Evaluating Two Annotated Corpora of Hindi Using a Verb Class Identifier

Neha Dixit
Centre for Technology Studies,
MGAHV, Wardha
bhunehadixit@gmail.com

Narayan Choudhary
ezDI, LLC.
choudharynarayan@gmail.com

Abstract

[In the past few years, Indian languages have seen a welcome arrival of large parts of speech annotated corpora, thanks to the DIT funded projects across the country. A major corpus of 50,000 sentences in each of the 12 of major Indian languages is available for research purposes. This corpus has been annotated for parts of speech using the BIS annotation guideline. However, it remains to be seen how good these corpora are with respect to annotation itself. Given that annotated corpora are also prone to human errors which later affect the accuracies achieved by the statistical NLP tools based on these corpora, there is a need to open evaluation of such a corpus. This paper focuses on finding annotation and other types of errors in two major parts of speech annotated corpora of Hindi and correcting them using a tool developed for the identification of verb classes in Hindi.]

1 Introduction

This paper emerges from a task meant to automatically identify the syntactico-semantic class of Hindi verbs occurring in a sentence. A verb class identifier was developed that took the parts of speech annotated text as input and identified the class of the verbs marked as main verbs in the text. Section 1 and 2 details the development of this automated identifier. This tool was run against two corpora, first the Hindi corpus developed by Microsoft Research India (MSRI) (Bali et al., 2010) and distributed by the Linguistic Data Consortium (LDC)¹ and second, the Hindi corpus developed under the consortia project called Indian Language Corpora Initiative (ILCI) (Choudhary et al., 2011) and distributed by the TDIL². While the MSRI corpus is annotated in the IL-PoST framework (Baskaran et al., 2008) of parts of speech annotation, the ILCI corpus is annotated using a tagset now commonly known as the BIS (Bureau of Indian Standards) tagset. Both of these tagsets are conceptually hierarchical and therefore have top level categories for each of the classes of words. For verbs, both of these tagsets categorize them as either main verb or auxiliary verb. While the IL-POST also includes the morphological information for each of the verbs annotated, the BIS tagset requires only the top level categorization of main or auxiliary verb. We show that both of these corpora have a high number of errors of both omission and commission which should be taken care of before these corpora are used as gold data for further NLP tasks such as statistical parts of speech tagging and so on.

The second section gives an overview of the verb classification used to develop the verb class identifier followed by the third section detailing the development of the knowledge base. The fourth and fifth sections detail the ambiguities arising out of the use of a knowledge base for verb classification and provide a solution for the most frequent cause of the ambiguities. The last sections present the results achieved after evaluating the verb class identifier against the LDC and the ILCI corpora followed by an error analysis.

¹ https://catalog.ldc.upenn.edu/LDC2010T24
² http://tdil-dc.in
2 Verb Classification

While we base the classification of verbs on the traditional classification into transitive and intransitives, we extend the category into multiple sub-classifications. Verbs are classified into a total of 13 categories. The classification we use emanates from the practical use envisaged for such a knowledge base. While the major categories are traditionally four in number (namely, intransitive, transitive, causative and double causative), we further classify the intransitives into 7 sub-classes based on some diagnostic tests which govern their syntactic function and affect or validate what constructions they allow in a sentence.

2.1 Classification of Intransitive Verbs

There are three diagnostic tests applied to classify the intransitive verbs. These diagnostic tests are as follows.

2.1.1 Allows ergative –ne

We know that some verbs require the marking of ergative case marker –ne in the simple past sentences in Hindi while with the others the same is not allowed. While this is always required with the transitive, causative and double causative verbs, the same does not always happen with the intransitive verbs.

For example, in the following two sentences where the main verb is intransitive, the use of –ne makes the sentence ungrammatical:

*Hindi मोहन ने बहुत सोया
IPA: mohən ne bahut soja:
Gloss: Mohan ERG very sleep-PST-MSG
Meaning: Mohan slept a lot

*Hindi सुमन के सिर ने बहुत चक्रा
IPA: sumə ke sɪr nə bahut chasra:
Gloss: Suman’s head reeled a lot
Meaning: Suman’s head reeled a lot.

But in the sentences below where again the main verb is intransitive, the use of –ne marking is perfectly fine:

Hindi शेर ने जोर से दहशा
IPA: sher ne dʒor se dhaʃa:da:
Gloss: lion ERG strong ASSOC panic-PST-MSG
Meaning: The lion roared strongly.

2.1.2 Allows Adjectival Use of the Perfective Form

All the intransitive verbs in their perfective forms cannot be used as an adjective. While some verbs allow this, others do not. For example, in the following sentences, the perfective forms of the verbs are being used as adjectives to modify nouns or noun phrases following it:

Hindi ती खान पर गए लोगो की तरह
IPA: ti:rt ʰ jaːt pa goe hu lɔgo ki:
Gloss: pilgrimage on go-PFT be people of TPF
Meaning: People who have gone on a pilgrimage...

Hindi संत नीर बे लोगो की
IPA: ənt ɡire be lɔgo ki:
Gloss: Saint be-PFT people AC
Meaning: Saints help the fallen people.

But if we use the same form of some other verbs as adjectives, the sentence becomes ungrammatical or sounds awkward:

*Hindi कांपा हुए लड़का लिया
IPA: kãːpa huaː ləɖkaː lɜːja:
Gloss: shiver-PST be-PFT boy fall go-PST
Meaning: The boy, who had shivered, fell.

*Hindi घाटी में चीखा लड़ मर ग
IPA: ʤʰaʈ mɛ ci:kʰaː ləɖ mə rə ga:
Gloss: bush LO stick-PST bal lose go-PST
Meaning: The ball stuck in the bush got lost.
The boy, who had shrieked in the valley, died.

The boy, who had run, won.

The boy, who could not roar.

He could not get bewildered.

Taking these three diagnostics to test as the base of the sub-classification within intransitive verbs, we come with a total of 13 classes of verbs as noted in the table below:

Verb Class	Verb Class Label
Causative	CAUS
Copular Verb	COP
Second Causative	DB_CAUS
Intransitive (+Adjectival)	INTR_ADJ
which they appear. An analysis of the verbs present in the knowledge shows that it has 1260 words that occur twice in the corpus. These words are possible causes of ambiguity resulting into incorrect assignment of class to the verbs. Our analysis shows that these ambiguities could be of 5 different types as mentioned below.

4.1 Ambiguity: Verb Root vs. Perfective Verb

This occurs mainly because of a derivational process used in Hindi and several other Indian languages where a valency is added by vowel lengthening. For example while the verb जग/ʤəg, an intransitive verb, means “to wake up” the verb root जगा/ʤəga, a transitive verb, means “to awaken”. While जगा/ʤəga is a verb root, it is also the perfective inflectional form of the verb root जग/ʤəg and this way जगा/ʤəga gets two verb classes which need to be resolved. While a solution to disambiguate this type of ambiguity has been implemented as described in by analysing the verb group patterns (as mentioned in the section below), the other types of ambiguities (described below) have to be taken care of at the word level.

4.2 Ambiguity: Conjunctive Participle vs. Perfective Verb

Another type of ambiguity which has a chance of becoming frequent if the genre of the corpus under test is of non-formal kind is that conjunctive participles can get confused with the perfective of the verbs ending on consonant -क/-k. Conjunctive participles are usually formed by adding the auxiliary verb –कर/-kər to any verb root and give a sense of perfective aspect to the verb. While the formal way of creating the conjunctive participle is to either attach -कर/-kər to the verb root itself or juxtaposing it afterwards, informally the variant -के/-ke is used. Thus we can have खाकर/kəkər and खाके/kəke having the same sense and used interchangeably. Except for a few frequent use of this variant such as खाके/kəke, रोके/roke, कसके/kaske, etc. most of the time this variant is not used. And this is why we have ignored finding out a rule-based solution to disambiguate this.

4.3 Ambiguity: Perfective Verb vs. Infinitive Verb

Some verbs that end with consonant –न/-n as in छाना/cʰaːna, जाना/ʤaːna etc. may be sharing the same grapheme and may be homophonic with some other verb’s infinitive form. Thus a verb like छाना/cʰaːna: may have two meanings, the first being the perfective of the verb root छान/cʰaːn (to filter) and another as the infinitive form of the verb root छा/cʰa: (which means “to cover the roof”). However, this type of ambiguity is also limited and count only 3 in Hindi. For this very reason, we have also ignored disambiguating this for the time being.

4.4 Ambiguity: Perfective Verb vs. Imperfective Verb

There are also a couple of verbs which can be interpreted as imperfective of a verb root and perfective of another. There are two verb root pairs that create this problem. The first pair is जीतना/ʤiːtna: and जीना/ʤiːna:, meaning respectively “to win” and “to live”. The second pair is बरतना/bərətna बरना/bərna, meaning respectively “to follow” and “to choose”.

4.5 Ambiguity: Verbs in multiple classes

While it is very common in other languages such as English that the same verb is used both as transitive and intransitive, the same is very rare in Indo-Aryan languages like Hindi. Out of all the verbs that we have analysed, we found only one verb that can be used both as transitive and intransitive. This verb is ऐंठना/ɛ̃ʈʰna: (meaning “to writhe” or “to snatch by deceit”).

5 Root vs. Perfective: Disambiguation

Taking a cue from the work done on identification of verb groups in Hindi by Choudhary et al. (2011a), we perform an analysis of the total verb group templates as defined here. Choudhary identifies a total of 675 templates covering all the verb groups possible in Hindi, including the compound verb constructions. As we know that for each of the verb groups found in Hindi, the class is defined by the main verb and this main verb occurs at the start of the verb groups. If we know the morphological type of the main verb (knowing whether it is verb root or a perfective form), we can identify the class of the verb with the help of the verb groups.
An analysis of the 675 verb group templates shows that there are only 30 such templates where both verb root (VR) and perfective verb (VR_pft) can stay. This means we basically have to find out the disambiguation rules for only these verb groups. The rest are taken care of automatically as proper, grammatical structure of Hindi would not allow them. These verb group templates are noted in the table below:

Template with First word as either VR or VR_pft	Ambiguity
VR_pft+ja+rah_pft+ho_fut	Yes
VR_pft+ja_pft+ho_impf+prs_aux	Yes
VR_pft+ja+rah_pft+prs_aux	Yes
VR_pft+ja_inf+cahiye+pst_aux	Yes
VR_pft+ja+rah_pft+pst_aux	Yes
VR_pft+ja_inf+cahiye	No
VR_pft+ja+rah_pft	Yes
VR_pft+ja+rah_pft+prs_aux	Yes
VR_pft+par_pft+prs_aux	Yes
VR_pft+ja_pft+pst_aux	Yes
VR_pft+par_pft+pst_aux	Yes
VR_pft+ja+rah_pft	Yes
VR_pft+ja_fut	Yes
VR_pft+ja_impf	Yes
VR_pft+ja_opt	Yes
VR_pft+ja_pft	Yes
VR_pft+rah_pft	Yes
VR_pft+VINF	Yes
VR_pft+VINF_imp	Yes
VR_pft+ho_fut	No
VR_pft+ho_impf	No
VR_pft+ho_opt	No
VR_pft+ho_pft	No
VR_pft+kar_fut	No
VR_pft+kar_imp	No
VR_pft+kar_impf	No
VR_pft+rah_fut	No
VR_pft+rah_imp	No
VR_pft+rah_opt	No
VR_pft+rakh_pft	No

Table 3: Possible Ambiguous Verb Group Templates

Now, if we closely analyse these auxiliary verbs in the given templates, we find that these auxiliaries actually do not allow perfective verbs to occur as their main verbs. This conclusion is based on a corpus study done on the EMILLE (McEnery et al., 2000) corpus and the Gyan-Nidhi corpus as well as some exact searches done on a prominent search engine. For example, in the phrase जगा जाएगी, the main verb जगा, or for that matter any other verb can never be inflected for the perfective aspect. Similar is the case with the place of other main verbs in the templates having ambiguity (noted with “yes” in table V above).

6 Evaluating against Corpora

The tool was given two corpora as input– the LDC and the ILCI. A summary of the error analysis on the results achieved has been provided here.

6.1 The LDC Corpus

LDC corpus contains a total of 4839 sentences annotated in the IL-PoST framework. When run against the verb class identifier, we get the following results:

- Total Main Verbs Found: 8,386
- Total Main Verbs Classified: 8,048
- Unclassified Main Verbs: 338
- Error Percentage: 4.030527

The 4% of error in identifying a verb class for a verb marked as VM emerges due to four different reasons as noted below:

Error Type	Frequency
Spelling Error	258
Annotation Error	39
Tokenization Error	18
Echo-Words	23
Total Errors	338

6.2 The ILCI Corpus

The Hindi corpus of ILCI contains 50,000 sentences from two domains of health and tourism. Summary of the error analysis done on the output of this corpus is given below:

- Total Main Verbs in ILCI: 87,801
- No. of Main Verbs Classified in ILCI: 82,232
- No. of Main Verbs Unclassified in ILCI: 5,569
- Accuracy on the ILCI Corpus: 93.66
- Error Percentage: 6.34

Further analysis breaks down the types of errors found in this evaluation. This has been shown in the table below:

Error Type	Tourism	Health	Overall	% of Errors
Annotation	3396	1721	5117	0.91604
7 Error Types

Evaluating against the ILCI corpus and following the error analysis, we find that there are four types of errors in the annotated text. “KB errors” are errors of knowledge base used in the verb classification tool itself. A summary of the errors for each of the tokens at the annotation level are shown below:

Correct Tag for VM	Unique Words	Frequency of Errors
JJ	420	3,543
NN	660	1,868
Echo	120	254
KB	41	213
Spelling	109	127
Tokenization	26	30
PP	7	28
RB	6	11
RPD	2	9
DMD	5	5
FW	1	1
PRP	1	1
CCD	1	1
DMR	1	1

Table 5: Error Types and their Frequency in the ILCI Corpus

The four major types of errors are mentioned below.

7.1 Annotation Error

Annotation errors are the errors in the assignment of the parts of speech tags to the text. As seen in the table above, the highest number of words marked incorrectly as main verb adjectives which should have been marked as JJ. This is followed by words that should have been marked as NN but are marked as VM. Some prepositions, adverbs, particles and demonstratives are also marked as VM. Some examples such errors are noted below:

Actual Tag	Example Words
JJ	स्थिति, पैदा, उपलब्धि, पता, स्थापित, प्राप्ति, खाद, प्रदान, चिप, शुरु, तैयार, सेवन, निमित्त
NN	िनिमार्ण, मािलश, याद, इस्तेमाल, बढावा, बढावा
PP	पर, बाहर, सामने, पास, अंदर, आर-पार, का, पारकर
RB	खासकर, नहीं, स्वरु, ऐसे, खड़े-खड़े, सिफर
RPD	िससे, यह, यहाँ, वहाँ, वही

Table 6: Examples of Annotation Errors

7.2 Echo word

Echo-words are a type of reduplication used as a method of word formation for emphasis and other semantic purposes. Using the echo-formation as the word formation process, a non-word is used together with the actual word to add a meaning to it. This phenomenon is seen all the content class words of Indian languages. However, when it comes to be captured at the level of language computation, this has not been covered yet in most of the cases. The current knowledge base used in the verb class identifier also does not cover the echo-words. Therefore, the main verbs when used in their echo-formation forms do not get detected. Some examples of such words as shown in the examples below:

खाने-पीने, चलने-िफरने, कूट-पीसकर, आने-जाने, पहुँचते-पहुँचते, उठने-बैठने, िमलता-िजुलता

7.3 Spelling Error

The ILCI corpus contains text that is usually corrected for any spelling errors. But some errors have still been found in our analysis. Some of these spelling errors are as follows:

होगɅ, धɉ, बढने, िभगɉ, रखनɅ, करेगɅ, करɉ, चढ़कर

7.4 Pre-Processing Error

Parts of speech annotation is usually done after the text is pre-processed and tokenized properly. The same is true with the ILCI corpus as well. However, some errors of pre-processing/tokenization are still left in the text itself. Some examples are shown below:
8 Conclusion

NLP community in India must be elated to have received a big annotated corpus in many Indian languages, including Hindi. These corpora really help a lot in developing next generation of NLP tools for various purposes. However, these corpora are labor intensive tasks and prone to human errors. Errors have been noted in almost all of the human annotation tasks including the Penn Treebank (Manning, C., 2011), the same is true also for other corpora. We have shown here a method to check the accuracy of the tags assigned to main verbs, done the error analysis and pointed out the errors that should be taken care of in the next release of the ILCI corpus and the LDC corpus so that users of the corpora do not need to do the same task again. The verb class identifier tool we used to mark the possible errors can also be used to check the accuracy of any other Hindi corpus annotated for parts of speech tags, thereby alleviating the time taken for error analysis.

Reference

Bali, Kalika, Monojit Choudhury, Priyanka Biswas, Girish Nath Jha, Narayan Kumar Choudhary and Maansi Sharma. 2010. Indian Language Part-of-Speech Tagset: Hindi. Linguistic Data Consortium, Philadelphia.

Baskaran, Sankaran, Kalika Bali, Monojit Choudhury, Tanmoy Bhattacharya, Pushpak Bhattacharyya, Girish Nath Jha, S. Rajendran, K. Saravanab, L. Sobha and K.V. Subbarao. 2008. A Common Parts-of-Speech Tagset Framework for Indian Languages. In: Nicoletta Calzolari (Conference Chair), Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios Piperidis, Daniel Tapias (Eds.) Proceedings of the Sixth International Language Resources and Evaluation (LREC’08), Marrakech, Morocco.

Choudhary, Narayan and Girish Nath Jha. 2011. Creating Multilingual Parallel Corpora in Indian Languages. In: Proceedings of 5th Language Technology Conference, Poznan.

Choudhary, Narayan, Girish Nath Jha, Pramod Pandey. 2011a. A Rule based Method for the Identification of TAM features in a PoS Tagged Corpus. In: Proceedings of 5th Language Technology Conference, Fundacja Uniwersytety im. A. Mickiewicza, Poznan.