Yeast Inhibitive Assay for Anionic Heavy Metals: A review

Farah Najieha Mohd Sadli1, Masyitah Husna Ammer1, Mohd Yunus Shukor1*

1Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

*Corresponding author: Mohd Yunus Shukor, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
Email: mohdyunus@upm.edu.my

ABSTRACT
One of the most common types of pollution that has a negative impact on the biotic community in aquatic habitats is heavy metal poisoning of the water. Both essential and non-essential heavy metals can be toxic to living things if their concentrations are too high for their bioavailability.

INTRODUCTION
As Malaysia's civilisation progresses, the level of heavy metal pollution in the environment continues to rise due to fast industrialisation, urbanisation, agricultural advancement, and other modern-era activities [1]. Heavy metal poisoning of water is one of the most common types of pollution that has a negative impact on the biotic community in aquatic habitats. Heavy metals, both essential and non-essential, have the potential to be hazardous to living organisms if their concentration exceeds a particular bio-available threshold. Water quality is one of the most critical environmental challenges associated with sustainable development, particularly in terms of ensuring national drinking water safety [2–4]. Adilah et al. [5] concluded that nearby mining activity is the main source of pollution in the Jemberau River and Chini River, both of which are classified as Class III (water supply requires significant treatment) because the heavy metal concentration in the water samples is marginally greater than the National Water Quality Standard permissible range. Nevertheless, another study found that anthropogenic activities such as livestock rearing, and oil palm planting are major contributors to low-level heavy metal contamination in the Linggi River [6]. According to the Environmental Quality Report (2013), the percentage of conformity for chromium was just 62 percent, while arsenic was 54 percent for municipal water supply [7].
similar to that of phosphate [19–22]. Arsenic's industrial applications include lead-acid batteries for automobiles, semiconductors, and light-emitting diodes [23].

Possible inhibition of oxidative phosphorylation by arsenate. Due to its importance in human and metazoan energy metabolism, this is a cause for worry [19–22]. Many enzymes, particularly those involved in respiration, contain reactive sulfur atoms, and arsenite, the most poisonous and soluble form of arsenic, can interact with these atoms [24,25]. In addition, it is well-known that the toxicity of soluble inorganic arsenic is typically higher than that of the organic form [19–22].

Arsine, in contrast to arsenate and arsenite, is commonly found in the environment at low concentrations but in the form of very hazardous gases such as (CH₃)₃As and H₃As [19–22]. However, arsenic concentrations in seawater can reach 2.6 µg/L while those in freshwater are typically around 0.4 µg/L. Arsenic levels in geothermal water in Japan varied from 1.8 to 6.4 mg/L [26], whereas in New Zealand they reached as high as 8.5 mg/L due to the country's strong thermal activity [27]. Drinking water wells in Jessore, Bangladesh, were analyzed and found to contain arsenic at concentrations as high as 225 mg/L, which is the main health concern in Bangladesh [16]. Suspended particulate matter in Malaysia has been shown to contain heavy metals including arsenic and lead, and the primary sources of pollution have been determined to be the use of automobiles and the combustion of biomass.

Heavy metals were found in both surface and groundwater and built up along the shore, especially in proximity to urban areas. The highest level of arsenic was reported near Port Klang with levels far above the maximum permissible limit for sediment [28]. Natural heavy metal deposits, particularly in abandoned tin mine ponds and gold mining regions, were also a cause for concern. Multiple freshwater and marine species tested positive for the heavy metals, indicating that persistent exposure to arsenic and mercury may pose a concern to some populations and their biomonitoring is important [29].

Chromium—chemistry, uses and pollution

Sodium and potassium dichromate, which are employed in the chrome industry for the manufacturing of antiseptics and the manufacture of pigments and colours, are good sources of Cr (VI). In solution, heavy metals can exist as cations with positive charges or anions with negative charges. Some metal ions have several oxidation states, which influences their toxicity. Several anionic metal ions, including chromate, molybdate, and arsenate, are hazardous. In nature, chromium is found in the third oxidation state as a cation (Cr³⁺) [Cr (III)] and the sixth, Cr (VI), as anions [30].

Chromium (III) is a mineral that exists naturally. Chromium is a metal that can be found in a variety of different states in nature, including as a solid, liquid, or gas, in places like rocks (ores), animals, plants, and soil. Some sources place chromium's abundance in the earth's crust as high as the sixth most abundant transition metal [31–35]. Although chromium compounds are not likely to enter groundwater due to their strong binding to the soil, they are quite persistent in aquatic sediments. Some of its soluble forms are employed in wood treatments. It is used in the production of textiles, electropolishing, leather tanning, metal finishing, chromate preparation, metal protective coatings (electropolishing), magnetic tapes, paints, cement, paper, rubber, and composition floor covering, among many other applications [36]. Thus, the discharge of industrial effluent into the environment is a possible source of chromium to drinking water contamination. Chromium (VI) compounds are soluble in water, forming HCrO₄⁻ and CrO₄²⁻ ions at pH 1–6, and Cr₂O₇²⁻ ions at pH > 6. The effect of chromium compounds on living things is determined by the chromium's oxidation state, solubility, and mode of entry into the body [37]. In contrast to chromium (III), which is both important to human health and less harmful than chromium (VI) compounds, which are recognized carcinogens [38].

Cr (VI) is highly toxic and can be found in many types of industrial fluids; exposure to it can result in severe diarrhoea, vomiting, lung congestion, and liver and kidney damage. Furthermore, breathing at high amounts can lead to nasal irritation, nose ulcers, a runny nose, and breathing issues like asthma, coughing, shortness of breath, or wheezing. The EPA sets the safe level of lead in water at 0.1 parts per billion. Meanwhile, bottled water cannot have more than 1 mg/l (1 ppm) of lead, as stated by the FDA. Heavy industrial locations on the western coast of Malaysia tend to have higher than average chromium levels [28].

Molybdenum—chemistry, uses and pollution

Mo is an essential trace element for all living things, especially nitrogen-fixing plant enzymes. At low concentrations, it is essential, but at higher concentrations, it becomes hazardous, thus it's important to find ways to get rid of it. While the maximum concentration of Mo in drinking water is 0.07 mg/L, the maximum concentration of Mo in water consumed by cattle is 0.5 ppm (general guidelines) [39]. This is because molybdenum is very toxic to spermatogenesis in mammals in general and ruminants in particular, causing scurvy and death at concentrations as low as a few parts per million. Mo concentrations above 100 mg/L had a deleterious effect on mouse testes, as evidenced by alterations in the oxidative stress-related enzymes superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GPx) [40]. This is likely molybdenum's mechanism of toxicity. Molybdenum can exist in oxidation levels from -2 to +6, with +4 and +6 being the most stable.

Hexavalent molybdenum oxycyanide molybdate (+VI) is the most water-soluble molybdenum salt [41]. The predominating ionic species of Mo (+VI) reported to be present in solution at pH > 2, were MoO₄²⁻ (pH 2–7) and MoO₂⁻ (pH > 4) [42]. Dissolved molybdenum (VI) compounds are found in biological systems as the molybdate ion at physiological pH [MoO₄²⁻] and sodium molybdate dihydrate is the gold standard for toxicology tests [43]. Although molybdenum is rarely found in significant concentrations in the environment, discharges from industrial operations can create high concentrations of Mo, which could pose a risk for water or soil contamination if released into the environment [44].

Molybdenum is a highly unsafe heavy metal, and its contamination has been documented in places like Terengganu, Malaysia [45], Tokyo Bay, Tyrol in Austria and in the Black Sea, where molybdenum concentration achieves worrying concentrations [46]. Furthermore, sewage sludge contamination is a major source of molybdenum pollution on Earth, which poses serious health risks [46]. The extensive use of molybdenum in several industrial applications—including as an alloying agent, anti-freeze component of automotive engines, corrosion-resistant steel section, and molybdenum disulphide lubricant—is the primary cause of these pollution events. Spent oil lubricants, particularly those with a typical molybdenum sulphide-based oil lubricant's molybdenum content of 0.5% to 5%, are a major source of molybdenum pollution that...
often goes unnoticed. Oil lubricant molybdenum disulfide is oxidized to molybdenum trioxide (MoO₃), which then dissolves in water to generate the extremely soluble molybdate anions. A summary of the toxicity of anionic heavy metals on various test organisms is shown in Table 1 while the chemical structure of the anionic heavy metals used in this study is shown in Fig. 1.

![Chemical structure of sodium arsenate, potassium dichromate and sodium molybdate used in this study.](https://doi.org/10.54987/bstr.v10i1.686)

Fig. 1. Chemical structure of sodium arsenate, potassium dichromate and sodium molybdate used in this study.

Toxicity of anionic heavy metals

Table 1. The toxicity effects of anionic heavy metals on various test organisms.

Anionic heavy metals	Concentration	Subject	Duration of exposure	Observed disorders/Response	Ref
Molybdate MoO₄²⁻	50 mg/kg	Adult male rats	60 days	Induced testicular damage and decreased sperm count and sperm motility	[47]
	10 mM	Human embryonic kidney (HEK293) and hepatoma liver (HepG2) cells	24 hours	Triggered toxicity by interfering with signalling pathways dependent on reactive oxygen species and phosphorylation and, consequently, gene expression	[48]
Chromate CrO₄²⁻	20 mg/kg	Female albino 5 months rats	Caused abnormal levels of sex hormones; a significant increase in FSH and LH serum levels and a significant decrease in progesterone and oestradiol serum levels	[49]	
	30 mg/kg	Wistar albino male rats	28 days	Induced hepatotoxicity related to oxidative stress, inhibition of antioxidant enzymes, lipid peroxidation and structural liver tissue injury	[50]
	100 μM	Cerebellar granule neurons	48 hours	Dichromate ion acts as a neurotoxic agent that causes oxidative stress by enhanced reactive oxygen species (ROS) production	[51]
Arsenate AsO₄³⁻	5 mg/kg	Male Swiss 1 week albino mice	Neurotoxicity was induced by elevating oxidative stress markers such as lipid peroxidation, inducible nitric oxide synthase, and nitric oxide while simultaneously reducing antioxidant enzyme and non-enzymatic marker levels	[52]	
	10 mg/kg	Male mice	4 weeks	Reduced avoidance memory retention by causing deleterious effects on learning and memory functions	[53]

Rapid toxicity test

Baker’s yeast (Saccharomyces cerevisiae) as a simple and rapid toxicity assay for anionic heavy metals

Eukaryotes, such as yeast, and *Saccharomyces cerevisiae*, offer great potential for rapid toxicology assessment since they are easy to maintain and develop under controlled circumstances, avoiding variability issues that arise when employing more complex organisms [62,63]. Heavy metals have been researched in particular for their ability to inhibit yeast respiratory metabolism. Chromate, or the reduced form Cr (III), may operate at many places in the mitochondrial to restrict respiration and cause petite mutants by inhibiting mitochondrial protein synthesis in yeast. Unlike prokaryotic bioindicator organisms like *E. coli*, yeasts are eukaryotic, making them a better proxy for human biological exposure to these contaminants [54]. Even though the application of conventional methods for the detection of toxic compounds using instrumental tests such as Atomic Absorption Spectrometry (AAS), High-Performance Liquid Chromatography (HPLC), and Gas Chromatography (GC) provides high sensitivity and accuracy, they come with limitations like time-consuming, expensive, and require special training. Therefore, to cut the cost of instrumental analysis, low-cost biomonitoring systems using enzymes and microorganisms have been intensively researched. The use of biomonitoring systems as preliminary screening tools can be more effective in detecting toxics as only positive samples are sent for instrumental analysis [55].

At present, the utilization of bioindicators or bioassays that make use of microorganisms and components of cells such as enzymes can provide a rapid, low-cost, and simpler method for the detection of toxic pollutants [56]. Commonly used test methods for determining the toxicity of chemicals and effluents include bioassays, which rely on assessing the reaction of organisms exposed to pollutants, relative to a control. [44]. Due to their strong tolerance for sub-optimal circumstances in terms of temperature and pH, microorganisms offer a more practical approach to toxicity testing. Also, they have higher sensitivity due to their simple morphology and large surface area about their small size when compared to larger and more complex organisms that require a longer time to give results [57].

Various studies regarding heavy metals toxicity tests using bacteria have been done [58,59] and this includes the commercial Microtox™ assay (Table 2). Meanwhile, an enzyme such as acetylcholinesterase has been proven sensitive for toxicity testing of heavy metals [60]. It is also possible to rapidly screen environmental samples for hazardous metals with an electrochemical linked assay based on the enzymes urease and glutamate dehydrogenase [61].

Table 2. Comparison of toxicity values obtained for some anionic heavy metals using microorganisms and enzymes as rapid toxicity tests.

IC₅₀, EC₅₀ or LC₅₀ (mg/L)	Anionic heavy metals	Acetylcholinesterase	Tetrahymana	Daphnia	Microtox™
MoO₄²⁻	26,492 a	2847.5 b	367.8 d		
CrO₄²⁻	0.632 b	0.29 b	12.4 d		
AsO₄³⁻	1420 b	821 d			

Note: a [34], b [36], c [18], d [37].

Microorganisms and enzymes as rapid toxicity assay for anionic heavy metals

Heavy metals are hazardous to both human and environmental health. Because of their toxicity and potential for bioaccumulation, these chemicals should be subjected to compulsory surveillance. As a result, there is an urgent need to assess the toxicity of these compounds as well as the danger of...
responses to pollution [64]. Furthermore, 45 per cent of yeast proteins have at least a portion of their primary amino-acid sequence in common with a human protein. In addition [65] advocated using yeast as an alternate organism to investigate the acute toxicity of pharmaceuticals and environmental contaminants as a first screening approach. Among various yeast strains available, [66] was among the earlier studies that make use of commercially available dry Baker’s yeast as the test microorganism in developing a toxicity assay for heavy metals. Due to these demonstrations of the advantages of a yeast-based assay, various studies of heavy metals toxicity utilizing yeast have been done as shown in Table 3 but these are mostly for cationic heavy metals with the exception of chromate and arsenate where the sensitivity needs further enhancement before it can be used for biomonitoring works.

A fast preview of prospective toxicity levels can be obtained using yeast-based tests for early screening of xenobiotics and environmental samples where large levels of contamination are predicted, as was recently observed [67]. The commercially available GreenScreen bioassay, which consists of genetically modified yeast cells that become progressively luminous when exposed to high levels of genotoxic chemicals, is one example. This bioassay has been proposed as suitable for aquatic environmental toxicity monitoring as it can simultaneously measure general non-specific toxicity besides measuring genotoxicity [68].

Table 3. A summary of the application of yeast (Saccharomyces cerevisiae) as rapid toxicity assay.

Metal detected	Toxicity value (mg/L)	Yeast strain	System use	Detection	Reference
Potassium dichromate	EC50: 19.35	NCYC 2939	Fluorescent	Resazurin/ Alamar Blue	[69]
Arsenic trioxide	EC50: 187.2	Baker’s yeast	Conductometric	-	[64]
Pb2+	EC50: 558.1	-	-	-	-
Hg2+	EC50: 110.1	-	-	-	-
Cu2+	EC50: 5.6	Baker’s yeast	Colorimetric	2-(4-Iodophenyl) - 5-(4-nitrophenyl) tetrazolium chloride (INT)	[66]
Zn2+	EC50: 19.5	-	-	-	-
Ag+	EC50: 6.3	-	-	-	-
Cu	EC50: 78.8	Baker’s yeast	Colorimetric	INT	[70]
Cr	EC50: 12.3	-	-	-	-
Hg	EC50: 101	-	-	-	-
Zn	EC50: 162.8	-	-	-	-
Cd2+	EC50: 0.000185 *	Baker’s yeast	Colorimetric	Triphenyl tetrazolium chloride (TTC)	[71]
Cr6+	EC50: 2.5	Baker’s yeast	Turbidity	-	[72]
Cu2+	EC50: 2.1	-	-	-	-
Hg2+	EC50: 3	-	-	-	-

*expressed as %, compared to control (100%)

Advantages of MTT assay and its application

MTT assay is initially developed based on the ability of the bacterium *Rhizobium meliloti* to reduce a water-soluble tetrazolium dye, MTT (3-[4,5-Dimethylthiazol-2-yl] 2,5-diphenyl-tetrazolium bromide) that results in a color change from pale yellow to insoluble purple-blue formazan. As toxic compounds inhibit reduction of the dye, lower color intensity indicates less reduction of MTT-formazan and so higher inhibition from a toxic compound. This assay offers a simple, fast, and inexpensive method as it does not require special equipment or training to run, but its sensitivity compares favorably to Microtox™ and Polytox™ microbial assays [73]. A *Bacillus sp*-based MTT assay was also developed and tested to be sensitive toward toxic response [58]. Tetrazolium salts can be used to detect dehydrogenase activity or other enzyme systems where redox equivalents are produced. Therefore, MTT assay is beneficial for testing cell proliferation and cell viability and is also used for cytotoxicity tests [74]. Cell viability can be thought of as the percentage of total cells that are alive and able to grow, divide, and interact with their environment, or it can be thought of as the number of total cells divided by the number of total cells that have died [75].

Active mitochondria in living cells cleave the tetrazolium ring, resulting in the formation of formazan. Therefore, the number of living cells is directly correlated with the amount of formazan produced [76]. A cell’s ability to convert MTT into formazan is lost when it dies. MTT is a positively charged compound that can easily enter living eukaryotic cells, allowing us to use the resulting color change as a marker of only the surviving cells [77]. As demonstrated in, succinate dehydrogenase, a component of mitochondrial complex II, is responsible for the conversion of MTT to formazan (Fig. 2).

Optimization method for improving the sensitivity of toxicity assay

The use of approach one-factor-at-a-time (OFAT) is often used in optimization works of analytical chemistry by changing one significant parameter at one time [79]. The main drawback of this method is that it does not reveal the full effects of the parameter on the response by neglecting the interactive component of the factors involved [80]. Another notable disadvantage of this one-factor optimization is that higher amounts of experiments are required to conduct the research, which resulted in increased time and costs. Additional reagents and consumables are also needed [81]. Despite that, the OFAT optimization method is a useful and powerful technique for understanding microbial regulation of parameters such as carbon, nitrogen and phosphorus sources [82]. Statistical and machine learning techniques to improve sensitivity can include the response Surface Method (RSM) and Artificial Neural networks [83–88].

CONCLUSION

The toxicity of cationic heavy metals such as arsenic, molybdenum and chromium are not addressed as intensively as cationic heavy metals. The toxicity of cationic heavy metals is on par with cationic heavy metals. Rapid bioassay using microorganisms such as yeast can allow the marriage between...
bioassay and instrumental methods. This can allow for more routine and rapid screening of heavy metals from the environment. The yeast bioassay system for cationic heavy metals is only partially complete and further studies are needed to be done.

REFERENCES

1. Abdollahi H, Fekri M, Mahmoodabadi M. Effect of heavy metals pollution on pistachio trees. Int J Agric Biol. 2011;13(4):599–602.

2. Hamdy A, Mostafa MK, Nasr M. Techno-economic estimation of electroplating wastewater treatment using zero-valent iron nanoparticles: batch optimization, continuous feed, and scaling up studies. Environ Sci Pollut Res. 2019 Aug 1;26(24):25372–85.

3. Martin-González A, Díaz S, Borniquel S, Gallego A, Gutiérrez JC. Cytotoxicity and bioaccumulation of heavy metals by ciliated protozoa isolated from urban wastewater treatment plants. Res Microbiol. 2006;157(2):108–18.

4. ELTurk M, Abdullah R, Mohamad Zakaria R, Abu Bakar NK. Bioassay and instrumental methods. This can allow for more rapid screening of heavy metals from the environment. The yeast bioassay system for cationic heavy metals is only partially complete and further studies are needed to be done. Environ Sci Pollut Res. 2019 Aug 1;26(24):25372–85.

5. Elias M, Ibrahim S, Samudin K, Kantasamy N, Rahman S, Hashim A. Toxicity and bioaccumulation of heavy metals by ciliated protozoa isolated from urban wastewater treatment plants. Res Microbiol. 2006;157(2):108–18.

6. DOE. Malaysia Environmental Quality Report 2014. Department of Environment, Ministry of Natural Resources and Environment, Malaysia; 2015.

7. Oremland RS a, Stolz JF b. Arsenic, microbes and contaminated aquifers. Trends Microbiol. 2005;13(2):45–9.

8. Soda SO, Yamamura S, Zhou H, Ike M, Fujita M. Reduction of ferroferric oxide nanoparticles and arsenic to the ciliated protozoa isolated from urban wastewater treatment plants. Res Microbiol. 2006;157(2):108–18.

9. Sakai N, Yoneda M. Potential Health Risk of Heavy Metals in Malaysia. In: Yoneda M, Mokhtar M, editors. Environmental Risk Assessment Analysis for Asian-Oriented, Risk-Based Watershed Management: Japan and Malaysia [Internet]. Singapore: Springer; 2018 [cited 2022 Jul 21]. p. 19–32. Available from: https://doi.org/10.1007/978-981-10-8960-6.2

10. Lee JD. Concise Inorganic Chemistry. Van Reinhold Co., New York; 1977.

11. Daneshpour A, Bedia B, Fathi M, Keshtkar M. Effect of heavy metals on the growth and metal accumulation of Pseudomonas aeruginosa CCTCC AB 93066: chromium(VI) metal tolerance and chromium(VI) reducing ability of Scenedesmus quadricauda as model object. Chemosphere. 2015;120:23–30.

12. Burton ED, Johnston SG, Planer-Friedrich B. Coupling of arsenic kinetics of As (V) to As (III) by a dissimilatory arsenate-reducing bacterium, Bacillus sp. SF-1. Biotechnol Bioeng. 2006;93(4):812–5.

13. Liao VHC, Chu YJ, Su YC a, Hsiao SY, Wei CC, Liu CW, et al. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. J Contam Hydrol. 2011;123(1-2):20–9.

14. Yang HC, Fu HL, Lin YF, Rosen BP. Pathways of Arsenic Uptake and Efflux. Curr Top Membr. 2012;69:325–58.

15. Nickson R, McArthur J, Burgess W, Matin Ahmed K, Ravenscroft B. Remediation of inorganic arsenic in groundwater for safe water supply: A critical assessment of technological solutions. Environ Sci Technol. 2005;39(5):1291–8.

16. Nickson R, McArthur J, Burgess W, Matin Ahmed K, Ravenscroft B. Remediation of inorganic arsenic in groundwater for safe water supply: A critical assessment of technological solutions. Environ Sci Technol. 2005;39(5):1291–8.

17. Kubrak OI, Lushchak OV, Lushchak JV, Torous IM, Storey JM, et al. Chromium effects on free radical processes in goldfish tissues: Comparison of Cr(III) and Cr(VI) exposures on oxidative stress markers, glutathione status and antioxidant enzymes. Comp Biochem Physiol - C Toxicol Pharmacol. 2010;152(3):360–70.

18. Wang G, Yang Y, Zhang H, et al. Arsenic mobility to sulfur transformations during microbial sulfate reduction in estuary, Malaysia: Implication of risk assessment. Estuar Coast Shelf Sci. 2019 Oct 15;226:106266.

19. Ahmad Abdul Ghani NA, Nadia H. Water Quality Status and Heavy Metal Contents in Selected Rivers at Tasik Chini due to Increasing Land Use Activities. IOP Conf Ser Mater Sci Eng. 2020 Jan 3;712:012022.

20. Nickson R, McArthur J, Burgess W, Matin Ahmed K, Ravenscroft B. Remediation of inorganic arsenic in groundwater for safe water supply: A critical assessment of technological solutions. Environ Sci Technol. 2005;39(5):1291–8.

21. Wang G, Yang Y, Zhang H, et al. Arsenic mobility to sulfur transformations during microbial sulfate reduction in estuary, Malaysia: Implication of risk assessment. Estuar Coast Shelf Sci. 2019 Oct 15;226:106266.

22. Mondal NK, Biswas R. A study on arsenical dermatosis in rural community of West Bengal. Indian J Public Health. 2004;48(1):30–3.

23. Yunus K, Zaraiedah MA, John A. A review on the accumulation of heavy metals in coastal sediment of Peninsular Malaysia. Ecoscenodesmus quadricauda as model object. Chemosphere. 2015;120:23–30.
wastewater by chemically modified persimmon residue. Biosensorech Technol. 2011 Jul 1;102(13):6857–62.
43. Jay Murray F, Tyl RW, Sullivan FM, Twiary AK, Carey S. Developmental toxicity study of sodium molybdate dihydrate administered in the diet to Sprague Dawley rats. Reprod Toxicol. 2014 Nov;50:2015(6):F3B.
44. Wang CW, Liang C, Yeh HJ. Aquatic acute toxicity assessments of molybdenum (+VI) to Daphnia magna. Chemosphere. 2016 Mar 1;147:82–7.
45. Yakasai HM, Rahman MF, Yasid NA, Ahmad SA, Halmi MIE, Isa HWM, Mustafa M, Wan Johari WL, Syahir A, Shukor MY, Nor Diamantino TC, Guilhermino L, Almeida E, Soares AMVM.
46. Dashti A, Soodi M, Amani N. Cr (VI) induced oxidative stress and Kassim A, Halmi MIE, Gani SSA, Zaidan UH, Othman R, Mahmud.
47. Morais S, Garcia E Costa F, De M, Pereira L. Heavy Metals and Sachdeva S, Maret W. Comparative outcomes of exposing human Navya K, Phani Kumar G, Chandrasekhar Y, KRA. Evaluation of molybdenum (+VI) to Daphnia magna. Chemosphere. 2016 Mar 1;49:202–8.
48. Sachdeva S, Maret W. Comparative outcomes of exposing human Developmental toxicity study of sodium molybdate dihydrate 2011 Jul 1;102(13):6857–62.
49. Attar H, Afshar S. Design of Sensible Biosensor for Rapid Detection of Biocides in Potable Water. Asian J Biotechnol. 2010 Mar 15;2(2):120–6.
50. Knight AW, Keenan PO, Goddard NJ, Fielden PR, Walmsley RM. A yeast-based cytotoxicity and genotoxicity assay for environmental monitoring using novel portable instrumentation. J Environ Monit. 2004 Jan;6(1):71–9.
51. Isa HWM, Yousef M, Shan Johari WL, Syahir A, Shukor MY, Nor Azwady AA, et al. Development of a Bacterial-based Tetrazolium Dye (MTT) Assay for Monitoring of Heavy Metals. Arab J Agric Biol. 2014;16:1123–8.
52. Halmi MIE, Ahmad F, Hashim AK, Shamaan NA, Syed MA, Shukor MY. Effect of bacterial growth period on the sensitivity of the MTT assay for silver. J Environ Biol. 2014;35(2):353–5.
53. Diamantino TC, Guilhermino L, Almeida E, Soares AMVM. Toxicity of sodium molybdate and sodium dichromate to Daphnia magna Straus evaluated in acute, chronic, and acetylcholinesterase toxicity in cultured cerebellar granule neurons at different stages of development and protective effect of Rosmarinic acid. Environ Toxicol. 2016 Mar 1;31(3):269–77.
54. Gomes LH, Duarte KMR, Kamogawa MY, Ferrarezi JA, Andrino FG, Tavares ALCB, et al. YTOX: a rapid toxicity test based on the dehydrogenase activity of Saccharomyces cerevisiae for detection of contaminants in water samples. J Microbiol Methods. 2019 Jun 1;161:43–6.
55. Gong L, Yang G, Yang B, Gu J. Development of the yeast Saccharomyces cerevisiae as a biosensor for the toxicity detection of toxic substances. bioRxiv. 2020;1–18.
56. Botsford JL A simple, rapid, inexpensive assay for toxic chemicals using a bacterial indicator. Stud Environ Sci. 1997 Jan 1;66(C):429–43.
57. Hayen T, Divilansky A, Shipberg O, Nathan I. Appraisal of the MTT-based assay as a useful tool for predicting drug chemosensitivity in leukemia. Leuk Lymphoma. 2003 Nov;44(11):1957–62.
58. Rumlova L, Dolezelova J. A new biological test utilising the yeast Saccharomyces cerevisiae for the rapid detection of toxic substances in water. Environ Toxicol Pharmacol. 2012 May 1;33(3):459–64.
59. Sánchez NS, Köningsberg M. Using yeast to easily determine mitochondrial functionality with 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenyltetrazolium bromide (MTT) assay. Biochem Mol Biol Educ. 2006 May;34(3):209–12.
60. Risso TL, Moravec RA, Niles DL, Suemman HA, Worzella TJ, et al. Cell Viability Assays. Assay Guidance Manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004.
61. Ahmad F, Halmi MIE, Baskaran G, Johari WLW, Shukor MY, Syed MA. Inhibitive bacterial MTT assay for river monitoring of heavy metals. Bioremediation Sci Technol Res. 2013;1(1):1–7.
62. Saha SP, Mazumdar D. Optimization of process parameter for alpha-amylase produced by Bacillus cereus am3 using one factor at a time (OFAT) and central composite rotatable (CCRD) design based response surface methodology (RSM). Biocatal Agric Biotechnol. 2019 May 1;19:101168.
63. Akbari S, Mahmood SM, Tan IM, Adeyemi BJ. Evaluation of One Factor at A Time (OFAT) technique in viscosity modeling of polymer solution. J Eng Appl Sci. 2017 Dec 31;12(17):4313–9.
64. Asif NF, Halmi MIE, Anwar F, Hussain S, Ramzan S, Hafeez F, Arshad M, Imran M, et al. Characterization of Reactive Red-120 Decolorizing Bacterial
65. Dolezlao J, Rumlova L. A new biological test of water toxicity– yeast Saccharomyces cerevisiae conductometric test. Environ Toxicol Pharmacol. 2014 Nov 1;38(3):977–81.
66. Gutiérrez JC, Amaro F, Martín-González A. Heavy metal whole-cell biosensors using eukaryotic microorganisms: An updated 2014 review. Front Microbiol. 2015;6(FEB).
67. Bitton G, Koopman B, Wang HD. Baker’s yeast assay procedure for testing heavy metal toxicity. Bull Env Contam Toxicol U S. 1984 Jan 1;32(1):80–4.
68. Gil FN, Moreira-Santos M, Chelinho S, Pereira C, Feliciano JR, Leitão JH, et al. Suitability of a Saccharomyces cerevisiae-based assay to assess the toxicity of pyrimethanil sprayed soils via surface runoff: Comparison with standard aquatic and soil toxicity assays. Sci Total Environment. 2015 Feb 1;505:161–71.
69. Daniel M, Sharpe A, Driver J, Knight AW, Keenan PO, Walmsley MM, et al. Results of a technology demonstration project to compare rapid aquatic toxicity screening tests in the analysis of industrial effluents. J Environ Monit. 2004 Nov 8;6(11):855–65.
70. Fai PB, Grant A. A rapid resazurin bioassay for assessing the toxicity of fungicides. Chemosphere. 2009 Mar 1;74(9):1165–70.
71. Codina IC, Perez-Garcia A, Vicente AD. Detection of Heavy Metal Toxicity and Genotoxicity in Wastewaters by Microbial Assay. Water Sci Technol. 1994;30(10):145–51.
72. Gomes LH, Duarte KMR, Kamogawa MY, Ferrarezi JA, Andrino FG, Tavares ALCB, et al. YTOX: a rapid toxicity test based on the dehydrogenase activity of Saccharomyces cerevisiae for detection of contaminants in water samples. J Microbiol Methods. 2019 Jun 1;161:43–6.
73. Hayen T, Divilansky A, Shipberg O, Nathan I. Appraisal of the MTT-based assay as a useful tool for predicting drug chemosensitivity in leukemia. Leuk Lymphoma. 2003 Nov 44(11):1957–62.
74. Rumlova L, Dolezelova J. A new biological test utilising the yeast Saccharomyces cerevisiae for the rapid detection of toxic substances in water. Environ Toxicol Pharmacol. 2012 May 1;33(3):459–64.
75. Sánchez NS, Königsberg M. Using yeast to easily determine mitochondrial functionality with 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenyltetrazolium bromide (MTT) assay. Biochem Mol Biol Educ. 2006 May;34(3):209–12.
76. Risso TL, Moravec RA, Niles DL, Suemman HA, Worzella TJ, et al. Cell Viability Assays. Assay Guidance Manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004.
77. Ahmad F, Halmi MIE, Baskaran G, Johari WLW, Shukor MY, Syed MA. Inhibitive bacterial MTT assay for river monitoring of heavy metals. Bioremediation Sci Technol Res. 2013;1(1):1–7.
78. Saha SP, Mazumdar D. Optimization of process parameter for alpha-amylase produced by Bacillus cereus am3 using one factor at a time (OFAT) and central composite rotatable (CCRD) design based response surface methodology (RSM). Biocatal Agric Biotechnol. 2019 May 1;19:101168.
79. Akbari S, Mahmood SM, Tan IM, Adeyemi BJ. Evaluation of One Factor at A Time (OFAT) technique in viscosity modeling of polymer solution. J Eng Appl Sci. 2017 Dec 31;12(17):4313–9.
80. Anwar F, Hussain S, Ramzan S, Hafeez F, Arshad M, Imran M, et al. Characterization of Reactive Red-120 Decolorizing Bacterial
Strain Acinetobacter junii FA10 Capable of Simultaneous Removal of Azo Dyes and Hexavalent Chromium. Water Air Soil Pollut. 2014 Jul 2;225(8):2017.

85. Folorunsho AT, Abel UA, Promise EU. A Statistical Approach to Optimization of Congo Red Dye Removal (CRDR) Via Coconut Shell Activated Carbon (CSAC). Int J Comput Theor Chem. 2016 Dec 22;4(2):7.

86. Conde-Gutiérrez RA, Colorado D, Hernández-Bautista SL. Comparison of an artificial neural network and Gompertz model for predicting the dynamics of deaths from COVID-19 in México. Nonlinear Dyn. 2021;

87. Schio RR, Salau NPG, Mallmann ES, Dotto GL. Modeling of fixed-bed dye adsorption using response surface methodology and artificial neural network. Chem Eng Commun. 2020 Apr 15;0(0):1–12.

88. Chakraborty S, Chowdhury S, Saha PD. Artificial neural network (ANN) modeling of dynamic adsorption of crystal violet from aqueous solution using citric-acid-modified rice (Oryza sativa) straw as adsorbent. Clean Technol Environ Policy. 2013 Apr 1;15(2):255–64.