Permutation-symmetric three-body $O(6)$ hyperspherical harmonics in three spatial dimensions

Igor Salom and V. Dmitrašinović

Abstract We have constructed the three-body permutation symmetric $O(6)$ hyperspherical harmonics which can be used to solve the non-relativistic three-body Schrödinger equation in three spatial dimensions. We label the states with eigenvalues of the $U(1) \otimes SO(3)_{rot} \subset U(3) \subset O(6)$ chain of algebras and we present the corresponding $K \leq 4$ harmonics. Concrete transformation properties of the harmonics are discussed in some detail.

1 Introduction

Hyperspherical harmonics are an important tool for dealing with quantum-mechanical three-body problem, being of a particular importance in the context of bound states \cite{1,2,3,4,5,6}. However, before our recent progress \cite{8}, a systematical construction of permutation-symmetric three-body hyperspherical harmonics was, to our knowledge, lacking (with only some particular cases being worked out – e.g. those with total orbital angular momentum $L = 0$, see Refs. \cite{5,7}).

In this note, we report the construction of permutation-symmetric three-body $O(6)$ hyperspherical harmonics using the $U(1) \otimes SO(3)_{rot} \subset U(3) \subset O(6)$ chain of algebras, where $U(1)$ is the “democracy transformation”, or “kinematic rotation” group for three particles, $SO(3)_{rot}$ is the 3D rotation group, and $U(3), O(6)$ are the usual Lie groups. This particular chain of algebras is mathematically very natural, since the $U(1)$ group of “democracy transformations” is the only nontrivial (Lie) subgroup of full hyperspherical $SO(6)$ symmetry (the symmetry of nonrelativistic...
kinetic energy) that commutes with spatial rotations. Historically, this chain was also suggested in the recent review of the Russian school’s work, Ref. [11], and indicated by the previous discovery of the dynamical $O(2)$ symmetry of the Y-string potential, Ref. [12]. The name “democracy transformations” comes from the close relation of these transformations with permutations: (cyclic) particle permutations form a discrete subgroup of this $U(1)$ group.

The polynomial form of the obtained h.s. harmonics allows integrals of three (or more) harmonic functions to be easily calculated. We demonstrate this in section 7 where we give tables of matrix elements of rotationally invariant permutation symmetric three particle harmonics in the h.s. basis (these matrix elements are crucial for solving the Schrödinger equation in any permutation symmetric potential).

2 Three-body hyper-spherical coordinates

A natural set of coordinates for parametrization of three-body wave function $\Psi(\rho, \lambda)$ (in the center-of-mass frame of reference) is given by the Euclidean relative position Jacobi vectors $\rho = \frac{1}{\sqrt{2}}(x_1 - x_2), \lambda = \frac{1}{\sqrt{6}}(x_1 + x_2 - 2x_3)$. The overall six components of the two vectors can be seen as specifying a position in a six-dimensional configuration space $x_\mu = (\lambda, \rho)$, which, in turn, can be parameterized by hyperspherical coordinates as $\Psi(R, \Omega_5)$. Here $R = \sqrt{\rho^2 + \lambda^2}$ is the hyper-radius, and five angles Ω_5 parametrize a hyper-sphere in the six-dimensional Euclidean space. Three (Φ_i, $i = 1, 2, 3$) of these five angles (Ω_5) are just the Euler angles associated with the orientation in a three-dimensional space of a spatial reference frame defined by the (plane of) three bodies; the remaining two hyper-angles describe the shape of the triangle subtended by three bodies; they are functions of three independent scalar three-body variables, e.g. $\rho \cdot \lambda, \rho^2, \lambda^2$. Due to the connection $R = \sqrt{\rho^2 + \lambda^2}$, this shape-space is two-dimensional, and topologically equivalent to the surface of a three-dimensional sphere. A spherical coordinate system can be further introduced in this shape space. Among various (in principle infinitely many) ways that this can be accomplished, the one due to Iwai [6] stands out as the one that fully observes the permutation symmetry of the problem. Namely, of the two

Iwai (hyper)spherical angles (α, ϕ): $(\sin \alpha)^2 = 1 - \left(\frac{2\rho \cdot \lambda}{R^2}\right)^2, \tan \phi = \left(\frac{\rho \cdot \lambda}{\rho^2 - \lambda^2}\right)$,

the angle α does not change under permutations, so that all permutation properties are encoded in the ϕ-dependence of the wave functions.

Nevertheless, in the construction of hyperspherical harmonics, we will, unlike the most of the previous attempts in this context, refrain from use of any explicit set of angles, and express harmonics as functions of cartesian Jacobi coordinates.
3 O(6) symmetry of the hyper-spherical approach

The motivation for hyperspherical approach to the three-body problem comes from the fact that the equal-mass three-body kinetic energy T is $O(6)$ invariant and can be written as

$$T = \frac{m}{2} \dot{R}^2 + \frac{K_{\mu\nu}^2}{2mR^2}.$$ (1)

Here, $K_{\mu\nu}$, $(\mu, \nu = 1, 2, \ldots, 6)$ denotes the $SO(6)$ “grand angular” momentum tensor

$$K_{\mu\nu} = m \left(x_{\mu} \dot{x}_{\nu} - x_{\nu} \dot{x}_{\mu} \right) = \left(x_{\mu} p_{\nu} - x_{\nu} p_{\mu} \right).$$ (2)

$K_{\mu\nu}$ has 15 linearly independent components, that contain, among themselves three components of the “ordinary” orbital angular momentum: $L = l_{\rho} + \lambda_{\rho} = m \left(\rho \times \rho + \lambda \times \lambda \right)$.

It is due to this symmetry of the kinetic energy that the decomposition of the wave function and potential energy into $SO(6)$ hyper-spherical harmonics becomes a natural way to tackle the three-body quantum problem.

In this particular physical context, the six dimensional hyperspherical harmonics need to have some desirable properties. Quite generally, apart from the hyperangular momentum K, which labels the $O(6)$ irreducible representation, all hyperspherical harmonics must carry additional labels specifying the transformation properties of the harmonic with respect to (w.r.t.) certain subgroups of the orthogonal group. The symmetries of most three-body potentials, including the three-quark confinement ones, are: parity, rotations and permutations (spatial exchange of particles).

Therefore, the goal is to find three-body hyperspherical harmonics with well defined transformation properties with respect to the symmetries. Parity is directly related to K value: $P = (-1)^K$, the rotation symmetry implies that the hyperspherical harmonics must carry usual quantum numbers L and m corresponding to $SO(3)_{rot} \supset SO(2)$ subgroups and permutation properties turn out to be related with a continuous $U(1)$ subgroup of “democracy transformations”, as will be discussed below.

4 Labels of permutation-symmetric three-body hyper-spherical harmonics

We introduce the complex coordinates:

$$X_i^\pm = \lambda_i \pm ip_i, \quad i = 1, 2, 3.$$ (3)

Nine of 15 hermitian $SO(6)$ generators $K_{\mu\nu}$ in these new coordinates become
Here L_{ij} have physical interpretation of components of angular momentum vector L. The symmetric tensor Q_{ij} decomposes as (5) + (1) w.r.t. rotations, while the trace:

$$Q = Q_{ii} = \sum_{i=1}^{3} X_i^+ \frac{\partial}{\partial X_i^+} - \sum_{i=1}^{3} X_i^- \frac{\partial}{\partial X_i^-}$$ \hspace{1cm} (6)$$

is the only scalar under rotations, among all of the $SO(6)$ generators. Therefore, the only mathematically justified choice is to take eigenvalues of this operator for an additional label of the hyperspherical harmonics. Besides, this trace Q is the generator of the forementioned democracy transformations, a special case of which are the cyclic permutations – which in addition makes this choice particularly convenient on an route to construction of permutation-symmetric hyperspherical harmonics.

The remaining five components of the symmetric tensor Q_{ij}, together with three antisymmetric tensors L_{ij} generate the $SU(3)$ Lie algebra, which together with the single scalar Q form an $U(3)$ algebra, Ref. [11].

Overall, labelling of the $O(6)$ hyper-spherical harmonics with labels K, Q, L and m corresponds to the subgroup chain $U(1) \otimes SO(3)_{rot} \subset U(3) \subset SO(6)$. Yet, these four quantum numbers are in general insufficient to uniquely specify an $SO(6)$ hyper-spherical harmonic and an additional quantum number must be introduced to account for the remaining multiplicity. This is the multiplicity that necessarily occurs when $SU(3)$ unitary irreducible representations are labelled w.r.t. the chain $SO(2) \subset SO(3) \subset SU(3)$ (where $SO(3)$ is “matrix embedded” into $SU(3)$), and thus is well documented in the literature. In this context the operator:

$$\mathcal{Y}_{LQL} = \sum_{ij} L_{ij} Q_{ij} L_{ij}$$ \hspace{1cm} (7)$$

(where $L_{ij} = \frac{1}{2} \varepsilon_{ijk} L_{jk}$ and Q_{ij} is given by Eq. (5)) has often been used to label the multiplicity of $SU(3)$ states. This operator commutes both with the angular momentum L_i, and with the “democracy rotation” generator Q:

$$[\mathcal{Y}_{LQL}, L_i] = 0; \quad [\mathcal{Y}_{LQL}, Q] = 0$$

Therefore we demand that the hyper-spherical harmonics be eigenstates of this operator:

$$\mathcal{Y}_{LQL} \psi^{KQ\nu}_{L_m} = \nu \psi^{KQ\nu}_{L_m}$$

Thus, ν will be the fifth label of the hyper-spherical harmonics, beside the (K, Q, L, m).

\[
i L_{ij} \equiv X_i^+ \frac{\partial}{\partial X_j^+} + X_i^- \frac{\partial}{\partial X_j^-} - X_j^+ \frac{\partial}{\partial X_i^+} - X_j^- \frac{\partial}{\partial X_i^-}, \quad (4)
\]

\[
2Q_{ij} \equiv X_i^+ \frac{\partial}{\partial X_j^+} - X_i^- \frac{\partial}{\partial X_j^-} + X_j^+ \frac{\partial}{\partial X_i^+} - X_j^- \frac{\partial}{\partial X_i^-}. \quad (5)
\]
5 Tables of hyper-spherical harmonics of given K, Q, L, m and ν

Below we explicitly list all hyper-spherical harmonics for $K \leq 4$, labelled by the quantum numbers (K, Q, L, m, ν) (we will not delve here into lengthy details of the derivation of the expressions). We list only the harmonics with $m = L$ and $Q \geq 0$, as the rest can be easily obtained by acting on them with standard lowering operators and by using the permutation symmetry properties of hyper-spherical harmonics: $\mathcal{P}^O_{Lm}(\lambda, \rho) = (-1)^{K-L}\mathcal{P}^O_{Lm}(\lambda, -\rho)$. We use the (more compact) spherical complex coordinates: $X_0^\pm = \lambda_3 \pm i \rho_3$, $X_1^\pm = \lambda_4 \pm i \rho_1 + (\pm)(\lambda_2 \pm i \rho_2)$, $|X_\pm|^2 = X_7^\pm X_\pm + (X_9^\pm)^2$, while we are also explicitly writing out the $K \leq 3$ harmonics in terms of Jacobi coordinates.

\[
\mathcal{P}^{0,0,0}_{0,0,0}(X) = \frac{1}{\pi^{3/2}} \\
\mathcal{P}^{1,1,-1}_{1,1,-1}(X) = \frac{\sqrt{2} X_7^\pm}{\pi^{3/2} R} = \frac{\sqrt{2} (\lambda_1 + i(\lambda_2 + \rho_1 + i\rho_2))}{\pi^{3/2} (\lambda_1^2 + \lambda_2^2 + \rho_1^2 + \rho_2^2 + \rho_3^2)} \\
\mathcal{P}^{2,0,0}_{1,1,0}(X) = \frac{\sqrt{3} X_7^\pm}{\pi^{3/2} R^2} = \frac{\sqrt{3} (\lambda_3 (p_2 - i\rho_1) + i(\lambda_1 + i\lambda_2) \rho_3)}{\pi^{3/2} (\lambda_1^2 + \lambda_2^2 + \lambda_3^2 + \rho_1^2 + \rho_2^2 + \rho_3^2)} \\
\mathcal{P}^{2,2,0}_{2,2,0}(X) = \frac{\sqrt{3} X_7^\pm}{\pi^{3/2} R^2} = \frac{\sqrt{3} (\lambda_1 + i(\lambda_2 + \rho_1 + i\rho_2) + (\lambda_3 \rho_3))}{\pi^{3/2} (\lambda_1^2 + \lambda_2^2 + \lambda_3^2 + \rho_1^2 + \rho_2^2 + \rho_3^2)} \\
\mathcal{P}^{2,2,-3}_{2,2,-3}(X) = \frac{\sqrt{2} |X_7^\pm|^2}{\pi^{3/2} R^2} = \frac{\sqrt{2} (\lambda_1 + i(\lambda_2 + \rho_1 + i\rho_2))^2}{\pi^{3/2} (\lambda_1^2 + \lambda_2^2 + \lambda_3^2 + \rho_1^2 + \rho_2^2 + \rho_3^2)} \\
\mathcal{P}^{3,1,1}_{1,1,1}(X) = \frac{\sqrt{6} \left(X_7^\pm |X_\pm|^2 - \frac{1}{2} R^2 X_7^\pm \right)}{\pi^{3/2} R^3} = \frac{\sqrt{6} \left(\lambda_1 + i\lambda_2 - i\rho_1 + \rho_2 \right) \left(\lambda_1 + i\rho_1 \right)^2 + (\lambda_2 + i\rho_2)^2 + (\lambda_3 + i\rho_3)^2}{\pi^{3/2} (\lambda_1^2 + \lambda_2^2 + \lambda_3^2 + \rho_1^2 + \rho_2^2 + \rho_3^2)} \\
\mathcal{P}^{3,1,-5}_{2,2,-5}(X) = \frac{\sqrt{3} X_7^\pm (X_7^\pm)^2 - \frac{1}{2} R^2 X_7^\pm}{\pi^{3/2} R^3} = \frac{\sqrt{3} (\lambda_1 + i(\lambda_2 + \rho_1 + i\rho_2) + (\lambda_3 \rho_3))}{\pi^{3/2} (\lambda_1^2 + \lambda_2^2 + \lambda_3^2 + \rho_1^2 + \rho_2^2 + \rho_3^2)^{3/2}} \\
\mathcal{P}^{3,1,-2}_{3,3,-2}(X) = \frac{\sqrt{15} (X_7^\pm)^2 X_7^\pm}{2 \pi^{3/2} R^3} = \frac{\sqrt{15} (\lambda_1 + i(\lambda_2 + \rho_1 + i\rho_2))^2 (\lambda_1 + i\lambda_2 - i\rho_1 + \rho_2)}{2 \pi^{3/2} (\lambda_1^2 + \lambda_2^2 + \lambda_3^2 + \rho_1^2 + \rho_2^2 + \rho_3^2)^{3/2}} \\
\mathcal{P}^{3,1,-1}_{1,1,-1}(X) = \frac{\sqrt{3} X_7^\pm |X_\pm|^2}{\pi^{3/2} R^3} = \frac{\sqrt{3} (\lambda_1 + i(\lambda_2 + \rho_1 + i\rho_2) + (\lambda_3 \rho_3))}{\pi^{3/2} (\lambda_1^2 + \lambda_2^2 + \lambda_3^2 + \rho_1^2 + \rho_2^2 + \rho_3^2)^{3/2}} \\
\mathcal{P}^{3,3,-6}_{3,3,-6}(X) = \frac{\sqrt{5} (X_7^\pm)^3}{2 \pi^{3/2} R^3} = \frac{\sqrt{5} (\lambda_1 + i(\lambda_2 + \rho_1 + i\rho_2))^3}{2 \pi^{3/2} (\lambda_1^2 + \lambda_2^2 + \lambda_3^2 + \rho_1^2 + \rho_2^2 + \rho_3^2)^{3/2}}
There is a small step remaining from obtaining the hyperspherical harmonics labelled by quantum numbers \((K, Q, L, m, \nu)\) to achieving our goal, which is to construct hyperspherical functions with well-defined values of parity \(P = (-1)^K\), rotational group quantum numbers \((L, m)\), and permutation symmetry \(M\) (mixed), \(S\)
In this section we clarify how to obtain the latter as linear combinations of the former.

Properties under particle permutations of the functions \(\mathcal{Y}_{J,m}^{KQ}(\lambda, \rho) \) are inferred from the transformation properties of the coordinates \(X_i^\pm \): under the transpositions (two-body permutations) \(\{ T_{12}, T_{23}, T_{31} \} \) of pairs of particles (1,2),(2,3) and (3,1), the Jacobi coordinates transform as:

\[
\begin{align*}
T_{12} & : \lambda \rightarrow \lambda, \quad \rho \rightarrow -\rho, \\
T_{23} & : \lambda \rightarrow -\frac{1}{2} \lambda + \frac{\sqrt{3}}{2} \rho, \quad \rho \rightarrow \frac{1}{2} \rho + \frac{\sqrt{3}}{2} \lambda, \\
T_{31} & : \lambda \rightarrow -\frac{1}{2} \lambda - \frac{\sqrt{3}}{2} \rho, \quad \rho \rightarrow \frac{1}{2} \rho - \frac{\sqrt{3}}{2} \lambda.
\end{align*}
\]

That induces the following transformations of complex coordinates \(X_i^\pm \):

\[
\begin{align*}
T_{12} & : X_i^\pm \rightarrow X_i^\mp, \\
T_{23} & : X_i^\pm \rightarrow e^{\pm \frac{2\pi}{3}} X_i^\mp, \\
T_{31} & : X_i^\pm \rightarrow e^{\pm \frac{2\pi}{3}} X_i^\mp.
\end{align*}
\]

None of the quantum numbers \(K, L \) and \(m \) change under permutations of particles, whereas the values of the “democracy label” \(Q \) and multiplicity label \(\nu \) are inverted under all transpositions: \(Q \rightarrow -Q, \nu \rightarrow -\nu \).

Apart from the changes in labels, transpositions of two particles generally also result in the appearance of an additional phase factor multiplying the hyperspherical harmonic. For values of \(K, Q, L \) and \(m \) with no multiplicity, we readily derive (Ref. [8]) the following transformation properties of h.s. harmonics under (two-particle) particle transpositions:

\[
\begin{align*}
T_{12} & : \mathcal{Y}_{23}^{KQ\nu} \rightarrow (-1)^{K-J} \mathcal{Y}_{23}^{K-Q,\nu}, \\
T_{23} & : \mathcal{Y}_{23}^{KQ\nu} \rightarrow (-1)^{K-L} e^{\frac{2\pi}{3}} \mathcal{Y}_{23}^{K-Q,\nu}, \\
T_{31} & : \mathcal{Y}_{23}^{KQ\nu} \rightarrow (-1)^{K-L} e^{-\frac{2\pi}{3}} \mathcal{Y}_{23}^{K-Q,\nu}.
\end{align*}
\]

There are three distinct irreducible representations of the \(S_3 \) permutation group - two one-dimensional (the symmetric S and the antisymmetric A ones) and a two-dimensional (the mixed M one). In order to determine to which representation of the permutation group any particular h.s. harmonic \(\mathcal{Y}_{23}^{KQ\nu} \) belongs, one has to consider various cases, with and without multiplicity, see Ref. [8]; here we simply state the results of the analysis conducted therein. The following linear combinations of the h.s. harmonics,

\[1\] The mixed symmetry representation of the \(S_3 \) permutation group being two-dimensional, there are two different state vectors (hyperspherical harmonics) in each mixed permutation symmetry multiplet, usually denoted by \(M_\rho \) and \(M_\lambda \).
\(Y^K|Q|\nu_{L,m,\pm} \equiv \frac{1}{\sqrt{2}} \left(Y^K|Q|\nu_{L,m}^{-} \pm (-1)^{K-L} Y^K|Q|\nu_{L,m}^{+} \right) \). (11)

are no longer eigenfunctions of operators \(Q \) and \(Y_{LQL} \) but are (pure sign) eigenfunctions of the transposition \(T_{12} \) instead:

\[
T_{12} : Y^K|Q|\nu_{L,m,\pm} \rightarrow \pm Y^K|Q|\nu_{L,m,\pm}.
\]

They are the appropriate h.s. harmonics with well-defined permutation properties:

1. for \(Q \not\equiv 0 \pmod{3} \), the harmonics \(Y^K|Q|\nu_{L,m,\pm} \) belong to the mixed representation \(M \), where the \(\pm \) sign determines the \(M_{\rho} M_{\lambda} \) component,
2. for \(Q \equiv 0 \pmod{3} \), the harmonic \(Y^K|Q|\nu_{L,m,+} \) belongs to the symmetric representation \(S \) and \(Y^K|Q|\nu_{L,m,-} \) belongs to the antisymmetric representation \(A \).

The above rules define the representation of \(S_3 \) for any given h.s. harmonic.

7 Matrix elements

Decomposition into hyperspherical harmonics with manifest permutation properties highly simplifies solving of Schrödinger’s equation. The benefits are most notable when the three-body potential is permutation symmetric. The decomposition of any such potential into h.s. harmonics has low number of nonzero components due to the permutation symmetry constraints: e.g. up to \(K \leq 11 \) the only h.s. harmonics that can appear in such decomposition are \(Y_0^0|0|0 \), \(Y_4^4|0|0 \), \(Y_8^8|0|0 \), and \(Y_6^6|6|0 \).

In tables 1 and 2, we show the nonzero matrix elements between states of same \(K \), \(K \leq 4 \). These matrix elements are sufficient to evaluate the matrix elements of permutation symmetric sums of arbitrary one-, two- and three-body operators, such as the three-body potential, and thus to solve Schrödinger’s equation in the first order of perturbation theory (in \(K \leq 4 \) subspace).

These harmonics have been applied in Ref. [14] to three homogeneous potentials. The ordering of eigenstates (“pattern” of the spectrum) depends on the \(O(6) \) symmetry-breaking, which in turn is determined by the hyperspherical expansion coefficients of the three-body potential. These coefficients depend on the dynamical “remnant” symmetries of the potential. Thus, for example the so-called Y-string potential has an \(O(2) \) dynamical symmetry, Ref. [12], that is absent in potentials that are pairwise sums of single-power-law terms (for powers different than the second one).

8 Summary and Discussion

In this paper we have reported on our recent construction of permutation symmetric three-body \(SO(6) \) hyperspherical harmonics. In the section 5 we have displayed explicit forms the harmonic functions labelled by quantum numbers \(K, Q, L, m \) and
Table 1

The values of the three-body potential hyper-angular diagonal matrix elements $\langle \mathcal{V}_{A}^{K\left[Q\right]}^{0,0},0\rangle_{\text{ang}}$, $\langle \mathcal{V}_{A}^{0,0,0},0\rangle_{\text{ang}}$ and $\langle \mathcal{V}_{A}^{8,0,0},0\rangle_{\text{ang}}$, for $K \leq 4$ states (for all allowed orbital waves L).

The correspondence between the S_{3} permutation group irreps. and $\text{SU}(6)_{FS}$ symmetry multiplets of the three-quark system: $S \leftrightarrow 56$, $A \leftrightarrow 20$ and $M \leftrightarrow 70$. The table values are independent of the angular moment projection m.

K	(Q, L, v, \pm)	$\text{SU}(6), L^\prime$	$\pi\sqrt{\mathcal{P}}(\mathcal{V}_{A}^{4,0,0},0)_{\text{ang}}$	$\pi\sqrt{\mathcal{P}}(\mathcal{V}_{A}^{6,0,0},0)_{\text{ang}}$	$\pi\sqrt{\mathcal{P}}(\mathcal{V}_{A}^{8,0,0},0)_{\text{ang}}$
2	$(2,2,0,0,\pm)$	$[70,0^+]$	0	0	0
2	$(2,0,2,0,\pm)$	$[56,2^+]$	$\frac{1}{\sqrt{3}}$	0	0
2	$(2,2,2,0,\pm)$	$[70,2^+]$	$\frac{1}{\sqrt{3}}$	0	0
2	$(2,0,0,3,\pm)$	$[20,1^+]$	$\frac{1}{\sqrt{3}}$	0	0
3	$(3,3,1,3,1,\pm)$	$[56,1^+]$	$\frac{1}{\sqrt{3}}$	1	0
3	$(3,3,1,3,0,\pm)$	$[56,1^+]$	$\frac{1}{\sqrt{3}}$	1	0
3	$(3,3,1,3,0,\pm)$	$[56,1^+]$	$\frac{1}{\sqrt{3}}$	1	0
3	$(3,3,3,3,0,\pm)$	$[70,3^+]$	0	0	0
4	$(4,4,0,0,\pm)$	$[56,0^+]$	0	0	0
4	$(4,2,1,2,\pm)$	$[70,1^+]$	0	0	0
4	$(4,2,1,2,\pm)$	$[70,1^+]$	0	0	0
4	$(4,2,1,2,\pm)$	$[70,1^+]$	0	0	0
4	$(4,2,1,2,\pm)$	$[70,1^+]$	0	0	0
v.			$\sqrt{\frac{3}{5}}$	0	$\sqrt{\frac{3}{5}}$

\[\mathcal{V} \]

, postponing explanation of their derivation to \[8\]. In section \[4\] we demonstrated that simple linear combinations $\mathcal{V}_{A}^{K\left[Q\right]}^{0,0,0}$ of these functions have well defined permutation properties and, then in section \[7\] we calculated their (non-vanishing) matrix elements that are sufficient for the evaluation of two- and three-body operators’ matrix elements. Our $O(6)$ permutation-symmetric three-body hyperspherical harmonics appear to be the first of their kind in the literature. Symmetrized three-body hyper-spherical harmonics have been pursued before, albeit without emphasis on the the “kinematic rotation” $O(2)$ symmetry label \mathcal{V}.

Finally, a word about other attempts at symmetrized hyperspherical harmonics is due. To our knowledge, aside from the special case $L = 0$ results of Simonov, Ref. \[5\] and $L = 1$ of Barnea and Mandelzweig, Ref. \[7\], several other
Table 2 The values of the off-diagonal matrix elements of the hyper-angular part of the three-body potential \(\pi \sqrt{2} \langle SU(6)_f, L_f^P | \phi_{0,0,+}^{6,6} \rangle |SU(6)_i, L_i^P \rangle \) \(^{\text{ang}}\), for various \(K = 4 \) states (for all allowed orbital waves \(L \)).

\(K \)	\(SU(6)_f, L_f^P \)	\(SU(6)_i, L_i^P \)	\(\pi \sqrt{2} \langle \phi_{0,0,+}^{6,6} \rangle \) \(^{\text{ang}}\)
4	\([70,2^+]\)	\([70',2^+]\)	\(\frac{\sqrt{6}}{2}\)
4	\([70',2^+]\)	\([70,2^+]\)	\(\frac{\sqrt{6}}{2}\)
4	\([70,4^+]\)	\([70',4^+]\)	\(\frac{3}{\sqrt{7}}\)
4	\([70',4^+]\)	\([70,4^+]\)	\(\frac{3}{\sqrt{7}}\)
4	\([20,L^+]\)	\([20,L^+]\)	0
4	\([56,L^+]\)	\([56,L^+]\)	0
4	\([20,L^+]\)	\([56,L^+]\)	0

Attempts, based on so-called “tree pruning” techniques, exist in the literature, Refs. \([15, 16, 17]\) (see also the extensive reference list and commentary in the review Ref. \([11]\)), beside the recursively symmetrized N-body (with \(N > 3 \)) hyperspherical harmonics of Barnea and Novoselsky, Refs. \([9, 10]\). The latter are based on the \(O(3) \otimes S_N \subset O(3N - 3) \) chain of algebras, which does not explicitly include the “kinematic rotation”/“democracy” \(O(2) \) symmetry. In Ref. \([10]\) only the two-body operator matrix elements were evaluated, however, and none of three-body ones.

Whereas, in the final instance, Barnea and Novoselsky’s work must be related to ours, we note the following basic differences: a) their work is based on a different chain of algebras: \(O(3) \otimes S_3 \subset O(6) \) vs. our \(U(1) \otimes SO(3)_{\text{rot}} \subset U(3) \subset SO(6) \); b) theirs is an essentially recursive-numerical method relying on the knowledge of tables of the symmetric group \(S_3 \) Clebsch-Gordan coefficients, whereas ours is a recursive-algebraic/group-theoretical approach; c) their \(S_3 \) hyperspherical states are expressed in terms of \(S_2 \) hyperspherical states, that are coupled, via the “tree” method; whereas ours makes no reference to any two-body substate; d) they evaluated only two-body matrix elements, whereas our method allows us to evaluate matrix elements of all, including three-body operators, such as the area (of the triangle).

Acknowledgements This work was financed by the Serbian Ministry of Science and Technological Development under grant numbers OI 171031, OI 171037 and III 41011.

References

1. T. H. Gronwall, Phys. Rev. 51, 655 (1937).
2. J. H. Bartlett, Phys. Rev. 51, 661 (1937).
3. L. M. Delves, Nucl. Phys. 9, 391 (1958); ibid. 20, 275 (1960).
4. F. T. Smith, J. Chem. Phys. 31, 1352 (1959); F. T. Smith, Phys. Rev. 120, 1058 (1960); F. T. Smith, J. Math. Phys. 3, 735 (1962); R. C. Whitten and F. T. Smith, J. Math. Phys. 9, 1103 (1968).
5. Yu. A. Simonov, Sov. J. Nucl. Phys. 3, 461 (1966) [Yad. Fiz. 3, 630 (1966)].
6. T. Iwai, J. Math. Phys. 28, 964, 1315 (1987).
7. N. Barnea and V. B. Mandelzweig, Phys. Rev. A 41, 5209 (1990).
8. Igor Salom and V. Dmitrašinović, “Permutation-symmetric three-particle hyper-spherical harmonics based on the $S_3 \otimes SO(3)_{\text{rot}} \subset U(1) \otimes SO(3)_{\text{rot}} \subset U(3) \subset O(6)$ chain of algebras”, in preparation (2016).
9. N. Barnea and A. Novoselsky, Ann. Phys. 256, 192 (1997).
10. N. Barnea and A. Novoselsky, Phys. Rev. A 57, 48 (1998).
11. V. A. Nikonov and J. Nyiri, Int. J. Mod. Phys. A 29, no. 20, 1430039 (2014).
12. V. Dmitrašinović, T. Sato and M. Šuvakov, Phys. Rev. D 80, 054501 (2009).
13. V. Dmitrašinović and Igor Salom, J. Math. Phys. 55, 082105 (16) (2014).
14. Igor Salom and V. Dmitrašinović, J. Phys. Conf. Ser. 670, no. 1, 012044 (2016).
15. F. del Aguila, J. Math. Phys. 21, 2327 (1980).
16. V. Aquilanti, S. Cavalli, G. Grossi, J. Chem. Phys. 85, 1362 (1986).
17. D. Wang and A. Kuppermann, International Journal of Quantum Chemistry, 106, 152-166 (2006).