SHARP ESTIMATES FOR THE ZEROS OF THE DERIVATIVE OF OSCILLATING POLYNOMIALS WITH LAGUERRE WEIGHT

LOZKO MILEV AND NIKOLA NAIDENOV

Abstract. Denote by $V_n(\lambda)$ the set of all weighted polynomials of the form $f(x) = e^{-\lambda x} p(x)$ ($\lambda > 0$), where p is an algebraic polynomial of degree n which has n simple real zeros. Given $f \in V_n(\lambda)$, let $x_1 < \cdots < x_n$ and $t_1 < \cdots < t_n$ be the zeros of f and f', correspondingly. Set $h_k := x_{k+1} - x_k$, $k = 1, \ldots, n-1$. We prove sharp estimates of the forms

$$x_k + c_1 h_k \leq t_k \leq x_{k+1} - d_k h_k, \quad k = 1, \ldots, n-1,$$

and

$$x_n + c_n h_{n-1} \leq t_n \leq x_n + d_n h_{n-1},$$

with explicit expressions for the coefficients, depending on λ. Known estimates of the same type for algebraic polynomials can be obtained by letting $\lambda \to 0$.

Mathematics subject classification (2010): 26C10, 26D07.

Keywords and phrases: Weighted oscillating polynomials, Markov interlacing property, zeros of polynomials.

REFERENCES

[1] B. BOJANOV, Polynomial inequalities, in “Open Problems in Approximation Theory” (B. Bojanov, Ed.), pp. 25–42, SCT Publishing, Singapore, 1994.

[2] B. BOJANOV, Markov interlacing property for perfect splines, J. Approx. Theory 100 (1999), 183–201.

[3] B. BOJANOV, Markov-type inequalities for polynomials and splines, in “Approximation Theory X: Abstract and Classical Analysis” (C. K. Chui, L. L. Schumaker and J. Stöckler, Eds.), pp. 31–90, Vanderbilt University Press, Nashville, TN, 2002.

[4] B. BOJANOV AND N. NAIDENOV, Exact Markov-type inequalities for oscillating perfect splines, Constr. Approx. 18 (2002), 37–59.

[5] B. D. BOJANOV AND Q. I. RAHMAN, On certain extremal problems for polynomials, J. Math. Anal. Appl. 189 (1995), 781–800.

[6] M. MARDEN, Geometry of Polynomials, American Mathematical Society, Providence, Rhode Island, 1966.

[7] L. MILEV, Weighted polynomial inequalities on infinite intervals, East J. Approx. 5 (1999), 449–465.

[8] L. MILEV AND N. NAIDENOV, Markov’s inequalities in integral norm for oscillating weighted polynomials, in “Approximation Theory: A Volume Dedicated to Borislav Bojanov” (D. K. Dimitrov, G. Nikolov and R. Uluçhev, Eds.), pp. 176–185, Marin Drinov Academic Publishing House, Sofia, 2004.

[9] L. MILEV, N. NAIDENOV, Markov interlacing property for exponential polynomials, J. Math. Anal. Appl. 367 (2010), 669–676.

[10] L. MILEV AND N. NAIDENOV, Markov type inequalities for oscillating exponential polynomials, in “Constructive Theory of Functions, Sozopol 2010: In memory of Borislav Bojanov” (G. Nikolov and R. Uluçhev, Eds.), pp. 201–212, Prof. Marin Drinov Academic Publishing House, Sofia, 2012.

[11] Q. I. RAHMAN AND G. SCHMEISSER, Analytic Theory of Polynomials, Clarendon Press, Oxford, 2002.

[12] T. J. RIVLIN, The Chebyshev Polynomials, John Wiley & Sons, Inc., New York, 1974.