Some remarks on varieties of pairs of commuting upper triangular matrices and an interpretation of commuting varieties

Roberta Basili
Via dei Ciclamini 2 B 06126 Perugia Italy, e-mail: robasili@alice.it

Abstract

It is known that the variety of pairs of $n \times n$ commuting upper triangular matrices isn’t a complete intersection for infinitely many values of n; we show that there exists m such that this happens if and only if $n > m$. We also show that $m < 18$ and that it could be found by determining the dimension of the variety of pairs of commuting strictly upper triangular matrices. Then we define a natural map from the variety of pairs of commuting $n \times n$ matrices onto a subvariety defined by linear equations of the grassmannian of subspaces of K^{n^2} of codimension 2.

1 Introduction

Let T_n be the set of all $n \times n$ upper triangular matrices over an algebraically closed field K; let T_n be the subset of T_n of all the invertible matrices. Let

$$CT_n = \{(X,Y) \in T_n \times T_n : [X,Y] = 0\}.$$

Let U_n be the subset of T_n of all the strictly upper triangular matrices and let

$$NT_n = CT_n \cap (U_n \times U_n).$$

It is known that there exist infinitely many values of n such that CT_n and NT_n are not irreducible and are not complete intersections. The determination of the smallest n such that these properties occur is an open problem which
has recently interested several mathematicians.
The action of T_n on U_n hasn’t finitely many orbits; a classification of them can be found in [1]. Hence many of the arguments which are used in the study of commuting varieties cannot be applied here.

In section 2 we show that CT_n is a complete intersection if and only if its irreducible components have the same dimension, and that there exist natural numbers m, m' such that CT_n isn’t a complete intersection if and only if $n > m$ and is reducible if and only if $n > m'$. Similar results hold for NT_n; moreover we prove that m and m' have the previous property according to the dimension of NT_m, $NT_{m'}$. Then we give examples which prove that $m < 18$ and $m' < 17$.

Many results of section 2 were independently obtained by Allan Keeton, as results of his Ph.D. thesis. More precisely, Keeton communicated to the author that he had obtained the following results:

a) CT_n is an irreducible, normal complete intersection if $n \leq 8$;
b) CT_n is not normal if $n \geq 16$;
c) CT_n is reducible if $n \geq 17$;
d) CT_n is not a complete intersection and not of pure dimension if $n \geq 18$.

In section 3 we consider the variety $\mathcal{C}(n, K)$ of all the pairs of commuting $n \times n$ matrices, which we regard as a subvariety of $\mathbb{P}^{n^2-1} \times \mathbb{P}^{n^2-1}$. We denote by $\mathcal{C}_0(n, K)$ the subvariety of $\mathcal{C}(n, K)$ of pairs of equal elements, then we define a map γ_n from $\mathcal{C}(n, K) \setminus \mathcal{C}_0(n, K)$ into the grassmannian $G(2, K^{n^2})$ of all the subspaces of K^{n^2} of codimension 2. The fibers of this map are the orbits of $\mathcal{C}(n, K) \setminus \mathcal{C}_0(n, K)$ under the natural action of $\text{GL}(2, K)$ on $\mathcal{C}(n, K) \setminus \mathcal{C}_0(n, K)$.

We get that the image of γ_2 is a linear complete intersection subvariety of the projective space of dimension 5 in which $G(2, K^4)$ is defined.

2 Some remarks on varieties of pairs of commuting upper triangular matrices

We will denote by (X, Y) a generic element of $T_n \times T_n$. The entries of $[X, Y]$ give $\frac{n(n-1)}{2}$ equations for CT_n and $\frac{(n-1)(n-2)}{2}$ equations for NT_n.

Let CT_n^0 be the Zariski closure of the subset of CT_n of all the pairs (X, Y)
such that X and Y are regular (that is have minimum polynomial of degree n); let NT_n^0 be the same Zariski closure in NT_n.

** Proposition 1** We have:

i) CT_n^0 is irreducible of dimension $\frac{n(n + 3)}{2}$; this is the minimum dimension of the irreducible components of CT_n.

\[n(n + 1) - 1; \] this is the minimum dimension of the irreducible components of NT_n.

\[CT_n^0 \]

\[\frac{n(n + 1)}{2} \]

\[+ 1 \]

\[n(n + 3) \]

\[= \frac{n(n + 3)}{2} \]

\[+ n \]

Moreover \[
\frac{n(n + 3)}{2} = \dim (T_n \times T_n) - \frac{n(n - 1)}{2},
\]

which shows i). The same argument can be used for ii).

\[\frac{n(n + 3)}{2} \]

By the irreducibility of the centralizer in T_n and in U_n we get the following result.

** Proposition 2** If $(X, Y) \in CT_n (NT_n)$ and X or Y commutes with regular matrices of $T_n (U_n)$ then $(X, Y) \in CT_n^0 (NT_n^0)$.

We observe that any irreducible component of $CT_n (NT_n)$ is stable under the action of T_n. Moreover any irreducible component of CT_n is stable with respect to the action of K^2 defined by

\[(x, y) \cdot (X, Y) = (X + xI_n, Y + yI_n); \]

hence the subset of the pairs of nonsingular matrices is dense in any irreducible component of CT_n.

We denote by \{ e_1, \ldots, e_n \} the canonical basis of K^n and by $M(p, q)$ the set of all $p \times q$ matrices over K.

** Proposition 3** If $CT_{n-1} (NT_{n-1})$ isn't irreducible or isn't a complete intersection, the same holds for $CT_n (NT_n)$.
Proof. We first prove the claim for CT_n.
Let CT^1_{n-1} be an irreducible subvariety of CT_{n-1} different from CT^0_{n-1} and let
\[\dim CT^1_{n-1} = \frac{(n-1)(n+2)}{2} + k, \quad k \geq 0. \]
Let T'_n be the subspace of T_n of all the endomorphisms which stabilize $\langle e_1 \rangle$ and $\langle e_2, \ldots, e_n \rangle$. Let $T'_n = T_n \cap T'_n$. Let
\[\Gamma = \{(X, Y) \in CT_n : X = \begin{pmatrix} 0 & 0 \\ 0 & X' \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 0 \\ 0 & Y' \end{pmatrix}, \quad (X', Y') \in CT^1_{n-1} \}. \]
Let Γ' be the orbit of Γ under the action of T_n. If $(X', Y') \in CT^1_{n-1}$, rank X', rank $Y' = n-1$ and $G \in T_n$ then we have that $G \cdot (X, Y) \in \Gamma$ iff $G \in T'_n$.
Hence
\[\dim \Gamma' = \dim T_n - \dim T'_n + \dim CT^1_{n-1} = \frac{n(n+1)}{2} - \left(\frac{n(n-1)}{2} + 1 \right) + \frac{(n-1)(n+2)}{2} + k = \frac{n(n+3)}{2} + k - 2. \]
Let CT^1_n be the orbit of Γ' under the action of K^2; we have
\[\dim CT^1_n = \frac{n(n+3)}{2} + k. \]
Since X' and Y' aren’t regular, $CT^1_n \neq CT^0_n$, which shows the claim.
We now prove the claim for NT_n. Let NT^1_{n-1} be a subvariety of NT_{n-1} and let
\[NT^1_n = \{ (X, Y) \in NT_n : X = \begin{pmatrix} 0 & \widetilde{X} \\ 0 & \widetilde{X}' \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & \widetilde{Y} \\ 0 & Y' \end{pmatrix}, \quad (X', Y') \in NT^1_{n-1}, \widetilde{X}, \widetilde{Y} \in M(1, n-1) \}. \]
The equations for NT^1_n as subvariety of
\[NT^1_{n-1} \times M(1, n-1) \times M(1, n-1) \]
are given by $\widetilde{X}Y' - \widetilde{Y}X' = 0$, hence
\[\dim NT^1_n \geq \dim NT^1_{n-1} + n. \]
If \(\dim NT_{n-1}^1 = \frac{n(n-1)}{2} - 1 + k, \ k \geq 0 \) then \(\dim NT_n \geq \frac{n(n+1)}{2} - 1 + k \), which proves the claim.

For \(X \in T_n \) let \(f(t) = (t - \lambda_1)^{m_1} \cdots (t - \lambda_r)^{m_r} \) be the minimum polynomial of \(X \). For \(i = 1, \ldots, r \) let \(f_i(t) = f(t) : (t - \lambda_i)^{m_i} \) and let \(g_1(t), \ldots, g_r(t) \) be such that \(\sum_{i=1}^{r} g_i(t)f_i(t) = 1 \); then \(\sum_{i=1}^{r} g_i(X)f_i(X) = I_n \). Hence the matrices \(I_i = g_i(X)f_i(X), \ i = 1, \ldots, r, \) are orthogonal projections of \(K^n \) on \(K^n \) and the image of \(I_i \) is \(\ker (X - \lambda_i I_n)^{m_i} \). Then we get the following result.

Lemma 4 Let \((X, Y) \in CT_n \). There exist \(G \in T_n \) and a partition \(\{E_1, \ldots, E_r\} \) of \(\{Ge_1, \ldots, Ge_n\} \) such that \(\ker (X - \lambda_i I_n)^{m_i} = \langle E_i \rangle \) and \(\langle E_i \rangle \) is stable with respect to \(X \) and \(Y \) for \(i = 1, \ldots, r \).

Proof. The matrices \(I_i \) for \(i = 1, \ldots, r \) are upper triangular and commute with the matrices of the centralizer of \(X \). If \(j \in \{1, \ldots, n\} \) there exists a unique \(i \in \{1, \ldots, r\} \) such that the entry of \(I_i \) of indices \((j, j) \) is 1. Let \(G \in T_n \) be such that \(Ge_j = I_ie_j \); this gives a partition with the required property.

We set \(n_i = |E_i| \) for \(i = 1, \ldots, r \). By Lemma 4 we get the following results.

Proposition 5 Let \(CT_{n-1} \) be a complete intersection and let \((X, Y) \in CT_n \) be such that \(X \) or \(Y \) has at least two eigenvalues. Then \((X, Y) \) doesn't belong to any irreducible component of dimension greater than \(\frac{n(n+3)}{2} \).

Proof. If \((X, Y) \) belongs to an irreducible component then the subset of it of all the pairs such that at least one of the matrices has more than one eigenvalue is dense. Let \(E = \{E_1, \ldots, E_r\} \) be a partition of \(\{e_1, \ldots, e_n\} \) such that \(r \geq 2 \). Let \(T_E \) be the subset of \(T_n \) of all the endomorphisms which stabilize \(\langle E_i \rangle \) for \(i = 1, \ldots, r \). Let \(T_E = T_n \cap T_E \) and let \(CT_E = CT_n \cap (T_E \times T_E) \). By Proposition 3 we have \(\dim CT_E = \sum_{i=1}^{r} \frac{n_i(n_i + 3)}{2} \), hence the dimension of the orbit of \(CT_E \) under the action of \(T_n \) is less or equal than

\[
\dim T_n - \dim T_E + \dim CT_E = \frac{n(n+1)}{2} - \sum_{i=1}^{r} \frac{n_i(n_i + 1)}{2} + \sum_{i=1}^{r} \frac{n_i(n_i + 3)}{2} = \frac{n(n+3)}{2}.
\]
Hence the claim follows by Lemma 4.

Proposition 6 Let CT_{n-1} be irreducible and let $(X, Y) \in CT_n$ be such that X or Y has at least two eigenvalues. Then $(X, Y) \in CT_n^0$.

Proof. Let us assume that X has $r \geq 2$ eigenvalues and let $\{E_1, \ldots, E_r\}$ be as in Lemma 4. Let CT_n^E be the subvariety of CT_n of all the pairs of matrices which stabilize $\langle E_i \rangle$ for $i = 1, \ldots, r$. Then we have

$$CT_n^E \cong CT_{n_1} \times \cdots \times CT_{n_r}.$$

By Proposition 3, CT_{n_i} is irreducible for $i = 1, \ldots, r$. Hence CT_n^E is irreducible and the subset of CT_E of all the pairs of regular matrices is dense, which shows the claim.

By Propositions 5 and 6 we get that, in order to determine the values of n such that CT_n isn’t irreducible or isn’t a complete intersection, we can look for irreducible components which have as elements only pairs of matrices with only one eigenvalue. Hence it is enough to determine the dimension of NT_n.

Let $X = (x_{i,j}), Y = (y_{i,j}), X_{i,j} = \begin{pmatrix} x_{i,j} \\ y_{i,j} \end{pmatrix}$. The condition $[X, Y] = 0$ gives the following equations for NT_n:

$$\sum_{k=i+1}^{j-1} \text{det} (X_{i,k} \quad X_{k,j}) = 0 \quad i = 1, \ldots, n - 2, \quad j = i + 2, \ldots, n. \quad (1)$$

We observe that this system of equations is invariant under the involution of U_n defined by $z_{i,j} \mapsto z_{n+1-j, n+1-i}$.

Any irreducible component of NT_n different from NT_n^0 is contained in a subvariety of NT_n defined by some equations of the form $X_{i,j} = 0, i < j$. Moreover the following result holds.

Lemma 7 If $X \in U_n$ and there exist $h, k \in \{1, \ldots, n\}$ such that $x_{h,k}$ vanishes on the orbit of X under the action of T_n then also $x_{i,j}$ vanishes on that orbit for $i, j = h, \ldots, k$.

Proof. The claim follows from the fact that in the orbit under T_m of any nonzero matrix of U_m there exists a matrix such that its entry of indices $(1, m)$ isn’t 0.
Corollary 8 Let NT^*_n be an irreducible component of NT_n different from NT^0_n. There exists $s \in \{1, \ldots, n-1\}$ and subsets J_1, \ldots, J_s of $\{1, \ldots, n\}$, such that:

i) if $h \in \{1, \ldots, s\}$, $i, j \in J_h$, $l \in \{1, \ldots, n\}$ and $i < l < j$ then $l \in J_h$;

ii) $J_1 \cup \cdots \cup J_s = \{1, \ldots, n\}$;

iii) $X_{i,j}$ is 0 on NT^*_n iff there exists $h \in \{1, \ldots, s\}$ such that $i, j \in J_h$.

Let Υ_n be the set of all the partitions $J = \{J_1, \ldots, J_s\}$ of $\{1, \ldots, n\}$ such that $s \in \{1, \ldots, n-1\}$ and J_1, \ldots, J_s have the property i) of Corollary 8.

We assume that if $h, k \in \{1, \ldots, s\}$ and $h < k$ the elements of J_h are smaller than those of J_k. If $J \in \Upsilon_n$ we denote by U^J_n the subvariety of U_n defined by the equations

$$x_{i,j} = 0, \quad i, j \in J_h, \quad h = 1, \ldots, s$$

and we set $NT^J_n = NT_n \cap (U^J_n \times U^J_n)$.

If NT^*_n is an irreducible component of NT_n different from NT^0_n there exists $J \in \Upsilon_n$ such that $NT^*_n \subseteq NT^J_n$.

Example A The variety NT_4 is defined by the equations:

$$\det (X_{1,2} \quad X_{2,3}) = 0, \quad \det (X_{2,3} \quad X_{3,4}) = 0,$$

$$\det (X_{1,2} \quad X_{2,4}) + \det (X_{1,3} \quad X_{3,4}) = 0.$$

Let NT^1_4 be the subvariety of NT_4 defined by the equations $X_{2,3} = 0$ and let NT^0_4 be the subvariety of NT_4 defined by the equations

$$\rank (X_{1,2} \quad X_{2,3} \quad X_{3,4}) \leq 1.$$
which shows the claim. Let \(X_{1,2} = \gamma X_{2,3}, \gamma \neq 0 \), and let \(X_{3,4} = 0 \). Let us consider the subvariety of \(NT_n^0 \), parametrized by \(\delta \), defined by \(X_{i,j} = X_{i,j} \) for \((i,j) = (2,3), (1,2), (1,3), X_{3,4} = \delta X_{2,3}, X_{2,4} = X_{2,4} + \delta X_{1,3} \); for \(\delta \neq 0 \) we get pairs of regular elements. We could use a similar argument if \(X_{1,2} = 0 \) and \(X_{3,4} \neq 0 \), which shows the claim.

Let \(J \in \Upsilon_n \) and let \(Z_{h,k} = (x_{i,j}) \), \(W_{h,k} = (y_{i,j}) \), \(i \in J_h, j \in J_k \). We can write the equations of \(NT_J^* \) in \(U_J^* \times U_J^* \) as follows:

\[
\sum_{i=h+1}^{k-1} Z_{h,i} W_{i,k} - W_{h,i} Z_{i,k} = 0 \quad h = 1, \ldots, s - 2, \quad k = h + 2, \ldots, s .
\]

This can be also written in the following way:

\[
\begin{pmatrix}
Z_{h,h+1} & -W_{h,h+1} & \cdots & Z_{h,k-1} & -W_{h,k-1}
\end{pmatrix}
\begin{pmatrix}
W_{h+1,k} \\
Z_{h+1,k} \\
\vdots \\
W_{k-1,k} \\
Z_{k-1,k}
\end{pmatrix} = 0
\]

\(h = 1, \ldots, s - 2, \quad k = h + 2, \ldots, s . \)

Let \(V_{m,p,q} = \{(A, B) \in M(m,p) \times M(p,q) : AB = 0\} \). We can determine a lower bound of the dimension of \(NT_J^* \) by the following elementary result.

Lemma 9 The irreducible components of \(V_{m,p,q} \) are the subvarieties

\[V_{m,p,q}^{a,b} = \{(A, B) \in V_{m,p,q} : \text{rank } A \leq a, \ \text{rank } B \leq b\} \]

where \((a,b)\) is maximal such that \(b \leq \min \{p, q\}, \ a \leq \min \{p - b, m\} \). We have:

1) \(\dim V_{m,p,q}^{a,b} = a(p + m - a) + b(p + q - b) - ab \);

2) \(V_{m,p,q} \) is a complete intersection iff \(p \geq m + q - 1 \).

By the following example W.V. Vasconcelos observed that \(CT_n \) isn’t a complete intersection for infinitely many values of \(n \).

Example B [4]. Let \(n = 3m \) and let \(J \in \Upsilon_{3m} \) be defined by \(J_1 = \{1, \ldots, m\} \),
$J_2 = \{m + 1, \ldots, 2m\}$, $J_3 = \{2m + 1, \ldots, 3m\}$. If (X, Y) belongs to the subvariety of $U_n \times U_n$ defined by

$$X_{i,j} = 0, \quad i, j \in J_h, \quad h = 1, 2, 3$$

then for $i \notin J_3$ or $j \notin J_3$ the entry of $[X, Y]$ of indices (i, j) is 0. Hence $\dim NT_3^m \geq 3m^2 + 3m^2 - m^2 = 5m^2$. We have $\dim CT_3^0 = \frac{9m(m+1)}{2}$, which for $m \geq 10$ is smaller than $5m^2$, hence CT_3^0 isn’t a complete intersection for $m \geq 10$.

Example C Let $n = 18$ and let $J \in \Upsilon_{18}$ be such that $|J_1| = 1$, $|J_2| = 5$, $|J_3| = 6$, $|J_4| = 5$, $|J_5| = 1$. The condition $[X, Y] = 0$ gives 48 equations for NT_1^J as subvariety of $U_1^J \times U_1^J$. Hence

$$\dim NT_1^J \geq \dim (U_1^J \times U_1^J) - 48 = 188.$$

Then the dimension of the orbit of NT_1^J under the action of K^2 is greater or equal than 190. Since $\dim CT_1^0 = 189$, CT_1 isn’t a complete intersection.

Example D Let $n = 17$ and let $J \in \Upsilon_1$ be such that $|J_1| = 2$, $|J_2| = 4$, $|J_3| = 5$, $|J_4| = 4$, $|J_5| = 2$. The condition $[X, Y] = 0$ gives 56 equations for NT_1^J as subvariety of $U_1^J \times U_1^J$. Hence

$$\dim NT_1^J \geq \dim (U_1^J \times U_1^J) - 56 = 168.$$

Then the dimension of the orbit of NT_1^J under the action of K^2 is greater or equal than 170. Since $\dim CT_1^0 = 170$, CT_1 is reducible.

3 An interpretation of commuting varieties

Let $M(n, K)$ be the set of $n \times n$ matrices over K, which we regard as a projective space of dimension $n^2 - 1$. Let

$$\mathcal{C}(n, K) = \{(X, Y) \in M(n, K) \times M(n, K) : [X, Y] = 0\}.$$

For $X, Y \in M(n, K)$ we set $X = (x_{i,j}), Y = (y_{i,j})$, where $i, j \in \{1, \ldots, n\}$, and $X_{i,j} = \begin{pmatrix} x_{i,j} \\ y_{i,j} \end{pmatrix}$. As a generalization of equations 1, the equations for $\mathcal{C}(n, K)$ given by the condition $[X, Y] = 0$ can be written as follows:

$$\sum_{k=1}^{n} \det \begin{pmatrix} X_{i,k} & X_{k,j} \end{pmatrix} = 0 \quad i, j = 1, \ldots, n.$$
Let
\[C_0(n, K) = \{ (X, Y) \in C(n, K) : \det \begin{pmatrix} X_{i,j} & X_{h,k} \end{pmatrix} = 0 \text{ for any } (i, j), (h, k) \in \{1, \ldots, n\} \times \{1, \ldots, n\} \}. \]

For \((i, j), (h, k) \in \{1, \ldots, n\} \times \{1, \ldots, n\}\) we denote by \(p_{(i,j)(h,k)}\) the Plücker coordinates of subspaces of codimension 2 of \(K^{n^2}\); we denote by \(G(2, K^{n^2})\) the grassmannian of those subspaces.

There is a natural map \(\gamma_n\) from \(C(n, K) \setminus C_0(n, K)\) into \(G(2, K^{n^2})\), defined by associating to \((X, Y)\) the subspace having the following Plücker coordinates:
\[p_{(i,j)(h,k)} = \det \begin{pmatrix} X_{i,j} & X_{h,k} \end{pmatrix} \]
for \((i, j), (h, k) \in \{1, \ldots, n\} \times \{1, \ldots, n\}\). The image of \(\gamma_n\) is the subvariety of \(G(2, K^{n^2})\) defined by the following linear equations:
\[\sum_{k=1}^{n} p_{(i,k)(k,j)} = 0, \quad i, j = 1, \ldots, n. \]

The group \(GL(2, K)\) acts on \(C(n, K) \setminus C_0(n, K)\) by the following rule:
\[\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \cdot (X, Y) = (aX + bY, cX + dY) \]
for \(\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in GL(2, K)\) and \((X, Y) \in C(n, K) \setminus C_0(n, K)\). The fibers of \(\gamma_n\) are the orbits of \(C(n, K) \setminus C_0(n, K)\) under the action of \(GL(2, K)\).

We can define a similar map for \(CT_h\) and \(NT_n\), as a restriction of \(\gamma_n\). As an example we illustrate this geometrical interpretation for \(NT_4\).

Example A We regard \(U_4\) as a projective variety of dimension 5 (whose coordinates have indices \((1, 2), (2, 3), (3, 4), (1, 3), (2, 4), (1, 4)\)). We consider the elements of \(U_4\) as hyperplanes of \(\mathbb{P}^5\). The map \(\gamma_4\) associates to any pair of different hyperplanes of \(NT_4\) the subspace of \(\mathbb{P}^5\) given by their intersection.

The image of \(NT_4\) by \(\gamma_4\) is defined by the equations:
\[p_{(1,2)(2,3)} = 0, \, p_{(2,3)(3,4)} = 0, \, p_{(1,2)(2,4)} + p_{(1,3)(3,4)} = 0. \]

The inverse image under \(\gamma_4\) of the subset of all subspaces of \(\mathbb{P}^5\) of codimension 2 such that \(p_{(1,2)(3,4)} = 0\) is the irreducible component \(NT_4^0\) of \(NT_4\). The set
of pairs of hyperplanes such that the coordinate of indices (2, 3) is 0 (that is, "parallel" to the (2, 3)-axis) is the irreducible component N_{T}^1 of NT_4.

Example E The image of $C(2, K) \setminus C_0(2, K)$ under the map γ_2 is a subvariety of $G(2, K^4)$ defined by the following equations:

$$p(1,2)(2,1) = 0 ,$$

$$p(1,1)(1,2) + p(1,2)(2,2) = 0 ,$$

$$p(2,1)(1,1) + p(2,2)(2,1) = 0 .$$

The variety $G(2, K^4)$ is a subvariety of a projective space of dimension 5 defined by the equation

$$p(1,1)(2,2)p(1,2)(2,1) - p(1,1)(1,2)p(2,2)(2,1) + p(1,1)(1,2)p(2,2)(1,2) = 0 .$$

If we consider subvarieties of that projective space, we have the following results. The subvariety defined by equations 3, 4 and 5 has two irreducible components; one of them is $\gamma_2(C(2, K) \setminus C_0(2, K))$ (see [3]). The subvariety defined by the equations 2, 3 and 4 is contained in $G(2, K^4)$, hence it is $\gamma_2(C(2, K) \setminus C_0(2, K))$. Then $\gamma_2(C(2, K) \setminus C_0(2, K))$ is linear complete intersection as subvariety of that projective space.

Acknowledgement The problem of properties of commuting varieties of upper triangular matrices was suggested to the author by Prof. Jerzy Weyman during her stay at Northeastern University in summer 2003.

References

[1] W.H. Hesselink, A classification of the nilpotent upper triangular matrices, Compositio Math. 55 (1985). 89-133

[2] A. Keeton, Ph.D. thesis (University of California).

[3] A. Knutson, Some schemes related to the commuting variety, J. Algebr. Geom. 14, No. 2, 283-294 (2005).

[4] W.V. Vasconcelos, Arithmetic of Blowup Algebras, London Mathematical Society, Lecture Note Series 195, Cambridge University Press (1994).