Dietary Carbohydrate and Protein Levels Affect the Growth Performance of Juvenile Peanut Worm (*Sipunculus nudus*): An LC–MS-Based Metabolomics Study

Jianqiang Huang¹, Ruzhuo Zhong¹, Chuangye Yang¹,²,³*, Qingheng Wang¹,²,³, Yongshan Liao¹ and Yuewen Deng¹,²,³

¹ Fisheries College, Guangdong Ocean University, Zhanjiang, China, ² Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China, ³ Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China

The peanut worm (*Sipunculus nudus*) is an economically important fishery resource in China. To determine how dietary carbohydrate and protein levels affect the growth performance of juvenile *S. nudus* and identify the mechanisms underlying observed patterns, five isoenergetic and isolipidic diets with different levels of carbohydrate and protein were formulated and fed to juvenile *S. nudus*; the experimental groups were referred to as EG1, EG2, EG3, EG4, and EG5, respectively. After 90 days of feeding, *S. nudus* had significantly lower survival rates when fed D5 compared with other diets (*P* < 0.05), and the highest survival rate was observed in EG2 individuals. The weight gain rate and specific growth rate were significantly higher in EG2 compared with the other groups (*P* < 0.05). Metabolomic profiling using liquid chromatography–mass spectrometry revealed 83 significantly differential metabolites (POS: 59; NEG: 24), which were identified via an in-house MS2 database. Pathway analysis indicated that the significantly different metabolites were involved in 22 metabolic pathways (POS: 9; NEG: 13), including tyrosine, phenylalanine, and tryptophan biosynthesis; phenylalanine metabolism; D-glutamate and D-glutamine metabolism; proline and arginine metabolism; aspartate, alanine, and glutamate metabolism; and aminoacyl-tRNA biosynthesis. These analyses implied that the biosynthetic capabilities of juvenile *S. nudus* were greater in the EG2. The results of this research enhance our understanding of the effects of dietary carbohydrate and protein levels on the growth performance of juvenile *S. nudus*.

Keywords: *Sipunculus nudus*, growth performance, metabolomics, LC–MS, carbohydrate, protein

INTRODUCTION

Peanut worm (*Sipunculus nudus*) is an important resource in China and is often referred to as the “cordyceps of the sea” because of its high medicinal and nutritional value (Shen et al., 2004; Luo et al., 2016; Zhang et al., 2018). It is cultured along beaches and obtains nutrients from surface sediments (Adrianov and Maiorova, 2010). *S. nudus* is widely distributed along the coast...
of southern China, including the Zhanjiang, Guangdong and Beihai, Guangxi (Du et al., 2008, 2009). Wild-collected seeds are commonly used for the culture of *S. nudus*; however, excessive harvesting of the seeds can rapidly deplete wild seed resources (Du et al., 2009). Artificial breeding can be used to mitigate the exploitation of wild resources. Many studies have been conducted on the population genetics (Du et al., 2008, 2009) and reproductive biology (Wang et al., 2005; Cao et al., 2020; Yang et al., 2020; Zhang J. W. et al., 2021) of *S. nudus*. Given that growth performance is greatly affected by diet quality, studies of the nutritional requirements, and artificial feed of juvenile *S. nudus* could aid its artificial breeding, enhance its aquaculture, and promote the restoration of wild populations.

Given that the nutritional requirements, and artificial feed of juvenile *S. nudus* could aid its artificial breeding, enhance its aquaculture, and promote the restoration of wild populations.

The amino acid profiles of the formulated diets were detailed by Wang et al. (2016), carbohydrate values were calculated following the methods of Xia et al. (2015), gross energy values were calculated following the methods of Xia et al. (2017).

Survival Rate and Growth Performance

The total number and total weight of juvenile *S. nudus* in each group were determined at the beginning and end of the experiment. Total weight was obtained using an electronic balance. Survival rate, weight gain rate (WGR), and specific growth rate (SGR) were calculated following the methods of Xia et al. (2015).

Sample Collection

After the 90-day culture period, eight *S. nudus* from each group were randomly selected and coelomic fluid from juvenile *S. nudus* was extracted following the methods of Yang et al. (2020), immediately placed in liquid nitrogen, and stored at −80°C.

Metabolite Extraction and LC–MS/MS Analysis

A 100-µL sample was pipetted into an Eppendorf tube, and 400 µL of extract solution (acetonitrile: methanol = 1: 1) containing an isotopically labeled internal standard mixture was added. Metabolite extraction followed the methods of Yang et al. (2021).

A UHPLC system (Vanquish, Thermo Fisher Scientific) with a UPLC BEH Amide column (2.1 mm × 100 mm, 1.7 µm) and a Q Exactive HFX mass spectrometer (Orbitrap MS, Thermo) was used for LC–MS/MS analyses. The analysis was carried out with an elution gradient as described by Yang et al. (2021). The flow rate was 0.5 mL/min; the auto-sampler temperature was 4°C; the column temperature was 30°C; and the injection volume was 2 µL.

MS/MS spectra were acquired using a Q Exactive HFX mass spectrometer through the information-dependent acquisition mode in Xcalibur software (Thermo Fisher Scientific). The software continuously evaluates the full-scan MS spectrum in this mode. The sheath gas flow rate was 30 Arb; the Aux gas flow rate was 25 Arb; the capillary temperature was 350°C; the full
MS resolution was 60,000; the MS/MS resolution was 7,500; the collision energy was 10/30/60 in NCE mode; and the spray voltage was 3,600 V (positive, POS) or –3,200 V (negative, NEG).

Data Preprocessing and Annotation

ProteoWizard was used to convert the raw data to mzXML format, followed by processing with an in-house program. This

TABLE 1	Survival rate and growth performance of juvenile peanut worm *S. nudus*.				
Items	EG1	EG2	EG3	EG4	EG5
---------	-----------------	-----------------	-----------------	-----------------	-----------------
Survival (%)	81.48 ± 1.70 a	82.59 ± 1.70 a	77.78 ± 2.94 a	78.15 ± 1.28 a	70.37 ± 6.79 b
Weight gain rate (%)	87.67 ± 5.19 b	117.03 ± 7.57 a	55.83 ± 2.95 c	51.23 ± 2.68 cd	45.70 ± 6.38 d
Specific growth rate (% day$^{-1}$)	0.70 ± 0.03 b	0.86 ± 0.04 a	0.49 ± 0.02 c	0.46 ± 0.02 cd	0.42 ± 0.05 d

Means with the same letters within a raw are not significantly different (P > 0.05).

FIGURE 1 | PCA model score scatter plot, OPLS–DA model, and permutation test for groups EG2 and EG5. The PCA model (A,B), OPLS–DA model (C,D), and permutation test of the OPLS–DA model (E,F) were derived from the UHPLC–QTOF/MS metabolomics profiles. (A,C,E) were derived from the POS ion mode, and (B,D,F) were derived from the NEG ion mode.
program was used for extraction, peak detection, alignment, and integration and was developed using R. The cutoff for annotation was 0.3. The metabolite identification was performed via an in-house MS2 database, including metlin, pubchem, and self-built database of Biotree Biotech Co., Ltd. (Shanghai, China).

Data Analysis
The final dataset contained information such as the sample name, peak number, and normalized peak area and was imported to SIMCA16.0.2 (Sartorius Stedim Data Analytics AB, Umea, Sweden) for orthogonal projections to latent structures discriminant analysis (OPLS-DA) and principal component analysis (PCA). Data were scaled and logarithmically transformed to minimize the effect of noise and high variance among the variables. Data were analyzed as previously described (Yang et al., 2021). In the OPLS-DA analysis, the variable importance in projection (VIP) of the first principal component in OPLS-DA analysis was obtained. Metabolites with \(P < 0.1 \) (Student’s t-test) and VIP > 1 were significantly different metabolites (SDMs). In addition, the KEGG\(^1\) and MetaboAnalyst\(^2\) databases were utilized for pathway enrichment analysis.

\(^1\)http://www.genome.jp/kegg/
\(^2\)http://www.metaboanalyst.ca/

FIGURE 2 | Volcano plots for groups EG2 and EG5. (A,B) were derived from POS and NEG, respectively. In the volcano plot, each point represents a metabolite, and the point size represents the VIP value of this metabolite in the OPLS–DA model. Red, blue, and gray indicate a significantly up-regulated metabolite in EG2, the opposite, and no significant difference between the two groups, respectively.
Survival rate, WGR, and SGR values were determined using one-way analysis of variance, followed by Duncan’s multiple comparisons test. The data were presented as mean ± SEM; significant differences (\(P < 0.05\)) between variables.

RESULTS

Survival Rate and Growth Performance

The survival rates of juvenile *S. nudus* ranged from 70.37 to 82.59\%. EG5 *S. nudus* had significantly lower survival rates compared with *S. nudus* in other groups (\(P < 0.05\), Table 1). Although no significant differences were observed among EG1, EG2, EG3, and EG4, the highest survival rate was observed in EG2 (\(P > 0.05\), Table 1). Juvenile *S. nudus* in group EG2 had significantly higher WGR and SGR compared with the other groups (Table 1, \(P < 0.05\)).

General Changes in Metabolites

The peak area and peak retention time of the total ion chromatograms from all QC samples showed extensive overlap, indicating the stability of the analytical system (Supplementary Figure 1). A total of 4,160 positive (POS) and 3,227 negative (NEG) peaks were obtained for the coelomic fluid from juvenile *S. nudus*. These valid peaks were matched to 207 and 103 metabolites in POS and NEG, respectively, via an in-house MS2 database.

In the PCA score scatter plot, similar datasets were clustered more closely, whereas different datasets were placed further apart (Figures 1A,B). The values for \(R^2_X\) of the PCA model between EG2 and EG5 were 0.572 (POS) and 0.574 (NEG), respectively. OPLS–DA was performed to characterize the different metabolic patterns of coelomic fluid from juvenile *S. nudus* (Figures 1C,D). The values for \(R^2_X\), \(R^2_Y\), and \(Q^2\) in the OPLS–DA model of POS between EG2 and EG5 were 0.229, 0.977, and 0.609, respectively.

![Hierarchical clustering analysis on SDMs from POS. The relative metabolite level is depicted according to the color scale. Red and blue indicate upregulation and downregulation, respectively.](#)
The values for R^2_X, R^2_Y, and Q^2 in the OPLS–DA model of NEG between EG2 and EG5 were 0.348, 0.957, and 0.520, respectively. A permutation test was used to avoid the transition fit in the OPLS–DA mode (Figures 1E,F). The R^2_Y and Q^2 intercepts were 0.97 and −0.46 between EG2 and EG5 (POS) and 0.91 and −0.52 between EG2 and EG5 (NEG), respectively. Thus, the OPLS–DA model was not overfit and showed high stability; it was thus suitable for use in subsequent analyses.

SDMs

Volcano plots were used to visualize the SDMs; the plots revealed several significant SDMs (Figures 2A,B). In total, 83 SDMs between EG2 and EG5 (POS: 59; NEG: 24) were identified via an in-house MS2 database (Figures 3, 4 and Supplementary Table 3). Compared with EG5, 37 SDMs had higher concentrations in EG2 (POS: 25; NEG: 12; Figures 3, 4 and Supplementary Table 3).

Metabolic Pathway Analysis of SDMs

To explore potential metabolic pathways, the SDMs were imported into MetaboAnalyst 4.0. 22 metabolic pathways were identified between EG2 and EG5 (POS: 9; NEG: 13; Figure 5 and Supplementary Table 4). The metabolic pathways in POS between EG2 and EG5 identified were histidine metabolism, sulfur metabolism, riboflavin metabolism, selenoamino acid metabolism, cysteine and methionine metabolism, proline and arginine metabolism, pyrimidine metabolism, purine metabolism, and aminoacyl-tRNA biosynthesis. The relevant metabolic pathways in NEG between EG2 and EG5 identified were tyrosine, phenylalanine, and tryptophan biosynthesis; phenylalanine metabolism; D-glutamate and D-glutamine metabolism; aspartate, alanine, and glutamate metabolism; proline and arginine metabolism; and aminoacyl-tRNA biosynthesis.

DISCUSSION

The WGR and SGR of juvenile *S. nudus* increased as the level of dietary carbohydrates increased from 21.50 to 34.97% and decreasing dietary protein level from 34.07 to 24.02%. The WGR and SGR decreased with further elevation in carbohydrate level from 34.97 to 39.46% and reducing dietary protein level from 24.02 to 20.67%. Suboptimal amounts of dietary carbohydrate and protein result in the poor growth of aquatic animals (Xia et al., 2015; Guy et al., 2018; Surintorn et al., 2018; Yang et al., 2019b). Moreover, juvenile peanut worm fed with D2 (34.97% carbohydrates, 24.02% protein) got the highest survival rate. Thus, D2 was considered the most optimal diet.

Characterizing the effects of different levels of carbohydrates in the diet and exploring the mechanism underlying variation in the responses of organisms to differences in diets is essential for optimizing the diets and growth rates of aquacultural species. Metabolomics approaches are useful for providing an organism-scale overview of relevant pathways, as the metabolic pathways identified through the SDMs are those most sensitive to dietary or medical interventions (Yang et al., 2018a). Nutritional metabolomics research is a relatively new field in the context of aquaculture. LC–MS-based metabolomics analysis was performed to characterize differences in the metabolomic responses of juvenile *S. nudus* fed D2 and D5. Differences in the metabolites and changes in the coelomic fluid of *S. nudus* were also compared between these two groups. The key metabolic pathways were identified based on the common key metabolic pathways and pathways altered in the coelomic fluid.

Biosynthesis-related pathways, including tyrosine, phenylalanine, and tryptophan biosynthesis and aminoacyl-tRNA biosynthesis, were enriched. The content of amino acids involved in aminoacyl-tRNA biosynthesis, such as L-asparagine, L-phenylalanine, L-glutamic acid, and L-arginine, was higher.
FIGURE 5 | Metabolome view map of significant metabolic pathways characterized in the coelomic fluid of *S. nudus* for groups EG2 and EG5. (A,B) are derived from POS and NEG, respectively. Significantly changed pathways based on enrichment and topology analysis are shown. The x- and y-axes represent pathway enrichment and pathway impact, respectively. Large sizes and dark colors represent major pathway enrichment and high pathway impact values, respectively.

in juvenile *S. nudus* fed D2. Amino acids can be transferred to ribosomal synthetic proteins through aminoacyl-tRNA biosynthesis (Smith and Hartman, 2015). This suggested that juvenile *S. nudus* got higher synthesis protein ability when fed D2 than when fed D5. Yang et al. (2020) also surmised that *S. nudus* exhibited higher synthesis ability with higher aminoacyl-tRNA biosynthesis ability in the breeding season. Altogether, arginine is an important amino acid that is involved in a variety of biological functions like protein synthesis, urea production, metabolism of glutamic acid and proline, and synthesis of creatine and polyamines in aquatic animals (Mai, 2011; Jin et al., 2016; Qi et al., 2021). It is a precursor for creatine and nitric oxide synthesis and serves as a potent stimulant of growth hormone suggestion that it may play an important role in anabolic processes (Zhou et al., 2012; Lin et al., 2015; Wei et al., 2021).

EG2 individuals had higher arginine acid content compared with EG5 individuals, which implied that the biosynthetic capabilities of juvenile *S. nudus* were greater in the EG2. Therefore, the superior synthesis ability of EG2 relative to EG5 might explain the greater growth performance of juvenile *S. nudus* in EG2.

The oxidation of cytoplasmically produced nicotinamide adenine dinucleotide can be affected by glutamic acid. In addition, glutamic acid has an anaplerotic function in the tricarboxylic acid cycle and acts as a signaling agent between the immune system and nervous system. Glutamic acid is an essential transamination partner for glutathione synthesis, which mitigates oxidative stress (Larsson et al., 2014). The glutamic acid content was substantially higher in juvenile *S. nudus* when fed D2 than when fed D5, which may reflect the superior growth, immunity, and antioxidant status.
of juvenile *S. nudus* when fed D2. Glutamic acid has also been observed to be elevated in fast-growing farmed *Haliotis midae* (Venter et al., 2018). Based on these findings, we speculate that changes in glutamic acid may affect D-glutamate and D-glutamine metabolism, as well as aspartate, alanine, and glutamate metabolism and thus explain the poorer growth performance of juvenile *S. nudus* in EG5 compared with EG2. This finding was also observed in the pearl oyster *Pinctada fucata martensii*, which was fed diets varying in carbohydrate and protein levels (Yang et al., 2019b).

Phenylalanine is an indispensable aromatic amino acid that is the sole precursor of tyrosine and is required for normal growth and metabolic processes (Zehra and Khan, 2014). When phenylalanine enters organisms, it may follow one of three pathways: conversion to tyrosine, conversion to phenylpyruvic acid, or incorporation into cellular proteins (Vockley et al., 2014). Thus, phenylalanine is an essential amino acid for aquatic organisms that enhances growth performance and plays a role in various physiological functions (Jin et al., 2015). In this study, the phenylalanine and phenylpyruvic acid content of *S. nudus* was higher when fed D2 than when fed D5, as D2 had a lower phenylalanine content compared with D5 (*Supplementary Table 2*). Hence, the dysfunctional phenylalanine metabolism in EG5 may in part explain the poorer growth performance of juvenile *S. nudus* fed D5 relative to EG2 individuals, which were fed D2. However, the specific mechanism underlying these patterns requires further study.

CONCLUSION

In this study, juvenile *S. nudus* fed D2 (34.97% carbohydrates, 24.02% protein) had the highest survival rate, WGR, and SGR. Comparison of the metabolic status of juvenile *S. nudus* fed D2 and D5 using an in-house MS2 database revealed a total of 83 SDMs (POS: 59; NEG: 24) between group EG2 and EG5, which were involved in 22 metabolic pathways (POS: 9; NEG: 13), including tyrosine, phenylalanine, and tryptophan biosynthesis; phenylalanine metabolism; D-glutamate and D-glutamine metabolism; aspartate, alanine, and glutamate metabolism; proline and arginine metabolism; and aminoacyl-tRNA biosynthesis. The results of this research enhance our understanding of the effects of dietary carbohydrate levels on the growth of juvenile *S. nudus*.

DATA AVAILABILITY STATEMENT

The data presented in the study are deposited in the MetaboLights repository, accession number MTBLS2887.

AUTHOR CONTRIBUTIONS

CY, QW, and YD designed the research. JH, YL, and RZ conducted the research. JH, CY, and QW analyzed the data. JH, RZ, CY, QW, YL, and YD contributed to the final writing of the manuscript. All authors have read and approved the final manuscript.

FUNDING

This work was supported by the Science and Technology Department, Guangdong Province (Grant Numbers: 2020A04009, 163-2019-XMZC-0009-02-0059, and 2016A0209010) and the Guangdong Ocean University Student’s Plan for Innovation and Entrepreneurship (Grant Number: 201810566049).

ACKNOWLEDGMENTS

Metabolomics analysis was assisted by Biotree Biotech Co., Ltd. (Shanghai, China). The authors would like to thank TopEdit (www.topeditisci.com) for linguistic assistance during preparation of this manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmars.2021.702101/full#supplementary-material

REFERENCES

Adrianov, A. V., and Maiorova, A. S. (2010). Reproduction and development of common species of peanut worms (*Sipuncula*) from the sea of Japan. *Russ. J. Mar. Biol.* 36, 1–15. doi: 10.1134/s1063074010010013

Andersen, S. M., Assaad, H. I., Lin, G., Wang, J., Wu, G., and Aksnes, A. (2015). Metabolomic analysis of plasma and liver from surplus arginine fed Atlantic salmon. *Front. Biosci. (Elit. Ed.)* 7, 77–89. doi: 10.2741/E718

Baumgarner, B. L., and Cooper, B. R. (2012). Evaluation of a tandem gas chromatography/time-of-flight mass spectrometry metabolomics platform as a single method to investigate the effect of starvation on whole-animal metabolism in rainbow trout (*Onchorhynchus mykiss*). *J. Exp. Biol.* 215, 1627–1632. doi: 10.1242/jeb.059873

Cao, F. J., Zhong, R. Z., Yang, C. Y., Hao, R. J., Wang, Q. H., Liao, Y. S., et al. (2020). Transcriptomic analysis of differentially expressed genes in the larval settlement and metamorphosis of peanut worm *Sipunculus nudus*. *Aquac. Rep.* 18:100475. doi: 10.1016/j.aqrep.2020.100475

Cao, Y. P., Lu, X. L., Dai, Y. P., Li, Y. H., Liu, F. H., Zhou, W., et al. (2021). Proteomic analysis of body wall and coelomic fluid in *Sipunculus nudus*. *Fish Shellfish Immunol.* 111, 16–24. doi: 10.1016/j.fsi.2021.01.004

Cappello, T., Giannetto, A., Parrino, V., Maisano, M., Oliva, S., Marcoet, G. D., et al. (2018). Baseline levels of metabolites in different tissues of mussel *Mytilus galloprovincialis* (*Bivalvia: mytilidae*). *Comp. Biochem. Physiol. Part D Genomics Proteomics* 26, 32–39. doi: 10.1016/j.cbd.2018.03.005

Cappello, T., Maisano, M., Mauceri, A., and Fasulo, S. (2017). 1H NMR-based metabolomics investigation on the effects of petrochemical contamination in posterior adductor muscles of caged mussel *Mytilus galloprovincialis*. *Ecotoxicol. Environ. Saf.* 142, 417–422. doi: 10.1016/j.ecoenv.2017.04.040

Cheng, K., Wagner, L., Moazzami, A. A., Gómez-Requeni, P., Schiller Vestergren, A., Brännäs, E., et al. (2016). Decontaminated fishmeal and fish oil from the
Baltic Sea are promising feed sources for Arctic char (Salvelinus alpinus L.); studies of flesh lipid quality and metabolic profile. Eur. J. Lipid Sci. Technol. 118, 862–873. doi: 10.1007/s11306-008-0143-1

Wang, Q. H., Du, X. D., Huang, H. Y., and Qin, H. G. (2005). Development of germ cells and reproductive cycle of Sipunculus nudus L in Zhanjiang. J. Zhanjiang Ocean Univ. 25, 5–9.

Wang, Q. H., Yang, C. Y., Du, X. D., Liu, X. W., Sun, R. J., and Deng, Y. W. (2016). Growth performance and biochemical composition of juvenile pearl oyster Pinctada martensii fed on artificial diets. Aquac. Int. 24, 995–1005. doi: 10.1007/s10495-015-9966-8

Wei, Y. L., Zhang, Q. G., Jia, L. L., Xu, H. G., and Liang, M. Q. (2021). Effects of dietary arginine levels on growth, intestinal peptide and amino acid transporters, and gene expressions of the TOR signaling pathway in tiger puffer, Takifugu rubripes. Aquaculture 532:736086. doi: 10.1016/j.aquaculture.2020.736086

Xia, B., Gao, Q. F., Wang, J., Li, P., Zhang, L., and Zhang, Z. (2015). Effects of dietary carbohydrate level on growth, biochemical composition and glucose metabolism of juvenile sea cucumber Apostichopus japonicus (Selenka). Aquaculture 448, 65–70. doi: 10.1016/j.aquaculture.2015.05.038

Xian, X. J., and Huang, R. L. (2011). Electropherograms analysis and determination of soluble proteins in the coelomic fluid of Sipunculus nudus. Guangdong Agric. Sci. 1, 144–145.

Xie, D. Z., Yang, L. P., Yu, R. M., Chen, F., Lu, R. H., Qin, C. B., et al. (2017). Effects of dietary carbohydrate level and lipid levels on growth and hepatic lipid deposition of juvenile tilapia, Oreoichromis niloticus. Aquaculture 479, 696–703. doi: 10.1016/j.aquaculture.2017.07.013

Xu, M. Z., Zhang, Q., Tong, W. P., Dong, L. F., Tong, T., Cheng, G. P., et al. (2013). Effects of dietary carbohydrate level on growth, body composition and digestive enzymes activities of juvenile peanut worm, Sipunculus nudus. Chin. J. Anim. Nutr. 25, 534–542.

Yang, C. Y., Du, X. D., Hao, R. J., Wang, Q. H., Deng, Y. W., and Sun, R. J. (2019a). Effect of vitamin D3 on immunity and antioxidant capacity of pearl oyster Pinctada fucata martensi after transplantation: insights from LC–MS-based metabolomics analysis. Fish. Shellfish Immunol. 94, 271–279. doi: 10.1016/j.fsi.2019.09.017

Yang, C. Y., Hao, R. J., Du, X. D., Wang, Q. H., Deng, Y. W., and Sun, R. J. (2019b). Response to different dietary carbohydrate and protein levels of pearl oysters (Pinctada fucata martensi) as revealed by GC-TOF/MS-based metabolomics. Sci. Total Environ. 650, 2614–2623. doi: 10.1016/j.scitotenv.2018.10.023

Yang, C. Y., Hao, R. J., Du, X. D., Wang, Q. H., Deng, Y. W., Sun, R. J., et al. (2018b). GC–TOF/MS-based metabolomics studies on the effect of protein sources in formulated diet for pearl oyster Pinctada fucata martensi. Aquaculture 486, 139–147. doi: 10.1016/j.aquaculture.2017.12.020

Yang, C. Y., Hao, R. J., Du, X. D., Deng, Y. W., Sun, R. J., and Wang, Q. H. (2018a). Metabolomics responses of pearl oysters (Pinctada fucata martensi) fed a formulated diet indoors and cultured with natural diet outdoors. Front. Physiol. 9, 9944. doi: 10.3389/fphys.2018.09944

Yang, C. Y., Zeng, Y. T., Liao, Y. S., Deng, Y. W., Du, X. D., and Wang, Q. H. (2021). Integrated GC–MS- and LC–MS-Based Untargeted Metabolomics Studies of the Effect of Vitamin D3 on Pearl Production Traits in Pearl Oyster Pinctada fucata martensi. Front. Mol. Biosci. 8:61404. doi: 10.3389/fmolb.2021.61404

Yang, C. Y., Zhang, J. W., Zhong, R. Z., Guo, Z. C., Wang, Q. H., and Zheng, Z. (2020). Characterization of metabolic differences in peanut worm Sipunculus nudus between breeding and nonbreeding seasons. Aquac. Rep. 16:100271. doi: 10.1016/j.aqrep.2019.100271

Zehr, S. A., Khan, M. A. (2014). Dietary phenylalanine requirement and tyrosine replacement value for phenylalanine for fingerling Atlantic salmon (Salmo salar). Food Chem. 147, 98–105. doi: 10.1016/j.foodchem.2013.09.128
Zhang, J. W., Yang, C. Y., Wang, Q. H., and Guo, Y. S. (2018). Analysis of Fatty Acid and Food Composition in Four Populations of *Sipunculus nudus*. *J. Guangdong Ocean Univ.* 38, 1–7.

Zhang, Q., Tong, W. P., Dong, L. F., Jiang, Y., and Tong, T. (2011). Effects of dietary lipid levels on growth performance, body composition and digestive enzyme activities of juvenile peanut worm, *Sipunculus nudus* Linnaeus. *Progress Fish. Sci.* 32, 99–106.

Zhang, Q., Tong, W. P., Dong, L. F., Jiang, Y., and Tong, T. (2012). Effects of dietary protein level on growth performance and body composition of juvenile peanut worm, *Sipunculus nudus* Linnaeus. *Progress Fish. Sci.* 33, 86–92.

Zhou, Q. C., Zeng, W. P., Wang, H. L., Wang, T., Wang, Y. L., and Xie, F. J. (2012). Dietary arginine requirement of juvenile Pacific white shrimp, *Litopenaeus vannamei*. *Aquaculture* 36, 252–258. doi: 10.1016/j.aquaculture.2012.08.020

Conflict of Interest: Data preprocessing and annotation of metabolomics analysis were assisted by Biotree Biotech Co., Ltd. (Shanghai, China).

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.