研究論文

Nd-Fe-B 磁石用プロトタイプ熱力学データベースの構築

阿部 太一*, 森下 政夫*, Ying CHEN**, Arkapol SAENGDEEJING**, 塩本 清**。

独立行政法人製・材料研究機構磁性材料戦略研究センター（ESICMM）, 〒305-0047 つくば市千塚1-2-1。

Development of a Prototype Thermodynamic Database for Nd-Fe-B Permanent Magnets

Taichi ABE*, Masao MORISHITA*, Ying CHEN**, Arkapol SAENGDEEJING**, Kiyoshi HASHIMOTO*, Yoshinao KOBAYASHI*, Ikuo OHNUMA*, Toshiyuki KOYAMA* and Satoshi HIROSAWA*

Elements Strategy Initiative Center for Magnet Materials (ESICMM), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan.

For the Nd-Fe-B permanent magnets, a prototype thermodynamic database of the 8-element system (Nd, Fe, B, Al, Co, Cu, Dy, Ga) was constructed based on literature data and assessed parameters in the present work. The magnetic excess Gibbs energy of the Nd$_2$Fe$_{14}$B compound was reassessed using thoroughly measured heat capacity data. The Dy-Nd binary system was reassessed based on formation energies estimated from *ab initio* calculations. The constructed database was applied successfully for estimations of phase equilibria during the grain boundary diffusion processes (GBDP) and the reactions in the hydrogenation decomposition desorption recombination (HDDR) processes.

KEY WORDS

thermodynamic database, Gibbs energy, phase equilibria, metastable states

1 緒 言

1984年にSagawaら1)によりNd$_2$Fe$_{14}$B化合物を主相とする希土類永久磁石が報告され、その高い磁化率と磁気異方性からこれまでに多くの研究が行われてきた2)。Nd-Fe-B系永久磁石は、電気自動車、携帯電話、電子機器など、私たちの生活に欠かせない機器に広く使用されているが、高い磁気特性を持つ永久磁石の創製のために、そのミクロ組織を精密に描写する必要がある。現在、提案されている最適なミクロ組織3)をFig. 1に示す。このミクロ組織は、マイクローマ

* Corresponding author, E-mail: abe.taichi@nims.go.jp

この論文のオリジナルの論文は“Science and Technology of Advanced Materials (STAM)”, Vol. 22, No. 1, pp. 557-570に掲載済みである。

トルサイズの結晶粒からなるNd$_2$Fe$_{14}$B化合物が厚い非磁性粒界相で被覆されている構造となっている。Sasakaら3,4)は、Nd-Fe-B系固結磁石のミクロ組織を詳細に観察し、主相の周りには多様な粒界相が存在していることを明らかにした。これらのミクロ組織を構成する多様な相とその形態は、磁石の化学組成や焼結条件などの作成条件により強く依存しているため、主相と粒界相の相平衡に関する熱力学的知見は、Nd-Fe-B系固結磁石のさらなる磁気特性の向上に不可欠である。しかし、Nd-Fe-B三元系と関連する合金系の状態図に関する情報は限られている。Matsuuraら5)は1985年に、B濃度が55atom%以下のNd-Fe-B系三元系の最初の等温状態図を発表している。その後、その状態図にいくつかの修正が加えられて
Nd-Fe-B 磁石用プロトタイプ熱力学データベースの構築

Fig. 1 The proposed optimal microstructure of the Nd-Fe-B permanent magnets where the Nd,Fe$_3$B phase (blue) is covered with a non-magnetic thin grain boundary phase (yellow).

Nd-Fe-B 合金の異方性パルク永久磁石を作るには、粉末焼結、急冷凝固材の熱間加工、水素化・不水素化・脱水素再結合（Hydrogenation-Disproportionation-Desorption-Recombination, HDDR）プロセスの3つの製造方法がある。これらのうち、主な製造方法は粉末焼結であり、共晶温度以上で生成する多成分からなる液相を用いた液相焼結後、固相線温度近傍で調質熱処理を行う。したがって、相互であるNd$_2$Fe$_{14}$B相と液相の間の相平衡をミクロ組織形成に重要な影響を与えている。原料粉末製造のための出発合金は、相関のαFe相の生成を避けるため、ストリップキャストと呼ばれる急速焼結プロセスが用いられている。この場合、液相からのαFe相の晶出などの動的成長過程の解析も重要となる。2つの目的の製造方法は、急速焼結・熱間加工である。メルトスパン法により微細な主相粒子を作製し、1000Kでホットプレス・熱間加工を行う。このプロセスにおいては液相が生成することで、熱間加工時に微細な主相粒子が凝集しミクロ組織が形成される。HDDRプロセスでは、Nd$_2$Fe$_{14}$B合金粉末を900Kで水素ガスと反応させることで、Fe, Fe$_3$B, NdH$_{1.3}$のナノサイズの粒子が生成し、その後、水素を取り除くことで、サブミクロサイズのNd$_2$Fe$_{14}$B粉末が再形成される。このプロセスでは、中間段階で水素を加えたNd-Fe-B-H系における平衡が重要となる。Nd$_2$Fe$_{14}$B相の水素化固溶体と不均化状態の間の平衡は、Coなどの少量の添加物の添加や水素分圧によって制御される。したがって、これらの元素を含む多成分系の相平衡に関する知見は、HDDRプロセスの改善に必要である。これらの製造過程を解析し、理想的なミクロ組織形成のためには、熱力学データ相関を含む全相のGibbsエネルギー、相平衡、相変態のダイナミクスに関する知見が必要となる。

市販のNd-Fe-B磁石は三元系Nd-Fe-B系ではなく、Nd, Fe, B, Dy, Cu, Ga, Al, Oなどの多くの元素を含む多成分系である3,19。たとえば、保磁力を向上させるためにDy, Cu, Gaが微量に添加されている。また、少量のAlも保磁力を向上させることが知られている。酸素は不可避の不純物である。様々な酸化物相を形成し、保磁力を影響を与える重要な要因であると考えられている3,20。これまでの相平衡・相図に関する研究の多くは2,3系までであり、磁石におけるミクロ組織形成理解には十分である。さらに、最近では、焼結磁石や熱間加工磁石の高密度化された磁石の表面に、比較的低温で粒界拡散や液相浸透により元素を添加し、粒界周辺の化学組成を変化させる「粒界拡散法」31や「共拡散法」32（または粒界浸透法）33と呼ばれる技術が開発されている。これらのプロセスにおいて、相組成を大きく変えることは、結晶粒界を無視して主にミクロ組織形成の制御と理解が重要となる。すなわち、これらのプロセスでは、加工温度や拡散させる元素の種類や合金組成などのプロセスパラメータを設定するために、粒界付近の局所平衡を理解する必要がある。

相平衡の解析には、第一原理/CALPHAD（CALculations of PHAs等）法と呼ばれる複合的な計算手法24,26が広く用いられている。我々は以前、酸素を含むNd系のデータベースを構築し、Nd-Fe-B-Cu-O系の相平衡における酸素の振舞いを検討した34。このデータベースでは上述の5元素系に限定されていた。これは、酸素を含む液相を2副格子イオン液体モデルより5元素系のGibbsエネルギーを記述することが困難であったことが主な理由である35,36。市販の磁石に含まれる酸素の含有量を考えると、5元素系のデータベースではNd-Fe-B永久磁石の相平衡を推定するには十分ではないが、実用磁石に適用可能な熱力学データベースを構築するためにはいくつかの問題がある。最も困難な点は、ラマンノイド元素を含む系の熱力学データが限られていることである。たとえば、1960年出版された最初の二元系状態図35では、Ndを含む二元系は含まれていない。最近の状態図36でも、掲載されているのは、1960年代頃までに測定された熱力学データに基づく部分的な状態図がほとんどである37。さらに、ラマンノイド元素を含む三元系では、利用可能な熱力学情報は限られている。3.2節で述べるように、Nd$_2$Fe$_{14}$B化合物の熱力学的な測定はほとんどされていない。さらに、Nd-Fe-B系磁石には、Cu, Dy, Ga, Alなどの様々な微量元素が含まれており、これらの元素の含有量は組成全体で微量であるが、低温熱処理時に粒界や特定の相や領域に濃化したり化合物を形成する。そのため、粒界におけるこれら微量元素を考慮した相平衡が重要となる。本研究では、ラマンノイド元素を含むより幅広い組成や合金組成を取り扱うために、プロトタイプ熱力学データベースの構築を行った。このデータベースを対象とするのは、8つの主要元素（Fe, Nd, B, Dy, Co, Al, Cu, Ga）である。さらに、ここで構築したデータベースを用いて、相平衡計算がNd-Fe-B系永久磁石の実際のプロセスを理解するための有効なツールであることを示すことを目的とした。

2 熱力学モデル
2.1 液相体と金属間化合物相のGibbsエネルギー
面心立方格子（fcc）、体心立方格子（bcc）、稠密六方格

2022年1月
子（hcp）、二重構密六方格子（dhcp）を持つ固溶体相、液相のギブスエネルギーは、置換型液体モデルをより記述した。この時の溶液相φの原子1モル当たりのギブスエネルギーは次式で与えられる。

\[G^\alpha_n = \sum_i G_i^\alpha + RT \sum_i x_i \ln x_i + \sigma^\alpha G^\alpha_n \] (1)

ここで、\(G_i^\alpha \)、\(G^\alpha_n \)、\(x_i \)、\(R \) はそれぞれ、純素\(i \)のからなる\(\phi \)相のギブスエネルギー、過剰ギブスエネルギー、\(x \)のモル分数、気体定数である。純素\(i \)のギブスエネルギーには、SGTE-PureデータベースVer.5.0を用いた。右边第三項の過剰ギブスエネルギー濃度依存性は、Redlich-Kister級数を用いて次式で与えられる。

\[G^\alpha_n = x_i x_j \sum_N x_j L_{ij}(x_i - x_j)^N \] (2)

さらに、式(2)中のパラメータ \(L_{ij} \) は温度依存性を持ち、
\[L_{ij} = A \cdot (B')^x \] と記述される。ここで\(A' \)と\(B' \)は定数であり、実験データを最もよく再現できるように熱力学解析において最適化されている。

本データベースでは多くの金属間化合物を定比化合物として扱っている。この場合、定比化合物\(A \cdot B(p + q = 1) \)の原子1モル当たりのギブスエネルギーは、次式で与えられる。

\[G^\alpha_{AB} = a \cdot hT + \alpha \cdot qG^\alpha_{A} + \alpha \cdot qG^\alpha_{B} \] (3)

ここで、\(a \)および\(\alpha \)は定数である。NdFeB相などの不定比化合物のギブスエネルギーには、同一原子数の素子の混合を考慮したモデルを用いておりこの点は後述する。

2.2 磁気過剰ギブスエネルギー

CALPHAD法による熱力学解析では、磁気変化に伴う過剰変化はIndenモデルにより与えられている。現在は、HillertとJarlによって与えられたIndenモデルの対数数を増数展開した形式がCALPHAD法による熱力学解析で広く使用されている。この場合、1気圧下における磁性状態の磁気過剰ギブスエネルギーを強磁性状態の磁気過剰ギブスエネルギーで次式で与えられる。

\[C_{\text{P\text{er}}^\text{mag}} = 2K_{\text{P\text{er}}^\text{mag}} R \left(r^3 + r^5 \right) \] (4)

\[C_{\text{P\text{er}}^\text{mag}} = 2K_{\text{P\text{er}}^\text{mag}} R \left(r^3 + r^5 \right) \] (4)

ここで、\(K_{\text{P\text{er}}^\text{mag}} \)は定数。\(r = T/T_c \)定義されるキュリーテン温度\(T_c \)で規格化された温度である。式中の指数\(m \)と\(n \)は、Indenにより経験的にそれぞれ5、3と与えられている。

Indenモデルによる磁気過剰ギブスエネルギー\(G^\text{mag} \)は次式で与えられる。

\[G^\text{mag} = RT \ln(\beta + 1) g(r) \] (5)

ここで、\(\beta \)は熱力学磁気モーメント、\(g(r) \)は温度依存項で磁気移動温度以下（\(r < 1 \)）では、式(6)で与えられる。

\[g(r) = \frac{1}{140} r^3 + \frac{474}{397} \left(\frac{1}{r^3} - \frac{1}{r^5} \right) + \frac{518}{15975} \left(\frac{1}{r^3} - \frac{1}{r^5} \right) \] (6)

\(r > 1 \)の場合は、

\[g(r) = \frac{1}{140} r^3 + \frac{474}{397} \left(\frac{1}{r^3} - \frac{1}{r^5} \right) + \frac{518}{15975} \left(\frac{1}{r^3} - \frac{1}{r^5} \right) \] (7)

これらの式(6)と(7)中の\(f \)は定数であり、磁気過剰エンタルピーの比として次式で与えられている。

\[f = \frac{C_{\text{P\text{er}}^\text{mag}} dT}{C_{\text{P\text{er}}^\text{mag}} dT} \] (8)

この値は、Inden[30]により経験的に、bcc相では\(f = 0.4 \)、他のすべての相では\(f = 0.28 \)とされている。

2.3 第一原理計算

ランクノイドを含む合金系の多くは、相平衡や熱力学量などの実験データが限られていることから、第一原理計算を用いて Dy-Nd系の相のギブスエネルギーの推定を行った。0 Kにおける電子状態計算にはVienna Ab initio Simulation Package（VASP）[3]を用いた。電子-イオン相互作用の記述にはProjector Augmented Wave（PAW）法、交換相関相互作用にはPerdew-Burke-Ernzerhof (PBE)の一般化勾配近似（Generalized Gradient Approximation, GGA）を用いた。希土類元素のPAWポテンシャルにおいては、電子を持ちため部分的にコアに凍結された状態に保たれている。また、全ての計算でスピン分離を考慮している。ここで用いた電子状態計算の詳細に関しては文献[49]に詳しい。さらに、クラスター展開法（Cluster Expansion Method, CEM）[40]を用いて系のエネルギー\(E^r \)を式(9)で記述することで、原子がランダム混じった場合の基底状態の推定を行った。

\[E^r = \sum_r J_r \sigma_r \] (9)

ここで、\(J_r \)はクラスター-\(\alpha \)の有効クラスター-\(\alpha \)相互作用（Effective Cluster Interaction, ECI）である。\(\sigma_r \)は相関関数と呼ばれ、原子の配列を表しており、規則構造については一義的に決定することができる。一連の規則構造に対して、第一原理計算を用いて求めた内部エネルギーから、逆行列計算によって\(J_r \)を得ることができる。さらに、得られた\(J_r \)から式(9)を用いて系のさまざまな原子配置のエネルギーを推定することができ、そのためクラスター展開法により得られた規則構造のエネルギーを電子状態計算から得られたエネルギーと比較することで、最適化されたECIを得ることができ、それにより他の多くの構造のエネルギーを予測することができる。この場合、任意の結晶構造\(\alpha \)の生成エネルギー\(\Delta E^r \)は、式(10)で与えられる。

\[\Delta E^r = E^r - \sum_i E_i^r \] (10)
Nd-Fe-B 磁石用プロトタイプ熱力学データベースの構築

3 熱力学データベースの構築

3.1 二元系 - 三元系状態図の熱力学解析

本研究では、Al, B, Co, Cu, Dy, Fe, Ga, Nd を含む 8 元系データベースの構築を行った。含まれる 28 の二元系のうち、25 の二元系が CALPHAD 法による熱力学評価が行われている。これらの二元系は以下の通りである：Al-B, Al-Co, Al-Cu, Al-Dy, Al-Fe, Al-Ga, Al-Nd, B-Co, B-Cu, B-Dy, B-Fe, B-Ga, B-Nd, Co-Cu, Co-Dy, Co-Fe, Co-Ga, Co-Nd, Cu-Dy, Cu-Fe, Cu-Ga, Cu-Nd, Dy-Dy, Dy-Fe, Dy-Ga, Fe-Ga, Fe-Nd。熱力学解析が行われていない系は Dy-Ga, Ga-Nd, Dy-Nd の 3 つの二元系である。本研究で熱力学解析を行った Dy-Nd 二元系については 3.3 節で取り上げる。本データベースに収録されている二元系は Table 1 に示す。

このデータベースには、さらに三元系として B-Fe-Nd, B-Co-Fe, Al-Co-Dy, Al-Cu-Fe, Cu-Co-Fe, Cu-Fe-Nd の 6 つの合金系のパラメーターを取り入れている。これらの二元系および一部の三元系の Gibbs エネルギーは、Computational Phase Diagram Database (CPDDDB)[6] からダウンロードできる。本データベースに含まれる相について Table 2 に示す。ここで "x" は、複数の二元系に現れる構造であり、本来は統合すべきであるが、そのためには新たなパラメーター（準安定組成における Gibbs エネルギー）の推定が必要となるため、本プロトタイプデータベースでは統合せずに、独立した相として取り扱っている。この点は今後改善が必要である。

3.2 Nd,Fe-B 相の Gibbs エネルギー

Nd-Fe-B 三元系状態図の解析は、1995 年に Hallemansら[56]によって初めて行われた。その後、この Nd-Fe-B 三元系は Hallemansらの解析結果を基にして再評価され、Gibbs エネルギーの高度化が図られてきた。van Ende ら[57]は、液相に擬似化学モデルを適用して、液相中の多原子系を考慮した解析を報告している。Zhou ら[58]は、B-Nd 二元系の再解析を行うと共にいくつかの準安定化合物を追加している。Chen ら[59]は、B-Nd 二元系の再解析を行っている。これらの再評価において共通で紹介されているのは、Hallemansら[57]により評価された B-Nd 二元系における液相と穏和相の間の相平衡の問題である。最近、Hanindriyo ら[60]は、第一原理計算を用いて、B-Nd 二元系における穏和相の安定性を詳細に検討している。これまでの解釈[56,57,60]では、磁気移動温度よりも高い温度領域での Nd2Fe14B 相の比熱の実験データは限られていたが、近年、Moriyama ら[61]は 900 K まで精密な NdFeB の比熱の測定を行っている。彼らの実験結果によると、Tc は 585 ± 3 K、磁気モーメントは 2.04 μB/m molecule であった。本データベースでは、Tc および f の値は Morishita らの測定結果に対して最適化を行った。Hallemans ら[60]（β = 2.4）や Morishita ら[61]（β = 2.04）の磁気モーメントを Inden モデルに用いること、磁気移動による比熱ピークが大きくずれるため、本研究では Inden モデルの熱力学的磁気モーメントを再評価し、最もよく Morishita らの比熱の温度依存性を再現できる値として f = 0.8 と定めた[62]。ここで、比熱の非炭化性部分には Kopp-Neuman 求める[63]を適用した。Fig. 2 に熱容量の測定値[64,65]と計算値[66,67]の比較を示す。

Dy は Nd-Fe-B 系永久磁石の必須元素の一つであり、Nd2Fe14B 相の Gibbs エネルギーにおける Dy 依存性を考慮する必要がある。したがって、NdFeB 相に含まれるラマンナイスター元素の優先置換サイト（Wyckoff ポジションの 4f と 4g）に基づいて、Dy を含む Nd2Fe14B 相を (Dy, Nd) (Dy, Nd), (Fe, Dy), (Fe, B) で定義される 4 員格子モデルで記述した。このグレードモデルでは Dy と Nd は第一、第二副格子を占め、第 3 副格子と第 4 副格子は、それぞれ Fe 原子と B 原子だけで占められている。1 員格子の原子に対する Nd2Fe14B 相の Gibbs エネルギーは次式で与えられる。

$$G_{n} = \sum_{i=1}^{5} \left(\sum_{j=1}^{5} \sum_{k=1}^{5} \sum_{l=1}^{5} \sum_{m=1}^{5} \sum_{n=1}^{5} \sum_{o=1}^{5} \sum_{p=1}^{5} \sum_{q=1}^{5} \sum_{r=1}^{5} \sum_{s=1}^{5} \sum_{t=1}^{5} \sum_{u=1}^{5} \sum_{v=1}^{5} \sum_{w=1}^{5} \sum_{x=1}^{5} \sum_{y=1}^{5} \sum_{z=1}^{5} \right)$$ (11)

ここで、$$x^{(m)}$$ は n 番目の格子上の元素 i のモル分率である。よって、$$G_{n}$$ は、それぞれ Dy, Dy, Dy, B, Dy, Nd, Nd, Nd, Fe, B, Nd, Nd, Nd, Fe, B および Gibbs エネルギーである。このモデルは、第 1 副格子と第 2 副格子上で Dy と Nd が混合した場合のパラメーターであり、“x” はパラメーターがその格子上の原子種に依存しないことを意味している。Dy, Dy, Dy, B, Nd, Nd, Fe, B, Nd, Nd, Nd, Fe, B の Gibbs エネルギーは文献[66]から推定したもので、Nd, Nd, Nd, Fe, B の Gibbs エネルギーもわずかに負で大きな値となっている。最近、Saito ら[68]は、中性子回折により NdFeB 構造中の Dy の優先サイトを測定し、第一原理計算により式 (11) の Gibbs エネルギーをパラメーターを推定している。このパラメーターを用いることにより，実験的に測定された Dy と Nd の格子間の置換挙動を再現できる[69]。

| Table 1 Assessed binary systems included in this database where "O", and "X" indicate assessed, and unassessed systems, respectively. |
|---|---|---|---|---|---|---|
| Nd | Al | B | Co | Cu | Dy | Fe | Ga |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ga | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| Fe | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Dy | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Cu | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Co | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

2022 年 1 月
Table 2 Phase names, constituents and sublattices, structure types, and pearson symbols included in this database
where “Va” denotes vacancy and Phases with “*” are not unified.

Phase name	Constituents and Sublattices	Structure type	Pearson symbol
LIQUID (Al,B,Co,Cu,Dy,Fe,Nd)	W	ci2	
BCC-A2 (Al,B,Co,Cu,Dy,Fe,Nd)	Cu	cF4	
HCP-A3 (Al,B,Co,Cu,Dy,Fe,Nd)	Mg	hP2	
DHCP (Al,B,Co,Cu,Dy,Fe,Nd)	Nd	hP4	
LAV-C14 (Al,B,Co,Cu,Dy,Fe,Nd)	MgZn	hP12	
LAV-C15 (Al,B,Co,Cu,Dy,Fe,Nd)	MgCu	cf24	
LAV-C16 (Al,B,Co,Cu,Dy,Fe,Nd)	CuAl	hP12	
LAV-C16 (Al,B,Co,Cu,Dy,Fe,Nd)	MgNi	hP12	
B2 (Co,Nd)	Fe,C	ofP16	
D2_2* (Co,Nd)	CoCu	ofP16	
C2 (Co,Nd)	CoAl	ofP12	

Table 2 Continued...
The Nd-Fe-B phase calculated in this work, compared to previous data: Luis et al.88, Morishita et al.87, Hallemans et al.90, and van Ende and Jung83. In the present work, Curie temperature is $T_c = 585.3$ K and thermodynamic magnetic moment is $m_B = 0.8$.

3.3 First principle calculations: Dy-Nd binary phase diagram

ラテン瓦素と硼の二元系は、通常に相互溶度度が大きく、広い準相領域を持つものが多く。Dy-Nd二元系状態図はその典型的な例である87,89. 最初のDy-Nd二元系状態図87,89は、1982年にGschneidnerとCalderwoodによって提案されたものである87,89. この状態図は、Kobzelenzらの実験データ89に基づいており、液相、bcc相、hcp相、dhcp相、δ相（α-Sm型構造）の各固溶体型から構成されている。この状態図にはdhcp+hcp→α-Smという包析反応が仮定されているが、この点はまだ実験的に確認されていない。GschneidnerとCalderwood89は、Nd-Sc二元系状態図からの類推により、δ相の生成はマルテンサイト型であり、コングルーテント点を持つとしている。その結果、熱力学的には変態反応が必要であるにもかかわらず、hcp相とdhcp相の間に連続的な固溶体が形成される。この二元系のCALPHAD法による熱力学解析はvan EndeとJungによって行われている83. ここでは、δ相はコングルーテント点を持つ金属間化合物相として記述されており、さらにhcpとdhcpの間の相転移は考慮されていない。すなわち、DyとNdは共にhcp構造として取り扱われている。

本研究では、hcp, α-Sm, dhcp構造の混合エネルギーを第一原理計算により推定した。その結果をFig.3(a), (b), (c)に示す。これに加えて相境界の実験データ87,89を用いて、Dy-Nd二元系状態図の解析を行った。熱力学解析により得られた各相のパラメータは、それぞれ$L^{\text{Lix}}_{\text{Dy,Nd}} = 0$, $L^{\text{BCC}}_{\text{Dy,Nd}} = 0$, $L^{\text{dhcp}}_{\text{Dy,Nd}} = -1.6$, $L^{\text{hcp}}_{\text{Dy,Nd}} = -0.7$, $L^{\text{α-Sm}}_{\text{Dy,Nd}} = -1.5$ kJ/molであり、どの構造においてもパラメータがゼロに近くこれから内の溶相は理想固溶体に近いと考えられる。この系では中間化合物を生成しないであろうと考えられる。得られた状態図を実験データ87,89と共にFig.4に示す。α-Sm相のパラメータも$L^{\text{α-Sm}}_{\text{Dy,Nd}} = -1.5$ kJ/molを小さく、この系では中間組成領域でα-Sm型の固溶体が安定化することは考えにくい。したがって、本解析ではDy-50 at%Nd近傍の狭い組成範囲で共析反応を仮定している。このα-Sm相の安定性と共析反応に関しては、今後さらなる実験が必要である。

![Fig. 3](image)

Fig. 3 Calculated mixing energies of various ordered structures in (a) hcp lattice, (b) α-Sm-type lattice, and (c) dhcp lattice. Solid line indicates convex hull, which is close to the ideal where the formation energy is zero in these structures.
Fig. 4 Calculated Dy-Nd binary phase diagram. Open symbols are experimental data.

4 熱力学データベースの応用

4.1 粒界拡散法の適用

粒界拡散法（GBDP: Grain Boundary Diffusion Processes）は、高性能磁石の製造や Dy などの希有土類元素の総添加量を著しく減少させるための有効手法の一つである。本節では、構築したデータベースを用いて、粒界拡散法におけるミクロ組織の変化の推定に適用した例を示す。文献 [8] により、計算を行った合金組成は Nd{14}Dy{3},Fe{77.5},Co{2.4},B{5.7},Ga{0.1},Cu{0.1} (at%) とした。試料の熱処理は 1173 K で Dy を表面に蒸着して試料内に拡散させ、その後 823 K で数時間のアニールを行っている。この GBDP 中の相構成や相分率の変化をこのデータベースを用いた熱力学計算により推定した。

熱力学計算は、PANDAT2019（熱力学計算ソフトウェア）を用いた。既報 [9] における熱力学計算では、その時に用いたデータベースの適用限界により実際の多元素系（Nd-Fe-B-Cu-Pt-Dy-Co-Ga）を Nd-Fe-B-Cu の 4 元系に簡略化させるをえないが、本データベースでは実用合金系に含まれているほとんどの元素（Pt のみを除く）をカバーすることができる。これらの元素の中で、データベースに含まれていない Pt は Nd 量を軽減している。したがって、合金組成を Nd{14}Dy{3},Fe{77.5},Co{2.4},B{5.7},Ga{0.1},Cu{0.1} (at%) とした。Fig. 5 (a) に (Nd{14},Dy{3},Fe{77.5},Co{2.4},B{5.7},Ga{0.1},Cu{0.1})100-Dy の合金について、1173 K における Dy に伴う相分率の変化を示す。文献 [8] ではランタノイドの拡散量を 14.2% から 14.7% に増やすことで、試料中心部の Nd-rich 相量 5~6% が表面近傍では 8~11% に増加している。この計算では、液相量が 5.7% (x=0) から 8.2% (x=0.6) に増加しており、粒界相の組成は約 8% とされた (Fig. 5 (b))。計算では低温域で Co を含む金属間化合物が現れるが、実際の磁石においては観察されていない。この理由としては、NdFe_{12}B 相への Co の固溶がまだ考慮されていないことによるものと考えられる。この点は今後のデータベースの高度化を必要とする課題の一つである。相分率が加えて、NdFe_{12}B 中の Dy の濃度を求めることができる。1223 K では 2.2 at%Dy であり、これは Dy を含む合金が実験的に観測された値、3.2~3.3 at% とよく一致している [10]。現在のデータベースをさらに改良するためには、GBDP の前後での相分率、相構成、相の同定などの実験データが必要である。

GBDP では、Tb, Tb-Dy, Pr-Cu, Nd-Cu, Nd-Ga-Cu の様々な希有土類元素やその共晶合金が拡散剤として試みられていた。このデータベースは Tb や Pr を含む系をカバーしていないが、Nd-Cu 系における平衡の推定は可能である。加えて、共晶系の GBDP では、最も低い共晶組成を選択することができる重要な要素の一つであるが、本データベースを用いて共晶組成を推定することも可能である。

4.2 HDDR (Hydrogenation Decomposition Desorption recombination) プロセス

HDDR プロセスは、マイクログラムサイズの粒径を持つ NdFe_{12}B 相の微粉末を作るために広く使用されている [11]。このプロセスは 2 段階で構成されている。第 1 段階は水素化・不均化段階で、H₂ ガス雰囲気下で 1000~1200 K で合金を処理し、NdHₓを形成させる。この水素化物生成時の体積膨張により、第 1 段階では微細な水素化物の粉末とその反応生成物が得られる。第二段階は脱水素・再結合法で、第 1 段階の終了後、H₂ ガスを排気すると、水素化物が脱水素化する。
Nd-Fe-B 磁石用プロトタイプ熱力学データベースの構築

Fig. 6 Calculated phase fractions as a function of temperature at a pressure (a) 10^5 Pa and (b) 10^2 Pa for the HDDR process of the Nd-Fe-B ternary alloy. Red arrows indicate the reaction temperatures.

NdH2 の Gibbs エネルギーを考慮することで、HDDR プロセスにおける相平衡を計算することができる。NdH2 は、Luo らによって熱力学解析されている。NdH2 は、3 副格子モデルを用いて不変比化物として記述されているが、本計算では単純のために NdH2 相を不変比化物とした。

式 (12) で示した反応を決定した。

\[G^{\text{NdH}_2}_n = -70433 + 47.867 T + \frac{1}{3} \frac{\mu_{\text{H}_{2}}}{G_{\text{H}_2}} + \frac{1}{3} \frac{\mu_{G_{\text{gas}}}}{G_{\text{gas}}} \]

Dy 系の水素化合物などの相平衡の計算結果は Fig. 6 に示す。NdH2 は 1300 K (10^5 Pa) と 900 K (10^2 Pa) で分解することがわかる。

Fig. 7 Calculated reaction temperature for Eq. (12) in the HDDR process; plots are experimental data and the solid line is the present calculation.

Fig. 7 Calculated reaction temperature for Eq. (12) in the HDDR process; plots are experimental data and the solid line is the present calculation.

5 ま と め

Nd-Fe-B 磁石に関する相図の情報を構築した。これにより、NdH2 が HDDR プロセスに適用できることが示唆される。
謝辞
本研究は文部科学省の委託事業である原子間力電気材料研究拠点（ESICMM）の支援を受けて行われました。

文献
1) M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, Y. Matsuura: J. Appl. Phys., 55 (1984) 2083-2087.
2) M. Sagawa: J. Mater. Eng., 13 (1991) 95-101.
3) O. Gutleisch, M. A. Willard, E. Brück, C. H. Chen, S. G. Sankar, J. P. Liu: Adv. Mater., 23 (2011) 821-842.
4) S. Sugimoto: J. Phys. D: Appl. Phys., 44 (2011) 064001.
5) H. Nakamura: Scripta Mater., 154 (2018) 273-276.
6) S. Hiroswa: IEEE Trans. Magn., 55 (2019) 2100506.
7) J. M. D. Coey: Engineering, 6 (2020) 119-131.
8) S. Hiroswa, M. Nishino, S. Miyashita: Adv. Nat. Sci.: Nanosci. Nanotechnol., 8 (2017) 013002.
9) T. T. Sasaki, T. Ohkubo, K. Hono: Acta Mater., 115 (2016) 269-277.
10) T. T. Sasaki, Y. Takada, H. Okazaki, T. Ohkubo, T. Nakamura, T. Sato, A. Kato, Y. Kaneko, K. Hono: J. Alloys Compd., 790 (2019) 750-759.
11) Y. Matsuura, S. Hiroswa, H. Yamamoto, S. Fujimura, M. Sagawa, K. Osamura: Jpn. J. Appl. Phys., 24 (1985) L635-L637.
12) D. Tsai, T. Chin, S. Hsu, M. Hung: IEEE Trans. Magn., 23 (1987) 3607-3609.
13) G. Schneider, E. T. Henig, G. Petzow, H. H. Stadelmaier: Z. Metallkd., 77 (1986) 755-761.
14) R. W. Lee: Appl. Phys. Lett., 46 (1985) 790-791.
15) R. Lee, E. Brewer, N. Schaffel: IEEE Trans. Magn., 21 (1985) 1958-1963.
16) R. Nakayama, T. Takeshita, M. Itakura, N. Kurose, O. Koi: J. Appl. Phys., 76 (1994) 412-417.
17) J. Bernardi, J. Fidler, M. Sagawa, Y. Hirose: J. Appl. Phys., 83 (1998) 6396-6398.
18) T. Umeda, T. Okane, W. Kurz: Acta Mater., 44 (1996) 4209-4216.
19) H. Sepehri-Amin, T. Ohkubo, T. Shima, K. Hono: Acta Mater., 60 (2012) 819-830.
20) T. Fukazawa, S. Hiroswa, K. Hono: J. Appl. Phys., 105 (2009) 07A724.
21) M. Matsuura, R. Goto, N. Tezuka, S. Sugimoto: Mater. Trans., 51 (2010) 1901-1904.
22) K. Hirota, H. Nakamura, T. Minowa, M. Honshina: IEEE Trans. Magn., 42 (2006) 2909-2911.
23) T. Akiya, J. Liu, H. Sepehri-Amin, T. Ohkubo, K. Hioki, A. Hattori, K. Hono: Scripta Mater., 81 (2014) 48-51.
24) H. L. Lukas, S. G. Fries, B. Sundman: Cambridge University Press, (2007) 1-312.
25) N. Saunders, A. P. Miodownik: A Comprehensive Guide. UK. Elsevier, (1998) 1-479.
26) T. Abe, Y. Chen, A. Saengdeejing, Y. Kobayashi: Scripta Mater., 154 (2018) 305-310.
27) M. Hillert, L. I. Staffansson: Acta Chem. Scand., 24 (1970) 3618-3626.
28) B. Sundman: CALPHAD, 15 (1991) 109-119.
29) M. Hansen, K. Anderko, H. W. Salzberg: J. Electrochem. Soc., 105 (1958).
30) ASM alloy phase diagram database [Internet]. Available from: https://www.asminternational.org/materials-resources/online-databases/. Access in: 14/10/2020.
31) K. A. Gschneidner Jr.: Rare Earth Alloys: A Critical Review of the Alloy Systems of the Rare Earth Scandium and Yttrium Metals, Princeton (NJ), (1961) 69-378.
32) SGTE Unary database version 5.0 [Internet]. Available from: http://www.crct.polymtl.ca/sgte/. Access in: 14/10/2020.
33) A. T. Dinsdale: CALPHAD, 15 (1991) 317-425.
34) O. Redlich, A. T. Kister: J. Chem. Phys., 36 (1962) 2002-2009.
35) G. Inden: Physica B + C, 103 (1981) 82-100.
36) G. Inden: Z. Metallkd., 66 (1975) 577-583.
37) M. Hillert, M. Jarl: CALPHAD, 2 (1978) 227-238.
38) VASP Vienna Ab initio Simulation Package [Internet]. Available from: http://www.vasp.at/. Access in: 14/10/2020.
39) Y. Chen, A. Saengdeejing, M. Matsuura, S. Sugimoto: JOM, 66 (2014) 1133-1137.
40) A. Saengdeejing, Y. Chen, M. Matsuura, S. Sugimoto: J. Chinese Chem. Soc. 63 (2016) 506-512.
41) D. B. Laks, L. G. Ferreira, S. Froyen, A. Zunger: Phys. Rev. B., 46 (1992) 12587-12605.
42) A. Van de Walle, M. Asta, G. Ceder: CALPHAD, 26 (2002) 539-553.
43) M. Hillert: Phase Equilibria, Phase Diagrams and Phase Transformations. 2nd edition, Cambridge University Press, (2008) 1-538.
44) D. Mirkovic, J. Gröbner, R. Schmid-Fetzer, O. Fabrichnaya, H. L. Lukas: J. Alloys Compd., 384 (2004) 168-174.
45) H. Ohtani, Y. Chen, M. Hasebe: Mater. Trans., 45 (2004) 1489-1498.
46) D. Minic, M. Premovic, V. Cosovic, D. Manasijevic, D. Zivkovic, A. Kostov, N. Talijan: J. Alloys Compd., 555 (2013) 347-356.
47) G. Cacciamani, S. De Negri, A. Saccone, R. Ferro: Intermetallics, 11 (2003) 1135-1151.
48) I. Ansara, A. T. Dinsdale, M. H. Rand: COST507 European Communities, (1998).
49) A. Watson: CALPHAD, 16 (1992) 207-217.
50) M. C. Gao, N. Unlu, G. J. Shiflet, M. Mihalkovic, M. Widom: Metal. Mater. Trans. A, 36 (2005) 3269-3279.
51) D. Yong, J. C. Schuster, Y. A. Chang, J. Zhanpeng, H. Baiyun: Z. Metallkd., 93 (2002) 1157-1163.
100) W. Li, Q. Zhang, Q. Zhu, S. Xiao, C. Xu, L. Yang, B. Zheng, S. Mao, Z. Song: Scripta Mater., 163 (2019) 40-43.
101) H. Sepehri-Amin, L. Liu, T. Ohkubo, M. Yano, T. Shoji, A. Kato, T. Schrefl, K. Hono: Acta Mater., 99 (2015) 297-306.
102) H. Sepehri-Amin, T. Ohkubo, S. Nagashima, M. Yano, T. Shoji, A. Kato, T. Schrefl, K. Hono: Acta Mater., 61 (2013) 6622-6634.
103) L. Liu, H. Sepehri-Amin, T. T. Sasaki, T. Ohkubo, M. Yano, N. Sakuma, A. Kato, T. Shoji, K. Hono: AIP Advances, 8 (2018) 056205.
104) W. L. Korst, J. C. Warf: Inorg. Chem., 5 (1966) 1719-1726.
105) SGTE Substance database [Internet]. Available from: https://www.sgte.net/en/neu. Access in: 14/10/2020.
106) Q. Luo, S. L. Chen, J. Y. Zhang, L. Li, K. C. Chou, Q. Li: CALPHAD, 51 (2015) 282-291.
107) D. T. Peterson, T. J. Poskie, J. A. Straatmann: J. Less Common Metals, 23 (1971) 177-183.
108) R. N. R. Mulford, C. E. Holley: J. Phys. Chem., 59 (1955) 1222-1226.
109) D. Book, I. R. Harris: J. Alloy Compd., 221 (1995) 187-192.
110) S. Sugimoto, O. Gutfleisch, I. R. Harris: J. Alloys Compd., 260 (1997) 284-291.
111) J. E. Bonnet, J. N. Daou: J. Appl. Phys., 48 (1977) 964-968.
112) H. Nakamura, K. Kato, D. Book, S. Sugimoto, M. Okada, M. Homma: Dresden Germany, TIB Hannover, (1998) 507-516.
113) K. Fu, G. Li, J. Li, Y. Liu, W. Tian, X. Li: J. Alloys Compd., 696 (2017) 60-66.