Adverse pregnancy outcomes and subsequent risk of cardiovascular disease in women with systemic lupus erythematosus

Pin Lin,1 Elisa Rhew,1 Roberta B Ness,2 Alan Peaceman,3 Alan Dyer,4 David McPherson,5 George T Kondos,6 Daniel Edmundowicz,7 Kim Sutton-Tyrrell,8 Trina Thompson,8 Rosalind Ramsey-Goldman1

ABSTRACT

Background/objective: Patients with systemic lupus erythematosus (SLE) are at increased risk for adverse pregnancy outcomes and cardiovascular disease (CVD). The objective of this exploratory study was to investigate the association between a history of adverse pregnancy outcomes and subsequent risk of subclinical CVD assessed by imaging studies and verified clinical CVD events in 129 women with SLE.

Methods: The occurrence of adverse pregnancy outcomes, specifically pre-eclampsia, preterm birth and low birth weight was ascertained by questionnaire. Subclinical CVD was assessed by coronary artery calcium (CAC) as measured by electron beam CT and carotid plaque measured by B mode ultrasound. Clinical CVD events were verified by medical record review. Logistic regression was used to estimate the association of pregnancy complications with occurrence of subclinical CVD and clinical CVD with a priori adjustment for age, which is associated with CVD and SLE disease duration as a measure of SLE disease burden.

Results: Fifty-six women reported at least one pregnancy complication while 73 had none. Twenty-six women had at least one pregnancy complicated by pre-eclampsia and were more likely to have a CAC score greater than or equal to 10 (adjusted OR=3.7; 95% CI 1.2 to 11.9), but the presence of plaque was not associated with this pregnancy complication, OR=1.1 (95% CI 0.4 to 2.8). Low birth weight and preterm birth were not associated with CAC or plaque.

Conclusions: Patients with SLE with a history of pre-eclampsia had a higher rate of subclinical CVD as measured by CAC score. Future studies are needed to confirm the relationship between adverse pregnancy outcomes and subsequent subclinical CVD and clinical CVD events.

Systemic Lupus Erythematosus (SLE) is an autoimmune disease characterised by systemic inflammation affecting predominantly young premenopausal women. Compared with the non-lupus population, patients with SLE are at an increased risk for pregnancy related complications, including pre-eclampsia, preterm delivery and low fetal birth weight.1–3 As disease-related survival has improved over the past two decades, premature cardiovascular disease (CVD) is now recognised as a serious long-term complication contributing significantly to the morbidity and subsequent mortality of patients with lupus. Women with SLE experience CVD events at a higher rate, and at earlier ages compared with the general population.4–6

Pre-eclampsia is a pregnancy syndrome marked by de novo elevations in blood pressure and proteinuria. Studies in patients without lupus suggest that cardiovascular morbidity and mortality are increased among those who had previously experienced pre-eclampsia,7–11 preterm delivery9, 11, 12 and delivery of low birthweight infants11, 13, 14 when compared with women with uncomplicated pregnancies.15

Associations that link pregnancy complications to later life CVD are not well understood and include classic cardiovascular risk factors, inflammation and thrombosis15 which are all relevant to patients with SLE.16

KEY MESSAGES

▸ Women with SLE and prior adverse pregnancy outcomes were more likely to have subsequent hypertension compared to those women with SLE and no prior adverse pregnancy outcomes.

▸ Women with SLE and a history of pre-eclampsia had an almost four fold increase in the rate of subclinical cardiovascular disease as measure by coronary artery scores of 10 or greater.

▸ Plaque score was not associated with prior adverse pregnancy outcomes in women with SLE.
What is not known is whether a relationship exists between pregnancy complications and CVD in women with SLE.

The objective of this study was to evaluate the association between a prior history of pregnancy complications and subsequent risk of CVD assessed by subclinical measured and verified events in women with SLE. Two measures of subclinical CVD associated with cardiovascular morbidity in the general population, coronary artery calcium (CAC) measured by ultrafast electron beam CT and carotid plaque using B mode carotid ultrasound have also been noted in women with SLE.19–21 Women with SLE participating in an ongoing prospective study assessing subclinical CVD and CVD events were queried on their history of pregnancy complications, including pre-eclampsia, preterm delivery and low birth weight.

METHODS

Study population

The parent study, Study of Long-term Vascular and Bone Outcomes in Lupus Erythematosus (SOLVABLE), from which data for the current study are derived, is a longitudinal epidemiological study designed to assess the risk for subclinical and clinical CVD in 185 patients with lupus from the Chicago Lupus Database compared with 186 healthy controls.

Data collection

The SOLVABLE study and this exploratory study were approved by the Institutional Review Board at Northwestern University. All patients gave informed consent prior to their participation in these studies.

Demographic information, pregnancy-related information, traditional CVD risk factors and clinical CVD events were determined through interviews, self-report pregnancy questionnaires, physical examinations and serological tests. Adverse pregnancy outcomes ascertained included the following: (1) history of pre-eclampsia or history of pregnancy induced hypertension and proteinuria not due to lupus from the Chicago Lupus Database compared with 186 healthy controls.

Participants provided information on corticosteroid treatment (current use, ever use and duration of treatment), as well as current use of hydroxychloroquine and immunosuppressants (cyclophosphamide, azathioprine, methotrexate, mycophenolate mofetil, ciclosporin and tacrolimus). Prior corticosteroid use and duration of treatment were verified by review of the subject’s medical chart.

Measures of subclinical CVD were presence of carotid artery plaque and CAC score. Carotid artery plaque was imaged using carotid B mode ultrasound, which was performed at the Cardiovascular Imaging Processing Laboratory at Northwestern University and read at the University of Pittsburgh Ultrasound Research Laboratory. Carotid artery plaque was defined as a distinct area protruding into the vessel lumen that was at least 50% thicker than the surrounding areas and was measured at eight sites (bilateral internal carotid, external carotid, common carotid and carotid bulb). The outcome measure used for analysis was the presence or absence of plaque (plaque ≥1 vs plaque=0) as previously described by our group.20 The reproducibility of carotid duplex scanning using this technique has been previously documented in the Pittsburgh SLE cohort and a non-SLE population.27 31

CAC score was measured using electron beam CT (Imatron C-150 Ultrafast CT Scanner) at the University of Pittsburgh Cardiovascular Institute.

Clinical cardiovascular events assessed at the time of the baseline visit were (1) MI, (2) angina, (3) percutaneous transluminal coronary angioplasty, (4) coronary artery bypass surgery, (5) cerebrovascular accident and (6) transient ischaemic attack and were verified using the Multiethnic Study of Atherosclerosis protocol.33 All self-reported history of high cholesterol or taking cholesterol-lowering medications). In addition, height, weight, waist and hip measurements were obtained.

To assess SLE-related characteristics, we used validated measures of lupus disease activity (Systemic Lupus Erythematosus Disease Activity Index-2000) and disease damage (Systemic Lupus International Collaborating Clinics Index (SLICC-DI)) which were completed by trained physicians. SLICC-DI was modified to remove the three items related to CVD. Disease duration was calculated using the date the subject fulfilled the fourth American College of Rheumatology classification criteria for SLE.26 27 Renal disease was defined as being present if the subject had fulfilled American College of Rheumatology classification criteria for lupus renal involvement (>0.5 gm/day or ≥3+ proteinuria and/or the presence of cellular casts)26 27 or had a renal biopsy with evidence of WHO Class IIIb, III, IV or V lupus nephritis. Participants provided information on corticosteroid treatment (current use, ever use and duration of treatment), as well as current use of hydroxychloroquine and immunosuppressants (cyclophosphamide, azathioprine, methotrexate, mycophenolate mofetil, ciclosporin and tacrolimus). Prior corticosteroid use and duration of treatment were verified by review of the subject’s medical chart.
with a priori adjustment for age, which is associated with occurrence of subclinical CVD and clinical CVD, estimate the associations of pregnancy complications with SLE disease burden. We also performed a sensitivity analysis substituting disease duration for disease damage using the SLICC-DI excluding the CVD-related variables as a measure of SLE disease burden in our logistic regression model. Since the results obtained were similar using either model, we present the results from the a priori model design which used disease duration as the measure of disease burden.

RESULTS

The clinical characteristics of the 185 SLE participants who were enrolled in the SOLVABLE parent study have been previously described. If Of the 185 SLE participants, 51 had never been pregnant or only had elective terminations and 5 women refused to participate, leaving 129 subjects included in this exploratory study.

The women with adverse pregnancy outcomes were similar with respect to mean age at study visit (44.5±9.7 vs 44.4±9.7 years), current smoking, body mass index, waist-hip ratio, family history of MI, hypercholesterolaemia and diabetes, but more had hypertension (66% vs 47%, p=0.027) compared with women without adverse pregnancy outcomes (table 1). There were no differences in SLE characteristics (disease duration, medications, renal disease, ACL antibody status or Systemic Lupus Erythematosus Disease Activity Index-2000 score) or circulating markers of inflammation and endothelial activation in women with and without adverse pregnancy outcomes.

In contrast, women with SLE and adverse pregnancy outcomes compared with those without adverse pregnancy outcomes had more SLE disease damage (SLICC-DI 2.1±1.8 vs 1.4±1.7, p=0.042) and menopause onset at an earlier mean age (37.4±8.0 vs 43.8±6.7, p=0.005), but the percentage of those who were postmenopausal at the baseline visit was similar, 38% vs 43% (table 1).

There were 331 pregnancies in the 129 women participating in this study and 66% of the pregnancies occurred before the diagnosis of SLE. Of the 33% of pregnancies occurring after the diagnosis of SLE, the mean disease duration between SLE diagnosis and pregnancy was 6.8±6.0 years and 7.3±5.9 years in those without and with adverse pregnancy outcomes, respectively. Of the 56 women who reported adverse pregnancy outcomes, 26 had at least one pregnancy complicated by pre-eclampsia during pregnancy; 56 had at least one pregnancy resulting in preterm birth; and 28 had at least one low birthweight infant. Seventy-three women had no adverse pregnancy outcomes.

Two women with adverse pregnancy outcomes, one preterm and one with a low birthweight infant, were excluded from the analysis for CAC, but included in the analysis for the presence of plaque because the former measure was not available. A higher percentage of women with an adverse pregnancy outcome had a CAC score greater than or equal to 10 and the presence of plaque compared with women without an adverse

Statistical methods

Descriptive statistics (eg, means, SDs, centiles, ranges) were used to determine distributions of the measures of subclinical CVD, cardiovascular risk factors (eg, smoking history, cholesterol, blood pressure) and inflammatory/endothelial markers. Differences between women with and without pregnancy complications were examined using t-tests for normally distributed continuous variables, Wilcoxon’s rank sum test for non-parametric comparison of continuous variables with skewed distributions and \(\chi^2 \) analyses or small sample methods for proportions. Logistic regression was used to estimate the associations of pregnancy complications with occurrence of subclinical CVD and clinical CVD, with a priori adjustment for age, which is associated with CVD and SLE disease duration as a measure of SLE disease burden.
pregnancy outcome, 25.9% vs 17.8% and 46.4% vs 38.4%, respectively. However these increases in the frequency of CAC score and the presence of plaque were not statistically significant after adjusting for age and SLE disease duration as noted in table 2. When evaluating the different types of adverse pregnancy outcomes individually, women with a history of pre-eclampsia were more likely to have a CAC score greater than or equal to

Table 1

Characteristics/CVD risk factors at baseline SOLVABLE visit	Patients with adverse pregnancy outcomes n=56	Patients with no adverse pregnancy outcomes n=73	p Value
Demographics			
Age (years, mean±SD)	44.5±9.7	44.4±9.7	0.948
Age at menopause (years, mean±SD)	37.4±8.9	43.8±6.9	0.005
Traditional CVD risk factors			
Body mass index, kg/m², mean±SD	29.4±8.5	27.7±7.4	0.225
Waist-hip ratio, mean±SD	0.86±0.12	0.86±0.16	0.713
Hypertension†, n (%)	37 (66.1)	34 (46.6)	0.027
Hypercholesterolaemia†, n (%)	17 (30.4)	21 (28.8)	0.844
Diabetes†, n (%)	8 (14.3)	4 (5.5)	0.088
Current smoker, n (%)	10 (17.9)	8 (11.0)	0.109
Family history of MI, n (%)	23 (41.1)	28 (38.4)	0.957
Total cholesterol, mg/dL, mean±SD	188.3±41.3	191.8±36.7	0.602
LDLc, mg/dL, mean±SD	105.6±30.4	112.0±32.8	0.263
HDLc, mg/dL, mean±SD	54.9±16.6	55.8±14.5	0.727
Triglycerides, mg/dL, mean±SD	141.0±99.2	124.1±75.6	0.276
Median (IQR)	110.5 (83.3, 172.5)	102 (81.5, 151)	0.287
SLE characteristics			
SLE disease duration, years, mean±SD	13.2±8.6	11.4±7.4	0.204
Current CS use, n (%)	30 (53.6)	29 (39.7)	0.118
CS use ever, n (%)	46 (82.1)	53 (72.6)	0.176
Duration of CS use, years, mean±SD	8.5±7.7	6.9±5.9	0.253
Current HCQ use, n (%)	37 (66.1)	53 (72.6)	0.423
Current immunosuppressant use†, n (%)	23 (41.1)	19 (26.0)	0.71
Immunosuppressant use† ever, n (%)	28 (50)	35 (47.9)	0.817
SLICC-DI, mean±SD	2.1±1.8	1.4±1.7	0.042
Median (IQR)	2 (0.25, 3)	1 (0.2)	0.032
SLEDAI, mean±SD	4.8±4.3	3.8±3.5	0.145
Median (IQR)	4 (2, 6)	4 (0.5, 6)	0.184
Renal disease§, n (%)	16 (28.6)	21 (28.8)	0.981
Anti-phospholipid status‡, n (%)	12 (21.8)	22 (30.1)	0.292
Inflammatory markers			
CRP, median (IQR)	1.6 (0.6–6.2)	1.2 (0.5–5.1)	0.277
HCY, mean±SD	13.0±8.3	11.1±3.9	0.082
ICAM, mean±SD	270.2±150.9	292.3±96.8	0.317
VCAM, mean±SD	1087.7±671.0	1038.2±48.5	0.630
E-selectin, mean±SD	69.7±30.1	65.8±35.3	0.515

Data presented as mean±SD for normally distributed continuous variables, median (IQR) for skewed continuous variables, and n (%) for categorical variables.

*Adverse pregnancy outcomes include pre-eclampsia, low birthweight infants or preterm birth.
†Hypertension present if any of the following: self-reported history of hypertension, systolic blood pressure>140, diastolic blood pressure>90, or taking antihypertensive medications; present if any of the following: self-reported history of high cholesterol or taking cholesterol lowering medications; diabetes present if self-reported history of diabetes or fasting glucose >126 mg/dL.
‡Immunosuppressants included: cyclophosphamide, azathioprine, methotrexate, mycophenolate molestif, ciclosporin and tacrolimus.
§Renal disease was defined as being present if the subject had fulfilled ACR classification criteria for lupus renal involvement or renal biopsy with WHO Class IIIb, III, IV or V lupus nephritis.
¶Anti-phospholipid status included any one of the following positive at the study visit: anticardiolipin antibody IgG or IgM isotype or lupus anticoagulant.

ACR, American College of Rheumatology; CRP, C reactive protein; CS, corticosteroid; CVD, cardiovascular disease; HCY, homocysteine; HDLc, high density lipoprotein cholesterol; ICAM, intracellular adhesion molecule; LDLc, low density lipoprotein cholesterol; MI, myocardial infarction; SLE, systemic lupus erythematosus; SLEDAI, Systemic Lupus Erythematosus Disease Activity Index; SLICC-DI, Systemic Lupus International Collaborating Clinics Damage Index; VCAM, vascular cell adhesion molecule; SOLVABLE, Study of Long-term Vascular and Bone Outcomes in Lupus Erythematosus.
Traditional CVD risk factors are associated with an increased risk of developing pregnancy complications, and conversely, pregnancy complications are also associated with an increased susceptibility for the subsequent development of traditional CVD risk factors, including hypertension, increased insulin resistance, obesity and lipid abnormalities.\(^9\)\(^1\)\(^1\)\(^4\)\(^\text{44–46}\) In our study, we also found a significant association between a history of pregnancy complications and hypertension (p=0.027, table 1), as well as an association for diabetes (p=0.088, table 1). However, we did not distinguish between type 1 and type 2 diabetes in this study. Similar associations between cardiovascular risk factors and pre-eclampsia have also been noted in women with polycystic ovarian syndrome, another population of women with premature atherosclerosis.\(^47\)

Recent studies have demonstrated that women with pre-eclampsia continue to have adverse metabolic and vascular abnormalities even years after delivery despite normalisation of blood pressure. When examined years after their affected pregnancy, women with a history of pre-eclampsia have worse lipid profiles, more hyperinsulinemia\(^49\) and more microalbuminuria\(^50\) than women with normotensive pregnancies. In addition, women with a history of pre-eclampsia had impaired endothelial function when examined 3 years after their pre-eclamptic episode.\(^51\) In women with SLE, there may be lupus-related factors such as autoantibodies that are contributing to vascular abnormalities in the endothelium as possible underlying risk factors for developing pre-eclampsia and CVD,\(^52\) however we were not able to demonstrate such an association with the autoantibodies measured in this study, likely due to our limited sample size and cross-sectional study design.

Since inflammation plays a role in atherosclerosis\(^53\) and SLE,\(^54\) and the inflammatory response is altered in pre-eclampsia compared with normal pregnancies, with elevated levels of cytokines and vascular adhesion.

DISCUSSION

Women with SLE have been reported to have more pregnancy complications,\(^1\)\(^3\) as well as a higher cardiovascular risk.\(^1\)\(^6\) This report describes the relationship between adverse pregnancy outcomes and subsequent subclinical CVD and CVD events in women with SLE. In this study, women with a history of pre-eclampsia had almost a fourfold increased risk of having subsequent subclinical CVD based on the presence of CAC score greater than or equal to 10.

One factor that may underlie the relationship between pregnancy complications and CVD is that pregnancy complications, such as pre-eclampsia, low birth weight and preterm delivery share several common risk factors with CVD, including obesity, cigarette smoking, hypertension, diabetes and lipid abnormalities\(^35\)\(^–\)\(^43\) as recently reviewed by Rich-Edwards and colleagues.\(^3\)\(^6\) These traditional CVD risk factors are associated with an increased risk of developing pregnancy complications, and conversely, pregnancy complications are also associated with an increased susceptibility for the subsequent development of traditional CVD risk factors, including hypertension, increased insulin resistance, obesity and lipid abnormalities.\(^9\)\(^1\)\(^1\)\(^4\)\(^\text{44–46}\) In our study, we also found a significant association between a history of pregnancy complications and hypertension (p=0.027, table 1), as well as an association for diabetes (p=0.088, table 1). However, we did not distinguish between type 1 and type 2 diabetes in this study. Similar associations between cardiovascular risk factors and pre-eclampsia have also been noted in women with polycystic ovarian syndrome, another population of women with premature atherosclerosis.\(^47\)

Recent studies have demonstrated that women with pre-eclampsia continue to have adverse metabolic and vascular abnormalities even years after delivery despite normalisation of blood pressure. When examined years after their affected pregnancy, women with a history of pre-eclampsia have worse lipid profiles, more hyperinsulinemia\(^49\) and more microalbuminuria\(^50\) than women with normotensive pregnancies. In addition, women with a history of pre-eclampsia had impaired endothelial function when examined 3 years after their pre-eclamptic episode.\(^51\) In women with SLE, there may be lupus-related factors such as autoantibodies that are contributing to vascular abnormalities in the endothelium as possible underlying risk factors for developing pre-eclampsia and CVD,\(^52\) however we were not able to demonstrate such an association with the autoantibodies measured in this study, likely due to our limited sample size and cross-sectional study design.

Since inflammation plays a role in atherosclerosis\(^53\) and SLE,\(^54\) and the inflammatory response is altered in pre-eclampsia compared with normal pregnancies, with elevated levels of cytokines and vascular adhesion.

Table 2

Pre-eclampsia	No adverse pregnancy outcomes	OR (95% CI) Age and disease duration adjusted
CAC score≥10, n (%)	10/26 (38.5)	3.7 (1.2 to 11.9)
Carotid plaque=1, n (%)	10/26 (38.5)	1.1 (0.4 to 2.8)
Low birthweight infant	No adverse pregnancy outcomes	
CAC score≥10, n (%)	8/27*(30.0)	2.2 (0.7 to 7.4)
Carotid plaque=1, n (%)	14/28 (50.0)	2.0 (0.8 to 5.1)
Preterm birth	No adverse pregnancy outcomes	
CAC score≥10, n (%)	8/35*(22.9)	1.0 (0.3 to 3.2)
Carotid plaque=1, n (%)	18/36 (50.0)	1.6 (0.7 to 3.8)

Adverse pregnancy outcomes include pre-eclampsia, low birthweight infants or preterm birth.

*Two women with adverse pregnancy outcomes (one each preterm and low birth weight) did not have a coronary calcium score calculated.

CAC, coronary artery calcium; SLE, systemic lupus erythematosus.
in gestational complications and subclinical CVD and events which limit the precision of our results. Maternal recall regarding certain pregnancy details have been shown to be reliable many years postpartum. We verified the self-reported pregnancy data for those subjects who had given birth at Prentice Women’s Hospital, Chicago, Illinois and found 100% accuracy using a similar strategy in a previous study, so maternal recall is not likely to be a problem for self-reported adverse pregnancy outcomes. Although we verified pregnancy outcomes, we were not able to document smoking or alcohol history at the time of pregnancy. We verified cardiovascular events, but we do not have biological samples nor did we perform detailed clinical assessments of SLE disease activity and medications used or tested for autoantibodies, inflammatory or endothelial markers during pregnancy, at the time subclinical CVD disease was assessed or when the cardiovascular events occurred. This study did not enrol and follow subjects prior to pregnancies. This precludes evaluation of autoantibodies, inflammatory markers, and endothelial activation markers, pregnancy outcomes and subclinical CVD and clinical CVD events nor can we eliminate the possibility that covariates measured after pregnancy could have changed over time and also be confounders influencing pregnancy outcomes. We controlled for SLE duration in our models and performed a sensitivity analysis substituting disease damage measured by the modified SLICC-DI (data not shown) for disease duration with similar results, making it less likely that SLE was acting as a mediating factor for the occurrence of pregnancy outcomes.

In summary, patients with SLE with a history of pre-eclampsia had an almost fourfold increase in the rate of subclinical CVD as measured by CAC score greater than or equal to 10, but the presence of plaque was not associated with this adverse pregnancy outcome. Neither low birth weight nor preterm birth was associated with CAC or plaque. The results reported here are preliminary. To explore these findings further larger, prospective studies are needed to examine the incidence of subclinical CVD and clinical CVD events in women with SLE who have a history of adverse pregnancy outcomes similar to observations in the general population, and also other groups with premature CVD such as women with polycystic ovarian syndrome.

Author affiliations
1 Division of Rheumatology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
2 Department of Epidemiology, The University of Texas, School of Public Health, Houston, Texas, USA
3 Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
4 Department of Preventive Medicine, Feinberg School of Medicine, Chicago, Illinois, USA
5 Division of Cardiology, Department of Medicine, University of Texas Health Science Center, Houston, Texas, USA
6 Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
7 Temple University School of Medicine, Philadelphia, Pennsylvania, USA
8 Department of Epidemiology, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, Pennsylvania, USA

Acknowledgements The authors thank Dr Malena Law for assistance with pregnancy outcomes, Dr Zoreh Davanipour for editorial assistance, and Beverly Smulevitz and Bonnie Kane for help in carotid plaque data collection and evaluation. The authors also thank the University of Pittsburgh and the University of Vermont for collaborative efforts on laboratory analyses.

Funding This work was supported by grants from the National Institutes of Health (NIH) T32-AR07611, F32-AR51681, K23-AR054418, and Mary Kirkland Center for Lupus Research and Rheumations, (ER); NIH T32-AR07611, F32-HL082224 (PL); NIH K24-AR023181, P60-AR30692, P60-AR48098, NCRR/GCRC M01-RR00048 (RR-G).

Competing interests None.

Patient consent Obtained.

Ethics approval Illinois.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement Any investigator who wishes to obtain data from this Project will do so with a Resource Sharing Agreement that provides for (1) a commitment to using the resources only for research purposes and not to identify an individual participant, (2) a commitment to securing resources using appropriate computer technology, and (3) a commitment to destroy or return the resources after analyses are completed. There is no additional unpublished data from the pregnancy project from SOLUBLE.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license,
which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

REFERENCES

1. Closwes ME, Jamison M, Myers E, et al. A national study of the complications of lupus in pregnancy. Am J Obstet Gynecol 2008;199:127 e1–6.

2. Lockshin MD, Sammaritano LR. Lupus pregnancy. Autoimmunity 2003;36:33–40.

3. Yasmeen S, Wilkins EE, Field NT, et al. Pregnancy outcomes in women with systemic lupus erythematosus. J Matern Fetal Med 2001;10:91–6.

4. Manzi S, Meliann E, Rairie J, et al. Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: comparison with the Framingham Study. Am J Epidemiol 1997;145:408–15.

5. Ward M. Premature morbidity from cardiovascular and cerebrovascular disease in women with SLE. Arthritis Rheum 1999;42:339–46.

6. Urowitz M. Insulin resistance syndrome in preeclampsia. J Rheumatol 2007;34:70–5.

7. Funai EF, Fiolander Y, Patiello Q, et al. Long-term mortality after preeclampsia. Epidemiology 2005;16:206–15.

8. Hannaford P, Ferry S, Hirsch S. Cardiovascular sequelae of toxemia of pregnancy. Heart 1997;77:154–8.

9. Irgens HU, Reisater L, Irgens LM, et al. Long term mortality of mothers and fathers after pre-eclampsia: population based cohort study. BMJ 2001;323:1213–7.

10. Jonsdottir LS, Amgrimson R, Geirsson RT, et al. Death rates from ischemic heart disease in women with a history of hypertension in pregnancy. Acta Obstet Gynecol Scand 1995;74:772–6.

11. Smith GC, Pell JP, Walsh D. Pregnancy complications and maternal risk of ischaemic heart disease: a retrospective cohort study of 129,290 births. Lancet 2001;357:2002–6.

12. Catov JM, Newman AB, Roberts JM, et al. Perterm delivery and later maternal cardiovascular disease risk. Epidemiology 2007;18:733–9.

13. Smith GD, Aliane J, Tyneus P, et al. Birth weight of offspring and subsequent cardiovascular mortality of the parents. Epidemiology 2005;16:563–9.

14. Smith GD, Harding S, Rosato M. Relation between infants’ birth weight and mothers’ mortality: prospective observational study. BMJ 2000;320:839–40.

15. Rich-Edwards JW, Fraser A, Lawlor DA, et al. Long term mortality of women with a history of hypertension in pregnancy: a case-control study. BMJ 2001;323:1213–7.

16. Skamar C, Ramsey-Goldman R. Management of cardiovascular complications in systemic lupus erythematosus. Int J Clin Rheumatol 2010;5:75–100.

17. Belcario G, Nicolaides AN, Lauorga G, et al. Ultrasound morphology classification of the arterial wall and cardiovascular events in a 6-year follow-up study. Arterioscler Thromb Vasc Biol 1996;16:851–6.

18. LaMonte MJ, FitzGerald SJ, Churchill TS, et al. Coronary artery calcium score and coronary heart disease events in a large cohort of asymptomatic men and women. Am J Epidemiol 2005;162:421–9.

19. Roman MJ, Shanker BA, Davis A, et al. Prevalence and correlates of accelerated atherosclerosis in systemic lupus erythematosus. N Engl J Med 2003;349:2399–406.

20. Asanuma Y, Osera, A, Shintani AK, et al. Premature coronary-artery atherosclerosis in systemic lupus erythematosus, N Engl J Med 2003;349:2407–15.

21. Kao AH, Lertratanakul A, Elliott JR, et al. Relation of carotid intima-media thickness and plaque with incident cardiovascular events in women with systemic lupus erythematosus. Am J Cardiol 2013;112:1025–30.

22. Payne B, Magee LA, von Dadasen P. Assessment, surveillance and prognosis in pre-eclampsia. Best Pract Res Clin Obstet Gynaecol 2011;25:449–62.

23. American College of Obstetrics and Gynecology. Intrauterine Growth Restriction. Bulletin, 2002: Practice Bulletin 12.

24. Gladman DD, Ibanez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000. J Rheumatol 2002;29:288–91.

25. Gladman D, Ginzier E, Goldsmith C, et al. The development and initial validation of the Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index for systemic lupus erythematosus. Arthritis Rheum 1996;39:363–9.

26. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1998;41:751.

27. Tan EM, Cohen AS, Fries JF, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1982;25:1271–7.

28. Chung J, Bernstein J, Glassock RJ. Renal disease: classification and Atlas of Glomerular diseases. 2nd edn. New York; Tokyo: Igaky-Shoin, 1995.

29. Rhew EY, Manzi SM, Dyer AR, et al. Differences in subclinical cardiovascular disease between African American and Caucasian women with systemic lupus erythematosus. Transl Res 2009;153:51–8.

30. Manzi S. Prevalence and risk factors of carotid plaque in women with systemic lupus erythematosus. Arthritis Rheum 1999;42:51–60.

31. Sutton-Tyrrell K, Lassila H, Meilahn E, et al. Carotid atherosclerosis in premenopausal and postmenopausal women and its association with risk factors, measured after menopause. Stroke 1998;29:1116–21.

32. Rumberger JA, Simons DB, Fitzpatrick LA, et al. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study [see comments]. Circulation 2000;102:1164–70.

33. Bild DE, Bluemke DA, Burke GL, et al. Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol 2002;156:871–81.

34. Wu PW, Rhew EY, Dyer AR, et al. 25-hydroxyvitamin D and cardiovascular risk factors in women with systemic lupus erythematosus. Arthritis Rheum 2009;61:1387–95.

35. Abrams B, Newman V. Small-for-gestational-age birth: maternal predictors and comparison with risk factors of spontaneous preterm delivery in the same cohort. Am J Obstet Gynecol 1991;164:785–90.

36. Fang J, Madhavan S, Alderman MH. The influence of maternal hypertension on low birth weight: differences among ethnic populations. Etnh Dis 1999;9:369–76.

37. Fox SH, Koepsell TD, Daling JR. Birth weight and smoking during pregnancy—effect modification by maternal age. Am J Epidemiol 1994;139:1005–15.

38. Gratacos E. Lipid-mediated endothelial dysfunction: a common factor to preeclampsia and chronic vascular disease. Eur J Obstet Gynecol Reprod Biol 2000;92:63–8.

39. Hubel CA, Lyall F, Weissfeld L, et al. Small low-density lipoproteins and vascular cell adhesion molecule-1 are increased in association with hyperlipidemia in preeclampsia. Metabolism 1998;47:1281–8.

40. Kaaja R. Insulin resistance syndrome in preeclampsia. Semin Reprod Endocrinol 1998;16:41–6.

41. Sattar N, Bendich A, Berry C, et al. Lipoprotein subfraction concentrations in preeclampsia: pathogenic parallels to atherosclerosis. Obstet Gynecol 1997;99:403–8.

42. Sibai BM, Ewell M, Levine RJ, et al. Risk factors associated with preeclampsia in healthy nulliparous women. The Calcium for Preeclampsia Prevention (CPEP) Study Group. Am J Obstet Gynecol 1997;177:1003–10.

43. Sibai BM, Gordon T, Thom E, et al. Risk factors for preeclampsia in healthy nulliparous women: a prospective multicenter study. The National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. Am J Obstet Gynecol 1995;172(Pt 1):642–8.

44. Arnaudot GA, Keirsson RT, Argrimson R, et al. Cardiovascular death in women who had hypertension in pregnancy: a case-control study. BJOG 2005;112:286–92.

45. Ray JG, Vermeulen MJ, Schull MJ, et al. Cardiovascular health after maternal placental syndromes (CHAMPS): population-based retrospective cohort study. Lancet 2005;366:797–803.

46. Catov JM, Newman AB, Roberts JM, et al. Association between infant birth weight and maternal cardiovascular risk factors in the health, aging, and body composition study. Ann Epidemiol 2007;17:36–43.

47. Veitlman-Verhult SM, van Rijn BB, Westerveld HE, et al. Polycystic ovary syndrome and early-onset preeclampsia: reproductive manifestations of increased cardiovascular risk. Menopause 2010;17:990–6.

48. Hubel CA, Snaedal S, Ness RB, et al. Dyslipoproteinemia in postmenopausal women with a history of eclampsia. BJOG 2000;107:776–84.

49. Laihuoni H, Tikkanen MJ, Ylikorkala O. Hyperinsulinism 17 years after preeclamptic first pregnancy. J Clin Endocrinol Metab 1996;81:2908–11.

50. Bar J, Kaplan B, Wittenberg C, et al. Microalbuminuria after pregnancy complicated by pre-eclampsia. Nephrol Dial Transplant 1995;10:1129–32.
51. Chambers JC, Fusi L, Malik IS, et al. Association of maternal endothelial dysfunction with preeclampsia. *JAMA* 2001;285:1607–12.

52. Narshi C, Giles I, Rahman A. The endothelium: an interface between autoimmunity and atherosclerosis in systemic lupus erythematosus? *Lupus* 2011;20:5–13.

53. Ross R. Atherosclerosis—an inflammatory disease. *N Engl J Med* 1999;340:115–26.

54. Liu Z, Davidson A. Taming lupus—a new understanding of pathogenesis is leading to clinical advances. *Nat Med* 2012;18:871–82.

55. Freeman DJ, McManus F, Brown EA, et al. Short- and long-term changes in plasma inflammatory markers associated with preeclampsia. *Hypertension* 2004;44:708–14.

56. Greer IA, Lyall F, Parera T, et al. Increased concentrations of cytokines interleukin-6 and interleukin-1 receptor antagonist in plasma of women with preeclampsia: a mechanism for endothelial dysfunction? *Obstet Gynecol* 1994;84:937–40.

57. Lyall F, Greer IA, Boswell F, et al. The cell adhesion molecule, VCAM-1, is selectively elevated in serum in pre-eclampsia: does this indicate the mechanism of leucocyte activation? *Br J Obstet Gynaecol* 1994;101:485–7.

58. Vince GS, Starkey PM, Austgulen R, et al. Interleukin-6, tumour necrosis factor and soluble tumour necrosis factor receptors in women with pre-eclampsia. *Br J Obstet Gynaecol* 1995; 102:20–5.

59. Silver RM, Schwinzer B, McGregor JA. Interleukin-6 levels in amniotic fluid in normal and abnormal pregnancies: preeclampsia, small-for-gestational-age fetus, and premature labor. *Am J Obstet Gynecol* 1993;169:1101–5.

60. Bartha JL, Romero-Carmona R, Comino-Delgado R. Inflammatory cytokines in intrauterine growth retardation. *Acta Obstet Gynecol Scand* 2003;82:1099–102.

61. Redman CW, Sacks GP, Sargent IL. Preeclampsia: an excessive maternal inflammatory response to pregnancy. *Am J Obstet Gynecol* 1999;180(2 Pt 1):499–506.

62. Chaiworapongs T, Romero R, Yoshimatsu J, et al. Soluble adhesion molecule profile in normal pregnancy and pre-eclampsia. *J Matern Fetal Neonatal Med* 2002;12:19–27.

63. Conrad KP, Miles TM, Benyo DF. Circulating levels of immunoreactive cytokines in women with preeclampsia. *Am J Reprod Immunol* 1998;40:102–11.

64. Heyl W, Handt S, Reister F, et al. The role of soluble adhesion molecules in evaluating endothelial cell activation in preeclampsia. *Am J Obstet Gynecol* 1999;180(1 Pt 1):68–72.

65. Tomeo CA, Rich-Edwards JW, Michels KB, et al. Reproducibility and validity of maternal recall of pregnancy-related events. *Epidemiology* 1999;10:774–7.

66. Ramsey-Goldman R, Horn D, Deng JS, et al. Anti-SS-A antibodies and fetal outcome in maternal systemic lupus erythematosus. *Arthritis Rheum* 1986;29:1269–73.