Extreme Pressure Properties of 600 N Base Oil Dispersed With Molybdenum Disulphide Nano Particles

V. Srinivas*, Ch. Kodanda Rama Rao, M Abyudaya , E Siva Jyothi

Department of Mechanical engineering, GITAM University

*Corresponding Author:vsrinivas@gitam.edu

Abstract

This work presents the extreme-pressure behavior of 600 N base oil dispersed with MoS₂ Nano particles with 1 volume percent of polyisobutenesuccinamide as dispersant. MoS₂ Nano particles were dispersed in 0.05, 1.0 wt. % and tested for Extreme pressure behavior on a 4 ball wear tester using the test method ASTM D 2783. The weld load and load wear index of base oil and oil dispersed with Nano particles are evaluated and compared for improvement. Prior to dispersion, the MoS₂ Nano particles are suitably surface modified to make them uniformly disperse in oils. The seizure load, weld load and load wear index of Nano particles dispersed oils have improved remarkably compared to Base oil. Metallographic studies done on the wear balls show that Nano particles get deposited on the worn area preventing the welding of the surfaces and hence higher weld load. The wear scar of bottom there balls are also found to be less for Nano dispersed oils compared to base oil and hence lower load-wear index.

Keywords

600 N Base Oil, MoS₂ Nano Particles, Base Oil, Extreme Pressure, Polyisobutenesuccinamide, Surface Modification, Seizure Load, Load Wear Index, Weld Load

1. Introduction

Molybdenum disulfide (MoS₂) is the inorganic compound which is classified as a di-chalcogenide. Molybdenum atoms are sandwiched between layers of sulfur atoms. Because of the weak vanderwaals interactions between the sheets of sulfide atoms, MoS₂ has a low coefficient of friction, resulting in its lubricating properties. MoS₂ with particle sizes in the range of 1-100µm is a common lubricant additive used in most of 2s and 4s engine oils MoS₂ retain its lubricity almost in all cases and also finding a use in critical applications such as Aircraft engines.

Extreme pressure or Extreme temperature lubricants have been developed for two main fields-the lubrication of Gears and as lubrications in metal working. Friction and surface damage caused by high temperatures and pressures can be reduced by applying extreme pressure (EP) and anti-wear (AW) additives. These tend to be sulphur-chlorine and phosphorous containing compounds designed to react chemically with the metal surfaces, forming easily sheared layers of sulphides, chlorines or phosphide and thereby preventing severe wear and seizure. The advantage of using nano materials in lubricants are 2 fold: one they form a barrier between two mating surfaces thereby preventing wear and secondly the spherical nano particles cat as rollers thereby reducing friction.

2. Literature Review

MoS₂ in particular have attracted considerable interest due to their wide range of promising applications [Fendler et.al, 1995]. During the last decade, a number of attempts were made to synthesize inorganic nano particles as lubricant additives [Liu et.al, 2000]. One of the main difficulties of using nano particles as additives is their dispersion in the lubricant oils. With the surface modification of nano particles trough long chain high molecular weight hydrocarbons, more and more inorganic compounds stably dispersed in lubricant oils become feasible [Rapoport et al, 1997]. V. N. [Bakunin et al, 2004]. investigated the tribological behavior of surface-capped MoS₃ nanoparticles (nano-MoS₃) in hydrocarbon oils in combination with ZDDP at test temperatures in the range of 100–160 °C and at ZDDP content of 0–1.0 wt% in oil. It was demonstrated that this combination of additives demonstrates high anti-wear and antifriction efficiency, especially at high temperatures and low ZDDP content. Under the tested conditions, the best tribological properties are demonstrated by the composition comprising 500 ppm Mo and 0.1 wt% ZDDP in oil. Xun Fu et al. studied the tribological properties of MoS₂ micro-sized spheres with diameter of 0.5–3m modified by self-prepared surfactant quaternary ammonium salt of 2-undecyl-1-dithioureido-ethyl-imidazoline (SUDEI) as an additive in base oil 500 SN. The tests for improvement in tribological properties were carried out on a four ball tester and an Optimol SRV oscillating friction and wear tester in a ball-on-disk contact configuration. It was found that the
MoS₂ micro-sized spheres product was a much better extreme-pressure additive and anti-wear and friction-reduction additive in 500 SN than commercial colloidal MoS₂.

3. Research Methodology

3.1. Lubricant Base Stock and Selection of Nano Particles

600 N oil is selected as it is the base stock for all gear oils. The base stock contains small amount of sulphur (2 to 3%). In the literature, several types of metal, metal oxide, inorganic and organic nano particles were used to improve the tribological properties of lubricants, most of them are not suitable as lubricant additives due to their corrosive or abrasive properties. The research explores the study of MoS₂ nano particles inclusion for the improvement of extreme pressure properties of 600 N oils. Molybdenum disulphide (MoS₂) nano particles are procured from M/s Nanoshel, USA.

3.2. Characterization of Nano Particles

The nano material is characterized using SEM & EDX to verify the size, shape and chemical composition. The loose agglomerates magnified in SEM are as shown below.

Element	Weight%	Atomic%
S K	21.04	44.36
Mo L	78.96	55.64
Totals	100.00	100.00

3.3. Extreme pressure test machine and procedure

The Four-Ball EP Test rotates a ½-inch diameter ball in contact with three similar balls held stationary in the test cup. The contact surfaces are covered with test lubricant, a load is applied and a timed test is performed. Normally, the wear scars on the three lower balls are measured and averaged. The test is generally terminated at the load where the rotating ball ‘welds’ to the three stationary balls.

The Load-Wear Index (LWI) quantifies the wear protection at increasing loads. The Last Non-Seizure Load (LNSL) indicates the transition from elasto-hydrodynamic to boundary lubrication and metal to metal contact.

3.4. Evaluation of EP Properties of Gear Oils Using ASTM D 2783

This test method covers the determination of the load carrying properties of lubricating fluids. The following two determinations are made:
1. Load-wear index (formerly Mean-Hertz load).
2. Weld point by means of the four-ball extreme-pressure (EP) tester.

Summary of the method:
The tester is operated with one steel ball under load rotating against three steel balls held stationary in the form of a cradle. Test lubricant covers the lower three balls.
occur on the check run, the test is repeated at the next higher load until welding is verified. If ten loads have not been run when welding occurs, the total was brought to ten by assuming, according to the standard, that loads below the last non seizure load (LNSL) produce wear scars equal to the compensation scar diameter.

The corrected load is calculated for all ten reading and the load wear index is calculated for a lubricant.

\[
\text{Corrected load} = \frac{L D_h}{X}
\]

Where
- \(L\) = applied load, kgf, that is, total weight applied,
- \(D_h\) = Hertz scar diameter, mm, and
- \(X\) = average scar diameter, mm.

Hertz line:

The Hertz line was obtained by plotting the Hertz scar diameter against the load. The Hertz scar diameter (\(D_h\)) is the average diameter of an indentation caused by the deformation of the balls under static conditions.

\[
D_h = 8.73 \times 10^{-2} (P)^{1/3}
\]

where:
- \(D_h\) = Hertz scar diameter, and
- \(P\) = the static load applied.

A line of plot on log-log paper where the coordinates are scar diameter in millimeters and applied load in kilograms-force (or Newton) obtained under static conditions.

3.5 Load-Wear Index (LWI)

The load-wear index (LWI) is an index of the ability of lubricant to minimize wear at applied load. It is a single parameter that shows the overall EP behavior in a range between well below seizure and welding. Higher is the value of LWI, better is the EP property. It may be calculated from the expression:

\[
\text{LWI (kgf)} = \frac{A}{10}
\]

Where:
- \(A\) = sum of the corrected loads determined for the ten applied loads immediately preceding the weld load.
- \(P\) is the applied load, \(d_h\) the Hertz diameter, \(d\) the wear scar diameter and \(n\) is the total number of occurrences.

4. Results and Analysis

4.1. EP Tests on 600 N oils

Extreme pressure test are carried out on 600 N oil dispersed with MOS\(_2\) nano particles.

The following results are obtained

Figure 3. Schematic Diagram of Load Vs Wear Scar

Table 1. Load Wear Indices, Seizure Loads and Weld Loads of Various Oils

Oil	load wear index	Seizure load	weld load
600 N base oil	56.52	120	250
BASE OIL + 0.1% MoS\(_2\)	63.32	140	280
BASE OIL + 0.05% MoS\(_2\)	84.30	180	280
All nano particle suspensions improve the EP properties of the base oil. Dispersion of all nano materials improved weld load as well as last non seizure load.

4.2. Metallographic Studies on Worn Surface of Balls

Metallographic studies are being conducted to assess the possible reason for reduction in friction and wear due to dispersion of Nano materials in the lubricants. The scar area after tests on 4 ball wear test is magnified in SEM and observed for deposition of particles on the surface. The characterization done on SEM – EDX reveals the deposition of Nano materials on the surface could be the possible mechanism for reduction in friction, wear and improvement in EP properties with addition of Nano materials. The detailed characterization done on Scanning electron microscope with EDX attachment is shown in the following figures.

From figs. 5& 6 it may be noted that there is a deposition of MoS₂ on the worn surface due to which there is reduction in the friction thereby wear. Further, it may be noted that the deposition rate is more with 0.1 % MoS₂ dispersion compared to 0.05 % MoS₂. This higher deposition may be due to overcrowding of nano particles and their fusion to the worn surface at higher pressures.

5. Conclusions
could well deposit on the worn surface preventing seizure and weld.

The optimum weight percentage of nano particle is 0.05 % for good results.

Surface modification and addition of dispersant improved the dispersion of MoS2 nano particles and thereby improved the Extreme pressure properties of 600 N oil.

REFERENCES

[1] Bakunin, V.N., Suslov, A.Yu., Kuzmina, G.N. and Parenago O.P., "Synthesis and application of inorganic nanoparticles as lubricant components – a review", Journal of Nano particle Research Vol. 6: pp.273–284, (2004)

[2] Belin, M.: Triboscopy: a new quantitative tool for microtribology. Wear 168, 7–12 (1993)

[3] B. Li, X. Wang, W. Liu and Q. Xue, Tribochemistry and antiwear mechanism of organic–inorganic nanoparticles as lubricant additives, Tribology Letters, Vol. 22, No. 1, April 2006

[4] C.S. Chen, X.H. Chen, L.S. Xu, Z. Yang, W.H. Li, Modification of multi-walled carbon nanotubes with fatty acid and their tribological properties as lubricant additive, Carbon 43 (2005) 1660–1666

[5] Cizaire, L., Vacher, B., Le-Mogne, T., Martin, J.M., Rapoport, L., Margolin, A., Tenne, R., Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles. Surface Coat Technology. Vol. 160, pp-282–287 (2002)

[6] C.C. Chou and S.H. Lee, Rheological behavior and tribological performance of a nano diamond-dispersed lubricant, Journal of materials processing technology 201 (2008) 542–547

[7] Fendler J.H. & F.C. Meldrum, 1995. The colloid-chemical approach to nanostructured materials. Adv. Mater. 7(7),607–632.

[8] G. Liu, X. Li, B. Qin, D. Xing, Y. Guo and R. Fan, 'Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface', Tribology Letters, Vol. 17, No. 4, November 2004

[9] G. Liu, X. Li, N. Lu and R. Fan, Enhancing AW/EP property of lubricant oil by adding nano Al/Sn particles, Tribology Letters, Vol. 18, No. 1, January 2005

[10] J. J. Lee, C. Kwak, Y. J. Yoon, T. Hyeon and S. H. Moon, Stud. Surf. Sci. Catal., 130, 2777 (2000).

[11] J. J. Lee, H. Kim and S. H. Moon, Appl. Catal. B, 41, 171 (2003).H. Kim, J. J. Lee, J.H. Koh and S. H. Moon, Appl. Catal. B, 54, 33(2004).

[12] Liu W., Z. Zhang, S. Chen & Q. Xue, ‘The research and application of colloids as lubricants’ J. Disp. Sci. Technol. 21(4), 469–490, 2000.

[13] Jaekeun Lee, Sangwon Cho, Yujin Hwang, Changgun Lee and Soo H. Kim, Enhancement of Lubrication Properties of Nano-oil by Controlling the Amount of Fullerene Nano particle Additives, Tribology Letter (2007) 28:203–208

[14] K.W. Street, M. Marchetti, R.L. Vander Wal and A.J. Tomasek, Evaluation of the tribological behavior of nano-onions in Krytox 1433AB, Tribology Letters, Vol. 16, Nos. 1–2, February 2004

[15] L. Kolodziejczyk, D. Martinez-Martinez, T. C. Rojas, A. Fernandez and J. C. Sanchez-Lopez, ‘Surface-modified Pb nanoparticles as a superior additive for lubrication’, Journal of Nanoparticle Research, 2006.

[16] L. Joly-Pottuz, B. Vacher, N. Ohmae, J. M. Martin, T. Epiceric, Anti-wear and Friction Reducing Mechanisms of Carbon Nano-onions as Lubricant Additives, Tribology Letters (2008) 30:69–80

[17] L. Joly-Pottuz, B. Vacher, Le Mogne, J. M. Martin, T. Mieno, C. N. He, and N. Q. Zhao, the Role of Nickel in Ni-Containing Nanotubes and Onions as Lubricant Additives, Tribology Letters (2008) 29:213–219

[18] L. Joly-Pottuz, F. Dassenoy, M. Belin, B. Vacher, J.M. Martin and N. Fleischer, Ultralow-friction and wear properties of IF-WS2 under boundary lubrication, Tribology Letters, Vol. 18, No. 4, April 2005

[19] Preparation and tribological properties of tetrafluoro benzoic acid modified TiO2 nanoparticles as lubricant additives, Wenyu Ye, Tiefeng Cheng, Qing Ye, Xinyong Guo, Zhijun Zhang and Hongxin Dang, Materials Science and Engineering A359 (2003) 82-85

[20] Rapoport, L.; Blik, Y.; Feldman, Y.; Homyonfer, M.Cohen, S. R.; Tenne, R. Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 1997, 387, 791,793.

[21] R. Greenberg, G. Halperin, I. Etsion, and R. Tenne, The effect of WS2 nanoparticles on friction reduction in various lubrication regimes, Tribology Letters, Vol. 17, No. 2, August 2004

[22] SHI Chen, MAO Da-heng and FENG Hao, Preparation of tungsten disulfide motor oil and its tribological characteristics, J. Cent. South Univ. Technol. (2007)05–0673–06, Springer 2007

[23] V.N. Bakunin, A.Yu. Suslov, G.N. Kuzmina and O.P. Parenago, Synthesis and application of inorganic nanoparticles as lubricant components – a review, Journal of Nanoparticle Research 6: 273–284, 2004

[24] V. N. Bakunin, A. Y. Suslov , G. N. Issue Kuzmin , L. M. Vedeneev , O. P. “Surface-capped molybdenum sulphide nanoparticles — a novel type of lubricant additive”, Lubrication Science Volume 16, Issue 3, pages 207–214, May 2004

[25] V.N. Bakunina, G.N. Kuzmina, M. Kasrai, O.P. Parenago and G.M. Bancroft, Tribological behavior and tribofilm composition in lubricated systems containing surface-capped molybdenum sulfide nanoparticles, Tribology Letters, Vol. 22, No. 3, June 2006