Empirical distribution of k-word matches in biological sequences

March 14, 2008

Sylvain Forêt1, Susan R. Wilson1, Conrad J. Burden1,2,3

1Centre for Bioinformation Science, Mathematical Sciences Institute, The Australian National University, Canberra ACT 0200, Australia
2John Curtin School of Medical Research, The Australian National University, Canberra ACT 0200, Australia
3Corresponding author, e-mail: Conrad.Burden@anu.edu.au

Abstract

This study focuses on an alignment-free sequence comparison method: the number of words of length k shared between two sequences, also known as the D_2 statistic. The advantages of the use of this statistic over alignment-based methods are firstly that it does not assume that homologous segments are contiguous, and secondly that the algorithm is computationally extremely fast, the runtime being proportional to the size of the sequence under scrutiny. Existing applications of the D_2 statistic include the clustering of related sequences in large EST databases such as the STACK database. Such applications have typically relied on heuristics without any statistical basis. Rigorous statistical characterisations of the distribution of D_2 have subsequently been undertaken, but have focussed on the distribution’s asymptotic behaviour, leaving the distribution of D_2 uncharacterised for most practical cases. The work presented here bridges these two worlds to give usable approximations of the distribution of D_2 for ranges of parameters most frequently encountered in the study of biological sequences.

1 Introduction

The accelerating rate of accumulation of molecular sequences in public databases has triggered the development of a number of sequence comparison algorithms.
The most popular algorithms, such as FASTA, BLAST or BLAT, rely on sequence alignment, and assume contiguity between homologous segments. This assumption is, however, often broken in molecular sequences, due to events such as transposition, unequal crossing over or alternative splicing. To address this issue, a number of alignment-free sequence comparison methods have been developed. Amongst them, the count of words of length k letters matching between two sequences, also known as the D_2 statistic, has found some successful applications, due to its simplicity and its speed. The algorithm to calculate the D_2 statistic between two sequences runs as a linear function of the sequences’ lengths, whereas alignment-based sequence comparison methods typically have a worst case runtime quadratic in the sequences’ lengths. The first applications of the D_2 statistic relied on heuristics to decide whether sequences are significantly similar, but did not have any statistical basis.

A rigorous examination of the distribution of D_2 led to the characterisation of asymptotic distributions, but the behaviour of D_2 in practical cases remains unknown. In a previous study, we characterized D_2 optimal word sizes for a range of sequence sizes. The goal of the present study is to find approximations of the distribution of D_2 for word sizes close to optimal, and for the sequence sizes most frequently encountered in molecular databases.

2 Background

The D_2 statistic is defined to be the number of exact word matches of length k between sequences $A = (A_1, \ldots, A_m)$ and $B = (B_1, \ldots, B_n)$, with A_i and B_j belonging to a given alphabet \mathcal{A}. For mathematical convenience we will impose periodic boundary conditions on both sequences, that is, the letter in the first position in sequence A is assumed to follow the letter in the mth position, and the letter in the first position in sequence B is assumed to follow the letter in the nth position. For $k << m, n$ we do not expect our results to differ significantly from the usual case of free boundary conditions.

Defining the indicator variables $Y_{(ij)}$ for a word match between the k-word at position i in A and the word at position j in B by

$$Y_{(ij)} = \begin{cases}
1 & \text{if } (A_i, \ldots, A_{(i+k-1) \mod m}) = (B_j, \ldots, B_{(j+k-1) \mod n}) \\
0 & \text{otherwise},
\end{cases} \quad (1)$$

the D_2 statistic is given by

$$D_2 = \sum_{(i,j) \in I} Y_{(ij)}, \quad (2)$$

where $I = \{(i,j) | 1 \leq i \leq m, 1 \leq j \leq n\}$. For the case of free boundary conditions the index set is replaced by $I = \{(i,j) | 1 \leq i \leq m - k + 1, 1 \leq j \leq n - k + 1\}$.

We are interested in the distributional properties of D_2 under the null hypothesis that \mathbf{A} and \mathbf{B} are Bernoulli texts, meaning that each letter, A_i or B_j, is independently and identically (i.i.d.) distributed. Let the probability of occurrence of letter $a \in \mathcal{A}$ be f_a, and define

$$p_t = \sum_{a \in \mathcal{A}} f_a^t, \quad t = 1, 2, \ldots$$

(3)

The mean of D_2 is then [7]:

$$E(D_2) = \sum_{(i,j) \in I} E(Y_{(ij)}) = mn \left(\sum_{a \in \mathcal{A}} f_a^2 \right)^k = mnp_2^k.$$

(4)

An exact value for the variance of D_2 has recently been given for the case of free boundary conditions in [6]. In Appendix I we derive a similar formula for the variance for the algebraically simpler case of periodic boundary conditions.

From here on, to simplify matters we set $m = n$. Rigorous results exist for the limiting distribution of D_2 as $n \to \infty$ in certain regimes. For pairs of Bernoulli texts with non-uniform letter distributions, the limiting distribution is compound Poisson in the regime $k > 2 \log_b n + \text{const.}$ [7], and normal in the regime $k < 1/2 \log_b n + \text{const}$. Here $b = p_2^{-1}$.

In earlier numerical analyses [4], we tested the accuracy with which k-word matches are able to measure the relatedness of artificially evolved sequences. Calculations of the optimum word size k for a range of sequence lengths n, showed that optimum word sizes generally fall between the two parameter regimes for which the asymptotic behaviour of D_2 is known. Our purpose here is to perform numerical experiments to fill in the gap in the biologically relevant parameter regime between the asymptotically normal and compound Poisson asymptotic behaviours, and to find accurate and practical approximations to the distribution of D_2 in this parameter region. In particular, we are concerned with accurately reproducing the region of the tail corresponding to classical significance levels (0.001%, 0.01%, . . .), both for the distribution of D_2, and for its extreme value distribution that is used for determining p-values in database searches.

3 Simulations of the empirical distribution

The distribution of D_2 was simulated for a number of combinations of sequence size n, word size k, alphabets \mathcal{A} and sequence composition f_a. For nucleic acid sequences, word sizes close to the optimal word size were chosen, based on computation of the optimal word size of D_2 [4]. We focused on sequence sizes typical of ESTs, whole genome shotgun sequencing trace pairs, CDSs, and mRNAs ($100 \leq n \leq 3200$ bases). For protein amino acid sequences, the optimal word sizes
and a letter composition equal to the average of the proteins encoded by the human genome where determined using the same method. For protein sequences of length up to $n = 400$ the optimum word size was $k = 3$, and for longer sequences up to $n = 3200$ the optimum word size was $k = 4$. The sequence sizes for proteins ranged from small peptides to large proteins (10 to 2560 residues). Sequences were simulated with uniform and non-uniform letter distributions.

For each combination of parameters, $N_{\text{sample}} = 10^6$ pairs of Bernoulli text sequences were generated. The extreme value distribution was simulated by taking the largest value of 100 comparisons N_{sample} times. The code for the simulations was written in ANSI C and is available from the author’s website [1].

4 Comparison between empirical and hypothesised distributions

Previous studies of the D_2 statistic used Kolmogorov-Smirnov tests [3] to compare the empirical distribution of D_2 with its theoretical asymptotic distributions (normal or compound-Poisson) [7, 2]. These studies, however, have been in error for the following reason. Care must be taken when using the Kolmogorov-Smirnov test to pre-specify the parameters of the distribution being compared. If instead, parameters are estimated from the empirical distribution, the p-values obtained will be overestimated (see Appendix II). Given that these earlier studies generally pre-dated the discovery of an analytic formula for the variance of D_2, they relied on means and variances estimated from empirical samples, and therefore led to overly optimistic claims of agreement between the distribution of the D_2 statistic for finite length sequences and its theoretical asymptotic limit.

We have repeated Kolmogorov-Smirnov tests of our empirically generated data, standardised with the analytically determined mean and variance of D_2, against the standard normal distribution. In general, we find p-values to be smaller than those reported in earlier studies. Similar results were obtained using the Shapiro-Wilk test, which tests for normality but does not require prior knowledge of the mean or variance. More importantly, we find that the information provided by such comparison is rather limited, as the p-value of the Kolmogorov-Smirnov test decreases noticeably with the sample size N_{sample}, since the true distribution of D_2 for finite sequence length n never exactly matches the hypothesised limiting distribution. We conclude that this type of measure does not give a panacea for how well (or how badly) a given hypothesised distribution will approximate the distribution of D_2.

Most practical uses of the D_2 statistic involve the calculation of a p-value resulting from the comparison of two sequences or from the comparison of a query
sequence to a sequence database. Our approach therefore is to compare a hypothe-
sised distribution with an empirically generated distribution of D_2 based on a
direct comparison of the p-values obtained with these two distributions. If the
p-values of a given hypothesised distribution agree well with those of the empiri-
cal distribution, this hypothesised distribution could be used to approximate the
relevant tail of the real distribution of D_2.

Suppose we wish to compare a postulated distribution function F_{hyp} with an
empirically generated sample $\{x_1, \ldots, x_{N_{sample}}\}$. To evaluate how accurately p-
values predicted by F_{hyp} would approximate those of the true distribution of D_2,
the quantiles

\[q_{hyp} = F_{hyp}^{-1}(1 - p_{hyp}) \]

(5)

are first calculated for a number of p-values, p_{hyp}. The frequency, in the simu-
lated data, of the occurrences of D_2 greater than q_{hyp} then provides an empirical
p-value,

\[p_{emp} = \frac{|\{x_i : x_i \geq q_{hyp}\}|}{N_{sample}}. \]

(6)

This is compared to p_{hyp}:

\[\delta = \left| \log \left(\frac{p_{emp}}{p_{hyp}} \right) \right|. \]

(7)

The comparisons focussed on p-values in the range of classical significance levels
($p_{hyp} \in \{0.001\%, 0.01\%, \ldots\}$). The theoretical distributions were parameterized
using the exact values of D_2’s mean and variance. Zero values of p_{emp} were replaced
by $1/N_{sample}$. The hypothesised distributions considered were the normal and
gamma distributions. The process is illustrated in Fig. 1.

When doing database searches, a query sequence is compared to several se-
quences, and the p-value of the best score of all these comparisons needs to be
estimated. The relevant statistic in this case is the extreme value, that is, the
maximum of a number of i.i.d. random variables. In addition to evaluating the tail
of the distribution of D_2 itself, the tail of the empirical extreme value distribu-
tion of D_2 was also compared to those of the the normal and the gamma distributions.
These two extreme value distributions belong to the Gumbel family and can be
easily computed (see Appendix III).

5 Results

5.1 Approximating the distribution of D_2

We first assessed the approximation of the distribution of D_2 with the normal
distribution. Figure 2 shows the results of the comparison of the p-values in the
case of nucleic sequences with a uniform letter distribution. Similar results were
Figure 1: Distribution of D_2 for $n = 800$, $k = 7$. The histogram shows the empirical distribution, and the continuous curve is a hypothesised gamma distribution with mean given by Eq. 4 and variance from the calculation in Appendix I. (a) Global view of the distribution. (b) Detail of the right hand tail of the distribution, the vertical bar shows the quantile q_{hyp}, the area under the curve is the corresponding level p_{hyp}, the hatched area is the empirical level p_{emp}.

obtained with non-uniform letter distributions. For sequences 1600 base pairs long or larger, the p-values from the hypothesised normal distribution were very close to the empirical p-values. For smaller sequences and large p-values (up to 1%), the normal and empirical p-values were of the same order of magnitude. For smaller p-values, the hypothesised normal distribution greatly overestimated the significance of D_2. A few other distributions were compared to the simulated distribution of D_2. The gamma distribution, in particular, approximated the distribution of D_2 better than the normal distribution did. In this case, the real p-values tended to be overestimated, and the relative difference increased as the p-values decreased (figure 3).

The trends were identical for the amino acid alphabet (figure 4): the normal distribution approximates the p-values relatively well for large sequences and moderate significance levels, but for shorter sequences and further into the tail of the distribution, p-values were strongly overestimated. The gamma distribution generally underestimated the p-values, but was closer to the simulated distribution of D_2 (figure 5).

5.2 Extreme value distribution

Figure 6 shows the results of comparison between the extreme value distribution of D_2, and the extreme values of the gamma and normal distributions in the case of a uniform nucleotide letter distribution for p_{hyp} in the range 0.1% to 10%. The extreme value distribution of D_2 is generally better approximated by the maximum of gamma distributions. Since it was noted in the previous section that the relative difference between the distribution of D_2 and the normal or the gamma distribution
Figure 2: Normal distribution versus empirical distribution of D_2, DNA alphabet with uniform letter distribution. Each table compares the two distributions at a given level of the hypothesised distribution, for a number of combinations of sequence lengths n and word sizes k. The value in each cell corresponds to the empirical level. The colour of each cell reflects the value of δ, as introduced in Eq. 7.
Figure 3: Gamma distribution versus empirical distribution of D_2, DNA alphabet with uniform letter distribution. See legend of figure 2.
Figure 4: Normal distribution versus empirical distribution of D_2, amino acid alphabet. See legend of figure [2].
Figure 5: Gamma distribution versus empirical distribution of D_2, amino acid alphabet. See legend of figure 2.
increased as the p-values decreased, it is not surprising that the approximations of the extreme value distribution of D_2 are not as good as the approximations to the distribution of D_2. The same trends were observed for nucleic sequences of non-uniform letters and amino acid sequences.

6 Discussion and Conclusions

This study introduces practical approximations to the distribution of the D_2 statistic and to the extreme value distribution of D_2. For sequences of intermediate length (around 800 base pairs, close to the average size of ESTs and sequencing traces) and for p-values between 5% and 0.1%, the Gamma distribution closely approximates the distribution of D_2. The Gamma distribution not only outperforms the normal distribution, but unlike the latter, it slightly overestimates the p-values, and thus would result in fewer false positives.

All the approximations presented here deteriorate as one moves further to the right hand of the tail (for smaller p-values). This is not, however, a major problem for any practical use of these approximations, where very small p-values would just have an indicative value.

Finally, our results show, that for longer sequences, such as genome assembly contigs, the normal approximation itself would be appropriate, even for very small p-values.

Appendices

I. Calculation of $\text{Var } D_2$

Using Eq. 2 the variance of D_2 is

$$\text{Var } (D_2) = \text{Var } \left(\sum_{(i,j) \in I} Y_{(ij)} \right) = \sum_{(i,j) \in I} \text{Var } (Y_{(ij)}) + \sum_{(i,j) \neq (i',j')} \text{Cov } (Y_{(ij)}, Y_{(i',j')}).$$

To simplify the notation from here on we set $u = (i, j)$, $v = (i', j')$. The first term in Eq. 8 depends only on

$$\text{Var } (Y_u) = E(Y_u^2) - (E(Y_u))^2 = E(Y_u) - (E(Y_u))^2 = p_t^k - p_t^{2k},$$

where p_t is defined in Eq. 3. Thus

$$\sum_{u \in I} \text{Var } (Y_u) = mn \left(p_t^k - p_t^{2k} \right).$$

11
Figure 6: Extreme value of Normal and Gamma versus empirical extreme value of D_2, DNA alphabet with uniform letter distribution. See legend of figure 2.
To calculate the covariances in the second term of Eq. (8) it is convenient to use the notation and terminology of [8], Chapter 11. Let \(J_u = \{ v = (i', j') : |i' - i| < k \text{ or } |j' - j| < k \} \) be the dependency neighbourhood of \(Y_u \). It can be decomposed into two parts, accordion and crabgrass, \(J_u = J_u^a \cup J_u^c \), where

\[
J_u^a = \{ v = (i', j') \in J_u : |i' - i| < k \text{ and } |j' - j| < k \} \quad \text{and} \quad J_u^c = J_u \setminus J_u^a.
\]

We compute the cross covariances, \(\text{Cov} (Y_u, Y_v) \), by looking at the following cases.

Case 1: \(v \notin J_u \). In this case, \(Y_u \) and \(Y_v \) are independent and hence \(\text{Cov} (Y_u, Y_v) = 0 \).

Case 2: \(v \in J_u^c \). Let \(u = (i, j) \) and \(v \in J_u^c \). Consider first the subcase \(v = (i + t, j') \), where \(|j - j'| \geq k \) and \(0 \leq t \leq k - 1 \). Then

\[
E(Y_u Y_v) = \Pr (Y_u = 1, Y_v = 1) = \sum_{(a_1, \ldots, a_{k+t}) \in A} (f_{a_1} \cdots f_{a_{k+t}})(f_{a_1} \cdots f_{a_k})(f_{a_1+t} \cdots f_{a_{k+t}})
\]

\[
= \left(\sum_{a \in A} f_a^2 \right)^2 t \left(\sum_{a \in A} f_a^3 \right) t \]

\[
= p_2^2 p_3^{k-t},
\]

(11)

where we have used the fact that word matches occur simultaneously at \(u \) and \(v \) if and only if the first \(k \) letters of \((A_1, \ldots, A_{i+k+t-1})\) are repeated at \((B_j, \ldots, B_{j+k-1})\) and the final \(k \) letters are repeated at \((B_{j'}, \ldots, B_{j'+k-1})\). This gives

\[
\text{Cov} (Y_u, Y_v) = E(Y_u Y_v) - E(Y_u)E(Y_v) = p_2^2 p_3^{k-t} - p_2^{2k}.
\]

(12)

Extending the argument to all \(-k + 1 \leq t \leq k - 1\) gives

\[
\text{Cov} (Y_u, Y_v) = p_2^{|t|} p_3^{k-|t|} - p_2^{2k}.
\]

(13)

By symmetry of the covariance function, the same result applies to the sub-case \(v = (i', j + t) \) where \(|i - i'| \geq k \) and \(|t| \leq k - 1 \).

The crabgrass contribution to the sum over covariance terms in Eq. (8) is then

\[
\sum_u \sum_{v \in J_u^c} \text{Cov} (Y_u, Y_v) = \sum_u \left(\sum_{|j' - j| \geq k} + \sum_{|j' - j| \leq k} \right) \sum_{t=-k+1}^{k-1} (p_2^{|t|} p_3^{k-|t|} - p_2^{2k})
\]

\[
= mn(m + n - 4k + 2) \left[p_3^k + 2 \sum_{t=1}^{k-1} p_2^t p_3^{k-t} - (2k - 1)p_2^{2k} \right]
\]

\[
= mn(m + n - 4k + 2) \left[p_3^k + 2p_2^2 p_3^{k-1} - p_2^{2(k-1)} - (2k - 1)p_2^{2k} \right]
\]

(14)
Case 3: v is on the main diagonal of J_a^u. That is, $v = (i + t, j + t)$, where $-k < t < k$ and $t \neq 0$ (see Fig. 7). In this case,

$$E(Y_uY_v) = \Pr(Y_u = 1, Y_v = 1) = \Pr(\text{a specific \,(k + |t|)-word match at the \,(i, j)\,position}) = \sum_{(a_1, \ldots, a_{k+|t|}) \in A^{k+|t|}} f_{a_1}^2 \times \cdots \times f_{a_{k+|t|}}^2 = p_2^{k+|t|},$$

(15)

and

$$\operatorname{Cov}(Y_u, Y_v) = E(Y_uY_v) - E(Y_u)E(Y_v) = p_2^{k+|t|} - p_2^{2k}. \quad (16)$$

The contribution to the sum over covariance terms in Eq. 8 from Case 3 is then

$$\sum_u \sum_{v \in \text{main diagonal, } v \neq u} \operatorname{Cov}(Y_u, Y_v) = 2mn \sum_{t=1}^{k-1} \left(p_2^{t+k} - p_2^{2k} \right) = 2mn \left[p_2^{k+1} \frac{1 - p_2^{k-1}}{1 - p_2} - (k-1)p_2^{2k} \right]. \quad (17)$$

Case 4: $v \in \text{one of the subregions I, II, III or IV of } J_a^u \text{ in Fig. 7}$. That is, $v = (i + t, j + s)$, where
I: $0 \leq s < t \leq k - 1$;

II: $-k + 1 \leq s < t \leq 0$;

III: $-k + 1 \leq t < s \leq 0$ or

IV: $0 \leq t < s \leq k - 1$.

Consider subregion I first. The word matches corresponding to the event “$Y_u = 1, Y_v = 1$” are illustrated in Fig. 8. For such a situation to occur, the $t + s$ letters $a_1, \ldots, a_s, b_1, \ldots, b_s$ and c_1, \ldots, c_{t-s} can be specified independently, and the remaining $2k$ letters within the four words must be repeats of c_1, \ldots, c_{t-s} as shown. The sequence c_1, \ldots, c_{t-s} is repeated $\nu = \lfloor (k - s)/(t - s) \rfloor$ complete times in sequence B and $\nu + 1$ complete times in sequence A, where $\lfloor \rfloor$ indicates the integer part. At the right hand end of these repeats, the sequence c_1, \ldots, c_ρ occurs once in Sequence A and once in Sequence B, where $\rho = (k - s) \mod (t - s)$.

Then

$$E(Y_u Y_v) = \Pr(Y_u = 1, Y_v = 1) = \sum_{(a_1, \ldots, a_s, b_1, \ldots, b_s, c_1, \ldots, c_{t-s}) \in A^{t+s}} f_{a_1}^2 \cdots f_{a_s}^2 f_{c_1}^{2\nu+3} \cdots f_{c_{t-s}}^{2\nu+3} \times f_{c_{\nu+1}}^{2\nu+1} \cdots f_{c_{t-s}}^{2\nu+1} f_{b_1}^2 \cdots f_{b_s}^2$$

$$= \left(\sum_{a \in A} f_a^2 \right)^s \left(\sum_{c \in A} f_c^{2\nu+3} \right)^\rho \left(\sum_{c \in A} f_c^{2\nu+1} \right)^{t-s-\rho} \left(\sum_{b \in A} f_b^2 \right)^s$$

$$= p_2^{2\nu+3} p_{2\nu+3}^\rho p_{2\nu+1}^{t-s-\rho}, \quad (18)$$

and

$$\text{Cov}(Y_u, Y_v) = E(Y_u Y_v) - E(Y_u)E(Y_v) = p_2^{2\nu+3} p_{2\nu+3}^\rho p_{2\nu+1}^{t-s-\rho} - p_2^{2k}. \quad (19)$$

It is straightforward to check that similar results apply to subregions II, III and IV, giving the contribution to the sum over covariances in Eq. 8 from Case 4 as

$$\sum_u \sum_{v \in R} \text{Cov}(Y_u, Y_v) = 4nm \sum_{t=1}^{k-1} \sum_{s=0}^{t-1} \left(p_2^{2s} p_{2\nu+3}^\rho p_{2\nu+1}^{t-s-\rho} - p_2^{2k} \right), \quad (20)$$

where $R = I \cup II \cup III \cup IV$ is the union of the four subregions of Case 4 and

$$\nu = \left\lfloor \frac{k - s}{t - s} \right\rfloor, \quad \rho = (k - s) \mod (t - s). \quad (21)$$

Case 5: $v \in$ one of the subregions V or VI of J_u in Fig. 7 That is, $v = (i+t, j+s)$, where
Figure 8: Word match configuration corresponding to Case 4(I). If the letters \(a_1, \ldots, a_s, b_1, \ldots, b_s\) and \(c_1, \ldots, c_{t-s}\) are specified, the remaining letters within the four words must be repeats of \(c_1, \ldots, c_{t-s}\) as shown, the final repeat being truncated at the same point in both Sequence \(A\) and Sequence \(B\).
Figure 9: Word match configuration corresponding to Case 5(V). If the letters \(a_1, \ldots, a_t, b_1, \ldots, b_r\) are specified, the remaining letters within the four words must be repeats of \(a_1, \ldots, b_r\) in Sequence A and \(b_1, \ldots, a_t\) in sequence B, the final repeat being truncated at the \((k+t)\)th or \((k+r)\)th position respectively.
V: $1 \leq t \leq k - 1$, $-k + 1 \leq s \leq -1$;

VI: $1 \leq s \leq k - 1$, $-k + 1 \leq t \leq -1$.

Consider subregion V first. The word matches corresponding to the event "$Y_u = 1, Y_v = 1$" are illustrated in Fig. 9. Set $r = -s$. For the event to occur, the affected block of length $t + k$ in Sequence A must consist of repeats of a sequence $(a_1, \ldots, a_t, b_1, \ldots, b_r)$ where a_1, \ldots, a_t and b_1, \ldots, b_r are independently specified letters. The final repeat is truncated at the $(k + t)$th letter. The affected block in sequence B must consist of repeats of the sequence $(b_1, \ldots, b_r, a_1, \ldots, a_t)$, the final repeat being truncated at the $(k + r)$th letter.

Let l_i, $i = 1, \ldots, t$ be the total number of times the letter a_i occurs and m_j, $j = 1, \ldots, r$ be the total number of times the letter b_j occurs in the two blocks in Fig. 9. By noting that the stretches of length k not including the first t letters of the A-block or not including the first r letters of the B-block each contain $\lfloor k/(r + t) \rfloor$ complete repeats of all $s + t$ independent letters plus a final k mod $(r + t)$ remaining letters at the right hand end, we arrive at

$$l_i = 1 + 2\eta + \begin{cases} 1 & \text{if } i \leq \zeta \\ 0 & \text{otherwise} \end{cases} + \begin{cases} 1 & \text{if } i \leq \zeta - r \\ 0 & \text{otherwise} \end{cases},$$

$$m_j = 1 + 2\eta + \begin{cases} 1 & \text{if } j \leq \zeta \\ 0 & \text{otherwise} \end{cases} + \begin{cases} 1 & \text{if } j \leq \zeta - t \\ 0 & \text{otherwise} \end{cases},$$ (22)

where

$$\eta = \left\lfloor \frac{k}{r + t} \right\rfloor, \quad \zeta = k \text{ mod } (r + t).$$ (23)

Then

$$E(Y_u Y_v) = Pr(Y_u = 1, Y_v = 1)$$

$$= \sum_{(a_1, \ldots, a_t, b_1, \ldots, b_r) \in A^{t + r}} f_{a_1}^{l_1} \ldots f_{a_t}^{l_t} f_{b_1}^{m_1} \ldots f_{b_r}^{m_r}$$

$$= \left(\sum_{a \in A} f_a^{l_1} \right) \ldots \left(\sum_{a \in A} f_a^{l_t} \right) \left(\sum_{b \in A} f_b^{m_1} \right) \ldots \left(\sum_{b \in A} f_b^{m_r} \right)$$

$$= \left(\prod_{i=1}^{t} p_{l_i} \right) \left(\prod_{j=1}^{r} p_{m_j} \right),$$ (24)

and

$$\text{Cov}(Y_u, Y_v) = E(Y_u Y_v) - E(Y_u)E(Y_v) = \left(\prod_{i=1}^{t} p_{l_i} \right) \left(\prod_{j=1}^{r} p_{m_j} \right) - p_2^{2k}. $$ (25)
A similar result holds for subregion VI. The contribution to the sum over covariances in Eq. 8 from Case 5 is then

$$\sum_u \sum_{v \in S} \text{Cov}(Y_u, Y_v) = 2nm \sum_{r,t=1}^{k-1} \left[\prod_{i=1}^{t} p_{l_i} \right] \left[\prod_{j=1}^{r} p_{m_j} \right] - p_2^{2k} \right], \quad (26)$$

where $S = V \cup VI$ is the union of the two subregions of Case 5 and l_i and m_j are given by Eq. 22.

Finally, by Eq. 8 the variance of D_2 is given by the sum of the right hand sides of Eqs. 10, 14, 17, 20 and 26.

II. Consequences of failing to pre-specify parameters in the Kolmogorov-Smirnov test

Given a random sample of observations $X_1, X_2, \ldots, X_{N_{\text{sample}}}$, the Kolmogorov-Smirnov test [3] gives p-values for the null hypothesis that the observations are associated with pre-specified distribution function F_{hyp}. The two-sided version of the test considered here uses as a test statistic $\sup_i |F_{\text{hyp}}(X_i) - S(X_i)|$, where S is the empirical cumulative distribution function based on the observations. Under the null hypothesis the p-values obtained are uniformly distributed on the interval [0, 1].

Importantly, if the hypothesised distribution F_{hyp} is not fully pre-specified, but relies on estimates from the sample, the reported p-values will not be uniformly distributed under the null hypothesis. To illustrate this, we have generated a set of 10,000 independent samples of $N_{\text{sample}} = 2500$ random numbers from a standard normal distribution, and applied the two-sided Kolmogorov-Smirnov test to each sample using the R function \texttt{ks.test}. Histograms of the p-values obtained are shown in Fig. 10. In the first plot each sample was tested against the standard normal $N(0, 1)$, whereas in the second plot each sample was tested against a normal distribution whose mean and variance was estimated from the sample. We see that in this situation, where the null hypothesis is true, but the Kolmogorov-Smirnov test is applied incorrectly, p-values are skewed heavily towards 1.

In a second test to see whether incorrect use of the Kolmogorov-Smirnov test can lead to an overly optimistic indication of agreement with a hypothesised distribution, we generated a set of 10,000 independent samples of $N_{\text{sample}} = 2500$ random numbers from a Gamma distribution with mean 10 and variance 1. This distribution is close to, but not identical with, the normal distribution $N(10, 1)$. The third and fourth histograms in Fig. 10 are of p-values obtained from application of the Kolmogorov-Smirnov test against a pre-specified $N(10, 1)$, and against a normal distribution with mean and variance estimated from the sample respectively. The third plot is an indication the distribution of p-values that will result if the Kolmogorov-Smirnov test for normality is applied correctly to this non-normal
Figure 10: Histograms of p-values obtained from the Kolmogorov-Smirnov test applied to artificially generated data tested against a normal distribution. From top to bottom the plots are (i) standard normal data, parameters of the hypothesised distribution pre-specified; (ii) standard normal data, parameters of the hypothesised distribution estimated from the data; (iii) gamma distributed data with mean 10 and variance 1, parameters of the hypothesised distribution pre-specified; and (iv) gamma distributed data with mean 10 and variance 1, parameters of the hypothesised distribution estimated from the data.
data. Again we see that p-values are overestimated in the fourth plot when the test is used incorrectly.

III. Limiting distribution of the maximum of N i.i.d. random variables

We are interested in the limiting distribution for N large of the random variable

$$X_{\text{max}} = \max_i X_i, \quad (27)$$

where $X_i, i = 1, \ldots, N$ are i.i.d. random variables with common density function f_X and distribution function

$$F_X(x) = \int_{-\infty}^x f_X(\xi)d\xi. \quad (28)$$

The general theory of extreme value distributions is given in the book by Gumbel [5], Chapter 5.2. For distributions of “type I”, which includes the normal and gamma distributions, the distribution function of X_{max}, namely $(F_X(x))^N$, asymptotes to the double exponential distribution function

$$G(x) = \exp(-e^{-y}), \quad (29)$$

where the reduced largest value is defined as

$$y = \alpha_N(x - u_N). \quad (30)$$

Here u_N, called the characteristic largest value, is determined by the condition that in N observations of X, the expected number of values greater than or equal to u_N is unity. It is the solution to the equation

$$F_X(u_N) = 1 - \frac{1}{N}, \quad (31)$$

and for the case of the normal and gamma distribution is easily found using the R function `qnorm()` and `qgamma()` respectively. The parameter α_N is called the extremal intensity function and is given by

$$\alpha_N = N f_X(u_N). \quad (32)$$

Acknowledgement

We thank Professors Alan Welsh and Chris Field for inspiring discussions. This work was funded in part by ARC Discovery Grant DP0559260.
References

[1] http://dayhoff.anu.edu.au/~sf/k_words.

[2] C. J. Burden, M. R. Kantorovitz, and S. R. Wilson. Approximate word matches between two random sequences. *Annals of Applied Probability*, 18(1):1–21, 2006.

[3] W.J. Conover. *Practical Nonparametric Statistics*. John Wiley and Sons, 1999.

[4] S. Forêt, M. R. Kantorovitz, and C. J. Burden. Asymptotic behaviour and optimal word size for exact and approximate word matches between random sequences. *BMC Bioinformatics*, 7 Suppl 5:S21, 2006.

[5] E. J. Gumbel. *Statistics of Extremes*. Columbia University Press, New York, 1958.

[6] M. R. Kantorovitz, G. E. Robinson, and S. Sinha. A statistical method for alignment-free comparison of regulatory sequences. *Bioinformatics*, 23(13):i249–55, 2007.

[7] R. A. Lippert, H. Huang, and M. S. Waterman. Distributional regimes for the number of k-word matches between two random sequences. *Proc Natl Acad Sci USA*, 99(22):13980–9, 2002.

[8] M. S. Waterman. *Introduction to Computational Biology*. Chapman and Hall, 1995.

Vitae

Sylvain Forêt

Sylvain Forêt graduated in Invertebrates Physiology and Computer Science at the INAP-G and Université Pierre et Marie Currie in Paris, France in 1998. He received his PhD in molecular biology and biochemistry from the Australian National University in Canberra, Australia in 2007.

Susan R. Wilson

Susan Wilson obtained her B.Sc. from the University of Sydney in 1968, and her Ph.D. from the Australian National University in 1972. She is an elected member of the International Statistical Institute, elected Fellow of the American Statistical Association and of the Institute of Mathematical Statistics. She has been President, International Biometric Society.
Conrad J. Burden

Conrad J. Burden received his B.Sc. in applied mathematics from the University of Queensland in 1978, his Ph.D. in theoretical physics from the Australian National University in 1983, and is a Fellow of the Australian Institute of Physics. For the first 16 years of his academic career his research interests centred on subatomic particle physics and quantum field theory. After a brief sojourn in the IT industry he made the transition to bioinformation science in 2003. He is currently a Fellow in the Centre for Bioinformation Science at the Australian National University where his research interests include modelling of oligonucleotide microarrays, alignment free sequence comparison methods, gene regulation and protein structure.