Commenting recently on rapid point-of-care tests, US Covid-19 coordinator Dr Deborah Birx said, “We are very quality-oriented. We don’t want false positives.”

“If they are incredibly accurate, we will work out the quickest way to release them. If they are not accurate, we will not release any of them.” echoed UK chief medical officer Chris Whitty.

Given the need for testing, the end goal is a quick, accurate, and cheap test. With scientific innovation, we will, in time, attain this goal. But the best is becoming the enemy of the good. Meanwhile, avoidable infections are growing.

The “gold standard” RT-PCR test for Covid-19 is highly accurate and reproducible, but is costly ($125 per test kit, over $15,000 to set up a processing lab) and slow (4-6 hours processing time, turnaround of 2-4 days including shipping).

At the other extreme, a Bangladeshi lab has reportedly developed a $3 rapid test kit which gives a result in under 15 minutes. But the accuracy of such point-of-care tests is questionable.

Smart tactics can help break this tradeoff between cost and quality.

First, consider two quick, cheap and inaccurate tests, each developed by a different lab, and based on detection of a different antibody – or of the same antibody, but via a different method. Suppose each test has a false-negative rate of 30%, and, for simplicity, zero false-positive results. What if both tests were administered to the same person? If the results of the two tests are independent, the chances of obtaining two false-negative results drops to 9% (and to less than 3% if a third independent test with similar characteristics is administered). Figure 1 illustrates this logic, which also applies to false-positive results, for a test with a 50% false-negative rate. (Reports suggest that the tests being considered for large scale procurement in the UK are in this range). As a comparison, since 2017, rapid influenza diagnostic tests cleared by the US Food and Drug Administration have been required to achieve false-negative rates and false-positive rates of below 20% and 5%, respectively, compared with RT-PCR.

Second, this recommendation to test and re-test can apply elsewhere too. Consider a test that displays the same false-negative and false-positive rates as the above tests — and is also

1 Deloitte Chair in Innovation & Entrepreneurship, Professor of Management Science & Operations, London Business School, London, UK.
2 Co-Director of the Institute of Global Health Innovation, Professor of Surgery, Faculty of Medicine, Department of Surgery & Cancer, Imperial College, London, UK.
3 Senior Fellow in Economics, Department of Economics, Oxford University, UK.
unreproducible. If a patient is tested twice in succession with this test, the results could vary. Counterintuitively, this lack of reproducibility may be advantageous. Again, if the results of the two tests are independent, the likelihood of two false-negative results drops to 9%.

The implication is clear: even an inaccurate test tells us something. Or, to misquote the World Health Organization: ‘test, re-test, re-test’.

Use of this strategy would be made easier if there were a database – updated in real time – of point-of-care tests being generated by labs around the world. This database, which could be assembled by an international organization such as the WHO, would list the lab and test name, the antibody that the test detects (e.g., IgG, IgN, or both), the detection method (e.g., lateral flow immunoassay) and its accuracy and reproducibility, the turnaround time, the testing-kit cost and the sample-processing cost. With this information in hand, governments and international organizations could advise scientists on what combination of cheap tests would be optimal for specific nations.

Third, consider a quick and cheap test with a 30% false positive rate, and for simplicity, zero false negatives. First, test many individuals with this test, and then test the subset who test positive with a highly accurate test. This economizes on the use of scarce but accurate test kits, while allowing for much wider testing than would have been possible with the few accurate test kits available. In short: “test, triage, re-test.”

Finally, smart tactics can enable cheaper testing with the expensive RT-PCR tests, if a sample taken can fuel multiple tests. Some German hospitals are doing ‘block tests’, using a pooled sample from 10 employees, and then testing individually only if there is a positive result.

One can take this idea further, by applying principles from discrete optimization. If the test is positive, then test two blocks of 5 samples each, and then further test the arm that tests positive. This mimics “branch and bound” algorithms for solving discrete optimization problems like the famous “travelling salesperson” problem, which requires finding the cheapest route for delivering supplies to a fixed number of stores.

These simple examples are illustrative. Naturally, several factors would come into play in their implementation. For example, block testing would increase time to diagnosis and may be more useful for asymptomatic low risk cases.

Finally, all inaccuracies are not equal. Right now, tests with a high false positive rate are less problematic – since people are being advised to stay home anyway – than those with high false negative rates. Further, a false positive for SARS-CoV-2 is unlikely to initiate treatment with negative side effects, like chemotherapy for misdiagnosed cancer.

The key point here is that creative use of currently available cheap and quick tests – even if they are inaccurate and unreproducible – can go a long way to reaching adequate levels of accuracy and precision, at least until the gold standard tests can be developed.
References

1. Boseley, Sarah and Julia Kollewe. “Covid-19 self-test could allow return to work, say health officials”. The Guardian. Mar 26, 2020. https://www.theguardian.com/world/2020/mar/26/covid-19-self-test-could-allow-return-to-work-says-public-health-england

2. Boseley, Sarah. “UK coronavirus home testing to be made available to millions”. The Guardian. Mar 25, 2020. https://www.theguardian.com/world/2020/mar/25/uk-coronavirus-mass-home-testing-to-be-made-available-within-days

3. Ghebreyesus, Tedros Adhanom, and Soumya Swaminathan. “Scientists are sprinting to outpace the novel coronavirus.” The Lancet. Feb 24, 2020. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30420-7/fulltext

4. Mahmud, Faisal. “Bangladesh scientists create $3 kit. Can it help detect COVID-19?” Aljazeera. Mar 24, 2020. https://www.aljazeera.com/news/2020/03/bangladesh-scientists-create-3-kit-detect-covid-19-200323035631025.html

5. Devlin, Hannah. Coronavirus 'game changer' testing kits could be unreliable, UK scientists say. The Guardian. Sun 5 Apr 2020

6. Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases. “Rapid Diagnostic Testing for Influenza: Information for Clinical Laboratory Directors.” https://www.cdc.gov/flu/professionals/diagnosis/rapidlab.htm Page last reviewed: Feb 4, 2019.

7. Center for Health Security, Johns Hopkins School of Public Health. “Serology testing for COVID-19”. Feb 28, 2020. http://www.centerforhealthsecurity.org/resources/COVID-19/200228-Serology-testing-COVID.pdf

8. Bennhold, Katrin. “A German Exception? Why the Country’s Coronavirus Death Rate Is Low.” The New York Times. April 4, 2020. https://www.nytimes.com/2020/04/04/world/europe/germany-coronavirus-death-rate.html

9. Fisher, Marshall L. “The Lagrangian relaxation method for solving integer programming problems.” Management science 27.1 (1981): 1-18.
Why Re-testing Increases Testing Accuracy

Flipping independent fair coins	Probability of event	Testing a patient repeatedly with independent tests, each with a 50% false-negative rate	Probability of event
Heads		False Negative	
Heads, Heads		False Negative, False Negative	
Heads, Heads, Heads		False Negative, False Negative, False Negative	