Meta-Reinforcement Learning in Broad and Non-Parametric Environments

Zhenshan Bing
Department of Informatics
Technical University of Munich
Munich, Germany
bing@in.tum.de

Lukas Knak
Department of Informatics
Technical University of Munich
Munich, Germany
lukas.knak@tum.de

Fabrice Oliver Robin
Department of Informatics
Technical University of Munich
Munich, Germany
morinf@in.tum.de

Kai Huang
School of Data and Computer Science
Sun Yat-sen University
Guangzhou, China
huangk36@mail.sysu.edu.cn

Alois Knoll
Technical University of Munich
Munich, Germany
knoll@in.tum.de

Abstract

Recent state-of-the-art artificial agents lack the ability to adapt rapidly to new tasks, as they are trained exclusively for specific objectives and require massive amounts of interaction to learn new skills. Meta-reinforcement learning (meta-RL) addresses this challenge by leveraging knowledge learned from training tasks to perform well in previously unseen tasks. However, current meta-RL approaches limit themselves to narrow parametric task distributions, ignoring qualitative differences between tasks that occur in the real world. In this paper, we introduce TIGR, a Task-Inference-based meta-RL algorithm using Gaussian mixture models (GMM) and gated Recurrent units, designed for tasks in non-parametric environments. We employ a generative model involving a GMM to capture the multi-modality of the tasks. We decouple the policy training from the task-inference learning and efficiently train the inference mechanism on the basis of an unsupervised reconstruction objective. We provide a benchmark with qualitatively distinct tasks based on the half-cheetah environment and demonstrate the superior performance of TIGR compared to state-of-the-art meta-RL approaches in terms of sample efficiency (3-10 times faster), asymptotic performance, and applicability in non-parametric environments with zero-shot adaptation. The videos can be viewed at https://videoviewsite.wixsite.com/tigr.

1 Introduction

Humans have the ability to learn new skills by transferring previously acquired knowledge, which enables them to quickly and easily adapt to new challenges. However, state-of-the-art artificial agents lack this ability, since they are generally trained on specific tasks from scratch, which renders them unable to adapt to differing tasks or to reuse existing experiences. For instance, to imbue a robotic hand with the dexterity to solve a Rubik’s Cube, OpenAI reported a cumulative experience of thirteen
thousand years [15]. In contrast, adult humans are able to manipulate the cube almost instantaneously, as they possess prior knowledge regarding generic object manipulation.

As a promising approach, meta-RL reinterprets this open challenge of adapting to new and yet related tasks as a learning-to-learn problem [5]. Specifically, meta-RL aims to learn new skills by first learning a prior from a set of similar tasks and then reusing this policy to succeed after few or zero trials in the new target environment. Recent studies in meta-RL can be divided into three main categories. Gradient-based meta-RL approaches, such as MAML [6], aim to learn a set of highly sensitive model parameters, so that the agent can quickly adapt to new tasks with only few gradient descent steps. Recurrence-based methods aim to learn how to implicitly store task information in the hidden states during meta-training and utilize the resulting mechanism during meta-testing [23]. While these two concepts can adapt to new tasks in only a few trials, they adopt on-policy RL algorithms during meta-training, which require massive amounts of data and lead to sample inefficiency. To address this issue, PEARL [16], a model-free and off-policy method, achieves state-of-the-art results and significantly outperforms prior studies in terms of sample efficiency and asymptotic performance, by representing the task with a single Gaussian distribution through an encoder which outputs the probabilistic task embeddings.

However, most previous approaches, including PEARL, are severely limited to narrow task distributions, as they have only been applied to parametric environments [16, 22, 6, 9, 14], in which only certain parameters of the tasks are varied. This ignores the fact that humans are usually faced with qualitatively different tasks in their daily lives, which happen to share some common structure. For example, grasping a bottle and turning a doorknob both require the dexterity of a hand. However, the non-parametric variability introduced by the two different objects makes it much more difficult to solve the tasks when compared to the sole use of parametric variations, such as turning a doorknob to different angles. In spite of these limitations, there is currently no study that explicitly focuses on challenging non-parametric environment variability while providing the benefits of model-free and off-policy algorithms, such as the superior data efficiency and good asymptotic performance.

In this paper, we establish an approach that addresses the challenge of learning how to behave in non-parametric and broad task distributions. We leverage insights from PEARL [16] and introduce a Task-Inference-based meta-RL algorithm using Gaussian mixture models and gated Recurrent units (TIGR), which is sample-efficient, adapts in a zero-shot manner, and achieves good asymptotic performance in non-parametric tasks. We base our method on four novel concepts. First, we use a generative model, leveraging a mixture of Gaussians to cluster the information on each qualitatively different base task. Second, we decouple the task-inference training from the RL algorithm by reconstructing the tasks’ Markov decision processes (MDPs) in an unsupervised setup. Third, we propose a zero-shot adaptation mechanism by extracting features from recent transition history and infer task information at each timestep. Last, we provide a benchmark with non-parametric tasks based on the commonly used half-cheetah environment. Experiment results demonstrate that TIGR significantly outperforms state-of-the-art methods with 3-10 times faster sample efficiency, substantially increased asymptotic performance, and unmatched task-inference capabilities under zero-shot adaptation in non-parametric environments for the first time. To the best of the authors’ knowledge, TIGR is the first model-free meta-RL algorithm to solve non-parametric environments with zero-shot adaptation.

2 Background

Meta-reinforcement learning The learning problem of meta-RL is extended to an agent that has to solve different tasks from a distribution \(p(T) \) [24]. Each task \(T \) is defined as an individual MDP specifying its properties. A meta-RL agent is not given any task information other than the experience it gathers while interacting with the environment. A standard meta-RL setup consists of two task sets: a meta-training task set \(D_T^{train} \) used to train the agent, and a meta-test task set \(D_T^{test} \) used to evaluate the agent. Both sets are drawn from the same distribution \(p(T) \), but \(D_T^{test} \) may differ from \(D_T^{train} \). The objective is to train a policy \(\pi_\theta \) on \(D_T^{train} \) that maximizes rewards on \(D_T^{test} \), which is defined as

\[
\theta^* = \arg \max_\theta \mathbb{E}_{T \sim D_T^{test}} \left[\mathbb{E}_{\tau \sim p(\tau|\pi_\theta)} \left[\sum_t \gamma^t r_t \right] \right].
\]
The recent work in the domain of meta-RL can be divided into three groups according to the approach taken: gradient-based, recurrence-based, and task-inference-based.

Meta-training and meta-testing
Meta-RL consists of two stages: meta-training and meta-testing. During meta-training, each training epoch consists of a data collection and optimization phase. In the data collection phase, interaction experiences for each task are collected and stored in the replay buffer. In the optimization phase, the losses for the policy are computed and the gradient of the averaged losses is used to update the parameters of the policy. During meta-testing, the policy is adapted to new tasks with either few trials, meaning that the agent can experience the presented environment and adapt before the final evaluation, or in zero-shot manner, which means that the agent must solve the environment at first sight.

Parametric and non-parametric variability in meta-RL
Two key properties define the underlying structure of task distributions in meta-RL [24]: parametric and non-parametric variability. Parametric variability describes tasks that qualitatively share the same properties (i.e., their semantic task descriptions are similar), but the parameterization of the tasks varies. Parametric task distributions tend to be more homogeneous and narrower, which limits the generalization ability of the trained agent to new tasks. Non-parametric variability, however, describes tasks that are qualitatively distinct but share a common structure, so a single meta-RL agent can succeed (See Figure 1 for a visual example of non-parametric tasks). Non-parametric task distributions are considerably more challenging, since each distinct task may contain parametric variations [24].

Probabilistic embeddings for Actor-Critic RL (PEARL)
In task-inference-based meta-RL, the task information that the agent lacks to enable it to behave optimally given a problem \(T \sim p(T) \) is modelled explicitly [9]. PEARL [16] learns a probabilistic latent variable \(z \) that encodes the salient task information given by a fixed-length context variable \(c_{1:N}^T \) containing \(N \) recently collected experiences of a task \(T \), which is fed into the policy \(\pi_\theta(a|s, z) \) trained via soft actor-critic (SAC) [8] to solve the presented task. To encode the task information, an inference network \(q_\phi(z|c_{1:N}^T) \) is learned with the variational lower bound objective

\[
\mathbb{E}_{T \sim p(T)} \left[\mathbb{E}_{z \sim q_\phi(z|c_{1:N}^T)} \left[R(T, z) + \beta \text{D}_{KL} \left(q_\phi(z|c_{1:N}^T) \parallel p(z) \right) \right] \right],
\]

where \(p(z) \) is a Gaussian prior used as a bottleneck constraint on the information of \(z \), given context \(c_{1:N}^T \) using the KL-divergence \(D_{KL} \). \(R(T, z) \) is an objective used to train the encoder via the Bellman critics loss. \(\beta \) is a hyperparameter for weighting the KL-divergence. The probabilistic encoder in PEARL is modeled as a product of independent Gaussian factors over the \(N \) transitions \(q_\phi(z|c_{1:N}^T) \propto \prod_n \Psi_\phi(z|c_n^T) \), where \(\Psi_\phi(z|c_n^T) \sim N(f_\phi^\mu(c_n^T), f_\phi^\sigma(c_n^T)) \) and \(f_\phi \) is represented as a neural network with parameters \(\phi \) that outputs the mean \(\mu \) and variance \(\sigma^2 \) of the Gaussian conditioned on the context \(c_n^T \). In the data collection phase, previous experiences are iteratively added to the context to predict the new latent task representation used in the policy for the next action. During testing, PEARL performs a few-shot adaptation by first collecting experiences and then computing a posterior for the latent representation, which remains unchanged during the entire roll-out. We highly encourage readers to read about PEARL [16] for its intuitive visualizations and in-depth explanations, as preliminaries to this work.

3 Related Work

The recent work in the domain of meta-RL can be divided into three groups according to the approach taken: gradient-based, recurrence-based, and task-inference-based.

Figure 1: Visualization of the non-parametric half-cheetah-eight benchmark. From left to right: run forward, run backward, reach front goal, reach back goal, front stand, back stand, jump, and front flip. These eight tasks share similar dynamic models, but are qualitatively distinct. Each task contains parametric variations, e.g., different goal velocities in the run forward/backward task.
Gradient-based Gradient-based meta-RL approaches such as MAML [6] and follow-up methods [1, 3, 14] are based on finding a set of model parameters during meta-training that can rapidly adapt to achieve large improvements on tasks sampled from a distribution \(p(T) \). During the meta-test phase, the initial learned parameters are adjusted to succeed in the task with few gradient steps [6].

Recurrence-based The key element in recurrence-based methods, as in [23, 5, 13, 15], is the implementation of a recurrent model that uses previous interactions to implicitly store information that the policy can exploit to perform well on a task distribution. By resetting the model at the beginning of each roll-out and recurrently feeding states, actions, and rewards back to the model, the agent can track the interaction history over the entire path in its hidden state and learn how to memorize relevant task information [23]. In meta-training, the model is trained via back-propagation through time. In meta-testing, the parameters are fixed, but the agent’s internal state adapts to the new task [23].

Task-inference-based In task-inference-based meta-RL, as in PEARL [16], the information that the agent lacks to enable it to behave optimally is modelled explicitly [9]. MAESN [7], for example, learns a task-dependent latent space that is used to introduce structured noise into the observations to guide the policy’s exploration. The authors of [11] improve on this idea by modelling the task explicitly using an encoder consisting of a gated recurrent unit (GRU) to extract information from a history of transitions, which is given to the policy in addition to the observations. In [22], the feature extraction is improved by leveraging a graph neural network that aggregates task information over time and outputs a Gaussian distribution over the latent representation. The authors of [18] further use a combination of a Dirichlet and a Gaussian distribution to model different base tasks with style factors.

4 Problem Statement

This work aims to solve non-parametric meta-RL tasks, in which an agent is trained to maximize the expected discounted return across multiple test tasks from a non-parametric task distribution. Specifically, we aim to achieve the following goals: first, our algorithm should be applicable to non-parametric and broad task distributions in a meta-RL setting. Second, the developed algorithm must be able to perform zero-shot adaptation. Finally, the method should provide the sample efficiency and asymptotic performance of model-free and off-policy algorithms. To the best of our knowledge, there is no approach that provides the advantages of model-free and off-policy algorithms and is applicable to non-parametric environments in a zero-shot manner. Currently the only benchmark that satisfies the environment requirements is MetaWorld [24]. Since MetaWorld does not offer well-defined rewards that are normalized across all environments, which can lead to strong bias towards dominant tasks, we provide our own benchmark half-cheetah-eight to evaluate different meta-RL approaches.

5 Methodology

In this section, we first give an overview of our TIGR algorithm. We then explain the strategy for making TIGR applicable in non-parametric environments, derive the generative model, and explain how we implement the encoder and decoder. Finally, we summarize TIGR with its pseudocode.
5.1 Overview

In this paper, we leverage the notion of meta-RL as task inference. Similar to PEARL, we also extract information from the transition history and use an encoder to generate task embeddings, which are provided to a task-conditioned policy learned via SAC. Unlike PEARL, however, we first redesign the generative model for the task inference to succeed in non-parametric environments. Second, we decouple the training of the probabilistic encoder from the training of the policy by introducing a decoder that reconstructs the underlying MDP of the environment. Third, we modify the training and testing procedure to encode task information from the recent transition history on a per-time-step basis, enabling zero-shot adaptation. The structure of our method is shown in Figure 2. Our algorithm is briefly explained as follows.

- During meta-training, we first gather interaction experiences from the training tasks and store them in the replay buffer. At each interaction, we infer a task representation, such that the policy can behave according to the objective in 1. We feed the recent transition history into a GRU (Sec. 5.2.1), which merges the extracted information and forward the features to the GMM (Sec. 5.2.1) to generate the overall task representation z. The task representation is given to the policy with the current observation to predict the corresponding action.

- Second, we optimize the task-inference and policy networks, in two sequential stages:
 - We first train the GRU-GMM encoder networks for task inference by reconstructing the underlying MDP. For this, we use two additional neural networks that predict the dynamics and reward for each transition (See orange gradient 1 in Figure 2 and Sec. 5.2.2). This gives the encoder the information required to generate an informative task representation. To improve the performance of the task inference, we employ two additional losses, namely, $L_{\text{classification}}$ and L_{Euclid} (See Sec. 5.2.2). We do not use any gradients from SAC (See orange gradient 2)), which enables us to train the encoder independently of the task-conditioned policy.
 - In policy training, we compute the task representation for the sampled transitions online using our GRU-GMM encoder. We feed this information to the task-conditioned policy and train it via SAC independently of the task-inference mechanism.

- During meta-testing, our method infers the task representation at each timestep, selects actions with the task-conditioned policy and adapts to the task in zero-shot manner.

5.2 Task Inference

The non-parametric environments that we consider describe a broad task distribution, with different clusters representing the non-parametric base tasks, and the intra-cluster variance describing the parametric variability for each objective. A standard variational autoencoder (VAE) with a single Gaussian for the underlying generative model as in PEARL is not intended to represent such clustered task distributions. We propose a more complex generative model involving a GMM that captures the multi-modality of the environments and produces reasonable task representations that take into account both non-parametric and parametric variability.

5.2.1 Generative Model

Given the context $c = (s_{t-T}, a_{t-T}, r_{t-T}, s_{t-T+1}, ..., s_{t-1}, a_{t-1}, r_{t-1}, s_t)$ as the sequence of the recent transition history in the last T timesteps, we aim to extract features and find a latent representation z that explains $c \sim p(c|z)$ in a generative model such that $p(c, z) = p(c|z)p(z)$. We reinterpret the joint structure of the meta-RL task distribution as a combination of different features in a latent space that represent the properties of a particular objective. Following this idea, we model z as a mixture of Gaussians that can express both non-parametric variability with the different Gaussian modes and parametric variability using the variance of a particular Gaussian k with its statistics $\mu(c, k)$ and $\sigma^2(c, k)$. Formalizing this mathematically, we use the following generative model:

$$p(z|c) = \sum_k \rho(c, k) \mathcal{N}(\mu(c, k), \sigma^2(c, k))$$

where $\rho(c, k)$ determines the activation for each Gaussian k subject to $\sum_k \rho(c, k) = 1$. Given a shared structure between tasks, the model thus represents the activated latent features that explain the
GMM architecture Using the variational inference approach, we approximate the intractable posterior \(p(z|c) \) using a variational posterior \(q_\theta(z|c) \), parameterized by neural networks with parameters \(\theta \). The neural network that implements the GMM is designed as a multilayer perceptron (MLP) that predicts the statistics for each Gaussian component including the mean \(\mu(c, k) \), variance \(\sigma^2(c, k) \) and activation \(\rho(c, k) \) as a function of the input features derived from the context \(c \) (See Figure 3). The standard model is given as a two-layer network and an output layer size of \(K \times (\text{dim}(z) \times 2 + 1) \), where \(K \) is the handcrafted number of Gaussian components, \(\text{dim}(z) \) is the latent dimensionality required for mean \(\mu(c, k) \) and variance \(\sigma^2(c, k) \), and the Gaussian activation value is \(\rho(c, k) \). Finally, we represent the GMM components as multivariate Gaussian distributions with mean \(\mu(c, k) \) and covariance \(\Sigma_k = I \odot \sigma^2(c, k) \), where the diagonal of \(\Sigma_k \) consists of the entries of \(\sigma^2(c, k) \), while every other value is 0. This assumes that there are no statistical effects between the tasks. We apply a softplus operation to enforce that the network output \(\sigma^2(c, k) \) contains only positive values. We sample from the multivariate Gaussian distributions and obtain representatives \(\zeta_k \) for each Gaussian component. We enforce \(\sum_k \rho(c, k) = 1 \) by computing the softmax over the GMM’s output for the \(\rho(c, k) \) values. Using the computed activations \(\rho(c, k) \) and the representatives, we obtain the final latent task representation \(z = \sum_k \rho(c, k) \cdot \zeta_k \).

Feature extraction In this paper, we consider RL environments that are described as high dimensional MDPs. To enable our GMM to produce an informative task representation from the high dimensional input data, we first employ a feature extraction mechanism to find the relevant information contained in the context. We employ a GRU to process the sequential input data (See Appendix Figure 4). We recurrently feed in the transitions of the context \(c \), and thereby combine the features internally in the GRU’s hidden state. We extract this hidden state after the last transition is processed and forward it into the GMM. An ablation study of various feature extraction configurations is presented in Appendix A.6.

5.2.2 Encoder-Decoder Strategy

Our generative model follows the idea of a VAE. The setup employs an encoder, to describe the latent task information given a history of transitions from an MDP as \(q_\theta(z|c) \); and a decoder to reconstruct the MDP from the latent task information given by the encoder as \(p_\phi(c|z) \). The encoder is modeled as a GMM which involves the prior use of a shared feature extraction method, as described in the previous section. The decoder implements the generating function \(p_\phi(c|z) \), parameterized as neural networks with parameters \(\phi \). Following the variational approach in [10], we derive the evidence lower bound objective (ELBO) for the encoder and decoder and obtain:

\[
\log p_\phi(c) \geq \mathcal{L}(\theta, \phi; c) = \mathbb{E}_{q_\theta(z|c)} [\log p_\phi(c, z) - \log q_\theta(z|c)] = \mathbb{E}_{q_\theta(z|c)} [\log p_\phi(c|z)] - D_{\text{KL}}(q_\theta(z|c)\|p_\phi(z)) .
\]
We use the reparameterization trick $\tilde{z} = \sum_k \rho_{q_\phi}(c, k) (\mu_{q_\phi}(c, k) + \epsilon \cdot \sigma^2_{q_\phi}(c, k))$ with $\epsilon \sim \mathcal{N}(0, 1)$ and apply Monte Carlo sampling to arrive at the objective:

$$\mathcal{L}(\theta, \phi; c) \approx \left[\log p_\phi(c|\tilde{z}) - D_{KL}(q_\theta(\tilde{z}|c)\|p_\phi(\tilde{z})) \right],$$

(5)

where $\log p_\phi(c|\tilde{z})$ is a reconstruction objective of the input data c. $D_{KL}(q_\theta(\tilde{z}|c)\|p_\phi(\tilde{z}))$ introduces a regularization conditioned on the prior $p_\phi(\tilde{z})$. Since the lower bound objective requires maximization, we denote the optimization objective as minimizing $-\mathcal{L}(\theta, \phi; c)$, which results in a negative log-likelihood objective for the reconstruction term.

Reconstruction objective The reconstruction objective provides the information necessary for the encoder and GMM to extract and compress relevant task information from the context. It can take many forms, as suggested in [16], such as reducing the Bellman critic’s loss, maximizing the actor’s returns, and reconstructing states and rewards. We follow the third proposal and extend the negative log-likelihood objective of reconstructing states and rewards to predicting the environment dynamics and the reward function for the underlying MDP (See Appendix Figure 8). We split the decoder into two parts $p_{\phi_{\text{dynamic}}}$ and $p_{\phi_{\text{reward}}}$, which predict the next state s' and reward r given s, a, and z, and train them with the following loss:

$$\log p_\phi(c|\tilde{z}) = \log p_\phi(s', r|s, a, \tilde{z}) = \log p_{\phi_{\text{dynamic}}}(s'|s, a, \tilde{z}) + \log p_{\phi_{\text{reward}}}(r|s, a, \tilde{z}).$$

(6)

We model both parts as regression networks, in which the data is modeled as a normal distribution. Thus, the loss function is defined as the sum of $\mathcal{L}_{\text{dynamic}}(\phi)$ and $\mathcal{L}_{\text{reward}}(\phi)$ as:

$$\mathcal{L}_{\text{prediction}}(\phi) = \frac{1}{\dim(s)} \lVert s' - p_{\phi_{\text{dynamic}}}(s'|s, a, \tilde{z}) \rVert^2 + \frac{1}{\dim(r)} \lVert r - p_{\phi_{\text{reward}}}(r|s, a, \tilde{z}) \rVert^2$$

(7)

where both components are normalized by the number of their dimensions.

Information bottleneck The regularization introduced by the KL-divergence in (5) serves as an information bottleneck that helps the GMM compress the input to a compact format. Due to the potential over-regularization of this term [4], we control its impact on the ELBO as $-\mathcal{L}(\theta, \phi; c) \approx \mathcal{L}_{\text{NLL}}(\theta, \phi) + \alpha \cdot \mathcal{L}_{\text{KL-divergence}}(\theta)$, with a factor $\alpha < 1$ to allow expressive latent representations.

Clustering losses To improve the task inference performance for non-parametric environments, we experiment with two additional losses that represent the two following ideas: (1) We enforce that each component of the GMM is assigned to one base task, similar to the component constraint learning in [17], using a supervised classification learning approach for the activations $\rho(c, k)$ and the true base class y as $\mathcal{L}_{\text{classification}}(\theta) = -\log \left(\frac{\exp(\rho(c, k=y))}{\sum_k \exp(\rho(c, k))} \right)$. (2) We confine the features to separate clusters by maximizing the Euclidean distance between the means $\mu(c, k)$ of the K components scaled by the inverse of the sum of variances $\sigma^2(c, k)$ with $\mathcal{L}_{\text{Euclid}}(\theta) = \sum_{k_1=1}^K \sum_{k_2=k_1+1}^K \frac{\lVert \mu(c, k_1) - \mu(c, k_2) \rVert^2}{\sigma^2(c, k_1) + \sigma^2(c, k_2)}$. We provide a detailed description of the losses and an evaluation of their impact in Appendix A.5.

Final objective The final objective derived from the reconstruction objective, information bottleneck, and clustering losses is used to jointly train the encoder-decoder setup as described in Section 5.2.2. We combine the different loss functions to enable the encoder to produce informative embeddings, which are used in the task-conditioned policy. The resulting overall loss is denoted as:

$$\mathcal{L}(\theta, \phi) = \mathcal{L}_{\text{NLL}}(\text{prediction})(\theta, \phi) + \alpha \cdot \mathcal{L}_{\text{KL-divergence}}(\theta) + \beta \cdot \mathcal{L}_{\text{Euclid}}(\theta) + \gamma \cdot \mathcal{L}_{\text{classification}}(\theta)$$

(8)

where α, β, γ are hyper-parameters that weigh the importance of each term.

5.3 Algorithm Overview

The TIGR algorithm is summarized in pseudo-code (See Algorithm 1). The task-inference mechanism is implemented from line 3 to line 9. Lines 10 and 12 implement the standard SAC [8]. A list of the most important hyperparameters of the algorithm and their values is given in Appendix A.2.
Algorithm 1 TIGR Meta-training

Require: Encoder q_θ, decoder p_ϕ, policy π_ψ, Q-network Q_ω, task distribution $p(T)$, replay buffer D

1: for each epoch do
2: Perform roll-out for each task $T \sim p(T)$, store in D
3: for each task-inference training step do
4: Sample context $c \sim D$
5: Compute $z = q_\theta(c)$ ⊘ (See Sec. 5.2.1)
6: Calculate losses L_{KL}-divergence, L_{Euclid}, $L_{classification}$ ⊘ (See Sec. 5.2.2)
7: Compute $(s', r) = p_\phi(s, a, z)$ ⊘ (See Sec. 5.2.2)
8: Calculate loss $L_{prediction}$
9: Derive gradients for losses with respect to q_θ, p_ϕ and perform optimization step
10: for each policy training step do
11: Sample RL batch $d \sim D$ and corresponding context c, infer $z = q_\theta(c)$
12: Perform SAC algorithm for π_ψ, Q_ω

return q_θ, π_ψ

Figure 4: Meta-testing performance over environment interactions evaluated periodically during the meta-training phase. As PEARL [16] outperforms ProMP [19], RL2 [5], and MAML [6] in half-cheetah-vel and half-cheetah-dir, we only compare TIGR with PEARL in these two environments.

Figure 5: (a) Meta-testing performance over environment interactions evaluated periodically during the meta-training phase. We show the mean performance from three independent runs. (b) Final encoding of the eight tasks visualized using T-SNE [20] in two dimensions.

6 Experiments

We evaluate the performance of our method on the non-parametric half-cheetah-eight benchmark that we provide and verify its wide applicability on a series of other environments. The half-cheetah-eight environments are shown in Figure 1 and their detailed descriptions are introduced in Appendix A.1. The evaluation metric is the average reward during the meta testing phase. We first compare the sample efficiency and asymptotic performance against state-of-the-art meta-RL algorithms, including PEARL. Second, we visualize the latent space encoding of the GMM. Third, we evaluate the task-inference capabilities of our algorithm in the zero-shot setup. Finally, we provide videos displaying the distinct learned behaviors in the supplementary material, along with our code.
We then progress to a slightly broader task distribution and evaluate the performance of PEARL, TIGR, we can see that every base task except the front flip is learnt correctly. It should be noted that PEARL achieves reported performances in few-shot manner while our method is tested at first sight in zero-shot fashion. Figure 4 shows that both methods achieve similar performance and can solve the tasks. However, TIGR significantly outperforms PEARL in terms of sample efficiency across both tasks, even in zero-shot manner.

Asymptotic performance and sample efficiency We first demonstrate the performance of PEARL and our method in standard parametric environments, namely half- Cheetah-vel and half- cheetah-dir tasks [10], to verify both approaches. It should be noted that PEARL achieves reported performances of −150, which is much harder than the standard flip task, in which the rotation speed is simply maximized.

We then progress to a slightly broader task distribution and evaluate the performance of PEARL, other state-of-the-art algorithms, and our method, on a modification of the ant environment. We use three different tasks, namely goal tasks, velocity tasks and a jumping task. The goal and velocity tasks are each split into left, right, up, and down and include different parametrizations. We take the original code and parameters provided from PEARL [16]. For a fair comparison, we adjust the dimensionality of the latent variable to be the same. For the other meta-RL algorithms, we use the code provided by the authors of Pro-MP [19] on the right shows the performances of these five methods. We see that although PEARL and RL2 can solve the different tasks, our method greatly outperforms the others in sample efficiency and has a slight advantage in asymptotic performance.

Finally, we evaluate the approaches on the half-cheetah-eight benchmark. The average reward during meta-testing is shown in Figure 5a. We can see that TIGR outperforms prior methods in terms of sample efficiency and demonstrates superior asymptotic performance. Looking at the behaviours showcased in the video provided with the supplementary material, we find that with a final average return of −150, the PEARL agent is not able to distinguish the tasks. We observe a goal-directed behavior of the agent for the goal tasks but no generalization of the forward/backward movement to velocity tasks. It learns how to stand in the front but fails in stand back, jump and front flip. For TIGR, we can see that every base task except the front flip is learnt correctly. It should be noted that for the customized flip task, we expect the agent to flip at different angular velocities, which is much harder than the standard flip task, in which the rotation speed is simply maximized.

Latent space encoding We evaluate the latent task representation by sampling transition histories from the replay buffer that belong to individual roll-outs. We extract features from the context using the GRU encoder and obtain the compressed representation from the GMM. The latent task encoding is visualized in Figure 5b. We use T-SNE [20] to visualize the eight-dimensional encoding in two dimensions. The representations are centered around 0, which demonstrates the information bottleneck imposed by the KL-divergence. We can see that qualitatively different tasks are clustered into different regions (e.g., run forward), verifying that the GMM is able to separate different base tasks from each other. Some base tasks show clear directions along which the representations are spread (e.g., run backward), suggesting how the parametric variations in each base task are encoded.

Task inference We evaluate whether the algorithm infers the correct task by examining the evolution of the velocity, distance, or angle during an episode. A task is correctly inferred when the current value approaches the target specification. We can see in Figure 6 that the target specification is reached within different time spans for the distinct tasks. This is because goal-based tasks take longer to perform. Nevertheless, we can see that the task inference is successful, as the current value approaches the target specification in the displayed settings. For jump, the vertical velocity oscillates due to gravity and cannot be kept steady at the target. The front flip task remains unsolved. A full evaluation is shown in Figure 9 in Appendix A.4.

1Repository available at https://github.com/jonasrothfuss/ProMP/tree/full_code
Discussion The results of our experiments demonstrate that TIGR is applicable to broad and non-parametric environments with zero-shot adaptation, where prior methods even fail with few-shot adaptation. However, our method is not applicable to sparse reward settings, since it assumes that the environment gives a feedback to the agent following a dense reward function. In general, this drawback can presumably lead to weaker performance for problems that do not follow well-shaped reward functions, and we suppose that the front flip task might also not be solved due to ill-defined rewards. Finally, we can not find any potential negative societal impacts of our work.

7 Conclusion

In this paper, we presented TIGR, an efficient meta-RL algorithm for solving non-parametric task distributions. Using our task representation learning strategy, TIGR is able to learn behaviors in non-parametric environments using zero-shot adaptation. Our encoder is based on a generative model represented as a mixture of Gaussians and trained by unsupervised MDP reconstruction. This makes it possible to capture the multi-modality of the non-parametric task distributions. We report 3-10 times better sample efficiency and superior performance compared to prior methods on a series of environments including the novel non-parametric half-cheetah-eight benchmark.

References

[1] Maruan Al-Shedivat, Trapit Bansal, Yura Burda, Ilya Sutskever, Igor Mordatch, and Pieter Abbeel. Continuous adaptation via meta-learning in nonstationary and competitive environments. In *International Conference on Learning Representations*, 2018.

[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016.

[3] Ignasi Clavera, Anusha Nagabandi, Simin Liu, Ronald S. Fearing, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-reinforcement learning. In *International Conference on Learning Representations*, 2019.

[4] Nat Dilokthanakul, Pedro A. M. Mediano, Marta Garnelo, Matthew C. H. Lee, Hugh Salimbeni, Kai Arulkumaran, and Murray Shanahan. Deep unsupervised clustering with gaussian mixture variational autoencoders. CoRR, abs/1611.02648, 2016.

[5] Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast reinforcement learning via slow reinforcement learning. CoRR, abs/1611.02779, 2016.

[6] Chelsea Finn, P. Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In *ICML*, 2017.

[7] A. Gupta, R. Mendonca, Yuxuan Liu, P. Abbeel, and Sergey Levine. Meta-reinforcement learning of structured exploration strategies. In *NeurIPS*, 2018.

[8] Tuomas Haarnoja, Aurick Zhou, P. Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In *ICML*, 2018.

[9] Jan Humplik, Alexandre Galashov, Leonard Hasenclever, Pedro A. Ortega, Yee Whye Teh, and Nicolas Heess. Meta reinforcement learning as task inference. CoRR, abs/1905.06424, 2019.

[10] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. arXiv e-prints, page arXiv:1312.6114, 2013.

[11] Lin Lan, Zhenguo Li, Xiaohong Guan, and Pinghui Wang. Meta reinforcement learning with task embedding and shared policy. In *Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19*, pages 2794–2800. International Joint Conferences on Artificial Intelligence Organization, 7 2019.

[12] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-learner. In *International Conference on Learning Representations*, 2018.

[13] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In Maria Florina Balcan and Kilian Q. Weinberger, editors, *Proceedings of The 33rd International Conference on Machine Learning*, volume 48 of *Proceedings of Machine Learning Research*, pages 1928–1937, New York, New York, USA, 20–22 Jun 2016. PMLR.
[14] Anusha Nagabandi, Chelsea Finn, and Sergey Levine. Deep online learning via meta-learning: Continual adaptation for model-based RL. In *International Conference on Learning Representations*, 2019.

[15] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciej Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei Zhang. Solving rubik’s cube with a robot hand. *CoRR*, abs/1910.07113, 2019.

[16] Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy meta-reinforcement learning via probabilistic context variables. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pages 5331–5340. PMLR, 09–15 Jun 2019.

[17] Dushyant Rao, Francesco Visin, Andrei A. Rusu, Y. Teh, Razvan Pascanu, and R. Hadsell. Continual unsupervised representation learning. In *NeurIPS*, 2019.

[18] Hongyu Ren, Animesh Garg, and Anima Anandkumar. Context-Based Meta-Reinforcement Learning with Structured Latent Space. page 5, 2019.

[19] Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. ProMP: Proximal meta-policy search. In *International Conference on Learning Representations*, 2019.

[20] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine learning research*, 9(11), 2008.

[21] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017.

[22] H. Wang, J. Zhou, and Xuming He. Learning context-aware task reasoning for efficient meta-reinforcement learning. In *AAMAS*, 2020.

[23] Jane X. Wang, Zeb Kurth-Nelson, Dhuva Tirumala, Hubert Soyer, Joel Z. Leibo, Rémi Munos, Charles Blundell, Dharshan Kumaran, and Matthew Botvinick. Learning to reinforcement learn. *CoRR*, abs/1611.05763, 2016.

[24] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan C. Julian, Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning. In *CoRL*, 2019.
A Appendix

A.1 Experiment Environments

The OpenAI Gym toolkit [2] provides many environments for RL setups that can be easily modified to meet our desired properties. An environment that is often used in meta-RL is the half-cheetah [12, 14, 6, 19, 13], and therefore we have chosen it to demonstrate the performance of our proposed approach. We provide a new benchmark consisting of eight non-parametric tasks requiring qualitatively distinct behavior as defined in Table 1 and visualized in Figure 1. Each environment contains internal parametric variability, in which the desired velocity or goal is sampled from a range of possible values. Each task was verified individually to show that the correct behavior is learnt when a high return is achieved by the algorithm. The environments are pseudo-normalized such that the maximum possible reward is 0 (i.e., when there is no deviation from the desired velocity/position), and the agent starts with a reward of −1 on each episode. We suggest that this is a very important feature of the environments, since the agent cannot distinguish tasks based on the magnitude of the reward alone. We assume that this increases the difficulty of the challenge as some kind of exploratory movement is required at the beginning of each episode to deduce what behavior is needed.

Table 1: Non-parametric variability proposed for the half-cheetah-eight environment

Behaviour	Objective		
Run forward	$1 \leq v_x \leq 5$; $r = -	v_x^* - v_x	$
Run backward	$-5 \leq v_x \leq -1$		
Reach goal in front	$5 \leq p_x \leq 25$; $r = -	p_x^* - p_x	$
Reach goal in back	$-25 \leq p_x \leq -5$		
Front stand	$\frac{\pi}{6} \leq p_y \leq \frac{\pi}{2}$; $r = -	p_y^* - p_y	$
Back stand	$-\frac{\pi}{2} \leq p_y \leq -\frac{\pi}{6}$		
Front flip	$2\pi \leq v_y \leq 4\pi$; $r = -	v_y^* - v_y	$
Jump	$1.5 \leq v_z \leq 3.0$; $r = -	v_z^* - v_z	$

A.2 Evaluation Details

We carried out the experiments on an 32-core machine with 252GB of RAM and 8 Tesla V100 GPUs. We implemented TIGR in PyTorch (version 1.7.0) and ran it on Ubuntu 18.04 with Python 3.7.7. The implementation of TIGR is based on the PEARL implementation given by [16].

- All curves in this work are plotted from three runs with random task initializations and seeds.
- Shaded regions indicate one standard deviation around the mean.

We give an overview of important hyperparameters of the method and the values we used during our experiments in Table 2. The settings for the half-cheetah-eight environment can be seen in Table 3. Detailed code can be found in the supplementary materials.

A.3 Network Architectures

We provide two more graphs to visualize the network architectures for the GRU encoder (see Sec. 5.2.1) in Figure 7 and prediction networks (see 5.2.2) in Figure 8.

Figure 7: Overview of GRU feature extraction. Transitions from the context c are fed in recurrently and the last hidden state is extracted. Orange arrows outline the gradient flow.
Table 2: General hyperparameters

Hyperparameter	Value
Optimizer	ADAM
Learning rate encoder, decoder, SAC	3e-4
Discount factor γ	0.99
Entropy target H	$\dim(A)$
SAC network size	3×300 units
Net complex c_n	5
GRU input dim	$\dim(S) + \dim(A) + 1 + \dim(S')$
GRU hidden layer size	$c_n \times$ GRU input dim
GMM network size	2 layers $[GRU$ hidden layer size \& Num Classes $\times (2 \times$ Latent Dim $+ 1)]$
Dynamics network size	2 layers $[c_n \times (\dim(S) + \dim(A) + \dim(Z))]$
Reward network size	3 layers $[c_n \times (\dim(S) + \dim(A) + \dim(Z))]$
Non-linearity (all networks)	ReLU
SAC target smoothing coefficient	0.005
Evaluation trajectories per task per epoch	1
Task inference training steps per epoch	128
Task inference training batch size	4096
Policy training steps per epoch	2048
Policy training batch size	256
Train-validation split encoder training	0.8 / 0.2

Loss weights:
- αKL-divergence | 0.001 |
- βeuclid | 5e-4 |
- γclassification | 0.1 |

Table 3: Half-credit-eight hyperparameters

Hyperparameter	Value
Training tasks	80
Test tasks	40
Maximal trajectory length	200
Training epochs	2000
Data collection: initial samples per task	200
Data collection: training tasks for sampling per epoch	80
Data collection: samples per task per epoch	200
Encoder context timesteps	64
Encoder latent dimension $\dim(z)$	8
Encoder GMM components	8

A.4 Task Inference

We evaluate whether the algorithm infers the correct task by examining the evolution of the velocity, distance or angle during an episode. A task is correctly inferred when the current value approaches the target specification. The evaluation of the task inference is visualized in Figure 9. A discussion of the results can be found in Section 6.

A.5 Clustering Losses

To achieve better clustering of task representations for non-parametric environments, we experiment with two additional losses that represent the following ideas.

- Assign each component of the GMM to one base only. This objective is related to component-constraint learning in [17], but is not a necessary part of the ELBO [5] in our approach. The idea is to enforce each Gaussian to represent one base task, containing only task-specific features. We can feed prior information about a base task k to the algorithm represented as a one-hot vector y_k, and use a supervised classification learning approach for the activations $\rho(c, k)$ as $\mathcal{L}_{\text{classification}}(\theta) = - \log \left(\frac{\exp(\rho(c, k=y))}{\sum_k \exp(\rho(c, k))} \right)$. Cross-entropy enforces that task activations correspond to the base task distribution such that $\rho_k \rightarrow 1$
For $k \triangleq y_k$. By introducing this secondary objective, we are able to constrain the components to represent task-specific features instead of shared features among tasks.

- Push the components of the GMM away from each other to achieve a clear distinction between base tasks. To be able to further distinguish the features and prevent overlap, we confine them to separate regions. This can be realized by an objective that seeks to maximize the Euclidean distance between the means $\mu(c, k)$ of the K components scaled by the inverse of the sum of variances $\sigma^2(c, k)$ with

$$L_{Euclid}(\theta) = \sum_{k_1=0}^{K} \sum_{k_2=k_1+1}^{K} \frac{||\mu(c, k_1) - \mu(c, k_2)||^2}{\sigma^2(c, k_1) + \sigma^2(c, k_2)}.$$

The Euclidean distance is replaced by the sum of squares, which avoids the computationally unstable calculation of the square root, but has the same effect.

The impact of clustering losses on meta-test performance is visualized in Figure 10a. We see that, when leaving out any one of the losses, the performance of the method is much weaker and less stable than when both clustering losses are activated. Thus, each loss has a beneficial impact on the meta-RL objective.

A.6 Ablation Study

We additionally provide an ablation study of the encoder architecture used to extract the features that are passed into the GMM. We compare three different architectures:

1. A shared multilayer perceptron (MLP) architecture similar to PEARL [16] that processes each transition tuple of the context in parallel. The extracted features are passed into the GMM,
Figure 10: (a) Evaluation of the impact of the proposed clustering losses on the meta-test performance of the algorithm. We remove each of the losses in turn and compare to the setup with all losses involved. (b) Evaluation of meta-test performance of different feature extraction configurations in addition to different context lengths in the brackets used to infer the task.

we combine the Gaussians for each timestep using the standard Gaussian multiplication with $\mu = \frac{\mu_1 \sigma^2_1 + \mu_2 \sigma^2_2}{\sigma^2_1 + \sigma^2_2}$ and $\sigma^2 = \frac{\sigma^2_1 \sigma^2_2}{\sigma^2_1 + \sigma^2_2}$

2. A transformer architecture \cite{21} that creates a key-value embedding for each transition in the context. We use the embedding as our features and forward them to the GMM, where we combine the Gaussians for each timestep using the standard Gaussian multiplication (see 1.).

3. The GRU architecture that we use in this study.

We evaluate the three architectures on the half-cheetah 6-task environment, i.e. omitting the jump and front flip tasks. We compare them using 32 and 64 timesteps in the context, respectively. The results are shown in Figure 10b. We can see that all methods show improved performance when using more timesteps in the context. As the GRU outperforms the other methods when 64 timesteps are used, we use this architecture in our study.