Mutually dependent degradation of Ama1p and Cdc20p terminates APC/C ubiquitin ligase activity at the completion of meiotic development in yeast

Grace S Tan1,2,4, Rebecca Lewandowski2, Michael J Mallory3, Randy Strich2 and Katrina F Cooper2*

Abstract

Background: The execution of meiotic nuclear divisions in S. cerevisiae is regulated by protein degradation mediated by the anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase. The correct timing of APC/C activity is essential for normal chromosome segregation. During meiosis, the APC/C is activated by the association of either Cdc20p or the meiosis-specific factor Ama1p. Both Ama1p and Cdc20p are targeted for degradation as cells exit meiosis II with Cdc20p being destroyed by APC/C^{Ama1}. In this study we investigated how Ama1p is down-regulated at the completion of meiosis.

Findings: Here we show that Ama1p is a substrate of APC/C^{Cdc20} but not APC/C^{Cdh1} in meiotic cells. Cdc20p binds Ama1p in vivo and APC/C^{Cdc20} ubiquitylates Ama1p in vitro. Ama1p ubiquitylation requires one of two degradation motifs, a D-box and a "KEN-box" like motif called GxEN. Finally, Ama1p degradation does not require its association with the APC/C via its conserved APC/C binding motifs (C-box and IR) and occurs simultaneously with APC/C^{Ama1}-mediated Cdc20p degradation.

Conclusions: Unlike the cyclical nature of mitotic cell division, meiosis is a linear pathway leading to the production of quiescent spores. This raises the question of how the APC/C is reset prior to spore germination. This and a previous study revealed that Cdc20p and Ama1p direct each others degradation via APC/C-dependent degradation. These findings suggest a model that the APC/C is inactivated by mutual degradation of the activators. In addition, these results support a model in which Ama1p and Cdc20p relocate to the substrate address within the APC/C cavity prior to degradation.

Keywords: Cdc20p, Ama1p, Anaphase Promoting Complex, Meiosis
(securin) and the S-phase cyclin Clb5 during both meiosis I (MI) and meiosis II (MII) [8,11]. Ama1p directs the ubiquitylation of the B-type cyclin Clb1p [10], Cdc20p [12] plus other unknown substrates [13] and co-ordinates exit from MII [12]. APC/C\(^{\text{Ama1}}\) also activates Smk1p, the meiotic MAP kinase required for spore wall morphogenesis [14] and is required for the early stages of spore wall assembly [11,13,15]. The third APC/C activator Cdh1p, is not required for normal meiosis [16].

It has been well documented that APC/C activator proteins recognize substrates through two conserved degrons called the “Destruction-box” (D-box, DB) and “KEN box” that bind the WD40 domain in the activator [17,18]. In addition, Doc1p (Apc10), a conserved component of the APC/C complex, also recognizes these degrons. These findings have lead to the model that substrates are recruited to the APC/C by binding to a bipartite substrate receptor composed of an activator protein and Doc1p [19] and reviewed in [20]). During meiosis, Ama1p recognizes the D-box as well as variant of the KEN box called GxEN [10,12] whereas Cdc20p recognizes the D-box and the KEN box [21,22]. However, in Xenopus egg extracts the APC/C recognizes destruction motifs directly, in both a Cdc20p and Cdh1p-independent manner [23]. Similarly, much is known about how the activator proteins bind to the APC/C [5]. Structural analysis of Cdh1p has shown that a domain called the C-box interacts with Apc2p [24]. Another domain termed the IR motif promotes the association of the activator with the TPR region of several APC/C subunits (Cdc16p, Cdc23p and Cdc27p) [25-28]. Doc1p (Apc10p), a subunit of the APC/C, also associates with the TPR subunits via its IR tail [29,30]. During meiosis, both the C-box and IR domains are required for Ama1p and Cdc20p function [12]. However, mutational analysis revealed that the C-box in Ama1p is significantly more important for meiotic progression than the IR motif [12]. Similarly, during mitotic cell division, the IR box of Cdc20p is not required for function but contributes to APC/C dependent turnover [3,6].

Although much is known about how the APC/C is activated during meiotic divisions (reviewed in [8]), considerably less is known about how this ligase is inactivated as cells complete meiotic program. This is an important question as APC/C inactivation at the end of meiosis may be critical to allow the spore to reenter the mitotic cell cycle. Our previous studies have shown that both Ama1p and Cdc20p are down regulated as cells exit from meiosis II [10,12]. Furthermore, Cdc20p degradation is mediated by APC/C\(^{\text{Ama1}}\) [12]. In this report, we present evidence that Ama1p down regulation occurs via ubiquitin-mediated degradation directed by APC/C\(^{\text{Cdc20}}\). Taken together, these results indicate that the cell has solved the problem of APC/C inactivation in a linear differentiation pathway by evolving a mutual degradation system for the activators.

Results

Cdc20p activates the APC/C to mediate Ama1p degradation

We have previously reported that Ama1p levels are reduced as cells complete the second meiotic division [10]. As APC/C activators have been reported to be down-regulated by APC/C mediated proteolysis during mitotic and meiotic cell divisions (reviewed in [7,8]), we first asked if the reduction in Ama1p levels was APC/C dependent. The meiotic levels of Ama1p-T7 [12] were monitored in a strain harboring a temperature sensitive allele of \(\text{CDC16 (cdc16-1)}\), an essential component of the APC/C [31] that is required for meiosis [10]. To inactivate Cdc16-1p, the cells were switched to the restrictive temperature (34.5°C) 4.5 h after meiotic entry as previously described [8,10,32]. As a control, Ama1p degradation was also examined in identically treated wild-type cells. Immunoblot analysis revealed that Ama1p-T7 levels remained elevated in the \(\text{cdc16-1}\) strain compared to wild type (Figure 1A, quantitated in Figure 1B). Similar results were obtained when these experiments were repeated in a \(\text{cdc20-1}\) strain (Figure 1A). Furthermore, these results are consistent with those obtained when Ama1p levels were monitored in a strain where Cdc20p was inactivated during meiosis by placing it under the control of \(\text{CLB2}\) promoter [33]. Taken together, these results indicate that APC/C\(^{\text{Cdc20}}\) is required for the down regulation of Ama1p-T7 in meiosis.

A caveat to this interpretation is that Ama1p-T7 stabilization in the \(\text{cdc20-1}\) mutant is an indirect effect of the metaphase I arrest associated with this mutation [32]. To address this issue, two approaches were taken. First, we examined Ama1p stability in a \(\text{cdc20-1}\) mutant shifted to the restrictive temperature following meiosis II (15 h timepoint). These results show that Ama1p remains stable in the \(\text{cdc20-1}\) strain at restrictive temperature (Figure 1C). To confirm that the \(\text{cdc20-1}\) cells had completed the meiotic divisions by this timepoint, the transcription profiles of meiosis-specific genes were monitored using Northern blot analysis. By 15 h in SPM, maximal transcriptional accumulation of \(\text{SPS4}\) was observed (Additional file 1) which is an indicator that the meiotic divisions are completing [34]. Similarly, \(\text{SPS100}\) mRNA induction, which correlates with spore wall formation [35], occurs 18 h after meiotic entry.

For the second approach, we analyzed the meiotic degradation of Clb5p, a known substrate of APC/C\(^{\text{Cdc20}}\) [11]. Clb5p-HA levels were followed by immunoblot analysis in wild type and \(\text{cdc20-1}\) cultures using the same temperature shift protocol as described in panel A. The
results show that, compared to wild-type cells, Clb5p was stabilized following Cdc20p-1 inactivation (Figure 1D). In contrast, Clb1p, a known substrate of APC/CAma1 [10], is destroyed in cdc20-1 cells using the same conditions (Figure 1D). The slower induction kinetics observed for both cyclins is due to the fact that expression of early-middle, middle gene mRNAs is significantly reduced as well as delayed in this strain background [32]. Taken together, these results support a model that APC/CCdc20 mediates the degradation of Ama1p as cells complete the meiosis and begin spore morphogenesis.

Cdh1p is not required to mediate the degradation of Ama1p during meiosis

To determine whether Cdh1p plays a role in Ama1p proteolysis during meiosis, Ama1p protein levels were monitored in cdh1Δ cells during meiosis. The results show that cdh1Δ cells both progress through meiosis (Additional file 2: Figure S2A, S2B and S2C) and degrade Ama1p with the same kinetics as wild type (Additional file 2: Figure S2D and see Tan et al. [12] for Northern analysis). Interestingly, dissection of the resulting cdh1Δ tetrads revealed that, different to previously published results [16], cdh1Δ spores exhibit a significant reduction in their ability to form colonies (Additional file 2: Figure S2E). These results indicate that Cdh1p does not control Ama1p stability but does play a role in promoting spore viability.

Ama1p contains functional degradation signals

Ama1p contains two motifs, the destruction box (Db) and GxEN, that are recognized by APC/CCdc20 (reviewed in [36]), see Figure 2A). To determine if these sequences are required for Ama1p-T7 degradation, wild-type cells expressing either Ama1pDb1Δ-T7 or Ama1pGxEN-T7 mutant proteins were induced to enter meiosis and their degradation profiles monitored by immunoblot analysis. These studies revealed no difference in decay kinetics for the single mutant derivatives compared to wild type (Figure 2B) indicating that individually the Db1 or GxEN motifs are not essential for Ama1p degradation. We have recently shown that the APC/CAma1 mediates Cdc20p degradation through more than one degron [12]. To determine if Cdc20p also recognizes multiple Ama1p degrons, wild-type cells expressing a double Db1 and
GxEN AMA1 derivative were examined as just described. The results (Figure 2B, quantified in Figure 2C) show that combining the GxEN and Db1 mutations protected Ama1p-T7 from degradation similar to that observed in cdc16-1 cells (compare to Figure 1A). These results indicate that either Db1 or GxEN is sufficient to target Ama1p for degradation. No difference in the rate of meiotic progression (Figure 2D) or spore viability (Figure 2E) was noted indicating that stabilizing Ama1p did not have an adverse effect on the process.

Ama1p is a substrate of APC/C_{Cdc20} in vitro
To further confirm that APC/C_{Cdc20} mediates the degradation of Ama1p, in vitro ubiquitylation assays were performed (see Methods for details). As Ama1p is an activator of the APC/C [10], the assays were performed with an in vitro transcription coupled translation produced 35-S labeled Ama1p derivative deleted for its two APC/C binding domains (C-box and IR motif). These motifs are required for Ama1p function. To ensure that the added Cdc20p is the only activator in the reaction, the APC/C core complex was purified from mitotically dividing cdc16Δ cells. Furthermore, Mnd2p (Apc15p) was not present in the extracts as it inhibits meiotic APC/C activity [33]. As predicted from the in vivo studies, Ama1p_{CBA/IRA} is ubiquitylated by APC/C_{Cdc20} in vitro (Figure 4A, lanes 1, 2 and 3 and see Additional file 3 for input), but also that Cdc20p is required for this event (Figure 3A – lane 12).

The in vivo stability assays just described (Figure 2) indicated that either Db1 or the GxEN motif is sufficient to induce Ama1p degradation. Consistent with this result, deletion of either of these motifs in the Ama1pCB/IR mutant still allowed ubiquitylation to occur (Figure 3A, lanes 4-6 for GxEN, 8 and 9 for Db1). However, Ama1p mutated for both Db1 and GxEN was still ubiquitylated in vitro by APC/C_{Cdc20} (Figure 3A, lanes 10 and 11). This result was unexpected as this mutant is not targeted for degradation in vivo (Figure 2B). These results led us to test if the second destruction box degron (Db2) on Ama1p can mediate Cdc20p-dependent in vitro ubiquitylation. This was indeed the case when Db2, in addition to Db1 and GxEN, rendered Ama1p resistant to APC/C_{Cdc20}-dependent ubiquitylation (Figure 3A, lane7). Taken together, these results reveal that Cdc20p can recognize degrons Db1, Db2 and GxEN using in vitro assays. However, Db2 is not recognized by Cdc20p as a degron in vivo during meiosis.

The APC/C core component Doc1p forms part of the bipartite degron receptor in yeast [19,25,30]. Therefore,
we addressed whether Doc1p is required for APC/C^{cd20Δ} mediated ubiquitylation of Ama1p. The ubiquitylation assays were repeated using Ama1p^{C-boxΔ/IRA} as the substrate and APC/C was prepared from cdh1Δ mnd2Δ doc1Δ cells. The results show a slight qualitative reduction in Ama1p^{C-boxΔ/IRA} ubiquitylation when the APC/C was prepared from cdh1Δ mnd2Δ doc1Δ extracts compared to those prepared from a cdh1Δ mnd2Δ strain (Figure 3B, compare lane 3 to 6). These results suggest that Doc1p is dispensable for Ama1p ubiquitylation in vitro.

Ama1p association with the APC/C through its C-box and IR motif is not required for its degradation

Significant structural analysis of the APC/C and its substrates has found two distinct locations within the cavity of the core APC/C complex that are occupied by the activator protein and the substrate. Our findings that Ama1p is both an activator and a substrate of the APC/C raised the question of its location within the APC/C cavity before it was destroyed. To address this question, we took advantage of the observation that the conserved cavity before it was destroyed. To address this question, co-immunoprecipitation performed assays were performed between Cdc27p-9myc and either Ama1p, Ama1p^{C-boxΔ/IRA}, Ama1p^{CBΔ-IRA} or Ama1p^{CBΔ/IRA-T7}. The results showed that Ama1p^{C-boxΔ/IRA} and Ama1p^{CBΔ/IRA-T7}, which complemented an ama1Δ allele with 11 and <0.5% sporulation efficiency, respectively [12], exhibited reduced Cdc27p-9myc binding (Figure 4B). Conversely, Ama1p^{CBΔ/IRA-T7}, which exhibited only slight reduction in activity [12], binds Cdc27p-9myc with similar affinity as wild-type Ama1p. These results were somewhat unexpected as deleting the IR and Cbox motifs in Cdh1p eliminates its ability to bind the APC/C [37]. In addition, these results suggest the presence of additional APC/C binding motif(s) in Ama1p. Consistent with this possibility, we found that a GST-Ama1p fusion construct containing the divergent amino third of Ama1p (codons 1-200) [12], can co-immunoprecipitate with Cdc27p-9myc (Figure 4C) whereas GST alone cannot (lanes 3 and 4). Again, we only observe a slight reduction in Cdc27p-9myc association when a GST-Ama1p^{1-200CBΔ} fusion construct (Figure 4C, lane 6). These results indicate that the amino-terminal region of Ama1p is sufficient for APC/C association and contains an uncharacterized APC/C binding motif(s).

Cdc20p and Ama1p are degraded with the same kinetics during meiosis

We have previously demonstrated that APC/C^{ama1Δ} directs the degradation of meiotic Cdc20p [12]. Our results here indicate that in a reciprocal fashion APC/C^{cd20Δ} also

Figure 3 Ama1p ubiquitylation by APC/C^{CD20Δ} A: in vitro ubiquitylation of Ama1p and mutant derivatives as indicated using the APC/C prepared from mnd2Δ cdh1Δ CDC16::TAP strain (RSY1381, see Methods for details). In vitro transcription coupled translation produced Cdc20p was added to all extracts except for lane 12. 35S-labeled Ama1p harboring the following mutations: lanes 1, 2 and 3 C-boxΔ/IRA, lanes 4, 5 and 6 C-boxΔ/IRA/GxEN, lane 7 C-boxΔ/IRA/GxEN/DB1/DB2, lanes 8 and 9 C-box/IRA/DB1 and lanes 10, 11 and 12 C-box/IRA/GxEN/DB1 was prepared by in vitro transcription coupled translation. B: Doc1p is not required for APC/C^{cd20Δ} mediated ubiquitylation of Ama1p. In vitro ubiquitylation assays on Ama1p^{CD20Δ} using APC/C purified from mnd2Δ cdh1Δ CDC16::TAP (RSY1381, lanes 1, 2 and 3) or mnd2Δ cdh1Δ doc1Δ CDC16::TAP (RSY1748 lanes 4, 5 and 6). Time after the addition of Cdc20p to the reactions (minutes at 37°C) is given.
mediates the degradation of Ama1p as cells exit meiosis II. If Ama1p and Cdc20p are required for each other’s degradation, one prediction of this model is that their degradation kinetics should be similar. To test this hypothesis, a strain was constructed harboring integrated alleles of CDC20-18myc and AMA1-3HA under the control of their own promoters. Our previous studies found that Ama1p-3HA is both functional and has the same degradation kinetics as Ama1p-T7 [10]. A meiotic timecourse was conducted and Cdc20p-18myc and Ama1p-3HA expression profiles were determined by immunoblot analysis. These studies revealed that the accumulation and subsequent degradation of both proteins were remarkably similar (Figure 4D). These results are consistent with the model that Ama1p and Cdc20p simultaneously mediate each other’s degradation, thus terminating APC/C activity as the cells complete meiosis and form quiescent spores.

Conclusions

The APC/C ubiquitin ligase is required for the meiotic nuclear divisions in yeast. Previous studies have found that the two APC/C activators in meiosis, Ama1p and Cdc20p, are down regulated as cells complete meiosis II. Cdc20p is targeted for degradation by APC/C^{Ama1} [12]. In this study, we demonstrate that the reverse is true in that APC/C^{Cdc20} is required for Ama1p degradation. Using a combination of stability assays and in vitro ubiquitylation experiments, we show that Cdc20p, but...
not Cdh1p, targets Ama1p through either one of two degrons, Db1 and GxEN. We also provide evidence to support a model in which degradation of Ama1p does not occur by auto-ubiquitylation as the non-functional Ama1p CRAS/IRA mutant is still degraded with wild-type kinetics in ama1A cells. Finally, we show that the degradation of Ama1p and Cdc20p at MII exit occurs with similar kinetics. Taken together, these results suggest a model in which the mutually dependent degradation of Ama1p and Cdc20p terminates APC/C ubiquitin ligase activity at the completion of meiotic development in yeast.

Understanding how the APC/C is regulated during both mitotic and meiotic divisions is important as unscheduled APC/C activity can lead to mis-segregated chromosomes and aneuploid gametes. Many studies have been devoted dissecting the precise mechanisms by which the APC/C is both activated and inactivated in mitotic cells (reviewed in [5]). These studies revealed that the complete inactivation of the APC/C late in G1 is driven by inhibition of Cdc20p and Cdh1p. This system not only resets the APC/C clock, which is critical for maintaining ploidy as it ensures that the pre-replication complex is assembled prior to S phase (reviewed in [36]). Cdh1p inactivation is achieved by phosphorylation (reviewed in [7]). However, Cdc20p regulation is more complex. Initially, it was shown that Cdc20p is inactivated by transcriptional oscillation and turnover by APC/C/Cdh1 (reviewed in [4]). However, recently it was shown that APC/C/Cdh1 only partially contributes to Cdc20p degradation during anaphase [38]. Instead, Cdc20p degradation is predominantly mediated by an auto-ubiquitylation event [6,39]. Ama1p degradation does not seem to take the same course as the non-functional CRA/IRA is still degraded in ama1A cells (Figure 4A).

Even less is known about how the APC/C is inactivated as cells exit meiosis II. This is an important question as APC/C inactivation is important for normal embryonic development in Drosophila [40]. Similarly, we find that the two APC/C activators are degraded late in meiotic development. However, we find no significant effect on meiosis II fidelity or overall spore viability when either Cdc20p or Ama1p degradation is inhibited ([12] and Figure 2). These observations suggest that either APC/C inactivation is not required for the normal execution of meiosis and spore formation or that this ubiquitin ligase is disabled by redundant systems. In support of the latter possibility, several mechanisms are known to control APC/C function including inhibitory phosphorylation [41-44], APC/C specific inhibitors [45-52], or removal of the activator from the APC/C complex [53]. The roles these mechanisms play as cells exit the meiotic program are not well understood. However, in Xenopus and S. pombe, inhibitors of meiotic Cdc20p have been identified [54,55].

Model for substrate recognition by APC/C activators
Extensive studies have been devoted to understanding the molecular mechanisms of APC/C activator binding and substrate recognition (reviewed in [5]). Currently, two non-mutually exclusive models have been proposed. In the bi-partite model (outlined in model A, Figure 5), the substrate binds to both the activator and to Doc1p in the inner cavity of the APC/C. This dual association increases the affinity of the substrate enzyme complex [19,24,25,30]. However, Doc1p it is not essential for substrate binding in yeast [56] and its contribution to meiosis is not well documented. In the second model, coined the allosteric model, binding of the activators to the APC/C induces a conformational change which leads to substrate recognition [57]. Currently, the bipartite model is favored but the two models can co-exist as the bi-partite model can still accommodate activator association promoting conformational changes.

That being said, how does Ama1p fit into these models when it becomes a substrate of the APC/C? Recently, work by Foe et al. [6] has shed some light on this question. This group demonstrated that the majority of the late mitotic turnover of Cdc20p occurs while Cdc20p is bound as an activator and is driven by auto-ubiquitylation (see model in Figure 5C, cis-model). Consistent with this model, Cdc20p IRA mutants show increased steady state levels and reduced auto-ubiquitylation [3,6]. In contrast, we present evidence that Ama1p degradation is independent of APC/C binding via the CB and/or IR motifs (see Figures 4 and 3A). As the CB and IR motifs associate with Cdc27p/Cdc23p and Apc2p, respectively [3], our data support a model (outlined in Figure 5B, trans-model) in which Ama1p dissociates from Cdc27/23 and Apc2 before it is recognized as a substrate by APC/C-Cdc20p. Thus, the residual association that we observed between Cdc27p and Ama1p CRAS/IRA (Figure 3B and C) could be due to Ama1p associating with the APC/C in the substrate location. This suggests a model in which C-box and IR motifs anchor Ama1p in the activator position but in their absence, Ama1p switches into the substrate position binding the APC/C via as yet uncharacterized motifs. The mechanism that triggers this disassociation remains unknown but recently it has been shown that phosphorylation of Cdc20p prevents its CB-dependent activation of the APC/C in Xenopus egg extracts [44]. Lastly a “cis-dimer” model (Figure 5D) where Ama1p remains in the activator position and is degraded when an APC/C-Cdc20p complex forms a dimer partner is also possible. This model is not favored as although yeast APC/C exist as dimers, recent work has shown that the monomers associate along the backbone of the “arc lamp”
thus positioning the substrate binding sites in opposite
directions [19,60].

Finally, the observation that Cdc20p and Ama1p both
regulate each other leads to the mechanistic question of
which protein is the last one to be degraded. Analysis of
both proteins under the control of their own promoters in
a single meiotic timecourse experiment showed that they
were down regulated at the same time. These results sug-
uggest that it may not be critical as to which activated APC/
C molecule is the last one. To conclude, these data
presented here allow us to propose a model of how APC/
C activators are recognized as substrates of the APC/C
during meiosis. It remains to be seen if this model is con-
served during gametogenesis in other systems.

Methods

Yeast strains and plasmids
The strains used in this study (Table 1) are isogenic to
RSY335 [61] and are derived from an SK1 background
[62]. The only exception to this is RSY1337 that is iso-
genic a W303a-related strain RSY10 [63]. The Cdc27-
9myc::LEU2 strains (KCY328 and RSY1337) were made
by inserting CDC27-9myc tagged allele (P. Hieter) into
RSY335 and RSY10 respectively. The mnd2Δ::KANMX
CDC16-TAP strain (KCY1381) was made as follows. First,
the TAP cassette was inserted into the
carboxyl terminus of
CDC16 by recombining PCR prod-
ucts from pFA6a-TAP-kanMX6 (D. Barford) to create
KCY456. Next, the
mnd2Δ::KAN haploid (KCY419)
was created in the opposite mating type using the gene
disruption [64]. These two haploids were then mated
and an mnd2Δ::KAN CDC16::TAP::MAMX haploid
(RSY1248) spore clone was identified that showed 2:2
distribution of the KANMX allele following tetrad ana-
lysis. CDH1 was deleted from RSY1248 using pWS176
(W. Seufert) to create RSY1381. Finally DOC1 was de-
leted from this strain using standard gene disruption
techniques [64] to create RSY1748. The temperature-
ama1::KANMX4

The strain RSY954 was made by back crossing H20c1a5 [10] into RSY750 AMA1-3HA CDC20-18MYC::URA3 ama1::KANMX4 RSY562 [10].

The created oligonucleotides are available on request. In brief, all the plasmids used in this study, respectively. Details of plasmid constructions are available on request. In brief, all the Ama1p expressing plasmids were derived from pKC427. The Galactose inducible GST expression constructs (pKC3113) has been previously described [12]. In brief, AMA1 was introduced into pEG[KT], which contains GST under the control of the galactose promoter (a gift from M. Solomon). Site directed mutagenesis was used to delete the C-box in this construct to make pKC3071. All mutations were introduced using the Quikchange Site-directed Mutagenesis (SDM) Kit (Stratagene) according to the manufacturer’s protocol. All introduced mutations were verified by DNA sequencing (MWG/Operon).

Meiotic and mitotic timecourse experiments
Growth and sporulation conditions were accomplished as previously described [63]. To permit cdc20-1 and cdc16-1 cultures to exit mitosis and enter the meiotic program, these cells were maintained at 23°C following transfer to sporulation medium for the amount of time indicated in the text before switching to the restrictive temperature (water bath). Quantitation of meiosis I and II was achieved by analyzing 4',6-diamidino-2-phenylindole (DAPI) stained cells as described [68]. A Nikon E800 fluorescence microscope was used for all experiments at a final magnification of 1000X. At least 200 cells were counted per timepoint. For the experiments using the galactose inducible GST expression constructs (Figure 4C), cells were grown to 1 × 10^7 cells/ml in 2% raffinose, 2% galactose medium as previously described [69].

Northern blot analysis, protein extract preparation, co-immunoprecipitation and Immunoblot analysis
Northern blot analysis was executed as previously described [32]. Protein extracts for co-immunoprecipitation and Western blot analyses (referred to as Immunoblot in text) were prepared as described [12]. Immunoblot analysis and co-immunoprecipitation experiments were conducted with 100 μg and 1 mg of soluble protein, respectively. Immunoblot signals were detected using goat anti-mouse secondary antibodies conjugated to alkaline phosphatase (Sigma) and the CDP-Star chemiluminescence kit (Tropix, Bedford, MA). Quantitation of Ama1p immunoblot signals with 100 μg protein, respectively. Immunoblot signals were detected using goat anti-mouse secondary antibodies conjugated to alkaline phosphatase (Sigma) and the CDP-Star chemiluminescence kit (Tropix, Bedford, MA).

Table 1 Yeast strains used in this study

Strain	Genotype	Source
RSY335	MATA::AMA1 cyh2 z his3 11	[63]
RSY56	amia1::KANMX4	[10]
RSY750	AMA1-3HA CDC20-18MYC::URA3	This study
RSY776	MATA::cdh1::LEU2	This study
RSY777	cdh1::LEU2	This study
RSY809	cdc20-1	[32]
RSY954	cdc16-1	This study
RSY1248	MATA::CDC16::TAP::mnd2::KANMX4	This study
RSY1337	MATA::ade2 ade6 can1-100 his3-11,15 leu2-3,12 trp1-1 ura3-1 CDC27-9myc::LEU2	This study
RSY1381	MATA::CDC16::TAP::KAN::CDC16::mnd2::KANMX4 cdh1::LEU2	This study
RSY1748	MATA::CDC16::TAP::CDC16::mnd2::KANMX4 cdh1::LEU2 doc1::TRP1	This study
KCY328	CDC27-9myc::LEU2	This study
KCY419	MATA::mnd2::KANMX4	This study
KCY456	MATA::CDC16::TAP::MND2::CDC16::TAP	This study

*All strains, except RSY1337 are isogenic to RSY335. All strains are diploids and all alleles are homozygous unless indicated.

sensitive cdc20-1 strain (RSY809) has been previously described [32]. The temperature-sensitive cdc16-1 strain RSY954 was made by back crossing H20c1a5 [10] into the RSY335 strain background eight times. The strain harboring integrated epitope-tagged alleles of both AMA1 and CDC20 (RSY750) was made by integrating plasmids containing functional AMA1-3HA [10] and CDC20-18myc (W. Zachariae), respectively. Tables 2 and 3 list the oligonucleotides and plasmids used in this study, respectively. Details of plasmid constructions are available on request. In brief, all the Ama1p expressing plasmids were derived from pKC3036 [12]. The Ama1p expressing plasmids for ubiquitylation assays were derived from pME67 (D. Morgan). The Cdc20p plasmid used for ubiquitylation assays was pME41 (D. Morgan). The CLB5-3HA plasmid (pKC40) was made by cloning an XhoI-ClaI fragment containing Clb5-3HA (C. Wittenberg) under the control of its own promotor and terminator into Ycplac222. The Clb1-9HA plasmid was made by first cloning a 1 fragment containing Clb5-3HA (from C. Wittenberg) into pRS315 and then inserting 9 repeats of the HA epitope just upstream of the stop codon to create pKC427. The galactose inducible GST-Ama11-200 fusion construct (pKC3113) has been previously described [12]. In brief, AMA1 was introduced into pEG[KT], which contains GST under the control of the galactose promoter (a gift from M. Solomon). Site directed mutagenesis was used to delete the C-box in this construct to make pKC3071. All mutations were introduced using the Quikchange Site-directed Mutagenesis (SDM) Kit (Stratagene) according to the manufacturer’s protocol. All introduced mutations were verified by DNA sequencing (MWG/Operon).

Table 2 Oligonucleotides used in this study with their accompanying mutation identified

Name Created	Gene target	Mutation	
Db1	AMA1	RXXL-AXX	ATTGTGGAATTTGCGTATCTGTCAATAGTATCAAAAGAATTTCCTATCCC
Db2	AMA1	RXXL-AXX	TCCCCCATAAAATCGTGAAGAGGCGAGTAAAGGCGAGATGAAAATTTTATAGGATTGAAA
GXEN	AMA1	GXEN-GXAN	AAATTTATTTGAGAGGCGAATTTGAGCCCTTTGAA
immunoblot analyses, the membranes were treated with the same probe at the same time and the resulting signals were developed to the same extent.

In vitro ubiquitylation assays

The in vitro ubiquitylation assays were performed as previously described [32,70]. In brief, the APC/C complex was purified from yeast extracts utilizing tandem affinity purification (TAP) tagged Cdc16p, a core component of this ubiquitin ligase. The ligase was incubated with E. coli produced ubiquitin conjugating enzyme (made from His6-Ubc4p (from M. Solomon) and in vitro transcription/translation produced Cdc20p. The Ama1p substrates were synthesized by in vitro transcription/translation and in vitro ubiquitylation reactions were conducted for the times used per reaction (see Additional file 3 for input). The reactions were stopped by addition of 2X sample buffer and separated by SDS PAGE. The gels were fixed, soaked in 10% trichloroacetic acid, washed in 70% ethanol and subjected to autoradiography.

Table 3 Plasmids used in this study

Mutation	Gene	Epitope tag	Plasmid name	Promoter	Type	References
WT	AMA1	1-T7	pKC3036	AMA1	2 µ	[12]
CB	AMA1	1-T7	pKC3045	AMA1	2 µ	[12]
IR	AMA1	1-T7	pKC3046	AMA1	2 µ	[12]
CB/IR	AMA1	1-T7	pKC3048	AMA1	2 µ	[12]
Db1	AMA1	1-T7	pKC3126	AMA1	2 µ	This study
GxEN	AMA1	1-T7	pKC3123	AMA1	2 µ	This study
Db1/GxEN	AMA1	1-T7	pKC3127	AMA1	2 µ	This study
3HA	AMA1	3HA	pKC2057	own	Int	[10]
18Myc	CDC20	18Myc	pCdc20-myc18	own	Int	[65]
Codons 1-200	AMA1	GST	pKC3113	GAL	CEN	This study
Codons 1-200	CB	GST	pKC3017	GAL	CEN	This study
9HA	Cbl1	3HA	pKC427	own	CEN	[32]
3HA	Cbl5	3HA	pKC440	own	This study	
deletion	Cdh1	No tag	pWS176	own	Int	[66]
Cbl5/IRΔ	AMA1	no tag	pKC3095	T7	-	This study
Cbl5/IRΔ/GXEN	AMA1	no tag	pKC3122	T7	-	This study
Cbl5/IRΔ/GXEN/Db1	AMA1	no tag	pKC3124	T7	-	This study
Cbl5/IRΔ/GXEN/Db2	AMA1	no tag	pKC3148	T7	-	This study
9Myc	Cdc27	9Myc	Cdc27-9Myc	own	int	P. Hieter
WT	CDC20	no Tag	pME41	T7	-	David Morgan
WT	UBC4	6HIS	6His-Ubc4	T7	-	Mark Solomon
GST	GST	-	pEGKT	GAL1 *	2 µ	[67]
1-200CB	GST-AMA1	none	pKC3113	GAL1*	2 µ	[12]
1-200CB	GST-AMA1	none	pKC3017	GAL1*	2 µ	This study

* CYC1 promoter driven by GAL1 UAS.

Additional files

Additional file 1: Analysis of cdc20-1 during meiosis. A: Northern blot analysis of cdc20-1 cells progressing through meiosis at 23°C showing the expression of early (IME2, early middle (NDD0), middle (SPS4) and late genes (SPS100). ENO1 represents the loading control. Additional file 2: Cdh1p is not required to degrade Ama1p during meiosis. A: Fluorescence and Nomarski (Nom.) images (1000X magnification) of DAPI stained wild type (RSY335) and cdh1Δ (RSY777) diploids 24 h after transfer to sporulation medium. B: Rate of appearance of bi- and tetranucleated cells in wild type and cdh1Δ cells after entry into the meiotic program. Percentage of cells in the culture executing at least one meiotic division, presented as a function of time following transfer to sporulation medium. MI, Meiosis I; MII meiosis II. C: % mono, bi and tetranucleated cells in the total population after 24 h in sporulation medium. D: cdh1Δ strain (RSY777) harboring Ama1p-T7 (pKC3036) was induced to enter meiosis and timepoints taken as indicated. Immunoblot analysis of immunoprecipitated protein extracts was conducted to detect Ama1p-T7. Immunoblot analysis of Tub1p was used as a loading control. E: Viability of wild type (RSY335) and cdh1Δ (RSY777) tetrad spores. Additional file 3: 35S labeled Ama1p input for ubiquitylation assays. 1 µl of 35S labeled in vitro transcription/translation Ama1p prepared from either pKC3095 (lane 1), pKC3122 (lane 2) pKC3148.
Abbreviation
APC/C: Anaphase promoting complex; Db1: Destruction box (degron); G6N: Destruction degron); CB: C-box (APC/C binding motif); IR: (APC/C binding motif); MI: Meiosis I; MII: Meiosis II; WT: Wild-type; SPM: Sporulation medium.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
GT performed the experiments outlined in Figure 3A, B and C, 2A and 2B. RL performed the experiments outlined in Figure 3. MM performed the experiments in Figure 1D and 4C. KFC and RS wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements
We thank D. Bradford, P. Hieter, D. Morgan, W. Seufert, M. Solomon, C.招商, B. RL performed the experiments outlined in Figure 3. MM performed the experiments in Figure 1D and 4C. KFC and RS wrote the manuscript. All authors read and approved the final manuscript.

Author details
1. Herskowitz I: Life style of the budding yeast Saccharomyces cerevisiae. Microbiol Rev 1988, 52:536–553.
2. Veronin A, Pierce M: Transcriptional regulation of meiosis in yeast. Curr Opin Cell Biol 2000, 12:334–339.
3. Thornton BR, Ng TM, Matyskiela ME, Carroll CW, Morgan DO, Toczyski DP: An architectural map of the anaphase-promoting complex. Genes Dev 2006, 20:449–463.
4. Yu H: Cdc20: a WD40 activator for a cell cycle degradation machine. Mol Cell 2007, 27:3–16.
5. Barford D: Structural insights into anaphase-promoting complex function and mechanism. Philos Trans R Soc Lond B Biol Sci 2011, 366:3605–3624.
6. Foe EF, Foster SA, Cheung SK, DeLuca SZ, Morgan DO, Toczyski DP: Ubiquitination of Cdc20 by the APC occurs through an intramolecular mechanism. Curr Biol 2011, 21:1870–1877.
7. Pesin JA, Orr-Weaver TL: Regulation of APC/C activators in mitosis and meiosis. Annu Rev Cell Dev Biol 2008, 24:475–499.
8. Cooper KF, Strich R: Meiotic control of the APC/C: similarities & differences from mitosis. Cell Div 2011, 6:16.
9. Chiu S, Delfini J, Eran M, Mulholland J, Botstein D, Brown PO, Herskowitz I: The transcriptional program of sporulation in budding yeast. Science 1998, 282:699–705.
10. Cooper KF, Egeland DE, Mallory MJ, Jarnik M, Strich R: Ama1p is a Meiosis-Specific Regulator of the Anaphase Promoting Complex/Cyclosome in yeast. Proc Natl Acad Sci USA 2000, 97:14548–14553.
11. Diamond AE, Park JS, Inoue I, Tachikawa H, Neiman AM: The anaphase promoting complex targeting subunit Ama1 links meiotic exit to cytokinesis during sporulation in Saccharomyces cerevisiae. Mol Biol Cell 2009, 20:134–145.
12. Tan GS, Magumo J, Cooper KF: Ama1p-activated anaphase-promoting complex regulates the destruction of Cdc20p during meiosis I. Mol Biol Cell 2011, 22:315–326.
13. Rabbitsch KP, Toth A, Galova M, Schleiffer A, Schaffner G, Aigner E, Rupp C, Penkner AM, Moreno-Borchart AC, Primig M, et al: A screen for genes required for meiosis and spore formation based on whole-genome expression. Curr Biol 2001, 11:1001–1009.
14. McDonald CM, Cooper KF, Winter E: The Ama1p-Directed Anaphase-Promoting Complex Regulates the Smk1 Mitogen-Activated Protein Kinase During Meiosis in Yeast. Genetics 2003, 173:401–411.
15. Coluccio A, Bogengruber E, Conrad MH, Dresser ME, Briz P, Neiman AM: Morphogenetic pathway of spore wall assembly in Saccharomyces cerevisiae. Eukaryot Cell 2004, 3:1464–1475.
16. Kamienicki RJ, Liu L, Dawson DS: FEAR but not MEN genes are required for exit from meiosis I. Cell Cycle 2005, 4:1093–1098.
17. Götter M, Murray AW, Kirschner MW: Cyclin is degraded by the ubiquitin pathway. Nature 1991, 349:132–138.
18. Pfleger CM, Lee E, Kirschner MW: Substrate recognition by the Cdc20 and Cdc11 components of the anaphase-promoting complex. Genes Dev 2001, 15:2396–2407.
19. Buschhorn BA, Petzold G, Galova M, Dubé P, Kraft C, Herzog F, Stark H, Peters JM: Substrate binding to the APC/C occurs between the coactator Cdc10 and the processivity factor Doc1. Nat Struct Mol Biol 2011, 18:16–13.
20. Barford D: Structure, function and mechanism of the anaphase promoting complex (APC/C). Q Rev Biophys 2011, 44:153–190.
21. King EM, van der Sar SJ, Hardwick KG: Mad3 KEN boxes mediate both Cdc20 and Mad3 turnover, and are critical for the spindle checkpoint. PLoS One 2007, 2:e9542.
22. Bobe M, Dickerhoff P, Krause C, Braun GH, Ingeri S: Synergistic inhibition of APC/C by glucose and activated Ras proteins can be mediated by each of the Tpk1-3 proteins in Saccharomyces cerevisiae. Microbiology 2003, 149:1205–1216.
23. Yamano H, Gannon J, Mahbubani H, Hunt T: Cell cycle-regulated recognition of the destruction box of cyclin B by the APC/C in Xenopus egg extracts. Mol Cell 2004, 13:151–170.
24. Da Fonseca PC, Kong BH, Zhang Z, Schreiber A, Williams MA, Morris EP, Barford D: Structures of APC(C/CDh1) with substrates identify CdH1 and ApC10 as the D-box co-receptor. Nature 2011, 470:274–278.
25. Passmore LA, McCormack EA, Au SW, Paul A, Willson KR, Harper JW, Barford D: Doc1 mediates the activity of the anaphase-promoting complex by contributing to substrate recognition. EMBO J 2005, 24:786–796.
26. Burton J, Tkacikides V, Solomon MJ: Assembly of an APC-Cdh1-substrate complex is stimulated by engagement of a destruction box. Mol Cell 2005, 18:533–542.
27. Kraft C, Vodermaier HC, Maurer-Stroh S, Eisenhaber F, Peters JM: The WD40 propeller domain of Cdh1 functions as a destruction box receptor for APC/C substrates. Mol Cell 2005, 18:543–553.
28. Iwasa D, Pines J: How APC/C-Cdc20 changes its substrate specificity in meiosis. Nat Cell Biol 2011, 13:223–233.
29. Wendt KS, Vodermaier HC, Jacob U, Geffers C, Gmachi M, Peters JM, Huber R, Södermann P: Crystal structure of the APC10/DOC1 subunit of the human anaphase-promoting complex. Nat Struct Mol Biol 2001, 8:784–788.
30. Carroll CW, Enquist-Newman M, Morgan DO: The APC subunit Doc1 promotes recognition of the substrate destruction box. Curr Biol 2005, 15:11–18.
31. Lamb JR, Michaud WA, Sikorski RS, Hieter PA: Cdc16p, Cdc23p and Cdc27p form a complex essential for mitosis. EMBO J 1994, 13:4321–4328.
32. Mallory MJ, Cooper KF, Strich R: Meiosis-specific destruction of the Umep6 repressor by the Cdc20-directed APC/C. Mol Cell 2007, 27:951–961.
33. Oelschlaegel T, Schwickart M, Matos J, Bogdanova A, Camasses A, Havlis J, Shevchenko A, Zachariae W: Destruction of the substrate repression by the Cdc20-directed APC/C. Mol Cell 2007, 28:533–542.
34. DeSchepper EB, Eliezir SL, Segall J: A 15-base-pair element activates the SPS4 gene midway through sporulation in Saccharomyces cerevisiae. Mol Cell Biol 1991, 15:3934–3944.
35. Law DT, Segall J: The SPS100 gene of Saccharomyces cerevisiae is activated late in the sporulation process and contributes to spore wall maturation. Mol Cell Biol 1988, 8:912–922.
36. Schwab M, Neutzer M, Mocker D, Seufert W: Yeast Hct1 recognizes the mitotic cyclin Clb2 and other substrates of the ubiquitin ligase APC. EMBO J 2001, 20:5165–5175.
38. Robbins JA, Cross FR: Regulated degradation of the APC coactivator Cdc20. Cell Div 2010, 5:23.

39. Foster SA, Morgan DO: The APC/C subunit Mdm2/Apc15 promotes Cdc20 autoubiquitination and spindle assembly checkpoint inactivation. Mol Cell 2012, 47:921–932.

40. Peis AJ, Oin-Weser TL: Developmental role and regulation of cortex, a meiosis-specific anaphase-promoting complex/cyclosome activator. PLoS Genet 2007, 3:e202.

41. Rudner AD, Murray AW: Phosphorylation by cdc28 activates the Cdc20-dependent anaphase of the anaphase-promoting complex. J Cell Biol 2000, 149:1377–1390.

42. Tang Z, Shu H, Oncel D, Chen S, Yu H: Phosphorylation of Cdc20 by Bub1 provides a catalytic mechanism for APC/C inhibition by the spindle checkpoint. Mol Cell 2004, 16:387–397.

43. Chung E, Chen RH: Phosphorylation of Cdc20 is required for its inhibition by the spindle checkpoint. Nat Cell Biol 2003, 5:748–753.

44. Reimann JD, Freed E, Hsu JY, Kramer ER, Peters JM, Jackson PK: Em1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex. Cell 2001, 105:645–655.

45. Martinez JS, Jeong DE, Choi E, Billings BM, Hall MC: Acn1 is a negative regulator of the CDH1-dependent anaphase-promoting/cyclosome in budding yeast. Mol Cell 2006, 26:9162–9176.

46. Choi E, Dial JM, Jeong DE, Hall MC: Unique D box and KEN box sequences limit ubiquitination of Acn1 and promote pseudosubstrate inhibition of the anaphase-promoting complex. J Biol Chem 2008, 283:23701–23710.

47. Ostapenko D, Burton JL, Wang R, Solomon MJ: Pseudosubstrate inhibition of the anaphase-promoting complex by Acn1: regulation by protein synthesis and Cdc28 phosphorylation. Mol Cell 2008, 28:653–664.

48. Enquist-Newman M, Sullivan M, Morgan DO: Modulation of the mitotic regulatory network by APC-dependent destruction of the Cdh1 inhibitor Acn1. Mol Cell 2008, 30:437–446.

49. Burton JL, Solomon MJ: Mad3p, a pseudosubstrate inhibitor of APC/cdc20 in the spindle assembly checkpoint. Genes Dev 2007, 21:655–667.

50. Sczaniecka M, Feoktistova A, May KM, Chen JS, Blyth J, Gould KL, Hardwick KG: The spindle checkpoint functions of Mad3 and Mad2 depend on a Mad3 KEN box-mediated interaction with Cdc20-anaphase-promoting complex (APC/C). J Biol Chem 2008, 283:23039–23047.

51. Lara-Gonzalez P, Scott MI, Diez M, Sen O, Taylor SS: Bub1R blocks substrate recruitment to the APC/C in a KEN-box-dependent manner. J Cell Sci 2011, 124:4332–4345.

52. Jaquenoud M, Van Drogen F, Peter M: Cell cycle-dependent nuclear export of Cdh1p may contribute to the inactivation of APC/C (Cdh1). EMBO J 2002, 21:6515–6526.

53. Schmidt A, Duncan PI, Rauh NR, Sauer G, Fry AM, Nigg EA, Mayer TU: Xenopus polo-like kinase Plx1 regulates Xer51p, a novel inhibitor of APC/C activity. Genes Dev 2005, 19:502–513.

54. Kimata Y, Kitamura K, Fenner N, Yamano H: The Polo-like kinase Cdc5p and the WD-repeat protein Cdc20p/Fizzy are regulators and substrates of the anaphase promoting complex in Saccharomyces cerevisiae. EMBO J 1998, 17:1336–1349.

55. Prinz S, Hwang ES, Visintin R, Amon A: The regulation of Cdc20 proteolysis reveals a role for APC components Cdc23 and Cdc27 during S phase and early mitosis. Curr Biol 1998, 8:750–760.

56. Passmore LA, McCormack EA, Au SWN, Paul A, Willison KR, Harper JW, Barford D: Doc1 mediates the activity of the anaphase promoting complex by contributing to substrate recognition. EMBO J 2003, 22:786–794.

57. Jacob M, Van Drogen F, Peter M: Cell cycle-dependent nuclear export of Cdh1p may contribute to the inactivation of APC/C (Cdh1). EMBO J 2002, 21:6515–6526.

58. Schmidt A, Duncan PI, Rauh NR, Sauer G, Fry AM, Nigg EA, Mayer TU: Xenopus polo-like kinase Plx1 regulates Xer51p, a novel inhibitor of APC/C activity. Genes Dev 2005, 19:502–513.

59. Kimata Y, Kitamura K, Fenner N, Yamano H: Msl1 controls the meiosis I to meiosis II transition by distinctly regulating the anaphase-promoting complex/cyclosome coactivators Fzr1/Mir1 and Slp1 in fission yeast. Mol Biol Cell 2011, 22:1486–1494.

60. Hwang LH, Murray AW: A novel yeast screen for mitotic arrest mutants identifies Doc1, a new gene involved in cyclin proteolysis. Mol Biol Cell 1997, 8:1877–1887.

61. Passmore LA, Barford D: Coactivator functions in a stoichiometric complex with anaphase-promoting complex/cyclosome to mediate substrate recognition. EMBO Rep 2005, 6:873–878.

62. Matyskiela ME, Morgan DO: Analysis of activator-binding sites on the APC/C supports a cooperative substrate-binding mechanism. Mol Cell 2009, 34:68–80.

63. Schreiber A, Stengel F, Zhang Z, Enchev RI, Kong EH, Morris EP, Robinson CV, Da Fonseca PC, Barford D: Structural basis for the subunit assembly of the anaphase-promoting complex. Nature 2011, 470:227–232.

64. Passmore LA, Booth CR, Venier-Ryan C, Lutskoe SJ, Fioretto C, Johnson LN, Chiu W, Barford D: Structural analysis of the anaphase-promoting complex reveals multiple active sites and insights into polyubiquitination. Mol Cell 2003, 20:855–866.

65. Cooper RF, Mallory MJ, Strich R: Oxidative stress-induced destruction of the yeast C-type cyclin Ume3p requires the Phosphatidylinositol-specific phospholipase C and the 26S proteasome. Mol Cell Biol 1999, 19:3338–3348.

66. Cooper RF, Mallory MJ, Guacci V, Lowe K, Strich R: Pds1p is required for meiotic recombination and prophase I progression in Saccharomyces cerevisiae. Genetics 2009, 181:565–79.

67. Cooper RF, Mallory MJ, Smith JS, Strich R: Stress and developmental regulation of the yeast C-type cyclin UME3 (SRR1/SSN8). EMBO J 1997, 16:4665–4675.

68. Longtine MS, McKenzie AR, Demarnini DJ, Shah NG, Wach A, Brachta A, Filippes P, Pringle JR: Additional modules for versatile and economical PCR-based gene deletion and modification. Saccharomyces cerevisiae 1998, Yeast 14:953–961.

69. Shiosayama M, Zachariai W, Ciosk R, Nasmyth K: The Polo-like kinase Cdc5p and the WD-repeat protein Cdc20p/Fizzy are regulators and substrates of the anaphase promoting complex in Saccharomyces cerevisiae. EMBO J 1998, 17:1336–1349.

70. Schwab M, Neutzer M, mocker D, Seufert W: Yeast Hct1 recognises the mitotic Cln2 and other substrates of the ubiquitin ligase APC. EMBO J 2001, 20:5165–5179.

71. Burton JL, Solomon MJ: D box and KEN box motifs in budding yeast His1p are required for APC-mediated degradation and direct binding to Cdc20p and Cdh1p. Genes Dev 2001, 15:2381–2395.

72. Cooper RF, Strich R: Saccharomyces cerevisiae C-type cyclin Ume3p/Srb11p is required for efficient induction and execution of meiotic development. Eukaryot Cell 2002, 1:666–74.

73. Prinz S, Hwang ES, Visintin R, Amon A: The regulation of Cdc20 proteolysis reveals a role for APC components Cdc23 and Cdc27 during S phase and early mitosis. Curr Biol 1998, 8:750–760.

74. Passmore LA, McCormack EA, Au SWN, Paul A, Willison KR, Harper JW, Barford D: Doc1 mediates the activity of the anaphase promoting complex by contributing to substrate recognition. EMBO J 2003, 22:786–794.

http://www.celldiv.com/content/8/1/9

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Doi:10.1186/1747-1028-9-8

Cite this article as: Tan et al.: Mutually dependent degradation of Ama1p and Cdc20p terminates APC/C ubiquitin ligase activity at the completion of meiotic development in yeast. Cell Division 2013 8:9.