The role of nanotechnology in current COVID-19 outbreak

Shima Tavakol a,b,**, Masoumeh Zahmatkeshtan a,c, Reza Mohammadmajed d, Saeed Mehrzad e, Mohammad T. Joghataei a,f, Mo S. Alavijeh b, Alexander Seifalian g,*

a Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
b Pharmidex Pharmaceutical Services Ltd., London, United Kingdom
c Department of Medical Nanotechnology, Iran University of Medical Sciences, Tehran, Iran
d Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
e Razi Drug Research Center, Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
f Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
g Nanotechnology and Regenerative Medicine Commercialization Centre (NanoRegMed Ltd, UK), London BioScience Innovation Centre, London, NW1 0NH, United Kingdom

ARTICLE INFO
Keywords:
COVID-19
Nanoparticle
Drug repurposing
Vaccine
Nanocarrier
Coronavirus
Drug delivery
Nanomaterials
Nanotechnology
Cells
Preclinical
Clinical

ABSTRACT
COVID-19 has recently become one of the most challenging pandemics of the last century with deadly outcomes and a high rate of reproduction number. It emphasizes the critical need for the designing of efficient vaccines to prevent virus infection, early and fast diagnosis by the high sensitivity and selectivity diagnostic kits, and effective antiviral and protective therapeutics to decline and eliminate the viral load and side effects derived from tissue damages. Therefore, non-toxic antiviral nanoparticles (NPs) have been under development for clinical application to prevent and treat COVID-19. NPs showed great promise to provide nano vaccines against viral infections. Here, we discuss the potentials of NPs that may be applied as a drug itself or as a platform for the aim of drug and vaccine repurposing and development. Meanwhile, the advanced strategies based on NPs to detect viruses will be described with the goal of encouraging scientists to design effective and cost-benefit nanoplatforms for prevention, diagnosis, and treatment.

1. Introduction

1.1. Coronavirus and its viral adventurage in the body: Corona

COVID-19 is caused by the SARS-CoV-2 virus and it has recently become one of the most challenging pandemics of the last century with deadly outcomes and a high rate of reproduction number and transmission. Since late 2002, coronaviruses have become a serious epidemic problem with severe acute respiratory syndrome coronavirus (SARS) and then with the onset of the Middle East respiratory syndrome (MERS) in late 2012. The enveloped ssRNA⁺ virus with an average particle size of 120–160 nm belongs to the subfamily, family, order, and the realm of Orthocoronavirinae, Coronaviridae, Nidovirales, and Riboviria, respectively [1]. Coronaviruses encode some structural and non-structural proteins that might be considered as an anti-viral target, including phosphorylated nucleocapsid, envelope, membrane glycoproteins, spike, helicase, papain-like protease and 3-chymotrypsin-like protease [2]. Although several of clinical trials are underway, currently, there is no clinically effective protective vaccine or therapeutic drug for COVID-19 patients in the world. Due to the urgent need for the treatment of COVID-19 patients and the desperation of uncertainly of any new vaccine, drug repurposing has been considered as a promising strategy. Therefore, the crucial step in drug repurposing is to have a thorough and accurate understanding and knowledge of structural differences of the coronaviruses and RNA (Ribonucleic acid) viruses and their involved receptors in a host.

Both SARS and COVID-19 were started from China during the spring festival with the same animal source, bat, and eventually pangolin in COVID-19 [3]. To the best of our knowledge, the coronavirus responsible for SARS and COVID-19 attached to the receptor-binding site of
angiotensin-converting enzyme 2 (ACE2). However, MERS was started from Saudi Arabia with the animal source of camel and dipeptidyl peptidase-4 (DPP4) receptor involvement. The age of involvement in MERS and COVID-19 is middle age and occurs mostly in patients with the underlying disease for 2–14 days post-exposure, unlike the SARS in young individuals.

As a view of clinical features, these viruses share some similarities and differences. They all appear to have common clinical symptoms such as fever, cough, and general symptoms of the common cold. Pathologically, ACE2 a cell surface receptor in human is the main receptor of the SARS-CoV-2 virus. It is over-expressed in the lung, heart, kidney, testis, intestine, and brain. Therefore, we expect these organs to experience cell and tissue damages in part due to cytokine storm. However, CD147 (Basigin) as an extracellular matrix metalloproteinase inducer is considered as the other receptor for SARS-CoV-2 on the surface of lots of cells, including epithelial cells, endothelial cells, leukocytes, red blood cells, etc. It is the receptors of plasmidium falciparum on red blood cells, and also it has rules in spermatogenesis, the responsiveness of lymphocytes, etc. [2]. However, the disruption of the CD147-C-type lectin leads to the induction of prostate cancer [4]. The point is related to the eventual influence of prostate tissue by SARS-CoV-2 through the involvement of CD-147. Clinically, MERS and COVID-19 cause higher cardiovascular problems than the SARS, while SARS and COVID-19 patients more frequently than MERS experienced renal and neurological problems.

The mechanism underlying the COVID-19 disease is in part related to the decline of ACE2 (angiotensin-converting enzyme 2) owing to the entrance of the virus by its spike glycoprotein resulting in spike cleavage by transmembrane protease TMRPRSS2. It triggers a cascade that leads to inflammation, TNF-α production, and tissue damage through the C-terminal cleavage of ACE2 by the TNF-alpha-converting enzyme (TACE). The sodium-dependent neutral amino acid transporter (SLC6A19 or B0AT1) occupies the C-terminal cleavage site and inhibits the effects of TACE on ACE2. The inhibition of TACE, renin-angiotensin pathway, C-terminal cleavage of ACE2, TNF-α, and inflammatory inhibitors will decrease the level of virus infection and tissue damage. As depicted in Figure 1, a virus is entered by binding to the ACE2 receptor on the cell surface of target cells and infects host cells [100]. However, chloroquine has the potential to interfere at different points of this cycle. Furthermore, chloroquine has a possible inhibitory effect on the MAPK kinase activity and hence a downregulation of certain proinflammatory responses.

From the other side, the interaction of the virus by CD147 will cause other parts of pathogenesis in patients [5]. However, one of the most crucial pathogenesis mechanisms of SARS-CoV and MERS-CoV is through delay interferon, TNF-α, and pro-inflammatory responses that lead to the decrement of innate immunity in the host [6].

In the present paper, we discuss the diagnostic and therapeutic strategies for the other viruses which have similar mechanisms of action with SARS-CoV-2. The aim was to repurpose some strategies to diagnosis and cure the COVID-19 based on successfulness in similar diseases aiming to reduce the time and cost of diagnosis and treatment.

2. What strategy been taking for the treatment of COVID-19

To design and evaluate a successful drug and vaccine repurposing, it is necessary to know how much SARS-CoV-2 is close to the MERS-CoV and SARS-CoV as a genotype and structure (Table 1). Nucleotide sequence identity among the human coronaviruses, SARS-CoV, and SARS-CoV-2, are varying from 99.99-79.7% and 82% in COVID-19 patients. The sequence homology of SARS-CoV and MERS-CoV with SARS-CoV-2 are 70–77.5% and 50%, respectively [7, 8]. The proteins of the envelope, membrane, nuleocapsid, S1, and S2 have 95–96, 91, 89.6–94, 70 and 99% similarity in SARS-CoV and SARS-CoV-2, respectively [7, 9, 10]. Noteworthy, the spike of MERS-CoV and SARS-CoV-2 just have a 31.9% amino acid identity that makes it unfavourable for drug repurposing in COVID-19 therapy. Furthermore, receptor-binding domain (RBD) of spike and ORF3b, ORF8 in SARS-CoV-2, just have 40, 32 and 40% amino acid identity with SARS-CoV [10, 11]. Moreover, SARS-CoV-2 has some mutations such as replacing serine instead of glycine and proline instead of isoleucine in the position of 723 and 1010 of ORF1ab compared to SARS-CoV, respectively [12]. ORF1ab is involved in the synthesis of papain-like proteases: nsp3,
3. Diagnosis

The first stage of diagnosis in COVID-19 patients is based on a traveling and communication history of patients. Then Chest X-Ray and CT are recommended to detect ground-glass opacity and patchy bilateral shadows in the lungs. Other analyses on blood serum are differential CBC, CRP, LDH, AST/AL, procalcitonin, troponin I. Lymphopenia in patients indicated a bad prognosis of the disease. To detect the virus in specimens, Real-time RT-PCR is recommended. However, the diagnostic kit based on the RT-PCR technique has varied negative results. The PCR positive results are valuable, and the negative results do not reject the possible diseases. A systematic review indicated that the CT scan is a valuable diagnostic method for the symptomatic and hospitalized patient, however, at the early stage PCR method is recommended [13]. The biodistribution of SARS-CoV-2 in bronchoalveolar lavage fluid, sputum, nasal, fibre-bronchoscope brush biopsy, pharyngeal, stool, blood and urine, and their biodistribution were 93, 72, 63, 46, 32, 29, 1 and 0%, respectively, during three days of hospitalization [14]. Accurate and early detection plays a critical role in limiting COVID-19 spread and prevents future epidemics. Nanotechnology, based on molecular techniques and specific pathogens targeting, has emerged as a promising strategy in the early and fast COVID-19 detection. In the field of NPs applications for SARS-CoV-2 detection, RNA might be extracted using high-affinity silica-coated iron oxide NPs. Recently [15] has been reviewed diagnostic strategies for SARS-CoV-2, focusing on nanotechnology. Notably, a molecular-based technique to assess the RNA virus has superior sensitivity compared to antibody-based methods and serology.

Table 1. The nuclear shuttle protein (NSP) function and amino acid identity between COVID-19 and bat-SL-CoVZXC21 and SARS [10]. Keys: ACIB, Amino acid identity; btw, between; Fm, formulation.

NSPs and other parts of coronaviruses	Putative function	Amino acid position	Putative cleave site	AC identity btw COVID-19 & bat-SL-CoVZXC21	AC identity btw COVID-19 & SARS
NSP1 suppress antiviral host response	M1 – G180	LNGGAYTR	96	84	
NSP2 unknown	A181 – G818	LKGGAFPTK	96	68	
NSP3 putative PI-pro domain	A819 – Q2763	LKGGKIVKN	93	76	
NSP4 complex with nsp3 and 6: DMV Fm	K2764 – Q3263	AVLQSSFR	96	80	
NSP5 3CL-pro domain	S3264 – Q3569	VTFQSAVK	99	96	
NSP6 complex with nsp3 and 4: DMV Fm	S3570 – Q3859	ATVQSKMS	98	88	
NSP7 complex with nsp8: primase	S3860 – Q3942	ATLQAAS	99	99	
NSP8 complex with nsp7: primase	A3943 – Q4140	VKLQNNEL	96	97	
NSP9 RNA/DNA binding activity	N4141 – Q4253	VRLQAGNA	96	97	
NSP10 complex with nsp14: replication	A4254 – Q4392	PMLQSADA	98	97	
NSP11 short peptide at the end of orf1a	S4393 – V4405	end of orf1a	85	85	
NSP12 RNA-dependent RNA polymerase	S4393 – Q5324	TVLQAVGA	96	96	
NSP13 helicase	A5325 – Q5925	ATLQAENV	99	100	
NSP14 ExoN: 3’–5’ exonuclease	A5926 – Q6452	TRLQSLK	95	95	
NSP15 XendoU: poly(U)-specific endoribonuclease	A5926 – Q6452	PEQQSQA	88	89	
NSP16 2’-O-MT: 2’-O-ribose methyltransferase	S6799 – N7096	end of orf1b	98	93	
Spike Host cell attachment and entry	-	-	-80	76	
Orf3a	-	-	92	72	
Orf3b	-	-	32	32	
Envelope protection	-	-	100	95	
Membrane fusion	-	-	99	91	
Orf6	-	-	94	69	
Orf7a	-	-	89	85	
Orf7b	-	-	93	81	
Orf8a/8b	-	-	94	40	
Nucleoprotein Viral genome and proteins	-	-	94	94	
Orf9b	-	-	73	73	
Envelope protection	-	-	100	95	
Membrane fusion	-	-	99	91	
Orf6	-	-	94	69	
Orf7a	-	-	89	85	
Orf7b	-	-	93	81	
Orf8a/8b	-	-	94	40	
Nucleoprotein Viral genome and proteins	-	-	94	94	
Orf9b	-	-	73	73	
However, a lateral flow antigen detection based on colloidal gold NPs is under investigation [16] and it seems that since virus infection is started from the lung, the rapid (3–15 min) and early (three days post-infection) serology methods by colloidal gold NPs are superior to PCR methods for the detection antibodies against virus instead of RNA virus [17, 18]. These findings related to the sampling, time point of sample collection, active infection versus post-infection seroconversion explains the false negative results of PCR methods. This point of care testing has exhibited a clinical sensitivity, specificity, and accuracy of 57%, 100%, and 69% for IgM and 81%, 100%, and 86% for IgG, respectively while showing a clinical sensitivity of 82% for detecting the both IgM and IgG. For example, the gold NPs that quickly detect IgM and IgG antibodies derived from SARS-CoV-2 virus [19]. Furthermore, Ahmed et al. [20] reported an ultrasensitive chiro-immunosensor for viruses, including coronavirus based on chiral AuNPs (CAu NPs)-quantum dot (QDs) nanocomposites which showed significantly enhanced sensitivity in viral detection based on exciton–plasmon interactions. Singaporean scientists developed an RNA stabilization kit that stabilizes RNA of the virus at room temperature to prevent its degradation up to one week storage [19].

As depicted in Table 1, it was shown some protein and structural similarities and differences between SARS-CoV, MERS-CoV and SARS-CoV-2 and then in Table 2, it was summarized the recent advancements in nanoplatforms for the detection and treatment of SARS-CoV-2 with regards to its similarities and differences with two other sisters. The other Nano platforms for the diagnosis of coronaviruses are polymeric NPs [21], chaperone-mediated ferritin nanoparticles [22], Nano-bodies [23, 24, 25, 26, 27], Self-Assembling Protein Nanoparticle (SAPN) [28], an adenoviral vector encoding Ad5 [29], spike protein nanoparticles [30], VLPs [31], AuNPs [32], AgNPs [33], Lumazine synthase NPs [34, 35], Microneedle array (MNA) delivered SARS-CoV-2 S1 subunit vaccines [36]. The based on the structure and protein similarities between SARS-CoV, MERS-CoV and SARS-CoV-2, it may be proposed a diagnostic method with less time and cost to design a new kit.

4. Properties of NPs for COVID-19 treatment

Nanomedicine, the application of nanomaterials to medicine, is used in vectors, biosensors, drug and gene delivery. Nanotechnology, by taking off its unique physicochemical characteristics, leads to improved therapeutic efficacy through enhanced drug bioavailability, overcome to the low Log P (hydrophobicity or insolubility in water), specific delivery to target sites in cellular and intracellular levels and reduces side effects; it can also overcome the drug resistance, which is beneficial for viral treatment. Nanomaterials that are scientifically engineered are used to help pharmaceutical companies; they help to enhance the effectiveness of therapy and target specific dysfunctional organs or decaying body cells. The emergence of nanomaterials in recent years is swiftly transforming the scientific landscape of fields as diverse as aerospace, military, and medicine.

Nanoparticles (NPs) possessing unique physicochemical properties showed virucidal activities [37]. Small size, large surface area, targetability, and stimulus-responsive characteristics, make NPs the effective antiviral agents. NPs such as iron oxide, zinc oxide, silver, carbon-based and AVNP2 are considered as the promising agents to modulate the viral infection process. Metal NPs through their localized surface plasmon resonance (LSPR) effect may act as the theranostic agents for the diagnostic and therapeutic applications [38] while polymeric NPs do not have LSPR effect. They can inactivate viruses, including H1N1 and H5N1 influenza [39], poliovirus [40], NIPAH virus [41], respiratory syncytial virus, herpes simplex virus, human papillomavirus, dengue, and leu-kivirus [42]. It has been shown that nitric oxide (NO) nanoparticles through the suppletion of NO for endothelial cells and also, inhibition of RNA replication by peroxynitrite residue derived from NO prevent SARS-CoV infection and virulence [43]. Nanomaterials such as AuNPs can be used to bind the coronavirus and interrupt its structure through infrared light emission, and then the virus is deactivated by nanomaterials. In addition to the antiviral properties, NPs are determined as promising antiviral drugs carriers. They increase the activity of the drugs and improve their bioavailability. For example, chitosan NPs in the form of an aerosol (Novochizol) encapsulate several drugs and adhere to epithelial cells and can release the drug up to 3h. Therefore, drug dilution in body fluid does not cause reduced drug effectiveness [19].

Currently, only a few unspecific anti-coronavirus agents with serious adverse effects are available such as Kaletra (Lopinavir/Ritonavir), hydroxychloroquine, oseltamivir phosphate, Azithromycin, etc. Whereas acute respiratory distress syndrome (ARDS) derived from cytokine release syndrome (CRS), especially interleukin (IL)-6, will worsen the patient’s fate. Therefore, the blocking of IL-6 and its receptor with Siltuximab and Tocilizumab are under clinical trial studies [37]. However, the role of lymphocyte apoptosis is not negligible in viral spreading by macrophages in COVID-19 patients [44]. Although there is no specific antiviral therapeutics for COVID-19, some unspecific medicines cured the patients. Nanostructures enhance the efficacy of these therapeutic agents.

Furthermore, siRNA, microRNA, and shRNA regulating viral gene expression will be developed as novel therapeutic agents against COVID-19 [45]. NPs cover the noncoding RNA and protect them from enzymes to improve their functions [46]. Nanodiamond particles functionalized and encapsulated with octadecylamine and dexamethasone show promising results dose dependency on declining of TNF-α, iNOS, and macrophage infiltration in mice [47]. However, the immunosuppression must be targeted to specific immune cells to not leading to sepsis in patients; extracorporeal perfusion of cytokines at the early stages using mesoporous carbon absorbents and graphene [48] makes enough time to host eliminate SARS-CoV-2 and limits mortality in patients derived from cytokine storm, etc.

Noteworthy, combination therapy seems to combat pandemic diseases. Co-delivery systems facilitate combination strategies [49]. Thus, nanocarriers can be applied for the co-encapsulation of the candidate drugs such as Remdesivir and hydroxychloroquine to treat COVID-19.

5. Preclinical assessment of NPs used for COVID-19 therapy

Some studies demonstrated the applications of NPs against coronavirus. Fortunately, airborne nanomaterials due to a small size and their tuneable physicochemical properties suited to penetrate alveolar epithelial type II cells (AECII) in the deep lung. The nanomaterial may be considered as a favourable candidate to deliver therapeutic agents in COVID-19 patients [37]. The most important point is related to the finding of some similar characteristics in viruses to repurpose medications such as attachment of virus attachment ligand (VAL) to heparan sulphate proteoglycans (HSPG) or sialic acids (SA) on the surface of host cells. The occupation of ligand sites on the cell surfaces, the viral attachment will be diminished [37]. However, clearance and dilution of nanomaterials upon virus replication have to be kept in mind.

Recently, different types of carbon dots have investigated for the treatment of human coronavirus HCoV-229E infection. These nanoscale materials derived from ethyleneediamine/citric acid and modified boronic acid ligands. The carbon nanomaterials inhibit and inactivate HCoV-229E entry in a concentration-dependent manner [50]. The functional groups of these carbon quantum dots interacting with HCoV-229E entry receptors and inhibit viral replication (Figure 2).

In the meantime, gold nanorods (AuNRs) have been applied to increase the inactivation of MERS-CoV. Conjugation of the AuNRs with an HR1 peptide inhibitor, pregnancy-induced hypertension (PIH), exhibits inhibitory effects and effectively prevents membrane fusion in MERS-CoV infections. These stable PIH-AuNRs complex represented as a new antiviral agent. These PIH-AuNRs possessing biocompatibility may provide fast clinical translation for MERS and eventually COVID-19 treatment [51]. Moreover, a molecular docking study proposed that Fe3O3 NPs strongly interacts to S1-RBD of the SARS-CoV-2 and eventually through the viral protein conformational change promotes antiviral
Another strategy is to grab the virus by nano-sponges. They have made nanosponges comprising the cell membrane of human macrophages and lung epithelial type II cells and decorated them with the host receptors of SARS-CoV-2. Viruses are trapped into the nanosponges and neutralized [53].

Currently, some repurposing antiviral drugs have been suggested in the treatment protocol of COVID-19, including IFN-α, Lopinavir/Ritonavir, Ribavirin, Chloroquine phosphate, and Arbidol [54, 55]. Chloroquine shows antiviral efficacy through inhibition of endosome–lysosome fusion by endosomal pH enhancement, reduction of viral load and virus entrance to host cells, and suppression of
PICALM involve in endocytosis [56] Therefore encapsulation of the hydroxychloroquine into the nanocarriers that deliver cargo to the respiratory system and decline systemic administration side effects such as retinopathy, myopathy, and heart diseases is valuable. The nanocarriers can be liposomes, polymeric NPs same as albumin NPs, micelles, etc [57].

However, as mentioned earlier, CD147 is a common receptor for plasmodium falciparum, a parasite of malaria, and SARS-CoV-2. The interaction of CD147 on RBCs and RAP2 from the plasmodium falciparum is necessary for a parasite invasion. Humanized CD147 antibody of HP6H8 completely inhibits this interaction [58]. However, owing to chloroquine resistance in malaria patients, it has been successfully substituted with artemisinin.

Regarding the antiviral drug limitations, applying available nanoplatforms is suggested. Recent it has been surveyed antiviral drugs nanocarriers, and some of them would be suggested for the treatment of COVID-19. These include; selenium@oseltamivir and nano-formulations of INFs-α. Moreover, liver targeted delivery of INFs-α decorated by hybrid NPs such as human serum albumin and copolymers of maleic anhydride/alkyl vinyl ethers of oligo (ethylene glycol) is a valuable nanoplatforms. It can be functionalized by digalactosyl diacyl glycerol, a natural glycolipid to selectively interact with the asialofetuin receptor of liver hepatocytes. Other examples are PegIntron® and Pegasys® as two FDA approved polymeric NPs containing PEG-interferon alfa-2b and PEG-interferon alfa-2a, respectively and chitosan NPs for the oral delivery of IFNα [56, 59]; combination therapy of lopinavir/ritonavir/te- nofovir by lipid nanoparticles composed of DSPC + MPEG + DSPE also introduced, although, a combination of Lopinavir/ritonavir has been suggested [60]. Combination therapy using nanomedicine not only increase the therapeutic effects induced by synergistic effects of drugs but also minimized the effective dose of drugs. In another antiviral study, lopinavir/ritonavir loaded PLGA NPs showed potent antiviral activity while reducing the effective dose [61]. Glutathione-capped Ag2S nanoclusters were also potent nanomaterial for coronavirus suppressing. They significantly prevent the RNA synthesis and budding and upregulate the INF-stimulating genes (ISGs) expression (Figure 3) [62]. Kerry and et al [41], also reviewed the nano-based approaches against viral infection in which noticed the antiviral activity of graphene oxide (GO) with Ag NPs study against Feline coronavirus (FCoV). GO-Ag NPs could efficiently suppress the FCoV through lipid membrane rupture mediated interaction of GO with lipid membrane and then, Ag NPs absorb the –SH groups of viral proteins. Furthermore, phage capsid NPs functionalized with multivalent ligands in an arrangement in which it matches the geometry of the spike protein binding site is promising. These NPs provide a collective strength of multiple binding sites and cover the entire virus envelop, thereby suppress the influenza virus entry [63]. The authors announced that they immediately take this approach to combat coronaviruses [64]. Another strategy is to rapidly eliminate pro-inflammatory cytokines from the bloodstream before the further adverse effect in tissues. It seems that extracorporeal perfusion through graphene and porous carbons is promising to quickly remove the cytokines from the blood circulation [48, 65]. However, a theranostic platform to detect and treat the virus infection is of interest. In this regards, organic, inorganic and virus-like NPs such as lipid NPs, dendrimer, magnetic and gold NPs have been reported [66]. A clinical trial phase 1 has been recently designed to investigate the safety and efficiency of aerosol inhalation of the exosomes derived from allogeneic adipose mesenchymal stem cells in patients with severe COVID-19 [67]. There are several nano-strategies to combat SARS-CoV-2 by repurposing from pharmaceutics for other diseases with

Figure 3. The anti-viral effect of Ag2S nanoclusters. They inhibit the replication of the viral genome and budding. However, they upregulate the INF-stimulating genes (ISGs) expression. Rights and permissions obtained from [62].
similar symptoms including TNF-α inhibitors and interferon producers. TNF-α is accounted as the one of major cytokines involved in cytokine storm and its inhibition will be promising to decline tissue damage thereof. To this aim, TNF-α-siRNA will be helpful especially when are encapsulated into the NPs to protect them from biodegradation and enhance their bio-distribution and transfer to the inflamed tissues. Targeted delivery to inflamed tissues may provide with acid-sensitive NPs such as acid-sensitive sheddable PEGylated solid-lipid NPs (SLN). The TNF-α-siRNA SLN had high encapsulation efficiency up to 90% with a 5% burst release of siRNA. However, they showed superior anti-inflammatory efficacy than free-methotrexate, as well [68]. Other nanoplatforms that inhibit TNF-α are surface charge tuneable (PEGSK-b-PLGA106K) NPs [69], gold NPs [70], nanodiamonds [47], Chitosan-Triplephosphate NPs [71], Polycaprolactone NPs [72], Magnetic nanocomposite particles [73], Zein NPs [74], Melatonin/Polydopamine Nanostructures [75], Polyurethane-chitosan copolymer [76], Nanocrystalline suspension [77], Lyophilized non-aggregated NP of Irbesartan (IBS-NPs) [78, 79]and Solid lipid NPs [80].

Besides, it has been proven that melatonin inhibits TNF-α production and also, it has beneficial potential to decline COVID-19 symptoms. One clinical trial on the efficacy of melatonin in COVID-19 patients has proven its efficacy [81]. In other words, melatonin modulates the immune system by acting on T cells and inhibiting of TNF-α [82].

It has been proven the administration of interferon-α needs a high dose of the parental regime and several severe side effects, therefore; encapsulation of the drug into a nanocarrier is of interest. For example, encapsulated interferon-α into chitosan NPs with mucoadhesive potential is promising to orally deliver the cargo. The NPs had a particle size of 36 nm without the decline of interferon-α activity into the carrier. Interferon-α-chitosan NP appear 1 hour after the oral administration in plasma of mice while the commercial interferon-alpha was not detected. This finding showed that encapsulation of interferon-alpha into a NP remains its activity and enhances its biodistribution. However, the patients are more compatible with the oral administration of the injection [56]. Some other nanoplatforms that have been applied to produce interferon are a derivate of chitosan NPs [25, 56, 59, 83], Fe3O4 NPs [84], Disulphide-based PEGylatednanogels [85], CD44-targeted glutathione-sensitive hyaluronic acid-mercaptopurine prodrg (HA-GS-MP) [86], Nanoliposomes [87], Sirolimus nanocomposites [88], Sirolimus Nanoeytlasts [89] and Calcium phosphate (CaP) NP-based vaccine carrier functionalized with CpG and viral peptides [90]. These NPs can encapsulate biomaterials and drugs that induce interferon-α.

Hydroxychloroquine is another drug that uses in COVID-19 patients through reduction of viral load and virus entrance to host cells. Therefore, encapsulation of the hydroxychloroquine into the nanocarriers that deliver cargo to the respiratory system and decline systemic administration side effects such as retinopathy, myopathy, and heart diseases is valuable. The nanocarriers can be liposomes, polymeric NPs same as albumin NPs, micelles, etc [57].

Safe, and effective vaccines are crucial for disrupting the COVID-19 transmission chain, and nanotechnology plays a growing potent role in vaccine development [91]. Novavax announced the development of a novel virus-like particle (VLP; recombinant NP) formulation with the Matrix-M™ adjuvant (RN 1235341-17-9) vaccine against at least one trimer of an S protein in COVID-19. The vaccine elicits a neutralizing antibody response in administered animals with a single prophylactic injection [45, 92]. A novel development of vaccine [93] reported a self-assembling peptide NP with deposition of N- and C-termini and containing NSP10, a viral transcription factor, of the human SARS-CoV as an antigen presentation platform.

A promising strategy in vaccine development is taking benefits of mRNA owing to mimicking the natural infection and the ability to combine multiple mRNAs into a single vaccine that resulted in the stimulation of a more potent immune response. For example, mRNA vaccines encapsulated in cationic lipid NPs that encode the full-length of S, S1, or S2 proteins from SARS-CoV and MERS-CoV lead to more amplified neutralizing antibody responses than mRNA encoding the S2 subunit in mice with high efficacy. Recently, Moderna announced [94] the release of the first mRNA-1273 vaccine formulated in cationic lipid NPs against the S protein of COVID-19 for human application. Others patented vaccines containing mRNA encoding at least one antigen from MERS, including an S protein or an S protein subunit (S1), an envelope protein (E), a membrane protein (M), or a nucleocapsid protein (N), all of which caused to significant specific protective immunity. Notably, intraderal injection of lipid NP (LNP)-loaded mRNA combination encoding S proteins of MERS stimulated the humoral immune responses in mice. Briefly, two companies developed nanoparticulate vaccines for SARS-CoV-2, including LNP-encapsulated mRNA form the Moderna (NCT04405076) and 3LN-mRNAs from BioNtech/Fosun Pharma/Pfizer [2020-001038-36]. These vaccines are under clinical trial studies. Some other vaccines are under preclinical investigations including LNP-mRNA from Translate Bio/SanoFite, LNP-encapsulated mRNA encoding RBD and LNP-encapsulated mRNA cocktail encoding VLP from Fudan University/Shanghai JiaoTong University/RNAcure Biopharma, LNP-encapsulated mRNA from University of Tokyo/Daiichi-Sankyo, Liposome-encapsulated mRNA from BI0CAD and LNP-mRNA from CanSino Biologics/Precision NanoSystems. Please see the recent review on vaccines on clinical trials and their mode of action for immunity against the virus [55].

6. Remark

Overall, nanotechnology has emerged as a potent strategy for the designing of antiviral therapeutics. However, translation of extensive researches from bench to clinic is an urgent priority to control COVID-19. Noteworthy, we offer the repurposing of their nano-platforms. These nanosystems have been summarized in Table 3. Most recent R&D on coronavirus vaccines has been dedicated to RNA and protein vaccines containing the S RNA and protein subunits and explicitly targeting the receptor-binding domain (RBD) of the S1 subunit of the viral S protein. Modern vaccines composed of antigenic protein subunits, including viral S protein subunits, present higher neutralizing antibody and more protective immunity compared to a live-attenuated virus, full-length S protein, and DNA-based S protein vaccines. Therefore, spike RNA and protein segments are the preferred targets for SARS/MERS vaccine development, which can take advantage of the same approach in developing COVID-19 nano-vaccines. From the other side, NPs are ideal carriers and therapeutics for pulmonary delivery [58]. In this point of view, blocking the S-ACE2 receptor interaction by biocompatible NPs would be promising; especially when the theranosticNPs are designed for early and fast detection and effective treatment, Nanomaterials can act as an adjuvant to enhance immunogenicity and antigen protection from biodegradation. These immune-targeted nanotherapeutics show dose spare, modulation of type of immunity, vast antibody responses, more rapid and durable immunity in vaccinated individuals [95]. Their responsiveness is size-dependent and, in some cases, may increase the immunity responses 100 folds higher than the soluble antigens. The NPs with 10–100 nm may be considered as a favourable particle size that can be deposited in the alveolar region, and lesser [95] than this size may be filtered from the kidney. Nano-vaccines should act as a delivering and immunomodulatory system. To reach this goal, functionalization of nanomaterials with the ligands of TLR4 and NLRP3 and also dendritic cells’ receptors such as ligands of Fc receptor, mannose receptor and CD11c/CD18 receptor, are promising. However, the cellular uptake may improve by the active targeting of target cells, cell-penetrating peptides (CPPs), cationic nanoparticles (branched PEI), etc. The candidate’s nanomaterials are MF59 (165 nm nanoemulsion), pH-sensitive or redox-sensitive nanomaterials, liposomes, gold nanoparticles, polymersome, virosomes, virus-like nanoparticles (VLPs) (15-30 nm), cationic nanoparticles such as chitosan nanoparticles, the polymeric nanoparticle of PLGA, poly(ethylene glycol)-b-poly(L-lysine)-b-poly(L-leucine) (PEG-PLL-PLL) micelles, dendrimers, etc. [95]. Although two
developed SARS-CoV-2 nano-vaccines in clinical trials are encapsulated RNA, the most preclinical vaccines focus on recombinant spike protein vaccine, one reason my related to non-exciting of RNA vaccine in the market. Therefore, the functionalization of NPs, such as liposomes with versatile biomolecules and motifs that target SARS-CoV-2 would be effective. However, functionalized graphene, carbon nanotubes, nanodiamonds, and polystyrene particles provoke the immune system. For example, amino-graphene oxide same as alum and AS01 and AS03 (conventional adjuvant) activate the inflammasome sensor NLRP3 and interferon pathways of STAT1/IRF1, respectively resulting in macrophage/Th1 polarization and T cell chemoattractants [37, 96]. However, graphene and fullerene are both candidates of photodynamic therapy [97]

7. Barriers to overcome

Recently, due to the importance of limiting the virus pandemic in the world, the results of the effectiveness of a new drug are announced every day, which seems to be understandable, but it should be reviewed more wisely. Nano drugs, meanwhile, acts as a double-edged sword. From one side, there are some concerns about their toxicities, and on the other hand, are promising to enhance the efficacy of drugs or act as a nano drug

| Table 3. The potential nano-based drugs repurposing for the treatment of COVID-19. |
|---------------------------------|-----------------|----------------|---|
| Nanoparticles Formulation | Therapeutic agent | Indication | Ref |
| **TNF-α inhibitors** | | | |
| Lipid NPs | TNF-α siRNA | rheumatoid arthritis | [68]|
| Surface charge tunable (PEG5k-b-PLGA10k) nanoparticles | TNF-α siRNA | ulcerative colitis | [69]|
| Gold NPs (AuNPs) | - | collagen-induced arthritis (CIA) | [70]|
| Octadecylamine-functionalyzed nanodiamond (ND-ODA) & dexamethasone (Dex)-adsorbed ND-ODA (ND-ODA-Dex) | ND-ODA and dexamethasone | rheumatoid arthritis | [47]|
| Chitosan-Triply phosphate NPs | Melatonin | Attenuating Endopside-Induced Genotoxicity | [71]|
| Polycaprolactone NPs | Melatonin | Glioblastoma | [72]|
| Magnetic nanocomposite particles | Melatonin | breast cancer | [73]|
| Zein NPs | Melatonin | - | [74]|
| Melatonin/Polydopamine Nanostructures | Melatonin | Parkinson's Disease | [75]|
| Polyurethane-chitosan copolymer | Mesalazine | An anti-inflammatory drug for the treatment of inflammatory bowel disease | [76]|
| | | | |
| Nanocrystalline suspension | Irbesartan (IBS)| angiotensin receptor blocker | [77]|
| Lyophilized non-aggregated NP of Irbesartan (IBS-NPs) | Irbesartan (IBS) | antihypertensive agent | [78]|
| IBS NPs | Irbesartan (IBS)| angiotensin II receptor antagonist | [79]|
| Solid lipid NPs | Irbesartan (IBS)| angiotensin receptor blocker | [80]|
| | | | |
| **Interferon inducers** | | | |
| Chitosan NPs | Interferon-alpha| viral infections and cancer diseases | [56, 59]|
| | 6-Mercaptopurine | immunosuppressant and anti-cancer drug | [100]|
| hydroxypropyl-β-cyclodextrin (HP-β-CD) inclusion complex loaded chitosan (CS) NPs | mesalazine (MSZ) | anti-inflammation activity | [83]|
| Folate Receptor-Targeted and GSH-Responsive Carbosymethyl Chitosan NPs | 6-mercaptopurine (6-MP) | Leukemia | [25]|
| PVA-coating, Fe3O4 NPs | 6-Mercaptopurine (6-MP) | Leukemia Therapy | [84]|
| Disulfide-based PEGylatednanogels | 6-mercaptopurine and methotrexate | breast cancer | [65]|
| CD44-targeted glutathione-sensitive hyaluronic acid-mercaptopurine prodrg (HA-GS-MP) | mercaptopurine prodrg | Leukemia | [86]|
| Nanoliposomes (Nanolimus) | Sirolimus known as rapamycin | Peripheral artery disease (PAD) | [87]|
| Sirolimus nanocomposites | Sirolimus | macrocyclic lactone immunosuppressant, anti-rejection reaction after organ transplantation | [88]|
| Sirolimus Nanocrystals | Sirolimus | the immunosuppressive agent also used to treat inflammation, cancer | [89]|
| Calcium phosphate (CaP) NP-based vaccine carrier functionalized with CpG and viral peptides | - | chronic retroviral infection | [90]|

S. Tavakol et al. Heliyon 7 (2021) e06841
to inhibit virus attachment, fusion, replication, and infection or even restrain the inflammatory and damaging cascade following virus infection in patients. There are several reports associated with mutagenicity, tumorgenicity, producing free radicals, penetration into the brain, etc. of NPs, especially metallic NPs. The caution should be considered related to toxicity and size dose dependency, the route of administration, bio-distribution, and biodegradability of NPs [38, 98]. Another critical point is associated with the cell death mechanisms provoke by NPs and cross-reaction with the efficacy of drugs against a virus such as auto-phagy, ferroptosis, etc. [49, 99]. Translation of in vitro studies to clinical investigations without definitive studies that carefully cover NPs’ biocompatibility resulted in irreparable damages.

8. Future perspective

Medical nanotechnology has established a new and mighty era in the diagnosis and treatment of viruses, including COVID-19. However, the safety, dose-response, and size-efﬁcacy of nanoparticles are their concern to translate to clinical applications. Designing nanoplatforms to diagnose and treat the COVID-19 and limit triggering of tissue damage cascade in human cells is necessary. To this aim, an accurate understanding of lethal death mechanisms of NPs in cells and viruses, occupying of the receptors binding sites of the virus in human cells using NPs and strategies to manipulate virus structures and their enzymes by NPs (Virus-NP interaction) is crucial. Meanwhile, designing of the NPs with enhanced circulation time, drug entrapment efﬁcacy, and biodistribution that limit drug metabolism and release in unwanted tissue and organs are of interest. Noteworthy, to enhance the effectiveness of antiviral drug delivery by the NPs, they can be functionalized with the specific antibodies and ligands for active targeting. However, NPs based on their small size exhibit passive targeting potential. Advanced methods such as molecular dynamic and molecular docking, stochastic, and micro-fluidic predicting the involvement of viruses’ structures with NPs and Virus-NPs interaction will be valuable to achieve this goal. Therefore, it appears that NPs themselves and also as a combination therapy system or carriers for the aim of drug repurposing and development will be promising in designing rapid test diagnosis methods and therapeutic agents.

Declarations

Author contribution statement

All authors listed have signiﬁcantly contributed to the development and the writing of this article.

Funding statement

This research did not receive any speciﬁc grant from funding agencies in the public, commercial, or not-for-proﬁt sectors.

Data availability statement

Data included in article/supp. material/referenced in article.

Competing interest statement

The authors declare no conﬂict of interest.

Additional information

No additional information is available for this paper.

References

[1] N.R. Sexton, E.C. Smith, H. Blanc, M. Vignuzzi, O.B. Peersen, M.R. Denison, Homology-based identiﬁcation of a mutation in the coronavirus RNA-dependent RNA polymerase that confers resistance to multiple mutagens, J. Virol. 90 (16) (2016) 7415–7428.
[2] H. Urich, M.M. Fillet, CD14 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement, Stem Cell Rev. Reg. Rep. (2020) 1–7.
[3] P. Liu, J.-Z. Jiang, Y. Hua, X. Wang, F. Hou, X.-F. Wan, J. Chen, J. Zou, J. Chen, Are Pangolins the Intermediate Host of the 2019 Novel Coronavirus (2019-nCoV)? bioRxiv, 2020.
[4] M. Rodríguez-Teja, J.H. Gronau, A. Minamidate, S. Darby, L. Gaughan, C. Robson, F. Mauri, J. Waxman, J. Sturge, Survival outcome and EMT suppression mediated by a lectin domain interaction of Endo180 and CD47, Mol. Canc. Res. 13 (3) (2015) 538–547.
[5] K. Wang, W. Chen, Y.-S. Zhou, J.-Q. Lian, Z. Zhang, P. Du, L. Gong, Y. Zhang, H.-Y. Cui, J.-J. Geng, SARS-CoV-2 invades host cells via a novel route: CD47-spike protein, BioRxiv, 2020.
[6] S.K. Lau, C.C. Lau, K.-H. Chan, C.P. Li, H. Chen, D.-Y. Jin, J.F. Chan, P.C. Woo, K.-Y. Yuen, Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment, J. Gen. Virol. 94 (12) (2013) 2679–2690.
[7] L.E. Gralinski, V.D. Menachevy, Return of the coronavirus: 2019-nCoV, Viruses 12 (2) (2020) 135.
[8] Markus Hoffmann, Hannah Kleine-Weber, Simon Schroeder, Marcel A. Müller, Christian Drosten, Stefan Pohlmann, SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell (2020).
[9] Y. Zhou, Y. Hou, J. Shen, Y. Huang, W. Martin, F. Cheng, Network-based drug repurposing for novel coronavirus 2019-nCoV, SARS-CoV-2, Cell Discov. 6 (1) (2020) 1–18.
[10] J.-F.W. Chan, K.-H. Kok, Z. Zhu, H. Chu, K.K.-W. To, S. Yuan, K.-Y. Yuen, Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan, Emerg. Microb. Infect. 9 (1) (2020) 221–236.
[11] Marco Cascella, Michael Rajnik, Arturo Cuomo, C. Scott, Dulehohn, R.D. Napoli, Features, Evaluation and Treatment Coronavirus (COVID-19), StatPearls Publishing, Treasure Island (FL), 2019.
[12] S. Angeletti, D. Benvenuto, M. Bianchi, M. Giovannetti, S. Pascarella, M. Ciccozzi, COVID-2019: the role of the np2 and np3 in its pathogenesis, J. Med. Virol. (2020).
[13] Y. Peeruthumaebi, M. Zandi, S. Soltani, S.M. Jazayeri, Clinical performance of RT-PCR and chest CT scan for covid-19 diagnosis; a systematic review, Adv. J. Emer. Med. 4 (2s) (2020) e57, e57.
[14] W. Wang, Y. Xu, K. Gao, R. Lu, K. Han, G. Wu, W. Tan, Detection of SARS-CoV-2 in different types of clinical specimens, Jama (2020).
[15] B. Udugama, P. Kadhiresan, H.N. Kozlowski, A. Malekjahani, M. Osborne, V.Y.C. Li, H. Chen, S. Mubareka, J. Gubbay, W.C.W. Chan, Diagnosing COVID-19: the disease and tools for detection, ACS Nano (2020).
[16] X. Jiang, M. Yan, H. Li, T. Liu, C. Lin, S. Huang, C. Shen, Evaluation of Enzyme-Linked Immunoassay and Colloidal Gold-Immunochromatographic assay Kit for Detection of Novel Coronavirus (SARS-CoV-2) Causing an Outbreak of Pneumonia (COVID-19), medRxiv, 2020.
[17] T.W.N. Foundation, COVID-19 Colloidal Gold Method Antibody Test, 2020.
[18] G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G.A. Kullak-Ublick, J. Wang, Enhanced ability of oligomeric nanobodies targeting MERS coronavirus receptor-binding domain, Viruses 11 (2) (2019) 166.
[19] I.D.L. Cavalcanti, M.D.B.L. Nogueira, Pharmaceutical nanotechnology: which protective efficacy against MERS-CoV, J. Virol. 94 (10) (2020) 5268–5277.
[20] C.-M.J. Hu, W.-S. Chang, Z.-S. Fang, Y.-T. Chen, W.-L. Wang, H.-H. Tsai, L.-L. Chueh, T. Takano, H. Oblata, H.-W. Chen, Nanoparticulate vaccular ATPase blocker exhibits potent host-targeted antiviral activity against feline coronavirus, Sci. Rep. 7 (1) (2017) 1–11.
[21] Y.-S. Kim, A. Son, J.Kim, S.B. Kwon, M.H. Kim, P. Kim, J. Kim, Y.H. Byun, J. Sung, J. Lee, Chaperina-mediated assembly of ferritin-bound Middle East respiratory syndrome-coronavirus nanoparticles, Front. Immunol. 9 (2018) 221.
[22] L. He, W. Tai, J. Li, Y. Chen, Y. Gao, J. Li, S. Sun, Y. Zhou, L. Du, G. Zhao, Enhanced ability of oligomeric nanobodies targeting MERS coronavirus receptor-binding domain, Viruses 11 (2) (2019) 166.
[23] V.S. Raj, N.M. Okba, J. Gutierrez-Alvarez, D. Drabek, B. van Dieren, W. Widagdo, M.M. Lamers, I. Widjaja, R. Fernandez-Delgado, I. Sola, Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection, Sci. Adv. 4 (8) (2018), eaaw6657.
[24] G. Zhao, L. He, S. Sun, H. Qiu, W. Tai, J. Chen, J. Li, L. Chen, Y. Guo, Y. Wang, A novel nanobody targeting Middle East respiratory syndrome coronavirus (MERS-CoV) receptor-binding domain has potent cross-neutralizing activity and protective efficacy against MERS-CoV, J. Virol. 92 (18) (2018), eaaw6657.
[25] G. Van Heeke, K. Allosery, V. De Brabandere, T. De Smedt, L. Detalle, A. de Fougerolles, Nanobodies® as inhaled biotherapeutics for lung diseases, Pharmacoal. Therapeut. 109 (2017) 47–56.
[26] D.Z. Helal, C.P. Karch, N. Mishra, T. Girshick, A. Garmendia, P. Burkhard, M.I. Khan, A self-adjuvanted nanoparticle based vaccine against infections bronchiitus virus, PloS One 13 (9) (2018), e0203771.
C. Liu, Q. Zhou, Y. Li, L.V. Garner, S.P. Watkins, L.J. Carter, J. Smoot, A.C. Gregg, A. Pentecost, M.J. Kim, S. Jeon, Y.J. Ko, I.C. Kwon, Y. Gogotsi, K. Kim, K.L. Spiller, S. Tavakol, M. Ashra...
D. Soma, Z. Attari, M.S. Reddy, A. Damodaram, K.B.G. Koteshwara, Solid lipid nanoparticles of irbesartan: preparation, characterization, optimization and pharmacokinetic studies, Brazil. J. Pharmaceut. Sci. 53 (1) (2017).

K. Kleszczyński, A.T. Slominski, K. Steinbrink, R.J. Reiter, Clinical trials for use of melatonin to fight against COVID-19 are urgently needed, Nutrients 12 (9) (2020) 2561.

A. Di Stefano, L. Paulesu, Inhibitory effect of melatonin on production of IFN-\gamma or TNF-\alpha in peripheral blood mononuclear cells of some blood donors, J. Pineal Res. 17 (4) (1994) 164–169.

P. Tang, Q. Sun, L. Zhao, H. Pu, H. Yang, S. Zhang, R. Gan, N. Gan, H. Li, Mesalazine/hydroxypropyl-\beta-cyclodextrin/chitosan nanoparticles with sustained release and enhanced anti-inflammation activity, Carbohydr. Polym. 198 (2018) 418–425.

M. Moustafa, A. Amin, Y. Magdi, Cytotoxicity of 6-mercaptopurine via loading on PVA-coated magnetite nanoparticles delivery system: a new era of leukemia therapy, J. Nanomed. Nanotechnol. 9 (521) (2018) 2.

P. Nezhad-Mokhtari, M. Ghorbani, F. Mahmoodzadeh, Smart co-delivery of 6-mercaptopurine and methotrexate using disulphide-based PEGylated-nanogels for effective treatment of breast cancer, New J. Chem. 43 (30) (2019) 12159–12167.

J. Qiu, R. Cheng, J. Zhang, H. Sun, C. Deng, F. Meng, Z. Zhong, Glutathione-sensitive hyaluronic acid-mercaptopurine prodrug linked via carbonyl vinyl sulfide: a robust and CD44-targeted nanomedicine for leukemia, Biomacromolecules 18 (10) (2017) 3207–3214.

W. Wu, L. Guo, Z. Liang, Y. Liu, Z. Yao, Lnc-SNHG16/miR-128 axis modulates malignant phenotype through WNT/\beta-catenin pathway in cervical cancer cells, J. Canc. 11 (8) (2020) 2201.

Y. Shen, X. Li, Y. Le, Amorphous nanoparticleulate formulation of sirolimus and its tablets, Pharmaceutics 10 (3) (2018) 155.

J. Kong, K. Wu, Y. Ji, K. Chen, J. Zhang, H. Sun, Y. Liang, W. Liang, Y. Chang, J. Cheng, Enhanced bioavailability by orally administered sirolimus Nanocrystals, ACS App. Bio Mater. 2 (10) (2019) 4612–4621.

T. Knuschke, O. Rotan, W. Bayer, S. Kollenda, J. Dickow, K. Sutter, W. Hansen, U. Döttmer, K.S. Lang, M. Epplie, Induction of type I interferons by therapeutic nanoparticle-based vaccination is indispensable to reinforce cytotoxic CD8+ T cell responses during chronic retroviral infection, Front. Immunol. 9 (2018) 614.

S. Tavakol, M.S. Alavihej, A.M. Seifalian, COVID-19 Vaccines in Clinical Trials and Their Mode of Action for Immunity against the Virus, Current pharmaceutical design, 2020.

K. Kuba, L. Zhang, Y. Imai, S. Arab, M. Chen, Y. Maekawa, M. Leschnik, A. Leibbrandt, M. Markovic, J. Schwaghofer, Impaired heart contractility in Apelin gene-deficient mice associated with aging and pressure overload, Circ. Res. 101 (4) (2007) e32–e42.

D.C. Carter, B. Wright, W.G. Jerome, J.P. Rose, E. Wilson, A unique protein self-assembling nanoparticle with significant advantages in vaccine development and production, J. Nanomater. (2020) 2020.

J. Jando, S.M. Camargo, B. Herzog, F. Verrey, Expression and regulation of the neutral amino acid transporter B0AT1 in rat small intestine, PloS One 12 (9) (2017).

S. Tavakol, M. Rezayat, Toxitpic Concerns of Nanocarriers. Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes, Elsevier, 2017, pp. 453–484.

R. Mohammadnejad, M.A. Moosavi, S. Tavakol, D.O. Vardar, A. Hoseini, M. Rahmati, L. Dini, S. Hussain, A. Mandegary, D.J. Klionsky, Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles, Autophagy 15 (1) (2019) 4–33.

C.A. Devaux, J.-M. Rolain, P. Colson, D. Raoult, New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int. J. Antimicrob. Agents (2020) 105938.

P.R. Govindappa, D. Joladarashi, R.L.S. Hallur, J.S. Sanganal, A.R. Phani, Toxicity evaluation of 6-mercaptopurine-Chitosan nanoparticles in rats, Saudi Pharmaceut. J. 28 (1) (2020) 147–154.