Mechanistic Insights of the Interaction of Plant Growth-Promoting Rhizobacteria (PGPR) With Plant Roots Toward Enhancing Plant Productivity by Alleviating Salinity Stress

Mujtaba Aamir Bhat†1, Vijay Kumar2†, Mudasir Ahmad Bhat3, Ishfaq Ahmad Wani1, Farhana Latief Dar1, Iqra Farooq1, Farha Bhatti1, Rubina Koser4, Safikur Rahman5* and Arif Tasleem Jan1*

†These authors have contributed equally to this work

1 Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India, 2 Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea, 3 Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India, 4 Department of Microbiology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India, 5 Department of Botany, Munshi Singh College, Babasaheb Bhimrao Ambedkar Bihar University, Muzaffarpur, India

Agriculture plays an important role in a country's economy. The sector is challenged by many stresses, which led to huge loss in plant productivity worldwide. The ever-increasing population, rapid urbanization with shrinking agricultural lands, dramatic change in climatic conditions, and extensive use of agrochemicals in agricultural practices that caused environmental disturbances confront mankind of escalating problems of food security and sustainability in agriculture. Escalating environmental problems and global hunger have led to the development and adoption of genetic engineering and other conventional plant breeding approaches in developing stress-tolerant varieties of crops. However, these approaches have drawn flaws in their adoption as the process of generating tolerant varieties takes months to years in bringing the technology from the lab to the field. Under such scenario, sustainable and climate-smart agricultural practices that avail bacterial usage open the avenues in fulfilling the incessant demand for food for the global population. Ensuring stability on economic fronts, bacteria minimizes plant salt uptake by trapping ions in their exopolysaccharide matrix besides checking the expression of Na+/H+ and high-affinity potassium transporters. Herein we describe information on salinity stress and its effect on plant health as well as strategies adopted by plant growth-promoting rhizobacteria (PGPR) in helping plants to overcome salinity stress and in mitigating loss in overall plant productivity. It is believed that acquisition of advanced knowledge of plant-beneficial PGPR will help in devising strategies for sustainable, environment-friendly, and climate-smart agricultural technologies for adoption in agriculture to overcome the constrained environmental conditions.

Keywords: plant productivity, phytohormones, rhizosphere, PGPR, soil salinity

OPEN ACCESS

MINI REVIEW

EDITED BY:
Dilfuza Egamberdieva,
Leibniz Centre for Agricultural Landscape Research (ZALF),
Germany

REVIEWED BY:
Arunkoo Vaishnav,
Banaras Hindu University, India
Muhammad Shahid,
Kyungpook National University,
South Korea

*Correspondence:
Safikur Rahman
shafique2@gmail.com
Arif Tasleem Jan
atasleem@bgsbu.ac.in; atasleem@gmail.com

†These authors have contributed equally to this work

Specialty section:
This article was submitted to Terrestrial Microbiology,
a section of the journal Frontiers in Microbiology

Received: 01 May 2020
Accepted: 24 July 2020
Published: 20 August 2020

Citation:
Bhat MA, Kumar V, Bhat MA, Wani IA, Dar FL, Farooq I, Bhatti F, Koser R, Rahman S and Jan AT (2020) Mechanistic Insights of the Interaction of Plant Growth-Promoting Rhizobacteria (PGPR) With Plant Roots Toward Enhancing Plant Productivity by Alleviating Salinity Stress. Front. Microbiol. 11:1952. doi: 10.3389/fmicb.2020.01952
INTRODUCTION

With rapid urbanization, the reduction in agricultural land left less space to expand the cultivation of plants. Under such circumstances, expansion in plant production relies on increasing the fertility of soils to ensure food for all under the current global food security scenario (Godfray et al., 2010). In this direction, soil quality and water availability play a pivotal role in sustainable agricultural productivity. Any disbalance of salt in soil and water leads not only to decline in plant productivity but also even to their abandonment as it progresses with change in the land pattern from fertile to a marginal one. Although primary salinity is natural in the environment, the contribution by anthropogenic sources such as urbanization and deforestation is worth noting as these result in enhancing loss of the cultivable capacity of soils (land degradation and disturbance in the physical and the biological properties of soil) that affect plant productivity worldwide. Enhancement in salt deposits in an agricultural field hampers the growth of crop plants. In the scenario of decreased availability of fertile land, studies were directed in adopting genetic engineering approaches to complement traditional breeding methods in the development of salt-tolerant crops of food and fiber (Rozema and Flowers, 2008; Zhu et al., 2011; Dodd and Perez-Alfocea, 2012; Joshi et al., 2015). Despite significant efforts, the complexity in understanding the biological aspects of salt-stress-induced changes (morphological, biochemical, and physiological) renders limited success in developing salinity-stress-tolerant plants.

To cope up with the limited success in bringing technology-driven transgenics from the lab to the field, alternative strategies, such as the introduction of salt-tolerant microbes, are explored for adoption in augmenting and, as such, enhancing the growth of crops in salt-affected soils (Dodd and Perez-Alfocea, 2012; Etesami and Beattie, 2017; Etesami, 2018). Among them, plant growth-promoting rhizobacteria (PGPR) constitutes an important class of microorganisms that were found effective in inducing systemic tolerance in plants to tolerate abiotic stresses (Dutta and Khurana, 2015; Etesami and Beattie, 2018). However, PGPR from hypersaline soils (halotolerant PGPR) expressing plant growth-promoting (PGP) traits were found least affected by environmental factors such as climate, soil characteristics, etc., and thus are more efficient in enhancing salt tolerance in plants than PGPR from non-saline habitats (Giongo et al., 2008; Upadhyay et al., 2009; Egamberdieva and Kucharova, 2009; Khan et al., 2016). As part of the plant–bacterial interaction at the rhizospheric plane, plants were found to dictate the growth of microbiota for driving adaptation to changing environmental conditions (Berendsen et al., 2012). While many excellent reviews discussed a range of diverse plant-beneficial traits of microbiota encompassing both bacteria and fungi (Qin et al., 2016; Ilangumaran and Smith, 2017; Etesami and Beattie, 2017, 2018; Backer et al., 2018; Egamberdieva et al., 2019), the present study is aimed at highlighting the importance of plant–bacterial interactions, with comprehensive inputs about the mechanistic insights that operate at the plant level in mitigating salt stress toward improvement in crop yield as part of the climate-smart agricultural practices geared for feeding the ever-increasing global population.

SOIL SALINITY AND PLANT GROWTH

Increase in the concentration of salts, preferably sodium chloride (NaCl; electrical conductance > 4 dS m\(^{-1}\) or 40 mM), attributed to both natural (salts released by weathering of rocks, salt from seawater influx, air-borne salts from oceans, etc.) and anthropogenic (surface runoff and irrigation-based salt deposition year after year) sources, renders the soil no longer suitable for cultivation (Pitman and Lauchli, 2002; Rengasamy, 2002). Despite suitable soil water columns, excessive salinity raising the concentration in soil solutions deprive plants of using it via osmotic reduction. High soil salt concentrations induce its effects right from imbibition of water to seed germination and root elongation that together have a great effect on the yield of crop plants (Katembe et al., 1998; Kaymakanova, 2009). It has been observed that the pre-treatment of seeds with different PGPR promotes seed germination and seedling growth (Poupin et al., 2013; Rahmoune et al., 2017; Bakhshandeh et al., 2020). As part of the mechanism, it is believed that PGPR helps in maintaining the balance of hormones, e.g., auxin to cytokinin levels during germination and the early stages of plant development, thereby playing a critical role in dictating the genetic program that controls post-embryonic roots and shoot growth (Chu et al., 2019; Qessaoui et al., 2019).

At later stages of plant growth, soil salinity interferes with root turgor that led to reduction in water absorption, decrease in the plant water column that progresses through dehydration and osmotic stress, inhibition of the metabolic machinery, disturbance in the transpiration system, and, most importantly, interference with parameters pertaining to photosynthesis (Kaushal and Wani, 2015). Photosynthesis refers to a major attribute in dry matter and, as such, in plant productivity, showing a decrease in saline condition owing to the reduction in leaf turgor and reduced leaf surface area (Qin et al., 2010; Tanveer and Shah, 2017). It occurs either through (1) decreased stomatal opening and CO\(_2\) uptake, which in turn is associated with the reduction in stomatal conductance or (2) operation of a less-efficient Calvin cycle due to limited chlorophyll content (Lycoskoufs et al., 2005; Chaves et al., 2009). Stunted growth (seedling) with reduced biomass and leaf area are observed effects of salinity stress in the growth (vegetative stage) of plants (Taketura et al., 2000; Wang et al., 2003). PGPR employ different mechanisms in encouraging plant growth, prominently being nutrient availability and securing mineral assets such as phosphorus, phytohormone production, production of volatile compounds in controlling seed- and soil-borne phytopathogen, and synergism with other plant-beneficial microorganisms in enhancing resistance against different stresses (Bhattacharyya and Jha, 2012; Bhattacharyya et al., 2015; Bell et al., 2015; Kurepin et al., 2015; Bach et al., 2016; Yuan et al., 2016). Additionally, a limited canopy that prevents water loss by transpiration also constitutes a
plant survival mechanism under high salt concentrations (Savé et al., 1994; Ruiz-Sánchez et al., 2000; Colmer et al., 2005; Cassaniti et al., 2009, 2012).

SALINITY STRESS, PGPR, AND PLANT PRODUCTIVITY: A TRIANGULAR CONJECTURE

Salinity is a stress of global magnitude, having a substantial effect on plant growth, and is accountable for a significant loss in their productivity. Exerting adverse effects on germination, vigor, and yield, it led to drastic reduction in plant productivity, as observed in plants growing in arid and semi-arid areas (Paul and Lade, 2014). With an increase in salt concentration, disturbance in the cellular ion balance led to an enhancement in reactive oxygen species (ROS) production, besides taking a huge toll in exerting ionic toxicity on the accumulation of Na\(^+\) and Cl\(^-\) ions (Grover et al., 2011). ROS (free oxygen radicals, superoxide, and hydrogen peroxide) are capable of damaging cellular structures and damage of biomolecules (proteins, lipids, etc.) besides talking a huge toll on chlorophyll degradation and lipid peroxidation that are, in turn, associated with a reduction in photosynthetic activity, damage of cellular membranes, and ultimately proceeding with induction of programmed cell death (Apel and Hirt, 2004). Interfering in cellular enzymatic functions, the accumulation of Na\(^+\) and Cl\(^-\) ions produces diverse effects on different physiological fronts and in its effect on the growth and the development of plants (Nunkaew et al., 2015; Acosta-Motos et al., 2017). Photosynthesis capacity is reduced due to the interference of these ions with the opening and the closing of the stomata and in exerting osmotic stress as reflected in plants through reduction in leaf area and chlorophyll content (Munns, 1992; Kang et al., 2014a). Suppression of plant growth, a phenomenon of disturbed metabolic activities as a result of nutritional and hormonal imbalance together with abscission and senescence, is observed once the intensity of salinity stress, together with temperature, crosses the limit (Glick, 2014; Paul and Lade, 2014; Hashem et al., 2015). The accumulation of Cl\(^-\) ion leads to inhibition of nitrate reductase activity in the photosynthetic pathway (Azza Mazher et al., 2007; Nadeem et al., 2014). Elevation in ethylene (C\(_2\)H\(_4\)) levels progresses with drastic effects on plant health such as defoliation, senescence, etc. (Barnawal et al., 2014; Glick, 2014). Upon overcoming the storage capacity of cells, the accumulation of salts progresses to dehydration of cells, ultimately leading to plant death (Kang et al., 2014a).

Constituting an excellent environment for them to flourish, plant-beneficial microorganisms play an important role in achieving sustainability in plant productivity under the current paradigm of climatic change. As part of the climate-smart agricultural practices, microorganisms improve nutrient availability to plants and, in return, get nutrients as root exudates from these plants (Patel et al., 2015; Hamilton et al., 2016; Singh and Strong, 2016). Halotolerant PGPR employs a wide range of strategies as adaption for survival under saline conditions and, in turn, executes a number of plant-beneficial mechanisms for improving the growth of crop plants growing under salinity stress (Figure 1). These include (1) making nutrients available to plants via solubilization of phosphorus and potassium, siderophore production for iron uptake, and fixation of atmospheric nitrogen (Etesami and Beattie, 2017; Etesami, 2018), (2) maintenance of water balance by changing the architecture of roots for hydraulic conductance (Arora et al., 2012), (3) selective uptake of K\(^+\) to Na\(^+\) ions for maintaining a high K\(^+\)/Na\(^+\) ratio that indirectly reduces the intercellular accumulation of K\(^+\) to Na\(^+\) ions (Islam et al., 2016; Etesami, 2018), (4) exopolysaccharide (EPS)-mediated alleviation of salt stress by decreasing Na\(^+\) accumulation in roots and, as such, preventing their translocation to the leaves (Nunkaew et al., 2015; Qin et al., 2016; Etesami and Beattie, 2017), (5) production of volatile compounds and osmoprotectants that enhance the plants’ survival under salt stress (Creus et al., 2004; Timmusk et al., 2014), (6) protecting plants from oxidative stress by upregulating the activity of enzymes such as superoxide dismutase (SOD), catalase (CAT), and peroxidase as part of the antioxidant defense system (Islam et al., 2016), (7) maintenance of hormonal level for alleviation of salt stress (Etesami et al., 2014; Singh et al., 2015; Etesami and Beattie, 2017), (8) modulation in the expression of stress-responsive genes (Gond et al., 2015; Qin et al., 2016; Kaushal and Wani, 2016; Etesami and Beattie, 2017), and (9) production of extracellular enzymes that impart protection against phytopathogens competing with beneficial bacterial species for nutrients (Hariprasad et al., 2011; Dubey et al., 2014; Etesami, 2018).

PGPR IN THE ALLEVIATION OF SALT STRESS

Salinity stress adversely affects plant morphological, physiological, and biochemical functioning that, in turn, proves detrimental to plant health. Salt tolerance—a parameter quantified over given time—is survival, growth (vegetative), and biomass (harvestable) of the plant growing under salt stress to non-saline habitats (Munns, 2002b). The plants adopt either by inheriting genetic traits that impart salinity tolerance or by adopting a selectable mechanism of salt exclusion from the roots, thereby delaying salinity stress (Munns, 2002b; Zhu, 2007). A few (in particular, halophytes) conduct movement of accumulated salts via the xylem for precipitation at the leaf surface, while others have developed specialized structures (salt glands) in shoots, whereby salt is excreted on the surface for removal by wind or water (Ilangumaran and Smith, 2017). Additionally, plants undergo valuable interactions with bacterial species residing in the rhizospheric region, with an interaction pattern ranging from mutualism to antagonism. Colonization and successful establishment in the rhizospheric region are considered as a prerequisite for their interaction at the root surface. Traits that promote colonization of PGPR at the root surface include the availability of sufficient nutrients besides the property of being motile and capable of adherence (via pili, surface-localized proteins, etc.) to plant roots (Jan et al., 2011). On one side where root exudates (organic acids, phenolics, sugars, amino acids, etc.) help microbes to flourish, it prompts...
FIGURE 1 | Salinity stress and tolerance mechanisms induced by plant growth-promoting rhizobacteria.

changes (both physical and chemical) in plants related to defense, nutrient deficiency, and tolerance against heavy metals besides being important in eliciting strong responses against different abiotic stresses such as salinity as a mechanism of promoting plant growth (Jan et al., 2011; Nadeem et al., 2014; Rashid et al., 2016). Table 1 a detailed account of the growth-promoting attributes of PGPR in agroecosystems is given in the following discussion.

Maintenance of Water Balance and Nutrient Acquisition

The hydration of cells, having a greater impact on physiological and metabolic processes, determines behavioral growth in plants. Hydraulic gradients in the xylem regulate water conductance from the roots to the leaves against an imbalance between the rate of transpiration and the available water absorbed from the soil (Passioura, 2010; Chavarria and dos Santos, 2012). The sustained transpiration of water from the leaf surface without any replenishment causes a reduction in xylem water potential that progressively leads to leaf dehydration, depending on the environmental conditions, stage of the growth of plant, canopy characteristics, and water quality as part of irrigation. The accumulation of salts at the root surface causes a transition in the root architecture (suppresses lateral root formation) over time that influences the availability and uptake of soil nutrients. Salinity-induced osmotic stress proceeds with a decrease in diffusion and, as such, mass flow of nutrients as they are carried to the roots of plants by water (Zhu, 2001; Munns, 2002a; Ashraf, 2004; Sánchez-Blanco et al., 2004; Meloni et al., 2008; Franco et al., 2011; Chavarria and dos Santos, 2012). Under osmotic stress conditions, the aboveground plant parts undergo little photosynthetic activity and switch to the use of photo-assimilates, which causes a reduction in plant growth. All these events lead to a subsequent reduction in plant productivity (Chartzoulakis et al., 2002; Giri et al., 2003; Katerji et al., 2005; Bhatnagar-Mathur et al., 2007; Álvarez et al., 2012; Gómez-Bellot et al., 2013).

The inoculation of bacterial isolates to the roots of pepper plants resulted in an enhanced roots system, thereby increasing the ability of plants to uptake water from the surroundings (Marasco et al., 2013). The expression of aquaporins (water-conducting proteins) present in plasma and intracellular
Sample number	Plant species	PGPR species inoculation	Effects observed	References
(1)	Maize (Zea mays)	Achromobacter xylosoxidans	Improved maize growth and productivity under drought stress	Danish et al., 2020
		B. licheniformis FMCH001	Enhances plant water use efficiency via growth stimulation in both normal as well as in drought conditions	Akhtar et al., 2020
		Bacillus sps.	Induces plant response for defense enzymes, chlorophyll, proline, and soluble sugar under salt stress	Misra and Chauhan, 2020
		Bacillus sp. NBRI YN4.4	Improves photosynthetic pigments and soluble sugar content and decreases proline level under stress conditions; also enhances soil enzymes dehydrogenase, alkaline phosphatase, and betaglucosidase, which help in improving soil health	Dixit et al., 2020
		Ochrobactrum sp. NBRISH6	Helps in maintaining homeostasis through various mechanisms under deficit water stress condition	Mishra et al., 2020
		A. brasilense	Induced the development of a more extensive root system, regardless of growth medium nitrate concentration	Pii et al., 2019
		Burkholderia cenocepacia CR318	Helps in the health and the growth of crop including phosphate and potassium solubilization and antimicrobial activity	You et al., 2020
		P. aeruginosa strain FB2 and B. subtilis strain RMB5	Shows effectiveness against a range of fungal phytopathogens	Ali et al., 2020
		Serratia liquefaciens KM4	Maintenance of water balance, enhanced antioxidant enzyme activities, increased nutrient uptake	El-Esawi et al., 2019b
		Pseudomonas sp., Arthrobacter sp., Bacillus sp., and members of other bacterial groups	Enhanced phosphate solubilization, IAA and ACC deaminase activity	Aslam and Ali, 2018
		A. brasilense Ab-V5 and Ab-V6, Rhizobium tropici CIAT 899	Enhanced antioxidant enzyme activities	Fukami et al., 2018
		Bacillus aquimaris DY-3	Maintenance of water balance, development of pigment system, enhanced antioxidant enzyme activities	Li and Jiang, 2017
		Bacillus amyloliquefaciens SQR9	Enhanced solute accumulation, enhanced antioxidant enzyme activities, increased expression of salinity stress response genes	Chen et al., 2016
		Staphylococcus sciuri	Enhanced antioxidant enzyme activities	Akram et al., 2016
		Bacillus spp., Arthrobacter pascens	Phosphate solubilization, maintenance of water balance, increased antioxidant enzyme activities	Ullah and Bano, 2015
		Pantoaea agglomerans	Increased expression of aquaporin genes	Gond et al., 2015
		P. syringae, P. fluorescens	Enhanced ACC deaminase activity	Zafar-ul-Hye et al., 2014
		Proteus penneri, P. aeruginosa, A. faecalis	Enhanced exopolysaccharide production	Naseem and Bano, 2014
		Azotobacter chroococcum	Enhanced growth, increased phosphate solubilization and K+ /Na+ ratio	Rojas-Tapias et al., 2012
		Bacillus megaterium	Improved expression of ZmPIP isoforms	Marulanda et al., 2010
		Rhizobium, Pseudomonas spp.	Osmotic regulation	Bano and Fatima, 2009
		Pseudomonas spp., Enterobacter spp.	ACC deaminase activity	Nadeem et al., 2009
		Pseudomonas syringae, Enterobacter aerogenes, P. fluorescens	ACC deaminase activity	Nadeem et al., 2007
		Azospirillum brasilense	Maintenance of ion homeostasis, decreased nitrogenase activity	Hamdia et al., 2004
	Rice (Oryza sativa)	Bacillus aryabhattai, Achromobacter denitrificans, and Ochrobactrum intermedium Klebsiella sp. PD3	Helps to accumulate under salt stress and exhibits greater resistance to heavy metals	Sultana et al., 2020
		Bacillus aryabhattai, Achromobacter denitrificans, and Ochrobactrum intermedium Klebsiella sp. PD3	Degradates phenanthrene; also shows ACC deaminase activity and phosphate solubilization	Li X. et al., 2020
		Bacillus amyloliquefaciens SN13	Induces metabolic and physiological parameters via different enzymes to reduce the impact of stress	Bisht et al., 2019
		Bacillus sp. JB5-28	Promotes grain yields; also decreases arsenic accumulation in arsenic-contaminated soil and paddy fields	Aw et al., 2019
Sample number	Plant species	PGPR species inoculation	Effects observed	References
---------------	--------------	--------------------------	--	------------
		Bacillus aryabhattai	Phosphate solubilization, enhanced siderophore and IAA production	Sultana et al., 2018
		Halobacillus dabanensis	Nitrogen fixation and IAA production	Rima et al., 2018
		Enterobacter sp. P23	Growth promotion, phosphate solubilization, increased siderophore, and IAA production, reduction in ethylene production, enhanced antioxidant enzyme activities	Sarkar et al., 2018
		B. stratosphericus	Increased growth and biomass production, Phosphate solubilization, IAA production, enhanced ACC deaminase activity	Misra et al., 2017
		Thalassobacillus denorans	Increased germination and growth of root and shoot, developed pigment system, reduced Na$^+$ ion accumulation	Shah et al., 2017
		Bacillus pumilus	Growth promotion, enhanced antioxidant enzyme production, reduced Na$^+$ ion accumulation	Khan et al., 2016
		Bacillus and Citrobacter	Growth promotion, phosphate solubilization, IAA production	Habib et al., 2016
		Pseudomonas PF1 and TDK1	Enhanced antioxidant enzyme production	Sen and Chandrasekhar, 2015
		Serratia sp., Pseudomonas sp.	Growth promotion, phosphate solubilization, IAA production	Nakbanpote et al., 2014
		Alcaligenes , Bacillus sp., Ochrobactrum sp.	ACC deaminase activity	Bai et al., 2013
		R. pseudoalcaligenes, B. pumilus	Reduction in ROS production, delay of senescence	Jha and Subramanian, 2013
		B. amylobiquefaciens NBRISN13 (SN13)	Solute accumulation, enhanced expression of SOS1, EREBP, SERK1, and NADP-Me2	Nautyal et al., 2013
	(3) Wheat	Variovorax paradoxus RAA3; Pseudomonas spp. DPC12, DPB13, DPB15, DPB16; Achromobacter spp. PSA7, PSS8; Ochrobactrum anthropl DPC9	ACC deaminase activity; improves the growth of plants in water-stressed rain-fed environments	Chandra et al., 2019
	(3) Wheat	Planomicrobium chinense and Bacillus cereus with salicylic acid	Reduces moisture stress in plants	Khan and Bano, 2019
	(3) Wheat	**Bacillus siamensis, Bacillus sp., and Bacillus methylotrophicus**	ACC deaminase activity	Amna et al., 2019
	(3) Wheat	**Bacillus subtilis**	Induction of systemic resistance	Lastochkina et al., 2017
	(3) Wheat	**Dietzia natronolimnus**	Enhanced expression of SOS-related genes, increased tissue-specific expression of ion transporters, modulation of ABA signaling cascade	Bharti et al., 2016
	(3) Wheat	**Serratia marcescens CDP-13**	ACC deaminase activity, minimizes the salinity-induced oxidative damages to the plants	Singh and Jha, 2016
	(3) Wheat	**Arthrobacter spp. SU18, B. aquimaris SU44, B. aquimaris SU8**	Root dry weight and shoot biomass	Upadhyay and Singh, 2015
	(3) Wheat	**Azospirillum lipoforum, Pseudomonas fluorescens 169**	Development of pigment system	Saghafi et al., 2013
	(3) Wheat	**Azospirillum**	Development of pigment system, enhanced solute accumulation, increased seedling growth and plant yield	Nia et al., 2012
	(3) Wheat	**Phitormo sporaindica, Azospirillum**	Development of pigment system, enhanced solute accumulation, increased seedling growth	Zarea et al., 2012
	(3) Wheat	**Azospirillum lipoforum**	Growth and biomass accumulation	Bacillo et al., 2004
(4) Soybean	(4) Soybean	**Bradyrhizobium diaeoefficiens USDA110, Bacillus velezensis S141**	Enhanced nodulation and N2-fixing efficiency by producing larger nodules	Sibponkrung et al., 2020
	(4) Soybean	**Bradyrhizobium**	Improves plant development and increases nodulation	Zefa et al., 2020
	(4) Soybean	**P. fluorescens LBUM677**	Enhances plant biomass, oil content, and lipid composition	Jiménez et al., 2020
(4) Soybean	(4) Soybean	**A. woluwensis, M. oxydans, A. aurescens, B. megaterium, and B. aryabhattai**	Maintains osmotic balance and regulates salt tolerance	Khan et al., 2019

(Continued)
Sample number	Plant species	PGPR species inoculation	Effects observed	References
(5) Tomato (Solanum lycopersicum)	Bacillus subtilis Rhizo SF 48	ACC deaminase activity; protects against oxidative damage and enhances plant growth against drought stress		Gowtham et al., 2020
	Funneliformis mosseae, Enterobacter sp. EG16, and Enterobacter ludwigii DJ3	Enhances plant growth and tolerance to Cd in Cd-contaminated soil		Li Y. et al., 2020
	Leclercia adecarboxylata MO1	IAA- and ACC-deaminase-producing activities; improves plant tolerance to salinity stress		Kang et al., 2019
	Pseudomonas putida LW4 (ACC deaminase)	Increased shoot growth and expression of Toe GTPase		Yan et al., 2014
	Pseudomonas aeruginosa T15, Pseudomonas fluorescens NT1, Pseudomonas stutzeri C4	Decreased ethylene levels, increased root and shoot length		Tank and Saraf, 2010
	Achromobacter piechaudii ARV8	Enhanced induced systemic tolerance, enhanced ACC deaminase activity		Mayak et al., 2004
(6) Common bean (Phaseolus vulgaris)	Aneurinbacillus aneurinolyticus and Paenibacillus sp.	ACC deaminase activity		Gupta and Pandey, 2019
	Mycomitiae, Bacillus subtilis, and Pseudomonas fluorescences	Controls the infection of Sclerotium rolfsii; also acts as biofertilizers		Mohamed et al., 2019
	Rhizobium	Increased nutrient content and dry weight		Yanni et al., 2016
	Pseudomonas chlororaphis TSAU13, Pseudomonas extremorientalis TSAU20	Increased dry weight and root length		Egamberdieva, 2011
	Azospirillum brasilense, Rhizobium spp.	Enhanced root branching, increased secretion of flavonoids		Dardaneli et al., 2008
(7) Radish (Raphanus sativus)	Bacillus sp. CJK-516	Improves plant growth and enhances Ni phytoextraction		Akhtar et al., 2018
	Lactobacillus sp., P. putida and Azotobacter chroococcum	Helps to mitigate salinity stress at the time of germination		Hussein and Joo, 2018
	Arthrobacter scleromycetis SYE-3	Increased shoot length		Hong and Lee, 2017
	Staphylococcus kloosii, Kocuria erythromyxa	Increased chlorophyll content, increased shoot and root fresh and dry weight		Yildirim et al., 2008a
	Bacillus spp.	Induction of plant growth		Yildirim et al., 2008b
(8) Barley (Hordeum vulgare)	Hartmannibacter diazotrophicus	Growth induction, enhanced ACC deaminase activity, increased root and shoot dry weight		Suarez et al., 2015
	Curtobacterium flaccumfaciens	Promotes plant growth		Cardinale et al., 2015
membrane determines the hydraulic conductance \((L) \) at the root surface and, as such, the uptake of water from salinized soil for a plant (Mosshelion et al., 2015; Qin et al., 2016). Plasma membrane intrinsic proteins \((\text{PIPs}) \) constitute important aquaporins for a plant, which helps in its adaptation to changing environmental conditions (Marulanda et al., 2010; Mosshelion et al., 2015). An expression analysis of \textit{Zea mays} roots inoculated with \textit{Bacillus megaterium} and \textit{Pantoea agglomerans} showed up-regulated \textit{PIP2} and \textit{ZmPIP1-1} genes that contribute to the increase in the \(L \)-values under salinity stress conditions (Gond et al., 2015).

These studies reveal that PGP bacteria determine the resistance of plants to water stress irrespective of the nature of interaction in determining the specificity for growth-promoting activity. Plant–bacterial interactions at the root surface assist plants in maintaining the availability of water and helps in the acquisition of nutrients through nitrogen fixation, phosphate solubilizations, and siderophore production as part of their mechanism in fulfilling the nutritional requirements of plants (Beattie, 2015; Pii et al., 2015). Nitrogen—an essential nutrient that limits plant productivity—is often applied exogenously. However, inorganic fertilizers that compensate nitrogen deficiency often lead to a change in soil structure and, as such, composition of soil microflora (Rueda-Puente et al., 2003). Studies were performed on exploring the naturally occurring nitrogen fixers which have the potential for exploration toward plant growth promotion. Of the different interactions, the nitrogen-fixing assembly of rhizobia in the roots of legumes is an extensively studied relationship between plants and bacteria. In this symbiotic relationship, the rhizomes provide the legumes with nitrogen and, in return, get reduced carbon as nutrient and suitable environment for nitrogenase activity (Backer et al., 2018).

Being a sensitive process, all stages of nitrogen fixation in leguminous plants were found to be prone to salinity effects, which result in a decrease in the nitrogen content of leguminous plants (de la Peña and Pueyo, 2012; Bruning and Rozema, 2013). In this regard, the commercial preparation of halotolerant free-living diazotrophs such as \textit{Azotobacter sp.}, \textit{Azospirillum sp.}, etc., proved beneficial than rhizobia in nitrogen fixation in a variety of crops worldwide, thereby found effective in increasing the yield of various cereal crops (Vessey, 2003; Bashan and de-Bashan, 2015; Sharma et al., 2016).

Phosphorus is a major essential macronutrient that constitutes another limiting nutrient for plants after nitrogen. The abundance of insoluble forms and the intensive agricultural practices in both saline and fertile soils deplete plants of this essential nutrient. On the second line, phosphate-solubilizing microorganisms \((\text{PSMs}) \) convert and as such make non-soluble forms of phosphate to easily available soluble forms for efficient utilization by the plants (Backer et al., 2018). Compared to complementation with NPK fertilizers, the employment of phosphate-solubilizing bacteria was found effective in enhancing phosphate availability to plants without exacerbating the soil salinity levels (Etesami, 2018; Etesami and Beattie, 2018). The liberation of reactive forms of phosphate from organic compounds on utilizing enzyme phytase of PSMs constitutes another mode of phosphate availability to plants. Additionally, the production of hydrogen cyanide \((\text{HCN}) \), which was earlier thought as a plant-protective mechanism, was found to be associated with an enhancement in phosphate availability to plants (Rijaev and Lapane, 2016). Siderophore (iron-binding ligands) production is associated with the deprivation of pathogenic microorganisms of iron \((\text{a micronutrient}) \) and making it available for use in respiration, photosynthesis, and nitrogen fixation by plants (Ahmed and Holmstrom, 2014; Saha et al., 2016).

Maintenance of Ionic Homeostasis

Alleviating the nutritional imbalance caused by a high influx of salt ions regulates the exchange of nutrients (both macro and micro) to minerals. Microbes increase nutrient availability to plants through the increased production of siderophores \((\text{metal chelation}) \) and bringing changes in \(\text{pH} \) at the surface of rhizospheres (Dodd and Perez-Alfocea, 2012; Lugtenberg et al., 2013). Disturbance in ionic homeostasis is observed in crops that are poor excluders of \(\text{Na}^+ \) \((\text{rice, beans, etc.}) \) and sensitive to \(\text{Cl}^- \) ions \((\text{citrus, soybean, etc.}) \) grown in soils with high salt levels (Munnis, 2002a; Tester and Davenport, 2003).

Under salinity stress, the influx of \(\text{Na}^+ \) into the roots undergoes translocation to the aerial parts \(\text{via} \) the xylem, with the final accumulation taking place at the leaf surface rather than at the roots (Tester and Davenport, 2003). As such, excluding \(\text{Na}^+ \) from plants becomes difficult as only a small proportion of it undergoes recirculation to the roots \(\text{via} \) the phloem, thereby restricting it to the aerial parts, thus causing toxicity in plants. An increase in the concentration of \(\text{Na}^+ \) disturbs the \(\text{Na}^+/\text{K}^+ \) ratio that progresses with the inhibition of cytosolic activities besides interfering with the activities of enzymes involved in respiration and photosynthesis (Baral et al., 2015; Jacoby et al., 2016). Considering the importance of \(\text{Na}^+ \) homeostasis to the growth of plants, the regulatory network of \(\text{Na}^+/\text{H}^+ \) antiporter and high-affinity \(\text{K}^+ \) transporters \((\text{HKT}) \) is put to work for the efflux of \(\text{Na}^+ \) ions from the cells throughout the plants (Tester and Davenport, 2003; Davenport et al., 2005). With localization on the plasma membrane, the \(\text{Na}^+/\text{H}^+ \) antiporter (also referred to as \(\text{SOS1} \), salt overlay sensitive channel) efflux \(\text{Na}^+ \) in response to its increasing cytosolic levels (Qiu et al., 2002). Also, the increase in plant \(\text{Na}^+ \) level interferes with the uptake of \(\text{K}^+ \) at the root surface \(\text{via} \) the low-affinity \(\text{K}^+ \) uptake system. To increase salinity tolerance, plants activate high-affinity \(\text{K}^+ \) transporters, thereby increasing the uptake of \(\text{K}^+ \) over \(\text{Na}^+ \) ions in plants (Rodriguez-Navarro and Rubio, 2006). Additionally, the activation of membrane-bound \(\text{Ca}^{2+} \) channels in response to a depolarization event generates a \(\text{Ca}^{2+} \) signal that indicates the occurrence of salt stress in plants. The \(\text{Ca}^{2+} \) signal is sensed by calcineurin B-like protein \((\text{CBL4}; \text{also referred to as} \text{SOS3}) \) which undergoes complex formation with CBL-interacting protein kinase; CIPK24 \((\text{also referred to as} \text{SOS2}) \) enables the phosphorylation of \(\text{SOS1} \) for its activation, an event important in maintaining the \(\text{Na}^+/\text{K}^+ \) ratio by sustaining \(\text{K}^+ \) transporters (Epstein, 1998; Halfter et al., 2000; Zhu, 2002).

Microbes minimize the accumulation of ions by increasing \(\text{Na}^+ \) exclusion at the roots besides boosting the working affinity of \(\text{K}^+ \) transporters that indirectly reduce their build-up in aerial parts, thereby contributing to the maintenance of ion...
showed an upregulation in the expression of PtK\textsubscript{T1}, SOS1, and Na+ to attribute tolerance to a high amount of salts (2015). Similarly, the inoculation of a halotolerant Pseudomonas aeruginosa inoculation reduces salt stress and promoted growth that led to an enhancement in yield in Helianthus annus (Tewari and Arora, 2014). Exerting a capability to fight salt stress, the inoculation of Bacillus subtilis to Helianthus annus was found to downregulate the expression of HKT1/K+ transporter (Zhang et al., 2008). Exopolysaccharide Production of Volatile Organic Compounds

Volatile organic compounds (VOCs; lipophilic in nature) are low molecular weight compounds that serve as signals for development and systemic response within the same or neighboring plants (Choudhary et al., 2008; Niinemets, 2010). The PGPR-mediated production of VOCs induces a range of physiological changes in plants that stimulate its growth (increasing shoot biomass) besides inducing systemic resistance to disease and controlling the plant pathogens (Lee et al., 2012; Park et al., 2015; Tahir et al., 2017). VOCs promote the biosynthesis of osmo-protectants such as glycine betaine whose accumulation imparts protection to PS-II besides maintaining the enzymatic activity and the membrane integrity of cells under osmotic stress conditions (Mäkelä et al., 2000; Jagendorf and Takabe, 2001). The VOCs of B. subtilis reduce salt stress through an enhancement in the tissue-specific expression of the HKT1/K+ transporter that enhances nutrient uptake at the root surface while minimizing the influx of Na+ to the roots (Zhang et al., 2008). P. chlororaphis O6 production of 2R, 3R-butanediol prevents water loss by inducing stomatal closures in A. thaliana, thereby imparting tolerance to A. thaliana (Cho et al., 2008). The process is mediated by Aba-1 and OST-1 kinases of jasmonic acid, ethylene, and salicylic acid pathways in plants. An increase in the VOC level on priming wheat plants with B. thuringiensis AZP2 imparts self-protection to the plants that enhances survival (fivefold higher) with higher photosynthesis, resulting in increased biomass under salt stress conditions (Timmusk et al., 2014). VOCs produced by P. simiae up-regulates γ-glutamyl hydrolase, vegetative storage (regulating Na+ homeostasis), and RUBISCO large-chain (associated with an increase in chlorophyll content and, as such, photosynthesis)
proteins that are considered important in eliciting induced systemic resistance in soybean (Glycine max) (Vaishnav et al., 2015). Butanoic acid released by Alcaligenes faecalis strain JBCS1294 attribute salt tolerance to plants via reprogramming of auxin and gibberellin pathways (Bhattarcharyya et al., 2015). A blend of 7-hexanol, 3-methylbutanol, and 2-undecanone was found effective in mimicking VOCs in attributing plant growth effects on inoculation with different bacterial species (Ledger et al., 2016).

Antioxidant Production

Reactive oxygen species (ROS; including superoxide O$_2^-$, hydroxyl radical OH$, hydrogen peroxide H$_2O_2$, etc.), generated as a metabolic by-product in plants, functions primarily as a signaling molecule. Abnormality in the cellular metabolic process of plants growing under stress conditions enhances the production of ROS, which results in DNA damage, changes in redox state, abnormality in protein formation, denaturation of membranous proteins, lipid peroxidation, reduction in membrane fluidity, interference with enzymatic activity, and overall homeostasis of cell that progresses to cell damage and even to plant cell death (Miller et al., 2010; Halo et al., 2015). Under such conditions, both enzymatic (SOD, superoxide dismutase; CAT, catalase; APX, ascorbate peroxidase, etc.) and non-enzymatic antioxidants (GSH, glutathione; tocopherols, ascorbic acid, etc.) play a vital role in neutralizing the ROS and, as such, protect plant cells against oxidative stress (Kim et al., 2014; Kaushal and Wani, 2015). In this regard, PGPRs extend their antioxidant enzyme machinery as protection to plants against oxidative stress. Salt stress induction triggers adaptive response mechanisms, including the accumulation of compatible compounds (organic and inorganic) that decrease the hydraulic conductivity of membranes for reducing cellular osmotic stress (Hasegawa et al., 2000; Munns, 2002a; Abdul-Jaleel et al., 2007). The inoculation of Pseudomonas sp. to basil plants (Ocimum basilicum L.) grown under stress conditions results in increasing the CAT activity, while the application of a microbial consortium (Pseudomonas sp., B. lentus, and A. brasilense) results in enhancement in APX and GPX (Heidari and Golpayegani, 2011). Similarly, tomato seedlings inoculated with Enterobacter spp. showed an increase in APX activity (Sandhya et al., 2010), while the inoculation of PGPR to gladiolus showed an enhancement in SOD and CAT activities (Damodoran et al., 2013). The inoculation of PGPR to Solanum tuberosum grown under stress conditions results in an enhancement in the activity of APX, SOD, CAT, and glutathione reductase (Gururani et al., 2013). The inoculation of B. amyloliquefaciens NBRISN13 (SN13) of rice grown under salinity stress results in an enhancement in chlorophyll content and plant biomass besides increasing proline content and the expression of antioxidant enzymes such as CAT (Nautiyal et al., 2013). An up-regulation in stress-responsive genes associated with proline biosynthesis was observed on treating A. thaliana with Enterobacter sp. (Kim et al., 2014).

The inoculation of microbial consortia (A. nitroguajacolicus strain YB3 and YB5, P. jessenii R62, and P. synxantha R81) to IR-64 variety of rice grown under stress conditions induces and, as such, enhances SOD, peroxidase (POD), CAT, and APX levels (Gusain et al., 2015). A significant increase in the transcription of stress-responsive genes, AtRSA1 (associated with ROS detoxification) and AtWRKY8 (associated with maintenance of ion homeostasis), while reducing the expression of AtVQ9 (negative regulator of AtWRKY8), was observed on inoculating Paeonibacillus yougicensis-to A. thaliana seedlings (Sukweenadhi et al., 2015). The inoculation of maize seedling with B. amyloliquefaciens SQR9 improved the glutathione, POD, and CAT levels besides showing an enhancement in soluble sugar and chlorophyll content (Chen et al., 2016). The physiological effects of the treatment were assessed as enhancement in RBCL (related to photosynthesis), HKT1, and NHX1, -2, and -3 genes. Modulation in the expression of complete gene families associated with abscisic acid (ABA) signaling, ion transport, SOS pathway, and antioxidants was observed on inoculating wheat with salt-tolerant Dietzia natronolimnaea (Bharti et al., 2016). The inoculation of soybean by P. simiae strain AU results in the enhancement of pyrroline-5-carboxylase synthase, associated with the synthesis of proline as part of tolerance to stress conditions (Vaishnav and Choudhary, 2019). The study goes well with previous reports regarding the enhancement in proline content during stress conditions (Ghosh et al., 2018; Patel et al., 2018). The inoculation of Azospirillum lipoferum FK1 of chickpea exhibited enhanced antioxidant enzyme levels besides demonstrating an increase in nutrient uptake and, as such, improvement in its growth and development (El-Esawi et al., 2019). The bacterial consortium of P. fluorescens S3, B. mojavensis S1, and B. pumilis mitigates salt-induced growth inhibition of barley through an enhancement in the water conductance and the nutrient uptake of plants. The inoculation of rice with Trichoderma asperellum and P. fluorescens results in an enhancement in the activity of POD, APX, SOD, and CAT that contributes to the alleviation of salt stress (Singh et al., 2020).

Enzymes and Metabolites of Bacterial Origin

Plant diseases are considered as a major constraint to crop yield. It has been observed that salinity stress contributes to an increase in the susceptibility of plants to attacks by different pathogens (Besri, 1993). As the usage of chemicals in the control of plant pathogens imparts deleterious effects, PGPR emerged as a potential substitute as a biological control strategy in the management of pathogen-associated diseases in plants (Compan et al., 2010; Etesami and Alikhani, 2018). PGPR-based mechanisms employed in the biological control of pathogens include the following:

1. Synthesis of cell-wall-degrading enzymes: The production of hydrolytic enzymes such as cellulases, glucanases, chitinases, protease, etc., hydrolyzing polymeric compounds such as cellulose, hemicellulose, chitin, cell wall proteins, etc., was found capable of inhibiting a variety of plant pathogens (Pal and Gardener, 2006; Mabood et al., 2014; Husson et al., 2017; Vaddepalli et al., 2017). Similarly, protease produced by different PGPR agents was found effective in reducing the infections of Fusarium sp. and M. phaseolina (Dunne et al., 1997;
its function in plants depends on the internal IAA levels (Spaepen and Vanderleyden, 2011; Ilangumaran and Smith, 2010; Tiwari et al., 2011). Tryptophan in root exudates is utilized by rhizobacteria for its conversion through multiple routes to IAA for it to be readily absorbed by plant roots (Jung et al., 2003, 2005). The inoculation of the roots and the leaves as part of its role in the developmental and physiological processes of plants (Wang et al., 2015; Guo et al., 2015; Martínez et al., 2016). The inoculation of Promicromospora sp. SE188. A similar effect (Spaepen and Vanderleyden, 2011; Ilangumaran and Smith, 2017). Complementing the endogenous IAA pool of plants, its function in plants depends on the internal IAA levels (ranging in function from promotion to inhibition of plant growth). Required for cell division and elongation in plants, the inoculation of ST-PGPR P. putida modulated internal IAA pools that resulted in an increase in the growth parameters in cotton plants grown under salinity stress (Yao et al., 2010; Egamberdieva et al., 2017). The inoculation of P. putida, and Stenotrophomonas maltophilia to Coleus plants was found to lead the production of IAA, cytokinin, and gibberellic acid (Patel and Saraf, 2017). The short-term treatment of Enterobacter sp. EJ01 increased the expression of salt stress-responsive genes such as late embryogenesis abundant (RAB18), DRE-binding protein (DREB2b), stress-inducible priming process (MPK3 and MPK6), etc., genes in Arabidopsis thaliana, while increasing the ROS scavenging activity of Solanum lycopersicum grown under salinity stress (Ilangumaran and Smith, 2017). The inoculation of halotolerants was found to be associated with an increase in the secretion of salicylic acid that leads to an enhancement in the growth of sunflower plant (Tewari and Arora, 2018). The inoculation of Leclercia decarboxylata MO1 in Solanum lycopersicum showed an improvement in chlorophyll fluorescence besides increasing sugar synthesis and the production of organic acids (Kang et al., 2019).

Cytokinin (CK) is another important class of phytohormones that assists plants in growth and development and in attributing resistance to different stresses (O’Brien and Benková, 2013). Though a common trait of PGPRs, they suffice plants of CK by either synthesizing it or altering its homeostasis in plants (Dodd et al., 2010; Pallai et al., 2012; Kapoor and Kaur, 2016). The inoculation of Pseudomonas sp. (P. aurantiaca and P. extremorientalis TSAU6 and TSAU20) results in alleviating the salinity-induced dormancy of wheat seeds besides enhancing their growth under salinity stress conditions (Egamberdieva, 2009). The inoculation of B. subtilis strain in Platycladus orientalis and lettuce plant showed an enhanced root-to-shoot signaling of CK, thereby improving plant growth under stress conditions (Arkhhipova et al., 2007; Liu et al., 2013). The ability of PGPRs to synthesize CK highlights their importance in stimulating plant growth.

Gibberellins (GA) constitute another important class of phytohormones that play an important role in regulating cell division and elongation and in regulating meristemetic activity at the roots and the leaves as part of its role in the developmental and physiological processes of plants (Gohel et al., 2004). The biocatalytic potential of chitinase produced by Paenibacillus illinoiensis spp. provides protection against blight and damping off diseases in pepper (Capsicum annuum) caused by Phytophthora capsica and Rhizoctonia solani (Jung et al., 2003, 2005). Chitinase produced by B. subtilis BSK17 for utilizing them as a source of carbon is of prime importance as it forms a major enzyme group capable of degrading the chitin and laminarin components of fungal cell walls (Kumar et al., 2012; Dubey et al., 2014).

(2) Synthesis of antimicrobial metabolites: With maximum reports from Bacillus and Pseudomonas genera, the production of a wide range of metabolites was found to restrict the growth of pathogens (Couillerot et al., 2009; Olanrewaju et al., 2017).

(3) HCN production by Pseudomonas sp., Bacillus sp., Rhizobium, etc., was found capable of inhibiting cytochrome C oxidase along with other metalloenzymes (Nandi et al., 2017).

(4) The synthesis of siderophores by different PGPR strains possessing a high affinity for Fe^3+ ions chelates it and, as such, deprives pathogens of this essential mineral (Shen et al., 2013; Olanrewaju et al., 2017).

(5) Prime plants for induction of induced systemic resistance that imparts a faster and stronger response to attacks by different pathogens (Olanrewaju et al., 2017).

Maintenance of Hormonal Balance

Phytohormones regulating plant growth and developmental processes attributes plants protection by imparting tolerance to cope up with diverse changes in the environment (Ryu and Cho, 2015). The exogenous application of phytohormones supplementing the internal hormonal pool was found effective in counteracting the deleterious effects of salt stress (Zahir et al., 2010). The exogenous application of indole-3-acetic acid (IAA) was found effective in stimulating the growth of roots and leaves, thereby alleviating salinity-induced reduction in plant productivity (Albacete et al., 2008; Dodd and Perez-Alfocea, 2012). Diminishing the endogenous hormonal level, metabolites, hormones, and enzymes produced by salt-tolerant (ST) PGPR complements the hormonal status of plants and, as such, contributes to the enhancement of salt tolerance in plants grown under salt stress (Egamberdieva and Kucharova, 2009; Ilangumaran and Smith, 2017). A common trait of PGPR, production of IAA, was found to increase the fitness of plants grown under salinity stress (Dodd et al., 2010; Tiwari et al., 2011). Tryptophan in root exudates is utilized by rhizobacteria for its conversion through multiple routes to IAA for it to be readily absorbed by plant roots (Spaepen and Vanderleyden, 2011; Ilangumaran and Smith, 2017). Complementing the endogenous IAA pool of plants, its function in plants depends on the internal IAA levels (ranging in function from promotion to inhibition of plant growth). Required for cell division and elongation in plants, the inoculation of ST-PGPR P. putida modulated internal IAA pools that resulted in an increase in the growth parameters in cotton plants grown under salinity stress (Yao et al., 2010; Egamberdieva et al., 2017). The inoculation of P. putida, and Stenotrophomonas maltophilia to Coleus plants was found to lead the production of IAA, cytokinin, and gibberellic acid (Patel and Saraf, 2017). The short-term treatment of Enterobacter sp. EJ01 increased the expression of salt stress-responsive genes such as late embryogenesis abundant (RAB18), DRE-binding protein (DREB2b), stress-inducible priming process (MPK3 and MPK6), etc., genes in Arabidopsis thaliana, while increasing the ROS scavenging activity of Solanum lycopersicum grown under salinity stress (Ilangumaran and Smith, 2017). The inoculation of halotolerants was found to be associated with an increase in the secretion of salicylic acid that leads to an enhancement in the growth of sunflower plant (Tewari and Arora, 2018). The inoculation of Leclercia decarboxylata MO1 in Solanum lycopersicum showed an improvement in chlorophyll fluorescence besides increasing sugar synthesis and the production of organic acids (Kang et al., 2019).

Cytokinin (CK) is another important class of phytohormones that assists plants in growth and development and in attributing resistance to different stresses (O’Brien and Benková, 2013). Though a common trait of PGPRs, they suffice plants of CK by either synthesizing it or altering its homeostasis in plants (Dodd et al., 2010; Pallai et al., 2012; Kapoor and Kaur, 2016). The inoculation of Pseudomonas sp. (P. aurantiaca and P. extremorientalis TSAU6 and TSAU20) results in alleviating the salinity-induced dormancy of wheat seeds besides enhancing their growth under salinity stress conditions (Egamberdieva, 2009). The inoculation of B. subtilis strain in Platycladus orientalis and lettuce plant showed an enhanced root-to-shoot signaling of CK, thereby improving plant growth under stress conditions (Arkhhipova et al., 2007; Liu et al., 2013). The ability of PGPRs to synthesize CK highlights their importance in stimulating plant growth.

Gibberellins (GA) constitute another important class of phytohormones that play an important role in regulating cell division and elongation and in regulating meristemetic activity at the roots and the leaves as part of its role in the developmental and physiological processes of plants (Wang et al., 2015; Guo et al., 2015; Martínez et al., 2016). Bottini et al. reported the production of gibberellin by PGPR strains of B. licheniformis, B. pumilis, and Azospirillum spp. (Bottini et al., 2004). Being a key factor associated with the inhibition of plant growth under stress conditions, PGPRs were found to enhance its levels in plants, thereby attributing a tolerance mechanism to plants for growth under salinity stress (Kang et al., 2014a; Martínez et al., 2016; Shahzad et al., 2016). Kang et al. (2014a) reported enhancement in the internal GA pools on inoculating plants with B. cereus MJ-1 and Promicromospora sp. SE188. A similar effect of regulating plant growth and development was observed on inoculating plants with B. aryabhattaii SRB02 (Park et al., 2017). The inoculation of P. aeruginosa PM389 and ZNP1 together with B. endophyticus J13 and B. tequilensis J12 results in the alleviation of the stress-induced effects in A. thaliana (Ghosh et al., 2019).
Abscisic acid is a stress hormone primarily known for its role in the abscission of leaves and growth of plants. Synthesized under water deficit conditions, it triggers an adaptive response via the activation of a set of genes responsible for stress resistance as part of its survival strategy for the plants (Pliego et al., 2011; Sah et al., 2016). Its synthesis in the roots that occurs in response to low water potential triggers the growth of roots and the emergence of lateral roots, contributing to the enhancement in the uptake of water at the root surface (Vaishnav et al., 2016b). Simultaneously, its translocation from roots to leaves progresses with the control of the stomatal closure events toward regulation of water loss by reducing transpiration at the leaf surface (Yamaguchi-Shinozaki and Shinozaki, 1994; Dodd and Perez-Alfocea, 2012; Kaushal and Wani, 2015). PGPRs capable of producing ABA play an important role in plant–PGPR interactions (Dodd, 2003; Naz et al., 2009; Dodd et al., 2010). They either modulate the biosynthesis of ABA or regulate ABA-mediated signaling pathways in plants, thereby contributing to the growth and survival of plants under salinity stress. The inoculation of PGPRs often mitigate the sensitivity of plants to water scarcity by decreasing its accumulation at the roots and significantly altering its long-distance signaling, i.e., shoot-to-root or vice versa flow through the phloem and the xylem, respectively (Dodd and Perez-Alfocea, 2012; Jiang et al., 2012; Belimov et al., 2014). The inoculation of Phyllobacterium brassicacearum STM196 results in an enhancement of the ABA levels that reduces transpiration at the leaf surface and, as such, enhances salt stress tolerance in A. thaliana (Bresson et al., 2013). A few species of PGPR (Rhodococcus sp. and Novosphingobium sp.) inhabiting rhizospheric regions capable of metabolizing ABA under in vitro conditions represent another stress-relieving mechanism for plants (Belimov et al., 2014). The inoculation of plants with ABA-producing PGPRs (P. fluorescens Rt6M10, A. brasilense SP245, and B. licheniformis Rt4M10) results in enhancement in internal ABA pools, thereby increasing plant growth under salinity stress conditions (Salomon et al., 2014; Cohen et al., 2015). A study reported that PGPR stimulated the production of endogenous ABA in plants, relieving them of the effects of being grown under salinity stress (Forni et al., 2017). Both ABA synthesizing and metabolizing PGPRs are capable of modulating the internal ABA status of plants and, as such, are capable of relieving plants to show normal growth even under salinity stress conditions.

Apart from ABA, the synthesis of another stress hormone, ethylene, was found to improve tolerance or expedite senescence (Morgan and Drew, 1997). Ethylene, a gaseous hormone, significantly enhances the response of plants to stress conditions. Acting as a negative regulator of plant growth, ethylene induces its effects by reducing the growth of roots and modulating the nitrogen-fixing capability of plants (Ma et al., 2002; Mahajan and Tuteja, 2005; Gamalero and Glick, 2015). As ethylene-mediated inhibition of the auxin response factor constraints the growth of plants, secretion of 1-aminocyclopropane-1-carboxylase (ACC) deaminase by PGPR hampers its synthesis in plants (Glick et al., 2007). ACC deaminase secretion by PGPR metabolizes ACC (precursor of ethylene in plants) into α-ketoglutarate and ammonia besides altering the expression of genes encoding ACC synthase and ACC oxidase, which are involved in the synthesis of ethylene (Etesami and Beattie, 2017). ACC deaminase-producing strains of P. fluorescens and Enterobacter spp. produced a significant effect in increasing the yield of maize grown under salt stress conditions (Nadeem et al., 2009; Panwar et al., 2016). The inoculation of Pantoea dispersa PSB3 to chickpea results in an enhancement in IAA and ACC deaminase production, which led to an improvement in pod size, seed weight, seed number, and altogether plant biomass (Panwar et al., 2016). The plants were also observed to have a higher K+/Na+ ratio, owing to a reduction in electrolyte leakage and a decreased uptake of Na+ besides leading to an increase in leaf water and chlorophyll content and enhancement in K+ uptake.

CONCLUSION AND FUTURE PERSPECTIVES

Though much progress has been made in understanding the different attributes of plant–microbe interactions and in formulating methodologies for crops grown under salinity stress, we still lag behind in achieving sustainability in plant productivity. With rising emphasis on environmental protection and sustainability in agriculture for food security, the timely mitigation of the adverse effects of different stresses, in a cost-effective manner, is required. For this to be realized, it becomes imperative to explore novel aspects of the plant-beneficial soil microbiota in relieving plants of stressful conditions. Microbiota from diversified environments needs characterization and exploration in terms of their acclimatization, in-depth knowledge of their ameliorative strategies for growth under stress conditions, and in acquiring knowledge of the intriguing mechanisms commonly employed in attributing plants with a potential to thrive in harsh edaphic conditions. As the efficiency of the microbiota depends on soil characteristics and plant species, a better understanding of plant–microbial interactions in the context of manipulation of stress-responsive genes in plants need further elucidation in terms of revealing their functionalities toward boosting plant defense and attaining enhancement in overall productivity. As the soil microbiota provides beneficial attributes to plants in withstanding salinity stress, newer prospects of understanding in the operational module of regulatory network-mediated plant defense in achieving tolerance against different stresses need to be undertaken in a timely manner. The same goes in terms of prospects of developing novel bioinoculants that could enhance the stability of crops grown under stress conditions and, as such, increase their productivity when grown in nutritionally poor agroecosystems. In addition to the screening and the optimization of PGPR strains for plant-beneficial characteristics under changing environmental conditions, the CRISPR/Cas approach in editing interactive networks of stress-responsive genes needs to be undertaken for their profound effect (metabolic, regulatory, and signaling) in...
overcoming stress and inducing tolerance in plants and their interacting partners toward attaining sustainability in agriculture production.

AUTHOR CONTRIBUTIONS

Aj and SR conceived the idea. All authors contributed equally in generating the draft of the different sections and in the repeated editing of the contents present in the finalized version of the manuscript.

REFERENCES

Abdul-Jaleel, C., Maniavannan, P., Sankar, B., Kishorekumar, A., Gopi, R., Somasundaram, R., et al. (2007). Water deficit stress mitigation by calcium chloride in Catharanthus roseus: effects on oxidative stress, proline metabolism and indole alkaloid accumulation. *Colloids Surf. B* 60, 110–116. doi: 10.1016/j.colsurfb.2007.06.006

Acosta-Motos, J., Ortúñio, M., Bernal-Vicente, A., Díaz-Vivancos, P., Sanchez-Blanco, M., and Hernandez, J. (2017). Plant responses to salt stress: adaptive mechanisms. *Agronomy* 7(18). doi: 10.3390/agronomy7010018

Ahmed, E., and Holstrom, S. J. (2014). Siderophores in environmental research: roles and applications. *Microb. Biotechnol.* 7, 196–208. doi: 10.1111/1751-7915.12117

Akhtar, M. J., Ullah, S., Ahmad, I., Rauf, A., Mahmood Nadeem, S., and Bashan, Y. (2014). Mitigation of salt stress in wheat by seedling in a gfp-tagged Azospirillum lipoferum. *Biol. Fertil. Soils* 40, 188–193.

Bacillo, M., Rodriguez, H., Moreno, M., Hernandez, J. P., and Bashan, Y. (2004). Plant growth-promoting rhizobacteria (PGPR) on arsenic accumulation and the growth of rice plants (*Oryza sativa L.*). *Chemosphere* 242:125136. doi: 10.1016/j.chemosphere.2019.125136

Azza Mazher, A. M., Fatma El-Quesni, E. M., and Farahat, M. M. (2007). Responses of ornamental plants and woody trees to salinity. *World J. Agric. Sci.* 3, 386–395.

Bashan, Y., and de-Las, S., and Adhya, T. K. (2013). Isolation of ACC deaminase containing *Azospirillum* for increasing nodulation and mycorrhization in *Lupinus albus L.*. *Front. Microbiol.* 7:867.

Blanc, H. B., Nayak, L., Das, S., and Adhya, T. K. (2013). Isolation of ACC deaminase-containing *Azospirillum lipoferum* for extending help in getting the manuscript finalized.

The authors would like to thank Dr. Khursheed Ahmad, Mr. Asif Iqbal Jan, and Mr. Zaid Qureshi for their timely suggestion and extending help in getting the manuscript finalized.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Khursheed Ahmad, Mr. Asif Iqbal Jan, and Mr. Zaid Qureshi for their timely suggestion and extending help in getting the manuscript finalized.

Asghar, M. (2004). Some important physiological selection criteria for salt tolerance in plants. *Flora* 199, 361–376. doi: 10.1063/2530–0016

Ashraf, M., Hannain, S., Berge, O., and Mahmood, T. (2004). Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. *Biol. Fertil. Soils* 40, 157–162.

Ashraf, M., Hannain, S., Berge, O., and Mahmood, T. (2004). Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. *Biol. Fertil. Soils* 40, 157–162.

Aslam, F., and Ali, B. (2018). Halotolerant bacterial diversity associated with *Suaeda fruticosa* (L.) forssk. improved growth of maize under salinity stress. *Agronomy* 8:131. doi: 10.3390/agronomy8080131

Atouei, M. T., Pourbabaee, A. A., and Sharaf, M. (2019). Alleviation of salinity stress on some growth parameters of wheat by exopolysaccharide-producing bacteria. *Iran. J. Sci. Technol. Trans. A Sci.* 43, 2725–2733. doi: 10.1007/s40959-019-00753-x

Aw, X., Li, Z., We, L., and Zh, Y. (2019). The effect of plant growth-promoting rhizobacteria (PGPR) on arsenic accumulation and the growth of rice plants (*Oryza sativa L.*). *Chemosphere* 242:125136. doi: 10.1016/j.chemosphere.2019.125136

Azza Mazher, A. M., Fatma El-Quesni, E. M., and Farahat, M. M. (2007). Responses of ornamental plants and woody trees to salinity. *World J. Agric. Sci.* 3, 386–395.

Bach, E., Seger, G. D. S., Fernandes, G. C., Lisboa, B. B., and Passaglia, L. M. P. (2016). Evaluation of biological control and rhizosphere competence of plant growth-promoting bacteria. *Appl. Soil Eco.* 99, 141–149. doi: 10.1016/j.apsoil.2015.11.002

Bacillo, M., Rodriguez, H., Moreno, M., Hernandez, J. P., and Bashan, Y. (2004). Mitigation of salt stress in wheat by seedling in a gfp-tagged Azospirillum lipoferum. *Biol. Fertil. Soils* 40, 188–193.

Barker, R., Okem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., et al. (2018). Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. *Front. Plant Sci.* 9:4173. doi: 10.3389/fpls.2018.04173

Bakshandeh, E., Gholamhosseini, M., Taghoughian, Y., and Piridashi, H. (2020). Plant growth promoting microorganisms can improve germination, seedling growth and potassium uptake of soybean under drought and salinity stress. *Plant Growth Regul.* 90, 123–136. doi: 10.1007/s10723-019-00556-5

Bal, H. B., Nayak, L., Das, S., and Adhya, T. K. (2013). Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. *Plant Soil* 366, 93–105. doi: 10.1007/s11104-012-1402-5

Balsanelli, E., de Baura, V. A., Pedrosa, F., de Souza, E. M., and Monteiro, R. A. (2016). Evaluation of biological control and rhizosphere competence of plant growth-promoting bacteria. *Appl. Soil Eco.* 99, 141–149. doi: 10.1016/j.apsoil.2015.11.002

Bano, A., and Fatima, M. (2009). Salt tolerance in *Zea mays* (L.), following inoculation with *Rhizobium* and *Pseudomonas*. *Biol. Fertil. Soils* 45, 405–413. doi: 10.1007/s00374-008-0344-9

Baral, A., Shruthi, K. S., and Mathew, M. K. (2015). Vesicular trafficking and salinity responses in plants. *IJUBM Life* 67, 677–686. doi: 10.1002/ijub.1425

Barnawal, D., Bharti, N., Maji, D., Chanotiya, C. S., and Kalra, A. (2014). Exopolysaccharide biosynthesis enables mature biofilm formation on abiotic surfaces by *Herbaspirillum seropedicae*. PLoS One 9:e110392. doi: 10.1371/journal.pone.0110392

Bhat et al. PGPR in Salinity Stress

PGPR in Salinity Stress

Frontiers in Microbiology | www.frontiersin.org 13 August 2020 | Volume 11 | Article 1952
Beattie, G. A. (2015). Microbiomes: curating communities from plants. *Nature* 528, 340–341. doi: 10.1038/nature16319

Belimov, A. A., Dodd, I. C., Safronova, V. I., Dumova, V. A., Shaposhnikov, A. I., Ladatko, A. G., et al. (2014). Absciscic acid metabolizing rhizobia decrease ABA concentrations in plants and alter plant growth. *Plant Physiol. Biochem.* 74, 84–91. doi: 10.1016/j.phyto.2013.10.032

Bell, C. W., Asao, S., Calderon, F., Wolk, B., and Wallensten, M. D. (2015). Plant nitrogen uptake drives rhizosphere bacterial community assembly during plant growth. *Soil Biol. Biochem.* 85, 170–182. doi: 10.1016/j.soilbio.2015.03.006

Berendsen, R. L., Pieterse, C. M. J., and Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. *Trends Plant Sci.* 17, 478–486. doi: 10.1016/j.tplants.2012.04.001

Besri, M. (1993). “Effects of salinity on plant diseases development,” in *Towards the Rational Use of High Salinity Tolerant Plants*, eds H. Lieth, and A. A. Al Masoom (Dordrecht: Springer), 67–74. doi: 10.1007/978-94-011-1866-6_8

Bhart et al. (2019). Evaluation of ACC-deaminase-producing rhizobacteria to alleviate water-stress impacts in wheat (*Triticum aestivum* L.). *Ann. Bot.* 113, 969–983. doi: 10.1093/annbot/mbz065

Bhattacharyya, P. N., and Jha, D. K. (2012). Plant growth-promoting rhizobacteria and their actual promotion effect on growth of barley (*Hordeum vulgare* L.). *Agron. Sci.* 7, 5082–5089. doi: 10.1186/s13105-014-0494-3

Bhattacharyya, D., Yu, S. M., and Lee, Y. H. (2010). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. *Soil Biol. Biochem.* 42, 669–678. doi: 10.1016/j.soilbio.2009.11.024

Couillard-O, P., Prigent-Combaret, C., Caballero-Mellado, J., and Moënne-Loccoz, Y. (2009). *Pseudomonas* fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. *Lett. Appl. Microbiol.* 48, 505–512. doi: 10.1111/j.1472-7574.2009.02566.x

Creus, C. M., Sueldo, R. J., and Barassi, C. A. (2004). Water relations and yield in *Azospirillum*-inoculated wheat exposed to drought in the field. *Can. J. Bot.* 82, 273–281. doi: 10.1139/b03-119

Damodaran, T., Sah, V., Rai, R., Sharma, D., Mishra, V., Jha, S., et al. (2013). Isolation of salt tolerant endophytic and rhizospheric bacteria by natural selection and screening for promising plant growth-promoting rhizobacteria (PGPR) and growth vigour in tomato under sodic condition. *Afr. J. Microbiol. Res.* 7, 5082–5089.

Danish, S., Zafar-ul-Hye, M., Mohsin, F., and Hussain, M. (2020). ACC-deaminase producing plant growth-promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. *PloS One* 15:e0230615. doi: 10.1371/journal.pone.0230615

Dardanelli, M. S., Fernández de Córdoba, F. J., Espuny, M. R., Rodríguez Carvajal, M. A., Soria Díaz, M. E., Gil Serrano, A. M., et al. (2008). Effect of *Azospirillum brasilense* inoculation on **Phaeosphaeria** forage flavonoids and Nod factor production under salt stress. *Soil Biol. Biochem.* 40, 2713–2721. doi: 10.1016/j.soilbio.2008.06.016

Davenport, R., James, R. A., Zakrisson-Plogander, A., Tester, M., and Munns, R. (2005). Combined inoculation with *Azospirillum* and *PS01* induces salt tolerance in Arabidopsis thaliana to drought mainly via enhancement of ABA levels. *Physiol. Plant.* 153, 79–90. doi: 10.1111/pp.12221

Colmer, T. D., Muhiz, R., and Flowers, T. J. (2005). Improving salt tolerance of wheat and barley: future prospects. *Aust. J. Exp. Agric.* 45, 1425–1443.

Compton, S., Clément, C., and Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. *Soil Biol. Biochem.* 42, 669–678. doi: 10.1016/j.soilbio.2009.11.024

Coombe, H., Beresford, P., and Devasagayam, T. A. (2003). Transcriptome analysis of radial growth in bacterial endophytes. *Plant Physiol. Biochem.* 41, 497–503. doi: 10.1016/j.micres.2003.06.007

Chaves, M. M., Flexas, J., and Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. *Ann. Bot.* 103, 551–560. doi: 10.1093/aob/mcm125

Chen, L., Liu, Y., Wu, G., Veronican Njeri, K., Shen, Q., Zhang, N., et al. (2016). Induced maize salt tolerance by rhizosphere inoculation of *Bacillus amyloliquefaciens* SQR9. *Plant Physiol.* 158, 34–44. doi: 10.1104/pp.158.012441

Cho, S., Kang, B., Han, S., Anderson, A., Park, J.-Y., Lee, Y.-H., et al. (2008). *2R,3R*-butanediol, a bacterial volatile produced by *Pseudomonas* chlororaphis O6, is involved in induction of systemic tolerance to drought in *Arabidopsis thaliana*. *Mol. Plant Microbe Interact.* 21, 1067–1075. doi: 10.1094/mpmi-21-8-1067

Choudhary, D., Johri, B., and Prakash, A. (2008). Volatiles as priming agents that initiate plant growth and defence responses. *Curr. Sci.* 94, 595–604.

Chu, T. N., Tran, B. T. H., Van Bui, L., and Hoang, M. T. T. (2019). Plant growth-promoting rhizobacterium *Pseudomonas* PS01 induces salt tolerance in *Arabidopsis thaliana*. *BMC Res. Notes* 12:111. doi: 10.1186/s13104-019-4046-1

Cohen, A. C., Bottini, R., Pontin, M., Berli, F. J., Moreno, D., Bocanondo, H., et al. (2015). *Azospirillum brasilense* ameliorates the response of *Arabidopsis thaliana* to drought mainly via enhancement of ABA levels. *Physiol. Plant.* 153, 79–90. doi: 10.1111/pp.12221
Dunne, C., J. J., Moenne-Loccoz, Y., Dowling, D. N., de Bruijn, F. J., and O’Gara, F. (1997). Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. *Microbiology* 143, 3921–3931. doi: 10.1099/00221287-143-12-3921

Dutta, S., and Khurana, S. M. P. (2015). "Plant growth-promoting rhizobacteria for alleviating abiotic stresses in medicinal plants," in *Plant Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants*, eds D. Egamberdieva, S. Shrivastava, and A. Varma (Berlin: Springer), 167–200. doi: 10.1007/978-3-319-13401-7_8

Egamberdieva, D. (2009). Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. *Acta Physiol. Plant.* 31, 861–864. doi: 10.1007/s11738-009-0297-0

Egamberdieva, D. (2011). Survival of *Pseudomonas extremorientalis* TSAU20 and *P. chlororaphis* TSAU13 in the rhizosphere of common bean (*Phaseolus vulgaris*) under saline conditions. *Plant Soil Environ.* 57, 122–127. doi: 10.17221/316/2010-pse

Egamberdieva, D., and Kucharova, Z. (2009). Selection for root colonising bacteria stimulating wheat growth in saline soils. *Biol. Fertil. Soils* 45, 561–573.

Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S. D., Mishra, J., and Arora, N. K. (2019). Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. *Front. Microbiol.* 10:2791. doi: 10.3389/fmicb.2019.02791

Egamberdieva, D., Wirth, S., Jabborini, D., Rasâenã, L. A., and Liao, H. (2017). *Pseudomonas extremorientalis* TSAU20 and *Pseudomonas aureofaciens* NM44 promote plant growth under saline conditions. *Plant Soil Environ.* 63, 379–387. doi: 10.17221/63/2017-pse

El-Esawi, M. A., Al-Ghamdi, A. A., Ali, H. M., and Alayafi, A. A. (2019). *Azospirillum brasilense* and *A. lipoferum* FK1 confers improved salt tolerance in chickpea (*Cicer arietinum*). *Biol. Fertil. Soils* 55, 55–65. doi: 10.1007/s00216-019-01054-2

Etesami, H., and Beattie, G. A. (2017). "Plant-microbe interactions in adaptation of *Acacia auriculiformis* Brazilian fields." *Appl. Soil Ecol.* 124, 715–720.

Gupta, S., and Pandey, S. (2019). ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French Bean (*Phaseolus vulgaris*) plants. *Front. Microbiol.* 10:1506. doi: 10.3389/fmicb.2019.01506

Guro, M., Ali, S. Z., Sandhya, V., Rasul, A., and Venkatasewarlu, B. (2011). Role of microorganisms in adaptation of agriculture crops to abiotic stresses. *World J. Microbiol. Biotechnol.* 27, 1231–1240. doi: 10.1007/s11274-010-0572-7

Guo, H., Wang, Y., Liu, H., Hu, P., Jia, Y., Zhang, C., et al. (2015). Exogenous GA3 application enhances xylem development and induces the expression of secondary wall biosynthesis related genes in *Betula platyphylla* *S. Saito*. *Front. Plant Sci.* 6:95. doi: 10.3389/fpls.2015.00097

Gusain, Y. S., Singh, U. S., and Sharma, A. K. (2015). Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (*Oryza sativa L.*). *Afri. J. Biotechnol.* 14, 764–773. doi: 10.5897/ab2015.14405
Habib, S. H., Kausar, H., Saud, H. M., Ismail, M. R., and Othman, R. (2016). Molecular characterization of stress tolerant plant growth promoting rhizobacteria (PGPR) for growth enhancement of rice. *Int. J. Agric. Biol.* 18, 184–191. doi: 10.17975/ijab.15.0099

Halter, U., Ishitani, M., and Zhu, J. K. (2000). The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. *Proc. Natl. Acad. Sci. U.S.A.* 97, 3730–3734.

Halo, B. A., Khan, A. L., Waqas, M., Al-Harrasi, A., Hussain, J.,Ali, L., et al. (2015). Endophytic bacteria (Sphingomonas sp. LK11) and gibberellin can improve *Solanum lycopersicum* growth and oxidative stress under salinity. *J. Plant Interact.* 11, 177–125. doi: 10.17975/jpi.2015.11006

Hamdia, M. A. E. S., Shaddad, M. A. K., and Doaa, M. M. (2004). Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. *Plant Growth Regul.* 44, 165–174. doi: 10.1023/b:pgro.0000049414.30099.9b

Hamilton, C. E., Bever, J. D., Labbé, J., Yang, X. H., and Yin, H. F. (2016). Mitigating climate change through managing constructed microbial communities in agriculture. *Agric. Ecosystem. Environ.* 264, 304–308. doi: 10.1016/j.agee.2015.10.006

Han, H. S., and Lee, K. D. (2005). Physiological responses of soybean-inoculation with *Pseudomonas fluorescens* LBUM67 differently increases plant biomass, total oil content and lipid composition in three oilseed crops. *J. Appl. Microbiol.* 128, 1119–1127. doi: 10.1111/j.1365-2672.2005.02688.x

Jung, W. J., An, K. N., Jin, Y. L., Park, R. D., Lim, K. T., Kim, K. Y., et al. (2003). Biological control of damping off caused by *Rhizoctonia solani* using chitinase producing *Pseudomonas fluorescens* KJA-424. *Soil Biol. Biochem.* 35, 1261–1264. doi: 10.1016/s0038-0717(03)00187-1

Jung, W. J., Jin, Y. L., Kim, K. Y., Park, R. D., and Kim, T. H. (2005). Changes in pathogenesis-related proteins in pepper plants with regard to biological control of phytophthora blight with *Pseudomonas fluorescens*. *Biocontrol*, 50, 165–178. doi: 10.1007/s10526-004-0451-y

Kang, S. M., Khan, A. L., Waqas, M., You, Y. H., Kim, J. K., Kim, J. G., et al. (2014a). Plant growth promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in *Cucumis sativus*. *J. Plant. Interact.* 9, 673–682. doi: 10.1080/17429145.2014.895487

Kang, S. M., Radhakrishnan, R., Khan, A. L., Kim, J. M., Park, J. M., Kim, B. R., et al. (2014b). Gibberellin secreting rhizobacterium, *Pseudomonas putida* HK-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. *Plant Physiol. Biochem.* 84, 115–124. doi: 10.1016/j.plaphy.2014.09.001

Kang, S. M., Shahzad, R., Bilal, S., Khan, L. Y.-G., Lee, K.-E., et al. (2019). Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves *Solanum lycopersicum* L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. *BMC Microbiol.* 19:80. doi: 10.1186/s12866-019-1450-6

Kapoor, R., and Kaur, M. (2016). Cytokinins production by fluorescent *Pseudomonas* isolated from rhizospheric soils of Malus and *Pyrus*. *Afr. J. Microbiol.* Res. 10, 1274–1279. doi: 10.5897/ajmr2016.8211

Katermi, W. J., Ungar, I. A., and Mitchell, J. P. (1998). Effect of Salinity on Germination and Seedling Growth of two *Arabidopsis* species (*Chenopodiaceae*). *Ann. Bot.* 82, 167–175. doi: 10.1006/anbo.1998.0663

Katerji, N., van Hoorn, J. W., Mastrorilli, M., and Hamdy, A. (2005). “Crop sensitivity to salinity”, in *Non-ConventionalWater Use*: WASAMED Project, eds A. Hamdy, F. ElGamal, N. Lamaddalena, C. Boglioti, and R. Guelloui (Bari: CHIEAM/EU DG Research), 43–51.

Kaushal, M., and Wani, S. P. (2015). Plant growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. *Ann. Microbiol.* 66, 35–42. doi: 10.1007/s13213-015-1112-3

Kaushal, M., and Wani, S. P. (2016). Rhizobacterial-plant interactions: strategies ensuring plant growth promotion under drought and salinity stress. *Agric. Ecosystem. Environ.* 231, 68–78. doi: 10.1016/j.agee.2016.06.031

Kaymakanova, M. (2009). Effect of salinity on germination and seed physiology in bean (*Phaseolus vulgaris* L.). *Biotechnol. Biotechnol. Equip.* 23, 326–329. doi: 10.1081/BTE-120082109.01818430

Khan, A., Zhao, X. Q., Javed, M. T., Khan, K. S., Bano, A., Shen, R. F., et al. (2016). Bacillus pumilus enhances tolerance in rice (*Oryza sativa* L.) to combined stresses of NaCl and high boron due to limited uptake of Na+. *Environ. Exp. Bot.* 124, 120–129. doi: 10.1016/j.envexpbot.2015.12.011

Khan, M. A., Asaf, S., Khan, A. L., Arjun, A., Rahmatullah, J., Saajid, A., et al. (2019). Halotolerant Rhizobacterial strains mitigate the adverse effects of NaCl stress in soybean seedlings. *Biomed Res. Int.* 2019:9530963.

Khan, N., and Bano, A. (2019). Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions. *PLoS One* 14:e0222302. doi: 10.1371/journal.pone.0222302

Kumar, P., Dubey, R. C., and Maheshwari, D. K. (2012). *Bacillus* strains isolated from rhizosphere showed plant growth promoting and antagonistic activity...
against phytopathogens. *Microbiol. Res.* 167, 493–499. doi: 10.1016/j.micres.2012.05.002

Kumawat, K. C., Sharma, P., Singh, I., Sirari, A., and Gill, B. S. (2019). Co-existence of *Lecleria adaequatoria* (LSE-1) and *Bradyrhizobium* sp. (LSBR-3) in nodule niche for multifaceted effects and profitability in soybean production. *World J. Microbiol. Biotechnol.* 35, 172.

Kurepin, L. V., Park, M. J., Lazarovits, G., and Bernard, M. A. (2015). *Burkholderia phytofirmans*-induced shoot and root growth promotion is associated with endogenous changes in plant growth hormone levels. *Plant Growth Regul.* 75, 199–207. doi: 10.1007/s10725-014-9944-6

Lastochkina, O., Pusenkova, L., Yuldashev, R., Babaev, M., Garipova, S., Blagova, D., et al. (2017). Effects of *Bacillus subtilis* on some physiological and biochemical parameters of *Triticum aestivum* L. (wheat) under salinity. *Plant Physiol. Biochem.* 121, 80–88. doi: 10.1016/j.plaphy.2017.10.020

Ledger, T., Rojas, S., Timmermann, T., Pinedo, I., Poupin, M. J., Garrido, T., et al. (2016). Volatile-mediated effects predominante in *Paraburkholderia phytofirmans* growth promotion and salt stress tolerance of *Arabidopsis thaliana*. *Front. Microbiol.* 7:1838. doi: 10.3389/fmicb.2016.01838

Lee, B., Farag, M. A., Park, H. B., Kloeper, W. J., Lee, S. H., and Ryu, C. M. (2012). Induced resistance by a long-chain bacterial volatile: elicitation of plant systemic defense by a C13 volatile produced by *Pseudomonas putida*. *PLoS One* 7:e48744. doi: 10.1371/journal.pone.0048744

Li, H. Q., and Jiang, X. W. (2017). Inoculation with plant growth-promoting bacteria (PGPB) improves salt tolerance of maize seedling. *R. J. Plant Physiol.* 119, 235–241. doi: 10.1016/j.rjpp.2014.07.008

Li, X., Peng, D., Zhang, Y., Ju, D., and Guan, C. (2020). Klebsiella sp. PD3, a phenanthrene (PHE)-degrading strain with plant growth promoting properties enhances the PHE degradation and stress tolerance in rice plants. *Ecotox. Environ. Saf.* 201:110804. doi: 10.1016/j.ecoenv.2020.110804

Li, Y., Zeng, J., Wang, S., Lin, Q., Ruan, D., Chi, H., et al. (2020). Effects of cadmium-resistant plant growth-promoting rhizobacteria and *Funneliformis mosseae* on the cadmium tolerance of tomato (*Lycopersicon esculentum* L.). *Int. J. Phytoremediat.* 22, 451–458. doi: 10.1080/15229149.2019.1671796

Liu, F., Xing, S., Ma, H., Du, Z., and Ma, B. (2013). Cytokinin-producing, plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. *Plant Physiol. Biochem.* 64, 235–241. doi: 10.1134/s1021443712020078

Mäkelä, P., Kärkkäinen, J., and Somersalo, S. (2000). Effect of glycinebetaine on the response of *Nicotiana tabacum* L. subjected to deficit induced stress. *Biochem. Physiol. Plant.* 130, 139–144. doi: 10.1016/s1021-4437(00)00253-3

Margulis, A. E., Martin, R. G., Bock, F., and Herr, K. (2017). Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield. *Plant Cell Environ.* 38, 1785–1793. doi: 10.1111/pce.12410

Meloni, D. A., Gulotta, M. R., and Martinez, C. A. (2008). Salinity tolerance in *Sclerotinia sclerotiorum* seed germination, growth, ion relations and metabolic responses. *J. Arid Env.* 72, 1785–1792. doi: 10.1016/j.jaridenv.2008.05.003

Miller, G., Suzuki, N., Ciftci-Yilmaz, S., and Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. *Plant Cell Environ.* 33, 453–467. doi: 10.1111/j.1365-3040.2009.02041.x

Mishra, S. K., Khan, M. H., Misra, S., Dixit, V. K., Gupta, S., Sateesh, S. T., et al. (2020). Drought tolerant *Ochrobactrum* sp. inoculation performs multiple roles in maintaining the homeostasis in *Zea mays* L. subjected to deficit water stress. *Plant Physiol. Biochem.* 150, 1–14. doi: 10.1016/j.plaphy.2020.02.025

Misra, S., and Chauhan, P. S. (2020). ACC deaminase-producing rhizosphere competent *Bacillus* sp. mitigate salt stress and promote *Zea mays* growth by modulating ethylene metabolism. *3 Biotech* 10:119.

Nadeem, S. M., Zahir, Z. A., Javaid, A., and Ashraf, M. (2014). The role of mycorrhizal and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. *Biotechnol. Adv.* 32, 429–448. doi: 10.1016/j.biotechadv.2013.12.005

Nadeem, S. M., Zahir, Z. A., Naveed, M., and Arshad, M. (2007). Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. *Can. J. Microbiol.* 53, 1141–1149. doi: 10.1139/w07-081

Nadeem, S. M., Zahir, Z. A., Naveed, M., and Arshad, M. (2009). Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. *Can. J. Microbiol.* 55, 1302–1309. doi: 10.1139/w09-092

Nakhanpote, W., Panitluttumpai, N., Sangdee, A., Sukulpone, N., Sirisom, P., and Pimthong, A. (2014). Salt-tolerant and plant growth-promoting bacteria isolated from *Zea/Cd* contaminated soil: identification and effect on rice under saline conditions. *J. Plant Interact.* 9, 379–387. doi: 10.1080/17429145.2013.842000

Nandi, M., Sein, C., Brawerman, G., Fernando, W. G. D., and de Kievit, T. (2017). *Hydrogen cyanide*, which contributes to *Pseudomonas chlororaphis* strain PA23 biocontrol, is upregulated in the presence of *glycine*. *Biocontrol* 108, 47–54. doi: 10.1016/j.biocontrol.2017.02.008

Naseem, H., and Bano, A. (2014). Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. *J. Plant Interact.* 9, 689–701. doi: 10.1080/17429145.2014.902125

Nautiyal, C. S., Srivastava, S., Chauhan, P. S. P., Seem, K., Mishra, A., and Sopory, S. K. (2013). Plant growth-promoting bacteria *Burkholderia amylolytica* NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. *Plant Physiol. Biochem.* 66, 1–9. doi: 10.1016/j.plaphy.2013.01.020

Naz, I., Bano, A., and Ul-Hassan, T. (2009). Isolation of phytotoxins producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to *Glycine max* L. *Afr. J. Biotechnol.* 8, 5762–5766.
Shahzad, R., Waqas, M., Khan, A. L., Asaf, S., Khan, M. A., Kang, S. M., et al. (2017). Effect of PGPR on enzymatic activities of Selvakumar, G., Panneerselvam, P., and Ganeshamurthy, A. N. (2012). “Bacterial Singh, D. P., Singh, V., Gupta, V. K., Shukla, R., Prabha, R., Sarma, B. K., et al. (2015). Biochemistry and Serratia marcescens in rice (Oryza sativa) under salt stress. Asian J. Plant Sci. Res. 5, 44ñ48. Shah, G., Jan, M., Afreen, M., Anees, M., Rehman, S., Daud, M. K., et al. (2016). A proteomic approach to lipo-chiologcosacharide and thuricin 17 effects on soybean germination unstimmed and salt stress. Microbiol. Res. 172, 7–15. doi: 10.1016/j.micres.2015.01.007 Sultana, S., Paul, S. C., and Karim, M. M. (2018). Salinity intrusion and coastal agriculture: adaptation strategies using salt-tolerant plant-growth promoting rhizobacteria for sustainable food security. Regul. Probl. 21, 58–61. doi: 10.31343/1605-220x-2018-21-3(1)-58-61 Sultana, S., Paul, S. C., Parven, S., Alam, S., Rahman, N., Jannat, B., et al. (2020). Isolation and identification of salt-tolerant plant-growth-promoting rhizobacteria and their application for rice cultivation under salt stress. Can. J. Microbiol. 66, 144–160. doi: 10.1139/cjm-2019-0323 Tahir, H. A. S., Gu, Q., Wu, H., Niu, Y., Huo, R., and Gao, X. (2017). Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Sci. Rep. 7:40841. Takemura, T., Hanagata, N., Sugihara, K., Baba, S., Karube, L, and Dubinsky, Z. (2004). Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquat. Bot. 68, 15–28. doi: 10.1016/j.aquabot.2003.3770(00)00106-6 Tank, N., and Saraf, M. (2010). Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J. Plant Interact. 5, 51–58. doi: 10.1080/17429140903125848 Tanveer, M., and Shah, A. N. (2017). An insight into salt stress tolerance mechanisms of Chenopodium album. Environ. Sci. Pollut. Res. Int. 24, 16531–16535. doi: 10.1007/s11356-017-9337-2 Tester, M., and Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91, 503–527. doi: 10.1093/ajob/mcg058 Tewari, S., and Arora, N. K. (2014). Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocatalysis and stress amelioration in sunflower under saline conditions. Curr. Microbiol. 69, 484–494. doi: 10.1007/s00284-014-0612-x Tewari, S., and Arora, N. K. (2018). Role of salicylic acid from Pseudomonas aeruginosa PF23 in growth promotion of soybean infected with phytopathogen Macrophomina phaseolina. Environ. Sustain. 1, 49–59. doi: 10.1007/s40239-018-0002-6 Timmsusk, S., El-Daim, I. A. A., Copolovici, L., Tanilas, T., Kännaste, A., Behers, L., et al. (2014). Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9:e96086. doi: 10.1371/journal.pone.0096086 Tiwari, P., Kumar, B., Kaur, G., and Kaur, H. (2011). Phytochemical screening and Extraction: a review. Int. Pharm. Sci. 1, 98–106. Ullah, S., and Bano, A. (2015). Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity. Can. J. Microbiol. 61, 307–313. doi: 10.1139/cjm-2014-0668 Upadhyay, S., Singh, J., and Singh, D. (2011). Exopolysaccharide-producing plant growth promoting rhizobacteria under salinity condition. Pedosphere 21, 214–222. doi: 10.1016/s1002-0160(11)60120-3
Upadhayay, S. K., and Singh, D. P. (2015). Effect of salt-tolerant plant growth promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biol. 17, 288–293. doi: 10.1111/plb.12173

Upadhayay, S. K., Singh, D. P., and Saikia, R. (2009). Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr. Microbiol. 59, 489–496. doi: 10.1007/s00284-009-9464-1

Vaddepalli, P., Fulton, L., Wieland, J., Wassmer, K., Schaeffer, M., Ranf, S., et al. (2017). The cell wall-localized atypical β-1, 3 glucanase ZERZAUSt controls tissue morphogenesis in Arabidopsis thaliana. Development 144, 2259–2269. doi: 10.1242/dev.152231

Vaishnav, A., and Choudhary, D. K. (2019). Regulation of Drought-Responsive Gene Expression in Glycine max L. Merrill is Mediated Through Pseudomonas simiae Strain AU. J. Plant Growth Regul. 38, 333–342. doi: 10.1007/s00344-018-9846-3

Vaishnav, A., Kumari, S., Jain, S., Varma, A., and Choudhary, D. K. (2015). Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. J. Appl. Microbiol. 119, 539–551. doi: 10.1111/jam.12866

Vaishnav, A., Kumari, S., Jain, S., Varma, A., Tuteja, N., and Choudhary, D. K. (2016a). PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J. Basic Microbiol. 56, 1274–1288. doi: 10.1002/jobm.201600188

Vaishnav, A., Varma, A., Tuteja, N., and Choudhary, D. K. (2016b). "PGPR-mediated amelioration of crops under salt stress," in Plant-Microbe Interaction: An Approach to Sustainable Agriculture, eds D. Choudhary, A. Varma, and N. Tuteja (Singapore: Springer).

Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255, 571–586.

Wang, G. L., Que, F., Xu, Z. S., Wang, F., and Xiong, A. S. (2015). Exogenous gibberellin altered morphology, anatomic and transcriptional regulatory networks of hormones in carrot root and shoot. BMC Plant Biol. 15:290. doi: 10.1186/s12870-015-0679-y

Wang, W., Vinocur, B., and Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1–14. doi: 10.1007/s00425-003-1105-5

Yamaguchi-Shinozaki, K., and Shinozaki, K. (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251–264. doi:10.1105/tpc.6.2.251

Yan, J. M., Smith, M. D., Glick, B. R., and Liang, Y. (2014). Effects of ACC deaminase containing rhizobacteria on plant growth and expression of Toc GTPaes in tomato (Solanum lycopersicum) under salt stress. Botany 92, 775–781. doi: 10.1139/cb-2014-0038

Yang, A., Akhtar, S. S., Iqbal, M., Naveed, M., Zahir, Z. A., et al. (2016). Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation. Funct. Plant Biol. 43, 632–642.

Yanni, Y., Zidan, M., Dazzo, F., Rizk, R., Mehesen, A., Abdelfattah, F., et al. (2016). Enhanced symbiotic performance and productivity of drought stressed common bean after inoculation with tolerant native rhizobia in extensive fields. Agric. Ecosyst. Environ. 232, 119–128. doi: 10.1016/j.agee.2016.07.006

Yao, L., Wu, Z., Zheng, Y., Kaleem, L., and Li, C. (2010). Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur. J. Soil Biol. 46, 49–54. doi: 10.1016/j.ejsobi.2009.11.002

Yildirim, E., Donmez, M. F., and Turan, M. (2008a). Use of bioinoculants in ameliorative effects on radish plants under salinity stress. J. Plant Nutr. 31, 2059–2074. doi: 10.1080/0190416808246150

Yildirim, E., Turan, M., and Donmez, M. F. (2008b). Mitigation of salt stress in radish (Raphanus sativus L.) by plant growth promoting rhizobacteria. Rom. Biotehnol. Lett. 13, 3933–3943.

You, M., Fang, S., MacDonald, J., Xu, J., and Yuan, Z. C. (2020). Isolation and characterization of Burkholderia cenocepacia CR318, a phosphate solubilizing bacterium promoting corn growth. Microbiol. Res. 233:126395. doi: 10.1016/j.micres.2019.126395

Yuan, S. F., Li, M. Y., Fang, Z. Y., Liu, Y., Shi, W., Pan, B., et al. (2016). Biological control of tobacco bacterial wilt using Trichoderma harzianum amended bio-organic fertilizer and the arbuscular mycorrhizal fungi Glomus mosseae. Biol. Control 92, 164–171. doi: 10.1016/j.biocontrol.2015.10.013

Zafar-ul-Hye, M., Muhammad, H., Zahir, F., Ahmad, Z., Hussain, M., and Hussain, A. (2014). Application of ACC-deaminase containing rhizobacteria with fertilizer improves maize production under drought and salinity stress. Int. J. Agric. Biol. 16, 591–596.

Zahir, Z. A., Shah, M. K., Naveed, M., and Akhter, M. J. (2010). Substrate-dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J. Microbiol. Biotechnol. 20, 1288–1294. doi: 10.4014/jmib.1002.02010

Zarea, M. H., Hajinia, S., Karimi, N., Goltepe, E. M., Rejali, F., and Varma, A. (2012). Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biol. Biochem. 45, 139–146. doi: 10.1016/j.soilbio.2011.11.006

Zeffa, D. M., Fantin, L. H., Koltun, A., de Oliveira, A. L. M., Nunes, M. P. B. A., Canteri, M. G., et al. (2020). Effects of plant growth-promoting rhizobacteria on co-inoculation with Bradyrhizobium in soybean crop: a meta-analysis of studies from 1987 to 2018. PeerJ 8:e7905. doi: 10.7717/peerj.7905

Zhang, H., Kim, M. S., Sun, Y., Dowd, S. E., Shi, H., and Paré, P. W. (2008). Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol. Plant Microbe Interact. 21, 737–744. doi: 10.1094/ mpmi-21-6-0737

Zhang, H., Zhang, Y., Deng, C., Deng, S., Li, N., Zhao, C., et al. (2018). The Arabidopsis Ca2+-Dependent Protein Kinase CPK12 is involved in plant response to salt stress. J. Biol. Chem. 19:4062. doi: 10.3390/mjms1912 4062

Zhu, F., Qu, L., Hong, X., and Sun, X. (2011). Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCW18 from Daqiao Saltern on the coast of Yellow Sea of China. Evid. Based Complement. Altern. Med. 2011:615032.

Zhu, J. K. (2001). Plant salt tolerance. Trends Plant Sci. 6, 66–71.

Zhu, J. K. (2002). Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53, 247–273.

Zhu, J. K. (2007). Plant Salt Stress. Hoboken, NJ: John Wiley & Sons.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Bhat, Kumar, Bhat, Wani, Dar, Farooq, Bhatti, Koser, Rahman and Jan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.