The Homotopy Theory of Cyclotomic Spectra

Michael A. Mandell

Indiana University

The Ohio State University
Topology Seminar

April 9, 2013
Overview

The homotopy theory of cyclotomic spectra

- Joint work with Andrew Blumberg
Overview

The homotopy theory of cyclotomic spectra

- Joint work with Andrew Blumberg
- Preprint: arXiv:1303.1694 [math.KT]
Overview

The homotopy theory of cyclotomic spectra

- Joint work with Andrew Blumberg
- Preprint: arXiv:1303.1694 [math.KT]

1. How do cyclotomic spectra show up?
Overview

The homotopy theory of cyclotomic spectra

- Joint work with Andrew Blumberg
- Preprint: arXiv:1303.1694 [math.KT]

How do cyclotomic spectra show up?

THH and *TC*
Overview

The homotopy theory of cyclotomic spectra

- Joint work with Andrew Blumberg
- Preprint: arXiv:1303.1694 [math.KT]

1. How do cyclotomic spectra show up?
 THH and TC

2. What is a cyclotomic spectrum?
Overview

The homotopy theory of cyclotomic spectra

- Joint work with Andrew Blumberg
- Preprint: arXiv:1303.1694 [math.KT]

1. How do cyclotomic spectra show up?
 THH and TC

2. What is a cyclotomic spectrum?
 Some equivariant stable homotopy theory
Overview

The homotopy theory of cyclotomic spectra

- Joint work with Andrew Blumberg
- Preprint: arXiv:1303.1694 [math.KT]

1. How do cyclotomic spectra show up?
 \(THH \) and \(TC \)

2. What is a cyclotomic spectrum?
 Some equivariant stable homotopy theory

3. The homotopy theory of cyclotomic spectra
Overview

The homotopy theory of cyclotomic spectra

- Joint work with Andrew Blumberg
- Preprint: arXiv:1303.1694 [math.KT]

1. How do cyclotomic spectra show up?
 \(THH \) and \(TC \)

2. What is a cyclotomic spectrum?
 Some equivariant stable homotopy theory

3. The homotopy theory of cyclotomic spectra

4. A new interpretation of \(TC \)
Hochschild Homology

Cyclic bar construction

\[N_{q}^{cy} R = R \otimes \cdots \otimes R \otimes R \]

\[\text{q factors} \]

Example: \(R = \mathbb{Z}[\pi] \)

\[\tau_C = \tau_0 \times \]

\[\times \text{ non-pos curved space} \]

\[X \cong B \mathbb{K} \]

\[HH_{\mathbb{K}}(\mathbb{Z}[\pi]) \cong H_{\mathbb{K}}(\wedge X) \]
Hochschild Homology

Cyclic bar construction

\[N_q^{cy} R = R \otimes \cdots \otimes R \otimes R \]

Example: \(R = \mathbb{Z}[\pi] \)

Chain complex
Hochschild Homology

Cyclic bar construction

\[N_q^{cy} R = R \otimes \cdots \otimes R \otimes R \]

\[q \text{ factors} \]

Example: \(R = \mathbb{Z}[\pi] \)

Chain complex

Cyclic structure \(\Rightarrow \) Connes’ \(B \) operator \(\Rightarrow \) cyclic homology
Cyclic bar construction

\[N_q^{cy} R = \underbrace{R \wedge \cdots \wedge R \wedge R}_{q \text{ factors}} \]

Example: \(R = H\mathbb{Z}[\pi] \) or \(R = \Sigma^\infty \Omega_+ \)

Spectrum
Cyclic structure \(\Rightarrow \)

\[\pi_1 X = \pi_0 \Omega X \]
\[\Omega \simeq \Omega X \]
\[THH(\Sigma^\infty \Omega X+) \simeq \sum^\infty \wedge X_+ \]
Topological Hochschild Homology

Cyclic bar construction

\[N^c_y \mathcal{R} = \underbrace{\mathcal{R} \wedge \cdots \wedge \mathcal{R}}_{q \text{ factors}} \wedge \mathcal{R} \]

Example: \(\mathcal{R} = H\mathbb{Z}[\pi] \) or \(\mathcal{R} = \Sigma^\infty \Omega_+ \)

Spectrum
Cyclic structure \(\Rightarrow \) circle group action
The Dennis Trace and Goodwillie’s Theorem

Trace map \(K_*(R) \to HH_*(R) \).

Factors through negative cyclic homology

\[
K_*(R) \to HN_*(R)
\]

For a map \(A \to B \), get a map on relative theories

\[
K_*(B, A) \to HN_*(B, A)
\]

Theorem (Goodwillie, 1986)

Let \(A \to \bar{B} \) be a surjection with nilpotent kernel. Then the map on relative theories

\[
K_*(\bar{B}, A) \to HN_*(\bar{B}, A)
\]

is an isomorphism after tensoring with \(\mathbb{Q} \).
The Dennis Trace and Goodwillie's Theorem

Trace map $K_\ast(R) \to HH_\ast(R)$.

Factors through negative cyclic homology

$$K_\ast(R) \to HN_\ast(R)$$

For a map $A \to B$, get a map on relative theories

$$K_\ast(B, A) \to HN_\ast(B, A)$$

Theorem (Goodwillie, 1986)

Let $A \to \bar{B}$ be a surjection with nilpotent kernel. Then the map on relative theories

$$K_\ast(\bar{B}, A) \to HN_\ast(\bar{B}, A)$$

is an isomorphism after tensoring with \mathbb{Q}
The Dennis Trace and Goodwillie's Theorem

Trace map $K_*(R) \to HH_*(R)$.

Factors through negative cyclic homology

$$K_*(R) \to HN_*(R)$$

For a map $A \to B$, get a map on relative theories

$$K_*(B, A) \to HN_*(B, A)$$

Theorem (Goodwillie, 1986)

Let $A \to \bar{B}$ be a surjection with nilpotent kernel. Then the map on relative theories

$$K_*(\bar{B}, A) \to HN_*(\bar{B}, A)$$

is an isomorphism after tensoring with \mathbb{Q}
The Dennis Trace and Goodwillie’s Theorem

Trace map $K_\ast(R) \to HH_\ast(R)$.

Factors through negative cyclic homology

$$K_\ast(R) \to HN_\ast(R)$$

For a map $A \to B$, get a map on relative theories

$$K_\ast(B, A) \to HN_\ast(B, A)$$

Theorem (Goodwillie, 1986)

Let $A \to \tilde{B}$ be a surjection with nilpotent kernel. Then the map on relative theories

$$K_\ast(\tilde{B}, A) \to HN_\ast(\tilde{B}, A) \simeq H_{C_\ast-1}(B; A)$$

is an isomorphism after tensoring with \mathbb{Q}.
The Cyclotomic Trace and McCarthy/Dundas Theorems

Question (Goodwillie)

Is there a corresponding theory that gets the p-adic information?

Bökstedt–Hsiang–Madsen constructed spectrum TC and map

$$K(R) \rightarrow TC(R)$$

Conjecture (1989)

Let $A \rightarrow B$ be a map of rings and assume it is surjective with nilpotent kernel then $K(B, A) \rightarrow TC(B, A)$ is a weak equivalence after p-completion.
Question (Goodwillie)

Is there a corresponding theory that gets the \(p \)-adic information?

Bökstedt–Hsiang–Madsen constructed spectrum \(TC \) and map

\[
K(R) \to TC(R)
\]

Conjecture (1989)

Let \(A \to B \) be a map of rings and assume it is surjective with nilpotent kernel then \(K(B, A) \to TC(B, A) \) is a weak equivalence after \(p \)-completion.
The Cyclotomic Trace and McCarthy/Dundas Theorems

Question (Goodwillie)
Is there a corresponding theory that gets the p-adic information?

Bökstedt–Hsiang–Madsen constructed spectrum TC and map

$$K(R) \to TC(R)$$

Conjecture (1989)
Let $A \to B$ be a map of rings and assume it is surjective with nilpotent kernel then $K(B, A) \to TC(B, A)$ is a weak equivalence after p-completion.
The Cyclotomic Trace and McCarthy/Dundas Theorems

Question (Goodwillie)
Is there a corresponding theory that gets the p-adic information?

Bökstedt–Hsiang–Madsen constructed spectrum TC and map

$$K(R) \to TC(R)$$

Theorem (McCarthy, 1997)
Let $A \to B$ be a map of rings and assume it is surjective with nilpotent kernel then $K(B, A) \to TC(B, A)$ is a weak equivalence after p-completion.
The Cyclotomic Trace and McCarthy/Dundas Theorems

Question (Goodwillie)
Is there a corresponding theory that gets the p-adic information?

Bökstedt–Hsiang–Madsen constructed spectrum TC and map

$$K(R) \rightarrow TC(R)$$

Theorem (McCarthy/Dundas, 1997)
Let $A \rightarrow B$ be a map of ring spectra and assume it is surjective with nilpotent kernel on π_0 then $K(B, A) \rightarrow TC(B, A)$ is a weak equivalence after p-completion.
The table shows the relationships between algebraic and topological theories for Abelian Groups and Spectrum.

Abelian Groups Spectrum	Algebra	Topology
Abelian Groups Spectrum	HH_\ast, HH, HN_\ast, HN	THH_\ast, THH

The table indicates that $TC \neq THN$.
TC is not THN

Abelian Groups Spectrum	Algebra	Topology
	HH_*	THH_*
	HH	THH
	HN_*	HN

Instead involves fixed points and geometric fixed points for finite subgroups C_n. $T^C \neq \text{THH}$
TC is not THN

Abelian Groups Spectrum	Algebra	Topology
	HH_*	THH_*
	HH	THH
	HN_*	
	HN	
TC is not THN

Algebra	Topology
HH_*	THH_*
HH	THH
HN_*	$THH_{\mathbb{T}}^{-*}(ET)$
HN	$THH^{h\mathbb{T}}$

Instead involves fixed points and geometric fixed points for finite subgroups C_n

$\mathbb{T} = \text{circle group}$
TC is not THN

Algebra	Topology
HH_*	THH_*
HH	THH
HN_*	$THH_{\mathbb{T}^*}(E_{\mathbb{T}})$
HN	$THH_{h\mathbb{T}}$

Instead involves **fixed points** and **geometric fixed points** for finite subgroups C_n

$\mathbb{T} = \text{circle group}$
TC is not THN

Abelian Groups	Algebra	Topology
Spectrum	HH_*	THH_*
Homotopy Fixed Points	HH	THH
Homotopy Fixed Point Spectrum	HN_*	$THH_T^{-*}(E_T)$
	HN	THH^{h_T}

Instead involves **fixed points** and **geometric fixed points** for finite subgroups C_n

$\mathbb{T} = \text{circle group}$
TC is not THN

	Algebra	Topology
Abelian Groups Spectrum	HH_*	THH_*
Homotopy Fixed Points	HH	THH
Homotopy Fixed Point Spectrum	HN_*	$THH_T^{-*}(E_T)$
	HN	THH_T^{hT}

$$TC \neq THH_T^{hT}$$

Instead involves **fixed points** and **geometric fixed points** for finite subgroups C_n

T = circle group
TC is not THN

	Algebra	Topology
Abelian Groups	HH_*	THH_*
Spectrum	HH	THH
Homotopy Fixed Points	HN_*	$THH\mathbb{T}^{-\ast}(E\mathbb{T})$
Homotopy Fixed Point Spectrum	HN	$THH_h\mathbb{T}$

Instead involves fixed points and geometric fixed points for finite subgroups C_{p^m}

$\mathbb{T} = \text{circle group}$
Fixed Points and Geometric Fixed Points

Example

For a \mathbb{T}-space X, what are the C_p-fixed points of $\Sigma^\infty X_+$?

Might want/expect them to be $\Sigma^\infty X_+^{C_p}$

Geometric Fixed Points

The geometric fixed point functor Φ^{C_p} has the property that

$$\Phi^{C_p} \Sigma^\infty X_+ = \Sigma^\infty X_+^{C_p}$$
Fixed Points and Geometric Fixed Points

Example

For a \mathbb{T}-space X, what are the C_p-fixed points of $\Sigma^\infty X_+$?

Might want/expect them to be $\Sigma^\infty X_+^{C_p}$

Geometric Fixed Points

The geometric fixed point functor Φ^{C_p} has the property that

$$\Phi^{C_p} \Sigma^\infty X_+ = \Sigma^\infty X_+^{C_p}$$
Example

For a \mathbb{T}-space X, what are the C_p-fixed points of $\Sigma_\mathbb{T} \infty X_+$?

Might want/expect them to be $\Sigma_\infty X^C_p$

Geometric Fixed Points

The geometric fixed point functor Φ^C_p has the property that

$$\Phi^C_p \Sigma_\mathbb{T} \infty X_+ = \Sigma_\infty X^C_p$$
Fixed Points and Geometric Fixed Points

Example

For a \mathbb{T}-space X, what are the C_p-fixed points of $\Sigma^\infty_{\mathbb{T}} X_+$?

Might want/expect them to be $\Sigma^\infty_{\mathbb{T}/C_p} X^C_p$.

Geometric Fixed Points

The geometric fixed point functor Φ^C_p has the property that

$$\Phi^C_p \Sigma^\infty_{\mathbb{T}} X_+ = \Sigma^\infty_{\mathbb{T}/C_p} X^C_p$$
Example

For a \mathbb{T}-space X, what are the C_p-fixed points of $\Sigma^\infty_{\mathbb{T}} X_+$?

Might want/expect them to be $\Sigma^\infty_{\mathbb{T}/C_p} X^C_p$

Geometric Fixed Points

The **geometric fixed point functor** Φ^{C_p} has the property that

$$\Phi^{C_p} \Sigma^\infty_{\mathbb{T}} X_+ = \Sigma^\infty_{\mathbb{T}/C_p} X^C_p$$

Might want/expect them to be C_p-equivariant maps from S^0 to $\Sigma_{\mathbb{T}} X_+$

This is a different functor, the **fixed point functor** $(-)^{C_p}$.
Example

For a \mathbb{T}-space X, what are the C_p-fixed points of $\Sigma_\mathbb{T} X$?

Might want/expect them to be $\Sigma_{\mathbb{T}/C_p} X^C_p$.

Geometric Fixed Points

The geometric fixed point functor Φ^C_p has the property that

$$\Phi^C_p \Sigma_{\mathbb{T}} X = \Sigma_{\mathbb{T}/C_p} X^C_p$$

Might want/expect them to be C_p-equivariant maps from S^0 to $\Sigma_{\mathbb{T}} X$.

This is a different functor, the fixed point functor $(_)^C_p$.
Example

For a \mathbb{T}-space X, what are the C_p-fixed points of $\Sigma_\mathbb{T} X_+$?

Might want/expect them to be $\Sigma_{\mathbb{T}/C_p} X^C_p$

Geometric Fixed Points

The geometric fixed point functor Φ^{C_p} has the property that

$$\Phi^{C_p} \Sigma_\mathbb{T} X_+ = \Sigma_{\mathbb{T}/C_p} X^C_p$$

Might want/expect them to be C_p-equivariant maps from S^0 to $\Sigma_\mathbb{T} X_+$

This is a different functor, the fixed point functor $(-)^{C_p}$.
Look at the case of $S = \Sigma_{\mathbb{T}}^\infty S^0$.
$S^{C_p} = \text{spectrum of } C_p\text{-equivariant maps from } S \text{ to } S.$
Fixed Points

Look at the case of \(S = \Sigma_T S^0 \).

\(S^{C_p} \) = spectrum of \(C_p \)-equivariant maps from \(S \) to \(S \).

Non-equivariant map example
Fixed Points

Look at the case of $S = \Sigma_{\mathbb{T}} S^0$.

$S^{C_p} = \text{spectrum of } C_p\text{-equivariant maps from } S \text{ to } S$.

$C_2\text{-equivariant map example}$
Look at the case of $S = \Sigma_T^\infty S^0$.

$S^{C_p} = \text{spectrum of } C_p\text{-equivariant maps from } S \text{ to } S$.

$C_2\text{-equivariant map examples}$
Fixed Points

Look at the case of $S = \Sigma_{T}^{\infty} S^{0}$.

$S^{C_{p}} = \text{spectrum of } C_{p}\text{-equivariant maps from } S \text{ to } S$.

$C_{2}\text{-equivariant map examples}$
Fixed Points and Geometric Fixed Points

Canonical map

\[T^{C_p} \to \Phi^{C_p} T \]

For suspension spectra, this map is split (tom Dieck splitting). Other piece is suspension spectrum of \(C_p \) homotopy orbits.

Summary

For \(T = \sum_{T}^\infty X_+ \)

- Geometric fixed points \(\Phi^{C_p} T = \sum_{T/C_p}^\infty X^{C_p}_+ \)
- Fixed points \(T^{C_p} = \sum_{T/C_p}^\infty (X^{C_p} \amalg (E_{T/C_p} \times X))_+ \)
Fixed Points and Geometric Fixed Points

Canonical map

\[T^{C_p} \to \Phi^{C_p} T \]

For suspension spectra, this map is split (tom Dieck splitting).
Other piece is suspension spectrum of \(C_p \) homotopy orbits.

Summary

For \(T = \sum_{\mathbb{T}} \infty X_+ \)
- Geometric fixed points \(\Phi^{C_p} T = \sum_{\mathbb{T}/C_p} \infty X^{C_p}_+ \)
- Fixed points \(T^{C_p} = \sum_{\mathbb{T}/C_p} \infty (X^{C_p} \amalg (E^{\mathbb{T}} \times_{C_p} X))_+ \)
Fixed Points and Geometric Fixed Points

Canonical map

$$T^{C_p} \rightarrow \Phi^{C_p} T$$

For suspension spectra, this map is split (tom Dieck splitting). Other piece is suspension spectrum of C_p homotopy orbits.

Summary

For $T = \sum_{T}^\infty X_+$

- Geometric fixed points $\Phi^{C_p} T = \sum_{T/C_p}^\infty X_{C_p}^{C_p}$
- Fixed points $T^{C_p} = \sum_{T/C_p}^\infty (X^{C_p} \amalg (E_{T/C_p} \times_{C_p} X))_+$
Fixed Points and Geometric Fixed Points

Canonical map

\[T^{C_p} \to \Phi^{C_p} T \]

For suspension spectra, this map is split (tom Dieck splitting). Other piece is suspension spectrum of \(C_p \) homotopy orbits.

Summary

For \(T = \Sigma_{\mathbb{T}} X_+ \)

- Geometric fixed points \(\Phi^{C_p} T = \Sigma_{\mathbb{T}/C_p} X^{C_p}_+ \)
- Fixed points \(T^{C_p} = \Sigma_{\mathbb{T}/C_p} (X^{C_p} \amalg (E_{\mathbb{T}} \times_{C_p} X))_+ \)
Fixed Points and Geometric Fixed Points

Canonical map

\[T^{C_p} \rightarrow \Phi^{C_p} T \]

For suspension spectra, this map is split (tom Dieck splitting). Other piece is suspension spectrum of \(C_p \) homotopy orbits.

Summary

For \(T = \sum_{\mathbb{T}}^\infty X_+ \)

- Geometric fixed points \(\Phi^{C_p} T = \sum_{\mathbb{T}/C_p}^\infty X_+^{C_p} \)
- Fixed points \(T^{C_p} = \sum_{\mathbb{T}/C_p}^\infty (X^{C_p} \amalg (E_{\mathbb{T}} \times_{C_p} X))_+ \)
Fixed Points and Geometric Fixed Points

Canonical map

\[T^{C_p} \rightarrow \Phi^{C_p} T \]

For suspension spectra, this map is split (tom Dieck splitting). Other piece is suspension spectrum of \(C_p \) homotopy orbits.

Summary

For \(T = \sum_{\mathbb{T}}^\infty X_+ \)

- Geometric fixed points \(\Phi^{C_p} T = \sum_{\mathbb{T}/C_p}^\infty X^{C_p}_+ \)
- Fixed points \(T^{C_p} = \sum_{\mathbb{T}/C_p}^\infty \left(X^{C_p} \amalg (E_{\mathbb{T}} \times_{C_p} X) \right)_+ \)
Fixed Points and Geometric Fixed Points

Canonical map

\[T^{C_p} \rightarrow \Phi^{C_p} T \]

For suspension spectra, this map is split (tom Dieck splitting). Other piece is suspension spectrum of \(C_p \) homotopy orbits.

Summary

For \(T = \Sigma_{\mathbb{T}}^\infty X_+ \)

- Geometric fixed points \(\Phi^{C_p} T = \Sigma_{\mathbb{T}/C_p}^\infty X_{C_p}^+ \)
- Fixed points \(T^{C_p} = \Sigma_{\mathbb{T}/C_p}^\infty (X_{C_p}^+ \amalg (E_{\mathbb{T}} \times_{C_p} X))_+ \)

\[T^{C_p^2} = \Sigma_{\mathbb{T}/C_p^2}^\infty (X_{C_p^2}^+ \amalg (E_{\mathbb{T}/C_p} \times_{C_p^2/C_p} X_{C_p}^+) \amalg (E_{\mathbb{T}} \times_{C_p^2} X))_+ \]
The Structure of THH

Example

$R = \sum_{\infty}^{\infty} \Omega_+, \Omega = \Omega X. \quad THH(R) \simeq \sum_{T}^{\infty} \Lambda X$,

$\Phi_{Cp} THH \simeq \sum_{T/Cp}^{\infty} (\Lambda X)_{Cp}$
The Structure of \(THH \)

Example

\[
R = \Sigma^\infty \Omega_+, \ \Omega = \Omega X.
\]

\[
THH(R) \simeq \Sigma^\infty \Lambda X_+.
\]

\[
\Phi^{C_p} THH \simeq \Sigma^\infty_{\mathbb{T}/C_p} (\Lambda X)^{C_p}_+.
\]
The Structure of THH

Example

$$R = \Sigma^\infty \Omega_+ , \Omega = \Omega X .$$

$$THH(R) \simeq \Sigma^\infty \Lambda X$$

$$\Phi^C_p \ THH \simeq \Sigma^\infty \frac{\Lambda X}{C_p}$$

$$\rho : \mathbb{T} \cong \mathbb{T}/C_p$$
The Structure of THH

Example

$$R = \Sigma^\infty \Omega_+, \ \Omega = \Omega X.$$

$$THH(R) \simeq \Sigma^\infty \Lambda X$$

$$\Phi^{C_p} THH \simeq \Sigma^\infty_{T/C_p} (\Lambda X)^{C_p}$$

$$\rho^* (\Lambda X)^{C_p} \cong \Lambda X$$

$$\implies \rho^* \Sigma^\infty_{T/C_p} (\Lambda X)^{C_p} \simeq \Sigma^\infty T \Lambda X$$

$$\rho: T \cong T/C_p$$
Example

\[R = \Sigma^\infty \Omega_+, \ \Omega = \Omega X. \]

\[\text{THH}(R) \simeq \Sigma^\infty \Lambda X \]

\[\Phi^C_p \text{THH} \simeq \Sigma^\infty_{\mathbb{T}/C_p} (\Lambda X)^C_p \]

\[\rho^* (\Lambda X)^C_p \simeq \Lambda X \quad \Rightarrow \quad \rho^* \Sigma^\infty_{\mathbb{T}/C_p} (\Lambda X)^C_p \simeq \Sigma^\infty \Lambda X_{\perp} \]

\[\rho: \mathbb{T} \simeq \mathbb{T}/C_p \]
The Structure of \(THH \)

Example

\[
R = \Sigma^\infty \Omega_+ , \quad \Omega = \Omega X .
\]

\[
THH(R) \simeq \Sigma^\infty \Lambda X
\]

\[
\Phi^C_p \text{THH} \simeq \Sigma^\infty_{\mathbb{T}/C_p} (\Lambda X)^{C_p}
\]

\[
\rho^*(\Lambda X)^{C_p} \simeq \Lambda X \quad \implies \quad \rho^* \Sigma^\infty_{\mathbb{T}/C_p} (\Lambda X)^{C_p} \simeq \Sigma^\infty \Lambda X
\]

Cyclotomic Structure

\[
\rho^*: \Phi^C_p \text{THH}(R) \xrightarrow{\simeq} \text{THH}(R)
\]

\[
\rho: \mathbb{T} \simeq \mathbb{T}/C_p
\]
Construction of TC

The maps R and F

\[
R : THH^{C_{p^m}} \rightarrow (\rho^* \Phi^{C_{p^m}} THH)^{C_{p^{m-1}}} \rightarrow THH^{C_{p^{m-1}}}
\]

\[
F : THH^{C_{p^m}} \rightarrow THH^{C_{p^{m-1}}}
\]

Definition

\[
TR = \text{holim}(\cdots \xrightarrow{R} THH^{C_{p^m}} \xrightarrow{R} \cdots \xrightarrow{R} THH)
\]

\[
TF = \text{holim}(\cdots \xrightarrow{F} THH^{C_{p^m}} \xrightarrow{F} \cdots \xrightarrow{F} THH)
\]

\[
TC = TR^{hF} \simeq TF^{hR}
\]
Construction of TC

The maps R and F

$$R: \text{THH}^{C_{p^m}} \rightarrow (\rho^* \Phi^C_p \text{THH})^{C_{p^{m-1}}} \rightarrow \text{THH}^{C_{p^{m-1}}}$$

$$F: \text{THH}^{C_{p^m}} \rightarrow \text{THH}^{C_{p^{m-1}}}$$

Definition

$$TR = \text{holim}(\cdots \xrightarrow{R} \text{THH}^{C_{p^m}} \xrightarrow{R} \cdots \xrightarrow{R} \text{THH})$$

$$TF = \text{holim}(\cdots \xrightarrow{F} \text{THH}^{C_{p^m}} \xrightarrow{F} \cdots \xrightarrow{F} \text{THH})$$

$$TC = TR^{hF} \simeq TF^{hR}$$
Construction of \(TC \)

The maps \(R \) and \(F \)

\[
R : \text{THH}^{C_p m} \to (\rho^* \Phi^{C_p} \text{THH})^{C_p m-1} \to \text{THH}^{C_p m-1}
\]

\[
F : \text{THH}^{C_p m} \to \text{THH}^{C_p m-1}
\]

Definition

\[
TR = \text{holim}(\cdots \xrightarrow{R} \text{THH}^{C_p m} \xrightarrow{R} \cdots \xrightarrow{R} \text{THH})
\]

\[
TF = \text{holim}(\cdots \xrightarrow{F} \text{THH}^{C_p m} \xrightarrow{F} \cdots \xrightarrow{F} \text{THH})
\]

\[
TC = TR^{hF} \simeq TF^{hR}
\]
Construction of TC

The maps R and F

$$R : \text{THH}^{C_p m} \to (\rho^* \Phi^{C_p} \text{THH})^{C_p m-1} \to \text{THH}^{C_p m-1}$$

$$F : \text{THH}^{C_p m} \to \text{THH}^{C_p m-1}$$

Definition

$$TR = \text{holim}(\cdots R \to \text{THH}^{C_p m} R \to \cdots R \to \text{THH})$$

$$TF = \text{holim}(\cdots F \to \text{THH}^{C_p m} F \to \cdots F \to \text{THH})$$

$$TC = TR^{hF} \simeq TF^{hR}$$
Construction of \(TC \)

The maps \(R \) and \(F \)

\[
R: \, \text{THH}^{C_{p^m}} \to (\rho^* \Phi^{C_p} \text{THH})^{C_{p^{m-1}}} \to \text{THH}^{C_{p^{m-1}}}
\]

\[
F: \, \text{THH}^{C_{p^m}} \to \text{THH}^{C_{p^{m-1}}}
\]

Definition

\[
TR = \text{holim}(\cdots \overset{R}{\to} \text{THH}^{C_{p^m}} \overset{R}{\to} \cdots \overset{R}{\to} \text{THH})
\]

\[
TF = \text{holim}(\cdots \overset{F}{\to} \text{THH}^{C_{p^m}} \overset{F}{\to} \cdots \overset{F}{\to} \text{THH})
\]

\[
TC = TR^{hF} \cong TF^{hR}
\]
Cofiber sequences

Hesselholt-Madsen: Computation of K-theory of local fields and proof of the Quillen-Lichtenbaum conjecture

Ausoni-Rognes: Program for understanding $A(\ast)$

Blumberg-Mandell: Localization sequence, Mayer-Vietoris, blow-up theorem, and projective bundle theorem for TC of schemes.

What are maps of cyclotomic spectra?

Strictly commuting structure maps?

Homotopy commuting structure maps?

What is the set of homotopy classes of cyclotomic maps?

What is the homotopy type of the space/spectrum of cyclotomic maps?
Cofiber sequences

- **Hesselholt-Madsen**: Computation of K-theory of local fields and proof of the Quillen-Lichtenbaum conjecture
- **Ausoni-Rognes**: Program for understanding $A(\ast)$
- **Blumberg-Mandell**: Localization sequence, Mayer-Vietoris, blow-up theorem, and projective bundle theorem for TC of schemes.
Cofiber sequences

- **Hesselholt-Madsen**: Computation of K-theory of local fields and proof of the Quillen-Lichtenbaum conjecture
- **Ausoni-Rognes**: Program for understanding $A(*)$
- **Blumberg-Mandell**: Localization sequence, Mayer-Vietoris, blow-up theorem, and projective bundle theorem for TC of schemes.
Cofiber sequences

- **Hesselholt-Madsen**: Computation of K-theory of local fields and proof of the Quillen-Lichtenbaum conjecture
- **Ausoni-Rognes**: Program for understanding $A(*)$
- **Blumberg-Mandell**: Localization sequence, Mayer-Vietoris, blow-up theorem, and projective bundle theorem for TC of schemes.
Cofiber sequences

- **Hesselholt-Madsen**: Computation of K-theory of local fields and proof of the Quillen-Lichtenbaum conjecture
- **Ausoni-Rognes**: Program for understanding $A(\ast)$
- **Blumberg-Mandell**: Localization sequence, Mayer-Vietoris, blow-up theorem, and projective bundle theorem for TC of schemes.
Cofiber sequences

- **Hesselholt-Madsen**: Computation of K-theory of local fields and proof of the Quillen-Lichtenbaum conjecture
- **Ausoni-Rognes**: Program for understanding $A(\ast)$
- **Blumberg-Mandell**: Localization sequence, Mayer-Vietoris, blow-up theorem, and projective bundle theorem for TC of schemes.

What are maps of cyclotomic spectra?

- Strictly commuting structure maps?
- Homotopy commuting structure maps?
- What is the set of homotopy classes of cyclotomic maps?
- What is the homotopy type of the space/spectrum of cyclotomic maps?
Cofiber sequences

- **Hesselholt-Madsen**: Computation of K-theory of local fields and proof of the Quillen-Lichtenbaum conjecture
- **Ausoni-Rognes**: Program for understanding $A(*)$
- **Blumberg-Mandell**: Localization sequence, Mayer-Vietoris, blow-up theorem, and projective bundle theorem for TC of schemes.

What are maps of cyclotomic spectra?

- Strictly commuting structure maps? Homotopy commuting structure maps?
- What is the set of homotopy classes of cyclotomic maps? What is the homotopy type of the space/spectrum of cyclotomic maps?
The Homotopy Theory of Cyclotomic Spectra

1. Cofiber sequences
 - **Hesselholt-Madsen**: Computation of K-theory of local fields and proof of the Quillen-Lichtenbaum conjecture
 - **Ausoni-Rognes**: Program for understanding $A(\ast)$
 - **Blumberg-Mandell**: Localization sequence, Mayer-Vietoris, blow-up theorem, and projective bundle theorem for TC of schemes.

2. What are maps of cyclotomic spectra?
 - Strictly commuting structure maps?
 - Homotopy commuting structure maps?
 - What is the set of homotopy classes of cyclotomic maps?
 - What is the homotopy type of the space/spectrum of cyclotomic maps?
Cofiber sequences

- **Hesselholt-Madsen**: Computation of K-theory of local fields and proof of the Quillen-Lichtenbaum conjecture
- **Ausoni-Rognes**: Program for understanding $A(\ast)$
- **Blumberg-Mandell**: Localization sequence, Mayer-Vietoris, blow-up theorem, and projective bundle theorem for TC of schemes.

What are maps of cyclotomic spectra?

- Strictly commuting structure maps?
- Homotopy commuting structure maps?
- What is the set of homotopy classes of cyclotomic maps?
- What is the homotopy type of the space/spectrum of cyclotomic maps?
Consists of a category C having all finite limits and colimits
Together with three classes of maps, called cofibrations, fibrations, and weak equivalences
Such that:

1. Weak equivalences satisfy the 2-out-of-3 property
2. All three classes of maps are closed under retracts
3. Cofibrations have the left lifting property with respect to acyclic fibrations and fibrations have the left lifting property with respect to acyclic cofibrations
4. Every map factors as a cofibration followed by an acyclic fibration and as an acyclic cofibration followed by a fibration

\Rightarrow abstract homotopy theory / homotopy category / good theory of derived functors / etc., etc., etc.
Model Category

Consists of a category \mathcal{C} having all finite limits and colimits
Together with three classes of maps, called **cofibrations**, **fibrations**, and **weak equivalences**
Such that:

1. Weak equivalences satisfy the 2-out-of-3 property
2. All three classes of maps are closed under retracts
3. Cofibrations have the left lifting property with respect to acyclic fibrations and fibrations have the left lifting property with respect to acyclic cofibrations
4. Every map factors as a cofibration followed by an acyclic fibration and as an acyclic cofibration followed by a fibration

\Rightarrow abstract homotopy theory / homotopy category / good theory of derived functors / etc., etc., etc.
Homotopy Theory

Model Category

Consists of a category C having all finite limits and colimits Together with three classes of maps, called cofibrations, fibrations, and weak equivalences Such that:

1. Weak equivalences satisfy the 2-out-of-3 property
2. All three classes of maps are closed under retracts
3. Cofibrations have the left lifting property with respect to acyclic fibrations and fibrations have the left lifting property with respect to acyclic cofibrations
4. Every map factors as a cofibration followed by an acyclic fibration and as an acyclic cofibration followed by a fibration

\Rightarrow abstract homotopy theory / homotopy category / good theory of derived functors / etc., etc., etc.
Homotopy Theory

Model Category

Consists of a category \mathcal{C} having all finite limits and colimits. Together with three classes of maps, called cofibrations, fibrations, and weak equivalences. Such that:

1. Weak equivalences satisfy the 2-out-of-3 property
2. All three classes of maps are closed under retracts
3. Cofibrations have the left lifting property with respect to acyclic fibrations and fibrations have the left lifting property with respect to acyclic cofibrations
4. Every map factors as a cofibration followed by an acyclic fibration and as an acyclic cofibration followed by a fibration

\[\implies \text{abstract homotopy theory / homotopy category / good theory of derived functors / etc., etc., etc.} \]
Model Category

Consists of a category \mathcal{C} having all finite limits and colimits. Together with three classes of maps, called cofibrations, fibrations, and weak equivalences. Such that:

1. Weak equivalences satisfy the 2-out-of-3 property
2. All three classes of maps are closed under retracts
3. Cofibrations have the left lifting property with respect to acyclic fibrations and fibrations have the left lifting property with respect to acyclic cofibrations
4. Every map factors as a cofibration followed by an acyclic fibration and as an acyclic cofibration followed by a fibration

\implies abstract homotopy theory / homotopy category / good theory of derived functors / etc., etc., etc.
Homotopy Theory

Model* Category

Consists of a category C having all finite limits and colimits. Together with three classes of maps, called cofibrations, fibrations, and weak equivalences, such that:

1. Weak equivalences satisfy the 2-out-of-3 property
2. All three classes of maps are closed under retracts
3. Cofibrations have the left lifting property with respect to acyclic fibrations, and fibrations have the left lifting property with respect to acyclic cofibrations
4. Every map factors as a cofibration followed by an acyclic fibration and as an acyclic cofibration followed by a fibration

\Rightarrow abstract homotopy theory / homotopy category / good theory of derived functors / etc., etc., etc.
A pre-cyclotomic spectrum is an orthogonal \mathbb{T}-spectrum T together with a map of orthogonal \mathbb{T}-spectra

$$\rho^* \Phi \mathcal{C}_p T \to T.$$

A cyclotomic spectrum is a pre-cyclotomic spectrum for which the structure map is* a weak equivalence.

A map of pre-cyclotomic spectra is a map of orthogonal \mathbb{T}-spectra that commutes with the structure map.
The Model* Category of Cyclotomic Spectra

Definition

A pre-cyclotomic spectrum is an orthogonal \mathbb{T}-spectrum T together with a map of orthogonal \mathbb{T}-spectra

$$\rho^* \Phi^C \rightarrow T.$$

A cyclotomic spectrum is a pre-cyclotomic spectrum for which the structure map is* a weak equivalence.

A map of pre-cyclotomic spectra is a map of orthogonal \mathbb{T}-spectra that commutes with the structure map.
The Model* Category of Cyclotomic Spectra

Definition

A pre-cyclotomic spectrum is an orthogonal \mathbb{T}-spectrum T together with a map of orthogonal \mathbb{T}-spectra

$$\rho^* \Phi^{C_{p}} T \rightarrow T.$$

A cyclotomic spectrum is a pre-cyclotomic spectrum for which the structure map is* a weak equivalence.

A map of pre-cyclotomic spectra is a map of orthogonal \mathbb{T}-spectra that commutes with the structure map.

$$\exists \ X \rightarrow X_{n}$$
The Model* Category of Cyclotomic Spectra

Definition

A weak equivalence of pre-cyclotomic spectra is a map that is an \mathcal{F}_p-equivalence of the underlying orthogonal T-spectra.

This is precisely a map that is a weak equivalence of non-equivariant spectra on C_{p^m} geometric fixed points for all $m \geq 0$.

A weak equivalence of cyclotomic spectra is a map that is a weak equivalence of the underlying non-equivariant orthogonal spectra.
Definition

A weak equivalence of pre-cyclotomic spectra is a map that is an F_p-equivalence of the underlying orthogonal \mathbb{T}-spectra.

This is precisely a map that is a weak equivalence of non-equivariant spectra on C_{p^m} geometric fixed points for all $m \geq 0$.

A weak equivalence of cyclotomic spectra is a map that is a weak equivalence of the underlying non-equivariant orthogonal spectra.
The Model* Category of Cyclotomic Spectra

Definition

A weak equivalence of pre-cyclotomic spectra is a map that is an \mathcal{F}_p-equivalence of the underlying orthogonal \mathbb{T}-spectra.

This is precisely a map that is a weak equivalence of non-equivariant spectra on C_{p^m} geometric fixed points for all $m \geq 0$.

A weak equivalence of cyclotomic spectra is a map that is a weak equivalence of the underlying non-equivariant orthogonal spectra.

$\mathcal{F}_p = \mathbb{Z}[C_{p^m}]$
The Model* Category of Cyclotomic Spectra

Observation

\[FX = X \lor \rho^* \Phi^C_X \lor \rho^* \Phi^C_{\rho^* \Phi^C_X} \lor \rho^* \Phi^C_{\rho^* \Phi^C_{\rho^* \Phi^C_X}} \lor \cdots \]

is a monad on the category of orthogonal \(T \)-spectra.

The category of pre-cyclotomic spectra is the category of algebras over the monad \(F \).
The Model* Category of Cyclotomic Spectra

Observation

\[FX = X \lor \rho^* \Phi^C_p X \lor \rho^* \Phi^C_p (\rho^* \Phi^C_p X) \lor \rho^* \Phi^C_p (\rho^* \Phi^C_p (\rho^* \Phi^C_p X)) \lor \ldots \]

is a monad on the category of orthogonal T-spectra.

The category of pre-cyclotomic spectra is the category of algebras over the monad F.
The Model* Category of Cyclotomic Spectra

Observation

\[\mathbb{F}X = X \lor \rho^* \Phi^{C_p} X \lor \rho^* \Phi^{C_p} (\rho^* \Phi^{C_p} X) \lor \rho^* \Phi^{C_p} (\rho^* \Phi^{C_p} (\rho^* \Phi^{C_p} X)) \lor \ldots \]

is a monad on the category of orthogonal \(\mathbb{T} \)-spectra.

The category of pre-cyclotomic spectra is the category of algebras over the monad \(\mathbb{F} \).

Model* structure on pre-cyclotomic spectra created by \(\mathbb{F} \) from the \(\mathbb{F}_p \)-local model structure on orthogonal \(\mathbb{T} \)-spectra.

Translation

Cofibrations are built by attaching cells of the form

\[\mathbb{F} \Sigma_+^\infty (S^{n-1} \times \mathbb{T} / C_p^m) \]

Fibrations are fibrations of the underlying orthogonal \(\mathbb{T} \)-spectra.
The Model* Category of Cyclotomic Spectra

Observation

\[FX = X \lor \rho^* \Phi^C_p X \lor \rho^* \Phi^C_p (\rho^* \Phi^C_p X) \lor \rho^* \Phi^C_p (\rho^* \Phi^C_p (\rho^* \Phi^C_p X)) \lor \cdots \]

is a monad on the category of orthogonal \(\mathbb{T} \)-spectra.

The category of pre-cyclotomic spectra is the category of algebras over the monad \(F \).

Model* structure on pre-cyclotomic spectra created by \(F \) from the \(F_p \)-local model structure on orthogonal \(\mathbb{T} \)-spectra.

Translation

Cofibrations are built by attaching cells of the form

\[F \Sigma^\infty_V (S^{n-1} \times \mathbb{T} / C_p^m)_+ \rightarrow F \Sigma^\infty_V (B^{n-1} \times \mathbb{T} / C_p^m)_+ \]

Fibrations are fibrations of the underlying orthogonal \(\mathbb{T} \)-spectra.
Do (pre-)cyclotomic spectra have mapping spectra?

Is $\Phi^C p$ a spectral functor: $F^T(T, U) \rightarrow F^T(\Phi^C p T, \Phi^C p U)$?

Spectrum of maps is an equalizer

$$F_{Cy}(T, U) \rightarrow F^T(T, U) \Rightarrow F^T(\rho^* \Phi^C p T, U)$$
Do (pre-)cycloptomic spectra have mapping spectra?

Is $\Phi^\mathbb{Cp}$ a spectral functor: $F^\mathbb{T}(T, U) \rightarrow F^\mathbb{T}(\Phi^\mathbb{Cp} T, \Phi^\mathbb{Cp} U)$?

Spectrum of maps is an equalizer

$$F_{Cy}(T, U) \rightarrow F^\mathbb{T}(T, U) \Rightarrow F^\mathbb{T}(\rho^* \Phi^\mathbb{Cp} T, U)$$
Do (pre-)cyclotomic spectra have mapping spectra?

Is Φ^{C_p} a spectral functor: $F^T(T, U) \to F^T(\Phi^{C_p} T, \Phi^{C_p} U)$?

Spectrum of maps is an equalizer

$$F_{Cy}(T, U) \to F^T(T, U) \Rightarrow F^T(\rho^* \Phi^{C_p} T, U)$$
Do (pre-)cyclotomic spectra have mapping spectra? Yes.

Is Φ^{C_p} a spectral functor: $F^T(T, U) \to F^T(\Phi^{C_p} T, \Phi^{C_p} U)$? Yes.

Spectrum of maps is an equalizer

$$F_{Cy}(T, U) \to F^T(T, U) \Rightarrow F^T(\rho^* \Phi^{C_p} T, U)$$
Mapping Spectra

Do (pre-)cyclo-tomic spectra have mapping spectra? Yes.

Is Φ^{C_p} a spectral functor: $F^T(T, U) \to F^T(\Phi^{C_p} T, \Phi^{C_p} U)$? Yes.

Spectrum of maps is an equalizer

$$F_{Cy}(T, U) \xrightarrow{\rho^* \Phi^{C_p}} F^T(T, U) \xrightarrow{\sim} F^T(\rho^* \Phi^{C_p} T, U)$$

Theorem

F_{Cy} plays nice with cofibrations, fibrations and weak equivalences (satisfies the analogue of SM7)

\Rightarrow derived mapping spectrum functor $\mathbb{R} F_{Cy}$
Do (pre-)cyclotomic spectra have mapping spectra? Yes.

Is Φ^{C_p} a spectral functor: $F^T(T, U) \to F^T(\Phi^{C_p}T, \Phi^{C_p}U)$? Yes.

Spectrum of maps is an equalizer

\[F_{Cy}(T, U) \to F^T(T, U) \Rightarrow F^T(\rho^* \Phi^{C_p} T, U) \]

Theorem

F_{Cy} plays nice with cofibrations, fibrations and weak equivalences (satisfies the analogue of SM7)

\Rightarrow derived mapping spectrum functor $\mathbb{R}F_{Cy}$
Calculating Mapping Spectra

Spectrum of maps is an equalizer

$$F_{Cy}(T, U) \rightarrow F^T(T, U) \Rightarrow F^T(\rho^* \Phi^Cp T, U)$$

Structure map commuting up to homotopy is a homotopy equalizer

$$F_{Cy}^{ho}(T, U) \xrightarrow{ho} F^T(T, U) \Rightarrow F^T(\rho^* \Phi^Cp T, U)$$

Theorem

If T is a cofibrant cyclotomic or pre-cyclotomic spectrum then

$$F_{Cy}(T, U) \rightarrow F_{Cy}^{ho}(T, U)$$

is a level equivalence.
Calculating Mapping Spectra

Spectrum of maps is an equalizer

\[F_{Cy}(T, U) \rightarrow F^T(T, U) \Rightarrow F^T(\rho^*\Phi^C_p T, U) \]

Structure map commuting up to homotopy is a homotopy equalizer

\[F_{ho}^{ho}(T, U) \xrightarrow{ho} F^T(T, U) \Rightarrow F^T(\rho^*\Phi^C_p T, U) \]

Theorem

If \(T \) is a cofibrant cyclotomic or pre-cyclotomic spectrum then

\[F_{Cy}(T, U) \rightarrow F_{Cy}^{ho}(T, U) \]

is a level equivalence.
Calculating Mapping Spectra

Spectrum of maps is an equalizer

\[F_{Cy}(T, U) \to F^T(T, U) \Rightarrow F^T(\rho^* \Phi^C_p T, U) \]

Structure map commuting up to homotopy is a homotopy equalizer

\[F_{Cy}^{ho}(T, U) \xrightarrow{ho} F^T(T, U) \Rightarrow F^T(\rho^* \Phi^C_p T, U) \]

\[\rho^* \Phi^C_p T \to \rho^* \Phi^C_p U \]

\[T \to U \]

Theorem

If \(T \) is a cofibrant cyclotomic or pre-cyclotomic spectrum then

\[F_{Cy}(T, U) \to F_{Cy}^{ho}(T, U) \]

is a level equivalence.
Let $S_{TR} = \Sigma_T^\infty (T \amalg (T/C_p) \amalg (T/C_{p^2}) \amalg \cdots)_+$

$$
\Phi^{C_p} \Sigma_T^\infty (T/C_{p^m})_+ = \Sigma_{T/C_p}^\infty (T/C_{p^m})_+
\quad \Rightarrow \quad \rho^* \Phi^{C_p} \Sigma_T^\infty (T/C_{p^m})_+ = \Sigma_T^\infty (T/C_{p^{m-1}})_+
$$

Quick Computation 1

$$
\rho^* \Phi^{C_p} S_{TR} = S_{TR}
$$

Use this for cyclotomic structure for S_{TR}.
TR is corepresentable

Let $S_{TR} = \Sigma_T^\infty (T \amalg (T/C_p) \amalg (T/C_{p^2}) \amalg \cdots)_+$

\[
\Phi^{C_p} \Sigma_T^\infty (T/C_{p^m})_+ = \Sigma_{T/C_p}^\infty (T/C_{p^m})_+ \\
\Rightarrow \rho^* \Phi^{C_p} \Sigma_T^\infty (T/C_{p^m})_+ = \Sigma_T^\infty (T/C_{p^{m-1}})_+
\]

Quick Computation 1

$\rho^* \Phi^{C_p} S_{TR} = S_{TR}$

Use this for cyclotomic structure for S_{TR}.
TR is corepresentable

Let $S_{TR} = \sum_{T}^{\infty} (T \amalg (T/C_p) \amalg (T/C_{p^2}) \amalg \cdots)_{+}$

$$\Phi^{C_p} \sum_{T}^{\infty} (T/C_{p^m})_{+} = \sum_{T/C_p}^{\infty} (T/C_{p^m})_{+}$$

$$\Rightarrow \rho^* \Phi^{C_p} \sum_{T}^{\infty} (T/C_{p^m})_{+} = \sum_{T}^{\infty} (T/C_{p^{m-1}})_{+}$$

Quick Computation 1

$$\rho^* \Phi^{C_p} S_{TR} = S_{TR}$$

Use this for cyclotomic structure for S_{TR}.
Let $S_{TR} = \Sigma_{T}^{\infty} (\mathbb{T} \amalg (\mathbb{T}/C_p) \amalg (\mathbb{T}/C_{p^2}) \amalg \cdots)_{+}$

$$
\Phi^C_p \Sigma_{T}^{\infty} (\mathbb{T}/C_{p^m})_{+} = \Sigma_{T/C_p}^{\infty} (\mathbb{T}/C_{p^m})_{+}
$$

$$
\Rightarrow \rho^* \Phi^C_p \Sigma_{T}^{\infty} (\mathbb{T}/C_{p^m})_{+} = \Sigma_{T}^{\infty} (\mathbb{T}/C_{p^{m-1}})_{+}
$$

Quick Computation 1

$$
\rho^* \Phi^C_p S_{TR} = S_{TR}
$$

Use this for cyclotomic structure for S_{TR}.
TR is corepresentable

\[S_{TR} = \Sigma_{T}^{\infty} (\mathbb{T} \amalg (\mathbb{T}/C_p) \amalg (\mathbb{T}/C_{p^2}) \amalg \cdots) \]

Quick Computation 2

\[F^{T}(S_{TR}, X) = X \times X^{C_p} \times X^{C_{p^2}} \times \cdots \]

\[S_{TR} \overset{\rho^* \Phi^{C_p}}{\longrightarrow} T \]

\[S_{TR} \longrightarrow \rho^* \Phi^{C_p} T \]

Conclusion

\[\mathbb{R}F_{Cy}(S_{TR}, T) = (T \times T^{C_p} \times T^{C_{p^2}} \times \cdots)^{hR} \]

\[= \text{holim}(\cdots \rightarrow T^{C_{p^m}} \overset{R}{\rightarrow} \cdots \overset{R}{\rightarrow} T) \]

\[= TR(T) \]
TR is corepresentable

\[S_{TR} = \Sigma_T^\infty (T \amalg (T/C_p) \amalg (T/C_{p^2}) \amalg \cdots)_+ \]

Quick Computation 2

\[F^T(S_{TR}, X) = X \times X^{C_p} \times X^{C_{p^2}} \times \cdots \]

\[S_{TR} \twoheadrightarrow \rho^* \Phi^{C_p} T \]

\[\Downarrow \]

\[S_{TR} \twoheadrightarrow T \]

Conclusion

\[RF_{Cy}(S_{TR}, T) = (T \times T^{C_p} \times T^{C_{p^2}} \times \cdots)^{hR} \]

\[= \text{holim}(\cdots \to T^{C_{p^m}} \xrightarrow{R} \cdots \xrightarrow{R} T) \]

\[= TR(T) \]
TR is corepresentable

$$S_{TR} = \Sigma_T^\infty (T \amalg (T/C_p) \amalg (T/C_{p^2}) \amalg \cdots)_+$$

Quick Computation 2

$$F^T(S_{TR}, X) = X \times X^{C_p} \times X^{C_{p^2}} \times \cdots$$

\[
\begin{align*}
S_{TR} & \longrightarrow \rho^* \Phi^{C_p} T \\
\Downarrow & \\
S_{TR} & \longrightarrow T
\end{align*}
\]

Conclusion

$$\mathbb{R}F_{Cy}(S_{TR}, T) = (T \times T^{C_p} \times T^{C_{p^2}} \times \cdots)^{hR}$$

$$= \text{holim}(\cdots \rightarrow T^{C_{p^m}} \overset{R}{\rightarrow} \cdots \overset{R}{\rightarrow} T)$$

$$= TR(T)$$
TR is corepresentable

\[S_{TR} = \Sigma_{\mathbb{T}} \mathbb{T} \amalg (\mathbb{T}/C_p) \amalg (\mathbb{T}/C_{p^2}) \amalg \cdots \]

Quick Computation 2

\[F^\mathbb{T}(S_{TR}, X) = X \times X^{C_p} \times X^{C_{p^2}} \times \cdots \]

\[\begin{array}{ccc}
S_{TR} & \rightarrow & \rho^* \Phi^{C_p} T \\
\downarrow & & \downarrow \\
S_{TR} & \rightarrow & T
\end{array} \]

Conclusion

\[\mathbb{R}F_{Cy}(S_{TR}, T) = (T \times T^{C_p} \times T^{C_{p^2}} \times \cdots)^{hR} \]

\[= \text{holim}(\cdots \rightarrow T^{C_{p^m}} \xrightarrow{R} \cdots \xrightarrow{R} T) \]

\[= TR(T) \]
"TR is corepresentable"

\[S_{TR} = \Sigma_{T}^{\infty} (T \amalg (T/C_p) \amalg (T/C_{p^2}) \cdots) + \]

Quick Computation 2

\[F^T(S_{TR}, X) = X \times X^{C_p} \times X^{C_{p^2}} \times \cdots \]

\[S_{TR} \rightarrow \rho^* \Phi^{C_p} T \]

\[\cong \]

\[S_{TR} \rightarrow T \]

Conclusion

\[R F_{Cy}(S_{TR}, T) = (T \times T^{C_p} \times T^{C_{p^2}} \times \cdots)^{hR} \]

\[= \text{holim}(\cdots \rightarrow T^{C_{p^m}} \xrightarrow{R} \cdots \xrightarrow{R} T) \]

\[= TR(T) \]
TC is corepresentable (in pre-cyclotomic spectra)

Let $S_{TC,m} = \Sigma^\infty_T (\mathbb{T}/C_{p^m})_+$ with pre-cyclotomic structure

$$\rho^* \Phi^C p S_{TC,m} = \Sigma^\infty_T (\mathbb{T}/C_{p^{m-1}})_+ \rightarrow \Sigma^\infty_T (\mathbb{T}/C_{p^m})_+ = S_{TC,m}$$

$$F^T(S_{TC,m}, X) = X^{C_{p^m}}$$

Quick Computation

$\mathbb{R}F_{Cy}(S_{TC,m}, T)$ is the homotopy equalizer of $R, F: T^{C_{p^m}} \rightarrow T^{C_{p^{m-1}}}$.

Let $S_{TC} = \text{hocolim } S_{TC,m}$

Theorem

$\mathbb{R}F_{Cy}(S_{TC}, T) = TC(T)$
TC is corepresentable (in pre-cyclotomic spectra)

Let \(S_{TC,m} = \Sigma_\mathbb{T}(\mathbb{T}/C_{p^m})_+ \) with pre-cyclotomic structure

\[
\rho^* \Phi_{Cp} S_{TC,m} = \Sigma_\mathbb{T}(\mathbb{T}/C_{p^{m-1}})_+ \rightarrow \Sigma_\mathbb{T}(\mathbb{T}/C_{p^m})_+ = S_{TC,m}
\]

\[
F^\mathbb{T}(S_{TC,m}, X) = X^{C_{p^m}}
\]

Quick Computation

\(\mathbb{R}F_{Cy}(S_{TC,m}, T) \) is the homotopy equalizer of \(R, F : T^{C_{p^m}} \rightarrow T^{C_{p^{m-1}}} \).

Let \(S_{TC} = \text{hocolim} S_{TC,m} \)

Theorem

\(\mathbb{R}F_{Cy}(S_{TC}, T) = TC(T) \)
TC is corepresentable (in pre-cyclotomic spectra)

Let $S_{TC,m} = \Sigma_{T}^{\infty} (\mathbb{T}/C_{p^m})_+$ with pre-cyclotomic structure

$$\rho^* \Phi^C p S_{TC,m} = \Sigma_{T}^{\infty} (\mathbb{T}/C_{p^{m-1}})_+ \to \Sigma_{T}^{\infty} (\mathbb{T}/C_{p^m})_+ = S_{TC,m}$$

$F^T(S_{TC,m}, X) = X^{C_{p^m}}$

Quick Computation

$\mathbb{R}F_{Cy}(S_{TC,m}, T)$ is the homotopy equalizer of $R, F: T^{C_{p^m}} \to T^{C_{p^{m-1}}}$.

Let $S_{TC} = \text{hocolim} \ S_{TC,m}$

Theorem

$\mathbb{R}F_{Cy}(S_{TC}, T) = TC(T)$
TC is corepresentable (in pre-cyclotomic spectra)

Let \(S_{TC,m} = \sum_{T}^{\infty} (T/C_{p^m})_{+} \) with pre-cyclotomic structure

\[
\rho^* \Phi^{C_p} S_{TC,m} = \sum_{T}^{\infty} (T/C_{p^{m-1}})_{+} \to \sum_{T}^{\infty} (T/C_{p^m})_{+} = S_{TC,m}
\]

\[
F^T(S_{TC,m}, X) = X^{C_{p^m}}
\]

Quick Computation

\(\mathbb{R}F_{Cy}(S_{TC,m}, T) \) is the homotopy equalizer of \(R, F : T^{C_{p^m}} \to T^{C_{p^{m-1}}} \).

Let \(S_{TC} = \text{hocolim} S_{TC,m} \)

Theorem

\(\mathbb{R}F_{Cy}(S_{TC}, T) = TC(T) \)
Let $S_{TC,m} = \Sigma_{\mathbb{T}}^\infty (\mathbb{T}/C_{p^m})_+$ with pre-cyclotomic structure

$$\rho^* \Phi^C_p S_{TC,m} = \Sigma_{\mathbb{T}}^\infty (\mathbb{T}/C_{p^{m-1}})_+ \to \Sigma_{\mathbb{T}}^\infty (\mathbb{T}/C_{p^m})_+ = S_{TC,m}$$

$F^\mathbb{T}(S_{TC,m}, X) = X^{C_{p^m}}$

Quick Computation

$\mathbb{R}F_{Cy}(S_{TC,m}, T)$ is the homotopy equalizer of $R, F : T^{C_{p^m}} \to T^{C_{p^{m-1}}}$.

Let $S_{TC} = \text{hocolim} \ S_{TC,m}$

Theorem

$\mathbb{R}F_{Cy}(S_{TC}, T) = TC(T)$
TC is corepresentable (in pre-cyclotomic spectra)

Let $S_{TC,m} = \Sigma_{\mathbb{T}}^{\infty} (\mathbb{T}/C_{p^m})_+$ with pre-cyclotomic structure

$$\rho^* \Phi C_p S_{TC,m} = \Sigma_{\mathbb{T}}^{\infty} (\mathbb{T}/C_{p^{m-1}})_+ \rightarrow \Sigma_{\mathbb{T}}^{\infty} (\mathbb{T}/C_{p^m})_+ = S_{TC,m}$$

$$F^\mathbb{T}(S_{TC,m}, X) = X^{C_{p^m}}$$

Quick Computation

$\mathbb{R}F_{Cy}(S_{TC,m}, T)$ is the homotopy equalizer of $R, F: T^{C_{p^m}} \rightarrow T^{C_{p^{m-1}}}$.

Let $S_{TC} = \hocolim S_{TC_m}$

Theorem

$\mathbb{R}F_{Cy}(S_{TC}, T) = TC(T)$
Is TC corepresentable in cyclotomic spectra?

Conjecture (Kaledin ICM 2010)

There is a homotopy theory of cyclotomic spectra and in it, TC is corepresented as maps out of the sphere spectrum.
Is TC corepresentable in cyclotomic spectra?

Conjecture (Kaledin ICM 2010)

There is a homotopy theory of cyclotomic spectra and in it, TC is corepresented as maps out of the sphere spectrum after finite completion.
Is TC corepresentable in cyclotomic spectra?

Conjecture (Kaledin ICM 2010)

There is a homotopy theory of cyclotomic spectra and in it, TC is corepresented as maps out of the sphere spectrum after finite completion.

$$(S_T^C)_r^\wedge \simeq S^\wedge_r$$

Theorem

$TC(T)^\wedge \simeq UF_{Cy}(S, T)^\wedge$
Is TC corepresentable in cyclotomic spectra?

Conjecture (Kaledin ICM 2010)

There is a homotopy theory of cyclotomic spectra and in it, TC is corepresented as maps out of the sphere spectrum after finite completion.

$$\left(S_{TC} \right)^{\wedge} \simeq S^{\wedge}$$

Theorem

$$TC(T)^{\wedge} \simeq RF_{Cy}(S, T)^{\wedge}$$

$$THN \simeq THK$$