Discrete Symmetry, Neutrino Magnetic Moment and the 17 keV Neutrino

Debajyoti Choudhury

Theoretical Physics Group, Tata Institute of Fundamental Research
Homi Bhabha Road, Bombay 400 005, India.

Abstract

The problem of generating large transition magnetic moments for nearly massless neutrinos in a truly three–generation case is discussed. A model to achieve the same by exploiting an octahedral symmetry is presented. The scheme also accommodates a radiatively generated mass of 17 keV for a pseudo–Dirac neutrino that decays rapidly through the Majoron channel.

1Bitnet address: debchou@tifrvax
Two problems in neutrino physics have attracted much attention over the past few years. The first, and relatively longstanding one, deals with the deficiency in the solar neutrino count in the Davis and Kamiokande experiments [1] and the related matter of the apparent anticorrelation between the observed solar neutrino flux and the sunspot activity [2]. The other, more recent one, is concerned with the reported signature of a 1% admixture of a 17 keV neutrino with the ν_e [3].

While the first problem can be resolved by postulating a relatively large magnetic moment for the neutrino [4], to generate the latter in realistic models is no mean task. For such an attempt normally leads to too large a value for the neutrino mass. An elegant solution to this problem was suggested by Voloshin [5] in the form of a $SU(2)_\nu$ symmetry connecting ν_L and ν_R (or ν_e and ν_μ if you are interested in transition moments) so that the mass term is a triplet while the magnetic moment term a singlet. In the limit of exact $SU(2)_\nu$ symmetry you then have the spectacle of a non–zero μ_ν but a identically vanishing m_ν. Several models [6, 7] have been constructed using this idea and some variants, but most require some amount of fine–tuning. The reason lies in the phenomenological necessity of breaking the continuous non–abelian symmetry at a scale too high to protect m_ν [8].

A way out of this imbroglio is to employ a non–abelian discrete symmetry instead, an idea
that has been richly harvested \cite{1}. An aesthetic problem persists though in such attempts, in the form of the unequal treatment they mete out to the Standard Model (SM) fermions. The point to remember is that if you put all the SM ν’s in the same representation, then for an odd number of generations it is the mass term that contains the singlet and not the μ_{ν} term \cite{10}. Hence, for three generations the Voloshin mechanism does not work. Instead, one should attempt to construct models wherein the lowest dimensional higgs operators coupling to the neutrino current are antisymmetric in the generation index \cite{7}. To achieve this in a model where the ν’s lie in a representation R of the symmetry group, it is essential that the symmetric and antisymmetric parts of $R \times R$ lie in inequivalent irreducible representations.

In our efforts to construct a model based on such ideas, we find that a very slight extension of the same also affords a solution to the second problem mentioned at the outset of this letter. Though phenomenological considerations \cite{11} indicate that the new find is most probably a Dirac particle and that it may be identified with the ν_{τ}, yet many embarassing questions remain. Not the least of which are the questions of generating such a low scale, and, more importantly, satisfying the strict theoretical constraints emanating from cosmology \cite{12} and primordial nucleosynthesis \cite{13}. Though some models have been proposed \cite{14, 15}, only one of these \cite{16} makes an effort to connect the two issues that have been raised here.
For our purpose, we choose the (24-element) symmetry group \((\mathcal{O})\) to be that of the octahedron, \(i.e.\) the one generated by rotations about three 4-fold axes \((f_i)\), four 3-fold axes \((t_K)\) and six 2-fold axes \((z_\alpha)\) \[16\]. The group algebra is given by
\[
 f_i^4 = e, \quad t_1 = f_2f_3, \quad
t_2 = f_3f_1, \quad t_3 = f_1f_2, \quad t_4 = f_1t_2f_3, \quad z_i = f_it_i^2, \quad z_{i+3} = f_it_3^2.
\]
\(\mathcal{O}\) has five irreducible representations namely
\[
 A_1 : f_i = 1; \quad A_2 : f_i = -1; \quad E : f_1 = \sigma_1, \quad f_2^* = f_3 = (-\sigma_1 + \sqrt{3}\sigma_2) / 2;
\]
\[
 F_1 : f_1 = \exp(\pi T_1/2), \quad f_2 = \exp(-\pi T_2/2), \quad f_3 = \exp(-\pi T_3/2); \quad F_2 : f_i = -f_i(F_1)
\]
where \((T_i)_{jk} = \epsilon_{ijk}\). Note that only \(F_{1,2}\) are faithful representations. The Clebsch–Gordan decomposition is given by \(\mathcal{A} \) and \(\mathcal{S} \) denote symmetry properties
\[
 F_1 \times A_2 = F_2; \quad E \times A_2 = E; \quad F_1 \times E = F_1 + F_2;
\]
\[
 F_1 \times F_1 = (A_1 + E + F_2)^S + F_1^A; \quad E \times E = (A_1 + E)^S + A_1^A;
\]
the rest following trivially.

The model: To the standard model fermions, we add a charge +1 vector singlet pair of leptons per generation. Also we introduce three right-handed neutrino fields. The new additions however are given an unconventional assignment of the total lepton number, which is conserved explicitly. The quarks are the same as in the SM and we shall not talk about them any further. The entire leptonic spectrum (under \(SU(2)_L \otimes U(1)_Y \otimes \mathcal{O} \otimes U(1)_L\)) is then
\[
 L_L (2, -1/2, F_1, 1), \quad E_R (1, -1, F_1, 1), \quad F_{L,R} (1, 1, F_1, 1), \quad N_{1R} (1, 0, A_1, -1), \quad N_{2R} (1, 0, A_1, -2) \quad \text{and} \quad N_{3R} (1, 0, A_1, -4)
\]
As for the scalar sector, apart from the $\phi (2, 1/2, A_1, 0)$ and $H (2, 1/2, E, 0)$ which give masses to the SM fermions, we also have $\Sigma (1, 0, F_1, 5)$ and $\sigma (1, 0, A_1, 6)$ to break the lepton number and give a Majorana mass term; $\Omega (1, 1, F_1, 7)$, $\Xi (1, 1, A_1, 6)$, $\chi (2, 3/2, A_1, 0)$ and $\eta(2, 1/2, F_1, 2)$ that traverse in loops responsible for various radiative generations; and finally $\xi (2, 1/2, F_1, -2)$ and $\zeta (2, 1/2, F_1, -3)$ to give Dirac masses to the neutrinos.

The fermion mass and Yukawa terms then read

$$L_{m+Y} = \tilde{m} \overline{F}_L E_R (a_1 \phi + a_2 H) + b_1 \overline{N}_1 R L_L \xi + b_2 \overline{N}_2 R L_L \zeta$$

$$+ c \overline{N}_2 R \overline{N}_3 R \sigma + g_1 \overline{F}_R L_L \chi + g_2 \overline{F}_R L_L \eta^\dagger + H.c.,$$

while the higgs potential, apart from the usual quadratic and quartic invariants, also contains the cross terms

$$L_{\text{Higgs}} = \Omega^\dagger \Sigma \eta (\lambda_1 \phi + \lambda_1' H) + \lambda_2 \Xi^\dagger \sigma^\dagger \Omega \Sigma + \lambda_3 \chi^\dagger \sigma^\dagger \Xi \phi$$

$$+ \lambda_4 \chi^\dagger \Sigma^\dagger \Omega \xi + \lambda_5 \zeta^\dagger \sigma^\dagger \xi \Sigma + \mu_1 \eta^\dagger \zeta \Sigma + \cdots$$

where we have displayed only those terms that interest us. In all of above the Clebsch–Gordan coefficients are implicitly present.

The fields η, ζ, ξ are ascribed a positive (mass)2 value so that they do not gain a vacuum expectation value ($v.e.v.$) at the tree level. One good feature of our model is that we do not need to introduce a new high scale as all symmetry including O and the lepton number
are broken at the weak scale. The tree–level v.e.v.s are then

\[
\langle \sigma \rangle = s; \quad \langle \Sigma \rangle = (S_1, S_2, S_3); \quad \langle \phi \rangle = v_s; \quad \langle H \rangle = (v_1, v_2);
\] (3)

where only the O dependence is exhibited. Apropos the domain wall problem, it can be tackled \[17\] by either invoking symmetry non–restoration in multi–Higgs models or the possible absence of high temperature phase transition in a system with large net lepton number as is the case here.

To this level then, the charged lepton mass matrix is diagonal with all three exotic particles degenerate with a mass $\tilde{m} \sim 200 \text{GeV}$. This form assures that there are no flavour changing neutral currents (FCNC) to the leading order. The model however cannot explain the SM fermion mass hierarchy which is to be taken care of by appropriate choice of v.e.v.s and Yukawa couplings. On the other hand, no Dirac masses for the neutrinos have been generated and the neutrino mass matrix is of rank two.

A magnetic moment for the neutrino is generated through the diagram in Figure 1 on insertion of a photon on either internal line. The contribution to μ_ν can be symbolically expressed as

\[
\mu_\nu \sim \frac{2e}{16\pi^2} \frac{g_1 g_2 \lambda_1 \lambda_2 \lambda_3 S^2 s^2 v^2}{\tilde{m}^2 (x_\chi - x_\Omega)} \left[\frac{h(x_\Xi, x_\eta) - h(x_\Xi, x_\chi)}{x_\eta - x_\chi} - \frac{h(x_\Xi, x_\eta) - h(x_\Xi, x_\Omega)}{x_\eta - x_\Omega} \right]
\] (4)
where
\[
h(x, y) = \frac{f(x) - f(y)}{x - y},
\]

\[f(x) = (1 - x)^{-3} \left[(1 - 4x + 3x^2)/2 - x^2 \ln x\right]\quad \text{and} \quad x_\chi \equiv \frac{m_\chi^2}{\tilde{m}^2}.
\]
The function \(f(x)\) is monotonically decreasing with \(f(0) = 1/2, f(1) = 1/3\) and \(f(\infty) = 0\). It should be noted that the above is only the contribution for a particular set of fields travelling in the loop. The full family dependence of \(\mu_\nu\) can easily be obtained by summing over all such diagrams taking into account the different masses, v.e.v.s and couplings. To get an order of magnitude estimate, we assume that all the scalars and the \(F\)-fields have mass \(\sim O(200 \, GeV)\) and that the couplings in eqn(4) are each \(O(0.1)\). We then have
\[
\mu_\nu \sim O\left(10^{-11} \mu_B\right)
\]
and hence of the correct order of magnitude to explain the observed anticorrelation \([2, 4]\).

Normally, with the removal of the photon, this diagram would generate a mass correction for the neutrino thus requiring fine-tuning. However, in the present model, this correction term is antisymmetric in the generation index and hence does not contribute at all to the neutrino Majorana mass. As pointed out right at the beginning, this is not a consequence of a Voloshin–like symmetry. Rather, unlike in the Voloshin mechanism, here the \(\mu_\nu\) term is not a group invariant and hence cannot arise until after the symmetry is broken. The key
to the protection of the mass lies in structure of the theory and more particularly that of the lowest–order diagram leading to μ_ν. A look at the fermion line of Figure 1 shows that irrespective of the scalars traversing the loop, the effective operator coupling to the neutrino current has to be antisymmetric. This result owes its origin to the fact that the mass term for the exotic fermions ($F_{L,R}$) is O–invariant (i.e. independent of the breaking) and hence proportional to the unit matrix in the generation space. Any departure from such structure is caused only by higher–dimensional operators and shall be commented upon later.

This would have been the whole story were it not for the fields N_{iR} and the scalars ξ and ζ. Though there are no three or four–dimensional operators leading to $v.e.v.s$ for them, higher–dimensional operators arising from radiative corrections do contribute to $\langle \xi_i \rangle$ etc. A typical example is the operator $\xi \Sigma^\dagger \sigma^2 \phi$ (as in Figure 2), resulting in

$$\langle \xi_i \rangle \sim \frac{\lambda_2 \lambda_3 \lambda_4}{16\pi^2} \frac{S^2 s^2 v}{m_\xi^2 m_{\text{loop}}^2} \sim O(1 \text{ MeV}).$$

(6)

where m_{loop} is the typical mass of the scalars in the loop. Similar values for $\langle \zeta_i \rangle$ and $\langle \eta_i \rangle$ are also generated through such diagrams and mixings with each other. Non–zero $\langle \eta_i \rangle$ of course lead to mixings of the SM charged leptons with the exotics, but due to the huge disparity in scales the levels of FCNC are somewhat below current experimental limits. The neutrino mass matrix, in the $(\nu_i N_1 N_2 N_3)$ basis (where ν_i represent the SM particles and all fields
are of the same helicity), now reads

\[
M_\nu = \begin{pmatrix} 0 & M_1^T \\ M_1 & M_2 \end{pmatrix}, \quad M_1 \equiv \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \\ 0 & 0 & 0 \end{pmatrix}, \quad M_2 \equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & M & 0 \end{pmatrix}
\]

where \(\alpha_i = b_1 \langle \xi_i \rangle, \beta_i = b_2 \langle \zeta_i \rangle \) and \(M = cs \). \(M_\nu \), which is of rank 4, has the eigenvalues 0, 0, \(\pm \left((G - \sqrt{G^2 - 4H}) / 2 \right)^{1/2} \) and \(\pm \left((G + \sqrt{G^2 - 4H}) / 2 \right)^{1/2} \). Here \(G = M^2 + \vec{\alpha}^2 + \vec{\beta}^2 \) and \(H = M^2 \vec{\alpha}^2 + (\vec{\alpha} \times \vec{\beta})^2 \). Note that \(\alpha_i, \beta_i \) can naturally be \(\sim O(10 \text{ keV}) \) without requiring either an artificial generation of such a scale or unnaturally small Yukawa couplings. Assuming \(M \sim 250 \text{ GeV} \), the neutrino spectrum then consists of three apparently–Dirac particles — one superheavy, one massless and one of mass 17 keV. The mixing of \(\nu_{17} \) with \(\nu_e \) is engendered by the ratios of the Dirac mass terms and easily give the required strength.

At this stage it is as well to point out that the full symmetry of \(M_\nu \) is not a symmetry of the theory and hence is broken by quantum corrections. For example, the off–diagonal mass terms for the charged leptons arising out of \(\langle \eta_i \rangle \) would lead to non—trivial mixing in that sector and hence to neutrino mass corrections through diagrams as in Fig. 1. However, due to the smallness of \(\langle \eta_i \rangle \), these corrections are almost of the see–saw type in magnitude \(\sim 10^{-3} \text{ eV} \) and do not alter the neutrino spectrum to any significant degree. Also, higher loop diagrams generate Majorana mass terms of similar order and involving “ordinary”
neutrinos. As a result of all these, the mass degeneracies are lifted and the Dirac neutrinos split into three pairs of pseudo–Dirac particles. The small masses for ν_e and ν_μ that are thus generated would be adequate for a MSW type of resonance enhancement in the Sun \[18\]. Also the effective mass contributing to the neutrinoless double beta decay $[\beta\beta_{0\nu}]$, is $\lesssim \beta_1^2/M$ and though miniscule, affords an example where the effective Majorana mass for $\beta\beta_{0\nu}$ could be larger than that to be observed in Kurie plots \[19\].

Of course, one might wonder if diagrams analogous to those in Fig. 1, but with N_{iR} as the virtual leptons instead of $F_{L,R}$ would contribute to Majorana mass terms. For if they did, the earlier group theoretic argument leading to exact cancellations would not hold and indeed the contributions could be large. However, it is easy to see that there is no place for such apprehension. Two facts need to be noted. Firstly, there is no Dirac term involving N_{3R} and secondly, the only tree order (and hence large) Majorana mass term is of the form $(N_{2R}N_{3R} + H.c.)$. As a result, there can exist no one–loop diagram with N_{iR} as the internal particle(s) and contributing to the neutrino Majorana masses. This can be verified rigorously by working with the mass eigenstates instead. Such arguments obviously do not hold for complicated multi–loop diagrams, but those contributions are too small to be relevant.

The Majoron (the only surviving Goldstone boson in the theory), to the leading order,
is given by

\[\vartheta \sim (6s \text{Im } \sigma + 5S_i \text{Im } \Sigma_i + 2\langle \eta_i \rangle \text{Im } \eta_i - 2\langle \zeta_i \rangle \text{Im } \zeta_i - 3\langle \xi_i \rangle \text{Im } \xi_i) / N \]

(8)

(where \(N \) gives the normalization) and is hence primarily a \(SU(2)_L \) singlet. Thus its coupling with the SM charged leptons is highly suppressed and fully in consonance with the bounds coming from \(Z \)-decay width \([20]\) as well as astrophysical considerations\([21]\). However, if one considers the coupling of the \(\nu \)'s with the Majoron, one gets

\[G_{\nu \vartheta} \approx N^{-1} \begin{pmatrix} 0 & G_1^T \\ G_1 & 6M_2 \end{pmatrix}, \quad G_1 \equiv \begin{pmatrix} 2\alpha_1 & 2\alpha_2 & 2\alpha_3 \\ 3\beta_1 & 3\beta_2 & 3\beta_3 \\ 0 & 0 & 0 \end{pmatrix}, \]

(9)

which is not diagonalized simultaneously alongwith \(M_\nu \). This then leads to a nondiagonal \(\nu - \vartheta \) coupling of the order of \(m_\nu / N \) and as a consequence to a very fast decay of the 17 keV neutrino which would have a lifetime \(\sim O(10^5 \text{ sec}) \).

To conclude, we have presented a model based on a non–abelian discrete symmetry \(O \) that leads to a significant amount of transition magnetic moment for nearly massless neutrinos. The model is \textit{not} a discrete version of the Voloshin mechanism, which we have argued cannot work for the truly 3–generation case. Rather, the protection of \(m_\nu \) owes its existence to the absence of any family–symmetric effective scalar operator to the lowest order. The magnetic moment term itself arises on breaking the symmetry, which, being discrete, can be preserved
until at least the weak scale. Higher order effects do lead to small mass corrections but these are greatly suppressed.

A simple extension of this model is shown to accommodate a pseudo–Dirac 17keV neutrino as well. The latter can be identified with the ν_τ and is generated through a cripple see–saw mechanism that keeps ν_e and ν_μ massless. However, tiny FCNCs in the charged lepton sector and multiloop diagrams together cause small mass corrections of the order of $10^{-3}eV$. The ν_{17} decays very fast into a lighter neutrino and a singlet–doublet Majoron and is thus consistent with all known experiments, whether terrestrial or cosmic.

Acknowledgements The author would like to thank Utpal Sarkar for useful discussions and suggestions. Thanks are also due to the referees for illuminating comments.
References

[1] R. Davis et al., Phys. Rev. Lett. 20, 1205 (1968); J. K. Rowley, B. T. Cleveland and R. Davis in Solar Neutrinos and Neutrino Astrophysics, AIP Conf. Proc. No. 126, p.1 (1985). K. S. Hirata et al., Phys. Rev. Lett. 63, 16 (1989).

[2] R. Davis, Proc. of “Neutrino 88”, eds. J. Schneps, T. Kafka, W. Mann and P. Nath (World Scientific) p. 518.

[3] J.J. Simpson, Phys. Rev. Lett. 54, 1891 (1985); J.J. Simpson and A. Hime, Phys. Rev. D 39, 1825 (1989); ibid, 1837; A. Hime and N.A. Jelley, Phys. Lett. B 257, 441 (1991); Oxford preprint OUNP–91–21(1991); B. Sur et al., Phys. Rev. Lett 66, 2444 (1991).

[4] M.B. Voloshin, M.I. Vysotskii and L. Okun, Yad. Fiz. 44, 677 (1986) [Sov. J. of Nucl. Phys. 44, 440 (1986)].

[5] M. Voloshin, Yad. Fiz. 48, 677 (1986) [Sov. J. of Nucl. Phys. 48, 512 (1988)].

[6] R. Barbieri and R.N. Mohapatra, Phys. Lett. B 218, 225 (1989); J. Liu, Phys. Lett. B 225, 148 (1989); K.S. Babu and R.N. Mohapatra, Phys. Rev. Lett.
63, 228 (1989). See also, P. Pal, in Proc. WHEPP II, Calcutta, Jan. 1991, and references therein.

[7] D. Choudhury and U. Sarkar, Phys. Lett. B 235, 113 (1990).

[8] M. Leurer and N. Marcus, Phys. Lett. B 237, 81 (1990).

[9] G. Ecker, W. Grimus and H. Neufeld, Phys. Lett. B 232, 217 (1990); K.S. Babu and R.N. Mohapatra, Phys. Rev. Lett. 64, 1705 (1990); D. Chang, W.-Y. Keung and G. Senjanović, Phys. Rev. D 42, 1559 (1990); H.M. Georgi and L. Randall, Phys. Lett. B 244, 196 (1990); D. Chang, W.-Y. Keung, S. Lipovača and G. Senjanović, Phys. Rev. Lett. 67, 953 (1991).

[10] For even $(2n)$ number of generations, this problem does not exist if the symmetry group is chosen to be $Sp(2n)$ or some subgroup thereof.

[11] A.V. Manohar and A.E. Nelson, Phys. Rev. Lett. 66, 2847 (1991); M. Fukugita and T. Yanagida, Prog. Theor. Phys. 85, 437 (1991); M.K. Samal and U. Sarkar, Phys. Lett. B 267, 243 (1991).

[12] D. Dicus, E.W. Kolb and V. Teplitz, Phys. Rev. Lett. 39, 169 (1977).

[13] E.W. Kolb and M.S. Turner, Phys. Rev. Lett. 67, 5 (1991).
[14] S.L. Glashow, Phys. Lett. B 256, 218 (1991); M. Fukugita and T. Yanagida, Phys. Rev. Lett. 66, 2705 (1991); K.S. Babu and R.N. Mohapatra, Phys. Rev. Lett. 67, 1498 (1991); R. Foot and S.F. King, Phys. Lett. B 259, 464 (1991); K. Choi and A. Santamaria, Phys. Lett. B 267, 504 (1991); A.S. Joshipura, PRL preprint PRL–TH/91–06 (1991); D. Choudhury and U. Sarkar, Phys. Lett. B 268, 96 (1991); A.S. Joshipura and S.D. Rindani, Phys. Rev. D 44, 22 (1991); X–G. He, Phys. Lett. B 261, 486 (1991).

[15] D. Choudhury and U. Sarkar, Phys. Rev. Lett. 68 2875 (1992).

[16] See e.g., M. Hamermesh, Group Theory and its Applications to Physical Problems, Addison–Wesley (1962).

[17] S. Weinberg, Phys. Rev. D 9, 2904 (1974); R.N. Mohapatra and G. Senjanović, Phys. Rev. D 20, 3390 (1979); A.S. Linde, Rep. Prog. Phys. 42, 189 (1979).

[18] E.Kh. Akhmedov, Phys. Lett. B213, 64 (1988).

[19] L. Wolfenstein, Phys. Lett. B 107, 77 (1981); D. Choudhury and U. Sarkar, Phys. Rev. D 41, 1591 (1990).

[20] E. Fernandez, CERN preprint CERN–PPE/90–151 (1990).
[21] J.E. Kim, Phys. Rept. 149, 1 (1987).
Figure Captions

Figure 1. Diagrams (sans photon lines) contributing to neutrino magnetic moments.

Figure 2. Typical diagram leading to radiative generation of $\langle \xi_i \rangle$.
