ABSTRACT Bacteriophage StarStruck is a lytic Siphoviridae phage that infects Gordonia terrae 3612. The 68,128-bp genome of StarStruck has a GC content of 65.4% and contains 92 protein-coding genes, including the gene for a HicA-like toxin. StarStruck was assigned to subcluster CR2 based on >35% shared gene content with other cluster CR genomes in the Actinobacteriophage Database.
A 12,000-bp region containing 23 genes. The right arm contains reverse-transcribed genes (gp54 to gp92), including two WhiB family transcription factors (gp56 and gp74), a DnaE-like DNA polymerase (gp61), and a DNA helicase (gp73). StarStruck lacks lysogenic genes such as an integrase and an immunity repressor, indicating that StarStruck is a lytic phage (19).

Like many cluster CR phages, StarStruck encodes a HicA-like toxin (gp7) within the 12,000-bp region separating the small- and large-subunit terminases. Another interesting feature of StarStruck is the location of the lysin B (gp19) within this region, rather than adjacent to the lysin A genes (protease C39 domain [gp49] and glycosyl hydrolase domain [gp50]), which are located downstream of the minor tail proteins.

Data availability. StarStruck is available at GenBank with the accession number ON456333 and the Sequence Read Jhu7 (SRA) accession number SRX14816101.

Acknowledgments
This research was made possible by the Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program of the Howard Hughes Medical Institute. We thank Daniel Russel and Rebecca Garlena for sequencing services and assembly of the StarStruck genome. We are grateful to Geoff Williams at the Brown Bioimaging Facility for providing electron microscopy services. Students are...
grateful for the support of teaching assistants Remi Geohagen, Mathew Cox, Allie Conner, Caitlin Wiafe-Kwakye, Abigail McNally, and Jacob Cote.

Research reported in this project was supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant P20GM103423.

REFERENCES

1. Hatfull GF. 2010. Mycobacteriophages: genes and genomes. Annu Rev Microbiol 64:331–356. https://doi.org/10.1146/annurev.micro.112408.134233.

2. Hatfull GF, Jacobs-Sera D, Lawrence JG, Pope WH, Russell DA, Ko C-C, Weber RJ, Patel MC, Germaine KL, Edgar RH, Hoyle NN, Bowman CA, Tantoco AT, Paladini EC, Myers SM, Smith AL, Grace MS, Pham TT, O’Brien MB, Vogelsberger AM, Hryckowian AJ, Wynalek JL, Donis-Keller H, Bogel MW, Peeples CL, Cresawn SG, Hendrix RW. 2010. Comparative genomic analysis of 60 mycobacteriophage genomes: genome clustering, gene acquisition, and gene size. J Mol Biol 397:119–143. https://doi.org/10.1016/j.jmb.2010.01.011.

3. Jacobs-Sera D, Abad LA, Alvey RM, Anders KR, Aull HG, Bhalla SS, Blumer LS, Bollivar DW, Bonilla JA, Butela KA, Coomans RJ, Cresawn SG, D’Elia T, Diaz A, Divens AM, Edgington NP, Frederick GD, Gainey MD, Garlena RA, Grant KW, Gumney SMR, Hendrickson HL, Hughes LE, Kenna MA, Klyczek KK, Kotturi H, Mavrich TN, McKinney AL, Merkhofer EC, Moberg Parker J, Molloy SD, Monti DL, Pape-Zambito DA, Pollenz RS, Pope WH, Reyna NS, Rinehart CA, Russell DA, Shaffer CD, Sivanathan V, Stoner TH, Stukey J, Sunnen CN, Tolsma SS, Touskas PK, Waller JR, Ware VC, Warner MH, Washington JM, Westover KM, Wiersma-Koch HI, Williams DC, Zack KM, Hatfull GF. 2020. Genomic diversity of bacteriophages infecting Microbacterium spp. PLoS One 15:e0234636. https://doi.org/10.1371/journal.pone.0234636.

4. Pope WH, Mavrich TN, Garlena RA, Guerrero-Bustamante CA, Jacobs-Sera D, Montgomery MT, Russell DA, Warner MH, Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES), Hatfull GF. 2017. Bacteriophages of Gordania spp. display a spectrum of diversity and genetic relationships. mBio 8:e01069-17. https://doi.org/10.1128/mBio.01069-17.

5. Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K, Harris K, Gilmour KC, Soothill J, Jacobs-Sera D, Schooley RT, Hatfull GF, Spencer H. 2019. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med 25:730–733. https://doi.org/10.1038/s41591-019-0437-z.

6. Dyson ZA, Tucci J, Seviour RJ, Petrovski S. 2015. Lysis to kill: evaluation of the lytic abilities, and genomics of nine bacteriophages infective for Gordonia spp. and their potential use in activated sludge sludge biocontrol. PLoS One 10:e0134512. https://doi.org/10.1371/journal.pone.0134512.

7. Poxleitner M, Pope W, Jacobs-Sera D, Sivanathan V, Hatfull G. 2018. Phage discovery guide. Howard Hughes Medical Institute, Chevy Chase, MD.

8. Sambrook J, Russell DW. 2006. Purification of nucleic acids by extraction with phenol:chloroform. Cold Spring Harb Protoc 2006pdb. prot4455. https://doi.org/10.1101/pdb.prot4455.

9. Gordon D, Green P. 2013. Consed: a graphical editor for next-generation sequencing. Bioinformatics 29:2936–2937. https://doi.org/10.1093/bioinformatics/btt515.

10. Cresawn SG, Bogel M, Day N, Jacobs-Sera D, Hendrix RW, Hatfull GF. 2011. Phamerator: a bioinformatic tool for comparative bacteriophage genomics. BMC Bioinformatics 12:395. https://doi.org/10.1186/1471-2105-12-395.

11. Russell DA, Hatfull GF. 2017. PhagesDB: the Actinobacteriophage Database. Bioinformatics 33:784–786. https://doi.org/10.1093/bioinformatics/btx711.

12. Besemer J, Borodovsky M. 2005. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 33:W451–W454. https://doi.org/10.1093/nar/gki487.

13. Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679. https://doi.org/10.1093/bioinformatics/btm009.

14. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389.

15. Krogh A, Larsson B, Von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580. https://doi.org/10.1006/jmbi.2000.4319.

16. Söding J, Biegert A, Lupas AN. 2005. HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248. https://doi.org/10.1093/nar/gki408.

17. Laslett D, Canback B. 2004. ARAGORN, a program to detect tRNA genes in nucleotide sequences. Nucleic Acids Res 32:W244–W248. https://doi.org/10.1093/nar/gki408.

18. Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964. https://doi.org/10.1093/nar/25.5.955.

19. Mageene C, Pope WH, Harrison M, Moran D, Cross T, Jacobs-Sera D, Hendrix RW, Dunbar D, Hatfull GF. 2012. Mycobacteriophage Marvin: a new singleton phage with an unusual genome organization. J Virol 86:4762–4775. https://doi.org/10.1128/JVI.00075-12.