RESEARCH ARTICLE

The *Staphylococcus aureus* SrrAB Regulatory System Modulates Hydrogen Peroxide Resistance Factors, Which Imparts Protection to Aconitase during Aerobic Growth

Ameya A. Mashruwala, Jeffrey M. Boyd *

Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America

* jmboyd@AESOP.Rutgers.edu

Abstract

The SrrAB two-component regulatory system (TCRS) positively influences the transcription of genes involved in aerobic respiration in response to changes in respiratory flux. Hydrogen peroxide (H$_2$O$_2$) can arise as a byproduct of spontaneous interactions between dioxygen and components of respiratory pathways. H$_2$O$_2$ damages cellular factors including protein associated iron-sulfur cluster prosthetic groups. We found that a *Staphylococcus aureus* strain lacking the SrrAB two-component regulatory system (TCRS) is sensitive to H$_2$O$_2$ intoxication. We tested the hypothesis that SrrAB manages the mutually inclusive expression of genes required for aerobic respiration and H$_2$O$_2$ resistance. Consistent with our hypothesis, a ΔsrrAB strain had decreased transcription of genes encoding for H$_2$O$_2$ resistance factors (kat, ahpC, dps). SrrAB was not required for the inducing the transcription of these genes in cells challenged with H$_2$O$_2$. Purified SrrA bound to the promoter region for dps suggesting that SrrA directly influences dps transcription. The H$_2$O$_2$ sensitivity of the ΔsrrAB strain was alleviated by iron chelation or deletion of the gene encoding for the peroxide regulon repressor (PerR). The positive influence of SrrAB upon H$_2$O$_2$ metabolism bestowed protection upon the solvent accessible iron-sulfur (FeS) cluster of aconitase from H$_2$O$_2$ poisoning. SrrAB also positively influenced transcription of scdA (ytfE), which encodes for a FeS cluster repair protein. Finally, we found that SrrAB positively influences H$_2$O$_2$ resistance only during periods of high dioxygen-dependent respiratory activity. SrrAB did not influence H$_2$O$_2$ resistance when cellular respiration was diminished as a result of decreased dioxygen availability, and negatively influenced it in the absence of respiration (fermentative growth). We propose a model whereby SrrAB-dependent regulatory patterns facilitate the adaptation of cells to changes in dioxygen concentrations, and thereby aids in the prevention of H$_2$O$_2$ intoxication during respiratory growth upon dioxygen.
Introduction

Staphylococcus aureus is a human pathogen that has the ability to infect nearly every tissue of the body [1]. The ability of *S. aureus* to sense various environmental stimuli, and rapidly calibrate its cellular physiology in response, is a cornerstone of its success as a pathogen. *S. aureus* is a facultative anaerobe and can respire dioxygen. Hydrogen peroxide (H$_2$O$_2$) is a deleterious by-product of aerobic respiration, and can arise as a result of interactions between dioxygen and components of respiratory pathways [2–5]. H$_2$O$_2$ can cause damage to cellular membranes and biological polymers, as well as oxidize protein bound iron-sulfur (FeS) cluster prosthetic groups [6, 7]. Oxidation of FeS clusters by H$_2$O$_2$ results in cluster disintegration and enzyme inactivation [7–9]. Ultimately, H$_2$O$_2$ exposure can result in metabolic standstill and eventually cell death [10, 11]. The importance of reactive oxygen species (ROS) in preventing *S. aureus* infections is evidenced by the fact that individuals carrying metabolic or genetic defects affecting ROS formation by polymorphonuclear neutrophils, the first line of defense in human innate immunity, often have chronic and reoccurring *S. aureus* infections [12].

The *S. aureus* genome encodes for a variety of mechanisms to detoxify ROS and to repair the damage caused by ROS to cellular molecules. Staphylococcal cells maintain high titers of the H$_2$O$_2$ scavenging enzymes catalase (Kat), alkylhydroperoxidase (Ahp) and the superoxide scavengers SodA and SodM [13–15]. In contrast to *Escherichia coli*, Kat is proposed to be the primary intracellular H$_2$O$_2$ scavenger in *S. aureus* [16]. SodA is proposed to be the dominant aerobic superoxide dismutase [15, 17, 18]. The findings that strains lacking ROS-scavenging enzymes display attenuated virulence in models of infection underscores the value of these ROS scavenging mechanisms [16, 19]. H$_2$O$_2$ can oxidize ferrous iron resulting in the production of hydroxyl radicals (Fenton reaction), which readily damage DNA [20]. The effects of Fenton chemistry are suppressed by producing a bi-functional protein (Dps) that binds and sequesters iron, as well as binds and protects DNA from oxidative damage [21–23]. *S. aureus* also encodes for a di-iron RIC protein ScdA (YtfE in *Escherichia coli*) that has a role in repairing FeS proteins damaged by H$_2$O$_2$ [24, 25].

The genome of *S. aureus* encodes for sixteen two-component regulatory systems (TCRS). TCRS permit bacteria to integrate multiple signals into cellular signaling circuits allowing for a rapid and robust response to stimuli [26]. TCRS typically consist of two proteins: a histidine kinase (HK) and a response regulator (RR). The HK can be either cytosolic or membrane-associated and the RR is typically a cytosolic DNA binding protein. A phosphorylation cascade between the HK and RR results in conformational changes in the RR protein, altered affinity towards target DNA sequences, modified gene expression, and a tailored physiological response [27]. TCRS have been implicated in the oxidative stress response in multiple bacterial species [28–30].

The staphylococcal respiratory regulator (SrrAB) is a TCRS that is thought to be the dominant transcriptional regulator mediating the aerobic to anaerobic switch in *S. aureus* [31–34]. SrrAB is a pleiotropic regulator of aerobic and anaerobic respiration and energy metabolism and is capable of activating as well as repressing gene transcription [31, 34–37]. SrrAB also modulates the response to nitric oxide stress [36, 38]. Alterations in cellular respiratory flux serve as one stimulus for SrrAB [36]. *S. aureus* strains lacking SrrAB display attenuated survival in models of infection [34, 38, 39].

In this study we focused upon defining a role for the SrrAB TCRS in mediating resistance to H$_2$O$_2$. Previous studies found that SrrAB positively influences expression of multiple genes required for aerobic respiration and changes in cellular respiratory flux act as a stimulus for SrrAB [34, 36]. We tested a model wherein *S. aureus* use SrrAB to co-regulate genes required for aerobic respiration and H$_2$O$_2$ resistance. Such a regulatory tuning mechanism would allow
respiring cells to achieve physiological homeostasis by protecting and repairing cellular macromolecules from H$_2$O$_2$ damage. In support of this model, SrrAB positively influenced the transcription of genes involved in H$_2$O$_2$ resistance and aerobic respiration (ahpC, kat, dps, scdA, cydB) during respiratory growth. However, SrrAB was not required for inducing the transcription of H$_2$O$_2$ resistance genes upon challenge with H$_2$O$_2$. Purified SrrA bound to the promoter region for dps suggesting that SrrAB directly modulates transcription of at least one H$_2$O$_2$ resistance factor. Intriguingly, SrrAB negatively modulated H$_2$O$_2$ resistance during conditions of low respiration or in its absence. During respiratory growth the positive influence of SrrAB upon H$_2$O$_2$ resistance bestowed protection upon the solvent accessible FeS cluster of aconitase from ROS poisoning.

Material and Methods

Materials

Restriction enzymes, quick DNA ligase kit, deoxynucleoside triphosphates, and Phusion DNA polymerase were purchased from New England Biolabs. The plasmid mini-prep kit, gel extraction kit, and RNAProtect were purchased from Qiagen. DNase I was purchased from Ambion. Lysostaphin was purchased from Ambi products. Oligonucleotides were purchased from Integrated DNA Technologies and sequences are listed in S1 Table. Trizol and High-Capacity cDNA Reverse Transcription Kits were purchased from Life Technologies. Tryptic Soy broth (TSB) was purchased from MP biomedical. Unless specified, all chemicals were purchased from Sigma-Aldrich and were of the highest purity available.

Bacterial growth conditions

Unless otherwise stated, the S. aureus strains used in this study (Table 1) were constructed in the S. aureus community-associated USA300_LAC strain that was cured of the native plasmid pUSA03, which confers erythromycin resistance (USA300_LAC or WT) [40]. S. aureus were cultured overnight aerobically in 10 mL culture tubes with a culture volume of 1 mL. For subcultures in the presence of dioxygen, overnight cultures were used to inoculate either 10 or 30 mL culture tubes covered with a loosely fitting stainless-steel cap (Kap-Uts) that allowed for free diffusion of gases. Unless otherwise indicated, the 10 mL tubes contained 1 mL of media and the 30 mL tubes contained 5 mL of media. Liquid shake-tube cultures were grown at 37°C with shaking at 250 rpm unless otherwise indicated. Aerobic phenotypic analyses in 96-well plates were assessed in 200 μL cultures using a BioTek 808E visible absorption spectrophotometer with medium shake speed and the culture optical density was monitored at 600 nm. Difco agar was added (15 g L$^{-1}$) for solid medium. The staphylococcal defined media contained per 100 mL: 1 g (NH$_4$)$_2$SO$_4$, 4.5 g KH$_2$PO$_4$, 10.5 g K$_2$HPO$_4$, 110 mM NaCl, 30 mM KCl, 50 μg nicotinic acid, 50 μg thiamine, 0.3 μg biotin and 0.025 mg of each of the 20 canonical amino acids. Glucose (14 mM) was added as carbon sources. When required antibiotics were added at the following concentrations: 150 μg mL$^{-1}$ ampicillin; 30 μg mL$^{-1}$ chloramphenicol (Cm); 10 μg mL$^{-1}$ erythromycin (Erm); 3 μg mL$^{-1}$ tetracycline (Tet); 125 μg mL$^{-1}$ kanamycin (Kan); 150 ng mL$^{-1}$ anhydrotetracycline (Atet). To maintain plasmids media was supplemented with either 15 μg mL$^{-1}$ or 5 μg mL$^{-1}$ of chloramphenicol or erythromycin, respectively.

Growth analyses for hydrogen peroxide resistance

Strains were cultured overnight in TSB at the indicated culture vessel headspace to the medium volume ratio (HVR). Optical density (OD) on all strains was standardized to OD 2.5 (A$_{600}$) in a final volume of 1 mL of 1X PBS. Two μL of the resuspended culture was used to inoculate
Table 1. Strains and plasmids used in this study.

S. aureus Strains	**Genotype/Description**	**Genetic Background**	**Source/Reference**
JMB1100	USA300_LAC (erm sensitive)	LAC	[40]
RN4220	Restriction minus	NCTC8325	[86]
JMB 1467	ΔsrrAB (SAUSA300_1441–42)	LAC	[87]
JMB 2047	ΔsrrAB::tet	LAC	This work
JMB 1209	Δdps (SAUSA300_2092)	LAC	This work
JMB6326	sodA::Tn (ermB) (SAUSA300_1513)	LAC	NARSA [88]
JMB 2968	sodM::Tn (ermB) (SAUSA300_0135)	LAC	NARSA [88]
JMB2080	ΔahpC::erm (SAUSA300_0379)	LAC	V. Torres
JMB 2078	Δkat::erm (SAUSA300_1232)	LAC	V. Torres
JMB2151	ΔperR::kan (SAUSA300_1842)	LAC	V. Torres
JMB2615	ΔsrrAB ΔperR::kan	LAC	This work
JMB7103	ΔsrrAB ΔahpC::erm	LAC	This work
JMB 5562	ΔsrrAB Δkat::erm	LAC	This work
JMB6069	cldA::Tn (ermB) (SAUSA300_2479)	LAC	[88]
JMB6070	ΔsrrAB cldA::Tn (ermB)	LAC	This work
JMB 6023	cldB::Tn (ermB)	LAC	NARSA [88]
JMB 6024	ΔsrrAB cldB::Tn (ermB) (SAUSA300_2479)	LAC	This work
SH1000	parent	SH1000	[77]
JMB4556	ΔsrrAB::tet	SH1000	This work
Newman	parent	Newman	[89]
JMB 4751	ΔsrrAB::tet	Newman	This work
JMB 2030	ΔsrrAB::tet	RN4220	This work
JMB1432	fur::tet	LAC	[90]
JMB 1163	acn::tet	LAC	[91]
JMB 7105	ΔahpC::erm acn::tet	LAC	This work
JMB 3537	acn::Tn (ermB)	LAC	NARSA [88]
JMB 3538	Δnfu acn::erm	LAC	This work
JMB 7107	Δkat::erm acn::tet	LAC	This work
JMB 4367	ΔsrrAB acn::erm	LAC	This work
JMB1254	ΔscdA (SAUSA300_0253)	LAC	This work

Other Strains

Escherichia coli PX5

Escherichia coli BL21-AI

Plasmids used in this study

Plasmid name	**Insert Locus/function**	**Source/Reference**
pJB38	construction of chromosomal gene deletions	[92]
pJB38_ΔscdA	Construction of ΔscdA	This work
pJB38_Δdps	Construction of Δdps	This work
pJB38_ΔsrrAB::tet	Construction of srrAB::tet allele	This work
pCM28	Cloning vector for genetic complementation	A. Horswill
pCM11	Cloning vector for trascipional reporters	[45]
pCM11_PsuIC	Reporter construct transcriptional activity	[46]
pCM11_Pdps	Reporter construct transcriptional activity	This work
pCM28_srrAB	Complementing vector	This work
pEPSA5	Xylose inducible over-expression	[99]
pEPSA5_acnA (pacnA)	Acinitase over-production	[47, 94]
pET20b	Cloning vector for protein production	EMD Millipore
pET20b(+)_srrA	Protein production	This work

doi:10.1371/journal.pone.0170283.t001
198 μL media in a 96-well microtiter plate. A multichannel pipettor was used to amend the media with hydrogen peroxide or vehicle control and the cultures were rapidly mixed. Bacterial strains were then cultured with constant shaking in a heated microplate reader.

Challenge during early exponential growth. Strains cultured overnight in TSB were diluted into fresh TSB medium to a final OD of 0.1 (A_{600}) at a HVR of 10 and allowed to grow with shaking for two doublings (OD of 0.4 (A_{600})). Subsequently, the strains were challenged with H_{2}O_{2} or vehicle control as outlined above.

Challenge during fermentative (anaerobic) growth. Strains were cultured overnight in TSB at a HVR of 0, as described earlier [41–43]. At point of harvest the cultures tubes were placed inside a COY anaerobic chamber (<1 ppm of O_{2}). Optical density on all strains was standardized in 1X PBS. The strains were then removed from the COY chamber and immediately sub-cultured into fresh TSB medium and challenged with H_{2}O_{2} or vehicle control as outlined above.

H_{2}O_{2} killing assays

Bacterial strains were cultured with shaking to OD 10 (A_{600}) in TSB. Cells were pelleted by centrifugation and resuspended in an equal volume of PBS. The optical density for all the strains was adjusted to an OD of 0.7 (A_{600}) in a total volume of 1 mL of 1X PBS. Cells were subsequently challenged with a bolus of H_{2}O_{2} and incubated for two hours at room temperature. Fifty μL of the reaction mixture was diluted 1:20 into PBS buffer containing catalase (1300 units mL^{-1}). Colony forming units (CFU) were determined by serially diluting cells and spot plating upon TSB agar plates.

Recombinant DNA and genetic techniques

All clones were passaged through RN4220 and subsequently transduced into the appropriate strains using bacteriophage 80α [44]. All *S. aureus* mutant strains and plasmids were verified using PCR or by sequencing PCR products or plasmids. DNA sequencing was performed at Genewiz, (South Plainfield, NJ).

Creation of plasmids and mutant strains

Chromosomal DNA from JMB 1100 was used as the template for PCR reactions for the construction of plasmids. To create the *scdA* chromosomal deletion, approximately 500 base pairs upstream and downstream of the *scdA* gene (SAUSA300_0253) was amplified using PCR the following primer pairs: 0253up5EcoRI and up3NheI; down5MluI and down3KpnI. Amplicons were gel purified and joined by PCR using the 0253up5EcoRI and down3KpnI primer pair. The amplicon was digested with EcoRI and KpnI, and ligated into similarly digested pJB38[10]. The ligation was transformed into *E. coli* DH5α and colonies were screened by PCR for the correct plasmid. Plasmid pJB38_{AscdA} was isolated and transformed into RN4220 by selection upon TSA-Cm at 30˚C. Plasmid pJB38_{AscdA} was transduced into JMB1100, and single colonies were inoculated into 5 mL of TSB-Cm. Cultures were grown at 42˚C overnight before plating upon TSA-Cm to select for single recombinants. Single colonies were inoculated into 5 mL of TSB medium, grown overnight, and cultures were diluted 1:25,000 before plating 100 μL on TSA-anhydrotetracycline to select for the loss of plasmid. Cm sensitive colonies were screened for the double recombination event using PCR with primers 0253up5EcoRI and down3KpnI primer pair.

To create the *dps* chromosomal deletion, approximately 500 base pairs upstream and downstream of the *dps* gene (SAUSA300_2092) was amplified using PCR the following primer pairs; 2092up5EcoRI and 2092up3NheI; 2092down5MluI and 2092down3SalI. Amplicons were gel
purified and joined by PCR using the 2092up5EcoRI and 2092down3SalI primer pair. The amplicon was digested with EcoRI and SalI, and ligated into similarly digested pJB38. Thereafter the Δdps strain was created as outlined above.

The pJB38 ΔsrrAB::tet plasmid was created by using PCR to amplify the tetM allele from strain JMB1432 using primers G+tetMluI and G+tetNheI. The PCR product was digested with MluI and NheI and ligated into similarly digested pJB38 ΔsrrAB (pJB38 ΔsrrAB::tetM). The ΔsrrAB::tetM strain was created as outlined above.

Transcriptional reporter plasmids for sufC and dps were constructed using the pCM11 vector backbone [45, 46]. Primers were designed to amplify the upstream regions (200–800 base pairs) upstream of the annotated translational start site for the genes. PCR amplicons were digested with HindIII and KpnI and subsequently ligated into similarly digested plasmid.

Quantitative real-time PCR assays

Overnight cultures were diluted to an OD of 0.1 (A_{600}) in a final volume of 5 mL of fresh TSB (HVR 6) and cDNA libraries were constructed as previously described [47].

ROS challenge. Culture optical density was standardized to an OD of 0.1 (A_{600}) in a final volume of 5 mL of fresh TSB (HVR 6) and strains were subsequently grown with shaking to the desired optical densities and treated with either 10 mM H_{2}O_{2} or the vehicle control and grown for an additional 25 minutes. Aliquots of cells were then harvested by centrifugation and treated with RNAprotect (Qiagen) reagent prior to RNA extraction and cDNA library preparation.

Anaerobic work

Unless otherwise mentioned anaerobic work was performed using a Coy anaerobic glove-box (Grass Lake, MI). Solutions, plastic-ware, and liquid and solid growth medium was allowed to equilibrate for >6 h inside the glove-box before use.

Cell-free extract enzyme assays

Aconitase (AcnA) assays. Overnight cultures were diluted to a final OD of 0.1 (A_{600}) in fresh TSB growth at HVR of 2.5, 5, 10 or 20 (ratios were altered as per experimental requirement) in the presence or absence of 1% xylose. Strains were cultured to an OD of 8 (A_{600}) and cell pellets were harvested by centrifugation. Cell-free lysates/extracts were prepared inside a COY anaerobic chamber using anaerobic lysis buffer (25 mM Tris, 150 mM NaCl, pH 7.4), as described previously [47]. The assay was initiated by addition of 25 μL of lyse to 975 μL of lysis buffer containing 20 mM DL-isocitrate. Aconitase activity was determined by monitoring the conversion of isocitrate to cis-aconitate spectrophotometrically using a Beckman Coulter DU530 UV-Vis absorption spectrophotometer (cis-aconitate ε_{240 nm} = 3.6 mM^{−1}cm^{−1} [48]).

For AcnA assays under anaerobic conditions, strains were cultured in 2 mL microcentrifuge tubes containing TSB and 1% xylose at a headspace to volume ratio of zero, as described earlier [47].

The effect of dioxygen on AcnA activity was assessed as described earlier [42]. Briefly, strains were cultured anaerobically as described above. Protein synthesis was inhibited by the addition of anaerobic 100 μg mL^{−1} rifampicin inside a COY chamber. Dioxygen was introduced to one set of cultures by decanting into tubes at a HVR of 15 and vigorous shaking for 35 minutes. The control set of cultures experienced continued anaerobic incubation.

Catalase assays. Overnight cultures were diluted to a final OD of 0.1 (A_{600}) in fresh TSB and cultured to an OD of 8 (A_{600}), at the desired HVR. Cell lysis and clarification of the supernatant were as described earlier [47]. The cell-free lysate was further diluted 50-fold and catalase activity was assayed by the addition of 5 μL of the diluted extract to 975 μL of assay buffer.
The decomposition of H_2O_2 was monitored spectrophotometrically, as described elsewhere [49].

Superoxide dismutase assays. Cells were cultured, harvested, and cell pellets obtained as described above for aconitase assays or as specified in the figure legend. SOD activity in the cell lysates was determined using the xanthine oxidase-cytochrome c method as described elsewhere [50].

Succinate dehydrogenase assays. Cells were cultured, harvested, and cell pellets obtained as described above for aconitase assays or as specified in the figure legend. Sdh activity was determined as described previously [46]. The reaction mixture contained PBS (pH 7.5), 2 mM KCN, 742 nM XTT, 19.5 nM phenazine methosulfate, and 130 mM sodium succinate (pH 7.1). The reaction was initiated by the addition of cell-free extract and reduction of XTT was monitored at 490 nm.

For all data examining enzymatic activity that is presented in this study, activity was standardized with respect to the protein concentration of the cell-free lysate and subsequent normalizations were as mentioned in the individual panels.

Protein purification

SrrA containing a C-terminal poly-histidine affinity tag was overproduced in and purified from *E. coli* BL21-AI* cells containing the pET20b-srrA plasmid. Cells were grown to an optical density of 0.6 (A_{600}) before induction by the addition of 0.3% arabinose. Cells were harvested by centrifugation and flash frozen in liquid nitrogen. Cells were lysed by resuspension in 50 mL of Buffer A (50 mM Tris, pH 7.5, 150 mM NaCl, and 5% glycerol) and passage through a chilled French pressure cell. Lysates were subsequently clarified by centrifugation and loaded onto a column of Ni-NTA resin (Qiagen), equilibrated with Buffer A. The column was washed with 25 column volumes of wash buffer (50 mM Tris, pH 7.5, 2 M NaCl, and 5% glycerol) before equilibration with 5 column volumes of Buffer A. Protein was eluted using a linear gradient with Buffer A containing 200 mM Imidazole. Fractions were collected and analyzed by SDS-PAGE. Fractions containing SrrA protein were pooled and dialyzed overnight at 4°C in Buffer B (50 mM Tris, pH 7.5, 110 mM KCl, 5% glycerol, and 1 mM DTT). Dialyzed protein was loaded onto a column containing Q-Sepharose resin pre-equilibrated with Buffer B. The column was washed with Buffer B and SrrA was eluted using a linear gradient of Buffer B containing 2 M KCl. Fractions were collected and analyzed using SDS-PAGE. Fractions containing SrrA protein at >95% purity were pooled and dialyzed overnight against Buffer B containing 0.01 M EDTA. SrrA was concentrated over a 3,000 Dalton molecular-mass-cutoff membrane (Amicon YM-3). Purified protein was further verified using western blots as previously described [51]. Concentrated protein was flash frozen in single use aliquots in liquid nitrogen. Concentration for proteins was routinely determined using micro-Biuret assay [52].

DNA mobility shift assays

Primers were used amplify 150 base pairs upstream of the annotated translational start sites of the *rpsC*, *srrA*, and *dps* genes using PCR. A biotin labeled primer was used to create all amplicons except those used as cold competitor controls. All amplicons were purified using a 3.5% NATIVE-PAGE gel, as described elsewhere (National Diagnostics). Prior to binding assays, phosphorylated SrrA (Srr~P) was obtained by incubating SrrA with 90 mM acetylphosphate at room temperature for 100 minutes. Binding assays were carried out in a reaction volume of 27 µL containing 15–146 ng of SrrA protein, 8 fmol of labeled DNA, 30 ng non-specific poly (dI-dC) DNA, 20 mM EDTA, and 5 mM MgSO$_4$. After 20 minutes of incubation at room temperature the binding reactions were subjected to electrophoresis on a 3.5% TBE gel. The DNAs
were subsequently transferred to a Hybond N membrane (GE Healthcare) and the blots were developed using chemiluminescent detection (Lightshift Kit, Pierce). Specific DNA::protein interactions were verified using 200-fold molar excess of a cold competitor control.

Results

A strain lacking the staphylococcal respiratory regulatory system (SrrAB) has increased susceptibility to H₂O₂

We screened a library of S. aureus strains lacking individual two-component regulatory systems (TCRS) for H₂O₂ sensitivity. A strain lacking the SrrAB TCRS had an extended lag-time before outgrowth when compared to the parental USA300_LAC strain (wild-type; WT) when challenged with H₂O₂ (Fig 1A and 1B). Returning srrAB in trans negated the H₂O₂ sensitivity of the ΔsrrAB strain verifying that the absence of SrrAB was resulting in the sensitivity phenotype (Fig 1A and 1B). The time necessary for the WT to initiate outgrowth increased in synchrony with increasing concentrations of H₂O₂ (S1A Fig). The lag-times for the ΔsrrAB strain also increased in synchrony with increasing H₂O₂, but the lag-times were significantly greater than those of the WT (S1B Fig). However, challenge with H₂O₂ did not significantly alter the generation times of either strain (data not shown).

To further examine this phenomenon, cells were resuspended in buffer and challenged with a bolus of H₂O₂. The stress was terminated by the addition of catalase and the viable cells were quantified. The ΔsrrAB strain had a ~10-fold decrease in survival post H₂O₂ challenge (S1C Fig) and this phenotype could be genetically complemented. Moreover, increasing the initial inoculum of the ΔsrrAB strain 10-fold resulted in a lag-time before outgrowth that was similar to that of the WT upon H₂O₂ challenge (data not shown). We concluded that the increased lag-time of the ΔsrrAB strain upon H₂O₂ challenge was likely an outcome of decreased cell viability.

SrrAB positively influences basal expression of H₂O₂ resistance factors

Ahp and Kat detoxify H₂O₂ and SodA has been proposed to facilitate resistance to H₂O₂ in alternate bacteria [16, 53–56]. PerR represses expression of peroxide resistance factors including Kat [57]. Catalase (Kat) activity was measured in cell-free lysates harvested from the WT, ΔsrrAB, Δkat (negative control) and ΔperR (positive control) strains, cultured aerobically. The ΔsrrAB strain displayed ~15% lower catalase activity than the WT (P<0.05) (Fig 1C). Kat activity was increased by ~25% in the ΔperR mutant while no activity was detected in the Δkat strain. Superoxide dismutase activity was measured in cell-free lysates harvested from the WT, ΔsrrAB, sodA::Tn, and sodM::Tn strains cultured aerobically. Sod activity was not decreased in the ΔsrrAB strain, but it was decreased by ~75% in the sodA::Tn strain and by ~20% in the sodM::Tn strain (Fig 1D).

We next examined whether SrrAB modulated the transcript levels of ahpC and kat. SrrAB is known to alter transcription of spa and cydB and SrrA directly modulates transcription of spa. The spa and cydB genes are repressed and activated by SrrAB, respectively [31, 34, 35]. The abundances of the transcripts corresponding to ahpC, kat, and cydB were reduced in the ΔsrrAB strain (~2–3 fold for each gene) (P<0.05) (Fig 1E). The abundance of the spa transcript was increased in the ΔsrrAB strain (~2 fold) (P<0.05) (Fig 1E).

We assessed whether SrrAB was required for the induction of ahpC and kat in cells challenged with H₂O₂. The WT and ΔsrrAB strains were cultured to post-exponential growth phase, challenged with a bolus of H₂O₂, and the transcript abundances were assessed. The changes in transcript levels for ahpC and kat, upon H₂O₂ challenge, were indistinguishable between the WT and ΔsrrAB strains. (S2 Fig).
From Fig 1, S1 Fig and S2 Fig, we concluded that SrrAB a) positively influences the basal transcript levels for ahpC and kat, and b) manages the mutually inclusive regulation of genes required for H$_2$O$_2$ resistance, aerobic respiration (cydB) and virulence (spa) during aerobic growth.
SrrAB positively influences Dps expression and iron chelation or introduction of a null perR allele alleviates the deficient survival of the ΔsrrAB strain upon H2O2 challenge

Dps protects cells from H2O2 toxicity [21–23]. SrrA could positively influence dps transcription, and thereby influence H2O2 resistance. Consistent with this theory, the abundance of the dps transcript was decreased in the ΔsrrAB strain (Fig 2A). In part, Dps imparts cellular protection by binding and sequestering free Fe, and thereby suppressing Fenton chemistry. We examined whether pre-incubation of the ΔsrrAB and Δdps strains with an iron chelator would mitigate the survival of these strains upon H2O2 challenge. The ΔsrrAB and Δdps strains that had been pre-incubated with vehicle-control, followed by H2O2 challenge, displayed decreased survival when compared to the WT. However, pre-incubation of strains with the cell permeable metal chelator 2,2-dipyrydyl, followed by H2O2 challenge, rescued the phenotypes of the ΔsrrAB and Δdps strains (Fig 2B).

Next, we examined whether increasing the expression of H2O2 resistance factors in the ΔsrrAB strain would mitigate the H2O2 sensitivity phenotype of this strain. PerR represses transcription of ahpC, kat, and dps (52). As expected, the ΔperR strain displayed increased resistance to H2O2 challenge (Fig 2C). Introduction of the ΔperR mutation mitigated the H2O2 sensitivity phenotype of the ΔsrrAB strain. The ΔperR ΔsrrAB strain displayed increased resistance towards H2O2 relative to the WT; however, this resistance was lower than that of the ΔperR mutant. These data suggested that PerR and SrrAB influence the expression of peroxide resistance factors independent of one another. Consistent with this premise, Kat activity was lower in the ΔperR ΔsrrAB strain than in the ΔperR strain (S3 Fig). Moreover, the transcriptional activity of dps was lower in the ΔperR ΔsrrAB strain than the ΔperR strain (Fig 2D).

From the data in Fig 2 and S3 Fig we concluded that a) the H2O2 sensitivity of the ΔsrrAB strain was the result of decreased expression of H2O2 resistance factors, and b) SrrAB influences H2O2 resistance factors independently of PerR.

SrrA binds to the promoter regions of dps and srrA

SrrA is an OmpR family response regulator that binds to the srrA promoter [31]. OmpR type regulators may bind inverted repeat sequences and RR binding regions can have an internal spacer of a varying length and sequence [58–62]. Visual inspection of the srrA promoter revealed the presence of an inverted repeat sequence separated by a four base-pair spacer region (AAATANTTAT). The potential binding site was also found in the promoter regions of icaA (SAUSA300_2600), tsst (SA1819), and agrB (P2 promoter, SAUSA300_1989) (S4 Fig); each of which is a direct binding target for SrrA~P [31, 35]. The inverted repeat was not found to occur in the promoter regions for four randomly selected genes in LAC (SAUSA300- 2112, 1112, 0124 and 2198). Allowing for a maximum of one mismatch, the inverted repeat was found to be present in the promoter region for dps (S4 Fig). A putative SrrA binding sequence was not observed in the promoter regions for kat or ahpC.

Electromobility gel shift assays (EMSA) were used to assess whether SrrA is capable of binding to the promoter region of dps. Binding to the srrA promoter was assessed as a positive control. The promoter of rpsC lacks the putative SrrA binding region, and was included as a negative control for non-specific DNA binding. SrrA bound to 150 base pair DNA fragments corresponding to the sequences located upstream of the annotated transcriptional start sites for srrA and dps in a concentration dependent manner (Fig 3A and 3B). SrrA did not bind to the rpsC promoter at the highest protein concentrations examined (Fig 3A and 3B). Consistent with the SrrA::DNA interactions being specific, the addition of excess unlabeled promoter
Fig 2. SrAB positively influences Dps expression and iron chelation or introduction of a ΔperR allele alleviates the deficient survival of a ΔsrrAB mutant upon H₂O₂ challenge. Panel A; The abundance of the dps transcript is lower in the ΔsrrAB strain. The abundances of the dps and spa transcripts were determined in the WT (JMB1100) and ΔsrrAB (JMB1467) strains from the cDNA libraries described in Fig 1E. The data were normalized to 16s rRNA transcript levels and are presented as fold-change relative to the WT. Panel B; Pre-incubation of the ΔsrrAB and Δdps strains with a metal chelator alleviates their sensitivity towards H₂O₂ challenge. The WT, ΔsrrAB, and Δdps (JMB2092) strains were cultured aerobically and subsequently incubated in buffer with vehicle control or 1 mM 2,2-dipyridyl. Cells were then challenged with H₂O₂ and survival was determining colony-forming units (CFU). Panel C; Introduction of a ΔperR allele mitigates the H₂O₂ sensitivity phenotype of the ΔsrrAB strain. The WT, ΔsrrAB, ΔperR (JMB2151), and ΔperR ΔsrrAB (JMB2615) strains were diluted into TSB and challenged with 1.57 mM H₂O₂ at the point of inoculation (indicated by arrow). Panel D; SrAB
and PerR influence dps transcriptional activity independent of one another. The transcriptional activity of dps was assessed in the WT, ΔsrrAB, ΔperR and ΔperR ΔsrrAB strains containing gfp under the transcriptional control of the dps promoter (pCM11_dps). Representative data are displayed in Panels B and C and experiments were performed on least three independent occasions. Data in Panels A and D represent the average of biological triplicates with standard deviations shown. Two-tail student t-tests were performed on the data in Panel A and * represents statistically significant data with P< 0.05.

DNA decreased the amount of biotin labeled DNA bound by SrrA. The data presented in Fig 2 and Fig 3 suggested that SrrAB directly modulates the transcription of dps.

SrrAB influences H2O2 resistance independent of CidA and CidB in S. aureus LAC

While this manuscript was under preparation, a study was published investigating the influence of SrrAB upon programmed cell death mediated by cidABC [63]. The study used a special medium (TSB medium amended with 35 mM glucose) that induces cell death phenotypes [63]. The authors found that SrrAB represses the transcription of cidABC when cultured in the cell death media. They also found that a ΔsrrAB mutant was sensitive to H2O2 intoxication and this phenotype was mitigated by the introduction of a null cidA or a null cidB allele. These data led to the hypothesis that the H2O2 sensitivity of the ΔsrrAB strain was the result of increased CidA and CidB activity. However, we found that the introduction of a cidA::Tn or a cidB::Tn

![Image](https://example.com/image1)

Fig 3. SrrA binds to DNA fragments immediately preceding the annotated transcriptional start sites for srrA and dps. Panels A and B; Electromobility gel shift assays (EMSA) demonstrating binding of SrrA to DNAs that correspond to the 150 base pair segments immediately preceding the annotated transcriptional start sites for the srrA (A) and dps (B). EMSAs were performed with SrrA (15–146 ng) and 8 fM of biotin labeled DNA. For each gel, the samples in lane 1 contain 146 ng SrrA with labeled sample DNA and a 125-fold excess of non-labeled (cold) competitor DNA. The samples in lanes 2–5 contain labeled DNA with varying amounts of SrrA protein (15–146 ng). The samples in lane 6 contain labeled DNA, but no SrrA. The samples in lanes 7–9 show that the interaction of SrrA with DNA is specific. The samples in lane 7 contain 146 ng SrrA with rpsC promoter DNA and a 125-fold excess of non-labeled (cold) competitor DNA. The samples in lanes 8 contain rpsC promoter DNA with 146 ng of SrrA. The samples in lane 9 contain rpsC promoter DNA, but no SrrA.

![Image](https://example.com/image2)
into the LAC ΔsrrAB strain did not alleviate H$_2$O$_2$ sensitivity when cultured in TSB medium (S5 Fig). Strains lacking Kat or PerR displayed increased sensitivity and resistance phenotypes towards H$_2$O$_2$, as expected (S5 Fig). We concluded that the H$_2$O$_2$ sensitivity of the *S. aureus* LAC ΔsrrAB strain cultured under our growth conditions and in TSB medium is independent of CidA or CidB.

SrrAB negatively influences *ahpC* and *kat* transcription during early exponential growth in TSB and during fermentative growth

While we were revising this manuscript, Oogai *et al.* published a report finding that during aerobic exponential-growth in TSB medium a *S. aureus* ΔsrrAB mutant in the MW2 background had increased transcription of *ahpC* and *kat* (but not *dps*), as well as increased resistance towards H$_2$O$_2$ [64]. In contrast to Oogai *et al.*, the H$_2$O$_2$ sensitivity phenotypes reported herein and by Windham *et al.* were conducted upon cells cultured to post-exponential growth. We tested the hypothesis that SrrAB negatively modulates H$_2$O$_2$ resistance during exponential growth. Consistent with our reasoning, a LAC ΔsrrAB strain, cultured to exponential phase, followed by challenge with H$_2$O$_2$, displayed increased resistance and this phenotype could be genetically complemented (Fig 4A).

When *S. aureus* is sub-cultured into TSB medium the TCA cycle is largely repressed during the initial period of growth (exponential growth) and fermentative by-products accumulate in the extracellular milieu [65, 66]. Subsequently, TCA cycle function increases as the fermentative by-products produced during initial growth are utilized to support respiratory growth (post-exponential growth) [42, 65, 66]. Decreased TCA cycle activity during exponential growth would result in reduced flux through respiratory pathways. We examined whether SrrAB modulates H$_2$O$_2$ resistance negatively during fermentative growth. Strains were cultured anaerobically in the absence of a terminal electron acceptor (fermentative growth), followed by challenge with H$_2$O$_2$. Subsequent growth was monitored aerobically. The ΔsrrAB strain displayed greater resistance to H$_2$O$_2$ challenge and this phenotype could be genetically complemented (Fig 4B). The growth of the non-challenged ΔsrrAB and WT strains was indistinguishable (data not shown).

Transcriptional analyses supported the H$_2$O$_2$ resistance phenotypes observed during fermentative and aerobic exponential growth. The transcript levels for *kat* and *ahpC* were increased ~5- and ~3-fold in the ΔsrrAB strain during fermentative growth (P<0.05), while those for *dps* were not significantly altered (Fig 4C). Moreover, Kat activity in cell-free extracts of the fermentatively cultured ΔsrrAB strain was ~200% higher (Fig 4D). Likewise, transcript levels for *ahpC* were increased ~3 fold in the ΔsrrAB strain during aerobic exponential growth, while those for *dps* were not significantly altered (Fig 4E). These findings led us to conclude that SrrAB negatively influences expression of AhpC and Kat during growth conditions when respiratory activity is low or absent.

A ΔsrrAB mutant incurs increased damage to aconitase during post-expontential aerobic growth

Aconitase (AcnA) requires a solvent exposed [Fe$_4$S$_4$] cluster for function [48]. Enzymes with solvent exposed FeS cofactors are poisoned by H$_2$O$_2$ [2–5]. We tested the hypothesis that SrrAB manages the expression of genes required for H$_2$O$_2$ resistance during respiratory growth, and thereby imparts protection to AcnA from ROS-induced damage.

We constructed *acnA::Tn* and *acnA::ΔsrrAB* strains and returned *acnA* into the strains under the transcriptional control of a xylose inducible promoter (p*acnA*). Introduction of p*acnA* allows for the control of *acnA* transcription, thereby negating potential changes in *acnA*
transcription between strains. Nfu is necessary for the maturation of holo-AcnA; therefore, an acnA::TnΔnfu strain carrying pacnA was included as a positive control [47]. AcnA activity was assessed during post-exponential growth and found to be ~25% lower in the Δnfu and ΔsrrAB strains (Fig 5A).
Altered transcription of genes required for the synthesis of FeS clusters could result in decreased AcnA activity in the ΔsrrAB strain. The sufCDSUB gene products are responsible for the synthesis of FeS clusters and decreased transcription of sufCDSUB results in decreased FeS enzyme activity (Roberts C., et al., in revision). Transcription of sufC was not altered in the ΔsrrAB strain (Fig 3B). Transcription of sufC increases upon H₂O₂ challenge [47]. However, transcription of sufC was induced to a similar extent (~2 fold) in both the WT and ΔsrrAB strains upon H₂O₂ challenge (Fig 5B) [47]. Likewise, suf transcriptional activity was similar in the WT and ΔsrrAB strains over time (S6 Fig).

Two experiments were conducted to determine whether increased damage by dioxygen underlies the low AcnA activity observed in the ΔsrrAB mutant. First, AcnA activity was assessed in the acnA::Tn and acnA::Tn ΔsrrAB strains carrying pacnA and cultured in the presence and absence of dioxygen. Culturing the ΔsrrAB mutant anaerobically restored AcnA activity (Fig 5C). Second, the same strains were cultured anaerobically, treated with a protein synthesis inhibitor (rifampicin), and one-half of the cultures were exposed to dioxygen [8], while the remainder were incubated anaerobically. Exposure of cells to dioxygen resulted in a decrease in AcnA activity, but importantly, the activity was indistinguishable between the two strains (Fig 5D). From Fig 5 we concluded that the ΔsrrAB mutant had decreased AcnA activity when cultured aerobically and this phenotype was a) not an outcome of decreased transcription of sufC, or b) increased damage by dioxygen.

SrrAB increases the ability of S. aureus to resist H₂O₂ intoxication during periods of high respiratory flux protecting AcnA

Respiratory flux is subject to the concentration of the terminal electron acceptor in the culture medium and SrrAB is responsive to changes in respiratory status [36, 66, 67]. SrrAB did not positively influence H₂O₂ resistance factors during fermentative growth and AcnA did not incur damage in a ΔsrrAB mutant following fermentative growth. Thus, we hypothesized that the influence of SrrAB upon the expression of H₂O₂ resistance factors, and the subsequent protection imparted to AcnA, would be altered with respect to dioxygen concentrations in the medium and the ensuing changes in respiratory flux.

Dioxygen diffusion into growth media is a function of the aeration experienced by cultures. Aeration of batch cultures can be modified by altering the culture vessel headspace to the medium volume ratio (HVR). Decreased HVR leads to decreased aeration and less dissolved dioxygen in the medium [66–69]. Culturing S. aureus under low aeration (HVR 1.25) results in a metabolic block at the TCA cycle [66], which would result in reduced flux through respiratory pathways.

We examined whether SrrAB alters the expression of H₂O₂ resistance factors in response to culture aeration. Kat activity was reduced by ~20% in the ΔsrrAB strain when cultured under high aeration (HVR 10), but was statistically indistinguishable from that of the WT when cultured under low aeration (HVR 2.5) (Fig 6A). Increased expression of H₂O₂ resistance factors would be predicted to result in greater resistance towards H₂O₂ in cells cultured with high aeration. Consistent with this idea, WT cells cultured under high aeration (HVR 10) were more resistant to H₂O₂ challenge than cells cultured under low aeration (HVR 2.5). In contrast, the sensitivity of the ΔsrrAB strain towards H₂O₂ was not altered as a variable of HV ratio (Fig 6B).

We reasoned that a strain deficient in scavenging H₂O₂ would have increased AcnA damage resulting in decreased AcnA activity when cultured under high aeration (HVR 10). The acnA::Tn Δkat strain carrying pacnA displayed lower AcnA activity than the acnA::Tn strain carrying pacnA when cultured under high aeration (HVR 10), but not when cultured under...
SrAB Facilitates the Prevention of Hydrogen Peroxide Intoxication while Respiring upon Dioxygen

AcnA activity inducible promoter

![Bar chart showing induction of AcnA activity](image)

sufC mRNA transcript abundance

![Bar chart showing sufc mRNA transcript abundance](image)

AcnA activity post reaeration

![Bar chart showing AcnA activity after reaeration](image)
Fig 5. A ΔsrrAB strain incurs increased damage toaconitase when cultured aerobically. Panel A: The activity of aconitase (AcnA) is decreased in a ΔsrrAB mutant and this phenotype is independent of acnA transcription levels. AcnA activity was assessed in the acnA::Tn (JMB 3537; parent), acnA::Tn Δlux (JMB 3538), and acnA::Tn ΔsrrAB (JMB 4367) strains carrying pacna, which contains acnA under the transcriptional control of a xylose inducible promoter. Strains were cultured aerobically in the presence (induced) or absence (not induced) of 1% xylose. Panel B: The suC mRNA transcript accumulates to similar levels in the WT and ΔsrrAB strains. The WT (JMB1100) and ΔsrrAB (JMB1167) strains were cultured aerobically and challenged with either 10 μM H2O2 or vehicle control and the abundance of the suC mRNA transcript was quantified. Data were normalized to the 16s rRNA transcript levels and are presented as fold-change relative to the WT strain. Panel C: The activity of AcnA is similar in the WT and ΔsrrAB strains cultured anaerobically. AcnA activity was assessed in the acnA::Tn (JMB 3537; parent) and acnA::Tn ΔsrrAB (JMB 4367) strains carrying pacna that were cultured either aerobically or anaerobically. Panel D: A ΔsrrAB mutant does not display increased dioxygen damage to AcnA. The acnA::Tn (JMB 3537; parent) and acnA::Tn ΔsrrAB (JMB 4367) strains carrying pacna were cultured anaerobically for 4.5 hours, treated with a protein synthesis inhibitor (100 μg mL−1 rifampicin) and either exposed to dioxygen or incubated anaerobically for 35 minutes subsequent to determining the activity of AcnA. Data in Panels A-D represent the average of biological triplicates. Where indicated, two-tailed student t-tests were performed on data and * denotes p<0.05 and NS denotes not significant.
doi:10.1371/journal.pone.0170283.g005

low aeration (HVR 2.5) (Fig 6C). AcnA activity was also assessed in the acnA::Tn and acnA::Tn ΔsrrAB strains carrying pacna following culture under varying HVRs. AcnA activity in the ΔsrrAB acnA::Tn strain with pacna was significantly lower than that of the acnA::Tn strain with pacna (~60%) when cultured under high aeration (HVR 20). However, as the HVR was decreased, the difference in AcnA activity between the two strains diminished. AcnA activity was fully restored in ΔsrrAB mutant after culture at a HVR of 2.5 (Fig 6D). Supplementation of the growth medium with excess iron (Fe) restores the activities of FeS cluster requiring dehydratase enzymes damaged by oxidation [70, 71]. The acnA::Tn, acnA::Tn ΔsrrAB, and acnA::Tn Δkat strains carrying pacna were cultured under high aeration (HVR 10) with and without Fe supplementation (500 μM). Supplementation of media with Fe recovered AcnA activity in the ΔsrrAB and Δkat strains (Fig 6E).

Succinate dehydrogenase (Sdh) also requires Fe-S clusters for function. However, the Fe-S clusters of Sdh are protected by the polypeptide providing increased stability [72, 73]. Consequently, exposure of up to 1mM H2O2 does not inactivate Sdh [72, 73]. Sdh activity was not decreased in the ΔsrrAB or Δkat strains cultured under high aeration (HVR 10) (Fig 6F). These findings confirmed that a) the ΔsrrAB and Δkat strains do not have a broad deficiency in the function of FeS proteins, and b) H2O2 accumulation in S. aureus predominantly damages solvent-exposed FeS clusters.

The data presented in Fig 6 demonstrated that S. aureus increased the ability to resist H2O2 when cultured under high aeration and these alterations arose due to regulatory changes mediated by SrrAB. Further, strains deficient in detoxifying endogenously produced H2O2 (ΔsrrAB and Δkat) displayed decreased AcnA activity when cultured under high aeration, but not low aeration.

SrrAB positively influences transcription of scdA, which encodes for a FeS cluster repair protein

The S. aureus di-iron RIC protein ScdA (YtfE in Escherichia coli) has a role in the repair of FeS proteins damaged by H2O2 [24, 25]. Previous studies on ScdA were conducted in the S. aureus strain RN4220, which lacks Sigma B and Agr function, which control expression of ROS resistance genes [74, 75]. We conducted experiments to determine whether a) ScdA is required for H2O2 resistance in S. aureus LAC, b) the H2O2 sensitivity of a ΔscdA strain is independent of altered expression of detoxification factors, and c) SrrAB modulates scdA transcription. S. aureus LAC ΔscdA and Δkat strains displayed increased sensitivity towards H2O2 (Fig 7A). However, the ΔscdA strain did not display decreased Kat (Fig 7B) or Sod activity (Fig 7C). The transcript level corresponding to scdA was decreased (~3 fold) in the ΔsrrAB strain during post-exponential growth (Fig 7D).
Fig 6. SrrAB upregulates H$_2$O$_2$ resistance during periods of high aeration and imparts protection to AcnA. Panel A; SrrAB positively influences catalase (Kat) expression in cells cultured under high aeration, but not under low aeration. Kat activity was assessed in cell-free lysates generated from the WT (JMB1100) and ΔsrrAB (JMB1467) strains cultured at a culture vessel headspace to liquid volume ratios (HVR) of 2.5 or 10. Panel B; SrrAB increases the ability of S. aureus to withstand H$_2$O$_2$ intoxication when cells are cultured under high aeration. The WT and ΔsrrAB strains were cultured at a HVR of 10 or 2.5, diluted into fresh TSB medium and challenged with 1.57 mM H$_2$O$_2$ at the point of inoculation. Panel C; AcnA activity is decreased in a strain lacking catalase when cultured under high aeration, but not under low aeration. AcnA activity was assessed in cell-free lysates harvested from the acnA::Tn (JMB3537; parent) and the acnA::Tn Δkat (JMB7107) strains carrying pacnA cultured at a HVR of 2.5 or 10. Panel D; AcnA activity is decreased in a ΔsrrAB mutant cultured under high aeration, but not when cultured under low aeration. AcnA activity was assessed in cell-free lysates from the acnA::Tn (JMB3537; parent) and acnA::Tn ΔsrrAB (JMB4367) strains carrying pacnA cultured at various HVRs. Panel E; The decreased AcnA activity under high aeration in strains defective in H$_2$O$_2$ resistance is restored by supplementation of growth medium with Fe. AcnA activity was assessed in cell-free lysates harvested from the acnA::Tn (JMB3537; parent), acnA::Tn ΔsrrAB (JMB4367), and acnA::Tn Δkat (JMB7107) strains carrying pacnA. Cells were cultured at HVR of 10 and in the presence or absence of 500 μM Fe. Panel F; Succinate dehydrogenase (Sdh) activity is not decreased in strains deficient in H$_2$O$_2$ resistance. Sdh activity was assessed in cell-free lysates from the WT, ΔsrrAB, and Δkat (JMB2078) strains cultured at a HVR of 10. Data shown in Panels A, C and D-F represent the average of biological triplicates with standard deviations shown. Representative growth profiles are presented in Panel B and experiments were performed on at least three independent occasions. Where indicated, two-tail student t-tests were performed on data and * denotes p<0.05 and NS denotes not significant.

doi:10.1371/journal.pone.0170283.g006
Fig 7. SrrAB positively influences the transcription of *scdA*. Panel A; *S. aureus* USA300_LAC ΔscdA mutant is sensitive to H$_2$O$_2$ intoxication. The WT (JMB1100), ΔscdA (JMB1254), and Δkat (JMB2078) strains were cultured aerobically, diluted into fresh medium, and challenged with 1.57 mM H$_2$O$_2$ at the point of inoculation. Panel B; The ΔscdA strain is not defective in catalase (Kat) activity. Kat activity was assessed in cell-free lysates from the WT, ΔscdA, Δ*perR* (JMB2151), and Δkat strains cultured at a HVR of 10. Panel C; The ΔscdA strain does not have decreased superoxide dismutase (Sod) activity. Sod activity was assessed in cell-free lysates from the WT, ΔscdA, and Δ*sodA::Tn* (JMB6326) strains cultured at a HVR of 10. Panel D; The abundance of the *scdA* mRNA transcript is lower in the ΔsrrAB strain during post-exponential growth. The mRNA abundance corresponding to *scdA* was determined using the same cDNA libraries as described in Fig 2A. The data were normalized to 16s rRNA transcript levels and are presented as fold-change relative to the WT strain. Representative growth profiles are presented in Panel A and experiments were performed on least three independent occasions. The data in Panels B-D represent the average of biological triplicates with standard deviations shown.

doi:10.1371/journal.pone.0170283.g007
The positive influence of SrrAB upon H$_2$O$_2$ metabolism is conserved in diverse *S. aureus* isolates

Regulatory networks that are integral to *S. aureus* physiology differ between isolates [76, 77]. We examined the influence of SrrAB upon ROS metabolism by assessing catalase activity in the SH1000, Newman, and RN4220 genetic backgrounds and their isogenic ΔsrrAB mutants. Strains lacking SrrAB displayed lower catalase activity relative to their parent strains (~10–60% lower catalase activity). When compared to a LAC background, the catalase activity was substantially lower in the Newman and SH1000 ΔsrrAB mutants (~30% and ~60% lower, respectively) (Fig 8). The ΔsrrAB mutants were also more sensitive than their isogenic parent strains to H$_2$O$_2$ challenge (data not shown).

Fig 8. The influence of SrrAB upon aerobic respiration and H$_2$O$_2$ metabolism is conserved in diverse *S. aureus* isolates. Catalase (Kat) activity is decreased in diverse *S. aureus* isolates lacking SrrAB. The USA 300 LAC (JMB1100), USA300 LAC ΔsrrAB (JMB2047), Newman (JMB1422), Newman ΔsrrAB (JMB4751), SH1000 (JMB1323), SH1000 ΔsrrAB (JMB4556), RN4220 (JMB1103), RN4220 ΔsrrAB (JMB2030) strains were cultured aerobically to post-exponential growth phase and Kat activities were determined in the cell-free lysates. The data represent the average of biological triplicates with standard deviations shown.

doi:10.1371/journal.pone.0170283.g008
Discussion

The goal of this study was to further our understanding of the role of SrrAB in \(\text{H}_2\text{O}_2 \) resistance. During post-exponential growth a \(\Delta \text{srrAB} \) strain was sensitive to \(\text{H}_2\text{O}_2 \) challenge. In \(S. \text{ aureus} \), AhpC and Kat are required for scavenging \(\text{H}_2\text{O}_2 \) [16]. The iron-sequestering and DNA-binding protein Dps is utilized to suppress Fenton chemistry [21–23]. ScdA (YtfE) also provides resistance to \(\text{H}_2\text{O}_2 \) by aiding in the repair of \(\text{H}_2\text{O}_2 \) damaged FeS proteins [24, 25]. The \(\Delta \text{srrAB} \) strain has decreased transcription of \(\text{ahpC}, \text{kat}, \text{dps} \) and \(\text{scdA} \); therefore, the \(\text{H}_2\text{O}_2 \) sensitivity phenotype of the \(\Delta \text{srrAB} \) strain is likely to arise, in part, as a result of the combined effect of decreased expression of these genes. In support of this idea we found that a) increasing the expression of \(\text{H}_2\text{O}_2 \) resistance factors by the introduction of a null \(\text{perR} \) allele into the \(\Delta \text{srrAB} \) strain increased \(\text{H}_2\text{O}_2 \) tolerance, and b) pre-incubation of \(\Delta \text{srrAB} \) strain with a cell permeable iron chelator prior to \(\text{H}_2\text{O}_2 \) challenge, alleviated the \(\text{H}_2\text{O}_2 \) sensitivity phenotype. Further, purified SrrA was capable of binding to the promoter region of \(\text{dps} \) in EMSA assays, suggesting that SrrAB directly modulates the transcription of at least one \(\text{H}_2\text{O}_2 \) resistance factor.

While our manuscript was under revision, Oogai et al. published a study that both confirmed our findings, and yet, seemingly contradicted them [64]. Oogai et al. found that SrrAB negatively influences AhpC and Kat expression in the \(S. \text{ aureus} \) isolate MW2 [64]. We further investigated this phenomenon in order to reconcile our findings with those of Oogai et al. We found that the negative influence of SrrAB upon \(\text{H}_2\text{O}_2 \) detoxification occurs during periods of decreased TCA cycle activity (aerobic exponential growth in TSB), which would ultimately lead to decreased flux through respiratory pathways or during fermentative growth. Moreover, SrrAB increased the ability of cells to withstand \(\text{H}_2\text{O}_2 \) stress when respiratory activity was high. The results presented herein confirm the findings of Oogai et al., as well as significantly expand upon them. The finding that SrrAB altered the \(\text{H}_2\text{O}_2 \) resistance of \(S. \text{ aureus} \) in response to respiration are in agreement with the prevailing hypothesis that alterations in the cellular respiratory status serve as a stimulus for SrrAB ([36] and Mashruwala et al. in review). Our findings extend the findings of others in emphasizing the importance of careful reporting of the culture media, growth parameters, and growth phases in the study of bacterial physiology [66, 67].

It is currently unclear how SrrAB negatively influences \(\text{ahpC}, \text{kat} \) and \(\text{scdA} \) transcription. We did not identify putative SrrA binding sites in the promoter regions for \(\text{ahpC}, \text{kat}, \) or \(\text{scdA} \) suggesting SrrAB indirectly modulates their expression. Oogai et al. reached a similar conclusion for AhpC and Kat [64]. SrrAB, as well as its ortholog ResDE in \(B. \text{subtilis} \), modulate the expression of the small non-coding regulatory RNA called RsaE/RoxS [78]. \(B. \text{subtilis} \) strains lacking RsaE/RoxS display altered expression of peroxide metabolism genes [78]. Thus, one explanation would be that SrrAB influences the expression of \(\text{kat}, \text{ahpC} \) and \(\text{ytfE} \) via RsaE/RoxS. We are currently testing this hypothesis. A strain lacking SrrAB also has altered respiration, redirected carbon flux, and by inference an altered redox status [36, 37]. Thus, an alternate explanation is that the physiological changes that are the result of the absence of SrrAB directly affect the expression of AhpC, Kat, and YtfE.

Why would SrrAB regulate \(\text{H}_2\text{O}_2 \) resistance factors in \(S. \text{ aureus} \)? SrrAB influences the transcription of multiple genes necessary for aerobic respiration [34] in response to respiratory flux [36]. \(\text{H}_2\text{O}_2 \) is a by-product of spontaneous interactions between dioxygen and components of respiratory pathways [2–5]. Therefore, \(\text{H}_2\text{O}_2 \) arises spontaneously during aerobic growth [2, 3]. Accumulation of as little as two \(\mu \text{M} \) \(\text{H}_2\text{O}_2 \) has been proposed to be sufficient to inhibit the growth of \(E. \text{coli} \) [79]. \(S. \text{ aureus} \) cells lacking the ability to synthesize both Ahp and Kat accumulate \(\sim 25 \mu \text{M} \) \(\text{H}_2\text{O}_2 \). The accumulation of \(\text{H}_2\text{O}_2 \) is maximal during post-exponential growth, which coincides with maximal respiratory processes [16]. Consequently, during
Increased dioxygen concentrations
Increased respiratory flux

Dehydrogenase

QH2

Terminal oxidase/reductase

Stimulus

SrrB(HK)

Altered pool of SrrA~P

High/Low SrrA~P

Direct or indirect

Aerobic respiration

cydB

H2O2 resistance

ahp, kat, scdA/ytfE

H2O2 resistance

dps

Increased protection from H2O2 toxicity during aerobic growth
aerobic growth, when *S. aureus* cells are respiring, it is imperative for the cell to detoxify H$_2$O$_2$ and repair macromolecules damaged by H$_2$O$_2$. This led us to propose a working model displayed in Fig 9 wherein SrrAB manages the mutually inclusive expression of genes required for aerobic respiration, H$_2$O$_2$ detoxification, and the repair of damaged cellular assets (FeS clusters), thereby facilitating proficient growth.

Consistent with our model, SrrAB modulated the transcription of H$_2$O$_2$ detoxification factors (*kat* and *ahpC*). Protein-associated solvent accessible FeS clusters, such as the cofactor of AcnA, are among the primary cellular targets of H$_2$O$_2$ [7, 8, 80, 81]. A ΔsrrAB strain had decreased AcnA activity when cultured aerobically and AcnA was restored by either a) decreasing culture aeration, which results in less dissolved dioxygen and decreased cellular respiration [66, 67], b) anaerobic growth, or c) supplementing the growth medium with Fe, which aids in the repair of oxidatively damaged FeS clusters [70, 71]. Moreover, SrrAB positively influenced the transcription of *scdA*, which functions in the repair of ROS damaged FeS clusters [24, 25]. The oxidation of FeS clusters can result in increased cytosolic free Fe, which can catalyze Fenton chemistry. Data presented suggest that SrrAB directly influences the transcription of *dps* and Dps is utilized to bind and sequester cytosolic free Fe suppressing Fenton chemistry.

Similar to SrrAB, the ArcAB system in gram-negative bacteria is responsive to the respiratory status of the cell [36, 82]. ArcAB controls the transcription of genes required for TCA cycle activity and fermentative processes. ArcAB also influences the transcription of ROS resistance genes in *E. coli*, *Haemophilus influenzae*, and *Salmonella enterica* [83–85]. In a direct parallel to SrrAB, ArcAB also alters the transcription of *dps*

SrrAB coregulated the transcription of genes encoding for virulence factors along with genes encoding for aerobic respiration and H$_2$O$_2$ resistance factors. The significance underlying the regulatory tethering of these diverse processes is not clear. However, SrrAB is responsive to cellular respiratory status [36]. Cellular respiration is directly connected to cellular energy homeostasis. Therefore, one explanation would be that *S. aureus* reprograms its virulence repertoire in accordance with respiratory status and the energetic demands or energetic potential of the cell. However, this idea remains to be tested.

In summary, the results presented in this study show that SrrAB manages the mutually inclusive transcription of genes involved in aerobic respiration and H$_2$O$_2$ resistance. Our data suggest that SrrAB alters expression of H$_2$O$_2$ resistance factors in response to cellular respiratory status. This regulatory tuning imparts protection to AcnA from H$_2$O$_2$ damage and we propose that it is likely to also facilitate the adaptation of *S. aureus* to shifts in dioxygen concentrations and changes in respiratory flux.

Supporting Information

S1 Fig. A *srrAB* mutant strain displays increased killing by H$_2$O$_2$. Panel A: The lag-time necessary for *S. aureus* to initiate outgrowth is increased as a function of H$_2$O$_2$ concentration. The WT (JMB1100) strain was cultured aerobically and then diluted into fresh defined medium and challenged with varying concentrations of H$_2$O$_2$. Panel B: The lag-times necessary for the ΔsrrAB strain to initiate outgrowth post H$_2$O$_2$ challenge is greater than the lag-times required
for the WT strain. The WT (JMB1100) and ΔsrrAB (JMB1467) strains were diluted into fresh defined medium and challenged with various concentrations of H₂O₂. The difference in lag-phase (relative to the WT) was determined by measuring the time to grow to an optical density (OD) of 0.2 (A₆₀₀) for each strain and subtracting these values from the time taken for WT to grow to the same OD. Panel C: The WT (JMB1100) with pCM28 (empty vector; pEV) and the ΔsrrAB strain (JMB1467) with pEV or pCM28_srrAB (srrAB_p(srrAB)) were cultured in TSB, standardized and challenged with H₂O₂ for 2 hours. The H₂O₂ stress was terminated with catalase addition and the surviving colony-forming units (CFU) were determined. Representative data are shown in Panels A and B and experiments were repeated on three independent occasions. Data in Panel C represent average of biological triplicates with standard deviations presented for all data, but not visible in some cases. Note that the differences in H₂O₂ concentrations between data in Panel A and C is due to the fact that cells were adjusted to a higher optical density for the survival assay.

(TIF) S2 Fig. SrrAB is not required for the induction of H₂O₂ resistance genes upon H₂O₂ challenge. The accumulation of mRNA transcripts corresponding to H₂O₂ resistance genes is similar in the WT and ΔsrrAB strains upon hydrogen peroxide challenge. The WT (JMB1100) and ΔsrrAB (JMB1467) strains were cultured to an optical density (OD) of 6.5 (A₆₀₀) at a HVR of 6 and challenged with 10 mM H₂O₂ or vehicle control. The mRNA transcript abundances corresponding to kat and ahpC were assessed post H₂O₂ treatment. The data were normalized to 16s rRNA transcript and are presented as a ratio of the transcript abundance upon challenge with ROS to the transcript abundance of the non-treated control for each strain. Data represent the average of biological triplicates with standard deviations shown. Two-tail student t-tests were performed on all samples P > 0.05 and is denoted as non-significant (NS).

(TIF) S3 Fig. SrrAB and PerR influence Kat activity independent of each another. Kat activity was assessed in cell-free lysates from the WT (JMB1100), ΔsrrAB (JMB1467), ΔperR (JMB2151), and ΔperR ΔsrrAB (JMB2615) strains.

(TIF) S4 Fig. Putative binding site that is conserved in promoter regions bound by SrrA. Depiction of the conserved inverted repeat sequence (bold and underlined) found in promoter regions bound by SrrA. The inverted repeat sequence was found to be separated by a variable spacer region of between 3–6 base-pairs. The sequence within the proposed dps promoter region had one mismatch (blue font).

(TIF) S5 Fig. Introduction of a cidA::Tn or cidB::Tn mutation into a ΔsrrAB strain does not provide it increased protection against H₂O₂ intoxication in USA300_LAC. The WT (JMB1100), ΔsrrAB (JMB1467), ΔsrrAB cidB::Tn (JMB6024), ΔsrrAB cidA::Tn (JMB6070), ΔperR (JMB2151), and Δkat (JMB2078) strains were cultured aerobically, diluted into fresh TSB medium, and challenged with H₂O₂ at the point of inoculation. Representative growth profiles are presented and experiments were performed on least three independent occasions.

(TIF) S6 Fig. sufC transcriptional activity is the same in the WT and srrAB strains during aerobic growth. The transcriptional activity of the sufC gene was assessed in the WT (JMB1100) and ΔsrrAB (JMB1467) strains containing gfp under the transcriptional control of the sufC promoter (pCM11_sufC). Data represent the average of biological triplicates with standard
S1 Table. Oligonucleotides used in this study (Locus numbers of genes indicated in brackets or in primer names).

Acknowledgments

The Boyd lab is supported by Rutgers University, the Charles and Johanna Busch foundation and USDA MRF project NE−1028. A.A.M. is supported by the Douglas Eveleigh fellowship from the Microbial Biology Graduate Program and an Excellence Fellowship from Rutgers University. The authors would like to thank Dr. Ann M. Stock for helpful discussions and Christina Roberts for help preparing the manuscript. We also thank Dr. William Belden for use of his real-time thermocycler.

Author Contributions

Conceptualization: AAM JMB.
Data curation: AAM.
Formal analysis: AAM JMB.
Funding acquisition: JMB.
Investigation: AAM JMB.
Methodology: AAM JMB.
Project administration: AAM JMB.
Resources: JMB.
Software: AAM JMB.
Supervision: JMB.
Validation: AAM JMB.
Visualization: AAM JMB.
Writing – original draft: AAM JMB.
Writing – review & editing: AAM JMB.

References

1. Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998; 339(8):520–32. Epub 1998/08/26. doi: 10.1056/NEJM199808203390806 PMID: 9709046
2. Imlay JA, Fridovich I. Superoxide production by respiring membranes of Escherichia coli. Free Radic Res Commun. 1991; 12–13 Pt 1:59–66. Epub 1991/01/01.
3. Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J. 1973; 134(3):707–16. Epub 1973/07/01. PubMed Central PMCID: PMC1177867. PMID: 4749271
4. Messner KR, Imlay JA. Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. J Biol Chem. 2002; 277(45):42563–71. Epub 2002/08/30. doi: 10.1074/jbc.M204958200 PMID: 12200425
5. Messner KR, Imlay JA. The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfate reductase complex of *Escherichia coli*. J Biol Chem. 1999; 274(15):10119–28. Epub 1999/04/03. PMID: 10187794

6. Imlay JA. How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Advances in Microbial Physiology. 2002; 46:111–53. PMID: 12073652

7. Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nature Reviews Microbiology. 2013; 11(7):443–54. Epub 2013/05/29. PubMed Central PMCID: PMC4018742. doi: 10.1038/nrmicro3032 PMID: 23712352

8. Djamani O, Outten FW, Imlay JA. Repair of oxidized iron-sulfur clusters in *Escherichia coli*. J Biol Chem. 2004; 279(43):44590–9. Epub 2004/08/17. doi: 10.1074/jbc.M406487200 PMID: 15308657

9. Kennedy MC, Kent TA, Emptage M, Merkle H, Beinert H, Munck E. Evidence for the formation of a linear [3Fe-4S] cluster in partially unfolded aconitate. J Biol Chem. 1984; 259(23):14463–71. Epub 1984/12/10. PMID: 6094558

10. Imlay JA. Iron-sulfur clusters and the problem with oxygen. Mol Microbiol. 2006; 59(4):1073–82. Epub 2006/01/25. PMID: 16430685

11. Imlay JA. Pathways of oxidative damage. Annu Rev Microbiol. 2003; 57:395–418. Epub 2003/10/07. doi: 10.1146/annurev.micro.57.030502.090938 PMID: 14527285

12. Song E, Jaishankar GB, Saleh H, Jithpratuck W, Sahni R, Krishnaswamy G. Chronic granulomatous disease: a review of the infectious and inflammatory complications. Clin Mol Allergy. 2011; 9(1):10. Epub 2011/06/01. 1476-7961-9-10 [pii] PubMed Central PMCID: PMC3128843. doi: 10.1186/1476-7961-9-10 PMID: 21624140

13. Clements MO, Watson SP, Foster SJ. Characterization of the major superoxide dismutase of *Staphylococcus aureus* and its role in starvation survival, stress resistance, and pathogenicity. J Bacteriol. 1999; 181(13):3898–903. Epub 1999/06/29. PubMed Central PMCID: PMC938777. PMID: 10383955

14. Armstrong-Buisseret L, Cole MB, Stewart GS. A homologue to the *Escherichia coli* alkyl hydroperoxide reductase AhpC is induced by osmotic upshock in *Staphylococcus aureus*. Microbiology. 1995; 141(Pt 7):1655–61. Epub 1995/07/01.

15. Clements MO, Foster SJ. Stress resistance in *Staphylococcus aureus*. Trends Microbiol. 1999; 7(11):458–62. Epub 1999/11/05. S0966-842X(99)01070-8 [pii] PMID: 10542426

16. Cosgrove K, Coutts G, Jonsson IM, Tarkowski A, Kokai-Kun JF, Mond JJ, et al. Catalase (KatA) and di-iron YtfE protein is necessary for survival, persistence, and nasal colonization in *Staphylococcus aureus*. J Bacteriol. 2007; 189(3):1025–35. Epub 2006/11/23. JB.01524-06 [pii] PubMed Central PMCID: PMC1797328. doi: 10.1128/JB.01524-06 PMID: 17114262

17. Imlay JA. Cellular defenses against superoxide and hydrogen peroxide. Annual Review of Biochemistry. 2008; 77:755–76. Epub 2008/01/05. PubMed Central PMCID: PMC3057177. doi: 10.1146/annurev.biochem.77.061606.161055 PMID: 18173371

18. Gaupp R, Ledala N, Somerville GA. Staphylococcal response to oxidative stress. Front Cell Infect Microbiol. 2012; 2:33. Epub 2012/08/25. PubMed Central PMCID: PMC3417528. doi: 10.3389/fcimb.2012.00033 PMID: 22919625

19. Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM, Bastian JF, et al. *Staphylococcus aureus* golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med. 2005; 202(2):209–15. Epub 2005/07/13. jem.20050846 [pii] PubMed Central PMCID: PMC2213009. doi: 10.1083/jem.20050846 PMID: 16009720

20. Imlay JA, Chin SM, Linn S. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science. 1988; 240(4852):640–2. Epub 1988/04/29. PMID: 2834821

21. Grant RA, Filman DJ, Finkel SE, Kolter R, Hogle JM. The crystal structure of Dps, a ferritin homolog that binds and protects DNA. Nat Struct Biol. 1998; 5(4):294–303. Epub 1998/04/18. PMID: 9546221

22. Park S, You X, Imlay JA. Substantial DNA damage from submicromolar intracellular hydrogen peroxide detected in Hpx- mutants of *Escherichia coli*. Proc Natl Acad Sci U S A. 2005; 102(26):9317–22. Epub 2005/06/22. 0502051102 [pii] PubMed Central PMCID: PMC1166606. doi: 10.1073/pnas.0502051102 PMID: 15967999

23. Ilari A, Ceci P, Ferrari D, Rossi GL, Chiancone E. Iron incorporation into *Escherichia coli* Dps gives rise to a ferritin-like microcrystalline core. Journal of Biological Chemistry. 2002; 277(40):37619–23. doi: 10.1074/jbc.M206186200 PMID: 12163499

24. Justino MC, Almeida CC, Teixeira M, Saraiva LM. *Escherichia coli* di-iron YIE protein is necessary for the repair of stress-damaged iron-sulfur clusters. J Biol Chem. 2007; 282(14):10352–9. Epub 2007/02/10. M610656200 [pii] doi: 10.1074/jbc.M610656200 PMID: 17289666
25. Overton TW, Justino MC, Li Y, Baptista JM, Melo AM, Cole JA, et al. Widespread distribution in pathogenic bacteria of di-iron proteins that repair oxidative and nitrosative damage to iron-sulfur centers. J Bacteriol. 2008; 190(6):2004–13. Epub 2008/01/22. JB.01733-07 [pii]. PubMed Central PMCID: PMC2258886. doi: 10.1128/JB.01733-07 PMID: 18203837

26. Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. Annual Review of Biochemistry. 2000; 69:183–215. doi: 10.1146/annurev.biochem.69.1.183 PMID: 10966457

27. Gao R, Stock AM. Biological insights from structures of two-component proteins. Annu Rev Microbiol. 2009; 63:133–54. Epub 2009/07/07. PubMed Central PMCID: PMC3645274. doi: 10.1146/annurev.micro.091208.073214 PMID: 19575571

28. Deng DM, Liu MJ, ten Cate JM, Crielaard W. The VicRK system of Staphylococcus mutans responds to oxidative stress. J Dent Res. 2007; 86(7):606–10. Epub 2007/06/26. 86/7/606 [pii]. PMID: 17586705

29. Hwang S, Kim M, Ryu S, Jeon B. Regulation of oxidative stress response by CosR, an essential response regulator in Campylobacter jejuni. PLoS One. 2011; 6(7):e22300. Epub 2011/08/04. PubMed Central PMCID: PMC3139631. doi: 10.1371/journal.pone.0022300 PMID: 21811584

30. McCluskey J, Hinds J, Husain S, Witney A, Mitchell TJ. A two-component system that controls the expression of pneumococcal surface antigen A (PsaA) and regulates virulence and resistance to oxidative stress in Streptococcus pneumoniae. Mol Microbiol. 2004; 51(6):1661–75. Epub 2004/03/11. 3917 [pii]. PMID: 15009893

31. Pragman AA, Yanwood JM, Tripp TJ, Schlievert PM. Characterization of virulence factor regulation by SrrAB, a two-component system in Staphylococcus aureus. Journal of bacteriology. 2004; 186(8):2430–8. Epub 2004/04/03. PubMed Central PMCID: PMC412142. doi: 10.1128/JB.186.8.2430-2438.2004 PMID: 15060046

32. Pragman AA, Ji Y, Schlievert PM. Repression of Staphylococcus aureus SrrAB using inducible anti-sense srrA alters growth and virulence factor transcript levels. Biochemistry. 2007; 46(1):314–21. Epub 2007/01/03. doi: 10.1021/bi060326M PMID: 17198402

33. Yanwood JM, McCormick JK, Schlievert PM. Identification of a novel two-component regulatory system that acts in global regulation of virulence factors of Staphylococcus aureus. J Bacteriol. 2001; 183(4):1113–23. Epub 2001/02/07. PubMed Central PMCID: PMC94983. doi: 10.1128/JB.183.4.1113-1123.2001 PMID: 11157922

34. Wilde AD, Snyder DJ, Putnam NE, Valentino MD, Hamer ND, Lonergan ZR, et al. Bacterial Hypoxic Responses Revealed as Critical Determinants of the Host-Pathogen Outcome by TnSeq Analysis of Staphylococcus aureus Invasive Infection. PLoS Pathog. 2015; 11(12):e1005341. Epub 2015/12/20. PubMed Central PMCID: PMC4684308. doi: 10.1371/journal.ppat.1005341 PMID: 26694646

35. Ulrich M, Bastian M, Cramton SE, Ziegler K, Pragman AA, Braonzi A, et al. The staphylococcal respiratory response regulator SrrAB inducesica gene transcription and polysaccharide intercellular adherin expression, protecting Staphylococcus aureus from neutrophil killing under anaerobic growth conditions. Mol Microbiol. 2007; 65(5):1276–87. Epub 2007/08/19. doi: 10.1111/j.1365-2958.2007.05863.x PMID: 17697253

36. Kinkel TL, Roux CM, Dunman PM, Fang FC. The Staphylococcus aureus SrrAB two-component system promotes resistance to nitrosative stress and hypoxia. MBio. 2013; 4(6):e00696–13. Epub 2013/11/14. mBio.00696-13 [pii]. PubMed Central PMCID: PMC3892780. doi: 10.1128/mBio.00696-13 PMID: 24222487

37. Throup JP, Zappacosta F, Lunsford RD, Annan RS, Carr SA, Lonsdale JT, et al. The srhSR gene pair from Staphylococcus aureus: genomic and proteomic approaches to the identification and characterization of gene function. Biochemistry. 201; 40(34):10392–401. Epub 2001/08/22. PMID: 11513618

38. Richardson AR, Dunman PM, Fang FC. The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity. Mol Microbiol. 2006; 61(4):927–39. Epub 2006/07/25. MMi5290 [pii]. doi: 10.1111/j.1365-2958.2006.05290.x PMID: 16859493

39. Richardson AR, Libby SJ, Fang FC. A nitric oxide-inducible lactate dehydrogenase enables Staphylococcus aureus to resist innate immunity. Science. 2008; 319(5870):1672–6. Epub 2008/03/22. 319/5870/1672 [pii]. doi: 10.1126/science.1155207 PMID: 18356528

40. Boles BR, Thoendel M, Roth AJ, Horwill AR. Identification of genes involved in polysaccharide-independent Staphylococcus aureus biofilm formation. PLoS One. 2010; 5(4):e10146. Epub 2010/04/27. PubMed Central PMCID: PMC2854687. doi: 10.1371/journal.pone.0001014 PMID: 20418950

41. Choby JE, Mike LA, Mashruwala AA, Dutter BF, Dunman PM, Sulikowski GA, et al. A Small-Molecule Inhibitor of Iron-Sulfur Cluster Assembly Uncovers a Link between Virulence Regulation and Metabolism in Staphylococcus aureus. Cell Chem Biol. 23(11):1351–61. Epub 2016/10/25. S2451-9456(16)30347-6 [pii]. doi: 10.1016/j.chembiol.2016.09.012 PMID: 27773628

42. Mashruwala AA, Bhatt S, Poudel S, Boyd ES, Boyd JM. The DUF59 Containing Protein SufT Is Involved in the Maturation of Iron-Sulfur (FeS) Proteins during Conditions of High FeS Cofactor Demand in Staphylococcus aureus. Cell Chem Biol. 2016; 23(11):1351–61. Epub 2016/10/25. S2451-9456(16)30347-6 [pii]. doi: 10.1016/j.chembiol.2016.09.012 PMID: 27773628

PLOS ONE | DOI:10.1371/journal.pone.0170283 January 18, 2017 27 / 30
Staphylococcus aureus. PLoS genetics. 12(8):e1006233. Epub 2016/08/16. PubMed Central PMCID: PMC4982691. doi: 10.1371/journal.pgen.1006233 PMID: 27517714

43. Fuchs S, Pane-Farre J, Kohler C, Hecker M, Engelmann S. Anaerobic gene expression in Staphylococcus aureus. J Bacteriol. 2007; 189(11):4275–89. doi: 10.1128/JB.00081-07 PMID: 17384184

44. Novick RP. Genetic systems in staphylococci. Methods Enzymol. 1991; 204:578–636. Epub 1991/01/01. 0076-6879(91)04029-N [pii]. PMID: 1658572

45. Malone CL, Boles BR, Lauderdale KJ, Thoendel M, Kavanaugh JS, Horswill AR. Fluorescent reporters for Staphylococcus aureus. J Microbiol Methods. 2009; 77(3):251–60. Epub 2009/03/07. S0167-7012(09)00066-9 [pii]. PubMed Central PMCID: PMC2693297. doi: 10.1016/j.mimet.2009.02.011 PMID: 19264102

46. Mashruwala AA, Roberts CA, Bhatt S, May KL, Carroll RK, Shaw LN, et al. Staphylococcus aureus SufT: an essential iron-sulphur cluster assembly factor in cells experiencing a high-demand for lipoprotein. Molecular microbiology. Epub 2016/10/22.

47. Mashruwala AA, Pang YY, Rosario-Cruz Z, Chahal HK, Benson MA, Mike LA, et al. Nfu facilitates the maturation of iron-sulfur proteins and participates in virulence in Staphylococcus aureus. Mol Microbiol. 2015; 95(3):383–409. Epub 2014/11/13. doi: 10.1111/mmi.12860 PMID: 25388433

48. Kennedy MC, Empage MH, Dreyer JL, Beinert H. The role of iron in the activation-inactivation of aconitase. Journal of Biological Chemistry. 1983; 258(18):11098–105. PMID: 6309829

49. Beers RF Jr., Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952; 195(1):133–40. Epub 1952/03/01. PMID: 14938361

50. McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocyte hemocuprein. J Biol Chem. 1969; 244(22):6049–55. Epub 1969/11/25. PMID: 5389100

51. Joska TM, Mashruwala A, Boyd JM, Belden WJ. A universal cloning method based on yeast homologous recombination that is simple, efficient, and versatile. J Microbiol Methods. 2014; 100:46–51. Epub 2014/01/15. S0167-7012(13)00364-3 [pii]. doi: 10.1016/j.mimet.2013.11.013 PMID: 24418681

52. Olson BJ, Markwell J. Assays for determination of protein concentration. Curr Protoc Protein Sci. 2007; Chapter 3:Unit 3.4. Epub 2008/04/23.

53. Fuchs S, Pane-Farre J, Kohler C, Hecker M, Engelmann S. Anaerobic gene expression in Escherichia coli: resistance, DNA damage, and comparison with hydrogen peroxide stress. J Bacteriol. 1996; 178(21):6145–50. Epub 1996/11/01. PubMed Central PMCID: PMC178483. doi: 10.1128/JB.00190-07 PMID: 8892812

54. Maaalej S, Dammak I, Dukan S. The impairment of superoxide dismutase coordinates the derepression of the PerR regulon in the response of Staphylococcus aureus to HOCl stress. Microbiology-Sgm. 2006; 152:855–61.

55. Mahawar M, Tran V, Sharp JS, Maier RJ. Synergistic roles of Helicobacter pylori/methionine sulfoxide reductase and GroEL in repairing oxidant-damaged catalase. J Biol Chem. 2009; 284(21):19159–69. Epub 2011/04/05. M111.223677 [pii]. PubMed Central PMCID: PMC299729. doi: 10.1074/jbc.M111.223677 PMID: 21460217

56. Ballal A, Manna AC. Regulation of superoxide dismutase (sod) genes by SarA in Staphylococcus aureus. J Bacteriol. 2009; 191(10):3301–10. Epub 2009/03/17. JB.01496-08 [pii]. PubMed Central PMCID: PMC2867179. doi: 10.1128/JB.01496-08 PMID: 19286803

57. Horsburgh MJ, Clements MO, Crossley H, Ingham E, Foster SJ. PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus. Infect Immun. 2001; 69(6):3744–54. Epub 2001/05/12. PubMed Central PMCID: PMC98383. doi: 10.1128/IAI.69.6.3744-3754.2001 PMID: 11349039

58. Bhattacharya M, Das AK. Inverted repeats in the promoter as an autoregulatory sequence for TcrX in Mycobacterium tuberculosis. Biochemical and Biophysical Research Communications. 2011; 415(1):17–23. doi: 10.1016/j.bbrc.2011.09.143 PMID: 22001925

59. Westen M. Molecular characterization of the PrmA regulon. Journal of Biological Chemistry. 1999; 274(38):27185–90. PMID: 10480935

60. Glover RT, Krasikov J, Garforth SJ, Baughn AD, Jacobs WR. The two-component regulatory system senX3-regX regulates phosphate-dependent gene expression in Mycobacterium smegmatis. Journal of bacteriology. 2007; 189(15):5495–503. doi: 10.1128/JB.00190-07 PMID: 17526710

61. Eraso JM, Kaplan S. Half-Site DNA Sequence and Spacing Length Contributions to PrmA Binding to PrmA Site 2 of RSP3361 in Rhodobacter sphaeroides 2.4.1. Journal of bacteriology. 2009; 191(13):4353–64. doi: 10.1128/JB.00244-09 PMID: 19411326

62. de Been M, Bart MJ, Abele T, Siezen RJ, Francke C. The identification of response regulator-specific binding sites reveals new roles of two-component systems in Bacillus cereus and closely related low-GC Gram-positives. Environmental Microbiology. 2008; 10(10):2796–809. doi: 10.1111/j.1462-2920.2008.01700.x PMID: 18662309
63. Windham IH, Chaudhari SS, Bose JL, Thomas VC, Bayles KW. SrrAB modulates Staphylococcus aureus cell death through regulation of cidABC transcription. J Bacteriol. 2016/01/27. J.B.00954-15 [pii].

64. Oogai Y, Kawada-Matsuo M, Komatsu-Zaw M. Staphylococcus aureus SrrAB Affects Susceptibility to Hydrogen Peroxide and Co-Existence with Streptococcus sanguinis. PLoS one. 11(7):e0159768. Epub 2016/07/22. PubMed Central PMCID: PMC4956085. doi: 10.1371/journal.pone.0159768 PMID: 27441694

65. Somerville GA, Said-Salim B, Wickman JM, Raffel SJ, Kreiswirth BN, Musser JM. Correlation of acetate catabolism and growth yield in Staphylococcus aureus: implications for host-pathogen interactions. Infect Immun. 2003; 71(8):4724–32. Epub 2003/07/23. PubMed Central PMCID: PMC166023. doi: 10.1128/IAI.71.8.4724-4732.2003 PMID: 12874354

66. Ledala N, Zhang B, Seravalli J, Powers R, Somerville GA. Influence of Iron and Aeration on Staphylococcus aureus Growth, Metabolism, and Transcription. J Bacteriol. 2014; 196(12):2178–89. Epub 2014/04/08. JB.01475-14 [pii] 10.1128/JB.01475-14. PubMed Central PMCID: PMC4054190. doi: 10.1128/JB.01475-14 PMID: 24706736

67. Somerville GA, Proctor RA. Cultivation conditions and the diffusion of oxygen into culture media: the rationale for the flask-to-medium ratio in microbiology. BMC Microbiol. 13:9. Epub 2013/01/18. 1471-2180-13-9 [pii]. PubMed Central PMCID: PMC3551634. doi: 10.1186/1471-2180-13-9 PMID: 23324109

68. McDaniell LE, Bailey EG, Zimmerman A. Effect of Oxygen-Supply Rates on Growth of Escherichia Coli. ii. Comparison of Results in Shake Flasks and 50-Liter Fermentor. Appl Microbiol. 1965; 13:115–9. Epub 1965/01/01. PubMed Central PMCID: PMC1058203. PMID: 14264837

69. Benov L, Fridovich I. Growth in iron-enriched medium partially compensates Escherichia coli for the lack of manganese and iron superoxide dismutase. J Biol Chem. 1998; 272(17):10313–6. Epub 1998/05/30. PMID: 9553085

70. Benov L, Fridovich I. Why superoxide imposes an aromatic amino acid auxotrophy on Escherichia coli. The transketolase connection. J Biol Chem. 1999; 274(7):4202–6. Epub 1999/02/06. PMID: 9933617

71. Jang S, Imlay JA. Hydrogen peroxide inactivates the Escherichia coli lac iron-sulphur assembly system, and OxyR induces the Sul system to compensate. Mol Microbiol. 2010; 78(6):1448–67. Epub 2010/12/13. PubMed Central PMCID: PMC3051686. doi: 10.1111/j.1365-2958.2010.07418.x PMID: 21143317

72. Yankovskaya V, Horsefield R, Tomroth S, Luna-Chavez C, Myoshi H, Leger C, et al. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science. 2003; 299(5607):700–4. Epub 2003/07/23. PubMed Central PMCID: PMC166023. doi: 10.1126/science.1079605 PMCID: 12560550

73. Nair D, Memmi G, Hernandez D, Bard J, Beaume M, Gill S, et al. Whole-genome sequencing of Staphylococcus aureus strain RN4220, a key laboratory strain used in virulence research, identifies mutations that affect not only virulence factors but also the fitness of the strain. J Bacteriol. 193(9):2332–5. Epub 2011/03/08. JB.00027-11 [pii]. PubMed Central PMCID: PMC3133102. doi: 10.1128/JB.00027-11 PMID: 21378186

74. Sun F, Liang H, Kong X, Xie S, Cho H, Deng X, et al. Quorum-sensing agr mediates bacteria oxidation response via an intramolecular disulfide redox switch in the response regulator AgrA. Proc Natl Acad Sci U S A. 2012; 109(23):9095–100. Epub 2012/05/16. 1200603109 [pii]. PubMed Central PMCID: PMC3384213. doi: 10.1073/pnas.1200603109 PMID: 22586129

75. Nair D, Memmi G, Hernandez D, Bard J, Beaume M, Gill S, et al. Whole-genome sequencing of Staphylococcus aureus strain RN4220, a key laboratory strain used in virulence research, identifies mutations that affect not only virulence factors but also the fitness of the strain. J Bacteriol. 193(9):2332–5. Epub 2011/03/08. JB.00027-11 [pii]. PubMed Central PMCID: PMC3133102. doi: 10.1128/JB.00027-11 PMID: 21378186

76. Memmi G, Nair DR, Cheung A. Role of ArlRS in autolysis in methicillin-sensitive and methicillin-resistant Staphylococcus aureus strains. J Bacteriol. 2012; 194(4):759–67. Epub 2011/12/06. JB.06261-11 [pii]. PubMed Central PMCID: PMC3272946. doi: 10.1128/JB.06261-11 PMID: 22139508

77. Herbert S, Ziebandt AK, Ohlsen K, Schafer T, Hecker M, Albrecht D, et al. Repair of global regulators in Staphylococcus aureus S325 and comparative analysis with other clinical isolates. Infect Immun. 2010; 78(6):2877–89. Epub 2010/03/10. IA.00098-10 [pii]. PubMed Central PMCID: PMC2876537. doi: 10.1128/IAI.00098-10 PMID: 20212089

78. Durand S, Braun F, Lioioi E, Romilly C, Helfer AC, Kuhn L, et al. A nitric oxide regulated small RNA controls expression of genes involved in redox homeostasis in Bacillus subtilis. PLoS Genet. 11(2): e1004957. Epub 2015/02/03. doi: 10.1371/journal.pgen.1004957 PMID: 25643072

79. Seaver LC, Imlay JA. Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J Bacteriol. 2001; 183(24):7182–9. Epub 2001/11/22. PubMed Central PMCID: PMC95567. doi: 10.1128/JB.183.24.7182-7189.2001 PMID: 11717277
80. Jang S, Imlay JA. Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes. J Biol Chem. 2007; 282(2):929–37. Epub 2006/11/15. M607646200 [pii]. doi: 10.1074/jbc.M607646200 PMID: 17102132

81. Flint DH, Tuminello JF, Emptage MH. The inactivation of Fe-S cluster containing hydro-lyses by superoxide. J Biol Chem. 1993; 268(30):22369–76. Epub 1993/10/25. PMID: 8226748

82. Georgellis D, Kwon O, Lin ECC. Quinones as the redox signal for the Arc two-component system of bacteria. Science. 2001; 292(5525):2314–6. doi: 10.1126/science.1059361 PMID: 11423658

83. Wong SM, Alugupalli KR, Ram S, Akerley BJ. The ArcA regulon and oxidative stress resistance in Haemophilus influenzae. Mol Microbiol. 2007; 64(5):1375–90. Epub 2007/06/05. MMI5747 [pii]. PubMed Central PMCID: PMC1974803. doi: 10.1111/j.1365-2958.2007.05747.x PMID: 17542927

84. Lu S, Killoran PB, Fang FC, Riley LW. The global regulator ArcA controls resistance to reactive nitrogen and oxygen intermediates in Salmonella enterica serovar Enteritidis. Infect Immun. 2002; 70(2):451–61. Epub 2002/01/18. PubMed Central PMCID: PMC127680. doi: 10.1128/IAI.70.2.451-461.2002 PMID: 11796570

85. Kreiswirth BN, Lofdahl S, Betley MJ, O’Reilly M, Schlievert PM, Bergdoll MS, et al. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature. 1983; 305(5936):709–12. Epub 1983/10/20. PMID: 6226876

86. Forsyth RA, Haselbeck RJ, Ohlsen KL, Yamamoto RT, Xu H, Trawick JD, et al. A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol Microbiol. 2002; 43(6):1387–400. Epub 2002/04/16. 2832 [pii]. PMID: 11952893

90. Mashruwala AA, Boyd JM. De Novo Assembly of Plasmids Using Yeast Recombinational Cloning. Methods Mol Biol. 1373:33–41. Epub 2015/07/22. doi: 10.1007/7651_2015_275 PMID: 26194707