Proteins that bind to *Drosophila* chorion cis-regulatory elements: A new C$_2$H$_2$ zinc finger protein and a C$_2$C$_2$ steroid receptor-like component

Martin J. Shea, 1 Dennis L. King, 1 Michael J. Conboy, 2 Brian D. Mariani, 3 and Fotis C. Kafatos 1,3

1Department of Cellular and Developmental Biology, Harvard University Biological Laboratories, Cambridge, Massachusetts 02138 USA; 2Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 USA; 3Institute of Molecular Biology and Biotechnology, Research Center of Crete, and Department of Biology, University of Crete, Heraklion 711 10, Crete, Greece

Gel mobility-shift assays have been used to identify proteins that bind specifically to the promoter region of the *Drosophila s15* chorion gene. These proteins are present in nuclear extracts of ovarian follicles, the tissue where *s15* is expressed during development, and bind to specific elements of the promoter that have been shown by transformation analysis to be important for in vivo expression. The DNA binding specificity has been used for molecular cloning of two components from expression cDNA libraries and for their tentative identification with specific DNA-binding proteins of the nuclear extracts. The mRNAs for both of these components, CF1 and CF2, are differentially enriched in the follicles. DNA sequence analysis suggests that both CF1 and CF2 are novel *Drosophila* transcription factors. CF2 is a member of the C$_2$H$_2$ family of zinc finger proteins, whereas CF1 is a member of the family of steroid hormone receptors. The putative DNA-binding domain of CF1 is highly similar to the corresponding domains of certain vertebrate hormone receptors and recognizes a region of DNA with similar, hyphenated palindromic sequences. The nature of CF1 raises the possibility of hormonal control of choriogenesis in *Drosophila*.

[Key Words: Trans-acting factors; nuclear hormone receptors; chorion gene regulation; zinc finger protein; *Drosophila* transcription factors; DNA-binding protein]

Received February 9, 1990; revised version accepted April 30, 1990.

In recent years, the mechanisms responsible for developmental patterning in *Drosophila* have been elucidated to remarkable molecular detail. Starting with mutations that interfere with the overall polarity and segmentation of the embryo or with the pattern of adult structures, genetic regulatory hierarchies have been defined, and key members have been cloned. The proteins encoded by many of these regulatory genes show sequence features characteristic of DNA-binding proteins, consistent with the suggestion that they function as transcriptional regulatory factors. These proteins are thought to regulate each other's production during development by binding to promoter and enhancer elements and thus refine the spatial and temporal pattern of their expression. The same proteins are also thought to bind and thereby regulate downstream, as yet undefined "realizator" genes.

A complementary approach, predominant in the field of vertebrate regulation, is to start from a highly specialized tissue-specific gene and proceed "bottom up" in defining the regulatory interactions: Characterizing the cis-regulatory elements of the chosen gene in detail, biochemically defining the proteins that interact with these elements, and then molecularly cloning the corresponding genes and subjecting them to reverse genetic functional assays. This approach in *Drosophila* has the attraction that ultimately it can be combined with classical genetic studies, thus intersecting with the "top-down" approach beginning with pattern formation.

We have been engaged in a bottom-up study of transcriptional regulation of a model developmental system in *Drosophila*, the *s15* chorion gene. This gene encodes an eggshell protein that is exclusively expressed in the last 2–3 hr of chorion formation (stages 13 and 14 of oogenesis), in the ~1000 follicular epithelial cells that surround each developing oocyte. In previous experiments, we have used various chorion DNA constructs in conjunction with germ line transformation analysis to delimit the DNA regions responsible for the developmentally regulated expression of *s15* [Mariani et al. 1988; Romano et al. 1988]. The results indicated that sufficient regulatory elements exist in the proximal 5'-flanking DNA to permit developmentally correct expression. Internal deletions within that DNA suggested
the existence of at least three positive and negative cis-regulatory elements. The most definitive experiments identified TCACGT, a hexamer motif at −55 to −60, as essential for s15 expression: Elimination of the hexamer, either by deletions or by a linker–scanning [clustered substitution] mutation, abolished gene expression. The hexamer motif was initially pinpointed by comparative sequence analysis: It is present in comparable locations upstream of all chorion genes that have been characterized to date in four Drosophila species [Levine and Spradling 1985; Wong et al. 1985; Martinez-Cruzado et al. 1988; Fenerjian et al. 1989], as well as in nearly all silkmoth chorion gene promoters [Spoerel et al. 1986; Mitsialis et al. 1989].

With this information as background, we have undertaken binding studies with ovarian nuclear extracts to identify proteins that recognize the known s15 regulatory elements. We report the molecular cloning and characterization of two of these components, which proved to be novel members of the zinc finger protein family. One has zinc fingers of the C2H2 type, and the other is a member of the nuclear hormone receptor family.

**Results**

**A quantitative cis-activator in the s15 chorion promoter**

Our previous studies of the s15 promoter [Mariani et al. 1988] had indicated the existence, in the vicinity of nucleotide position −69, of a cis-activating element that is important for expression at the normal late period of choriogenesis. A 119-bp deletion mutation, Δ−189/−69, substantially reduced late expression in transgenic Drosophila, whereas a deletion that was only 11 bp shorter, Δ−189/−80, permitted normal late expression [both deletions resulted in abnormal early expression, because of the elimination of an upstream early repressing sequence]. We have confirmed that even in the two most highly expressing transformant lines, deletion Δ−189/−69 reduces by four- to ninefold the late expression of a reporter gene [Fig. 1]. To further delimit this and other cis-regulatory elements of s15, we have constructed a series of linker–scanning mutations throughout the −13 to −148 region. The results revealed a complexity and redundancy of cis-regulatory elements greater than that suggested by the deletions alone and will be reported in full elsewhere. However, some of the results are pertinent to the present study. As shown in Figure 1, mutation d, which alters the −63 to −72 DNA, results in a threefold average decrease in s15 expression in vivo [tested in four independent transformant lines]. The effect is only quantitative: The temporal specificity of mRNA appearance is not altered [data not shown]. In contrast to d, a similar mutation just upstream [mutation de, −72 to −80] has no significant effect on expression [data not shown]. The effect of Δ−189/−69 is clearly more severe than the effect of mutation d. This may be due to the existence of one or more functionally redundant elements within the deleted DNA: Mutation g [−101 to −109], by itself, reduces in vivo late expression fourfold [data not shown]. Although additional experiments are needed to pinpoint these regulatory elements accurately, the results to date suggest that a late activator maps in the −72 to −63 DNA region of s15.

**An ovarian nuclear extract contains factors that recognize specific binding sites in the s15 promoter**

To characterize the trans-acting factors that might be responsible for the developmental regulation of the s15 chorion gene, a procedure was developed to isolate nuclear proteins from ovaries. A previously reported method for mass isolation of developing follicles [Petri et al. 1977] was modified to recover purified nuclei [see Materials and methods]. Salt extraction [Wu 1984] yielded nuclear extracts that showed highly specific DNA-binding activity.

Fragments of the s15 promoter [−145 to +32 or shorter] were used in gel retardation assays [Fried and Crothers 1981] to detect specific DNA-binding proteins. Extracts from mixed stage follicles [stages 1–14 of King 1970, including early oogenesis, vitellogenesis, and chorion formation] yielded a series of protein–DNA complexes; the major ones were named I and X. These complexes were formed with extracts from both early [predominantly stage 1–10a] and late (choriogenic, stage 10b–14) follicles [Fig. 2a and b, respectively]. An
Figure 2. Gel retardation assays of specific DNA-binding proteins in ovarian nuclear extracts. Labeled fragments of the s15 gene, −145 to +33 [a] and −145 to −47 [b], as indicated in the diagrams, were mixed with nuclear extracts from early [a, predominantly stage 1−10a] or late [b, predominantly stage 10b−14] follicles. Major retarded complexes are labeled I, II, and X; free DNA is labeled F. The fragments were of wild-type sequence (WT), truncated (Δ - 113), or mutated (a to g). Mutations were clustered [linker-scanning] substitutions at the positions indicated by black bars in the diagrams, except for mutation a, which included both a substitution and a small deletion. Mutation c eliminates the TCACGT hexamer (open bar), and mutation a eliminates the TATA box (stippled bar). Note that mutations c and d interfered with complex I formation, d interfered with complex II, and e–g interfered with complex X, thus revealing the approximate binding sites of the respective proteins. c is from a competition experiment, using nuclear extract from early follicles and a constant amount of labeled wild-type s15 DNA [−113 to +33], in the absence [−] or presence of 50-fold molar excess of unlabeled competing fragments, from −381 to +599 of s15. Note that wild-type fragments or those that bear mutations a, b, and e compete equally well, the d mutant fragment competes partially, and the c mutant fragment shows essentially no competition. In this experiment, the gel conditions were slightly different, and complex X is not seen, presumably because of overlap with free DNA.

additional complex, which was named II, was most abundant in the late extract [Fig. 2b].

The binding specificities of the proteins responsible for these major complexes were confirmed by varying concentrations of NaCl and poly[d(I-C)]·poly[d(I-C)] (data not shown). The binding sites were localized more precisely within −80 bp upstream of the TATA motif, by use of a series of linker-scanning mutations of the promoter. As can be observed in Figure 2, specific complexes disappeared when defined short sequences were altered. In particular, the binding site necessary for complex I formation is encompassed in the DNA segment between −55 and −72 [mutations c and d], the site necessary for complex II overlaps the −63 to −72 segment [mutation d], and that needed for complex X spans the −81 to −109 segment [mutations e–g]. The specificity of complex I was also examined by competition experiments, using wild-type promoter fragments as the labeled probe and corresponding fragments derived from wild-type or mutated promoters as the unlabeled competitor. While confirming the previous results, these competition experiments revealed that complex I is more destabilized by mutation c than by mutation d [Fig. 2c]. Furthermore, methylation interference showed that the guanine contact sites for complex I are within the −62 to −57 segment [see below]. Thus, this protein is largely a TCACGT-binding factor, although its binding site extends farther upstream than the hexamer.

In preparation for the molecular cloning of these DNA-binding proteins, two double-stranded oligonucleotides spanning the putative binding sites were synthesized. The downstream hexamer-centered oligonucleotide [H, −80 to −42] included the binding sites for complexes I and II, whereas the upstream oligonucleotide [U, −122 to −76] included the binding site of complex X. When H or U was mixed with ovarian extracts, the expected retarded complexes were observed [data not shown].

Recombinant clones producing proteins that specifically recognize s15 promoter sequences

By use of the procedure of Vinson et al. [1988], the synthetic oligonucleotides were individually catenated, labeled, and used as binding probes for proteins produced by clones of Agt11 expression cDNA libraries. The primary screens were performed with a mixture of the catenated H and U oligonucleotides, together with a control catenated 50-mer probe derived from the adult enhancer of the Drosophila Adh gene. Secondary screens of putative positives were performed with each of the three probes separately. In our experience, parallel secondary screens with individual control and experimental probes are essential, because primary screens yield a high proportion (−90%) of false positives, corresponding to proteins with indiscriminate DNA-binding activity. Figure 3 shows secondary screens of five positive clones, each of which recognized only one of our probes. Restriction analysis confirmed that each clone shown in Figure 3 is distinct, except for the clones named CF2, which are identical [data not shown, and see below]. Clone AEF1 [adult enhancer factor 1; isolated by D. Falb] served as a
Cloning of chorion promoter-binding factors

and adults of both sexes. Multiple transcripts are evident, suggestive of developmentally regulated alternative splicing. The major form of CF1 mRNA is 2.4 kb long. CF2 has two major mRNA forms, ~3.5 and 2.5 kb long, which are found in different ratios in prechoriogenic and cho riogenic follicles (Fig. 4).

With the U oligonucleotide, we have not as yet obtained a clone corresponding to factor X, which we suspect to be a repressor, according to the results of in vivo deletion analysis (Mariani et al. 1988). However, the U oligonucleotide did select a clone that encodes a specific DNA-binding protein, CF3 (Fig. 3). The binding site of this factor coincides with the site of mutation g, which is important in vivo (see above). Our analysis of CF3 and its equivalent in follicular extracts is incomplete and will be presented elsewhere; however, the distinct binding specificity of CF3 provides an additional control, which emphasizes the specificity of CF1 and CF2 for the H oligonucleotide (Fig. 3).

CF1 and CF2 proteins bind to distinct elements of the s15 promoter

EcoRI fragments containing the Drosophila CF1 and CF2 inserts were subcloned in the translation vector pET-3b (Rosenberg et al. 1987). Overexpressed proteins

control, it corresponds to a putative trans-acting factor for an adult Adh enhancer element.

With the chorion oligonucleotide H, we recovered clones corresponding to two proteins that bind specifically: CF1 (chorion factor 1) and CF2 (chorion factor 2). Most likely, these proteins correspond to complexes I and II, respectively (see below). Each sequence is unique in the genome. CF1 and CF2 were mapped by in situ hybridization to Drosophila polytene chromosomes: CF1 to cytogenetic location 2C4-8 [X chromosome], and CF2 to 25A5-8 [chromosome 2L]. As shown in Figure 4, both CF1 and CF2 mRNAs are substantially more abundant in ovarian follicles than in the other tissues and developmental stages that were tested (embryos, pupae,
present in the bacterial extracts were tested for binding to wild-type and mutated si5 promoter fragments [Fig. 5]. Control extracts were obtained from bacteria harboring each of the inserts in an inverted orientation. Each of the inserts, in the correct orientation only, yielded a protein that specifically recognized si5 promoter sequences. The results showed that CF1 binding is abolished by mutation $c_1$, under some conditions, the binding appeared to be weakened by mutation $d$, in a manner resembling the results of competition experiments with follicular extracts [Fig. 2c]. Taking into account the incomplete nature of the cloned protein [see below], these results are consistent with the interpretation that CF1 corresponds to follicular complex I. Similarly, both CF2 and complex II are uniquely sensitive to the $d$ mutation, suggesting that they are identical.

We used DNase I footprinting analysis to define more precisely the boundaries of interaction between the bacterially produced factors and the si5 promoter sequences. Examples of the footprints and a diagram of the results are shown in Figure 6. CF1 and CF2 yielded nu-

clease protection footprints of -20 bp (for both strands combined) and some major nearby enhancements. The footprint of CF1 includes the TCACGT hexamer, 2 bases downstream and 10 bases upstream. A similar DNase I footprint was obtained with complex I from follicular extracts [data not shown]. The major footprint of CF2 overlaps that of CF1 extensively but is shifted slightly upstream; as expected from Figure 5, it encom-
passes the site of mutation $d$. The addition of 1 mM Zn$^{2+}$ enhances the CF2 footprint and reveals two secondary binding sites: One is centered over the TATA box, and the other is centered over an upstream region, approximately -130 to -100. In 10–12 of 16 nucleotide positions, the upstream ends of the primary and secondary CF2 footprints match the consensus AATtg.GTA-

**Figure 5.** Gel retardation assays of DNA-binding proteins expressed in bacteria. (top autoradiograph) Results obtained with the CF1 clone; (bottom autoradiograph) results with the CF2 clone, retarded bands attributed to these factors are labeled, and free DNA is also indicated [F]. The DNA was a -145 to -47 fragment of the si5 promoter and was of wild-type sequence [WT] or carried a clustered substitution mutation [c to g]. The diagram (top) shows the locations of the mutations on the DNA fragment used for each experiment. Note that CF1 cannot bind on DNA carrying the c mutation, whereas CF2 cannot bind on DNA carrying the $d$ mutation. 

The CF1 and CF2 inserts were subcloned into M13 and subjected to DNA sequence analysis by the dideoxynu-

clotide method. Figure 7 presents the coding strand se-
quence and their conceptual translations.

Both clones are incomplete and encompass open reading frames of 280 (CF1) or 235 (CF2) codons. Al-
though CF1 is incomplete at both ends, CF2 includes a termination codon, followed by 819 nucleotides of puta-

tive 3` untranslated sequence [including an AATAAA motif] and a remnant of the poly(A) tail [19 A residues]. In each case, the open reading frame shows a putative DNA-binding domain consisting of zinc finger motifs. The domain of CF2 [113 amino acid residues] consists of four contiguous zinc fingers of the Cys-Cys-His-His type. As seen in Figure 8a, in addition to the con-
served C and H residues, the CF2 fingers show charac-
teristic, properly spaced hydrophobic residues [F and L] typical of this type of motif. They most closely resemble the developmentally regulated Drosophila Krüppel, mouse mkt1 and mkt2, and Xenopus Xfin and XlcOF zinc finger sequences, although they also share some similarities with the constitutive mammalian transcription factor Sp1 [for detailed comparisons and references, see Discussion]. The CF1 sequence is especially intriguing. It includes a central segment of 68 amino acid residues, with un-

mistakable homology to the DNA-binding domain of
Cloning of chorion promoter-binding factors

Figure 6. Footprint analysis of CF1 and CF2. Fragments of the s15 promoter extending between the Ncol site at -115 or the RsaI site at -145 and an artificial EcoRI site at -13 were end-labeled by standard procedures: At -115 for the coding or positive strand (+) and at -13 for the noncoding or negative strand (-). The footprints were obtained by use of the authentic complex I [1] from a follicular nuclear extract or extracts of bacteria expressing the cDNA clones [CF1 or CF2]. Residues are numbered relative to the transcription initiation site. Methylation interference footprints (left) were obtained by pretreatment of the DNA with DMS, addition of protein extract, electrophoresis in a native gel, band recovery, and cleavage of free (F) or complex-bound (B) DNAs at methylated G. DNase I protection footprints (right) were obtained by treating with DNase I [in the presence of 1 mM Zn2+] a mixture of the promoter fragment and an extract of bacteria expressing the indicated clone in the correct (C) or reversed (R) orientation; total DNA from the treated mixture was analyzed. Landmark bands are labeled relative to the transcription initiation site. The sequence diagram (bottom) summarizes the footprints; they are displayed against the double-stranded DNA sequence of the promoter (coding strand on top), from -135 to -1. The -89 to -49 DNA segment is displayed twice, to show the protected region of the CF1 and primary CF2 DNase I footprints [shaded]. A Zn2+ induced secondary CF2 footprint encompassing the TATA box is also shaded; an additional secondary footprint is found in the -130 to -100 region but has not been mapped precisely. The locations of the TACAGT hexamer and mutations c and d are shown; lowercase letters indicate the nucleotide substitutions in the mutations. Arrowheads summarize the results of the methylation interference experiments: Methylated guanine residues are indicated with solid arrowheads if they prevent protein binding, and with shaded arrowheads if they weaken the binding.

the vertebrate nuclear hormone receptor family of proteins [including steroid receptors]. Indeed, this domain of CF1 consists of two fingers of the C2-C2 [Cys-Cys-Cys-Cys] type, with characteristic conserved residues, and also has features in the linking and trailing sequences that recur in the hormone receptor family. Figure 8b shows an alignment of the putative DNA-binding domain of CF1 with 12 additional members of the nuclear hormone receptor family. Remarkably, the CF1 domain shows 43–68% identity to all eight human or viral receptor sequences listed, the best match is shown with the ear3/COUP transcription factor [Miyajima et al. 1988; Wang et al. 1989]. Four additional Drosophila members of the nuclear hormone receptor family are known [Nauber et al. 1988; Oro et al. 1988; Rothe et al. 1989; Mlodzik et al. 1990]: knirps [knl], knirps-related [knrl], embryonic gonad [egon] and seven-up [svp]. The first three are more distantly related to the DNA-binding domain of CF1 and the vertebrate sequences [41%, 41%, and 40% identity to CF1], whereas ssvp, which appears to be the Drosophila homolog of ear3/COUP, is 65% identical to the DNA-binding domain of CF1. Outside that domain, CF1 shows no substantial sequence identity to any previously described protein.

Discussion

Cloning of two chorion promoter binding factors

Our analysis of the molecular mechanisms that regulate the remarkable developmental specificity of the Drosophila s15 chorion gene was initially focused on in vivo identification of the pertinent cis-regulatory DNA elements. As the next step, we used the gel retardation technique to characterize follicular nuclear proteins that bind to these elements. These two types of studies have
now culminated in the molecular cloning of cDNAs for proteins that recognize cis-regulatory elements of s15. Three lines of evidence strongly suggest that the cloned CF1 and CF2 components correspond to the follicular DNA-binding proteins responsible for complexes I and II, respectively. First, CF1 and CF2 RNAs are highly enriched in follicles, relative to other tested tissues and developmental stages. Second, the cloned components are indistinguishable from the authentic follicular proteins in their methylation interference patterns. Third, the binding of cloned and authentic components is similarly affected by the linker-scanning mutations used: Binding is abolished by mutation d in the case of CF2 complex II, and by mutation c in the case of CF1 complex I. Mutation d appears to weaken the binding of CF1/complex I; the apparent difference between Figures 2 and 5 is attributable to differences in protein concentration and possibly the incomplete nature of the CF1 clone. Definitive identification will require additional studies, such as the use of anti-CF1 and anti-CF2 antibodies to interfere with or alter the mobility of complexes observed with follicular extracts.

Binding alone does not establish in vivo function: Direct in vivo and in vitro functional assays will be needed to document the importance of CF1 and CF2. However, we note that the s15-binding sites for these proteins are well-known families of transcription factors (see below). Both CF1 and CF2 also occur outside the ovary, and detailed studies on their tissue and temporal distribution during Drosophila development will be of interest; however, it is highly suggestive that their mRNAs are excep...
Cloning of chorion promoter-binding factors

Nature and significance of CF2

CF2 has the hallmarks of transcription factors. At the beginning of the available sequence, a segment of 37 residues includes 17 glutamines interspersed with 7 acidic residues; such clusters are frequently found in activation domains of transcription factors [Mitchell and Tjian 1989]. As shown in Figure 8a, the zinc finger domain of CF2 is reminiscent of the protein encoded by the Drosophila regulatory gene Krüppel [Rosenberg et al. 1986]; it also resembles the finger domains encoded by hunchback [Tautz et al. 1987], serendipity β and δ [Vincent et al. 1985], and glass [Moses et al. 1989]. All of these proteins have a small number (five to seven) of clustered zinc fingers of the C2H2 class, each with 2 amino acid

Figure 8. (a) Comparison of the DNA-binding domains of CF2 and two typical zinc finger proteins. For each protein the sequences shown are contiguous from line to line. Each line includes one zinc finger, conforming to the C2H2 consensus [CX2CX3FX4LX5HX6H]; the conserved residues are highlighted with vertical solid lines. Note that in two Sp1 fingers the first 2 cysteines are separated by 4 residues; such clusters are frequently found in activation domains of transcription factors (Mitchell and Tjian 1989). As shown in Figure 8a, the zinc finger domain of CF2 has the hallmarks of transcription factors. At the beginning of the available sequence, a segment of 37 residues includes 17 glutamines interspersed with 7 acidic residues; such clusters are frequently found in activation domains of transcription factors [Mitchell and Tjian 1989]. As shown in Figure 8a, the zinc finger domain of CF2 is reminiscent of the protein encoded by the Drosophila regulatory gene Krüppel [Rosenberg et al. 1986]; it also resembles the finger domains encoded by hunchback [Tautz et al. 1987], serendipity β and δ [Vincent et al. 1985], and glass [Moses et al. 1989]. All of these proteins have a small number (five to seven) of clustered zinc fingers of the C2H2 class, each with 2 amino acid
residues between the first 2 cysteines in a different subtype of $\text{C}_2\text{H}_2$ zinc finger, 4 residues are present between the cysteines, resulting in an extra $\beta$-bend in the expected structure; Berg 1988]. Zinc fingers, of the same type as in CF2, sometimes in very long arrays, are found in certain vertebrate proteins such as those encoded by the Xenopus Xfin [Ruiz i Altaba et al. 1987] and XLoOF [Köster et al. 1988] sequences, and the mouse mkr1 and mkr2 genes (Chowdhury et al. 1987). CF2 also shares with many of the previously mentioned proteins a characteristic short sequence between the zinc fingers [H/C link; Berg 1988], conforming to the consensus TG$$\text{E}$$PG$$\text{E}$$X [Fig. 8a].

CF2 shows enhanced DNA binding in the presence of added Zn$^{2+}$; a similar property has been documented for Sp1 [Kadonaga et al. 1987]. With added Zn$^{2+}$, CF2 binds not only to its primary recognition site, just upstream of the TCACG$$\text{T}$$ hexamer, but also to two flanking secondary sites of related sequence: the TATA box and a site at the upstream end of the previously defined minimal regulatory region (Mariani et al. 1988).

Although CF2 and CF1 show extensively overlapping footprints, some of the mutations tested prevent the binding of only one of these factors, thus permitting separate inference of their possible in vivo functions. Mutation d, which eliminates the TCACG$$\text{T}$$ hexamer and abolishes expression [Mariani et al. 1988], prevents the binding of CF1 but not of CF2; this suggests that CF1 may be an essential hexamer-binding positive factor. The possible effect of CF2 cannot be inferred from mutation d alone, because this mutation also weakens CF1 binding. However, the effect of this mutation, coupled with the observation that $\Delta-189/-69$ suppresses late expression [Fig. 1; Mariani et al. 1988] and that $\Delta-189/-69$ hinders CF1 DNA binding and complex II formation but not the binding of CF1 or complex I formation [data not shown], all argue that CF2 may act as a late activator [Mariani et al. 1988]. If CF2 binds in vivo to two secondary sites, as it does in the presence of added Zn$^{2+}$ in vitro, the phenotype of mutation d may grossly underestimate the importance of CF2.

**CF1 and the control of s15 expression**

The nature of CF1, a factor that binds strongly to the conserved chorion hexamer (TCACG$$\text{T}$$) and adjacent DNA, is particularly intriguing. Again, direct functional tests are needed to establish whether CF1 is a transcription factor involved in the regulation of choriogenesis. Genetics could provide such a test: CF1 maps to a favorable location in the polytenic chromosomes in a region that has been genetically well studied, because of proximity to the pattern formation gene polyhomeotic [Dura et al. 1987]. However, CF1 is not polyhomeotic, nor is it likely to correspond to any of the nearby complementation groups that are uncovered by deficiency $Df(1)A52$: Our CF1 cDNA maps between 43 and 51 kb on the chromosomal walk of Dura et al. [1987], $\sim$25 kb outside the nearest breakpoint of $Df(1)A52$ [data not shown].

On the basis of its putative DNA-binding domain, CF1 is clearly a member of the family of proteins that have two zinc fingers of a special class ($\text{C}_2\text{C}_2$) and function as nuclear hormone receptors [for review, see Evans 1988; Berg 1989]. This factor has been cloned independently by two additional groups: by A. Oro and R. Evans [pers. comm.], by use of the DNA-binding domain of the human retinoid acid receptor as probe; and by V. Henrich and L. Gilbert [pers. comm.], using as probe a consensus oligonucleotide from a portion of the DNA-binding region of human steroid receptors. At the protein level [Fig. 8b] the DNA-binding domain of CF1 is most similar [68% identity] to the binding domain of the human ear3 receptor, a ubiquitous component of fetal tissues [Miyajima et al. 1988]; ear3 corresponds to the COUP transcription factor which, in conjunction with a second protein, stimulates in vitro transcription from the promoter of the chicken ovalbumin gene [Wang et al. 1989]. The apparent ear3/COUP homolog of Drosophila, svp, is an essential gene that is involved in the control of cell fate during the generation of neuronal diversity in the eye [Mlodzik et al. 1990]. CF1 also shows identities in the 43–57% range with several additional vertebrate members of the nuclear receptor family, although only 40–41% with three Drosophila members that have described thus far [kni, knrl, and egon].

The presence of a zinc finger structure characteristic of the steroid receptor superfamily suggests that CF1 may be a ligand-dependent transcription factor. This raises the intriguing possibility of hormonal control of choriogenesis in Drosophila. Two lines of indirect evidence favor that possibility. First is the isolation of a somatic cell-specific mutation, $fs(1)de12$, which results in drastically underdeveloped chorionic appendages [Orr et al. 1989]. That mutation is allelic to $l(1)mpr-l$ and, thus, part of the Broad-Complex locus, which has been implicated in the mediation of ec dysone effects [Belyaeva et al. 1981; Meyerowitz et al. 1985]. Second, oogenesis in Drosophila is feedback-inhibited by failure of oviposition; the mechanism of that inhibition is unknown but could be hormonal, as is the regulation of other steps in oogenesis such as vitellogensis in many insects [Postlethwait et al. 1980; Racciopi et al. 1986].

Direct identification of the putative CF1 ligand would be of major interest. Pending that, closer scrutiny of the CF1 DNA-binding domain and the DNA site that it recognizes is informative. The nuclear hormone receptors have been classified into two subfamilies, GR and ER/TR, typified by the human glucocorticoid and estrogen or thyroid hormone receptors, respectively [Umesono and Evans 1989]. The discriminating characteristic is the sequence of the P box at the end of the first zinc finger, where the GR subfamily shows a GSCKV motif and the ER/TR subfamily shows an EGCK motif. Interchange of these motifs is sufficient to change the specificity of a glucocorticoid receptor so that it recognizes an estrogen response DNA element (ERE), rather than a glucocorticoid response element [GRE; Klock et al. 1987; Martinez et al. 1987; Green et al. 1988; Umesono and Evans 1989]. CF1 is clearly a member of the ER/TR [Regulation of Drosophila eggshell development].

Cold Spring Harbor Laboratory Press on February 24, 2020 - Published by genesdev.cshlp.org

Downloaded from genesdev.cshlp.org on February 24, 2020 - Published by Cold Spring Harbor Laboratory Press
subfamily of receptors by the criterion of P box sequence, as are ear3, svp, kni, knr1, and egron (Fig. 8b).

Another interesting feature of nuclear hormone receptors is the D box between the first 2 cysteines of the second zinc finger (Umesono and Evans 1989). That region is moderately variable in sequence, and it is also thought to be involved in some aspect of DNA recognition (Umesono and Evans 1989). In the D box, CF1 differs from most of the hormone receptors but is nearly identical to ear3, the svp product, and ear2 (Fig. 8b). It also shows unusually strong sequence similarity with ear3 and the svp product in two additional regions: a DNA segment that links the two zinc fingers, between the P and D boxes, and a trailer segment that follows the second zinc finger (Fig. 8b).

Identification of CF1 as a member of the nuclear hormone receptor family led us to re-examine the sequence of its binding site. Members of this family are known to recognize DNA palindromes, perfect or imperfect, with two half-sites that are separated by variable DNA spacing, specific for each class of receptors (for review, see Evans 1988; Beato 1989, Berg 1989). As shown in Figure 9, the binding site of CF1 in the s15 promoter is the first half-site of an imperfect palindromic, with substantial similarity to vertebrate hormone response elements. The major difference is the spacing of the half-sites, which are 6 nucleotides apart for the CF1-binding site, directly contiguous for TRE (thyroid), and 3 nucleotides apart for ERE (estrogen) or GRE (glucocorticoid), as well as the binding site of the COUP transcription factor. The invariant chorion hexamer TCAGCGT overlaps the first half-site and the beginning of the spacer; the rest of this putative CF1 response element is also extensively conserved in the s15 promoter of four different Drosophila species (Martinez-Cruzado et al. 1988), and in silkmoth chorion genes (Mitsialis et al. 1989).

Our working hypothesis, based on these sequence similarities and the known mode of binding of vertebrate hormone receptors, is that full-length CF1 would bind avidly to the first half-site of the motif shown in Figure 9 and, upon dimerization, also bind to the second half-site. The CF1 factor currently in our possession is incomplete and has not shown dimerization. The prediction can be tested by future binding studies involving full-length CF1 protein synthesized in bacteria, as well as the authentic factor responsible for complex I formation, purified from follicular extracts.

Materials and methods

In vitro mutagenesis

Promoter mutants of the s15 gene were obtained by site-directed mutagenesis (Carter et al. 1985) of a 990-bp XbaI–KpnI DNA fragment. Selected target sites were mutagenized by use of synthetic oligonucleotide primers of varying lengths (36–44 nucleotides). Each primer contained a centrally located 10-nucleotide mutagenic sequence (5’-CCGAATTC.C-3’ or 5’-CCGAAATTCC-3’), which included an EcoRI recognition site (underlined), flanked by sequences wild type for s15. Thus, mutagenized fragments contained EcoRI sites in their target sites; the number of mismatches to wild-type s15 sequence ranged from 6 to 9 bp. Mutant clones were verified by dideoxynucleotide sequencing.

Gel-blot and dot-blot hybridization analysis

For in vivo analysis of s15 promoter mutations, the s15 gene was marked by an insertion of silkmoth DNA and used as a reporter (s15-P; Mariani et al. 1988). Ovaries from conditioned transformed females were dissected, and stage 14 follicles were harvested and total RNA extracted, and gel-blot hybridization was performed as in Mariani et al. [1988]. For dot-blot hybridizations, 5μg of total RNA [for detection of both endogenous s15-I transcripts and transformant-specific s15-P transcripts] from the above samples was incubated in 200 μl of a solution of 10 mM Tris-HCl [pH 8.0], 0.5 mM EDTA [pH 8.0], 3× SSC, and 7% [wt/vol] formaldehyde for 15 min at 65°C prior to dot-blotting to Biotrans [ICN] nylon membranes with a suction manifold. The RNA samples for the s15-I probes were supplementmed with 4.5 μg yeast tRNA. RNA was fixed to membranes and hybridized as described in Mariani et al. (1988), with the addition of 0.5 mg/ml sheared and denatured herring sperm DNA. To detect s15-P or s15-I transcripts, the RNA probes were derived from the T3 promoter of a Bluescribe plasmid [Stratagene, San Diego, CA] that contained either a 202-bp SacI fragment from the silkmoth insert of the s15-P gene or the full-length wild-type cDNA [s15-I], respectively.

Densitometry values were determined by use of an LKB
Bromma Ultroscan XL laser densitometer, from autoradiographs obtained without an intensifying screen and exposed within the linear range of the film. The values for s15-P were normalized relative to the s15-P values in the same sample; and for each line, the normalized s15-P value was listed in Figure 1 relative to the corresponding value of the wild-type control (full-length B/S construct; see Mariani et al. 1988).

For in vivo analysis of CF1 and CF2 expression, total RNA was extracted from tissues of various life stages, as indicated in Figure 4, and poly(A)+ RNA was selected by use of oligo(dT)-cellulose type 7 (Pharmacia). Samples of poly(A)+ RNA (2 μg each) were gel-blotted analyzed as described above. Transcripts were detected with RNA probes derived from the T3 promoter of Bluescribe plasmids containing either a 0.9-kb CF1 cDNA or a 1.6-kb CF2 cDNA fragment.

Follicle isolation and nuclear extract preparation

Follicles were isolated as in Petri et al. (1977), with the following modifications. Canton S flies were conditioned for 36-48 hr in one-half pint, yeast-sprinkled food bottles (~200-300 flies per bottle), with one bottle change after 18-24 hr. Step 3, stirring of the brei with a large magnetic stirring bar, was omitted. To isolate a late stage fraction, the total pool of follicles was shaken vigorously through a Nitex 202 screen, and follicles that were retained—stages 10b-14 but predominantly stage 14—were collected. To obtain early stage follicles, the flowthrough fraction in the above fractionation was lightly shaken through Nitex 143, and the subsequent flowthrough fraction, consisting predominantly of stage 1-10a follicles, was collected.

Isolation and salt extraction of nuclei was similar to that of Wu (1984), with several modifications. Briefly, follicles were allowed to settle, and an equal volume of 2 × Robb's saline buffer [RSB: 100 mM Tris-HCl (pH 7.4), 100 mM NaCl, 30 mM MgCl2] plus 1% NP-40 and 1 mM PMSF was added. This mixture was homogenized (Thomas homogenizer 3431-D76), placed on top of a sucrose cushion (1 M sucrose, 1 × RSB, 0.5 mM PMSF), and spun for 15 min at 3000 rpm in an HB4 rotor. The nuclear pellet was resuspended in a wash solution (1 × RSB, 0.5 mM PMSF) and repelleted as above. The nuclei were then resuspended in a small volume of a salt extraction wash buffer [10 mM HEPES (pH 7.9), 10 mM KCl, 1.5 mM MgCl2, 0.1 mM EDTA, 0.5 mM DTT, 0.5 mM PMSF], transferred to Eppendorf tubes, and repelleted at 3000 rpm for 15 min. After estimating the volume of the pellet, solution II (Wu 1984), at 3.5 × the pellet volume, was added and rotated gently for 30 min. This was followed by a 50-min spin at 34,000 rpm in a TFFT80.4 rotor. All of the above steps were performed at 4°C. The supernatant (nuclear extract) was then aliquoted and stored in liquid N2.

Retardation gels

The following binding conditions were used for gel retardation experiments (Fried and Crothers 1981). Nuclear or bacterial extracts (10–20 μg protein) were incubated with ~0.2–1.0 ng of 32P-end-labeled DNA fragment in the presence of 3 μg of poly(dI)-Cl · poly(dI)-Cl (Pharmacia), in buffer that was 4 mM Tris (pH 7.5), 75 mM NaCl (final), 5% glycerol, 0.5 mM DTT, and 1 mM EDTA. The incubation was carried out in 25 μl at 22°C for 30 min and was followed by loading on a 6% 0.25 × Tris–borate–EDTA buffer, nondenaturing polyacrylamide gel (containing 5% glycerol) that was prerun and run at 4°C. For the competition experiment shown in Figure 2c, a 4% gel with 1 × Tris–acetate–EDTA buffer and without glycerol was run at 22°C.

DNase I and methylation interference footprints

Direct DNase I footprinting was performed as in Heberlein et al. (1985), with the following modifications (K. Zinn, pers. comm.). Binding reactions of 15 μl, consisting of 10 μl of bacterial extract, probe (~20,000 cpm), 2 μl of polyvinyl alcohol (13.3%), 3 μg of poly[dI-Cl] and 75 mM NaCl (final), were incubated for 30 min at room temperature (~22°C). A 35-μl aliquot of a 5 mM CaCl2, 10 mM MgCl2 solution was added, followed by the addition of 2.5 μl DNase I stock (2 μg/ml). After 1 min at room temperature, 75 μl of a stop mix (1.7 mM ammonium acetate, 2 μg glycogen) was added, followed by phenol, phenol–chloroform, and chloroform extractions, and ethanol precipitation. The DNAs were subsequently analyzed on a 7% polyacrylamide sequencing gel.

Methylation interference footprinting was performed in the following manner. Radiolabeled DNA was pretreated with dimethyl sulfate (Hendrickson and Schleif 1985). A preparative retardation gel was run, the wet gel was placed on film, and free and bound complexes were subsequently excised from the gel. The DNA was electroeluted, and the solution was brought to 0.6 M NaCl, followed by phenol, phenol–chloroform, and chloroform extractions. The DNA solution was then diluted to 0.1 M NaCl and passed over Elutip-d columns (Schleicher & Schuell). Glycogen (2 μg; Boehringer–Mannheim) was added prior to ethanol precipitation to serve as a carrier. The DNA was resuspended in 20 μl of water, and 20 μl of 2 M piperidine was added, followed by incubation at 90°C for 30 min. The solution was then frozen and vacuum-dried. The residue was resuspended repeatedly in water (200, 100, 50, 25, 15, 10, 1 μl) and vacuum-dried, before being resuspended in loading buffer and analyzed on a 7% polyacrylamide sequencing gel.

Screening cDNA libraries

Ovarian (Steinhauer et al. 1989) and 9- to 12-hr embryonic (Zinn et al. 1988) cDNA libraries in agt11 were screened as in Vinson et al. (1988), with the following modifications. Plates were incubated overnight after overlaying with the IPTG-impregnated nitrocellulose filters. BSA was used in place of Carnation nonfat dry milk. The filters were exposed to the DNA probe overnight with the addition of salmon sperm DNA (10 μg/ml) to the binding buffer. The filters were washed over a period of 30 min with six changes of binding buffer plus 0.25% BSA. CF1 was isolated from the ovarian cDNA library. CF2 and CF3 were obtained from the embryonic library.

Sequences for the H and U oligonucleotides were as follows [dots denote wild-type s15 sequence]:

H: 5′-GATCTGAAACA......AGGCCTG ACTTGTT......TCCGACCTAG-3′

U: 5′-GATCCAGCCG......AGAACA GTCGCC......TCTTGCTCTAG-3′

Preparation of bacterial extract

EcoRI fragments [consisting of the cDNA insert] were obtained from plaque-purified phage and subcloned into the translation vector pET-3b (Rosenberg et al. 1987). Escherichia coli BL21 cells were then infected with phage and induced to produce protein off the T7 promoter, and total bacterial protein was subsequently isolated as in Desplan et al. (1985).
Sequencing analysis

Restriction fragments were cloned into M13 vectors and sequenced by the chain-termination method (Sanger et al. 1977) by using ³²P-labeled dATP. Data were analyzed by computer programs [Pustell and Kafatos 1982, 1984].

Acknowledgments

We are grateful to Michael Ashburner for in situ mapping of CF1, CF2, and CF3. Athanasia Economou for oligonucleotide synthesis, Laura Kallayan and Kai Zinn for gifts of expression libraries, Janet Deatrick and Neel Randsholt for a gift of fly stocks and clones from the chromosome walk of J.M. Dura et al., Marta Frisardi for localizing CF1 on that walk, and Paul Young, Dean Falb, Ted Abel, Peter Tolias, Michael Koelle, Lucy Cherbas, and Peter Cherbas for helpful discussions. We acknowledge the photography of Bianca Klumpa and the secretarial assistance of Esther Fenerjian. This work was supported by grants from the National Institutes of Health and the National Science Foundation.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

Note added in proof

The sequence of full-length, independently isolated CF1 cDNA clone, and comparison with its closest homolog, the mouse H-2RIIBP component [Hamada et al. 1989, Proc. Natl. Acad. Sci. 86: 8289–8293] are presented in Henrich et al. [Nucleic Acids Res., in press]. Analysis of the recently published sequence of the Drosophila E75 protein [Segraves and Hogness 1990, Genes Dev. 4: 204–219] reveals a 56% sequence identity to CF1 in the DNA-binding domain. Sequence data reported in this paper have been submitted to the EMBL/GenBank Data Libraries.

References

Baker, A.R., D.P. McDonnell, M. Hughes, T.M. Crisp, D.J. Mangelsdorf, M.R. Haussler, J.W. Pike, J. Shine, and B. O’Malley. 1988. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc. Natl. Acad. Sci. 85: 3294–3298.

Beato, M. 1989. Gene regulation by steroid hormones. Cell 56: 335–344.

Belyaeva, E.S., I.E. Vlassova, Z.M. Biyasheava, V.T. Kapkakov, G. Richards, and I.F. Zhimulev. 1981. Cytogenetic analysis of the 283–4–2811 region of the X chromosome of Drosophila melanogaster. II. Changes in 20-OH ecdysone puffing caused by genetic defects of puff 285. Chromosoma 84: 207–219.

Berg, J. 1988. Proposed structure for the zinc-binding domains from transcriptional factor IIIA and related proteins. Proc. Natl. Acad. Sci. 85: 99–102.

—. 1989. DNA binding specificity of steroid receptors. Cell 57: 1065–1068.

Carter, P., H. Bedouelle, and G. Winter. 1985. Improved oligonucleotide site-directed mutagenesis using M13 vectors. Nucleic Acids Res. 13: 4431–4443.

Chowdhury, K., U. Deutsch, and P. Gruss. 1987. A multigene family encoding several finger structures is present and differentially active in mammalian genomes. Cell 48: 771–778.

Debrille, C., M. Benaisse, and G. Biserte. 1984. Sequencing the erb A gene of avian erythroblastosis virus reveals a new type of oncogene. Science 224: 1456–1459.

Desplan, C., J. Theis, and P.H. O’Farrell. 1985. The Drosophila developmental gene, engrailed, encodes a sequence-specific DNA binding activity. Nature 318: 630–635.

Dura, J.M., N.B. Randsholt, J. Deatrick, I. Erk, P. Santamaria, S.J. Freeman, D. Weddell, and H.W. Brock. 1987. A complex genetic locus, polyhomeotic, is required for segmental specification and epidermal development in D. melanogaster. Cell 51: 829–839.

Evans, R.M. 1988. The steroid and thyroid hormone receptor superfamly. Science 240: 889–895.

Fenerjian, M.G., J.C. Martinez-Cruzado, C. Swimmer, D. King, and F.C. Kafatos. 1989. Evolution of the autosomal chorion locus in Drosophila. II. Chorion gene expression and sequence comparisons of the s16 and s19 genes in evolutionarily related species. J. Mol. Evol. 29: 108–125.

Frietsch, M. and D. Crothers. 1981. Equilibrium and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 8: 6505–6525.

Giguere, V., E.S. Ong, P. Segui, and R.M. Evans. 1987. Identification of a receptor for the morphogen retinoic acid. Nature 330: 624–629.

Green, S., V. Kumar, I. Theulaz, W. Wahli, and P. Chambon. 1988. The N-terminal DNA-binding zinc finger of the oestrogen and glucocorticoid receptors determines target gene specificity. EMBO J. 7: 3037–3044.

Greene, G.L., P. Gilna, M. Waterfield, A. Baker, Y. Horta, and J. Shine. 1986. Sequence and expression of human estrogen receptor complementary DNA. Science 231: 1150–1154.

Heberlein, U., B. England, and R. Tjian. 1985. Characterization of Drosophila transcription factors that activate the tandem promoters of the alcohol dehydrogenase gene. Cell 41: 965–977.

Hendrickson, W. and R. Schleif. 1985. A dimer of AraC protein contacts three adjacent major groove regions of the ara DNA site. Proc. Natl. Acad. Sci. 82: 3129–3133.

Hollenberg, S.M., C. Weinerberger, E.S. Ong, G. Cerelli, A. Oro, R. Lebo, E.B. Thompson, M.G. Rosenfeld, and R.M. Evans. 1985. Primary structure and expression of a functional glucocorticoid receptor cDNA. Nature 318: 635–641.

Kadonaga, J.T., K.R. Carner, F.R. Masiarz, and R. Tjian. 1987. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell 51: 1079–1090.

King, R.C. 1970. Ovarian development in Drosophila melanogaster. Academic Press, New York.

Klock, G., U. Strahle, and G. Schutz. 1987. Oestrogen and glucocorticoid responsive elements are closely related but distinct. Nature 329: 734–736.

Köster, M., T. Pieler, A. Poting, and W. Knochel. 1988. The aryl hydrocarbon receptor, AhR, encodes an inducible receptor of the retinoic acid receptor superfamily. J. Mol. Evol. 28: 330–339.

Levine, J. and A. Spradling. 1985. DNA sequence of a 3.8 kilobase pair region controlling Drosophila chorion gene amplification. Chromosoma 92: 136–142.

Mariani, B.D., J.R. Lingappa, and F.C. Kafatos. 1988. Temporal regulation in development: Negative and positive cis-regulators dictate the precise timing of expression of a Drosophila chorion gene. Proc. Natl. Acad. Sci. 85: 3029–3033.

Martinez, E., F. Givel, and W. Wahli. 1987. The estrogen-re
responsive element as an inducible enhancer: DNA sequence requirements and conversion to a glucocorticoid-responsive element. EMBO J. 6: 3719–3727.

Martinez-Cruzado, J.C., C. Swimmer, M.G. Fenerjian, and F.C. Kafatos. 1988. Evolution of the autosomal chorion locus in Drosophila. General organization of the locus and sequence comparisons of genes s15 and s19 in evolutionarily distant species. Genetics 119: 663–667.

Meyerowitz, E.M., M.A. Crosby, M.D. Garfinkel, C.H. Martin, P.H. Mathers, and K. Vijayraghavan. 1985. The 68 gluc puff of Drosophila. Cold Spring Harbor Symp. Quant. Biol. 50: 347–353.

Mitchell, P.J. and R. Tjian. 1989. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245: 371–378.

Mitsialis, S.A., S. Velentza, and F.C. Kafatos. 1989. Transgenic regulation of moth chorion gene promoters in Drosophila: Tissue, temporal and quantitative control of four bidirectional promoters. J. Mol. Evol. 29: 486–495.

Miyajima, N., Y. Kadowaki, S. Fukushige, S. Shimizu, K. Sembra, Y. Yamazaki, K. Matsubara, K. Toyoshima, and T. Yamamoto. 1988. Identification of two novel members of the erbA superfamily by molecular cloning: The gene products of two are highly related to each other. Nucleic Acids Res. 16: 11057–11074.

Mlodzik, M., Y. Hiromi, U. Weber, C.S. Goodman, and G.M. Rubin. 1989. The Drosophila seven-up gene, a member of the steroid receptor gene superfamily, controls photoreceptor cell fates. Cell 60: 211–224.

Moses, K., M.C. Ellis, and G.M. Rubin. 1989. The glass gene encodes a zinc-finger protein required by Drosophila photoreceptor cells. Nature 340: 531–534.

Nauber, U., M.J. Pankratz, A. Kienlin, E. Seifert, U. Klemm, and H. Jäckle. 1988. Abdominal segmentation of Drosophila embryo requires a hormone receptor-like protein encoded by the gap gene knips. Nature 336: 489–491.

Oro, A.E., E.S. Ong, J.S. Margolis, J.W. Posakony, M. McKown, and R.M. Evans. 1988. The Drosophila gene knips-related is a member of the steroid-receptor gene superfamily. Nature 336: 493–496.

Orr, W.C., V.K. Galanopoulos, C.P. Romano, and F.C. Kafatos. 1989. A female sterile screen of the Drosophila melanogaster X chromosome using hybrid dysgenesis: Identification and characterization of morphological mutants. Genetics 122: 847–858.

Petri, W.H., A.R. Wyman, and F.C. Kafatos. 1977. Mass isolation of Drosophila follicles and eggsHELLS. The genetics and biology of Drosophila, vol. 2 [ed. M. Ashburner and T. Wright] pp. 136–140. Academic Press, London.

Postlethwait, J.H., M. Bownes, and T. Jowett. 1980. Sexual phenotype and vitellogenin synthesis in Drosophila melanogaster. Dev. Biol. 79: 379–387.

Pustell, J. and F.C. Kafatos. 1984. A convenient and adaptable package of computer programs for DNA and protein sequence management, analysis and homology determination. Nucleic Acids Res. 12: 643–655.

———. 1982. A high speed, high capacity homology matrix: Zooming through SV40 and polyoma. Nucleic Acids Res. 10: 4765–4782.

Racioppi, J.V., R.M. Gemmill, P.H. Kogan, J.M. Calvo, and H.H. Hagedorn. 1986. Expression and regulation of vitellogenin messenger RNA in the mosquito, Aedes aegypti. Insect Biochem. 16: 255–262.

Romano, C.P., B. Bienz-Tadmor, B.D. Mariani, and F.C. Kafatos. 1988. Both early and late Drosophila chorion gene promoters confer correct temporal, tissue and sex specificity on a reporter Adh gene. EMBO J. 7: 783–790.

Rosenberg, A.H., B.N. Lade, D. Chui, S. Lin, J.J. Dunn, and F.W. Studier. 1987. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene 56: 125–135.

Rosenberg, U.B., C. Schroder, A. Preiss, A. Kienlin, S. Cote, I. Riede, and H. Jäckle. 1986. Structural homology of the product of the Drosophila Krüppel gene with Xenopus transcription factor IIIA. Nature 319: 336–339.

Roth, M., U. Nauber, and H. Jäckle. 1989. Three hormone receptor-like Drosophila genes encode an identical DNA-binding finger. EMBO J. 8: 3087–3094.

Ruiz i Altaba, A., H. Perry-O’Keefe, and D.A. Melton. 1987. Xfin: An embryonic gene encoding a multifingered protein in Xenopus. EMBO J. 6: 3065–3070.

Sanger, F., S. Nicklen, and A.R. Coulson. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. 74: 5463–5467.

Speroel, N., H.T. Nguyen, and F.C. Kafatos. 1986. Gene regulation and evolution in the chorion locus of B. mori: Structural and developmental characterization of four eggshell genes and their flanking DNA regions. J. Mol. Biol. 190: 23–35.

Steinhauer, W., R. Walsh, and L. Källayan. 1989. Sequence and structure of the Drosophila melanogaster ovarian tumor gene and generation of an antibody specific for the ovarian tumor protein. Mol. Cell. Biol. 12: 5726–5732.

Tautz, D., R. Lehmahn, H. Schnurch, R. Schuh, E. Seifert, A. Kienlin, K. Jones, and H. Jäckle. 1987. Finger protein of novel structure encoded by hunchback, a second member of the gap class of Drosophila segmentation genes. Nature 327: 383–389.

Umesono, K. and R.M. Evans. 1989. Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57: 1139–1146.

Vincent, A., H.V. Colot, and M. Rosbash. 1985. Sequence and structure of the Serendipity locus of Drosophila melanogaster: A densely transcribed region including a blastoderm-specific gene. J. Mol. Biol. 186: 149–166.

Vinson, C.R., K.L. LaMarco, P.F. Johnson, W.H. Landschulz, and S.L. McKnight. 1988. In situ detection of sequence-specific DNA binding activity specified by a recombinant bacteriophage. Genes Dev. 2: 801–806.

Wang, L., S.Y. Tsai, R.G. Cook, W.G. Beattie, M. Tsai, and B.W. O'Malley. 1989. COUP transcription factor is a member of the steroid receptor superfamily. Nature 400: 163–166.

Weinberger, C.C., C.G. Thompson, E.S. Ong, R. Lebo, D.J. Grul, and R.M. Evans. 1986. Three c-erb-A gene encodes a thyroid hormone receptor. Nature 324: 641–646.

Wong, Y-C., J. Pustell, N. Spoerel, and F.C. Kafatos. 1985. Analysis and neuronal expression of fasciclin in grasshopper and Drosophila. Cell 319: 336–339.

Wu, C. 1984. Activating protein factor binds in vitro to upstream control sequences in heat shock gene chromatin. Nature 311: 81–84.

Zinn, K., L. McAllister, and C. Goodman. 1988. Sequence analysis and neuronal expression of fasciclin in grasshopper and Drosophila. Cell 53: 577–587.
Proteins that bind to Drosophila chorion cis-regulatory elements: a new C2H2 zinc finger protein and a C2C2 steroid receptor-like component.

M J Shea, D L King, M J Conboy, et al.

*Genes Dev.* 1990, 4:
Access the most recent version at doi:10.1101/gad.4.7.1128