Application of Higher Order Sliding Mode Observer and Super Twisting Observer based Super Twisting Control in Hydroelectric power plants

Yeremou Tamsitsa Aurelien, Samba Aimé Hervé, Nneme Nneme Léandre

Abstract: Speed control of hydro Turbine is an important issue and a shorter settling time is desired. In case of operation of drives with speed sensors, the performance of the drive is not satisfactory. To get satisfactory performance, a sensorless speed control system for hydro Turbine driving a synchronous generator in the hydroelectric power plants is developed. This work, we apply the approach of two methods of regulation: Super Twisting Control (STC) based on super-twisting observer (STO) and Super Twisting Control (STC) based on Higher Order Sliding Mode Observer (HOSMO). Simulation model in the presence of stochastic disturbance has been established in Matlab-Simulink. Simulation results demonstrate and validate the productiveness and performances of the proposed control method.

II. SYSTEM DESCRIPTION AND MODELING

Transfer function of the model of the Francis turbine is given by [1]:

\[G_f(p) = \frac{0.663}{1 + 42.55s} \]

Modeling the servovalve with the parameters of the power station makes it possible to obtain the following transfer function [1]:

\[G(s) = \frac{20}{1 + 0.645s + 0.00645s^2} \]

The correspondence between winnowing (v) and the turbine water flow (d) is represented by [1]:

\[d = 0.7967v + 0.9874 \]

MATLAB /Simulink diagram of the power chain is acquired from the equations 4 and 5.

\[Q = 16 + 90 \frac{P}{H_b} \]

\[P = \frac{1}{90} (Q - 16) H_b \]

Table 1 presents the parameters of the hydroelectric plant.

Parameter	Description	Units
Q	Water flow rate	m³/s
H_b	Height of waterfall	m
P_f	Power of the load	Watts
T_f	Resistant torque	N.m
P_m	Power produced	Watts
T_m	Motor torque	Nm
\omega_{mes}	Speed measured	rad/s
\omega_o	Disturbance	

III. METHOD OF SYNTHESIS OF SUPER TWISTING CONTROL (STC)

A. Method of Synthesis of STC based on STO

Consider the dynamical system described by the following state equation

\[\begin{align*}
 x_1 &= x_2 \\
 x_2 &= u + p_i \\
 y &= x_1
\end{align*} \]
y is measured the system, u is order and ρ₁ is a non-vanishing Lipschitz disturbance.

The dynamic equation of STO for the estimate of the equation (6) is given by [3]:
\[
\dot{x}_1 = x_2 + k_1 |x| \text{sign}(e_1) \\
\dot{x}_2 = u - k_2 \text{sign}(e_1)
\] (7)

Where the error \(e_1 = x_1 - \hat{x}_1 \)
The equation of error dynamic is given by [3]:
\[
\dot{e}_1 = -k_1 |e_1| \text{sign}(e_1) + e_2 \\
\dot{e}_2 = -k_2 \text{sign}(e_1)
\] (8)

So \(e_1 \) and \(e_2 \) will converge to zero in specific time \(t > T_0 \) by selecting the appropriate gains \(k_1 \) and \(k_2 \).

For this, one can say that \(\hat{x}_1 = x_1 \) and \(\hat{x}_2 = x_2 \) after specific time \(t > T_0 \) [3].

Consider the sliding manifold of the form
\[s = c_1 x_1 + x_2 \, \text{ where } c_1 > 0 \] (9)

The time derivative of (9) is written as
\[\dot{s} = c_1 \dot{x}_1 + \dot{x}_2 \] (10)

After specific time \(t > T_0 \), one substitute \(\dot{x}_1 = \hat{x}_2 \) [4].

Also using (7) and (10), one can further be written
\[\dot{s} = c_1 \hat{x}_2 + u + k_2 \text{sign}(e_1) \] (11)

The transformation of the equation (1) in the co-ordinate of \(x_1 \) and \(\hat{s} \) by using (9) and (10) is writing by [4]:
\[\dot{x}_1 = \hat{s} - c_1 x_1 \]
\[\dot{s} = c_1 \hat{x}_2 + u + k_2 \text{sign}(e_1) \] (12)

The design of the Super-twisting control as defined in [5] can be obtained:
\[u = -c_1 \hat{x}_2 - \lambda_1 |\hat{s}|^{\frac{1}{2}} \text{sign}(\hat{s}) - \lambda_2 \int_0^t |\text{sign}(\hat{s})| \, ds \] (13)

Where \(\lambda_1 \) and \(\lambda_2 > 0 \) are selecting according to [7].

IV. APPLICATION OF STO AND HOSMO BASED STC FOR THE SPEED CONTROL OF HYDROTURBINE

A. System model
The transfer function of the nominal regime of the model of the system is given by:
\[G(s) = \frac{-12.57 s + 46.73}{42.84 s^2 + 160.3 s + 3.717} \] (21)

From equation (21), one can derive the state representation as follow:
\[\dot{x}_1 = -3.7418 x_2 - 0.3471 x_2 + 2 u \]
\[\dot{x}_2 = 0.25 x_1 \]
\[y = -0.1467 x_1 + 2.1816 x_2 \] (22)

B. Method of Synthesis of STC based on HOSMO
The estimation of the states from equation (6) using the dynamics of the HOSMO is [10]:
\[
\dot{x}_1 = \hat{x}_2 + k_1 |x| \text{sign}(e_1) \\
\dot{x}_2 = \hat{x}_1 + u + k_2 |x| \text{sign}(e_1) \\
\dot{x}_3 = k_3 \text{sign}(e_1)
\] (14)

Let us define the error \(e_1 = x_1 - \hat{x}_1 \) and \(e_2 = x_2 - \hat{x}_2 \). Using [3], the error can be obtained as follow:
\[
\dot{e}_1 = e_2 - k_1 |e_1| \text{sign}(e_1) \\
\dot{e}_2 = -\dot{x}_3 - k_2 |x| \text{sign}(e_1) + \rho_1 \\
\dot{\rho}_1 = k_3 \text{sign}(e_1)
\] (15)

Now define the new \(e_3 = -\hat{x}_3 + \rho_1 \) and \(|\tilde{e}_3| < |\rho_0| \).

One can further write (15) as:
\[
\dot{e}_3 = -k_1 |e_1| \text{sign}(e_1) \\
\dot{e}_2 = e_1 - k_2 |e_1| \text{sign}(e_1) + \rho_1 \\
\dot{\rho}_1 = -k_3 \text{sign}(e_1) + \rho_1
\] (16)

So \(e_1 \), \(e_2 \) and \(e_3 \) will converge to zero in specific time \(t > T_0 \), by selecting the appropriate gains \(k_1 \), \(k_2 \) and \(k_3 \).

After the convergence of the error, one can find that \(x_1 = \hat{x}_1 \), \(x_2 = \hat{x}_2 \) and \(\hat{x}_3 = \rho_1 \) after specific time \(t > T_0 \).

Consider the sliding surface (9) and its time derivative is
\[\dot{s} = c_1 \hat{x}_1 + \hat{x}_2 \] (17)

Also using (15) and (17), one can further write:
\[\dot{s} = c_1 \hat{x}_2 + u + k_1 |e_1| \text{sign}(e_1) + \int_0^t k_3 \text{sign}(e_1) \, ds \] (18)

The equation (6) in the co-ordinate of \(x_1 \) and \(s \) by using (9) and (18).
\[\hat{x}_1 = \tilde{s} - c_1 x_1 \]
\[\dot{s} = c_1 \hat{x}_2 + u + k_2 |e_1| \text{sign}(e_1) + \int_0^t k_3 \text{sign}(e_1) \, ds \] (19)

Where \(\lambda_1 \) and \(\lambda_2 > 0 \) are selecting according to [7].
C. Design of STC based on HOSMO for speed control of hydroturbine

The STC based on HOSMO algorithms proposed for hydro turbine is giving by:

\[
\begin{align*}
\dot{x}_1 &= \dot{x}_2 + k_1 |e_1|^\frac{3}{2} \text{sign}(e_1) \\
\dot{x}_2 &= \dot{x}_3 + u + k_2 |e_1|^\frac{3}{2} \text{sign}(e_1) \\
\dot{x}_3 &= k_3 \text{sign}(e_1) \\
\end{align*}
\]

\[
\begin{align*}
u &= -0.25 \dot{x}_1 - c_1 \dot{x}_2 - \lambda_1 s |s|^\frac{3}{2} \text{sign}(s) - k_3 \int_0^t \text{sign}(e_1) \, dt \\
&\quad - \lambda_2 \int_0^t \text{sign}(s) \, dt
\end{align*}
\]

(25)

(26)

Table 2- Simulation parameters for STC based on STO.

Parameter	Value
STC-HOSMO	
STC	2000
STO	2000

Table 3- Simulation parameters for STC based on HOSMO.

Parameter	Value
STC-STO	
STC	2000
HOSMO	
k_1	1500
k_2	1100
k_3	22
k_4	78
k_5	300

From Table 2 and Table 3, one can choose the parameters for the controllers to implement in these studies [7]. Fig.1 show the structure of STC based on STO/HOSMO proposed for hydro turbine.

From the model of hydroelectric plant and the Simulink models of STC-STO and STC-HOSMO, we obtain the Simulink models of power plant (Fig.2 and Fig.3).

Fig.1. Structure of STC based on STO /HOSMO for hydro turbine.

Fig.2. Simulink Model of the Power Plant controlled by STC based on STO.

Fig.3. Simulink Model of the Power Plant controlled by STC based on HOSMO.
Application of Higher Order Sliding Mode Observer and Super Twisting Observer based Super Twisting Control in Hydroelectric power plants

V. RESULT DISSECTION

Fig. 4. The result of actual (a) and estimated (b) speed for the STC based on HOSMO and STC based on STO.

Fig. 5. Actual (a) and estimated (b) speed for the STC based on HOSMO and STO.

Fig. 6. Error between actual speed (a) and estimated speed (b) of the STC based on HOSMO and STO under noisy measurement.

Fig. 7. Evolution of sliding manifold (a) for the STC based on HOSMO and STO under noisy measurement (b).

The Fig.4 and Fig.5 presents the simulation results obtained by applying STC-STO and STC-HOSMO on the system of regulating the speed of the hydro turbine. We note that both methods achieves desired speed, but from Fig.4a and Fig.5a we can say that precision of speed in STC-HOSMO is...
expanded than STC-STO. Evolution of observer error in simulation is visible in Fig.6; we can notice that the errors are more significant when order STC-STO is used; on Fig.7 we can see the evolution of the sliding surface; by using the precision as a criteria of comparison, the sliding variable of STC-HOSMO give us better results.

VI. CONCLUSION

The results relating to the application of a new STC based on sliding mode observers for the speed control of hydroturbine in hydroelectric power plants has been presented in this article. The simulation results of the various commands presented are satisfactory from the point of view of the error estimation and stability of the overall system under various operating conditions. A compromise between the speed of convergence of the observer and the robustness degree with respect to noise measurement is obtained with the STC based on HOSMO.

REFERENCES

1. A.Yeremou Tamtsia, J.M. Nyobe Yome, G. M. Ngalu, J. C.Ndzana. "Contrôle de la fréquence dans une centrale de production d’énergie électrique ". Sciences Technologie et Developpement, 2016
2. Samba Aimé Hervé, Yeremou Tamtsia Aurélien, Nneme Nneme Léandre. "Impacts of Packet Losses and Delay in a Networked Control Hydroelectric Power Plants", International Research Journal of Engineering and Technology (IRJET), 2019.
3. Chalanga, Asif, Shyam Kamal, Leonid M. Fridman,Bijnan Bandyopadhyay, and Jaime A. Moreno."Implementation of Super-Twisting Control: Super-Twisting and Higher Order Sliding-Mode Observer-Based Approaches", IEEE Transactions on Industrial Electronics, 2016
4. Krupa Narwekar, V. A. Shah. "Level control of coupled tank using higher order sliding mode control", 2017 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), 2017
5. O. A. Morfin, B. Aguilar, Hossam A. Gabbar, F. Ornelas-Tellez, R. Ruiz-Cruz, A. ValderrabannoGonzalez, C.E. Castaneda. "Real-time induction motor velocity controller applying SOSM super-twisting combined with statefeedback linearization", 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 2017
6. Maria Thomas, Bijnan Bandyopadhyay, Leena Vachhani. "A Finite-time Sliding Mode Observer for a Class of Perturbed Nonholonomic Systems", IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, 2018
7. A.Levant. "Robust exact differentiation via sliding mode technique", Automatica, 1998
8. Mehmet Önder Efe, Cosku Kasnakoglu. "An adaptation law for sliding mode control", International Journal of Adaptive Control and Signal Processing, 2008
9. Daga, Gariabal, "Machine Vibration Monitoring for Diagnostics through Hypothesis Testing", Information, 2019
10. A. Benallegue, A. Mokhtari, L. Fridman. "High-order sliding-mode observer for a quadrotor UAV", International Journal of Robust and Nonlinear Control, 2008
11. Senqiang Zhu, Danwei Wang, Qiang Shen, Eng Kee Poh. "Satellite Attitude Stabilization Control with Actuator Faults", Journal of Guidance, Control, and Dynamics, 2017
12. Wang Limei, Chen Jichao, Zheng Hao. "Global fast terminal sliding mode control for direct drive XY table by permanent magnet linear synchronous motor", 2011 Chinese Control and Decision Conference (CCDC), 2011
13. Kang-Bark Park, Teroo Tsuji. "Terminal sliding mode control of second-order nonlinear uncertain systems", International Journal of Robust and Nonlinear Control, 1999
14. F.A. Haouari, B. Cherki, M. Djemai. "Sliding mode observers for Takagi-Sugeno fuzzy models", 3rd International Conference on Systems and Control, 2013
15. J. Abedor, K. Nagpal, K. Poullia. "A linear matrix inequality approach to peak-to-peak gain minimization".International Journal of Robust and Nonlinear Control, 1996
16. "Recent Advances in Sliding Modes: From Control to Intelligent Mechatronics", Springer Science and Business Media LLC, 2015
17. "Applied Computer Sciences in Engineering", Springer Nature, 2018

AUTHORS PROFILE

YEREMOU TAMTSIA Aurelien received the Master Degree in process engineering and the Ph.D. degree in vision and robotic from agro- food processing engineering school (ENSAL - Cameroon) and Blaise Pascal university Clermont- Ferrand (France) respectively. From 2013, he held an academic position in the Department of Industrial robotics at Faculty of Industrial Engineering, University of Douala (Cameroon), as Lecturer. His current researches lie on Robot Control, robust control, industrial instrumentation and regulations technologies of both deterministic and stochastic dynamic processes.

SAMBA Aimé Hervé completed MSc degree in Electronic and Instrumentation from Douala University, Cameroon, in 2016. Currently, he is pursuing for his PhD degree in the Department of Industrial robotics at Faculty of Industrial Engineering, University of Douala, Cameroon. His research interests robust control and networked control systems.

Pr NNEME NNEME Léandre received the Master Degree in electrical and computer science engineering and the Ph.D. degree in Systems and Automation from Ecole Polytechnique de Montreal (Canada) in 1993 and 1998 respectively. From 1998, he held an academic position in the Advanced Teacher’s Training College for Technical Education (ATTCTE) of Douala (Cameroon), as senior Lecturer and Director of the ATTCTE. His current researches lie on Robot Control, industrial instrumentation technologies and remote control of both deterministic and stochastic dynamic processes.