Enumeration of (16,4,16,4) Relative Difference Sets

David Clark
Department of Mathematics
University of Minnesota
Minneapolis, MN 55455, USA
dccclark@umn.edu

Vladimir D. Tonchev*
Department of Mathematics
Michigan Technological University
Houghton, MI 49931, USA
tonchev@mtu.edu

Submitted: Oct 5, 2012; Accepted: Mar 21, 2013; Published: Mar 31, 2013

Abstract

A complete enumeration of relative difference sets (RDS) with parameters (16,4,16,4) in a group of order 64 with a normal subgroup N of order 4 is given. If $N = Z_4$, three of the eleven abelian groups of order 64, and 23 of the 256 nonabelian groups of order 64 contain (16,4,16,4) RDSs. If $N = Z_2 \times Z_2$, six of the abelian groups and 194 of the non-abelian groups of order 64 contain (16,4,16,4) RDSs.

Keywords: Relative difference set; symmetric net.

1 Introduction

A relative difference set (RDS) with parameters (m,n,k,λ) in a finite group G of order mn relative to a normal subgroup N of order n is a k-subset R of G such that every element of $g \in G \setminus N$ appears exactly λ times in the multiset $S = \{ab^{-1} \mid a, b \in R, a \neq b\}$, and no element of N appears in S [1]. An RDS is called abelian if G is abelian, and nonabelian otherwise.

Relative difference sets are closely related to difference sets, group-divisible designs, generalized Hadamard matrices, symmetric nets, and finite geometry [1], [4], [6]. A comprehensive survey on RDS is the paper by Pott [5]. The existence problem of (p^a, p^b, p^a, p^{a-b}) RDSs is considered to be one of the most important questions concerning RDSs [5].

In [7], Schmidt studied the existence of abelian (p^a, p^b, p^a, p^{a-b}) RDS, and settled the existence problem of abelian (16,4,16,4) RDS completely.

*The authors acknowledge support by NSA Grant H98230-12-0213.
In this paper, a complete enumeration of $(16, 4, 16, 4)$ RDSs is given, for all groups, abelian and nonabelian, of order 64. In summary, RDSs exist in 6 of the 11 abelian groups of order 64, as well as in 195 of the 256 nonabelian groups of order 64. If $N = Z_4$, three of the eleven abelian groups of order 64, and 23 of the 256 non-abelian groups of order 64 contain $(16, 4, 16, 4)$ RDSs. If $N = Z_2 \times Z_2$, six of the abelian groups and 194 of the non-abelian groups of order 64 contain $(16, 4, 16, 4)$ RDSs. The computer algebra package Magma [2] was used in the computations.

2 RDS and symmetric nets

Our approach to the enumeration of $(16, 4, 16, 4)$ RDSs is based on their link to incidence structures known as symmetric $(4, 4)$-nets.

A symmetric $(4, 4)$-net\(^1\) is an incidence structure $I = (X, B)$ consisting of a set X of 64 points and a collection B of 64 blocks, each block being a subset of 16 points of X, having the following properties:

- Each point belongs to 16 blocks.
- There exists a partition P of the point set X into 16 subsets of size 4, called groups, so that every two points belonging to different groups appear together in exactly 4 blocks, while every two points belonging to the same group do not appear together in any block.
- The 64 blocks are partitioned into 16 parallel classes, each class consisting of 4 pairwise disjoint blocks, so that every two blocks belonging to different parallel classes share exactly 4 points.

Other terms used for a structure with the above properties are group-divisible design, or a transversal design [1].

An automorphism of an incidence structure I is any permutation of the point set which preserves the collection of blocks. The set of all automorphisms of I form a group, called the full automorphism group, $Aut(I)$, of I. The subgroups of $Aut(I)$ are called automorphism groups.

A symmetric $(4, 4)$-net is class-regular if it admits an automorphism group N of order 4 which acts transitively on each group of points and each parallel class of blocks. The group N is then called a group of bitranslations.

If R is a $(16, 4, 16, 4)$ RDS in a group G of order 64, relative to a normal subgroup $N \leq G$ of order 4, one can associate with R a class-regular $(4, 4)$-net I with point set G and blocks being the subsets $B_g \subseteq G$ of the form

$$B_g = \{Rg \mid g \in G\}.$$

\(^1\)More generally, a net is defined as a resolvable 1-design, and a symmetric net is a net with equal number of points and blocks. For more definitions concerning designs see [1].
The partition \mathcal{P} of the points into subsets of size 4 is defined as the partition of G into cosets of N. Consequently, G acts as an automorphism group of I, and the subgroup N acts transitively on each point group and each parallel class.

Thus, any $(16, 4, 16, 4)$ RDS corresponds to a class-regular symmetric $(4, 4)$-net which admits a regular automorphism group.

All nonisomorphic class-regular symmetric $(4, 4)$-nets were enumerated by Harada, Lam and Tonchev in [4], and, implicitly, by Gibbons and Mathon in [3] (two incidence structures are isomorphic if there is an incidence preserving bijection between their point sets). Up to isomorphism, there are exactly 226 nets with group of bitranslations $N = Z_2 \times Z_2$, and 13 nets with $N = Z_4$.

These results reduce the enumeration of $(16, 4, 16, 4)$ RDSs to finding sharply transitive regular subgroups G of the full automorphism groups of those class-regular symmetric $(4, 4)$-nets which admit automorphism groups acting transitively on the points, such that N is a normal subgroup of G. We used Magma to find the conjugacy classes of sharply transitive regular subgroups.

There are 267 groups of order 64, of which 11 are abelian and 256 are nonabelian. Among the 226 nets with group of bitranslations $Z_2 \times Z_2$, only 200 nonisomorphic regular subgroups of order 64 appeared within the automorphism groups of those nets, of which 6 were abelian and 194 were nonabelian. Among the 13 nets with group of bitranslations Z_4, only 26 nonisomorphic regular subgroups of order 64 appeared within the automorphism groups of those nets, of which 3 were abelian and 23 were nonabelian.

3 The results

Tables 1 and 2 list the nets with automorphism groups which admit regular subgroups with normal subgroup N. Each entry is as follows:

- $#$: The index of the net within the list of nets with a group of bitranslations $N = Z_2 \times Z_2$ available at http://www.math.mtu.edu/~tonchev/Z2Z2nets and at http://www.math.mtu.edu/~tonchev/Z4nets for the nets with $N = Z_4$. Missing indices indicate that the corresponding nets do not have transitive automorphism groups.

- **Order**: The order of the automorphism group.

- **2-Rank**: The 2-rank of the incidence matrix of the net.

- **Total**: In the format x/y, x indicates the total number of conjugacy classes of regular subgroups containing the group of bitranslations, found within the automorphism group of each net, while y is the number of nonisomorphic regular subgroups.

- **Abelian** and **Nonabelian**: In the format x/y, x indicates the number of conjugacy classes of each type of subgroup found within the net’s automorphism group, while y is the number of nonisomorphic subgroups.
• **List of indices:** Below the previous data is a list of the indices of the regular subgroups of order 64 found in each automorphism group according to Magma’s list of the groups of order 64. Entries of the form \(x(y)\) indicate that groups isomorphic to group \(x\) appeared in \(y\) distinct conjugacy classes. Entries marked with an asterisk are abelian, and all others are nonabelian.

Tables 3 and 4 give details about the structure of the regular abelian subgroups of order 64 found. Only such subgroups containing the relevant group \(N\) of bitranslations were considered. Groups with the following indices had a single regular abelian subgroup isomorphic to \(\mathbb{Z}_2^6\), and are not listed in Table 3: 6, 99, 100, 103, 104, 105, 107, 111, 113, 120, 121, 127, 128, 131, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 181, 182, 192, 193, 194, 195, 196, 197, 198, 212, 214, 221, 224, 225, 226.

Tables 5 and 6 summarize the structures of the regular abelian subgroups of order 64 found within the nets.

Table 7 gives the structures of all abelian groups of order 64 which do not appear as a regular subgroup in any net. Consequently, those are the groups which do not support any \((16, 4, 16, 4)\) RDS.

#	Order	2-Rank	Total	Abelian	Nonabelian
1	1105920	16	173/57	6/2	167/55
	4(2), 9(2), 18(2), 20(2), 23(5), 25(2), 32(6), 33(2), 34, 35(3), 36, 37(3), 56(8), 60(2), 74, 77, 80, 88(4), 90(5), 92(2), 100(2), 102(2), 132, 165, 192(4)*, 193(4), 194, 198(2), 199(3), 200(2), 202(3), 206(3), 207(3), 210(4), 214(3), 215(3), 217(3), 219(4), 223(8), 224(5), 226(2), 227(4), 229(2), 230(2), 232(10), 236, 237(6), 239(4), 240, 241(2), 242(9), 243, 244(5), 245, 262(3), 264(2), 267(2)*				
2	13824	18	8/7	2/2	6/5
	60(2), 88, 132, 192*, 193, 262, 267*				
4	4608	18	8/5	0/0	8/5
	56(2), 88(2), 100, 132, 262(2)				
5	18432	16	61/21	6/2	55/19
	4(2), 9(2), 20, 23, 32(4), 35(2), 56(14), 60(2), 74(3), 88(3), 90, 92, 100, 132(2), 192(5)*, 193(5), 202, 207(2), 242(5), 262(3), 267*				
6	4608	20	28/19	1/1	27/18
	20(2), 23(2), 58, 60(6), 69(2), 71, 74, 75, 78, 90, 92, 100, 109, 193, 202(2), 204, 207, 247, 267*				
8	384	20	4/3	0/0	4/3
	88, 132(2), 262				
9	4608	18	8/7	2/2	6/5
	60(2), 88, 132, 192*, 193, 262, 267*				
#	Order	2-Rank	Total	Abelian	Nonabelian
----	-------	--------	-------	---------	------------
22	6144	16	84/25	6/2	78/23
			4(2), 9(2), 20, 23, 32(2), 56(29), 60, 66, 67(2), 69(3), 71(2), 73(2), 75(3), 78(2), 88(3), 90, 92, 109, 131, 164, 192(5)*, 193(8), 194(8), 260*, 261		
24	1536	20	48/35	0/0	48/35
			18, 22, 25(2), 88(2), 93(2), 97, 100(5), 102, 111, 114, 116, 117, 120, 122, 132(5), 133, 143, 145, 149, 151, 156, 158, 163, 166(3), 168, 170, 200, 206, 217, 229, 230, 249, 252, 255, 262		
25	1536	18	9/5	0/0	9/5
			56(3), 88(2), 100, 132, 262(2)		
30	1536	20	50/42	0/0	50/42
			18, 22, 25(2), 33, 36, 91, 93(2), 97(2), 99, 100(2), 105, 111, 119, 120, 121, 122, 129, 130, 131, 132(2), 133, 142, 143, 144, 145(3), 146, 148, 149, 151, 156, 158, 166(2), 168, 170, 176, 178, 200, 249, 251, 252, 254, 255		
31	1536	20	45/26	1/1	44/25
			23, 24, 32(6), 35(4), 58, 59, 60, 61(2), 66, 67(2), 69, 72(2), 74, 75, 78, 85, 90(2), 101(2), 136(3), 138(2), 202(2), 207, 212, 242(2), 255(2), 260*		
32	128	20	4/4	1/1	3/3
			146, 148, 206, 246*		
33	512	20	66/44	1/1	65/43
			18, 25, 32(4), 33(4), 35(2), 86(2), 88, 91(2), 97(2), 99, 100, 102(2), 105, 108(3), 115, 116, 119, 122, 132, 133, 135, 138, 139(3), 145, 146(2), 148(2), 149, 151, 155, 158(2), 163, 166(3), 170, 179, 206(2), 217, 223(2), 227, 232, 237, 242, 246*, 251, 254		
36	73728	16	1158/85	6/3	1152/82
			4(2), 9(2), 18(6), 20(6), 23(13), 25(6), 32(14), 33(10), 34(5), 35(7), 36(5), 37(7), 56(13), 60(3), 62, 74(4), 77(2), 80, 88(6), 90(11), 92(3), 93, 99(2), 100(4), 102(6), 132(2), 192(4)*, 193(6), 194(2), 195(5), 196(5), 197(3), 198(13), 199(15), 200(5), 201(6), 202(7), 203(6), 204(6), 205(7), 206(29), 207(7), 209(8), 210(52), 211(3), 212(3), 213(12), 214(17), 215(16), 216(12), 217(19), 218(9), 219(56), 220(44), 221(18), 222(26), 223(68), 224(12), 225(13), 226(15), 227(58), 228(19), 229(22), 230(11), 231(5), 232(69), 233(46), 234(38), 235(23), 236(20), 237(33), 238(9), 239(5), 240(18), 241(27), 242(15), 243(24), 244(31), 260*, 261, 262(4), 263, 264(5), 265, 267*		
78	6144	20	28/24	0/0	28/24
			4, 5, 9(4), 57, 62, 67, 68, 69(2), 70, 73, 74, 77, 78, 79, 81, 82, 87, 112, 131, 132, 164, 165, 208, 263		
Table 1: (16, 4, 16, 4) RDS with $N = \mathbb{Z}_2 \times \mathbb{Z}_2$

#	Order	2-Rank	Total	Abelian	Nonabelian
99	1152	20	4/2	1/1	3/1
	60(3), 267*				
100	1152	22	4/2	1/1	3/1
	60(3), 267*				
103	384	20	4/2	1/1	3/1
	60(3), 267*				
104	384	22	4/2	1/1	3/1
	60(3), 267*				
105	1152	18	4/2	1/1	3/1
	60(3), 267*				
107	6912	20	5/3	1/1	4/2
	60(3), 193, 267*				
109	384	22	4/4	0/0	4/4
	100, 109, 204, 247				
111	512	20	52/19	1/1	51/18
	20(2), 23(2), 58(2), 60(10), 69(6), 71(2), 74(3), 75(3), 78(3), 90, 92(2), 100, 109, 193(2), 202(6), 204(2), 207(2), 247, 267*				
113	1536	20	48/19	1/1	47/18
	20(2), 23(2), 58(2), 60(10), 69(6), 71(2), 74(3), 75(3), 78(3), 90, 92, 100, 109, 193(2), 202(3), 204(2), 207(2), 247, 267*				
115	256	20	4/2	0/0	4/2
	9(2), 132(2)				
116	768	20	4/2	0/0	4/2
	9(2), 132(2)				
117	128	21	0/0	0/0	0/0
120	1536	20	31/19	1/1	30/18
	20(2), 23(2), 58, 60(6), 69(2), 71, 74, 75, 78, 90, 92(2), 100, 109, 193, 202(4), 204, 207, 247, 267*				
121	384	22	4/2	1/1	3/1
	60(3), 267*				
122	128	22	4/4	0/0	4/4
	100, 109, 204, 247				
123	192	22	1/1	0/0	1/1
	20				
124	64	22	1/1	0/0	1/1
	23				
Table 1: (16, 4, 16, 4) RDS with $N = \mathbb{Z}_2 \times \mathbb{Z}_2$

#	Order	2-Rank	Total	Abelian	Nonabelian
125	64	22	1/1	0/0	1/1
132					
126	192	22	1/1	0/0	1/1
132					
127	768	20	6/3	1/1	5/2
	60(4), 193, 267*				
128	256	20	7/3	1/1	6/2
	60(4), 193(2), 267*				
131	768	20	6/3	1/1	5/2
	60(4), 193, 267*				
132	512	20	52/32	1/1	51/31
	23, 24, 32, 33(2), 58, 59(2), 61, 62, 63, 65(2), 66, 67(3), 68(3), 69(7), 70, 71, 72, 75, 77(3), 78(2), 80, 81(2), 85, 90(2), 98(2), 101(2), 139, 192*, 197, 204, 205, 212				
134	256	20	64/21	0/0	64/21
	58, 59(2), 61, 63, 65, 68(2), 69(10), 70(5), 71(4), 72, 73(2), 75(9), 77(4), 78(7), 79(3), 80(3), 81(2), 195(2), 196, 197, 204(2)				
136	512	20	52/28	1/1	51/27
	23, 24, 32, 35(2), 55*, 58(2), 59, 61, 63(3), 66(2), 67(4), 69(8), 71, 72(4), 74(3), 75, 76, 78(2), 81(2), 90(2), 98, 101(2), 104, 136, 197, 208, 255, 262				
137	768	20	24/13	0/0	24/13
	57, 59, 69(4), 70(3), 72, 77(3), 78(2), 79(2), 80(3), 81, 82, 197, 212				
138	1536	20	45/30	1/1	44/29
	23, 24, 32(2), 33(4), 34(4), 55*, 58, 61, 62(2), 65, 67, 69, 70, 71, 75, 77, 79, 90(2), 98, 101(2), 104, 143(2), 139(3), 194, 196, 203, 205(2), 209, 241(2), 254				
139	512	21	52/40	0/0	52/40
	18, 20, 25(2), 89, 91(2), 92, 95, 97, 98, 100(3), 102(2), 105, 112, 115, 117, 119, 120, 129, 131(2), 132, 133(2), 145(2), 148, 151, 159, 160, 163, 164, 165, 166, 169(2), 198, 200, 207(2), 217(2), 227(2), 229, 252, 255, 264				
140	512	21	66/44	0/0	66/44
	18, 25, 32(2), 33(6), 35(2), 86(2), 88, 91(2), 97, 100(3), 102(2), 105, 108(2), 109, 116, 117, 120, 122, 132(2), 137, 138, 139(3), 143, 148(2), 151(4), 156, 158, 160, 165, 166(3), 168, 182, 204, 206, 217, 222, 225, 230, 232, 233, 244, 247, 252, 255				
Table 1: \((16,4,16,4)\) RDS with \(N = \mathbb{Z}_2 \times \mathbb{Z}_2\)

\#	Order	2-Rank	Total	Abelian	Nonabelian
142	512	19	\(52/19\)	1/1	\(51/18\)
					20(2), 23(2), 32(2), 60(10), 66(2), 67(2), 69(4), 71(3), 77(4), 78(4), 88, 90, 92, 109(2), 193(2), 195(2), 202(5), 205(2), 267*
143	6144	20	\(45/33\)	1/1	\(44/32\)
					5, 9(2), 20, 23(2), 32, 57, 58, 60(5), 61, 62, 66(2), 67, 68, 69(2), 70, 71, 77(2), 78, 79, 81, 88, 90(4), 92, 109, 112, 164, 165, 193, 195, 202, 205, 208, 267*
144	128	20	\(4/2\)	1/1	3/1
					60(3), 267*
145	256	20	\(6/6\)	1/1	63/5
					60(21), 69(21), 77(7), 80(7), 209(7), 267*
146	64	22	1/1	1/1	0/0
					267*
147	128	20	\(4/2\)	1/1	3/1
					60(3), 267*
148	128	22	\(4/2\)	1/1	3/1
					60(3), 267*
149	128	22	\(4/2\)	1/1	3/1
					60(3), 267*
150	384	20	\(4/2\)	1/1	3/1
					60(3), 267*
151	1152	21	\(2/2\)	1/1	1/1
					60, 267*
152	512	21	\(66/43\)	0/0	\(66/43\)
					18(2), 25(2), 32(2), 33(2), 34(3), 35(3), 91(6), 97(2), 99, 100(3), 105(2), 115(2), 117(2), 118, 119(2), 120, 129, 130, 132, 133(3), 144, 145, 146, 148, 149, 151, 159, 160, 164, 165, 200(2), 227, 229, 232, 233, 234, 236, 241, 244, 251, 252, 254, 255
153	512	21	\(66/43\)	0/0	\(66/43\)
					18(2), 25(2), 32(2), 33(2), 34(3), 35(3), 91(6), 97(2), 99, 100(3), 105(2), 115(2), 117(2), 118, 119(2), 120, 129, 130, 132, 133(3), 144, 145, 146, 148, 149, 151, 159, 160, 164, 165, 200(2), 227, 229, 232, 233, 234, 236, 241, 244, 251, 252, 254, 255
154	512	21	\(66/43\)	0/0	\(66/43\)
					18(2), 25(2), 32(2), 33(2), 34(3), 35(3), 91(6), 97(2), 99, 100(3), 105(2), 115(2), 117(2), 118, 119(2), 120, 129, 130, 132, 133(3), 144, 145, 146, 148, 149, 151, 159, 160, 164, 165, 200(2), 227, 229, 232, 233, 234, 236, 241, 244, 251, 252, 254, 255
155	512	21	\(66/43\)	0/0	\(66/43\)
					18(2), 25(2), 32(2), 33(2), 34(3), 35(3), 91(6), 97(2), 99, 100(3), 105(2), 115(2), 117(2), 118, 119(2), 120, 129, 130, 132, 133(3), 144, 145, 146, 148, 149, 151, 159, 160, 164, 165, 200(2), 227, 229, 232, 233, 234, 236, 241, 244, 251, 252, 254, 255
156	256	25	\(8/7\)	0/0	\(8/7\)
					35, 84, 91, 97, 170, 172(2), 214
157	256	21	\(68/48\)	0/0	\(68/48\)
					86, 89, 95, 97, 98, 99, 105, 109(3), 116(2), 117(2), 118, 119, 122, 123, 128, 130, 133(2), 141, 144, 146(4), 147(2), 149(3), 150(2), 151, 155, 157(2), 159, 160(2), 162, 163(4), 164(2), 166, 170, 171, 179, 180, 216, 218, 219, 221(2), 223, 226, 227(2), 228, 232, 233, 248, 254
Table 1: (16, 4, 16, 4) RDS with $N = \mathbb{Z}_2 \times \mathbb{Z}_2$

#	Order	2-Rank	Total	Abelian	Nonabelian
158	256	21	68/47	0/0	68/47
	85, 88, 96(2), 97, 100, 104, 106, 108, 109, 115(2), 116(2), 120(2), 121, 122, 129, 132(2), 133, 143, 145, 148(2), 149(3), 151(7), 158, 159, 160(4), 162, 163, 165(2), 166(4), 169, 172, 180, 182, 201, 204, 206, 210, 213, 220, 228, 229, 230, 232, 233, 235, 247, 252				
166	1024	20	52/33	1/1	51/32
	9(2), 20(2), 23(2), 33, 35, 58, 62(3), 63, 65, 66, 67(3), 68(2), 69(2), 72(3), 74, 75(2), 77, 85, 88(2), 90(2), 92(2), 93(4), 100, 104, 109, 114, 192*, 195(2), 204, 205, 212, 217, 262				
167	512	21	52/40	1/1	51/39
	18(3), 20(2), 22, 25(2), 33, 36, 83*, 85, 92, 100, 105(3), 111, 112, 114, 119, 120, 121, 122, 131, 132, 145(2), 146, 148, 149, 151, 155, 156(2), 157, 158(2), 166(2), 169(2), 180(2), 199, 200, 207, 210, 214, 223, 232, 237				
168	512	19	66/33	0/0	66/33
	20(2), 23(2), 32(6), 33(2), 35(2), 58, 59, 62(2), 66(5), 67(4), 68(3), 69(2), 70(2), 71, 72, 75(3), 76, 78(2), 79(2), 90, 91(2), 93, 94(2), 100, 109, 194, 195(2), 196, 204(2), 205(2), 212, 232(4), 247				
169	512	20	48/21	0/0	48/21
	5(2), 9(4), 59(5), 63, 68(2), 69(8), 70, 72(2), 74, 76, 77(2), 78(4), 79(4), 80, 81, 113(2), 132, 164(2), 165, 197(2), 212				
175	512	20	2/2	0/0	2/2
	4, 87				
177	64	22	1/1	0/0	1/1
	132				
178	64	22	1/1	0/0	1/1
	233				
181	384	21	4/2	1/1	3/1
	60(3), 267*				
182	1536	19	76/29	1/1	75/28
	20(2), 23(2), 32(4), 33(4), 34(2), 35(2), 60(3), 88, 90, 92, 99, 100, 193(2), 195, 196, 202(7), 203, 204, 205, 207, 209(2), 211, 216(4), 219(8), 227(8), 232(6), 241(6), 263, 267*				
183	512	21	52/39	0/0	52/39
	25(2), 86(2), 91(2), 99, 100(3), 102(2), 108(2), 119, 120, 121, 122, 129, 131, 132(2), 135, 137, 139(2), 142, 143, 145(2), 146, 148, 149, 151, 156, 158, 159, 160, 163, 166(3), 168, 169, 178, 182, 217(2), 251, 252, 254, 255				
Table 1: (16, 4, 16, 4) RDS with $N = \mathbb{Z}_2 \times \mathbb{Z}_2$

#	Order	2-Rank	Total	Abelian	Nonabelian
184	256	21	64/38	0/0	64/38
	96(2), 98, 99, 106, 109, 119(2), 120(2), 121(2), 122, 123, 129(3), 131(2), 132, 133(2), 142, 143, 144(2), 145(4), 146(2), 147(2), 151(4), 157, 158, 159(2), 160(4), 161(2), 162, 165(3), 166(2), 169(2), 170, 172, 176, 178, 180, 182, 252, 254				
185	512	19	52/32	0/0	52/32
	20(2), 23(2), 33, 35, 58, 59, 62(2), 66(3), 67(3), 68(3), 69(4), 70(2), 71(2), 72, 74, 75(5), 76, 77(2), 79(2), 80, 90, 91, 93, 94, 100, 109, 194, 195, 204, 205, 212, 247				
186	512	21	52/31	1/1	51/30
	18, 19, 83*, 85, 86(2), 88(2), 89(3), 91, 94, 97, 101, 102, 104(2), 105(2), 108, 110, 112(3), 114(3), 115(2), 116(4), 117(6), 126(2), 127(2), 135, 137, 138, 139, 206, 247, 248, 256				
187	512	20	48/23	0/0	48/23
	5(2), 9(4), 58, 59, 61, 62(2), 63, 66(4), 67(2), 69(2), 70(3), 72(2), 73, 75(5), 77, 78(3), 79(4), 113(2), 131, 164(3), 196, 204, 212				
190	1536	20	28/11	0/0	28/11
	4(2), 9(4), 62(3), 67(4), 73(2), 74(3), 82(2), 87(2), 131(2), 132(2), 263(2)				
192	128	21	4/2	1/1	3/1
	60(3), 267*				
193	128	22	4/2	1/1	3/1
	60(3), 267*				
194	384	20	4/2	1/1	3/1
	60(3), 267*				
195	128	21	4/2	1/1	3/1
	60(3), 267*				
196	640	22	4/2	1/1	3/1
	60(3), 267*				
197	384	22	2/2	1/1	1/1
	60, 267*				
198	384	20	4/2	1/1	3/1
	60(3), 267*				
201	64	22	1/1	0/0	1/1
	20				
202	64	22	1/1	0/0	1/1
	23				
203	128	22	4/4	0/0	4/4
	97, 108, 206, 247				
Table 1: \((16, 4, 16, 4)\) RDS with \(N = \mathbb{Z}_2 \times \mathbb{Z}_2\)

#	Order	2-Rank	Total	Abelian	Nonabelian
204	64	22	1/1	0/0	1/1
206	64	22	1/1	0/0	1/1
207	128	22	2/1	0/0	2/1
208	64	22	1/1	0/0	1/1
209	64	22	1/1	0/0	1/1
211	30720	18	2316/78	2/2	2314/76
212	2048	20	92/38	1/1	91/37
213	2048	20	48/27	0/0	48/27
214	1024	20	32/23	1/1	31/22
221	768	19	24/6	1/1	23/5
222	256	22	8/8	0/0	8/8

18(4), 20(4), 23(4), 25(4), 32(8), 33(8), 34(4), 35(4), 36(4), 37(4), 60, 62, 88(2), 90(2), 92, 93, 99(2), 100(2), 102(4), 192*, 193(2), 194, 195(9), 196(17), 197(5), 198(22), 199(17), 200(7), 201(22), 202(7), 203(17), 204(15), 205(17), 206(62), 207(7), 208(9), 209(10), 210(128), 211(2), 212(4), 213(32), 214(34), 215(29), 216(32), 217(36), 218(31), 219(132), 220(124), 221(66), 222(66), 223(116), 224(19), 225(31), 226(34), 227(122), 228(65), 229(46), 230(19), 231(19), 232(135), 233(122), 234(122), 235(65), 236(34), 237(65), 238(19), 239(11), 240(34), 241(47), 242(15), 243(63), 244(66), 245(5), 262(2), 263(4), 264(6), 265(2), 267*

212 2048 20 92/38 1/1 91/37
5, 9(2), 20, 23(4), 32, 58(3), 59, 60(10), 61(3), 62(3), 64, 66(6), 67(3), 68(5), 69(6), 70, 71(2), 74, 76, 77(4), 78(3), 79(2), 80, 81, 88, 90(8), 92, 109, 112, 132, 164, 193(2), 195(2), 197, 202(2), 205(3), 208, 267*

213 2048 20 48/27 0/0 48/27
4, 5, 9(4), 59, 62(2), 64, 67(3), 68(5), 69(6), 70, 73, 74(3), 76, 77, 78(3), 79(2), 80, 81, 82, 87, 112, 131, 132(2), 164, 197, 208, 263

214 1024 20 32/23 1/1 31/22
4, 9(2), 24(2), 55*, 57, 59, 66(2), 68, 69(2), 71(3), 72, 75(2), 77, 80, 87, 88, 89, 197, 207, 208(2), 212(2), 222, 247

221 768 19 24/6 1/1 23/5
60(7), 69(7), 77(3), 80(3), 209(3), 267*

222 256 22 8/8 0/0 8/8
35, 90, 114, 131, 145, 169, 178, 222
Table 1: (16, 4, 16, 4) RDS with $N = \mathbb{Z}_2 \times \mathbb{Z}_2$

#	Order	2-Rank	Total	Abelian	Nonabelian
223	192	22	1/1	0/0	1/1
	20				
224	768	20	24/6	1/1	23/5
	60(7), 69(7), 77(3), 80(3), 209(3), 267*				
225	256	20	64/6	1/1	63/5
	60(21), 69(21), 77(7), 80(7), 209(7), 267*				
226	320	21	1/1	1/1	0/0
	267*				

Table 2: (16, 4, 16, 4) RDS with $N = \mathbb{Z}_4$

#	Order	2-Rank	Total	Abelian	Nonabelian
1	512	22	14/9	0/0	14/9
	58, 59(2), 61(2), 72(4), 85, 175, 208, 212, 262				
5	256	22	16/10	0/0	16/10
	59, 61, 63, 65, 70(4), 72(2), 195, 197(2), 204(2), 212				
6	512	22	14/13	0/0	14/13
	58, 59, 61, 63, 65, 70(2), 72, 85, 168, 194, 197, 204, 212				
8	512	22	14/10	2/2	12/8
	55*, 58(2), 59(3), 61, 70, 104, 142, 192*, 195, 196(2)				
9	7680	22	9/8	2/2	7/6
	55*, 57, 58(2), 61, 104, 143, 197, 260*				
10	128	22	4/4	0/0	4/4
	59, 72, 197, 212				
11	384	22	2/2	1/1	1/1
	55*, 70				
12	64	24	1/1	0/0	1/1
	238				
13	384	22	2/2	0/0	2/2
	57, 212				
Table 3: Structures of abelian regular subgroups in $\mathbb{Z}_2 \times \mathbb{Z}_2$ nets

#	Order	Abelian	Group structure
1	1105920	6/2	$\mathbb{Z}_2^2 \times \mathbb{Z}_4^4(4), \mathbb{Z}_2(2)$
2	13824	2/2	$\mathbb{Z}_2^2 \times \mathbb{Z}_4^2, \mathbb{Z}_2^6$
5	18432	6/2	$\mathbb{Z}_2^2 \times \mathbb{Z}_4^2(5), \mathbb{Z}_2^6$
9	4608	2/2	$\mathbb{Z}_2^2 \times \mathbb{Z}_4^2, \mathbb{Z}_2^6$
22	6144	6/2	$\mathbb{Z}_2^2 \times \mathbb{Z}_4^2(5), \mathbb{Z}_2^4 \times \mathbb{Z}_4$
31	1536	1/1	$\mathbb{Z}_2^3 \times \mathbb{Z}_4$
32	128	1/1	$\mathbb{Z}_2^3 \times \mathbb{Z}_8$
33	512	1/1	$\mathbb{Z}_2^3 \times \mathbb{Z}_8$
36	73728	6/3	$\mathbb{Z}_2^2 \times \mathbb{Z}_4^2(4), \mathbb{Z}_2^2 \times \mathbb{Z}_4, \mathbb{Z}_2^6$
132	512	1/1	$\mathbb{Z}_2^4 \times \mathbb{Z}_4$
136	512	1/1	\mathbb{Z}_2^3
138	1536	1/1	\mathbb{Z}_2^3
166	1024	1/1	$\mathbb{Z}_2^2 \times \mathbb{Z}_4^2$
167	512	1/1	$\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_4$
186	512	1/1	$\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_8$
211	30720	2/2	$\mathbb{Z}_2^2 \times \mathbb{Z}_4^2, \mathbb{Z}_2^6$
214	1024	1/1	\mathbb{Z}_2^3

Table 4: Structures of abelian regular subgroups in \mathbb{Z}_4 nets.

#	Order	Abelian	Group structure
8	512	2/2	$\mathbb{Z}_4^1, \mathbb{Z}_2^2 \times \mathbb{Z}_4^2$
9	7680	2/2	$\mathbb{Z}_4^1, \mathbb{Z}_2 \times \mathbb{Z}_4$
11	384	1/1	\mathbb{Z}_4^1

Table 5: All regular abelian subgroups of order 64 appearing in GDDs with bitranslation group \mathbb{Z}_4.

Group Structure
55 \mathbb{Z}_4^3
192 $\mathbb{Z}_2^2 \times \mathbb{Z}_4^2$
260 $\mathbb{Z}_2^4 \times \mathbb{Z}_4$

Table 6: All regular abelian subgroups of order 64 appearing in GDDs with bi-translation group $\mathbb{Z}_2 \times \mathbb{Z}_2$.

THE ELECTRONIC JOURNAL OF COMBINATORICS 20(1) (2013), #P72 13
Table 7: Abelian groups which do not contain any (16, 4, 16, 4) RDS

Group	Structure
55	\mathbb{Z}_4^3
83	$\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_8$
192	$\mathbb{Z}_2^2 \times \mathbb{Z}_4^7$
246	$\mathbb{Z}_2^3 \times \mathbb{Z}_8$
260	$\mathbb{Z}_2^4 \times \mathbb{Z}_4$
267	\mathbb{Z}_2^6

Acknowledgments

The authors wish to thank the referees for their useful comments. This research was partially supported by NSA Grant H98230-12-0213.

References

[1] Beth, T., Jungnickel, D., Lenz, H.: Design Theory, 2nd edition. Cambridge University Press, Cambridge (1999).

[2] Bosma, W., Cannon, J.: Handbook of Magma Functions, Department of Mathematics, University of Sydney, 1994.

[3] Gibbons, P.B., Mathon, R.: Enumeration of generalized Hadamard matrices of order 16 and related designs. J. Combin. Des. 17 (2009), 119–135.

[4] Harada, M., Lam, C., Tonchev, V.D.: Symmetric (4, 4)-nets and generalized Hadamard matrices over groups of order 4, Des. Codes Cryptogr., 34 (2005), 71–87.

[5] Pott, A.: A survey on relative difference sets, in: Groups, Difference Sets, and the Monster, Arasu, K.T., Dillon, J.F., Harada, K., Seghal, S.K., and Solomon, R.I., eds., DeGruyter Verlag, Berlin 1996, pp. 195-233.

[6] Röder, M.: The quasiregular projective planes of order 16, Glasnik Mat., 43 (2008), 231-242.

[7] Schmidt, B.: On (p^a, p^b, p^a, p^{a-b})-Relative Difference Sets, J. Algebraic. Combin. 6 (1997), 279–297.