Oil and fatty profile on the film from the Pistacia Region of Collo

Boudiaf Nassima¹, Djelloul Messadi², Patrice Bourson³, Mizi Abdelkader⁴, Baccouche Mostefa⁵,*

¹²⁵Laboratoire Metallurgie et Proprietes Physiques des Materiaux (LM2PM), Faulty of Pharmacy (LM2PM) Université Badji Mokhtar Campus Sidi Amar, Algeria. ³Laboratoire LMPOS University Of Lorraine METZ, France

*Corresponding Author:
Email: boudiafmn@yahoo.Fr

Abstract
The objective of this study is the determination of the analytical parameters and the fatty acid composition of the film from pistacia lentiscus, the extraction was carried out by soxhlet using an apolar solvent which is hexane, the chemical composition of fatty acids was performed by chromatography alone and coupled to mass spectroscopy (CGC, GC/MS) this study identified 7 constituents representing 86.81% the compounds the major compounds are palmitic acid 28.15%, oleic 26.56% and linoleic 24.57%.

Keyword: Pistacia, Extraction, oil, Fatty acids, CG/MS.

Introduction
The lentiscus pistachio is a shrub of size ranging from 2m to 6m which spreads throughout the Algerian land with a high density in the forest areas and also in the fresh countryside and belongs to the family of anacardiaceae.¹ Its fruits have a spherical flattened shape of small dwarf at the beginning its color is green then turns to the black color, this fruit is covered by a soft zest then comes a hard layer containing a pulp of good taste and an embalmed odor (IRN BITAR).

In the literature several works have been done on the oil extracted from the mesocarp and epicarp mixture of the wall fruit proving that it contains saturated and unsaturated fatty acids.²³

Bibliographic investigations hâve shown no study has been done on the determination of the parameters and fatty acids of the epicarp. We were interested in this work which consists of an extraction, isolation and identification by chromatography coupled to mass spectroscopy.

Materials and Methods
The conditions for harvesting the fruit in the following table:

Table 1 : Recapulative of harvest conditions

Botanical name	Date of Harvest	Location	Stage of development	Vegetative
Pistacia	December 2016	Collo	Fruit Walls	Forêt

The harvested fruit is separated after peeling for two part mesocarp and epicarp film is the latter which will be the subject of our work in the following part of the film then dipped in liquid nitrogen for stabilization from the chemical point of view. cryogynation and primordial in the conservation of vegetable matter, it is crushed to obtain a powder which will be put in the freezer at -4 °C until analysis

Extraction of the oil: The fruit is dried in an oven at 80 ° C for 10H the oil obtained after 16H extraction with hexane in a continuous extractor soxhlet after removal of the solvent by evaporation in vacuo, recovers oil qi is yellow and a very strong scented odor and solidifies at room temperature.

Analysis of analytical parameters: the determination of main chemical characteristics is made according to standardized standard methods.⁴

Statistical Analysis
All the experiments underwent three repetitions using the analysis of the variance (ANOVA) the values were calculated by comparison of the averages.

Preparation of methyl esters of fatty acids: The method we used is the cold transesterification using a methanoidal sodium hydroxide solution, in a 10 ml screw tube are introduced 0.5 g of oil then 10 ml of heptane and The mixture is stirred and then 0.1 ml of 2N sodium methanoic is added, poured and stirred very hard and then decanted to recover the upper layer containing the methyl esters [the reaction was followed by IR to confirm the existence of band] at 1750cm⁻¹

GC analysis: The COG analyzes were carried out on AGITANTTECHNRLOGIE 6890 equipment equipped with a flame ionization detector FID) of an injector and a HP5 capillary column (30 x 0.32 mm, film thickness
0.25 µm) the carrier gas is helium, the temperature is 270 °C., the temperature program of the oven consists of an isothermal 80 °/min followed by a temperature lamp at 50 ° / min up to 310 ° / 2min, the injection is done by SPLILESS mode, the injected volume of 1ml.

Analysis by GPC-SMRH: The analyses were carried out on equipment AGITENT type TECHNOLOGY 6890 dote an automatic injector and a capillary column HPS [30Mfois 0.32 mm film thickness 0.25 microns] coupled to a mass spectroscopy:AUTOSPEC 610 the ionization mode is the electronic impact at 70W, the detection is done by HRMS analyzer [high resoultion mass spectrometry] of EBE type in the mass range from 50 to 800Da, the carrier gas is helium with a flow rate of 1ml / min, the programming of the temperature is identical to that used previously for detection by FID, the injection is done by the Splytiess mode the spectra obtained have been identified by comparison with the spectrum database ofknown NIST compounds [5].

Qualitative and quantitative analysis: For each of the compounds, the retention indices are calculated from the retention times of a standard range ofC8-C30 alkanes (KOVATS indices) analyzed in the mining conditions chroma graphies cited above the calculation of relative percentages of thèse compounds was performed on the chromatograms obtained by FID.

Results and Discussions

The results of our experiments on the determination of the analytical parameters are shown in Table 2.

Table 2 : Characterization of film and fat

Parameter	Value
Water content	24,50 ± 0,21
Fat extracted with hexane	68,50 ± 0,05
Cendre	2,70 ± 0,01
Protéine N x 6,25	10,50 ± 0,41

Mineral elements [mg / 100g of dry matter]

Element	Value
K	9,07
Fe	165
P	103,7
Ca	1,287
Zn**	22,9
Mn	30,50
Mg	3,201
Na*	86
Cu	11,4

* Indicates by emission of the flame
** refers to atomic absorption

Phosphorus was measured by ascorbic acid calorimetric method and 820nm ammonium

Table 3

Parameter	Value
Melting point	27.5 ± 0.1
Indice de réfraction	1.4 ± 0.2
Density	1.3 ±0.5
Standard Saponification Index (T60206)	191.90 ±0.5
Iodine value (wijs)	CT60206
Acid value (AOCS)	2.7 ±0.21
Unsaponifiable (hexane method)	3.14 ±0.15
Peroxide value (mmol/kg)	3.8 ±0.2
Lovibond color	Blue= 0.6
	Red=2.7
	Yellow = 80.7

The high value found for the content in eu lights us on its water richness which is higher compared to that of rapeseed (17.64%) and sunflower (19.77%) concerning the content of ash which is about 2.7% confirms that our sample does not contain toxic elements, the low protein content shows us that the amino acids they contain are very low, for the mineral elements there is no evidence of toxic elements since the ash rate is very low.

The high unsaponifiable content corresponds to an oil rather to be useful as an interesting raw material in cosmetics according to (OLLE 2002).

On average of three extractions the proportion of the oil present in the film is 68.50%.

The determination of the peroxide index and the acid number gives an image of the state of degradation of the oil. The low values of these two indices show that our sample has not undergone any oxidative and hydrolytic deterioration during storage. iodine and saponification indices indicate their preponderance of long chain C18 fatty acids with a higher rate of initiation. The value observed in the yellow of the color lovibon confirms our yellow color of the extraction, the observed value which is of the order of 80.7 confirme our color of the oil that is yellow of ours ample during our extraction.
Table 4 : composition in% of the fatty acids of the film

Components	Name	IK	RT	%
Palmitic acid	C16	1090	12.24	28.15
Palmitoleic acid	C161A9	1659	13.01	1.37
Oleic acid	C18A9	1290	18.88	26.56
Linoleic acid	C18A9.12	1120	20.86	24.57
Linoleic acid	C183A9.12	1510	23.05	5.99
Stearic acid	C18	1640	17.82	4.08
Cicric acid	C19	1014	5.61	4.08

The table shows the absence of the acid that is considered undesirable because of its pathological effect on the cardiac muscle. The value of the high rate of palmitic acid could open a way for use in the industry as an example, manufacture of biscuits indeed this oil is remarkable for its high content of acid linoleic acid sought for various industrial applications.

Conclusion

This botanical plant pistacia presented on the Algerian tell for essentially medicinal purposes constitutes in the light of these results a plant material quite interesting which one must depend the study through the qualitative and quantitative analysis of the important constituents of the unsaponifiable fraction this evaluation to corne soon in our newspaper.

References

1. Quezel, P et SANTAA (1963) nouvelle flore d’Algerie et des regions desertiques Ed CNRS pp 31-40. IBN BITAR les medicaments, explication du livre DIACIKO Maison du Magreb BEYROUT.
2. M LABRA, F. Grassi, M BARDINI plant science, 2003 pp 1129-36.
3. LECHERC H. 1994 precis de phytotherapie Ed Masson pp 257.
4. Recueil de normes Francaise des corps gras oleagincuses produits derives (1984) edt AFNOR.
5. ADAMS RP, 2001 identification of essentials composants by gas chromatography/quadripole mars spectroscopy USA pp 454.
6. OLLE, M 2002 Analyse des corps gras technique d’ingénieur pp 3325 – 1-15.
7. KRISHNA, MURTY, RAJA/AKSH MIS, Malika T et al (1983) journal of Food sciences pp 20-32.
8. BELLAKHDAR (1978) Medicine traditionnelle et toxicologie Ouest Sahariennes.
9. FLANDERSA, ABDELKARIM SM (1985) Journal AOCs Vol 62 n° 7 pp 1134–1136.
10. KALERKIND A (1982) Manuel des corps gras Vol 1 et 2 Lavosssier Ed, Paris ed Toc et doc.
11. LEGRAND P 2008 interet nutritionnel des principaux acides gras des Lipides Sciences des aliments, 28 34-43.
12. R.A FLATH, J.M TAKAHASKI Journal agioic Food chemistry 1978, 26, pp 834-8.
13. M.F RAMADAN, IT MORSEL Food chemistry 2000, 82 pp 209-27.