Current status of herbal and their future perspectives

R. Perumal Samy, and P. Gopalakrishnakone*

Venom and Toxin Research Programme, Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597

Abstract

Traditional medicine is the synthesis of therapeutic experience of generations of practicing physicians of indigenous systems of medicine. Throughout the history of mankind, many infectious diseases have been treated with herbals. The traditional medicine is increasingly solicited through the tradipractioners and herbalists in the treatment of infectious diseases. Among the remedies used, plant drugs constitute an important part. A number of scientific investigations have highlighted the importance and the contribution of many plant families i.e. Asteraceae, Liliaceae, Apocynaceae, Solanaceae, Caesalpinaceae, Rutaceae, Piperaceae, Sapotaceae used as medicinal plants. Medicinal plants play a vital role for the development of new drugs (export and import diverse parts or bioactive compounds in the current market). The bioactive extract should be standardized on the basis of active compound. The bioactive extract should undergo limited safety studies.

*Corresponding author. E-mail: antgopal@nus.edu.sg; Tel: 65- 65163207
1. Introduction

India is one of the 12 mega biodiversity centres having 45,000 plant species; its diversity is unmatched due to the 16 different agroclimatic zones, 10 vegetative zones, and 15 biotic provinces. The country has a rich floral diversity (Table 1).

Table 1: Floral diversity in India.

Numbers	Species
15,000 - 18,000	Flowering plants
23,000	Fungi
25,000	Algae
1,600	Lichens
1,800	Bryophytes
30 million	Microorganisms

Traditional medicine is the synthesis of therapeutic experience of generations of practicing physicians of indigenous systems of medicine. Traditional preparation comprises medicinal plants, minerals and organic matters etc. Herbal drug constitutes only those traditional medicines that primarily use medicinal plant preparations for therapy. The ancient record is evidencing their use by Indian, Chinese, Egyptian, Greek, Roman and Syrian dates back to about 5000 years (Table 2). About 500 plants with medicinal use are mentioned in ancient texts and around 800 plants have been used in indigenous systems of medicine. Indian subcontinent is a vast repository of medicinal plants that are used in traditional medical treatments (Chopra et al., 1956), which also forms a rich source of knowledge (Nadkarni, 1982; Jone, 1984). The various indigenous systems such as Siddha, Ayurveda, Unani and Allopathy use several plant species to treat
different ailments (Rabe and Staden, 1997). In India around 20,000 medicinal plant species have been recorded recently (Dev, 1997), but more than 500 traditional communities use about 800 plant species for curing different diseases (Kamboj, 2000). Currently 80% of the world population depends on plant-derived medicine for the first line of primary health care for human alleviation because it has no side effects (Veale et al., 1992). Plants are important sources of medicines and presently about 25% of pharmaceutical prescriptions in the United States contain at least one plant-derived ingredient. In the last century, roughly 121 pharmaceutical products were formulated based on the traditional knowledge obtained from various sources (Anesini and Perez, 1993).

2. Modern medicine from higher plants

Medicinal plants play a vital role for the development of new drugs. During 1950-1970 approximately 100 plants based new drugs were introduced in the USA drug market including deserpidine, reseinnamine, reserpine, vinblastine and vincristine which are derived from higher plants. From 1971 to 1990 new drugs such as ectoposide, E-guggulsterone, teniposide, nabilone, plaunotol, Z-guggulsterone, lectinan, artemisinin and ginkgolides appeared all over the world. 2% of drugs were introduced from 1991 to 1995 including paciltaxel, toptecan, gomishin, irinotecan etc. Plant based drugs provide outstanding contribution to modern therapeutics; for example: serpentine isolated from the root of Indian plant Rauwolfia serpentina in 1953, was a revolutionary event in the treatment of hypertension and lowering of blood pressure. Vinblastine isolated from the Catharanthus rosesus (Farnsworth and Blowster, 1967) is used for the treatment of
Hodgkins, choriocarcinoma, non-hodgkins lymphomas, leukemia in children, testicular and neck cancer. Vincristine is recommended for acute lymphocytic leukemia in childhood advanced stages of hodgkins, lymphosarcoma, small cell lung, cervical and breast cancer. (Farnsworth and Bingel, 1977). Phophyllotoxin is a constituent of Phodophyllum emodi currently used against testicular, small cell lung cancer and lymphomas. Indian indigenous tree of Nothapodytes nimmoniana (Mappia foetida) are mostly used in Japan for the treatment of cervical cancer (Table 3). Plant derived drugs are used to cure mental illness, skin diseases, tuberculosis, diabetes, jaundice, hypertension and cancer. Medicinal plants play an important role in the development of potent therapeutic agents. Plant derived drugs came into use in the modern medicine through the uses of plant material as indigenous cure in folklore or traditional systems of medicine. More than 64 plants have been found to possess significant antibacterial properties; and more than 24 plants have been found to possess antidiabetic properties (Arcamone et al., 1980), antimicrobial studies of plants (Perumal Samy and Ignacimuthu, 1998; 1999 and Perumal Samy et al., 2006), plant for antidotes activity - Daboia russellii and Naja kaouthia venom neutralization by lupeol acetate isolated from the root extract of Indian sarsaparilla Hemidesmus indicus R.Br (Chatterjee, et al., 2006). Which effectively neutralized Daboia russellii venom induced pathophysiological changes (Alam et al., 1994). The present investigation explores the isolation and purification of another active compound from the methanolic root extract of Hemidesmus indicus, which was responsible for snake venom neutralization. Antagonism of both viper and cobra venom and antiserum action potentiation, antioxidant property of the active compound was studied in experimental animals. Recently, Chatterjee et al. (2004) from this
laboratory reported that an active compound from the _Strychnus nux vomica_ seed extract, inhibited viper venom induced lipid peroxidation in experimental animals. The mechanism of action of the plant derived micromolecules induced venom neutralization need further attention, for the development of plant-derived therapeutic antagonist against snakebite for the community in need. However, the toxicity of plants has known for a long period of time, and the history of these toxic plants side by side with medicinal ones are very old and popular worldwide, they considered the major natural source of folk medication and toxication even after arising of recent chemical synthesis of the active constituents contained by these plants (Adailkan and Gauthaman, 2001; Heinrich, 2000; Pfister et al., 2002).

Table 2: Plant derived ethnotherapeutics and traditional modern medicine.

S.No.	Drug	Basic investigation
1	Codeine, morphin	Opium the latex of _Papaver somniferum_ used by ancient Sumarians, Egyptians and Greeks for the treatment of headaches, arthritis and inducing sleep.
2	Atropine, hyoscyamine	_Atropa belladona, Hyoscyamus niger_ etc., were important drugs in Babylonium folklore.
3	Ephedrine	Crude drug (astringent yellow) derived from _Ephedra sinica_ had been used by Chinese for respiratory ailments since 2700 BC.
4	Quinine	_Cinchona spp_ were used by Peruvian Indians for the treatment of fevers.
5	Emetine	Brazilian Indians and several others South American tribes used root and rhizomes of _Cephaelis spp_ to induce vomiting and cure dysentery.
6	Colchicine	Use of Colchicum in the treatment of gout has been known in Europe since 78 AD.
7	Digoxin	Digitalis leaves were being used in heart therapy in Europe during the 18th century.
Table 3: Some of the important medicinal plants used for major modern drugs for cancer.

Plant name/family	Drugs	Treatment
Catharanthus roseus L. (Apocynaceae)	Vinblastine and vincristine	Hodgkins, Lymphosarcomas and children leukemia.
Podophyllum emodi Wall. (Beriberidaceae)	Podophyllotaxin,	Testicular cancer, small cell lung cancer and lymphomas.
Taxus brevifolius (Taxaceae)	Paciltaxel, taxotere	Ovarian cancer, lung cancer and malignant melanoma.
Mappia foetida Miers.	Comptothecin, lrenoteccan and topotecan	Lung, ovarian and cervical cancer.
Comptotheca acuminata	Quinoline and comptothecin alkaloids	used in Japan for the treatment of cervical cancer
Juniperus communis L. (Cupressaceae)	Teniposide and etoposie	Lung cancer

Teniposide and etoposide isolated from *Podophyllum* species are used for testicular and lung cancer. Taxol isolated from *Taxus brevifolius* is used for the treatment of metastatic ovarian cancer and lung cancer. The above drugs came into use through the screening study of medicinal plants because they showed less side effects, were cost effective and possessed better compatibility.

3. Market potential of phytomedicine

The estimation of total phytomedicine sale reported in country wise European Union was about US$ 6 billion in 1991 and $ 4 billion in 1996, of which almost half were sold in Germany $ 3 billion, in France $ 1.6 billion, in Italy $ 0.6 billion and in Japan $ 1.5 billion. The present global market (Table 4) is said to be US 250 billion (Brower *et al.*, 1998). In India the sale of total herbal products is estimated at $ 1 billion and the export
of herbal crude extract is about $80 million, of which 50% is contributed by Ayurvedic classical preparations. Plant derived drugs are important in Germany and Russia. Particularly, herbal drugs are imported by several countries for their usage of traditional medicinal preparation from various parts of the country (Table 5). Some of the important Indian medicinal plants exported to various countries are reported (Table 6.).

Table 4. Market size of phytomedicine and their sale in US Dollar.

S.No.	Country	Years	Drugs sales in US $ (billion)
1	Europe	1991	6
	Germany		3.0
	France		1.6
	Italy		0.6
	Others		0.8
2	Europe	1996	10.0
3	USA	1996	4.0
4	India	1996	1.0
5	Other countries	1996	5.0
6	All countries	1998	30.0 - 60.0
Table 5. Percentage of herbal drugs imported by various countries for drug preparation

Country	Percentage of herbal drugs imported
China	45%
USA	15.6%
Australia	10.5%
India	3.7%
South Korea	1.4%
Taiwan	1.7%
Indonesia	8.1%

Table 6. Medicinal plant parts exported from India, importing medicinal plants and their parts.

Botanical names	Parts used	Botanical name	Parts used
Acorus calamus	Rhizome	Aloe vera	Dried leaf
Argemone mexicana	Fruit	Adhatoda vasica	Whole plant
Curcuma amada	Rhizome	Cinnamomum iners	Bark and leaf
Curcuma longa	Rhizome	Curcuma aromatica	Rhizome
Curcuma aromatica	Wild turmeric	Garcinia indica	Fruit
Cassia lanceolata	Leaves	Gloriosa superba	Tuber and seed
Glycyrrhiza glabra	Root	Juniperus communis	Fruit
Withania somnifera	Vegetable rennet	**Myrica nagi**	Bark
------------------------	------------------	----------------	------
Myrica nagi	Leaf	**Strychos nux-vomica**	Bark and seed
Piper longum	Fruit	**Phyllanthus amarus**	Fruit
Rubia cordifolia	Madder root	**Ricinus communis**	Seed
Symplcos racemosa	Bark	**Rauvolfia serpentina**	Root
Swertia chirata	Whole plant	**Ocimum sanctum**	Leaf and essential oil
Terminalia chebula	Bark and seed	**Tylophora purpurea**	Root
Zingiber officinale	Rhizome	**Vinca rosea**	Leaf, seed and stem
-	-	**Wedelia calendula**	Leaf and root
-	-	**Withania somnifera**	Tuber

Important medicinal plants and their parts used for the preparation in indigenous systems of Indian medicines are reported in table 7.

5. Role of World Health Organization (WHO) in phytomedicine medicine

In 1991 WHO developed guidelines for the assessment of herbal medicine, and the 6th International Conference of Drug Regulatory Authorities held at Ottawa in the same year ratified the same. The salient features of WHO guidelines are: 1). **Quality assessment:** Crude plant materials or extract plant preparation and finished product. 2). **Stability:** Shelf life. 3). **Safety assessment:** Documentation of safety based on experience and
toxicological studies. 4). **Assessment of efficacy:** Documented evidence of traditional use and activity determination (Animals and human).

6. **Standardization of phytomedicine**

In the traditional system of medicine, the drugs are primarily dispensed as aqueous or ethanol extract. Fresh plant juice or crude extract are a rarity rather than a rule. The medicinal plants should be authentic and free from harmful materials like pesticides, heavy metals, and microbial and radioactive contamination. The medicinal plant should be single solvent extraction once or repeatedly or aqueous extract or as described in the ancient texts. The extract should be then checked for biological activity in experimental animal models. The bioactive extract should be standardized on the basis of active compound (Table 7). The bioactive extract should undergo limited safety studies.

Table .7 The major traditional sector of pharmaceutical companies.

S.No	Traditional sector pharmas	Modern sector pharmas	Standardization of phytomedicine (formulation)
1	Himalaya	Ranbaxy	Chromatography techniques
2	Zandu	Lupin	Thin Layer chromatography (TLC)
3	Dabur	Allembic	UV - Spectrophotometer
4	Hamdard	-	High Performance of Liquid Chromatography (HPLC)
5	Maharishi	-	Nuclear Magnetic Resonance spectroscopy (NMR)

7. **New sources of tribal medicine for future investigation**

Tribal healers in most of the countries, where ethnomedical treatment is frequently used to treat cut wounds, skin infection, swelling, aging, mental illness, cancer, asthma,
diabetes, jaundice, scabies, eczema, venereal diseases, snakebite and gastric ulcer, provide instructions to local people as how to prepare medicine from herbal (Puspangadan and Atal, 1984; Waller, 1993; Perumal Samy and Ignacimuthu, 1998-1999; Perumal Samy et al., 2006). They keep no records and the information is mainly passed on verbally from generation to generation (Dhar et al., 1973; Sofowara, 1982).

World Health Organization (WHO) has shown great interest in documenting the use of medicinal plants used by tribals from different parts of the world (Kaido et al., 1987). Many developing countries have intensified their efforts in documenting the ethnomedical data on medicinal plants. Research to find out scientific evidence for claims by tribal healers on Indian herbs has been intensified. Once these local ethnomedical preparations are scientifically evaluated and disseminated properly, people will be better informed regarding efficacious drug treatment and improved health status (Manandhar, 1987).

8. Conclusions

Determining the biological (activity) properties of plants used in traditional medicine is helpful to the rural communities and informal settlements. Several authors are currently being undertaken to isolate the active compound(s) by bioassay-guided fractionation from the species that showed high biological activity during screening. Therefore, these scientific investigations may be utilized to develop drugs for these diseases. Further research is deserved to isolate the compounds responsible for the observed biological activity.
References

Adailkan, P.G., Gauthaman, K., 2001. History of herbal medicines with an insight on the pharmacological properties of Tribulus terrestris. The Aging Male 4, 163–169.

Alam, M.I., Auddy, B., Gomes, A., 1994. Isolation and partial characterization of viper venom inhibiting factor from the root extract of the Indian medicinal plant sarsaparilla (Hemidesmus indicus R.Br.). Toxicon 32, 1551–1557.

Bhakuni DS, Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN (1969): Screening of Indian plants for biological activity: Part II. Indian J. Exp. Biol. 7: 250-262.

Chatterjee, I. Chakravarty, A.K., Gomesa A., (2006) Daboia russellii and Naja kaouthia venom neutralization by lupeol acetate isolated from the root extract of Indian sarsaparilla Hemidesmus indicus R.Br . Journal of Ethnopharmacology 106(1), 38-43.

Chatterjee, I., Chakravarty, A.K., Gomes, A., 2004. Antisnake venom activity of ethanolic seed extract of Stychnos nux vomica Linn. Indian Journal of Experimental Biology 42, 468–475.

Chopra, R.N., Nayar, S.L. and Chopra, I.C. (1956) In Glossary of Indian medicinal plants, Vol. I. Council of Scientific and Industrial Research, New Delhi, pp. 197.

Cox P, Balick M. The ethnobotanical approach to drug discovery. Scientific American, 1994, June, 82-87.

Cox PA, Ethnopharmacology and the search for new drugs. (Eds. D.J. Chadwick and J. Marsh). In Bioactive Compounds from Plants. Ciba Foundation Symposium 154, John Wiley & Sons, Chichester, 1990, pp.40-55.

Dev S (1997) Ethnotherapeutic and modern drug development: The potential of Ayurveda. Cur. Sci. 73 (11): 909-928.

Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN, Ray C (1968): Screening of Indian plants for biological activity: Part I. Indian J. Exp. Biol. 7: 232-247.

Farnsworth NR, Bingel AS. Problems and prospects of discovery new drugs from higher plants by pharmacological screening. In: H.Wagner and P.Wolff (eds.), New Natural products and plant drugs with pharmacological, biological and therapeautical activity, Springer Verlag, Berlin 1997: 1-22.
Farnsworth NR, Blowster RN, Darmratoski D, Meer WA, Cammarato LV (1967) Studies on Catharanthus alkaloids IV Evaluation by means of TLC and ceric ammonium sulphate spray reagent, Lloydia 27: 302-314.

Heinrich, M., 2000. Plant resources of south-east Asia medicinal and poisonous plants 1. Phytochemistry 53, 619–620.

Kaido, T.L., Veale, D.J.H., Havlik, I., and Rama, D.B.K. Preliminary screening of plants used in South Africa as traditional herbal remedies during pregnancy and labour. J. Ethnopharmacol., 1997; 55: 185-191.

Kamboj VP (2000): Herbal medicine. Cur. Sc. 78(1): 35-39.

Kandil, O., Radwan, N.M., Hassan, A.B., Amer, A.M.M. and El-Banna, H.R. (1994) Extracts and fractions of Thymus captitatus exhibit antimicrobial activities. J. Ethnopharmacol. 44, 19-24.

Latha PG, Evans DA, Panikkar KR, Jayavardhanan KK (2000): Inhibition of chemical carcinogenesis in mice by Ixora coccinea flower. Pharmaceutical Biol. 38(2): 152-156.

Manandhar, N.P. Traditional medicinal plants used by tribals of Lamjung District, Nepal. Int. J. Crude Drug Res., 1987; 25 (4): 236-240.

Perumal Samy R, Ignacimuthu S (1998): Screening of 34 Indian medicinal plants for antibacterial properties. J. Ethnopharmacol. 62: 173-182.

Pfister, J.A., Ralhrs, M.H., Gardner, D.R., Stegeleier, B.L., Manners, G.D., Panter, K.E., 2002. Management of three toxic Delphinium species based on alkaloid concentrations. Biochemical Systematics and Ecology 30, 129–138.

Puspangadan, P., and Atal, C.K. Ethnomedico-botanical investigation in Kerala I. Some primitive tribes of Western Ghats and their herbal medicine. J. Ethnopharmacol., 1984; 11: 59-77.

Rabe T, Staden JV (1997): Antibacterial activity of South African plants used for medicinal purposes. J. Ethnopharmacol. 56: 81-87.

Sofowora, A. Medicinal Plants and Traditional Medicine in Africa. Wiley and Sons, Chichester, 1982; pp. 75-76.

World Health Assembly, Resolution, WHA 1977; 30: 49.