Multiple environmental factors regulate the large-scale patterns of plant water use efficiency and nitrogen availability across China's forests

Songbo Tang1,2,3,4, Yuan Lai1,2,3,4, Xuli Tang1, Oliver L. Phillips2, Jianfeng Liu1, Dexiang Chen1, Dazhi Wen1,5, Silong Wang1, Longchi Chen1, Xingjun Tian1 and Yuanwen Kuang2,3,6.

1 Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, People's Republic of China
2 Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, People's Republic of China
3 Heshan National Field Research Station of Forest Ecosystem, South China Botanical Garden, Guangzhou 510650, People's Republic of China
4 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
5 School of Geography, University of Leeds, Leeds LS2 9JT, United Kingdom
6 Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, People's Republic of China
7 Hainan Jianfengling Forest Ecosystem National Field Science Observation and Research Station, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, People's Republic of China
8 Key Laboratory of Forest Ecology and Management, Huitong Experimental Station of Forest Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
9 School of Life Science, Nanjing University, Nanjing 210023, People's Republic of China

E-mail: kuangyw@scbg.ac.cn

Keywords: broad-leaved forest, geographical transect, foliar carbon and nitrogen isotope ratios, nitrogen availability, precipitation seasonality, water use efficiency

Supplementary material for this article is available online

Abstract

Global changes, e.g. global warming, elevated nitrogen deposition, and shifts of precipitation regime, exert a major influence on forests via affecting plant water use efficiency (WUE) and plant nitrogen (N) availability. Large-scale ecological sampling can help us to better understand variation across regions and provide opportunities to investigate the potential impacts of multiple aspects of global change on forest ecosystem responses. Here, we determine the geographical patterns of key isotopic measures of ecosystem function—plant WUE (calculated from foliar $\delta^{13}C$ values) and plant N availability (assessed by foliar $\delta^{15}N$ values)—across China's forests covering ~ 21 latitude ($\sim 22^\circ - 43^\circ N$) and ~ 28 longitude ($\sim 93^\circ - 121^\circ E$) degree, and investigate how a suite of soil, plant, and atmospheric factors regulate them. We found that plant WUE increased but N availability decreased with latitude, while plant WUE and N availability did not vary with longitudinal gradient. Different factors regulate the large-scale patterns in WUE and N availability. The mean annual temperature, atmospheric N deposition, and soil water content exhibit considerable effects on plant WUE over both the north-to-south and east-to-west transects, while the mean annual precipitation, soil potassium content, foliar N, and precipitation seasonality considerably affect the latitudinal patterns of plant N availability. In addition, the east-to-west spatial pattern in plant N availability is associated with the variation in solar radiation. Our results suggest that key forest ecological functions respond to an array of environmental factors, and imply that changes in many different environmental attributes need to be considered in order to successfully assess plant WUE and N availability responses to global changes this century.

1. Introduction

Geographical transects such as latitudinal and longitudinal gradients provide opportunities to explore not only the current controls on ecosystem function, but also to assess how environmental changes in the future might impact ecosystems. Over such spatial gradients, environmental factors e.g. precipitation,
nitrogen (N) deposition, and climatic variability substantially vary with longitude and altitude in China (Willig et al. 2003, Li et al. 2015, Ma et al. 2019, Yu et al. 2019). Such spatial-environmental changes provide the possibility to explore how ecosystem variables might respond to global or regional change in the future (Niu et al. 2018).

Plant water use efficiency (WUE) and forest N availability are key measures of how water, carbon, and N are processed (Yanni et al. 2011, Elmore et al. 2016, Craine et al. 2018, Hatfield and Dold 2019, Birami et al. 2020), which are subject to great geographical and temporal variation in environmental factors (Huang et al. 2020, Birami et al. 2020, Liang et al. 2020). Nitrogen availability is typically assessed by foliar δ^{15}N values, with high δ^{15}N values always indicating high N availability in forest ecosystems (Garten 1993, Högberg 1997, Craine et al. 2009, 2015, Elmore et al. 2016, Craine et al. 2018). Atmospheric CO$_2$ exhibit substantial effects on both plant WUE and N availability (Mclauchlan et al. 2017, Craine et al. 2018, Soh et al. 2019, Adams et al. 2020, Dusenge et al. 2020). Increases in mean annual temperature (MAT) and precipitation (MAP) can lead to decline of plant WUE for increasing stomatal conductance (Reynolds-Henne et al. 2010, Matthews and Lawson 2019, Kimm et al. 2020). Increasing N deposition may either increase or decrease plant WUE due to impacts on plant photosynthesis and stomatal conductance (Brooks and Coulombe 2009, Huang et al. 2016, Liang et al. 2020). Forest N availability is negatively correlated with MAP (Craine et al. 2018, Ma et al. 2019), but positively correlated with MAT (Craine et al. 2018) and N deposition (Hietz et al. 2011), caused by differences between plant N absorption rate, plant growth rate, or soil organic mineralization (Lammers and Poorter 1992, Hung Dinh et al. 2013, Elmore et al. 2016). In addition, the climatic variability, e.g. precipitation and temperature seasonality (PS and TS, respectively), are also likely to affect plant WUE and N availability (Stevens 1989, Li et al. 2016). A number of other climatic factors, such as precipitation regime (Liu et al. 2013a), wind speed (Schymanski and Or 2016, Cornwell et al. 2018, Hatfield and Dold 2019), and vapor pressure deficit (VPD, Shi et al. 2014, Zhang et al. 2019, Grossiord et al. 2020) can have individually small but cumulatively substantial impacts on plant WUE and N availability. Furthermore, soil factors and plant traits also affect plant WUE and N availability (Grzebisz et al. 2013, Maxwell et al. 2018), e.g. soil pH may affect plant WUE via changing plant photosynthesis (Hung Dinh et al. 2013, Koehler et al. 2016, Cornwell et al. 2018, Niwayama and Higuchi 2018). However, more comprehensive assessments of different factors across the soil-atmosphere interface (i.e. spanning ‘traditional’ and other climate variables, soil factors, and plant traits) on plant WUE and N availability are especially lacking.

In this study we take a large-scale approach aiming to determine the latitudinal and longitudinal patterns of dominant plant species’ WUE and forest N availability (indicated by foliar δ^{15}N values) across China, and the important environmental factors contributing to these patterns. Together, quantifying the large-scale responses of forest WUE and N availability to multiple different environmental factors provides an opportunity to predict the potential changes in forests as they function, which is closely related to water, C, and N cycles of forest ecosystems facing ongoing global changes.

2. Materials and methods

2.1. Sampling and measurement

The sites in this study are conserved locations included in the program ‘Forest Ecosystem Carbon Project in China’ (Tang et al. 2018), in which the main land of China was divided into 35 800 grid cells based on vegetation diversity, and 4.5% grid cells were selected for investigation (Tang et al. 2018). From these a total of 2234 different forest sites has been sampled from across China, from which foliar of dominant forest plants were sampled. Foliar of the several dominant broad-leafed woody species in these broad-leaved forests were collected in 2011–2012. For each dominant species in each forest, at least ten mature, current-year, fully expanded, and healthy sunlit leaves from mature individuals (breast height greater than 5 cm) were collected per dominant species per forest site. Species were considered dominant based on the criteria described by Tang et al. (2018).

For this study, we collected foliar samples from 244 sites located in both a latitudinal and a longitudinal transects, including 92 dominant tree or shrub species (figure S1 (available online at stacks.iop.org/ERL/16/034026/mmedia)) over the latitudinal and longitudinal gradients. Sampling sites in our study were distributed extensively over the Chinese mainland from within the tropics (22°N) to the cool temperate forest zone at 43°N, and from 93°E to 121°E (figure 1). All foliar samples were dried to a constant weight (65 °C for 72 h) and ground for analyses. Foliar N concentrations were determined with an elemental analyzer (Isoprime 100, Elementar Isoprime, UK). Foliar δ^{13}C and δ^{15}N values were determined using a mass spectrometer (Thermo Finnigan, North Pod Waltham, Massachusetts, USA).

WUE was calculated from foliar δ^{13}C values according to Farquhar et al. (1982) and Ehleringer and Cerling (1995):

$$\Delta^{13}C = \frac{(\delta_a - \delta_p)}{(1 + \frac{\delta_p}{1000})}$$

(1)

$$\Delta^{13}C = a + (b - a) \frac{C_i}{C_a}$$

(2)
Figure 1. Locations of the 244 sample sites (broad-leaved forests) in the current study. Dark-green sites collectively provide a longitudinal forest transect spanning nearly 3000 km; red sites provide a latitudinal forest transect of 2500 km; blue sites are included in both the latitudinal and the longitudinal transects.

\[
WUE = \frac{(C_a - C_i)}{1.6}
\]

where: \(\Delta^{13}C\) (‰) is carbon (C) isotope discrimination, \(\delta_a\) and \(\delta_p\) are \(\delta^{13}C\) values for source atmospheric CO\(_2\) and foliar, respectively, \(\delta^{13}C\) values of atmospheric CO\(_2\) are about –8.4‰ during 2011–2012; \(\alpha\) is the discrimination due to slower diffusion of \(^{13}CO_2\) through stomata, and \(b\) is fractionation discrimination by Rubisco against \(^{13}CO_2\) (\(b = 27\%\), \(a = 4.4\%\)) (Farquhar et al 1982); \(C_i\) is intracellular CO\(_2\) concentration in leaf cells; \(C_a\) is atmospheric CO\(_2\) concentration (391.98 ppm); and 1.6 is the ratio of gaseous diffusivity of CO\(_2\) to water vapor (Ehleringer and Cerling 1995).

Nitrogen availability is indicated by foliar \(\delta^{15}N\) values, with high \(\delta^{15}N\) values showing high N availability in forest ecosystems (Hogberg 1997). The indications of foliar \(\delta^{15}N\) values on N availability are now confident (Garten 1993, Craine et al 2009, 2015, 2018, Elmore et al 2016).

3. Variables related to soil-atmosphere interface

MAT, MAP, TS, and PS were directly extracted from the standard (19) WorldClim Bioclimatic variables for WorldClim version 2 (1 km\(^2\)), and mean annual solar radiation (Solar), wind speed (Wind), and water vapor pressure (VAP) were indirectly calculated by monthly data (1 km\(^2\)) extracted from WorldClim version 2 (Fick and Hijmans 2017). The VPD was calculated from temperature and VAP (Grossiord et al 2020). Data for monthly potential evapotranspiration (PET) were extracted from Trabucco and Zomer (2019a). The monthly soil water content (SWC) and actual evapotranspiration (AET) were extracted from Trabucco and Zomer (2019b). Total N deposition (Ndep) was estimated based on Jia et al (2019), and soil pH, cation exchange capacity of soil (CEC), clay content (Clay), silt content (Silt), organic carbon (SOC) for 0–300 mm depth was derived from SoilGrids250m (Hengl et al...
2017). Soil N, phosphorus (P, soil P), and potassium (K, soil K) contents (~30 cm in depth, g/100 g) were extracted from the global soil dataset (globallchange.bnu.edu.cn) with 30 s resolution (Shangguan et al. 2013), according to the geographic locations of the sampling sites using ArcGIS 10.3 for Desktop (v.10.3.0.4322). The unit of each environmental factor see table S1.

4. Data analysis

All environmental factors were standardized via equation (4) to a mean of 0 and standard deviation of 1 to reduce the magnitude and multicollinearity (Du et al. 2020) by function scale in R base package (R Core Team 2019).

\[
\text{Standardized value} = \frac{\text{Original value} - \text{mean value}}{\text{standard deviation}}
\]

In order to detect the influence of phylogenetic development on foliar δ13C and δ15N values of the dominant species in this study, an ultrametric phylogenetic tree was pruned using phylo.maker function in V.PhyloMaker R package (figure S1, Jin and Qian 2019). We tested phylogenetic signals of plant WUE and foliar δ15N values based on Pagel’s lambda (λ) and Bolmberg’s K statistic (K) calculated by phylosig function in phytools R package (table S3). A value of λ and K closing to 1 (P < 0.05) suggests strong phylogenetic signal (Hao et al. 2015).

Linear mixed effects models (LMMs) were used to determine the patterns of plant WUE and foliar δ15N values along geographical transects, with geographical gradient as fixed effect and with altitude as random effect (Crawley 2012). We determined variance explained of tree species, geographical gradients, altitude, and sampling site by calcVarPart function in variancePartition R package after creating models with a priori model, then removed all non-significant paths, and reran the new model. A goodness-of-fit of model was assessed by the ratio of χ² to degrees of freedom (χ²/df ≤ 2, P > 0.05), and comparative fit index (CFI ≥ 0.95) (Schermelleh-Engel et al. 2003). Significance was set at P < 0.05. All statistical analyses were performed using the R software platform (R Core Team 2019).

5. Results and discussion

5.1. Latitudinal and longitudinal patterns of plant WUE and foliar δ15N values

Plant WUE and foliar δ15N values significantly varied along latitudinal, while did not vary along longitudinal gradient, with WUE and foliar δ15N values increased and decreased, respectively, with latitude (figures 2(a), (b) and 3; table S2). Overall, ~32.2% and 2.0% of the variance for plant WUE and foliar δ15N values, respectively, could be explained by latitude, but 0.1% and 1.2% of the variance, respectively, by longitude (P > 0.05, figures 2 and 3). In addition, 0.7 ~ 9.4% and 1.0 ~ 8.5% of the variance for plant WUE and foliar δ15N values, respectively, were explained by altitude, and 26.3 ~ 51.2% and 38.0 ~ 64.9% of variance for plant WUE and foliar δ15N values, respectively, were explained by sampling site in this study (figure 3).

It is already known that both plant WUE and foliar δ15N values can differ significantly among tree species, functional types, and environmental gradients (Soolanayakanahally et al. 2009, Tang et al. 2014, Ma et al. 2019, Soh et al. 2019). In this study, plant species exhibit effects on plant WUE (8.0%–9.1%) and foliar δ15N values (10.1%–18.5%) (figure 3), however, significant phylogenetic signals were not found (λ < 1, P > 0.05, table S3). Thus, the interpretation of geographical gradients and in particular sampling site on the variation of plant WUE and foliar δ15N values imply that both plant WUE and N availability are associated with the environmental factors, in particular along the latitude (figure 2) where environmental factors, e.g. temperature, vary significantly from the south to the north of China (Li et al. 2016). Our findings differ from Wei et al. (2019) who found instead that plant WUE decreased with increasing latitude. The pattern of plant WUE decreased but not significantly with increasing longitude is also inconsistent with Li et al. (2016) who found the WUE of invasive herbs declines toward the east in China. The differences between previous studies and our study might result from the different ecosystems (broad-leaved forest ecosystems in this study vs arid shrub ecosystems in Wei et al. (2019)), vegetation types
(shrubs and trees in this study vs herbs and shrubs in Li et al (2016), Wei et al (2019)), and geographical regions (covering 22–43°N, 93–121°E in this study vs 35–55°N, 47–85°E in Wei et al (2019)). These findings suggest that exhibiting of high WUE for tree species growing at high latitudes (north) may be one of adaptive strategies to the dry and cold conditions.

Our results also showed that foliar δ15N values decreased with increasing latitude although the foliar samples at higher latitude is relatively less than at lower latitude, but were invariant with longitude (figures 2(b) and (d)). Numerous studies have revealed that plant growth is more likely to be limited by soil N at higher latitudes (e.g. Du et al 2020). Based on the efficiency of foliar δ15N values indicating plant N availability (Elmore et al 2016, Craine et al 2018), the broad-scale patterns of foliar δ15N values shown in this study support the inference that low N availability characterizes high-latitude forests due to low rate of mineralization (Liu et al 2016). However, it is bear noted that there are relatively higher foliar δ15N values in 37–45°N than those in 30–35°N, which might result from high N deposition (Yu et al 2019) but lower net primary production of temperature forest than (sub)tropical forests (Zhuang et al 2009), leading to less consumption of soil available N.

6. Factors regulating the variation of plant WUE and foliar δ15N values

Two models were established to determine which and how environmental factors and foliar N affect plant WUE and foliar δ15N values along the geographical gradients (table 1, figure S2). MAT, Ndep, and SWC explained 37% variations of plant WUE, with significantly negative correlations between MAT, SWC and plant WUE, while positive ones between Ndep and plant WUE (table 1). Foliar δ15N values were positively correlated with MAP, PS, solar radiation, soil K, and foliar N, but negatively with TS (table 1). 21% variance of foliar δ15N values could be explained by the above factors (table 1).

Apparently, plant WUE and foliar δ15N values in this study were affected by different variables as shown by the best-fitted models. The correlations
between environmental factors and plant WUE are consistent with previous studies (Cornwell et al. 2018, Matthews and Lawson 2019). The adverse impacts of temperature on stomatal regulation (Urban et al. 2017, Liu et al. 2018, Matthews and Lawson 2019) and photosynthesis (Hebbar et al. 2020) of plants explained the significantly negative relationships between MAT and plant WUE. The result implies that WUE of forest plants might be declined under future global warming. High SWC could increase evapotranspiration, transpiration (Schymanski and Or 2016, Xue et al. 2016, Matthews and Lawson 2019, Zhang et al. 2019) and leaf water potential (Liu et al. 2013b), leading to low WUE. The relationship

Figure 3. Variance explained of plant water use efficiency (WUE) and foliar nitrogen isotope ratios (δ^{15}N), explained by geographical gradients, species, sampling site, and altitude. Variance derived from calcVarPart function in variancePartition R package with formula as Variable \sim Latitude + Altitude + (1|Species) + (1|Site) and Variable \sim Longitude + Altitude + (1|Species) + (1|Site), respectively, for latitude and longitude. ‘Gradient’ indicates latitude and longitude, respectively, in left and right panel.

| Variable | Dependence | Independence | Estimate | SE | df | t value | $P (>|t|)$ | R^2 |
|----------|------------|--------------|----------|-----|------|---------|-----------|------------|
| WUE | Intercept | | 46.25 | 1.48| 97.52| 31.21 | <0.001 | $R^2_c = 0.74$ |
| | MAT | -8.84 | 1.47 | 146.42| -6.02| <0.001 | | $R^2_m = 0.37$ |
| | Ndep | 4.63 | 1.48 | 115.36| 3.13 | 0.002 | | |
| | SWC | -8.09 | 1.43 | 139.46| -5.67| <0.001 | | |
| δ^{15}N | Intercept | -2.81 | 0.19 | 106.82| -15.01| <0.001 | | $R^2_c = 0.76$ |
| | MAP | 0.71 | 0.27 | 141.65| 2.66 | 0.009 | | $R^2_m = 0.21$ |
| | TS | -0.63 | 0.23 | 128.43| -2.76| 0.007 | | |
| | PS | 0.61 | 0.22 | 124.32| 2.73 | 0.007 | | |
| | Solar radiation | 0.47 | 0.18 | 133.34| 2.59 | 0.011 | | |
| | Foliar N | 0.62 | 0.10 | 278.37| 6.51 | <0.001 | | |
| | Soil K | 0.47 | 0.17 | 186.72| 2.72 | 0.007 | | |

Table 1. Summary of the best-fitted models for determining the relationships between independent variables and plant water use efficiency (WUE) and foliar nitrogen isotope ratios (δ^{15}N). All independent variables were standardized. The abbreviations of each variable can be found in table S1. R^2_w: R^2 of fixed effects only; R^2_c: R^2 of both fixed and random effects. All VIF of variables in each model are lower than 5 (table S4).
between SWC and WUE contribute to the changes in plant WUE in this study. The enhancement of plant photosynthesis caused by increasing N deposition (Brooks and Coulombe 2009) might explain the positive relationships between N deposition and WUE in this study. This result supports that increasing N deposition can enhance WUE of forest plants (Lu et al 2014).

The effects of plant (traits) on foliar δ^{15}N values suggest that the floristic composition of the community itself may be a critical factor when considering how changing N availability will impact forest ecosystems (Craine et al 2018). We found that foliar δ^{15}N values were significantly correlated with foliar N, which is consistent with Craine et al (2018), indicating that high N availability enhances plant N absorption. We also found that TS, PS, MAP, soil K, and solar radiation substantially affected foliar δ^{15}N values, showing their substantial impacts on N availability. Frequent and high precipitation may shorten plant photosynthesis, decrease N absorb, resulting high N availability in forest with high MAP and PS as shown in this study, which are inconsistent with previous studies showing N declines with MAP (Mclauchlan et al 2017, Craine et al 2018). Temperature variability (i.e. TS) exhibits considerable influence on leaf senescence and N input (Asseng et al 2011), soil microbial activities, and litter decomposition (Schimel et al 1999, Gremer et al 2018), which lead to the negative relationships between TS and foliar δ^{15}N values in this study. In addition, increases of solar radiation at lower level may benefit to plant growth and increases plant N storage (Pu et al 2020), but can also enhance soil N mineralization due to increase soil temperature (Guntinas et al 2012, Grzebisz et al 2013, Xue et al 2016), resulting in high N availability.
7. Possible mechanisms for latitudinal and longitudinal patterns of WUE and foliar δ^{15}N values

Considering the effects of factors on plant WUE and foliar δ^{15}N values (figures 4 and S3–S5), we identified that MAT, SWC (negatively, $-$), and atmospheric N deposition (positively, $+$) drove the patterns of plant WUE (figures 4(a) and S3), while MAP (−), PS (+), foliar N (+) and soil K (+) drove the ones of foliar δ^{15}N values, over the latitude (figures 4(b) and S3). Along the longitudinal gradient, changes in plant WUE were attributed to MAT, N deposition, and SWC (+) (figures 4(c) and S4), while changes in foliar δ^{15}N values were associated with MAP (+), solar (+), and foliar N (+), and soil K (−) (figures 4(d) and S4).

Given the significant variations of plant WUE and foliar δ^{15}N values with latitude but not with longitude, there were extremely complicated influences for environmental factors and foliar N on plant WUE and foliar δ^{15}N values in longitude as shown by the SEM (figure 4). The possible reasons for the latitudinal pattern of plant WUE are the declines of MAT and SWC but increases of N deposition along the latitude. The decline of N availability along latitude is likely caused by the decline of MAP, but most of declines can be offset by the effects of PS, foliar N, and soil K on N availability. In contrast, the longitudinal patterns of plant WUE and N availability might be contributed to the offsets between the negative and positive effects, e.g. the negative effects of MAT and SWC but the positive effects of N deposition on plant WUE. In addition, the lower variations of climate, e.g. MAT and MAP, (figure 4), but larger difference of N deposition, along longitude than along altitude (Yu et al 2019) led to the differences in the controlling factors to WUE and foliar δ^{15}N values. Our results suggest that the effects of longitude on plant WUE and N availability are also important to reveal how environmental factors control the functions and processes of forest ecosystems. The large-scale geographical patterns and the driving factors of plant WUE and N availability in the forests across China address our second aim, concerning which environmental factors contribute to the spatial gradients in plant WUE and N availability and how their influence may differ depending on the environmental context. Our results suggest that more environmental factors including solar radiation and climate seasonality should be taken into consideration in predicting the status of plant WUE and N availability under global changes.

8. Conclusions

We analyzed an extensive gradient of Chinese broad-leaved forests, and found that the WUE of dominant tree species increased from south to north, while N availability declined over latitudinal gradients. Neither plant WUE nor N availability varied with longitude. Multiple factors and leaf traits regulate the geographical patterns of WUE and N availability. Specifically, MAT, N deposition, and SWC drive the north-south variation in plant WUE, instead there are more factors—MAP, precipitation seasonality, soil K content, and foliar N concentration—which drive N availability over longitudinal gradients. Overall, this large-scale analysis of contemporary variations in isotopic C and N indicators of Chinese forests’ ecological functions reveal not only that a wide range of environmental factors are influential, but also that the impact of each is highly context-dependent. This suggests that through this century, changes in multiple aspects of the soil-plant-atmosphere system are likely to have significant, but regionally differing, impact on forest ecological functions.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgments

This study was jointly supported by the National Natural Science Foundation of China (Nos. 41771522, 41471443), the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (No. GML2019ZD0408). We appreciate greatly ‘Forest Ecosystem Carbon Project in China’ for providing the leaf samples in this research.

ORCID iDs

Songbo Tang ☑ https://orcid.org/0000-0001-9334-8089
Oliver L. Phillips ☑ https://orcid.org/0000-0002-8993-6168
Yuanwen Kuang ☑ https://orcid.org/0000-0003-0627-9519

References

Adams M A, Buckley T N and Turnbull T L 2020 Diminishing CO$_2$ driven gains in water-use efficiency of global forests Nat. Clim. Change 10 466–71
Asseng S, Foster I and Turner N C 2011 The impact of temperature variability on wheat yields Glob. Change Biol. 17 997–1012
Birami B, Nägèle T, Gattmann M, Preisler Y, Gast A, Arnth A and Ruehr N K 2020 Hot drought reduces the effects of elevated CO$_2$ on tree water-use efficiency and carbon metabolism New Phytol. 226 1607–21
Brooks J R and Coulombe R 2009 Physiological responses to fertilization recorded in tree rings: isotopic lessons from a long-term fertilization trial Ecol. Appl. 19 1044–60
Cornwell W K et al 2018 Climate and soils together regulate photosynthetic carbon isotope discrimination within C$_3$ plants worldwide Glob. Ecol. Biogeogr. 27 1056–67
Craine J M et al 2009 Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability New Phytol. 183 980–92

Craine J M et al 2018 Isotopic evidence for oligotrophication of terrestrial ecosystems Nat. Ecol. Evol. 2 1735–44

Craine J M, Brookshire E N J, Cramer M D, Hasselquist N J, Koba K, Marin-Spiotta E and Wang L 2015 Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils Plant Soil 396 1–26

Crawley M J 2012 Mixed-effects models The R Book ed M J Crawley (United Kingdom: Wiley) pp 681–714

Du E, Terrer C, Pellegrini A F A, Ahlström A, Van Lissa C J, Zhao X, Xia N, Wu X and Jackson R B 2020 Global patterns of terrestrial nitrogen and phosphorus limitation Nat. Geosci. 13 422–6

Dusenge M E, Madhavji S and Way D A 2020 Contrasting acclimation responses to elevated CO₂ and warming between an evergreen and a deciduous boreal conifer Glob. Change Biol. 26 3639–57

Ehleringer J R and Cerling T E 1995 Atmospheric CO₂ and the ratio of intercellular to ambient CO₂ concentrations in plants Tree Physiol. 15 105–11

Elmore A J, Nelson D M and Craine J M 2016 Earlier springs are causing reduced nitrogen availability in North American eastern deciduous forests Nat. Plants 2 16133

Farquhar G D, Oleary M H and Berry J A 1982 On the relationship between carbon isotope discrimination and the inter-cellular carbon-dioxide concentration in leaves Aust. J. Plant Physiol. 9 121–37

Fick S E and Hijmans R J 2017 WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas Int. J. Climatol. 37 4360–15

Garten C T 1993 Variation in foliar N15 abundance and the availability of soil-nitrogen on walker branch watershed Ecology 74 2098–113

Gremer J R, Andrews C, Norris J R, Thomas I P, Munson S M, Dunwicy M C and Bradford J B 2018 Increasing temperature seasonality may overwhelm shifts in soil moisture to favor shrub over grass dominance in Colorado Plateau drylands Oecologia 188 1195–207

Grossford C, Buckley T N, Cernusak L A, Novick K A, Poulter B, Gremer J R, Andrews C, Norris J R, Thomas I P, Munson S M, Garten C T, Grünzweig J M, Spain D S, Looney R M, Phillips M J and Allen M B 2020 SoilClim: a laboratory study Eur. J. Soil Biol. 48 73–80

Hao Z, Kuang Y and Kang M 2015 Untangling the influence of phylogenetic, soil and climate on leaf element concentrations in a biodiversity hotspot Funct. Ecol. 29 165–76

Hatfield J L and Dold C 2019 Water-use efficiency: advances and challenges in a changing climate Front. Plant. Sci. 10 103

Hebbeker K B, Asphara E, Chandran K P and Prasad P V V 2020 Effect of elevated CO₂, high temperature, and water deficit on growth, photosynthesis, and whole plant water use efficiency of cocoa (Theobroma cacao L.) Int. J. Bioterrorol. 64 47–57

Hengl T et al 2017 SoilGrids250m: global gridded soil information based on machine learning PLoS One 12 e0169748

Hietz P, Turner B L, Wanek W, Richter A, Noack C A and Wright S J 2011 Long-term change in the nitrogen cycle of tropical forests Science 334 646–4

Hoffman G E and Schaft E E 2016 variancePartition: interpreting drivers of variation in complex gene expression studies BMC Bioinform. 17 483

Hogberg P 1997 15N natural abundance in soil-plant systems New Phytol. 137 179–203

Hovenden M J et al 2019 Globally consistent influences of seasonal precipitation limit grassland biomass response to elevated CO₂ Nat. Plants 5 167–73

Huang Z, Liu B, Davis M, Sardans J, Periuelas J and Billings S 2016 Long-term nitrogen deposition linked to reduced water use efficiency in forests with low phosphorus availability New Phytol. 210 431–42

Hung Dinh V, Kwek J-H, Lee K-S, Lim S-S, Matsushina M, Chang X, Lee K-H and Choi W-J 2013 Foliar chemistry and tree ring δ13C of Pinus densiflora in relation to tree growth along a soil pH gradient Plant Soil 363 101–12

Jia Y et al 2019 A spatial and temporal dataset of atmospheric inorganic nitrogen wet deposition in China (1996–2015) China Sci. Data 4 1–10

Jin Y and Qian H 2019 V.Phylomo: an R package that can generate very large phylogenies for vascular plants Ecography 42 1353–9

Kimm H, Guan K, Gentine P, Wu J, Bernacchi C J, Subramaniam B N, Griffis T J and Lin C 2020 Redefining droughts for the US Corn Belt: the dominant role of atmospheric vapor pressure deficit over soil moisture in regulating stomatal behavior of Maize and Soybean Agr. For. Meteorol. 287 107930

Koehler I H, Macdonald A J and Schneidny H 2016 Last-century increases in intrinsic water-use efficiency of grassland communities have occurred over a wide range of vegetation components, nutrient inputs, and soil pH Plant Physiol. 170 881–90

Lambers H and Poorter H 1992 Inherent Variation in Growth Rate Between Higher Plants: A Search for Physiological Causes and Ecological Consequences Adv. Ecol. Res. Begon M and Fitter A H (London: Academic) 23 187–261

Li J, Du L, Guan W, Yu F-H and Van Kleunen M 2016 Latitudinal and longitudinal clines of phenotypic plasticity in the invasive herb Solidago canadensis in China Oecologia 185 752–65

Li Z, Yang L, Lu W, Guo W, Gong X, Xu J and Yu D 2015 Spatial patterns of leaf carbon, nitrogen stoichiometry and stable carbon isotope composition of Ranunculus natsans CA Mey. (Ranunculaceae) in the arid zone of northwest China Ecol. Eng. 77 9–17

Li X et al 2020 Global response patterns of plant photosynthesis to nitrogen addition: a meta-analysis Glob. Change Biol. 26 5383–600

Liu C, Liu Y, Guo K, Wang S J and Yang Y 2018 Variation of stomatal traits from cold temperate to tropical forests and association with water use efficiency Funct. Ecol. 32 20–28

Liu X P, Fan Y, Long J, Wei R, Kjelgren R, Gong C and Zhao J 2013b Effects of soil water and nitrogen availability on photosynthesis and water use efficiency of Robinia pseudoacacia seedlings to soil acidification in tropical ecosystems Glob. Change Biol. 20 7390–801

Liu X et al 2013a Enhanced nitrogen deposition over China Nature 494 459–62

Liu Y, He N, Wen X, Yu G, Gao Y and Jia Y 2016 Patterns and regulating mechanisms of soil nitrogen mineralization and temperature sensitivity in Chinese terrestrial ecosystems Agric. Ecosyst. Environ. 215 40–46

Lu A, Mao Q, Gilliam F S, Luo Y and Mo J 2014 Nitrogen deposition to freshwater ecosystems Glob. Change Biol. 20 3790–801

Ma F, Zhou Z, Li S, Ai Z, Xiao G, Jia Y, Xu T and Denton M D 2019 Patterns of foliar and soil nitrogen isotope composition of Caragana microphylla, a leguminous shrub species in the semi-arid regions of northern China Biogeochemistry 146 257–69

Marchand W, Girardin M P, Hartmann H, Depardieu C, Isabel N, Gautier S, Boucher É and Bergeron Y 2020 Strong overestimation of water-use efficiency responses to rising CO₂ in tree-ring studies Glob. Change Biol. 26 4538–58

Matthews J and Lawson T 2019 Climate change and stomatal physiology Annu. Plant Rev. Online (London: Wiley) pp 713–52

Matthews J and Lawson T 2019 Climate change and stomatal physiology Annu. Plant Rev. Online (London: Wiley) pp 713–52
Maxwell T M, Silva I C R and Horwath W R 2018 Integrating effects of species composition and soil properties to predict shifts in Montane forest carbon-water relations. Proc. Natl Acad. Sci. USA 115 E4219–26

Mclauchlan K K et al 2017 Centennial-scale reductions in nitrogen availability in temperate forests of the United States Sci. Rep. 7 7856

Nakagawa S and Schielzeth H 2013 A general and simple method for obtaining R2 from generalized linear mixed-effects models Methods Ecol. Evol. 4 133–42

Niu S, Classen A T and Luo Y 2018 Functional traits along a transect Funct. Ecol. 32 4–9

Niwayama S and Higuchi H 2018 Effects of soil pH on the root growth of passion fruit and the mechanism of mineral uptake Acta Hort. 1217 111–20

Pu L M, Zhang S W, Yang J H, Chang L P and Xiao X M 2020 Assessing the impact of climate changes on the potential yields of maize and paddy rice in Northeast China by 2050 Theor. Appl. Climatol. 140 167–82

R Core Team 2019 R: A Language and Environment for Statistical Computing (Vienna: R Foundation for Statistical Computing) (https://www.R-project.org/)

Reynolds-Henne C E, Langenegger A, Mani J, Schenk N, Zumsteg A and Feller U 2010 Interactions between temperature, drought and stomatal opening in legumes Environ. Exp. Bot. 68 37–43

Schimel-Engel K, Moosbruger H and Müller H H 2003 Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures Methods Psychol. Res. Online 8 23–74 (http://www.stats.ox.ac.uk/~snijders/mpr_Schermelleh.pdf)

Schimel J P, Gulledge J M, Klein-Curley J S, Lindstrom J E and Braddock J F 1999 Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga Soil Biol. Biochem. 31 831–8

Schymanski S J and Or D 2016 Wind increases leaf water use efficiency Plant Cell Environ. 39 1448–59

Shangguan W et al 2013 A China data set of soil properties for land surface modeling J. Adv. Model. Earth Syst. 5 212–24

Shi H, Li L, Eamus D, Cleverly J, Huete A, Beringer J, Yu Q, Van Gorsel E and Hutley L 2014 Intrinsic climate dependency of ecosystem light and water-use-efficiencies across Australian biomes Environ. Res. Lett. 9 104002

Soh W K, Yiotis C, Murray M, Parnell A, Wright I J, Spicer R A, Lawson T, Caballero R and McElwain J C 2019 Rising CO2 drives divergence in water use efficiency of evergreen and deciduous plants Sci. Adv. 5 eaax7906

Soolanayakanahally R Y, Guy R D, Silim S N, Drewes E C and Schroeder W R 2009 Enhanced assimilation rate and water use efficiency with latitude through increased photosynthetic capacity and internal conductance in balsam poplar (Populus balsamifera L.) Plant Cell Environ. 32 1821–32

Stevens G C 1989 The latitudinal gradient in geographical range—how so many species coexist in the tropics Am. Nat. 133 240–56

Tang X et al 2014 How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth? Sci. Rep. 4 7483

Tang X et al 2018 Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey Proc. Natl Acad. Sci. USA 115 4021–6

Trabucco A and Zomer R J 2019a Global aridity index and potential evapotranspiration (ET0) climate database v2. figshare DATASET (https://doi.org/10.6084/m9.figshare.7504448.v3)

Trabucco A and Zomer R J 2019b Global high-resolution soil-water balance. figshare DATASET (https://doi.org/10.6084/m9.figshare.7707605.v3)

Urban J, Ingwers M, McGuire M A and Teskey R O 2017 Stomatal conductance increases with rising temperature Plant Signal. Behav. 12 e1356534

Wei W, Li H, Wang B T and Zhang K B 2019 Rain- and water-use efficiencies of a shrub ecosystem and its resilience to drought in the Central Asia region during 2000–2014 Glob. Ecol. Conserv. 17 e00595

Willig M R, Kaufman D M and Stevens R D 2003 Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis Annu. Rev. Ecol. Evol. Syst. 34 273–309

Xue R, Shen Y and Marschner P 2016 Low soil water content during plant growth influences soil respiration and microbial biomass after plant removal and rewetting J. Plant. Nutr. Soil Sci. 16 955–66

Yanni S F, Whalen J K, Simpson M J and Janzen H H 2011 Plant lignin and nitrogen contents control carbon dioxide production and nitrogen mineralization in soils incubated with Bt and non-Bt corn residues Soil Biol. Biochem. 43 63–69

Yu G et al 2019 Stabilization of atmospheric nitrogen deposition in China over the past decade Nat. Geosci. 12 424–9

Zhang Q, Ficklin D L, Manzoni S, Wang L, Way D, Phillips R P and Novick K A 2019 Response of ecosystem intrinsic water use efficiency and gross primary productivity to rising vapor pressure deficit Environ. Res. Lett. 14 074023

Zhuang Q, Zhang T, Xiao J and Luo T 2009 Quantification of net primary production of Chinese forest ecosystems with spatial statistical approaches Mitig. Adapt. Strateg. Glob. Change 14 85–99