Inappropriate Use of Antibiotics Effective Against Gram Positive Microorganism in Under Restrictive Antibiotic Policies in ICU; A Prospective Observational Study

CURRENT STATUS: UNDER REVISION

Hasan Selçuk Özger
Gazi Universitesi Tip Fakultesi

Dolunay Merve Fakıoğlu
Gazi Universitesi Eczacilik Fakultesi

Kübra Erbay
Gazi Universitesi Tip Fakultesi

ASLINUR ALBAYRAK
Gazi Universitesi Eczacilik Fakultesi

a.albayrak007@gmail.com Corresponding Author
ORCiD: https://orcid.org/0000-0001-5862-4746

Kenan Hizel
Gazi Universitesi Tip Fakultesi

DOI:
10.21203/rs.2.21842/v1

SUBJECT AREAS
Infectious Diseases

KEYWORDS
Antibiotic stewardship, rational antibiotic use, antibiotic resistance, gram positive microorganism, inappropriate use of antibiotics
Abstract

Background Gram-positive spectrum antibiotics such as vancomycin, teicoplanin, daptomycin, and linezolid are frequently used in empirical treatment combinations in critically ill patients. Although they are included in the national antibiotic restriction program, thought to be inappropriate, unnecessary and suboptimal use is high due to their widespread use. In our study, in addition to their widespread use, gram-positive spectrum antibiotics were evaluated due to their use in more limited and clear clinical indications. This study aims to determine the frequency of inappropriate uses of gram-positive spectrum antibiotics and risk factors for inappropriate use according to different quality parameters.

Methods This clinical study was conducted prospectively between 01.10.2018 and 01.10.2019 in the medical and surgical ICUs of Gazi University Faculty of Medicine Hospital with a total bed capacity of 55. Patients older than 18 years of age onset of gram-positive spectrum antibiotics (vancomycin, teicoplanin, linezolid, and daptomycin) were included. Patients under the age of eighteen or immunosuppressed (neutropenic, HIV-infected patients with hematologic or solid organ malignancies) were not included in the study. The demographic and clinical features of the patients were recorded. The treatment was also evaluated and recorded by 2 infectious diseases specialists and 2 clinical pharmacists except for the clinical staff at 24-hour intervals from the first day to the last day of treatment. SPSS software for Windows, version 17 (IBM, Armonk, NY) was used to analyze the data. Categorical variables are presented as number and percentage, and non-categorical variables are presented as mean ± standard deviation.

Results In the use of antibiotics, the incidence of non-compliance with at least one of the determined quality parameters was 83%. Multivariate analysis was performed to evaluate risk factors for inappropriate antibiotic use, and creatine values were found to increase the risk of inappropriate antibiotic use.

Conclusions In spite of the restricted antibiotic program, inappropriate antibiotic use in ICUs is quite common. In particular, it is necessary to establish local guidelines in collaboration with different disciplines for the determination and follow-up of de-escalation and optimal treatment doses.
Keywords: Antibiotic stewardship, rational antibiotic use, antibiotic resistance, gram positive microorganism, inappropriate use of antibiotics

1. Background
Infection development is an important cause of morbidity and mortality in intensive care units (ICU), leading to the widespread use of antibiotic [1]. It is reported that 41–85% of ICU patients use at least one antibiotic and antibiotic consumption is 10 times higher in ICUs compared to other units [2]. This widespread use increases the unnecessary and inappropriate use of antibiotics and causes an increase in antimicrobial resistance [3]. It is stated that approximately 20–50% of hospitalized patients and 30–60% of patients in ICU use unnecessary, inappropriate or suboptimal antibiotic treatment [2–5]. Antibiotic stewardship programs are widely used to optimize antibiotic use in hospitals [6, 7].

To develop an effective program, it is necessary to determine the priority targets by evaluating inappropriate antibiotic use [6].

Gram-positive spectrum antibiotics such as vancomycin, teicoplanin, daptomycin, and linezolid are frequently used in empirical treatment combinations in critically ill patients [8]. In our country, after beta-lactams and fluoroquinolones are reported to be the most commonly used antibiotics in ICUs [2]. Although they are included in the national antibiotic restriction program, thought to be inappropriate, unnecessary and suboptimal use is high due to their widespread use. In our study, in addition to their widespread use, gram-positive spectrum antibiotics were evaluated due to their use in more limited and clear clinical indications.

This study aims to determine the frequency of inappropriate uses of gram-positive spectrum antibiotics and risk factors for inappropriate use according to different quality parameters.

2. Methods
This clinical study was conducted prospectively between 01.10.2018 and 01.10.2019 in the medical and surgical ICUs of Gazi University Faculty of Medicine Hospital with a total bed capacity of 55. Patients older than 18 years of age onset of gram-positive spectrum antibiotics (vancomycin, teicoplanin, linezolid, and daptomycin) were included. Patients under the age of eighteen or
immunosuppressed (neutropenic, HIV-infected patients with hematologic or solid organ malignancies) were not included in the study.

The demographic and clinical features of the patients were recorded. The treatment was also evaluated and recorded by 2 infectious diseases specialists and 2 clinical pharmacists except for the clinical staff at 24-hour intervals from the first day to the last day of treatment. Demographic data of patients (age, sex, body mass index, etc.), comorbid diseases, charlson comorbidity indices, indications for antibiotic treatment, presence of sepsis or septic shock, clinical and laboratory findings (microbiological samples and results, creatine values, calculated with cockroft formula, GFR) were recorded. This study was approved by the Institutional Review Board of Gazi University School of Medicine and was conducted according to the Helsinki Declaration and good clinical practice. (No:02)

2.a. Definitions

The quality parameters evaluated for inappropriate use in the study are given in Table 1.

Inappropriate antibiotic use; It is defined as non-compliance with at least one of the above quality parameters (Documented antibiotic indication, appropriate microbiological sampling, appropriate dose, de-escalation and duration of treatment).

3. Statistical Method

SPSS software for Windows, version 17 (IBM, Armonk, NY) was used to analyze the data. Categorical variables are presented as number and percentage, and non-categorical variables are presented as mean ± standard deviation. A Chi-square test was used to compare categorical variables. The suitability of the non-categorical variables to the normal distribution was evaluated by Shapiro - Wilk test. Mann - Whitney U test was used for comparison of non - normally distributed variables and Student -T test was used for comparison of normally distributed variables. In the univariate analysis, variables with a p-value < 0.20 and not correlated with each other were included in the logistic regression model. Charlson comorbidity index, central catheter, treatment approach, CRP, sepsis, procalcitonin ,and creatine levels were included in the logistic regression model. The cases where the type-1 error level is below 5% are statistically significant.

4. Results
During the study, 200 treatments were evaluated in 169 patients. The Clinical features of the patients were evaluated and presented in Table 2.

In the use of antibiotics, the incidence of non-compliance with at least one of the determined quality parameters was 83%. The frequency of inappropriate use of gram-positive spectrum antibiotic was evaluated for each quality parameters and presented in Table 3.

Reasons for inappropriate use of antibiotics were evaluated and presented in Fig. 1.

Risk factors for inappropriate use of antibiotics were analyzed and presented in Table 4.

Multivariate analysis was performed to evaluate risk factors for inappropriate antibiotic use, and creatine values were found to increase the risk of inappropriate antibiotic use (Table 5).

5. Discussion

In this study, 83% of the gram-positive spectrum antibiotics used in ICUs were found to be inappropriate. Compliance with the evaluation of de-escalation was very low in our ICUs. Renal failure was caused inappropriate use and increased the frequency of inappropriate use of antibiotics by about 2-fold.

In Turkey, 71.3% of patients in the ICU are treated with antibiotics[2]. This widespread using leads to unnecessary and inappropriate use. It is recommended to use different quality parameters to evaluate inappropriate antibiotics used. Dresser et al. recommend that uncertainty of indication, the continuation of empirical treatment without evidence of infection, and the presence of unnecessary prophylaxis and drug contraindications as quality criteria for the evaluation of inappropriate antibiotic use [9]. For the same evaluation, Kallen et al. recommend that appropriate microbiological sampling, therapeutic drug monitoring for vancomycin and aminoglycoside, taking surveillance cultures and periodically sharing local resistance data [1]. The incidence of inappropriate empirical antibiotic use in ICUs varies between 14.1–78.9% due to differences in evaluation criteria [4, 20]. In Turkey, this incidence ranges from 30% to % 50%. [21–23]. Our incidence of inappropriate antibiotic use was found to be high compared with the literature [6]. This is thought to be related to the evaluation of different clinical tr indications and the evaluation of empirical treatments as well as the agents' specific treatment processes.
Since 2003, a national antibiotic restriction program has been implemented in Turkey. Previous studies have been shown that these programs reduce nosocomial infection, length of hospital stay, mortality and microbial resistance rates. They have a positive effect on health expenditures [3, 24, 25]. However, several studies were shown that increased prescriptions of non-restricted antibiotics may be eliminated these positive effects [2, 3]. In our study, it was shown that antibiotics, all of which are under a restricted antibiotic program, are used inappropriately with high frequency. This indicates that inappropriate antibiotic use in ICUs cannot be prevented by restriction programs alone and that the system should be supported by audit and feedback mechanisms. The results of an intervention study conducted by Güçlü et al. was shown that antibiotic restriction programs can be activated by supporting prospective control and feedback mechanisms [3].

In our study, the most common reason for inappropriateness was the continuation of antibiotics without microbiological evidence. In ICU, the de-escalation algorithm reduces the duration of treatment and the frequency of microbial resistance without increasing mortality [3, 26–28]. In studies conducted in Turkey, it is stated that the necessity of de-escalation was 10% [23]. On the other hand, the necessity of de-escalation in ICUs was shown to be higher. Mutters et al study was shown that compliance with the evaluation of therapy discontinuation or de-escalation was 2.4-8% [29]. In our study, the compliance of the early period (3 days) de-escalation was found to be quite low. The frequency of de-escalation was found to be slightly higher in the late period (5 days). Considering the high frequency of appropriate microbiological sampling, this may be related to late results of blood culture due to the long incubation period. Despite the increase compared to the early period, the frequency of late de-escalation was found to be low. The most important reason for this is thought to be the unwillingness of clinicians to discontinue treatment despite the culture results. It appears that the restricted antibacterial program alone does not seem to be sufficient for proper de-escalation in ICUs. There is a need to develop an effective de-escalation strategy supported by local treatment guides.

Another important reason for inappropriateness in our study was the lack of proper antibiotic dose adjustment according to the glomerular filtration rate. Renal failure and renal replacement therapies
cause plasma concentration changes and affect drug concentrations [5]. Renal replacement therapies (RRT), especially continuous RRT, have also been shown to cause significant pharmacokinetic changes on the antibiotic groups we evaluated [30–32]. Therefore, antibiotic doses may remain suboptimal in ICU patients when compared to the normal population. [5, 33, 34]. In our study, the frequency of RRT was 21.7%. And also, 6.7% of all patients received continuous RRT during the study. Also, elevation in serum level was found to be the determining major risk factor for the inappropriate use of antibiotics. Therefore, creatine clearance changes need to be periodically evaluated to determine appropriate doses of antibiotics in collaboration with clinical pharmacists, infectious diseases specialists and clinical staff in ICUs [5].

Single-centered and evaluation of antibiotics with only gram positive effects are limitations of this study.

6. conclusion

In spite of the restricted antibiotic program, inappropriate antibiotic use in ICUs is quite common. Appropriate use of antibiotics should be audited with predetermined quality parameters. In particular, it is necessary to establish local guidelines in collaboration with different disciplines for the determination and follow-up of de-escalation and optimal treatment doses. In patients undergoing renal replacement therapy with increased risk of suboptimal concentration, antibacterial treatment doses should be individualized and closely monitored.

Declarations

Ethics approval and consent to participate

This study was approved by the Institutional Review Board of Gazi University School of Medicine, Ankara/Turkey and was conducted according to the Helsinki Declaration and good clinical practice. (No:02/14.01.2019). Written informed consent was obtained from adults (> 18 years old).

Consent for publication

Not applicable.

Availability of data and materials

All data generated or analysed during this study are included in this published article.
Competing interests

The authors declare that they have no competing interests.

Funding

The funding body had no role in the study design, analysis and interpretation of results nor in writing the manuscript.

Authors’ contributions

HSO and KH designed the study, DMF KE and AA collected datas, HSO interpreted the results, and wrote the manuscript. All of writers read and approved the final manuscript.

Acknowledgements

We would like to thank both reviewers of this article for valuable suggestions.

Author details

1,3,5 Gazi University Faculty Of Medicine Department Of Infectious Diseases, Ankara, Turkey

2,4 Gazi University, Faculty of Pharmacy, Department of Clinical Pharmacy, Ankara, Turkey

Abbreviations

ICU

Intensive Care Unit, HIV: Human Immunodeficiency Virus, GFR: Glomerular Filtration Rate, RRT: Renal Replacement Therapy

References

1. Kallen MC, Roos-Blom MJ, Dongelmans DA, Schouten JA, Gude WT, de Jonge E, Prins JM, de Keizer NF: Development of actionable quality indicators and an action implementation toolbox for appropriate antibiotic use at intensive care units: A modified-RAND Delphi study. PLoS One 2018; 13(11):e0207991.

2. Guclu E, Ogutlu A, Karabay O, Demirdal T, Erayman I, Hosoglu S, Turhan V, Erol S, Oztoprak N, Batirel A: Antibiotic consumption in Turkish hospitals; a multi-centre point prevalence study. J Chemother 2017; 29(1):19-24.
3. Schuts EC, Hulscher ME, Mouton JW, Verduin CM, Stuart JWC, Overdiek HW, van der Linden PD, Natsch S, Hertogh CM, Wolfs TF: Current evidence on hospital antimicrobial stewardship objectives: a systematic review and meta-analysis. The Lancet Infect Dis 2016; 16(7):847-856.

4. Marquet K, Liesenborgs A, Bergs J, Vleugels A, Claes N: Incidence and outcome of inappropriate in-hospital empiric antibiotics for severe infection: a systematic review and meta-analysis. Crit Care 2015; 19(1):63.

5. Luyt C-E, Bréchot N, Trouillet J-L, Chastre J: Antibiotic stewardship in the intensive care unit. Crit Care 2014; 18(5):480.

6. van den Bosch CM, Geerlings SE, Natsch S, Prins JM, Hulscher ME: Quality indicators to measure appropriate antibiotic use in hospitalized adults. Clin Infect Dis 2014; 60(2):281-291.

7. Scott CL, Brown E, Charani E, Michie S, Ramsay CR, Marwick CA, Davey P: Interventions to improve antibiotic prescribing practices for hospital inpatients (updated protocol). Cochrane Database Syst Rev 2017; 2017(2).

8. Cowley MC, Ritchie DJ, Hampton N, Kollef MH, Micek ST: Outcomes associated with de-escalating therapy for methicillin-resistant Staphylococcus aureus in culture-negative nosocomial pneumonia. Chest 2019; 155(1):53-59.

9. Dresser LD, Bell CM, Steinberg M, Ferguson ND, Lapinsky S, Lazar N, Murphy P, Singh JM, Morris AM: Use of a structured panel process to define antimicrobial prescribing appropriateness in critical care. J Antimicrob Chemother 2017; 73(1):246-249.

10. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME: Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 2017; 43(3):304-377.
11. Miller JM, Binnicker MJ, Campbell S, Carroll KC, Chapin KC, Gilligan PH, Gonzalez MD, Jerris RC, Kehl SC, Patel R: A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2018 update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin Infect Dis 2018; 67(6):e1-e94.

12. Murray BE, Arias CA, Nannini EC: Glycopeptides (vancomycin and teicoplanin), streptogramins (quinupristin-dalfopristin), lipopeptides (daptomycin), and lipoglycopeptides (telavancin). In: Mandell, Douglas, and Bennett's principles and practice of infectious diseases. edn.: Elsevier; 2015: 377-400. e374.

13. Cox HL, Donowitz GR: Linezolid and other oxazolidinones. In: Mandell, Douglas, and Bennett's principles and practice of infectious diseases. edn.: Elsevier; 2015: 406-409. e402.

14. Liu P, Ohl C, Johnson J, Williamson J, Beardsley J, Luther V: Frequency of empiric antibiotic de-escalation in an acute care hospital with an established Antimicrobial Stewardship Program. BMC Infect Dis 2016; 16(1):751.

15. Garnacho-Montero J, Escoresca-Ortega A, Fernández-Delgado E: Antibiotic de-escalation in the ICU: how is it best done? Curr Opin Infect Dis 2015; 28(2):193-198.

16. Mermel LA, Allon M, Bouza E, Craven DE, Flynn P, O'Grady NP, Raad II, Rijnders BJ, Sherertz RJ, Warren DK: Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin Infect Dis 2009; 49(1):1-45.

17. Hooton TM, Bradley SF, Cardenas DD, Colgan R, Geerlings SE, Rice JC, Saint S, Schaeffer AJ, Tambayh PA, Tenke P: Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin Infect Dis
18. Tunkel AR, Hasbun R, Bhimraj A, Byers K, Kaplan SL, Scheld WM, van de Beek D, Bleck TP, Garton HJ, Zunt JR: 2017 Infectious Diseases Society of America’s clinical practice guidelines for healthcare-associated ventriculitis and meningitis. Clin Infect Dis 2017; 64(6):e34-e65.

19. Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, Napolitano LM, O'Grady NP, Bartlett JG, Carratalà J: Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 2016; 63(5):e61-e111.

20. Paul M, Shani V, Muchtar E, Kariv G, Robenshtok E, Leibovici L: Systematic review and meta-analysis of the efficacy of appropriate empiric antibiotic therapy for sepsis. Antimicrob Agents Chemother 2010; 54(11):4851-4863.

21. Erbay A, İdil A, Gözel MG, Mumcuoğlu İ, Balaban N: Impact of early appropriate antimicrobial therapy on survival in Acinetobacter baumannii bloodstream infections. Int J Antimicrob Agents 2009; 34(6):575-579.

22. Ergül AB, Gökçek İ, Çelik T, Torun YA: Assessment of inappropriate antibiotic use in pediatric patients: Point-prevalence study. Turk Pediatr Arsivi 2018; 53(1):17.

23. Şengel BE, Bilgin H, Bilgin BÖ, Gidener T, Saydam S, Pekmezci A, Ergönül Ö, Korten V: The need for an antibiotic stewardship program in a hospital using a computerized pre-authorization system. Int J Infect Dis 2019; 82:40-43.

24. Altunsoy A, Aypak C, Azap A, Ergönül Ö, Balık İ: The impact of a nationwide antibiotic restriction program on antibiotic usage and resistance against nosocomial pathogens in Turkey. Int J Med Sci 2011; 8(4):339.

25. Abbara S, Pitsch A, Jochmans S, Hodjat K, Cherrier P, Monchi M, Vinsonneau C,
Diamantis S: Impact of a multimodal strategy combining a new standard of care and restriction of carbapenems, fluoroquinolones and cephalosporins on antibiotic consumption and resistance of Pseudomonas aeruginosa in a French intensive care unit. Int J Antimicrob Agents 2019; 53(4):416-422.

26. De Bus L, Denys W, Catteeuw J, Gadeye B, Vermeulen K, Boelens J, Claeys G, De Waele JJ, Decruyenaere J, Depuydt PO: Impact of de-escalation of beta-lactam antibiotics on the emergence of antibiotic resistance in ICU patients: a retrospective observational study. Intensive Care Med 2016; 42(6):1029-1039.

27. Montravers P, Augustin P, Grall N, Desmard M, Allou N, Marmuse J-P, Guglielminotti J: Characteristics and outcomes of anti-infective de-escalation during health care-associated intra-abdominal infections. Crit Care 2016; 20(1):83.

28. Arda B, Sipahi OR, Yamazhan T, Tasbakan M, Pullukcu H, Tunger A, Buke C, Uluso Y S: Short-term effect of antibiotic control policy on the usage patterns and cost of antimicrobials, mortality, nosocomial infection rates and antibacterial resistance. J Infect 2007; 55(1):41-48.

29. Mutters NT, De Angelis G, Restuccia G, Di Muzio F, Schouten J, Hulscher M, Antonelli M, Tacconelli E: Use of evidence-based recommendations in an antibiotic care bundle for the intensive care unit. Int J Antimicrob Agents 2018; 51(1):65-70.

30. Roger C, Muller L, Wallis S, Louart B, Saissi G, Lipman J, Lefrant J, Roberts J: Population pharmacokinetics of linezolid in critically ill patients on renal replacement therapy: comparison of equal doses in continuous venovenous haemofiltration and continuous venovenous haemodiafiltration. J Antimicrob Chemother 2015; 71(2):464-470.

31. Soraluce A, Asín-Prieto E, Rodríguez-Gascón A, Barrasa H, Maynar J, Carcelero E, Soy D, Isla A: Population pharmacokinetics of daptomycin in critically ill patients. Int J
Antimicrob Agents 2018; 52(2):158-165.

32. Economou CJ, Kielstein JT, Czock D, Xie J, Field J, Richards B, Tallott M, Visser A, Koenig C, Hafer C: Population pharmacokinetics of vancomycin in critically ill patients receiving prolonged intermittent renal replacement therapy. Int J Antimicrob Agents 2018; 52(2):151-157.

33. Leone M, Roberts JA, Bassetti M, Bouglé A, Lavigne J-P, Legrand M, Neely M, Paiva J-A, Payen D, Rello J: Update in Antibiotic Therapy in Intensive Care Unit Report from the 2019 Nimes International Symposium. Anaesth Crit Care Pa 2019.

34. Rello Condomines J: DALI defining antibiotic levels in intensive care unit patients are current beta-lactam antibiotic doses sufficient for critically ill patients. Clinical Infectious Diseases 2014, vol 58, núm 8, p 1-1072-83 2014.

Tables
Abbreviations	Criteria	Assessment Day	Non-Compliance Definition	References
IUC-1	Antibiotic Treatment Indication	1st day	No provide rationale of antibiotics	[9]
	- Documented rationale for starting antibiotics in patients charts			
IUC-2	Appropriate microbiological sampling	1st day	Inadequate blood or suspected-infection site culture	[3, 10, 11]
	- At least 2 sets of blood culture		Collection of culture after antibiotic administration	
	- Culture from suspected infection site			
	- Time for taking culture samples			
IUC-3	Antibiotic Dosage	1st, 3rd and 7th day	- Less than the recommended dose according to body weight or body mass index	13 referans kay
	- Loading dosage use^a		- No loading dose^a	[12]
	- Adjustment of dosage according to the glomerular filtration rate (GFR)^b		- No antibiotic dose adjustment according to GFR	
	De-escalation^{c, d, e}	3rd and 7th day	Continuation of antibiotic therapy based on lack of antimicrobiological evidence	[3, 10, 11]
	- Discontinuation of antibiotic therapy based on microbiological results			
IUC-5	Duration of treatment^f	14th and 21st day	- Longer treatment than recommended	13 referans kay
	- Discontinuation of antibiotic therapy according to local or international guidelines		- Shorter treatment than recommended	[13-16]

Abbreviations: IUC, Inappropriate use criteria

^a Evaluated for vancomycin and teicoplanin.

^b Calculated with GFR cockroft formula.

^c The incubation time for samples other than blood cultures is 2 days and for blood samples a minimum of 5 days. For this reason, deescalation evaluation was performed on the 3rd and 7th days of treatment.

^d De-escalation assessment was only performed for empirical antibiotic treatment.

^e De-escalation evaluation was not performed in patients whose treatment duration was less than 7 days.

^f De-escalation or withdrawal of the patient (discharge, transfer, death, etc.) has not been evaluated for treatment duration.
Table 2. Clinical Features of Patients

Variables	N	%
Age, mean ± SD	63.9±18.7	
Gender, Female	79	46.7
BMI, mean ± SD	26.5±5.81	
Intensive Care Units (ICUs)		
Medical ICUs	95	56.2
Surgical ICUs	74	43.8
Duration of hospital stay (day), mean ± SD	16.4±17.8	
Duration of ICU stay (Day), mean ± SD	10.2±14.4	
CCI, mean ± SD	4.40±2.43	
Central venous catheters	100	59.2
Invasive mechanical ventilation	120	71

Renal failure

CrCl ≥ 50	89	52.7
CrCl 30-49	25	14.8
CrCl 10-29	45	26.6
CrCl<10	10	5.9

| Intermittant renal replacement therapy | 37 | 21.9 |
| Continous renal replacement therapy | 7 | 4.1 |

Abbreviations: SD, standart deviation; BMI, Body mass index; ICU, Intensive care unit, CCI, Charlson comorbidity index; CrCI, Creatine clearance

Table 3. Frequency of Inapropriate Use of Antibiotics (%)

	1. Day	3. Day	7. Day	14. Day	Total
IUC-1	47.0				
IUC-2	28.0				
IUC-3	26.5	35.0	35.0		
IUC-4	78.5	61.8			
IUC-5				36.0	
Total					83.0

Table 4. Risk factors for Inappropriate Use of Antibiotics
	Inappropriate Use	Appropriate Use
Age, mean ± SD	64.3±18.7	61.6±20.8
Gender		
Female	78(47)	16(47.1)
Male	88(53)	18(52.9)
BMI, mean ± SD	26.3±6.24	27.0±5.68
CCI, mean ± SD	4.51±2.48	3.82±2.35
ICU		
Medical	95(57.2)	20(58.8)
Surgical	71(42.8)	14(41.2)
Duration of Hospital Stay ± SD	23.2±27.0	20.9±26.6
Duration of ICU stay ± SD	16.8±25.8	16.5±27.6
Source of Infection		
Sepsis	70(49.3)	9(29)
Septic Schock	59(30.5)	7(20.6)
Pneumoniae	111(66.9)	20(58.8)
Blood Stream Infection (BSI)	46 (27.9)	5(14.7)
Others *	20 (12.0)	11 (32.4)
Unknown	32 (19.3)	3(8.8)
Antibiotic treatment approach		
Empirical therapy	114(68.7)	18(52.9)
Agent spesific therapy	52(31.3)	16(47.1)
Central Venous Catheter	109(65.7)	16(47.1)
Laboratory Parameters		
WBC, mean ± SD	14.672±19.179	14.802±10.087
PLT, mean ± SD	221.879±139.955	244.323±156.829
Laktat, mean ± SD	2.06±1.70	2.22±1.91
GFR, mean ± SD	50.6±32.5	69.4±26.8
Cr, mean ± SD	1.93±1.74	0.90±0.79
Table 5. Risk Factors for Inappropriate Antibiotic Use in Multivariate Analysis

	B	S.E	Sig.	O.R	%
CCI	-.042	.093	.650	.959	.71
Sepsis	-.552	.776	.477	.576	.12
Antibiotic	-.504	.442	.255	.604	.21
treatment					
approach					
Central	.322	.415	.438	1.380	.62
venous					
catheter					
CRP	-.003	.002	.136	.997	.91
Prokalsiton	.000	.002	.889	1.00	.91
in					
Creatinine	.685	.258	.008	1.985	1.31

Abbreviations: B, unstandardized regression weight; CI, confidence interval; OR, odds ratio; SE, standard error; CCI, Charlson comorbidity index; CRP, C-reactive protein
Figure 1

Reasons For Inappropriate use of Antibiotics

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.
STROBE Statement.doc