Artificial intelligence and machine learning in cardiovascular computed tomography

Karthik Seetharam, Premila Bhat, Maxine Orris, Hejmadi Prabhu, Jilan Shah, Deepak Asti, Preety Chawla, Tanveer Mir

ORCID number: Karthik Seetharam 0000-0001-8006-6445; Premila Bhat 0000-0002-7384-2300; Maxine Orris 0000-0002-0898-3991; Hejmadi Prabhu 0000-0001-9374-7952; Jilan Shah 0000-0002-0863-8979; Deepak Asti 0000-0003-2205-7529; Preety Chawla 0000-0002-1578-6697; Tanveer Mir 0000-0002-8550-5555.

Author contributions: Seetharam K and Bhat P contributed equally to this work; Seetharam K, Bhat P, Orris M, Prabhu H, Shah J, Asti D, Chawla P, and Mir T designed the research study; Seetharam K, Bhat P, Asti D, and Mir T performed the research; Seetharam K and Bhat P wrote the manuscript; all authors have read and approve the final manuscript.

Conflict-of-interest statement: The authors declare that there is no any conflicts of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the

Abstract
Computed tomography (CT) is emerging as a prominent diagnostic modality in the field of cardiovascular imaging. Artificial intelligence (AI) is making significant strides in the field of information technology, the commercial industry, and health care. Machine learning (ML), a branch of AI, can optimize the performance of CT and augment the assessment of coronary artery disease. These ML platforms can automate multiple tasks, perform calculations, and integrate information from a variety of data sources. In this review article, we explore the ML in CT imaging.

Key Words: Computed tomography; Machine learning; Artificial intelligence; Cardiovascular imaging

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Machine learning (ML), a subset of artificial intelligence, contains multiple algorithms which include supervised, unsupervised, reinforcement and deep learning. These algorithms can greatly augment multiple aspects in computed tomography which
include automated segmentation, diagnosis, and stratification based on risk. Outputs need to be carefully assessed by the medical team for any potential biases. For the future of computed tomography and cardiovascular imaging, ML algorithms need to be integrated in clinical care.

INTRODUCTION

In this digital era, distance is no longer a limiting factor and information is emanating from a variety of devices and sources[1]. These technological innovations have considerably transformed our perception, culture, and our daily lifestyles[2]. Similarly, many of these changes have trickled downwards in healthcare and are especially apparent in the field of cardiovascular imaging. Over the last 10 years, the field of computed tomography (CT) has expanded tremendously with significant changes in diagnostic performance and prognostic implications in coronary artery disease[3,4]. Coronary CT angiography (CTA) is now heralded as an established diagnostic modality in the evaluation of coronary artery disease (CAD)[4,5]. With each year, data arising from each imaging scan is increasing exponentially in intricacy and size[6]. As we approach this technological ceiling, the sheer complexity of this information will supersede the analytic capabilities of conventional statistical software[7].

Artificial Intelligence (AI) refers to a set of actions that can mimic human cognitive thinking and decision making[8]. Machine learning (ML), a branch of AI, can extrapolate hidden characteristics or relationships present in vast expanses of data[2]. It can analyze data from a multitude of sources and link the information in user-friendly approaches[9]. In addition, it can automate several processes and perform many calculations[10]. With the application of ML algorithms in CT for cardiology, it can elevate the modality to unprecedented new heights which can improve the quality of patient care. In our review, we evaluate recent advances and progression of ML in cardiac CT over recent years.

BROAD CLASSIFICATION OF ML

ML is an aggregate term which collectively encompasses a wide variety of analytical algorithms[11]. They can be simply divided into supervised learning, unsupervised learning, semi-supervised learning, deep learning and reinforcement learning[12,13] (Figure 1 and Table 1). Supervised learning requires labeled datasets or domains within the dataset to perform analytical actions[14]. Unsupervised learning does not require labels within a dataset and can analyze information in a very independent manner. For discussion purposes, it can be referred to as agnostic[2,15]. Hierarchical clustering, a type of unsupervised learning, can identify and distinguish new phenotypes within various cardiac diseases[2]. It has gained significant traction recently. Semi-supervised learning is a hybrid approach that utilizes properties present within supervised and unsupervised learning[16]. Reinforcement learning uses definitive reward conditions for the ML architecture to perform certain functions. Nevertheless, frequently not used in the field of cardiology[7]. Multiple studies have been documented to show the potential of ML in CT and CTA (Table 2).

Among all the available ML algorithms, deep learning is considered to have the most revolutionary potential[17]. In various sectors of commerce and industry, deep learning is being heavily utilized to unravel information within large troves of data[18]. From voice recognition software in Siri or Alexa to self-driving cars in google, deep learning is garnering significant interest[12]. The architecture of deep learning algorithms is similar to the arrangement of a human neuron[19,20]. It is structured in a series of layers, there is significant communication between the preceding and subsequent layers. It processes information in multiple layers and is more independent
Table 1 Type of machine learning

Types of machine learning	Function	Examples
Supervised learning (55)	Contains labels and outcomes, deduces inferences for prediction purpose	Includes logistic regression, ridge regression, elastic net regression, Bayesian and artificial neural networks
Unsupervised learning (55)	No labels, independently detects significant relationships.	Includes hierarchical clustering, k-means clustering, principal component analysis
Semi-supervised learning (55)	Properties of both supervised and unsupervised learning	Utilized in image and speech recognition
Re-enforcement learning (55)	Utilizes reward function to execute tasks	Utilized in medical imaging, analytics, and prescription selection

Table 2 Machine learning studies in computed tomography

Ref.	ML approach	Brief study description
ML derived CAC assessment	Multiple ML algorithm	To use CAC and clinical factors for CAD prediction
Al’Aref et al.[24]	ML algorithm	To compare ML derived CT FFR and CAC in CT
Kay et al.[27]	ML algorithm	To identify phenotypes of left ventricular hypertrophy in combination with CAC
Zhou et al.[31]	Multiple ML algorithms	To employ CT FFR for myocardial bridge formation prediction
Tang et al.[32]	ML algorithm	To compare ML CT FFR, CTA and invasive angiography
Coenen et al.[33]	Supervised learning	To identify CAD
ML derived evaluation of plaque characteristics	ML algorithm	To generate ML derived scores from plaque characteristics
Dey et al.[34]	ML algorithm	To predict cardiac death from plaque characteristics from CTA
Hell et al.[35]	ML algorithm	To segment and distinguish between different varieties of EAT
Rodrigues et al.[38]	ML algorithm	To quantify EAT in CT
Commandeur et al.[39]	Supervised learning	To assess the relationship between EAT in CT and MFR in PET
Otaki et al.[40]	Supervised learning	To identify CAD
ML derived evaluation of epicardial adipose tissue	Deep learning	To assess automatic and manual assessment of left and right cardiac structure and function
Baskaran et al.[41]	Deep learning	To identify culprit coronary lesions in CT
Al’Aref et al.[42]	Supervised learning	To detect acute ischemic stroke in CT
Beecy et al.[43]	Supervised learning	To utilize perivascular fat for cardiac risk prediction
Oikonomou et al.[44]	Deep learning	To evaluate epicardial tissue for MACE events

CT: Computed tomography; CTA: Computed tomography angiography; CAC: Coronary artery calcium; ML: Machine learning; CAD: Coronary artery disease; FFR: Fractional flow reserve; EAT: Epicardial adipose tissue.

AUGMENTED CORONARY CALCIUM ASSESSMENT

Coronary artery calcium (CAC) measurement is heralded as a fundamental metric in coronary CT because it serves as a pivotal predictor of mortality and cardiac complic-
The Agatston scoring method is the conventional approach utilized to quantify CAC in coronary CT\cite{19}. Furthermore, the CAC plays a diagnostic role in medical management, the CAC scores can be used to stratify patients and monitor medical therapy. However, CAC measurement can be quite tedious due to underlying artifacts, image noise, an abundance of calcifications, interobserver variability, and other factors\cite{24}. The application of ML can significantly elevate the potential of CAC in CT.

Al’Aref \textit{et al}\cite{24} applied an ML architecture incorporating clinical factors in the CONFIRM registry with CAC for calculating the probability of CAD with CTA in a total of 35821 patients. It clearly showcased excellent AUC for ML and (CAC) (0.881) to other conventional approaches in their study [ML independently (0.773), updated Diamond-Forrester Score (0.682) coronary calcium (0.886)]. Hou \textit{et al}\cite{25} assessed the role of supervised ML to evaluate pretest likelihood of CAD in CTA with 6274 individuals. Their ML algorithm demonstrated superior discriminative capacity for CAD occlusion in comparison to traditional scoring metrics such as Modified Diamond Forester scores and CAD consortium score ($P < 0.001$). Tesche \textit{et al}\cite{26} exhibited superior performance of ML derived CT fractional flow reserve (FFR) in comparison to CTA with CAC, substantial distinctions in capability were noted and with propionate increases in Agatston scores ($P < 0.001$). Kay \textit{et al}\cite{27} integrated various algorithmic frameworks with radiomics for identifying new phenotypic characteristics regarding left ventricular hypertrophy (LVH) severity in CT with (CAC) assessment. As a result, ML frameworks are found to be efficacious in identifi-
cation of LVH.

APPLICATION OF MACHINE LEARNING FOR CT FRACTIONAL FLOW RESERVE

Although CTA enables visual evaluation of a stenotic lesion, it lags behind invasive FFR for assessing the hemodynamic significance of coronary stenosis\cite{28}. Coronary fractional flow reserve (CT-FFR) has become a suitable non-invasive modality for evaluating ischemic heart disease and chest pain\cite{29}. Furthermore, it can perform this task without the requirement of additional medications or imaging. It provides functional and anatomic evaluation, this approach is steadily gaining momentum in CT imaging\cite{30}. ML algorithms can calculate FFR in the absence of computational fluid dynamics and yield additional prognostic information\cite{3}. It can substantially expand the arena of CT-FFR in CT imaging.

Zhou \textit{et al}\cite{31} evaluated CT fractional flow reserve (CT FFR) for estimating myocardial bridge formation by integrating several algorithms. Interestingly, the framework chose properties which contained superior AUC (0.75 ± 0.04) in comparison to clinical attributes (0.53 ± 0.09, $P < 0.0001$), or CT-FFR properties (0.62 ± 0.06, $P = 0.0127$). Tang \textit{et al}\cite{32} demonstrated that CT FFR with computational fluid dynamics was superior CTA and invasive angiography for detecting vessel-specific ischemia. This was particularly seen in intermediate lesions ($P < 0.001$ for all). Coenen \textit{et al}\cite{33} demonstrated excellent correlation between ML based CT FFR and deep learning in CAD ($r = 0.997$).
PLAQUE CHARACTERIZATION AND SEGMENTATION IN CAD

ML algorithms can provide additional insight regarding plaque characteristics in CAD and augment our understanding[2]. Dey et al[34] utilized a logitboost algorithm to produce an ML-derived risk score from plaque characteristics in CTA for 254 patients. The ML algorithm displayed a higher AUC (0.84) than individual CTA parameters including stenosis (0.76), total plaque volume (0.74), and low likelihood of CAD (P < 0.0006) (0.63). Hell et al[35] investigated the role of ML algorithms to predict cardiac death from coronary CTA through the utilization of plaque features in 2748 patients. The non-calcified plaque > 146 mm³ (P = 0.027), low density non-calcified plaque (P = 0.025), total plaque volume > 179 mm³, and CDD > 35% in any vessel were significantly associated with elevated risk of future cardiac death.

ML AUGMENTED EVALUATION OF EPICARDIAL AND THORACIC ADIPOSE TISSUE

Cardiac CT is deemed as the gold standard for evaluation of epicardial adipose tissue (EAT) quantification and assessment. EAT is a layer of adipose surrounding the heart and the accompanying coronary arteries. In addition, EAT is significantly linked with various cardiovascular risk factors, atherosclerosis of the coronary arteries, and CAD [36,37]. The application of ML algorithms can automate the quantification of EAT and greatly reduce the time of manual measurements. This can translate into greater clinical implementation in coronary CT.

Rodrigues et al[38] applied ML algorithms for segmenting and differentiating types of fat in CT. The ML platform was able to achieve 98.4% mean accuracy and a DICE similarity index of 96.8%. Commandeur et al[39] utilized a deep learning algorithm for quantifying EAT in coronary CT. Strong agreement was observed between automatic and expert manual quantification with a mean DICE score coefficient of 0.823 and an excellent correlation of 0.923 with EAT volume. Otaki et al[40] utilized a boost ensemble machine learning algorithm for assessing the association of epicardial fat volume from myocardial flow reserve (MFR) in non-contrast CT in positive emission tomography (PET). The ML composite risk score substantially increased risk reclassification of impaired MFR to EAT volume or coronary calcium score (IDI = 0.19 and P = 0.007, IDI = 0.22 and P = 0.002).

MISCELLANEOUS APPLICATIONS OF ML

In CT, ML has been applied in a variety of different situations with overwhelmingly positive results. Baskaran et al[41] assessed deep learning for assessing cardiovascular structures for CTA in 166 patients. The ML architecture corroborated in parallel to manual annotation in CTA for left ventricular volume (r = 0.98), right ventricular volume (r = 0.97) (P < 0.05). Al Arel et al[42] utilized ML in CTA to detect precursor culprit lesion from patients with CAD. It exhibited a superior AUC for discriminating lesions in comparison to other ML derived frameworks (P < 0.01). Beecy et al[43] on CT for detecting acute ischemic stroke events. Interestingly, their AUC was 0.91 for automatic detection of infarction and had a 93% accuracy with interpretation of experienced physicians. Oikonomou et al[44] examined the capability of the random forest ML architecture from the radiomic profile of CTA derived coronary perivascular adipose tissue (PVAT) for identifying cardiac risk. It exceeded traditional risk stratification metrics for MACE prediction (P < 0.001). Eisenberg used deep learning for MACE prediction with EAT and other characteristics. The EAT in CT predicted MACE effectively (HR, 1.35, P < 0.01), inversely with attenuation (0.83, P = 0.01)[45].

BIG DATA UTILIZATION FOR PREDICTION OF OUTCOMES IN CT

Big data has emerged as a valuable resource that provides significant depth and understanding and is instrumental to the growth of ML in clinical medicine (Table 3) [3]. Due to size and magnitude, many important characteristics are often unnoticed by conventional approaches[6,46]. The implementation of AI with these immense expanses of data can yield additional information which can aid in medical management and clinical care.
Motwani et al[47] evaluated an ML framework to predict CAD in 10,030 patients for five-year mortality in comparison to traditional cardiac metrics in CT. Interestingly, the ML architecture exhibited a superior AUC (0.79) than CT severity scores (SSS = 0.64, SIS = 0.64, DI = 0.62) for five-year all-cause mortality prediction ($P < 0.0001$). Similarly, van Rosendael et al[48] utilized an ML framework in CT with 8844 patients for detecting major cardiovascular events encompassing various attributes in relation to severity scores for CAD prediction. The ML derived AUC (0.771) was significantly higher in CT than conventional scoring parametric systems (0.685-0.701) for anticipating major cardiovascular events, with a notable difference ($P < 0.001$). Han et al[49] assessed an ML-derived predictive capacity for all-cause mortality in 86155 patients. Notably, the AUC (0.82) noted to be higher than Framingham risk score and other traditional metrics ($P < 0.05$).

Evolving Beliefs and Future Directions of ML

It must be emphasized with great importance that cardiovascular disease is heterogeneous in nature[50]. It cannot be perceived as straightforward because disease mechanisms have intricate interactions among molecular, genetic, and environmental factors[22]. The process is very dynamic, it truly reflects the essence of ML algorithms. ML can integrate this information from multiple sources and analyze it in a variety of approaches. This can lead to the development of various genetic markers which can help guide medical management and monitor responses after therapy[6,51]. Furthermore, we can tailor treatment regimens appropriate to the genetic constitutional makeup of an individual, ML algorithms will facilitate the growth of precision medicine[12].

In current times, mobile devices, smartphone apps, and wearable devices are part and parcel of our daily lifestyles[52]. Telemedicine and ML algorithms are clearly intertwined in cardiovascular imaging and CT[1]. The information from these devices can be integrated with various parameters in cardiovascular imaging to yield additional insight regarding various cardiovascular diseases. In many underserved regions of the world, these devices can provide medical care and help direct patients towards appropriate intervention[1,53]. ML algorithms can analyze this information in real-time and help expedite this process[1]. These algorithms can serve as a bridge between different types of technology and cardiovascular imaging.

Although several algorithms have significant potential in computed tomography, deep learning has the most overwhelming potential[54]. It captures information through hierarchical levels of abstraction. As the computational prowess of graphical processing units (GPUs) continue to progressively evolve in conjunction with big data, the relevance of deep learning in computed tomography is becoming imminent. It is very effective in robust tasks such as image classification, image segmentation, and identification of various cardiovascular structures in CT, CTA, and cardiovascular imaging[20]. Furthermore, it does not require extensive training. The accuracy can be achieved by elevating the capability of the network or increasing the training set. This is a stark distinction in comparison to other ML algorithms[55]. Other algorithms entail a significant number of observations, computations, manual labor, and training to achieve optimal efficiency.

Randomized clinical trials (RCTs) are the gold standard in clinical research. The integration of ML algorithms could prove to be exceedingly useful if implemented appropriately. Numerous RCTs fail to reach completion due to several factors which could include improper study design, inadequate number of participants, or lack of funding[56]. The integration of ML algorithms during the early or intermediate stage of an RCT could provide an outlook of different outcomes[5]. This information could

Ref.	ML approach	Number	Brief study description
Motwani et al[47]	Supervised Learning	10030	To predict 5-yr mortality from CT
Rosandael et al[48]	Supervised Learning	8844	To predict major cardiac events from CT
Han et al[49]	ML algorithm	86155	To predict all-cause mortality from CT

CT: Computed tomography; ML: Machine learning.
be used to restructure the RCT to obtain more successful outcomes. In addition, ML algorithms can enhance the randomization process in RCT[56].

LIMITATIONS OF ML

Though ML algorithms offer a significant promise for the future, it is far from straightforward. Several issues need to be resolved for successful implementation in clinical medicine. The potential of false discovery can occur with small databases, there is not enough information to properly train the algorithm[55]. Unfortunately, AI lacks a moral compass[57]. In addition, several unintentional biases can emerge during the process and could alter interpretation. The “black box” nature has always been an enigmatic property of ML algorithms, this has impeded its adoption in the medical field[2]. Investigators must have a proper research concept and plan before embarking on any ML-related task. As a result, engineers, physicians, and other members of a research team must play an active role in every stage of the ML algorithm[15,58]. Adjustments can be made to the algorithm to deliver clinically relevant information.

For any ML algorithm to thrive and grow, large information or databases is mandatory[15]. Obtaining this information can be complex and tedious. Data needs to be shared among institutions to allow training of the ML model[15]. This might require multiple IRB approvals. Information also needs to be de-identified before it can be shared. Many of these tasks can be time-consuming. Many types of imaging systems are frequently used for storing cardiovascular images. Nevertheless, each institution has their own unique protocols and there are differences in the acquisition process as well[2]. Some form of data standardization is required to facilitate data sharing and ML algorithm growth. If more information can be publicly available, it would be beneficial.

CONCLUSION

ML algorithms will have limitless potential in cardiovascular imaging, this has been evidenced in the field of CT. It will cause multiple paradigm shifts which will have a revolutionary impact in the field of medicine. These frameworks will automate several tasks, perform calculations, and aid as a supplementary tool for medical diagnosis and prognostication. By performing multiple tasks, physicians will have more time to spend with patients and be more focused on proper medical management. ML will serve as a long-lasting bridge between physicians and technology in clinical medicine.

REFERENCES

1. Seetharam K, Kagiyama N, Sengupta PP. Application of mobile health, telemedicine and artificial intelligence to echocardiography. Echo Res Pract 2019; 6: R41-R52 [PMID: 30844756 DOI: 10.1530/ERP-18-0081]

2. Seetharam K, Brito D, Farjo PD, Sengupta PP. The Role of Artificial Intelligence in Cardiovascular Imaging: State of the Art Review. Front Cardiovasc Med 2020; 7: 618849 [PMID: 33426010 DOI: 10.3389/fcvm.2020.618849]

3. Al’Aref SJ, Anchouche K, Singh G, Slomka PJ, Kolli KK, Kumar A, Pandey M, Maliakal G, van Rosendaal AR, Beeey AN, Berman DS, Leipsic J, Nieman K, Andreini D, Pontone G, Schoept UJ, Shaw LJ, Chang HJ, Narula J, Bax JJ, Guan Y, Min JK. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur Heart J 2019; 40: 1975-1986 [PMID: 30060039 DOI: 10.1093/eurheartj/ehy404]

4. Abdelrahman KM, Chen MY, Dey AK, Virmani R, Finn AV, Khamis RY, Choi AD, Min JK, Williams MC, Buckler AJ, Taylor CA, Rogers C, Samady H, Antoniades C, Shaw LJ, Budoff MJ, Hoffmann U, Blankstein R, Narula J, Mehta NN. Coronary Computed Tomography Angiography From Clinical Uses to Emerging Technologies: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 76: 1226-1243 [PMID: 32883417 DOI: 10.1016/j.jacc.2020.06.076]

5. Seetharam K, Min JK. Artificial Intelligence and Machine Learning in Cardiovascular Imaging. Methodist Debakey Cardiovasc J 2020; 16: 263-271 [PMID: 33507554 DOI: 10.14797/mdcj-16-4-263]

6. Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP. Machine learning in cardiovascular medicine: are we there yet? Heart 2018; 104: 1156-1164 [PMID: 29352006 DOI: 10.1136/heartjnl-2017-31198]

7. Seetharam K, Raina S, Sengupta PP. The Role of Artificial Intelligence in Echocardiography. Curr
Cardiovasc Med 2020; 22: 99 [PMID: 32728829 DOI: 10.1007/s11936-020-01329-7]
8 Hamet P, Tremblay J. Artificial intelligence in medicine. *Metabolism* 2017; 69S: S36-S40 [PMID: 28126242 DOI: 10.1016/j.metabol.2017.01.011]
9 Seetharam K, Sengupta PP, Bianco CM. Cardiac mechanics in heart failure with preserved ejection fraction. *Echocardiography* 2020; 37: 1936-1943 [PMID: 32594605 DOI: 10.1111/echo.14764]
10 Kagiymana N, Shrestha S, Farjo PD, Sengupta PP. Artificial Intelligence: Practical Primer for Clinical Research in Cardiovascular Disease. *J Am Heart Assoc* 2019; 8: e12788 [PMID: 31450991 DOI: 10.1161/JAHA.119.012785]
11 Seetharam K, Shrestha S, Sengupta P. Artificial Intelligence in Cardiac Imaging. *US Cardiol Rev* 2020; 13: 110-116 [DOI: 10.15420/uscr.2019.19.2]
12 Johnson KW, Torres Soto J, Glicksberg BS, Shamek K, Miotto R, Ali M, Ashley E, Dudley JT. Artificial Intelligence in Cardiology. *J Am Coll Cardiol* 2018; 71: 2668-2679 [PMID: 29880128 DOI: 10.1016/j.jacc.2018.03.521]
13 Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial Intelligence in Precision Cardiovascular Medicine. *J Am Coll Cardiol* 2017; 69: 2657-2664 [PMID: 28545640 DOI: 10.1016/j.jacc.2017.03.571]
14 Seetharam K, Kagiymana N, Shrestha S, Sengupta PP. Clinical Inference From Cardiovascular Imaging: Paradigm Shift Towards Machine-Based Intelligent Platform. *Curr Treat Options Cardiovasc Med* 2020; 22: 8 [DOI: 10.1007/s11936-020-0805-5]
15 Seetharam K, Shrestha S, Mills JD, Sengupta PP. Artificial Intelligence in Nuclear Cardiology: Adding Value to Prognostication. *Curr Cardiovasc Imag Rep* 2019; 12 [DOI: 10.1007/s12350-018-1284-x]
16 Sengupta PP, Shrestha S. Machine Learning for Data-Driven Discovery: The Rise and Relevance. *JACC Cardiovasc Imaging* 2019; 12: 690-692 [PMID: 30553684 DOI: 10.1016/j.jcim.2018.06.030]
17 Bizopoulos P, Koutsouris D. Deep Learning in Cardiology. *IEEE Rev Biomed Eng* 2019; 12: 168-193 [PMID: 30530339 DOI: 10.1109/RBME.2018.2885714]
18 Krittanawong C, Johnson KW, Rosenson RS, Wang Z, Aydar M, Beber U, Min JK, Tang WHW, Halperin JL, Narayan SM. Deep learning for cardiovascular medicine: a practical primer. *Eur Heart J* 2019; 40: 2058-2073 [PMID: 30815669 DOI: 10.1093/eurheartj/ehz056]
19 Sengupta PP, Shrestha S, Zeb I. Solving coronary risk: time to feed machines some (score) supplements. *Eur Heart J* 2020; 41: 368-370 [PMID: 31603192 DOI: 10.1093/eurheartj/ehz706]
20 Litjens G, Ciompi F, Wolterink JM, de Vos BD, Leiner T, Teuwen J, Ishgum I. State-of-the-Art Deep Learning in Cardiovascular Image Analysis. *JACC Cardiovasc Imaging* 2019; 12: 1549-1565 [PMID: 31395244 DOI: 10.1016/j.jcmg.2019.06.009]
21 Shrestha S, Sengupta PP. Machine learning for nuclear cardiology: The way forward. *J Nucl Cardiol* 2019; 26: 1755-1758 [PMID: 29679221 DOI: 10.1007/s12350-018-1284-x]
22 Shrestha S, Sengupta PP. The Mechanics of Machine Learning: From a Concept to Value. *J Am Soc Echocardiogr* 2018; 31: 1285-1287 [PMID: 30522604 DOI: 10.1016/j.echo.2018.10.003]
23 Al’Aref SJ, Min JK. Cardiac CT: current practice and emerging applications. *Heart* 2019; 105: 1597-1605 [PMID: 31425295 DOI: 10.1136/heartjnl-2018-314229]
24 Al’Aref SJ, Malikak G, Singh G, van Rosendaal AR, Ma X, Xu Z, Alavamih OA, Lee B, Pandey M, Achenbach S, Al-Mallah MH, Andreini D, Rax JJ, Berman DS, Budolf MJ, Cademartiri F, Callister TQ, Chang HJ, Chinnaiyan K, Chow BJW, Cary RC, Delago A, Feuchtner G, Hadamitzky M, Hausleiter J, Kaufmann PA, Kim YJ, Leipsic JA, Maffei E, Marques H, Goncalves PA, Pontone G, Raff GL, Rubinshtein R, Villines TC, Gransar H, Lu Y, Jones EC, Perna JM, Lin FY, Min JK, Shaw LJ. Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on computed tomography angiography: analysis from the CONFIRM registry. *Eur Heart J* 2020; 41: 359-367 [PMID: 31513271 DOI: 10.1093/eurheartj/ehz656]
25 Hou ZH, Lu B, Li ZN, An YQ, Gao Y, Yin WH, Liang S, Zhang RG. Machine Learning for Pretest Probability of Obstructive Coronary Stenosis in Symptomatic Patients. *JACC Cardiovasc Imaging* 2019; 12: 2584-2586 [PMID: 31734209 DOI: 10.1016/j.jcmg.2019.07.030]
26 Tesche C, Otani K, De Cecco CN, Coenen A, De Geer J, Achenbach S, Al-Mallah MH, Andreini D, Rax JJ, Berman DS, Budolf MJ, Cademartiri F, Callister TQ, Chang HJ, Chinnaiyan K, Chow BJW, Cary RC, Delago A, Feuchtner G, Hadamitzky M, Hausleiter J, Kaufmann PA, Kim YJ, Leipsic JA, Maffei E, Marques H, Goncalves PA, Pontone G, Raff GL, Rubinshtein R, Villines TC, Gransar H, Lu Y, Jones EC, Perna JM, Lin FY, Min JK, Shaw LJ. Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on computed tomography angiography: analysis from the CONFIRM registry. *Eur Heart J* 2020; 41: 359-367 [PMID: 31513271 DOI: 10.1093/eurheartj/ehz656]
26 Tesche C, Otani K, De Cecco CN, Coenen A, De Geer J, Kruk M, Albrecht MH, Yang DH, Kepka C, Persson A, Nieman K, Schoepf UJ. Influence of Coronary Calcium on Diagnostic Performance of Machine Learning CT-FFR: Results From MACHINE Registry. *JACC Cardiovasc Imaging* 2020; 13: 760-770 [PMID: 31422144 DOI: 10.1016/j.jcmg.2019.06.027]
27 Kay FU, Abbas B, Joshi PH, Garq S, Khera A, Pesheck R. Identification of High-Risk Left Ventricular Hypertrophy on Calcium Scoring Cardiac Computed Tomography Scans: Validation in the DHS. *Circ Cardiovasc Imaging* 2020, 13: e009678 [PMID: 32066275 DOI: 10.1161/CIRCIMAGING.119.009678]
28 Pijls NH, Van Gelder B, Van der Voort P, Peels K, Bracke FA, Bonnier HJ, el Gamal MI. Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. *Circulation* 1995; 92: 3183-3193 [PMID: 7586302 DOI: 10.1161/01.cir.92.11.3183]
29 Leipsic J, Weir-McCall J, Blank P. FFR_{CT} for Complex Coronary Artery Disease Treatment Planning: New Opportunities. *Interv Cardiol* 2018; 13: 126-128 [PMID: 30443268 DOI: 10.1542/icc.2018.14.3]
30 Hirshfeld JW Jr, Nathan AS. QFR and FFR_{CT}: Accurate Enough? *JACC Cardiovasc Interv* 2019; 12:
risk prediction using coronary CT angiography.

A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac

Dey D, Gaur S, Ovrehus KA, Slomka PJ, Betancur J, Goeller M, Hell MM, Gransar H, Berman DS, Achenbach S, Botker HE, Jensen JM, Lassen JF, Norgaard BL. Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angiography using machine learning: a multicentre study. Eeur Radiol 2018; 28: 2655-2664 [PMID: 29352380 DOI: 10.1007/s00330-017-5225-z]

Hell MM, Dey D, Marwan M, Achenbach S, Schmidt J, Schuhbaeck A. Non-invasive prediction of hemodynamically significant coronary artery stenoses by contrast density difference in coronary CT angiography. Eur J Radiol 2015; 84: 1502-1508 [PMID: 2600143] DOI: 10.1016/j.ejrad.2015.04.024

Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahahadi AA, Vasan RS, O'Donnell CJ, Fox CS. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation 2008; 117: 605-613 [PMID: 18212276 DOI: 10.1161/CIRCULATIONAHA.107.743062]

de Vos AM, Prokop M, Roos CJ, Meij FS, van der Schouw YT, Rutten A, Gorter PM, Cramer MJ, Doevendans PA, Rensing BJ, Bartelink ML, Veltius BK, Mosterd A, Bols ML. Peri-coronary epicardial adipose tissue is related to cardiovascular risk factors and coronary artery calcification in post-menopausal women. Eur Heart J 2012; 29: 777-783 [PMID: 18156138 DOI: 10.1093/eurheartj/ehm564]

Rodrigues ÉO, Morais FF, Morais NA, Conci LS, Neto LV, Conci A. A novel approach for the automated segmentation and volume quantification of cardiac fats on computed tomography. Comput Methods Programs Biomed 2016; 123: 109-128 [PMID: 26474835 DOI: 10.1016/j.cmpb.2015.09.017]

Commandeur F, Goeller M, Betancur J, Cadet S, Doris M, Chen X, Berman DS, Slomka PJ, Tamarappoo BK, Dey D. Deep Learning for Quantification of Epicardial and Thoracic Adipose Tissue From Non-Contrast CT. IEEE Trans Med Imaging 2018; 37: 1835-1846 [PMID: 29994362 DOI: 10.1109/TMI.2018.2804799]

Otaki Y, Hell M, Slomka PJ, Schuhbaeck A, Gransar H, Huber B, Nakazato R, Germerano G, Hayes SW, Thomson LE, Friedman JD, Achenbach S, Berman DS, Dey D. Relationship of epicardial fat volume from noncontrast CT with impaired myocardial flow reserve by positron emission tomography. J Cardiovasc Comput Tomogr 2015; 9: 303-309 [DOI: 10.1016/j.jcct.2015.03.005]

Baskaran L, Maliakal G, Al'Aref SJ, Singh G, Xu Z, Michalak K, Dolan K, Gianni U, van Rosendael A, van den Hoogen I, Han D, Stuijfzand W, Pandey M, Lee BC, Lin F, Pontone G, Knapek P, Marques H, Bax J, Berman D, Chang HJ, Shaw LJ, Min JK. Identification and Quantification of Cardiovular Structures From CCTA: An End-to-End, Rapid, Pixel-Wise, Deep-Learning Method. JACC Cardiovasc Imaging 2020; 13: 1163-1171 [PMID: 31607673 DOI: 10.1016/j.jcmg.2019.08.025]

Al'Aref SJ, Singh G, Choi JW, Xu Z, Maliakal G, van Rosendael AR, Lee BC, Fatima Z, Andreini D, Bax JJ, Cademartiri F, Chinnaiyan K, Chow BW, Conte E, Cory RC, Feuchtner G, Hadamitzky M, Kim YJ, Lee SE, Leipsc JA, Maffei E, Marques H, Plank F, Pontone G, Raff GL, Villines TC, Weirich HG, Cho I, Danad I, Han D, Leo RH, Rizvi A, Stuijfzand WJ, Gransar H, Lu Y, Sang JM, Park HB, Berman DS, Budoff MJ, Samady H, Stone PH, Virmani R, Narula J, Chang HJ, Lin FY, Baskaran L, Shaw LJ, Min JK. A Boosted Ensemble Algorithm for Determination of Plaque Stability in High-Risk Patients on Coronary CTA. JACC Cardiovasc Imaging 2020; 13: 2162-2173 [PMID: 32682719 DOI: 10.1016/j.jcmg.2020.03.025]

Beeay AN, Chang Q, Anchouche K, Baskaran L, Elmore K, Kolli K, Wang H, Al'Aref S, Peña JM, Knight-Greenfield AC, Patel P, Sun P, Zhang T, Kamil H, Gupta A, Min JK. A Novel Deep Learning Approach for Automated Diagnosis of Acute Ischemic Infarction on Computed Tomography. JACC Cardiovasc Imaging 2018; 11: 1723-1725 [PMID: 29778866 DOI: 10.1016/j.jcmg.2018.03.012]

Oikonomou EK, Williams MC, Kotanidis CP, Desai MY, Marwan M, Antapolous AS, Thomas KE, Thomas S, Akoumianakis I, Fan LM, Kesanav S, Hendrick L, Alashi A, Centeno EH, Lyasheva M, Griffin BP, Flamm SD, Shirodaria C, Sahbarwal N, Kelion A, Dweck MR, Van Beek EJR, Deanfield J, Hopewell JC, Neubauer S, Channon KM, Achenbach S, Newby DE, Antoniades C. A novel machine learning-derived radiotranscriptomic signature of atherothrombotic plaques improves cardiac risk prediction using coronary CT angiography. Eur Heart J 2019; 40: 3529-3543 [PMID: 31504423]
Checklist: Reviewed by the American College of Cardiology Healthcare Innovation Council.

Requirements for Cardiovascular Imaging-Related Machine Learning Evaluation (PRIME): A proposed framework. Yanamala N, Duchateau N, Kagiyama N, Bernard O, Slomka P, Deo R, Arnaout R.

Artificial Intelligence. Cambridge University Press, 2014 [DOI: 10.1017/CBO9781139046855]

Bostrom N. [DOI: 10.1016/j.ejha.2018.02.010].

Krittanawong C. Treat Options Cardiovasc Med 2020, 11: 30838909 [PMID: 32063057] DOI: 10.1007/s11936-019-0728-1

Seetharam K. Journal of Cardiovascular Imaging 2019; 11: 26873098 [PMID: 31574994] DOI: 10.1016/j.jcmg.2018.02.010

Bhavnani SP. JACC Cardiovasc Imaging 2018; 11: 29661796 [PMID: 30989203] DOI: 10.1016/j.jcmg.2018.02.010

Shrestha S, Sengupta PP. Imaging Heart Failure With Artificial Intelligence: Improving the Realism of Synthetic Wisdom. Circ Cardiovasc Imaging 2018; 11: e007723 [PMID: 29661796] DOI: 10.1016/j.jcmg.2018.02.010

Dey D, Slomka PJ, Leeson P, Comaniciu D, Shrestha S, Sengupta PP, Marwick TH. Artificial Intelligence in Cardiovascular Imaging: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 73: 1317-1335 [PMID: 30989203] DOI: 10.1016/j.jacc.2018.12.054

Bhavnani SP, Narula J, Sengupta PP. Mobile technology and the digitization of healthcare. Eur Heart J 2016; 37: 1428-1438 [PMID: 26873093] DOI: 10.1093/eurheartj/ehw770

Bhavnani SP, Sola S, Adams D, Venkateshvaran A, Dash PK, Sengupta PP; ASEF-VALUES Investigators. A Randomized Trial of Pocket-Echocardiography Integrated Mobile Health Device Assessments in Modern Structural Heart Disease Clinics. JACC Cardiovascular Imaging 2018; 11: 546-557 [PMID: 28917688] DOI: 10.1016/j.jcmg.2017.06.019

Sahbarwal NK. Could Deep Learning Change Our Working Lives? JACC Cardiovascular Imaging 2018; 11: 1664-1665 [PMID: 29503322] DOI: 10.1016/j.jcmg.2018.02.010

Seetharam K, Shrestha S, Sengupta PP. Artificial Intelligence in Cardiovascular Medicine. Curr Treat Options Cardiovasc Med 2019; 21: 25 [PMID: 31089906] DOI: 10.1007/s11936-019-0728-1

Krittanawong C, Johnson KW, Tang WW. How artificial intelligence could redefine clinical trials in cardiovascular medicine: lessons learned from oncology. Per Med 2019; 16: 83-88 [PMID: 30838909] DOI: 10.2217/pme-2018-0130

Bostrom N, Yudkowsky E. The ethics of artificial intelligence. The Cambridge Handbook of Artificial Intelligence. Cambridge University Press, 2014 [DOI: 10.1017/CBO9781139046855]

Sengupta PP, Shrestha S, Berthon B, Messas E, Donal E, Tison GH, Min JK, D'hooge J, Voigt JU, Dudley J, Verjans JW, Shaner K, Johnson K, Lovstakken L, Tabassian M, Piccirilli M, Pernot M, Yanamala N, Duchateau N, Kagiyma N, Bernard O, Slomka P, Deo R, Arnaout R. Proposed Requirements for Cardiovascular Imaging-Related Machine Learning Evaluation (PRIME): A Checklist. Review by the American College of Cardiology Healthcare Innovation Council. JACC Cardiovascular Imaging 2020; 13: 2017-2035 [PMID: 32912474] DOI: 10.1016/j.jcmg.2020.07.015
