RESEARCH ARTICLE

The scuttle flies (Diptera: Phoridae) of Iran with the description of *Mahabadphora aesthesphora* as a new genus and species

Roya Namaki-Khameneh¹, Samad Khaghaninia ¹, R. Henry L. Disney², Naseh Maleki-Ravasan³*

¹ Faculty of Agriculture, Department of Plant Protection, University of Tabriz, Tabriz, Iran, ² Department of Zoology, University of Cambridge, Cambridge, United Kingdom, ³ Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran

* naseh_maleki@yahoo.com

Abstract

Scuttle flies (Diptera: Phoridae) are mega-diverse and often synanthropic insects that play superb roles in various ecosystems. Identification of this group of insects is challenging due to their small size, morphological identification difficulties, niche diversity, and lack of taxonomic keys. To pave the way, an in-depth investigation was directed toward the scuttle flies in Iran using morphological and molecular data. A dichotomous key was also developed to identify the genus and species of the phorids reported in the country. The faunistic findings revealed the presence of about 22,000 (13,903 male and 8,097 female) phorid materials organized into 11 genera. *Megaselia* species (n = 13768), made up about 99% of the specimens studied. Moreover, 71 morphologically defined species belonging to nine genera were molecularly characterized using COI, 28S rRNA, and Arginine kinase datasets. Excluding four *Megaselia* Rondani, 1856 species, our results specified that morphologically delimited species were in agreement with the molecular analyses inferred from the COI/28S rRNA and COI/Arginine kinase sequences with genetic distances and phylogenetic trees. According to the results of the present study and previously published data, the Phoridae recorded for Iran are a total of 97 species that are ordered in 13 genera and three subfamilies, including Chonocephalinae, Metopininae and Phorinae. By comparing the known world phorid genera, a new monotypic genus of scuttle flies, *Mahabadphora aesthesphora* gen. nov., sp. nov., was identified based on its morphological and molecular characteristics and included in an updated key. Our results could comprehensively determine the taxonomic status of scuttle flies in Iran, scrutinize their phylogenetic structures and facilitate their identification.

Introduction

Scuttle flies (Diptera: Phoridae) are considered as one of the most abundant and diverse families of flies [1]. The adults resembling fruit flies can simply be recognized through the morphological (hump-backed outwards and reduced wing venations) and behavioral (escaping across
a surface rather than flying) characteristics [2]. These flies exploit a wide range of habitats and display miscellaneous feeding patterns from polyphagous saprophages and fungivorous to specialized predators and true parasites or parasitoids [3,4].

Larvae of many species are scavengers on decaying plant and animal organic matters, which are lively attractants to the female insects [5]. Other species are generally malacophagous [6] or parasitic on spiders [7], millipedes [8], and many insect orders, including Lepidoptera, Coleoptera, Hymenoptera, Isoptera etc. [9–12]. They are prominent parasitoids of particular arthropods, as well. For instance, *Pseudacteon* spp. are mainly acknowledged as promising biocontrol agents of *Solenopsis invicta* Buren, 1972, a very aggressive medically important ant [13]. Likewise, *Apocephalus paraponerae* Borgmeier, 1958 is a parasitoid of the giant tropical ant, *Paraponera clavata* (Fabricius, 1775) [14]. The occurrence of the *Megaselia scalaris* Loew, 1866, as a parasitoid of acarine tick *Boophilus microplus* (Canestrini, 1888), is also documented [15,16].

A few phorid species are significant agents of human facultative myiasis. *Megaselia scalaris* Loew, 1866 and *M. spiracularis* Schmitz, 1938 are examples of such species that are the causative agents of wound, ophthalmic, pneumonic, nasal, intestinal, urogenital, and nosocomial myiasis, worldwide [17–25].

Several species might provide valuable entomological facts in crime scene inquiries, particularly for post-mortem interval (PMI) estimations [26]. Due to the minute size, species such as *M. scalaris* can move to every enclosed and concealed environment and may possibly offer more accurate PMI assessments than calliphorid species [27]. The *Conicera tibialis* Schmitz, 1925, known as coffin fly, raises numerous generations in hidden settings, such as coffins or in shallow graves of buried remains [28]. Unlike two mentioned species, *Dohrniphora cornuta* (Bigot, 1857), a globally distributed species, often flies indoors and to burial settings [29]. Besides, the phorid flies can proficiently infest every kind of invertebrate and small vertebrate cultures [30–33]. Therefore, scuttle flies are recognized as insects of environmental, agricultural, medical and forensic significance. However, the detailed life history of most species is still far from entire perception and requires further surveys.

The Phoridae family has currently been classified into four subfamilies (Sciadocerinae, Chonocephalinae, Metopininae, and Phorinae), 260 genera, more than 4000 described species, and many more remain to be described [34,35]. In spite of being one of the largest families of insects in terms of number of know species, Phoridae has much less been studied in comparison with others due to their relatively small size and morphological identification difficulties. DNA profiling clearly arises as the most influential and reliable method for identifying insect individuals in divers taxonomic groups [36–41]. Mito-nuclear molecular markers have chiefly been utilized for the identification of phorid flies with forensic and medical superiorities [25,42]. Nonetheless, inadequate molecular surveys have sometimes been conducted to resolve taxonomic problems in other sets of scuttle flies. For example, mitochondrial and ribosomal RNA genes have been used for phylogenetic analysis of critical genera of Phoridae and related families [43]. Combinations of mitochondrial and nuclear genes have been engaged to assess the monophyly of *Anevrina* Lioy, 1864 and *Dohrniphora* Dahl, 1898 genera in distinct studies [44,45]. The COI and 28S rRNA markers have been utilized to organize *Megaselia*, the most species-rich genus of scuttle flies, at the subgenus level [46]. The mito-nuclear markers of COI/wingless genes have also been utilized to discriminate body size biotypes as well as cryptic species of *Pseudacteon* Coquillett, 1907 [47,48].

The Phorid fauna of Iran has not practically been studied in many areas, and very limited studies have been conducted to identify species with medical [24] and agricultural [49–51] significance. The main objective of the current study was to offer a comprehensive review of the scuttle flies in Iran. This goal was achieved by applying an in-depth survey with the aid of...
combining morphology with molecular data, to identify and validate the scuttle fly species in the country. A morphological identification key of the scuttle flies in the country was developed, as well. Based on the findings, we could detect a new monotypic genus in West Azerbaijan Province relying on its morphological and molecular characteristics.

Materials and methods

Ethics statement

All experiments were performed in accordance with international and institutional ethics guidelines. No specific permissions were required for this study. The study did not involve endangered or protected species.

Study area, sample collections, and morphological studies

Adult insects were captured in a malaise trap and by a standard insect net from grasslands and wetlands in Ardabil, East Azerbaijan, and West Azerbaijan Provinces (Iran), from May to September 2012–2018. Specimens were promptly killed in a potassium cyanide jar and kept in 70% ethanol at 4°C until analysis. Taxonomic sorting of trapped insects and initial identification of phorid flies were accomplished in the Entomology Laboratory of Tabriz University (East Azerbaijan Province). Detailed identification of the flies was carried out by preparing and mounting the specimen slides in Berlese’s medium in the Department of Zoology, University of Cambridge (UK), according to the Disney [52]. The slides were labeled, and pictures from the whole body of each fly were taken using a Nikon SMZ800N stereomicroscope equipped with a Nikon D5200 digital camera. The discriminative features of individual specimens were photographed by the Image Pro-Insight system attached to a compound microscope. The type materials of the new taxa were deposited in the University of Cambridge Museum of Zoology (UCMZ). Duplicate paratypes were used in molecular surveys or were preserved in the Insect Collection of Professor Hasan Maleki Milani (ICHMM), Tabriz, Iran.

Molecular surveys

DNA extraction, PCR amplification, and sequencing. A total of 71 paratypes were subjected for molecular characterizations. Before DNA isolation, adult flies were separately washed thoroughly with 70% ethanol and centrifugation. Total genomic DNA was extracted from the whole body of each fly, using the GeneAll Exgene™ Cell SV Mini Kit (Seoul, Korea) and according to the protocol for animal tissues. DNA concentration was evaluated by measuring the absorbance at 260 nm using a PowerWave XS Microplate Spectrophotometer (BioTek, Vermont, USA). DNA specimens were stored at -20°C until investigation.

Portions of three different loci, including one mitochondrial cytochrome oxidase I (COI; 831 bp) and two nuclear expansion segment D7 of 28S rRNA (28S; 607 bp) and Arginine kinase (AK; 756 bp) genes, were amplified and sequenced using the oligonucleotide primers and thermal profiles specified in Table 1. All PCR amplifications were performed in a 25 μL volume using the Taq DNA Polymerase 2× Master Mix RED from Ampliqon (Denmark), with the subsequent mixtures: 1–2 μL of DNA extract (~0.1 μg), 12.5 μL of Master mix, 1 μL of each primer (10 mM), and 8.5–9.5 μL of sterile water. PCR products were checked via 1.5% agarose gel electrophoresis, followed by GreenViewer staining and photographing using a UV transilluminator. Fruitful amplicons were purified and sequenced at both directions by Genomin Company, Tehran, Iran.

Sequence and phylogenetic relationships analysis. The sequences obtained in this study (n = 143) and those retrieved from GenBank (n = 219 and n = 204) were respectively used to
study genetic diversity in a single mode and also to reconstruct phylogenetic trees in the combined modes (S1 Table). The quality of raw sequences obtained herein was proofread using the Chromas 2.6.6 (Technelysium Pty Ltd., South Brisbane, Australia). The BLAST (Basic Local Alignment Search Tool) search was employed to compare under-investigated sequences. Multiple sequence alignments were conducted by Clustal Omega software [56]. The basic sequence statistics, including polymorphic and parsimony-informative sites, were analyzed by the aid of MEGA X software [57]. Interspecific and inter/intrageneric divergences for the studied gene sets were estimated with the suite of molecular genetic programs embedded in MEGA X using the Kimura two-parameter (K2P) distance model [58]. The combination of COI-28S and COI-AK gene sets was exploited to infer relationships. Phylogenetic relationships were examined using maximum likelihood (ML) and neighbour joining (NJ) algorithms with K2P correction models embedded in MEGA X software. Confidence of internal nodes was assessed by bootstrap analysis with 1,000 replicates. Sequences of the target genes in brachyceran fly species Drosophila melanogaster Meigen, 1830, Glossina morsitans Westwood, 1851 and Musca domestica Linnaeus, 1758 were designated as outgroups. All sequences achieved in this study were deposited in the GenBank database (S1 Table).

Abbreviations: COI: cytochrome oxidase I; 28S: 28S rRNA; AK: Arginine kinase; F: Forward; R: Reverse; bp: base pairs; D: denaturation; A: annealing; E: elongation.

https://doi.org/10.1371/journal.pone.0257899.t001

Locus	Gene & Primer code	Sequence (5' - 3')	Thermal conditions	Product size (bp)	Reference
mitochondrial	COI-F (C1-j-2183)	CAACATTTATTTTGATTTTTTGG			
	COI-R (TL2-n-3014)	CCAATGCATCTCGGATATTA	D: 94˚C for 30 sec; A: 47(52˚C for 40 sec; E: 72˚C for 1 min, 5 cycles 47˚C, 35 cycles 52˚C	~830	[53]
nuclear	28S-F (Rc28p)	TGGTATGGTAGAAGTGTTTGGC			
	28S-R (28E)	CCTTATCCCGAAATTCAG	D: 94˚C for 1 min; A: 53˚C for 1 min; E:72˚C for 2 min, 30 cycles	~600	[54]
	AK-F (AK183F)	GATTCTGGAGTCGGNATYAYGNNCGCGAATG	D: 94˚C for 30 sec; A: 53˚C for 30 sec; E:72˚C for 1 min, 35 cycles	~750	[55]
	AK-R (AK939R)	GCCNCCYTCRGCYTCRGTGTG			

Literature review and providing an identification key. An extensive literature review was conducted based on a search of online scientific databases (Scientific Information Database, PubMed and Google Scholar) to find published reports on phorid flies in Iran before 30th June 2020. Searches were performed in titles, abstracts, keywords, and full texts. Keywords for the search were Phorids AND fauna AND Iran, Iran AND Phoridae, and Iran AND scuttle flies. An updated dichotomous key to all known species of Phoridae in Iran, including specimens from the current study, was subsequently generated.

Nomenclatural acts

The electronic edition of this paper follows to the necessities of the adjusted International Code of Zoological Nomenclature, and therefore the new names included herein are accessible under that Code from the electronic edition of this article. This published paper and the nomenclatural acts it comprises have been registered in ZooBank, the online registration organization for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed through any standard web browser by appending the LSID to the prefix “http://zoobank.org/”. The LSID for this publication is: urn:lsid:zoobank.org:pub:9145941B-10BF-4B27-8B4C-D90006A857B5. The LSIDs of all the publications and species mentioned in the present project are available in the supplementary materials (S2 Table).
The electronic edition of this work was published in a journal with an ISSN, and has been archived and is available from the following digital repositories: PubMed Central, LOCKSS.

Results

Morphological identifications

A total of 22,000 phorid materials, comprising of 13,903 males and 8,097 females, were collected during excursions within six consecutive years. A major part of the faunistic results of the sampled flies in the form of new taxa and records were published in reputable journals [59–64]. The remaining 2,250 specimens, including three genera (*Megaselia* Rondani, 1856, *Metopina* Macquart, 1835 and an unknown genus) and 19 species are herein reported (Table 2). The recent flies were gathered from six locations in East (Chichekli, Shanejan, Sharakhan, and Sufiyan) and West (Khoy and Mahabad) Azerbaijan Provinces. *Megaselia* spp. included *M. angelicae* Wood, 1910; *M. berndseni* (Schmitz, 1919); *M. communiformis* (Schmitz, 1918); *M. hirtiventris* (Wood, 1909); *M. largifrontalis* Schmitz, 1939; *M. longipalpis* (Wood, 1910); *M. pallidizona* (Lundbeck, 1920); *M. perdistans* (Schmitz, 1924); *M. propinqua* (Wood, 1909); *M. pallidizona* (Meigen, 1830); *M. ruficornis* (Meigen, 1830); *M. sandhui* Disney, 1981; *M. stigmatica* (Schmitz, 1920); *M. subpleuralis* (Wood, 1909); *M. spinicincta* (Wood, 1910); *M. tarsalis* (Wood, 1910) and *M. verna* Schmitz, 1932. A species of *Metopina perpusilla* (Six, 1878) was found, as well. To identify the unknown genus/species, the entire known world genera of Phoridae deposited in UCMZ was directly examined.

Description of a new genus and species. Taxonomy

Subfamily Phorinae

Mahabadphora Namaki-Khameneh & Disney n. gen.

LSID: urn:lsid:zoobank.org:act:BB5DCD6D-EFA2-4E34-828A-C34A1438E093

Diagnosis (male). In the key to world genera of the Phoridae [1], it runs to couplet 73 lead 1 *Chaetopleurophora* Schmitz. It is immediately distinguished by its anal tube being very much longer than the epandrium as opposed to being very much shorter. Its globose postpedicels its costal index being less than 0.4 further distinguishes the new genus. It fails to run to *Rhynchomicropteron* Annandale, 1912 in the key to the males. This genus is primarily known from the females, with their greatly reduced wings. However, Lengyel [102] has provided a well illustrated key to a male. His Fig 6 of the very distinctive frons, whose breadth is about twice its length, immediately distinguished from *Mahabadphora*.

Etymology. Named after the city Mahabad (locality of the holotype).

Mahabadphora aesthesphora Namaki-Khameneh & Disney n. sp.

LSID: urn:lsid:zoobank.org:act:4FD302BB-CAF5E2-B2D2-D53F6DF1DCA0

Specification (male). Fig 1A, whole fly. Frons as Fig 1B, without a median furrow, with a pair of short supra-antennal bristles and 4–4 long bristles. Side of thorax as Fig 1C, the mesopleuron with hairs. Antennae, palps, and proboscis as Fig 1D. Scutellum with a pair of long bristles and a pair of short hairs. Abdomen as Fig 1E, the hairs of the tergites being very small and the venter lacking hairs. The left face of hypopygium as Fig 1F and the right face of hypopygium as Fig 2A, being notable for the strong bristles on the epandrium, the small left lobe of the hypandrium and huge right lobe. Front leg as Fig 2B. Middle leg as Fig 2D. Hind femur, tibia, and basitarsus as Fig 2C, the tibia without a dorsal hair palisade and the posterior face of tip of hind tibia as Fig 2E. Very pale wing, basal third of wing as Fig 2F. Wing length 1.44 mm. Costal index 0.31. Costal ratios about 5: 1.3: 1. Costal cilia 0.02 mm long. The single axillary bristle 0.05 mm long. Haltere very pale.
Table 2. List of taxa analyzed in this study, with their collection data, and hierarchical classification, as well as synopsis of their life history.

No.	Subfamily/Species	N (male-female)	Locality	Latitude	Longitude	Altitude (m)	Reference	Life history perspectives
	Chonoccephalinae							
1	*Chonoccephalus heymonsi* Strobe, 1913	—	Fars: Jahrom	28°49' N	53°55' E	1038	[65]	A range of decaying organic materials is exploited by this species [66]. Females oviposit on the edible paddy straw mushroom *Volvariella* (Plutaceae), as well as on rotting *Termitomyces* (Amanitaceae) [1]. It was also reported from bread fruits, *Artocarpus altiss* (Moraceae) [67], a colony of termite *Coptotermes niger* (Brues, 1925), the army ant *Eciton burchelli* and from the detritus from a tree hole [68].
2	*Arabiphora tenuifemorata* Disney, 2006	(1–0)	East Azerbaijan: Sharafkhaneh	38°11.05' N	45°29.52' E	1313	[64]	nd
3	*Iranphora sharafkhanensis* Namaki-Khameneh & Disney, 2021	(1–0)	East Azerbaijan: Sharafkhaneh	37°54.736' N	46°41.617' E	1928	[59]	nd
4	*Gymnophora arcuata* (Meigen, 1830)	(1–2)	East Azerbaijan: Sharafkhaneh	38°51.051' N	45°29.52' E	1406	[62]	Floral visitation [1]. Overwintering adults are found in caves [70,71].
5	*Megasis albacaudata* (Wood, 1910)	(2–0)	East Azerbaijan: Sharafkhaneh	38°00'09'' N	49°20'34'' E	1869	[69]	
6	*Megasis aniffrons* (Wood, 1909)	—	Markazi: Ajabshir region	36°16'55'' N	48°36'51'' E	1662	[69]	It was often found in forests and also on agricultural land [72–76]. The biology of the larvae is unknown; however, adults emerge from April to June [77]. As a multivoltine species, the insect emergence period begins in spring and lasts until autumn [78].
7	*Megasis aculeate* (Schmitz, 1919)	(1–0)	West Azerbaijan: Mahabad	42°43.6' 36°34.16'E	45°12.246' E	968	[61]	nd
8	*Megasis albocingulata* (Strobl, 1906)	(28–0)	East Azerbaijan: Mahabad	43°46.10' N	46°16.001' E	2500	[62]	Floral visitation [1].
9	*Megasis ajabshiriensis* Namaki-Khameneh et al., 2019	(1–0)	East Azerbaijan: Sharafkhaneh	37°31.978' N	46°07.716' E	1662	[63]	nd

(Continued)
No.	Subfamily/Species	N (male-female)	Locality	Latitude	Longitude	Altitude (m)	Reference	Life history perspectives	
10	*Megaselia angustiata* Schmitz, 1936	(1–0) (240–0) (110–0) (20–0)	East Azerbaijan: Zomuz, Zomuzaq region East Azerbaijan: Sharafkhaneh West Azerbaijan: Mahabad West Azerbaijan: Khoy, Pere region	38° 35.369’ N 38° 11.05’ N 36° 34.16’ N 38° 36.722’ N	45° 50.684’ E 45° 29.52’ E 45° 41.21’ E 44° 53.336’ E	11758 11313 11521 11233	[62]	Floral visitation [70].	
11	*Megaselia aradbdensis* Namaki-Khameneh et al., 2019	(10–0)	Ardabil: Meshgin Shahr, Ghiro-Bulax region	38° 18.01’ N 47° 23.02’ E	1803	–	–	nd	
12	*Megaselia angelicae* (Wood, 1910)	(1–0)	West Azerbaijan: Mahabad	36° 34.16’ N	45° 41.21’ E	1521	Current study	Floral visitation [1].	
13	*Megaselia annullipes* (Schmitz, 1921)	(4–0) (28–0)	West Azerbaijan: Khoy, Evghi region East Azerbaijan: Sharafkhaneh	38° 42.436’ N 38° 11.05’ N	45° 12.246’ E 45° 29.52’ E	968 1313	–	nd	
14	*Megaselia barzegarae* Disney, 2012	(9–0) (6–0)	East Azerbaijan: Kandovan region West Azerbaijan: Miandoab region Kermanshah	37° 46.10’ N 36° 56.846’ N 34° 19’21’’ N	46° 16.001’ E 46° 10.015’ E 47° 05’21’’ E	2500 1306 1320	–	Reared from the fruiting bodies of agaric fungi [70].	
15	*Megaselia brevicostalis* (Wood, 1910)	(32–0) (8–0) (5–0) (820–0) (640–0)	West Azerbaijan: Khoy, Evghi region West Azerbaijan: Khoy, Pere region West Azerbaijan: Khoy, Pere region East Azerbaijan: Sharafkhaneh West Azerbaijan: Mahabad	38° 42.436’ N 38° 34.220’ N 38° 36.722’ N 38° 11.05’ N 36° 34.16’ N	45° 12.246’ E 44° 50.896’ E 44° 53.336’ E 45° 29.52’ E 45° 41.21’ E	968 1305 1323 1313 1521	–	Larvae feed on dead insects/snails. Adults visit diverse flowers [70].	
16	*Megaselia brevior* (Schmitz, 1924)	(4–0) (36–0)	East Azerbaijan: Shabestar, Shanejan region East Azerbaijan: Sharafkhaneh	38° 13.85’ N 38° 11.05’ N	45° 42.93’ E 45° 29.52’ E	1664 1313	[62]	Floral visitation [1].	
17	*Megaselia bovista* (Gimmerthal, 1848)	(6–0)	East Azerbaijan: Arasbaran forest, Makid	38° 51.051’ N	46° 54.892’ E	1406	[62]	Oviposition onto the gills of mushroom sporophores [1,80].	
18	*Megaselia berndseni* (Schmitz, 1919)	(11–0) (5–0)	East Azerbaijan: Sharafkhaneh West Azerbaijan: Mahabad	38° 11.05’ N 36° 34.16’ N	45° 29.52’ E 45° 41.21’ E	1313 1521	Current study	Compared to other phorids, larvae have been reported from sporophores of various fungi. Occasional floral visitation by adults [70].	
19	*Megaselia coetanea* Schmitz, 1929	—	Kermanshah: Koohserid Kermanshah	35° 02.38’ N 34° 19’27’’ N	46° 21.00’ E 47° 05’56’’ E	1471 1323	[79]	As a fungivorous fly, it was reared from the fruiting bodies of agaric mushroom, in Iran [70].	
No.	Subfamily/Species	N (male-female)	Locality	Latitude	Longitude	Altitude (m)	Reference	Life history perspectives	
-----	------------------	-----------------	----------	----------	-----------	--------------	-----------	-------------------------	
20	*Megaselia curvicapilla* Schmitz, 1947	(8–0) (2400–0) (16–0)	East Azerbaijan: Zomuz, Mahar region East Azerbaijan: Sharafkhaneh East Azerbaijan: Arasbaran forest, Kaleybar region	38° 39.339' N 38° 11.05' N 38° 51.548' N	45° 55.556' E 45° 29.52' E 46° 59.007' E	2095 1313 1783	[62]	-	
21	*Megaselia chichekliensis* Namaki-Khameneh et al., 2019	(4–0)	East Azerbaijan: Arasbaran forest, Chichekli region	38° 39.899' N 38° 11.05' N	46° 31.248' E	2140	[63]	nd	
22	*Megaselia caveonectergata* Namaki-Khameneh & Disney, 2021	(2–0) (2–0)	East Azerbaijan: Arasbaran forest, Chichekli region East Azerbaijan: Sharafkhaneh	38° 39.899' N 38° 11.05' N	46° 31.248' E 45° 29.52' E	2140 1313	[64]	nd	
23	*Megaselia communiformis* Schmitz, 1918	(5–0) (1–0)	East Azerbaijan: Sharafkhaneh East Azerbaijan: Sufiyan region	38° 11.05' N 38° 17.01' N	45° 29.52' E 46° 10.02' E	1313 1469	Current study	nd	
24	*Megaselia distincta* Namaki-Khameneh & Disney, 2021	(3–0) (1–0)	West Azerbaijan: Mahabad East Azerbaijan: Sharafkhaneh	36° 34.16' N 38° 11.05' N	45° 41.21' E 45° 29.52' E	1521 1313	[64]	nd	
25	Megaselia daemona Bridaroli, 1951	—	Fars: Jahrom	28° 53' N 53° 54' E	1009		[65]	nd	
26	*Megaselia ekkaleybar* Namaki-Khameneh et al., 2019	(3–0)	East Azerbaijan: Arasbaran forest, Kaleybar region	38° 51.548' N	46° 59.007' E	1783	[63]	nd	
27	*Megaselia evogiensis* Namaki-Khameneh et al., 2019	(2–0)	West Azerbaijan: Khoy, Evogi region	38° 42.436' N	45° 12.246' E	968	[63]	nd	
28	*Megaselia fereagarici* Namaki-Khameneh & Disney, 2021	(4–0)	West Azerbaijan: Mahabad	36° 34.16' N	45° 41.21' E	1521	[64]	nd	
29	Megaselia farshi Nekoei & Disney, 2021	(1–0)	West Azerbaijan: Khoy, Pere region	38° 41.719' N	44° 54.041' E	1405	[63]	nd	
30	*Megaselia flavuncrus* Namaki-Khameneh & Disney, 2021	(6–0)	West Azerbaijan: Mahabad	36° 34.16' N	45° 41.21' E	1521	[64]	nd	
31	Megaselia ghalateshahensis Namaki-Khameneh et al., 2019	(1–0)	West Azerbaijan: Mahabad, Ghalate-Shah region	36° 46.01' N	46° 22.37' E	1605	[63]	nd	
32	*Megaselia giraudii* (Egger, 1862)	(18–0) (48–0)	West Azerbaijan: Khoy, Evogi region East Azerbaijan: Sharafkhaneh	38° 42.436' N 38° 11.05' N	45° 12.246' E 45° 29.52' E	968 1313	[61]	-	
33	*Megaselia iraddadi* Namaki-Khameneh et al., 2019	(2–0)	West Azerbaijan: Khoy, Evogi region	38° 42.436' N	45° 12.246' E	968	[63]	nd	(Continued)
No.	Subfamily/Species	N (male-female)	Locality	Latitude	Longitude	Altitude (m)	Reference	Life history perspectives	
-----	-------------------------------------	-----------------	---	----------	-----------	--------------	-----------	--------------------------	
34	*Megaselia halterata* (Wood, 1910)	(2–0)	West Azerbaijan: Khoys, Ewghi region	38°42.436’ N 38°11.05’ N	45°12.246’ E 45°29.52’ E	968 1313	[61]	Larvae as important pest of the button mushrooms in Iran and other areas [84,85]. A phorid with known bionomics in Iran [50].	
35	*Megaselia hejazii* Namaki-Khameneh et al., 2019	(2–0)	West Azerbaijan: Khoys, Ewghi region	38°36.722’ N 38°11.05’ N	45°53.336’ E 45°29.52’ E	968 1313	[63]	nd	
36	*Megaselia hirticaudata* (Wood, 1910)	(1–0)	West Azerbaijan: Khoys, Ewghi region	38°42.436’ N 37°54.736’ N	46°41.617’ E	968 1928	[61]	nd	
37	Megaselia hendersoni Disney, 1979	(1–0)	West Azerbaijan: Khoys, Ewghi region	38°41.719’ N	44°54.041’ E	1405	[61]	nd	
38	*Megaselia hirtiventris* (Wood, 1909)	(1–0)	East Azerbaijan: Sharakhanah	38°11.05’ N	45°29.52’ E	1313 Current study	Fungus-feeding larvae [1].		
39	*Megaselia khoensis* Namaki-Khameneh et al., 2019	(24–0)	West Azerbaijan: Khoys, Ewghi region	38°42.436’ N	45°12.246’ E	968	[63]	nd	
40	Megaselia khoahamniaei Namaki-Khameneh & Disney 2019	(1–0)	West Azerbaijan: Khoys, Ewghi region	38°41.719’ N	44°54.041’ E	1405	[63]	nd	
41	Megaselia kermanshahensis Disney, 2012	—	Kermanshah: Sahne Park	34°19’27” N 34°29’07” N 34°17’12” N 34°58’04” N	47°05’56” E 47°41’39” E 47°03’17” E 47°27’54” E	1323 1401 1461 1805	[79]	As a fungivorous fly, it was reared from the fruiting bodies of agaric mushroom, in Iran [79].	
42	*Megaselia kalebarenensis* Namaki-Khameneh et al., 2019	(47–0)	East Azerbaijan: Arasbaran forest, Kaleybar region West Azerbaijan: Khoys, Ewghi region	38°51.548’ N 38°42.436’ N	46°59.007’ E 45°12.246’ E	1783 968	[63]	nd	
43	*Megaselia longiata* (Wood, 1909)	(1–0)	East Azerbaijan: Arasbaran forest, Kaleybar region West Azerbaijan: Khoys, Ewghi region	38°51.548’ N 38°11.05’ N	46°59.007’ E 45°29.52’ E	1783 1313	[62]	nd	
44	*Megaselia lezona* Namaki-Khameneh et al., 2019	(49–0)	West Azerbaijan: Khoys, Ewghi region	38°42.436’ N	45°12.246’ E	968	[63]	nd	
45	**Megaselia longipalpis** (Wood, 1910)	(4–0)	West Azerbaijan: Mahabad	36°34.16’ N	45°41.21’ E	1521 Current study	nd		
46	*Megaselia largifrontalis* Schmitz, 1939	(1–0)	East Azerbaijan: Arasbaran forest, Chichekli region	38°39.899’ N	46°31.248’ E	2140 Current study	nd		

(Continued)
No.	Subfamily/Species	Locality	N (male:female)	Reference	Altitude (m)	Longitude	Reference	Life history perspectives
47	Megaselia mahabadensis	West Azerbaijan: Mahabad, Ghalate-Shah region	1–0	Namaki-Khameneh et al., 2019	1605	46°22.37’E	nd	Coexist in the nests of wrens, Troglodytes troglodytes [1].
48	Megaselia minuta (Aldrich, 1892)	West Azerbaijan: Khoy, Pere region	2–0	36°46.01’N 46°22.37’E	1905	38°34.220’N 44°50.896’E	nd	Larvae found in mammalian dung and adults in large numbers in houses in the cold months [1].
49	Megaselia meconicera (Speiser, 1925)	West Azerbaijan: Khoy, Evogli region	1–0	Markazi: Bazeneh	2000	38°42.436’N 45°12.246’E	nd	Larvae are fungivorous on Boletus edulis, Boletus pinophilus (Boletaceae), and Pleurotus cornucopiae (Lentinaceae), as well as adults flower visitors of Anthriscus sylvestris (Apiaceae) [70].
50	Megaselia minor (Zetterstedt, 1848)	Markazi: Bazeneh	34°02’32''	236	2000	38°42.436’N 45°12.246’E	nd	Larvae found in pigeon dung, and adults are visitors of a wide range of flower species [70].
51	Megaselia miandoabensis	West Azerbaijan: Miandoab region	5–2	Namaki-Khameneh et al., 2019	1306	36°56.846’N 46°10.015’E	nd	Larvae are fungivorous on Boletus edulis, Boletus pinophilus (Boletaceae), and Pleurotus cornucopiae (Lentinaceae), as well as adults flower visitors of Anthriscus sylvestris (Apiaceae) [70].
52	Megaselia namakiae (Khaghania & Disney, 2019)	East Azerbaijan: Kaleybar, Khodaafarin region	1–0	38°34.220’N 44°50.896’E	1664	38°42.37’N 45°12.246’E	nd	Larvae are fungivorous on Boletus edulis, Boletus pinophilus (Boletaceae), and Pleurotus cornucopiae (Lentinaceae), as well as adults flower visitors of Anthriscus sylvestris (Apiaceae) [70].
53	Megaselia oxybelorum (Schmitz, 1928)	East Azerbaijan: Shabestar, Shanejan region	2–0	38°12.85’N 38°18.01’N 38°11.05’N 38°13.85’N 38°18.01’N 38°11.05’N 38°13.85’N	237	45°12.246’E 47°01.07’E 47°01.07’E	nd	Larvae are fungivorous on Boletus edulis, Boletus pinophilus (Boletaceae), and Pleurotus cornucopiae (Lentinaceae), as well as adults flower visitors of Anthriscus sylvestris (Apiaceae) [70].
54	Megaselia plurispinulosa (Zetterstedt, 1860)	West Azerbaijan: Khoy, Evogli region	6–6	38°42.436’N 45°12.246’E 45°12.246’E 45°12.246’E 45°12.246’E 45°12.246’E	968	38°42.436’N 45°12.246’E 45°12.246’E 45°12.246’E 45°12.246’E 45°12.246’E	nd	Larvae are fungivorous on Boletus edulis, Boletus pinophilus (Boletaceae), and Pleurotus cornucopiae (Lentinaceae), as well as adults flower visitors of Anthriscus sylvestris (Apiaceae) [70].
55	Megaselia pereensis (Namaki-Khameneh et al., 2019)	East Azerbaijan: Khoy, Pere region	1–0	38°13.85’N 44°54.041’E	1405	38°41.719’N 44°54.041’E	nd	Larvae are fungivorous on Boletus edulis, Boletus pinophilus (Boletaceae), and Pleurotus cornucopiae (Lentinaceae), as well as adults flower visitors of Anthriscus sylvestris (Apiaceae) [70].
56	Megaselia producta (Schmitz, 1921)	West Azerbaijan: Khoy, Evogli region	1–0	38°13.85’N 44°54.041’E	1664	38°41.719’N 44°54.041’E	nd	Larvae are fungivorous on Boletus edulis, Boletus pinophilus (Boletaceae), and Pleurotus cornucopiae (Lentinaceae), as well as adults flower visitors of Anthriscus sylvestris (Apiaceae) [70].
57	Megaselia pleuralis (Wood, 1909)	West Azerbaijan: Khoy, Evogli region	16–0	38°13.85’N 44°54.041’E	2000	38°13.85’N 44°54.041’E	nd	Larvae are fungivorous on Boletus edulis, Boletus pinophilus (Boletaceae), and Pleurotus cornucopiae (Lentinaceae), as well as adults flower visitors of Anthriscus sylvestris (Apiaceae) [70].
58	Megaselia propinqua (Wood, 1909)	East Azerbaijan: Sharafkhan, Ghirx-Bulax region	16–0	38°13.85’N 44°54.041’E	1405	38°13.85’N 44°54.041’E	nd	Larvae are fungivorous on Boletus edulis, Boletus pinophilus (Boletaceae), and Pleurotus cornucopiae (Lentinaceae), as well as adults flower visitors of Anthriscus sylvestris (Apiaceae) [70].
59	Megaselia pusilla (Meigen, 1830)	East Azerbaijan: Sharafkhan, Ghirx-Bulax region	610–0	38°11.05’N 45°29.52’E 45°29.52’E 45°29.52’E	1521	38°11.05’N 45°29.52’E 45°29.52’E 45°29.52’E	nd	Larvae are fungivorous on Boletus edulis, Boletus pinophilus (Boletaceae), and Pleurotus cornucopiae (Lentinaceae), as well as adults flower visitors of Anthriscus sylvestris (Apiaceae) [70].
No.	Subfamily/Species	N (male-female)	Locality	Latitude	Longitude	Altitude (m)	Reference	Life history perspectives
-----	-----------------------------------	-----------------	-------------------	----------------	----------------	--------------	-----------	---------------------------
60	*Megaselia posticata* (Strobl, 1898)	(2–0)	East Azerbaijan: Bostan abad, Qurigol region East Azerbaijan: Sharafkhaneh	37˚ 54.736' N 38˚11.05' N	46˚41.617’ E 45˚29.52’ E	1928 1313	[62] “”	Floral visitation [1].
61	**Megaselia perdistans** (Schmitz, 1924)	(2–0)	East Azerbaijan: Sharafkhaneh West Azerbaijan: Mahabad	38˚11.05’ N 36˚34.16’ N	45˚29.52’ E 45˚41.21’ E	1313 1521	Current study nd	
62	*Megaselia polysetosis* Namaki-Khameneh & Disney, 2021	(3–0)	East Azerbaijan: Sharafkhaneh West Azerbaijan: Mahabad	38˚11.05’ N 36˚34.16’ N	45˚29.52’ E 45˚41.21’ E	1313 1521	nd	
63	*Megaselia paluventer* Namaki-Khameneh & Disney, 2021	(41–0)	East Azerbaijan: Sharafkhaneh	38˚11.05’ N	45˚29.52’ E	1313	[64] “”	nd
64	**Megaselia pallidizona** (Lundbeck 1920)	(48–0)	East Azerbaijan: Sharafkhaneh	38˚11.05’ N	45˚29.52’ E	1313	Current study nd	
65	*Megaselia qurigolenis* Namaki-Khameneh et al., 2019 (2–0)	(1040)	East Azerbaijan: Bostan abad, Qurigol region West Azerbaijan: Mahabad	37˚ 54.736’ N 36˚34.16’ N	46˚41.617’ E 45˚41.21’ E	1928 1521	[63] “”	nd
66	**Megaselia ruficomis** (Meigen, 1830)	(2–0)	East Azerbaijan: Sharafkhaneh	38˚11.05’ N	45˚29.52’ E	1313	Current study Larvae are scavengers on decaying organic matters (dead molluscs/insects, dung and vertebrate meat baits) and females fungivorous [70].	
67	*Megaselia rufipes* (Meigen, 1804)	(15–0)	East Azerbaijan: Ajabshir region East Azerbaijan: Sharafkhaneh West Azerbaijan: Mahabad East Azerbaijan: Fars: Jahrom	37˚ 31.978’ N 38˚11.05’ N 36˚34.16’ N 28˚50’ N	46˚07.716’ E 45˚29.52’ E 45˚41.21’ E 53˚35’ E	1662 1313 1521 1040	[62] “”	Larvae are scavengers on decaying broad spectrum of organic matters (rotting plants, dung, decaying fungi, dead invertebrates, and vertebrate carrion, including human corpses). They occasionally exploit human foods, such as cheese and rice-based pre-cooked meals. Adults visit a variety of flowers and fungus spores have been found in the crops of females [70].
68	*Megaselia styloprocta* (Schmitz, 1921)	(2–0)	East Azerbaijan: Zonuz, Zonuzaq region	38˚ 35.369’ N	45˚50.684’ E	1758	[62] “”	nd
69	*Megaselia shabestarensis* Namaki-Khameneh et al., 2019	(38–0)	East Azerbaijan: Shabestar, Shanejan region	38˚13.85’ N	45˚42.93’ E	1664	[63] “”	nd
70	*Megaselia subnudipennis* (Schmitz, 1919)	(2–0)	West Azerbaijan: Miandoab region East Azerbaijan: Sharafkhaneh	36˚ 56.846’ N 38˚11.05’ N	46˚10.015’ E 45˚29.52’ E	1306 1313	[61] “”	Floral visitation [1].

(Continued)
No.	Subfamily/Species	N (male-female)	Locality	Latitude	Longitude	Altitude (m)	Reference	Life history perspectives
71	Megasia scalaris Loew, 1866	(Continued)	Fars: Jahrom	28°50' N	53°54' E	1018	[49]	Larvae are polyphagous.
			Mazandaran: Amol, Ghaemshahr, Behshahr Tehran: Shah-rey Golestan: Gorgan Alborz: Karaj Zanjan	28°50' N	53°54' E	1018	[49]	Their favoring substrates include decaying coconuts [91], ripe bananas [92] and dead rabbits [1]. However, they were reported from human corpses [93] and near dirty floor-drains and mausoleums [94]. This species is recognized as an important pest of the button mushrooms in Karaj mushroom houses [49]. Also, it invades insect cultures [90] and parasites asilid species and honey bee colonies [51] in Iran. M. scalaris is reported to be a cause of myiasis on humans and animals [24,95,96].
			Markazi: Cheshmeh sar Fars: Jahrom	34°07'57'' N	53°54' E	2098	[69]	They are most often reported from agricultural lands in Germany [73,86,97]. Larvae considered to be zoosaprophagous [86].
72	Megasia subsuscipes Schmitz, 1935	(1–0)	East Azerbaijan: Kandovan region East Azerbaijan: Sharif Khaneh West Azerbaijan: Mahabad	37°46.10' N	46°16.001' E	2500	[62]	nd
			(14–0) East Azerbaijan: Jahrom	38°17.01' N	46°10.02' E	2140	Current study	nd
73	*Megasia stichata* (Lundbeck, 1920)	(10–0)	East Azerbaijan: Arasbaran forest, Chichkelli region East Azerbaijan: Sufiyaneh region	37°46.10' N	45°29.52' E	1521	Current study	Fungus-feeding larvae [1].
			(7–0) East Azerbaijan: Sharafkhaneh	38°17.01' N	45°41.21' E	1313	Current study	nd
			(15–0)	39°89'9' N	46°31.248' E	2140	Current study	nd
74	**Megasia sandhui* Disney, 1981	(3–0)	East Azerbaijan: Arasbaran forest, Chichkelli region East Azerbaijan: Sufiyaneh region	37°46.10' N	45°41.21' E	1521	Current study	nd
			(12–0)	38°17.01' N	46°10.02' E	2140	Current study	nd
75	*Megasia stigmatica* (Schmitz, 1920)	(1–0)	East Azerbaijan: Mahabad	36°34.16' N	45°41.21' E	1521	Current study	nd
76	*Megasia subpleuralis* (Wood, 1909)	(1–0)	East Azerbaijan: Mahabad	36°34.16' N	45°41.21' E	1521	Current study	nd
77	**Megasia spinicincta* (Wood, 1910)	(3–0)	East Azerbaijan: Sharafkhaneh West Azerbaijan: Mahabad	38°17.01' N	45°29.52' E	1521	Current study	Fungus-feeding larvae [1].
			(12–0)	36°34.16' N	45°41.21' E	1521	Current study	nd
78	*Megasia tama* (Schmitz, 1926)	(1–0)	East Azerbaijan: Arasbaran forest, Makid East Azerbaijan: Sharafkhaneh	38°05'1' N	46°54.892' E	1406	[62]	nd
			(1–0)	38°01.05' N	45°29.52' E	1406	[62]	nd
79	**Megasia tarsalis* (Wood, 1910)	(3–0)	East Azerbaijan: Sharafkhaneh East Azerbaijan: Shabestar, Shanejan region	38°11.05' N	45°29.52' E	1313	Current study	nd
			(11–0)	38°13.85' N	45°42.93' E	1313	Current study	nd
80	**Megasia versala Schmitz, 1932	(6–0)	East Azerbaijan: Sharafkhaneh West Azerbaijan: Mahabad	38°11.05' N	45°41.21' E	1313	Current study	nd
			(28–0)	36°34.16' N	45°41.21' E	1313	Current study	nd

(Continued)
Table 2. (Continued)

No.	Subfamily/Species	N (male-female)	Locality	Latitude	Longitude	Altitude (m)	Reference	Life history perspectives
81	*Megaselia vernalis* (Wood, 1910)	(52–0) (37–0) (1960–0) (1830–0)	West Azerbaijan: Khoy, Evogli region West Azerbaijan: Khoy, Pere region East Azerbaijan: Shanikhaneh West Azerbaijan: Mahabad	38° 42.436' N 38° 41.719' N 38° 11.05' N 36° 34.16' N	45° 12.246' E 44° 54.041' E 45° 29.52' E 45° 41.21' E	968 1405 1313 1521	[61]	nd

| 82 | *Megaselia xanthozona* (Strobl, 1892) | (9–0) (760–0) (14–0) (570–0) (4–0) | East Azerbaijan: Shabestar, Shavaj region East Azerbaijan: Shanikhaneh West Azerbaijan: Khoy, Evogli region West Azerbaijan: Khoy, Pere region West Azerbaijan: Mahabad East Azerbaijan: Arasbaran forest, Kaleybar region Markazi: Hafeh Markazi: Shanagh Fars: Jahrom | 38° 13.85' N 38° 11.05' N 38° 42.436' N 38° 34.220' N 36° 51.548' N 33° 59'49'' N 33° 58'06'' N 28° 50' N | 45° 42.93' E 45° 29.52' E 45° 12.246' E 44° 50.896' E 45° 41.21' E 46° 59.007' E 49° 23'58'' E 50° 24'10'' E | 1664 1313 968 1305 1521 1783 1588 2143 1028 | [62] [61] | In Europe, it is often collected from forests [72,76], as well as in the Alpine zone of the Alps [98]. Adults visit flowers of *Gypsophila hispanica* (Caryophyllaceae) [99]. |

| 83 | *Megaselia yaseri* Namaki-Khameneh et al., 2019 | (1–0) | West Azerbaijan: Khoy, Pere region | 38° 36.722' N | 44° 53.336' E | 1323 | [63] | nd |

| 84 | *Megaselia zarghani* Namaki-Khameneh et al., 2019 | (3–0) | West Azerbaijan: Mahabad, Ghalate-Shah region | 36° 46.01' N | 46° 22.37' E | 1605 | [63] | nd |

| 85 | *Megaselia zonuzensis* Namaki-Khameneh et al., 2019 | (23–0) (45–0) (20–0) (15–0) | East Azerbaijan: Zonuz, Zonuzag region East Azerbaijan: Shanikhaneh West Azerbaijan: Khoy, Evogli region West Azerbaijan: Khoy, Pere region | 38° 35.369' N 38° 35.369' N 38° 42.436' N 38° 34.220' N | 45° 50.684' E 45° 29.52' E 45° 12.246' E 44° 50.896' E | 1758 1313 968 1305 | [63] | nd |

| 86 | *Metopina heselhausi* Schmitz 1914 | (15–0) | East Azerbaijan: Shanikhaneh Fans: Jahrom Fans: Jahrom | 38° 11.05' N 28° 53' N 28° 53' N | 45° 29.52' E 53° 54' E 53° 53' E | 1313 1009 996 | [65] | Adults visit the flowers of *Taraxacum officinale* (Asteraceae), *Reseda lutea* (Resedaceae), and *Potentilla anserina* (Rosaceae), as well as meat baits [70]. |

| 87 | *Metopina oligoneura* (Mik, 1867) | (1–0) | West Azerbaijan: Khoy, Evogli region | 38° 42.436' N | 45° 12.246' E | 968 | [59] | Floral visitation. Saprophage species exploiting from the decaying or locally damaged leaves/roots of beet. Reared from meat bait buried 15–20 cm in arable soil [1]. |

| 88 | **Metopina perpusilla** (Six, 1878) | (12–0) | East Azerbaijan: Shanikhaneh | 38° 11.05' N | 45° 29.52' E | 1313 | Current study | nd |

(Continued)
No.	Subfamily/Species	N (male-female)	Locality	Latitude	Longitude	Altitude (m)	Reference	Life history perspectives
89	*Phalcotrophora flavidus* Namaki-Khameneh & Disney, 2021	(1–0)	East Azerbaijan: Sharafkhaneh	38°11.05’ N	45°29.52’ E	1313	[64]	nd
90	*Phalcotrophora fasciata* (Fallen, 1823)		Mashhad	–	–	–	[100]	It was reported as pupal parasitoid on seven-spot ladybird, in Mashhad, in 2012 [100].
91	*Conicera tibialis* Schmitz, 1925	(6–0)	West Azerbaijan: Kho, Ghehr-Bulax region	38°18.01’ N	45°12.246’ E	968	1313	The larvae feed on buried human corpses. They are also scavengers in wasp and bird nests. Adults visit a range of flowers in Apiaceae [70].
92	*Diplovenra funebris* (Meigen, 1830)	(9–3)	Ardabil: Meshgin, East Azerbaijan: Sharafkhaneh, East Azerbaijan: Sharafkhaneh, Markazi: Tooreh	37°46.10’ N	46°16.001’ E	2500	237	The larvae are zoosaprotophas, chiefly on animal carrion (pork, snail, duck and sheep) [1,86]. The larvae feed on dead invertebrates and have frequently been recorded as scavengers in wasp nests. Adults visit a range of flowers in Apiaceae and Asteraeae [70].
93	*Dohrniphora cornuta* (Bigot, 1857)	(1–0)	East Azerbaijan: Kandovan region, East Azerbaijan: Kaleybar, Khodaafarin region	38°30.37’ N	47°48.66’ E	2991	1469	Larvae are scavengers on decaying organic matters (rotten potatoes, onions, beans, rice bran, chick peas, dead insects, dead snails, sour milk, human faeces, general garbage, dead mice and other small mammals, moribund eggs of turtles, and the sewage film of microorganisms in trickling filter sewage beds). Adults visit flowers of Aristolochia as a major pollinator in Thailand [70,101].
94	*Phora holosericea* Schmitz, 1920	(16–6)	Ardabil: Meshgin, East Azerbaijan: Sufiyah region, East Azerbaijan: Mahabad, Ghalete-Shah region, East Azerbaijan: Sharafkhaneh, West Azerbaijan: Mahabad, Markazi: Aman abad, Markazi: Akbar abad, Markazi: Gvar, Markazi: Mahdi abad, Markazi: Vismeh, Markazi: Zarrin khashe	38°20.37’ N	47°48.66’ E	2991	1469	Larvae feed on Aphids as predators [1].
95	*Phora iranensis* Namaki-Khameneh & Disney, 2021	(4–0)	West Azerbaijan: Mahabad	36°34.16’ N	45°41.21’ E	1521	[64]	nd
No.	Subfamily/Species	N (male-female)	Locality	Latitude	Longitude	Altitude (m)	Reference	Life history perspectives
-----	-------------------	----------------	----------	-----------	------------	--------------	-----------	--------------------------
96	#*Mahabadphora aesthesphora*							
Namaki-Khameneh & Disney, 2021	(2–0)	West Azerbaijan: Mahabad	36˚34.16’N	45˚41.21’E	1521	nd		
97	*Triphleba intermedia*							
(Malloch, 1908) | (5–0) | East Azerbaijan: Sufiyan region | 38˚17.01’N | 46˚10.02’E | 1469 | [59] | Floral visitation [1]. |

Symbols:
* New record for Iran
* Species with molecular data
* New genus.

Note: There is no way or identification key to discriminate the female specimens of most species; as a result, the majority of females (n = 8057) were not included in the table.
nd: Not defined.
Fig 1. *Mahabadphora aesthesphora* n. gen, n. sp., male. A, whole fly; B, frons; C, side of thorax; D, antennae, palps, and proboscis; E, abdomen; F, left face of hypopygium. The right black rectangle of each image represents a scale of 20 μm.

https://doi.org/10.1371/journal.pone.0257899.g001

Fig 2. *Mahabadphora aesthesphora* n. gen, n. sp., male. A, right face of hypopygium; B, front leg; C, hind femur, tibia and basitarsus; D, middle leg; E, posterior face of tip of hind tibia; F, basal third of wing. The right black rectangle of each image represents a scale of 20 μm.

https://doi.org/10.1371/journal.pone.0257899.g002
Material examined. Holotype male, Iran, West Azerbaijan, Mahabad City, 36˚34.16’N, 45˚41.21’E, 1521m, 23.VII.2018. Samad Khaghaninia (71, UCMZ, 13–104).

Etymology. Named after it being strange (Greek aesthes).

Ecological data. The climate at the type locality is temperate with very cold winters and hot summers. The sampling site is located within the valley, which has a seasonal river running until the end of July. Herbaceous and woody vegetation plants in the area comprises of *Glycyrrhiza glabra* L. (Fabaceae), *Achillea millefolium* L. (Asteraceae), *Peganum harmala* L. (Zygo-phyllaceae), *Convolvulus arvensis* L. (Convolvulaceae), and *Salix alba* L.) Salicaceae (etc. In general, the region has previously been quite untouched and pristine, but recently, it has been modified or influenced by human activities (Fig 3).

Molecular surveys

Sequence analysis. Two COI and 28S genes for all studied specimens and three COI, 28S and AK genes for the new genus were successfully amplified and sequenced (S1 Table). In total, 720, 512–549, and 543 base pairs were sequenced for the COI, 28S, and AK genes of the...
studied specimens, respectively. The corresponding sequences were deposited in the GenBank under accession numbers MN597118-MN597188 (COI), MN833420-MN833490 (28S), and MN723164 (AK). The multiple sequence alignments showed relatively a large number of substitutions and a few indels among the COI/AK and 28S gene sequences, correspondingly. The analysis of the COI sequences revealed 349 (49%) polymorphic sites, where 310 (43%) was the parsimony-informative site. There were also 104 (19%) polymorphic sites with 60 (11%) parsimony-informative sites in the 28S gene sequences, in comparison. Among 543-bp AK gene analyzed, 166 (30.57%) were polymorphic sites, and 101 (18.60%) were parsimony-informative.

Taxa and genetic diversities. Seventy-one morphologically defined species belonged to nine genera, comprising of Conicera Meigen, 1830 (n = 1), Diplonevra Lioy, 1864 (n = 1), Dohrniphora Dahl, 1898 (n = 1), Gymnophora Macquart, 1835 (n = 1), Mahabadphora (n = 1), Megaselia Rondani, 1856 (n = 61), Metopina Macquart, 1835 (n = 2), Phora Latreille, 1796 (n = 2), and Triphleba Rondani, 1856 (n = 1), as shown in Table 2. All 71 species studied were readily differentiated from each other by the COI (but not 28S) sequences (data are not shown). The molecular analysis of COI sequences did not display any dissimilarity between the members of the two pairs of Megaselia species, i.e. M. hirticaudata / M. shabarestarensis and M. khoyensis / M. ardabilensis. Based on the K2P substitution model, the average interspecific pairwise distances among COI, 28S, and AK sequences were determined as 16.67%, 1.39%, and 10.76%, respectively (Tables 3, S3 and S4). The mean intergeneric genetic divergence of COI, 28S, and AK sequences was calculated correspondingly as 17.30%, 1.29% and 10.76%, respectively (Tables 3–6). For all the target genes, the genetic distances of the studied genera were greater than the mean intergeneric divergence estimated (shown by the shaded column/row in Tables 3–5). The average intrageneric genetic distances of the analyzed COI sequences varied from 8.06% (Stichillus Enderlein 1924) to 15.63% (Megaselia), which were negligible for the specimens studied based on 28S gene, which ranged from 0.05% (Anevrina Lioy, 1864) to 0.77% (Megaselia). Besides, for the AK gene, the distance was in the range from 4.16% (Myriophora Brown, 1992) to 5.41% (Apocephalus Coquillett, 1901).

Relationship analysis. The ML method provided more reliable phylogenetic trees than NJ method (S1–S3 Figs). Consequently, three ML phylogenetic trees were constructed using combined sequences of COI-28S (1200–1269 bp) and COI-AK (1263 bp) datasets (Figs 4–6). The first one was drawn based on COI-28S dataset for the Megaselia spp. determined in this study along with the sequences of M. scalaris (KF974742-KC177721), D. melanogaster (KY559392-NR133562), Glossina morsitans (KC190971-KC177834) and Musca domestica (AB479529-AJ551427) from the Genbank (Fig 4). The tree divided the Megaselia species into six groups. Sixteen similar morphospecies clustered together in the clade I. Morphological parsing showed that in all species grouped in this clade, except for M. styloprocta, the mesopleuron was bare, and dorsal face of epandrium was longer than or equal to the length of the anal tube. The M. styloprocta was joined to M. minuta and M. subnudipennis branch as a sister group. Our study found four out of the 10 members of the M. brevior complex, all of which were correctly classified in the clade I.

Clade II was composed of five species: M. albicaudata, M. propinqua, M. verna, M. flavuscirus, and M. caveonecergata, which shared many morphological similarities. There were 18 species categorized in Clade III, where all species, except M. longipalpis, M. fereagaria and M. tarsalis, had hairy mesopleuron. M. longipalpis could be distinguished from other species by having large palps and the latter two species varied slightly from each other in the color of the legs and the shape of the hypopygium.

Clade IV included 10 similar morphospecies and was divided into two subclades. In the first clade M. sandhui / M. bovista, two morphologically very similar species were clustered
Species	Genus	Mean genetic distance	Number of sequences	Confidence interval
Chaetogodavaria	9	19.32 ± 1.57	10	(18.40–19.13)
Chaetomus	10	19.24 ± 1.56	10	(18.32–19.06)
Chaetocercus & Plectrotoma	11	19.15 ± 1.55	10	(18.23–18.88)
Chaetomus	12	19.06 ± 1.54	10	(18.14–18.78)
Chaetocercus & Plectrotoma	13	18.97 ± 1.53	10	(18.05–18.70)
Chaetocercus	14	18.88 ± 1.52	10	(17.96–18.60)
Chaetocercus & Plectrotoma	15	18.79 ± 1.51	10	(17.87–18.54)
Chaetothalamus	16	18.70 ± 1.50	10	(17.78–18.43)

Note: The values were not calculated due to due to the low sequence number.
Table 4. K2P genetic distances ± standard deviations (SD) for studied scuttle flies genera based on 481–549 bps of 28S rRNA sequences.

Group	Mean intergeneric genetic divergence ±SD (min–max)	mean intrageneric genetic divergence ±SD (min–max)
1. Coniceria (n = 3)		0.42±0.23
2. Gymnophora (n = 2)	1.26 ±0.45 (1.05–1.69)	0.42±0.30
3. Triphleba (n = 1)	0.84 ±0.38 (0.63–1.26)	
4. Dohrniphora (n = 1)	3.07 ±0.79 (3.00–3.21)	
5. Phora (n = 2)	2.47 ±0.68 (2.33–2.54)	
6. Diplonevra (n = 1)	1.76 ±0.57 (1.69–1.90)	
7. Metopina (n = 2)	1.27 ±0.48 (1.05–1.69)	
8. Mahabadphora (n = 1)	3.57 ±0.78 (3.43–3.64)	
9. Megaselia (n = 62)	1.79 ±0.50 (1.48–3.88)	
10. Apodicrania (n = 1)	1.27 ±0.48 (1.05–1.69)	
11. Chaetogadavaria (n = 1)	1.76 ±0.57 (1.69–1.90)	
12. Anermina (n = 8)	0.81 ±0.37 (0.42–1.26)	
13. Borophaga (n = 2)	1.05 ±0.41 (0.84–1.47)	

(Continued)
Table 4. (Continued)

Group	Mean intergeneric genetic divergence ±SD (min–max)	mean intrageneric genetic divergence ±SD (min–max)											
	1	2	3	4	5	6	7	8	9	10	11	12	13
14. Stichillus (n = 1)	1.97±0.61	2.99±0.77	2.55±0.72	3.21±0.77	4.07±0.88	2.77±0.75	2.99±0.79	4.08±0.87	3.33±0.76	2.99±0.79	1.69±0.59	2.52±0.71	1.48±0.54

nc: The values were not calculated due to due to low sequence number.

https://doi.org/10.1371/journal.pone.0257899.t004

Table 5. K2P genetic distances ± standard deviations (SD) for studied scuttle flies genera based on 543 bps of Arginine kinase sequences.

Group	Mean intergeneric genetic divergence ±SD (min–max)	mean intrageneric genetic divergence ±SD (min–max)						
	1	2	3	4	5	6	7	8
1. Mahabadphora (n = 1)		nc						
2. Myriophora (n = 4)	11.69±1.38	8.02±1.09	9.63±1.19	10.47±1.19	11.07±1.42	5.41±0.97		
3. Megaselia (n = 1)	12.75±1.57	8.80±1.16	9.12±1.33	10.75±1.33	11.46±1.46	4.16±0.61		
4. Apocephalus (n = 2)	14.91±1.59	10.46±1.51	12.85±1.61	14.26±1.64	15.34±1.67	4.16±0.61		
5. Apodicrania (n = 1)	14.32±1.68	8.38±1.14	9.73±1.39	10.75±1.33	10.46±1.46	4.16±0.61		
6. Gymnophora (n = 1)	11.64±1.50	11.87±1.40	12.60±1.58	14.09±1.67	12.19±1.54	11.27±1.48		
7. Phalacrotophora (n = 1)	15.99±1.81	10.14±1.29	12.60±1.58	14.09±1.67	12.19±1.54	11.27±1.48		
8. Melalocera (n = 1)	15.22±1.78	11.87±1.40	12.60±1.58	14.09±1.67	12.19±1.54	11.27±1.48		
9. Beckerina (n = 1)	14.53±1.64	13.52±1.53	14.61±1.65	15.43±1.66	12.85±1.64	11.66±1.46		
10. Keraphora (n = 1)	13.39±1.61	8.04±1.08	9.08±1.31	10.89±1.42	10.83±1.44	7.66±1.16		

nc: The values were not calculated due to due to low sequence number.

https://doi.org/10.1371/journal.pone.0257899.t005
with *M. scalaris*, *M. perdistans* and *M. plurispinulosa*. The second clade comprised of two members of *M. sulphuripes* species group (*M. halterata* and *M. hirticaudata*) together with three other species. *M. shabestarensis* and *M. ledzona* were new species that were presented to the world fauna by our research team; however, the former species was molecularly indistinguishable from *M. hirticaudata*.

In clade V, there were 11 species that shared similar morphological properties, e.g. the hairs of left side of epandrium were, at most, only as robust as those of cerci. *Megaselia ardabilensis* was morphologically very similar to *M. khoyensis* but could be distinguished by the relative size of hairs below basal half of hind femur, as compared to those of anteroventral row of outer half. Moreover, their hypandrial lobes were clearly different.

The clade VI comprising of *M. evogliensis* / *M. longiseta* was established as paraphilic group of other megaselias in the phylogenetic tree. The *M. evogliensis* and *M. longiseta* species had definite dissimilarities (see the key).

The second tree covered the COI-28S sequences of other 11 species found in this study, along with those of 17 other species retrieved from the Genbank (Fig 5). The tree divided the studied taxa into two subfamilies: Phorinae (six clades) and Metopininae (three clades). Taxonomically challenging species *Triphleba intermedia* and *Conicera tibialis* were arranged in clades II and III of Phorinae, respectively. The newly described taxon, *Mahabadphora aesthesphora*, and the genus *Phora* were classified in the clade IV under the Phorinae subfamily. They shared some morphological characteristics e.g. vein Rs without hairs along the dorsal face, at least two differentiated dorsal or near-dorsal bristles in basal two-thirds of mid tibia and hind tibia without longitudinal hair palisade. However, unlike *Phora*, the Vein 3 in *Mahabadphora*, was forked. The *Diplonevra* and *Dohrniphora* genera were organized in the same expected clade (VI) as a sister group of other species of subfamily Phorinae.

Four phorid fly species of this study (*Metopina heselhausi*, *Metopina perpusilla*, *Gymnophora arcuata* and *Megaselia xanthozona*), along with a couple species from the GenBank (*Gymnophora spiracularis* (KT862035, GU559927) and *Apodicrania molinai* (GU559947, GU559926)), yielded three strongly supported and genetically quite distant clades within Metopininae subfamily.

The third ML consensus tree, in support of the second one, recovered from 16 pairs of COI-AK sequences confirmed that *Mahabadphora aesthesphora* was a genetically quite distant clade from Metopininae, clearly representing valid taxon in the Phorinae scuttle flies (Fig 6).

Checklist of scuttle flies occurring in Iran and their identification key. An inventory of 97 scuttle fly species known from Iran, together with their collection data, hierarchical classification, and synopsis of their life history is summarized in Table 2. These flies were distributed to several locations of 12 Provinces of the country, namely Alborz, Ardabil, East Azerbaijan, Fars, Golestan, Kermanshah, Markazi, Mazandaran, Razavi Khorasan, Tehran, West

Loci	Indices	Number of taxa analyzed	Range (%)	Mean distance (%)
COI	IPD	71 spp. belonged to 9 genera	0–27.26	16.67
	IGD	117 spp. belonged to 21 genera	12.80–25.44	17.30
28S	IPD	71 spp. belonged to 9 genera	0–6.24	1.39
	IGD	88 spp. belonged to 14 genera	0–4.98	1.29
AK	IPD	14 spp. belonged to 10 genera	2.27–17.03	10.76
	IGD	14 spp. belonged to 10 genera	7.66–17.03	10.76

IPD: Interspecific pairwise distance, IGD: Intergeneric genetic distances.
Azerbaijan, and Zanjan. They are organized into three subfamilies of Chonocephalinae, Metopininae, and Phorinae and 13 genera. Moreover, 18 species in seven genera Arabiphora Disney, 2006, Chonocephalus Wandolleck, 1898, Diplonevra Lioy, 1864, Megaselia Rondani, 1856,
Metopina Macquart, 1835, Phalacrotophora Enderlein, 1912 and Phora Latreille, 1796 had formerly been reported from Iran [49,65,69,79,82,100]. The following key is based on the 87 adult male species of scuttle flies described in this project and on 10 species described previously. The key characters are illustrated in Fig 7.

Fig 6. Maximum likelihood tree inferred from 1263 bp of the COI-AK gene sequences of the new genus described in this study. Only bootstrap values higher than 50% are shown on the branches. The bar indicates substitutions per site. The Drosophila melanogaster (Meigen, 1830) (KY559392 and U26939), Glossina morsitans Westwood, 1851 (KC192971-EZ423387) and Musca domestica Linnaeus, 1758 (AB479529-JX428899) were set as outgroups.

https://doi.org/10.1371/journal.pone.0257899.g006

Metopina Macquart, 1835, Phalacrotophora Enderlein, 1912 and Phora Latreille, 1796 had formerly been reported from Iran [49,65,69,79,82,100]. The following key is based on the 87 adult male species of scuttle flies described in this project and on 10 species described previously. The key characters are illustrated in Fig 7.

Key to the genera and species of the Phoridae known from Iran

The following key is based on the male insects of phorid spp. described during this project and on 10 species published previously [1,2,60,63,64,70,79,99,103–111].

* Identifications should be confirmed by reference to the description and figures in the relevant publication.

1. Apex of third antennal segment drawn out into long .. 2
 * Apex of third antennal segment not drawn out in this way .. 7

2. Mid tibia with only one dorsal bristle in basal half (genus Conicera) 3
 * Mid tibia without such bristles .. 4
3. Claspers of hypopygium developed as irregular lobes, which are not tapered and tend to be rounded, posterior face of mid femur with a sense organ and pit of that larger and apical process longer.

......................... .Conicera tibialis
• Without this combination. .. other species
4. Costal index more than 0.5 (genus *Iranphora*) 5
• Costal index between 0.4 and 0.5 (genus *Arabiphora*) 6
5. Notopleuron with three bristles. Mesopleuron bare. Abdominal tergites with small hairs largely restricted to hind margins. Venter pale and without hairs. Hypopygium pale with the pale anal tube that is longer than epandrium. Wings 0.87 mm long. Costal index 0.64. Haltere knob brown. .. *Iranphora sharafkhaneensis*
• Without this combination. .. other species
6. Frons about 3x as broad as midline length; brown, with darker ocellar triangle; 12-16 hairs. Postpedicels pale yellowish brown, lacking SPS vesicles, Wing 1.2-1.3 mm long. Costal index 0.47 .. *Arabiphora tenuifemorata*
• Without this combination. .. other species
7. Vein 6 (third thin vein) with a sudden bend near middle, opposite (and opposed to) basal curve of vein 5 (genus *Metopina*). 8
• Vein 6 without such a bend. .. 10
8. Posterior face of base of hind femur with conspicuous “sensory patch” that includes a distinct circular pit. Hairs of hind trochanter reduced in number and with only a single, basal one evident on ventral face, which is itself fringed with dense microscopic hairs. In addition, the terminal spine is dark, somewhat reduced and strongly tapered. .. *Metopina heselhausi*
• Sensory patch of hind femur less conspicuous and without a pit. At least three hairs along ventral face of hind trochanter, which is itself fringed with sparse, inconspicuous microscopic hairs. The terminal spine is more robust, pale, and more gradually tapered. .. 9
9. Venter with a distinct ventral plate on segment 4, bearing irregular rows of hairs along the lateral margins but none along the median third, sensory patch on posterior face of base of hind femur usually visible as a darker smudge at relatively low magnification. .. *Metopina oligoneura*
• Venter without a clearly defined plate on segment 4 and along with hair patch usually more than 20 hairs, microsculpture of posterior face of hind femur with rows of polygons curving dorsally. .. *Metopina perpusilla*
10. Hind tibia simply haired on dorsal face, but may bear isolated bristles. 11
 • Hind tibia with one or more dorsal or near dorsal longitudinal palisade-like rows of setae. 20
11. Middle and hind tibiae with isolated bristles. ... 12
 • Middle and hind tibiae without isolated bristles ... 17
12. Middle tibia with at most one dorsal bristle (genus Triphleba) 13
 • Middle tibia with at least two dorsal bristles .. 14
13. Scutellum with two pairs of bristles, both of which are clearly more robust and longer than hairs of scutum, left side of epandrium with process divided into two arms, lower arm of process of left side of epandrium very much larger than upper arm, hind tibia usually with a bristle in upper half on anterior face .. Triphleba intermedia
 • Without this combination .. other species
14. Vein 3 unforked (genus Phora) ... 15
 • Vein 3 forked (genus Mahabadphora) .. 16
15. Left side of epandrium deeply cleft to give a shorter upper lobe and a longer lower lobe, upper lobe of left side of epandrium with a nearly vertical posterior margin, which is irregularly straight-edged to somewhat concave in middle, and is distinctly crenellate Phora holosericea
 • Left side of the epandrium not being deeply cleft, upper lobe of left side of epandrium otherwise ... Phora iranensis
16. Scutellum with a pair of long bristles and a pair of short hairs. The hairs of the tergites being very small and the venter lacking hairs. Epandrium with strong bristles, left lobe of the hypandrium smaller than right lobe, wing length 1.44 mm, costal index 0.31 Mahabadphora aesthesphora
 • Without this combination .. other species
17. Frons lacking bristles between antennae and ocelli (genus Gymnophora) 18
 • Frons with bristles between antennae and ocelli (genus Chonocephalus) 19
18. Oblique ridge of notopleuron largely pale. Small swelling of costa before tip of vein 1 embracing a pale oval spot.

Gymnophora arcuata

- Without this combination.

19. Microsetae of left side of epandrium near margin absent, epandrium with numerous long hairs, right gonopod asymmetrically expanded distally and with the longer arm directed rearwards; left gonopod a long narrow process bearing a pair of bristles at its slightly expanded tip.

Chonocephalus heymonsi

- Without this combination.

20. Hind tibiae with two (rarely three) setal palisades (genus *Diplonevra*).

- Hind tibia with only one dorsal palisade-like row of setae.

21. Halteres black, proboscis elongated, narrow, and elbowed. Hind trochanter with cluster of short black ‘studs’ in place of bristles.

Diplonevra funebris

- Without this combination.

22. Middle tibia with two isolated bristles in proximal third (genus *Dohrniphora*).

- Middle tibia without isolated bristles in proximal thirds.

23. Legs yellow apart from some brown pigment on mid coxae, posterior face of hind femur with sparse dorsal setae; ventrobasal region with only four or five short, thick peg-like setae.

Dohrniphora cornuta

- Without this combination.

24. Male with proctiger ending in finely feathered bristles that are clearly more robust than setae on cerci, hind tibia with a clearly differentiated longitudinal row of stout, spine-like, antero-dorsal hair (genus *Phalacrotophora*).

- Male with proctiger ending in setae that little, if any, stronger than those on cerci, hind tibia without a clearly differentiated row of spine-like antero-dorsal hairs (genus *Megaselia*).

25. Wing about 2 mm long, costal index of 0.46.

Phalacrotophora fasciata
• Wing 1.39 mm long, costal index 0.36 ... Phalacrotophora flavidus
• Wing much longer and costal index exceeds 0.5 ...26

26. Abdominal spiracles greatly enlarged on segments 5–7 at least Megaselia stigmatica
• Abdominal spiracles not enlarged ..27

27. Hairs at tip of anal tube developed as robust feathered bristles Megaseelia scalaris
• Hairs at tip of anal tube normal ..28

28. Longest bristle on palp at most as long as maximum width of palp Megaselia longipalpis
• Longest bristle on palp clearly longer than maximum width of palp29

29. Hypopygium is often largely straw yellow. The inner face of the epandrium comprises elaborate cavities lined with fine pale hairs ... Megaselia xanthozona
• Hypopygium otherwise ..30

30. Tibia and metatarsus of fore legs dark brown in apical half Megaselia annulipes
• Tibia and metatarsus of fore legs uniformly yellowish or uniformly dark31

31. The apical third of hind tibia appears deformed, associated with the strong deflection of the hair palisade onto the anterior face ... Megaselia hirtiventris
• The apical third of hind tibia not modified in this way ...32

32. Midline length of dorsal face of epandrium very short and cerci lengthened dorsoventrally ... Megaselia tama
• Hypopygium otherwise ..33

33. Right side of the epandrium distinctively, dark hook-shaped posterovertral process ... Megaselia albocingulata
• Hypopygium otherwise ..34
| 34. Mesopleuron with hairs and sometimes with bristles | 35 |
|---|----|
| • Mesopleuron bare | 66 |

35. Mid femur with a conspicuous ventral dilation	36
• Mid femur with no ventral dilation	37

36. Haltere knob pale	Mega-	
• Haltere knob brown	selia	zonuzensis

37. Terminal hairs of anal tube weak and down-curved	Mega-	
• Terminal hairs of anal tube often relatively strong and always curved upwards	selia	producta

38. Mesopleuron with at least one bristle near posterior border. These bristles are clearly more robust and longer than hairs	39
• Mesopleuron with hairs only. When these hairs are somewhat strong and bristle-like, there is no clear division into two size classes	53

39. Scutellum with two pairs of bristles	Mega-	
• Scutellum with an anterior pair of short hairs and a posterior pair of long bristles	selia	daemon

40. Knob of haltere largely or entirely yellow	41
• Knob of haltere somewhat darkened	43

41. Hairs below basal half of hind femur relatively short and in a single row	Mega-	
• Hairs below basal half of hind femur relatively long and somewhat crowded.	selia	pleuralis

42. Left side of epandrium with a strong bristle towards lower margin near half-way point and a vertical row of 2–4 slightly weaker bristles in front	Mega-	
• Left side of epandrium without this isolated bristle and vertical row of 3–4 stronger bristles usually less inclined anteriorly	selia	meconicera
43. Penis complex in hypopygium including a pale process tipped with a pair of short but thick spines. ... Megaselia chicheckiensis
 • Penis complex in hypopygium otherwise .. 44

44. Abdominal venter with hairs restricted to segments 5 and 6 45
 • Abdominal venter with hairs on segments 3–6 ... 46

45. Venter of abdominal segment 6 with a posterior pair of bristle clusters, with each bristle arising from a dark circular disc .. Megaselia aculeata
 • Venter of abdominal segment 6 without such a bristle Megaselia ghalateshahensis

46. Front basitarsus ventrally with hairs replaced by minute spinules 47
 • Front basitarsus ventrally without such hairs ... 49

47. Hind tibia with six of the eight differentiated posterodorsal hairs robust Megaselia evogliensis
 • Hind tibia with more moderately differentiated posterodorsal hairs 48

48. The two hairs of the ventral edge of left cercus situated postero-ventrally so as to be almost as far back as lower hair of posterior edge of cercus. The most posterior of these ventral hairs is at least as strong as terminal hairs of proctiger, and usually stronger Megaselia curvicapilla
 • Neither hair of cercus as strongly developed as terminal hairs of proctiger . . Megaselia mahabadensis

49. Hypopygium with very long left hypandrial lobe ... 50
 • Not so .. 51

50. Hairs below basal half of hind femur clearly longer than those of anteroventral row of outer half. ... Megaselia khoyensis
 • Hairs below basal half of hind about as long as those of anteroventral row of outer half. ... Megaselia ardabilensis

51. Legs yellow .. Megaselia yaseri
• Legs brown to brownish yellow .. 52

52. Hairs below basal half of hind femur clearly longer than those of anteroventral half. .. Megaselia pereensis

• Hairs below basal half of hind about as long as those of anteroventral row of outer half. .. Megaselia namakiae

53. The lower margin of right side of epandrium greatly extended downwards and curving under the hairless hypandrium .. Megaselia verralli

• Epandrium not modified in this way ... 54

54. Ventral face of metatarsus of front leg with at least two complete longitudinal rows of hairs reduced to short blunt spines .. 55

• Ventral face of fore metatarsus at most with only one complete row of hairs modified in this way ... 57

55. Notopleuron with two bristles ... Megaselia zarghanii

• Notopleuron with three bristles ... 56

56. Haltere knob brown ... Megaselia ajabshirensis

• Haltere knob whitish yellow ... Megaselia hejazii

57. Labella of proboscis somewhat to conspicuously enlarged and their lower faces with dense fields of short, blunt, pale spine .. 58

• Labella little, if any, enlarged and lower faces with few or no short pale spines 60

58. Haltere knob yellow ... Megaselia altifrons

• Haltere knob brown .. 59

59. Anterior pair of bristles on scutellum clearly shorter and finer than posterior pair. Apart from the lowest bristle, the left side of epandrium with weaker hairs Megaselia posticata
- Bristles on scutellum subequal, the anterior pair being only slightly shorter and finer. All hairs on left side of epandrium, in anterior half, are stronger. *Megaselia communiformis*

60. Anal tube clearly longer than the length of dorsal face of epandrium. *Megaselia styloprocta*

- Anal tube subequal or clearly shorter than the length of dorsal face of epandrium. 61

61. Haltere with stem and knob largely dark. ... 62

- Haltere with knob mainly yellow or yellowish. .. 64

62. Hairs of tergite of abdominal segment 6 strongly developed. *Megaselia exkaleybar*

- These hairs much finer. ... 63

63. All legs dark grey to blackish. ... *Megaselia pusilla*

- Fore legs and mid legs yellow, hind legs yellow brown. ... *Megaselia polysetosis*

64. Hairs on left side of epandrium distinctly somewhat more robust than those on cerci. ... *Megaselia subpleuralis*

- Hairs on left side of epandrium at most only as robust as those on cerci. 65

65. Hairs below basal half of hind femur clearly longer than those of anteroventral half. ... *Megaselia kaleybarensis*

- Hairs below basal half of hind about as long as those of anteroventral row of outer half. ... *Megaselia distincta*

66. Abdominal tergites 1–6 with numerous long bristles and epandrium also with bristle. ... *Megaselia rufipes*

- Any long bristles on abdominal tergites restricted to hind margins of 5 and 6 and sides of tergite 2... 67

67. A short row of 4–5 spines (with bent tips) sharply contrasting with rest of hairs beneath base of hind femur. ... *Megaselia longiseta*

- No such spines beneath hind femur, but with hairs only. .. 68
68. Rear margin of segment 4 of venter forms a median ‘pocket’ associated with 2-4 more robust hairs at sharply defined hind margin of sternum; and segment 5 with a pair of diverging ridges running rearwards from just behind these hairs.

- Ventral face of segments of abdomen not in this form.

69. Scutellum with two pairs of bristles.

- Scutellum with a posterior pair of bristles and an anterior pair of hairs.

70. Hind tibia with an antero-dorsal row of short black spines, clearly differentiated from adjacent hairs of anterior face, as well as the longer postero-dorsals (the dorsal hair palisade passes between these two rows of spines); mid tibia also with a row of differentiated antero-dorsals in addition to postero-dorsals.

- Neither hind nor mid tibia with such spine-like antero-dorsals.

71. Vein Sc strong and its tip fused to vein 1 (R1).

- Vein Sc fades away before reaching vein 1 (R1).

72. Left side of epandrium with at least one bristle or strong hair, which is more robust than hairs of cerci.

- Hairs of left side of epandrium at most only as robust as hairs of cerci, usually weaker.

73. Bristles at rear margin of abdominal tergite 6 conspicuously longer and stronger than most robust hairs or bristles on left side of epandrium, and the hairs of the venter of segment 6 also strong and bristle-like.

- Bristles at rear margin of abdominal tergite 6 subequal to or shorter than most robust hairs or bristles on left side of epandrium, and those on venter of segment 6, usually weaker.

74. Strong bristles on epandrium distinctly feathered.

- No bristles on epandrium are obviously feathered.

75. At most, only one bristle on left side of epandrium is longer than those at rear margin of abdominal tergite 6.

- Megaselia plurispinulosa

- Megaselia ruficornis

- Megaselia giraudii

- Megaselia spinicincta

- Megaselia hirticaudata
• At least two (usually more) bristles on left side of epandrium are clearly longer than those at rear margin of abdominal tergite 6. .. 76

76. Hairs of venter at least twice as numerous, thus segment 4 bears about 20 hairs.
... Megaselia halterata

• Hairs of venter at most half as numerous, thus segment 4 bears 10 or fewer hairs.
... 77

77. Haltere knob pale yellowish. ... Megaselia Ledzona

• Haltere knob brown. .. 78

78. Hind femora straw yellow. ... Megaselia subfuscipes

• Hind femora brown. .. 79

79. Stronger, bristle-like, hairs on epandrium restricted to postero-lateral corners, there being 1-2 such hairs each side. .. Megaselia hendersoni

• The hairs of postero-ventral corners of epandrium are weaker than those on sides in front of these hair. ... Megaselia pallidizona

80. Knob of haltere brown. .. 80

• Knob of haltere yellowish. .. 81

81. Terminal hairs of proctiger distinctly a little, to conspicuously, more robust than strongest hairs of cerci. ... Megaselia kermanshahensis

• Terminal hairs of proctiger at most only indistinctly more robust than strongest hairs on cerci, usually weaker or subequal in thickness. ... 82

82. All femora dominantly yellowish, apart from dark tip to hind femur. Megaselia kaghaniniai

• All femora somewhat pigmented, ranging from yellowish grey to blackish brown. 83

83. Abdominal venter with hairs restricted to segments 5 and 6. Megaselia propinqua

• Abdominal venter with hairs present on segments 3–6. .. Megaselia subnudipennis
84. Notopleuron with only two strong bristles 85
 • Notopleuron with three strong bristles 98

85. Vein Sc reaches R1, although last quarter may be a little faint 86
 • Vein Sc clearly ending before reaching R1 88

86. Terminal hairs of proctiger a little, but distinctly, more robust than hairs of cerci; a short bristle between the two strong bristles on notopleuron (even when quite short it is still longer and more robust than adjacent hairs of dorsum) Megaselia largifrontalis
 • Terminal hairs of proctiger at most as robust as those on cerci. Any hairs between two strong bristles on notopleuron are no stronger than adjacent hairs on dorsum 87

87. Hairs below basal half of hind femur longer than those of antero-ventral row of outer half ... Megaseelia caveonectergata
 • Hairs below basal half of hind femur shorter than those of antero-ventral row of outer half .. Megaselia flavururus

88. Wing membrane distinctly tinged brownish grey 89
 • Wing membrane only faintly tinged with grey 90

89. Costa only about one-third of wing length and costal cilia relatively short Megaselia brevior
 • Costa at least two-fifths of wing length and costal cilia longer .. Megaselia minuta

90. A notopleural cleft present above and in front of the anterior notopleural bristle Megaselia brevicoastals
 • No notopleural cleft present .. 91

91. Terminal hairs of proctiger at least a little, but distinctly, more robust than hairs of cerci 92
 • Terminal hairs of proctiger at most as robust as hairs on cerci 93

92. Lower faces of labella with dense fields of short, pale spines Megaseelia berndseni
• Lower faces of labella usually with only sparsely scattered spines *Megase-
 lia oxybelorum*

93. Pre-ocellar bristles clearly closer together than upper supra-antennals, and lower supra-
 antennals also well separated *Megase-
 lia perdistans*

• Pre-ocellars as far apart or further apart than upper supra-antennals, and lower supra-
 antennals even closer together than latter 94

94. Lower faces of labella with few or no short pale spines 95

• Lower faces of labella with dense fields of short, pale spine 96

95. Legs yellow *Megaselia haddadi*

• Legs brown to brownish yellow *Megaselia angustiata*

96. With three bristles on axillary ridge of wing *Megaselia
 miandoabensis*

• Only two bristles on axillary ridge of wing 97

97. Costal index less than 0.4 *Megaselia
 paluventer*

• Costal index more than 0.4 *Megaselia
 barzegarae*

98. Anal tube very long relative to the length of epandrium *Mega-
 selia minor*

• Anal tube shorter than the length of epandrium 99

99. Hairs of left side of epandrium only about as strong as those on cerci 100

• Hairs of left side of epandrium weaker than those on cerci 101

100. Lower faces of labella with numerous short pale spines *Megaselia
 verna*

• Lower faces of labella at most with a few scattered spines *Megaselia
 angelicae*

101. Posterior lobe of left side of hypandrium bare on lower face *Megase-
 lia coaetanea*

• Posterior lobe of left side of hypandrium with fine, usually pale, hairs on lower face 102
102. All legs dominantly brown or greyish brown ... 103

- At least front legs extensively yellowish ... 104

103. Postero-ventral extremity of left side of epandrium more drawn out behind

- *Megaselia fereagarici*

- Postero-ventral extremity of left side of epandrium less drawn out behind

Megaselia bovista

104. Terminal hairs of proctiger only about as strong as hairs on cerci *Megaselia albicaudata*

- Terminal hairs of proctiger distinctly stronger than hairs of cerci 105

105. Front basitarsus ventrally with hairs replaced by minute spinules *Megaselia tarsalis*

- Front basitarsus ventrally without such a hairs .. *Megaselia farshbafi*

Discussion

The phorid flies are very diverse in terms of species number and lifestyle but are poorly known. During this study, the phorids captured from three northwestern provinces of Iran were investigated via morphological and molecular methods, and subsequently, a genus/species-level morphological identification key was developed for male flies reported throughout the country. By comparing the known world phorid genera maintained in UCMZ, we proposed a new monotypic genus of scuttle flies, *Mahabadphora aesthesphora* gen. nov., sp. nov.

The faunistic findings revealed the presence of 13,903 males and 8,097 females during this project. All male (and some female) flies were morphologically identified and organized into 11 genera. *Megaselia* species (n = 13768), made up about 99% of the specimens studied (Table 2). In bulk collections of other studies, the genus *Megaselia* constitutes the most frequently captured flies [70,112–116].

The specimens of the present study were gathered from relatively restricted localities in the mountainous cold areas. Hence, with the expansion of sampling to the areas with temperate and tropical climates, we can anticipate the precise reflections of the phorid’s distribution since they are very responsive to microclimatic/habitat alterations [72,117,118].

We were able to include only 71 paratypes in our molecular experiments as the type specimens were archived in UCMZ and ICHMM collections after identity verifications. The mitochondrial *COI* and nuclear *28S/AK* markers were preferred to other targets because they have been proved to be informative for species-level and genus-level analyses, as indicated in a large number of resources regarding evolutionary associations in insects [e.g., 37–40,44,46,119,120].

Based on the single gene datasets, the preliminary molecular analysis of this study resulted in trees with less resolution and support; owing to fewer included characters (data are not shown). Mitochondrial markers are also more variable than nuclear ones. The mitochondrial genes help to solve the more recent divergences and nuclear ones better resolver deeper divergences, hence, the combinations of *COI-28S* and *COI-AK* datasets were applied to describe the
studied paratypes, as well as to determine their relationships with known taxa. The reason for using combined analyses is that they may reliably resolve disagreements between the individual genes analyzes, enhance phylogenetic resolutions, and be more consistent with morphological data [121]. We also tried to include sequences from the same specimens in combined analyses whenever possible.

Excluding two pairs of _Megaselia_ species, _M. hirticaudata_ / _M. shabestarensis_ and _M. khoyensis_ / _M. ardabilensis_, our results specified that morphologically delimited species were congruent with the molecular analysis inferred from the _COI-28S_ and _COI-AK_ sequences with genetic distances and phylogenetic trees. Broadly speaking, the failure of the target genes to discriminate above-mentioned pair species is controversial. Although, belonging to the _M. sulphuripes_ species group, _M. hirticaudata_ and _M. shabestarensis_ are morphologically distinct. This dissimilarity is also true for the species of _M. ardabilensis_ and _M. khoyensis_. The discrepancy in morphological and molecular analysis could be a consequence of conspecificity, misidentification, or inefficiency of target genes in differentiating these species. However, the original data and photographs in combination with the quality of the sequences were carefully examined, and none of the aforementioned matters were resolved. Molecular investigations were repeated even in the case where syntypes were available, though the results did not change. According to the literature, even when two _COI_ sequences are the same, there is still a chance that they belong to different taxa [122]. Therefore, to solve inconsistency like this, we suggest using supplementary loci or sequencing of the mitochondrial / nuclear genomes if possible.

Phylogenetic relationships of the understudy sequences were first examined using the NJ (S1–S3 Figs) and then by the ML method (Figs 4–6), but the second one showed more agreement with the morphological classifications. The fact that ML or Bayesian methods are more efficient than the NJ method in obtaining the true tree has been indicated in other studies [123,124].

Herein, the results of the relationship analysis were offered through three ML phylogenetic trees; the first and second trees with relying on _COI-28S_ datasets for the _Megaselia_ spp. and non- _Megaselia_ species, respectively and the third tree, in support of the second one, using _COI-AK_ sequences, to confirm the position of the newly described species within Phorinae. We reported six major clades for _Megaselia_ species with low bootstrap values. Low bootstrap values may indicate that there are conflicting or little signals in the data set. Most genera within the Phoridae were monophyletic taxa with relatively a few species; however, _Megaselia_ with remarkable radiation comprised of about 1,700 described species, presumably accounting for the largest genus in the animal kingdom [46,125]. Initially, the genus _Megaselia_ was morphologically divided into two _Megaselia_ and _Aphiochaeta_ subgenera, and subsequently into further divisions and series [103,126–129]. Later, a new species (the lucifrons) group in _Megaselia_ was introduced, using two _COI_ and 28S molecular markers [46]. Recently, 22 informal species groups have been proposed for this species-rich genus based on nuclear (28S rDNA) and mitochondrial (_ND1_, _COI_, and _16S_) markers [130]. The topology obtained for _Megaselia_ sequences in this study, in agreement with other studies, represents a monophyletic lineage for this challenging genus [46,130]. Genome-scale phylogenetics is necessary to infer true monophyly and radiation of _Megaselia_ species.

The last consensus tree, in support of the second one, verified _Mahabadphora aesthesphora_ gen. nov., sp. nov. as a valid new taxon in the Phorinae subfamily. Both morphological and molecular analyses specified _M. aesthesphora_ gen. nov., sp. nov. as sister taxon to _Phora_ spp. Two specimens of this species were collected from West Azerbaijan, Mahabad City, which the first specimen was deposited in the UCMZ, and the second one was used for molecular analysis. This species may have a wider distribution in Iran and other areas with this type of habitat, which requires further sampling.
Literature review revealed that the phorids fauna in 12 provinces of Iran comprises of three subfamilies, 13 genera, and 97 species (Table 2). However, information on other species in the remaining 19 provinces is largely unavailable. Among 87 species offered during the current project, two new genera (Mahabadphora g. nov. and Iranphora Namaki-Khameneh & Disney, 2021) and 32 species represented new records for the world, and four genera (Conicera, Dohrniphora, Gymnophora, and Triphleba) and 47 species were new reports from Iran. Moreover, 10 species of the current study have previously been reported [49,65,69,79,100].

As a most evolutionarily successful group of macro-organisms, true flies (Diptera) can exploit almost all terrestrial and aquatic ecosystems on the earth. Indeed, Diptera is divided into families with regard to the habits (nutrition) and habitats (environment) of adults and larvae [131]. In this respect, phorid flies display the greatest diversity among all the dipterous families. The life histories of most scuttle flies are rarely documented in Iran, and limited studies have focused on only renowned species that act as the pest of edible mushrooms [49,50], invade honey bee colonies [51], or cause myiasis in humans [24]. A synopsis of bio-ecological information of 97 phorid species reported in this study was assembled from various sources and is shown in Table 2. Due to the fact that the way of life of most species is unknown, this information could expand our knowledge on the bionomics of scuttle flies in terms of environmental, agricultural, medical, and forensic prospectives.

Conclusion

The present study is the most extensive sampling of Phoridae in Iran and the first study that utilizes the molecular characters for the identification of specimens to address morphological identification problems. Obviously, our research work has limitations in terms of sample size and sampling locations. Despite these downsides, we believe our results can comprehensively determine the taxonomic status of scuttle flies in Iran, scrutinize their phylogenetic structures, facilitate their identification and introduce a new monotypic genus.

Supporting information

S1 Fig. Neighbour joining tree inferred from 1200–1269 bp of the COI-28S gene sequences of 61 Megaselia species obtained in this study, along with the sequences of M. scalaris from the Genbank (KF974742-KC177721). Only bootstrap values higher than 50% are shown on the branches. The bar indicates substitutions per site. The Drosophila melanogaster (Meigen, 1830) (KY559392-NR_133562), Glossina morsitans Westwood, 1851 (KC192971-KC177834) and Musca domestica Linnaeus, 1758 (AB479529-AJ551427) were set as outgroups.

S2 Fig. Neighbour joining tree inferred from 1200–1269 bp of the COI-28S gene sequences of 11 non-Megaselia species obtained in this study. Only bootstrap values higher than 50% are shown on the branches. The bar indicates substitutions per site. The Drosophila melanogaster (Meigen, 1830) (KY559392-NR_133562), Glossina morsitans Westwood, 1851 (KC192971-KC177834) and Musca domestica Linnaeus, 1758 (AB479529-AJ551427) were set as outgroups.

S3 Fig. Neighbour joining tree inferred from 1263 bp of the COI-AK gene sequences of the new genus described in this study. Only bootstrap values higher than 50% are shown on the branches. The bar indicates substitutions per site. The Drosophila melanogaster (Meigen, 1830) (KY559392-U26939), Glossina morsitans Westwood, 1851 (KC192971-EZ423387) and Musca
domestica Linnaeus, 1758 (AB479529-JX428899) were set as outgroups.

S1 Graphical Abstract.

S1 Table. Inventory of sequences used in molecular analysis of the specimens of this study. I. sequences generated in this study (n = 143) which are shown in bold, II. Those used to study of interspecific and inter/intrageneric genetic diversity (n = 219), and III. Sequences applied in phylogenetic tree reconstructions (n = 204).

S2 Table. The LSIDs of the all publications and species mentioned in the present project.

S3 Table. Pairwise genetic distances (%) between 71 species of Phorid species from Iran based on COI (down) and 28S rRNA (up) sequences.

S4 Table. Pairwise genetic distances of *Mahabadphora aesthesphora* gen. nov., sp. nov. from other Phorid species based on *Arginine kinase* sequences.

Author Contributions

Conceptualization: Samad Khaghaninia.

Data curation: Roya Namaki-Khameneh, R. Henry L. Disney, Naseh Maleki-Ravasan.

Formal analysis: Naseh Maleki-Ravasan.

Funding acquisition: Naseh Maleki-Ravasan.

Investigation: Roya Namaki-Khameneh, Samad Khaghaninia, R. Henry L. Disney, Naseh Maleki-Ravasan.

Methodology: R. Henry L. Disney, Naseh Maleki-Ravasan.

Project administration: Naseh Maleki-Ravasan.

Resources: Naseh Maleki-Ravasan.

Software: Roya Namaki-Khameneh, Naseh Maleki-Ravasan.

Supervision: Samad Khaghaninia, Naseh Maleki-Ravasan.

Validation: R. Henry L. Disney, Naseh Maleki-Ravasan.

Visualization: Naseh Maleki-Ravasan.

Writing – original draft: Naseh Maleki-Ravasan.

Writing – review & editing: Naseh Maleki-Ravasan.

References

1. Disney RHL. Scuttle flies: The Phoridae. Chapman & Hall, London, UK. 1994; 467 pp. http://dx.doi.org/10.1007/978-94-011-1288-8_6.

2. Disney RHL. Scuttle Flies-Diptera Phoridae Genus *Megaselia*. Handbooks for the Identification of British Insects. 1989; 10: 1–155.
3. Smith KGV. An introduction to the immature stages of British flies. Diptera larvae, with notes on eggs, puparia and pupae. Handbooks for the identification of British insects. vol. 10 (part 14). R. Entomol. Soc. Lond. UK. 1989: p 280.

4. Polidori C, Disney RHL, Andrietti F. Some behavioural observations on *Megaselia oxybelorum* (Diptera: Phoridae), a new kleptoparasite of *Cerceris arenaria* (Hymenoptera: Sphecidae: Philanthidae). Br. J. Ent. Nat. Hist. 2001; 14: 93–95.

5. Scott HG, Lettig K.S. Flies of Public Health Importance and their Control. US Government Printing Office, Washington. DC. 1962.

6. Coupland JB, Barker G. Diptera as predators and parasitoids of terrestrial gastropods, with emphasis on Phoridae, Calliphoridae, Sarcophagidae, Muscidae and Fanniidae. In Naturan Enemies of Terrestrial Mollusks, ed. Barker G. M. Wallingford: CABl publishing. 2004; pp. 85–158.

7. Gillung JP, Borkent CJ. Death comes on two wings: a review of dipteran natural enemies of arachnids. J Arachnol. 2017; 45: 1–19. https://doi.org/10.1636/JoA-S-16-085.1

8. Huntington TE, Voigt DW, Higley LG. Not the usual suspects: human wound myiasis by Phorids. J Med Entomol. 1989; 26: 228–229. PMID: 2724321

9. Hash J, Brown B. Revision of the New World species of the millipede-parasitic genus *Myniophora* Brown (Dipteria: Phoridae). Zootaxa. 2015; 4035: 1–79. https://doi.org/10.1371/journal.pone.0257899

10. Komori K, Hara K, Smith KGV, Oda T, Karamine D. Invasion of the scuttle flies of Iran. The scuttle flies of Iran: From the Mediterranean basin to Central Asia. Korean J Parasitol. 2008; 46: 27–80. PMID: 84098.
24. Ghavami MB, Djailivand A. First Record of Urogenital Myiasis Induced by *Megaselia scalaris* (Diptera: Phoridae) from Iran. J Arthropod-Borne Dis. 2015; 9: 274–280. PMID: 26623439

25. Solgi R, Djadid ND, Eslamifar A, Raz A, Zakeri S. Morphological and molecular characteristic of *Megaselia scalaris* (Diptera: Phoridae) larvae as the cause of urinary myiasis. J Med Entomol. 2017; 54: 781–784. https://doi.org/10.1093/jme/tjw204 PMID: 28399213.

26. Talebzadeh F, Ghadipasha M, Gharehaghi J, Yeksan N, Akbarzadeh K, Oshaghi MA. Insect fauna of human cadavers in Tehran District. J Arthropod Borne Dis. 2017; 11: 363–70. PMID: 29322053.

27. Reibe S, Madea B. Use of *Megaselia scalaris* (Diptera: Phoridae) for postmortem interval estimation indoors. Parasitol Res. 2010; 106: 637–640. https://doi.org/10.1007/s00436-009-1713-5 PMID: 20076971.

28. Martin-Vega D, Gomez-Gomez A, Baz A. The “coffin fly” *Conicerca tibialis* (Diptera: Phoridae) breeding on buried human remains after a postmortem interval of 18 years. J Forensic Sci. 2011; 56: 1654–1656. https://doi.org/10.1111/j.1556-4029.2011.01839.x PMID: 21790595.

29. Feng DX, Wu J, Sun DP. Intrapuparial Age Estimation of Forensically Important *Dohrniphora cornuta* (Diptera: Phoridae). J Med Entomol. 2020; 28: 219. https://doi.org/10.1093/jme/tjaa219 PMID: 33112405.

30. Zwart P, Disney RHL, de Batist P, Mutschmann F. The phorid scuttle fly (*Megaselia scalaris*) a threat to zoological collections and especially to amphibians. ZooMed the Bulletin of the BVZS, 2005; 5: 27–30.

31. Costa J, Almeida CE, Esperança GM, Mallet JRDS, Gonçalves TCM, et al. First record of *Megaselia scalaris* (Diptera: Phoridae) breeding on a subterranean colony of Triatoma brasiliensis Neiva (Hemiptera: Reduviidae). Neotrop Entomol. 2007; 36: 987–989. https://doi.org/10.1590/s1519-566x2007000600026 PMID: 18246279.

32. Mongiardino Koch N, Fontanarosa P, Padro J, Soto IM. First record of *Megaselia scalaris* (Loew) (Diptera: Phoridae) infesting laboratory stocks of mantids (Parastagmatoptera tessellata, Saussure). Arthropod. 2013; 2: 1–6.

33. Zuha RM, Jenartha nan LXQ, Disney RHL, Omar B. Multiple species of scuttle flies (Diptera: Phoridae) as contaminants in forensic entomology laboratory insect colony. Trop Biomed. 2015; 32: 568–572. PMID: 26695221

34. Ament DC, Brown BV. Family Phoridae. Zootaxa. 2016; 4122: 414–451. https://doi.org/10.11646/zootaxa.4122.1.37 PMID: 27395285

35. Disney RHL, Mostovski MB. Phoridae (Platypezoidea). Manual of Afrotropical Diptera. 2018; In press.

36. Pereira F, Carneiro J, Amorim A. Identification of species with dna-based technology: current progress and challenges. Recent Pat DNA Gene Seq. 2008; 2: 187–200. https://doi.org/10.2174/187221508786241738 PMID: 19075956.

37. Maleki-Ravasan N, Shayeghi M, Najibi B, Oshaghi MA. Infantile Nosocomial Myiasis in Iran. J Arthropod Borne Dis. 2012; 6: 156–163. PMID: 23378974

38. Maleki-Ravasan N, Bahrami A, Vatandoost H, Shayeghi M, Koosha M, Oshaghi MA. Molecular characterization and phylogenetic congruence of *Hydropsyche sciligna* (Trichoptera: Hydropsychidae) using mitochondrial and nuclear markers. J Arthropod Borne Dis. 2017; 11: 60–77. PMID: 29026853.

39. Karimian F, Oshaghi MA, Sedaghat MM, Waterhouse RM, Vatandoost H, Hanafi-Bojd AA, et al. Phylogenetic analysis of the oriental-Palaearctic-Afrotropical members of *Anopheles* (Culicidae: Diptera) based on nuclear rDNA and mitochondrial DNA characteristics. Jap J Infc Dis. 2014; 67: 361–367. https://doi.org/10.7883/yoken.67.361 PMID: 25241686.

40. Kanzadeh F, Khaghaninia S, Maleki-Ravasan N, Oshaghi MA, Adler PH. Black flies (Diptera: Simuliidae) of the Aras River Basin: species composition and floral visitation. Acta Trop. 2020; 105536: 1–8. https://doi.org/10.1016/j.actatropica.2020.105536 PMID: 32450136.

41. Skuhrovec J, Gosik R, Maleki-Ravasan N, Karimian F, Tahghighi F. Morphological and molecular inference of immature stages of *Larinus hedenborghi* (Col: Curculionidae), a trehala-constructing weevil. Org Divers Evol. 2021; In press.

42. Boehme P, Amendt J, Disney RHL, Zehner R. Molecular identification of carrion-breeding scuttle flies (Diptera: Phoridae) using COI/barcodes. Int J Legal Med. 2010; 124: 577–581. https://doi.org/10.1007/s00414-010-0429-5 PMID: 20195623

43. Cook CE, Austin JJ, Disney RHL. A mitochondrial 12S and 16S rRNA phylogeny of critical genera of Phoridae (Diptera) and related families of Aschizida. Zootaxa. 2004; 593: 1–11. https://doi.org/10.11646/zootaxa.593.1.1.

44. Smith PT, Brown BV. A molecular phylogenetic analysis of genus *Anevrina* (Diptera: Phoridae), with the description of a new species and updated world key. Zootaxa. 2010; 2397: 29–40. https://doi.org/10.11646/zootaxa.2397.1.3.
45. Hash JM, Brown BV, Smith PT, Kanao T. A molecular phylogenetic analysis of the genus *Dohrniphora* (Diptera: Phoridae). Ann Entomol Soc Am. 2013; 106: 401–409. https://doi.org/10.1603/AN12053.

46. Häggqvist S, Ulefers SO, Ronquist F. A new species group in *Megaselia*, the *lucitrons* group, with description of a new species (Diptera, Phoridae). Zookeys. 2015; 6: 89–108. https://doi.org/10.3897/zookeys.512.9494 PMID: 26257662.

47. Sánchez-Restrepo AF, Chifflet L, Confalonieri VA, Tsutsui ND, Pesquero MA, Calcaterra LA. A Species delimitation approach to uncover cryptic species in the South American fire ant decapitating flies (Diptera: Phoridae: *Pseudacteon*). PloS one. 2020; 15: e0236086. https://doi.org/10.1371/journal.pone.0236086 PMID: 32678835.

48. Kronforst MR, Folgarait PJ, Patrick RJ, Gilbert LE. Genetic differentiation between body size biotypes of the parasitoid fly *Pseudacteon obtusus* (Diptera: Phoridae). Mol Phylogenetics Evol. 2007; 43: 1178–1184. https://doi.org/10.1016/j.ympev.2006.09.003 PMID: 17046288.

49. Zamani AA, Talebi AA, Mohammadi Goltapeh E, Fathipour Y. Investigation on morphological and biological characteristics of *Megaselia scalaris* (Diptera: Phoridae), as an important pest of button mushroom in Karaj, Iran. Sci J Agric. 2005; 27: 45–58. [in Persian] https://doi.org/10.1016/j.ympev.2008.05.023 PMID: 18644735.

50. Talebi AA, Zamani AA, Mohammadi Goltapeh E, Moharramipour S, Fathipour Y. Investigation on biological characteristics of *Megaselia halterata* (Diptera: Phoridae), as an pest of button mushroom (Agarius bioporus Lange) in Karaj. J Agric Sci. 2005; 15: 53–61. [in Persian] https://doi.org/10.1080/09397140.2018.1540155.

51. Abdi-Goodarzi M, Moharrami M, Karimi Gh. Identification of phorid fly *Megaselia scalaris* (Diptera: Phoridae) in Iranian honey bee (*Apis mellifera media*) Colonies of Taleghan, Karadj apiaries. Iran HoneyBee Sci Technol. 2013; 3: 9–13.

52. Disney RHL. The preservation of small Diptera. Entomol Mag. 2001; 137: 155–159.

53. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am. 1994; 87: 651–701. https://doi.org/10.1093/aesa/87.6.651.

54. Wiegmann BM, Tsaur Sh, Webb DW, Yeates DK, Cassel BK. Monophyly and Relationships of the Tabanomorpha (Diptera: Brachycera) Based on 28S Ribosomal Gene Sequences. Ann Entomol Soc Am. 2000; 93: 1031–1038. https://doi.org/10.1603/7463489

55. Wild AL, Maddison DR. Evaluating nuclear protein-coding genes for phylogenetic utility in beetles. Mol Phylogenet Evol. 2008; 48: 877–891. https://doi.org/10.1016/j.ympev.2008.05.023 PMID: 18644735.

56. Sievers F, Wilm A, Dineen DG, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011; 7: 539. https://doi.org/10.1038/mabs.2011.75 PMID: 21988835.

57. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. Mega x: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018; 35: 1547–1549. https://doi.org/10.1093/molbev/msy096 PMID: 2972287.

58. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980; 16: 111–120. https://doi.org/10.1007/BF01731581 PMID: 7463489.

59. Namaki-Khameh R, Khaghaninia S, Disney RHL. New records of the scuttle flies (Diptera, Phoridae) from Iran. J Insect Biodivers syst. 2018; 4: 147–155.

60. Namaki-Khameh R, Khaghaninia S, Disney RHL. Scuttle flies (Diptera: Phoridae) from Ardabil province in Iran, with description of a new species of *Megaselia* Rondani. Zool Middle East. 2019; 65: 70–74. https://doi.org/10.1080/09397140.2018.1540155.

61. Namaki-Khameh R, Khaghaninia S, Disney RHL. Records of species of *Megaselia* Rondani 1856 (Diptera, Phoridae) from West Azerbaijan province including new records for Iran. J Crop Prot. 2019; 8: 235–242.

62. Namaki-Khameh R, Khaghaninia S, Disney RHL, Maleki-Ravasan N. Faunistic study of the genus *Megaselia* Rondani 1856 (Diptera: Phoridae) from East Azerbaijan province including 11 new records for Iran. J Appl Plant Prot. 2019; 8: 45–56.

63. Namaki-Khameh R, Khaghaninia S, Disney RHL, Maleki-Ravasan N. Twenty one new species of scuttle flies (Diptera: Phoridae) from Iran. Zootaxa. 2019; 4711: 001–050. https://doi.org/10.11646/zootaxa.4711.1.1.

64. Namaki-Khameh R, Khaghaninia S, Disney RHL, Maleki-Ravasan N. Nine new species of scuttle flies, including one new genus (Diptera: Phoridae) from Iran. Biologia. 2021; 76: 2895–2912. https://doi.org/10.1007/s11756-021-00762-5.

65. Sadeghi S, Weber G, Fallahzadeh M, Dousti AF. Introduction to the Scuttle Flies Fauna (Diptera: Phoridae) of Fars Province, Iran. Linzer Biol Beitr. 2013; 45: 2019–2024.
66. Disney RHL. Review of Neotropical Chonocephalus Wandolleck (Diptera: Phoridae). Zootaxa. 2008; 1772: 1–54. https://doi.org/10.11646/zootaxa.1772.1.1.

67. Disney RHL, Sinclair BJ. Some Scuttle Flies (Diptera: Phoridae) of the Galapagos Islands. Tijdschr Entomol. 2008; 151: 115–132. https://doi.org/10.1163/2211943-900000257.

68. Disney RHL, Rettenmeyer CW. New species and revisionary notes on scuttle flies (Diptera: Phoridae) associated with Neotropical army ants (Hymenoptera: Formicidae). Sociobiology. 2007; 49: 1–58.

69. Rabieh MM, Prescher S, Alikhani M, Arkani T. Review of scuttle flies (Diptera: Phoridae) from Iran, with first records for Iran and Asia. Studia dipt. 2013; 20: 23–30.

70. Disney RHL, Prescher S, Ashmole NP. Scuttle flies (Diptera: Phoridae) of the Canary Islands. J Nat Hist. 2010; 44: 107–218. https://doi.org/10.1080/00222930903371813.

71. Prescher S, Zaenker S. Buckelfliegen (Diptera, Phoridae) aus hessischen Höhlen mit einer selten gefangenen Art. Hess Faun Briefe. 2005; 24: 21–25.

72. Durska E. Secondary succession of scuttle fly communities (Diptera: Phoridae) in moist pine forest in Bialowieza Forest. Fragm Faun. 2001; 44: 79–128. https://doi.org/10.3161/00159301FF2001.44.1.079.

73. Froese A. Vergleichende Untersuchungen zur Biologie und Ökologie der Dipteren auf integriert und konventionell bewirtschafteten Feldern. PhD thesis, Justus-Liebig-Universität, Gießen. 1992; 248 pp.

74. Prescher S, Obrist MK, Duelli P. Die Phoridenfauna (Diptera, Brachycera) naturnaher Biotope und intensiv genutzter Kulturläufe im Schweizer Mittelland. Mitt Schweiz Entomol Ges. 2000; 73: 265–275.

75. Prescher S, Moretti M, Duelli P. Scuttle flies (Diptera, Phoridae) in Castanea sativa forests in the Southern Alps (Ticino, Switzerland), with thirteen species new to Switzerland. Bull Soc Entomol Suis. 2002; 75: 289–298. https://doi.org/10.5169/SEALS-402634.

76. Weber G, Prescher S, Ulefors SO, Viklund B. Fifty-eight species of Scuttle Flies (Diptera, Phoridae: Megaselia spp.) new to Sweden from the Tyresta National Park and Nature Reserve. Studia dipt. 2006; 13: 231–240.

77. Wood JH. On the British species of Phora. Part II contd. Entomol Mag. 1909; 45: 24–29, 59–63, 113–120, 143–149, 191–195, 240–244.

78. Durska E. The scuttle fly (Diptera, Phoridae) assemblages of pine plantations of the Biała Forest. Dipteron. 2008; 24: 2–7. https://doi.org/10.3333/ef.84473.

79. Disney RHL, Barzegar S, Zamani AA, Abbasi S, Vafaei Shoushtari R. Two new species of Megaselia (Diptera: Phoridae) reared from fungi in Iran. Fragm Faun. 2012; 55: 41–48. https://doi.org/10.3161/00159301FF2012.55.1.041.

80. Hussey NW. Identification of Phoridae (Diptera) attacking cultivated mushrooms in Britain. Ann Mag Nat Hist. 1961; 3: 599–603.

81. Collin JE. On various new or little-known British Diptera, including species bred from the nests of birds and mammals. Entomol Mag. 1939; 75: 134–54.

82. Talebi AA, Zamani AA, Mohammadi Goltapeh E. Identification and description of some Diptera pest of white button mushroom, Agaricus bisporus. J Pests Plant Dis. 2003; 71: 91–102. [in Persian]

83. Barzegar S, Zamani AA, Abbasi S, Vafaee Shoushtari R. Effect of temperatures on life expectancy and reproductive parameters of Megaselia halterata (Diptera: Phoridae) on different varieties of button mushroom. Researches of the First International Conference. 2011; 147–151.

84. Cliff AD. The identity, economic importance and control of insect pests of mushrooms in New South Wales, Australia. Mushroom Sci. 1979; 10: 367–383.

85. Disney RHL. A new species and new records of Phoridae (Diptera) from New Zealand. G Ital Entomol. 1994; 6: 119–124.

86. Buck M. Untersuchungen zur ökologischen Einnischung saprophager Dipteren unter besonderer Berücksichtigung der Phoridae und Sphaeroceridae (Brachycera:Cyclorrhapha). 1997; 194 pp; Köln: Curcius.

87. Chevalier L. Phora pygmaea Zett. Diptère mangeur de mouches. Bull Soc Sc Seine-et- Oise. 1925; 6: 93–96.

88. Schmitz H. Verslag der Maandelijksche vergadering 5. September L. --Megaselia oxybelorum n. sp. Natuurhist Maanbl. 1928; 17: 121–122, 131–132.

89. Polidori C, Papadia C, Disney RHL, Andrietti F. Behaviour and activity patterns of the scuttle fly Megaselia oxybelorum Schmitz (Diptera: Phoridae) at nest aggregation of two host digger wasps (Hymenoptera: Crabronidae). J Nat Hist. 2006; 40: 1969–1982. https://doi.org/10.1080/00222930601046527.
90. Ghahari H, Disney RHL. *Megaselia scalaris* (Loew) (Dipt: Phoridae) invading insect cultures in Iran. Entomol Mag. 2007; 143: 164.

91. Bohart GE, Gressitt JL. Filth-inhabiting flies of Guam. Bull Bernice P. Bishop Mus. 1951; 204: 1–152.

92. Karunaweera ND, Ihalamura RL, Kumarsinghe SP. *Megaselia scalaris* (Diptera: Phoridae) can live on ripe bananas - a potential health hazard. Ceylon Med J. 2002; 47: 9–10. https://doi.org/10.4038/cmj.v47i1.6397 PMID: 12001616

93. Greenberg B, Wells JD. Forensic use of *Megaselia abdita* and *M. scalaris* (Phoridae: Diptera): case studies, development rates, and egg structure. J Med Entomol. 1998; 35: 205–209. https://doi.org/10.1093/jmedent/35.3.205 PMID: 9615535

94. Disney RHL. Natural history of the scuttle fly *Megaselia scalaris*. Annu Rev Entomol. 2007; 53: 39–60. https://doi.org/10.1146/annurev.ento.53.103106.093415.

95. Silva RJ, Prado AP, Rodrigues RR, Lopes CA, Godoy M. *Megaselia scalaris* (Diptera: Phoridae) causing myiasis in *Crotalus durissus terrificus* (Serpentes: Viperidae) in Brazil. J Med Entomol. 1999; 36: 630. https://doi.org/10.1093/jmedent/36.5.630 PMID: 10534959

96. Hira PR, Assad RM, Okasha G, Al-Ali FM, Iqbal J, Mutawali KEH, et al. Myiasis in Kuwait: Nosocomial infections caused by *Lucilia sericata* and *Megaselia scalaris*. Am J Trop Med Hyg. 2004; 70: 386–389. https://doi.org/10.4269/ajtmh.2004.70.386 PMID: 15100451.

97. Franzen J, Weber G, Büchel W, Larink O. Langzeiteneinfluss von Pflanzenschutzmitteln auf Dipteren mit bodenlebenden Entwicklungsstadien. Berichte uber Landwirtschaft. 1997; 75: 291–326.

98. Weber G, Prescher S, Disney RHL. Phoridae. Part 3.–In: Ziegler J. (ed.): Diptera Stelvian a. Stud dipterol. Supplement, Halle an der Saale: Ampyx-Verlag. 2012.

99. Disney RHL. Scuttle flies (Diptera : Phoridae) , Part II: the genus *Megaselia*. Fauna Arab. 2009; 24: 249–357.

100. Ebrahimí S, Karimi J, Modarres Awal M, Fekrat L. A newly recorded genus and species of *Megaselia* (Diptera: Phoridae) , a parasitoid of ladybird pupae (Coleoptera: Coccinellidae), from Iran. Entomol. Fauna 2014; 35: 425–432.

101. Bänziger H, Disney RHL. Scuttle flies (Diptera: Phoridae) imprisoned by *Aristolochia baenzigeri* (Aristolochiaceae) in Thailand. Mitt Schweiz Entomol Geselltsch. 2006; 79: 29–61.

102. Lengyel GB. The first *Rhynchomicropteron Annandale, 1912* (Diptera, Phoridae) species from the Palearctic region with taxonomic and faunistic notes on the fauna of Israel. Zootaxa. 2011; 2885: 23–32. https://doi.org/10.5281/zenodo.207378.

103. Schmitz H. Phoridae. Die Fliegen der palaearktischen Region, 1958; Vol. 202 (ed. by Lindner E.), pp. 465–512. Stuttgart: E. Schweizerbart'sche Verlagsbuchhandlung.

104. Disney RHL. *Megaselia sandhui* sp. n. (Diptera: Phoridae), a pest of cultivated mushrooms in India. Bull Entomol Res. 1981; 71: 509–512. https://doi.org/10.1017/S0007485300008518.

105. Disney RHL. Scuttle flies–Diptera Phoridae (except *Megaselia*). Handbooks for the Identification of British Insects. 1983; 10: 1–81.

106. Disney RHL. Notes on European Phoridae (Diptera). British J Nat Hist. 1993; 6: 107–118.

107. Disney RHL. Revisionary notes on *Chonocephalus Wandolleck* (Diptera: Phoridae) with keys to species of the Holarctic Region. Zootaxa. 2002; 60: 1–36. https://doi.org/10.11646/zootaxa.60.1.1.

108. Disney RHL. Revisionary notes on European Phoridae (Diptera). Bonn zool Beitr. 2003; 50: 293–304.

109. Disney RHL. Revision of the Palearctic members of the species complex resembling *Megaselia breviar* (Schmitz) (Diptera: Phoridae). Fragm faun. 2006; 49: 41–51. https://doi.org/10.3161/00159301FF2006.49.1.041.

110. Disney RHL. Scuttle flies (Diptera: Phoridae) Part I: all genera except *Megaselia*. Fauna Arab. 2006; 22: 473–521.

111. Disney RHL. Bayram S. Recognition, biology and first Turkish record of *Megaselia coaearea* Schmitz (Dipt., Phoridae). Entomol Mag. 1999; 136: 233–236.

112. Durska E, Bonet J, Viklund B. The scuttle fly (Diptera: Phoridae) assemblages of a wildfire-affected hemiboreal old-growth forest in Tyresta (Sweden). Entomol Fenn. 2010; 21: 19–32. https://doi.org/10.33338/ef.84495.

113. Langourov M. Some scuttle flies (Diptera: Phoridae) from Western Rhodope Mountains. in: Biodiversity of Bulgaria 4. Biodiversity of Western Rhodopes (Bulgaria and Greece) II. Publisher: Pensoft & Nat Mus Natur Hist Sofia. 2010; pp. 485–498.

114. Durska E. Effects of disturbances on scuttle flies (Diptera: Phoridae) in Pine Forests. Biodivers Conserv. 2013; 22: 1991–2021. https://doi.org/10.1007/s10531-013-0522-4.
115. Disney RLH. Scuttle flies (Diptera, Phoridae) from the canopies of oak trees (Fagaceae) in Norway, including 13 new species. Nor J Entomol. 2015; 62: 20–52. https://doi.org/10.3161/00159301FF2020.63.1.029.

116. Brown BV, Hartop EA. Big data from tiny flies: patterns revealed from over 42,000 phorid flies (Insecta: Diptera: Phoridae) collected over one year in Los Angeles, California, USA. Urban Ecosyst. 2017; 20: 521–534. https://doi.org/10.1007/s11252-016-0612-7.

117. Durska E. The species composition and structure of scuttle fly communities (Diptera: Phoridae) in mature tree stands in pine forests at different stages of habitat degradation. Fragm Faun. 1996; 39: 267–285.

118. McGlynn TP, Meineke EK, Bahlai CA, Li E, Hartop EA, Adams BJ, et al. Temperature accounts for the biodiversity of a hyperdiverse group of insects in urban Los Angeles. Proc Royal Soc B. 2019; 286: 1818. https://doi.org/10.1098/rspb.2019.1818 PMID: 31575368.

119. Brown BV, Hayes Ch, Hash JM, Smith PT. Molecular Phylogeny of the Ant-Decapitating Flies, Genus Apocephalus (Diptera: Phoridae). Insect Syst Evol. 2018; 2: 1–8. https://doi.org/10.1093/isd/ixy007.

120. Menguala X, Stahlsb G, Rojo S. First phylogeny of predatory flower flies (Diptera, Syrphidae, Syrphinae) using mitochondrial COI and nuclear 28S rRNA genes: conflict and congruence with the current tribal classification. Cladistics. 2008; 24: 543–562. https://doi.org/10.1111/j.1096-0031.2008.00200.x.

121. Gontcharov AA, Marin B, Melkonian M. Are combined analyses better than single gene phylogenies? A case study using SSU rDNA and rbcL sequence comparisons in the Zygnematophyceae (Streptophyta). Mol Biol Evol. 2004; 21: 612–624. https://doi.org/10.1093/molbev/msi052 PMID: 14739253.

122. Meier R, Shiyang K, Vaidya G, Ng PK. DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst Biol. 2006; 55: 715–728. https://doi.org/10.1080/10635150600969864 PMID: 17060194.

123. Kühner MK, Felsenstein J. A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol Biol Evol. 1994; 11: 459–468. https://doi.org/10.1093/oxfordjournals.molbev.a040126 PMID: 8015439.

124. Guindon S, Gascuel O. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol. 2003; 52: 696–704. https://doi.org/10.1080/10635150390235520 PMID: 14530136.

125. Brown BV. Phorid Catalog. Phorid Catalog. 2019. URL http://phorid.net/pcat/ [accessed on 11 May 2019].

126. Schmitz H. Phoridae. Die Fliegen der paläarktischen Region, 1953; Vol. 171 (ed. by E. Lindner), pp. 273–320. Stuttgart: E. Schweizerbart'sche Verlagsbuchhandlung.

127. Schmitz H. Phoridae. Die Fliegen der paläarktischen Region, 1955; Vol. 180 (ed. by Lindner E.), pp. 321–386. Stuttgart: E. Schweizerbart'sche Verlagsbuchhandlung.

128. Schmitz H. Phoridae. Die Fliegen der paläarktischen Region, 1956; Vol. 196 (ed. by Lindner E.), pp. 369–416. Stuttgart: E. Schweizerbart'sche Verlagsbuchhandlung.

129. Schmitz H. Phoridae. Die Fliegen der paläarktischen Region, 1957; Vol. 196 (ed. by Lindner E.), pp. 417–464. Stuttgart: E. Schweizerbart'sche Verlagsbuchhandlung.

130. Hartop E, Häggqvist S, Ulfors SO. Scuttling towards monophyly: phylogeny of the mega-diverse genus Megaselia (Diptera: Phoridae). Syst Entomol. 2021; 46: 71–82. https://doi.org/10.1111/syen.12448.

131. Sarwar M. Typical flies: Natural history, lifestyle and diversity of Diptera. In Life Cycle and Development of Diptera. IntechOpen, London. 2020. https://doi.org/10.5772/intechopen.9139.