Mosquitos’ species of Diyala province, Iraq

Raad Hammodi Hasson, Ph.D. Parasitology
College of Veterinary Medicine, University of Diyala, Iraq

Abstract—In the present study; the electrical mosquito’s killer collection method was used for adult mosquitoes. Two different stations for fixing electrical mosquito’s killer were chosen in the study area of veterinary college of medicine of Diyala University, Baquba, Al-muradia. Total number of 553 insects collected; total number of mosquitoes n = 70; Two genera Anopheles n=21 and Culex n= 49 adults were recorded with no significance difference P-Value = 0.565; Three spp. were identified and classified as follows: Cx. (Cux.) pipiens Linnaeus 1758, An. (Cel.) stephensi Liston 1901 and An. (Ano.) sacharovi Favre 1903.

There was significant difference p=0.010 between monthly distribution in favor of March 2017, were the total number of the insects (n=507) and the number of mosquitoes (n=64) and lowest number were in January and February (n=0) reported. Results revealed also significant difference p=0.248 between the monthly total number of mosquitoes and other insects and monthly total number of mosquitoes; Mosquitoes were captured indoors more Anopheles than outdoors; Culex recorded in November, December and March, while anopheline reported in March only in time of study.

Our present study entomological data calls the health authority to conduct further survey for Mosquito species in the province to its great role as vector of malaria.

Keywords—Mosquito, Anopheles, Culex, Diyala, Iraq.

1. INTRODUCTION

There are 3,500 named species of mosquito, of which only a couple of hundred bite or bother humans.

Mosquitoes are one of the deadliest animals in the world. Their ability to carry and spread disease to humans causes millions of deaths every year. In 2015 malaria alone caused 438,000 deaths. The worldwide incidence of dengue has risen 30-fold in the past 30 years, and more countries are reporting their first outbreaks of the disease. Zika, dengue, chikungunya, and yellow fever are all transmitted to humans by the Aedes aegypti mosquito. More than half of the world’s population lives in areas where this mosquito species is present.

Not only can mosquitoes carry diseases that afflict humans, they also transmit several diseases and parasites that dogs and horses are very susceptible to. These include dog heartworm, West Nile virus and Eastern equine encephalitis. In addition, mosquito bites can cause severe skin irritation through an allergic reaction to the mosquito’s saliva - this is what causes the red bump and itching.

Iraqi Culicinaemosquitoes had been studied by many workers since 1920, wrote on some Culicidae of the southerm Iraq; then in 1921 by Christopher and Shortt (4), have been recorded from Iraq genus Anopheles: algeriensis, martensi, claviger, sacharovi, maculipennis (typical form), hyrcanus, dihali, fluviatilis, multicolor (the inclusion of multicolor rests on the reputed capture of the an adult at Sedat-al-Hindiyeh in May 1943), superpictus, stephensi, pulcherrimus; (8); write an list of Culicinein the central region including Baghdad during August to November, 1954; (9) found Aedes aegypti in Baghdad; (10), and worked on keys for Iraqi culicine larvae in general.

The previous authors belive that the culicine mosquitoes are still improperly suted; only 12 species (Culex theleri, C. pusillus, C. tritaeniorychus, C. pipinespinoipes, C. pipinesfrigans, C. torrentium, Aedes capriscus, A. dorsalis, Theobaldiongariylareolata, Th. subochea, Th. annulata and Urrantiaeniugulae); have been reported from Iraq and half that number from Baghdad.

(13) Provided some notes on the bionics of An. Maculipennis and An. sacharovi from Iran and Iraq and examined the distribution of the two species in central and northern areas of Iran. (14) Recorded 15 species of Anopheles from Iran and provided a key for the identification of these species in both Iran and Iraq.

Of the almost 16 anopheline species so far recorded in Iraq (5, 14, 7, 15) only 3, Anopheles stephensi Liston, An. sacharovi Favre and An. superpictus Grassi are proven to be vectors of malaria. An. p.chirrimum Theobald has been suspected of being a vector in Najaf Province.

Mosquitoes records in Iraq shows Variation of species number reported; In 12 Iraqi provinces were collected and speciated. Four Anopheles (An. pulcherrimus, An. stephensi, An. superpictus, and An. sacharovi) and one Culex (Cx. pipiens).
puppiens) species were identified. *Anopheles pulcherimus* was found in 11 provinces, *An. stephensi* in 7, *An. superpictus* in 2, and *An. sacharovi* in one province, while *Cx. pipiens* was found in all the 12 provinces. Two peaks of mosquito density were found: the first from April–June and the other from September–October (17); while 10 species up to 37 species belong for 4 genera (*Anopheles*, *Culex*, *Aedes* and *Culiseta*) as shown in table (1) (18).

Modified Table 1: Updated checklists of mosquito species from Afghanistan and Iraq (after Rueda et al.2008).

Species	Iraq
Aedes (Aedemorphus) vexans (Meigen 1830)	R
Ae. (Ochlerotatus) caspius (Pallas1771)	A1, K, X
Ae. (Och.) dorsalis (Meigen1830)	I, K
Anopheles (Anopheles) algeriensis Theobald1903	A2, G, P
An. (Ano.) claviger Meigen1804	A2, G, P
An. (Ano.) hyrcanus (Pallas) 1771	A2, G, K, P
An. (Ano.) maculipennis Meigen1818	A2, G, K, P
An. (Ano.) marteri Senevet and Prunnelle1927	A2, G, K, P
An. (Ano.) melanoon Hackett	G
An. (Ano.) sacharovi Favre 1903	A2, G, K, P
An. (Cel.) apoci Marsh	A2, G, K
An. (Cel.) culicifacies Giles	A2, G, K
An. (Cel.) dthali Patton 1905	A2, G, K, P
An. (Cel.) fluviatilis James 1902	A2, G, K, P
An. (Cel.) multicolor Cambouliu1902	A2, G, K, P
An. (Cel.) pulcherrimus Theobald 1902	A2, G, K, P, X
An. (Cel.) sergentii (Theobald) 1907	A2, G, K, X
An. (Cel.) stephensi Liston 1901	A2, G, K, P, X
An. (Cel.) superpictus Grassi 1899	A2, G, K, P
An. (Cel.) turkhudi Liston	A2, G
Culex (Barradius) modestus Ficalbi	A1, K
Cx. (Bar.) pusillus Macquart	A1, I, K
Cx. (Culex) mimeticus Noe	A1, I, H1, H2
Cx. (Cux.) perexiguus Theobald	H2, X H1, H2
Cx. (Cux.) pipiens Linneaus	A1, I, H1, H2, K, X
Cx. (Cux.) pseudovishnui Collens	H2
Cx. (Cux.) quinquefasciatus Say	H2, I, K, X
Cx. (Cux.) theileri Theobald	A1, H1, H2, I, K, X
Cx. (Cux.) tritaeniorhynchus Giles	A1, H1, H2, I, K, X
Cx. (Mailloitia) deserticola Kirkpatrick	H1, I
Cx. (Mai.) hortensis Ficalbi	A1, I
Cx. (Neoculex) territans Walker	A1
Culiseta (Allotheobaldia) longiareolata (Macquart)	A1, I, K, X
Cs. (Culicella) fumipennis (Stephens)	U
Cs. (Culiseta) annulata (Schrank)	I, K
Cs. (Cus.) subochrea (Edwards)	A1, I, K
Uranotaenia (Pseudoficalbia) unguiculata Edwards	A1, K

Total number of species: 37
The aim of present study is to provide an up-to-date list of mosquitoes collected from internal girl’s residence and animal farm of veterinary college of medicine of Diyala University.

II. MATERIALS AND METHODS
In the present study; The electrical mosquitoes killer collection method was used for outdoor and semi-indoor resting mosquitoes. For the present entomological survey, 2 fixed stations of electrical mosquitoes killer were put in the internal girl’s residence and animal farm of veterinary college of medicine of Diyala university area, Al-muradia, and they were visited weekly to collect mosquitoes vector and other insects killed. The study time conducted from November 2016-March 2017. The vectors were monitored at adult stages from various habitats. Specimens were identified to species using keys and descriptions from pertinent literature (e.g., 24, 22, 28).

III. RESULTS
Total of 553 as shown in table (2); Two genera Anopheles n=21 and Culex n= 49 adult species of mosquitoes were recorded with no significance difference between total number of genera P-Value = 0.565, table (2); their spp. were identified and classified as follows:

Month	Total number of genera	Total number of mosq.	Total number of insects	
November 2016	4	0	4	12
December 2016	2	0	2	34
January 2017	0	0	0	0
February 2017	0	0	0	0
March 2017	43	21	64	507
total	**49**	**21**	**70**	**553**
Fig. 3: Monthly distribution of Mosq. and other insect

Fig. 4: Monthly distribution of Mosq. and other insects

Order Diptera
Family Culicidae
i. Sub family culicinae
 Cx. (Cux.) pipiens Linnaeus 1758
ii. Sub family Anophelinae
 An. (Cel.) stephensi Liston 1901
 An. (Ano.) sacharovi Favre 1903

Fig. 5: Cx. (Cux.) pipiens Linnaeus 1758

Fig. 6: An. (Cel.) stephensi Liston 1901

Fig. 7: Anopheles An. (Ano.) sacharovi Favre 1903
There was significant difference between monthly distribution in favor of March month p=0.010; Results revealed that the highest number of mosquitoes reported in March 2017 (n=70) and lowest in January and February (n=0) ; Results revealed also that the highest number of mosquitoes and other insect reported in March 2017 (n=507) and lowest in January and February (n=0) but with no significant difference p= 0.565 ; mosquitoes were captured indoors more Anopheles than indoors ; Culex recorded all over the time outdoors more than indoors resting places.

IV. DISCUSSION

There is growing evidence that the northern house mosquito, Culex pipiens (Diptera: Culicidae), is a major vector of avian malaria in the northern hemisphere. This mosquito, which can act as a vector of several other infectious diseases such as arboviruses(29),

Mosquitoes of Culex pipiens prevailing in November December and March both indoors and outdoors, this result agree with(30) in that, it is a highly adapted to all the different types of environments; the adults of C. pipiens group are thought to appear throughout the year31).

The study shows that 2 species Anopheles An. (Ano.) sacharovi Favre 1903 ; An. (Cel.) stephensi Liston 1901 the proven vectors of malaria were encountered in Diyala area.

The findings revealed that A. stephensi and A. sacharovi were present during March 2017 in indoors resting disagrees with(20) who found that A. stephensi adults were present during all months of the year except January and also disagree with (17) who recorded the presence of An. Pulcherrimusand An. Superpictus only in Diyala province, but our finding of C. pipiens identification agree with previously author.

Both the critical and normal thresholds were determined from the entomological data before, during and after the epidemic which is an important signal in malaria epidemiology and mosquitoes control.

In Iraq, increased Anopheles densities are not always associated with an epidemic disease but could be used as an indicator of epidemic risk. A.stephensi is the major malaria vector in the central and southern regions of Iraq. Indoor resting A. stephensi density was used as an indicator of epidemic risk when its density exceeded the critical level.

V. CONCLUSION

Our present study entomological data calls the health authority to conduct further survey for Mosquito species in the province to its great role as vector of malaria.

Acknowledgments:

Thanks for veterinary doctors of Vet. Service of Baquba, Diyala province, particularly Dr. Marwa Sabah.

REFERENCES

[1] Fang, J. 2010. Ecology: A world without mosquitoes. Nature. vol. 466, pp:432-434 .
[2] http://www.who.int/neglected_diseases/vector_ecology/mosquito-borne-diseases/en/
[3] http://www.mosquito.org/mosquito-borne-diseases
[4] Barraud, P.J.1920. Notes on some culicidae collected in lower Mesopotamia. Bull. Ent. Research vol.10.no.3.pp:323-325.
[5] Christopher, S .R. and Shortt H.E. (1921). Malaria in Mesopotamia 1916 -1919. Ind.j. Med.Research.vol.8 no.3.pp:508-552.
[6] PRINGLE, G. 1952. The Identification of the Larvae of Anopheles stephensi Liston and Anopheles superpictus Grassi in Iraq. Bulletin of Entomological Research. Volume 42, Issue 4., pp. 779-783.
[7] PRINGLE, G.1954. The Identification of the Adult Anopheline Mosquitoes of Iraq and Neighbouring Territories. Bulletin of Endemic Diseases Vol.1. No.1. pp.53-76.
[8] Khatat ,F.H. (1955). An account of the taxonomy and biology of the larvae of culicine mosquitoes in Iraq. Bull.End.Dis. Baghdad. vol.1. no.2 . pp:156-184
[9] Al-Murayati,Y. (1956). A brief note on the occurrence of Aedesaegyi in the city of Baghdad. Bull.End. Dis.Baghdad. vol.1. no.4.pp:311.
[10] Abul-Hab,J. (1968). larvae of culicinemosquitoes of Iraq with a key for their identification. Bull.End.Dis.Baghdad. vol.10. No.1-4.pp:343-356.
[11] Zaini M.A.; Kessal, S.M. and Al-Takriti A.B. (1976). Preliminary report on mosquitos and malaria in Iraq. Bull. End. Dis. Bagdad. Vol.1. No.1-4.pp:143-144.

[12] Ibrahim I.K.; Alsamarae T.Y.M.; Zaini M.A. and Kessal, S.M. (1983). Identification key for Iraqi Culicine mosquitoes larvae (Culicine –Diptera). Bull.End.Dis. Baghdad. Vol.12-13. No.1-4.pp:89-113.

[13] Etherington, D. and G. Sellick. 1946. Notes on the bionomics of Anopheles sacharovi in Persia and Iraq. Bull. Entomol.Res. 37: 191-195.

[14] Macan, T.T. 1950. The anopheline mosquitoes of Iraq and north Persia, pp. 111-219, Anopheles and malaria in the Near East. Mem. Lond. Sch. Hyg. Trop. Med. No.7.

[15] Pringle, G.; Tekriti A. ; Azzawi M.; Riyadh H. and Murayati Y. 1960. The anopheline larvae of Iraq with a report on a culicifacies and A.apoci breeding in Syrian desert spring. Bull. End. Dis. Inst. Bagdad vol.7 pp: 36-57.

[16] Manoucheri, A.V.; Shalli A. K. ; Al-Saadi S. H. And Al-Olaily A. K.Status Of Resistance Of Anopheline Mosquitoes In Iraq, 1978 . 1980. Mosquitoes news. vol.40 no.4 .pp:535-540.

[17] Hantosh, H. A.; Hassan, H. M.; Ahmad B. & Al-fatlawy, A. 2012. Mosquito species geographical distribution in Iraq 2009. J. Vector Borne Dis. Vol.49. pp. 33–35.

[18] Rueda, L.M.; Pecor, J.E.; Lowen, R.G. and Carder, M. 2008. New record and updated checklists of the mosquitoes of Afghanistan and Iraq. Vector Ecol. 2008; vl.33 no.(2). pp: 397–402.

[19] Kadhem, Z. A.; Al-Sariy, J. S. and Ali, S. M. 2014. Seasonal distribution study of mosquito species (Culicidae: Diptera) in Al-Naamania salt basin north western Al Kut city / Iraq. Wasit Journal for Science & Medicine. vol. 7 no.1 .pp: (124-135).

[20] Ghar, A.A.; El-Houchi, W.K. and Abul-Hab, J. 2006. Epidemiology of malaria and predictions of retransmission in Babylon governorate, Iraq. Eastern Mediterranean Health Journal, Vol. 12, N o 3/4, pp: 270-279.

[21] Abul-hab, J. and S.M. al-Kassal. 1986. Impact of anti-malaria spraying on the occurrence of Anopheles (Diptera, Culicidae) in Iraq. Bull. End. Dis. (Baghdad). 27: 37-51

[22] Glick, J.I., 1992. Illustrated key to the female Anopheles of Southwestern Asia and Egypt. Mosq. Syst. 24 (2), 125–153.

[23] Harbach, R.E. 1985. Pictorial keys to the genera of mosquitoes, subgenera of Culex and the species of Culex (Culex) occurring in southwestern Asia and Egypt, with a note on the subgeneric placement of Culex deserticola (Diptera: Culicidae). Mosq. Syst. 17: 83-107.

[24] Harbach, R.E., 1988. The mosquitoes of the subgenus Culex in Southwestern Asia and Egypt Diptera: Culicidae. Contrib. Am. Entomol. Inst. 24 (1), 1–240.

[25] Khalaf, K.T. 1962. Handbook of the Mosquitoes Recorded from Iraq. Shafik Press, Baghdad. 62 pp.

[26] Reinert, J.F. 1973. Genus AedesMeigen, subgenus Aedimorphus Theobald in Southeast Asia. Contr. Am. Entomol. Inst. 9: 1-218.

[27] Walter Reed Biosystematics Unit (WRBU). 2001. Systematic Catalog of Culicidae, Smithsonian Institution, Washington, DC, USA. http://wrbu.org. (3/5/2008).

[28] Salit A.M.; Zakaria M.; Balaba M. and Zaghoul T. 1994. The mosquito fauna of Kuwait. J.Univ. Kuwait (Sci).vol.21.pp:77-85.

[29] Fabrice, L.; Aline, D.; Olivier, G. and Philippe, C. 2013.Temporal changes in mosquito abundance (Culex pипiens), avian malaria prevalence and lineage composition. Parasites & Vectors vol.6.pp:307.

[30] El Khereji, M. A.; Alahmed, A. M., and Kheir, S. M. 2007. Survey and Seasonal Activity of Adult Mosquitoes (Diptera: Culicidae) in Riyadh City, Saudi Arabia. Res. Bult., No. (152), Food Sci. & Agric. Res. Center, King Saud Univ., pp. (5-17)

[31] Sohn, S. R. 2008. Seasonal prevalence of the Culex pипiens group (Diptera: Culicidae) larvae occurring in a puddle in the basement of an apartment building. Entomological Research.vol. 37.no.2.pp:95 - 99

[32] Communicable Disease Centre. Annual reports of malaria in Iraq. Baghdad, Iraq. Ministry of Health, 1997–98.