PhyCovA — a tool for exploring covariates of pathogen spread

Tim Blokker1, Guy Baele, Philippe Lemey, and Simon Dellicour

1Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, Leuven 3000, Belgium and 2Spatial Epidemiology Lab. (SpELL), Université Libre de Bruxelles, CP160/12, 50, av FD Roosevelt, Bruxelles 1050, Belgium

Abstract

Genetic analyses of fast-evolving pathogens are frequently undertaken to test the impact of covariates on their dispersal. In particular, a popular approach consists of parameterizing a discrete phylogeographic model as a generalized linear model to identify and analyse the predictors of the dispersal rates of viral lineages among discrete locations. However, such a full probabilistic inference is often computationally demanding and time-consuming. In the face of the increasing amount of viral genomes sequenced in epidemic outbreaks, there is a need for a fast exploration of covariates that might be relevant to consider in formal analyses. Here, we present PhyCovA (short for ’Phylogeographic Covariate Analysis’), a web-based application allowing users to rapidly explore the association between candidate covariates and the number of phylogenetically informed transition events among locations. Specifically, PhyCovA takes as input a phylogenetic tree with discrete state annotations at the internal nodes, or reconstructs those states if not available, to subsequently conduct univariate and multivariate linear regression analyses, as well as an exploratory variable selection analysis. In addition, the application can also be used to generate and explore various visualizations related to the regression analyses or to the phylogenetic tree annotated by the ancestral state reconstruction. PhyCovA is freely accessible at https://evolcompvir-kuleuven.shinyapps.io/PhyCovA/ and also distributed in a dockerized form obtainable from https://hub.docker.com/repository/docker/timblokker/phycova. The source code and tutorial are available from the GitHub repository https://github.com/TimBlokker/PhyCovA.

Key words: discrete phylogeography; covariates; generalized linear model; linear regression; BEAST; PhyCovA; visualization; pathogen spread

1. Introduction

Phylogeographic analyses (Lemey et al. 2009, 2010, Müller et al. 2018) are frequently used in molecular epidemiology to investigate the drivers of spatial spread of fast-evolving pathogens, such as RNA viruses (Lemey et al. 2014; Müller et al. 2019; Dellicour et al. 2020). In particular, adopting a generalized linear model (GLM) in phylogeographic reconstruction has become a popular approach to test the association of the transition rates between discrete locations (e.g. countries) and a series of potential predictors or covariates (Lemey et al. 2014). This approach has, for instance, been used to study the predictors of Ebola virus (EBOV) spread during the 2014–2016 epidemic in West Africa (Dudas et al. 2019). Based on the analysis of >1,600 EBOV genomes, this study highlighted that viral lineages tend to preferentially disperse between geographically closer and highly populated locations. Implemented in the software package BEAST 1.10 (Suchard et al. 2018), this GLM approach is, however, associated with a relatively high computational burden related (1) to the need to perform the GLM analysis while averaging over many plausible evolutionary histories and (2) to the number of distinct parameters to be estimated in such joint Bayesian phylogeographic inference involving estimation of parameters for the coalescent, substitution, and molecular clock models, as well as for the discrete diffusion model used for the phylogeographic reconstruction and associated GLM.

During the COVID-19 pandemic, an unprecedented amount of viral genomes have been sequenced and made publicly available (~8 × 10⁵ SARS-CoV-2 genomes deposited on GISAID in February 2022, https://www.gisaid.org/). To support large-scale phylogeographic reconstructions, it would be useful to rapidly explore dispersal rate predictors that would be relevant to include in such analyses. To fill this gap, we here present PhyCovA, a novel user-friendly application that can be used to quickly investigate a (potentially large) series of predictors of spatial spread. The development of PhyCovA has been inspired by applications such as TempEst (Rambaut et al. 2016), which was developed to perform...
an exploratory investigation of the temporal signal in a data set of
time-stamped sequences, a prerequisite for the subsequent
 calibration of a molecular clock model to infer time-calibrated
phylogenetic trees. Similar to TempEst, PhyCovA is a software tool
that can be used to perform exploratory analysis prior to more for-
mal and more time-consuming probabilistic inferences to identify
the drivers of viral spread.

2. Design and implementation
PhyCovA, short for ‘Phylogeographic Covariate Analysis’, has been
developed as a browser-based application. The baseline code
has been written in R using the package ‘shiny’ (https://shiny.
rstudio.com/) to make PhyCovA accessible as a web application
with a graphical user interface (Fig. 1). The application allows
the user to explore which predictors (e.g. geographic distance, air traf-
fc, and population size at the location of origin/destination) tend
to correlate with the number of viral lineage transitions among
locations. Those transition counts are either extracted from an
annotated phylogenetic tree, i.e. a tree for which the location of
ancestral nodes has already been estimated or from a tree for
which ancestral reconstruction of internal nodes still has to be
performed. In the latter case, the ancestral reconstruction can be
performed as a first analytical step in PhyCovA by using either
a maximum-likelihood method implemented in the R package
‘ape’ (Paradis and Schliep 2019) or a maximum parsimony method
implemented in the R package ‘caster’ (Locuca and Doebeli 2018).

In both cases, i.e. if the tree was previously annotated or if it needs
to be annotated in PhyCovA, a tree traversal is performed to count
the number of lineage transitions between locations, leading to
an asymmetric matrix of these pairwise transition counts. Specif-
cally, transition events are identified by comparing the locations
assigned to the parent and child nodes connected by phylogenetic
branches; a transition event is inferred when the location assigned
to a child node is different from the location assigned to its parent
node in the tree.

In addition to a rooted phylogenetic tree with or without anno-
tations, PhyCovA requires the user to load the following input
files: a matrix or several matrices to be tested as potential predic-
tor(s) (e.g. geographic distances among locations, a binary metric
specifying if each pair of locations share a specific administrative
border), a list of location-specific values of interest to be tested as
potential predictors (e.g. population density, economic metrics, or
measures of averaged climatic variables at each location), and an
ordered list of tip locations (only when loading a tree without state
annotations).

PhyCovA has three tabs that support different tasks (Fig. 1).
First, the ‘Univariate analysis’ tab allows for univariate regression
analysis and serves, at the same time, as the user interface to
upload the different input files and specify the ancestral recon-
struction method (if the provided phylogenetic tree is not already
annotated; see above). The choices made in the univariate tab
before clicking ‘RUN’ are the only inputs that are not reactive in
PhyCovA. All other inputs are reversible and can be changed or
tuned. Upon clicking ‘RUN’, the ‘Univariate analysis’ tab provides
the user with a scatter plot and associated linear regression, as
well as other optional graphs (a scatter plot of the linear regression
residuals, a barplot reporting the total number of transition events
to/from each location). Below the graphical elements, the ‘Uni-
variate analysis’ tab can also detail the results of the univariate
linear regression analysis. The second tab, ‘Multivariate analysis’,
allows selecting predictors for analysis in a multivariate linear
regression model. The different predictors can be selected using
interactive tick-boxes in the first panel, and data transformation
(log-transformation and standardization) can be carried out by
the user. The results of the multivariate linear regression anal-
ysis and associated graphs (e.g. scatter plot, correlation matrix)
are reported in the two subsequent panels. Multivariate analys-
ises may include results from a variable selection analysis, e.g.
based on the Bayesian information criterion and performed with
the ‘regsubsets’ function of the R package ‘leaps’ (https://cran.r-
project.org/web/packages/leaps/index.html). The third and last

We note that there are important differences between the
linear regression approach used in PhyCovA and Bayesian phylo-
geographic inference that makes use of a GLM. Linear regression
enables estimating a linear relationship between a dependent
variable and one or more explanatory (or independent) variables.
In classical statistics, observed data are typically used as the
variables of interest. In phylogenetics, however, the dependent
variable is typically an estimable parameter. The linear regression
approach we use here first estimates the dependent variable —
the number of lineage transitions along an annotated phylogeny,
in the case of PhyCovA — in a phylogenetic framework and sub-
sequently uses those estimates in a standard linear regression
approach (Rambaut et al. 2016). As a result, uncertainty related
to the phylogeny or the lineage transition events is not taken
into account. The GLM generalizes linear regression by allowing
to model the response variable through a link function (e.g. log,
identify, and inverse) and allowing the magnitude of the vari-
ance of each measurement to be a function of its predicted value.
It unifies various other statistical models, including linear regres-
sion, logistic regression, and Poisson regression (Zhao 2012). The
GLM approach (Lemey et al. 2014), as implemented in BEAST 1.10
(Suchard et al. 2018), parameterizes the transition rates between
locations as a log-linear function of a set of explanatory (or inde-
pendent) variables, typically called predictors or covariates. The
coefficient for each predictor is estimated throughout the BEAST
analysis, as well as its inclusion probability, allowing to estimate
the contribution and support for each predictor while accommo-
dating phylogenetic (and parameter) uncertainty. This procedure
also enables estimating transition events between locations by
means of Markov jumps (Minin and Suchard 2008) but albeit
using a time-consuming approach, especially when analysing
high-dimensional data sets.

Similar to the regression of sampling time against root-to-
tip genetic distance used to investigate temporal signal in the
program TempEst (Rambaut et al. 2016), the linear regressions
implemented in PhyCovA are not suitable for hypothesis testing
because we do not assess if regression residuals are normally
distributed and associated with a constant variance (homoscedas-
ticity). Consequently, the coefficient of determination (R^2) and
associated p-value are not valid statistical estimates (Drummond
et al. 2003; Rambaut et al. 2016). In addition, several sources of
estimation uncertainty are ignored. For these reasons, PhyCovA
is not designed to produce statistically rigorous results that are
publication-ready, but it is intended as a data exploration tool.
Figure 1. User interface of the PhyCovA online application. On the left-hand side, the annotated phylogeny along with the potential predictors of pathogen spread can be uploaded to the application. On the right-hand side, a scatter plot explores the association (or lack thereof) between the transition rates and a selected predictor, allowing users to quickly investigate hypotheses that may inform a more formal analysis.

Funding

G.B. and S.D. acknowledge support from the Research Foundation - Flanders (Fonds voor Wetenschappelijk Onderzoek-Vlaanderen, G098321N). G.B. also acknowledges support from the Research Foundation - Flanders (Fonds voor Wetenschappelijk Onderzoek-Vlaanderen, GOE1420N) and from the Internal Funds KU Leuven under grant agreement C14/18/094. P.L. acknowledges support from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no.725422 - ReservoirDOCS), the Wellcome Trust through project 206298/Z/17/Z, the National Institutes of Health grant R01 AI153044, and from the Research Foundation – Flanders (‘Fonds voor Wetenschappelijk Onderzoek-Vlaanderen’, G066215N, GOD5117N and G0B9317N). This study was partially funded by EU grant 874850 MOOD and is catalogued as MOOD 036. The contents of this publication are the sole responsibility of the authors and don’t necessarily reflect the views of the European Commission. S.D. is supported by the Fonds National de la Recherche Scientifique (FNRS, Belgium).

Conflict of interest: None declared.
Availability

PhyCovA is freely accessible online at https://evolcompvirkuleuven.shinyapps.io/PhyCovA/ and also distributed in a dockerized form obtainable from https://hub.docker.com/repository/docker/timblokker/phycova. The source code is publicly available at https://github.com/TimBlokker/PhyCovA/, and the application tutorial can be found at https://github.com/TimBlokker/PhyCovA/blob/master/tutorial/PhyCovA_Tutorial.pdf.

References

Bielejec, F. et al. (2011) ‘SPREAD: Spatial Phylogenetic Reconstruction of Evolutionary Dynamics’, Bioinformatics, 27: 2910–2.
——— et al. (2016) ‘Spread3: Interactive Visualization of Spatiotemporal History and Trait Evolutionary Processes’, Molecular Biology and Evolution, 33: 2167–9.
Dellicour, S. et al. (2020) ‘Epidemiological Hypothesis Testing Using a Phylogeographic and Phylodynamic Framework’, Nature Communications, 11: 5620.
Drummond, A. J. et al. (2003) ‘Measurably Evolving Populations’, Trends in Ecology & Evolution, 18: 481–8.
Dudas, G. et al. (2017) ‘Virus Genomes Reveal Factors that Spread and Sustained the Ebola Epidemic’, Nature, 544: 309–15.
Lemey, P. et al. (2009) ‘Bayesian Phylogeography Finds Its Roots’, PLoS Computational Biology, 5: e1000520.
——— et al. (2010) ‘Phylogeography Takes a Relaxed Random Walk in Continuous Space and Time’, Molecular Biology and Evolution, 27: 1877–85.
——— et al. (2014) ‘Unifying Viral Genetics and Human Transportation Data to Predict the Global Transmission Dynamics of Human Influenza H3N2’, PLoS Pathogens, 10: e1003932.
Louca, S., and Doebeli, M. (2018) ‘Efficient Comparative Phylogenetics on Large Trees’, Bioinformatics, 34: 1053–5.
Minvielle-Sianesi, V. N., and Suchard, M. A. (2008) ‘Fast, Accurate and Simulation-free Stochastic Mapping’, Philosophical Transactions of the Royal Society B: Biological Sciences, 363: 3985–95.
Müller, N. F. et al. (2018) ‘MASCOT: Parameter and State Inference under the Marginal Structured Coalescent Approximation’, Bioinformatics, 34: 3843–8.
——— et al. (2019) ‘Inferring Time-dependent Migration and Coalescence Patterns from Genetic Sequence and Predictor Data in Structured Populations’, Virus Evolution, 5: vez030.
Paradis, E., and Schlöper, K. (2019) ‘Ape 5.0: An Environment for Modern Phylogenetics and Evolutionary Analyses in R’, Bioinformatics, 35: 526–8.
Rambaut, A. et al. (2016) ‘Exploring the Temporal Structure of Heterochronous Sequences Using TempEst (Formerly Path-O-Gen)’, Virus Evolution, 2: vez007.
Suchard, M. A. et al. (2018) ‘Bayesian Phylogenetic and Phylodynamic Data Integration Using BEAST 1.10’, Virus Evolution, 4: vez016.
Yu, G. et al. (2017) ‘Ggtree: An R Package for Visualization and Annotation of Phylogenetic Trees with Their Covariates and Other Associated Data’, Methods in Ecology and Evolution, 8: 28–36.
Zhao, Y. (2012) R and Data Mining: Examples and Case Studies. Academic Press.