Super-rigid Donaldson-Thomas Invariants

Kai Behrend and Jim Bryan

August 21, 2018

Abstract

We solve the part of the Donaldson-Thomas theory of Calabi-Yau threefolds which comes from super-rigid rational curves. As an application, we prove a version of the conjectural Gromov-Witten/Donaldson-Thomas correspondence of [MNOP] for contributions from super-rigid rational curves. In particular, we prove the full GW/DT correspondence for the quintic threefold in degrees one and two.

Contents

1 Introduction ... 2
 1.1 Weighted Euler characteristic 3

2 The Calculation ... 4
 2.1 The open subscheme $J_n(Y, C)$ 4
 2.2 The closed subset $\tilde J_n(Y, C)$ 4
 2.3 The open Calabi Yau $N = \mathcal{O}(-1) \oplus \mathcal{O}(-1)$ 5
 2.4 The box counting function $p(n, d)$ 6
 2.5 General Y .. 7

3 The super-rigid GW/DT correspondence 11
 3.1 The usual GW/DT correspondence 11
 3.2 The super-rigid GW/DT correspondence 11
1 Introduction

Let \(Y \) be a smooth complex projective Calabi-Yau threefold. Let \(I_n(\mathcal{O}_Y, \beta) \) be the moduli space of ideal sheaves \(I_Z \subset \mathcal{O}_Y \), where the associated subscheme \(Z \) has maximal dimension equal to one, the holomorphic Euler characteristic \(\chi(\mathcal{O}_Z) \) is equal to \(n \), and the associated 1-cycle has class \(\beta \in H_2(Y) \).

Recall that \(I_n(\mathcal{O}_Y, \beta) \) has a natural symmetric obstruction theory \cite{Th00, BF05}. Hence we have the (degree zero) virtual fundamental class of \(I_n(\mathcal{O}_Y, \beta) \), whose degree \(N_n(\mathcal{O}_Y, \beta) \in \mathbb{Z} \) is the associated Donaldson-Thomas invariant.

Let \(C = \sum_{i=1}^{s} d_i C_i \) be an effective cycle on \(Y \), and assume that the \(C_i \) are pairwise disjoint, smoothly embedded rational curves with normal bundle \(N_{C_i}/Y \cong \mathcal{O}(-1) \oplus \mathcal{O}(-1) \). Such curves are called super-rigid rational curves in \(Y \) \cite{Pa99, BP01}. Assume that the class of \(C \) is \(\beta \).

Let \(J_n(Y, C) \subset I_n(\mathcal{O}_Y, \beta) \) be the locus corresponding to subschemes \(Z \subset Y \) whose associated cycle under the Hilbert-Chow morphism is equal to \(C \) (see Definition 2.1). Since \(J_n(Y, C) \subset I_n(\mathcal{O}_Y, \beta) \) is open and closed (see Remark 2.2), we get an induced virtual fundamental class on \(J_n(Y, C) \) by restriction. We call \(N_n(\mathcal{O}_Y, C) = \text{deg}[J_n(Y, C)]^\text{vir} \) the contribution of \(C \) to the Donaldson-Thomas invariant \(N_n(\mathcal{O}_Y, \beta) \).

The goal of this paper is to compute the invariants \(N_n(\mathcal{O}_Y, C) \).

To formulate our results, we define a series \(P_d(q) \in \mathbb{Z}[[q]] \), for all integers \(d \geq 0 \) by

\[
\prod_{m=1}^{\infty} (1 + q^m v)^d = \sum_{d=0}^{\infty} P_d(q) v^d.
\]

Moreover, recall the McMahon function

\[
M(q) = \prod_{m=1}^{\infty} \frac{1}{(1 - q^m)^m}.
\]

Then we prove (Theorem 2.4) that

\[
\sum_{n=0}^{\infty} N_n(\mathcal{O}_Y, C) q^n = M(-q)^{\chi(Y)} \prod_{i=1}^{s} (-1)^{d_i} P_{d_i}(-q).
\]

Maulik, Nekrasov, Okounkov, and Pandharipande have conjectured a beautiful correspondence between Gromov-Witten theory and Donaldson-Thomas theory which we call the GW/DT correspondence.

As an application of the above formula we prove the GW/DT correspondence for the contributions from super-rigid rational curves (Theorem 3.1). In particular, we prove the full degree \(\beta \) GW/DT correspondence (Conjecture 3 of \cite{MNOP}) for any \(\beta \) for which it is known that all
cycle representatives are supported on super-rigid rational curves (Corollary 3.2). For example, our results yield the GW/DT correspondence for the quintic threefold in degrees one and two (Corollary 3.3). As far as we know, these are the first instances of the GW/DT conjecture to be proved for compact Calabi-Yau threefolds.

The local GW/DT correspondence for super-rigid rational curves follows from the results of [MNOP] as a special case of the correspondence for toric Calabi-Yau threefolds. In contrast to Gromov-Witten theory, passing from the local invariants of super-rigid curves to global invariants is non-trivial in Donaldson-Thomas theory, and can be regarded as the main contribution of this paper.

1.1 Weighted Euler characteristics

Our main tool will be the weighted Euler characteristics introduced in [Be05]. Every scheme X has a canonical \mathbb{Z}-valued constructible function ν_X on it. The weighted Euler characteristic $\tilde{\chi}(X)$ of X is defined as

$$\tilde{\chi}(X) = \chi(X, \nu_X) = \sum_{n \in \mathbb{Z}} n \chi(\nu_X^{-1}(n)).$$

More generally, we use relative weighted Euler characteristics $\tilde{\chi}(Z, X)$ defined as

$$\tilde{\chi}(Z, X) = \chi(Z, f^*\nu_X),$$

for any morphism $f : Z \to X$. Three fundamental properties are

(i) if $X \to Y$ is étale, then $\tilde{\chi}(Z, X) = \tilde{\chi}(Z, Y)$,

(ii) if $Z = Z_1 \sqcup Z_2$ is a disjoint union, $\tilde{\chi}(Z, X) = \tilde{\chi}(Z_1, X) + \tilde{\chi}(Z_2, X)$,

(iii) $\tilde{\chi}(Z_1, X_1) \tilde{\chi}(Z_2, X_2) = \tilde{\chi}(Z_1 \times Z_2, X_1 \times X_2)$.

The main result of [Be05], Theorem 4.18, asserts that if X is a projective scheme with a symmetric obstruction theory on it, then

$$\deg[X]^{\text{vir}} = \tilde{\chi}(X).$$

Thus we can calculate $N_n(Y, C)$ as $\tilde{\chi}(J_n(Y, C))$.

We will also need the following fact. If X is an affine scheme with an action of an algebraic torus T and an isolated fixed point $p \in X$, and X admits a symmetric obstruction theory compatible with the T-action, then

$$\nu_X(p) = (-1)^{\dim T_p X},$$

where $T_p X$ is the Zariski tangent space of X at p. This is the main technical result of [BF05], Theorem 3.4.

Finally, we will use the following result from [BF05]. If X is a smooth threefold (not necessarily proper), then

$$\sum_{m=0}^{\infty} \tilde{\chi}({\text{Hilb}}^m X)q^m = M(-q)^{\chi(X)}.$$
2 The Calculation

2.1 The open subscheme $J_n(Y, C)$

Definition 2.1 Let C_1, \ldots, C_s be pairwise distinct, super-rigid rational curves on Y and let (d_1, \ldots, d_s) be an s-tuple of non-negative integers. Let $C = \sum_i d_i C_i$ be the associated 1-cycle on Y and let β be the class of C in homology. Define

$$J_n(Y, C) \subset I_n(Y, \beta)$$

to be the open and closed subscheme consisting of subschemes $Z \subset Y$ whose associated 1-cycle is equal to C.

Remark 2.2 To see that $J_n(Y, C)$ is, indeed, open and closed, consider the Hilbert-Chow morphism, see [Ko96], Chapter I, Theorem 6.3, which is a morphism

$$f : I_n(Y, \beta)^{sn} \longrightarrow \text{Chow}(Y, d),$$

where $\text{Chow}(Y, d)$ is the Chow scheme of 1-dimensional cycles of degree $d = \deg \beta$ on Y. It is a projective scheme. Moreover, $I_n(Y, \beta)^{sn}$ is the semi-normalization of $I_n(Y, \beta)$. The structure morphism $I_n(Y, \beta)^{sn} \to I_n(Y, \beta)$ is a homeomorphism of underlying Zariski topological spaces. Therefore the Hilbert-Chow morphism descends to a continuous map of Zariski topological spaces

$$|f| : |I_n(Y, \beta)| \longrightarrow |\text{Chow}(Y, d)|.$$

Because the C_i are super-rigid, the cycle C corresponds to an isolated point of $|\text{Chow}(Y, d)|$. So the preimage of this point under $|f|$ is open and closed in $|I_n(Y, \beta)|$. The open subscheme of $I_n(Y, \beta)$ defined by this open subset is $J_n(Y, C)$.

Definition 2.3 As $J_n(Y, C)$ is open in $I_n(Y, \beta)$, it has an induced (symmetric) obstruction theory and hence a virtual fundamental class of degree zero. Since $J_n(Y, C)$ is closed in $I_n(Y, \beta)$ it is projective, and so we can consider the degree of the virtual fundamental class

$$N_n(Y, C) = \deg[J_n(Y, C)]^{\text{vir}},$$

and call it the *contribution of* C to the Donaldson-Thomas invariant $N_n(Y, \beta)$.

2.2 The closed subset $\tilde{J}_n(Y, C)$

Definition 2.4 Let $C = \sum_i d_i C_i$ be as above and denote by suppC the reduced closed subscheme of Y underlying C. Let

$$\tilde{J}_n(Y, C) \subset J_n(Y, C) \subset I_n(Y, \beta)$$

be the closed subset consisting of subschemes $Z \subset Y$ whose underlying closed subset $Z^{\text{red}} \subset Y$ is contained in suppC.
Remark 2.5 To see that \(\tilde{J}_n(Y, C) \) is closed in \(I_n(Y, \beta) \), let \(W_m \subset Y \) be the \(m \)-th infinitesimal neighborhood of \(\text{supp} C \subset Y \). For any subscheme \(Z \subset Y \), with fixed numerical invariants \(n \) and \(\beta \), and such that \(Z^{\text{red}} \subset \text{supp} C \), there exists a sufficiently large \(m \) so that \(Z \subset W_m \). For such an \(m \), consider the Hilbert scheme \(I_n(W_m, \beta) \), which is a closed subscheme of \(I_n(Y, \beta) \), as \(W_m \) is a closed subscheme of \(Y \). The underlying closed subset of \(I_n(Y, \beta) \) is equal to \(\tilde{J}_n(Y, C) \).

Remark 2.6 Informally speaking, \(J_n(Y, C) \) parameterizes subschemes whose one dimensional components are confined to \(C \), but may have embedded points anywhere in \(Y \), whereas \(\tilde{J}_n(Y, C) \) parameterizes subschemes where both the one dimensional components and the embedded points are supported on \(C \).

2.3 The open Calabi Yau \(N = \mathcal{O}(-1) \oplus \mathcal{O}(-1) \)

We consider the open Calabi-Yau \(N \), which is the total space of the vector bundle \(\mathcal{O}(-1) \oplus \mathcal{O}(-1) \) on \(P^1 \). We denote by \(C_0 \subset N \) the zero section.

We consider the Hilbert scheme \(I_n(N, [dC_0]) \).

Let \(\mathcal{N} \) denote \(\mathbb{P}(\mathcal{O} \oplus \mathcal{O}(-1) \oplus \mathcal{O}(-1)) \) and let \(D_\infty = \mathcal{N} \setminus N \). Since \(3D_\infty \) is an anti-canonical divisor of \(\mathcal{N} \), the corresponding section defines a trivialization of \(K_N \). \(\mathcal{N} \) is naturally a toric variety, \(D_\infty \) is an invariant divisor, and we let \(T_0 \) be the subtorus whose elements act trivially on \(K_N \). Then \(T_0 \) induces a \(T_0 \)-equivariant symmetric obstruction theory on \(I_n(N, [dC_0]) \), by Proposition 2.4 of [BF05]. Moreover, the \(T_0 \) fixed points in \(I_n(N, [dC_0]) \) are isolated points whose Zariski tangent spaces have no trivial factors as \(T_0 \) representations (the proof of Lemma 4.1, Part (a) and (b) in [BF05] is easily adapted to prove this).

As in [MOP], the \(T_0 \) fixed points in \(I_n(N, [dC_0]) \) correspond to subschemes which are given by monomial ideals on the restriction to the two affine charts of \(N \). The number of such fixed points is given by \(p(n, d) \) described below.

Let \(p(n, d) \) be the number of triples \((\pi_0, \lambda, \pi_\infty) \), where \(\pi_0 \) and \(\pi_\infty \) are 3-dimensional partitions and \(\lambda \) a 2-dimensional partition. The 3-dimensional partitions each have one infinite leg with asymptotics \(\lambda \), and no other infinite legs. Moreover, \(d = |\lambda| \) and \(n \) is given by (MOP Lemma 5)

\[
n = |\pi_0| + |\pi_\infty| + \sum_{(i,j) \in \lambda} (i + j + 1),
\]

where the size of a three dimensional partition with an infinite leg of shape \(\lambda \) along the \(z \) axis is defined by

\[
|\pi| = \# \{(i, j, k) \in \mathbb{Z}_{\geq 0}^3 : (i, j, k) \in \pi, (i, j) \not\in \lambda \}.
\]

Proposition 2.7 We have

\[
\tilde{\chi}(I_n(N, [dC_0])) = (-1)^{n-d} p(n, d).
\]
Proof. By Corollary 3.5 of [BF05], we have
\[\tilde{\chi}(I_n(N, [dC_0])) = \sum_p (-1)^{\dim T_p}, \]
where the sum is over all T_0-fixed points on $I_n(N, [dC_0])$ and T_p is the Zariski tangent space of $I_n(N, [dC_0])$ at p. The parity of $\dim T_p$ can be easily deduced from Theorem 2 of [MNOP] (just as in the proof of Lemma 4.1 (c) in [BF05]). The result is $n - d$. So all we have to notice is that $p(n, d)$ is the number of fixed points of T_0 on $I_n(N, [dC_0])$. □

Corollary 2.8 We have
\[\tilde{\chi}(\tilde{J}_n(N, dC_0), I_n(N, [dC_0])) = (-1)^{n-d} p(n, d). \]
Proof. We just have to notice that all T_0-fixed points are contained in $\tilde{J}_n(N, dC_0)$. □

2.4 The box counting function $p(n, d)$

Counting three dimensional partitions with given asymptotics has been shown by Okounkov, Reshetikhin, and Vafa [ORV] to be equivalent to the topological vertex formalism which occurs in Gromov-Witten theory. They give general formulas for the associated generating functions in terms of q values of Schur functions which we will use to prove the following Lemma.

Lemma 2.9 The generating function for $p(n, d)$ is given by
\[\sum_{n=0}^{\infty} p(n, d) q^n = M(q)^2 P_d(q), \]
where the power series $P_d(q)$ and $M(q)$ are defined in Equations 1 and 2.

Proof. The generating function for the number of 3-dimensional partitions with one infinite leg of shape λ is given by equation 3.21 in [ORV]:
\[\sum_{\text{3d partitions } \pi \text{ asymptotic to } \lambda} q^{\#} M(q)q^{-(\lambda_2 - \frac{1}{2})} s_{\lambda^t}(q^{1/2}, q^{3/2}, q^{5/2}, \ldots) \]
where λ^t is the transpose partition, $(\lambda_2) = \sum_i \binom{\lambda_i}{2}$, $|\lambda| = \sum_i \lambda_i$, and
\[s_{\lambda^t}(q^{1/2}, q^{3/2}, q^{5/2}, \ldots) \]
is the Schur function associated to λ^t evaluated at $x_i = q^{(2i-1)/2}$. Using the homogeneity of Schur functions and writing
\[s_{\lambda^t}(q) = s_{\lambda^t}(1, q, q^2, \ldots) \]
we can rewrite the right hand side of the above equation as
\[M(q)q^{-(\lambda_2)} s_{\lambda^t}(q). \]
Observing that
\[
\sum_{(i,j) \in \lambda} (i + j + 1) = |\lambda| + \left(\frac{\lambda}{2}\right) + \left(\frac{\lambda^t}{2}\right),
\]
we get
\[
\sum_{n,d=0}^{\infty} p(n,d)q^n v^d = M(q)^2 \sum_{\lambda} s_{\lambda^t}(q)^2 q^{\lambda|+\frac{\lambda^t}{2}\mid} v^{|\lambda|}.
\]
The hook polynomial formula for \(s_{\lambda^t}(q)\) (I.3 ex pg 45, [Mac95]) is
\[
s_{\lambda^t}(q) = q^{\left(\frac{\lambda}{2}\right)-\left(\frac{\lambda^t}{2}\right)} s_{\lambda}(q).
\]
from which one easily sees that
\[
s_{\lambda^t}(q) = q^{\left(\frac{\lambda}{2}\right)-\left(\frac{\lambda^t}{2}\right)} s_{\lambda}(q).
\]
Therefore
\[
\sum_{n,d=0}^{\infty} p(n,d)q^n v^d = M(q)^2 \sum_{\lambda} s_{\lambda}(q) s_{\lambda^t}(q) q^{\lambda|+\frac{\lambda^t}{2}\mid} v^{|\lambda|}
\]
\[
= M(q)^2 \sum_{\lambda} s_{\lambda}(q, q^2, q^3, \ldots) s_{\lambda^t}(v, vq, vq^2, \ldots)
\]
\[
= M(q)^2 \prod_{i,j=1}^{\infty} (1 + q^{i+j-1} v)
\]
where the last equality comes from the orthogonality of Schur functions (I.4 equation (4.3)' of [Mac95]). By rearranging this last sum and taking the \(v^d\) term, the lemma is proved. ∎

Remark 2.10 From the proof of the lemma we see that
\[
P_d(q) = q^d \sum_{\lambda \vdash d} s_{\lambda}(q) s_{\lambda^t}(q).
\]
From Equation (3), it is immediate that \(P_d(q)\) is a rational function in \(q\). Moreover, using the formula for total hooklength (pg 11, I.1 ex 2, [Mac95]), it is easy to check that \(P_d(q)\) is invariant under \(q \mapsto 1/q\).

2.5 General \(Y\)

Lemma 2.11 Let \(C\) be a super-rigid rational curve on the Calabi-Yau threefold \(Y\). Then
\[
\bar{\chi}(J_n(Y, dC), J_n(Y, dC)) = (-1)^{n-d} p(n, d),
\]
for all \(n, d\).
Proof. First of all, by Theorem 3.2 of [La81], an analytic neighborhood of C in Y is isomorphic to an analytic neighborhood of C_0 in N. Therefore, by the analytic theory of Hilbert schemes (or Douady spaces), see [Do66], we obtain an analytic isomorphism of $\tilde{J}_n(Y, dC)$ with $\tilde{J}_n(N, dC_0)$ which extends to an isomorphism of a tubular neighborhood of $\tilde{J}_n(Y, dC)$ in $I_n(Y, [dC])$ with a tubular neighborhood of $\tilde{J}_n(N, dC_0)$ in $I_n(N, [dC_0])$.

The formula for $\nu_X(P)$ in terms of a linking number, Proposition 4.22 of [Be05], shows that $\nu_X(P)$ is an invariant of the underlying analytic structure of a scheme X. Thus, we have

$$\tilde{\chi}(\tilde{J}_n(Y, dC), I_n(Y, [dC])) = \tilde{\chi}(\tilde{J}_n(N, dC_0), I_n(N, [dC_0])).$$

Finally, apply Corollary 2.8. □

Lemma 2.12 Let $f : X \to Y$ be an étale morphism of separated schemes of finite type over \mathbb{C}. Let $Z \subset X$ be a constructible subset. Assume that the restriction of f to the closed points of Z, $f : Z(\mathbb{C}) \to Y(\mathbb{C})$, is injective. Then we have

$$\tilde{\chi}(f(X), Y) = \tilde{\chi}(Z, X).$$

We remark that by Chevalley’s theorem (EGA IV, Cor. 1.8.5), $f(Z)$ is constructible, so that $\tilde{\chi}(f(X), Y)$ is defined.

Proof. Without loss of generality, $Z \subset X$ is a closed subscheme and so $Z \to Y$ is unramified.

We claim that there exists a decomposition $Y = Y_1 \sqcup \ldots \sqcup Y_n$ into locally closed subsets, such that, putting the reduced structure on Y_i, the induced morphism $Z_i = Z \times_Y Y_i \to Y_i$ is either an isomorphism, or Z_i is empty.

In fact, by generic flatness (EGA IV, Cor. 6.9.3), we may assume without loss of generality that $Z \to Y$ is flat, hence étale. By Zariski’s Main Theorem (EGA IV, Cor. 18.12.13), we may assume that $Z \to Y$ is finite, hence finite étale. Then, by our injectivity assumption, the degree of $Z \to Y$ is 1 and so $Z \to Y$ is an isomorphism.

Once we have this decomposition of Y, the lemma follows from additivity of the Euler characteristic over such decompositions and the étale invariance of the canonical constructible function ν. □

Now we consider the case of a curve with several components. Let $C_d = \sum_{i=1}^s d_i C_i$ be an effective cycle, where the C_i are pairwise disjoint super-rigid rational curves in Y. We assume $d_i > 0$, for all $i = 1, \ldots, s$.

For an $(s + 1)$-tuple of non-negative integers $\vec{m} = (m_0, m_1, \ldots, m_s)$, we let $|\vec{m}| = \sum_{i=0}^s m_i$. Consider, for $|\vec{m}| = n$ the open subscheme

$$U_{\vec{m}} \subset \text{Hilb}^{m_0}(Y) \times \prod_{i=1}^s J_{m_i}(Y, d_i C_i),$$

consisting of subschemes $(Z_0, (Z_i))$ with pairwise disjoint support.
Lemma 2.13 Mapping \((Z_0, (Z_i))\) to \(Z_0 \cup \bigcup_i Z_i\) defines an étale morphism
\[f : U_{\tilde{m}} \to J_n(Y, C_{\tilde{d}}). \]

Proof. This is straightforward. See also Lemma 4.4 in [BF97]. □

Let us write \(\tilde{Y}\) for \(Y \setminus \text{supp } C\) and remark that
\[Z_{\tilde{m}} = \text{Hilb}_{m_0}^{\tilde{m}}(\tilde{Y}) \times \prod_{i > 0} \tilde{J}_{m_i}(Y, d_i C_i) \]
is contained in \(U_{\tilde{m}}\). Moreover, the restriction \(f : Z_{\tilde{m}} \to J_n(Y, C_{\tilde{d}})\) is injective on closed points. Finally, every closed point of \(J_n(Y, C_{\tilde{d}})\) is contained in \(f(Z_{\tilde{m}})\), for a unique \(\tilde{m}\), such that \(|\tilde{m}| = n\).

We will apply Lemma 2.12 to the diagram

\[Z_{\tilde{m}} = \text{Hilb}_{m_0}^{\tilde{m}}(\tilde{Y}) \times \prod_{i > 0} \tilde{J}_{m_i}(Y, d_i C_i) \]

Thus, we may calculate as follows:
\[\tilde{\chi}(J_n(Y, C_{\tilde{d}})) = \sum_{|\tilde{m}|=n} \tilde{\chi}(f(Z_{\tilde{m}}), J_n(Y, C_{\tilde{d}})) \]
\[= \sum_{|\tilde{m}|=n} \tilde{\chi}(Z_{\tilde{m}}, U_{\tilde{m}}) \]
\[= \sum_{|\tilde{m}|=n} \tilde{\chi} \left(\text{Hilb}_{m_0}^{\tilde{m}}(\tilde{Y}) \times \prod_{i > 0} \tilde{J}_{m_i}(Y, d_i C_i), \text{Hilb}_{m_0}^{\tilde{m}}(Y) \times \prod_{i > 0} J_{m_i}(Y, d_i C_i) \right) \]
\[= \sum_{|\tilde{m}|=n} \tilde{\chi} \left(\text{Hilb}_{m_0}^{\tilde{m}}(\tilde{Y}), \text{Hilb}_{m_0}^{\tilde{m}}(Y) \right) \prod_{i > 0} \tilde{\chi} \left(\tilde{J}_{m_i}(Y, d_i C_i), J_{m_i}(Y, d_i C_i) \right) \]
\[= \sum_{|\tilde{m}|=n} \tilde{\chi} \left(\text{Hilb}_{m_0}^{\tilde{m}}(\tilde{Y}) \right) \prod_{i > 0} (-1)^{m_i - d_i} p(m_i, d_i). \]

Now we perform the summation:
\[\sum_{n=0}^{\infty} \tilde{\chi}(J_n(Y, C_{\tilde{d}})) q^n \]
\[= \sum_{n=0}^{\infty} \left(\sum_{|\tilde{m}|=n} \tilde{\chi} \left(\text{Hilb}_{m_0}^{\tilde{m}}(\tilde{Y}) \right) \prod_{i=1}^{\tilde{s}} (-1)^{m_i - d_i} p(m_i, d_i) \right) q^n \]
\[= \sum_{n=0}^{\infty} \sum_{|\tilde{m}|=n} \tilde{\chi} \left(\text{Hilb}_{m_0}^{\tilde{m}}(\tilde{Y}) \right) q^n \prod_{i=1}^{\tilde{s}} (-1)^{d_i} p(m_i, d_i) (-q)^{m_i} \]
\[
\begin{align*}
\sum_{m_0=0}^{\infty} \tilde{\chi}(\text{Hilb}^{m_0}(\check{Y}))q^{m_0} & = \sum_{m_0=0}^{\infty} \tilde{\chi}(\text{Hilb}^{m_0}(\check{Y}))q^{m_0} \\
& = M(-q)^{\chi(\check{Y})} \prod_{i=1}^{s} (-1)^{d_i} P_d(-q) \\
& = M(-q)^{\chi(\check{Y})} \prod_{i=1}^{s} (-1)^{d_i} P_d(-q) \\
& = M(-q)^{\chi(\check{Y})} \prod_{i=1}^{s} (-1)^{d_i} P_d(-q) \\
\end{align*}
\]

By the main result of [BF05], Theorem 4.18, we have
\[
N_\nu(Y, C_{\vec{d}}) = \tilde{\chi}(J_\nu(Y, C_{\vec{d}})).
\]
This finishes the proof of:

Theorem 2.14 The partition function for the contribution of $C_{\vec{d}}$ to the Donaldson-Thomas invariants of Y is given by
\[
Z(Y, C_{\vec{d}}) = \sum_{n=0}^{\infty} N_n(Y, C_{\vec{d}}) q^n = M(-q)^{\chi(\check{Y})} \prod_{i=1}^{s} (-1)^{d_i} P_d(-q).
\]

Corollary 2.15 Define the reduced partition function
\[
Z'(Y, C_{\vec{d}}) = \frac{Z(Y, C_{\vec{d}})}{Z(Y, 0)}.
\]
Then we have
\[
Z'(Y, C_{\vec{d}}) = \prod_{i=1}^{s} (-1)^{d_i} P_d(-q),
\]
a rational function in q, invariant under $q \mapsto 1/q$.

Proof. Behrend and Fantechi prove [BF05] that
\[
Z(Y, 0) = \sum_{n=0}^{\infty} \tilde{\chi}(\text{Hilb}^n Y)q^n = M(-q)^{\chi(Y)};
\]
the formula for $Z'(Y, C_{\vec{d}})$ then follows immediately from Theorem 2.14.
For the proof that $Z'(Y, C_{\vec{d}})$ is a rational function invariant under $q \mapsto 1/q$, see Remark 2.10. □
3 The super-rigid GW/DT correspondence.

3.1 The usual GW/DT correspondence

The Gromov-Witten/Donaldson-Thomas correspondence of \[\text{MNOP}\] can be formulated as follows.

Let \(Y\) be a Calabi-Yau threefold and let

\[
Z_{DT}(Y, \beta) = \sum_{n \in \mathbb{Z}} N_n(Y, \beta)q^n
\]

be the partition function for the degree \(\beta\) Donaldson-Thomas invariants.

Let

\[
Z'_{DT}(Y, \beta) = \frac{Z_{DT}(Y, \beta)}{Z_{DT}(Y, 0)}
\]

be the reduced partition function.

In Gromov-Witten theory, the reduced partition function for the degree \(\beta\) Gromov-Witten invariants, \(Z'_{GW}(Y, \beta)\), is given by the coefficients of the exponential of the \(\beta \neq 0\) part of the potential function:

\[
1 + \sum_{\beta \neq 0} Z'_{GW}(Y, \beta)v^\beta = \exp \left(\sum_{\beta \neq 0} N_g^{GW}(Y, \beta)u^{2g-2}v^\beta \right).
\]

Here

\[
N_g^{GW}(Y, \beta) = \deg[M_g(Y, \beta)]^{\text{vir}}
\]

is the genus \(g\), degree \(\beta\) Gromov-Witten invariant of \(Y\).

The conjectural GW/DT correspondence states that

(i) The degree 0 partition function in Donaldson-Thomas theory is given by

\[
Z_{DT}(Y, 0) = M(-q)^{\chi(Y)},
\]

(ii) \(Z'_{DT}(Y, \beta)\) is a rational function in \(q\), invariant under \(q \mapsto 1/q\), and

(iii) the equality

\[
Z'_{GW}(Y, \beta) = Z'_{DT}(Y, \beta)
\]

holds under the change of variables \(q = -e^{iu}\).

Part (i) is proved for all \(Y\) in \[\text{BF05}\].

3.2 The super-rigid GW/DT correspondence

In an entirely parallel manner, we can formulate the GW/DT correspondence for \(N_u(Y, C_{\vec{d}})\), the contribution from a collection of super-rigid rational curves \(C_{\vec{d}} = \sum_i d_i C_i\).

Just as in Donaldson-Thomas theory, there is an open component of the moduli space of stable maps

\[
\overline{M}_g(Y, C_{\vec{d}}) \subset \overline{M}_g(Y, \beta)
\]
parameterizing maps whose image lies in the support of C_d. There are corresponding invariants given by the degree of the virtual class:

$$N^G_W(Y, C_d) = \deg[M_g(Y, C_d)]^{vir}$$

We define $Z'_{GW}(Y, C_d)$ by replacing $N^G_W(Y, \beta)$ on the right side of formula (4) by $N^G_W(Y, C_d)$.

Then we can formulate our results as follows.

Theorem 3.1 The GW/DT correspondence holds for the contributions from super-rigid rational curves. Namely, let $C_d = d_1C_1 + \cdots + d_sC_s$ be a cycle supported on pairwise disjoint super-rigid rational curves C_i in a Calabi-Yau threefold Y, and let $Z'_{DT}(Y, C_d)$ and $Z'_{GW}(Y, C_d)$ be defined as above. Then

1. $Z'_{DT}(Y, C_d)$ is a rational function of q, invariant under $q \mapsto 1/q$, and
2. the equality

$$Z'_{DT}(Y, C_d) = Z'_{GW}(Y, C_d)$$

holds under the change of variables $q = -e^{iu}$.

Proof. For (ii), see Corollary 2.15. To prove (iii), we reproduce a calculation well known to the experts (e.g. [Ka04]).

By the famous multiple cover formula of Faber-Pandharipande [FP00] (see also [Pa99]),

$$N^G_W(Y, C_d) = \sum_{i=1}^s c(g, d_i),$$

where $c(g, d)$ is given by

$$\sum_{g \geq 0} c(g, d) u^{2g-2} = \frac{1}{d} \left(\sin \left(\frac{du}{2} \right) \right)^{-2}.$$

We compute $Z'_{GW}(Y, C_d)$ and make the substitution $q = -e^{iu}$:

$$1 + \sum_{(d_1, \ldots, d_s) \neq 0} Z'_{GW}(Y, C_d) v_1^{d_1} \cdots v_s^{d_s}$$

$$= \exp \left(\sum_{j=1}^s \sum_{d_j=1}^\infty \sum_{g=0}^\infty c(g, d_j) u^{2g-2} v_j^{d_j} \right)$$

$$= \prod_{j=1}^s \exp \left(\sum_{d_j=1}^\infty \frac{v_j^{d_j}}{d_j} \left(2 \sin \frac{d_j u}{2} \right)^{-2} \right)$$

$$= \prod_{j=1}^s \exp \left(\sum_{d_j=1}^\infty \frac{v_j^{d_j}}{d_j} \left(1 - e^{i d_j u} \right)^{-2} \right)$$

$$= \prod_{j=1}^s \exp \left(\sum_{d_j=1}^\infty \sum_{m_j=1}^\infty \frac{-m_j}{d_j} e^{i m_j u} v_j^{d_j} \right)$$
\[
\prod_{j=1}^{s} \exp \left(\sum_{m_{j}=1}^{\infty} m_{j} \log \left(1 - v_{j} e^{im_{j}u} \right) \right)
= \prod_{j=1}^{s} \prod_{m_{j}=1}^{\infty} (1 - (-q)^{m_{j}} v_{j})^{m_{j}}
= \prod_{j=1}^{s} \sum_{m_{j}=1}^{\infty} P_{d_{j}} (-q) (-v_{j})^{d_{j}}
= \sum_{(d_{1}, \ldots, d_{s})} \prod_{j=1}^{s} (-1)^{d_{j}} P_{d_{j}} (-q) v_{j}^{d_{j}}.
\]

Therefore,
\[
Z'_{GW}(Y, C_{d}) = \prod_{j=1}^{s} (-1)^{d_{j}} P_{d_{j}} (-q)
\]
and so by comparing with Corollary 2.15 the theorem is proved. □

The following corollary is immediate.

Corollary 3.2 Let \(Y \) be a Calabi-Yau threefold and let \(\beta \in H_{2}(Y, \mathbb{Z}) \) be a curve class such that all cycle representatives of \(\beta \) are supported on a collection of pairwise disjoint, super-rigid rational curves. Then the degree \(\beta \) GW/DT correspondence holds:
\[
Z'_{DT}(Y, \beta) = Z'_{GW}(Y, \beta).
\]

For example, we have:

Corollary 3.3 Let \(Y \subset \mathbb{P}^{4} \) be a quintic threefold, and let \(L \) be the class of the line. Then for \(\beta \) equal to \(L \) or \(2L \), the GW/DT correspondence holds.

Proof. By deformation invariance of both Donaldson-Thomas and Gromov-Witten invariants, it suffices to let \(Y \) be a generic quintic threefold. It is well known that there are exactly 2875 pairwise disjoint lines on \(Y \) and they are all super-rigid. The conics on \(Y \) are all planar and hence rational, and it is known that there are exactly 609250 pairwise disjoint conics and they are super-rigid as well. For these facts and more, see [Ka86]. □

Note that we cannot prove the GW/DT conjecture by this method for the quintic in degree three (and higher) due to the presence of elliptic curves in degree three.

Explicit formulas for the reduced Donaldson-Thomas partition function of a generic quintic threefold \(Y \) in degrees one and two are given below:
\[
Z'_{DT}(Y, L) = 2875 \frac{q}{(1-q)^{2}}
\]
\[
Z'_{DT}(Y, 2L) = 609250 \frac{q}{(1-q)^{2}} \cdot 2875 \cdot \frac{-2q^{3}}{(1+q)^{3}(1-q)^{2}}
= -3503187500 \frac{1}{(q-q^{-1})^{4}}
\]
References

[Be05] K. Behrend. Donaldson-Thomas type invariants via microlocal geometry. ArXiv: math.AG/0507523.

[BF05] K. Behrend and B. Fantechi. Symmetric obstruction theories and Hilbert schemes of points on threefolds. ArXiv: math.AG/0512556.

[BF97] K. Behrend and B. Fantechi. The intrinsic normal cone. Invent. Math., 128(1):45–88, 1997.

[BP01] J. Bryan and R. Pandharipande. BPS states of curves in Calabi-Yau 3-folds. Geom. Topol., 5:287–318 (electronic), 2001.

[Do66] A. Douady. Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné. Ann. Inst. Fourier (Grenoble), 16(fasc. 1):1–95, 1966.

[FP00] C. Faber and R. Pandharipande. Hodge integrals and Gromov-Witten theory. Invent. Math., 139(1):173–199, 2000.

[Ka04] Sheldon Katz. Gromov-Witten, Gopakumar-Vafa, and Donaldson-Thomas invariants of Calabi-Yau threefolds. arXiv:math.AG/0408266.

[Ka86] S. Katz. On the finiteness of rational curves on quintic threefolds. Compositio Math., 60(2):151–162, 1986.

[Ko96] J. Kollár. Rational curves on algebraic varieties, volume 32 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer-Verlag, Berlin, 1996.

[La81] H. B. Laufer. On \(\mathbb{CP}^3 \) as an exceptional set. In Recent developments in several complex variables, volume 100 of Ann. of Math. Stud., pages 261–275. Princeton, N.J., 1981.

[Mac95] I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford Mathematical Monographs. New York, second edition, 1995.

[MNOP] D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande. Gromov-Witten theory and Donaldson-Thomas theory, I. ArXiv: math.AG/0312059.

[ORV] A. Okounkov, N. Reshetekhin, and C. Vafa. Quantum Calabi-Yau and classical crystals. ArXiv: hep-th/0309208.

[Pa99] R. Pandharipande. Hodge integrals and degenerate contributions. Comm. Math. Phys., 208(2):489–506, 1999.

[Th00] R. P. Thomas. A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibrations. J. Differential Geom., 54(2):367–438, 2000.