Subclasses of analytic functions associated with Pascal distribution series

Basem Aref Frasina

aFaculty of Science, Department of Mathematics, Al al-Bayt University, Mafraq, Jordan

Abstract

In the present paper we determine necessary and sufficient conditions for the Pascal distribution series to be in the subclasses $S(k, \lambda)$ and $C(k, \lambda)$ of analytic functions. Further, we consider an integral operator related to Pascal distribution series. Some interesting special cases of our main results are also considered.

Keywords: Analytic functions; Hadamard product; Pascal distribution series.

2010 MSC: 30C45.

1. Introduction and definitions

Let \mathcal{A} denote the class of the normalized functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic in the open unit disk $U = \{ z \in \mathbb{C} : |z| < 1 \}$. Further, let \mathcal{T} be a subclass of \mathcal{A} consisting of functions of the form

$$f(z) = z - \sum_{n=2}^{\infty} |a_n| z^n. \quad (2)$$

A function f of the form (2) is in $S(k, \lambda)$ if it satisfies the condition

$$\left| \frac{zf'(z)}{(1-\lambda)f(z) + \lambda zf'(z)} - 1 \right| < k, \quad (0 < k \leq 1, \ 0 \leq \lambda < 1, \ z \in U)$$

Received February 22, 2020, Accepted: April 18, 2020 , Online: April 19, 2020 .
and \(f \in \mathcal{C}(k,\lambda) \) if and only if \(zf' \in \mathcal{S}(k,\lambda) \). The class \(\mathcal{S}(k,\lambda) \) was studied by Frasin et al. [7].

We note that \(\mathcal{S}(k,0) = \mathcal{S}(k) \) and \(\mathcal{C}(k,0) = \mathcal{C}(k) \), where the classes \(\mathcal{S}(k) \) and \(\mathcal{C}(k) \) were introduced and studied by Padmanabhan [7] (see also, [11, 16]).

A function \(f \in \mathcal{A} \) is said to be in the class \(\mathcal{R}^\tau(A,B) \) if \(-1 < B < A \leq 1 \), if it satisfies the inequality

\[
\left| \frac{f'(z) - 1}{(A-B)\tau - B[f'(z) - 1]} \right| < 1, \quad z \in \mathbb{U}.
\]

This class was introduced by Dixit and Pal [3].

A variable \(X \) is said to be Pascal distribution if it takes the values \(0, 1, 2, 3, \ldots \) with probabilities

\[
(1-q)^m, \quad \frac{q^m(1-q)^m}{1!}, \quad \frac{q^m(1-q)^{m+1}(m+1)}{2!}, \quad \frac{q^m(1-q)^{m+1}(m+2)(1-q)^m}{3!}, \ldots,
\]

respectively, where \(q \) and \(m \) are called the parameters, and thus

\[
P(X = r) = \binom{r + m - 1}{m - 1} q^{r}(1-q)^{m}, \quad (m \geq 1, 0 \leq q \leq 1, r = 0, 1, 2, 3, \ldots).
\]

Very recently, El-Deeb et al. [5] (see also, [13, 11]) introduced a power series whose coefficients are probabilities of Pascal distribution, that is

\[
\Psi_q^m(z) := z + \sum_{n=2}^{\infty} \binom{n + m - 2}{m - 1} q^{n-1}(1-q)^m z^n, \quad z \in \mathbb{U},
\]

where \(m \geq 1, 0 \leq q \leq 1 \), and we note that, by ratio test the radius of convergence of above series is infinity. We also define the series

\[
\Phi_q^m(z) := 2z - \Psi_q^m(z) = z - \sum_{n=2}^{\infty} \binom{n + m - 2}{m - 1} q^{n-1}(1-q)^m a_n z^n, \quad z \in \mathbb{U}.
\] (3)

Let consider the linear operator \(\mathcal{I}_q^m : \mathcal{A} \to \mathcal{A} \) defined by the convolution or Hadamard product

\[
\mathcal{I}_q^m f(z) := \Psi_q^m(z) * f(z) = z + \sum_{n=2}^{\infty} \binom{n + m - 2}{m - 1} q^{n-1}(1-q)^m a_n z^n, \quad z \in \mathbb{U},
\]

where \(m \geq 1 \) and \(0 \leq q \leq 1 \).

Motivated by several earlier results on connections between various subclasses of analytic and univalent functions, by using hypergeometric functions (see for example, [2, 7, 10, 11, 20]) and by using various distributions such as Yule-Simon distribution, Logarithmic distribution, Poisson distribution, Binomial distribution, Beta-Binomial distribution, Zeta distribution, Geometric distribution and Bernoulli distribution (see for example, [4, 6, 8, 9, 12, 13, 18, 15]), in this paper, we determine the necessary and sufficient conditions for \(\Phi_q^m(z) \) to be in our classes \(\mathcal{S}(k,\lambda) \) and \(\mathcal{C}(k,\lambda) \) and connections of these subclasses with \(\mathcal{R}^\tau(A,B) \). Finally, we give conditions for the integral operator \(G_q^m(m,z) = \int_0^z \frac{t^{m-1}}{t^m} \varphi(t) dt \) belonging to the above classes.

2. Preliminary lemmas

To establish our main results, we need the following Lemmas.

Lemma 2.1. [7] A function \(f \) of the form [2] is in \(\mathcal{S}(k,\lambda) \) if and only if it satisfies

\[
\sum_{n=2}^{\infty} |a_n((1-\lambda) + k(1+\lambda)) - (1-\lambda)(1-k)] |a_n| \leq 2k
\] (4)
where $0 < k \leq 1$ and $0 \leq \lambda < 1$. The result is sharp.

Lemma 2.2. A function f of the form (2) is in $\mathcal{C}(k,\lambda)$ if and only if it satisfies

$$
\sum_{n=2}^{\infty} n[n((1 - \lambda) + k(1 + \lambda)) - (1 - \lambda)(1 - k)] |a_n| \leq 2k
$$

where $0 < k \leq 1$ and $0 \leq \lambda < 1$. The result is sharp.

Lemma 2.3. If $f \in \mathcal{R}^+(A,B)$ is of the form (1), then

$$
|a_n| \leq (A - B)\frac{|\tau|}{n}, \quad n \in \mathbb{N} - \{1\}.
$$

The result is sharp for the function

$$
f(z) = \int_0^z (1 + (A - B)\frac{\tau t^{n-1}}{1 + Bt^{n-1}})dt, \quad (z \in \mathbb{U}; n \in \mathbb{N} - \{1\}).
$$

3. Necessary and sufficient conditions

For convenience throughout in the sequel, we use the following identities that hold at least for $m \geq 2$ and $0 \leq q < 1$:

$$
\sum_{n=0}^{\infty} \binom{n+m-1}{m-1} q^n = \frac{1}{(1-q)^m}, \quad \sum_{n=0}^{\infty} \binom{n+m-2}{m-2} q^n = \frac{1}{(1-q)^{m-1}},
$$

$$
\sum_{n=0}^{\infty} \binom{n+m}{m} q^n = \frac{1}{(1-q)^{m+1}}, \quad \sum_{n=0}^{\infty} \binom{n+m+1}{m+1} q^n = \frac{1}{(1-q)^{m+2}}.
$$

By simple calculations we derive the following relations:

$$
\sum_{n=2}^{\infty} \binom{n+m-2}{m-1} q^{n-1} = \sum_{n=0}^{\infty} \binom{n+m-1}{m-1} q^n - 1 = \frac{1}{(1-q)^{m-1}},
$$

$$
\sum_{n=2}^{\infty} (n-1) \binom{n+m-2}{m-1} q^{n-1} = qm \sum_{n=0}^{\infty} \binom{n+m}{m} q^n = \frac{qm}{(1-q)^{m+1}},
$$

and

$$
\sum_{n=3}^{\infty} (n-1)(n-2) \binom{n+m-2}{m-1} q^{n-1} = q^2m(m+1) \sum_{n=0}^{\infty} \binom{n+m+1}{m+1} q^n = \frac{q^2m(m+1)}{(1-q)^{m+2}}.
$$

Unless otherwise mentioned, we shall assume in this paper that $0 < k \leq 1$, $0 \leq \lambda < 1$, while $m \geq 1$ and $0 \leq q < 1$.

Firstly, we obtain the necessary and sufficient conditions for Φ^m_q to be in the class $\mathcal{S}(k,\lambda)$.

Theorem 3.1. We have $\Phi^m_q \in \mathcal{S}(k,\lambda)$, if and only if

$$
((1 - \lambda) + k(1 + \lambda)) \frac{q^m}{(1-q)^{m+1}} \leq 2k.
$$
Proof. Since
\[\Phi_q^m(z) = z - \sum_{n=2}^{\infty} \left(\frac{n + m - 2}{m - 1} \right) q^{n-1}(1 - q)^m z^n \] (7)
in view of Lemma 2.1 it suffices to show that
\[\sum_{n=2}^{\infty} [n((1 - \lambda) + k(1 + \lambda)) - (1 - \lambda)(1 - k)] \left(\frac{n + m - 2}{m - 1} \right) q^{n-1}(1 - q)^m \leq 2k. \] (8)
Writing
\[n = (n - 1) + 1 \]
in (8) we have
\[\sum_{n=2}^{\infty} [n((1 - \lambda) + k(1 + \lambda)) - (1 - \lambda)(1 - k)] \left(\frac{n + m - 2}{m - 1} \right) q^{n-1}(1 - q)^m \]
\[\sum_{n=2}^{\infty} [(n - 1)((1 - \lambda) + k(1 + \lambda)) + 2k] \left(\frac{n + m - 2}{m - 1} \right) q^{n-1}(1 - q)^m \]
\[= [(1 - \lambda) + k(1 + \lambda)] \sum_{n=2}^{\infty} (n - 1) \left(\frac{n + m - 2}{m - 1} \right) q^{n-1}(1 - q)^m \]
\[+ 2k \sum_{n=2}^{\infty} \left(\frac{n + m - 2}{m - 1} \right) q^{n-1}(1 - q)^m \]
\[= ((1 - \lambda) + k(1 + \lambda)) \frac{q m}{1 - q} + 2k (1 - (1 - q)^m). \]
But this last expression is bounded above by 2k if and only if (6) holds.

Theorem 3.2. We have \(\Phi_q^m \in C(k, \lambda) \) if and only if
\[[(1 - \lambda) + k(1 + \lambda)] \frac{q^2 m(m + 1)}{(1 - q)^{m+2}} \]
\[+ [\lambda(1 - \lambda)(2 + k) + 3k(1 + \lambda)] \frac{q m}{(1 - q)^{m+1}} \leq 2k. \] (9)
Proof. In view of Lemma 2.2 we must show that
\[\sum_{n=2}^{\infty} n[n((1 - \lambda) + k(1 + \lambda)) - (1 - \lambda)(1 - k)] \left(\frac{n + m - 2}{m - 1} \right) q^{n-1}(1 - q)^m \leq 2k. \] (10)
Writing
\[n^2 = (n - 1)(n - 2) + 3(n - 1) + 1 \] and \(n = (n - 1) + 1 \),
we get
\[\sum_{n=2}^{\infty} n[(1-\lambda) + k(1+\lambda)] - (1-\lambda)(1-k)] \binom{n+m-2}{m-1} q^{n-1}(1-q)^m \]

\[\frac{[(1-\lambda) + k(1+\lambda)]}{m} \sum_{n=3}^{\infty} (n-1)(n-2) \binom{n+m-2}{m-1} q^{n-1}(1-q)^m \]

\[+ [(1-\lambda)(2+k) + 3k(1+\lambda)] \sum_{n=2}^{\infty} (n-1) \binom{n+m-2}{m-1} q^{n-1}(1-q)^m \]

\[+ 2k \sum_{n=2}^{\infty} \binom{n+m-2}{m-1} q^{n-1}(1-q)^m \]

\[= \frac{[(1-\lambda) + k(1+\lambda)] q^2 m(m+1)}{(1-q)^2} \]

\[+ [(1-\lambda)(2+k) + 3k(1+\lambda)] \frac{q m}{(1-q)^2} + 2k (1 - (1-q)^m) . \]

Therefore, we see that the last expression is bounded above by 2k if (9) is satisfied.

\[\square \]

4. Inclusion Properties

Making use of Lemma 2.3, we will study the action of the Pascal distribution series on the classes \(\mathcal{S}(k,\lambda) \) and \(\mathbb{C}(k,\lambda) \).

Theorem 4.1. Let \(m > 1 \). If \(f \in \mathcal{R}^r(A,B) \), then \(T_q^m \in \mathcal{S}(k,\lambda) \) if

\[(A - B)|\tau| [[(1-\lambda) + k(1+\lambda)] (1 - (1-q)^m)] \]

\[- \frac{(1-\lambda)(1-k)}{q(m-1)} [(1-q) - (1-q)^m - q(m-1)(1-q)^m] \]

\[\leq 2k. \] (11)

Proof. In view of Lemma 2.1, it suffices to show that

\[\sum_{n=2}^{\infty} n[(1-\lambda) + k(1+\lambda)] - (1-\lambda)(1-k)] \binom{n+m-2}{m-1} q^{n-1}(1-q)^m |a_n| \leq 2k. \]

Since \(f \in \mathcal{R}^r(A,B) \), then by Lemma 2.3 we have

\[|a_n| \leq \frac{(A - B)|\tau|}{n}. \] (12)

Thus, we have

\[\sum_{n=2}^{\infty} n[(1-\lambda) + k(1+\lambda)] - (1-\lambda)(1-k)] \binom{n+m-2}{m-1} q^{n-1}(1-q)^m |a_n| \]

\[\leq (A - B)|\tau| \sum_{n=2}^{\infty} [(1-\lambda) + k(1+\lambda)] \binom{n+m-2}{m-1} q^{n-1}(1-q)^m \]

\[- \sum_{n=2}^{\infty} \frac{1}{n} [(1-\lambda)(1-k)] \binom{n+m-2}{m-1} q^{n-1}(1-q)^m \]

\[= (A - B)|\tau| [(1-\lambda) + k(1+\lambda)] (1 - (1-q)^m) \]

\[- \frac{(1-\lambda)(1-k)}{q(m-1)} [(1-q) - (1-q)^m - q(m-1)(1-q)^m] \]

But this last expression is bounded by 2k, if (11) holds, which completes the proof of Theorem 4.1. \[\square \]
Applying Lemma 2.2 and using the same technique as in the proof of Theorem 4.1 we have the following result:

Theorem 4.2. Let \(m \geq 1 \). If \(f \in \mathcal{R}^\tau(A,B) \), then \(I_m^q \in \mathcal{C}(k,\lambda) \) if

\[
(A - B)|\tau| \left[(1 - \lambda) + k(1 + \lambda)\frac{q^m}{1 - q} + 2k(1 - q)^m\right] \leq 2k. \tag{13}
\]

5. **An integral operator**

Theorem 5.1. If \(m \geq 1 \), then the integral operator

\[
G_q^m(m,z) = \int_0^z \frac{\Phi_q^m(t)}{t} dt \tag{14}
\]

is in \(\mathcal{C}(k,\lambda) \) if and only if inequality (6) is satisfied.

Proof. According to (14) it follows that

\[
G_q^m(m,z) = z - \sum_{n=2}^{\infty} \left(\frac{n + m - 2}{m - 1}\right) q^{n-1}(1 - q)^m \frac{z^n}{n}
\]

then by Lemma 2.2 we need only to show that

\[
\sum_{n=2}^{\infty} n[(1 - \lambda) + k(1 + \lambda)] - (1 - \lambda)(1 - k)] \times \frac{1}{n} \left(\frac{n + m - 2}{m - 1}\right) q^{n-1}(1 - q)^m \leq 2k,
\]

or, equivalently

\[
\sum_{n=2}^{\infty} n[(1 - \lambda) + k(1 + \lambda)] - (1 - \lambda)(1 - k)] \left(\frac{n + m - 2}{m - 1}\right) q^{n-1}(1 - q)^m \leq 2k. \tag{15}
\]

The remaining part of the proof of Theorem 5.1 is similar to that of Theorem 3.1 and so we omit the details. \(\square \)

Theorem 5.2. If \(m > 1 \), then the integral operator \(G_q^m(m,z) \) given by (14) is in \(\mathcal{S}(k,\lambda) \) if and only if

\[
[(1 - \lambda) + k(1 + \lambda)](1 - (1 - q)^m)
- \frac{(1 - \lambda)(1 - k)}{q(m - 1)}[(1 - q) - (1 - q)^m - q(m - 1)(1 - q)^m]
\]

\[
\leq 2k.
\]

The proof of Theorem 5.2 is lines similar to the proof of Theorem 5.1, so we omitted the proof of this theorem.

6. **Corollaries and consequences**

By specializing the parameter \(\lambda = 0 \) in the above theorems we obtain the following corollaries.

Corollary 6.1. We have \(\Phi_q^m \in \mathcal{S}(k) \), if and only if

\[
\frac{q^m(1 + k)}{(1 - q)^{m+1}} \leq 2k. \tag{16}
\]
Corollary 6.2. We have $\Phi_q^m \in \mathcal{C}(k)$ if and only if
\[
q^2 \frac{m(m+1)(1+k)}{(1-q)^{m+2}} + 2q \frac{m(1+2k)}{(1-q)^{m+1}} \leq 2k.
\] (17)

Corollary 6.3. Let $m > 1$. If $f \in \mathcal{R}^r(A,B)$, then $I_q^m \in \mathcal{S}(k)$ if
\[
(A - B)|r| \left[\frac{(1+k)(1-(1-q)^m)}{q(m-1)} \right] \leq 2k.
\] (18)

Corollary 6.4. Let $m \geq 1$. If $f \in \mathcal{R}^r(A,B)$, then $I_q^m f \in \mathcal{C}(k)$ if
\[
(A - B)|r| \left[(1+k) \frac{m}{1-q} + 2k (1-(1-q)^m) \right] \leq 2k.
\] (19)

Corollary 6.5. If $m \geq 1$, then the integral operator $G_q^m(m,z)$ given by (14) is in $\mathcal{C}(k)$ if and only if inequality (16) is satisfied.

If $m > 1$, then the integral operator $G_q^m(m,z)$ given by (14) is in $\mathcal{S}(k)$ if and only if
\[
(1+k) \frac{(1-(1-q)^m)}{q(m-1)} \leq 2k.
\]

Acknowledgements. The author would like to thank the referees for their helpful comments and suggestions.

References

[1] S.Çakmak, S.Yalçın, and Ş. Altunkaya, Some connections between various classes of analytic functions associated with the power series distribution, Sakarya Univ. J. Sci., 23(5)(2019), 982–985.

[2] N. E. Cho, S. Y. Woo and S. Owa, Uniform convexity properties for hypergeometric functions, Fract. Calc. Appl. Anal., 5(3) (2002), 303–313.

[3] K.K. Dixit and S.K. Pal, On a class of univalent functions related to complex order, Indian J. Pure Appl. Math., 26(1995), no. 9, 889–896.

[4] R. M. El-Ashwah and W. Y Kota, Some condition on a Poisson distribution series to be in subclasses of univalent functions, Acta Univ. Apulensis Math. Inform., No. 51/2017, pp. 89–103.

[5] S.M. El-Deeb, T. Bulboacă and J. Dziok, Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J. 59(2019), 301–314.

[6] B.A. Frasin, On certain subclasses of analytic functions associated with Poisson distribution series, Acta Univ. Sapientiae Math. 11, 1 (2019) 78–86.

[7] B.A. Frasin, Tariq Al-Hawary and Feras Yousef, Necessary and sufficient conditions for hypergeometric functions to be in a subclass of analytic functions, Afr. Mat., Volume 30, Issue 1–2, 2019, pp. 223–230.

[8] B.A. Frasin and Ibtisam Aklawish, On subclasses of uniformly spirallike functions associated with generalized Bessel functions, J. Funct. Spaces, Volume 2019, Article ID 1329462, 6 pages.

[9] W. Nazeer, Q. Mehmood, S.M. Kang, and A. Ul Haq, An application of Binomial distribution series on certain analytic functions, J. Computational Analysis and Applications, Volume 26, No.1(2019),11–17.

[10] E. Merkes and B. T. Scott, Starlike hypergeometric functions, Proc. Amer. Math. Soc., 12(1961), 885–888.

[11] M.L. Mogra, On a class of starlike functions in the unit disc I, J. Indian Math. Soc. (N.S.) 40(1976), 159–161.

[12] G. Murugusundaramoorthy, Subclasses of starlike and convex functions involving Poisson distribution series, Afr. Mat. (2017) 28:1357-1366.

[13] G. Murugusundaramoorthy, K. Vijaya and S. Porwal, Some inclusion results of certain subclasses of analytic functions associated with Poisson distribution series, Hacet. J. Math. Stat. 45(2016), no. 4, 1101-1107.

[14] G. Murugusundaramoorthy, B. A. Frasin and Tariq Al-Hawary, Uniformly convex spiral functions and uniformly spirallike function associated with Pascal distribution series, arXiv:2001.07517 [math.CV].
[15] A.T. Oladipo, Bounds for probability of the generalised distribution defined by generalised polylogarithm, Punjab Univ. J. Math., Vol 51(7) (2019), 19-26.

[16] S. Owa, On certain classes of univalent functions in the unit disc, Kyungpook Math. J., Vol. 24, No. 2 (1984), 127-136.

[17] K.S. Padmanabhan, On certain classes of starlike functions in the unit disc, J. Indian Math. Soc. 32(1968), 89-103.

[18] S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal., (2014), Art. ID 984135, 1–3.

[19] H. Silverman, Starlike and convexity properties for hypergeometric functions, J. Math. Anal. Appl. 172 (1993), 574–581.

[20] H.M. Srivastava, G. Murugusundaramoorthy and S. Sivasubramanian, Hypergeometric functions in the parabolic starlike and uniformly convex domains, Integr. Transf. Spec. Func. 18 (2007), 511–520.