Quantum Reed-Muller Codes

Lin Zhang and Ian Fuss
Communications Division
Defence Science and Technology Organisation
P O Box 1500, Salisbury, South Australia 5108
Email: Lin.Zhang@dsto.defence.gov.au Ian.Fuss@dsto.defence.gov.au

Abstract

This paper presents a set of quantum Reed-Muller codes which are typically 100 times more effective than existing quantum Reed-Muller codes. The code parameters are $[[n, k, d]] = [[2^m, \sum_{l=0}^{r} C(m, l) - \sum_{l=0}^{m-r-1} C(m, l), 2^{m-r}]]$ where $2r + 1 > m > r$.

1. Introduction

Quantum information processing, which includes quantum communication, cryptography, and computation is currently moving from theoretical analysis towards implementation [1]. The fragility of quantum states has led to the development of quantum error correcting codes [2],[3]. A large number of research papers have appeared since it was shown that quantum error correcting codes exist [3]-[12]. Much of this research work has focused on repetition codes, i.e., codes with parameters $[[n,1,d]]$, or single error correcting codes, i.e., codes with parameters $[[n,k,3]]$. Repetition codes are inefficient, with code rates ($R = \frac{1}{n}$). Single error correcting codes are not very effective because they correct only one error in a block of n qubits. It is desirable to design quantum error correcting codes that are more efficient, and more powerful.

Calderbank and Shor described a general method to construct non-trivial, multiple error correcting quantum codes [4]. The same method was independently discovered by Steane [5]. Using this method, together with a technique to accommodate more information qubit(s) in a coded block by slightly reducing the minimum Hamming distance, Steane presented a set of multiple error correcting codes based on trivial codes and Hamming codes [10], and a set of quantum Reed-Muller Codes based on classical Reed-Muller codes [6]. In this paper, a new set of quantum Reed-Muller
codes are derived using the technique of Calderbank & Shor/Steane. These codes have lower code rates than Steane’s but their minimum Hamming distances are larger. It will be shown that if the uncoded quantum system has a qubit error rate less than 0.3%, one particular code of rate $R = 0.246$ will be able to bring the output qubit error rate down to 10^{-9}.

2. Quantum Codes

A multiple error correcting quantum code described in [4] comprises two classical error correcting codes, $C_1 = (n, k_1, d_1)$ and $C_2 = (n, k_2, d_2)$. C_1 and C_2 are related by

$$\{0\} \subset C_2 \subset C_1 \subset F_2^n$$

where $\{0\}$ is the all-zero code word of length n, and F_2^n is the n-dimensional binary vector space. The quantum code C defined by C_1 and C_2 has the parameters

$$[[n, k, d]] = [[n, \dim(C_2^\perp) - \dim(C_1^\perp), \min(d_1, d_2)]]$$

where C^\perp represents the dual code of C; the parameters of C^\perp are $(n, n - k, d^\perp)$; d and d^\perp are indirectly related by MacWilliams theorem [13]; and $\dim(C)$ denotes the dimension of the code C.

In order for the error correction scheme to work, coded quantum states must be represented in two bases. As in [3], we use ($\ket{0}, \ket{1}$) to represent basis 1, and ($\ket{0} = \ket{0} + \ket{1}, \ket{1} = \ket{0} - \ket{1}$) to represent basis 2. Note that the normalisation coefficients have been omitted for the sake of simplicity in presentation.

A quantum state, denoted by \ket{w}, can be coded as

$$\ket{c_w} = \sum_{v \in C_1} (-1)^{vw} \ket{v} \quad \text{in basis 1, and}$$

$$\ket{c_w} = \sum_{v \in C_1^\perp} \ket{v + w} \quad \text{in basis 2}$$

where $w \in C_2^\perp/C_1^\perp$; C_2^\perp/C_1^\perp denotes the cosets of C_1^\perp in C_2^\perp. Since all the w’s in C_1^\perp define the same quantum state, we can choose w to be coset leaders in C_2^\perp/C_1^\perp, denoted by $w \in [C_2^\perp/C_1^\perp]$. There are $|C_2^\perp/C_1^\perp| = 2^{\dim(C_2^\perp) - \dim(C_1^\perp)}$ coset leaders. The quantum code C spans a 2^k-dimensional Hilbert space where $k = \dim(C_2^\perp) - \dim(C_1^\perp)$. It is equivalent to encoding a block of k qubits into n qubits (mapping from the 2^k-dimensional Hilbert space into a subspace of a 2^n-dimensional Hilbert space).
3. Reed-Muller Codes

Reed-Muller codes are self-dual and hence good candidates for constructing quantum error correcting codes \[\text{[6]}.\] In this section, a brief introduction to the structure of Reed-Muller Codes is given. A thorough treatment of this subject can be found in\[\text{[13]}-\text{[15]}\].

For each positive integer \(m\) and \(r\) \((0 \leq r \leq m)\), there exists a Reed-Muller code of block length \(n = 2^m\). This code, denoted by \(RM(r, m)\), is called the \(r\)-th order Reed-Muller code. The generator matrix of \(RM(r, m)\) is defined as

\[
G = \begin{bmatrix}
G_0 \\
G_1 \\
\vdots \\
G_r
\end{bmatrix}
\]

(5)

where \(G_0 = \{1\}\) is the all-one vector of length \(n\); \(G_1\), an \(m\) by \(2^m\) matrix, has each binary \(m\)-tuple appearing once as a column; and \(G_l\) is constructed from \(G_1\) by taking its rows to be all possible products of rows of \(G_1\), \(l\) rows of \(G_1\) to a product. For definiteness, we take the leftmost column of \(G_1\) to be all zeros, the rightmost to be all ones, and the others to be the binary \(m\)-tuples in increasing order, with the low-order bit in the bottom row. Because there are \(C(m, l)\) ways to choose the \(l\) rows in a product, \(G_l\) is a \(C(m, l)\) by \(2^m\) matrix. For an \(r\)-th order Reed-Muller code, the dimension of the code is given by \(k = \sum_{l=0}^{r} C(m, l)\).

Equation (5) shows that \(RM(r-1, m)\) is generated by \([G_0, G_1, \ldots, G_{r-1}]^T\), therefore \(RM(r-1, m) \subseteq RM(r, m)\). More generally,

\[
RM(r - i, m) \subseteq RM(r, m) \quad \text{for integers} \quad 1 \leq i \leq r.
\]

(6)

The self-duality property and the minimum Hamming distance of a Reed-Muller code can be easily derived from the squaring structure of the code. According to Forney \[\text{[15]}\], any \(r\)-th order Reed-Muller code of length \(2^m\) can be generated through recursive squaring construction:

\[
RM(r, m) = |RM(r, m - 1)/RM(r - 1, m - 1)|^2
\]

(7)

or two-level squaring construction:

\[
RM(r, m) = |RM(r, m - 2)/RM(r - 1, m - 2)/RM(r - 2, m - 2)|^4
\]

(8)
where \(RM(r, m-1)/RM(r-1, m-1)\) and \(RM(r, m-2)/RM(r-1, m-2)/RM(r-2, m-2)\) represent a one-level partition and a two-level partition, respectively. The boundary conditions are:

\[
RM(r, 0) = \begin{cases}
(1, 1) & \text{if } r \geq 0 \\
(1, 0) & \text{otherwise}
\end{cases}
\]

The squaring construction of \(RM(r, m)\) is defined as

\[
|RM(r, m-1)/RM(r-1, m-1)|^2 = \{(t_1 + c, t_2 + c) : t_1, t_2 \in RM(r-1, m-1), c \in [RM(r, m-1)/RM(r-1, m-1)]\}. \tag{9}
\]

From this construction, it is obvious that the minimum Hamming distance of \(RM(r, m)\), denoted \(d[RM(r, m)]\), is given by

\[
d[RM(r, m)] = \min\{d[RM(r-1, m-1)], 2d[RM(r, m-1)]\}. \tag{10}
\]

From the boundary condition, one can easily prove by induction that the minimum Hamming distance of \(RM(r, m)\) is indeed \(2^{m-r}\).

The dual partition chain of \(RM(r, m-1)/RM(r-1, m-1)\) is \(RM^\perp(r-1, m-1)/RM^\perp(r, m-1)\). The squaring construction of this dual partition chain is written as

\[
|RM^\perp(r-1, m-1)/RM^\perp(r, m-1)|^2 = \{(t_1' + c', t_2' + c') : t_1', t_2' \in RM^\perp(r, m-1), c' \in [RM^\perp(r-1, m-1)/RM^\perp(r, m-1)]\}. \tag{11}
\]

\(|RM^\perp(r-1, m-1)/RM^\perp(r, m-1)|^2\) is the dual of \(|RM(r, m-1)/RM(r-1, m-1)|^2\) because the inner product of the vectors from the two constructions is zero,

\[
(t_1 + c, t_2 + c) \cdot (t_1' + c', t_2' + c') = (c, c) \cdot (c', c') = 0. \tag{12}
\]

If \(RM^\perp(r, m-1) = RM[(m-1) - r - 1, m-1]\) for \(r \leq m-1\), Eqs \((11)\) and \((12)\) shows that \(RM^\perp(r, m) = RM(m-r-1, m)\) for \(r \leq m\). Using the induction method and the boundary condition for the initial partition, it can be shown that the dual code of \(RM(r, m)\) is \(RM(m-r-1, m)\). If \(m-r-1 \leq r\),

\[
RM^\perp \equiv RM(m-r-1, m) \subseteq RM(r, m).
\]

That is, Reed-Muller codes are self-dual. The minimum Hamming distance of the dual code \(RM(m-r-1, m)\) is \(2^{r+1}\). Reed-Muller Codes of block length 4 to 1024 are listed in Table \(I\).
4. Construction

Since Reed-Muller codes are self-dual, we have $C^⊥ \subseteq C$ if $k^⊥ \leq k$. Let $C_1 \equiv (n, k, d) \equiv (2^m, \sum_{l=0}^r C(m, l), 2^{m-r})$ and $k \geq \frac{n}{2}$. To construct a quantum code from Reed-Muller codes, we simply choose $C_2 = C_1^⊥$. Therefore, $C_2 \equiv (n, k^⊥, d^⊥) \equiv (2^m, \sum_{l=0}^{m-r-1} C(m, l), 2^{r+1})$ and $d^⊥ \geq d$. Applying the method introduced in Section 2 and Equations (2)-(4), we will have the quantum Reed-Muller code C defined as

$$C = [[n, k, d]] = [[2^m, \sum_{l=0}^r C(m, l) - \sum_{l=0}^{m-r-1} C(m, l), 2^{m-r}]]$$

(13)

For example, let $m = 10$ and $n = 2^m = 1024$. There are 10 classical Reed-Muller codes of length 1024:

(1024, 1023, 2) (1024, 1013, 4) (1024, 968, 8) (1024, 848, 16) (1024, 638, 32)
(1024, 1, 1024) (1024, 11, 512) (1024, 56, 256) (1024, 176, 128) (1024, 386, 64)

Every pair of dual codes form a quantum Reed-Muller code:

(1024, 1022, 2) (1024, 1002, 4) (1024, 912, 8) (1024, 772, 16) (1024, 252, 32)

The (1024, 252, 32) code can correct 15 errors out of 1024 qubits. A comparable code in [6] is the (1024, 462, 24) code, which is about 1.8 times more efficient than the (1024, 252, 32) code. But the (1024, 252, 32) code is able to correct 4 more errors than the (1024, 462, 24) code.

A list of new quantum Reed-Muller codes of length 4 to 1024 is given in Table 2. These codes, together with codes listed in [6], form one family of quantum Reed-Muller codes.

Assume that the decoherence process affects each qubit independently, and that the error probability of uncoded qubits is p. Then the probability of each coded quantum state in error shall be bounded by

$$P_e \leq \sum_{j=t+1}^n C(n, j)p^{n-j}(1-p)^j.$$

(14)

The probability of each qubit being in error is given by

$$P_q = 1 - (1 - P_e)^\frac{1}{t}$$

(15)

The error performances of various quantum error correcting codes are illustrated in Figs.1 and 2 by applying Equations (14) and (15). It was found that all single error...
correcting quantum codes have similar qubit error performance (close to that of the [5, 1, 3] code). The most effective repetition codes were proposed by Calderbank et. al. [8]. Fig. 1 shows that the [[1024, 252, 32]] quantum Reed-Muller code outperforms the [[13, 1, 5]] repetition code significantly, and outperforms the [[29, 1, 11]] repetition code asymptotically. The [[1024, 252, 32]] code is about 3 times more efficient than the [[13, 1, 5]] code, and 7 times more efficient than the [[13, 1, 5]] code. It should be noted though that codes such as [[1024, 252, 32]] are more complex to decode.

The quantum Reed-Muller codes constructed in this paper are a factor of 2 less efficient than those constructed by Steane [3]. However they are two orders of magnitude more effective, as shown in Fig 2. As indicated in both figures, the average qubit error probability can be reduced to less than 10^{-9} (one in a billion) if the uncoded qubit error rate is not more than 0.3%.

References

[1] T.P. Spiller, “Quantum Information Processing: Cryptography, Computation, and Teleportation”, Proceedings of IEEE, Vol.84, No.12, pp.1719-1746, December 1996.

[2] P.W. Shor, “Scheme for Reducing Decoherence in Quantum Memory”, Phys. Rev. A 52, 2493 (1995).

[3] A.M. Steane, “Error Correcting Codes in Quantum Theory”, Phys. Rev. Lett., Vol.77, No.5, July 1996.

[4] A.R. Calderbank and P.W. Shor, “Good quantum error-correcting codes exist”, Phys. Rev. A, to be published (preprint quant-ph/9512032).

[5] A.M. Steane, “Multiple Particle Interference and Quantum Error Correction”, Phys. Rev. A, to be published (preprint quant-ph/9601024).

[6] A.M. Steane, “Quantum Reed-Muller Codes”, Phys. Rev. A, to be published (preprint quant-ph/9608026).

[7] R. Laflamme, C. Miquel, J.P. Paz and W.H. Zurek, “Perfect Quantum Error Correction Code”, to be published (preprint quant-ph/9602019).

[8] A.R. Calderbank, E.M. Rains, P.W. Shor and N.J.A. Sloane, “Quantum Error Correction and Orthogonal Geometry”, to be published (preprint quant-ph/9605005).
[9] D. Gottesman, “A Class of Quantum Error-Correcting Codes Saturating the Quantum Hamming Bound”, to be published (preprint quant-ph/9604038).

[10] A.M. Steane, “Simple Quantum Error Correcting Codes”, to be published (preprint quant-ph/9605021).

[11] A.R. Calderbank, E.M. Rains, P.W. Shor and N.J.A. Sloane, “Quantum Error via Codes over GF(4)”, to be published (preprint quant-ph/9608006).

[12] E. Knill and R. Laflamme, “A Theory of Quantum Error-Correcting Codes”, to be published (preprint quant-ph/9604034).

[13] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error Correcting Codes, North Holland, Amsterdam, 1977.

[14] R.E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley Publishing Company.

[15] G.D. Forney, “Coset codes–Part II: Binary lattices and related codes”, IEEE Trans. Inform. Theory, vol. IT-34, pp. 1152-1187, Sept. 1988.
Table 1: Parameters of the Classical Reed-Muller Codes

k	2	4	8	16	32	64	128	256	512	1024
4	3	1								
8	7	4	1							
16	15	11	5	1						
n	32	31	26	16	6	1				
64	63	57	42	22	7	1				
128	127	120	99	64	29	8	1			
256	255	247	219	163	93	37	9	1		
512	511	502	466	382	256	130	46	10	1	
1024	1023	1013	968	848	638	386	176	56	11	1

Table 2: Parameters of the Quantum Reed-Muller Codes

k	2	4	8	16	32
4	2				
8	6	0			
16	14	6			
n	32	30	20	0	
64	62	50	20		
128	126	118	68	0	
256	254	238	184	70	
512	510	492	420	252	0
1024	1022	1002	912	772	252
Figure 1: Qubit Error Performance of repetition codes and the (1024,252,32) Reed-Muller code.
Figure 2: Qubit Error Performance of Multiple Error Correcting Codes.