Introduction

Gliomas are one of the categories that have undergone the most profound variations in the brain tumors classification by World Health Organization (WHO) in 2016. In the past, many mutations in many genes have been described as related to the development of glial neoplasms.\(^1\) However, the authors of the aforementioned classification essentially focused on the isocitrate dehydrogenase 1 (\(IDH-1\)) or \(IDH-2\) gene mutations, ordering the various entities, mainly for prognostic reasons. The practical benefits from a therapeutic point of view are imperceptible so far, since the prognosis, primarily for high-grade forms such as glioblastoma, remains very poor. Furthermore, diagnostic practices applied to individual entities can be tricky or too expensive and therefore not applicable throughout the world. In recent years, various strategies of immunotherapy have been proposed for central nervous system (CNS) tumors, but results seem to be quite disappointing so far.
The aim of this work is to briefly discuss the role of innate immunity as a possible cause of failure of immunotherapy facing brain tumors.

Methods and results

Pertinent studies published from January 2004 to September 2018 were selected by means of a MEDLINE search, accessed via PubMed database scanning. Search keys like “Innate immunity and brain tumors,” “immunotherapy and brain tumors,” and “Macrophages and brain tumors” gave an output of 2578 items. The articles we decided to cite in this article were chosen based on their overall significance, referring to a couple of criteria. First, we took into account the recent appearance namely for the ability to better represent the state of the art describing subjects involved in the studies, and second, we considered the exemplary value on the subjects dealt with, such as innate immunity or brain tumors.

The main results we could summarize from literature reviewing would be the messages that immunotherapy cannot be considered yet a safe tool for therapy against brain tumors and that innate immunity could exert a critical influence in the real efficacy of this kind of treatments.

Discussion

Current classification of diffuse gliomas is based on IDHs genes mutation and 1p/19q co-deletion. Generally, glioblastomas, oligodendrogliomas, and astrocytomas are treated combining radiotherapy and chemotherapy, making this approach more effective. Differentiated protocols are applied regarding IDH mutation status.3

The currently used immunotherapeutic tools against brain cancers are based on immune checkpoint inhibitors (ICIs) and vaccine-mediated immunization. ICIs consist of monoclonal antibodies that neutralize immunosuppressive signaling and enhance immune responses against tumor cells targeting costimulatory and inhibitory molecules, which can regulate the activation and effector functions of T lymphocytes (Figure 1). Under physiological conditions, those regulatory circuits are essential for self-tolerance, but in many cases, they may be coopted in malignancies. ICIs such as pembrolizumab and nivolumab are anti-programmed cell death protein-1 (PD-1); durvalumab, atezolizumab, and avelumab are anti-programmed cell death ligand-1 (PD-L1); and ipilimumab is anti-cytotoxic T lymphocyte–associated protein 4 (CTLA-4). All these preparations have shown a discrete efficacy in clinical trials.

However, in a Phase 3 study focusing on recurrence of glioblastoma, the treatment with nivolumab failed to increase overall survival compared to the treatment with bevacizumab that targets vascular endothelial growth factor A (VEGF-A). Furthermore, in patients with recurrent high-grade gliomas, salvage therapy with nivolumab or pembrolizumab did not significantly improve survival.4 Two proposals for explanations can be advanced: the former is that not always in glioblastomas, there is a sufficient number of PD-1 receptor expressing cells5, and second, there could be an active role of the neoplasm populating innate immunity cells (Figure 2(a) and (b)).

Ipilimumab and tremelimumab are CTLA-4 targeting monoclonal antibodies currently being
tested in glioblastoma immunotherapy. In a clinical trial, the concomitant use of ipilimumab and bevacizumab, in patients with malignant glioma, culminated in partial radiographic response for 31%. Tremelimumab, in combination with durvalumab (AstraZeneca), is under investigation as a combined treatment against a variety of solid tumors, including recurrent glioblastoma (NCT02794883). These unfavorable data for ICI-based immunotherapy could be explained by already known mechanisms of resistance. VEGFs can be produced by glioma tumor cells, and also by polymorphonuclear neutrophils, macrophages, and endothelium, during angiogenesis (Figure 2(c)), and it can result in apoptosis induction of CD8 T-effector cells that enter the tumor tissue.

Interestingly, the number of infiltrating neutrophils correlates with glioma grade and with acquired resistance to anti-VEGF therapy in glioblastoma multiforme (GBM). M2-polarized macrophages have a higher angiogenic potential compared to M1. Tumor-associated macrophages (TAMs) are, as a rule, alternatively polarized toward an M2 state. Both M1 and M2 macrophages can produce VEGF, and IL-10 secretion and hypoxia, present in high-grade gliomas microenvironment, enhance it. Even mast cells are powerful producers of IL-10 and angiogenic factors conditioning, similar to the macrophage phenotype.

FasL and PD-L1 are expressed both on glioma cells and TAMs surface T cell inhibition and apoptosis (Figure 2(a)). Both tumor-infiltrating macrophages and microglia are reported to express high levels of PD-L1 in GBMs. This implies that an important fraction of administered immunotherapeutic antibodies might target macrophage population rather than tumor cells (Figure 3(a)); microglia account for 50% of the FasL expressing cells in gliomas and may be considered a major cause for the induced apoptosis of lymphocytes (Figure 2(a)). In astrocytic neoplasms, the greater the tumor grade, the more increase in tumor mass and the percentage of TAMs increases in parallel, up to 70% of tumor mass, as it can be observed in glioblastoma. The state of macrophage polarization can move from M1 to M2 while the tumor grade is increasing. It is probable that failure of ICIs therapy in higher grade glial tumors could be due to a direct action of macrophages against the lymphocytic population, hired to kill neoplastic cells.

Immunization strategies with tumor-associated or tumor-specific antigens can increase the immune response facing tumor, and it has also been explored against gliomas. TAMs and microglia shall support tumor progression, uptaking the injected antigens or released by glioblastoma tumor cells (Figure 3(b)). Indeed, TAMs, by producing CCL2, are also able to recruit lymphocytes with immunosuppressive activity such as Treg cells, or they directly inhibit tumoricidal T cells by means of receptors and ligands usually targeted by ICIs (Figures 2(b)
and 3(b)). Some, among the mechanisms that would make ICIs treatments ineffective, could be responsible for vaccination failure just because, in any case, cytotoxic T lymphocytes are the terminal effectors.

In conclusion, the cells of innate immunity, such as macrophages, mast cells, and neutrophils, can somehow negatively interfere with the action of ICIs or immunized lymphocytes against tumor antigens. This is the reason why macrophage re-education might be an interesting strategy in order to support ICI or vaccine therapies. Also, it must be considered that future therapeutic intervention, targeting mast cell activity, hypothetically could provide another tool in this scenario.5,9,10

Generally speaking, a possible future direction for research in the therapy of brain tumors could be the molecular and immunological targeting of the innate immune system.

Acknowledgements
G.D., I.P., and N.M. contributed equally to the design and writing of this paper.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD
Ivan Presta https://orcid.org/0000-0003-2668-6381

References
1. Crespo I, Vital AL, Gonzalez-Tablas M, et al. (2015) Molecular and genomic alterations in glioblastoma multiforme. The American Journal of Pathology 185(7): 1820–1833.
2. Donato G, Iofrida G, Lavano A, et al. (2008) Analysis of UbcH10 expression represents a useful tool for the diagnosis and therapy of astrocytic tumors. Clinical Neuropathology 27(4): 219–223.
3. Wirsching HG, Weiss T, Roth P, et al. (2018) Basic principles of diagnosis and treatment of gliomas. Nervenarzt 89(6): 692–698.
4. Kurz SC, Cabrera LP, Hastie D, et al. (2018) PD-1 inhibition has only limited clinical benefit in patients with recurrent high-grade glioma. Neurology 91(14): e1355–e1359.
5. Wilcox JA, Ramakrishna R and Magge R (2018) Immunotherapy in glioblastoma. World Neurosurgery 116: 518–528.
6. Syn NL, Teng MWL, Mok TSK, et al. (2017) De-novo and acquired resistance to immune checkpoint targeting. The Lancet Oncology 18(12): e731–e741.
7. Guadagno E, Presta I, Maisano D, et al. (2018) Role of macrophages in brain tumor growth and progression. *International Journal of Molecular Sciences* 19(4): E1005.

8. Wu WK, Llewellyn OP, Bates DO, et al. (2010) IL-10 regulation of macrophage VEGF production is dependent on macrophage polarisation and hypoxia. *Immunobiology* 215(9–10): 796–803.

9. Donato G, Conforti F, Camastra C, et al. (2014) The role of mast cell tryptases in cardiac myxoma: Histogenesis and development of a challenging tumor. *Oncology Letters* 8(1): 379–383.

10. Conti P, Caraffa Al, Kritas SK, et al. (2017) Mast cell, pro-inflammatory and anti-inflammatory: Jekyll and Hyde, the story continues. *Journal of Biological Regulators & Homeostatic Agents* 31(2): 263–267.