Performance Assessment for Sunlight Radiation Resistant Coating Manufacturers

Chun-Ming Yang¹, Huifeng Gong¹*, Chang-Hsien Hsu²*, and Chi-Yuan Chen³

¹Business School, Guilin University of Technology, Guilin, 541004, China
²Department of Business Administration, Asia University, Taichung, 41354, Taiwan
³Research Center for Healthcare Management, Tsinghua University, Beijing, 100084, China

*Corresponding author’s e-mail: windafen@163.com (H. Gong); pci@asia.edu.tw (C. H. Hsu)

Abstract. It is of great significance to select suitable manufacturers to improve the ability to respond to the final customer demand. Establishing a strategic partnership with manufacturers is an effective way to increase profits and improve the process efficiency for better connectivity across the supply chain. Therefore, manufacturer performance evaluation and selection is one of the most important decision-making problems in enterprises. This study proposes a manufacturer capability index $M_{CI}$ and gives the uniformly minimum-variance unbiased estimator (UMVUE) of the variance and probability density function (PDF) for index $M_{CI}$. Finally, an example of performance assessment for sunlight radiation resistant coating (SRRC) manufacturer is given to illustrate the application of the proposed index $M_{CI}$.

1. Introduction

In the traditional sunlight radiation resistant coating (SRRC) supply chain management, the SRRC members are in a situation of antagonism and competition, and the supply and demand sides play a zero-sum game. Therefore, the traditional manufacturer performance evaluation index is mainly focused on the cost. However, when enterprises (buyers) choose SRRC manufacturers (sellers), they only pay attention to the short-term behaviour of cost, which leads to a decline in product quality and service capacity and aggravates the hostile relationship between seller and buyer, such as: delivery time, pre-sale and post-sale service, etc[1-2]. Therefore, there is an inseparable relationship between the enterprises with its SRRC manufacturers.

In general, enterprises decision makers decide on the basis of past personal experience or their subjective perception, or use the Likert scale to calculate the sample mean for selecting SRRC manufacturers, but ignore the degree of variation of the sample, resulting in a failure to accurately grasp and judge the SRRC manufacturer's service capacity and performance [3-4]. Therefore, a systematic method should be used to analyse and quantify the qualitative and quantitative criteria of these uncertainties and contradictions. This study presents a manufacturer capability index $M_{CI}$ to assess the level of SRRC manufacturer capabilities, and gives some statistical properties of the index $M_{CI}$ and derives the uniformly minimum-variance unbiased estimator (UMVUE) of the variance and probability density function (PDF) for index $M_{CI}$. The ability levels of multiple SRRC manufacturers can be assessed by values of $M_{CI}$. Finally, a performance assessment for SRRC manufacturer is used to exemplify the applicability and usefulness of the proposed index $M_{CI}$.
2. Manufacturer capability index $M_{CI}$

In general, enterprises require SRRC manufacturers to provide high quality products/services with low cost [5-7]. For product quality assurance and quality control testing, enterprises usually use some expert tools and techniques to measure the quality of the products. In practice, however, it is difficult to obtain overall total data, most of the samples are taken by sampling, then the sample data is measured using the sample estimation method. Based on the concept of [8], a manufacturer capability index $M_{CI}$ was defined as follows:

$$\hat{M}_{CI} = (b_n) \times \bar{M}_{CI}$$

where $\bar{M}_{CI} = \bar{X} - LPS / 3S$ is the expected value of naive estimator for index $M_{CI}$ equals to $(b_n)^{-1}M_{CI}$, $LPS$ is the lower performance score for each SRRC manufacturer, $\bar{X}$ estimates the mean $\mu$ and sample standard deviation $S$ estimates the standard deviation $\sigma$ and the constant $b_n$ is a correction parameter to an unbiased estimator and determined by:

$$b_n = \sqrt{2 / (n-1)} \times b_n \times \left( \frac{\Gamma[(n-1)/2]}{\Gamma[(n-2)/2]} \right), \quad n > 2$$

Obviously, by multiplying the value of $b_n$, the unbiased estimator $\hat{M}_{CI}$ for $M_{CI}$ can be obtained as follows:

$$\hat{M}_{CI} = (b_n) \times \bar{M}_{CI}$$

In fact, unbiased estimator $\hat{M}_{CI}$ is a function of the complete sufficient statistics $\left(\bar{X}, (S)^2\right)$. Due to the distribution of $3\sqrt{n}/b_n \bar{M}_{CI}$ has a non-central $t$-distribution with a degree of freedom with $n-1$, and the non-central parameter is $\delta = 3\sqrt{n}M_{CI}$, noted as $t_{n-1}(\delta)$, and $Z = \sqrt{n}(\bar{X} - LPS) / \sigma$ obey $N(3\sqrt{n}S_{pr}, 1)$, and $K = (n-1)S^2 / \sigma^2$ obey $\chi^2_{n-1}$. Therefore, $\hat{M}_{CI}$ can be rewritten as follows:

$$\hat{M}_{CI} = \left(\frac{b_n}{3}\right) \times \sqrt{\frac{n-1}{n}} \times (K)^{-1/2} \times (Z)$$

Under the normal distribution assumption, since $\bar{X}$ and $(S)^2$ are independent of each other, we have:

$$E(\hat{M}_{CI})^2 = \left(\frac{b_n}{3}\right)^2 \times \frac{n-1}{n} \times E(K)^{-1} \times E(Z)^2 = \left(\frac{b_n}{3}\right)^2 \times \frac{n-1}{n} \times \left( \frac{\Gamma[(n-3)/2]}{2\Gamma[(n-1)/2]} \right) \times \left[ 9n(M_{CI})^2 + 1 \right]$$

$$\text{Var}(\hat{M}_{CI}) = E(\hat{M}_{CI})^2 - E^2(\hat{M}_{CI}) = \left( \frac{\Gamma[(n-1)/2]\Gamma[(n-3)/2]}{\Gamma^2[(n-2)/2]} \right) \times [(1/9n) + (M_{CI})^2] - (M_{CI})^2$$

Let $T = (3\sqrt{n}/b_n) \bar{M}_{CI} = \frac{Z}{\sqrt{K/(n-1)}}$ obey $t_{n-1}(\delta)$, and $Y = \hat{M}_{CI} = \frac{b_n}{3\sqrt{n}} \times T$, then $Y$ and $T$ have a one-to-one mathematical relationship, therefore, we have:

$$f_Y(y) = f_T(t) \left| \frac{dt}{dy} \right|$$

where

$$\left| \frac{dt}{dy} \right| = \frac{3\sqrt{n}}{b_n}$$

and

$$f_T(t) = \frac{\Gamma[(n/2)]}{\Gamma[(n-1)/2]} \int_0^\infty x^{(n/2)-1} \exp \left[-0.5 \left( x + \frac{\sqrt{x}}{(n-1)} t - \delta \right)^2 \right] dx, \quad t \in R$$

then
\[ f_{\hat{\delta}_\nu} (y) = f_r \left( \frac{3\sqrt{n}}{b_n}, y \right) \left( \frac{3\sqrt{n}}{b_n} \right) \]

\[ = \left( \frac{2\nu/(2\nu - 1))}{\Gamma((n-1)/2) \Gamma((n-2)/2)} \right) t^{(n-2)/2} \times \exp \left\{ -0.5 \left[ t \times \left( \frac{\sqrt{n}}{(n-1)b_n} \left( \frac{1}{3} \right) y - \delta \right) \right]^2 \right\} dt, \ y \in R \]  

Under the normal distribution assumption, \( \hat{M}_{CI} \) is the UMVUE of \( M_{CI} \). The variance and PDF of the UMVUE for \( M_{CI} \) can be derived as follows:

\[
\text{Var}(\hat{M}_{CI}) = \left( \frac{\Gamma((n-1)/2) \Gamma((n-3)/2)}{\Gamma^2((n-2)/2)} \right) \left[ \left( (1/9n) + (M_{CI})^2 \right) - (M_{CI})^2 \right] 
\]

\[
f_{\hat{\delta}_\nu} (y) = \left( \frac{2\nu/(2\nu - 1))}{\Gamma((n-1)/2) \Gamma((n-2)/2)} \right) t^{(n-2)/2} \times \exp \left\{ -0.5 \left[ t \times \left( \frac{\sqrt{n}}{(n-1)b_n} \left( \frac{1}{3} \right) y - \delta \right) \right]^2 \right\} dt, \ y \in R
\]

where \( x \in R \) and \( R \) is real number.

To facilitate the calculation of the \( \hat{M}_{CI} \), Table 1 shows the corresponding value \( b_n \) with different value \( n \).

| Table 1. Values of \( b_n \) with different \( n \) |
| --- |
| \( n \) | \( b_n \) | \( n \) | \( b_n \) | \( n \) | \( b_n \) |
| 3 | 0.580 | 8 | 0.888 | 13 | 0.936 |
| 4 | 0.725 | 9 | 0.903 | 14 | 0.941 |
| 5 | 0.798 | 10 | 0.914 | 15 | 0.945 |
| 6 | 0.841 | 11 | 0.923 | 16 | 0.949 |
| 7 | 0.869 | 12 | 0.930 | 17 | 0.952 |

According to the manufacture capability assessment guide (see table 2) proposed by [9], it is shown that 60 is a threshold for re-ordering by the enterprise. When the manufacture’s performance is lower than 60, the enterprise will refuse to order. Therefore, this study sets 60 as the \( LPS \) of \( M_{CI} \) to assess the manufacture's ability level and performance.

| Table 2. Manufacturer capability assessment guide |
| --- |
| Score | Level | Result |
| 60 \leq \text{Score} \leq 75 | Medium | Manufacturers should prevent their quality levels from falling continuously |
| 30 < \text{Score} < 60 | Insufficient | Enterprises will refuse to order |
| \text{Score} > 75 | High | Enterprises will order again |

3. Numerical example

A performance assessment for SRRC manufactures is selected as an empirical example. The five managers of the enterprise decided to use the proposed method of this study to evaluate the capability levels of the three SRRC manufactures based on two benefit criteria as: quality and service, and two cost criteria as: delivery time and price. The semantic assessment was set as {very bad; bad; medium; good; very good}. Since the semantic assessment is a qualitative description, each semantic variable of the evaluator will be converted into a score (quantification), for example: the benefit criteria semantics {very bad; bad; normal; good; very good} will be converted to scores as {10, 50, 70, 90}). After using the proposed method, the results of the three SRRC manufactures are shown in tables 3, 4 and 5.
Table 3. Score of Manufacturer A

| Manager  | Quality  | Service | Delivery time | Price       | Average |
|----------|----------|---------|---------------|-------------|---------|
| Manager 1| Low (70) | Good (70) | Very low (90) | Very low (90) | 80      |
| Manager 2| Normal (50)| Normal (50) | Low (70)     | Low (70)    | 60      |
| Manager 3| Good (70) | Good (70) | Low (70)      | Low (70)    | 70      |
| Manager 4| Very good (90)| Normal (50) | Low (70)     | Very low (90)| 75      |
| Manager 5| Good (70) | Very good (90)| Low (70) | Very low (90)| 80      |

\[ \bar{X} = 73 \]
\[ S = 13.416 \]

Table 4. Score of Manufacturer B

| Manager  | Quality  | Service | Delivery time | Price | Average |
|----------|----------|---------|---------------|-------|---------|
| Manager 1| Good (70) | Good (70) | Very low (90) | Low (70) | 75      |
| Manager 2| Good (70) | Good (70) | Low (70)      | Low (70) | 70      |
| Manager 3| Good (70) | Good (70) | Low (70)      | Very low (90) | 75      |
| Manager 4| Good (70) | Very good (90)| Low (70) | Low (70) | 75      |
| Manager 5| Normal (50)| Good (70) | Low (70) | Normal (50) | 60      |

\[ \bar{X} = 71 \]
\[ S = 10.208 \]

Table 5. Score of Manufacturer C

| Manager  | Quality  | Service | Delivery time | Price | Average |
|----------|----------|---------|---------------|-------|---------|
| Manager 1| Normal (50)| Good (70) | Very low (90) | Low (70) | 70      |
| Manager 2| Good (70) | Normal (50) | Low (70)      | Normal (50) | 60      |
| Manager 3| Good (70) | Good (70) | Very low (90) | Low (70) | 75      |
| Manager 4| Good (70) | Good (70) | Low (70)      | Normal (50) | 65      |
| Manager 5| Good (70) | Very good (90)| Very low (90)| Very low (90)| 85      |

\[ \bar{X} = 69 \]
\[ S = 8.367 \]

Using the \( \bar{X} \) and \( S \) values obtained in tables 3, 4, and 5 and equation (2), the scores of three SRRC manufactures are obtained as \( \hat{M}_{C1} = 0.323 \), \( \hat{M}_{C2} = 0.359 \), and \( \hat{M}_{C3} = 0.267 \). Then, table 1 shows that when \( n = 5 \), \( b_n \) is 0.798. Hence, by using equation (4), we obtained \( \hat{M}_{C1} = 0.258 \), \( \hat{M}_{C2} = 0.287 \), and \( \hat{M}_{C3} = 0.213 \). The result shows that manufacture B is superior to other manufactures in the SRRC manufacture performance evaluation. Therefore, manufacture B is the best choice for the enterprise with respect to four criteria.

4. Conclusion

Each SRRC enterprise in the supply chain is a community of interests, which cannot be generated when the enterprise is independent by complementary advantages and synergistic effects, for example: improve productivity, save resources, reduce costs, create greater customer value, etc. Therefore, how the enterprises (buyers) to evaluate and select SRRC manufacturers (sellers) is a very important issue. In general, when enterprises evaluate, screen, and decide suppliers, they often use the Likert scale to ignore sample variability, resulting in an inability to accurately determine the level and performance of manufacturer. To solve this problem, this study proposes a manufacturer capability index \( M_{Ct} \), and
gives the UMVUE of the variation and PDF of the index $M_{CI}$. This method not only meets the technical requirements, but also improves the rationality of decision-making for SRRC enterprises. Finally, this study uses a performance assessment for SRRC manufactures as an empirical example to prove the effectiveness of the proposed method. The method proposed in this study can be extended to other industries as a performance appraisal tool in the agreements for the supply of goods and services between buyer and seller.

Acknowledgments
This work is financially supported by National Natural Science Foundation of China under Grant No. 71762008, 71762009 and Guilin University of Technology under Grant No. GUTQDJ6616075.

References
[1] Chen, K.L., Chen, K.S., Li, R.K. (2005) Suppliers capability and price analysis chart. Int. J. Prod. Econ., 98: 315–327.
[2] Fallahpour, A., Olugu, E.U., Musa, S.N., Wong, K.Y., Noori, S. (2017) A decision support model for sustainable supplier selection in sustainable supply chain management. Comput. Ind. Eng., 105: 391–410
[3] Chou, C.C., Liu, L.J., Huang, S.F., Yih, J.M., Han, T.C. (2011) An evaluation of airline service quality using the fuzzy weighted SERVQUAL method. Appl. Soft Comput., 11: 2117–2128.
[4] Juan, Y.K., Perng, Y.H., Castro-Lacouture, D., Lu, K.S. (2009) Housing refurbishment contractors selection based on a hybrid fuzzy-QFD approach. Automat. Constr., 18: 139–144.
[5] Ouyang, L.Y., Chen, K.S., Yang, C.M., Hsu, C.H. (2014) Using a QCAC–Entropy–TOPSIS approach to measure quality characteristics and rank improvement priorities for all substandard quality characteristics. Int. J. Prod. Res., 52: 3110–3124.
[6] Hsu, C.H., Chen, K.S., Yang, C.M. (2016) Construction of closed interval for process yield indices $C_{pu}$, $C_{pte}$ and $S_{pk}$ based on Boole's inequality and de Morgan's laws. J. Stat. Comput. Sim., 86: 3701‒3713.
[7] Chen, K.S., Hsu, C.H., Ouyang, L.Y., Yang, C.M. (2017) Applying MQCAC and fuzzy TOPSIS to improve the unleaded gasoline quality. J. Test. Eval., 45: 1045‒1057.
[8] Kane, V. E. (1986) Process capability indices. J. Qual. Technol., 18: 41–52.
[9] Chen, T.W., Chen, K.S., Lin, J.Y. (2003). Fuzzy evaluation of process capability for bigger-the-best type products. Int. J. Adv. Manuf. Tech., 21: 820–826.