EXPLICIT DESCRIPTION OF A CERTAIN DESTABILIZING WALL OF SKYSCRAPER SHEAVES ON RULED SURFACES

TAKAYUKI UCHIBA

ABSTRACT. We give an explicit description of gluing stability conditions on ruled surfaces by introducing gluing perversity. Moreover, we describe a destabilizing wall of skyscraper sheaves on ruled surfaces by deformation of stability conditions glued from $\tilde{GL}^+ (2, \mathbb{R})$-translates of the standard stability condition on the base curve.

1. Introduction

Bridgeland introduced the notion of a stability condition on a triangulated category in [Bri1]. A stability space which is a set of stability conditions on a fixed triangulated category has a natural topology if one assumes locally niteness for stability conditions. Especially, each connected component of the stability space is a complex manifold ([Bri1] Theorem 1.2). In this paper we describe a destabilizing wall of skyscraper sheaves on ruled surfaces in the stability space. A fundamental example of locally finite stability condition is geometric stability conditions ([Bri2] §6, [Ohk] Denition 3.5). However, the skyscraper sheaves are stable of the same phase with respect to geometric stability conditions ([Ohk] Proposition 3.6). Hence we need to ask if there is a stability condition with respect to which skyscraper sheaves are strictly semistable of the same phase.

Collins and Polishchuck [CP] introduced gluing stability conditions on a triangulated category that has a semi-orthogonal decomposition. A derived category on a ruled surface has a semi-orthogonal decomposition that consists of its subcategories which are equivalent to the derived category on the base curve ([Orl]). Hence, one can hope to construct stability conditions glued from stability conditions on the base curve. In section 3, we introduce gluing perversity (Denition 3.6), which is the key notion to the following theorem:

Theorem 1.1 (Theorem 3.9). On ruled surfaces, a stability condition σ glued from $\tilde{GL}^+ (2, \mathbb{R})$-translates of the standard stability condition on the base curve is a locally nite stability condition if and only if the gluing perversity of σ is at least one.

In this paper, we mean a stability condition glued from $\tilde{GL}^+ (2, \mathbb{R})$-translates of the standard stability condition on the base curve simply by a gluing stability condition. One can see from Theorem 1.1 that the existence of gluing stability conditions does not depend on genus of ruled surfaces. This means that the gluing stability conditions constitute a class of fundamental stability conditions on ruled surfaces. Furthermore, we describe the following lemma on the stability of skyscraper sheaves in the description of gluing perversity.

Lemma 1.2 (Lemma 3.10). Suppose that σ is a gluing stability condition on a ruled surface.

(1) If the gluing perversity of σ is equal to 1, the skyscraper sheaves are strictly semistable of the same phase for any point of the ruled surface in σ.
(2) If the gluing perversity is larger than 1, the skyscraper sheaves are not stable in for any point of the ruled surface in \(\sigma \).

In section 4, we describe a destabilizing wall of skyscraper sheaves on ruled surfaces. Lemma 1.2 already suggests that the set of gluing stability conditions with gluing per-

Lemma 1.3 (From Lemma 4.2). Let \(S \) be a ruled surface. Suppose that \(\sigma_{gl} = (Z_{gl}, P_{gl}) \) is a gluing stability condition with the gluing perversity 1 on \(S \). Then there is an \(\epsilon_0 > 0 \) such that if \(0 < \epsilon < \epsilon_0 \) and \(W : N(S) \to \mathbb{C} \) is a group homomorphism satisfying

\[
\text{the phase of } O_j(-C_0) \text{ is greater than the phase of } O_j, \text{ and}
\]

\[
|W(E) - Z(E)| < \sin(\pi \epsilon)|Z(F)|
\]

for any \(E \in D^b(S) \) semistable in \(\sigma_{gl} \), then there is a unique locally finite Bridgeland stability condition \(\tau = (W, Q) \) on \(S \) with \(d(P_{gl}, Q) < \epsilon \) satisfying that \(O_x \) are stable of the same phase in \(\tau \) for any \(x \in S \).

From the above results, we can describe a certain destabilizing wall of skyscraper sheaves by simple calculation.

Theorem 1.4 (From Theorem 4.4). Let \(S_{geom} \) be the set of geometric stability conditions on \(S \) and \(S_{glp} \) be the set of gluing stability conditions with gluing perversity \(p \). Suppose that \(A = \left(\begin{array}{cccc} a & b & c & d \\ 0 & 0 & 0 & 0 \\ \end{array} \right) \), \(f \in \tilde{GL}^*(2, \mathbb{R}) \) with \(a < 0 \). Then \(\partial S_{geom} \cap S_{gl,1} \) is the set of \(\tilde{GL}^*(2, \mathbb{R}) \)-translates of a stability condition glued from \(\sigma_{g geom} \) and \(\sigma_{str} \).

Acknowledgement. The author would like to thank his supervisor Prof. Yasunari Nagai

Bridgeland introduced the notion of a stability condition on a triangulated category in [Bri1].

Definition 2.1 ([Bri1] Definition 5.1). Let \(\mathcal{D} \) be a triangulated category and \(K(\mathcal{D}) \) Grothendieck group of \(\mathcal{D} \). A Bridgeland stability condition on \(\sigma = (Z, \mathcal{P}) \) on \(\mathcal{D} \) consists of a linear map \(Z : K(\mathcal{D}) \to \mathbb{C} \) called the central charge, and full additive subcategories \(\mathcal{P}(\phi) \subset \mathcal{D} \) for each \(\phi \in \mathbb{R} \), satisfying the following axioms.

1. for all \(0 \neq E \in \mathcal{P}(\phi) \), if there exists some \(m(E) > 0 \) such that \(Z(E) = m(E) \exp(i\pi \phi) \).
2. \(\mathcal{P}(\phi + 1) = \mathcal{P}(\phi)[1] \), for all \(\phi \in \mathbb{R} \).
3. if \(\phi_1 > \phi_2 \) and \(A_j \in \mathcal{P}(\phi_j) \) (\(j = 1, 2 \)) then \(\text{Hom}(A_1, A_2) = 0 \).
4. for each nonzero object \(E \in \mathcal{D} \), there is a finite sequence of real number \(\phi_1 > \phi_2 > \cdots > \phi_n \)

and a collection of triangles \(E_j \to E_{j+1} \to A_{j+1} \to E_j[1] \)

with \(E_0 = 0, E_n = E \), and \(A_{j+1} \in \mathcal{P}(\phi_{j+1}) \) for all \(j = 0, \cdots, n - 1 \).

\(\mathcal{P} \) is called the slicing of \(\mathcal{D} \). An object \(E \) is defined to be semistable of phase \(\phi \) in \(\sigma \) if \(E \in \mathcal{P}(\phi) \). A semistable object \(E \in \mathcal{P}(\phi) \) is stable if it has no nontrivial subobject in \(\mathcal{P}(\phi) \).
Definition 2.2 ([Bri1] Definition 5.7). A slicing \mathcal{P} of a triangulated category \mathcal{D} is locally finite if there exists a real number $\eta > 0$ such that the quasi abelian category $\mathcal{P}(t - \eta, t + \eta) \subset \mathcal{D}$ is of finite length for all $t \in \mathbb{R}$. A Bridgeland stability condition (Z, \mathcal{P}) is locally finite if the corresponding slicing \mathcal{P} is.

Since the decomposition of a nonzero object $E \in \mathcal{D}$ given by Definition 2.1 (4) is unique up to isomorphisms, we can define $\phi^+_\sigma(E) = \phi_0$, $\phi^-\sigma(E) = \phi_1$ and $m_\sigma(E) = \Sigma_i |Z(A_i)|$. There is a generalized metric on the space of locally finite stability conditions Stab on a triangulated category \mathcal{D}. The metric d is defined by

$$d(\sigma, \tau) = \sup_{E \in \mathcal{D}} \left\{ |\phi^+\sigma(E) - \phi^+\tau(E)|, |\phi^-\sigma(E) - \phi^-\tau(E)|, |\log \frac{m_\sigma(E)}{m_\tau(E)}| \right\}.$$

Then ϕ^+ and $m(E)$ are continuous functions on Stab. It follows immediately from this that the subset of Stab consisting of those stability conditions in which a given object is semistable is a closed subset ([Bri1] Proposition 8.1).

Let S be a smooth projective surface over \mathbb{C}. A Bridgeland stability condition $\sigma = (Z, \mathcal{P})$ is numerical if the central charge $Z : \mathcal{K}(S) \to \mathbb{C}$ factors through the numerical Grothendieck group $\mathcal{N}(S)$. Mukai pairing is a symmetric bilinear form $(-, -)_S$ on $\mathcal{N}(S) = \mathbb{Z} \oplus \mathcal{N}(S) \oplus \frac{1}{2} \mathbb{Z}$ defined by the following formula

$$((r_1, D_1, s_1), (r_2, D_2, s_2))_S = D_1D_2 - r_1s_2 - r_2s_1.$$

The set of numerical locally finite stability conditions $\text{Stab}_N S$ is called stability space. If $\sigma = (Z, \mathcal{P}) \in \text{Stab}_N S$, we can write $Z(E) = (\text{pr}_1(\sigma), \text{ch}(E))_S$.

Proposition 2.3 ([Bri1] Corollary 1.3). For each connected component $\text{Stab}^1 S \subset \text{Stab}_N S$, there is a subspace $V(\text{Stab}^1 S) \subset \text{Hom}(\mathcal{N}(S), \mathbb{C})$ and a local homeomorphism $\text{pr}_1 : \text{Stab}^1 S \to V(\text{Stab}^1 S)$ which maps a stability condition to its central charge Z. In particular $\text{Stab}^1 S$ is a finite dimensional complex manifold.

A connected component $\text{Stab}^1 S$ is full if the subspace $V(\text{Stab}^1 S)$ is equal to $\text{Hom}(\mathcal{N}(S), \mathbb{C})$. A stability condition $\sigma \in \text{Stab}_N S$ is full if it lies in a full component. On a derived category of coherent sheaves on a surface, one of fundamental examples of numerical locally finite stability conditions are divisorial stability conditions ([AR] §2). We can construct a divisorial stability condition in the following way:

Definition 2.4 ([Bri1] Definition 2.1). Let \mathcal{A} be an abelian category and $K(\mathcal{A})$ Grothendieck group of \mathcal{A}. A stability function on \mathcal{A} is a group homomorphism $Z : K(\mathcal{A}) \to \mathbb{C}$ such that for all $0 \neq E \in \mathcal{A}$ the complex number $Z(E)$ lies in the strict upper half plane $H = \{ r \exp(i\pi \phi) | r > 0$ and $0 < \phi < 1 \}$.

Let \mathcal{A} be a heart of a bounded t-structure of a triangulated category \mathcal{D}. \mathcal{A} is an abelian subcategory of \mathcal{D} and one has an identification of Grothendieck group $K(\mathcal{D}) = K(\mathcal{A})$. To give a stability condition on \mathcal{D} is equivalent to giving a bounded t-structure \mathcal{D} and a stability function on its heart \mathcal{A} with the Harder Narasimhan property ([Bri1] Proposition 5.3). In this paper, stability function is also called pre-stability condition.

We denote $\text{Amp}(S)$ ample cone of S and $\text{NS}(S)$ Neron Severi group of S. Let $\omega \in \text{Amp}(S)$. One defines the slope μ_ω of a torsion free sheaf $E \in \text{Coh} S$ by

$$\mu_\omega(E) = \frac{c_1(E, \omega)}{\text{rank}(E)}.$$

For any $B, \omega \in \text{NS}(S) \otimes \mathbb{R}$ with $\omega \in \text{Amp}(S)$ there is a unique torsion pair $(\mathcal{T}_{B, \omega}, \mathcal{F}_{B, \omega})$ on the category $\text{Coh} S$ such that $\mathcal{T}_{B, \omega}$ consists of sheaves whose torsion free parts have μ_ω-semistable Harder Narasimhan factors of slope $\mu_\omega > B. \omega$ and $\mathcal{F}_{B, \omega}$ consists of torsion free
sheaves on S all of whose μ_0-semistable Harder Narasimhan factors have slope $\mu_0 \leq B_0$ ([Bri2] Lemma 6.1).

Definition 2.5 ([AB] §2 Our Charges, [Ohk] Definition 3.3). $\sigma_{B,0} = (Z_{B,0}, \mathcal{A}_{B,0})$ is defined by the stability function

$$Z_{B,0}(E) = (\exp(B + i0), \ch(E))_S$$

and the heart of the bounded t-structure $\mathcal{A}_{B,0}$, which is obtained from $\text{Coh} S$ by tilting with respect to the torsion pair $(T_{B,0}, \mathcal{T}_{B,0})$.

If $\sigma_{B,0}$ is a stability condition, Arcara and Miles called it a *divisorial stability condition* ([AM]). For each pair $B, \omega \in \text{NS}(S) \otimes \mathbb{Q}$ with $\omega \in \text{Amp}(S)$, $\sigma_{B,0}$ is a numerical locally finite stability condition ([Ohk] Proposition 3.4). Stab with respect to the torsion pair $(T_{B,0}, \mathcal{T}_{B,0})$ follows immediately that for any S sheaf. Recall that Stab is a short exact sequence in $\text{Coh} S$ by tilting with respect to the torsion pair $(T_{B,0}, \mathcal{T}_{B,0})$.

Proposition 2.6 ([Ohk] Proposition 3.6). $\sigma \in \text{Stab}_N S$ is geometric if and only if

1. for all $x \in S$, skyscraper sheaves O_x are stable of the same phase in σ,
2. there exist $M \in \text{GL}^+(2, \mathbb{R})$ and $B, \omega \in \text{NS}(S) \otimes \mathbb{R}$ such that $\omega^2 > 0$ and $M^{-1} \text{pr}_1(\sigma) = \exp(B + i0)$.

A ruled surface is a smooth projective surface S, together with a surjective morphism $p: S \to C$ to a smooth projective curve of genus g, such that the fibre S_x is isomorphic to \mathbb{P}^1 for any point $x \in C$, and such that p admits a section $s: C \to S$ ([Har] §V.2). Furthermore, let C_0 be $s(C)$, E the direct image sheaf $p_*O_S(C_0)$ and f a fibre of p. Then S is isomorphic to the projective bundle $\mathbb{P}_C(E)$ of E, and we can calculate the intersection numbers as $C_0^2 = \deg E$, $C_0 f = 1$, $f^2 = 0$, and the canonical divisor $K_S = -2C_0 + (2g - 2 + \deg E)f$. $\text{NS}(S)$ is generated by C_0 and f, and hence $\dim \text{Hom}(N(S), \mathbb{C}) = 8$.

Proposition 2.7. For any f, O_f is stable of the same phase in a geometric stability condition.

Proof. (c.f. [Bri2] Lemma 6.3) For any f, $Z(O_f)$ always take in the same value in \mathbb{C}. It follows immediately that for any f the phase of O_f is the same if O_f is stable. First, we show that a subobject of torsion sheaf is also torsion sheaf in $\mathcal{A}_{B,0}$. Suppose T is torsion sheaf. Recall that T lies in the torsion subcategory $\mathcal{T}_{B,0}$ and hence in the abelian category $\mathcal{A}_{B,0}$. Suppose that

$$0 \to A \to T \to B \to 0$$

is a short exact sequence in $\mathcal{A}_{B,0}$ with $A \in \mathcal{T}_{B,0}$. Taking cohomology gives an exact sequence in $\text{Coh} S$

$$0 \to \mathcal{H}^{-1}(B) \to \mathcal{H}^0(A) \to T \to \mathcal{H}^0(B) \to 0.$$

Since $\mathcal{H}^{-1}(B) \in \mathcal{T}_{B,0}$, $\mathcal{H}^{-1}(B)$ is torsion free sheaf. It follows that the μ_0-semistable factors of $\mathcal{H}^{-1}(B)$ and $\mathcal{H}^0(A)$ have the same slope. The contradicts the definition of the category $\mathcal{A}_{B,0}$ unless $\mathcal{H}^{-1}(B) = 0$, in which case either A and B must be torsion sheaf.

Second, we show that subobjects of O_f are $O_f(-p_1 - \cdots - p_n)$ with $p_1, \ldots, p_n \in f$. Let $i: f \hookrightarrow S$ and F a subobject of O_f. Then F is a torsion sheaf and hence i^*F is a subsheaf of the structure sheaf of f, which is $O_f(-p_1 - \cdots - p_n)$ with $p_1, \ldots, p_n \in f$. It follows that $F \cong R_i i^*F = O_f(-p_1 - \cdots - p_n)$ with $p_1, \ldots, p_n \in f$. Hence, O_f is stable by comparison of these phases.
3. Constructing gluing stability conditions on ruled surfaces

This section is concerned with the construction and the existence of the gluing stability conditions on ruled surfaces, and the stability of skyscraper sheaves in gluing stability conditions.

Since \(p \) is a flat morphism, \(p^\ast \) is an exact functor, and hence \(Lp^\ast \) can be simply denoted by \(p^\ast \). Since \(O_S(-C_0) \) is locally free sheaf, \(\otimes^2 O_S(-C_0) \) is ordinary tensor product \(\otimes O_S(-C_0) \). Orlov [Orl] showed that a derived category of a ruled surface has Orlov’s semi-orthogonal decomposition \(D^b(S) = \langle p^\ast D^b(C) \otimes O_S(-C_0), p^\ast D^b(C) \rangle \). Recall that \(p^\ast D^b(C) \otimes O_S(-C_0) \) and \(p^\ast D^b(C) \) are equivalent to triangulated category \(D^b(C) \). There exist the following canonical isomorphisms of Grothendieck groups (c.f. [MMS] section 2),

\[
F_1 : K(C) \cong K(p^\ast D^b(C) \otimes O_S(-C_0)),
F_2 : K(C) \cong K(p^\ast D^b(C)).
\]

Furthermore, we can describe the space of stability conditions on the both categories,

\[
\text{Stab}(p^\ast D^b(C) \otimes O_S(-C_0)) = \left\{ (Z_1, \mathcal{P}_1) \mid (Z_2, \mathcal{P}_2) \right\},
\]

\[
\text{Stab}(p^\ast D^b(C)) = \left\{ (Z_1, \mathcal{P}_1) \mid (Z_2, \mathcal{P}_2) \right\},
\]

\(\text{Stab} \) \(C \) is completely determined in [Bri1], [Mac] and (Oka). \(\sigma_{st} = (Z_{st}, \mathcal{P}_{st}) \) with \(Z_{st}(E) = -\deg E + i \text{rank } E \) and \(\mathcal{P}(0, 1) = \text{Coh } C \) is a stability condition on \(\text{Stab} \) \(C \). It is called standard stability condition. Especially, the following result is remarkable.

Proposition 3.1 ([Bri1] Theorem 9.1, [Mac] Theorem 2.7). If a smooth projective curve \(C \) has positive genus, then the action of \(GL^\ast(2, \mathbb{R}) \) on \(\text{Stab} \) \(C \) is free and transitive, so that \(\text{Stab} \) \(C \cong GL^\ast(2, \mathbb{R}) \).

Collins and Polishchuck [CP] gave the definition of gluing stability conditions.

Definition 3.2 ([CP] §2. Definition). Suppose \(D \) is a triangulated category that have a semi-orthogonal decomposition \(\langle D_1, D_2 \rangle \), \(\lambda_1 \) is the left adjoint functor of \(D_1 \to D \) and \(\rho_2 \) is the right adjoint functor of \(D_2 \to D \). \(\sigma = (Z, \mathcal{A}) \) is called gluing pre-stability condition of \(\sigma_1 \) and \(\sigma_2 \) if \(\sigma_j = (Z_j, \mathcal{A}_j) \) in \(\text{Stab} \) \(D_j \) \((j = 1, 2) \) satisfy the following conditions,

1. \(Z = Z_1 \circ \lambda_1 + Z_2 \circ \rho_2 \).
2. \(\mathcal{A} = \{ F \in D \mid \lambda_1(F) \in \mathcal{A}_1 \text{ and } \rho_2(F) \in \mathcal{A}_2 \} \).
3. \(\text{Hom}(\mathcal{A}_1, \mathcal{A}_2[i]) = 0 \) for any \(i \leq 0 \) (We call this gluing property.)

It is called gluing stability condition if it satisfies Harder-Narasimhan property. In the above definition, we set \(D = D^b(S), D_1 = p^\ast D^b(C) \otimes O_S(-C_0) \) and \(D_2 = p^\ast D^b(C) \). Then we get explicit formulas of \(\lambda_1 \) and \(\rho_2 \).

Proposition 3.3. Let \(F \) be an object of \(D^b(S) \). We get

1. \(\lambda_1(F) = p^\ast(Rp_\ast(F(-C_0 + (2g - 2 + \deg E)f)) \otimes \omega_p^c[1]) \otimes O_S(-C_0) \).
2. \(\rho_2(F) = p^\ast Rp_\ast F \).

Proof. Recall that \(p^\ast \) and \(\otimes O_S(-C_0) \) are fully faithful. \(\lambda_1 \) can be calculated by the following calculation,

\[
\text{Hom}(F, p^\ast G \otimes O_S(-C_0)) = \text{Hom}(F(C_0), p^\ast G) = \text{Hom}(F(C_0), p^\ast G \otimes \omega_p^c[-1]) = \text{Hom}(F(C_0) \otimes \omega_p^c[1], p^\ast G).
\]
Proof. If one takes stability conditions on D_1 and D_2, the gluing of the stability conditions under the above definition is not a stability condition. Gluing procedure is compatible with the action of $GL^*(2, \mathbb{R})$.

Proposition 3.4. Suppose $A \in GL^*(2, \mathbb{R})$ and σ_{gl} is a gluing pre-stability condition of σ_1 and σ_2. Then $\sigma_{gl}A$ is equal to the gluing of σ_1A and σ_2A.

Proof. By Definition 3.2 (2), both gluing stability conditions have the same central charge. We show that both have the same heart of the bounded t-structure. Let $A = (M, f) \in GL^*(2, \mathbb{R})$. Suppose that $\sigma_{gl} = (Z_{gl}, P_{gl})$ is a stability condition glued from $\sigma_1 = (Z_1, P_1)$ and $\sigma_2 = (Z_2, P_2)$. For any ϕ, $P_{1}(f^{-1}(\phi)) \subset P_{gl}(f^{-1}(\phi))$ and $P_{2}(f^{-1}(\phi)) \subset P_{gl}(f^{-1}(\phi))$ by [CP] Proposition 2.2 (3). Then $P_{1}(f^{-1}(0), f^{-1}(1)) \subset P_{gl}(f^{-1}(0), f^{-1}(1))$ and $P_{2}(f^{-1}(0), f^{-1}(1)) \subset P_{gl}(f^{-1}(0), f^{-1}(1))$. Furthermore, we get the inclusion

$$P_{1}(f^{-1}(0), f^{-1}(1), P_{2}(f^{-1}(0), f^{-1}(1))) \subset P_{gl}(f^{-1}(0), f^{-1}(1))$$

by extension closedness. Hence, both have the same a heart of a bounded t-structure. □

From now on, let σ_1 and $\sigma_2 \in GL^*(2, \mathbb{R})$-translates of a stability condition on $p^*D^b(C) \otimes O(-C_0)$ and $p^*D^b(C)$ induced from the standard stability condition $D^b(C)$ respectively. We can calculate a central charge of such a gluing pre-stability condition.

Proposition 3.5. Let $M^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL^*(2, \mathbb{R})$. Suppose that σ_1 is a stability condition on $p^*D^b(C) \otimes O(-C_0)$ and σ_2 is a standard stability condition on $p^*D^b(C)$. Then a gluing stability conditions $\sigma_{gl} = (Z_{gl}, P_{gl})$ glued from σ_1, M and σ_2 satisfies

$$\text{pr}_1(Z_{gl}) = \{(1 - a) - ic, -C_0 + \{[\frac{1}{2} \deg E(a + 1) - b] + i[\frac{1}{2}c \deg E + (1 - d)]\}, f, -i).$$

Proof. By Definition 3.2 (2) and Proposition 3.3, all we need to calculate is $\text{ch} Rp_*(F(-C_0 + (2g - 2 + \deg E)f)) \otimes \omega_{C_0}^{-1}$. By Grothendieck-Riemann-Roch formula,

$$\text{ch} Rp_*(F(-C_0 + (2g - 2 + \deg E)f)) \otimes \omega_{C_0}^{-1}$$

$= -p_!(ch F(-C_0 + (2g - 2 + \deg E)f).td S). td C^{-1}. ch \omega_{C_0}^{-1}$.

Suppose that $\text{ch} F = (r, c_1, c_2)$, then

$$\text{ch} F(-C_0 + (2g - 2 + \deg E)f) = ch F.ch O_S(-C_0 + (2g - 2 + \deg E)f)$$

$= (r, c_1 - rC_0 + r(2g - 2 + \deg E)c_1, c_2 - c_1.C_0 + (2g - 2 + \deg E)c_1, f + \frac{1}{2}r(-4g + 4 - \deg E))$.

$$\begin{equation} ch F(-C_0 + (2g - 2 + \deg E)f).td S = (r, c_1 + \frac{1}{2}r(2g - 2 + \deg E)c_1 + \frac{1}{2}(2g - 2 + \deg E)c_1, f). \end{equation}$$

$p_!(ch F(-C_0 + (2g - 2 + \deg E)f).td S). td C^{-1}$

$= (c_1, f, c_2 + (\frac{1}{2} \deg E)c_1, f))$.

Hence, $\text{ch} Rp_*(F(-C_0 + (2g - 2 + \deg E)f)) \otimes \omega_{C_0}^{-1} = (-c_1, f, -c_2 - (\frac{1}{2} \deg E)c_1, f)$. We can get $\text{ch} Rp_*(F) = (c_1, f + r, c_2 + c_1.C_0 - (\frac{1}{2} \deg E)c_1, f)$ similarly. Then we get

$\text{Re} Z_{gl}(F)$
\[[d(ch_2 + (\frac{1}{2} \deg E)c_1, f)] = [c(ch_2 + (\frac{1}{2} \deg E)c_1, f) + d(-c_1, f)] + (c_1, f) + r + (\frac{4}{5} \deg E)c_1, f + (1 - d)c_1, f] + c h_2 \]

Now, one cannot usually glue \(\sigma_1 \) and \(\sigma_2 \). For describing a necessary and sufficient condition of the existence of the gluing stability condition, we introduce gluing perversity.

Definition 3.6. Let \(\sigma_{st} = (Z_{st}, P_{st}) \) be the standard stability condition on the base curve. Suppose that \(\sigma_1 = (Z_1, P_1) \in \text{Stab}(p^*D^b(C) \otimes O_S(-C_0)) \) with \(P_1(0) = p^*P_{st}(\phi_1) \otimes O_S(-C_0) \) and \(\sigma_2 = (Z_2, P_2) \in \text{Stab}(p^*D^b(C)) \) with \(P_2(0) = p^*P_{st}(\phi_2) \). Assume that \(\sigma \) is a gluing pre-stability condition of \(\sigma_1 \) and \(\sigma_2 \), then gluing perversity of \(\sigma \) is defined to be \(\text{per}(\sigma) = \phi_1 - \phi_2 \).

Proposition 3.7. Suppose \(\sigma_{gl} \) is a gluing pre-stability condition. A \(G\mathfrak{L}^*(2, \mathbb{R}) \)-translate of \(\sigma_{gl} \) has gluing perversity 1 if and only if \(\text{per}(\sigma_{gl}) = 1 \)

Proof. Suppose \(\sigma_{gl} = (Z_{gl}, P_{gl}) \) is a gluing pre-stability condition of \(\sigma_1 \) and \(\sigma_2 \), and \(A = (M, f) \in G\mathfrak{L}^*(2, \mathbb{R}) \). If the heart of the bounded t-structure of \(\sigma_1 \) satisfies \(P_1(0) = p^*P_{st}(\phi) \otimes O(-C_0) \) and the heart of the bounded t-structure of \(\sigma_2 \) satisfies \(P_2(0) = p^*P_{st}(\phi) \), then \(\text{per}(\sigma_{gl}, A) = f^{-1}(\phi) - f^{-1}(\phi), \text{per}(\sigma_{gl}) = \phi - \psi = 1 \) if and only if \(\text{per}(\sigma_{gl}, A) = f^{-1}(\phi) - f^{-1}(\psi) = 1 \) since \(f \) is bijective.

Lemma 3.8. \(\sigma_1 \) and \(\sigma_2 \) satisfy the gluing property. Then \(\text{per}(\sigma) \) is not less than 1.

Proof. By Proposition 3.7, we can assume that \(\sigma_2 \) is the standard stability condition on \(p^*D^b(S) \). Suppose that \(\phi < 1 \) and \(A_1 = p^*P_{st}(\phi, \phi + 1) \otimes O_S(-C_0) \). It is enough to show that \(\text{Hom}(p^*P_{st}(\phi, \phi + 1)) \otimes O_S(-C_0) \neq 0 \) for some \(i \leq 0 \). Recall that for all \(q \in \frac{1}{2} \arctan \phi \), there is a line bundle \(L \) such that \(L \in P_{st}(q) \). (For example, \(L = O(-n) \) with \(q = \frac{1}{2} \arctan \phi \). If we take \(q = (\phi - [\phi], 1) \), there is a line bundle \(L \in P_{st}(q) \) and we get \(p^*L \otimes O(-C_0)[[\phi]] = p^*P_{st}(\phi, \phi + 1) \). Hence, \(\text{Hom}(p^*L \otimes O_S(-C_0)[[\phi]]) = 0 \).

Theorem 3.9. On ruled surfaces, a gluing pre-stability condition \(\sigma \) of \(G\mathfrak{L}^*(2, \mathbb{R}) \)-actions of the standard stability condition is a locally finite stability condition if and only if the gluing perversity of \(\sigma \) is at least 1.

Proof. By Lemma 3.8, it would be sufficient to prove \(\text{Hom}(\mathcal{A}_1, \mathcal{A}_2[i]) \) for \(i \leq 0 \) if \(\phi = \text{per}(\sigma) \geq 1 \). By Proposition 3.7, we can assume \(\mathcal{A}_1 = p^*P_{st}(\phi, \phi + 1) \otimes O_S(-C_0) \) and \(\mathcal{A}_2 = p^*P_{st}(0, 1) \). Suppose that \(F \in P_{st}(\phi, \phi + 1), G \in P_{st}(0, 1) = \text{Coh} C \) and \(\leq \phi \).

\[
\text{Hom}(p^*F \otimes O_S(-C_0), p^*G[i]) = \text{Hom}(p^*F, p^*G \otimes O_S(C_0)[i]) = \text{Hom}(F, Rp_*p^*G \otimes O_S(C_0)[i]) = \text{Hom}(F, G \otimes Rp_*O_S(C_0)[i])
\]

Since \(Rp_*O_S(C_0) \) is a locally free sheaf, \(G \otimes Rp_*O_S(C_0)[i] \in P(i, i + 1) \). Therefore, \(\text{Hom}(F, G \otimes Rp_*O_S(C_0)[i]) = 0 \) by the phase of \(F \) and \(G \otimes Rp_*O_S(C_0) \). Then by Definition 3.2 (2), the image of \(\sigma \) is discrete subgroup of \(\mathbb{C} \). By [CP] Proposition 3.5 (a), \(\sigma \) is a Bridgeland stability condition. Moreover, \(\sigma \) is locally finite by [Bri] Lemma 4.4.

In the above theorem, we declare all gluing stability conditions on ruled surfaces with base curve of positive genus. From now on, we mean a Bridgeland stability condition
Lemma 3.10. Suppose that $\sigma = (Z, \mathcal{A})$ is a gluing stability condition. Then
(1) for any f, O_f and $O_f(-C_0)[1]$ are stable of the same phase in σ, respectively.
(2) the phase of O_f is larger than the phase of $O_f(-C_0)[1]$.
(3) if $\text{per}(\sigma) = 1$ skyscraper sheaves are strictly semistable of the same phase in σ, and also if $1 < \text{per}(\sigma)$ skyscraper sheaves are destabilised by O_f with $x \in f$.

Proof. By Proposition 3.7, we can assume that σ_2 is the standard stability condition on $p^*D^b(S)$. (1) Since $O_f = p^*O_y$ with $y = p(f)$, O_f is semistable of the same phase 1 for any f by [CP] Proposition 2.2 (3). Suppose that \mathcal{F} is a subobject of O_f on $\mathcal{P}(1)$. \mathcal{F} is also in \mathcal{A}. Hence, we have the following diagram in $\mathcal{P}(1)$.

$$
\begin{array}{cccc}
0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow \\
0 & \rho_2(\mathcal{F}) & \mathcal{F} & \lambda_1(\mathcal{F}) & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \\
0 & \rho_2(O_f) & O_f & \lambda_1(O_f) & 0 \\
\end{array}
$$

Then $\mathcal{F} = \rho_2(\mathcal{F}) \subset \rho_2(O_f) = O_f$ in $p^*D^b(C)$ by $\lambda_1(O_f) = 0$. O_f is a minimal object in $p^*D^b(C)$. Hence, \mathcal{F} is isomorphic to 0 or O_f, $O_f(-C_0)[1]$ can be proved similarly.

(2) $O_f = p^*O_y$ with $y = p(f)$. $O_f(-C_0)[1] = p^*O_y[1] \otimes O_S(-C_0)$ with $y = p(f)$. Since $\text{per}(\sigma) \geq 1$, the phase of O_f is larger than the phase of $O_f(-C_0)[1]$ by [CP] Proposition 2.2 (3).

(3) If O_x is semistable of the phase ϕ we have the following in $\mathcal{A}[[\phi] - 1]$. (c.f. [CP] Lemma 2.1)

$$
0 \rightarrow \rho_2(O_x) \rightarrow O_x \rightarrow \lambda_1(O_x) \rightarrow 0 \text{ exact.}
$$

Since $\rho_2(O_x) = O_f$ and $\lambda_1(O_x) = O_f(-C_0)[1]$, ϕ must be 1 by the phases, and hence if $1 < \text{per}(\sigma)$ O_x is destabilised by O_f with $x \in f$. Now we assume that $\text{per}(\sigma) = 1$. Since $O_f \in \mathcal{P}(1)$ and $O_f(-C_0) \in \mathcal{P}(1)$, O_x is strictly semistable in σ by extension closedness of $\mathcal{P}(1)$.

4. A destabilising wall of skyscraper sheaves on ruled surfaces

In this section, we describe a destabilising wall of skyscraper sheaves on ruled surfaces. We start by the deformation theory of Bridgeland stability conditions.

For each $\sigma = (Z, \mathcal{P}) \in \text{Stab}_N S$, define a function

$$
\| \cdot \| : \text{Hom}(N(S), \mathbb{C}) \rightarrow [0, \infty)
$$

by sending a group homomorphism $U : N(S) \rightarrow \mathbb{C}$ to

$$
\|U\|_\sigma = \sup \left\{ \|U(E)\|_{\text{st}} \mid E \text{ semistable in } \sigma \right\}
$$

Note that $\| \cdot \|_\sigma$ has all the properties of a norm on the complex vector space $\text{Hom}(N(S), \mathbb{C})$. A norm of a finite dimensional vector space is unique up to equivalence. Hence, this norm is equivalent to the standard norm of the finite dimensional vector space $\text{Hom}(N(S), \mathbb{C})$. If $\sigma = (Z, \mathcal{P})$ and $\tau = (W, Q)$ are stability conditions on a derived category $D^b(S)$ define

$$
d(\mathcal{P}, Q) = \sup \left\{ |\phi_\tau^*_p(E) - \phi_\tau^*_q(E)|, |\phi_\tau^*_p(E) - \phi_\tau^*_q(E)| \mid 0 \neq E \in D^b(S) \right\}
$$

It is a generalized metric on the space of slicings. Then an open basis of $\text{Stab}_N S$ consists

...
of the following
\[B_{s}(\sigma) = \{ \tau = (W, Q) \in \text{Stab}_{S} | ||W - Z||_{\infty} < \sin(\pi \epsilon), d(P, Q) < \epsilon \} . \]

Proposition 4.1 (Bri1 Theorem 7.1). Let \((Z, \mathcal{P}) \) be a numerical locally finite stability condition on a derived category \(\mathcal{D}^{b}(S) \). Then there is an \(\epsilon_{0} \) such that if \(0 < \epsilon < \epsilon_{0} \) and \(W : \mathcal{N}(S) \rightarrow \mathbb{C} \) is a group homomorphism satisfying
\[|W(E) - Z(E)| < \sin(\pi \epsilon)|Z(E)| \]
for all \(E \in \mathcal{D}^{b}(S) \) semistable in \(\sigma \), then there is a locally finite stability condition \(\tau = (W, Q) \) on \(\mathcal{D}^{b}(S) \) with \(d(P, Q) < \epsilon \).

The above \(Q \) is constructed as follows. A **thin subcategory** of \(\mathcal{D}^{b}(S) \) is a full subcategory of the form \(\mathcal{P}((a, b)) \subset \mathcal{D}^{b}(S) \) where \(a \) and \(b \) are real numbers with \(0 < b - a < 1 - 2\epsilon \). Suppose \(\psi(E) \) is the phase of \(E \) on \(W \). A nonzero object \(E \in \mathcal{P}((a, b)) \) is defined to be enveloped by \(\mathcal{P}((a, b)) \) if \(\psi(E) \) is a thin subcategory satisfying \(a + \epsilon \leq \psi(E) \leq b - \epsilon \). Then for each \(\psi \in \mathbb{R} \), we define \(Q(\psi) \) to be the full additive subcategory \(\mathcal{D}^{b}(S) \) consisting of the zero objects of \(\mathcal{D}^{b}(S) \) together with those object \(E \in \mathcal{D}^{b}(S) \) which are \(W \)-semistable of phase \(\psi \) in some thin enveloping subcategory \(\mathcal{P}((a, b)) \).

First, the following lemma plays an important role of the proof that gluing stability conditions with the gluing perversity 1 are a destabilizing wall of skyscraper sheaves.

Lemma 4.2. Let \(S \) be a ruled surface. Suppose that \(\sigma_{gl} = (Z_{gl}, P_{gl}) \) is a glueing stability condition with the gluing perversity 1 on \(S \). Then there is an \(\epsilon_{0} > 0 \) such that if \(0 < \epsilon < \epsilon_{0} \) and \(W : \mathcal{N}(S) \rightarrow \mathbb{C} \) is a group homomorphism satisfying
\[|W(O) - Z(O)| < \sin(\pi \epsilon)|Z(O)| \]
for any \(O \in \mathcal{D}^{b}(S) \) semistable in \(\sigma_{gl} \), then there is a unique locally finite Bridgeland stability condition \(\tau = (W, Q) \) on \(\mathcal{D}^{b}(S) \) with \(d(P, Q) < \epsilon \) satisfying that \(O_{x} \) is stable of the same phase in \(\tau \) for any \(x \in S \).

Proof. By Proposition 3.7, we can assume that \(\sigma_{2} \) is the standard stability condition on \(\mathcal{P}^{+}\mathcal{D}^{b}(C) \). Then the phase of \(O_{x} \) is equal to 1. By the construction of \(Q \), we can construct the following slicing \(Q \) of \(\tau \)
\[Q(\psi) = \{ F \mid F \text{ is enveloped by } P_{g}(a, b), \text{ and semistable of phase } \psi \text{ in some } (W, P_{g}(a, b)) \} . \]

We show that \(O_{x} \) is a minimal object in \(Q(\psi) \). Since \(\sigma_{gl} \) is discrete, we can take such an \(\epsilon_{0} < \frac{1}{2} \) that
\[S := \{ F \mid \Re Z_{gl}(O_{x}) < \Re Z_{gl}(F) < 0, F \in P_{g}(1 - 2\epsilon, 1 + 2\epsilon) \} \subset P_{g}(1). \]

It is sufficient to show that \(O_{x} \) is stable in \((W, P_{g}(1 - 2\epsilon, 1 + 2\epsilon)) \). Suppose \(O_{x} \) is not stable in \(P_{g}(1 - 2\epsilon, 1 + 2\epsilon) \). Then we can take \(F \) a proper stable subobject of \(O_{x} \) in \(P_{g}(1 - 2\epsilon, 1 + 2\epsilon) \). We take an exact sequence in \(P_{g}(1 - 2\epsilon, 1 + 2\epsilon) \):
\[0 \rightarrow F \rightarrow O_{x} \rightarrow O_{x}/F \rightarrow 0. \]
Hence, we get

\[\psi \]

Proof.

Lemma 4.3. \(S \) is connected submanifold of \(\mathbb{S} \). Suppose that \(\sigma_{gl} \in S_{gl,1} \) consists of the element of \(S_{gl,1} \) that \(\sigma_2 \) is the standard stability condition on \(p^*D^p(C) \). Then by [Bru1] Theorem 9.1, \(S_{gl,1} = \{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}, f \mid a > 0, b, d > 0 \text{ and } f(0) = 0 \} \). Especially, \(S_{gl,1} \) is a connected submanifold with real dimension 3 since \(p_1 \) is a local homeomorphism. Hence, \(S_{gl,1} \) is connected submanifold of \(\text{Stab}_S \) with real dimension 7. We can prove in the case of \(S_{gl} \) similarly.

Second, the set of gluing stability conditions are connected submanifold of \(\text{Stab}_N S \).

We prove the following lemma.

Lemma 4.3. Let \(S_{gl,p} \) be the set of gluing stability conditions with gluing perversity \(p \). \(S_{gl,1} \) is connected submanifold of \(\text{Stab}_N S \) with real dimension 7. Moreover, \(S_{gl} = \bigcup_p S_{gl,p} \) is also a submanifold with real dimension 8, especially the subset of full components.

Proof. We show that the action of \(GL^+(2,\mathbb{R}) \) on \(S_{gl,1} \) is free. Suppose \(\sigma_{gl} \in S_{gl,1} \) and \(A = (M, f) \in GL^+(2,\mathbb{R}) \). If \(\sigma_{gl} A = \sigma_{gl}, \) then we get

\[M^{-1}(Z_{gl}(O_2)) = Z_{gl}(O_2) \]

and

\[M^{-1}(Z_{gl}(O_1)) = Z_{gl}(O_1). \]

By Proposition 3.5, \(Z_{gl}(O_2) = i \) and \(Z_{gl}(O_1) = -1 \). Hence, \(M \) is the identity matrix by comparison of both values of central charges. \(f = \text{id} \) can be get by the comparison of both hearts of the bounded t-structures. Suppose that \(S_{gl,1} \) consists of the element of \(S_{gl,1} \) that \(\sigma_2 \) is the standard stability condition on \(p^*D^p(C) \). Then by [Bru1] Theorem 9.1, \(S_{gl,1} = \{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}, f \mid a > 0, b, d > 0 \text{ and } f(0) = 0 \} \). Especially, \(S_{gl,1} \) is a connected submanifold with real dimension 3 since \(p_1 \) is a local homeomorphism. Hence, \(S_{gl,1} \) is connected submanifold of \(\text{Stab}_N S \) with real dimension 7. We can prove in the case of \(S_{gl} \) similarly.

Finally, we describe a concrete description between geometric stability conditions and gluing stability conditions on the stability space. This is the end of the proof of Theorem 1.4.

Theorem 4.4. Let \(S_{geom} \) be the set of geometric stability conditions on \(S \). Suppose that

\[A = \left(\begin{array}{cc} a \\ \frac{1}{2} \text{deg } E \end{array} \right)^{-1}, f \in GL^+(2,\mathbb{R}) \text{ with } a < 0. \]

Then \(\partial S_{geom} \cap S_{gl,1} \) is the set of \(GL^+(2,\mathbb{R}) \)-translates of a stability condition glued from \(\sigma_{st}, A \) and \(\sigma_{st} \).

Proof. We can assume that \(\sigma_{gl} = (Z_{gl}, P_{gl}) \) is a gluing stability condition that \(\sigma_2 \) is a standard stability condition. It is sufficient to show that \(Z_{gl} = M^{-1} \exp(B + i\omega) \) if and only if

\[Z_{gl} = \left(\begin{array}{cc} a \\ \frac{1}{2} \text{deg } E \end{array} \right) Z_{st} \circ A_1 + Z_{st} \circ \rho_2 \text{ with } a < 0. \]
Let $M^{-1} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$. Then $B = xC_0 + yf$ and $\omega = zC_0 + wf$. We denote $I = \frac{1}{2} \alpha \{(x^2 - z^2) \deg E + 2(xy - zw)\} + \beta \{xz \deg E + (yz + xw)\}$ and $J = \frac{1}{2} \gamma \{(x^2 - z^2) \deg E + 2(xy - zw)\} + \delta \{xz \deg E + (yz + xw)\}$ Then
\[
\exp(B + i\omega) = (1, x + iz, y + iw, \frac{1}{2} \{(x^2 - z^2) \deg E + 2(xy - zw)\} + i\{xz \deg E + (yz + xw)\}),
\]
\[
M^{-1} \exp(B + i\omega) = (a + iy, ((ax + \beta z) + i(\gamma x + \delta z))C_0 + ((ax + \gamma w) + i(\beta y + \delta w))f, I + iJ).
\]

We compare it to Proposition 3.5. Recall that σ_{gl} has gluing perversity 1. So $a < 0$ and $c = 0$. Then
\[
pr_1(Z_{gl}) = (1 - a, -C_0 + [\frac{1}{2} \deg E(a + 1) - b] + i(1 - d)]f, -i)
\]
From $a + iy = 1 - a$, we get $a = 1 - a$ and $\gamma = 0$. Then we get $z = 0$ from $x = a\gamma + \delta z = 0$ since $det M = a\delta \neq 0$. And then we get $x = \frac{y}{a - 1}$ from $ax + \beta z = -1$. And then we get $a = d$ from $J = \delta x w = 1 - 1$ and $\gamma y + \delta w = 1 - d$. From $I = \frac{1}{2} \{(x^2 - z^2) \deg E + 2y\} + \beta \frac{1}{a - 1} w = 0$ and $\gamma y + \delta w = (1 - a) y + \beta w = \frac{1}{a} \deg E(a + 1) - b$, we get $b = \frac{1}{a} \deg E$. □

The set of gluing stability conditions is a submanifold of the full stability space (Lemma 4.3). Lemma 3.10 (3) and Lemma 4.2 suggest that the set of gluing stability conditions neighbors on the set of stability conditions such that skyscraper sheaves are stable of the same phase on the stability space. Especially, the set of gluing stability conditions with the gluing perversity 1 is a part of destabilizing wall of skyscraper sheaves. In addition, the boundary of the set of geometric stability conditions only contacts the destabilizing wall (Theorem 4.4). The following picture of $\text{Stab}_N S$ is convenient for understanding.

\[
\text{All point sheaves are stable of the same phase.}
\]

\[
\text{gluing stability conditions}
\]

\[
\text{gluing perversity 1}
\]

\[
\text{geometric stability conditions}
\]

Remark 4.5. Let $\overline{\mathcal{M}^s}(\{O_\alpha\})$ be the variety of S-equivalent classes of objects $E \in \mathcal{P}(\phi(O_\alpha))$.

- If σ is a geometric stability condition, then $\overline{\mathcal{M}^s}(\{O_\alpha\}) = S$.
- If σ is a gluing stability condition with gluing perversity 1, then $\overline{\mathcal{M}^s}(\{O_\alpha\}) = C$.
- If σ is a gluing stability condition with gluing perversity > 1, then $\overline{\mathcal{M}^s}(\{O_\alpha\})$ is empty.

References

[AB] D. Arcara and A. Bertram, Bridgeland-stable moduli spaces for K-trivial surfaces, JEMS 15(1) 1-38 (2013).

[AM] D. Arcara and E. Miles, Bridgeland Stability of Line Bundles on Surfaces, [arXiv:1401.6149v1] (2014).

[Bri1] T. Bridgeland, Stability conditions on triangulated categories, Annals of Math. 166 no.2 317-345 (2007).

[Bri2] T. Bridgeland, Stability conditions on K3 surfaces, Duke Math. J. 141 no.2 241-291 (2008).

[CP] J. Collins and A. Polishchuck, Gluing stability conditions Adv. Theor. Math. Phys. Volume 14 Number 2 563-608 (2010).

[Har] R. Hartshorne, Algebraic Geometry, Grad. Texts Math. 52, Springer (1971).

[Mac] E. Macrì, Stability conditions on curves, Math. Res. Lett. 14 657-672 (2007).
[MMS] E. Macrì, S. Mehrotra and P. Stellari, Inducing stability conditions, J. Algebraic Geom. 18 605-649 (2009).
[Ohk] R. Ohkawa, Moduli of Bridgeland semistable objects on \mathbb{P}^2, Kodai Math. J. 33 no.2 329-366 (2010).
[Oka] S. Okada, Stability manifold on \mathbb{P}^1, J. Algebraic Geom. 15 487-505 (2006).
[Orl] D. Orlov, Projective bundles, monoidal transforms and derived categories of coherent sheaves, Izv. Ross. Akad. Nauk. Soc. Mat. 56 852-862 (1991).

Department of Pure and Applied Mathematics, Faculty of Science and Engineering, Waseda University,
3-4-1 Ohkubo Shinjyuku Tokyo 169-8555, Japan
E-mail address: prime-xp.1990@moegi.waseda.jp