Hepatitis D: advances and challenges

Zhijiang Miao¹, Zhenrong Xie², Li Ren³, Qiuwei Pan¹,⁴

¹Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands; ²Biobank, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; ³Department of Obstetrics and Gynecology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan 650031, China; ⁴Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, China.

Abstract
Hepatitis D virus (HDV) infection causes the most severe form of viral hepatitis with rapid progression to cirrhosis, hepatic decompensation, and hepatocellular carcinoma. Although discovered > 40 years ago, little attention has been paid to this pathogen from both scientific and public communities. However, effectively combating hepatitis D requires advanced scientific knowledge and joint efforts from multi-stakeholders. In this review, we emphasized the recent advances in HDV virology, epidemiology, clinical feature, treatment, and prevention. We not only highlighted the remaining challenges but also the opportunities that can move the field forward.

Keywords: Hepatitis D virus; Hepatitis B virus; Virology; Epidemiology; Clinical impact; Treatment; Prevention

Introduction
Viral hepatitis caused by the infections of hepatotropic viruses is a major global public health problem. In 2016, the World Health Organization adopted a strategy aiming at the elimination of viral hepatitis by 2030 focusing on hepatitis B virus (HBV) and hepatitis C virus (HCV) infections. However, little attention has been reserved to hepatitis D virus (HDV), a satellite virus coinfecting with HBV. It is estimated that approximately 240 to 350 million people are living with chronic HBV infection, but the coinfection of HDV with HBV provokes the most severe form of acute and chronic viral hepatitis. This constitutes a major contributor to viral hepatitis, the most severe form of acute and chronic viral infections.

HDV virology
HDV was firstly identified both in liver biopsies and in the serum from chronic HBV infected patients experiencing severe hepatitis in the 1970s. The International Committee on Taxonomy of Viruses has classified HDV as the archetypical member of the Deltaviridae family, representing the Deltavirus genus. Recently, more HDV-like viruses (deltaviruses) have been discovered in a diverse range of hosts, including birds, rodents, white-tailed deer, Eastern woodchucks, fish, amphibians, and even invertebrates. This strongly indicates that HDV has a much longer evolutionary history than previously anticipated, although the origin of HDV remains uncertain.

Human HDV is a peculiar hepatic pathogen and is a defective RNA virus. It completely relies on cellular enzymes for genome replication and dependents on HBV for its propagation in hepatocytes. Upon entry, both the genomic RNA (gRNA) and antigenic RNA (agRNA) are synthesized by host cellular DNA-dependent RNA polymerases via a double-rolling circle mechanism. The HDV genome encodes only one functional open reading frame for the translation of two proteins, HDAg proteins as well as the archetypical member of the Deltaviridae family, representing the Deltavirus genus. Recently, more HDV-like viruses (deltaviruses) have been discovered in a diverse range of hosts, including birds, rodents, white-tailed deer, Eastern woodchucks, fish, amphibians, and even invertebrates. This strongly indicates that HDV has a much longer evolutionary history than previously anticipated, although the origin of HDV remains uncertain.

Human HDV is a peculiar hepatic pathogen and is a defective RNA virus. It completely relies on cellular enzymes for genome replication and depends on HBV for its propagation in hepatocytes. Upon entry, both the genomic RNA (gRNA) and antigenic RNA (agRNA) are synthesized by host cellular DNA-dependent RNA polymerases via a double-rolling circle mechanism. Because the HDV genome encodes only one functional open reading frame for the translation of two isoforms of hepatitis delta antigen (HDAg), small-HDAg (S-HDAg) and large-HDAg (L-HDAg). Following several post-translational modifications, HD Ag proteins assemble with HDV gRNA to form HDV ribonucleoproteins (RNPs), which are subsequently enveloped by three HBV envelope proteins comprised of small/middle/large HBV surface antigen (S/M/L-HBsAg) to generate infectious HDV particles. Sharing the envelope proteins with HBV, HDV exploits not only the same particle but also host cell machinery for its propagation in hepatocytes.

Quick Response Code:

Website: www.cmj.org
DOI: 10.1097/CMJ9.0000000000002011

Copyright © 2022 The Chinese Medical Association, produced by Wolters Kluwer, Inc. under the CC-BY-NC-ND license. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CC-BY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Chinese Medical Journal 2022;135(7)
release machinery but also the identical transmission route, especially with regard to cellular entry factors.\[^{121,22}\] HDV explores the HBV receptor, sodium taurocholate cotransporting polypeptide (NTCP), for entry.\[^{28}\] Of note, NTCP is a bile salt transporter exclusively expressed on the sinusoidal site of hepatocytes, which may explain the hepatic tropism of HBV and HDV.\[^{21,28}\]

For HDV propagation, HBV was considered as the exclusive helper. However, a series of in vitro experiments have demonstrated that HDV RNPs could be artificially packaged into envelopes from several non-HBV-related viruses such as hepatitis C virus, flavivirus, and vesiculovirus, allowing egress of HDV RNPs from infected cells and subsequent entry into cell lines expressing their respective receptors.\[^{21,26,29-31}\] In fact, in humanized mice, HDV mono-infection can persist intra-hepatically for at least 6 weeks in the absence of HBV, and infectious HDV particles can be released following HBV superinfection.\[^{32}\] Furthermore, a recent study also demonstrated that coinfection of helper virus may not even be required for the horizontal transmission of rodent deltavirus.\[^{13}\] Taken together, these new studies are arguing against a possible co-evolution process between deltaviruses and hepadnavirus.\[^{15,16}\]

Clearly, the advance in understanding HDV virology would have a major impact on the diagnosis, treatment, and prevention of the disease.

Genome classification

HDV is the smallest human virus ever discovered. Its genome is a circular negative single-stranded RNA (ssRNA) composed of approximately 1672 to 1697 nucleotides, depending on the strain.\[^{13,14}\] As an ssRNA virus, HDV rapidly evolves resulting in high genetic diversity. The nucleotide divergence between different strains is > 35%.\[^{34,35}\] Further heterogeneity may result from recombination. Homologous recombination between different HDV strains has been reported in patients that suffered from multi-strain infection and has also been observed in the laboratory upon co-transfection of the genomes of different strains in cell culture systems.\[^{36-38}\] Even though both mutation and recombination are important driving forces in the evolution, HDV recombinants are rare and do not spread widely as circulating recombinant forms, for reasons yet unknown.

During viral replication, three forms of HDV RNA are present: gRNA, agRNA, and messenger RNA.\[^{19}\] This, to some extent, led to substantial chaos with respect to the registration of HDV sequences in public databases,\[^{35}\] resulting in the definition of two inconsistent classification systems.\[^{9,34}\] However, in the updated classification system when the recombinants were identified and removed and sequences were standardized, HDV strains are clearly clustered into eight genotypes, further grouped into 18 subtypes.\[^{13}\] Based on comparisons of nucleotide similarity and genetic distance between strains, criteria for identifying novel HDV genotypes or subtypes have been summarized and reformulated, and reference genomes for each subtype have also been proposed.\[^{35}\]

Although the proposed system will likely evolve, as future epidemiological and genomic data will accumulate,\[^{40}\] using standardized classification and criteria should largely avoid potential inconsistency in future research and clinical management.\[^{41-48}\]

Epidemiology

The first attempt to estimate the regional epidemiology of HDV was conducted for South America in 1996, based on data published in the 1980s and 1990s. This study concluded that approximately 5% of HBV carriers in South America were coinfected with HDV, equivalent to 300,000 people in this region at the time.\[^{49}\] Thereafter, this regional prevalence was extrapolated to an estimation of 15 to 20 million HDV infections worldwide.\[^{30,51}\] This, however, was challenged in 2017 by an estimate of 7 million infections in sub-Saharan Africa alone.\[^{52}\] In response, the global estimation was adjusted upwards to approximately 62 to 74 million in 2019 \[^{35,54}\] but this has raised the concern of overestimation.\[^{55,56}\] By stratifying the general population and HBV carriers, the pooled prevalence of HDV was estimated as 13.02% among HBV carriers and 0.80% in the general population, corresponding to 48 to 60 million infections worldwide.\[^{9}\] However, a more recent meta-analysis has estimated HDV prevalence of 4.5% among all HBV carriers, which was translated into a prevalence of only 0.16% of the global population, corresponding to 12 million people worldwide.\[^{57}\] But their underlying assumption may be questionable as HDV infected individuals are likely to be underrepresented in asymptomatic carriers.\[^{58}\]

It is important to recognize the huge heterogeneities of HDV prevalence among different populations. For example, the infection rate can be much higher among particular risk populations including intravenous drug users, HCV-coinfected individuals, and human immunodeficiency virus (HIV)-coinfected patients.\[^{9,53}\] The prevalence rates in intravenous drug users (IDUs) can reach as high as 80% in some countries.\[^{53}\] By contrast, the prevalence appears to be much lower in blood donors and asymptomatic HBV carriers.\[^{9,58}\]

There are also substantial variations of HDV prevalence among different countries and regions. Notably, China, India, and Nigeria, the major reservoirs of HBV infection, harbor one-third of total HDV infections [Figure 1].\[^{3}\]

Globally, HDV genotypes present distinct geographical distribution patterns: genotype 1 is widespread worldwide; genotypes 2 and 4 are mostly found in Asia; genotype 3 is found in South America; whereas genotypes 5 to 8 are found in Africa. This triggers an intriguing question of whether this is related to the genotype distribution of HBV. In the cell culture model, it has recently been demonstrated that the specific combination of HDV and HBV genotypes prominently determines the efficiency of HDV egress and entry.\[^{48}\] We thus speculate that the co-existence of particular HBV and HDV genotypes in specific geographical regions substantially affects their HDV prevalence rates. Nevertheless, large-scale, well-designed epidemiological studies are required to validate this concept.
Last but not least, reported HDV screening was mainly based on the detection of anti-HDV antibodies (IgG and/or IgM). HDV RNA testing was rarely performed in the majority of epidemiological studies due to the lack of a standardized HDV RNA assay and also because of economic considerations.[51,59] Anti-HDV IgG indicates resolved HDV infection while anti-HDV IgM or viral RNA indicates acute or active infection. The positive rate of HDV RNA among anti-HDV antibody-positive patients is usually about 50%.[58] Therefore, robust estimation of HDV prevalence requires both well-designed epidemiological studies and standardized diagnostic tools with optimal performance.

Clinical feature

Compared with HBV mono-infection, HDV and HBV coinfection or superinfection usually presents with distinct clinical features [Figure 2]. Most coinfection cases (about 80%) who are immunocompetent adults can spontaneously clear the virus.[9,60-62] For those who failed to clear HBV, only a minority (around 30%) can independently clear HDV, whereas the majority will progress to chronic coinfection.[9,60-63] Superinfection is HDV infection of an individual chronically infected with HBV. Once chronic HDV infection is established, it usually exacerbates the preexisting chronic hepatitis B. In general, the clinical outcome of HDV coinfection (both viruses are usually cleared) is different from HDV superinfection (usually leads to persistent infection with both viruses). The odds ratio to recover or become chronically infected after HDV coinfection are 5.05 (95% confidence interval [CI], 1.45–17.56) and 0.05 (95% CI, 0.01–0.27), respectively, relative to HDV superinfection.[9]

HDV exposure, either via coinfection or superinfection, may involve the full range of possible outcomes from asymptomatic infection to acute liver failure and lethality.[60-62,64] In HBV patients manifested with chronic hepatitis (17%), cirrhosis (26%), and HCC (20%), HDV infection rates are extremely high but the rate is low in asymptomatic HBV carriers (<5%) [Figure 2].[9] Chronic hepatitis D is considered to be associated with the most severe form of chronic viral hepatitis, with a rapid
progression towards fibrosis/cirrhosis and subsequent liver decompensation.[46,47,62,63] Longitudinal studies have confirmed that a large proportion of chronic hepatitis D patients swiftly progress to cirrhosis and eventually 80% of the patients will develop cirrhosis, which is significantly higher than the percentage seen in patients only infected with HBV.[48,49,52,66] In addition, the reported HCC incidence in chronic hepatitis D patients is much higher than that seen in HBV mono-infected patients.[6,67-69] Upon HDV infection, over half of the patients will have an outcome of chronic hepatitis, whereas approximately 40% and 20% of the patients will finally progress to cirrhosis and HCC, respectively [Figure 2]. On average, HDV infection progresses to cirrhosis within 3 years and to HCC within 10 years. This highlights the importance and significance of HDV screening and testing among general HBV carriers, especially in eastern Europe, Asia, and Africa, which are the regions for the high prevalence of associated liver cirrhosis and HCC. [9,52,56]

HDV genotype can also influence the outcome of chronic hepatitis D. Patients chronically infected with HDV-1 and HDV-3 are associated with more severe hepatitis than those infected with genotype HDV-2 and HDV-4.[41-45] European HDV-1 and African HDV-5 patients have a greater risk of developing cirrhosis.[60] Interestingly, HDV isolates from different genotypes exhibited remarkable differences in their replication efficiency and envelopment preferences in experimental models in vitro.[46] Furthermore, it has been indicated that HDV may cause liver fibrosis through the modulation of transforming beta-growth factor-induced signaling and the activation of epithelial-mesenchymal transition, whereas the exact underlying mechanisms of HDV pathogenesis remain largely elusive and require further investigation.[71,72]

Therapeutic development

For decades, pegylated interferon (IFN) alpha is the only treatment regimen currently recommended by the international guidelines.[73] However, a long-term sustained virological response can only be achieved in minority patients,[2,31,62,73] although patients with HDV genotype 5 seem to have a better response to IFN treatment.[36,47] With advanced knowledge recently gained on HDV virology, novel therapeutic options are increasingly explored by targeting different stages of the HDV life cycle. Several candidates are currently under clinical investigation.[2,31,62,73] Bulevirtide (previously named Myrcludex-B) was approved in Europe in 2020 under the branded name of Hepcludex. It is a subcutaneously delivered lipopeptide that specifically inhibits HBV/HDV entry into hepatocytes.[25,4,76] Lonafarnib is an orally administered farnesyl-transferase inhibitor that blocks the prenylation of L-HDAg, thus resulting in the inhibition of virion assembly in hepatocytes. A dose-dependent reduction of HDV RNA was observed in the serum of treated patients.[77,78] REP 2139 is a nucleic acid polymer that selectively blocks the assembly of subviral particles derived from covalently closed circular DNA or integrated HBV DNA and also decreases serum HDV RNA levels with yet unknown mode-of-action.[79,80] Recently, the infectious clones of HDV 1 to 8 and HBV envelope protein expression constructs of genotype A-H have been successfully established. Based on this complete tool set, bulevirtide and lonafarnib, for the first time, were confirmed as potent and pan-genotypic antiviral regimens against HBV/HDV or HDV.[81] With the development of novel cell culture models (eg, HuH7-END and HepNB2.7) to support the full life cycle of HDV,[81] many more novel antivirals that target any stage of the HDV cycle, especially the later stages of HDV replication and release and HBsAg secretion, are expected to be discovered in the near future.

Prevention

Because HDV is thought to be transmitted only in the context of HBV infection, HBV immunization in the general population should have a protective effect against HDV transmission.[82-87] Since the first hepatitis B vaccine was licensed by the Food and Drug Administration of the United States of America in 1981, the subsequent worldwide implementation of the hepatitis B vaccine has led to a dramatic decline in the number of HBsAg carriers. Although the initial vaccination uptake was low on a global scale, by 2018, 108 countries had adopted HBV vaccination for infants and 189 countries had adopted the HepB3 vaccine, which involves three doses of hepatitis B vaccine in their population-wide vaccination programs.[88,89] Despite the HBV vaccine having been estimated to prevent approximately 12 million individuals from HDV infection, the global burden of HDV remains substantial at present, which may be partially attributed to global population growth.[90] Thus, effective prevention of HDV infection requires multi-dimensional approaches by enhanced awareness, screening, and interventions, as well as specific attention for high-risk populations.

Summary and perspective

As a peculiar satellite virus, understanding the unique aspects of HDV virology is essential. There has been major progress in deciphering the HDV life cycle, but further research is required to deepen the knowledge of virus-host interactions and the possible origin of HDV. The field is realizing the importance of understanding HDV epidemiology, which is the cornerstone of any effective public health response. Unfortunately, there are many pitfalls of the currently available epidemiological data making it difficult to accurately estimate the global burden. Only when higher quality epidemiology studies incorporating improved diagnostic tools become available in the future, the burden could be more precisely estimated. Mathematical modeling could be used to further assist the research in this respect. Fortunately, therapeutic development has achieved major breakthroughs, with the entry-inhibitor bulevirtide being approved in the European Union in 2020 as a successful example. Given the recent advance of HDV in vitro models, many new therapeutic options are expected to emerge, providing hope to millions of HDV-infected patients. Nevertheless, many challenges remain in combating hepatitis D, requiring joint efforts from multi-stakeholders to enhance research, public health,
and patient care, thereby contributing to the global mission of eliminating viral hepatitis by 2030.

Funding

This work was supported by the China Scholarship Council for funding PhD fellowships to Zhijiang Miao (No. 201708530234); the Project of Yunnan Provincial Science and Technology Department to Zhenrong Xie (No. 2017FE468[-142]); and the National Natural Science Foundation of China to Li Ren (No. 82060608).

Conflicts of interest

None.

References

1. Thomas DL. Global elimination of chronic hepatitis. N Engl J Med 2019;380:2041–2050. doi: 10.1056/NEJMra1810477.
2. Hughes SA, Wedemeyer H, Harrison PM. Hepatitis delta virus. Lancet 2011;377:73–85. doi: 10.1016/S0140-6736(10)61931-9.
3. Polanski Observatory Collaborators. Global prevalence, treatment, and prevention of hepatitis B virus infection in 2016: a modelling study. Lancet Gastroenterol Hepatol 2018;3:383–403. doi: 10.1016/S2468-1253(18)30056-6.
4. Sorzano V, Young B, Reau N. Report from the International Conference on Viral Hepatitis - 2017. AIDS Rev 2018;20:58–70.
5. Basnayake SK, Easterbrook PJ. Wide variation in estimates of global prevalence and burden of chronic hepatitis B and C infection cited in published literature. J Viral Hepat 2016;23:545–559. doi: 10.1111/jvh.12519.
6. Rizzetto M, Canese MG, Arico S, Crivelli O, Trepo C, Bonino F, et al. Immunoalkaline phosphatase test for the diagnosis of hepatitis delta in serum of HBsAg carriers. Gut 1977;18:997.
7. Hetzel U, Szirovicza L, Smura T, Prezerakos K, Lohse AW, et al. A single antigenomic open reading frame of the hepatitis delta virus encodes the epitope(s) of both hepatitis delta antigen polypeptides p24 delta and p27 delta. J Virol 1980;62:594–599. doi: 10.1128/JVI.62.2.594-599.1980.
8. Urban S, Neumann-Haefelin C, Lampertho P. Hepatitis D virus in 2021: virology, immunology and new treatment approaches for a difficult-to-treat disease. Gut 2021;70:1782–1794. doi: 10.1136/gutjnl-2020-328388.
9. Rufiora J, Delphin M. Current knowledge on hepatitis delta virus replication, pathogenesis and patient care, thereby contributing to the global mission of eliminating viral hepatitis by 2030.

10. Basnayake SK, Easterbrook PJ. Wide variation in estimates of global prevalence and burden of chronic hepatitis B and C infection cited in published literature. J Viral Hepat 2016;23:545–559. doi: 10.1111/jvh.12519.
11. Rizzetto M, Canese MG, Arico S, Crivelli O, Trepo C, Bonino F, et al. Immunoalkaline phosphatase test for the diagnosis of hepatitis delta in serum of HBsAg carriers. Gut 1977;18:997.
12. Hetzel U, Szirovicza L, Smura T, Prezerakos K, Lohse AW, et al. A single antigenomic open reading frame of the hepatitis delta virus encodes the epitope(s) of both hepatitis delta antigen polypeptides p24 delta and p27 delta. J Virol 1980;62:594–599. doi: 10.1128/JVI.62.2.594-599.1980.
13. Urban S, Neumann-Haefelin C, Lampertho P. Hepatitis D virus in 2021: virology, immunology and new treatment approaches for a difficult-to-treat disease. Gut 2021;70:1782–1794. doi: 10.1136/gutjnl-2020-328388.
14. Rufiora J, Delphin M. Current knowledge on hepatitis delta virus replication, pathogenesis and patient care, thereby contributing to the global mission of eliminating viral hepatitis by 2030.

10. Basnayake SK, Easterbrook PJ. Wide variation in estimates of global prevalence and burden of chronic hepatitis B and C infection cited in published literature. J Viral Hepat 2016;23:545–559. doi: 10.1111/jvh.12519.
11. Rizzetto M, Canese MG, Arico S, Crivelli O, Trepo C, Bonino F, et al. Immunoalkaline phosphatase test for the diagnosis of hepatitis delta in serum of HBsAg carriers. Gut 1977;18:997.
12. Hetzel U, Szirovicza L, Smura T, Prezerakos K, Lohse AW, et al. A single antigenomic open reading frame of the hepatitis delta virus encodes the epitope(s) of both hepatitis delta antigen polypeptides p24 delta and p27 delta. J Virol 1980;62:594–599. doi: 10.1128/JVI.62.2.594-599.1980.
13. Urban S, Neumann-Haefelin C, Lampertho P. Hepatitis D virus in 2021: virology, immunology and new treatment approaches for a difficult-to-treat disease. Gut 2021;70:1782–1794. doi: 10.1136/gutjnl-2020-328388.
14. Rufiora J, Delphin M. Current knowledge on hepatitis delta virus replication, pathogenesis and patient care, thereby contributing to the global mission of eliminating viral hepatitis by 2030.
double-blind, placebo-controlled phase 2A trial. Lancet Infect Dis 2015;15:1167–1174. doi: 10.1016/S1473-3099(15)00074-2.
78. Yurdaydın C, Keskın O, Kalkan C, Karakaya F, Calıskan A, Karataşlı E, et al. Optimizing lonafarnib treatment for the management of chronic delta hepatitis: the LOWR HDV-1 study. Hepatology 2018;67:1224–1236. doi: 10.1002/hep.29658.
79. Bazinet M, Pantea V, Cebotarescu V, Cojohari L, Jimbei P, Anderson M, et al. Persistent control of hepatitis B virus and hepatitis delta virus infection following R E2139-Ca and Pegylated interferon therapy in chronic hepatitis B virus/hepatitis delta virus coinfection. Hepatol Commun 2021;5:189–202. doi: 10.1002/hep4.1633.
80. Bazinet M, Pantea V, Cebotarescu V, Cojohari L, Jimbei P, Albrecht J, et al. Safety and efficacy of REP 2139 and pegylated interferon alfa-2a for treatment-naive patients with chronic hepatitis B virus and hepatitis D virus co-infection (REP 301 and R E301-LTFa non-randomised, open-label, phase 2 trial. Lancet Gastroenterol Hepatol 2017;2:877–889. doi: 10.1016/S2468-1253(17)30288-1.
81. Ni Y, Zhang Z, Engelskircher L, Verch G, Tu T, Lempp FA, et al. Generation and characterization of a stable cell line persistently replicating and secreting the human hepatitis delta virus. Sci Rep 2019;9:10021. doi: 10.1038/s41598-019-46493-1.
82. Gaeta GB, Stroffolini T, Chiaramonte M, Asione T, Stornaiuolo G, Lobello S, et al. Chronic hepatitis D: a vanishing disease? An Italian multicenter study. Hepatology 2000;32:824–827. doi: 10.1053/jhep.2000.17711.
83. Huang YH, Wu JC, Tao MH, Syu WJ, Hsu SC, Chi WK, et al. DNA-based immunization produces Th1 immune responses to hepatitis delta virus in a mouse model. Hepatology 2000;32:104–110. doi: 10.1053/jhep.2000.8348.
84. Huang YH, Wu JC, Hsu SC, Syu WJ. Varied immunity generated in mice by DNA vaccines with large and small hepatitis delta antigens. J Virol 2003;77:12980–12985. doi: 10.1128/jvi.77.24.12980–12985.2003.
85. Fiedler M, Riegler M. Immunology of HDV infection. Curr Top Microbiol Immunol 2006;307:187–209. doi: 10.1007/3-540-29802-9_10.
86. Rizzetto M. Hepatitis D: the comeback? Liver Int 2009;29 (Suppl 1):140–142. doi: 10.1111/j.1478-3231.2008.01937.x.
87. Rizzetto M, Ponzetto A, Forzani L. Hepatitis delta virus as a global health problem. Vaccine 1999;8 (Suppl):S10–S14. doi: 10.1016/S0264-410X(99)00114-5.
88. Casey RM, Dumolard L, Danovaro-Holliday MC, Gacic-Dobo M, Diallo MS, Hampton LM, et al. Global routine vaccination coverage, 2015. MMWR Morb Mortal Wkly Rep 2016;65:1270–1273. doi: 10.15585/mmwr.mm6545a5.
89. Peck M, Gacic-Dobo M, Diallo MS, Nedelec Y, Sodha SV, Wallace AS. Global routine vaccination coverage, 2018. MMWR Morb Mortal Wkly Rep 2019;68:937–942. doi: 10.15585/mmwr.mm6842a1.
90. Miao Z, Li Y, Yu P, Yu B, Peppelenbosch MP, Pan Q. The dynamics of hepatitis delta virus prevalence and its potential association with hepatitis B virus vaccination. Clin Res Hepatol Gastroenterol 2021;45:101677. doi: 10.1016/j.clinre.2021.101677.

How to cite this article: Miao Z, Xie Z, Ren L, Pan Q. Hepatitis D: advances and challenges. Chin Med J 2022;135:767–773. doi: 10.1097/CM9.0000000000012011