ABSTRACT

The present investigation was carried out to study the effect of seed treatments of lupine plants (cv. Giza 2) with chemical inducers Bion (5mM), salicylic acid (5mM) and saccharin (3mM) as well as Paenibacillus polymyxa and Trichoderma harzianum as biotic inducers on the infection with Rhyzoctonia solani and Fusarium oxysporum f. sp. lupini under greenhouse and field conditions.

Under greenhouse condition (Agricultural Research Centre, Giza) all treatments significantly reduced the percentages of pre- and post-emergence damping-off compared with the untreated control, the highest percentage of survived plants was achieved 92% by Bion and T. harzianum as well as fungicide Rizolex-T followed by salicylic acid and P. polymyxa as 88%. On the other hand, all treatments decrease significantly the incidence and severity of wilt, also increased the percentage of survived plants compared with untreated control.

Under field conditions at Giza and Ismailia Agricultural Research Stations (Giza and Ismailia governorates) during winter season 2016-2017, all the treatments decreased the percentage of pre- and post-emergence damping-off as well as the percentage of wilted plants and increased the percentage of survived plants compared with untreated control. At Giza research station, the highest percentages of survived plants were recorded with Rizolex-T followed by Bion, P. polymyxa, and salicylic acid. While at Ismailia, the highest percentage of survived plants were recorded with Rizolex-T followed by Bion, P. polymyxa, T. harzianum, and salicylic acid. Meantime, these treatments improved growth parameters i.e. plant height, number of pods/plant, the weight of seeds/plant and the weight of one hundred seed. The higher increase in seed yield (ton /feddan) was obtained with Rizolex-T and Bion treatments followed by Salicylic acid, P. polymyxa, and T. harzianum at two locations.

Activities of peroxidase (PO), polyphenol oxidase (PPO) enzymes and phenol content were determined. Bion treatment showed the highest increase in PO and PPO activity, and total phenols followed by salicylic acid and P. polymyxa treatments in the presence of R. solani or F. oxysporum f. sp. lupini.

Keywords: Lupine, damping-off, wilt, induce resistance

INTRODUCTION

Lupine (Lupinus albus L.) is an economically valuable plant. Its seeds are utilized as a protein source for nutrition in various parts of the world; it has the highest protein percent of any grain legume (38-42%), also for their adaptability to marginal soils and climates (Milford and Shield, 1996). In Egypt, in the last 10 years, the cultivated lupine area is decreased from 1574 ha producing 2885 tons during 2007 to 224 ha producing 420 tons during 2017 (FAOSTAT, 2019).

Soil-borne diseases caused heavy losses to lupine plants; they include damping-off, root rot and wilt diseases. They have common characteristics based on their close connection with the soil, which has a strong impact on their survival and capability to cause disease (Katan, 2017). In this respect, lupine plants are attacked by several pathogens which cause damping-off and wilt diseases leading to serious economic losses. Several soil-borne fungi were frequently reported as the
causal organisms of such diseases namely; *Fusarium oxysporum* f.sp. *lupini* Snyder & Hansen, *Rhizoctonia solani* Kühn, *F. solani* (Mat.) Sacc. and *Macrophomina phaseolina* (Tassi) Goid. (Zian, 2011; Abdel-Monaim et al. 2016).

Chemical seed treatments still appear a major practice in agriculture and widely used to control fungal soil-borne diseases. However, fungicides have two major consequences, first: fungicide overuse threatens human health and causes ecological concerns; second: this practice leads to the emergence of fungicide-resistant microorganisms in the environment (Lamichhane et al. 2017).

Induced resistance which utilizes natural defense of plants could be suggested as an alternative, non-classical and ecologically-friendly approach for plant protection (Edreva, 2004). There are two forms of systemic resistance, Systemic acquired resistance (SAR) and induced systemic resistance (ISR). Systemic acquired resistance (SAR) against pathogens can be induced by several synthetic chemical agents, such as salicylic acid, methyl salicylate, benzothiadiazole (Bion), β-aminobutyric acid, isonicotinic acid, benzoic acid, chitosan, saccharin and so forth which affect production of phenolic compounds and activation of various defense-related enzymes in plants (Thakur & Sohal, 2013 and Walters et al. 2013).

Induced systemic resistance (ISR) triggered by root-colonizing mutualistic microbes that are beneficial for plants, like rhizobacteria (PGPB or PGPR: Plant Growth Promoting Bacteria or Rhizobacteria) such as *Pseudomonas fluorescens* & *Paenibacillus polymyxa* and fungi (PGPF: Plant Growth Promoting Fungi) such as *Trichoderma* spp. which can improve plant growth and benefit the adaptation of plants to adverse conditions (Piterse et al. 2014; Pii et al. 2015). Most inducers reduce disease in the infected plants by 20%–85% (Walters et al. 2013).

The objectives of the present study aimed to evaluate the efficacy of some chemical and biotic inducers for inducing resistance of lupine plants against damping-off and wilt diseases under greenhouse and field conditions. The reaction of host metabolic processes to induce an increase in phenolic compounds as a result of such treatments was studied.

MATERIALS AND METHODS

Plant material

Lupine seeds (*Lupinus albus* L.), cultivar Giza 2 were obtained from the Legume Res. Dept., Field Crops Res. Inst., ARC, Giza, Egypt.

Pathogens

The fungi *R. solani* Kühn and *F. oxysporum* f.sp. *lupini* Snyder & Hansen were kindly provided by Legume and Forage Dis. Res. Dept., Plant Pathol. Res. Inst., Agric. Res. Centre, Giza, Egypt. The fungi were isolated from naturally infected lupine plants, showing damping-off and wilt symptoms. Their pathogenicity were updatedly confirmed and identified on the basis of cultural properties and microscopic morphological characters according to Sneh et al. (1991) and Booth (1971).

Preparation of pathogens inocula

Inocula of *R. solani* and *F. oxysporum* f.sp. *lupini* were prepared by growing the fungi in glass bottles 500 cc containing 100 gram sterilized sorghum grains medium. The bottles were inoculated with actively growing of equal five disks (0.5 cm) for each bottle of four days old *R. solani* or seven days old *F. oxysporum* f.sp. *lupini* cultures. The bottles were incubated at 25 ± 1°C for 18 days; during this period the bottles were vigorously shaken daily for the first 4 days to encourage more rapid and uniform colonization of the sorghum grains then shaken every three days to ensure uniform distribution of the fungal growth. After the incubation period, the glass bottles were then evacuated and its content was air-dried at room temperature and crushed in a mill to pass through a 3-mm sieve. The dried crushed inocula stored in paper bags at 4 ± 1°C until added to the soil within one week (Gaskill, 1968; Leslie & Summerell, 2006).

Chemical inducers

Bion wettable granule (WG) 50%, benzothiadiazole, (Syngenta Crop Protection, Inc); and salicylic acid (Sigma Aldrich, USA) and saccharin (MP Biomedicals, LLC) were used in this study.
Growing of biotic inducers

A- *Paenibacillus polymyxa*: The culture of the bacteria *P. polymyxa* (isolate 9D14), previously isolated by Shehata et al (2006) and belongs to the collection of Plant Pathol. Dept., Fac. of Agric., Ain Shams Univ. was kindly provided. The culture of the bacteria was activated on fresh slants and after 24 hrs. was transferred to flasks with 50 ml of nutrient yeast dextrose broth (NYDB) medium (per liter: nutrient broth 8 g, yeast extract 5 g and dextrose 10 g). The flasks were placed on a rotary shaker to grow at 120 rpm for 66 hrs. at 24±1°C.

B- *Trichoderma harzianum*: The fungus *T. harzianum* which isolated from the rhizosphere of faba bean by Elsaid et al (2005) and belongs to the collection of Plant Pathol. Dept., Fac. of Agric., Ain Shams Univ. was kindly provided. Its identification was previously confirmed on the basis of cultural properties and microscopic morphological characters according to Rifai (1969). The fungus was kept under a phosphate buffer (pH 6.5) at 4± 0.5°C for longtime storage (Boeswinkel, 1976). Formulation of *T. harzianum* was prepared by growing the fungus in glass bottles 500 cc containing 100 g sterilized sorghum grains medium (Rini & Sulochana, 2007). The bottles were inoculated with actively growing 0.5 cm diameter mycelial disc of 7 days old *T. harzianum* culture. Five discs were used for inoculation for each bottle. The bottles were incubated at 27 ± 1°C for 18 days and were vigorously shaken daily for the first 4 days to encourage more rapid and uniform colonization of the sorghum grains. At the end of the incubation period, the colonized sorghum grains by mycelium and conidia of *T. harzianum* were removed from the bottles and air dried in shade at room temperature, and was fine ground in a mill then sieved through 60 mesh (0.25 mm) sieve (Tewari & Bhanu, 2004). The grinded sorghum grains were kept in a polythene bag and treated as formulated *Trichoderma* within one week.

Seed and soil treatments

Apparentlky, healthy uniformity seeds of lupine were surface disinfected by immersing in sodium hypochlorite (1%) for 2 min, and washed several times with sterilized water, then left to dry on screen cloth with paper towel underneath to absorb the excess water at room temperature for approximately two hours.

A) Chemical inducers treatments: The disinfected lupine seeds were soaked in aqueous solutions of the inducers (Bion, salicylic acid, and saccharin) for 6 hours on previous day of sowing at the rate of 5 mM, 5 mM, and 3mM respectively, then the treated seeds were air-dried for 15 hrs. until sowing time.

B) The bacterial inducer treatment: After the growth of *P. polymyxa*, the liquid cultures media were then centrifuged undercooling (4°C) at 7500 rpm for 10 min. Then, the disinfected lupine seeds were soaked in the supernatant for 6 hours on the previous day of sowing. Cells of *P. polymyxa* in the precipitate were collected in a 20 cm Petri dish and the bacterial slurry was obtained by adding 1ml of 1% methylcellulose (Sigma-Aldrich, Milwaukee, WI, USA) in sterile distilled water to bacterial cells harvested from each Erlenmeyer flask. Healthy seeds of lupine that previously were soaked in the supernatant, were coated with the bacterial slurry, then spread on screen cloth with paper towel underneath to absorb the excess liquid, then the coated seeds were air-dried for 15 hrs. until sowing time. Enumeration of bacteria coated on seeds was performed by plate dilution method on the basis of colony-forming unit (CFU/seed) on nutrient yeast dextrose agar (NYDA) medium.

C) The *T. harzianum* treatment: Air-dried fine grinded sorghum grains which contained 3.7x 10⁸ (CFU) of *T. harzianum* (formulated Trichoderma) was used on previous day of sowing to coat the disinfected lupine seeds moistened with 1% methylcellulose in sterile distilled water as sticker, then the coated seeds were air-dried for 15 hrs. until sowing time.

D) Fungicide treatment: seed dressing was carried out to the disinfected lupine seeds by applying the Rizolex-T® 50% WP (Tolclofos methyl + thiram), Sumitomo Chemical Company Ltd. at the recommended dose (3 g/kg seeds) to the 1% methylcellulose (as sticker) moistened seeds in polyethylene bags and shaking well to ensure even distribution of the fungicide. The treatment was done on the previous day of sowing then the seeds air-dried for 15 hrs. until sowing time.

E) Control: The disinfected lupine seeds were soaked in sterilized water for 6 hours on the previous day of sowing then air-dried for 15 hrs. until sowing time.
Enumeration of bacterial and fungal populations coated on seeds

Enumeration of bacterium or fungus coated on seeds was performed by plate dilution method on the basis of colony-forming unit (CFU/seed) on nutrient yeast dextrose agar (NYDA) medium for *P. polymyxa*, or potato dextrose agar (PDA) supplemented with Rose bengal (25 mg/litre) for *T. harzianum*. Colony-forming units (CFU) were counted after 24 and 48 hrs of incubation for *P. polymyxa* and *T. harzianum* respectively (Rini and Sublochana, 2007). Population density of *P. polymyxa* were 4.1×10^5; 3.6×10^5 and 3.7×10^5 CFU per seed of lupine and propagule density of *T. harzianum* were 4.3×10^4; 3.8×10^4 and 3.9×10^4 CFU per seed of lupine in greenhouse experiment, field experiments and the experiment of oxidative enzymes activity determination, respectively.

Greenhouse experiments

The trials were carried out in the greenhouse of the Plant Pathology Research Institute, Agricultural Research Centre, Giza. Pots (30 cm in diameter) with a bottom drainage hole were sterilized by dipping in a 5% formalin solution for 15 minutes and left for one week till complete formalin evaporation. Pots were filled with steam disinfested sandy clay soil 1:2 (V/V). Soil infestation was achieved by mixing the inoculum of *R. solani* or *F. oxysporum* f. sp. *lupini* with the soil at the rate of 2% of soil weight (Papavizas & Davey, 1962). Sterilized uninoculated grounded sorghum grains were added to the disinfested soil at the same rate for used as healthy control. The infested soil was mixed thoroughly and watered every 2 days for a week before planting to stimulate the fungal growth and ensure its distribution in the soil. Five g of *Bradyrhizobium* sp formulation (obtained from Biofertilizers Production Unit, Soils Water and Environment Res. Inst., SWERI, Agric. Res. Centre (ARC), Giza, Egypt) were mixed in each pot during sowing. Five seeds of treated lupine seeds, as mentioned before, were sown in each pot and pots were irrigated directly. Ten replicated pots were used for each particular treatment. All pots were irrigated when necessary, and watered once a week to near field capacity with a 0.1% 15:15:15 (N:P:K) fertilizer solution in the first month and kept in a greenhouse under natural conditions. Other agricultural procedures were performed according to normal practice. The treatments were as follows: (1) Bion at 5 mM; (2) Salicylic acid at 5 mM; (3) Saccharin at 3 mM; (4) *P. polymyxa*; (5) *T. harzianum*; (6) Rizolex-T.; (7) and (8) seeds soaking in water served as untreated control for both infested and non-infested soil. The damping-off disease incidence (DI) %, percentage of wilt and disease severity index were determined as described below in Disease assessment. The experiment was repeated for determining the activity of oxidative enzymes and phenol content.

Disease assessment

A) Damping-off disease

The disease incidence (DI) % was determined by recording pre-emergence damping-off and post-emergence damping-off 15 and 30 days after sowing respectively according to the following formulas (Mona et al 2009):

$$Pre-\text{emergence} \% = \frac{\text{Total No. of un-germinated seeds} \times 100}{\text{Total No. of planted seeds}}$$

$$Post-\text{emergence} \% = \frac{\text{Total No. of rotted seedlings} \times 100}{\text{Total No. of planted seeds}}$$

Survived seedlings % = 100 - (di + post emergence)

Reduction or increasing % over the infected control was also calculated according to the following formula:

$$\text{Reduction or Increasing} \% = \frac{\text{DI of Control} - \text{DI of treatment} \times 100}{\text{DI of Control}}$$

B) Wilt disease

Percentages of early and late wilt were recorded at 30 and 90 days after sowing, respectively.

$$\text{Disease incidence} \% = \frac{\text{Number of wilted plants} \times 100}{\text{Total Number of plants}}$$

However, disease severity based on the foliar symptom was assessed 90 days after sowing using a scale of 0 to 4, where: 0 = healthy plant, all leaves green; 1 = lower leaves yellow; 2 = lower leaves wilted and some upper leaves yellow, exist-
ence discoloration of vascular tissue; 3 = whole leaves wilted, existence discoloration of vascular tissue; 4 = plant dead (Muslim et al 2003). The disease rating data was used to calculate disease severity index as DSI =

\[(0{n_1}+1{n_2}+2{n_3}+3{n_4}+4{n_5})/(4N)*100 \]

where \(n_1 \) - \(n_5 \) are the number of plants in each disease category and \(N \) was the total number of plants.

Field experiments

The field experiments was carried out during the winter growing season 2016-2017 at two locations namely, Giza Agricultural Research Station, Giza Governorate and Ismailia Agricultural Research Station, Egypt; in field known to have root rot and wilt history, in order to investigate the effect of chemical and biotic inducers for controlling damping-off and wilt diseases. The disinfected lupine seeds were treated in the same manner in a greenhouse experiment. In the control treatment, seeds were soaked in distilled water as mentioned before. The treated lupine seeds were sown in the field on October 27, 2016, at Giza and Ismailia Governorate. The field trial (28 plots) was designed in complete randomized blocks with four replicates. The area of each plot was 10.5 m\(^2\) consisted of five rows; each row was 3.5 m length and 0.6 m width. All treatments were sown in hills 20 cm apart on both sides of the row ridge, with one seed per hill. Eight hundred grams of Bradyrhizobium formulation was mixed with approximately 50 kg of moistened fine sandy soil and added to field soil into the seed furrow during sowing, at the rate of 800 g Bradyrhizobium formulation/ feddan. All other recommended agricultural practices were followed according to the recommendations of the Egyptian Ministry of Agriculture and Land Reclamation. The treatments were as follows: (1) Bion at 5 mM (2) Salicylic acid at 5 mM (3) Saccharin at 3 mM (4) P. polymyxa (5) T. harzianum (6) Water in infested soil (Control, infected) and (7) Water in non-infested soil (Control, healthy).

Assay of enzymes activities

A) Assay of peroxidase (PO)

The extraction and assay of peroxidase (PO) activity were carried out according to Chakraborty & Chatterjee (2007).

B) Assay of polyphenol oxidase (PPO)

Extraction and assay of polyphenoloxidase enzyme (PPO) were carried out according to Sadasivam & Manickam (1996).

Determination of phenolic compounds

Extraction of phenolic compounds was carried out according to Sutha et al (1998). However, phenolic compounds were determined using methods of analysis described by Snell & Snell (1953). The total, free and conjugated phenolic contents were calculated on the basis of the calibration curve of catechol and expressed as catechol equivalents in milligrams per gram fresh weight.

Statistical analysis

Completely randomized design (CRD) and randomized blocks design (RBD) were conducted in greenhouse experiment and field experiment, respectively. The obtained data were subjected to computer statistical software (ASSISTAT) originated by Silva & Azevedo (2009). Data analyzed using analysis of variance (ANOVA), and mean values were compared using Duncan’s multiple range test at a significance level of \(P \leq 0.05 \).
RESULTS

1- Greenhouse experiment

I- Effect of some inducers on the incidence of damping-off and wilt diseases of lupine

Results in Table (1) A & B indicate that all treatments induced a significant reduction in the percentages of pre- and post-emergence damping-off caused by *R. solani* or percentage of wilt caused by *F. oxysporum* f. sp. *lupini* compared to untreated infested control. Also, all treatments have significantly increased survived plants compared with untreated infested control. *Bion, T. harzianum* and Rizolex-T treatments gave the highest effect followed by each of *P. Polymyxa* and/or Salicylic acid treatments in the presence of *R. solani* and followed by Salicylic acid, *P. polymyxa* and *T. harzianum* in the presence *F. oxysporum* f. sp. *lupini*. While the lowest reduction effect and lowest survived plants were attributed to Saccharin treatment. However, all treatment reduced disease index of *F. oxysporum* f. sp. *lupini*, as Rizolex-T and Bion recorded the lowest values (8.0 and 9.0 respectively) as compared with untreated infested control (47). The rest treatments also reduced the wilt disease index with lower values (12-21).

Table 1. Effect of some chemical and biotic inducers as well as Rizolex-T as seed treatments on the percentage of damping-off and wilt diseases of lupine plants grown in artificially infested soil by *Rhizoctonia solani* (A) or *Fusarium oxysporum* f. sp. *lupini* (B) under greenhouse conditions

(A) *R. solani*

Treatments	Damping-off	Survived plants	Increasing %				
	Pre-emergence	Post-emergence					
	Incidence %	Reduction %	Incidence %	Reduction %	%		
Bion 5mM	4.0 b	87.5	4.0 ab	66.7	92.0 a	64.30	
Salicylic acid 5mM	12.0 b	62.5	0.0 b	100.0	88.0 a	57.14	
Saccharin 3mM	12.0 b	62.5	12.0 a	0.0	76.0 b	35.71	
P. polymyxa	8.0 b	75.0	4.0 ab	66.7	88.0 a	57.14	
T. harzianum	8.0 b	75.0	0.0 b	100.0	92.0 a	64.30	
Rizolex-T	4.0 b	87.5	4.0 ab	66.7	92.0 a	64.30	
Control (infested soil)	32.0 a	0.0	12.0 a	0.0	56.0 c	0.0	
Control healthy (non-infested soil)	4.0 b	0.0	96.0 a				

(B) *F. oxysporum* f. sp. *lupini*

Treatments	Wilted plants %	Survived plants	Increasing %	Disease index			
	After 30 days (Early)	After 90 days (Late)					
	Incidence %	Reduction %	Incidence %	Reduction %	%	%	
Bion 5mM	4.0 b	88.9	4.0 c	80.0	92.0 a	109.0	9.0
Salicylic acid 5mM	8.0 b	77.8	4.0 c	80.0	88.0 ab	100.0	12.0
Saccharin 3mM	8.0 b	77.8	12.0 b	40.0	80.0 b	81.8	21.0
P. polymyxa	8.0 b	77.8	4.0 c	80.0	88.0 ab	100.0	14.0
T. harzianum	8.0 b	77.8	4.0 c	80.0	88.0 ab	100.0	13.0
Rizolex-T	4.0 b	88.9	4.0 c	80.0	92.0 a	109.0	8.0
Control (infested soil)	36.0 a	0.0	20.0 a	0.0	44.0 c	0.0	47.0
Control healthy (non-infested soil)	2.0 b	4.0 c	94.0 a				2.0

Means in each column followed by the same letter are not significantly different according to Duncan’s multiple range test, (p = 0.05).
2- Field experiments

I- Effect of some inducers on the incidence of damping-off and wilt diseases of lupine

Results in Table 2 (A&B) exhibited that all the inducers have significantly reduced the percentages of pre-emergence damping-off and percentage of wilted lupine plants as compared with untreated control in two locations i.e., Giza and Ismailia, such results were concomitant with significant increases survived lupine plants treated with inducers over the untreated control. As for treatments, Rizolex-T and Bion gave the highest values in reducing diseases as well as increasing the survived lupine plants compared with other treatments. On the other hand, Saccharin resulted in the lowest values even in decreasing diseases or increasing survival.

Table 2. Effect of some chemical and biotic inducers as well as Rizolex-T as seed treatments on the percentage of damping-off and wilt diseases of lupine plants grown under field conditions at Giza Agricultural Research Station (A) and Ismailia Agricultural Research Station (B) during winter growing season 2016 - 2017 (natural infection)

(A): Giza Agricultural Research Station

Treatments	Damping-off			Damping-off			
	Pre-emergence	Post-emergence	Wilted	Survived	Increasing		
	Incidence	Reduction	Incidence	Reduction	plants%	plants%	%
Bion 5mM	18.7 c	54.8	4.0 ab	45.2	2.5 cd	74.8 ab	114.9
Salicylic acid 5mM	24.2 bc	41.5	4.7 a	35.6	3.3 bcd	67.8 bcd	94.8
Saccharin 3mM	27.0 b	34.8	7.0 a	4.1	4.1 b	61.5 d	77.8
P. polymyxa	21.3 bc	48.6	6.0 a	17.8	2.3 cd	70.4 abc	108.1
T. harzianum	25.5 bc	38.6	6.2 a	15.1	3.8 bc	64.5 cd	85.3
Rizolex-T	18.8 c	54.6	1.8 b	75.3	2.0 d	77.4 a	122.1
Control	41.4 a	-	7.3 a	-	16.5 a	34.8 e	-

(B): Ismailia Agricultural Research Station

Treatments	Damping-off			Damping-off			
	Pre-emergence	Post-emergence	Wilted	Survived	Increasing		
	Incidence	Reduction	Incidence	Reduction	plants%	plants%	%
Bion 5mM	17.9 c	55.1	3.8 ab	47.2	2.7 cd	75.6 ab	112.3
Salicylic acid 5mM	22.3 bc	44.1	4.1 ab	43.1	4.1 b	69.5 bc	95.2
Saccharin 3mM	25.1 b	37.1	6.4 a	11.1	4.5 b	64.0 c	79.8
P. polymyxa	19.8 bc	50.4	5.8 a	19.4	2.1 d	72.3 ab	103.1
T. harzianum	20.3 bc	49.1	6.2 a	86.1	3.3 bc	70.2 bc	97.2
Rizolex-T	16.1 c	59.6	1.5 b	79.2	2.4 cd	80.0 a	124.7
Control	39.9 a	-	7.2 a	-	17.3 a	35.6 d	-

Means in each column followed by the same letter are not significantly different according to Duncan’s multiple range test, (p = 0.05).

II- Effect of some inducers on growth parameters and yield of lupine plants

Under field conditions, inducers treatments significantly improved growth parameters and yield compared with untreated control in the two locations (Table 3, A & B).

Plant height

In two locations, all treatments significantly increased plant height as compared with untreated control. The maximum plant height was recorded with Bion, Salicylic acid and Rizolex-T treatments at Giza followed by P. polymyxa and salicylic acid.
treatments. At Ismailia, the maximum plant height was recorded with Rizolex-T and Bion treatment. However, in two locations there were no significant differences between the treatments with Saccharin and T. harzianum.

Number of branches per plant

In two locations, the highest significant increase in the number of branches per lupine plants was recorded with Bion, Rizolex-T and *P. polymyxa* treatments followed by salicylic acid and *T. harzianum* treatments at Giza and followed by *T. harzianum* and salicylic acid treatments at Ismailia Agricultural Research Station.

Number of pods per plant

The number of pods per plant significantly increased with all treatments as compared with untreated control. At Giza Agricultural Research Station the maximum number of pods per plant was recorded with Bion and Rizolex-T treatments, while the minimum number of pods per plant was recorded with *T. harzianum* treatment. In Ismailia, the maximum effect was observed with Rizolex-T and Bion treatments.

Seed weight per plant

In the two locations, all treatments significantly increased seed weight per plant as compared with untreated control. At Giza Agricultural Research Station, the maximum seed weight per plant was recorded with Bion treatment followed by Rizolex-T and salicylic acid. Meantime, there was no significant difference among other treatments.

At Ismailia Agricultural Research Station, the maximum seed weight per plant was recorded with Rizolex-T, Bion followed by salicylic acid treatments. Meantime, there were no significant differences between the treatments of *P. polymyxa* and *T. harzianum* in the two locations.

The weight of one hundred seed

In the two locations, all treatments significantly increased the weight of one hundred seed as compared with untreated control. Rizolex-T and Bion significantly increased the weight of one hundred seed with a varied trend from the rest of treatments followed by salicylic acid, *T. harzianum* and *P. polymyxa* treatments at Giza and salicylic acid and *P. polymyxa* treatments at Ismailia.

Table 3. Effect of some chemical and biotic inducers as well as Rizolex-T as seed treatments on some growth parameters of lupine plants grown under field conditions at Giza Agricultural Research Station (A) and Ismailia Agricultural Research Station (B) during winter growing season 2016 - 2017 (natural infection)

(A): Giza Agricultural Research Station

Treatments	Plant height (cm)	Number of branches/plant	Number of pods/plant	Seed weight / Plant (g)	100 seed weight (g)	Seed yield (ton/fed)
Bion 5mM	132.25 a	6.50 a	36.25 a	42.30 a	41 a	2.115 a
Salicylic acid 5mM	129.75 ab	5.72 b	32.95 a	38.3 ab	37.2 b	1.998 ab
Saccharin 3mM	119.25 c	5.10 c	30.55 a	30.2 b	33.2 c	1.587 d
P. polymyxa	125.25 b	5.93 b	33.25 a	31.2 b	34.3 bc	1.873 bc
T. harzianum	116.25 c	5.50 bc	27.9 a	33.75 b	35.5 bc	1.705 cd
Rizolex –T	129.25 ab	5.93 b	34.5 a	43.1 a	41.5 a	2.019 ab
Control	107.98 d	4.20 d	15 b	23.25 c	29.4 d	1.183 e
Effect of different inducers on controlling damping-off and wilt diseases of lupine

AUJASCI, Arab Univ. J. Agric. Sci., 27(3), 2019

(B): Ismailia Agricultural Research Station

Treatments	Plant height (cm)	Number of branches/plant	Number of pods/ plant	Seed weight / Plant (g)	100 seed weight (g)	Seed yield (ton/fed)
Bion 5mM	128 a	6.43 a	34.85 ab	38.1 a	37.3 b	1.752 ab
Salicylic acid 5mM	122.5 ab	5.65 b	33.1 abc	34.43 b	34.65 bc	1.599 bc
Saccharin 3mM	118 b	5.07 c	28.85 c	29.8 c	32.75 c	1.419 c
P. polymyxa	123.9 ab	6.1 ab	32.93 bc	33.1 b	34.1 bc	1.561 bc
T. harzianum	117.9 b	5.65 b	30.8 bc	32.15 b	32.3 c	1.458 c
Rizolex –T	128.6 a	6.1 ab	36.55 a	39 a	40.1 a	1.880 a
Control	109.3 c	4.35 d	17.8 d	21 d	27.6 d	0.844 d

Means in each column followed by the same letter are not significantly different according to Duncan's multiple range test, (p = 0.05).

Seed yield

The two locations showed nearly similar results which indicated that all treatments significantly increased the seed yield as compared with untreated control. At Giza and Ismailia, the maximum seed yield was recorded from the Bion, Rizolex-T with no significant differences, followed by salicylic acid and P. polymyxa treatments. Whereas, the lowest seed yield values compared with untreated control were recorded in Saccharin treatment at Giza and Ismailia Agricultural Research Stations.

3- Effect of Lupine seed treatments with different inducers on the activity of oxidative enzymes and phenol content

I- Activity of oxidative enzymes

Activities of peroxidase (PO) and polyphenol oxidase (PPO) enzymes of lupine plants were evaluated with the different inducer treatments in the presence of R. solani (Table 4 A) or F. oxysporum f. sp. lupini (Table 4 B). Results showed that all treatments were effective in increasing enzyme activities. The highest increase of PO and PPO activities as compared to the untreated control was achieved with Bion treatment either in the presence of R. solani or F. oxysporum f. sp. lupini. Meantime, the salicylic acid treatment showed a considerable increase in the two enzymes followed by P. polymyxa and T. harzianum treatments. However, the lowest activity of the enzymes was obtained when Saccharin was applied. However, Results showed that clear higher values of PO activity than PPO activity in all treatments in the presence of two pathogens. In addition, the percentage of increase in enzyme activity as induced by inducers treatments presented clear higher values of PPO than PO in all treatments; such a trend was true with the two pathogens. Meanwhile, it has to notice that infestation with the two fungal pathogens in the absence of inducers, clearly increased the activity of both PPO and PO than that recorded in healthy untreated plants as blank of all treatments.

II- Phenol content

The content of total phenols coincided with the trend of data of both PO and PPO enzymes, where it was highly enhanced in lupine plants treated with different inducers compared with untreated plants in the presence of R. solani (Table 5A) or F. oxysporum f. sp. lupini (Table 5B). The maximum increase in the content of total phenolic compounds was recorded with Bion treatment followed by salicylic acid and P. polymyxa compared with untreated control. Whereas the less increases in total phenols content were recognized when Saccharin was applied. As for conjugated phenols, salicylic acid and Bion treatments gave the highest increase over untreated control followed by P. polymyxa. Whereas the less decreases were recognized in the conjugated phenols when Saccharin and T. harzianum were applied. Moreover, the least values in total, free and conjugated phenols were recorded in the healthy control treatment, indicating the role of pathogens in raising the phenol content of the host plant. On the other hand, free phenols represented the highest figures of phenolic compounds than the conjugated phenols in all treatments as well as control untreated plants.
Table 4. Effect of some chemical and biotic inducers as seed treatments on the peroxidase and polyphenol oxidase activity in lupine plants grown in artificially infested soil by *Rhizoctonia solani* (A) or *Fusarium oxysporum* f. sp. *lupini* (B) under greenhouse conditions

(A) *R. solani*

Treatments	Peroxidase activity (absorbance at 430 nm)	Polyphenol oxidase activity (absorbance at 495 nm)		
	(Enzyme unit/mg protein/min)	(Enzyme unit/mg protein/min)		
	Activity	Increasing over control %	Activity	Increasing over control %
Bion 5 mM	0.322	131.4	0.075	294.7
Salicylic acid 5 mM	0.291	109.4	0.071	273.7
Saccharin 3 mM	0.213	53.2	0.061	221.1
P. polymyxa	0.280	101.4	0.070	268.4
T. harzianum	0.232	66.9	0.059	210.5
Control (infested soil)	0.139	-	0.019	-
Control healthy (non-infested soil)	0.121	0.10		

(B) *F. oxysporum* f. sp. *lupini*

Treatments	Peroxidase activity (absorbance at 430 nm)	Polyphenol oxidase activity (absorbance at 495 nm)		
	(Enzyme unit/mg protein/min)	(Enzyme unit/mg protein/min)		
	Activity	Increasing over control %	Activity	Increasing over control %
Bion 5 mM	0.401	184.4	0.069	200.0
Salicylic acid 5 mM	0.298	111.3	0.067	191.3
Saccharin 3 mM	0.233	58.2	0.059	156.5
P. polymyxa	0.291	105.4	0.065	182.6
T. harzianum	0.256	81.6	0.052	126.1
Control (infested soil)	0.141	-	0.023	-
Control healthy (non-infested soil)	0.121	0.10		

Table 5. Effect of some chemical and biotic inducers as seed treatments on levels of phenolic compounds in lupine plants grown in artificially infested soil by *Rhizoctonia solani* (A) or *Fusarium oxysporum* f. sp. *lupini* (B) under greenhouse conditions

(A) *R. solani:*

Treatments	Phenolic contents (catechol equivalents mg/g fresh weight)					
	Total phenols	Increase over control %	Free phenols	Increase over control %	Conjugated phenols	Increase over control %
Bion 5 mM	8.66	84.65	6.91	100.87	1.75	38.9
Salicylic acid 5 mM	7.71	64.40	5.91	71.80	1.80	42.9
Saccharin 3 mM	5.77	23.00	4.43	28.70	1.34	6.3
P. polymyxa	6.66	42.00	4.97	44.50	1.69	34.2
T. harzianum	5.87	25.20	4.55	61.33	1.32	4.8
Control (infested soil)	4.69	0.00	3.44	0.00	1.26	0.0
Control healthy (non-infested soil)	2.85	2.10	0.75			
Effect of different inducers on controlling damping-off and wilt
diseases of lupine

(B) *F. oxysporum* f. sp. *lupini*:

Treatments	Total phenols	Increase over control %	Free phenols	Increase over control %	Conjugated phenols	Increase over control %
Bion 5 mM	7.21	39.7	5.36	39.6	1.85	40.2
Salicylic acid 5 mM	6.91	33.9	4.23	10.1	2.68	103.0
Saccharin 3 mM	5.81	12.59	4.11	7.03	1.70	28.7
P. polymyxa	6.29	21.9	4.58	19.3	1.71	29.5
T. harzianum	6.12	18.6	4.57	19.0	1.55	17.4
Control (infested soil)	5.16	0.0	3.84	0.0	1.32	0.0
Control healthy (non infested soil)	2.85	2.10	0.75			

DISCUSSION

In Egypt, lupine is one of the preferable hosts to *Rhizoctonia solani* and *F. oxysporum* f. sp. *lupini* causing damping-off and wilt diseases respectively (Zian, 2011; Abdel-Monaim et al 2016; El-Sayed and Abdel-Monaim, 2017).

As recorded till now, the management of such two diseases has conventionally depended on chemical application. So, recent research priorities embraced disease control programs that are compatible with sustainable agriculture.

Acquired and induced resistance against future pathogen attacks, seem to be one of the safe alternatives to decrease the use of fungicides. Resistance induced by these inducers has a broad spectrum against many pathogens and long-lasting, but rarely provides complete control of infection, as many resistance elicitors provide between 20 and 85% disease control. (Walters et al 2013; Burketova et al 2015; Hartman et al 2016; and Kanojia et al 2019).

In the present work, lupine seed treatments with Bion [benzothiadiazole, (BTH)], salicylic acid (SA) and saccharin as chemical inducers resulted in a significant reduction of damping-off and wilt diseases, and highly increased growth parameters as well as the net seeds yield. These results were obtained from the greenhouse experiment and confirmed by field experiments data. Such results were consistent with those reported on lupine plants by (Ali et al 2009; Abdel-Monaim et al 2012; Marwa et al 2014). A comparative evaluation showed that the tested chemical inducers differed in their effectiveness against lupine damping-off and wilt diseases. Bion and salicylic acid were the most effective treatments; they increased survived lupine plants under field conditions by 114.8% and 94.7%, respectively, in Giza Governorate and by 112.4% and 95.2%, respectively, in Ismailia Governorate.

In this respect, Benzothiadiazole (BTH) was widely reported to induce plant resistance against a broad spectrum of pathogens in many plant species (Walters et al 2013), for example in pea against *Uromyces pisi* (Barilli et al 2010); in faba bean against *Uromyces vicie-fabae* (Sillero et al 2012); and in sunflower against *Sclerotinia sclerotiorum* (Bán et al 2017). Early, BTH was shown to induce expression of systemic acquired resistance “SAR” genes (Gorlach et al 1996 and Friedrich et al 1996). The mechanisms of BTH as inducer have been shown to involve in the activation of SAR mechanisms based on the SA pathway (Friedrich et al 1996), with consequent upregulation of defense genes (Bovie et al 2004) and accumulation of phenolic compounds (Iriti et al 2004); also, activating resistance by increasing the activity of peroxidase enzyme (Sarma et al 2007) and the accumulation of pathogenesis-related (PR) proteins, some of which have antimicrobial properties (Sauerborn et al 2002).

Salicylic acid as a key of plant hormone plays an important role in the induction of plant defense against a variety of biotic and abiotic stresses through morphological, physiological and biochemical mechanisms (Kumar, 2014). It was declared to induce resistance against many pathogens in many plant species for example in guar against *Rhizoctonia solani* (Abdel-Monaim, 2016); in snap bean against *Rhizoctonia solani* (Ahmed, 2016); and in lupine against *Fusarium solani*, *Rhizoctonia*...
solani and Macrophomina phaseolina (El-Sayed and Abdel-Monaim, 2017). Treatment with SA and its derivatives induced the expression of pathogenesis-related (PR) proteins (Gaffney et al 1993). It regulates the activities of various enzymes such as, peroxidase (PO), polyphenol oxidase (PPO), phenylalanine ammonia-lyase (PAL), etc., which are the major components of induced plant defense against biotic and abiotic stresses (Idrees et al 2011).

However, saccharin as seed soaking treatment gave the least reduction of the disease incidence among the chemical inducers. Meanwhile, saccharin has been found to induce systemic resistance against several diseases as a foliar application or root drench: tobacco mosaic virus (TMV) in tobacco, Colletotrichum lagenarium in cucumber, and Uromyces appendiculatus in runner bean (Siegrist et al 1998); R. solani in soybean (Marwa et al 2014). Additionally, probenazole (ORYZEMATE), of which saccharin is a metabolite, is used mainly on rice and was effective in controlling bacterial blight caused by Xanthomonas oryzae and rice blast caused by Magnaporthe grisea (Oostendorp et al 2001). Srivastava et al (2011) found that saccharin applied as a root drench to soybean plants was usually more effective than the leaf treatment at inducing protection. A similar response has been observed by other researchers in other plant species (Boyle & Walters, 2005& 2006).

As for biotic inducers tested i.e., P. polymyxa and T. harzianum, tended in the same as chemical inducers, in limiting the development of both diseases (damping-off and wilt) of lupine, but their effect still lower than that of bion. To some extent, there were no significant differences between the two bio-inducers used. Previous reports have shown that P. polymyxa and T. harzianum control the development of many soil-borne pathogens i.e. R. solani and Fusarium spp. on many crops under greenhouse and field conditions (Marwa et al 2014; Sarhan and Shehata 2014; Raza et al 2015 and Redda et al 2018).

The bacterium P. polymyxa is known for its ability to produce antimicrobial compounds (produced by some strains) act against fungi, bacteria, and actinomycetes including gavaserin and saltavidin (Pichard et al 1995); fusaricidins (Beatty & Jensen, 2002); polymyxins and lantibiotics (He et al 2007). Plant growth promotion may be an indirect effect of this antibiotic production through the suppression of plant diseases in disease-carrying soil. One of the possible explanations for growth promotion by P. polymyxa which has also been reported that it produces many plant growth stimulators, including auxin as indole-3-acetic acid (da Mota et al 2008) and cytokinin (Timmusk et al 1999). So, the application of P. polymyxa in seed pelleting can be used to manage pre- and post-emergence damping-off in plants (Choong-Min et al 2006).

However, the genus Trichoderma has been known since at least the 1920s for its ability to act as biocontrol agents against plant pathogens (Samuels, 1996). T. harzianum was established to be an effective producer of many extracellular enzymes and some of these are involved in the biological control of plant diseases (Almeida et al 2007). Some Trichoderma biological control agents (BCAs) produce highly efficient siderophores that chelate iron and stop the growth of other fungi (Chet and Inbar, 1994). Substantial information provides the support that the extraordinary capacity of T. harzianum to attack the structures of phytopathogenic fungi and sclerotial degradation by mycoparasitism which has been observed for R. solani (Almeida et al 2007). Meanwhile, T. harzianum is well-known producer of antibiotic (produced by some strains) that are toxic for phytopathogenic fungi, including Koninginins A, B, D, E and G (Almassi et al 1991; Ghisalberti & Rowland, 1993); Harzianopyridone, Harzianic acid, Azaphilones and Harzianolide (Vinale et al 2006; 2009); and Trichorzianines A (EIHajji et al 1987).

Also, some Trichoderma strains that produce cytokinin-like molecules, e.g. zeatyn and gibberel lin GA3 or GA3-related, have been detected (Beneitez et al 2004). Furthermore, during plant–Trichoderma interaction, numerous elicitors released by the Trichoderma hyphae may induce different types of signals transmitted within the plant e.g. by salicylic acid (SA), jasmonic acid (JA) or reactive oxygen species (ROS), triggering expression of defense proteins which refers to the induction of resistance. As a result of gene activation, the plant produces enzymes involved in direct suppression of pathogens and enhancing the biochemical and structural barriers in a plant. Depending on the Trichoderma isolate, plant cultivar and conditions, the defensive reactions activated by the fungi may fluctuate between the two types of systemic resistance i.e. induced systemic resistance and systemic acquired resistance (Harman et al 2004; Nawrocka & Malolepsza, 2013).

However, the treatments with Bion, SA, P. Polymyxa and T. harzianum as seed treatments were effective in eliciting the enzyme activities (peroxi-
The oxidation of phenols is mediated by the enzymes PO and PPO and the resulting quinones are effective inhibitors of SH group of enzymes which may inhibit the pathogen (Goodman et al 1967). Peroxidase is reported to have an important function in secondary cell wall biosynthesis (Grisebach, 1981). Therefore, Peroxidase may be directly associated with the increased ability of protected tissue for lignification which may restrict the penetration (Gross, 1979). Meantime, polyphenol oxidase (PPO) is capable of dehydrogenating of o-diphenols to produce o-quinones (antimicrobial compounds) as well as lignification of plant cells during microbial invasion (Meyer, 1987).

Furthermore, the treatments led to increasing of the phenolic compounds content compared with the untreated control. Such an increase was highly obvious with free phenols compared with conjugated. In this regard, the role of phenolic compounds in disease resistance was postulated by Nicholson and Hammerschmidt (1992). They indicated that phenols are oxidized to quinones or semi-quinones which are more toxic and play a great role as antimicrobial substances on the fungal pathogens (Farkas and Király 1962). So, it can be concluded that treatments with Bion, salicylic acid, P. Polymyxa, and T. harzianum as seed treatments increased plant resistance against the infection by R. solani, or F. oxysporum f.sp. lupini improved plant growth and yield. Such treatments may be used as a part of integrated disease management for field crops in order to avoid the use of fungicides.

REFERENCES

Abdel-Monaim M.F., Ismail M.E. and Morsy K.M. 2012. Induction of Systematic Resistance in Soybean Plants against Fusarium Wilt Disease by Seed Treatment with Benzothiadiazole and Humic. African J. of Biotechnology, 11, 2454-2465.

Abdel-Monaim M.F., Mazen M.M. and Atwa M.A.M. 2016. Effect of cyanobacteria on reducing damping-off and root rot incidence in lupine plants. New Valley Governorate, Egypt. British Microbiology Research J. 16(2), 1-14.

Ahmed G.A. 2016. Efficiency of some antioxidants and bioagents in controlling Rhizoctonia damping-off of snap bean. Middle East J. of Applied Sci, 6, 748-758.

Ali A.A., Ghoneem K.M., El-Metywally M.A. and Abdel-Hai K.M. 2009. Induce systemic resistance in lupine against root rot diseases. Pakistan J. of Biological Sci., 12, 219-221.

Almassi F., Ghisalberti E.L., Narbey M.J. and Sivasithamparam K. 1991. New antibiotics from strains of Trichoderma harzianum. J. Nat. Prod., 54, 396-402.

Almeida F.B., dos R., Cerqueira, F.M., Silva, R. do N., Ulhoa C.J. and Lima A.L. 2007. Myco-parasitism studies of Trichoderma harzianum strains against Rhizoctonia solani: evaluation of coiling and hydrolytic enzyme production. Biotechnology Letters, 29, 1189-1193.

Bán R., Baglyas G., Virányi F., Barna B., Posta K., Kiss J. and Körösi K. 2017. The chemical inducer, BTH (benzothiadiazole) and root colonization by mycorrhizal fungi (Glomus spp.) trigger resistance against white rot (Sclerotinia sclerotiorum) in sunflower. Acta. Biol. Hung., 68, 50-59.

Barilli E., Sillero J.C. and Rubiales D. 2010. Induction of systemic acquired resistance in pea against rust (Uromyces pisi) by exogenous application of biotic and abiotic inducers. J. Phytopathol., 158, 30-34.

Beatty P.H. and Jensen S.E. 2002. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can. J. Microbiol., 48, 159-169.

Benitez T., Rincon A.M., Limon M.C. and Co-don A.C. 2004. Biocontrol mechanisms of Trichoderma strains. Int. Microbiol., 7, 249-260.

Boesewinkel H.J. 1976. Storage of fungal cultures in water. Trans. Br. Mycol. Soc., 66, 183-185.
Booth C. 1971. The Genus *Fusarium*. Commonwealth Mycological Institute, Kew, Surrey, United Kingdom. 237p.

Boyle C., Ongena M., Thonart P. and Dommes J. 2004. Cloning and expression analysis of cDNAs corresponding to genes activated in cucumber showing systemic acquired resistance after BTH treatment. BMC Plant Biology, 26, 4-15.

Boyle C. and Walters D. 2005. Induction of systemic protection against rust infection in broad bean by saccharin: effects on plant growth and development. New Phytol., 167, 607-612.

Boyle C. and Walters D.R. 2006. Saccharin-induced protection against powdery mildew in barley: effects on growth and phenylpropanoid metabolism. Plant Pathol., 55, 82-91.

Burketova L., Trda L., Ott P.G. and Valentonova O. 2015. Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnology Advances 33, 994-1004.

Chakraborty M.R. and Chatterjee N.C. 2007. Interaction of *Trichoderma harzianum* with *Fusarium solani* during its pathogenesis and the associated resistance of the host. Asian J. Exp. Sci., 21, 351-355.

Chet I. and Inbar J. 1994. Biological control of fungal pathogens. Appl. Biochem Biotechnol., 48, 37-43.

Choong-Min R., Jinwöo K., Okhee C., Seuk H. K. and Chang S.P. 2006. Improvement of biological control capacity of *Paenibacillus polymyxa* E681 by seed pelleting on sesame. Biological Control, 39, 282-289.

Da Mota F.F., Gomes E.A. and Seldin L. 2008. Auxin production and detection of the gene coding for the auxin efflux carrier (AEC) protein in *Paenibacillus polymyxa*. J. Microbiol., 56, 257–264.

Edreva A. 2004. A novel strategy for plant protection: Induced resistance. Journal of Cell and Molecular Biology, 3, 61-69.

Elhajji M., Rebuffat S., Lecommandeur D. and Bodo B. 1987. Isolation and sequence determination of Trichorzaninines: An antifungal peptides from *Trichoderma harzianum*. International J. of Peptide and Protein Research, 29, 207-215.

Elsaid A.M., Shehata S.T., Abd-El-Moity T.H., and Aly M.M. 2005. Evaluation of single or combined isolates of *Trichoderma harzianum* in different formulations for controlling root rot diseases of strawberry. Annals of Agric. Sci., Ain Shams Univ., Egypt, 50, 601-611.

El-Sayed S.A. and Abdel-Monaim M.F. 2017. Integrated control management of root rot disease in lupine plants by using some bio-agents, chemical inducers and fungicides. J. of Plant Sci. and Agric. Research, 1, 1-8.

FAOSTAT. 2019. Data base result 2017, Food and Agriculture Organization of United Nations, http://Fao.org.

Farkas G.L. and Kiraly Z. 1962. Role of phenolic compounds in the physiology of plant diseases and disease resistance. Phytopath. Z., 44, 105-150.

Friedrich L., Lawton K., Russen W., Masner P., Specker N., Gut Rella M., Meier B., Dincher S., Staub T., Uknes S., Metraux J.P., Kessmann H. and Ryals J. 1996. A benzothiadiazole derivative induces systemic acquired resistance in tobacco. The Plant J., 10, 61-70.

Gaffney T., Friedrich L., Vernooij B., Negrotto D., Nye G., Uknes S., Ward E., Kessmann H. and Ryals J. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Sci., 261, 754-756.

Gaskill J.O. 1968. Breeding for Rhizoctonia resistance in sugar-beet. J. of the American Society of Sugar Beet Technologists 15, 105-119.

Ghislberti E.L. and Rowland C.Y. 1993. Antifungal metabolites from *Trichoderma harzianum*. J. Nat. Prod., 56, 1799-1804.

Goodman R.N., Kiraly Z. and Zaitlin M. 1967. The Biochemistry and Physiology of Infectious plant Diseases. Van Nostrand Co. Inc., Princeton, New Jersey, 354 p.

Görlich J., Völrath S., Knauf-Beiter G., Hengy G., Beckhove U., Koge K.H.l., Oostendorp M., Staub T., Ward E., Kessmann H. and Ryals J. 1996. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell, 8, 629-643.

Grisebach H. 1981. Lignin. In: The Biochemistry of Plants, Vol. 7, Conn E.E., (Ed.). Academic Press, New York, pp. 451-478.

Gross G.G. 1979. Recent advances in chemistry and biochemistry of lignin. Recent Advances in Phytochemistry, 12, 177-220.

Harman G.E., Howell C.R., Viterbo A., Chet I. and Lorito M. 2004. *Trichoderma* species opportunistic, a virulent plant symbionts. Nature Rev., 2, 43-56.

Hartman G.E., Howell C.R., Viterbo A., Chet I. and Lorito M. 2004. *Trichoderma* species opportunistic, a virulent plant symbionts. Nature Rev., 2, 43-56.

Hartman G.L., Pawlowski, M.L., Chang H.X. and Hill C.B. 2016. Successful technologies and approaches used to develop and manage resistance against crop diseases and pests. In: Madramootoo, C. (Ed.), Emerging technologies for promoting food security: Overcoming the world food crisis. Wood head Publishing, pp. 43-66.
Effect of different inducers on controlling damping-off and wilt diseases of lupine

1981

He Z., Kisla D., Zhang L., Yuan C.H., Green-Church K.B. and Yousef A.E. 2007. Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin. Appl. Environ. Microbiol., 73, 168-178.

Idrees M., Naem N., Aftab T., Khan M.M.A. and Moinuddin 2011. Salicylic acid mitigates salinity stress by improving antioxidant defence system and enhances vincristine and vinblas-tine alkaloids production in periwinkle [Catharanthus roseus (L.) G. Don]. Acta Physiol. Plant, 33, 987-999.

Irri M., Rossoni M., Borgo M. and Faoro F. 2004. Benzothiadiazole enhances resveratrol and anthocyanin biosynthesis in grapevine, meanwhile improving resistance to Botrytis cinerea. J. Agric. Food Chem., 52, 4406-4413.

Kannoja P., Choudhary K.K., Srivastava A.K. and Singh A.K. 2019. Pgpr bioelicitors: induced systemic resistance (ISR) and proteomic perspective on biocontrol. In: Singh, A.K., Kumar A. and Singh P.K. (Eds.), Pgpr amelioration in sustainable agriculture: food security and environmental management. Woodhead Publishing, pp. 67-84.

Katan J. 2017. Diseases caused by soilborne pathogens: Biology, Management and Challenges. J. Plant Pathol., 99, 305-315.

Kumar D. 2014. Salicylic acid signalling in disease resistance. Plant Sci., 228,127-134.

Lamichhane J.R., Durr C., Schwamck A.A., Robin M.H., Sarthou J.P., Cellier V., Messean A. and Aubertot J.N. 2017. Integrated management of damping-off diseases: A review. Agron. Sustain. Dev. 37(2), 10. https://doi.org/10.1007/s11717-017-0417-y

Leslie J.F. and Summerell B. A. 2006. The Fusarium laboratory manual. Black well Publishing, Iowa, USA, 388p.

Mandal, S., Mallick, N. and Mitra, A. 2009. Salicylic acid induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiology and Biochemistry, 47, 642-649.

Marwa M.M., Atwa, Shehata S.T. and Rahhal M.M. 2014. Induction of resistance against soybean damping-off caused by Rhizoctonia solani. Egypt. J. Phytopathol. 42, 137-158.

Meyer A.M. 1987. Polyphenol oxidases in plants – recent progress. Phytochemistry, 26, 11-20.

Milford G.F. and Shield I.F. 1996. The potential of lupins for UK Agriculture. J. of the Royal Agric. Society of England, 157, 84-91.

Mona M.M., Ragab, Saber M.M., El-Morsy S.A. and Abeer A.R. Abd El-Aziz 2009. Induction of systemic resistance against root rot of basil using some chemical inducers. Egypt. J. Phytopathol., 37, 59-70.

Muslim A., Horinouchi H. and Hyakumachi M. 2003. Control of Fusarium crown and root rot of tomato with hypovirulent binucleate Rhizoctonia in soil and rock wool systems. Plant Dis. 87, 739-747.

Nafie E. and Mazen M.M. 2008. Chemical induced resistance against brown stem rot in soybean: The effect of benzothiadiazole. J. of Applied Sci. Research, 4, 2046-2064.

Nawrocka J. and Malolepsza U. 2013. Diversity in plant systemic resistance induced by Trichoderma. Biological Control, 67, 149-156.

Nicholson R.L. and Hammerschmidt R. 1992. Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology, 30, 369-389.

Oostendorp M., Kunz W., Dietrich B. and Staub T. 2001. Induced disease resistance in plants by chemicals. European J. of Plant Pathology, 107, 19-28.

Papavizas G.C. and Davey C.B. 1962. Isolation and pathogenicity of Rhizoctonia saprophytically existing in soil. Phytopathology, 52, 834-840.

Picard B., Larue J.P. and Thouvenot D. 1995. Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiology Letters, 133, 215-218.

Pieterse C.M.J., Zamiodus C., Berendsen R.L., Weller D.M., Van Wees S.C.M. and Bakker P.A.H.M. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol, 52, 347-375.

Pii Y., Mimmo T., Tomasi N., Terzano R., Cesco S. and Crecchio C. 2015. Microbial interactions in the rhizosphere: beneficial influences of plant growth promoting rhizobacteria on nutrient acquisition process. A review. Biol. Fertil. Soils, 51, 403-415.

Raza W., Yuan J., Ling N., Huang Q. and Shen Q. 2015. Production of volatile organic compounds by an antagonistic strain Paenibacillus polymyxa WR2 in the presence of root exudates and organic fertilizer and their antifungal activity against Fusarium oxysporum f.sp. niveum. Biological Control, 80, 89-95.

Redda E.T., Ma J., Mei J., Li M., Wu B. and Jiang X. 2018. Antagonistic potential of different isolates of Trichoderma against Fusarium oxysporum, Rhizoctonia solani, and Botrytis cinerea. Eur. Exp. Biol., 8(2), 12. DOI: 10.21767/2248-9215.100053

Rifai M.A. 1969. A revision of the genus Trichoderma. Mycological Paper 116, 1-56.
Rini C.R. and Sulochana K.K. 2007. Substrate evaluation for multiplication of Trichoderma spp. J. of Tropical Agric., 45, 59-60.
Sadasivam S. and Manickam A. 1996. Biochemical Methods. 2nd Ed. New Age Int. Pvt. Ltd. Pub. and T.N. Agric. Univ. Coimbatore, Tamil Nadu, India, pp. 108-110.
Samuels G.J. 1996. Trichoderma: a review of biology and systematics of the genus. Mycol. Res. 100, 923-935.
Sarhan E.A.D. and Shehata H.S. 2014. Potential plant growth-promoting activity of Pseudomonas spp. and Bacillus spp. as biocontrol agents against damping-off in Alfalfa. Plant Pathology J., 13, 8-17.
Sarma B.K., Ameer Basha S., Singh D.P. and Singh U.P. 2007. Use of non-conventional chemicals as an alternative approach to protect chickpea (Cicer aritinum) from Sclerotinia stem rot. Crop Prot., 26, 1042-1048.
Sauerborn J., Buschmann H., Ghiasi K.G. and Kogel K.H. 2002. Benzothiadiazole activates resistance in sunflower (Helianthus annuus) to the root-parasitic weed Orobanchus cumana. Phytopathology, 92, 59-64.
Shehata S.T., Mosbah M.M. and Hegazi M.F. 2006. Selection of biocontrol agents for control of onion white rot disease. J. Agric. Sci. Mansoura Univ., Mansoura, Egypt, 31, 2621-2637.
Siegrist J., Mühlenbeck S. and Buchenauer H. 1998. Cultured parsley cells, a model system for the rapid testing of abiotic and natural substances as inducers of systemic acquired resistance. Physiological and Molecular Plant Pathology, 53, 223-238.
Sillero J.C., Rojas-Molina M.M., Avila C.M. and Rubiales D. 2012. Induction of systemic acquired resistance against rust, ascochytta blight and broomrape in faba bean by exogenous application of salicylic acid and benzothiadiazole. Crop Protection, 34, 65-69.
Silva F. and Azevedo C.A.V. 2009. Principal components analysis in the software Assistat-Statistical Attendance. In: World Congress on Computers In Agriculture, 7. American Society of Agricultural and Biological Engineers. Reno, NV, USA.
Sneh B., Burpee L. and Ogoshi A. 1991. Identification of Rhizoctonia species. American Phytopathological Society Press, St. Paul, Minnesota. 133 p.
Snell F.D. and Snell C.T. 1953. Calorimetric methods of analysis, including some turbidimetric and nephelometric methods. 3rd Ed., Volume III (Organic I), D. Van Nostrand CO. Inc., Princeton, NJ, USA. 606 p.
Srivastava P., George S., Marois J.J., Wright D.L. and Walker D.R. 2011. Saccharin induced systemic acquired resistance against rust (Phakopsora pachyrrhizi) infection in soybean: Effects on growth and development. Crop Protection, 30, 726-732.
Sutha R., Ramiah M. and Rajappan K. 1998. Changes in protein and amino acid composition of tomato due to a tospovirus infection. Indian Phytopath., 51, 136-139.
Tewari L. and Bhanu C. 2004. Evaluation of agroindustrial wastes for conidia based inoculum production of biocontrol agent: Trichoderma harzianum. J. of Scientific and Industrial Research 63, 807-812.
Thakur M. and Sohal B.S. 2013. Role of elicitors in inducing resistance in plants against pathogen infection: a review. ISRN Biochemistry: Vol. 2013, Article ID 762412, 10 p.
Timmusk S., Nicander B., Granhall U. and Tillberg E. 1999. Cytokinin production by Paenibacillus polymyxa. Soil Biol. Biochem., 31, 1847-1852.
Winale F., Marra R., Scala F., Ghisalberti E.L., Lorito M. and Sivasithamparam K. 2006. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett. App. Microbiol., 43, 143-148.
Winale F., Flematti G., Sivasithamparam K., Lorito M., Marra R., Skelton B.W. and Ghisalberti E.L. 2009. Harzician acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J. Nat. Prod., 72, 2032-2035.
Walters D.R., Ratsep J. and Havis N.D. 2013. Controlling crop diseases using induced resistance: challenges for the future. J. Exp. Bot., 64, 1263-1280.
Wang F., Gao R.J., Li J.O., Wu X.H. and Geny P.T. 2000. Effect of difenoconazole on the growth and activities of disease resistance related enzymes in wheat seedlings from treated seeds. Acta Phytopathologica Sinica, 30, 213-216.
Zian A.H. 2011. Studies on Fusarium wilt disease of white lupine plants in Egypt. Ph.D. Thesis, Fac. Agric., Suez Canal Univ., Egypt, pp. 138-145.
تأثر المستحثات المختلفة على مكافحة أمراض موت البادرات والذبول في الترمس

ماري عبد الله محمود عطوه * - إيهاب علي ضياء سرحان - أحمد حنفي زيان

قسم بحوث أمراض البذور والاعلاف - مجمع بحوث أمراض النباتات - مركز البحوث الزراعية - الجيزة - مصر

*Corresponding author: marwashehata@yahoo.com

Received 9 July, 2019
Accepted 4 August, 2019

الموجز

بهدف هذا البحث دراسة تأثير معاملة بذور الترمس من الصنف جيزة 2 بتركيزات من مواد البيون (5 مللي مولر)، حامض السلسليك (5 مللي مولر) والسكارين (3 مللي مولر) كمستحثات كيماوية Paenibacillus polymyxa بالإضافة إلى بكتيريا Trichoderma harzianum وفطر غرزرولكس Trichoderma harzianum على الاصابة بفطري Rhizoctonia solani Fusarium oxysporum f. sp. lupini تحت ظروف الصوبة والحقول.

وقد أدت كل المعاملات تحت ظروف الصوبة إلى اكتشاف نمو النباتات قبل وبعد الظهور فوق سطح التربة. وقد حققت أعلي نسبة للنباتات الباقية على قيد الحياة من المعاملة رايزولكس، ثم تلاها المعاملة بحمض السلسليك وبكتيريا P. polymyxa وفطر T. harzianum، أي 72%، بينما كانت نسبة النباتات الباقية من المعاملة بحمض السلسليك وباكتيريا P. polymyxa وفطر T. harzianum، أي 82%. وقدمت في وجود الفطر polymyxa و P. polymyxa و T. harzianum، ومن ناحية أخرى أدت جميع المعاملات إلى اكتشاف معنوي في نسبة موت البادرات قبل وبعد الظهور في محطة بحوث الجيزة. وقد تحتوي نسبيا للنباتات الناجية على قيد الحياة في المعاملة Raizerolx - وتليها المعاملة بحمض P. polymyxa وباكتيريا T. harzianum وفطر T. harzianum وحمض P. polymyxa وباكتيريا T. harzianum.

الكلمات الدالة: الترمس، موت البادرات، الذبول، المقاومة المستحثة
