Randomized Efficacy Trial of Early Preconception Counseling for Diabetic Teens (READY-Girls)

Denise Charron-Prochownik, PhD,CPNP (1), Margaret Ferons-Hannan, PhD,CPNP (1), Susan Sereika, PhD (1), Dorothy Becker, MBBCh (2)

1. School of Nursing, Health Promotion/Development, University of Pittsburgh, Pittsburgh, PA
2. Children’s Hospital Pittsburgh, Endocrinology, Pittsburgh, PA

Running Title: Early preconception counseling for teens

Corresponding Author:
Denise Charron-Prochownik, PhD,CPNP
SON-Health Promotion/Development
440 Victoria Bldg
University of Pittsburgh
Pittsburgh, PA 15261
dcpro@pitt.edu

Received for publication 03 July 2007 and accepted in revised form 24 March 2008
ABSTRACT

Objective-To develop and assess the feasibility of an early preconception counseling program for adolescents called READY-Girls.

Research Design and Methods- Fifty-three adolescent females with T1D between 16-19.9yrs were randomized into: CD, book, or control/standard care, and given one comprehensive session. Outcomes were assessed at baseline, immediately-after, and at 3-months.

Results- Teens that received the CD and book significantly (p<.05) improved in knowledge, perceived benefits of PC and of using effective family planning, and perceived more support with reproductive health issues which were sustained over three months.

Conclusions- Clinical feasibility of the program was demonstrated. Both the CD and book appeared to be efficacious formats for short term. Future studies should examine repeated boosters of both CD and book. They are not to replace, but reinforce and supplement health professional education.
Early preconception counseling for teens

Risks of reproductive complications can be significantly reduced through preconception counseling (PC)(1-3). Despite recommendations by the American Diabetes Association (ADA) that all women of child-bearing potential receive PC(4), most diabetic women do not receive PC, and two-thirds continue to have unplanned pregnancies(5-8). In a previous study, we found that adolescent diabetic females reported unsafe sexual practices and were unaware of the risks of diabetes and pregnancy and of the availability of PC(9). This study developed a fundamental PC program (READY-Girl) specifically tailored for diabetic adolescents; explored clinical feasibility, short-term (3-month) program efficacy, and the most effective delivery format.

RESEARCH DESIGN AND METHODS

“Reproductive-health Education and Awareness of Diabetes in Youth for Girls” (READY-Girls)(10) is a self-instructional developmentally-appropriate, evidence-based CD-ROM and book(4-9,11). Content was validated through resource-identification, formal consensus of experts(12,13), and a focus group of diabetic teens for content/language/presentation(12). Embedded within the STAR (stop-think-act-reflect) decision-making framework(13,14) and the Expanded Health Belief Model (EHBM)(15-19,20,21), READY-Girls presents the effects of diabetes on reproductive-health/puberty/sexuality/pregnancy, the benefits of PC, and practices skills for decision-making/communication.

In a randomized-controlled, repeated-measures feasibility study, subjects were randomized into one of three protocols: CD (n=17), book (n=16), or control/standard care (n=20). Both intervention groups (CD or book) received one comprehensive session of the program prior to routine diabetes clinics.

Subjects were seen only at their visits. Process evaluation included timing, effort, ease-of-use and satisfaction. Outcome measures evaluated reproductive-health and PC knowledge, beliefs (EHBM dimensions: susceptibility, severity, benefits, barriers, self-efficacy, motivational cues, social support), intention and behaviors (of seeking PC and using effective family-planning); and metabolic control. Each dimension was a composite score (higher scores=greater levels of the construct). Outcomes were assessed at baseline, immediate-post intervention (post-test-1), and at 3-month follow-up (post-test-2) by paper-and-pencil self-administered questionnaires (Cronbach’s alpha=.65-.83) based on a standard validated interview-schedule(22-23). Data were analyzed using descriptive statistics, group comparative analyses and repeated measures mixed-modeling-methods(24). Post-hoc comparisons explored group-main-effects and group-by-time interactions.

Fifty-three out of a possible 60 females with T1D between 16-19.9yrs (mean=17.4yrs) from a diabetes clinic self-selected to participate. Their mean duration-of-illness was 9.9yrs, 64% were ≥ middle income, 4.4% African American, 32% were sexually active. Consent was obtained from teens >18yrs, or consent/assent from parents and teens < 18yrs.

RESULTS

Both CD and book took less than 1-hour to review (average time: CD=47.0±15min. versus book=34.3±8.4min.). Both were rated (94%-100%) as having helpful, easy-to-understand information.

Results for knowledge, beliefs (benefits, barriers), social support, intentions, and metabolic control (A1C) are illustrated in Figure 1. From baseline to immediately-post intervention (post-test-1), compared to controls, teens that received the program...
significantly improved in knowledge (CD: 42.7%, p < .001; book: 45.3%, p < .001; control: 12.6%, p = .38), and sustained effects at the 3-month follow-up (post-test-2) (CD: p = .96; book: p = .71). Controls increased at 3-months (19.0%, p = .004). A significant time-by-group interaction was found for knowledge [F(2, 40.1) = 3.77, p = .032].

There were significant group-by-time effects for beliefs (benefits, barriers) {benefits [F(2, 40.1) = 3.48, p = .040]; barriers [F(2, 40.4) = 4.82, p = .013]. From baseline to post-test-1, teens that received the program significantly improved in benefits [CD: 12.3% (p = .05); book: 12.7% (p = .04); control (p = .44)]. Effects were sustained at post-test-2 (CD: p = .19; book: p = .49), while controls significantly decreased (-6.2%, p = .03). For barriers, the only significant change from baseline to post-test-1 was controls (24.0%, p = .02). At 3-months, CD had significantly decreased (-20.5%, p = .04), book had significantly increased (21.8% p = .03), and controls had no significant change (p = .90). No significant group-by-time or group effects were observed for susceptibility, severity, or self-efficacy.

Social support had significant group effects [F(2, 39.4) = 3.37, p = .045]. Both intervention groups showed a significant increase from baseline to immediate post-test-1 (CD: 11.5%, p = .007; book: 15.6%, p < .001; control p = .98), with effects sustained at post-test-2.

Intention to seek PC and use effective family planning had a significant time effect [F(1, 37) = 5.75, p = .022] from baseline to post-test-1. Only book had a significant decrease from post-test-1 to post-test-2 (-13.0%, p = .02), while the CD and controls sustained their modest increases. Actual behaviors (seeking PC and using effective family planning) had no significant group-by-time effect.

A1C had no significant group differences from baseline to 3-months follow-up (p = .134). However, CD had an average decrease of -1%, compared to book’s average increase of 2%, and controls average increase of 8%.

CONCLUSIONS

Program evaluation(25) was completed over a 3-month follow-up. Clinical feasibility of the READY-Girl’s program was demonstrated, and both interventions (CD and book) appeared to be efficacious formats.

Compared to controls, teens that received the program improved in knowledge, perceived benefits of PC and of using effective family planning, and perceived more support with regards to reproductive health issues, preventing an unplanned pregnancy, and seeking PC. These findings are in accordance with the EHBM(20,21).

CD and control groups identified greater barriers. CD group had diminished barriers at 3-months, perhaps because the CD had an interactive individualized problem-solving exercise.

Intention to use effective family planning and to seek PC increased in all three groups. Actual behaviors had no significant group-by-time effect perhaps because of the short time frame of 3-months.

Although no significant group effect, the percent change in A1C from baseline to 3-month appears clinically meaningful; the CD group decreased by -1% (indicating improved control), while the control group had a percent change of 8%. Future studies should include: younger, larger, more diverse sample sizes; longer-term outcomes; beginning at puberty, the intervention should be targeted to teens and include their parents; and CD-ROM and book could be used sequentially and the information repeated for reinforcement. READY-Girls appears to be an efficacious early-intervention program for teens. READY-Girls is not to replace, but supplement health-professional education(12). Both CD-ROM and book(10) are designed to be easily
Early preconception counseling for teens integrated into clinical settings. Similar programs have been successful for other health behaviors (12, 26-28). Programs like READY-Girls could potentially set new standards of practice and be an integral part of diabetic adolescent education to empower teens in making informed decisions regarding their reproductive-health (12).

ACKNOWLEDGEMENTS
Financially supported by: American Diabetes Association Clinical Research Award (1999-2003); General Clinical Research Center (GCRC) Children’s Hospital of Pittsburgh, Grant M01 RR00084; and NIH NINR P30 NR03924 Center for Research in Chronic Disorders. We acknowledge: Center for Instructional Development and Distance Education at the University of Pittsburgh, dbaza inc. Production Company, Barbara Anderson, Millecent Ball, Janet Bell, Jean Betschart Roemer, Beth Cohen, Mary Ann Cwynar, Tracy Dean-McElhinny, Richard Engberg, Melanie Gold, Bill Herman, Scott Jacober, Nancy Janz, Kristin Kolence, Danielle Lockhart, Joan Mansfield, Margaret Marshall, Cindy McQuaide, DeEta Metz, Pamela Murray, Gail Podabinski, Jamie Reddinger, Sergey Sirotinin, Mark Soroka, Sandy Hughes Stewart, Linda Trail, Shiaw-Ling Wang, and Neil White for their efforts. Portions of this paper were presented at the 61st and 62nd Scientific Sessions of the ADA, 2001 and 2002.
REFERENCES

1. Cohen M: Pregnancy in women with diabetes. *Journal of Women’s Health* 1: 81-87, 1992
2. Greene M, Hare J, Cloherty J, Benacerraf B, Soeldner J: First trimester hemoglobin A1 and risk for major malformation and spontaneous abortion in diabetic pregnancy. *Diabetes Spectrum* 3: 161-167, 1989
3. Mills, J, Knopp, R, Simpson, J, Jovanovic-Peterson, L, Metzger, B, Holmes, L, et al: Lack of relation of increased malformation rates in infants of diabetic mothers to glycemic control during organogenesis. *New England Journal of Medicine* 318: 671-676, 1988
4. American Diabetes Association: Preconception care of women with diabetes: Position Statement. *Diabetes Care* 27(S1): S76-S78, 2004
5. Kjaer K, Hagen C, Sand E, Eshoj O: Contraception in women with IDDM. *Diabetes Care* 15:1585-1590, 1992
6. Kitzmiller JL, Gavin LA, Gin GD, Jovanovic-Peterson L, Main EK, Aigrang WD: Preconception care of diabetes. Glycemic control prevents congenital anomalies. *Journal of the American Medical Association* 13:731-736, 1991
7. St James P, Younger M, Hamilton B, Waisbrem S: Unplanned pregnancies in young women with diabetes. *Diabetes Care* 16:1572-1578, 1993
8. Willhoite, M., et al: The impact of preconception counseling on pregnancy outcomes: The experience of the Maine Diabetes in Pregnancy Program. *Diabetes Care* 16:450-455, 1993
9. Charron-Prochownik D, Sereika SM, Becker D, et al: Reproductive health beliefs and behaviors in teens with diabetes: application of the expanded health belief model. *Pediatric Diabetes* 2: 30-39, 2001
10. Charron-Prochownik, D: Reproductive-health awareness for teenage women with diabetes: what teens want to know about sexuality, pregnancy, and diabetes. Alexandria, VA, American Diabetes Association, 2003
11. Marshall, M, Jennings, V, Cachan, J: Reproductive health awareness: an integrated approach to obtaining a high quality of health. (Georgetown University’s “Reproductive Health Awareness Curriculum”). *Advances in Contraception* 13:313-318, 1997
12. Charron-Prochownik, D, Ferons Hannan, M Sereika, S, Becker, D, Rodgers-Fischel, A: How to develop CD-ROMs for Diabetes Education: Exemplar “Reproductive-health Education and Awareness of diabetes in Youth for Girls” (READY-Girls). *Diabetes Spectrum* 19: 110-115, 2006
13. Anderson, B, Burkhart, M, Charron-Prohownik, D: *Making Choices: Teenagers and Diabetes*. Ann Arbor, MI, University of Michigan Press, 1986
14. Meichenbaum, D: *Coping with Stress*. Toronto, Ontario, John Wiley & Sons, 1983
15. Conner, M and Norman, P: The role of social cognition in health behaviors, in *Predicting Health Behavior: Research and Practice with Social Cognition Models*, M. Conner and P. Norman, Editors. Buckingham, Open University Press, 1996
16. Maiman, L and Becker, M: The health belief model: origins and correlates in psychological theory, in *The Health Belief Model and Personal Health Behaviors*, M.H. Becker, Editor. Thorofare, NJ Charles B. Slack, Inc, 1974
17. Janz NK, Champion VL, Strecher VJ: The Health Belief Model. In Glanz K, Rimer BK, Lewis FM, (Eds.). *Health Behavior and Health Education: Theory, Research, and Practice*. San Francisco: Jossey-Bass Publishers 2002:41-59.
18. Strecher, V and Rosenstock, I: The health belief model, in Health Behavior & Health Education. San Francisco, Jossey-Bass, 1997
19. Wang, S-L, Charron-Prochownik, D, Sereika, S, Siminerio, L, Kim, Y: Comparing Three Theories in Predicting Reproductive Health Behavioral Intention in Adolescent Women with Diabetes. Pediatric Diabetes 7: 108-115, 2006
20. Rosenstock, I, Strecher, V, Becker, M: Social learning theory and the health belief model. Health Education Quarterly 15:175-183, 1988
21. Burns, AC: The expanded health belief model as a basis for enlightened preventive health care practice and research. Journal of Health Care Marketing 12: 32-45, 1992
22. Charron-Prochownik, D, Wang, S-L, Sereika, S, Kim, Y, Janz, N: A Theory-Based Reproductive Health and Diabetes Instrument. American Journal of Health Behavior 30: 208-220, 2006
23. Janz NK, Herman WH, Becker M, Charron-Prochownik D, et al: Diabetes and pregnancy: Factors associated with seeking preconception care. Diabetes Care 18:157-165, 1995
24. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. 2nd ed., Hillsdale, NJ: Lawrence Erlbaum Associates, Inc, 1988
25. Sussman, S: Program Development for Health Behavior Research & Practice. Thousand Oaks, CA: Sage Publications, Inc., 2001
26. Khalili, A and Shashaani, L: The effectiveness of computer applications: a meta-analysis. Journal of Research on Computing in Education 27:48-61, 1994
27. Miller, WC, et al: Successful weight loss in a self taught, self administered program. International Journal of Sports Medicine 14:401-40, 1993
28. King DK, Bull SS, Christiansen, S, Nelson C, Strycker LA, Toobert D, Glasgow RE: Developing and using interactive health CD-ROMs as a complement to primary care: lessons from two research studies. Diabetes Spectrum 17:234-242, 2004
Early preconception counseling for teens

Figure 1 --- Group response profiles for outcome variables expressed as a percentage change from baseline values to follow-up post-test values: (A) Total knowledge (diabetes-pregnancy, contraception, sexuality, and family planning) a summation of 25 dichotomous items (correct = 1, incorrect = 0, % correct); (B) Perceived benefits of seeking PC and using family planning, a summation of 5 Likert-type items (possible range = 5-25); (C) Perceived barriers to seeking PC and using family planning, a summation score of 5 Likert-type items (possible range = 5-25); (D) Perceived availability of social support (emotional, informational, and instrumental) with PC and family planning, a summation of 8 Likert-type items (possible range = 8-40); (E) Intention to seek PC and use effective family planning, a summation of 3 items (1 = unlikely to 7 = likely; possible range = 3-21); and (F) A1C (metabolic control) was measured by the home Accu-Base HbA1c Sample Collection Kit. Blood finger stick assays were analyzed in Vanderbilt Pathology Lab Services, Vanderbilt University Medical Center using a high-performance liquid chromatography analyzer (ion-exchange method) (Bio-Rad Diamat HPLC, Hercules, CA). The reference range for the Diamat HPLC was 4.2% to 5.8%. Baseline = pretest; post-test 1 = immediate-post intervention; and post-test 2 = 3-month follow up. Three-month analyses were conducted on completed longitudinal data from 47 subjects [16 (34%) CD, 16 (34%) book, and 15 (32%) control] controlling for sexual activity and age as covariates.
A

![Graph A: Mean % Change in Total Knowledge](image)

B

![Graph B: Mean % Change in Benefits](image)

C

![Graph C: Mean % Change in Barriers](image)
Early preconception counseling for teens

D

![Graph showing mean % change in social support over time for CD, Book, and Control groups.]

E

![Graph showing mean % change in intentions over time for CD, Book, and Control groups.]

F

![Bar chart showing mean % change in A1C from baseline to 3-months for CD, Book, and Control groups.]