HEEGNER POINTS ON MODULAR CURVES

LI CAI, YIHUA CHEN AND YU LIU

Abstract. In this paper, we study the Heegner points on more general modular curves other than $X_0(N)$, which generalizes Gross’ work “Heegner points on $X_0(N)$”. The explicit Gross-Zagier formula and the Euler system property are stated in this case. Using such kind of Heegner points, we construct certain families of quadratic twists of $X_0(36)$, with the ranks of Mordell-Weil groups being zero and one respectively, and show that the 2-part of their BSD conjectures hold.

Contents

1. Introduction

2. The Modular Curve and Heegner points

3. Quadratic Twists of $X_0(36)$

3.1. The Waldspurger Formula

3.2. Rank Zero Twists

3.3. The Gross-Zagier Formula

3.4. Rank One Twists

References

1. Introduction

Let $\phi = \sum_{n=1}^{\infty} a_n q^n$ be a newform of weight 2, level $\Gamma_0(N)$, normalized such that $a_1 = 1$. Let K be an imaginary quadratic field of discriminant D and χ a (primitive) ring class character over K of conductor c, i.e. a character of $\text{Pic}(\mathcal{O}_c)$, where \mathcal{O}_c is the order $\mathbb{Z} + c\mathcal{O}_K$ of K. Let $L(s, \phi, \chi)$ be the Rankin-Selberg convolution of ϕ and χ. Assume the Heegner condition:

1. $(c, N) = 1$,
2. Any prime $p|N$ is either split in K or ramified in K with $\text{ord}_p(N) = 1$ and $\chi([p]) \neq a_p$, where p is the unique prime ideal of \mathcal{O}_K above p and $[p]$ is its class in $\text{Pic}(\mathcal{O}_c)$.

Under this condition, the sign of $L(s, \phi, \chi)$ is -1 and Gross studies the Heegner points on $X_0(N)$ in [7]. It’s well known that $X_0(N)(\mathbb{C})$ parameterizes the pairs (E, C), with E an elliptic curve over \mathbb{C} and C a cyclic subgroup of E of order N. By the Heegner condition, there exists a proper ideal \mathcal{N} of \mathcal{O}_c such that $\mathcal{O}_c/\mathcal{N} \cong \mathbb{Z}/N\mathbb{Z}$. For any proper ideal \mathfrak{a} of \mathcal{O}_c, let $P_{\mathfrak{a}} \in X_0(N)$ be the point representing $(\mathbb{C}/\mathfrak{a}, \mathfrak{a}\mathcal{N}^{-1}/\mathfrak{a})$, which is defined over the ring class field H_c, the abelian extension of K with Galois group $\text{Pic}(\mathcal{O}_c)$ by class field theory. Such points are called Heegner points over K of conductor c and only depends on the class of \mathfrak{a} in $\text{Pic}(\mathcal{O}_c)$.

Let $J_0(N)$ be the Jacobian of $X_0(N)$ and the cusp $[\infty]$ on $X_0(N)$ defines a morphism from $X_0(N)$ to $J_0(N)$ over \mathbb{Q}: $P \mapsto [P - \infty]$. Let P_{ϕ} be the point

$$P_{\phi} = \sum_{[\mathfrak{a}] \in \text{Pic}(\mathcal{O}_c)} [P_{\mathfrak{a}} - \infty] \otimes \chi([\mathfrak{a}]) \in J_0(N)(H_c) \otimes_{\mathbb{Z}} \mathbb{C}$$

and P_{ϕ}^ϕ the ϕ-isotypical component of P_{ϕ}. Then under the Heegner condition, Cai-Shu-Tian [3] gives an explicit form of Gross-Zagier formula which relates height of P_{ϕ}^ϕ to $L'(1, \phi, \chi)$. In fact, they give an explicit form of Gross-Zagier formula in general Shimura curve case.

Let the data (ϕ, K, χ) be as above, and generalize the Heegner condition to the following one (\star):

Li Cai was supported by the Special Financial Grant from the China Postdoctoral Science Foundation 2014T70067.
(i) \((c, N) = 1\).
(ii) if prime \(p|N\) is inert in \(K\), then \(\text{ord}_p N\) is even; if \(p|N\) is ramified in \(K\), then \(\text{ord}_p N = 1\) and \(\chi(p) \neq a_p\), where \(p\) is the unique prime ideal of \(\mathcal{O}_K\) above \(p\) and \([p]\) is its class in \(\text{Pic} (\mathcal{O}_K)\).

By this assumption, write \(N = N_0 N_1^2\), with \(p|N_1\) if and only if \(p\) is inert. Given an embedding \(K \hookrightarrow M_2(\mathbb{Q})\) such that \(K \cap M_2(\mathbb{Q}) = K \cap R_0(N_0) = \mathcal{O}_c\), where

\[R_0(N_0) = \left\{ A \in M_2(\mathbb{Z}) \mid A \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \pmod{N_0} \right\}. \]

Then \(R = \mathcal{O}_c + N_1 R_0(N_0)\) is an order of \(M_2(\mathbb{Z})\). Define

\[\Gamma_K (N) = R^\times \cap \text{SL}_2(\mathbb{Z}) = \left\{ A \in \text{SL}_2(\mathbb{Z}) \mid A \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \pmod{N_0} \right\}. \]

The modular curve now we have to consider is \(X_K(N) = \Gamma_K(N) \backslash \mathcal{H} \cup \{\text{cusps}\}\).

This modular curve is not the usual modular curve of the form \(X_0(M)\) any longer, if \(N \neq 1\). \(X_K(N)\) parameterizes \((E, C, \alpha)\) where \(E\) is an elliptic curve over \(C\), \(C\) is a cyclic subgroup of \(E\) of order \(N_0\) and \(\alpha\) is an \(H\)-orbit of an isomorphism \((\mathbb{Z}/N_1 \mathbb{Z})^2 \cong E[N_1]\), where

\[H = (\mathcal{O}_K/\mathcal{N}_1 \mathcal{O}_K)^\times \subset \text{GL}_2(\mathbb{Z}/N_1 \mathbb{Z}). \]

The readers are referred to [9]. Let \(h_0\) be the fixed point of \(\mathcal{H}\) under the action of \(K^\times\). Note that \(\mathbb{Z} + \mathbb{Z} h_0^{-1}\) is an invertible ideal of \(\mathcal{O}_c\), then the triple \(P = \left(\mathbb{C}/\mathbb{Z} + \mathbb{Z} h_0, (\alpha, 1), H \left(\begin{pmatrix} a & \beta \\ \gamma & \delta \end{pmatrix} \right) \right)\) is a Heegner point on \(X_K(N)\). By CM theory, \(P \in X_K(N)(K^{ab})\). The conductor of \(P\) is also defined to be \(c\), the conductor of \(\mathcal{O}_c\). For details, see Section 2.

Assume \(\phi\) corresponds to an elliptic curve \(E/\mathbb{Q}\), then there is a modular parametrization \(f : X_K(N) \to E\), taking \(\infty\) to identity in \(E\). It is unique in the sense that given two parametrizations \(f_1, f_2\), there exist integers \(n_1, n_2\) such that \(n_1 f_2 = n_2 f_2\) [3, Proposition 3.8]. Now we can formulate the following Gross-Zagier formula:

Theorem 1.1 ([3]). Under the assumption \((*)\)

\[L'(1, E, \chi) = 2^{-\mu(N, D)} \frac{8\pi^2 (\phi, \phi)_{\Gamma_0(N)}}{u^2 c \sqrt{|D_K|}} \frac{\hat{h}_K(P_\chi(f))}{\deg f} \]

(GZ)

where \((\ , \ , \)_{\Gamma_0(N)}\) is the Petersson inner product, \(\hat{h}_K\) is the Néron-Tate height over \(K\), \(\mu(N, D)\) is the number of prime factors of \((N, D)\), \(u = [\mathcal{O}_c^\times : \{\pm 1\}]\).

In another way, following the idea of Kolyvagin, these Heegner points form an “Euler system”. There is a norm compatible relation between Heegner points of different conductors. See Theorem 2.13.

As an application of such kind of parametrization, we will construct a family of quadratic twists of an elliptic curve with Mordell-Weil groups being rank one. The action of complex conjugation on the CM-points of modular curve is a crucial point in the proof of the nontriviality of the Heegner point. For usual modular curve \(X_0(N)\), the complex conjugation is essentially the Atkin-Lehner operator. However, it does not keep for the modular curve \(X_K(N)\). We find the correct one, namely, the combination of local Atkin-Lehner operators? and the nontrivial normalizer of \(K^\times\) in \(\text{GL}_2(\mathbb{Q})\). Denote this operator by \(w\). Then \(f + f^w\) is a constant map with its image a nontrivial 2-torsion point; see Lemma 3.8. This phenomenon and the norm compatible relation control the divisibility of Heegner cycles. Together with the Gross-Zagier formula, the divisibility of Heegner cycles deduces the 2-part of the BSD conjecture for our family of quadratic twists.

For each square free non-zero integer \(d \neq 1\), we write \(E^{(d)}\) for the twist of an elliptic curve \(E/\mathbb{Q}\) by the quadratic extension \(\mathbb{Q}(\sqrt{d})/\mathbb{Q}\). The results of [26], [2], [5], [14] shows that there are infinitely many \(d\) such that \(L(E^{(d)}, s)\) is nonvanishing at \(s = 1\), and infinitely many \(d\) such that \(L(E^{(d)}, s)\) has a simple zero at \(s = 1\).

The work of [21], [22] for the elliptic curve \((X_0(32), \{\infty\}) : y^2 = x^3 - x\) constructs explicitly families of \(d\) with \(\text{ord}_d L(E^{(d)}, s) = 1\). The work of [3] deals with the elliptic curve \(E = (X_0(49), \{\infty\})\) which has CM by \(\sqrt{-7}\), gets the similar results to [21].

Here, we construct a family of quadratic twists of \(E = (X_0(36), \{\infty\})\) such that the ranks of Mordell-Weil groups for this twists are one.
Theorem 1.2. Let ℓ be a prime such that 3 is split in $\mathbb{Q}(\sqrt{-\ell})$ and 2 is unramified in $\mathbb{Q}(\sqrt{-\ell})$. Let $M = q_1 \cdots q_r$ be a positive square-free integer with prime factors q_i all inert in $\mathbb{Q}(\sqrt{-3})$, $q_i \equiv 1 \pmod{4}$ and q_i inert in $\mathbb{Q}(\sqrt{-\ell})$. Then

1. $\text{ord}_{s=1} L(s, E^{(-M)}) = 1 = \text{rank} E^{(-M)}(\mathbb{Q})$;
2. $\# \mathfrak{I}(E^{(-M)}/\mathbb{Q})$ is odd, and the p-part of the full BSD conjecture of $E^{(-M)}$ holds for $p \nmid 3M$.

The nontriviality of Heegner cycles and Gross-Zagier formula also implies the rank part of BSD conjecture for $E^{(M)}$, namely,

$$\text{ord}_{s=1} L(s, E^{(M)}) = 0 = \text{rank} E^{(M)}(\mathbb{Q}).$$

However, the proof of the 2-part of the BSD conjecture for $E^{(M)}$ needs that for $E^{(1)}$.

A new feature of this paper is that we give a parallel proof of the BSD conjecture for $E^{(M)}$, that is, using the Waldspurger formula and the norm property of Gross points. For the induction method using in [4], [23], there is an embedding problem of imaginary quadratic fields to quaternion algebras which relating with the problem of representation integers by ternary quadratic forms (See also the argument before [4, Definition 5.5], [23, Section 2.1] and [13]). The use of the norm property of Gross points avoids this embedding problem.

If the data (ϕ, K, χ) satisfies that the root number $\epsilon(\phi, \chi) = +1$, by [3] we can choose an appropriate definite quaternion algebra B over \mathbb{Q} containing K, an order R of B of discriminant N with $R \cap K = \mathcal{O}_K$ and a “unique” function $f : B^{\times} \backslash B^{\times}/R^{\times} \to \mathbb{C}$. Assume the conductor c of χ satisfies $(c, N) = 1$. Let $x_c \in K^{\times} \backslash B^{\times}/R^{\times}$ be a Gross point of conductor c, that is $x_c R x_c^{-1} \cap K = \mathcal{O}_c$. Denote by

$$P_\chi(f) = \sum_{\sigma \in \text{Gal}(H_c/K)} f(\sigma x_c) \chi(\sigma).$$

Then with similar notations as for Gross-Zagier formula, we have the Waldspurger formula (See Theorem 2.14)

$$L(1, E, \chi) = 2^{-\mu(N, D)} \cdot \frac{8\pi^2(\phi, \phi) \Gamma_0(N)}{u^2 \sqrt{|Dc^2|}} \cdot \left|P_\chi(f)\right|^2 \left(f, f\right),$$

Moreover, the Gross points of different conductors also form an “Euler system” (See Section 2). The following theorem can be viewed as the rank zero version of Theorem 1.2:

Theorem 1.3. Let $M = q_1 \cdots q_r$ be a positive square-free integer with prime factors q_i all inert in $\mathbb{Q}(\sqrt{-3})$ and $q_i \equiv 1 \pmod{4}$, then

1. $\text{ord}_{s=1} L(s, E^{(M)}) = 0 = \text{rank} E^{(M)}(\mathbb{Q})$;
2. $\# \mathfrak{I}(E^{(M)}/\mathbb{Q})$ is odd, and the p-part of the full BSD conjecture of $E^{(-M)}$ holds for $p \neq 3$.

Acknowledgements. The authors greatly thank Professor Ye Tian for suggesting this problem and his persistent encouragement.

2. The Modular Curve and Heegner points

2.1. The Modular Curve $X_K(N)$. Let K be an imaginary quadratic field with discriminant D. Let $N = N_0 N_1$ be a positive integer such that $p|N_1$ if and only if p is inert in K. Let c be another positive integer coprime to N. Take an embedding $K \hookrightarrow M_2(\mathbb{Q})$ which is admissible in the sense that

$$K \cap M_2(\mathbb{Z}) = K \cap R_0(\mathbb{N}) = \mathcal{O}_c.$$

Denote by $R = \mathcal{O}_c + N_1 R_0(\mathbb{N})$ an order of $M_2(\mathbb{Q})$. Then R has discriminant N with $R \cap K = \mathcal{O}_c$.

Let $\Gamma_K(N) = \Gamma \cap \text{SL}_2(\mathbb{Z})$ and $X_K(N)$ be the modular curve over \mathbb{Q} with level $\Gamma_K(N)$. It’s well known that $X(N_0 N_1)(\mathbb{C})$ parameterizes $E, (Z/(N_0 N_1)^2 \cong E[N_0 N_1])$ where E is an elliptic curve over \mathbb{C}. By [9], it parameterizes $E, (Z/N_0)^2 \cong E[N_0], (Z/N_1)^2 \cong E[N_1])$. Then $X_K(N)$ parameterizes $(E, C, \alpha : (Z/N_1)^2 \cong E[N_1])$, where C is a cyclic subgroup of $E[N_0]$ of order N_0, and α is an H-orbit of a basis of $E[N_1]$ where $H := (\mathcal{O}_K/N_1 \mathcal{O}_K)^\times \subset \text{GL}_2(Z/N_1 \mathbb{Z})$. Precisely, the class of $z \in \mathcal{H}$ in $X_K(N)$ corresponds to the triple

$$\left(\mathbb{C}/\mathbb{Z} \cdot z + \mathbb{Z}, \left\{\frac{1}{N_0}\right\}, H\left(\frac{N_1}{N_1}, \frac{1}{N_1}\right)\right).$$

Lemma 2.1. If m is a positive integer and $(m, cN DK) = 1$, then for any invertible fractional ideals a, N of \mathcal{O}_{cm}, satisfying $N^{-1}a/a \cong \mathbb{Z}/N_0 \mathbb{Z}$, there exist a \mathbb{Z}-basis $\{u, v\}$ of a and $g \in \text{GL}_2(\mathbb{Q})$, such that $N^{-1}a = \mathbb{Z}\frac{u}{N_0} + \mathbb{Z}v$, $\frac{v}{u} = g^{-1} h_0$, and $K \cap g R g^{-1} = \mathcal{O}_{cm}$.

3
Proof. Consider the curve morphism $X_K(N) \to X_0(N_0)$ over \mathbb{Q}, which is the forgetful functor in the moduli aspect $(E,C,[\alpha]) \mapsto (E,C)$. \mathcal{a}, \mathcal{N} defines a Heegner point $(\mathbb{C}/\mathcal{a}, \mathcal{N}^{-1} \mathcal{a}/\mathcal{a})$ on $X_0(N_0)$. Then exists a \mathbb{Z}-basis $\{u, v\}$ of \mathcal{a} and $g = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \text{GL}_2(\mathbb{Q})$. $\mathcal{N}^{-1} \mathcal{a} = \mathbb{Z} \left(\begin{array}{c} u \\ N_0 \end{array} \right)$, $\mathcal{v} = g^{-1} h_0$, and $K \cap gR_0(N_0)g^{-1} = \mathcal{O}_c$. Different choice of basis (u, v) make g differ an element in $\Gamma_0(N_0) = R_0(N_0)^\times$ and a scalar. So we have to prove there exists $g' \in \Gamma_0(N_0)$, such that $K \cap gg' R_0(N_0)g'^{-1} = \mathcal{O}_c$.

In fact, we choose $g' \in \Gamma_0(N_0)$, such that $gg' \in \prod_{\ell \mid N_1} K_\ell^\times(1 + N_1 M_2(\mathbb{Z}_\ell))$, embedding gg' into $\bigoplus_{\ell \mid N_1} \text{GL}_2(\mathbb{Q}_\ell)$. Note that if $g^{-1} = \left(\begin{array}{cc} a' & b' \\ c' & d' \end{array} \right)$, and multiply a scalar if necessary, we may assume $g^{-1} \in M_2(\mathbb{Z})$, then $\mathbb{Z}(a'h_0 + b') + \mathbb{Z}(c'h_0 + d)$ and \mathcal{a} belong to a same class in $\text{Pic}(\mathcal{O}_c)$, hence

$$ \det g^{-1} = |\mathcal{O}_c : \mathcal{a}| := \frac{|\mathcal{O}_c : \mathcal{O}_c \cap \mathcal{a}|}{|\mathcal{a} : \mathcal{O}_c \cap \mathcal{a}|}. $$

Therefore there exists an integer N'_1 whose prime factors are prime factors of N_1, s.t. $\ell \mid \det(N'_1 g^{-1})$, $\forall \ell \mid N_1$. So $N'_1 g^{-1} \in \text{GL}_2(\mathbb{Z}_\ell)$, $\forall \ell \mid N_1$. By strong approximation, $\Gamma_0(N_0) \prod_{\ell \mid N_1} \text{O}_{K,\ell}^\times(1 + N_1 M_2(\mathbb{Z}_\ell)) = \prod_{\ell \mid N_1} \text{GL}_2(\mathbb{Z}_\ell)$, then there exists $g' \in \Gamma_0(N_0), X \in \prod_{\ell \mid N_1} \text{O}_{K,\ell}^\times(1 + N_1 M_2(\mathbb{Z}_\ell))$, such that $g' X = N'_1 g^{-1}$, thus $gg' = N'_1 X \in \prod_{\ell \mid N_1} K_\ell^\times(1 + N_1 M_2(\mathbb{Z}_\ell))$. The proof is completed.

\begin{definition}
Let \mathcal{a}, \mathcal{N} and u, v, g be as in the above lemma. A Heegner point on $X_K(N)$ of conductor cm is a triple

$$ P = \left(\mathbb{C}/\mathcal{a}, \mathcal{N}^{-1} \mathcal{a}/\mathcal{a}, H \left(\frac{u}{\mathcal{N}_1}, \frac{v}{\mathcal{N}_1} \right) \right). $$

\end{definition}

\begin{remark}
This point corresponds to the point $\frac{v}{u} \in \mathcal{H}$. Let h_0 be the point \mathcal{H}^{K^\times}. The order $\mathcal{O}_c = \mathbb{Z} + \mathbb{Z} \mathcal{a}$, where $\mathcal{a} = \frac{e^{2(D^2-D)}}{2}$. Denote by $\left(\begin{array}{cc} x & y \\ z & w \end{array} \right) \in \text{GL}_2(\mathbb{Q})$ the image of \mathcal{a} under the fixed embedding $K \hookrightarrow M_2(\mathbb{Q})$. Since K is a field, $z \neq 0$.

\begin{lemma}
$K = \mathbb{Q} + Qh_0$ and $\mathcal{O}_c = \mathbb{Z} + \mathbb{Z} h_0^{-1}$.
\end{lemma}

\begin{proof}
We have $x + w = Dc, xw - yz = \frac{e^2(D^2-D)}{4}$. As h_0 is fixed by $\left(\begin{array}{cc} x & y \\ z & w \end{array} \right)$,

$$ \frac{zh_0^2 + y}{zh_0 + w} = h_0 \text{ and } zh_0^2 + (w - x)h_0 - y = 0. $$

Hence

$$ h_0 = \frac{(x - w) + c\sqrt{D}}{2z} \in K \setminus \mathbb{Q} \text{ and } h_0^{-1} = \frac{2z}{(x - w) + c\sqrt{D}} = \frac{(x - w) - c\sqrt{D}}{2y}, $$

so

$$ yh_0^{-1} = -w + \frac{Dc + c\sqrt{D}}{2}. \quad \Box $$

\end{proof}

\begin{lemma}
Let $\mathcal{a} = \mathbb{Z} + \mathbb{Z} \cdot h_0^{-1}$ and $\mathcal{N}^{-1} = \mathbb{Z} + \mathbb{Z} \cdot N_0^{-1} h_0^{-1}$. Then $\text{End}(\mathcal{a}) = \{ x \in K : x \mathcal{a} \subset \mathcal{a} \} = \mathcal{O}_c$, and $\text{End}(\mathcal{N}^{-1}) = \mathcal{O}_c$.
\end{lemma}

\begin{proof}
Let $(a + bh_0^{-1}) \mathcal{a} \subset \mathcal{a}$. Then it is equivalent to

$$(a + bh_0^{-1}) \in \mathcal{a} \text{ and } (a + bh_0^{-1})h_0^{-1} \in \mathcal{a}. $$

The first condition implies $a, b \in \mathbb{Z}$, then the second one is equivalent to $bh_0^{-2} \in \mathcal{a}$. But

$$ bh_0^{-2} = y^{-1}b((w - x)h_0^{-1} + z) \in \mathcal{a}. $$

The condition $R \cap K = \mathcal{O}_c$ tells $(w - x, z, y) = 1$, so the above condition implies $b \in y\mathbb{Z}$, which is exactly $\text{End}(\mathcal{a}) = \mathcal{O}_c$. The assertion for \mathcal{N}^{-1} is the same, noticing that $N_0 z$.

\end{proof}

Clearly, \mathcal{a} and \mathcal{N} are invertible ideals of \mathcal{O}_c, and $\mathcal{N}^{-1}/\mathcal{a} \simeq \mathbb{Z}/N_0 \mathbb{Z}$. Summing up:
Proposition 2.6. Let $K \hookrightarrow M_2(\mathbb{Q})$ be an admissible embedding and $h_0 \in \mathcal{H}_K^\times$. Denote by $a = \mathbb{Z} + \mathbb{Z} \cdot h_0^{-1}$ and $N^{-1} = \mathbb{Z} + \mathbb{Z} \cdot N_0^{-1} h_0^{-1}$, then

$$P = \left(\mathbb{C}/a, N^{-1}/a, H \left(\frac{N_1}{N_1^2} \right) \right)$$

is a Heegner point on $X_K(N)$ of conductor c.

Example 2.1. Now we construct an admissible embedding $K \hookrightarrow M_2(\mathbb{Q})$ as following. Since $\ell|N_0$ implies that ℓ is split in K, there exists an integral ideal \mathfrak{R}_0 of \mathcal{O}_K such that $\mathcal{O}_K/\mathfrak{R}_0 \cong \mathbb{Z}/N_0$, which implies $\mathbb{Z} + \mathfrak{R}_0 = \mathcal{O}_K$. Then there exists $n \in \mathbb{Z}$ and $m \in \mathfrak{R}_0$ such that

$$D + \sqrt{D} = n + m.$$

Take trace and norm, we get

$$D = 2n + (m + \overline{m})$$

and

$$\frac{D^2 - D}{4} = n^2 + n(m + \overline{m}) + mm\overline{m}.$$

Since $m\overline{m} \in \mathfrak{R}_0 \mathfrak{R}_0 = N_0 \mathcal{O}_K$ and it is an integer, so $m\overline{m} = N_0b$ for some $b \in \mathbb{Z}$. Let $a = D - 2n$, we see

$$D = a^2 - 4N_0b.$$

It’s easy to check that $(a, b, N_0) = 1$. Given an integer c such that $(c, N) = 1$, we let the embedding $i_c : K \rightarrow B$ be given by

$$\frac{D+\sqrt{D}}{2} \xrightarrow{(\frac{D+a}{N_0bc} \quad -e^{-1}} \quad \frac{Dc+\sqrt{Dc^2}}{2} \xrightarrow{(\frac{Dc+ac}{N_0bc^2} \quad -1}} \frac{D-a}{2}.$$

We can see this embedding is normal in the sense of [18], and $h_0 = \frac{a + \sqrt{D}}{2N_0bc}$.

The modular curve $X_K(N)$ depends on the admissible embedding $K \hookrightarrow M_2(\mathbb{Q})$. However, we will prove that, all those modular curves given by admissible embeddings are isomorphic over \mathbb{Q}. Let $i : K \hookrightarrow M_2(\mathbb{Q})$ be an admissible embedding, $H = i(\mathcal{O}_K/N_1 \mathcal{O}_K) \subset \text{GL}_2(\mathbb{Z}/N_1 \mathbb{Z})$, and H_0 be the upper-triangular matrices in $\text{GL}_2(\mathbb{Z}/N_0 \mathbb{Z})$, then $H = \prod_{p|N_1} H_p$, where $H_p \subset \text{GL}_2(\mathbb{Z}/p^{\text{ord}_pN_1} \mathbb{Z})$. Then

$$X_K(N) = X(N_0N_1)/(H \times H_0).$$

If i' is another admissible embedding, and for any $p|N_1$, H_p and H'_p are conjugate in $\text{GL}_2(\mathbb{Z}/p^{\text{ord}_pN_1} \mathbb{Z})$, then we obviously have

$$X(N_0N_1)/(H \times H_0) \cong X(N_0N_1)/(H' \times H_0).$$

In fact, H_p is the image of following kind of morphism: $\mathbb{Z}_p^{\times} \rightarrow \text{GL}_2(\mathbb{Z}_p) \rightarrow \text{GL}_2(\mathbb{Z}_p/p^{\text{ord}_pN_1} \mathbb{Z})$, then the following lemma implies that H_p and H'_p are conjugate in $\text{GL}_2(\mathbb{Z}/p^{\text{ord}_pN_1} \mathbb{Z})$.

Lemma 2.7. For any two embeddings $\varphi_i : \mathbb{Z}_p^{\times} \rightarrow M_2(\mathbb{Z}_p), i = 1, 2$, there exists $g \in \text{GL}_2(\mathbb{Z}_p)$, such that $\varphi_1 = g^{-1}\varphi_2g$.

Remark 2.8. If we change \mathbb{Z}_p to \mathbb{Q}_p, and \mathbb{Z}_p^{\times} to \mathbb{Q}_p^{\times}, this lemma is well-known.

Proof. Consider $V = \mathbb{Z}_p \oplus \mathbb{Z}_p$, with a natural action of $M_2(\mathbb{Z}_p)$. Via φ, we view V as an \mathbb{Z}_p-module, denoted by $V_i, i = 1, 2$. Since \mathbb{Z}_p is a discrete valuation ring and V_i are torsion free, so V_1, V_2 are both free \mathbb{Z}_p-module of rank 1, so there exists an isomorphism $g : V_1 \rightarrow V_2$ of \mathbb{Z}_p-module, this isomorphism corresponds to an element of $\text{GL}_2(\mathbb{Z}_p)$, also denoted by g. g is an isomorphism of \mathbb{Z}_p-modules means that

$$g\varphi_1(x) = \varphi_2(x)g, \forall x \in \mathbb{Z}_p^{\times}.$$

Lemma 2.9. Let ζ_{N_1} be a primitive N_1-th root of unity. Then the cusp ∞ of $X_K(N)$ is defined over $\mathbb{Q}(\zeta_{N_1})$.

\[\Box\]
Proof. In the adelic language, we have the following complex uniformization

\[X_K(N)(\mathbb{C}) = \text{GL}_2(\mathbb{Q})_+ \backslash \mathbb{H} \times \text{GL}_2(\mathbb{Z}) / \hat{R}^\times \cup \{\text{cusps}\} \]

where \(\hat{R} = R \otimes \mathbb{Z} \hat{\mathbb{Z}} \) and the cusps are

\[\text{GL}_2(\mathbb{Q})_+ \backslash \mathbb{P}^1(\mathbb{Q}) \times \text{GL}_2(\mathbb{Z}) / \hat{R}^\times. \]

The cusps are all defined over \(\mathbb{Q}^{ab} \). By [16, pp.507], if we let \(r : \mathbb{Q}^\times / Q^\times \to \text{Gal}(\mathbb{Q}^{ab}/\mathbb{Q}) \) be the Artin map, then \(r(x) \in \text{Gal}(\mathbb{Q}^{ab}/\mathbb{Q}) \) acts on the cusps by left multiplication the matrix \(\begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} \). Since \(\hat{\mathbb{Q}}^\times / Q^\times \simeq \hat{\mathbb{Z}}^\times \), then if \(x \in \hat{\mathbb{Z}}^\times \) such that \(r(x) \cdot [\infty, 1] = [\infty, 1] \), there exists \(\begin{pmatrix} \alpha & \beta \\ 0 & \gamma \end{pmatrix} \in \text{GL}_2^+(\mathbb{Q}) \), such that

\[\begin{pmatrix} \alpha & \beta \\ 0 & \gamma \end{pmatrix} \begin{pmatrix} x \\ 0 \end{pmatrix} \in \hat{R}^\times, \]

which implies

\[\gamma \in \mathbb{Z}_p^\times, \quad \alpha x \in \mathbb{Z}_p^\times, \quad \beta, \gamma \in N_1 \mathbb{Z}_p \text{ for all } p, \text{ and } \alpha x \equiv \gamma \pmod{N_1} \text{ for all } p \mid N_1. \]

Then \(\alpha = \gamma = \pm 1 \), and \(x_p \equiv 1 \pmod{N_1} \). So the definition field of \([\infty, 1] \) corresponds to

\[\mathbb{Q}^\times / Q^\times \mathbb{Z}^\times(N_1) \prod_{p \mid N_1} (1 + N_1 \mathbb{Z}_p), \]

via class field theory, which is \(\mathbb{Q}(\zeta_{N_1}). \)

In the following, we fix the embedding \(i_c : K \hookrightarrow M_2(\mathbb{Q}). \)

Atkin-Lehner operator. Take \(j = \begin{pmatrix} 1 & 0 \\ a & -1 \end{pmatrix} \), then \(kj = jk \) for all \(k \in K \) where \(k \) is the Galois conjugation of \(k \). For each \(p \mid N_0 \), let

\[w_p = \begin{pmatrix} 0 \\ \text{ord}_p N \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in \text{GL}_2(\mathbb{Q}_p) \]

be the local Atkin-Lehner operator. Define

\[w = j^{(N_0)} \cdot \prod_{p \mid N_0} w_p \in \text{GL}_2(\mathbb{Q}) \cap M_2(\mathbb{Z}). \]

Since \(w \) normalizes \(\hat{R}^\times \), it acts on \(X_K(N) \).

For each \(p \mid N_0 \), write \(N_0 = p^{k} \cdot m \) with \((p, m) = 1 \). Similar to the proof of lemma (2.1), we can choose \(u, v \in \mathbb{Z} \) such that \(p^k u + mv = 1 \), let \(g = \begin{pmatrix} p^k \\ -N_0 v \end{pmatrix} \begin{pmatrix} 1 & 0 \\ p^k u \end{pmatrix} \in \text{GL}_2^+(\mathbb{Q}) \cap M_2(\mathbb{Z}) \), such that \(g^{-1} w_p \in U \), so

\[w_p P = [h_0, w_p] = [g^{-1} h_0, 1] = \left(\mathbb{C}/\mathbb{Z} \cdot g^{-1} h_0 + \mathbb{Z}, \left(\frac{1}{N_0}, \mathbb{H} \left(\frac{g^{-1} h_0}{N_0} \right) \right) \right). \]

Modify it, we get

\[w_p P = \left(\mathbb{C}/\mathbb{Z} h_0^{-1} + \mathbb{Z} \cdot p^k, \left(v + \frac{h_0^{-1}}{m} \right), \mathbb{H} \left(\frac{\frac{1}{N_0}}{N_0} \right) \right). \]

However, \(a = \mathbb{Z} h_0^{-1} + \mathbb{Z} \cdot p^k = \mathbb{Z}^\times \)

is an invertible ideal of \(\mathcal{O} \) dividing \(N \). Suppose \(N = \mathfrak{a} m \), let \(N' = \mathfrak{a} \mathfrak{m} \), then \(N'^{-1} \mathfrak{a}/\mathfrak{a} = \left(v + \frac{h_0^{-1}}{m} \right). \)

In another words, consider the quotient map \(\xi : X_K(N) \to X_0(N_0) \) induced by \(\Gamma_K(N) \subset \Gamma_0(N_0) \), which is defined over \(\mathbb{Q} \), then the above argument says that \(\xi \circ w_p = w_p \circ \xi \), where the action of \(w_p \) on \(X_0(N_0) \) is defined by [6, pp.90].

To study the action of \(w \) on \(X_K(N) \), we can prove the following lemma:

Lemma 2.10. There exists \(t_0 \in \hat{K}^\times \) and \(u \in \hat{R}^\times \) such that \(w = t_0 j u \).

Proof. For \(p \mid N_0 \), let \(k = \text{ord}_p N_0 \geq 1 \), \(K_p^\times = (\mathbb{Q}_p + \mathbb{Q}_p(\sqrt{D}))^\times \). Let \(x, y \in \mathbb{Q}_p \), then

\[(x + y \sqrt{D})^{-1} w_p = \begin{pmatrix} -2p^k y & -2p^k (x + ay) \\ p^k (x + ay) & a(x + ay) - 2N_0 by \end{pmatrix} \]

So we choose \(\text{ord}_p y = -k - \text{ord}_p x + ay \in \mathbb{Z}_p \) and such that \(a(x + ay) \in \mathbb{Z}_p^\times \). Then let \(t_{0,p} = x + y \sqrt{D} \).

For \(p \nmid N_0 \), let \(t_{0,p} = 1 \). Then such choice of \(t_0 \) works. \(\square \)
Remark 2.11. By Shimura reciprocity law, if we use \([x] \mapsto [\overline{x}]\) to denote the complex conjugation on \(X_K(N)(\mathbb{C})\), then
\[\overline{[h_0,g]} = [h_0,\overline{g}], \forall g \in \text{GL}_2(\mathbb{A}_f).\]

Lemma 2.10 in fact tells that the action of \(w\) is the composition of a Galois action and the complex conjugation.

Hecke correspondence. Let \(\ell \nmid N\) be a prime, the Hecke correspondence on \(X_U\) is defined by
\[T_\ell \left(E, C, H \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \right) = \sum_i \left(E/C_i, (C + C_i)/C_i, H \left(\frac{x_1 \mod C_i}{x_2 \mod C_i} \right) \right)\]
where the sum is taken over all cyclic subgroups \(C_i\) of \(E\) of order \(\ell\), \(\alpha_i\) is given by \((\mathbb{Z}/N_i\mathbb{Z})^2 \xrightarrow{\alpha} E[N_i] \simeq (E/C_i)[N_i].\) \(E[N_i] \simeq (E/C_i)[N_i]\) is because \((\ell, N) = 1\). This is just by definition.

2.2. **Gross-Zagier Formula.** Let \(E\) be an elliptic curve of conductor \(N\), \(K\) be an imaginary quadratic field of discriminant \(D\) and \(\chi\) be a ring class character over \(K\) of conductor \(c\). Assume \(E, K, \chi\) satisfy the condition \((*)\)

Then we can write \(N = N_0 N_1^2\), where \(p\mid N\) is inert in \(K\) if and only if \(p\mid N_1\).

Embed \(K\) in \(M_2(\mathbb{Q})\) by \(i\). There is a modular parametrization \(f : X_K(N) \to E\) mapping \([\bar{x}]\) to the identity of \(E\). If \(f_1, f_2\) are two such morphisms, then there exist integers \(n_1, n_2\) such that \(n_1 f_1 = n_2 f_2\). Let \(h_0\) be the point in \(H\) fixed by \(K^\times\), then \(\mathcal{O}_c = \mathbb{Z} + \mathbb{Z} h_0^{-1}, N = \mathbb{Z} + \mathbb{Z} h_0^{-1}\) is an invertible ideal of \(\mathcal{O}_c\) such that \(N/\mathcal{O}_c \simeq \mathbb{Z}/N_0 \mathbb{Z}\).

Consider the following Heegner point on \(X_K(N)(\mathcal{O}_c)\) of conductor \(c\)
\[P = \left(\mathbb{C}/\mathcal{O}_c, N/\mathcal{O}_c, H \left(\frac{x_1}{h_0^{-1}} \right) \right) \in X_K(N)(\mathcal{O}_c).\]

Form the cycle:
\[P_\chi(f) = \sum_{\sigma \in \text{Gal}(H_c/K)} f(P_{\sigma})\chi(\sigma) \in E(H_c) \otimes \mathbb{C}.\]

Theorem 2.12 (Explicit Gross-Zagier formula [3]). We have the following equation
\[L'(1, E, \chi) = 2^{-\mu(N,D)} \frac{8\pi^2 \phi(\phi) H_K(P_\chi(f))}{w^2 c \sqrt{|D|}} \deg f (GZ)\]
here \(\phi\) is the normalized newform associated to \(E\), \(\mu(N,D)\) is the number of prime factors of \((N,D), u = [\mathcal{O}_K^*: \mathbb{Z}^*], H_K\) is the Neron-Tate height pairing over \(K\) and the Petersson inner product
\[(\phi, \phi)_{T_\chi(N)} = \int_{T_\chi(N) \backslash H} \phi(x + iy)^2 dx dy.\]

2.3. **Euler System.** Let \(S\) be a finite set of primes containing the prime factors of \(6cND_K\), \(N_S\) denote the set of integers any of whose prime divisors is not in \(S\). For any \(\ell, m \in N_S\) with \(\ell\) a prime and \(\ell \nmid m\), let \(P_m = (\mathbb{C}/a_m, N_1^{-1}a_m/\alpha_m, \alpha_m)\) be a Heegner point of conductor \(cm\). Let \(P_{m\ell} = (\mathbb{C}/a_{m\ell}, N_2^{-1}a_{m\ell}/\alpha_{m\ell}, \alpha_{m\ell})\), such that \(N_{m\ell} = N_m \cap \mathcal{O}_{m\ell}, a_{m\ell} = a \cap \mathcal{O}_{m\ell}, \alpha_{m\ell}\) is the composition \(\mathbb{Z}/N_1\mathbb{Z} \xrightarrow{\alpha_m} N_1^{-1}a_m/\alpha_m \xrightarrow{\sim} N_1^{-1}a_{m\ell}/\alpha_{m\ell}\).

Theorem 2.13. Then we have that \([H_{m\ell} : H_m] = (\ell + 1)/u_m\) if \(\ell\) is inert in \(K\) and \((\ell - 1)/u_m\) if \(\ell\) is split and
\[u_m \sum_{\sigma \in \text{Gal}(H_{m\ell}/H_m)} P_{m\ell}^\sigma = \begin{cases} T_\ell P_m, & \text{if } \ell \text{ is inert in } K, \\ \left(T_\ell - \sum w_{m\ell} \text{Frob}_w\right) P_m, & \text{if } \ell \text{ is split in } K, \end{cases}\]
where \(T_\ell\) is the Hecke correspondence, \(\text{Frob}_w\) is the Frobenius at \(w|\ell\) in \(\text{Gal}(H_m/K)\), and \(u_m = 1\) if \(m \neq 1\) and \(u_1 = [\mathcal{O}_K^*: \mathbb{Z}^*]\).

This theorem is proved in general by [10, Proposition 4.8] or [20, Theorem 3.1.1].
2.4. Waldspurger Formula and Gross Points. Let $\phi = \sum_{n=1}^{\infty} a_n q^n$ be a newform of weight 2, level $\Gamma_0(N)$, normalized such that $a_1 = 1$. Let K be an imaginary quadratic field of discriminant D and χ a ring class character over K of conductor c. Let $L(s, \phi, \chi)$ be the Rankin-Selberg convolution of ϕ and χ.

Assume that $(c, N) = 1$. Denote by S the set of primes $p | N$ satisfying one of the following conditions:

- p is inert in K with ord$_p(N)$ odd;
- $p | D$, ord$_p(N) = 1$ and $\chi([p]) = a_p$ where p is the prime of \mathcal{O}_K above p and $[p]$ is its class in Pic(\mathcal{O}_c);
- $p | D$, ord$_p(N) \geq 2$ and the local root number of $L(s, \phi, \chi)$ at p equals $-\eta_p(-1)$ where η_p is the quadratic character for K_p.

Then the sign of $L(s, \phi, \chi)$ is $+1$. Let B be the definite quaternion algebra defined over \mathbb{Q} ramified exactly at primes in $\mathbb{Q} \setminus \{\infty\}$. Fix an embedding from K in B. Let R be an order in B with discriminant N and $R \cap K = \mathcal{O}_c$. Denote by $\hat{R} = R \otimes_\mathbb{Z} \hat{\mathbb{Z}}$ and $U = \hat{R}^\times$ which is an open compact subgroup of \hat{B}^\times. Consider the Shimura set $X_U = B^\times \backslash \hat{B}^\times / U$ which is a finite set. A point in X_U represented by $x \in \hat{B}^\times$ is denoted by $[x]$. Note that for $p | (D, N)$, K^\times_p normalizes U and then K^\times_p acts on X_U by right multiplication. Let

$$\mathbb{C}[X_U]^0 = \left\{ f \in \mathbb{C}[X_U] \mid \sum_{x \in X_U} f(x) = 0 \right\}.$$

For each $p \nmid N$, there are Hecke correspondences T_p and S_p. In this case, B_p is split while U_p is maximal. Then the quotient B^\times_p / U_p can be identified with \mathbb{Z}_p-lattices in \mathbb{Q}^2_p. Then for any $[x] \in X_U$,

$$S_p[x] := [x^{(p)}] S_p, \quad T_p[x] := \sum_{h_p} [x^{(p)}] h_p$$

where if x_p corresponds to a lattice Λ, then S_p is the lattice $p\Lambda$ and the set $\{h_p\}$ is the set of sublattices Λ' of Λ with $[\Lambda : \Lambda'] = p$. There is then a line $V(\phi, \chi)$ of $\mathbb{C}[X_U]^0$ characterized as following

- for any $p | N$, T_p acts on $V(\phi, \chi)$ by a_p and S_p acts trivially;
- for any $p | (D, N)$ with ord$_p(N) \geq 2$, K^\times_p acts on $V(\phi, \chi)$ by χ_p.

Let f be a nonzero vector in $V(\phi, \chi)$ and consider the period

$$P_\chi(f) = \sum_{\sigma \in \text{Gal}(H_c / K)} f(\sigma) \chi(\sigma)$$

where the embedding of K to B induces a map

$$\text{Gal}(H_c / K) = K^\times \backslash \hat{K}^\times / \hat{\mathcal{O}}^\times_c \rightarrow X_U.$$

Theorem 2.14 (Explicit Waldspurger formula [3]). We have the following equation

$$L(1, \phi, \chi) = 2^{-\nu(N, D)} \frac{\delta^2(\phi, \chi) \Gamma_1(N)}{a^2 c^{\sqrt{D}} |D|} \left\langle f, f \right\rangle$$

(Wald)

where the pairing

$$\left\langle f, f \right\rangle = \sum_{[x] \in X_U} |f([x])|^2 w([x])^{-1}$$

and $w([x])$ is the order of the finite group $(B^\times \cap xUx^{-1}) / \{ \pm 1 \}$.

There is an analogue to Heegner points, the so called Gross points. Let S be a set of finite places of \mathbb{Q} containing all places dividing $6cND$. Let \mathbb{N}_S denote the set of integers whose prime divisors are not in S.

Definition 2.15. Let $m \in \mathbb{N}_S$. A point $x_m \in K^\times \backslash \hat{B}^\times / U$ is called a Gross Point of conductor cm, if $x_m U x_m^{-1} \cap K^\times = \hat{\mathcal{O}}^\times_{cm}$.

Each element in $K^\times \backslash \hat{K}^\times / \hat{\mathcal{O}}^\times_{cm}$ acts on x_m by left multiplication. This induces an action of $\text{Gal}(H_{cm} / K)$ on x_m, also called the Galois action.

For each prime $\ell \in \mathbb{N}_S$, fix an isomorphism $\beta_{\ell} : B_{\ell} \cong M_2(\mathbb{Q}_\ell)$, such that $\beta_{\ell}(U_{\ell}) = \text{GL}_2(\mathbb{Z}_\ell)$, and, under this isomorphism, we have

- $\beta_{\ell}(K_{\ell}) = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : a, b \in \mathbb{Q}_\ell \right\}$, if ℓ is split in K;
- $\beta_{\ell}(K_{\ell}) = \left\{ \begin{pmatrix} a & b \delta \\ b & a \end{pmatrix} : a, b \in \mathbb{Q}_\ell \right\}$, where $\delta \in \mathbb{Z}_p^\times \backslash \mathbb{Z}_p^2$, if ℓ is inert in K.

8
For \(m \in \mathbb{N}_S \), define \(x_m \in \hat{B}^\times \) by

\[
(x_m)_\ell = \begin{cases} \beta_\ell^{-1} \begin{pmatrix} \text{ord}_m \ 0 \\ 0 \\ 1 \end{pmatrix} & \text{if } \ell \nmid m \\
1 & \text{if } \ell \mid m
\end{cases}
\]

Then the image of \(x_m \) in \(K^\times \backslash \hat{B}^\times /U \), still denoted by \(x_m \), is a Gross point of conductor \(cm \).

Theorem 2.16. For any \(\ell, m \in \mathbb{N}_S \) with \(\ell \) a prime and \(\ell \nmid m \), we have that

\[
\sum_{\sigma \in \text{Gal}(H_{cm}/H_{cm})} [\sigma, x_m] = \begin{cases} 0 & \text{if } \ell \text{ is inert in } K, \\
(T_\ell - \sum_{w|\ell} \text{Frob}_w)[x_m] & \text{if } \ell \text{ is split in } K,
\end{cases}
\]

where the equality holds as divisors on \(X_U \), with \(\text{Frob}_w \) and \(u_m \) the same as Theorem 2.13.

The proof is the same as the norm relation of Heegner points on Shimura curves. One can refer to [10, Proposition 4.8] or [20, Theorem 3.1.1].

3. Quadratic Twists of \(X_0(36) \)

The modular curve \(X_0(36) \) has genus one and its cusp \([\infty]\) is rational over \(\mathbb{Q} \) so that \(E = (X_0(36), [\infty]) \) is an elliptic curve defined over \(\mathbb{Q} \). The elliptic curve \(E \) has CM by \(\mathbb{Q}(\sqrt{-3}) \) and has minimal Weierstrass equation

\[
y^2 = x^3 + 1.
\]

Note that its Tamagawa numbers are \(c_2 = 3, c_3 = 2 \) and \(E(\mathbb{Q}) \cong \mathbb{Z}/6\mathbb{Z} \) is generated by the cusp \([0] = (2,3) \), we use \(T \) to denote the non-trivial 2-torsion point in the following. Denote by \(L^{\text{alg}}(E, s) \) the algebraic part of \(L(E, s) \). Then \(L^{\text{alg}}(E, 1) = 1/6 \).

For a non-zero integer \(m \), let \(E^{(m)} : y^2 = x^3 + m^3 \) the quadratic twist of \(E \) by the field \(\mathbb{Q}(\sqrt{m}) \). Then \(E^{(m)} \) and \(E^{(m\cdot 3^m)} \) are 3-isogenous to each other.

Lemma 3.1. Let \(D \in \mathbb{Z} \) be a fundamental discriminant of a quadratic field. Then the sign for the functional equation of \(E^{(D)} \), denoted by \(\epsilon(E^{(D)}) \), is

\[
(-1)^{\# \{p \mid D, p=2,3,\infty\}}
\]

where \(\infty|D \) means that \(D < 0 \).

Proof. For each \(D \), denote by \(K = \mathbb{Q}(\sqrt{D}) \), then

\[
L(s, E_K) = L(s, E)L(s, E^{(D)})
\]

where \(L(s, E_K) \) is the base change \(L \)-function and it suffices to determine the sign of \(L(s, E_K) \). Note that the local components of the cuspidal automorphic representation for \(E \) at places 2 and 3 are supercuspidal with conductor 2, then by [19, Proposition 3.5], the local root number for the base change \(L \)-function at places 2 (resp. 3) is negative if and only if \(2|D \) (resp. 3|\(D \)). Meanwhile, the local root number at \(\infty \) is positive if and only if \(D \) is positive and for any place not dividing 6\(\infty \) it is positive. Summing up, the result holds.

3.1. The Waldspurger Formula. Let \(B \) be the definite quaternion algebra over \(\mathbb{Q} \) ramified at 3, \(\infty \), then we know that

\[
B = \mathbb{Q}+\mathbb{Q}i+\mathbb{Q}j+\mathbb{Q}k, \quad i^2 = -1, j^2 = -3, k = ij = -ji.
\]

Let \(\mathcal{O}_B = \mathbb{Z}[1, i, (i + j)/2, (1 + k)/2] \) of \(B \). The unit group \(\mathcal{O}_B^\times \) of \(\mathcal{O}_B \) equals to

\[
\{\pm 1, \pm i, \pm (i + j)/2, \pm (i - j)/2, \pm (1 + k)/2, \pm (1 - k)/2\}.
\]

Let \(K = \mathbb{Q}(\sqrt{-3}) \) and \(\eta : \hat{\mathbb{Q}}^\times /\mathbb{Q}^\times \to \{\pm 1\} \) is the quadratic character associated to \(K \). Embed \(K \hookrightarrow B \) by sending \(\sqrt{-3} \) to \(k \), which induces an embedding \(\hat{\mathbb{Q}}^\times \hookrightarrow \hat{B}^\times \).

Let \(\pi = \otimes_v \pi_v \) be the automorphic representation of \(B_v^\times \) corresponding to \(E \) via the modularity of \(E \) and the Jacquet-Langlands correspondence. Let \(\mathcal{R} = \prod_p \mathcal{R}_p \) be an order of \(\hat{B}^\times \) defined as following. If \(p = 2 \), then \(\mathcal{R}_2 = \mathcal{O}_{K,2} + 2\mathcal{O}_B \). If \(p = 3 \), then \(\mathcal{R}_3 = \mathcal{O}_{K,3} + \lambda \mathcal{O}_{B,3} \) where \(\lambda \in B^\times \) is a uniformizer of \(B_3 \); for example, we may choose \(\lambda = k \), which is also a uniformizer of \(K_3 \). For \(p \nmid 6 \), \(\mathcal{R}_p = \mathcal{O}_{B,p} \). Denote by \(U = \mathcal{R}^\times \). Then \(U \) is an open compact subgroup of \(\hat{B}^\times \).

The local components of \(\pi \) have the following properties:

- \(\pi_\infty \) is trivial;
• π_p is unramified if $p \neq 2, 3, \infty$, i.e. $\pi^{O_{B,p}}$ is one dimensional;
• $\pi^{O_{K,2}}$ is one dimensional and $\pi^{O_{K,3}}$ is two dimensional.

The first two properties are standard, while the last property comes from [3, proposition 3.8]. Then π^U is a representation of B_3^x with dimension 2. As K_3^x-modules, $\pi^U = \mathbb{C} \chi_+ \oplus \mathbb{C} \chi_-$ where χ_+ is the trivial character of K_3^x and χ_- is the nontrivial quadratic unramified character on K_3^x.

This representation π^U is naturally realized as a subspace of the space of the infinitely differentiable complex-valued functions $C^\infty(B^x \backslash \tilde{B}^x / \hat{Q}^x)$. The space π^U is contained in the space $C^\infty(B^x \backslash \tilde{B}^x / \hat{Q}^x U)$ and is perpendicular to the spectrum consisting of characters (the residue spectrum). In fact, we have the following more detailed proposition:

Proposition 3.2.

1. π^U has an orthonormal basis f_+, f_- under the Petersson inner product defined by

 \[\| f \|^2 = \int_{B^x \backslash \tilde{B}^x / \hat{Q}^x} |f(g)|^2 dg \]

 with the Tamagawa measure $\text{Vol}(B^x \backslash \tilde{B}^x / \hat{Q}^x) = 2$.

2. Moreover, f_+ (resp. f_-) is the function on $B^x \backslash \tilde{B}^x / \hat{Q}^x U$, supported on those $g \in \tilde{B}^x$ with $\chi_0(g) = +1$ (resp. -1), valued in $0, \pm 1$ with total mass zero, where χ_0 is the composition of the following morphisms:

3. For any $t \in K^x_3$, $\pi(t)f_+ = \chi_+(t)f_+$ and $\pi(t)f_- = \chi_-(t)f_-$.

Since the class number of B with respect to O_B is 1 by [24, pp. 152], one has

\[\hat{B}^x = B^x \hat{O}_B^x = B^x B_3^x \hat{O}_B^x. \]

Therefore,

\[B^x \backslash \tilde{B}^x / \hat{Q}^x U = B^x \backslash B^x B_3^x \hat{O}_B^{(3)} / U_2 U_3 \hat{O}_B^{(6)} = H^x \backslash B_3^x O_{B,3}^x / U_2 U_3, \]

where $H = B^x \cap B_3^x \hat{O}_B^{(3)} = O_{B,1}^x \subset B_3^x O_{B,2}^x$ and the last inclusion is given by the diagonal embedding.

Lemma 3.3. The double coset $H \backslash O_{B,2}^x / U_2$ is trivial and $H \cap U_2 \backslash B_3^x / U_3 = O_{B,2}^x / U_3$.

Proof. The proof is elementary. Firstly, we prove that $H \backslash O_{B,2}^x / U_2$ is trivial. Recall that $U_2 = O_{K,2}^x(1 + 2M_2(Z_2))$. As $GL_2(Z_2)/(1 + 2M_2(Z_2)) = GL_2(F_2)$, the claim follows from that for any $g \in GL_2(F_2)$, one may find $h \in H$ and $u \in O_{B,2}^x$ such that $g \equiv hu (\text{mod } 2Z_2)$. For the second claim, note that

\[H \cap U_2 = \langle k, \frac{1 - 1 + k}{2} \rangle, \]

For any $x \in B_3^x$, $x^{-1}(1 + \lambda)x = 1 + x^{-1} \lambda x \in U_3$ where λ is any uniformizer of B_3^x. In particular, the action of $H \cap U_2$ on B_3^x / U_3 is equal to the action of the group generated by some uniformizer. Hence $H \cap U_2 \backslash B_3^x / U_3 = O_{B,2}^x / U_3$.

If we denote Z_0 the integer ring for the unramified quadratic extension field of Q_3, then

\[O_{B,2}^x = Z_0^x(1 + \lambda Z_0); U_3 = O_{K,3}^x(1 + \lambda O_{B,3}) = \mu_2(1 + 3Z_0)(1 + \lambda Z_0) \]

where $\mu_2 = \{ \pm 1 \}$. Hence

\[H' \backslash B_3^x O_{B,2}^x / U_2 U_3 \stackrel{\sim}{\leftarrow} H \cap U_2 \backslash B_3^x / U_3 \]

\[\stackrel{\sim}{\leftarrow} O_{B,3}^x / U_3 \]

\[\stackrel{\sim}{=\rightarrow} Z_0^x / \mu_2(1 + 3Z_0) \cong Z/4Z, \]

and we can identify $C^\infty(B^x \backslash \tilde{B}^x / \hat{Q}^x U)$ with $C[Z/4Z]$.

The image of $B^x \backslash \tilde{B}^x / \hat{Q}^x$ under the norm map is $Q_3^x \backslash \hat{Q}^x / \text{N}rU$. If $p \neq 3$, $\text{N}rU_p = Z_0^x$ while if $\text{N}rU_3 = 1 + 3Z_3$. Therefore, by the approximation theorem,

\[Q_3^x \backslash \hat{Q}^x / \text{N}rU = Z_0^x / \text{N}rU_3 = Z_0^x / 1 + 3Z_3. \]

In particular, the cardinality of $Q_3^x \backslash \hat{Q}^x / \text{N}rU$ is 2. Forms in $C^\infty(B^x \backslash \tilde{B}^x / \hat{Q}^x U)$ of the form $\mu \circ \text{N}r$ for some Hecke character μ correspond to characters on $C[Z/4Z]$ of order dividing 2. Sum up, we obtain
Lemma 3.4. There is a natural bijection

\[\mathbb{Z}_q^* / \mu_2(1 + 3\mathbb{Z}_q) \xrightarrow{\sim} B^\times \backslash \hat{B}^\times / \hat{\mathbb{Q}}^\times U \]

which is induced by the embedding \(\mathbb{Z}_q^* \to B_3^\times \to \hat{B}^\times \), and the left hand side of the above bijection is isomorphic to the cyclic group of order 4. Via this bijection, the space \(\pi^U \) is spanned by characters on the cyclic group with order not dividing 2.

Since \(\mathcal{O}_K^\times \subset U_3 \), \(f \) is \(\chi \)-eigen and only if \(\pi_3(\varpi_3)f = \pm f \), if and only if \(f(\zeta^a \varpi_3) = \pm f(\zeta^a) \) for \(a = 0, \ldots, 3 \) where \(\zeta \) is a primitive 8th root of unity in \(\mathbb{Z}_q^* \). Moreover, we may assume \(\zeta \equiv 1 + i \pmod{1 + 3\mathbb{Z}_q} \).

To compute \(f(\zeta^a \varpi_3) \), since \(k \in H \cap U_3 \) and \(f \in \pi^U \), we have

\[f(\zeta^a \varpi_3) = f(k^{-1}\zeta^a \varpi_3) = f(k_3^{-1}\zeta^a \varpi_3). \]

where \(k_3 \) denote the 3-component of \(k \).

Take \(\varpi_3 = \sqrt{-3} \in K_3^\times \). Then

\[f(k_3^{-1}\zeta^a \varpi_3) = f(k_3^{-1}\zeta^a k_3) = f(\zeta^{3a}), \quad a \in \mathbb{Z}/4\mathbb{Z} \]

because the conjugate action of \(k_3 \) on \(\varpi_3 = 3 \) is the Galois conjugation. Thus

\[\pi(\varpi_3)f(\zeta) = f(\zeta^3), \quad \pi(\varpi_3)f(\zeta^a) = f(\zeta^a), \quad \text{if } 2a = 0. \]

Thus, one may take \(f_+ \) and \(f_- \) by

\[f_+(1) = 1, \quad f_+(\zeta^2) = -1, \quad f_+(\zeta^4) = f_+(\zeta^6) = 0 \text{ and } f_-(1) = 1, \quad f_-(\zeta^2) = -1, \quad f_-(\zeta^4) = f_-(\zeta^6) = 0. \]

Finally, \(\chi_0 \) is the non-trivial element in the residue spectrum of \(C^\infty(B^\times \backslash \hat{B}^\times / \hat{\mathbb{Q}}^\times U) \) and \(\chi_0(\zeta^a) = (-1)^a \) for \(a = 0, \ldots, 3 \). Thus, up to \(\pm 1 \), \(f_+ \) (resp. \(f_- \)) is the function on \(B^\times \backslash \hat{B}^\times / \hat{\mathbb{Q}}^\times U \), supported on those \(g \in \hat{B}^\times \) with \(\chi_0(g) = +1 \) (resp. \(= -1 \)), valued in \(0, \pm 1 \) with total mass zero. It is clear that \(f_+ \) and \(f_- \) is an orthonormal basis of \(\pi^U \). We have completed the proof of Proposition 3.2.

Now let \(M = q_1 \cdots q_r \) with \(q_i \equiv 5 \pmod{12} \). For any \(q \mid M \), taking an isomorphism \(\iota_q : B_q \iso M_2(\mathbb{Q}_q) \)

by \(i \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) and \(k \mapsto \begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix} \). In particular, \(\iota_q(\mathcal{O}_{B,q}) = M_2(\mathbb{Z}_q) \). Denote by \(x_q \in B_q^\times \) with \(\iota_q(x_q) = \begin{pmatrix} q \\ 1 \end{pmatrix} \). Then \(x_q \mathcal{O}_{B,q} x_q^{-1} \cap K_q = \mathcal{O}_{M,q} \). Take \(x_M = \prod_i x_{q_i} \in B^\times \). Denote by

\[f_M = \begin{cases} f_+(x_M), & \text{if } r \text{ is even} \\ f_-(x_M), & \text{if } r \text{ is odd}. \end{cases} \]

Let \(\chi_M \) be the quadratic Hecke character of \(K \) associated to \(K(\sqrt{M})/K \), then \(\chi_M(\varpi_3) = (-1)^r \). Then \(f_M = \pi^U \). In particular, it satisfies that

1. \(\forall p \nmid 6M, T_p f_M = a_p f_M; \)
2. \(f_M \) is integrable-valued with minimal norm;
3. \(\pi(\varpi_3)f_M = \chi_M(\varpi_3)f_M. \)

Let \(H_M \) be the ring class field of \(K \) of conductor \(M \), i.e. the abelian extension of \(K \) with Galois group \(\text{Gal}(H_M/K) \simeq \text{Pic}(\mathcal{O}_M) = \hat{K}^\times / K^\times \hat{\mathcal{O}}_M^\times \). The embedding \(K \hookrightarrow B \) induces a map

\[K^\times \backslash \hat{K}^\times / \hat{\mathcal{O}}_M^\times \to B^\times \backslash \hat{B}^\times / U. \]

Consider

\[P_{K_M}(f_M) = \sum_{t \in \text{Pic}(\mathcal{O}_M)} f_M(t) \chi_M(t). \]

Denote by

\[L^{alg}(s, E) = L(s, E)/\Omega(E) \]

where for any elliptic curve \(A \) over \(\mathbb{Q} \), \(\Omega(A) \) is the real period for the Neron differential of \(A \); and for simplicity, we let \(\Omega = \Omega(E) \); then the imaginary period of \(E \) is \(\Omega^- = \Omega / \sqrt{-3} \).

Proposition 3.5. Up to \(\pm 1 \), \(L^{alg}(1, E^{(M)}) = 2^{-1} P_{K_M}(f_M) \).
Proof. By Theorem 2.14,
\[L(1, E, \chi_M) = 2^{-3} \frac{8\pi^2 \langle \phi, \phi \rangle_{\Gamma_0(36)} |P_{\chi_M}(f_M)|^2}{\sqrt{3}M} \langle f_M, f_M \rangle. \]
Here,
\[\langle f_M, f_M \rangle = \frac{|f_M|^2}{2} \text{Vol}(X_U) \]
and Vol(X_U) is the mass of U. By [3, Lemma 2.2],
\[\text{Vol}(X_U) = 2(4\pi^2)^{-1} \text{Vol}(U)^{-1} \]
where Vol(U) is with respect to Tamagawa measures so that for any finite $p \neq 3$, Vol($\text{GL}_2(\mathbb{Z}_p)$) = $L(2,1_p)^{-1}$ and Vol($O_{B,3}^\times$) = $2^{-1}L(2,1_3)^{-1}$. By [3, Lemma 3.5], Vol(X_U) = 4/3. Thus, deg$_U f_M$ = 2/3. On the other hand,
\[8\pi^2 \langle \phi, \phi \rangle_{\Gamma_0(36)} = 8\pi^2 \int_{\Gamma_0(36) \backslash \mathbb{H}} |\phi(x + iy)|^2 dx dy = i\Omega^{-1}. \]
As $E(M)$ and $E(-3M)$ are isogenous over \mathbb{Q}, $L(s, E, \chi_M) = L(s, E(M))L(s, E(-3M)) = L(s, E(M))^2$. Denote by $\Omega(M)$ the real period for $E(M)$, then $\Omega(M) = \Omega/\sqrt{M}$. Thus, $L^{alg}(1, E(M))^2 = (L(1, E(M))/\Omega(M))^2 = M\mathcal{L}(1, E, \chi_M)/\Omega^2$ and
\[L^{alg}(1, E(M))^2 = 2^{-2}|P_{\chi_M}(f_M)|^2. \]
\[\square \]

3.2. Rank Zero Twists. Keep the notations from the last section. Denote by $\mathcal{A} = \text{Gal}(H_M/K)$, then $2\mathcal{A} = \text{Gal}(H_M/H^0_M)$, where $H^0_M = K(\sqrt{q} : q \mid M)$. Let \mathcal{A} (resp. $\mathcal{A}/2\mathcal{A}$) be groups of characters on \mathcal{A} (resp. on \mathcal{A} and factors through $\text{Gal}(H^0_M/K)$). Then
\[\sum_{\chi \in \mathcal{A}/2\mathcal{A}} P_{\chi}(f_M) = 2^r y_0, \quad y_0 := \sum_{\sigma \in 2\mathcal{A}} f_M(\sigma) \]
Note that each $\chi \in \mathcal{A}/2\mathcal{A}$ corresponds to an integer $d|M$, in the sense that χ corresponds to the extension $K(\sqrt{d})/K$.

Proposition 3.6. If $\chi \in \mathcal{A}/2\mathcal{A}$ corresponds to an integer $d \neq M$, then $P_{\chi}(f_M) = 0$

Proof. Choose primes $q \in \mathbb{N}_S$ such that $qd|M$. Then
\[P_{\chi}(f_M) = \sum_{\sigma \in \mathcal{A}} f_M(\sigma)\chi(\sigma) = \sum_{\sigma \in \text{Gal}(H_{M/q}/K)} f_M(\sigma) \sum_{\tau \in \text{Gal}(H_M/H_{M/q})} \chi(\sigma\tau) = \sum_{\sigma \in \text{Gal}(H_{M/q}/K)} \chi(\sigma) \sum_{\tau \in \text{Gal}(H_M/H_{M/q})} f(\sigma x_M) \]
By Theorem 2.16, we have
\[u_{M/q} \sum_{\tau \in \text{Gal}(H_M/H_{M/q})} f(\sigma x_M) = a_q f(\sigma x_{M/q}) = 0. \]
So the proposition holds. \[\square \]

By Proposition 3.6, we have the equality
\[P_{\chi_M}(f_M) = 2^r y_0 \]

Lemma 3.7. The values of $f_M|_{B_{x^2}}$ are odd. In particular, y_0 is odd and
\[v_2(P_{\chi_M}(f_M)) = r. \]

Proof. By the definition of f_M, $f_M|_{B_{x^2}}$ is odd if and only if for any $g \in B_{x^2}$, $\chi_0(gx_M) = (-1)^r$. Since χ_0 is quadratic, $\chi_0(g) = 1$. Then $\chi_0(gx_M) = \chi_0(x_M) = \prod_{i=1}^{q+1} \chi_0(q_i) = (-1)^r$ as q_i is inert in K. Hence
\[y_0 \equiv [H_M : H^0_M] \equiv \frac{1}{3} \prod_{q|M} q + \frac{1}{2} \equiv 1 (\text{mod } 2). \]
\[\square \]
The Proof of Theorem 1.3. By Proposition 3.5, \(v_2(L_{alg}^1(1, E^{(M)})) = r - 1\). The 2-part of BSD is equivalent to

\[
v_2 \left(L_{alg}^1(1, E^{(M)}) \right) = \sum_{p \nmid 6M} v_2 \left(c_p \left(E^{(M)} \right) \right) - 2v_2 \left(\# E^{(M)}_{tor} \right) + v_2 \left(\# \text{III}(E^{(M)}/\mathbb{Q}) \right).
\]

The Tamagawa numbers of \(E^{(M)}\) are: \(c_2(E^{(M)}) = 3\) (resp. \(= 1\)) if \(M \equiv 1 \pmod{8}\) (resp. otherwise), \(c_3(E^{(M)}) = 2\) and \(c_4(E^{(M)}) = 2\) for \(q \mid M\). On the other hand, \(E^{(M)}(\mathbb{Q}) = E^{(M)}(\mathbb{Q})_{tor} = \mathbb{Z}/2\mathbb{Z}\). Finally, using classical 2-descent, \(\text{III}(E^{(M)}/\mathbb{Q})[2] = 0\). Combine the results above, it is clear that the 2-part of BSD conjecture holds.

By [15, Theorem 11.1], the \(p\)-part of the BSD-conjecture for \(E^{(M)}\) holds for \(p \nmid 6\), hence and the first part of Theorem 1.3 holds.

\[\square\]

3.3. The Gross-Zagier Formula. Let \(K = \mathbb{Q}(\sqrt{-\ell})\) with \(\ell \equiv 11 \pmod{12}\). Let \(N = 36\). Write \(N = N_0 N_2^2\) as before. There are two cases:

1. If \(\ell \equiv -1 \pmod{24}\), then the Heegner hypothesis holds and \(N = N_0 = 36\);
2. If \(\ell \equiv 11 \pmod{24}\), then \(N_0 = 9\).

Embed \(K\) into \(M_2(\mathbb{Q})\) as \(i_\epsilon\) with \(\epsilon = 1\) in Example 2.1. Precisely, take an odd integer \(a\) with \(4 \cdot N_0 (\ell + a^2)\) and embed \(K\) into \(M_2(\mathbb{Q})\) by

\[
\sqrt{-\ell} \mapsto \begin{pmatrix} a & 2 \\ \ell a^2 & -a \end{pmatrix}.
\]

Then \(M_2(\mathbb{Z}) \cap K = R_0(N_0) \cap K = O_K\). Under such embedding, take \(R = O_K + N_1 R_0(N_0)\) and consider the modular curve \(X_K(N)\). For the Heegner hypothesis case, \(X_K(N) = X_0(36)\). For another case, the modular curve \(X_K(N)\) has genus one and by Lemma 2.9, the cusp \([\infty]\) is defined over \(\mathbb{Q}\). In fact, by [6, Example 11.7.c], \(A := (X_K(N), [\infty])\) is the elliptic curve

\[
y^2 = x^3 - 27 \quad (36C)
\]

which is 3-isogenous to \(E\). We have \(A(\mathbb{Q}) = A(\mathbb{Q})[2] \cong \mathbb{Z}/2\mathbb{Z}\). For the Heegner hypothesis case (resp. another case), take \(f\) to be the identity morphism on \(E\) (resp. on \(A\)). Denote by

\[
\epsilon = \begin{pmatrix} 1 & 0 \\ -a & -1 \end{pmatrix} \in K^-.
\]

Lemma 3.8. Take \(w \in \text{GL}_2(\mathbb{Q})\) the Atkin-Lehner operator defined in Section 2.1. Precisely, for the Heegner hypothesis case, \(w = j(3\ell)w_2w_3\) while for another case, \(w = j(3\ell)w_3\). Then \(w\) normalize \(R^*\) and \(w = toju\) for some \(t_0 \in R^*\) and \(u \in R^*\). Moreover, \(f + f^w\) is a constant map and its image is not in \(2E(\mathbb{Q})\) for the Heegner hypothesis case or not in \(2A(\mathbb{Q}) = \{0\}\) for the other case.

Proof. By Lemma 2.10, it suffices to prove the “Moreover” part.

For the Heegner hypothesis case, denote by \(\text{Hom}_{\mathbb{Q}}(X_0(N), E)\) the space of \(\mathbb{Q}\)-morphisms from \(X_0(N)\) to \(E\) taking \([\infty]\) to \(O\) and \(\text{Hom}_{\mathbb{Q}}(X_0(N), E) = \text{Hom}_{\mathbb{Q}}(X_0(N), E) \otimes \mathbb{Z}\mathbb{Q}\). By Atkin-Lehner theory, \(f^w = -f \in \text{Hom}_{\mathbb{Q}}(X_0(N), E)\). So \(f^w + f\) is a constant map. However, \(f([\infty]) = 0\), \(f^w([\infty]) = f([0]) = [0]\), while \([0]\) is the generator of \(E(\mathbb{Q}) = \mathbb{Z}/6\mathbb{Z}\). Thus, the image of \(f + f^w\) is not in \(2E(\mathbb{Q})\).

For another case, view \(f \in \text{Hom}_{\mathbb{Q}}(X_K(N), A)\). Then \(f^w = \epsilon(A/Q_3)f = f\). As \(f\) and \(f^3\) are both \(K^X\)-invariant and such vectors in \(\text{Hom}_{\mathbb{Q}}(X_K(N), A)\) is of dimension 1. There is a sign \(\epsilon \in \{\pm 1\}\) such that \(f^{32} = \epsilon f\). By [11, Theorem 4], the sign \(\epsilon_2 = +1\) if and only if \(\epsilon(A/Q_3) = \epsilon(A^{-1}/Q_3) = 1\). Since \(\epsilon(A/Q_3) = -1\), we obtain \(f^{32} = -f\). Thus \(f^w + f = -f\) as a morphism from \(X_K(N)\) to \(A\). \(f + f^w = T\) for some torsion point \(T \in A(\mathbb{Q})\). To see \(T \neq O\), it suffices to show \([\infty]\) \(\neq [\infty]^w\). This equivalent to say \(w \notin P(\mathbb{Q})R^X\) with \(P\) the upper-triangular matrices in \(\text{GL}_2\). This holds since \(w_3 \notin P(\mathbb{Q})R^X\).

Write \(\text{Isom}_Q(A)\) for the group of algebraic isomorphisms of \(A\) over \(Q\) and \(\text{Aut}_Q(A)\) the subgroup of algebraic isomorphisms over \(Q\) which fix \(O\). Then \(\text{Aut}_Q(A) = \mathbb{Z}/2\mathbb{Z}\) is generated by multiplication \(-1\) and \(\text{Isom}_Q(A) = (t_T) \times \text{Aut}_Q(A)\) where \(t_T : P \mapsto P + T\) for any \(P \in A\).

Lemma 3.9. For any \(P \in A\), \(P^{w_3} = t_T(P)\) and \(P^{j(3)} = -P\).

Proof. In the above proof, we have seen that \(w_3 \notin PU_3\). Thus \([\infty]^{w_3} \neq [\infty]\). Hence for any point \(P\), \(P^{w_3} = t_T(P)\). On the other hand, \(P^w = t_T(-P)\). Therefore, \(P^{j(3)} = P^w w_3^{-1} = -P\). \(\square\)
Let $M = \prod q_i$ where q_i are distinct positive integers $\equiv 5 \pmod{12}$. Denoted by χ_M the quadratic character of K associated to the extension $K(\sqrt{M})/K$. Let $P_M \in \mathcal{X}_K(N)(H_M)$ be the Heegner point defined in 2.3. Consider

$$P_{\chi_M}(f) = \sum_{\sigma \in \text{Gal}(H_M/K)} f(P_M)^\sigma \chi_M(\sigma) \in E(K).$$

Proposition 3.10. Up to ± 1,

$$L^\text{alg}(1, E^{(M)}) \frac{L'(1, E^{(-\ell M)})}{\Omega(E^{(-\ell M)})} = \widehat{h}_K(P_{\chi_M}(f)).$$

Proof. By Theorem 2.12,

$$L'(1, E, \chi_M) = \frac{8\pi^2 (\phi, \phi)|_{\Gamma_0(36)}}{\sqrt{\ell M}} \cdot \widehat{h}_K(P_{\chi_M}(f)).$$

Since $L(s, E, \chi_M) = L(s, E^{(M)})L(s, E^{(-\ell M)})$, and we have proved that $L(s, E^{(M)})$ is nonvanishing at $s = 1$,

$$L'(1, E, \chi_M) = L(1, E^{(M)})L'(1, E^{(-\ell M)}).$$

As in the proof of 3.5

$$8\pi^2 (\phi, \phi)|_{\Gamma_0(36)} = 8\pi^2 \int_{\Gamma_0(36) \backslash \mathcal{H}} |\phi(x + iy)|^2 dx dy = i\Omega\Omega^{-}. $$

By [25], we know $\Omega(E^{(M)}) = \Omega/\sqrt{M}$ and up to sign $\Omega(E^{(-\ell M)}) = \Omega^{-}/\sqrt{-\ell M}$, so up to sign

$$\Omega(E^{(M)})\Omega(E^{(-\ell M)}) = \frac{\Omega}{\sqrt{M}} \frac{\Omega^{-}}{\sqrt{-\ell M}} = -\frac{8\pi^2 (\phi, \phi)|_{\Gamma_0(36)}}{M\sqrt{\ell}}.$$

Thus up to sign:

$$L^\text{alg}(1, E^{(M)})\frac{L'(1, E^{(-\ell M)})}{\Omega(E^{(-\ell M)})} = \widehat{h}_K(P_{\chi_M}(f)).$$

□

3.4. **Rank One Twists.** Let ℓ be a prime with $\ell \equiv 11 \pmod{12}$. Denote by $K = \mathbb{Q}(\sqrt{-\ell})$. We only prove Theorem 1.2 in the case $\ell \equiv 11 \pmod{24}$, that is, 2 is inert in K and 3 is split in K, while its proof for the other case is similar.

Let $M = q_1 \cdots q_r$ where $q_i \equiv 5 \pmod{12}$ and inert in K. Denote by $\mathcal{A} = \text{Gal}(H_M/K)$. Then $2\mathcal{A} = \text{Gal}(H_M/H^0_M)$, where $H^0_M = K(\sqrt{q} : q \mid M)$. Let \mathcal{A}^\ast (resp. $\mathcal{A}^\ast/2\mathcal{A}^\ast$) be the group of characters on \mathcal{A} (resp. on \mathcal{A}^\ast and factors through $\text{Gal}(H^0_M/K)$).

Let A be the elliptic curve $y^2 = x^3 - 27$. Observe that $A(H^0_M)[2\infty] = A(\mathbb{Q})[2\infty] = A(\mathbb{Q})[2]$. In fact, suppose $Q \in A(H^0_M)[2\infty]$ but $Q \notin A(\mathbb{Q})[2\infty]$. Then the extension $\mathbb{Q}(Q)/\mathbb{Q}$ is unramified outside 2 and 3. However, as $Q(\mathbb{Q}) \subset H^0_M$, $Q(\mathbb{Q})/\mathbb{Q}$ must be ramified at ℓ or q_i for some i. A contradiction. Let T be the nontrivial element in $A(\mathbb{Q})[2]$, and $C = \#A(H^0_M)_{\text{tor}}$ be the cardinality of odd part of $A(H^0_M)_{\text{tor}}$.

Denote by

$$y_M = P_{\chi_M}(f) = \sum_{\sigma \in \mathcal{A}} f(P_M)^\sigma \chi_M(\sigma) \in A(H^0_M).$$

Then the same as Proposition 3.6, we have

$$y_M = 2^r y_0, \quad y_0 := \sum_{\sigma \in \mathcal{A}/2} f(P_M)^\sigma,$$

as equality of points in $A(H^0_M)$. The key point is the following lemma:

Lemma 3.11.

$$\overline{y}_0 + y_0 = T$$

Proof. By Lemma 2.10, one can write $w = t_0 j u$ with $t_0 \in \hat{K}^\times$, $j = \hat{K}^-$ and $u \in \hat{R}^\times$. Take $x_M \in \hat{B}^\times$ such that $P_M = [z, x_M] \in \mathcal{X}_K(N)(H_M)$ with $z \in \mathcal{H}^0_K$. Thus, for any $\sigma \in 2\mathcal{A}$ with $t \in \hat{K}^\times$

$$f^w(P_M)^{\sigma_t} = f([h_0, tx_M j]).$$

Note that $x_M \in \text{GL}_2(\mathbb{Q}(N))$ while $t_0 \in K_{(N)}^\times \subset \text{GL}_2(\mathbb{Q}(N))$. Hence $x_{M} t_0 = t_0 x_M$ and

$$f^w(P_M)^{\sigma_t} = f([h_0, x_M j])^{\sigma t_0}.$$
Finally, we need to show that $x_M j \in j x_M U$. This reduces to show that for any $q | M$, the q-part of $x_M^{-1} j^{-1} x_M j$ belongs to $R_q^* = \text{GL}_2(\mathbb{Z}_q)$. It is easy to check this holds. Thus

$$f^w(P_M)^{\sigma_0} = f([h_0, j x_M])^{\sigma_0} = f([h_0, x_M])^{\sigma_0}.$$

On the other hand, note that in the proof of Lemma 2.10, $t_0, p = 1$ for any $p \not| N_0 = 9$. Denote by $a_0 = N_{K'/Q}(t_0) \in \hat{Q}^\times$. Take determinant for the equation $w = j t_0$. Then $a_0, p = 1$ if $p \neq 3$ and $a_0, p = 2$ if $p = 3$. Thus for any prime $q | M$

$$\sigma_{t_0}(\sqrt{q}) = \sigma_{a_0}(\sqrt{q}) = \sqrt{q}$$

where $\sigma_{a_0} \in \text{Gal}(\mathbb{Q}(\sqrt{q})/\mathbb{Q})$ via the Artin map over \mathbb{Q}. Hence, $\sigma_{t_0} \in 2A$.

Sum up, since $[H_M : H^0_M] = [H : K] \prod_{q | M} q + 1 \over 2$ is odd, we get

$$\eta_0 + \eta = \sum_{\sigma \in 2A} (f + f^w) (P_M)^{\sigma} = [H_M : H^0_M] T = T.$$

\[\square \]

Theorem 3.12. $y_M \in A(K(\sqrt{M}))^-$ and the 2-index of y_M is $r - 1$ in $A(K(\sqrt{M}))$.

Proof. Consider the maps

$$A(K(\sqrt{M}))/2^r A(K(\sqrt{M}))$$

$$\begin{array}{c}
0 \to H^1(H^0_M/K(\sqrt{M}), A[2]^r(H^0_M)) \to H^1(K(\sqrt{M}), A[2]^r) \to H^1(H^0_M, A[2]^r)
\end{array}$$

where δ is the Kummer map, which is injective, and the horizontal line is the inflation-restriction exact sequence. Since $y_M = 2^r \eta$ with $\eta \in A(H^0_M)$, the image of $\delta(y_M)$ is 0 in $H^1(H^0_M, A[2]^r)$, hence $\delta(y_M)$ lies in the image of $H^1(H^0_M/K(\sqrt{M}), A[2]^r(H^0_M))$, which is killed by 2. It follows that $2y_M = 2^r A(K(\sqrt{M}))$,

$$y_M = 2^r z + t, z = 2 \eta + s$$

for some $z \in A(K(\sqrt{M}))$ and $s, t \in A(Q)[2]$.

Let $\sigma \in \text{Gal}(K(\sqrt{M})/K)$ be the nontrivial element. Then by definition, we have $y_M + y_M^\sigma = 0$, so

$$y_0 + y_0^\sigma \in A(H^0_M)[2] = A(Q)[2],$$

thus $z + z^\sigma = 0$. On the other hand

$$z + \overline{z} = 2(\eta + \overline{\eta}) = 0,$$

which implies $z \in A(Q(\sqrt{-LM}))^- = A(-LM)(Q)$. Therefore

$$y_M \in 2^{r-1} A(Q(\sqrt{-LM}))^- + A(Q)[2].$$

We will show that the 2-index of y_M is exactly $r - 1$. Suppose that $y_M = 2^r z + t$ for some $z \in A(Q(\sqrt{-LM}))$ and $t \in A(Q(\sqrt{-LM}))$ tor. Then $2^r (z - \eta) + t = 0$, which implies $C(z - \eta) \in A(Q)[2]$. Operating by complex conjugation and plus together, $C(z - \eta) + C(\overline{z} - \overline{\eta}) = 0$. But we have $z + \overline{z} = 0$, so $C(z + \overline{z}) = 0$. But it contradicts to the fact that $\overline{\eta} + \overline{\eta} = T \neq 0$. \[\square \]

The **Proof of Theorem 1.2.** Observe that A and E are 3-isogeny, so to prove Theorem 1.2, we only need to prove that it holds for A.

By Proposition 3.10, up to ± 1,

$$L_{\text{alg}}(1, A(M)) \frac{L'(1, A(-LM))}{\Omega(A(-LM))} = \tilde{h}_K(y_M).$$

Denote by $R(-LM) = \tilde{h}(P_{LM})$ where P_{LM} is the generator of $A(-LM)(Q)/A(-LM)(Q)$ tor. In particular, by Theorem 3.12

$$\tilde{h}_K(y_M) = 2^{2r-1} R(-LM)$$

Thus, if denote by

$$L_{\text{alg}}(s, A(-LM)) = \frac{L'(s, A(-LM))}{R(-LM) \Omega(A(-LM))}$$

then by the result of rank zero case, we have

$$v_2(L_{\text{alg}}(1, A(-LM))) = r.$$
The Tamagawa numbers of $A^{(−LM)}$ are: $c_2(A^{(−LM)}) = 1$ or 3, $c_3(A^{(−LM)}) = 2$ and $c_q(A^{(−LM)}) = 2$ for $q∤\ell M$. On the other hand, $A^{(−LM)}(\mathbb{Q}) = A^{(−LM)}(\mathbb{Q})_{\text{tor}} = \mathbb{Z}/2\mathbb{Z}$. Finally, using classical 2-descent, $III(A^{(−LM)}/\mathbb{Q})[2] = 0$. Combine the results above, it is clear that the 2-part of BSD conjecture for $A^{(−LM)}$ holds.

Since $A^{(−LM)}$ has CM, so the p-adic height paring is nontrivial. Then by [12, Corollary 1.9], p-part of the BSD conjecture for $A^{(−LM)}$ holds for $p ∤ 6\ell M$. So the second part of Theorem 1.2 holds for A, and hence for E.

References

[1] M.Bertolini and H.Darmon, Heegner points, L-functions and Cerednik-Drinfeld uniformization. Invent. Math. 131 (1998), no. 3 453-491.
[2] D.Bump, S.Friedberg and J.Hoffstein, Non-vanishing theorems for L-functions for modular forms and their derivatives, Invent. Math. 102 (1990), 543-618.
[3] L.Cai, J.Shu and Y.Tian, Explicit Gross-Zagier formula and Waldspurger formula, Algebra Number Theory 8 (2014), no. 10, 2523C2572.
[4] J. Coates, Y. Li, Y. Tian, and S. Zhai, Modular units, Algebra Number Theory 8 (2014), no. 10, 2523C2572.
[5] Solomon Friedberg and Jeffrey Hoffstein, Nonvanishing theorems for automorphic L-functions on GL(2), Ann. of Math. 142 (1995), 385-423
[6] B.Gross Local Orders, Root Numbers, and Modular Curves, Amer. J.Mathp, Vol 110, No. 6 (Dec. 1988), pp. 1153-1182.
[7] B.Gross Heegner points on $X_0(N)$, Modular forms (Durham, 1983), 87-105, Ellis Horwood Ser. Math. Appl.:Statist. Oper. Res., Horwood, Chichester, 1984.
[8] B. Gross and D. Zagier, Heegner points an derivatives of L-series, Invent. Math. 84 (1986), no. 2, 225-320.
[9] N.Katz and B.Mazur Arithmetic moduli of elliptic curves Princeton Univ. Press, Princeton, NJ, 1985;
[10] J.Nekovář, The Euler system method for CM points on Shimura curves, L-functions and Galois representations, 471C547, London Math. Soc. Lecture Note Ser., 320, Cambridge University Press, Cambridge, 2007.
[11] D.Prasad, Some applications of seesaw duality to branching laws. Math. Ann. 304 (1996), no. 1, 1C20.
[12] Perrin-Riou, Points de Heegner et dérivées de fonctions L p-adiques, Invent. Math. 89 (1987), no.3 455-510.
[13] H. Qin, Representation of integers by positive ternary quadratic forms, Cambridge Journal of Mathematics, 2 (2014), 117-161.
[14] K. Rubin, The main conjecture of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), no. 1, 25-68.
[15] Anthony J. Scholl, On modular units. Math. Ann. 285 (1990), no. 3, 503C510.
[16] J-P.Serre, Lectures on the Mordell-Weil theorem. Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt. With a foreword by Brown and Serre. Third edition. Aspects of Mathematics. Friedr. Vieweg & Sohn, Braunschweig, 1989. x+218 pp. ISBN: 3-528-22732-2 11G05 (11D41 11G30 14G25)
[17] G. Shimura, Introduction to the arithmetic theory of automorphic functions. Princeton University Press, Princeton, NJ, 1971.
[18] J. Tunnell, Local epsilon factors and characters of GL(2), Amer. J. Math 105 (1983), 1277-1307.
[19] Y. Tian Euler systems of CM points on Shimura curves, Ph.D Thesis, Columbia University, 2003.
[20] Y. Tian, Congruent Numbers and Heegner Points, Cambridge Journal of Mathematics, 2 (2014), 117-161.
[21] Y. Tian, Congruent numbers with many prime factors, Proc. Natl. Acad. Sci. USA 109 (2012), 21256-21258.
[22] Y. Tian, X. Yuan, S. Zhang, Genus Periods, Genus Points and Congruent Number Problem, preprint, 2015.
[23] Vigneras, Arithmétique des algèbres de quaternions, Lect. Notes in Math., 800. Springer, Berlin, 1980. vii+169 pp.
[24] V. Pal, Periods of quadratic twists of elliptic curves, Proceedings AMS 140 (2012), 1513-1525.
[25] J-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier J. Math. Pures Appl. 60 (1981), 375-484.
[26] Xinyi Yuan, Shouwu Zhang and Wei Zhang, The Gross-Zagier Formula on Shimura Curves, Princeton University Press, Annals of Mathematics Studies, (2013).