Impact of aromatase absence on murine intraocular pressure and retinal ganglion cells

Xiaomin Chen1,2, Yang Liu1, Yi Zhang1,3, Wendy R. Kam1, Louis R. Pasquale1,4 & David A. Sullivan1

We hypothesize that aromatase, an enzyme that regulates estrogen production, plays a significant role in the control of intraocular pressure (IOP) and retinal ganglion cells (RGCs). To begin to test our hypothesis, we examined the impact of aromatase absence, which completely eliminates estrogen synthesis, in male and female mice. Studies were performed with adult, age-matched wild type (WT) and aromatase knockout (ArKO) mice. IOP was measured in a masked fashion in both eyes of conscious mice at 12 and 24 weeks of age. Retinas were obtained and processed for RGC counting with a confocal microscope. IOP levels in both 12- and 24-week old female ArKO mice were significantly higher than those of age- and sex-matched WT controls. The mean increase in IOP was 7.9% in the 12-week-, and 19.7% in the 24-week-old mice, respectively. These changes were accompanied by significant 9% and 7% decreases in RGC numbers in the ArKO female mice, relative to controls, at 12- and 24-weeks, respectively. In contrast, aromatase deficiency did not lead to an increased IOP in male mice. There was a significant reduction in RGC counts in the 12-, but not 24-, week-old male ArKO mice, as compared to their age- and sex-matched WT controls. Overall, our findings show that aromatase inhibition in females is associated with elevated IOP and reduced RGC counts.

Several researchers have hypothesized that estrogen deficiency predisposes to optic nerve degeneration1–3. This hypothesis is supported by a myriad of observational studies linking estrogen deprivation to an increased risk of open-angle glaucoma4–7. Furthermore, variations in several genes involved in estrogen processing are related to open-angle glaucoma8–10. Conversely, investigators have also reported that estrogen use may decrease the risk of developing glaucoma11, prevent retinal ganglion cell (RGC) death12,13, reduce intraocular pressure (IOP)14–17; preserve visual acuity18 and serve as a viable option for treating glaucoma14,18.

However, despite these impressive results, there is no global consensus on the role of estrogens in glaucoma. Indeed, there is controversy. There is no robust evidence indicating an overall sexual predilection for OAG18,19. Tamoxifen, an estrogen receptor blocker that is widely used to treat breast cancer, does not appear to be associated with increased risk of glaucoma20. Abramov and colleagues found no difference in IOP among postmenopausal women with a history of hormone replacement therapy versus women who did not use postmenopausal hormones21. No significant correlation between IOP level and serum estradiol was found among 62 postmenopausal women, 30 of which were using hormone replacement therapy22. Furthermore another study from India did not find relations between female reproductive factors and open-angle glaucoma23.

These discrepant findings may be attributed, at least in part, to variations in experimental design, including differences in the age, sex, and endocrine status of subjects, as well as in the dosage and time course of estrogen therapy, and even in the methods of analysis. Nevertheless, it is extremely important to determine whether estrogen deficiency promotes, and estrogen treatment suppresses, IOP elevation, RGC death and optic neuropathy. The reason is that estrogen dynamics may contribute significantly to the development of primary open-angle glaucoma in women and possibly men. Furthermore, there is an ever-increasing use of aromatase inhibitors for the treatment of breast and ovarian cancer in postmenopausal women. These inhibitors prevent the biosynthesis of estrogens and could possibly enhance the risk and/or severity of glaucoma24.

1 Schepens Eye Research Institute, Massachusetts Eye and Ear, and Department of Ophthalmology, Harvard Medical School, Boston, MA, USA. 2 Zhongnan Hospital, Wuhan University, Wuhan, China. 3 Affiliated Hospital of Shenzhen University, Shenzhen, China. 4 Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA. Correspondence and requests for materials should be addressed to Y.L. (email: yang_liu@meei.harvard.edu)
We used C57BL/6J - aromatase knockout (ArKO) mice to begin to clarify whether estrogen deprivation is associated with glaucomatous features. The ArKO mice were generated by the targeted disruption of exon IX in the cyp19 gene and lack aromatase activity. Aromatase is a cytochrome P450 enzyme that catalyzes the formation of estrogens from androgens, and contributes to a number of sex-specific differences throughout the body. In the absence of aromatase, the synthesis of estrogens is completely eliminated. Accordingly, we examined whether female ArKO mice exhibit heightened IOP and RGC loss, as compared to their wildtype (WT) controls. For comparison, we also evaluated male ArKO mice.

Results

IOP levels in female and male ArKO mice. To determine whether aromatase absence influences IOP, we measured IOP levels in both eyes of 12- and 24-week old female and male WT and ArKO mice (n=8/group). Our results demonstrate that IOP levels in both 12- (WT = 13.5 ± 0.3; ArKO = 14.5 ± 0.4, p < 0.05) and 24-week old female ArKO mice were significantly higher than those of age- and sex-matched WT controls (Fig. 1). The mean increases in IOP ranged from 7.9% (1.1 mmHg) in the 12-week- to 19.7% (2.6 mmHg) in the 24-week-old mice, respectively.

In contrast, aromatase deficiency did not lead to increases in the IOP of 12- (WT = 13.8 ± 0.5; ArKO = 13.5 ± 0.4) or 24-week old male ArKO mice, as compared to WT controls. Rather, the lack of aromatase was associated with a significant decrease in the IOP of 24-week old male mice (p < 0.05; Fig. 1).

Our findings related to the influence of aromatase were the same if we limited IOP comparisons to the same (e.g. right vs. right) or to the opposite (e.g. right vs. left) eyes of sex- and age-matched WT vs ArKO mice (data not shown). There were no significant differences in IOP levels between the left and right eyes of WT mice, or between left and right eyes of ArKO mice. In addition, there was no significant difference between the IOP of 12- vs. 24-week old female or male ArKO mice.

Our IOP data are based upon the analyses of one mean IOP per mouse (i.e. average of 12 IOP values/mouse, originating from 3 values/eye/day, two eyes/mouse, on 2 consecutive days).

RGC counts in female and male ArKO mice. To examine the effect of complete aromatase absence on RGC counts, we analyzed RGC numbers in retinas of 12- and 24-week old female and male WT and ArKO mice (n=8/group). As shown in Fig. 2, RGC numbers in the ArKO female mice were significantly reduced, as compared to age- and sex-matched WT controls (12 week old, WT = 1,249 ± 25; ArKO = 1,136 ± 29, p = 0.012; 24 week old, WT = 1,213 ± 33; ArKO = 1,129 ± 34, p = 0.049, one tail). Similarly, there was a significant decrease in RGC counts in the 12-week old male ArKO mice, relative to their age- and sex-matched WT controls (WT = 1,351 ± 24; ArKO = 1,288 ± 16, p = 0.047). No significant difference existed between the RGC numbers...
in 24-week-old male WT and male ArKO mice (WT = 1,214 ± 24; ArKO = 1,208 ± 43). Furthermore, there was no significant difference between the RGC counts of 12- vs. 24-week old female ArKO mice or 12- vs. 24-week old male ArKO mice (Fig. 2).

Discussion
Glaucoma is the second leading cause of blindness in the world and is a slowly progressing neurodegenerative disease37,38. It is characterized by a gradual loss of RGCs, which leads to a loss of vision37,39,40,41. The most common form of glaucoma, occurring in 70 to 90% of patients, is primary open angle glaucoma (POAG)41–43.

In one epidemiological study, women had a significantly lower incidence of POAG, as compared to men, until the age of 80 years44. This sex-related difference has been linked to the extent of lifetime estrogen exposure. Indeed, there is an association between increased estrogen exposure and a reduced POAG risk37. Conversely, studies have shown that a decreased exposure (i.e. early loss of estrogens), due to late menarche, oral contraceptive use, early menopause, and a shorter duration between menarche to menopause, is associated with an increased risk of POAG5–7,37,45. Given this background, we assessed glaucoma features in female ArKO mice.

Our present study demonstrates that aromatase absence is associated with a significant increase in the IOP levels of 12- and 24-week old female ArKO mice. The extent of this IOP difference (i.e. 1.1 to 2.6 mmHg) is comparable to that (i.e. 0.5 to 0.6 mmHg) found between postmenopausal women taking, versus not taking, estrogen replacement therapy as part of a post-hoc analysis of a randomized clinical trial17. In addition, the aromatase deficiency in ArKO mice is associated with a significant decrease in RGC counts. Our findings support the myriad of human data linking estrogen deprivation to the development of glaucoma among women.

In contrast to the responses of ArKO females, aromatase deficiency did not lead to an increased IOP in male mice. There was, though, a significant decrease in RGC counts in the 12-, but not 24-, week-old male ArKO mice, as compared to their age- and sex-matched WT controls. This sexually dimorphic response to complete aromatase absence is not surprising. We have previously found that almost all genes regulated by aromatase in non-retinal ocular tissues (i.e. meibomian and lacrimal glands) are sex-specific, and thus different, in male and female mice46,47. Similar sex-related differences have also been found in the liver, bone, hematopoietic microenvironment, adipose tissue and brain48–55. These variations between male and female responses may reflect the loss of estrogens, reduced serum adiponectin56, alterations in neural activity57,58, as well as the heightened serum levels of testosterone, androstenedione, prolactin, follicle-stimulating hormone, luteinizing hormone (LH), insulin-like growth factor 1 (IGF-1) and leptin in ArKO mice25,50,55,56,59–61, some hormone-independent processes62,63, and the influence of Y-linked genes or X inactivation in the ArKO strain64–67. The fact that aromatase deficiency does impact the male eye is consistent with studies demonstrating that aromatase and estrogen actions are very important in other male tissues62–55,68–70.
There are several specific ways in which estrogen may directly affect vulnerability to glaucoma. One mechanism may involve estrogen binding to saturable, high affinity, and steroid-specific estrogen receptors (ERs) in retinal tissues, especially in RGCs. ERs, which are members of the nuclear receptor superfamily of ligand-inducible transcription factors, mediate most of the actions of estrogens throughout the body. Estrogens have two nuclear ERs, termed α and β, which are highly homologous in their DNA and ligand binding domains, are often differentially distributed, and which direct different, and sometimes opposite, functions of estrogens. After estrogen binds to the ER, the activated hormone-receptor complex typically associates with estrogen responsive elements in the regulatory region of specific target genes and, in combination with appropriate co-activators and enhancers, modulates gene transcription, protein synthesis and tissue function. Consistent with this mechanism, we in the regulatory region of specific target genes and, in combination with appropriate co-activators and enhancers, modulates gene transcription, protein synthesis and tissue function. Consistent with this mechanism, we

A second mechanism to explain estrogen effects on the eye may also involve plasma membrane ERs. These pathways, which typically signal within seconds to minutes, involve estrogen interaction with stereospecific membrane ERs and lead to rapid changes in membrane fluidity, the activity of neurotransmitter receptors and/or the control of transcription factors. We have identified membrane ERs in other ocular tissues. It is also possible that estrogen influence could be modified by the activity of retinal steroidogenic enzymes.

A third mechanism by which estrogens impact glaucoma may be operative in humans, but not mice, and involve the intracrine synthesis of estrogens. Unlike lower mammals (e.g., mice), in which the ovaries and testes are the primary origin of active sex steroids, most biologically active sex steroids in women do not originate from the ovary and do not circulate in the blood. The vast majority of estrogens (i.e., 75% before, and 100% after menopause) are synthesized in peripheral tissues from dehydroepiandrosterone (DHEA) and estrogen influence could be modified by the activity of retinal steroidogenic enzymes.

We obtained breeding pairs of C57BL/6J - aromatase knockout (ArKO) heterozygous mice from Dr. Nabil J. Alkayed (Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR), who, in turn, had procured them from Dr. Orhan Oz (University of Texas Southwestern Medical Center, Dallas, TX). Animals were shipped to Charles River Breeding Laboratories (Wilmington, MA) for initial quarantine, health monitoring and serology, and then forwarded to the Animal Facilities of the Schepens Eye Research Institute (SERI). Mice were housed and bred in constant temperature rooms with fixed light/dark intervals of 12 hours duration. All mice were fed the PicoLab Rodent Diet 20 (#5053; LabDiet, St Louis, MO). Animals were obtained from Dr. Orhan Oz (University of Texas Southwestern Medical Center, Dallas, TX). Animals were shipped to Charles River Breeding Laboratories (Wilmington, MA) for initial quarantine, health monitoring and serology, and then forwarded to the Animal Facilities of the Schepens Eye Research Institute (SERI). Mice were housed and bred in constant temperature rooms with fixed light/dark intervals of 12 hours duration. All mice were fed the PicoLab Rodent Diet 20 (#5053; LabDiet, St Louis, MO).

There are limitations in our study. We did not assess the retinal functional consequences in the ArKO mice. We did not extend phenotype observations beyond 24 weeks. Furthermore, we did not explore the mechanism for IOP increase or RGC dropout in female mice, nor the compensatory mechanisms that might have produced minimal or no glaucomatous features in male ArKO mice.

Overall, our results demonstrate that aromatase absence produces a glaucoma phenotype that is more significant in female mice. Our study is a reverse engineering approach to model one aspect of POAG and to support the epidemiological literature suggesting that relative estrogen deficiency increases the risk of POAG, which is a multifactorial disease. Therefore, it is not surprising that the IOP increases and RGC losses were modest and relatively sex-specific. We are not modeling nonspecific end organ optic nerve damage, but rather a complex disease (POAG) by precisely altering one of the many exposures involved in disease pathogenesis. In this regard our findings are very important, because the modest effects on IOP and the RGGs are consistent with epidemiological data showing modest reductions in IOP and in glaucoma risk related to estrogen exposure.
All experiments with these mice were approved by the SERI Institutional Animal Care and Use Committee (IACUC) and adhere to the Association for Research in Vision and Ophthalmology Statement for the Use of Animals in Ophthalmic and Vision Research.

IOP measurements. Measurements of IOP were performed on conscious mice. We developed procedures to measure IOP (n = 6 consecutive measurements per IOP value, 3 values/eye/day, 2 consecutive days) at the central cornea of awake mice. The difference between the mean IOP values on Days 1 and 2 in the right and left eyes of female and male WT and ArKO mice (n = 8/mice group) at 12 and 24 weeks of age are shown. The “−” symbol stands for “negative” (i.e. the group mean IOP value decreased from Day 1 to 2 by that amount). The “+” symbol stands for “positive” (i.e. the group mean IOP value increased from Day 1 to 2 by that amount).

Table 1. Variation in mean IOP levels in right and left eyes of mice from days 1 to 2 of IOP measurements. IOP levels (n = 6 consecutive measurements per IOP value, 3 values/eye/day, 2 consecutive days) were recorded at the central cornea of awake mice. The difference between the mean IOP values on Days 1 and 2 in the right and left eyes of female and male WT and ArKO mice (n = 8/mice group) at 12 and 24 weeks of age are shown. The “−” symbol stands for “negative” (i.e. the group mean IOP value decreased from Day 1 to 2 by that amount). The “+” symbol stands for “positive” (i.e. the group mean IOP value increased from Day 1 to 2 by that amount).

Figure 3. Immunohistochemical identification of mouse RGCs. Retinal samples were mounted and RGCs imaged with a confocal microscope. Cells were counted manually in 3 random areas along the centerline of each quadrant (total = 3 counts/quadrant, 12 counts/retina). RGCs were clearly visible by using a primary anti-Brn3a antibody and a secondary anti-IgG antibody.
albumin and 2% Triton X-100) overnight at 4°C, then incubated with donkey anti-mouse IgG antibody (Millipore; diluted 1:200 in blocking buffer) for 2 hours at room temperature. The use of the mouse anti-mouse Brn3a antibody for the identification of RGCs in mouse retinal sections has previously been described.[15,16] Samples were then mounted and RGCs were imaged with a confocal microscope (Leica TCS SP5 CLSM, zoom = 800 fold). RGCs were counted manually in 3 random areas along the centerline of each quadrant (total = 3 counts/quadrant, 12 counts/retina). More specifically, we used the optic nerve head as the origin with 3 standard regions distributed at 1-mm intervals along the central line of each quadrant. The area of each region at 800x magnification equaled 0.037 mm². This analytical approach permitted us to account for retinal eccentricity. Overall, we optimized the techniques for the identification of mouse RGCs (Fig. 3).

Statistical analyses. Normality of the data was confirmed by using the Shapiro–Wilk and Kolmogorov–Smirnov tests. Unless otherwise noted, IOP and RGC comparisons were performed with two-tailed Student’s t-tests. A P < 0.05 was considered significant. Data are provided as the mean and standard error. All statistical analyses were performed with SPSS (IBM, Armonk, New York) and/or Prism 7 (GraphPad Software, Inc., La Jolla, CA).

Data availability statement. All data generated or analyzed during this study are included in this published article.

References
1. Vajaranant, T. S. & Pasquale, L. R. Estrogen deficiency accelerates aging of the optic nerve. Menopause 19, 942–947, https://doi.org/10.1097/gme.0b013e3182243137 (2012).
2. Wei, X. et al. Low dose of estrogen beneficial for prevention of glaucoma? Medical hypotheses 79, 377–380, https://doi.org/10.1016/j.mehy.2012.05.041 (2012).
3. Caccio, C., Deidda, I., Russo, D. & Guarneri, P. The estrogenic retina: The potential contribution to healthy aging and age-related neurodegenerative diseases of the retina. Steroids 103, 31–41, https://doi.org/10.1016/j.steroids.2015.08.002 (2015).
4. Vajaranant, T. S. et al. Risk of glaucoma after early bilateral oophorectomy. Menopause 21, 391–398, https://doi.org/10.1097/GME.0b013e3182950801 (2014).
5. Pasquale, L. R., Rosner, B. A., Hankinson, S. E. & Kang, J. H. Attributes of female reproductive aging and their relation to primary open-angle glaucoma: a prospective study. Journal of glaucoma 16, 598–605, https://doi.org/10.1097/IJG.0b013e318064c82d (2007).
6. Lee, A. J., Mitchell, P., Rochtchina, E., Healey, P. R. & Blue Mountains Eye, S. Female reproductive factors and open angle glaucoma: the Blue Mountains Eye Study. The British journal of ophthalmology 87, 1324–1328 (2003).
7. Hulsman, C. A. et al. Is open-angle glaucoma associated with early menopause? The Rotterdam Study. American journal of epidemiology 154, 138–144 (2001).
8. Pasquale, L. R. et al. Estrogen pathway polymorphisms in relation to primary open angle glaucoma: an analysis accounting for gender from the United States. Molecular vision 19, 1471–1481 (2013).
9. Mabuchi, F. et al. Estrogen receptor beta gene polymorphism and intraocular pressure elevation in female patients with primary open-angle glaucoma. American journal of ophthalmology 149, 826–830 e821–822, https://doi.org/10.1016/j.ajo.2009.12.030 (2010).
10. de Voogd, S. et al. Estrogen receptors alpha and beta and the risk of open-angle glaucoma: the Rotterdam Study. Archives of ophthalmology 126, 110–114, https://doi.org/10.1001/archoph.126.1.110 (2008).
11. Newman-Casey, P. A. et al. The potential association between postmenopausal hormone use and primary open-angle glaucoma. JAMA ophthalmology 132, 298–303, https://doi.org/10.1001/jamaophthalmol.2013.7618 (2014).
12. Prokai-Tatrai, K. et al. 17β-estradiol eye drops protect the retinal ganglion cell layer and preserve visual function in an in vivo model of glaucoma. Molecular pharmaceutics 10, 3253–3261, https://doi.org/10.1021/mp400313u (2013).
13. Zhou, X. et al. Retinal ganglion cell protection by 17β-estradiol in a mouse model of inherited glaucoma. Developmental neurobiology 67, 603–616, https://doi.org/10.1002/dnn.20373 (2007).
14. Tint, N. L. et al. Hormone therapy and intraocular pressure in nonglaucomatous eyes. Menopause 17, 157–160, https://doi.org/10.1097/GME.0b013e31813b42f4 (2010).
15. Russo, R. et al. 17β-estradiol prevents retinal ganglion cell loss induced by acute rise of intraocular pressure in rat. Progress in brain research 173, 583–590, https://doi.org/10.1016/S0079-6123(08)01144-8 (2008).
16. Sato, M. O. et al. Reduction of intraocular pressure in a glaucoma patient undergoing hormone replacement therapy. Maturitas 29, 93–95 (1998).
17. Vajaranant, T. S. et al. Effects of Hormone Therapy on Intraocular Pressure: The Women’s Health Initiative-Sight Exam Study. American journal of ophthalmology 165, 115–124, https://doi.org/10.1016/j.ajo.2016.02.025 (2016).
18. Nixon, E. & Simpkins, J. W. Neuroprotective effects of nonfeminizing estrogens in retinal photoreceptor neurons. Molecular pharmaceutics 3, 942–947, https://doi.org/10.1016/j.mapharm.2006.12.007 (2007).
19. Vajaranant, T. S., Nayak, S., Wilensky, J. T. & Joslin, C. E. Gender and glaucoma: what we know and what we need to know. Current opinion in ophthalmology 21, 91–99, https://doi.org/10.1097/ICO.0b013e32833687e7 (2010).
20. Paganini-Hill, A. & Clark, L. J. Eye problems in breast cancer patients treated with tamoxifen. Breast cancer research and treatment 60, 167–172 (2000).
21. Abramov, Y. et al. Does postmenopausal hormone replacement therapy affect intraocular pressure? Journal of glaucoma 14, 271–273 (2005).
22. Toker, F., Yener, O. & Temel, A. Influence of serum levels of sex hormones on intraocular pressure in menopausal women. Journal of glaucoma 12, 436–440 (2003).
23. Nirmalan, P. K. et al. Female reproductive factors and eye disease in a rural South Indian population: the Aravind Comprehensive Eye Survey. Investigative ophthalmology & visual science 55, 4739–4747, https://doi.org/10.1167/iovs.11-79517 (2012).
24. Fabian, C. J. The what, why and how of aromatase inhibitors: hormonal agents for treatment and prevention of breast cancer. International journal of clinical practice 61, 2051–2063, https://doi.org/10.1111/j.1475-1305.2007.01587.x (2007).
25. Fisher, C. R., Graves, K. H., Parlow, A. F. & Simpson, E. R. Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp19 gene. Proceedings of the National Academy of Sciences of the United States of America 95, 6965–6970 (1998).
26. Jones, M. E., Boon, W. C., Proietto, J. & Simpson, E. R. Of mice and men: the evolving phenotype of aromatase deficiency. Trends in endocrinology and metabolism: TEM 17, 55–64, https://doi.org/10.1016/j.tem.2006.01.004 (2006).
27. Santen, R. J., Brodie, H., Simpson, E. R., Siteri, P. K. & Brodie, A. History of aromatase: saga of an important biological mediator and therapeutic target. Endocrine reviews 30, 343–375, https://doi.org/10.1210/er.2008-0016 (2009).
28. Czajka-Oraniec, I. & Simpson, E. R. Aromatase research and its clinical significance. Endokrynologia Polska 61, 126–134 (2010).
105. Ma, J. et al. Transplantation of Human Neural Progenitor Cells Expressing IGF-1 Enhances Retinal Ganglion Cell Survival. PloS one 10, e0125695, https://doi.org/10.1371/journal.pone.0125695 (2015).

106. Lei, Z. M. & Rao, C. V. Neural actions of luteinizing hormone and human chorionic gonadotropin. Seminars in reproductive medicine 19, 103–109, https://doi.org/10.1055/s-2001-13917 (2001).

107. Misso, M. L. et al. Cellular and molecular characterization of the adipose-deficient mouse. Endocrinology 144, 1474–1480, https://doi.org/10.1210/en.2002-221123 (2003).

108. Van Sinderen, M. et al. Sexual dimorphism in the glucose homeostasis phenotype of the Aromatase Knockout (ArKO) mice. The Journal of steroid biochemistry and molecular biology 170, 39–48, https://doi.org/10.1016/j.jsbmb.2016.05.013 (2017).

109. Le May, C. et al. Estrogens protect pancreatic beta-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proceedings of the National Academy of Sciences of the United States of America 103, 9232–9237, https://doi.org/10.1073/pnas.0602956103 (2006).

110. Ramdas, W. D. et al. Lifestyle and risk of developing open-angle glaucoma: the Rotterdam study. Archives of ophthalmology 129, 767–772, https://doi.org/10.1001/archophthalmol.2010.373 (2011).

111. Soto, I. et al. DBA/2J mice are susceptible to diabetic nephropathy and diabetic exacerbation of IOP elevation. PloS one 9, e107291, https://doi.org/10.1371/journal.pone.0107291 (2014).

112. Costa, L., Cunha, J. P., Amado, D., Pinto, L. A. & Ferreira, J. Diabetes Mellitus as a Risk Factor in Glaucoma’s Physiopathology and Surgical Survival Time: A Literature Review. Journal of current glaucoma practice 9, 81–85, https://doi.org/10.5005/jp-journals-10008-1190 (2015).

113. Head, G. A., Obeyesekere, V. R., Jones, M. E., Simpson, E. R. & Krozowski, Z. S. Aromatase-deficient (ArKO) mice have reduced blood pressure and baroreflex sensitivity. Endocrinology 145, 4286–4291, https://doi.org/10.1210/en.2004-0421 (2004).

114. Levine, R. M., Yang, A., Brahma, V. & Martone, J. F. Management of Blood Pressure in Patients with Glaucoma. Current cardiology reports 19, 109, https://doi.org/10.1007/s11886-017-0927-x (2017).

115. Ding, C., Wang, P. & Tian, N. Effect of general anesthetics on IOP in elevated IOP mouse model. Experimental eye research 92, 512–520, https://doi.org/10.1016/j.exer.2011.03.016 (2011).

116. Chan-Ling, T. G. vascular, and neuronal cytogenesis in whole-mounted cat retina. Microscopy research and technique 36, 1–16, https://doi.org/10.1002/(SICI)1097-0029(19970101)36:1::AID-JEMT13.0.CO;2-V (1997).

117. Mead, B. et al. Comparative evaluation of methods for estimating retinal ganglion cell loss in retinal sections and wholemounts. PloS one 9, e10612, https://doi.org/10.1371/journal.pone.010612 (2014).

118. De la Huerta, I., Kim, I. J., Voinescu, P. E. & Sanes, J. R. Direction-selective retinal ganglion cells arise from molecularly specified stem cells. Genes & development 12, 904–915, https://doi.org/10.1101/gad.843024.112 (2014).

119. Caprara, C. et al. HIF1A is essential for the development of the intermediate plexus of the retinal vasculature. Investigative ophthalmology & visual science 52, 2109–2117, https://doi.org/10.1167/iovs.12-6222 (2011).

Acknowledgements
The authors express their appreciation to Nabil J. Alkayed, Nicole Libal, Molly Malone (Portland, OR), Orhan Oz (Dallas, TX), Evan Simpson (Clayton, Victoria, Australia), Sara J. M. Tellefsen (Solbergelva, Norway), and Xi Han, Huatao Xie, Jessica Hoadley, Michele Mammolenti, Jerome Mauris, Sandra Michaud, Jie Ma, Yiqing Li, Donald Pottle, Candace Beiler, and Kathleen Gallagher (Boston, MA, USA) for their assistance. The China Scholarship Council, the Harvard Glaucoma Center of Excellence, the Glaucoma Research Foundation (San Francisco, CA), the Margaret S. Sinon Scholar in Ocular Surface Research fund, the Yong Zhang Research Fund, and the Guoxing Yao Research Fund.

Author Contributions
D.A.S., L.R.P. and W.R.K. designed the strategy and experimentation. X.C. and Y.L. standardized and performed the mice breeding, genotyping, IOP measurement and RGC staining. X.C., Y.L. and Y.Z. contributed to the data acquisition. X.C., Y.L. and Y.Z. analyzed the data including statistics. X.C., Y.L., L.R.P. and D.A.S. wrote the manuscript. W.K. critiqued the manuscript. All authors have approved the final version of the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018