Interaction of light with gravitational waves

S. Hacyan
Instituto de Física, Universidad Nacional Autónoma de México,
Apartado Postal 20-364, México D. F. 01000, Mexico.

Received 14 October 2013; accepted 2 April 2014

The physical properties of electromagnetic waves in the presence of a gravitational plane wave are analyzed. Formulas for the Stokes parameters describing the polarization of light are obtained in closed form. The particular case of a constant amplitude gravitational wave is worked out explicitly and it is shown that it produces a linear polarization of light.

Keywords: Gravitational waves; electromagnetic waves; Stokes parameters.

PACS: 04.30.Nk; 42.25.Ja

1. Introduction

The propagation of electromagnetic waves in a gravitational field is an interesting problem in general, and it is particularly relevant to the detection of gravitational waves by interferometric methods [1] or by the polarization of the cosmic microwave background [2, 3]. Previous works on the subject started with Plebanski’s article on the scattering of electromagnetic waves by weak gravitational fields [4]. Electromagnetic waves in the field of a gravitational wave were analyzed by Mashhoon and Grishchuk [5] in a general context. Exact but purely formal solutions of Einstein’s equations for electromagnetic waves by weak gravitational fields [4]. Electromagnetic waves in the background of a gravitational field [4]. The relations between electric and magnetic field vectors \(\mathbf{E} \) and \(\mathbf{H} \), and electric displacement and magnetic induction \(\mathbf{D} \) and \(\mathbf{B} \) are the usual ones,

\[
\mathbf{D} = \mathbf{E} + 4\pi\mathbf{P}, \quad \mathbf{H} = \mathbf{B} - 4\pi\mathbf{M},
\]

and the Maxwell equations imply

\[
\mathbf{E} = -\nabla\Phi - \dot{\mathbf{A}}, \quad \mathbf{B} = \nabla \times \mathbf{A},
\]

where the scalar and vector potentials, \(\Phi \) and \(\mathbf{A} \), satisfy the equations

\[
\Box\Phi = -4\pi \nabla \cdot \mathbf{P},
\]

\[
\Box\mathbf{A} = 4\pi(\dot{\mathbf{P}} + \nabla \times \mathbf{M}),
\]

with the Lorentz gauge condition \(\dot{\Phi} + \nabla \cdot \mathbf{A} = 0 \).

Now, for the metric (1) in particular, it follows that

\[
4\pi\mathbf{P} = \mathbf{G} \cdot \mathbf{E},
\]

\[
4\pi\mathbf{M} = \mathbf{G} \cdot \mathbf{B},
\]

where \(\mathbf{G} \) is a dyad with components:

\[
G_{ab} = \begin{pmatrix} f & g & 0 \\ g & -f & 0 \\ 0 & 0 & 0 \end{pmatrix}.
\]

In flat space-time, an electromagnetic plane wave is given by \(\mathbf{E}^{(0)} = \mathbf{E} e^{-i\omega t + \mathbf{k} \cdot \mathbf{r}} \) and \(\mathbf{B}^{(0)} = \mathbf{B} e^{-i\omega t + \mathbf{k} \cdot \mathbf{r}} \), where \(\mathbf{E} \) and \(\mathbf{B} \) are constant vectors such that

\[
\omega \mathbf{B} = \mathbf{k} \times \mathbf{E}, \quad \omega \mathbf{E} = -\mathbf{k} \times \mathbf{B},
\]

\(\mathbf{k} \) is the wave vector and \(\omega = |\mathbf{k}| \) the frequency of the wave. The important point is that, if terms of second order in \(G_{ab} \) are neglected, \(\mathbf{P} \) and \(\mathbf{M} \) depend only on the unperturbed electric and magnetic fields, \(\mathbf{E}^{(0)} \) and \(\mathbf{B}^{(0)} \), and, accordingly, we can set

\[
4\pi\mathbf{P} = \mathbf{G} \cdot \mathbf{E} e^{-i\omega t + i\mathbf{k} \cdot \mathbf{r}},
\]

\[
4\pi\mathbf{M} = \mathbf{G} \cdot \mathbf{B} e^{-i\omega t + i\mathbf{k} \cdot \mathbf{r}}.
\]
It is now convenient to define
\[h_{\pm}(u) = f(u) \pm ig(u), \]
so that
\begin{align*}
G \cdot E &= h_+(u)E_+ + h_-(u)E_- \\
G \cdot B &= h_+(u)B_+ + h_-(u)B_-.
\end{align*}
(12)
(13)
where
\[e_{\pm} = e_x \pm ie_y \]
and
\[E_{\pm} = \frac{1}{2}(E_x \pm iE_y) \]
\[B_{\pm} = \frac{1}{2}(B_x \pm iB_y). \]

Setting the first order corrections to the potentials in the forms
\begin{align*}
\Phi^{(1)} &= \phi(u) e^{-i\omega t + ik \cdot r}, \\
A^{(1)} &= A(u) e^{-i\omega t + ik \cdot r},
\end{align*}
it follows that
\begin{align*}
\Box \Phi^{(1)} &= -2i(\omega - k_z)\phi^\prime(u) e^{-i\omega t + k \cdot r} \\
&= -4\pi \nabla \cdot P, \quad \Box A^{(1)} = -2i(\omega - k_z)A^\prime(u) e^{-i\omega t + k \cdot r} \\
&= 4\pi(\dot{P} + \nabla \times \mathbf{M}),
\end{align*}
(14)
(15)
where the primes denote derivation with respect to \(u \). These last equations can be integrated separating + and - components:
\begin{align*}
\phi^{(1)} &= \phi_{\pm}^{(1)} + \phi_{\mp}^{(1)}, \\
A^{(1)} &= A_{\mp}^{(1)} + A_{\pm}^{(1)}.
\end{align*}

It follows that
\[\phi_{\pm}^{(1)} = \frac{1}{(\omega - k_z)}k_z E_{\pm} H_{\pm} e^{-i\omega t + ik \cdot r}, \]
(16)
and
\[A_{\pm}^{(1)} = \frac{1}{(\omega - k_z)} \left\{ \frac{i}{2} \left(E_{\pm} (H_{\pm}' - i\omega H_{\pm}) \mp iB_{\pm} \right) \right\} e^{-i\omega t + ik \cdot r}, \]
(17)
where we have defined
\[H_{\pm}'(u) = h_{\pm}(u) \]
and
\[k_{\pm} = \frac{1}{2}(k_x \pm ik_y). \]

Accordingly, the first order correction to the electric field vector can be written as the sum of two terms, \(\mathbf{E}_{\pm}^{(1)} \), such that
\[\mathbf{E}_{\pm}^{(1)} = (E_{\pm} M_{\pm} \pm iB_{\pm} N_{\pm}) e^{-i\omega t + ik \cdot r}, \]
(18)
where
\[M_{\pm} \equiv M_{\pm} e_{\pm} + M_{\pm z} e_z - \frac{ik_{\pm}}{\omega - k_z} H_{\pm}, \]
\[N_{\pm} \equiv N_{\pm} e_{\pm} + N_{\pm z} e_z, \]
with
\[M_{\mp} = -\frac{i}{2(\omega - k_z)}(H_{\mp}' - 2i\omega H_{\mp} - \omega^2 H_{\mp}) , \]
(19)
\[M_{\pm z} = \frac{k_{\pm}}{\omega - k_z} H_{\pm}' , \]
(20)
and
\[N_{\mp} = -\frac{i}{2(\omega - k_z)}(H_{\mp}' - i(\omega + k_z)H_{\mp}' - \omega k_z H_{\mp}) , \]
(21)
\[N_{\pm z} = \frac{k_{\pm}}{\omega - k_z} (H_{\pm}' - i\omega H_{\pm}). \]
(22)

Define now two orthonormal vectors perpendicular to \(k \):
\begin{align*}
\epsilon_1 &= \frac{1}{k_{\perp}} e_z \times k , \\
\epsilon_2 &= \frac{1}{\omega k_{\perp}} (\omega^2 e_z - k_z k) ,
\end{align*}
(23)
where \(k_{\perp} = (k_x^2 + k_y^2)^{1/2} \), and also a circular polarization basis, which is conveniently chosen as
\[\epsilon_{\pm} = \epsilon_2 \pm i\epsilon_1. \]
(24)

The matrix of the Stokes parameters, as defined in general in the Appendix, can be written in the form \(\mathbf{S} + \Delta \mathbf{S} \), where \(\mathbf{S} \) is the corresponding matrix in flat space-time and \(\Delta \mathbf{S} \) is the first order correction produced by the gravitational wave. Explicitly:
\[\Delta \mathbf{S} = \left(\begin{array}{c} e_+ \cdot \mathbf{E}^{(1)} \\
\epsilon_- \cdot \mathbf{E}^{(1)} \end{array} \right) \times \left(\begin{array}{c} (e_+ \cdot \mathbf{E}^{(0)*})^*, \\
(e_- \cdot \mathbf{E}^{(0)*})^* \end{array} \right) + \text{h. c.} \]
(25)
Setting \(\Delta \mathbf{S} \equiv \Delta \mathbf{S}_+ + \Delta \mathbf{S}_- \) and using Eqs. (A.4) and (A.6) in the Appendix, it follows with some straightforward matrix algebra that
\[\Delta \mathbf{S}_{\pm} = \frac{1}{2} \left(\begin{array}{ccc} e_+ \cdot e_\pm & e_+ \cdot e_z \\
\epsilon_- \cdot e_\pm & \epsilon_- \cdot e_z \end{array} \right) \left(\begin{array}{c} M_{\mp} \\
N_{\pm z} \end{array} \right) \]
\[\times \left(\begin{array}{c} \epsilon_+ \cdot e_\pm \\
\epsilon_- \cdot e_\pm \end{array} \right) + \text{h. c.} \]
(26)
where, according to our previous definitions (23) and (24),
\[e_+ \cdot e_\pm = \frac{1}{\omega k_{\perp}} (\omega \mp k_z) k_{\pm}, \]
\[e_- \cdot e_\pm = \frac{1}{\omega k_{\perp}} (\omega \pm k_z) k_{\pm}, \]
\[\epsilon_{\pm} \cdot e_z = \frac{k_{\perp}}{\omega}, \]
(27)
In particular, we can choose without loss of generality the coordinates system such that the vector k lies in the (x, z) plane, that is $k_y = 0$ and $k = \frac{1}{2}k_x$. In this case, Eq. (26) takes the simpler form:

$$\Delta S = \frac{1}{2\omega^2} \left[\begin{pmatrix} \mp \omega - k_x & k_x \\ \pm \omega - k_x & k_x \end{pmatrix} \begin{pmatrix} M_{\pm} \\ N_{\pm} \end{pmatrix} \right] S + \text{h.c.}$$

$$\Delta S = \Delta S_+ + \Delta S_- = -\frac{i}{4(\omega - k_z)} \begin{pmatrix} 3k_z^2(H_+ + H_-) \\ -(\omega - k_z)^2 H_+ - (\omega + k_z)^2 H_- \end{pmatrix}$$

Now, in the particularly important case of unpolarized light, the averaged Stokes parameters are

$$\langle s_i \rangle = 0, \quad i = 1, 2, 3$$

and $\langle s_0 \rangle$ is just the intensity of the wave. In this case, it follows from Eq. (38) that

$$\Delta \langle s_0 \rangle = 0, \quad \Delta \langle s_1 \rangle = 0,$$

and

$$\langle s_1 \rangle + i\langle s_2 \rangle = \langle s_0 \rangle \frac{h_0}{2(\omega - k_z)} \left[2\omega k_z \sin \theta + i(\omega^2 + k_z^2) \cos \theta \right],$$

where $\theta = \Omega u + \alpha$. These are precisely the conditions for a light beam to be linearly polarized (as can be seen, for instance, from the definition of the Poincaré sphere; see, e.g., Born and Wolf [12]).

3. Constant amplitude gravitational wave

As an example of application of the general formula given above, consider a constant amplitude sinusoidal gravitational wave, such as one generated by a periodically varying configuration of massive bodies (see, e.g., Landau and Lifshitz [10]). Accordingly we set

$$H_\pm = h_0 e^{\mp i\Omega u + ia},$$

where h_0 is a real valued constant, Ω is the frequency of the wave and α is a constant phase. In this particular case:

$$M_\mp = \frac{i\omega^2}{2(\omega - k_z)}(\Omega \pm \omega)^2 H_\pm,$$

and

$$N_\mp = \frac{i}{2(\omega - k_z)}(\Omega \mp \omega)(\omega \pm k_z)H_\pm,$$

$$N_\pm = -ik_\pm \frac{\omega \pm \Omega}{\omega - k_z} H_\pm.$$
s_1 + is_2 = (\epsilon_+ \cdot \mathbf{E})^* (\epsilon_- \cdot \mathbf{E})
\nonumber
s_3 = \frac{1}{2} (|\epsilon_+ \cdot \mathbf{E}|^2 - |\epsilon_- \cdot \mathbf{E}|^2), \quad (A.1)

following the notation of Jackson [11] (except for a factor \sqrt{2} in the definition of \epsilon_{\pm}). This can be written in matrix form as
\nonumber
S \equiv \begin{pmatrix} s_0 + s_3 & s_1 - is_2 \\ s_1 + is_2 & s_0 - s_3 \end{pmatrix}
\nonumber
= \begin{pmatrix} \epsilon_+ \cdot \mathbf{E} \\ \epsilon_- \cdot \mathbf{E} \end{pmatrix} \begin{pmatrix} (\epsilon_+ \cdot \mathbf{E})^* \\ (\epsilon_- \cdot \mathbf{E})^* \end{pmatrix}. \quad (A.2)

Using the relations \omega \mathbf{B} = \mathbf{k} \times \mathbf{E} and \omega \mathbf{E} = -\mathbf{k} \times \mathbf{B} in combination with (23) and (24), it follows that
\nonumber
\epsilon_\pm \cdot \mathbf{E} = \frac{\omega}{k} (E_z \pm iB_z), \quad (A.3)

and therefore
\nonumber
S = \frac{2\omega^2}{k^2} \begin{pmatrix} (E_z + iB_z) \\ (E_z - iB_z) \end{pmatrix}
\nonumber\times \begin{pmatrix} (E_z + iB_z)^* \\ (E_z - iB_z)^* \end{pmatrix}. \quad (A.4)

Also
\nonumber
\mathbf{E} = \frac{\omega}{2k} \begin{pmatrix} (E_z - iB_z)\epsilon_+ + (E_z + iB_z)\epsilon_- \\ (E_z - iB_z)\epsilon_+ + (E_z + iB_z)\epsilon_- \end{pmatrix}, \quad (A.5)

and since
\nonumber
\mathbf{B} = \frac{\omega}{2k} \begin{pmatrix} - (E_z - iB_z)\epsilon_+ + (E_z + iB_z)\epsilon_- \\ - (E_z - iB_z)\epsilon_+ + (E_z + iB_z)\epsilon_- \end{pmatrix},

with a similar expression for \mathbf{B}, it follows that
\nonumber
\begin{pmatrix} E_\pm \\ \pm iB_\pm \end{pmatrix} = \frac{\omega}{4k} \begin{pmatrix} \epsilon_- \cdot \mathbf{e}_\pm \\ \pm \epsilon_- \cdot \mathbf{e}_\pm + \epsilon_+ \cdot \mathbf{e}_\pm \end{pmatrix} \begin{pmatrix} E_z + iB_z \\ E_z - iB_z \end{pmatrix}. \quad (A.6)

\section*{Acknowledgments}

Work supported in part by PAPIIT-UNAM, project IN 101511-3.

1. LIGO project: http://www.ligo.caltech.edu/
2. A. A. Starobinskii, Sov. Astr. Lett. 11 (1985) 133; A. G. Polnarev, Sov. Astr. 29 (1985) 607.
3. A. C. S. Readhead et al., Science 306 (2004) 836.
4. J. Plebanski, Phys. Rev. 118 (1960) 1396.
5. B. Mashhoon and L. P. Grishchuk, Astrophys. J. 236 (1980) 990.
6. N. R. Sibgatullin, Oscillations and Waves: In Strong Gravitational and Electromagnetic Fields, Springer-Verlag (Berlin, 1991), Section 1.3
7. D. Bini, P. Fortini, M. Haney, and A. Ortolan, Class. Quan. Grav. 28 (2011) 235007.
8. J. Ehlers and W. Kundt, in The Theory of Gravitation, L. Witten, editor, John Wiley & Sons, Inc., (New York and London, 1962); p. 86-101.
9. S. Hacyan, Gen. Rel. Grav. 44 (2012) 2923.
10. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (4th edition), Butterworth-Heinemann, (Oxford, 2000). Chap. 13.
11. J. D. Jackson, Classical Electrodynamics. Wiley; 2 edition (New York, London, 1975). Sect. 7.2.
12. M. Born and E. Wolf, Principles of Optics. (Pergamon Press, Oxford, 1975); Sect. 30-31.