CONTINUOUS RIESZ BASES IN HILBERT C^*-MODULES

HADI GHASEMI AND TAYEBE LAL SHATERI

ABSTRACT. The paper is devoted to continuous frames and Riesz bases in Hilbert C^*-modules. We define a continuous Riesz basis for Hilbert C^*-modules and give some results about them.

1. Introduction

Frame theory is nowadays a fundamental research area in mathematics, computer science and engineering with many interesting applications in a variety of different fields. Frames were first introduced by Duffin and Schaeffer [8] in the context of nonharmonic fourier series. Then Daubechieies, Grassman and Mayer [7] reintroduced and developed them. The concept of a generalization of frames to a family indexed by some locally compact space endowed with a Radon measure was proposed by G. Kaiser [13] and independently by Ali, Antoine and Gazeau [1]. These frames are known as continuous frames. For a discussion of continuous frames, we refer to Refs.[17, 16]. Arefijamaal and et al. [3] introduced continuous Riesz bases and give some equivalent conditions for a continuous frame to be a continuous Riesz basis.

One reason to study frames in Hilbert C^*-modules is that there are some differences between Hilbert spaces and Hilbert C^*-modules. For example, in general, every bounded operator on a Hilbert space has an unique adjoint, while this fact not hold for bounded operators on a Hilbert C^*-module. Thus it is more difficult to make a discussion of the theory of Hilbert C^*-modules than that of Hilbert spaces in general. We refer the readers to [14], for more details on Hilbert C^*-modules. Frank and Larson [9] presented a general approach to the frame theory in Hilbert C^*-modules. The theory of frames has been extended from Hilbert spaces to Hilbert C^*-modules, see [4, 12, 9, 19, 20].

The paper is organized as follows. First, we recall the basic definitions and some notations about Hilbert C^*-modules, and we also give some properties of them. Also, we recall the

2010 Mathematics Subject Classification. Primary 42C15; Secondary 06D22.

Key words and phrases. Hilbert C^*-module, Riesz basis, continuous frame, L^2-independent, Riesz-type frame.

*The corresponding author: t.shateri@hsu.ac.ir; shateri@ualberta.ca (Tayebe Lal Shateri).
notion of continuous frames in Hilbert C^*-modules and their operators. In section 3, we define continuous Riesz bases in Hilbert C^*-modules and we give some results about them.

2. Preliminaries

First, we recall some definitions and basic properties of Hilbert C^*-modules. We give only a brief introduction to the theory of Hilbert C^*-modules to make our explanations self-contained. For comprehensive accounts, we refer to [14, 15]. Throughout this paper, \mathcal{A} shows a unital C^*-algebra.

Definition 2.1. A pre-Hilbert module over unital C^*-algebra \mathcal{A} is a complex vector space U which is also a left \mathcal{A}-module equipped with an \mathcal{A}-valued inner product $\langle ., . \rangle : U \times U \rightarrow \mathcal{A}$ which is \mathbb{C}-linear and \mathcal{A}-linear in its first variable and satisfies the following conditions:

(i) $\langle f, f \rangle \geq 0$,
(ii) $\langle f, f \rangle = 0$ iff $f = 0$,
(iii) $\langle f, g \rangle^* = \langle g, f \rangle$,
(iv) $\langle af, g \rangle = a \langle f, g \rangle$,

for all $f, g \in U$ and $a \in \mathcal{A}$.

A pre-Hilbert \mathcal{A}-module U is called Hilbert \mathcal{A}-module if U is complete with respect to the topology determined by the norm $\|f\| = \|\langle f, f \rangle\|^\frac{1}{2}$.

By [12, Example 2.46], if \mathcal{A} is a C^*-algebra, then it is a Hilbert \mathcal{A}-module with respect to the inner product $\langle a, b \rangle = ab^*$, \quad (a, b \in \mathcal{A})$.

Example 2.2. [15, Page 237] Let $\ell^2(\mathcal{A})$ be the set of all sequences $\{a_n\}_{n \in \mathbb{N}}$ of elements of a C^*-algebra \mathcal{A} such that the series $\sum_{n=1}^{\infty} a_n a_n^*$ is convergent in \mathcal{A}. Then $\ell^2(\mathcal{A})$ is a Hilbert \mathcal{A}-module with respect to the pointwise operations and inner product defined by $\langle \{a_n\}_{n \in \mathbb{N}}, \{b_n\}_{n \in \mathbb{N}} \rangle = \sum_{n=1}^{\infty} a_n b_n^*$.

In the following lemma the Cauchy-Schwartz inequality reconstructed in Hilbert C^*-modules.

Lemma 2.3. [15, Lemma 15.1.3] (Cauchy-Schwartz inequality) Let U be a Hilbert C^*-modules over a unital C^*-algebra \mathcal{A}. Then

$$\|\langle f, g \rangle\|^2 \leq \|\langle f, f \rangle\| \|\langle g, g \rangle\|,$$

for all $f, g \in U$.

Definition 2.4. [14, Page 8] Let U and V be two Hilbert C^*-modules over a unital C^*-algebra A. A map $T : U \to V$ is said to be adjointable if there exists a map $T^* : V \to U$ satisfying

$$\langle T f, g \rangle = \langle f, T^* g \rangle$$

for all $f \in U, g \in V$. Such a map T^* is called the adjoint of T. By $\text{End}_A^*(U)$ we denote the set of all adjointable maps on U.

It is surprising that an adjointable operator is automatically linear and bounded.

Lemma 2.5. [21, Lemma 1.1] Let U and V be two Hilbert C^*-modules over a unital C^*-algebra A and $T \in \text{End}_A^*(U,V)$ has closed range. Then T^* has closed range and

$$U = \text{Ker}(T) \oplus R(T^*) \quad , \quad V = \text{Ker}(T^*) \oplus R(T)$$

Lemma 2.6. [2, Lemma 0.1] Let U and V be two Hilbert C^*-modules over a unital C^*-algebra A and $T \in \text{End}_A^*(U,V)$. Then

(i) If T is injective and T has closed range, then the adjointable map T^*T is invertible and

$$\| (T^*T)^{-1} \|^{-1} \leq T^*T \leq \| T \|^2.$$

(ii) If T is surjective, then the adjointable map TT^* is invertible and

$$\| (TT^*)^{-1} \|^{-1} \leq TT^* \leq \| T \|^2.$$

Now, we introduce continuous frames in Hilbert C^*-modules over a unital C^*-algebra A, and then we give some results for these frames.

Let \mathcal{Y} be a Banach space, (\mathcal{X}, μ) a measure space, and $f : \mathcal{X} \to \mathcal{Y}$ a measurable function. The integral of the Banach-valued function f has been defined by Bochner and others. Most properties of this integral are similar to those of the integral of real-valued functions (see [6, 22]). Since every C^*-algebra and Hilbert C^*-module is a Banach space, hence we can use this integral in these spaces. In the following, we assume that A is a unital C^*-algebra and U is a Hilbert C^*-module over A and (Ω, μ) is a measure space.

Definition 2.7. [10, 18] Let (Ω, μ) be a measure space and A is a unital C^*-algebra. We define,

$$L^2(\Omega, A) = \{ \varphi : \Omega \to A \ ; \ \| \int_{\Omega} (\varphi(\omega))^* \varphi(\omega) d\mu(\omega) \| < \infty \}.$$

For any $\varphi, \psi \in L^2(\Omega, A)$, the inner product is defined by $\langle \varphi, \psi \rangle = \int_{\Omega} \langle \varphi(\omega), \psi(\omega) \rangle d\mu(\omega)$ and the norm is defined by $\| \varphi \| = \| \langle \varphi, \varphi \rangle \|^{\frac{1}{2}}$. It was shown in [14] $L^2(\Omega, A)$ is a Hilbert A-module.
Continuous frames for Hilbert \mathcal{A}-modules are defined as follows.

Definition 2.8. [10, 18] A mapping $F : \Omega \to U$ is called a continuous frame for U if

(i) F is weakly-measurable, i.e., for any $f \in U$, the mapping $\omega \mapsto \langle f, F(\omega) \rangle$ is measurable on Ω.

(ii) There exist constants $A, B > 0$ such that

$$A \langle f, f \rangle \leq \int_{\Omega} \langle f, F(\omega) \rangle \langle F(\omega), f \rangle d\mu(\omega) \leq B \langle f, f \rangle,$$

(2.1)

The constants A, B are called *lower* and *upper* frame bounds, respectively. The mapping F is called *Bessel* if the right inequality in (2.1) holds and is called *tight* if $A = B$.

Definition 2.9. [11] A continuous frame $F : \Omega \to U$ is called *exact* if for every measurable subset $\Omega_1 \subseteq \Omega$ with $0 < \mu(\Omega_1) < \infty$, the mapping $F : \Omega \setminus \Omega_1 \to U$ is not a continuous frame for U.

Example 2.10. Let $U = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & 0 & b \end{pmatrix} : a, b \in \mathbb{C} \right\}$, and $\mathcal{A} = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} : x, y \in \mathbb{C} \right\}$ which is a C^*-algebra. We define the inner product

$$\langle.,.\rangle : U \times U \to \mathcal{A}$$

$$(M, N) \mapsto M(N)^t.$$

This inner product makes U a C^*-module on \mathcal{A}. We consider a measure space $(\Omega = [0, 1], \mu)$ whose μ is the Lebesgue measure. Also $F : \Omega \to U$ defined by $F(\omega) = \begin{pmatrix} \sqrt{3}\omega & 0 & 0 \\ 0 & 0 & \sqrt{3}\omega \end{pmatrix}$, for any $\omega \in \Omega$.

For each $f = \begin{pmatrix} a & 0 & 0 \\ 0 & 0 & b \end{pmatrix} \in U$, we have

$$\int_{[0,1]} \langle f, F(\omega) \rangle \langle F(\omega), f \rangle d\mu(\omega) = \int_{[0,1]} 3\omega^2 \begin{pmatrix} |a|^2 & 0 \\ 0 & |b|^2 \end{pmatrix} d\mu(\omega)$$

$$= \begin{pmatrix} |a|^2 & 0 \\ 0 & |b|^2 \end{pmatrix} = \langle f, f \rangle.$$

Therefore F is a continuous tight frame with bounds $A = B = 1$.

The following operators for Bessel mappings and continuous frames in Hilbert C^*-modules are defined in [11].
Definition 2.11. Let $F : \Omega \rightarrow U$ be a Bessel mapping. Then
(i) The synthesis operator or pre-frame operator $T_F : L^2(\Omega, A) \rightarrow U$ weakly defined by
\[
\langle T_F \varphi, f \rangle = \int_\Omega \varphi(\omega) \langle F(\omega), f \rangle d\mu(\omega), \quad (f \in U).
\]
(ii) The adjoint of T, called the analysis operator $T_F^* : U \rightarrow L^2(\Omega, A)$ is defined by
\[
(T_F^* f)(\omega) = \langle f, F(\omega) \rangle, \quad (\omega \in \Omega).
\]

The pre-frame operator is a well defined, surjective, adjointable A-linear map and is bounded with $\|T\| \leq \sqrt{B}$ and the analysis operator $T_F^* : U \rightarrow L^2(\Omega, A)$ is injective and has closed range.

Definition 2.12. Let $F : \Omega \rightarrow U$ be a continuous frame for Hilbert C^*-module U. Then the frame operator $S_F : U \rightarrow U$ is weakly defined by
\[
\langle S_F f, f \rangle = \int_\Omega \langle f, F(\omega) \rangle \langle F(\omega), f \rangle d\mu(\omega), \quad (f \in U).
\]

In [11] prove that the frame operator S_F is positive, adjointable, selfadjoint and invertible and the lower and the upper bounds of F are respectively $\|S^{-1}\|^{-1}$ and $\|T\|^2$. Now we introduce the concept of the duals of continuous frames in Hilbert C^*-modules and give some important properties of continuous frames and their duals.

Definition 2.13. [11] Let $F : \Omega \rightarrow U$ be a continuous Bessel mapping. A continuous Bessel mapping $G : \Omega \rightarrow U$ is called a dual for F if
\[
f = \int_\Omega \langle f, G(\omega) \rangle F(\omega) d\mu(\omega), \quad (f \in U),
\]
or
\[
\langle f, g \rangle = \int_\Omega \langle f, G(\omega) \rangle \langle F(\omega), g \rangle d\mu(\omega), \quad (f, g \in U).
\]
In this case (F, G) is called a dual pair. If T_F and T_G denote the synthesis operators of F and G, respectively, then (2.5) is equivalent to $T_FT_G^* = I_U$. The condition
\[
\langle f, g \rangle = \int_\Omega \langle f, G(\omega) \rangle \langle F(\omega), g \rangle d\mu(\omega), \quad (f, g \in U),
\]
is equivalent
\[
\langle f, g \rangle = \int_\Omega \langle f, F(\omega) \rangle \langle G(\omega), g \rangle d\mu(\omega), \quad (f, g \in U),
\]
because $T_F T_G^* = I_U$ if and only if $T_G T_F^* = I_U$.

Also, by reconstruction formula we have

$$f = S^{-1} S f = S^{-1} \int_\Omega \langle f, F(\omega) \rangle F(\omega) d\mu(\omega) = \int_\Omega \langle f, F(\omega) \rangle S^{-1} F(\omega) d\mu(\omega),$$

and

$$f = S S^{-1} f = \int_\Omega \langle S^{-1} f, F(\omega) \rangle F(\omega) d\mu(\omega) = \int_\Omega \langle f, S^{-1} F(\omega) \rangle F(\omega) d\mu(\omega).$$

Then $S^{-1} F$ is a dual for F, which is called canonical dual.

3. Continuous Riesz bases in Hilbert C^*-modules

In this section, we introduce the concept of continuous Riesz bases in Hilbert C^*-modules and give some important properties of them. First, we give the notion of a Riesz-type frame that is introduced in [11].

Definition 3.1. Let $F : \Omega \to U$ be a continuous frame for Hilbert C^*-module U. If F has only one dual, we call F a Riesz-type frame.

Theorem 3.2. [11, Theorem 3.4] Let $F : \Omega \to U$ be a continuous frame for Hilbert C^*-module U over a unital C^*-algebra A. Then F is a Riesz-type frame if and only if the analysis operator $T_F^* : U \to L^2(\Omega, A)$ is onto.

Definition 3.3. Let U be a Hilbert C^*-module U over a unital C^*-algebra A. A Bessel mapping $F : \Omega \to U$ is called a μ-complete if

$$\{ f \in U : \langle f, F(\omega) \rangle = 0 \text{ a.e. }]\} = \{0\}.$$

Now, we define a continuous Riesz basis for Hilbert C^*-modules.

Definition 3.4. Let U be a Hilbert C^*-module U over a unital C^*-algebra A. A mapping $F : \Omega \to U$ is called a continuous Riesz basis for Hilbert C^*-module U, if the following conditions are satisfied:

1. F is weakly-measurable, i.e., for any $f \in U$, the mapping $\omega \mapsto \langle f, F(\omega) \rangle$ is measurable on Ω.
2. F is μ-complete.
3. There are two constants $A, B > 0$ such that

$$A \left\| \int_{\Omega_1} |\varphi(\omega)|^2 d\mu(\omega) \right\|^2 \leq \left\| \int_{\Omega_1} \varphi(\omega) F(\omega) d\mu(\omega) \right\| \leq B \left\| \int_{\Omega_1} |\varphi(\omega)|^2 d\mu(\omega) \right\|^2,$$

where φ is a function from Ω to \mathbb{C}.
for every \(\varphi \in L^2(\Omega, A) \) and measurable subset \(\Omega_1 \subseteq \Omega \) with \(\mu(\Omega_1) < +\infty \).

Remark 3.5. Let \(F : \Omega \to U \) be a continuous Riesz basis for Hilbert \(C^* \)-module \(U \). Define

\[
T : L^2(\Omega, A) \longrightarrow U
\]

\[
\varphi \mapsto \int_{\Omega} \varphi(\omega) F(\omega) d\mu(\omega)
\]

Then \(T \) is well-defined, adjointable map with \(T^*f = \{ \langle f, F(\omega) \rangle \}_{\omega \in \Omega} \) and bounded such that

\[
A\|\varphi\|^2 \leq \|T\varphi\|^2 \leq B\|\varphi\|^2.
\]

Hence \(F \) is a continuous Bessel mapping. Also by \(\mu \)-completeness of \(F \) we have

\[
\text{Ker}(T^*) = \{ f \in U \mid \langle f, F(\omega) \rangle = 0 \quad \forall \omega \in \Omega \} = \{0\},
\]

so by lemma 2.5, \(R(T) = \text{Ker}(T^*)^\perp = U \). Then \(T \) is onto and by [11, theorem 2.15], \(F \) is a continuous frame for \(U \).

Definition 3.6. Let \(U \) be a Hilbert \(C^* \)-module \(U \) over a unital \(C^* \)-algebra \(A \). A Bessel mapping \(F : \Omega \to U \) is said to be \(L^2 \)-independent if for \(\varphi \in L^2(\Omega, A) \),

\[
\int_{\Omega} \varphi(\omega) F(\omega) d\mu(\omega) = 0
\]

implies that \(\varphi(\omega) = 0 \), for each \(\omega \in \Omega \).

We give the following result.

Theorem 3.7. Let \(F : \Omega \to U \) be a continuous frame for Hilbert \(C^* \)-module \(U \) over a unital \(C^* \)-algebra \(A \) with bounds \(A, B > 0 \). Then the following are equivalent:

(i) \(F \) is a continuous Riesz basis.

(ii) \(F \) is \(\mu \)-complete and \(L^2 \)-independent.

Proof. (i) \(\implies \) (ii) Let \(F \) be a continuous Riesz basis and \(\int_{\Omega} \varphi(\omega) F(\omega) d\mu(\omega) = 0 \) for some \(\varphi \in L^2(\Omega, A) \). Since

\[
A\|\int_{\Omega} |\varphi(\omega)|^2 d\mu(\omega)\| \leq \|\int_{\Omega} \varphi(\omega) F(\omega) d\mu(\omega)\|^2 = 0,
\]

so

\[
\langle \{\varphi(\omega)\}_{\omega \in \Omega}, \{\varphi(\omega)\}_{\omega \in \Omega} \rangle = \int_{\Omega} |\varphi(\omega)|^2 d\mu(\omega) = 0.
\]

Hence \(\{\varphi(\omega)\}_{\omega \in \Omega} = 0 \) and \(\varphi = 0 \) i.e. \(F \) is \(L^2 \)-independent.
(ii) \implies (i) Let \(F \) be a \(L^2 \)-independent continuous frame for Hilbert \(C^* \)-module \(U \) with bounds \(A, B > 0 \). For \(\varphi \in L^2(\Omega, A) \) and measurable subset \(\Omega_1 \subseteq \Omega \) with \(\mu(\Omega_1) < +\infty \), put \(f = \int_{\Omega_1} \varphi(\omega) F(\omega) d\mu(\omega) \). Then we have,

\[
f = \int_{\Omega_1} \varphi(\omega) F(\omega) d\mu(\omega) = \int_{\Omega} \varphi(\omega) \chi_{\Omega_1}(\omega) F(\omega) d\mu(\omega).
\]

Also \(f = \int_{\Omega} \langle f, S^{-1}F(\omega) \rangle F(\omega) d\mu(\omega) \) where \(S \) is the continuous frame operator of \(F \). Since \(F \) is \(L^2 \)-independent, so

\[
\varphi(\omega) \chi_{\Omega_1}(\omega) = \langle f, S^{-1}F(\omega) \rangle, \quad (\omega \in \Omega).
\]

and by [11, corollary 2.11],

\[
B^{-1} \langle f, f \rangle \leq \langle S^{-1}f, f \rangle \leq A^{-1} \langle f, f \rangle,
\]

and so

\[
A \| \langle S^{-1}f, f \rangle \| \leq \| \langle f, f \rangle \| \leq B \| \langle S^{-1}f, f \rangle \|.
\]

Now we show that \(\langle S^{-1}f, f \rangle = \int_{\Omega_1} |\varphi(\omega)|^2 d\mu(\omega) \).

\[
\langle S^{-1}f, f \rangle = \langle f, S^{-1}f \rangle = \int_{\Omega_1} \langle f, \varphi(\omega)S^{-1}F(\omega) \rangle d\mu(\omega)
\]

\[
= \int_{\Omega_1} \langle f, S^{-1}F(\omega) \rangle \varphi(\omega)^* d\mu(\omega)
\]

\[
= \int_{\Omega_1} \varphi(\omega) \varphi(\omega)^* d\mu(\omega) = \int_{\Omega_1} |\varphi(\omega)|^2 d\mu(\omega).
\]

Therefore,

\[
A \| \int_{\Omega_1} |\varphi(\omega)|^2 d\mu(\omega) \| \leq \| \int_{\Omega_1} \varphi(\omega) F(\omega) d\mu(\omega) \|^2 \leq B \| \int_{\Omega_1} |\varphi(\omega)|^2 d\mu(\omega) \|,
\]

i.e. \(F \) is a continuous Riesz basis for \(U \) with bounds \(A, B \). \(\square \)

Theorem 3.8. Let \(F : \Omega \to U \) be a continuous frame for Hilbert \(C^* \)-module \(U \) over a unital \(C^* \)-algebra \(A \). If \(F \) is a continuous Riesz basis for \(U \), then it is a continuous exact frame.

Proof. Let \(\Omega_1 \subseteq \Omega \) be a measurable subset of \(\Omega \) with \(0 < \mu(\Omega_1) < \infty \). For \(\varphi = \chi_{\Omega_1} \in L^2(\Omega, A) \) we have,

\[
\| \int_{\Omega_1} F(\omega) d\mu(\omega) \|^2 = \| \int_{\Omega_1} \chi_{\Omega_1}(\omega) F(\omega) d\mu(\omega) \|^2
\]
\[
\geq A \| \int_{\Omega_1} |\chi_{\Omega_1}(\omega)|^2 d\mu(\omega) \|
\]
\[
= A \| \mu(\Omega_1) \| > 0.
\]

Hence \(\int_{\Omega_1} F(\omega) d\mu(\omega) \neq 0 \).

Now suppose that \(F : \Omega \setminus \Omega_1 \to U \) is a continuous frame for \(U \). Then by completeness of \(F \mid_{\Omega \setminus \Omega_1} \) there exists \(\varphi_0 \in L^2(\Omega \setminus \Omega_1, A) \) such that
\[
\int_{\Omega_1} F(\omega) d\mu(\omega) = \int_{\Omega \setminus \Omega_1} \varphi_0(\omega) F(\omega) d\mu(\omega).
\]

Define \(\varphi : \Omega \to A \) where
\[
\varphi(\omega) = \begin{cases}
\varphi_0(\omega) & \omega \in \Omega \setminus \Omega_1 \\
1 & \omega \in \Omega_1.
\end{cases}
\]

Then \(\varphi \in L^2(\Omega, A) \) and
\[
\int_{\Omega} \chi_{\Omega_1}(\omega) F(\omega) d\mu(\omega) = \int_{\Omega} \varphi(\omega) F(\omega) d\mu(\omega),
\]
so \(\int_{\Omega} (\varphi - \chi_{\Omega_1})(\omega) F(\omega) d\mu(\omega) = 0 \). Hence \(L^2 \)-independent shows that \(\varphi = \chi_{\Omega_1} \) and so \(\varphi_0 = 0 \).

Therefore
\[
\int_{\Omega_1} F(\omega) d\mu(\omega) = \int_{\Omega \setminus \Omega_1} \varphi_0(\omega) F(\omega) d\mu(\omega) = 0,
\]
which is a contradiction. \(\square \)

Proposition 3.9. Let \(F : \Omega \to U \) be a continuous Bessel mapping for Hilbert \(C^* \)-module \(U \) over a unital \(C^* \)-algebra \(A \) with pre-frame operator \(T \). Suppose that \(F \) is \(\mu \)-complete and the mapping
\[
V : L^2(\Omega, A) \to L^2(\Omega, A)
\]
\[
\varphi \mapsto \int_{\Omega} \varphi(\omega) \langle F(\omega), F(\cdot) \rangle d\mu(\omega)
\]
defines a bounded, adjointable and invertible operator. Then \(F \) is a continuous Riesz basis for \(U \).

Proof. Since \(F \) is Bessel, so the synthesis operator \(T \) is well-defined and bounded and adjointable with \(T^* f = \{ \langle f, F(\omega) \rangle \}_{\omega \in \Omega} \) for \(f \in U \).

Also \(T^* T = V \), because
\[
(T^* T)(\varphi) = T^*(\int_{\Omega} \varphi(\omega) F(\omega) d\mu(\omega))
\]
\[
\begin{align*}
\langle \int_{\Omega} \varphi(\omega)F(\omega)d\mu(\omega), F(\gamma) \rangle & \vphantom{\int} = \{ \int_{\Omega} \varphi(\omega)F(\omega)d\mu(\omega) \} \gamma \in \Omega \\
\langle \int_{\Omega} \varphi(\omega)F(\omega)d\mu(\omega), F(\gamma) \rangle & \vphantom{\int} = \{ \int_{\Omega} \varphi(\omega)F(\omega)d\mu(\omega) \} \gamma \in \Omega.
\end{align*}
\]

Since \(T \) is bounded, so there exist \(B > 0 \) such that \(\| T\varphi \|^2 \leq B\| \varphi \|^2 \) i.e.

\[
\| \int_{\Omega} \varphi(\omega)F(\omega)d\mu(\omega) \|^2 \leq B\| \varphi \|^2.
\]

Since \(T^*T \) is positive, so

\[
\| \int_{\Omega} \varphi(\omega)F(\omega)d\mu(\omega) \|^2 = \| T\varphi \|^2
\]

\[
= \| \langle T^*T\varphi, \varphi \rangle \|
\]

\[
= \| \langle (T^*T)^2\varphi, (T^*T)^2\varphi \rangle \|
\]

\[
= \| (T^*T)^2\varphi \|^2 \geq \| (T^*T)^{-1} \|^2 \| \varphi \|^2.
\]

Therefore \(F \) is continuous Riesz basis with lower and upper bounds \(\| (T^*T)^{-1} \|^2 \), \(B \) respectively.

\[\square\]

Theorem 3.10. Let \(F : \Omega \to U \) be a continuous frame for Hilbert \(C^* \)-module \(U \) over a unital \(C^* \)-algebra \(A \) with pre-frame operator \(T \). Then \(F \) is a continuous Riesz basis for \(U \) if and only if \(F \) is a Riesz-type frame.

Proof. \((\implies)\) Let \(F_1 \neq F_2 \) are two duals of \(F \). Then for each \(f \in U \),

\[
\int_{\Omega} \langle f, F_1(\omega) - F_2(\omega) \rangle F(\omega)d\mu(\omega) = \int_{\Omega} \langle f, F_1(\omega) \rangle F(\omega)d\mu(\omega) - \int_{\Omega} \langle f, F_2(\omega) \rangle F(\omega)d\mu(\omega)
\]

\[
= f - f = 0.
\]

Since \(F \) is continuous Riesz basis, so is \(L^2 \)-independent and

\[
\langle f, F_1(\omega) - F_2(\omega) \rangle = 0 \implies \langle f, F_1(\omega) \rangle = \langle f, F_2(\omega) \rangle \quad (\omega \in \Omega).
\]

Therefore \(F_1 = F_2 \).

\((\impliedby)\) Let \(F \) be Riesz-type frame and \(\varphi \in L^2(\Omega, A) \) such that \(\int_{\Omega} \varphi(\omega)F(\omega)d\mu(\omega) = 0 \).

Since \(F \) is Riesz-type, so \(R(T^*) = L^2(\Omega, A) \). Also \(L^2(\Omega, A) = Ker(T) \oplus R(T^*) \).

Then

\[
\varphi \in Ker(T) = R(T^*)^\perp = \{0\},
\]

Therefore \(F_1 = F_2 \).
then $\varphi = 0$ and so F is L^2-independent. Therefore F is a continuous Riesz basis.

Corollary 3.11. Let $F : \Omega \to U$ be a continuous frame for Hilbert C^*-module U over a unital C^*-algebra A. If F is a Riesz-type frame, then it is a continuous exact frame.

Due to Theorem 3.10, the converse of the Proposition 3.9 holds as follows.

Corollary 3.12. Let $F : \Omega \to U$ be a continuous Riesz basis for Hilbert C^*-module U over a unital C^*-algebra A with bounds $A, B > 0$ and pre-frame operator T. Then F is μ-complete and the mapping

$$V : L^2(\Omega, A) \to L^2(\Omega, A)$$

$$\varphi \mapsto \int_\Omega \varphi(\omega) \langle F(\omega), F(\cdot) \rangle d\mu(\omega)$$

defines a bounded, adjointable and invertible operator.

Proof. Let F be a continuous Riesz basis for U with bounds $A, B > 0$. Then the synthesis operator T satisfies $\|T\| \leq \sqrt{B}$. Also,

$$(T^* T)(\varphi) = T^* \left(\int_\Omega \varphi(\omega) F(\omega) d\mu(\omega) \right)$$

$$= \{ \int_\Omega \varphi(\omega) F(\omega) d\mu(\omega), F(\gamma) \} \gamma \in \Omega$$

$$= \{ \int_\Omega \varphi(\omega) \langle F(\omega), F(\gamma) \rangle d\mu(\omega) \} \gamma \in \Omega.$$

Then $V = T^* T$. Moreover, F is Riesz-type and T^* is onto. Then by lemma 2.6, V is adjointable and invertible operator and

$$\|(T^* T)^{-1}\|^{-1} \leq V \leq \|T^*\|^2 \leq B.$$

According to the Theorem 3.10, in the next corollary we show the relation between two continuous Riesz bases for a Hilbert C^*-module U.

Corollary 3.13. Let $F, G : \Omega \to U$ be two continuous Riesz bases for Hilbert C^*-module U over a unital C^*-algebra A and T_F, T_G, S_G are the pre-frame operator of F, the pre-frame operator of G and the frame operator of G respectively. Then there exists an invertible operator $K \in \text{End}^*(U)$ such that $G = S_G K^* F$.

Proof. Let $f \in U$ such that $(T_G T_F^*)f = 0$. Then $T_G((T_F^*f)(\omega)) = 0$ for all $\omega \in \Omega$ and $
abla_\Omega \langle f, F(\omega) \rangle G(\omega) d\mu(\omega) = 0$.

Since G is L^2-independence, so $\langle f, F(\omega) \rangle = 0$ for all $\omega \in \Omega$ and by completeness of F, we have $f = 0$. This shows that $T_G T_F^*$ is injective. Also F a is Riesz-type frame, so T_F^* is onto. Since G is a continuous frame so T_G is onto. Hence $T_G T_F^*$ is onto and so is invertible.

Put $K := (T_G T_F^*)^{-1}$. Then for any $f, g \in U$,

$$
\langle f, g \rangle = \langle K^{-1} K f, g \rangle
= \langle T_F^* K f, T_G^* g \rangle
= \int_\Omega \langle K f, F(\omega) \rangle \langle G(\omega), g \rangle d\mu(\omega)
= \int_\Omega \langle f, K^* F(\omega) \rangle \langle G(\omega), g \rangle d\mu(\omega).
$$

Thus $K^* F$ is a dual of G. But G is a Riesz-type frame, then $S_G^{-1} G = K^* F$ and hence $G = S_G K^* F$. \hfill \Box

References

[1] S.T. Ali, J.-P. Antoine and J.-P. Gazeau, Continuous frames in Hilbert space, Annals of Physics, 222 (1993), 1–37.
[2] A. Alijani and M. Dehghan, $*$-frames in Hilbert C^*-modules, UPB Scientific Bulletin, Series A, vol. 73, (2011).
[3] A. A. Arefijamaal, R. A. Kamyabi Gol, R. Raisi Tousi and N. Tavallaei, A new approach to continuous Riesz bases, J. Sci. Iran, 24(1), 63-69 (2013).
[4] L. Arambaic, On frames for countably generated Hilbert C^*-modules, Proc. Amer. Math. Soc., 135 (2007), 479–478.
[5] O. Christensen, An introduction to frames and Riesz bases, Birkhauser, Boston, 2016.
[6] N. Dunford and J.T. Schwartz, Linear Operators, I. General Theory, vol. 7 of Pure and Applied Mathematics, Interscience, New York, NY, USA, (1958).
[7] I. Daubechies, A. Grassman and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys., 27 (1986), 1271–1283.
[8] R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), 341–366.
[9] M. Frank and D. R. Larson, Frames in Hilbert C^*-modules and C^*-algebras, J. Operator Theory, 48 (2002), 273–314.
[10] H. Ghasemi and T.L. Shateri, Continuous $*$-controlled frames in Hilbert C^*-modules, to appear in Caspian J. Math. Scienc., DOI: 10.22080/cjms.2022.21850.1590.
[11] H. Ghasemi and T.L. Shateri, *Continuous Frames in Hilbert C*-Modules*, arXiv preprint arXiv:2208.06799 (2022).
[12] W. Jing, *Frames in Hilbert C*-modules*, Ph.D. Thesis, University of Central Florida Orlando, Florida, 2006.
[13] G. Kaiser, *A Friendly Guide to Wavelets*, Birkhauser, Boston, 1994.
[14] E.C. Lance, *Hilbert C*-Modules: A Toolkit for Operator Algebraists*, 144 pages, vol. 210 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, UK, (1995).
[15] N.E. Wegge-Olsen, *K-theory and C*-algebras: A friendly approach*, Oxford University Press, (1993).
[16] A. Rahimi, Z. Darvishi and B. Daraby, *Dual pair and approximate dual for continuous frames in Hilbert spaces*, Math. Rep. 21(2) (2019),173–191.
[17] A. Rahimi, A. Najati and Y. N. Dehghan, *Continuous frames in Hilbert spaces*, Methods Func. Anal. Topol. 12 (2006) 170–182.
[18] M. Rossafi, F. Chouchene, and S. Kabbaj, *Integral frame in Hilbert C*-modules*, arXiv preprint arXiv: 2005.09995v2 (2020).
[19] M. Rashidi-Kouchi and A. Rahimi, *On controlled frames in Hilbert C*-modules*, Int. J. Wavelets Multiresol. Inf. Process., 15(4) (2017), 1750038 (15 pages), DOI: 10.1142/S0219691317500382.
[20] T.L. Shateri, *-*controlled frames in Hilbert C*-modules*, Inter. J. Wavelets Multiresolut. Inf. Process., 19(03) 2050080 (2021), DOI: 10.1142/S0219691320500800.
[21] Q. Xu, L. Sheng, *Positive semi-definite matrices of adjointable operators on Hilbert C*-modules*, Linear algebra and its applications, 428(4) (2008), 992–1000.
[22] K. Yosida, *Functional Analysis*, vol. 123, Springer-Verlag Berlin Heidelberg, Springer, Berlin, Germany, 6th edition, (1980).

HADI GHASEMI, DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES, HAKIM SABZEVARI UNIVERSITY, SABZEVAR, P.O. BOX 397, IRAN
Email address: h.ghasemi@hsu.ac.ir

TAYEBE LAL SHATERI, DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES, HAKIM SABZEVARI UNIVERSITY, SABZEVAR, P.O. BOX 397, IRAN
Email address: t.shateri@hsu.ac.ir; shateri@ualberta.ca