Local Identification of Overcomplete Dictionaries

Karin Schnass

Abstract

This paper presents the first theoretical results showing that stable identification of overcomplete \(\mu \)-coherent dictionaries \(\Phi \in \mathbb{R}^{d \times K} \) is locally possible from training signals with sparsity levels \(S \) up to the order \(O(\mu^{-2}) \) and signal to noise ratios up to \(O(\sqrt{d}) \). In particular the dictionary is recoverable as the local maximum of a new maximisation criterion that generalises the K-means criterion. For this maximisation criterion results for asymptotic exact recovery for sparsity levels up to \(O(\mu^{-1}) \) and stable recovery for sparsity levels up to \(O(\mu^{-2}) \) as well as signal to noise ratios up to \(O(\sqrt{d}) \) are provided. These asymptotic results translate to finite sample size recovery results with high probability as long as the sample size \(N \) scales as \(O(K^3dS\tilde{\epsilon}^{-2}) \), where the recovery precision \(\tilde{\epsilon} \) can go down to the asymptotically achievable precision. Further to actually find the local maxima of the new criterion, a very simple Iterative Thresholding& K (signed) Means algorithm (ITKM), which has complexity \(O(dKN) \) in each iteration, is presented and its local efficiency is demonstrated in several experiments.

Index Terms

dictionary learning, dictionary identification, sparse coding, sparse component analysis, vector quantisation, K-means, finite sample size, sampling complexity, maximisation criterion, sparse representation

1 Introduction

Be it the 300 million photos uploaded to Facebook per day, the 800GB the large Hadron collider records per second or the 320.000GB per second it cannot record, it is clear that we have reached the age of big data. Indeed, in 2012, the amount of data existing worldwide is estimated to have reached 2.8 ZB = 2.800 billion GB and while 23% of these data are expected to be useful if analysed only 1% actually are. So how do we deal with this big data challenge? The key concept, that has driven data processing and data analysis in the past decade, is that even
high-dimensional data has intrinsically low complexity, meaning that every data point \(y \) can be represented as linear combination of a sparse (small) number of elements or atoms \(\phi_i \in \mathbb{R}^d, \|\phi\|_2 = 1 \) of an overcomplete dictionary \(\Phi = (\phi_1, \ldots, \phi_K) \), that is

\[
y \approx \Phi Ix I = \sum_{i \in I} x(i) \phi_i,
\]

for a set \(I \) of size \(S \), that is \(|I| = S \), which is small compared to the ambient dimension, that is \(S \ll d \leq K \).

These sparse components not only describe the data but the representations can also be used for a myriad of efficient sparsity based data processing schemes, ranging from denoising, \[7\], to compressed sensing, \[6\], \[5\]. Therefore a promising tool both for data analysis and data processing, that has emerged in the last years is dictionary learning, also known as sparse coding or sparse component analysis. Dictionary learning addresses the fundamental question how to automatically learn a dictionary, providing sparse representations for a given data class, that is given \(N \) signals \(y_n \in \mathbb{R}^d \), stored as columns in a matrix \(Y = (y_1, \ldots, y_N) \) find a decomposition

\[
Y \approx \Phi X
\]

into a \(d \times K \) dictionary matrix \(\Phi \) with unit norm columns and a \(K \times N \) coefficient matrix with sparse columns.

Until recently the main research focus in dictionary learning has been on the development of algorithms. Thus by now there is an ample choice of learning algorithms, that perform well in experiments and are popular in applications, \[8\], \[17\], \[16\], \[3\], \[31\], \[18\], \[26\], \[22\]. However, slowly the interest is shifting and researcher are starting to investigate also the theoretical aspects of dictionary learning. Following the first theoretical insights, originating in the blind source separation community, \[32\], \[10\], there is now a set of generalisation bounds predicting how well a learned dictionary can be expected to sparsely approximate future data, \[19\], \[29\], \[20\], \[12\]. These results give a theoretical foundation for dictionary learning as data processing tool, that is for compression, but unfortunately do not give guarantees that an efficient algorithm will find/recover a good dictionary provided that it exists. However, in order to justify the use of dictionary learning as data analysis tool, for instance in blind source separation, it is important to provide conditions under which an algorithm or scheme can identify the dictionary from a finite number of training signals, that is the sources from the mixtures. Following the first dictionary identification results for the \(\ell_1 \)-minimisation principle, which was suggested in \[32\]/\[21\], by \[13\],
and for the ER-SPuD algorithm for learning a basis in \cite{27}, 2013 has seen a number of interesting developments. First in \cite{23} it was shown that the K-SVD minimisation principle suggested in \cite{3} can locally identify overcomplete tight dictionaries, then in \cite{1, 2} algorithms with \textit{global} identification guarantees for coherent dictionaries were presented and finally in \cite{1} it was shown that an alternative minimisation method is locally convergent to the correct generating dictionary. One aspect that all these results have in common is that the sparsity level of the training signals required for successful identification is of order $O(\mu^{-1})$ or $O(\sqrt{d})$ for incoherent dictionaries. Considering that average sparse recovery in a given dictionary is successful for sparsity levels $O(\mu^{-2})$, \cite{28, 24}, and that for dictionary learning we usually have a lot of training signals at our disposal, the same sparsity level should be sufficient for dictionary learning and indeed in this paper we will give the first theoretical results showing that at least locally dictionary identification is possible for sparsity levels $O(\mu^{-2})$ and that in practice this can be done with a very simple algorithm.

The paper is organised as follows. After introducing all necessary notation in Section 2 we present a new optimisation criterion, motivated by the analysis of the K-SVD principle, \cite{23}, in Section 3. In Section 4 we give asymptotic identification results both for exact and stable recovery, which in Section 5 are extended to results to finite sample size. Section 6 provides an algorithm for actually finding a local optimum and some experiments confirming the theoretical results. Finally in the last section we compare the results for the new criterion to existing identification results and point out directions for future research.

\section{Notations and Conventions}

Before we jump into the fray, we collect some definitions and lose a few words on notations; usually subscripted letters will denote vectors with the exception of c and ε where they are numbers, eg. $(x_1, \ldots, x_K) = X \in \mathbb{R}^{d \times K}$ vs. $c = (c_1, \ldots, c_K) \in \mathbb{R}^K$, however, it should always be clear from the context what we are dealing with.

We consider a dictionary Φ a collection of K unit norm vectors $\phi_i \in \mathbb{R}^d$, $\|\phi_i\|_2 = 1$. By abuse of notation we will also refer to the $d \times K$ matrix collecting the atoms as its columns as the dictionary, that is $\Phi = (\phi_i, \ldots, \phi_K)$. The maximal absolute inner product between two different atoms is called the coherence μ of the dictionary, $\mu = \max_{i \neq j} |\langle \phi_i, \phi_j \rangle|$.

By Φ_I we denote the restriction of the dictionary to the atoms indexed by I, that is $\Phi_I = (\phi_i, \ldots, \phi_{i_j})$, $i_j \in I$. We indicate the conjugate transpose of a matrix with a *, for example Φ^*.
would be the transpose of \(\Phi \).

For two dictionaries \(\Phi, \Psi \) we define the distance between each other as the maximal distance between two corresponding atoms,

\[
d(\Phi, \Psi) := \max_i \| \phi_i - \psi_i \|_2.
\] (1)

We consider a **frame** \(F \) a collection of \(K \geq d \) vectors \(f_i \in \mathbb{R}^d \) for which there exist two positive constants \(A, B \) such that for all \(v \in \mathbb{R}^d \) we have

\[
A\|v\|_2^2 \leq \sum_{i=1}^K |\langle f_i, v \rangle|^2 \leq B\|v\|_2^2.
\] (2)

If \(B \) can be chosen equal to \(A \), that is \(B = A \), the frame is called tight. Finally we introduce the Landau symbols \(O, o \) to characterise the growth of a function. We write \(f(\varepsilon) = O(g(\varepsilon)) \) if \(\lim_{\varepsilon \to 0} f(\varepsilon)/g(\varepsilon) = C \) \(< \infty \) and \(f(\varepsilon) = o(g(\varepsilon)) \) if \(\lim_{\varepsilon \to 0} f(\varepsilon)/g(\varepsilon) = 0 \).

3 A RESPONSE MAXIMISATION CRITERION

One of the origins of dictionary learning can be found in the field of vector quantisation, where the aim is to find a codebook (dictionary) such that the codewords (atoms) closely represent the data, that is

\[
\min_{\Phi, X} \| Y - \Phi X \|_F^2 \quad \text{s.t.} \quad x_n \in \{ e_i \}_i.
\] (3)

Indeed the vector quantisation problem can be seen as an extreme case of dictionary learning, where we not only want all our signals to be approximately 1-sparse but also to have the one non-zero coefficient equal to one. On the other hand we allow the atoms (codewords) to have any length. The problem above is usually solved by a K-means algorithm which alternatively separates the training data into K clusters each assigned to one codeword and then updates the codeword to be the mean of the associated train signals. For more detailed information about vector quantisation or the K-means algorithm see for instance [11] or the introduction of [3].

If we relax the condition that each coefficient has to be positive and allow also negative \(-1\) coefficients, but in turn ask for the atoms to have unit norm, we are already getting closer to the concept of 1-sparse dictionary learning,

\[
\min_{\Phi, X} \| Y - \Phi X \|_F^2 \quad \text{s.t.} \quad x_n \in \{ \pm e_i \}_i.
\] (4)
This minimisation problem can be rewritten as
\[
\min_{\Phi \in D} \sum_n \min_{i, \sigma_i = \pm 1} \left\| y_n - \sigma_i \phi_i \right\|_2^2 = \min_{\Phi \in D} \sum_n \min_{i, \sigma_i = \pm 1} \left\| y_n \right\|_2 - 2 \sigma_i \langle y_n, \phi_i \rangle + \left\| \phi_i \right\|_2^2 \\
= \left\| Y \right\|_2 + N - 2 \max_{\Phi \in D} \sum_n \left| \langle y_n, \phi_i \rangle \right|,
\]
and is therefore equivalent to the maximisation problem
\[
\max_{\Phi \in D} \sum_n \left| \langle y_n, \phi_i \rangle \right|.
\]
A local maximum of (6) can be found with a signed K-means algorithm, which assigns each training signal to the atom of the current dictionary giving the largest response in absolute value and then updating the atom as normalised signed mean of the associated training signals, see Section 6 for more details. The question now is how do we go from these 1-sparse dictionary learning formulations to S-sparse formulations with $S > 1$. The most common generalisation, which provides the starting point for the MOD and the K-SVD algorithm, is to give up all constraints on the coefficients except for S-sparsity and to minimise,
\[
(P_{P2}) \quad \min_{\Phi \in \Phi, X} \left\| Y - \Phi X \right\|_F^2 \quad \text{s.t.} \quad \left\| x_n \right\|_0 \leq S.
\]
However, rewriting the problem we see that this formulation does not reduce to the same maximisation problem in case $S = 1$. Then the best one term approximation in the given dictionary is simply the largest projection onto one atom and we have
\[
\min_{\Phi \in D} \sum_n \min_{i, x_i} \left\| y_n - x_i \phi_i \right\|_2^2 = \min_{\Phi \in D} \sum_n \min_i \left\| y_n - \langle \phi_i, y_n \rangle \phi_i \right\|_2 \\
= \left\| Y \right\|_2 - \max_{\Phi \in D} \sum_n \left| \langle y_n, \phi_i \rangle \right|^2,
\]
leading instead to the maximisation problem
\[
\max_{\Phi \in D} \sum_n \left| \langle y_n, \phi_i \rangle \right|^2 \quad \text{vs.} \quad \max_{\Phi \in D} \sum_n \left| \langle y_n, \phi_i \rangle \right|.
\]
random mixtures to arbitrary precision (given enough training samples) if this dictionary is tight and it is conjectured that the same holds for $S \geq 1$. Roughly simplified the reason for this is that for random sparse signals Φx and an ε-perturbation Ψ the average of the largest squared response behaves like

$$
\frac{1}{2} \left(1 - \frac{\varepsilon^2}{2} + c(\Psi) \right)^2 + \frac{1}{2} \left(1 - \frac{\varepsilon^2}{2} - c(\Psi) \right)^2 = 1 - \frac{\varepsilon^2}{2} + \frac{\varepsilon^4}{4} + c(\Psi)^2.
$$

(10)

If Φ is tight the term $c(\Psi)$ is constant over all dictionaries and therefore there is a local maximum at Φ. From the above we also see that the average of the largest absolute response should behave like

$$
\frac{1}{2} \left| 1 - \frac{\varepsilon^2}{2} + c(\Psi) \right| + \frac{1}{2} \left| 1 - \frac{\varepsilon^2}{2} - c(\Psi) \right| = 1 - \frac{\varepsilon^2}{2},
$$

(11)

meaning that we should have a maximum at Φ also if it is non-tight. This suggests as alternative way to generalise the K-means optimisation principle for dictionary identification to simply maximise the absolute norm of the S-largest responses,

$$
(P_{R1}) \max_{\Psi \in D} \sum_n \max_{|I| = S} \| \Psi_I^* y_n \|_1.
$$

(12)

Other than for the K-SVD criterion it is not obvious that there should be a local optimum of (12) at Φ even if all signals y_n are perfectly S-sparse in Φ. Therefore it is quite intriguing that we will not only be able to prove local identifiability of any generating dictionary via (12) from randomly sparse signals, but that these identifiability properties are stable under coherence and noise. However before we get to this main result in Theorem 5.2 on page 24, we first have to lay the foundation, by providing suitable random signal models and by studying the asymptotic identifiability properties of the new principle.

4 Asymptotic Results

We can get to the asymptotic version of the S-response maximisation principle in (12) simply by replacing the sum over the training signals with the expectation leading to

$$
\max_{\Psi \in D} \mathbb{E}_y \left(\max_{|I| = S} \| \Psi_I^* y \|_1 \right).
$$

(13)

Next we need a random sparse coefficient model to generate our signals y. To motivate the requirements on our coefficient distributions we will recycle the very simple negative example of a coefficient distribution for which the original generating dictionary is not at a local maximum from [23].
Example 4.1. Let U be an orthonormal basis and x be randomly 2-sparse with ‘flat’ coefficients, that is pick two indices i, j choose $\sigma_{i/j} = \pm 1$ uniformly at random and set $x_k = \sigma_k$ for $k = i, j$ and zero else. Then U is not a local maximum of (13). Indeed since the signals are all 2-sparse the maximal inner product with all atoms in U is the same as the maximal inner product with only $d - 1$ atoms. This degree of freedom we can use to construct an ascent direction. Choose $U_\epsilon = (u_1, \ldots, u_{d-1}, (u_d + \epsilon u_1)/\sqrt{1 + \epsilon^2})$, then we have

$$E_y (\|U_\epsilon^* y\|_\infty) = E_x \left(\left\| \left(x_1, \ldots, x_{d-1}, \frac{x_d + \epsilon x_1}{\sqrt{1 + \epsilon^2}} \right) \right\|_\infty \right)$$

$$= E_x \max \left\{ 1, \frac{x_d + \epsilon x_1}{\sqrt{1 + \epsilon^2}} \right\}$$

$$= 1 - \frac{1}{d(d-1)} + \frac{1}{d(d-1)} \frac{1 + \epsilon}{\sqrt{1 + \epsilon^2}}$$

$$\geq 1 + \frac{1}{d(d-1)} \frac{\epsilon - \epsilon^2}{1 + \epsilon^2} > 1 = E_y (\|U^* y\|_\infty) \quad (14)$$

From the above example we see that in order to have a local maximum at the original dictionary we need a signal/coefficient model where the coefficients show some type of decay.

4.1 A simple model of decaying coefficients

To get started we consider a very simple coefficient model, constructed from a non-negative, non-increasing sequence $c \in \mathbb{R}_+^K$ with $||c||_2 = 1$, which we permute uniformly at random and provide with random \pm signs, compare [23]. To be precise for a permutation $p : \{1, \ldots, K\} \to \{1, \ldots, K\}$ and a sign sequence σ, $\sigma_i = \pm 1$, we define the sequence $c_{p,\sigma}$ component-wise as $c_{p,\sigma}(i) := \sigma_i c_{p(i)}$, and set $y = \Phi x$ where $x = c_{p,\sigma}$ with probability $(2^K K!)^{-1}$. The normalisation $||c||_2 = 1$ has the advantage that for dictionaries, which are an orthonormal basis, the resulting signals also have unit norm and for general dictionaries the signals have unit square norm in expectation, ie. $\mathbb{E}(\|y\|_2^2) = 1$. This reflects the situation in practical application, where we would normalise the signals in order to equally weight their importance.

Armed with this model we can now prove the first asymptotic dictionary identification result for (13).

Theorem 4.1. Let Φ be a unit norm frame with frame constants $A \leq B$ and coherence μ. Let $x \in \mathbb{R}^K$ be a random permutation of a sequence c, where $c_1 \geq c_2 \geq c_3 \ldots \geq c_K \geq 0$ and $||c||_2 = 1$, provided with random \pm signs, that is $x = c_{p,\sigma}$ with probability $\mathbb{P}(p, \sigma) = (2^K K!)^{-1}$. Assume that the signals are generated as $y = \Phi x$. If c satisfies $c_S > c_{S+1} + 2\mu ||c||_1$ then there is a local maximum of (13) at Φ.

January 27, 2014 DRAFT
Moreover for \(\Psi \neq \Phi \) we have \(\mathbb{E}_y \left(\max_{|I| = S} \| \Psi^*_I y \|_1 \right) < \mathbb{E}_y \left(\max_{|I| = S} \| \Phi^*_I y \|_1 \right) \) as soon as

\[
d(\Phi, \Psi) \leq \frac{c_S - c_{S+1} - 2\mu \| c \|_1}{1 + 3 \sqrt{\log \left(\frac{24K^2S\sqrt{I}}{(c_S - c_{S+1} - 2\mu \| c \|_1)(c_1 + \ldots + c_S)} \right)}}.
\]

(15)

\[\textbf{Proof:}\] The proof is based on the same ideas as the proof of the corresponding Theorem for the K-SVD principle in [23]. However, for self-containedness of the paper and to lay the basis for the more intricated proofs later on we detail all the necessary steps. We start by evaluating the objective function at the original dictionary \(\Phi \).

\[
\mathbb{E}_y \left(\max_{|I| = S} \| \Phi^*_I y \|_1 \right) = \mathbb{E}_p \mathbb{E}_\sigma \left(\max_{|I| = S} \| \Phi^*_I \Phi_{c_p,\sigma} \|_1 \right) \mathbb{E}_p \mathbb{E}_\sigma \left(\max_{|I| = S} \sum_{i \in I} |\langle \phi_i, \Phi_{c_p,\sigma} \rangle| \right)
\]

To estimate the sum of the (in absolute value) largest \(S \) inner products we first assume that \(p \) is fixed. Setting \(I_p = p^{-1} (\{1, \ldots, S\}) \) we have,

\[
|\langle \phi_i, \Phi_{c_p,\sigma} \rangle| = |\sigma_i c_{p(i)} + \sum_{j \neq i} \sigma_j c_{p(j)} \langle \phi_i, \phi_j \rangle| \geq c_S - \mu \| c \|_1 \quad \forall i \in I_p
\]

(17)

\[
\leq c_{S+1} + \mu \| c \|_1 \quad \forall i \notin I_p.
\]

Together with the condition that \(c_S > c_{S+1} + 2\mu \| c \|_1 \) these estimates ensure that the \(S \) maximal inner products in absolute value are attained at \(I_p \) and so we get for the expectation,

\[
\mathbb{E}_p \mathbb{E}_\sigma \left(\max_{|I| = S} \| \Phi^*_I \Phi_{c_p,\sigma} \|_1 \right) = \mathbb{E}_p \mathbb{E}_\sigma \left(\| \Phi^*_I \Phi_{c_p,\sigma} \|_1 \right)
\]

\[
= \mathbb{E}_p \mathbb{E}_\sigma \left(\sum_{i \in I_p} |c_{p(i)} + \sigma_i \sum_{j \neq i} \sigma_j c_{p(j)} \langle \phi_i, \phi_j \rangle| \right) = c_1 + \ldots + c_S.
\]

To compute the expectation for a perturbation of the original dictionary we use the following parametrisation of all \(\varepsilon \)-perturbations \(\Psi \) of the original dictionary \(\Phi \). If \(d(\Psi, \Phi) = \varepsilon \) then \(\| \psi_i - \phi_i \|_2 = \varepsilon_i \) with \(\max_i \varepsilon_i = \varepsilon \) and we have \(z_i \) with \(\langle \phi_i, z_i \rangle = 0, \| z_i \|_2 = 1 \) and \(\alpha_i := 1 - \varepsilon_i^2/2 \) and \(\omega_i := (\varepsilon_i^2 - \varepsilon_i^4/4)^{1/2} \), such that

\[
\psi_i = \alpha_i \phi_i + \omega_i z_i.
\]

(18)

Expanding the expectation as before we get,

\[
\mathbb{E}_y \left(\max_{|I| = S} \| \Psi^*_I y \|_1 \right) = \mathbb{E}_p \mathbb{E}_\sigma \left(\max_{|I| = S} \| \Psi^*_I \Phi_{c_p,\sigma} \|_1 \right) = \mathbb{E}_p \mathbb{E}_\sigma \left(\max_{|I| = S} \sum_{i \in I} |\langle \psi_i, \Phi_{c_p,\sigma} \rangle| \right)
\]

(19)

The tried and tested strategy applied now is showing that for small perturbations and most sign patterns \(\sigma \) the maximal inner products are still attained by \(i \in I_p \). We have

\[
\forall i \in I_p : \quad |\langle \psi_i, \Phi_{c_p,\sigma} \rangle| \geq \alpha_i (c_S - \mu \| c \|_1) - \omega_i |\langle z_i, \Phi_{c_p,\sigma} \rangle|,
\]

\[
\forall i \notin I_p : \quad |\langle \psi_i, \Phi_{c_p,\sigma} \rangle| \leq \alpha_i (c_{S+1} + \mu \| c \|_1) + \omega_i |\langle z_i, \Phi_{c_p,\sigma} \rangle|.
\]

January 27, 2014
Using Hoeffding’s inequality we can estimate the typical sizes of terms $|\langle z_i, \Phi_{p,\sigma} \rangle|$,

$$
\mathbb{P}(|\langle z_i, \Phi_{p,\sigma} \rangle| \geq t) = \mathbb{P}(\sum_{j \neq i} \sigma_j c_{p(j)} \langle z_i, \phi_j \rangle > t)
\leq 2 \exp\left(-\frac{t^2}{2 \sum_{j \neq i} c_{p(j)}^2 \langle z_i, \phi_j \rangle^2} \right)
\leq 2 \exp\left(-\frac{t^2}{2} \right).
$$ (20)

In case $\omega_i \neq 0$ or equivalently $\varepsilon_i \neq 0$, we set $t = s/\omega_i$ to arrive at

$$
\mathbb{P}(\omega_i|\langle z_i, \Phi_{p,\sigma} \rangle| \geq s) \leq 2 \exp\left(-\frac{s^2}{2\omega_i^2} \right) \leq 2 \exp\left(-\frac{s^2}{2\varepsilon_i^2} \right),
$$ (21)

where we have used that $\omega_i^2 = \varepsilon_i^2 - \varepsilon_i^4/4 \leq \varepsilon_i^2$, while in case $\varepsilon_i = 0$ we trivially have that $\mathbb{P}(\omega_i|\langle z_i, \Phi_{p,\sigma} \rangle| \geq s) = 0$. Summarising these findings we see that except with probability

$$
\eta := 2 \sum_{i: \varepsilon_i \neq 0} \exp\left(-\frac{s^2}{2\varepsilon_i^2} \right)
$$ (22)

we have,

$$
\forall i \in I_p : \quad |\langle \psi_i, \Phi_{p,\sigma} \rangle| \geq \alpha_i (c_S - \mu \|c\|_1) - s \\
\forall i \notin I_p : \quad |\langle \psi_i, \Phi_{p,\sigma} \rangle| \leq \alpha_i (c_{S+1} + \mu \|c\|_1) + s.
$$

This means that as long as $\min_{i \in I_p} \alpha_i (c_S - \mu \|c\|_1) - s \geq \max_{i \notin I_p} \alpha_i (c_{S+1} + \mu \|c\|_1) + s$, which is for instance implied by setting $s := \frac{1}{2} (c_S - c_{S+1} - 2\mu \|c\|_1 - \varepsilon_i^2/2)$, we have

$$
\max_{|I| = S} \|\Psi_I^* \Phi_{p,\sigma}\|_1 = \|\Psi_I^* \Phi_{p,\sigma}\|_1.
$$ (23)

We now use this result for the calculation of the expectation over σ in (19). For any permutation p we define the set,

$$
\Sigma_p := \bigcup_i \{\sigma \text{ s.t. } \omega_i|\langle z_i, \Phi_{p,\sigma} \rangle| \geq s\}.
$$ (24)

We then have

$$
\mathbb{E}_\sigma \left(\max_{|I| = S} \|\Psi_I^* \Phi_{p,\sigma}\|_1 \right) = \sum_{\sigma \in \Sigma_p} \mathbb{P}(\sigma) \cdot \max_{|I| = S} \|\Psi_I^* \Phi_{p,\sigma}\|_1
+ \sum_{\sigma \notin \Sigma_p} \mathbb{P}(\sigma) \cdot \|\Psi_I^* \Phi_{p,\sigma}\|_1
= \sum_{\sigma \in \Sigma_p} \mathbb{P}(\sigma) \cdot \left(\max_{|I| = S} \|\Psi_I^* \Phi_{p,\sigma}\|_1 - \|\Psi_I^* \Phi_{p,\sigma}\|_1 \right)
+ \mathbb{E}_\sigma \left(\|\Psi_I^* \Phi_{p,\sigma}\|_1 \right).
$$ (25)

To estimate the sum over Σ_p, note that we have the following bounds,

$$
|\langle \psi_i, \Phi_{p,\sigma} \rangle| = |\alpha_i \langle \phi_i, \Phi_{p,\sigma} \rangle + \omega_i \langle z_i, \Phi_{p,\sigma} \rangle|
\leq (1 - \varepsilon_i^2/2) |\langle \phi_i, \Phi_{p,\sigma} \rangle| + \varepsilon \sqrt{B}
\geq (1 - \varepsilon_i^2/2) |\langle \phi_i, \Phi_{p,\sigma} \rangle| - \varepsilon \sqrt{B},
$$ (26)
leading to,
\[
\max_{|I|=S} \| \Psi_I^* \Phi_{c,p,\sigma} \|_1 \leq (1 - \frac{\varepsilon^2}{2}) \max_{|I|=S} \| \Phi_I^* \Phi_{c,p,\sigma} \|_1 + S \cdot \varepsilon \sqrt{B} = (1 - \frac{\varepsilon^2}{2}) \| \Phi_I^* \Phi_{c,p,\sigma} \|_1 + S \cdot \varepsilon \sqrt{B}
\]
\[
\| \Psi_I^* \Phi_{c,p,\sigma} \|_1 \geq (1 - \frac{\varepsilon^2}{2}) \| \Phi_I^* \Phi_{c,p,\sigma} \|_1 - S \cdot \varepsilon \sqrt{B}.
\]

Substituting these estimates into (25) we get
\[
E_{\sigma} \left(\max_{|I|=S} \| \Psi_I^* \Phi_{c,p,\sigma} \|_1 \right) \leq \sum_{\sigma \in \Sigma_p} P(\sigma) \cdot 2\varepsilon S \sqrt{B} + E_{\sigma} \left(\| \Psi_I^* \Phi_{c,p,\sigma} \|_1 \right)
\]
\[
\leq \eta \cdot 2\varepsilon S \sqrt{B} + E_{\sigma} \left(\| \Psi_I^* \Phi_{c,p,\sigma} \|_1 \right) .
\] (27)

Next we calculate \(E_{\sigma} \left(\| \Psi_I^* \Phi_{c,p,\sigma} \|_1 \right) , \)
\[
E_{\sigma} \left(\| \Psi_I^* \Phi_{c,p,\sigma} \|_1 \right) = E_{\sigma} \left(\sum_{i \in I_p} |\langle \psi_i, \Phi_{c,p,\sigma} \rangle| \right)
\]
\[
= E_{\sigma} \left(\sum_{i \in I_p} \left| \alpha_i \epsilon_{c\langle i \rangle} + \sigma_i (\alpha_i \phi_i + \omega_i z_i, j) \sigma_j \epsilon_{c\langle j \rangle} \phi_j \right| \right) = \sum_{i \in I_p} \alpha_i \epsilon_{c\langle i \rangle},
\] (28)
where have used that \(\epsilon \leq (1 - \frac{\varepsilon^2}{2})c_S - \mu \|c\|_1)/\sqrt{B} \) guarantees the expression within absolute values in (28) to always be positive. Collecting all these results we arrive at the following estimate for the value of the objective function at \(\Psi. \)
\[
E_y \left(\max_{|I|=S} \| \Psi_I^* y \|_1 \right) = E_p E_{\sigma} \left(\max_{|I|=S} \| \Psi_I^* \Phi_{c,p,\sigma} \|_1 \right)
\]
\[
\leq E_p \left(4\varepsilon S \sqrt{B} \sum_{i : \varepsilon_i \neq 0} \exp \left(- \frac{(c_S - c_{S+1} - 2\mu \|c\|_1 - \frac{\varepsilon^2}{2})^2}{8\varepsilon_i^2} \right) \right) + \sum_{i \in I_p} \alpha_i \epsilon_{c\langle i \rangle}
\]
\[
\leq 4\varepsilon S \sqrt{B} \sum_{i : \varepsilon_i \neq 0} \exp \left(- \frac{(c_S - c_{S+1} - 2\mu \|c\|_1 - \frac{\varepsilon^2}{2})^2}{8\varepsilon_i^2} \right) + \frac{c_1 + \ldots + c_S}{K} \sum_i \alpha_i.
\]

Finally we are able to compare the expectation at the original dictionary to that at an \(\varepsilon \)-perturbations. Remembering that \(\alpha_i = 1 - \frac{\varepsilon_i^2}{2} \), we get
\[
E_y \left(\max_{|I|=S} \| \Phi_I^* y \|_1 \right) - E_y \left(\max_{|I|=S} \| \Psi_I^* y \|_1 \right)
\]
\[
\geq \frac{c_1 + \ldots + c_S}{K} \sum_i \frac{\varepsilon_i^2}{2} - 4\varepsilon S \sqrt{B} \sum_{i : \varepsilon_i \neq 0} \exp \left(- \frac{(c_S - c_{S+1} - 2\mu \|c\|_1 - \frac{\varepsilon^2}{2})^2}{8\varepsilon_i^2} \right)
\]
\[
\geq \frac{\varepsilon^2 c_1 + \ldots + c_S}{2K} - 4\varepsilon SK \sqrt{B} \exp \left(- \frac{(c_S - c_{S+1} - 2\mu \|c\|_1 - \frac{\varepsilon^2}{2})^2}{8\varepsilon^2} \right) .
\] (29)
Thus to have a local maximum at the original dictionary we need that
\[\varepsilon > \frac{8SK^2\sqrt{B}}{c_1 + \ldots + c_S} \exp \left(-\frac{(c_S - c_{S+1} - 2\mu\|c\|_1 - \varepsilon^2)^2}{8\varepsilon^2} \right), \tag{30} \]
and all that remains to be shown is that this is implied by (15). Since \(K \geq 2 \) Condition (15) implies that \(\varepsilon^2 < \frac{c_S - c_{S+1} - 2\mu\|c\|_1}{2(1 + 3\sqrt{\log(96)})^2} \leq \frac{c_S - c_{S+1} - 2\mu\|c\|_1}{100} \), it suffices to show that (15) implies
\[\varepsilon > \frac{8SK^2\sqrt{B}}{c_1 + \ldots + c_S} \exp \left(-\frac{(c_S - c_{S+1} - 2\mu\|c\|_1)^2 \cdot 99^2}{8\varepsilon^2 \cdot 100^2} \right). \tag{31} \]
Applying Lemma A.3 from [23], which says that for \(a, b, \varepsilon > 0 \), \(\varepsilon \leq \frac{4b}{1 + \sqrt{1 + 16\log \left(\frac{a}{b} \right)}} \) implies that \(a \exp \left(-\frac{b^2 \varepsilon^2}{\varepsilon^2} \right) < \varepsilon \), to the situation at hand, where \(a = \frac{8SK^2\sqrt{B}}{c_1 + \ldots + c_S} \) and \(b = \frac{(c_S - c_{S+1} - 2\mu\|c\|_1) \cdot 99}{\sqrt{8 \cdot 100}} \), we get that (31) is ensured by
\[\varepsilon < \frac{c_S - c_{S+1} - 2\mu\|c\|_1}{\sqrt{8 \cdot 2599} \left(1 + \sqrt{16\log \left(\frac{8\sqrt{8 \cdot 100}e^{1/16}SK^2\sqrt{B}}{(c_S - c_{S+1} - 2\mu\|c\|_1)(c_1 + \ldots + c_S)} \right)} \right)}, \]
which simplifies to (15). \(\square \)

4.2 A continuous model of decaying coefficients

In this section we extend the recovery results to more general coefficient models, which essentially have the same properties as the simple model in the last section. We make the following definition, see also [23].

Definition 4.1. A probability measure \(\nu \) on the unit sphere \(S^{K-1} \subset \mathbb{R}^K \) is called symmetric if for all measurable sets \(\mathcal{X} \subseteq S^{K-1} \), for all sign sequences \(\sigma \in \{-1, 1\}^K \) and all permutations \(p \) we have
\[\nu(\sigma \mathcal{X}) = \nu(\mathcal{X}), \quad \text{where} \quad \sigma \mathcal{X} := \{(\sigma_1x_1, \ldots, \sigma_Kx_K) : x \in \mathcal{X}\} \tag{33} \]
\[\nu(p(\mathcal{X})) = \nu(\mathcal{X}), \quad \text{where} \quad p(\mathcal{X}) := \{(x_{p(1)}, \ldots, x_{p(K)}) : x \in \mathcal{X}\} \tag{34} \]

Using this definition we can state the following corollary of the Theorem 4.1.

Corollary 4.2. Let \(\Phi \) be a unit norm frame with frame constants \(A \leq B \) and coherence \(\mu \). Let the coefficients \(x \) be drawn from a symmetric probability distribution \(\nu \) on the unit sphere \(S^{K-1} \subset \mathbb{R}^K \) and assume that the signals are generated as \(y = \Phi x \). If there exists \(\beta > 0 \) such that for \(c_1(x) \geq c_2(x) \geq \ldots \),
\[
\ldots \geq c_K(x) \geq 0 \text{ the non-increasing rearrangement of the absolute values of the components of } x \text{ we have } c_S(x) - c_{S+1}(x) - 2\mu \|x\|_1 \geq \beta \text{ almost surely, that is }
\]
\[
\nu(c_S(x) - c_{S+1}(x) - 2\mu \|x\|_1 \geq \beta) = 1,
\]
then there is a local maximum of \([13]\) at \(\Phi\).

Moreover for \(\Psi \neq \Phi\) we have \(\mathbb{E}_y (\max_{|I|=S} \|\Psi_I^* y\|_1) < \mathbb{E}_y (\max_{|I|=S} \|\Phi_I^* y\|_1)\) as soon as
\[
\varepsilon < \frac{\beta}{1 + 3\sqrt{\log \left(\frac{24K^2S\sqrt{B}}{\beta(c_1+\ldots+c_S)}\right)}},
\]
where \(\bar{c}_i := \mathbb{E}_x(c_i(x))\).

Proof: Using the symmetry of \(\nu\), our strategy is to reduce the general to the simple coefficient model. Let \(c\) denote the mapping that assigns to each \(x \in S^{K-1}\) the non-increasing rearrangement of the absolute values of its components, that is \(c_i(x) = |x_{p(i)}|\) for a permutation \(p\) such that \(c_1(x) \geq c_2(x) \geq \ldots \geq c_K(x) \geq 0\). Then the mapping \(c\) together with the probability measure \(\nu\) on \(S^{K-1}\) induces a pull-back probability measure \(\nu_c\) on \(c(S^{K-1})\), by \(\nu_c(\Omega) := \nu(c^{-1}(\Omega))\) for any measurable set \(\Omega \subseteq c(S^{K-1})\). With the help of this new measure we can rewrite the expectations we need to calculate as,
\[
\mathbb{E}_y \left(\max_{|I|=S} \|\Phi_I^* y\|_1\right) = \mathbb{E}_x \left(\max_{|I|=S} \|\Phi_I^* x\|_1\right)
\]
\[
= \int_x \max_{|I|=S} \|\Phi_I^* x\|_1 d\nu = \int_{c(x)} \mathbb{E}_p \mathbb{E}_\sigma \left(\max_{|I|=S} \|\Phi_I^* \Phi_{p,\sigma}(x)\|_1\right) d\nu_c.
\]
The expectation inside the integral should seem familiar. Indeed we have calculated it already in the proof of Theorem 4.1 for \(c(x)\) a fixed decaying sequence satisfying \(c_S(x) > c_{S+1}(x) + 2\mu \|x\|_1\). Since this property is satisfied almost surely we have,
\[
\mathbb{E}_y \left(\max_{|I|=S} \|\Phi_I^* y\|_1\right) = \int_{c(x)} \mathbb{E}_p \mathbb{E}_\sigma \left(\max_{|I|=S} \|\Phi_I^* \Phi_{p,\sigma}(x)\|_1\right) d\nu_c
\]
\[
= \int_{c(x)} c_1(x) + \ldots + c_S(x) d\nu_c := \bar{c}_1 + \ldots + \bar{c}_S.
\]
For the expectation of a perturbed dictionary \(\Psi\) we get in analogy
\[
\mathbb{E}_y \left(\max_{|I|=S} \|\Psi_I^* y\|_1\right) = \int_{c(x)} \mathbb{E}_p \mathbb{E}_\sigma \left(\max_{|I|=S} \|\Psi_I^* \Phi_{p,\sigma}(x)\|_1\right) d\nu_c
\]
\[
\leq \int_{c(x)} \eta(x) + (c_1(x) + \ldots + c_S(x)) \frac{1}{K} \sum_i \alpha_i d\nu_c,
\]
where
\[\eta(x) := 4\varepsilon S \sqrt{B} \sum_{i: \varepsilon_i \neq 0} \exp \left(-\frac{(c_S(x) - c_{S+1}(x) - 2\mu \|x\|_1 - \frac{\varepsilon^2}{2})^2}{8\varepsilon_i^2} \right). \] (40)

Since \(c_S(x) - c_{S+1}(x) - 2\mu \|x\|_1 \geq \beta \) almost surely we have
\[\eta(x) \leq 4\varepsilon S \sqrt{B} \sum_{i: \varepsilon_i \neq 0} \exp \left(-\frac{(\beta - \frac{\varepsilon^2}{2})^2}{8\varepsilon_i^2} \right) := \eta_\beta, \] (41)
almost surely and therefore
\[\mathbb{E}_y \left(\max_{|I| = S} \|\Psi_I^*y\|_1 \right) \leq \eta_\beta + (\bar{c}_1 + \ldots + \bar{c}_S) \frac{1}{K} \sum_i \alpha_i. \] (42)

Following the same argument as in the proof of Theorem 4.1 we see that
\[\mathbb{E}_y \left(\max_{|I| = S} \|\Phi_I^*y\|_1 \right) > \mathbb{E}_y \left(\max_{|I| = S} \|\Psi_I^*y\|_1 \right), \] (43)
as soon as
\[\varepsilon < \frac{\beta}{1 + 3 \sqrt{\log \left(\frac{24K^2S\sqrt{B}}{\beta (\bar{c}_1 + \ldots + \bar{c}_S)} \right)}}. \]

As already mentioned, while for the K-SVD criterion (7) there is always an optimum at the generating dictionary if all training signals are \(S \)-sparse this is not obvious for the response principle. Indeed in the special case where all the training signals are exactly \(S \)-sparse, that is \(c_{S+1}(x) = 0 \) almost surely, we get as additional condition to ensure asymptotic recoverability,
\[c_S(x) - 2\mu \sum_{s=1}^{S} c_s(x) \geq \beta > 0, \quad \text{almost surely.} \] (44)

To get a better feeling for this constraint we bound the sum over the \(S \) largest responses by \(S \) times the largest response,
\[\sum_{s=1}^{S} c_s(x) \leq Sc_1(x) \] and arrive at the condition
\[\frac{c_S(x)}{c_1(x)} \geq 2S\mu, \] (45)
which is the classical condition under which simple thresholding will find the support of an exactly \(S \)-sparse signal, compare for instance [25].
4.3 Stability under coherence

The condition on the coherence of the dictionary with respect to the decay of the coefficients posed in Theorem 4.1 and Corollary 4.2, that is

\[c_S - c_{S+1} - 2\mu \|c\|_1 > 0, \]

is unfortunately quite strict. In the most favourable case of exactly \(S \) sparse signals with equally balanced coefficients, \(c_1(x) = c_S(x) = 1/\sqrt{S} \) we see from (45) that we can only identify dictionaries from very sparse signals where \(S \lesssim \mu^{-1} \) which in case of very incoherent dictionary with \(\mu = O(1/\sqrt{d}) \) means that \(S \lesssim \sqrt{d} \). However, typically we have

\[
\|\langle \phi_i, \Phi_{c,p,\sigma} \rangle\| = \left| \sigma_i c_{p(i)} + \sum_{j \neq i} \sigma_j c_{p(j)} \langle \phi_i, \phi_j \rangle \right| \approx c_{p(i)} \pm \left(\sum_{j \neq i} c_{p(j)}^2 \|\langle \phi_i, \phi_j \rangle\|^2 \right)^{1/2} \approx c_{p(i)} \pm \mu. \tag{46}
\]

indicating that a condition of the form \(\mu \lesssim c_S - c_{S+1} \) may be strong enough to guarantee (approximate) recoverability of the dictionary. Assuming again the most favourable case this means that we can identify dictionaries from signals with sparsity levels of the order \(S \lesssim \mu^{-2} \), which in case of incoherent dictionaries means of the order of the ambient dimension, \(S \lesssim d \).

In the following theorem we will concretise these informal ideas.

Theorem 4.3. Let \(\Phi \) be a unit norm frame with frame constants \(A \leq B \) and coherence \(\mu \). Let \(x \in \mathbb{R}^K \) be a random permutation of a sequence \(c \), where \(c_1 \geq c_2 \geq c_3 \ldots \geq c_K \geq 0 \) and \(\|c\|_2 = 1 \), provided with random \(\pm \) signs, that is \(x = c_{p,\sigma} \) with probability \(P(p,\sigma) = (2^K K!)^{-1} \) and assume that the signals are generated as \(y = \Phi x \). If we have

\[
\mu \leq \frac{c_S - c_{S+1}}{\sqrt{32(\log a + \log \log a)}} \quad \text{for} \quad a = \frac{48K^2 S \sqrt{B}}{(c_S - c_{S+1})(c_1 + \ldots + c_S)}, \tag{47}
\]

then there is a local maximum \(\tilde{\Psi} \) of (13) near \(\Phi \) satisfying,

\[
\max_k \|\tilde{\psi}_k - \phi_k\|_2 \leq \frac{8SK^2 \sqrt{B}}{c_1 + \ldots + c_S} \exp \left(-\frac{(c_S - c_{S+1})^2}{32\mu^2} \right). \tag{48}
\]

Proof: To prove the theorem we digress from the conventional scheme of first calculating the expectation of our objective function for both the original and a perturbed dictionary and then comparing and instead bound the difference of the expectations directly. We first estimate the typical gap size between the inner products \(\langle \phi_i, \Phi_{c,p,\sigma} \rangle \) for \(i \in I_p \) and \(i \notin I_p \). Using Hoeffding’s
inequality we get for \(i \in I_p, \)

\[
P \left(|\langle \phi_i, \Phi_{c,p,\sigma} \rangle| > c_S - t \right) = P \left(c_{p(i)} + \sum_{j \neq i} \sigma_j c_{p(j)} |\langle \phi_i, \phi_j \rangle| > c_S - t \right)
\leq P \left(\sum_{j \neq i} \sigma_j c_{p(j)} |\langle \phi_i, \phi_j \rangle| > t \right)
\leq 2 \exp \left(\frac{-t^2}{2 \sum_{j \neq i} c^2_{p(j)} |\langle \phi_i, \phi_j \rangle|^2} \right) \leq 2 \exp \left(\frac{-t^2}{2 \mu^2} \right),
\]

(49)

and for \(i \notin I_p, \)

\[
P \left(|\langle \phi_i, \Phi_{c,p,\sigma} \rangle| < c_{S+1} + t \right) = P \left(c_{p(i)} + \sum_{j \neq i} \sigma_j c_{p(j)} |\langle \phi_i, \phi_j \rangle| < c_{S+1} + t \right) \leq 2 \exp \left(\frac{-t^2}{2 \mu^2} \right).
\]

Choosing \(t = (c_S - c_{S+1})/4 \) we get

\[
P \left(\min_{i \in I_p} |\langle \phi_i, \Phi_{c,p,\sigma} \rangle| - \max_{i \notin I_p} |\langle \phi_i, \Phi_{c,p,\sigma} \rangle| < \frac{c_S - c_{S+1}}{2} \right) \leq 2K \exp \left(\frac{- (c_S - c_{S+1})^2}{32 \mu^2} \right),
\]

(50)

and remembering that \(1 - \frac{\varepsilon^2}{2} \leq \alpha_i \leq 1 \) this further leads to

\[
P \left(\min_{i \in I_p} |\alpha_i \langle \phi_i, \Phi_{c,p,\sigma} \rangle| - \max_{i \notin I_p} |\alpha_i \langle \phi_i, \Phi_{c,p,\sigma} \rangle| < \frac{c_S - c_{S+1} - \frac{\varepsilon^2}{2}}{2} \right) \leq 2K \exp \left(\frac{-(c_S - c_{S+1})^2}{32 \mu^2} \right).
\]

From the proof of Theorem 4.1 we know that for \(\varepsilon_i \neq 0 \) we have \(P(|\omega_i| z_i, \Phi_{c,p,\sigma}) \geq s \) \(\leq 2 \exp \left(-\frac{s^2}{2\sigma_i} \right) \). Setting \(s = (c_S - c_{S+1} - \varepsilon^2/2)/4 \) we thus get that except with probability

\[
\eta := 2 \sum_{\varepsilon_i \neq 0} \exp \left(\frac{-(c_S - c_{S+1} - \varepsilon^2)}{32 \varepsilon_i^2} \right) + 2K \exp \left(\frac{-(c_S - c_{S+1})^2}{32 \mu^2} \right),
\]

(51)

we have \(\min_{i \in I_p} |\langle \psi_i, \Phi_{c,p,\sigma} \rangle| > \max_{i \notin I_p} |\langle \psi_i, \Phi_{c,p,\sigma} \rangle| \).

We now use these bounds to estimate the difference of the expectations. For \(p \) fixed we define the set \(\Sigma_p \) as

\[
\Sigma_p := \bigcup_i \left\{ \sigma \ \text{s.t.} \ \sum_{j \neq i} \sigma_j c_{p(j)} |\langle \phi_i, \phi_j \rangle| \geq \frac{c_S - c_{S+1}}{4} \quad \text{or} \quad \omega_i |\langle z_i, \Phi_{c,p,\sigma} \rangle| \geq \frac{c_S - c_{S+1} - \varepsilon^2}{4} \right\}.
\]

(52)
We then have,

\[E_g \left(\max_{|I|=S} \| \Phi_I^* y \|_1 \right) - E_g \left(\max_{|I|=S} \| \Psi_I^* y \|_1 \right) \]

\[= E_p E_\sigma \left(\max_{|I|=S} \| \Phi_I^* \Phi_{I_p} \|_1 - \max_{|I|=S} \| \Psi_I^* \Phi_{I_p} \|_1 \right) \]

\[= E_p \left(\sum_{\sigma \in \Sigma_p} P(\sigma) \left(\max_{|I|=S} \| \Phi_I^* \Phi_{I_p} \|_1 - \max_{|I|=S} \| \Psi_I^* \Phi_{I_p} \|_1 \right) + \sum_{\sigma \notin \Sigma_p} P(\sigma) \left(\max_{|I|=S} \| \Phi_I^* \Phi_{I_p} \|_1 - \max_{|I|=S} \| \Psi_I^* \Phi_{I_p} \|_1 \right) \right) \]

\[\geq E_p \left(P(\sigma) \sum_{\sigma \in \Sigma_p} \left(\frac{\varepsilon^2}{2} \max_{|I|=S} \| \Phi_I^* \Phi_{I_p} \|_1 - \varepsilon S \sqrt{B} \right) + P(\sigma) \sum_{\sigma \notin \Sigma_p} \left(\| \Phi_{I_p}^* \Phi_{I_p} \|_1 - \| \Psi_{I_p}^* \Phi_{I_p} \|_1 \right) \right), \quad (53) \]

where for the last inequality we have used the bound

\[\max_{|I|=S} \| \Psi_I^* \Phi_{I_p} \|_1 \leq (1 - \frac{\varepsilon^2}{2}) \max_{|I|=S} \| \Phi_I^* \Phi_{I_p} \|_1 + S \cdot \varepsilon \sqrt{B} \quad (54) \]

and that for \(\sigma \notin \Sigma_p \) the maximal inner products are attained at \(I_p \). We continue by further bounding the sum over \(\sigma \notin \Sigma_p \),

\[\sum_{\sigma \notin \Sigma_p} \left(\| \Phi_{I_p}^* \Phi_{I_p} \|_1 - \| \Psi_{I_p}^* \Phi_{I_p} \|_1 \right) \]

\[= \sum_{\sigma \notin \Sigma_p} \sum_{i \in I_p} \left(c_p(i) + \alpha_i \sum_{j \neq i} \sigma_j c_p(j) \langle \phi_i, \phi_j \rangle \right) \]

\[- \sum_{\sigma \notin \Sigma_p} \sum_{i \in I_p} \left(\alpha_i \sum_{j \neq i} \sigma_j c_p(j) \langle \phi_i, \phi_j \rangle + \omega_i \sum_{j \neq i} \sigma_j c_p(j) \langle z_i, \phi_j \rangle \right) \]

\[= \sum_{\sigma \notin \Sigma_p} \sum_{i \in I_p} \left(c_p(i) + \alpha_i \sum_{j \neq i} \sigma_j c_p(j) \langle \phi_i, \phi_j \rangle \right) \]

\[- \sum_{\sigma \notin \Sigma_p} \sum_{i \in I_p} \alpha_i c_p(i) + \alpha_i \sum_{j \neq i} \sigma_j c_p(j) \langle \phi_i, \phi_j \rangle + \omega_i \sum_{j \neq i} \sigma_j c_p(j) \langle z_i, \phi_j \rangle \right). \quad (55) \]

Next note that \(\Sigma_p \) is symmetric in the sense that we either have \((\sigma_1, \ldots, \pm \sigma_i, \ldots, \sigma_K) \in \Sigma_p \) or \((\sigma_1, \ldots, \pm \sigma_i, \ldots, \sigma_K) \notin \Sigma_p \). This leads us to

\[\sum_{\sigma \notin \Sigma_p} \left(\| \Phi_{I_p}^* \Phi_{I_p,\sigma} \|_1 - \| \Psi_{I_p}^* \Phi_{I_p,\sigma} \|_1 \right) = \sum_{\sigma \notin \Sigma_p} \sum_{i \in I_p} c_p(i) (1 - \alpha_i) = \sum_{\sigma \notin \Sigma_p} \sum_{i \in I_p} c_p(i) \frac{\varepsilon^2}{2}. \quad (56) \]

January 27, 2014 DRAFT
Resubstituting these estimates into \((53)\) we get
\[
\mathbb{E}_y \left(\max_{|I|=S} \| \Phi_I^* y \|_1 \right) - \mathbb{E}_y \left(\max_{|I|=S} \| \Psi_I^* y \|_1 \right)
\geq \mathbb{E}_p \left(\mathbb{P}(\sigma) \sum_{\sigma \in \Sigma_p} \left(\frac{\varepsilon^2}{2} \max_{|I|=S} \| \Phi_I^* \Phi_{c_p,\sigma} \|_1 - \varepsilon S \sqrt{B} \right) + \mathbb{P}(\sigma) \sum_{i \in I_p} \sum_{i \notin \Sigma_p} c_{p(i)} \varepsilon_i^2 \right)
\geq \mathbb{E}_p \left(\mathbb{P}(\sigma) \sum_{\sigma \in \Sigma_p} \left(\frac{\varepsilon^2}{2} \| \Phi_I^* \Phi_{c_p,\sigma} \|_1 - \varepsilon S \sqrt{B} \right) + \mathbb{P}(\sigma) \sum_{i \in I_p} \sum_{i \notin \Sigma_p} c_{p(i)} \varepsilon_i^2 \right)
\geq \mathbb{E}_p \left(\mathbb{P}(\sigma) \sum_{i \in I_p} \sum_{i \notin \Sigma_p} c_{p(i)} \varepsilon_i^2 \right) - \varepsilon S \sqrt{B} \cdot \mathbb{P}(\Sigma_p)
\geq \frac{c_1 + \ldots + c_S}{2K} \sum_i \varepsilon_i^2 - \varepsilon S \sqrt{B} \cdot \eta,
\]
(57)

Finally all we need to do is check when the expression above is larger than zero. Abbreviating \(\gamma = c_1 + \ldots + c_S\) we need that
\[
\frac{\gamma}{2K} \sum_i \varepsilon_i^2 > \varepsilon S \sqrt{B} \left(2 \sum_{\varepsilon_i \neq 0} \exp \left(-\frac{(c_S - c_{S+1})^2}{32\varepsilon_i^2} \right) + 2K \exp \left(-\frac{(c_S - c_{S+1})^2}{32\mu^2} \right) \right),
\]
which is implied by
\[
\varepsilon > \frac{4SK^2 \sqrt{B}}{\gamma} \left(\exp \left(-\frac{(c_S - c_{S+1})^2}{32\varepsilon_i^2} \right) + \exp \left(-\frac{(c_S - c_{S+1})^2}{32\mu^2} \right) \right).
\]
(58)

We split the above into two conditions, the first condition,
\[
\frac{\varepsilon}{2} > \frac{4SK^2 \sqrt{B}}{\gamma} \exp \left(-\frac{(c_S - c_{S+1})^2}{32\mu^2} \right) := \varepsilon_{\min},
\]
(59)
defining the lower bound on the perturbation size, and the second condition,
\[
\frac{\varepsilon}{2} > \frac{4SK^2 \sqrt{B}}{\gamma} \exp \left(-\frac{(c_S - c_{S+1})^2}{32\varepsilon_i^2} \right),
\]
(60)
implicitly defining the upper bound on the perturbation size (compare proof of Theorem 4.1),
\[
\varepsilon < \frac{c_S - c_{S+1}}{2} + 6 \sqrt{\log \left(\frac{4SK^2 \sqrt{B}}{(c_S - c_{S+1})(c_1 + \ldots + c_S)} \right)} := \varepsilon_{\max}.
\]
(61)
The statement follows from making sure that \(\varepsilon_{\min} < \varepsilon_{\max}\).
We can again extend the theorem for the very simple coefficient model to more complicated coefficient models.
Corollary 4.4. Let Φ be a unit norm frame with frame constants $A \leq B$ and coherence μ. Let the coefficients x be drawn from a symmetric probability distribution ν on the unit sphere $S^{K-1} \subset \mathbb{R}^K$ and assume that the signals are generated as $y = \Phi x$. If there exists $\beta > 0$ such that for $c_1(x) \geq c_2(x) \geq \ldots \geq c_K(x) \geq 0$ the non-increasing rearrangement of the absolute values of the components of x we have $c_S(x) - c_{S+1}(x) \geq \beta$ almost surely and

$$\mu \leq \frac{\beta}{\sqrt{32(\log a + \log \log a)}} \quad \text{for} \quad a = \frac{48K^2S\sqrt{B}}{\beta(\bar{c}_1 + \ldots + \bar{c}_S)},$$

where $\bar{c}_i := \mathbb{E}_x(c_i(x))$, then there is a local maximum of (13) at $\tilde{\Psi}$ satisfying,

$$d(\tilde{\Psi}, \Phi) \leq \frac{8SK^2\sqrt{B}}{\bar{c}_1 + \ldots + \bar{c}_S} \exp\left(\frac{-\beta^2}{32\mu^2}\right).$$

Proof: Follow the proof of Corollary 4.1 with the necessary changes.

Let us make some observations about the last two results. First, by specialising Corollary 4.4 to the case of exactly S-sparse signals we get - to the best of our knowledge - the first result establishing that it is possible to stably identify dictionaries from signals with sparsity levels beyond the spark of the generating dictionary. Indeed even if some of the S-sparse signals could have representations in Φ that require less than S atoms there will still be a local maximum of the asymptotic criterion close to the original dictionary as long as the smallest coefficient of each signal is of the order $O(\mu)$, which in the most favourable case means that we can have $S \lesssim \mu^{-2}$ or $S \lesssim d$. The quality of this result is on par with the best results for finding sparse approximations in a given dictionary, saying that on average Basis Pursuit or thresholding can find the correct sparse support even for signals with sparsity levels of the order of the ambient dimension [28], [24].

Next note that with the available tools it would be possible to consider also a signal model where a small fraction of the coefficients violates the decay condition $c_S(x) - c_{S+1}(x) \geq \beta$ and still have stability. However, we leave explorations into that direction to the interested reader and instead turn to the case of noisy signals.

4.4 Stability under noise

In this section we want to extend our results to noisy signals. We would like to consider unbounded white noise, but also keep the property that in expectation the signals have unit square norm. Further for the next section, where we want to transform our asymptotic identification
results to results for finite sample sizes, it will be convenient if our signals are bounded. These considerations lead to the following model,

\[y = \frac{\Phi x + r}{\sqrt{1 + \|r\|^2}}, \tag{64} \]

where \(r = (r(1) \ldots r(d)) \) is a centred random subgaussian vector with parameter \(\rho \), that is the entries \(r(i) \) are independent and satisfy \(\mathbb{E}(e^{tr(i)}) \leq e^{t\rho^2/2} \).

Based on this noisy signal model we could derive noisy versions of both exact and stable recovery, but for conciseness we will only extend Theorems 4.3/4.4 to the noisy case and leave formulation and proof of extensions of Theorems 4.1/4.2 to the interested reader.

Theorem 4.5. Let \(\Phi \) be a unit norm frame with frame constants \(A \leq B \) and coherence \(\mu \). Let \(x \in \mathbb{R}^K \) be a random permutation of a sequence \(c \), where \(c_1 \geq c_2 \geq c_3 \ldots \geq c_K \geq 0 \) and \(\|c\|_2 = 1 \), provided with random \(\pm \) signs, that is \(x = c_{p,\sigma} \) with probability \(\mathbb{P}(p, \sigma) = (2^K K!)^{-1} \). Further let \(r = (r(1) \ldots r(d)) \) be a centred random subgaussian noise-vector with parameter \(\rho \) and assume that the signals are generated according to the noisy signal model in (64). If we have

\[\max\{\mu, \rho\} \leq \frac{c_S - c_{S+1}}{\sqrt{72(\log a + \log \log a)}} \quad \text{for} \quad a = \frac{102K^2 S(\sqrt{B} + 1)}{C_r(c_S - c_{S+1})(c_1 + \ldots + c_S)}, \tag{65} \]

where \(C_r = \mathbb{E}_r \left((1 + \|r\|^2)^{-1/2}\right) \), then there is a local maximum of (13) at \(\tilde{\Psi} \) satisfying,

\[d(\tilde{\Psi}, \Phi) \leq \frac{12SK^2 \sqrt{B}}{C_r(c_1 + \ldots + c_S)} \exp \left(\frac{-(c_S - c_{S+1})^2}{72 \max\{\mu^2, \rho^2\}}\right). \tag{66} \]

Proof: As in the proof of Theorem 4.3 we will directly estimate the difference of the expectations for the original and a perturbed dictionary.

\[
\mathbb{E}_y \left(\max_{|I|=S} \|\Phi_I^* y\|_1 \right) - \mathbb{E}_y \left(\max_{|I|=S} \|\Psi_I^* y\|_1 \right)
= \mathbb{E}_{p,\sigma,r} \left(\max_{|I|=S} \left\| \Phi_I^* (\Phi c_{p,\sigma} + r) \right\|_1 - \max_{|I|=S} \left\| \Psi_I^* (\Phi c_{p,\sigma} + r) \right\|_1 \right)
= \mathbb{E}_{p,\sigma,r} \left(\max_{|I|=S} \left\| \Phi_I^* (\Phi c_{p,\sigma} + r) \right\|_1 - \max_{|I|=S} \left\| \Psi_I^* (\Phi c_{p,\sigma} + r) \right\|_1 \right) \cdot \mathbb{E}_{p,\sigma,r}(\Delta_{p,\sigma,r})
\]

Our strategy is to show that for a fixed \(p \) for most \(\sigma \) and \(r \) the maximal response of both the original dictionary and the perturbation is attained at \(I_p \). The expressions we therefore need to
lower (upper) bound for $i \in I_p \; (i \notin I_p)$ are

$$|\langle \phi_i, \Phi_{c,\sigma} + r \rangle| = |\sigma_i c_p(i) + \sum_{j \neq i} \sigma_j c_p(j) \langle \phi_i, \phi_j \rangle + \langle \phi_i, r \rangle|,$$

$$|\langle \psi_i, \Phi_{c,\sigma} + r \rangle| = |\alpha_i \sigma_i c_p(i) + \alpha_i \sum_{j \neq i} \sigma_j c_p(j) \langle \phi_i, \phi_j \rangle + \omega_i \langle z_i, \Phi_{c,\sigma} \rangle + \langle \psi_i, r \rangle|.$$ (67) (68)

Defining the sets,

$$\Sigma_p := \bigcup_i \left\{ \sigma \text{ s.t. } \sum_{j \neq i} \sigma_j c_p(j) \langle \phi_i, \phi_j \rangle \geq \frac{cS - cS + 1}{6} \text{ or } \omega_i \langle z_i, \Phi_{c,\sigma} \rangle \geq \frac{cS - cS + 1 - \epsilon^2}{2} \right\},$$

for a fixed permutation p and

$$R := \bigcup_i \left\{ r \text{ s.t. } |\langle \phi_i, r \rangle| \geq \frac{cS - cS + 1}{3} \text{ or } |\langle \psi_i, r \rangle| \geq \frac{cS - cS + 1}{6} \right\},$$

we see that both maxima are attained at I_p as long as $\sigma \notin \Sigma_p$ and $r \notin R$. We now split the expectations over the sign and noise patterns for a fixed p to get

$$\mathbb{E}_\sigma \mathbb{E}_r(\Delta_{p,\sigma,\epsilon}) = \mathbb{E}_\sigma \left(\int_{r \notin R} \Delta_{p,\sigma,\epsilon} d\nu_r \right) + \mathbb{E}_\sigma \left(\int_{r \in R} \Delta_{p,\sigma,\epsilon} d\nu_r \right)
\quad = \sum_{\sigma \notin \Sigma_p} \mathbb{P}(\sigma) \int_{r \notin R} \Delta_{p,\sigma,\epsilon} d\nu_r + \sum_{\sigma \in \Sigma_p} \mathbb{P}(\sigma) \int_{r \in R} \Delta_{p,\sigma,\epsilon} d\nu_r
\quad + \mathbb{E}_\sigma \left(\int_{r \in R} \Delta_{p,\sigma,\epsilon} d\nu_r \right).$$ (71)

Using the symmetry of Σ_p as in the proof of Theorem 4.3 we get for the first term in (71),

$$\sum_{\sigma \notin \Sigma_p} \mathbb{P}(\sigma) \int_{r \notin R} \Delta_{p,\sigma,\epsilon} d\nu_r = \int_{r \notin R} \sum_{\sigma \notin \Sigma_p} \mathbb{P}(\sigma) \left(\frac{\left| \Phi^*_p(\Phi_{c,\sigma} + r) \right|_1 - \left| \Phi^*_p(\Phi_{c,\sigma} + r) \right|_1}{\sqrt{1 + \|r\|_2^2}} \right) d\nu_r
\quad = \int_{r \notin R} \sum_{\sigma \notin \Sigma_p} \mathbb{P}(\sigma) \left(\frac{\sum_{i \in I_p} c_p(i) \|r\|_2}{\sqrt{1 + \|r\|_2^2}} \right) d\nu_r.$$ (72)

To bound the last two terms in (71) we first upper bound $\max_{|I| = S} \left| \Phi^*_I(\Phi_{c,\sigma} + r) \right|_1$ as,

$$\max_{|I| = S} \left| \Phi^*_I(\Phi_{c,\sigma} + r) \right|_1 = \max_{|I| = S} \left| \sum_{i \in I} \langle \phi_i + \omega_i z_i, \Phi_{c,\sigma} + r \rangle \right|
\quad \leq \max_{|I| = S} \sum_{i \in I} \left(1 - \frac{\epsilon^2}{2} \right) \left| \langle \phi_i + \omega_i z_i, \Phi_{c,\sigma} + r \rangle \right| + \epsilon \|\Phi_{c,\sigma} + r\|_2
\quad \leq \max_{|I| = S} \sum_{i \in I} \left(1 - \frac{\epsilon^2}{2} \right) \left| \langle \phi_i + \omega_i z_i, \Phi_{c,\sigma} + r \rangle \right| + \epsilon \left(\sqrt{B} + \|r\|_2 \right)
\quad = (1 - \frac{\epsilon^2}{2}) \max_{|I| = S} \left| \Phi^*_I(\Phi_{c,\sigma} + r) \right|_1 + \epsilon S \left(\sqrt{B} + \|r\|_2 \right).$$ (73)
This then leads to the following lower bound for $\Delta_{p,\sigma,r}$

$$\Delta_{p,\sigma,r} \geq (1 + \|r\|_2) \left(\max_{\{i\} = S} \|\Phi^*_i(\Phi c_{p,\sigma} + r)\|_1 \frac{\epsilon^2}{2} - \epsilon S(\sqrt{B} + \|r\|_2) \right)$$

$$\geq (1 + \|r\|_2)^{-1/2} \left(\|\Phi^*_i(\Phi c_{p,\sigma} + r)\|_1 \frac{\epsilon^2}{2} - \epsilon S(\sqrt{B} + \|r\|_2) \right). \quad (74)$$

Using again the symmetry of Σ_p we have

$$\sum_{\sigma \in \Sigma_p} \mathbb{P}(\sigma) \int_{r \notin R} \Delta_{p,\sigma,r} d\nu_r \geq \int_{r \notin R} \sum_{\sigma \in \Sigma_p} \mathbb{P}(\sigma) \frac{\|\Phi^*_i(\Phi c_{p,\sigma} + r)\|_1 \frac{\epsilon^2}{2} - \epsilon S(\sqrt{B} + \|r\|_2)}{\sqrt{1 + \|r\|_2}} d\nu_r$$

$$\geq \int_{r \notin R} \sum_{\sigma \in \Sigma_p} \mathbb{P}(\sigma) \left(\frac{\sum_{i \in I_p} c_{p(i)} \frac{\epsilon^2}{2}}{\sqrt{1 + \|r\|_2}} - \epsilon S(\sqrt{B} + 1) \right) d\nu_r,$n

$$\geq \int_{r \notin R} \sum_{\sigma \in \Sigma_p} \mathbb{P}(\sigma) \left(\frac{\sum_{i \in I_p} c_{p(i)} \frac{\epsilon^2}{2}}{\sqrt{1 + \|r\|_2}} - \epsilon S(\sqrt{B} + 1) \right) d\nu_r, \quad (75)$$

and similarly

$$\mathbb{E}_\sigma \left(\int_{r \in R} \Delta_{p,\sigma,r} d\nu_r \right) \geq \int_{r \in R} \mathbb{E}_\sigma \left(\frac{\|\Phi^*_i(\Phi c_{p,\sigma} + r)\|_1 \frac{\epsilon^2}{2} - \epsilon S(\sqrt{B} + \|r\|_2)}{\sqrt{1 + \|r\|_2}} \right) d\nu_r,$n

$$\geq \int_{r \in R} \frac{\sum_{i \in I_p} c_{p(i)} \frac{\epsilon^2}{2}}{\sqrt{1 + \|r\|_2}} - \epsilon S(\sqrt{B} + 1) d\nu_r. \quad (76)$$

Resubstituting into (71) we get,

$$\mathbb{E}_\sigma \mathbb{E}_r(\Delta_{p,\sigma,r}) \geq \int_{r \in R} \sum_{i \in I_p} c_{p(i)} \frac{\epsilon^2}{2} \frac{1}{\sqrt{1 + \|r\|_2}^2} - \epsilon S(\sqrt{B} + 1) d\nu_r$$

$$+ \int_{r \notin R} \sum_{\sigma \in \Sigma_p} \mathbb{P}(\sigma) \left(\frac{\sum_{i \in I_p} c_{p(i)} \frac{\epsilon^2}{2}}{\sqrt{1 + \|r\|_2}^2} - \epsilon S(\sqrt{B} + 1) \right) d\nu_r$$

$$+ \int_{r \notin R} \sum_{\sigma \notin \Sigma_p} \mathbb{P}(\sigma) \left(\frac{\sum_{i \in I_p} c_{p(i)} \frac{\epsilon^2}{2}}{\sqrt{1 + \|r\|_2}^2} \right) d\nu_r,$n

$$\geq \int_{r} \frac{\sum_{i \in I_p} c_{p(i)} \frac{\epsilon^2}{2}}{\sqrt{1 + \|r\|_2}^2} d\nu_r - \epsilon S(\sqrt{B} + 1) \cdot (P(R) + P(\Sigma_p)). \quad (77)$$

Taking the expectation over the permutations then yields

$$\mathbb{E}_{p,\sigma,r}(\Delta_{p,\sigma,r}) \geq \mathbb{E}_p \mathbb{E}_r \left(\frac{\sum_{i \in I_p} c_{p(i)} \frac{\epsilon^2}{2}}{\sqrt{1 + \|r\|_2}^2} \right) - \epsilon S(\sqrt{B} + 1) \cdot (P(R) + \mathbb{E}_p \mathbb{P}(\Sigma_p))$$

$$\geq \mathbb{E}_p \left(\frac{1}{\sqrt{1 + \|r\|_2}^2} \right) \frac{c_1 + \ldots + c_S}{2K} \sum_{i} \epsilon_{i}^2 - \epsilon S(\sqrt{B} + 1) \cdot (P(R) + \mathbb{E}_p \mathbb{P}(\Sigma_p)).$$
From previous proofs we know that
\[P(\Sigma_p) \leq 2K \exp\left(-\frac{(c_S - c_{S+1})^2}{72\varepsilon^2}\right) + 2K \exp\left(-\frac{(c_S - c_{S+1})^2}{72\mu^2}\right). \] (78)

Since the \(r(i) \) are subgaussian with parameter \(\rho \) we have for any \(v = (v_1 \ldots v_d) \) and \(t \geq 0 \), \(P(|\langle v, r \rangle| \geq t) \leq \exp\left(-\frac{t^2}{2\rho^2\|v\|^2}\right) \), see e.g. [30]. Taking a union bound over all \(\phi_i, \psi_i \) with the corresponding choice for \(t \) then leads to the estimate
\[P(R) \leq 2K \exp\left(-\frac{(c_S - c_{S+1})^2}{72\rho^2}\right) + 2K \exp\left(-\frac{(c_S - c_{S+1})^2}{18\rho^2}\right). \] (79)

With these concrete estimates at hand we see that \(E_{p,\sigma,r}(\Delta p,\sigma, r) > 0 \) is implied by
\[\varepsilon \geq \frac{4SK^2(\sqrt{B} + 1)}{C_r\gamma} \left(\exp\left(-\frac{(\beta - \frac{\varepsilon^2}{2})^2}{72\varepsilon^2}\right) + \exp\left(-\frac{\beta^2}{72\rho^2}\right) + \exp\left(-\frac{\beta^2}{18\rho^2}\right) \right), \]
where we have used the abbreviations \(\gamma = c_1 + \ldots + c_S, \beta = c_S - c_{S+1} \) and \(C_r = E_r \left((1 + \|r\|^2)_{\frac{3}{2}}^{-1/2}\right) \).

We now proceed as in the proof of Theorem 4.3 by splitting the above condition. We define \(\varepsilon_{\text{min}} \) by asking that
\[\frac{\varepsilon}{3} \geq \frac{4SK^2(\sqrt{B} + 1)}{C_r\gamma} \exp\left(-\frac{\beta^2}{72\max\{\mu^2, \rho^2\}}\right) := \frac{\varepsilon_{\text{min}}}{3} \] (80)
and \(\varepsilon_{\text{max}} \) implicitly by asking that
\[\frac{\varepsilon}{3} \geq \frac{4SK^2(\sqrt{B} + 1)}{C_r\gamma} \exp\left(-\frac{(\beta - \frac{\varepsilon^2}{2})^2}{72\varepsilon^2}\right). \] (81)

Following the line of argument in the proof of Theorem 4.1 we see that the above condition is guaranteed as soon as
\[\varepsilon \leq \frac{\beta}{\frac{5}{2} + 9\sqrt{\log\left(\frac{102K^2S(\sqrt{B} + 1)}{C_r\beta\gamma}\right)}} := \varepsilon_{\text{max}}. \]

The statement follows again from making sure that \(\varepsilon_{\text{min}} < \varepsilon_{\text{max}} \).

Going from the simple coefficient model with one base sequence \(c \) to the more complicated models leads to the following corollary.

Corollary 4.6. Let \(\Phi \) be a unit norm frame with frame constants \(A \leq B \) and coherence \(\mu \). Let the coefficients \(x \) be drawn from a symmetric probability distribution \(\nu \) on the unit sphere \(S^{K-1} \subset \mathbb{R}^K \). Further let \(r = (r(1) \ldots r(d)) \) be a centred random subgaussian noise-vector with parameter \(\rho \) and assume that the signals are generated according to the noisy signal model in (64). If there exists \(\beta > 0 \)
such that for \(c_1(x) \geq c_2(x) \geq \ldots \geq c_K(x) \geq 0 \) the non-increasing rearrangement of the absolute values of the components of \(x \) we have \(c_S(x) - c_{S+1}(x) \geq \beta \) almost surely and

\[
\max\{\mu, \rho\} \leq \frac{\beta}{\sqrt{72(\log a + \log \log a)}} \quad \text{for} \quad a = \frac{102K^2S(\sqrt{B} + 1)}{C_r\beta(\bar{c}_1 + \ldots + \bar{c}_S)},
\]

where \(C_r = \mathbb{E}_r((1 + \|r\|^2)^{-1/2}) \) and \(\bar{c}_i := \mathbb{E}_x(c_i(x)) \), then there is a local maximum of \(\Psi \) at \(\Psi^{*} \) satisfying,

\[
d(\Psi^{*}, \Phi) \leq 12SK^2\sqrt{B} \exp\left(\frac{-\beta^2}{72 \max\{\mu^2, \rho^2\}}\right). \tag{83}
\]

Proof: Follow the proof of Corollary 4.1 with the necessary changes. \(\square \)

Let us quickly point out that for sub-gaussian noise with parameter \(\rho \), the quantity \(C_r = \mathbb{E}_r((1 + \|r\|^2)^{-1/2}) \) in the statement above is well behaved. If for example the \(r_i \) are iid Bernoulli-variables, that is \(P(r_i = \pm \rho) = \frac{1}{2} \), we have \(C_r = (1 + d\rho^2)^{-1/2} \). In general we have the following estimate due for instance to Theorem 1 in \[14\]. Since

\[
\mathbb{P}\left(\|x\|_2^2 \geq \rho^2(d + 2\sqrt{dt} + 2t)\right) \leq e^{-t}, \tag{84}
\]

for \(t = d \) we get \(\mathbb{P}\left(\|x\|_2^2 \geq 5d\rho^2\right) \leq e^{-d} \) and

\[
\mathbb{E}_r\left(\frac{1}{\sqrt{1 + \|r\|^2}}\right) \geq \frac{(1 - e^{-d})}{\sqrt{1 + 5d\rho^2}}. \tag{85}
\]

Also to illustrate the result we again specialise it to the most favourable case of exactly \(S \)-sparse signals with balanced coefficients, that is \(c_S(x) = S^{-1/2} \). Assuming white Gaussian noise with variance \(\rho_G^2 \), we see that identification is possible even for expected signal to noise ratios of the order \(O\left(\frac{S}{d}\right) \), that is

\[
\frac{\mathbb{E}(\|\Phi x\|_2^2)}{\mathbb{E}(\|r\|_2^2)} \geq \frac{S}{d}.
\]

After deriving three asymptotic identification results for the new optimisation criterion we can finally turn to the study of the criterion for a finite number of training samples.

5 Finite sample size results

In this section we will transform the asymptotic results from the last two sections into results for finite sample sizes, that is we will study when \(\Phi \) is close to a local maximum of

\[
\max_{\Psi \in \mathcal{D}} \frac{1}{N} \sum_{n=1}^{N} \max_{|I|=S} \|\Psi^*_I y_n\|_1, \tag{86}
\]
assuming that the y_n are following either the noise-free or the noisy signal model. For convenience we will do the analysis for the normalised version $\mathbf{86}$ of the S-response criterion $\mathbf{4}$.

We only give finite sample size versions of Corollary $\mathbf{4.2}$ and Corollary $\mathbf{4.6}$ and again leave the extension of Corollary $\mathbf{4.4}$ to the interested reader.

Theorem 5.1. Let Φ be a unit norm frame with frame constants $A \leq B$ and coherence μ. Let the coefficients x_n be drawn from a symmetric probability distribution ν on the unit sphere $S^{K-1} \subset \mathbb{R}^K$ and assume that the signals are generated as $y_n = \Phi x_n$. If there exists $\beta > 0$ such that for $c_1(x_n) \geq c_2(x_n) \geq \ldots \geq c_K(x_n) \geq 0$ the non-increasing rearrangement of the absolute values of the components of x_n we have $c_S(x_n) - c_{S+1}(x_n) \geq \beta$ almost surely and the target precision $\tilde{\varepsilon}$ satisfies

$$\tilde{\varepsilon} \leq \frac{\beta}{1 + 3\sqrt{\log \left(\frac{48K^2S\sqrt{B}}{\beta(c_1 + \ldots + c_S)} \right)}},$$

where $\bar{c}_i := \mathbb{E}_{x_n}(c_i(x_n))$, then except with probability

$$2 \exp \left(-\frac{N\tilde{\varepsilon}^2(c_1 + \ldots + c_S)^2}{129S^2K^2B} + Kd \log \left(\frac{25SK\sqrt{B}}{\tilde{\varepsilon}(c_1 + \ldots + c_S)} \right) \right),$$

there is a local maximum of $\mathbf{86}$ respectively $\mathbf{12}$ at $\tilde{\Psi}$ satisfying,

$$d(\tilde{\Psi}, \Phi) \leq \tilde{\varepsilon} + \frac{\tilde{\varepsilon}^2}{4K}.$$

Theorem 5.2. Let Φ be a unit norm frame with frame constants $A \leq B$ and coherence μ. Let the coefficients x_n be drawn from a symmetric probability distribution ν on the unit sphere $S^{K-1} \subset \mathbb{R}^K$. Further let $r_n = (r_n(1) \ldots r_n(d))$ be i.i.d. centred random subgaussian noise-vectors with parameter ρ and assume that the signals are generated according to the noisy signal model in $\mathbf{64}$. If there exists $\beta > 0$ such that for $c_1(x_n) \geq c_2(x_n) \geq \ldots \geq c_K(x_n) \geq 0$ the non-increasing rearrangement of the absolute values of the components of x we have $c_S(x_n) - c_{S+1}(x_n) \geq \beta$ almost surely and if the target precision $\tilde{\varepsilon}$, the noise parameter ρ and the coherence μ satisfy

$$\tilde{\varepsilon} \leq \frac{\beta}{\frac{9}{4} + 9\sqrt{\log a}} \quad \text{and} \quad \max\{\mu, \rho\} \leq \frac{\beta}{\sqrt{72}(\log a + \log \log a)}$$

for $a = \frac{136K^2S(\sqrt{B} + 1)}{C_r\beta(c_1 + \ldots + c_S)}$,

January 27, 2014 DRAFT
where \(C_r = \mathbb{E}_{r_n} \left((1 + \| r_n \|^2)^{-1/2} \right) \) and \(\bar{c}_i := \mathbb{E}_{x_n} (c_i(x_n)) \), then except with probability
\[
2 \exp \left(\frac{\bar{c}_1 + \ldots + \bar{c}_S}{513 C_r^2 S^2 K^2 (\sqrt{B} + 1)^2} + K d \log \left(\frac{49 S K (\sqrt{B} + 1)}{\varepsilon_{\mu, \rho} (\bar{c}_1 + \ldots + \bar{c}_S)} \right) \right),
\]
where \(\varepsilon_{\mu, \rho} = \max \left\{ \tilde{\varepsilon}, \frac{16 S K^2 (\sqrt{B} + 1)}{C_r (\bar{c}_1 + \ldots + \bar{c}_S)} \exp \left(-\frac{\beta^2}{72 \max\{\mu^2, \rho^2\}} \right) \right\} \),
\[
(92)
\]
there is a local maximum of \((86) \) respectively \((12) \) at \(\bar{\Psi} \), satisfying
\[
d(\bar{\Psi}, \Phi) \leq \tilde{\varepsilon}_{\mu, \rho} + \frac{\varepsilon_{\mu, \rho}^2}{16K}.
\]
\[
(94)
\]
Since the proofs of Theorems 5.1 and 5.2 are conceptually equivalent we will combine them into one and just split the argument for the inevitable juggling of constants.

Proof: The proof is based on three ingredients, for both signal models a Lipschitz property for the mapping \(\Psi \rightarrow \frac{1}{N} \sum_{n=1}^{N} \max_{|I| = S} \| \Psi^*_I y_n \|_1 \), the concentration of the sum around its expectation for a \(\delta \) net covering the space of all admissible dictionaries close to \(\Phi \) and a triangle inequality argument to get to the final statement.

To show the Lipschitz property we use a reverse triangle inequality,
\[
\left| \max_{|I| = S} \| \Psi^*_I y_n \|_1 - \max_{|I| = S} \| \bar{\Psi}^*_I y_n \|_1 \right| = \max_{|I| = S} \| \bar{\Psi}^*_I y_n - (\Psi^*_I - \bar{\Psi}^*_I) y_n \|_1 - \max_{|I| = S} \| \bar{\Psi}^*_I y_n \|_1
\leq \max_{|I| = S} \| (\Psi^*_I - \bar{\Psi}^*_I) y_n \|_1
\leq S \max_k \| \psi_k - \tilde{\psi}_k \|_2 \| y_n \|_2
\leq d(\Psi, \bar{\Psi}) S (\sqrt{B} + 1).
\]
\[
(95)
\]
Note that for the noise-free signal model we can replace \((\sqrt{B} + 1) \) by \(\sqrt{B} \) in the last expression.

By averaging over \(n \) we get that the mapping in question is Lipschitz with constant \(S(\sqrt{B} + 1) \) in the noisy and \(S \sqrt{B} \) in the noise-free case, that is
\[
\left| \frac{1}{N} \sum_{n=1}^{N} \max_{|I| = S} \| \Psi^*_I y_n \|_1 - \frac{1}{N} \sum_{n=1}^{N} \max_{|I| = S} \| \bar{\Psi}^*_I y_n \|_1 \right| \leq d(\Psi, \bar{\Psi}) S (\sqrt{B} + 1).
\]
\[
(96)
\]
To show that the averaged sums concentrate around their expectations we use our favourite tool Hoeffding’s inequality. Set \(X_n = \max_{|I| = S} \| \Psi^*_I y_n \|_1 - \max_{|I| = S} \| \Phi^*_I y_n \|_1 \), then we have \(|X_n| \leq \)
\(\varepsilon S(\sqrt{B} + 1) \), resp. \(|X_n| \leq \varepsilon S\sqrt{B} \) in the noise-free case, and get the estimate,

\[
P\left(\frac{1}{N} \sum_{n=1}^{N} \left(\max_{|I|=S} \|\Phi^*_I y_n\|_1 - \max_{|I|=S} \|\Psi^*_I y_n\|_1 \right) - \mathbb{E} \left(\max_{|I|=S} \|\Phi^*_I y_1\|_1 - \max_{|I|=S} \|\Psi^*_I y_1\|_1 \right) \geq 2t \right)
\leq 2 \exp\left(\frac{-2Nt^2}{\varepsilon^2 S^2 (\sqrt{B} + 1)^2} \right). \tag{97} \]

Next we need to choose a \(\delta \)-net for all perturbations \(\Psi \) with \(d(\Phi, \Psi) \leq \varepsilon_{\max} \), that is a finite set of perturbations \(\mathcal{N} \) such that for every \(\Psi \) we can find \(\bar{\Psi} \in \mathcal{N} \) with \(d(\Psi, \bar{\Psi}) \leq \delta \). Recalling the parametrisation of all \(\varepsilon \)-perturbations from Theorem 4.1, we see that the space we need to cover is included in the product of \(K \) balls with radius \(\varepsilon_{\max} \) in dimension \(d \). From e.g. Lemma 2 in [30] we know that for the \(d \) dimensional ball of radius \(\varepsilon_{\max} \) we can find a \(\delta \)-net \(\mathcal{N}_d \) satisfying \(\# \mathcal{N}_d \leq \left(\varepsilon_{\max} + \frac{2\varepsilon_{\max}}{\delta} \right)^d \), so for our space of \(\varepsilon \)-perturbations we can find a \(\delta \)-net \(\mathcal{N} \) satisfying,

\[
\# \mathcal{N} \leq \left(\varepsilon_{\max} + \frac{2\varepsilon_{\max}}{\delta} \right)^K \leq \left(\frac{3\varepsilon_{\max}}{\delta} \right)^K. \tag{98} \]

Taking a union bound we can now estimate the probability that we have concentration for all perturbations in the net as,

\[
P\left(\exists \Psi \in \mathcal{N} : \frac{1}{N} \sum_{n=1}^{N} \left(\max_{|I|=S} \|\Phi^*_I y_n\|_1 - \max_{|I|=S} \|\Psi^*_I y_n\|_1 \right)
- \mathbb{E} \left(\max_{|I|=S} \|\Phi^*_I y_1\|_1 - \max_{|I|=S} \|\Psi^*_I y_1\|_1 \right) \geq 2t \right)
\leq \left(\frac{3\varepsilon_{\max}}{\delta} \right)^K 2 \exp\left(\frac{-2Nt^2}{\varepsilon^2 S^2 (\sqrt{B} + 1)^2} \right). \tag{99} \]

Finally we are ready for the triangle inequality argument. For any \(\Psi \) with \(d(\Psi, \Phi) = \varepsilon \leq \varepsilon_{\max} \) we can find \(\bar{\Psi} \in \mathcal{N} \) with \(d(\Psi, \bar{\Psi}) \leq \delta \) and \(d(\Phi, \bar{\Psi}) = \bar{\varepsilon} \) and therefore get,

\[
\frac{1}{N} \sum_{n=1}^{N} \max_{|I|=S} \|\Phi^*_I y_n\|_1 - \frac{1}{N} \sum_{n=1}^{N} \max_{|I|=S} \|\Psi^*_I y_n\|_1
\leq \frac{1}{N} \sum_{n=1}^{N} \max_{|I|=S} \|\Phi^*_I y_n\|_1 - \mathbb{E} \left(\max_{|I|=S} \|\Phi^*_I y_1\|_1 \right) + \mathbb{E} \left(\max_{|I|=S} \|\Phi^*_I y_1\|_1 \right) - \mathbb{E} \left(\max_{|I|=S} \|\bar{\Psi}^*_I y_1\|_1 \right)
+ \mathbb{E} \left(\max_{|I|=S} \|\bar{\Psi}^*_I y_1\|_1 \right) - \frac{1}{N} \sum_{n=1}^{N} \max_{|I|=S} \|\bar{\Psi}^*_I y_n\|_1 + \frac{1}{N} \sum_{n=1}^{N} \max_{|I|=S} \|\bar{\Psi}^*_I y_n\|_1 - \frac{1}{N} \sum_{n=1}^{N} \max_{|I|=S} \|\bar{\Psi}^*_I y_n\|_1
\geq \mathbb{E} \left(\max_{|I|=S} \|\Phi^*_I y_1\|_1 \right) - \mathbb{E} \left(\max_{|I|=S} \|\bar{\Psi}^*_I y_1\|_1 \right) - 2t - \delta S(\sqrt{B} + 1). \tag{100} \]

Depending on the signal model we now have to substitute the values for the asymptotic differences \(\mathbb{E} \left(\max_{|I|=S} \|\Phi^*_I y_1\|_1 \right) - \mathbb{E} \left(\max_{|I|=S} \|\bar{\Psi}^*_I y_1\|_1 \right) \) calculated in the previous sections.
In case of the noisy signal model, that is under the condition given in Theorem 5.2, we have, making sure that the right most inequality in (106) is satisfied and simplifications.

\[\frac{1}{N} \sum_{n=1}^{N} \max_{|t|=S} \| \Phi_t y_n \|_1 - \frac{1}{N} \sum_{n=1}^{N} \max_{|t|=S} \| \Psi_t y_n \|_1 \geq \varepsilon^2 \bar{c}_1 + \ldots + \bar{c}_S \frac{2K}{2K} - 4 \varepsilon SK \sqrt{B} \exp \left(-\left(\frac{\beta - \frac{\varepsilon^2}{2}}{8\varepsilon^2} \right)^2 \right) - 2t - \delta S \sqrt{B} \quad (101) \]

To make sure that the above expression is larger than zero, we split it into two conditions. The first condition,

\[\varepsilon^2 \bar{c}_1 + \ldots + \bar{c}_S \frac{4K}{4K} > 4 \varepsilon SK \sqrt{B} \exp \left(-\left(\frac{\beta - \frac{\varepsilon^2}{2}}{8\varepsilon^2} \right)^2 \right), \quad (102) \]

is satisfied as soon as

\[\varepsilon \leq \frac{\beta}{25\sqrt{8}} \left(1 + 4 \sqrt{\log \left(\frac{48K^2S\sqrt{B}}{\beta(\bar{c}_1 + \ldots + \bar{c}_S)} \right)} \right). \quad (103) \]

To concretise the second condition,

\[\varepsilon^2 \bar{c}_1 + \ldots + \bar{c}_S \frac{4K}{4K} \geq 2t + \delta S \sqrt{B}, \quad (104) \]

we choose \(t = \varepsilon^2 \bar{c}_1 + \ldots + \bar{c}_S \frac{16K}{16K} \) and \(\delta = \varepsilon^2 \bar{c}_1 + \ldots + \bar{c}_S \frac{8KS\sqrt{B}}{8KS\sqrt{B}} \) to arrive at \(\varepsilon \geq 2\varepsilon \). Given that \(\varepsilon \) differs at most by \(\delta \) from \(\varepsilon \) we see that (101) is larger than zero except with probability

\[2 \exp \left(-\frac{N \varepsilon^4(\bar{c}_1 + \ldots + \bar{c}_S)^2}{128\varepsilon^2 \max S^2 K^2 B} + K d \log \left(\frac{24 \varepsilon \max KS \sqrt{B}}{\varepsilon^2(\bar{c}_1 + \ldots + \bar{c}_S)} \right) \right) \quad (105) \]

as long as

\[\varepsilon_{\min} := \bar{c}_1 + \varepsilon^2 \frac{8K}{8K} \leq \varepsilon \leq \varepsilon_{\max} \leq \frac{\beta}{25\sqrt{8}} \left(1 + 4 \sqrt{\log \left(\frac{48K^2S\sqrt{B}}{\beta(\bar{c}_1 + \ldots + \bar{c}_S)} \right)} \right) - \varepsilon^2 \frac{8K}{8K}. \quad (106) \]

While for the asymptotic results we tried to make \(\varepsilon_{\max} \) as large as possible to indicate how large the basin of attraction could be, for the finite sample size results we it as small as possible in order to keep the sampling complexity small and therefore chose \(\varepsilon_{\max} = \varepsilon_{\min} \). The statement then follows from making sure that the right most inequality in (106) is satisfied and simplifications.

In case of the noisy signal model, that is under the condition given in Theorem 5.2, we have

\[\frac{1}{N} \sum_{n=1}^{N} \max_{|t|=S} \| \Phi_t y_n \|_1 - \frac{1}{N} \sum_{n=1}^{N} \max_{|t|=S} \| \Psi_t y_n \|_1 \geq \varepsilon^2 \bar{c}_1 + \ldots + \bar{c}_S \frac{2C_tK}{2C_tK} - 2t - \delta S(\sqrt{B} + 1) - 2\varepsilon SK(\sqrt{B} + 1). \]

\[\cdot \left(\exp \left(-\left(\frac{\beta - \frac{\varepsilon^2}{2}}{72\varepsilon^2} \right)^2 \right) + \exp \left(-\frac{\beta^2}{72\mu^2} \right) + \exp \left(-\frac{\beta^2}{72\rho^2} \right) + \exp \left(-\frac{\beta^2}{18\rho^2} \right) \right). \quad (107) \]
Splitting equally gives us four conditions,

\[
\bar{\varepsilon} \geq \frac{16C_rSK^2(\sqrt{B} + 1)}{c_1 + \ldots + c_S} \exp\left(-\frac{\beta^2}{72\mu^2}\right):= \varepsilon_{\mu}, \quad (108)
\]

\[
\bar{\varepsilon} \geq \frac{16C_rSK^2(\sqrt{B} + 1)}{c_1 + \ldots + c_S} \exp\left(-\frac{\beta^2}{72\rho^2}\right):= \varepsilon_{\rho}, \quad (109)
\]

\[
\bar{\varepsilon}^2 \geq \frac{8C_rK}{c_1 + \ldots + c_S} \left(2t + \delta S(\sqrt{B} + 1)\right), \quad (110)
\]

\[
\bar{\varepsilon}(1 - \frac{\bar{\varepsilon}^3}{64}) \geq \frac{16C_rSK^2(\sqrt{B} + 1)}{c_1 + \ldots + c_S} \exp\left(-\frac{(\beta - \bar{\varepsilon})^2}{72\bar{\varepsilon}^2}\right). \quad (111)
\]

Choosing \(t = \frac{\bar{\varepsilon}_{\mu}^2}{8C_rK} \cdot \frac{\bar{\varepsilon}_1 + \ldots + \bar{\varepsilon}_S}{2} \) and \(\delta = \frac{\bar{\varepsilon}_{\mu,\rho}^2}{16KS(\sqrt{B} + 1)} \) we can merge the first three conditions to \(\bar{\varepsilon} \geq \bar{\varepsilon}_{\mu,\rho}^2 \), while following the usual argument, Condition (111) is satisfied once

\[
\bar{\varepsilon} \leq \frac{\beta}{\frac{9}{4} + 9 \sqrt{\log\left(\frac{136K^2S(\sqrt{B} + 1)}{\beta C_r(c_1 + \ldots + c_S)}\right)}}. \quad (112)
\]

Given that \(\bar{\varepsilon} \) differs at most by \(\delta \) from \(\varepsilon \) we see that (107) is larger than zero except with probability

\[
2 \exp\left(-\frac{N\bar{\varepsilon}_{\mu,\rho}^4(c_1 + \ldots + c_S)^2}{512\varepsilon_{\max}^2 C_r S^2 K^2(\sqrt{B} + 1)^2} + Kd\log\left(\frac{48\varepsilon_{\max} KS(\sqrt{B} + 1)}{\bar{\varepsilon}_{\mu,\rho}^2(c_1 + \ldots + c_S)}\right)\right) \quad (113)
\]

as long as

\[
\varepsilon_{\min} := \bar{\varepsilon}_{\mu,\rho} + \frac{\bar{\varepsilon}_{\mu,\rho}^2}{16K} \leq \varepsilon \leq \varepsilon_{\max} \leq \frac{\beta}{\frac{9}{4} + 9 \sqrt{\log\left(\frac{136K^2S(\sqrt{B} + 1)}{\beta C_r(c_1 + \ldots + c_S)}\right)}} - \frac{N^{-2q}}{K}. \quad (114)
\]

Again the statement follows from choosing \(\varepsilon_{\max} = \varepsilon_{\min} \), making sure that the right most inequality in (114) is satisfied and simplifications.

To see better how the sampling complexity behaves we simplify the two theorems to the special case of noiseless exactly \(S \)-sparse signals with balanced coefficients for various orders of magnitude of \(S \). If we have \(S = O(1) \), Theorem 5.1 implies that in order to have a maximum within radius \(\bar{\varepsilon} \) to the original dictionary \(\Phi \) with probability \(e^{-Kd} \) we need \(N = O(K^3d\bar{\varepsilon}^{-2}) \) samples. Conversely given \(N \) training signals we can expect the distance between generating dictionary and closest local maximum to be of the order \(O(K^2N^{-1/2}) \).

If we assume a very incoherent dictionary where \(\mu = O(d^{-1/2}) \) and thus let the sparsity level be of the order \(O(\sqrt{d}) \) the sampling complexity rises to \(N = O(K^3d^{3/2}\bar{\varepsilon}^{-2}) \). Taking into account that the target precision \(\bar{\varepsilon} \) needs to be of order \(d^{-1/4} \) this means that we need at least \(N = O(K^3d^2) \).
training signals and once this initial level is reached the error goes to zero at rate $N^{-1/2}$.

For an even lower sparsity level $S = O(d)$ again assuming a very incoherent dictionary, the sampling complexity for target precision $\tilde{\varepsilon}$ implied now by Theorem 5.2 rises to $N = O(K^2 d^2 \tilde{\varepsilon}^{-2})$.

In this regime however we cannot reach arbitrarily small errors by choosing N large enough but only approach the asymptotic precision $\tilde{\varepsilon}_\mu = 16K^2\sqrt{SB}\exp(-d/72S)$.

Following these promising theoretical results, in the next section we will finally see how theory translates into practice.

6 Experiments

After showing that the optimisation criterion in (12) is locally suitable for dictionary identification, in this section we present an iterative thresholding & K-means type algorithm (ITKM) to actually find the local maxima of (12) and conduct some experiments to illustrate the theoretical results. We recall that given the input signals $Y = (y_1 \ldots y_N)$ and a fixed sparsity parameter S we want to solve,

$$
\max_{\Psi \in D} \sum_n \max_{|I| = S} \|\Psi_I^* y_n\|_1.
$$

Using LaGrange multipliers,

$$
\frac{\partial}{\partial \psi_k} \left(\sum_n \max_{|I| = S} \|\Psi_I^* y_n\|_1 \right) = \sum_{n: k \in I(\Psi, y_n)} \text{sign}(\langle \psi_k, y_n \rangle) y^*_n,
$$

$$
\frac{\partial}{\partial \psi_k} (\|\psi_k\|_2^2) = 2\psi^*_k,
$$

where $I(\Psi, y_n) := \arg\max_{|I| = S} \|\Phi_I^* y_n\|_1$, we arrive at the following update rule,

$$
\psi_k^{\text{new}} = \lambda_k \cdot \sum_{n: k \in I(\Psi^{\text{old}}, y_n)} \text{sign}(\langle \psi_k^{\text{old}}, y_n \rangle) y_n
$$

where λ_k is a scaling parameter ensuring that $\|\psi_k^{\text{new}}\|_2 = 1$.

In practice when we do not have an oracle giving us the generating dictionary as initialisation we also need to safeguard against bad initialisations resulting in a zero-update $\psi_k^{\text{new}} = 0$. For example we can choose the zero-updated atom uniformly at random from the unit sphere or from the input signals.

Note that finding the sets $I(\Psi^{\text{old}}, y_n)$ corresponds to N thresholding operations while updating according to (116) corresponds to K signed means. Altogether this means that each iteration of ITKM has complexity determined by matrix multiplication $\Phi^* Y$ meaning $O(dKN)$. This is light
in comparison to K-SVD, which even when using tresholding instead of OMP as sparse approx-
imation procedure still requires the calculation of the maximal singular vector of K on average $d \times \frac{N}{K}$ matrices. It is also more computationally efficient than the similarly on averaging based algorithm for local dictionary refinement, proposed in [4]. Furthermore it is straightforward to derive online or parallelised versions of ITKM. In an online version for each newly arriving signal y_n we calculate $I(\Psi_{old}, y_n)$ using thresholding and update $\psi_k^{new} = \psi_k^{new} + \text{sign}(\langle \psi_k^{old}, y_n \rangle) y_n$ for $k \in I(\Psi_{old}, y_n)$. After N signals have been processed we renormalise the atoms ψ_k^{new} to have unit norm and set $\Psi_{old} = \Psi_{new}$. Similarly to parallelise we divide the training samples into m sets of size $\frac{N}{m}$ and on each node m learn a dictionary Ψ_{new}^{m} according to (116) but with $\lambda_k = 1$. We then calculate the sum of these dictionaries $\Psi_{new}^{0} = \sum_{m} \Psi_{new}^{m}$ and renormalise the atoms in Ψ_{new}^{0} to have unit norm.

Armed with this very simple algorithm we will now conduct four experiments to illustrate our theoretical findings[4].

Signal Model
Given the generating dictionary Φ our signal model further depends on four coefficient parameters,
S - the effective sparsity or number of comparatively large coefficients,
b - deciding the decay factor of these sparse coefficients,
T - the total number of non-zero coefficients ($T \geq S$) and
ρ - the noiselevel.

Given these parameters we choose a decay factor c_b uniformly at random in the interval $[1 - b, 1]$. We set $c_i = c_b / \sqrt{S}$ for $1 \leq i \leq S$ and $c_i = 0$ for $T < i \leq K$. If $T = S$ we renormalise the sequence to have unit norm, while if $T > S$ we choose the vector (c_{S+1}, \ldots, c_T) uniformly at random on the sphere of radius R, where R is chosen such that the resulting sequence c has unit norm. We then choose a permutation p and a sign sequence σ uniformly at random and set $y = \Phi c_{p, \sigma}$, respectively $y = (\Phi c_{p, \sigma} + r) / \sqrt{1 + \|r\|_2}$ where r is a Gaussian noise-vector with variance ρ^2 if $\rho > 0$.

TABLE 1

Signal Model

1. A Matlab penknife (mini-toolbox) for playing around with ITKM and reproducing the experiments can be found at http://people.ricam.oeaw.ac.at/k.schnass/ITKM.zip
6.1 ITKM vs. K-SVD

In our first experiment we compare the local recovery error of ITKM and K-SVD for 3-dimensional bases with increasing condition numbers. The bases are perturbations of the canonical basis \(\Phi = (e_1, e_2, e_3) \) with the vector \(v = (1, 1, 1) \), that is \(\Phi^t = (e_1^t, e_2^t, e_3^t) \), where \(e_i^t = (e_i + tv)/\|e_i + tv\|_2 \) and \(t \) varying from 0 to 0.5 in steps of 0.1, corresponding to condition numbers \(\kappa(\Phi^t) \) varying from 1 to 2.5. We generate \(N = 4096 \) approximately 1-sparse noiseless signals from the signal model described in Table 1 with \(S = 1, T = 2, \rho = 0 \) and \(b = 0.1/0.2 \) and run both ITKM and K-SVD with 1000 iterations, sparsity parameter \(S = 1 \) and the true dictionary (basis) as initialisation. Figure 1(a) shows the recovery error \(d(\Phi^t, \tilde{\Psi}) \) between the original dictionary and the output of the respective algorithm averaged over 10 runs. As predicted by the theoretical results on the corresponding underlying minimisation principles the recovery errors of ITKM and K-SVD are roughly the same for \(\Phi^0 \), which is an orthogonal basis and therefore tight. However while for ITKM the recovery error stays constantly low over all condition numbers, for K-SVD it increases with increasing condition number or non-tightness.

6.2 Recovery error and sample size

The next experiment is designed to show how fast the maximiser \(\tilde{\Psi} \) near the original dictionary \(\Phi \) converges to \(\Phi \) with increasing sample size \(N \).

The generating dictionaries consist of the canonical basis in \(\mathbb{R}^d \) for \(d = 4, 8, 16 \) and the first \(d/2 \) elements of the Hadamard basis and as such are not tight. For every set of parameters \(d, S(T), b \) we generate \(N \) noiseless signals with \(N \) varying from \(2^7 = 128 \) to \(2^{14} = 16384 \) and run ITKM with 1000 iterations, sparsity parameter \(S \) equal to the coefficient parameter \(S \) and the true dictionary as initialisation. Figure 1(b) shows the recovery error \(d(\Phi, \tilde{\Psi}) \) between the original dictionary and the output of ITKM \(\tilde{\Psi} \) averaged over 10 runs. As predicted by Theorem 5.1 the recovery error decays as \(N^{-1/2} \). However the separation of the curves for \(d = 4, 8, 16 \) and almost exactly sparse signals \((b = 0.01) \) by a factor around \(\sqrt{2} \) instead of 4, as suggested by the estimate \(\tilde{\varepsilon} \approx K^2 N^{-1/2} \), indicates that the cubic dependence of the sampling complexity on the number of atoms \(K \) may be too pessimistic and could be lowered.
Fig. 1. (a) Local recovery error of K-SVD and ITKM for two different types of decaying coefficients and bases with varying condition numbers in \mathbb{R}^3, (b) Decay of recovery error of ITKM with increasing number of training signals

6.3 Stability of recovery error under coherence and noise

With the last two experiments we illustrate the stability of the maximisation criterion under coherence and noise. As generating dictionaries we use again the canonical basis plus half Hadamard dictionaries described in the last experiment, which have coherence $\mu = d^{-1/2}$. To test the stability under coherence we use a large enough number of noiseless training signals $N = 16384$, such that the distance between the local maximum of the criterion near the generating dictionary, ie. the output of ITKM with oracle initialisation, and the generating dictionary is mainly determined by the ratio between the gapsize β and the coherence. For each set of parameters $d, S(T)$ we create N training signals with decreasing gap-sizes β by increasing b from 0 to 0.1 in steps of 0.01 and run ITKM with oracle initialisation, parameter S and 1000 iterations. Figure 2(a) shows the recovery error $d(\Phi, \tilde{\Psi})$ between the original dictionary Φ and the output of ITKM $\tilde{\Psi}$ again averaged over 10 trials. Again the experiments reflect our theoretical results. For $d = 8/16$ with $S = 1$ or $d = 16$ with $S = 2$ the gap size is large enough that over the whole range of parameters the recovery error stays constantly low at the level defined by the number of samples. On the other hand for $d = 8$ with $S = 2$ or $d = 16$ with $S = 3$ early on the gap decreases enough to become the error determining factor and so we see an increase in
recovery error as b grows. Conversely to test the stability under noise we use a large enough number of exactly sparse training signals, such that the recovery error will be mainly determined by the noiselevel. For each set of parameters $d, S(S), b$ we create $N = 16384$ training signals with Gaussian noise of variance (noiselevel) ρ^2 going from 0 to 0.1 in steps of 0.01 and run ITKM with oracle initialisation, parameter S and 1000 iterations. Figure 2(b) shows the recovery error $d(\Phi, \tilde{\Psi})$ between the original dictionary Φ and the output of ITKM $\tilde{\Psi}$ this time averaged over 20 trials. The curves again correspond to the prediction of the theoretical results, that is the recovery error stays at roughly the same level defined by the number of samples until the noise becomes large enough and then increases.

What is maybe interesting to observe in both experiments is the dithering effect for $d = 16$ with $S = 3$, which is due to the special structure of the dictionary. Indeed using almost equally sized, almost exactly sparse coefficients, it is possible to build signals using only the canonical basis, that have almost the same response in only half the Hadamard basis and the other way round. This indicates that slight perturbations of one with the other lead to even better responses and therefore a larger recovery error.

![Graph](a)
![Graph](b)

Fig. 2. Increase of recovery error with (a) decreasing ratio between coefficient gap and coherence and (b) increasing noise level

After showing that the theoretical results translate into algorithmic practice, we finally turn
to a discussion of our results in the context of existing work and point out directions of future research.

7 DISCUSSION

We have introduced a new response maximisation principle for dictionary learning and shown that this is locally suitable to identify a generating μ-coherent dictionary from approximately S-sparse training signals to arbitrary precision as long as the sparsity level is of the order $O(\mu^{-1})$. We have also presented the - to the best of our knowledge - first results showing that stable dictionary identification is locally possible not only for signal to noise ratios of the order $O(\sqrt{d})$ but also for sparsity levels of the order $O(\mu^{-2})$.

The derived sampling complexity (omitting log factors) of $O(K^3d\bar{\varepsilon}^{-2})$, for signals with sparsity levels $S = O(1)$ is roughly the same as for the K-SVD criterion, [23], or the ℓ_1- minimisation criterion, [15], but somewhat large compared to recently developed dictionary algorithms that have a sampling complexity of $O(K^2)$, [4], [1], or $O(K\varepsilon^{-2})$, [2]. However as the sparsity approaches and goes beyond $\mu^{-1} \sim \sqrt{d}$ the derived sampling complexity of $O(K^3d^2\bar{\varepsilon}^{-2})$ compares quite favourably to the sampling complexity of $O(K^{1/(4\eta)})$ for a sparsity level $d^{1/2-\eta}$ as projected in [4]. Given that also our experimental results suggest that $O(K^3d\bar{\varepsilon}^{-2})$ is quite pessimistic, one future direction of research aims to lower the sampling complexity. In particular we hope to go from K^3 to K^2 using sharper concentration inequalities and chaining methods in the proofs of the relevant theorems.

Another strong point of the results is that the corresponding maximisation algorithm ITKM (Iterative Thresholding& K signed Means) is locally successful, as demonstrated in several experiments, and computationally very efficient. The most complex step in each iteration is the matrix multiplication Φ^*Y of order $O(dKN)$, which is even lighter than the iterative averaging algorithm described in [4].

However, the serious drawback is that ITKM is only a local algorithm and that all our results are only local. Also while for the K-SVD criterion and the ℓ_1-minimisation criterion there is reason to believe that all local minima might be equivalent, the response maximisation principle has a lot of smaller local maxima, which is confirmed by preliminary experiments with random initialisations. There ITKM fails but with grace, that is it outputs local minimizers that have not all but only most atoms in common with what seems to be the global maximiser near generating dictionary. This behaviour is in strong contrast to the algorithms presented in [4], [2], that have
global success guarantees at a computational cost of the order $O(dN^2)$, and leads to two very important research directions.

First we want to confirm that ITKM has a basin of attraction of the order $O(1/\sqrt{S})$, as suggested by the derived radius of the area on which the generating dictionary is the optimal maximiser as well as preliminary experiments. Alternatively one could investigate how the results for the local iterative algorithms in [4], [1] could be extended to larger sparsity levels and basins of attraction. The second important question is how to extend the results for the algorithms presented in [4], [2] to sparsity levels $O(\mu^{-2})$, if possible at lower cost than $O(dN^2)$. Given the conjectured size of the basin of attraction for ITKM it would even be sufficient for the output of the algorithm to arrive at a dictionary within distance $O(1/\sqrt{S})$ to the generating dictionary, since the output could then be used as initialisation for ITKM.

The last research directions we want to point out are concerned with the realism of the signal model. The fact that for an input sparsity S a gap of order $O(\mu^{-2})$ between the S and $S+1$ largest coefficient is sufficient can be interpreted as a relaxed dependence of the algorithm on the sparsity parameter, since a gap of order μ^{-2} can occur quite frequently. To further decrease this sensitivity to the sparsity parameter in the criterion and the algorithm we would therefore like to extend our results to the case where we can only guarantee a gap of order $O(\mu^{-2})$ between the S largest and the $S+T$ largest coefficient for some $T > 1$. Last but not least we would like to exactly reflect the practical situation, where we would normalise our training signals to equally weight their importance, and analyse the unit norm signal model where $y = \Phi x + r/\|\Phi x + r\|_2$.

ACKNOWLEDGMENTS

This work was supported by the Austrian Science Fund (FWF) under Grant no. J3335.

REFERENCES

[1] A. Agarwal, A. Anandkumar, P. Jain, P. Netrapalli, and R. Tandon. Learning sparsely used overcomplete dictionaries via alternating minimization. arXiv:1310.7991 2013.

[2] A. Agarwal, A. Anandkumar, and P. Netrapalli. Exact recovery of sparsely used overcomplete dictionaries. arXiv:1309.1952 2013.

[3] M. Aharon, M. Elad, and A.M. Bruckstein. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. *IEEE Transactions on Signal Processing.*, 54(11):4311–4322, November 2006.

[4] S. Arora, R. Ge, and A. Moitra. New algorithms for learning incoherent and overcomplete dictionaries. arXiv:1308.6273 2013.
[5] E. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. *IEEE Transactions on Information Theory*, 52(2):489–509, 2006.

[6] D.L. Donoho. Compressed sensing. *IEEE Transactions on Information Theory*, 52(4):1289–1306, 2006.

[7] D.L. Donoho, M. Elad, and V.N. Temlyakov. Stable recovery of sparse overcomplete representations in the presence of noise. *IEEE Transactions on Information Theory*, 52(1):6–18, January 2006.

[8] D.J. Field and B.A. Olshausen. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. *Nature*, 381:607–609, 1996.

[9] Q. Geng, H. Wang, and J. Wright. On the local correctness of ℓ^1-minimization for dictionary learning. *arXiv:1101.5672*, 2011.

[10] P. Georgiev, F.J. Theis, and A. Cichocki. Sparse component analysis and blind source separation of underdetermined mixtures. *IEEE Transactions on Neural Networks*, 16(4):992–996, 2005.

[11] A. Gersho and R.M. Gray. *Vector quantization and signal compression*. Springer, 1992.

[12] R. Gribonval, R. Jenatton, F. Bach, M. Kleinsteuber, and M. Seibert. Sample complexity of dictionary learning and other matrix factorizations. *arXiv:1312.3790*, 2013.

[13] R. Gribonval and K. Schnass. Dictionary identifiability - sparse matrix-factorisation via l_1-minimisation. *IEEE Transactions on Information Theory*, 56(7):3523–3539, July 2010.

[14] D. Hsu, S.M. Kakade, and T. Zhang. A tail inequality for quadratic forms of subgaussian random vectors. *arXiv:1110.2842 [math.PR]*, 2011.

[15] R. Jenatton, F. Bach, and R. Gribonval. Local stability and robustness of sparse dictionary learning in the presence of noise. *preprint*, 2012.

[16] K. Kreutz-Delgado, J.F. Murray, B.D. Rao, K. Engan, T. Lee, and T.J. Sejnowski. Dictionary learning algorithms for sparse representation. *Neural Computations*, 15(2):349–396, 2003.

[17] K. Kreutz-Delgado and B.D. Rao. FOCUS-based dictionary learning algorithms. In *SPIE 4119*, 2000.

[18] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. *Journal of Machine Learning Research*, 11:19–60, 2010.

[19] A. Maurer and M. Pontil. K-dimensional coding schemes in Hilbert spaces. *IEEE Transactions on Information Theory*, 56(11):5839–5846, 2010.

[20] N.A. Mehta and A.G. Gray. On the sample complexity of predictive sparse coding. *arXiv:1202.4050*, 2012.

[21] M.D. Plumbley. Dictionary learning for ℓ_1-exact sparse coding. In M.E. Davies, C.J. James, and S.A. Abdallah, editors, *International Conference on Independent Component Analysis and Signal Separation*, volume 4666, pages 406–413. Springer, 2007.

[22] R. Rubinstein, A. Bruckstein, and M. Elad. Dictionaries for sparse representation modeling. *Proceedings of the IEEE*, 98(6):1045–1057, 2010.

[23] K. Schnass. On the identifiability of overcomplete dictionaries via the minimisation principle underlying K-SVD. *Applied Computational Harmonic Analysis (arXiv:1301.3355)*, to appear, 2014.

[24] K. Schnass and P. Vandergheynst. Average performance analysis for thresholding. *IEEE Signal Processing Letters*, 14(11):828–831, 2007.

[25] K. Schnass and P. Vandergheynst. Dictionary preconditioning for greedy algorithms. *IEEE Transactions on Signal Processing*, 56(5):1994–2002, 2008.
[26] K. Skretting and K. Engan. Recursive least squares dictionary learning algorithm. *IEEE Transactions on Signal Processing*, 58(4):2121–2130, April 2010.

[27] D. Spielman, H. Wang, and J. Wright. Exact recovery of sparsely-used dictionaries. In *Conference on Learning Theory* [arXiv:1206.5882], 2012.

[28] J.A. Tropp. On the conditioning of random subdictionaries. *Applied Computational Harmonic Analysis*, 25(1-24), 2008.

[29] D. Vainsencher, S. Mannor, and A.M. Bruckstein. The sample complexity of dictionary learning. *Journal of Machine Learning Research*, 12(3259-3281), 2011.

[30] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Y. Eldar and G. Kutyniok, editors, *Compressed Sensing, Theory and Applications*, chapter 5. Cambridge University Press, 2012.

[31] M. Yaghoobi, T. Blumensath, and M.E. Davies. Dictionary learning for sparse approximations with the majorization method. *IEEE Transactions on Signal Processing*, 57(6):2178–2191, June 2009.

[32] M. Zibulevsky and B.A. Pearlmutter. Blind source separation by sparse decomposition in a signal dictionary. *Neural Computations*, 13(4):863–882, 2001.