Role of atrial natriuretic peptide receptor in inhibition of laterally spreading tumors via Wnt/β-catenin signaling

Xiaoying Zhang1,2, Qiang Wang1, Chengyou Jia3, Dan Li2, Zhongwei Lv1,2, Jianshe Yang2,3

Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy worldwide. Laterally spreading tumors (LSTs), as special manifestations of digestive tract tumors, are often misdiagnosed or undiagnosed due to their unique morphological and pathological features. LST has no protruding lesions and progresses rapidly, and prognoses are consequently poor. LST progression to CRC is complicated. Clinical data indicate that the heart is rarely the site of primary tumorigenesis, and a class of atrial natriuretic peptides (ANPs) secreted by heart tissue play an important role in this phenomenon, which is closely related to the Wnt/β-catenin signaling pathway. However, previous studies focused solely on correlations between the Wnt/β-catenin signaling pathway, downstream gene expression and LST. Thus, correlational studies of ANP/ANP receptor, LST and CRC may be of great help in understanding the occurrence, development and treatment of LST, as well as in establishing specific and sensitive methods for detecting LST.

Key words: colorectal cancer, laterally spreading tumor, ANP/ANPR, Wnt/β-catenin signaling pathway, gene expression.

Introduction
Colorectal cancer (CRC) is a common malignant tumor of the digestive system, and its incidence in China and internationally is increasing. CRC has the third highest incidence of all malignant tumors, and developed countries have higher incidence than developing countries [1]. Large intestine adenomatous polyposis is one of the main precancerous lesions of the large intestine, and originates in the large intestinal mucosa. These lesions grow in the cavity and can be found and removed in early stages during colonoscopy. Thus, removal of adenomatous polyposis represents the gold standard for preventing large intestine cancer [2].

In 1993, Japanese scholars identified a class of lesions characterized by lateral superficial growth along the surface of the large intestine. The surface had a particle-like feature and it was classified as a cluster-like lesion of the large intestine [3]. The lesion is also known as a superficial extension type tumor, a rhabdoid tumor or a petal-like lesion [4]. With additional study, the non-particle type of the lesion was documented and it was formally designated [5] as a large intestine lateral spreading tu-
Role of atrial natriuretic peptide receptor in inhibition of laterally spreading tumors via Wnt/β-catenin signaling

Molecular biological characteristics of LST

The progression of LSTs to CRC requires a series of processes, including adenoma formation, which are regulated by a variety of proto-oncogenes, tumor suppressors, apoptosis-related genes and other factors. It has been reported that at least five to six genetic changes occur during the evolution of CRC [16]. Therefore, the study of molecular biological characteristics is of great significance to understand the process and mechanisms of LST transformation.

Proto-oncogenes involved in LST development

As an important member of the Myc gene family, c-Myc is not only a differentially expressed gene in cancer but is also involved in a number of chromosomal translocations. During cellular differentiation, c-Myc mainly plays a negative regulatory role. Abnormal expression can lead to malignant transformation, as well as unlimited proliferation, resulting in tumor formation. Some studies have shown that c-Myc plays a key role in the occurrence and development of a variety of tumors. In many tumors, such as colon cancer, breast cancer, and malignant lymphoma, c-Myc gene amplification, rearrangement or overexpression has been documented [17]. c-Myc can induce cellular transformation and tumorigenesis in vitro. However, its amplification in the human body is coordinated with changes in other genes in the early stages of CRC, which is more common in highly malignant tumors with poor prognoses. It has been reported that the abundance of c-Myc mRNA in LSTs is 3- to 24-fold higher than that in normal colorectal mucosa [18]. One way c-Myc regulates the cell cycle, which determines its mRNA expression level, is through the p21 protein (cyclin-dependent inhibitor-1).

The Ras protein is highly conserved. Upon interaction with guanine-containing nucleotides, Ras can take on an active form in complex with GTP, but can also be expressed as an inactive form in complex with GDP. Conversion between the two forms is an important hub for the Ras protein to participate in regulation of cell function and signal transduction [19]. The conversion process is reg-
ulated by a variety of protein factors as well as by Ras endogenous GTPase activity. Some scholars have found that mutation of residues 12, 13 and 61 of p21ras was associated with the occurrence of LSTs, and that p21ras-GTP cannot be hydrolyzed to GDP [20] owing to a lack of GTPase enzyme activation. It was also reported that the ras gene mutation rate was 7% in early adenomas with diameters of < 1 cm and 57% in medium-term adenomas with a diameter of 1 cm. Ras gene mutations are likely initiation events of LST malignant changes. However, LSTs caused by ras gene mutations are not significantly correlated with the patient’s family and gender [21].

Tumor suppressor genes involved in suppressing LST

The main biological functions of the p53 gene are to repair cellular injury and to monitor the integrity of genomic DNA. When DNA is damaged by drugs or radiation, p53 can stop the process of cell division in G1/S phase to help cells to repair the damage prior to division. For irreparable DNA damage, p53 can trigger programmed cell death by initiating apoptosis, avoiding the production of mutant cells that may induce carcinogenesis [22]. The mutation rates of the p53 gene in colorectal adenoma and LSTs are about 20% and 18.2%, respectively, indicating that p53 gene mutations may occur during the middle and late stages of carcinogenesis. The large number of p53 mutations reduces the proportion of wild type p53, and its function in monitoring the integrity of genomic DNA is also weakened, providing conditions for tumorigenesis. Expression of p53 in LSTs is up-regulated, suggesting that p53 plays a role in the process of benign LST carcinogenesis [23]. Other scholars have found that p53 expression was correlated with LST lymph node metastasis [24].

At present, it is believed that APC, as the “doorman” gene of colorectal epithelial tissue, plays an important role in maintaining the mucous epithelial cell number. APC is also the key rate-limiting gene for tumor transformation, and can regulate levels of b-streptavidin through two b-linked peptide binding regions. Thus, APC is an important gene in the pathogenesis of colorectal tumors [25]. The polymerase chain reaction single-strand conformation polymorphism technique was applied to assess the frequency of APC gene mutations in the normal colorectal mucosa, LST, colorectal carcinoma and colorectal adenoma. Almost no APC gene mutations were detected in normal colorectal mucosa, but the APC mutation rates were 25%, 30% and 27.8% in LST, colorectal adenoma and colorectal carcinoma, respectively. The mutation rates of the APC gene in LSTs reported in the literature were 15.5% to 42.4%, suggesting that APC gene mutations played a key role in the occurrence and development of LSTs, and may represent early molecular drivers in the process of carcinogenesis [26].

Apoptosis-related genes involved in LST

The Bcl-2 gene is of significant interest owing to its role in regulating apoptosis. Bcl-2 is a cytoplasmic membrane protein with a molecular weight of 26,000 Daltons, is encoded at 18q21, and is widely expressed during the activation and development of normal cells. Bcl-2 is rarely expressed in mature cells or apoptotic cells [27]. It has been confirmed that Bcl-2 can inhibit apoptosis by regulating mitochondrial activity. In eukaryotic cells, Bcl-2 gene expression products and the homologous protein Bcl-XL can play an inhibitory role in apoptosis induced by many factors. When expression of Bcl-2 is low or deleted, the mortality of damaged cells will increase significantly. Expression of the Bcl-2 gene in colorectal adenoma was similar to that in LST, which may be related to the normal loss of Bcl-2 expression during colorectal epithelial differentiation. The persistent high expression of Bcl-2 in surface epithelial cells is closely related to the occurrence of LSTs [28].

The survivin gene is not expressed in human normal tissues (except in the thymus) but is expressed in most tumor tissues and is a unique mammalian apoptosis-inhibiting gene. Survivin gene expression can be detected in various transformed cell lines in vitro, and expression of survivin in human tumor tissues, such as lung cancer, breast cancer and colon cancer, can be observed. In LST tissue, high survivin expression is detectable [29]. This suggests that during the early CRC events, expression of survivin, which is activated in the LST stage, has an inhibitory effect on apoptosis. Thus, survival of tumor cells is prolonged and the development of CRC is promoted. Therefore, survivin has potential value as a specific diagnostic index for LST, and may represent a new target for the treatment of CRC [30].

At present, at least 11 human caspase family members have been identified. As apoptosis executioner genes, the activation and regulation of caspase family genes directly affect the occurrence and biochemical characteristics of apoptosis. The gene products of this family are produced in the form of inactivated precursors. When the caspase protease is activated to form tetramers, enzymatic hydrolysis can occur [31]. It has been suggested that caspase proteases can auto-activate and activate one another, and that Ca2+ can activate them directly or indirectly. However, the specific processes and regulation of their activation into tetramers need to be further studied [32]. Caspase-9 is widely expressed in the cytoplasm of the normal colorectal mucosa, and its expression in LST is significantly higher than that in adenocarcinoma. This
may be related to a decrease of caspase-9 expression and inhibition of apoptosis, resulting in tumor growth and deterioration of LST [33].

Heart biofunctions and atrial natriuretic peptides (ANPs)

Of human tissues and organs, few primary tumors occur in the heart and its adjacent arteriovenous tissues. Malignant primary tumors and tumors with recurrent metastases and implantation are rarely reported, potentially because of the following factors. Myocardial tissue, conduction tissue and supporting tissue are mostly composed of terminally differentiated cells; the morphologies and functions of these cells are very stable and are not easy to transform. These cells and tissues are not easily invaded by foreign cells. To promote blood circulation, the heart is a high energy consumption organ, and the active absorption of energy makes it difficult for malignant tumors to grow. Because of the high pressure of blood flow in atrial ventricles and the aorta and the rapid flow rate, the probability of invasion and implantation of tumor cells is very low [34, 35].

The above functions and structures macroscopically explain the very low incidence of primary and metastatic recurrence of the heart. However, apart from being an energy-supplying organ, the heart is demonstrated to have endocrine function, playing a vital role in metabolism, and influencing metabolic disease [36–38]. For instance, a family of small molecular weight peptides secreted by cardiac tissue also plays an important role in the very low incidence of cardiac malignancies.

Natriuretic peptides (NPs) are a family of cardiac hormones that includes atrial, brain and C-type NPs (ANPs, BNP, and CNP, respectively). ANPs and BNP are mainly produced in the atria and ventricles of the heart and play an important role in maintenance of cardiovascular stability [39]. ANP is stored as a pro-peptide in the dense particles of cardiac myocytes. Atrial lengthening caused by hypertension leads to release of ANP into the bloodstream [40]. ANP is synthetized as an inactive precursor and is hydrolyzed by a membrane-associated protease, Corin, to convert it into the mature active peptide [41]. The biological effect of NPs occurs mainly through activation of the ornithine-acid cyclase A and the B-receptor through an intracellular messenger cGMP-mediated series of biochemical reactions.

In recent years, it was discovered that ANP is not only expressed in the heart, but is also produced in the colon, kidney, articular cartilage, ovary and other organs. ANP is involved in anti-inflammatory immune responses and in regulating metabolism [42]. The biological functions of ANPs include anticancer effects. ANPs can slow progression of prostate, breast, pancreatic and colorectal adenomas. At present, it is believed that the potential anticancer mechanisms of ANPs include inhibition of DNA synthesis through intracellular messenger DNA [43], and they may have a variety of other anticancer effects. The molecular mechanisms of antitumor and antiproliferative activity may be related to effects on the expression of biomolecules including Ras-MEK1/2, ERK1/2, the Wnt pathway, vascular endothelial growth factor, and β-catenin [44]. The ANP receptor (ANPR) is a guanylate cyclase receptor on the cell surface and is expressed in different organs and tumor tissues. ANP binds to ANPR and exerts biological effects.

Combining the molecular biological characteristics of LSTs and the mechanisms of the antitumor effect of the ANP/ANPR system, we found that both LST pathogenesis and the therapeutic mechanism of ANPs were significantly dependent on changes in the Wnt/β-catenin signaling pathway as well as abnormal expression of downstream effectors. Therefore, we propose in this study to establish a correlation between ANP/ANPR expression level and expression of molecules of the Wnt/β-catenin signaling pathway as well as its downstream effectors. This will achieve the following two objectives: (i) to establish a specific and sensitive ANP/ANPR detection method for LST, and (ii) to explore the evidence supporting ANP as a target for biological intervention in LST.

In conclusion, by establishing correlations between ANP/ANPR expression and expression of Wnt/β-catenin signaling pathway members and their downstream effectors, we hope to develop a specific and sensitive method for detection of LST mediated by ANP/ANPR. Based on the inhibitory function of ANP/ANPR on tumors, we will explore new molecular evidence supporting the biological role of ANP/ANPR in LSTs, and provide new ideas and methods for biotherapy of LSTs.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (82071964), Shanghai Municipal Health Commission (GWV-10.1-XK09).

Conflict of interest

The authors declare no conflict of interest.

References

1. Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet 2014; 383: 1490-502.
2. Watanabe T, Itabashi M, Shimada Y, et al.; Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2010 for the treatment of colorectal cancer. Int J Clin Oncol 2015; 20: 207-39.
3. Kudo SE. Endoscopic mucosal resection of flat and depressed types of early colorectal cancer. Endoscopy 1993; 25: 455-61.

4. Heinemann V, Weikersthal LFV, Decker T, et al. FOLFI R plus cetuximab versus FOLFI R plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomized, open-label, phase-3 trial. Lancet Oncol 2014; 15: 1065-75.

5. Souverijn JH. Multitarget stool DNA testing for colorectal cancer screening. N Engl J Med 2014; 371: 187-8.

6. Jung DH, Youn YH, Kim JH, et al. Endoscopic submucosal dissection for colorectal lateral spreading tumors larger than 10 cm: is it feasible? Gastrointest Endosc 2015; 81: 614-20.

7. Binmoeller KF, Hamerski CM, Shah JN, et al. Attempted underwater en bloc resection for large (2-4 cm) colorectal laterally spreading tumors (with video). Gastrointest Endosc 2015; 81: 713-8.

8. Sakai E, Ohata K, Chiba H, et al. Methylation epigenotypes and genetic features in colorectal laterally spreading tumors. Int J Cancer 2014; 135: 1586-95.

9. Miyamoto H, Ikematsu H, Fujii S, et al. Clinicopathological differences of laterally spreading tumors arising in the colon and rectum. Int J Colorectal Dis 2014; 29: 1069-75.

10. Hong YM, Kim HW, Park SB, et al. Endoscopic mucosal resection with circumferential incision for the treatment of large sessile polyps and laterally spreading tumors of the colorectum.Clin Endosc 2015; 48: 52-8.

11. Imai K, Hotta K, Yamaguchi Y, et al. Should laterally spreading tumors granular type be resected en bloc in endoscopic resections? Surg Endosc 2014; 28: 2167-73.

12. Yamada M, Saito Y, Sakamoto T, et al. Endoscopic predictors of deep submucosal invasion in colorectal laterally spreading tumors. Endoscopy 2016; 48: 456-64.

13. Okada M, Sakamoto H, Takezawa T, et al. Laterally spreading tumor of the rectum delineated with linked color imaging technology. Clin Endosc 2016; 49: 207-8.

14. Zhao X, Zhan Q, Xiang L, et al. Clinicopathological characteristics of laterally spreading colorectal tumor. PLoS One 2014; 9: e94552.

15. Hayashi Y, Miura Y, Yamamoto H. Pocket-creation method for the safe, reliable, and efficient endoscopic submucosal dissection of colorectal lateral spreading tumors. Dig Endosc 2015; 27: 534-5.

16. Lee YJ, Kim ES, Park KS, et al. Inter-observer agreement in the endoscopic classification of colorectal laterally spreading tumors: a multicenter study between experts and trainees. Dig Dis Sci 2014; 59: 2550-6.

17. O’Donnell KA, Wentzel EA, Zeller KI, et al. c-Myc-regulated micromRNAs modulate E2F1 expression. Nature 2005; 435: 839-43.

18. Bredt E, Delgado MD, Leon J, Myc and cell cycle control. Biochim Biophys Acta 2015; 1849: 506-16.

19. Wilentz RE, Chung C H, Sturm PD, et al. K-ras mutations of large sessile polyps and laterally spreading tumors granular type be resected en bloc in the colorectum. Clin Endosc 2015; 48: 52-8.

20. Souverijn JH. Multitarget stool DNA testing for colorectal cancer screening. N Engl J Med 2014; 371: 187-8.

21. Davidson SM, Papagnianakopoulos T, Olchenchock BA, et al. Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer. Cell Metab 2016; 23: 517-28.

22. Weintraub M, Bhatia KG, Chandra RS, et al. p53 expression in Langerhans cell histiocytosis. J Pediatr Hematol Oncol 2002; 24: 733-6.

23. Carlisle DL, Pritchard DE, Singh J, et al. Chromium (VI) induces p53-dependent apoptosis in diploid human lung and mouse dermal fibroblasts. Mol Carcinog 2015; 28: 111-8.

24. Pilotti S, Torre GD, Lavarnino C, et al. Distinct mdm2/p53 expression patterns in liposarcoma subgroups: implications for different pathogenetic mechanisms. J Pathol 2015; 181: 14-24.

25. Chang L, Zhang Z, Yang J, et al. Atomic structure of the APC/C and its mechanism protein ubiquity. Nature 2015; 522: 450-4.

26. Cho KR, Olinder JD, Simons JW, et al. The DCC gene: construction analysis and mutations in colorectal carcinomas. Genomics 1994; 19: 525.

27. Sidi S, Senda T, Kennedy RD, et al. Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell 2015; 163: 864-77.

28. Feng L, Precht P, Balakir R, et al. Evidence of a direct role for Bcl-2 in the regulation of articular chondrocyte apoptosis under the conditions of serum withdrawal and retinoic acid treatment. J Cell Biochem 2015; 71: 302-9.

29. Altieri DC. Validating survivin as a cancer therapeutic target. Nat Rev Cancer 2003; 3: 46-54.

30. Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 1997; 3: 917-21.

31. Enari M, Sakahira H, Yokoyama H, et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998; 391: 43-50.

32. Narkilahti S, Pirttil TJ, Lukasiuk K, et al. Expression and activation of caspase 3 following status epilepticus in the rat. Eur J Neurosci 2015; 18: 1486-96.

33. Levrer Y, Dupont C, Moreno E. Tissue crowding induces caspase-dependent competition for space. Curr Biol 2016; 26: 670-7.

34. Mittle S, Makaryus AN, Boutis L, et al. Right-sided myxomas. J Am Soc Echocardiogr 2005; 18: 695.

35. Li H, Guo H, Xiong H, et al. Clinical features and surgical results of right atrial myxomas. J Card Surg 2016; 31: 15-7.

36. Kozera L, Kuliczkowski W, Gocek E. Cardiovascular risk types and genetic features in colorectal laterally spreading tumors. Cancer 2015; 82: 96-103.

37. Gluba A, Mikhailidis DP, Lip GY, et al. Metabolic syndrome and renal disease. Int J Cardiol 2013; 164: 141-50.

38. Patti AM, Al-Rasadi K, Giglio RV, et al. Natural approaches to disease management in metabolic syndrome. Arch Med Sci 2020; 16: 617-23.

39. Skelton WP, Kelton M, Vesely DL. Cardiac hormones are not types of tumors of the papilla of vater. Cancer 2015; 82: 96-103.

40. Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med 1998; 339: 321-8.

41. Chan JC, Knudson O, Wu F, et al. Environment impacts the metabolic dependencies of Cardiac hormones: anticancer effects in vitro and in vivo. J Invest Med 2009; 57: 22-8.