The Natural Effect of BCG Vaccination on COVID-19: The Debate Continues

Wenping Gong1,2†, Huiru An1,2†, Jie Wang1,2, Peng Cheng1,2 and Yong Qi3*

1 Tuberculosis Prevention and Control Key Laboratory, Senior Department of Tuberculosis, The 8th Medical Center of People’s Liberation Army (PLA) General Hospital, Beijing, China, 2 Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of People’s Liberation Army (PLA) General Hospital, Beijing, China, 3 Huadong Research Institute for Medicine and Biotechniques, Nanjing, China

Keywords: BCG (Bacille Calmette-Guérin), COVID-19, Mycobacterium tuberculosis, clinical trial, hospitalization, protective effect

INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has inflicted an unprecedented and significant toll on global public health and the economy. During the fight against the pandemic, the century-old tuberculosis (TB) vaccine Bacille Calmette Guérin (BCG), which has been reported to protect against infections of various respiratory pathogens other than Mycobacterium tuberculosis by inducing non-specific immune responses, was found to play an essential role against COVID-19 in various ecological, analytical, and animal studies (1, 2). However, its effectiveness remains controversial due to the limited number of published clinical trials (2). The effect of BCG vaccines appears to be quite non-specific or speculative. Currently there is no clear or strong evidence to support the notion that BCG vaccination confer protection to COVID-19, and this recommendation has remained unchanged to date (3).

NON-SPECIFIC IMMUNE RESPONSE INDUCED BY THE BCG

Our previous studies have reported that BCG vaccination could induce a non-specific immune response to fight against unrelated pathogens (2, 4–7). The non-specific immune response induced by BCG vaccination may be due to three potential mechanisms: trained immunity, heterologous immunity, and anti-inflammatory effect (2). Of the three possible mechanisms, trained immunity has received the most attention. Trained immunity is derived from immune memory in innate...
immune cells such as monocytes and macrophages. The primary immunization of BCG can activate innate immune cells to produce IL-1β, TNF-α, and IL-6, generating trained monocytes/macrophages with an “infection memory.” These trained monocytes/macrophages will respond rapidly by releasing higher levels of cytokines to combat the second unrelated pathogens’ invasion (8). The trained immunity induced by BCG has been demonstrated in both animal experiments and human clinical trials, and it may be beneficial for the prevention and treatment of SARS-CoV-2 infection (2, 4–7, 9–11).

EARLY EVIDENCE ON BCG PREVENTION OF COVID-19

Early in the COVID-19 outbreak, the hypothesis that BCG could prevent COVID-19 infection was raised. Isabel N. Kantor was the first to publicly discuss whether BCG has preventive and protective effects against COVID-19 and how strong the association is between the “more BCG vaccination” and the “less COVID-19 infection” (12). Then, the lead investigator of the BRACE trial (NCT04327206) and the BCG-CORONA trial (NCT04328441) as well as the Director General of WHO discussed this hypothesis, and they suggested that BCG might reduce viremia following SARS-CoV-2 exposure, thereby reducing the severity of COVID-19 and recovering faster (13). Furthermore, Luke A. J. O’Neill and Mihai G. Netea claimed that the BCG vaccine might well be a bridge to a specific COVID-19 vaccine due to the trained immunity induced by BCG.

Although this hypothesis offered a glimmer of hope to the panicked and helpless people in the early days of the COVID-19 pandemic, it still needed a lot of evidence to prove it. In the early months of the COVID-19 pandemic, findings from the ecological and analytical studies indicated that countries with low BCG coverage had significantly higher rates of COVID-19 morbidity and mortality than countries with high BCG coverage (14–40). On the contrary, other ecological and analytical studies found that BCG vaccination could not provide adequate protection against COVID-19 infection (41–50). The results of these ecological and analytical studies were contradictory, and the heterogeneity of these findings may originate from some confounding factors, such as population density, ethnicity, age structure, income, healthcare access and quality index, COVID-19 transmission progression, COVID-19 testing rate, non-pharmaceutical interventions, and geographical distribution (2, 5, 51–53). Therefore, these findings should be investigated by randomized clinical trials.

LATEST EVIDENCE ON BCG PREVENTION OF COVID-19

Recently, results of a double-blind, randomized, placebo-controlled clinical trial (NCT04379336), which aimed to evaluate the efficacy of BCG vaccination in delivering protection against COVID-19 in healthcare workers (HCWs) in South Africa, were published in the journal eClinicalMedicine and attracted wide attention (54). The study reported that BCG revaccination failed to protect HCWs from SARS-CoV-2 infection, severe COVID-19, hospitalization, and respiratory tract infections (RTIs), on the contrary, resulting in an unexpected trend toward more symptomatic and severe RTIs. Nevertheless, it is plausible that BCG offered protection from death. The results indicated that BCG had no statistically significant effect on COVID-19, which in our opinion, maybe still controversial.

A large number of COVID-19 immune-tolerant rather than sensitive participants recruited in the study may have influenced or masked the true protective effect of the BCG vaccine. However, the COVID-19-seropositive population, with a rate of 15.3% resistant to COVID-19-related severe disease, were not excluded. Considering that M. tuberculosis-infected mice were resistant to secondary SARS-CoV-2 infection (48), it’s not inconceivable that the latent tuberculosis infection in the HCWs occupied 48.5% of all the participants might play resistant roles and influence the significant difference between groups. However, they were not excluded, either. More importantly, all the participants had previously received at least one dose of the BCG vaccine due to the vaccination policy of South Africa before the trial, which also could decrease the variation between the BCG revaccination and placebo groups. Interestingly, the only clinical trial to obtain results similar to this one also recruited volunteers who had received the BCG vaccine before in Poland (55), indicating the limitation should not be ignored.

Considering that many clinical trials began in the early days of the pandemic like this study, there must have been various drawbacks in their design due to the lack of understanding of the disease and its interaction with the BCG vaccine at that time. For instance, the BCG vaccination-caused scars would expose the participants’ group and make the double-blind experimental design impossible. Furthermore, the young and middle-aged participants being relatively more resistant to COVID-19 than older people may mask the real efficacy of the BCG vaccine. Here we summarize the designs, results, and deficiencies of all published clinical studies (Table 1) (35–59) and hope to provide helpful information for more clinical studies involving the efficacy of BCG vaccination against COVID-19 or other virus infections in the future. After all, though more than 50 clinical trials have been registered, results of less than ten clinical trials have been published so far (2).

CONCLUSION

The hypothesis that BCG has a protective effect against COVID-19 has not been robustly verified. Therefore, the interpretation of any clinical trial results used to confirm this hypothesis should follow the principles of objectivity, science, and prudence.
TABLE 1 | Summary of the designs, results, and deficiencies of all published clinical studies.

Age (years)	BCG strain	Inclusion criteria	Exclusion criteria
39-40	Danish strain 1331	1. Elderly patients (≥ 65 years) were selected.	1. Respiratory infection or other active infection.
>65	Moscow strain 361-1	Enrolled people should also have skin test sensitivity to BCG.	2. COVID-19 treated with medications or ongoing immunosuppressive therapy.
	Danish strain 1331	The study enrolled elderly patients (age ≥ 65 years) of both genders who were discharged from hospital after hospitalization for a medical cause.	3. Treatment with bone marrow transplantation.
>25	Brazilian strain	2. No confirmed SARS-CoV-2 infection. 3. Earlier vaccination against tuberculosis. 4. Received two doses of the COVID-19 vaccine.	4. Infection by HIV-1.
60-80	NA	1. Age ≥ 60 years. 2. Having a chronic disease or having undergone major surgery. 3. Meeting at least one of the following criteria: (1) Planned to be discharged from the hospital or discharged from the hospital less than 6 weeks ago. (2) Visiting a medical outpatient clinic. (3) Attending the thrombosis care service.	5. Known history of a positive Mantoux or active TB.
	Danish strain 1331	1. Elderly individuals between 60-80 years of age residing in hotspots for SARS-CoV2 infection were included.	6. Treatment with corticosteroids, ongoing immunosuppressive therapy, or tranquilizers.
>60	NA	1. Elderly individuals between 60-80 years of age residing in hotspots for SARS-CoV2 infection were included.	7. Neoplastic diseases.

(Continued)
TABLE 1 | Continued

Intervention	Morbidity	Severe disease rate	Hospitalization
BCG: 0.1mL, placebo: 0.1mL NaCl	A total of 99 COVID-19 events were recorded on BCG, and 93 COVID-19 events were recorded on placebo.	A higher proportion of a total of 27 severe COVID-19 events were recorded on BCG (19, 70.4%) compared to placebo (8, 29.6%)	NA
Subdermal injection of 0.1mL of sodium chloride 0.9% or with 0.1mL of BCG vaccine	During these first 3 months after the vaccination, the overall incidence of COVID-19 was 10 patients in placebo vs. two patients in BCG group, p = 0.086. In contrast, 6-months after vaccination, the total number of COVID-19 diagnoses (possible/probable/definitive) was significantly lower in the BCG-vaccinated group compared with the placebo group: OR 0.32 in multivariate analysis (95% CI 0.13-0.79, p = 0.014)	Definitive diagnosis of severe COVID-19 requiring hospitalization was present in 5 individuals in the placebo group and only one in the BCG group	NA
Intradermal vaccination with 0.1mL of sodium chloride 0.9% or with 0.1mL of BCG	The incidence of new infection was 42.3% (95% confidence intervals [CIs] 31.9%-53.4%) in the placebo group and 25.0% (95% CIs 16.4%-36.1%) in the BCG group.	NA	NA
Intradermal vaccination with 0.1mL of sodium chloride 0.9% or with 0.1mL of BCG	The incidence of new infection was 42.3% (95% confidence intervals [CIs] 31.9%-53.4%) in the placebo group and 25.0% (95% CIs 16.4%-36.1%) in the BCG group.	NA	NA
Intradermal injection in the left upper arm with BCG. Placebo: Intradermal injection of sterile 0.9% NaCl	NA	NA	NA

BCG: Single dose of 0.1mL of BCG vaccine. Placebo: No BCG vaccine

NCT04379336 (54)
NCT04414267 (56)
NCT03296423 (57)
NCT04648800 (55)
NCT04475302 (58)
NCT04537663 (59)

- therapies.
- 5. Positive IFN-γ Release Assay (IGRA)
- 9. In the exacerbation stage of chronic diseases
- 10. Pregnancy
- 11. History of tuberculosis
- 12. Keloid at the vaccination site after previous BCG vaccination

8. History of COVID-19
9. Not able to perform the study procedures
10. Legally incapacitated or unwilling to provide informed consent

Morbidity A total of 99 COVID-19 event were record on BCG, and 93 COVID-19 events were record on placebo.

Intervention
- BCG: 0.1mL, placebo: 0.1mL NaCl

Morbidity
- A total of 99 COVID-19 event were record on BCG, and 93 COVID-19 events were record on placebo.

Severe disease rate
- A higher proportion of a total of 27 severe COVID-19 events were recorded on BCG (19, 70.4%) compared to placebo (8, 29.6%)

Hospitalization
1. The primary endpoint of hospitalization due to COVID-19 occurred in 15 (1.5%) participants: 10 (67%) on BCG compared to 5 (33%) on placebo, with an HR of 2.0 (95% CI 0.69-5.9, p = 0.20)
2. The time-to-first hospitalization for all causes included 47 (4.7%) admissions; 27 (57.4%) on BCG and 20 (42.6%) on placebo.
TABLE 1 | Continued

Study	NCT04379336 (54)	NCT04414267 (56)	NCT03296423 (57)	NCT04648800 (55)	NCT04475302 (58)	NCT04537663 (59)
Mortality						
Placebo						
NCT04379336 (54)						
NCT04414267 (56)						
NCT03296423 (57)						
NCT04648800 (55)						
NCT04475302 (58)						
NCT04537663 (59)						

Mortality

Four participants (0.4%) died, two (50.0%) due to COVID-19 and one each (25.0%) due to bowel perforation and a cerebrovascular accident, all on placebo.

Limitation

1. The lack of information on BCG vaccination at birth.
2. The lower-than-expected attack rate (19.2%) and hospitalisation rate (7.8%)
3. Participants with a positive serology test were included.
4. Unblinded within a few days of enrollment.
5. Participants with positive QuantFERON results were included.
6. The number of participants included in final analysis was not clear.

Placebo with an HR of 1.36 (95% CI 0.72–2.49, p = 0.31).

1. Small sample size
2. Lack of microbiological testing in all patients with a clinical diagnosis of possible or probable COVID-19.
3. No conclusions can be drawn regarding the effect of BCG vaccination on the severe forms of COVID-19.
4. Lack of information regarding the SARS-CoV-2 strains.
5. Limited information regarding the impact of BCG on the specific immunological host defense pathways against SARS-CoV-2.
6. The lack of a never-vaccinated control population.
7. Small sample size
8. This study did not examine the mechanical changes in the immune system.
9. Almost all individuals participating in this study received the BCG vaccine for the first time, as the Netherlands did not adopt a policy of vaccination with BCG in childhood.
10. There is no specific outcome data.

NA, not applicable.

Considering the ongoing pandemic and the possibility of novel variants or other pathogens emerging, the potential effect of BCG on COVID-19 needs to be further confirmed in rigorous randomized clinical trials.

AUTHOR CONTRIBUTIONS

Conceptualization: WG, YQ, and HA; Data curation: JW and PC; Formal analysis: YQ; Funding acquisition: WG; Methodology: HA, JW, and PC; Writing - original draft: WG and YQ; Writing - review and editing: HA, YQ, and WG. All authors contributed to the article and approved the submitted version.

FUNDING

This study was funded by the Beijing Municipal Science & Technology Commission (Grant No. 19L2065) and the Chinese PLA General Hospital (Grant No. QNC19047) to WG.

REFERENCES

1. Parmar K, Siddiqui A, Nugent K. Bacillus Calmette-Guerin Vaccine and Nonspecific Immunity. Am J Med Sci (2021) 361:683–9. doi: 10.1016/j.amjms.2021.03.003
2. Gong W, Mao Y, Li Y, Qi Y. BCG Vaccination: A Potential Tool Against COVID-19 and COVID-19-Like Black Swan Incidents. Int Immunopharmacol (2022) 108:108870. doi: 10.1016/j.intimp.2022.108870
3. WHO. Bacille Calmette-Guerin (BCG) Vaccination and COVID-19. Geneva: WHO (2020).
Gong W, Parkkila S, Wu X, Aspatwar A. SARS-CoV-2 Variants and COVID-19 Vaccines: Current Challenges and Future Strategies. Int Rev Immunol (2022) 41:1–22. doi: 10.1080/08830185.2022.2079642

Wang J, Zhang Q, Wang H, Gong W. The Potential Roles of BCG Vaccine in the Prevention or Treatment of COVID-19. Front Biosci (Landmark Ed) (2022) 27:157. doi: 10.31083/fjl.2705157

Gong W, Aspatwar A, Wang S, Parkkila S, Wu X. COVID-19 Pandemic: SARS-CoV-2 Specific Vaccines and Challenges, Protection via BCG Trained Immunity, and Clinical Trials. Expert Rev Vaccines (2021) 20:857–80. doi: 10.1080/14760584.2021.1938550

Aspatwar A, Gong W, Wang S, Wu X, Parkkila S. Tuberculosis Vaccine BCG: The Magical Effect of the Old Vaccine in the Fight Against the COVID-19 Pandemic. Int Rev Immunol (2022) 41(2):283–96. doi: 10.1080/08380185.2021.1922685

Netea MG, Giamarellos-Bourboulis EJ, Dominguez-Andres J, Curtis N, van Crevel R, van de Veerendonk FL, et al. Trained Immunity: A Tool for Reducing Susceptibility to and the Severity of SARS-CoV-2 Infection. Cell (2020) 181:969–77. doi: 10.1016/j.cell.2020.04.042

Brueggeman JM, Zhao J, Schank M, Yao ZQ, Moorman JP. Trained Immunity: An Overview and the Impact on COVID-19. Front Immunol (2022) 13:83752. doi: 10.3389/fimmu.2022.837524

Lee MH, Kim BJ. COVID-19 Vaccine Development Based on Recombinant Viral and Bacterial Vector Systems: Combinatorial Effect of Adaptive and Trained Immunity. J Microbiol (Seoul Korea) (2020) 60:321–34. doi: 10.1007/s12275-022-1621-2

You M, Chen L, Zhang D, Zhao P, Chen Z, Qin EQ, et al. Single-Cell Epigenomic Landscape of Peripheral Immune Cells Reveals Establishment of Trained Immunity in Individuals Convalescing From COVID-19. Nat Cell Biol (2021) 23:620–30. doi: 10.1038/s41556-021-00690-1

Kantor IN. BCG Versus COVID-19! Medicina (2020) 80:292–4.

Curtis N, Sparrow A, Ghebreyesus TA, Netea MG. Considering BCG Vaccination to Reduce the Impact of COVID-19. Lancet (2020) 395:1545–6. doi: 10.1016/S0140-6736(20)31025-4

Klinger D, Blass I, Rappoport N, Linal M. Significantly Improved COVID-19 Outcomes in Countries With Higher BCG Vaccination Coverage: A Multivariable Analysis. Vaccines (Basel) (2020) 8:378. doi: 10.3390/vaccines8030378

Miller A, Reandeler MJ, Fasiglione K, Roumenova V, Li Y, Otazu GH. Correlation Between Universal BCG Vaccination Policy and Reduced Morbidity and Mortality for COVID-19: An Epidemiological Study. medRxiv (2020). doi: 10.1101/2020.03.24.20042937

Gong W, Wu X. Is the Tuberculosis Vaccine BCG an Alternative Weapon for COVID-19? J Med virol (2021) 93:1496–505. doi: 10.1002/jmv.26450

Senoo Y, Suzuki Y, Tsudo K, Tanimoto T, Takahashi K. Association Between COVID-19 Morbidity and Mortality Rates and BCG Vaccination Policies in OECD Countries. J Infect Prev (2021) 22:91–3. doi: 10.1177/175717420976812

Kinoshita M, Tanaka M. Impact of Routine Infant BCG Vaccination on COVID-19. J Infect (2020) 81:625–33. doi: 10.1016/j.jinf.2020.08.013

Singh S, Maurya RP, Singh RK. “Trained Immunity” From Mycobacterium spp. Exposure or BCG Vaccination and COVID-19 Outcomes. Plos pathogens (2020) 16:e1008969. doi: 10.1371/journal.ppat.1008969

Raham TF. Influence of Malaria Endemicity and Tuberculosis Prevalence on COVID-19 Mortality. Public Health (2021) 194:33–5. doi: 10.1016/j.pu.2021.02.018

Inoue K, Kashima S. Association of the Past Epidemic of Mycobacterium Tuberculosis With Mortality and Incidence of COVID-19. Plos One (2021) 16:e0253169. doi: 10.1371/journal.pone.0253169

Chaudhari VL, Godbole CJ, Gandhe PP, Gogtay NJ, Thatte UM. Association of Bacillus Calmette Guerin Vaccine Strains With COVID-19 Morbidity and Mortality - Evaluation of Global Data. Indian J Commun Med (2021) 46:727–30. doi: 10.4103/ijcrim.IJCM_103_21

Kumar A, Misra S, Verma V, Vishwakarma RK, Kamal VK, Nath M, et al. Global Impact of Environmental Temperature and BCG Vaccination Coverage on the Transmissibility and Fatality Rate of COVID-19. Plos One (2021) 15:e0240710. doi: 10.1371/journal.pone.0240710

Abdulah DM, Hassan AB. Exploration of Association Between Respiratory Vaccinations With Infection and Mortality Rates of COVID-19. Disaster Med Public Health Prep (2021), 1–6. doi: 10.1017/dmp.2021.47

Pathak S, Jolly MK, Nandi D. Countries With High Deaths Due to Flu and Tuberculosis Demonstrate Lower COVID-19 Mortality: Roles of Vaccinations. Hum Vaccin Immunother (2021) 17:2851–62. doi: 10.1080/21645515.2021.1908058

Hidvégi M, Nicheltali M, Bacillus Calmette-Guerin Vaccination Policy and Consumption of Ammonium Chloride-Enriched Confectioneries May Be Factors Reducing COVID-19 Death Rates in Europe. Israel Med Assoc J (2021) 8:435–8.

Ebina-Shibuya R, Horita N, Namkoong H, Kaneko T. Current National Policies for Infant Universal Bacille Calmette-Guérin Vaccination Were Associated With Lower Mortality From Coronavirus Disease 2019. Clin Exp Vaccine Res (2020) 9:179–82. doi: 10.7774/cevr.2020.9.2.179

Szigeti R, Kellermayer D, Trakimas G, Kellermayer R. BCG Epidemiology Supports its Protection Against COVID-19! A Word of Caution. Plos One (2020) 15:e0240203. doi: 10.1371/journal.pone.0240203

Lerm M. On the Relationship Between BCG Coverage and National COVID-19 Outcome: Could ‘Heterologous’ Herd Immunity Explain Why Some Countries Are Better Off? J Intern Med (2020) 288:682–8. doi: 10.1111/joim.13198

Hauer J, Fischer U, Auer F, Borkhardt A. Regional BCG Vaccination Policy in Former East- and West Germany May Impact on Both Severity of SARS-CoV-2 and Incidence of Childhood Leukemia. Leukemia (2020) 34:2217–9. doi: 10.1038/s41373-020-0871-4

Weng CH, Saal A, Butt WW, Bica N, Fisher JQ, Tao J, et al. Bacillus Calmette-Guérin Vaccination and Clinical Characteristics and Outcomes of COVID-19 in Rhode Island, United States: A Cohort Study. Epidemiol Infect (2020) 148: c140. doi: 10.1093/aje/kwaa001569

Hamiel U, Kozier E, Youngster I. SARS-CoV-2 Rates in BCG-Vaccinated and Unvaccinated Young Adults. Jama (2020) 323:2340–1. doi: 10.1001/ jama.2020.8189

Sayed A, Challa KT, Arja S. Epidemiological Differences of COVID-19 Over the World. Cureus (2020) 12:e10316. doi: 10.7759/cureus.10316

Hensel J, McAndrews KM, McGrail DJ, Dowlatshahi DP, LeBlue VS, Kalluri R. Protection Against SARS-CoV-2 by BCG Vaccination Is Not Supported by Epidemiological Analyses. Sci Rep (2020) 10:18377. doi: 10.1038/s41598-020-75491-x
44. Wassenaar TM, Buzard GS, Newman DJ. BCG Vaccination Early in Life Does Not Improve COVID-19 Outcome of Elderly Populations, Based on Nationally Reported Data. *Int. J. Microbiol.* (2020) 71:e498–505. doi: 10.1111/ijm.13365

45. Chimoyi L, Velen K, Churchyard GJ, Wallis R, Lewis JJ, Charalambous S. An Ecological Study to Evaluate the Association of Bacillus Calmette-Guerin (BCG) Vaccination on Cases of SARS-CoV2 Infection and Mortality From COVID-19. *PloS One* (2020) 15:e0243707. doi: 10.1371/journal.pone.0243707

46. de Chaisemartin C, de Chaisemartin L. Bacille Calmette-Guerin Vaccine in Infancy Does Not Protect Against Coronavirus Disease 2019 (COVID-19): Evidence From a Natural Experiment in Sweden. *Clin Infect Dis* (2021) 72: e501–e5. doi: 10.1093/cid/ciaa1223

47. Patella V, Sanduzzi A, Bruzzese D, Florio G, Brancaccio R, Fabbrocini G, et al. A Survey Among Italian Physicians During COVID-19 Outbreak. Could Bacillus Calmette-Guerin Vaccine Be Effective Against SARS-CoV-2? *Front Pharmacol* (2021) 12:646570. doi: 10.3389/fphar.2021.646570

48. Chauhan A, Singh M, Agarwal A, Jaiswal N, M Lakshmi PV, Singh M. Exploring the Role of Bacillus Calmette-Guerin Vaccination in Protection Against COVID-19. *Int J mycobact* (2021) 10:433–6. doi: 10.4103/ijmy.ijmy_179_21

49. Cerqueira S, Deps PD, Cunha DV, Bezerra NVF, Barroso DH, Pinheiro ABS, et al. The Influence of Leprosy-Related Clinical and Epidemiological Variables in the Occurrence and Severity of COVID-19: A Prospective Real-World Cohort Study. *PloS Negl Trop Dis* (2021) 15:e0009635. doi: 10.1371/journal.pntd.0009635

50. Bates MN, Herron TJ, Lwi SJ, Baldo JV. BCG Vaccination at Birth and COVID-19 Morbidity in Healthcare Workers: A Double-Blind, Randomised, Controlled, Phase 3 Trial. *EClinicalMedicine* (2022) 48:101414. doi: 10.1016/j.eclinm.2022.101414

51. Czajka H, Zapolnik P, Krzych L, Kmiecik W, Stopyra L, Nowakowska A, et al. A Multi-Center, Randomised, Double-Blind, Placebo-Controlled Phase III Clinical Trial Evaluating the Impact of BCG Re-Vaccination on the Incidence and Severity of SARS-CoV-2 Infections Among Symptomatic Healthcare Professionals During the COVID-19 Pandemic in Poland-First Results. *Vaccines (Basel)* (2022) 10(2):314. doi: 10.3390/vaccines10020314

52. Kumar NP, Padmapriyadarsini C, Rajamanickam A, Bhavani PK, Nancy A, Jeyadeepa B, et al. BCG Vaccination Induces Enhanced Frequencies of Dendritic Cells and Altered Plasma Levels of Type I and Type III Interferons in Elderly Individuals. *Int J Infect Dis IJID* (2021) 110:98–104. doi: 10.1016/j.ijid.2021.07.041

53. Tsilika M, Taks E, Dolianitis K, Kotsaki A, Leventogiannis K, Damoulari C, et al. ACTIVATE-2: A Double-Blind Randomized Trial of BCG Vaccination Against COVID-19 in Individuals at Risk. *medRxiv* (2021). doi: 10.1101/2021.05.20.21257520

54. Giamarellos-Bourboulis EJ, Tsilika M, Moorlag S, Antonakos N, Kotsaki A, Dominguez-Andrés J, et al. Activate: Randomized Clinical Trial of BCG Vaccination Against Infection in the Elderly. *Cell* (2020) 183:315–23.e9. doi: 10.1016/j.cell.2020.08.051

55. Kumar DP, Padmapriyadarsini C, Rajamanickam A, Bhavani PK, Nancy A, Jeyadeepa B, et al. BCG Vaccine Be Effective Against SARS-Cov2? *Front Immunol* (2020) 11:e570. doi: 10.3389/fimmu.2020.01792

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Gong, An, Wang, Cheng and Qi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.