Abstract

Background: Higher insulin-like growth factor (IGF)-1 and lower IGF binding protein (BP)-3 levels have been associated with higher common cancer risk, including breast cancer. Dietary factors, genetic polymorphisms, and the combination of both may influence circulating IGF-1 and IGFBP-3 serum concentrations.

Methods: From September 2011 to July 2012, we collected demographic, reproductive and dietary data on 143 women (≥40 years). We genotyped IGF-1 rs1520220 and IGFBP-3 rs2854744 and measured circulating IGF-1 and IGFBP-3 levels in serum. Covariance analyses were used to estimate the associations of serum levels of IGF-1 and IGFBP-3, and the molar ratio of IGF-1 to IGFBP-3 with rs1520220 and rs2854744 genotypes. We subsequently assessed the combined influence of genetics and diet (daily intake of protein, fat and soy isoflavones) on IGF-1 and IGFBP-3 levels.

Results: Among women aged less than 50 years, circulating IGF-1 serum levels were significantly lower for those with CC genotype for IGF-1 rs1520220 than levels for those with the GC or GG genotypes (in recessive model: \(P = 0.007 \)). In gene-diet analyses among these women, we found carrying CC genotype for IGF-1 rs1520220 and high soy isoflavone intake tend to be associated with lower circulating IGF-1 levels synthetically (\(P = 0.002 \)). Women with GG or GC genotypes for IGF-1 rs1520220 and with low intake of soy isoflavones had the highest levels of circulating IGF-1 (geometric mean [95% CI]: 195 [37, 1021] μg/L). Comparatively, women with both the CC genotype and high soy intake had the lowest levels of circulating IGF-1 (geometric mean [95% CI]: 120 [38, 378] μg/L).

Conclusions: IGF-1 serum levels are significantly lower among women with the CC genotype for IGF-1-rs1520220 to lower women’s serum IGF-1 levels more.

Citation: Wang Q, Liu L, Li H, McCullough LE, Qi Y-n, et al. (2014) Genetic and Dietary Determinants of Insulin-Like Growth Factor (IGF)-1 and IGF Binding Protein (BP)-3 Levels among Chinese Women. PLoS ONE 9(10): e108934. doi:10.1371/journal.pone.0108934

Editor: Salvatore V. Pizzo, Duke University Medical Center, United States of America

Received January 6, 2014; **Accepted** September 5, 2014; **Published** October 6, 2014

Copyright: © 2014 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by the Ministry of Education Fundamental Research Foundation for Central Universities, P.R. China (grant no. 2010SCU21001). The URL of funder’s website is http://st.scu.edu.cn/index.aspx. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: lijiayuan@scu.edu.cn

† These authors contributed equally to this work.

* These authors share first authorship on this work.

Introduction

The insulin-like growth factor (IGF) -system mainly consists of IGF-1, IGF-2, IGF receptors (IGF-1R and IGF-2R), and six binding proteins (IGFBP-1-6). Within IGF system, IGF-1 and its main binding protein, IGFBP-3, are two key molecules for cellular proliferation, differentiation and apoptosis [1]. In addition to the regulation of normal cell growth, IGF systems have been implicated in carcinogenesis [2]. Results from in vivo carcinogenesis models and epidemiological studies indicate that high levels of circulating IGF-1 are associated with increased risk and progression of several common cancers, including breast [3–7], prostate [8–11], colorectal [12–15], and ovarian cancer [16–17] among others. The relationship between circulating IGFBP-3 levels and cancers have been inconsistent [14,16,18–22].

Circulating IGF-1 and IGFBP-3 levels are determined by both heritable and exogenous factors. Two twin studies estimated that approximately 40%–60% of inter-individual differences in circulating levels of IGF-1 and IGFBP-3 are attributed to heritable factors, such as single nucleotide polymorphisms (SNPs) [23–24]. Although there are many SNPs identified for IGF-1 (rs1520220, rs10735380, rs5742665, rs1549593, rs2373722, etc.) and IGFBP-3...
and 5, rs2854744, rs3110697, rs2132570, rs2270628, etc.) [25], SNP rs1520220, located in the third intron of IGF-1 gene, and rs2854744, in the promoter region of the IGFBP-3 gene, are consistently found to be associated with circulating IGF-1 and IGFBP-3 levels in Caucasians [26–29]. However, the associations of both SNPs with circulating IGF-1 and IGFBP-3 levels is not clear in the Chinese population as few studies have focused on this population. Exogenous factors, including both hormonal and nutritional, may have an important influence on circulating IGF-1 and IGFBP-3 levels [30]. Decreased levels of serum IGF-1 and IGFBP-3 were observed after chronic or acute energy restriction [31]. Several cross-sectional studies have found that serum IGF-1 concentrations are positively associated with higher total protein intake [32–34]. Soy isoflavone, a phytoestrogen, may act as selective ER modulators do by inhibiting IGF-1 concentrations or IGF system signaling [35].

In our previous studies, we mainly focused on breast cancer etiology and to be consistent with other studies in finding that nutrients, for example animal protein [36–37] may increase breast cancer risk, while high intake of soy products [38–39] may result in risk reduction. Given the associations of SNPs and dietary intake with circulating levels within the IGF system (IGF-1, IGFBP-3 and the molar ratio of IGF-1 to IGFBP-3), the hypothesis that genetic and nutritional factors may interact to effect serum concentrations of the IGF system and subsequent cancer risk warrants further investigation [30]. Several studies conducted among Caucasian women have examined the effects of nutritional factors and IGF polymorphisms on IGF serum levels [26,28,30,33–34]. However, to the best of our knowledge, no previous study has examined this issue in Chinese population in China, and previous studies did not focus on the interaction of genetic and environmental factors. In the present study, we examined the main effects of dietary intake and genetic polymorphisms on circulating IGF-1 and IGFBP-3 concentrations among women aged 40 years or older, a population with high breast cancer incidence in China (more than 42.3 per 100,000) [40]. Furthermore, we explored potential combined effects of dietary factors and gene polymorphisms on IGF-1 and IGFBP-3 concentrations.

Methods

Ethics Statement

The study protocol was approved by the Institutional Review Board at Sichuan University. All subjects provided written informed consent before completing the questionnaire survey and laboratory tests.

Study population

From September 2011 to July 2012, a total of 279 women aged 40 years and older sought the outpatient service for a physical examination from the Comprehensive Guidance Center of Women’s Health, Chengdu Women’s and Children’s Central Hospital. The women who were of Han ethnicity, had been living in Sichuan Province for over 20 years, had no history of bilateral ovariectomy, no hormonal contraceptive use, and no perimenopausal complaints. We further excluded women who declined to join the program, women with insulin-dependent diabetes mellitus, and women with diagnosed/history of malignancy, including breast, liver or ovarian cancer at baseline as these diseases may affect circulating IGF levels. Ultimately, 143 women were included in the study. To minimize possible impact of estrogens from periodical variation during the menstrual cycle on IGFs, all women were enrolled between the 3rd and 5th day from the beginning of their periods for blood sample collection.

Data collection

Information on socio-demographic and reproductive characteristics was collected using a structured questionnaire. A semi-quantitative dietary questionnaire, the Questionnaire of Health Related Dietary Habits, was designed to collect all participants’ long-term (≥5 years) dietary habits. Evaluation of reliability and structural validity for the questionnaire has been described in detail in our previous study [39]. In brief, we first calculated the total daily intake of energy, protein, fat, carbohydrate, dietary fiber, and soy isoflavones referring to the nutrient compositions listed in the Danone Institute China Diet Nutrition Evaluating System [41]. We subsequently calculated the daily intake of energy-adjusted dietary factors to prevent potential underreporting of dietary intake using residual methods [39]. According to Chinese Dietary Reference Intakes (DRI) [Chinese DRIs committee formulated in 2000] for 18–50 year old women with moderate physical labor [42], we used the following dichotimization for total daily energy (2300 kcal/day), protein (70 g/day) and fat intake (77 g/day). For those without recommended levels of dietary intake, the means of dietary intakes (167.0 g/day for carbohydrate, 19.8 g/day for dietary fiber and 11.6 mg/day for soy isoflavones) were selected as cut-off values of high/low intake.

Genotype analyses

Whole blood samples (5 mL) were obtained from participants via venipuncture into tubes containing ethylenediaminetetraacetic acid. Samples were stored at −20°C until DNA extraction. Genomic DNA was extracted from whole blood using TIANamp Blood DNA Kit (TIANGEN, Beijing). IGF-1 rs1520220 and IGFBP-3 rs2854744 were genotyped with TaqMan assays which were purchased from ABI (Applied Biosystems, Foster City, CA). All TaqMan assays were performed with the ABI 7500 thermal cycler (Applied Biosystems, Foster City, CA). According to manufacturers’ instructions. Duplicate aliquots from each blood sample were genotyped analyses. Coefficients of variation (CVs) for duplication were less than 10%. The intra- and inter-assay coefficients of variation were 4.9% and 12.8%, respectively, for IGF-1 at a concentration of 110 ng/ml. Intra and inter-assay coefficients of variation were 4.9% and 5.4%, respectively, for IGFBP-3 at a concentration of 4,900 ng/ml. The molar ratio, which may estimate the biologically active fraction of IGF-1, was calculated based on equation 1:

$$\text{IGF–1 : IGFBP–3 molar ratio} = \frac{(C_1 \times 0.13)}{(C_2 \times 0.036) \times 1000}$$
C1 and C2 are concentrations of IGF-1 and IGFBP-3, respectively. For IGF-1, 1 ng/ml is equal to 0.130 nM, and for IGFBP-3, 1 ng/ml is equal to 0.036 nM.

To ensure blinded laboratory analyses, participants were assigned a unique random ID number at each clinic visit.

Statistical analyses

We checked the Hardy–Weinberg equilibrium (HWE) among all women via Chi-square test. The measured total IGF-1 and IGFBP-3 levels were log transformed to reduce departures from the normal distribution and then described using the geometric mean (95% confidence interval [CI]). After making a scatter plot of IGF component levels (i.e. IGF-1, IGFBP-3, and the molar ratio of IGF-1 to IGFBP-3) by age, we found that IGF levels were relatively more centralized among women aged less than 50 years. Considering differences in sex steroid levels between two age groups, which may affect circulating IGF levels, we divided the participants into two subgroups for sub-group analyses: <50 years and ≥50 years. Independent-sample T-tests and Chi-square tests/Fisher’s exact tests were used to compare the demographic characteristics, and reproductive and dietary factors between age subgroups. Independent-sample T-tests were used to compare geometric means of IGF-1, IGFBP-3, and the molar ratio of IGF-1 to IGFBP-3 (equation 1), for each exposure of interest. Factors that were significantly associated with IGFBP-3 component levels were then adjusted for as potential confounders in the covariance analyses to test the differences of IGF component levels within gene-diet exposure groups. Referring to results from previous studies that noted carrying the CC genotype for IGF-1 rs1520220 was associated with lower IGF-1 levels in breast tissue among Chinese women [43], and that circulating levels of IGFBP-3 were significantly lower for CC or CA genotype carriers for IGF-1 rs2854744 than AA allele carriers [44], we analyzed the effects of circulating IGFBP-3 levels in women with low soy intake (groups 1 and 2: (geometric mean [95% CI]: 195 [37, 1021] μg/L), but these differences

IGF-1 rs1520220/IGFBP-3 rs2854744 genotypes and circulating IGF component levels

Among all women, the frequency of the C allele for IGF-1 rs1520220 and the C allele for IGFBP-3 rs2854744 were 56.6% and 27.1%, respectively. Genotypes of IGF-1 rs1520220 and IGFBP-3 rs2854744 did not deviate from HWE (IGF-1 rs1520220: χ² = 3.04, P = 0.08; IGFBP-3 rs2854744: χ² = 2.29, P = 0.13). Table 3 presents covariance analyses results of IGF-1 rs1520220 and IGFBP-3 rs2854744 genotypes in relation to circulating levels of IGF components. Among women <50 years, circulating IGF-1 levels were significantly lower for those carrying the CC genotype for IGF-1 rs1520220 than IGF-1 levels for those carrying GC or GG genotypes (recessive model: P = 0.007). We did not observe any association between IGFBP-3 rs2854744 genotypes and circulating IGFBP-3 level or the molar ratio.

Combination of IGF-1 rs1520220/IGFBP-3 rs2854744 genotypes and daily intake of energy-adjusted soy isoflavones and protein on circulating IGF component levels among women <50 years old

For women <50 years, those with both low intake of soy isoflavones and at least one variant G allele for IGF-1 rs1520220 had the highest levels of circulating IGF-1 (geometric mean [95% CI]: 195 [37, 1021] μg/L). Women who either had high intake of dietary soy or were homozygous for the major C allele had significantly lower levels of circulating IGF-1 (geometric mean [95% CI]: 160 [34, 753] μg/L and 167 [38, 723] μg/L, respectively). Women who had both high soy intake and were homozygous for the major C allele had the lowest levels of circulating IGF-1 (geometric mean [95% CI]: 120 [38, 378] μg/L) (Table 4, P = 0.002). As for combination of IGFBP-3 rs2854744 genotypes and soy isoflavone intake, we found higher IGFBP-3 levels in women with low soy intake (groups 1 and 2: geometric mean [95% CI]: 1832 [503, 6671] μg/L and 2014 [613, 6613] μg/L, respectively) than those women with high soy intake (groups 3 and 4: geometric mean [95% CI]: 1654 [663, 4124] μg/L and 1735 [641, 4096] μg/L, respectively), but these differences appear to be driven primarily by soy intake, as the overall effect of diet and genetics was not significant (P = 0.40). Although protein intake were found to be related to IGF system variables (Table 2), combinations of IGF-1 rs1520220/IGFBP-3 rs2854744 genotypes and daily intake of energy-adjusted protein were not associated with IGFBP-3 component levels (P = 0.05).

While dietary fiber intake seems to be positively related to the molar ratio of IGF-1 to IGFBP-3 in the ≥50 age group (Table 2), we did not analyze combinations of IGF-1 rs1520220/IGFBP-3...
rs2854744 genotypes and dietary fiber intake due to limited sample size in this age group.

Discussion

In this study, we aimed to reveal the genetic and dietary determinants of IGF-1 and IGFBP-3 in our population of Chinese women aged 40 years or older. We found that carrying CC genotype for IGF-1 rs1520220 may work alone or interact with dietary intake, for example, soy isoflavone intake, to decrease serum IGF-1 levels among women aged 50 years old. Since relatively high circulating IGF-1 expression, synthesis, and secretion, resulting in altered serum IGF levels; ii. Certain dietary factors (i.e. protein and fat intake) could affect IGFBP levels, and may also influence the binding ability of IGF-1 to IGFBP-1 by competing for active sites; iii. Dietary factors may indirectly affect the IGF system through interaction with genetic factors.

Soy food has consistently been characterized to have an anticancer effect [50], particularly in Asian populations where soy intake is relatively high. In vitro studies have shown that pharmacological doses of genistein, the main composition of soy isoflavones, may stimulate IGF-1R signaling human breast cancer cells [51]. Although we did not find associations between soy intake and serum IGF-1 as previous studies did [52], we observed that high soy intake enhanced the association between carrying CC genotype for IGF-1 rs1520220 and lower circulating IGF-1 levels among women aged <50 years. Since relatively high circulating IGF-1 concentration is associated with increased cancer risk [18-19], modulation of IGF-1 levels by soy isoflavone intake may be implemented as a risk reduction mechanism, particularly for breast cancer as reported in our previous studies [38-39]. We also hypothesized that IGFBP-3 polymorphisms may potentially interact with dietary intake, for example, soy isoflavone intake,

Table 1. Descriptive statistics of demographic, reproductive and insulin-like growth factors by age status.

Variables	<50 years	≥50 years	P value^a
BMI (kg/m²)^b	103	38	0.72
WHR^b	89	35	0.21
Age at menarche (years)^b	103	37	0.08
Passive smoking, yes, n (%)	69	25	0.73
Parity, ≥2, n (%)	16	7	0.69
Breast feeding, ≥3 months, n (%)	75	22	0.66
Total energy intake (kcal/day)^b	104	39	0.68
Protein intake (g/day)^{a, b}	104	39	0.17
Fat intake (g/day)^{a, b}	104	39	0.33
Carbohydrate intake (g/day)^{a, b}	104	39	0.47
Dietary fiber intake (g/day)^{a, b}	104	39	0.30
Soy isoflavone intake (mg/day)^{a, b}	104	39	0.32
Insulin-like growth factor-1 (µg/L)^c	104	39	0.25
Insulin-like growth factor binding protein-3 (µg/L)^c	104	39	0.38
IGF-1:IGFBP-3 molar ratio^c	104	39	0.09

^a The dietary key nutrient intakes, including protein, fat, carbohydrates, dietary fiber, and soy isoflavones are adjusted for energy by residual method; ^b mean ± standard deviation; ^c Geometric mean (95% confidence interval); ^d P value is based on T test for continuous variables and χ² test or Fisher’s exact test for categorical variables. Waist to hip ratio, WHR; Body mass index, BMI.

doi:10.1371/journal.pone.0108934.t001
Table 2. Relationship between geometric mean (95% CI) of insulin-like growth factor component levels with dietary intake.

Variables	N	IGF-1 (µg/L)	IGFBP-3 (µg/L)	IGF-1:IGFBP-3	
Overall					
Total energy intake (kcal/day)	<2300	130	181 (36,906)	1782 (580,5476)	367 (67,2015)
	≥2300	13	134 (36,498)	1874 (469,7492)	258 (66,1009)
P value		0.20	0.77	0.16	
Protein intake (g/day)	<70	93	138 (35,913)	1694 (525,5467)	380 (67,2161)
	≥70	50	173 (38,790)	1984 (679,5796)	315 (66,1499)
P value		0.85	0.12	0.22	
Fat intake (g/day)	<77	100	182 (34,981)	1834 (585,5746)	359 (65,1998)
	≥77	43	163 (42,633)	1692 (534,5362)	348 (69,1757)
P value		0.45	0.45	0.85	
Carbohydrate intake (g/day)	<167.0	70	163 (35,756)	1747 (577,5286)	337 (64,1779)
	≥167.0	73	190 (37,978)	1833 (561,5986)	375 (68,2060)
P value		0.25	0.62	0.46	
Dietary fiber intake (g/day)	<19.8	67	155 (37,647)	1793 (548,5873)	312 (61,1608)
	≥19.8	76	197 (36,1078)	1787 (587,5439)	399 (73,2180)
P value		0.07	0.97	0.09	
Soy isoflavone intake (mg/day)	<11.6	90	139 (36,1022)	1870 (541,6465)	372 (63,2193)
	≥11.6	53	151 (37,622)	1662 (642,4303)	329 (72,1504)
P value		0.09	0.21	0.39	
<50 years					
Total energy intake (kcal/day)	<2300	92	173 (37,816)	1840 (617,5485)	340 (64,1814)
	≥2300	12	133 (34,526)	1821 (435,7620)	264 (64,1086)
P value		0.28	0.95	0.33	
Protein intake (g/day)	<70	68	163 (38,711)	1700 (542,5334)	346 (63,1917)
	≥70	36	178 (34,934)	2129 (742,6111)	302 (65,1392)
P value		0.59	0.06	0.43	
Fat intake (g/day)	<77	68	176 (34,905)	1924 (623,5944)	330 (59,1844)
	≥77	36	154 (41,577)	1684 (547,5188)	330 (72,1521)
P value		0.41	0.26	0.99	
Carbohydrate intake (g/day)	<167.0	55	158 (34,724)	1774 (581,5421)	321 (67,1552)
	≥167.0	49	180 (38,849)	1911 (607,6022)	341 (60,1492)
P value		0.39	0.31	0.72	
Dietary fiber intake (g/day)	<19.8	54	153 (36,667)	1734 (508,5917)	319 (65,1575)
	≥19.8	50	186 (38,911)	1957 (714,5363)	342 (62,1905)
P value		0.22	0.29	0.68	
Soy isoflavone intake (mg/day)	<11.6	63	184 (38,889)	1934 (567,6600)	344 (64,1847)
	≥11.6	41	146 (34,620)	1699 (657,4393)	311 (62,1551)
P value		0.14	0.26	0.55	
≥50 years					
Total energy intake (kcal/day)	<2300	38	202 (35,1158)	1649 (499,5445)	443 (78,2512)
	≥2300	1	140	2650	191
P value		–	–	–	
Protein intake (g/day)	<70	25	226 (32,1618)	1677 (471,5971)	486 (84,2821)
	≥70	14	162 (33,496)	1655 (567,4835)	353 (66,1879)
P value		0.19	0.95	0.28	
Fat intake (g/day)	<77	32	196 (33,1180)	1656 (517,5305)	428 (79,2310)
	≥77	7	220 (50,968)	1729 (431,6945)	459 (58,3662)
P value		0.76	0.87	0.85	
Carbohydrate intake (g/day)	<167.0	15	183 (36,917)	1648 (548,4962)	400 (55,2905)
	≥167.0	24	212 (35,1306)	1682 (476,5943)	456 (93,2244)
and then influence circulating IGF component levels. However, we found negative results, which may be due partly to the limited sample in our study. This hypothesis deserves further study with a larger sample size.

Total energy and dietary protein have been shown to be positively associated with serum IGF levels [32–34]. We observed no associations between total energy and IGF component levels, although there was a borderline significant positive association for dietary protein and IGFBP-3, it was limited to women aged 50 years (Table 2). In this age group, positive results disappeared when we combined protein intake and IGF-1 rs1520220/IGFBP-3 rs2854744 genotypes. Few studies paid attention to the relationship of dietary fiber intake and circulating IGF levels. Gannet al. 2005 found low fat, high fiber dietary intake didn’t change circulatory IGF-1 or IGFBP-3 levels compared to the usual diet among women in Chicago after a intervention period of 12 menstrual cycles [53]. However, the main effect of dietary fiber intake isn’t clear yet. In our study, while we observed a possible relationship of high dietary fiber intake with increased molar ratio of IGF-1 to IGFBP-3 in the \(\geq 50 \) age group, relatively limited sample (\(N = 39 \)) may have limited our ability to ascertain the association of dietary fiber intake combined with IGF-1 rs1520220/IGFBP-3 rs2854744 genotypes. We believe that the effects of fiber intake on IGF system relationship of dietary fiber intake and circulating IGF levels.

Table 2. Cont.

Variables	N	IGF-1 (\(\mu \)g/L)	IGFBP-3 (\(\mu \)g/L)	IGF-1:IGFBP-3
\(<19.8 \) g/day		0.61	0.92	0.66
\(\geq 19.8 \) g/day		0.30	0.12	0.03
Soy isoflavone intake (mg/day)		0.46	0.59	0.66

Variables	N	IGF-1 (\(\mu \)g/L)	IGFBP-3 (\(\mu \)g/L)	IGF-1:IGFBP-3
IGF-1 GG+ CG	92	191 (35,1039)	1819(574,5765)	380(68,2115)
CC	51	152(39,589)	1738(558,5412)	316(63,1576)
P value		0.10	0.66	0.22
IGFBP-3 CC+CA	63	161(35,731)	1723(566,5251)	337(57,2009)
AA	79	187(36,963)	1838(567,5957)	368(74,1831)
P value		0.23	0.70	0.57

Table 3. Relationship between geometric mean (95% CI) of insulin-like growth factor component levels with IGF-1 and IGFBP-3 genotypes.

Variables	N	IGF-1 (\(\mu \)g/L)	IGFBP-3 (\(\mu \)g/L)	IGF-1:IGFBP-3
Overall				
IGF-1 GG+ CG	66	180(36,8980)	1907(634,5731)	341(61,1900)
CC	38	149(37,597)	1724(530,5605)	313(67,1450)
P value		0.007	0.16	0.46
IGFBP-3 CC+CA	45	164(34,800)	1759(558,5546)	337(55,2075)
AA	59	171(38,773)	1900(621,5812)	325(71,1489)
P value		0.76	0.44	0.80

<50 years

Variables	N	IGF-1 (\(\mu \)g/L)	IGFBP-3 (\(\mu \)g/L)	IGF-1:IGFBP-3
IGF-1 GG+ CG	26	224(34,1478)	1616(454,5754)	501(99,2534)
CC	13	160(44,591)	1781(629,5044)	325(50,2116)
P value		0.29	0.97	0.25

\(\geq 50 \) years

Variables	N	IGF-1 (\(\mu \)g/L)	IGFBP-3 (\(\mu \)g/L)	IGF-1:IGFBP-3
IGF-1 GG+ CG	18	153(39,597)	1638(575,4670)	337(59,1945)
CC	20	244(36,1667)	1666(434,6396)	528(99,2823)
P value		0.14	0.85	0.25

Insulin-like Growth Factor, IGF; Insulin-like Growth Factor Binding Protein, IGFBP.

\(^a \): Models among women \(<50 \) years were adjusted for WHR (waist hip ratio), passive smoking and protein intake; \(^b \): Models among women \(\geq 50 \) years were adjusted for age at menarche and dietary fiber intake.

doi:10.1371/journal.pone.0108934.t003
Table 4. Relationship between geometric mean (95% CI) of insulin-like growth factor component levels with IGF-1 and IGFBP-3 genotypes combined soy isoflavone and protein intake among women <50 years old.

Group	Dietary intake	IGF-1 genotypes	N	IGF-1 (μg/L)	IGFBP-3 (μg/L)	IGF-1: IGFBP-3	P value a				
Soy isoflavone intake											
1 low (<11.6)	GG+ CG	38	195 (37,1021)	206 (61,76916)	342 (60,1932)	CC+CA	27	174 (39,776)	183 (50,361)	344 (64,1832)	0.002
2 low (<11.6)	CC	25	167 (38,723)	174 (67,1779)	345 (67,1779)	AA	36	191 (36,997)	201 (61,6613)	343 (61,1901)	
3 high (≥11.6)	GG+ CG	28	160 (34,753)	170 (68,1917)	338 (60,1917)	CC+CA	18	149 (26,850)	165 (63,4124)	326 (61,2576)	
4 high (≥11.6)	CC	13	120 (38,378)	167 (500,4862)	257 (71,931)	AA	23	144 (31,480)	173 (61,4696)	299 (92,972)	
Protein intake											
1 low	GG+ CG	44	176 (38,830)	178 (5780,5477)	358 (61,2109)	CC+CA	31	159 (32,802)	159 (485,5240)	361 (53,2461)	
2 low	CC	24	141 (38,522)	156 (478,5107)	326 (65,1649)	AA	37	166 (42,650)	179 (591,5436)	335 (72,1560)	
3 high (≥70)	GG+ CG	22	187 (32,1083)	218 (786,6091)	309 (61,1569)	CC+CA	14	175 (37,83)	218 (836,5696)	289 (59,1425)	
4 high (≥70)	CC	14	164 (35,769)	204 (657,6346)	290 (70,1203)	AA	22	180 (31,1037)	209 (676,6499)	310 (68,1419)	

Insulin-like Growth Factor, IGF; Insulin-like Growth Factor Binding Protein, IGFBP.

a: Models among women <50 years were adjusted for WHR (waist hip ratio), passive smoking and protein intake.

doi:10.1371/journal.pone.0108934.t004
levels and corresponding cancer risk deserve further study. To our knowledge, our study is the first to explore the combined-influence of IGF-1 and IGFBP-3 genotypes on IGF-1 levels and breast cancer risk: findings from the Breast and Prostate Cancer Cohort Consortium [EPC3]. PlLoS One 37: 2527.

26. Al-Zahraa A, Sandhu MS, Luhm RN, Thompson D, Baynes C, et al (2006) IGFI and IGFBP3 tagging polymorphisms are associated with circulating levels of IGFI, IGFBP3 and breast cancer risk. Hum Mol Genet 15:1–10.

27. Chen C, Freeman R, Voigt LF, Fitzpatrick A, Pymate SR, et al (2006) Prostate cancer risk in relation to selected genetic polymorphisms in insulin-like growth factor-I, insulin-like growth factor binding protein-3, and insulin-like growth factor-I receptor. Cancer Epidemiol Biomarkers Prev 15:2461–2466.

28. Canzian F, McKay JD, Cleveland RJ, Dossus L, Biscey C, et al (2006) Polymorphisms of genes coding for insulin-like growth factor 1 and its major binding proteins, circulating levels of IGFI-1 and IGFBP-3 and breast cancer risk: results from the EPC3 study. Br J Cancer 94:299–307.

29. Gu F, Schumacher FR, Canzian F, Allen NE, Albans D, et al (2010) Eighteen insulin-like growth factor pathway genes, circulating levels of IGFI-I and its binding protein, and risk of prostate and breast cancer. Cancer Epidemiol Biomarkers Prev 19(11): 77–87.

30. Vrieling A, Voskuil DW, Bueno de Mesquita HB, Kaaks R, van Noord PA, et al (2004) Dietary determinants of circulating insulin-like growth factor (IGFI-I and IGFBP3) levels and breast cancer risk: results from the EPIC study. Br J Cancer 95:196–200.

31. Zhu Z, Jiang W, Thompson HJ (2003) Mechanisms by which energy restriction inhibits mammary carcinogenesis: in vivo effects of corticosterone on cell cycle machinery in mammary carcinomas. Carcinogenesis 24:1225–1231.

32. Giovannucci E, Pollak MN, Liu Y, Mei C, Li B, et al (2003) Nutritional predictors of insulin-like growth factor-I and their relationships to cancer in men. Cancer Epidemiol Biomarkers Prev 12:84–89.
33. Heald AH, Cade JE, Cruickshank JK, Anderson S, White A, et al (2003) The influence of dietary intake on the insulin-like growth factor (IGF) system across three ethnic groups: a population based study. Public Health Nutr 6:175–180.

34. Holmes MD, Pollak MN, Willett WC, Hankinson SE (2002) Dietary correlates of plasma insulin-like growth factor-I and insulin-like growth factor binding protein-3 concentrations. Cancer Epidemiol Biomarkers Prev 11:852–861.

35. Wangen KE, Duncan AM, Merz-Dembow BE, Xu X, Marcus R, et al (2000) Effects of soy isoflavones on markers of bone turnover in premenopausal and postmenopausal women. J Clin Endocrinol Metab 85:3043–3048.

36. Bao PP, Shu XO, Zheng Y, Cai H, Ruan ZX, et al (2012) Fruit, vegetable, and animal food intake and breast cancer risk by hormone receptor status. Cancer Epidemiol Biomarkers Prev 64(6): 806–819.

37. Malin A, Matthews CE, Shu XO, Cai H, Dai Q, et al (2005) Energy balance and breast cancer risk. Cancer Epidemiol Biomarkers Prev 14:1496–1501.

38. Wang Q, Wang YP, Li JY, Yuan P, Yang F, et al (2010) Polymorphic catechol-O-methyltransferase gene, soy isoflavone intake and breast cancer in postmenopausal women: a case-control study. Chin J Cancer 29(7):683–688.

39. Lu L, Katsaros D, Mayne ST, Risch HA, Benedetto C, et al (2012) Functional study of risk loci of stem cell-associated gene Lin-28A and associations with disease survival outcomes in epithelial ovarian cancer. Carcinogenesis 33(11): 2119–2125.

40. Lu L, Risch E, Deng Q, Biglia N, Picardo E, et al (2013) An insulin-like growth factor-II intronic variant affects local DNA conformation and ovarian cancer survival. Carcinogenesis 34(9): 2024–2030.

41. Ferlay J, Soerjomataram I, Ervik M, et al. GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC Cancer Base No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer, 2013.

42. Chinese Nutrition Society, Chinese Dietary Reference Intakes Website. Available: http://www.cnsoc.org.cn. Accessed 2014 Jan 1.

43. Qian B, Zheng H, Yu H, Chen K. (2011) Genotypes and phenotypes of IGF-1 and IGFBP-3 in breast tumors among Chinese women 130(1):217–226.

44. Fletcher O, Gibson L, Johnson N, Altmann DR, Holly JM, et al (2005) Polymorphisms and circulating levels in the insulin-like growth factor system and risk of breast cancer: a systematic review. Cancer Epidemiol Biomarkers Prev 14(1): 2–19.

45. Lu L, Katsaros D, Mayne ST, Risch HA, Benedetto C, et al (2012) Functional study of risk loci of stem cell-associated gene Lin-28A and associations with disease survival outcomes in epithelial ovarian cancer. Carcinogenesis 33(11): 2119–2125.

46. Lu L, Risch E, Deng Q, Biglia N, Picardo E, et al (2013) An insulin-like growth factor-II intronic variant affects local DNA conformation and ovarian cancer survival. Carcinogenesis 34(9): 2024–2030.