Accepted Manuscript

Marine fouling invasions in ports of Patagonia (Argentina) with implications for legislation and monitoring programs

Evangelina Schwindt, Juan López Gappa, María Paula Raffo, Marcos Tatián, Alejandro Bortolus, José María Orensanz, Gloria Alonso, María Emilia Diez, Brenda Doti, Gabriel Genzano, Cristian Lagger, Gustavo Lovrich, María Luz Piriz, María Martha Mendez, Verónica Savoya, María Cruz Sueiro

PII: S0141-1136(14)00113-5
DOI: 10.1016/j.marenvres.2014.06.006
Reference: MERE 3909

To appear in: Marine Environmental Research

Received Date: 24 February 2014
Revised Date: 9 June 2014
Accepted Date: 12 June 2014

Please cite this article as: Schwindt, E., Gappa, J.L., Raffo, M.P., Tatián, M., Bortolus, A., Orensanz, J.M., Alonso, G., Diez, M.E., Doti, B., Genzano, G., Lagger, C., Lovrich, G., Piriz, M.L., Mendez, M.M., Savoya, V., Sueiro, M.C., Marine fouling invasions in ports of Patagonia (Argentina) with implications for legislation and monitoring programs, Marine Environmental Research (2014), doi: 10.1016/j.marenvres.2014.06.006.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Marine fouling invasions in ports of Patagonia (Argentina) with implications
for legislation and monitoring programs

Evangelina Schwindt¹,²*, Juan López Gappa³, María Paula Raffo¹,², Marcos
Tatián⁴, Alejandro Bortolus¹,², José María Orensanz², Gloria Alonso³, María Emilia
Diez², Brenda Doti⁵, Gabriel Genzano⁶, Cristian Lagger⁴, Gustavo Lovrich⁷, María
Luz Piriz², María Martha Mendez¹,², Verónica Savoya¹,², María Cruz Sueiro¹,²

¹ Grupo de Ecología en Ambientes Costeros (GEAC). E-mail address:
schwindt@cenpat.edu.ar (E. Schwindt), raffo@cenpat.edu.ar (M.P. Raffo),
bortolus@cenpat.edu.ar (A. Bortolus), mendez@cenpat.edu.ar (M.M. Mendez),
savoya@cenpat.edu.ar (V. Savoya), sueiro@cenpat.edu.ar (M.C. Sueiro)
² Centro Nacional Patagónico (CENPAT-CONICET), Puerto Madryn, Chubut,
Argentina. E-mail address: lobo@cenpat.edu.ar (J.M. Orensanz),
emiliadiez@cenpat.edu.ar (M.E. Diez), luz@cenpat.edu.ar (M.L. Piriz)
³ Museo Argentino de Ciencias Naturales “B. Rivadavia” (MACN-CONICET),
Ciudad Autónoma de Buenos Aires, Argentina. E-mail address:
lgappa@macn.gov.ar (J. López Gappa), galonso@macn.gov.ar (G. Alonso)
⁴ Instituto de Diversidad y Ecología Animal, (IDEA-UNC-CONICET), Universidad
Nacional de Córdoba, Córdoba, Argentina. E-mail address:
mtatian@gtwing.efn.uncor.edu (M. Tatián), cristianlagger@yahoo.com.ar (C.
Lagger)
⁵ Universidad de Buenos Aires (UBA-CONICET), Ciudad Autónoma de Buenos
Aires, Argentina. E-mail address: bdoti@bg.fcen.uba.ar
⁶ Estación Costera Nágera, Dpto. Cs. Marinas; Instituto de Investigaciones Marinas
y Costeras (IIMyC-CONICET-UNMdP), Mar del Plata, Argentina. E-mail address:
genzano@mdp.edu.ar
⁷ Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ushuaia, Tierra
del Fuego, Argentina. E-mail address: gustavolovrich@gmail.com
Author for correspondence: Grupo de Ecología en Ambientes Costeros, Centro Nacional Patagónico (CENPAT-CONICET), Blvd. Brown 2915, Puerto Madryn (U9120ACD), Chubut, Argentina. E-mail: schwindt@cenpat.edu.ar, Tel: 54-280-4883184, Fax: 54-280-4883543
Abstract

Ports are a key factor in the understanding and solving of most problems associated with marine invasive species across regional and global scales. Yet many regions with active ports remain understudied. The aim of this work was to (a) identify and quantify the marine fouling organisms in all Patagonian ports of Argentina classifying them as native, exotic or cryptogenic species through a rapid assessment survey and experimental studies, (b) survey the environmental and anthropogenic variables of these ports and (c) analyze and discuss these results in the light of the South America context for the study of marine invasive species, legislation and commerce. We found 247 fouling species, including 17 introduced, one of which is a new record for the region, and other 15 species currently considered cryptogenic species that will need further attention to clarify their status. The analysis of mobile and sessile taxa, together with the environmental variables measured in this study and the port movement, allow us to discuss individual ports’ vulnerability to future introductions. This is the first large scale study performed for this region on this topic, and it will help in developing monitoring programs and early detection plans to minimize new species introductions along the marine coastline of southern South America.

Keywords: Marine exotic species; Fouling; Ports; Southwestern Atlantic
1. Introduction

The introduction of invasive species is recognized as one of the top five threats to native biodiversity (Sala et al., 2000). An overwhelming number of species are transported worldwide every day by several means, and our understanding of their evolutionary history constantly reveals unexpected complexities (e.g., Geller, 1999; Fortune et al., 2008). Since ocean shipping is considered the most important vector for transporting and introducing species into new areas outside their native ranges (Ruiz and Carlton, 2003; Drake and Lodge, 2007), the monitoring of ports and harbors helps us to predict the vulnerability of local harbors and to develop regional management policies (Bishop and Hutchings, 2011). Indeed, harbors’ vulnerability is extremely difficult to predict due to the complexity presented by variables such as propagule pressure (Johnston et al., 2009), resource availability (Olyarnik et al., 2009), diversity of resident species and environmental conditions of the receptive habitat (Byers, 2002). Within this context, it is clear necessity to create accurate baseline information about these environmental conditions (Bishop and Hutchings, 2011; Mead et al., 2011).

Port areas concentrate a variety of artificial structures that support many different organisms (Glasby, 1999; Connell, 2001), and it is known that artificial and natural habitats are not equally colonized by fouling species (Connell, 2001). In fact, man-made structures seem to favor the recruitment and survival of fouling exotic species even when the richness of native species is relatively high (Glasby et al., 2007). Indeed, man-made habitats might even act as corridors enhancing the spreading of exotic marine species, as shown by Bulleri and Airoldi (2005) for the invasive Codium fragile subsp. tomentosoides. Considering that the 90% of the global trade is carried by sea, our understanding of global marine invasion ecology is strongly related to the effort we dedicate to study port areas.

The Southwestern Atlantic (SWA) is currently placing a considerable effort to compile all the records of marine exotic and cryptogenic species (e.g., Orensanz et al., 2002; Scarabino, 2006; Schwindt, 2008). However, the lack of tradition in integrating coastal ecology and the regional maritime history hampers our ability to understand biological invasion patterns in this region (Bortolus and Schwindt,
The earliest fouling studies in warm temperate Argentinean ports date from the 1960’s (Bastida, 1971; Valentinuzzi de Santos, 1971), and since then, most cold temperate ports within this region have never been intensively surveyed and their biodiversity remains largely unknown. Argentina has the second longest shoreline of the SWA, after Brazil. However, in contrast with the heavily populated and industrialized coast of Brazil, Argentina has only ten major marine ports along a mostly exposed shoreline with a few marinas associated with recreational activities (Boltovskoy, 2008). Thus, the aim of this work was (a) to identify and quantify the marine fouling organisms in all Patagonian ports of Argentina by conducting a Rapid Assessment Survey (hereafter RAS) and experimental studies, and classifying them as native, exotic or cryptogenic species (b) to survey/describe the environmental and anthropogenic variables of these ports and (c) to analyze and discuss these results in the light of the South America context on marine invasion ecology, legislation and commerce. This is the first large scale study performed for this region on this topic, and it will help in developing monitoring programs and early detection plans to minimize new species introductions along the marine coastline of southern South America.

2. Materials and Methods

2.1. Fouling sampling

Of the ten main marine ports of Argentina, we surveyed six, all of them situated in the Patagonian region from 40°S to 54°S: San Antonio Este (SAE), Puerto Madryn (PM), Puerto Deseado (PD), Punta Quilla (PQ), Río Gallegos (RG) and Ushuaia (U, Fig. 1). At each port, a RAS (qualitative fouling sampling) was conducted in spring 2005 on the subtidal zone (i.e. just under the intertidal zone but never exposed to the air) by scuba diving and scraping the surface of different pilings (n = 3 to 5 samples per port, 25 x 25 cm each). Samples were collected by expert scientific divers, bagged separately, labeled, fixed in formalin (4%) and then preserved in ethanol (70%) excepting for the algae, which were kept in formalin. Later, samples were sorted and identified to the lowest possible taxonomic level.
following the recommendations by Bortolus (2008; 2012a, b). Although most authors of this work have expertise in different taxa, we had the collaboration of several other expert taxonomists in order to cover most of the taxa found (see Acknowledgement section and Appendix A). Vouchers of the collected taxa were deposited in the Centro Nacional Patagónico (CENPAT) Invertebrate Collection. Planktonic and soft-bottom organisms were out of the scope of this study.

To identify the total biodiversity at each port, we complemented the RAS (qualitative sampling) with a survey with fouling plates (quantitative sampling). These plates ($n = 15$ per port, 20×20 cm each, one plate per piling) were vertically deployed at each port along the subtidal zone, at 1.5 m below the average low tide, during 18-22 months. All plates were made of fiberglass homogeneously scratched to increase the roughness. Plates were deployed between October/November 2005 (spring) and collected between June/July 2007 (Winter). At the end of this period all plates were placed separately in plastic bags and transported in coolers at ~5 °C to the laboratory for processing. In the laboratory each plate was photographed, and the percentage cover of sessile species and the abundance of mobile species, were recorded. Then, all the organisms were removed from the plates, fixed and preserved following Hewitt and Martin (2001). All organisms collected were identified to the lowest taxonomic level possible and deposited in the Invertebrate Collection of the CENPAT. Organisms were classified as native, cryptogenic or exotic following Chapman and Carlton (1991). We noted if a species represented the first record for the region (FR), or if it was never previously mentioned in the regional literature as exotic or cryptogenic species (NM), and also those found outside their known regional geographic range (RE, range extension).

2.2. Port characterization

To assess differences and similarities among ports and to discuss the potential vulnerability of every port to marine invasive species, we developed a database with nine environmental variables based on field sampling and literature surveys (following Clarke et al., 2004, Table B.1 of Appendix B). The main variables considered were: 1) sea surface water temperature, 2) air temperature,
3) tidal amplitude, 4) wind speed, 5) surface salinity, 6) rainfall, 7) port depth, 8) type of port and 9) the environmental impact of the city. For the first seven variables we estimated their maximum, minimum and average values. The resultant matrix was composed by 26 different variables (see Appendix B for details). These variables were selected because they were identified influencing on the survivorship of intertidal and shallow subtidal organisms in the port environment, according to the studies carried on by the Globalballast Programme (see for example Clarke et al. 2004 for the Port of Sepetiba, Brazil). In addition to these variables, we added wind speed because of its strong influence across the coastal area of Patagonia (Prohaska, 1970). The categorization of the environmental impact of the city was developed by Esteves (2007) considering coastal geography, the oceanographic and fluvial conditions, the pollution, and the eutrophication level recorded at each port (see Appendix B for details). In addition, to compare the port activity within the study area, we analyzed the average port movement (in tons) between 1998 and 2008 (Consejo Portuario Argentino, 2011 and the references therein) and the average number of ship entries reported for the same period for all the ports excepting PD, PQ (both 1998-2005) and RG (2000-2005). The port movement was obtained from the statistics reported at each port and it represents the total cargo movement of domestic and international ships. The shipping entries represent the total number of vessels (domestic and international) entering at each port. Since ballast water discharge reports are not mandatories in Argentinean waters, this information was not available to analyze in this study (for detailed discussion see Boltovskoy et al., 2011).

2.3. Data analysis

To explain the relationships between environmental variables and the composition of the total biological assemblages among ports, two canonical correspondence analyses (CCA) were performed independently for mobile and sessile taxa using the package Vegan (Oksanen, 2011) in the R computing environment. Previously, a correlation matrix of the 26 environmental variables was studied to detect problems of multicollinearity (see Table B. 2 of Appendix B). The
final analysis of CCA was performed using the following seven variables which represented the main environmental characteristics of the ports that we studied: average annual surface water temperature, average tidal amplitude, average annual wind speed, salinity, average monthly rainfall, port’s depth and type (see Table B. 3 of Appendix B for details). In addition, we used the one-way ANOVA to evaluate the null hypothesis of no differences in port movement (in tons) among ports (Zar, 1999). Another one-way ANOVA was used to evaluate the null hypothesis of no difference in taxonomic richness of the plates (mobile plus sessile taxa together) among ports (Zar, 1999). Levene and Kolgomorov-Smirnov tests were used to evaluate the homoscedasticity and normality of the data respectively. Data were square-root or log transformed to comply with the ANOVA assumptions. Finally, a posteriori Tukey tests were used to identify differences among means (Zar, 1999).

3. Results

A total of 247 fouling taxa and three associated fish species (Appendix A) were found; most organisms (77%) were recorded in the qualitative samples during the RAS, and most species (87%) were native. Overall, we found 17 exotic species (six macroalgae, five crustaceans, one bryozoan and five ascidians, Table 1) and 15 cryptogenic species (four macroalgae, four hydrozoans, two polychaetes, two crustaceans, one bryozoan and two ascidians, Table 1). The use of plates allowed us to detect several species unrecorded during the RAS (Appendix A), including five cryptogenic species (the macroalgae Bangia fuscopurpurea, Blidingia marginata, Dictyota dichotoma and Ectocarpus siliculosus, and the ascidian Cnemidocarpa robinsoni) and five exotic species (the macroalgae Anotrichium furcellatum, the bryozoan Bugula stolonifera and the ascidians Ciona intestinalis, Diplosoma listerianum and Molgula manhattensis, Table 1).

The port of SAE showed the highest number of exotic and cryptogenic species with a total of 20, followed by PD with 12 species (Table 1). Our record for the colonial ascidian Diplosoma listerianum is the first for Argentinean waters, being observed in SAE (on 12 of 15 plates) and less abundantly in PD (on two
plates). We re-categorized as exotic two species previously known as native (the amphipods *Jassa marmorata* and *Crassicorophium bonnellii*), and four other species we re-categorized as cryptogenic (the hydrozoans *Amphisbetia operculata*, *Obelia bidentata* and *Halecium delicatum*, Table 1). Finally, we detected a southward range extension for two known exotic species, the amphipod *Monocorophium insidiosum* and the ascidian *Molgula manhattensis*, found in U and PD, respectively. Nearly 50% of the surface mean cover on plates detected at SAE and PD were exotic or cryptogenic species (Fig. 2), while this percentage in the other ports was less than 13% (Fig. 2).

Mobile taxa were represented by turbellarians, polychaetes, brachyurans, carideans, isopods, amphipods, pycnogonids, gastropods, polyplacophorans, echinoderms and fishes (see Appendix A for complete species list). The first two CCA axes explained 90.9% (CCA1: 76.8% and CCA2: 14.1%) of the total variance in the analysis of mobile taxa (Fig. 3A). The ports of U, RG and PD were grouped showing similar taxa, mainly polychaetes, while PQ, SAE and PM differed their mobile taxa (Fig. 3A). Polychaetes, and particularly isopods, were abundant in PD. The port of SAE was the richest in terms of the mobile fauna. The carideans were present only in this port and the amphipods, mollusks, brachyurans and echinoderms showed their highest abundances there (Figs. 3A). Mobile fauna was almost absent in PQ. Ports were also separated by their environmental variables (Fig. 3A). The cold temperate ports of U, RG, PQ and PD were spread along the positive values of the first axis, while the warm temperate ports of SAE and PM were spread along the negative values also of the first axis. The ports of U, SAE and PM are situated in natural bays which were separated from PQ, PD and RG, located in estuarine areas. Salinity and temperature were high in SAE and PM and low in PQ and U. Rainfall was highest in U (Fig. 3A).

The cover values obtained from the plates for sessile taxa reached the maximum 100% in three ports (SAE, PD and U), ranging from 23% in RG to 72% in the remaining ports. The first two CCA axes explained 67.1% (CCA1: 37.8% and CCA2: 29.3%) of the total variance in the analysis of sessile taxa (Fig. 3B). Each port showed distinctive taxa composition, with the ascidians as the only taxonomic
group common to all ports. This taxon showed the highest average cover (85%) in PD, with eight species (three exotics and two cryptogenics, Table 1). Bryozoans, polychaetes and ascidians were the dominant faunal components in the ports of PD and U (Fig. 3B). The colonization by macroalgae registered on the plates was extremely low in most ports, excepting in PQ where they were dominant (average cover = 39%, Fig. 3B). Anthozoans were dominant in PM and abundant in SAE. In the latter the dominant taxon were the hydrozoans, mostly due to the presence of the cryptogenic *Ectopleura crocea* (average cover = 53%). The port of RG was very poor in terms of cover of sessile taxa, showing the lowest average cover (22.7%) compared to the other ports. Bivalves *Mytilus* spp. were the dominant taxon (17.3%). Environmental variables separated the ports in a similar way as the mobile taxa (Fig. 3B). The warm temperate ports of SAE and PM were also grouped by the high air and water temperatures, depth and salinity. The cold temperate ports (U, PD and PQ) were spread along the positive values of the second axis, except for RG which was closer to SAE and PM due to the high tidal amplitude. Rainfall was particularly high in U, and wind speed was highest in PQ.

The average port movement for the 1998-2008 period we analyzed showed significant differences among compared ports (square-root transformed data, $F = 123.4$, $MS_{\text{error}} = 8941$, $MS_{\text{effect}} = 1103881$, $df_{\text{error}} = 60$, $df_{\text{effect}} = 5$, $p < 0.05$, Fig. 4), with PM being the more active port with nearly 50% of the total movement, and significantly different from the others (Post-hoc Tukey test $p < 0.05$, Fig. 4). The U port was not significantly different from SAE or PD ($p > 0.05$). Finally, the ports RG and PQ showed the lowest values in port movement (less than 5%, $p < 0.05$, Fig. 4). These results were also accompanied by the average number of ship entries per port, excepting PD, in which the large number of ships showed a strong contrast with its port movement (Fig. 4).

Total taxonomic richness (considering both mobile and sessile taxa) was significantly different among the compared ports (square-root transformed data, $F = 78.9$, $MS_{\text{error}} = 0.22$, $MS_{\text{effect}} = 17.5$, $df_{\text{error}} = 84$, $df_{\text{effect}} = 84$, $p < 0.05$, Fig. 5A), showing the highest values for the plates deployed in SAE compared to the other ports (Post-hoc Tukey test $p < 0.05$, Fig. 5A). Also, the taxonomic richness was
higher in PD than in PM (p < 0.05), but neither of them was found significantly
different than U (p > 0.05). The ports of PQ and RG showed the lowest taxonomic
richness, with no significant differences between them (p > 0.05). Finally, although
the highest taxonomic richness was in SAE, the port of RG showed the highest
percentage of exotic and cryptogenic species in relation to the total number of taxa
found at that port (25%) mostly due to the high percentage of cryptogenic species
(15.6%, Fig. 5B). In second place was SAE with 21.7% due to the high number of
exotic species (n = 14), which was the 15.2 % of the total number of the species
observed (Fig. 5B).

4. Discussion

4.1. Assessment of marine exotic species and the port’s environments

We detected a relatively large number of new records of exotic and
cryptogenic species in addition to those reported in the literature for the ports we
studied (see Orensanz et al., 2002; Schwindt, 2008). Some of them refer to
species that had been previously misidentified as native, and which after reviewing
the literature and museum collections, we re-classified them more properly as
exotic or cryptogenic species. Our results include the third exotic colonial ascidian
reported to have been introduced to Patagonia (Diplosoma listerianum, Table 1)
after the stylid Botryllus schlosseri, collected for the first time in 1962 (Amor,
1964), and Lissoclinum fragile, detected for the first time in 2004 (Rico et al., 2012)
and which we recorded in SAE. Diplosoma listerianum and L. fragile are currently
spread throughout the Western Pacific, South Pacific, and Indian Ocean; the
Caribbean, Brazil, and West Africa (Rocha and Kremer, 2005; Carlton and
Eldredge, 2009). Although D. listerianum is considered native to Europe (e.g.
Monniot et al., 2001), its broad global distribution makes it difficult to determine a
precise native area (Carlton and Eldredge, 2009) hence the need for DNA data.
Ascidians are considered good indicators of anthropogenic transport over long
distances because they have short lifespan and lecithotrophic larvae and,
consequently, natural long distance dispersal is highly unlikely for these animals
(Lambert and Lambert, 1998). Moreover, since the larval stage is so short, the primary mode of anthropogenic transport of ascidians is likely to be hull fouling, which suggests that once introduced into a new region, local dispersal via domestic shipping is highly probable as a fouling species. This is particularly important for the Patagonian region, where a large proportion of the port entries are attributable to domestic shipping (Boltovskoy et al., 2011). We actually expect these tunicate species to disperse by shipping to other ports along the region in the near future, eventually reaching the Uruguayan coast in the North. In support to this we have recently found specimens of *D. listerianum* in PM (March 2012; Schwindt and Tatián, unpubl. data).

Most the ascidians found in PM were exotic species. Of the three exotic species found in this port, *Ascidiella aspersa* is considered as pioneer organism on artificial substrates (Collins et al., 2002; Schwindt et al., 2013). In Argentina, forty years after the introduction of *Ascidiella* (Tatián et al., 2010) studies showed that this species is not only one of the first species settling on fouling plates, but also that it quickly becomes a pest, overgrowing other exotic species like the invasive *Ciona intestinalis* (Schwindt et al., 2013). Among the eight ascidian species found in SAE, six of them (75%), are exotics or cryptogenics. Although *Diplosoma listerianum* is a new invader, this species showed the highest cover among all the ascidians we found growing on plates, and together with other exotic fouling species, were dominant over the native sessile species in this port. These species are well known because they can recruit rapidly and dominate the substrate and resist adverse conditions such as pollution from sewage, land runoff, heavy metals and periods of low salinity. Also, they show a high physiological flexibility that facilitates their success in all kind of ports and aquaculture facilities (Lambert and Lambert, 2003). Thus, the presence of new invader species like *A. aspersa*, *Molgula manhattensis* and *D. listerianum* could change dramatically the composition of the fouling communities in a short period.

The richness of the fouling species is not homogeneous across the ports of Patagonia, as each port was characterized by different taxonomic groups. It is noteworthy that the port of SAE showed not only the highest number of sessile and
mobile taxa (dominated by hydroids and amphipods respectively), but it also
showed the highest number of exotic and cryptogenic species among the ports that
we studied. Although the maritime activity of SAE (i.e. number of ship entries and
port movement) was not the highest among the ports compared, it is still a major
regional node for exporting goods, comparable to PD and U (Boltovskoy et al.,
2011). In fact, these are the only ports almost exclusively receiving vessels laden
with ballast water, and therefore the propagule pressure is expected to be higher
there than in the other ports. Concordantly to this, we have found that SAE and PD
ports have the highest number of exotic and cryptogenic species (20 and 12
respectively) among all ports studied, suggesting that a closer surveillance is
needed there.

Although port movement was similar in U and SAE, which are both export-
oriented ports (Boltovskoy et al., 2011), the number of exotic and cryptogenic
species found in U was among the lowest recorded (n = 4). Only PQ had the same
low number of exotic and cryptogenic species, being this port one of the least
active in the region. On the other hand, we found that RG doubles the number of
exotic and cryptogenic species of PQ port, which is very similar to RG in terms of
regional shipping activity (scarce in both) and low taxonomic richness. The
proportion of exotic and cryptogenic species in relation to the native biodiversity we
found in RG is one of the highest among the ports studied. Considering that none
of the non native species found in these ports were new arrivals, and that the port
movement is relatively low there, it was expected that PQ and RG have a low
vulnerability to new introductions. Since the sampling effort and level of expertise
were the same in all ports, these unexpected results strongly support the
hypothesis about the existence of environmental and biological variables able to
modulate the propagule pressure for a given site, especially in the port of U
(Boltovskoy et al., 2011).

The port of PM doubles the average number of ship entries of U and almost
three times that of SAE. Although taxonomic richness of PM was lower than in SAE
and comparable to U, the percentage of exotic and cryptogenic species found in
this port was one of the highest within the ports studied. This is a striking finding
since PM is not one the ports receiving important discharges of ballast water (Boltovskoy et al., 2011). This port is situated within a natural bay with signs of contamination by heavy metals and/or eutrophication (Gil et al., 1999; Diaz et al., 2002) It was through this port that the macroalga Undaria pinnatifida was introduced and nowadays is one of the most aggressive marine invasive species in Southern South America, affecting the abundance and richness of native organisms (Casas et al., 2004; Irigoyen et al., 2011). Therefore, the results of this study suggest that more data about the shipping activity are needed to better understand bioinvasions and the vulnerability of this port to new introductions.

4.2. The South American context of marine invasive species

While scientists have surveyed ports and coastal areas worldwide, cross-regional comparisons are still difficult to perform due to the implementation of different methods used and the often contrasting environmental conditions. Nevertheless, more efforts should be emphatically directed to coordinate international research teams to address cross-regional comparisons. In South America, other rapid assessment surveys of marine exotic species were performed in specific sites of Brazil (Ignacio et al., 2010; Marques et al., 2013), but exhaustive examinations of marine exotic and cryptogenic species were compiled only in Argentina, Uruguay (41 and 50 respectively, Orensanz et al., 2002; updated in Schwindt, 2008), Chile (51 and 47 respectively, Castilla and Neill, 2009) and Venezuela (22 and 67 respectively, Pérez et al., 2007). National reports and/or specific case-study publications were completed in Colombia (Gracia et al., 2011) and Brazil (e.g. Souza and Silva, 2004; Ferreira et al., 2009; Lopes, 2009; Farrapeira et al., 2011). The number of marine and brackish water exotic species reported in countries of South America is low if they are compared with other countries as Italy (89, Occhipinti-Ambrogi et al., 2011), South Africa (86, Mead et al., 2011), Britain (90, Minchin et al., 2013), Israel (296, Galil, 2007) and Germany (85, Gollasch and Nehring, 2006), among others. The scarce reports and compilations plus the intense maritime traffic of some South American countries (see below) calls the attention to the need of increase the surveys and monitoring.
programs in and around ports and ports of South America. A step forward to achieve an international cross-regional collaboration is given by the Convention for the Control and Management of Ship’s Ballast Water and Sediments, signed in 2004 by 74 States. However, the only country in South America that ratified the Convention was Brazil (IMO, 2014).

Every protocol to survey marine invasive species has weaknesses and strengths (reviewed in Campbell et al., 2007) and they are strongly dependent of the budget and the availability of taxonomists. In spite of this, it is clear that the profuse maritime commercial activity linking South American countries must be complemented with effective sampling protocols to detect invasive species (Campbell et al., 2007; Bishop and Hutchings, 2011). To achieve this goal, it is critical to identify the major potential routes of introduction. For instance, the United States of America and China represent together the major import/export partners of South American countries (nearly 50% of the maritime relationships for Venezuela; The World Factbook, 2013-14). However, the countries facing the Pacific coast of South America, have more commercial relationships with USA, China and other countries of the Pacific like Japan and South Korea (ranging between 41 and 52% of exports and imports) than among them, being the intraregional commerce of imports and exports lower than 8% (The World Factbook, 2013-14). On the other hand, along the Atlantic coast of South America, Brazil, Argentina and Uruguay have more commercial interchange among them than with the countries situated on the Pacific coast. For these last group, Brazil is the major import/export partner (ranging between 16 and 27%, The World Factbook, 2013-14) and its commercial activity is so important that in 2011 the 19.1% of the total containership occurred in Latin America and the Caribbean region was operated through Brazilian ports (Sánchez, 2012). Moreover, Santos harbor (23° 58’S, 46° 17’W) is one of the 20 most important harbors of the world with maritime activity, only compared to Panama (Kaluza et al., 2010). Thus, Brazil appears to be a major stepping stone in the region for marine invasions problem, that would likely contribute with their own biota (native and non native) to the rest of its commercial partners in South America.
5. Conclusions

Scientists’ ability to predict the vulnerability of a given habitat or community to invasions is largely hampered by the multiple variables involved (Byers, 2002; Johnston et al., 2009; Olyarnik et al., 2009). However, it is by performing the analysis of global patterns that scientists will be able to provide the best support to managers and decision-makers. The expedient and extensive rapid assessment survey we present in this study, complemented by quantitative sampling of fouling plates and an extensive compilation of significant environmental variables, provide the first large-scale information baseline of bioinvasion analysis along the Southern South American ports. We expect that these results will assist managers to design more optimal monitoring programs and will speed up the development of appropriate legislation for preventing further bioinvasions.

Conflict of interest
Authors declare that they do not have any conflict of interest.

Author contribution
ES conceived the ideas; ES, AB, GL lead the field work; ES, MPR, MED, MMM, VS, MCS performed lab work; ES, JLG, MPR, MT, JMO, GA, MED, BD, GG, CL, MLP identified the taxa; ES, JLG analyzed the data; ES, JLG and AB led the writing. All authors have approved the final article.

Acknowledgements
We are grateful to R. Vera, L. Loto, N. Ortiz, F. Quiroga and the late M. A. (Hormiga) Díaz, for excellent assistance with SCUBA diving and field work. We thank also to PNA and each port’s administrations (Patagonia Norte, A.P.P.M., UN.E.PO.S.C and Ushuaia) for allowed us to work inside the ports. We greatly appreciate help with taxonomic identifications from M. Brögger (Ophiuroidea, UBA, Argentina), F. Brusa (Turbellaria, UNLP, Argentina), S. Salazar Vallejo
A. C. Tovar-Hernández (Polychaeta, ECOSUR, México), M.A. Tovar-Hernández (Polychaeta, GEOMARE, México), J.T. Carlton (Williams-Mystic, USA), J. Chapman (the amphipod *M. acherusicum*, OSU, USA), R. Elias (Pycnogonida, UNMdP, Argentina), E. Gomez Simes (Caridea, UNPSJB, Argentina), A. Gosztonyi (fishes, CENPAT, Argentina), T. Rubilar (Asteroidea, CENPAT, Argentina), D. Zelaya (Mollusca, UBA, Argentina) and F. Scarabino (Mollusca, DINARA, Uruguay). D. Zelaya made useful comments on earlier drafts of this work. This study was partially funded by National Geographic Society (#7805-05 to ES), FONCyT-PICT # 20621 (to ES), Proyecto ARG/PNUD ARG 02/018 Subproyecto AB-54 (to JMO and ES), PIP CONICET 089 (to ES and MT), FONCyT-PICT # 2206 (to AB and ES) and SECyT-UNC (05/1602 to MT and ES). MPR, MED, MMM, MCS and VS were supported by doctoral fellowships from CONICET.

Literature Cited

Alonso de Pina, G.M., 2005. A new species of *Notopoma* Lowry & Berents, 1996, and a new record of *Jassa marmorata* Holmes, 1903, from the southwestern Atlantic (Amphipoda: Corophiidea: Ischyroceridae). Proc. Biol. Soc. Wash. 118, 528-538.

Alonso, G.M., 2012. Amphipod crustaceans (Corophiidea and Gammaridea) associated with holdfasts of *Macrocystis pyrifera* from the Beagle Channel (Argentina) and additional records from the Southwestern Atlantic. J. Nat. Hist. 46, 1799-1894.

Amor, A., 1964. Ascidias nuevas para la fauna argentina. Physis 68, 351.

Ärnbäck-Christie-Linde, A., 1938. Ascidiae. Part I. In: Further Zool. Res. Swedish Antarct. Exp. 3, 1-54.

Asensi, A.O., 1971. Un orden de algas pardas nuevo para Argentina. Darwiniana 3-4, 435-442.

Bastida, R., 1971. Las incrustaciones biológicas en el Puerto de Mar del Plata periodo 1966/67. Rev. Mus. Argent. Cienc. Nat. 3, 203-285.

Bishop, M.J., Hutchings, P.A., 2011. How useful are port surveys focused on target pest identification for exotic species management? Mar. Pollut. Bull. 62, 36-42.
Boltovskoy, D., 2008. Ed., Atlas de Sensibilidad Ambiental de la costa y el Mar Argentino, Secretaría de Ambiente y Desarrollo Sustentable, Argentina. Available in: http://atlas.ambiente.gov.ar.

Boltovskoy, D., Almada, P., Correa, N., 2011. Biological invasions: assessment of threat from ballast-water discharge in Patagonian (Argentina) ports. Environ. Sci. Policy 14, 578-583.

Boraso de Zaixso, A., 2002. *Rosenvingiella polyrhiza* (Rosenvinge) Silva (Prasiolales, Prasiolaceae) en Tierra del Fuego (Argentina). Naturalia Patagónica 1, 46-50.

Boraso de Zaixso, A., Akselman, R., 2005. *Anotrichium furcellatum* (Ceramiaceae, Rhodophyta) en Argentina. Una posible especie invasora. Bol. Soc. Argent. Bot. 40, 207-213.

Bortolus, A., 2008. Error cascades in the biological sciences: the unwanted consequences of using bad taxonomy in ecology. AMBIO 37, 114-118.

Bortolus, A., 2012a. Guiding authors to reliably use taxonomic names. Trends Ecol. Evol. 27, 418.

Bortolus, A., 2012b. Good habits come first in Science too: a reply to Straka and Starzomski. Trends Ecol. Evol. 27, 655.

Bortolus, A., Schwindt, E., 2007. What would have Darwin written now? Biodivers. Conserv. 16, 337-345.

Bulleri, F., Airoldi, L., 2005. Artificial marine structures facilitate the spread of a non-indigenous green alga *Codium fragile* ssp. *tomentosoides*, in the north Adriatic Sea. J. Appl. Ecol. 42, 1063-1072.

Byers, J.E., 2002. Physical habitat attribute mediates biotic resistance to non-indigenous species invasion. Oecologia 130,146-156.

Campbell, M.L., Gould, B., Hewitt, C.L., 2007. Survey evaluations to assess marine bioinvasions. Mar. Pollut. Bull. 55, 360-378.

Caputi, L., Andreakis, N., Mastrototaro, F., Cirino, P., Vassillo, M., Sordino, P., 2007. Cryptic speciation in a model invertebrate chordate. Proc. Natl. Acad. Sci. USA. 104, 9364-9369.
Carlton, J.T., Eldredge, L.G., 2009. Marine bioinvasions of Hawai‘i. The introduced and cryptogenic marine and estuarine animals and plants of the Hawaiian Archipelago. Bishop Museum Bulletins in Cultural and Environmental Studies 4. Bishop Museum Press, Honolulu, 202 pp.

Casas, G.N., Scrosati, R., Piriz, M.L., 2004. The invasive kelp Undaria pinnatifida (Phaeophyceae, Laminariales) reduces native seaweed diversity in Nuevo Gulf (Patagonia, Argentina). Biol. Invasions 6, 411–416.

Castilla, J.C., Neill, P., 2009. Marine Bioinvasions in the Southeastern Pacific: Status, Ecology, Economic Impacts, Conservation and Management. In: Rilov, G., Crooks, J.A. (Eds.), Biological Invasions in Marine Ecosystems. Ecological Studies 204, Springer-Verlag Berlin Heidelberg, pp. 439-458.

Chapman, J.W., Carlton, J.T., 1991. A test of criteria for introduced species: the global invasion by the isopod Synidotea laevidorsalis (Miers, 1881). J. Crustac. Biol. 11, 386-400.

Clarke, M., Castilla, J.C., 2000. Dos nuevos registros de ascidias (Tunicata: Asciacea) para la costa continental de Chile. Rev. Chil. Hist. Nat. 73, 503-510.

Clarke, C., Hilliard, R., Junqueira, A. de O.R., Neto, A. de C.L., Polglaze J., Raaymakers, S., 2004. Ballast Water Risk Assessment, Port of Sepetiba, Federal Republic of Brazil, December 2003: Final Report. GloBallast Monograph Series No. 14. IMO London.

Collins, K.J., Jensen, A.C., Mallinson, J.J., Roenelle, V., Smith, I.P., 2002. Environmental impact assessment of a scrap tyre artificial reef. ICES J. Mar. Sci. 59, S243–S249.

Connell, S.D., 2001. Urban structures as marine habitats: an experimental comparison of the composition and abundance of subtidal epibiota among pilings, pontoons and rocky reefs. Mar. Environ. Res. 52, 115-125.

Consejo Portuario Argentino, 2011. Buenos Aires, Argentina. Available in: http://www.consejoportuario.com.ar.
Diaz, P., López Gappa, J.J., Piriz, M.L., 2002. Symptoms of eutrophication in intertidal macroalgal assemblages of Nuevo Gulf (Patagonia, Argentina). Bot. Mar. 45, 267-273.

Drake, J.M., Lodge, D.M., 2007. Hull fouling is a risk factor for intercontinental species exchange in aquatic ecosystems. Aquat. Invasions 2, 121-131.

Esteves, J.L., 2007. Contaminación costera marina. In: Atlas de Sensibilidad Ambiental de la costa y el Mar Argentino, Boltovskoy, D. (Ed.). Available in: http://atlas.ambiente.gov.ar.

Farrapeira, C.M.R., Tenório, D.O.T., do Amaral, F.D., 2011. Vessel biofouling as an inadvertent vector of benthic invertebrates occurring in Brazil. Mar. Pollut. Bull. 62, 832–839.

Ferreira, C.E.L., Junqueira, A.O.R., Villac, M.C., Lopes, R.M., 2009. Marine Bioinvasions in the Brazilian Coast: Brief Report on History of Events, Vectors, Ecology, Impacts and Management of Non-indigenous Species. In: Rilov, G., Crooks, J.A. (Eds.), Biological Invasions in Marine Ecosystems. Ecological Studies 204, Springer-Verlag Berlin Heidelberg, pp. 459-478.

Fortune, P.M., Schierenbeck, K., Ayres, D., Bortolus, A., Catrice, O., Brown, S., Ainouche, M., 2008. The enigmatic invasive Spartina densiflora: A history of hybridizations in a polyploidy context. Mol. Ecol. 17, 4304-4316.

Galil, B.S., 2007. Seeing Red: Alien species along the Mediterranean coast of Israel. Aquat. Invasions 2, 281-312.

Genzano, G.N., Giberto, D., Schejter, L., Bremec, C., Meretta, P., 2009. Hydroid assemblages from the Southwestern Atlantic Ocean (34-42°S). Mar. Ecol. 30, 33-46.

Geller, J. 1999. Decline of a native mussel masked by sibling species invasion. Conserv. Biol. 13, 661–664.

Gil, M.N., Harvey, M.A., Esteves, J.L., 1999. Heavy metals in intertidal surface sediments from the Patagonian Coast, Argentina. Bull. Envirom. Contam. Toxicol. 63, 52-58.

Glasby, T.M., 1999. Differences between subtidal epibiota on pier pilings and rocky reefs at marinas in Sydney, Australia. Estuar. Coast. Shelf S. 48, 281–290.
Glasby, T.M., Connell, S.D., Holloway, M.G., Hewitt, C.L., 2007. Nonindigenous biota on artificial structures: could habitat creation facilitate biological invasions? Mar. Biol. 151: 887-895.

Gollasch, S., Nehring, S., 2006. National checklist for aquatic alien species in Germany. Aquat. Invasions 1, 245-269.

Gracia, A., Medellín-Mora, J., Gil-Agudelo, D.L., Puentes, V., 2011. (Eds.). Guía de las especies introducidas marinas y costeras de Colombia. INVEMAR, Serie de Publicaciones Especiales No. 23. Ministerio de Ambiente y Desarrollo Sostenible. Bogotá, Colombia. 136 p.

Guiry, M.D., Guiry, G.M., 2012. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available in http://www.algaebase.org.

Hewitt, C.L., Martin, R.B., 2001. Revised protocols for baseline port surveys for introduced marine species – Survey design, sampling protocols, and specimen handling. Centre for Research on Introduced Marine Pests, Hobart, Tasmania. Technical Report 22.

Hewitt, C.L., Campbell, M.L., Thresher, R.E., Martin, R.B., Boyd, S., Cohen, B.F., Currie, M.F., Gomon, M.J., Keogh, J.A., Lewis, M.M., Lockett, N.M., McArthur, M.A., O’Hara, T.D., Poore, G.C.B., Ross, D.J., Storey, M.J., Watson, J.E., Wilson, R.S., 2004. Introduced and cryptogenic species in Port Phillip Bay, Victoria, Australia. Mar. Biol. 144, 183–202.

Hoshino, Z., Nishikawa, T., 1985. Taxonomic Studies of Ciona intestinalis (L.) and its allies. Publ. Seto Mar. Biol. Lab. 30, 61-79.

Howes, S., Herbinger, C.M., Darnell, P., Vercaemer, B., 2007. Spatial and temporal patterns of recruitment of the tunicate Ciona intestinalis on a mussel farm in Nova Scotia, Canada. J. Exp. Mar. Biol. Ecol. 342,85-92.

Imazu, M.A., Ale, E., Genzano, G.N., Marques, A.C., 2014. A comparative study of populations of Ectopleura crocea and Ectopleura ralphii (Hydrozoa, Tubulariidae) from the Southwestern Atlantic Ocean Zootaxa 3753, 421–439.

International Maritime Organization, 2014. International Convention for the Control and Management of Ships’ Ballast Water and Sediments (BWM). Available at: http://www.imo.org.
Irigoyen, A.J., Eyras, C., Parma, A., 2011. Alien algae *Undaria pinnatifida* causes habitat loss for rocky reef fishes in north Patagonia. Biol. Invasions 13, 17-24.

Johnston, E.L., Piola, R.F., Clark, G.F., 2009. The role of propagule pressure in invasion success. In: Rilov, G., Crooks, J.A. (Eds.), Biological Invasions in Marine Ecosystems. Springer-Verlag, Heidelberg, pp. 133–151.

Kaluza, P., Koelzsch, A., Gastner, M.T., Blasius, B., 2010. The complex network of global cargo ship movements. J. Roy. Soc. Interface 7, 1093-1103.

Lambert, C.C., Lambert, G., 1998. Non-indigenous ascidians in southern California harbors and marinas. Mar. Biol. 130, 675-688.

Lambert, C.C., Lambert, G., 2003. Persistence and differential distribution of nonindigenous ascidians in harbors of the Southern California Bight. Mar. Ecol. Prog. Ser. 259, 145-161.

Lopes, R.M., 2009. (Ed) Informe sobre as espécies exóticas invasoras marinas no Brasil / Ministério do Meio Ambiente. IO-USP. Brasília: MMA/SBF. 440 p.

López Gappa, J., 2000. Species richness of marine Bryozoa in the continental shelf and slope off Argentina (South-west Atlantic). Divers. Distrib. 6, 15–27.

López Gappa, J., Alonso, G.M., Landoni, N.A., 2006. Biodiversity of benthic Amphipoda (Crustacea: Peracarida) in the Southwest Atlantic between 35ºS and 56ºS. Zootaxa 1342, 1-66.

Mathieson, A.C., Pederson, J.R., Neefus, C.D., Dawes, C.J., Bray, T.L., 2008. Multiple assessments of introduced seaweeds in the Northwest Atlantic. ICES J. Mar. Sci. 65, 730-741.

Mead, M., Carlton, J.T., Griffiths, C.L., Rius, M., 2011. Revealing the scale of marine bioinvasions in developing regions: a South African re-assessment. Biol. Invasions 13, 1991-2008.

Mendoza, M.L., 1970. Algunas observaciones y nuevas localidades de *Bangia fuscopupurea* (Rhodophyta). Physis 80, 283-290.

Minchin, D., Cook, E.J., Clark, P.F., 2013. Alien species in British brackish and marine waters. Aquat. Invasions 8, 3-19.

Monniot, C., Monniot, F., Griffiths, C.L., Schleyer, M., 2001. South African Ascidians. Ann. South African Mus. 108. Part 1. 141 pp.
Occhipinti-Ambrogi, A., Marchini, A., Cantone, G., Castelli, A., Chimenz, C., Cormaci, M., Froglia, C., Furnari, G., Gambi, M.C., Giaccone, G., Giangrande, A., Gravili, C., Mastrototaro, F., Mazziotti, C., Orsi-Relini, L., Piraino, S., 2011. Alien species along the Italian coasts: an overview. Biol. Invasions 13, 215-237.

Oksanen, J., 2011. Multivariate analysis of ecological communities in R: vegan tutorial, 43 pp.

Olyarnik, S.V., Bracken, M.E.S., Byrnes, J.E., Hughes, A.R., Hultgren, K.M., Stachowicz, J.J., 2009. Ecological factors affecting community invasibility. In: Rilov, G., Crooks, J.A. (Eds.), Biological invasions in marine ecosystems. Springer-Verlag, Heidelberg, pp. 215-238.

Orensanz, J.M., Schwindt, E., Pastorino, G., Bortolus, A., Casas, G., Darrigran, G., Elías, R., López Gappa, J.J., Obenat, S., Pascual, M., Penchaszadeh, P., Piriz, M.L., Scarabino, F., Spivak, E.D., Vallarino, E.A., 2002. No longer a pristine confine of the world ocean-a survey of exotic marine species in the Southwestern Atlantic. Biol. Invasions 4, 115-143.

Pérez, J.E., Alfonsi, C., Salazar, S.K., Macsotay, O., Barrios J., Martinez Escarbassiere, R., 2007. Especies marinas exóticas y criptogénicas en las costas de Venezuela. Bol. Inst. Oceanogr. Venezuela, 46, 79-96.

Prohaska, F., 1979. The climate of Argentina, Paraguay and Uruguay. In: W. Schwerdtfeger (Ed.) Climates of Central and South America. World Survey of Climatology. Elsevier, Amsterdam, 12,13-122.

Rico, A., Peralta, R., López Gappa, J., 2012. Succession in subtidal macrofouling assemblages of a Patagonian harbour (Argentina, SW Atlantic) Helgol. Mar. Res. 66, 577-584.

Rocha, R.M., Kremer, L.P., 2005. Introduced ascidians in Paranaguá Bay, Paraná, southern Brazil. Ver. Bras. Zool. 22, 1170-1184.

Ruiz, G.M., Carlton, J.T., 2003. (eds) Invasive species: vectors and management strategies. Island Press, Washington, DC.

Sala, O.E., Chapin III, F.S., Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L.F., Jackson, R.B., Kinzig, A., Leemans, R., 2000.
Lodge, D.M., Mooney, H.A., Oesterheld, M., Leroy Poff, N., Sykes, M.T., Walker, B.H., Walker, M., Wall, D.H., 2000. Global biodiversity scenarios for the year 2100. Science 287, 1770-1774.

Sánchez, R.J., 2012. Transporte marítimo internacional 2012. Ajustes, efectos y las lecciones de la mitología. Boletín Marítimo 51. 81 pp. CEPAL/UN, Chile. http://www.eclac.org

Scarabino, F., 2006. Faunística y taxonomía de invertebrados bentónicos de marinos y estuarinos de la costa uruguaya. In: Menafra, R., Rodríguez-Gallego, L., Scarabino, F., Conde, D. (Eds.), Bases para la conservación y manejo de la costa uruguaya. Vida Silvestre, Montevideo, pp. 113–142.

Schwindt, E., 2008. Especies exóticas en el Mar Patagónico y sectores aledaños. In: Foro para la Conservación del Mar Patagónico y Áreas de Influencia. Estado de conservación del Mar Patagónico y áreas de influencia. Puerto Madryn, Argentina, Edición del Foro. Available in: www.marpatagonico.org.

Schwindt, E., Tatián, M., Savoya, V., Casas, G., Lagger, C., Bortolus, A., 2013. Marine fouling communities in an increasingly active international harbor: temporal patterns of native and exotic species. 8th International Conference on Marine Bioinvasions. Vancouver, Canada.

Souza, R.S.C.L., Silva, J.V., (eds) 2004. Água de Lastro e Bioinvasão, Interciência, Rio de Janeiro, Brazil, 224 pp

Spivak, E.D., L’Hoste, S.G., 1976. Presencia de cuatro especies de Balanus en la costa de la Provincia de Buenos Aires. Distribución y aspectos ecológicos. Author’s edition, Mar del Plata (Argentina), 17 pp.

Spivak, E.D., Schwindt, E., in press. CRUSTACEA: Balanomorfos (Cirripedia: Thoracica). In: Libro Biodiversidad de Artrópodos Argentinos volumen 3, Roig-Juñent S., Claps L.E., Morrone J.J. (Eds.). Sociedad Entomológica Argentina

Tatián, M., Schwindt, E., Lagger, C., Varela, M.M., 2010. Colonization of Patagonian harbors (SW Atlantic) by an invasive sea squirt. Spixiana 33, 111-117.

Taylor, W.R., 1939. Algae collected by the "Hassler", "Albatross" and Schmitt expeditions. II. Marine algae from Uruguay, Argentina, the Falkland Islands,
and the Strait of Magellan. Pap. Mich. Acad. Sci., Arts Lett. 24, 127-164, Plates 1-7.

The World Factbook, 2013-14. Washington, DC: Central Intelligence Agency, 2013
https://www.cia.gov/library/publications/the-world-factbook/index.html
Accessed February 10th 2014.

Valentinuzzi de Santos, S., 1971. Estudio preliminar sobre las comunidades intercotidales del Puerto Ing. White. Physis 30, 407-416.

Zar, J.H., 1999. Biostatistical analysis, 4th edn. Englewood Cliffs: Prentice-Hall, Inc.
Figure Legends

Fig. 1. Studied marine ports of Argentinean Patagonia: San Antonio Este (SAE), Puerto Madryn (PM), Puerto Deseado (PD), Punta Quilla (PQ), Río Gallegos (RG) and Ushuaia (U).

Fig. 2. Mean cover (in percentage, + SE) of exotic and cryptogenic species found on fouling plates at each port. Abbreviations are the same as in Fig. 1.

Fig. 3. Canonical correspondence analysis triplot showing the ordination of ports (SAE, PM, PD, PQ, RG and U, see abbreviations in Fig. 1), environmental variables (Te: temperature, Ti: tidal amplitude, Wi: wind speed, S: salinity, Ra: rainfall, De: depth and PT: Port type), mobile taxa (A, Is: isopods, Po: polychaetes, Py: pycnogonids, Ba: brachyurans, Ca: carideans, Am: amphipods, Mo: mollusks, Ec: echinoderms, Tu: turbellarians) and sessile taxa (B, Ma: macroalgae, Ci: cirripedia, Br: bryozoans, Mo: mollusks, Pr: porifera, Po: polychaetes, As: ascidians, An: anthozoans, Hy: hydrozoans).

Fig. 4. Average port movement + SD (bars, left y axis) between 1998 and 2008 and average number of ship entries (diamonds, right y axis) reported for the same period for all the ports except for PD and PQ (1998-2005) and RG (2000-2005). Abbreviations of the ports are the same as in Fig. 1. Same letters indicate not statistically significant differences.

Fig. 5. Average taxonomic richness (A) and percentage of exotic and cryptogenic species (B) at each port. Same letters mean not statistically significant differences. Abbreviations are the same as in Fig. 1.

APPENDIX

APPENDIX A. Organisms found during the qualitative and quantitative sampling in all ports.

APPENDIX B. Environmental variables studied at each port (Table B.1) and Spearman rank order correlation matrix (Tables B.2 and B.3).
Table 1. Exotic and cryptogenic species recorded in Patagonian ports (SAE: San Antonio Este, PM: Puerto Madryn, PD: Puerto Deseado, PQ: Punta Quilla, RG: Rio Gallegos, U: Ushuaia) and their status (exotic, cryptogenic). TS: species that need taxonomic study, FR: species that represents the first record for the Patagonian coast, NM: species that were never mentioned in the SWA literature as exotic or cryptogenic, RE: exotic species that extended the distribution range according to the earliest reports in the region, P: taxa found only in fouling plates but not in the qualitative sampling, S: taxa found only during the qualitative sampling but not on the plates, B: taxa found on plates and during the qualitative sampling. Next to each taxon between brackets is the Phylum to which belongs each taxon. R: Rodophyta, Cl: Chlorophyta, O: Ochrophyta, Cn: Cnidaria, An: Annelida, Ar: Arthropoda, M: Mollusca, B: Bryozoa, Ch: Chordata,

Species	Ports SAE PM PD PQ RG U	Comments		
Anotrichium furcellatum (R)	P	Observed in Argentina since 1984 (Boraso de Zaixso and Akselman, 2005)		
Lomentaria clavellosa (R)	S	Native to Europe (Mathieson et al., 2008)		
Neosiphonia harveyi (R)	S	Previously described as *Polysiphonia argentinica* in 1872 (Taylor, 1939)		
Rosenvingiella polyrhiza (Cl)	S	First collected in 1972 (Boraso de Zaixso, 2002)		
Cutleria multifida (O)	S	First reported in Argentina around 1965 (Asensi, 1971)		
Undaria pinnatifida (O)	S	See Orensanz et al. (2002)		
Balanus glandula (Ar)	B S	First collected in 1974 (Spivak and L’Hoste, 1976)		
Monocorophium insidiosum (Ar)	S	RE. First collected in 1968 in fouling communities (López Gappa et al., 2006)		
Monocorophium acherusicum (Ar)	B S	First collected in Argentina in 1961 (USNM # 127701) NM. The species was barely observed since 1892. A recent taxonomic study confirmed its presence and suggested its native area (Alonso, 2012)		
Crassicorophium bonellii (Ar)	S			
Jassa marmorata	S			
Species	Ch	B	P	S
---------	----	---	---	---
Bugula stolonifera	(B)			
Ascidiella aspersa	(Ch)	B	B	B
Ciona intestinalis	(Ch)	P	P	
Diploma listerianum	(Ch)	P	P	
Lissoclinum fragile	(Ch)	B		
Molgula manhattensis	(Ch)	P	P	

CRYPTOGENICS

Species	Ch	B	P	S
Bangia fuscofuscorpura	(R)	P	S	
Blidingia marginata	(Cl)		P	
Dictyota dichotoma	(O)	S	P	
Ectocarpus siliculosus	(O)	P		
Ectopleura crocea	(Cn)	B	B	
Obelia bidentata	(Cn)		B	
Amphibeta operculata	(Cn)	S	S	B
Haleciurn delicatulum	(Cn)		B	
Boccardia polybranchia	(An)		S	
Syllis gracilis	(An)	S		

- Origin (Mead et al., 2011). Observed in Argentina and Uruguay since 1968 (Alonso de Pina, 2005). From 38° to 40°S strongly associated to port areas (López Gappa, 2000). See text (Tatín et al., 2010).
- TS. More detailed studies are needed for this region (see Caputi et al., 2007).
- Regional records of *Ciona robusta* belong to *C. intestinalis* (Hoshino and Nishikawa, 1985).
- FR. Origin unknown. First observed in 2004 (Rico et al., 2012). Origin unknown.
- RE. Strongly associated to port areas (Orensanz et al., 2002; Rico et al., 2012).
- TS. Observed in Argentina since 1969 (Mendoza, 1970). This species might be species complex (Guiry and Guiry, 2012).
- TS. Idem to *B. fuscorpura*.
- TS. This species requires a global taxonomic revision.
- TS. Wide distribution in NE Atlantic.
- NM. Found only in port areas (Genzano et al., 2009). Origin unknown.
- NM. Introduced in Australia (Hewitt et al., 2004).
- NM. Introduced in Australia (Hewitt et al., 2004).
- TS. This species might be a species complex.
| Species | Code | Description |
|--|------|--|
| Amphibalanus improvisus (Ar) | B | See Orensanz et al. (2002) |
| Caprella equilibra (Ar) | B | Strongly associated to port areas (López Gappa et al., 2006) |
| Conopeum reticulum (Ar) | S | Scattered records from 38° to 47°S (López Gappa, 2000) |
| Cnemidocarpa robinsoni (Co) | B | TS. Highly similar to Asterocarpa humilis reported as introduced in continental Chile (Clarke and Castilla, 2000) |
| Corella eumyota (Co) | B | Records in Argentina are scarce and reported for first time in the SWA in 1938 (Årnbäck-Christie-Linde, 1938) |

Total Number of Exotic Species	14	6	6	0	3	2
Total Number of Cryptogenic Species	6	1	6	4	4	2
Fig. 1. Schwindt et al.
Fig. 2. Schwindt et al.
Fig. 3. Schwindt et al.
Fig. 4. Schwindt et al.
Fig. 5. Schwindt et al.
Marine fouling invasions in ports of Patagonia (Argentina) with implications for legislation and monitoring programs

Evangelina Schwindt, Juan López Gappa, María Paula Raffo, Marcos Tatián, Alejandro Bortolus, José María Orensanz, Gloria Alonso, María Emilia Diez, Brenda Doti, Gabriel Genzano, Cristian Lagger, Gustavo Lovrich, María Luz Piriz, María Martha Mendez, Verónica Savoya, María Cruz Sueiro

Highlights
1. Marine native, exotic and cryptogenic species along major ports of Argentina are reported.
2. The port with the highest specific richness showed the highest number of exotic species.
3. A new marine exotic species is reported for Argentinean waters.
4. Taxa composition, environmental variables and port movement were different at each port.
5. Port’s vulnerability to future introductions is discussed.
Appendix A

Table A.1. Taxa identified at each Patagonian port (SAE: San Antonio Este, PM: Puerto Madryn, PD: Puerto Deseado, PQ: Punta Quilla, RG: Río Gallegos, U: Ushuaia) with the name of the taxonomic specialist responsible for its identification. Taxa are separated by Phylum and between brackets are the credits for the taxonomic identifications. P: taxa found only in fouling plates but not in the qualitative sampling, S: taxa found only during the qualitative sampling but not on the plates, B: taxa found on plates and during the qualitative sampling. Name of the Institutions abbreviated: UNLP: Universidad Nacional de La Plata (Argentina), UNPSJB: Universidad Nacional de la Patagonia San Juan Bosco (Argentina), UNMDP: Universidad Nacional de Mar del Plata (Argentina), UBA: Universidad de Buenos Aires (Argentina), DINARA: Dirección Nacional de Recursos Acuáticos (Uruguay), CENPAT: Centro Nacional Patagónico (Argentina), ECOSUR: El Colegio de la Frontera Sur (México).

Major taxonomic group	Ports	SAE	PM	PD	PQ	RG	U
Phylum Rhodophyta (ML Piriz)							
Acanthococcus antarcticus J.D. Hooker & Harvey		S	P				
Acrochaetium sp.							
Anotrichium furcellatum (J. Agardh) Baldock							
Antithamnion sp.		S	S				
Aphanocladiella robusta Pujals							
Ballia callitricha (C. Agardh) Kützing		S	B				
Bangia fuscopurpurea (Dillwyn) Lyngbye							
Callithamnion gaudichaudii C. Agardh		P	S				
Calliphyllis sp.		S	S				
Ceramium tenuicorne (Kützing) Waern		B	S				
Ceramium virgatum Roth		P	S				
Chondria macrocarpa Harvey		S					
Cladodonta lyallii (J.D. Hooker & Harvey) Skottsberg		S					
Corallinaceae		S					
Delesseria macloviana Skottsberg		S					
Delesseriaceae		B					
Erythrotrichia carnea (Dillwyn) J. Agardh		P					
Griffithsia antarctica J.D. Hooker & Harvey		S					
Heterosiphonia merenia Falkenberg		S	S				
Hymenena falklandica Kylin		S	S				
Hymenena laciniata (J.D. Hooker & Harvey) Kylin		S	S				
Hymenena sp.		S	S				
Lomentaria clavellosa (Lightfoot ex Turner) Gaillon		S	S				
Lophurella hookeriana (J. Agardh) Falkenberg		S	S				
Medieothamnion flaccidum (J.D. Hooker & Harvey)		B					
Brauner Neosiphonia harveyi (Bailey) M.-S.Kim, H.-G.Choi, Guiry & G.W.Saunders		S	S				
Phycodrys quercifolia (Bory de Saint-Vincent)		S	S				
Skottsberg Picconia pectinata (J.D. Hooker & Harvey) De Toni		P					
fil. Picconia plumosa (Kylin) J. De Toni		S					
Plocamium secundatum (Kützing) Kützing		S					
Polysiphonia abscessa J.D. Hooker & Harvey		S					
Phylum Chlorophyta (ML Piriz)							
----------------------------------	---						
Blidingia marginata (J. Agardh) P. Dangeard	P						
Chaetomorpha aerea (Dillwyn) Kützing	S						
Cladophora falklandica (J.D. Hooker & Harvey) J.D. Hooker & Harvey	S						
Cutleria multifida (Turner) Greville	P						
Dictyota dichotoma (Hudson) Lamouroux	B						
Ectocarpus siliculosus (Dillwyn) Lyngbye 1819	P						
Ectopleura crocea (Agassiz, 1862) B	B						
Microciona velutina (Harvey) J. Agardh	S						
Spongilla pinnatifida (Harvey) Suringar	S						
Phylum Chlorophyta (ML Piriz)							
Blidingia marginata (J. Agardh) P. Dangeard	P						
Chaetomorpha aerea (Dillwyn) Kützing	S						
Cladophora falklandica (J.D. Hooker & Harvey) J.D. Hooker & Harvey	S						
Cutleria multifida (Turner) Greville	P						
Dictyota dichotoma (Hudson) Lamouroux	B						
Ectocarpus siliculosus (Dillwyn) Lyngbye 1819	P						
Ectopleura crocea (Agassiz, 1862) B	B						
Microciona velutina (Harvey) J. Agardh	S						
Spongilla pinnatifida (Harvey) Suringar	S						
Phylum Chlorophyta (ML Piriz)							
Blidingia marginata (J. Agardh) P. Dangeard	P						
Chaetomorpha aerea (Dillwyn) Kützing	S						
Cladophora falklandica (J.D. Hooker & Harvey) J.D. Hooker & Harvey	S						
Cutleria multifida (Turner) Greville	P						
Dictyota dichotoma (Hudson) Lamouroux	B						
Ectocarpus siliculosus (Dillwyn) Lyngbye 1819	P						
Ectopleura crocea (Agassiz, 1862) B	B						
Microciona velutina (Harvey) J. Agardh	S						
Spongilla pinnatifida (Harvey) Suringar	S						
Phylum Chlorophyta (ML Piriz)							
Blidingia marginata (J. Agardh) P. Dangeard	P						
Chaetomorpha aerea (Dillwyn) Kützing	S						
Cladophora falklandica (J.D. Hooker & Harvey) J.D. Hooker & Harvey	S						
Cutleria multifida (Turner) Greville	P						
Dictyota dichotoma (Hudson) Lamouroux	B						
Ectocarpus siliculosus (Dillwyn) Lyngbye 1819	P						
Ectopleura crocea (Agassiz, 1862) B	B						
Microciona velutina (Harvey) J. Agardh	S						
Spongilla pinnatifida (Harvey) Suringar	S						
Specimen	Phylum						
------------------------------	-----------------	---	---				
Sertularella polyzonias (Linnaeus, 1758)	**Phylum Platyhelminthes** (F Brusa, UNLP)						
Nemertesia sp.							
Lafoea dumosa (Fleming, 1820)							
Halecium delicatulum Coughtrey, 1876							
Eudendrium ramosum (Linnaeus, 1758)							
Phylum Platyhelminthes (F Brusa, UNLP)							
Phrikoceros mopsus (Marcus, 1952)	B						
Thysanozoon sp.	P						
SO. Acotylea	B	S					
Phylum Nemertea	S	S	S				
Phylum Sipuncula	S	S					
Phylum Annelida (S Salazar Vallejo (ECOSUR), ME Diez, JM Orensanz)							
F. Chaetopteridae	P						
F. Chrysopetalidae	P						
F. Cirratulidae	P	S	B				
F. Eunicidae	P	B					
Eunice cf. argentinensis	S	S					
Marphysa cf. aenea	S						
F. Flabelligeridae	S						
Pherusa sp.	S						
Pherusa gymnopapillata Hartmann-Schröder, 1965	P						
F. Lumbrineridae	B	P	S				
F. Nereididae	S	P	B				
Perinereis sp.	S						
Platyneris australis (Schmarda, 1861)	P	S					
Phylo sp.	S						
Arabella acuta (Kinberg, 1865)	P						
Halosynta patagonica Kinberg, 1857	S	S	B				
Halosyntella australis (Kinberg, 1855)	S						
Harmothoe sp.	S						
Harmothoe exanthema (Grube, 1858)	S	P					
Harmothoe madrynensis Barnich, Orensanz & Fiege 2012	S	S	B				
F. Phyllodocidae	S						
Eumida sp.	P	P					
Eteone sp.	S						
F. Sabellidae	B	B					
Parasabella sp.	B	S	S				
Notaulax sp.	S						
F. Serpulidae	P	P					
Hydroides plateni (Kinberg, 1867)	B						
SF. Spirorbiniae	S	P	B				
Boccardia polybranchia (Haswell, 1885)	S						
F. Syllidae	B	S	B				
Syllis sp.	S						
Syllis gracilis Grube, 1840	S						
F. Terebellidae	B	B	B				
Thelepus sp.	S	S	S				
Phylum Arthropoda
(Caridea: E Gómez Simes, UNPSJB, Brachyura: MP Raffo, Cirripedia: E Schwindt, Pycnogonida: R Elias, UNMdP, Amphipoda: G Alonso, Isopoda: B. Doti)

Species	Author
Betaeus lilianae	Boschi, 1966
Nauticaris magellanica	(A. Milne Edwards, 1891)
Rochinia gracilipes	A. Milne Edwards, 1875
Pelia rotunda	A. Milne Edwards, 1875
Libinia spinosa	H. Milne Edwards, 1834
Halicarcinus planatus	(Fabricius, 1775)
Pilumnus reticulatus	(Stimpson, 1860)
Pachycheles chubutensis	Boschi, 1963
Eurypodius sp.	
Austromegabalanus psittacus	(Molina, 1782)
Balanus glandula	Darwin, 1854
Amphibalanus improvisus	(Darwin, 1854)
Balanus laevis	Brugiére, 1789
Elminius kingii	Gray, 1831
Anoploactylus petiolatus	(Krøyer, 1844)
Achelia assimilis	(Haswell, 1885)
Pycnodonum spp.	
Monocorophium insidiosum	(Crawford, 1937)
Monocorophium acherusicum	(Costa, 1853)
Corophium s.l.	
Crassicorophium bonnellii	(Milne Edwards, 1830)
Caprella equilibra	Say, 1818
Caprella sp. 1	
Caprella sp. 2	
Stenothoe sp.	
Probolisca sp.	
Dulichiea sp.	
Leucothoe sp.	
cf. Polycheria sp.	
Jassa marmorata Holmes	Holmes, 1905
Jassa sp.	
Erikus sp.	
Ampithoe sp.	
Austroregia huxleyana	(Bate, 1862)
Ultimachelium barnardi	(Alonso de Pina, 1993)
Lijeborgia octodentata	Schellenberg, 1931
Paramoera sp.	
Atylloella dentata K.H. Barnard	1932
cf. Lembos sp.	
Cymodec cf. bentonica	
Exosphaeroma lanceolatum	(White, 1843)
Exosphaeroma studeri	Vanhöffen, 1914
Ischyromene eatoni	(Miers, 1875)
Iais pubescens	(Dana, 1852)

Phylum Mollusca
(Bivalvia: D Zelaya (UBA) and E. Schwindt, Gastropoda: D Zelaya and F Scarabino, DINARA, Polyplacophora: MP Raffo and D Zelaya)

Species	Author
Aulacomya atra	Molina, 1782
Brachidontes purpuratus	Lamarck, 1819
Phylum Entoprocta (J López Gappa)	

Pedicellina sp.	

Phylum Bryozoa (J López Gappa)
Alcyonidium australe d'Hondt & Moyano, 1979
Alcyonidium sp.
Beania costata (Busk, 1876)
Beania magellanica (Busk, 1852)
Bugula stolonifera Ryland, 1960
Cellania malvinensis (Busk, 1852)
Celleporella hyalina s.l.
Chaperiopsis galeata (Busk, 1854)
Conopeum aculeatum (d’Orbigny, 1847)
Electra sp.
Fenestrulina sp.
Membranipora isabelleana (d’Orbigny, 1847)
Menipea patagonica Busk, 1852
Tricellaria aculeata (d’Orbigny, 1847)
Disporella sp.
Metroperiella galeata (Busk, 1854)
Smittoidea sp.

Phylum Echinodermata (Asteroidea: T Rubilar)
Memus viator (d’Orbigny, 1846)
Mytilus spp.
Hiatella meridionalis (d’Orbigny, 1846)
Hiatella sp.
Entodesma patagonica (d’Orbigny, 1846)
Ostrea puelchana d’Orbigny, 1842
Ostrea stentina Payraudeau, 1826
Sphonia hatcheri Pilsbry, 1899
Bostryx capulus odles Collin, 2005
Crepipatella cf. dilatata
Crepipatella dilatata (Lamarck, 1822)
Crepidula sp.
Fissurella ories Sowerby, 1835
Fissurella picta (Gmelin, 1791)
Fissurella radiosa radiosa Lesson, 1831
Fissurellidea patagonica (Strebel, 1907)
Margarella violacea (King & Broderip, 1832)
Tegula patagonica (d’Orbigny, 1835)
Costoanachis sertulariarum (d’Orbigny, 1839)
Parvanachis paesleri (Strebel, 1905)
Lachesis (?) *euthnoides* Melvill & Standen, 1898
Pareuthria plumbea (Philippi, 1844)
Photinastoma *taeniata* (Wood, 1828)
Trophon geversianus (Pallas, 1774)
Xymenopsis *muriciformis* (King, 1832)
Acteon *biplicatus* (Strebel, 1908)
Odostomia sp.
Sparilla sp.
Berghia *risgodominguezi* Muniain & Ortea, 1999
Callochiton *purinus* (Couthousy MS, Gould, 1846)
Chaetopleura isabellei (d’Orbigny, 1841)
Plaxiphora aurata (Spalowsky, 1795)
Phylum Entoprocta (J López Gappa)
Pedicellina sp.

Phylum Bryozoa (J López Gappa)
Alcyonidium australe d'Hondt & Moyano, 1979
Alcyonidium sp.
Beania costata (Busk, 1876)
Beania magellanica (Busk, 1852)
Bugula stolonifera Ryland, 1960
Cellania malvinensis (Busk, 1852)
Celleporella hyalina s.l.
Chaperiopsis galeata (Busk, 1854)
Conopeum aculeatum (d’Orbigny, 1847)
Electra sp.
Fenestrulina sp.
Membranipora isabelleana (d’Orbigny, 1847)
Menipea patagonica Busk, 1852
Tricellaria aculeata (d’Orbigny, 1847)
Disporella sp.
Metroperiella galeata (Busk, 1854)
Smittoidea sp.
Ophiuroidea: M Brögger, UBA, Echinoidea: MP Raffo

Allostichaster capensis (Perrier, 1875)
Anasterias antarctica (Lütken, 1857)
Diplodonta singularis (Müller & Troschel, 1843)
Ophiactis asperula (Philippi, 1858)
Amphipholis squamata (Delle Chiaje, 1828)
Ophioplocus januarii (Lütken, 1856)
Arbacia dufresnii (Blainville, 1825)
Pseudechinus magellanicus (Philippi, 1857)

PHYLUM CHORDATA (Ascidiacea: M Tatián, C Lagger, Osteichtherys: A Gosztonyi, CENPAT)	
Aplidium meridianum (Sluiter, 1906)	S
Aplidium variabile (Herdman, 1886)	B
Asciella aspersa (Müller, 1776)	B
Cnemidocarpa robinsoni Hartmeyer, 1916	B
Polyzoa opuntia Lesson, 1830	P
Styela paesleri (Michaelsen, 1898)	S
Ciona intestinalis (Linnaeus, 1767)	P
Corella eumyota Traustedt, 1882	B
Diplosoma listerianum (Milne-Edwards, 1841)	P
Lissoclinum fragile (Van Name, 1902)	B
Eudistoma platense Van Name, 1945	P
Molgula manhattensis (De Kay, 1843)	P
Paramolgula gregaria (Lesson, 1830)	S
Pyura legumen (Lesson, 1830)	S
Sycozoa gaimardi (Herdman, 1886)	P
Sycozoa sigillinoides Lesson, 1830	B
Patagonotothen squamiceps (Peters, 1877)	S
Patagonotothen sima (Richardson, 1845)	S
Patagonotothen cornucola (Richardson, 1844)	S

| **Total number of taxa observed** | 92 | 43 | 85 | 38 | 32 | 80 |
APPENDIX B.

Table B.1. List of variables studied at each port and the source of the information used.

Main Variable	**Specific Variable**	**Period recorded and Source**
Sea Surface Water Temperature (°C)	Annual mean (WTAM), maximum mean (WTMaxM), minimum mean (WTMinM), maximum at the hottest time of the summer season (WTMaxHS), mean during summer season (WTMS), minimum at the coldest time of the winter season (WTMinCW), mean during winter season (WTMW)	Servicio de Hidrografía Naval, Argentina (historical data from permanent oceanographic stations at the ports). For the port of San Antonio Este and Punta Quilla data were obtained from AVHRR Pathfinder, NOAA-NASA (period 1993-2003)
Air Temperature (°C)	Annual mean (ATAM), annual maximum mean (ATAMaxM), annual minimum mean (ATAMinM), mean of the maximum in summer season (ATMaxMS), mean of the minimum in winter season (ATMinMW)	Servicio Meteorológico Nacional 1981, 1986 (period 1961-1980). Data from Puerto Madryn obtained from Laboratorio de Datos CENPAT-CONICET (1982-2002)
Tidal Amplitude (m)	Mean (TAM), maximum in spring tides (TAMaxS), minimum in neap tides (TAMinN), mean with spring tides (TAMS), mean with neap tides (TAMN)	Charts of the Servicio de Hidrografía Naval, Argentina
Wind Speed (km/h)	Annual mean (WSAM)	Published data of the Servicio Meteorológico Nacional 1981, 1986 (period 1961-1980). Data from
Variable	Description	Source
----------	-------------	--------
Superficial Salinity	Annual mean (SAM)	Puerto Madryn obtained from Laboratorio de Datos CENPAT-CONICET (1982-2002)
Rainfall (mm)	Mean monthly (RMM), total Annual (RTA), total in the port's driest 6 months season (RTD), total in the port's wettest 6 months season (RTW)	Tapella et al. (2002 for Ushuaia), Piola 2007, field surveys were performed in Punta Quilla, Río Gallegos and Puerto Deseado
Port Depth (m)	Mean (De)	Consejo Portuario Argentino (2011)
Environmental impact of the city	This variable was categorized in high, medium and low considering the coastal geography, the oceanographic and fluvial conditions, the ecosystem disturbance, the pollution, and the eutrophication recorded at each port area (EIC)	Esteves (2007)
Port Type	Classification was based following Clarke et al. (2004) in natural bay, breakwater port, tidal creek, and estuary (HT)	Hydrographic charts, Consejo Portuario Argentino (2011)
Table B.2. Spearman rank order correlation matrix for the Sea Surface Water Temperature (1: WTAM, 2: WTMaxM, 3: WTMinM, 4: WTMaxHS, 5: WTMS, 6: WTMinCW, 7: WTMW), Air Temperature (8: ATAM, 9: ATAMaxM, 10: ATAMinM, 11: ATMaxMS, 12: ATMinMW), Tidal Amplitude (13: TAM, 14: TMaxS, 15: TMinN, 16: TAMS, 17: TAMN), Wind Speed (18: WSAM), Superficial Salinity (19: SAM), Rainfall (20: RMM, 21: RTA, 22: RTD, 23: RTW), Depth (24: De), Environmental Impact of the City (25: EIC) and Port Type (26: HT). Abbreviations are the same as in Table 1. Values in italics within the grey cells show the significant results (p < 0.05).

	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26														
1	0.98	0.99	0.76	0.98	0.96	0.97	0.99	0.97	0.97	0.93	0.75	0.09	0.47	0.03	-0.17	-0.42	0.68	-0.46	-0.47	-0.38	-0.39	**0.84**	0.49	-0.57															
2	0.95	0.81	0.93	0.93	0.98	0.94	0.91	0.91	0.9	0.9	0.66	-0.04	-0.12	0.45	-0.1	-0.29	-0.58	0.7	-0.29	-0.32	-0.21	-0.23	**0.87**	0.63	-0.67														
3	0.77	0.99	0.95	0.93	1	0.99	0.97	0.95	0.95	0.95	0.75	0.19	0.11	0.43	0.13	-0.05	-0.3	0.67	-0.58	-0.59	-0.51	-0.51	0.78	0.39	-0.45														
4	0.8	0.6	0.68	0.73	0.69	0.61	0.86	0.17	-0.11	-0.16	0.26	-0.14	-0.24	-0.59	**0.81**	-0.28	-0.31	-0.2	-0.13	0.59	0.7	-0.43																	
5	0.92	0.89	0.98	0.98	0.98	0.95	0.97	0.89	0.21	0.13	0.48	0.16	-0.02	-0.32	0.73	-0.59	-0.57	-0.51	-0.49	0.71	0.43	-0.4																	
6	0.95	0.95	0.96	0.95	0.95	0.81	0.97	0.95	0.95	0.95	0.78	-0.05	-0.13	0.43	-0.11	-0.32	-0.51	0.57	-0.3	-0.33	-0.22	-0.26	**0.93**	0.52	-0.71														
7	0.94	0.92	0.93	0.83	0.7	0.26	0.17	0.34	0.19	-0.02	-0.3	0.47	-0.48	-0.52	0.42	-0.49	0.8	0.32	-0.48	0.11	-0.09	-0.26	**0.86**	0.52	-0.49														
8	0.99	0.98	0.93	0.93	0.99	0.97	0.91	0.82	0.26	0.18	0.4	0.21	0.02	-0.2	0.59	-0.64	-0.65	-0.58	-0.59	0.76	0.29	-0.39																	
9	0.97	0.91	0.84	0.17	0.08	0.57	0.11	0.09	0.26	0.63	0.54	-0.51	-0.46	-0.47	0.78	0.35	0.35	-0.49	0.86	0.52	-0.47	-0.43	-0.37	0.66	0.54	-0.41													
10	0.53	0.09	0.02	0.57	0.04	-0.11	-0.39	**0.86**	-0.52	-0.47	-0.43	0.37	0.66	0.54	0.41	0.33	0.26	0.28	0.28	-0.08	0.07	0.11	-0.54	-0.56	-0.51	-0.61	0.7	-0.09	-0.34										
11	-0.26	1	0.96	0.63	-0.22	-0.7	-0.71	-0.77	-0.81	-0.32	-0.59	0.7	0.31	1	**0.98**	0.67	-0.27	-0.67	-0.68	-0.75	-0.78	-0.4	-0.64	0.76	0.07	0.03	0.37	0.74	-0.01	0.18	0.08	0.16	0.33	0.5	-0.45				
12	0.97	0.66	-0.25	0.69	-0.7	-0.76	0.8	-0.38	-0.63	0.75	0.33	-0.63	-0.64	-0.72	-0.73	0.55	0.71	**0.88**	-0.57	-0.56	-0.53	-0.63	-0.63	-0.54	**0.97**	0.61	0.18	-0.07	-0.08	-0.04	0.43	0.75	0.43	-0.43	0.97	0.96	-0.12	0.42	-0.39
	0.98	0.98	-0.18	0.43	-0.36																																		
---	------	------	-------	------	-------																																		
22	0.98	-0.03	0.51	-0.48																																			
23	-0.09	0.55	-0.44																																				
24	0.52	-0.85																																					
25			-0.75																																				
Table B.3. Spearman rank order correlation matrix reduced for the environmental variables of the ports being Te: temperature, Ti: tidal amplitude, Wi: wind speed, S: salinity, Ra: rainfall, De: depth and PT: port type. Significant results are shown within the grey cells (p < 0.05).

Parameters	Ti	Wi	S	Ra	De	PT
Te	0.09	-0.42	0.68	-0.46	0.84	-0.57
Ti	0.63	-0.22	-0.7	-0.32	0.7	
Wi	-0.57	-0.56	-0.54	0.81		
S	-0.18	0.43	-0.43			
Ra	-0.12	-0.39				
De					-0.85	
Literature cited

Consejo Portuario Argentino, 2011. http://www.consejoportuario.com.ar

Esteves, J.L., 2007. Contaminación costera marina. In: Atlas de Sensibilidad Ambiental de la costa y el Mar Argentino, Boltovskoy, D. (Ed.). Available in: http://atlas.ambiente.gov.ar.

Laboratorio de Datos CENPAT-CONICET, 2011. METEOCEAN. Área de Oceanografía y Meteorología del Centro Nacional Patagónico - CONICET. Available in: http://www.meteocean.com.ar

Piola, A., 2007. Oceanografía física. In: Atlas de Sensibilidad Ambiental de la costa y el Mar Argentino, Boltovskoy, D. (Ed.). http://atlas.ambiente.gov.ar.

Servicio de Hidrografía Naval Argentina, 2011. http://www.hidro.gov.ar/

Servicio Meteorológico Nacional, 1981. Estadísticas Meteorológicas 1961-1970. Publicación Estadística 35. Buenos Aires, Argentina.

Servicio Meteorológico Nacional, 1986. Estadísticas Meteorológicas 1971-1980. Publicación Estadística, 36. Buenos Aires, Argentina.

Tapella, F., Lovrich, G.A., Romero, M.C., Thajje, S., 2002. Reproductive biology of the crab Munida subrugosa (Decapoda: Anomura: Galatheidae) in the Beagle Channel, Argentina. J. Mar. Biol. Assoc. U.K. 82, 589-595