The growth performance of sheep fed with different wafer feed supplement

Y Retnani*, N N Barkah and Taryati
Department Nutrition and Feed Science, Faculty of Animal Science, Jl. Agatis, Kampus IPB Dramaga, Bogor, 16680, West Java, Indonesia

*Corresponding author's email: yuli_retnani@ipb.ac.id

Abstract. Providing wafer feed supplement using ingredients that are easily obtained is one effective way to add nutrients consumed by livestock. This study aimed to evaluate the supplementation of wafer feed supplement derived from lamtoro (Leucaena leucocephala) leaves, bean sprouts, and morinda (Morinda citrifolia) leaves on sheep growth performance. The research used randomized block design with 4 treatments and 3 groups that were differentiated based on the initial body weight. The treatment given consisted of T0: control feed, T1: control feed + 15% lamtoro leaves wafer, T2: control feed + 15% bean sprouts wafer, T3: control feed + 15% morinda leaves wafer. The sheep were fed forage:concentrate with a ratio of 40:60 for 2 months. The results showed that supplementation of wafer feed supplement significantly increased nutrient intake, daily body weight gain, and increased income over feed cost (IOFC). Supplementation of wafer containing lamtoro leaves provides the highest daily body weight gain and IOFC compared to other treatments. This showed that even though there are additional costs for making wafer feed supplement, but this is able to support livestock productivity, so that it can provide greater benefits for farmers.

1. Introduction
The population of Indonesia is predicted to growth and will reach its peak in 2062 which puts Indonesia as the number sixth country with the largest population in the world. This is driven by an increase in livestock products, especially meat as a source of animal protein. Meat needs in Indonesia are met from small-scale farming systems as well as commercial farmers and large beef cattle companies whose target markets are mostly in Java. However, the gap between supply and demand for beef causes an increase in imports of live cattle and meat. The low productivity of national beef cattle in Indonesia is caused by low reproductive rates of cattle because low fertility includes a low conception rate (56%), long delivery intervals (18 to 21 months) and high calf mortality (5% to 10%), low body condition scores, resulting in slow national livestock growth, and due to the high level of sales and slaughter of productive female cattle [1]. In addition, conventional farming systems that are widely applied by small-scale farmers by relying on surrounding food resources have not been able to support the growth of livestock. In fact, the feed factor has a large influence on livestock production, so that the availability of good quality feed is needed. The main limitation of ruminant feed is the low quality of forage feed that affects palatability and digestibility [2].

Lamtoro (Leucaena leucocephala) leaves and morinda (Morinda citrifolia) leaves and market waste such as bean sprouts waste can be used as supplements and minimize the use of concentrates so that the cost of feed becomes lower. The proximate analysis showed that bean sprouts contain 63.35% water, 7.35% ash, 1.17% fat, 13-14% protein, crude fiber 49.44%, and TDN 64.65% [3]. Lamtoro
leaves have crude protein content of 25-32% [4]. Morinda leaves contain dry matter 92.92%, crude protein 21.63%, crude fiber 29.38%, and nitrogen free extract 45.93%. Lamtoro, morinda, and bean sprout waste has several disadvantages as feed, has high water content which lead to perishable product, so the quality as feed decreases rapidly. These ingredients needs to be processed to maintain its quality. One of the processing technologies that is being developed is feed in the form of wafers.

Wafers are compaction of fiber source raw materials that have long and wide dimensions [5]. Previous research on wafers has been carried out by [6] with a modified cuboid forage wafer made with heating and pressing technology with a press machine. Wafers are made in cubes so that they are easy to store and transport during transportation. Feed processing in the form of wafers has been able to preserve and maintain the quality of agricultural waste as feed ingredients [6]. Utilization of wafer processing technology were expected to have good feed palatability so that livestock productivity can increase. This study aimed to evaluate the supplementation of leucaena leaves, bean sprouts, and morinda leaves as wafer feed supplement on sheep growth performance.

2. Materials and methods
This research was conducted at the Laboratory of Feed Industry, Faculty of Animal Science, Bogor Agricultural University and Mitra Tani Farm, Tegal Waru, Ciampea, Bogor. Twelve 1-year-old male local sheep with an average body weight of 24.82±2.04 kg were used in this study.

2.1 Production of Wafer Feed Supplement
The making of wafer feed supplement derived from lamtoro leaves, bean sprouts waste, and morinda leaves are carried out as follows: leaves are separated between leaves and stem leaves. The leaves that have been separated were dried. After drying, the leaves are ground using a grinder into leaf flour. After that, the leaf flour was mixed with additional ingredients using mixer machine. Additional ingredients used are coconut cake, soybean meal, corn gluten meal (CGM), molasses, urea, and CaCO₃. After being homogeneously mixed, the ingredients put into a wafer machine with a temperature of 100-115°C for 10 minutes. Wafers that have been formed were cooled at room temperature and were given to sheep.

| Table 1. Nutrient content of lamtoro leaves, bean sprout waste and morinda leaves. |
|-----------------|--------------------------|--------------------------|
| Parameters | Lamtoro leaves [7] | Bean sprouts [3] | Morinda leaves [8] |
| Dry matter (%) | 29.90 | 36.65 | 26.71 |
| Ash (%) | 8.50 | 7.35 | 9.15 |
| Crude protein (%)| 23.30 | 1.17 | 14.13 |
| Crude fat (%) | 4.00 | 13.00 | 2.53 |
| Crude fiber (%) | 19.90 | 49.44 | 23.09 |
| Nitrogen free extract (%) | 44.30 | 29.04 | 51.10 |

2.2 Feeding Treatment
Supplementation of wafer feed supplement was carried out for 7 weeks. Feed treatment given were basal feed + wafer feed supplement. Basal feed consists of 60% commercial concentrates and 40% dried kale (Ipomoea aquatica). The nutritional content of the research feed is presented in table 2. Before being fed in the morning, the sheep were given 15% wafers. The sheep are given concentrated feed in the morning and kale in the afternoon. Every morning, the remaining feed is calculated to determine the amount of feed intake.
2.3 Data Analysis

This research used completely randomized block design with 4 feed treatments and 3 groups, as follows:

- T0: control feed
- T1: control feed + 15% lamtoro leaves wafer
- T2: control feed + 15% bean sprouts wafer
- T3: control feed + 15% morinda leaves wafer

Data were analyzed using analysis of variance (ANOVA) and if there were significant differences followed by Duncan test [13].

Table 2. Nutrient content of control feed and wafer feed supplement.

Parameters	Control feed	Leucaena leaves wafer	Bean sprout wafer	Morinda leaves wafer
Dry matter (%)	88.94	89.28	71.96	88.87
Ash (%)	10.75	8.24	5.90	8.02
Crude protein (%)	14.24	32.33	27.11	27.01
Crude fat (%)	4.22	1.67	4.23	12.60
Crude fiber (%)	19.50	10.33	22.65	6.99
Nitrogen free extract (%)	51.29	47.43	40.11	45.38

3. Results and discussions

3.1 Nutrient intake

The results of the variance analysis showed that the supplementation of wafer feed supplement was significantly increased (P<0.05) the intake of dry matter in male local sheep compared to without wafer supplementation (table 3). This is because the addition of wafer supplements can increase the crude protein content in feed. The high availability of crude protein in feed is thought to increase the activity and growth of rumen microbes so that the process of food degradation in the rumen also increases. The average yield of sheep dry matter intake with the addition of wafers ranged from 1074.60 to 1497.33 g, this value exceeded the standard of dry matter needs of sheep weighing 20 to 30 kg which is 590 to 1030 g [9]. Body size can affect nutrient intake [10]. The higher the body weight, the greater the capacity of the digestive tract [11]. However, the results of this study showed that the average dry matter intake of sheep with a small weight was highest. This was thought to be caused by small weight sheep having rumen microbes that are easily adapted to crude proteins so that the rate of feed degradation is faster.

Table 3. Average nutrient intake of twelve sheep in each treatments.

Parameters (g head\(^{-1}\) day\(^{-1}\))	T0	T1	T2	T3
Dry matter	808.41±33.40a	1283.75±204.36b	1091.41±15.38b	1317.32±34.42b
Crude protein	117.50±7.53a	245.07±39.01b	199.84±2.82b	240.94±6.29c
Crude fat	34.82±2.23a	57.38±9.13b	53.04±0.75b	80.49±2.10c
Crude fiber	160.90±10.31a	270.23±43.02b	249.93±3.52b	270.71±7.07b
Nitrogen free extract	423.22±27.13a	749.84±119.36b	625.49±8.81b	765.36±20.00b

Notes are referenced using alpha superscripts show significantly different (P<0.05); T0: control feed; T1: control feed + 15% lamtoro leaves wafer; T2: control feed + 15% bean sprouts wafer; T3: control feed + 15% morinda leaves wafer
3.2 Growth performance
The results of the variance analysis showed that daily body weight gain in male local sheep given wafer feed supplement was significantly different (P<0.05) greater than without wafer supplementation (table 4). This is due to the addition of wafer supplements increase dry matter intake and crude protein so the growth of livestock body weight gain increases. Livestock body weight gain was influenced by crude protein intake [12]. The three types of wafer supplements used in this study produce the same weight gain in sheep. However, sheep that were given lamtoro leaf wafer supplements had better feed efficiency than other treatments. If seen from table 2, lamtoro leaf wafers contain higher crude protein than other wafers which causes higher intake of crude protein, which in turn affects the body weight gain and better feed efficiency.

Table 4. Average growth performances of twelve sheep in each treatments.

Parameters	T0	T1	T2	T3
Initial body weight (kg day⁻¹)	23.68±1.53a	25.25±2.54b	24.73±2.35ab	25.62±2.31b
Final body weight (kg day⁻¹)	27.28±1.40a	34.28±3.66b	32.05±1.88b	32.92±0.88b
Average daily weight gain (g head⁻¹ day⁻¹)	73.47±11.77a	184.35±64.20b	149.32±11.24b	148.98±54.66b
Feed efficiency (%)	8.97±1.81	14.07±2.99	13.69±1.22	11.24±3.87

Notes are referenced using alpha superscripts show significantly different (P<0.05); T0: control feed; T1: control feed + 15% lamtoro leaves wafer; T2: control feed + 15% bean sprouts wafer; T3: control feed + 15% morinda leaves wafer

3.3 Income over feed cost
Income over feed cost is an efficiency measure that possible to measure returns from feed provided to livestock. The supplementation of wafer feed supplement to livestock causes an increase in feed costs, due to the processing process starting from drying to making into wafer forms. However, the increase in feed costs is in line with the improvement in sheep growth performance, so that the income obtained by farmers also increases compared to without wafer feed supplement.

Table 5. Average income over feed cost of twelve sheep in each treatments.

Parameters	T0	T1	T2	T3
Buying sheep cost	1 657 833	1 767 500	1 731 333	1 793 167
Selling price	1 909 833	2 399 833	2 243 500	2 304 167
Feed cost	1 758 914	1 961 509	1 901 781	1 991 288
Income over feed cost	150 919⁵	438 324⁵	341 719⁵	312 879⁵

Notes are referenced using alpha superscripts show significantly different (P<0.05); T0: control feed; T1: control feed + 15% lamtoro leaves wafer; T2: control feed + 15% bean sprouts wafer; T3: control feed + 15% morinda leaves wafer

4. Conclusion
Supplementation of wafer feed supplement significantly increased nutrient intake, daily body weight gain of sheep, and increased income over feed cost (IOFC) and wafer feed supplement containing lamtoro leaves provides the highest daily body weight gain and IOFC compared to other treatments.
Acknowledgment

The authors wish to thank the Ministry of Research, Technology and Higher Education of the Republic of Indonesia, which funded this research through the Campus Intellectual Product Development Program (Program Pengembangan Usaha Produk Intelektual Kampus).

References
[1] Agus A and Widi T S M 2018 Current situation and future prospects for beef cattle production in Indonesia: A review Asian-Australas J Anim Sci. 31(7) 976–983
[2] Retnani Y, Arman C, Said S, Permana I G and Saenab A 2013 Wafer as feed supplement stimulates the productivity of bali calves APCBEE Procedia 8 173–177
[3] Rahayu SD, Diapari DS, Wandito and Ifafah WW 2010 Survey of the potential availability of bean sprouts as an alternative animal feed in Bogor. Bogor Agricultural University Research Report
[4] Askar S 1997 Leucaena leaf nutritional value and utilization as ruminant feed Bogor: Livestock Research Institute, Ministry of Agriculture
[5] ASAE Standard 1994 Wafers, pellet, and crumble-definition and methods determining specific weight, durability, and moisture content. In: R. R. Mc Ellhiney Feed Manufacturing Technology IV American Feed Industry
[6] Retnani Y, Basymeleh S and Herawati L 2009 Effect of type of forage and storage time on the physical properties of wafers Jurnal Ilmu-Ilmu Peternakan 12(4) 196-202
[7] Abdulrazak S A, Kahindi R K and Muinga R W 2006 Effects of Madras thorn, Leucaena and Gliricidia supplementation on feed intake, digestibility and growth of goats fed Panicum hay Livest. Res. Rural Dev. 18(9)
[8] Mahima, Rahal A, Mandil R, Verma A K and Kumar V 2014 Res. J. Med. Plant. 8(6) 283-289.
[9] National Research Council 2006 Nutrient Requirement of Sheep (Washington DC: National Academy Pr)
[10] Areghore E M 2002 Intake and digestibility of Moringa oleifera-batiki grass mixtures by growing goats Small Ruminant Res. 46:23-8
[11] Tamminga S and Van Vuuren A M 1988 Formation and utilization of end products of lignocellulose degradation in ruminants. Anim. Feed Sci. Technol. 21:141–159
[12] Ngu N T and Ledin I Effects of feeding wastes from brassica species on growth of goats and pesticide/insecticide residues in goat meat Asian-Australas J Anim Sci. 18(2): 197-202
[13] Steel R G D and Torrie J H 1993 Principles and Procedures of Statistics. A Biomedical Approach, 3rd Ed (Tokyo: Mc Graw Hill)