1. INTRODUCTION

The nature of dark energy (DE) or geometrical dark energy (GDE) is one of the intrinsic queries of modern cosmology that we are still looking for. According to the analyses of the high quality observational data, the present accelerating phase of the universe is quite well described in the framework of the general relativity together with a cosmological constant – the so called ΛCDM model. However, due to many theoretical and observational shortcomings associated with the ΛCDM cosmology, searches for alternative descriptions have been necessary. Apart from the well known cosmological constant/fine tuning and cosmic coincidence problems affecting the ΛCDM scenario, recent observations indicate that the CMB measurements of some key cosmological parameters within this minimal ΛCDM scenario do not match with the values measured by other cosmological probes. Specifically, the very well known H_0 tension between Planck and the estimate obtained by the SH0ES collaboration 1, or the S_8 tensions with the cosmic shear measurements KiDS-450 2 or DES 3, or CFHTLenS 4. Furthermore, when a curvature is considered into the cosmic picture 5, all these tensions are exacerbated revealing a possible crisis for the cosmology. Thus, in order to circumvent these problems, several alternative cosmological models have been introduced in the literature aiming to solve or alleviate such tensions in an effective way.

For a possible solution or alleviation of the H_0 tension, one can see an incomplete list of works $^{11-60}$ and for S_8 one can look at the following works $^{45, 54, 56, 61-64}$. In this article we consider two metastable DE models introduced recently by Shafieloo et al. 40 (also see 41). In these models, DE has a decaying nature into other components. The most notable point in such models is that the decay of DE depends only on its intrinsic nature and not on the expansion of the universe. Thus, it is expected that metastable DE models could explore some inherent nature of the dark sector, specially the DE. Our observational constraints on the metastable DE models should be considered stringent for the following reasons: (i) we have considered the cosmological perturbations for the models, an indispensable tool to understand the large scale structure of the universe, (ii) we have included the final Planck 2018 data $^{65-67}$. A quick observation from our analyses is that the metastable DE models are able to alleviate the H_0 tension. The article is organized in the following way. In section 2 we present the gravitational equations in a Friedmann-Lemaître-Robertson-Walker (FLRW) universe and the metastable DE models that we wish to study in this work. In section 3 we discuss the observational data and the methodology applied to constrain the models. Then we discuss the results of our analyses in section 4. Finally, in section 5 we close our work with a brief summary of all the findings.

2. METASTABLE DARK ENERGY MODELS

In this section we review two metastable DE models introduced recently in $^{40-41}$. As usual we assume the spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry characterized by the line el-
emt $ds^2 = -dt^2 + a^2(t) [dx^2 + dy^2 + dz^2]$, where $a(t)$ (hereafter a) is the expansion scale factor of the universe. The gravitational sector is assumed to be described by the Einstein's field equations:

\[3H^2 = \frac{8\pi G}{3} \sum_i \rho_i, \]

\[2\dot{H} + 3H^2 = -4\pi G \sum_i p_i, \]

where an overhead dot denotes the derivative with respect to the cosmic time and $H \equiv \dot{a}/a$ is the Hubble rate of the FLRW universe. Let us now introduce the metastable DE models that we wish to investigate in this article.

2.1. Model I

The first metastable DE model that we aim to study follows the evolution law [40][41]:

\[\dot{\rho}_x = -\Gamma \rho_x, \]

where ρ_x, as already mentioned, denotes the energy density of DE and Γ is a constant which could be either positive or negative and its dimension is the same of the Hubble rate, H, of the FLRW universe. Note that $\Gamma = 0$ implies that $\rho_x = \text{constant}$ featuring the cosmological constant. For $\Gamma > 0$, DE density has a decaying character while for $\Gamma < 0$, DE density is increasing. Note further that other cosmic fluids, namely baryons, radiation and cold dark matter follow the usual conservation equation, that means, $\dot{\rho}_i + 3H(p_i + \rho_i) = 0$, where $i = \{b, r, c\}$.

Now, if we focus on the evolution of DE as given in eqn. [3], that means, $\rho_x + \Gamma \rho_x = 0$, one could quickly find its equivalent structure by comparing it with the standard evolution of DE

\[\dot{\rho}_x + 3H(1 + w_x)\rho_x = 0, \]

which naturally introduces a dynamical equation of state of DE, $w_x = p_x/\rho_x$. Thus, comparing [3] and [4], one could determine, $w_x = -1 + \Gamma/\dot{H}/H_0$, where we introduce H_0, i.e. the present value of H. In other words, Γ will give us an estimate of the deviation of the dark energy equation of state from the cosmological constant.

Let us now proceed with the evolution of this model at the level of perturbations. This is an useful addition in this work because the present two metastable DE models have not been investigated considering their large scale behaviour. We consider the perturbed FLRW metric and synchronous gauge for evaluating the equations, see [68] for more details. The perturbations equations in this gauge can be calculated to be

\[\delta_x' = -(1 + w_x) \left(\theta_x + \frac{h'}{2} \right) - 3H(c_{sx}^2 - w_x) \left[\delta_x + 3H(1 + w_x)\frac{\theta_x}{k^2} \right] - 3Hw_x \frac{\theta_x}{k^2}, \]

\[\theta_x' = -H(1 - 3c_{sx}^2) \theta_x + \frac{c_{sx}^2}{1 + w_x} k^2 \delta_x', \]

\[\delta_c' = \left(\theta_c + \frac{h'}{2} \right), \]

\[\theta_c' = -H \theta_c, \]

In order to understand better the Model I we have investigated the temperature anisotropy in the CMB spectra and matter power spectra for various numerical values of the dimensionless parameter Γ/H_0. In Fig. 1 we have shown the corresponding plots. In particular, we show the CMB TT spectra in the left panel and matter power spectra in the right one. One can clearly see that even if we increase the value of Γ/H_0, there is no significant changes in the spectra. In fact, a very mild deviation is present in the low multipoles of the CMB spectra.

2.2. Model II

We now introduce the second metastable DE model in this work as following [40][41]:

\[\dot{\rho}_x' + 3H(1 + w_x)\rho_x = 0, \]

where ρ_x, as already mentioned, denotes the energy density of DE and Γ is a constant which could be either positive or negative and its dimension is the same of the Hubble rate, H, of the FLRW universe. Note that $\Gamma = 0$ implies that $\rho_x = \text{constant}$ featuring the cosmological constant. For $\Gamma > 0$, DE density has a decaying character while for $\Gamma < 0$, DE density is increasing. Note further that other cosmic fluids, namely baryons, radiation and cold dark matter follow the usual conservation equation, that means, $\dot{\rho}_i + 3H(p_i + \rho_i) = 0$, where $i = \{b, r, c\}$.

Now, if we focus on the evolution of DE as given in eqn. [3], that means, $\rho_x + \Gamma \rho_x = 0$, one could quickly find its equivalent structure by comparing it with the standard evolution of DE

\[\dot{\rho}_x + 3H(1 + w_x)\rho_x = 0, \]

which naturally introduces a dynamical equation of state of DE, $w_x = p_x/\rho_x$. Thus, comparing [3] and [4], one could determine, $w_x = -1 + \Gamma/\dot{H}/H_0$, where we introduce H_0, i.e. the present value of H. In other words, Γ will give us an estimate of the deviation of the dark energy equation of state from the cosmological constant.

Let us now proceed with the evolution of this model at the level of perturbations. This is an useful addition in this work because the present two metastable DE models have not been investigated considering their large scale behaviour. We consider the perturbed FLRW metric and synchronous gauge for evaluating the equations, see [68] for more details. The perturbations equations in this gauge can be calculated to be

\[\delta_x' = -(1 + w_x) \left(\theta_x + \frac{h'}{2} \right) - 3H(c_{sx}^2 - w_x) \left[\delta_x + 3H(1 + w_x)\frac{\theta_x}{k^2} \right] - 3Hw_x \frac{\theta_x}{k^2}, \]

\[\theta_x' = -H(1 - 3c_{sx}^2) \theta_x + \frac{c_{sx}^2}{1 + w_x} k^2 \delta_x', \]

\[\delta_c' = \left(\theta_c + \frac{h'}{2} \right), \]

\[\theta_c' = -H \theta_c, \]

In order to understand better the Model I we have investigated the temperature anisotropy in the CMB spectra and matter power spectra for various numerical values of the dimensionless parameter Γ/H_0. In Fig. 1 we have shown the corresponding plots. In particular, we show the CMB TT spectra in the left panel and matter power spectra in the right one. One can clearly see that even if we increase the value of Γ/H_0, there is no significant changes in the spectra. In fact, a very mild deviation is present in the low multipoles of the CMB spectra.
where Γ is a constant having the same dimension as that of the Hubble constant, hence, Γ/H_0 is the dimensionless quantity which one can estimate using the observational data. One can see that the above model is actually an interacting scenario (see [69–95, 97–115]) in which pressureless DM is interacting with vacuum non-gravitationally where Γ is the coupling parameter of this interacting scenario. As usual the interaction rate does not depend on any parameter related to the expansion of the universe, and this is the basic nature of the metastable DE models. The sign of Γ determines the flow of energy between the dark two sectors. For $\Gamma > 0$, DE decays into DM while for $\Gamma < 0$, the situation is reversed, that means energy flows from DM to DE. We consider a general picture allowing Γ to take both positive and negative values, with $\Gamma = 0$ recovering the non-interacting ΛCDM cosmology.

Let us now consider the perturbations equations for this model. We have again considered the perturbed FLRW metric [68] and the synchronous gauge. Within this formalism, one can write down the perturbations equations of the above model as,

$$\dot{\rho}_x = -\Gamma \rho_x, \quad \dot{\rho}_c + 3H \rho_c = \Gamma \rho_x$$

$$\delta_c = -\frac{1}{2} \left(\theta_c + \frac{h'}{2} \right) + Q \frac{\delta_c}{\rho_c} = -\frac{h'}{2} - \frac{a \Gamma \rho_x}{\rho_c} \delta_c$$

$$\theta'_c = -H \theta_c,$$

where $\theta_c = 0$. In a similar way, for Model II we have shown the temperature anisotropy in the CMB spectra and matter power spectra for various numerical values of the dimensionless parameter Γ/H_0 in Fig. 2. Specifically, the left panel of Fig. 2 shows the CMB TT power spectra and the right panel of Fig. 2 shows the matter power spectra.
The features of the spectra are quite different compared to the Model I. As one can see from the CMB TT power spectra, a mild change in the dimensionless coupling parameter Γ/H_0 will produce an observable change there. In fact, for negative values of Γ/H_0 (DM decaying into DE), the amplitude of the first acoustic peak in the CMB TT spectra decreases. The opposite scenario holds when the energy flow takes place from DE to DM ($\Gamma > 0$). Similar effects are observed in the matter power spectra, but in this case when Γ/H_0 increases, the amplitude of the matter power spectrum is more suppressed.

3. OBSERVATIONAL DATA AND METHODOLOGY

This section is devoted to describe the observational datasets, statistical techniques and the priors imposed on various free parameters related to the aforementioned metastable dark energy models, namely, Model I and Model II. In what follows we describe the observational datasets first:

- **Planck2018**: The latest cosmic microwave background (CMB) measurements from final 2018 Planck legacy release [65][67] have been adopted.
- **BAO**: Measurements of the BAO data from different astronomical missions [116][118] have been used.
- **DES**: The first-year measurements of the Dark Energy Survey (DES) experiment [5][6][119], as adopted by the Planck collaboration in [65] have been analyzed.
- **R19**: The recent measurement of the Hubble constant from a reanalysis of the Hubble Space Telescope data using Cepheids as calibrators, giving $H_0 = 74.03 \pm 1.42$ km/s/Mpc at 68% CL [1] has been considered. It is important to comment that this H_0 value is in tension at 4.4σ with the Planck’s estimation within the ΛCDM cosmological set-up.

To constrain the metastable DE scenarios we use our modified version of the publicly available markov chain monte carlo package CosmoMC [120][121], an excellent cosmological code having a fine convergence diagnostic by Gelman-Rubin [122]. This code includes the support for Planck 2018 likelihood [65][67]. The models we are considering have one extra free parameter, Γ, compared to the flat ΛCDM model (six-parameters). Therefore the parameter space of the models is:

$$\mathcal{P}_1 \equiv \left\{ \Omega_b h^2, \Omega_c h^2, 100\theta_{MC}, \tau, n_s, \log[10^{10} A_s], \Gamma/H_0 \right\} ,$$

(13)

where $\Omega_b h^2$, $\Omega_c h^2$, are the physical density for baryons and cold dark matter, respectively; θ_{MC} denotes the ratio of the sound horizon to the angular diameter distance.

Parameter	Prior (Model I)	Prior (Model II)
$\Omega_b h^2$	[0.005, 0.1]	[0.005, 0.1]
$\Omega_c h^2$	[0.01, 0.99]	[0.01, 0.99]
τ	[0.01, 0.8]	[0.01, 0.8]
n_s	[0.5, 1.5]	[0.5, 1.5]
$\log[10^{10} A_s]$	[2.4, 4]	[2.4, 4]
$100\theta_{MC}$	[0.5, 10]	[0.5, 10]
Γ/H_0	[-1, 1]	[-1, 0.7]

TABLE I: We show the flat priors on the free parameters of both metastable DE models for the statistical simulations.

τ refers to the reionization optical depth; n_s denotes the scalar spectral index; A_s being the amplitude of the primordial scalar power spectrum; and Γ/H_0 being the free parameter of the metastable models normalized to the Hubble constant value. For the statistical analyses, we have imposed flat priors (see Table I) on the above free parameters.

4. RESULTS AND ANALYSES

In this section we describe the main observational constraints extracted from both the metastable DE scenarios considering the set of observational datasets and their combinations shown in section 3 In what follows we discuss the constraints.

4.1. Model I

The results of the observational constraints for this model have been summarized in Table II and in Fig. 3. In Fig. 3 selecting some of the key parameters of this model we show their one-dimensional posterior distributions and the 2D joint contours at 68% and 95% CL.

We start with the results of Model I from Planck2018 alone dataset which are shown in the second column of Table II. We see that the dimensionless parameter Γ/H_0 quantifying the decay of DE is slightly larger than zero at more than 1σ, and completely unconstrained at 95% CL for Planck2018 alone. And this parameter is correlated with most of the key parameters of this model. The fact that the Γ/H_0 is mostly unconstrained from the CMB alone, can be easily deduced by looking at Fig. 1 where changing Γ/H_0 we do not observe any differences. In Fig. 3 we can see a strong positive correlation with the Hubble constant, H_0, that is shifting its estimate towards
larger values ($H_0 = 69.3^{+5.9}_{-3.5}$, 68% CL, Planck2018) compared to what we obtained in a ΛCDM model with the same data [65], by relaxing significantly its error bars, and thus, alleviating the H_0 tension with R19 within one standard deviation. Thanks to the geometrical degeneracy present in the CMB data between H_0 and Ω_{m0}, we find additionally that this model prefers a lower value of the matter density. As we can see from Fig. 4, a strong anti-correlation is present between Γ/H_0 and Ω_{m0}.

When the BAO data are added to Planck2018, we can now bound Γ/H_0 at 95% CL, as we can see in the third column of Table II and in the 3D scattered plot of Fig. 4. This is due to the strong constraining power the BAO data have on Ω_{m0} that strongly anti-correlates with Γ/H_0, as

Thus, this scenario alleviates the larger values ($H_0 = 70.0^{+3.6}_{-2.2}$, 95% CL, Planck2018+BAO) compared to what we obtained in a ΛCDM model with the same data [65], by relaxing significantly its error bars, and thus, alleviating the H_0 tension with R19 within one standard deviation. Thanks to the geometrical degeneracy present in the CMB data between H_0 and Ω_{m0}, we find additionally that this model prefers a lower value of the matter density. As we can see from Fig. 4, a strong anti-correlation is present between Γ/H_0 and Ω_{m0}.

When the BAO data are added to Planck2018, we can now bound Γ/H_0 at 95% CL, as we can see in the third column of Table II and in the 3D scattered plot of Fig. 4. This is due to the strong constraining power the BAO data have on Ω_{m0} that strongly anti-correlates with Γ/H_0, as

Parameters	Planck2018	Planck2018+BAO	Planck2018+DES	Planck2018+R19
Ω_{m0}	$0.303^{+0.026}_{-0.053}$	$0.306^{+0.014}_{-0.016}$	$0.263^{+0.012}_{-0.027}$	$0.263^{+0.009}_{-0.011}$
H_0	$69.3^{+5.9}_{-3.5}$	$68.3^{+1.7}_{-3.4}$	$73.6^{+3.7}_{-6.9}$	$73.8^{+1.4}_{-2.5}$
χ^2	2771.046	2779.456	3293.906	2771.620
A strong anti-correlation between Γ/H_0 and Ω_m, and a positive correlation between Γ/H_0 and H_0 are present. For Planck alone, upper left panel, Γ/H_0 is unconstrained, while the addition of external datasets to Planck 2018 helps in constraining this parameter.

![3D scattered plots at 95% c.l. in the plane Γ/H_0 vs Ω_m, coloured by the Hubble constant value H_0 for Model I.](image)

TABLE III: Summary of the observational constraints at 68% and 95% CL on the cosmological scenario driven by the metastable DE scenario, *Model II*, using different observational datasets.

Parameters	Planck2018	Planck2018+BAO	Planck2018+DES	Planck2018+R19
$\Omega_m h^2$	0.064 $^{+0.022}_{-0.022}$	$0.091^{+0.034+0.051}_{-0.023+0.056}$	$0.0998^{+0.0071+0.015}_{-0.0077-0.014}$	<0.050 <0.099
$\Omega_b h^2$	0.02231 $^{+0.0015+0.00030}_{-0.0015-0.00031}$	$0.02233^{+0.0014+0.00028}_{-0.0015-0.00028}$	$0.02237^{+0.0015+0.00029}_{-0.0016-0.00028}$	$0.02236^{+0.0016+0.00030}_{-0.0016-0.00028}$
$100\theta_{MC}$	1.0444 $^{+0.031+0.0049}_{-0.0331-0.0049}$	$1.0425^{+0.012+0.0037}_{-0.0022-0.0032}$	$1.04183^{+0.0049+0.00095}_{-0.0049+0.00091}$	$1.0461^{+0.0031+0.0039}_{-0.0031-0.0039}$
τ	0.054 $^{+0.0076+0.016}_{-0.0077-0.015}$	$0.052^{+0.0076+0.016}_{-0.0076-0.016}$	$0.055^{+0.0077+0.016}_{-0.0076-0.016}$	$0.055^{+0.0074+0.014}_{-0.0074-0.015}$
n_s	0.9724 $^{+0.040+0.0082}_{-0.0042-0.0081}$	$0.9736^{+0.0039+0.0079}_{-0.0040-0.0079}$	$0.9739^{+0.0041+0.0081}_{-0.0040-0.0083}$	$0.9740^{+0.0041+0.0083}_{-0.0041-0.0082}$
$\ln(10^{10}A_s)$	3.055 $^{+0.014+0.0033}_{-0.016-0.0033}$	$3.056^{+0.015+0.0032}_{-0.016-0.0032}$	$3.056^{+0.015+0.0033}_{-0.017-0.0032}$	$3.056^{+0.015+0.0032}_{-0.015-0.0030}$
Γ/H_0	$< -0.39 < 0.19$	$-0.29^{+0.30+0.54}_{-0.28-0.53}$	$-0.21^{+0.082+0.17}_{-0.090-0.17}$	$-0.21^{+0.082+0.17}_{-0.090-0.17}$
Ω_m	0.18 $^{+0.07+0.19}_{-0.13-0.16}$	$0.242^{+0.073+0.13}_{-0.063-0.14}$	$0.261^{+0.017+0.038}_{-0.019-0.034}$	$0.12^{+0.034+0.140}_{-0.084-0.098}$
H_0	70.3 $^{+3.3+4.9}_{-2.0-4.9}$	$69.0^{+4.4+3.1}_{-1.8-3.0}$	$68.6^{+0.54+1.1}_{-0.54-1.1}$	$72^{+0.92+1.27}_{-1.0-3.4}$
χ^2	2771.716	2780.014	3295.094	2773.360

Table of the number of events in each bin for the Γ/H_0 and Ω_m constraints.

We then combine CMB from Planck2018 with DES data because they are no more in tension in this model. As we can see in [3] that the addition of DES data to...
Planck in the plane $\sigma_8 - \Omega_{m0}$ does not shift significantly the 2D contours, as expected when two datasets are in tension with each other. The results of Planck2018+DES combination are summarized in the fourth column of Table [I]. We see that in this case we have an important lower limit on Γ / H_0, that is larger than zero (i.e. a cosmological constant model), at about 2 standard deviations. This means we have an evidence of increasing DE for this combination of data. This strong constraint is due to the important bound we have on Ω_{m0}, that takes a lower value in this case giving $\Omega_{m0} = 0.263^{+0.012}_{-0.027}$ (68% CL, Planck2018+DES). Thanks to the three-parameter correlation shown in Fig. 4, we find that H_0 goes up having its mean value very close to R19 together with large error bars. Thus, within 68% CL, clearly the tension in H_0 is released with this model and combination of data.

Finally, since the tension between the Planck2018 and R19 [1] measurements is solved for this model scenario, we can safely add R19 to Planck2018. The results for the combined dataset Planck2018+R19 are shown in the last column of Table [I]. We find a very strong indication of decaying DE with $\Gamma / H_0 > 0$ at more than 2σ. In fact we have $\Gamma / H_0 > 0.53$ at 95% CL for Planck2018+R19. The constraints we have for this combination of data in Model I are fully consistent with the Planck2018+DES bounds as well, showing a resolution of the tension with the cosmic shear data at the same time.

For a better understanding on the constraints on H_0 for different combinations, in Fig. 5 we present all of them in a whisker plot diagram, where additionally, we show the constraints on H_0 from Planck2018 (the vertical sky-blue band) [65] and the local estimation (the vertical grey band) from R19 [1].

4.2. Model II

The results of the observational constraints for this model are shown in Table [III] and in Fig. 6. In Fig. 6 selecting some of the key parameters of this model we show their one-dimensional posterior distributions and the 2-dimensional joint contours at 68% and 95% CL.

For Planck2018 alone we find an indication of a Γ / H_0 different from zero at more than 1σ. In fact, we have the upper limit $\Gamma / H_0 < -0.39$ at 68% CL. This clearly shows that the transfer of energy from DM to DE is preferred by Planck2018 data. However, at 2σ, $\Gamma = 0$ is back in agreement with the data. On the other hand, from Fig. 6 we find a strong anti-correlation between H_0 and Γ / H_0, thus, as long as Γ / H_0 decreases, H_0 should increase. This fact is reflected by the Hubble constant constraint $H_0 = 70.3^{+3.3}_{-2.9}$ (68% CL), which clearly shows that the tension on H_0 between Planck2018 and R19 is solved within 2 standard deviation. Moreover, for this model, because of the flow of energy from DM to DE, we find a lower estimation of cold dark matter ($\Omega_{m0} = 0.18^{+0.07}_{-0.13}$ at 68% CL) than its estimation within the ΛCDM model as obtained by Planck2018 in [65]. This is clearly expected.
for the geometrical degeneracy present in the CMB data: if we have less dark matter, we see a shift of the acoustic peaks and we need a larger H_0 value to have them back in the original position.

When BAO data are added to Planck2018, thanks to the robust constraint BAO data give on the matter density Ω_m, we find that Ω_m slightly increases with respect to the Planck2018 alone case ($\Omega_m = 0.242^{+0.079}_{-0.063}$ at 68% CL), but it is still lower than the Planck2018 value in a ΛCDM model [65]. Because of the positive correlation present between Ω_m and Γ/H_0, as we can see in Figs. 7 and 6 we find that Γ/H_0 is back in agreement with zero within one standard deviation. This means that Γ/H_0, i.e., the rate of energy transfer between the dark sectors, is in agreement with the expected value in the minimal ΛCDM model. Finally, because of the very well known anti-correlation between Ω_m and H_0, we see that the Hubble constant shifts towards lower value compared to its estimation from Planck2018 alone, and moreover, its error bars are significantly decreased. Thus, the tension on H_0 slightly increases at 2.5σ, but of course in this model scenario, this is always less than the 4.4σ tension between Planck2018 [65] and the SH0ES collaboration [1] within the minimal ΛCDM scenario. Moreover, because of the extraction method, the BAO data are not completely reliable in fitting extended DE models, as already pointed out in [55].

Now we consider the next two datasets Planck2018+DES and Planck2018+R19. In both cases since the tension between the datasets (Planck2018, DES) and (Planck2018, R19) is solved in this scenario, we can safely combine them. The results for Planck2018+DES and Planck2018+R19 are shown in the last two columns of Table III. For Planck2018+DES we see a really strong bound on Γ/H_0, that is lower than zero at more than 2σ and very well constrained. Since it is slightly less negative than Planck2018 and Planck2018+BAO, for the three parameter correlation we see in Fig. 7 we will have a slightly larger values of Ω_m and smaller of H_0 with respect to the previous cases. For this reason the Hubble constant tension with R19 is restored in this scenario at about 3.6σ. Finally, for Planck+R19 we have a very strong upper limit on Γ/H_0, that is less than zero at several standard deviations.
deviations. That means essentially we have an increasing DE scenario for this metastable DE model. Concerning \(\Omega_m \) estimations, similarly to the previous cases, the matter density again decreases.

Finally, we refer to Fig. 5 showing the whisker plot of \(H_0 \) at 68% CL with its measurements by different observational data. The whisker plot in Fig. 5 clearly shows how the tension on \(H_0 \) is alleviated for most of the data combination, with the exception of Planck2018+DES. In summary, within this metastable DE scenario, the energy density of DE is increasing, as reported by the observational data preferring a negative value for \(\Gamma/H_0 \).

5. SUMMARY AND CONCLUDING REMARKS

In this work we investigate two metastable DE models by considering their evolution at the level of linear perturbations and constrain their parameter space in light of the latest observations. The consideration of perturbations equations is the essence of this work since the perturbations equations, specifically for the first metastable DE model have not been studied in earlier works. Concerning the observational data, we use the CMB measurements from final Planck 2018 release [66, 67], BAO [116–118], DES [5, 6, 119] and a measurement of \(H_0 \) from SH0ES collaboration (R19) [1]. In particular, we consider Planck2018, Planck2018+BAO, Planck2018+DES and Planck2018+R19. The inclusion of additional data to CMB is used to break the degeneracies between the parameters. In the last two cases, the combination of Planck2018 to either DES or R19 is possible since the tension between these datasets are solved within these models.

For the first metastable DE model \(\sigma \), we have summarized the results in Table I and in Figs. 4 and 5. The results show that for all the observational data \(\Gamma/H_0 > 0 \) is suggested, which indicates that DE has a decaying nature within this context. While we mention that for Planck2018 alone, \(\Gamma/H_0 \) remains positive at about 68% CL, such an evidence becomes stronger for Planck2018+DES and Planck2018+R19 datasets. However, for Planck2018+BAO, \(\Gamma = 0 \) is in agreement with the data within 68% CL. Additionally, we find that

FIG. 7: 3D scattered plots at 95% CL in the plane \(\Gamma/H_0 \) vs \(\Omega_m \), coloured by the Hubble constant value \(H_0 \) for Model II. On the contrary of the Model I, a strong positive correlation between \(\Gamma/H_0 \) and \(\Omega_m \), and a negative correlation between \(\Gamma/H_0 \) and \(H_0 \) are present.
within this model, the tension on H_0 is mostly solved. To be precise, we notice that for Planck2018 data alone, Planck2018+DES and Planck2018+R19, the tension on H_0 is significantly alleviated within 1σ. However, for Planck2018+BAO, the tension on H_0 is just reduced at 2.6σ (see Fig. 5 for a better understanding).

The results of the second metastable DE model are shown in Table II and Fig. 6. From the results, one can clearly conclude that, within this model scenario, $\Gamma/H_0 < 0$ is preferred for all the data combination, with the exception of Planck2018+BAO where $\Gamma = 0$ is in agreement with the data within 68% CL. So, for most of the observational data, an increasing of the DE density is favored. The tension on H_0 is alleviated for Planck2018 within 2σ, however for Planck2018+BAO is weakened at 2.5σ and for Planck2018+R19 is completely restored.

In summary, based on the observational results, we see that the recent observations support an indication of non-zero Γ/H_0, and hence, they are in support of metastable DE models. Moreover, metastable DE models with just an additional extra free parameter Γ/H_0 can solve quite efficiently the Hubble constant tension.

Last but not least, we would like to emphasize that the choice of the metastable DE models is not unique. Since the nature of DE is not purely understood, thus, there is no reason to exclude other metastable DE models. For instance, some alternatives to the exponential choice of model I can be considered. In a similar way, one could also generalize model II by considering other functional forms. Although model II describes an interacting scenario and similar choices are available in the literature, however, the exact functional form of the interaction rate is not yet revealed. Hence, we believe that metastable DE models must gain a considerable attention in the cosmological community due to the fact that within such models, the extrinsic properties of the universe do not come into the picture, only the intrinsic nature of DE plays the master role.

6. ACKNOWLEDGMENTS

WY has been supported by the National Natural Science Foundation of China under Grants No. 11705079 and No. 11647153. EDV acknowledges support from the European Research Council in the form of a Consolidator Grant with number 681431. SP has been supported by the Mathematical Research Impact-Centric Support Scheme (MATRICS), File No. MTR/2018/000940, given by the Science and Engineering Research Board (SERB), Govt. of India. SB acknowledges support from the Research Center for Astronomy of the Academy of Athens in the context of the program “Tracing the Cosmic Acceleration.”

[1] A. G. Riess, S. Casertano, W. Yuan, L. M. Macri and D. Scolnic, Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM, Astrophys. J. 876, no. 1, 85 (2019) [arXiv:1903.07603 [astro-ph.CO]].
[2] K. Kuijken et al., Gravitational Lensing Analysis of the Kilo Degree Survey, Mon. Not. Roy. Astron. Soc. 454, no. 4, 3500 (2015) [arXiv:1507.00738 [astro-ph.CO]].
[3] H. Hildebrandt et al., KiDS-450: Cosmological parameter constraints from tomographic weak gravitational lensing, arXiv:1606.05338 [astro-ph.CO].
[4] I. Fenech Conti, R. Herbonnet, H. Hoekstra, J. Merten, L. Miller and M. Viola, Calibration of weak-lensing shear in the Kilo-Degree Survey, Mon. Not. Roy. Astron. Soc. 467, no. 2, 1627 (2017) [arXiv:1606.05337 [astro-ph.CO]].
[5] M. A. Troxel et al. [DES Collaboration], Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear, Phys. Rev. D 98, no. 4, 043528 (2018) [arXiv:1708.01538 [astro-ph.CO]].
[6] T. M. C. Abbott et al. [DES Collaboration], Dark Energy Survey Year 1 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing, arXiv:1708.01530 [astro-ph.CO].
[7] C. Heymans et al., CFHTLenS: The Canada-France-Hawaii Telescope Lensing Survey, Mon. Not. Roy. Astron. Soc. 427, 146 (2012) [arXiv:1210.0032 [astro-ph.CO]].
[8] T. Erben et al., CFHTLenS: The Canada-France-Hawaii Telescope Lensing Survey - Imaging Data and Catalogue Products, Mon. Not. Roy. Astron. Soc. 433, 2545 (2013) [arXiv:1210.8156 [astro-ph.CO]].
[9] S. Joudaki et al., CFHTLenS revisited: assessing concordance with Planck including astrophysical systematics, Mon. Not. Roy. Astron. Soc. 465, no. 2, 2033 (2017) [arXiv:1601.05786 [astro-ph.CO]].
[10] E. Di Valentino, A. Melchiorri and J. Silk, Planck evidence for a closed Universe and a possible crisis for cosmology, Nat. Astron. (2019) [arXiv:1911.02087 [astro-ph.CO]].
[11] E. Di Valentino, A. Melchiorri and J. Silk, Beyond six parameters: extending ΛCDM, Phys. Rev. D 92, no. 12, 121302 (2015) [arXiv:1507.06646 [astro-ph.CO]].
[12] E. Di Valentino, A. Melchiorri and J. Silk, Reconciling Planck with the local value of H_0 in extended parameter space, Phys. Lett. B 761, 242 (2016) [arXiv:1606.00634 [astro-ph.CO]].
[13] S. Kumar and R. C. Nunes, Probing the interaction between dark matter and dark energy in the presence of massive neutrinos, Phys. Rev. D 94, no. 12, 123511 (2016) [arXiv:1608.02454 [astro-ph.CO]].
[14] S. Kumar and R. C. Nunes, Echo of interactions in the dark sector, Phys. Rev. D 96, no. 10, 103511 (2017) [arXiv:1702.02143 [astro-ph.CO]].
[15] E. Di Valentino, A. Melchiorri and O. Mena, Can interacting dark energy solve the H_0 tension?, Phys. Rev. D 96, no. 4, 043503 (2017) [arXiv:1704.08342 [astro-]
servational constraints on an interacting dark energy model, Mon. Not. Roy. Astron. Soc. 402, 2355 (2010) [arXiv:0007.4987 [astro-ph.CO]].

[85] L. P. Chimento, Linear and nonlinear interactions in the dark sector, Phys. Rev. D 81, 043525 (2010) [arXiv:0911.5687 [astro-ph.CO]].

[86] T. Harko and F. S. N. Lobo, Irreversible thermodynamic description of interacting dark energy-dark matter cosmological models, Phys. Rev. D 87, no. 4, 044018 (2013) arXiv:1210.3617 [gr-qc].

[87] S. Pan and S. Chakraborty, Will there be again a transition from acceleration to deceleration in course of the dark energy evolution of the universe?, Eur. Phys. J. C 73, 2575 (2013) arXiv:1303.5602 [gr-qc].

[88] Y. H. Li and X. Zhang, Large-scale stable interacting dark energy model: Cosmological perturbations and observational constraints, Phys. Rev. D 89, no. 8, 083009 (2014) arXiv:1312.6328 [astro-ph.CO].

[89] W. Yang and L. Xu, Testing coupled dark energy with large scale structure observation, JCAP 1408, 034 (2014) arXiv:1401.5177 [astro-ph.CO].

[90] W. Yang and L. Xu, Cosmological constraints on interacting dark energy with redshift-space distortion after Planck data, Phys. Rev. D 89, no.8, 083517 (2014) arXiv:1401.1280 [astro-ph.CO].

[91] R. C. Nunes and E. M. Barboza, Dark matter-dark energy interaction for a time-dependent EoS parameter, Gen. Rel. Grav. 46, 1820 (2014) arXiv:1404.1620 [astro-ph.CO].

[92] V. Faraoni, J. B. Dent and E. N. Saridakis, Covariantizing the interaction between dark energy and dark matter, Phys. Rev. D 90, no. 6, 063510 (2014) arXiv:1405.7288 [gr-qc].

[93] V. Salvatelli, N. Said, M. Bruni, A. Melchiorri and D. Wands, Indications of a late-time interaction in the dark sector, Phys. Rev. Lett. 113, no. 18, 181301 (2014) arXiv:1406.7297 [astro-ph.CO].

[94] W. Yang and L. Xu, Coupled dark energy with perturbed Hubble expansion rate, Phys. Rev. D 90, no. 8, 083532 (2014) arXiv:1409.5533 [astro-ph.CO].

[95] S. Pan, S. Bhattacharya and S. Chakraborty, An analytic model for interacting dark energy and its observational constraints, Mon. Not. Roy. Astron. Soc. 452, no.3, 3038 (2015) arXiv:1210.0396 [gr-qc].

[96] J. L. Cui, L. Yin, L. F. Wang, Y. H. Li and X. Zhang, A closer look at interacting dark energy with statefinder hierarchy and growth rate of structure, JCAP 1509, 024 (2015) arXiv:1503.08048 [astro-ph.CO].

[97] Y. H. Li, J. F. Zhang and X. Zhang, Testing models of vacuum energy interaction with cold dark matter, Phys. Rev. D 93, no. 2, 023002 (2016) arXiv:1506.06349 [astro-ph.CO].

[98] R. C. Nunes, S. Pan and E. N. Saridakis, New constraints on interacting dark energy from cosmic chronometers, Phys. Rev. D 94, no. 2, 023508 (2016) arXiv:1605.01712 [astro-ph.CO].

[99] W. Yang, H. Li, Y. Wu and J. Lu, Cosmological constraints on coupled dark energy, JCAP 1610, no.10, 007 (2016) arXiv:1608.07039 [astro-ph.CO].

[100] S. Pan and G. S. Sharov, A model with interaction of dark components and recent observational data, Mon. Not. Roy. Astron. Soc. 472, no. 4, 4736 (2017) arXiv:1609.02287 [gr-qc].

[101] A. Mukherjee and N. Banerjee, In search of the dark matter dark energy interaction: a kinematic approach, Class. Quant. Grav. 34, no. 3, 035016 (2017) arXiv:1610.04419 [astro-ph.CO].

[102] G. S. Sharov, S. Bhattacharya, S. Pan, R. C. Nunes and S. Chakraborty, A new interacting two fluid model and its consequences, Mon. Not. Roy. Astron. Soc. 466, no. 3, 3497 (2017) arXiv:1701.00780 [gr-qc].

[103] M. Shahalam, S. D. Pathak, S. Li, R. Myrzakulov and A. Wang, Dynamics of coupled phantom and tachyon fields, Eur. Phys. J. C 77, no. 10, 686 (2017) arXiv:1702.04720 [gr-qc].

[104] R. Y. Guo, Y. H. Li, J. F. Zhang and X. Zhang, Weighing neutrinos in the scenario of vacuum energy interacting with cold dark matter: application of the parameterized post-Friedmann approach, JCAP 1705, no. 05, 040 (2017) arXiv:1702.04189 [astro-ph.CO].

[105] R. G. Cai, N. Tamanini and T. Yang, Reconstructing the dark sector interaction with LISA, JCAP 1705, no. 05, 031 (2017) arXiv:1703.07323 [astro-ph.CO].

[106] W. Yang, N. Banerjee and S. Pan, Constraining a dark matter and dark energy interaction scenario with a dynamical equation of state, Phys. Rev. D 95, no. 12, 123527 (2017) arXiv:1705.09278 [astro-ph.CO].

[107] W. Yang, S. Pan and D. F. Mota, Novel approach towards the large-scale stable interacting dark-energy models and their astronomical bounds, Phys. Rev. D 96, no. 12, 123508 (2017) arXiv:1709.00006 [astro-ph.CO].

[108] S. Pan, A. Mukherjee and N. Banerjee, Astronomical bounds on a cosmological model allowing a general interaction in the dark sector, Mon. Not. Roy. Astron. Soc. 477, no. 1, 1189 (2018) arXiv:1710.03725 [astro-ph.CO].

[109] W. Yang, S. Pan, R. Herrera and S. Chakraborty, Large-scale (in) stability analysis of an exactly solved coupled dark-energy model, Phys. Rev. D 98, no. 4, 043517 (2018) arXiv:1808.01669 [gr-qc].

[110] W. Yang, S. Pan, L. Xu and D. F. Mota, Effects of anisotropic stress in interacting dark matter-dark energy scenarios, Mon. Not. Roy. Astron. Soc. 482, no. 2, 1858 (2019) arXiv:1804.08555 [astro-ph.CO].

[111] W. Yang, S. Pan and A. Paliathanasis, Cosmological constraints on an exponential interaction in the dark sector, Mon. Not. Roy. Astron. Soc. 482, no. 1, 1007 (2019) arXiv:1804.08558 [gr-qc].

[112] R. von Marttens, L. Casarini, D. F. Mota and W. Zimdahl, Cosmological constraints on parametrized interacting dark energy, Phys. Dark Univ. 23, 100248 (2019) arXiv:1807.11380 [astro-ph.CO].

[113] W. Yang, N. Banerjee, A. Paliathanasis and S. Pan, Reconstructing the dark matter and dark energy interaction scenarios from observations, Phys. Dark Univ. 26, 100383 (2019) arXiv:1812.06854 [astro-ph.CO].

[114] A. Paliathanasis, S. Pan and W. Yang, Dynamics of nonlinear interacting dark energy models, Int. J. Mod. Phys. D 28, no. 12, 1950161 (2019) arXiv:1903.02370 [gr-qc].

[115] W. Yang, S. Pan, R. C. Nunes and D. F. Mota, Dark calling Dark: Interaction in the dark sector in presence of neutrino properties after Planck CMB final release, arXiv:1910.08821 [astro-ph.CO].

[116] F. Beutler et al., The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant, Mon. Not. Roy. Astron. Soc. 416, 3017 (2011) arXiv:1106.3366 [astro-ph.CO].
[117] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden and M. Manera, *The clustering of the SDSS DR7 main Galaxy sample I. A 4 per cent distance measure at $z = 0.15$*, Mon. Not. Roy. Astron. Soc. 449, no. 1, 835 (2015) [arXiv:1409.3242 [astro-ph.CO]].

[118] S. Alam et al. [BOSS Collaboration], *The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample*, Mon. Not. Roy. Astron. Soc. 470, no. 3, 2617 (2017) [arXiv:1607.03155 [astro-ph.CO]].

[119] E. Krause et al. [DES Collaboration], *Dark Energy Survey Year 1 Results: Multi-Probe Methodology and Simulated Likelihood Analyses*, arXiv:1706.09359 [astro-ph.CO].

[120] A. Lewis and S. Bridle, *Cosmological parameters from CMB and other data: A Monte Carlo approach*, Phys. Rev. D 66, 103511 (2002) [astro-ph/0205436].

[121] A. Lewis, A. Challinor and A. Lasenby, *Efficient computation of CMB anisotropies in closed FRW models*, Astrophys. J. 538, 473 (2000) [astro-ph/9911177].

[122] A. Gelman and D. Rubin, *Inference from iterative simulation using multiple sequences*, Statistical Science 7, 457 (1992).

[123] M. Soares-Santos et al. [DES and LIGO Scientific and Virgo Collaborations], *First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary Black-hole Merger GW170814*, Astrophys. J. 876, no. 1, L7 (2019) [arXiv:1901.01540 [astro-ph.CO]].