Original Research Article

Anti-microbial susceptibility pattern of spores used in Bacillus clausii suspension: an in vitro study

A. Srinivas*

Department of Probiotics R and D, Virchow Biotech Pvt. Ltd, Medchal II, Qutubullapur, Gagillapur, Hyderabad, Telangana, India

Received: 18 February 2020
Accepted: 21 March 2020

*Correspondence:
Dr. A. Srinivas,
E-mail: srinivasarewar@gmail.com

ABSTRACT

Background: Bacillus species have been used as probiotics as they have high stability to gastrointestinal conditions and impart health benefit on the host. Primarily used in their spore form the diversity of Bacillus species being used and their applications are remarkable. Here, we present the results of the antimicrobial susceptibility testing of the B. clausii spore suspension (Benegut®).

Methods: Bacillus clausii spore suspension (Benegut®), used in oral bacteriotherapy was tested for the susceptibility to therapeutically useful antibiotics. Twelve commercially prepared, paper antibiotic discs of different drugs having fixed concentrations were used. The antimicrobial susceptibility test was performed by the disc diffusion technique, using soybean casein digestive agar (SCDA) as media and the results were categorized as susceptible, intermediate, or resistant; using the criteria published by the Clinical and Laboratory Standards Institute.

Results: B. clausii was found to be resistant to broad-spectrum antibiotic chloramphenicol, antimycobacterial rifampicin, beta-lactamase inhibitor amoxiclav, first-generation antibiotic cefaloridine, penicillin ampicillin, and tetracycline. B. clausii was resistant to both the aminoglycoside antibiotics (streptomycin and kanamycin) studied. Off first-generation fluoroquinolones studied, B. clausii was resistant to ciprofloxacin but partially sensitive to norfloxacin, ofloxacin and to macrolide azithromycin.

Conclusions: Antimicrobial resistance is an important feature of probiotics. The results of our study indicate that the antimicrobial and immunomodulatory activity B. clausii spore suspension (Benegut®) can profess beneficial effects and can be a useful source of improving the intestinal imbalance of microbial flora and is safe for human consumption.

Keywords: B. clausii, Probiotics, Resistance, Susceptibility

INTRODUCTION

Probiotics are live microorganisms which when administered in adequate quantities confer health benefits to the host. Microorganisms have applications in every area of human life and have been explored for human benefits in the food and pharmaceutical industry. In pharmaceutical industries various antibiotics and vaccines are produced from fungi, viruses and bacteria. Food and beverage industries also use microbes such as lactobacillus, Saccharomyces cerevisiae and Propionibacterium sharmanii for manufacturing processed foods and drinks. The potential benefits of probiotics include improved nutrition and growth and prevention of various gastrointestinal disorders. Probiotics can also be used as an adjunct to antibiotic therapy, as the microorganisms present in them are resistant to antibiotics and therefore prevent the intestinal microbial flora imbalance.

However, the use of probiotics for health benefits is giving rise to concerns regarding resistance transfer from the probiotic microorganisms to the disease-causing pathogenic bacteria. The antimicrobial resistance to
antibiotics can be classified as intrinsic which is non-transferrable and acquired resistance which is transferrable. The resistance transfer, acquired in nature, can take place either by a mutation in a gene or by the acquisition of foreign DNA through horizontal gene transfer which includes transduction, transformation, and conjugation.

The most common group of bacteria used as probiotics belongs to the group of lactic acid bacteria, which involves *Lactobacillus* and *Enterococcus*. Due to horizontal gene transfer, concerns are still raised, particularly in lactic acid bacteria strains that carry mobile genetic elements such as plasmids. *Enterococcus*, on the other hand, has member strains that are opportunistic pathogens and are sometimes the etiologic agents of some human nosocomial infections, such as bacteremia and infective endocarditis. Therefore, bacterial spore formers, mostly of the genus *Bacillus* which is a gram-positive species constitute a major probiotic product in use today. Primarily used in their spore form, these products have been shown to prevent gastrointestinal disorders, also the diversity of *Bacillus* species being used and their applications are astonishing.

It has been suggested that the spore-bearing bacilli have some potential advantages over other non-spore formers such as *Lactobacillus* spp. *Bacillus* spores are heat-stable, capable of surviving the low pH of the gastric barrier, additionally products made on them can be stored at room temperature without any deleterious effect on viability.

Benegut® is a *Bacillus clausii* spore suspension, used in the treatment of alterations in the intestinal microbial flora. In this article, we present the results of the antimicrobial susceptibility testing of the *B. clausii* using Soybean Casein Digestive Agar (SCDA).

METHODS

The antimicrobial susceptibility test was performed by the disc diffusion technique to assess the susceptibility of the strains of *B. clausii* against the antibiotics.

Table 1: Composition of soybean casein digestive agar.

Chemicals	%
Tryptone	1.7
Peptone	0.5
NaCl	0.5
Agar	2
pH - 8.0±0.2	

The advantages of the disk method are simplicity of testing not requiring any special equipment, flexibility in the selection of disks for testing and the results that can be easily interpreted by the clinicians. The media used for the antimicrobial susceptibility testing of *B. clausii* was SCDA. The composition of this media is mentioned in Table 1. One hundred mL of enriched broth of soybean casein digestive medium (SCDM) was prepared (Table 2) and one vial of *B. clausii* spore suspension (Benegut®) was inoculated on it. After that 500µL of this prepared media was spread on the SCDA in aseptic conditions and the broth was incubated at 37°C±2°C for 18-24 hrs.

Table 2: Composition of soybean casein digestive medium.

Chemicals	%
Tryptone	1.7
Soya peptone	0.3
Sodium Chloride	0.5
Dextrose	0.25
Dipotassium hydrogen phosphate	0.25
pH - 7.3±0.2	

Table 3: Antibiotic discs and their concentration.

Antibiotic name	Disc concentration	Disc source
Streptomycin	10 mcg	HiMedia
Chloramphenicol	10 mcg	HiMedia
Tetracycline	30 mcg	HiMedia
Rifampicin	30 mcg	HiMedia
Azithromycin	15 mcg	HiMedia
Amoxyclyav	30 mcg	HiMedia
Cefaloridine	10 mcg	HiMedia
Ciprofloxacin	5 mcg	HiMedia
Norfloxacin	10 mcg	HiMedia
Ofloxacin	2 mcg	HiMedia
Ampicillin	10 mcg	HiMedia
Kanamycin	30 mcg	HiMedia

Table 3 contains the concentration and source of the antibiotic discs used. Twelve commercially prepared, paper antibiotic discs of different drugs having fixed concentrations were placed in the middle of the culture inoculated agar plates. These agar plates were incubated at 37±2°C for 24 to 48 hours and observed. The zones of growth inhibition around each antibiotic disks were measured to the nearest millimeter. The diameter of the zone gives the measure of the susceptibility of the isolate and the amount of drug diffused through the agar medium. The zone diameters of each drug are interpreted around antibiotic disc was regarded as negative.
RESULTS

The antimicrobial susceptibility of B. clausii spore suspension (Benegut®) to antibiotics was accessed by the disc diffusion technique and the results were categorized as susceptible, intermediate or resistant. A bacterial strain is said to be susceptible to a given antibiotic when it is inhibited in vitro by the antibiotic in therapeutic dose range; intermediate if it is inhibited by a concentration that is associated with an uncertain therapeutic effect and resistant when it is inhibited by a concentration that is associated with a high likelihood of therapeutic failure.11 B. clausii was found to be resistant to broad-spectrum antibiotic chloramphenicol, antimycobacterial rifampicin, beta-lactamase inhibitor amoxiclav, first-generation antibiotic cefaloridine, penicillin ampicillin, and tetracycline. B. clausii was resistant to both the aminoglycoside antibiotics (streptomycin and kanamycin) studied. Off first-generation fluoroquinolones studied, B. clausii was resistant to ciprofloxacin but partially sensitive to norfloxacin, ofloxacin and to macrolide azithromycin. The test results are summarized in Table 4. Positive and medium control was also maintained and growth was observed in positive control and not in medium control.

Table 4: Results of the antibiotic susceptibility test.

Name of the Antibiotic	Benegut® Resistance	Sensitivity
Streptomycin	✓	X
Chloramphenicol	✓	X
Tetracycline	✓	X
Rifampicin	✓	X
Azithromycin	Partially resistant	Partially sensitive
Amoxiclav	✓	X
Cefaloridine	✓	X
Ciprofloxacin	✓	X
Norfloxacin	Partially resistant	Partially sensitive
Ofloxacin	Partially resistant	Partially sensitive
Ampicillin	✓	X
Kanamycin	✓	X
Positive control	Growth was observed	
Medium control	No growth was observed	
LAFU control	No growth was observed	

✓=Resistant
X=Zone of inhibition more than 1.0 cm
Partially resistant= Zone of inhibition less than 1.0 cm

DISCUSSION

Commercially available probiotics contain microorganisms with antibiotic resistance, due to which they are used in association with antibiotic therapies in order to prevent microbial flora imbalance.12 Therefore, it is necessary to access the pattern and stability of resistance spectra in probiotics, in order to better manage the advantage of antibiotic-resistant probiotics during antibiotic therapy.5 Antibiotic resistance is a common phenomenon in gram-positive bacteria.13 It is accomplished by genes acquired either horizontally through plasmids, or foreign DNA recombination, or mutations at different chromosomal loci in the bacterial genome.13

Members of the genus Bacillus are aerobic or facultative aerobic, endospore-forming and rod-shaped gram-positive bacteria, which inhabit a wide range of habitats, mostly soil, and sediments.12 These bacteria do not belong to the commensal microbiota of the gastrointestinal tract, but some strains of the genus are included in food supplements and used in human nutrition as probiotics, notably B. clausii.12

The B. clausii probiotic strains are resistant to clinically important antibiotics, including macrolides and aminoglycosides.14,15 Resistance to aminoglycosides is reported to be due to the synthesis of an aminoglycoside-inactivating enzyme encoded by an aadD2 chromosomal gene, and to macrolides due to the presence of an erm(34) gene.14 The resistance of B. clausii to rifampicin is reported to be due to a chromosomal mutation.7 A study by Galopin et al, showed that the resistance to chloramphenicol in probiotic containing B. clausii was due to the production of CAT encoded by the catBcl gene.16 There are domains found in B. clausii which confer resistance to different drugs, such as streptomycin (Psam) and tetracycline.13 Moreover, all the Bacillus probiotics contain different classes of beta-lactamases rendering them resistant to penicillins such as ampicillin and amoxiclav.15 These findings are consistent with the fact that the genes found in B. clausii have not been detected in pathogenic bacteria despite the long term use.7

The present study evaluated the antibiotic susceptibility profile of B. clausii spore suspension (Benegut®). The antimicrobial susceptibility test of B. clausii spore suspension (Benegut®) was performed against 12 antibiotics using the disc diffusion technique. In this study, we found that the Benegut® was resistant to streptomycin, chloramphenicol, tetracycline, rifampicin, amoxiclav, cefaloridine, ciprofloxacin, ampicillin, and kanamycin; partially resistant to azithromycin, norfloxacin, ofloxacin. In the case of positive and medium controls, growth was observed in positive control and not in medium control.

A couple of studies have reported similar susceptibility of B. clausii to antibiotics as reported in our study. A study conducted by Gueimonde et al, accessing the antibiotic resistance patterns of the Lactobacillus and Bacillus strains, also showed that the strains of Bacillus had genes resistant to macrolides, tetracycline, aminoglycosides, chloramphenicol, and beta-lactamases.12 Another study testing Enterocermin (containing four strains of Bacillus
species [O/C, N/R, T, and SIN]) found that different strains had varied susceptibility towards different antibiotics. O/C strain was found to be resistant to chloramphenicol, N/R was resistant to rifampicin, T showed resistance towards tetracycline and SIN showed resistance to streptomycin.17

Guemonde et al. examined five commercial preparations of Bacillus strains by disc diffusion technique.12 The authors reported that B. subtilis had a basal level of resistance to streptomycin. Among the five probiotics examined, Bactisubtil was resistant to both chloramphenicol and tetracycline, Dounvar, which is closely related to Enterogermina was found to be resistant to chloramphenicol.13 According to another study testing probiotics containing Bacillus strains, all the strains of Bacillus were resistant to streptomycin but susceptible to chloramphenicol, kanamycin, and tetracycline.14 The B. clausii strain (ATCC 9799) was reported to be resistant to cephalosporins in the study by Hong et al, and Girlich et al, and sensitive in a study by Abbrescia et al.3,6,14 In this study out of three fluoroquinolones (ciprofloxacin, norfloxacin, and ofloxacin) tested, B. clausii probiotic strains were reported to be resistant to ciprofloxacin but partially resistant to norfloxacin and ofloxacin. However, in a study by Abbrescia et al., B. strains were reported to be sensitive to fluoroquinolones (ciprofloxacin, levofloxacin, norfloxacin, and moxifloxacin).9

In the era of antibiotics, probiotic use is increasingly employed in association with antibiotics therapy for preserving the intestinal microbial flora, owing to antimicrobial resistance.6 Antimicrobial resistance is a desirable feature in probiotics. Although, microbes used as probiotics are not exempted from the natural processes governing antibiotic resistance.20

Therefore, it is imperative to screen microbes effectively for antibiotic resistance genes before using them as probiotics.20 Extensive research has been conducted on the antimicrobial resistance patterns of probiotic strains and it was found that probiotic strains possess both acquired and intrinsic resistance.3,12,20

B. clausii, probiotic in the spore form appears to have an important role to play management of acute diarrhea and recurrent respiratory infections in children, with a good safety profile.21,22 A systematic review and a meta-analysis of randomized controlled trials of B. clausii in acute childhood diarrhea by Ianiero et al, showed that the mean duration of diarrhea was reduced by 9.12 hours with B. clausii treatment, as compared to controls (p=0.015).21 The authors also reported that the administration of B. clausii preparations significantly reduced the duration of hospitalization by a mean of 0.85 days compared to controls (p = 0.017).21 This is important considering that in low-income countries, children under three years old experience on average three episodes of diarrhea every year.21,23 Marseglio et al, performed a pilot study to assess the efficacy and the safety of B. clausii in the prevention of recurrent respiratory infections in children.22 Results showed that B. clausii treatment was significantly effective (p=0.037) in reducing the duration of respiratory infections in children with recurrent disease. Moreover, the duration of respiratory infections episodes during the follow-up period was also significantly shortened (p=0.049).22

The use of probiotics in the treatment and prevention of disease, particularly gastrointestinal disease, has yielded many successful results.24 As regard to B. clausii, its professed beneficial effect has been credited to antimicrobial and immunomodulatory activity.25 Bacillus probiotics have an overall excellent health-promoting record, especially in preventing and curing of diarrhea, gingivitis, H. pylori infection and maintaining homeostasis of the intestine.26 B. clausii survives transit in the gut and maintains a considerable intestinal titre for up to 12 days after a single oral administration.25 B. clausii strains show different ability to survive and persist, suggesting a strain dependent adaptation to this environment.25 Analysis of the whole genome sequence of B. clausii has revealed that the antibiotic resistance genes are present in chromosomal DNA which is intrinsic and not transferable.27 Toxin genes were also found to be absent. These results suggest consumption of B. clausii is safe for humans.27

In conclusion, resistant traits found in B. clausii spore suspension (Benegut®) in our study were similar to those reported from other commercial preparations of Bacillus strains. Benegut® can be a useful source of improving the intestinal imbalance of microbial flora; and effective treatment of diarrhea and other intestinal malfunctions.

ACKNOWLEDGEMENTS

Authors would like to thank MIS team at medONE Pharma Solutions, Gurugram, Delhi NCR, for assistance in the preparation of this manuscript.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. Guidelines for the Evaluation of Probiotics in Food. Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food. 2002. [Cited December 30, 2019]. Available at: https://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf. Accessed on 30 December 2019.
2. Jozala AF, Gerales DC, Tundisi LL, Feitosa VA, Breyer CA, Cardoso SL, et al. Biopharmaceuticals
from microorganisms: from production to purification. Braz J Microbiol. 2016;47:51-63.
3. Doyle M.P., Steenson L.R, Meng J. Bacteria in Food and Beverage Production. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. (eds) The Prokaryotes; 2013:241-256.
4. Duc le H, Hong HA, Barbosa TM, Henrique AO, Cutting SM. Characterization of Bacillus Probiotics Available for Human Use. Appl Environ Microbiol. 2004;70:2161-71.
5. Hong HA, Duc le H, Cutting SM. The use of bacterial spore formers as probiotics. FEMS Microbiol Rev. 2005;29:813-35.
6. Abbrescia A, Palese LL, Papa S, Gaballo A, Alifano P, Sardanelli AM. Antibiotic Sensitivity of Bacillus clausii Strains in Commercial Preparation. Curr Med Chem. 2014;1:102-110.
7. Courvalin P. Antibiotic resistance: the pros and cons of probiotics. Dig Liver Dis. 2006;38(Suppl 2):S261-5.
8. Munita JM, Arias CA. Mechanisms of Antibiotic Resistance. Microbiol Spectr. 2016;4:1-4.
9. Imperial IC, Ibana JA. Addressing the Antibiotic Resistance Problem with Probiotics: Reducing the Risk of Its Double-Edged Sword Effect. Front Microbiol. 2016;7:1983.
10. Varankovich NV, Nickerson MT, Korber DR. Probiotic-based strategies for therapeutic and prophylactic use against multiple gastrointestinal diseases. Front Microbiol. 2015;6:685.
11. Rodloff A, Bauer T, Ewig S, Kujath P, Müller E. Susceptible, intermediate, and resistant - the intensity of antibiotic action. Dtsch Arztebl Int. 2008;105:657-62.
12. Gueimonde M, Sánchez B, de Los Reyes-Gavilán CG, Margolles A. Antibiotic resistance in probiotic bacteria. Front Microbiol. 2013;4:202.
13. Khatri I, Sharma G, Subramanian S. Composite genome sequence of Bacillus clausii, a probiotic commercially available as Enterogermina®, and insights into its probiotic properties. BMC Microbiol. 2019;19:307.
14. Bozdogan B, Galopin S, Gerbaud G, Courvalin P, Leclercq R. Chromosomal aadD2 encodes an aminoglycoside nucleotidyltransferase in Bacillus clausii. Antimicrob Agents Chemother. 2003;47:1343-6.
15. Mazza P, Zani F, Martelli P. Studies on the antibiotic resistance of Bacillus subtilis strains used in oral bacteriotherapy. Boll Chim Farm. 1992;131:401-8.
16. Galopin S, Cattoir V, Leclercq R. A chromosomal chloramphenicol acetyltransferase determinant from a probiotic strain of Bacillus clausii. FEMS Microbiol Lett. 2009;296:185-9.
17. Senesi S, Celandroni F, Tavanti A, Ghelardi E. Molecular Characterization and Identification of Bacillus clausii strains marketed for use in oral bacteriotherapy. Appl Environ Microbiol. 2001;67:834-9.
18. Zheng M, Zhang R, Tian X, Zhou X, Pan X, Wong A. Assessing the Risk of Probiotic Dietary Supplements in the Context of Antibiotic Resistance. Front Microbiol. 2017;8:908.
19. Girlich D, Leclercq R, Naas T, Nordmann P. Molecular and biochemical characterization of the chromosome-encoded class A beta-lactamase BCL-1 from Bacillus clausii. Antimicrob Agents Chemother. 2007;51:4009-14.
20. Imperial IC, Ibana JA. Addressing the Antibiotic Resistance Problem with Probiotics: Reducing the Risk of Its Double-Edged Sword Effect. Front Microbiol. 2016;7:1983.
21. Ianiro G, Rizzatti G, Plomer M, Lopetuso L, Scaldafferri F, Franceschi F, et al. Bacillus clausii for the Treatment of Acute Diarrhea in Children: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2018;10. pii: E1074.
22. Marseglia GL, Tosca M, Cirillo I, Licari A, Leone M, Marseglia A, et al. Efficacy of Bacillus clausii spores in the prevention of recurrent respiratory infections in children: a pilot study. Ther Clin Risk Manag. 2007;3:13-7.
23. World Health Organization (WHO) Diarrhoeal Disease: Fact Sheet. Available at: http://www.who.int/mediacentre/factsheets/fs330/en/. Accessed on 10 February 2020.
24. Culligan EP, Hill C, Sleator RD. Probiotics and gastrointestinal disease: successes, problems and future prospects. Gut Pathog. 2009;1:19
25. Ghelardi E, Celandroni F, Salvetti S, Gueye SA, Lupetti A, Senesi S. Survival and persistence of Bacillus clausii in the human gastrointestinal tract following oral administration as spore-based probiotic formulation. J Appl Microbiol. 2015;119:552-9.
26. Elshaghabee FMF, Rokana N, Gulhane RD, Sharma C, Panwar H. Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives. Front Microbiol. 2017;8:1490.
27. Lakshmi SG, Jayanthi N, Saravanan M, Ratna MS. Safety assessment of Bacillus clausii UBBC07, a spore forming probiotic. Toxicol Rep. 2017;4:62-71.