Antiparasitic activity in Asteraceae with special attention to ethnobotanical use by the tribes of Odisha, India

Sujogya Kumar Panda1,2,* and Walter Luyten2

1 Department of Zoology, North Orissa University, Baripada-757003, India
2 Department of Biology, KU Leuven, 3000 Leuven, Belgium

Received 6 November 2017, Accepted 3 February 2018, Published online 12 March 2018

\textbf{Abstract} – The purpose of this review is to survey the antiparasitic plants of the Asteraceae family and their applicability in the treatment of parasites. This review is divided into three major parts: (a) literature on traditional uses of Asteraceae plants for the treatment of parasites; (b) description of the major classes of chemical compounds from Asteraceae and their antiparasitic effects; and (c) antiparasitic activity with special reference to flavonoids and terpenoids. This review provides detailed information on the reported Asteraceae plant extracts found throughout the world and on isolated secondary metabolites that can inhibit protozoan parasites such as \textit{Plasmodium}, \textit{Trypanosoma}, \textit{Leishmania}, and intestinal worms. Additionally, special attention is given to the Asteraceae plants of Odisha, used by the tribes of the area as antiparasitics. These plants are compared to the same plants used traditionally in other regions. Finally, we provide information on which plants identified in Odisha, India and related compounds show promise for the development of new drugs against parasitic diseases. For most of the plants discussed in this review, the active compounds still need to be isolated and tested further.

\textbf{Keywords:} Asteraceae, \textit{Plasmodium}, \textit{Trypanosoma}, \textit{Leishmania}, Odisha (India), antiparasitic drugs

\textbf{Introduction – Antiparasitic research}

Parasite diseases are a major source of disease in both humans and animals and result in significant economic losses. Protozoan parasites threaten the lives of billions of people worldwide and are associated with significant morbidity and large economic impacts \cite{88}. The lack of proper vaccines and the emergence of drug resistance make the search for new drugs for treatment and prophylaxis more urgent, including from alternative sources like plants. In 2005, Pink et al. published a review emphasizing that new antiparasitic drugs are urgently needed to treat and control diseases such as malaria,
leishmaniasis, sleeping sickness and filariasis [124]. The discovery of quinine from Cinchona succirubra (Rubiaceae) and its subsequent development as an antimalarial drug represent a milestone in the history of antiparasitic drugs from nature. The 2015 Nobel Prize in Physiology or Medicine was awarded for the discovery of artemisinin and avermectin, which fundamentally changed the treatment of parasitic diseases around the globe. Both compounds are natural products, once again showing that nature can be a powerful source of medicines. A breakthrough for the development of antimalarial drugs was the identification of the sesquiterpene artemisinin from Artemisia annua (Asteraceae), which can even kill multidrug-resistant strains of Plasmodium falciparum [3,62]. Several semisynthetic derivatives of artemisinin (e.g., the water-soluble artesunate) have been developed and used in clinical practice today [62].

There are three major protozoan parasitic infections, caused by Plasmodium, Leishmania and Trypanosoma species. Plasmodium is the most significant of the protozoan parasites that infect humans. Found in tropical and sub-tropical regions of the world, malaria parasites threaten the lives of 3.3 billion people and cause 0.6–1.1 million deaths annually [70]. Six species of Plasmodium are responsible for causing malaria in humans [144], with Plasmodium falciparum and Plasmodium vivax being the most common and major causes. Leishmaniasis is caused by Leishmania sp., generating 1–1.5 million new cases annually [104]. The disease is endemic in 98 countries and is one of the neglected tropical diseases where the majority of the affected individuals are rural, underprivileged, and economically disadvantaged. African sleeping sickness (trypanosomiasis), is caused by two parasitic protozoans: Trypanosoma brucei gambiense (West Africa) and Trypanosoma brucei rhodesiense (East Africa) [15]. African trypanosomiasis threatens the lives of approximately 60 million people in sub-Saharan Africa and is fatal if untreated [70]. Another species of Trypanosoma (T. cruzi) is responsible for Chagas disease (American trypanosomiasis), and threatens the lives of millions primarily in Mexico, Latin America and the United States. The World Health Organization estimates that 8–10 million people are infected annually. There is also no vaccine for Chagas disease and no clinical trials of new drugs are under way; current treatment depends on only two chemotherapeutics – benznidazole and nifurtimox.

Medicinal uses of Asteraceae with special reference to the tribes of Odisha (Orissa), India

The family Asteraceae (Compositae) is also known as the daisy family, sunflower family or thistle family. Asteraceae is derived from the term “aster” meaning “star” in Latin, and refers to the characteristic in florescence with flower heads composed of florets (small flowers), and surrounded by bracts [12]. The family Asteraceae is one of the largest families comprising 1600–1700 genera and 24,000–30,000 species [30]. The family has 12 subfamilies and 43 tribes, and is distributed worldwide [16], but is most abundant in the temperate and warm-temperate regions. Most of the species are herbs and shrubs, while trees are fewer in number. Asteraceae have been commonly used in the treatment of various diseases since ancient times, as attested by classical literature. For this review, we collected literature from scientific journals, books, theses and reports via a library and electronic search (using databases viz. PubMed, Google Scholar and Scopus). Several researchers have systematically investigated Asteraceae for their therapeautic utility. More than 7000 compounds have already been isolated, and 5000 have been identified from this family, often associated with some bioactivity [3]. Members of the Asteraceae are claimed to have various properties: antipyretic, anti-inflammatory, detoxifying, antibacterial, wound-healing, antihemorrhagic, antalgic (also for headaches), anti-spasmodic, and anti-tussive, and have been considered beneficial for flatulence, dyspepsia, dysentery, lumbago, leucorhoea, hemorrhoids, hypotension, and most importantly, some are hepatoprotective, antitumor and antiparasitic [68]. The majority of studies on Asteraceae throughout the world have focused on chemical analysis (nearly 7000 compounds already isolated). There are many papers on in vitro studies, especially on antimicrobial, antioxidant and anticarcinogenic properties, using selected cells and crude extracts or purified compounds. In the few published reviews on pure compounds, the structure-activity relations were studied as well as their mechanism of action. Despite the discovery of a large number of compounds in Asteraceae around the world, and the reported antiparasitic properties of members of the Asteraceae family, not many bioactivity studies on Asteraceae species have yet been carried out. In India, the family is represented by 900 species from 167 genera. Due to their bioactive properties, plants from the Asteraceae family are commonly used in the traditional treatment of various diseases (Table 1). For instance, Ageratum conyzoides has been commonly used in India including in the state of Odisha, where the plant is traditionally used for diarrhoea, dysentery, intestinal colic [118] and malaria. This plant is well-known for the presence of phytochemicals such as alkaloids, coumarins, flavonoids, benzofurans, sterols and terpenoids, with the following identified compounds: friedelin, various sterols (including β-sitosterol and stigmasterol), various flavonoids, caryophyllene, coumarin, quercetin, as well as fumaric and caffeic acid [51]. Bidens pilosa is also found in Odisha, and is moreover widely used as folk medicine by indigenous tribes of the Amazon in the treatment of malaria [13]. About 201 compounds comprising 70 aliphatics, 60 flavonoids, 25 terpenoids, 19 phenylpropanoids, 13 aromatics, 8 porphyrins, and 6 other compounds, have been identified from this plant, as compiled previously [67]. However, the relation between Bidens pilosa phytochemicals and various bioactivities is not yet fully established, and should become a future research focus [7]. Blumea laceria is used for the treatment
Table 1. Traditional uses of plants of the Asteraceae family

Plant	Traditional uses by the tribes of Odisha	Other parts of India/world
Ageratum conyzoides (L.) L.	Herb infusion is given for gastrointestinal ailments such as diarrhoea, dysentery and intestinal colic with flatulence [117,120]. Cold decoctions from the aerial parts are used to cure malarial fever (unpublished observations).	As worm medicine in Cameroon [157].
Bidens pilosa L.	Fresh juice from the aerial parts is used for intestinal worm infections, abdominal pain and stomach ache (unpublished observations).	Juice form the root and whole plant is used for the treatment of malaria (Africa, China) [142,157]. Whole plant is used by the Bukusu community of Kenya for tick prevention and control on livestock [159].
Blumea lacera (Burm.f.) DC.	The tribes use fresh leaf juice of this plant for the treatment of all kinds of fever, including malaria (unpublished observations).	Leaf juice is used to kill worms in children by the tribes of Madhya Pradesh, India [136].
Calendula officinalis L.	Cold decoction of leaf is used for amoebic and bloody dysentery (unpublished observations).	Flowers are used for the treatment of intestinal worms and amoebal infections in pets and pigs in British Columbia, Canada [64].
Caesulia axillaris Roxb.	Whole plant extract is given to cure malaria [119].	The whole plant is crushed and juice is extracted, which is given orally three times a day, along with curd to cure amoebic dysentery by the tribes of Madhya Pradesh, India [155].
Centipeda minima (L.) A. Braun & Asch.	Root decoction is used for the treatment of all kinds of fever [112]. Leaf decoction is commonly used for hookworm and roundworm (unpublished observations).	In China, decoction from whole plant is used for malaria treatment. The seed or dried aerial parts are used as a vermifuge and amoebicide (http://uses.plantnet-project.org/en/Centipeda_minima_PROSEA).
Eclipta alba (L.) Hassk.	Treatment of malaria [112].	Leaf decoction is used by the Rakhain tribal healers of Chittagong Division, Bangladesh for the treatment of malaria [46].
Eclipta prostrata (L.) L.	Treatment of malaria: decoction of dried leaf with tea leaf tincture is administered orally twice a day for five days [118].	Infusion or juice of the plant mixed with honey is given for the treatment of malaria by the tribal communities of Pakistan [86].
Elephantopus scaber L.	Treatment of malaria: paste prepared from fresh root is taken orally once a day for three days [118]. Juice of leaf is used in the treatment of malaria [53].	Decoction from aerial parts is used to treat malaria by the tribes of Madagascar [86].
Sphaeranthus indicus L.	Helminths: whole plant paste with a pinch of salt is taken as an anthelmintic [107].	Root and seed powder is given orally to kill intestinal worms in children [39]. Whole plant paste with a pinch of common salt is taken as an anthelmintic [61].
Tagetes erecta L.	Cold decoctions of leaf and flower are used for all kinds of worm infections and dysentery (unpublished observations).	Plants used by native Amazonian groups from the Nanay River (Peru) for the treatment of malaria [61].
Tridax procumbens (L.) L.	Decoction prepared from leaves of *Tridax procumbens* and *Andrographis paniculata* (Burm. f.) Nees is used for the treatment of malaria fever (unpublished observations).	Used for the treatment of malaria by the tribes of Ghana [59], and Kwale community of the Kenyan Coast [90].
Table 1. (continued).

Plant	Traditional uses by the tribes of Odisha	Other parts of India/world
Vernonia anthelmintica (L.) Wild.	Fruit powder is used in malaria fever, and for stomach ache during amoebic dysentery [81]. Seeds are used as an anthelmintic, especially in children (2-5 g with water on an empty stomach twice a day for three days) [111,112].	The seeds are used as an anthelmintic against parasitic worm (including tapeworm) infestations [4].
Vernonia albicans DC.	Filariasis; powdered plant (10-20 g) is advised to be consumed with 125 mL milk (mixed with 5-7 cardamom fruits and 10 g sugar candy) once daily in the morning, on an empty stomach, for about three months [37]. Water-extract of the whole plant is used in the treatment of malaria [53].	–
Vernonia cinerea (L.) Less.	Treatment of malaria; root paste is mixed with honey and administered orally twice a day for three days [118]. The plant is also used for elephantiasis [120].	Leaf and bark are used by the tribes of Equatorial Guinea as febrifuge and vermifuge [2], while the tribes of Tanzania use it for the treatment of malaria [84].
Xanthium strumarium L.	Coastal tribes of Odisha use crushed fresh fruit for the treatment of *filariasis* (unpublished observations).	Tribes of Bannu district, Pakistan, use it for the treatment of chronic malaria [154].

1 All taxonomic names were verified in the Global Composite Checklist database (http://compositae.landcareresearch.co.nz/Default.aspx)

of all kinds of fever, including malaria, and contains phytocompounds such as fenchone, coniferyl alcohol derivatives, campesterol, flavonoids, lupeol, hentriacon- tene, hentriacontane, α-amyrin, β-sitosterol and triter- penes [7,80,105]. *Calendula officinalis* has found many medicinal applications and contains various terpenoids (sitosterols, stigmasterols, erythrodiol, brein, ursadiol and its derivatives; several triterpene glycosides like calendulaglycoside A; glucosides of oleanolic acid, etc.), various flavonoids (queretin, isoorqueries, isorhamnetin-3-O-β-D-glycoside, narcissin, calendolasside, calendoflavoside, calendoflavobioside, rutin, quercetin-3-O-glucoside and quercetin-3-O-rutinoside), coumarins, saponins and quinones [87].

Whole plant extracts of *Caesulia axillaris* are frequently used by the coastal tribes of Odisha to cure malaria [107,113], but no scientific studies have yet been published on this plant. *Centipeda minima* is widely distributed in Odisha, and is frequently used by the local tribes for the treatment of parasites [112], but no compounds responsible for its antiparasitic activities have yet been identified. *Eclipta prostrata* (synonym *E. alba*) is frequently used by the tribes for the treatment of malaria [113,130]. The plant is well studied for its phytochemistry, with documented presence of compounds such as ecliptine, β-amyrin, luteolin-7-O-glucoside, apigenin, cinnaroside, stigmasterol, wedelolactone, columbin, triterpene glycosides and triterpenic acid [47]. Like *Eclipta prostrata*, *Elephantopus scaber* is also frequently used by the tribes for the treatment of malaria [118]. This plant is also well studied for its phytochemistry with documented presence of sesquiterpenelactones such as elscaberin, deoxyelephan- topin, isodeoxyelephantopin, scabertopin, and isoscabertopin, and lipids like ethyl hexadecanoate, ethyl-9, 12-octadecadienoate, ethyl-(Z)-9-octadecenoate, octadecanoate, lupeol and stigmasterol [19]. Whole plant paste of *Sphaeranthus indicus* with a pinch of salt is taken as an anthelmintic by the tribes of Odisha [111]. The phytochemical studies of this plant suggest the presence of eudesmanolides, sesquiterpenoids, sesquiterpene lactones, sesquiterpene acids, flavone glycosides, flavonoid C-glycosides, isolavone glycosides, sterols, sterol glycosides, alkaloids, peptide alkaloids, amino acids and sugars [125]. The essential oil from this plant has been well studied with the documented presence of bioactive compounds like sphaeranthine, sphaeranol, spherene, methyl chavicol, ocimene, geraniol, and methoxy frullanolides [71]. *Tagetes erecta* is an ornamental plant of Odisha and is often used by the tribes for the treatment of various conditions such as anaemia, irregular menstruation, abdominal pain, colic, cough and dysentery. Like *Sphaeranthus indicus*, this plant is also well known for its phytocomponents such as β-sitosterol, β-daucosterol, 7-hydroxy sitosterol, lupeol, erythrodiol, erythrodiol-3-palmitate, quercetagetin, quercetagetin-7-methyl ether, quercetagetin-7-O-glucoside, gallic acid, syringic acid, quercetin, ocimene and tagetone [135]. *Tridax procumbens* has been extensively used in Ayurvedic medicine and is well-studied for its phytochemistry, with the presence of compounds like 8,3′-dihydroxy-3,7,4′-trimethoxy-6-O-β-D-glucopyranoside flavonol, apigenin-7-O-β-D-glucoside, pentadecane, β-sitosterol, stigmasterol, β-daucosterol and bis-(2-ethylhexyl)-phthalate [131]. Several species of *Vernonia* have been used in different traditional
medicines all over the world. The tribes of Odisha most frequently use different species of *Vernonia*: *V. anthemintica*, *V. albinca* and *V. cinerea*. Seeds of *Vernonia anthemintica* are used as an anthelmintic, especially in children: 2-5 g with water on an empty stomach twice a day for three days [111,112]. Fruit powder is used in malaria fever, and stomach ache during amoebic dysentery [81]. Powdered *Vernonia albinca* plant (10-20 g) is advised to be consumed with 125 mL milk (mixed with 5-7 cardamom fruits and 10 g sugar candy) once in the morning, on an empty stomach for about three months for the treatment of filariasis [37]. The aqueous extract of the whole plant is also used in the treatment of malaria [53]. Root paste of *Vernonia cinerea* mixed with honey is administered orally twice a day for three days for malaria [108]. Reports are also available on the use of this plant for the treatment of elephantiasis [108]. Toyang and Verpoorte [152] published a review article on this genus *Vernonia* (109 species) concerning its ethnopharmacology and phytochemistry. *Xanthium strumarium* is a weed, widely distributed in Odisha, and commonly used as a medicinal plant. Most of its pharmacological effects can be explained by constituents like sesquiterpene lactones, glycosides, phenols, as well as polysterols present in all plant parts. The bioactive compounds reported for this plants are xanthinin, xanthinin, xanthatin (deacetylxanthinin), a toxic principle, namely a sulphated glycoside: xanthostrumarin, atracyloside, carbuxatracylside, phytosteros, xanthanol, isoxanthanhol, xanthinosin, 4-oxo-bedfordia acid, hydroquinone, xantholanes, cafooxyquinic acids, α- and γ-tocopherol, thiazinedione and deacetyl xanthumin, β-sitosterol, γ-sitosterol, β-D-gluco-side of β-sitosterol; isohexacosane, chlorobutanol, stearyl alcohol, stromasterol and oleic acid [52].

Miscellaneous antiparasitic properties of Asteraceae and their phytochemistry

Over the past decades, a lot of research on antiparasitic drugs of plant origin has yielded undisputable metabolites of interest. Many plant-derived secondary metabolites of Asteraceae have exhibited target-specific activity against *Plasmodium, Leishmania* and *Trypanosoma* parasites (Table 2). Plants from the Asteraceae family are widely used as medicines due to the presence of a broad range of bioactive metabolites such as alkaloids (pyrrolizidine and pyridine), flavonoids, phenolic acids, coumarins, terpenoids (monoterpenes, sesquiterpenes, diterpenes, and triterpenes), quinoline and diterpenoid types, triterpenoid sesquiterpene lactones, pyrethrins and saponins. Several sesquiterpenes has been reported as antiprotozoal since the discovery of artemisinin. The sesquiterpene lactone brevulin A from *Centipeda minima* and dehydrozaluzianin C from *Munnozia maronii* were discovered and reported as antiparasitic. Similarly, sesquiterpene lactones from *Neoleaeea lobata* are well established for the treatment of *Plasmodium* infections [28]. In this plant, structure-activity relationship analysis revealed that germano- nolide sesquiterpenes, like neolenin A (EC50 = 0.92 µM) and B (EC50 = 0.62 µM), were more potent than furano- heliangles like lobatin A and B (EC50 = 15.62 µM and 16.51 µM), respectively, against *Leishmania* promastigotes and *Trypanosoma* epimastigotes [28]. Based on ethnobotanical studies (wild chimpanzees were observed to chew young stems of *Vernonia amygdalina*), antiplasmodial sesquiterpenes vernoldalin and vernoldine, hydroxyvernoladin have been isolated [60]. Oketch-Rahab et al. [101] observed that macrocyclic germaane lactone dilaete 16,17-dihydrobrachycaalyxde from *Vernonia brachycalyx* has both antileishmanial and antiplasmodial activity.

Phenols are widely distributed in Asteraceae, and some have the ability to inhibit parasites. Gallic acid and its derivatives inhibit the proliferation of *Trypanosoma cruzi* trypomastigotes in *vitro* [58]. Higher activities were observed for the gallic acid esters ethyl-gallate and n-propyl-gallate, which had EC50 values of 2.28 and 1.47 µg/mL, respectively, possibly due to increased lipophilicity. Oketch-Rahab et al. [101] reported the antiprotozoal activity from *Vernonia brachycalyx* (2-epicycloisobrachycoumarinone epoxide and its stereoisomer). Both stereoisomers show similar in *vitro* activities against chloroquine-sensitive (CQ-S) and chloroquine-resistant (CQ-R) strains for *Plasmodium falciparum*, as well as *Leishmania major* promastigotes, with EC50 values of 0.11 µg/mL and 0.15 µg/mL for *Plasmodium falciparum*, and 37.1 µg/mL and 39.2 µg/mL for *Leishmania major*, respectively. Like phenols, flavonoids are extensively present in Asteraceae plants. Elford et al. [21] demonstrated that methoxylated flavonones artemetin and casticin act synergistically with artemisinin in *vitro* against *Plasmodium falciparum*. Later, exigualavonane A and B, isolated from *Artemisia indica* (Asteraceae), were shown to exhibit in *vitro* activity against *Plasmodium falciparum*.

The flavonoids can be classified into several subtypes: flavone (1), flavonol (2), flavanone (3), dihydroflavonol (4), flavan-3-ol (5), flavan-3,4-diol (6), chalcone (a structure with one opened ring), aurone, and anthocyani- nide (with a positive charge on oxygen O-1). Except for these basic structures, flavonoids also exist in biflavonoid and glycosidic form in the Asteraceae family. Perez-Victoria et al. [122] suggested that flavonoids could affect transport mechanisms in *Leishmania*. The C-terminal nucleotide-binding domain of a P-glycoprotein-like transporter, encoded by the ltrmdr1 gene in *Leishmania tropica* and involved in parasite multidrug resistance (MDR), was overexpressed in *Escherichia coli* as a hexahistidine-tagged protein and purified. The *Leishmania tropica* recombinant domain efficiently bound different classes of flavonoids with the following relative affinity: flavone>...
Plant Name	Plant part used	Pharmacological Preparation	Organism tested	Context of use	Reference	
Acanthospermum hispidum DC.	Whole plant	Antileishmanial	Ethanol extract	Leishmania amazonensis	In vitro	[27]
	Aerial part	Antitrypanosomal	Dichloromethane/ Methanol/ Aqueous	Trypanosoma brucei	In vitro	[10]
Achyrocline flaccida (Weinm.) DC.	Whole plant	Antileishmanial	Ethanol extract	Leishmania amazonensis	In vitro	[27]
Ageratina pentlandiana (DC.) R. M. King & H. Rob.	Leaf	Antileishmanial	Ethanol extract	Leishmania amazonensis	In vitro	[27]
				Leishmania braziliensis	In vitro	[69]
Ageratum conyzoides (L.) L.	Whole plant	Antiparasitic	Organic (hexane, ethyl acetate, chloroform, methanol) and aqueous extracts	Trypanosoma brucei	In vitro	[98]
	Whole plant	Antileishmanial	Aqueous and ethanolic	Leishmania amazonensis	In vitro	[149]
	Leaf	Antiparasitic	Aqueous and ethanolic	Trypanosoma cruzi	In vitro	[149]
	Leaf	Antiparasitic	Ethanol extract	Heligmosomoides bakeri	In vitro	[157]
Artemisia absinthium L.	Flower	Antiparasitic	Di-ethyl ether essential oil	Toxocara cati	In vivo	[163]
	Leaf	Schistosomicidal	Dichloromethane	Trypanosoma brucei	In vitro	[20]
Artemisia abyssinica Sch. Bip. ex A. Rich.	Aerial part	Antitrypanosomal	Dichloromethane: Methanol	Trypanosoma brucei	In vitro	[94]
	Aerial part	Antitrypanosomal	Dichloromethane: Methanol	Trypanosoma brucei	In vivo	[25]
	Leaf	Antiparasitic	Dichloromethane: methanol	Trypanosoma brucei	In vivo	[85]
	Leaf	Antimalarial	Acetone	Plasmodium falciparum	In vivo	[25]
Artemisia afra Jacq. ex Willd.	Leaf	Antiparasitic	Dichloromethane: Methanol	Trypanosoma brucei	In vitro	[94]
				Trypanosoma brucei	In vitro	[82]
				Trypanosoma brucei	In vitro	[94]
				Trypanosoma brucei	In vitro	[85]
Artemisia annua L.	Aerial part	Antiparasitic	Dichloromethane: Methanol	Trypanosoma brucei	In vitro	[94]
				Trypanosoma brucei	In vitro	[43]
Artemisia herba-alba Asso	–	Antileishmanial	Aqueous	Leishmania tropica	In vitro	[43]
Baccharis salicifolia (Ruiz & Pav.) Pers.	Leaf	Antileishmanial	Ethyl acetate extract	Leishmania braziliensis	In vitro	[27]
Baccharis uncinella DC.	Leaf	Antileishmanial	Ursolic acid	Leishmania infantum	In vivo	[49]
Table 2. (continued).

Plant1	Plant part used	Pharmacological Preparation	Organism tested	Context of use	Reference	
Bidens pilosa L.	Leaf	Antimalarial	Organic extracts and fractions	Plasmodium falciparum	In vitro	[13]
	Antimalarial	Organic extracts	Plasmodium falciparum	In vitro	[102]	
	Antimalarial	Organic extracts	Plasmodium falciparum	In vitro & in vivo (mice)	[63]	
	Anthelmintic	Ethanol extract	Haemonchus contortus	In vitro	[36]	
	Antileishmanial	Crude extracts	Leishmania amazonensis	In vitro	[35,49,151]	
Blumea lacera (Burm.f.) DC.	Leaf	Anthelmintic	Alcoholic and aqueous extracts	Ascaris lumbricoides	In vitro	[119]
Calendula officinalis L.	Flower	Antileishmanial	Methanol (80%)	Leishmania major	In vitro	[95]
	Antiparasitic	Oleanolic acid and its glycosides	Heligmosomoides polygyrus	in vitro & in vivo (mice)	[145]	
Centipeda minima (L.) A. Braun & Asch.	Whole plant	Antiparasitic	Crude extracts and fractions	Giardia intestinalis	In vitro	[164]
				Entamoeba histolytica		
				Plasmodium falciparum		
Chersodoma jodopappa Cabrera	Leaf	Antileishmanial	Ethanol extract	Leishmania amazonensis	In vitro	[27]
	Stem	Antileishmanial	Ethanol extract	Leishmania braziliensis	In vitro	[27]
				Leishmania donovani	In vitro	[27]
Cichorium intybus L.	Leaf	Anthelmintic	Methanol:water	Ascaris suum	In vitro	[160]
				Oesophagostomum dentatum		
				Leishmania amazonensis	In vitro	[27]
				Leishmania braziliensis	In vitro	[27]
	Stem	Antileishmanial	Ethanol extract	Leishmania amazonensis	In vitro	[27]
				Leishmania donovani	In vitro	[27]
Conyza alboi Wild. ex Spreng.	Whole plant	Antitrypanosomal	Dichloromethane: methanol	Trypanosoma brucei rhodesiens, Trypanosoma cruzi	In vitro	[82]
Conyza podocephala DC.	Whole plant	Antitrypanosomal	Dichloromethane: methanol	Trypanosoma brucei rhodesiens, Trypanosoma cruzi	In vitro	[82]
Conyza scabrida DC.	Leaf	Antitrypanosomal	Dichloromethane: methanol	Trypanosoma brucei rhodesiens, Trypanosoma cruzi	In vitro	[82]
Echinacea purpurea (L.) Moench	Whole part	Antileishmanial	Ethanol extract	Leishmania sp.	In vitro	[114]
Eclipta alba (L.) Hassk.	Leaf	Antimalarial	Crude extract	Plasmodium berghei	In vivo	[6]
	Antileishmanial	Crude extract	Leishmania donovani	In vivo	[138]	
Eclipta prostrata (L.) L.	Leaf	Anthelmintic activity	Ethanol and aqueous extracts	Pheretima posthuma	In vitro	[11]
Plant	Plant part used	Pharmacological activity	Preparation	Organism tested	Context of use	Reference
-------	----------------	--------------------------	-------------	----------------	---------------	-----------
Leaf	Anthelmintic activity	Organic extracts	*Pheretima posthuma*	In vitro	50	
Leaf	Antileishmanial	Saponin, daucuscyphin C	*Leishmania major*, *Leishmania aethiopica*, *Leishmania tropica*	In vitro	56	
Whole plant	Anthelmintic activity	Organic and water extracts	*Haemonechus contortus*	In vitro	139	
Elephantopus scaber L.	Leaf	Antileishmanial	*Leishmania major*, *Leishmania aethiopica*, *Leishmania tropica*	In vitro	56	
Whole plant	Anthelmintic activity	Organic and water extracts	*Trypanosoma brucei rhodesiense*	In vitro	165	
Helichrysum nudifolium (L.) Less.	Whole plant	Antileishmanial	Dichloromethane: methanol	In vitro	82	
Inula montana L.	Aerial part	Antileishmanial	Methanol	*Leishmania infantum*	In vitro	73
Jasminum glutinosum (L.) DC.	Aerial part	Antileishmanial	Acetone	*Leishmania donovani*	In vitro	156
Kleinia odorata (Forssk.) DC.	Whole plant	Antiparasitic	Ursane, triterpenes of lupane	*Trypanosoma brucei rhodesiense*, *Trypanosoma cruzi*	In vitro	89
Munnozia fournetii H. Rob. (unresolved name)	Leaf	Antileishmanial	Ethanol extract	*Leishmania amazonensis*, *Leishmania braziliensis*	In vitro	27
Stem	Antileishmanial	Ethanol extract	*Leishmania donovani*, *Leishmania braziliensis*	In vitro	27	
Neurolaena lobata (L.) R.Br. ex Cass.	Leaf	Antileishmanial	Ethanol extract	*Leishmania mexicana*	In vitro	9
Oedera genistifolia (L.) Anderb. & K. Bremer	Whole plant	Antileishmanial	Ethanol extract	*Leishmania amazonensis*, *Leishmania braziliensis*	In vitro	27
Ophryosporus piquerioides (DC.) Benth. ex Baker	Whole plant	Antileishmanial	Ethanol extract	*Leishmania amazonensis*	In vitro	27
Pentzia globosa Less.	Root	Antileishmanial	Dichloromethane: methanol	*Trypanosoma brucei rhodesiense*, *Trypanosoma cruzi*	In vitro	82
Perezia multiflora (Humb. & Bonpl.) Less.	Leaf	Antileishmanial	Ethanol extract	*Leishmania amazonensis*, *Leishmania braziliensis*, *Leishmania donovani*	In vitro	27
Pterocaulon alopecuroideum Chodat (unresolved name)	Whole plant	Antileishmanial	Ethanol extract	*Leishmania donovani*	In vitro	27
Plant	Plant part used	Pharmacological	Preparation	Organism tested	Context of use	Reference
-------	----------------	-----------------	-------------	----------------	---------------	-----------
Senecio clivicolus Wedd.	Leaf	Antileishmanial	Ethanol extract	Leishmania amazonensis	In vitro	[27]
	Stem	Antileishmanial	Ethanol extract	Leishmania donovani	In vitro	[27]
	Stem	Antileishmanial	Ethanol extract	Leishmania braziliensis	In vitro	[27]
Solanecio mannii (Hook. F) C. Jeffrey	Leaf	Antileishmanial	Ethanol extract	Trypanosoma brucei	In vitro	[94]
Sphaeranthus indicus L.	Whole plant	Antiparasitic	Dichloromethane: methanol	Plasmodium falciparum	In vitro	[41]
	Leaf	Antiparasitic	Ethanol and aqueous extracts	Pheretima posthuma	In vitro	[134]
Stevia yaconensis Hieron.	Whole plant	Antileishmanial	Ethanol extract	Leishmania amazonensis	In vitro	[27]
Tagetes erecta L.	Root	Antimalarial	Organic and aqueous extracts	Plasmodium falciparum	In vitro	[41]
	Flower	Antiparasitic	Organic extracts	Pheretima posthuma	In vitro	[106]
Tithonia diversifolia (Hemsl.) A. Gray	Leaf	Antiparasitic	Dichloromethane: methanol	Trypanosoma brucei	In vivo	[103]
Tridax procumbens (L.) L.	Whole plant	Antileishmanial	Organic extracts and (3S)-16,17-didehydrofalcarinol	Leishmania mexicana	In vitro	[75]
	Whole plant	Antileishmanial	Organic extracts and (3S)-16,17-didehydrofalcarinol	Leishmania mexicana	In vivo	[75]
	Whole plant	Antileishmanial	Organic extracts and (3S)-16,17-didehydrofalcarinol	Leishmania mexicana	In vivo	[75]
Vernonia anthelmintica (L.) Wild.	Whole plant	Anthelmintic	Aqueous and methanolic extracts	Haemonchus contortus	In vitro & In vivo	[45]
	Seed	Anthelmintic	Ethanol extract	Haemonchus contortus	In vivo	[44]
	Seed	Anthelmintic	Ethanol extract	Haemonchus contortus	In vivo	[93]
Vernonia auricalifera Hiern	Root	Antiparasitic	Dichloromethane	Trypanosoma brucei rhodesiense	In vitro	[29]
Vernonia hirsute (DC.) Sch. Bip. ex Walp.	Whole plant	Antileishmanial	Dichloromethane: methanol	Trypanosoma brucei rhodesiense	In vitro	[82]
	Whole plant	Antileishmanial	Dichloromethane: methanol	Trypanosoma brucei rhodesiense	In vitro	[82]
Vernonia mespilifolia Less.	Leaf	Antiparasitic	Dichloromethane: methanol	Trypanosoma brucei rhodesiense	In vitro	[82]
	Whole plant	Antiparasitic	Dichloromethane: methanol	Trypanosoma brucei rhodesiense	In vitro	[82]
Vernonia natalensis Oliv. & Hiern	Whole plant	Antileishmanial	Dichloromethane: methanol	Trypanosoma brucei rhodesiense	In vitro	[82]
	Whole plant	Antileishmanial	Dichloromethane: methanol	Trypanosoma brucei rhodesiense	In vitro	[82]
Vernonia ologephala Katt	Leaf	Antiparasitic	Dichloromethane	Trypanosoma brucei rhodesiense	In vitro	[82]
	Whole plant	Antileishmanial	Dichloromethane	Trypanosoma brucei rhodesiense	In vitro	[82]
Xanthium strumarium against C from the leaves and proved its antileishmanial activities. But further studies addressing its mechanism of use are required. The genus fl flavonoids, its phytochemistry, with triterpene alcohols, triterpene are required. The genus fl blood cells, but results showed that the NK-65 strain), and results showed that the compound can decrease the average parasitaemia in red fl malaria strain) showed promising antimalarial activity against Plasmodium berghei, which showed promising antimalarial activity against Plasmodium falciparum (Table 3). Moreover, this compound was first reported the antimalarial activity of crude extracts and their fractions from different species of Bidens, and provided evidence that this is due to the presence of polyacetylene and flavonoids. Later, Kumari et al. [63] and Tobinaga et al. [151] isolated the polyacetylene compound (R)-1,1-dimethylallyl substituent at position C-8. From flavanone>isoflavone>glucorhamnosyl-flavone. The affinity was dependent on the presence of hydroxyl groups at positions C-5 and C-3, and was further increased by a hydrophobic 1,1-dimethylallyl substituent at position C-8. Brandoio et al. [13] first reported the antimalarial activity of crude extracts and their fractions from different species of Bidens, and provided evidence that this is due to the presence of polyacetylene and flavonoids. Later, Kumari et al. [63] and Tobinaga et al. [151] isolated the polyacetylene compound (R)-1,2-dihydroxytrideca-3,5,7,9,11-pentayne from leaf extracts of B. pilosa, which showed promising antimalarial activity against Plasmodium falciparum (Table 3). Moreover, this compound was tested in an in vivo model (mice infected with Plasmodium berghei NK-65 strain), and results showed that the compound can decrease the average parasitaemia in red blood cells, but further studies addressing its mechanism are required. The genus Calendula is very well studied for its phytochemistry, with triterpene alcohols, triterpene saponins, flavonoids, carotenoids and polysaccharides as the major classes of phytoconstituents. Szakie et al. [145] isolated severaloleanolic acid glycoside derivatives and tested them against Helignomosomoides polygyrus; the wormicidal activity of the oleanolic acid glycosides was superior to that of the aglycone, and the level of activity was dependent on the nature of the sugar side-chain at the C-3 position. The first sugar molecule of the glucuronides, i.e., the glucuronic acid attached to the aglycone, appeared to be vital for the antiparasitic properties of these compounds [145]. E. prostrata was studied by several scientists for its antiparasitic properties such as antimalarial [6], antileishmanial [56,138], and anthelmintic activities [11,50]. Khanna et al. [56] isolated dasyccypsin C from the leaves and proved its antileishmanial activities against Leishmania major, Leishmania aethiopica and Leishmania tropica (Table 3). A sesquiterpene lactone (deoxyelephantopin) was isolated by Zahari et al. [165] from E. scaber and proved active against Trypanosoma brucei rhodesiense. Similarly, T. procumbens showed significant antileishmanial activity against promastigotes of Leishmania mexicana. The active principle was found to be an oxylipin, namely (3S)-16, 17-didehydrofalcarinol [76].

Antiparasitic activity of flavonoids and terpenoids documented in Asteraceae

Flavonoids are the class of compound of highest occurrence, wide structural diversity, and chemical stability. They have been isolated on a large scale from Asteraceae species and can be used as taxonomic markers at lower hierarchical levels [75]. Flavones and flavonols are common throughout the Asteraceae, i.e., glycosides of apigenin, luteolin, kaempferol, quercetin, flavanone derivatives, (−)-epicatechin and (−)-epigallocatechin (Figure 1). Although there are fewer reports on antiplasmodial activity in Asteraceae, these compounds from other families are well-studied against G. lambia. From the aerial parts of Helianthemum glomeratum (Cistaceae), kaempferol, quercetin, (−)-epicatechin and (−)-epigallocatechin have shown antigiardial activity against promastigotes of Leishmania mexicana. The active principle was found to be an oxylipin, namely (3S)-16, 17-didehydrofalcarinol [76].

Plant1	Plant part used	Pharmacological Preparation	Organism tested	Context of use	Reference
Vernonia squamulose Hook. & Arn.	Stem	Antileishmanial Ethanol extract	Leishmania amazonensis	In vitro	[27]
			Leishmania braziliensis		
			Leishmania donovani		
Werneria nabigena Kunth	Leaf	Antileishmanial Ethanol extract	Leishmania amazonensis	In vitro	[27]
	Stem	Antileishmanial Ethanol extract	Leishmania amazonensis	In vitro	[27]
			Leishmania braziliensis	In vitro	
			Leishmania donovani	In vitro	
Xanthium catharticum Kunth	Leaf	Antileishmanial Ethanol extract	Leishmania amazonensis	In vitro	[27]
	Stem	Antileishmanial Ethanol extract	Leishmania amazonensis	In vitro	[27]
			Leishmania braziliensis	In vitro	
			Leishmania donovani	In vitro	
Xanthium strumarium L.	Leaf	Antitrypanosomal 50% ethanolic extract	Trypanosoma evansi	In vitro	[147]
	Fruit	Antimalarial Methanol: water extract	Plasmodium falciparum strain FCR-3	In vitro	[153]

1 All taxonomic names were verified in the Global Composite Checklist database (http://compositae.landcareresearch.co.nz/Default.aspx)
Table 3. List of compounds from Asteraceae commonly reported for their antiparasitic properties.

Plant Name	Name of the compounds/group	Organism tested	References
Acanthospermum hispidum DC.	Sesquiterpenic lactones	*Plasmodium falciparum*	[34]
Acmella ciliate (Kunth) Cass.	Spilanthol	*Trypanosoma brucei rhodesiense* and *Plasmodium falciparum*	[137]
Ageratum conyzoides (L.) L.	Methoxylated flavonoids	*Trypanosoma brucei rhodesiense*, *Trypanosoma cruzi*, *Leishmania donovani* and *Plasmodium falciparum*	[98]
Ambrosia tenuifolia Spreng.	Psilostachyin	*Plasmodium falciparum*	[143]
Ambrosia tenuifolia Spreng. and *Ambrosia scabra* Hook. & Arn.	Psilostachyin and psilostachyin C	*Trypanosoma cruzi*	[143]
Artemisia annua L.	Sesquiterpenes and sesquiterpene lactones	*Plasmodium falciparum*	[127]
Aspilia africana (Pers.) C. D. Adams	Thiarubrine A	*Caenorhabditis elegans*	[128]
Baccharis retusa DC.	Sakuranetin	*Leishmania sp.*	[40]
Baccharis uncinella DC.	Caffeic acid	*Leishmania amazonensis*	[116]
Baccharis uncinella DC.	Pectolinarigenin	*Leishmania braziliensis*	[116]
Bidens pilosa L.	Polyacetylene	*Plasmodium falciparum*	[63,151]
Bidens sulphurea (Cav.) Sch. Bip.	2,6-Di-tert-butyl-4-methylphenol, germacrene D, β-caryophyllene	*Schistosoma mansoni*	[1]
Calendula officinalis L.	Glycosides of oleanolic acid	*Heligmosomoides polygyrus*	[145]
Centipeda minima (L.) A. Braun & Asch.	Sesquiterpene lactone, brevulin A	*Giardia intestinalis*, *Entamoeba histolytica*	[164]
Chromolaena odorata f. odorata	Quercetin-4′-methyl ether	*Plasmodium falciparum*	[23]
Cichorium intybus L.	Sesquiterpene lactone	*Haemonchus contortus*	[26]
Coreopsis lanceolate L.	1-Phenylhepta-1,3,5-triyne and 5-phenyl-2-(1′-propynyl)-thiophene	*Bursaphelenchus xylophilus* and *Caenorhabditis elegans*	[55]
Dicoma tomentosa Cass.	Sesquiterpene lactones	*Plasmodium falciparum*	[48]
Dicona anomala subsp. *gerrardii* (Harv. ex F. C. Wilson) S. Ortiz & Rodr. Oubiña	Eudesmanolide-type sesquiterpene lactone	*Plasmodium falciparum* D10	[38]
Eclipta prostrata (L.) L.	Dasycyphin C	*Leishmania major*, *Leishmania aethiopica*, *Leishmania tropica*	[56]
Plant	Name of the compounds/group	Organism tested	References
-----------------------------	--	--	------------
Elephantopus scaber L.	Deoxyelephantopin	*Trypanosoma brucei rhodesiense*, strain STIB 900	[165]
Fructus arctii	Arctigenin and arctiin	*Dactylogyrus intermedius*	[158]
Heterotheca inuloides Cass.	7-Hydroxy-3,4-dihydrocadalene, 7-hydroxycalamene	*Giardia intestinalis*	[129]
Kleinia odora (Forsk.) DC.	Ursolic acid and derivatives	*Plasmodium falciparum*	[89]
		Leishmania infantum	
		Trypanosoma cruzi	
		Trypanosoma brucei	
Pentacalia desiderabilis Cuatrec.	Jacaranone	*Leishmania braziliensis*	[83]
		Leishmania amazonensis	
Porophyllum ruderale (Jacq.) Cass.	Thiophene derivatives	[146]	
Sphaeranthus indicus L.	Indicusalactone, (−)-oxyfrullanolide, 7-Hydroxyfrullanolide, squalene, 3,5-di-O-caffeoylquinic acid methyl ester, 3,4-di-O-caffeoylquinic acid methyl ester	*Plasmodium falciparum*	[132]
Tagetes erecta L.	2-Hydroxymethyl-non-3-ynoic acid, 2-[2,2′]-bithiophenyl-5-ethyl ester	*Plasmodium falciparum MRC-pf-2*	[41]
Tagetes patula L. Synonym of *Tagetes erecta* L.	α-terthienyl, gallic and linoleic acids	*Heterodera zeae*	[24]
Tridax procumbens (L.) L.	(3s)-16,17-Didehydrofalcarinol, (3S)-16,17-didehydrofalcarinol	*Leishmania mexicana*	[75]
		Leishmania mexicana	[75]
Tanacetum parthenium (L.) Sch. Bip.	Parthenolide	*Leishmania amazonensis*	[150]
Tithonia diversifolia (Hemsl.) A. Gray	Sesquiterpenes and sesquiterpene lactones	*Plasmodium falciparum*	[38]
Trixis antimenorrhoea (Schrank) Mart. ex Baker	Trixanolide	*Leishmania amazonensis*	[72]
		Leishmania braziliensis	
Vernonia amygdalina Delile	Sesquiterpenes and sesquiterpene lactones	*Plasmodium falciparum*	[100]
Vernonia brachycalyx O. Hoffm.	Sesquiterpene dilactone	*Plasmodium falciparum (K39, 3D7, V1/S and Dd2)	[101]
Vernonia angulifolia DC.	Sesquiterpenes and sesquiterpene lactones	*Plasmodium falciparum*	[121]
Xanthium macrocarpum DC.	Xanthanolides (xanthinosin, xanthatin, xanthinin, 4-epiisoxanthanol, 4-epixanthanol)	*Leishmania mexicana*	[65]
		Leishmania infantum	

1 All taxonomic names were verified in the Global Composite Checklist database (http://compositae.landcareresearch.co.nz/Default.aspx)
flavan-3-ol structure is an sp3 carbon. In addition, there are several reports that glycosylated flavonoids also possess antigiardial activity. Also, a C-3 glycosylated flavone tiliroside [17,79], obtained from *H. glomeratum*, has been shown to possess antigiardial inhibitory activity with an IC50 value of 17.36 μg/mL.

Recently, Klongsiriwet et al. [57] demonstrated that quercetin and luteolin are highly effective at 250 μM to reduce the *in vitro* exsheathment of *Haemonchus contortus* L3 larvae. Tasdemir et al. studied the antitrypanosomal and antileishmanial activities of flavonoids and their analogues *in vitro* and *in vivo*, as well as their (quantitative) structure-activity relationship [148]. They showed that fisetin, 3-hydroxyflavone, luteolin, and quercetin are the most potent antileishmanial compounds against *Leishmania donovani*, with IC50 of 0.6, 0.7, 0.8, and 1.0 μg/mL, respectively (Table 4). Moreover, these authors found moderate antiparasitic activity of five methoxylated flavonoids viz. 5,6,7,8,5-pentamethoxy-3,4-methylenedioxyflavone (eupalestin), 5,6,7,5-tetramethoxy-3,4-methylenedioxyflavone; 5,6,7,8,3,4,5-heptamethoxy-flavone (5-methoxybiletine), 5,6,7,3,4,5-hexamethoxy-flavone and 4-hydroxy-5,6,7,3,5-pentamethoxy-flavone (ageconyflavone) against several parasites: *Trypanosoma brucei rhodesiense*, *Trypanosoma cruzi*, *Leishmania donovani* and *Plasmodium falciparum* (Table 4).

Terpenoids are the largest group of phytochemicals as they comprise more than 20,000 recognised molecules. Depending on the number of carbons, terpenoids are divided into classes, starting with sesquiterpenes and continuing with diterpenes, sterols, triterpenes and finally tetraterpenes. Several sesquiterpenes, sterols and triterpenes have been isolated from members of the Asteraceae family. The sesquiterpenes commonly found in leaf extracts from Asteraceae are divided into mono- and bicyclic. The most abundant sterols from Asteraceae are stigmasterol and sitosterol. Sequiterpenes isolated from *Vernonia* spp. have antiparasitic activity against *Plasmodium falciparum*. Four compounds such as vernoldalin, vernodalol, vernoldil, and hydroxyvernoldil (Figure 2), all derived from the leaves of *Vernonia amygdalina*, showed IC50 values of 4, 4.2, 8.4 and 11.4 μg/mL, respectively [60]. Another compound: sesquiterpene dillactone (16,17-dihydrobrachycalyxolide), isolated from the leaves of *V. brachycalyx*, exhibited anti-plasmodial activity against different multidrug-resistant strains of *Plasmodium falciparum* and concluded that luteolin showed IC50 values of 11 ± 1 μM and 12 ± 1 μM for strains 3D7 and 7G8, respectively. Although luteolin was found to prevent the progression of parasite growth beyond the young trophozoite stage, it did not affect parasite susceptibility to the antimalarial drugs chloroquine or artemisinin. Nour et al. [98] found moderate antiparasitic activity of five methoxylated flavonoids viz. 5,6,7,8,5-pentamethoxy-3,4-methylenedioxyflavone (eupalestin), 5,6,7,5-tetramethoxy-3,4-methylenedioxyflavone; 5,6,7,8,3,4,5-heptamethoxy-flavone (5-methoxybiletine), 5,6,7,3,4,5-hexamethoxy-flavone and 4-hydroxy-5,6,7,3,5-pentamethoxy-flavone (ageconyflavone) against several parasites: *Trypanosoma brucei rhodesiense*, *Trypanosoma cruzi*, *Leishmania donovani* and *Plasmodium falciparum* (Table 4).
Table 4. Selected flavonoids and terpenoids (whose presence has been reported in plants of the Asteraceae family) with antiparasitic activity

Flavonoids	Organism tested	Concentration/dose IC₅₀	References
Four polyoxygenated flavonoids	*Trypanosoma brucei rhodesiense*	C1: 16 μM, C2: 18 μM, C3: 21 μM and C4: 11 μM	[97]
5,6,7,8,5-Pentamethoxy-3,4-methylenedioxy flavone	*Trypanosoma brucei rhodesiense*, *Trypanosoma cruzi*, *Leishmania donovani* and *Plasmodium falciparum*	Tb: 6.67 μg/mL	[98]
5,6,7,5-Tetramethoxy-3,4-methylenedioxyflavone	*Trypanosoma brucei rhodesiense*, *Trypanosoma cruzi*, *Leishmania donovani* and *Plasmodium falciparum*	Tb: 7.29 μg/mL	[98]
5,6,7,8,3,4,5-Hepta-methoxyflavone	*Trypanosoma brucei rhodesiense*, *Trypanosoma cruzi*, *Leishmania donovani* and *Plasmodium falciparum*	Tb: 4.76 μg/mL	[98]
5,6,7,3,4,5-Hexamethoxyflavone	*Trypanosoma brucei rhodesiense*, *Trypanosoma cruzi*, *Leishmania donovani* and *Plasmodium falciparum*	Tb: 8.58 μg/mL	[98]
4-Hydroxy-5,6,7,3,5-pentamethoxyflavone (agecony flavone C)	*Trypanosoma brucei rhodesiense*, *Trypanosoma cruzi*, *Leishmania donovani* and *Plasmodium falciparum*	Tb: 3.01 μg/mL	[98]
3, 5, 7, 3’-Tetrahydroxy-4’-methoxyflavone	*Plasmodium falciparum*	–	[23]
Bractein	*Leishmania donovani*	–	[54]
Kaempferol	*Giardia lamblia*	26.47 μg/mL	[17]
Quercetin	*Giardia lamblia*	8.73 μg/mL	[17]
(−)-Epicatechin	*Giardia lamblia*	1.64 μg/mL	[17]
(−)-Epigallocatechin	*Giardia lamblia*	8.06 μg/mL	[17]
Quercetin	*Haemonchus contortus*	250 μg/mL as highest concentration	[57]
Luteolin	*Haemonchus contortus*	250 μg/mL as highest concentration	[57]
Quercetin	*Leishmania donovani*	0.8 μg/mL	[148]
Fisetin	*Leishmania donovani*	1 μg/mL	[148]
Flavonoids	Organism tested	Concentration/dose IC₅₀	References
----------------------------------	--	-------------------------	------------
3-Hydroxyflavone	*Leishmania donovani*	0.7 μg/mL	[148]
Luteolin	*Plasmodium falciparum* 3D7 and 7G8	3D7: 11 μg/mL	[66]
		7G8: 12 μg/mL	
Terpenoids			
Vernoladin	*Plasmodium falciparum*	4 μg/mL	[100]
Vernolalol	*Plasmodium falciparum*	4.2 μg/mL	[100]
Vernolide	*Plasmodium falciparum*	8.4 μg/mL	[100]
Hydroxyvernolide	*Plasmodium falciparum*	11.4 μg/mL	[100]
16,17- Dihydrobrachycalyxolide	*Plasmodium falciparum* (K39, 3D7, V1/S and Dd2)	K39: 4.2 μg/mL	[101]
		3D7: 13.7 μg/mL	
		V1/S: 3 μg/mL	
		Dd2: 16 μg/mL	
Tagitinin C	*Plasmodium falciparum*	0.75 μg/mL	[38]
15-Acetoxy-8β-[1-(2-methylbutyryloxy)]-14-oxo-4, 5-cis-α-acanthospermolide	*Plasmodium falciparum* 3D7	2.9 μg/mL	[34]
9α-Acetoxy-15-hydroxy-8β-(2-methylbutyryloxy)-14-oxo-4,5-Trans-α-acanthospermolide	*Plasmodium falciparum* 3D7	2.23 μg/mL	[34]
3β-Hydroxyolean-12-en-28-oic acid (oleanolic acid)	*Leishmania amazonensis*	La: > 100 μg/mL	[116,162], [161]
		Leishmania braziliensis -	
3β-Hydroxyurs-12-en-28-oic acid (ursolic acid)	*Leishmania infantum*	Li: 7.4 μM	[89]
	Trypanosoma brucei	Tb: 2.2 μM	
	Trypanosoma cruzi	Tc: 8.8 μM	
	Plasmodium falciparum	Pf: 29.7 μM	
Indicusalactone	*Plasmodium falciparum*	2.8 μg/mL	[132]
(−)-Oxyfrullanolide	*Plasmodium falciparum*	3.8 μg/mL	[132]
7-Hydroxyfrullanolide,	*Plasmodium falciparum*	2.5 μg/mL	[132]
Squalene	*Plasmodium falciparum*	2.3 μg/mL	[132]
3,5-Di-O-caffeoylquinic acid methyl ester	*Plasmodium falciparum*	2.4 μg/mL	[132]
(3s)-16,17-Didehydrofalcarnol	*Leishmania mexicana*	0.48 μM	[76]
Plasmodium falciparum (K39, 3D7, V1/S and Dd2) with IC50 values of 4.2, 13.7, 3.0, and 16 mg/mL, respectively [101]. Goffin et al. [38] isolated the sesquiterpene lactone: tagitinin C, from the ether extract of Tithonia diversifolia and demonstrated antiplasmodial activity against Plasmodium falciparum (IC50 of 0.75 mg/mL). Becker et al. [8] identified urospermal A-15-O-acetate and dehydrobrachylaenolide as the main active compound responsible for the antiplasmodial activity against Plasmodium falciparum 3D7 and W2 strains. Ganfon et al. [34] investigated the antiparasitic activities of Acanthospermum hispidum by isolating two sesquiterpene lactones (15-acetoxy-8b-(2-methylbutyryloxy)-14-oxo-4,5-cis-acanthospermolide), and 9a-acetoxy-15-hydroxy-8β-(2-methylbutyryl-499 loxy)-14-oxo-4,5-trans-acanthospermolide), both of which exhibited in vitro antiplasmodial activity against

Flavonoids	Organism tested	Concentration/dose IC50	References
Ursolic acid	Leishmania amazonensis	6.4 μg/mL	[162]
	Leishmania infantum	In vivo 1.0 mg/kg body	[49]
	Trypanosoma cruzi		
	Trypanosoma brucei		
Urs-12-ene-3β,16β-diol	Plasmodium falciparum	Pf: 9.7 μM	[89]
	Leishmania infantum	Li: 9.3 μM	
	Trypanosoma cruzi	Te: 9.9 μM	
	Trypanosoma brucei	Tb: 2.3 μM	
3β,11α-Dihydroxyurs-12-ene	Plasmodium falciparum	Pf: 23.9 μM	[89]
	Leishmania infantum	Li: 3.2 μM	
	Trypanosoma cruzi	Te: 8.1 μM	
	Trypanosoma brucei	Tb: 7.8 μM	
Betulinic acid	Caenorhabditis elegans	100 μg/mL	[22]
	Plasmodium falciparum W2	2.33 μg/mL	[91]
β-Sitosterol	Trypanosoma brucei brucei S427	12.5 μg/mL	[99]

Table 4. (continued).

Figure 2. Common terpenoids of the Asteraceae family reported as antiparasitic compounds
a chloroquine-sensitive strain (3D7) with IC$_{50}$ values of 2.9 and 2.23 μM, respectively (Table 4).

Among the triterpenes, squalene and lupeol derivatives are the more common ones [67]. Oleanolic acid (3β-hydroxyolean-12-en-28-oic acid) is a pentacyclic triterpenoid with widespread occurrence in Asteraceae and was found to have antimalarial and antileishmanial activity [89,162]. Recently, Yamamoto et al. [162] studied the activity of ursolic acid on Leishmania amazonensis (in vitro and in vivo). They found that ursolic acid eliminated Leishmania amazonensis promastigotes with an EC$_{50}$ of 6.4 μg/mL, comparable with miltefosine, while oleanolic acid presented only a marginal effect on promastigote forms at 100 μg/mL. The possible mechanism by which promastigotes were eliminated by ursolic acid was programmed cell death, independent of caspase 3/7, but it was highly dependent on mitochondrial activity. Also, the ursolic acid was not toxic for peritoneal macrophages from BALB/c mice, and it could eliminate intracellular amastigotes, associated with nitric oxide (NO) production. These authors conclude that ursolic acid can be considered an interesting candidate for future testing as a prototype drug for the treatment of cutaneous leishmaniasis. Enwerem et al. [22] examined the anthelmintic activity of betulinic acid on C. elegans and confirmed its strong anthelmintic activity at 100 μg/mL, comparable to piperazine. Brügmann et al. [14] observed that betulinic acid exhibited moderate to good in vitro antimalarial activity against asexual erythrocytic stages of Plasmodium falciparum. Later, Steele et al. [141] concluded that betulinic acid can inhibit Plasmodium falciparum (in vitro), while in vivo experiments failed to reduce parasitaemia (up to 500 mg/mL in a murine malaria model mice infected with P. berghei) and exhibited some toxicity. However, Ndjakou Lenta et al. [91] isolated betulinic acid, studied its in vitro activity against the Plasmodium falciparum W2 strain, and found it to be very potent with an IC$_{50}$ of 2.33 μg/mL. Nweze et al. [99] observed that β-sitosterol has modest anti-trypanosomal activity against Trypanosoma brucei S427 (in vitro IC$_{50}$ 12.5 μg/mL).

Discussion

In a review on nature-derived drugs, Zhu et al. [166] analysed “the ranking of drug-productive plant families based on the ratio of the approved drugs to reported bioactive natural products (including leads of the approved and clinical trials drugs)” and concluded that there are a few top-ranked plant families that produce high numbers of approved drugs among plant-derived medicines. According to Zhu et al. [166], Asteraceae is the fourth-largest drug-productive family that has yielded many approved drugs, including antiparasitic, anticancer, antiglucoma, anti-inflammatory, antihypertoxic, antiviral and choleretic agents. From 7229 Asteraceae species, 25 clinical drugs (17 approved and 8 in clinical trials) were documented among 1016 searchable drugs [91,99]. There are many FDA-approved nature-derived drugs that originate from Asteraceae as antiparasitics: arteether, arteether, artesiminin, artemunate, coarsucam, co-artemether, dihydroartemisinin and santonin (all from Artemisia species). Also, there are a few drugs still in clinical trials as antiparasitics, such as artemisone, arterolane and artelinic acid [92].

Traditional knowledge has proven a useful tool in the search for new plant-based medicines [18]. It has been estimated that the number of traditionally used plant species worldwide is between 10,000 and 53,000 [77]. In India alone, there are about 25,000 plant-based formulations used in folk and traditional medicine [126]. However, only a small proportion have been screened for biological activity [42,140]. Also, there are many specific regions that are less studied than others (only 1% of tropical floras have been investigated) [42]. Odisha’s unique location in Peninsular India has blessed it with an interesting assemblage of floral and faunal diversity (http://odishaasbb.nic.in/index.php?lang=en). The state is on the eastern seaboard of India, located between 17° 49’ and 22° 36’ N latitudes and between 81° 36’ and 87° 18’ E longitudes. It covers an area of 1,55,707 sq km and is broadly divided into four geographical regions, i.e. the Northern Plateau (Chhotanagpur), Central River Basins, Eastern Hills and Coastal Plains. The confluence of two major biogeographic provinces of India: the Eastern Ghats (South-West) and Chhotanagpur Plateau (North), make Odisha a rich biodiversity repository with two internationally well-recognised areas: the Similipal Biosphere Reserve and the Chilika Lagoon. The state has a biodiversity board (it is a statutory body established under the Biological Diversity Act of 2002), with a network of 19 wildlife sanctuaries, one national park, one proposed national park, one biosphere reserve, two tiger reserves and three elephant reserves (http://odishaasbb.nic.in/index.php?lang=en). Throughout the state, one finds varied and widespread forests harbouring different types of vegetation such as semi-evergreen forests, tropical moist deciduous forests, tropical dry deciduous forests and littoral and tidal swamp forests, as well as mangroves with unique, endemic, rare and endangered floral and faunal species. The climate of Odisha is characterised by tropical monsoon weather as its coast borders the Bay of Bengal. The weather is classified as summer, monsoon and winter. Searing hot summers with considerably high monsoon downpours and cool, pleasant winters mark the Odisha climate. The average rainfall varies from 1200 mm to 1700 mm across the state, and is the main source of water. Moreover, the state is vulnerable to multiple disasters such as tropical cyclones, storm surges and tsunamis due to its sub-tropical littoral location (http://nidm.gov.in/default.asp). About 62 ethnic tribal communities have been reported in Odisha, of which 13 are known as "Particularly Vulnerable Tribal Groups" (https://en.wikipedia.org/wiki/List_of_Scheduled_Tribes_in_Odisha). Districts such as Kandhamala, Koraput, Malkangiri, Mayurbhanj, Nabarangpur, Rayagada and Sundargarh have scheduled tribes (officially designated groups of historically disadvantaged people in India) above 50% of the total population. The social,
cultural and religious life of aboriginal people is influenced by nature and natural resources available in and around their habitat, which provides their food, medicine, shelter, and various other materials and cultural needs [109,110].

Sasil-Lagoudakis et al. [133] published a review entitled “phylogenies reveal the predictive power of traditional medicine in bioprospecting”. Their study, which includes the Asteraceae family, provides unique large-scale evidence that plant bioactivity underlies traditional medicine. According to these authors, “related plants are traditionally used as medicines in different regions, and these plant groups coincide with groups that are used to produce pharmaceutical drugs”. The authors conclude that “phylogenetic cross-cultural comparisons can focus screening efforts on a subset of traditionally used plants that are richer in bioactive compounds, and could revitalise the use of traditional knowledge in bioprospecting”.

Gertrude et al. [36] studied the anthelmintic activity of Bidens pilosa leaf against Haemonchus contortus eggs and larvae and concluded that ethanolic extracts have the potential to inhibit the growth of Haemonchus contortus. However, further study on the isolation of the active compounds as well as in vivo studies are needed. Similarly, antileishmanial activity of Bidens pilosa leaf was reported by several researchers [31,85], but no compound responsible for this activity has been identified so far. The anthelmintic and wormicidal properties of Blumea lacera leaf were evaluated against Ascaris lumbricoides and Phereetima posthuma [119], but no bioactive compounds have been acknowledged so far. Calendula officinalis has been used traditionally by the tribes of Odisha for worm infections. Nikmehr et al. [95] found that crude methanolic extracts have antileishmanial activity, but no bioactive molecules have been isolated so far. Caesalia axillaris, a wetland plant, is used very frequently for the treatment of malaria by the coastal peoples of Odisha. However, despite its long traditional use, its scientific validation as an antiparasitic agent has not been established so far. Also, the phytochemistry of this plant is not well known, except for a few studies on its essential oils. Similarly, plants such as Centipeda minima, Sphaeranthus indicus and Tagetes erecta are used as anthelmintic plants by the tribes of Odisha for the treatment of worm infections. Yu et al. [164] found antiparasitic activity of crude extracts of Centipeda minima and its fractions against Giardia intestinalis, Entamoeba histolytica and Plasmodium falciparum. Crude extracts of Sphaeranthus indicus also showed antiparasitic effects on Ascaridia galli, Entamoeba histolytica and Setaria digitata [96,134]. Organic and aqueous extracts of Tagetes erecta show antiparasitic [41], and anthelmintic properties [106]. However, notwithstanding phytochemical studies, no anti-parasitic compounds have been identified, nor have any in vivo studies been conducted so far on these plants. The plant Elephantopus scaber showed anthelmintic activity against Phereetima posthuma in crude extract. However, further study is required to find out the active anthelmintic compounds. Both in vitro and in vivo studies were carried out and proved the anthelmintic properties of Vernonia anthelmintica against Haemonchus contortus [103,106,140]. Further study is needed to determine the active anthelmintic compounds. The tribes of Odisha frequently use two other species of Vernonia: V. albicans and V. cinerea. These plants are also interesting for future study to discover active molecules with antiparasitic properties. The antitrypanosomal activity of a crude 50% ethanol extract of Xanthium strumarium leaves was studied in vitro and in vivo. The extract exhibited trypanocidal activity against Trypanosoma evansi-infected mice [147]. The authors hypothesised that the presence of xanthinin may be responsible for its trypanocidal activity, but further study is needed to definitively identify the antitrypanosomal compound or compounds.

Conclusion

A search for new antiparasitic drugs has been under way over the past several decades. However, despite the abundant literature, more work is needed to yield potent, commercially available drugs based on natural products. Fortunately, academic drug discovery for neglected diseases has intensified (e.g. the Drugs for Neglected Disease Initiative http://www.dndi.org/), and this includes efforts to use natural products (e.g. Research Network Natural Products against Neglected Diseases https://www.facebook.com/ResNetNPND/app/435433039823956). Although many Asteraceae species were already studied for different antiparasitic activities, some of the species important in traditional medicines have still hardly been studied for their bioactivity. Therefore, the present review aims to encourage further exploration of their potential bioactivity and particularly their antiparasitic properties, guided by the knowledge on the use of Asteraceae plants by the tribes of Odisha and corresponding traditional uses elsewhere in the world. The work reported here highlights the traditional uses of Asteraceae plants of Odisha for the treatment of parasites. Plants such as Bidens pilosa, Blumea lacera, Caesalia azillaris, Centipeda minima and Sphaeranthus indicus deserve to be studied further, especially concerning their most relevant bioactive properties and significant bioactive compounds that could be purified with state-of-the-art methods.

Acknowledgment. The authors are thankful to KU Leuven for providing the necessary facilities during preparation of this review article. This project received funding from the European Union’s Horizon 2020 research and innovation programme under Grant agreement No 633589. This publication reflects only the authors’ views and the Commission is not responsible for any use that may be made of the information it contains.

Conflict of interest

The authors declare that they have no conflict of interest.
References

1. Aguiar GP, Melo NI, Wakabayashi KAL, Lopes MHS, Mantovani ALL, Dias HJ, Fukui MJ, Keles LC, Rodrigues V, Groppo M, Silva-Filho AA, Cunha WR, Magalhães LG, Crotti AEM. 2013. Chemical composition and in vitro schistosomicidal activity of the essential oil from the flowers of Bidens sulphurea (Asteraceae). Natural Product Research, 27, 920–924.

2. Akendengé B. 1992. Medicinal plants used by the Fang traditional healers in Equatorial Guinea. Journal of Ethnopharmacology, 37, 165–173.

3. Alvarenga SA, Ferreira MJ, Emerenciano V, Cabrol-Bass D. 2001. Chemosystematic studies of natural compounds isolated from Asteraceae: characterization of tribes by principal component analysis. Chemosystems and Intelligent Laboratory Systems, 56, 27–37.

4. Ashok P, Koti BC, Thippeswamy AHM, Tikare VP, Dadadi P, Viswanathaswamy AHM, 2010. Evaluation of antiinflammatory activity of Centratherum anthemifolium (L) Kunze Seed. Indian Journal of Pharmaceutical Sciences, 72, 697–703.

5. Baillien M, Julio LF, Diaz CE, Sanz J, Martinez-Diaz RA, Cabrera R, Barilo J, Gonzalez-Coloma A. 2013. Chemical composition and biological effects of essential oils from Artemisia absinthium L. cultivated under different environmental conditions. Industrial Crops and Products, 49, 102–107.

6. Bapna S, Adsule S, Shirshat Mahendra S, Jadhav S, Patil LS, Deshmukh RA. 2007. Anti-malarial activity of *Eclipta alba* against *Plasmodium berghei* infection in mice. Journal of Communicable Diseases, 39, 91–104.

7. Bartolome AP, Villaseñor IM, Yang W-C. 2016. Flavonoids and sesquiterpene lactones from *Artemisia absinthium* and *Tanacetum parthenium* against *Schistosoma mansoni* worms. Evidence-Based Complementary and Alternative Medicine, 9521349.

8. Becker JV, van der Merwe MM, van Brummen AC, Pillay P, Crampton BG, Mnunthe EM, Parkinson C, van Heerden FR, Crouch NR, Smith PJ, Mancama DT, Maharaj VJ. 2011. *In vitro* anti-plasmodial activity of *Dicoma anomala* subsp. *gerrardii* (Asteraceae): identification of its main active constituent, structure–activity relationship studies and gene expression profiling. Malaria Journal, 10, 295.

9. Berger I, Passreiter CM, Cáceres A, Kubelka W. 2001. Antiprotozoal activity of *Neuroloena lobata*. Phytotherapy Research, 15, 327–330.

10. Bero J, Hannuet V, Chataigné G, Hérent MF, Quentin-Leclercq J. 2011. *In vitro* antitrypanosomal and antileishmanial activity of plants used in Benin in traditional medicine and bio-guided fractionation of the most active extract. Journal of Ethnopharmacology, 137, 998–1002.

11. Bhinge SD, Hogade MG, Chavan C, Kumbhar M, Chature V. 2010. *In vitro* anthelminthic activity of herb extract of *Eclipta prostrata* L. against *Phereetima posthuma*. Asian Journal of Pharmaceutic Clinical Research, 3, 229–230.

12. Bisht VK, Purohit V. 2010. Medicinal and aromatic plants diversity of Asteraceae in Uttarakhand. Nature and Science, 8, 121–128.

13. Brandão MG, Krettili AU, Soares LS, Nery CG, Marinuzzi HC. 1997. Antimalarial activity of extracts and fractions from *Bidens pilosa* and other *Bidens* species (Asteraceae) correlated with the presence of acetylone and flavonoid compounds. Journal of Ethnopharmacology, 57, 131–138.

14. Bringmann G, Saez W, Assi L, François G, Sarkana Narayanan A, Peters K, Peters EM. 1997. Betulinic acid: isolation from *Triphophyllum peltatum* and *Anicstrocladus heyneanus*, antimalarial activity, and crystal structure of the benzyl ester, Planta Medica, 63, 255–257.

15. Brun R, Don R, Jacobs RT, Wang MZ, Barrett MP. 2011. Development of novel drugs for human African trypanosomiasis. Future Microbiology, 6, 677–691.

16. Byng JW. The flowering plants handbook: a practical guide to families and genera of the world. Plant Gateway Ltd., Hertford, Plant Gateway Ltd., 2004.

17. Calzada F, Meckes M, Cedillo-Rivera R. 1999. Anti-amoebic and antigiardial activity of plant flavonoids. Planta Medica, 65, 78–80.

18. Cox PA. 2000. Will tribal knowledge survive the millennium? Science, 287, 44–45.

19. Das M, Mukherjee A. 2014. *Elephantopus scaber* L.: An overview. Indian Journal Life Science, 4, 51–54.

20. de Almeida LMS, Carvalho LSA de, Gazolla MC, Silva Pinto PL, Silva MPN da, de Moraes J, Da Silva Filho A. 2016. Flavonoids and sesquiterpene lactones from *Artemisia absinthium* and *Tanacetum parthenium* against *Schistosoma mansoni* worms. Evidence-Based Complementary and Alternative Medicine, 9521349.

21. Eiford BC, Roberts MP, Phillipson JD, Wilson RJM. 1987. Potentiation of the antimalarial activity of qinghaosu by methoxyflavones. Transactions of the Royal Society of Tropical Medicine and Hygiene, 81, 434–436.

22. Enwerem NM, Okogun JI, Wambebe CO, Okorie DA, Akah PA. 2001. Anthelminthic activity of the stem bark extracts of *Berlina grandiflora* and one of its active principles, Betulinic acid. Phytomedicine, 8, 112–114.

23. Ezenyi JC, Salawu OA, Kulkarni R, Emeje M. 2014. Antiplasmodial activity-assisted isolation and identification of quercetin-4′-methyl ether in *Chromolaena odorata* leaf fraction with high activity against chloroquine-resistant *Plasmodium falciparum*. Parasitology Research, 113, 4415–4422.

24. Faizi S, Fayyaz S, Bano S, Yawar Iqbal E, Siddiqui H, Naz A, Naz A. 2011. Isolation of nematicidal compounds from *Tegetes patula* L. yellow flowers: Structure–activity relationship studies against cyst nematode *Heterodera zeae* infective stage larvae. Journal of Agricultural and Food Chemistry, 59, 9080–9093.

25. Feyera T, Terefe G, Shibeshi W. Evaluation of *In vivo* antitrypanosomal activity of crude extracts of *Artemisia abyssinica* against a *Trypanosoma congolense* isolate. BMC Complementary and Alternative Medicine, 14, 117.

26. Foster JG, Cassida KA, Turner KE. 2011. *In vitro* analysis of the anthelminthic activity of forage chicory (Cichorium intybus L.) sesquiterpene lactones against a predominantly *Haemonchus contortus* egg population. Veterinary Parasitology, 180, 298–306.

27. Fournet A, Barrios AA, Muñoz V. 1994. Leishmanicidal and trypanocidal activities of Bolivian medicinal plants. Journal of Ethnopharmacology, 41, 19–37.

28. François G, Passreiter CM, Woerdembag HJ. 2016. Antiplasmodial activity and cytotoxic effects of aqueous extracts and sesquiterpene lactones from *Neuroloena lobata*. Planta Medica, 62, 126–129.

29. Freiburghaus F, Ogwal EN, Nkunya MH, Kaminsky R, S.K. Panda and W. Luyten: Parasite 2018, 25, 10 19
Antarctica: Using a supertree to understand the diversity and distribution of the Compositae. Biologiske Skrifter, 55, 343–374.
31. Gachet MS, Locaro JS, Kaiser M, Brun R, Navarrete H, Muñoz RA, Bauer R, Schulhy W. 2010. Assessment of anti-protozoal activity of plants traditionally used in Ecuador in the treatment of leishmaniasis. Journal of Ethnopharmacology, 128, 184–197.
32. Gallwitz H, Bonse S, Martinez-Cruz A, Schlichting I, Schumacher K, Krauth-Siegel RL. 1999. Ajene is an inhibitor and subversive substrate of human glutathione reductase and Trypanosoma cruzi trypanothione reductase: Crystallographic, kinetic, and spectroscopic studies. Journal of Medicinal Chemistry, 42, 364–372.
33. Gamboa-Leon R, Vera-Ku M, Peraza-Sanchez SR, Ku-ceutical Biology, 48, 1218
34. Gof
35. Hatimi S, Boudouma M, Bichichi M, Chaib N, Idrissi NG. 2012. Antiparasitic activities of two sesquiterpenic lactones isolated from Anadenanthera peregrina (Asteraceae). Experimental Parasitology, 130, 141
36. Gallwitz H, Bonse S, Martinez-Cruz A, Schlichting I, Schumacher K, Krauth-Siegel RL. 1999. Ajene is an inhibitor and subversive substrate of human glutathione reductase and Trypanosoma cruzi trypanothione reductase: Crystallographic, kinetic, and spectroscopic studies. Journal of Medicinal Chemistry, 42, 364–372.
37. Gertrude Mgooding Tayo, Payne VK, Poné JW, Claire KM, Jeanette Y, Alidou MN, Mbida M, Bilong CFB. 2012. In vitro ovicidal and larvicidal activities of aqueous and ethanolic extracts of the leaves of Bidens pilosa (Asteraceae) on Heligmosomoides bakeri (Nematoda: Heligmosomatidae). International Journal of Phytomedicine and Related Industries, 4, 121–125.
38. Girach RD, Brahmam M, Misra MK, Ahmed M. 1998. Indigenous phytotherapy for filariasis from Orissa. Ancient Science of Life, 17, 224–227.
39. Goffin E, da Cunha AP, Ziemos E, Tits M, Angenot L, Frederich M. 2003. Quantification of tagetin C in Tithonia diversifolia by reversed-phase high-performance liquid chromatography. Phytochemical Analysis, 14, 378–380.
40. Gogate G, Ananthasubramanian L, Nargund KS, Bhat-tacharya SC. 1986. Some interesting sesquiterpenoids from Sphaeranthus indicus Linn. Indian Journal of Chemistry, 25, 233–238.
41. Grecco SS, Reimão JQ, Tempone AG, Sartorelli P, Cunha RLO, Romoff P, Ferreira MJP, Fávero MA, Lago JHG. 2012. In vitro antileishmanial and antiparasomal activities of flavanones from Baccharis retusa DC. (Asteraceae), Experimental Parasitology, 130, 141–145.
42. Gupta P, Vasudeva N. 2010. In vitro antiplasmodial and antimicrobial potential of Tagetes erecta roots. Pharmaceutical Biology, 48, 1218–1223.
43. Gurib-Fakim A. 2006. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Molecular Aspects of Medicine 27, 1–93.
44. Hatimi S, Boudouma M, Bichichi M, Chaib N, Idrissi NG. 2001. In vitro evaluation of antileishmanial activity of Artemisia herba alba Asso. Bulletin de la Société de Pathologie Exotique, 94, 29–31.
45. Hördegen P, Cabaret J, Hertzberg H, Langhans W, Maurer V. 2006. In vitro screening of six anthelmintic plant products against larval Haemonchus contortus with a modified methyl- thiazolyl-tetrazolium reduction assay. Journal of Ethnopharmacology, 108, 85–89.
46. Iqbal Z, Lateef M, Jabbar A, Akhtar MS, Khan MN. 2006. Anthelmintic activity of Vernonia anthelmintica seeds against Trichosonhythrid nematodes of sheep. Pharmaceutical Biology, 44, 563–567.
47. Islam MT, Das PR, Kabir MH, Akter S, Khattun Z, Haque MM, Roney MSI, Jahan R, Rahmatullah M. 2012. Acanthaceae and Asteraceae family plants used by folk medicinal practitioners for treatment of malaria in Chittagong and Sylhet divisions of Bangladesh. American-Eurasian Journal of Sustainable Agriculture, 6, 146–152.
48. Jahan R, Al-Nahain A, Majumder S, Rahmatullah M. 2014. Ethnopharmacological Significance of Eclipta alba (L.) Hassk. (Asteraceae). International Scholarly Research Notices, 385969.
49. Jansen O, Tits M, Angenot L, Nicolas JP, Patrick De Mol JBN, Frederich M. 2012. Anti-plasmodial activity of Dicoma tomentosa (Asteraceae) and identification of urosporal A-15-O-acetate as the main active compound. Malaria Journal, 11, 289.
50. Jansen O, Tits M, Angenot L, Nicolas JP, Patrick De Mol JBN, Frederich M. 2012. Anti-plasmodial activity of Dicoma tomentosa (Asteraceae) and identification of urosporal A-15-O-acetate as the main active compound. Malaria Journal, 11, 289.
51. Koide T, Nose M, Inoue M, Ogihara Y, Yabu Y, Ohta N. 2009. Trypanocidal effects of gallic acid and related mercurials and condensed tannins. International Journal for Parasitology: Drugs and Drug Resistance, 7, 1–11.
52. Kamboj A, Saluja AK. 2010. Phytopharmacological review on Xanthium strumarium L. (Cocklebur). International Journal of Green Pharmacy, 4, 129–139.
53. Kantamreddi VSS, Parida S, Kommula SM, Wright CW. 2009. Phytotherapy used in Orissa state, India for treating malaria. Phytotherapy Research, 23, 1638–1641.
54. Kayser O, Kiderlen AF, Folkens U, Koldziejczy H. 1999. In vitro leishmanicidal activity of Aurores. Planta Medica, 65, 316–319.
55. Kimura Y, Hiraoka K, Kawano T, Fujioka S, Shimada A. 2009. Use of a modiﬁed methyl-thiazolyl-tetrazolium reduction assay. Malaria Journal, 11, 289.
56. Koshimizu K, Ohigashi H, Huffman MA. Use of real-time PCR for assessment of parasitic DNA in a sample from a wild chimpanzee: possible roles of its bitter amygdalin. Zeitschrift fur Naturforschung C,63, 843–847.
57. Khanna VG, Kannabiran K, Getti G. 2009. Leishmanicidal activity of saponins isolated from the leaves of Eclipta prostrata and Gymnema sylvestre. Indian Journal of Pharmacology, 41, 32–35.
58. Klongsirivet C, Quijada J, Williams AR, Mueller-Harvey I, Williamson EM, Hoste H. 2015. Synergistic inhibition of Haemonchus contortus exsheathment by flavonoid monomers and condensed tannins. International Journal for Parasitology: Drugs and Drug Resistance, 5, 127–134.
59. Kolde T, Nose M, Ioue M, Ogihara Y, Yabu Y, Ohta N. 1998. Trypanocidal effects of gallic acid and related compounds. Planta Medica, 64, 27–30.
60. Komilaga G, Agaye C, Dickson RA, Mensah ML, Annan K, Loiseau PM, et al. 2015. Medicinal plants and finished marketed herbal products used in the treatment of malaria in the Ashanti region, Ghana. Journal of Ethnopharmacology,172, 333–436.
61. Koshimizu K, Ohigashi H, Huffman MA. Use of a modiﬁed methyl-thiazolyl-tetrazolium reduction assay. Malaria Journal, 11, 289.
62. Koskimizu K, Ohigashi H, Huffman MA. Use of a modiﬁed methyl-thiazolyl-tetrazolium reduction assay. Malaria Journal, 11, 289.
62. Kuhn T, Wang Y. 2008. Artemisinin—an innovative cornerstone for anti-malaria therapy. Progress in Drug Research, 66, 385–422.

63. Kumari P, Misra K, Sisodia B, Faridi U, Srivastava S, Luqman S, Darokar M, Negi A, Gupta M, Singh S, Kumar J. 2009. A promising anticerine and antimalarial component from the leaves of Bidasia pilosa. Planta Medica, 75, 59–61.

64. Lans C, Turner N, Khan T, Brauer G. 2007. Ethnoveterinary medicines used to treat endoparasites and stomach problems in pigs and pets in British Columbia, Canada. Veterinary Parasitology, 148, 325–340.

65. Lavault M, Landreau A, Boucher J-P, Pagniez F, Le Pape P, Richomme P. 2005. Antileishmanial and antifungal activities of xanthanolides isolated from Xanthium macrocarpum. Fiteroterapia, 76, 363–369.

66. Lehane AM, Saliba KJ. 2008. Common dietary flavonoids inhibit the growth of the intraerythrocytic malaria parasite. BMC Research Notes, 1, 26.

67. Lima Silva F, Fischer DCH, Fechine-Tavares J, Sobral-Silva M, Filgueiras de Athayde-Filho P, Barbosa-Filho JM. 2011. Compilation of secondary metabolites from Bidens pilosa. Molecules 16, 1070–1092.

68. Lin YL, Chang CC, Lee LI. 2008. Review on phytochemical study of Asteraceae in Taiwan (1996–2005). Journal of Chinese Medicine, 1934, 135–149.

69. Lockman Y, Vardy D, Ohayon D, el – Lahernia E, Del Prado G, Aguiló-Ortuño MT, Julio LF, González-Colomina JH. 2015. Trypanocidal, trichomonasicidal and cytotoxic components of cultivated Artemisia absinthium Linnaeus (Asteraceae) essential oil. Memorias do Instituto Oswaldo Cruz, 110, 693–699.

70. Martín T, Villasecasua L, Gasquet M, Delmas F, Bartolomé C, Diaz-Lanza AM, Ollierie B, Balansard G. 1998. Screening for protozoocidal activity of Spanish plants. Pharmaceutical Biology, 36, 56–62.

71. Martínez-Díaz RA, Ibáñez-Escribano A, Burillo J, De Las Heras L, Del Prado G, Aguiló-Ortuño MT, Julio LF, González-Colomina JH. 2015. Trypanocidal, trichomonasicidal and cytotoxic components of cultivated Artemisia absinthium Linnaeus (Asteraceae) essential oil. Memorias do Instituto Oswaldo Cruz, 110, 693–699.

72. Maldonado EM, Salamanca E, Giménez A, Saavedra G, Sterner O. 2014. Antileishmanial metabolites from Trypis antimenorrhoea. Phytochemistry Letters, 10, 281–286.

73. Martin-Vilarescua L, Gasquet M, Delmas F, Bartolomé C, Díaz-Lanza AM, Ollierie B, Balansard G. 1998. Screening for protozoocidal activity of Spanish plants. Pharmaceutical Biology, 36, 56–62.

74. Marín J. 1991. The isolation and cytotoxicity of acridone and quinolizidine alkaloids from Pentacalia desiderabilis (Vell.) Cuatrec. Fitoterapia, 76, 363–369.

75. Martín-Quintal Z, del Rosario García-Miss M, Martín M, Matus-Moo A, Torres-Tapia LW, Peraza-Sanchez SR. 2009. In vitro activity of Tridax procumbens against promastigotes of Leishmania mexicana. Journal of Ethnopharmacology, 122, 463–467.

76. Meckes M, Calzada F, Tapia-Conteras A, Celledi-Rivera R. 1999. Antiprotozoal properties of Helianthemum glomeratum. Phytotherapy Research, 13, 102–105.

77. Mishra P, Kumar Mishra S, Lacer Prathbha Mishra BD, Irchihiya R. 2015. Phytochemical investigation and spectral studies of isolated flavonoid from ethanolic extract of whole plant. Journal of Pharmacognosy and Phytochemistry, 4, 1–4.

78. Mohanthy N, Panda T, Sahoo S, Rath SP. 2015. Herbal folk remedies of Dhenkanal district, Odisha, India. International Journal of Herbal Medicine, 3, 24–33.

79. Moloko T, Zimmermann S, Julieli T, Hata Y, Moodley N, Cal M, Adams M, Kiser M, Brun R, Keeparan N, Hamburger M. 2011. In vitro screening of traditional South African medicinal remedies against Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmanina donovani and Plasmodium falciparum. Planta Medica, 77, 1663–1667.

80. Moreira TR, Rompolo F, Fávero OA, Reimann JQ, Lourenço WC. Tempone AG, Hristov AD, Dí Santi SM, Lago JHG, Sartetelli P, Fereira MJP. 2012. Anti-malarial, anti-trypanosomial, and antileishmanial activities of jacaranone isolated from Pentacalia desiderabilis (Vell.) Cuatrec. (Asteraceae). Parasitology Research, 110, 95–101.
84. Moshi MJ, Orieto DF, Mbabazi PK, Weisheit A. 2010. Ethnomedicine of the Kagera Region, North Western Tanzania. Part 2: The medicinal plants used in Katoro Ward, Bukoba District. Journal of Ethnobiology and Ethnomedicine, 6, 19.

85. Moyo P, Botha ME, Nondaba S, Niemand J, Maharaj VJ, Ellef JN, Louw AL, Birkholz L. 2016. In vitro inhibition of Plasmodium falciparum early and late stage gametocyte viability by extracts from eight traditionally used South African plant species. Journal of Ethnopharmacology, 185, 235-242.

86. Mujtaba Shah G, Abbasi AM, Khan N, Guo X, Ajab Khan. 2010. Newman DJ, Cragg GM. 2016. Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 79, 629-661.

87. Muley B, Khadbadi S, Banarase N. 2009. Phytochemical constituents and pharmacological activities of Calendula officinalis Linn (Asteraceae): A review. Tropical Journal of Pharmaceutical Research, 8, 455-462.

88. Murray CJL, Rosenfeld LC, Lim SS, Andrews KG, Mutersa CN, Kiriko JM, Mutai C, Yenesew A, Gathirwa P. 2008. Anti-plasmodial potential of traditional antimalarial phytotherapy remedies used by the Kwaile community of the Kenyan Coast. Journal of Ethnopharmacology, 170, 148-157.

89. Niaz S, Akhtar T, Shams S, Abeel-Salam NM, Ayaz S, Ullah R, Bibi S, Hussain I, Ahmad S. 2015. Treatment of bovine schistosomiasis with medicinal plant, Vernonia amygdalina (Kaliziri), an alternative approach. African Journal of Traditional, Complementary and Alternative Medicines, 12, 78-83.

90. Oudhia P, Tripathi JK, Sahu RK. 2014. Review on ethnobotanical investigation and anthelmintic activity of various root extracts of Gmelina arborea. Asian Journal of Plant Sciences, 3, 95-107.

91. Ohigashi H, Huffman MA, Izutsu D, Koshimizu K, Ohkumre JO, Jacobs EB, Oyewusi JA, Durotlaye LA. 2015. Effects of aqueous leaf extract of Tithonia diversifolia (Mexican Sunflower) on semen characteristics and morphology in male Wistar albino rats. Nigerian Journal of Animal Production, 42, 263-270.

92. Oliveira F, Andrade-Neto V, Krettli A, Brandão MG. 2004. New evidences of antimalarial activity of Bidens pilosa roots extract correlated with polyacetylene and flavonoids. Journal of Ethnopharmacology, 93, 39-42.

93. Oudhia P, Tripathi RS. 1974. A useful weed Ageratum conyzoides L. – A review. Indian Journal of Weed Science, 31, 108-109.

94. Palacios Landín J, Mendoza de Gives P, Salinas Sánchez DO, Lépez Arellano ME, Liébano Hernández E, Hernández Velázquez VM, Villedares Cimeros MG. 2016. In vitro and in vivo nematocidal activity of Allium sativum and Tagetes erecta extracts against Haemonchus contortus. Turkish Journal of Parasitology, 39, 260-264.

95. Panda A, Misra MK. 2011. Ethnomedicinal survey of some wetland plants of South Orissa and their conservation. Indian Journal of Traditional Knowledge, 10, 296-303.

96. Panda SK, Das D, Tripathy NK. 2015. Phytochemical investigation and anthelmintic activity of various root extracts of Melocina arborea. Asian Journal of Plant Research and Science, 5, 54-58.

97. Panda SK, Mohanta YK, Padhi L, Park Y-H., Mohanta TK, Bae H. 2016. Large scale screening of ethnomedicinal plants for identification of potential antibacterial compounds. Molecules, 21, 293.

98. Panda SK, Padhi L, Leyssen P, Liu M, Neyts J, Luyten W. 2017. Antimicrobial, anthelmintic and antiviral activity of plants traditionally used for treating infectious disease in the Similipal Biosphere Reserve, Odisha, India. Frontiers in Pharmacology, 8, 658.

99. Schmid TJ. 2006. Trypanocidal activity of methylated flavonoids from Agaratum conyzoides. Planta Medica, 72, P. 673.

100. Schmid TJ. 2010. The antiprotozoal activity of methylated flavonoids from Agaratum conyzoides L. Journal of Ethnopharmacology, 129, 127-130.

101. Pani M, Nahak G, Sahu RK. 2014. Review on ethnobotanical investigation and anthelmintic activity of plants traditionally used for treating infectious disease in the Similipal Biosphere Reserve, Odisha, India. Journal of Ethnopharmacology, 151, 158-175.

102. Panwar NK, Luyten W. 2011. Ethnomedicinal survey of some wetland plants of South Orissa and their conservation. Indian Journal of Traditional Knowledge, 10, 296-303.
115. Parveen S, Godara R, Katroch R, Yadav A, Verma PK, Katroch M, Singh NK. 2014. *In vitro* evaluation of ethanolic extracts of *Agaratum conyzoides* and *Artemisia absinthium* against cattle tick *Rhipicephalus microplus*. Scientific World Journal, 858973.

116. Passero LF, Bonfim-Melo A, Corbett CEP, Laurenti MD, Toyama MH, de Toyama DO, Romoff P, Fávero OA, dos Greco SS, Zalweis CA, Lago JIH. 2011. Anti-leishmanial effects of purified compounds from aerial parts of *Baccharis uncimina* C. DC. (Asteraceae). Parasitology Research, 108, 529–536.

117. Pattanaik C, Reddy C, Dhal N. 2008. Phytomedicinal survey of coastal sand dune species of Orissa, India. *Indian Journal of Traditional Knowledge*, 7, 263–268.

118. Pattnaik A, Sarkar R, Sharma A, Yadav KK, Kumar A, Parveen S, Godara R, Katoch R, Singh NK. 2014. A focus on wound healing with particular reference to antibiofilm properties. *Asian Pacific Journal of Tropical Biomedicine*, 3, 967–974.

119. Pedersen MM, Chukwujekwu JC, Lategan CA, Staden J, Reale S, Pace L, Monti P, Angelis F, De Marcozzi G. 2008. Rodriguez E, Aregullin M, Nishida T, Uehara S, Wrang-S. 2008. Rodriguez E, Aregullin M, Nishida T, Uehara S, Wrangles C, Blaise M, Otto TD, Barnwell JW, Pain A, Williams J, White NJ, Day NJ, Snow M, Lockhart PJ, Chiodini PL, Inwong M, Polley SD. 2010. Ethnomedical plant resources of Mayurbhanj district, Orissa. *Indian Journal of Traditional Knowledge*, 9, 68–72.

120. Pattanaik B, Dhal NK, Parida S. 2016. Ethnobotanical study of coastal sand dune species of Orissa, India. *Indian Journal of Traditional Knowledge*, 7, 263–268.

121. Picman AK, Rodriguez E, Towers GH. 1979. Formation of some derivatives against *Artemisia annua* L. plants cultivated for the discovery of antimalarial plant resources of Rewa district, Madhya Pradesh. *Indian Journal of Traditional Knowledge*, 7, 268–273.

122. Pattnaik A, Sarkar R, Sharma A, Yadav KK, Kumar A, Roy P, Mazumder A, Karmakar S, Sen T. 2013. Pharmacological studies on *Buchanania lanzan* L. (Kotakkarantai). *Pharmacognosy Reviews*, 7, 60–66.

123. Pérez-Victoria JM, Chiquero MJ, Conseil G, Dayan G, Di Pietro A, Barron D, Castanys S, Gamarro F. 1999. Bioactive constituents of aerial parts of *Asperula odorata* and *Acmella oleracea* L. plants cultivated for the discovery of antimalarial plant resources of Mayurbhanj district, Orissa, India. *Indian Journal of Traditional Knowledge*, 7, 259–256.

124. Pedersen MM, Chukwujekwu JC, Lategan CA, Staden J, van, Smith PJ, Stærk D. 2009. Antimalarial sesquiterpene lactones from *Distephanus angulifolius*. *Phytochemistry*, 70, 601–607.

125. Pettewar AM, Dawalbaje AB, Gundale DM, Pawar PB, Kavitkwar PG, Yerawar PP, Pandharkar TM, Patawar VA. 2012. Phytochemistry and anthemic studies on *Blumea lacera*. *Indo Global Journal of Pharmaceutical Sciences*, 2, 390–396.

126. Picman AK, Rodriguez E, Towers GH. 1979. Formation of addsucts of parthenin and related sesquiterpene lactones with cysteine and glutathione. Chemico-biological Interactions, 28, 83–89.

127. Pink R, Hudson A, Mouriès MA, Bendig M. 2005. Opportunities and challenges in antiparasitic drug discovery. *Nature Reviews Drug Discovery*, 4, 727–740.

128. Pimentel S, Costa F, Barron D, Castanys S, Gamarro F. 1999. Correlation between the affinity of flavonoids binding to the cytosolic site of *Leishmania tropica* multidrug transporter and their efficiency to revert parasite resistance to Daunomycin. *Biochemistry*, 38, 1736–1743.

129. Picman AK, Rodriguez E, Towers GH. 1979. Formation of adducts of parthenin and related sesquiterpene lactones with cysteine and glutathione. *Chemico-biological Interactions*, 28, 83–89.

130. Pinheiro JG, Goyal S. 2008. The Indian herbal drugs scenario in global perspectives, in Bioactive molecules and medicinal plants, Ramawat K, Merillon J, Editors. *Springer, Berlin, Heidelberg*, p. 325–347.

131. Reale S, Pace L, Monti P, Angelis F, De Marcozzi G. 2008. Rodriguez E, Aregullin M, Nishida T, Uehara S, Wrang-S. 2008. Rodriguez E, Aregullin M, Nishida T, Uehara S, Wrangles C, Blaise M, Otto TD, Barnwell JW, Pain A, Williams J, White NJ, Day NJ, Snow M, Lockhart PJ, Chiodini PL, Inwong M, Polley SD. 2010. Ethnomedical plant resources of Mayurbhanj district, Orissa. *Indian Journal of Traditional Knowledge*, 9, 68–72.

132. Saini A, Kumar Soni H, Gupta P. 2016. A Review on *Trypanosoma cruzi*. *Impressions*, 2, 308–319.

133. Sangsopha W, Lekphrom R, Kanokmedhakul S, Kanokmedhakul K. 2016. Cytotoxic and antimalarial constituents from aerial parts of *Sphaeranthus indicus*. *Phytochemistry Letters*, 17, 278–281.

134. Saslis-Lagoudakis CH, Savolainen V, Williamson EM, Forest F, Wagstaff SJ, Baral SR, Watson MF, Pendry CA, Hawkins JA. 2012. Phylogenies reveal predictive power of traditional medicine in bioprospecting. *Proceedings of the National Academy of Sciences*, 109, 15835–15840.

135. Sharma S, Jalalpur S, Bhupesh S, Shrutti T, Agarwal N. 2011. Anthelminthic activity of the whole plant of *Sphaeranthus indicus*. *International Journal of Ayurvedic and Herbal Medicine*, 1, 14–21.

136. Shukla AN, Rawat AKS. 2010. An ethnobotanical study of medicinal plants of Rewa district, Madhya Pradesh. *Indian Journal of Traditional Knowledge*, 9, 191–202.

137. Silveira N, Saar J, Santos A, Barison A, Sandjo L, Kaiser M, Schmidt T, Biavatti M. 2016. A new alkaloid with an endoperoxide structure from *Acmella ciliata* (Asteraceae) and its *In vitro* antiplaesmodial activity. *Molecules*, 21, 765.

138. Singh SK, Bimal S, Narayan S, Jee C, Bimal D, Das P, Bimal R. 2011. *Leishmania donovani*: Assessment of leishmanicidal effects of herbal extracts obtained from plants in the visceral leishmaniasis endemic area of Bihar, India. *Experimental Parasitology*, 127, 552–558.

139. Sirama V, Kokwaro JO, Warhurst DC, Yusuf A. 2014. *In vitro* anthelminthic bioactivity study of *Eclipta prostrata* L. (whole plant) using adult *Hymenochirus contemptus* worms: A case study of Migori County, Kenya. *IOSR Journal of Pharmacy and Biological Sciences*, 9, 45–53.

140. Soejarto DD, Fong HHS, Tan GT, Zhang HJ, Ma CY, Franzblau SG, Gyllenhaal C, Riley MC, Kudushin MR, Pezzuto JM, Xuan LT, Hiep NT, Hung NV, Yu BM, Loc PK, DaC LX, Binh LT, Chinh QN, Hai NV, Bich TQ, Cuong NM, Southavong B, Sutdara C, Bouamavong S, Ly HM, Thuy TV, Rose WC, Dietzman GR. 2005. Ethnobotany/ethnopharmacology and mass bioprospecting: Issues on intellectual property and benefit-sharing. *Journal of Ethnopharmacology*, 100, 15–22.

141. Steele JCP, Warhurst DC, Kirby GC, Simmonds MSJ. 1999. *In vitro* and *In vivo* evaluation of betulinic acid as an antimalarial. *Phytotherapy Research*, 13, 115–119.

142. Subhuti D. 2000. *Bidens*: A popular remedy escapes notice of Western Practitioners. *ITM, India*.

143. Suzuki VP, Tatro P, Padapenetro D, Battle A, Martin VS, Frank FM, Lombardo ME. 2016. Mode of action of the sesquiterpene lactones pisistochayin and pisistochaycin C on *Trypanosoma cruzi*. *Plos One*, 11, e0150526.

144. Sutherland CJ, Tanouming N, Nolder D, Oguike M, Jennison C, Fukrittayakamee S, Dolecek C, Jennison C, Pukrittayakamee S, Hien TT, do Cicero D, Wagstaff SJ, Baral SR, Watson MF, Pendry CA, Hawkins JA. 2012. Phylogenies reveal predictive power of traditional medicine in bioprospecting. *Proceedings of the National Academy of Sciences*, 109, 15835–15840.
Two nonrecombining sympatric forms of the human malaria parasite \textit{Plasmodium ovale} occur globally. Journal of Infectious Diseases, 201, 1544–1550.

Szakiel A, Ruszkowski D, Grudniak A, Kurek A, Wolska K, Doligalska M, Janiszowska W. 2008. Antibacterial and antiparasitic activity of oleanolic acid and its glycosides isolated from marigold (\textit{Calendula officinalis}). Planta Medica, 74, 1709–1715.

Takahashi HT, Novello CR, Ueda-Nakamura T, Filho BPD, Palazzo de Mello JC, Nakamura CV. 2011. Thiophene derivatives with antileishmanial activity isolated from aerial parts of \textit{Porophyllum ruderale} (Jacq.). Cass. Molecules, 16, 3409–3478.

Talakal TS, Dwivedi SK, Sharma SR. 1995. \textit{Cassia acutifolia} (Linn.) \textit{Lactone of deoxyelephantopin} from \textit{Planta Medica}, 75, 624–628.

Toyang NJ, Verpoorte R. 2013. A review of the medicinal potentials of plants of the genus \textit{Vernonia} (Asteraceae). Journal of Ethnopharmacology, 146, 681–723.

Tran Q Le Tezuka Y, Ueda J, Nguyen NT, Maruyama Y, Begum K, Kim H-S, Wataya Y, Tran QK, Kadota S. 2003. \textit{In vitro} antiparasitic activity of \textit{Oxandrinium leaves}. Journal of Ethnopharmacology, 146, 681–723.

Tobinaga S, Sharma M, Aalbersberg W, Watanabe K, Doligalska M, Janiszowska W. 2008. Antibacterial and antitrypanosomal activity of chicory (\textit{Cichorium intybus}): \textit{In vitro} effects on swine nematodes and relationship to sesquiterpene lactone composition. Parasitology, 143, 770–777.

Yamamoto ES, Campos BL, Laurenti MD, Lago JH, dos Santos Grecco S, Corbett CE, Passero LF. 2014. Treatment with triterpenic fraction purified from \textit{Baccharis uncinella} leaves inhibits \textit{Leishmania} (Leishmania) amazonesis spreading and improves Th1 immune response in infected mice. Parasitology Research. 133, 333–339.

Yildiz K, Basalan M, Dur O, Gökpinar S. 2011. Antiparasitic efficiency of \textit{Artemisia absinthium} on \textit{Toxocara cati} in naturally infected cats. Turkish Journal of Parasitology, 35, 10–14.

Yue HW, Wright CW, Cai Y, Yang SL, Phillipson JD, Kirby GC, Warhurst DC. 1994. AntipROTOZAL activity of \textit{Jasminum nudiflorum} aerial parts. Pharmaceutical Biology, 34, 303–304.

Wabo Pone J, Fossi Tankou O, Yondo J, Komtangi MC, Mbida M, Bilong Bilong CF. 2011. The \textit{In vitro} effects of aqueous and ethanolic extracts of the leaves of \textit{Ageratum conyzoides} (Asteraceae) on three life cycle stages of the parasitic nematode \textit{Heligmosoides bakeri} (Nematoda: Heligmosomatidae). Veterinary Medicine International, 140293.

Wang G, Han J, Feng T, Li F, Zhu B. 2009. Bioassay-guided isolation and identification of active compounds from \textit{Fractus arctis} against \textit{Dactylyogryrus intermedius} (Monogenea) in goldfish (\textit{Carassius auratus}). Parasitology Research, 106, 247–255.

Wanzala W, Takken W, Mukabana WR, Pala AO, Hassanali A. 2012. Ethnoknowledge of Bukuus community on livestock tick prevention and control in Bungoma district, Western Kenya. Journal of Ethnopharmacology, 140, 298–324.

Williams AR, Peña-Espinoza MA, Boas U, Simonsen HT, Enemark HL, Thamsborg SM. 2016. Anthelmintic activity of the \textit{Carassius auratus} (Monogenea): \textit{In vitro} effects on swine nematodes and relationship to sesquiterpene lactone composition. Parasitology, 143, 770–777.

Yamamoto ES, Campos BL, Laurenti MD, Lago JH, dos Santos Grecco S, Corbett CE, Passero LF. 2014. Treatment with triterpenic fraction purified from \textit{Baccharis uncinella} leaves inhibits \textit{Leishmania} (Leishmania) amazonesis spreading and improves Th1 immune response in infected mice. Parasitology Research. 133, 333–339.

Yamamoto ES, Campos BL, Laurenti MD, Ribeiro SP, Kallás EG, Rafael-Fernandes M, Santos-Gomes G, Silva MS, Sessa DP, Lago JHG, Levy D, Passero LFD. 2015. The effect of ursoic acid on \textit{Leishmania} (Leishmania) amazonesis is related to programmed cell death and presents therapeutic potential in experimental cutaneous leishmaniasis. \textit{PLoS One}, 10, e0114946.

Yildiz K, Basalan M, Dur O, Gökpinar S. 2011. Antiparasitic efficiency of \textit{Artemisia absinthium} on \textit{Toxocara cati} in naturally infected cats. Turkish Journal of Parasitology, 35, 10–14.

Yu HW, Wright CW, Cai Y, Yang SL, Phillipson JD, Kirby GC, Warhurst DC. 1994. AntipROTOZAL activity of \textit{Centipeda minima}. Phytotherapy Research, 8, 436–438.

Zahari Z, Jani NA, Amanah A, Latif MNA, Majid MIA, Adenan MI. Bioassay-guided isolation of a sesquiterpene lactone of deoxyelephantopin from \textit{Elephantopus scaber} Linn. active on \textit{Trypanosoma brucei rhodesiense}. Phytotherapy Research, 21, 282–285.

Zhu F, Qin C, Tao L, Liu X, Shi Z, Ma X, Jia J, Tan Y, Cui C, Lin J, Tan C, Jiang Y, Chen Y. 2011. Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting. Proceedings of the National Academy of Sciences, 108, 12943–12948.
Reviews, articles and short notes may be submitted. Fields include, but are not limited to: general, medical and veterinary parasitology; morphology, including ultrastructure; parasite systematics, including entomology, acarology, helminthology and protistology, and molecular analyses; molecular biology and biochemistry; immunology of parasitic diseases; host-parasite relationships; ecology and life history of parasites; epidemiology; therapeutics; new diagnostic tools.

All papers in Parasite are published in English. Manuscripts should have a broad interest and must not have been published or submitted elsewhere. No limit is imposed on the length of manuscripts.

Parasite (open-access) continues *Parasite* (print and online editions, 1994-2012) and *Annales de Parasitologie Humaine et Comparée* (1923-1993) and is the official journal of the Société Française de Parasitologie.

Editor-in-Chief:
Jean-Lou Justine, Paris

Submit your manuscript at
https://parasite.edmgr.com/