Is There Emergence of β-Lactam Antibiotic-Resistant Streptococcus pyogenes in China?

Dingle Yu 1,2,* Yuejie Zheng 2,* Yonghong Yang 1,2

1Laboratory of Microbiology and Immunology, Beijing Children’s Hospital Affiliated to Capital Medical University, Beijing, People’s Republic of China; 2Department of Respiratory, Shenzhen Children’s Hospital, Shenzhen, People’s Republic of China

*These authors contributed equally to this work

Abstract: Streptococcus pyogenes is regarded as susceptible to β-lactam antibiotics. The guidelines of the Clinical and Laboratory Standards Institute (CLSI) are widely recognized and have long-recommended penicillin for treatment of S. pyogenes infections. There is no CLSI guideline for the treatment of S. pyogenes infections that have intermediate susceptibility or resistance to penicillin. However, there have been several reports of S. pyogenes isolates that are nonsusceptible or even resistant to β-lactam antibiotics, mostly from Chinese journals. The purpose of this commentary is to show data from the literature which suggests the presence of S. pyogenes isolates that are not susceptible to β-lactam antibiotics and whether these strains are really nonsusceptible to β-lactam antibiotics and the presence of mutation in the pbp2x gene requires further research and confirmation.

Keywords: Streptococcus pyogenes, GAS, β-lactam, antibiotic resistance, China

Introduction

Streptococcus pyogenes, also called group A Streptococcus (GAS), is a major human pathogen that can cause a broad spectrum of acute infections. Traditionally, S. pyogenes was regarded as susceptible to β-lactam antibiotics, including penicillins and cephalosporins. Thus, penicillin is administered as a first-line antibiotic, and macrolides are an alternative option. 1 However, there have been several reports of the emergence of S. pyogenes isolates with resistance to β-lactam antibiotics or reduced susceptibility to penicillin. These findings require confirmation. What is the actual situation? We will address this issue by reviewing the literature.

Search Strategy and Selection Criteria

Data for this review were identified by searches of MEDLINE, Current Contents, PubMed, Wanfang, and references from relevant articles using the search terms “antibiotic”, “resistance”, “surveillance”, “Streptococcus pyogenes” and “group A streptococci”. Abstracts and reports from meetings were included only when they related directly to previously published work. Only articles published in the English language between 1995 and 2019 were included. Moreover, the references of all identified articles were searched for further articles. Finally, the search was restricted to manuscripts that were published in China up to May 2020.

Reports of S. pyogenes That is Nonsusceptible to β-Lactam Antibiotics

There have been several reports of the emergence of S. pyogenes isolates that are nonsusceptible or even resistant to β-lactam antibiotics, most of which were...
Table 1 Publications Reporting the Percentages of Resistance (R) and Intermediate Susceptibility (I) to β-Lactam Antibiotics in Isolates of *Streptococcus pyogenes* in China

Year	Strain Number	Antibiotics	R (%)	I (%)	References
2002	33	Ampicillin	10.0		[7]
2006	334	Penicillin	NA	NA	[8]
2006	17	Cefotaxime	11.1	NA	[9]
2006	17	Ceftriaxone	17.6	NA	[9]
2007	308	Ceftriaxone	2.7	NA	[10]
2007	308	Penicillin	0.3	NA	[10]
2008	328	Cefotaxime	3.4	NA	[11]
2008	328	Ceftriaxone	2.6	NA	[11]
2008	328	Penicillin	0.3	NA	[11]
2008	491	Cefotaxime	4.1	NA	[12]
2008	491	Ceftriaxone	2.9	NA	[12]
2008	491	Penicillin	0.2	NA	[12]
2008	487	Ceftriaxone	2.9	NA	[13]
2008	487	Penicillin	0.7	NA	[13]
2008	61	Cefotaxime	19.7	NA	[14]
2008	51	Ceftriaxone	13.7	NA	[14]
2008	33	Cefuroxime	12.1	NA	[14]
2008	202	Ampicillin	6.9	0	[15]
2008	210	Cefuroxime	1.4	NA	[15]
2008	29	Cefotaxime	3.4	0	[16]
2008	29	Ceftriaxone	6.9	0	[16]
2008	52	Penicillin	7.7	0	[16]
2008	18	Cefazolin	5.6	0	[17]
2008	30	Cefotaxime	13.3	0	[17]
2008	53	Ceftriaxone	11.3	0	[17]
2008	19	Cefuroxime	5.3	NA	[17]
2009	491	Cefotaxime	4.1	NA	[18]
2009	491	Ceftriaxone	2.9	NA	[18]
2009	491	Penicillin	0.2	NA	[18]
2009	423	Cefotaxime	0.8	NA	[19]
2009	423	Ceftriaxone	1.5	NA	[19]
2009	423	Penicillin	0.2	NA	[19]
2009	426	Ceftriaxone	2.0	NA	[20]
2010	122	Ampicillin	NA	NA	[21]
2010	122	Cefotaxime	NA	NA	[21]
2010	122	Ceftriaxone	NA	NA	[21]
2010	122	Penicillin	NA	NA	[21]
2010	250	Ceftriaxone	4.5	NA	[22]
2010	265	Cefotaxime	2.9	NA	[23]
2010	265	Ceftriaxone	3.7	NA	[23]
2010	265	Penicillin	0.4	NA	[23]
2010	12	Cefazolin	8.3	0	[24]
2010	68	Cefotaxime	14.7	5.9	[24]
2010	74	Ceftriaxone	9.5	5.4	[24]
2010	10	Cefuroxime	0	10.0	[24]
2011	253	Cefotaxime	6.1	NA	[25]
2011	253	Ceftriaxone	8.9	NA	[25]
2011	253	Cefuroxime	0.5	NA	[25]
2011	253	Penicillin	1.2	NA	[25]

(Continued)
Year	Strain Number	Antibiotics	R (%)	I (%)	References
2011	239	Ceftriaxone	11.2	NA	26
2011	239	Penicillin	0.9	NA	26
2011	220	Ampicillin	65.0	NA	27
2011	383	Cefazolin	30.8	NA	27
2011	708	Cefepime	17.8	NA	27
2011	545	Cefotaxime	21.3	NA	27
2011	660	Ceftriaxone	31.8	NA	27
2011	407	Penicillin	18.7	NA	27
2012	584	Cefuroxime	0.2	NA	28
2012	34	Cefepime	3.3	NA	29
2012	34	Cefotaxime	3.7	NA	29
2012	209	Cefprozil	0.5	NA	30
2012	209	Ceftriaxone	3.5	NA	30
2012	209	Penicillin	1.5	NA	30
2012	29	Cefotaxime	10.3	NA	31
2012	41	Ceftriaxone	22.0	NA	31
2012	12	Cefuroxime	8.3	NA	31
2012	400	Penicillin	9.2	NA	32
2012	138	Cefotaxime	43.5	NA	33
2012	150	Ceftriaxone	42	NA	33
2012	39	Penicillin	35.9	NA	33
2012	32	Ampicillin	3.1	NA	34
2012	37	Cefotaxime	10.8	NA	34
2012	37	Ceftriaxone	5.4	NA	34
2012	50	Cefotaxime	54.0	4.0	35
2012	49	Ceftriaxone	42.9	12.2	35
2012	87	Penicillin	16.1	1.1	35
2012	248	Cefotaxime	1.2	NA	36
2012	248	Ceftriaxone	2.5	NA	36
2012	248	Cefuroxime	0.8	NA	36
2012	248	Penicillin	1.3	NA	36
2013	238	Cefotaxime	25.7	0	37
2013	238	Ceftriaxone	12.5	0	37
2014	558	Cefepime	3.5	NA	38
2014	558	Cefotaxime	0.6	NA	38
2014	558	Ceftriaxone	1.6	NA	38
2014	558	Cefuroxime	0.2	NA	38
2014	558	Penicillin	0.8	NA	38
2014	193	Cefotaxime	5.0	NA	39
2014	193	Ceftriaxone	2.4	NA	39
2014	193	Penicillin	2.9	NA	39
2014	13	Cefotaxime	15.4	0	40
2014	20	Penicillin	10.0	0	40
2015	456	Ceftriaxone	1.3	NA	41
2016	2551	Cefotaxime	0.1	NA	42
2016	2551	Ceftriaxone	0.1	NA	42
2016	2551	Penicillin	0.2	NA	42
2016	68	Penicillin	1.5	NA	43
2018	3589	Cefotaxime	0.2	NA	44
2018	3589	Ceftriaxone	2.5	NA	44
2018	3589	Penicillin	0.2	NA	44

Abbreviation: NA, no data.
published in Chinese journals between 2002 and 2018. Most of these reports were from the large Antimicrobial Surveillance Network (CHINET) in China and were published in Chinese Journals (Table 1). Our examination of the literature indicated only a few isolates of *S. pyogenes* outside of China were not susceptible to β-lactam antibiotics. A study in Mexico reported diminished susceptibility (increased MIC) to penicillin (0.25 to 0.75 µg/mL) in 10 (5%) isolates, a study in India identified 7 of 34 strains (20.6%) that were nonsusceptible to penicillin (MICs of 0.19 to 0.25 µg/mL), and a study in Japan found 2 of 93 strains that were “resistant” to penicillin (MIC > 2.0 U/mL).

The standards of the Clinical and Laboratory Standards Institute (CLSI) are widely recognized, and its standard for treatment of *Streptococcus* infections with penicillin has not changed for many years. These standards consider an inhibition zone diameter of 24 mm or more or a MIC of 0.12 µg/mL or less as indicating susceptibility to penicillin, and by extension to other β-lactam antibiotics (ampicillin, amoxicillin, and cefaclor). The breakpoints for nonsusceptibility are slightly different for penicillin (MIC > 0.12 µg/mL), ampicillin (MIC > 0.25 µg/mL), and cefotaxime/ceftriaxone (MIC > 0.5 µg/mL). However, there is no specific CLSI standard for the use of penicillin for the treatment of patients who have isolates with intermediate susceptibility or resistance.

We read with great interest of a study that investigated 7025 genome sequences of *S. pyogenes* strains and identified 137 strains that had 37 nonsynonymous mutations in 36 codons in the *pbp2x* gene. The authors proposed that decreased β-lactam susceptibility was geographically widespread in strains with common *emm* gene subtypes. Coincidentally, Vannice et al also recently reported two nearly identical GAS isolates, each with the same rare mutation that led to elevated β-lactam MICs and an invasive infection. The two nearly identical clinical *S. pyogenes* isolates had the subtype *emm*43.4 and a *pbp2x* missense mutation (T553K).

Conclusion

Traditionally, *S. pyogenes* was regarded as susceptible to β-lactam antibiotics. However, many publications, mostly from China (Table 1), have reported intermediate susceptibility or even resistance to β-lactam antibiotics, but without confirmation. Whether these strains are really nonsusceptible to β-lactam antibiotics, and whether they really have *pbp2x* mutations will require further research and confirmation.

Author Contributions

YY conceived the idea. DY and YZ were responsible for the concept and contributed to the manuscript. All authors reviewed and agreed with the final manuscript.

All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; gave final approval of the version to be published; and agree to be accountable for all aspects of the work.

Funding

This research was funded by Sanming Project of Medicine in Shenzhen (SZSM201512030), Shenzhen Key Medical Discipline Construction Fund(SZK032).

Disclosure

Dr Yonghong Yang reports grants from Shenzhen city government, during the conduct of the study. The authors report no other conflicts of interest in this work.

References

1. Camara M, Dieng A, Boye CSB. Antibiotic susceptibility of *Streptococcus pyogenes* isolated from respiratory tract infections in Dakar, Senegal. *Microbiol Insights*. 2013;6:71–75. doi:10.4137/MBI. S12996
2. Amabile-Cuevas CF, Hermida-Escobedo C, Vivar R. Comparative in vitro activity of moxifloxacin by E-test against Streptococcus pyogenes. *Clin Infect Dis*. 2001;null(Supplement 1):S30–32. doi:10.1086/319373
3. Capoor MR, Nair D, Deb M, et al. Resistance to erythromycin and rising penicillin MIC in Streptococcus pyogenes in India. *Jpn J Infect Dis*. 2006;59(5):334–336.
4. Ogawa T, Terao Y, Sakata H, et al. Epidemiological characterization of *Streptococcus pyogenes* isolated from patients with multiple onsets of pharyngitis. *FEMS Microbiol Lett*. 2011;318(2):143–151. doi:10.1111/j.1574-6968.2011.02252.x
5. Musser JM, Beres SB, Zhu L, et al. Reduced in vitro susceptibility of streptococcus pyogenes to β-lactam antibiotics associated with mutations in the *pbp2x* gene is geographically widespread. *J Clin Microbiol*. 2020;58(4):e01993–01919. doi:10.1128/JCM.01993-19
6. Vannice K, Ricaldi J, Nanduri S, et al. Streptococcus pyogenes *pbp2x* mutation confers reduced susceptibility to β-lactam antibiotics. *Clin Infect Dis*. 2019.
7. Shanghai surveillance of bacterial resistance working group. Surveillance of bacterial resistance in Shanghai. *Chinese J Infect Chemother*. 2002;2:1–9.
8. Zhu D, Wang F, Zhang Y. Surveillance of bacterial resistance in hospitals of Shanghai during 2005. *Chinese J Infect Chemother*. 2006;6:371–376.
9. Wang F. CHINET 2005 surveillance of bacterial resistance in China. *Chinese J Infect Chemother*. 2006;6:289–295.
10. Zhu D, Zhang Y, Wang F. Surveillance of bacterial resistance in Shanghai hospitals during 2006. *Chinese J Infect Chemother*. 2007;7:393–399.
11. Wang F. CHINET 2006 surveillance of bacterial resistance in China. *Chinese J Infect Chemother*. 2008;8:1–9.
12. Wang F, Zhu D, Hu F, et al. CHINET 2007 surveillance of bacterial resistance in China. *Chinese J Infect Chemother.* 2008;8:325–333.

13. Zhu D, Zhang Y, Wang F. Surveillance of bacterial resistance from hospitals in Shanghai in 2007. *Chinese J Infect Chemother.* 2008;8:401–410.

14. Wang J, Xiao Y. Mohnarin report 2006–2007: bacterial distribution and resistance in bloodstream infections. *Chin J Nosocomiology.* 2008;18:1238–1242.

15. Xiao Y, Wang J, Zhao C, et al. Mohnarin bacterial resistance surveillance 2006–2007. *Chin J Nosocomiology.* 2008;18:1051–1056.

16. Zhao C, Xiao Y. Mohnarin report 2006–2007: bacterial resistant surveillance among inpatients of non-ICU departments in China. *Chin J Nosocomiology.* 2008;18:1228–1232.

17. Wang J, Xiao Y. Mohnarin report 2006–2007: bacterial distribution and resistance in outpatients and emergency patients. *Chin J Nosocomiology.* 2008;18:1233–1237.

18. Wang C, Xue J, Zhang H, et al. Distribution and antibiotic resistance of Streptococcus spp.: results of national CHINET program 2007. *Chinese J Infect Chemother.* 2009;9:180–184.

19. Wang F, Zhu D, Hu F, et al. CHINET 2008 surveillance of bacterial resistance in China. *Chinese J Infect Chemother.* 2009;9:321–329.

20. Zhu D, Zhang Y, Wang F, et al. Surveillance of bacterial resistance from hospitals in Shanghai during 2008. *Chinese J Infect Chemother.* 2009;9:401–411.

21. Wang J, Xiao Y. 2008 Mohnarin report: results of Streptococcus, Haemophilus and Moraxella catarrhalis resistance. *Chin J Antibiot.* 2010;35:543–547.

22. Zhu D, Zhang Y, Wang F, et al. Surveillance report of bacterial resistance from hospitals in Shanghai in 2009. *Chinese J Infect Chemother.* 2010;10:403–413.

23. Wang C, Wang A, Zhang H, et al. CHINET 2009 surveillance of antibiotic resistance in Streptococcus spp. in China. *Chinese J Infect Chemother.* 2010;10:426–429.

24. Wang J, Xiao Y. 2008 Mohnarin report: bacterial drug resistance surveillance of emergency outpatients. *Chin J Nosocomiology.* 2010;20:2393–2398.

25. Zhu D, Wang F, Hu F, et al. CHINET 2009 surveillance of bacterial resistance in China. *Chinese J Infect Chemother.* 2011;11:321–329.

26. Zhu D, Zhang Y, Wang F, et al. Surveillance of bacterial resistance in Shanghai hospitals during 2010. *Chinese J Infect Chemother.* 2011;11:436–445.

27. Zheng B, Lv Y, Wang S. Mohnarin report 2010: surveillance for antimicrobial resistance of gram-positive cocci. *Chin J Nosocomiology.* 2011;21:5128–5132.

28. Hu F, Zhu D, Wang F, et al. 2011 CHINET surveillance of bacterial resistance in China. *Chinese J Infect Chemother.* 2012;12:321–329.

29. Zhang X, Yang Q, Sun H, et al. Surveillance of bacterial resistance in Peking Union Medical College Hospital during the period from 2005 to 2010. *Chinese J Infect Chemother.* 2012;12:330–339.

30. Luo J, Yang Q, Yu Y, et al. Distribution and antimicrobial resistance of common pathogens isolated from respiratory secretions in CHINET 2010 surveillance in China. *Chinese J Infect Chemother.* 2012;12:340–347.

31. Chen Y, Shen P, Wei Z, et al. Mohnarin report of 2010: surveillance of bacterial resistance of outpatient and emergency patients. *Chin J Nosocomiology.* 2012;22:491–496.

32. Xiao Y, Shen P, Wei Z, et al. Mohnarin report of 2011: monitoring of bacterial resistance in China. *Chin J Nosocomiology.* 2012;22:4946–4952.

33. Yang Q, Chen X, Kong H, et al. Mohnarin report of 2010: surveillance of bacterial resistance in patients under 14 years old. *Chin J Nosocomiology.* 2012;22:497–502.

34. Chen Y, Shen P, Wei Z, et al. Mohnarin report of 2011: bacterial resistance surveillance of emergency and outpatient isolates. *Chin J Nosocomiology.* 2012;22:5482–5487.

35. Yang Q, Chen X, Kong H, et al. Mohnarin report of 2011: surveillance of bacterial resistance in patients aged between 0 and 14. *Chin J Nosocomiology.* 2012;22:5488–5492.

36. Wang F, Zhu D, Hu F, et al. 2012 CHINET surveillance of bacterial resistance in China. *Chinese J Infect Chemother.* 2013;13:321–330.

37. Zhou W, Kuang L, Su M, et al. 2012 annual report of Sichuan provincial antimicrobial resistant investigation net: surveillance of bacterial resistance in patients aged between 0 and 14. *Pract J Clin Med.* 2013;10:66–71.

38. Yang Y, Zhang L, Wang L, et al. Ministry of health national antimicrobial resistant investigation net report of 2011: bacterial resistance surveillance in patients under 14 years old. *Chin J Clin Pharmacol.* 2014;30:83–88.

39. Hu F, Zhu D, Wang F, et al. CHINET 2013 surveillance of bacterial resistance in China. *Chinese J Infect Chemother.* 2014;14:365–374.

40. Fan J, Dong L, Chen Z, et al. Clinical characteristics and antimicrobial resistance of invasive group A phemolytic streptococcus infection in children. *Chin J Pediatr.* 2014;52(1):46–50.

41. Hu F, Zhu D, Wang F, et al. CHINET 2014 surveillance of bacterial resistance in China. *Chinese J Infect Chemother.* 2015;15:401–410.

42. Hu F, Zhu D, Wang F, et al. Report of CHINET antimicrobial resistance surveillance program in 2015. *Chinese J Infect Chemother.* 2016;16:685–694.

43. Li Y, Lv Y, Xue F, et al. Antimicrobial susceptibility of gram-positive organisms: results from China antimicrobial resistance surveillance trial program, 2013–2014. *Chin J Lab Med.* 2016;39:120–129.

44. Hu F, Guo Y, Zhu D, et al. Antimicrobial resistance profile of clinical isolates in hospitals across China: report from the CHINET surveillance program, 2017. *Chinese J Infect Chemother.* 2018;18:241–251.