Tauopathies are a heterogeneous group of neurodegenerative disorders sharing the neuropathologic hallmark of neuronal and/or glial accumulation of tau (Table 1). They can have genetic, toxic, autoimmune, or environmental bases, although in most cases, the etiology remains unknown. Recent years have seen increasing numbers of movement disorders subsumed under the umbrella of “tauopathies.” Herein we review these entities from clinical, etiological, and pathomechanistic standpoints and conclude by discussing the difficulties in interpreting the relevance of tau deposition in these disorders.

Indeed, as the number of disparate disorders bearing tau pathology increases, the less likely it becomes that tau is the primary instigator or mediator of disease in all. Moreover, the recognition of a number of aging-related tauopathies (aging-related tau astrogliopathy; primary age related tauopathy), sometimes in cognition of a number of aging-related tauopathies (aging-related tauopathy), sometimes in patients without clinical deficits, further supports the theory that on occasion, tau deposition may be a late or secondary phenomenon or may merely reflect processes associated with normal aging and life insults.1,2

Brief Overview of Tau

Tau is a critical microtubule–associated protein subserving varied functions ranging from maintenance of cytoskeletal architecture and axonal transport to neurite polarization and DNA protection.3 A total of 6 tau isoforms exist, generated through alternate splicing of exons 2, 3, and 10 of the MAPT gene on chromosome 17; inclusion or exclusion of exon 10 produces tau with either 3 (3R) or 4 (4R) microtubule-binding domains, the normal 1:1 ratio of which can become skewed in various disease states.3 In disease, tau becomes misfolded and physiochemically abnormal and accumulates as insoluble inclusions in neurons and/or glia, the neuropathologic detection of which denotes the condition as a “tauopathy.” Recent evidence has uncovered “prion-like” cell-to-cell tau propagation along the neuro-anatomic connectome and strain-specific tau pathologic inclusions and seeding characteristics.3–5

In addition to the division into primary (where tau is considered the sole and/or primary mediator of neurodegeneration) and secondary (where tau coexists with other pathology) forms, disease-specific signatures for each tauopathy exist based on which cell types bear inclusions (neurons, glia, or both), their morphological appearances and anatomic distribution, and the ratio of 3R:4R tau.3,6

Herein we discuss recent movement disorder additions to the field of tauopathies. Deciding which disorders to include was difficult, as some subjectivity exists regarding what constitutes a “new” or “unexpected” finding. We tried to focus on disorders that would be of interest to practicing clinicians and group these according to likely disease pathomechanisms.

Hereditary Disorders

Beta-Propeller Protein Associated Neurodegeneration (BPAN)

Described in 2012, this neurodegenerative disorder with brain iron accumulation mostly results from de novo mutations in the WDR45 gene.7 Despite being x-linked, BPAN is uncommon in males, likely because of the nonviability of affected conceptuses.7 Clinical characteristics include early-onset seizures, global developmental delay, ataxia, and behavioral problems often with a Rett syndrome–like phenotype.7 In adolescence, seizures...
become less prominent, parkinsonism and dystonia appear, and dementia progresses.7

Neuropathology shows widespread Alzheimer-like tau pathology throughout the cortex, basal ganglia, brainstem, and cerebellum.8 The notable absence of alpha-synuclein pathology helps to differentiate BPAN from other neurodegenerative disorders with brain iron accumulation, particularly phospholipase A2 group VI-associated neurodegeneration and mitochondrial membrane protein associated neurodegeneration, while tau anatomic distribution is quite distinct from that seen in Alzheimer’s disease (AD).7

Adenylate Cyclase 5 (ADCY5)–Related Dyskinesia

ADCY5-related dyskinesia is a childhood-onset choreodystonic movement disorder caused by mutations in the ADCY5 family of striatal-specific enzymes, which convert ATP to the second messenger cyclic adenosine monophosphate.9 Associated symptoms may include axial hypotonia, limb hypertonia, cognitive impairment, depression, attention-deficit hyperactivity disorder, and psychosis. Oculomotor apraxia and nocturnal ballistic bouts may be seen.10

Neuropathologic features of the disorder have yet to be clearly defined. Recently, the first neuropathological examination of a patient with a genetically confirmed (p.M1029K) ADCY5 gene mutation who died at the age of 46 years was reported.11 This showed widespread (mixed 3R/4R) tau pathology, including neurofibrillary tangles, neuritic tau, and glial tau deposition involving the cerebral cortex, midbrain, thalamus, and hippocampus. Sulcal perivascular astroglial tau inclusions were identified, raising questions about whether this could have represented chronic traumatic encephalopathy pathology from severe choreodystonic head movements, but the pathology was not typical for this disorder.11

Benign Hereditary Chorea (BHC) Type 2

Most BHC syndromes result from mutations in either the thyroid transcription factor 1 (TTFTf)12 or ADCY5 genes.13 BHC type 2, the rarest benign chorea syndrome, was described in 2007 in 2 Japanese families with adult-onset dominantly inherited progressive chorea and mapped to chromosome 8q 21.3–q23.3.14 Neuropathological findings in a single case of BHC type 2 included presence of neurofibrillary tangles and threads and 4R immunoreactive tuffed astrocytes (a hallmark feature of progressive supranuclear palsy) affecting the cortex, basal ganglia, brainstem, and cerebellum.15 Of note, the reported patient was 83 years old at the time of death, hence it remains to be seen if tau pathology in BHC is a specific feature or rather a concomitant age-related pathology or unrelated primary tauopathy.

Autosomal Dominant Spinocerebellar Ataxias (SCAs)

SCAs are dominantly inherited degenerative disorders characterized principally by progressive ataxia, often accompanied by extracerebellar symptoms including parkinsonism, pyramidal signs, retinal degeneration, and peripheral neuropathy.16–18 In the former, neurofibrillary tangles, neurophil threads, and tau-positive neurites involved various brainstem regions and the basal ganglia.17 In the latter, tau may simply represent coincidental AD pathology.18

Huntington’s Disease (HD)

HD is a dominantly inherited neurodegenerative disorder classically producing the triad of cognitive decline, psychiatric symptoms, and hyperkinetic movements.19 Expansion of the CAG trinucleotide repeat in the huntingtin (HTT) gene elongates the protein’s polyglutamine tract, causing misfolding, aggregation, and impairment of various cellular processes.19

Along with other misfolded proteins, such as alpha-synuclein and TAR DNA binding protein-43, tau deposition is increasingly recognized as a feature of HD neuropathology, taking the form of neurofibrillary tangles predominately in medial temporal lobes as well as nuclear tau rods (Lucas rods).20,21 Tau pathology, which may be responsible for the development of cognitive symptoms in HD,21 increases with increasing disease stage, suggesting a direct role for mutant HTT in formation of insoluble tau.20

Autoimmune Disorders

Anti-IgLON5 Disease

Anti-IgLON5 disease is a nonparaneoplastic antibody-associated disorder classically presenting in the sixth to seventh decade of life with disordered sleep (parasomnias, obstructive sleep apnea, stridor, hypoventilation), cognitive decline, bulbar symptoms, and ataxia. Parkinsonism, sometimes assuming a progressive supranuclear palsy-like phenotype, can be present, as can chorea.22 The rate of progression is slow, at times decades from diagnosis until death. Response to immunotherapy may be seen.23

Neuropathologic findings in the disorder were considered relatively homogeneous, showing almost exclusively neuronal 3R-tau and 4R-tau deposition primarily in the brainstem tegmentum and hypothalamus, following a cranio-caudal gradient to the level of the cervical spinal cord.22 However, the recent report of a case of symptomatic anti-IgLON5 disease without brainstem tau pathology questions the pathogenic role of tau in this disorder.23
Idiopathic/Environmentally Mediated Disorders

Progressive Ataxia and Palatal Tremor (PAPT)

The PAPT syndrome is characterized by palatal tremor along with progressive cerebellar signs; cerebellar atrophy and hypertrophic olivary degeneration are frequent neuroimaging findings. PAPT is classified as either “sporadic” or “familial.” Familial PAPT is usually a consequence of adult-onset Alexander’s disease, although rarer causes include autosomal dominant SCA type 20 and DNA polymerase gamma (POLG) mutations. “Sporadic” PAPT subsumes the nonfamilial conditions, including celiac disease and cerebrotendinous xanthomatosis, although most cases remain idiopathic.

Two separate reports (on 3 patients, aged 75, 80, and 89 years at the time of autopsy) have identified tau deposits in idiopathic PAPT. Its distribution differed, but generally comprised somatodendritic inclusions in the inferior olives, nigra, locus coeruleus, red nucleus, and thalamus alongside cortical and/or hippocampal tau pathology that was interpreted as an incidental finding related to aging.

Globular Glial Tauopathies (GGT)

The GGT are rare 4R-tauopathies characterized neuropathologically by widespread globular glial inclusions. Various neuropathologic subtypes of GGT have been defined:

- Type I GGT classically presents with fronto-temporal dementia, reflecting predominant fronto-temporal distribution of pathology.
- Type II GGT generally demonstrate prominent pyramidal involvement, reflecting motor cortex pathology with corticospinal tract degeneration.
- Type III GGT is essentially a combination of types I and II, exhibiting combined involvement of the motor cortex and frontotemporal regions and consequent symptomatic overlap.

GGT types II and III may demonstrate extrapyramidal features and can be misdiagnosed as either progressive supranuclear palsy or corticobasal syndrome, sometimes with “typical” neuroimaging. Clinical clues in these cases include prominent upper motor neuron signs, with most cases essentially representing primary lateral sclerosis overlap syndromes. Tau strains in GGT demonstrate unique, potent seeding characteristics that appear to be a primary driver of the neurodegenerative process.

Traumatic Brain Injury Producing Secondary Dystonia

A single case report of a 78-year-old male patient demonstrated tau pathology potentially underlying the development of secondary dystonia following focal traumatic brain injury. Neuropathology, in addition to chronic traumatic encephalopathy-like tau deposition in the frontal cortex (the likely site of impact), and histologic evidence of PAPT, showed evidence of focal right basal ganglia neuronal and glial tau deposition, likely accounting for left hand dystonia. The report in question should, however, be interpreted with caution, especially given the self-confessed clinical uncertainties about the diagnosis of dystonia.

Nodding Syndrome (NS)

NS is an enigmatic epidemic neurologic disorder affecting children in East Africa. Joining other geographical clusters of tauopathy such as Guadeloupean parkinsonism and Parkinsonism-dementia complex of Guam, the disorder manifests between 3 and 18 years of age with stereotyped head drops, seizures, neurocognitive regression, and slow, inexorable progression until death. Its etiology is uncertain. Theories include intentional poisoning of water sources, exposure to chemicals, neurotropic viruses, and parafusceptious autoimmune disorders.

Recent neuropathologic examination of 5 patients who had died of NS showed neuronal tau deposition (pretangles and neuronal threads) predominantly in the cortical and brainstem regions, with relative sparing of basal ganglia. However, epilepsy is one of the clinical features of NS, and given that tau pathology is well known to occur in long-standing epileptics, it could be that the observed changes are secondary to poorly controlled seizures.

Discussion

Fundamentally, all tauopathies are characterized by deposition of physio-chemically abnormal, misfolded tau within neurons and/or glia. The upstream pathophysiologic abnormalities leading to such conformational changes are vast. They include alterations in amino acid sequences within the MAPT gene, altered transcription, multiple posttranslational influences (but especially hyperphosphorylation), head trauma, ischemia, and oxidative stress. Therefore, although classifying disorders together according to their neuropathologic similarities is informative, it can convey the wrong message that these diseases all function in similar ways and that disease modification can be applied using a “one size fits all” approach. This is incorrect, and perhaps may be one reason for the disappointing results obtained thus far from disease-modification treatment trials in tauopathies.

With new diseases come new insights about disease mechanisms. Nowhere is this more true than with the new and unexpected tauopathies. Although many of the disorders described previously reflect experience from small numbers of cases and therefore need to be replicated, studying these offers great potential to further our understanding of disease physiology and disclose novel disease-modifying treatment targets.
The aforementioned disorders may critically affect tau structure at various levels. For example, ADCY5 mutations influence cyclic adenosine monophosphate production; in turn, cyclic adenosine monophosphate–dependent protein kinases regulate (among other things) tau phosphorylation and exon 10 splicing.37 In BPAN, defective autophagy likely impairs clearance of proteins, including tau.38 Moreover, iron dyshomeostasis in this disorder may influence tau phosphorylation and aggregation.39 Posttraumatic dystonia, similar to chronic traumatic encephalopathy, reflects the fact that head trauma and shear forces can influence tau folding.40 The SCA 11 gene product TTBK2 encodes a kinase that putatively phosphorylates tau and tubulin proteins. SCA 31 affects the BEAN gene, coding for a protein that marks defective tau for subsequent degradation. In HD, mutant HTT protein can promote tau hyperphosphorylation and disrupt normal tau splicing, shifting the balance in favor of 4R-tau isoforms.21 Anti-IGLON5 disease, and possibly NS, offer an opportunity to study the interplay of autoimmunity with later neurodegeneration.

Furthermore, these cases illustrate the importance of untangling what truly represents a tauopathy. Should scant amounts of tau deposition be enough to merit classification of a disorder as a tauopathy and to ascribe disease initiation and/or progression to the observed neuropathologic inclusions? How well defined and reproduced should the neuropathology be to merit this definition? Should there always be a corresponding clinical syndrome? Could tau in some cases be an innocent bystander or a reflection of normal aging?

Further systematic clinical, neuropathologic, and molecular characterization of tauopathies is needed to address these questions and hopefully concomitantly allow the development of targeted disease-modifying therapies.

Acknowledgments

We thank Professor John Hardy for his critical review of this article.

Author Roles

1) Research project: A. Conception, B. Organization, C. Execution; 2) Statistical Analysis: A. Design, B. Execution, C. Review and Critique; 3) Manuscript: A. Writing of the first draft, B. Review and Critique.

E.M.: 1A, 1B, 1C, 3A, 3B
B.B.: 1C, 3A, 3B
Z.J.: 1C, 3A, 3B
R.E.: 1C, 3A, 3B
A.L.: 1C, 3A, 3B
K.P.B.: 1C, 3A, 3B

Disclosures

Ethical Compliance Statement: The authors confirm that the approval of an institutional review board/ patient consent was not required for this work. We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this work is consistent with those guidelines.

Funding Sources and Conflicts of Interest: None of the authors report any conflict of interest or financial disclosures in relation to this article.

Financial Disclosure for previous 12 months: B.B. was supported by the Robert Bosch Foundation. R.E. received honoraria for speaking at meetings from UCB and the International Parkinson’s Disease and Movement Disorder Society. He receives royalties from the publication of Case Studies in Movement Disorders—Common and Uncommon Presentations (Cambridge University Press, 2017). Z.J. is supported by the Department of Health’s National Institute for Health Research Biomedical Research Centre’s funding scheme. K.P.B. holds research grants from EU Horizon 2020 and has received honoraria to speak at meetings or to attend advisory boards from Ipsen, Cavion, Allegran, Teva Lundbeck, and Bial pharmaceutical companies. He also receives royalties from Oxford University Press and a stipend for Movement Disorders Clinical Practice editorship.
References

1. Kovacs G. Understanding the relevance of aging-related tau astrogliopathy (ARTAG). Neurologia 2018;1:339–350.

2. Crary JF, Trojanowski JQ, Schneider JA, et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol 2014;128:755–766.

3. Lebouvier T, Pasquier F, Buée L. Update on tauopathies. Curr Opin Neurol 2017;30:589–598.

4. Gibbons GS, Lee VMY, Trojanowski JQ. Mechanisms of cell-to-cell transmission of pathological tau. JAMA Neurol 2019;76:101–108.

5. Sanders DW, Kaufman SK, DeVos SL, Sharma AM, Mirbaha H, Li A, et al. Distinct tau prone strains propagate in cells and mice and define different tauopathies. Neuron 2014;82:1271–1288.

6. Kovacs GG. Invited review: neuropathology of tauopathies: principles and practice. Neuropathol Appl Neurobiol 2015;41:3–23.

7. Gregory A, Kurian MA, Haack T, Hayflick SJ, Hogarth P. Beta-Propeller Protein-Associated Neurodegeneration GeneReviews®. Seattle, WA: University of Washington; 1993.

8. Paudel R, Li A, Wiethoff S, Bandopadhyay R, et al. Neuropathology of beta-propeller protein associated neurodegeneration (BPAN): a new tauopathy. Acta Neuropathol Commun 2015;3:59.

9. Chen Y-Z. Autosomal dominant familial dyskinesia and facial myokymia. Arch Neurol 2012;69:630–635.

10. Balint B, Antelmi E, Mencacci NE, et al. Oculomotor apraxia and disrupted sleep with nocturnal ballistic bouts in ADCYS-related disease. Parkinsonism Relat Disord 2018;54:103–106.

11. Chen D, Latimer CS, Spencer M, et al. Hyperphosphorylated tau, increased adenylylcyclase 5 (ADCYS) immunoreactivity, but no neuro-loss in ADCYS-dyskinesia. Mov Disord Clin Pract 2020;7:70–77.

12. Breedveld GJ. Mutations in TTF-1 are associated with benign hereditary chorea. Hum Mol Genet 2002;11:971–979.

13. Mencacci NE, Erro R, Wiethoff S, et al. ADCYS mutations are another cause of benign hereditary chorea. Neurology 2015;85:80–88.

14. Shimohata T, Hara K, Sanpei K, et al. Novel locus for benign hereditary chorea with adult onset maps to chromosome 8q21.3 q23.3. Brain 2007;130:23/02–25/09.

15. Yoshida Y, Nunomura J, Shimohata T, Nano H, Miyata H. Benign hereditary chorea 2: pathological findings in an autopsy case. Neuropathology 2012;32:557–565.

16. Seidel K, Siwanto S, Brunt ERP, den Dunnen W, Korf H-W, Riub U. Brain pathology of spinocerebellar ataxia. Acta Neuropathol 2012;124:1–23.

17. Houdzen H, Johnson J, Gardner-Thorpe C, et al. Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11. Nat Genet 2007;39:1434–1436.

18. Adachi T, Kitayama M, Nakano T, Adachi Y, Kato S, Nakashima K. Autopsy case of spinocerebellar ataxia type 31 with severe dementia at the terminal stage. Neuropathology 2015;35:273–279.

19. McCollan P, Tahmini SJ. Huntington’s disease: a clinical review. Eur J Neurol 2018;25:24–34.

20. St-Amour I, Turgeon A, Goupil C, Planèl E, Hébert SS. Co-occurrence of mixed proteinopathies in late-stage Huntington’s disease. Acta Neuropathol 2018;135:249–265.

21. Gratuze M, Cibani G, Cicchetti F, Planèl E. Is Huntington’s disease a tauopathy? Brain 2016;139:1014–1025.

22. Sabater I, Gaà C, Gelpi E, et al. A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol 2014;13:575–586.

23. Cabezudo-García P, Mené-Vázquez N, Estrell Torriós G, Serrano-Castro P. Response to immunotherapy in anti-IgLON5 disease: a systematic review. Acta Neurol Scand 2020;141:263–270.

24. Erro ME, Sabater L, Martínez L, et al. Anti-IgLON5 disease: a new case without neuropathologic evidence of brainstem tauopathy. Neurol-Immunol Neuroinflamm 2020;7:e651.

25. Samuel M. Progressive ataxia and palatal tremor (PAPT): Clinical and MRI assessment with review of palatal tremors. Brain 2004;127:1252–1268.

26. Mari Z, Halls AJM, Vortmeyer A, et al. Clinico-pathological correlation in progressive ataxia and palatal tremor: a novel tauopathy. Mov Disord Clin Pract 2014;1:50–56.

27. Gao AF, Faust-Socher A, Al-Murshed M, Del Bigio MR, Lang AE, Munoz DG. Progressive ataxia and palatal tremor: two autopsy cases of a novel tauopathy. Mov Disord 2017;32:1465–1473.

28. Ahmed Z, Bigio EH, Budka H, et al. Globular glial tauopathies (GGT): consensus recommendations. Acta Neuropathol 2013;126:537–544.

29. Marali L, Dickson DW, Espay AJ. Globular glial tauopathy may be mistaken for corticobasal syndrome-pointers for the clinician. Mov Disord Clin Pract 2018;5:439–441.

30. Josep N, Katusse O, Beccano-Kelly DA, et al. Atypical progressive supranuclear palsy with corticospinal tract degeneration. J Neuropathol Exp Neurol 2006;65:396–405.

31. Chung DC, Carlomagno Y, Cook CN, et al. Tau exhibits unique seeding properties in globular glial tauopathy. Acta Neuropathol Commun 2019;7:36.

32. Iacono D, Lee P, Hallett M, Perl D. Possible post-traumatic focal dystonia associated with tau pathology localized to putamen-Globus pallidus. Mov Disord Clin Pract 2018;5:492–498.

33. Landis JL, Palmer VS, Spencer PS. Nodding syndrome in Kitgum District, Uganda: association with conflict and internal displacement. BMJ Open 2014;4:e006195.

34. Mkusa A, Semakula JR, Abbco C, Idro R. Nodding syndrome: recent insights into etiology, pathophysiology, and treatment. Res Rep Trop Med 2018;9:89–93.

35. Pollanen MS, Onizuka S, Robertson J, et al. Nodding syndrome in Uganda is a tauopathy. Acta Neuropathol 2018;136:691–697.

36. Tai XY, Koepp M, Duncan JS, et al. Hyperphosphorylated tau in patients with refractory epilepsy correlates with cognitive decline: a study of temporal lobe resections. Brain 2016;139:2441–2455.

37. Shi J, Qian W, Yin X, et al. Cyclic AMP-dependent protein kinase regulates the alternative splicing of tau exon 10. J Biol Chem 2011;286:14639–14648.

38. Saito H, Nishimura T, Muramatsu K, et al. De novo mutations in the autophagy gene WDRL45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet 2013;45:445–449.

39. Rao SS, Adlard PA. Untangling tau and iron: exploring the interaction between iron and tau in neurodegeneration. Front Mol Neurosci 2018;11:276.

40. McKee AC, Stein TD, Kiernan PT, Alvarez VE. The neuropathology of chronic traumatic encephalopathy. Brain Pathol 2015;25:350–364.
| Disorder | Clinical Summary | Tau Isoforms | Tau Neuropathology | Usual Causative Mechanisms |
|-------------------------------|--|--------------|---|---|
| ADCY5-related dyskinesia* | Infantile to adolescent onset choreo-dystonia and/or myoclonus affecting the face, limbs, and/or neck. May be associated with axial hypotonia, facial twitching, and nocturnal exacerbations-“ballistic bouts” | Mixed 3R and 4R | Appearance: NFTs, neuritic tau, and glial tau deposition. Anatomic Distribution: Cerebral cortex, midbrain, thalamus and hippocampus. Sulcal perivascular astrogliial tau inclusions also seen, though not typical of CTE | Genetic: ADCY5 gene mutation |
| Aging-related tau astrogliopathy (ARTAG) | ARTAG describes a spectrum of astrogial tau pathologies which are mainly encountered in the elderly, may occur in isolation or associated with other tauopathies and whose clinical relevance when an isolated finding is uncertain | 4R-tau | Appearance: Hyperphosphorylated tau accumulation in astrocytes, mainly taking the form of thorn-shaped astrocytes and/or granular/fuzzy astrocytes | Uncertain |
| **Alzheimer’s disease (AD)** | Late-onset AD: Progressive cognitive dysfunction characterized by memory loss, executive dysfunction, language dysfunction and impaired visuospatial ability. Early-onset (<65 years) disease can have atypical presentations with less memory impairment and more focal cortical syndromes | Mixed 3R and 4R | Appearance: NFTs (paired helical filaments and straight filaments), accompanied by widespread amyloid-beta pathology, and hippocampal granulovascular degeneration and Hirano bodies. Anatomic Distribution: Predicable spread of tau pathology over time from the transentorhinal cortex to the temporal allocortex, temporal neocortex and later to additional neocortical areas | Most commonly idiopathic neurodegeneration. Some familial syndromes due to APP and presenilin gene mutations |
| Amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia complex of Guam | Atypical parkinsonism, dementia, motor neuron disease, or a combination of these 3 phenotypes, occurring both in the indigenous Chamorro population and in immigrants to the Mariana islands, the Kii peninsula of Japan, and the coastal plain of West New Guinea | Mixed 3R and 4R | Appearance: Dystrophic neurites, neurofibrillary tangles, coiled bodies and astrocytic inclusions. A lesser degree of Lewy body pathology affecting the SNR, LC and amygdala. Anatomic Distribution: Neuroonal and glial tau pathology in the neocortex, hippocampus, brainstem and spinal cord | Uncertain: possibly mediated through ingestion of environmental toxin |
| Anti-IGLON5 disease | Sleep changes (OSA, parasomnia, goal-directed movements during sleep), cognitive decline, movement disorders (chorea, parkinsonism, PSP-like syndrome) | Mixed 3R and 4R | Appearance: Selective neuronal involvement with NFT, pretangles and neuropi threads. Anatomic Distribution: Hypothalamus and brainstem tegmentum following rostro-caudal severity gradient all the way down to the level of the cervical spinal cord | Autoimmune-Anti-IGLON5 antibodies |
| Argyrophilic grain disease (AGD) | Late-onset slowly progressive MCI, sometimes with neuropsychiatric symptoms | 4R-tau | Appearance: In addition to argyrophilic grains and bush-like astrocytes, tau inclusions consisting of oligodendrocytic coiled bodies (also seen in other 4R tauopathies such as PSP and CBD) and neuronal pretangles can be seen. Frequently present alongside AD pathology. Anatomic Distribution: Characteristic progression starting from MTL structures and involving neocortex and brainstem late | Idiopathic |
| Disorder | Clinical Summary | Tau Isoforms | Tau Neuropathology | Usual Causative Mechanisms |
|---|--|--------------|---|------------------------------------|
| Benign hereditary chorea type 2 | Adult-onset nonprogressive chorea | 4R-tau | Appearance: NFTs, tufted astrocytes and argyrophilic threads. Unique neuronal cytoplasmic inclusion (non-tau) in oculomotor nuclei | Genetic: linked to chromosome 8q21.3-q23.3 |
| Beta-propeller protein associated neurodegeneration (BPAN) | Early-onset seizures, developmental delay, behavioral problems (Rett syndrome-like phenotype) and ataxia. Later dystonia and parkinsonism. Pallidal iron accumulation on MRI | 3R and 4R | Appearance: NFTs, threads, NFTs and pretangles | Genetic: ADR45 mutations |
| Cerebrotendinous xanthomatosis | Cataracts, atherosclerosis, neuropsychiatric symptoms, dementia, ataxia, seizures | 4R-tau | Appearance: 4R tau deposition with AGD-like features | Genetic: mitochondrial |
| Chronic traumatic encephalopathy (CTE) | Behavioral and mood changes, memory loss, cognitive impairment and dementia following repetitive head trauma | 3R and 4R | Appearance: NFTs, threads and astrocytic inclusions; additional TDP-43 and amyloid-beta deposition found in a number of cases | Environmental: repeated head trauma |
| Corticobasal degeneration | Variable clinical phenomenology broadly presenting either as CBS or as Richardson syndrome (RS). CBS presentations mostly take the form of asymmetric limb-onset rigidity and apraxia, focal limb dystonia, myoclonus and cortical sensory deficits, whereas RS-onset patients frequently manifest with gait disturbance, behavior change, vertical supranuclear gaze palsy, dysphagia, and symmetric parkinsonism | 4R-tau | Appearance: Tau pathology mainly comprises pretangles and thread-like processes; Astrocytic plaques are typical | Idiopathic |
| Diffuse neurofibrillary tangles with calcification (Kosaka-Shibayama disease) | Almost exclusively described in Japan. Initial AD-like amnestic syndrome but often accompanied by behavior change (disinhibition, apathy), oral tendencies, parkinsonism, or gait disturbance. Neuroimaging: Fahr-type calcifications | Mixed 3R and 4R | Appearance: Intracellular and extracellular AD-like NFTs and glial fibrillary tangle | Idiopathic |
| Down syndrome | Trisomy 21 results in a poly-symptomatic disorder, features of which include congenital cardiac defects, typical facial appearance, short stature, predisposition to leukemias and infections, mental retardation, and early-onset AD | Mixed 3R and 4R | Appearance: Tau NFTs and amyloid plaques | Genetic: trisomy 21 |
| Disorder | Clinical Summary | Tau Isoforms | Tau Neuropathology | Usual Causative Mechanisms |
|---|--|--------------|---|---------------------------|
| Cognitive decline in temporal lobe epilepsy | Accelerated cognitive decline in temporal-lobe epilepsy | Mixed 3R and 4R | Appearance: Hyperphosphorylated tau pathology in the form of neurofilament threads, neurofibrillary tangles and pretangles; absence of amyloid-beta plaques in most cases
Anatomic distribution: Medial temporal lobe; can be AD-like, CTE-like, or an unusual subpial, axonal distribution | Idiopathic |
| Familial British dementia | A non-Abeta cerebral amyloidosis demonstrating progressive cognitive impairment, spastic tetraparesis, and cerebellar ataxia | Mixed 3R and 4R | Appearance: Tau NFTs
Anatomic Distribution: Tau mostly affecting the hippocampus. Deposition of amyloid protein (ABri) in blood vessels (amyloid angiopathy) and parenchyma, most prominently in the cerebellum and limbic structures | Genetic: Dominantly inherited mutations in the BRI2 gene |
| Familial Danish dementia | A non-Abeta cerebral amyloidosis characterized by early-onset cataracts, followed later by deafness, ataxia, psychosis, and dementia | Mixed 3R and 4R | Appearance: Tau NFTs
Anatomic Distribution: Tau mostly affecting the hippocampus. Deposition of amyloid protein (ABri) in blood vessels (amyloid angiopathy) and parenchyma, most prominently in the cerebellum and limbic structures | Genetic: Dominantly inherited mutations in the BRI2 gene |
| Focal cortical dysplasia type 2b | Drug-resistant childhood-onset focal epilepsy | 3R and 4R | Focal cortical dysplasia with dysmorphic neurons and balloon cells. Tau deposition confined to dystrophic neurons | Mutations in genes involved in mTOR pathway regulation found in some, but many remain idiopathic |
| Frontotemporal lobar degeneration attributed to MAPT mutation | Classic phenotypes include behavioral variant FTLD and primary progressive aphasia, although other features such as parkinsonism and motor neuron disease may dominate | 3R, 4R, or mixed | Appearance: Variable tau pathology depending on mutation type; can resemble Pick’s disease pathology with dominance of 3R tau, or CBD and PSP pathology with dominance of 4R tau
Anatomic Distribution: Variable, depending on clinical syndrome | Genetic: MAPT mutations |
| Frontotemporal lobar degeneration, Pick’s disease | Behavioral variant FTLD and less frequently primary progressive aphasia | 3R | Appearance: 3R dominant neuronal and glial tau pathology
Anatomic Distribution: Cortical (frontotemporal, medial temporal lobe) | Sporadic |
| Ganglioglioma | Epileptogenic malformation of cortical development frequently presenting with childhood seizures | – | NFTs within the dysmorphic neurons | Idiopathic |
| Globular glial tauopathy | Three clinical presentations recognized:
1. Frontotemporal dementia
2. Pyramidal weakness
3. Frontotemporal dementia/motor neuron disease overlap syndrome | 4R-tau | Appearance: Tau-positive globular astrocytic inclusions (GAI) and globular oligodendrocytic inclusions (GOI).
Anatomic Distribution: Varies according to clinical phenotype:
1. Frontotemporal regions
2. Motor cortex and corticospinal tracts
3. Frontotemporal regions, motor cortex, and corticospinal tracts | Idiopathic |
| Disorder | Clinical Summary | Tau Isoforms | Tau Neuropathology | Usual Causative Mechanisms |
|-------------------------------|--|--------------|---|---------------------------|
| Guadeloupe parkinsonism | Axial-predominant parkinsonism with early falls, frontal cognitive dysfunction and poor levodopa response in patients from Guadeloupe | 4R | Appearance: Severe neuropil thread and NFT pathology. Severe nigral, pallidal, and thalamic neuronal loss with intense astrogliosis | Unknown? Genetic? Environmental |
| Hemimegalencephaly | Neonatal-onset seizures. May be associated with neurocutaneous syndromes. Brain imaging showing hemimegalencephaly | - | Anatomic Distribution: Cortex, basal ganglia, brainstem, and cerebellum | Genetic: AKT1 or AKT3 gene mutations |
| Heroin-associated accelerated brain aging | Cognitive dysfunction in heroin users | - | Appearance: Tau neuropil threads or thin neurites. No Amyloid-beta, Alpha-synuclein, or TDP-43 pathology | Unknown |
| Huntington’s disease | Clinical triad of dementia, hyperkinetic movements, and psychiatric symptoms. Tau deposition may underlie the development of cognitive impairment | Mixed 3R and 4R | Anatomic Distribution: Cortex, striatum, and in some cases, brainstem | Genetic: CAG trinucleotide repeat expansion in huntingtin gene |
| Meningioangiomatosis | Benign focal lesion of the leptomeninges and adjacent cerebral cortex characterized histologically by meningovascular proliferation and focal calcification. Most commonly presents with focal epilepsy | - | Anatomic Distribution: Adjacent to focal brain lesions | May occur sporadically or in association with neurofibromatosis |
| Motor neuron disease (rare)b | Most cases of familial and sporadic ALS are characterized by TDP-43 deposition. However, a small proportion of sporadic (termed non-Guamanian MND with neurofibrillary tangles) and postencephalitic motor neuron disease is characterized by abnormal tau deposition | - | Appearance: NFTs | Idiopathic |
| Myotonic dystrophy types 1 and 2 | Progressive muscle weakness, cataracts, endocrine dysfunction and cardiac conduction defects. Variable degrees of cognitive dysfunction | Unique class of tau isoforms lacking N-terminal inserts | Anatomic Distribution: Majority of pathology confined to medial temporal lobe structures, with lesser involvement of other cortical regions and brainstem nuclei (non-Guamanian form) | Genetic: DMPK (DM1) and ZNF9 (DM2) repeat expansions |
| Niemann–Pick type C | Ataxia, dementia, psychiatric manifestations, vertical supranuclear gaze palsy, gelastic cataplexy | Mixed 3R and 4R | Appearance: NFTs | Genetic: NPC1 and NPC2 gene mutations |
| Nodding syndromeb | Neurodevelopmental regression, stereotyped head drops, seizures | Mixed 3R and 4R | Anatomic Distribution: Cortex and brainstem with relative sparing of basal ganglia | Uncertain, possibly autoimmune reaction to O. volvulus |
| Disorder | Clinical Summary | Tau Isoforms | Tau Neuropathology | Usual Causative Mechanisms |
|---|---|--------------|---|--|
| Parkinson’s disease, including genetic forms: | **LRRK2** and **PRKN** | Mixed 3R and 4R | Appearance: Tau NFTs, Anatomic Distribution: Neuronal loss, and astrocytosis in the SNR, and in the entorhinal cortex and hippocampus | Unknown: Primary infection? Autoimmune/para-infectious antibody-mediated illness |
| Postencephalitic parkinsonism | Delayed, often asymmetric parkinsonism occurring either during the recovery phase after an encephalitic illness or many years after the original illness. Commonly associated with the outbreak of encephalitis lethargica, although the exact cause of PEP remains unknown | Mixed 3R and 4R | Appearance: NFTs, Anatomic Distribution: Substantia nigra | Idiopathic and genetic variants |
| Primary age-related tauopathy (PART) | Spectrum ranging from normal to amnestic cognitive changes | 3R and 4R | Appearance: NFT and/or neurites in the absence of amyloid plaque pathology | Idiopathic |
| Prion diseases especially Gerstmann-Sträussler-Scheinker disease (GSS) | Rapidly progressive neurodegenerative disorders caused by misfolded prion proteins. Variable phenotypes, including rapidly progressive dementia, ataxia, parkinsonism, myoclonus, and sleep-wake disorders. | Uncertain/variable | Appearance: Varied pathology including granular deposits, neuritic plaques, threads, NFTs and astroglial pathology. GSS usually shows severe intraneuronal tau pathology. | Idiopathic, genetic, and acquired |
| Progressive ataxia and palatal tremor (PAPT) | Palatal tremor and cerebellar signs | Uncertain, either 4R or mixed 3R and 4R tau | Appearance: Neuropil threads and diffuse somatodendritic accumulation | Idiopathic |
| Progressive supranuclear palsy (PSP) | Axial rigidity, vertical supranuclear gaze palsy, cognitive decline | 4R-tau | appearance: NFTs, pretangles, threads, oligodendroglial coiled bodies, and tufted astrocytes | Idiopathic (some genetic predisposition, eg, H1 haplotype of MAPT) |
| Senile dementia of the neurofibrillary tangle type (tangle-only dementia) | Late-onset progressive dementia with predominant memory impairment | Mixed 3R and 4R | Appearance: Neurofibrillary tangles (predominantly extracellular-ghost tangles) with striking absence of senile plaques | Uncertain |
| SLC9A6 mental retardation (Christianson syndrome) | Males with neurodevelopmental delay, behavioral alterations, seizures, dystonia, and ataxia | Mixed 3R and 4R | Appearance: NFTs, locus coeruleus, pontine nuclei, basal ganglia, thalami, cranial nerve nuclei, cerebral cortex, and hippocampus. Tau-positive glial inclusions throughout the white matter. Astrocytic plaques seen in the cerebral white matter, thalamus, and brainstem. | Genetic: X-linked mutations in the SLC9A6 gene |
| Disorder | Clinical Summary | Tau Isoforms | Tau Neuropathology | Usual Causative Mechanisms |
|----------|------------------|--------------|--------------------|---------------------------|
| Autosomal dominant spinocerebellar ataxia 11 and possibly 31^a | Progressive ataxia with variable extracerebellar features (neuropathy, retinal degeneration, dystonia, cognitive decline, ophthalmoplegia) | Uncertain | Appearance: NFT, pretangles, and neuropil threads (SCA 11) | Genetic: tau tubulin kinase-2 (TTBK2) gene (SCA 11); BEAN gene (SCA 31) Postinfectious |
| Subacute sclerosing panencephalitis | Infrequent complication of measles virus infection characterized by behavioral and intellectual decline and periodic myoclonus following a latent postinfectious period | Uncertain | Appearance: Tau NFTs and (sometimes) straight filament (similar to PSP). In addition, severe neuronal loss, gliosis, demyelination, perivascular inflammation, Cowdry type-A and type-B bodies | |
| Early-onset refractory seizures and progressive neurological decline attributed to SYNJ1 mutation^a | Recessive inheritance of SYNJ1 variants are reported in 2 clinical syndromes: 1. Early-onset intractable epilepsy with cognitive decline 2. Early-onset Parkinsonism with seizures and dystonia | - | Appearance: Tau NFTs | Genetic: SYNJ1 mutation |
| Traumatic basal ganglia injury with secondary dystonia^a | Single case: Posttraumatic focal dystonia resulting from head injury related basal ganglia lesion | Uncertain | Appearance: NFTs, neurites, and tau astroglial pathology | Posttraumatic |
| Tuberous sclerosis complex | Multisystem neurocognitive syndrome characterized by hamartoma formation in various organs, neuronal migration defects, and tumors. Presentations are highly variable but neurologic presentations generally comprise seizures and/or intellectual disability | Uncertain | Tau deposition seen to varying degrees in cortical tubers | Genetic: Autosomal dominant mutations in TSC1 and TSC2 genes |
| X-linked parkinsonism with spasticity^a | Young-onset parkinsonism with spasticity | 4R-tau | Appearance: NFTs and neurites Anatomic Distribution: Medial temporal lobe and SNR Diffuse Aβ deposits in the neocortex and limbic system, with neuritic plaques confined to the medial temporal lobe; no Lewy bodies. Plaque-like structures in the striatum | Genetic: X-linked mutations in the ATP6AP2 gene |

^aTau pathology so far only demonstrated in small numbers of case reports and/or unclear, potentially coincidental association with tau pathology.

NFT, neurofibrillary tangles; ADCY5, adenylate cyclase 5; CTE, chronic traumatic encephalopathy; WM, white matter; GM, gray matter; OSA, obstructive sleep apnea; MCI, mild cognitive impairment; CBD, corticobasal degeneration; MTL, medial temporal lobe; SNR, substantia nigra; LC, locus coeruleus; MRI, magnetic resonance imaging; TDP-43, TAR DNA binding protein-43; CBS, corticobasal syndrome; mTOR, mammalian target of rapamycin; FTLD, frontotemporal lobar degeneration; HTT, huntingtin; MND, motor neuron disease; PEP, postencephalitic parkinsonism; SCA, spinocerebellar ataxia.