Correlated event-by-event fluctuations of flow harmonics in Pb-Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV

(ALICE Collaboration) Adam, J.; ...; Antičić, Tome; ...; Gotovac, Sven; ...; Erhardt, Filip; ...; Mudnić, Eugen; ...; ...

Source / Izvornik: Physical Review Letters, 2016, 117

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.1103/PhysRevLett.117.182301

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:917324

Rights / Prava: Attribution 3.0 Unported

Download date / Datum preuzimanja: 2021-01-03

Repository / Repozitorij: Repository of Faculty of Science - University of Zagreb
Correlated Event-by-Event Fluctuations of Flow Harmonics in Pb-Pb Collisions at $\sqrt{s_{NN}} = 2.76$ TeV

J. Adam et al.
(ALICE Collaboration)
(Received 4 May 2016; published 28 October 2016)

We report the measurements of correlations between event-by-event fluctuations of amplitudes of anisotropic flow harmonics in nucleus-nucleus collisions, obtained for the first time using a new analysis method based on multiparticle cumulants in mixed harmonics. This novel method is robust against systematic biases originating from nonflow effects and by construction any dependence on symmetry planes is eliminated. We demonstrate that correlations of flow harmonics exhibit a better sensitivity to medium properties than the individual flow harmonics. The new measurements are performed in Pb-Pb collisions at the center-of-mass energy per nucleon pair of $\sqrt{s_{NN}} = 2.76$ TeV by the ALICE experiment at the Large Hadron Collider. The centrality dependence of correlation between event-by-event fluctuations of the elliptic v_2 and quadrangular v_4 flow harmonics, as well as of anticorrelation between v_2 and triangular v_3 flow harmonics are presented. The results cover two different regimes of the initial state configurations: geometry dominated (in midcentral collisions) and fluctuation dominated (in the most central collisions). Comparisons are made to predictions from Monte Carlo Glauber, viscous hydrodynamics, AMPT, and HIJING models. Together with the existing measurements of the individual flow harmonics the presented results provide further constraints on the initial conditions and the transport properties of the system produced in heavy-ion collisions.

DOI: 10.1103/PhysRevLett.117.182301

The properties of an extreme state of matter, the quark-gluon plasma (QGP), are studied by colliding heavy ions at BNL’s Relativistic Heavy Ion Collider (RHIC) and at CERN’s Large Hadron Collider (LHC). One of the most widely utilized physical phenomena in the exploration of QGP properties is collective anisotropic flow [1,2]. The large elliptic flow discovered at RHIC energies [3], which at the LHC energy of 2.76 TeV is 30% larger [4] and is recently reported in Ref. [5] to increase even further at 5.02 TeV, demonstrated that the QGP behaves like a strongly coupled liquid with a very small ratio of the shear viscosity to entropy density, η/s, which is close to a universal lower bound of $1/4\pi$ [6].

Anisotropic flow is traditionally quantified with harmonics v_n and corresponding symmetry plane angles ψ_n in the Fourier series decomposition of the particle azimuthal distribution (parametrized with azimuthal angle ϕ) in the plane transverse to the beam direction [7]:

$$\frac{dN}{d\phi} \propto 1 + 2 \sum_{n=1}^{\infty} v_n \cos[n(\phi - \psi_n)].$$

The shape of the intersecting zone of two identical heavy ions in noncentral collisions is approximately ellipsoidal. This initial anisotropy is transferred via interactions among constituents and the pressure gradients developed in the QGP medium to an observable final-state anisotropic emission of particles with respect to the symmetry plane(s) of the intersecting zone. The resulting anisotropic flow for such an idealized ellipsoidal geometry is determined solely by even Fourier harmonics v_{2n}, and only one symmetry plane (the reaction plane) exists. Recently, the importance of flow fluctuations and related additional observables has been identified. This has led to new concepts such as nonvanishing odd harmonics v_{2n-1} at midrapidity [8], nonidentical symmetry plane angles ψ_n and their intercorrelations [9–14], the stochastic nature of the harmonic v_n and its probability density function $P(v_n)$ [15–20], and, finally, the importance of higher order flow moments $\langle v_k \rangle$ (where the angular brackets denote an average over all events, and $k \geq 2$) [21]. Two distinct regimes for anisotropic flow development are nowadays scrutinized separately: geometry dominated (in midcentral collisions) and fluctuation dominated (in the most central collisions) [11].

Anisotropic flow is generated by the initial anisotropic geometry and its fluctuations coupled with an expansion of the produced medium. The initial coordinate space anisotropy can be quantified in terms of the eccentricity coefficients e_n and the corresponding symmetry plane angles Φ_n [8,15,22]. A great deal of effort is being invested...
to understand the relations between the momentum space Fourier harmonics v_n and the symmetry planes ψ_n on one side, and their spatial counterparts ϵ_n and Φ_n on the other side. These relations describe the response of the produced system to the initial coordinate space anisotropies, and therefore provide a rich repository of constraints for the system properties. In the early studies it was regularly assumed that, for small eccentricities, the harmonics v_n respond linearly to the eccentricities ϵ_n of the same order, $v_n \propto \epsilon_n$, and that $\psi_n = \Phi_n$ [8,10,23,24]. However, for sizable eccentricities recent studies argue that the anisotropic flow harmonics ψ_n for single-event average four-particle correlations is mathematically equivalent to a unit weight for each individual event-by-event estimation of the symmetry planes [35,36]. The observable in Eq.(2) is individually [30,31]. The last equality is true only in the absence of nonflow effects [32]. The observable in Eq. (2) is zero in the absence of flow fluctuations, or if the magnitudes of the harmonics v_m and v_n are uncorrelated [28]. It is also unaffected by the relationship between the symmetry plane angles ψ_m and ψ_n. The four-particle cumulant in Eq. (2) is proportional to the linear correlation coefficient $c(a,b)$ with the condition $m \neq n$ for two positive integers m and n. We refer to these new observables as the symmetric two-harmonic four-particle cumulant, and use the notation SC(m,n), or just SC. The double angular brackets indicate that the averaging procedure has been performed in two steps—first, averaging over all distinct particle quadruplets in an event, and then in the second step weighting the single-event averages with the “number of combinations.” The latter for single-event average four-particle correlations is mathematically equivalent to a unit weight for each individual quadruplet when the multiplicity differs event by event [29]. In both two-particle correlators above all distinct particle pairs are considered in each case. The four-particle cumulant in Eq. (2) is less sensitive to nonflow correlations than any two- or four-particle correlator on the right-hand side taken individually [30,31]. The last equality is true only in the absence of nonflow effects [32]. The observable in Eq. (2) is zero in the absence of flow fluctuations, or if the magnitudes of the harmonics v_m and v_n are uncorrelated [28]. It is also unaffected by the relationship between the symmetry plane angles ψ_m and ψ_n. The four-particle cumulant in Eq. (2) is proportional to the linear correlation coefficient $c(a,b)$ introduced in Ref. [25] and discussed above, with $a = v_m^2$ and $b = v_n^2$. Experimentally, it is more reliable to measure the higher order moments of the flow harmonics $v^k_n (k \geq 2)$ with two- and multiparticle correlation techniques [31,33,34], than to measure the first moments v_n with the event plane method, due to the systematic uncertainties involved in the event-by-event estimation of the symmetry planes [35,36]. Therefore, we have used the new multiparticle observable in Eq. (2) as meant to be the least biased measure of the correlation between event-by-event fluctuations of magnitudes of the two different harmonics v_m and v_n [28].

The two- and four-particle correlations in Eq. (2) were evaluated in terms of Q vectors [33]. The Q vector (or flow vector) in harmonic n for a set of M particles, where throughout this Letter M is the multiplicity of an event, is defined as $Q_n \equiv \sum_{k=1}^{M} e^{i\theta n_k} [7,37].$ We have used for a single-event average two-particle correlation $\langle \cos(n(\varphi_1 - \varphi_2)) \rangle$ the following definition and analytic result in terms of Q vectors:

$$\frac{1}{(\frac{M}{2})!2!} \sum_{(\varphi_1,\varphi_2)} e^{i\varphi_1} e^{i\varphi_2} = \frac{1}{(\frac{M}{2})!2!} |Q_n|^2 - M.$$
For four-particle correlation \(\langle \cos(m \varphi_1 + n \varphi_2 - m \varphi_3 - n \varphi_4) \rangle \) we used

\[
\frac{1}{M} \sum_{i,j,k,l} \exp(i(m \varphi_1 + n \varphi_2 - m \varphi_3 - n \varphi_4)) = \frac{1}{M} \sum_{i,j,k,l} \left[|Q_{m,n}|^2 - 2 \text{Re}[Q_{m,n} Q_{m,n}^*] - 2 \text{Re}[Q_{m,n} Q_{m-n,n}^*] + |Q_{m-n,n}|^2 - (M-4)(|Q_{m,n}|^2 + |Q_{n,n}|^2) + M(M-6) \right].
\]

In order to obtain the all-event average correlations, denoted by \(\langle \cdots \rangle \) in Eq. (2), we have weighted single-event expressions in Eqs. (3) and (4) with weights \(M(M-1) \) and \(M(M-1)(M-2)(M-3) \), respectively [29].

The data used in this analysis were obtained with the ALICE detector [38,39]. They consist of minimum-bias Pb-Pb collisions recorded during the 2010 LHC Pb-Pb run at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \). With the default event and track selection criteria described below, we have obtained in total about \(1.8 \times 10^5 \) events per 1% centrality bin width. All individual systematic variations were combined in quadrature to obtain the final uncertainty.

The centrality was determined with the V0 detector [40–42]. As a part of systematic checks the centrality was determined independently with the time projection chamber (TPC) [43] and the silicon pixel detector [44,45], which have slightly worse resolution [42]. A systematic difference of up to 3% was observed in the SC \((m,n) \) results when using different centrality estimations. Charged particles were reconstructed with the TPC and the inner tracking system [44,45] immersed in a 0.5 T solenoidal field. The TPC is capable of detecting charged particles in the transverse momentum range \(0.1 < p_T < 100 \text{ GeV}/c \), with a \(p_T \) resolution of less than 6% for tracks below 20 GeV/c. Because of TPC dead zones between neighboring sectors, the track finding efficiency is about 75% for \(p_T = 200 \text{ MeV}/c \) and then it saturates at about 85% for \(p_T > 1 \text{ GeV}/c \) in Pb-Pb collisions. The TPC covers the full azimuth and has a pseudorapidity coverage of \(|\eta| < 0.9 \). Tracks reconstructed using the TPC and inner tracking system are referred to as global, while tracks reconstructed only with the TPC are referred to as TPC only.

For online triggering, the V0 and silicon pixel detectors were used [39]. The reconstructed primary vertex is required to lie within \(\pm 10 \text{ cm} \) of the nominal interaction point in the longitudinal direction along the beam axis. The cut on the position of the primary vertex along the beam axis was varied from \(\pm 12 \text{ to } \pm 6 \text{ cm} \); the resulting SC measurements are consistent with those obtained with the default cut.

The main analysis was performed with global tracks selected in the transverse momentum interval \(0.2 < p_T < 5.0 \text{ GeV}/c \) and the pseudorapidity region \(|\eta| < 0.8 \). With this choice of a low \(p_T \) cutoff we are reducing event-by-event biases from a smaller reconstruction efficiency at lower \(p_T \), while the high \(p_T \) cutoff was introduced to reduce the contribution to the anisotropies from the jets.

Reconstructed tracks were required to have at least 70 TPC space points (out of a maximum of 159). Only tracks with a transverse distance of closest approach (DCA) to the primary vertex less than 3 mm are accepted to reduce the contamination from secondary tracks. Tracks with kinks (the tracks that appear to change direction due to multiple scattering, \(K^\pm \) decays) were rejected.

An independent analysis was performed with TPC-only and hybrid tracks (see below). For TPC-only tracks, the DCA cut was relaxed to 3 cm, providing a different sensitivity to contamination from the secondary tracks. Both the azimuthal acceptance and the reconstruction efficiency as a function of transverse momentum differ between the TPC-only and global tracks. The resulting difference between independent analyses with global and TPC-only tracks was found to be 1%–5% in all the centrality ranges studied, both for SC(3,2) and SC(4,2).

In another independent analysis with hybrid tracks, three different types of tracks were combined, in order to overcome the nonuniform azimuthal acceptance due to dead zones in the silicon pixel detector, and to achieve the best transverse momentum resolution [39]. In this analysis the DCA cut was set to 3.2 cm in the longitudinal and to 2.4 cm in the transverse direction. The results between the global and hybrid tracks differ by 3% to 5%, depending on the observable considered.

One of the largest contributions to the systematic uncertainty originates from the nonuniform reconstruction efficiency as a function of transverse momentum. For the observables SC(3,2) and SC(4,2) the uncertainty is 7% and 8%, respectively. In order to correct the measurements of these azimuthal correlators for various detector inefficiencies, we have constructed the particle weights as a function of azimuthal angle \(\varphi \) and transverse momentum \(p_T \), and used the prescription outlined in Ref. [28]. In particular, \(p_T \) weights were constructed as a ratio of the transverse momentum distribution obtained from Monte Carlo generated tracks and from tracks reconstructed after they have passed through the detector simulated with GEANT3 [46].

We have used four Monte Carlo models in this Letter. The HIJING model [47,48] was utilized to obtain the \(p_T \) weights [28]. Second, the HIJING model was used to estimate the strength of the nonflow correlations (typically few-particle correlations insensitive to the collision geometry). We have evaluated the observables of interest in coordinate space by modeling the initial conditions with a Monte Carlo Glauber model [49]. We have compared the
charged combinations is within 10%. This demonstrates the difference between the correlations for like-sign and all sign techniques, which is another powerful approach to estimate the nonflow effects [4]. It was found that the difference between the correlations for like-sign and all charged combinations is within 10%. This demonstrates that nonzero values of SC measurements cannot be explained by nonflow effects.

A study based on the AMPT model showed that the observed (anti)correlations are also sensitive to the transport properties, e.g., the partonic and hadronic interactions [20,28]. Figure 2 shows the comparison of SC(3,2) and SC(4,2) observables by utilizing the AMPT model [53].
SC(4,2) to the AMPT calculations, which generally predict the correct sign but underestimate their magnitude. The comparison between experimental data and the theoretical calculations [50], which incorporate both the initial conditions and the system evolution, is shown in Fig. 2 (top). The model captures qualitatively the centrality dependence, but not quantitatively. Most notably, there is no single centrality for which a given \(\eta/s(T) \) parametrization describes simultaneously both SC(4,2) and SC(3,2). On the other hand, the same theoretical model captures quantitatively the centrality dependence of the individual \(v_2 \), \(v_3 \), and \(v_4 \) harmonics with a precision better than 10% in the central and midcentral collisions [50]. We therefore conclude that the individual flow harmonics \(v_n \) and new SC\((m,n)\) observables together provide a better handle on the initial conditions and \(\eta/s(T) \) than each of them alone. This is emphasized in Fig. 2 (middle), where the SC(3,2) and SC(4,2) observables were divided with the products \(\langle v_2^2 \rangle \langle v_2^2 \rangle \) and \(\langle v_2^2 \rangle \langle v_2^2 \rangle \), respectively, in order to obtain the normalized SC observables (the result for 60\%–70\% is omitted due to the large statistical uncertainty). These products were obtained with two-particle correlations and using a pseudorapidity gap of \(|\Delta \eta| > 1.0 \) to suppress biases from few-particle nonflow correlations. We have found that the normalized SC(4,2) observable exhibits much better sensitivity to different \(\eta/s(T) \) parametrizations than the normalized SC(3,2) observable, see Fig. 2 (middle), and than the individual flow harmonics [50].

These findings indicate that the normalized SC(3,2) observable is sensitive mainly to the initial conditions, while the normalized SC(4,2) observable is sensitive to both the initial conditions and the system properties, which is consistent with the prediction from Ref. [25].

It can be seen in Fig. 1 that SC(4,2) and SC(3,2) increase nonlinearly up to centrality 60\%. Assuming only a linear response, \(v_n \propto e_n \), we expect that the normalized SC\((m,n)\) evaluated in coordinate space can capture the measurement of the centrality dependence of the normalized SC\((m,n)\) in the momentum space. The correlations between the \(n \)th and \(m \)th order harmonics were estimated with calculations of \(\langle \langle e_n^2 e_m^2 \rangle - \langle e_n^2 \rangle \langle e_m^2 \rangle \rangle / \langle e_n^2 \rangle \langle e_m^2 \rangle \rangle \), i.e., a normalized SC observable in the coordinate space, which we denote \(SC(m,n) \). Here, \(e_n (e_m) \) is the \(n \)th (\(m \)th) order coordinate space anisotropy, following the definition in Ref. [8]. Different scenarios of the Monte Carlo Glauber model, named the wounded nucleon and binary collision weights, have been used. An increasing trend from central to peripheral collisions with different sign has been observed in Fig. 2 (bottom) for SC(4,2) and SC(3,2).

A dramatic deviation of SC(4,2) between data and the model calculation is observed for noncentral collisions. This deviation increases from midcentral to peripheral, which could be understood as the contribution of the nonlinear response \((v_2 \) contributes to \(v_4 \) increasing as a function of centrality, which is consistent with that reported in Ref. [54]. Since the normalized SC(3,2) appears to be sensitive only to the initial conditions and not to \(\eta/s(T) \), see Fig. 2 (middle), the Monte Carlo Glauber model captures better its centrality dependence than it does for the normalized SC(4,2) observable, see Fig. 2 (bottom).

The relationship between the flow harmonics \(v_2 \), \(v_3 \), \(v_4 \) has also been investigated by the ATLAS Collaboration using the event shape engineering technique [54–56]. For events with a larger \(v_2 \), the ATLAS Collaboration showed these have a smaller than average \(v_3 \), and a larger than average \(v_4 \). For events with a smaller \(v_2 \), the opposite trend occurred. These observations are consistent with the patterns observed via the SC measurements presented in this Letter. The SC observables, however, provide a compact quantitative measure of these correlations, without fitting correlations between \(v_n \) and \(v_m \). This simplifies the quantitative comparison of the SC observables with hydro-dynamical calculations as shown in Fig. 2.

In the most central collisions the anisotropies originate mainly from fluctuations; i.e., the initial ellipsoidal.

![Figure 3](image-url)

FIG. 3. Top: correlated and anticorrelated event-by-event fluctuations in coordinate (Monte Carlo Glauber model) and momentum space (data). Bottom: normalized SC observables, where the pseudorapidity gap \(|\Delta \eta| > 1.0 \) was applied in both two-particle correlations in the denominator used to estimate the individual flow harmonics.
geometry characteristic for midcentral collisions plays little role in this regime. Therefore, we have performed a separate analysis for the centrality range 0%–10% in centrality bins of 1%. The results are presented in Fig. 3. We observe that event-by-event fluctuations of \(v_2 \) and \(v_3 \) remain correlated, and of \(v_2 \) and \(v_3 \) anticorrelated, also in this regime. However, the strength of the (anti) correlations exhibits a different centrality dependence than for the wider centrality range shown in Fig. 1. As seen in Fig. 3 (top) the centrality dependence cannot be linearly extrapolated from the 0%–10% region to the full centrality range. Comparison with the two different parametrizations of the Monte Carlo Glauber initial conditions for the fluctuation-dominated (most central) and the geometry-dominated (midcentral) regimes. The fluctuations of \(v_2 \) and \(v_4 \) are correlated for all centralities. The SC observables were used to discriminate between the state-of-the-art hydro model calculations with different parametrizations of the temperature dependence of \(\eta/s \), for all of which the centrality dependence of elliptic, triangular, and quadrangular flow has a weaker sensitivity at the LHC. In particular, the centrality dependence of SC(4,2) cannot be captured with the constant \(\eta/s \). We have also used our results to discriminate between two different parametrizations of the initial conditions and have demonstrated that in the fluctuation-dominated regime (in central collisions) the Monte Carlo Glauber initial conditions with binary collision weights are favored over wounded nucleon weights.

In summary, we have measured for the first time the new multiparticle observables, the symmetric two-harmonic four-particle cumulants, which quantify the relationship between the event-by-event fluctuations of two different flow harmonics. We have found that the fluctuations of \(v_2 \) and \(v_3 \) are anticorrelated in all centralities; however, the details of the centrality dependence differ in the fluctuation-dominated (most central) and the geometry-dominated (midcentral) regimes. The fluctuations of \(v_2 \) and \(v_4 \) are correlated for all centralities. The SC observables were used to discriminate between the state-of-the-art hydro model calculations with different parametrizations of the temperature dependence of \(\eta/s \), for all of which the centrality dependence of elliptic, triangular, and quadrangular flow has a weaker sensitivity at the LHC. In particular, the centrality dependence of SC(4,2) cannot be captured with the constant \(\eta/s \). We have also used our results to discriminate between two different parametrizations of the initial conditions and have demonstrated that in the fluctuation-dominated regime (in central collisions) the Monte Carlo Glauber initial conditions with binary collision weights are favored over wounded nucleon weights.

The ALICE Collaboration would like to thank Harri Niemi for providing the latest predictions from the state-of-the-art hydrodynamic model. The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centers and the Worldwide LHC Computing Grid (WLCG) Collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); Ministry of Science and Technology of China (MOST), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC); Ministry of Science, Education and Sports of Croatia and Unity through Knowledge Fund, Croatia; Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community’s Seventh Framework Programme; the Helsinki Institute of Physics and the Academy of Finland; the French Centre national de la recherche scientifique-Institut national de physique nucléaire et de physique des particules (CNRS-IN2P3), the “Region Pays de Loire,” “Region Alsace,” “Region Auvergne” and CEA, France; German Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; National Research, Development and Innovation Office (NKFIH), Hungary; Council of Scientific and Industrial Research (CSIR), New Delhi; Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi—Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi,” Italy; Japan Society for the Promotion of Science (JSPS) KAKENHI and MEXT, Japan; National Research Foundation of Korea (NRF); Consejo Nacional de Ciencia y Tecnología (CONACYT), Dirección General de Asuntos del Personal Académico (DGAPA), México, Amerique Latine Formation academique—European Commission (ALFA-EC) and the EPLANET Program (European Particle Physics Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Pontificia Universidad Católica del Perú; National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics and National Council of Scientific Research in Higher Education (CNCSU-UEFISCDI), Romania; Joint Institute for Nuclear Research, Dubna; Ministry of Education and Science of Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and The Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), E-Infrastructure shared between Europe and Latin America (EELA), Ministerio...
de Economía y Competitividad (MINECO) of Spain, Xunta de Galicia (Consellería de Educación), Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); National Science and Technology Development Agency (NSDTA), Suranaree University of Technology (SUT) and Office of the Higher Education Commission under NRU project of Thailand; Ukraine Technology (SUT) and Office of the Higher Education Research Council (VR) and Knut & Alice Wallenberg (CEADEN), Cubaenergía, Cuba, and IAEA

PRL 117, 182301 (2016) PHYSICAL REVIEW LETTERS week ending 28 OCTOBER 2016

[1] J.-Y. Ollitrault, Anisotropy as a signature of transverse collective flow, Phys. Rev. D 46, 229 (1992).
[2] S. A. Voloshin, A. M. Poskanzer, and R. Snellings, Collective phenomena in noncentral nuclear collisions, arXiv:0809.2949.
[3] K. H. Ackermann et al. (STAR Collaboration), Elliptic Flow in Au + Au Collisions at $\sqrt{s_{NN}} = 130$ GeV, Phys. Rev. Lett. 86, 402 (2001).
[4] K. Aamodt et al. (ALICE Collaboration), Elliptic Flow of Charged Particles in Pb-Pb Collisions at 2.76 TeV, Phys. Rev. Lett. 105, 252302 (2010).
[5] J. Adam et al. (ALICE Collaboration), Anisotropic Flow of Charged Particles in Pb-Pb Collisions at $\sqrt{s_{NN}} = 5.02$ TeV, Phys. Rev. Lett. 116, 132302 (2016).
[6] P. K. Kovtun, D. T. Son, and A. O. Starinets, Viscosity in Strongly Interacting Quantum Field Theories from Black Hole Physics, Phys. Rev. Lett. 94, 111601 (2005).
[7] S. Voloshin and Y. Zhang, Flow study in relativistic nuclear collisions by Fourier expansion of azimuthal particle distributions, Z. Phys. C 70, 665 (1996).
[8] B. Alver and G. Roland, Collision geometry fluctuations and triangular flow in heavy-ion collisions, Phys. Rev. C 81, 054905 (2010); 82, 039903(E) (2010).
[9] G.-Y. Qin, H. Petersen, S. A. Bass, and B. Muller, Translation of collision geometry fluctuations into momentum anisotropies in relativistic heavy-ion collisions, Phys. Rev. C 82, 064903 (2010).
[10] D. Teaney and L. Yan, Triangularity and dipole asymmetry in heavy ion collisions, Phys. Rev. C 83, 064904 (2011).
[11] Z. Qu and U. W. Heinz, Event-by-event shape and flow fluctuations of relativistic heavy-ion collision fireballs, Phys. Rev. C 84, 024911 (2011).
[12] K. Aamodt et al. (ALICE Collaboration), Higher Harmonic Anisotropic Flow Measurements of Charged Particles in Pb-Pb Collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Rev. Lett. 107, 032301 (2011).
[13] A. Adare et al. (PHENIX Collaboration), Measurements of Higher-Order Flow Harmonics in Au + Au Collisions at $\sqrt{s_{NN}} = 200$ GeV, Phys. Rev. Lett. 107, 252301 (2011).
[14] G. Aad et al. (ATLAS Collaboration), Measurement of event-plane correlations in $\sqrt{s_{NN}} = 2.76$ TeV lead-lead collisions with the ATLAS detector, Phys. Rev. C 90, 024905 (2014).
[15] S. A. Voloshin, A. M. Poskanzer, A. Tang, and G. Wang, Elliptic flow in the Gaussian model of eccentricity fluctuations, Phys. Lett. B 659, 537 (2008).
[16] C. Gale, S. Jeon, B. Schenke, P. Tribedy, and R. Venugopalan, Initial state fluctuations and higher harmonic flow in heavy-ion collisions, Nucl. Phys. A904-905, 409c (2013).
[17] G. Aad et al. (ATLAS Collaboration), Measurement of the distributions of event-by-event flow harmonics in lead-lead collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the ATLAS detector at the LHC, J. High Energy Phys. 11 (2013) 183.
[18] L. Yan and J.-Y. Ollitrault, Universal Fluctuation-Driven Eccentricities in Proton-Proton, Proton-Nucleus and Nucleus-Nucleus Collisions, Phys. Rev. Lett. 112, 082301 (2014).
[19] L. Yan, J.-Y. Ollitrault, and A. M. Poskanzer, Eccentricity distributions in nucleus-nucleus collisions, Phys. Rev. C 90, 024903 (2014).
[20] Y. Zhou, K. Xiao, Z. Feng, F. Liu, and R. Snellings, Anisotropic distributions in a multi-phase transport model, Phys. Rev. C 93, 034909 (2016).
[21] R. S. Blaerao, J.-Y. Ollitrault, and S. Pal, Characterizing flow fluctuations with moments, Phys. Lett. B 742, 94 (2015).
[22] B. Alver et al. (PHOBOS Collaboration), System Size, Energy, Pseudorapidity, and Centrality Dependence of Elliptic Flow, Phys. Rev. Lett. 98, 242302 (2007).
[23] B. H. Alver, C. Gombeaud, M. Luzum, and J.-Y. Ollitrault, Triangular flow in hydrodynamics and transport theory, Phys. Rev. C 82, 034913 (2010).
[24] R. A. Lacey, D. Reynolds, A. Taranenko, N. N. Ajitanand, J. M. Alexander, F.-H. Liu, Y. Gu, and A. Mwai, Acoustic scaling of anisotropic flow in shape-engineered events: Implications for extraction of the specific shear viscosity of the quark gluon plasma, arXiv:1311.1728.
[25] H. Niemi, G. S. Denicol, H. Holopainen, and P. Huovinen, Event-by-event distributions of azimuthal asymmetries in ultrarelativistic heavy-ion collisions, Phys. Rev. C 87, 054901 (2013).
[26] L. Yan and J.-Y. Ollitrault, v_4, v_5, v_6, v_7: Nonlinear hydrodynamic response versus LHC data, Phys. Lett. B 744, 82 (2015).
[27] P. F. Kolb, v_4: A Small, but sensitive observable for heavy ion collisions, Phys. Rev. C 68, 031902 (2003).
[28] A. Bilandzic, C. H. Christensen, K. Gulbrandsen, A. Hansen, and Y. Zhou, Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations, Phys. Rev. C 89, 064904 (2014).
[29] A. Bilandzic, Ph.D. thesis, Utrecht U., 2012, https:// inspirehepnet/record/1186272/files/CERN‑THESIS-2012-018.pdf.
[30] N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, A new method for measuring azimuthal distributions in nucleus-nucleus collisions, Phys. Rev. C 63, 054906 (2001).
[31] N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, Flow analysis from multiparticle azimuthal correlations, Phys. Rev. C 64, 054901 (2001).
[32] R. S. Bhalerao, M. Luzum, and J.-Y. Ollitrault, Determining initial-state fluctuations from flow measurements in heavy-ion collisions, Phys. Rev. C 84, 034910 (2011).

[33] A. Bilandzic, R. Snellings, and S. Voloshin, Flow analysis with cumulants: Direct calculations, Phys. Rev. C 83, 044913 (2011).

[34] S. Wang, Y.Z. Jiang, Y.M. Liu, D. Keane, D. Beavis, S.Y. Chu, S.Y. Fung, M. Vient, C. Hartnack, and H. Stocker, Measurement of collective flow in heavy ion collisions using particle pair correlations, Phys. Rev. C 44, 1091 (1991).

[35] A. M. Poskanzer and S. A. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions, Phys. Rev. C 58, 1671 (1998).

[36] M. Luzum and J.-Y. Ollitrault, Eliminating experimental bias in anisotropic-flow measurements of high-energy nuclear collisions, Phys. Rev. C 87, 044907 (2013).

[37] J. Barrette et al. (E877 Collaboration), Observation of Anisotropic Event Shapes and Transverse Flow in Au + Au Collisions at AGS Energy, Phys. Rev. Lett. 73, 2532 (1994).

[38] K. Aamodt et al. (ALICE Collaboration), The ALICE experiment at the CERN LHC, J. Instrum. 3, S08002 (2008).

[39] B. B. Abelev et al. (ALICE Collaboration), Performance of the ALICE Experiment at the CERN LHC, Int. J. Mod. Phys. A 29, 1430044 (2014).

[40] P. Cortese et al. (ALICE Collaboration), Report No. CERN-LHCC-2004-025, https://cds.cern.ch/record/781854/files/lhcc-2004-025.pdf.

[41] E. Abbas et al. (ALICE Collaboration), Performance of the ALICE VZERO system, J. Instrum. 8, P10016 (2013).

[42] B. Abelev et al. (ALICE Collaboration), Centrality determination of Pb-Pb collisions at √sNN = 2.76 TeV with ALICE, Phys. Rev. C 88, 044909 (2013).

[43] J. Alme et al., The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events, Nucl. Instrum. Methods Phys. Res., Sect. A 622, 316 (2010).

[44] G. Dellacasa et al. (ALICE Collaboration), Report No. CERN-LHCC-99-12, https://cds.cern.ch/record/391177?

[45] K. Aamodt et al. (ALICE Collaboration), Alignment of the ALICE Inner Tracking System with cosmic-ray tracks, J. Instrum. 5, P03003 (2010).

[46] R. Brun, F. Carminati, and S. Giani, Report No. CERN-W5013, 1994, https://cds.cern.ch/record/1082634/files/geantall_CERN-W5013.pdf.

[47] X.-N. Wang and M. Gyulassy, HIJING: A Monte Carlo model for multiple jet production in pp, pA and AA collisions, Phys. Rev. D 44, 3501 (1991).

[48] M. Gyulassy and X.-N. Wang, HIJING 1.0: A Monte Carlo program for parton and particle production in high-energy hadronic and nuclear collisions, Comput. Phys. Commun. 83, 307 (1994).

[49] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, Glauber modeling in high energy nuclear collisions, Annu. Rev. Nucl. Part. Sci. 57, 205 (2007).

[50] H. Niemi, K. J. Eskola, and R. Paatelainen, Event-by-event fluctuations in perturbative QCD + saturation + hydro model: pinning down QCD matter shear viscosity in ultrarelativistic heavy-ion collisions, Phys. Rev. C 93, 024907 (2016).

[51] R. Paatelainen, K. J. Eskola, H. Holopainen, and K. Tuominen, Multiplicities and pT spectra in ultrarelativistic heavy ion collisions from a next-to-leading order improved perturbative QCD + saturation + hydrodynamics model, Phys. Rev. C 87, 044904 (2013).

[52] R. Paatelainen, K. J. Eskola, H. Niemi, and K. Tuominen, Fluid dynamics with saturated minijet initial conditions in ultrarelativistic heavy-ion collisions, Phys. Lett. B 731, 126 (2014).

[53] Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang, and S. Pal, A Multi-phase transport model for relativistic heavy ion collisions, Phys. Rev. C 72, 064901 (2005).

[54] G. Aad et al. (ATLAS Collaboration), Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector, Phys. Rev. C 92, 034903 (2015).

[55] J. Schukraft, A. Timmins, and S. A. Voloshin, Ultrarelativistic nuclear collisions: Event shape engineering, Phys. Lett. B 719, 394 (2013).

[56] H. Petersen and B. Muller, Possibility of event shape selection in relativistic heavy ion collisions, Phys. Rev. C 88, 044918 (2013).

[57] S. Eremin and S. Voloshin, Nucleon participants or quark participants?, Phys. Rev. C 67, 064905 (2003).

[58] M. Miller and R. Snellings, Eccentricity fluctuations and its possible effect on elliptic flow measurements, arXiv: nucl-ex/0312008.

[59] L. Adamczyk et al. (STAR Collaboration), Azimuthal anisotropy in U + U and Au + Au collisions at RHIC, Phys. Rev. Lett. 115, 222301 (2015).

[60] A. Adare et al. (PHENIX Collaboration), Transverse energy production and charged-particle multiplicity at midrapidity in various systems from √sNN = 7.7 to 200 GeV, Phys. Rev. C 93, 024901 (2016).

[61] C. Loizides, Glauber modeling of high-energy nuclear collisions at sub-nucleon level, Phys. Rev. C 94, 024914 (2016).
Y. Schutz,35,114 K. Schwarz,98 K. Schweda,98 G. Scioli,27 E. Scomparin,111 R. Scott,126 M. Šefčík,40 J. E. Seger,88 Y. Sekiguchi,129 D. Sekihata,47 I. Selyuzhenkov,98 K. Senosi,66 S. Senyukov,3,35 E. Serradilla,10,64 A. Sevcenco,59 A. Shabanov,53 A. Shabetai,114 O. Shadura,3 R. Shahoyan,35 M. I. Shahzad,16 A. Shangaraev,112 A. Sharma,92 M. Sharma,92 N. Sharma,126 A. I. Sheikh,134 K. Shigaki,47 Q. Shou,7 K. Shtejer,9,26 Y. Sibiriak,81 S. Siddhanta,106 K. M. Sielewicz,35 T. Siemiarczuk,78 D. Silvermyr,33 C. Silvestre,72 G. Simatovic,130 G. Simonetti,35 R. Singh,80 V. Singhal,134 T. Sinha,101 B. Sitar,38 M. Sitta,31 T. B. Skaali,21 M. Slupecki,124 N. Smirnov,138 R. J. M. Snellings,54 T. W. Snellman,124 J. Song,97 M. Song,139 Z. Song,7 F. Soramel,29 S. Sorensen,126 F. Sorbelli,98 M. Spacek,39 E. Spiri,71 I. Sputowska,118 M. Spyropoulou-Stassinaki,90 J. Stachel,94 I. Stan,99 P. Stankus,86 E. Stenlund,33 G. Steyn,66 J. H. Stiller,94 D. Stocco,114 P. Strmen,38 A. A. P. Suaide,121 T. Sugitate,47 C. Suire,52 M. Suleymanov,16 M. Šumbera,85 S. Sumowidagdo,50 A. Szabo,38 I. Szarka,38 A. Szczepankiewicz,135 M. Szymanski,135 U. Tabassam,16 J. Takahashi,122 G. J. Tambave,22 N. Tanaka,129 M. Tarhini,52 M. Tariq,18 M. G. Tarzila,79 A. Tauro,35 G. Tejeda Muñoz,2 A. Telesca,35 K. Terasaki,128 C. Terrevoli,29 B. Teyssier,131 J. Thäder,75 D. Thakur,49 D. Thomas,119 R. Tieulent,131 A. Tikhonov,53 A. R. Timmins,123 A. Toia,61 S. Trogolo,26 G. Trombetta,32 V. Trubnikov,3 W. H. Trzaska,124 T. Tsuji,128 A. Tumkin,100 R. Tursi,108 T. S. Tveter,21 K. Ullaland,22 A. Uras,131 G. L. Usai,24 A. Utrobicic,130 M. Vala,56 L. Valencia Palomo,71 S. Vallero,26 J. Van Der Maarel,54 J.W. Van Hoorne,35,113 M. van Leeuwen,94 T. Vanat,35,124 P. Vande Vyvre,37 D. Varga,137 A. Vargas,3 M. Vargyas,124 R. Varma,48 M. Vasileiou,90 A. Vasiliev,81 A. Vauthier,72 O. Vázquez Doce,56,95 V. Vechernin,133 A. M. Veen,43 M. Veldhoen,54 A. Velure,22 E. Vercellin,26 S. Vergara Limón,2 R. Vernet,8 M. Verweij,136 L. V. Vicassio,117 J. Viennikainen,124 Z. Vilakazi,127 O. Villalobos Baillie,102 A. Villatoro Tello,2 A. Vinogradov,81 L. Vinogradov,133 Y. Vinogradov,100,3 T. Virgili,30 V. Vislavicius,33 Y. P. Viyogi,134 A. Vodopyanov,97 M. A. Völkl,94 K. Voloshin,35 S. A. Voloshin,136 G. Volpe,32,137 B. von Haller,35 I. Vorobyev,56,95 D. Vranic,35,98 J. Vrálková,40 B. Vulpescu,71 B. Wagner,22 J. Wagner,98 H. Wang,54 M. Wang,7 D. Watanabe,129 Y. Watanabe,128 M. Weber,35,113 S. G. Weber,98 D. F. Weiser,94 J. P. Wessels,62 U. Westerhoff,62 A. M. Whitehead,91 J. Wiechula,34 J. Wikne,21 G. Wilk,47 J. Wilkinson,94 M. C. S. Williams,105 B. Windelband,94 M. Winn,64 P. Yang,2 S. Yano,47 Z. Yasin,16 Z. Yin,7 H. Yokoyama,129 I.-K. Yoo,67 J. H. Yoon,51 V. Yurchenko,53 A. Zaborowska,135 V. Zaccurio,82 A. Zanini,35,127 C. Zampolli,35,105 H. J. C. Zanoli,121 S. Zaporozhets,67 N. Zardoshti,102 A. Zarochentsev,133 P. Závada,57 N. Zavidovique,100 I. S. Zgura,59 M. Zhalov,87 H. Zhang,7,22 X. Zhang,7,75 Y. Zhang,7 C. Zhang,54 Z. Zhang,7 C. Zhao,21 N. Zhigareva,59 D. Zhou,7 Y. Zhou,82 Z. Zhou,22 H. Zhu,7,22 J. Zhu,7,114 A. Zichichi,12,27 A. Zimmermann,94 M. B. Zimmermann,35,62 G. Zinovjev,3 and M. Zyzak42

(PICT Collaboration)

1A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
2Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
3Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
4Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India
5Budker Institute for Nuclear Physics, Novosibirsk, Russia
6California Polytechnic State University, San Luis Obispo, California, USA
7Central China Normal University, Wuhan, China
8Centre de Calcul de l’IN2P3, Villeurbanne, France
9Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
10Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
11Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
12Centro Fermi—Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Rome, Italy
13Chicago State University, Chicago, Illinois, USA
14China Institute of Atomic Energy, Beijing, China
15Commissariat à l’Energie Atomique, IRFU, Saclay, France
16COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
17Departamento de Física de Partículas and IGFAE, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
18Department of Physics, Aligarh Muslim University, Aligarh, India
19Department of Physics, Ohio State University, Columbus, Ohio, USA
20Department of Physics, Sejong University, Seoul, South Korea
21Department of Physics, University of Oslo, Norway

PRL 117, 182301 (2016) PHYSICAL REVIEW LETTERS week ending 28 OCTOBER 2016

182301-11
78 National Centre for Nuclear Studies, Warsaw, Poland
79 National Institute for Physics and Nuclear Engineering, Bucharest, Romania
80 National Institute of Science Education and Research, Bhubaneswar, India
81 National Research Centre Kurchatov Institute, Moscow, Russia
82 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
83 Nikhef, Nationaal instituut voor subatomare fysica, Amsterdam, The Netherlands
84 Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
85 Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rež u Prahy, Czech Republic
86 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
87 Petersburg Nuclear Physics Institute, Gatchina, Russia
88 Physics Department, Creighton University, Omaha, Nebraska, USA
89 Physics Department, Panjab University, Chandigarh, India
90 Physics Department, University of Athens, Athens, Greece
91 Physics Department, University of Cape Town, Cape Town, South Africa
92 Physics Department, University of Jammu, Jammu, India
93 Physics Department, University of Rajasthan, Jaipur, India
94 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
95 Physik Department, Technische Universität München, Munich, Germany
96 Purdue University, West Lafayette, Indiana, USA
97 Pusan National University, Pusan, South Korea
98 Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
99 Rudjer Bošković Institute, Zagreb, Croatia
100 Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
101 Saha Institute of Nuclear Physics, Kolkata, India
102 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
103 Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
104 Sezione INFN, Bari, Italy
105 Sezione INFN, Bologna, Italy
106 Sezione INFN, Catania, Italy
107 Sezione INFN, Catania, Italy
108 Sezione INFN, Catania, Italy
109 Sezione INFN, Padova, Italy
110 Sezione INFN, Padua, Italy
111 Sezione INFN, Trieste, Italy
112 SSC IHEP of NRC Kurchatov Institute, Protvino, Russia
113 Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
114 SUBATECH, École des Mines de Nantes, Université de Nantes, CNRS-IN2P3, Nantes, France
115 Suranaree University of Technology, Nakhon Ratchasima, Thailand
116 Technical University of Košice, Košice, Slovakia
117 Technical University of Split FESB, Split, Croatia
118 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
119 The University of Texas at Austin, Physics Department, Austin, Texas, USA
120 Universidad Autónoma de Sinaloa, Culiacán, Mexico
121 Universidade de S ao Paulo (USP), Sao Paulo, Brazil
122 Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
123 University of Houston, Houston, Texas, USA
124 University of Jyväskylä, Jyväskylä, Finland
125 University of Liverpool, Liverpool, United Kingdom
126 University of Tennessee, Knoxville, Tennessee, USA
127 University of the Witwatersrand, Johannesburg, South Africa
128 University of Tokyo, Tokyo, Japan
129 University of Tsukuba, Tsukuba, Japan
130 University of Zagreb, Zagreb, Croatia
131 Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, France
132 Università di Brescia, Brescia, Italy
133 V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia
134 Variable Energy Cyclotron Centre, Kolkata, India
135 Warsaw University of Technology, Warsaw, Poland
136 Wayne State University, Detroit, Michigan, USA

PRL 117, 182301 (2016) PHYSICAL REVIEW LETTERS week ending 28 OCTOBER 2016
Deceased.

\(^{\dagger}\) Also at Georgia State University, Atlanta, Georgia, USA.

\(^{\ddagger}\) Also at Department of Applied Physics, Aligarh Muslim University, Aligarh, India.

\(^{\S}\) Also at M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia.