Gastric dysplasia may be an independent risk factor of an advanced colorectal neoplasm

Rack Cheon Bae, Seong Woo Jeon, Han Jin Cho, Min Kyu Jung, Young Oh Kweon, Sung Kook Kim

INTRODUCTION
Colorectal carcinoma is one of the most common cancers and is the second leading cause of cancer-related mortality in the United States \(^1\), and the fourth leading cause of cancer-related mortality in Korea \(^2\). The etiologies and risk factors of colorectal neoplasms have attracted research attention for several decades, especially in association with *Helicobacter pylori* (*H. pylori*) or gastric dysplasia. *H. pylori* infection is a well-known cause of chronic gastritis, peptic ulcers \(^3,4\), gastric adenocarcinoma \(^5,6\), and gastric lymphoma \(^6\), and several reports have suggested that *H. pylori* infection increases the risk of colorectal adenoma and adenocarcinoma \(^6,7\); however, other reports disagree \(^8,9\). Furthermore, several have concluded that gastric adenoma and carcinoma may be indicators of colorectal adenoma or carcinoma \(^10,11\), and it is accepted that both gastric adenoma and colorectal adenoma have a high potential for malignant transformation \(^12-15\). The aims of this study were to evaluate relations between gastric dysplasia and *H. pylori* infection and the occurrence of colorectal adenoma and to define the need for colonoscopy in patients with gastric dysplasia or *H. pylori* infection.

CONCLUSION: The study emphasizes the need for colon surveillance in patients with gastric dysplasia, regardless of *H pylori* infection.

© 2009 The WJG Press and Baishideng. All rights reserved.

Key words: Gastric adenoma or dysplasia; *Helicobacter pylori*; Colorectal neoplasm

Peer reviewers: Won Ho Kim, MD, Professor, Department of Internal Medicine, Yonsei University College of Medicine, 134 Shinchon-dong Seodaemun-ku, Seoul 120-752, South Korea; Klaus Thaler, MD, One Hospital Drive, McHany Hall, MC 413, Columbia, MO 65212, United States

Bae RC, Jeon SW, Cho HJ, Jung MK, Kweon YO, Kim SK. Gastric dysplasia may be an independent risk factor of an advanced colorectal neoplasm. *World J Gastroenterol* 2009; 15(45): 5722-5726 Available from: URL: http://www.wjgnet.com/1007-9327/15/5722.asp DOI: http://dx.doi.org/10.3748/wjg.15.5722
MATERIALS AND METHODS

Patients
From May 2005 to February 2008, 133 consecutive patients with established gastric dysplasia (the gastric dysplasia group), as determined by gastroendoscopy (EGD) at our institute, were additionally subjected to colonoscopy, after obtaining informed consent, within 3 wk of EGD. We defined gastric adenoma as gastric dysplasia. The presence of gastric dysplasia and colorectal adenoma were confirmed histologically using specimens obtained by endoscopic mucosal resection (EMR), endoscopic submucosal dissection (ESD), or polypectomy. We also enrolled 213 consecutive subjects who underwent both EGD and colonoscopy for the purpose of screening at the Health Promotion Center at Kyungpook National University Hospital as a control group during the same period. We reviewed endoscopic findings and pathology specimens retrospectively. The subjects who were included in the control group had no symptoms and no gastric dysplasia. Patients with any kind of malignancy and those with a previous history of colorectal surgery were excluded. Subjects with either family history of colorectal adenocarcinoma or adenoma or gastric cancer were also excluded. This study was approved by our Institutional Review Board.

Diagnosis of *H pylori* infection
H pylori infection was diagnosed by biopsy, CLO test (GASTREX, Warsaw, Poland), or by using an urea breathing test (UBT, Otsuka, Tokyo). The specimens for the CLO test were obtained from both the antrum and the distal body of the stomach during EGD. Cresyl violet staining was used for the pathologic diagnosis of *H pylori* infection. The cut-off value of the UBT was 2.5‰. *H pylori* infection was diagnosed when two of the above three methods were positive.

Colonoscopic diagnosis
Cecal intubation was successful in all patients. All lesions found during colonoscopy were removed by biopsy, polypectomy, EMR, or ESD. Advanced colorectal adenoma was defined as a size larger than 1 cm, a villous or tubulovillous adenoma histology, or adenoma with high-grade dysplasia.

Statistical analysis
We compared age and sex distributions, the presence or absence of colorectal adenoma, colorectal adenoma sizes and histology, and *H pylori* infection states in the gastric dysplasia and control groups. Variables were compared using the χ² or independent t-tests, depending on the nature of the data. Fisher’s exact test was used when numbers were small. Odds ratios (ORs) and 95% CIs were used to describe associations. ORs with corresponding 95% CIs were obtained by conditional logistic regression analysis. P values of < 0.05 were considered statistically significant, and statistical calculations were performed using SPSS version 14.0 software for Window (SPSS Inc. Chicago, IL, USA).

RESULTS

Clinical characteristics of the gastric dysplasia and control groups
The mean age of all 346 study subjects was 54.1 ± 10.5 years, and there were 258 men (73%) and 87 women (27%). The gastric dysplasia group was older than the control group (*P* = 0.0005). In the gastric dysplasia group (*n* = 133), colorectal adenoma was diagnosed in 55/133 (41%) and advanced colorectal adenoma in 28/133 (21%). In the control group, colorectal adenoma was diagnosed in 93/213 (44%), and advanced colorectal adenoma in 16/213 (7.5%). No significant difference was observed between the gastric dysplasia and control groups in terms of the prevalence of colorectal adenoma (*P* = 0.5220), and no significant difference was observed between the *H pylori* positive and negative groups in terms of the prevalence of gastric dysplasia, colorectal adenoma, or advanced colorectal adenoma (*P* = 0.2610). Furthermore, no significant difference was observed between the gastric dysplasia and control groups in terms of the sizes of advanced colorectal adenomas (10.50 ± 3.107 mm vs 11.92 ± 8.722 mm, respectively, *P* = 0.5860) (Table 1).

Clinical characteristics of the advanced colorectal adenoma positive and negative groups
Mean age in the advanced colorectal adenoma positive group was greater than in the negative group (*P* = 0.0002). However, group sex distributions (*P* = 0.0600) and *H pylori* (*P* = 0.1060) infection statuses were not different significantly different (Table 2).

Comparisons of the colorectal adenoma and advanced colorectal adenoma groups
Those with colorectal adenoma or advanced colorectal adenoma were older than those without (Table 3). Moreover, those with gastric dysplasia showed no increased risk of having colorectal adenoma (OR = 0.910, 95% CI: 0.587-1.411, *P* = 0.7380), but they had a significantly higher risk of having advanced colorectal adenoma (adjusted OR = 3.283, CI: 1.700-6.342, *P* = 0.0004) (Table 3). This result was supported by multivariate analysis (Table 4).

Table 1 Baseline characteristics of gastric dysplasia and control group

	Gastric dysplasia (n = 133)	Control (n = 213)	P-value
Age (mean ± SD)	61.2 ± 9.7	49.6 ± 8.3	0.0005
Sex [M/F, (%)]	97/36 (73/37)	162/51 (76/24)	0.5200
H pylori (+)	n = 204		
(-)	n = 142		
Colorectal adenoma (+)	n = 148		
(-)	n = 198		
Advanced adenoma (+)	n = 44		
(-)	n = 302		

Advanced adenoma: Advanced colorectal adenoma.
DISCUSSION

This study shows that the risk of advanced colorectal adenoma is elevated in patients with gastric dysplasia, and thus, supports the notion that colorectal cancer risk is increased by gastric adenoma, as has been reported previously[12]. In addition, our study concurs with the findings of a previous study, in which it was found that two of six patients with diffuse gastric adenoma had colon polyps and 40 of 73 patients (54.8%) with gastric polyps had colorectal adenomatous polyps[13]. In the present study, 55 of 133 patients (41%) with gastric dysplasia had colorectal adenomatous polyps and 28 of 133 (21%) had advanced colorectal adenomatous polyps. The present study concurs with another study, in which it was found that eight of eleven patients with duodenal adenomas had colonic polyps[14]. Furthermore, the present study agrees with other studies concerning the elevated risk of gastric polyps in patients with sporadic colonic polyps[19]. Shemesh et al[25] reported that two of 100 patients with 1-4 colorectal polyps had gastric adenoma, 3 of 80 patients (3.5%) with 5 or more colorectal polyps had gastric adenoma, 3 of 80 patients with colon cancer had gastric adenoma, and one of 100 patients without colorectal adenoma and cancer had gastric adenoma, and these findings are also in line with those of the present study. The progression of colorectal adenoma to colon cancer is known to be associated with an adenoma size larger than 10 mm, more than three lesions, a villous, tubulovillous or high grade dysplastic histology, and the presence of genetic abnormalities[21-24]. Genetic abnormalities in colon cancer are very similar to those in gastric cancer[25,26], especially concerning mutations of the p53[25-28], APC[25,34], DCC[25,35], and K-ras genes[25,36]. Genetic abnormalities are well known to be associated with upper gastrointestinal polyps and with hereditary colonic polyposis syndromes[25,26], which include familial polyposis coli[25,26], Gardner’s syndrome, Peutz-Jeghers’ syndrome, Cowden’s syndrome, Cronkhite-Canada syndrome, hereditary flat adenoma syndrome, and others. In the present study, we deliberately excluded patients with HNPCC, suspected HNPCC, or FAP to avoid the influence of such genetic factors.

Gastric adenoma or dysplasia have high rates of malignant transformation (up to 75%)[6,16,18,21]. Accordingly, regardless of the existence of colorectal adenoma, treatment of gastric dysplasia by EMR or ESD is inevitable. Moreover, the above-mentioned relations suggest that the pathogeneses of gastric dysplasia and colorectal adenoma are similar. Several other controversial factors may increase the risk of colorectal cancer development, e.g. an increased serum gastrin level[15], H pylori infection[5,11] and Streptococcus bovis bacteremia[35]. However, previous studies have concluded that the presence of H pylori infection and an elevated serum gastrin level are not associated with elevated risks of colorectal neoplasm development. Recently, some studies have concluded that increased serum gastrin levels due to the use of proton pump inhibitors do not predispose the development of a colorectal neoplasm. In the present study, we included only gastric dysplasia and H pylori infection status to examine the risk of colorectal adenoma development. No significant association was found between H pylori infection and colorectal adenoma, which concurs with another study[10,11], and thus, it appears that an agent other than H pylori is responsible for co-pathogenesis of colorectal adenoma[35].

The aim of several studies on colorectal adenoma has been to reduce colorectal cancer mortality and morbidity. To achieve this aim, the early diagnoses and treatment of precancerous lesions, like colorectal adenoma and early colorectal cancer, are of the utmost importance, especially, in those deemed to be at high risk group by early surveillance colonoscopy[37,38]. Some studies have recommended that gastric cancer patients undergo colonoscopy due to a substantial risk of their developing colon cancer[34]. In another study, haemoccult studies were recommended for early detection of colorectal tumors in patients with gastric polyp[39]. In addition, it has been reported that the rates of occurrence of colorectal adenoma in gastric adenoma and carcinoma patients are increasing[12]. In common with other studies, the present study reveals that gastric dysplasia is an indicator of advanced colorectal adenoma, which is an important risk factor of colorectal cancer. Accordingly, we emphasize the need for colon surveillance in elderly patients with gastric dysplasia because of their elevated risk of developing advanced colorectal adenoma, which is an important risk factor of colorectal cancer, regardless of H pylori infection.

Several limitations of the present study should be considered. First, the sample size was small, which introduces the possibility of a type II error, and we could not collect age and sex-matched controls. Second, selection bias is possible due to the retrospective nature of the study. Third, insufficient information was obtained regarding alcohol consumption, smoking status, and
serum gastrin, cholesterol, and glucose levels, which were recently proposed as risk factors of gastric dysplasia [30]. Fourth, the mean age of the gastric dysplasia group was greater than that of the control group, because the patients who visited our health promotion center were much younger than the gastric dysplasia patients. Accordingly, although age-adjusted odds ratios for advanced colorectal adenoma were statistically significant, we cannot exclude the possibility of an age-related bias.

Even though there were several reports that H. pylori infection increased the risk of colorectal adenoma and adenocarcinoma [7-9], our report reveals that H. pylori infection is not a risk factor for advanced colorectal polyps, but that gastric dysplasia and an advanced age are. Thus, we infer that genetic and environmental factors probably importantly contribute to the development of advanced colorectal polyps, because patients are continuously exposed to those factors. However, the environmental factors involved have not been identified as yet. Thus, further diverse complex study models are required to clarify the relationship between gastric dysplasia, H. pylori, and colorectal adenoma, and identify the environmental factors concerned. Moreover, a large prospective case-controlled study is required to determine whether the presence of gastric dysplasia is an indication for colonoscopy and what intervals would be recommended for patients with gastric dysplasia.

COMMENTS

Background

Over the last decades, several studies have been performed on the etiologies and risk factors of colorectal neoplasms, especially on the association with Helicobacter pylori (H. pylori) and gastric dysplasia. This study was performed to define the necessity of screening colonoscopy in patients with gastric dysplasia or H. pylori infection.

Research frontiers

Several controversial factors might increase the risk of colorectal cancer development, for example, increased serum gastrin level, H. pylori infection and Streptococcus bovis bacteremia, and so on. In this study, the authors demonstrate the relations between gastric dysplasia and the occurrence of advanced colorectal adenoma.

Innovations and breakthroughs

Even though there were several reports that H. pylori infection increased the risk of colorectal adenoma and adenocarcinoma, this report reveals that H. pylori infection is not a risk factor for advanced colorectal polyps; however, gastric dysplasia and an advanced age are. Thus, genetic and environmental factors probably contribute to the development of advanced colorectal polyps, because of continuous exposure to genetic and environmental factors.

Applications

This result could emphasize the need for colon surveillance in elderly patients with gastric dysplasia because of their elevated risk of developing advanced colorectal adenoma, which is an important risk factor of colorectal cancer, regardless of H. pylori infection.

Peer review

The authors examined the relation between gastric dysplasia and H. pylori and advanced colorectal adenoma. However, a large prospective case-controlled study is required to determine whether the presence of gastric dysplasia is an indication for colonoscopy and what intervals would be recommended for patients with gastric dysplasia.

REFERENCES

1. Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ. Cancer statistics, 2003. CA Cancer J Clin 2003; 53: 5-26
2. Shin HR, Jung KW, Won YJ, Park JC. Annual report of the Korean Central Cancer registry 2002: based on registered data from 139 hospitals. Cancer Res Treat 2004; 36: 103-114
3. Moss SF, Calam J. Helicobacter pylori and peptic ulcers: the present position. Gut 1992; 33: 289-292
4. Dooley CP, Cohen H, Fitzgibbons PL, Bauer M, Appleman MD, Perez-Perez GI, Blaser MJ. Prevalence of Helicobacter pylori infection and histologic gastritis in asymptomatic persons. N Engl J Med 1989; 321: 1562-1566
5. Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N, Sibley RK. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 1991; 325: 1127-1131
6. Wotherspoon AC, Ortie-Hidalgo C, Falzon MR, Isaacson PG. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet 1991; 338: 1175-1176
7. Breuer-Katschinski B, Nemes K, Marr A, Rump B, Leindecker B, Breuer N, Goebb H. Helicobacter pylori and the risk of colonic adenomas. Colorectal Adenoma Study Group. Digestion 1999; 60: 210-215
8. Meucci G, Tatarrella M, Vecchi M, Ranzi ML, Biguzzi E, Beccari G, Clerici E, de Francinis R. High prevalence of Helicobacter pylori infection in patients with colonic adenomas and carcinomas. J Clin Gastroenterol 1997; 25: 605-607
9. Mizuno S, Morita Y, Inui T, Asakawa A, Ueno N, Ando T, Kato H, Uchida M, Yoshikawa T, Inui A. Helicobacter pylori infection is associated with colon adenomatous polyps detected by high-resolution colonoscopy. Int J Cancer 2005; 117: 1058-1059
10. Siddheshwar RK, Muhammad KB, Gray JC, Kelly SB. Seroprevalence of Helicobacter pylori in patients with colonic polyps and colorectal carcinoma. Am J Gastroenterol 2001; 96: 84-88
11. Moss SF, Neugut AI, Garbowksi GC, Wang S, Treat MR, Forde KA. Helicobacter pylori seroprevalence and colorectal neoplasia: evidence against an association. J Natl Cancer Inst 1995; 87: 762-763
12. Cappell MS, Fiest TC. A multicenter, multiyear, case-controlled study of the risk of colon polyps in patients with gastric polyps. Are gastric adenomas a new indication for surveillance colonoscopy? J Clin Gastroenterol 1995; 21: 198-202
13. Oh SY, Park DI, Yoo TW, Kang MS, Kim SH, Park JH, Kim HJ, Cho YK, Sohn CI, Jeon WK, Kim BI, Son BH, Yoo CH. Is gastric cancer a new indication for surveillance colonoscopy? J Clin Gastroenterol 2005; 31: 95-102
colonoscopy? Colon cancer is increased in gastric cancer patients. [Korean J Gastroenterol 2006; 47: 191-197]

14 Marshak RH, Lindner AE, Maklansky D. Gastric polyps. Mt Sinai J Med 1983; 50: 8-18

15 Seifert E, Gross U, Schulte F, Stolte M. [Are stomach polyps an indicator of colonic carcinoma and colorectal polyps an indicator of stomach carcinoma?] Dtsch Med Wochenschr 1987; 112: 1967-1972

16 Ming SC. The classification and significance of gastric polyps. Manogr Pathol 1977; 149-175

17 Fabry TL, Frankel A, Waye JD. Gastric polyps. J Clin Gastroenterol 1982; 4: 23-27

18 Seifert E, Schulte F, Stolte M. Adenoma and carcinoma of the duodenum and papilla of Vater: a clinicopathologic study. Am J Gastroenterol 1992; 87: 37-42

19 Koch H. Viebahn B. The significance of polypectomy in the stomach. Endoscopy 1983; 15 Suppl 1: 144-147

20 Shemesh E, Czerniak A, Pines A, Bat L. Is there an association between gastric polyps and colonic neoplasms? Digestion 1989; 42: 212-216

21 Atkin WS, Morson BC, Cuzick J. Long-term risk of colorectal cancer after excision of rectosigmoid adenomas. N Engl J Med 1992; 326: 658-662

22 Senore C, Segnan N, Bonelli L, Sciallero S, Pennazio M, Angioli D, Crosta C, Gasperoni S, Malitanta G. Predicting proximal advanced neoplasms at screening sigmoidoscopy. Dis Colon Rectum 2004; 47: 1331-1340

23 Cho KR, Vogelstein B. Genetic alterations in the adenoma--carcinoma sequence. Cancer 1992; 70: 1727-1731

24 Mulder JW, Offerhaus GJ, de Feyter EP, Floyd JJ, Kern SE, Vogelstein B, Hamilton SR. The relationship of quantitative nuclear morphology to molecular genetic alterations in the adenoma-carcinoma sequence of the large bowel. Am J Pathol 1992; 141: 797-804

25 Church JM, McCannon E, Hull-Boiner S, Sivak MV, Van Stolk R, Jelgamn DG, Fazio VW, Oakley JR, Lavery IC, Milsom JW. Gastrroduodenal polyps in patients with familial adenomatous polyposis. Dis Colon Rectum 1992; 35: 1170-1173

26 Goedde TA, Rodriguez-Bigas MA, Herrera L, Petrelli NJ. Gastrroduodenal polyps in familial adenomatous polyposis. Surg Oncol 1992; 1: 357-361

27 Laurent-Puig P, Olschwang S, Delattre O, Remvikos Y, Assellain B, Melot T, Validire P, Muleris M, Girodet J, Salmon RJ. Survival and acquired genetic alterations in colorectal cancer. Gastroenterology 1992; 102: 1136-1141

28 Uchino S, Noguchi M, Ochiai A, Saito T, Kobayashi M, Hirohashi S. p53 mutation in gastric cancer: a genetic model for carcinogenesis is common to gastric and colorectal cancer. Int J Cancer 1993; 54: 759-764

29 Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Tibboeldeau SN, Vogelstein B, Kinzler KW. APC mutations occur early during colorectal tumorigenesis. Nature 1992; 359: 235-237

30 Nakatsuru S, Yanagisawa A, Ichii S, Tahara E, Kato Y, Nakamura H, Horii A. Somatic mutation of the APC gene in gastric cancer: frequent mutations in very well differentiated adenocarcinoma and signet-ring cell carcinoma. Hum Mol Genet 1992; 1: 559-563

31 Shibata D, Reale MA, Lavin P, Silverman M, Fearon ER, Steele G Jr, Jessup JM, Loda M, Summerhayes IC. The DCC protein and prognosis in colorectal cancer. N Engl J Med 1996; 335: 1727-1732

32 Uchino S, Tsuda H, Noguchi M, Yokota J, Terada M, Saito T, Kobayashi M, Sugimura T, Hirohashi S. Frequent loss of heterozygosity at the DCC locus in gastric cancer. Cancer Res 1992; 52: 3099-3102

33 Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL. Genetic alterations during colorectal-tumor development. N Engl J Med 1988; 319: 525-532

34 Isogaki J, Shimamura K, Yin W, Arai T, Koda K, Kimura T, Kino I, Sugimura H. Microsatellite instability and K-ras mutations in gastric adenomas, with reference to associated gastric cancers. Cancer Detect Prev 1999; 23: 204-214

35 Jung MK, Jeon SW, Cho CM, Tak WY, Kweon YO, Kim SK, Choi YH, Bae H, Lee JY, Chung JM. Hyperglycaemia, hypercholesterolaemia and the risk for developing gastric dysplasia. Dig Liver Dis 2008; 40: 361-365

36 Darjee R, Gibb AP. Serological investigation into the association between Streptococcus bovis and colorectal cancer. J Clin Pathol 1993; 46: 1116-1119

37 Cappell MS, Forde KA. Spatial clustering of multiple hyperplastic, adenomatous, and malignant colonic polyps in individual patients. Dis Colon Rectum 1989; 32: 641-652

38 Winawer SJ, Zauber AG, Ho MN, O’Brien M J, Gottlieb LS, Sternberg SS, Waye JD, Schapiro M, Bond JH, Panish JF. Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup. N Engl J Med 1993; 329: 1977-1981

39 Liebe S, Wohlgemuth B. [Patient with stomach polyps—a risk group for colorectal tumors? Haemoccult studies on 106 patients] Z Gesamt Inn Med 1981; 36: 682-684

S-Editor Tian L L-Editor O’Neill M E-Editor Ma WH