The Erdős-Szekeres problem and an induced Ramsey question

Dhruv Mubayi∗ Andrew Suk†

Abstract

Motivated by the Erdős-Szekeres convex polytope conjecture in \(\mathbb{R}^d \), we initiate the study of the following induced Ramsey problem for hypergraphs. Given integers \(n > k \geq 5 \), what is the minimum integer \(g_k(n) \) such that any \(k \)-uniform hypergraph on \(g_k(n) \) vertices with the property that any set of \(k + 1 \) vertices induces 0, 2, or 4 edges, contains an independent set of size \(n \). Our main result shows that \(g_k(n) > 2^{cn^{k-4}} \), where \(c = c(k) \).

1 Introduction

Given a finite point set \(P \) in \(d \)-dimensional Euclidean space \(\mathbb{R}^d \), we say that \(P \) is in \textit{general position} if no \(d + 1 \) members lie on a common hyperplane. Let \(ES_d(n) \) denote the minimum integer \(N \), such that any set of \(N \) points in \(\mathbb{R}^d \) in general position contains \(n \) members in \textit{convex position}, that is, \(n \) points that form the vertex set of a convex polytope. In their classic 1935 paper, Erdős and Szekeres [1] proved that in the plane, \(ES_2(n) \leq 4^n \). In 1960, they [2] showed that \(ES_2(n) \geq 2^{n-2}+1 \) and conjectured this to be sharp for every integer \(n \geq 3 \). Their conjecture has been verified for \(n \leq 6 \) [1, 8], and determining the exact value of \(ES_2(n) \) for \(n \geq 7 \) is one of the longest-standing open problems in Ramsey theory/discrete geometry. Recently [9], the second author asymptotically verified the Erdős-Szekeres conjecture by showing that \(ES_2(n) = 2^{\Theta(n^{1/(d-1)})} \).

In higher dimensions, \(d \geq 3 \), much less is known about \(ES_d(n) \). In [3], Károlyi showed that projections into lower-dimensional spaces can be used to bound these functions, since most generic projections preserve general position, and the preimage of a set in convex position must itself be in convex position. Hence, \(ES_d(n) \leq ES_2(n) = 2^{n+o(n)} \). However, the best known lower bound for \(ES_d(n) \) is only on the order of \(2^{n^{1/(d-1)}} \), due to Károlyi and Valtr [4]. An old conjecture of Füredi (see Chapter 3 in [5]) says that this lower bound is essentially the truth.

Conjecture 1.1. For \(d \geq 3 \), \(ES_d(n) = 2^{\Theta(n^{1/(d-1)})} \).

It was observed by Motzkin [6] that any set of \(d + 3 \) points in \(\mathbb{R}^d \) in general position contains either 0, 2, or 4 \((d+2)\)-tuples not in convex position. By defining a hypergraph \(H \) whose vertices are \(N \)

∗Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago, IL, 60607 USA. Research partially supported by NSF grant DMS-1763317. Email: mubayi@uic.edu
†Department of Mathematics, University of California at San Diego, La Jolla, CA, 92093 USA. Supported by an NSF CAREER award and an Alfred Sloan Fellowship. Email: asuk@ucsd.edu.
points in \mathbb{R}^d in general position, and edges are $(d+2)$-tuples not in convex position, then every set of $k+1$ vertices induces 0, 2, or 4 edges. Moreover, by Carathéodory’s theorem (see Theorem 1.2.3 in [8]), an independent set in H would correspond to a set of points in convex position. This leads us to the following combinatorial parameter.

Let $g_k(n)$ be the minimum integer N such that any k-uniform hypergraph on N vertices with the property that every set of $k+1$ vertices induces 0, 2, or 4 edges, contains an independent set of size n. For $k \geq 5$, the geometric construction of Károlyi and Valtr [4] mentioned earlier implies that

$$g_k(n) \geq ES_{k-2}(n) \geq 2^{cn^{1/(k-3)}},$$

where $c = c(k)$. One might be tempted to prove Conjecture 1.1 by establishing a similar upper bound for $g_k(n)$. However, our main result shows that this is not possible.

Theorem 1.2. For each $n \geq k \geq 5$ there exists $c = c(k) > 0$ such that $g_k(n) > 2^{cn^{k-4}}$.

In the other direction, we can bound $g_k(n)$ from above as follows. For $n \geq k \geq 5$ and $t \leq k$, let $h_k(t, n)$ be the minimum integer N such that any k-uniform hypergraph on N vertices with the property that any set of $k+1$ vertices induces at most t edges, contains an independent set of size n. In [7], the authors proved the following.

Theorem 1.3 ([7]). For $k \geq 5$ and $t \leq k$, there is a positive constant $c' = c'(k, t)$ such that

$$h_k(t, n) \leq \text{twr}(c'n^{k-t} \log n),$$

where twr is defined recursively as $\text{twr}_1(x) = x$ and $\text{twr}_{i+1}(x) = 2^{\text{twr}_i(x)}$.

Hence, we have the following corollary.

Corollary 1.4. For $k \geq 5$, there is a constant $c' = c'(k)$ such that

$$g_k(n) \leq h_k(4, n) \leq 2^{2c'n^{k-4} \log n}.$$

It is an interesting open problem to improve either the upper or lower bounds for $g_k(n)$.

Problem 1.5. Determine the tower growth rate for $g_k(n)$.

Actually, this Ramsey function can be generalized further as follows: for every $S \subset \{0, 1, \ldots, k\}$, define $g_k(n, S)$ to be the minimum integer N such that any N-vertex k-uniform hypergraph with the property that every set of $k+1$ vertices induces s edges for some $s \in S$, contains an independent set of size n. General results for $g_k(n, S)$ may shed light on classical Ramsey problems, but it appears difficult to determine even the tower height for any nontrivial cases.
2 Proof of Theorem 1.2

Let \(k \geq 5 \) and \(N = 2^{c_k k - 4} \) where \(c = c_k > 0 \) is sufficiently small to be chosen later. We are to produce a \(k \)-uniform hypergraph \(H \) on \(N \) vertices with \(\alpha(H) \leq n \) and every \(k + 1 \) vertices of \(H \) span 0, 2, or 4 edges. Let \(\phi : \binom{[N]}{k-3} \to \binom{[k-1]}{2} \) be a random \(\binom{[k-1]}{2} \)-coloring, where each color appears on each \((k-3) \)-tuple independently with probability \(1/\binom{[k-1]}{2} \). For \(f = (v_1, \ldots, v_{k-1}) \in \binom{[N]}{k-1} \), where \(v_1 < v_2 < \cdots < v_{k-1} \), define the function \(\chi_f : \binom{[k-1]}{2} \to \binom{[k-1]}{2} \) as follows: for all \(\{i, j\} \in \binom{[k-1]}{2} \), let

\[
\chi_f(f \setminus \{v_i, v_j\}) = \{i, j\}.
\]

We define the \((k-1) \)-uniform hypergraph \(G \), whose vertex set is \([N] \), such that

\[
G = G_\phi := \left\{ f \in \binom{[N]}{k-1} : \phi(f \setminus \{u, v\}) = \chi_f(f \setminus \{u, v\}) \text{ for all } \{u, v\} \in \binom{f}{2} \right\}.
\]

For example, if \(k = 4 \) (which is excluded for the theorem but we allow it to illustrate this construction) then \(\phi : [N] \to \{12, 13, 23\} \) and for \(f = (v_1, v_2, v_3) \), where \(v_1 < v_2 < v_3 \), we have \(f \in G \) iff \(\phi(v_1) = 23, \phi(v_2) = 13, \text{ and } \phi(v_3) = 12 \).

Finally, we define the \(k \)-uniform hypergraph \(H \), whose vertex set is \([N] \), such that

\[
H = H_\phi := \left\{ e \in \binom{[N]}{k} : |G[e]| \text{ is odd} \right\}.
\]

Claim 2.1. \(|H[S]| \) is even for every \(S \in \binom{[N]}{k+1} \).

Proof. Let \(S \in \binom{[N]}{k+1} \) and suppose for contradiction that \(|H[S]| \) is odd. Then

\[
2|G[S]| = \sum_{f \in G[S]} 2 = \sum_{f \in G[S]} \sum_{e \in \binom{f}{2}} 1 = \sum_{e \in \binom{f}{2}} |G[e]| = \sum_{e \notin H[S]} |G[e]| + \sum_{e \in H[S]} |G[e]|.
\]

The first sum on the RHS above is even by definition of \(H \) and the second sum is odd by definition of \(H \) and the assumption that \(|H[S]| \) is odd. This contradiction completes the proof.

Claim 2.2. \(|G[e]| \leq 2 \) for every \(e \in \binom{[N]}{k} \).

Proof. For sake of contradiction, suppose that for \(e = (v_1, \ldots, v_k) \), where \(v_1 < \cdots < v_k \), we have \(|G[e]| \geq 3 \). Let \(e_p = e \setminus \{v_p\} \) for \(p \in [k] \) and suppose that \(e_i, e_j, e_l \in G \) with \(i < j < l \). In what follows, we will find a set \(S \) of size \(k-3 \), where \(S \subseteq e_i \) and \(S \subseteq e_l \), such that \(\chi_{e_i}(S) \neq \chi_{e_l}(S) \). This will give us our contradiction since \(e_i, e_l \in G \) implies that \(\chi_{e_i}(S) = \phi(S) = \chi_{e_l}(S) \).

Let \(Y = e \setminus \{v_i, v_j, v_l\} \) and \(Y' = Y \setminus \{\min Y\} \). Let us first assume that \(i > 1 \) so that \(\min Y = v_1 \). In this case,

\[
\chi_{e_i}(Y' \cup \{v_j\}) = \{1, l-1\},
\]

since we obtain \(Y' \cup \{v_j\} \) from \(e_i \) by removing \(\min Y \) and \(v_l \) which are the first and \((l-1)\)st elements of \(e_i \). Similarly,

\[
\chi_{e_l}(Y' \cup \{v_j\}) = \{1, i\},
\]
since we obtain $Y' \cup \{v_j\}$ from e_l by removing $\min Y$ and v_l which are the first and ith elements of e_i. Because $l > i + 1$, we conclude that $\chi_{e_i}(Y' \cup \{v_j\}) \neq \chi_{e_l}(Y' \cup \{v_j\})$ as desired.

Next, we assume that $i = 1$ and $\min Y = v_q$ where $q > 1$. In this case,

$$\chi_{e_l}(Y' \cup \{v_j\}) = \{q - 1, l - 1\},$$

since we obtain $Y' \cup \{v_j\}$ from e_l by removing v_q and v_l which are the $(q - 1)$st and $(l - 1)$st elements of e_l. Similarly,

$$\chi_{e_i}(Y' \cup \{v_j\}) = \{1, q'\} \quad \text{where} \quad q' = q \text{ if } q < l \text{ and } q' = q - 1 \text{ if } q > l,$$

since we obtain $Y' \cup \{v_j\}$ from e_l by removing $v_i = v_1$ and v_q which are the first and q'th elements of e_i. If $q = 2$, then we immediately obtain $\chi_{e_i}(Y' \cup \{v_j\}) \neq \chi_{e_l}(Y' \cup \{v_j\})$ as desired. On the other hand, if $q = 2$, then $q' = q - 2$ as well and $l \geq 4$, so $l - 1 \neq q'$ and again

$$\chi_{e_i}(Y' \cup \{v_j\}) = \{q - 1, l - 1\} \neq \{1, q'\} = \chi_{e_l}(Y' \cup \{v_j\}).$$

This completes the proof of the claim. \hfill \Box

Let T_3 be the $(k - 1)$-uniform hypergraph with vertex set S with $|S| = k + 1$ and three edges e_1, e_2, e_3 such that there are three pairwise disjoint pairs $p_1, p_2, p_3 \in \binom{S}{2}$ with $p_i = \{v_i, v'_i\}$ and $e_i = S \setminus p_i$ for $i \in \{1, 2, 3\}$.

Claim 2.3. $T_3 \not\subset G$.

Proof. Suppose for a contradiction that there is a subset $S \subset [N]$ of size $k + 1$ such that $T_3 \subset G[S]$. Using the notation above, assume without loss of generality that $v_1 = \min \cup_i p_i$ and $v_2 = \min(p_2 \cup p_3)$. Let $Y = S \setminus (p_1 \cup p_3)$ and note that $Y \in \binom{e_1 \cup e_3}{k - 3}$. Let $Y_1 \subset Y$ be the set of elements in Y that are smaller than v_1, so we have the ordering

$$Y_1 < v_1 < v_2 < \{v_3, v'_3\}.$$

Now, $\chi_{e_1}(Y)$ is the pair of positions of v_2 and v'_3 in e_1. Both of these positions are at least $|Y_1| + 2$ as $Y_1 \cup \{v_2\}$ lies before p_3. On the other hand, the smallest element of $\chi_{e_3}(Y)$ is $|Y_1| + 1$ which is the position of v_1 in e_3. This shows that $\chi_{e_1}(Y) \neq \chi_{e_3}(Y)$, which is a contradiction as both must be equal to $\phi(Y)$ as $e_1, e_3 \subset G$. \hfill \Box

We now show that every $(k + 1)$-set $S \subset [N]$ spans 0, 2 or 4 edges of H. Let G' be the graph with vertex set S and edge set $\{S \setminus f : f \in G[S]\}$. So there is a 1-1 correspondence between $G[S]$ and G' via the map $f \rightarrow S \setminus f$. If G' has a vertex x of degree at least three, then $|G[S \setminus \{x\}]| \geq 3$ which contradicts Claim 2.2. Therefore G' consists of disjoint paths and cycles. Next, observe that Claim 2.3 implies that G' does not contain a matching of size three, for the complementary sets of this matching yield a copy of $T_3 \subset G$. This immediately implies that $k = 5$, for otherwise we obtain a 3-matching in G'. Moreover, the only way to avoid a 3-matching when $k = 5$ is for G' to consist of two components each of which contains a two edge path so we may assume that G' is of this form, with paths abc, uvw. If both uvw and abc are triangles, then $|H[S]| = 0$ as any 5-set A in S contains precisely two edges of G' from A to $S \setminus A$ which yields
Let us now argue that \(\alpha(H) \leq n \), which is a straight-forward application of the probabilistic method. Indeed, we will show that this happens with positive probability and conclude that an \(H \) with this property exists. For a given \(k \)-set, the probability that it is an edge of \(H \) is \(p < 1 \), where \(p \) depends only on \(k \). Consequently, the probability that \(H \) has an independent set of size \(n \) is at most

\[
\binom{N}{n} (1 - p)^{c'n^{k-3}}
\]

for some \(c' > 0 \). Note that the exponent \(k - 3 \) above is obtained by taking a partial Steiner \((n, k, k - 3)\) system \(S \) within a potential independent set of size \(n \) and observing that we have independence within the edges of \(S \). A short calculation shows that this probability is less than 1 as long as \(c \) is sufficiently small. This completes the proof of Theorem 1.2. \[\square\]

References

[1] P. Erdős, G. Szekeres, A combinatorial problem in geometry, *Compos. Math.* 2 (1935), 463–470.

[2] P. Erdős, G. Szekeres, On some extremum problems in elementary geometry, *Ann. Univ. Sci. Budapest. Eötvös Sect. Math.*, 3–4 (1960-61), 53–62.

[3] G. Károlyi, Ramsey-remainder for convex sets and the Erdős-Szekeres theorem, *Discrete Applied Mathematics* 109 (2001), 163–175.

[4] G. Károlyi, P. Valtr, Point configurations in \(d \)-space without large subsets in convex position, *Disc. Comp. Geom.* 30 (2003), 277–286.

[5] J. Matoušek, *Lectures in Discrete Geometry*, Springer, 2002.

[6] T. Motzkin, Cooperative classes of finite sets in one and more dimensions, *Journal of Combinatorial Theory* 3 (1967), 244–251.

[7] D. Mubayi, A. Suk, The Erdos-Hajnal hypergraph Ramsey problem, submitted.

[8] G. Szekeres, L. Peters, Computer solution to the 17-point Erdős-Szekeres problem, *ANZIAM Journal* 48 (2006), 151–164.

[9] A. Suk, On the Erdős-Szekeres convex polygon problem, *Journal of the American Mathematical Society* 30 (2017), 1047–1053.