$W^+ - H^+$ Interference and Partial Width
Asymmetry in Top and Antitop Decays

Torsten Arens and L.M. Sehgal

III. Physikalisches Institut (A), RWTH Aachen,
D-52074 Aachen, Germany

Abstract

We re-examine the question of a possible difference in the partial decay widths of t and \bar{t}, induced by an intermediate scalar boson H^+ with CP-violating couplings. The interference of W^+ and H^+ exchanges is analysed by constructing the 2×2 propagator matrix of the $W^+ - H^+$ system, and determining its absorptive part in terms of fermion loops. Results are obtained for the partial rate difference in the channels $t \to bl^+\nu_l$ and $t \to bc\bar{s}$, which fulfil explicitly the constraints of CPT invariance. These results are contrasted with those in previous work.

*E-mail addresses: {arens,sehgal}@acphyz.hep.rwth-aachen.de
1 Introduction

Recent literature [1, 2] has been witness to an interesting debate on the question of a possible CP-violating difference in the partial widths of t and \bar{t} decays, into conjugate channels such as $t \rightarrow b\tau^+\nu$ and $\bar{t} \rightarrow \bar{b}\tau^-\bar{\nu}$. This discussion has taken place in the context of a model in which the decays of the top quark are mediated, not only by W^\pm bosons, but also by charged Higgs bosons H^\pm with CP-violating couplings [3]. Two specific questions that have arisen in this regard are (i) the correct form of the propagator for an unstable W boson [1, 2, 4, 5], and (ii) the implications of CPT invariance and unitarity for partial rate asymmetries generated by absorptive parts of decay amplitudes [3].

In this paper, we present an analysis that, we believe, is more complete than that in Refs. [1, 2]. Central to our analysis is the derivation of the propagator matrix of the coupled $W^+ - H^+$ system, taking account of vacuum polarization effects induced by fermion loops. The propagator matrix includes off-diagonal transitions between W^+ and H^+, which turn out to be essential for obtaining a partial rate asymmetry that respects the constraints of CPT invariance.

The model we use is defined by the Lagrangian [3]

\begin{align}
\mathcal{L} &= \mathcal{L}_W + \mathcal{L}_H, \\
\mathcal{L}_W &= -\frac{g}{\sqrt{2}} \left\{ \sum_{l=e,\mu,\tau} \left[\bar{\nu}_l \gamma^\mu (1 - \gamma_5) l W^+_{\mu} + \bar{\nu}_l \gamma^\mu (1 - \gamma_5) \nu_l W^-_{\mu} \right] \\
&\quad + \bar{\nu} \gamma^\mu (1 - \gamma_5) d W^+_{\mu} + \bar{d} \gamma^\mu (1 - \gamma_5) u W^-_{\mu} + (u, d) \rightarrow (c, s) + (u, d) \rightarrow (t, b) \right\}, \\
\mathcal{L}_H &= \frac{g}{\sqrt{2}} \left\{ - \sum_{l=e,\mu,\tau} \left[H^+ Z \frac{m_l}{m_W} \bar{\nu}_l (1 + \gamma_5) l + H^- Z^* \frac{m_l}{m_W} \bar{\nu}_l (1 - \gamma_5) \nu_l \right] \\
&\quad + H^+ \bar{\nu} \left[Y \frac{m_u}{m_W} (1 - \gamma_5) + X \frac{m_d}{m_W} (1 + \gamma_5) \right] d \right\},
\end{align}

(1)
\[H - \mathcal{F}[X^* \frac{m_d}{m_W} (1 - \gamma_5) + Y^* \frac{m_u}{m_W} (1 + \gamma_5)] u \]
\[+ (u, d) \to (c, s) + (u, d) \to (t, b) \],

(3)

where we neglect quark-mixing. The parameters \(X, Y, Z \) appearing in \(\mathcal{L}_H \) are permitted to be complex relative to one another, so that this term is \(CP \)-violating. The interaction \(\mathcal{L}_H \) may be imagined to arise as a special case of the Weinberg model with three Higgs doublets \([7]\), in which the remaining charged scalars are sufficiently heavy to be disregarded.

2 The \(W^+ - H^+ \) Propagator

We are concerned with the propagator (in unitary gauge) of the coupled \(W^+ - H^+ \) system, which we describe by a \(2 \times 2 \) matrix

\[D = \begin{pmatrix} D^\mu_\nu & D^\mu_{W+H^+} \\ D^\nu_{W^+H^+} & D_H \end{pmatrix}. \]

(4)

The inverse of this matrix is defined by

\[D^{-1} = \begin{pmatrix} g & 0 \\ 0 & 1 \end{pmatrix}, \]

(5)

where \(g \) is the metric tensor with elements \(g^\mu_\nu = diag(1, -1, -1, -1) \). The inverse matrix \(D^{-1} \) has the general form

\[D^{-1} = -i \begin{pmatrix} (m^2_W - q^2 + F_1)g^\mu_\nu + q^\mu q^\nu(1 + F_2) & q^\mu F_3 \\ q^\nu F_4 & q^2 - m^2_H + F_5 \end{pmatrix}, \]

(6)

where the functions \(F_i(q^2), i = 1, \ldots, 5 \) are given by the one-particle-irreducible self-energies

\[\Sigma^\mu_\nu(q^2) = i \left[g^\mu_\nu F_1(q^2) + q^\mu q^\nu F_2(q^2) \right], \]
\[\Sigma_{W^+H^+}(q^2) = iq^\mu F_3(q^2), \]
\[\Sigma_{H^+W^+}(q^2) = iq^\mu F_4(q^2), \]
\[\Sigma_H(q^2) = iF_5(q^2). \] (7)

Inversion of the matrix (6) yields the elements of the propagator matrix (4):

\[D_{W^\mu W^\nu} = \frac{-g^{\mu\nu} + q^\mu q^\nu}{(m_W^2 + F_1 + q^2 F_2)(q^2 - m_H^2 + F_5)} \frac{(1 + F_2)(q^2 - m_H^2 + F_5) - F_3 F_4}{q^2 - m_W^2 - F_1}, \]
\[D_{W^+H^+} = \frac{iq^\mu F_3}{q^2 F_3 F_4 - (q^2 - m_H^2 + F_5)(m_W^2 + F_1 + q^2 F_2)}, \]
\[D_{H^+W^+} = \frac{iq^\mu F_4}{q^2 F_3 F_4 - (q^2 - m_H^2 + F_5)(m_W^2 + F_1 + q^2 F_2)}, \]
\[D_H = \frac{i}{q^2 - m_H^2 + F_5 - \frac{q^2 F_3 F_4}{m_W^2 + F_1 + q^2 F_2}}. \] (8)

The corresponding propagator matrix for \(W^- - H^- \) is obtained by the replacement \(q^\mu \rightarrow -q^\mu, F_3(q^2) \leftrightarrow F_4(q^2) \). The above derivation is analogous to the description of the \(\gamma - Z \) system \[8\]. A graphical representation of Eqs. (7) and (8) is given in Figs. 1-3.

The function \(D_{W^\mu W^\nu} \), representing the \(WW \) element of the propagator matrix, can be decomposed into transverse and longitudinal pieces:

\[D_{W^\mu W^\nu} = i(-g^{\mu\nu} + \frac{q^\mu q^\nu}{q^2})G_T + \frac{q^\mu q^\nu}{q^2}G_L \] (9)

with

\[G_T = \frac{1}{q^2 - m_W^2 - F_1}, \]
\[G_L = \frac{1}{m_W^2 + F_1 + q^2 F_2 - \frac{q^2 F_3 F_4}{q^2 - m_H^2 + F_5}}. \] (10)

It will turn out that only the longitudinal part \(G_L \) contributes to the partial width asymmetry. If the term proportional to \(F_3 F_4 \) is dropped, the function \(G_L \) coincides
with that in Refs. [1, 2]. We work initially with the full expression in Eq. (8), in order to obtain results that are also valid for \(q^2 \simeq m^2_H \), a region that is physically accessible if \(m_H < m_t - m_b \).

3 Difference of Partial Widths

3.1 Asymmetry in Lepton Channels

The amplitude of the decay \(t \to b l^+ \nu_l \), including vacuum polarization effects in the \(W - H \) propagator, is given by the sum of the four diagrams shown in Fig. 4, and has the form

\[
M_l = \frac{ig^2}{8} \left\{ A_l \bar{u}_b \gamma^\mu (1 - \gamma_5) u_t \bar{u}_\nu \gamma_\mu (1 - \gamma_5) \nu_l + B_l \bar{u}_b (1 + \gamma_5) u_t \bar{u}_\nu (1 + \gamma_5) \nu_l + D_l \bar{u}_b (1 - \gamma_5) u_t \bar{u}_\nu (1 + \gamma_5) \nu_l \right\} \tag{11}
\]

with

\[
A_l = G_T, \\
B_l = \frac{m_t m_l}{m^2_W} \left\{ \frac{m^2_W}{q^2} (G_T + G_L) + Y^* ZG_5 + m_W N(Y^* F_4 + ZF_3) \right\}, \\
D_l = \frac{m_b m_l}{m^2_W} \left\{ -\frac{m^2_W}{q^2} (G_T + G_L) + X^* ZG_5 + m_W N(X^* F_4 - ZF_3) \right\}, \tag{12}
\]

where \(N \equiv [(m^2_W + F_1 + q^2 F_2)(q^2 - m^2_H + F_5) - q^2 F_3 F_4]^{-1} \) and \(G_5 \equiv N(m^2_W + F_1 + q^2 F_2) \). The corresponding decay amplitude for \(\bar{t} \to \bar{b} l^- \bar{\nu}_l \) is

\[
\overline{M}_l = \frac{ig^2}{8} \left\{ \overline{A}_l \bar{v}_b \gamma^\mu (1 - \gamma_5) v_l \bar{v}_\nu \gamma_\mu (1 - \gamma_5) \nu_l + \overline{B}_l \bar{v}_b (1 + \gamma_5) v_l \bar{v}_\nu (1 + \gamma_5) \nu_l + \overline{D}_l \bar{v}_b (1 - \gamma_5) v_l \bar{v}_\nu (1 + \gamma_5) \nu_l \right\} \tag{13}
\]

with

\[
\overline{A}_l = G_T, \\
\overline{B}_l = \frac{m_t m_l}{m^2_W} \left\{ \frac{m^2_W}{q^2} (G_T + G_L) + Y^* ZG_5 + m_W N(Y^* F_4 + ZF_3) \right\}, \\
\overline{D}_l = \frac{m_b m_l}{m^2_W} \left\{ -\frac{m^2_W}{q^2} (G_T + G_L) + X^* ZG_5 + m_W N(X^* F_4 - ZF_3) \right\}.
\]
\[\bar{B}_l = \frac{m_t m_l}{m_W^2} \left\{ \frac{m_W^2}{q^2} (G_T + G_L) + Y Z^* G_5 + m_W N (Y F_3 + Z^* F_4) \right\}, \]

\[\bar{D}_l = \frac{m_b m_l}{m_W^2} \left\{ \frac{m_W^2}{q^2} (G_T + G_L) + X Z^* G_5 + m_W N (X F_3 - Z^* F_4) \right\}; \quad (14) \]

The matrix elements \(M_l \) and \(\overline{M}_l \) yield the following asymmetry between the partial widths:

\[\Delta_{\nu_l} \equiv \Gamma(\bar{t} \rightarrow b^{+}\nu_l) - \Gamma(t \rightarrow b^{+}\nu) \]

\[= \frac{1}{2m_t} \int \frac{d^3p_b}{(2\pi)^3 2E_b} \frac{d^3p_t}{(2\pi)^3 2E_t} \frac{d^3p_\nu}{(2\pi)^3 2E_\nu} (2\pi)^4 \delta(4)(p_t - p_b - p_l - p_\nu) \]
\[\left\{ |\overline{M}_l|^2 - |M_l|^2 \right\} \]
\[= \frac{g^4}{211\pi^4 m_t^2} \int \frac{dq^2}{q^4} \lambda(q^2, m_t^2, m_b^2)(q^2 - m_t^2)^2 \left\{ (|\overline{B}_l|^2 - |B_l|^2 + |\overline{D}_l|^2 - |D_l|^2)q^2(m_t^2 + m_b^2 - q^2) \right. \]
\[+ 4Re(\overline{B}_l D_l - B_l^* D_l)m_t m_b q^2 \]
\[- 2ReA^*(\overline{B}_l - B_l)m_t m_l(m_t^2 - m_b^2 - q^2) \]
\[- 2ReA^*(\overline{D}_l - D_l)m_b m_l(m_t^2 - m_b^2 + q^2) \right\}, \quad (15) \]

where \(\lambda(a, b, c) = (a^2 + b^2 + c^2 - 2ab - 2ac - 2bc)^{1/2} \). Substituting the expressions for \(A_l, B_l, D_l, \overline{A}_l, \overline{B}_l, \overline{D}_l \) in the above integrand, we find (as anticipated) that terms proportional to the transverse propagator \(G_T \) cancel completely. Expressed in terms of the functions \(F_i(q^2) \), the asymmetry involves only the quantities \(\text{Im}(F_1 + q^2 F_2)(q^2) \), \((F_3 - F_4^*)(q^2) \) and \(\text{Im}F_5(q^2) \). Representing the self-energies by fermion loops, these terms are

\[\text{Im}(F_1 + q^2 F_2)(q^2) = \frac{g^2}{16\pi} \left\{ \frac{N_c \lambda(q^2, m_u^2, m_d^2)}{2q^4} \Theta[q^2 - (m_u + m_d)^2] \right. \]
\[\cdot(-m_u^4 - m_u^4 + q^2 m_u^2 + q^2 m_d^2 + 2m_u^2 m_d^2) \]
\[+ (u, d) \rightarrow (c, s) + \sum_{l=e, \mu, \tau} \frac{(q^2 - m_l^2)^2}{2q^4} \Theta(q^2 - m_l^2) \right\}, \]
One finds that the contribution of the lepton loops (the pieces \(\sum_{l=e,\mu,\tau}^{\text{c, s}}\)) to the asymmetry vanishes identically, leaving as the final result

\[
(16) \quad \Delta_{l\nu} = \frac{g^6 N_c m_l^2}{214\pi^4 m_W^6 m_{\nu}^6} \int_{\max(m_{\nu}^2, m_{s}^2, m_{t}^2)}^{(m_{l} - m_{\nu})^2} dq^2 \frac{\lambda(q^2, m_{l}^2, m_{\nu}^2)\lambda(q^2, m_{l}^2, m_{\nu}^2)(q^2 - m_{l}^2)^2}{(q^2 - m_{\nu}^2)^2 + m_{H}^2 \Gamma_{H}^2} \bigg[\left[\begin{aligned} m_{l}^2 m_{s}^2 (m_{t}^2 &- m_{u}^2 - q^2)(q^2 + m_{c}^2 - m_{s}^2) \\ -m_{u}^2 m_{s}^2 (m_{t}^2 &- m_{u}^2 - q^2)(q^2 + m_{c}^2 - m_{s}^2) \end{aligned} \right] \\ \cdot \left[\begin{aligned} (1 - \frac{m_{H}^2}{q^2}) Im(XY^* - XZ^* - YZ^*) \\ + |Y|^2 Im(XZ^*) - |Z|^2 Im(XY^*) + |X|^2 Im(YZ^*) \end{aligned} \right] \\ + 2ImYZ^* |X| + Y^2 m_{l}^2 m_{c}^2 \left[\begin{aligned} q^2 (m_{s}^2 &- m_{u}^2) + m_{u}^2 m_{c}^2 - m_{t}^2 m_{s}^2 \\ + &m_{u}^2 m_{s}^2 \left[q^2 (m_{l}^2 - m_{c}^2) + m_{l}^2 m_{c}^2 - m_{t}^2 m_{s}^2 \right] \end{aligned} \right] \bigg] \\ + (c, s) \rightarrow (u, d) \\ \equiv \Delta_{l\nu}(c, s) + \Delta_{l\nu}(u, d).
\]
in the form $ImF_5(q^2 = m_H^2) = m_H \Gamma_H$, and have neglected terms of relative order q^2.

3.2 Asymmetry in Quark Channels

In complete analogy to the lepton case, the matrix elements for the decays $t \to b c \bar{s}$, $\bar{t} \to \bar{b} c \bar{s}$ are

\[
M = \frac{ig^2}{8} \left\{ \begin{array}{l}
A \bar{u}_b \gamma^\mu (1 - \gamma_5) u_t \bar{u}_c \gamma_\mu (1 - \gamma_5) v_s \\
+ B \bar{u}_b (1 + \gamma_5) u_t \bar{u}_c (1 + \gamma_5) v_s + C \bar{u}_b (1 + \gamma_5) u_t \bar{u}_c (1 - \gamma_5) v_s \\
+ D \bar{u}_b (1 - \gamma_5) u_t \bar{u}_c (1 + \gamma_5) v_s + E \bar{u}_b (1 - \gamma_5) u_t \bar{u}_c (1 - \gamma_5) v_s
\end{array} \right\},
\]

\[
\overline{M} = \frac{ig^2}{8} \left\{ \begin{array}{l}
\bar{A} \bar{v}_t \gamma^\mu (1 - \gamma_5) v_b \bar{v}_s \gamma_\mu (1 - \gamma_5) v_c \\
+ \bar{B} \bar{v}_t (1 - \gamma_5) v_b \bar{v}_s (1 - \gamma_5) v_c + \bar{C} \bar{v}_t (1 - \gamma_5) v_b \bar{v}_s (1 + \gamma_5) v_c \\
+ \bar{D} \bar{v}_t (1 + \gamma_5) v_b \bar{v}_s (1 + \gamma_5) v_c + \bar{E} \bar{v}_t (1 + \gamma_5) v_b \bar{v}_s (1 + \gamma_5) v_c
\end{array} \right\},
\]

where

\[
A = G_T,
\]

\[
B = \frac{m_t m_s}{m_W^2} \left\{ -\frac{m_W^2}{q^2} (G_T + G_L) - X*YG_5 + m_W N(Y^*F_4 + XF_3) \right\},
\]

\[
C = \frac{m_t m_c}{m_W^2} \left\{ -\frac{m_W^2}{q^2} (G_T + G_L) - |Y|^2 G_5 - m_W N(Y^*F_4 + YF_3) \right\},
\]

\[
D = \frac{m_b m_s}{m_W^2} \left\{ -\frac{m_W^2}{q^2} (G_T + G_L) - |X|^2 G_5 + m_W N(X^*F_4 + XF_3) \right\},
\]

\[
E = \frac{m_b m_c}{m_W^2} \left\{ -\frac{m_W^2}{q^2} (G_T + G_L) - X*YG_5 + m_W N(YF_3 - X^*F_4) \right\}
\]

and

\[
\bar{A} = A, \quad \bar{C} = C, \quad \bar{D} = D, \quad \bar{B} = \frac{m_t m_s}{m_W^2} \left\{ -\frac{m_W^2}{q^2} (G_T + G_L) - X*YG_5 + m_W N(YF_3 - X^*F_4) \right\}.
\]

8
\[E = \frac{m_b m_c}{m_W^2} \left\{ \frac{m_W^2}{q^2} (G_T + G_L) - X Y^* G_5 + m_W N(Y^* F_4 - X F_3) \right\}. \quad (20) \]

Once again, the transverse propagator term \(G_T \) makes no contribution to the asymmetry, which is given by

\[
\Delta_{cs} = \Gamma(t \rightarrow \bar{b}c) - \Gamma(t \rightarrow bc\pi) = \frac{N_c g^4}{2^{11} \pi^3 m_t^3} \int \frac{dq^2}{q^2} \lambda(q^2, m_t^2, m_b^2) \lambda(q^2, m_c^2, m_s^2) \left\{ (|\mathcal{B}_0|^2 - |B_0|^2 + |\mathcal{E}_0|^2)|E_0|^2)(m_t^2 + m_b^2 - q^2)(q^2 - m_c^2 - m_s^2) \right. \\
-4Re[C_0^* (B_0 - B_0) + D_0^* (E_0 - E_0)] m_c m_s (m_t^2 + m_b^2 - q^2) \\
+4Re[D_0^* (\bar{B}_0 - B_0) + C_0^* (E_0 - E_0)] m_t m_b (q^2 - m_c^2 - m_s^2), \quad (21)
\]

where the subscript “0” means the expressions (19) and (20) without the terms proportional to \(G_T \). Expressed in terms of the functions \(F_i(q^2) \), the asymmetry involves only the combinations given in Eq. (16), yielding as the final result

\[
\Delta_{cs} = \frac{N_c g^6}{2^{13} \pi^4 m_t^3 m_b^6} \left\{ \frac{m_W^2}{q^2} X Y^* |X + Y|^2 \right\} \int \frac{dq^2}{q^2} \lambda(q^2, m_t^2, m_b^2) \lambda(q^2, m_c^2, m_s^2) \lambda(q^2, m_u^2, m_d^2) \\
\left(q^2 - m_H^2 \right) (q^2 - m_H^2) \right. \\
- \sum_{l=e,\mu,\tau} \Delta_{ln}(c, s), \quad (22)
\]

where the last term follows from the relation \(\Delta_{cs}(l\nu) = -\Delta_{ln}(cs) \), which we have checked explicitly. The function \(f \) is defined by

\[
f(q^2, t, b, c, s, u, d) = q^4 (t b c d - t b s u - t c d s + t s u d + b c s u - b c u d) \\
+ q^2 (t^2 c s d - t^2 s u d - t b c^2 d - t b c d^2 + t b s^2 u + t b s u^2 \\
+ t c s d^2 - t s^2 u d - b^2 c s u + b^2 c u d + b c^2 u d - b c u^2) \\
+ (t - b c) (s u - c d) (t d - b u). \quad (23)
\]
It has the remarkable property of being antisymmetric under any one of the following exchanges:

\[(u, d) \leftrightarrow (c, s) \quad ; \quad (u, d) \leftrightarrow (t, b) \quad ; \quad (c, s) \leftrightarrow (t, b).\] (24)

As a consequence of this asymmetry, we immediately see that (i) the \((c, s)\) loop does not contribute to \(\Delta_{cs}\), (ii) the analogous result for \(\Delta_{ud}\) is obtained by interchanging \((c, s)\) and \((u, d)\) in Eq. (22), and (iii) the asymmetries in the various channels satisfy the relation

\[\Delta_{cs} + \Delta_{ud} + \Delta_{\tau\nu_e} + \Delta_{\mu\nu_e} + \Delta_{\tau\nu_e} = 0,\] (25)

implying the equality of total width of \(t\) and \(\bar{t}\), mandated by \(CPT\) invariance.

4 Comments

(i) Our results fulfill all the general constraints on partial width asymmetries noted by Wolfenstein [6]. In particular, the asymmetry in a channel \(f\) associated with a loop \(n\) satisfies

\[\Delta_f(n) = -\Delta_n(f)\] (26)

and vanishes when \(n = f\).

(ii) A characteristic feature of \(W^+ - H^+\) interference is the result that the asymmetry \(\Delta_q(q')\) in the quark channel \(q\), arising from a quark loop \(q'\), is proportional to the function \(f(q^2, m_1^2, m_2^2, m_3^2, m_4^2)\) defined in Eq. (23), where \((m_1, m_2)\) and \((m_3, m_4)\) are the masses of the quark doublets contained in \(q\) and \(q'\). This implies that the specific asymmetry \(\Delta_q(q')\) vanishes when one of the masses \((m_1, m_2)\) and one of the masses \((m_3, m_4)\) is zero. For a similar reason, the asymmetry in a lepton
channel \(l \) due to a lepton loop \(l' \) vanishes, even for \(l \neq l' \), since the two doublets necessarily contain two massless neutrinos.

(iii) The fact that the asymmetries \(\Delta_{\mu\nu}, \Delta_{cs} \) and \(\Delta_{ud} \) given by Eqs. (17) and (22) satisfy the \(CPT \) condition (25) is a nontrivial test of the full \(W^+ - H^+ \) propagator constructed in Eq. (8). In particular, neglect of the off-diagonal terms \(F_3 \) and \(F_4 \) leads to conflict with \(CPT \) invariance. These terms have not been considered in previous work.

(iv) Our results for \(\Delta_{\tau\nu} \) and \(\Delta_{cs} \) do not coincide with those in Refs. [1, 2]. For instance, these earlier papers found an asymmetry \(\Delta_{\tau\nu} \) proportional to \(m_\tau^2 m_e^2 \). By contrast, the leading term of our result (Eq. (17)) is proportional to \(m_\tau^2 m_e^2 \). We have been able to trace the difference to the neglect of the off-diagonal part of the \(W^+ - H^+ \) propagator in Refs. [1, 2], which inevitably leads to a violation of the \(CPT \) condition (Eq. (25)).

(v) In the absence of any scalar interaction of the form \(L_H \), the transverse and longitudinal parts of the propagator \(D_W^{\mu\nu} \) obtained by us agree with those in Refs. [1, 2, 4].

(vi) Numerically, the partial width asymmetries resulting from \(W^+ - H^+ \) interference, in the models discussed here, are exceedingly small. As pointed out in Ref. [1], larger differences between \(t \to b\tau^+ \nu_\tau \) and \(\bar{t} \to \bar{b}\tau^- \bar{\nu}_\tau \) occur if one compares the spectra of these reactions, not only in the variable \(q^2 \) but also in the complementary Dalitz variable \(u = (p_\tau + p_b)^2 \) [8, 10]. Likewise, larger asymmetries are possible if one compares the \(\tau^+ \) and \(\tau^- \) polarization [11]. Whereas the partial width asymmetry discussed in this paper involves only the longitudinal part of the \(W \) propagator, these alternative effects involve the transverse part, and do not necessarily require absorptive phases associated with final state interactions.
Acknowledgements: We wish to record our indebtedness to the papers of Lincoln Wolfenstein on all aspects of CP-symmetry, particularly Ref. [6]. The support of the German Ministry of Research and Technology is acknowledged with gratitude. One of us (T.A.) has been supported by the Graduiertenförderungsgesetz Nordrhein-Westfalen.
References

[1] D. Atwood, G. Eilam, A. Soni, R.R. Mendel and R. Migneron, Phys. Rev. D49 (1994) 289

[2] J. Liu, Phys. Rev. D47 (1993) R1741

[3] C.H. Albright, J. Smith and S.-H.H. Tye, Phys. Rev. D21 (1980) 711

[4] M. Nowakowski and A. Pilaftsis, Z. Phys. C60 (1993) 121

[5] G. López Castro, J.L.M. Lucio and J. Pestieau, Mod. Phys. Lett. A6 (1991) 3679

[6] L. Wolfenstein, Phys. Rev. D43 (1991) 151

[7] S. Weinberg, Phys. Rev. Lett. 37 (1976) 657

[8] W. Hollik, Fortschr. Phys. 38 (1990) 165

[9] D. Atwood, G. Eilam, A. Soni, R.R. Mendel and R. Migneron, Phys. Rev. Lett. 70 (1993) 1364

[10] R. Cruz, B. Grządkowski and J.F. Gunion, Phys. Lett. B289 (1992) 440

[11] D. Atwood, G. Eilam and A. Soni, Phys. Rev. Lett. 71 (1993) 492
Figure Captions

Fig. 1. Diagonal and non-diagonal one-particle-irreducible self-energies of the $W - H$ system (Eq. (7)).

Fig. 2. Graphical representation of the “pure” W and H propagators, neglecting $W - H$ mixing.

Fig. 3. Graphical representation of the full $W - H$ propagator (Eq. (8)), in terms of the “pure” W and H propagators defined in Fig. 2.

Fig. 4. Feynman diagrams contributing to the reaction $t \rightarrow b \tau^+ \nu_{\tau}$.
This figure "fig1-1.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9404259v1
This figure "fig1-2.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9404259v1
This figure "fig1-3.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9404259v1
Fig. 3.
Fig. 4.
\[
\Sigma_{W}^{\mu\nu}(q^2) = i[g^{\mu\nu}F_1(q^2) + q^\mu q^\nu F_2(q^2)]
\]

\[
\Sigma_{W+H}^{\mu}(q^2) = i q^\mu F_3(q^2)
\]

\[
\Sigma_{H+W}^{\mu}(q^2) = i q^\mu F_4(q^2)
\]

\[
\Sigma_{H}(q^2) = i F_5(q^2)
\]

Fig. 1.

\[
[D_W^{\mu\nu}]_0 = \cdots - + \cdots - + \cdots - + \cdots - + \cdots
\]

\[
[D_H]_0 = \cdots - + \cdots - + \cdots - + \cdots - + \cdots
\]

Fig. 2.