Most bacterial pathogens comprise a variety of strains in various proportions. For *Borrelia burgdorferi*, an agent of Lyme borreliosis, strains differ in their reservoir host preferences (1), propensities to disseminate in humans (2,3), and prevalences in ticks by geographic area (4,5). Strain identification of *B. burgdorferi* now is predominantly based on DNA sequences of either of 2 genetic loci: 1) the plasmid-borne, highly polymorphic outer surface protein C gene and *rrs*-rrlA intergenic spacer from extracts of *Ixodes* spp. ticks in 3 US regions showed linkage disequilibrium between the 2 loci within a region but not consistently between regions.

Geographic Differences in Genetic Locus Linkages for *Borrelia burgdorferi*

Borrelia burgdorferi genotype in the northeastern United States is associated with Lyme borreliosis severity. Analysis of DNA sequences of the outer surface protein C gene and *rrs*-rrlA intergenic spacer from extracts of *Ixodes* spp. ticks in 3 US regions showed linkage disequilibrium between the 2 loci within a region but not consistently between regions.

For 741 *Ixodes* ticks from northeastern and north-central United States or from northern California, 1 *ospC* allele was identified and sequenced. In the remaining samples, we found a mixture of strains or evidence of >2 *ospC* and/or >2 IGS sequences (9). In 678 (91%) of the 741 samples with a single *ospC*, the allele could be matched with particular IGS1 (Table). We identified 9 unique *ospC* sequences: Fc, Ob, Ub, A3, B3, C3, D3, E3, and F3, all from the north-central United States. Alleles H3 and I3 of California were recently reported by Girard et al. (5). Of 32 codon-aligned *ospC* sequences, 6 pairs and 1 trio (Fa, Fb, and Fc) differed in sequence by <1% (Figure, panel A). Nine novel IGS1 sequences, numbered 24–31 and 33, were discovered in samples from which *ospC* alleles were determined.

When we confined analysis to samples from northeastern states, we confirmed linkage disequilibrium between *ospC* and IGS1 loci (7,10,14). However, when results from north-central states and California were included, a different picture emerged (Table, Figure, panel B). Most of the
ospC alleles showed concordance with the chromosomal loci; monophyletic MLST showed either the same ospC allele or a minor variant of it. However, in several instances, the ospC alleles were linked to different IGS1 sequences, different ospA sequences, and/or different MLST with internal nodes in common. We observed this linkage for ospC alleles A, G, Hb, and N. In the case of ospC Hb, the shared internal node was deep.

Table. Linkages between ospC alleles and other loci in *Borrelia burgdorferi* strains

ospC	IGS1	Geographic region*	Representative cultured isolate or tick sample†	IGS1-ospC associations‡	ospA	IGS2	MLST§
A	1	1, 2	B31	45/52	1	1	1
A	11	2	2206617	4/4	22	1	55
A	10	3	CA4, CA6	14/18	23	1	2
Ba	3	1	64B, B373	39/41	3	1	7,58,59
Ba	6	2	51405UT	7/9	14	1	30
Bb	16	4	Z57	–	28	–	20
C	24	1	JD1, BL515	10/10	8	5	11
Da	5	1	516113	13/14	5	4	38
Db	5	2	424404	13/15	18	7	51
Db	19	3	CA11.2A	16/16	27	4	70
E	9	1, 2	N40, B348	17/19	9	1	19
Fa	17	1, 2, 3	B156	61/64	3	4	8
Fb	18	2	M407	14/19	8	6	–
Fc	18	2	1469205	7/8	13	6	56
G	26	1	72a, MR616	10/11	9	4	14
G	22	2, 3	1468503	9/10	21	4	48,49
Ha/Hb	12	1	B509/156a	13/13	2	2	4
Hb	12	2	519014UT	56/65	11	2	32
Hb	13	3	CA92-0953	20/20	23	2	6
Ia	7	1	B500, B331	12/16	7	4	15,16
Ia	7	2	W91-23	5/5	11	4	71
Ib	7	3	CA92-1096	–	30	4	17
J	20	1, 2	11Bb	3/5	8	4	34
K	2	1	297	67/68	2	2	3
K	14	2	149901	7/10	31	2	–
L	14	2	47703UT	23/25	8	2	29
M	6	1	29805	4/4	2	3	12
M	6	2, 3	CA92-1337	16/16	17	3	13
N	4	1	MR661, 500203	41/41	4	10	9,36
N	23	2	51108	8/10	2	1	43
Oa	27	1	501427	1/1	–	–	54
Ob	6	2	2207807	6/7	2	–	–
T	28	1	23509	16/16	8	4	37
T	29	2	1476702	10/11	20	4	46
Ua	8	1	94a, B485	19/19	8	4	18
Ua	8	2	48802	4/4	16	4	47
Ub	17	2	2207116	4/4	12	10	–
M	30	2	426905	3/3	8	9	–
A3	14	2	2206613	6/6	19	2	–
B3	23	1, 2	2250201	3/3	17	1	57
C3	17	2	50202	6/9	15	5	–
D3	31	2	2150902	1/1	–	–	–
E3	20	2	2127701	4/4	8	8	52
E3	21	3	HRT25	12/12	24	–	–
E3	5	3	LMR28	12/12	25	–	–
F3	5	2	1456802	8/12	8	4	–
H3	25	3	CA8	37/40	26	4	(72)
I3	17	3	CA11, CA12	5/5	27	4	–

*Regions: 1, northeastern United States; 2, north-central United States; 3, northern California; 4, western Europe; osp, outer surface protein; IGS, intergenic spacer; MLST, multilocus sequence typing; –, MLST not determined.
†Number of tick extracts with the listed IGS1 locus (numerator)/number of extracts with the listed ospC allele (denominator).
‡MLST from (4,12) or this study (in parentheses).
We applied the Simpson index of diversity, as implemented by Hunter and Gaston (15), to the data in the Table to compare the discriminatory power (DP) of genotyping on the basis of a combination of *ospC* and IGS1 sequences with genotyping by 8-locus MLST (12). For double-locus typing, there were 43 types were found for 678 strains; DP value was 0.96. For MLST in this data set, 36 types were shown for 554 strains; DP was 0.95. In the study of Hoen et al. in which selection was made for geographic isolation, 37 types were distributed among 78 strains; DP was 0.97 (4).

Conclusions

Dependence on a single locus for typing may falsely identify different lineages as the same, especially when the samples come from different regions. Other loci may be as informative as *ospC* or IGS1, but the abundance of extant sequences for these loci justifies their continued use. Uncertainties about the linkage of *ospC* and IGS1 usually can be resolved by sequencing the *ospA* allele (Table). IGS2 provided little additional information in this study.

One interpretation of these findings is that lateral gene transfer of all or nearly all of an *ospC* gene has occurred between different genetic lineages. We previously had not detected recombination at the IGS1 locus on the chromo-
some (7), but there may be recombination at other chromosomal loci, as well as plasmid loci (6). Besides extending the understanding of the geographic structuring of the B. burgdorferi population, the results indicate that the ospC allele does not fully represent the complexity of B. burgdorferi lineages; thus, inferring phenotypes on the basis of this single locus should be made with caution.

Acknowledgment

We thank Robert S. Lane for providing strain CA8.

This research was supported by Centers for Disease Control and Prevention Cooperative Agreement CI 00171-01 and National Institutes of Health grant AI065359.

Ms Travinsky is a senior research associate in the Department of Microbiology and Molecular Genetics, University of California, Irvine. Her research interests include the genetic diversity and phylogeography of Borrelia species.

References

1. Brisson D, Dykhuizen DE. ospC diversity in Borrelia burgdorferi: different hosts are different niches. Genetics. 2004;168:713–22. DOI: 10.1534/genetics.104.028738

2. Wormser GP, Brisson D, Liveris D, Hanincova K, Sandigursky S, Nowakowski J, et al. Borrelia burgdorferi genotype predicts the capacity for hematogenous dissemination during early Lyme disease. J Infect Dis. 2008;198:1358–64. DOI: 10.1086/592279

3. Dykhuizen DE, Brisson D, Sandigursky S, Wormser GP, Nowakowski J, Nadelman RB, et al. The propensity of different Borrelia burgdorferi sensu stricto genotypes to cause disseminated infections in humans. Am J Trop Med Hyg. 2008;78:806–10.

4. Hoen AG, Margos G, Bent SJ, Diuk-Wasser MA, Barbour AG, Kurtenbach K, et al. Phylogeography of Borrelia burgdorferi in the eastern United States reflects multiple independent Lyme disease emergence events. Proc Natl Acad Sci U S A. 2009;106:15013–8. DOI: 10.1073/pnas.0903810106

5. Girard YA, Travinsky B, Schotthoefer A, Federova N, Eisen RJ, Eisen L, et al. Population structure of the Lyme disease spirochete Borrelia burgdorferi in the western black-legged tick (Ixodes pacificus) in northern California. Appl Environ Microbiol. 2009;75:7243–52. DOI: 10.1128/AEM.01704-09

6. Qiu WG, Schutzer SE, Bruno JF, Attie O, Xu Y, Dunn JJ, et al. Genetic exchange and plasmid transfers in Borrelia burgdorferi sensu stricto revealed by three-way genome comparisons and multilocus sequence typing. Proc Natl Acad Sci U S A. 2004;101:14150–5. DOI: 10.1073/pnas.0402745101

7. Hanincova K, Liveris D, Sandigursky S, Wormser GP, Schwartz I. Borrelia burgdorferi sensu stricto is clonal in patients with early Lyme borreliosis. Appl Environ Microbiol. 2008;74:5008–14. DOI: 10.1128/AEM.00479-08

8. Qiu WG, Dykhuizen DE, Acosta MS, Luft BJ. Geographic uniformity of the Lyme disease spirochete (Borrelia burgdorferi) and its shared history with tick vector (Ixodes scapularis) in the northeastern United States. Genetics. 2002;160:833–49.

9. Hanincova K, Liveris D, Sandigursky S, Wormser GP, Schwartz I. Borrelia burgdorferi sensu stricto in North America. Infect Genet Evol. 2007;7:1–12. DOI: 10.1016/j.incegme.2006.02.008

10. Wang IN, Dykhuizen DE, Quinones-Baldrich WJ, buddy G, et al. Co-evolution of the surface protein C gene (ospC) and its shared history with tick vector (Ixodes scapularis) in the northeastern United States. J Clin Microbiol. 1988;26:2465–6.

Address for correspondence: Alan G. Barbour, University of California, Irvine, 3012 Hewitt, Irvine, CA 92697-4028, USA; email: abarbour@uci.edu
Strain	ospC allele	IGS2 accession no.	IGS1 name	GQ463603
B31	A	AE000792	1A	1
C4	A	EU377748	1A-684	10
C5	A	EU377748	1A-684	10
2206617	A	AE000792	1A-684/872	11
64b	Ba	CP001422	3A	3
837	Ba	EU377779	3B	3
51405UT	Ba	EU373625	6A	6
ZS7	Bb	NC_011724	3D	16
JD1	Ca	DG437462	5G	24
BLS15	Ca	EU377774	5G	24
OC4	Da	AF028863	5A	5
516113	Da	EU377521	5A	5
42404D	Db	GQ478283	5A	5
11.2a	Ca	EU377521	5A-239	19
N40	E	AY275221	9A	9
B348	E	AF467875	9C	9C
990503	Fa	AY275225	4C	17
B158	Fa	EU377776	4C	17
M6107	Fb	EF357367	4C	18
1469205	Fc	GQ478285	4D	18
MR616	G	EU377771	6B	26
72a	G	CP001375	6B	26
1468503	G	AY275223	5C	22
B509	Ha	EU377781	2D	12
156a	Hb	CP001271	2D	12
519014UT	Hb	EU375831	2D	12
519512	Hb	GQ478286	2D	12
401994	K	AY275214	2A	2
149901	K	AY275214	2E	14
47703UT	L	EU375832	2E	14
29065	M	CP001550	6A	6
1472505	Ila	AF467874	7A	7
1469205	Ila	AF467874	7A	7
1472505	Ila	AY275219	7A	7
919-23	Ipa	CP001446	7A	7
1469205	Ipa	AY275223	5C	22
500203	N	AY275216	4A	4
M518	N	EF573430	5E	23
51108	N	AY275216	5E	23
501427	Oa	FJ997281	6C	27
2207807	Ob	FJ997282	6D	6
23509	T	AY275222	8C	28
1476702	T	AY275222	8C-808	29
94a	Ua	CP001493	8A	8
B485	Ua	EU377769	8A	8
48802	Ua	CP001493	8A	8
2207116	Ua	EU377769	8A	8
426905	Ua	GQ478287	8E	30
2206613	A3	EF592541	2E	14
2250201	B3	EF592542	5E	23
50202	C3	EF592543	4C	17
2150902	D3	EF592544	New	31
1456802	E3	EF592545	5A	5
C4	H3	FH3J2733	5A8	25
CA11	I3	FH3J2734	4C	17
CA12	I3	FH3J2734	4C	17

*Boldface indicates new accession number from this study.
†IGS1, ns=NA intergenic spacer region.
‡IGS2, mt=mt intergenic spacer.