Auditory intellectually repetition learning model and trade a problem learning model on row and series algebraic material: The influences on numerical skills

Muhamad Syazali¹*, Ulfa Iqoh², Vistania Febiola Mufty² and Yasinta Rahmawati²

¹Department of Mathematics, Faculty of Military Mathematics and Natural Science, Indonesia Defense University, IPSC Area, Sentul, Bogor 16810, Indonesia
²Universitas Islam Negeri Raden Intan Lampung

*Correspondent Author: muhamad.syazali@idu.ac.id

Abstract. Mathematics learning is dealing with numerical skills. One way to improve numerical skills is to use appropriate learning models. This study aimed to determine the influence of the Auditory Intellectually Repetition learning model and the Trade A Problem learning model on numerical skills on row and series of algebra. This research was a quasi-experimental research. Hypothesis testing employed a t-test with a significance level of 5%. The test results revealed that the Auditory Intellectually Repetition learning model and the Trade A Problem provided different influences. Based on the results of the study, it can be concluded that the Auditory Intellectually Repetition learning model had a better influence on increasing numerical skills in row and series compared to the Trade A Problem learning model.

Keyword: Algebra, Auditory Intellectually Repetition Learning Model, Numerical skills, Trade A Problem Learning Model, Row.

1. Introduction

Students’ mathematics achievement level is relatively low and far from expectations [1]. One of the aspects needed to improve mathematics learning achievement is numerical skills. Numerical skills are useful and very important in solving mathematical problems. According to the previous research, the numerical skills have been researched with several learning models, including Pair Check, Contextual, Group Investigation, Talking Stick, Think-Pair-Share (TPS), Realistic Mathematics, After Project, Learning Cell, Inquiry, and STAD [2,3,12–19, 4–11]. Students’ numerical skills can be improved by using appropriate learning models including the AIR model and the TAP model.

Auditory Intellectually Repetition (AIR) learning model can make students learn by listening, reasoning, and then repeating the learning materials to deepen their understanding of questions [20]. Previous research has applied the AIR learning model on mathematical communication skills, problem-solving, learning achievement, conceptual understanding, mathematical understanding, cognitive learning outcomes, learning outcomes, motivation and learning outcomes, understanding mathematical concepts, mathematical problem-solving, reasoning, mathematical understanding, and creative-thinking [20,21,30–35, 22–29].

The Trade A Problem (TAP) learning model is a cooperative learning model that repeats the lessons and invites students to take an active role in learning [36]. Previous researchers have applied the TAP
model on various skills, including mathematical communication skills, problem-solving, and learning outcomes [36–39]. Based on the previous research, there have been no researchers who focused their research on the influence analysis of AIR and TAP learning models on numerical skills. The purpose of this research was to compare the influence of the Auditory Intellectually Repetition (AIR) learning model and the Trade A Problem (TAP) learning model on numerical skills.

2. Research Method
This research employed the quantitative approach with a quasi-experimental design. The learning models applied in this research are presented in Figures 1 and 2.

![Figure 1. The Steps of Auditory Intellectually Repetition Learning Model](image1)

![Figure 2. The Steps of Trade A Problem Learning Model](image2)

Based on Figures 1 and 2, it can be seen that the learning models applied were the Auditory Intellectually Repetition learning model and the Trade A Problem learning model. The steps of the Auditory Intellectually Repetition learning model consisted of the preparation stage, the auditory stage, the intellectual stage, and the stage repetition. The steps of the TAP learning model consisted of group division, explanation of material by teachers, distribution of questions, exchange of questions between groups, problem-solving, presentation of answers by students, question and answer, and work on practice questions. The data was collected through the post-test results and then analyzed by performing the t-test to see the influences of the AIR and TAP learning models on students’ numerical skills.

3. Results and Discussion
The AIR and TAP learning models had been implemented in each class to see their influences on students’ numerical skills. The data obtained are presented in Table 1.
Table 1. The Descriptive Test Results of Numerical Skills Test

Model	N	Mean	Standard Deviation	Std. Error Mean	Minimum	Maximum
AIR	30	90.2667	9.55179	40.00	60.00	100.00
TAP	30	86.7000	8.38369	39.00	58.00	97.00

Based on Table 1, the data on the implementation of AIR and TAP learning models on 30 respondents can be seen. In terms of concentration, the AIR model had more influence on numerical skills. It can be seen from the mean and maximum values which indicated that the AIR learning model produced greater values than the TAP learning model. To strengthen this argument, the researchers proceed with the t-test as can be seen in Table 2.

Table 2. Independent Samples t-Test

	Levene’s Test for Equality of Variances	t-test for Equality of Means				
	F	Sig	T	Df	p-value	
Numerical Skills	Equal variances assumed	.142	.707	1,537	58	.013
	Equal variances notes assumed	1,537	57 040	.013		

Based on Table 2, It can be seen that the p-value was 0.013 <0.05, so it can be concluded that H₀ was rejected and H₁ was accepted. It can be said that the AIR learning model and the TAP learning model had different influences on increasing students’ numerical skills. Hypothetically and statistically, the AIR learning model provided a better influence.

The comparison results showed that the AIR learning model produced a better result than the TAP learning model. There were differences in the steps of each learning model. The first step of the AIR learning model was preparation while the first step of the TAP learning model was group division. The second step of the AIR learning model was the delivery of material to make students understand the problems to be discussed while the second step of the TAP learning model was the material delivery by teachers. The third step of the AIR learning model was doing exercise and discussing a problem so that students can play an active role in responding and solving a problem while the third step of the TAP learning model was the distribution of questions to students. The step that made the AIR learning model different from the TAP learning model was the repetition of the material after the presentation of the discussion results about a problem so that students can easily understand the material.

Based on the difference, the AIR learning model showed a better influence than the TAP learning model on students’ numerical skills. This influence was in line with research that has been conducted that the AIR learning model is better in increasing numerical skills. Besides improving the numerical skills, the AIR learning model can also improve understanding of mathematical concepts, motivation, learning outcomes, and problem-solving [27,29,40]. The TAP learning model can also improve numerical skills. Besides improving the numerical skills, according to previous research by [36,37] the TAP learning model can also improve mathematical communication skills and mathematical problem-solving. However, in this research, the AIR learning model provided a better influence than the TAP learning model in improving students’ numerical skills on line and series algebraic material. The novelty of this research lied in the influence of the AIR and TAP learning models on students’ numerical skills in line and series algebraic material.
4. Conclusions and Suggestions

Based on the results of the analysis, it can be concluded that the AIR model was more influential and provided an improvement in students’ numerical skills in series and line algebraic material compared to the TAP learning model. Based on the research, the researcher expected that further researchers to investigate the implementation of the AIR and TAP learning models in improving other skills.

References

[1] Indrawati F, 2015 Pengaruh Kemampuan Numerik dan Cara Belajar terhadap Prestasi Belajar Matematika Form. J. Ilm. Pendidik. MIPA 3, 3 215–223.
[2] Melani A E T Candiasa I M and Hartawan I G N Y, 2019 Pengaruh Penerapan Model Pembelajaran Pair Check Terhadap Kemampuan Numerik Siswa Kelas Vi Smp Negeri 3 Gianyar J. Pendidik. Mat. Undiksha 10, 1 1.
[3] Lestari N A P, 2019 Pengaruh Implementasi Pembelajaran Kontekstual terhadap Hasil Belajar Matematika dengan Kovariabel Kemampuan Numerik dan Kemampuan Verbal J. Pendidik. Dasar Nusant. 5 72–87.
[4] Sari W R, 2019 Pengaruh Model Pembelajaran Kooperatif Tipe Group Investigation (Gi) Terhadap Kemampuan Numerik Ditinjau Dari Intelligence Quotient (Iq) Peserta Didik Sma Negeri 7 Bandar Lampung.
[5] Mustikasari M Isnani and Susongko P, 2017 Keefektifan Model Pembelajaran Talking Stick Berbantu Media Microsoft Power Point Terhadap Prestasi Belajar Matematika Ditinjau Dari Kemampuan Numerikmateri Pokok Statistika J. Pendidik. MIPA Pancasakti 1, 1 65–71.
[6] Supatni N M Dantes N and Tika I N, 2015 Pengaruh Model Pembelajaran Think Pair Share (Tps) Terhadap Prestasi Belajar Matematika Dengan Kovariabel Kemampuan Numerik Siswa Kelas VI J. Penelit. dan Eval. Pendidik. 5, 1 1–9.
[7] Sunarthi N W Dantes N and Tika I N, 2015 Siswa Kelas Vi Gugus Sukawati Iii 5, 1 1–10.
[8] Kasyfia Japa I G N and Sumantri M, 2015 Pengaruh Model Pembelajaran Berbasis Proyek Dari Kemampuan Numerik Siswa Kelas Iv Sd J. Pgsd 3, 3.
[9] Adduri K A M Tayeb T and Ikhal M S, 2017 Penggunaan Metode Learning Cell Berbasis Group Investigation Terhadap Kemampuan Numerik Dan Hasil Belajar J. Pendidik. Fis. 5, 1 25–31.
[10] Sudiasa I W, 2012 Pengaruh Model Pembelajaran Inkuiri dan Kemampuan Numerik terhadap Hasil Belajar Matematika Pendidik. dan Pengajaran 45, 3 263–271.
[11] Sunilawati N M Dantes N and Candiasa I M, 2013 Terhadap Hasil Belajar Matematika Ditinjau Dari e-Journal Program Pascasarjana Universitas Pendidikan Ganesha Progr. Pascasarj. Univ. Pendidik. Ganesha Jur. 3, 1–9.
[12] Irawan A and Kencanawaty G, 2016 Penerapan Kemampuan Verbal dan Kemampuan Numerik terhadap Kemampuan Berpikir Kritis Matematika 5, 2 110–119.
[13] Afriza S Ahmad H and AR M, 2016 pengaruh kemampuan numerik terhadap hasil belajar fisika siswa kelas xi sma negeri 5 banda aceh 161–163.
[14] Pasek G W Adnyana I P A and Satria G A, 2019 Effect Framing Dalam Pengambilan Keputusan Investasi Tinjauan dari Kemampuan Numerik Krisis 10, 2 125–130.
[15] Novita D, 2017 Pengaruh Motivasi Belajar dan Kemampuan Numerik terhadap Prestasi Belajar Akuntansi SAP 2, 1 43–52.
[16] Achdiyat M and Utomo R, 2017 Kecerdasan visual-spasial, kemampuan numerik, dan prestasi belajar matematika Formatif 7, 3 234–245.
[17] Rezawatimar Maidiyah E and Suryawati, 2018 Kemampuan Numerik dan Hubungannya dengan Hasil Belajar Matematika Siswa Kelas VII SMP Negeri 1 Manggeng, ABDYA, Ilm. Mhs. Pendidik. Mat. 3, 2 15–21.
[18] Gunur B Makur A P and Ramda A H, 2018 Hubungan antara kemampuan numerik dengan kemampuan pemecahan masalah matematis siswa di pedesaan Mat. dan Pembelajaran 6, 2 148–160.
[19] Sitriani Kadir Arapu L and Ndia L, Analisis Kemampuan Numerik Siswa SMP Negeri Di Kota
Kendari Ditinjau Dari Perbedaan Gender 161–171.

[20] Alan U F and Afriansyah E A, 2017 Kamampuan Pemahaman Matematis Siswa Melalui Model Pembelajaran Auditory Intellectually Repetition Dan Problem Based Learning *Pendidik. Mat.* **11**, 1.

[21] Ulva M, 2011 Pengaruh Model Pembelajaran Auditory Intellectually Repetition (AIR) terhadap Kemampuan Komunikasi Matematik Peserta Didik Kelas VIII.

[22] Siswanto R D Akbar P D and Bernard M, 2018 Penerapan Model Pembelajaran Kooperatif Tipe Auditorial , Intellectually , Repetition (Air) untuk Meningkatkan Pemecahan Masalah Siswa SMK Kelas XI *J. Educ.* **1**, 1 66–73.

[23] Ainia Q Kurniasih N and Sapti E A, 2017 Eksperimenmen Model Pembelajaran Auditory Intellectually Repetition (AIR) terhadap Prestasi Belajar Matematika Ditinjau Dari Karakter Belajar Siswa Kelas VII Smp Negeri Se-Kecamatan Kaligesing Tahun 2011/2012 *Kontribusi Pendidik. Mat. dan Mat. dalam Membangun Karakter Guru dan Siswa* November 978–979.

[24] Talib A Ihsan H and Fairul M, 2019 Komparasi Pemahaman Konsep Matematika Siswa Melalui Penerapan Model Pembelajaran Auditory Intellectually Repetition (AIR) dan Model Pembelajaran Reciprocal Teaching (RT) *Issues Math. Educ.* **2**, 2 100–106.

[25] Elinawati W Duda H J and Julung H, 2018 Penerapan Model Pembelajaran Auditory Intellectually Repetition (AIR) terhadap Hasil Belajar Kognitif Siswa *sainsmat VII*, 1 13–24.

[26] Pujiantutik H, 2016 Penerapan Model Pembelajaran AIR (Auditory , Intellectually , Repetition) untuk Meningkatkan Hasil Belajar Mahasiswa Mata Kuliah Belajar Pembelajaran *Biol. Educ.* **13**, 1 515–518.

[27] Winarti E and Suharto B, 2017 Meningkatkan Motivasi Dan Hasil Belajar Melalui Model Pembelajaran Auditory , Intellectually , Repetition Pada Materi Larutan Penyangga Di Kelas Xi Ipa Sma Muhammadiyah 1 Banjarmasin *J. Chem. Educ.* **13**, 1 515–518.

[28] Susanto A, 2019 Kamampuan Pemahaman Konsep Matematik Siswa dengan Menggunakan Model Pembelajaran Auditory Intellectually Repetition (AIR) dengan Pendekatan Lesson Study terhadap Kamampuan Pemecahan Masalah Matematis Desimal, 1 1–6.

[29] I.M H E P and Suhito, 2014 Keefektifan Auditory Intellectually Repetition Berbantuan LKPD terhadap Kamampuan Penalaran Peserta Didik SMP *Kreano* **5**, April 1–9.

[30] Linuwih S and Sukwati N D, 2014 Efektivitas Model Efektivitas Model Pembelajaran Auditory Intellectually Repetition (Air) Terhadap Pemahaman Siswa Pada Konsep Energi Dalam *Pendidik. Fis. Indones.* **10**, 2 158–162.

[31] Awaliyah F Soedjoko E and Isnarto, 2016 Analisis Kamampuan Pemecahan Masalah Siswa Dalam Pembelajaran Auditory Intellectually Repetition *Unnes* **5**, 3.

[32] Nugraheny H Edie S S and Sutikno S, 2019 Efektivitas Model Pembelajaran Campuran Auditory, Intellectually, Repetition dan Group Investigation dengan Model Pembelajaran Problem Based Learning terhadap Kreativitas Berpihak *Unnes Phys. Educ.* **8**, 2.

[33] Rahayuningsih S, 2017 Penerapan Model Pembelajaran Matematika Model Auditory Intellectually Repetition (Air) *Erud. J. Educ. Innov.* **3**, 2 67–83.

[34] Wijaya T U U Destiniar and Mulbasari A S, 2013 Kamampuan Pemahaman Konsep Matematik Siswa dengan Menggunakan Model Pembelajaran Auditory Intellectually Repetition (AIR) *J. Chem. Inf. Model.* **53**, 9 1689–1699.

[35] Hadjiah S and Surya E, 2016 Pengaruh Penggunaan Metode Pembelajaran Trade A Problem terhadap Kamampuan Pemecahan Matematis Siswa.

[36] Sinaga C V R, 2019 Pengaruh Model Pembelajaran Trade A Problem Dengan Pemberian Reward Terhadap Kamampuan Komunikasi Matematis Siswa Kelas VII Smp N.1 Gunung Malela *MES J. Math. Educ. Sci.* **4**, 2 209–216.

[37] Asiy An dan Rahma An, 2016 Upaya Meningkatkan Aktivitas dan Hasil Belajar Siswa Melalui Model Pembelajaran Koperatif Tipe Trade A Problem, 2 105–121.
[39] Erno M A Yusmin E and Suratman D, 2018 Penerapan Kooperatif Tipe Trade A Problem pada Materi Berdasarkan uraian yang telah dikemukakan dan fakta di lapangan maka peneliti bermaksud mengadakan penelitian dengan judul “Penerapan Model Kooperatif Tipe Trade A Problem pada Materi Barisan dan Der 1–7.

[40] Susanto A, 2019 Kemampuan Pemahaman Konsep Matematis, Model Reciprocal Teaching Dan Model Air Auditory Intellectually Repetition Mat. dan Pendidik. Mat. 3, 2 219–230.