A, B) \) has no polynomial-time algorithm with performance bound \(o(\log |B|) \) unless \(P = NP \). Also it has no polynomial-time algorithm with performance bound \((1 - \epsilon) \ln |B| \), for any \(\epsilon > 0 \), unless \(NP \subseteq \text{DTIME}(|B|^{\log \log |B|}) \).

Proof. For any \(MSC(\mathcal{U}, \mathcal{F}) \), we make an \(x \) times multiplied \(MSC \) instance with \(x \) disjoint copies of it. Let \(|\mathcal{U}| = m, |\mathcal{F}| = n \), then \(x = \lceil m \log m \rceil \). We refer to it as \(Mul-MSC(x\mathcal{U}, x\mathcal{F}) \). We then construct an \(MCS \) instance \(MCS(x\mathcal{F} + \mathcal{U}, (x + 1)\mathcal{U}) \) by the same way used in the NP-Complete proof. Notation is abused here to make the idea clear. Recall the construction that, \(MSC(\mathcal{U}, \mathcal{F}) \) has a solution of size at most \(\delta \) if and only if \(Mul-MSC(x\mathcal{U}, x\mathcal{F}) \) has a solution of size at most \(x\delta \), if and only if \(MCS(x\mathcal{F} + \mathcal{U}, (x + 1)\mathcal{U}) \) has a solution of size at most \(x\delta + m \leq x\delta(1 + O(1/\log m)) \). Suppose we could approximate \(MCS(x\mathcal{F} + \mathcal{U}, (x + 1)\mathcal{U}) \) within a factor of \(\rho \), then \(MSC(\mathcal{U}, \mathcal{F}) \) has a ratio of \(\rho(1 + O(1/\log m)) \). From the definition of \(MCS(A, B) \) and the transformation above,
we see that \(m = |\mathcal{U}| = \frac{1}{2} \log B \). For \(\text{MCS}(\mathcal{U}, \mathcal{F}) \), [6] shows it has no polynomial-time algorithm with performance bound \(o(\log |\mathcal{U}|) \) unless \(\text{P} = \text{NP} \). [1] shows it has no polynomial-time algorithm with performance bound \((1 - \epsilon) \ln |\mathcal{U}| \), for any \(\epsilon > 0 \), unless \(\text{NP} \subset \text{DTIME}(|\mathcal{U}|^{\log \log |\mathcal{U}|}) \). Thus the theorem is correct.

Because each string in MSS corresponds to an item in MCS and vice versa, and each equivalence class of \(U \) in MSS corresponds to each subset in MCS and vice versa. So it is straightforward to show the inapproximability of Minimum Spanning Set (MSS).

Theorem 6.3. Given a set \(W \) of \(m \)-bit long binary strings, for the Minimum Spanning Subset (MSS) problem, there is no polynomial-time algorithm with performance bound \(o(\log m) \) unless \(\text{P} = \text{NP} \). Also there is no polynomial-time algorithm with performance bound \((1 - \epsilon) \ln m \), for any \(\epsilon > 0 \), unless \(\text{NP} \subset \text{DTIME}(m^{\log \log m}) \).

7 Power of Negation

Negation is also an elementary operation on boolean value, so it is helpful to see how the properties of the studied problems in the former sections changed when negation is allowed.

Theorem 7.1. Given \((W, s)\), \(s \) is representable by \(W \) where negation is allowed if and only if \(s \) is representable by \(W \cup \overline{W} \) where negation is not allowed.

Proof. First, if \(s \) is representable by \(W \cup \overline{W} \) where negation is not allowed, clearly \(s \) is representable by \(W \) where negation is allowed.

If \(s \) is representable by \(W \) where negation is allowed, there is a formula \(\phi \) with operands in \(W \) to represent \(s \). Due to DeMorgan’s laws, there is an equivalent formula where each negation operator only appears immediately before some operand. Each pair of the negation operator and the operand immediately after it can be regarded as the operand in \(\overline{W} \). Therefore, \(s \) is also representable by \(W \cup \overline{W} \) where negation is not allowed.

According to the theorem, deciding whether \(s \) is representable by \(W \) when negation is allowed can also be solved by just inputting \((W \cup \overline{W}, s)\) to the algorithm in Section 3.

Theorem 7.2. When negation is allowed, the number of strings representable by \(W \) is \(2^{\left| \mathcal{U} \right|} \), where \(\mathcal{U} \) is the set of equivalence classes derived from \(W \cup \overline{W} \).

Proof. According to Theorem 7.1, the number of representable strings when negation is allowed, equals to the number of strings generated from \(W \cup \overline{W} \) when negation is forbidden. Further, by Lemma 4.4 and 4.6, the number of strings representable by \(W \) when negation is allowed, is the same as the number of antichains of \((U, \preceq_U)\).
Thus let us look at the structure of U derived from $W \cup \overline{W}$. Suppose $[i] \neq [j]$, then $T_i \neq T_j$. If $T_i \subseteq T_j$, then there exists x such that $x \in T_j$ and $x \notin T_i$. So $j \in \text{Zero}(x)$ and $i \notin \text{Zero}(x)$. Thus $j \notin \text{Zero}(\overline{x})$ and $i \in \text{Zero}(\overline{x})$. Since \overline{x} is also in $W \cup \overline{W}$, therefore $\overline{x} \in T_i$ and $\overline{x} \notin T_j$ which contradict the premise that $T_i \subseteq T_j$. So $T_i \notin T_j$. Similarly, $T_j \notin T_i$. Thus $[i] \neq [j]$ implies $[i]$ and $[j]$ are incomparable in (U, \preceq_U). Therefore, any subset of U makes up an antichain of (U, \preceq_U). So when negation is allowed, the number of strings representable by W is $2^{|U|}$.

Theorem 7.3. When negation is allowed, the minimum representation subset problem is still \mathcal{NP}-hard.

Proof. We reduce the minimum set cover problem to it. Given an instance $(\mathcal{U}, \mathcal{S})$ where $\mathcal{U} = \{2, \ldots, m\}$ and $\mathcal{S} = \{S_1, \ldots, S_n\}$. An instance of the minimum representation subset problem is constructed as follows. Keep m unchanged, let $W = \{s_i|\text{Zero}(s_i) = S_1\}$ (i.e., $\text{One}(\overline{s_i}) = S_1$) and $\text{Zero}(s) = \{1\}$. For a subfamily \mathcal{C}, \mathcal{C} denotes the corresponding set of strings, and vice versa. If there is a subfamily \mathcal{C} covers \mathcal{U}, obviously $\bigvee_{x \in \mathcal{C}} \overline{x} = \overline{s}$. Conversely, if s is representable by a subset \mathcal{C} when negation is allowed, then s is representable by $\mathcal{C} \cup \overline{\mathcal{C}}$ without negation due to Theorem 7.1. Since $\forall x \in \mathcal{C}, b_x^t \neq 0$, according to Theorem 3.2 $s = t_1 = \bigvee_{x \in \mathcal{C}} \overline{x}$. That is, $\text{One}(s) = \{2, 3, \cdots, m\} = \bigcup_{x \in \mathcal{C}} \text{One}(\overline{x})$. Thus $\bigcup_{x \in \mathcal{C}} X = \mathcal{U}$. So the minimum of $(\mathcal{U}, \mathcal{S})$ is the same as the minimum of (W, s).

References

[1] U. Feige. A threshold of ln n for approximating set cover. *J. ACM*, 45:634–652, July 1998.

[2] D. S. Johnson. Approximation algorithms for combinatorial problems. In *Proceedings of the fifth annual ACM symposium on Theory of computing*, STOC ’73, pages 38–49, New York, NY, USA, 1973. ACM.

[3] R. M. Karp. Reducibility Among Combinatorial Problems. In R. E. Miller and J. W. Thatcher, editors, *Complexity of Computer Computations*, pages 85–103. Plenum Press, 1972.

[4] B. M. E. Moret and H. D. Shapiro. On minimizing a set of tests. *SIAM Journal on Scientific and Statistical Computing*, 6(4):983–1003, 1985.

[5] S. J. Provan and M. O. Ball. The Complexity of Counting Cuts and of Computing the Probability that a Graph is Connected. *SIAM Journal on Computing*, 12(4):777–788, 1983.

[6] R. Raz and S. Safr.a. A sub-constant error-probability low-degree test, and a sub-constant error-probability pcp characterization of np. In *Proceedings of the twenty-ninth annual ACM symposium on Theory of computing*, STOC ’97, pages 475–484, New York, NY, USA, 1997. ACM.
[7] M. H. Stone. The theory of representation for boolean algebras. *Transactions of the American Mathematical Society*, 40(1):pp. 37–111, 1936.