Overexpressed somatic alleles are enriched in functional elements in Breast Cancer

Paula Restrepo1,2, Mercedeh Movassagh3, Nawaf Alomran2,4, Christian Miller2, Muzi Li2,4, Chris Trenkov2, Yulian Manchev2, Sonali Bahl1, Stephanie Warnken5, Liam Spurr1,2, Tatiyana Apanasovich6, Keith Crandall5, Nathan Edwards4 & Anelia Horvath1,2,6,7

Asymmetric allele content in the transcriptome can be indicative of functional and selective features of the underlying genetic variants. Yet, imbalanced alleles, especially from diploid genome regions, are poorly explored in cancer. Here we systematically quantify and integrate the variant allele fraction from corresponding RNA and DNA sequence data from patients with breast cancer acquired through The Cancer Genome Atlas (TCGA). We test for correlation between allele prevalence and functionality in known cancer-implicated genes from the Cancer Gene Census (CGC). We document significant allele-preferential expression of functional variants in CGC genes and across the entire dataset. Notably, we find frequent allele-specific overexpression of variants in tumor-suppressor genes. We also report a list of over-expressed variants from non-CGC genes. Overall, our analysis presents an integrated set of features of somatic allele expression and points to the vast information content of the asymmetric alleles in the cancer transcriptome.

The cancer phenotype is largely driven by somatic mutations, whose carcinogenic effects are ultimately intervened by the transcription process1–3. As a mediator between genotype and phenotype, the tumor transcriptome reflects both advantage- selective pressure, and direct effects of the mutations on the transcription process. Hence, the tumor transcriptome is highly informative about the somatic functionality, especially through allele-specific approaches that can confine expressed structures to particular mutant alleles1–4.

Several studies have explored the allele-specific transcriptional landscape of cancer1, 5–10. Preferentially expressed alleles are reported to play a role in epithelial ovarian cancer7, as well as in microRNA-implicated carcinogenesis, an example of which is miR-31 dysregulation in lung cancer8. Imbalanced allele expression can be caused by both large chromosomal alterations, such as copy number alterations (CNAs), and single nucleotide somatic mutations1.

Nucleotide somatic mutations can affect the transcriptome through alteration of regulatory, splicing, or expression-rate modifying sites. Such effects commonly manifest in cis-fashion and directly impact the transcript abundance of the mutation bearing allele1,11,12. Mutations can also indirectly imbalance the allele content through changing the protein functions to either advance or impair the tumor growth. Functional mutations that provide selective advantage are referred to as drivers, and they are commonly targeted by either positive or negative selection forces to retain or deplete the growth-affecting allele13–16. Accordingly, somatic allele imbalance, including the extremes of loss or over-expression, can indicate tumorigenic functionality.

1Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA. 2McCormick Genomics and Proteomics Center, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA. 3University of Massachusetts Medical School, Program in Bioinformatics and Integrative Biology, Worcester, MA, 01605, USA. 4Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, School of Medicine, Washington, DC, 20057, USA. 5Computational Biology Institute, The George Washington University, Washington, DC, 20037, USA. 6Department of Statistics, The George Washington University, Washington, DC, 20037, USA. 7Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA. Paula Restrepo, Mercedeh Movassagh, Nawaf Alomran, Christian Miller and Muzi Li contributed equally to this work. Correspondence and requests for materials should be addressed to A.H. (email: horvatha@gwu.edu)
Expression imbalance of point mutations is particularly informative for regions with no CNAs, where potential effects on the transcription can be directly linked to the underlying nucleotide change. Therefore, quantitative integration of allele signals between same-source DNA and RNA is instrumental for tracking chromosome-of-origin effects. The latter, in turn, can be used to search for new genes whose allele behavior follows the pattern of known cancer drivers and is thus indicative for potential carcinogenicity. Therefore, the few studies that quantitatively integrate allele abundance from matching DNA and RNA sequencing sources are very informative.

Herein, we apply a software that we recently developed – RNA2DNAlign – to systematically quantify the allele expression of somatic variants in breast cancer samples from The Cancer Genome Atlas (TCGA). RNA2DNAlign counts variant and reference sequencing reads derived from compatible RNA and DNA datasets, and tests for allelic imbalance; it also calls positions with extreme allele distributions, including somatic over-Expression (SOM-E) or loss (SOM-L). We compute and compare the somatic variant allele fraction (VAF) of mutations in genes from the Cancer Gene Census (CGC) to those in the rest of the genes in our samples. We also report a list of non-CGC genes with over-expressed somatic variants. Overall, we present an integrated set of somatic allele-specific expression features, in the context of their potential underlying functionality.

Results

Strategy. Our strategy was to first systematically quantify the variant allele fraction of the tumor RNA (VAF(tRNA)), and then to assess for correlation between RNA allele asymmetry and functional features (Fig. 1). Somatic variants (SOM) with a bi-allelic signal in the tumor DNA and a mono-allelic signal in the tumor RNA were classified as SOM-L (VAF(tDNA) ~ 0) or SOM-E (VAF(tDNA) ~ 1; Fig. 2). We assess both absolute VAF(tRNA), and relative to VAF(tDNA), for which we introduce the expression V_R:D = VAF(tRNA) / VAF(tDNA). We note that through accounting for the VAF(tDNA), V_R:D reflects the overall genome composition of the sample, including the contribution from large rearrangements, and admixture with non-tumor genomes (i.e. the sample purity). First, we analyzed the allele distribution for mutations in known oncogenes and tumor suppressors from CGC. We evaluated VAF(tRNA) and V_R:D for correlation with functional features including conservation, predicted pathogenicity, and location in critical sequence motifs. Next, we assessed these features, in the context of their allelic expression, in the non-CGC dataset, and highlighted variants whose somatic allele patterns follow functionality-associated allele behavior of known cancer drivers.

Overall dataset characteristics. A total of 1238 (1139 unique) mutations in 921 genes, from which 68 were listed in CGC, satisfied the requirements for our analysis (Supplementary Table 1 and Supplementary Figure 1). Between 7 and 51 somatic point mutations in expressed coding regions were assessed per individual sample. Most of the mutations (94%) were singletons (present in only one sample), whereas 44 mutations were seen in 2, 12 in 3, 4 in 4, 2 in 5, and one mutation each was found in 6 and 7 different samples. Notably, all non-singleton mutations shared similar allele expression status across the different samples. A total of 437 somatic mutations (38.3%) were not expressed all at the transcriptome (SOM-L), and 73 mutations (4.9%) were over-expressed (SOM-E). The analysis of the variant allele fraction showed an overall positive correlation between VAF(tDNA) and VAF(tRNA) (Spearman correlation $r = 0.38$, Fig. 3A–C). The functional distribution of the predicted consequences on the protein, and the intersection with their allele-expression status is presented on Fig. 3D. The missense, non-coding and stop-codon variants showed clearly different patterns of $V_{R:D}$ with a higher $V_{R:D}$ in the missense mutations, as compared to the non-coding and stop-codon variants ($p = 0.0004$, Kruskal-Wallis test, Fig. 3E). Notably, we observed distribution towards higher $V_{R:D}$ of the variants predicted to be pathogenic through FATHMM (Functional Analysis Through Hidden Markov Models), Fig. 3F.

CGC genes somatic allele expression: overall features. The 68 known cancer driver genes collectively contained 103 (88 unique) somatic mutations qualifying for the analysis (Supplementary Table 2). Mutations in PIK3CA, MITF, ACVR2A, CLIP1, and TCEA1 were called in more than one sample. In this gene-set, we called 10 SOM-E variants: seven missense substitutions, two synonymous variants, and, notably, the stop-codon R63X...
in CDH1. Of note, four of the SOM-E missense substitutions were called in TP53 (See Supplementary Table 2). A higher number - 25 - SOM-L variants were completely absent from the transcriptome in the CGC dataset.

Several noticeable observations were made in the CGC subset. First, different VR:D distribution was observed in the CGC variants as compared to the rest of the dataset ($p = 0.02$, Kruskal-Wallis test 18, Fig. 4A); the difference due to larger proportion of CGC variants with higher allele expression. Second, the CGC missense mutations showed higher allele expression as compared to the missense mutations in the entire dataset ($p = 0.03$, Kruskal-Wallis test 18, Fig. 4B). Notably, a tendency for higher VR:D was also seen for the stop-codon mutations, albeit not reaching statistical significance (Fig. 4C). In contrast, the non-coding variants did not show significant differences between the CGC and non-CGC genes (Fig. 4D). Third, we documented positive correlation between VR:D and predicted pathogenicity assessed by the CADD score (Combined Annotation Dependent Depletion) 21, (Spearman $r = 0.25$), FATHMM score (Functional Analysis Through Hidden Markov Models) 19, 20 (Spearman $r = 0.17$), and conservation of the position of the somatic mutation as assessed through GERP (Genomic Evolutionary Rate Profiling, Spearman $r = 0.29$) 22–26. Of note, 21% of the variants in the CGC dataset modeled through FATHMM as pathogenic have been reported in cancer-based studies 17. Collectively, all the above analyses supported preferential expression of functional alleles in the CGC dataset.

Figure 2. IGV visualization of somatic mutations that are over-expressed (SOM-E, middle) or under-expressed (SOM-L, right) compared to expected allele distribution for a germline heterozygote variant (left); the heterozygosity is reflected through color-coding of the summary flag on the top of each panel. The gray lines represent reads, and the colored letters show differences from the reference.
We then assessed CGC SOM-E and SOM-L mutations in the context of their harboring gene's function and mechanism of action. The first noticeable observation was a tendency for over-representation of genes acting in recessive molecular mode among the SOM-E variants, as opposed to more-frequent dominant mode of action in the genes bearing SOM-L variants (p = 0.15). Recessive mode is traditionally more often associated with tumor-suppressive function, while dominant action is reported frequently for oncogenes. In our study, SOM-E status appears not to result from a genomic DNA loss, as evident by the tumor DNA’s biallelic signal (0 < VAF[tDNA] < 1). Both the inhibition of the reference and the enhancement of the mutant allele’s expression could result in mutant RNA dominance, and these effects could be independent or related to the functionality of the particular mutation. In the case of the mutations acknowledged as pathogenic in suppressor genes, the observed overexpression is consistent with mutation-driven allele inactivation, possibly favored by positive selection forces. Such interpretation is in line also with the over-expressed stop-codon R63X in CDH1.

For the SOM-L mutations, whether their expressional loss is linked to potential oncogenic action of the host gene, is to be determined on per-gene basis. It is important to recognize that many somatic variants are randomly lost in the tumor transcriptome, and the number of transcribed ones can depend on factors such as Estrogen Receptor (ER) expression levels. While it is possible for a SOM-L variant to reside on a lost allele by coincidence, this is unlikely to explain all SOM-L patterns for variants with known pathogenicity.

Allele expression of somatic mutations in the non-CGC genes. The integrated features of somatic allele expression in the non-CGC genes is presented in Supplementary Table 3. We documented concurrent to the CGC dataset positive correlation between increased allele expression and predicted pathogenicity and conservation scores (Spearman CADD r = 0.11, FATHMM r = 0.12, and GERP r = 0.17 (Supplementary Table 3)).

The non-CGC somatic mutations with strong overexpression of the mutation-bearing allele (VAF[tRNA] = 1) are presented in Table 1. We next assessed the SOM-E variants for location within transcription and splicing factor binding sites, including analysis for generation of a new binding site outside of known protein - recognizable sequences. Indeed, 18 out of the 42 non-CGC SOM-E variants positioned outside an existing TFBS were predicted to generate a new motif recognizable by either transcription or a splicing factor.

Figure 3. (A–C) Distribution of VAFtRNA (blue) and VR:D (red) in the subgroups of missense (A), non-coding (B) and stop-codon variants. The X axis shows the number of variants in each functional category. Positive correlation is seen in all three mutation groups. (D) Distribution of SOM-E and SOM-L expression status in regards to predicted effect on the protein function in the entire set, CGC-, and non-CGC variants. (E) VR:D for non-coding, missense and stop-codon variants across the entire dataset. Clearly different VR:D distribution is seen among the different functional subtypes, with the missense mutations showing higher VR:D, indicative for higher allele expression of potentially functional transcripts. (F) VR:D for pathogenic and neutral variants as predicted by FATHMM. The difference in the distribution is due to the larger proportion of the pathogenic mutations with higher VR:D.
Next, we reviewed, on a per-gene basis, the current knowledge on the SOM-E genes and their possible implications in cancer. Despite not being listed in the CGC, some of these genes – such as *MSH3* and *NUAK1* and *NFE2* – have been repeatedly linked to cancer. Notably, more of the SOM-E genes linked to tumor suppressor features (as opposed to oncogenic, *p* = 3.8e-4, Metacore), which we concurrently observed in the CGC dataset. Another striking observation is that 6 of the genes with SOM-E variants – *MSH3*, *RAD51*, *TCOF1*, *TP53BP1*, *CCNB2*, and *TOP3B* – are directly implicated in DNA damage response and repair which was also the top-enriched pathway in the SOM-E dataset (*p* = 0.05, Metacore). In contrast, the most represented pathway in the SOM-L group was the immune response (*p* = 0.05, Metacore). In regards to GO annotations, two differences were detected between the SOM-E and SOM-L groups (Supplementary Figure 2). First, SOM-E variants were more frequently located in genes encoding receptors and signal transducers, while a higher proportion of the SOM-L variants resided in structure-supportive genes. In regards to biological processes, the SOM-E group was enriched in genes involved in response to stimuli.

Discussion

Ultimately, the accurate assessment of the expressed allele fraction is only possible in the context of the corresponding DNA alleles’ content. Herein, we integrate matching RNA and DNA allele fraction from bi-allelic DNA regions to identify transcriptome-favored alleles. We focus more specifically on somatic point mutations in breast cancer, which we assess for tumorigenic functionality that can underlie selective transcriptome preference.

The first striking observation from our study is that transcriptome-preferred alleles are enriched in functional features, which are often predicted to alter the original protein function. This correlation was stronger in the group of genes traditionally acknowledged as tumor suppressors. Tumor suppressors are often lost during progression, and their loss is considered a contribution to tumor growth. In our data we see a strong expression preference towards somatically mutated tumor suppressor transcripts, including such bearing a premature stop-codon. Increased allele expression can be either directly caused by mutation-promoted cis transcription...
Gene	Chr:pos (hg38)	Function	TFBS	SFBS
TMEM51	chr1:15215414C > A	missense	none	none
NBPF3	chr1:21481730T > C	non-coding	none	none to SRp40
EPHA10	chr1:37720517C > T	missense	none	none
KIF26B	chr1:245609349C > G	missense	none to VSLRH1_ Q5_01	none
ILDR1	chr1:122001432G > A	non-coding	VSPARG_02	none to Sam68, SLM-2
MUC20	chr1:195725818C > T	non-coding	VSCREB1_Q6	hnRNP DL, SRp55none
ZNF518B	chr2:10445288C > G	missense	VSPBX1_02	none
NBPF3	chr1:21481730T > C	non-coding	none to SRp40	
NBPF3	chr1:21481730T > C	non-coding	none to ETR-3	
ACBD4	chr1:1594351223G > A	missense	VSY1_02	none
TCOF1	chr5:150376236C > T	missense	none to SRp20/Nova-1/Nova-2 to none	
MDN1	chr5:89700782A > T	non-coding	VSSMAD4_Q6_01	none
TNRC18	chr7:5316065C > A	non-coding	none	none
WDR60	chr7:158871385A > G	missense	none to SC35, SF2/ASF, hnRNP A1	
FZD3	chr8:28527405G > A	non-coding	none	none
DAPK1	chr9:87709996C > T	missense	VSNFAT_Q6	none
COLE1	chr9:114369301C > G	missense	none to VSMYOGENIN_ Q6_01	none
PLCG1	chr10:94270600A > C	missense	none to VSNFAT1_ Q4	SF2/ASF, hnRNP A1 to none
PDCD11	chr10:103441838A > C	missense	none	none to SRp40
MUCA1	chr11:10146036G > A	missense	none to VSNFAT1_ Q4	none
ACER3	chr11:76861031G > T	missense	none	SRp30c to none
RAB38	chr11:88175326A > T	missense	VSPARG_02	none
PHLD1B	chr12:118627958C > T	non-coding	VSSK3_01	none to HuB, TIA-1, SRp40
WNK1	chr12:7536666C > G	missense	VSGF1_01	none
NFE2	chr12:54289919G > A	missense	none to VSBEN_01	none to YB-1, SRp40
NUAK1	chr12:106067839A > T	missense	VSOCT1_06	none
RASAL1	chr12:111314816C > G	missense	VSY1_01	none
SLTRK6	chr13:85795773A > C	missense	VSSMAD4_Q6_01	SF2/ASE, SRp38, YB-1 to Sam68
ATP11A	chr13:118251785C > A	missense	VSPAX5_01	none
NNYRRN	chr14:244713385C > G	non-coding	none to VSBEN_01	MBNL1
CLMN	chr14:95203587C > T	missense	none	none to hnRNP I
AHNAK2	chr14:10448892T > C	non-coding	none	none
RAD51	chr15:40762096G > A	non-coding	VCSCBPB_02	none
CCN2R	chr15:59120511G > A	non-coding	none	none
SUITIA2	chr16:28592021A > G	non-coding	none	SRp30c to none
NFATC3	chr16:68190983G > A	missense	none to V3GATA_ Q6	none to SLM-2, Sam68
MED31	chr17:6651601A > G	non-coding	none	SRp30c to none
CHRN1B1	chr17:7447082C > T	non-coding	none	none to ETR-3
ACR1D4	chr17:45136583G > T	missense	none to SC35	
ARCA7	chr19:10415101G > A	missense	none	none to YB-1, SRp20
LMNB1	chr19:24381813G > A	non-coding	none	SRp55 to SC35
ZNF676	chr19:22180184G > T	non-coding	none to VSNFAT1_ Q4	deleted MBNL1
ZIM2	chr19:56774836G > T	stop	none to VSDRI1_01	none to Sam68, SLM-2

Continued
 activation, or/and retention of the mutant allele in the transcriptome via positive selection. Both scenarios infer functionality and growth-supportive potential. Conforming with that, highly expressed somatic variants, including SOM-E, were more frequently located in highly conserved and predicted to be functional genomic sequences. Taken together, these data are consistent with gain-of-function mechanism favored by the tumor transcriptome. An active role of over-expressed variants is also supported by the selection for maintaining the expression of a complete, translation-ready transcripts, suggesting a possible role of the altered/shortened proteins in the tumor progression. Indeed, once recognized as tumor suppressors, many of the genes in our SOM-E set, including TP53 are now acknowledged to play more complex roles that include oncogenic action. Both inactivation and altering the protein function can be crucial for the tumor development. Regardless the mechanism of action, the above observations mark allelic overexpression as a highly informative metric that can be used to outline functionally enriched somatic datasets.

The proportion of SOM-L alleles in our data is generally consistent with other reports. Under-expressed alleles, including SOM-L, also correlated with functional annotations and regulatory motifs, though did not reach the significance of SOM-E. In contrast to SOM-E, SOM-L variants confer features that imply intolerance of the transcriptional machinery to the harbored variant. In the absence of CNAs, several mechanisms could potentially lower allele expression levels of mutation bearing transcripts. A well acknowledged scenario is the surveillance-driven targeting of transcripts with deleterious variants, the most prominent example of which is NMD. A degradation mechanism can also take place where the mutation results in an unstable RNA structure. Finally, a mutation can destroy a binding site for a transcription or splicing factor, thus directly abolishing the expression of the underlying alleles. Additional factors, such as high ER expression levels, are also reported to correlate with a decreased number of expressed somatic mutations. Besides the above mutation-focused mechanisms, SOM-L may result from random under-expression in the tumor transcriptome, and the general infidelity of cancer transcriptional machinery. The later confers higher contribution of randomness towards SOM-L loci, which is likely to dilute functional annotations in this group.

Another striking observation from our analysis is the expression pattern of stop-codon mutations. Several recent studies have published decreased expression of stop-codon bearing variants in cancer, and have linked it to NMD. Notably, in our data we see stop-codon bearing alleles over-represented as compared to the reference. Whether these expressed RNAs are translated into shorter proteins is subject of further studies, but this possibility is consistent with the presence of premature stop containing, translation-ready transcripts. While NMD is knowledgeably impaired in cancer, our data suggests gene-selective NMD actions.

Distinguishing pathogenic mutations from the more prevalent neutral variants constitutes one of the greatest challenges of cancer biology, leading to substantial effort towards developing confident analytic strategies. Modern methods integrate traditional frequency based approaches with expression abundance, functional effects, interaction networks and pathway context. Here, we integrate somatic allele fraction with most of the above strategies and the knowledge on tumor driving mechanisms, and evaluate the potential of asymmetric allele expression to predict cancer implicated variants. We document distinct allele signatures of cancer drivers at several levels. First, mutations in known cancer genes from our dataset presented more frequently with extreme allele expression to predict cancer implicated variants. We document distinct allele signatures of cancer drivers at several levels. First, mutations in known cancer genes from our dataset presented more frequently with extreme allele expression. An example is TP53, mutation in which were frequently either over-expressed or lost. Second, mutations in known cancer-implicated genes presented with higher allele expression. This was also reflected in the higher percentage of SOM-E variants among the known cancer genes. Third, SOM-E mutation sites were enriched in conservation and functional motifs. Cumulatively, these findings highlight the SOM-E status as a potential indicator for cancer-driving functionality. Based on the above, we list the non-CGC genes whose expression status follows the drivers-enriched SOM-E status (see Table 1); albeit not included in the CGC list, some of these genes have been linked to cancer before and are worth further investigation. In summary, our research illustrates an important correlation between asymmetric alleles and cancer-implicated functionality, and functionality in general, and underscores the vast information content of our strategy to systematically outline asymmetrically expressed alleles. This strategy is applicable to all types of cancer and is now enabled by the growing accessibility of matched DNA and RNA sequence data new tools for their integration and analysis.
Methods

TCGA samples selection. We first identified all breast cancer samples for which the following five sets were available: normal exome, normal transcriptome, tumor exome, tumor transcriptome, and CNA data (segmentation file based on Affymetrix SNP6 array profiling)12,63,64. All these samples had at purity assessed with at least three of the following five purity estimators: ESTIMATE, ABSOLUTE, JUMP, IHC and the Consensus Purity Estimation (CPE)65–67. From these, we excluded samples with extensive (more than 3 standard deviations) number of somatic mutations, possibly due to clustered genomic rearrangements69,70. The remaining 72 samples (Supplementary Table 4) were retained for further analysis. We reviewed the pathology reports and retrieved the available clinical information; data for 41 (57%) of the studied samples was available (See Supplementary Table 4). The highest proportion of the samples were ductal adenocarcinomas, either ER, or ER/PR positive. We did not observe any significantly distinguishing somatic expression patterns, which is likely due to the small sample size. The purity, as assessed by the above-mentioned algorithms, is shown in Supplementary Table 5.

Allele count computation. All the used datasets were generated through paired-end sequencing on an Illumina HiSeq platform. The aligned to the human genome reference (hg38) sequencing reads (Binary Alignment Maps, bams) were downloaded from the Genomic Data Commons Data Portal (https://portal.gdc.cancer.gov/) and processed downstream through an in-house pipeline. Briefly, for both DNA and RNA datasets variants were called using the mpileup module of SAMtools71. The variants were further annotated through SeattleSeq 147 (http://snp.gs.washington.edu/SeattleSeqAnnotation147/). The alignments together with the variant calls (.vcf) were processed through RNA2DNAlign. RNA2DNAlign produced variant and reference sequencing reads counts for all the variant positions in all four datasets (normal exome, normal transcriptome, tumor exome and tumor transcriptome). The read count assessments were visually examined using Integrative Genome Viewer72. We excluded from further analyses variants which (1) were covered with less than 10 sequencing read in the tumor DNA or the RNA sequencing data; (2) reside in known imprinted regions, and (3) reside in area affected by copy number change in the corresponding sample, as defined based on the CNA segmentation file, (4) were present in the normal DNA or RNA, suggestive for germline origin.

Assessment for allele distribution. Allele expression rates within a sample were determined through estimation of the relative abundance of variant over total sequence read counts, expressed as Variant Allele Fraction (VAF). For each somatic mutation, we computed the VAF = n(var)/(n(var) + n(ref)), for both tumor RNA (VAF_{tRNA}) and tumor DNA (VAF_{tDNA}), where n(var) and n(ref) are the counts of the variant and reference sequencing reads covering the position. To account for allele asymmetries related to DNA, we analyzed VAF_{tRNA} in the context of the corresponding VAF_{tDNA}. Over-expression of somatic mutations (SOM-E status) was determined as prevalence of variant sequencing reads in the transcriptome (VAF_{tRNA} ~ 1), while SOM-L was defined by complete loss of the mutant allele in the transcriptome (VAF_{tRNA} ~ 0). All the VAF_{tRNA} values were used in a correlation analyses to search for association with functional features. Overall VAFs across the studied datasets were illustrated using Circos plots (See Supplementary Figure 1)73.

Functional and enrichment analyses. Functional annotations, conservation scores and modeled pathogenicity were extracted using the SeattleSeq annotation 147 (http://snp.gs.washington.edu/SeattleSeqAnnotation147/index.jsp). Pathogenicity was modeled using PolyPhen, CADD and FATHMM models, and Conservation was assessed based on Phast, GREP and Grantham Scores20–26. Gene Ontology categories, pathway enrichment and network analysis were assessed using Metacore (Claritive Analytics). Transcription factor binding cites were analyzed using TRANSFAC 7.029 and splicing motifs were assessed using SpliceAid20.

Statistics. SOM, SOM-E and SOM-L variants were called based on a binomial test for variant and reference sequencing read distribution, as previously described9. The distributions of SOM-E and SOM-L across tumor-suppressors, oncogenes, and the rest of the genes in the datasets, as well as the distribution of functional elements across SOM, SOM-E and SOM-L, were assessed using the Fisher exact test, Pearson chi-square test, Kruskal-Wallis rank sum test, linear regression analysis, and the Spearman rank correlation coefficient74,75. Yates’s correction for continuity was applied for tests with less than 5 measurements in any category76. The means of the VAF across different mutation types were compared using Student’s t-test77. P-values below 0.05 were considered significant. For multiple trials, the significance value was corrected using Benjamini-Hochberg False Discovery Rate (FDR) technique.

References
1. Shlien, A. et al. Direct Transcriptional Consequences of Somatic Mutation in Breast Cancer. Cell Reports 16, 2032–2046 (2016).
2. Eswaran, J. et al. RNA sequencing of cancer reveals novel splicing alterations. Scientific reports 3, 1689 (2013).
3. Horvath, A. et al. Novel insights into breast cancer genetic variance through RNA sequencing. Scientific reports 3, 2256 (2013).
4. Fredriksson, N. J., Ny, L., Nilsson, J. A. & Larsson, E. Systematic analysis of noncoding somatic mutations and gene expression alterations across 14 tumor types. Nature Genet 46, 1258–1263 (2014).
5. Lin, W. et al. Allelic expression imbalance polymorphisms in susceptibility chromosome regions and the risk and survival of breast cancer. Molecular Carcinogenesis 56, 300–311 (2017).
6. French, J. & Edwards, S. Allelic imbalance in human breast cancer. Oncotarget 8 (2017).
7. Halabi, N. M. et al. Preferential Allele Expression Analysis Identifies Shared Germline and Somatic Driver Genes in Advanced Ovarian Cancer. PloS Genetics 12, 1–22 (2016).
8. Okudela, K. et al. Allelic imbalance in the miR-31 host gene locus in lung cancer—its potential role in carcinogenesis. Plos one 9, e100581 (2014).
9. Movassagh, M. et al. RNA2DNAlign: nucleotide resolution allele asymmetries through quantitative assessment of RNA and DNA paired sequencing data. Nucleic Acids Research (2016).
35. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation.

14. Vorontsov, I. E.

50. Karam, R., Wengrod, J., Gardner, L. B. & Wilkinson, M. F. Regulation of nonsense-mediated mRNA decay: implications for human cancers.

49. Lindeboom, R. G. H., Supek, F. & Lehner, B. The rules and impact of nonsense-mediated mRNA decay in human cancers.

48. Li, H., Wang, J., Mor, G. & Sklar, J. A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science (New York, N.Y.) 321, 1357–1361 (2008).

39. Saviozzi, S.

37. Kolinjivadi, A. M.

34. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and human phenotypes.

31. Chakraborty, U. & Alani, E. Understanding how mismatch repair proteins participate in the repair/anti-recombination decision.

28. Majer, A., Blanchard, A. A., Medina, S., Booth, S. A. & Myal, Y. Claudin 1 Expression Levels Affect miRNA Dynamics in Human Lung Cancer Cells. Human molecular genetics 28, 282–289 (2015).

27. Wilkie, A. O. The molecular basis of genetic dominance. Journal of medical genetics 31, 89–98 (1994).

26. Majer, A., Blanchard, A. A., Medina, S., Booth, S. A. & Myal, Y. Claudin 1 Expression Levels Affect miRNA Dynamics in Human Lung Cancer Cells. Human molecular genetics 28, 282–289 (2015).

25. Van den Eynde, J., Fierro, A. C., Verbeke, I. P. C. & Marchal, K. SonomaClust: detection of cancer genes based on somatic mutation patterns of inactivation and clustering. BMC bioinformatics 16, 125 (2015).

24. Hubisz, M. J., Pollard, K. S. & Siepel, A. PHAST and RPHAST: phylogenetic analysis with space/time models. Briefings in bioinformatics 12, 41–51 (2011).

23. Kircher, M., Cooper, G. M. & Schuster, S. C. A general framework for estimating the relative pathogenicity of human genetic variants. Nature genetics 46, 310–315 (2014).

22. Grantham, R. Amino acid difference formula to help explain protein evolution. Science (New York, N.Y.) 185, 862–864 (1974).

21. Kircher, M. Distribution and intensity of constraint in mammalian genomic sequence. Genome research 15, 901–913 (2005).

20. Wu, G. S. Role of mitogen-activated protein kinase phosphatases (MKPs) in cancer. Cancer metastasis reviews 35, 813–829 (2016).

19. Shihab, H. A. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Human mutation 34, 57–65 (2013).

18. Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association 47, 583–621 (1952).

17. Forbes, S. A., et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic acids research 43, D805–11 (2015).
67. Y. Yoshihara, K.
64. Fischer, K. & Pflugfelder, G. O. Putative Breast Cancer Driver Mutations in TBX3 Cause Impaired Transcriptional Repression.
62. Lu, R.
65. Zheng, X.
66. Pages, F.
63. Narayan, S., Bader, G. D. & Reimand, J. Frequent mutations in acetylation and ubiquitination sites suggest novel driver mechanisms of cancer.

53. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. *Nature* **499**, 214–218 (2013).
54. Da Sylva, T. R., Gordon, C. S. & Wu, G. E. A genetic approach to quantifying human in vivo mutation frequency uncovers transcriptional effects. *Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis* **670**, 68–73 (2009).
55. Evans, P., Avey, S., Kong, Y. & Krauthammer, M. Adjusting for background mutation frequency biases improves the identification of cancer driver genes. *IEEE transactions on nanobioscience* **12**, 150–157 (2013).
56. Watson, I. R., Takahashi, K., Futreal, P. A. & Chin, L. Emerging patterns of somatic mutations in cancer. *Nature reviews. Genetics* **14**, 703–718 (2013).
57. Supek, F. & Lehner, B. Differential DNA mismatch repair underlies mutation rate variation across the human genome. *Nature* **521**, 81–84 (2015).
58. Zhang, J., Zhang, S., Wang, Y. & Zhang, X.-S. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data. *BMC systems biology* **7**(Suppl 2), S4 (2013).
59. Cho, A. et al. MUFFINN: cancer gene discovery via network analysis of somatic mutation data. *Genome Biology* **17**, 129 (2016).
60. Suro, C. et al. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival. *Bioinformatics* (Oxford, England) **31**, 2607–13 (2015).
61. Edsgard, D. et al. Genetase: Detection of condition-dependent and static allele-specific expression from RNA-seq data without haplotypic information. *Scientific reports* **6** (2016).
62. Lu, R. et al. Analyzing allele specific RNA expression using mixture models. *BMC genomics* **16**, 566 (2015).
63. Narayan, S., Bader, G. D. & Reimand, J. Frequent mutations in acetylation and ubiquitination sites suggest novel driver mechanisms of cancer. *Genome Medicine* **8**, 55 (2016).
64. Fischer, K. & Pflugfelder, G. O. Putative Breast Cancer Driver Mutations in TBX3 Cause Impaired Transcriptional Repression. *Frontiers in oncology* **5**, 244 (2015).
65. Zheng, X. et al. MethylPurify: tumor purity deconvolution and differential methylation detection from single tumor DNA methylomes. *Genome biology* **15**, 419 (2014).
66. Pages, F. et al. Immune infiltration in human tumors: a prognostic factor that should not be ignored. *Oncogene* **29**, 1093–1102 (2010).
67. Yoshihara, K. et al. Inferring tumour purity and stromal and immune cell admixture from expression data. *Nature communications* **4**, 2612 (2013).
68. Aran, D., Sirotia, M. & Butte, A. J. Systematic pan-cancer analysis of tumour purity. *Nature communications* **6**, 8971 (2015).
69. Storchova, Z. & Kloosterman, W. P. The genomic characteristics and cellular origin of chromothripsis. *Current Opinion in Cell Biology* **40**, 106–113 (2016).
70. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. *Cell* **144**, 27–40 (2011).
71. Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. *Nature biotechnology* **31**, 46–53 (2013).
72. Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. *Briefings in bioinformatics* **14**, 178–192 (2013).
73. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. *Genome Research* **19**, 1639–1645 (2009).
74. Fisher, R. A. On the Interpretation of χ^2 from Contingency Tables, and the Calculation of P. Journal of the Royal Statistical Society **85**, 87–94 (1922).
75. Plackett, R. L. Karl Pearson and the Chi-Squared Test. *International Statistical Review/Revue Internationale de Statistique* **51**, 59–72 (1983).
76. Yates, F. Contingency Tables Involving Small Numbers and the χ^2 Test. *Supplement to the Journal of the Royal Statistical Society* **1**, 217–235 (1934).
77. Student. The Probable Error of a Mean. *Biometrika* **6**, 1–25 (1908).

Acknowledgements
This work is supported by McCormick Genomic and Proteomic Center (MGPC), GWU; NIH National Center for Advancing Translational Sciences (UL1TR000075); Clinical and Translational Science Institute at Children's National Medical Center (CTSI-CN to AH) and Katzen Innovative Cancer Research Pilot Grant Program (RG0982 to AH).

Author Contributions
P.R., C.M., N.A., M.I., M.M., S.B., S.W. and L.S. performed the raw large data analysis. C.T. and Y.M. organized and managed the data, and assisted with the analyses and data presentation. N.A., M.M., K.C. and N.E. implemented the read counting and statistical significance framework for the SOM-E and SOM-L models; N.E. supervised all the computational scripts. L.S. and T.A. performed the statistical analyses. A.H. designed the project, conceived the framework and devised the analytic approach. A.H., with the help of P.R., C.M., and L.S., prepared the manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-08416-w

Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2017