Dimethylammonium iodide stabilized bismuth halide perovskite photocatalyst for hydrogen evolution

He Zhao¹, Kalyani Chordiya²,³, Petri Leukkunen⁴, Alexey Popov⁵,¹, Mousumi Upadhyay Kahaly²,³, Krisztian Kordas⁶ (✉), and Satu Ojala¹

¹ Environmental and Chemical Engineering Research Unit, University of Oulu, P. O. Box 4300, FI-90014 Oulu, Finland
² ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics ter 13, 6720 Szeged, Hungary
³ Institute of Physics, University of Szeged, Döm tér 9, H-6720 Szeged, Hungary
⁴ Nano and Molecular Systems Research Unit, University of Oulu, P. O. Box 3000, FI-90014 Oulu, Finland
⁵ Optoelectronics and Measurement Techniques Unit, University of Oulu, FI-90570 Oulu, Finland
⁶ Microelectronics Research Unit, University of Oulu, P. O. Box 4500, FI-90014 Oulu, Finland

© The Author(s) 2020
Received: 24 August 2020 / Revised: 30 September 2020 / Accepted: 4 October 2020

ABSTRACT

Metal halide perovskites have emerged as novel and promising photocatalysts for hydrogen generation. Currently, their stability in water is a vital and urgent research question. In this paper a novel approach to stabilize a bismuth halide perovskite [(CH₃)₂NH₂][BiI₆] (DA₃BiI₆) in water using dimethylammonium iodide (DAI) without the assistance of acids or coatings is reported. The DA₃BiI₆ powder exhibits good stability in DAI solutions for at least two weeks. The concentration of DAI is found as a critical parameter, where the I⁻ ions play the key role in the stabilization. The stability of DA₃BiI₆ in water is realized via a surface dissolution–recrystallization process. Stabilized DA₃BiI₆ demonstrates constant photocatalytic properties for visible light-induced photo-oxidation of I⁻ ions and with PtCl₄ as a co-catalyst (Pt-DA₃BiI₆), photocatalytic H₂ evolution with a rate of 5.7 μmol·h⁻¹ from HI in DAI solution, obtaining an apparent quantum efficiency of 0.83% at 535 nm. This study provides new insights on the stabilization of metal halide perovskites for photocatalysis in aqueous solution.

KEYWORDS

bismuth halide perovskite, dimethylammonium iodide, photocatalysis, hydrogen evolution

1 Introduction

Hydrogen evolution from solar-driven splitting of water or acids has been regarded as a promising approach for the conversion and storage of solar energy, and thus it has been under the scope of research for nearly half a century [1–3]. Until today, the typical photocatalysts have been rather inefficient because of their large band gap or severe recombination of photocarriers [4, 5]. More recently, metal halide perovskites have been widely employed as efficient photoactive materials in solar cells, with a surge of power conversion efficiency from 3.8% to exceeding 25.2% over the past decade [6, 7]. The exceptional performance in solar cells originates from their superior optoelectronic properties, such as wide absorption window and long electron–hole diffusion lengths [8–10], which are also highly expected among photocatalysts. For the first time, Nam et al. reported their pioneering work of photocatalytic hydroiodic acid (HI) splitting using methylammonium lead iodide (MAPbI₃) [11]. To date, because of the instability of hybrid perovskites in water, all photocatalytic hydrogen evolution reactions on lead based perovskites are carried out in concentrated hydrohalic acids [11–19]. Moreover, despite their superior light-harvesting and carrier transporting properties, the high cost and corrosive nature of concentrated hydrohalic acids as well as the environmental and health risks associated with lead make such processes for H₂ evolution impractical and have thus largely limited their general applications in photocatalysis [20, 21].

Approaches have been developed to replace lead and alleviate the problem of perovskite instability simultaneously using e.g. all-inorganic halide perovskites and bismuth halide perovskites. In particular, bismuth halide perovskites have shown better stability under ambient atmosphere in solar cells in comparison with traditional lead based perovskites [22]. Although some works have demonstrated that the bismuth halide hybrids show catalytic activity in lower concentration of hydrohalic acids or even water [23, 24], their stability issue in aqueous solution is still lacking. In addition, encapsulation strategy has been explored to stabilize metal halide perovskites in water [25, 26]. However, for coating approach, one needs to consider many aspects such as the thickness, chemistry and charge transport behavior of the shell material to ensure the photogenerated carriers can eventually reach the surface and react with adsorbed species there [27, 28]. Considering mentioned above, stabilizing bismuth-based halide perovskites directly in water is a challenging but meaningful route for widening the photocatalytic applications with copious water.

More recent years, the dimethylammonium iodide (DAI)-
related methods are widely used to stabilize the perovskite phase [29, 30]. It has been reported that the incorporation of DAI into perovskite solar cells can improve the air and thermal stability as well as charge transport property [31–33]. Notably, the stabilization with DAI seems more promising than the use of insulating coating materials in photocatalysis because the latter may hinder the charge transfer from perovskite to surface catalytic sites and deteriorate the following redox reactions [34, 35]. However, to the best of our knowledge, there is no report on stabilizing bismuth halide perovskite in aqueous solution with DAI so far. Herein, we present a facile strategy to synthesize a lead-free hybrid semiconducting perovskite [(CH3)2NH2]3[BiI6] (DA3BiI6) and its improved stability in acid-free aqueous DAI solutions without coatings for the first time. As a result, the DA3BiI6 powder displays good water-tolerance in DAI solutions for two weeks without degradation and exhibits stable photocatalytic properties in DAI solutions.

2 Experimental

2.1 Materials

Dimethylamine ((CH3)2NH, 40% solution in water), HI (57% solution in water, unstabilized), methylamine (CH3NH2, 40% solution in water), diethyl ether (≥ 99.5%), ethanol absolute (99.8%), bismuth sulfide (Bi2S3, 99.9%), dimethylformamide (DMF, anhydrous, 99.8%), chloroform (anhydrous, ≥ 99%, containing 0.5%–1.0% ethanol as stabilizer), acetonitrile (anhydrous, 99.9%), potassium iodide (KI, ACS reagent, ≥ 99%), iodine (I2, containing 0.5%–1.0% ethanol as stabilizer), acetonitrile (anhydrous, 99.9%), potassium iodide (KI, ACS reagent, ≥ 99%), iodine (I2, ACS reagent, ≥ 99.8%), platinum(IV) chloride (PtCl4, ≥ 99.99%) and hypophosphorous acid (H3PO2, 50% solution in water) was synthesized by the reaction of bismuth trioxide (Bi2O3) and orange powder was dried at room temperature for 24 h. BiI3 fraction of saturated solutions of DA3BiI6 powder. In brief, 250 mg of DA3BiI6 powder was added into 1 mL of HI solution, followed by sonication and shaking simultaneously for 30 min. Next, the upper clear fraction of the liquid was collected and filtered (0.45 μm PTFE), and then kept stand-still overnight. After that, a washed glass slide (weight: W1) was chosen as a carrier. 10 μL of the upper liquid was dropped on it and thermally annealed in oven at 110 °C for 30 min (weight: W2). The solubility was calculated by the mass difference (W2 – W1).

2.5 Amount of evolved triiodide (I3−) ions

Firstly, the standard curve of I3− solutions was obtained by plotting the UV–vis absorption data (351 nm) of I3− ions at various concentrations. An iodine solution (0.001 M) was obtained by the dissolution of 12.6 mg of solid iodine into 50 mL of 0.18 M KI solution. Then different concentration of I3− solution was synthesized by mixing the iodine solution (0.001 M) and the KI solution (0.01 M). The corresponding concentration of I3− ions was determined by the iodine solution because of the introduction of extra iodide ions in solution to stabilize I3− ions. The fresh I3− solutions were characterized with UV–vis spectrophotometer. Notably, the stock solution should be fresh because the I3− ions may be disproportionated into I2− and I5− ions in water and the KI solution is not stable when exposed to light. Then, the concentrations of I3− ions before and after light irradiation were determined by the standard curve mentioned above. Owing to the similar absorption range caused by iodobismuthate ions in photocatalytic solutions, a 1/100 dilution with water of stock solution was used to determine the concentration of I3− ions.

2.6 Characterization

The morphology of DA:BiI3 powder was analyzed by field emission scanning electron microscopy (FESEM, Zeiss Sigma FESEM). Powder X-ray diffraction (XRD) was carried out by using PANalytical X’Pert Pro Diffractometer with Cu Ka, at 2θ scan from 5° to 80°. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectra were recorded with a Bruker HYPERION 3000 FT-IR Microscope equipped with ATR crystal. X-ray photoelectron spectrum spectrum (XPS) was obtained by using a Thermo Fisher Scientific ESCALAB 250Xi instrument with Al Kα irradiation. The spectrometer work function used was 4.59 eV. The binding energy of aliphatic C1s peak (284.8 eV) was applied as reference for calibration. Absorption spectra of solutions were collected using a UV–vis spectrophotometer (UV-2600, SHIMADZU). The absorption spectrum of solid was recorded with a spectrophotometer system (Optroctive Laboratories, USA) equipped with an integrating sphere. The experimental bandgap was determined from the Tauc plot for indirect transition (hν − a(hν)2)1/2, where hν is the photon energy and α is the optical absorption coefficient). The light-emitting diode (LED) spectra were analyzed using Ocean Optics USB4000 spectrometer and the light intensity was measured by the Compact Power and Energy Meter Console (PM100D) equipped with a power sensor head (THORLABS, S310C).

2.7 Density functional theory (DFT) calculations

The electronic structure calculations were based on the experimental lattice parameters (a = b = 30.8173 Å and c = 8.8171 Å) of the crystal structure of DA:BiI3 [23]. All the DFT calculations were carried out using Quantum-ESPRESSO package [36]. Total energy calculations were performed within the linear density approximation (LDA), using Perdew–Zunger (PZ) exchange-correlation functional. H (1s, 2p, 3d, 4f), C (2s, 2p, 3d, 4f), N (2s, 2p, 3d, 4f), O (2s, 2p, 3d, 4f), I (5s, 5p, 5d, 4f) and Bi (6s, 6p, 6d, 5f) orbitals were treated as valence orbitals. Since the crystal unit cell was large, a 2 × 2 × 4 k-point mesh was used to
sample the Brillouin-zone of the crystal. The results of the calculations were checked for convergence with respect to the number of \(k \) points and the plane wave cut off energy. After the full relaxation of DA BiI\(_6\) followed by self-consistent field calculations for total electronic densities of states (DOS), non-self-consistent field calculations along symmetry directions \(\Gamma-K-H-\Gamma \) was performed for its electronic band structure analysis. The reorganization energy (\(\lambda_i \), \(i \) is hole or electron) was calculated based on Marcus theory \([37, 38]\), using the following equation \([39]\)

\[
\lambda_i = (E_i^+ - E_{n+}) + (E_i^0 - E_n)
\]

where \(E_i^+ \) is the energy of ion calculation with the geometry of the neutral molecules, \(E_i \) is the energy of ion in ion geometry. \(E_i^0 \) is the energy of neutral molecules in ion state, and \(E_n \) is the energy of neutral molecule at ground state geometry.

2.8 Photocatalytic reactions

The photocatalytic reactions were performed in a quartz vial (40 mL) equipped with a cooling system (6 °C) under a commercial white LED lamp (Blue Import BIM, LED, 100 W). The light intensity was 76.4 mW·cm\(^{-2}\) at a distance of 48 mm and the total optical power impinging on the solution was determined to be 422 mW. The photooxidation of I\(^-\) ions to I\(^3-\) ions was conducted in 10 mL of DAI solution with or without DA\(_3\)BiI\(_6\) powders and the evolved I\(^3-\) ions were determined by UV–vis spectroscopy after irradiation. For hydrogen evolution, the same system was used. Typically, 4 mL of H\(_3\)PO\(_2\) was mixed with different amount of HI, and the overall reaction solution was kept as 10 mL by adjusting the amount of DAI solution. Then, a desired amount of DA\(_3\)BiI\(_6\) and 1 mg of PtCl\(_4\) powder were added into the above mixture, followed by degassing with N\(_2\) gas for 30 min. The solution was irradiated with the commercial white LED lamp for 1 h under continuous magnetic stirring. The evolved hydrogen was analyzed with a Micro GC (Agilent 490G, MolSieve 5 Å column, with argon gas as carrier).

The repeatability tests for H\(_2\) evolution were carried out by four consecutive photocatalytic experiments. Each time the reactor was irradiated with the white LED source for 1 h, and then bubbled with N\(_2\) for 10 min before the next cycle. After every run (4 h), the solution was kept overnight and then bubbled with N\(_2\) for 30 min before the next photocatalytic reaction. The apparent quantum efficiency (AQE) was determined under different monochromatic LED lamp (420, 450, 485 and 535 nm) from multichannel photochemical reaction device (PCX50B Discover, Beijing Perfect light Co. Ltd.). The measured light intensities were 41.7, 44.6, 18.8 and 13.3 mW·cm\(^{-2}\), respectively. The reflectivity on the quartz–air interface was calculated from the Fresnel equation for normal incidence and thus about 4% of the incident intensity was reflected. The modified incident light intensities were 40.0, 42.8, 18.0 and 12.8 mW·cm\(^{-2}\) without considering the loss of intensity at quartz-to-solution interface. The AQE values were calculated according to the following formula \([14]\)

\[
AQE = \left(\frac{2N(H_2)}{N(\text{photons})} \right) \times 100
\]

where \(N(H_2) \) is the number of evolved H\(_2\) molecules and \(N(\text{photons}) \) is the number of incident photons.

3 Results and discussion

3.1 Structure and morphology

Here we report a novel solution-processed method for the synthesis of DA\(_3\)BiI\(_6\) powder at 80 °C for 2 h (see details in Experimental section). This method is much easier than those of previously reported in Refs. \([23, 40, 41]\), which were processed under solvothermal conditions or lasted for three months. The morphology of DA\(_3\)BiI\(_6\) powder characterized by FESEM reveals rod-like crystals with smooth facets (Fig. 1(a)), similar to those reported using a solvothermal method \([23]\). According to the XRD analysis (Fig. 1(b)), the diffraction pattern of the product matches well with the previously reported rhombohedral DA\(_3\)BiI\(_6\) \([23, 40]\). The elemental composition and oxidation states...
of Bi of the product were further confirmed by XPS (Fig. 1(c)) revealing the presence of C, N, Bi and I with an atomic ratio of 6.05 for I/Bi (inset in Fig. 1(c)), which is consistent with the stoichiometric value in DA3BiI6 as well as the result from energy dispersive X-ray spectroscopy (EDS, Fig. S1 in the Electronic Supplementary Material (ESM)). The O 1s signal at 531.9 eV may originate from adsorbed O2 or ambient moisture [42]. The Bi 4f spectrum shows the characteristic binding energy located at 157.6 and 162.9 eV with a corresponding spin-orbit splitting of 5.3 eV (Fig. 1(d)) indicating Bi3+ oxidation state in the product [43]. Combining the above analysis, it can be concluded that DA3BiI6 is synthesized successfully using a simple method that does not require autoclaves and elevated pressures as in solvolithic synthesis or long reaction period.

3.2 Stability of DA3BiI6 in DAI solution

Due to the ionic characteristics, halide perovskites generally exhibit extreme sensitivity to polar solvents, especially water. For instance, once MAPbI3 is in contact with water, it starts to decompose, forming MA+, I− and PbI2. From the viewpoint of chemical reaction, the low solubility of PbI2 in water is the main obstacle to rebuild MAPbI3 molecules, while the formation of PbI2 ions in water from the reaction of PbI2 and I− ions seems promising to stabilize halide perovskites in water. Zheng et al. proposed that the removal of I− ions from the surface of MAPbI3 triggers the initial dissolution of MAPbI3 in water [44]. On the other hand, degraded MAPbI3 can be regenerated through a treatment with MAI or I− solution [45, 46]. Such observations suggest that controlling the concentration of DAI might stabilize DA3BiI6 in water.

As shown in Fig. 2(a), a series of aqueous DAI solutions, with concentrations up to 0.25 M were prepared and equal amounts of DA3BiI6 powder were added. In water, the DA3BiI6 powder decomposed into BiI3 immediately and the color of the powder changed from orange to black (see Fig. S2 in the ESM) whereas no visibly black-colored substance was observed in the presence of DAI, implying directly that DAI molecules can hamper the degradation of DA3BiI6 in water. The possible reason is that the addition of DAI to water leads to the dissolution of BiI3 and formation of iodobismuthate(III) ions (BiI63− or BiI74−) [47], thus stabilizing DA3BiI6 powder in water. To verify this hypothesis, after 1-day immersion, a 1/10 dilution of solution (Fig. 2(b)) with acetonitrile was prepared and identified using UV–vis absorption spectroscopy. The spectral changes are displayed in Fig. 2(c). In water, no apparent absorption appeared between 300 and 600 nm, which are the characteristic absorption ranges of iodobismuthate(III) ions, implying the rather high stability of BiI3 in water. Increasing the DAI concentration to 0.05 M, the aqueous solution turned to yellow, which indicates the appearance of iodobismuthate(III) ions. Besides, two peaks appeared to UV–vis spectra located at 350 and 461 nm, which can be assigned to [BiI4]3− ions and BiI3 (Figs. S3 and S4 in the ESM), respectively [48]. Upon further increase of the DAI concentration (up to 0.15 M), the absorption peaks became stronger, suggesting the increasing amount of iodobismuthate(III) ions. Meanwhile, the peaks gradually shifted to 347 and 483 nm, that are reasonably ascribed to the characteristic peaks of BiI33− ions [48]. The difference (347 nm vs. 350 nm and 483 nm vs. 486 nm) for the peak positions may result from the presence of DAI in the aqueous solution, which is known to have a great effect on the absorption spectra [49]. The gradual shift of absorption peaks also suggests a stepwise BiI3−→[BiI4]3−→[BiI5]4− transformation with the increase of DAI concentration. Above 0.15 M of DAI in the solution, no further peak shift in the spectra was observed, indicating that only BiI33− ions were present. In addition, no peaks above 500 nm appeared, precluding the existence of BiI4+ ions in our current system [47].

To understand how DAI molecules stabilize DA3BiI6 in water (i.e. to confirm the role of (CH3)2NH2+ and I− ions in stabilization of DA3BiI6), three solutions were prepared: (1) 0.2 M aqueous dimethylamine, (2) 0.2 M aqueous KI, and (3) 0.2 M aqueous MAI. As shown in Fig. S5 in the ESM, the DA3BiI6 powder was deliberately immersed in water to obtain BiI3. Then, the BiI3 powder was collected and transferred into the above three solutions. Note that the black color of the powder turned into red in 0.2 M KI and 0.2 M aqueous MAI, whereas the color of solutions turned to yellow. The characteristic absorption peaks of BiI33− ions were also detected (Fig. 2(d)), implying that the I− ions reacted with BiI3. In contrast, white powder was obtained in 0.2 M dimethylamine aqueous solution and BiI33− was not formed according to UV–vis absorption spectra. These observations mean that I− ions play an important role in the stabilization. On the basis of the above results, we
could conclude that the I− ions from DAI can suppress the degradation of DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}} in water, without the use of encapsulation layers or the assistance of an acid.

Another aspect to be studied is related to the long-term stability of DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}} in DAI solution and the underlying reasons behind the stabilization. To examine the long-term stability, DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}} was mixed in 0.2 M DAI solution (all experiments reported below are for 0.2 M DAI solution unless otherwise stated) for two weeks, then the powder was collected (denoted as I-DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}}) for further analysis. First, the composition before and after immersion was investigated by using ATR-FTIR spectroscopy, as shown in Fig. 3(a). Before the immersion, the DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}} powder showed the representative absorption peaks as reported before (see details in Fig. S6 in the ESM) \[23]\]. After two weeks, new peaks at around 3,500 and 3,145 cm−1 appeared, while all other absorption peak positions remained the same. The weak broad peak centred at 3,500 cm−1 is due to O–H vibration of surface adsorbed water \[50]\], whereas the doublet around 3,100 cm−1 can be assigned to the hydrogen-bonded N–H (3,145 cm−1) and free N–H stretching vibration (3,093 cm−1) \[41, 51]\]. The adsorbed water does not cause the peak position shift of other absorption bands, especially N–H vibration, which indicates that the water just adsorbed on the surface of I-DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}} without reaching deeper in the bulk of the particles \[50]\.

We also noted that the color of DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}} powder changed after immersion from orange to red (inset of Fig. 3(a)). It is well known that surface structural change or phase transformation can result in color difference \[52, 53]\). Due to the ionic character of hybrid perovskites, the ions from halide perovskites can dissolve in water and then recrystallize at room temperature because of the low formation energy. For instance, this approach has been exploited for the synthesis of CsPbBr\textsubscript{3} nanosheets from Cs\textsubscript{4}PbBr\textsubscript{6} nanocrystals by aqueous phase exfoliation method \[54]\). Accordingly, we suspect that the color change in our work may originate from the reconstruction (i.e. dissolution of surface ions and subsequent recrystallization with I− and DA+ ions in solution) of the surface of DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}} when exposed to aqueous DAI. During this process, the morphology and also the phase may be altered due to the difference between dissolution and recrystallization rates leading to altered optical scattering properties and consequently to a change in the color \[55]\). To verify this hypothesis, FESEM images before and after immersion were analyzed to study the change of microstructure. As displayed in Fig. 3(b), the surface of DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}} particles is smooth, whereas I-DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}} exhibits a rough surface and some plate-like particles formed on those (Fig. 3(c)). The rough surface leads to more exposed DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}} molecules in I-DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}} without reaching deeper in the bulk of the particles \[50]\.

![Figure 3](image-url) Phase transformation of DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}} powder in aqueous DAI solution. (a) ATR-FTIR spectra and color change of DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}} and I-DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}} powder (inset: color change before and after immersion). SEM images of (b) DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}}, (c) I-DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}} and (d) D-DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}}. (e) XRD patterns of I-DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}}, E-DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}} and D-DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}}. (f) Resolved Bi 4f XPS peaks of DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}}, I-DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}} and D-DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}}. (I-DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}}: DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}} powder was immersed in DAI solution for 2 weeks; D-DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}}: DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}} powder was prepared with DAI; E-DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}}: DA\textsubscript{3}Bi\textsubscript{I\textsubscript{6}} powder was immersed in ethanol for 1 day).
phase transformation is often observed in dimethylammonium metal hybrid compounds [56, 57]. In this work, during the cooling process, first the formation of small plate-like particles was observed, and then rod-like products were obtained after keeping the samples at ambient conditions overnight. In DA:BiI₃, DA⁺ ions are assumed to originate from the protonated dimethylamine after the hydrolysis of dimethylformamide (generating dimethylamine and formic acid) under acid conditions [23, 41]. As described by Snaith et al., the remained formic acid in precursor solution can induce the oriented growth of crystal [58]. Therefore, DA:BiI₃ powder using DAI instead of DMF (marked as D-DA:BiI₃) was tentatively prepared. As shown in Fig. 3(d), plate-like particles were obtained, similar to the newly formed particles in I-DA:BiI₃. To confirm the phase, the XRD patterns of I-DA:BiI₃ and D-DA:BiI₃ were assessed (Fig. 3(e)). While no significant differences in the 2θ positions were found, the relative intensities of the reflections were quite different. This was likely due to the different morphology of I-DA:BiI₃ and D-DA:BiI₃ as shown in Figs. 3(c) and 3(d). The I-DA:BiI₃ powder still maintained the rod-like shape, which will influence the peak intensity of XRD patterns. Thus, ethanol was used to etch the surface of DA:BiI₃ powder (denoted as E-DA:BiI₃). Ethanol was chosen, since DA:BiI₃ powder dissolves in ethanol slowly instead of complete dissolution immediately as occurs in other common polar solvents such as, dimethylformamide and acetonitrile. The XRD patterns from I-DA:BiI₃ and E-DA:BiI₃ were further compared, and no indistinguishable change was observed. Thus, it is reasonable to conclude that the plate-like particles formed in I-DA:BiI₃ originate from phase transformation of DA:BiI₃ powder during the dissolution–recrystallization process. It is also worth mentioning, that common degradation products (BiI₃, BiOI, DAI) were not found based on XRD (Fig. S7 in the ESM).

3.3 Photophysical and photocatalytic properties

Prior to photocatalytic performance evaluation, the optical properties and electronic structure of DA:BiI₃ were studied. As concluded from UV–vis absorption measurements, the DA:BiI₃ powder absorbs wavelengths up to ~ 570 nm (Fig. 4(a)). From the Tauc plot, the optical bandgap was determined to be 2.14 eV (the inset in Fig. 4(a)) assuming indirect transitions (no good linearity was observed for direct band gap, as shown in Fig. S9 in the ESM). This claims that the DA:BiI₃ is an indirect band gap material [64], which is consistent with our theorical result (Fig. 4(b)) from DFT calculations based on the reported crystal structure (hexagonal phase, Fig. S10 in the ESM) [23]. The valence band maximum (VBM) and conduction band maximum (CBM) appear on H point and Γ point respectively, proving an indirect band gap. The absolute band gap from calculations (2.98 eV) compares reasonably well with the experimental data of 2.14 eV, if not considering the spin-orbit coupling effects in DFT calculations [65, 66]. The carrier transport of DA:BiI₃ was also predicted by calculating the reorganization energy based on Marcus theory [37, 38]. The calculated reorganization energy is 73 meV for holes and 26 meV for electrons, respectively. Both are smaller than the reported values of MAPbI₃ (410 meV for holes and 90 meV for electrons) [39], suggesting that DA:BiI₃ is preferred for efficient

![Figure 4](https://via.placeholder.com/150)

Figure 4 Band structure of DA:BiI₃. (a) UV–vis absorption spectrum and Tauc plot of DA:BiI₃ powder. (b) Electronic band structure and corresponding projected density of states of DA:BiI₃. (c) Valence level spectrum of DA:BiI₃ powder measured by XPS. (d) Schematic band diagrams of DA:BiI₃ powder and the redox potentials for water splitting and I⁻ ions oxidation reaction.
transportation of the carrier, and holds the promise for better photocatalytic property than the lead analogs. The electronic structure was further elucidated from valence-band XPS spectrum (Fig. 4(c)) showing the VBM position of DA3BiI6 to be located at 1.2 eV versus Fermi level. Now, by considering the optical bandgap, the CBM is at ~3.61 eV [67]. Thus, the CBM and VBM of DA3BiI6 are located at ~0.85 and 1.29 V with respect to the normal hydrogen electrode (NHE) [68]. Note that the CBM of DA3BiI6 is at a more negative potential than the potential of proton reduction (Fig. 4(d)), which indicates that the photo-generated holes would have sufficient driving forces to reduce proton and generate H2.

However, since the VBM is more positive than the potential of iodine oxidation as compared to that of water oxidation, the photo-generated holes from DA3BiI6 prefer to oxidize I− ions to I3− ions instead of oxidizing water to oxygen or I− ions to IO3− ions [69].

The possibility of photocatalytic H2 evolution in DAI solution was firstly evaluated using a commercial LED as light source (100 W, photocatalytic system and light spectrum shown in the inset of Fig. 5(a) and Fig. S11 in the ESM, respectively). Although no H2 signal was detected after 24 h, we noted that the I− ions were oxidized to I3− ions (Fig. S12 in the ESM) and the concentration of I3− ions was determined to be 142, 268, and 339 μmol·L−1 at 4, 8, 12 h, respectively (Fig. S13 in the ESM and Fig. 5(a)), demonstrating photocatalytic reactions occur on DA3BiI6 under LED irradiation. Since small amount of I3− ions were produced after 12 h without DA3BiI6, the generated I3− ions are supposed to be mainly from photocatalytic reactions of DA3BiI6 powder in this system.

Although it was demonstrated that photooxidation reaction can be realized on DA3BiI6 in acid-free aqueous solution under visible light irradiation for the first time, the photocatalytic activity is still not adequate for H2 evolution. This possibly originates from the relatively high overpotential for water splitting, which requires four electrons, while only two electrons are needed for acid-splitting [70]. Therefore, photocatalytic H2 generation with DA3BiI6 in the presence of aqueous HI solution was examined. In this study, H3PO2 was added to alleviate the effect of evolved I3− ions [11], and a series of HI solutions (namely, 1.52, 2.28, 3.04 and 3.8 M) were prepared by adjusting the amount of DA3BiI6. To optimize the photocatalytic efficiency, PtCl4 powder (1 mg) was added simultaneously as a co-catalyst (denoted as Pt-DA3BiI6) [23]. The hydrogen gas was measured with a micro gas chromatography. In the first place, the solubility of DA3BiI6 powder in HI solution was determined to be about 133 mg·mL−1 (Table S1 in the ESM), indicating forming of a homogeneous solution for all the evaluated cases. As displayed in Fig. 5(b), all examined cases showed photocatalytic H2 evolution activity under visible light irradiation suggesting the possibility of photocatalytic HI-splitting activity for DA3BiI6 powders in aqueous DAI solution. In particular, the amount of H2 evolution increased to the optimal value of 4.25 μmol for 3.04 M of HI solution after 1 h irradiation. Control experiments demonstrated that no H2 signals were detected in the absence of light or the photocatalyst, which means that H2 was formed via the photocatalytic reaction. The amount of DA3BiI6 on photocatalytic activity was also studied as shown in Fig. S14 in the ESM. The best hydrogen evolution activity was 4.55 μmol after 1 h reaction when 50 mg of DA3BiI6 was used. Moreover, Pt-DA3BiI6 showed good structural stability assessed by XRD (Fig. S15 in the ESM) and retained its photocatalytic activity for H2 evolution in repeated experiments with an average evolution rate of 5.7 μmol·h−1 (Fig. 5(c)). The apparent quantum efficiency was determined by applying monochromatic LED lamp (Fig. 5(d)). As shown in Fig. S16 in the ESM, the reaction solution absorbs all the light up to 520 nm, thus assuming that the total power was utilized by the photocatalyst. The H2 evolution rate (μmol·h−1) surpasses some reported data over Pt-MAPbX3 (X = I, Br) or Pt-Cs2AgBiBr6 for H2 evolution from concentrated HI solution (Fig. 5(e)) [12, 13, 15, 19]. The smaller calculated reorganization energy as described above and the homogeneous system applied instead of heterogeneous system may contribute to the better performance [23, 39]. Figure 5(f) shows the AQE values of Pt-DA3BiI6 in 3.04 M of HI solution under different wavelength, the error bar represents the SD of the measurements.

Figure 5 Photocatalytic performance of DA3BiI6 photocatalysts. (a) Evolved I3− ions in 0.2 M DAI solution without and with DA3BiI6 powder under white LED irradiation (inset: schematic illustration of side irradiation for the evaluated activities shown in (a)–(c)). (b) The photocatalytic H2 evolution activities on Pt-DA3BiI6 with different concentration of HI (100 mg of DA3BiI6, 1 h). (c) Cycling runs of the Pt-DA3BiI6 for photocatalytic H2 evolution (3.04 M of HI, 50 mg of DA3BiI6). (d) Schematic diagram of the setup used for AQE measurements. (e) Comparison of photocatalytic H2 evolution rates between this work and reported Pt-decorated halide perovskite systems. (f) AQE values of H2 evolution over Pt-DA3BiI6 in 3.04 M of HI solution under different wavelength, the error bar represents the SD of the measurements.
monochromatic LED irradiation and the AQE values were 0.35%, 0.34%, 0.64% and 0.83% at 420, 450, 485 and 535 nm, respectively, indicating that this photocatalyst can work from the wavelength of 420 nm up to 535 nm. Though the performance is still low, the AQE values exceed the reported data (0.16% at 450 nm) of double perovskite Cs₂AgBiBr₆/RGO for H₂ evolution from HBr-splitting (Fig. 5(d)). Note that as a co-catalyst, the reduced graphene oxide (RGO) displayed ca. 51 times and ca. 23 times higher photocatalytic H₂ generation rate than Pt in Cs₂AgBiBr₆ and CH₃NH₃PbI₃, respectively [12, 19]. More importantly, the DA₃BiI₆ demonstrates high-tolerance to water and can broaden the applications of halide hybrid perovskite family in photocatalytic systems.

4 Conclusions

In summary, a lead-free bismuth halide perovskite DA₃BiI₆ was synthesized and stabilized in aqueous DAI solution over 2 weeks without the addition of acids. The I⁻ ions from DAI molecules in aqueous solution can alleviate the degradation and thus stabilize the DA₃BiI₆ powder through a surface dissolution-recrystallization process when the concentration of DAI solution is higher than 0.15 M. The photophysical properties of DA₃BiI₆ were thoroughly studied by experimental and modelling approaches proving that DA₃BiI₆ as a photocatalyst is suitable for hydrogen evolution. As a proof of concept, DA₃BiI₆ was applied as a photocatalyst for photooxidation of I⁻ ions as well as photocatalytic hydrogen evolution from HI in DAI solutions for the first time. Using PtCl₆ as a co-catalyst, a H₂ evolution rate of 5.7 μmol·h⁻¹ during 4 runs with no significant decrease in activity was obtained, yielding an AQE of 0.83% at 535 nm. The bismuth-based perovskite developed in this work exhibits high-tolerance to water and can broaden the applications of halide hybrid perovskite family in photocatalytic systems.

Acknowledgements

This work was supported by the Kvantum Institute Emerging Project at the University of Oulu and Academy of Finland ELECTRA-project (No. 2430291511). We thank Raija Oulunkaemi and Markus Riihimäki for the help with XRD and ATR characterization, respectively. We are grateful to the staff from Centre for Material Analysis (University of Oulu) for the characterization. ELI-ALPS is supported by the European Union and co-financed by the European Regional Development Fund (No. GINOP-2.3.6-15-2015-00001). M. U. K. also acknowledges funding from PaNOSC European project.

Funding note: Open access funding provided by University of Oulu including Oulu University Hospital.

Electronic Supplementary Material: Supplementary material (additional supporting figures EDS, XRD, UV-vis spectra, ATR-FTIR, XPS, crystal structure of DA₃BiI₆, and photocatalytic H₂ evolution activities) is available in the online version of this article at https://doi.org/10.1007/s12274-020-3159-0.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/

References

[1] Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 38–37.
[2] Wang, Q.; Donnen, P. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919–985.
[3] Heyduk, A.; Nocera, D. G. Hydrogen produced from hydrohalic acid solutions by a two-electron mixed-valence photocatalyst. Science 2001, 293, 1639–1641.
[4] Osterloh, F. E. Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 2008, 20, 35–54.
[5] Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horie, Y.; Anpo, M.; Bahmenn, D. W. Understanding TiO₂ photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986.
[6] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.
[7] Chen, B.; Baek, S. W.; Hou, Y.; Aydin, E.; De Bastiani, M.; Scheffel, B.; Proppe, A.; Huang, Z. R.; Wei, M. Y.; Yang, Y. K. et al. Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandem. Nat. Commun. 2020, 11, 1257.
[8] Chen, Q.; De Marco, N.; Yang, Y.; Song, T. B.; Chen, C. C.; Zhao, H. X.; Hong, Z. R.; Zhou, H. P.; Yang, Y. Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 2015, 10, 355–396.
[9] Xing, G. C.; Mathews, N.; Sun, S. Y.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH₃NH₃PbI₃, Science 2013, 342, 344–347.
[10] Dong, Q. F.; Fang, Y. J.; Shao, Y. C.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. S. Electron-hole diffusion lengths > 175 μm in solution-grown CH₃NH₃PbI₃ single crystals. Science 2015, 347, 967–970.
[11] Park, S.; Chang, W. J.; Lee, C. W.; Park, S.; Ahn, H. Y.; Nam, K. T. Photocatalytic hydrogen generation from hydric acid using methylammonium lead iodide in aqueous equilibrium with aqeous solution. Nat. Energy 2017, 2, 16185.
[12] Wu, Y. Q.; Wang, P.; Zhu, X. L.; Zhang, Q. Q.; Wang, Z. Y.; Liu, Y. Y.; Zou, G. Z.; Dai, Y.; Wangbo, M. H.; Huang, B. B. Composite of CH₃NH₃PbI₃ with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution. Adv. Mater. 2018, 30, 1704342.
[13] Wang, H.; Wang, X. M.; Chen, R. T.; Zhang, H. F.; Wang, X. L.; Wang, J. H.; Zhang, J.; Ma, L. C.; Wu, K. F.; Fan, F. T. et al. Promoting photocatalytic H₂ evolution on organic–inorganic hybrid perovskite nanocrystals by simultaneous dual-charge transportation modulation. ACS Energy Lett. 2019, 4, 40–47.
[14] Zhao, Z. J.; Wu, J. J.; Zheng, Y. Z.; Li, N.; Li, X. T.; Tao, X. Ni.-decorated MAPbI₃ as visible-light photocatalyst for H₂ evolution from HI splitting. ACS Catal. 2019, 9, 8144–8152.
[15] Wang, X. M.; Wang, H.; Zhang, H. F.; Yu, W.; Wang, X. L.; Zhao, Y.; Zong, X.; Li, C. Dynamic interaction between methylammonium lead iodide and TiO₂ nanocrystals leads to enhanced photocatalytic H₂ evolution from HI splitting. ACS Catal. 2018, 8, 1159–1164.
[16] Guan, Z. H.; Wu, Y. Q.; Wang, P.; Zhang, Q. Q.; Wang, Z. Y.; Zheng, Z. K.; Liu, Y. Y.; Dai, Y.; Whangbo, M. H.; Huang, B. B. Perovskite photocatalyst CsPbBr₃, with a bandgap funnel structure for H₂ evolution under visible light. Appl. Catal. B: Environ. 2019, 245, 522–527.
[17] Wang, M. Y.; Zuo, Y. P.; Wang, J. L.; Wang, Y.; Shen, X. P.; Qiu, B. C.; Cai, L. J.; Zhou, F. C.; Lau, S. P.; Chai, Y. Remarkably enhanced hydrogen generation of organolead halide perovskites via piezocatalysis and photocatalysis. Adv. Energy Mater. 2019, 9, 1901801.

www.theNanoResearch.com | www.Springer.com/journal/12274 | Nano Research
[18] Wu, Y. Q.; Wang, P.; Guan, Z. H.; Liu, J. X.; Wang, Z. Y.; Zheng, Z. K.; Jin, S. N.; Dai, Y.; Whangbo, M. H.; Huang, B. B. Enhancing the photocatalytic hydrogen evolution activity of mixed-halide perovskite CH3NH3PbI3, achieved by bandgap funneling of charge carriers. ACS Catal. 2018, 8, 10349–10357.

[19] Wang, T.; Yue, D. T.; Li, X.; Zhao, Y. X. Lead-free double perovskite CsAgBi2Br7/RGO composite for efficient visible light photocatalytic H2 evolution. Appl. Catal. B Environ. 2020, 268, 118399.

[20] Vesborg, P. C. K. Photocatalysis: HI-time for perovskites. Nat. Energy 2017, 2, 16205.

[21] Li, J. M.; Cao, H. L.; Jiao, W. B.; Wang, Q.; Wei, M. D.; Cantone, I.; Lü, J.; Abate, A. Biological impact of lead from halide perovskite reveals the risk of introducing a safe threshold. Nat. Commun. 2020, 11, 310.

[22] Zong, X. Organic–inorganic hybrid perovskites: Game-changing candidates for solar fuel production. Nano Energy 2018, 56, 665–674.

[23] Chu, K. B.; Xie, J. L.; Chen, W. J.; Lu, W. X.; Song, J. L.; Zhang, C.

[24] Eperon, G. E.; Stone, K. H.; Mundt, L. E.; Schloemer, T. H.; Pisanu, A.; Speltini, A.; Quadrelli, P.; Drera, G.; Sangaletti, L.; Mu, Y. F.; Zhang, W.; Guo, X. X.; Dong, G. X.; Zhang, M.; Lu, T. B.; Xiao, M.; Hao, M. M.; Lyu, M. Q.; Moore, E. G.; Zhang, C.; Luo, B.;

[25] García-Fernández, A.; Bermúdez-García, J. M.; Castro-García, S.; Abid, Y. Optical properties and \textit{ab initio} study on the hybrid organic–inorganic material [(CH3)2NH3]2[BIL]. J. Mater. Chem. C 2019, 7, 72–77.

[26] Horváth, O.; Mikó, I. Spectra, equilibrium and photoelectrochemistry of iodobismuthate(III) complexes in acetonitrile. Inorganica Chim. Acta. 2000, 304, 210–218.

[27] Nikol, H.; Vogler, A. Photoluminescence of antimony(III) and bismuth(III) chloride complexes in solution. J. Am. Chem. Soc. 1991, 113, 8988–8990.

[28] Müller, C.; Glaser, T.; Plogmeyer, M.; Sendner, M.; Döring, S.; Bakulin, A. A.; Brzuska, C.; Scheer, R.; Pshenichnikov, M. S.; Kowalsky, W. et al. Water infiltration in methylammonium lead iodide perovskite: Fast and inconspicuous. Chem. Mater. 2017, 29, 8988–8990.

[29] Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600–7603.

[30] Nie, M. L.; Liu, H.; Chun, F. J.; Deng, W.; Luo, C.; Zhu, Z. H.; Yang, M.; Li, Y. M.; Li, W.; Yan, W. et al. Aqueous phase exfoliating quasi-2D CsPbBr3 nanosheets with ultrahigh intrinsic water stability. Small 2019, 15, 1901994.

[31] García-Fernández, A.; Bermúdez-García, J. M.; Castro-García, S.; Llanos-Saiz, A. L.; Artigas, R.; López-Becerril, J.; Hu, S.; Ren, W.; Stroppa, A.; Sanchez-Andujar, M. et al. Phase transition, dielectric properties, and ionic transport in the [(CH3)2NH3]x[BIL]. Inorg. Chem. 2017, 56, 4918–4927.

[32] Zhang, W.; Ye, H. Y.; Graf, R.; Spiess, H. W.; Yao, Y. F.; Zhu, R. Q.; Xiong, R. G. Tunable and switchable dielectric constant in an amphotiedramic crystal. J. Am. Chem. Soc. 2013, 135, 5230–5233.
[58] Noel, N. K.; Congiu, M.; Ramadan, A. J.; Fearn, S.; McMeekin, D. P.; Patel, J. B.; Johnston, M. B.; Wenger, B.; Snaith, H. J. Unveiling the influence of pH on the crystallization of hybrid perovskites, delivering low voltage loss photovoltaics. *Joule* 2017, 1, 328–343.

[59] Seo, H. K.; Kim, G. S.; Ansari, S. G.; Kim, Y. S.; Shin, H. S.; Shim, K.H.; Suh, E. K. A study on the structure/phase transformation of titanate nanotubes synthesized at various hydrothermal temperatures. *Sol. Energy Mater. Sol. Cells* 2008, 92, 1533–1539.

[60] Kim, J.; Duy, L. T.; Ahn, B.; Seo, H. Pre-oxidation effects on properties of bismuth telluride thermoelectric composites compacted by spark plasma sintering. *J. Asian Ceram. Soc.* 2020, 8, 211–221.

[61] Fabian, D. M.; Ardo, S. Hybrid organic–inorganic solar cells based on bismuth iodide and 1,6-hexanediammonium dication. *J. Mater. Chem. A* 2016, 4, 6837–6841.

[62] Yi, N. B.; Wang, S.; Duan, Z. H.; Wang, K. Y.; Song, Q. H.; Xiao, S. M. Tailoring the performances of lead halide perovskite devices with electron-beam irradiation. *Adv. Mater.* 2017, 29, 1701636.

[63] Dang, Z. Y.; Shamsi, J.; Palazon, F.; Imran, M.; Akkerman, Q. A.; Park, S.; Bertoni, G.; Prato, M.; Brescia, R.; Manna, L. In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals. *ACS Nano* 2017, 11, 2124–2132.

[64] Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. *Science* 2015, 347, 970–974.

[65] Even, J.; Pedesseau, L.; Jancu, J. M.; Katan, C. Importance of spin–orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. *J. Phys. Chem. Lett.* 2013, 4, 2999–3005.

[66] Umari, P.; Mosconi, E.; De Angelis, F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. *Sci. Rep.* 2014, 4, 4467.

[67] Liang, J.; Wang, C. X.; Wang, Y. R.; Xu, Z. R.; Lu, Z. P.; Ma, Y.; Zhu, H. F.; Hu, Y.; Xiao, C. C.; Yi, X. et al. All-inorganic perovskite solar cells. *J. Am. Chem. Soc.* 2016, 138, 15829–15832.

[68] Grätzel, M. Photoelectrochemical cells. *Nature* 2001, 414, 338–344.

[69] Hagiwara, H.; Nozawa, I.; Hayakawa, K.; Ishihara, T. Hydrogen production by photocatalytic water splitting of aqueous hydrogen iodide over Pt/alkali metal tantalates. *Sustain. Energy Fuels* 2019, 3, 3021–3028.

[70] Powers, D. C.; Anderson, B. L.; Hwang, S. J.; Powers, T. M.; Perez, L. M.; Hall, M. B.; Zheng, S. L.; Chen, Y. S.; Nocera, D. G. Photocrystallographic observation of halide-bridged intermediates in halogen photoeliminations. *J. Am. Chem. Soc.* 2014, 136, 15346–15355.

[71] Han, C.; Zhu, X. L.; Martin, J. S.; Lin, Y. X.; Spears, S.; Yan, Y. Recent progress in engineering metal halide perovskites for efficient visible-light-driven photocatalysis. *ChemSusChem* 2020, 13, 4005–4025.