Comprehensive Risk Management for the Prevention of Cerebro-Cardiovascular Diseases in Japan

Joint Committee for Comprehensive Risk Management Chart for the Prevention of Cerebro-Cardiovascular Diseases

Participating societies and organizations
The Japanese Society of Internal Medicine, the Japan Epidemiological Association, the Japanese Society of Hypertension, the Japanese Circulation Society, the Japanese Society of Nephrology, the Japanese Society of Physical Fitness and Sports Medicine, the Japan Diabetes Society, the Japan Atherosclerosis Society, the Japan Stroke Society, the Japan Society for the Study of Obesity, the Japan Geriatrics Society, the Japanese Association of Medical Sciences, and the Japan Medical Association

1. Introduction

The leading cause of mortality in Japan is cancer. However, when cardiovascular disease, the second leading cause of mortality, and cerebrovascular disease, the fourth most common cause, are combined as vascular disease, they account for almost as many deaths as cancer. Thus, prevention of cancer and vascular disease are extremely important health-care priorities in Japan. Cerebrovascular disease and cerebral hemorrhage in particular became overwhelmingly widespread in Japan in the 1960s. Guidance for improving lifestyle habits, such as sodium intake restriction, was successful in markedly reducing blood pressure and mortality rates, a proud time in history for preventive medicine. However, in recent years, despite decreases in the main coronary risk factors, hypertension incidence and smoking rates, the mortality rate for heart disease continues to rise. Furthermore, the mortality rate for cerebral infarction has not decreased and in fact has surpassed that of cerebral hemorrhage to exhibit a Western disease pattern.

The Hisayama study in Japan, an ongoing epidemiological research, also suggests that obesity, diabetes, and dyslipidemia now contribute more to cerebrovascular disease risk compared to past two decades. Accordingly, it is well recognized that in addition to blood pressure, the management of obesity, diabetes, and dyslipidemia, as well as chronic kidney disease (CKD), is pivotal for the prevention of cerebro-cardiovascular diseases in Japan. Thus, methods of treatment and treatment guidelines are frequently updated for these diseases and physician specialists are well informed about them. However, some inconsistencies in the expressions used in these guidelines have been reported by general physicians.

There has been a growing momentum for mainly academic societies to engage in scientific research on such risk factors to develop comprehensive cerebro-cardiovascular disease management guidelines. Therefore, 11 societies including the Japanese Society for Internal Medicine agreed to participate in creating a “Comprehensive Risk Management for the Prevention of Cerebro-Cardiovascular Diseases in Japan.” The Japan Medical Association and the Japanese Association of Medical Sciences, which approved cooperative work, also participated in this project, thereby enabling the creation of this practical management chart for general practitioners. Although the basic aim was to improve risk factors (obesity, blood pressure, blood glucose, serum lipids, kidney function, etc.) by comprehensive management of lifestyle habits as the basic concept is indicated in Fig. 1, the importance of comprehensive management, including drug intervention, is emphasized in the case of multiple risk factors involved in each disease. Physicians must also keep in mind that in cases with genetic factors or in secondary disease groups, specific pharmacotherapy for the underlying disease is necessary.

It is most anticipated that this management chart will be utilized in medical settings throughout Japan and that comprehensive management of the diverse range of risk factors observed in individual patients...
will improve the prevention of cerebro-cardiovascular diseases, thereby leading to a healthier society.

Japan has one of the highest overall life expectancies and thus physicians must recognize that cerebro-cardiovascular diseases are more likely to occur in elderly patients. Of course, management must also take into account functional declines specific to the elderly (decreased renal function and muscle weakness in particular), but careful management should also be implemented due to the greater risks of cerebro-cardiovascular diseases in elderly individuals. We would like to introduce the comprehensive risk management chart for prevention of cerebro-cardiovascular diseases.

2. Cerebro-Cardiovascular Disease Epidemiology and Risk Evaluation in Japan

Full-scale epidemiological research on cerebro-cardiovascular diseases in Japan began in the 1960s when stroke was the leading cause of death. The aim then was to investigate the actual conditions of stroke onset and associated risk factors, and thereby to use the results for prevention. Since then, various epidemiological studies have been conducted throughout Japan. From the 1980s, those studies have developed into nationwide collaborations; and in recent years, the number of reports on stroke risk factors by international meta-analyses has increased.

The growth of epidemiological research on coronary artery disease had been slower in Japan because its incidence rate has been much lower than those in Western countries. However, since reports emerged in the 2000s that incidence rates had increased significantly in urban areas, risk factors have gradually been clarified, mainly by means of urban or nationwide collaborative studies.

Important cerebro-cardiovascular risk factors are thought to include hypertension, hypo-HDL cholesterol (or high total cholesterol, high non-HDL cholesterol levels), hyper-LDL cholesterol, diabetes (impaired glucose tolerance), smoking, excessive drinking, obesity, and CKD. Accordingly, it is appropriate to set the following eight risk factors that require special attention for the prevention of cerebro-cardiovascular diseases: (1) smoking, (2) hypertension, (3) diabetes (including impaired glucose tolerance), (4) dyslipidemia, (5) CKD, (6) obesity (visceral fat accumulation in particular), (7) age/gender (male or post-menopausal female), and (8) family history. Furthermore, it is also valid to perform risk management taking the overlapping presence of these factors into account.

Fig. 1. Comprehensive management of lifestyle habits and risk factors.
increase in the hospitalization rate of cerebral infarction among person older than 70 years. Improved treatment and prevention of stroke is one of the national health priorities because the aim is not just life prolongation but healthy longevity. Some of risk factors for stroke vary among stroke types.

3. Diagnosis of Chronic Kidney Disease (CKD) in the Prevention of Cerebro-Cardiovascular Diseases

Screening for CKD is one of the important items in the prevention of cerebro-cardiovascular disease. The “Evidence-based Clinical Practice Guideline for CKD” published in 2013 by the Japanese Society of Nephrology indicates that CKD is renal impairment as determined by the following criteria: either (1) Kidney damage is clearly present on the basis of urine test, diagnostic imaging, blood tests, or histological examination. The presence of proteinuria ≥0.15 g/gCr (albuminuria ≥30 mg/gCr) is of particular impor-
4. Diagnosis of Peripheral Artery Disease (PAD) in the Prevention of Cerebro-Cardiovascular Diseases

Peripheral artery disease (PAD) involves stenosis and constrictive lesions due to atherosclerosis of the peripheral blood vessels. Symptoms such as coldness in the legs, intermittent claudication, ulceration, and necrosis may be observed. In this management chart for the prevention of cerebro-cardiovascular diseases, the above symptoms need to be confirmed in Step 1a of screening. If the ankle–brachial index (ABI), one of the additional evaluation items in Step 1b screening, is <0.9 or ≥1.3, PAD is suspected. If there is a history of PAD or complications are suspected, it should be considered to refer the patient to a physician specialist. Patients with PAD have high incidence and mortality rates for coronary artery disease and stroke. According to TASC-II, half of PAD patients had coronary artery disease.

5. Improvement of Lifestyle Habits to Prevent Cerebro-Cardiovascular Diseases

5-1 Quitting Smoking

It is necessary to determine during risk evaluation screening whether the patient has a smoking habit to prevent cerebro-cardiovascular diseases. Any deleterious lifestyle habits, such as smoking and passive smoking, should be first improved during treatment after diagnosing and evaluating risk factors and setting management objectives. Quitting smoking decreases mortality and lowers cardiovascular disease risk, regardless of whether the person has a history of coronary artery disease, and these effects are independent of age and gender. Moreover, effects appear quickly after quitting; the longer the non-smoking period is, the further the risks decrease. Smoking is also a risk factor for exacerbating heart failure. Accordingly, when aiming to prevent cerebro-cardiovascular diseases, all smokers must first be encouraged...
5-2 Diet Therapy

Cerebrovascular diseases develop due to lifestyle habits such as overeating and lack of physical activity in addition to genetic factors. Historically, strokes were common and coronary artery disease relatively uncommon in Japan. In recent years, there has been a marked decrease in the number of strokes. However, the Hisayama study also found that the cerebrovascular risk factors such as obesity, and abnormal glucose tolerance, and hypercholesterolemia are increasing in both men and women, whereas hypertension incidence and smoking rates are decreasing. Meanwhile, the National Health and Nutrition Survey in Japan found that consumption of whole grains and rice was markedly decreasing, whereas the consumption of milk, dairy products, and meat was increasing, demonstrating the Westernization of diets in Japan. The Japan Atherosclerosis Society summarized evidence related to the traditional Japanese diet to recommend “The Japan Diet” with reduced sodium intake in the 2012 edition of the Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases.

5-3 Exercise Therapy

Physical activity (daily activity and exercise) plays an important role in the primary and secondary prevention of atherosclerotic cardiovascular disease through changes in metabolism and in the musculoskeletal system, and inhibition of chronic inflammation. In order to perform physical activity, an amount and quality of exercise that exceeds that of daily life are necessary, and thus appropriate guidance is required, while taking individual risks into account. This management chart recommends “to regularly engage in moderate to vigorous aerobic exercise (at least 30 min per day).”
6. Management of Each Risk Factor

6-1 Blood Pressure Management

Basic elements of blood pressure management are accurate diagnosis and monitoring of blood pressure values. This management chart includes home blood pressure in the medical interview and clinic blood pressure as a physical finding in Step 1a, orthostatic blood pressure in Step 1b, and 24-hour blood pressure as an additional evaluation item in Step 2. Diagnosing the cause of hypertension is also included in the first step. In the management chart, in order to differentiate from secondary hypertension, Step 1b includes plasma aldosterone concentration/renin activity ratio measurement, taking frequency and importance into account and Step 1c includes screening for cases suspected of juvenile-onset and sudden onset. Blood pressure goals range from strict to moderate depending on complications and age. The basic stance taken when selecting anti-hypertensive agents is to proactively confirm the compelling indications and, if they are not eligible for a certain agent; a calcium channel blocker, an angiotensin-converting enzyme inhibitor, an angiotensin receptor blocker, or a diuretic, to choose the first-line agent. One must also take precautions in cases of women who might be pregnant.

6-2. Glycemic Control

Cerebro- cardiovascular diseases occur at a much higher rate in patients with diabetes due to chronic hyperglycemia and/or insulin resistance, which can trigger and facilitate atherosclerotic processes by various mechanisms such as oxidative stress, nonenzymatic glycosylation, chronic inflammation, lipoprotein abnormalities, and vascular endothelial dysfunction. It is necessary to prove a chronic hyperglycemic status to diagnose diabetes mellitus, so as a rule it is necessary to re-confirm that the patient is “diabetic type” on tests performed on separate days. However, diabetes mellitus can be diagnosed on the basis of the initial test alone if blood glucose levels and HbA1c values are measured simultaneously and it can be confirmed that both show the patient to be diabetic type. Alternatively, when patients who are classified as diabetic type by blood glucose level exhibit typical symptoms such as thirst, polydipsia, polyuria, and weight loss, a diagnosis can be made on the basis of the initial test alone (Fig. 3). It is recommended to aim for HbA1c ʻ6% (roughly equivalent to fasting blood glucose levels below 130 mg/dl) as a basic goal for preventing complications, particularly microangiopathy. However, as stated above, there is an increased risk of macroangiopathy even in the stage of impaired glucose tolerance. Therefore, from the viewpoint of preventing cerebro- cardiovascular diseases, if HbA1c ʻ6% can be achieved without any side effects such as hypoglycemia using appropriate diet therapy and exercise therapy alone or with the addition of pharmacotherapy, it is recommended that goal for glycemic control should be set to below 6%. Alternatively, when it is difficult to intensify the treatment due to side effects such as hypoglycemia or other reasons, a target HbA1c of 8% could be set (Table 2).

6-3 Lipid Management

To prevent the onset of cerebro- cardiovascular diseases, it is important to manage dyslipidemia. Since this management chart mainly targets primary prevention patients (without coronary artery disease) examined by physician specialists, lipid management target values classified by risk are determined as target values for LDL-C, HDL-C, TG, etc. in accordance with the management category classification I – III. Lipid man-
management target values are set on the basis of category classification. LDL-C management target values are <160 mg/dL for category I (estimated 10-year risk of CAD death rate <0.5%), <140 mg/dL for category II (estimated 10-year risk of CAD death rate 0.5-2.0%), and <120 mg/dL for category III (estimated 10-year risk of CAD death rate ≥2.0% and the patients with CKD, DM, cerebro- cardiovascular diseases and PAD).

6-4 Obesity Management

In Japan, obesity is defined as a BMI of 25 or higher. When BMI reaches 25, the prevalence of hypertension and dyslipidemia is twice than those at BMI 22 at which the prevalence of both is considered to be lowest\(^5\). However, increases in cardiovascular disease risk are more strongly affected by excessive accumulation of visceral fat than the degree of obesity as determined by BMI. As more visceral fat is accumulated in men than in women, the prevalence and mortality rates from diabetes and dyslipidemia are higher in men than in women even at the same BMI. As a screening test for the excessive accumulation of visceral fat, waist circumference is measured at the umbilical level and excessive accumulation is suspected to be present for men who measure 85 cm or greater and for women who measure 90 cm or greater. With visceral fat accumulation as a mandatory item, metabolic syndrome is diagnosed if the patient has at least two of the following: hyperglycemia, dyslipidemia, or hypertension. In cases of metabolic syndrome, the accumulation of cardiovascular risk factors other than cholesterol caused by obesity leads to the onset of atherosclerosis, followed by cerebro- cardiovascular diseases. Visceral fat decreases more quickly than subcutaneous fat with weight loss therapy\(^6\). The target of weight loss therapy is 3% reduction of the body weight, if the BMI is 25 or greater.

7. How to Use the Comprehensive Management Chart for Cerebro-Cardiovascular Diseases (Algorithm)

As shown on the first page, this comprehensive management chart for cerebro- cardiovascular diseases mainly targets patients at hospital who were diagnosed as having a high risk of cerebro- cardiovascular diseases during a routine health checkup and does not target secondary prevention. However, it has been created as a tool that can also be used to evaluate the management status of patients already undergoing treatment of risk factors.

1) Algorithm Outline

This management chart was designed so that physician specialists can easily conduct diagnosis and treatment in accordance with the procedures from Steps 1 through 6. We tried to ensure mutual consistency with related academic society guidelines and treatment guidelines. Step 1 comprises screening and diagnostic criteria for the necessity of referral to a physician specialist. Step 2: diagnosis of risk factors and additional evaluation items. Step 3: risk factors that need to be confirmed before starting treatment. Step 4: the setting of management goal in accordance with risk and the pathological condition of each individual patient. Step 5: lifestyle habit improvement. Step 6: the introduction of pharmacotherapy and points of caution.

2) Step 1

Step 1 comprises Step 1a and Step 1b, which lists basic and additional items for screening, respectively, and Step 1c, which presents diagnostic criteria for the necessity of referral to a physician specialist. In Step 1a, items queried by medical interview include home blood pressure in addition to standard items from the “Tokutei Kensin” (Tokutei Kensin: nationwide annual health check, which is recommend for all residents of Japan aged between 40 and 74 years by the Ministry of Health, Labour and Welfare) such as age/gender, subjective symptoms, family history, complications/medical history, medication history, lifestyle habits (smoking, alcohol), exercise habits, and sleep. Furthermore, an additional medical interview item questionnaire including items thought to be strongly associated with cerebro- cardiovascular disease risk such as family history and passive smoking were newly created (Table 3). The physical findings included height, weight, BMI (body weight [kg] divided by height [m]\(^2\)), clinic blood pressure, pulse rate/min (normal/arrhythmia), and chest auscultation. Moreover, it is recommended that blood tests should ideally be performed during fasting if possible. Test items comprise TC, HDL-C, non-HDL-C (TC–HDL-C), eGFR (serum creatinine), ALT, γ-GT, HbA1c, and blood glucose (either HbA1c or blood glucose only for the “diabetic type” [in the event that HbA1c ≥6.5% or fasting blood glucose of ≥126 mg/dL, or casual blood glucose level of ≥200 mg/dL is indicated, re-test shall be performed on a separate day]). It is also recommended to perform general (qualitative) urine testing and electrocardiography with referral to a physician specialist depending on the degree of abnormality, such as atrial fibrillation.

Step 1 b shall be implemented in the additional screening item simultaneously with Step 1a or after an
For hypertensive patients, suspected secondary hypertension (juvenile-onset, sudden onset, etc.), pregnancy-induced hypertension, suspected hypertensive emergency/hypertensive urgency (untreated diastolic blood pressure ≥ 120 mmHg, $\geq 180/110$ mmHg if treated, or target blood pressure not achieved even with triple drug therapy).

For diabetes, type 1 diabetes, HbA1c $\geq 8.0\%$, fasting blood glucose ≥ 200 mg/dL (or spot blood glucose ≥ 300 mg/dL), acute complications (hyperglycemia emergency), and gestational diabetes.

For dyslipidemia, LDL-C ≥ 180 mg/dL, HDL-C ≥ 30 mg/dL, TG ≥ 500 mg/dL, non-HDL-C ≥ 210 mg/dL, suspected primary hyperlipidemia, suspected secondary dyslipidemia.

For CKD, proteinuria (albuminuria/creatinine ratio ≥ 0.5 g/gCr, or urine dipstick test $\geq 2+$), both albuminuria and hematuria positive (urine dipstick test $\geq 1+$), eGFR < 50 ml/min/1.73 m2 (< 60 if younger than 40 years, < 40 for patients aged 70 years or older with stable kidney function).

For obesity, severe obesity (BMI ≥ 35) or suspected secondary obesity (symptomatic obesity).

Table 3. Step 1 additional interview items in medical questionnaire

Patient ID	Name	
Questionnaire	Options	
1	Are you taking medicines to reduce blood pressure, blood glucose or blood cholesterol?	□ Any of them □ None of them
2	Do you have loud and frequent snoring? Do you have pauses in breathing or shallow breaths while you sleep? Do you have chronic daytime fatigue or sleepiness?	□ Any of them □ None of them
3	Do you inhale secondhand cigarette smoke at your office or home?	□ Yes □ No
4	Currently taking medicines to reduce blood pressure, blood glucose or blood cholesterol?	□ Medicines to reduce blood pressure □ Medicines to reduce blood glucose □ Medicines to reduce blood cholesterol*_2 □ Others
5	Have been told to have disease and took medicines to reduce blood pressure, blood glucose or blood cholesterol?	□ Stroke (cerebral infarction or hemorrhage) or TIA □ Coronary artery disease (Myocardial infarction or Angina pectoris) □ Chronic kidney disease or hemodialysis □ Diabetes □ Others

*_1 You May Choose Multiple Options
*_2 Includes Medicine to reduce Triglyceride
3) Step 2
Step 2 involves diagnosis of each risk factor and additional evaluation items.

1) For hypertension (clinic blood pressure ≥140/90 mmHg or home blood pressure ≥135/85 mmHg), measure 24-hour blood pressure as necessary (with differentiation of nighttime hypertension and workplace hypertension).

2) If suspected diabetes cannot be ruled out (HbA1c 5.6%–6.4%, fasting blood glucose levels of 100–125 mg/dL, or spot blood glucose levels of 140–199 mg/dL), or if there is familial clustering of diabetes or presence of obesity, perform 75-g oral glucose tolerance test (OGTT) (however, this does not apply if clear diabetes symptoms are present).

3) If clearly diagnosed with diabetes (if HbA1c and blood glucose levels both indicate diabetes and if diabetic polydipsia, polyuria, and weight loss are present) or the patient has clear diabetic retinopathy or was reconfirmed to be diabetic type on a test performed on a separate day (however, blood glucose levels must show diabetic type on either the initial test or the repeat test), funduscoppy and albuminuria/creatinine ratio measurement are performed (spot urine quantification).

4) For dyslipidemia (LDL-C ≥140 mg/dL, HDL-C <40 mg/dL, fasting TG ≥150 mg/dL or non-HDL-C ≥170 mg/dL), the presence of corneal ring, Achilles tendon hypertrophy, skin/tendon xanthoma, eruptive xanthoma shall be confirmed.

5) CKD shall be diagnosed if eGFR <60 ml/min/1.73 m² or proteinuria continuing for at least 3 months.

6) For metabolic syndrome, diagnosis shall be made on the basis of the diagnostic criteria of the eight of internal medicine societies (Japanese Society of Internal Medicine, Japan Society for the Study of Obesity, Japan Atherosclerosis Society, the Japan Diabetes Society, Japanese Society of Hypertension, Japanese Circulation Society, Japanese Society of Nephrology, and Japanese Society on Thrombosis and Hemostasis).

4) Step 3
Step 3 involves evaluation of risk factors that should be confirmed before starting treatment. These include (1) smoking, (2) hypertension, (3) diabetes (including impaired glucose tolerance), (4) dyslipidemia, (5) CKD, (6) obesity (visceral fat type obesity in particular), (7) age/gender (includes male or postmenopausal female), and (8) family history (grandfather/grandmother, father/mother, sibling with history of or complication of cerebro- or cardiovascular disease or lifestyle disease [hypertension, diabetes, dyslipidemia, particularly juvenile-onset cases]). Whilst constantly keeping in mind that overlapping risk factors require strict management, these form the basis for risk management.

5) Step 4
Step 4 involves setting management goal in accordance with risk factors and the clinical condition of individual patients. It is based on the guidelines of various academic societies. Management of elderly individuals shall be established taking lifestyle environment such as living alone/care status, and individual factors such as activities of daily living (ADL), cognitive function, and quality of life (QOL) into consideration.

1) Hypertension
Younger than 75 years clinical blood pressure <140/90 mmHg (home blood pressure <135/85 mmHg)
Age 75 years or older blood pressure <150/90 mmHg (home blood pressure <145/85 mmHg).
(If tolerable, blood pressure <140/90 mmHg or home blood pressure <135/85 mmHg)
For patients with diabetes or albuminuria-positive CKD complications: blood pressure <130/80 mmHg (home blood pressure <125/75 mmHg)

2) Diabetes
Target aiming for blood glucose normalization: HbA1c <6.0%
Target for preventing complications: HbA1c <7.0%
Target if difficult to intensify the treatment: HbA1c <8.0%

3) Dyslipidemia
For low risk, HDL-C ≥40 mg/dL, TG <150 mg/dL
Furthermore,
Category I (low risk): LDL-C <160 mg/dL (non-HDL-C <190 mg/dL)
Category II (moderate risk): LDL-C <140 mg/dL (non-HDL-C <170 mg/dL)
Category III (high risk): LDL-C <120 mg/dL (non-HDL-C <150 mg/dL)
When stratifying risk, the 2012 edition of the Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases established by the Japan Atherosclerosis Society state that the following model obtained from a “Simple Chart for Classification based on Gender, Age and Number of Risk Factors” (modified from Table 4) is recommended for use.

Male	Risk factors*	40–59 years	60–74 years
1	Category II	Category III	
METs, and jogging is 7 METs. Individuals with no exercise habit shall be advised to start with light exercise or exercise for a short period of time. Ethanol (25 g) is equivalent to 1 glass of Japanese sake, one medium glass of beer, half a cup of shochu, one double-shot of whiskey or brandy, or two glasses of wine.

7) Step 6
Step 6 describes pharmacotherapy. It is emphasized that with continuing lifestyle modification, pharmacotherapy should be started or continued with careful consideration of individual risk factors and disease pathology. However, when there is a high risk, the necessity of strict pharmacotherapy is also emphasized. The details of pharmacotherapy shall be conducted in accordance with the guidelines for each disease.

For elderly patients aged 75 years or older or patients with renal dysfunction, particular care should be taken for side effects caused by drugs. The selection of drugs for each of the diseases and points of caution are suggested on page 4 of this management chart along with the table, and thus it is encouraged to use them as reference.

Table 4. Management categories based on sex, age, and number of risk factors

Baseline risk factors	Risk factors	10-year absolute risk of CAD death	Risk category	
Sex	Age	1. Hypertension		
		2. Smoking		
		3. Hypo-HDL cholesterolemia		
		4. Family history of premature CAD Onset < 55 years of age in first-degree male relatives or < 65 years of age in first-degree female relatives		
		5. Impaired glucose intolerance		
Men	30-49	0	0.23	Category I
		1-2	0.32-0.55	Category II
		3 or more	0.48-0.83	Category III
	50-59	0	0.63	Category II
		1	0.91-1.08	Category II
		2 or more	1.55	Category III
	60-74	0	1.78	Category II
		1 or more	2.55-4.31	Category III
Women	40-59	0-1	0.10-0.20	Category I
		2 or more	0.24	Category I
	60-74	0-1	0.87-1.83	Category II
		2 or more	2.19	Category III

Modified from Japan Atherosclerosis Society (JAS) Guidelines for the Diagnosis and Prevention of Atherosclerotic Cardiovascular Diseases in Japan – 2012 Version

*Risk factors include smoking, hypertension, hypo-HDL cholesterolemia, family history, and impaired glucose tolerance

(Note) A patient with a history or complications of diabetes, CKD, cerebral infarction, or PAD is classified as high risk regardless of age or gender

4) Obesity
- Improvement of hypertension, diabetes, and dyslipidemia by a 3%–5% decrease in bodyweight

6) Step 5
Step 5 emphasizes lifestyle modification—in particular, quitting smoking, diet management, weight management, physical activity/exercise, and moderation in alcohol consumption. With regards to physical activity, METs is a unit for activity intensity that shows how much the activity equates to metabolism during sitting quietly. Activity of moderate intensity or greater is defined as an intensity of 3 METs or greater. Normal walking is equivalent to 3 METs, fast walking is 4 METs, and jogging is 7 METs. Individuals with no exercise habit shall be advised to start with light exercise or exercise for a short period of time. Ethanol (25 g) is equivalent to 1 glass of Japanese sake, one medium glass of beer, half a cup of shochu, one double-shot of whiskey or brandy, or two glasses of wine.
Conflict of Interest

Tamio Teramoto: Honoraria; Astellas Pharma Inc., KOWA PHARMACEUTICAL COMPANY LTD., DAIICHI SANKYO COMPANY, LIMITED, Takeda Pharmaceutical Company Limited, Bayer Yakuhin, Ltd., Pfizer Japan Inc.. Research funding; ASKA Pharmaceutical Co., Ltd., Kissei Pharmaceutical Co., Ltd., KOWA PHARMACEUTICAL COMPANY LTD., DAIICHI SANKYO COMPANY, LIMITED, Pfizer Japan Inc.. Research funding; DAIICHI SANKYO COMPANY, LIMITED, Toray Medical Co., Ltd., Heart Flow. Donation; Abbott Vascular Japan Co., Ltd., MSD K.K., KOWA PHARMACEUTICAL COMPANY LTD., DAIICHI SANKYO COMPANY, LIMITED, Takeda Pharmaceutical Company Limited, Novartis Pharma K.K.. Masayasu Matsumoto: Honoraria; Eisai Co., Ltd., Otsuka Pharmaceutical Co., Ltd., Sanofi K.K., DAIICHI SANKYO COMPANY, LIMITED, Pfizer Japan Inc.. Research funding; DAIICHI SANKYO COMPANY, LIMITED, Sumitomo Dainippon Pharma Co., Ltd., Takeda Pharmaceutical Company Limited, Novartis Pharma K.K.. Hidenori Arai: Employment/Leadership position/Advisory role; POSSIBLE Medical Science. Honoraria; MSD K.K., KOWA PHARMACEUTICAL COMPANY LTD., DAIICHI SANKYO COMPANY, LIMITED. Donation; Otsuka Pharmaceutical Co., Ltd., DAIICHI SANKYO COMPANY, LIMITED.. Hiromi Rakugi: Honoraria; MSD K.K., Kowa Hakko Kirin Co., Ltd., SHIONOGI & CO., LTD., DAIICHI SANKYO COMPANY, LIMITED, Sumitomo Dainippon Pharma Co., Ltd., Takeda Pharmaceutical Company Limited, Novartis Pharma K.K.. Pfizer Japan Inc.. Research funding; Novartis Pharma K.K.. Donation; Astellas Pharma Inc., MSD K.K., Kyowa Hakko Kirin Co., Ltd., SHIONOGI & CO., LTD., DAIICHI SANKYO COMPANY, LIMITED, Sumitomo Dainippon Pharma Co., Ltd., Takeda Pharmaceutical Company Limited, Nippon Boehringer Ingelheim Co., Ltd., Novartis Pharma K.K., Pfizer Japan Inc.. Hirohito Sone: Honoraria; Astellas Pharma Inc., ONO PHARMACEUTICAL CO., LTD., KOWA PHARMACEUTICAL COMPANY LTD., Sanofi K.K., SANWA KAGAKU KENKYUSHO CO., LTD., DAIICHI SANKYO COMPANY, LIMITED. Donation; Mitsubishi Tanabe Pharma Corporation, Nippon Boehringer Ingelheim Co., Ltd., Novartis Pharma K.K., Novo Nordisk Pharma Ltd.. Research funding; Nippon Boehringer Ingelheim Co., Ltd., Novartis Pharma K.K.. NOVANOR LUXEMBOURG S.A., Astellas Pharma Inc., MSD K.K., Pfizer Japan Inc.. Research funding; Astellas Pharma Inc., ONO PHARMACEUTICAL CO., LTD., KOWA PHARMACEUTICAL COMPANY LTD., Novartis Pharma K.K.. Donation; SHIONOGI & CO., LTD., DAIICHI SANKYO COMPANY, LIMITED, Sumitomo Dainippon Pharma Co., Ltd., Takeda Pharmaceutical Company Limited, Nippon Boehringer Ingelheim Co., Ltd., Novartis Pharma K.K.. Pfizer Japan Inc.. Research funding; Astellas Pharma Inc., MSD K.K., Kyowa Hakko Kirin Co., Ltd., SHIONOGI & CO., LTD., DAIICHI SANKYO COMPANY, LIMITED, Sumitomo Dainippon Pharma Co., Ltd., Takeda Pharmaceutical Company Limited, Nippon Boehringer Ingelheim Co., Ltd., Novartis Pharma K.K.. PSP Harmonia LLC, Astellas Pharma Inc., MSD K.K., Pfizer Japan Inc.. Research funding; Astellas Pharma Inc., ONO PHARMACEUTICAL CO., LTD., KOWA PHARMACEUTICAL COMPANY LTD., Novartis Pharma K.K.. Donation; SHIONOGI & CO., LTD., DAIICHI SANKYO COMPANY, LIMITED, Sumitomo Dainippon Pharma Co., Ltd., Takeda Pharmaceutical Company Limited, Nippon Boehringer Ingelheim Co., Ltd., Novartis Pharma K.K.. PSP Harmonia LLC, Astellas Pharma Inc., MSD K.K., Pfizer Japan Inc.. Research funding; Astellas Pharma Inc., ONO PHARMACEUTICAL CO., LTD., KOWA PHARMACEUTICAL COMPANY LTD., Novartis Pharma K.K.. Research funding; SHIONOGI & CO., LTD., DAIICHI SANKYO COMPANY, LIMITED, Sumitomo Dainippon Pharma Co., Ltd., Takeda Pharmaceutical Company Limited, Nippon Boehringer Ingelheim Co., Ltd., Novartis Pharma K.K.. Donation; Astellas Pharma Inc., MSD K.K., Pfizer Japan Inc.. Research funding; Astellas Pharma Inc., ONO PHARMACEUTICAL CO., LTD., KOWA PHARMACEUTICAL COMPANY LTD., Novartis Pharma K.K.. Donation; SHIONOGI & CO., LTD., DAIICHI SANKYO COMPANY, LIMITED, Sumitomo Dainippon Pharma Co., Ltd., Takeda Pharmaceutical

Writing Committee

Tamio Teramoto, Masayuki Yokode, Hiroyasu Iso, Akihiko Kitamura, Hiroki Shiom, Masayasu Matsumoto, Mami Iida, Jun Sasaki, Shigeru Inoue, Ryouichi Nagatomi, Tetse Bushi, Hidenori Arai, Hiromi Rakugi, Hirohito Sone, Shizuya Yamashita, Shigeru Miyazaki

This is an English version of the Comprehensive risk management for the prevention of cerebro-cardiovascular diseases in Japan published in Japanese in April, 2015.

This article is copublished in Journal of Epide-
This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License.

References
1) Japanese Society of Nephrology: Evidence-based Practice Guideline for the Treatment for CKD in Japan 2013. Tokyo Igakusha. Tokyo
2) Chronic Kidney Disease Prognosis Consortium, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, Coresh J, Gansevoort RT.: Association of estimated glomerular filtration rate and albuminuria with: all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet, 2010; 375: 2073-2081
3) Iso H, Date C, Yamamoto A, Toyoshima H, Watanabe Y, Kikuchi S, Koizumi A, Wada Y, Kondo T, Inaba Y, Tama-koshi A, the JACC Study Group: Smoking cessation and mortality from cardiovascular disese among Japanese men and women: the JACC Study. Am J Epidemiol, 2005; 161: 170-179
4) Suskin N, Sheth T, Negassa A, Yusuf S: Relationship of current and past smoking to mortality and morbidity in patient with left ventricular dysfunction. J Am Coll Cardiol, 2001; 37: 1677-1682
5) Yoshiike N, Nishi N, Matsushima S, Ito C, Ikeda Y, Kashihara H, Yoshinaga H, Ogura H, Komine S, Sato Y, Sato N, Sasaki A, Fujisaka S, Oku J, Amemiya T, Sakata T, Inoue S. Relationships between degree of obesity based on body mass index and risk factors for diabetes mellitus, hypertension, and hyperlipidemia (in Japanese). Himan kenkyu 2000; 6: 4-17
6) Suzuki R, Watanabe S, Hirai Y, Akiyama K, Nishide T, Matsushima Y, Murayama H, Ohshima H, Shinomiya M, Shiraki K, Saito Y, Yoshida S, Saisho H, Ohto M: Abdominal wall fat index, estimated by ultrasonography, for assessment of ratio of visceral fat to subcutaneous fat in the abdomen. Am J Med, 1993; 95: 309-314
7) Evidence-based Practice Guideline for the Treatment for Diabetes in Japan 2013
8) Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2012
9) Committee on Diagnostic Criteria for Metabolic Syndrome: Definition and diagnostic criteria of metabolic syndrome/ J Jpn Soc Intern Med, 2005; 94: 794-809
Participating societies and organizations

- The Japanese Society of Internal Medicine
- The Japan Epidemiological Association
- The Japanese Society of Hypertension
- The Japanese Circulation Society
- The Japanese Society of Nephrology
- The Japanese Society of Physical Fitness and Sports Medicine
- The Japan Diabetes Society
- The Japan Atherosclerosis Society
- The Japan Stroke Society
- The Japan Society for the Study of Obesity
- The Japan Geriatrics Society
- The Japanese Association of Medical Sciences
- The Japan Medical Association

The comprehensive management chart for cerebro-cardiovascular diseases 2015
The comprehensive management chart for

Step 1a Screening (standard items)

Medical Interview: age/gender, subjective symptoms, family history, complications/medical history, medication history, lifestyle habits (smoking, alcohol), exercise habits, sleep and home blood pressure.

Physical Findings: height, weight, BMI (body weight [kg] divided by height [m]²), clinic blood pressure, pulse rate/min (normal/arrhythmia), and chest auscultation.

Medical Tests (during fasting if possible): TC, HDL-C, non-HDL-C (TC − HDL-C), eGFR (serum creatinine), ALT, γ-GT, HbA1c, and plasma glucose (either HbA1c or plasma glucose only for the “diabetic type” [in the event that HbA1c ≥ 6.5% or fasting plasma glucose of ≥ 126 mg/dL, or casual plasma glucose level of ≥ 200 mg/dL is indicated, re-test shall be performed on a separate day]), general (qualitative) urine testing, and electrocardiography.

Step 1b Screening (the additional screening item simultaneously with Step 1a or after an abnormality is noted in 1a)

Physical Findings: waist circumference, orthostatic blood pressure (after 1~3 min of standing), ABI, limb (artery) palpation, cervical vascular murmur, and abdominal vascular murmur.

Additional Tests: blood samples shall be collected during fasting and blood counts, fasting plasma glucose, fasting TG, LDL-C shall be calculated (make sure to simultaneously test TC, HDL-C and TG during fasting and if TG < 400 mg/dL, calculate LDL-C using the Friedewald formula (or equation) (TC − HDL-C − 0.2 × TG)). Furthermore, in addition to measurements of uric acid and potassium concentrations, plasma aldosterone concentration/renin activity ratio shall be measured and chest X-rays acquired. If an abnormality is noted during spot urine quantification or general qualitative urine test, the albuminuria/creatinine ratio shall be measured.

Step 1c Referral to a specialist

1. History or suspected complications of stroke/transient ischemic attack (TIA), coronary heart disease, arrhythmia such as atrial fibrillation, aortic disease, PAD.
2. For hypertensive patients, suspected secondary hypertension (juvenile-onset, sudden onset etc.), pregnancy-induced hypertension, suspected hypertensive emergency/hypertensive urgency (untreated diastolic blood pressure ≥ 120 mmHg, ≥ 180/110 mmHg with recommended treatment, or target blood pressure not achieved even with triple drug therapy.
3. For diabetes, type 1 diabetes, HbA1c ≥ 8.0%, fasting plasma glucose ≥ 200 mg/dL (or casual plasma glucose ≥ 300 mg/dL), acute complications (hyperglycemia emergency), and gestational diabetes.
4. For dyslipidemia, LDL-C ≥ 180 mg/dL, HDL-C < 30 mg/dL, TG ≥ 500 mg/dL, non-HDL-C ≥ 210 mg/dL, suspected primary hyperlipidemia, suspected secondary dyslipidemia.
5. For CKD, proteinuria (urine protein/creatinine ratio ≥ 0.5 g/gCr, or urine dipstick test ≥ 2+), both proteinuria and hematuria positive (urine dipstick test ≥ 1+), eGFR < 50 ml/min/1.73 m² (< 60 if younger than 40 years, < 40 for patients aged 70 years or older with stable kidney function).
6. For obesity, severe obesity (BMI ≥ 35) or suspected secondary obesity (symptomatic obesity).

Step 2 Diagnosis of each risk factor and additional evaluation items

1. For hypertension (clinic blood pressure ≥ 140/90 mmHg or home blood pressure ≥ 135/85 mmHg), measure 24-hour blood pressure as necessary (with differentiation of nighttime hypertension and workplace hypertension).
2. If suspected diabetes cannot be ruled out (HbA1c 5.6%~6.4%, fasting plasma glucose levels of 100-125 mg/dL, or casual plasma glucose levels of 140-199 mg/dL), or if there is familial clustering of diabetes or presence of obesity, perform 75-g oral glucose tolerance test (OGTT) (however, this does not apply if clear diabetes symptoms are present).
3. If clearly diagnosed with diabetes (if HbA1c and plasma glucose levels both indicate diabetes and if diabetic polydipsia, polyuria, and weight loss are present) or the patient has clear diabetic retinopathy or was reconfirmed to be diabetic type on a test performed on a separate day (however, plasma glucose levels must show diabetic type on either the initial test or the repeat test), fundoscopy and albuminuria/creatinine ratio measurement are performed (spot urine quantification).
4. For dyslipidemia (LDL-C ≥ 140 mg/dL, HDL-C < 40 mg/dL, fasting TG ≥ 150 mg/dL or non-HDL-C ≥ 170 mg/dL, the presence of corneal ring, Achilles tendon hypertrophy, skin/tendon xanthoma, eruptive xanthoma shall be confirmed.
5. CKD shall be diagnosed if eGFR < 60 ml/min/1.73 m² or proteinuria continuing for at least 3 months.
6. For metabolic syndrome, diagnosis shall be made on the basis of the diagnostic criteria of the eight of internal medicine societies (Japanese Society of Internal Medicine, Japan Society for the Study of Obesity, Japan Atherosclerosis Society, the Japan Diabetes Society, Japanese Society of Hypertension, Japanese Circulation Society, Japanese Society of Nephrology, and Japanese Society on Thrombosis and Hemostasis).
Risk factors

1. smoking,
2. hypertension,
3. diabetes (including impaired glucose tolerance),
4. dyslipidemia,
5. CKD,
6. obesity (visceral fat type obesity in particular),
7. aging/gender (includes male or post-menopausal female),
8. family history (grandfather/grandmother, father/mother, sibling with history of or complication of cerebro- or cardiovascular disease or lifestyle disease [hypertension, diabetes, dyslipidemia, particularly juvenile-onset cases]).

Whilst constantly keeping in mind that overlapping risk factors require strict management, these form the basis for risk management.

Management goal in accordance with risk factors and the clinical condition of individual patients

1. Hypertension:
 - Younger than 75 years with blood pressure < 140/90 mmHg (home blood pressure < 135/85 mmHg)
 - Age 75 years or older with blood pressure < 150/90 mmHg (home blood pressure < 145/85 mmHg). (If tolerable, aim for < 140/90 mmHg or home blood pressure < 135/85 mmHg)
 - For patients with diabetic complications or albuminuria-positive CKD complications: blood pressure < 130/80 mmHg (home blood pressure < 125/75 mmHg)

2. Diabetes:
 - Goal for normal plasma glucose: HbA1c < 6.0%
 - Goal for preventing complications: HbA1c < 7.0%
 - Goal where it is difficult to intensify the treatment: HbA1c < 8.0%

3. Dyslipidemia:
 - For all risk categories, HDL-C ≥ 40 mg/dL, TG < 150 mg/dL.
 - Furthermore,
 - Category I (low risk): LDL-C < 160 mg/dL. (non HDL-C < 190 mg/dL)
 - Category II (moderate risk): LDL-C < 140 mg/dL. (non HDL-C < 170 mg/dL)
 - Category III (high risk): LDL-C < 120 mg/dL. (non HDL-C < 150 mg/dL)

(4) Obesity: Improvement of hypertension, diabetes, and dyslipidemia by a 3%～5% decrease in bodyweight

Lifestyle modification

- quitting smoking: Quitting smoking is essential. Prevent passive smoking.
- diet management: Aim to reduce the salt to < 6 g/day. Appropriate energy intake and balanced nutrient intakes; carbohydrates, protein, fat, vitamin and mineral. Increase intake of vegetables, dietary fiber and fruit. Reduce the intake of saturated fatty acids and cholesterol and increase the intake of saturated fish.
- weight management: Routinely body weight measured. Maintaining an ideal body weight, if the BMI is within the normal range. Making the target of weight loss therapy to appropriate energy intake, if the BMI is 25 or greater.
- physical activity/exercise: To regularly engage in moderate to vigorous aerobic exercise (at least 30 min per day)
 Perform aerobic exercise for at least 30 min daily. In daily life, not to stay sedentary and to be made to keep their daily physical activity levels.
- alcohol: Limit alcohol consumption to ≤ 25 g/day.

Pharmacotherapy

It is emphasized that with continuing lifestyle modification, pharmacotherapy should be started or continued with careful consideration of individual risk factors and disease pathology. However, when there is a high risk, the necessity of strict pharmacotherapy is also emphasized.

The details of pharmacotherapy shall be conducted in accordance with the guidelines for each disease. For elderly patients age 75 years or older or patients with renal dysfunction, particular care should be taken for side effects caused by drugs.
1. Hypertension

Conditions for which major antihypertensive drugs are indicated

Condition	Ca channel blockers	ARBs/ACE inhibitors	Thiazide diuretics	β-Blockers
Left ventricular hypertrophy	♦	♦	♦	♦*
Heart failure	♦	♦	♦	♦
Tachycardia	♦	♦	♦	♦
Angina pectoris	♦	♦	♦	♦
Post myocardial infarction	♦	♦	♦	♦
Chronic phase of cerebrovascular disorders	♦	♦	♦	♦
Diabetes mellitus/ MetS*	♦	♦	♦	♦
Osteoporosis	♦	♦	♦	♦
Aspiration pneumonia	♦	♦	♦	♦

First-choice drug

Ca channel blockers	ARBs/ACE inhibitors	Thiazide diuretics
♦	♦	♦

Contraindications for major antihypertensive drug and conditions requiring careful administration

Ca channel blockers	ARBs/ACE inhibitors	Thiazide diuretics
Bradycardia (non-chyhydromerporellones)	♦	♦

Modified from Guideline for the management of Hypertension 2014

*Caution is required for patients with coronary spastic angina pectoris.

2. Diabetes

Condition of patient with type 2 diabetes

Mechanism	Types	Main actions	Contraindication or careful administration	Significant adverse reactions
Increased insulin resistance	Biguanides	Inhibition of hepatic gluconeogenesis	Elderly (≥ 75 years), hepatic disorders, renal dysfunction, heart failure, diabetes	Lactic acidosis
Deficient insulin secretion	Thiazolidinediones	Glucose absorption	Elderly, history of abdominal surgery, Ileus, hepatic disorder	Renal failure, edema
Deficiency of insulin effect	Sulfonylurea	Acceleration of insulin secretion, improvement of postprandial plasma glucose	Elderly, history of abdominal surgery, Ileus, hepatic disorder	Renal failure (dialysis)
Postprandial hyperglycemia	DPP-4 inhibitors	Acceleration of glucose-dependent insulin secretion and inhibition of glucagon secretion	Elderly, history of abdominal surgery, Ileus, hepatic disorder	Hypoglycemia (especially when combined with sulfonylurea)
	SGLT2 inhibitor	Inhibiting renal glucose reabsorption by sodium-glucose co-transporter	Elderly, when combined with diuretics, urinary and genital infection	Frenzel urination and polyuria, dehydration, constipation, nausea, and vomiting

The combined use of two or more oral drugs should be applied only in cases in which the combination of improvement of lifestyle including exercise together with the administration of one type of oral drug is not efficacious. Although the combined use of drugs with different modes of action may be considered to be efficacious, there are some drug combinations in which efficacy and safety have not been established. For detailed information on such matters, always refer to the package or insert of each drug.

Modified from Japan Diabetes Society, Treatment Guide for Diabetes 2014-2015

3. Dyslipidemia

Indication

Status	Condition or care management
Hypercholesterolemia and/or hypertriglyceridemia	
Disorder of lipoprotein metabolism	
Familial hypercholesterolemia	
Heterozygous familial hypercholesterolemia	
Homozygous familial hypercholesterolemia	
Primary hypertriglyceridemia	
Secondary hyperlipidemia	

Contraindication or careful use

Ca channel blockers	ARBs/ACE inhibitors	Thiazide diuretics
Bradycardia	♦	♦

Significant adverse reactions

Status	Condition or care management
Hypercholesterolemia and/or hypertriglyceridemia	
Disorder of lipoprotein metabolism	
Familial hypercholesterolemia	
Heterozygous familial hypercholesterolemia	
Homozygous familial hypercholesterolemia	
Primary hypertriglyceridemia	
Secondary hyperlipidemia	
Artifical kidney failure	
Acute myeloid leukemia	

Status	Condition or care management
Hypercholesterolemia and/or hypertriglyceridemia	
Disorder of lipoprotein metabolism	
Familial hypercholesterolemia	
Heterozygous familial hypercholesterolemia	
Homozygous familial hypercholesterolemia	
Primary hypertriglyceridemia	
Secondary hyperlipidemia	
Artificial kidney failure	
Acute myeloid leukemia	

Modified from Japan Atherosclerosis Society (JAS) Guidelines for the Diagnosis and Prevention of Atherosclerotic Cardiovascular Diseases in Japan - 2012 Version

11 societies including the Japanese Society for Internal Medicine agreed to participate in creating a "Comprehensive Risk Management for the Prevention of Cerebro- and Cardiovascular Diseases in Japan." The Japan Medical Association and the Japanese Association of Medical Sciences, which approved cooperative work, also participated in this project, thereby enabling the creation of this practical management chart for general practitioners. It has been created as a tool that can also be used to evaluate the management status of patients already undergoing treatment of risk factors.