In-vitro Anti-Inflammatory activity of Digera muricata Extracts

Balaji Subramaniyan R¹, Jaikumar S²*, Sekkizhar M³

¹Department of Dentistry, Sri Lakshmi Narayana institute of medical sciences, Ossudu kudapakkam, Pondicherry, India
²Department of Pharmacology, Sri Lakshmi Narayana institute of medical sciences, Puducherry - 605502, India
³Department of Pharmacology, Vinayaka missions medical college and hospital, Kalaikkal, Tamilnadu, India

ABSTRACT

Inflammation is a process that is generally termed for pain and redness, which includes swelling. But it is defined as a heterogeneous group of processes which result in the pain and increase in vascular circulation and denaturation of protein that results in tissue degeneration. There are many synthetic drugs available to treat and relieve the inflammation. They are potent and have many side effects too. So there is an increased search for alternative means of treatment option. Thereby there was a high focus on the medicinal plants and herbs. Digera muricata, which is used to treat many diseases like analgesic activity, antidiabetic activity and anticancer activity too, this plant has proven to possess the antioxidant potential also. So there is no enough work done to verify the inflammatory potential of the plant. This was the primary consideration for this research to select the plant to prove it has anti-inflammatory potential. Having in the account that the ethical problems in the usage of lab animals, the anti-inflammatory potential of the plant was evaluated in-vitro using enzyme inhibition assays. The in-vitro models of the inflammatory activity are used for testing the anti-inflammatory activity, and the results were not different from invivo models. The extracts showed a dose based rise in the action, and the plant process a better anti-inflammatory activity than the standard drugs.

INTRODUCTION

Inflammation is a process that is generally termed for pain and redness, which includes swelling. But it is defined as a heterogeneous group of processes which result in the pain and increase in vascular circulation and denaturation of protein that results in tissue degeneration. This inflammation may be due to micro-organisms, physiological stress, oxidative stress etc. and result in pain, swelling and redness. There may be seen as an inability to do the normal functioning of the body and its organs (Jain and Bari, 2010). When there is an inflammation in the body, tissue releases cytokines and Pgs and histamines which are called as pain mediators. This will increase blood flow to the site of the injury, which results in the production of chemotaxis. Therefore, tissue repair starts to work (Koster et al., 1959).
Table 1: Anti-inflammatory activity invitro of *Digera muricata*

Treatment	Protein Denaturation Assay	Proteinase inhibition Assay	Lipoygenase inhibiting Assay			
	Absorbance at 660nm	% Activity	Absorbance at 210nm	% Activity	Absorbance at 234nm	% Activity
Control	0.40±0.07	-	0.39±0.11	-	0.42±0.04	-
DME 100μg/ml	0.28±0.04**	33.12	0.32±0.07**	22.48	0.38±0.05**	10.23
DME 100μg/ml	0.22±0.03**	48.36	0.29±0.02**	28.01	0.34±0.07**	18.41
DME 100μg/ml	0.18±0.05**	58.74	0.26±0.09*	37.39	0.32±0.03**	27.65
DME 100μg/ml	0.15±0.03**	66.58	0.24±0.03**	43.54	0.23±0.08**	49.74
DME 100μg/ml	0.13±0.09**	72.91	0.20±0.05**	54.63	0.17±0.04**	62.86
Standard	0.14±0.02**	69.25	0.19±0.03**	56.82	0.08±0.06**	87.09

Table 2: Anti-inflammatory activity invitro of *Digera muricata*

Treatment	Heat induced hemolysis	Hypotonicity induced Hemolysis		
	Absorbance	% Activity	Absorbance	% Activity
Control	0.32±0.05	-	0.33±0.04	-
DME 100μg/ml	0.26±0.10**	22.67	0.24±0.03**	31.77
DME 100μg/ml	0.23±0.09**	31.24	0.18±0.11**	49.90
DME 100μg/ml	0.21±0.07**	37.51	0.16±0.06**	55.62
DME 100μg/ml	0.19±0.02*	44.73	0.13±0.09**	62.45
DME 100μg/ml	0.16±0.05*	52.06	0.08±0.04**	76.84
Standard	0.11±0.08**	72.92	0.17±0.02**	52.03

have many side effects too. So there is an increased search for alternative means of treatment option. Thereby there was a high focus on the medicinal plants and herbs. (Shiddamallayya *et al.*, 2010). They are serving humans as an alternative treatment option in many diseases like diabetes, hypertension, CV disorders etc. Many of those plants were used to treat inflammations also (Soudahmini *et al.*, 2005).

One of those plants is *Digera muricata*, which is used to treat many diseases like analgesic activity, anti-diabetic activity and anticancer activity too (Koster *et al.*, 1959). This plant had been proven to possess the antioxidant potential also. So there is no enough work done to verify the inflammatory potential of the plant. This was the primary consideration for this research to select the plant to prove it has anti-inflammatory potential. There were many folklore claims of the plant had used to treat many other diseases like diarrhoea, and it as has a cooling effect on the body. Having in the account that the ethical problems in the usage of lab animals, the anti-inflammatory potential of the plant was evaluated *in-vitro* using enzyme inhibition assays.

METHODS

Extraction
The aerial plant parts were collected in November and dried under shade and then ground into a fine powder with a blender. This powder is stored in room temperature for a day to use for further extraction. This powder was used for extraction using methanol using Soxhlet extractor, and the filtrate is
reduced to get the desired consistency of extract, which is like paste consistency using an evaporator and stored the extract in a desiccator. The plant extract was dissolved in distilled water, that the concentration of extracts was maintained at 100, 200, 300, 400 and 500 microgram/ml. This was used for further Assay.

Activity
The anti-inflammatory activity of the plant was assayed in-vitro using enzyme analysis as follows

Protein denaturation inhibition assay
In this method, the heat was used to denature the protein as per the method described by Mizushima and Kobayashi (1968). The UV absorption was measured at 660nm.

Antagonizing proteinase
This method was adopted to test the activity according to the method described by Oyedepo and Femurewa (1995). The UV absorption was measured at 210nm. The percentage inhibition and absorbance were noted according to the method.

Lipoxygenase inhibiting activity
In this method, the extracts were tested from anti-inflammatory activity in different concentrations as planned above. The process was followed as per the procedure by Shinde et al. (1999). Lipoxidase enzyme was used as a marker for the inflammatory mediator, and the activity was measured in UV at 234 nm. The percentage of inhibition and absorbance was noted and tabulated.

Membrane stabilization assay
In this method, RBC cells are used to study the stabilization of membrane of cells as there is a similarity of membranes of RBC and cytokines. In this method, a healthy human volunteer was selected who did not use any NSAID in near history for seven days, and his blood sample was withdrawn and centrifuged to separate RBC. The cells were collected and suspended in saline solution.

In this method, hemolysis was measured in two ways.

Haemolysis induced by heating.
The method was adopted to estimate the amount of anti-inflammatory activity by preventing the haemolysis of the RBC in-vitro, which is induced by heat according to the process detailed by Sakat et al. (2010). The standard drug used in this method is aspirin.

Haemolysis induced by hypotonicity.
In this method, the extracts were tested by different concentrations, and the haemolysis was induced using a hypotonic saline solution. The technique was adopted as given by Azeem et al. (2010). The percentage inhibition was measured and compared with the standard, Diclofenac sodium.

RESULTS AND DISCUSSION
The anti-inflammatory activity of the plant was investigated in-vitro using various models, and the results were tabulated in Table 1 & Table 2. In protein denaturation assay, the extracts showed better activity than the standard drug, aspirin with almost 3-4 percent better activity. During the inflammation process, the denaturation of protein occurs by the application of heat. It is the most notable causes of inflammation, and the extract showed an increase in activity in a dose based manner (Kim et al., 2004).

In the lipoxygenase method, the extracts at different doses showed a dose-dependent increase in the activity so at 500microgm extracts showed the highest activity, which is less than that of the standard. Lipoxygenase induces the oxidative free radicals and initiates the stress-based inflammation in the body. The extracts, when successfully inhibited the enzymes, means the antioxidant activity of the extract was an added advantage (Sokol et al., 2008). Proteinase is an enzyme responsible for the inflammation mediation at the lysosomal level. Neutrophils had rich content of the enzyme. Therefore the enzyme inhibition is said to lower the inflammation via the mechanism of the enzyme. The extracts a better activity compared to the standard drug Table 1. The antioxidant activity of the extract might have added advantage in the anti-inflammatory activity in this Assay.

As discussed earlier, membrane stabilization assay was used on RBC as there is a similarity between the lysosome membrane and the RBC. These lysosome breakdowns and releases corrosive enzymes that digest the tissue and cell, which leads to inflammation. The extracts were used to prevent the breakage of the membrane and to stabilize it. So RBC hemolysis was assayed in two methods. In the heat-induced method and hypotonicity method, there was a significant reduction in membrane breakage. The activity was similar and higher than the standard drugs, Aspirin and Diclofenac sodium Table 2 (Alhakmani et al., 2013).

CONCLUSION
The in-vitro models of the inflammatory activity are used for testing the anti-inflammatory action, and the results were not different from invivo models.
The extracts showed a dose based rise in the activity, and the plant possess a better anti-inflammatory activity than the standard drugs.

ACKNOWLEDGEMENT

The authors are thankful to all who have extended their constant support for the completion of the work.

Conflict of Interest

The authors declare that they have no conflict of interest for this study.

Funding Support

The authors declare that they have no funding support for this study.

REFERENCES

Alhakmani, F., Kumar, S., Khan, S. A. 2013. Estimation of total phenolic content, in–vitro antioxidant and anti–inflammatory activity of flowers of Moringa oleifera. *Asian Pacific Journal of Tropical Biomedicine*, 3(8):623–627.

Azeem, A. K., Dilip, C., Prasanth, S. S., Shahima, V. J. H., Sajeey, K., Naseera, C. 2010. Anti–inflammatory activity of the glandular extracts of Thunnus alalunga. *Asian Pacific Journal of Tropical Medicine*, 3(10):794–796.

Jain, P. S., Bari, S. B. 2010. Anti-inflammatory Activity of Abelmoschus manihot Extracts. *International Journal of Pharmacology*, 6(4):505–509.

Kim, H. P., Son, K. H., Chang, H. W., Kang, S. S. 2004. Anti-inflammatory plant flavonoids and cellular action mechanisms. *In Journal of Pharmacological Sciences*, 96(3):229–245.

Koster, R., Anderson, M., Beer, E. J. 1959. Acetic acid for analgesic screening. *Federation Proceedings*, 18:412–417.

Mizushima, Y., Kobayashi, M. 1968. Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins. *Journal of Pharmacy and Pharmacology*, 20(3):169–173.

Oyedepo, O. O., Femurewa, A. J. 1995. Anti-protease and membrane stabilizing activities of extracts of Fagra zanthoxiloides, Olax subscorpioides and Tetrapleura tetraptera. *International Journal of Pharmacognosy*, 33(1):65–69.

Sakat, S., Juvekar, A. R., Gambhire, M. N. 2010. In vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata Linn. *International Journal of Pharmacy and Pharmacological Sciences*, 2(1):146–155.