Electronic Supplementary Information

A bicyclic S-adenosylmethionine regeneration system applicable with different nucleosides or nucleotides as cofactor building blocks

Désirée Popadić, Dipali Mhaindarkar, Mike H. N. Dang Thai, Helen C. Hailes, Silja Mordhorst, and Jennifer N. Andexer

a Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany
b Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
c Present address: Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1–5/10, 8093 Zurich, Switzerland

*Corresponding E-mail: jennifer.andexer@pharmazie.uni-freiburg.de

Table of Contents

Experimental .. S2
Materials ... S2
Enzymes used in the regeneration systems (cloning, expression, and purification) S2
HPLC analysis .. S3
Buffer screening for SAM regeneration system ... S3
Assays for cyclic cofactor regeneration system ... S3
Assays for extended three-enzyme cascade starting from L-homocysteine S4
Control assays for side reactions ... S5
Statistical analysis .. S5
DNA sequences .. S5
Protein sequences .. S9
State of the art .. S11
Results and discussion .. S16
Starting point for optimisation.. S16
Quantitative data for MT conversion and TTNs .. S17
Buffer screening ... S21
Co-purified MTAN is not the only reason for adenine accumulation S23
Options for the removal of L-homocysteine ... S24
N-Methylation also improved by optimised system with L-methionine regeneration S32
Cyclic SAM regeneration with L-methionine regeneration is more efficient than without S33
Regeneration of SAM analogues is possible with nucleobase modifications S34
The regeneration system can be used with crude lysates .. S35
References .. S36

S1
Experimental

Materials

Substrates and reference standards were purchased in the highest purity available from Sigma-Aldrich (ATP, ADP, AMP, adenosine, IDP, IMP, inosine, hypoxanthine, CTP, CDP, CMP, cytidine, cytosine, SAM, SAH, MTA, L-methionine, L-ethionine, D/L-SMM, N-ethylanthranilic acid, and 3,4-dihydroxybenzoic acid), Acros Organics (isonicotinic acid and sodium polyphosphate), Alfa Aesar (N-methylanthranilic acid, vanillic acid), AppliChem (adenine), Th. Geyer (ITP) and Fluka (anthranilic acid). Ingredients for buffers and cultivation media were purchased from Carl Roth.

Enzymes used in the regeneration systems (cloning, expression, and purification)

The cloning, expression, and purification of the majority of enzymes used in the regeneration system have been described in previous publications. Only modifications and newly added enzymes are described here. An overview of all enzymes and their UniProt accession numbers are listed in Table S3, as well as their DNA and protein sequences below.

The 975 bp gene coding for the L-homocysteine S-methyltransferase from Saccharomyces cerevisiae (SchSMT) was amplified by PCR from genomic DNA of baker’s yeast (primers used: SchSMT-Ndel-fwd 5’TATATACATATGAACGCGATTCATCAATCAGAG-3’ and SchSMT-HindIII-rc 5’TATATAAGCTTAGATTTATCTACGCTGATG-3’) and cloned into pET28a(+) using T4 DNA ligase (New England Biolabs GmbH, Frankfurt am Main, Germany). The 1224 bp gene coding for the betaine-L-homocysteine S-methyltransferase from Rattus norvegicus (RnBHMT) was purchased as synthetic DNA strings from Invitrogen (Thermo Fisher Scientific, Waltham, MA, USA), amplified by PCR (primers used: RnBHMT-Ndel-fwd 5’TATATAAGCTTAGATTTATCTACGCTGATG-3’ and RnBHMT-HindIII-rc 5’TATATAAGCTTAGATTTATCTACGCTGATG-3’) and cloned into pET28a(+) using In-Fusion Cloning (Takara Bio Europe, Saint-Germain-en-Laye, France). Restriction sites were included in the primers to leave the option for using restriction enzyme cloning.

The enzymes used in the regular SAM regeneration system were produced in E. coli BL21-Gold(DE3) (Agilent, Santa Clara, CA, USA). To eliminate any nucleosidase contamination, E. coli Δmtm (DE3) cells were used, which were kindly provided by C. Liao and F. Seebeck (University of Basel, Switzerland).

The expression of TkMAT (Thermococcus kodakarenensis methionine adenosyltransferase) was improved by the addition of the RIPL plasmid (Agilent, Santa Clara, CA, USA) to the E. coli strains, as well as using 2xYT medium for expression. RnBHMT was also expressed in 2xYT medium. As the expression of MmSAH (Mus musculus SAH hydrolase) was decreased in the nucleosidase-deficient strain, 2xYT medium was used for expression.

Seed cultures (5 mL) were grown in LB medium with the corresponding antibiotics at 37 °C overnight. The main culture (400 mL plus added seed culture) was grown in LB medium, if not otherwise stated, supplemented with the needed antibiotics, at 37 °C. When the OD₆₀₀ was higher than 0.5, the expression was induced by the addition of isopropyl-β-D-thiogalactopyranoside (IPTG; final concentration 0.25 mM, for RnBHMT 0.20 mM) and the cultures were shaken at 160 rpm for at least 18 h at 20 °C. The cells were harvested by centrifugation and lysed by sonication [Branson Sonifier 250, Emerson, St. Louis, MO, USA (duty cycle 50%,
intensity 50%, 5 x 30 s with 30 s breaks)] in lysis buffer [40 mM Tris-HCl, pH 8.0, 100 mM NaCl, 10% (w/v) glycerol].

After centrifugation the crude lysate was either directly used for assays or the soluble proteins were purified by nickel-NTA affinity chromatography (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) and desalted using a PD-10 column (GE Healthcare Life Sciences, Little Chalfont, UK). The storage buffer of the enzymes was the same as the lysis buffer. Protein concentration was determined using the absorbance at 280 nm, the molecular weight (including the His6-tag), and the protein extinction coefficient (calculated with ExPASy ProtParam tool) with a NanoDrop 2000 (Thermo Fisher Scientific, Waltham, MA, USA). Purified protein samples were visualised by SDS-PAGE (Fig. S2).

HPLC analysis
All substrates, products, and intermediates in the regeneration system that are commercially available have been used as authentic reference standards and for calibration curves.

All assays were analysed with an Agilent 1100 Series HPLC using an ISAspher SCX 100-5 column (250 mm x 4.6 mm, 5 µm, ISERA GmbH, Düren, Germany). The HPLC method for the substrates and products has been described previously. The injection volume was set to 5 µL for assays with 12 and to 10 µL for assays with 18. All retention times and calibration curves are listed in Table S4.

Buffer screening for SAM regeneration system
The standard conditions for the assays were 50 mM buffer, 20 mM MgCl2, 50 mM KCl, and 20 mM polyP (calculated as single phosphate residues). The MT substrate 12 was used at 2 mM and the cofactor building block AMP was supplied at 40 µM, while L-methionine was added in excess at 3 mM. The concentrations of the enzymes were 1 µM for ScADK, AjPPK2, and SmPPK2 and 10 µM for EcMAT, RnCOMT, and MmAHH. Different buffer systems with various pHs (potassium phosphate pH 7.5, 8.0; HEPES-NaOH pH 7.5, 8.0; Tris-HCl, pH 7.0, 7.5, 8.0, 8.5, 9.0) were tested for overall activity of the regeneration system looking at the RnCOMT conversion of 3,4-dihydroxybenzoic acid (12) to its methylated products vanillic acid (13) and isovanillic acid (14). A master mix of all necessary enzymes was prepared and added to the assay to start the reaction. Negative controls were prepared without any addition of enzymes. The samples were incubated at 37 °C at 300 rpm in a final volume of 200 µL and the reaction stopped by the addition of 10% (v/v) perchloric acid [final concentration 2.5% (v/v)] after 20 h. The samples were immediately frozen in liquid nitrogen and stored at −20 °C. Prior to HPLC analysis, the samples were re-thawed, centrifuged for 30 min at 18213 × g at 4 °C, and 80 µL of the supernatant was transferred to an HPLC vial with inlet.

Assays for cyclic cofactor regeneration system
SAM regeneration
The standard conditions for the assays were 50 mM Tris-HCl, pH 8.0, 20 mM MgCl2, 50 mM KCl, and 20 mM polyP (calculated as single phosphate residues). The substrate of the MTs, 12 or 18, was used at 2 mM and the cofactor building block AMP was varied between 0 and 40 µM, resulting between 50 and 200 maximum turnover numbers possible in the reaction setup. L-Methionine was added in excess at 3 mM. The concentrations of the enzymes were 1 µM for ScADK, AjPPK2, and SmPPK2 and 10 µM for EcMAT, RnCOMT or RgANMT, and MmAHH. The samples were incubated, stopped, and prepared for HPLC analysis as described above.
SAM and L-methionine regeneration with 5 mM MT substrate

Enzyme concentrations and set-ups were the same as for all other assays. 5 mM MT substrate were used with either an excess of 7.5 mM L-methionine or 7.5 mM S-methyl-D/L-methionine (D/L-SMM) and 40 µM L-methionine. AMP was varied between 10 and 100 µM. The samples were incubated and stopped described above. After centrifugation, the samples were diluted 1:1 with water and 80 µL of the dilution was transferred to a HPLC vial with inlet.

SAE regeneration

The same assay set-up was used as described for the SAM regeneration only the alkyl group donor was swapped to L-ethionine and TkMAT was used. Anthranilic acid (18) was used as substrate with RgANMT as MT. The samples were incubated, stopped, and prepared for HPLC analysis as described above.

S7dzAM regeneration

The same assay set-up was used as described for the SAM regeneration only the cofactor building block was exchanged. 7-Deazadenosine (7b, tubercidin) was used as starting material, as a nucleoside monophosphate was not available, AMP (1 µM) was added to start the reaction. Both EcMAT and TkMAT were tested with the modified cofactor building block. The samples were incubated, stopped, and prepared for HPLC analysis as described above.

SAM and L-methionine regeneration

The same assay set-up was used as described for the SAM regeneration except that L-methionine was reduced to 40 µM or not added at all. Either D/L-SMM or betaine were added at 3 mM in excess and an additional enzyme for L-methionine regeneration, ScHSMT or RnBHMT, was added at 10 µM. The samples were incubated, stopped, and prepared for HPLC analysis as described above.

SIM and SCM regeneration

The same assay set-up was used as described for the SAM regeneration only the cofactor building block was exchanged. Either IMP or CMP was added at 40 µM. As EcMAT did not accept ITP and CTP as substrates, TkMAT was used in all assays containing cofactor analogues. Assays featuring L-methionine regeneration included 40 µM L-methionine, 3 mM D/L-SMM and 10 µM ScHSMT. The samples were incubated, stopped, and prepared for HPLC analysis as described above.

SAM regeneration with crude lysates

The assays were set up in the same way as the ones featuring purified enzymes. The final concentration of crude lysates was 10% (v/v) for EcMAT, RnCOMT, MmSAHH, and ScHSMT, and 1% (v/v) for ScADK, AjPPK2, and SmPPK2. Negative controls were set up with crude lysate of empty pET28a(+) vector [final concentration 33% (v/v)] cultivated in the same way as the other cultures. The samples were incubated, stopped, and prepared for HPLC analysis as described above.

Assays for extended three-enzyme cascade starting from L-homocysteine

The standard conditions for the assays were 50 mM Tris-HCl, pH 8.0, 20 mM MgCl2, and 50 mM KCl. The starting material was 2 mM L-homocysteine, 2.5 mM betaine or D/L-SMM, 2.5 mM ATP, and 2 mM MT substrate and the enzymes added were RnBHMT or ScHSMT, EcMAT, RnCOMT, and EcMTAN at 10 µM each. The samples were incubated for 20 h, stopped, and prepared for HPLC analysis as described above.
Control assays for side reactions

SAH as methyl acceptor
To check if SAH can directly be methylated by ScHSMT (or RnBHMT), 10 µM of the enzyme was incubated with 1 mM SAH and 2 mM D/L-SMM (or 2 mM betaine) in the optimised buffer system. The samples were incubated for 5.5 h, stopped, and prepared for HPLC analysis as described above.

12 as methyl acceptor
To check if 12 can directly be methylated by ScHSMT (or RnBHMT), 10 µM of the enzyme was incubated with 2 mM 12, and 2 mM D/L-SMM (or 2 mM betaine) in the optimised buffer system. The samples were incubated for 20 h, stopped, and prepared for HPLC analysis as described above.

Methionine alternatives as substrate for EcMAT
To check if EcMAT accepts either D/L-SMM (or betaine as an L-methionine alternative), the reaction was coupled to RnCOMT with 12 as substrate for easier detection. 10 µM of each enzyme were added to 3 mM ATP and either 3 mM L-methionine (positive control), 3 mM D/L-SMM or 3 mM betaine with 2 mM 12 as MT substrate, in the optimised buffer system. The samples were incubated for 20 h, stopped, and prepared for HPLC analysis as described above.

Methyl donors directly used by RnCOMT
It was checked if RnCOMT accepts either D/L-SMM or betaine directly as a methyl donor. 10 µM of the enzyme was added to either 3 mM SAM (positive control), 3 mM D/L-SMM or 3 mM betaine with 2 mM 12 as MT substrate, in the optimised buffer system. The samples were incubated for 20 h, stopped, and prepared for HPLC analysis as described above.

Statistical analysis
As MT conversion was detected without the addition of cofactor building block, a statistical analysis was conducted to check if the conversion with modified cofactor building blocks was significant. An unpaired t-test was used.

DNA sequences

>AjPPK2 (codon-optimised for E. coli)
ATGGGACCCGAAAACCATGTGCAAGGACATGGGAGCGGCTGAGCCATGGATGAGCAACGAGATATG
GCACCTGAGATACCCGGACGACGACGAGGACATGCGTATGCTGAGCAGCTGGAGTATGCTGAGG
AAAGTGAAGCGTATGCTGAGCAGCTGGAGTATGCTGAGG

S5
GATTATCTGAAAAAGCCGACGATATATGTTCACATACCGATACGATACGATATGCGAAAACTGGAAGACGGATCGTGATACCGAT
AATGATAAACAGCAAGCCCGTATTGAAGTTCTGCGTGCAATCCTGAAACAACTGAAAGCGGATCGTGATACCGAT
TAA

>EdMAT

ATGGCAAAACACCTTTTTATGTCCGAGTCTGCTCTGAGAGGACATCGACATGAGATGCTAGACAAATGCTCTGAT
GCCGTTTTTACAGCCACGACTCCTGCAAGAGATGACGAGGCTTGTGGGAAACCTACGTTAAAAACCGGAGAT
GTITTTATGTTGGCCGCGATCTACACACAGCCCGCTGTTGCTGACAGATCGGAAATACCCCGTTAAGGGTTGGGAA
ATTTGCTACATATGCTCAGACGCGGTTTGTGCGAAGGCTTTTGTTGTTATCGAGAAGTTCTGGAACACATCAGC
TCTGGAACATCCCGACGTGCTGCGATGCTGCAAGATCGGCGCGAAGCGAATTTCGCGATG

>EdMTAN

ATGGAAAATCGGCTCATATTGGTCAATGGAAGAAGATTTATCGCGTCGCTGCGACTAAAATCGAAAACCGTCAAACTC
ATCAGTCTCGCGGTTGCGAAATCTATACCGGCCAAAAGTAAGGCTGACACGCGTTGCTGTTGGAAACACTGCAAGC
CTGTAGTCATCGATCTTGTTCTGCTGACCGGTTGAAAATCGGTGCTGTTGGAAACACTGCAAGCTGCAAGAT
GCCTACCGGCGACGTTTCTTGGTATATGCGTGAAATGTATAGCGCAAGCACAACCGCTGAAAGGTGCACGTATT
GCAGGTTGTCTGCACATGACCGTTGAAACCGCAGTTCTGATTGAAACCCTGGTTGCACTGGGTGCAGAAGTTCGT
TGGAGCAGCTGTAACATT
TTTAGACCCAGGATCATGCAGCAGCAGCAATTGCAAAAGCAGGTATTCCGGTTTTGT
GCATGGAAAGGTGAAACCGATGAAGAATATCTGTGGTGTATTGAACAGACCCTGCACTTTAAAGATGGTCCGCTG
AATATGATTCTGGATGATGGTGGTGATCTGACCAATCTGATTCATACCAAATATCCGCAGCTGCTGAGCGGTATT
CGTGGTATTAGCGAAACCAACCCACGCTGTTTCAAACTCTGATATAAATGTAGGACCGAACGCACGTTGCAATG
CCGCAATTAAATGTATACGATCAGCTGCAACCTCCTGCTGGCTGTGCAAAATCGGTCTTTGGTGTGCTGCTGCT
ATGGGTCATCCGAGCTTTGTTATGAGCAATAGCTTTACCAATCAGGTGATGGCACAGATTGAACTGTGGACCCATA
CCGGATAAATATCCGGTTGGTGTTCATTTCCTGCCGAAAAAACTGGATGAGGCAGTTGCAGAAGCACATCTGGGT
AAACTGAATGTGAAACTGACCAAACTGACAGAAAAACAGGCACAGTATCTGGGTATGCCGATTAACG

>RgANMT (codon-optimised for E. coli)

ATGGGCAAAACACCTTTTTATGTCCGAGTCTGCTCTGAGAGGACATCGACATGAGATGCTAGACAAATGCTCTGAT
GCCGTTTTTACAGCCACGACTCCTGCAAGAGATGACGAGGCTTGTGGGAAACCTACGTTAAAAACCGGAGAT
GTITTTATGTTGGCCGCGATCTACACACAGCCCGCTGTTGCTGACAGATCGGAAATACCCCGTTAAGGGTTGGGAA
ATTTGCTACATATGCTCAGACGCGGTTTGTGCGAAGGCTTTTGTTGTTATCGAGAAGTTCTGGAACACATCAGC
TCTGGAACATCCCGACGTGCTGCGATGCTGCAAGATCGGCGCGAAGCGAATTTCGCGATG

>MmSAHH (codon-optimised for E. coli)

ATGGAAAAATCGGCTCATATTGGTCAATGGAAGAAGATTTATCGCGTCGCTGCGACTAAAATCGAAAACCGTCAAACTC
ATCAGTCTCGCGGTTGCGAAATCTATACCGGCCAAAAGTAAGGCTGACACGCGTTGCTGTTGGAAACACTGCAAGC
CTGTAGTCATCGATCTTGTTCTGCTGACCGGTTGAAAATCGGTGCTGTTGGAAACACTGCAAGCTGCAAGAT
GCCTACCGGCGACGTTTCTTGGTATATGCGTGAAATGTATAGCGCAAGCACAACCGCTGAAAGGTGCACGTATT
GCAGGTTGTCTGCACATGACCGTTGAAACCGCAGTTCTGATTGAAACCCTGGTTGCACTGGGTGCAGAAGTTCGT
TGGAGCAGCTGTAACATT
TTTAGACCCAGGATCATGCAGCAGCAGCAATTGCAAAAGCAGGTATTCCGGTTTTGT
GCATGGAAAGGTGAAACCGATGAAGAATATCTGTGGTGTATTGAACAGACCCTGCACTTTAAAGATGGTCCGCTG
AATATGATTCTGGATGATGGTGGTGATCTGACCAATCTGATTCATACCAAATATCCGCAGCTGCTGAGCGGTATT
CGTGGTATTAGCGAAACCAACCCACGCTGTTTCAAACTCTGATATAAATGTAGGACCGAACGCACGTTGCAATG
CCGCAATTAAATGTATACGATCAGCTGCAACCTCCTGCTGGCTGTGCAAAATCGGTCTTTGGTGTGCTGCTGCT
ATGGGTCATCCGAGCTTTGTTATGAGCAATAGCTTTACCAATCAGGTGATGGCACAGATTGAACTGTGGACCCATA
CCGGATAAATATCCGGTTGGTGTTCATTTCCTGCCGAAAAAACTGGATGAGGCAGTTGCAGAAGCACATCTGGGT
AAACTGAATGTGAAACTGACCAAACTGACAGAAAAACAGGCACAGTATCTGGGTATGCCGATTAACG
>**RnBHMT** (codon-optimised for *E. coli*)

ATGGCACCGATTGCAGGTAAAAAAGCAAAACGTGGTATTCTGGAACGTCTGAATGCCGGTGAAGTTGTTATTGGTGGATGGTGGTTTTGTTTTCGCACTGGAAAAACGCGGTTATGTTAAAGCAGGTCCGTGGACACCGGAAGCAGCAGTTGAACATCCGGAAGCCGTTCGTCAGCTGCATCGTGAAATTTCTGCGTGCTAGGTAGCAATGTTATGCAGACCTTTACCTTTATGCCAGCGAAGATAAACTGGAAAATC

>**RnCOMT** (codon-optimised for *E. coli*)

ATGGGTAGCCTGAGCGAAGCCCATATCCAGTATATACACTTGTGGTGAAGGAAGAACGATGAGGAATACATAT

>**ScADK**

ATGGGCTTAGCCTGAGCGAAGCCCATATCCAGTATATACACTTGTGGTGAAGGAAGAACGATGAGGAATACATAT
GTGAAAAGACTGTCATCTTCCACCCACGGTGTCGACCCGCCAAACACAGTGTTGGTGTCGTCCATCCAGGGTACCAGCAACTAT
CCAGTCGACACCCCTTGGAGCCTCCTTCTAAGTGCTGCACACCCACGGTGTCGTCGCTC GTAATACGCTGCAAGTCTGC
GCTGGGTTGACTAAATGGGAAAGATTTGGAAACTCTTTGAGGCTATGACATGGGTCAATGGCTAGCTGCTTTGTCTATTCAA
GAAGTTGGTCCCTCTTTACCCCTGCAGAAATATACCTCCTCAA

>ScHSMT
ATGAGGCGCCATTCAACTCAAAGAACTACTATAGTGAGACCCCGAAAAAGTTCTTATATCCTGTATGTGTCGTAGCTGCTT
ACATTCATGNCACGACGCTTTGTCGAAGGTGGACTCTTCTAAGATCGTCGACACCAACGGTGCTGGTG
ACGCCTTCGCTGGTGGCTTTATGGCTGGGTTGACTAAAGGTGAAGATTTGGAAACCTCTATTGACATGGGTCAATGGCTAGCTGCTTTGTCTATTCAA
GAAGTTGGTCCCTCTTTACCCCTGCAGAAATATACCTCCTCAA

>SmPPK2 (codon-optimised for E. coli)
ATGGCCCTGGATGAAGCACCGGCAGAAGCACGTCCGGGTAGCCGTGCAGTTGAACTGGAAATTGATGGTCGTAGCCATTTTTGATATTGATGATCCTGATCTGCCGAAATGGATTGATGAAGAGGCATTTCGTAGTGATGATTATCCGTTATAAAAAAAAACTGGATCGCGAAGAGTATGAGGAAACCCTGACCAAACTGCAGATCGAACTGGTTAAAGTTCAGTTTTGGATGCAGGCAACCGGTAAACGTGTTA
TCGGCAGTTTTTGAAGGTCGTGATGCAGCAGGTAAAGGTGGTGCA
ATTCATGCAACCACCCGAAATAGTGAACCTCCGAGTACGTTGAGGAGCTCGTCAGGACCCCAGTTGAGATGCAGAAGGTTGAGCTGTTGAGAGGAAGGGTATCGGTCACCCCGACAGCATAGCCGACGGTATAGCCGAGGCCGTCAGCAGGGCGCTCTCCAGGGAGTACGTGAAGAGGTACGGCATCATTCTCCACCACAACACCGACCAGGTCGAGGTTGTCGGCGGAAGGGCTACCCGCAGTTCGGCGGCGGTGAGGTCATCA
AGCCGATCTACATCCTCCTCTCCGGAAGGGCCGTCGAGATGGTTGACAGGGAGTTCTTCCCCGTCCATGAGATAGCACTTAAGGCCGCAAAGGACTACCTCAGGGACAGGCCGGCGACGACGGTTCCGTCGGAAGGGGCAACAGGGTTAACGGCCTCATCACCCCCAACAGGCACATGAGCATGGAGGCAGCGGCGGGTAAGAACCCGGTGAGCCACGTCGGTAAGATCTACAACATCCTCTCAAATGCTCATAGCGAACGACATAGCCGAGCAGGTCGAGGGCGTTGAGGAGG
TCTACGTTAGAATCCTCAGCCAGATTGGAAAGCCGATAGACGAGCCTCTCGTTGCCAGCGTGCAGATAATCCCGAAGAAGGGCTACTCAATCGACGTCCTCACAGAAGCCGGCCTACGAGATAGCCGACGAGTGGCTGGCCAACATAACGAAGATACAGAAGATGATCCTCGAGGAC
AAGGTAAACGTCTTCTGA

>TkMAT
ATGGCTGGAAAGGCTCGGAAATGAGGCTGTTGAGAGCTGTTGAGGAGCTGTTGACAGGGGTTGCTCCATCCAGGGTACCAGCAACTAT
CCAGTCGACACCCCTTGGAGCCTCCTTCTAAGTGCTGCACACCCACGGTGTCGTCGCTC GTAATACGCTGCAAGTCTGC
GCTGGGTTGACTAAATGGGAAAGATTTGGAAACTCTTTGAGGCTATGACATGGGTCAATGGCTAGCTGCTTTGTCTATTCAA
GAAGTTGGTCCCTCTTTACCCCTGCAGAAATATACCTCCTCAA

S8
>ScADK
MGATAPIVVLGNPLLDFQADVTALEYALKYSLKENDAILDVSDKDAIFMAFDELLQMPETKLVAGGAAQNTRAGAAYVLGAGQVVYFGSKDxFSERLNNENNEKAVGKSVMQVNDIFGTGKCAAILTGHNRSLTVTDLGAAANFFTPDHLDKHWDLVEAAAFLFYIIGFHLTVSPDIAVKLQHAKESKFFLNFSAFPFHPHFVKDAATLFYATVIIANESAAEFCDAFQLDCAFDTDAIAAQRIVKDSPVEKTVIFTHGEPTTVVSSSKGTSTYPKPLDSKIVDNTAGDADFAAGFMAGLTGKEDLETSIDMGQWLALSIQVEGYPSPSEKISYSDKLEH

>ScHSMT
MGSSHSHSHSSGSLVPGRSHMKRIPIKELIVEHPKVLILDGGGETELENRGININSFWSAAPFSESFWEPSSQERKVVEEMYRDFMIAGANILMTITYQAFQISSENTSITLAAAYKRFDLKIVSFTREGFEGEYLYLSIPWAHHVSCEYTGYGPFPEIDYGYFFKQLEFNQNRIDILGFETIPNHELKALSILVEDDIISKPFYGLSVDDSLNLQGTLEEISVHIKGLNKINNNLMCGVNCVSFNQSALILMLTEHELPGMLPVFSGIEYNPKEKTWHRPTNKLLDDWETTVKFDNGARIIGGCCRSTPSKDIAEAASAVDKY

>SmPPK2
MGSSHSHSHSSGSLVPGRSHWALDEAPAEARPSRAVELEIDGRSRIDDDPDLPKWIDEAEPFSDYISKKLDREEEYETTLKQIELVKVQFWMQATGKRVMAVFEGDRDAAGKGAHATTANMNPRARSEVVALKETETEGQWYFQRYVATFTAGEFVLFDWYRNGVEPMVMFTDPQYEQPFLKEARPFEEMIANEGIHLFKFWINIGQMKPLFHRHRDPDIKWLSPDIAALSKWDDYTGKRDMLKETHETEHPGWAVGNDKRRSRINVIRHMLTLDYGKEAAIGEVDKILGSGPFLR

>TkMAT
MGSSHSHSHSSGSLVPGRSHMAGKVRNIVVEELRTFVVEMQKVELVERKIGHPDSIADGIAEAVSRALSEYVKRYGIILHHTNDQVEVVGRRYFQGGGEVIEKPIYILSSGRAVMDREFFPVHEIALKAADYLRKAVRLLDEEHVIIIDSGIGQSGVLDVGVFNKAKNPIPLANDTSFGVYAPLTEKLYEKLNSDFKKEVKAPVEDIKVMGLRGHEIDLTIAAAIVDEVNDPMAVKEAIEAAKIGIVESHTERNPITNUTADDPKEIYITYTGTSAEAGDGGSVGCRVNRNGITRHMMSAAAGKNPVHSVGKYNILSMLIANDIAEVEQVGEVEYVVRILSQIGPIDEPLVASQIIIPKKGYSIDVLQKPAYEIADEWLNNITKIQMKILEDKVNF
Fig. S1. Previously published systems for enzymatic SAM supply or SAM regeneration. A. Three-enzyme SAM supply and SAH degrading cascade employing MAT, MT, and MTAN; B. ATP regeneration coupled to SAM supply using six enzymes starting from adenosine (extended supply cascade); C. SAM regeneration using two enzymes directly methylating SAH back to SAM by HMT with methyl iodide; D. Cyclic SAM regeneration system using six enzymes with AMP as starting cofactor building block. MAT, methionine adenosyltransferase; MT, methyltransferase; MTAN, MTA/SAH nucleosidase; ADK, adenosine kinase; PPK2-I/II, polyphosphate kinases; SAHH, SAH hydrolase; HMT, halide methyltransferase.

*For a better understanding, already described reactions are streamlined. Detailed substrate and product relationships are depicted in A and B.
Table S1. Overview of existing SAM supply and regeneration systems and examples for MT and MT substrate used.

System	Co-factor	Buffer and salts	Substrates	Enzymes	Mol% of MT	Incubation	Conversion [%][a]	TTN[b]
Supply (3 enzymes)²	SAM	100 mM Hapes, pH 8.0, 20 mM MgCl₂, 200 mM KCl	5 mM ATP, 5 mM L-Met, 5 mM 12	TnMAT (11 µM), RnCOMT (4 µM), EcMTAN (1 µM)	0.08	1.5 h	50 n.a.[c]	
Supply (6 enzymes)¹	SAM (ATP)	50 mM potassium phosphate, pH 7.5, 20 mM MgCl₂, 50 mM KCl	20 mM polyP, 3 mM L-Met, 3 mM adenosine, 1 mM AMP, 2 mM 12	ScADK (1.3 µM), AëPPK2 (0.9 µM), SmPPK2 (1.4 µM), EcMAT (11 µM), RnCOMT (19 µM), EcMTAN (3.8 µM)	0.93	20 h	>99 n.a.[c] (>1980)	
Supply (6 enzymes)¹	SAM (ATP)	50 mM potassium phosphate, pH 7.5, 20 mM MgCl₂, 50 mM KCl	20 mM polyP, 3 mM L-Met, 3 mM adenosine, 1 mM AMP, 2 mM 18	ScADK (1.3 µM), AëPPK2 (0.9 µM), SmPPK2 (1.4 µM), EcMAT (11 µM), RnANMT (12 µM), EcMTAN (3.8 µM)	0.59	20 h	>85 n.a.[c] (>1700)	
Supply (6 enzymes)¹	SAE (ATP)	50 mM potassium phosphate, pH 7.5, 20 mM MgCl₂, 50 mM KCl	20 mM polyP, 3 mM L-ethionine, 3 mM adenosine, 1 mM AMP, 2 mM 18	ScADK (1.3 µM), AëPPK2 (0.9 µM), SmPPK2 (1.4 µM), TnMAT (11 µM), RnANMT (12 µM), EcMTAN (3.8 µM)	0.59	20 h	>75 n.a.[c] (>1500)	
Regeneration (2 enzymes)⁴	SAM	100 mM sodium phosphate, pH 8.0	20 µM SAH, 4 mM methyl iodide, 2 mM α-ketovaleric acid	SgvM (20 µM), HMT (10 µM)	1.00	72 h	>95 100	
Regeneration (2 enzymes)⁴	SAM	100 mM sodium phosphate, pH 8.0	20 µM SAH, 20 mM methyl iodide, 8 mM histidine	EgtD (20 µM), HMT (10 µM)	1.00	48 h	48 580	
Regeneration (6 enzymes)	SAM	50 mM potassium phosphate, pH 7.5, 20 mM MgCl₂, 50 mM KCl	20 mM polyP, 3 mM L-Met, 40 µM AMP, 2 mM 18	ScADK (1.3 µM), APPK2 (0.9 µM), SmPPK2 (1.4 µM), EcMAT (11 µM), RgANMT (12 µM), MmAOMT (10 µM)	0.59	20 h, 37 °C	22	11
-------------------------	-----	---	---------------------------------	---------------------------------	--------	--------	--------	------

| Regeneration (6 enzymes) | SAE | 50 mM potassium phosphate, pH 7.5, 20 mM MgCl₂, 50 mM KCl | 20 mM polyP, 3 mM L-ethionine, 40 µM AMP, 2 mM 18 | ScADK (1.3 µM), APPK2 (0.9 µM), SmPPK2 (1.4 µM), EcMAT (11 µM), RgANMT (12 µM), MmAOMT (10 µM) | 0.59 | 20 h, 37 °C | 19 | 10 |

[a] Conversion based on MT reaction. [b] The number of cycles was calculated based on the ratio of alkylated product to catalytic amount of AMP. [c] n.a. – not applicable; the cofactor was not regenerated, but supplied in the reaction, and thus no TTN was calculated.
Table S2. Selected studies using (co)substrate analogues with enzymes from the SAM regeneration system.

Enzyme class	Organism/ enzyme name	Accepted substrates
	Cryptosporidium hominis	Natural (hypoxanthine) and non-natural nucleobase analogues with allyl or propargyl group (medium conv.)⁸
		Selenium analogues of L-methionine with other modifications (medium conv.)⁸
	E. coli	L-Ethionine (low conv.)^{9,10}
		Selenium analogues of L-methionine (high conv.)¹⁰ and longer alkyl, allyl, alkenyl, alkinyl groups (very low conv.)¹⁰
		Analogues of L-methionine with longer alkyl, allyl, alkenyl, alkinyl groups (very low conv.)¹⁰
	Homo sapiens (MAT 2A)	L-Ethionine (high conv.)¹⁰
		Selenium analogues of L-methionine (high conv.)¹⁰ and longer alkyl, allyl, alkenyl, alkinyl groups (low to medium conv.)¹⁰
		Analogues of L-methionine with longer alkyl, allyl, alkenyl, alkinyl groups (low to medium conv.)¹⁰
	Homo sapiens	Analogue of L-methionine with modified carboxylate moieties (low to high conv.)^{11,12}
	Methanocaldococcus jannaschii	L-Ethionine (high conv.)^{8,10}
		Natural (cytosine, guanine, hypoxanthine, uracil) and non-natural nucleobase analogues (high conv.)⁸
		Selenium analogues of L-methionine (high conv.)¹⁰ and longer alkyl, allyl, alkenyl, alkinyl groups (low to high conv.)¹⁰
		Analogues of L-methionine with longer alkyl, allyl, alkenyl, alkinyl groups (low to high conv.)¹⁰
	CouO/ Streptomyces rishiriensis	Non-natural nucleobase SAM analogue (medium conv.)⁸
		Selenium analogue with propargyl group (high conv.)⁸
	DnrK/ Streptomyces peucetius	SAM analogue with modified carboxylate moiety¹¹
	Ecml/ Encephalitozoon cuniculi	SAM analogues with photo-cross-linking moieties (high conv.)¹³
		Non-natural nucleobase SAM analogue (high conv.)⁸
		Selenium analogue with propargyl group (high conv.)⁸
	hTGS1/ Homo sapiens	Non-natural nucleobase SAM analogue (medium conv.)⁸
		Selenium analogue with propargyl group (low conv.)⁸
	M.TaqI/ Thermus aquaticus, MHhal/ Haemophilus paraHaemolyticus, M.BcnIB/ Bacillus centrosporus	Alkyl SAM analogues (low to high conv.)¹⁴
	NovO/ Streptomyces niveus	Alkyl SAM analogues and SAM analogues with modified carboxylate moiety (low to high conv.)¹⁵
Enzyme class	Organism/ enzyme name	Accepted substrates
-------------	--------------------------------	---
SAHH	RapM/ *Streptomyces hygroscopicus*	Ethyl and allyl SAM analogues¹⁶
	Alcaligenes faecalis	Nucleobase analogues of adenosine (low to high conv.)¹⁷
	Methanocaldococcus jannaschii	Inosine analogues of SAH and adenosine (high conv.)¹⁸
ADK	*Mycobacterium tuberculosis*	Ribose analogues of adenosine (low to high conv.)¹⁹
	Saccharomyces cerevisiae	Natural nucleobase (cytosine, guanine, hypoxanthine, uracil) and ribose analogues of adenosine (low to medium conv.)²⁰
	Trypanosoma brucei	Natural nucleotide analogues (CTP, GTP, UTP) and non-natural adenosine analogues²¹
PPK2	*Francisella tularensis*	Guanine analogues²²
	Arthrobacter (Paenarthrobacter) aurescens	Guanine analogues²³
	Ruegeria pomeroyi	Natural nucleobase (cytosine, guanine, uracil) analogues²⁴
	Sinorhizobium meliloti	Guanine analogues²⁵
Results and discussion

Starting point for optimisation

Table S3. Enzymes used in this study and their UniProt accession numbers (gene and protein sequences are given above).

Enzyme	UniProt accession number
AjPPK2	Q83XD3 (Q83XD3_ACIJO)
EcMAT	P0A817 (METK_ECOLI)
EcMTAN	P0AF12 (MTNN_ECOLI)
MmSAHH	P50247 (SAHH_MOUSE)
RgANMT	A9X7L0 (ANMT_RUTGR)
RnBHMT	O09171 (BHMT1_RAT)
RnCOMT	P22734 (COMT_RAT)
ScADK	P47143 (ADK_YEAST)
ScHSMT	Q08985 (SAM4_YEAST)
SmPPK2	Q92SA6 (Q92SA6_RHIME)
TkMAT	Q5JF22 (METK_THEKO)

Fig. S2. SDS-PAGE analysis of purified proteins. For each protein 2 µg was applied; S – standard, 1 – EcMAT (44 kDa), 2 – RnCOMT (27 kDa), 3 – MmSAHH (50 kDa), 4 – ScADK (37 kDa), 5 – AjPPK2 (58 kDa), 6 – SmPPK2 (37 kDa), 7 – ScHSMT (39 kDa), 8 – TkMAT (47 kDa), 9 – RgANMT (42 kDa), 10 – RnBHMT (47 kDa), 11 – EcMTAN (27 kDa), the calculated molecular weight always includes the His-tag. Standard taken from https://www.bio-rad.com/en-deSKU/1610374-precision-plus-protein-dual-color-standards-500-ulID=1610374.
Table S4. HPLC retention times and calibration curves (n.d. – not determined).

Substance	Retention time [min]	Calibration curve	R²
ATP (2a)	1.7	n.d.	n.d.
ADP (11a)	1.9	n.d.	n.d.
AMP (9a)	2.0	n.d.	n.d.
Adenosine (7a)	7.8	n.d.	n.d.
SAM (1a)	1.6	n.d.	n.d.
SAH (4a)	8.1	n.d.	n.d.
MTA	8.4	n.d.	n.d.
Adenine (5a)	9.2	n.d.	n.d.
ITP (2c)	1.3	n.d.	n.d.
IDP (11c)	1.3	n.d.	n.d.
IMP (9c)	1.5	n.d.	n.d.
Inosine (7c)	2.8	n.d.	n.d.
Hypoxanthine (5c)	3.2	n.d.	n.d.
CTP (2d)	1.3	n.d.	n.d.
CDP (11d)	1.5	n.d.	n.d.
CMP (9d)	2.0	n.d.	n.d.
Cytidine (7d)	7.8	n.d.	n.d.
Cytosine (5d)	10.0	n.d.	n.d.
7-Deazadenosine (Tubercidin, 7b)	12.3	n.d.	n.d.
3,4-Dihydroxybenzoic acid (12)	2.3	324.7 x	>0.99
Vanillic acid (13)	3.3	371.4 x	>0.99
Isovanillic acid (14)	4.5	465.4 x	>0.99
Anthranilic acid (18)	4.0	91.1 x	>0.99
N-Methylantranilic acid (19)	7.5	151.4 x	>0.99
N-Ethylantranilic acid	7.9	163.9 x	>0.99

Quantitative data for MT conversion and TTNs

For all regeneration systems, the MAT, MT, MT substrate, and cofactor building block used are given, as well as if the L-methionine regeneration system was in place. The regeneration systems start from the monophosphorylated nucleotide in catalytic amount and for methylation 2 mM MT substrate was supplied, if not otherwise stated. Conversions are based on the MT reaction; conversions and total turnover numbers (TTN) are given as mean values ± standard deviation. All reactions were performed and analysed in triplicates. TTNs were calculated as
the amount of MT product formed divided by the catalytic amount of AMP added to the reaction. The maximum possible TTNs for 2 mM MT substrate and 40, 20, or 10 µM cofactor building block are consequently 50, 100, or 200 TTNs, respectively. Increasing the MT substrate to 5 mM and adding 100, 40, 20, or 10 µM cofactor building block correspond to turnovers of at most 50, 125, 250, or 500, respectively.

Table S5. Results from SAM regeneration systems using enzymes produced in E. coli BL21-Gold(DE3) strain with AMP as cofactor building block and different L-methionine regeneration systems.

MAT	MT	Substrate	L-Methionine Regeneration	AMP [µM]	Conv. [%]	N° of cycles	
EcMAT	RnCOMT	12	no	40	92 ± 2.2	46 ± 1.1	
				20	68 ± 1.0	68 ± 1.0	
				10	47 ± 0.7	95 ± 1.5	
				0	9.9 ± 0.3	n.a.	
			ScHSMT	40 µM L-Met	40	>99 ± 0.0	50 ± 0.0
					20	>99 ± 0.0	100 ± 0.0
					10	>99 ± 0.0	200 ± 0.0
					0	25 ± 1.4	n.a.
ScHSMT	3 mM D/L-SMM	3	40	>99 ± 0.0	50 ± 0.0		
					20	>99 ± 0.0	100 ± 0.0
					10	82 ± 2.8	164 ± 5.7
RnBHMT	3 mM betaine	40 µM L-Met	40	16 ± 0.9	8 ± 0.5		
					20	13 ± 0.3	13 ± 0.3
					10	9 ± 0.4	17 ± 0.9
			no	40	59 ± 3.1	30 ± 1.5	
				20	39 ± 1.8	39 ± 1.8	
				10	27 ± 1.4	59 ± 2.9	
EcMAT	RgANMT	18	ScHSMT	40 µM L-Met	40	81 ± 0.6	41 ± 0.3
					20	53 ± 3.3	53 ± 3.3
					10	38 ± 1.6	75 ± 3.1

n.a.; not applicable, as the number of cycles is calculated from the cofactor building block added to the system.
Table S6. Results from cofactor regeneration systems using enzymes produced in *E. coli* BL21-Gold(DE3) strain with AMP analogues as cofactor building block and use of *ScHSMT* for L-methionine regeneration.

MAT	MT	Substrate	L-Methionine Regeneration	AMP [µM]	Conv. [%]	N° of cycles				
EcMAT	*RnCOMT*	12	no	AMP [1] 7dADO [40]	43 ± 1.5	23 ± 0.4	43 ± 1.5	22 ± 0.8	11 ± 0.2	
TkMAT	*RnCOMT*	12	no	AMP [40]	65 ± 1.3	42 ± 0.0	19 ± 1.0	11 ± 0.2		
			ScHSMT 3 mM D/L-SMM 40 µM L-Met		20 ± 0.5	(p < 0.0001)*	10 ± 0.3	23 ± 1.7	(p = 0.0057)*	11 ± 0.8
					38 ± 1.9	(p = 0.0007)*	19 ± 1.0	33 ± 2.8	(p = 0.0115)*	16 ± 1.4

*compared to the conv. without cofactor building block added (Table S5)

Table S7. Results from SAM regeneration systems using enzymes produced in *E. coli* Δmtn (DE3) strain with AMP as cofactor building block and L-methionine regeneration systems.

MAT	MT	Substrate	L-Methionine Regeneration	AMP [µM]	Conv. [%]	N° of cycles
EcMAT	*RnCOMT*	12	no	40	99 ± 0.3	50 ± 0.1
				20	85 ± 0.1	85 ± 0.1
				10	54 ± 1.1	108 ± 2.3
			ScHSMT 3 mM D/L-SMM 40 µM L-Met	40	>99 ± 0.0	50.0 ± 0.0
				20	99 ± 1.6	99 ± 1.6
				10	64 ± 0.2	129 ± 0.4
			no	40	61 ± 5.8	31 ± 2.9
				20	46 ± 0.5	46 ± 0.5
				10	35 ± 6.0	74 ± 12.0
EcMAT	*RgANMT*	18	no	40	75 ± 2.4	37 ± 1.2
			ScHSMT 3 mM D/L-SMM 40 µM L-Met	20	78 ± 6.6	78 ± 6.6
				10	61 ± 4.8	123 ± 9.5
Table S8. Results from SAE regeneration systems using enzymes produced in *E. coli* BL21-Gold(DE3) strain or *E. coli* Δmtn (DE3) strain with AMP as cofactor building block.

MAT	MT	Substrate	AMP [µM]	*E. coli* strain	Conv. [%]	N° of cycles
TkMAT	RgANMT	18	40	BL21-Gold(DE3)	20 ± 1.6	10 ± 0.8
		Δmtn (DE3)			23 ± 0.1	11 ± 0.0

Table S9. Results from SAM regeneration systems using enzymes produced in *E. coli* BL21-Gold(DE3) strain with AMP as cofactor building block and 5 mM MT substrate.

MAT	MT	Substrate	AMP [µM]	Conv. [%]	N° of cycles	
EcMAT	RnCOMT	12	no	100	63 ± 1.0	32 ± 0.5
			40	37 ± 0.3	46 ± 0.4	
			15	23 ± 0.7	76 ± 2.2	
			10	18 ± 0.6	90 ± 2.8	
		40	ScHSMT	100	72 ± 1.4	36 ± 0.7
		3 mM D/L-SMM	40	47 ± 3.2	58 ± 4.0	
		40 µM L-Met	15	33 ± 1.1	110 ± 3.6	
			10	27 ± 0.1	136 ± 0.7	

Table S10. Results from SAM regeneration systems using crude lysates produced in *E. coli* BL21-Gold(DE3) strain with AMP as cofactor building block based on the decrease of substrate 12.

MAT	MT	Substrate	AMP [µM]	Conv. [%]	N° of cycles	
EcMAT	RnCOMT	12	no	40	45 ± 2.1	22 ± 1.1
		ScHSMT	40	88 ± 0.5	44 ± 0.3	
Buffer screening

Fig. S3. Impact of buffer salt and pH on MT conversion. Tris-HCl pH 8.0, was the optimal buffer choice. The substrate was oxidised at Tris-HCl pH 9.0, and was not included in the data set.

Fig. S4. Typical HPLC chromatograms of the SAM regeneration system with RnCOMT. Starting material: 2 mM MT substrate 12, 3 mM L-methionine, 20 mM polyP (calculated as single phosphate residues), AMP (orange – 40 µM, blue – 20 µM, green – 10 µM).
Isosteric adenosine analogues are not well tolerated by each cycle enzyme

Fig. S5. Typical HPLC chromatograms of the S\(^{7\alpha}\)AM regeneration system with RnCOMT. Starting material: 2 mM MT substrate 12, 3 mM L-methionine, 20 mM polyP (calculated as single phosphate residues), 1 µM AMP, tubercidin (orange – 40 µM, blue – 20 µM, green – 10 µM).
Co-purified MTAN is not the only reason for adenine accumulation

Fig. S6. HPLC chromatograms of the hydrolysis of SAH catalysed by either MmSAHH purified from the E. coli BL21-Gold(DE3) (pink) or E. coli Δmtn (DE3) strain (purple) after 20 h. The SAH hydrolysis reaction that is included in the regeneration system is not the preferred in vitro reaction of the enzyme and adenine is formed as a side product.
Options for the removal of L-homocysteine

Fig. S7. Typical HPLC chromatograms of the SAM regeneration system with \(RnCOMT \) and additional L-methionine regeneration using \(RnBHMT \). Starting material: 2 mM MT substrate, 3 mM betaine, 20 mM polyP (calculated as single phosphate residues), AMP (orange – 40 µM, blue – 20 µM, green – 10 µM).
Fig. S8. A. Three-enzyme cascade (MAT–MT–MTAN) coupled to either HSMT or BHMT starting from L-homocysteine; B. HPLC chromatograms of the three-enzyme cascade (EcMAT, RnCOMT, EcMTAN) coupled to either ScHSMT or RnBHMT starting from L-homocysteine. Starting material: 2 mM MT substrate 12, 2 mM L-homocysteine, 3 mM D/L-SMM or betaine, 3 mM ATP.
The NMR spectra were recorded on a DRX 400 spectrometer (Bruker, Billerica, MA, USA) operating at 400.1 MHz (for 1H NMR). Spectra were analysed with TopSpin 3.6.2 (Bruker, Billerica, MA, USA). All NMR measurements were performed once at 25 °C.

Fig. S9. 1H NMR spectra of the possible degradation products of d/L-SMM, dimethyl sulfide (light green) and homoserine (orange), compared with d/L-SMM (red) incubated for 1 h (dark green), 6 h (purple) and 20 h (yellow) in buffer (blue) at 37 °C under assay conditions in 5% D$_2$O. No degradation products were found.
Fig. S10. HPLC chromatograms of ScHSMT or RnBHMT incubated with RnCOMT and SAH and MT substrate 12. Starting material: 2 mM MT substrate 12, 1 mM SAH, 2 mM d/L-SMM or 2 mM betaine.

Fig. S11. HPLC chromatograms of ScHSMT or RnBHMT incubated with 12. Starting material: 2 mM MT substrate 12, 3 mM d/L-SMM or 3 mM betaine.
Fig. S12. HPLC chromatograms of EcMAT and RnCOMT incubated with L-methionine or some analogues and ATP. Starting material: 2 mM MT substrate 12, 3 mM ATP, 3 mM L-methionine, 3 mM D/L-SMM or 3 mM betaine.

Fig. S13. HPLC chromatograms of RnCOMT incubated with SAM, D/L-SMM or betaine as possible methyl donors. Starting material: 2 mM MT substrate 12, 3 mM SAM, 3 mM D/L-SMM or 3 mM betaine. A small peak for 13 is detected in the D/L-SMM sample because of the L-methionine impurity.
Fig. S14. Typical HPLC chromatograms of the SAM regeneration system with *RnCOMT* and additional L-methionine regeneration using *ShHSMT*. Starting material: 2 mM MT substrate 12, 3 mM d/L-SMM, 40 µM L-methionine, 20 mM polyP (calculated as single phosphate residues), AMP (orange – 40 µM, blue – 20 µM, green – 10 µM).

Fig. S15. Typical HPLC chromatograms of the SAM regeneration system with *RnCOMT* and additional L-methionine regeneration using *ShHSMT*. Starting material: 2 mM MT substrate 12, 3 mM d/L-SMM, 20 mM polyP (calculated as single phosphate residues), AMP (orange – 40 µM, blue – 20 µM, green – 10 µM).
Fig. S16. Time course of MT conversion with A. regular SAM regeneration system and B. with the addition of L-methionine regeneration system using ScHSMT with RnCOMT. Starting material: 2 mM MT substrate 12, 3 mM L-methionine (A) or 3 mM D/L-SMM and 40 µM L-methionine (addition of ScHSMT, B), 20 mM polyP (calculated as single phosphate residues), 40 µM AMP. The same data as in Fig. S21 is shown.
L-Methionine was identified as an impurity in the S-methyl-D/L-methionine authentic standard (Fig. S17) when being compared to the L-methionine authentic standard (Fig. S18) using 1H NMR spectroscopy. The manufacturer gives the purity of the chemical at >99.0%.

Fig. S17. 1H NMR spectrum of the authentic reference of S-methyl-D/L-methionine (16) showing the L-methionine impurity in 5% D$_2$O.

S-Methyl-D/L-methionine (16):
1H NMR (5% D$_2$O, 25 °C, 400 MHz): δ = 3.76 ppm (t, J = 6.8 Hz, C$_\alpha$-H), 3.36 ppm (m, C$_\gamma$-H$_2$), 2.84 ppm (s, CH$_3$-S), 2.25 ppm (q, J = 8.3 Hz, C$_\beta$-H$_2$).

Fig. S18. 1H NMR spectrum of the authentic reference of L-methionine (3) in 5% D$_2$O.

L-Methionine (3):
1H NMR (5% D$_2$O, 25 °C, 400 MHz): δ = 3.74 ppm (t, J = 8.0 Hz, C$_\alpha$-H), 2.51 ppm (t, J = 8.0 Hz, C$_\gamma$-H$_2$), 2.04 ppm (m, CH$_3$-S, C$_\beta$-H$_2$).
N-Methylation also improved by optimised system with L-methionine regeneration

Fig. S19. Typical HPLC chromatograms of the SAM regeneration system with *RgANMT*. Starting material: 2 mM MT substrate 18, 3 mM L-methionine, 20 mM polyP (calculated as single phosphate residues), AMP (orange – 40 µM, blue – 20 µM, green – 10 µM).

Fig. S20. Typical HPLC chromatograms of the SAM regeneration system with *RgANMT* and additional L-methionine regeneration using *ScHSMT*. Starting material: 2 mM MT substrate 18, 3 mM d/L-SMM, 40 µM L-methionine, 20 mM polyP (calculated as single phosphate residues), AMP (orange – 40 µM, blue – 20 µM, green – 10 µM).
Cyclic SAM regeneration with L-methionine regeneration is more efficient than without without

Fig. S21. Time course of MT conversion with regular SAM regeneration system (green) and with the addition of L-methionine regeneration system using SchHSMT (blue) with RnCOMT. Starting material: 2 mM MT substrate, 3 mM L-methionine (green) or 3 mM D/L-SMM and 40 µM L-methionine (addition of SchHSMT, blue), 20 mM polyP (calculated as single phosphate residues), 40 µM AMP.

Fig. S22. Time course of MT conversion with regular SAM regeneration system (green) and with the addition of L-methionine regeneration system using SchHSMT (blue) with RgANMT. Starting material: 2 mM MT substrate, 3 mM L-methionine (green) or 3 mM D/L-SMM and 40 µM L-methionine (addition of SchHSMT, blue), 20 mM polyP (calculated as single phosphate residues), 40 µM AMP.
Regeneration of SAM analogues is possible with nucleobase modifications

Fig. S23. Typical HPLC chromatograms of the SAM (reds), SIM (purples) and SCM (pinks) regeneration systems with \(RnCOMT \). Starting material: 2 mM MT substrate 12, 3 mM L-methionine (regular regeneration system, light colours) or 3 mM D/L-SMM and 40 \(\mu \)M L-methionine (addition of \(ScHSMT \), dark colours), 20 mM polyP (calculated as single phosphate residues), 40 \(\mu \)M NMP.
Fig. S24. Typical HPLC chromatograms of the SAE regeneration system with *RgANMT*. Starting material: 2 mM MT substrate 18, 3 mM L-ethionine, 20 mM polyP (calculated as single phosphate residues), 40 µM AMP.

The regeneration system can be used with crude lysates

Fig. S25. HPLC chromatograms of the SAM regeneration system using crude lysates with *RnCOMT*. Starting material: 2 mM MT substrate 12, 3 mM L-methionine (regular regeneration system, green) or 3 mM d/L-SMM and 40 µM L-methionine (addition of ScHSMT, dark green), 20 mM polyP (calculated as single phosphate residues), 40 µM AMP.
Fig. S26. HPLC chromatogram of a blank sample (injection of water). A peak is always visible between 7 and 8 min.

References

1. S. Mordhorst, J. Siegrist, M. Müller, M. Richter and J. N. Andexer, Angew. Chem. Int. Ed., 2017, 56, 4037–4041.
2. J. Siegrist, S. Aschwanden, S. Mordhorst, L. Thöny-Meyer, M. Richter and J. N. Andexer, ChemBioChem, 2015, 16, 2576–2579.
3. J. Schlesier, J. Siegrist, S. Gerhardt, A. Erb, S. Blaesl, M. Richter, O. Einsle and J. N. Andexer, BMC Struct. Biol., 2013, 13, 22.
4. C. Liao and F. P. Seebeck, Nat. Catal., 2019, 2, 696–701.
5. E. Gasteiger, C. Hoogland, A. Gattiker, S. Duvaud, M. R. Wilkins, R. D. Appel and A. Bairoch, in The Proteomics Protocols Handbook, ed. J. M. Walker, Humana Press, Totowa, NJ, 2005, pp. 571–607.
6. U. K. Laemmli, Nature, 1970, 227, 680–685.
7. Q. Tang, C. W. Grathwohl, A. S. Aslan-Üzel, S. Wu, A. Link, I. V. Pavlidis, C. P. S. Badenhorst and U. T. Bornscheuer, Angew. Chem. Int. Ed., 2021, 60, 1524–1527.
8. N. V. Cornelissen, F. Michailidou, F. Muttach, K. Rau and A. Rentmeister, Chem. Commun., 2020, 56, 2115–2118.
9. Z. J. Lu and G. D. Markham, J. Biol. Chem., 2002, 277, 16624–16631.
10. S. Singh, J. Zhang, T. D. Huber, M. Sunkara, K. Hurley, R. D. Gofl, G. Wang, W. Zhang, C. Liu, J. Rohr, S. G. Van Lanen, A. J. Morris and J. S. Thorson, Angew. Chem. Int. Ed., 2014, 53, 3965–3969.
11. T. D. Huber, F. Wang, S. Singh, B. R. Johnson, J. Zhang, M. Sunkara, S. G. Van Lanen, A. J. Morris, G. N. Phillips and J. S. Thorson, ACS Chem. Biol., 2016, 11, 2484–2491.
12. T. D. Huber, J. A. Clinger, Y. Liu, W. Xu, M. D. Miller, G. N. Phillips and J. S. Thorson, ACS Chem. Biol., 2020, 15, 695–705.
13. F. Muttach, F. Mäsing, A. Studer and A. Rentmeister, Chem. Eur. J., 2017, 23, 5988–5993.
14. C. Dalhoff, G. Lukinavičius, S. Klimašauskas and E. Weinhold, Nat. Chem. Biol., 2006, 2, 31–32.
15. I. J. W. McKeen, J. C. Sadler, A. Cueto, A. Frese, L. D. Humphreys, G. Grogan, P. A. Hoskisson and G. A. Burley, Angew. Chem. Int. Ed., 2019, 58, 17583–17588.
16. B. J. C. Law, A.-W. Struck, M. R. Bennett, B. Wilkinson and J. Micklefield, Chem. Sci., 2015, 6, 2885–2892.
17. S. Shimizu, S. Shiozaki, T. Ohshiro and H. Yamada, Eur. J. Biochem., 1984, 141, 385–392.
18. D. Miller, H. Xu and R. H. White, J. Bacteriol., 2015, 197, 2284–2291.
19 M. C. Long, S. C. Shaddix, O. Moukha-Chafiq, J. A. Maddry, L. Nagy and W. B. Parker, Biochem. Pharmacol., 2008, 75, 1588–1600.
20 X.-B. Lv, H.-Z. Wu, J. Ye, Y. Fan and H.-Z. Zhang, Acta Biochim. Biophys. Sin., 2003, 35, 666–670.
21 M. Vodnala, A. Fijolek, R. Rofougaran, M. Mosimann, P. Mäser and A. Hofer, J. Biol. Chem., 2008, 283, 5380–5388.
22 L. E. Batten, A. E. Parnell, N. J. Wells, A. L. Murch, P. C. F. Oyston and P. L. Roach, Biosci. Rep., 2016, 36, e00294.
23 B. P. Nocek, A. N. Khusnutdinova, M. Ruszkowski, R. Flick, M. Burda, K. Batyrova, G. Brown, A. Mucha, A. Joachimiak, Ł. Berlicki and A. F. Yakunin, ACS Catal., 2018, 8, 10746–10760.
24 J. Nahalka and V. Patoprsty, Org. Biomol. Chem., 2009, 7, 1778–1780.
25 B. Nocek, S. Kochinyan, M. Proudfoot, G. Brown, E. Evdokimova, J. Osipiuk, A. M. Edwards, A. Savchenko, A. Joachimiak and A. F. Yakunin, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 17730–17735.