Data Article

Data: Inventory of trees in five fragments of temperate evergreen forest located on the eastern slope of Chile’s coastal mountain range

Jimmy Pincheira-Ulbrich a,*, Jaime R. Rau b, Cecilia Smith-Ramírez c, d, e

a Laboratorio de Planificación Territorial, Departamento de Ciencias Ambientales, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco, Chile
b Laboratorio de Ecología, Departamento de Ciencias Biológicas & Biodiversidad and Programa IBAM, Universidad de Los Lagos, Casilla 933, Osorno, Chile
c Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda. Fuchslocher 1305, Osorno, Chile
d Instituto de Ecología y Biodiversidad-Chile (IEB), Las Palmeras 3425, Ñuñoa, Santiago, Chile
e Instituto de Conservación, Biodiversidad y Territorio, Universidad Austral de Chile, Isla Teja s/n, Valdivia, Chile

Abstract

The data set comes from a tree inventory conducted in an evergreen forest fragment (dominated by Laureliopsis philippiana and Eucryphia cordifolia) and four fragments dominated by Nothofagus obliqua. The forests are located in an agroforestry matrix landscape of the Coastal Mountain Range of the Chilean Lake District. The data collection was carried out using line transect sampling, which was traced through the core of each fragment oriented towards its longest axis. Data provide taxonomic identity, diameter at breast height (DBH), overstory canopy cover, condition (e.g. live or snag), some height samples, and the estimate of the vertical stratification (e.g. canopy or understory) of 462 trees belonging to 19 species. The data also shows a record of 50 woody debris. The geographical location of each forest fragments is also included. Inventories are fundamental for knowledge of species diversity and provide the foundation for more com-

* Corresponding author.
E-mail address: jpincheira@uct.cl (J. Pincheira-Ulbrich).

https://doi.org/10.1016/j.dib.2020.105557
2352-3409/© 2020 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
plex analytical studies, such as the distribution of plant assemblages in the landscape; determine the conservation status of species, and research into biogeographical or macro-ecological areas of interest.

© 2020 Published by Elsevier Inc.

This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Specifications table

Subject	Agricultural and Biological Sciences
Specific subject area	Plant science. Currently, this discipline has diversified in order to understand how plants respond in natural and human-made ecosystems.
Type of data	Table
How data were acquired	Line transect sampling. Quadrants of 25 m² (5 x 5 m) were established on each transect, separated from each other by five meters. Instruments: diametric tape, densiometer and hypsometer.
Data format	Raw
Parameters for data collection	All trees and shrubs with a DBH equal or greater than 5 cm, and woody debris, in two types of forest fragments, one evergreen and four secondary *Nothofagus obliqua* forests.
Description of data collection	(i) Taxonomic identity, (ii) diameter at breast height (DBP), measured with a diametric tape, (iii) condition (i.e. broken live tree, coarse woody debris, discomposing stump, fallen log, live, snag, snag – missing a top, stump), and (iv) overstory canopy cover, measured with densiometer. Furthermore, some records of tree height (measured with a hypsometer) and canopy stratification were taken (i.e. canopy, emergent, midstorey, understory).
Data source location	Institution: Unidad Católica de Temuco
City/Town/Region	Purranque/Los Lagos Region
Country	Chile
Latitude and longitude (and GPS coordinates) for collected samples/data:	40°51’59” S and 73°33’01” W and 40°55’13” S and 73°25’19” W
Data accessibility	Submitted with the article
Related research article	Pincheira-Ulbrich J, J R Rau & F Peña-Cortés (2009). *Tamaño y forma de fragmentos de bosque y su relación con la riqueza de especies de árboles y arbustos*. Phyton-International Journal of Experimental Botany 78: 121–128.

Value of the data

- Species Inventories provide essential information for more complex analytical studies, such as research into biogeographical or macro-ecological areas of interest.
- Scientists and researchers, as well as decision-makers from local government and rural communities, can benefit from these data.
- Data can be used to compare species diversity in different spatial contexts and to implement local conservation policies.
- Data represent the diversity of trees and shrubs species in a gradient of patch sizes and different habitat structure, which may support studies on species/area relationships, controlling by habitat structure; pattern poorly studied in temperate forests.

1. Data description

The data set shows the results of a tree inventory conducted in an evergreen forest fragment (dominated by *Laureliopsis philippiana* and *Eucryphia cordifolia*) and four fragments dominated by *Nothofagus obliqua* localized in an agroforestry matrix landscape of the Coastal Mountain Range.
of the Chilean Lake District. Table 1 describes the list of tree species, their botanical family and the recorded abundance for each forest patch. Table 2 describes the classification of trees according to their condition for each forest patch, which includes live trees and seven categories for woody debris. Table 3 describes some representative species of each forest patch, classified according to the crown position in one of the five categories of the vertical stratum. The raw data of the inventory are included in this article.

2. Experimental design, materials, and methods

The study area is located approximately 65 km southwest of the city of Osorno, in the commune of Purranque, Los Lagos Region, Chile. Forest patches (Table 4) are located in an area of transition between the Intermediate Depression and the Coastal Range (foothills), with a hilly

Table 1

Trees abundance recorded in five native forest fragments on the Coastal Range of Chile’s Los Lagos Region. Evergreen forest: 55 ha; *Nothofagus obliqua* forest = 12 ha, 6 ha, 1.6 ha and 0.6 ha. Snag are not included.

Species	Family	Patch size (ha)	Total abundance				
		55	12	6	1.6	0.6	
Aristotelia chilensis Stuntz	Elaeocarpaceae	13	4	5	1		23
Amomyrtus luma (Molina) D.Legrand & Kausel	Myrtaceae	3					3
Amomyrtus meli (Phil.) D.Legrand & Kausel	Myrtaceae	2					2
Aextoxicum punctatum Ruiz & Pav.	Aextoxicaceae	1	3	1	2		7
Calcluvia paniculata D.Don	Cunoniaceae	2	12	1	15		
Embothrium coccineum J.R.Forst. & G.Forst.	Proteaceae	2					2
Eucryphia cordifolia Cav.	Cunoniaceae	31	5	19	6	2	63
Gevuina avellana Molina	Proteaceae	24	16	2	42		
Luma apiculata (DC.) Burret	Myrtaceae	2	8	2	12		
Lomatia ferruginea R.Br.	Proteaceae	7					7
Lomatia hirsuta (Lam.) Diels ex J.F.Macbr.	Proteaceae	3	3				6
Laureliopsis philippiana (Looser) Schodde	Monimiaceae	31					31
Laurelia sempervirens (Ruiz & Pav.) Tul.	Monimiaceae	3					3
Myrcuegina planipes O.Berg	Myrtaceae	14					14
Nothofagus obliqua (Mirb.) Oerst.	Nothofagaceae	34	61	32	33		160
Raukaua laetevirens (Gay) Frodin	Araliaceae	3					3
Persea lingue (Miers ex Bertero) Nees	Lauraceae	22	9			5	36
Rhaphithamnus spinosus (Juss.) Moldenke	Verbenaceae	2	14	9	5	1	31
Weinmannia trichosperma Cav.	Cunoniaceae	1	1				2

Abundance

	122	111	132	48	49	462
Richness	12	9	12	4	9	19

Table 2

Trees classified according to their condition.

Condition	Patch size (ha)	Total abundance				
	55	12	6	1.6	0.6	
Broken live tree	2	1				3
Coarse Woody debris	3	1	4	1		9
Discomposing stump	1	5		1		7
Fallen log	5					5
Live	117	101	129	46	44	437
Snag	4	10	3	2	5	24
Snag – missing a top	1					1
Stump	2	1	2			5
Abundance	132	120	138	51	50	491
Table 3
Example of common trees and their position according to the crown position in the vertical stratum. na= not applicable.

Stratification	Patch size (ha)	55	12	6	1.6	0.6
Canopy	E. cordifolia	N. obliqua	N. obliqua	N. obliqua	N. obliqua	
Emergent	L. philippiana	E. cordifolia	na	na	na	
Middle-canopy	E. cordifolia	na	na	na		
Sub-canopy	L. ferruginea	N. obliqua	E. cordifolia	E. cordifolia	N. obliqua	
Understory	L. philippiana	P. lingue	L. apiculata	na	P. lingue	

Table 4
Geographical location of forest patches.

Patch size (ha)	Latitude	Longitude
55	40°53′12.31″S	73°31′11.30″O
12	40°53′8.22″S	73°29′29.69″O
6	40°53′50.07″S	73°26′41.61″O
1.6	40°53′46.23″S	73°31′5.22″O
0.6	40°53′29.62″S	73°26′34.73″O

topography that varies between 220 and 310 m.a.s.l. (slope eastern part of the Coastal Mountain Range).

The data comes from a sampling carried out in 22 days, between July and December 2005, with a non-random design [7]. Tree selection was by transect sampling [1], designed in order to cross the center of the forest patch. In each transect, quadrants measuring 25 m² (5 × 5 m) were established, separated from each other by at least five metres. This sampling resulted in 95 quadrants distributed in all fragments. All trees with a DBH greater than or equal to 5 cm were sampled in two types of forest patch, one evergreen and four Nothofagus obliqua forests. Within each quadrat, four types of data were recorded: (i) Taxonomic identity, followed the criteria established in the publications of Marticorena and Rodríguez [2–5], (ii) diameter at breast height (DBH), measured with a diametric tape, (iii) condition (i.e. broken live tree, coarse woody debris, discomposing stump, fallen log, live, snag, snag – missing a top, stump), according to Enrong et al. [6], and (iv) overstory canopy cover, measured with a densitometer. Furthermore, some records of tree height (measured with a hypsometer) and canopy stratification were taken (i.e. canopy, emergent, midstorey, understory). The taxonomic nomenclature was based on The International Plant Names Index [8].

Acknowledgments

This research was carried out within the framework of the Master of Science program at the University of Los Lagos (Chile). The second (JRR) and third authors (CSR) acknowledges the Dirección de Investigación of the Universidad de Los Lagos for support regarding the publishing costs of the manuscript.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References

[1] J. Brower, J. Zar, y.C. von Ende, Field and Laboratory Methods For General Ecology, Brown Publishers, 1990.
[2] C. Marticorena, R. Rodríguez, Flora De Chile, Vol. 2(2): Berberidaceae-Betulaceae, Universidad de Concepción, 2003.
[3] C. Marticorena, R. Rodríguez, Flora De Chile, Vol. 2(3): Plumbaginaceae-Malvaceae, Universidad de Concepción, Concepción, 2005.
[4] C. Marticorena, R. Rodríguez, Flora De Chile. Vol. 3(1): Misodendraceae-Zygophyllaceae, Universidad de Concepción, Concepción, 2011.
[5] C. Marticorena, R. Rodríguez, Flora De Chile. Vol. 2(1), Winteraceae-Ranunculaceae, Universidad de Concepción, Concepción, 2001.
[6] Y. Enrong, W. Xihua, H. Jianhua, Concept and classification of coarse woody debris in forest ecosystems, Frontier Biol. China 1 (2006) 76–84, doi:10.1007/s11515-005-0019-y.
[7] J. Pincheira-Ulbrich, J.R. Rau, F. Peña-Cortés, Tamaño y forma de fragmentos de bosque y su relación con la riqueza de especies de árboles y arbustos, Phyton-Int. J. Experim. Botany 78 (2009) 121–128.
[8] The International Plant Names Index, The International Plant Names Index, 2019 [cited 2020 March 19]. Available from: http://www.ipni.org/ .