Wilson, C. M., Gañesh, V., Noble, A., & Aggarwal, V. K. (2017). Enantiospecific sp²–sp³ Coupling of ortho- and para-Phenols with Secondary and Tertiary Boronic Esters. *Angewandte Chemie - International Edition*, 56(51), 16318-16322. https://doi.org/10.1002/anie.201710777

Publisher's PDF, also known as Version of record
License (if available): CC BY
Link to published version (if available): 10.1002/anie.201710777
Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Enantiospecific sp\(^2\)--sp\(^3\) Coupling of ortho- and para-Phenols with Secondary and Tertiary Boronic Esters

Claire M. Wilson, Venkataraman Ganesh\(^\ast\), Adam Noble, and Varinder K. Aggarwal\(^\ast\)

Abstract: The coupling of ortho- and para-phenols with secondary and tertiary boronic esters has been explored. In the case of para-substituted phenols, after reaction of a dilithio phenolate species with a boronic ester, treatment with Ph\(_3\)BiF\(_2\) or Martin’s sulfurane gave the coupled product with complete enantiospecificity. The methodology was applied to the synthesis of the broad spectrum antibacterial natural product \((-\)4-(1,5-dimethylhex-4-enyl)-2-methyl phenol. For ortho-substituted phenols, initial incorporation of a benzotriazole on the phenol oxygen atom was required. Subsequent ortholithiation and borylation gave the coupled product, again with complete stereospecificity.

Phenols are ubiquitous motifs in pharmaceuticals, agrochemicals, and polymers, and are important constituents of plant metabolites possessing an array of interesting biological activities.\(^1\) Chiral phenolic groups, bearing benzylic stereocenters, are also found in a range of currently marketed drugs and agrochemicals (Scheme 1a).\(^2\) Installation of the benzylic stereocenter would ideally be accomplished by a stereospecific cross-coupling reaction between a halo-phenol and a chiral organometallic reagent. However, sp\(^2\)--sp\(^3\) cross-couplings, such as the Suzuki–Miyaura reaction,\(^3\) of secondary and tertiary aliphatic organometallic reagents remain a significant challenge.\(^4\) We have worked on a conceptually different approach to such cross-couplings and recently reported a high yielding, stereospecific method for the coupling of aryl lithium species with chiral secondary and tertiary boronic esters (Scheme 1b).\(^5,6\) The reaction occurs via a boronate complex that undergoes stereospecific 1,2-migration upon activation by an electrophilic halogenating agent, with subsequent elimination of the boron and halide groups leading to the coupled product. This mode of activation proved to be highly efficient for a variety of electron-rich heteroaromatics (e.g. furan, thiophene, indole, and benzofuran) and electron-rich aromatics, provided they were substituted with donor groups at the meta-position. The meta donor group and the electron-rich boronate worked synergistically to promote an electrophilic reaction on the aromatic ring.\(^5a,b\) Positioning the donor group in the para-position pushes electron density onto the sp\(^3\) carbon atom of the boronate complex, resulting in a selective reaction via an S\(_2\)Ar pathway, rather than an S\(_2\) pathway (e.g. Scheme 1c, left-hand side).\(^6n\)

To address this limitation, we considered the counter-intuitive use of the even more electron-rich para-phenolates for our coupling strategy (Scheme 1c). Although paradoxically this should strongly promote reaction at the sp\(^3\) carbon (S\(_2\) pathway), we reasoned that the nucleophilic properties of the phenolate oxygen would lend themselves to the identification of activating reagents that could trigger the desired 1,2-migration of the boronate complex. Herein, we...
report our success in achieving this goal with two distinct methods for the stereospecific coupling of both ortho- and para-substituted phenols with secondary and tertiary boronic esters.

Initially, we focused on coupling para-substituted phenols. We began our studies by establishing the conditions required to promote the 1,2-migration of the boronate complex 1a, which was easily prepared by reaction of boronic ester 1 with 2 equivalents of sBuLi. A broad range of promoters were investigated, including phenol oxidizing reagents [e.g., single-electron oxidants: Fremy’s salt, ceric ammonium nitrate, DDQ, and two-electron oxidants: PhI(OAc)2], aliphatic alcohol oxidizing reagents [e.g., Swern-type conditions, MnO2], dehydrating reagents (e.g., Martin’s sulfurane, Burgess reagent), phenolate alkylation reagents (e.g., Ph3BiF2), and other oxophilic reagents (e.g., Ph3PCl2, SO2Cl2).

Although most were unsuccessful (see Scheme 2 and the Supporting Information for more details), we were delighted to find that Martin’s sulfurane (3, Ph2S[OC(CF3)2]2Ph, Method A) and triphenylbismuth difluoride (4, Ph3BiF2, Method B) gave the desired coupling product in good yield.

A plausible mechanism for the reaction of 1a with promoters 3 and 4 is presented in Scheme 3. The key step in both the cases is believed to be the functionalization of the phenolate oxygen of boronate complex I by the promoters 3 and 4 giving intermediates IIa and IIb, respectively. This triggers 1,2-migration with the reduction of SIV to SII in IIa and BiV to BiIII in IIb, leading to the quinone intermediate III. Subsequent rearomatization by elimination of Bpin from III leads to the coupled products. The success of the two reagents may be ascribed to their hindered nature, which leads to preferential reaction at the unhindered phenolate over the much more hindered boronate.

Having established two protocols to trigger the key 1,2-migration step, we turned our attention to linking them with in situ boronate formation from alkyl boronic esters. Di-anionic boronate complex VI was generated by the reaction
desired coupling product 7a in 62% yield with Martin’s sulfurane (3) as the promoter and 44% with Ph,BiF₂ (4). Additional methyl substituents could be introduced on the phenol at the 2- or 3-positions (7b, 7c) as well as the 2,6- and 3,5-positions (7d, 7e), albeit with a reduction in yield in the most cases of the sterically more demanding substrates. Naphthol could also be used in the coupling reaction (7f), as could phenols bearing electron-donating groups (OMe, 7g) or electron-withdrawing groups (F, 7h, 7i). In most cases, Martin’s sulfurane (Method A) gave higher yields than Ph,BiF₂ (Method B).

Having demonstrated that a wide range of phenols could be employed in this cross-coupling reaction, we then explored the scope of the boronic esters using Martin’s sulfurane (Method A, Table 2). Primary, secondary, and tertiary boronic esters were all successfully coupled, giving high yields of the desired products with excellent enantiospecificity (es). Both benzylic and non-benzylic boronic esters could be used, as well as highly hindered secondary and tertiary boronic esters. Chiral secondary boronic esters bearing alkenyl (8i), cyclopropyl (8j), TBS ether (8k), azido (8l), acetal (8m), and carbamate (8n) functionalities were smoothly converted to the corresponding phenol derivatives 9i–n in good yields (68–37%) and with excellent enantiospecificity. In addition, the natural-product-derived boronic esters 8o and 8q gave the desired coupling products 9o–q efficiently (58–50%) with complete diastereoselectivity.

To further highlight the utility of this coupling reaction, we applied it to the synthesis of the natural product (–)-4-(1,5-dimethylhex-4-enyl)-2-methylphenol (9r), a compound active against a broad spectrum of gram-positive (MIC: 16–32 μg·mL⁻¹) and gram-negative bacteria including methicillin-resistant S. aureus and vancomycin-resistant E. faecium. Phenol 9r is also a key intermediate in the total synthesis of (+)-β-herbertenol. Treatment of enantioenriched boronic ester 8r with dilithiated 5b, followed by Martin’s sulfurane, gave the natural product 9r in 57% yield with 100% enantiomeric purity.

Having successfully developed an enantiospecific cross-coupling reaction for the synthesis of para-substituted phenols, we wished to extend the methodology to ortho-phenols. However, our attempts with ortho-bromophenol 10 using the previous strategy of dilithiation/borinate complex formation and activation with Martin’s sulfurane only gave a trace amount of the desired product 14a (Scheme 4). Although activation with Ph,BiF₂ gave the coupled product in significantly higher yield (31%), all attempts to improve upon this were unsuccessful. We believe that the increased steric demand of phenolate 11 inhibits reaction with the bulky

![Scheme 4. Attempts towards ortho-functionalization using ortho-bromophenol.](image-url)

Table 2: Substrate scope of chiral boronic esters for enantiospecific sp²–sp³ coupling with para-bromophenols.

R²	1. MeLi, THF, –30 °C, 1 h	2. tBuLi, –30 °C, 15 min	RBPin (8) –30 °C, 1 h
5a,b	63%	53%	60%
9c	59%	60%, es 100%	62%
9f	63%, es 100%	70%, es 100%	54%, es 96%
9h: 68%, es 98%	68%, es 100%	68%, es 98%	
9j	68%, es 100%	50%, ds 100%	58%, ds 100%
9k	68%, es 100%	66%, es 100%	66%, es 100%
9l	37%, es 100%	37%, es 100%	37%, es 100%
9m	66%, es 100%	66%, es 100%	66%, es 100%
9n	62%	62%	62%

[a] Reaction conditions: ArBr (0.20 mmol, 1.25 equiv), MeLi (1.3 equiv), tBuLi (2.1 equiv), RBPin (0.16 mmol, 1.0 equiv), Martin’s sulfurane (0.20 mmol, 1.25 equiv), –30 °C, 16 h.
promoters. This prompted us to investigate an alternative strategy that would avoid the requirement of a sterically hindered phenolate reacting with an activating reagent.

We postulated that a convenient solution to the poor reactivity of the ortho-substituted phenolate would be to incorporate an efficient leaving group on the phenolic oxygen atom prior to boronate complex formation. We selected a benzotriazole (Bt) group as it can be easily introduced, is compatible with organolithium reagents, and is a good leaving group. However, we were also aware that boronate complexes possessing good leaving groups at the ortho-position were prone to undergo elimination leading to benzene formation, which is a potentially competing process.

ortho-Bromophenoxybenzotriazoles 10a–d were easily prepared in one step by reaction of ArI+OTf with hydroxybenzotriazole (HOBt). Lithium–halogen exchange of 10a with nBuLi and treatment with boronic ester 6 gave the corresponding boronate complex (see Table 3). To our delight, upon warming to room temperature the 1,2-migration proceeded to give the ortho-functionalized phenol 14a in 53% yield with 100% ee. Both electron-rich (10b) and electron-deficient phenoxybenzotriazoles (10c,d) gave the coupled products 14b–d in good yields (41–82%). A range of chiral secondary and tertiary boronic esters were tested to explore the scope of this methodology. With simple secondary and tertiary boronic esters, 2-bromophenoxybenzotriazole 10a reacted smoothly under the standard reaction conditions to give the desired products 15a–d in 22–68% yield. The use of strongly electron-withdrawing substituents (CF3) on the aromatic ring or sterically demanding tertiary pinacol boronic esters (e.g., to give 15c) resulted in poor yield (10–15%) with considerable recovery of the starting boronic esters (see the Supporting Information for details). Fortertiary boronic esters, exchanging the pinacol ligand for a less bulky neopentyl glycol gave the coupled product (15c) in slightly improved yield (22%). Other functionalized secondary boronic esters gave the corresponding products bearing alkenyl (15e), azido (15f), and carbamate (15h) functionalities, as well as a menthol-derived boronic ester (15g), all with complete stereoselectivity.

In conclusion, we have developed a general method for the enantiospecific coupling of boronic esters with ortho- and para-substituted phenols. For hindered ortho-substituted phenols, a pre-incorporated leaving group (benzotriazole) was required to promote 1,2-migration of the corresponding boronate complex. For the less hindered para-substituted phenols 1,2-migration was triggered by using Martin’s sulfurane or Ph3BiF2. The substrate scope was found to be broad, with excellent functional-group tolerance demonstrated over a range of boronic ester and phenol coupling partners. This methodology provides an important extension to the growing range of aromatic compounds that can partake in stereospecific transition-metal-free cross-coupling reactions of highly hindered secondary and tertiary boronic esters and will likely find broad utility for the synthesis of challenging chiral phenol derivatives.

Acknowledgements

We acknowledge financial support from the EPSRC (EP/I038071/1) and ERC (670668). V.G. thanks the RS for the Newton International Fellowship. We thank Dr. Eddie Myers, Dr. Y. Wang, Dr. C. Sandford, and Dr. M. Odachowski for valuable discussion and contribution of boronic esters.

Conflict of interest

The authors declare no conflict of interest.

Keywords: arylation · boronic esters · C–C bond formation · phenol · synthetic methods

Table 3: Substrate scope of ArOBt and chiral boronic esters for enantiospecific sp2–sp3 coupling to access ortho-functionalized phenols.
![Diagram of substrate scope](Angewandte_2017_56_16318_16322_Fig3)
![List of substrates](Angewandte_2017_56_16318_16322_Table3)
[a] Reaction Conditions: ArBr (0.30 mmol, 1.5 equiv), nBuLi (1.5 equiv), RBpin (0.20 mmol, 1.0 equiv), –78 °C to RT, 16 h; [b] Bneop ester was used; [c] ArBr (0.20 mmol, 1.1 equiv), nBuLi (1.1 equiv), RBpin (0.18 mmol, 1.0 equiv), –75 °C to RT, 16 h.
How to cite: Angew. Chem. Int. Ed. 2017, 56, 16318–16322
Angew. Chem. 2017, 129, 16536–16540

[1] a) W. Vermerris, R. Nicholson, The Chemistry of Phenols, Vol. 1, Wiley, New York, 2003; b) Phenolic Compound Biochemistry, Springer, Berlin, 2006.

[2] Chiral Drugs: Chemistry and Biological Action, Wiley, Hoboken, 2011.

[3] a) N. Miyaura, A. Suzuki, J. Chem. Soc. Chem. Commun. 1979, 866–867; b) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457–2483.

[4] a) S. D. Dreher, P. G. Dormer, D. L. Sandrock, G. A. Molander, J. Am. Chem. Soc. 2008, 130, 9257–9259; b) D. Imao, B. W. Glasspode, V. S. Laberge, C. M. Crudden, J. Am. Chem. Soc. 2009, 131, 5024–5025; c) L. Li, S. Zhao, A. Joshi-Pangu, M. Diane, M. R. Biscoe, J. Am. Chem. Soc. 2014, 136, 14027–14030; d) D. Leonori, V. K. Aggarwal, Angew. Chem. Int. Ed. 2015, 54, 1082–1096; Angew. Chem. 2015, 127, 1096–1111; e) C.-Y. Wang, J. Derose, M. R. Biscoe, Chem. Sci. 2015, 6, 5105–5113.

[5] a) A. Bonet, M. Odachowski, D. Leonori, S. Essafi, V. K. Aggarwal, Nat. Chem. 2014, 6, 584–589; b) M. Odachowski, A. Bonet, S. Essafi, P. Conti-Ramsden, J. N. Harvey, D. Leonori, V. K. Aggarwal, J. Am. Chem. Soc. 2016, 138, 9521–9532; c) V. Ganesh, M. Odachowski, V. K. Aggarwal, Angew. Chem. Int. Ed. 2017, 56, 9752–9756; Angew. Chem. 2017, 129, 9884–9888.

[6] a) J. Llaveria, D. Leonori, V. K. Aggarwal, J. Am. Chem. Soc. 2015, 137, 10958–10961; b) S. Achihorn, R. Bigler, E. L. Myers, V. K. Aggarwal, J. Am. Chem. Soc. 2017, 139, 9519–9522.

[7] a) R. Larouche-Gauthier, T. G. Elford, V. K. Aggarwal, J. Am. Chem. Soc. 2011, 133, 16794–16797; b) K. Feeney, G. Berioni, H. Mayr, V. K. Aggarwal, Org. Lett. 2015, 17, 2614–2617; Reaction of p-MeO-arylboronate complexes with electrophiles result in the addition of electrophiles to the sp2-carbon–boron bond through an S2 inversion pathway or a single-electron transfer (SET) pathway.

[8] a) S. S. Pooppanal, Synlett 2009, 850–851; b) Z. Wang. Comprehensive Organic Name Reactions and Reagents, Wiley, Hoboken, 2010.

[9] M. Drapeau, T. Olleveir, Electronic Encyclopedia of Reagents for Organic Synthesis: Triphenylbismuth Difluoride, Wiley, United Kingdom, 2014.

[10] a) D. J. Gallagher, P. Beak, J. Am. Chem. Soc. 1991, 113, 7984–7987; b) A. Guijarro, D. J. Ramón, M. Yus, Tetrahedron 1993, 49, 469–482; c) H. G. Selnick, M. L. Bourgeois, J. W. Butcher, E. M. Radzilowski, Tetrahedron Lett. 1993, 34, 2043–2046; d) F. Mongin, J.-M. Fourquez, S. Rault, V. Levacher, A. Godard, F. Trécourt, G. Quéguiner, Tetrahedron Lett. 1995, 36, 8415–8418; e) F. Z. Dörwald, K. E. Andersen, T. K. Jørgensen, B. Peschke, B. S. Wulff, I. Pettersson, K. Rudolf, D. Stenkamp, R. Hurnaus, S. G. Müller, WO2000063208, 2000.

[11] R. Mata, E. Martínez, R. Bye, G. Morales, M. P. Singh, J. E. Janso, W. M. Maiiese, B. Timmermann, J. Nat. Prod. 2001, 64, 911–914.

[12] S. P. Chavan, M. Thakkar, R. K. Karul, A. B. Pathak, G. V. Bhosekar, M. M. Bhadbhade, Med. Sci. Monit. 2010, 16, 14027–14030.

[13] T. G. Elford, S. Nave, R. P. Sonawane, V. K. Aggarwal, J. Am. Chem. Soc. 2011, 133, 16798–16801.

[14] Z.-X. Wang, W.-M. Shi, H.-Y. Bi, X.-H. Li, G.-F. Su, D.-L. Mo, J. Org. Chem. 2016, 81, 8014–8021.

[15] a) A. R. Katritzky, Z. Huang, Y. Fang, I. Prakash, J. Org. Chem. 1999, 64, 2124–2126; b) J. Clatford, Organolithiums: Selectivity for Synthesis, Vol. 23, Pergamon, New York, 2002.

[16] A. R. Katritzky, S. A. Belovak, Aldrichimica Acta 1998, 31, 35.

[17] Y. Sumida, T. Kato, T. Hosoya, Org. Lett. 2013, 15, 2806–2809.

Manuscript received: October 19, 2017
Accepted manuscript online: November 7, 2017
Version of record online: November 28, 2017