A substitution mutation in OsPELOTA confers bacterial blight resistance by activating the salicylic acid pathway

Xiao-Bo Zhang†, Bao-Hua Feng†, Hui-Mei Wang, Xia Xu, Yong-Feng Shi, Yan He, Zheng Chen, Atul Prakash Sathe, Lei Shi and Jian-Li Wu*

State Key Laboratory of Rice Biology/Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
†These authors contributed equally to this work
*Correspondence: Jian-Li Wu (beishangd@163.com)
doi: 10.1111/jipb.12613

Abstract We previously reported a spotted-leaf mutant pelota (originally termed HM47) in rice displaying arrested growth and enhanced resistance to multiple races of Xanthomonas oryzae pv. oryzae. Here, we report the map-based cloning of the causal gene OsPELOTA (originally termed splHM47). We identified a single base substitution from T to A at position 556 in the coding sequence of OsPELOTA, effectively mutating phenylalanine to isoleucine at position 186 in the translated protein sequence. Both functional complementation and over-expression could rescue the spotted-leaf phenotype. OsPELOTA, a paralogue to eukaryotic release factor 1 (eRF1), shows high sequence similarity to Drosophila Pelota and also localizes to the endoplasmic reticulum and plasma membrane. OsPELOTA is constitutively expressed in roots, leaves, sheaths, stems, and panicles. Elevated levels of salicylic acid and decreased level of jasmonate were detected in the pelota mutant. RNA-seq analysis confirmed that genes responding to salicylic acid were upregulated in the mutant. Our results indicate that the rice PELOTA protein is involved in bacterial leaf blight resistance by activating the salicylic acid metabolic pathway.

INTRODUCTION

The hypersensitive response (HR) is a highly effective mechanism by which plants protect themselves from different pathogenic attacks. Once plants recognize an invading pathogen, they induce rapid cell death in the attacked areas, restricting further pathogenic invasion or spread to adjacent cells. Lesion mimic mutants (LMMs) characteristically form necrotic lesions similar to HR lesions in the absence of pathogenic infection and can be used to determine the mechanisms involved in plant disease resistance. Over the last decade, many LMMs have been reported in a variety of plant species, including Arabidopsis (Lorrain et al. 2003), barley (Buschges et al. 1997), groundnut (Badigannavar et al. 2002), and rice (Wu et al. 2008).

In rice (Oryza sativa L.), LMMs are specifically termed spotted-leaf (spl) mutants, and more than 11 spl genes have been isolated. Among them, spl7, the first isolated spl gene, encodes a predicted heat stress transcription factor, the expression of which is induced by light and temperature (Yamanouchi et al. 2002). Other spl genes have a wide range of biological functions, encoding a diversity of proteins/enzymes such as CC-NBS-LRR-type proteins (Tang et al. 2011), zinc finger proteins (Wang et al. 2005), E3 ubiquitin ligase (Zeng et al. 2004; Liu et al. 2017), membrane-associated proteins (Zhou et al. 2009; Zhou et al. 2010), and a eukaryotic translation elongation
OsPELOTA is involved in rice disease resistance

OsPELOTA is an enzyme involved in the SA-dependent defense response {Chern et al. 2005} and chlorophyll biosynthesis {Sun et al. 2011}. Such a diverse collection of functionally different genes involved in lesion production suggests that complicated mechanisms underlie the initiation of lesion mimics.

The fruitfly pelota mutant was first identified in a screen for male-sterile mutants in Drosophila melanogaster {Castrillon et al. 1993}. Subsequently, the Pelota locus was shown to encode a protein homologous to yeast Dom34, with wide evolutionary conservation {Eberhart and Wasserman 1995}. Both Pelota and Dom34 are involved in the cell division cycle by influencing protein quality control in eukaryotes. Drosophila pelota mutants demonstrate spermatogenic arrest, female sterility, and disturbances in eye patterning. During Drosophila pelota spermatogenesis, the germline mitotic divisions are normal, but meiosis is blocked {Eberhart and Wasserman 1995}. In mice, genetic ablation of Pelota is embryo lethal at the early implantation stage by impairing the development of the extraembryonic endoderm {Nyamsuren et al. 2014; Raju et al. 2015}. Human Pelota promotes the degradation of messenger RNA (mRNA) lacking a stop codon and poly(A) tail {Ikeuchi et al. 2016}. In tomato, silencing Pelota confers high resistance to tomato yellow leaf curl virus (TYLCV) {Lapidot et al. 2015}. However, the role of Pelota in plants is still largely unknown.

In our previous study, a rice spotted-leaf mutant obtained from ethyl methanesulfonate (EMS) mutagenesis was characterized and the causal gene locus was narrowed down to a 74 kb region in chromosome 4 by map-based cloning {Feng et al. 2013}. Here, we show that the rice PELOTA protein (OsPELOTA), encoded by LOC_Os04g56480, controls the spotted-leaf phenotype. High-throughput mRNA sequencing (RNA-seq), plant hormone level determination, and gene functional analysis suggest that OsPELOTA mediates disease resistance to Xanthomonas oryzae pv. oryzae in rice by activating the SA metabolic pathway.

RESULTS

OsPELOTA complements the spotted-leaf phenotype

The OsPELOTA (originally splM47) locus was previously mapped to a 74 kb region of rice chromosome 4 {Feng et al. 2013}. To fine-map the gene, an additional 1,754 F2 individuals with the spotted-leaf phenotype were genotyped and the OsPELOTA locus was further refined to a 20 kb region containing three open reading frames (ORFs) {Figure 1A}. After sequencing all three ORFs in this region, it was found that only one nonsynonymous mutation (T556A, F186I) was detected in the pelota LOC_Os04g56480. The other two ORFs (LOC_Os04g56470 and LOC_Os04g56490) did not have any mutations compared to their respective wild-type loci {Figure 1B}. The 7,427 bp LOC_Os04g56480 contains 15 exons, 14 introns, and was considered the most likely candidate gene responsible for the pelota spotted-leaf phenotype based on these results.

To validate the candidate gene, the complementary vector pC1300-C was introduced into embryogenic calli of pelota mutants, via Agrobacterium tumefaciens-mediated transformation. A total of 14 positive transformants were obtained and all exhibited a normal green leaf color without lesions throughout their entire growth period. These results indicate that LOC_Os04g56480 could rescue the spotted-leaf phenotype and was indeed the target gene {Figure 2A–C}. Furthermore, pelota shows a high level of H2O2 accumulation at/around leaf lesions with high malonaldehyde (MDA) content and low catalase (CAT) activity compared to the wild-type IR64 {Feng et al. 2013}. We measured the content of MDA and the activity of CAT in the complemented plants to assess whether they were restored to wild-type levels. The MDA content in both the complementation lines and the wild-type IR64 plants were similar and significantly lower than the MDA content in pelota plants. While the CAT activity in complementation lines was significantly higher than that of pelota, they still did not fully recover to the level of the wild-type IR64 {Figure 2D}. Taken together, these results demonstrate that LOC_Os04g56480 is the target gene that controls the spotted-leaf phenotype for OsPELOTA.

OsPELOTA has three different transcripts

When we tried to isolate the coding sequence of OsPELOTA, we identified three alternative splicing isoforms, which we termed transcripts 1, 2, and 3 {Figure 3}. Transcript 1 was the full-length coding sequence (CDS) in pelota and the mutation occurred at position 556 (T/A) in exon 8 {Figure 3}. For transcript 2, both the seventh and eighth introns were not spliced.
Instead, intron 7 was fully translated as indicated by a red box in transcript 2 (Figure 3). Similarly, the eighth intron in transcript 3 was not excised and a part of intron 8 was translated into the protein. To test the function of these isoforms, all three transcripts were over-expressed using the maize ubiquitin promoter in the mutant pelota, via Agrobacterium tumefaciens-mediated transformation. Only the transgenic plants carrying transcript 1 restored the wild-type phenotype, although the expression levels of transcript 1 were different among various independent transgenic lines (Figure 4). Transformants carrying the other two transcripts exhibited the spotted-leaf phenotype similar to the pelota mutant (data not shown). These results indicate that only transcript 1 could rescue the mutant phenotype.

OsPELOTA is highly conserved in eukaryotic organisms

All eukaryotes contain a eukaryotic release factor 1 (eRF1) paralog, which is termed Pelota in Drosophila and Dom34 in yeast. Sequence analysis (http://www.ncbi.nlm.nih.gov) indicated that OsPELOTA encodes a paralogue of eRF1 consisting of three domains: the N domain that recognizes stop codons at the A site of the ribosome (Ma and Nussinov 2004), the M domain that mimics the acceptor stem of transfer RNA (tRNA) and contains a conserved GGQ motif essential for peptidyl-tRNA hydrolysis at the peptidyl transferase center (Bulygin et al. 2010), and the C domain that recognizes tRNA TYC stems. We found OsPELOTA to be structurally composed of three domains, which we named eRF1_1, eRF1_2, and eRF1-3. The eRF1_2 and eRF1_3 domains were structurally analogous to the M and C domains, except that the eRF1_2 domain did not contain the critical GGQ motif. However, the eRF1_1 domain was different from the N domain and lacked the RNA-binding Sm fold (Lee et al. 2007; Graille et al. 2008).

According to our sequence alignment results, OsPELOTA was most comparable to monocot homologues such as ObPELOTA (90%) and ZmPelota1 (87%). OsPELOTA also had a high level of similarity to the dicot AtPELOTA1 (74%), and lesser similarity to the insect DmPelota (54%) and the yeast Dom34 (31%) (Figure 5). Notably, the amino acid mutation (F186I) in rice pelota was within domain eRF1_2, and the corresponding site was conserved in different species, especially in the plant kingdom (F186 in plants and Y186 in animals and yeast). These results indicate that OsPELOTA is

Figure 1. Map-based cloning of OsPELOTA

(A) OsPELOTA locus is further refined to a 20 kb region between InDel marker YY84 and YY91. (B) Single base substitution at position 556 (T556A, F186I).
Figure 2. OsPELOTA complements the *pelota* spotted-leaf phenotype
(A) Complementation construct pC1300-C. (B) Phenotype of IR64, *pelota* and complementation transgenic line (Com-PELOTA). (C) Sequencing analysis of complementation transgenic lines. Arrowhead indicates the mutation site. (D) The contents of malonaldehyde (MDA) and activities of catalase (CAT) in the wild-type, *pelota* and complementation lines.

Figure 3. Transcripts of OsPELOTA (LOC_Os04g56480)
Grey, white, and red boxes indicate functional coding sequence, untranslated region (UTR), and shift open reading frames (ORF), respectively. The arrow shows the position at 556 bp where the point mutation occurs.
structurally conserved and that the F186I mutation is likely critical to PELOTA function.

OsPELOTA is expressed constitutively and OsPELOTA-GFP localizes to both the endoplasmic reticulum and plasma membrane

To clarify the expression pattern of OsPELOTA, we performed quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis on the total RNA of roots, stems, nodes, internodes, leaves, leaf sheaths, panicles, and filling grains from the wild-type IR64. OsPELOTA was expressed in all the organs tested. The highest expression level occurred in the filling grains, followed by flag leaves, roots, and panicles at the grain filling stage. In other organs, it was expressed at a lower level, but these results indicate OsPELOTA is a constitutively expressed gene (Figure 6).

Having determined the tissue expression pattern of OsPELOTA, we carried out polyethylene glycol (PEG)-mediated transient transformation of rice protoplasts to clarify the distribution of OsPELOTA-GFP (green fluorescence protein) in rice cells. When pAN580 and pOsPELOTA-GFP were introduced into rice protoplasts, the distribution of OsPELOTA-GFP was more pronounced in the plasma membrane and endoplasmic reticulum (ER) compared to cytosol-localized GFP (Figure 7). As OsRacGEF1-CFP predominantly localizes to the ER and plasma membrane (Akamatsu et al. 2013), we confirmed the subcellular location of OsPELOTA-GFP by expressing it with pGEF-RFP (Red fluorescence protein fused to the C-terminal of OsRacGEF1), finding that their subcellular localization patterns are similar. Thus, we concluded that OsPELOTA primarily localizes to the ER and plasma membrane.

Activation of the SA response causes disease resistance to bacterial leaf blight pathogen in pelota

Our previous studies have shown that rice pelota is broadly resistant to Xanthomonas oryzae pv. oryzae (Xoo), the causal pathogen of bacterial leaf blight in rice (Feng et al. 2013). Although resistance to Xoo is highly associated with the spotted-leaf phenotype and a couple of defense genes were found to be upregulated in pelota (Feng et al. 2013), the resistance mechanism was still unclear.

To further explore the potential resistance mechanism, we carried out high-throughput RNA sequencing (RNA-seq) analysis. The complementary DNA (cDNA) libraries were prepared from the leaves of 23-day-old BC1F2 pelota mutant and wild-type IR64 plants. A total of 1,460 differentially expressed genes (DEGs) were detected between pelota and IR64. Among these, 801 genes were up-regulated and 659 genes were down-regulated in the pelota mutant. To verify the reliability of the sequencing results, 10 genes were randomly selected and analyzed.

Figure 4. Over-expression of the wild-type OsPELOTA transcript 1 in pelota

(A) Wild-type. (B) pelota. (C–G) Different overexpression lines of OsPELOTA transcript 1. (H) OsPELOTA expression levels of wild-type and over-expression lines. OV-1, OV-2, OV-3, OV-4 and OV-5 represent five independent OsPELOTA transcript 1 over-expression transgenic lines in the pelota mutant background. Rice ubiquitin gene was amplified as internal standard.
Figure 5. Sequence alignment and phylogenetic analysis of OsPELOTA with its homologues

(A) OsPELOTA shares high identity with its homologues, shown by the amino acids highlighted in black.

(B) Phylogenetic analysis of PELOTA proteins from different organisms. Phylogenetic tree was constructed by neighbor-joining method using the MEGA program. Bootstrap values from 100 replicates are indicated at each node.
using qRT-PCR. The expression levels of nine out of these 10 genes were the same in both methods, validating the RNA-seq data (Figure S1 and Table S2).

Gene Ontology (GO) analysis was used to classify the functions of the DEGs identified in pelota. From the GO term enrichment results, there were a total of 20 GO terms in biological processes with \(P/C20 \leq 0.01\) (Table S3). Among them, “response to chitin”, “defense response to fungus” and “response to salicylic acid” were the most highly enriched terms with \(P\)-values of 1.18E-09, 4.98E-05, and 1.28E-04, respectively. More importantly, a total of 19 genes were enriched in the GO term “response to salicylic acid”, with 13 genes up-regulated and six genes down-regulated (Table S4). Among the 13 up-regulated genes, there were eight lectin-like receptor kinase genes and 1 receptor like kinase. Three of the six downregulated genes were WRKY genes (WRKY28, WRKY71, and WRKY76) (Table S4). These results indicate that the salicylic acid-mediated defense pathway was constitutively activated in pelota.

To elucidate the changes in endogenous plant hormones, including SA, leaf samples from the pelota mutant and the wild-type IR64 were tested for their hormone levels. For the sake of comparison, we set the content of various endogenous hormones in the wild-type IR64 to 1, providing a relative measurement for endogenous hormone in the pelota mutants (Figure 8). The results show the SA content in pelota increased by 68.7% (\(P \leq 0.01\)), whereas the levels of abscisic acid (ABA) and jasmonate (MeJA) decreased by 38.3% and 47.1%, respectively. This indicates that the broad-spectrum resistance of pelota was probably generated

Figure 6. Quantitative polymerase chain reaction (qPCR) analysis of wild-type OsPELOTA messenger RNA expression

Relative expression levels of OsPELOTA in various rice tissues at different growth stages. Means with different letters are significantly different at \(P \leq 0.01\) using Duncan’s test.

Bar represents the number of amino acid differences per site. All PELOTA proteins used and their GenBank accessions are as follows: Oryza sativa OsPELOTA (XP_015637164.1), Oryza brachyantha ObPELOTA (XP_006652952.1), Sorghum bicolor SbPELOTA (XP_021319384.1), Zea mays ZmPELOTA (NP_001338038.1), Arabidopsis thaliana AtPELOTA (NP_194495.3), Medicago truncatula MtPELOTA (XP_013468922.1), Drosophila melanogaster DmPELOTA (NP_476982.1), Danio rerio DrPELOTA (NP_957430.1), Homo sapiens HsPELOTA (NP_057030.3) and Saccharomyces cerevisiae Dom34 (NP_014397.1).
from the activation of the SA-mediated defense pathway.

DISCUSSION

In the present study, we demonstrate that the spotted-leaf phenotype of rice *pelota* is caused by a single nucleotide replacement (T556A) in the *OsPELOTA* gene (accession number MF457479). Both complementary assays and over-expression analysis clearly show that the expression of the *OsPELOTA* gene in *pelota* could restore a wild-type phenotype.

The amino acid sequence alignment reveals Pelota proteins are conserved in eukaryotes (Figure 5), but their functions may differ. In Saccharomyces cerevisiae, there are no obvious differences in the growth rates between the dom34Δ strain and its wild-type counterpart under regular growth temperatures. However, the growth of the dom34Δ strain is particularly slow at low temperatures, due to a reduced ribosome supply during the transition out of stationary phase (Davis and Engebrecht 1998). Unlike Dom34 in yeast, mutations in Pelota proteins often lead to severe problems in animals, such as male infertility, female sterility, spermatogenic arrest in *Drosophila* (Eberhart and Wasserman 1995), and cell cycle arrest at the G2/M transition and embryonic death in mice (Nyamsuren et al. 2014; Raju et al. 2015). Currently, knowledge of Pelota’s role in plants is still very limited. Only one report indicated that silencing Pelota in *Solanum lycopersicum* could lead to high TYLCV-resistance and significant reduction in fruit size (Lapidot et al. 2015).

We have previously shown that rice *pelota* exhibits poor performance in agronomic traits, including plant height, number of tillers, panicle length, seed-setting, and 1,000-grain weight (Feng et al. 2013). Here, we reveal that a single nucleotide substitution mutation in *OsPELOTA* causes the spotted-leaf phenotype and enhances broad-spectrum disease resistance to Xoo. Our research shows that a loss of function in plant PELOTA protein can cause multiple effects, including

Figure 7. Subcellular location of OsPELOTA-GFP in rice protoplasts

Upper panel: OsPELOTA-GFP (green fluorescence protein) and wild-type GFP are separately transformed into rice protoplasts; Lower panel: OsPELOTA-GFP and GEF-RFP are co-localized at endoplasmic reticulum (ER) and plasma membrane.
growth arrest, spotted-leaf phenotype, and enhanced resistance to bacterial leaf blight pathogens.

The nuclear localization signal sequence at the animal Pelota N-terminus is perfectly conserved from Drosophila to human beings, raising an interesting possibility that Pelota is a nucleus-localized protein. However, further research shows that Drosophila Pelota localizes to the cytoplasm (Xi et al. 2005) and human Pelota localizes to the cytoskeleton, at certain regions of plasma membranes, and at the site close to nuclear membranes (presumably to the endoplasmic reticulum) (Burnicka-Turek et al. 2010). However, murine Pelota is localized in the cytoskeleton and membrane-fractions, but not in nuclear and cytoplasmic fractions (Buyandelger and Mongolei 2007). Until now, the subcellular location of plant PELOTA has been unclear. Here, we show that OsPELOTA-GFP mainly localizes to the endoplasmic reticulum and plasma membrane in rice (Figure 7). In general, animal and plant PELOTA proteins share the same subcellular localization pattern, although the animal Pelota contains an additional nuclear-localized sequence at its N terminus.

A higher level of endogenous SA likely partially accounts for the broad-spectrum disease resistance in pelota plants. After pathogen infection, endogenous levels of SA increase significantly, preceding the induction of pathogenesis-related genes and the onset of disease resistance (Prithiviraj et al. 2005; An and Mou 2011; Yang et al. 2016). Similarly, overproduction of endogenous SA in transgenic tobacco and Arabidopsis enhances disease resistance (Verberne et al. 2000). By contrast, SA-deficient rice exhibits increased susceptibility to avirulent Magnaporthe oryzae (Yang et al. 2004).

In the present study, the endogenous SA level in pelota was 1.87-fold higher than that of wild-type plants. Furthermore, consistent with the higher endogenous SA content, multiple genes involved in response to SA were activated in the pelota mutant (Table S4), supporting the notion that resistance to Xoo is enhanced, via the SA-mediated defense pathway. Notably, a set of lectin receptor kinase genes are up-regulated in pelota, and lectin receptor kinases have been shown to participate in plant innate immunity (Singh and Zimmerli 2013). For example, Pi-d2, a rice lectin receptor kinase, provides resistance against the fungal pathogen Magnaporthe oryzae (Chen et al. 2006b). In addition, the expression of WRKY28, WRKY71, and WRKY76 were all down-regulated in pelota. However, overexpression of OsWRKY28 and OsWRKY76 in rice plants results in drastically increased susceptibility to Magnaporthe oryzae (Chujo et al. 2013; Yokotani et al. 2013), while overexpression of OsWRKY71 enhances resistance to virulent Xoo strain 13751 (Liu et al. 2007). These results indicate that WRKY71 plays vital roles to modulate the innate immunity in rice against Xoo and highlight that further functional characterization of WRKY71 is needed. Nevertheless, the upregulation of the lectin receptor kinase genes and down-regulation of WRKY genes are consistent with the elevated resistance to Xoo in the mutant.

The interactions between SA and JA signaling appear to be complex, but their antagonistic relationship is well accepted (Kunkel and Brooks 2002; He et al. 2017). ABA treatment inhibits both upstream and downstream signaling in the SA-mediated defense pathway, independently of the jasmonic acid (JA)/ethylene-mediated signaling pathway (Yasuda et al. 2008). Similarly, we detected a decreased level of endogenous MeJA and ABA in pelota. Considering the key role of SA in plant disease resistance, we conclude that the rice pelota mutant confers enhanced bacterial leaf blight resistance through the activation of the SA metabolic pathway.

Although the rice pelota exhibits a higher level of resistance to Xoo by activating the SA-mediated
defense pathway, the molecular mechanism remains unknown. We are currently carrying out yeast two-hybrid screening to identify protein interactions with PELOTA. In any event, the present study provides a starting point to further elucidate OsPELOTA-mediated disease resistance in rice.

MATERIALS AND METHODS

Rice material
In this study, the spotted-leaf mutant pelota was obtained by EMS mutagenesis of indica rice (Oryza sativa L.) cultivar IR64. The rice pelota shows impaired growth, spotted-leaf, and broad-spectrum resistance to Xanthomonas oryzae pv. oryzae (Feng et al. 2013).

Seedlings of pelota and wild-type IR64 were planted in pots in a greenhouse at the China National Rice Research Institute. Twenty-three days after germination, rice leaves were collected for high-throughput RNA-Seq and determination of plant hormone levels.

Extraction and determination of hormone levels
The levels of MeJA, GA3, SA, IAA, and ABA were determined by Zoonbio Biotechnology Co., Ltd, Nanjing, China, and the methods were modified from those described by You et al. (2016). Approximately 1.0 g leaf samples were ground in a pre-cooled mortar that contained 10 mL extraction buffer (isopropanol:water: hydrochloric acid, 2:1:0.002 v/v). The extract was shaken at 4°C for 30 min. Then, 20 mL dichloromethane was added and the sample was shaken at 4°C for 30 min and then centrifuged at 16,020 \(\times \) g for 5 min. The organic phase was extracted and dried under liquid nitrogen. The pellets were dissolved in 150 \(\mu \)L methanol (0.1% methane acid) and filtered with a 0.22 \(\mu \)m filter membrane. The purified product was then subjected to high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis. The injection volume was 2 \(\mu \)L. Mass spectometry conditions were as follows: the spray voltage was 4,500 V; the pressure of the air curtain, nebulizer, and aux gas were 15, 65, and 70 psi, respectively, and the atomizing temperature was 400°C.

Complementation test and over-expression analysis
To construct a plasmid for the complementation test, an 11.3 kb DNA fragment from the wild-type IR64 containing 2,200 bp upstream of the OsPELOTA transcription start site, the full-length OsPELOTA genomic DNA, and 1,500 bp downstream of the OsPELOTA termination site was amplified by LA taq polymerase (Takara Inc.) and cloned into the binary OsPELOTA vector pCAMBIA1300 to generate the construct pC1300-C. The primer set 47com was used to amplify the 11.3 kb OsPELOTA (Table S1).

To determine which transcript could restore the phenotype of the pelota mutant, 3 OsPELOTA transcripts with different ORF sizes were amplified and inserted into the rice overexpression plasmid pCAMBIA1300-UBI-NOS (Huang et al. 2016) between the maize ubiquitin promoter and NOS terminator. The primers for each of the transcripts are listed in Table S1.

All the above constructs were used to transform embryogenic calli induced from pelota seeds using the Agrobacterium tumefaciens-mediated method (Hiei and Komari 2008).

Subcellular location and qPCR analysis
The full-length coding sequence (no stop codon) of OsPELOTA and OsRacGEF were amplified using the primers 47GFP F/R and OsRacGEF F/R (Table S1). The PCR product of OsPELOTA was fused to the GFP N-terminus and driven by the CaMV 35S promoter in the transient expression vector PAN580 to form a new construct: pOsPELOTA-GFP. The CDS of OsRacGEF was placed upstream of mRFP in the plasmid pB-mRFP (pBluescript II SK-35S-mRFP-NOS) to generate a new construct termed pGEF-RFP. Ten micrograms of pAN580, 10 \(\mu \)g of pOsPELOTA-GFP, or the mixture of 5 \(\mu \)g pGEF-RFP and 5 \(\mu \)g pOsPELOTA-GFP were introduced into the protoplasts generated from the IR64 seedlings according to the protocol described previously (Chen et al. 2006a). The GFP fluorescence was observed 48 h after transformation by a Zeiss lsm710 confocal laser scanning microscope (Carl Zeiss, Inc., Jena, Germany).

Total RNA was extracted from various plant tissues using TRIzol reagent (Invitrogen, Life Technologies, Carlsbad, CA, USA) according to the manufacturer’s protocol. The genomic DNA removal and first strand cDNA synthesis were carried out using the ReverTra Ace qPCR Master Mix kit (Toyobo, Tokyo, Japan). SYBR \(^{\text{TM}} \) Premix Ex TaqTM II (Tli RNaseH Plus) Kit was chosen for qRT-PCR analysis and performed on a Thermal Cycle Dice \(^{\text{TM}} \) Real
Time System (TaKaRa, Dalian, China). A ubiquitin gene was used as an internal control. Primers used for qRT-PCR are listed in Table S1. All assays were repeated at least three times and the means were used for analysis.

High-throughput mRNA sequencing (RNA-seq) analysis

To eliminate other possible mutations, pelota was backcrossed to the wild-type IR64. The F1 plants were self-pollinated to generate BC1F2 and BC1F3. Three individual BC1F3 lines and three wild-type IR64 plants were chosen for isolation of total RNA. A total of six RNA samples were used for RNA-seq analyses. Library construction and approximately 6 Gb deep sequencing were carried out using the Illumina HiSeq 3000 platform (Illumina, 345 San Diego, CA, USA) following the manufacturer’s instructions by Genevy 346 Biotechnology Co. Ltd. (Shanghai, China). The aligned read files were processed by Cufflinks. The unit of measurement is fragments per kilobase of exon per million fragments mapped (FPKM). DEGs between three biological replicates of either pelota and IR64 were identified using the Empirical Analysis of Digital Gene Expression data package in Cuffdiff (ver.2.1.1). An absolute fold change of >2 and a false discovery rate significance score of ≤ 0.05 were used as thresholds to identify significant differences in gene expression. Each DEG was annotated, initially according to the top Oryza sativa annotation hit and then by GO enrichment analysis using GO Slim (http://www.geneontology.org), which assigned each DEG to one of three principal GO categories: molecular function, cellular component, and biological process.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (31471572) and the Ministry of Science and Technology of China (2016YFD0101104).

AUTHOR CONTRIBUTIONS

X.Z. and J.W. conceived and designed the research, X.Z., B.F., H.W. and Y.H. performed the experiments, X.X., C.Z., A.P. and Y.S. carried out the data analysis, X.Z. and J.W. wrote and revised the manuscript. All authors read and approved the manuscript.

REFERENCES

Akamatsu A, Wong HL, Fujiwara M, Okuda J, Nishide K, Uno K, Imai K, Umemura K, Kawasaki T, Kawano Y, Shimamoto K (2013) An OsCEBIP/OsCEK1-OsRacCEF1-OsRac1 module is an essential early component of chitin-induced rice immunity. Cell Host Microbe 13: 465–476

An CF, Mou ZL (2011) Salicylic acid and its function in plant immunity. J Integr Plant Biol 53: 412–428

Badigannavar AM, Kale DM, Eapen S, Murty GSS (2002) Inheritance of disease lesion mimic leaf trait in groundnut. J Hered 93: 50–52

Bulygin KN, Khairulina YS, Kolosov PM, Ven’yaminova AG, Graifer DM, Vorobjev YN, Frolova LY, Kisselev LL, Karpova GG (2010) Three distinct peptides from the N domain of translation termination factor eRF1 surround stop codon in the ribosome. RNA 16: 1902–1914

Bumicka-Turek O, Kata A, Buyandelger B, Ebermann L, Kurmann N, Burfeind P, Hoyer-Fender S, Engel W, Adham IM (2010) Pelota interacts with HAX1, EIF3G and SRPX and the resulting protein complexes are associated with the actin cytoskeleton. BMC Cell Biol 11: 28

Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, vanDaalen R, vanDerveer T, Diergaardt P, Groenendijk J, Topsh C, Vos P, Salamini F, Schultze-Lefert P (1997) The barley mlo gene: A novel control element of plant pathogen resistance. Cell 88: 695–705

Buyandelger B, Mongolei D (2007) Expression and functional analyses of murine Pelota (Pelo) gene. Exp Biol Med 30: 468–473

Castrillon DH, Gonczy P, Alexander S, Rawson R, Eberhart CG, Viswanathan S, DiNardo S, Wasserman SA (1993) Toward a molecular genetic analysis of spermatogenesis in Dro sophila melanogaster: Characterization of male-sterile mutants generated by single P element mutagenesis. Genetics 135: 489–505

Chen SB, Tao LZ, Zeng LR, Vega-Sanchez ME, Umemura K, Wang GL (2006a) A highly efficient transient protoplast system for analyzing defence gene expression and protein-protein interactions in rice. Mol Plant Pathol 7: 417–427

Chen XW, Shang JJ, Chen DX, Lei CL, Zou Y, Zhai WX, Liu GZ, Xu JC, Ling ZZ, Cao G, Ma BT, Wang YP, Zhao XF, Li SG, Zhu LH (2006b) A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46: 794–804

Chern M, Fitzgerald HA, Canlas PE, Navarde DA, Ronald PC (2005) Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant Microbe In 18: 511–520

Chujo T, Miyamoto K, Shimogawa T, Shimizu T, Otake Y, Yokotani N, Nishizawa Y, Shibuya N, Nojiri H, Yamane H, Minami E, Okada K (2013) OsWRKY28, a PAMP-responsive transrepressor, negatively regulates innate immune responses in rice against rice blast fungus. Plant Mol Biol 82: 23–37

Davis L, Engebrect J (1998) Yeast dom34 mutants are defective in multiple developmental pathways and exhibit decreased levels of polyribosomes. Genetics 149: 45–56
OsPELOTA is involved in rice disease resistance

Eberhart CG, Wasserman SA (1995) The pelota locus encodes a protein required for meiotic cell division: An analysis of G2/M arrest in Drosophila spermagenesis. Development 121: 3477–3486

Feng BH, Yang Y, Shi YF, Shen HC, Wang HM, Huang QN, Xu X, Lu XG, Wu JL (2013) Characterization and genetic analysis of a novel rice spotted-leaf mutant HM47 with broad-spectrum resistance to Xanthomonas oryzae pv. oryzae. J Integr Plant Biol 55: 473–483

Graille M, Chaillet M, van Tilbeurgh H (2008) Structure of yeast Dom34 – A protein related to translation termination factor eRF1 and involved in No-Go decay. J Biol Chem 283: 7145–7154

He X, Jiang JS, Wang CQ, Dehesh K (2017) ORA59 and EIN3 interaction couples jasmonate-ethylene synergistic action to antagonistic salicylic acid regulation of PDF expression. J Integr Plant Biol 59: 275–287

Hiel Y, Komari T (2008) Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat Protoc 3: 824–834

Huang QN, Shi YF, Zhang XB, Song LX, Feng BH, Wang HM, Xu X, Li XH, Guo D, Wu JL (2016) Single base substitution in OsCDC48 is responsible for premature senescence and death phenotype in rice. J Integr Plant Biol 58: 12–28

Ikeuchi K, Yazaki E, Kudo K, Inada T (2016) Conserved functions of human Pelota in mRNA quality control of nonstop mRNA. FEBS Lett 590: 3254–3263

Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5: 325–331

Lapidot M, Karniel U, Gelbart D, Fogel D, Evenor D, Kutsher Y, Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in plants? Trends Plant Sci 8: 263–271

Ma BY, Nussinov R (2004) Release factors eRF1 and RF2 – A universal mechanism controls the large conformational changes. J Biol Chem 279: 53875–53885

Nyamsuren G, Kata A, Xu XB, Raju P, Dressel R, Engel W, Pantakani DVK, Adhram IM (2014) Pelota regulates the development of extraembryonic endoderm through activation of bone morphogenetic protein (BMP) signaling. Stem Cell Res 13: 61–74

Prithiviraj B, Bais HP, Jha AK, Vivanco JM (2005) Staphylococcus aureus pathogenicity on Arabidopsis thaliana is mediated either by a direct effect of salicylic acid on the pathogen or by SA-dependent, NPR1-independent host responses. Plant J 42: 417–432

Raju P, Nyamsuren G, Elkenni M, Kata A, Tsagaan E, Engel W, Adhram IM (2015) Pelota mediates gonocyte maturation and maintenance of spermatogonial stem cells in mouse testes. Reproduction 149: 213–221

Singh P, Zimmerli L (2013) Lectin receptor kinases in plant innate immunity. Frontiers Plant Sci 4: 124

Sun CH, Liu LC, Tang YJ, Lin AH, Zhang FT, Fang J, Zhang GF, Chu CC (2011) RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice. J Genet Genomics 38: 29–37

Tang JY, Zhu XD, Wang YQ, Liu LC, Xu B, Li F, Fang J, Chu CC (2011) Semi-dominant mutations in the CC-NB-LRR-type NLR gene, NLS1, lead to constitutive activation of defense responses in rice. Plant J 66: 996–1007

Verberne MC, Verpoorte R, Bol JF, Mercado-Blanco J, Linthorst HJM (2000) Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nat Biotechnol 18: 779–783

Wang LJ, Pei ZY, Tian YC, He CZ (2005) OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Mol Plant Microbe Inter 18: 375–384

Wu CJ, Bordeos A, Madamba MRS, Baraoalnd M, Ramos M, Wang GL, Leach JE, Leung H (2008) Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genomics 279: 605–619

Xi RW, Doan C, Liu DZ, Xie T (2005) Pelota controls self-renewal of germline stem cells by repressing a Bam-independent differentiation pathway. Development 132: 5365–5374

Yamanouchi U, Yano M, Lin HX, Ashikari M, Yamada K (2002) A rice spotted leaf gene, Sp17, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA 99: 7530–7535

Yang W, Xu XN, Li Y, Wang YZ, Li M, Wang Y, Ding XH, Chu ZH (2016) Rutin-mediated priming of plant resistance to three bacterial pathogens initiating the early SA signal pathway. PLoS ONE 11: e0149610

Yang YN, Qi M, Mei CS (2004) Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J 40: 909–919

Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T, Maruyama-Nakashita A, Kudo T, Shinozaki K, Yoshida S, Nakashita H (2008) Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell 20: 1678–1692

Yokotani N, Sato Y, Tanabe S, Chuo T, Shimizu T, Okada K, Yamane H, Shimoto M, Sugano S, Takatsui H, Kaku H, Minami E, Nishizawa Y (2013) WRKY76 is a rice...
transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. *J Exp Bot* 64: 5085–5097

You C, Zhu H, Xu B, Huang W, Wang S, Ding Y, Liu Z, Li G, Chen L, Ding C, Tang S (2016) Effect of removing superior spikelets on grain filling of inferior spikelets in rice. *Frontiers Plant Sci* 7: 1161

Zeng LR, Qu SH, Bordeos A, Yang CW, Baraoidan M, Yan HY, Xie Q, Nahm BH, Leung H, Wang GL (2004) Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. *Plant Cell* 16: 2795–2808

Zhao JY, Liu PC, Li CR, Wang YY, Guo LQ, Jiang GH, Zhai WX (2017) LMM5.1 and LMM5.4, two eukaryotic translation elongation factor 1A-like gene family members, negatively affect cell death and disease resistance in rice. *J Genet Genomics* 44: 107–118

Zhou LA, Cheung MY, Li MW, Fu YP, Sun ZX, Sun SM, Lam HM (2010) Rice hypersensitive induced reaction protein 1 (OsHIR1) associates with plasma membrane and triggers hypersensitive cell death. *BMC Plant Biol* 10: 290

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article: http://onlinelibrary.wiley.com/doi/10.1111/jipb.12613/suppinfo

Figure S1. qRT-PCR validation of 10 genes expressed in IR64 and pelota

Actin1 was used as an internal control. One asterisk denotes $p < 0.05$, and double asterisks denote P-value < 0.01 (Student’s t-test).

Table S1. The primer pairs used in this study

Table S2. The RNA-seq data of 10 randomly selected genes expressed in IR64 and pelota

Table S3. Enrichment of gene ontology in terms of biological processes with P-value ≤ 0.01

Table S4. Different expression genes between IR64 and pelota plants in the Gene Ontology term: response to salicylic acid stimulus