SOME INEQUALITIES FOR TRACE CLASS OPERATORS VIA A KATO’S RESULT

S.S. DRAGOMIR

ABSTRACT. By the use of the celebrated Kato’s inequality we obtain in this paper some new inequalities for trace class operators on a complex Hilbert space H. Natural applications for functions defined by power series of normal operators are given as well.

1. INTRODUCTION

We denote by $B(H)$ the Banach algebra of all bounded linear operators on a complex Hilbert space $(H; (\cdot, \cdot))$.

If P is a positive selfadjoint operator on H, i.e. $\langle Px, x \rangle \geq 0$ for any $x \in H$, then the following inequality is a generalization of the Schwarz inequality in H

$$|\langle Px, y \rangle|^2 \leq \langle Px, x \rangle \langle Py, y \rangle,$$

for any $x, y \in H$.

The following inequality is of interest as well, see [18, p. 221].

Let P be a positive selfadjoint operator on H. Then

$$\|Px\|^2 \leq \|P\| \langle Px, x \rangle$$

for any $x \in H$.

The "square root" of a positive bounded selfadjoint operator on H can be defined as follows, see for instance [18, p. 240]: If the operator $A \in B(H)$ is selfadjoint and positive, then there exists a unique positive selfadjoint operator $B := \sqrt{A} \in B(H)$ such that $B^2 = A$. If A is invertible, then so is B.

If $A \in B(H)$, then the operator A^*A is selfadjoint and positive. Define the "absolute value" operator by $|A| := \sqrt{A^*A}$.

In 1952, Kato [19] proved the following celebrated generalization of Schwarz inequality for any bounded linear operator T on H:

$$|\langle Tx, y \rangle|^2 \leq \langle (T^*T)^\alpha x, x \rangle \langle (TT^*)^{1-\alpha} y, y \rangle,$$

for any $x, y \in H, \alpha \in [0, 1]$. Utilizing the modulus notation introduced before, we can write (1.3) as follows

$$|\langle Tx, y \rangle|^2 \leq \langle |T|^{2\alpha} x, x \rangle \langle |T^*|^{2(1-\alpha)} y, y \rangle$$

for any $x, y \in H, \alpha \in [0, 1]$.

1991 Mathematics Subject Classification. 47A63; 47A99.

Key words and phrases. Bounded linear operators, Operator inequalities, Kato’s inequality, Functions of normal operators, Euclidian norm and numerical radius.
It is useful to observe that, if $T = N$, a normal operator, i.e., we recall that $NN^* = N^*N$, then the inequality (1.4) can be written as

\begin{equation}
|\langle Nx, y \rangle|^2 \leq \langle |N|^{2\alpha} x, x \rangle \langle |N|^{2(1-\alpha)} y, y \rangle,
\end{equation}

and in particular, for selfadjoint operators A we can state it as

\begin{equation}
|\langle Ax, y \rangle| \leq \|A\|^\alpha x \|A^{1-\alpha} y \|
\end{equation}

for any $x, y \in H, \alpha \in [0, 1]$.

If $T = U$, a unitary operator, i.e., we recall that $UU^* = U^*U = 1_H$, then the inequality (1.4) becomes

\begin{equation}
|\langle Ux, y \rangle| \leq \|x\| \|y\|
\end{equation}

for any $x, y \in H$, which provides a natural generalization for the Schwarz inequality in H.

The symmetric powers in the inequalities above are natural to be considered, so if we choose in (1.4), (1.5) and in (1.6) $\alpha = 1/2$ then we get for any $x, y \in H$

\begin{align*}
|\langle Tx, y \rangle|^2 &\leq \langle |T| x, x \rangle \langle |T^*| y, y \rangle,
|\langle Nx, y \rangle|^2 &\leq \langle |N| x, x \rangle \langle |N| y, y \rangle,
|\langle Ax, y \rangle| &\leq \|A^{1/2} x \| \|A^{1/2} y \|
\end{align*}

respectively.

It is also worthwhile to observe that, if we take the supremum over $y \in H, \|y\| = 1$ in (1.4) then we get

\begin{equation}
\|Tx\|^2 \leq \|T\|^{2(1-\alpha)} \langle |T|^{2\alpha} x, x \rangle
\end{equation}

for any $x \in H$, or in an equivalent form

\begin{equation}
\|Tx\| \leq \|T\|^{\alpha} \|x\| \|T\|^{1-\alpha}
\end{equation}

for any $x \in H$.

If we take $\alpha = 1/2$ in (1.10), then we get

\begin{equation}
\|Tx\|^2 \leq \|T\| \langle |T| x, x \rangle
\end{equation}

for any $x \in H$, which in the particular case of $T = P$, a positive operator, provides the result from (1.2).

For various interesting generalizations, extension and Kato related results, see the papers [7]-[17], [23]-[29] and [34].

In order to state our results concerning new trace inequalities for operators in Hilbert spaces we need some preliminary facts as follows.

2. Trace of Operators

Let $(H, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space and $\{e_i\}_{i \in I}$ an orthonormal basis of H. We say that $A \in \mathcal{B}(H)$ is a Hilbert-Schmidt operator if

\begin{equation}
\sum_{i \in I} \|Ae_i\|^2 < \infty.
\end{equation}
It is well known that, if \(\{e_i\}_{i \in I} \) and \(\{f_j\}_{j \in J} \) are orthonormal bases for \(H \) and \(A \in \mathcal{B}(H) \) then
\[
\sum_{i \in I} \|Ae_i\|^2 = \sum_{j \in J} \|Af_j\|^2 = \sum_{j \in J} \|A^*f_j\|^2
\]
showing that the definition \((2.1) \) is independent of the orthonormal basis and \(A \) is a Hilbert-Schmidt operator if \(A^* \) is a Hilbert-Schmidt operator.

Let \(\mathcal{B}_2(H) \) the set of Hilbert-Schmidt operators in \(\mathcal{B}(H) \). For \(A \in \mathcal{B}_2(H) \) we define
\[
\|A\|_2 := \left(\sum_{i \in I} \|Ae_i\|^2 \right)^{1/2}
\]
for \(\{e_i\}_{i \in I} \) an orthonormal basis of \(H \). This definition does not depend on the choice of the orthonormal basis.

Using the triangle inequality in \(l^2(I) \), one checks that \(\mathcal{B}_2(H) \) is a vector space and that \(\|\cdot\|_2 \) is a norm on \(\mathcal{B}_2(H) \), which is usually called in the literature as the Hilbert-Schmidt norm.

Denote the modulus of an operator \(A \in \mathcal{B}(H) \) by \(|A| := (A^*A)^{1/2} \).

Because \(\|A\|_2 = \|Ax\| \) for all \(x \in H \), \(A \) is Hilbert-Schmidt iff \(|A| \) is Hilbert-Schmidt and \(\|A\|_2 = \||A||_2 \). From \((2.2) \) we have that if \(A \in \mathcal{B}_2(H) \), then \(A^* \in \mathcal{B}_2(H) \) and \(\|A\|_2 = \|A^*\|_2 \).

The following theorem collects some of the most important properties of Hilbert-Schmidt operators:

Theorem 1. We have

(i) \((\mathcal{B}_2(H), \|\cdot\|_2) \) is a Hilbert space with inner product
\[
\langle A, B \rangle_2 := \sum_{i \in I} \langle Ae_i, Be_i \rangle = \sum_{i \in I} \langle B^*Ae_i, e_i \rangle
\]
and the definition does not depend on the choice of the orthonormal basis \(\{e_i\}_{i \in I} \);

(ii) We have the inequalities
\[
\|A\| \leq \|A\|_2
\]
for any \(A \in \mathcal{B}_2(H) \) and
\[
\|AT\|_2, \|TA\|_2 \leq \|T\| \|A\|_2
\]
for any \(A \in \mathcal{B}_2(H) \) and \(T \in \mathcal{B}(H) \);

(iii) \(\mathcal{B}_2(H) \) is an operator ideal in \(\mathcal{B}(H) \), i.e.
\[
\mathcal{B}(H) \mathcal{B}_2(H) \mathcal{B}(H) \subseteq \mathcal{B}_2(H);
\]

(iv) \(\mathcal{B}_{fin}(H) \), the space of operators of finite rank, is a dense subspace of \(\mathcal{B}_2(H) \);

(v) \(\mathcal{B}_2(H) \subseteq \mathcal{K}(H) \), where \(\mathcal{K}(H) \) denotes the algebra of compact operators on \(H \).

If \(\{e_i\}_{i \in I} \) an orthonormal basis of \(H \), we say that \(A \in \mathcal{B}(H) \) is trace class if
\[
\|A\|_1 := \sum_{i \in I} \langle |A| e_i, e_i \rangle < \infty.
\]
The definition of \(\|A\|_1 \) does not depend on the choice of the orthonormal basis \(\{e_i\}_{i \in I} \). We denote by \(\mathcal{B}_1(H) \) the set of trace class operators in \(\mathcal{B}(H) \).

The following proposition holds:
Proposition 1. If \(A \in \mathcal{B}(H) \), then the following are equivalent:
(i) \(A \in \mathcal{B}_1(H) \);
(ii) \(|A|^\frac{1}{2} \in \mathcal{B}_2(H)\);
(iii) \(A \) (or \(|A|\)) is the product of two elements of \(\mathcal{B}_2(H)\).

The following properties are also well known:
Theorem 2. With the above notations:
(i) We have
\[
\|A\|_1 = \|A^*\|_1 \quad \text{and} \quad \|A\|_2 \leq \|A\|_1
\]
for any \(A \in \mathcal{B}_1(H) \);
(ii) \(\mathcal{B}_1(H) \) is an operator ideal in \(\mathcal{B}(H) \), i.e.
\[
\mathcal{B}(H) \mathcal{B}_1(H) \mathcal{B}(H) \subseteq \mathcal{B}_1(H);
\]
(iii) We have
\[
\mathcal{B}_2(H) \mathcal{B}_2(H) = \mathcal{B}_1(H);
\]
(iv) We have
\[
\|A\|_1 = \sup \{ \langle A, B \rangle_2 : B \in \mathcal{B}_2(H), \|B\| \leq 1 \};
\]
(v) \((\mathcal{B}_1(H), \|\cdot\|_1) \) is a Banach space.

We have the following isometric isomorphisms
\[
\mathcal{B}_1(H) \cong K(H)^* \text{ and } \mathcal{B}_1(H)^* \cong \mathcal{B}(H),
\]
where \(K(H)^* \) is the dual space of \(K(H) \) and \(\mathcal{B}_1(H)^* \) is the dual space of \(\mathcal{B}_1(H) \).

We define the trace of a trace class operator \(A \in \mathcal{B}_1(H) \) to be
\[
\text{tr} (A) := \sum_{i \in I} \langle Ae_i, e_i \rangle,
\]
where \(\{e_i\}_{i \in I} \) is an orthonormal basis of \(H \). Note that this coincides with the usual definition of the trace if \(H \) is finite-dimensional. We observe that the series (2.9) converges absolutely and it is independent from the choice of basis.

The following result collects some properties of the trace:
Theorem 3. We have
(i) If \(A \in \mathcal{B}_1(H) \) then \(A^* \in \mathcal{B}_1(H) \) and
\[
\text{tr} (A^*) = \text{tr}(A);
\]
(ii) If \(A \in \mathcal{B}_1(H) \) and \(T \in \mathcal{B}(H) \), then \(AT, TA \in \mathcal{B}_1(H) \) and
\[
\text{tr} (AT) = \text{tr} (TA) \quad \text{and} \quad |\text{tr} (AT)| \leq \|A\|_1 \|T\|;
\]
(iii) \(\text{tr} (\cdot) \) is a bounded linear functional on \(\mathcal{B}_1(H) \) with \(|\text{tr}| = 1 \);
(iv) If \(A, B \in \mathcal{B}_2(H) \) then \(AB, BA \in \mathcal{B}_1(H) \) and \(\text{tr} (AB) = \text{tr} (BA) \);
(v) \(\mathcal{B}_{fin}(H) \) is a dense subspace of \(\mathcal{B}_1(H) \).

Utilising the trace notation we obviously have that
\[
\langle A, B \rangle_2 = \text{tr} (B^* A) = \text{tr} (AB^*) \quad \text{and} \quad \|A\|_2^2 = \text{tr} (A^* A) = \text{tr} (|A|^2)
\]
for any \(A, B \in \mathcal{B}_2(H). \)

For the theory of trace functionals and their applications the reader is referred to [33].
For some classical trace inequalities see [4], [6], [30] and [38], which are continuations of the work of Bellman [2]. For related works the reader can refer to [1], [3], [4], [14], [22], [27], [28], [31] and [35].

3. Trace Inequalities Via Kato’s Result

We start with the following result:

Theorem 4. Let $T \in B(H)$.

(i) If for some $\alpha \in (0, 1)$ we have $|T|^{2\alpha}$, $|T^*|^{2(1-\alpha)} \in B_1(H)$, then $T \in B_1(H)$ and we have the inequality

$$|\text{tr} (T)|^2 \leq \text{tr} \left(|T|^{2\alpha} \right) \text{tr} \left(|T^*|^{2(1-\alpha)} \right);$$

(ii) If for some $\alpha \in [0, 1]$ and an orthonormal basis $\{e_i\}_{i \in I}$ the sum

$$\sum_{i \in I} \|T e_i\|^\alpha \|T^* e_i\|^{1-\alpha}$$

is finite, then $T \in B_1(H)$ and we have the inequality

$$|\text{tr} (T)| \leq \sum_{i \in I} \|T e_i\|^\alpha \|T^* e_i\|^{1-\alpha}.$$

Moreover, if the sums $\sum_{i \in I} \|T e_i\|$ and $\sum_{i \in I} \|T^* e_i\|$ are finite for an orthonormal basis $\{e_i\}_{i \in I}$, then $T \in B_1(H)$ and we have

$$|\text{tr} (T)| \leq \inf_{\alpha \in [0, 1]} \left\{ \sum_{i \in I} \|T e_i\|^\alpha \|T^* e_i\|^{1-\alpha} \right\} \leq \min \left\{ \sum_{i \in I} \|T e_i\|, \sum_{i \in I} \|T^* e_i\| \right\}.$$

Proof. (i) Assume that $\alpha \in (0, 1)$. Let $\{e_i\}_{i \in I}$ be an orthonormal basis in H and F a finite part of I. Then by Kato’s inequality (1.4) we have

$$\sum_{i \in F} \langle T e_i, e_i \rangle \leq \sum_{i \in F} |\langle T e_i, e_i \rangle| \leq \sum_{i \in F} \langle |T|^{2\alpha} e_i, e_i \rangle^{1/2} \langle |T^*|^{2(1-\alpha)} e_i, e_i \rangle^{1/2}.$$

By Cauchy-Buniakowskii-Schwarz inequality for finite sums we have

$$\sum_{i \in F} \langle |T|^{2\alpha} e_i, e_i \rangle^{1/2} \langle |T^*|^{2(1-\alpha)} e_i, e_i \rangle^{1/2} \leq \left(\sum_{i \in F} \langle |T|^{2\alpha} e_i, e_i \rangle^{1/2} \right)^2 \left(\sum_{i \in F} \langle |T^*|^{2(1-\alpha)} e_i, e_i \rangle^{1/2} \right)^2 \frac{1}{2} \left(\sum_{i \in F} \langle |T^*|^{2(1-\alpha)} e_i, e_i \rangle \right) \frac{1}{2} \left(\sum_{i \in F} \langle |T|^{2\alpha} e_i, e_i \rangle \right).$$

Therefore, by (3.4) and (3.5) we have

$$\sum_{i \in F} \langle T e_i, e_i \rangle \leq \left(\sum_{i \in F} \langle |T|^{2\alpha} e_i, e_i \rangle \right)^{1/2} \left(\sum_{i \in F} \langle |T^*|^{2(1-\alpha)} e_i, e_i \rangle \right)^{1/2}$$

for any finite part F of I.
If for some \(\alpha \in (0, 1) \) we have \(|T|^{2\alpha}, |T^*|^{2(1-\alpha)} \in B_1(H) \), then the sums
\[\sum_{i \in I} \left| \left\langle T^{2\alpha} e_i, e_i \right\rangle \right| \quad \text{and} \quad \sum_{i \in I} \left| \left\langle T^*^{2(1-\alpha)} e_i, e_i \right\rangle \right| \]
are finite and by (3.6) we have that \(\sum_{i \in I} \left| \langle T e_i, e_i \rangle \right| \) is also finite and we have the inequality (3.1).

(ii) Assume that \(\alpha \in [0, 1] \). Let \(\{e_i\}_{i \in I} \) be an orthonormal basis in \(H \) and \(F \) a finite part of \(I \). Utilising McCarthy’s inequality for the positive operator \(P \), namely
\[\langle P^\alpha x, x \rangle \leq \langle Px, x \rangle^\beta, \]
that holds for \(\beta \in [0, 1] \) and \(x \in H, \|x\| = 1 \), we have
\[\left| \left\langle T^{2\alpha} e_i, e_i \right\rangle \right| \leq \left| \left\langle T^2 e_i, e_i \right\rangle \right|^{\alpha} \]
and
\[\left| \left\langle T^*^{2(1-\alpha)} e_i, e_i \right\rangle \right| \leq \left| \left\langle T^2 e_i, e_i \right\rangle \right|^{1-\alpha} \]
for any \(i \in I \).

Making use of (3.4) we have
\[
(3.7) \quad \left| \sum_{i \in F} \langle T e_i, e_i \rangle \right| \leq \sum_{i \in F} |\langle T e_i, e_i \rangle| \leq \sum_{i \in F} \left| \left\langle T^{2\alpha} e_i, e_i \right\rangle \right|^{1/2} \left| \left\langle T^*^{2(1-\alpha)} e_i, e_i \right\rangle \right|^{1/2} \\
\leq \sum_{i \in F} \left| \langle T^2 e_i, e_i \rangle \right|^{\alpha/2} \left| \langle T^2 e_i, e_i \rangle \right|^{(1-\alpha)/2} \\
= \sum_{i \in F} \langle T^* T e_i, e_i \rangle^{\alpha/2} \langle T T^* e_i, e_i \rangle^{(1-\alpha)/2} \\
= \sum_{i \in F} \|T e_i\|^{\alpha} \|T^* e_i\|^{1-\alpha}.
\]

Utilizing Hölder’s inequality for finite sums and \(p = \frac{1}{\alpha}, q = \frac{1}{1-\alpha} \) we also have
\[
(3.8) \quad \sum_{i \in F} \|T e_i\|^{\alpha} \|T^* e_i\|^{1-\alpha} \\
\leq \left[\sum_{i \in F} \left(\|T e_i\|^{\alpha} \right) \right]^{1/\alpha} \left[\sum_{i \in F} \left(\|T^* e_i\|^{1-\alpha} \right) \right]^{1-1/\alpha} \\
= \left[\sum_{i \in F} \|T e_i\| \right]^{\alpha} \left[\sum_{i \in F} \|T^* e_i\| \right]^{1-\alpha}.
\]

Since all the series involved in (3.7) and (3.8) are convergent, then we get
\[
(3.9) \quad \left| \sum_{i \in I} \langle T e_i, e_i \rangle \right| \leq \sum_{i \in I} \|T e_i\|^{\alpha} \|T^* e_i\|^{1-\alpha} \\
\leq \left[\sum_{i \in I} \|T e_i\| \right]^{\alpha} \left[\sum_{i \in I} \|T^* e_i\| \right]^{1-\alpha}
\]
for any \(\alpha \in [0, 1] \).
Taking the infimum over $\alpha \in [0, 1]$ in (3.9) produces
\begin{equation}
(3.10) \quad \left| \sum_{i \in I} \langle Te_i, e_i \rangle \right| \leq \inf_{\alpha \in [0, 1]} \left\{ \sum_{i \in F} \|Te_i\|^\alpha \|T^*e_i\|^{1-\alpha} \right\} \\
\leq \inf_{\alpha \in [0, 1]} \left[\sum_{i \in F} \|Te_i\|^\alpha \right] \left[\sum_{i \in F} \|T^*e_i\| \right]^{1-\alpha} \\
= \min \left\{ \sum_{i \in F} \|Te_i\|, \sum_{i \in F} \|T^*e_i\| \right\}.
\end{equation}

\[\square \]

Corollary 1. Let $T \in \mathcal{B}(H)$.

(i) If we have $|T|, |T^*| \in \mathcal{B}_1(H)$, then $T \in \mathcal{B}_1(H)$ and we have the inequality
\begin{equation}
(3.11) \quad |\text{tr } (T)|^2 \leq \text{tr } (|T|) \text{ tr } (|T^*|);
\end{equation}

(ii) If for an orthonormal basis $\{e_i\}_{i \in I}$ the sum $\sum_{i \in I} \sqrt{\|Te_i\| \|T^*e_i\|}$ is finite, then $T \in \mathcal{B}_1(H)$ and we have the inequality
\begin{equation}
(3.12) \quad |\text{tr } (T)| \leq \sum_{i \in I} \sqrt{\|Te_i\| \|T^*e_i\|}.
\end{equation}

Corollary 2. Let $N \in \mathcal{B}(H)$ be a normal operator. If for some $\alpha \in (0, 1)$ we have $|N|^{2\alpha}, |N|^{2(1-\alpha)} \in \mathcal{B}_1(H)$, then $N \in \mathcal{B}_1(H)$ and we have the inequality
\begin{equation}
(3.13) \quad |\text{tr } (N)|^2 \leq \text{tr } (|N|^{2\alpha}) \text{ tr } (|N|^{2(1-\alpha)}).
\end{equation}

In particular, if $|N| \in \mathcal{B}_1(H)$, then $N \in \mathcal{B}_1(H)$ and
\begin{equation}
(3.14) \quad |\text{tr } (N)| \leq \text{tr } (|N|).
\end{equation}

The following result also holds.

Theorem 5. Let $T \in \mathcal{B}(H)$ and $A, B \in \mathcal{B}_2(H)$.

(i) For any $\alpha \in [0, 1]$ we have $|A|^2 |T|^{2\alpha}, |B|^2 |T^*|^{2(1-\alpha)}$ and $B^*TA \in \mathcal{B}_1(H)$ and
\begin{equation}
(3.15) \quad |\text{tr } (AB^*T)|^2 \leq \text{tr } (|A|^2 |T|^{2\alpha}) \text{ tr } (|B|^2 |T^*|^{2(1-\alpha)});
\end{equation}

(ii) We also have
\begin{equation}
(3.16) \quad |\text{tr } (AB^*T)|^2 \leq \min \left\{ \text{tr } (|B|^2) \text{ tr } (|A|^2 |T|^{2\alpha}) \text{ tr } (|B|^2 |T^*|^{2(1-\alpha)}) \right\}.
\end{equation}

Proof. (i) Let $\{e_i\}_{i \in I}$ be an orthonormal basis in H and F a finite part of I. Then by Kato’s inequality (1.4) we have
\begin{equation}
(3.17) \quad |(TAe_i, Be_i)|^2 \leq \langle |T|^{2\alpha} Ae_i, Ae_i \rangle \langle |T^*|^{2(1-\alpha)} Be_i, Be_i \rangle
\end{equation}
for any $i \in I$. This is equivalent to
\begin{equation}
(3.18) \quad |(B^*TAe_i, e_i)| \leq \langle A^* |T|^{2\alpha} Ae_i, e_i \rangle^{1/2} \langle B^* |T^*|^{2(1-\alpha)} Be_i, e_i \rangle^{1/2}
\end{equation}
for any $i \in I$.

Using the generalized triangle inequality for the modulus and the Cauchy-Bunyakowsky-Schwarz inequality for finite sums we have from (3.18) that

\[
\sum_{i \in F} |\langle B^* T A e_i, e_i \rangle| \\
\leq \sum_{i \in F} |\langle B^* T A e_i, e_i \rangle| \\
\leq \sum_{i \in F} \left(\left| \langle A^* |T|^{2\alpha} A e_i, e_i \rangle \right|^{1/2} \left| \langle B^* |T^*|^{2(1-\alpha)} B e_i, e_i \rangle \right|^{1/2} \right) \\
\leq \sum_{i \in F} \left(\left(\langle A^* |T|^{2\alpha} A e_i, e_i \rangle \right)^{1/2} \right)^2 \\
\times \left[\sum_{i \in F} \left(\langle B^* |T^*|^{2(1-\alpha)} B e_i, e_i \rangle \right)^{1/2} \right]^2 \\
= \sum_{i \in F} \left(\langle A^* |T|^{2\alpha} A e_i, e_i \rangle \right)^{1/2} \left[\sum_{i \in F} \langle B^* |T^*|^{2(1-\alpha)} B e_i, e_i \rangle \right]^{1/2}
\]

for any \(F \) a finite part of \(I \).

Let \(\alpha \in [0, 1] \). Since \(A, B \in \mathcal{B}_2(H) \), then \(A^* |T|^{2\alpha} A, B^* |T^*|^{2(1-\alpha)} B \) and \(B^* T A \in \mathcal{B}_1(H) \) and by (3.19) we have

\[
|\text{tr}(B^* T A)| \leq \left[\text{tr} \left(A^* |T|^{2\alpha} A \right) \right]^{1/2} \left[\text{tr} \left(B^* |T^*|^{2(1-\alpha)} B \right) \right]^{1/2}.
\]

Since, by the properties of trace we have

\[
\text{tr}(B^* T A) = \text{tr}(A B^* T), \\
\text{tr}(A^* |T|^{2\alpha} A) = \text{tr}(A A^* |T|^{2\alpha}) = \text{tr}(|A|^2 |T|^{2\alpha})
\]

and

\[
\text{tr}(B^* |T^*|^{2(1-\alpha)} B) = \text{tr}(|B|^2 |T^*|^{2(1-\alpha)}),
\]

then by (3.20) we get (3.15).

(ii) Utilising McCarthy’s inequality [29] for the positive operator \(P \)

\[
\langle P^\beta x, x \rangle \leq \langle P x, x \rangle^\beta
\]

that holds for \(\beta \in (0, 1) \) and \(x \in H, \|x\| = 1 \), we have

\[
\langle P^\beta y, y \rangle \leq \|y\|^{2(1-\beta)} \langle P y, y \rangle^\beta
\]

for any \(y \in H \).

Let \(\{e_i\}_{i \in I} \) be an orthonormal basis in \(H \) and \(F \) a finite part of \(I \). From (3.21) we have

\[
\langle |T|^{2\alpha} A e_i, A e_i \rangle \leq \|A e_i\|^{2(1-\alpha)} \langle |T|^{2\alpha} A e_i, A e_i \rangle^{\alpha}
\]

and

\[
\langle |T^*|^{2(1-\alpha)} B e_i, B e_i \rangle \leq \|B e_i\|^{2\alpha} \langle |T^*|^{2\alpha} B e_i, B e_i \rangle^{1-\alpha}
\]

for any \(i \in I \).
Making use of the inequality (3.17) we get

\[
\langle T A e_i, B e_i \rangle \leq \|A e_i\|^2 (1 - \alpha) \|T^* A e_i, A e_i\|^{\alpha} \|B e_i\|^2 \langle T^* |T^2 B e_i, B e_i\rangle^{1 - \alpha}
\]

and taking the square root we get

\[
(3.22) \quad \langle T A e_i, B e_i \rangle \leq \|B e_i\|^\alpha \langle T^* |T^2 A e_i, A e_i\rangle^{\frac{\alpha}{2}} \|A e_i\|^{1 - \alpha} \langle T^* |T^2 B e_i, B e_i\rangle^{\frac{1 - \alpha}{2}}
\]

for any \(i \in I \).

Using the generalized triangle inequality for the modulus and the Hölder’s inequality for finite sums and \(p = \frac{1}{\alpha}, q = \frac{1}{1 - \alpha} \) we get from (3.22) that

\[
(3.23) \quad \left| \sum_{i \in F} \langle B^* T A e_i, e_i \rangle \right| \\
\leq \sum_{i \in F} \|B e_i\|^\alpha \langle T^* |T^2 A e_i, A e_i\rangle \|A e_i\|^{1 - \alpha} \langle T^* |T^2 B e_i, B e_i\rangle^{\frac{1 - \alpha}{2}}
\]

By Cauchy-Bunyakowsky-Schwarz inequality for finite sums we also have

\[
\sum_{i \in F} \|B e_i\| \langle T |T^2 A e_i, A e_i\rangle^{\frac{1}{2}} \leq \left(\sum_{i \in F} \|B e_i\|^2 \right)^{1/2} \left(\sum_{i \in F} \langle T |T^2 A e_i, A e_i\rangle \right)^{1/2}
\]

\[
= \left(\sum_{i \in F} \langle B^* e_i, e_i \rangle \right)^{1/2} \left(\sum_{i \in F} \langle A^* |T^2 A e_i, e_i\rangle \right)^{1/2}
\]

and

\[
\sum_{i \in F} \|A e_i\| \langle T^* |T^2 B e_i, B e_i\rangle^{\frac{1}{2}} \leq \left(\sum_{i \in F} \|A e_i\|^2 \right)^{1/2} \left(\sum_{i \in F} \langle T^* |T^2 B e_i, B e_i\rangle \right)^{1/2}
\]

\[
= \left(\sum_{i \in F} \langle A^2 e_i, e_i \rangle \right)^{1/2} \left(\sum_{i \in F} \langle B^* |T^2 B e_i, e_i\rangle \right)^{1/2}
\]
and by (3.23) we obtain

\[
\left| \sum_{i \in F} \langle B^*TAe_i, e_i \rangle \right| \\
\leq \left(\sum_{i \in F} |B|^2 e_i, e_i \right)^{\alpha/2} \left(\sum_{i \in F} |A^*|T|^2 A e_i, e_i \right)^{\alpha/2} \\
\times \left(\sum_{i \in F} |A|^2 e_i, e_i \right)^{(1-\alpha)/2} \left(\sum_{i \in F} |B^*|T^*|^2 B e_i, e_i \right)^{(1-\alpha)/2}
\]

for any \(F \) a finite part of \(I \).

Let \(\alpha \in [0,1] \). Since \(A, B \in B_2(H) \), then \(A^*|T|^2 A \) and \(B^*|T^*|^2 B \in B_1(H) \) and by (3.24) we get

\[
|\text{tr}(AB^*T)|^2 \\
\leq \left[\text{tr} \left(|B|^2 \right) \text{tr} \left(A^*|T|^2 A \right) \right]^{\alpha} \left[\text{tr} \left(|A|^2 \right) \text{tr} \left(B^*|T^*|^2 B \right) \right]^{1-\alpha} \\
= \left[\text{tr} \left(|B|^2 \right) \text{tr} \left(|A|^2 |T|^2 \right) \right]^{\alpha} \left[\text{tr} \left(|A|^2 \right) \text{tr} \left(|B|^2 |T^*|^2 \right) \right]^{1-\alpha}.
\]

Taking the infimum over \(\alpha \in [0,1] \) we get (3.16). \(\square \)

Corollary 3. Let \(T \in B(H) \) and \(A, B \in B_2(H) \). We have \(|A^*|^2 |T| \), \(|B^*|^2 |T^*| \) and \(B^*TA \in B_1(H) \) and

\[
|\text{tr}(AB^*T)|^2 \leq \text{tr} \left(|A^*|^2 |T| \right) \text{tr} \left(|B^*|^2 |T^*| \right).
\]

Corollary 4. Let \(N \in B(H) \) be a normal operator and \(A, B \in B_2(H) \).

(i) For any \(\alpha \in [0,1] \) we have \(|A^*|^2 |N|^{2\alpha}, |B^*|^2 |N|^{2(1-\alpha)} \) and \(B^*NA \in B_1(H) \) and

\[
|\text{tr}(AB^*N)|^2 \leq \text{tr} \left(|A^*|^2 |N|^{2\alpha} \right) \text{tr} \left(|B^*|^2 |N|^{2(1-\alpha)} \right).
\]

In particular, we have \(|A^*|^2 |N|, |B^*|^2 |N| \) and \(B^*NA \in B_1(H) \) and

\[
|\text{tr}(AB^*N)|^2 \leq \text{tr} \left(|A^*|^2 |N| \right) \text{tr} \left(|B^*|^2 |N| \right).
\]

(ii) We also have

\[
|\text{tr}(AB^*N)|^2 \\
\leq \min \left\{ \text{tr} \left(|B|^2 \right) \text{tr} \left(|A|^2 |N|^2 \right), \text{tr} \left(|A|^2 \right) \text{tr} \left(|B|^2 |N|^2 \right) \right\}.
\]

Remark 1. Let \(\alpha \in [0,1] \). By replacing \(A \) with \(A^* \) and \(B \) with \(B^* \) in (3.15) we get

\[
|\text{tr}(A^* BT)|^2 \leq \text{tr} \left(|A|^2 |T|^{2\alpha} \right) \text{tr} \left(|B|^2 |T^*|^{2(1-\alpha)} \right)
\]

for any \(T \in B(H) \) and \(A, B \in B_2(H) \).

If in this inequality we take \(A = B \), then we get

\[
|\text{tr}(B^2 T)|^2 \leq \text{tr} \left(|B|^2 |T|^{2\alpha} \right) \text{tr} \left(|B|^2 |T^*|^{2(1-\alpha)} \right)
\]

for any \(T \in B(H) \) and \(B \in B_2(H) \).
If in (3.30) we take \(A = B^* \) then we get
\[
(3.32) \quad |\text{tr} (B^2 T)|^2 \leq \text{tr} \left(|B^*|^2 |T|^{2\alpha} \right) \text{tr} \left(|B|^2 |T^*|^{2(1-\alpha)} \right)
\]
for any \(T \in \mathcal{B}(H) \) and \(B \in \mathcal{B}_2(H) \).

Also, if \(T = N \), a normal operator, then (3.31) and (3.32) become
\[
(3.33) \quad |\text{tr} \left(|B|^2 N \right)|^2 \leq \text{tr} \left(|B|^2 |N|^{2\alpha} \right) \text{tr} \left(|B|^2 |N|^{2(1-\alpha)} \right)
\]
and
\[
(3.34) \quad |\text{tr} (B^2 N)|^2 \leq \text{tr} \left(|B^*|^2 |N|^{2\alpha} \right) \text{tr} \left(|B|^2 |N|^{2(1-\alpha)} \right),
\]
for any \(B \in \mathcal{B}_2(H) \).

4. Some Functional Properties

Let \(A \in \mathcal{B}_2(H) \) and \(P \in \mathcal{B}(H) \) with \(P \geq 0 \). Then \(Q := A^*PA \in \mathcal{B}_1(H) \) with \(Q \geq 0 \) and writing the inequality (3.31) for \(B = (A^*PA)^{1/2} \in \mathcal{B}_2(H) \) we get
\[
|\text{tr} (A^*PAT)|^2 \leq \text{tr} \left(A^*PA |T|^{2\alpha} \right) \text{tr} \left(A^*PA |T^*|^{2(1-\alpha)} \right),
\]
which, by the properties of trace, is equivalent to
\[
(4.1) \quad |\text{tr} (PA^*AT)|^2 \leq \text{tr} \left(PA |T|^{2\alpha} A^* \right) \text{tr} \left(PA |T^*|^{2(1-\alpha)} A^* \right),
\]
where \(T \in \mathcal{B}(H) \) and \(\alpha \in [0, 1] \).

For a given \(A \in \mathcal{B}_2(H) \), \(T \in \mathcal{B}(H) \) and \(\alpha \in [0, 1] \), we consider the functional \(\sigma_{A,T,\alpha} \) defined on the cone \(\mathcal{B}_+(H) \) of nonnegative operators on \(\mathcal{B}(H) \) by
\[
\sigma_{A,T,\alpha}(P) := \left[\text{tr} \left(PA |T|^{2\alpha} A^* \right) \right]^{1/2} \left[\text{tr} \left(PA |T^*|^{2(1-\alpha)} A^* \right) \right]^{1/2} - |\text{tr} (PA^*AT)|.
\]

The following theorem collects some fundamental properties of this functional.

Theorem 6. Let \(A \in \mathcal{B}_2(H) \), \(T \in \mathcal{B}(H) \) and \(\alpha \in [0, 1] \).

(i) For any \(P, Q \in \mathcal{B}_+(H) \) we have
\[
(4.2) \quad \sigma_{A,T,\alpha}(P + Q) \geq \sigma_{A,T,\alpha}(P) + \sigma_{A,T,\alpha}(Q) \geq 0,
\]
namely, \(\sigma_{A,T,\alpha} \) is a superadditive functional on \(\mathcal{B}_+(H) \);

(ii) For any \(P, Q \in \mathcal{B}_+(H) \) with \(P \geq Q \) we have
\[
(4.3) \quad \sigma_{A,T,\alpha}(P) \geq \sigma_{A,T,\alpha}(Q) \geq 0,
\]
namely, \(\sigma_{A,T,\alpha} \) is a monotonic nondecreasing functional on \(\mathcal{B}_+(H) \);

(iii) If \(P, Q \in \mathcal{B}_+(H) \) and there exist the constants \(M > m > 0 \) such that \(MQ \geq P \geq mQ \) then
\[
(4.4) \quad M \sigma_{A,T,\alpha}(Q) \geq \sigma_{A,T,\alpha}(P) \geq m \sigma_{A,T,\alpha}(Q) \geq 0.
\]

Proof. (i) Let \(P, Q \in \mathcal{B}_+(H) \). On utilizing the elementary inequality
\[
(a^2 + b^2)^{1/2} (c^2 + d^2)^{1/2} \geq ac + bd, \ a, b, c, d \geq 0
\]
and the triangle inequality for the modulus, we have

\[
\sigma_{A,T,\alpha} (P + Q)
= \left[\text{tr} \left((P + Q) A |T|^{2\alpha} A^* \right) \right]^{1/2} \left[\text{tr} \left((P + Q) A |T|^{2(1-\alpha)} A^* \right) \right]^{1/2}
- \left[\text{tr} ((P + Q) ATA^*) \right]
= \left[\text{tr} \left(PA |T|^{2\alpha} A^* + QA |T|^{2\alpha} A^* \right) \right]^{1/2}
\times \left[\text{tr} \left(PA |T|^{2(1-\alpha)} A^* + QA |T|^{2(1-\alpha)} A^* \right) \right]^{1/2}
- \left[\text{tr} (PATA^* + QATA^*) \right]
= \left[\text{tr} \left(PA |T|^{2\alpha} A^* \right) \right]^{1/2}
\times \left[\text{tr} \left(PA |T|^{2(1-\alpha)} A^* \right) \right]^{1/2}
- \left[\text{tr} (PATA^*) \right]
\geq \left[\text{tr} \left(PA |T|^{2\alpha} A^* \right) \right]^{1/2}
\times \left[\text{tr} \left(PA |T|^{2(1-\alpha)} A^* \right) \right]^{1/2}
- \left[\text{tr} (PATA^*) \right]
= \sigma_{A,T,\alpha} (P) + \sigma_{A,T,\alpha} (Q)
\]

and the inequality (4.2) is proved.

(ii) Let \(P, Q \in \mathcal{B}_+ (H) \) with \(P \geq Q \). Utilising the superadditivity property we have

\[
\sigma_{A,T,\alpha} (P)
= \sigma_{A,T,\alpha} ((P - Q) + Q) \geq \sigma_{A,T,\alpha} (P - Q) + \sigma_{A,T,\alpha} (Q)
\geq \sigma_{A,T,\alpha} (Q)
\]

and the inequality (4.3) is obtained.

(iii) From the monotonicity property we have

\[
\sigma_{A,T,\alpha} (P) \geq \sigma_{A,T,\alpha} (mQ) = m \sigma_{A,T,\alpha} (Q)
\]

and a similar inequality for \(M \), which prove the desired result (4.4).

\(\square \)

Corollary 5. Let \(A \in \mathcal{B}_2 (H) \), \(T \in \mathcal{B} (H) \) and \(\alpha \in [0, 1] \). If \(P \in \mathcal{B} (H) \) is such that there exist the constants \(M > m > 0 \) with \(M1_H \geq P \geq m1_H \), then we have

\[
(4.5) \quad M \left(\left[\text{tr} \left(A |T|^{2\alpha} A^* \right) \right]^{1/2} \left[\text{tr} \left(A |T|^{2(1-\alpha)} A^* \right) \right]^{1/2} - \left| \text{tr} (ATA^*) \right| \right)
\geq \left[\text{tr} \left(PA |T|^{2\alpha} A^* \right) \right]^{1/2} \left[\text{tr} \left(PA |T|^{2(1-\alpha)} A^* \right) \right]^{1/2} - \left| \text{tr} (PATA^*) \right|
\geq m \left(\left[\text{tr} \left(A |T|^{2\alpha} A^* \right) \right]^{1/2} \left[\text{tr} \left(A |T|^{2(1-\alpha)} A^* \right) \right]^{1/2} - \left| \text{tr} (ATA^*) \right| \right).
\]
For a given $A \in \mathcal{B}_2(H)$, $T \in \mathcal{B}(H)$ and $\alpha \in [0,1]$, if we take $P = |V|^2$ with $V \in \mathcal{B}(H)$, we have

$$
\sigma_{A,T,\alpha}(|V|^2) = \left[\text{tr} \left(|V|^2 A |T|^{2\alpha} A^* \right) \right]^{1/2} \left[\text{tr} \left(|V|^2 A |T^*|^{2(1-\alpha)} A^* \right) \right]^{1/2} \\
- \left[\text{tr} \left(|V|^2 ATA^* \right) \right] \\
= \left[\text{tr} \left(V^* VA |T|^{2\alpha} A^* \right) \right]^{1/2} \left[\text{tr} \left(V^* VA |T^*|^{2(1-\alpha)} A^* \right) \right]^{1/2} \\
- \left[\text{tr} \left(V^* VAT A^* \right) \right] \\
= \left[\text{tr} \left(A^* V^* VA |T|^{2\alpha} \right) \right]^{1/2} \left[\text{tr} \left(A^* V^* VA |T^*|^{2(1-\alpha)} \right) \right]^{1/2} \\
- \left[\text{tr} \left(A^* V^* VAT \right) \right] \\
= \left[\text{tr} \left(|VA|^2 |T|^{2\alpha} \right) \right]^{1/2} \left[\text{tr} \left(|VA|^2 |T^*|^{2(1-\alpha)} \right) \right]^{1/2} - \left[\text{tr} \left(|VA|^2 T \right) \right].
$$

Assume that $A \in \mathcal{B}_2(H)$, $T \in \mathcal{B}(H)$ and $\alpha \in [0,1]$. If we use the superadditivity property of the functional $\sigma_{A,T,\alpha}$ we have for any $V, U \in \mathcal{B}(H)$ that

$$
\text{(4.6)} \quad \left[\text{tr} \left((|VA|^2 + |UA|^2) |T|^{2\alpha} \right) \right]^{1/2} \left[\text{tr} \left((|VA|^2 + |UA|^2) |T^*|^{2(1-\alpha)} \right) \right]^{1/2} \\
- \left[\text{tr} \left((|VA|^2 + |UA|^2) T \right) \right] \\
\geq \left[\text{tr} \left(|VA|^2 |T|^{2\alpha} \right) \right]^{1/2} \left[\text{tr} \left(|VA|^2 |T^*|^{2(1-\alpha)} \right) \right]^{1/2} - \left[\text{tr} \left(|VA|^2 T \right) \right] \\
+ \left[\text{tr} \left(|UA|^2 |T|^{2\alpha} \right) \right]^{1/2} \left[\text{tr} \left(|UA|^2 |T^*|^{2(1-\alpha)} \right) \right]^{1/2} - \left[\text{tr} \left(|UA|^2 T \right) \right] \geq 0.
$$

Also, if $|V|^2 \geq |U|^2$ with $V, U \in \mathcal{B}(H)$, then

$$
\text{(4.7)} \quad \left[\text{tr} \left(|VA|^2 |T|^{2\alpha} \right) \right]^{1/2} \left[\text{tr} \left(|VA|^2 |T^*|^{2(1-\alpha)} \right) \right]^{1/2} - \left[\text{tr} \left(|VA|^2 T \right) \right] \\
\geq \left[\text{tr} \left(|UA|^2 |T|^{2\alpha} \right) \right]^{1/2} \left[\text{tr} \left(|UA|^2 |T^*|^{2(1-\alpha)} \right) \right]^{1/2} - \left[\text{tr} \left(|UA|^2 T \right) \right] \geq 0.
$$

If $U \in \mathcal{B}(H)$ is invertible then

$$
\frac{1}{\|U^{-1}\|} \|x\| \leq \|Ux\| \leq \|U\| \|x\| \text{ for any } x \in H,
$$

which implies that

$$
\frac{1}{\|U^{-1}\|^2} 1_H \leq |U|^2 \leq \|U\|^2 1_H.
$$
Utilising (4.5) we get
\[(4.8) \quad ||U||^2 \left(\left[\text{tr} \left(|A|^2 |T|^{2\alpha} \right) \right]^{1/2} - \left| \text{tr} \left(|A|^2 |T|^{2(1-\alpha)} \right) \right| \right) \]
\[\geq \left[\text{tr} \left(|U|A^2 |T|^{2\alpha} \right) \right]^{1/2} - \left[\text{tr} \left(|U|A^2 |T|^{2(1-\alpha)} \right) \right]^{1/2}
\[\geq \frac{1}{||U^{-1}||^2} \left(\left[\text{tr} \left(|A|^2 |T|^{2\alpha} \right) \right]^{1/2} - \left| \text{tr} \left(|A|^2 |T|^{2(1-\alpha)} \right) \right| \right).\]

5. Inequalities for Sequences of Operators

For \(n \geq 2 \), define the Cartesian products \(B^{(n)}(H) := B(H) \times ... \times B(H) \), \(B_2^{(n)}(H) := B_2(H) \times ... \times B_2(H) \) and \(B_+^{(n)}(H) := B_+(H) \times ... \times B_+(H) \) where \(B_+(H) \) denotes the convex cone of nonnegative selfadjoint operators on \(H \), i.e. \(P \in B_+(H) \) if \(\langle Px, x \rangle \geq 0 \) for any \(x \in H \).

Proposition 2. Let \(P = (P_1, ..., P_n) \in B_+^{(n)}(H) \), \(T = (T_1, ..., T_n) \in B^{(n)}(H) \), \(A = (A_1, ..., A_n) \in B_2^{(n)}(H) \) and \(z = (z_1, ..., z_n) \in \mathbb{C}^n \) with \(n \geq 2 \). Then
\[(5.1) \quad \left| \text{tr} \left(\sum_{k=1}^{n} z_k P_k A_k T_k A_k^* \right) \right|^2 \]
\[\leq \text{tr} \left(\sum_{k=1}^{n} |z_k|^2 P_k A_k |T_k|^{2\alpha} A_k^* \right) \text{tr} \left(\sum_{k=1}^{n} |z_k|^2 P_k A_k |T_k|^{2(1-\alpha)} A_k^* \right)
\]
for any \(\alpha \in [0, 1] \).

Proof. Using the properties of modulus and the inequality (4.1) we have
\[\left| \text{tr} \left(\sum_{k=1}^{n} z_k P_k A_k T_k A_k^* \right) \right| \]
\[= \sum_{k=1}^{n} z_k \text{tr} \left(P_k A_k T_k A_k^* \right) \leq \sum_{k=1}^{n} |z_k| \left| \text{tr} \left(P_k A_k T_k A_k^* \right) \right|
\[\leq \sum_{k=1}^{n} |z_k| \left[\text{tr} \left(P_k A_k |T_k|^{2\alpha} A_k^* \right) \right]^{1/2} \left[\text{tr} \left(P_k A_k |T_k|^{2(1-\alpha)} A_k^* \right) \right]^{1/2}.
\]
Utilizing the weighted discrete Cauchy-Bunyakovsky-Schwarz inequality we also have
\[\sum_{k=1}^{n} |z_k| \left[\text{tr} \left(P_k A_k |T_k|^{2\alpha} A_k^* \right) \right]^{1/2} \left[\text{tr} \left(P_k A_k |T_k|^{2(1-\alpha)} A_k^* \right) \right]^{1/2}
\[\leq \left(\sum_{k=1}^{n} |z_k|^2 \left[\text{tr} \left(P_k A_k |T_k|^{2\alpha} A_k^* \right) \right]^{1/2} \right)^{1/2}
\[\times \left(\sum_{k=1}^{n} |z_k|^2 \left[\text{tr} \left(P_k A_k |T_k|^{2(1-\alpha)} A_k^* \right) \right]^{1/2} \right)^{1/2}
\[= \left(\sum_{k=1}^{n} |z_k| \text{tr} \left(P_k A_k |T_k|^{2\alpha} A_k^* \right) \right) \left(\sum_{k=1}^{n} |z_k| \text{tr} \left(P_k A_k |T_k|^{2(1-\alpha)} A_k^* \right) \right)^{1/2},\]
where

\[\text{Proposition 3.} \]

\[\text{provided that } T = (T_1, \ldots, T_n) \in \mathcal{B}^n(H), \ A = (A_1, \ldots, A_n) \in \mathcal{B}_2^n(H), \ \alpha \in [0, 1] \]

and \(z = (z_1, \ldots, z_n) \in \mathbb{C}^n \).

We consider the functional for \(n \)-tuples of nonnegative operators \(P = (P_1, \ldots, P_n) \in \mathcal{B}_+^n(H) \) as follows:

\[\text{Remark 2.} \]

\[\text{If we take } P_k = 1_H \text{ for any } k \in \{1, \ldots, n\} \text{ in (5.1), then we have the simpler inequality} \]

\[\frac{\sum_{k=1}^{n} z_k |A_k|^2 T_k}{\left(\sum_{k=1}^{n} |z_k|^2 |T_k|^{2\alpha} \right)^{1/2}} \]

\[\leq \frac{\sum_{k=1}^{n} |z_k|^2 |T_k|^{2\alpha}}{\left(\sum_{k=1}^{n} |z_k|^2 |T_k|^{2\alpha} \right)^{1/2}} \]

\[\text{the desired result (5.1).} \square \]

\[\text{We have} \]

\[\text{which imply the desired result (5.1).} \]

\[\text{Proposition 3.} \]

\[\text{provided that } T = (T_1, \ldots, T_n) \in \mathcal{B}^n(H), \ A = (A_1, \ldots, A_n) \in \mathcal{B}_2^n(H), \ \alpha \in [0, 1] \]

\[\text{and } z = (z_1, \ldots, z_n) \in \mathbb{C}^n. \]

\[\text{We consider the functional for } n \text{-tuples of nonnegative operators } P = (P_1, \ldots, P_n) \in \mathcal{B}_+^n(H) \text{ as follows:} \]

\[\sigma_{A,T,\alpha}(P) := \left[\frac{\sum_{k=1}^{n} P_k A_k |T_k|^{2\alpha} A_k^*}{\left(\sum_{k=1}^{n} P_k A_k |T_k|^{2\alpha} A_k^* \right)^{1/2}} \right] \]

\[\text{where } T = (T_1, \ldots, T_n) \in \mathcal{B}^n(H), \ A = (A_1, \ldots, A_n) \in \mathcal{B}_2^n(H) \text{ and } \alpha \in [0, 1]. \]

\[\text{Utilising a similar argument to the one in Theorem 6 we can state:} \]

\[\text{Proposition 3.} \]

\[\text{Let } T = (T_1, \ldots, T_n) \in \mathcal{B}^n(H), \ A = (A_1, \ldots, A_n) \in \mathcal{B}_2^n(H) \text{ and } \alpha \in [0, 1]. \]

\[\text{(i) For any } P, Q \in \mathcal{B}_+^n(H) \text{ we have} \]

\[\sigma_{A,T,\alpha}(P + Q) \geq \sigma_{A,T,\alpha}(P) + \sigma_{A,T,\alpha}(Q) \geq 0, \]

\[\text{naming, } \sigma_{A,T,\alpha} \text{ is a superadditive functional on } \mathcal{B}_+^n(H); \]

\[\text{(ii) For any } P, Q \in \mathcal{B}_+^n(H) \text{ with } P \geq Q \text{, namely } P_k \geq Q_k \text{ for all } k \in \{1, \ldots, n\} \text{ we have} \]

\[\sigma_{A,T,\alpha}(P) \geq \sigma_{A,T,\alpha}(Q) \geq 0, \]

\[\text{naming, } \sigma_{A,B} \text{ is a monotonic nondecreasing functional on } \mathcal{B}_+^n(H); \]

\[\text{(iii) If } P, Q \in \mathcal{B}_+^n(H) \text{ and there exist the constants } M > m > 0 \text{ such that } M Q \geq P \geq m Q \text{ then} \]

\[M \sigma_{A,T,\alpha}(Q) \geq \sigma_{A,T,\alpha}(P) \geq m \sigma_{A,T,\alpha}(Q) \geq 0. \]

\[\text{If } P = (p_1 1_H, \ldots, p_n 1_H) \text{ with } p_k \geq 0, k \in \{1, \ldots, n\} \text{ then the functional of real nonnegative weights } p = (p_1, \ldots, p_n) \text{ defined by} \]

\[\sigma_{A,T,\alpha}(p) := \left[\frac{\sum_{k=1}^{n} p_k |A_k|^2 |T_k|^{2\alpha}}{\left(\sum_{k=1}^{n} p_k |A_k|^2 |T_k|^{2\alpha} \right)^{1/2}} \right] \]

\[\times \left[\frac{\sum_{k=1}^{n} p_k |A_k|^2 |T_k|^{2(1-\alpha)}}{\left(\sum_{k=1}^{n} p_k |A_k|^2 |T_k|^{2(1-\alpha)} \right)^{1/2}} \right] \]

\[\text{has the same properties as in Theorem 6.} \]
Moreover, we have the simple bounds

\[
\max_{k \in \{1, \ldots, n\}} \{p_k\} \left(\frac{\max_{\alpha} \sum_{k=1}^{n} |A_k|^2 |T_k|^{2\alpha}}{\left(\sum_{k=1}^{n} |A_k|^2 |T_k|^{2(1-\alpha)} \right)^{1/2}} \right)^{1/2} \\
\times \left[\frac{\sum_{k=1}^{n} p_k |A_k|^2 |T_k|^{2(1-\alpha)}}{\left(\sum_{k=1}^{n} p_k |A_k|^2 |T_k|^{2(1-\alpha)} \right)^{1/2}} \right]^{1/2} \\
\geq \left[\frac{\sum_{k=1}^{n} p_k |A_k|^2 |T_k|^{2\alpha}}{\left(\sum_{k=1}^{n} p_k |A_k|^2 |T_k|^{2\alpha} \right)^{1/2}} \right]^{1/2} \\
- \left[\frac{\sum_{k=1}^{n} p_k |A_k|^2 |T_k|^{2\alpha}}{\left(\sum_{k=1}^{n} p_k |A_k|^2 |T_k|^{2\alpha} \right)^{1/2}} \right]^{1/2} \\
\geq \min_{k \in \{1, \ldots, n\}} \{p_k\} \left(\frac{\max_{\alpha} \sum_{k=1}^{n} |A_k|^2 |T_k|^{2\alpha}}{\left(\sum_{k=1}^{n} |A_k|^2 |T_k|^{2(1-\alpha)} \right)^{1/2}} \right)^{1/2} \\
\times \left[\frac{\sum_{k=1}^{n} p_k |A_k|^2 |T_k|^{2(1-\alpha)}}{\left(\sum_{k=1}^{n} p_k |A_k|^2 |T_k|^{2(1-\alpha)} \right)^{1/2}} \right]^{1/2} \\
- \left[\frac{\sum_{k=1}^{n} p_k |A_k|^2 |T_k|^{2(1-\alpha)}}{\left(\sum_{k=1}^{n} p_k |A_k|^2 |T_k|^{2(1-\alpha)} \right)^{1/2}} \right]^{1/2}.
\]

6. **Inequalities for Power Series of Operators**

Denote by:

\[
D(0, R) = \begin{cases}
\{z \in \mathbb{C} : |z| < R\}, & \text{if } R < \infty \\
\mathbb{C}, & \text{if } R = \infty,
\end{cases}
\]

and consider the functions:

\[
\lambda \mapsto f(\lambda) : D(0, R) \to \mathbb{C}, \quad f(\lambda) := \sum_{n=0}^{\infty} \alpha_n \lambda^n
\]

and

\[
\lambda \mapsto f_\alpha(\lambda) : D(0, R) \to \mathbb{C}, \quad f_\alpha(\lambda) := \sum_{n=0}^{\infty} |\alpha_n| \lambda^n.
\]

As some natural examples that are useful for applications, we can point out that, if

\[
\begin{align*}
\lambda &= \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \lambda^n = \ln \frac{1}{1+\lambda}, \quad \lambda \in D(0, 1); \\
g(\lambda) &= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \lambda^{2n} = \cos \lambda, \quad \lambda \in \mathbb{C}; \\
h(\lambda) &= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \lambda^{2n+1} = \sin \lambda, \quad \lambda \in \mathbb{C}; \\
l(\lambda) &= \sum_{n=0}^{\infty} (-1)^n \lambda^n = \frac{1}{1+\lambda}, \quad \lambda \in D(0, 1);
\end{align*}
\]
then the corresponding functions constructed by the use of the absolute values of the coefficients are

\[f_a(\lambda) = \sum_{n=1}^{\infty} \frac{1}{n} \lambda^n = \ln \frac{1}{1-\lambda}, \quad \lambda \in D(0, 1); \]

\[g_a(\lambda) = \sum_{n=0}^{\infty} \frac{1}{(2n)!} \lambda^{2n} = \cosh \lambda, \quad \lambda \in \mathbb{C}; \]

\[h_a(\lambda) = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} \lambda^{2n+1} = \sinh \lambda, \quad \lambda \in \mathbb{C}; \]

\[l_a(\lambda) = \sum_{n=0}^{\infty} \lambda^n = \frac{1}{1-\lambda}, \quad \lambda \in D(0, 1). \]

Other important examples of functions as power series representations with non-negative coefficients are:

\[\exp(\lambda) = \sum_{n=0}^{\infty} \frac{1}{n!} \lambda^n \quad \lambda \in \mathbb{C}, \]

\[\frac{1}{2} \ln \left(\frac{1 + \lambda}{1 - \lambda} \right) = \sum_{n=1}^{\infty} \frac{1}{2n-1} \lambda^{2n-1}, \quad \lambda \in D(0, 1); \]

\[\sin^{-1}(\lambda) = \sum_{n=0}^{\infty} \frac{\Gamma\left(\frac{n}{2} + \frac{1}{2}\right)}{\sqrt{\pi} (2n+1) n!} \lambda^{2n+1}, \quad \lambda \in D(0, 1); \]

\[\tanh^{-1}(\lambda) = \sum_{n=1}^{\infty} \frac{1}{2n-1} \lambda^{2n-1}, \quad \lambda \in D(0, 1); \]

\[_2F_1(\alpha, \beta, \gamma, \lambda) = \sum_{n=0}^{\infty} \frac{\Gamma(n+\alpha) \Gamma(n+\beta) \Gamma(\gamma)}{n! \Gamma(\alpha) \Gamma(\beta) \Gamma(n+\gamma)} \lambda^n, \alpha, \beta, \gamma > 0, \]

\[\lambda \in D(0, 1); \]

where \(\Gamma \) is Gamma function.

Theorem 7. Let \(f(\lambda) := \sum_{n=1}^{\infty} \alpha_n \lambda^n \) be a power series with complex coefficients and convergent on the open disk \(D(0, R), \ R > 0 \). Let \(N \in \mathcal{B}(H) \) be a normal operator. If for some \(\alpha \in (0, 1) \) we have \(|N|^{2\alpha}, |N|^{2(1-\alpha)} \in \mathcal{B}_1(H) \) with \(\text{tr} \left(|N|^{2(1-\alpha)} \right) \), \(\text{tr} \left(|N|^{2(1-\alpha)} \right) < R \), then we have the inequality

\[\text{tr} \left(f(\lambda) \lambda \right) \leq \text{tr} \left(f_a(\lambda) \lambda \right) \text{tr} \left(f_a(\lambda) \lambda \right). \]

Proof. Since \(N \) is a normal operator, then for any natural number \(k \geq 1 \) we have \(|N|^{2\alpha} = |N|^{2ak} \) and \(|N|^{2(1-\alpha)} = |N|^{2(1-\alpha)} \).

By the generalized triangle inequality for the modulus we have for \(n \geq 2 \)

\[\text{tr} \left(\sum_{k=1}^{n} \alpha_k N^k \right) = \left| \sum_{k=1}^{n} \alpha_k \text{tr} (N^k) \right| \leq \sum_{k=1}^{n} |\alpha_k| \left| \text{tr} (N^k) \right|. \]

If for some \(\alpha \in (0, 1) \) we have \(|N|^{2\alpha}, |N|^{2(1-\alpha)} \in \mathcal{B}_1(H) \), then by Corollary 2 we have \(N \in \mathcal{B}_1(H) \). Now, since \(N, |N|^{2\alpha}, |N|^{2(1-\alpha)} \in \mathcal{B}_1(H) \) then any natural
power of these operators belong to \(\mathcal{B}_1(H) \) and by (3.13) we have
\[
|\text{tr} (N^k)|^2 \leq \text{tr} \left(|N|^{2\alpha k} \right) \text{tr} \left(|N|^{2(1-\alpha)k} \right),
\]
for any natural number \(k \geq 1 \).

Making use of (6.6) we have
\[
\sum_{k=1}^{n} |\alpha_k| |\text{tr} (N^k)| \leq \sum_{k=1}^{n} |\alpha_k| \left(\text{tr} \left(|N|^{2\alpha k} \right) \right)^{1/2} \left(\text{tr} \left(|N|^{2(1-\alpha)k} \right) \right)^{1/2}. \tag{6.7}
\]

Utilising the weighted Cauchy-Bunyakovsky-Schwarz inequality for sums we also have
\[
\sum_{k=1}^{n} |\alpha_k| \left(\text{tr} \left(|N|^{2\alpha k} \right) \right)^{1/2} \left(\text{tr} \left(|N|^{2(1-\alpha)k} \right) \right)^{1/2} \leq \left[\sum_{k=1}^{n} |\alpha_k| \left(\text{tr} \left(|N|^{2\alpha k} \right) \right)^{1/2} \right]^2 \leq \left[\sum_{k=1}^{n} |\alpha_k| \left(\text{tr} \left(|N|^{2(1-\alpha)k} \right) \right)^{1/2} \right]^2 = \sum_{k=1}^{n} |\alpha_k| \text{tr} \left(|N|^{2\alpha k} \right) \sum_{k=1}^{n} |\alpha_k| \text{tr} \left(|N|^{2(1-\alpha)k} \right)^{1/2}. \tag{6.8}
\]

Making use of (6.5), (6.7) and (6.8) we get the inequality
\[
\left| \text{tr} \left(\sum_{k=1}^{n} \alpha_k N^k \right) \right|^2 \leq \text{tr} \left(\sum_{k=1}^{n} |\alpha_k| |N|^{2\alpha k} \right) \text{tr} \left(\sum_{k=1}^{n} |\alpha_k| |N|^{2(1-\alpha)k} \right) \tag{6.9}
\]
for any \(n \geq 2 \).

Due to the fact that \(\text{tr} \left(|N|^{2\alpha} \right), \text{tr} \left(|N|^{2(1-\alpha)} \right) < R \) it follows by (3.13) that \(\text{tr}(|N|) < R \) and the operator series
\[
\sum_{k=1}^{\infty} \alpha_k N^k, \quad \sum_{k=1}^{\infty} |\alpha_k| |N|^{2\alpha k} \quad \text{and} \quad \sum_{k=1}^{\infty} |\alpha_k| |N|^{2(1-\alpha)k}
\]
are convergent in the Banach space \(\mathcal{B}_1(H) \).

Taking the limit over \(n \to \infty \) in (6.9) and using the continuity of the \(\text{tr} (\cdot) \) on \(\mathcal{B}_1(H) \) we deduce the desired result (6.4).

Example 1. a) If we take in \(f(\lambda) = (1 \pm \lambda)^{-1} - 1 = \mp \lambda \left((1 \pm \lambda)^{-1} \right), |\lambda| < 1 \) then we get from (6.4) the inequality
\[
\left| \text{tr} \left(N \left((1 \pm N)^{-1} \right) \right) \right|^2 \leq \text{tr} \left(|N|^{2\alpha \left(1 - |N|^{2\alpha} \right)^{-1}} \right) \text{tr} \left(|N|^{2(1-\alpha) \left(1 - |N|^{2(1-\alpha)} \right)^{-1}} \right), \tag{6.10}
\]
provided that \(N \in \mathcal{B}(H) \) is a normal operator and for \(\alpha \in (0, 1) \) we have \(|N|^{2\alpha}, |N|^{2(1-\alpha)} \in \mathcal{B}_1(H) \) with \(\text{tr} \left(|N|^{2\alpha} \right), \text{tr} \left(|N|^{2(1-\alpha)} \right) < 1 \).
b) If we take in (6.4) \(f(\lambda) = \exp(\lambda) - 1, \lambda \in \mathbb{C} \) then we get the inequality

\[
(6.11) \quad |\text{tr}(\exp(N) - 1_H)|^2 \leq \text{tr}\left(\exp\left(|N|^{2\alpha}\right) - 1_H\right) \text{tr}\left(\exp\left(|N|^{2(1-\alpha)}\right) - 1_H\right),
\]

provided that \(N \in \mathcal{B}(H) \) is a normal operator and for \(\alpha \in (0, 1) \) we have \(|N|^{2\alpha}, |N|^{2(1-\alpha)} \in \mathcal{B}_1(H) \).

The following result also holds:

Theorem 8. Let \(f(\lambda) := \sum_{n=0}^{\infty} \alpha_n \lambda^n \) be a power series with complex coefficients and convergent on the open disk \(D(0,R), R > 0 \). If \(T \in \mathcal{B}(H), A \in \mathcal{B}_2(H) \) are normal operators that double commute, i.e. \(TA = AT \) and \(TA^* = A*T \) and \(\text{tr}\left(|A|^2 |T|^{2\alpha}\right), \text{tr}\left(|A|^2 |T|^{2(1-\alpha)}\right) < R \) for some \(\alpha \in [0,1] \), then

\[
(6.12) \quad \left|\text{tr}\left(f\left(|A|^2 T\right)\right)\right|^2 \leq \text{tr}\left(f_a\left(|A|^2 |T|^{2\alpha}\right)\right) \text{tr}\left(f_a\left(|A|^2 |T|^{2(1-\alpha)}\right)\right).
\]

Proof. From the inequality (5.2) we have

\[
(6.13) \quad \left|\text{tr}\left(\sum_{k=0}^{n} \alpha_k |A|^k |T|^k\right)\right|^2 \leq \text{tr}\left(\sum_{k=0}^{n} |\alpha_k| |A|^k |T|^k\right)^2 \text{tr}\left(\sum_{k=0}^{n} |\alpha_k| |A|^k |T|^k\right)^2.
\]

Since \(A \) and \(T \) are normal operators, then \(|A|^k = |A|^{2k}, |T|^k = |T|^{2\alpha} \) and \(|T|^{2(1-\alpha)} = |T|^{2(1-\alpha)k} \) for any natural number \(k \geq 0 \) and \(\alpha \in [0,1] \).

Since \(T \) and \(A \) double commute, then it is easy to see that

\[
|A|^{2k} T^k = \left(|A|^2 T\right)^k, \quad |A|^{2k} |T|^{2\alpha k} = \left(|A|^2 |T|^{2\alpha}\right)^k
\]

and

\[
|A|^{2k} |T|^{2(1-\alpha)k} = \left(|A|^2 |T|^{2(1-\alpha)}\right)^k
\]

for any natural number \(k \geq 0 \) and \(\alpha \in [0,1] \).

Therefore (6.13) is equivalent to

\[
(6.14) \quad \left|\text{tr}\left(\sum_{k=0}^{n} \alpha_k \left(|A|^2 T\right)^k\right)\right|^2 \leq \text{tr}\left(\sum_{k=0}^{n} |\alpha_k| \left(|A|^2 |T|^{2\alpha}\right)^k\right) \text{tr}\left(\sum_{k=0}^{n} |\alpha_k| \left(|A|^2 |T|^{2(1-\alpha)}\right)^k\right),
\]

for any natural number \(n \geq 1 \) and \(\alpha \in [0,1] \).

Due to the fact that \(\text{tr}\left(|A|^2 |T|^{2\alpha}\right), \text{tr}\left(|A|^2 |T|^{2(1-\alpha)}\right) < R \) it follows by (5.2) for \(n = 1 \) that \(\text{tr}\left(|A|^2 T\right) < R \) and the operator series

\[
\sum_{k=1}^{\infty} \alpha_k N^k, \sum_{k=1}^{\infty} |\alpha_k| |N|^{2\alpha k} \text{ and } \sum_{k=1}^{\infty} |\alpha_k| |N|^{2(1-\alpha)k}
\]

are convergent in the Banach space \(\mathcal{B}_1(H) \).

Taking the limit over \(n \to \infty \) in (6.14) and using the continuity of the \(\text{tr}(\cdot) \) on \(\mathcal{B}_1(H) \) we deduce the desired result (6.12). \(\square \)
Example 2. a) If we take \(f(\lambda) = (1 \pm \lambda)^{-1}, |\lambda| < 1 \) then we get from (6.12) the inequality

\[
\begin{align*}
(6.15) & \quad | \text{tr} \left(\left(1 + |A|^2 |T|^{-1} \right) \right) |^2 \\
& \leq \text{tr} \left(\left(1 - |A|^2 |T|^{2\alpha} \right) \right) \text{tr} \left(\left(1 - |A|^2 |T|^{2(1-\alpha)} \right) \right),
\end{align*}
\]

provided that \(T \in \mathcal{B}(H), A \in \mathcal{B}_2(H) \) are normal operators that double commute and

\[
\text{tr} \left(|A|^2 |T|^{2\alpha} \right), \text{tr} \left(|A|^2 |T|^{2(1-\alpha)} \right) < 1 \text{ for } \alpha \in [0, 1].
\]

b) If we take in (6.12) \(f(\lambda) = \exp(\lambda), \lambda \in \mathbb{C} \) then we get the inequality

\[
(6.16) \quad | \text{tr} \left(\exp \left(|A|^2 |T|^{2\alpha} \right) \right) |^2 \leq \text{tr} \left(\exp \left(|A|^2 |T|^{2(1-\alpha)} \right) \right) \text{tr} \left(\exp \left(|A|^2 |T|^{2(1-\alpha)} \right) \right),
\]

provided that \(T \in \mathcal{B}(H) \) and \(A \in \mathcal{B}_2(H) \) are normal operators that double commute and \(\alpha \in [0, 1] \).

Theorem 9. Let \(f(z) := \sum_{j=0}^{\infty} p_j z^j \) and \(g(z) := \sum_{j=0}^{\infty} q_j z^j \) be two power series with nonnegative coefficients and convergent on the open disk \(D(0, R), R > 0. \) If \(T \in \mathcal{B}(H), A \in \mathcal{B}_2(H) \) are normal operators that double commute and \(\text{tr} \left(|A|^2 |T|^{2\alpha} \right), \text{tr} \left(|A|^2 |T|^{2(1-\alpha)} \right) < R \) for \(\alpha \in [0, 1], \) then

\[
(6.17) \quad \left[\text{tr} \left(f \left(|A|^2 |T|^{2\alpha} \right) + g \left(|A|^2 |T|^{2\alpha} \right) \right) \right]^{1/2} \\
\times \left[\text{tr} \left(f \left(|A|^2 |T|^{2(1-\alpha)} \right) + g \left(|A|^2 |T|^{2(1-\alpha)} \right) \right) \right]^{1/2} \\
- \left[\text{tr} \left(f \left(|A|^2 |T|^{2\alpha} \right) + g \left(|A|^2 |T|^{2\alpha} \right) \right) \right] \\
\geq \left[\text{tr} \left(f \left(|A|^2 |T|^{2\alpha} \right) \right) \right]^{1/2} \left[\text{tr} \left(f \left(|A|^2 |T|^{2(1-\alpha)} \right) \right) \right]^{1/2} \\
- \left[\text{tr} \left(f \left(|A|^2 |T|^{2\alpha} \right) \right) \right] \\
+ \left[\text{tr} \left(g \left(|A|^2 |T|^{2\alpha} \right) \right) \right]^{1/2} \left[\text{tr} \left(g \left(|A|^2 |T|^{2(1-\alpha)} \right) \right) \right]^{1/2} \\
- \left[\text{tr} \left(g \left(|A|^2 |T|^{2\alpha} \right) \right) \right] \quad (\geq 0).
\]

Moreover, if \(p_j \geq q_j \) for any \(j \in \mathbb{N} \), then, with the above assumptions on \(T \) and \(A \), we have

\[
(6.18) \quad \left[\text{tr} \left(f \left(|A|^2 |T|^{2\alpha} \right) \right) \right]^{1/2} \left[\text{tr} \left(f \left(|A|^2 |T|^{2(1-\alpha)} \right) \right) \right]^{1/2} \\
- \left[\text{tr} \left(f \left(|A|^2 |T|^{2\alpha} \right) \right) \right] \\
\geq \left[\text{tr} \left(g \left(|A|^2 |T|^{2\alpha} \right) \right) \right]^{1/2} \left[\text{tr} \left(g \left(|A|^2 |T|^{2(1-\alpha)} \right) \right) \right]^{1/2} \\
- \left[\text{tr} \left(g \left(|A|^2 |T|^{2\alpha} \right) \right) \right] \quad (\geq 0).
\]

The proof follows in a similar way to the proof of Theorem 8 by making use of the superadditivity and monotonicity properties of the functional \(\sigma_{A,T,\alpha}(\cdot) \). We omit the details.
Example 3. Now, observe that if we take

\[f(\lambda) = \sinh \lambda = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} \lambda^{2n+1} \]

and

\[g(\lambda) = \cosh \lambda = \sum_{n=0}^{\infty} \frac{1}{(2n)!} \lambda^{2n} \]

then

\[f(\lambda) + g(\lambda) = \exp \lambda = \sum_{n=0}^{\infty} \frac{1}{n!} \lambda^n \]

for any \(\lambda \in \mathbb{C} \).

If \(T \in \mathcal{B}(H) \), \(A \in \mathcal{B}_2(H) \) are normal operators that double commute and \(\alpha \in [0, 1] \), then by (6.17) we have

\[
(6.19) \quad \left[\text{tr} \left(\exp \left(|A|^2 |T|^{2\alpha} \right) \right) \right]^{1/2} \left[\text{tr} \left(\exp \left(|A|^2 |T|^{2(1-\alpha)} \right) \right) \right]^{1/2} \\
- \left[\text{tr} \left(\exp \left(|A|^2 T \right) \right) \right] \\
\geq \left[\text{tr} \left(\sinh \left(|A|^2 |T|^{2\alpha} \right) \right) \right]^{1/2} \left[\text{tr} \left(\sinh \left(|A|^2 |T|^{2(1-\alpha)} \right) \right) \right]^{1/2} \\
- \left[\text{tr} \left(\sinh \left(|A|^2 T \right) \right) \right] \\
+ \left[\text{tr} \left(\cosh \left(|A|^2 |T|^{2\alpha} \right) \right) \right]^{1/2} \left[\text{tr} \left(\cosh \left(|A|^2 |T|^{2(1-\alpha)} \right) \right) \right]^{1/2} \\
- \left[\text{tr} \left(\cosh \left(|A|^2 T \right) \right) \right] (\geq 0).
\]

Now, consider the series \(\frac{1}{1-\lambda} = \sum_{n=0}^{\infty} \lambda^n \), \(\lambda \in D(0, 1) \) and \(\ln \frac{1}{1-\lambda} = \sum_{n=1}^{\infty} \frac{1}{n} \lambda^n \), \(\lambda \in D(0, 1) \) and define \(p_n = 1 \), \(n \geq 0 \), \(q_0 = 0 \), \(q_n = \frac{1}{n} \), \(n \geq 1 \), then we observe that for any \(n \geq 0 \) we have \(p_n \geq q_n \).

If \(T \in \mathcal{B}(H) \), \(A \in \mathcal{B}_2(H) \) are normal operators that double commute, \(\alpha \in [0, 1] \) and \(\text{tr} \left(|A|^2 |T|^{2\alpha} \right) \), \(\text{tr} \left(|A|^2 |T|^{2(1-\alpha)} \right) \) < 1, then by (6.18) we have

\[
(6.20) \quad \left[\text{tr} \left(\left(1 - |A|^2 |T|^{2\alpha} \right)^{-1} \right) \right]^{1/2} \left[\text{tr} \left(\left(1 - |A|^2 |T|^{2(1-\alpha)} \right)^{-1} \right) \right]^{1/2} \\
- \left[\text{tr} \left(\left(1 - |A|^2 T \right)^{-1} \right) \right] \\
\geq \left[\text{tr} \left(\ln \left(1 - |A|^2 |T|^{2\alpha} \right)^{-1} \right) \right]^{1/2} \left[\text{tr} \left(\ln \left(1 - |A|^2 |T|^{2(1-\alpha)} \right)^{-1} \right) \right]^{1/2} \\
- \left[\text{tr} \left(\ln \left(1 - |A|^2 T \right)^{-1} \right) \right] (\geq 0).
\]

References

[1] T. Ando, Matrix Young inequalities, *Oper. Theory Adv. Appl.* 75 (1995), 33–38.
[2] R. Bellman, Some inequalities for positive definite matrices, in: E.F. Beckenbach (Ed.), *General Inequalities 2*, Proceedings of the 2nd International Conference on General Inequalities, Birkhäuser, Basel, 1980, pp. 89–90.
[3] E. V. Belmega, M. Jungers and S. Lasaulce, A generalization of a trace inequality for positive definite matrices. *Aust. J. Math. Anal. Appl.* 7 (2010), no. 2, Art. 26, 5 pp.
[4] D. Chang, A matrix trace inequality for products of Hermitian matrices, *J. Math. Anal. Appl.* **237** (1999) 721–725.
[5] L. Chen and C. Wong, Inequalities for singular values and traces, *Linear Algebra Appl.* **171** (1992), 109–120.
[6] I. D. Coop, On matrix trace inequalities and related topics for products of Hermitian matrix, *J. Math. Anal. Appl.* **188** (1994) 999–1001.
[7] M. Fujii, C.-S. Liu and R. Nakamoto, Alternative extensions of Heinz-Kato-Furuta inequality. *Sci. Math.* **2** (1999), no. 2, 215–221.
[8] M. Fujii and T. Furuta, Löwner-Heinz, Cordes and Heinz-Kato inequalities. *Math. Japon.* **38** (1993), no. 1, 73–78.
[9] M. Fujii, E. Kamei, C. Kotari and H. Yamada, Furuta’s determinant type generalizations of Heinz-Kato inequality. *Math. Japon.* **40** (1994), no. 2, 259–267.
[10] M. Fujii, Y.O. Kim, and Y. Seo, Further extensions of Wielandt type Heinz-Kato-Furuta inequalities via Furuta inequality. *Arch. Inequal. Appl.* **1** (2003), no. 2, 275–283.
[11] M. Fujii, Y.O. Kim and M. Tominaga, Extensions of the Heinz-Kato-Furuta inequality by using operator monotone functions. *Far East J. Math. Sci.* (FJMS) **6** (2002), no. 3, 225–238.
[12] M. Fujii and R. Nakamoto, Extensions of Heinz-Kato-Furuta inequality. *Proc. Amer. Math. Soc.* **128** (2000), no. 1, 223–228.
[13] M. Fujii and R. Nakamoto, Extensions of Heinz-Kato-Furuta inequality. II. *J. Inequal. Appl.* **3** (1999), no. 3, 293–302.
[14] S. Furuta and M. Lin, Refinements of the trace inequality of Belmega, Lasaulce and Debbah. *Aust. J. Math. Anal. Appl.* **7** (2010), no. 2, Art. 23, 4 pp.
[15] T. Furuta, Equivalence relations among Reid, Löwner-Heinz and Heinz-Kato inequalities, and extensions of these inequalities. *Integral Equations Operator Theory* **29** (1997), no. 1, 1–9.
[16] T. Furuta, Determinant type generalizations of Heinz-Kato theorem via Furuta inequality. *Proc. Amer. Math. Soc.* **120** (1994), no. 1, 223–231.
[17] T. Furuta, An extension of the Heinz-Kato theorem. *Proc. Amer. Math. Soc.* **120** (1994), no. 3, 785–787.
[18] G. Helmberg, *Introduction to Spectral Theory in Hilbert Space*, John Wiley & Sons, Inc. -New York, 1969.
[19] T. Kato, Notes on some inequalities for linear operators, *Math. Ann.* **125**(1952), 208–212.
[20] F. Kittaneh, Notes on some inequalities for Hilbert space operators. *Publ. Res. Inst. Math. Sci.* **24** (1988), no. 2, 283–293.
[21] F. Kittaneh, Norm inequalities for fractional powers of positive operators. *Lett. Math. Phys.* **27** (1993), no. 4, 279–285.
[22] H. D. Lee, On some matrix inequalities, *Korean J. Math.* **16** (2008), No. 4, pp. 565-571.
[23] C.-S. Lin, On Heinz-Kato-Furuta inequality with best bounds. *J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math.* **15** (2008), no. 1, 93–101.
[24] C.-S. Lin, On chaotic order and generalized Heinz-Kato-Furuta-type inequality. *Int. Math. Forum* **2** (2007), no. 37-40, 1849–1858.
[25] C.-S. Lin, On inequalities of Heinz and Kato, and Furuta for linear operators. *Math. Japon.* **50** (1999), no. 3, 463–468.
[26] C.-S. Lin, On Heinz-Kato type characterizations of the Furuta inequality. II. *Math. Inequal. Appl.* **2** (1999), no. 2, 283–287.
[27] L. Liu, A trace class operator inequality, *J. Math. Anal. Appl.* **328** (2007) 1484–1486.
[28] S. Manjegani, Hölder and Young inequalities for the trace of operators, *Positivity* **11** (2007), 239–250.
[29] C.A. McCarthy, *c_p*. *Israel J. Math.*, **5**(1967), 249-271.
[30] H. Neudecker, A matrix trace inequality, *J. Math. Anal. Appl.* **166** (1992) 302–303.
[31] K. Shebrawi and H. Albadawi, Operator norm inequalities of Minkowski type, *J. Inequal. Pure Appl. Math.* **9**(1) (2008), 1–10, article 26.
[32] K. Shebrawi and H. Albadawi, Trace inequalities for matrices, *Bull. Aust. Math. Soc.* **87** (2013), 139–148.
[33] B. Simon, *Trace Ideals and Their Applications*, Cambridge University Press, Cambridge, 1979.
[34] M. Uchiyama, Further extension of Heinz-Kato-Furuta inequality. *Proc. Amer. Math. Soc.* **127**(1999), no. 10, 2899–2904.
[35] Z. Ulukök and R. Türkmen, On some matrix trace inequalities. *J. Inequal. Appl.* **2010**, Art. ID 201486, 8 pp.

[36] X. Yang, A matrix trace inequality, *J. Math. Anal. Appl.* **250** (2000) 372–374.

[37] X. M. Yang, X. Q. Yang and K. L. Teo, A matrix trace inequality, *J. Math. Anal. Appl.* **263** (2001), 327–331.

[38] Y. Yang, A matrix trace inequality, *J. Math. Anal. Appl.* **133** (1988) 573–574.

1 Mathematics, School of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.org/dragomir

2 School of Computational & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa.