Nature of correlations in the atomic limit of the boson fermion model

T. Domański

Institute of Physics, M. Curie Skłodowska University, 20-031 Lublin, Poland
(March 22, 2002)

Using the equation of motion technique for Green’s functions we derive the exact solution of the boson fermion model in the atomic limit. Both (fermion and boson) subsystems are characterized by the effective three level excitation spectra. We compute the spectral weights of these states and analyse them in detail with respect to all possible parameters.

Although in the atomic limit there is no true phase transition, we notice that upon decreasing temperature some pairing correlations start to appear. Their intensity is found to be proportional to the depleted amount of the fermion nonbonding state. We notice that pairing correlations behave in a fashion observed for the optimally doped and underdoped high T_c superconductors. We try to identify which parameter of the boson fermion model can possibly correspond to the actual doping level. This study clarifies the origin of pairing correlations within the boson fermion model and may elucidate how to apply it for interpretation of experimental data.

Boson fermion (BF) model describes a system composed of the narrow band electrons or holes (fermions) which coexist and interact with the local pairs (hard core bosons) of, for example, bipolaronic origin [1]. The BF model has been recently intensively studied by various methods, such as: the standard mean field theory [1], the perturbative procedure with respect to the boson fermion coupling [2], perturbative expansion with respect to the kinetic hopping [3], the dynamical mean field procedure [4], the continuous canonical transformation [5], etc. Apart of studying the mechanism responsible for superconductivity, there have been also investigated the many-body effects which, above T_c, lead to an appearance of fermion pairs without their long range coherence. Indeed, three independent procedures [2,4,5] gave unambiguous arguments for the precursor effects, out of which a pseudogap is the most transparent one.

The pseudogap feature gradually builds up upon lowering temperature. It is observed in a temperature regime $T^* > T > T_c$, with both characteristic temperatures T^* and T_c depending on the BF model parameters. Absence of the long range coherence between pairs is caused by quantum fluctuations of the order parameter $\chi < T >$. In general, it is hard to distinguish between the amplitude χ_i and phase ϕ_i fluctuations because they are convoluted. Intuitively one may expect that phase fluctuations would dominate for a dilute concentration of paired fermions, while in the opposite limit the amplitude fluctuations take over. Some analysis along this line was recently discussed in Ref. [6]. Fluctuation effects were also studied for the 2 dimensional (isotropic and anisotropic) BF model by Micnas et al [7] using the Kosterlitz Thouless theory. Authors reported a noticeable splitting between T^* and T_c which considerably increased for increasing population of the paired fermions. This result supports the above mentioned reasoning.

In this brief report we show that already on a level of the zero-dimensional (atomic limit) physics there is some evidence for pairing correlations which gradually increase in strength upon lowering temperature. We study such effect on a basis of the rigorous solution of the BF model in the atomic limit.

In our previous paper [3] we have investigated some aspects of the atomic limit solution. The effective fermion spectrum was determined there by a direct diagonalisation of the Hilbert space. In a current work we rederive the exact solution using the equation of motion technique of Ref. [8] for Green’s functions. Advantage of this method is that it gives the spectral weights for the eigenstates expressed in terms of the corresponding correlation functions. Of course, diagonalisation and Green’s function method are equivalent and complementary to each other.

Hamiltonian of the boson fermion model can be written as $H = \sum_{i,j,\sigma} t_{ij} c_{i,\sigma}^\dagger c_{j,\sigma} + \sum_i H_i$ where t_{ij} stands for the hopping integral and the local part H_i is given by [1]

$$H_i = \varepsilon_0 \sum_{\sigma} c_{i,\sigma}^\dagger c_{i,\sigma} + E_0 b_i^\dagger b_i + g \left(b_{i,\uparrow,\sigma}^\dagger c_{i,\downarrow,\sigma}^\dagger + b_{i,\downarrow,\sigma}^\dagger c_{i,\uparrow,\sigma} \right).$$

We use here standard notations for the second quantisation operators of fermion $c_{i,\sigma}, c_{i,\sigma}^\dagger$ and hard core boson b_i, b_i^\dagger fields. Site energies are correspondingly expressed as $\varepsilon_0 = \varepsilon_f - \mu$ and $E_0 = \Delta B - 2\mu$ where a common chemical potential μ ensures conservation of the total charge concentration $n_{tot} = \left\langle 2b_i^\dagger b_i + \sum_{\sigma} c_{i,\sigma}^\dagger c_{i,\sigma} \right\rangle$. Fermion and boson fields are coupled through the exchange interaction $g b_i^\dagger c_{i,\uparrow,\sigma}^\dagger c_{i,\downarrow,\sigma} + h.c.$ which can transform a fermion pair into a hard core boson and vice versa.

In the strict atomic limit $t_{ij} = 0$ one needs a solution of only the local part (1). Let us notice that the hard core boson operators obey, in general, the spin $\frac{1}{2}$ algebra, characterised by the following commutation rules $[b_i, b_j^\dagger] = \delta_{ij}(1 - 2b_i^\dagger b_i)$ and $[b_i, b_j] = 0 = [b_i^\dagger, b_j^\dagger]$. For the same site $i = j$ (which is relevant in the atomic...
limit) they simply reduce to the anticommutation relations [9]. We can thus construct the fermionic Green’s function \(\langle \langle A_i; A_i^\dagger \rangle \rangle_\omega \) both for fermions \(A_i = c_{i\sigma} \) and for hard-core bosons \(A_i = b_i \), where we introduced the Fourier transform of the retarded Green’s function

\[-i\Theta(t) \left\langle \left[A_i(t), A_i^\dagger(0) \right] \right\rangle \equiv \int d\omega e^{i\omega t} \langle \langle A_i; A_i^\dagger \rangle \rangle_\omega . \]

According to the equation of motion [8] \(\langle \langle A; B \rangle \rangle_\omega = \langle \langle A, B \rangle \rangle + \langle \langle [A, H] ; B \rangle \rangle_\omega \) we find the following set of coupled equations

\[
(\omega - \varepsilon_0) \langle \langle c_{i\uparrow}; c_{i\uparrow}^\dagger \rangle \rangle_\omega = 1 + g \langle \langle b_i c_{i\uparrow}; c_{i\uparrow}^\dagger \rangle \rangle_\omega , \tag{2}
\]

\[
(\omega + \varepsilon_0 - E_0) \langle \langle b_i c_{i\uparrow}; c_{i\uparrow}^\dagger \rangle \rangle_\omega = g \langle \langle n_i^F - n_i^B \rangle \rangle_\omega , \tag{3}
\]

\[
(\omega - E_0) \langle \langle (n_i^F - n_i^B)^2 c_{i\uparrow}; c_{i\uparrow}^\dagger \rangle \rangle_\omega = \langle \langle n_i^F - n_i^B \rangle \rangle_\omega + g \langle \langle b_i c_{i\uparrow}; c_{i\uparrow}^\dagger \rangle \rangle_\omega , \tag{4}
\]

where \(n_i^F = c_{i\uparrow}^\dagger c_{i\uparrow} \) and \(n_i^B = b_i^\dagger b_i \). After some algebraic calculations we determine that these three functions read

\[
\langle \langle c_{i\uparrow}; c_{i\uparrow}^\dagger \rangle \rangle_\omega = \frac{1 - \langle \langle n_i^F - n_i^B \rangle \rangle_\omega^2}{\omega - \varepsilon_0} + \frac{\langle \langle n_i^F - n_i^B \rangle \rangle_\omega^2 (\omega + \varepsilon_0 - E_0)}{\omega - \varepsilon_0 (\omega + \varepsilon_0 - E_0) - g^2} , \tag{5}
\]

\[
\langle \langle b_i c_{i\uparrow}; c_{i\uparrow}^\dagger \rangle \rangle_\omega = \frac{\langle \langle n_i^F - n_i^B \rangle \rangle_\omega^2}{\omega - \varepsilon_0 (\omega + \varepsilon_0 - E_0) - g^2} , \tag{6}
\]

\[
\langle \langle (n_i^F - n_i^B)^2 c_{i\uparrow}; c_{i\uparrow}^\dagger \rangle \rangle_\omega = \frac{\langle \langle n_i^F - n_i^B \rangle \rangle_\omega^2}{\omega + \varepsilon_0 - E_0} . \tag{7}
\]

It is convenient to rewrite the single particle Green’s function in the following way

\[
\langle \langle c_{i\uparrow}; c_{i\uparrow}^\dagger \rangle \rangle_\omega = \frac{Z_F}{\omega - \varepsilon_0} + (1 - Z_F) \left[\frac{v^2}{\omega - \varepsilon_+} + \frac{u^2}{\omega - \varepsilon_-} \right] , \tag{8}
\]

\[
Z_F = 1 - \langle \langle n_i^F - n_i^B \rangle \rangle_\omega^2 , \tag{9}
\]

\[
\varepsilon_\pm = \frac{E_0}{2} \pm \sqrt{\left(\frac{\varepsilon_0 - E_0}{2} \right)^2 + g^2} , \tag{10}
\]

\[
v^2 = 1 - u^2 = \frac{1}{2} \left[1 + \frac{\varepsilon_0 - E_0}{\sqrt{(\varepsilon_0 - E_0)^2 + 4g^2}} \right] . \tag{11}
\]

Another set of coupled equations to determine the hard core boson propagator \(\langle \langle b_i; b_i^\dagger \rangle \rangle_\omega \) involves the following Green’s functions

\[
(\omega - E_0) \langle \langle b_i; b_i^\dagger \rangle \rangle_\omega = 1 + g \langle \langle n_i^F; n_i^B \rangle \rangle_\omega , \tag{12}
\]

\[
(\omega - 2\varepsilon_0) \langle \langle c_{i\uparrow} c_{i\downarrow}; b_i^\dagger \rangle \rangle_\omega = 2 \langle \langle n_i^F; n_i^B \rangle \rangle_\omega + g \langle \langle b_i b_i^\dagger \rangle \rangle_\omega - g \sum_\sigma \langle \langle c_{i\sigma} c_{i\sigma} b_i b_i^\dagger \rangle \rangle_\omega , \tag{13}
\]

\[
(\omega - E_0) \sum_\sigma \langle \langle c_{i\sigma} c_{i\sigma} b_i b_i^\dagger \rangle \rangle_\omega = \langle \langle n_i^F + n_i^B \rangle \rangle_\omega . \tag{14}
\]

In analogy to (8) we present the explicit form of the single particle Green’s function as

\[
\langle \langle b_i; b_i^\dagger \rangle \rangle_\omega = \frac{Z_B}{\omega - E_0} + (1 - Z_B) \left[\frac{v^2}{\omega - E_+} + \frac{u^2}{\omega - E_-} \right] , \tag{15}
\]

\[
Z_B = \langle \langle n_i^F - n_i^B \rangle \rangle_\omega^2 , \tag{16}
\]

\[
E_\pm = \varepsilon_\pm + \varepsilon_0 . \tag{17}
\]

The single particle propagators (8) and (15) are both characterised by a three pole structure. One of the poles is a remnant of the free nonbonding state \((\varepsilon_0 \text{ for fermions and } E_0 \text{ for hard core bosons). The other two poles (} \varepsilon_\pm \text{ and } E_\pm \text{) correspond to the bonding and antibonding states which arise due to the boson fermion interaction. Hamiltonian (1) is no longer diagonal in the occupation representation \(|n_i^F, n_i^B \rangle \) because two eigenvectors contain admixture of \| \uparrow, \downarrow; 0 \rangle \text{ and } |0, 0; 1 \rangle \text{ [3]. Loosely speaking, an ability of the system to fluctuate}
between these two states is a measure of pairing correlations (we mean the correlations in time, because in the atomic limit there exist no spatial correlations).

Let us inspect in some detail the spectral weight Z_F of the nonbonding fermions’ state. From (9) we see that Z_F is depleted from unity by $\langle (n_i^F - n_i^B)^2 \rangle = \langle n_i^F \rangle + \langle n_i^B \rangle - 2\langle n_i^\text{pair} \rangle$. It means that propagation (in time) of the free fermion (with spin $\sigma = \uparrow$) occurs unless: (a) there exists another fermion on the same site with the opposite spin and simultaneously no hard-core boson is present there, (b) there is boson while \downarrow fermion is absent. Disappearance of the nonbonding state depends thus on fermion and boson concentrations. Role of other factors, such as for example temperature, is less evident at this point.

Spectral weight of hard core boson nonbonding state is given by

$$Z_B = \langle (n_i^F - 1)^2 \rangle = \langle n_i^\text{pair} \rangle - 2\langle n_i^\text{pair} \rangle,$$

where $n_i^F = n_i^\uparrow + n_i^\downarrow$ counts the total number of fermions on site i, while n_i^pair counts only the doubly occupied fermion states $n_i^\text{pair} = n_i^\uparrow n_i^\downarrow$. The hard core boson can safely exist in a free (nonbonding) state when there are only single fermions present on the same site. The more fermions are paired, the less spectral weight is left for a free hard core boson.

We can express the spectral weights Z_F and Z_B explicitly via the concentrations $n_i^F = \sum_\sigma \langle c_i^{\sigma \uparrow} c_i^{\sigma \downarrow} \rangle$, $n_i^B = \langle b_i^\dagger b_i \rangle$ and through such parameters as temperature T and Δ_B. From a general relation [8] $\langle AB \rangle = -\frac{1}{\beta} \int d\omega f(\omega) \text{Imag} \langle \langle B; A \rangle \rangle_{\omega+i0}$ we obtain

$$Z_F = \frac{n_i^F - [e^{2f(\varepsilon_+)} + e^{2f(\varepsilon_-)}]}{f(\varepsilon_0) - [e^{2f(\varepsilon_+)} + e^{2f(\varepsilon_-)}]},$$

$$Z_B = \frac{n_i^B - [e^{2f(E_+)} + e^{2f(E_-)}]}{f(E_0) - [e^{2f(E_+)} + e^{2f(E_-)}]},$$

where $f(x) = [e^{x\beta} + 1]^{-1}$ is the Fermi Dirac distribution and $\beta = 1/k_B T$. These quantities can be computed also from the diagonalized Hamiltonian using the Lehmann representation. They are found to be $Z_F = [1 + e^{-\beta\varepsilon_0} + e^{-\beta(\varepsilon_0 + E_0)} + e^{-\beta(2\varepsilon_0 + E_0)}] / \Theta$ (where $\Theta = 1 + [e^{-\beta\varepsilon_0} + e^{-\beta(2\varepsilon_0 + E_0)}] / \Theta$ and $Z_B = [2e^{-\beta\varepsilon_0} + 2e^{-\beta(\varepsilon_0 + 2E_0)} + e^{-\betaE_+} + e^{-\betaE_-}] / \Theta$. These expressions are of course identical with (19,20).

We explored numerically variation of the spectral weights Z_F, Z_B versus temperature T and Δ_B for several fixed charge concentrations $n_{tot} = n_i^F + 2n_i^B$. From our analysis it turns out that the most sensitive T-dependence of these quantities occurs for $\varepsilon_0 + E_0 = 0$ when $n_{tot} = 2$. One can show that

$$Z_F^{n_{tot}=2} = \frac{2}{3 + \cosh \beta \sqrt{\Delta_B^2 + g^2}} = Z_B^{n_{tot}=2},$$

which at high temperature approach the asymptotic value $\lim_{T \to \infty} Z_F^{n_{tot}=2} = 0.5$, while for $T \to 0$ diminish to zero. Figure 1 illustrates this behaviour.

![Figure 1: Spectral weight of the nonbonding state of the fermion and hard core boson subsystems for total charge concentration $n_{tot} = 2$. Main suppression of the spectral weight of the nonbonding state occurs near T^* (pointed by the arrows) and depends on the parameter Δ_B.](image)

In any other case the spectral weights Z_F, Z_B may not vanish in the ground state. They vary within a narrower regime signalling that interaction effect is then less efficient as compared to the case $n_{tot} = 2$. Figure 2 shows the spectral weights Z_F,B as functions of n_{tot} for $\Delta_B/2 = \varepsilon_f$. For fermions we notice that away of $n_{tot} = 2$ the spectral weight Z_F increases and becomes less dependent on temperature. In the extreme dilute region $Z_F \to 1$. As far as Z_B is concerned it follows the behaviour of Z_F only in a close vicinity of $n_{tot} = 2$. Going away from such case the nonbonding spectral weight Z_B decreases as a direct consequence of the relations (16,18).
where 0 = \langle \varepsilon_i^\uparrow \rangle. We can think of a finite value (22) as a result of fluctuating pairing correlations. Magnitude of \langle c_{i,t}^\dagger c_{i,t}^\dagger \rangle turns out to be proportional to the mean field value of TcMF which proves their close relation.

The boson fermion model is claimed by some authors [1,6,7,10] to capture key aspects of the theory for high temperature superconductors (HTSC). In realistic description of the HTSC materials one must however consider their anisotropic \textit{dim} = 2 + \delta structure. Pairing correlations discussed here for the atomic limit would in higher dimensions lead to: (a) formation of fermion pairs at Tp, and (b) at \textit{Tc} \leq Tp, to their long range coherence, establishing the superconductivity (with \textit{Tc} \neq 0). What remains to be studied for the realistic \textit{dim} = 2 + \delta systems is a pseudogap region of the incoherent fermion pairs \textit{Tc} \leq T \leq Tp. We hope that the exact solution of the BF model discussed here for the atomic limit may help in such future investigations.

[1] J. Ranninger and S. Robaszkiewicz, Physica B, 468 (1985); R. Micnas, J. Ranninger and S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990); J. Ranninger and J.M. Robin, Physica C 253, 279 (1995).
[2] J. Ranninger, J.M. Robin and M. Eschrig, Phys. Rev. Lett. 74, 4027 (1995); J. Ranninger and J.M. Robin, Solid State Commun. 98, 559 (1996); J. Ranninger and J.M. Robin, Phys. Rev. B 53, R11961 (1996); P. Devilard and J. Ranninger, Phys. Rev. Lett. 84, 5200 (2000).

[3] T. Domański, J. Ranninger and J.M. Robin, Solid State Commun. 105, 473 (1998).

[4] J.M. Robin, A. Romano, J. Ranninger, Phys. Rev. Lett. 81, 2755 (1998); A. Romano and J. Ranninger, Phys. Rev. B 62, 4066 (2000).

[5] T. Domański and J. Ranninger, Phys. Rev. B 63, 134505 (2001).

[6] L. Tripodi and J. Ranninger, Phys. Rev. B (2003) in print, cond-mat/0212332.

[7] R. Micnas, S. Robaszkiewicz and A. Bussmann-Holder, Phys. Rev. B 66, 104516 (2002); Physica C 387, 58 (2003).

[8] D.N. Zubarev, Sov. Phys. Uspekhi 3, 320 (1960).

[9] R. Micnas and S. Robaszkiewicz, Phys. Rev. B 45, 9900 (1992).

[10] E. Altman and A. Auerbach, Phys. Rev. B 65, 104508 (2002); M. Mierzewski and E. Kochetov, cond-mat/0204420 (unpublished); R. Friedberg, T.D. Lee and H.C. Ren, Phys. Rev. B 50, 10190 (1994).