The role of long non-coding RNAs in angiogenesis and anti-angiogenic therapy resistance in cancer

Junxia Liu,1,2 Qiniqu Zhang,1,2 Daolu Yang,1,2 Fei Xie,1,2 and Zhaoxia Wang1

INTRODUCTION

Currently, cancer is a major public health problem worldwide and results in heavy social and economic burden.1 The latest Global Cancer Date Report indicates that an estimated 19.3 million new cancer cases and nearly 10 million cancer deaths occurred worldwide in 2020.2 The occurrence and development of tumors is an intricate process affected by multiple factors and manifested in multiple stages, among which angiogenesis is an important role.3 Angiogenesis is a commonality of almost all solid tumors, concerned with tumor grade, malignancy, and poor clinical outcomes.4-8 Anti-angiogenic therapy has been one of the effective treatment methods for tumors. But its drug resistance leads to the limitation of clinical application. Recent studies have shown that lncRNAs are closely related to tumor angiogenesis and anti-angiogenic therapy resistance, which provides a new direction for tumor research. lncRNAs are expected to be new targets for tumor therapy. For the first time to our knowledge, this paper reviews advancement of lncRNAs in tumor angiogenesis and anti-angiogenic therapy resistance and further discusses their potential clinical application.

Examples of lncRNAs regulating tumor and therapeutic resistance are nothing new.12-16 Our research group found LINC01234 was significantly upregulated in gastric cancer (GC) and non-small cell lung cancer (NSCLC), associated with poor prognosis. LINC01234 upregulated CBFB via sponge miR-204-5p to boost the occurrence and development of GC.17 A positive feedback loop, c-Myc–LINC01234–HNRNPA2B1–miR-106b–5p–CRY2–c-Myc, was crucial to the progression of NSCLC.18 It also promoted NSCLC metastasis by activating VAV3 as a miR-27b-3p/miR-340-5p ceRNA or directly inhibiting BTG2.19 In addition, IncRNA CAS-C9 promoted NSCLC resistance to gefitinib by recruiting EZH2 to inhibit DUSP1.20 With the deep-going research, the function of lncRNAs in angiogenesis and anti-angiogenic therapy resistance has been revealed in cancer.21,22 Here, we first summarize the roles of lncRNAs in tumor angiogenesis and anti-angiogenic therapy resistance.

lncRNAs

The IncRNA is mainly transcribed from the antisense chains and spacers of protein-coding genes. Compared with protein-coding RNAs, lncRNAs are expressed at a lower level but are still characterized by tissue and cell specificity, high interspecific conservation, and high coefficient of variation.23 lncRNAs are involved in biological processes through adjustment of gene expression, including transcriptional regulation, epigenetic regulation of chromatin modification, and post-transcriptional regulation.24-29 For instance, IncRNA H19 stimulated osteogenic differentiation of bone marrow mesenchymal stems cells by means of targeting the miR-149/SDF-1 axis.30 Importantly, lncRNAs are also involved in many pathological processes to influence many diseases,25 especially tumors.31 According to their effects, they can be divided into oncogenes and suppressor genes. IncRNA VCAN-AS1 promotes the progression of GC by interacting with eIF4A3 to downregulate p53.32 On the contrary, IncRNA GAS5 inhibits the metastasis of GC via positively modulating p53.33 Firstly, lncRNAs are expressed in almost all types of cancers. Secondly, lncRNAs are expressed variably in the same tumor tissue or
Using gene chip technology, He et al. found 2,669 upregulated and 3,506 downregulated lncRNAs in GC.34 And last, the expression levels of the same lncRNA are different in disparate tumors. H19 is upregulated in GC,35 breast cancer,36 colorectal cancer (CRC),37 cholangiocarcinoma,38 and NSCLC.39 But it is downregulated in papillary thyroid carcinoma.40

ANGIOGENESIS AND ANTI-ANGIOGENIC THERAPY

In 1971, Folkman first proposed the hypothesis that tumor growth and metastasis depended on angiogenesis.41 Angiogenesis is a highly dynamic, sophisticated process. New blood vessels are generated from existing germinated or ungerminated vascular beds, including degradation of vascular basement membranes; activation, proliferation, and migration of vascular endothelial cells; and reconstruction of new blood vessels and vascular networks.

Tumor micro environment (TME) refers to the local internal environment composed of locally infiltrated immune cells, mesenchymal cells, extracellular matrix, and active mediators, together with tumor cells and tumor stem cells, namely the site of angiogenesis.42,43 Due to the rapid growth of tumor cells, the blood supply cannot meet the growth needs of tumor cells, leading to hypoxia and acidosis in the TME. Hypoxia induces cells to produce proangiogenic factors, which turn on the switch of tumor angiogenesis.44 The continuous secretion of proangiogenic factors in the TME leads to abnormal vascular structure with a circuitous leakage state, and ultimately it results in poor blood perfusion of the tumor. This result further aggravates hypoxia and acidosis in the TME. Abnormal tumor blood vessels cause the immunosuppressive state of TME.45 A large number of immunosuppressive cells and factors are released and collected, including myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), M2 phenotype of tumor associated macrophages (TAMs), T regulatory cells (Tregs), IL-10, TGF-β, and so on. The increased expression of PD-L1 in tumor cells inhibited the infiltration of cytotoxic T lymphocyte (CTL) to tumor cells. The cytotoxic effect of NK cells is reduced or even inactivated. The differentiation and maturation of DCs are inhibited, and the antigen presenting ability is decreased. The immunosuppressive state of TME eventually gives rise to immune escape of tumor cells. In addition, hypoxia can induce dedifferentiation of tumor cells and enhance the stem cell phenotype of tumor cells.46 Anti-angiogenic therapy can inhibit angiogenesis and normalize abnormal tumor blood vessels. Vascular normalization can reprogram the immunosuppressive state into an immune activated state, and the activation of immune cells can in turn promote vascular normalization, thus forming a good positive feedback loop (Figure 1).47,48 It is the theoretical basis for anti-angiogenic therapy in combination with immune checkpoint inhibitors in the treatment of malignancies.49

In February 2004, the US FDA authorized bevacizumab in combination with 5-FU for the first-line treatment of metastatic colorectal cancer.50 Up to now, angiogenesis theory and inhibitors have gained widespread acceptance. At present, anti-angiogenic drugs are divided into three categories: (1) macromolecular monoclonal antibodies (bevacizumab, ramucirumab), (2) small molecule multi-target anti-angiogenic drugs (sorafenib, sunitinib, and so on), and (3) endostatin (endostar). Anti-angiogenic therapy is more effective in combination with other anti-tumor therapies, especially immunotherapy. Compared with bevacizumab + chemotherapy, atezolizumab + bevacizumab + chemotherapy significantly improved progression-free survival (PFS) and overall survival (OS) of patients with metastatic non-squamous NSCLC, no matter what PD-L1 and EGFR or ALK gene altered status.51

![Figure 1. Relationship between tumor angiogenesis and immune microenvironment before and after anti-angiogenic therapy](image.png)
Choueiri et al. first reported that avelumab combined with axitinib improved PFS in patients with advanced clear cell renal cancer (RC). However, the resistance of anti-angiogenic therapy critically imposes restrictions on its clinical application.

CORRELATION BETWEEN IncRNAs AND ANGIOGENESIS IN CANCER

IncRNAs can regulate angiogenesis in cardiovascular disease, diabetes, and even tumors. It is common knowledge that the vascular endothelial growth factors (VEGF), Notch, and angiogenin (Ang) signaling pathways are the vital signaling pathways involved in angiogenesis. IncRNAs are closely connected with angiogenesis and may regulate tumor angiogenesis (Figure 2, Table 1).

Head and neck tumors

Nasopharyngeal carcinoma (NPC) with obvious regional aggregation, most frequently occurring in Southeast Asian countries, is a malignant tumor usually occurring in the mucosa and epithelium of the nasopharynx. Chen et al. reported a novel IncRNA SRRM2-AS that is regarded as a potential marker for angiogenesis in NPC. Overexpression of SRRM2-AS was confirmed in NPC tissues. Moreover, further investigations revealed that silencing SRRM2-AS inhibited angiogenesis in NPC by activating MYLK-mediated cGMP/PKG signaling pathway. It was reported that IncRNA MALAT1 might be a new biomarker for thyroid cancer. Fibroblast growth factors 2 (FGF2) is a VEGF-independent angiogenic factor. MALAT1 and FGF2 were dramatically overexpressed in thyroid cancer tissues and cells (FTC133). It was noteworthy that both of them also presented high expression in TAMs. The culture medium (CM) from TAMs can effectively promote the proliferation, migration, and invasion of FTC133 cells. The CM from M2 macrophages and TAMs effectively increased the angiogenesis of human umbilical vein endothelial cells (HUVECs). After downregulation of MALAT1 in TAMs, the CM could restrain proliferation, migration, and invasion of FTC133 cells and reduce angiogenesis. The same results were observed when FGF2 in TAMs was downregulated. Mechanism studies have found that MALAT1 promoted angiogenesis and enhanced cell proliferation, migration, and invasion by mediating FGF2 protein secretion of TAMs in thyroid cancer (Figure 2A).

Respiratory tumors

Lung cancer remains one of the leading causes of death from malignancies worldwide, despite significant reductions in the death rate from lung cancer after intensive research and standardized treatment. The result of bioinformatics analysis implied LINC00173.v1 was mainly expressed in lung cancer tissues and significantly upregulated in lung squamous cell carcinoma. Overexpression of LINC00173.v1 was a symbol of poorer OS and PFS. This result was confirmed in situ hybridization. Silencing LINC00173.v1 inhibited the proliferation and migration of vascular endothelial cells in vivo and in vitro. The mechanism experiment proved that LINC00173.v1 increased the expression of VEGFA by sponging miR-511-5p to boost the proliferation and migration of vascular endothelial cells in lung squamous cell carcinoma. In a xenograft model of the mice,
miR-511-5p/VEGFA axis may be the mechanism of LINCC00173.v1-induced tumorigenesis. Moreover, inhibiting the expression of LINCC00173.v1 has a therapeutic effect in SQC.

DNNp63α is one of the p53/p63/p73 family transcription factors, which is essential to the occurrence,78 development, and even drug resistance of a variety of tumors.79 Further studies demonstrated that DNNp63α raised the transcription of LINCC00173.v1. These events suggested that LINCC00173.v1 may be an underlying anti-angiogenic therapeutic target of lung squamous cell carcinoma (Figure 2B).60 Hou et al. found that lncRNA EPIC1 is upregulated in NSCLC cells and tissues. Mechanistically, EPIC1 enhanced tumor angiogenesis by activating the Ang2/Tie2 axis in NSCLC. Angiogenesis assay in chick chorioallantoic membranes (CAM) showed that overexpression of EPIC1 promoted CAM angiogenesis, while silencing EPIC1 inhibited CAM angiogenesis. A xenograft nude mice model confirmed that EPIC1 overexpression significantly increased tumor angiogenesis, the number of CD31 marked channels, and Ang2 levels. What is more, samples from patients with NSCLC also confirmed the results. EPIC1 might be a biomarker for angiogenesis in NSCLC.68

Table 1. Correlation between lncRNAs and angiogenesis in tumors

Classification	LncRNA	Cancer	Expression	Mechanism	Biological functions	Ref
CeRNA	LINC00173.v1	lung squamous cell carcinoma	up	ΔNp63α/LINC00173.v1/miR-511-5p/VEGFA axis	promoting tumorigenesis and angiogenesis	60
	MYLK-AS1	hepatocellular carcinoma	up	miR-424-5p/E2F7/VEGFR-2 axis	promoting proliferation, invasion, migration, and angiogenesis	61
	MALAT1		up	miR-140/VEGFA axis	promoting angiogenesis and changing polarization of macrophage	62
	SNHG17	colorectal carcinoma	up	miR-23a-3p/CXCL12 axis	promoting viability proliferation, migration, and angiogenesis	63
	SNHG22	gastric carcinoma	up	miR-361-3p/HMG1A1/Wnt/β-catenin axis	promoting proliferation, angiogenesis, and transition from G1 phase to S phase; inhibition of apoptosis	64
	TUG1	osteosarcoma	up	miR-143-5p/HIF-1α	promoting invasion and angiogenesis	65
Signaling pathway	SRRM2-AS	nasopharyngeal carcinoma	up	MYLK/eGMP/PKG axis	promoting proliferation, colony formation, angiogenesis; regulating cell cycle; inhibition apoptosis	66
	LINC01314	gastric carcinoma	down	KLK4/Wnt/β-catenin axis	inhibiting migration, invasion, and angiogenesis	67
Angiogenic factors and receptors	EPIC1	non-small cell lung cancer	up	Ang2/Tie2 axis	promoting angiogenesis	68
	RAB11B-AS1	breast cancer	up	HIF-2/Rab11B-AS1/RNA Pol II/VEGFA and ANGPTL4	promoting migration, invasion, angiogenesis, and distant metastasis	69
Exosome	TUG1	cervical cancer	up	exosome transfer	promoting angiogenesis	70
Gene transcription	LINC00261	prostate cancer	down	DKK3/GATA6/VEGF and CD31	inhibiting proliferation, migration, invasion, tumorigenicity, and angiogenesis	71
	SLC26A4-AS1	glioma	down	NFkB1/NPTX1	Inhibiting cell viability, proliferation, migration, invasion and angiogenesis	72
	LINC00320		down	NFkB1/AQP9	Inhibiting cell viability, proliferation, migration, invasion, and angiogenesis	73
Tumor associated macrophage	MALAT1	thyroid cancer	up	TAMs FGF2 protein	promoting proliferation, migration, invasion, angiogenesis	74
Cancer stem cells	H19	hepatocellular carcinoma	up	exosome transfer	promoting tube formation and cell-cell adhesion	75

Digestive system tumors
The morbidity and mortality of various digestive system tumors are among the top 10 malignancies in the world.2 LINC01314 (CTXND1) was low in GC by analyzed GC Chip Data GSE19826. In vivo and in vitro, upregulation of LINC01314 or downregulation of KLK4 reduced the proliferation, migration, invasion, and angiogenesis of GC cells and decreased micro-vessel density. Bioinformatic analysis showed that there was a specific binding site between KLK4 and LINC01314. Dual-luciferase reporter gene assay confirmed the result. The Wnt/β-catenin signaling pathway participated in the adjustment of various pathophysiological procedures.80–82 Abnormal Wnt/β-catenin signaling pathway can induce many diseases.83–85 In western blot analysis, the expression levels of KLK4, Wnt-1, β-catenin, Cyclin D1, and N-cadherin were decreased after the upregulation of LINC01314. Animal experiments showed that upregulation of LINC01314 or downregulation of KLK4 can inhibit tumor growth and reduce the micro-vessel density. The preceding results revealed that overexpressed LINC01314 can inhibit the Wnt/β-catenin signaling pathway by downregulating KLK4 to suppress the
angiogenesis in GC.67 lncRNA SNHG22 can upregulate HMGAI through sponge miR-361-3p to activate Wnt/β-catenin pathway, thereby promoting GC progression (Figure 2C).64,65 1,081 lncRNAs, 127 microRNAs, and 1,983 differentially expressed mRNAs were screened from RNA-seq data of hepatocellular carcinoma (HCC) patients in the TCGA database. More importantly, lncRNA MYLK-AS1/miR-424-5p/SEF7 axis was the only ceRNA regulatory axis negatively correlated with OS. MiR-424-5p has the dual effects of oncogene and tumor suppressor gene. In LSCC,86 esophageal cancer,87 CRC,88 and thyroid cancer,89 miR-424-5p mainly intensifies the proliferation, invasion, migration, and drug resistance of tumor cells. However, it has the opposite effect on liver,90 breast,91 and nasopharyngeal cancers.92 Mechanistically, MYLK-AS1 accelerated angiogenesis by regulating the miR-424-5p/SEF7 axis to activate the VEGFR-2 signaling pathway in HCC. This result was further confirmed in xenograft mice tumors.61 Hou et al. covered that miR-140/VEGFA axis may be the potential mechanism for regulating HCC angiogenesis by MALAT1.62 In colorectal adenocarcinoma (CRC), SNHG17 boosted CRC angiogenesis through regulating the miR-23a-3p/ CXCL12 axis to induce proliferation and migration of CRA cells.63

Genitourinary system tumors
According to the latest data, breast cancer overtakes lung cancer as the most common malignancy.9 Niu et al. established breast cancer cell lines of different oxygen concentrations and found that hypoxia could induce upregulation of lncRNA RAB11B-AS1. HIF, a highly conserved transcription factor, can regulate the expression of multifarious genes responsible for specific physiological responses.93 ChIP-qPCR analysis showed that HIF-2 induced the overexpression of RAB11B-AS1 in hypoxia. Gain-of-function experiments demonstrated that upregulation of RAB11B-AS1 enhanced invasion and migration of breast cancer cells. The opposite results were in loss-of-function experiment. Animal studies showed that RAB11B-AS1 promoted angiogenesis and metastasis. Mechanistically, RAB11B-AS1 recruited RNA Pol II to enhance hypoxia-induced angiogenic factors, VEGFA, and ANGPTL4, thus motivating angiogenesis in breast cancer (Figure 2D).94 Lei et al. reported that lncRNA TUG1 was transferred by exosomes to the HUVECs to promote angiogenesis and cell-cell adhesion of HUVECs. Mechanism studies have shown that TUG1 might be a therapeutic target and prognostic indicator in osteosarcoma.95 CD90 + HCC cells are described as cancer stem-cell-like that exhibit aggressive and metastatic phenotypes.96 Information analysis showed that miR-143-5p was a potential target binding miRNA of TUG1, and HIF-1α was the target gene of miR-143-5p. Further experiments verified that TUG1 positively regulated HIF-1α through acting ceRNA of miR-143-5p, thereby promoting the invasion and angiogenesis of osteosarcoma cells. The xenografted tumor experiments in nude mice showed that silencing TUG1 refrained tumor growth, peritoneal diffusion, and metastasis in vivo. In short, TUG1 might be a potential therapeutic target and prognostic indicator in osteosarcoma.97

Cancer stem cells (CSCs)
CSCs can secrete plenty of VEGF to promote tumor angiogenesis. In the meantime, CSCs depend on vascular niches. CSCs and angiogenesis can form a positive feedback loop to boost the occurrence and development of tumors.98 CD90 + HCC cells are described as cancer stem-cell-like that exhibit aggressive and metastatic phenotypes. CD90 + cells isolated from Huh7 cell line were found to have mesenchymal phenotype and release exosomes in large quantities in HCC. Exosomes produced by CD90 + Huh7 cells promoted angiogenesis and cell-cell adhesion of HUVECs. Mechanism studies have shown that CD90+ Huh7 cells can overexpress H19 and transfer H19 into HUVECs by secreting exosomes, thus promoting angiogenesis and
adhesion of endothelial monolayer in HUVECs. Due to the difficulty in successfully isolating and identifying CSCs, studies on CSCs are still in infancy. There are few studies on lncRNAs, angiogenesis, and CSCs. Scientific and technological progress will solve the problem of isolation and identification of CSCs in the future. The studies of lncRNAs, angiogenesis, and CSCs will also embrace a qualitative leap by then.

CORRELATION BETWEEN lncRNAs AND ANTI-ANGIOGENIC THERAPY RESISTANCE IN CANCER

Anti-angiogenic therapy, as an important means of tumor therapy, has achieved good efficacy in clinical application. However, the shortcoming of drug resistance has also been highlighted in the long-term clinical application. Many studies have attested that lncRNAs are closely related to anti-angiogenic therapy resistance (Table 2).

Sorafenib

Sorafenib is a multi-kinase inhibitor targeted VEGFR and platelet-derived growth factor receptor (PDGFR) and others. As a first-line treatment for advanced HCC, it has effectively ameliorated the prognosis of patients with HCC. However, patients gradually develop resistance, leading to poor treatment. Fan et al. established HCC cell lines resistant to sorafenib (HepG2-R and SMMC-R). Microarray analysis results displayed that there were 293 upregulated lncRNAs and 207 downregulated lncRNAs in sorafenib-resistant HCC cells, among which MALAT1 was significantly overexpressed. The knockdown of MALAT1 in HepG2-R and SMMC-R cells resulted in the decrease of IC50 value, inhibition of cell proliferation and migration, G2-M cell-cycle arrest, and increase of apoptosis. Aurora-A not only promotes the genesis and progression of tumors, but it also mediates the resistance of chemotherapy and radiotherapy and participates in immunotherapy. In clinical trials, its selective inhibitors or siRNA have been demonstrated to have anti-tumor effects. Mechanically, MALAT1 upregulated the expression of Aurora-A by sponging miR-140-5p to intensify sorafenib resistance of HCC cells. Clinical patient tissue tests further confirmed these results. Patients with high MALAT1 expression had poor prognosis. More importantly, animal studies indicated that silencing MALAT1 promoted the anti-tumor efficacy of sorafenib in vivo.

In HCC, lncRNA TTN-AS1 was a potential therapeutic target of HCC. It is common knowledge that cyclin E1 is the tumorigenic factor and biomarker of numerous malignant tumors, such as, breast cancer, osteosarcoma, etc. Research has demonstrated that lncRNA TTN-AS1 can competitively inhibit miR-16-5p to upregulate cyclin E1 and regulate the PTEN/akt signaling pathway to enhance sorafenib resistance of HCC. In a tumor-forming model in nude mice, knockdown of TTN-AS1 reduced sorafenib resistance in vivo.

Classification	Drugs	Cancer	lncRNA	Role	Mechanism	Ref
CeRNA	sorafenib	hepatocellular carcinoma	MALAT1	up	regulating miR-140-5p/Aurora-A axis	99
					regulating miR-16-5p/cyclin E1/PTEN/akt axis	99
Gene transcription	sunitinib	renal cancer	HOTAIR	up	regulating miR-17-5p/Beclin1 axis	100
Signal pathway	anlotinib	non-small cell lung cancer	CCAT1	up	regulating c-Myc	102
			NEAT1	up	regulating Wnt/b-catenin signaling pathway	105

Sunitinib

Sunitinib, a multitarget RTK inhibitor with strong anti-angiogenesis, has been approved for imatinib-resistant stromal tumor, renal, and pancreatic neuroendocrine tumors. Sunitinib has been proved to extend PFS and OS of patients with RC, but its efficacy has been overshadowed by drug resistance after the sensitive phase. Li et al. recognized a novel lncRNA, HOTAIR, which was an enhancing factor of sunitinib resistance in RC. HOTAIR promoted sunitinib resistance in RC by negatively regulating miR-17-5p to promote Beclin1-mediated autophagy. Knockdown of HOTAIR partially reversed sunitinib resistance of RC cells in vivo. Thus, miR-17-5p/Beclin1 axis might be the potential mechanism of sunitinib resistance of RC. In renal cell carcinoma (RCC), lncRNA CCAT1 granted resistance to sunitinib in a c-Myc-dependent manner, providing a new target for improving sunitinib therapy.

In addition, Liu et al. first proposed lncRNA SNHG12 could upregulate the expression of CDCA3 by stabilizing transcription factor SP1 to facilitate tumor progressions and resistance to sunitinib in RCC. RNA sequence and bioinformatics analysis demonstrated that SNHG12 was highly expressed in RCC tissues and cells resistant to sunitinib, associating with poor prognoses. Downregulation of SNHG12 meaningly reduced the proliferation, migration, and invasion ability of tumor cells, and partially reversed the resistance to sunitinib. CDCA3, a potential marker for poor prognoses, often acts as an oncogene in digestive system tumors and NSCLC. GSEA analysis and rescue assays confirmed that SNHG12 accelerated the progression of RCC by positively regulating CDCA3. RIP and ChIP experiments confirmed that SNHG12 activated CDCA3 transcription by binding and stabilizing SP1. Animal experiments made clear that knockdown SNHG12 inhibited tumor progression and reversed sunitinib resistance. Thus, SNHG12 may be a potential therapeutic target for the reversal of sunitinib resistance in RCC.
Anlotinib

Anlotinib is a multi-target inhibitor that targets c-kit, PDGFR, fibroblast growth factor receptor, and VEGFR. In 2018, it was approved for patients with NSCLC who progressed after treatment of at least two drugs in China. It has been shown to prolong PFS and OS in patients with advanced refractory NSCLC. Previous studies reported that IncRNA NEAT1 played an oncogene role in NSCLC. It promoted the progression of NSCLC by regulating the miR-376b-3p/SULF1 and miR-204/NUAK1 axis, and it even mediated the pachli Baxter effect of NSCLC by activating the AKT/mTOR signaling pathway. Gu et al. reported that NEAT1 was involved in regulating anlotinib sensitivity in NSCLC. In vivo, the knockdown of NEAT1 in A549 and NCI-H1975 cells enhanced the sensitivity of the cells to anlotinib. Compared with anlotinib alone group, tumor volume and weight were significantly reduced in the NEAT1 knockdown combined anlotinib group in vivo. Further studies showed that NEAT1 knockdown promoted the cytotoxicity of anlotinib by inhibiting the Wnt/β-catenin signaling pathway. Downregulation of NEAT1 can enhance the anti-tumor effect of anlotinib in mouse xenograft tumor model (Figure 2I).

CONCLUSIONS AND PERSPECTIVES

Cancer poses a serious threat to the global economy and human health. The functions of ncRNAs have been discovered through high-throughput sequence technology. We mainly reviewed IncRNAs that can play ceRNAs of miRNAs, target directly proangiogenic factors and their receptors, or act on some signaling pathways to regulate tumor angiogenesis. The same IncRNA regulates angiogenesis by different mechanisms in different tumors. In addition, we also reviewed most of the IncRNAs regulate the mechanism of anti-angiogenic therapy resistance through sponging miRNA. Ye et al. discovered anisomycin inhibited angiogenesis in ovarian cancer by weakening the molecular sponge effect of IncRNA MEG3/miR-421/PDGFRα axis. Tretinin can target and inhibit the TR4-mediated expression of IncRNA TASR/AXL axis, thereby reducing sunitinib resistance in RCC. These results further confirmed the feasibility of IncRNAs as potential targets for tumor therapy. Wang et al. reported ASRPS secreted by LINC00908 had anti-tumor angiogenesis effects in triple-negative breast cancer. Mechanically, ASRPS downregulated STAT3 phosphorylation and reduced sunitinib resistance in RCC. These results further confirmed the feasibility of IncRNAs as potential targets for tumor therapy. Conclusions and perspectives of this review are summarized in Table 1 and Figure 1.

REFERENCES

1. Siegel, R.L., Miller, K.D., and Fuchs, H.E. (2021). Cancer statistics, 2021. CA Cancer J. Clin. 71, 7–33.
2. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., and Jemal, A. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249.
3. Lugano, R., Ramachandran, M., and Dimberg, A. (2020). Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol. Life Sci. 77, 1745–1770.
4. Weshner, N., Semple, J.P., Welch, W.R., and Folkman, J. (1991). Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N. Engl. J. Med. 324, 1–8.
5. Fox, S.B. (1997). Tumour angiogenesis and prognosis. Histopathology 30, 294–301.
6. Chakerov, R., Hilpert, F., Mahner, S., El-Balat, A., Harter, P., De Gregorio, N., Fridrich, C., Markmann, S., Potenberg, J., Lorenz, R., et al. (2018). Sorafenib plus topotecan versus placebo plus topotecan for platinum-resistant ovarian cancer (TRIAS): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 19, 1247–1258.
7. Rani, V., and Prabhu, A. (2021). Combining angiogenesis inhibitors with radiation: advances and challenges in cancer treatment. Curr. Pharm. Des. 27, 919–931.
8. Manegold, C., Dingemans, A.C., Gray, J.E., Nakagawa, K., Nico1on, M., Peters, S., et al. (2017). The potential of combined immunotherapy and antiangiogenesis for the synergistic treatment of advanced NSCLC. J. Thorac. Oncol. 12, 194–207.
9. Botsford-Miller, J.N., Coleman, R.L., and Sood, A.K. (2012). Resistance and escape from antiangiogenesis therapy: clinical implications and future strategies. J. Clin. Oncol. 30, 4026–4034.
10. Djebali, S., Davis, C.A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F., et al. (2012). Landscape of transcription in human cells. Nature 489, 101–108.
11. Mattick, J.S., and Makunin, I.V. (2006). Non-coding RNA. Hum. Mol. Genet. 15 Spec. No I, R17–R29.

12. Yang, X., Meng, L., Zhong, Y., Hu, F., Wang, L., and Wang, M. (2021). The long intergenic noncoding RNA GAS5 reduces cisplatin-resistance in non-small cell lung cancer through the miR-217/LHPP axis. Aging (Albany NY) 13, 2864–2884.

13. Jiang, X., Guan, J., Xu, Y., Ren, H., Jiang, J., Wudu, M., Wang, Q., Su, H., Zhang, Y., Zhang, B., et al. (2021). Silencing of CASC8 inhibits non-small cell lung cancer cell function and promotes sensitivity to osimertinib via FOXM1. J. Cancer 12, 387–396.

14. Wang, H., Lu, B., Ren, S., Wu, F., Wang, X., Yan, C., and Wang, Z. (2020). Long non-coding RNA LINCO1116 contributes to gefitinib resistance in non-small cell lung cancer through regulating IFH4. Mol. Ther. Nucleic Acids 19, 218–227.

15. Huang, D., Chen, J., Yang, L., Ouyang, Q., Li, J., Lao, L., Zhao, J., Liu, J., Liu, Y., Xing, T., et al. (2018). NKILA IncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death. Nat. Immunol. 19, 1112–1123.

16. Yu, Z., Wang, G., Zhang, C., Liu, Y., Chen, W., Wang, H., and Liu, H. (2020). LncRNA SBF2-AS1 affects the radiosensitivity of non-small cell lung cancer via modulating miRNA-302a/MBNL3 axis. Cell Cycle 19, 300–316.

17. Chen, X., Chen, Z., Yu, S., Nie, F., Yan, S., Ma, P., Chen, Q., Wei, C., Fu, H., Xu, T., et al. (2018). Long noncoding RNA LINCO1234 functions as a competing endogenous RNA to regulate CBFB expression by splicing miR-204-5p in gastric cancer. Clin. Cancer Res. 24, 2002–2014.

18. Chen, Z., Chen, X., Lei, T., Gu, Y., Gu, J., Huang, J., Lu, B., Yuan, L., Sun, M., and Wang, Z. (2020). Integrative analysis of NSCLC identifies LINCO1234 as an oncogenic IncRNA that interacts with HNRNPA2B1 and regulates miR-106b biogenesis. Mol. Ther. 28, 1479–1493.

19. Chen, Z., Chen, X., Lu, B., Gu, Y., Chen, Q., Lei, T., Nie, F., Gu, J., Huang, J., Wei, C., et al. (2020). Upregulated LINCO1234 promotes non-small-cell lung cancer cell metastasis by activating VAY3 and repressing BTG2 expression. J. Hematol. Oncol. 13, 7.

20. Chen, Z., Chen, Q., Cheng, Z., Gu, J., Feng, W., Lei, T., Huang, J., Pu, J., Chen, X., and Wang, Z. (2020). Long non-coding RNA CASC9 promotes gefitinib resistance in NSCLC by epigenetic repression of DUSP1. Cell Death Dis. 11, 858.

21. Teppan, J., Barth, D.A., Prinz, F., Jonas, K., Pichler, M., and Klee, C. (2020). Involvement of long non-coding RNAs (IncRNAs) in tumor angiogenesis. Noncoding RNA 6, 42.

22. Qu, L., Ding, J., Chen, C., Wu, Z.J., Liu, B., Gao, Y., Chen, W., Liu, F., Sun, W., Li, X.F., et al. (2016). Exosome-transmitted IncAR5 promotes sunninhin resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell 29, 653–668.

23. Guo, C.J., Ma, X.K., Xing, Y.H., Zheng, C.C., Xu, Y.F., Shan, L., Zhang, J., Wang, S., Wang, Y., Carmichael, G.G., et al. (2020). Distinct processing of IncRNAs contributes to non-conserved functions in stem cells. Stem Cell Reports 181, 621–636.e622.

24. Anastasiadou, E., Jacob, L.S., and Slack, F.J. (2018). Non-coding RNA networks in cancer. Nat. Rev. Cancer 18, 5–18.

25. Beermann, J., Piccoli, M.T., Viercek, J., and Thum, T. (2016). Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol. Rev. 96, 1297–1325.

26. Slack, F.J., and Chinnaiyan, A.M. (2019). The role of non-coding RNAs in oncology. Cell 179, 1033–1055.

27. Zhang, X., Wang, W., Zhu, W., Dong, J., Cheng, Y., Yin, Z., and Shen, F. (2019). Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int. J. Mol. Sci. 20, 5573.

28. Kopp, F., and Mendell, J.T. (2018). Functional classification and experimental dissection of long noncoding RNA. Cell 172, 393–407.

29. Statellio, L., Guo, C.J., Chen, L.L., and Huarte, M. (2021). Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118.

30. Li, G., Yun, X., Ye, K., Zhao, H., An, J., Zhang, X., Han, X., Li, Y., and Wang, S. (2020). Long non-coding RNA H19 stimulates osteogenic differentiation of bone marrow mesenchymal stem cells via the microRNA-149/SDF-1 axis. J. Cell Mol Med. 24, 4944–4955.

31. Sanchez Calle, A., Kawamura, Y., Yamamoto, Y., Takeshita, F., and Ochiya, T. (2018). Emerging roles of long non-coding RNA in cancer. Cancer Sci. 109, 2093–2100.
Review

53. Iwamoto, H., Abe, M., Yang, Y., Cui, D., Seki, T., Nakamura, M., Hosaka, K., Lim, S., Wu, J., He, X., et al. (2018). Cancer lipid metabolism confers angiogenic drug resistance. Cell Metab. 28, 104–117.e105.

54. Kuczynski, E.A., and Reynolds, A.R. (2020). Vessel co-option and resistance to antiangiogenic therapy. Angiogenesis 23, 55–74.

55. Si, X., Zheng, H., Wei, G., Li, M., Li, W., Wang, H., Guo, H., Sun, J., Li, C., Zhong, S., et al. (2020). circRNA Hspi3 induces cardiac regeneration after myocardial infarction in mice by binding to Notch1 and miR-133a. Mol. Ther. Nucleic Acids 21, 636–655.

56. Li, Y., Yan, C., Fan, J., Hou, Z., and Han, Y. (2021). MiR-221-3p targets Hif-1alpha to inhibit angiogenesis in heart failure. Lab. Invest. 101, 104–115.

57. Zou, J., Liu, K.C., Wang, W.P., and Xu, Y. (2020). Circular RNA COL1A2 promotes angiogenesis via regulating miR-29b/VEGF axis in diabetic retinopathy. Life Sci. 256, 117888.

58. Cheng, N., Li, X., Zhao, C., Ren, S., Chen, X., Cai, W., Zhao, M., Zhang, Y., Li, J., Wang, Q., et al. (2015). Microarray expression profile of long non-coding RNAs in EGRF-TKIs resistance of human non-small cell lung cancer. Oncol. Rep. 33, 833–839.

59. Caporrello, N., Lupo, G., Olivieri, M., Cristaldi, M., Cambria, M.T., Salmeri, M., and Anfuso, C.D. (2017). Classical VEGF, Notch and Ang signalling in cancer angiogenesis, alternative approaches and future directions (Review). Mol. Med. Rep. 16, 4393–4402.

60. Chen, J., Liu, A., Wang, Z., Wang, B., Chai, X., Lu, W., et al. (2020). LINC00173.v1 promotes angiogenesis and progression of lung squamous cell carcinoma by sponging miR-511-5p to regulate VEGFA expression. Mol. Cancer. 19, 98.

61. Teng, F., Zhang, J.X., Guo, H., Wu, X.B., Tang, W.G., Wang, J.F., et al. (2020). Correction to: LncRNA-MALAT1 Promotes Angiogenesis of Thyroid Cancer by Modulating Tumor-Associated Macrophage FGFR2 Protein Secretion. J Cell Biochem. 118, 4821–4830.

62. Niu, Y., Bao, L., Chen, Y., Wang, C., Luo, M., Zhang, B., et al. (2020). HIF2-Induced Long Non-coding RNA SLC26A4-AS1 Exerts antiangiogenic effects in human glioma by upregulating NPTX1 via NFkB1 transcriptional factor. FEBS J. 288, 212–228.

63. Chang, L., Bao, Z., Xiong, X., Liu, J., Wang, D., Zhou, F., et al. (2020). Long Non-coding RNA LINC03320 Inhibits Tumorigenicity of Glioma Cells and Angiogenesis Through Downregulation of NFkB1-Mediated AQP9. Front. Cell Neurosci. 14, 542552.

64. Hou, Y., Jia, H., Cao, Y., Zhang, S., Zhang, X., Wei, P., et al. (2021). LncRNA EPIC1 Promotes Angiogenesis of Gastric Cancer by Targeting the Wnt/beta-catenin Signaling Pathway. Cell Int. 975, 104980.

65. Yu, X., Hu, L., Li, S., Shen, J., Wang, D., Xue, R., et al. (2019). Long non-coding RNA Taurine upregulated gene 1 promotes osteosarcoma cell metastasis by mediating TGF-β1 signaling. Mol. Cancer. 18, 117.e105.

66. Chen, S., You, Z., Luo, X., et al. (2020). Silencing of long non-coding RNA LINC00261 suppresses prostate cancer tumorigenesis through upregulation of GATA6-mediated DKK3. Cancer Cell Int. 20, 47.

67. Li, Y., Huang, X., and Wei, X. (2020). Long noncoding RNA LINC00261 suppresses prostate cancer tumorigenesis through upregulation of GATA6-mediated DKK3. Cancer Cell Int. 20, 47.

68. Lei, Y., Yan, R., Chen, W., Ding, X., Liu, J., Chen, G., et al. (2021). Long non coding RNA SL26A4-AS1 exerts antiangiogenic effects in human glioma by upregulating NPTX1 via NFkB1 transcriptional factor. FEBS J. 288, 212–228.

69. Huang, J.K., Ma, L., Song, W.H., Lu, B.Y., Huang, Y.B., Dang, H.M., et al. (2017). LncRNA-MALAT1 Promotes Angiogenesis of Thyroid Cancer by Modulating Tumor-Associated Macrophage FGFR2 Protein Secretion. J Cell Biochem. 118, 4821–4830.

70. Coniglio, A., Costa, V., Lo Dico, A., Saita, L., Buccheri, S., Dieli, F., et al. (2015). CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol. Cancer. 14, 155.

71. Guan, S., Wei, J., Huang, L., and Wu, L. (2020). Chemotherapy and chemo-resistance in nasopharyngeal carcinoma. Eur J Med Chem. 207, 112758.

72. Eguchi, R., and Wakabayashi, I. (2020). HDGF enhances VEGF-dependent angiogenesis and FGFR2 is a VEGF-dependent angiogenic factor in nonsmall cell lung cancer. Oncol Rep. 44, 14–28.

73. Niu, M., He, Y., Xu, J., Ding, L., He, Y., Li, Y., et al. (2021). Noncanonical TGF-beta signaling leads to FBXO3-mediated degradation of DeltaNp63alpha promoting breast cancer metastasis and poor clinical prognosis. PLoS Biol. 19, e3001113.

74. Tao, H., and Gan, Y.H. (2020). ΔNp63α promotes the expression and nuclear translocation of PTEN, leading to cisplatin resistance in oral cancer cells. Am J Transl. Res. 12, 6187–6203.

75. Zhou, J.Y., Huang, D.G., Zhu, M., Gao, C.Q., Yan, H.C., Li, X.G., et al. (2020). Wnt/ beta-catenin-mediated heat exposure inhibits intestinal epithelial cell proliferation and stem cell expansion through endoplasmic reticulum stress. J Cell Physiol. 235, 5613–5627.

76. Wei, H., Beeson, G.C., Ye, Z., Zhang, J., Yan, H., Damon, B., et al. (2021). Activation of Wnt/beta-catenin signalling and HIF1alpha stabilisation alters pluriplasticity and differentiation/proliferation properties of human-induced pluripotent stem cells. Bio Cell. 113, 133–145.

77. Lorzadhe, S., Kohan, L., Khemakhem, M., and Azarpaz, N. (2021). Autophagy and the Wnt signaling pathway: A focus on Wnt/beta-catenin signaling. Biochim Biophys Acta Mol Cell Res. 1868, 118926.

78. Serafino, A., Giovanni, D., Rossi, S., and Cozzolino, M. (2020). Targeting the Wnt/ beta-catenin pathway in neurodegenerative diseases: recent approaches and current challenges. Expert Opin Drug Discov. 15, 803–822.

79. Schunk, S.J., Hoege, J., Fleser, D., and Speer, T. (2021). WNT-beta-catenin signalling - a versatile player in kidney injury and repair. Nat Rev Nephrol. 17, 172–184.

80. Li, K., Zhang, J., Tian, Y., He, Y., Xu, X., Pan, W., et al. (2020). The Wnt/beta-catenin/VASP positive feedback loop drives cell proliferation and migration in breast cancer. Oncogene. 39, 2256–2274.

81. Li, Y., Liu, J., Hu, W., Zhang, Y., Sang, J., Li, H., et al. (2019). miR-424-5p Promotes Proliferation, Migration and Invasion of Laryngeal Squamous Cell Carcinoma. Onco Targets Ther. 12, 10441–10453.

82. Cui, Y., Yang, J., Bai, Y., Zhang, Y., Yao, Z., Zheng, T., et al. (2020). miR-424-5p Regulates cell proliferation and migration of esophageal squamous cell carcinoma by targeting SIRT4. J Cancer. 11, 6337–6347.

83. Dai, W., Zhou, J., Wang, H., Zhang, M., Yang, X., and Song, W. (2020). miR-424-5p promotes the proliferation and metastasis of colorectal cancer by directly targeting SCN4B. Pathol Res Pract. 216, 152731.

84. Liu, X., Xu, F., Zhang, G., Zhang, D., Liang, N., Li, F., et al. (2019). miR-424-5p Promotes Anoikis Resistance and Lung Metastasis by Inactivating Hippo Signaling in Thyroid Cancer. Mol Ther Oncolytics. 15, 248–260.

85. Cui, Y., Zhang, Y., Bai, Z., Feng, X., He, B., Xie, H., et al. (2019). miR-424-5p represses the metastasis and invasion of intrabehapic cholangiocarcinoma by targeting ARK5. Int J Biol Sci. 15, 1591–1599.
91. Dastmalchi, N., Hosseinpourfeizi, M.A., Khejasteh, S.M.B., Baradaran, B., and Safaralizadeh, R. (2020). Tumor suppressive activity of miR-424-5p in breast cancer cells through targeting PD-L1 and modulating PTEN/Pi3K/AKT/mTOR signaling pathway. Life Sciences. 259, 118239.

92. Zhao, C., Zhao, F., Chen, H., Liu, Y., and Su, J. (2020). MicroRNA-424-5p inhibits the proliferation, migration, and invasion of nasopharyngeal carcinoma cells by decreasing AKT3 expression. Braz J Med Biol Res. 53, e9029.

93. Madu, C.O., Wang, S., Madu, C.O., and Lu, M. (2020). Angiogenesis in Breast Cancer Progression, Diagnosis, and Treatment. J. Cancer. 11, 4474–4494.

94. Sun, Z., and Yan, B. (2020). Multiple roles and regulatory mechanisms of the transcription factor GATA6 in human cancers. Clin Genet. 97, 64–72.

95. Tu, J., Fang, Y., Han, D., Tan, X., Jiang, H., Gong, X., et al. (2021). Activation of nuclear factor-kappaB in the angiogenesis of gloma: Insights into the associated molecular mechanisms and targeted therapies. Cell Proli. 54, e12929.

96. Xu, H., Zhao, G., Zhang, Y., Jiang, H., Wang, W., Zhao, D., et al. (2019). Long non-coding RNA PAXIP1-AS1 facilitates cell invasion and angiogenesis of glioma by recruiting transcription factor ETS1 to upregulate KIF14 expression. J Exp Clin Cancer Res. 38, 486.

97. Eyler, C.E., and Rich, J.N. (2008). Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 26, 2839–2845.

98. Fan, L., Huang, X., Chen, J., Zhang, K., Gu, Y.H., Sun, J., et al. (2020). Long Noncoding RNA MALAT1 Contributes to Sorafenib Resistance by Targeting miR-140-5p/Aurora-A Signaling in Hepatocellular Carcinoma. Mol Cancer Ther.

99. Zhou, Y., Huang, Y., Dai, T., Hua, Z., Xu, J., Ling, Y., et al. (2021). LncRNA TTN-AS1 intensifies sorafenib resistance in hepatocellular carcinoma by sponging miR-16-5p and upregulation of cyclin E1. Biomed Pharmacother. 133, 111030.

100. Li, D., Li, C., Chen, Y., Teng, L., Cao, Y., Wang, W., et al. (2020). LncRNA HOTAIR induces sunitinib resistance in renal cancer by acting as a competing endogenous RNA to regulate autophagy of renal cancers. Cancer Cell Int. 20, 338.

101. Liu, Y., Cheng, G., Huang, Z., Bao, L., Liu, J., Wang, C., et al. (2020). Long noncoding RNA SNAHG12 promotes tumour progression and sunitinib resistance by upregulating CDCA3 in renal cell carcinoma. Cell Death Dis. 11, 515.

102. Shan, L., Liu, W., and Zhan, Y. (2020). Aurora-A kinase oncogenic signaling mediates TGF-β1-induced sunitinib resistance in renal cancer cells through activation of Akt/mTOR signalling pathway. Cell Death Dis. 11, 2509–2524.

103. Wei, R., Thanindratarn, P., Dean, D.C., Hornicek, F.J., Guo, W., and Duan, Z. (2020). Cyclin E1 is a prognostic biomarker and potential therapeutic target in osteosarcoma. J Orthop Res. 38, 1952–1964.

104. Zhou, M., Chen, X., Zhang, H., Xia, L., Tong, X., Zou, L., et al. (2019). China National Medical Products Administration approval summary: anlotinib for the treatment of advanced non-small cell lung cancer after two lines of chemotherapy. Cancer Commun (Lond). 39, 36.

105. Han, B., Li, K., Wang, Q., Zhang, L., Shi, J., Wang, Z., et al. (2018). Effect of Anlotinib as a Third-Line or Further Treatment on Overall Survival of Patients With Advanced Non-Small Cell Lung Cancer: The ALTER 0303 Phase 3 Randomized Clinical Trial. JAMA Oncol. 4, 1569–1575.

106. Chen, L.M., Niu, Y.D., Xiao, M., Li, X.J., and Lin, H. (2020). LncRNA NEAT1 regulates cell proliferation, invasion, migration and apoptosis by targeting has-miR-376b-3p/SULF1 axis in non-small cell lung cancer. Eur Rev Med Pharmacol Sci. 24, 4810–4821.

107. Zhao, M.M., Ge, L.Y., Yang, L.F., Zheng, H.X., Chen, G., Wu, L.Z., et al. (2020). LncRNA NEAT1/miR-204/NUKA1 Axis is a Potential Therapeutic Target for Non-Small Cell Lung Cancer. Cancer Manag Res. 12, 13357–13368.

108. Li, B., Gu, W., and Zhu, X. (2019). NEAT1 mediates paclitaxel-resistance of non-small cell lung cancer through activation of Akt/mTOR signalling pathway. Journal of Drug Targeting. 27, 1061–1067.

109. Ye, W., Ni, Z., Yicheng, S., Pan, H., Huang, Y., Xiong, Y., and Liu, T. (2019). Anisomycin inhibits angiogenesis in ovarian cancer by attenuating the molecular sponge effect of the IncRNAMeg3/miR421/PDGFRA axis. Int. J. Oncol. 55, 1296–1312.

110. Shi, H., Sun, Y., He, M., Yang, X., Nhamada, M., Fukunaga, T., Zhang, X., and Chang, C. (2020). Targeting the TR4 nuclear receptor-mediated IncTASR/AXL signaling with tretniin increases the sunitinib sensitivity to better suppress the RCC progression. Oncogene. 39, 530–545.

111. Wang, Y., Wu, S., Zhu, X., Zhang, L., Deng, J., Li, F., Guo, B., Zhang, S., Wu, R., Zhang, Z., et al. (2020). LncRNA-encoded polypeptide ASBRPs inhibits triple-negative breast cancer angiogenesis. J Exp. Med. 221, 20190050.

112. Tong, S., Tan, G., Jiang, X., Han, P., Zhai, B., Dong, X., Qiao, H., Jiang, H., and Sun, X. (2016). An artificial lncRNA targeting multiple miRNAs overcomes sorafenib resistance in hepatocellular carcinoma cells. Oncotarget 7, 73257–73269.

113. Delami, S.Z., Cortes-Hernandez, L.E., Cayrefourcq, L., and Alix-Panabieres, C. (2020). The different facets of liquid biopsy: a kaleidoscopic view. Cold Spring Harb Perspect. Med. 10, a037333.

114. Tong, Y.S., Wang, X.W., Zhou, X.L., Liu, Z.H., Yang, T.X., Shi, W.H., Xie, H.W., Lv, J., Wu, Q.Q., and Cao, X.F. (2015). Identification of the long non-coding RNA POUSF3 as a plasma novel biomarker for diagnosis of esophageal squamous cell carcinoma. Mol. Cancer 14, 3.
Circulating long non-coding RNA GAS5 (growth arrest-specific transcript 5) as a complement marker for the detection of malignant mesothelioma using liquid biopsies. Biomarker Res. 8, 15.

129. Guo, X., Lv, X., Ru, Y., Zhou, F., Wang, N., Xi, H., Zhang, K., Li, J., Chang, R., Xie, T., et al. (2020). Circulating exosomal gastric cancer-associated long noncoding RNA1 as a biomarker for early detection and monitoring progression of gastric cancer: a multiphase study. JAMA Surg. 155, 572–579.

130. Baassiri, A., Nassar, F., Mukherji, D., Shamseddine, A., Nasr, R., and Temraz, S. (2020). Exosomal non coding RNA in LIQUID biopsies as a promising biomarker for colorectal cancer. Int. J. Mol. Sci. 21, 1398.

131. Lee, Y.R., Kim, G., Tak, W.Y., Jang, S.Y., Kweon, Y.O., Park, J.G., Lee, H.W., Han, Y.S., Chun, J.M., Park, S.Y., et al. (2019). Circulating exosomal noncoding RNAs as prognostic biomarkers in human hepatocellular carcinoma. Int. J. Cancer 144, 1444–1452.