Abstract—Growing demand for electricity and the innovations in smart grid technologies is providing new opportunities for intelligent electrical demand loads control in the form of Demand Response (DR). In this paper, we present a comprehensive review of demand response by conducting a systematic mapping of the field to evaluate the current research trends, knowledge gaps, and the scope of future research of DR in the smart grid applications. Bibliometric analysis has been done to map the research themes under the demand response domain by analyzing the co-relationships in the metadata originated from the SCOPUS database. Thorough content analysis has also been performed, and six emerging research themes have been identified along with fundamental research questions commonly addressed to devise future research directions.

Keywords— Bibliometric Analysis, Demand Response, Smart Grid, Systematic Mapping

I. INTRODUCTION

Recently, the electricity grid has been undergoing rapid change because of energy conservation as well as environmental sustainability. Ageing electrical power grid infrastructure and demand for improving operational efficiency call for a reliable electrical power grid. However owing to the increasing proliferation of renewable energy sources, the electrical power grid and the power grid operators are facing operational challenges to meet operational reliability [1]. Furthermore, governments are also imposing grid operators with strict policies and regulations to cut carbon emissions as well as enforcing massive integration of renewable energy in the generation mix. Renewable energy sources (RESs) are highly intermittent, which can lead to additional ramping of generators in the grid hence compromising the grid stability.

Demand Response (DR) refers to shift in the usage of electricity by energy users from their regular use habits in response to increase in electricity rates over time or opportunities to limit the use of electricity at periods of elevated wholesale market costs or when the efficiency of the grid is undermined[2]. DR can help in accommodating intermittent renewable energy generation by incorporating demand-side flexibility. Hence it has drawn compelling attention from both academia and the industry in recent years which lead to the rapid growth of research on demand response including a considerable amount of scientific literature, i.e. journal articles, conference preceding, and books. This significant volume of literature is making it challenging and time-consuming for researchers and DR participants to get a synoptic and structured overview of the relevances as well as up to date information about DR. To date, several review papers have been published covering the general concept of DR and recent advances in academia as well as industrial research on DR [3]–[5].

This study aims to provide a comprehensive and structured overview of the DR domain by systematic mapping of the field. In this regard, a Bibliometric analysis has been done followed by a content analysis of the identified research themes and the broad domain. The critical contribution of the can be summarized as; The Bibliometric analysis provides an in-depth visualization and ranking of the literature under review, associated keyword trends, a conceptual map which in turn provides a swift overview of the DR research. Furthermore, a detailed content analysis of the selected scientific literature gives us the current research questions addressed by the top researchers, state of the art methods to solve those problems and also an excellent understanding to provide future research direction.

The organization of the rest of the papers is as follows; Section II provides an overview of the methodology of systematic mapping followed by Section III which includes the bibliometric analysis results. Section IV contains the analysis of the demand response research themes formulated from content analysis and Section V includes concluding remarks by outlining the future research direction of DR.

II. METHODOLOGY

A. Systematic Mapping Framework

Fig 1. shows the comprehensive framework of the systematic mapping study. Under the framework, an initial repository has been created containing the metadata of the relevant literature from a reliable database (SCOPUS). The initial search results have been filtered accordingly to exclude any irrelevant data or literature which does not fall under the scope of the study. Bibliometric analysis has been carried out
on the refined metadata. The bibliometric analysis comprised a qualitative and quantitative analysis of bibliometric data providing insight into the research domain by highlighting the patterns of publications, associated institutions as well as journals[6]. An in-depth content analysis based on the research themes identified from the bibliometric analysis provided the latest advancement, current gaps in each of the research sub-themes which in turn indicate future development on the particular topic.

B. Data and Tools

The datum was retrieved from the SCOPUS database, one of the most reliable scientific citation index databases in the research community. The search terms were combined with different keywords that commonly represents the DR domain. Initial search results showed publications dated in the 90s with the fundamental concept of DR. For the relevancy of the latest research activity, a period between “2008-2020” has been considered while searching for relevant data.

TABLE I. SEARCH STRING TERMS
SEARCH TERMS
"Demand Response OR "Demand Side Response" AND "Smart Grid"

Table I shows the related search term and filtration criteria on the SCOPUS database. The initial search result came with 5534 articles which were numbered down to 1377 after applying the filtration criteria. This metadata has been used to carry out the bibliometric analysis.

III. BIBLIOMETRIC ANALYSIS

A. Publication Trend and Research Growth

The metadata from SCOPUS includes information such as publication year, authors, titles, abstracts, and references which can be effectively used to carry out the bibliometric analysis and information visualization. “Bibliometrix” – an R based tool[7] is used to analyze and visualize the co-relationships in the metadata. One of the most important indications of the development of the research field is the number of peer-reviewed publications each year.

Fig. 1. Systematic Mapping Framework

Fig. 2 shows annual research growth by outlining the total number of publications each year. The cumulative progression of fig 2 depicts the steady increase of peer-reviewed scientific literature from 2008-2020 which strongly suggests the growth of demand response related research. The year 2020 only included the articles published until January 26th. It could be concluded that the quantity of scientific literature on demand response will increase at a significant number in the coming years.

B. Top Source Journal

Top source journals that are publishing most frequently in the areas of Demand Response have been extracted and categorized based on the total number of publications (NP) and the total number of citations (NC). This categorization will give an impression of influential Journals to the researchers for monitoring the progress of the discipline. Table II categorized the top five journals from the SCOPUS metadata where the IEEE transaction on Smart Grid has the highest number of published literature in terms of NP as well as NC.

| TABLE II. TOP MOST CONTRIBUTING SOURCE TITLE |
|-------------------|-----|-----|--|-------|
| JOURNAL | NP | NC | PUBLISHER |
| IEEE Trans On Smart Grid | 169 | 7560 | IEEE |
| Energies | 73 | 399 | MDPI |
| Dianwang Jishu/Power System Technology | 61 | 564 | Power System Technology Press |
| IEEE Transaction On Power System | 60 | 2375 | IEEE |
| Applied Energy | 53 | 993 | Elsevier |

C. Country Wise Analysis

In this section, the top most productive countries in terms of the number of publications are presented. The number of publications from a country reflects the attention and the overall research strengths of this country in the related field of research. Table III shows the order of the countries sorted by NP, also taking into account the NC. A total of 525 articles has been published from 1377 articles where the corresponding author is affiliated to the countries from Table III which accounts for 38% of the total publications. China
tops the table with 228 articles followed by the USA with 111 publications.

TABLE III. TOP MOST PRODUCTIVE COUNTRIES

COUNTRIES	NP	NC
China	288	2969
USA	111	5726
South Korea	54	1441
United Kingdom	38	690
Japan	34	771

D. Institutional Performance

Table IV illustrates the top-performing institutions in terms of the number of publications. China outperformed the rest of the world with five institutions in the top 10 most contributing institutions where North China Electric Power University secures the top position with 99 publications.

TABLE IV. TOP MOST PRODUCTIVE INSTITUTIONS

INSTITUTIONS	COUNTRY	NP
North China Electric Power University	China	99
China Electric Power Research Institute	China	61
South East University	China	51
Tianjin University	China	35
Shanghai Jiao Tong University	China	27

E. Most Cited Articles

Table V lists the highly influential papers based on the number of citations each paper got throughout the analyzed period. The main focus of the papers is on a conceptual review of DR as well as proposing optimization and control framework for cost minimization and energy saving.

TABLE V. TOP MOST INFLUENTIAL ARTICLE

ARTICLE	REF	NC	KEYWORDS/CONTRIBUTION
Palensky et al. 2011	[8]	1457	DSM, Energy Efficiency, DR, Load Management, Peak Shaving
Ipakachi et al. 2009	[1]	1171	DER, DR, HEV, Load Shaping, Smart Grid
LU N et al. 2012	[9]	370	Air Conditioning, Ancillary Service, HVAC, Direct Load Control, DR
Fan Z et al. 2013	[10]	327	Smart Grid, Communication
Mathieu J L et al. 2010	[11]	299	DR, Predictive Control, State Estimation, Control Framework

IV. DEMAND RESPONSE: ANALYSIS OF THE RESEARCH THEMES

Keywords are generally used to emphasize the research theme as well as the content of the publications. In this study, the keywords associated with each paper have been utilized to identify a common research theme to create a conceptual map of Demand Response research. Using the bibliometrix tool, a multiple corresponding analysis (MCA) has been performed to draw the conceptual structure using a word co-occurrence network to map and cluster keyword terms that are frequently occurring in a bibliographic collection. Fig 3 illustrates the conceptual map and keyword cluster from MCA. The figure can be interpreted based on the relative position of the points and their distribution along the dimensions; as words are more similar in distribution, the closer they represent in the figure[7].

![Conceptual Structure from multiple corresponding analysis](image)

In Fig 3, each cluster essentially represents a group of keywords that expresses a common research theme. From the analysis, six key research themes have been identified and an elaborate content analysis based on selected literature has been carried out where frequent research questions addressed by the research community on identified topics have been described and grouped. Table VI provides an overview of each of the research domain with identified research questions.
RESEARCH THEME	CONTENT	RESEARCH QUESTIONS	REFERENCES
Smart Homes	Residential DR, Commercial DR, Appliance Scheduling	RQ1. Which type of residential equipment is suitable for DR and how long it can participate in DR without compromising user comfort?	[17][18][19][20][21][22][23][24][25][26][27]
		RQ2. What are the key factors in pricing schemes that provide the maximum user participation in DR?	
		RQ3. What framework works best in optimizing the load hence maximizing energy saving in DR?	
		RQ4. How to deal with the uncertainties in DR?	
Grid Energy Management	DER Integration, Energy Management in Micro-grid	RQ5. How accurately model DR participating assets?	[28][29][30][31][32][33][34][35][36]
		RQ6. What is the impact of the DR Framework on grid-level energy management considering maximum DER Integration and uncertainties?	
Ancillary Services	Frequency Control, Peak-load control Voltage Regulation	RQ7. What is the impact of load characteristics in system operational parameters (frequency, voltage)?	[37][38][39]
Load Management	Controllable Thermal Load, Electric Vehicles (EV)	RQ8. How to aggregate different types of (controllable Flexible thermal) loads and utilize different control methods to perform DR associated services?	[40][41][42][43]
Energy Market	Market Model Incentive Planning	RQ9. What market structure/scheme works best in terms of DR profit maximization?	[44][45][46][47][48][49][50]
		RQ10. How to incorporate the uncertainties in Energy Market Framework?	
Smart Metering /AMI	Non-Intrusive Load Monitoring (NILM); Energy Meter Data Analysis	RQ11. How to model the individual pattern of device-level electrical load in DR application?	[51][52][53][54][55][56]
		RQ12. How to identify different assets/appliances in Residential/Commercial DR Context?	
		RQ13. What are the critical features in Smart Meter data that help facilitate decision making in DR?	
		RQ14. How to make the system more secure; Detection of Cyber Attack?	

A. Smart Homes

Among the research themes, articles have been published under Smart Homes, where an emphasis has been given on the identification of suitable assets that can participate in a demand response program. Different optimization frameworks that considered the key optimization parameters such as cost, energy efficiency, user comfort have also been addressed. Pricing schemes remain a crucial challenge to identify the user’s willingness to participate in DR programs. Alternatively, the estimation of uncertainties in electrical load estimation, as well as the frameworks to include the uncertainty measurement, are getting significant attention.

B. Grid Energy Management

Different DR control frameworks on grid-level energy management with distributed energy resources have been investigated to assess impact in terms of maximizing DER integration to the grid. Demand response facilitates DER integration by incorporating different resources (thermal loads, EVs, Energy Storage) and utilizing their flexible load changing capacity. However, accurate mathematical modelling of these resources is very important to fully harness their ability and integrate them into a DR framework.

C. Ancillary Services

Several works of literature were also focused on utilizing DR for ancillary services. As the penetration of intermittent resources is increasing continuously, hence the grid stability issues such as frequency and voltage regulations are getting attention under the DR paradigm. The effect of system parameters due to external disturbances, for example, significant generation drop or large load drops are being studied while the impact of the load characteristics on system parameters has also been researched extensively in recent days.

D. Load Management

The increasing number of thermal loads, as well as EVs, brings massive challenges to the traditional grid. However, some loads such as EVs can also be utilized to inject the electrical power back to the electrical power grid. This provides an excellent opportunity to achieve active demand response and provide associated services to facilitate grid stability in the presence of intermittent resources. But how to aggregate different types of loads to participate in the DR framework, also coordinated control of these loads remains an important research question that is being addressed under the direct load management research theme.
E. Energy Market

There have been some extensive studies on the market behaviour of demand response resources. Different market structures and strategies remain the primary focus of many literature. The lack of a market mechanism in the current market structure (Day-ahead/Real-Time) remains a great barrier for demand response in most countries. Without an accurate market mechanism and demand response model, it is hardly possible to estimate the real impact of the demand response market, hence there will be a significant change in financial outcome for the consumers which has been estimated from the existing model.

F. Smart Metering

The penetration of advanced metering infrastructure enables consumers to participate more in DR programs. Since the introduction of market deregulation and market-driven pricing, utilities have been searching to equalize consumption with generation. Smart meters are providing site-specific information which helps to make decisions in response to changing prices for electricity according to the time of the day and season. Hence feature analysis of smart meter data has been getting significant research attention. Alternatively, intelligent technologies such as Non-intrusive load monitoring (NILM) are getting popular for device-level detection. As more appliances are now becoming intelligent i.e. IoT enabled, it opens up a new dimension where research has been done on identifying an individual device status to facilitate cost-effective scheduling under the DR program.

V. CONCLUSION

In this paper, a comprehensive mapping of demand-side response has been carried out under the smart grid paradigm. Demand response has shown to be efficient in mitigating many grid operational challenges. Though there have been numerous research outcomes on demand response, there are still some challenges and research questions that need further attention,

- From the study, it is evident that a lot of research has been done in both residential and commercial DR context. However, there are very few cases of DR application in an industrial setting. As industries also employ flexible controllable load, evaluation of DR potential in an industrial context will prove valuable to exploit in the long run.
- Introduction of EVs, Energy storage will create new opportunities for residential and commercial level DR. Therefore more research to facilitate these assets in DR will be required.
- User comfort and pricing remain a crucial barrier for DR participation by the consumers. Introducing new strategies and control frameworks that attracts the consumers to participate in DR can be considered as a significant research challenge.
- The effect of DR schemes in the electricity market with different levels of competition is recommended for further investigation.
- Proper mathematical modeling of assets and formulating the optimization problem with more detailed parameters for DR programs are required in the future.

- As more advanced computing technologies are being involved, analysis of higher resolution smart meter data as well as interpreting the patterns will get more attention in the future.
- Responding to cyber threats remains a big question, as more and more smart meters are being deployed proper data encryption, and introducing more security features remains a significant challenge that needs to be addressed.

ACKNOWLEDGMENT

This research was part-funded by Science Foundation Ireland (SFI) through MaREI, the SFI Research Centre for Energy, Climate, and Marine and specially the Centre for Doctoral Training in Energy Resilience and the Built Environment (ERBE) (grant no: 12/RC/2302_P2), with supporting funding obtained from UK Engineering and Physical Sciences Research Council (EPSRC) (grant EP/S021671/1) and FlexTECC: Flexible Timing of Energy Consumption in Communities Innovation Fellowship (grant EP/S001670/1).

REFERENCES

[1] A. Ipakchi and F. Albueyeh, “Grid of the future,” IEEE Power Energy Mag., vol. 7, no. 2, pp. 52–62, 2009.
[2] S. Chen and C.-C. Liu, “From demand response to transactive energy: state of the art,” J. Mod. Power Syst. Clean Energy, vol. 5, no. 1, pp. 10–19, 2017.
[3] V. S. K. M. Balijepalli, V. Pradhan, S. A. Kharande, and R. M. Shereef, “Review of demand response under smart grid paradigm,” 2011 IEEE PES Int. Conf. Innov. Smart Grid Technol. ISGT India 2011, pp. 236–243, 2011, doi: 10.1109/ISGT-India.2011.6145388.
[4] R. S. El Geneidy and B. Howard, “Review of techniques to enable community-scale demand response strategy design,” uSim2018 - Urban Energy Simul., 2018.
[5] I. Wang, H. Zhong, Z. Ma, Q. Xia, and C. Kang, “Review and prospect of integrated demand response in the multi-energy system,” Appl. Energy, vol. 202, pp. 772–782, 2017.
[6] Y. M. Guo, Z. L. Huang, J. Guo, H. Li, X. R. Guo, and M. J. Nkeli, “Bibliometric analysis on smart cities research,” Sustain., vol. 11, no. 13, 2019.
[7] M. Aria and C. Cucucurullo, “bibliometrix: An R-tool for comprehensive science mapping analysis,” J. Informetr., vol. 11, no. 4, pp. 959–975, 2017.
[8] P. Palensky and D. Dietrich, “Demand side management: Demand response, intelligent energy systems, and smart loads,” IEEE Trans. Ind. Informatics, vol. 7, no. 3, pp. 381–388, 2011.
[9] N. Lu, “An evaluation of the HVAC load potential for providing load balancing service,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1263–1270, 2012.
[10] Z. Fan et al., “Smart grid communications: Overview of research challenges, solutions, and standardization activities,” IEEE Commun. Surv. Tutorials, vol. 15, no. 1, pp. 21–38, 2013.
[11] J. L. Mathieu, P. N. Price, S. Kiliccote, and M. A. Piette, “Quantifying changes in building electricity use, with application to demand response,” IEEE Trans. Smart Grid, vol. 2, no. 3, pp. 507–518, 2011.
[12] K. M. Tsui and S. C. Chan, “Demand response optimization for smart home scheduling under real-time pricing,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1812–1821, 2012.
[13] J. Medina, N. Muller, and I. Roytelman, “Demand response and distribution grid operations: Opportunities and challenges,” IEEE Trans. Smart Grid, vol. 1, no. 2, pp. 193–198, 2010.
[14] J. Kang, R. Yu, X. Huang, S. Maharanj, Y. Zhang, and E. Hossain, “Enabling Localized Peer-to-Peer Electricity Trading among Plug-in Hybrid Electric Vehicles Using Consortium Blockchains,” IEEE Trans. Ind. Informatics, vol. 13, no. 6, pp. 3154–3164, 2017.
[15] B. Chai, J. Chen, S. Member, Z. Yang, Y. Zhang, and S. Member, “Utility Companies: A Two-Level Game Approach,” vol. 5, no. 2, pp. 722–731, 2014.
[16] S. Bahrami and A. Sheikhi, “From Demand Response in Smart Grid Toward Integrated Demand Response in Smart Energy Hub,”
IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 650–658, 2016.

[17] R. D’Hulst, T. de Vos, B. De Vreese, B. Eeckhout, B. G. Deconinck, and K. Vanthournout, “Demand response flexibility and flexibility potential of residential smart appliances: Experiences from large pilot test in Belgium,” Appl. Energy, vol. 155, pp. 79–90, 2015.

[18] C. B. A. Kobus, E. A. M. Klaassen, R. Mugge, and J. P. L. Schorsmans, “A real-life assessment on the effect of smart appliances for shifting households’ electricity demand,” Appl. Energy, vol. 147, pp. 335–343, 2015.

[19] W. Labeeuw, J. Stragier, and G. Deconinck, “Potential of active demand reduction with residential wet appliances: A case study for Belgium,” IEEE Trans. Smart Grid, vol. 6, no. 1, pp. 315–323, 2015.

[20] K. Ma, T. Yao, J. Yang, and X. Guan, “Residential power scheduling for demand response in smart grid,” Int. J. Electr. Power Energy Syst., vol. 78, pp. 320–325, 2016, doi: 10.1016/j.ijpeps.2015.11.099.

[21] K. X. Perez, M. Baldea, and T. F. Edgar, “Integrated HVAC management and optimal scheduling of smart appliances for community peak load reduction,” Energy Build., vol. 123, pp. 34–40, 2016, doi: 10.1016/j.enbuild.2016.04.003.

[22] M. Pipattanasomporn, M. Kuzlu, S. Rahman, and Y. Teklu, “Load profiles of selected major household appliances and their demand response opportunities,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 742–750, 2014.

[23] S. Shao, M. Pipattanasomporn, and S. Rahman, “Development of physical-based demand response-enabled residential load models,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 607–614, 2013.

[24] Z. Yu, L. Jia, M. C. Murphy-Hoye, A. Pratt, and L. Tong, “Modeling and stochastic control for home energy management,” IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 2244–2255, 2013.

[25] C. Bartus, F. Wallin, M. Oflare, I. Vassileva, and L. Wester, “Introducing a demand-based electricity distribution tariff in the residential sector: Demand response and customer perception,” Energy Policy, vol. 39, no. 9, pp. 5008–5025, 2011.

[26] S. Li, D. Zhang, A. B. Roget, and Z. O’Neill, “Integrating home appliances for shifting households’ electricity demand,” IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 650–658, 2016.

[27] J. Mathieu, S. Koch, and D. S. Callaway, “State estimation and control of electric loads to manage real-time energy imbalance,” IEEE Trans. Power Syst., vol. 28, no. 1, pp. 430–440, 2013.

[28] F. Luo, Z. Y. Dong, K. Meng, J. Wen, H. Wang, and J. Zhao, “An Operational Planning Framework for Large-Scale Thermorestrictedly Controlled Load Dispatch,” IEEE Trans. Ind. Informatics, vol. 13, no. 1, pp. 217–227, 2017.

[29] N. Mahmoudi, M. Eghbal, and T. K. Saha, “Employing demand response in energy procurement plans of electricity retailers,” Int. J. Electr. Power Energy Syst., vol. 63, pp. 455–460, 2014.

[30] S. Mahjarian, Q. Z. Zhu, Y. Zhang, S. Gjessing, and T. Basar, “Demand response management in the smart grid in a large population regime,” IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 189–199, 2016.

[31] N. Li, L. Chen, and M. A. Dahleh, “Demand Response Using Linear Supply Function Bidding,” IEEE Trans. Smart Grid, vol. 6, no. 4, pp. 1827–1838, 2015.

[32] H. Li, X. Lin, H. Yang, X. Liang, R. Lu, and X. Shen, “EPDRP: An efficient privacy-preserving demand response scheme with adaptive key evolution in smart grid,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 8, pp. 2053–2064, 2014.

[33] H. S. V. S. K. Nuna and D. Srinivasan, “Multiagent-Based Transactive Energy Framework for Distribution Systems with Smart Microgrids,” IEEE Trans. Ind. Informatics, vol. 13, no. 5, pp. 2241–2250, 2017.

[34] M. Kazemi, B. Mohammadi-Ivatloo, and M. Ehsan, “Risk-based bidding of large electric utilities using Information Gap Decision Theory considering demand response,” Electr. Power Syst. Res., vol. 114, pp. 86–92, 2014.

[35] M. Kazemi, B. Mohammadi-Ivatloo, and M. Ehsan, “Risk-constrained strategic bidding of GenCos considering demand response,” IEEE Trans. Power Syst., vol. 30, no. 1, pp. 376–384, 2015.

[36] D. T. Nguyen, M. Negnevitsky, and M. De Groot, “Market-based demand response scheduling in a deregulated environment,” IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 1498–1506, 2013.

[37] M. Dong, P. C. M. Meira, W. Xu, and F. Freitas, “An event window based load monitoring technique for smart meters,” IEEE Trans. Smart Grid, vol. 3, no. 2, pp. 787–796, 2012.

[38] G. J. Kojovicz and T. Zahkbowicz, “Data mining techniques for detecting household characteristics based on smart meter data,” Energies, vol. 8, no. 7, pp. 7407–7427, 2015.

[39] J. Kwac, J. Flora, and R. Rajagopal, “Household energy consumption pattern segmentation using hourly data,” IEEE Trans. Smart Grid, vol. 5, no. 1, pp. 420–430, 2014.

[40] S. Haben, C. Singleton, and P. Grindrod, “Analysis and clustering of residential customers energy behavioral demand using smart meter data,” IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 136–144, 2016.

[41] Y. Wang, Q. Chen, C. Kang, and Q. Xia, “Clustering of Electricity Consumption Behavior Dynamics Toward Big Data Applications,” IEEE Trans. Smart Grid, vol. 7, no. 5, pp. 2437–2447, 2016.

[42] E. McKenna, I. Richardson, and M. Thomson, “Smart meter data: Balancing consumer privacy concerns with legitimate applications,” Energy Policy, vol. 41, pp. 807–814, 2012.