Rare protein-altering variants in \textit{ANGPTL7} lower intraocular pressure and protect against glaucoma

Yosuke Tanigawa1, Michael Wainberg1, Juha Karjalainen2,3,4, Tuomo Kiiskinen4,5, Susanna Lemmelä4,5, Joni A. Turunen6,7, Robert Graham8, Aki S. Havulinna4,5, Markus Perola5, Aarno Palotie2,4, FinnGen, Mark J. Daly2,3,4+ and Manuel A. Rivas1+

1. Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, USA.
2. Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
3. Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
4. Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
5. Finnish Institute for Health and Welfare, Helsinki, Finland.
6. Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
7. Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland.
8. Maze Therapeutics, San Francisco, CA, USA.
+ Corresponding authors, contributed equally to the work.

Protein-altering variants that are protective against human disease provide \textit{in vivo} validation of therapeutic targets. Here we use genotyping data in UK Biobank and FinnGen to conduct a search for protein-altering variants conferring lower intraocular pressure (IOP) and protection against glaucoma. Through protein-altering variant association analysis we find a missense variant in UK Biobank (rs28991009 (MAF=0.8%) genotyped in 81,527 individuals with measured IOP and an independent set of 4,269 glaucoma patients and 251,355 controls) that significantly lowers IOP (β = -0.73 mmHg for heterozygotes, -2.96 mmHg for homozygotes, \(P = 1 \times 10^{-13} \)) and is associated with 34\% reduced risk of glaucoma (\(P = 0.005 \)). In FinnGen, we identify an \textit{ANGPTL7} missense variant at a greater than 50-fold increased frequency in Finland compared with other populations (rs147660927, p.Arg220Cys, MAF Finland = 4.1\%), which was genotyped in 5,177 glaucoma patients and 130,461 controls and is associated with 30\% lower glaucoma risk (\(P = 1 \times 10^{-9} \)). We further find three rarer variants in UK Biobank, including a protein-truncating variant, which confer a strong composite lowering of IOP (\(P = 0.002 \)), suggesting the protective mechanism likely resides in the loss of an interaction or function. Our results support inhibition or down-regulation of ANGPTL7 as a therapeutic strategy for glaucoma.

Corresponding authors: Manuel A. Rivas, mrivas@stanford.edu and Mark J. Daly, mjdaly@broadinstitute.org
Introduction

Intraocular pressure is currently the sole modifiable risk factor and predictive measure for glaucoma\(^1,2,3,4\) (Supplementary Figure S1). Genome-wide association studies (GWAS) have commonly used genetic associations to this endophenotype that exhibits high genetic correlation (\(rg = 0.71\)) to glaucoma, as an approach to prioritize genetic variants likely to contribute to disease risk\(^5\). A total of 53 independent loci have been unequivocally implicated in glaucoma\(^6\). For these discoveries, like most GWAS results, it has proven challenging to infer the functional consequences of common variant associations beyond cases where protein-altering variants have been directly implicated. Protein-altering variants, generally the strongest-acting genetic variants in medical genetics, include nonsynonymous substitutions and protein-truncating variants, and understanding their functional consequences provides insight into the therapeutic effects of inhibiting or down-regulating the gene in which they reside\(^6\). Thus, identifying protein-altering variants that confer protection from disease holds particular promise for identifying therapeutic targets.

Here we leverage two cohorts that provide complementarity for glaucoma gene discovery. First, UK Biobank has obtained intraocular pressure (IOP) measurements in approximately 128,000 individuals in addition to case-control status for glaucoma from hospital in-patient and verbal questionnaire data in over 500,000 individuals\(^7,8\). Second, FinnGen has directly genotyped and aggregated disease outcomes in over 135,000 individuals from Finland, an isolated population with recent bottlenecks that offers an unprecedented advantage for studying rare variants in complex diseases\(^9\). With clinic-based recruitment focused on several areas including ophthalmology, and with 32.4% of the collection above age 70, FinnGen is particularly well-powered for aging-associated endpoints. We therefore conduct targeted association analysis with IOP in UK Biobank (\(N = 81,534\)) to identify protein-altering variants that reduce IOP, and test whether those variants, or others in the same genes, also confer protection to glaucoma in FinnGen (5,177 cases and 130,461 controls) and UK Biobank (4,269 cases and 251,355 controls not included in the IOP sample). Analysis of an allelic series of protein-altering variants in \(\text{ANGPTL7}\) in 9,446 glaucoma patients and over 350,000 controls identifies a significant lowering effect on IOP and protective association with glaucoma. By analyzing putative loss-of-function variants, we find concordant effect directions with the nonsynonymous substitutions, suggesting that the protective mechanism may reside in the loss of gene function.

Results

Protein-altering variant association analysis

We conducted protein-altering variant association analysis with IOP, as measured via Goldmann-correlated tonometry, in 81,527 British individuals in UK Biobank dataset
Across 41,632 rare (0.01 % < MAF < 1%) protein-altering variants outside of the MHC region with genotyping array data in UK Biobank, we used a generalized linear model implemented in PLINK11 to scan for variants with IOP-lowering effects. We identified one protein-altering variant significantly associated with lower IOP below a Bonferroni-corrected \(P \) value < 1.0x10-6, a nonsynonymous substitution (p.Gln175His) in \textit{ANGPTL7} (\(P = 1.47\times10^{-13} \), \(\beta = -0.200 \) SD 95% CI: [-0.253, -0.147], -0.73 mmHg for heterozygotes, -2.96 mmHg for homozygotes, \textbf{Table 1,2, Supplementary Figure S2}).

Based on this finding, we assessed whether any additional rare variant associations in \textit{ANGPTL7} were present. We found three additional independent rare protein-altering variants in \textit{ANGPTL7} (MAF < 0.25%) including a premature stop-gain allele (p.Arg177Ter). Collectively, these three variants showed a marginally significant association with lower IOP (\(P = 0.0023 \), \textbf{Table 1}), with the stop-gain allele p.Arg177Ter also showing a marginally significant effect on its own (\(P = 0.038 \)). Genotyping intensity plots and the concordance of genotype calls from array and whole-exome sequencing data were manually inspected to ensure high quality and consistent genotyping (\textit{Supplementary Figure S3, Supplementary Table S1, Methods}) and alleles were confirmed to be independent (pairwise \(r^2 < 10^{-4} \) for each, \textit{Supplementary Table S2, Methods}). Using inverse variance weighted meta-analysis method, the combined effect of those four variants are estimated to be -0.19 (95% CI: -0.23 - -0.14) SD, \(P = 3.4\times10^{-16}, -0.67 \) mmHg [95% CI: -0.85 - -0.49], \textit{Supplementary Figure S4, Supplementary Tables S3-4, Methods}).

Given these findings, we next asked whether any of these putative IOP-lowering genetic variants showed effects consistent with reducing glaucoma risk in an independent set of British individuals that do not have IOP measures (4,269 cases and 251,355 controls). For p.Gln175His in \textit{ANGPTL7}, we estimated that the variant lowers glaucoma risk by 34% (\(P = 0.00543; \) OR = 0.66 [95% CI: 0.366 - 0.954]). The three additional protein-altering variants did not significantly confer protection against glaucoma (burden test \(P = 0.55 \)), although we expect this to be a result of limited power in the binary case-control setting.

Variant	rsID	HGVSp	MAF	Beta SD [95% CI]	\(P \)
1:11252357:A:G	rs200058074	p.Gln136Arg	.054 %	-.038 [-.26, .18]	7.3x10-1
1:11252369:G:A	rs28991002	p.Arg140His	.25 %	-.16 [-.25, -.061]	1.3x10-3
1:11253684:G:T	rs28991009	p.Gln175His	.81 %	-.20 [-.25, -.15]	1.4x10-13
1:11253688:C:T	rs143435072	p.Arg177Ter	.041 %	-.26 [-.51, -.014]	3.8x10-2

\textbf{Table 1, ANGPTL7 IOP protein-altering variant association in UK Biobank}. Variant includes chromosome, position, reference, and alternate allele (hg19). rsID - the rs identifier of the genetic variant. HGVSp - the HGVS
protein sequence name. MAF - the minor allele frequency in UK Biobank British population. Beta - estimated regression coefficient with 95% confidence intervals. P - p-value of association.

Variant	Dosage	rsID	Carrier frequency in UK	Carrier frequency in Finland	N with IOP (UK Biobank)	IOP (mmHg) [95% CI]	OR for glaucoma
Gln175His	Gln/His	rs28991009	1.43%	0.24%	1355	-0.73 [-0.95, -0.52] ***	0.66 **
Gln175His	His/His		0.01%	NA	5	-2.95 [-6.43, 0.530] .	NS
Arg177Ter	Arg/Ter	rs143435072	0.07%	NA	62	-0.94 [-1.93, 0.0445] .	NS
Arg140His	Arg/His	rs28991002	0.51%	0.35%	427	-0.48 [-0.86, -0.10] *	NS
Gln136Arg	Gln/Arg	rs200058074	0.11%	NA	80	-0.21 [-1.08, 0.66]	NS
Arg220Cys	Arg/Cys	rs147660927	NA	7.82%	NA	NA	0.72 ***
Arg220Cys	Cys/Cys		NA	0.21%	NA	NA	0.47 .

Significant codes: 0 ‘****’ 0.001 ‘***’ 0.01 ‘**’ 0.05 ‘.’ 0.1 ‘’ 1

Table 2. ANGPTL7 allelic series summary. Variant: HGVSp amino acid nomenclature. Dosage - genotype of individuals. rsID - rs identifier. Carrier frequency in UK - carrier frequency in UK Biobank for the respective genotype dosage. Carrier frequency in Finland - carrier frequency in FinnGen for the respective genotype dosage. N with IOP (UK Biobank) - number of individuals in UK Biobank with intraocular pressure measurements corresponding to the genotype dosage. IOP (mmHg) [95% CI] - unstandardized estimates of effect size on intraocular pressure measurements (NB: standardized estimated effect sizes may have lower p-values due to normalization procedure). OR for glaucoma - estimate odds ratio on glaucoma risk for the respective genotype dosage. NS non-significant (p > 0.1).

Independent Finnish-enriched missense allele in ANGPTL7

We then sought evidence from the FinnGen dataset that either the same or novel Finnish-enriched protein-altering variants would confirm the association of ANGPTL7 with protection from glaucoma. This additional ANGPTL7 association data, obtained in 5,177 glaucoma patients and 130,461 controls, provided strong support that protein-altering variants in ANGPTL7 protect against glaucoma (case definitions described in Supplementary Table S5).

Specifically, we found that the p.Gln175His substitution has nominal evidence of association (P = 0.031, OR = 0.49) despite the variant only being present at a minor allele frequency of 0.1% in this Finnish cohort (8-fold depleted compared to UK Biobank). The remaining protein-altering
variants in *ANGPTL7* tested in UK Biobank were not found in the FinnGen dataset. Confirmation of an *ANGPTL7* effect on glaucoma risk was seen in data from an independent Finnish-specific protein-altering nonsynonymous substitution, p.Arg220Cys, which was strongly associated with protection from glaucoma ($P = 1.0 \times 10^{-9}$, OR = 0.72 [95% CI: 0.64 - 0.80], Supplementary Figure S5). Of note, this observation is advantaged by the property that p.Arg220Cys is found at a greater than 50-fold increased frequency in Finland compared with other populations\(^\text{12}\), reinforcing the value of isolated, bottlenecked populations in which the allele frequency spectrum is intensely concentrated on the minority of variants passing through the bottleneck.

While registry-based diagnoses in FinnGen do not yet contain detailed ophthalmologic records, a subset of 2695 glaucoma patients had been recorded as having primary open-angle glaucoma (POAG). In this sub-group a stronger effect was observed (OR=0.68) versus those glaucoma cases without a definitive record of POAG (OR=0.77 [95% CI: 0.67 - 0.88]), reminiscent of the stronger risk effects seen at the myocilin (*MYOC*) gene and other established genes in the POAG subgroup. Given the Finnish enrichment of the known strong glaucoma risk allele, p.Gln368Ter, in *MYOC* (MAF in Finland = 0.3%, MAF in Non-Finnish European = 0.16%, reference sequence: NM_00026), we next asked whether carriers have risk reduced if they carry *ANGPTL7* p.Arg220Cys. In FinnGen, we estimate that 7.7% of individuals carriers for *MYOC* p.Gln368Ter variant are POAG cases in comparison to 2% for non-carriers. In the presence of *ANGPTL7* p.Arg220Cys, only 1.3% of individuals are POAG cases, and only 1 of 70 (1.4%) who carry both *MYOC* risk and *ANGPTL7* protective variants were POAG cases (Supplementary Table S6). This suggests *ANGPTL7* protection extends to the *MYOC* risk group but the small counts preclude any definitive statement regarding interaction - given the limited number of double-carriers, larger case-control series are needed to refine our understanding as to whether *ANGPTL7* p.Arg220Cys variant modifies the glaucoma risk conferred by p.Gln368Ter in *MYOC*.

Access to genotype data in over 300,000 individuals from the UK and 135,000 from the Finnish group enabled us to identify rare protein-altering homozygotes. In UK Biobank we found 28 individuals homozygous for the 175His allele, consistent with Hardy-Weinberg expectation (n=22.6), where we estimated a 2.96 mm Hg drop in IOP compared to the mean IOP levels. Furthermore, the oldest reached the age of 80 and one of the 28 died (age 65). In FinnGen we found 268 individuals homozygous for the 220C allele, the oldest reached the age of 98, with no depletion of homozygotes compared with Hardy-Weinberg equilibrium expectation. There was no significant association of the homozygous genotype with a decreased lifespan. Together this indicates that having two copies with 175His or 220Cys in *ANGPTL7* is compatible with normal lifespan. To assess the potential impacts of those protein-truncating variants on reproductive fitness we assessed the association of p.Gln175His with the number of live births and number of children fathered and found no significant association ($P > 0.05/4$, Supplementary Table S7). Hence, we did not find any severe medical consequences that would be of obvious concern in developing a therapeutic to mimic the effect of these alleles.
The combined significance of ANGPTL7 protein-altering variants across more than 435,000 samples tested is $P = 3.4 \times 10^{-16}$ for IOP and $P = 1.9 \times 10^{-11}$ for glaucoma using inverse-variance weighted method (Supplementary Figure S6).

Transcript and protein expression

ANGPTL7, a five-exon protein-coding gene, encodes the Angiopoietin-related protein 7, which is expressed in several human tissues including the trabecular meshwork, cornea and retina. Recently, ANGPTL7 overexpression in primary human trabecular meshwork cells was found to alter the expression of relevant trabecular meshwork proteins of the extracellular matrix, including fibronectin, collagens type I, IV, and V, myocilin, versican, and MMP1, and ANGPTL7 protein was increased as the disease progressed in POAG beagle dogs. We examined proteomics expression data in normal tissues and cell lines from ProteomicsDB and MOPED and found vitreous humor tissue-specific expression of ANGPTL7 (log10 ppm = 1, Supplementary Figure S7). These data suggest that the eye is the relevant tissue type in understanding the functional consequences of the variants discovered in this study. Further work is dissecting the role of ANGPL7 in all possible cell types in the eye is warranted.

Discussion

This study establishes strong genetic evidence for the involvement of ANGPTL7 in glaucoma risk in which a powerful allelic series, including all low-frequency nonsynonymous substitutions and a single premature stop-gain substitution, is conclusively associated with reduced disease risk and endophenotype-lowering effects. Increasing evidence is associating ANGPTL proteins to cardiometabolic phenotypes. Although it has been recently proposed that ANGPTL7 levels are increased in obesity and reduced after physical exercise, we do not observe any evidence of genetic association in either UK Biobank or FinnGen to support this hypothesis. In the context of the other established variants in glaucoma, including the protein-truncating variants in MYOC, p.Gln175His and the 57-fold Finnish enriched p.Arg220Cys variant in ANGPTL7 exert a comparable protective effect. Because of the strong protective effect associated with the ANGPTL7 coding variants, studies of ANGPTL7 inhibition and the specific action of these variant proteins should be useful in understanding the mechanism by which protection to glaucoma disease occurs and whether this reveals a promising therapeutic opportunity similar to that which has been realized from the examples of PCSK9, APOC3 and cardiovascular disease. The phenotype and longevity profile of ANGPTL7 homozygotes suggest that this is likely to be a safe strategy for therapeutic intervention.
Acknowledgments

This research has been conducted using the UK Biobank Resource under Application Number 24983, “Generating effective therapeutic hypotheses from genomic and hospital linkage data” (http://www.ukbiobank.ac.uk/wp-content/uploads/2017/06/24983-Dr-Manuel-Rivas.pdf). Based on the information provided in Protocol 44532 the Stanford IRB has determined that the research does not involve human subjects as defined in 45 CFR 46.102(f) or 21 CFR 50.3(g). All participants of UK Biobank provided written informed consent (more information is available at https://www.ukbiobank.ac.uk/2018/02/gdpr/). For the Finnish Institute of Health and Welfare (THL) driven FinnGen preparatory project (here called FinnGen), all patients and control subjects had provided informed consent for biobank research, based on the Finnish Biobank Act. Alternatively, older cohorts were based on study specific consents and later transferred to the THL Biobank after approval by Valvira, the National Supervisory Authority for Welfare and Health. Recruitment protocols followed the biobank protocols approved by Valvira. The Ethical Review Board of the Hospital District of Helsinki and Uusimaa approved the FinnGen study protocol Nr HUS/990/2017. The FinnGen preparatory project is approved by THL, approval numbers THL/2031/6.02.00/2017, amendments THL/341/6.02.00/2018, THL/2222/6.02.00/2018 and THL/283/6.02.00/2019. All DNA samples and data in this study were pseudonymized. We thank all the participants in the UK Biobank and Finnish Biobanks used in FinnGen studies. This work was supported by National Human Genome Research Institute (NHGRI) of the National Institutes of Health (NIH) under awards R01HG010140 (M.A.R.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We thank Sirpa Soini, Fatima Rodriguez and David Amar for invaluable feedback on the manuscript. Y.T. is supported by Funai Overseas Scholarship from Funai Foundation for Information Technology and the Stanford University School of Medicine. FinnGen is supported by Abbvie, Astra Zeneca, Biogen, Celgene, Genentech, GSK, Merck, Pfizer, and Sanofi. M.A.R. is supported by Stanford University and a National Institute of Health center for Multi- and Trans-ethnic Mapping of Mendelian and Complex Diseases grant (5U01 HG009080).

Author information

Author contributions

M.A.R. and M.J.D. conceived and designed the study. M.P. designed the FinnGen preparatory project in collaboration with A.P and M.J.D. M.A.R., Y.T., J.K., and M.J.D. carried out the statistical and computational analyses. M.A.R., Y.T., J.K., T.K., J.A.T., and M.J.D. carried out quality control of the data. The manuscript was written by M.A.R., Y.T., and M.J.D.; and revised by all the co-authors. All co-authors have approved of the final version of the manuscript.
Competing financial interests

Robert Graham is an employee of MazeTx.

Data availability:

Data is displayed in the Global Biobank Engine (https://biobankengine.stanford.edu). Analysis scripts and notebooks are available on GitHub at https://github.com/rivas-lab/ANGPTL7.

References

1. Cantor, L. B. Brimonidine in the treatment of glaucoma and ocular hypertension. *Therapeutics and Clinical Risk Management* **2**, 337–346 (2006).

2. Kass, M. A. *et al.* The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. *Arch. Ophthalmol.* **120**, 701–13; discussion 829–30 (2002).

3. Kazemian, P., Lavieri, M. S., Van Oyen, M. P., Andrews, C. & Stein, J. D. Personalized Prediction of Glaucoma Progression Under Different Target Intraocular Pressure Levels Using Filtered Forecasting Methods. *Ophthalmology* **125**, 569–577 (2018).

4. Group, T. J. A. of M. D. in G. (jamdig) C. & The Japanese Archive of Multicentral Database in Glaucoma (JAMDIG) construction group. A novel method to predict visual field progression more accurately, using intraocular pressure measurements in glaucoma patients. *Scientific Reports* **6**, (2016).

5. MacGregor, S. *et al.* Genome-wide association study of intraocular pressure uncovers new pathways to glaucoma. *Nat. Genet.* **50**, 1067–1071 (2018).

6. Leshchiner, E. S. *et al.* Small-molecule inhibitors directly target CARD9 and mimic its protective variant in inflammatory bowel disease. *Proc. Natl. Acad. Sci. U. S. A.* **114**,
7. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. *Nature* **562**, 203–209 (2018).

8. DeBoever, C. et al. Medical relevance of protein-truncating variants across 337,205 individuals in the UK Biobank study. *Nat. Commun.* **9**, 1612 (2018).

9. Lim, E. T. et al. Distribution and medical impact of loss-of-function variants in the Finnish founder population. *PLoS Genet.* **10**, e1004494 (2014).

10. Chan, M. P. Y. et al. Associations with Intraocular Pressure in a Large Cohort: Results from the UK Biobank. *Ophthalmology* **123**, 771–782 (2016).

11. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. *Gigascience* **4**, 7 (2015).

12. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. *Nature* **536**, 285–291 (2016).

13. Comes, N., Buie, L. K. & Borrás, T. Evidence for a role of angiopoietin-like 7 (ANGPTL7) in extracellular matrix formation of the human trabecular meshwork: implications for glaucoma. *Genes Cells* **16**, 243–259 (2011).

14. Santulli, G. Angiopoietin-like proteins: a comprehensive look. *Front. Endocrinol.* **5**, 4 (2014).

15. Kuchtey, J. et al. Angiopoietin-like 7 secretion is induced by glaucoma stimuli and its concentration is elevated in glaucomatous aqueous humor. *Invest. Ophthalmol. Vis. Sci.* **49**, 3438–3448 (2008).

16. Kolker, E. et al. MOPED: Model Organism Protein Expression Database. *Nucleic Acids Res.* **40**, D1093–9 (2012).

17. Schmidt, T. et al. ProteomicsDB. *Nucleic Acids Res.* **46**, D1271–D1281 (2018).
18. Musunuru, K. & Kathiresan, S. Cardiovascular endocrinology: Is ANGPTL3 the next PCSK9? *Nat. Rev. Endocrinol.* **13**, 503–504 (2017).

19. Musunuru, K. *et al.* Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. *N. Engl. J. Med.* **363**, 2220–2227 (2010).

20. Gusarova, V. *et al.* Genetic inactivation of ANGPTL4 improves glucose homeostasis and is associated with reduced risk of diabetes. *Nat. Commun.* **9**, 2252 (2018).

21. Clapham, K. R. *et al.* A null mutation in ANGPTL8 does not associate with either plasma glucose or type 2 diabetes in humans. *BMC Endocr. Disord.* **16**, 7 (2016).

22. Peloso, G. M. *et al.* Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. *Am. J. Hum. Genet.* **94**, 223–232 (2014).

23. Abu-Farha, M. *et al.* Plasma and adipose tissue level of angiopoietin-like 7 (ANGPTL7) are increased in obesity and reduced after physical exercise. *PLoS One* **12**, e0173024 (2017).

24. Jørgensen, A. B., Frikke-Schmidt, R., Nordestgaard, B. G. & Tybjærg-Hansen, A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. *N. Engl. J. Med.* **371**, 32–41 (2014).

25. TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute *et al.* Loss-of-function mutations in APOC3, triglycerides, and coronary disease. *N. Engl. J. Med.* **371**, 22–31 (2014).

26. Cohen, J. C., Boerwinkle, E., Mosley, T. H., Jr & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. *N. Engl. J. Med.* **354**, 1264–1272 (2006).

27. Tanigawa, Y. *et al.* Components of genetic associations across 2,138 phenotypes in the UK Biobank highlight novel adipocyte biology. *bioRxiv* 442715 (2019). doi:10.1101/442715
28. McCarthy, M. & O’Brien, E. McCarthy Group Front page. McCarthy Group (2018). Available at: http://mccarthy.well.ox.ac.uk/. (Accessed: 20th May 2019)

29. Van Hout, C. V. et al. Whole exome sequencing and characterization of coding variation in 49,960 individuals in the UK Biobank. bioRxiv 572347 (2019). doi:10.1101/572347

Methods

Genome-wide association analysis in UK Biobank

For British individuals (n = 337,151) in UK Biobank as described elsewhere, we applied genome-wide association analysis for directly genotyped variants were applied to Goldmann-correlated intraocular pressure described more detailed earlier (right, UK Biobank Field ID 5255, Global Biobank Engine phenotype ID: INI5255) and glaucoma (Global Biobank Engine phenotype ID: HC276), using generalized linear model association analysis implemented in PLINK v2.00aLM (2 April 2019) with age, sex, types of genotyping array, and the first 4 genotype principal components as described elsewhere. The glaucoma phenotype was previously defined as a part of “high confidence” disease outcome phenotypes by combining disease diagnoses (UK Biobank Field ID 41202) from the UK National Health Service Hospital Episode Statistics (ICD10 codes: H40.[0-6,8,9], H42.8, and Q15.0) with self-reported non-cancer diagnosis questionnaire (UK Biobank Field ID 20002).

Genotyping quality control in UK Biobank

Manual inspection of intensity plots

For the identified rare (0.01 % < MAF < 1%) protein-altering variants in ANGPTL7 (reference sequence: NM_021146), we generated and inspected intensity plots with McCarthy Group’s ScatterShot using “UKB - All Participants” module.

Variant-calling consistency analysis

For individuals with whole-exome sequencing data (n = 49,960), we extracted the genotype calls of coding variants in ANGPTL7 using PLINK v2.00aLM (2 April 2019) and compared the consistency between array-genotyped dataset and whole-exome sequencing dataset.
Independence analysis of alleles

Pairwise r^2 computation within British individuals in UK Biobank

We computed pairwise r^2 for the identified rare protein-altering variants in \textit{ANGPTL7} within British individuals in UK Biobank using PLINK v1.90b6.7 64-bit (2 Dec 2018) with --ld <variant_ID_1> <variant_ID_1> hwe-midp subcommand11.

Number of individuals with the combination of genotypes in UK Biobank

Using the extracted genotype calls from for the identified rare protein-altering variants in \textit{ANGPTL7} (see Variant-calling consistency analysis section), we counted the number of British individuals by the combination of genotypes. We computed the expected number of individuals under Hardy-Weinberg equilibrium model and the independence assumption:

- The expected frequencies of REF/REF, REF/ALT, and ALT/ALT carriers are $(1 - \text{AF})^2$, $2 \times \text{AF}(1-\text{AF})$, and AF^2, respectively.
- The expected genotyping rate is independently estimated by the observed genotyping rate for each variant.
- The expected frequency of the combination of genotypes is computed under the independent assumption among alleles.

Combined effect size estimates of rare protein-altering variants

Using the inverse-variance method for fixed-effects model implemented in R meta package, we performed a meta-analysis of the estimated effect sizes (BETAs) of protein-altering variants on intraocular pressure and glaucoma. For glaucoma, the results are reported as odds ratio. 95% confidence intervals are reported for IOP and glaucoma.

Association analysis with reproductive fitness

Using the number of live births (UK Biobank Field ID: 2734, Global Biobank Engine phenotype ID: INI2734) and the number of children fathered (UK Biobank Field ID: 2405, Global Biobank Engine phenotype ID: INI2405), we performed association analysis for the four identified protein-altering variants using R script with age, types of genotyping array, and the first 4 genotype principal components as covariates.

Homozygous carrier analysis

For UK Biobank British individuals, we extracted the genotype calls with PLINK v2.00aLM (2 April 2019) and identified homozygous carrier of 175H allele11. We examined the year of birth (UK Biobank Field ID 34) and age at death (UK Biobank Field ID 40007)7.
Supplementary Figure S1. Phenotype distribution of Intraocular pressure stratified by glaucoma disease status displayed as a Tukey’s box plot. The middle bold horizontal line represents the median, the lower and upper hinges show the first and third quartiles, the lower and upper whiskers represent 1.5 * interquartile range from the hinges. The data points beyond whiskers are plotted individually.
Supplementary Figure S2. The protein-altering variant GWAS QQ plot for intraocular pressure. The variants outside of MHC region with $0.01 \% < \text{MAF} < 1\%$ are included in the analysis.
Supplementary Figure S3. The intensity plots for ANGPTL7 protein-altering variants with 0.01 % < MAF < 1%. (A) rs200058074 (p.Gln136Arg). (B) rs28991002 (p.Arg140His). (C) rs28991009 (p.Gln175His). (D) rs143435072 (p.Arg177Ter)
Supplementary Table S1. Consistency of the genotype call for four protein-altering variants in ANGPTL7 between genotyping array and exome sequencing data. Variant including chromosome, position, reference, and alternate allele (hg19), the rs identifier of the genetic variant (rsID), consequence of the variation (Consequence), genotype call from array (Array) and exome data (Exome), and the number of individuals (N). Inconsistent variant calls are highlighted in bold font.

Variant	rsID	Consequence	Array	Exome	N
1:11252357:A>G	rs200058074	p.Gln136Arg	A/G	A/G	42
1:11252357:A>G	rs200058074	p.Gln136Arg	A/A	A/A	49837
1:11252357:A>G	rs200058074	p.Gln136Arg	NA	A/G	1
1:11252357:A>G	rs200058074	p.Gln136Arg	NA	A/A	29
1:11252369:G>A	rs28991002	p.Arg140His	A/A	A/A	1
1:11252369:G>A	rs28991002	p.Arg140His	G/A	G/A	218
1:11252369:G>A	rs28991002	p.Arg140His	G/A	G/G	1
1:11252369:G>A	rs28991002	p.Arg140His	G/G	G/G	49,663
1:11252369:G>A	rs28991002	p.Arg140His	NA	G/G	26
1:11253684:G>T	rs28991009	p.Gln175His	T/T	T/T	4
1:11253684:G>T	rs28991009	p.Gln175His	G/T	G/T	720
1:11253684:G>T	rs28991009	p.Gln175His	G/G	G/G	49,093
1:11253684:G>T	rs28991009	p.Gln175His	NA	G/T	1
1:11253684:G>T	rs28991009	p.Gln175His	NA	G/G	91
1:11253688:C>T	rs143435072	p.Arg177Ter	C/T	C/T	41
1:11253688:C>T	rs143435072	p.Arg177Ter	C/T	C/C	1
1:11253688:C>T	rs143435072	p.Arg177Ter	C/C	C/C	49,857
1:11253688:C>T	rs143435072	p.Arg177Ter	NA	C/C	10
Supplementary Table S2. Number of individuals stratified by genotype of rare (0.01% < MAF < 1%) protein-altering variants in ANGPTL7. The combination of genotypes is shown in the first four columns (rs200058074, rs28991002, rs28991009, and rs143435072) as well as the number of British individuals with the genotype combination in UK Biobank (n_observed). The expected number of individuals are computed under Hardy-Weinberg equilibrium model and the independence assumption (n_expected, Method).

rs200058074	rs28991002	rs28991009	rs143435072	n_observed	n_expected
A/A	G/G	G/G	C/C	328,492.00	329,401.21
A/A	G/G	G/T	C/C	5,395.00	5,390.72
A/A	G/A	G/G	C/C	1,693.00	1,672.69
A/A	G/G	NA	C/C	471.00	470.71
A/G	G/G	G/G	C/C	356.00	353.03
A/A	G/G	G/G	C/T	270.00	267.80
A/A	NA	G/G	C/C	194.00	192.47
NA	G/G	G/G	C/C	192.00	188.77
A/A	G/G	G/G	NA	37.00	38.13
A/A	G/G	T/T	C/C	28.00	22.06
A/A	G/A	G/T	C/C	8.00	27.37
A/G	G/G	G/T	C/C	4.00	5.78
A/A	NA	G/T	C/C	2.00	3.15
A/A	G/A	G/G	NA	2.00	0.19
A/A	G/G	NA	C/T	2.00	0.38
NA	G/A	G/G	C/C	1.00	0.96
A/A	A/A	G/G	C/C	1.00	2.12
A/A	G/A	G/G	C/T	1.00	1.36
A/A	G/G	G/T	C/T	1.00	4.38
A/A	G/G	NA	C/C	1.00	0.50
Supplementary Figure S4: The combined effect size estimates of rare protein-altering variants.

The estimates of effect size on unstandardized intraocular pressure measurements (IOP [mmHg]) and normalized intraocular pressure measurements (SD[IOP]) are shown for the four protein-altering variants in ANGPTL7. The combined effect size estimate is summarized using inverse-variance method under the fixed effect model (Methods).
Supplementary Table S3. The combined effect size estimates of rare protein-altering variants. The estimates of effect size on normalized intraocular pressure measurements (SD [IOP]) and their 95% confidence interval (95% CI) are shown for the four protein-altering variants in *ANGPTL7*. The combined effect size estimate is summarized using inverse-variance method under the fixed effect model (Methods). %W (fixed) column indicates the relative weights used in the fixed effect model. The bottom right cell indicates the P-value of combined effect size model.

Variant	SD (IOP)	95% CI	%W(fixed)
Gln175His	-0.2003	[-0.2534; -0.1471]	70.5
Arg177Ter	-0.2626	[-0.5107; -0.0144]	3.2
Arg140His	-0.1555	[-0.2502; -0.0607]	22.1
Gln136Arg	-0.0380	[-0.2564; 0.1804]	4.2
Fixed effect model	-0.1856	[-0.2302; -0.1410]	P-value: 3.4x10^{-16}

Supplementary Table S4. The combined effect size estimates of rare protein-altering variants. The estimates of effect size on unstandardized intraocular pressure measurements (IOP [mmHg]) and their 95% confidence interval (95% CI) are shown for the four protein-altering variants in *ANGPTL7*. The combined effect size estimate is summarized using inverse-variance method under the fixed effect model (Methods). %W (fixed) column indicates the relative weights used in the fixed effect model. The bottom right cell indicates the P-value of combined effect size model.

Variant	IOP (mmHg)	95% CI	%W(fixed)
Gln175His	-0.7430	[-0.9547; -0.5314]	70.5
Arg177Ter	-0.9444	[-1.9333; 0.0445]	3.2
Arg140His	-0.4816	[-0.8593; -0.1039]	22.1
Gln136Arg	-0.2078	[-1.0785; 0.6630]	4.2
Fixed effect model	-0.6694	[-0.8471; -0.4917]	P-value: 1.6 x 10^{-13}
Supplementary Table S5: Glaucoma definitions in FinnGen. ICD-codes are used in the Finnish hospital discharge and cause-of-death registries. ATC-codes are used in the Social Insurance Institution prescription drug purchase registry. All endpoint definitions in the FinnGen phenome-wide association analysis are available online (https://www.finngen.fi/fi/node/68).

Phenotype name	ICD-10	ICD-9	ICD-8 exclude	ATC (drug purchases)			
Glaucoma (broad definition, combination of all the subphenotypes below)	Any of the below	Any of the below	Any of the below	S01EA			
Glaucoma suspect	H40.0	365.0	375.97				
Primary open-angle glaucoma	H40.1	365.1	375.1[0-3]	375.11			
Primary angle-closure glaucoma	H40.2	365.2	375.00	37 5.11			
Glaucoma secondary to eye trauma	H40.3	365.6E					
Glaucoma secondary to eye inflammation	H40.4	365.6F	365.6B	365.3A	364.01		
Glaucoma secondary to other eye disorders	H40.5	365.5	365.6A	365.3A			
Glaucoma secondary to drugs	H40.6	365.3A					
Other and unspecified glaucoma	H40.[8-9]	365.6X	365.6C	365.6X	365.6C	375.2	375.97
Glaucoma in diseases classified elsewhere	H42	365.4A					
Use of antiglaucoma preparations and miotics	S01EA						
Supplementary Figure S5: Phenome-wide association analysis of p.R220C in FinnGen. -log10(P-value) is displayed in y-axis. Disease endpoints grouped by disease categories are displayed on the x-axis. Highlighted associations with $P < 0.001$ are shown.

Supplementary Table S6. FinnGen summary of MYOC p.Gln168Ter and ANGPTL7 p.Arg220Cys carriers in primary open glaucoma cases.

Numbers of POA Glaucoma cases/controls by genotype:

- ANGPTL7
 - wt: 2,499/119,192 = 2.0%
 - R220C+: 146/10,570 = 1.3%
- MYOC-
 - 49/630 = 7.7%
 - 1/69 = 1.4%
- MYOC+
 - 22/35
Supplementary Table S7. ANGPTL7 protein-altering variant association with reproductive fitness, (A) the number of live births and (B) the number of children fathered. Variant includes chromosome, position, reference, and alternate allele (hg19). rsID - the rs identifier of the genetic variant. HGVSp - the HGVS protein sequence name. MAF - the minor allele frequency in UK Biobank British population. Beta - estimated regression coefficient with 95% confidence intervals. P - p-value of association.

A. Number of live births

Variant	rsID	HGVSp	MAF	Dosage	Beta [95% CI]	P
1:11252357:A:G	rs200058074	p.Gln136Arg	.054 %	Gln/Arg	0.089 [-0.064, 0.24]	0.26
1:11252369:G:A	rs28991002	p.Arg140His	.25 %	Arg/His	0.29 [-1.9, 2.5]	0.80
1:11253684:G:T	rs28991009	p.Gln175His	.81 %	Gln/His	-0.0076 [-0.050, 0.035]	0.72
					His/His	
1:11253688:C:T	rs143435072	p.Arg177Ter	.041 %	Arg/Ter	0.2 [0.021, 0.38]	0.029

B. Number of children fathered

Variant	rsID	HGVSp	MAF	Dosage	Beta [95% CI]	P
1:11252357:A:G	rs200058074	p.Gln136Arg	.054 %	Gln/Arg	0.0064 [-0.19, 0.21]	0.95
1:11252369:G:A	rs28991002	p.Arg140His	.25 %	Arg/His	0.0030 [-0.081, 0.087]	0.94
1:11253684:G:T	rs28991009	p.Gln175His	.81 %	Gln/His	-0.0052 [-0.054, 0.044]	0.83
					His/His	
1:11253688:C:T	rs143435072	p.Arg177Ter	.041 %	Arg/Ter	-0.052 [-0.27, 0.17]	0.64
Supplementary Figure S6: The combined effect size estimates of rare protein-altering variants. The estimates of effect size (odds ratio, OR) on glaucoma is shown in log scale for the five protein-altering variants in *ANGPTL7*. The combined effect size estimate is summarized using inverse-variance method under the fixed effect model and 95% confidence intervals are shown (Methods).

Variant	OR [95% CI]
Gln175His	0.66
Arg177Ter	0.58
Arg140His	0.92
Gln136Arg	0.21
Arg220Cys	0.72
Summary	**0.72 [0.65, 0.79]**
Supplementary Figure S7: Protein expression in normal tissues and cell lines from ProteomicsDB and MOPED for ANGPTL7
Supplementary Note

FinnGen

FinnGen consists of the following people:

Steering Committee

- Aarno Palotie, University of Helsinki / FIMM
- Mark Daly, University of Helsinki / FIMM

Pharma

- Howard Jacob, Abbvie
- Athena Matakidou, Astra Zeneca
- Heiko Runz, Biogen
- Sally John, Biogen
- Robert Plenge, Celgene
- Julie Hunkapiller, Genentech
- Meg Ehm, GSK
- Dawn Waterworth, GSK
- Caroline Fox, Merck
- Anders Malarstig, Pfizer
- Kathy Klinger, Sanofi
- Kathy Call, Sanofi

UH & Biobanks

- Tomi Mäkelä, University of Helsinki / FIMM
- Jaakko Kaprio, University of Helsinki / FIMM
- Petri Virolainen, Auria BB / Univ. of Turku /VSSHP
- Kari Pulkki, Auria BB / Univ. of Turku /VSSHP
- Terhi Kilpi, THL Biobank (BB) / THL
- Markus Perola, THL Biobank (BB) / THL
- Jukka Partanen, Finnish Red Cross Blood Service/FHRB
- Anne Pitkäranta, HUS/Univ Hosp Districts
- Riitta Kaarteenaho, Borealis BB/Univ. of Oulu/PPSHP
- Seppo Vainio, Borealis BB/Univ. of Oulu/PPSHP
- Kimmo Savinainen, Tampere BB/Univ Tampere/PSHP
- Veli-Matti Kosma, Eastern Finland BB/UEF/PSSHP
- Urho Kujala, Central Finland BB /UJy/KSSHP
Scientific Committee

Pharma

Jeff Waring Abbvie
Bridget Riley-Gillis AbbVie
Athena Matakidou Astra Zeneca
Heiko Runz Biogen
Jimmy Liu Biogen
Shameek Biswas Celgene
Julie Hunkapiller Genentech
Dawn Waterworth GSK
Meg Ehm GSK
Josh Hoffman GSK
Dorothee Diogo Merck
Caroline Fox Merck
Anders Malarstig Pfizer
Catherine Marshall Pfizer
Xinli Hu Pfizer
Kathy Call Sanofi
Kathy Klinger Sanofi

UH & Biobanks

Samuli Ripatti University of Helsinki / FIMM
Johanna Schleutker Auria BB / Univ. of Turku /VSSHP
Markus Perola THL Biobank (BB) / THL
Tiina Wahlfors Finnish Red Cross Blood Service/FHRB
Olli Carpen HUS/Univ Hosp Districts
Johanna Myllyharju Borealis BB/Univ. of Oulu/PPSHP
Johannes Kettunen Borealis BB/Univ. of Oulu/PPSHP
Reijo Laaksonen Tampere BB/Univ Tampere/PSHP
Arto Mannermaa Eastern Finland BB/UEF/PSSHP
Juha Paloneva Central Finland BB /UJy/KSSHP
Urho Kujala Central Finland BB /UJy/KSSHP

Clinical Groups

Neurology Group

Hilkka Soininen LEAD: Kuopio
Valtteri Julkunen Kuopio
Anne Remes Oulu
Reetta Kälviäinen Kuopio
Mikko Hiltunen Kuopio
Jukka Peltola Tampere
Pentti Tienari Helsinki

Juha Rinne Turku
Adam Ziemann AbbVie
Jeffrey Waring AbbVie
Sahar Esmaeeli AbbVie
Nizar Smaoui AbbVie

Anne Lehtonen AbbVie
Susan Eaton Biogen
Heiko Runz Biogen
Sanni Lahdenperä Biogen
Janet van Adelsberg Celgene

Shameek Biswas Celgene
John Michon Genentech
Geoff Kerchner Genentech
Julie Hunkapiller Genentech
Natalie Bowers Genentech

Edmond Teng Genentech
John Eicher Merck
Vinay Mehta Merck
Padhraig Gormley Merck
Kari Linden Pfizer

Christopher Whelan Pfizer
Fanli Xu GSK
David Pulford GSK

Gastroenterology Group
Martti Färkkilä LEAD: Helsinki

Samps Pikkarainen HUS
Ari Jussila Tampere
Timo Blomster Oulu
Mikko Kiviniemi Kuopio
Markku Voutilainen Turku

Bob Georgantas AbbVie
Graham Heap AbbVie
Jeffrey Waring AbbVie
Nizar Smaoui AbbVie
Fedik Rahimov AbbVie

Anne Lehtonen AbbVie
Keith Usiskin Celgene
Tim Lu Genentech
Natalie Bowers Genentech
Danny Oh Genentech
540 John Michon Genentech
Vinay Mehta Merck
Dermot Reilly Merck
Kirsi Kalpala Pfizer
Melissa Miller Pfizer
545 Xinli Hu Pfizer
Linda McCarthy GSK

Rheumatology Group
Kari Eklund LEAD:Helsinki
Antti Palomäki Turku
550 Pia Isomaki Tampere
Laura Pirilä Turku
Oili Kaipiainen-Seppänen Kuopio
Johanna Huhtakangas Oulu
Bob Georgantas AbbVie
555 Jeffrey Waring AbbVie
Fedik Rahimov AbbVie
Apinya Lertratanakul AbbVie
Nizar Smaoui AbbVie
Anne Lehtonen AbbVie
560 David Close AstraZeneca
Marla Hochfeld Celgene
Natalie Bowers Genentech
John Michon Genentech
Dorothee Diogo Merck
565 Vinay Mehta Merck
Kirsi Kalpala Pfizer
Nan Bing Pfizer
Xinli Hu Pfizer
Jorge Esparza Gordillo GSK
570 Nina Mars University of Helsinki / FIMM

Pulmonology Group
Tarja Laitinen LEAD:Tampere
Margit Pelkonen Kuopio
Paula Kauppi Helsinki
575 Hannu Kankaanranta Tampere
Terttu Harju Oulu
Nizar Smaoui AbbVie
David Close AstraZeneca
Steven Greenberg Celgene

580
Hubert Chen Genentech
Natalie Bowers Genentech
John Michon Genentech
Vinay Mehta Merck
Jo Betts GSK

585
Soumitra Ghosh GSK

Cardiometabolic Diseases Group

Veikko Salomaa Lead: THL
Teemu Niiranen THL
Markus Juonala Turku

590
Kaj Metsärinne Turku
Mika Kähönen Tampere
Juhani Junttila Oulu
Markku Laakso Kuopio
Jussi Pihlajamäki Kuopio

595
Juha Sinisalo Helsinki
Marja-Riitta Taskinen Helsinki
Tiinamaija Tuomi Helsinki
Jari Laukkanen Keski-Suomen Keskussairaala
Ben Challis AstraZeneca

600
Keith Usiskin Celgene
Andrew Peterson Genentech
Julie Hunkapiller Genentech
Natalie Bowers Genentech
John Michon Genentech

605
Dorothee Diogo Merck
Dermot Reilly Merck
Audrey Chu Merck
Vinay Mehta Merck
Jaakko Parkkinen Pfizer

610
Melissa Miller Pfizer
Anthony Muslin Sanofi
Dawn Waterworth GSK

Oncology Group

Heikki Joensuu Lead: Helsinki

615
Tuomo Meretoja Helsinki
Olli Carpen Helsinki
Lauri Aaltonen Helsinki
Annika Auranen Tampere
Peeter Karihtala Oulu

Saila Kauppila Oulu
Päivi Auvinen Kuopio
Klaus Elenius Turku
Relja Popovic AbbVie
Jeffrey Waring AbbVie

Bridget Riley-Gillis AbbVie
Anne Lehtonen AbbVie
Athena Matakidou AstraZeneca
Jennifer Schutzman Genentech
Julie Hunkapiller Genentech

Natalie Bowers Genentech
John Michon Genentech
Vinay Mehta Merck
Andrey Loboda Merck
Aparna Chhibber Merck

Heli Lehtonen Pfizer
Stefan McDonough Pfizer
Marika Crohns Sanofi
Diptee Kulkarni GSK

Ophthalmology Group

Kai Kaarniranta Lead: Kuopio
Joni Turunen HUS/ Secretary
Terhi Ollila HUS
Sanna Seitsonen HUS
Hannu Uusitalo Tampere

Vesa Aaltonen Turku
Hannele Uusitalo-Järvinen PSHP
Marja Luodonpää Oulu
Nina Hautala Oulu
Heiko Runz Biogen

Erich Strauss Genentech
Natalie Bowers Genentech
Hao Chen Genentech
John Michon Genentech
Anna Podgornaia Merck

Vinay Mehta Merck
Dorothee Diogo Merck
Joshua Hoffman GSK

Dermatology Group
Kaisa Tasanen Oulu
Laura Huilaja Oulu
Katariina Hannula-Jouppi HUS
Teeea Salmi Tampere
Sirkku Peltonen Turku
Leena Koulu Turku

Ilkka Harvima Kuopio
Kirsi Kalpala Pfizer
Ying Wu Pfizer
David Choy Genentech
John Michon Genentech

Nizar Smaoui AbbVie
Fedik Rahimov AbbVie
Anne Lehtonen AbbVie
Dawn Waterworth GSK

FinnGen Teams

Administration Team
Anu Jalanko University of Helsinki / FIMM
Risto Kajanne University of Helsinki / FIMM
Ulrike Lyhs University of Helsinki / FIMM

Communication
Mari Kaunisto University of Helsinki / FIMM

Analysis Team
Justin Wade Davis Abbvie
Bridget Riley-Gillis Abbvie
Danjuma Quarless Abbvie
Slavé Petrovski Astra Zeneca
Jimmy Liu Biogen
Chia-Yen Chen Biogen
Paola Bronson Biogen
Robert Yang Celgene
Joseph Maranville Celgene
Shameek Biswas Celgene
Diana Chang Genentech
Julie Hunkapiller Genentech
Tushar Bhangale Genentech
Natalie Bowers Genentech
Dorothee Diogo Merck
Emily Holzinger Merck
Padhraig Gormley Merck
Xulong Wang Merck
Xing Chen Pfizer
Åsa Hedman Pfizer
Joshua Hoffman GSK
Clarence Wang Sanofi
Ethan Xu Sanofi
Franck Auge Sanofi
Clement Chatelain Sanofi
Mitja Kurki University of Helsinki / FIMM/ Broad Institute
Samuli Ripatti University of Helsinki / FIMM
Mark Daly University of Helsinki / FIMM
Juha Karjalainen University of Helsinki / FIMM/ Broad Institute
Aki Havulinna University of Helsinki / FIMM
Anu Jalanko University of Helsinki / FIMM
Kimmo Palmin University of Helsinki
Priit Palta University of Helsinki / FIMM
Pietro della Briotta Parolo University of Helsinki / FIMM
Wei Zhou Broad Institute
Susanna Lemmelä University of Helsinki / FIMM
Manuel Rivas University of Stanford
Jarmo Harju University of Helsinki / FIMM
Aarno Palotie University of Helsinki / FIMM
Arto Lehisto University of Helsinki / FIMM
Andrea Ganna University of Helsinki / FIMM
Vincent Llorens University of Helsinki / FIMM
Antti Karlsson Auria BB / Univ. of Turku /VSSHP
Kati Kristiansson THL BB / THL
Mikko Arvas Finnish Red Cross Blood Service BB /FHRB
Kati Hyvärinen Finnish Red Cross Blood Service BB /FHRB
Jarmo Ritari Finnish Red Cross Blood Service BB /FHRB
Tiina Wahlfors Finnish Red Cross Blood Service BB /FHRB
Miika Koskinen Helsinki BB/HUS/Univ Hosp Districts
Olli Carpen Helsinki BB/HUS/Univ Hosp Districts
Johannes Kettunen Borealis BB/Univ. of Oulu/PPSHP
Katri Pylkäs Borealis BB/Univ. of Oulu/PPSHP
Marita Kalaoja Borealis BB/Univ. of Oulu/PPSHP
Minna Karjalainen Borealis BB/Univ. of Oulu/PPSHP
Tuomo Mantere Borealis BB/Univ. of Oulu/PPSHP
Eeva Kangasniemi Tampere BB/Univ Tampere/PSHP
Sami Heikkinen Eastern Finland BB/UEF/PSSHP
Arto Mannermaa Eastern Finland BB/UEF/PSSHP
Eija Laakkonen Central Finland BB/UJy/KSSHP
Juha Kononen Central Finland BB/UJy/KSSHP

Sample Collection Coordination
Anu Loukola Helsinki BB/HUS/Univ Hosp Districts

Sample Logistics
Päivi Laiho THL BB / THL
Tuuli Sistonen THL BB / THL
Essi Kairharju THL BB / THL
Markku Laukkanen THL BB / THL
Elina Järvensivu THL BB / THL
Sini Lähteenmäki THL BB / THL
Lotta Männikkö THL BB / THL
Regis Wong THL BB / THL

Registry Data Operations
Kati Kristiansson THL BB / THL
Hannele Mattsson THL BB / THL
Susanna Lemmelä University of Helsinki / FIMM
Tero Hiekkalinna THL BB / THL
Manuel González Jiménez THL BB / THL

Genotyping
Kati Donner University of Helsinki / FIMM

Sequencing Informatics
Priit Palta University of Helsinki / FIMM
Kalle Pärn University of Helsinki / FIMM
Javier Nunez-Fontarnau University of Helsinki / FIMM

Data Management and IT Infrastructure
Jarmo Harju University of Helsinki / FIMM
Elina Kilpeläinen University of Helsinki / FIMM
Timo P. Sipilä University of Helsinki / FIMM
Georg Brein University of Helsinki / FIMM
Alexander Dada University of Helsinki / FIMM
Ghazal Awaisa University of Helsinki / FIMM
Anastasia Shcherban University of Helsinki / FIMM
Tuomas Sipilä University of Helsinki / FIMM

Clinical Endpoint Development

Hannele Laivuori University of Helsinki / FIMM
Aki Havulinna University of Helsinki / FIMM
Susanna Lemmelä University of Helsinki / FIMM
Tuomo Kiiskinen University of Helsinki / FIMM

Trajectory Team

Tarja Laitinen Tampere University Hospital
Harri Siirtola University of Tampere
Javier Gracia Tabuenca University of Tampere

Biobank Directors

Lila Kallio Auria Biobank
Sirpa Soini THL Biobank
Jukka Partanen Blood Service Biobank
Kimmo Pitkänen Helsinki Biobank
Seppo Vainio Northern Finland Biobank Borealis
Kimmo Savinainen Tampere Biobank
Veli-Matti Kosma Biobank of Eastern Finland
Teijo Kuopio Central Finland Biobank