A NOTE ON DEPTH PRESERVATION

MANISH MISHRA AND BASUDEV PATTANAYAK

Abstract. We show that for a wildly ramified torus, depth is not preserved in general under local Langlands correspondence for tori.

1. Introduction

Let K be a non-archimedean local field and let W_K denote its Weil group. Local class field theory (LCFT) tells us that there is a canonical isomorphism $K^\times \cong W_K^{ab}$ and this isomorphism respects the numbering on the filtration subgroups $\{K_r^\times\}_{r \geq 0}$ of K^\times and the upper numbering on the filtration subgroups $\{W_K^r\}_{r \geq 0}$ of W_K. Local Langlands Correspondence (LLC) stipulates a vast generalization of the LCFT isomorphism. In LLC, irreducible representations $\text{Irr}(G(K))$ of the K-points of a reductive K-group G are expected to be parametrized by arithmetic objects called Langlands parameters $\Phi(G)$ in a certain natural way. For each $\pi \in \text{Irr}(G(K))$, Moy-Prasad theory associates an invariant called depth $\text{dep}(\pi)$. Also for each $\phi \in \Phi(G)$, one defines the notion of depth $\text{dep}(\phi)$. It is the smallest number such that ϕ is trivial on W_K^r for all $r > \text{dep}(\phi)$. If ϕ associates to π under LLC, then one expects that quite fairly $\text{dep}(\pi) = \text{dep}(\phi)$. This is known in many cases (see the introduction in [2] for a survey). However, counter examples have been constructed for inner forms of $\text{SL}_n(K)$ [2] and in the case of $\text{SL}_2(K)$ when K has characteristic 2 [1].

Now let $T = R_{K'/K}\mathbb{G}_m$ where K' is a finite separable extension of K and $R_{K'/K}$ denotes the Weil restriction and let $\lambda_T : \chi \in \text{Irr}(T(K)) \mapsto \lambda_T(\chi) \in \Phi(T)$ under LLC. In this note, we show that $\varphi_{K'/K}(e \cdot \text{dep}(\chi)) = \text{dep}(\lambda_T(\chi))$ where $\varphi_{K'/K}$ is the Hasse-Herbrand function and e is the ramification index of K'/K. Thus for all positive depth characters χ, $\text{dep}(\lambda_T(\chi)) > \text{dep}(\chi)$. When T is a tamely induced wildly ramified torus (see Sec. 7.1), we show that $T(K)$ admits characters for which depth is not preserved under LLC. In Section 8 we compute Hasse-Herbrand function for a certain wildly ramified extension of a cyclotomic field to illustrate the failure of depth preservation.

The proofs in Section 7 follow closely the proofs in [8] and [4].
2. Review of ramification groups

Let \(K \) be a non-archimedean local field and let \(L \) be a finite Galois extension of \(K \). Write \(\mathcal{O}_L, p_L \) for the ring of integers of \(L \) and the maximal ideal of \(\mathcal{O}_L \). For \(i \geq -1 \), define \(G_i \) to be the set of all \(s \in G := \text{Gal}(L/K) \) such that \(s \) operates trivially on \(\mathcal{O}_L/p_L^{i+1} \). Then \(G_{-1} = G \). The groups \(G_i \) are called ramification groups. They form a decreasing filtration of normal subgroups. Extend the definition of \(G_u \) for all real numbers \(u \geq -1 \) by setting

\[
G_u = G_i \quad \text{where} \quad i \quad \text{is the least integer} \quad \geq \quad u.
\]

This numbering of ramification groups is called lower numbering. Lower numbering behaves well with respect to intersections, i.e., if \(H \) is a subgroup of \(G \), then \(G_u \cap H = H_u \).

Upper numbering of ramification groups. Define \(\varphi_{L/K} : [-1, \infty) \rightarrow \mathbb{R} \) to be the map \(r \mapsto \int_{0}^{r} \frac{1}{(1+t^2)} dt \) where \((G_0 : G_u) := (G_u : G_0)^{-1} \) for \(u \in [-1, 0) \). The function \(\varphi_{L/K} \) is called the Hasse-Herbrand function. It has the basic properties [6]:

(a) \(\varphi_{L/K} \) is continuous, piecewise linear, increasing and concave.

(b) \(\varphi_{L/K}(0) = 0 \).

(c) \(\varphi_{L/K} \) is a homeomorphism of \([-1, \infty)\) onto itself.

(d) If \(H \) is a normal subgroup of \(G \), then \(\varphi_{L/K} = \varphi_{L/H/K} \circ \varphi_{L/H} \).

If an extension \(M/K \) is not Galois, define \(\varphi_{M/K} = \varphi_{M'/K} \circ \varphi_{M/M'}^{-1} \), where \(M' \) is a Galois extension of \(K \) containing \(M \). The inverse \(\varphi_{M/K}^{-1} \) is denoted \(\psi_{M/K} \).

Define an upper numbering on ramification groups by setting \(G^v = G_u \) if \(v = \varphi_{L/K}(u) \). Upper numbering behaves well with respect to quotients, i.e., if \(H \) is a normal subgroup of \(G \), then

\[
(G/H)^v = G^v H/H.
\]

For an infinite Galois extension \(\Omega \) of \(K \), define the ramification groups on \(G = \text{Gal}(\Omega/K) \) by:

\[
G^v = \lim_{\overset{F/K \text{ finite}}{F/K \text{ finite}}} \text{Gal}(F/K)^v.
\]

Now let \(L/K \) be Galois extension of local fields and let \(F \) be a finite extension of \(K \) contained in \(L \). Write \(G = \text{Gal}(L/K) \) and \(H = \text{Gal}(L/F) \).

Lemma 1. For all \(r \geq 0 \), \(G^r \cap H = H^{\psi_{F/K}(r)} \).
Proof. Let E be a finite Galois extension of K in L containing F. Write $I = \text{Gal}(L/E)$. Then
\[
(G/I)^r \cap (H/I) = (G/I)^{\psi_{E/K}^r} \cap (H/I) = (H/I)^{\psi_{E/K}^r} = (H/I)^{\psi_{E/F}^r \psi_{E/K}^r} = (H/I)^{\psi_{F/K}^r}.
\]
The lemma now follows by taking inverse limit over E. □

3. Notion of depth

Let $G = \text{Gal}(L/K)$ where L and K are local fields and let M be a G-module. Define the depth of M to be:
\[
\text{dep}_G(M) = \inf \{ r \geq 0 \mid M^{G^r} \neq 0 \text{ for all } s > r \}.
\]

Define the depth of a co-cycle $\varphi \in H^1(G,M)$ to be:
\[
\text{dep}_G(\varphi) = \inf \{ r \geq 0 \mid G^s \subset \ker(\varphi) \text{ for all } s > r \}.
\]

4. Depth change under induction

Let $G = \text{Gal}(L/K)$ and $H = \text{Gal}(L/F)$ where $K \subseteq F \subseteq L$ and F/K finite Galois. Let N be an H-module.

Proposition 2. $\text{dep}_H(N) = \psi_{F/K}(\text{dep}_G(\text{Ind}_H^G N))$.

Proof. By Mackey theory,
\[
\text{Res}_{G^r}(\text{Ind}_H^G N) = \bigoplus_{g \in G^r \setminus G/H} \text{Ind}_{G^r \cap H}^{G^r} N^g.
\]
Here Res denotes the restriction functor and N^g denotes the g-twisted module N. By Lemma 1, $G^r \cap H = H^{\psi_{F/K}^r}$. Thus
\[
(\text{Ind}_H^G N)^{G^r} \neq 0 \iff (\text{Ind}_{H^{\psi_{F/K}^r}} N^g)^{G^r} \neq 0 \text{ for some } g \in G^r \setminus G/H
\]
\[
\iff (N^g)^{H^{\psi_{F/K}^r}} \neq 0
\]
\[
\iff (N)^{H^{\psi_{F/K}^r}} \neq 0.
\]

□

5. Depth change under Shapiro’s isomorphism

Again $G = \text{Gal}(L/K)$ and $H = \text{Gal}(L/F)$ where $K \subseteq F \subseteq L$ and F/K is any finite extension and let N be an H-module.
Shapiro’s lemma states that the map
\[\text{Sh} : H^1(G, \text{Ind}_{H}^G N) \to H^1(H, N) \]
defined by
\[\gamma \mapsto (h \mapsto \gamma(h)(1)) \]
is an isomorphism. We wish to relate the depth of co-cycles under this isomorphism. We first observe the following:

Lemma 3. Let \(A \) be a group, \(B \) and \(C \) subgroups of \(A \) with \(C \) being normal in \(A \). Let \(M \) be a \(B \)-module. Then there is a canonical isomorphism of \(A/C \)-modules:

\[(\text{Ind}_{A}^B M)^C \cong \text{Ind}_{B \cap C}^A M_{C \cap B} \]

Proof. The map \(f \in (\text{Ind}_{A}^B M)^C \mapsto \tilde{f} := (gC \mapsto f(g)) \in (\text{Ind}_{B \cap C}^A M_{C \cap B}) \) is easily verified to be the required isomorphism. \(\square \)

Lemma 4. For \(r \geq 0 \), Shapiro’s lemma induces an isomorphism
\[H^1(G/G^r, (\text{Ind}_{H}^G N)^{G^r}) \cong H^1(H/H^{\psi_F/K(r)}, N^{H^{\psi_F/K(r)}}) \]

Proof. We have
\[H^1(G/G^r, (\text{Ind}_{H}^G N)^{G^r}) \cong H^1(G/G^r, \text{Ind}_{H/G^r \cap H}^{G/G^r} N^{G^r \cap H}) \cong H^1(G/G^r, \text{Ind}_{H/H^{\psi_F/K(r)}}^{G/G^r} N^{H^{\psi_F/K(r)}}) \cong H^1(H/H^{\psi_F/K(r)}, N^{H^{\psi_F/K(r)}}) \]

The first isomorphism follows from Lemma 3, second from Lemma 1 and the last from Shapiro’s lemma. \(\square \)

Write \(H^1(G, \text{Ind}_{H}^G N)^{\text{adm}} = \bigcup_{r \geq 0} H^1(G/G^r, (\text{Ind}_{H}^G N)^{G^r}) \).

Corollary 5. If \(\lambda \in H^1(G, \text{Ind}_{H}^G N)^{\text{adm}} \), then \(\text{dep}_G(\lambda) = \varphi_{F/K}(\text{dep}_H(\text{Sh}(\lambda))) \).

Proof. Let \(\text{dep}_G(\lambda) = r \). Then \(G^s \subset \ker(\lambda) \) if \(s > r \). By Lemma 4, this implies \(H^{\psi_F/K(s)} \subset \ker(\text{Sh}(\lambda)) \) if \(s > r \). Therefore \(\text{dep}_H(\text{Sh}(\lambda)) \leq \psi_{F/K}(\text{dep}_G(\lambda)) \). The argument is reversible showing that \(\text{dep}_H(\text{Sh}(\lambda)) \geq \psi_{F/K}(\text{dep}_G(\lambda)) \). Therefore \(\text{dep}_H(\text{Sh}(\lambda)) = \psi_{F/K}(\text{dep}_G(\lambda)) \). \(\square \)

6. **Langlands correspondence for tori**

We review here the statement of local Langlands correspondence for tori as stated and proved in [8].
6.1. Special case. Let \(T = R_{K'/K} \mathbb{G}_m \) where \(K' \) is a finite separable extension of \(K \) and \(R_{K'/K} \) denotes the Weil restriction. Then \(T(K) = K'^\times \) and the group of characters \(X^*(T) \) is canonically a free \(\mathbb{Z} \)-module with basis \(W_K/W_{K'} \) where \(W_K \) (resp. \(W_{K'} \)) denotes the Weil group of \(K \) (resp. \(K' \)). From this, it follows that the complex dual \(\hat{T} \) of \(T \) is canonically isomorphic to \(\text{Ind}_{W_K}^{W_{K'}} \mathbb{C}^\times \). We get,

\[
\text{Hom}(T(K), \mathbb{C}^\times) \cong \text{Hom}(K'^\times, \mathbb{C}^\times) \\
\cong \text{Hom}(W_{K'}, \mathbb{C}^\times) \\
\cong \text{H}^1(W_{K'}, \mathbb{C}^\times) \\
\cong \text{H}^1(W_K, \text{Ind}_{W_{K'}}^{W_K} \mathbb{C}^\times) \\
\cong \text{H}^1(W_K, \hat{T}). \tag{6.2}
\]

The isomorphism 6.1 follows by class field theory and the isomorphism 6.2 by Shapiro’s lemma.

6.2. The LLC for tori in general.

Theorem. \([3]\) There is a unique family of homomorphisms

\[\lambda_T : \text{Hom}(T(K), \mathbb{C}^\times) \to \text{H}^1(W_K, \hat{T}) \]

with the following properties:

1. \(\lambda_T \) is additive functorial in \(T \), i.e., it is a morphism between two additive functors from the category of tori over \(K \) to the category of abelian groups;
2. For \(T = R_{K'/K} \mathbb{G}_m \), where \(K'/K \) is a finite separable extension, \(\lambda_T \) is the isomorphism described in Section 6.1.

7. Depth change for tori under LLC

We keep the notations as in Section 6. Let \(M \) be a local field. Recall that \(M^\times \) admits a filtration \(\{M_r^\times\}_{r \geq 0} \) where \(M_0^\times \) is the units of the ring of integers and for \(r > 0 \), \(M_r^\times := \{ x \in M \mid \text{ord}_M(x - 1) \geq r \} \). Here \(\text{ord}_M \) is the valuation of \(M \) normalised so that \(\text{ord}_M(M^\times) = \mathbb{Z} \). Under local class field theory isomorphism

\[M_r^\times \cong (W_M^r)^\text{ab}. \]

We recall that \(T(K) \) carries a Moy-Prasad filtration \(\{T(K)_r\}_{r \geq 0} \). The depth \(\text{dep}_T(\chi) \) of a character \(\chi : T(K) \to \mathbb{C}^\times \) is defined to be

\[\inf\{ r \geq 0 \mid T(K)_s \subset \ker(\chi) \text{ for } s > r \}. \]

The group \(T(K)_0 \) is called the Iwahori subgroup of \(T(K) \). It is a subgroup of finite index in the maximal compact subgroup of \(T(K) \). When \(T = R_{K'/K} \mathbb{G}_m \),
then for $r > 0$,

\begin{align}
T(K)_r &= \{ x \in T(K) = K'^x \mid \text{ord}_K(x - 1) \geq r \} \\
(7.1) &= \{ x \in K'^x \mid \text{ord}_{K'}(x - 1) \geq er \} \\
(7.2) &= K'^x.
\end{align}

Here ord_K is the valuation on K' normalised so that $\text{ord}_K(K'^x) = \mathbb{Z}$ and e is the ramification index of K'/K. The equality (7.1) follows from \cite[Sec. 4.2]{7} and the equality (7.2) follows from the fact that $\text{ord}_{K'}(\alpha) = e \cdot \text{ord}_K(\alpha)$ for all $\alpha \in K^x$.

Theorem 6. Let $T = R_{K'/K} \mathbb{G}_m$, where K'/K is a finite separable extension of local fields of ramification index e. Then for $r \geq 0$, the local Langlands correspondence for tori induces an isomorphism:

\[\text{Hom}(T(K)/T(K)_r, C^\times) \cong H^1(W_K/W_{K'}^{\varphi_{K'/K}(er)}, \hat{T}W_{K'}^{\varphi_{K'/K}(er)}). \]

Proof. The case $r = 0$ is a special case of \cite[Theorem 7]{4}. For $r > 0$, this follows by

\begin{align}
\text{Hom}(T(K)/T(K)_r, C^\times) &\cong \text{Hom}(K'^x/K'^x_\text{er}, C^\times) \\
(7.3) &\cong \text{Hom}(W_{K'}^{\varphi_{K'/K}(er)}, C^\times) \\
&\cong H^1(W_{K'}^{\varphi_{K'/K}(er)}, C^\times) \\
(7.4) &\cong H^1(W_K/W_{{K'}_r}^{\varphi_{K'/K}(er)}, \text{Ind}_{W_{K'}}^{W_K} C^\times W_{K'}^{\varphi_{K'/K}(er)}) \\
&\cong H^1(W_K/W_{{K'}_r}^{\varphi_{K'/K}(er)}, (\hat{T}) W_{K'}^{\varphi_{K'/K}(er)}).
\end{align}

Here, the isomorphism (7.4) follows from Lemma 4. \hfill \Box

Corollary 7. For T as in Theorem 6, \(\varphi_{K'/K}(e \cdot \text{dep}_T(\chi)) = \text{dep}_{W_K}(\lambda_T(\chi)). \)

Proof. This follows from an argument analogous to the argument in the proof of the Corollary 5. \hfill \Box

Remark 8. The slope of the map $r \mapsto \varphi_{K'/K}(er)$ at a differentiable point r is \(\frac{e}{\text{log}_e(e^{r})} \geq 1. \) Thus, when K'/K is a wildly ramified extension, $\varphi_{K'/K}(er) > r$ and consequently $\text{dep}_T(\chi) < \text{dep}_{W_K}(\lambda_T(\chi))$.

When K'/K is a tamely ramified extension, $\varphi_{K'/K}(r) = \frac{r}{e}$. Therefore in this case, Corollary 7 simplifies to,

\[\text{dep}_T(\chi) = \text{dep}_{W_K}(\lambda_T(\chi)). \]

This is a special case of Depth-preservation Theorem of Yu for tamely ramified tori \cite[Sec. 7.10]{8}.
Lemma 9. For $1 \leq r$ and $\varphi_{L/F}(r) = (p - 1)\varphi_{L/K}(r)$.

7.1. Case of a tamely induced tori. Recall that a K-torus is called induced if it is of the form $\Pi_{i=1}^{k} R_{L_i/K} G_m$, where L_i are finite separable extensions of K. A K-torus T is called tamely induced if $T \otimes_K K_1$ is an induced torus for some tamely ramified extension K_1 of K. In this section, we compare depths under LLC for such tori following the proof in [8, Sec. 7.10].

Let T be a tamely induced K-torus. Then there exists an induced torus $T' = \prod_{i=1}^{n} R_{K_i'/K} G_m$ such that $T' \to T$ and $C_0 := \ker(T' \to T)$ is connected. Further $T'(K)_r \to T(K)_r \forall r > 0$ (see proof in [7, Lemma 4.7.4]). Let $\chi \in \text{Hom}(T(K), \mathbb{C}^\times)$ and let χ' denote its lift to $T'(K)$. Then

$$\text{dep}_T(\chi) = \text{dep}_{T'}(\chi') = \sup\{\text{dep}_{T'}(\chi'_i) \mid 1 \leq i \leq n\}. \tag{7.5}$$

Here T'_i denotes $R_{K_i'/K} G_m$ and $\chi'_i = \chi'|_{T'_i}$. By functoriality, $\lambda_T(\chi)$ is the image of $\lambda_T(\chi)$ under $H^1(W_K, T) \to H^1(W_K, T')$ and therefore $\text{dep}_{W_K}(\lambda_T(\chi)) = \text{dep}_{W_K}(\lambda_T(\chi'))$. But

$$\text{dep}_{W_K}(\lambda_T(\chi')) = \sup\{\text{dep}_{W_K}(\varphi_{K_i'/K_i}(e_i \cdot \text{dep}_{T'}(\chi'_i)) \mid 1 \leq i \leq n\}.$$ \hspace{1cm} (7.6)

$$= \sup\{\varphi_{K_i'/K_i}(e_i \cdot \text{dep}_{T'}(\chi'_i)) \mid 1 \leq i \leq n\}.$$ \hspace{1cm} (7.6)

$$\geq \sup\{\text{dep}_{T'}(\chi'_i) \mid 1 \leq i \leq n\}. \tag{7.6}$$

Here e_i denotes the ramification index of K_i'/K_i. Thus

$$\text{dep}_{W_K}(\lambda_T(\chi)) \geq \text{dep}_T(\chi). \tag{7.6}$$

Now assume T is wildly ramified. We will now produce a character of $T(K)$ for which the inequality (7.6) is strict. We can assume without loss of generality that $T_0 := R_{K_0'/K} G_m$ is wildly ramified. Let χ'_0 be a positive depth character of $T_0(K)$ which is trivial on $C_0 \cap T_0(K)$. Extend χ'_0 trivially to a character χ' of $T'(K)$. Then since \mathbb{C}^\times is divisible, the character χ' lifts to a character χ of $T(K)$. By Remark [8] $\text{dep}_{T_0}(\chi'_0) < \text{dep}_{W_K}(\lambda_T_0(\chi'_0))$. Since $\text{dep}_T(\chi) = \text{dep}_{T_0}(\chi'_0)$ and $\text{dep}_{W_K}(\lambda_T(\chi)) = \text{dep}_{W_K}(\lambda_{T_0}(\chi'_0))$, it follows that the inequality (7.6) is strict for this choice of χ.

8. An Example

Let $K = \mathbb{Q}_p$, $L = K(\zeta_{p^n})$, where ζ_{p^n} denotes a primitive p^nth root of unity, $n \geq 1$. Then L/K is a totally ramified extension of degree $(p - 1)p^{n-1}$. Consider the intermediate extension $F = K(\zeta_p)$ of K of degree $p - 1$ over K. Then L/F is a wildly ramified extension. Write $G = \text{Gal}(L/K)$ and $H = \text{Gal}(L/F)$.

Lemma 9. For $1 \leq r$ and $\varphi_{L/F}(r) = (p - 1)\varphi_{L/K}(r)$.

Proof. We first note that since we considering abelian extensions, the jumps in filtration occur at integer values. We have for \(r \geq 1 \),
\[
\varphi_{L/K}(r) = \int_0^r \frac{dt}{(G_0 : G_t)}
\]
\[
= \int_0^1 \frac{dt}{(G_0 : G_t)} + \int_1^r \frac{dt}{(G_0 : G_t)}
\]
\[
= \frac{1}{p-1} + \int_1^r \frac{dt}{(G_0 : G_t)}
\]
\[
= \frac{1}{p-1} + \int_1^r \frac{(H_0 : H_t)}{(G_0 : G_t)} \frac{dt}{(G_0 : G_t)}
\]
\[
= \frac{1}{p-1} + \int_1^r \frac{(H_0 : H_t)}{(G_0 : H_0)} \frac{dt}{(H_0 : H_t)}
\]
\[
= \frac{1}{p-1} + \frac{1}{p-1} \int_1^r \frac{dt}{(H_0 : H_t)}.
\]
The last equality holds because \(G_t = H_t \) for \(t \geq 1 \) and \((G_0 : H_0) = p - 1 \). Thus
\[
\varphi_{L/K}(r) = \frac{1}{p-1} + \frac{1}{p-1} (\varphi_{L/F}(r) - \int_0^1 \frac{1}{(H_0 : H_t)} dt)
\]
\[
= \frac{1}{p-1} + \frac{1}{p-1} (\varphi_{L/F}(r) - 1)
\]
\[
= \frac{\varphi_{L/F}(r)}{(p-1)}.
\]
\[\square\]

Write \(m = p^n \) and let \(G(m) = (\mathbb{Z}/m\mathbb{Z})^\times \). By [6, Chap IV, Prop. 17], \(G = G(m) \).
Define
\[
G(m)^e := \{ a \in G(m) \mid a \equiv 1 \mod p^e \}.
\]
Then \(G(m)^e = \text{Gal}(L/K(\zeta_{p^e})) \). The ramification groups \(G_u \) of \(G \) are [6, Chap IV, Prop. 18]:
\[
G_0 = G
\]
if \(1 \leq u \leq p - 1 \) \(G_u = G(m)^1 \)
if \(p \leq u \leq p^2 - 1 \) \(G_u = G(m)^2 \)
\[
\vdots
\]
if \(p^{n-1} \leq u \) \(G_u = 1 \).

We now calculate \(\varphi_{L/F} \).
Proposition 10. The Hasse-Herbrand function of the wildly ramified extension \(L/F \) is given by

\[
\varphi_{L/F}(r) = \begin{cases}
 k(p-1) + \frac{r-p^k+1}{p^k} & \text{if } p^k - 1 < r \leq p^{k+1} - 1 \text{ with } 0 \leq k < n - 1 \\
 (n-1)(p-1) + \frac{r-p^{n-1}+1}{p^{n-1}} & \text{if } r > p^{n-1} - 1
\end{cases}
\]

Proof. We consider various cases:

- **Case** \(0 < r \leq 1 \)
 \[
 \varphi_{L/F}(r) = \int_0^r \frac{dt}{(H_0 : H_t)} = \frac{1}{(H_0 : H_1)} \int_0^r dr = r.
 \]

- **Case** \(1 < r \leq p - 1 \)
 \[
 \varphi_{L/K}(r) = \int_0^r \frac{dt}{(G_0 : G_t)} = \int_0^1 \frac{dt}{(G_0 : G_1)} + \int_1^r \frac{dt}{(G_0 : G_t)} = \frac{1}{p-1} + \int_1^r \frac{dt}{(G_0 : G(m)^1)} = \frac{r}{p-1}.
 \]

Therefore, \(\varphi_{L/F}(r) = r \).

- **Case** \(p^k - 1 < r \leq p^{k+1} - 1 \) with \(1 \leq k < n - 1 \)
 \[
 \varphi_{L/K}(r) = \int_0^r \frac{dt}{(G_0 : G_t)} = \sum_{i=0}^{k-1} \int_{(p^i-1)}^{(p^{i+1}-1)} \frac{dt}{(G_0 : G_t)} + \int_{p^k-1}^r \frac{dt}{(G_0 : G_t)} = \int_0^1 \frac{dt}{(G_0 : G_1)} + \int_1^{p-1} \frac{dt}{(G_0 : G(m)^1)} + \sum_{i=1}^{k-1} \int_{p^i-1}^{p^{i+1}-1} \frac{dt}{(G_0 : G(m)^i)}
 \]
 \[
 + \int_{p^k-1}^r \frac{dt}{(G_0 : G(m)^{k+1})} = \frac{1}{p-1} + \frac{p-2}{p-1} + \sum_{i=1}^{k-1} \frac{p^{i+1} - p^i}{(p-1)p^i} + \frac{r - p^k + 1}{(p-1)p^k} = k + \frac{r - p^k + 1}{(p-1)p^k}.
 \]

Therefore, \(\varphi_{L/F}(r) = k(p-1) + \frac{r-p^k+1}{p^k} \).
• Case $r > p^n - 1$

$$
\varphi_{L/K}(r) = \int_0^r \frac{dt}{G_0 : G_t} = \int_0^{p^n - 1} \frac{dt}{G_0 : G_1} + \int_{p^n - 1}^r \frac{dt}{G_0 : G_t} = (n - 1) + \frac{r - p^n - 1 + 1}{(p - 1)p^n - 1}.
$$

Therefore, $\varphi_{L/F}(r) = (n - 1)(p - 1) + \frac{r - p^n - 1 + 1}{p^n - 1}$.

Now write $T = R_{L/F} G_m$ and let λ_T be as denoted in Sec. 6. It then immediately follows from Prop. 10.

Lemma 11. $\varphi_{L/K}(p^n - 1 - r) > r \forall r > 0$. Consequently, for all positive depth $\chi \in \text{Hom}(T(K), \mathbb{C}^\times)$, $\text{dep}_T(\chi) < \text{dep}_{W_K}(\lambda_T(\chi))$.

9. ACKNOWLEDGEMENT

The authors would like to thank Anne-Marie Aubert for carefully going over this article and suggesting several improvements.

REFERENCES

[1] Anne-Marie Aubert, Sergio Mendes, Roger Plymen, and Maarten Solleveld, *On L-packets and depth for $\text{SL}_2(K)$ and its inner form*, Int. J. Number Theory 13 (2017), no. 10, 2545–2568.

[2] Anne-Marie Aubert, Paul Baum, Roger Plymen, and Maarten Solleveld, *Depth and the local Langlands correspondence*, Arbeitstagung Bonn 2013, 2016, pp. 17–41.

[3] Robert Langlands, *Representations of abelian algebraic groups*, Pacific Journal of Mathematics 181 (1997), no. 3, 231–250.

[4] Manish Mishra, *Langlands parameters associated to special maximal parahoric spherical representations*, Proceedings of the American Mathematical Society 143 (2015), no. 5, 1933–1941.

[5] Allen Moy and Gopal Prasad, *Jacquet functors and unrefined minimal K-types*, Comment. Math. Helv. 71 (1996), no. 1, 98–121.

[6] Jean-Pierre Serre, *Local fields*, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg.

[7] Jiu-Kang Yu, *Smooth models associated to concave functions in Bruhat-Tits theory*, preprint.

[8] Jiu-Kang Yu, *On the local Langlands correspondence for tori*, Ottawa lectures on admissible representations of reductive p-adic groups, 2009, pp. 177–183.

Department of Mathematics, Indian Institute for Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India

E-mail address: manish@iiserpune.ac.in

E-mail address: basudev.pattanayak@students.iiserpune.ac.in