A deep learning segmentation strategy that minimizes the amount of manually annotated images [version 1; peer review: 1 approved with reservations]

Thierry Pécot¹, Alexander Alekseyenko², Kristin Wallace³

¹Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29407, USA
²Departments of Public Health Sciences and Oral Health Sciences, Biomedical Informatics Center, Medical University of South Carolina, Charleston, SC, 29407, USA
³Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, 29407, USA

Abstract
Deep learning has revolutionized the automatic processing of images. While deep convolutional neural networks have demonstrated astonishing segmentation results for many biological objects acquired with microscopy, this technology’s good performance relies on large training datasets. In this paper, we present a strategy to minimize the amount of time spent in manually annotating images for segmentation. It involves using an efficient and open source annotation tool, the artificial increase of the training data set with data augmentation, the creation of an artificial data set with a conditional generative adversarial network and the combination of semantic and instance segmentations. We evaluate the impact of each of these approaches for the segmentation of nuclei in 2D widefield images of human precancerous polyp biopsies in order to define an optimal strategy.

Keywords
Deep learning, image annotation, semantic and instance segmentations, conditional GANs, nuclei segmentation

This article is included in the NEUBIAS - the Bioimage Analysts Network gateway.
Corresponding author: Thierry Pécot (thierry.pecot@univ-rennes1.fr)

Author roles: Pécot T: Conceptualization, Data Curation, Formal Analysis, Methodology, Software, Validation, Visualization, Writing – Original Draft Preparation; Alekseyenko A: Writing – Review & Editing; Wallace K: Funding Acquisition, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This work was funded by a Chan Zuckerberg Initiative DAF grant to T.P. (2019-198009). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2021 Pécot T et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Pécot T, Alekseyenko A and Wallace K. A deep learning segmentation strategy that minimizes the amount of manually annotated images [version 1; peer review: 1 approved with reservations] F1000Research 2021, 10:256 https://doi.org/10.12688/f1000research.52026.1

First published: 30 Mar 2021, 10:256 https://doi.org/10.12688/f1000research.52026.1
Introduction
Over the last decade, deep learning approaches have outperformed all existing methods for image segmentation\(^1\). Semantic segmentation, the estimation of a label at each pixel, and instance segmentation, the identification of individual objects, were successfully applied to spatially characterize biological entities in microscopic images\(^2\). However, these powerful approaches rely on large annotated datasets. While more and more datasets become publicly available\(^3\),\(^4\), annotated data for every combination of modalities, tissues and biological objects is far from completion. Therefore, procedures to efficiently build training datasets are required to use the full potential of deep learning-based segmentation at a single biological lab scale.

In this paper, we propose a strategy to minimize the amount of time dedicated to manually annotate images and investigate several approaches to maximize accuracy when only using one annotated image. We apply this strategy to segment nuclei stained with DAPI in widefield images of human colorectal adenomas (\textit{i.e.} precancerous polyps) as follows. First, we take advantage of existing training datasets\(^5\),\(^6\) and massive data augmentation to obtain a preliminary segmentation. We then use an open source annotation software\(^7\) to manually correct this segmentation and consequently define the training dataset. Next, we simulate synthetic images using a conditional generative adversarial network (GAN)\(^8\) to increase the size of the training dataset. Finally, we combine U-Net\(^9\),\(^10\), an instance segmentation approach, and Mask R-CNN\(^11\), an instance segmentation approach, to improve the nuclear segmentation accuracy.

Methods
Sample preparation
In this study, we used the Medical University of South Carolina (MUSC) pathology laboratory information system CoPath (Cerner Corporation, Kansas City, MO), to identify a convenience sample of colorectal adenomas excised from patients who underwent a sigmoidoscopy or colonoscopy with polypectomy between October 2012 and May 2016. For each patient, we obtained a formalin-fixed, paraffin-embedded (FFPE) tissue block and prepared one H&E and 5, 5-micron sections for immunofluorescence (IF) on FFPE tissue. Prior to the start of the IF procedures, all antibodies were optimized and reviewed by the study immunologist, the pathologist, the epidemiologist, and laboratory personnel to ensure agreement and proper staining. The study was approved by the institutional review board of the Medical University of South Carolina (IRB # PRO-00007139).

Image acquisition
DAPI was used for nuclear counterstaining. Stained slides were mounted with ProLong™ Gold Antifade Reagent (Cat. # P36934, ThermoFisher) and imaged using the Akoya Vectra® Polaris™ Automated Imaging system (Akoya Biosciences, Marlborough, MA). Whole slide scans were done at 20X magnification and regions of interest where chosen randomly.

Deep learning code
U-Net, Mask R-CNN and pix2pix were coded in Python and used the Python libraries numpy\(^12\), tensorflow\(^13\), keras\(^14\), scipy\(^15\) and scikit-image\(^16\).

Training dataset
The training dataset consisted of three 1868 x 1400 images manually annotated with Annotater\(^17\). Only one image was used to train U-Net and Mask R-CNN as well as pix2pix (conditional GAN) for most of the study. The two other images were added to the training dataset in the last section to be compared with the combination of results obtained with U-Net and Mask R-CNN (see Figure 3).

U-Net training
The annotated 1868 x 1400 image was divided into six 622 x 700 images for training: five of these images were included in the training dataset while the last one defined the validation dataset. As U-Net is a semantic segmentation approach, three classes were defined to allow separating nuclei as proposed in 22: inner nuclei, nuclei contours and background. To facilitate nuclei separation, the nuclei contours in the training dataset were dilated\(^22\). To limit over-fitting, the imaging field for images in the training dataset was set to 256 x 256 by randomly cropping the 622 x 700 input images. These cropped images were then normalized to obtain intensity values between 0 and 1. A root mean square prop was used to estimate the parameters of the deep convolutional neural network by minimizing a weighted cross entropy loss to handle class imbalance for 100 epochs without data augmentation and 25 epochs with data augmentation. The weights associated with each class were defined from the training dataset as their inverse proportion. A data augmentation to increase the training dataset by a factor of 100 was processed after normalization with the imgaug python library\(^22\) and included flipping, rotation, pixel dropout, blurring, noise addition and contrast modifications. In Figure 2 and Figure 3, augmented simulated images were obtained by applying the same modifications with the imgaug python library to simulated images with pix2pix. When combining the annotated image for this study with simulated images and/or existing datasets, the number of augmented images was defined to be balanced between the different data.

U-Net post-processing
An ImageJ macro\(^24\),\(^25\) was used to convert the three classes obtained with U-Net to individual nuclei. More specifically, individual nuclei were identified by thresholding the subtraction of the nuclei contours component from the inner nuclei component with a threshold equal to 0.35. A 3D Voronoi tessellation\(^26\) was then applied to assign each pixel to a nucleus. The object component was defined as all pixels whose background component was inferior to 0.95. This object component was then multiplied by the Voronoi tessellation to obtain individual nuclei. The Voronoi tessellation implies that a 1-pixel width area between nuclei is not assigned to any nucleus. To address this
problem, the location of these pixels is obtained by subtracting the binary thresholding of the individual nuclei from the object component. The individual nuclei are then dilated32 and multiplied to this subtraction to be added to the individual nuclei. Finally, nuclei with less than 35 pixels were removed.

Mask R-CNN
The annotated 1868 x 1400 image was divided into thirty-five 266 x 280 images for training; thirty of these images were included in the training dataset while the last five images defined the validation dataset. Version 2.1 of Mask R-CNN36 was used in this study. The backbone network was defined as the Resnet-101 deep convolutional neural network39. We used the code in 5 to define the only class in this study, i.e. the nuclei. A data augmentation to increase the training dataset by a factor of 100 was processed before normalization with the imgaug python library23 and included resizing, cropping, flipping, rotation, shearing, pixel dropout, blurring, sharpness and brightness modifications, noise addition and contrast modifications. Transfer learning with fine-tuning from a network trained on the coco dataset30 was also applied. In the first epoch, only the region proposal network, the classifier and mask heads were trained. The whole network was then trained for the next three epochs. In Figure 2 and Figure 3, augmented simulated images were obtained by applying the same modifications with the imgaug python library to simulated images with pix2pix. When combining the annotated image for this study with simulated images and/or existing datasets, the number of augmented images was defined to be balanced between the different data. The maximum image size used for processing Mask R-CNN was larger than 256 as resizing and cropping were applied for data augmentation and set to 512. This parameter was defined as 1024 when other existing datasets were included for training as magnification in these images is higher.

Evaluation
One 1868 x 1400 and one 934 x 1400 manually annotated images were used for evaluation. As proposed in 11, we used the F1 score with respect to the Intersection over Union (IoU) to evaluate the different nuclei segmentation approaches. More formally, let \(O_{GT} = \{ O_{GT}(e) \}_{1 \leq n} \) be the set of \(n \) ground truth nuclei and \(O_{E} = \{ O_{E}(e) \}_{1 \leq m} \) be the set of \(m \) estimated nuclei. The IoU defined between the truth nucleus \(O_{GT}(e) \) and the estimated nucleus \(O_{E}(e) \) was defined as:

\[
\text{IoU}(O_{GT}(e), O_{E}(e)) = \frac{O_{GT}(e) \cap O_{E}(e)}{O_{GT}(e) \cup O_{E}(e)}.
\]

An \(\text{IoU}(O_{GT}(e), O_{E}(e)) \) equal to 0 implies that \(O_{GT}(e) \) and \(O_{E}(e) \) do not share any pixel while an \(\text{IoU}(O_{GT}(e), O_{E}(e)) \) equal to 1 means that \(O_{GT}(e) \) and \(O_{E}(e) \) are identical. To ensure that one ground truth nucleus is not associated to multiple estimated nuclei and conversely, we use the following definition for the IoU:

\[
\text{IoU}^* (O_{GT}(e_1), O_{E}(e_2)) = \begin{cases}
\text{IoU}(O_{GT}(e_1), O_{E}(e_2)) \\
0
\end{cases}
\]

F1 score for a given \(\text{IoU}^* \) threshold \(t > 0 \) can be defined as:

\[
F1(t) = \frac{2 \times TP(t)}{2 \times TP(t) + FN(t) + FP(t)}
\]

where

\[
TP(t) = \sum_{e_1 \in \{1, \ldots, n\}} 1 \{ (\text{IoU}^* (O_{GT}(e_1), O_{E}(e_2)) > t) \}, \\
FN(t) = \sum_{e_1 \in \{1, \ldots, n\}} \sum_{e_2 \in \{1, \ldots, m\}} 1 \{ (\text{IoU}^* (O_{GT}(e_1), O_{E}(e_2)) < t) \}, \\
FP(t) = \sum_{e_2 \in \{1, \ldots, m\}} 1 \{ (\text{IoU}^* (O_{GT}(e_1), O_{E}(e_2)) < t) \}
\]

and

\[
1(\varphi) = \begin{cases}
1 & \text{if } \varphi \text{ is true,} \\
0 & \text{otherwise.}
\end{cases}
\]

With a threshold \(t = 0.05 \), this metric gives the accuracy of a method to identify the correct number of nuclei, while with thresholds in the range 0.05 to 0.9, it evaluates the localization accuracy of the identified nuclear contours.

Conditional GAN
The annotated 1868 x 1400 image was divided into thirty-five 256 x 256 images for training. As defined in 13, U-Net14 was used for the generator and a convolutional PatchGAN classifier was used for the discriminator. Once trained, nuclei masks had to be generated to simulate images. Distributions for the number of nuclei per image and the size of nuclei were defined from the training dataset. The number of nuclei per image was then modeled as a Gaussian distribution while the size of nuclei was modeled by a Gumbel distribution to reflect the heavy tail distribution observed in the training dataset. Nuclei masks were then defined as ellipses randomly generated with these distributions with random orientation and ratio between the two axes defined according to a Gaussian distribution of average \(s/\pi \) and standard deviation of 0.2s/\pi, where \(s \) is the area of the ellipse. 1000 256 x 256 nuclei images were simulated by considering the generated ellipses as nuclei masks.
Combination of instance and semantic segmentations

The combination of results obtained with instance and semantic segmentations was initialized as the nuclei segmented with Mask R-CNN. To prevent from hallucinations, nuclei identified with Mask R-CNN for which the area overlapping with nuclei obtained with U-Net was inferior to 20% were discarded. Then, nuclei identified with U-Net whose area overlapping with nuclei obtained with Mask R-CNN was inferior to 33% were added as new nuclei to the final segmentation. Finally, nuclei with an area inferior to 35 pixels were discarded.

Results

Deep learning-based instance segmentation with existing datasets and massive data augmentation is used to initialize the training dataset

A training dataset is required to train a deep learning method for object segmentation. Consequently, users most often start with manually annotating objects of interest with existing annotation tools\(^{30,31}\). As shown in Figure 1a, this task is particularly challenging in our case due to the wide range of morphologies and high density of nuclei in polyps. We use the ImageJ plugin Annotater\(^{32}\) to efficiently annotate nuclei, a task that takes approximately 30 hours. To avoid a fully manual annotation and save time, it is possible to use the same plugin to correct a nuclei segmentation obtained with an existing method. The watershed method\(^{33}\), probably the most used method for nuclei segmentation in fluorescence microscopy images, correctly identifies a high number of nuclei (high F1 score for a low IoU threshold in Figure 1 b-c). Unfortunately, under- and over-segmentations, a well-known limitation of this approach, lead to a poor segmentation localization (rapidly decreasing F1 score with increasing IoU thresholds in Figure 1 b-c). Alternatively, deep learning approaches can be trained with existing training datasets. We propose to use a high throughput chemical screen on U2OS cells dataset (CC) (image set BBBC039v1 available from the Broad Bioimage Benchmark Collection\(^{1}\)) and a widefield mouse intestinal epithelium dataset (MIE)\(^{34}\). While U-Net demonstrates a poor performance with these datasets (Figure 1b), Mask R-CNN identifies more nuclei and mostly leads to much higher localization precision than the watershed approach (slowly decreasing F1 score with increasing IoU thresholds in Figure 1c). Correcting this segmentation with Annotater takes about 15–20 hours, which is clearly faster than an annotation from scratch. For both U-Net and Mask R-CNN, a massive data augmentation (100 times) clearly improves the performance.

Increasing the training dataset by using a conditional GAN improves nuclear segmentation accuracy

When only considering the annotated image in Figure 1a in the training dataset, U-Net leads to higher segmentation accuracy than Mask R-CNN (Figure 2a-b). To increase the training dataset, we use the same annotated image to train a conditional Generative Adversarial Network (GAN)\(^{35}\) and simulate images showing nuclei from masks defined as random ellipses generated with the distributions of nuclei size and nuclei number observed in the training dataset (see Figure 2c and Methods). Only using simulated images lead to a lower accuracy for both deep learning approaches, even though applying mathematical operations to these synthetic images (augmented simulated training dataset, see Methods) improves the segmentation accuracy. However, pooling together augmented simulated images and the annotated image from Figure 1a slightly improves U-Net performance and distinctly increases the number of accurately identified nuclei with Mask R-CNN while decreasing the segmentation localization precision. Finally, adding existing datasets clearly leads to the optimal results for Mask R-CNN while degrading the accuracy for U-Net, which is consistent with the inability for this approach to generalize nuclear segmentation for different data as shown in Figure 1b.

Combining semantic and instance segmentations improves nuclear segmentation accuracy

Nuclei segmented with Mask R-CNN show a higher localization precision than those obtained with U-Net as shown in Figure 1a-b. However, nuclei that are harder to delineate are missed with Mask R-CNN while U-Net accurately identifies pixels that belong to nuclei, even though the separation between individual nuclei might not be precise. In order to get the best of both worlds, we propose to combine the results obtained with U-Net trained with one annotated image with data augmentation and augmented simulated images, and the results obtained with Mask R-CNN trained with one annotated image with data augmentation, augmented simulated images and existing datasets with data augmentation (see Methods). As shown in Figure 3, these results demonstrate a higher F1 score for any IoU threshold than obtained with U-Net or Mask R-CNN trained with 3 times more annotated images. The corresponding segmented nuclei are shown in Figure 4.

Discussion

This study demonstrates how to take advantage of existing training datasets, efficient annotation tools, massive data augmentation, conditional GANs and the combination of results obtained with both semantic and instance segmentations to minimize the amount of manually annotated data. When facing a new object segmentation problem, it is beneficial to find existing training datasets, even though modalities and/or tissues differ, to train an instance segmentation-based deep learning method. The segmentation obtained with this approach is then used to initialize a training dataset. Training a conditional GAN to increase the size of the training dataset improves the performance for both semantic and instance segmentations. Additionally, adding existing training datasets increases even more the
Figure 1. Manual annotation and evaluation of deep learning-based segmentation with existing training datasets.

(a) Widefield acquisition of a human polyp biopsy stained with DAPI. Manually annotated nuclei are overlaid as red circles. Zoomed-in regions are displayed on the right side with corresponding squared colors. Scale bar = 100 µm.

(b-c) F1 score for range of IoU thresholds obtained with the watershed method, with U-Net b and Mask R-CNN c approaches trained with a high-throughput chemical screen on U2OS cells dataset (CC) or/and a widefield mouse intestinal epithelium dataset (MIE), with and without data augmentation (DA). Lines correspond to average F1 score over the two tested images while the shaded areas represent the standard deviation.
Figure 2. Evaluation of deep learning-based segmentation when using a conditional Generative Adversarial Network to increase the size of the training dataset.

a First row: masks generated as ellipses (see Methods) and represented with unique colors. Second row: images simulated from masks shown in first row with a conditional Generative Adversarial Network (GAN).

b–c F1 score for range of IoU thresholds obtained with U-Net b and Mask R-CNN c trained with 1 annotated image with data augmentation (DA), 1000 simulated images, 1000 augmented simulated images, 1 annotated image with DA combined with 1000 augmented simulated images and 1 annotated image with DA combined with 1000 augmented simulated images as well as a high-throughput chemical screen on U2OS cells dataset (CC) and a widefield mouse intestinal epithelium dataset (MIE). Lines correspond to average F1 score over the two tested images while the shaded areas represent the standard deviation.
Figure 3. Evaluation of nuclear segmentation when combining U-Net and Mask R-CNN. F1 score for range of IoU thresholds obtained with U-Net trained with 1 and 3 annotated images with data augmentation (DA), Mask R-CNN trained with 1 and 3 annotated images with DA, and the combination of results obtained with U-Net trained with 1 annotated image with DA and augmented simulated images, and the results obtained with Mask R-CNN trained with 1 annotated image with DA, augmented simulated images and existing datasets with DA. Lines correspond to average F1 score over the two tested images while the shaded areas represent the standard deviation.
Software availability

The code with the parameters used to train and process all experiments presented in this manuscript with U-Net and Mask R-CNN is available at https://github.com/tpecot/DeepLearningBasedSegmentationForBiologists/tree/main/Codes.

Archived code as at time of publication: https://doi.org/10.5281/zenodo.4608793

License: GPL3

The code with the parameters used to train and generate images with pix2pix is available at https://github.com/tpecot/NucleiSimulationWithConditionalGAN.

Archived code as at time of publication: https://doi.org/10.5281/zenodo.4608793

License: GPL3

The ImageJ macro used to convert the output classes obtained with U-Net to individual nuclei is available at https://github.com/tpecot/DeepLearningBasedSegmentationForBiologists/tree/main/Codes/ImageJMacros.

Archived macro as at time of publication: https://doi.org/10.5281/zenodo.4608795

License: GPL3

segmentation accuracy for instance segmentation. Finally, combining semantic and instance segmentation results leads to the optimal result for the initial training dataset. If the final accuracy is not satisfactory, images should be processed by manually correcting the combination of semantic and instance segmentations to increase the size of the training dataset and repeat this operation until an accuracy threshold is met.

Data availability

The five annotated images are available at https://github.com/tpecot/DeepLearningBasedSegmentationForBiologists/tree/main/Data/AnnotatedNuclei. This project contains the following data:

- Polyp12_[10837,39273]_component_data.tiff: image used for training U-Net and Mask R-CNN in all figures and for training pix2pix in Figure 2.
- Polyp40_[13694,34105]_component_data.tiff and Polyp42_[12011,37598]_component_data.tiff: two images used for training U-Net and Mask R-CNN in Figure 3.
- Polyp12_[12699,39273]_component_data.tiff and Polyp42_[12942,36900]_component_data.tiff: two images used for evaluation in all figures.

The images generated with pix2pix and used for training U-Net and Mask R-CNN in Figure 2–Figure 3 are available at https://github.com/tpecot/NucleiSimulationWithConditionalGAN/tree/main/datasets/Nuclei_polyps_1image.
Acknowledgements
This publication was supported by COST Action NEU-BIAS (CA15124), funded by COST (European Cooperation in Science and Technology). We acknowledge the Translational Science Lab at the Medical University of South Carolina for help and advice with microscopy.

References

1. Krizhevsky A, Sutskever I, Hinton GE: Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. 2012; 1097–1105. Reference Source
2. Ciresan D, Meier U, Schmidhuber J: Multi-column deep neural networks for image classification. In 2012 IEEE conference on computer vision and pattern recognition. IEEE, 2012; 3642–3649. Published Full Text
3. LeCun Y, Bengio Y, Hinton G: Deep learning. Nature. 2015; 521(7553): 436–444. Published Abstract | Publisher Full Text
4. Schmidhuber J: Deep learning in neural networks: An overview. Neural Netw. 2015; 61: 85–117. Published Abstract | Publisher Full Text
5. Hollandi R, Szkalas A, Tosh T, et al.: nucleusNet: a parameter-free deep learning framework for nucleus segmentation using image style transfer. Cell Systems. 2020; 10(5): 453–458.e6. Published Full Text
6. Moen E, Bannon D, Kudo T, et al.: Deep learning for cellular image analysis. Nat Methods. 2019; 16(12): 1233–1246. Published Abstract | Publisher Full Text
7. Schmidt U, Weigert M, Broaddus C, et al.: Cell detection with star-convex polygons. In International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2018; 265–273. Published Full Text
8. Mandal S, Uhlmann V: Splinedist: Automated cell segmentation with spline curves. bioRxiv. 2020. Published Full Text
9. Ljosa V, Sokolnitsky KL, Carpenter AE: Annotating high-throughput microscopy image sets for validation. Nat Methods. 2012; 9(7): 637. Published Full Text | Publisher Full Text | Free Full Text
10. Caicedo JC, Goodman A, Karhohs KW, et al.: Nuclear segmentation across imaging experiments: the 2018 data science bowl. Nat Methods. 2019; 16(12): 1247–1253. Published Abstract | Publisher Full Text | Free Full Text
11. Caicedo JC, Roth J, Goodman A, et al.: Evaluation of deep learning strategies for nucleus segmentation in fluorescence images. Cytometry A. 2019; 95(6): 952–965. Published Abstract | Publisher Full Text | Free Full Text
12. Pécor T, Cuny MC, Johnson RH, et al.: Deep learning tools and modelling to estimate the temporal expression of E2F5 over the cell cycle from 2D static images. bioRxiv. 2021. Published Full Text
13. Colque P, Zhu Y, Zhou L, et al.: Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2017; 1125–1134. Published Full Text
14. Ronneberger O, Fischer P, Brox T: U-Net: Convolutional Networks for Biomedical Image Segmentation. In International Conference on Medical image computing and computer-assisted intervention. Springer, 2015; 234–241. Published Full Text
15. Falk T, Mai D, Bensch R, et al.: U-net: deep learning for cell counting, detection, and morphometry. Nat Methods. 2019; 16(1): 67–70. Published Abstract | Publisher Full Text
16. He K, Gkioxari G, Dollár P, et al.: Mask R-CNN. In Proceedings of the IEEE international conference on computer vision. 2017; 2961–2969. Reference Source
17. van der Walt S, Colbert SC, Varoquaux G: The numpy array: a structure for efficient numerical computation. Computing in Science & Engineering. 2011; 13(2): 22–30. Publisher Full Text
18. Abadi M, Agarwal A, Barham P, et al.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. 2015. Reference Source
19. Chollet F: Keras. 2015. Reference Source
20. Virtanen P, Gommers R, Oliphant TE, et al.: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat Methods. 2020; 17(3): 261–272. Published Abstract | Publisher Full Text | Free Full Text
21. van der Walt S, Schönberger JL, Nunez-Iglesias J, et al.: scikit-image: image processing in python. PeerJ. 2014; 2: e453. PubMed Abstract | Publisher Full Text | Free Full Text
22. Van Valen DA, Kudo T, Lane KM, et al.: Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments. PLoS Comput Biol. 2016; 12(11): e1005177. PubMed Abstract | Publisher Full Text | Free Full Text
23. Jung AB, Wada K, Crall J, et al.: imagau. 2020; accessed 01-Feb-2020. Reference Source
24. Schneider CA, Rasband WS, Eliceiri KW: NIH image to imagej: 25 years of image analysis. Nat Methods. 2012; 9(7): 671–675. Published Abstract | Publisher Full Text | Free Full Text
25. Schindelin J, Arganda-Carreras I, Frise E, et al.: Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012; 9(7): 676–682. Published Abstract | Publisher Full Text | Free Full Text
26. Ollion J, Cohenmek J, Loli F, et al.: Tango: a generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics. 2013; 29(14): 1840–1841. Published Abstract | Publisher Full Text | Free Full Text
27. Legland D, Arganda-Carreras I, Andrey P: Morpholibj: integrated library and plugins for mathematical morphology with imagej. Bioinformatics. 2016; 32(22): 3532–3534. Published Abstract | Publisher Full Text | Free Full Text
28. He K, Zhang X, Ren S, et al.: Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2016; 770–778. Published Full Text
29. Lin TY, Maire M, Belongie S, et al.: Microsoft coco: Common objects in context. In European conference on computer vision. Springer, 2014; 8693: 740–755. Published Full Text
30. Bankhead P, Loughrey MB, Fernández JA, et al.: Qupath: Open source software for digital pathology image analysis. Sci Rep. 2017; 7(1): 16878. PubMed Abstract | Publisher Full Text | Free Full Text
31. SofoNiew N, Lambert T, Evans K, et al.: napari. 2021. Published Full Text
32. Vincent L, Soille P: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell. 1991; 13(6): 583–598. Published Full Text
33. Pécor T: Deep Learning-based segmentation for biologists. 2021. http://www.doi.org/10.5281/zenodo.4608795
34. Pécor T: NuclSimulation with Conditional GAN. 2021. http://www.doi.org/10.5281/zenodo.4608793
The authors propose multiple strategies to improve segmentation results given a new dataset. Instead of manually annotating a training image from scratch, the authors recommend to leverage knowledge learned by networks pre-trained on other larger datasets. Therefore, they propose to first train a model on large existing datasets (that differ from the final dataset of interest). The trained model is then used to annotate the desired training image, and these predictions are then manually corrected using Annotater. This allows the authors to manually annotate for 15-20 hours, compared with 30 hours when annotating the image from scratch.

A second solution that they implement in order to improve their final segmentation results is to (1) train a conditional GAN on their annotated image and (2) use the cGAN to predict additional synthesized segmentation masks. The UNet and Mask-RCNN can then use this additional data for training.

Finally, to further improve their results, they combine results obtained from their trained UNet and their trained Mask-RCNN to obtain a final instance segmentation map. More specifically, the semantic segmentations from UNet are post-processed to obtain instance segmentation masks, and merged (following a specific protocol) with those predicted by the trained Mask-RCNN.

A few comments:

- Clarity regarding the purposes of the different training sets used could be improved. At first it was not clear to me how the CC/MIE datasets related to the final training dataset of interest (the 1868 x 1400 image). It could be made a bit more explicit that (1) the CC / MIE data is used to pre-train a neural network, (2) this neural network is then applied on the image of interest to provide the annotations, and (3) final training data is obtained by correcting these predictions. (4) On this final training data will be trained UNet and Mask-RCNN.

- The text “Only one image was used to train […]“ is a bit of a misleading statement. In the
end, when looking at the whole pipeline, a very large dataset of annotated images was used to get to these results.

- It would be interesting to know how many hours it took to pre-train Mask-RCNN and UNet on the large datasets, as well as for training the conditional GAN. This is helpful especially for better comparing the 30 hours of manual annotation from scratch vs. the 15-20 hours when using these strategies.

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Deep Learning, Computer Vision, Image and Video Processing

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com