SHORT COMMUNICATION

The contribution of Chlamydia-specific CD8+ T cells to upper genital tract pathology

Kelly R Vlcek1,2,5, Weidang Li1,5, Srikanth Manam1, Brian Zanotti3, Bruce J Nicholson4, Kyle H Ramsey3 and Ashlesh K Murthy1

Genital chlamydial infections lead to severe upper reproductive tract pathology in a subset of untreated women. We demonstrated previously that tumor necrosis factor (TNF)-α-producing CD8+ T cells contribute significantly to chlamydial upper genital tract pathology in female mice. In addition, we observed that minimal chlamydial oviduct pathology develops in OT-1 transgenic (OT-1) mice, wherein the CD8+ T-cell repertoire is restricted to recognition of the ovalbumin peptide Ova257–264, suggesting that non-Chlamydia-specific CD8+ T cells may not be responsible for chlamydial pathogenesis. In the current study, we evaluated whether antigen-specific CD8+ T cells mediate chlamydial pathology. Groups of wild-type (WT) C57BL/6J, OT-1 mice, and OT-1 mice replete with WT CD8+ T cells (1 × 10⁶ cells per mouse intravenously) were infected intravaginally with C. muridarum (5 × 10⁴ IFU/mouse). Serum total anti-Chlamydia antibody and total splenic anti-Chlamydia interferon (IFN)-γ and TNF-α responses were comparable among the three groups of animals. However, Chlamydia-specific IFN-γ and TNF-α production from purified splenic CD8+ T cells of OT-1 mice was minimal, whereas responses in OT-1 mice replete with WT CD8+ T cells were comparable to those in WT animals. Vaginal chlamydial clearance was comparable between the three groups of mice. Importantly, the incidence and severity of oviduct and uterine horn pathology was significantly reduced in OT-1 mice but reverted to WT levels in OT-1 mice replete with WT CD8+ T cells. Collectively, these results demonstrate that Chlamydia-specific CD8+ T cells contribute significantly to upper genital tract pathology.

Immunology and Cell Biology (2016) 94, 208–212; doi:10.1038/icb.2015.74; published online 1 September 2015

Chlamydia trachomatis is the leading cause of sexually transmitted bacterial infection worldwide.1,2 Chlamydial infections in a subset of untreated women ascend to the upper reproductive tract and induce severe immunopathology in the uterus and fallopian tubes, including pelvic inflammatory disease, and complications such as ectopic pregnancy and infertility.3,4 Due to host tropism dictated by interferon (IFN)-γ evasion mechanisms, C. trachomatis does not productively infect and cause severe pathologies in mice.5 C. muridarum is a mouse pathogen that causes genital infection and reproductive tract pathology in mice, similar to the effects of C. trachomatis in humans.6,7

We demonstrated previously that tumor necrosis factor-α (TNF-α)-producing CD8+ T cells cause chlamydial upper genital tract (UGT) immunopathology,8 and that OT-1 mice wherein CD8+ T-cell repertoire is limited to recognition of the ovalbumin peptide Ova257–264 develop minimal UGT pathology,9 suggesting that CD8+ T cells that do not recognize chlamydial antigens do not contribute significantly to such pathology. However, it remained to be demonstrated that Chlamydia-specific CD8+ T cells cause the UGT pathology.

In the current study, we compared immune responses and UGT pathology in wild-type (WT) C57BL/6J mice, OT-1 mice and OT-1 mice replete with WT CD8+ T cells at the time of C. muridarum intravaginal infection.

RESULTS

Immune responses following genital C. muridarum infection

On day 4 after cellular injection, CD3+ CD8+ CFSE+ cells were enumerated in three OT-1 mice replete with WT CD8+ T cells and constituted 16.5 ± 1.5% of all CD3+ CD8+ T cells in the spleen, compared with none in control OT-1 mice (Figure 1a), confirming the success of adoptive transfer. Serum anti-Chlamydia total antibody responses were measured on day 40 in WT mice, OT-1 mice and OT-1 mice replete with WT CD8+ T cells infected with 5 × 10⁴ inclusion-forming units (IFU) of C. muridarum and were found to be comparable between the groups of mice (Figure 1b). The splenic total cellular IFN-γ and TNF-α production in response to in vitro C. muridarum stimulation also were comparable among the three groups of mice (Figure 1c).

We then evaluated Chlamydia-specific cytokine response from enriched splenic CD8+ T cells from the three groups of mice. The production of Chlamydia-specific IFN-γ and TNF-α from WT CD8+ T cells was significantly higher compared with the minimal amounts

1Department of Pathology, Midwestern University, Downers Grove, IL, USA; 2Department of Biomedical Sciences, Midwestern University, Downers Grove, IL, USA; 3Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, USA and 4Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA

5These authors contributed equally to this work.

Correspondence: Dr AK Murthy, Department of Pathology, Midwestern University, 555, 31st Street, Downers Grove, IL 60515, USA.

E-mail: amurthy@midwestern.edu

Received 12 June 2015; revised 10 July 2015; accepted 11 July 2015; published online 1 September 2015
Produced by OT-1 CD8+ T cells (Figure 2). Importantly, CD8+ T cells from OT-1 mice replete with WT CD8+ T cells produced comparable levels of IFN-γ and TNF-α to WT cells, demonstrating the restoration of the ability of these mice to respond to chlamydial infection via CD8+ T cells in an antigen-specific fashion. The ability of OT-1 CD8+ T cells to produce IFN-γ and TNF-α was confirmed by in vitro stimulation with Ova257–264 peptide of enriched CD8+ T cells from ovalbumin-immunized animals (data not shown). Collectively, these

Figure 1 Immune responses in OT-1 mice replete with WT CD8+ T cells. (a) A group (n=3) of OT-1 mice were replete with CFSE-labeled CD8+ T cells on day 0 and killed on day 4 to evaluate the frequency of CD3+ CD8+ CFSE+ cells in the spleen. A representative histogram is shown with a mouse in this group to an OT-1 mouse control. Results are representative of two independent experiments. (b) Groups (n=10–12) of mice (WT mice (n=12), OT-1 mice (n=12) and OT-1 mice replete with CD8+ T cells (n=10)) were pre-treated (5 days prior to infection) with Depo-provera, and challenged (on day 0) with 5×10^4 IFU of C. muridarum. Mice were bled on day 40 and serum anti-chlamydial total antibody levels determined. Mean±s.e.m. of the reciprocal antibody titer corresponding to 50% maximal binding is shown. Results pooled from two independent experiments is shown. (c) Groups (n=4) of mice (WT mice, OT-1 mice and OT-1 mice replete with C. muridarum -infected antigen-presenting cells. Mean±s.e.m. of the cytokine levels in each group is shown. Results are representative of two independent experiments.
results demonstrate that serum antibody response and total splenic cytokine responses were comparable between WT and OT-1 mice, suggesting that a general deficiency of immune response does not explain reduced UGT pathology in OT-1 mice as reported by us previously. However, CD8+ T cells from only WT, not OT-1, mice respond to C. muridarum infection in an antigen-specific fashion. Moreover, OT-1 mice replete with WT CD8+ T cells could mount Chlamydia-specific CD8+ T-cell cytokine response to a level comparable to WT animals.

Vaginal bacterial clearance and UGT pathology following genital C. muridarum infection

Groups of WT mice, OT-1 mice and OT-1 mice replete with WT CD8+ T cells were infected with 5×10^4 IFU of C. muridarum. WT mice shed high numbers of bacteria at early time periods and displayed a progressive reduction in vaginal chlamydial shedding with complete clearance by day 33 after primary chlamydial inoculation (Figure 3). The kinetics of vaginal bacterial shedding and resolution of infection in OT-1 mice and OT-1 mice replete with WT CD8+ T cells was comparable to that in WT mice. These results suggest that antigen-specific CD8+ T cells are not required for clearance of primary intravaginal C. muridarum infection and agrees with similar previous findings from our lab and others.8-10

Oviduct and uterine horn pathology following genital C. muridarum infection

The development of hydrosalpinx (fluid-filled oviduct dilatation), a characteristic marker of reproductive tract pathological sequelae, and uterine horn dilatation was evaluated at day 80 following primary genital chlamydial inoculation in the three groups of mice. OT-1 mice displayed significant reduction in the incidence of both oviduct and uterine horn dilatation when compared with WT mice (Figures 4a and b). Importantly, OT-1 mice replete with WT CD8+ T cells displayed a significant increase in the incidence of both oviduct and uterine horn dilatation when compared with WT and OT-1 mice, and to a level comparable to that in WT mice (Figures 4a and b). Furthermore, there was a significant reduction in the severity of oviduct and uterine horn dilatation as represented by the size of dilatation in OT-1 mice compared with WT animals, whereas OT-1 mice replete with WT CD8+ T cells displayed comparable severity of oviduct and uterine dilatation to WT animals (Figures 4c and d, respectively). Collectively, these results demonstrate that WT CD8+ T cells that are capable of mounting Chlamydia-specific cytokine responses can restore UGT pathology in OT-1 mice to a level found in WT animals.

DISCUSSION

We demonstrated previously that TNF-α-producing CD8+ T cells contribute significantly to Chlamydia-induced UGT pathology.8 In addition, we had reported that OT-1 mice display minimal chlamydial UGT pathology,9 suggesting that CD8+ T cells that do not recognize chlamydial antigens do not contribute significantly to such pathologies. In this study, we provide compelling evidence that antigen-specific CD8+ T cells respond to chlamydial infection and cause much of the UGT pathology following primary genital C. muridarum infection.

This study is the first to demonstrate the antigen specificity of CD8+ T cells that mediate pathological sequelae following primary genital chlamydial infection. These results confirm and extend previous evidence on the pathogenic role of CD8+ T cells in different models including the mouse model of C. muridarum infection, salpingitis in nonhuman primates and trachoma in human individuals.8-9,11-14 These previous studies had not specifically addressed whether pathologies were mediated by antigen-specific CD8+ T cells. The results of the current study have important implications in the context of anti-chlamydial vaccine development. Vaccination regimens can elicit various adaptive immune responses including antigen-specific CD8+ T-cell responses and any anti-Chlamydia vaccination protocol or composition should avoid untoward responses.15 Conversely, several studies have demonstrated a protective role for CD8+ T cells in chlamydial infections. Specifically, certain CD8+ T-cell clones expressing high levels of IFN-γ have been shown to be important in genital chlamydial clearance,16 and a CXCR5+ regulatory CD8+ T-cell subset has been implicated in reduction of oviduct pathology following C. muridarum infection.17 More recently, CD8+ T cells primed in the respiratory tract, not in the genital tract, were shown to mediate protective responses.18 In addition, CD8+ T cells primed with plasmid-deficient chlamydial organisms were shown to be important in resistance against ocular infectious challenge using virulent strains of C. trachomatis.19 Therefore, various factors including, but not limited to specific phenotypic subsets, inductive sites, sites of infection and multiple infections appear to affect protective versus pathological outcomes mediated by Chlamydia-specific CD8+ T cells.

In summary, the role of CD8+ T cells in genital chlamydial infections continues to be elaborated, and this study provides an important and compelling addition to the existing body of evidence. Given the significant interest in development of an anti-Chlamydia vaccine, future studies need to focus on teasing out the specific nature and mechanisms of pathogenesis and protective immunity mediated by Chlamydia-specific CD8+ T cells.

METHODS

C. muridarum and mice

C. muridarum Nigg (C. muridarum) strain was grown in HeLa 229 cells, and elementary bodies were obtained as described previously.20,21 Ultraviolet-inactivated organisms were generated by subjecting gradient-purified chlamydial elementary bodies to 30 min of ultraviolet irradiation. Female 4-6-week-old C57BL/6J WT mice and OT-1 mice were purchased from the Jackson Laboratory (Bar Harbor, ME, USA), and bred and maintained at...
Mice replete with CD8+ T cells (antibody, as described previously.21 Reciprocal serum dilution corresponding to the mouse groups. Food and water were supplied ad libitum and housed in different experimental groups. Personnel were not blinded to the Institutional Animal Care and Use Committee at Midwestern University. No specific randomization protocol was followed to place animals in different experimental groups. Personnel were not blinded to the Institutional Animal Care and Use Committee at Midwestern University.

Enrichment of CD8+ T cells from splenocytes and adoptive transfer

Spleens were collected from naive donor mice after euthanasia, and CD8+ T cells were enriched using magnetic beads (Easysep, Stemcell Technologies, Vancouver, BC, Canada) as described previously.21 The enriched (>95%) cells were injected intravenously (1 × 106 cells per mouse) into recipient mice in 100 μl sterile 1 × PBS 2 h after intravaginal infection with C. muridarum. Some mice that received carboxy-fluoro-succinimidyl ester (CFSE)-labeled CD8+ T cells were killed on day 4 and splenic CD3+ CD8+ CFSE+ cells were enumerated using flow cytometry to confirm successful transfer.

Evaluation of serum antibody and cellular cytokine responses

Groups (n = 10–12) of mice (WT mice (n = 12), OT-1 mice (n = 12) and OT-1 mice replete with CD8+ T cells (n = 10)) were pre-treated (5 days prior to infection) with Depo-provera, and challenged (on day 0) with 5 × 104 IFU of C. muridarum. (a–d) On day 80, oviduct and uterine horn pathology was evaluated. The percentage and the number of pathological and normal tissues in the oviduct (a) and uterus horns (b) is shown. *, Significant (𝑃 ≤ 0.05, Fisher’s exact test) difference in the incidence of histopathological changes in the group of OT-1 mice compared with wild-type mice or OT-1 mice replete with WT CD8+ T cells. The macroscopic oviduct diameter (c) and uterine horn diameter (d) were measured. Each individual marker represents one oviduct or uterine horn, and the mean ± S.E.M. of oviduct/uterine horn diameter is also shown. The horizontal line at 0.5 and 1 mm depicts the distinction between normal and dilated oviducts and uterine horns, respectively. *, Significant (𝑃 ≤ 0.05, one-way analysis of variance with Dunn’s test for multiple group comparisons) difference in severity of dilatation between OT-1 mice and wild-type mice, and between OT-1 mice and OT-1 mice replete with WT CD8+ T cells. Results pooled from two independent experiments are shown.
20-mega-pixel Panasonic ZS20 camera (Chesapeake, VA, USA). Dilated oviducts measuring >0.5 mm in diameter were used as an indicator of hydrosalpinx. When multiple oviduct loops were present, the one with the greatest diameter was reported. For uterine horns, the greatest cross-sectional diameter of each 3-mm longitudinal section of an individual uterine horn was measured and the average per uterine horn was used to calculate the mean per group of mice. The baseline normal mouse oviduct diameter was determined to be up to 0.5 mm and normal uterine horn diameter to be up to 1 mm by prior analysis of a group of age-matched naive mice.

Statistical analyses

The number of animals per group for various experiments was determined based on our previous studies. Sigma Stat (Systat Software Inc., San Jose, CA, USA) was used to perform all tests of significance. One-way analysis of variance (Systat, CA, USA) was used for all comparisons. For multiple group comparisons, Holm–Sidak method in Figure 2 and Dunn’s method Figure 4 was also used. The variance between groups compared statistically significant was similar. The differences in incidence of oviduct pathology were compared between two groups at a time using Fisher’s exact test. Differences were considered statistically significant if P-values were <0.05. All experiments were repeated at least twice, and each experiment was analyzed independently, with the exception of the serum antibody levels, vaginal Chlamydia shedding and UGT pathology results wherein results from two experiments were pooled and analyzed.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This work was supported by Midwestern University College of Health Sciences Master’s thesis funds to KR and National Institutes of Health grant 1R15AI101920, American Heart Association Midwest Affiliate grant 13SDG17310011 and Midwestern University Faculty Startup Grant to AKM. We thank Mr Ryan Incrocci and Mr William Kay for technical assistance.

1. Lewis DA, Latif AS, Ndowa F. WHO global strategy for the prevention and control of sexually transmitted infections: time for action. *Sex Transm Infect* 2007; 83: 508–509.

2. Beland R, Ojcius DM, Byrne GI. *Chlamydia Nat Rev Microbiol* 2004; 2: 530–531.

3. Westrom L, Joesoef R, Reynolds G, Hagdú A, Thompson SE. Pelvic inflammatory disease and fertility. A cohort study of 1,844 women with laparoscopically verified disease and 657 control women with normal laparoscopic results. *Sex Transm Dis* 1992; 19: 185–192.

4. Westrom L, Mardh PA. Chlamydia salpingitis. *Br Med Bull* 1983; 39: 145–150.

5. Nelson DE, Vink DP, Wood H, Roshick C, Johnson RM, Whitmire WM et al. Chlamydia IFN-gamma immune evasion is linked to host infection tropism. *Proc Natl Acad Sci USA* 2005; 102: 10658–10663.

6. Rank RG. Animal models for urogenital infections. *Methods Enzymol* 1994; 235: 83–93.

7. Morrison RP, Caldwell HD. Immunity to murine chlamydial genital infection. *Infect Immun* 2002; 70: 2741–2751.

8. Murthy AK, Li W, Chaganty BK, Kamalakaran S, Guentzel MN, Seshu J et al. Tumor necrosis factor alpha production from CD8⁺ T cells mediates oviduct pathological sequelae following primary genital *Chlamydia muridarum* infection. *Infect Immun* 2011; 79: 2928–2935.

9. Manam S, Nicholson BJ, Murthy AK. OT-1 mice display minimal upper genital tract pathology following primary intravaginal *Chlamydia muridarum* infection. *Pathog Dis* 2013; 67: 221–224.

10. Morrison SG, Su H, Caldwell HD, Morrison RP. Immunity to murine *Chlamydia trachomatis* genital tract reinfection involves B cells and CD4⁺ T cells but not CD8⁺ T cells. *Infect Immun* 2000; 68: 6979–6987.

11. Igietseme JU, He Q, Joseph K, Eko FO, Lyn D, Ananaba G et al. Role of T lymphocytes in the pathogenesis of *Chlamydia* disease. *J Infect Dis* 2009; 200: 926–934.

12. Kimani J, Maclean IW, Bwayo JJ, MacDonald K, Oyugi J, Maitha GM et al. Risk factors for *Chlamydia trachomatis* pelvic inflammatory disease among sex workers in Nairobi, Kenya. *J Infect Dis* 1996; 173: 1437–1444.

13. Van Voorhis WC, Barrett LK, Sweeney YT, Kuo CC, Patton DL. Repeated *Chlamydia trachomatis* infection of Macaca nemestrina fallopian tubes produces a Th1-like cytokine response associated with fibrosis and scarring. *Infect Immun* 1997; 65: 2175–2182.

14. Van Voorhis WC, Barrett LK, Sweeney YT, Kuo CC, Patton DL. Analysis of lymphocyte phenotype and cytokine activity in the inflammatory infiltrates of the upper genital tract of female macaques infected with *Chlamydia trachomatis*. *J Infect Dis* 1996; 174: 647–650.

15. Murthy AK, Arulanandam BP, Zhong G. *Chlamydia* Vaccine: Progress and Challenges. (ASM Press, Washington, DC, USA) 2012: 311–333.

16. Igietseme JU, Magee DM, Williams DM, Rank RG. Role for CD8⁺ T cells in antichlamydial immunity defined by *Chlamydia*-specific T-lymphocyte clones. *Infect Immun* 1994; 62: 5195–5197.

17. Jiang J, Champion CE, Wei B, Liu G, Kelly KA. CD8⁺CXCR5⁺ T cells regulate pathology in the genital tract. *Infect Dis Obstet Gynecol* 2013; 2013: 813238–813245.

18. Nogueira CV, Zhang X, Giovannone N, Sennott EL, Starnbach MN. Protective immunity against *Chlamydia trachomatis* can engage both CD4⁺ and CD8⁺ T cells and bridge the respiratory and genital mucosae. *J Immunol* 2015; 194: 2319–2329.

19. Oliveira-Zavaleta N, Whitmire WM, Kari L, Sturdevant GL, Caldwell HD. CD8⁺ T cells define an unexpected role in live-attenuated vaccine protective immunity against *Chlamydia trachomatis* infection in macaques. *J Immunol* 2014; 192: 4648–4654.

20. Murthy AK, Chambers JP, Meier PA, Zhong G, Arulanandam BP. Intranasal vaccination with a secreted chlamydial protein enhances resolution of genital *Chlamydia muridarum* infection, protects against oviduct pathology, and is highly dependent upon endogenous gamma interferon production. *Infect Immun* 2007; 75: 666–676.

21. Manam S, Thomas JD, Li W, Maladore A, Schripsema JH, Ramsey KH et al. Tumor necrosis factor (TNF) receptor superfamily member 1b on CD8⁺ T cells and TNF receptor superfamily member 1a on non-CD8⁺ T cells contribute significantly to upper genital tract pathology following chlamydial infection. *J Infect Dis* 2015; 211: 2014–2022.

22. Cong Y, Jupelli M, Guentzel MN, Zhong G, Murthy AK, Arulanandam BP. Intranasal immunization with chlamydial protease-like activity factor and CpG deoxynucleotides enhances protective immunity against genital *Chlamydia muridarum* infection. *Vaccine* 2007; 25: 3773–3780.

23. Manam S, Chaganty BK, Evans SJ, Zaffaratos MT, Ramasubramanian AK, Arulanandam BP et al. Intranasal vaccination with *Chlamydia pneumoniae* induces cross-species immunity against genital *Chlamydia muridarum* challenge in mice. *PLoS One* 2013; 8: e64917.