Antiobesity Effect of Gynostemma pentaphyllum Extract (Actiponin): A Randomized, Double-Blind, Placebo-Controlled Trial

Soo-Hyun Park1,2, Tae-Lin Huh3,4, Sun-Young Kim2, Mi-Ra Oh2, P.B. Tirupathi Pichiah1, Soo-Wan Chae2,5 and Youn-Soo Cha1,2

Objective: The effects of actiponin was investigated, a heat-processed Gynostemma pentaphyllum extract, on body weight, fat loss, and metabolic markers of Korean participants in a 12-week, randomized, double-blind, placebo-controlled clinical trial.

Design and Methods: Obese participants (BMI ≥ 25 kg m⁻² and WHR ≥ 0.90 for male or WHR ≥ 0.85 for female) who had not been diagnosed with any disease and met the inclusion criteria were recruited for this study. The 80 subjects were randomly divided into actiponin (n = 40, 450 mg day⁻¹) and placebo (n = 40) groups. Outcomes included measurement of efficacy (abdominal fat distribution, anthropometric parameters, and blood lipid profiles) and safety (adverse events, laboratory test results, electrocardiogram data, and vital signs).

Results: During 12-week of actiponin supplementation, total abdominal fat area, body weight, body fat mass, percent body fat, and BMI were significantly decreased (P < 0.044, P < 0.05, P < 0.0001, P < 0.0001, and P < 0.05, respectively) in the actiponin group compared to the placebo group. No clinically significant changes in any safety parameter were observed.

Conclusion: Our study revealed that actiponin is a potent antiobesity reagent that does not produce any significant adverse effects. These results suggest that actiponin supplementation may be effective for treating obese individuals.

Obesity (2014) 22, 63–71. doi:10.1002/oby.20539

Introduction

According to the World Health Organization, overweight and obesity are defined as abnormal or excessive fat accumulation that increases the risk of type 2 diabetes, cardiovascular disease, and several types of cancers (1,2). A number of promising antiobesity drugs are developed each year with demonstrable efficacy in cell lines and animal models. However, only a few of these reagents enter and stay in the market because most are associated with serious side effects.

Only a few antiobesity drugs have been approved by the United States Food and Drug Administration for long-term use. One of these is orlistat (Xenical) that reduces intestinal fat absorption by inhibiting pancreatic lipase (3). Another, sibutramine (Meridia), decreases appetite by inhibiting the deactivation of the neurotransmitters in the brain but was withdrawn from the United States and Canadian markets in October 2010 because of increased risk of cardiovascular disease (4,5). Because of potential adverse side effects, it is recommended that anti-obesity drugs only be prescribed for

Funding agencies: This work was supported by a grant (PF06212-00) from the Plant Diversity Research Center of the 21st Century Frontier Research Program funded by the Ministry of Education, Science and Technology, and by a grant (A111345) from the Korean Health Technology R&D Project from the Ministry of Health and Welfare, Republic of Korea.

Disclosure: None of the authors have any potential conflicts of interest related to the contents of this article.

Author Contributions: The authors’ responsibilities were as follows: YSC and SWC conceived the study concept and designed the experiments. SHP, PSTP, TLH, SWC, and YSC analyzed and interpreted the data, and wrote the manuscript. SWC and YSC had primary responsibility for the final content. All authors read and approved the final version of the manuscript.

Soo-Hyun Park and Tae-Lin Huh contributed equally to this work.

Additional Supporting Information may be found in the online version of this article.

This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Received: 30 November 2012; Accepted: 27 May 2013; Published online 26 June 2013. doi:10.1002/oby.20539
treating obesity when the benefits of the treatment clearly outweigh its risks. Moreover, most of functional foods that are generally considered safe have not been scientifically validated for treating obesity and their effects are not significant (6,7).

AMP-activated protein kinase (AMPK) is an important intracellular sensor. This enzyme regulates whole-body and cellular energy balance in response to energy supply and demand. AMPK has been implicated in metabolic diseases such as obesity, type 2 diabetes, and dyslipidemia since its activation increases fat oxidation and glucose uptake while inhibiting fat and cholesterol synthesis (8-10). This kinase is a heterotrimeric enzyme comprised of a catalytic (α1 or α2) and two regulatory (β1 or β2 and γ1, γ2, or γ3) subunits (10). The activation of AMPK is mainly achieved via Thr172 phosphorylation in the α subunit by LKB1 kinase or Ca2+/calmodulin-dependent protein kinase kinase (8-11). Upon activation, AMPK phosphorylates downstream targets and inhibits ATP-consuming anabolic pathways including fatty acid and cholesterol synthesis. At the same time, catabolic pathways that produce ATP, such as glycolysis, fatty acid oxidation, and glucose uptake, are stimulated (9,12).

Gynostemma pentaphyllum (G. pentaphyllum) is a herbaceous vine of the family Cucurbitaceae (cucumber or gourd family) that is indigenous to and widely used in Asian countries including Korea, China, and Japan as traditional medicines or tea. Total extracts or saponins from this plant have been shown to exert a wide range of beneficial effects such as reducing cholesterol and blood glucose levels, strengthening immunity, and inhibiting cancer growth (13-16). These activities likely overlap with diverse downstream effects on AMPK activation (9). In vitro studies revealed that damulin A and B, two dammarane-type saponins purified from the leaves of G. pentaphyllum, are able to increase the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) through which β-oxidation can be stimulated (17).

We recently reported that, the ability of a G. pentaphyllum leaf ethanol extract to activate AMPK is increased by autoclaving with increasing the levels of AMPK activators damulin A and B (18). In both cultured HepG2 and L6 myotube cells, this heat-processed G. pentaphyllum extract named “actiponin” dose-dependently increases the expression of key factors that regulate fat oxidation and adaptive thermogenesis while decreasing the expression of lipogenic transcription factors (18). Furthermore, oral administration of actiponin reduces body fat mass in ob/ob mice by stimulating AMPK and ACC phosphorylation in the soleus muscle (18). Although the antiobesity activities of G. pentaphyllum extract have been demonstrated in vitro and in vivo (17,18), the effects of this plant extract on humans are unclear. Therefore, we performed the first clinical trial for evaluating the antiobesity effects of actiponin on human subjects. The objective of the present study was to document the effect of 12-week actiponin supplementation on body fat composition (particularly abdominal fat) in obese Korean participants using a randomized, double-blind, placebo-controlled protocol.

Methods

Study design

This study was a 12-week, randomized, double-blind, placebo-controlled clinical trial followed by a 3-week screening period. Participants who responded to solicitation and met entry criteria during a telephone screening interview were scheduled for a baseline visit. Evaluation during baseline visit, physical examination, electrocardiogram, and screening blood parameter tests were conducted in all participants within 3-week from initial screening. A random number between 1 and 80 was generated for each subject and the enrolled participants were scheduled for their first visit and randomly assigned to either the actiponin (n = 40) or placebo (n = 40) group. Actiponin/placebo tablets were given to the participants for every 4-week.

During the 12-week intervention period, participants were asked to continue their usual diets and not to take any other functional foods or dietary supplements. Anthropometric, computed tomography (CT), biochemical parameters, vital signs, and nutrient intake of both groups were measured before and after the intervention period. During the run-in phase of the trial, all participants were instructed to maintain their normal diet and physical activity. Every fourth week the participants were asked to report for assessment of any adverse events or changes in training, lifestyle, or eating patterns; and to evaluate tablet compliance.

Participants

The study participants were recruited during 2009 at the Clinical Trial Center for Functional Foods of Chonbuk National University Hospital (Jeonju, Republic of Korea). A total of 105 participants agreed to participate in the study. Only individuals who were obese (BMI ≥ 25 kg m−2 and WHR ≥ 0.90 for male or WHR ≥ 0.85 for female) according to Asia-pacific guideline and had not been diagnosed with any other diseases were included in this study. To meet guidelines for evaluating the efficacy of functional foods from the Korea Food and Drug Administration (19), extremely obese participants (BMI ≥ 30 kg m−2) were not included in this investigation.

Altogether, 80 participants met the study criteria (age, 40.08 ± 10.60 years; weight, 74.58 ± 9.19 kg; BMI, 27.53 ± 1.22 kg m−2) and were randomly divided into two groups (n = 40 each) given either actiponin (450 mg day−1) or a placebo (450 mg day−1). Exclusion criteria for the study were as follows: (a) significant variation in weight (more 10%) in the past 3 months; (b) a history of cardiovascular disease including arrhythmia, heart failure, or myocardial infarction, and use of a pacemaker; (c) a history of conditions that could interfere with the test products or impede their absorption such as gastrointestinal disease (Crohn’s disease) or experienced surgery (caesarean or enteroccele surgery); (d) participation in another clinical trial within the past 2 months; (e) abnormal hepatic function; (f) a history of renal disease (e.g., acute or chronic renal failure and nephritic syndrome); (g) undergoing antipsychotic drug therapy within past the 2 months; (h) laboratory tests results as well as medical or psychological conditions that could interfere with successful participation in the study as judged by the investigators; (i) pregnancy or breast feeding; (j) a history of alcohol or substance abuse; and (k) allergies or hypersensitivity to any of the ingredients in the test products. All participants provided written informed consent before the investigation commenced. The study protocols were approved by the Functional Foods Institutional Review Board of Chonbuk National University Hospital.

Test supplement

Actiponin powder containing 1.1% (w/w) damulin A (Figure 1) was prepared by TG Biotech (Daegu, Republic of Korea) as previously described (18). Briefly, dried leaves of G. pentaphyllum underwent extraction with 50% ethanol. The extracts were then concentrated.
under reduced pressure, autoclaved at 121°C for 4 h, and dried using a spray dryer. Actiponin was administered to the study subjects as tablets (225 mg actiponin and 275 mg diluting agents in a 500 mg tablet). Traditionally, a daily dose of 3–9 g dried G. pentaphyllum leaves is recommended for human subjects as folk medicine or tea. We therefore decided to administer a daily dose of 450 mg day⁻¹ actiponin in our clinical trial based on the following calculation: daily dosage of G. pentaphyllum leaf (3 g day⁻¹) × (3 mg day⁻¹) × product yield (15%) of the extract powder (actiponin) from the dried plant = 450 mg day⁻¹. The energy contents (3.07 kcal), flavor, and appearance of the actiponin and placebo tablets were identical (Table 1).

All participants were instructed to take two tablets per day (one tablet after breakfast and one after dinner). Actiponin and placebo tablets were packaged in an indistinguishable manner and labeled with the study subject’s number. Participants were instructed to bring all remaining supplements at each visit and were withdrawn from the study if supplement consumption was <70% of the recommended dose.

Efficacy outcome measurements
Total 80 participants met the study criteria were asked to visit the clinic once in every 4 weeks (0th, 4th, 8th, and 12th wk of the study period) for a total of five clinical visits including the initial screening. During each visit, current supplementation use was reviewed and symptoms or side effects were recorded. During the screening visit, demographic and lifestyle information was collected (gender, age, alcohol consumption, and smoking habits). A medical history was taken and a urine pregnancy test was conducted.

The following parameters were assessed. Abdominal fat distribution was measured and analyzed using CT (Somatom Sensation 16 MDCT; Siemens, Germany) before and after the 12-week intervention period. Body weight, BMI, body fat mass, percent body fat, and lean body mass were measured using Inbody 3.0 (Biospace, Seoul, Korea) during each visit. Blood samples were collected after a minimum 12 h of fasting during the initial screening as well as on the 8th- and 12th-week of the intervention period to obtain lipid metabolism profiles [total cholesterol, triglycerides, high-density lipoprotein (HDL), low-density lipoprotein (LDL), free fatty acids, apolipoprotein AI (apoAI),and apolipoprotein B (apo B)]. Blood samples were analyzed with Hitachi 7600-110 analyzer (Hitachi High-Technologies, Japan) using standard methods in the biochemical laboratory of Chonbuk National University Hospital.

Safety and dietary evaluations
Safety of the extract was assessed by the following procedures. Electrocardiogram, hematology, and laboratory tests were conducted during the screening, 8th-, and 12th-week intervention periods (WBC, RBC, and platelet counts; hemoglobin, hematocrit, total protein, albumin, ALT, AST, BUN, and creatinine levels). Pulse rate and blood pressure were measured at every visit after a 5-min rest using IntelliVue MP70 (Philips, Netherlands). A personal report was also recorded at these times. We kept subjects maintaining their usual diet and activity, and all participants completed a dietary record at each visit to the clinic during the intervention period in order to evaluate their energy intake and diet quality. Dietary intake data were analyzed by the same dietitian using CAN-pro 3.0 software (The Korea Nutrition Society, Seoul, Korea).

Statistical analysis
Statistical analyses were performed using SAS software, version 9.2 (SAS Institute, USA). Data are presented as the mean ± standard error (S.E.) to detect a 0.3 kg (S.D. = 0. 60 kg) difference in body weight between groups with 80% power and a two-tailed z-value of 0.05 (20). The appropriate sample size of each group in the study was determined

Component	Test tablet Content (mg)	Placebo tablet Content (mg)
G. pentaphyllum extract powder	225	350
Maltodextrin	187.5	96
Microcrystalline cellulose	74	24
Silicon dioxide	5	10
Niacin	2.5	1.5
Magnesium Stearate	6	5
Total	500	500
to be 32 participants, allowing a 20% drop-out rate. Intention-to-treat (ITT) analysis included all randomized participants who received at least one dose of the actiponin or placebo tablet. Efficacy and safety parameters of the ITT group were analyzed. A chi-square test was performed to determine differences in the frequencies of categorized baseline variables between the groups. A paired Student’s t test was used to assess differences in continuous measures before and after the 12-week intervention period. A linear mixed-effects model was applied to repeated measures data for each continuous outcome. Data were adjusted according to gender. Fixed effects included treatment group, treatment visit, and interaction between treatment group and visit. A P value <0.05 was considered statistically significant.

Results

Participants

Among the 105 participants screened, 25 were excluded due to anthropometric characteristics and/or laboratory test results consistent with the exclusion criteria. The remaining 80 participants fulfilled the study criteria and were divided equally into the actiponin and placebo groups. Four participants from the actiponin group and two from the placebo group withdrew from the study due to personal reasons. Ultimately, 74 participants (36 actiponin and 38 placebo group members) were able to finish the study (Figure 2).

Dietary assessment

No significant differences in dietary intake (calorie, carbohydrate, protein, and fat) were observed between the groups during the intervention period (Supporting Information Table S1).

Participant characteristics

General characteristics of the participants are shown in Table 2. There were no significant differences in baseline characteristics such as age, height, weight, and BMI between the actiponin and placebo groups.

Abdominal fat

Changes in abdominal fat (total abdominal fat, abdominal visceral fat, and abdominal subcutaneous fat) before and after the 12-week intervention period were analyzed (Table 3 and Figure 3). After 12-week of intervention, statistically significant differences were found in the total abdominal fat area (actiponin group: -20.90 ± 8.29 cm2, placebo group: -2.87 ± 3.73 cm2, $P = 0.044$). Areas of abdominal visceral (actiponin group: -11.70 ± 5.65 cm2, placebo group: -2.92 ± 2.21 cm2, $P = 0.146$) and subcutaneous fat (actiponin group: -20.90 ± 8.29 cm2, placebo group: -2.87 ± 3.73 cm2, $P = 0.044$). Areas of abdominal visceral (actiponin group: -11.70 ± 5.65 cm2, placebo group: -2.92 ± 2.21 cm2, $P = 0.146$) and subcutaneous fat (actiponin group: -20.90 ± 8.29 cm2, placebo group: -2.87 ± 3.73 cm2, $P = 0.044$).

TABLE 2 Demographic characteristics of the study participants

	Actiponin group $(n = 40)$	Placebo group $(n = 40)$	P^{b}
Age (years)	40.10 ± 1.53	40.05 ± 1.83	0.983
Height (cm)	165.78 ± 1.36	162.90 ± 1.41	0.146
Weight (kg)	76.56 ± 1.36	73.41 ± 1.55	0.126
BMI (kg m$^{-2}$)	27.80 ± 0.19	27.55 ± 0.20	0.364
Sex			
Male	22 (55)c	10 (25)	0.006d
Female	18 (45)	30 (75)	

aAll values are presented as the mean ± S.E.
bDerived from an independent student’s t test. No significant differences between the two groups were observed.
cDerived from a chi-square test. Statistically significant compared to the placebo group ($P < 0.05$).
Obesity

Significant differences were observed between the two groups. The C-reactive protein levels tended to decrease in the actiponin group, although no statistically significant differences were found between the actiponin and placebo groups. In addition, there were no differences in total cholesterol, triglycerides, HDL-cholesterol and LDL-cholesterol levels between the two groups.

Changes in anthropometric parameters (weight, BMI, body fat mass, percent body fat, waist circumference, and hip circumference) during the 4-, 8-, and 12-week intervention periods are shown in Table 4. As a result, decrease in body weight ($P = 0.021$), BMI ($P = 0.029$), body fat mass ($P < 0.0001$), and percent body fat ($P < 0.0001$) in actiponin group was statistically significant. However, when analyzing the changes of anthropometric parameters before and after the 12-week intervention, decrease in waist circumference (actiponin group: -2.49 ± 0.35 cm, placebo group: -1.33 ± 0.37, $P = 0.029$) was also found in the actiponin group. Similarly, body weight, BMI, body fat mass and percent body fat were also significantly reduced in the actiponin group (Supporting Information Table S2).

Changes in lipid metabolism parameters (serum levels of total cholesterol, triglycerides, LDL-cholesterol, HDL-cholesterol, free fatty acids, apo AI, and apo B) during the 4-, 8-, and 12-week intervention periods are shown in Table 5. During 12-week of intervention periods, total cholesterol, triglycerides, HDL-cholesterol and LDL-cholesterol levels tended to decrease in the actiponin group. However, no statistically significant differences were found between the actiponin and placebo groups. In addition, there were no differences in free fatty acid, apo AI, or apo B within or between the groups.

Safety analyses

Hematology test results and vital signs of both the actiponin and placebo groups (Tables S3 and S4) were within normal ranges, indicating that actiponin supplementation did not cause any adverse side effects.

Discussion

AMPK has been regarded as an emerging target for drugs designed to combat metabolic diseases including obesity and dyslipidemia (12,21). Activation of AMPK by 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) inhibits adipogenesis by downregulating the expression of key transcription factors such as peroxisome proliferator-activated receptor γ (PPAR γ) and CCAAT/enhancer binding protein (CEBP)α as well as lipogenic factors including fatty acid binding protein 4 and lipoprotein lipase (22,23). Additionally, AMPK activation directly inactivates ACC through Ser79 phosphorylation, leading to decreased fat synthesis by reducing the production of malonyl-CoA from acetyl-CoA (24,25). Decreased malonyl-CoA concentrations stimulate mitochondrial fatty acid oxidation through increased mitochondrial fatty acid flux by inhibiting carnitine palmitoyl-CoA transferase-1 (12). In agreement with these findings, a thienopyridone family of an AMPK activator, A-769662 was found to improve diabetes, dyslipidemia, and fatty liver while substantially reducing body weight gain (21). Metformin, another AMPK activator, is widely prescribed to treat type 2 diabetes (26). Clinical studies have also demonstrated that metformin significantly decreases body weight (26,27), thus further strengthen the beneficial effects of AMPK activation for treating obesity.

We recently reported that damulin A and B isolated from G. pentaphyllum extract can increase the phosphorylation of AMPK and ACC in L6 myotube cells in dose-dependent manners, thereby increasing β-oxidation (17). Other study using ob/ob mice model also revealed that actiponin, a heat-processed G. pentaphyllum extract enriched with damulin A and B, reduces body weight, body fat mass, and total plasma cholesterol levels with activation of AMPK in their soleus muscle (18). In the current clinical study, participants who completed the 12-week of treatment with actiponin (450 mg/day) showed statistically significant reductions in abdominal fat (total abdominal fat area) and anthropometric parameters (weight, BMI, body fat mass, percent body fat, and waist circumference) without any significant changes in food intake, dietary, or lifestyle compared to the placebo group. These results were similar to our previous observations made in cultured cells and ob/ob mice both in vitro and in vivo (17,18). These observations suggest that AMPK activators, such as damulin A and B, in actiponin might be successfully delivered to peripheral tissues and exert anti-obesity effect in human subjects as similar to the result obtained in rodent model (18), although we did not analyze changes of AMPK activity in human tissues of actiponin and placebo groups.

During the 12-week intervention periods, some hematologic values (RBC, Hb, Hct, and platelet) in the actiponin group were slightly decreased. Thus, actiponin, a heat-processed G. pentaphyllum extract enriched with damulin A and B, reduces body weight, body fat mass, and total plasma cholesterol levels with activation of AMPK in their soleus muscle. These findings support the potential of actiponin in the treatment of obesity.

Table 3: Abdominal fat area of the actiponin and the placebo groups measured at 0- and 12-week of the study

Parameters	Actiponin group (n = 40)	Placebo group (n = 40)			
	0-wk	12-wk	Difference	P^b	P^c
Total abdominal fat (cm²)	332.24 ± 10.65	313.15 ± 9.04	−20.90 ± 8.29	0.016	
	335.36 ± 7.24	333.05 ± 8.36	−2.87 ± 3.73	0.447	0.044
Visceral fat (cm²)	106.84 ± 6.61	95.97 ± 5.23	−11.70 ± 5.65	0.046	
	98.78 ± 4.85	96.68 ± 4.79	−2.92 ± 2.21	0.195	0.146
Subcutaneous fat (cm²)	225.40 ± 8.55	215.38 ± 8.06	−8.70 ± 3.54	0.019	
	236.57 ± 9.08	236.37 ± 10.17	0.05 ± 3.85	0.990	0.092
VSR^d	0.51 ± 0.04	0.47 ± 0.04	−0.04 ± 0.02	0.075	
	0.47 ± 0.04	0.47 ± 0.04	−0.00 ± 0.02	0.801	0.203

^aAll values are presented as the mean ± S.E.
^bDerived from a paired t test. Statistically significant compared to the baseline ($P < 0.05$).
^cDerived from the linear mixed-effects model adjusted for gender. Statistically significant compared to the placebo group ($P < 0.05$).
^dVSR, visceral subcutaneous ratio.
decreased, although their values were still in the normal range and no statistically significant difference was found between the actiponin and placebo groups. Further research is required to explain whether this decrease of hematologic values in the actiponin group is caused by pseudoanemia as similar to the condition seen in sports anemia (28) or other unexpected adverse effects of actiponin.

(-)-Hydroxycitrate (HCA) is a major constituent of *Garcinia* (*G.* cambogia) fruit extract, a representative dietary supplement used for weight management due to its ability to inhibit ATP-citrate lyase (EC 4.1.3.8) that catalyzes cytosolic acetyl-CoA production from citrate in the initial fat biosynthesis pathway (29). However, numerous clinical studies have also provided evidences that *G. cambogia* extract (HCA) does not ameliorate obesity (30-34). In addition, potential testicular toxicity of *G. cambogia* extract at high doses was reported in an obese animal model (35). In these regards, it is likely that *G. cambogia* extract (HCA) may not be extremely effective for

FIGURE 3 Representative CT-scan data at 0 and 12-week in a subject from actiponin or placebo group. Differences in abdominal visceral fat (AVF), abdominal subcutaneous fat (ASF), and total abdominal fat (TAF) areas at 0 and 12-week were measured. Each data is expressed as a mean ± S.D. of 5 CT-scan (L1–5) area values.
TABLE 4 Anthropometric parameters of the actipolin and the placebo groups measured at 0-, 4-, 8-, and 12-week of the studya

Parameters	Actipolin group (n = 40)	Placebo group (n = 40)									
	0-wk	4-wk	8-wk	12-wk	Pb	0-wk	4-wk	8-wk	12-wk	Pb	Pb
Body weight (kg)	76.56 ± 8.31	76.26 ± 8.35	75.57 ± 8.18c	75.21 ± 8.20f	<0.0001	73.41 ± 9.79	73.53 ± 9.79	73.33 ± 9.98	73.33 ± 10.17	0.187	0.021
Body mass index (kg m-2)	27.80 ± 1.21	27.69 ± 1.17	27.44 ± 1.28c	27.31 ± 1.24f	<0.0001	27.55 ± 1.27	27.61 ± 1.36	27.54 ± 1.45	27.55 ± 1.54	0.159	0.029
Body fat mass (kg)	22.65 ± 3.12	22.28 ± 3.45	21.89 ± 3.35c	21.40 ± 3.62f	<0.0001	23.04 ± 3.55	23.17 ± 3.61	23.15 ± 3.8	23.32 ± 3.82	0.147	<0.0001
Percent body fat (%)	29.95 ± 5.4	29.56 ± 5.73	29.31 ± 5.67c	28.79 ± 5.87f	<0.0001	31.76 ± 5.39	31.91 ± 5.62	31.96 ± 5.68	32.13 ± 5.4	0.018	<0.0001
Waist circumference (cm)	93.69 ± 4.85	92.26 ± 5.03c	91.65 ± 4.62c	91.07 ± 5.11f	<0.0001	92.23 ± 4.03	91.57 ± 4.55	91.46 ± 4.25f	91.04 ± 4.50f	0.0001	0.060
Hip circumference (cm)	99.85 ± 3.30	99.41 ± 3.28	99.21 ± 3.39c	98.85 ± 3.40f	<0.0001	99.86 ± 4.28	99.81 ± 4.62	99.76 ± 4.59	99.68 ± 4.83	0.257	0.127

aAll values are presented as the mean ± S.E.
bDerived from the linear mixed-effects model adjusted for gender. Statistically significant compared to the placebo group (P < 0.05).
cMultiple comparison by Bonferroni correction. Statistically significant difference compared to baseline (0-wk).

TABLE 5 Lipid profiles of the actipolin and placebo groups at 0-, 8- and 12-wka of the study

Parameters	Actipolin group (n = 40)	Placebo group (n = 40)							
	0-wk	8-wk	12-wk	Pb	0-wk	8-wk	12-wk	Pb	Pb
Total cholesterol (mg dL-1)	195.50 ± 5.03	185.97 ± 4.98	185.97 ± 29.9	0.055	190.40 ± 4.93	190.42 ± 5.89	190.42 ± 36.3	0.865	0.461
Triglycerides (mg dL-1)	134.35 ± 9.60	117.28 ± 8.71	117.28 ± 52.26	0.336	136.40 ± 13.88	143.03 ± 12.44	143.03 ± 76.67	0.717	0.316
HDL-C (mg dL-1)	44.43 ± 1.32	41.64 ± 1.01	41.64 ± 6.05	0.018	47.35 ± 1.71	44.37 ± 1.59	44.37 ± 9.78	0.052	0.946
LDL-C (mg dL-1)	119.75 ± 4.22	111.61 ± 4.11	111.61 ± 24.67	0.060	113.03 ± 4.71	107.97 ± 4.88	107.97 ± 30.11	0.155	0.901
FFA (uEq L-1)	582.48 ± 29.50	602.03 ± 31.42	602.03 ± 188.53	0.592	591.83 ± 33.47	608.45 ± 27.97	608.45 ± 172.39	0.223	0.197
Apo A1 (g L-1)	1.41 ± 0.04	1.35 ± 0.03	1.35 ± 0.18	0.165	1.43 ± 0.04	1.43 ± 0.04	1.43 ± 0.25	0.158	0.202
Apo B (g L-1)	0.89 ± 0.03	0.85 ± 0.03	0.85 ± 0.19	0.119	0.85 ± 0.03	0.86 ± 0.03	0.86 ± 0.19	0.846	0.692

aAll values are presented as the mean ± S.E.
bDerived from the linear mixed-effects model adjusted for gender. No statistically significant differences between the two groups were observed. Multiple comparison by Bonferroni correction. Statistically significant difference compared to baseline (0-wk).
treat obesity and actiponin could be a potential alternative for controlling body fat accumulation and weight.

To the best of our knowledge, the current study is the first to demonstrate that *G. pentaphyllum* extract significantly reduces body weight and fat mass in obese human subjects. Nevertheless, our study has several limitations. First, we only surveyed the subjects’ food intake during the treatment period by reviewing food records. Therefore, the participants’ food intake and activity levels were not accurately controlled and impartially investigated. According to the European Medicines Agency, participants in randomized controlled trials evaluating weight control should adhere to an appropriate weight-reducing diet for a specified minimum period of time (36). All participants should also be given similar instructions, advice, and encouragement with regard to diet, behavior modification, and exercise. In the current study, total cholesterol and LDL-cholesterol levels are decreased after the 12-week intervention although no significant changes were observed between two groups. Megalli et al. (13) demonstrated that *G. pentaphyllum* alleviates hypercholesterolemia in animals and humans. Difference in the results from our current study and Megalli et al. may be due to the subjects’ lipid profiles. Generally, inclusion criteria for clinical trials focused on hyperlipidemia dictate that fasting serum LDL-cholesterol levels should fall between 160 and 250 mg dL\(^{-1}\) (37). However, the LDL-cholesterol baseline levels of participants in our study were within a normal range (\(~117.5\) mg dL\(^{-1}\)), which may be responsible for the absence of a significance difference between the actiponin and placebo groups.

Despite of the limitations mentioned above, data from our study suggest that actiponin is a safe and effective antiobesity agent. In these regards, actiponin is the newly reported edible AMPK activator, thus it will be of interest to investigate long-term effect of actiponin supplementation on improving severe obesity. Combined with life style modification or weight-reducing diet program, the antiobesity effect of actiponin will become more pronounced.

Acknowledgments

We wish to express our gratitude to all subjects who participated in this intervention study and the staff of the Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Republic of Korea.

© 2013 The Authors. Obesity published by Wiley Periodicals, Inc. on behalf of The Obesity Society (TOS)

References

1. WHO/IASO/ITOF. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment. Melbourne, Australia: Health Communications Australia, 2000.
2. Haslam DW, James WP. Obesity. Lancet 2005;366:1197-1209.
3. Drent ML, van der Veen EA. First clinical studies with orlistat: a short review. *Obes Res* 1995;3 (Suppl 4): 623S-625S.
4. Website. FDA. Meridia (sibutramine): Market Withdrawal Due to Risk of Serious Cardiovascular Events: Food & Drug Administration. [WWW document]. Available at: URL http://www.fda.gov/safety/medwatch/safetyinformation/safetyalertsforhuman medicalproducts/ucm228830.htm.
5. Murphy E. Abbott to stop marketing the obesity medicine sibutramin in Canada. Abbott News 2010. [WWW document]. Available at: URL http://www.abbott.ca.
6. Snow V, Barry P, Fitterman N, et al. Pharmacologic and surgical management of obesity in primary care: a clinical practice guideline from the American College of Physicians. *Ann Intern Med* 2005;142:525-531.
7. Cooke D, Bloom S. The obesity pipeline: current strategies in the development of anti-obesity drugs. *Nat Rev Drug Discov* 2006;5:919-931.
8. Carling D. The AMP-activated protein kinase cascade—a unifying system for energy metabolism control. *Trends Biochem Sci* 2004;29:18-24.
9. Fogarty S, Hardie DG. Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. *Biochim Biophys Acta* 2010;1804:581-591.
10. Hardie DG. AMPK: a key regulator of energy balance in the single cell and the whole organism. *Int J Obes (Lond)* 2008;32 (Suppl 4): S7-S12.
11. Woods A, Dickerson K, Heath R, et al. Ca2+calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. *Cell Metab* 2005;2:21-33.
12. Zhang BB, Zhou G, Li C. AMPK: an emerging drug target for diabetes and the metabolic syndrome. *Cell Metab* 2009;9:407-416.
13. Megalli S, Davies NM, Roufogalis BD. Anti-hyperlipidemic and hypoglycemic effects of Gynostemma pentaphyllum in the Zucker fatty rat. *J Pharm Sci* 2006;9:289-291.
14. Yeo J, Kang YJ, Jeon SM, et al. Potential hypoglycemic effect of an ethanol extract of Gynostemma pentaphyllum in C57BL/KsJ-db/db mice. *J Med Food* 2008;11:709-716.
15. Lu HF, Chen YS, Yang JS, et al. Gypenosides induced GO/G1 arrest via inhibition of cyclin E and induction of apoptosis via activation of caspases-3 and -9 in human lung cancer A-549 cells. *In Vivo* 2008;22:215-221.
16. Razmorski-Naumovski V, Huang TH, Tran VH, et al. Chemistry and pharmacology of Gynostemma pentaphyllum. *Phytochem Rev* 2005;4:197-219.
17. Nguyen PH, Gauhar R, Hwang SL, et al. New dammarane-type glucosides as potential activators of AMP-dependent protein kinase (AMPK) from Gynostemma pentaphyllum. *Biorg Med Chem* 2011;19:6254-6260.
18. Gauhar R, Hwang SL, Jeong SS, et al. Heat-processed Gynostemma pentaphyllum extract improves obesity in db/db mice by activating AMP-activated protein kinase. *Biotechnol Lett* 2012;34:1607-1616.
19. KFDA Guideline. Guidelines for Evaluation of the Efficacy of Functional Foods. Korea Food and Drug Administration: Korea, 2012.
20. Georg Jensen M, Kristensen M, Astrup A. Effect of alginate supplementation on weight loss in obese subjects completing a 12-wk energy-restricted diet: a randomized controlled trial. *Am J Clin Nutr* 2012;96:5-13.
21. Cool B, Zinker B, Chouw W, et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. *Cell Metab* 2006;3:403-416.
22. Corton JM, Gillespie JG, Hawley SA, et al. 5-aminomimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? *Eur J Biochem* 1995;229:558-565.
23. Lee H, Kang R, Bae S, et al. AlC4AR, an activator of AMPK, inhibits adipogenesis via the WNT/beta-catenin pathway in 3T3-L1 adipocytes. *Int J Mol Med* 2011;28:65-71.
24. Davies SP, Carling D, Munday MR, et al. Diurnal rhythm of phosphorylation of rat liver acetyl-CoA carboxylase by the AMP-activated protein kinase, demonstrated using freeze-clamping. Effects of high fat diets. *Eur J Biochem FEMS* 1992;203:615-623.
25. Henin N, Vincent MF, Gruber HE, et al. Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP-activated protein kinase. *FASEB J* 1995;9:541-546.
26. Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. *J Clin Investig* 2001;108:1167-1174.
27. Krakoff J, Clark JM, Crandall JP, et al. Effects of metformin and weight loss on serum alanine aminotransferase activity in the diabetes prevention program. *Obesity (Silver Spring)* 2010;18:1762-1767.
28. Carlson DL, Mawdsley RH. Sports anemia: a review of the literature. *Am J Sports Med* 1998;14:109-112.
29. Watson JA, Fang M, Lowenstein JM. Triacarballylate and hydroxycitrate: substrate and inhibitor of ATP: citrate oxaloacetate lyase. *Arch Biochem Biophys* 1969;135:209-217.
30. Hayamizu K, Ishii Y, Kaneo I, et al. Effects of Garcinia cambogia (hydroxycitric acid) on visceral fat accumulation: a double-blind, randomized, placebo-controlled trial. *Curr Therap Res* 2003;64:551-567.
31. Kim JE, Jeon SM, Park KH, et al. Does Glycine max leaves or Garcinia Cambogia Extract inhibit adipogenesis? *Nutrition Journal* 2011;10:94.
32. Heymsfield SB, Allison DB, Vasselli JR, et al. Garcinia cambogia (hydroxycitric acid) as a potential antiobesity agent: a randomized controlled trial. *JAMA* 1998;280:1596-1600.
33. Egras AM, Hamilton WR, Lenz TL, et al. An evidence-based review of fat modifying supplemental weight loss products. *J Obes* 2011:2011:Article ID 297315.
34. Pittler MH, Ernst E. Dietary supplements for body-weight reduction: a systematic review. *Am J Clin Nutr* 2004;79:529-36.

35. Saito M, Ueno M, Ogino S, et al. High dose of *Garcinia* cambogia is effective in suppressing fat accumulation in developing male Zucker obese rats, but highly toxic to the testis. *Food Chem Toxicol* 2005;43:411-19.

36. European Medicines Agency (EMEA). *Guideline on clinical investigation of medicinal products used in weight control*. Committee for medicinal products for human use (CHMP) 2006. [WWW document]. Available at: URL http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003213.pdf.

37. European Medicines Agency (EMEA). *Note for guidance on clinical investigation of medicinal products in the treatment of lipid disorders*. Committee for medicinal products for human use (CHMP) 2004. [WWW document]. Available at: URL http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003235.pdf.