Pharmacogenetic analysis of cinacalcet response in secondary hyperparathyroidism patients

Background: Secondary hyperparathyroidism (SHPT) is one of the major risk factors of morbidity and mortality in end-stage renal disease. Cinacalcet effectively controls SHPT without causing hypercalcemia and hyperphosphatemia. However, there is significant inter-individual response variance to cinacalcet treatment. Therefore, we aimed to evaluate the genetic effects related with parathyroid hormone regulation as factors for cinacalcet response variance.

Methods: Patients with a diagnosis of SHPT based on intact parathyroid hormone (iPTH) >300 pg/mL on dialysis were included in this study. They were over 18 years and have been treated by cinacalcet for more than 3 months. Responders and nonresponders were grouped by the serum iPTH changes. Twenty-four single nucleotide polymorphisms of CASR, VDR, FGFR1, KL, ALPL, RGS14, NR4A2, and PTHLH genes were selected for the pharmacogenetic analysis.

Results: After adjusting for age, sex, and calcium level, CASR rs1042636 (odds ratio [OR]: 0.066, P=0.027) and rs1802757 (OR: 10.532, P=0.042) were associated with cinacalcet response. The association of haplotypes of CASR rs1042636, rs10190, and rs1802757; GCC (OR: 0.355, P=0.015); and ATT (OR: 2.769, P=0.014) with cinacalcet response was also significant.

Conclusion: We obtained supporting information of the associations between cinacalcet response and CASR polymorphisms. CASR single nucleotide polymorphisms (SNPs) rs1802757, rs1042636, and haplotypes of rs1042636, rs10190, and rs1802757 were significantly associated with cinacalcet response variance.

Keywords: CASR, calcium sensing receptor, SHPT, genetic polymorphisms, haplotype, single nucleotide polymorphisms

Introduction

Dysregulation of mineral homeostasis due to failing kidney function leads to decreased renal phosphate excretion, elevated fibroblast growth factor 23 level, and reduced synthesis of calcitriol. These changes lead to consistent secretion of parathyroid hormone (PTH) contributing to the development of parathyroid hyperplasia and secondary hyperparathyroidism (SHPT) in end-stage renal disease. SHPT with elevated calcium and phosphate levels contributes to the development of renal osteodystrophy, erythrocytosis, resistance, vascular calcification, and left ventricular hypertrophy. These clinical features are strongly associated with increased morbidity and mortality in dialytic end-stage renal disease population.

It is therefore critical to maintain optimal level of PTH in these patients. However, because of the complicated problems of lowering PTH with simultaneously controlling imbalanced serum levels of calcium and phosphate, traditional therapies of phosphate binders and vitamin D analogues for managing SHPT have all too often led to clinical problems, including hypercalcemia.
hyperparathyroidism, and refractory hyperparathyroidism or over-suppression of PTH.5

One of the newer treatment options for SHPT is cinacalcet which increases the sensitivity of the calcium-sensing receptor (CaSR) on the parathyroid gland cells to extracellular calcium,6 resulting in a decreased calcium set point and circulating PTH levels.6–9 The cinacalcet treatment resulted in 41% of SHPT patients achieving PTH and Ca × P levels recommended by the Kidney Disease Outcomes Quality Initiative (K/DOQI) guidelines6 whereas fewer than 10% of the patients treated with phosphate binders and vitamin D analogs reached optimal control.10 Moreover, cinacalcet reduced the risk of parathyroidectomy by 91%.11 Cinacalcet treatment is effective to the extent that it can be utilized as an alternative to surgical intervention in some patients.12,13 Despite the overall response to cinacalcet being promising in a number of clinical trials,14–16 the therapeutic efficacy has a significant inter-individual variability of 12.1%–46% PTH reduction, representing drug resistance.17–21 The factors associated with the drug resistance include delayed therapy, persistent hyperphosphatemia, nodular hyperplasia,22 and reduced expression of CaSR and vitamin D receptor (VDR).23–25 In particular, genetic polymorphisms affecting CaSR and VDR expression have been considered as factors for drug resistance. The genetic polymorphism of CASR Arg990Gly (c.2968A > G, rs1042636) was associated with different cinacalcet response.26 Several other studies27–29 on CASR presented the possible association of CASR rs1042636 and rs2221266 polymorphisms with PTH level difference. VDR gene polymorphisms of rs7975232 (Apa I), rs731236 (Taq I), and rs1544410 (Bsm I) were also associated with PTH regulation.30–32 These studies presented the clinical importance of genetic polymorphisms in PTH regulation. However, the results available so far show limited evidence for genetic polymorphisms associated with cinacalcet response involving a small number of patients and not including phosphate and bone regulation-related genes in PTH homeostasis. Thus, we aimed to evaluate the frequency of variants of study genes related to PTH regulation and the association between SNPs and haplotypes of genes and cinacalcet response in Korean SHPT patients on dialysis.

Methods

Study subjects

Study patients were selected from a tertiary university hospital in Seoul, Korea, between June 2011 and July 2014. Patients with a diagnosis of SHPT based on intact parathyroid hormone (iPTH) >300 pg/mL were included in this study. The patients were over 18 years and have been treated by cinacalcet for more than 3 months. All these patients were on either hemodialysis or peritoneal dialysis, receiving optimal medical therapy in the form of dietary restriction, phosphate binders, or vitamin D sterols. The main exclusion criteria were serious concomitant hepatic disease, active cancers, or taking strong CYP3A4 inhibitors, such as itraconazole, clarithromycin, diltiazem, and verapamil.

The study complies with the Helsinki Declaration and was approved by the Ethics Committee of the Seoul National University Hospital (IRB #: H-1408-082-604). Written informed consents were obtained from all patients.

Data collection

Demographic information on the cause of chronic kidney disease (CKD), mode and duration of dialysis, concomitant drugs, and biochemical parameter levels of serum calcium, phosphorus, alkaline phosphatase, iPTH, creatinine, estimated glomerular filtration rate using Modification of Diet in Renal Disease equation, albumin, and hemoglobin at the start and during 3 months of cinacalcet treatment was obtained. Responders and nonresponders were grouped by their serum iPTH changes. Nonresponders were grouped as the patients whose iPTH levels increased even after 3 months of cinacalcet treatment.33,34 Otherwise, those patients whose iPTH values showed any reduction during the period of 3-month cinacalcet treatment were defined as responders.

Serum calcium and phosphate levels were measured by standard methods; iPTH was measured using a double-antibody immunoradiometric assay for the quantitative determination of intact biological chain of 84 amino acids of PTH in human serum (ELSA PTH, Cisbio Bioassays, Codolet, France). Serum calcium was reported as albumin corrected values throughout this research.

Genotype selection and analysis

Twenty-five SNPs in nine genes which are previously known as related to calcium, phosphate, and bone metabolism were selected from the results of previous literatures and databases. Of these genes, CASR26–29,35–37 and VDR38–40,43,45 involved in calcium regulation; FGFR1,46,47 KL,42 RGSI4,43,44 and SLC34A143 related to phosphate serum concentration; and ALPL40,46 NR4A248,49 and PTHLP40,53 related to bone formation were evaluated. Peripheral blood samples were collected in ethylenediaminetetraacetic acid (EDTA) containing tubes and stored at −80°C before DNA isolation. The SNaPshot assay was performed according to the manufacturer’s instructions (ABI PRISM SNaPshot Multiplex kit, Thermo Fischer

Drug Design, Development and Therapy 2016:10

submit your manuscript | www.dovepress.com

Dovepress

2212 Drug Design, Development and Therapy 2016:10
Statistical analysis

The Hardy–Weinberg Equilibrium of each SNP was tested using the goodness-of-fit chi-square test to compare the expected frequencies of genotypes in controls; SNPs with \(P > 0.05 \) were considered to be in Hardy–Weinberg Equilibrium. The independent-samples \(t \)-test and Mann–Whitney test were used to determine the differences between parametric and nonparametric characteristics of patients and biochemical parameter changes. The chi-square or Fisher’s exact test was performed to assess the difference between categorical variables of the patient characteristics. Unconditional logistic regression analysis and chi-square or Fisher’s exact test were used to evaluate the frequency analysis of polymorphisms of the genes and the relationships between different genotypes and cinacalcet response. Statistical analysis was carried out using IBM SPSS Statistics 21.0 for Windows (SPSS Inc., IBM Corporation, Armonk, NY, USA). Haplotypes and haplotype frequencies were calculated using Haplovew software (version 4.2, Massachusetts Institute of Technology, Cambridge, MA, USA). The haplotype with \(P < 0.05 \) was considered statistically significant.

Results

Patient data

A total of 70 dialysis patients with SHPT were included in the biochemical parameter analysis. Baseline characteristics were well balanced between the responders and nonresponders except for baseline calcium levels (\(P = 0.001 \)). The baseline iPTH for 68 patients was 622 (300–1,493) pg/mL versus 601 (316–1,183) pg/mL (\(P = 0.375 \)) for responders versus nonresponders, respectively. The parathyroid gland hyperplasia or adenomatous state did not differ between two groups (\(P = 0.726 \)). The amount of vitamin D (calcitriol or paricalcitol) taken by the patients (\(P = 0.116 \)) and the number of patients on phosphate binders and vitamin D analogues were not different between the two groups (\(P = 0.116 \) and \(P = 1.000 \), respectively) (Table 1). The maintenance dose of cinacalcet ranged from 12.5 to 100 mg per day, depending on patient’s status. The dose was higher in nonresponders: responders 25 (12.5–75) mg/day versus nonresponders 50 (25–100) mg/day (\(P < 0.001 \)).

Biochemical parameter changes

The biochemical parameter changes between baseline and 3-month treatment are summarized in Table 2. Cinacalcet significantly reduced serum iPTH levels in 53 responders. The percent iPTH changes between baseline and 3-month treatment were \(-42.29 (-97.41 \text{ to } 9.23) \% \) versus 6.16 (0.90 to 45.25) \% in responders versus nonresponders, respectively (\(P < 0.001 \)). At 3-month treatment, 39.6\% (21/53) of responders had an iPTH level below 300 pg/mL, the level recommended by the K/DOQI guidelines.9 The percent change of serum calcium concentration at 3-month treatment was \(-5.75 (-25.67 \text{ to } 15.81) \% \) in responders compared to \(-7.13 (-19.09 \text{ to } 1.67) \% \) in nonresponders (\(P = 0.182 \)). The percent change of serum phosphorus reduction in responders was \(-9.84 (-69.23 \text{ to } 69.43) \% \) compared to \(-8.42 (-33.33 \text{ to } 72.43) \% \) in nonresponders (\(P = 0.170 \)).

Frequency analysis of genetic polymorphisms

The loci, allele, and minor allele frequency (MAF) results are summarized in Table 3. The observed MAFs in \(CASR \) rs1042636 and rs1802757 were 45.8\% and 35.8\%, respectively. \(VDR \) rs7975232 (Apa I) and rs1544410 (bsm I) were 16.0\% and 6.3\%, respectively, whereas rs2228570 (Fok I) was 38.2\%.

Association with cinacalcet response

Association of 24 SNPs with iPTH

The association of 24 SNPs with cinacalcet response was evaluated (Table 4). The chi-square test showed that \(CASR \) rs1042636 had a significant difference in genotype frequencies between responder and nonresponders (\(P = 0.036 \)) but the MAF was not significant (\(P = 0.075 \)). The chi-square test also proved that \(CASR \) rs1042636 had a significant association with cinacalcet response (odds ratio [OR]: 0.267, \(P = 0.035 \)) in the dominant genetic model (Table 5). Unconditional logistic regression analysis showed that \(CASR \) rs1042636 (OR: 0.074, \(P = 0.025 \)) (95\% confidence interval [CI]: 0.008–0.721) and rs1802757 (OR: 0.116, \(P = 0.042 \)) (95\% CI: 1.077–69.075) had an association with the cinacalcet response in the genotype model, indicating that the A to G substitution of rs1042636 decreased the risk of nonresponse by 93\%, whereas the C to T substitution of rs1802757 increased the risk of nonresponse by approximately eight times. After adjusting for age, sex, and baseline calcium level, \(CASR \) rs1042636 (OR: 0.066, \(P = 0.027 \)) and rs1802757 (OR: 10.532, \(P = 0.042 \)) were associated with cinacalcet response.
Table 1 Demographic characteristics at baseline for included subjects (n=70)

Characteristics	Total (N=70)* (%)	Grouped by cinacalcet response (N=68)** (%)	P-value	
	Responders (n=53)	Nonresponders (n=15)		
Male sex, n (%)	32 (45.7)	27 (45.9)	4 (26.7)	0.096
Age, years, median (range)	50 (21–75)	49 (21–75)	52 (24–71)	0.325
BMI, kg/cm², median (range)	22.37 (16.01–31.45)	22.08 (16.01–31.00)	23.29 (17.76–27.38)	0.206
Cause of CKD, n (%)				
DM	12 (17.2)	7 (13.2)	4 (26.7)	0.680
HTN	10 (14.3)	7 (13.2)	2 (13.3)	1.000
GN	28 (40.0)	22 (41.5)	6 (40.0)	0.916
Others	20 (28.6)	17 (32.1)	3 (20.0)	0.762
Mode of dialysis, n (%)				
HD	19 (27.1)	11 (20.8)	7 (46.7)	0.093
PD	40 (57.1)	33 (62.3)	6 (40.0)	0.124
Both	11 (15.7)	9 (17.0)	2 (13.3)	1.000
Dialysis duration, median (range)	97 (38–195)	77.5 (15–300)	97 (38–195)	0.363
Use of phosphate binder/calcium supplement, n (%)	62 (88.6)	48 (90.6)	14 (93.3)	1.000
Lab values, median (range)				
iPTh (pg/mL)*	620 (300–1,493)	622 (300–1,493)	601 (316–1,183)	0.375
Albumin corrected calcium (mg/dL)	9.84 (7.4–13.52)	9.72 (7.40–13.52)	10.50 (9.18–11.88)	0.001
Phosphorus (mg/dL)	5.85 (3.40–12.80)	5.70 (3.50–12.80)	6.00 (3.40–7.50)	0.673
Ca × P (mg/dL²)	58.35 (32.41–94.72)	57.01 (32.41–94.72)	61.80 (37.38–71.10)	0.787
ALP (IU/L)	106 (41–393)	100 (41–381)	124 (61–762)	0.252
Hb (g/dL)	10.50 (7.00–14.60)	10.70 (7.00–14.00)	10.10 (7.70–14.60)	0.107
Albumin (g/dL)	3.80 (2.40–11.50)	3.80 (2.40–5.10)	3.90 (3.10–4.40)	0.953
Serum creatinine (mg/dL)	11.69 (4.30–20.66)	12.03 (4.30–20.66)	10.85 (4.35–18.12)	0.248
GFR (ml/min/1.73 m²)	3.80 (2.10–15.7)	3.80 (2.50–13.30)	3.80 (2.10–15.70)	0.842
Comorbidities related with CKD-MBD, n (%)	6 (8.6)	5 (9.4)	1 (6.7)	1.000
Osteoporosis	6 (8.6)	5 (9.4)	1 (6.7)	1.000
Osteopenia	22 (31.4)	18 (34.0)	3 (20.0)	0.361
Fracture	11 (15.7)	7 (13.2)	4 (26.7)	0.243
PTH hyperplasia or adenoma	15 (21.4)	12 (22.6)	3 (20.0)	0.726
HTN	51 (72.9)	39 (73.6)	10 (66.7)	0.745
IHD, HF, AF, LVH	25 (35.7)	16 (30.2)	8 (53.3)	0.666
Comorbidity related with neoplasm	13 (18.6)	7 (13.2)	5 (33.3)	0.442

Notes: *A total of 70 patients were included in the final analysis. **A total of 68 patients who had available iPTh level were included in the cinacalcet response analysis. Significant results are marked in bold.

Abbreviations: AF, atrial fibrillation; ALP, alkaline phosphatase; BMI, body mass index; CKD, chronic kidney disease; CKD-MBD, chronic kidney disease-mineral bone disease; DM, diabetes mellitus; GFR, glomerular filtration rate; Hb, hemoglobin; HF, heart failure; HTN, hypertension; GN, glomerulonephritis; HD, hemodialysis; IHD, ischemic heart disease; iPTh, intact parathyroid hormone; LVH, left ventricular hypertrophy; PD, peritoneal dialysis; PTh, parathyroid hormone.

Association of CASR haplotypes with iPTh

The distribution of haplotypes was constructed for three genes and assessed for the association with the cinacalcet response. Linkage disequilibrium structures were designated by the D' value shown in Figure 1. Each of CASR, VDR, and ALPL genes included one haplotype block. The correlation coefficient (r^2) between rs1042636 and rs1802757, rs1042636 and rs1802757, and rs10190 was significant.

Table 2 Comparison of biochemical parameter percent changes between baseline and 3-month treatment with cinacalcet (n=68)

Parameter	Responders Median (range) (%)	Nonresponders Median (range) (%)	P-value*
ΔiPTh (pg/mL)	−42.29 (−97.41–[−9.23])	6.16 (0.90–45.25)	<0.001
ΔCalcium (mg/dL)	−5.75 (−25.67–15.81)	−7.13 (−19.09–1.67)	0.182
ΔPhosphorus (mg/dL)	−9.84 (−69.23–69.43)	−8.42 (−33.33–72.43)	0.170
ΔCa × P (mg/dL²)	−14.70 (−71.13–68.70)	−8.84 (−36.99–43.70)	0.296
ΔALP (IU/L)	1.60 (−28.48–146.58)	10.71 (−29.26–93.89)	0.211

Notes: The 3-month treatment value for biochemical parameters is defined as the mean value during baseline to 3-month treatment. *Descriptive P-values were obtained from the independent-samples t-test or Mann–Whitney U-test. Significant results are marked in bold.

Abbreviations: ALP, alkaline phosphatase; PTh, parathyroid hormone.
Table 3 The loci and minor allele frequency (MAF) information of the 24 SNPs in CASR, VDR, FGFR1, KL, RGS14, SLC34A1, ALPL, NR4A2, and PTHLH genes

Gene/SNP	Chromosome position	Alleles	SNP location	Observed MAF/expected MAF	HWE test (P-value)	
CASR	rs1042636	3:122284922	A/G	Exon	0.458/0.2065	0.59
	rs2221266	3:122277969	C/T	Intron	0.410/0.4619	0.97
	rs10190	3:122283689	C/T	3′UTR	0.387/0.4669	0.81
	rs1802757	3:122286284	C/T	3′UTR	0.359/0.1983	0.43
VDR	rs7975232	12:47845054	A/C	Intron	0.160/0.4846	0.87
	rs2228570	12:47879112	C/T	Exon	0.382/0.3285	0.80
	rs1544410	12:47846052	A/G	Intron	0.063/0.2959	0.57
	rs1802757	12:47844285	C/T	3′UTR	0.099/0.0385	0.08
	rs739837	12:47844438	C/A	3′UTR	0.176/0.4942	0.67
	rs9729	12:47842840	C/A	3′UTR	0.169/0.4902	0.71
FGFR1	rs13317	8:38411996	C/T	3′UTR	0.345/0.2250	0.06
KL	rs1207568	13:33016046	C/T	Exon	0.160/0.1601	0.11
RGS14	rs4074995	5:17730742	A/G	Intron	0.236/0.1895	0.20
SLC34A1*	rs3812035	5:177390142	A/C	3′UTR	0.255/0.387	0.01
ALPL	rs1697421	1:21496799	A/G	Exon	0.458/0.3776	0.50
	rs3200254	1:21568242	C/T	Exon	0.424/0.2670	0.66
	rs2242420	1:21578036	C/T	3′UTR	0.155/0.1172	0.47
	rs2242421	1:21578081	A/G	3′UTR	0.345/0.2220	0.46
	rs1697405	1:21577713	G/A	3′UTR	0.268/0.3367	0.43
	rs1697406	1:21577774	A/G	3′UTR	0.148/0.1318	0.49
NR4A2	rs12080	2:15629935	G/A	3′UTR	0.2863/0.169	0.45
PTHLH	rs2796	12:27963178	A/G	3′UTR	0.127/0.0727	0.76
	rs6253	12:27963008	A/G	3′UTR	0.394/0.3243	0.09
	rs6245	12:27963124	A/G	3′UTR	0.085/0.0629	0.40

Note: *Hardy–Weinberg Equilibrium (HWE) test was not satisfied and SLC34A1 rs3812035 excluded for our analysis. Significant results are marked in bold.

Abbreviations: UTR, untranslated region; SNP, single nucleotide polymorphism; MAF, minor allele frequency.

Discussion

In this study, the genotype frequencies of the SNPs related to PTH regulation and the association with cinacalcet response were evaluated. The observed MAFs in CASR rs1042636 and rs1802757 were double the reported frequency in HapMap whereas VDR rs7975232 (Apa I) and rs1544410 (bsm I) showed a lower frequency than that of HapMap. The rs2228570 (Fok 1) showed a similar frequency. Furthermore, the novel findings of our study are that genetic polymorphisms of CASR rs1802757 besides rs1042636 and haplotypes of rs1042636, rs10190, and rs1802757 were significantly associated with cinacalcet response. The gain of function nonsynonymous SNP of rs1042636, which is
Table 4 Comparisons of genotypes and allele frequencies between responders versus nonresponders group

Gene/SNP	Genotype frequency (%)	Minor allele frequency (%)				
	Responders (n=53)	Nonresponders (n=15)	P-value	Responders (n=53)	Nonresponders (n=15)	P-value
	AA/AB/BB	AA/AB/BB	B	B		
CASR						
rs1042636 (A/G)	15.1/50.9/34.0	40/53.3/6.7	0.036	59.4	33.3	0.075
rs2221266 (C/T)	41.5/45.3/13.2	13.3/53.3/33.3	0.086	35.8	60.0	0.111
rs101909 (C/T)	42.3/44.2/13.5	15.4/61.5/23.1	0.190	35.6	53.8	0.149
rs1802757 (C/T)	44.2/48.1/7.7	15.4/61.5/23.1	0.086	31.7	53.8	0.085
VDR						
rs7975323 (G/T)	66.0/28.3/3.8	80/20/0	0.336	17.9	10	0.292
rs2228570 (C/T)	37.7/47.2/15.1	33.3/60.0/6.7	0.585	38.7	36.7	0.920
rs1544410 (A/G)	84.9/15.1/0	93.3/6.7/0	0.672	7.5	3.3	1.000
rs11574129 (T/C)	82.7/13.5/3.8	84.6/15.4/0	0.574	10.5	7.7	1.000
rs3847987 (G/T)	78.8/15.4/3.8	84.6/15.4/0	0.706	11.5	7.7	0.672
rs7398737 (C/A)	61.5/32.7/3.8	76.9/23.1/0	0.762	20.2	11.5	1.000
rs97295 (C/A)	63.5/30.8/3.8	76.9/23.1/0	0.769	19.2	11.5	1.000
FGFR3						
rs13317 (G/A)	47.2/39.6/13.2	46.7/20.0/33.3	0.313	33.0	43.3	0.865
KL						
rs1207568 (C/T)	66.0/32.1/1.9	66.7/33.3/0	0.865	17.0	20.0	0.852
RGS14						
rs4074995 (A/G)	50.9/30.2/11.3 (F:7.6)	60.0/33.3/6.7	0.828	26.4	23.3	1.000
ALPL						
rs1697421 (A/G)	34.0/41.5/24.5	6.7/46.7/26.7	0.491	45.3	50.0	0.666
rs3200254 (C/T)	30.2/45.3/24.5	26.7/53.3/6.7 (F:13.3)	0.837	47.2	33.3	0.818
rs2242420 (C/T)	65.4/32.7/1.9	76.9/23.1/0	0.880	18.3	11.5	1.000
rs2242421 (A/G)	42.3/42.3/15.4	46.2/28.5/15.4	0.964	36.5	34.6	0.955
rs1697405 (G/A)	51.9/49.2/3.8	46.2/28.5/7.7	0.920	26.9	26.9	1.000
rs1697406 (G/A)	67.3/30.8/1.9	69.2/23.1/0 (F:7.7)	0.858	17.3	11.5	1.000
NR4A2						
rs12803 (G/A)	69.2/28.8/1.9	61.5/38.5/0	0.721	16.3	19.2	0.704
PTHLH						
rs2796 (A/G)	73.1/25.0/1.9	84.6/15.4/0	0.589	14.4	7.7	0.672
rs6253 (A/G)	32.7/51.9/15.4	23.1/76.9/0	0.296	41.3	38.5	0.656
rs6245 (A/G)	80.8/19.2/0	92.3/7.7/0	0.439	9.6	3.8	1.000

Notes: Significant result is marked with bold type. F means failure rate (%) to genotype analysis. SNPs are located in 3’ untranslated region and analyzed in 65 patients (responder: 52, nonresponder: 13).

Abbreviations: AA, homozygote major allele; AB, heterozygote allele; BB, homozygote minor allele; SNP, single nucleotide polymorphism.

frequently found in the Asian population (MAF: Han Chinese 52.3%, Japanese 55.8%) and showed the consistent result with the previous study by Rothe et al. The study suggested that an Asian dialysis patient carrying a homozygous (G/G) variant of CASR rs1042636 showed significant iPTH reduction after 2-month cinacalcet treatment compared to another six patients having different genotypes. Several other studies on CASR also presented the possible association of CASR rs1042636 with PTH level difference. However, the functionality of rs1802757 which is located in 3’ untranslated region (UTR) has not been well documented. We can assume that the rs1802757 can be investigated further via similar mechanism. In particular, the SNPs of rs1042636 and rs1802757 and haplotypes of GCC and ATT occurred at high frequencies of 45.8%, 35.9%, 52.9%, and 37.5%, respectively; in our result, the impact of these variants should not be negligible among Asians.

The regulation of PTH secretion and synthesis involves a multitude of pathways. However, in our study, the SNPs of genes other than CASR seemed not to correlate with cinacalcet response. Studies of Casr and Vdr knockout mice can explain part of our results. VDR-deficient mice which developed severe SHPT could be corrected by stabilizing serum calcium concentrations, whereas CaSR-deficient mice with SHPT were not corrected by elevated serum calcium and vitamin D levels and normal serum phosphorus.
Gene/SNP	Genotype model*	OR (95% CI)	OR (95% CI)	OR	OR (95% CI)
CASR					
rs1042636 (A/G)	0.074 (0.008–0.721)	0.395 (0.106–1.479)	I	0.267 (0.074–0.957)	0.139 (0.017–1.142)
	P=0.025	P=0.168			
rs2221266 (C/T)	5.500 (0.839–36.059)	3.826 (0.730–20.044)	I	4.613 (0.945–22.526)	2.813 (0.758–10.431)
	P=0.076	P=0.112			
rs10190 (C/T)	5.500 (0.741–40.803)	4.304 (0.730–20.044)	I	4.033 (0.811–20.056)	1.929 (0.423–8.784)
	P=0.095	P=0.112			
rs1802757 (C/T)	8.625 (1.077–69.075)	3.680 (0.707–19.156)	P<0.042	4.362 (0.878–21.669)	3.600 (0.695–18.646)
	P=0.122				
VDR					
rs7975232 (G/T)	0.365 (0.073–1.823)	I	0.324 (0.065–1.607)	P=0.200	
	P=0.219				
rs2228570 (C/T)	0.500 (0.050–4.978)	1.440 (0.416–4.983)	I	1.212 (0.362–4.059)	0.402 (0.046–3.497)
	P=0.554	P=0.565			
rs1544410 (A/G)	0.402 (0.046–3.497)	I	0.402 (0.046–3.497)	P=0.672	
	P=0.409				
rs11574129 (T/C)	0.438 (0.050–3.853)	I	0.350 (0.041–3.015)	P=0.439	
	P=0.456				
rs3847987 (G/T)	0.741 (0.141–3.905)	I	0.606 (0.118–3.121)	P=0.717	
	P=0.723				
rs739837 (C/A)	0.917 (0.245–3.433)	I	0.815 (0.220–3.021)	P=1.000	
	P=0.897				
rs9729 (C/A)	1.007 (0.268–3.791)	I	0.889 (0.239–3.307)	P=1.000	
	P=0.991				
FGFR1					
rs13317 (C/T)	1.500 (0.355–6.347)	0.429 (0.100–1.828)	I	0.724 (0.229–2.826)	2.045 (0.520–8.044)
	P=0.582	P=0.252			
KL					
rs1207568 (C/T)	1.029 (0.304–3.486)	I	0.972 (0.289–3.276)	P=0.964	
	P=0.963				
RGS14					
rs4074995 (A/G)	0.500 (0.053–4.732)	0.938 (0.267–3.292)	I	0.818 (0.252–2.653)	0.512 (0.057–4.626)
	P=0.546	P=0.920			
ALPL					
rs1697421 (A/G)	1.821 (0.266–12.473)	2.705 (0.497–14.718)	I	2.361 (0.465–11.979)	0.929 (0.220–3.928)
	P=0.541	P=0.250			
rs3200254 (C/T)	0.667 (0.104–4.261)	1.120 (0.282–4.449)	I	0.973 (0.261–3.627)	0.621 (0.121–3.197)
	P=0.668	P=0.872			
rs2242420 (C/T)	0.972 (0.260–3.632)	0.915 (0.246–3.400)	I	0.915 (0.246–3.400)	0.718 (0.178–3.088)
	P=0.967	P=1.000			
rs2242421 (A/G)	0.917 (0.153–5.508)	0.833 (0.221–3.138)	I	0.856 (0.252–2.902)	1.000 (0.186–5.390)
	P=0.924	P=0.788			
rs1697405 (G/A)	1.500 (0.132–17.037)	1.227 (0.347–4.343)	I	1.080 (0.308–3.791)	1.485 (0.141–15.659)
	P=0.744	P=0.751			
rs1697406 (A/G)	1.200 (0.313–4.596)	I	0.686 (0.164–2.866)	P=0.739	
	P=0.790				
NR4A2					
rs12803 (G/A)	1.500 (0.422–5.338)	I	1.250 (0.361–4.327)	P=0.724	
	P=0.531				
PTHHL					
rs2796 (A/G)	0.487 (0.096–2.472)	I	0.452 (0.090–2.280)	P=0.385	
	P=0.385				
rs6253 (A/G)	1.286 (0.341–4.853)	I	1.000 (0.268–3.732)	P=1.000	
	P=0.711				
rs6245 (A/G)	0.350 (0.041–3.015)	I	0.350 (0.041–3.015)	P=0.439	
	P=0.339				

Notes: Significant results are marked in bold type. *Logistic regression analysis. **Chi-square analysis.

Abbreviations: AA, homozygote major allele; AB, heterozygote; BB, homozygote minor allele; CI, confidence interval; OR, odds ratio; PTH, parathyroid hormone; SNP, single nucleotide polymorphism.
which demonstrates that CaSR is the major regulator of PTH secretion and bone abnormalities.\(^\text{52}\) Thus, other genes related to phosphate and bone metabolism do not have much effect on the PTH regulation by cinacalcet.

The maximum dose of cinacalcet approved in Korea is 100 mg/day and the higher titration dose did not control the PTH level in nonresponders. Previous studies suggested that early response to cinacalcet determined the effectiveness of cinacalcet treatment.\(^\text{63,64}\)

Therefore, our study can suggest that CKD patients who carry T allele of rs1802757 and/or ATT haplotype of rs1042646, rs10190 and rs1802757 have high risk of cinacalcet treatment failure and might be candidates for the parathyroidectomy. There have been pharmacoeconomic issues about the indefinite long-term cinacalcet treatment versus one-time surgery. The research in the 5 European countries by Iannazzo et al.\(^\text{65}\) proved that cinacalcet treatment was beneficial when compared to the standard therapy of vitamin D analogues in cost-effectiveness and cost utility model compared to standard therapy of vitamin D analogs. Komaba et al.\(^\text{66}\) presented that cinacalcet was cost-effective in 99.9% of the Monte Carlo simulations in parathyroidectomy ineligible patients, but only 0.9% of the simulations in parathyroidectomy eligible patients. Thus, nonresponders to cinacalcet treatment can have minimal cost-effectiveness compared to surgery in economic issues.

SHPT patients are highly vulnerable to cardiovascular morbidity and mortality and neither parathyroidectomy\(^\text{67}\) nor cinacalcet\(^\text{68}\) reduces the risk of death or major cardiovascular events in SHPT patients undergoing dialysis.

Table 6 Association of PTH regulation by cinacalcet with CASR, VDR, and ALPL haplotypes

Gene/SNP	Haplotype	Haplotype frequency (%)	Case/control frequencies (%)	OR (95% CI)	P-value
CASR					
rs1042636 (A/G)	GCC	0.529	33.3/58.5	0.355 (0.151–0.832)	0.015
rs1802757 (C/T)	ATT	0.375	57.3/31.9	2.769 (1.208–6.347)	0.014
rs10190 (C/T)	ACC	0.064	8.5/5.8	1.786 (0.420–7.597)	0.423
	ACT	0.032	0.9/3.8	–	0.575
VDR					
rs9729 (C/A)	CTGCG	0.815	88.5/79.8	1.940 (0.531–7.081)	0.404
rs11574129 (T/C)	ACTAT	0.092	7.7/9.6	0.783 (0.161–3.814)	1
rs3847987 (G/T)	ATGAT	0.068	3.8/7.6	0.480 (0.057–4.019)	0.686
rs7975232 (C/A)					
rs1697406 (A/G)	GCC	0.638	65.4/63.5	1.088 (0.442–2.678)	0.855
rs2242420 (C/T)	GCA	0.192	23.1/18.3	1.342 (0.475–3.794)	0.578
rs2242421 (A/G)	ATA	0.162	11.5/17.3	0.623 (0.169–2.300)	0.567

Note: Significant results are marked in bold type.

Abbreviations: CI, confidence interval; OR, odds ratio; PTH, parathyroid hormone; SNP, single nucleotide polymorphism.
timely management of SHPT at the initial stage may offer long-term survival in CKD patients. Several studies have proved the efficacy and safety of cinacalcet in stage 3 and 4 CKD patients with SHPT; however, the noticeable PTH decrease followed by hypocalemia and hyperphosphatemia brought about the avoidance of cinacalcet prescription in CKD predialysis patients. Since our findings in this study provided a potential target for the investigation of cinacalcet nonresponder group who have high possibility of parathyroidectomy or refractory SHPT, CASR SNPs may be useful biomarkers to administer cinacalcet in early stage of CKD patients to attain the individualized medical treatment of SHPT.

The main factors of cinacalcet resistance after several months or years of therapy are severely enlarged parathyroid gland (>1 cm), nodular hyperplasia, and the downregulation of CaSR and VDR by uremic status which is resulted by inadequate dialysis. However, the parathyroid hyperplasia did not affect the cinacalcet nonresponsiveness in our short-term study as in previous studies. The dose of vitamin D was not different between two groups and findings from the study by Block et al presented that cinacalcet reduced PTH levels regardless of whether the vitamin D doses were increased, decreased, or unchanged. We performed multiple testing by Bonferroni correction and false discovery rate test. The result turned out that the association of rs1042636 or rs1802757 with PTH change was not significant. However, neither of these methods take into account the correlation of SNPs due to linkage disequilibrium, which tags the genetic variation across gene regions. Our result showed that the three SNPs of CASR, five SNPs of VDR, and three SNPs of ALPL comprise one haplblock each, representing that the SNPs are not independent and highly correlated. Thus, we rather not reflect the multiple testing in the results.

Our study has several limitations as follows. The first, 70 Korean patients are relatively small for genetic association study and diverse ethnic factors could not be considered. This limitation should warrant further large-scale studies to replicate and confirm our findings. The second, the included patients were on either hemodialysis or peritoneal dialysis; the Kt/V (\(\text{K}_{\text{urea}} \times \text{T} / \text{V}_{\text{urea}}\)) value which indicates the dialysis adequacy is not reciprocally conversed between two modalities, so the influence of dialysis could not be evaluated in our study. The third, we focused on the 3-month treatment of cinacalcet, and the result of long-term follow-up study on the mineral bone disease and cardiovascular disease could not be assessed. The last, most patients were on either phosphate binders or vitamin D analogs and the proportion of patients on either drug was not different between two groups, but the possible impact of different amount of concomitant calcium intake cannot be ruled out.

Conclusion

We obtained supporting evidence for an association between cinacalcet response and CASR polymorphisms. We performed a comprehensive search for SNPs within genes associated with PTH regulations to find the precise frequencies and association with cinacalcet response in 70 dialytic SHPT patients for the first time in Korea. CASR SNPs rs1802757, rs1042636, and haplotypes of rs1042636, rs10190, and rs1802757 were significantly associated with cinacalcet response variance.

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2014R1A1A2055734) and BK21 Plus Program in 2015.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Delmez JA, Slatopolsky E. Hyperphosphatemia: its consequences and treatment in patients with chronic renal disease. *Am J Kidney Dis*. 1992;19:303–317.
2. Winchester JF, Rotellar C, Goggins M, Robino D, Rakowski TA, Argy WP. Calcium and phosphate balance in dialysis patients. *Kidney Int Suppl*. 1993;41:S174–S178.
3. Levin A, Thompson CR, Ethier J, et al. Left ventricular mass index increase in early renal disease: impact of decline in hemoglobin. *Am J Kidney Dis*. 1999;34:125–134.
4. Harnett JD, Kent GM, Barre PE, Taylor R, Parfrey PS. Risk factors for the development of left ventricular hypertrophy in a prospectively followed cohort of dialysis patients. *J Am Soc Nephrol*. 1994;4:1486–1490.
5. Locatelli F, Cannata-Andia J, Druke T, et al. Management of disturbances of calcium and phosphate metabolism and chronic renal insufficiency with emphasis on the control of hyperphosphatemia. *Nephrol Dial Transplant*. 2002;17:723–731.
6. Padhi D, Harris R. Clinical pharmacokinetic and pharmacodynamic profile of cinacalcet hydrochloride. *Clin Pharmacokinet*. 2009;48(5):303–311.
7. Druke TB. Modulation and action of the calcium sensing receptor. *Nephrol Dial Transplant*. 2004;19(suppl 5):V20–V26.
8. Nagano N, Nemeth EF. Functional proteins involved in regulation of intracellular Ca(21) for drug development: the extracellular calcium receptor and an innovative medical approach to control secondary hyperparathyroidism by calcimimetics. *J Pharmacol Sci*. 2005;97:355–360.
9. National Kidney Foundation. K/DOQI Clinical Practice Guidelines for Bone Metabolism and Disease in Chronic Kidney Disease. *Am J Kidney Dis*. 2003;42(suppl 3):S1–S201.
10. Quarles LD. Cinacalcet HCl: a novel treatment for secondary hyperparathyroidism in stage 5 chronic kidney disease. *Kidney Int Suppl*. 2005;68(Supplement 96):s24–s28.
11. Cunningham J, Danese M, Olson K, Klassen P, Chertow G. Effects of the calcimimetic cinacalcet HCl on cardiovascular disease, fracture, and health-related quality of life in secondary hyperparathyroidism. Kidney Int. 2005;68(4):1793.

12. Kruse A, Eisenberger U, Frey F, Mohaupt M. The calcimimetic cinacalcet normalizes serum calcium in renal transplant recipients with persistent hyperparathyroidism. Nephrol Dial Transplant. 2005;20:1311–1314.

13. Yang R, Freeman K, Reineke C, et al. Tertiary hyperparathyroidism in kidney transplant recipients: characteristics of patients selected for different treatment strategies. Transplantation. 2012:94:70–76.

14. Goodman W, Hladik G, Turner S, et al. The calcimimetic agent AMG 073 lowers plasma parathyroid hormone levels in hemodialysis patients with secondary hyperparathyroidism. J Am Soc Nephrol. 2002;13:1017–1024.

15. Wüthrich R, Martin D, Bilezikian J. The role of calcimetics in the treatment of hyperparathyroidism. Eur J Clin Invest. 2007;37:915–922.

16. Ballinger AE, Palmer SC, Nistor I, Craig JC, Strippoli GF. Calcimimetics for secondary hyperparathyroidism in chronic kidney disease patients. Cochrane Database Syst Rev. 2014(12):1–82.

17. Kuczer P, Adamczak M, Więcek A. Safety and efficiency of treatment with cinacalcet of haemodialysed patients with chronic kidney disease and secondary hyperparathyroidism. Endokrynol Pol. 2013;64(3):176–181.

18. Li D, Shao L, Jiang W, Zhang W, Xu Y. The efficacy of cinacalcet combined with conventional therapy on bone and mineral metabolism in dialysis patients with secondary hyperparathyroidism: a meta-analysis. Endocrine. 2013;43(1):68–77.

19. Quarles LD, Sherrard DJ, Adler S, et al. The calcimimetic AMG 073 as a potential treatment for secondary hyperparathyroidism of end-stage renal disease. J Am Soc Nephrol. 2003;14:575–583.

20. Lafrance J, Cardinal H, Leblanc M, et al. Effect of cinacalcet availability and formulary listing on parathyroidectomy rate trends. BMC Nephrol. 2013;14:100.

21. Wetmore J, Gurevich K, Sprague S, et al. A randomized trial of cinacalcet versus vitamin D analogs as monotherapy in secondary hyperparathyroidism (PARADIGM). Clin J Am Soc Nephrol. 2015;10(6):1031–1040.

22. Okada M, Tominaga Y, Izumi K, et al. Tertiary hyperparathyroidism resistant to cinacalcet treatment. Ther Apher Dial. 2011;15(Suppl 1):33–37.

23. Gogusuev J, Duchampon P, Hory B, et al. Depressed expression of calcium receptor in parathyroid gland tissue of patients with hyperparathyroidism. Kidney Int. 1997;51(1):328–336.

24. Fukuda N, Tanaka H, Tominaga Y, Fukagawa M, Kurokawa K, Seino Y. Decreased 1,25-dihydroxyvitamin D3 receptor density is associated with a more severe form of parathyroid hyperplasia in chronic uremic patients. J Clin Invest. 1993;92:1436–1442.

25. Kifor O, Moore FJ, Wang P, et al. Reduced immunostaining for the tissue calcium sensing receptor gene in CKD patients and its effect on renal phosphate handling and vitamin D metabolism. J Am Soc Nephrol. 2015;26(3):573–579.

26. Rothe HM, Shapiro WB, Sun WY, Chou SY. Calcium-sensing receptor polymorphism detected by digestion with Apa I influences the parathyroid response to extracellular calcium in Japanese chronic dialysis patients. Nephron. 2001;89(3):315–320.

27. Kukoszka H, Chudek J, Strzelczyk P, et al. Association between secondary hyperparathyroidism and polymorphic alleles of the calcium-sensing receptor gene. Clin Nephrol. 2002;57(2):157–164.

28. Engler JD, Schröder D, Meier R, et al. The calcium-sensing receptor gene Arg990Gly polymorphism. J Endocrinol. 2012;196(5):629–638.

29. Yamauchi M, Kojima M, Takeuchi T, et al. The association between vitamin D receptor gene 1a polymorphism and secondary hyperparathyroidism. J Clin Endocrinol Metab. 2012;97(7):2385–2392.

30. Li D, Shao L, Jiang W, Zhang W, Xu Y. The efficacy of cinacalcet of haemodialysed patients with chronic kidney disease and secondary hyperparathyroidism. Nephron. 2005;99(2):292–294.

31. Yoshikawa K, Shigematsu T, Tsukada T, et al. Apa I polymorphism in the vitamin D receptor gene may affect the parathyroid response in Japanese patients with end-stage renal disease. Kidney Int. 1999;55(2):454–458.

32. Ozdemir FN, Sezer S, Atac B, et al. Vitamin D receptor BsmI and TaqI gene polymorphisms in a Turkish ESRD population: influences on parathyroid hormone response. Transplant Proc. 2005;37(7):2923–2926.

33. Management of secondary hyperparathyroidism and mineral metabolism abnormalities in dialysis patients. Wolters Kluwer; 2015. Available from: www.uptodate.com/contents/management-of-secondary-hyperparathyroidism-and-mineral-metabolism-irregularities-in-dialysis-patients?source=search_result&search=treatment+failure+secondary+hyperparathyroidism&selectedTitle=1–150. Accessed December 9.

34. Tsai HC, Tsai MC, Weng SH, et al. Multiple gene polymorphisms contribute to the parathyroid response to extracellular calcium in Taiwanese end-stage renal disease patients. Nephron. 2010;114:345–351.

35. Sakan H, Nakatani K, Asai O, et al. Vitamin D receptor BsmI and TaqI gene polymorphisms and the rate of bone loss of the femur neck and lumbar spine in hemodialized patients with chronic renal failure. Pol Merkur Lekarski. 1998;28:199–202.

36. Jiang Y, Kim SM. Association study of fibroblast growth factor 2 and fibroblast growth factor receptors gene polymorphism in Korean ossification of the posterior longitudinal ligament patients. J Korean Neurosurg Soc. 2012;52:7–13.

37. Guimarães JM, Guimarães IC, Duarte ME, et al. Polymorphisms in BMP4 and FGFR1 genes are associated with fracture non-union. J Ortho Res. 2013;31(12):1971–1979.

38. Sakan H, Nakatani K, Asai O, et al. Reduced renal α-Klotho expression in CKD patients and its effect on renal phosphate handling and vitamin D metabolism. PloS One. 2014;9(1):e86301.

39. Kukoszka H, Chudek J, Strzelczyk P, et al. Vitamin D receptor gene polymorphism and the rate of bone loss of the femur neck and lumbar spine in hemodialysed patients with chronic renal failure. Pol Merkur Lekarski. 1998;28:199–202.

40. Jun JK, Kim SM. Association study of fibroblast growth factor 2 and fibroblast growth factor receptors gene polymorphism in Korean ossification of the posterior longitudinal ligament patients. J Korean Neurosurg Soc. 2012;52:7–13.

41. Tsai HC, Tsai MC, Weng SH, et al. Multiple gene polymorphisms contribute to the parathyroid response to extracellular calcium in Taiwanese end-stage renal disease patients. Nephron. 2010;114:345–351.

42. Jiang Y, Kim SM. Association study of fibroblast growth factor 2 and fibroblast growth factor receptors gene polymorphism in Korean ossification of the posterior longitudinal ligament patients. J Korean Neurosurg Soc. 2012;52:7–13.
50. Nakajima K, Tamai M, Okaniwa S, et al. Humoral hypercalcemia associated with gastric carcinoma secreting parathyroid hormone: a case report and review of the literature. *Endocr J.* 2013;60(5):557–562.

51. Tenne M, McGuigan F, Jansson L, et al. Genetic variation in the PTH pathway and bone phenotypes in elderly women: evaluation of PTH, PTHLH, PTHR1 and PTHR2 genes. *Bone.* 2008;42(4):719–727.

52. Tuong NU, deB Edwards MD, Papavasiliou V, Goltzman D, Kremer R. Parathyroid hormone-related peptide and survival of patients with cancer and hypercalcemia. *Am J Med.* 2003;115(2):115–121.

53. Iwase M, Takemi T, Manabe M, Nagumo M. Hypercalcemia upon recurrence of renal cell carcinoma producing parathyroid hormone-related protein. *J Int Oral Maxillofac Surg.* 2003;32(2):174–180.

54. dbSNP. National Library of Medicine. Available from: http://www.ncbi.nlm.nih.gov/snp/. Accessed December 9, 2015.

55. Miyata T, Miyazawa S, Yasunaga T. Two types of amino acid substitutions in protein evolution. *J Mol Evol.* 1979;12(3):219–236.

56. Barrett LW, Fletcher S, Wilton SD. Regulation of eukaryotic gene expression by the untranslated regions of genes and other non-coding elements. *Cell Mol Life Sci.* 2012;69(21):3613–3634.

57. Pichon X, Wilson LA, Stoneley M, et al. RNA binding protein/RNA element interactions and the control of translation. *Curr Protein Pept Sci.* 2012;13(4):294–304.

58. Levi R, Ben Dov I, Lavi-Moshayoff V, et al. Increased parathyroid hormone gene expression in secondary hyperparathyroidism of experimental uremia is reversed by calcimetics: correlation with posttranslational modification of the trans acting factor AUF1. *J Am Soc Nephrol.* 2006;17:107–112.

59. Gilbert SJ, Weiner DE, Gipson DS, Perazella MA, Tonelli M. *National Kidney Foundation’s Primer on Kidney Disease.* 6th ed. Philadelphia: Elsevier; 2014.

60. Li Y, Amling M, Pirro A, et al. Normalization of mineral ion homeostasis by dietary means prevents parathyroid hyperplasia, rickets and osteomalacia, but not alopecia in vitamin D receptor ablated mice. *Endocrinology.* 1998;139:4391–4396.

61. Garner S, Pi M, Tu Q, Quares L. Rickets in cation sensing receptor deficient mice: an unexpected skeletal phenotype. *Endocrinology.* 2001;142(9):4096–4095.

62. Block GA. The impact of calcimetics on mineral metabolism and secondary hyperparathyroidism in end-stage renal disease. *Kidney Int Suppl.* 2003;64(Suppl 87):S131–S136.

63. Torres PS, Uziel FJB, Perales MCS, Cortés MJG, Baldón MMB, Bañasco VP. Analysis of efficacy and factors that impact the response of secondary hyperparathyroidism to cinacalcet in haemodialysis patients. *Nefrologia.* 2010;30(4):443–451.

64. Kim JK, Kwon YJ, Choi KH, et al. Rapid decrease of intact parathyroid hormone could be a predictor of better response to cinacalcet in hemodialysis patients. *Yonsei Med J.* 2013;54(2):453–463.

65. Iannazzo S, Carsi M, Chirolò S. A cost-utility analysis of cinacalcet in secondary hyperparathyroidism in five European countries. *Appl Health Econ Health Policy.* 2012;10(2):127–138.

66. Komaba H, Moriwaki K, Goto S, et al. Cost-effectiveness of cinacalcet hydrochloride for hemodialysis patients with severe secondary hyperparathyroidism in Japan. *Am J Kidney Dis.* 2012;60(2):262–271.

67. Conzo G, Perna AF, Savica V, et al. Impact of parathyroidectomy on cardiovascular outcomes and survival in chronic hemodialysis patients with secondary hyperparathyroidism. A retrospective study of 50 cases prior to the calcimetics era. *BMC Surg.* 2013;13(Suppl 2):S2–S4.

68. EVOLVE Investigators, Chertow GM, Block GA, et al. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. *N Engl J Med.* 2012;367(26):2482–2494.

69. Charytan C, Coburn JW, Chonchol M, et al. Cinacalcet hydrochloride is an effective treatment for secondary hyperparathyroidism in patients with CKD not receiving dialysis. *Am J Kidney Dis.* 2005;46:58–67.

70. Chonchol M, Locatelli F, Abboud HE, et al. A randomized, double-blind, placebo-controlled study to assess the efficacy and safety of cinacalcet HCl in participants with CKD not receiving dialysis *Am J Kidney Dis.* 2009;53:197–207.

71. Montenegro J, Cornago I, Gallardo I, et al. Efficacy and safety of cinacalcet for the treatment of secondary hyperparathyroidism in patients with advanced chronic kidney disease before initiation of regular dialysis. *Nephrology.* 2012;17:26–31.

72. de Francisco AL, Piñera C, Palomar R. Cinacalcet should be used to treat secondary hyperparathyroidism in stage 3–4 chronic kidney disease. *Nat Clin Pract Nephrol.* 2008;4:366–367.

73. Coyne DW. Cinacalcet should not be used to treat secondary hyperparathyroidism in stage 3–4 chronic kidney disease. *Nat Clin Pract Nephrol.* 2008;4:364–365.

74. Cannata-Andia JB, Fernández-Martín JL. Mineral metabolism: should cinacalcet be used in patients who are not on dialysis? *Nat Rev Nephrol.* 2009;5:307–308.

75. Kalantar-Zadeh K, Kovesdy CP. Is it worth correcting hyperparathyroidism if hyperphosphatemia and hypercalcemia worsen? A cinacalcet story. *Am J Kidney Dis.* 2009;53:183–188.

76. Shoback D, Bilezikjian J, Binder T, Graves T, Turner S, Peacock M. Calcimimetic AMG 073 normalizes total serum calcium in patients with primary hyperparathyroidism [abstract]. *J Bone Miner Res.* 2000;15:210.

77. Indridason OS, Heath H, Khosla S, Yohay DA, Quarles LD. Non-suppressible parathyroid hormone secretion is related to gland size in uremic secondary hyperparathyroidism. *Kidney Int.* 1996;50:1663–1671.

78. Lewin E, Garfia B, Recio F, Rodriguez M, Olgaard K. Persistent downregulation of calcium-sensing receptor mRNA in rat parathyroids when severe secondary hyperparathyroidism is reversed by an isogenic kidney transplantation. *J Am Soc Nephrol.* 2002;13(8):2110–2116.

79. Komaba H, Nakanishi S, Fujimori A, et al. Cinacalcet effectively reduces parathyroid hormone secretion and gland volume regardless of pretreatment gland size in patients with secondary hyperparathyroidism. *Clin J Am Soc Nephrol.* 2010;5:2305–2314.

80. Meola M, Petrucci I, Barsotti G. Long-term treatment with cinacalcet and conventional therapy reduces parathyroid hyperplasia in severe secondary hyperparathyroidism. *Nephrol Dial Transplant.* 2009;24:982–989.

81. Block G, Martin K, de Francisco A, et al. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. *N Engl J Med.* 2004;350(15):1516–1525.
Supplementary materials

Table S1 The primer sets and melting temperature (Tm) used for the SNaPshot assay

Gene	rs number	Strand	Primer sequence	Tm
CASR	rs1042636	Forward	Forward primer	CAGATGCAGCAGAGGT
	rs2221266	Reverse	Forward primer	CAAAGCTCTGGAACCTGGA
			Reverse primer	GCCTCAGAGAAYKCCATGCSCAC
	rs10190	Reverse	Forward primer	CGTTTACCCCCGTGGAT
			Reverse primer	TCCATTGGTGTGCTACGTTC
			Genotyping primer	GTGTGCTACGTGGTAAAT
	rs1802757	Forward	Forward primer	CCAAGAAAGATCCACCTCCTCA
			Reverse primer	TGGGCTAGGGCATACATACTTG
			Genotyping primer	ATCCATAAGCTCTGAGGGGA
VDR	rs7975232	Forward	Forward primer	TGGAGCACTGGCAGGTACAGG
	rs2228570	Reverse	Forward primer	TGGTGGGGATTAGCAGTGAGG
	rs1544410	Forward	Forward primer	AGCCCTCAAGAGTCAAGG
			Reverse primer	TGGGCTAGGGCATACATACTTG
	rs11574129	Forward	Forward primer	TGCCTGGGCAAGCAGGAGG
			Reverse primer	CACAGCTCGAGGATGG
	rs3847987	Reverse	Forward primer	GAGTGAATACTCAAGTGAC
	rs739837	Reverse	Forward primer	CACCAGGCCATCTCTCTT
	rs9729	Forward	Forward primer	GGGAAAAGACCCACCTCA
			Reverse primer	AGGGGTTGGGGGTGGAGGCTTG
	rs3200254	Forward	Forward primer	TACTCCATAGCCATGCC
	rs2242420	Reverse	Forward primer	ACTAGTCCCCCCACGTGAT
	ALPL	Forward	Forward primer	TTGAGTGAGTGGTCTGA
	ALPL	Reverse	Forward primer	GCAGCTCCAAAGAAGGAGG
	ALPL	Reverse	Reverse primer	CCCCTATGAGACCTTTAAGGGA
	ALPL	Genotyping primer	TCTGTAACCAGCATGCTG	
	SLC34A1*	Forward	Forward primer	TCCCTTTCACCTGAGGAGG
	rs3812035	Reverse	Forward primer	CAGGTTAGGGGAGTTCC
	rs1697421	Forward	Forward primer	TCTGTAACCAGCATGCTG
	rs3200254	Forward	Forward primer	TCTGTAACCAGCATGCTG
	ALPL	Reverse	Forward primer	TCTGTAACCAGCATGCTG
	ALPL	Reverse	Reverse primer	TCTGTAACCAGCATGCTG
	ALPL	Genotyping primer	TCTGTAACCAGCATGCTG	

(Continued)
Table S1 (Continued)

Gene	rs number	Strand	Primer sequence	Tm
			Forward primer	
			Reverse primer	
			Genotyping primer	
rs2242421	Forward	Forward primer	ACTACGTCCCCCACGTGAT	60
		Reverse primer	CCTGGTGCTCTGAGTGA	
		Genotyping primer	CCTCTGAAACCACGGGGA	
rs1697405	Reverse	Forward primer	ACTACGTCCCCCACGTGAT	60
		Reverse primer	CCTGGTGCTCTGAGTGA	
		Genotyping primer	GCCCCCACCTCCCTGGGCCC	
rs1697406	Forward	Forward primer	ACTACGTCCCCCACGTGAT	60
		Reverse primer	CCTGGTGCTCTGAGTGA	
		Genotyping primer	CTTGACTGCAAGAAAAAGGGA	
NR4A2	rs12803	Reverse	Forward primer	
		Reverse primer	GGCAGAGATAAGCCGGTGA	
		Genotyping primer	TGGGCTAGGGCACTACATTG	
PTHLH	rs2796	Forward	Forward primer	
		Reverse primer	TGCCTCAGCTGGTTTTC	55
		Genotyping primer	TGGCAGATTGCTGGGTTTTC	
rs6253	Forward	Forward primer	TGCCTCAGCTGGTTTTC	55
		Reverse primer	CATGATGCTGGCTCTGGT	
		Genotyping primer	TCAGAAATCTGCTCGCTTAAAGCA	
rs6245	Forward	Forward primer	TGCCTCAGCTGGTTTTC	55
		Reverse primer	CATGATGCTGGCTCTGGT	
		Genotyping primer	TCCCAGACCATATAGAGGGGCTGA	

Note: *SLC34A4 was not included in the final analysis because it didn’t meet the Hardy Weinberg Equilibrium (HWE).*
Table S2 Association between biochemical parameters and the genotypes* of four SNPs of CASR

Parameter	Total Δ% (mean ± SD)	Δ% by genotypes, median (range)				
	rs1042636	rs2221266	rs10190	rs1802757		
	AA (n=14)	GA + GG (n=56)	CC (n=24)	CT + TT (n=46)	CC (n=25)	CT + TT (n=40)
Ca mg/dL	-6.64 (-19.09–15.81)	-6.64 (-25.67–5.07)	-6.27 (-25.67–5.07)	-6.50 (-25.67–5.07)	-5.75 (-25.67–5.07)	-6.68 (-25.67–5.07)
P-value	0.622	0.889	0.863	0.909	0.940	0.989
P mg/dL	-8.13 (-43.69–69.43)	-9.35 (-69.23–72.44)	-9.23 (-69.23–72.44)	-9.84 (-69.23–72.44)	-8.87 (-42.08–63.83)	-9.23 (-69.23–72.44)
P-value	0.463	0.934	0.714	0.989	0.874	0.989
Ca × P mg²/dL²	-12.22 (-44.87–68.70)	-14.80 (-64.98–68.70)	-14.80 (-64.98–68.70)	-14.90 (-64.98–68.70)	-13.68 (-48.81–61.24)	-14.80 (-71.13–68.70)
P-value	0.686	0.874	0.647	0.862	0.874	0.862
ALP IU/l	2.36 (-28.48–146.58)	2.35 (28.48–93.89)	2.36 (28.48–93.89)	2.36 (28.48–93.89)	2.36 (28.48–93.89)	2.36 (28.48–93.89)
P-value	0.310	0.614	0.197	0.373	0.91	5.14

Note: *analyzed by a dominant genetic model.

Abbreviations: ALP, alkaline phosphatase; SD, standard deviation; SNP, single nucleotide polymorphism.
