Allopregnanolone-induced rise in intracellular calcium in embryonic hippocampal neurons parallels their proliferative potential

Jun Ming Wang¹,² and Roberta Diaz Brinton*¹

Address: ¹Department of Pharmacology and Pharmaceutical Sciences and Program in Neuroscience, University of Southern California, Los Angeles, CA 90089, USA and ²Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA

Email: Jun Ming Wang - jwang@pathology.umsmed.edu; Roberta Diaz Brinton* - rbrinton@hsc.usc.edu

* Corresponding author

Abstract

Background: Factors that regulate intracellular calcium concentration are known to play a critical role in brain function and neural development, including neural plasticity and neurogenesis. We previously demonstrated that the neurosteroid allopregnanolone (APα; 5α-pregnan-3α-ol-20-one) promotes neural progenitor proliferation in vitro in cultures of rodent hippocampal and human cortical neural progenitors, and in vivo in triple transgenic Alzheimer's disease mice dentate gyrus. We also found that APα-induced proliferation of neural progenitors is abolished by a calcium channel blocker, nifedipine, indicating a calcium dependent mechanism for the proliferation.

Methods: In the present study, we investigated the effect of APα on the regulation of intracellular calcium concentration in E18 rat hippocampal neurons using ratiometric Fura2-AM imaging.

Results: Results indicate that APα rapidly increased intracellular calcium concentration in a dose-dependent and developmentally regulated manner, with an EC₅₀ of 110 ± 15 nM and a maximal response occurring at three days in vitro. The stereoisomers 3β-hydroxy-5α-hydroxy-pregnan-20-one, and 3β-hydroxy-5β-hydroxy-pregnan-20-one, as well as progesterone, were without significant effect. APα-induced intracellular calcium concentration increase was not observed in calcium depleted medium and was blocked in the presence of the broad spectrum calcium channel blocker La³⁺, or the L-type calcium channel blocker nifedipine. Furthermore, the GABAA receptor blockers bicuculline and picrotoxin abolished APα-induced intracellular calcium concentration rise.

Conclusion: Collectively, these data indicate that APα promotes a rapid, dose-dependent, stereospecific, and developmentally regulated increase of intracellular calcium concentration in rat embryonic hippocampal neurons via a mechanism that requires both the GABAA receptor and L-type calcium channel. These data suggest that APα-induced intracellular calcium concentration increase serves as the initiation mechanism whereby APα promotes neurogenesis.
Background
Allopregnanolone (APα; 3α-hydroxy-5α-hydroxy-pregn-20-one; also known as tetrahydropregnanolone) is a derivative of progesterone that is produced in both the periphery and the central nervous system via enzymatic conversions of progesterone [1-3]. In mature neurons, APα is known to act as an allosteric modulator of the γ-aminobutyric acid type A (GABA_A) receptor, binding to a specific site within the GABA_A receptor at physiological concentrations (6-35 nM) [4,5] to increase chloride influx, thereby hyperpolarizing the neuronal membrane potential, and decreasing neuron excitability [6-11]. In marked contrast, the flux of chloride in developing neurons is opposite to that of mature neurons. Because of the high intracellular chloride content in immature neurons, APα provokes an efflux of chloride through the GABA_A receptor, depolarization of the membrane, opening voltage dependent L-type calcium channels, leading to an influx of calcium from the extracellular medium [12-16].

Calcium signalling plays a key role in neural function and neural development [17-20]. Increases in intracellular calcium concentration ([Ca^{2+}]_i) also control cell cycle protein expression and promote cell proliferation [21-26]. Therefore, GABA_A receptor-mediated depolarization may be the trigger that leads to activity-independent [Ca^{2+}]_i rise in early precursor cells, or neural progenitors and stem cells, and consequently may influence early developmental events, including neurogenesis and synaptogenesis [16,27-29].

Previously we found that APα rapidly induced neurite regression in cultured hippocampal neurons [30], which we later identified as a prelude to entry into the cell cycle and mitosis [29]. Recently, we demonstrated that APα regulates the expression of genes encoding cell cycle-related molecules and enhances human cortical neural progenitor, and rat hippocampal neuronal progenitor cell proliferation in vitro [29], and in vivo in triple transgenic Alzheimer's disease mice dentate gyrus [31-33]. Moreover, the L-type calcium blocker nifedipine abolished the APα-induced cell proliferation. We therefore hypothesized that the APα-induced neural progenitor cell proliferation is mediated by calcium influx via GABA_A receptor-activated L-type calcium channels. To test this hypothesis, we investigated the impact of APα on calcium dynamics using Fura2 fluorescent ratio calcium imaging in rat E18 hippocampal neurons.

Methods
Animals and primary hippocampal neuron culture
Timed-pregnant Sprague-Dawley rats were purchased from Harlan Sprague Dawley, Inc. (Indianapolis, IN, USA). Rats were housed under controlled conditions of temperature (22°C), humidity (30–50%), and light (14 hour light:10 hour dark); water and food were available ad libitum. All experiments conformed to the Animal Welfare Act, Guide to Use and Care of Laboratory Animals, and the US Government Principles of the Utilization and Care of Vertebrate Animals Used in Testing, Research, and Training guidelines on the ethical use of animals. In addition, the minimal number of required animals was used for these experiments and suffering was minimized. Primary cultures of dissociated hippocampal neurons were performed as previously described [29,30]. Briefly, hippocampi were dissected from the brains of E18 rat fetuses, treated with 0.02% trypsin in Hank's balanced salt solution (HBSS, Invitrogen, Grand Island, NY, USA) for 5 minutes at 37°C and dissociated by repeated passage through a series of constricted, fire-polished Pasteur pipettes. Cells were plated onto poly-d-lysine-coated 22 mm diameter cover slips at a density of 2–4 × 10^4 cells per cm^2, and grown in Neurobasal medium without phenol red (NBM; Gibco/Life Technologies, St. Petersburg, FL, USA) supplemented with 2% B27 (Gibco/Life Technologies), 10 U/ml penicillin, 10 μg/ml streptomycin, 0.5 mM glutamine and 25 μM glutamate. Cultures were maintained at 37°C in a humidified 5% CO2 atmosphere until the day of imaging.

Steroids
All steroids used in this study were purchased from Steraloids Inc (Newport, Rhode Island, USA). They were: allopregnanolone (APα; 5α-pregnan-3α-ol-20-one); pregnanolone (3α,5βAP; 5β-pregnan-3α-ol-20-one); epi-pregnanolone (3β,5βAP; 5β-pregnan-3β-ol-20-one); epiallopregnanolone (3β5αAP; 5α-pregnan-3β-ol-20-one); and progesterone (P4; 4-pregnen-3,20-dione).

[Ca^{2+}]_i microfluorimetry and imaging
[Ca^{2+}]_i in hippocampal neurons was determined by ratio imaging of the Ca^{2+}-sensitive fluorescent dye, Fura2 acetoxyxymethyl ester (Fura-2 AM, Molecular Probes, Eugene, OR, USA), as previously described [34,35]. Briefly, cells were loaded with 2 μM Fura-2 AM in HEPES-buffered solution (HBS; 100 mM NaCl, 2.0 mM KCl, 1.0 mM CaCl_2, 1.0 mM MgCl_2, 1.0 mM NaH_2PO_4, 4.2 mM NaHCO_3, 12.5 mM HEPES and 10.0 mM glucose, pH 7.4) for 45 minutes at 37°C, 5% CO2. Cells were then washed in HBS to remove excess Fura-2 AM and incubated in HBS for another 30 minutes to equilibrate. The cover slip with cells loaded with Fura-2 AM was then mounted in a perfusion chamber and placed on an inverted microscope (Olympus IMT-2). Baseline [Ca^{2+}]_i was obtained over 1 minute prior to the initiation of stimulus, which was maintained for the duration of the imaging. Stimulation was initiated by perfusion (2 ml/minute), or bolus addition (200 μl in total of 1,000 μl), to a static bath of the indicated compounds. Fura-2 was successively excited by a xenon light source at 340 nm and 380 nm by means of
two narrow beam band-pass filters selected by a computer-controlled filter wheel. The emitted fluorescence was filtered through a 520 nm filter, captured with an intensified CCD camera (COHU, San Diego, CA, USA), and analyzed with InCyt Im2 software (Intracellular Imaging, Inc., Cincinnati, OH, USA). The [Ca²⁺]i was calculated by comparing the ratio of fluorescence at 340 nm and 380 nm against a standard curve. The curve was made from five different [Ca²⁺] standards available from Molecular Probes. Data from regions of interest were displayed in real-time and logged to hard disk. Data are presented as representative traces averaged from at least 10 cells per experiment. Responses to treatments were quantified by determining the difference between the average [Ca²⁺], for the period of time of maximal response during the drug exposure and the average [Ca²⁺] for 30 seconds prior to exposure. Changes in [Ca²⁺] are presented as mean ± standard error of the mean (SEM) from three or more independent experiments with ≥10 cells per experiment. Statistical comparisons utilized one-way ANOVA followed by Newman-Keul’s post hoc analysis.

Results

APα induces a rapid and transient change in [Ca²⁺] in hippocampal neurons

APα induced a rapid (within seconds) and transient (over the course of minutes) increase in [Ca²⁺], in E18 rat hippocampal neurons (Figure 1A) as observed by ratiometric imaging of the Ca²⁺-sensitive fluorescent dye Fura-2 AM (Figure 1A). [Ca²⁺]i was calculated using a linear regression standard curve of the 340 nm/380 nm ratios of fluorescence generated by a standard series of calcium concentrations (Figure 1B). The multiple correlation coefficient (R-square = 0.9942) indicated a linear relationship between fluorescence ratio and [Ca²⁺], (Figure 1B). Based on this linear relationship, it was possible to generate an approximate [Ca²⁺]i value. Three distinct calcium responses in neurons exposed to APα emerged from this analysis: high response, neurons exhibiting a ≥0.78 of 340 nm/380 nm ratio; low response, neurons exhibiting ≤0.73 of 340 nm/380 nm ratio; and no response (Figure 1C). In the low response population, APα (250 nM) induced a [Ca²⁺]i rise of 38 ± 2.6 nM, whereas in the high response population, the same concentration of APα induced a [Ca²⁺]i rise of 118 ± 32 nM (Figure 1D; p < 0.05 compared to control neurons).

APα-induced [Ca²⁺] rise is dependent upon dose and days in vitro and is stereoisomer specific

To characterize APα-induced [Ca²⁺], signalling in embryonic hippocampal neurons, three issues were addressed: dose-response; stereospecificity; and developmental profile of response during days in vitro (DIV). Analysis for dose-response and stereospecificity were conducted in neurons at 3 DIV. Application of 10 nM APα showed an insignificant increase in [Ca²⁺]. A linear and significant increase was observed from 50 nM, (13 ± 7 nM [Ca²⁺], p < 0.05 versus vehicle control), and 100 nM APα (62 ± 12 [Ca²⁺], p < 0.01) Maximal response was observed when 250 nM APα was applied (135 ± 14 nM [Ca²⁺], p < 0.01), which could not be further increased using 500–1,000 nM APα (Figure 2A). The estimated EC₅₀ value for APα was 124 ± 15 nM.

To determine the specificity of APα on the increase of [Ca²⁺], the effects of several APα isomers, and its parent molecule, progesterone, were compared at a concentration of 250 nM. APα induced an [Ca²⁺] increase with an average of 133 ± 11 nM. No significant [Ca²⁺] response was observed for 3β5αAP, 3β5βAP, or progesterone at the same concentration. Only 3α5βAP induced a significant, but lower, [Ca²⁺] increase (73 ± 8 nM, p < 0.01; Figure 2B,C). These data indicate that the APα-induced [Ca²⁺] increase is stereospecific for APα, and its 5β-, but not 3β-isomers.

To determine the proportion of hippocampal neurons responsive to APα, and the duration of responsiveness, the number of APα-induced [Ca²⁺]-responsive neurons were assessed each day for 11 days (216 neurons/day). The percentage of APα-induced [Ca²⁺] rise in neurons increased linearly from day 0 to day 4 (DIV), followed by a stepwise decrease in the number of neurons that, by day 11, had returned to day 0 levels (Figure 2D). At DIV 0, 25 ± 5% of the neurons exhibited a APα-induced [Ca²⁺] increase; at DIV 1, 61 ± 7%; at DIV 2, 84 ± 4%. By DIV 3, the number of APα-responding neurons reached an asymptote at 90 ± 6% (Figure 2D; *p < 0.01 and **p < 0.001) and remained at that level until DIV 4. From DIV 7-10, the number of responding neurons declined and remained stable at approximately 63%. By DIV 11, the number of neurons responding to APα (30 ± 4%) declined to the level observed at DIV 0.

Different types of [Ca²⁺] responses

To determine the developmental profile for low and high responders, we determined the change in the magnitude of APα-induced [Ca²⁺], in low and high responders, and the portion of the population of responders across DIV. We first investigated whether the magnitude of the APα-induced [Ca²⁺], changed with time in culture. High-response, low-response, and non-responsive neurons were consistently observed from DIV 0 to DIV 11. As summarized in Figure 3A, the magnitude of APα-induced [Ca²⁺] in low responders (340/380 nm fluorescence ratio lower than 0.73 and reflect <45 nM increase in free calcium; Figure 1B) showed no significant change during the entire 11-day experimental period. In contrast, the magnitude of APα-induced [Ca²⁺], in high-response neurons (340/380 nm fluorescent ratio >0.78, reflecting a >65 nM increase in free calcium, p < 0.01) increased from 65 to
APα induces a rapid and transient [Ca²⁺] rise in rat E18 hippocampal neurons in primary culture. Cells grown on glass cover slips were loaded with Fura-2 AM as described in the Methods. The [Ca²⁺], was determined on single cells in HBSS medium. (A) Images represent calcium fluoro-2 fluorescence in rat hippocampal neurons under vehicle control (top) and 500 nM APα (bottom). A fluorescent gradient of fluorescence ratio of 340 nm/380 nm is presented at the right side of the images. (B) A linear regression and the multiple correlation coefficient R-square value indicate the perfect correlation between fluorescence ratio of 340 nm/380 nm and [Ca²⁺]. (C) APα induced rapid and transient responses of [Ca²⁺], recorded in a time course and expressed as the fluorescence ratio between 340 nm/380 nm, which is a representative of three different experiments. (D) Bar graph represents the summary of [Ca²⁺] in response to control, vehicle control, and 500 nM APα. Data are mean ± SEM (*p < 0.05 compared to control neurons; N = 3 experiments with 36 neurons/condition/experiment). No changes in [Ca²⁺], were observed under control or vehicle control conditions. With the addition of 500 nM APα, three types of calcium responses were observed in neurons: high (defined as an increase in [Ca²⁺], >65 nM over the baseline); low (defined as an increase in [Ca²⁺], <45 nM over the baseline); and no response (defined as neurons that did not show a measurable increase in [Ca²⁺], over their baseline).
125 ± 10 nM in the first 3 days, and reached a plateau for the remaining days of culture. We then determined whether the number of high-response neurons versus low-response neurons changed during time in culture and present the data as a percentage of total cells (Figure 3B; *p < 0.01 and **p < 0.001). The number of high-response neurons increased rapidly and linearly, and reached the highest percentage of 65 ± 7% on DIV 3, gradually decreasing to less than 40% on DIV 7. The number of low-response neurons also increased early in the course of culturing and reached the greatest percentage of 27 ± 5% on DIV 2, decreasing to 17 ± 3% on DIV 3 (no significant difference with DIV 0). However, on DIV 4, the percentage of low-response neurons returned to a level similar to that observed on DIV 2 and then gradually decreased. DIV 3 was the time-point at which the highest number of high-

Figure 3 The magnitude of the APα-induced intracellular calcium response changes at different DIV. (A) Bar graph indicates the magnitude of the [Ca2+]i, increases, high response (defined as >65 nM [Ca2+]i rise over the baseline) or low response (defined as <45 nM [Ca2+]i, rise over baseline), in [Ca2+]i, over the baseline in hippocampal neuron cultures at different DIV treated with 500 nM APα. (B) Bar graph indicates the percentage of hippocampal neurons that respond to 500 nM APα with a high or a low response at different DIV. Data are mean ± SEM (N = 3 independent experiments with at least 36 neurons/condition/experiment). *p < 0.01, **p < 0.001 versus DIV 0.
response neurons, and the lowest number of low-response neurons, were observed. These data indicate that the magnitude of calcium responses, and the numbers of APα-induced [Ca2+]i-responsive neurons, vary with the days of culture and that DIV 3 represents a pivotal time-point in the response to APα.

APα-induced [Ca2+]i rise reflects an influx of extracellular Ca2+ and is regulated by an L-type calcium channel

Free [Ca2+]i increase could result from either an influx of extracellular calcium or a release of calcium from an intracellular pool stored in organelles, including the endoplasmic reticulum and mitochondria. To investigate whether the APα-induced [Ca2+]i rise required an influx of extracellular Ca2+, neurons at DIV 3–4, when 84% of neurons should be responsive to APα (65% high responders), were treated with 500 nM APα in a calcium-free medium. To sustain comparable osmolarity and ionic strength, 2 mM NaCl was substituted for 1 mM CaCl2. In the absence of extracellular calcium, APα did not induce a rise in [Ca2+]i (Figure 4A). This result suggested that the APα-induced [Ca2+]i rise could be attributed mainly, if not completely, to the influx of extracellular Ca2+. To discern which calcium channel was required for the calcium influx, neurons were exposed to the inorganic-calcium transport inhibitor La3+ (10 μM) [36,37]. Exposure to La3+ reduced the APα-induced [Ca2+]i rise from 78 ± 5 nM to 42 ± 7 nM (Figure 4B; p < 0.05). When nifedipine, a more specific blocker to L-type calcium channels was used, the APα-induced [Ca2+]i rise decreased from 82 ± 14 nM to 20 ± 4 nM (Figure 4C; p < 0.01). These data indicate that the APα-induced [Ca2+]i rise is dependent upon extracellular Ca2+ and is regulated by the L-type calcium channel.

GABAα receptor mediates the [Ca2+]i rise induced by APα

It is well known that APα acts as an allosteric modulator of the GABAα receptor/chloride channel by altering chloride flux and thereby hyperpolarizing (in mature neurons) or depolarizing (in immature neurons) the neuronal membrane [15,16,38-42]. To determine whether the APα-induced [Ca2+]i rise in hippocampal neurons required the GABAα receptor, two GABAα receptor blockers, picrotoxin (a non-competitive antagonist) and bicuculline (the prototypical competitive antagonist that directly competes with GABA for binding to the receptor complex), were applied at 100 μM and 30 μM, respectively. Both GABAα receptor blockers completely abolished the APα-induced [Ca2+]i rise (Figure 5A,B). These data indicate that the APα-induced [Ca2+]i rise requires activation of GABAα receptor and the L-type calcium channel in rat hippocampal neuron cultures.

Discussion

Analyses using intracellular ratiometric Fura2 calcium imaging demonstrated that APα specifically induced a rapid, transient, and dose-dependent [Ca2+]i rise in E18 rat hippocampal neurons in primary culture. The APα-induced [Ca2+]i rise was not observed in calcium-free medium and was blocked by the L-type calcium channel blockers La3+ and nifedipine. In addition, the GABAα receptor inhibitors picrotoxin and bicuculline completely abolished the APα-induced [Ca2+]i rise. These findings in hippocampal neurons parallel those described by Dayanithi and Tapia-Arancibia [43] in fetal rat hypothalamic neurons, suggesting that the APα-induced rise in [Ca2+]i is a generalized effect in developing neurons.

The APα-induced rapid response is specific to APα as the β-isomers of APα, namely 3β5αAP and 3β5βAP, and its parent molecule, progesterone, were without effect, whereas 3α5βAP induced a [Ca2+]i rise that was 50% of the effect of APα. These data suggest the structure with the most important impact on stereospecificity may reside at the 3 position of the neurosteroid. Indeed, both an extracellular application, and 3α-substitutions of the A ring of the steroid nucleus, have been reported to be prerequisites for many of the interactions of the neurosteroid with GABAα receptor/Cl channels, because neither intracellular applications, nor 3β-substituted steroids applied extracellularly, show agonistic effects of GABA [4,44,45]. Recent analyses by Hosie et al. [10] indicate that APα can bind to two sites on the GABAα receptor, one that potentiates, and one that directly activates the GABAα receptor. The potentiating binding site of APα resides in a cavity formed by the α-subunit transmembrane domains. The direct activating binding site of APα located among interfacial residues between the α and β subunits and is enhanced by steroid binding to the potentiation site [10]. Data presented here demonstrate that the APα-induced [Ca2+]i rise can be abolished by two GABAα receptor blockers, namely bicuculline [46-49] and picrotoxin [50-52], strongly supporting the notion that the APα-induced [Ca2+]i rise is a GABAα receptor-mediated process and most likely through the direct activating binding site.

GABAα receptor is an ion channel that allows either influx or efflux of chloride ions (Cl−), depending upon the prevailing transmembrane [Cl−] gradient. Because immature neurons have a higher intracellular [Cl−], activation of the GABAα receptor by GABA, or other agonists, for example, muscimol, causes efflux of Cl− and thus membrane depolarization [15,53]. This depolarization is sufficient to open L-type voltage-gated calcium channels, leading to calcium influx [54-56]. GABA and GABA-induced calcium influx have been linked to trophic actions important for developmental processes, including the expression of brain-derived neurotrophic factor [20]. Thus, GABAα receptor-mediated depolarization may be the trigger for a spontaneous, activity-independent [Ca2+]i rise in early precursor cells, or subventricular zone radial precursor...
cells, thereby influencing early developmental events, including neurogenesis and synaptogenesis [16,28,29]. In the present study, we have demonstrated that APα-induced [Ca2+]i rise can be blocked by a voltage-gated calcium channel blocker, La3+, as well as a more specific L-type calcium channel blocker, nifedipine. Further, we recently demonstrated that the L-type calcium channel blocker nifedipine specifically abolished the APα-induced proliferation of rat hippocampal neuronal progenitor cells [29]. Taken together, these data suggest that the APα-induced [Ca2+]i rise, regulated by the L-type calcium channel and evoked by GABA_A receptor, may be the signalling initiation mechanism for APα-induced neuroprogenitor cell proliferation and cell cycle gene expression.

Figure 4

APα-induced [Ca2+]i increases result from influx of extracellular calcium and are mediated by the L-type calcium channel. (A) Neurons (3–4 DIV) were exposed to 500 nM APα or vehicle control in Ca2+-free medium at the time-point indicated by the arrow. In the medium without calcium, APα showed no effect on intracellular calcium concentration. A representative graph of four independent experiments is shown (N = 36 neurons/condition/experiment). (B) La3+ diminished APα-induced [Ca2+]i rises. Neurons (3–4 DIV) were incubated with or without 10 μM La3+ (a calcium channel blocker) for 30 minutes prior to and continuously throughout imaging, and 500 nM APα or vehicle was added at the time-point indicated by the arrow. (B1) Representative graph of three different experiments (N = 36 neurons/condition/experiment). (B2) Bar graph represents the summary of [Ca2+]i rise in response to control, 10 μM La3+ 500 nM APα, and APα + La3+. Data are mean ± SEM, *p < 0.05 compared to APα treated neurons; N = 3 experiments with 36 neurons/condition/experiment. (C) Nifedipine blocked APα induced [Ca2+]i rises. Neurons were incubated with or without 10 μM nifedipine (an L-type calcium channel blocker) for 30 minutes prior to and continuously throughout imaging, and 250 nM APα or vehicle was added at the time-point indicated by the arrow. (C1) The graph is representative of three different experiments (N = 36 neurons/condition/experiment). (C2) The bar graph represents quantitative changes in [Ca2+]i in response to control, 10 μM nifedipine, APα, and APα + 10 μM nifedipine. Data are mean ± SEM (**p < 0.01 compared to APα treated neurons; N = 36 neurons/condition/experiment).
As development progresses, the effect of APα associated with GABA_A receptor binding gradually switches from excitatory to inhibitory [15,16,57,58]. The timing of the shift from depolarizing to hyperpolarizing via GABA_A receptor varies across brain regions, but is generally complete by the second week of life in the rat and mouse [12,59-61]. Remarkably, APα induction of [Ca²⁺]_i rise in cultured hippocampal neurons closely parallels the developmental time course of Na⁺-K⁺-2Cl[−] co-transporter expression [62,63]. In primary cultures of the E18 rat hippocampal neurons, a mixture of E16–E18 neurons with differing phenotypes will exist. Therefore, it is not surprising that high and low APα-induced calcium responses were observed in this study. The high and low calcium responses may be indicative of the developmental stage of the neuron in culture.

The GABA_A receptor is composed of a pentamer of structurally homologous subunits that may be drawn from the α1–6, β1–3, γ1–3, δ, ϵ, θ, ρ1–3, and π subunit families. The precise subunit composition of different GABA_A receptor isoforms is an important determinant of their pharmacological and biophysical properties [4,64-69], but the exact combination heterogeneity exist. For example, a study indicated that the subunit combinations comprising α1β1γ2 and α3β1γ2 required a three- to seven-fold lower concentration for APα to enhance GABA-evoked current to the same degree as other combinations [70], while another study demonstrated that the potencies of APα to enhance GABA response were significantly higher in the α5β2γ2 receptor versus α1β2γ2 [71]. Another study suggested that the efficacy of APα to enhance GABA response depended on the γ subunit subtype: α1β1γ3 > α1β1γ2 = α1β1γ1 [72]. Interestingly, during migration from the subventricular zone to the cortical plate, neurons became predominantly GABAergic, and their dominant GABA_A receptor subunit expression pattern changed from α4β1γ1 to α3β3γ2 or α3β3γ3, coincident with an increasing potency of GABA on GABA_A receptor-mediated depolarization [73]. Although heterogeneity of the subunit combination exists, all these studies suggest that the effects of APα depend on subunit combinations of the GABA_A receptor and the combination is changing during development. Therefore, the different GABA_A receptor subunit combinations might be the underlying mechanism for the variety of APα-induced [Ca²⁺]_i responses in cultured hippocampal neurons. Along with DIV, the combination of the GABA_A receptor subunits is changing and a possible time-point at which one GABA_A receptor subunit combination switches to another is 3–4 DIV. However, exact matching of neuronal high and low calcium responses to the expression of specific GABA_A receptor subunit combinations, and investigation of the role of each combination, needs to be further addressed.

Conclusion

These data demonstrate that APα induced a dose and developmentally regulated rise in [Ca²⁺]_i that was stereospecific, rapid, and transient in E18 rat hippocampal neurons in primary culture. Moreover, our data indicated that the APα-induced rise in [Ca²⁺]_i requires both GABA_A receptor and L-type calcium channel. Together with earlier findings, we propose that the APα-induced rise in [Ca²⁺]_i provides a mechanism whereby APα can promote proliferation of rodent, and also possible of human, neural progenitor cells.
List of abbreviations used

3α,5βAP: pregnanolone; 3β,5αAP: epiallopregnanolone; 3β,5βAP: epipregnanolone; APα: allopregnanolone; [Ca2+]i: intracellular calcium concentration; DIV: days in vitro; Fura-2 AM: Fura-2 acetoxymethyl ester; GABA\textsubscript{A}: \gamma-aminobutyric acid type A; HBS: HEPES-buffered solution; HBSS: Hank’s balanced salt solution; SEM: standard error of the mean.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

JMW analyzed the data and drafted the manuscript. RDB designed the experiments, coordinated the study and edited the manuscript.

Acknowledgements

This research was supported by grants from the Institute for Study of Aging/Alzheimer’s Drug Discovery Foundation, the Kenneth T and Eileen L Norris Foundation and the LK Whittier Foundation to RDB. The excellent technical contributions of Angela Dietrich are acknowledged.

This article has been published as part of BMC Neuroscience Volume 9 Supplement 2: 2008 Proceedings of the 8th International Conference on Alzheimer’s Disease Drug Discovery. The full contents of the supplement are available online at http://www.biomedcentral.com/1471-2202/9/S2.

References

1. Baulieu EE, Robel P, Schumacher M: Neurosteroids: beginning of the story. Int Rev Neurobiol 2001, 46:1-32.
2. Compagnone NA, Mellon SH: Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol 2000, 21:1-56.
3. Flattau-Tschiers E, Baulieu EE: Neurosteroids: recent findings. Brain Res Brain Res Rev 2001, 37:131-140.
4. Green K, Bolger MB, Brinton RE, McEwen BS: Steroid modulation of the chloride ionophore in rat brain: structure-activity requirements, regional dependence and mechanism of action. J Pharmacol Exp Ther 1988, 246:803-812.
5. Green K, Chang WC, Brinton RE, McEwen BS: GABA-dependent modulation of the Cl- ionophore by steriods in rat brain. Eur J Pharmacol 1987, 136:19-423.
6. Belletti D, Herbe MB, Mitchell EA, Peden DR, Vardy AW, Gentet L, Lambert JJ: Neuroactive steroids and inhibitory neurotransmission: mechanisms of action and physiological relevance. Neuroscience 2006, 138:821-829.
7. Belletti D, Lambert JJ: Neurosteroids: endogenous regulators of the GABA\textsubscript{A} receptor. Nat Rev Neurosci 2005, 6:565-575.
8. Beletti D, Peden DR, Rosahl TW, Wafford KA, Lambert JJ: Extrasynaptic GABA\textsubscript{A} receptors of thalamocortical neurons: a molecular target for hypnotics. J Neurosci 2005, 25:11513-11520.
9. Herbe MB, Beletti D, Lambert JJ: Neurosteroid modulation of synaptic and extrasynaptic GABA\textsubscript{A} receptors. Pharmacol Ther 2007, 116:20-34.
10. Hosie AM, Wilkins ME, da Silva HM, Smart TG: Endogenous neurosteroids regulate GABA\textsubscript{A} receptors through two discrete transmembrane sites. Nature 2006, 444:485-489.
11. Lambert JJ, Beletti D, Peden DR, Vardy AW, Peters JA: Neurosteroid modulation of GABA\textsubscript{A} receptors. Prog Neurobiol 2003, 71:675-80.
12. Cherubini E, Rotvai C, Girasolo JL, Corradetti R, Ben Ari Y: GABA mediated excitation in immature rat CA3 hippocampal neurons. Int J Dev Neurosci 1990, 8:481-490.
13. Wang YF, Gao XB, Po AN van den: Membrane properties underlying patterns of GABA-dependent action potentials in developing mouse hypothalamic neurons. J Neurophysiol 2001, 86:1252-1265.
14. Ben-Ari Y, Gaar WS, Tzio R, Khazipov R: GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 2007, 87:1215-1284.
15. Pol AN van den: Developing neurons make the switch. Nat Neurosci 2004, 7:7-8.
16. Brinton RD: Cellular and molecular mechanisms of estrogen regulation of memory function and neuroprotection against Alzheimer’s disease: recent insights and remaining challenges. Learn Mem 2001, 8:121-133.
17. Son MC, Brinton RD: Regulation and mechanism of L-type calcium channel activation via V1a vasopressin receptor activation in cultured cortical neurons. Neurobiol Learn Mem 2001, 76:388-402.
18. Zhao L, Brinton RD: Vasopressin-induced cytoplasmic and nuclear calcium signaling in embryonic cortical astrocytes: dynamics of calcium and calcium-dependent kinase translocation. J Neurosci 2003, 23:4228-4239.
19. Berninger B, Marty S, Oza R, Da Penha Berzaghi M, Thoenen H, Lindholm D: GABAergic stimulation switches from enhancing to repressing BDNF expression in rat hippocampal neurons during maturation in vitro. Development 1995, 121:2237-2235.
20. Grudzien R, Gajewska B: Intracellular calcium pool emptying induces DNA synthesis in HaCaT keratinocytes. Exp Dermatol 2003, 12:453-459.
21. Means AR: Calcium, calmodulin and cell cycle regulation. FEBS Lett 1994, 347:1-4.
22. Lu KP, Means AR: Regulation of the cell cycle by calcium and calmodulin. Endocr Rev 1993, 14:40-58.
23. Compagnone M van Lookeren, Gill R: Calcium signal, calcium and cell cycle control. Development 1990, 108:525-542.
24. Ashworth R, Bolsover SR: Spontaneous activity-independent intracellular calcium signals in the developing spinal cord of the zebrafish embryo. Brain Res Dev Brain Res 2002, 139:131-137.
25. Owens DF, Flint AC, Dammerman KS, Kriegstein AR: Calcium dynamics of neocortical ventricular zone cells. Dev Neurosci 2000, 22:25-33.
26. Wang JM, Johnston PB, Ball BG, Brinton RD: The neurosteroid allopregnanolone promotes proliferation of rodent and human neural progenitor cells and regulates cell-cycle gene and protein expression. J Neurosci 2003, 23:4706-4718.
27. Brinton RD: The neurosteroid 3alpha-hydroxy-5 alpha-pregnan-20-one induces cytoarchitectural regression in cultured fetal hippocampal neurons. J Neurosci 1994, 14:2763-2774.
28. Wang JM, Irwin WR, Liu L, Chen S, Brinton RD: Regeneration in a degenerating brain: potential of allopregnanolone as a neuronregenerative agent. Curr Alzheimer Res 2007, 4:510-517.
29. Wang JM, Liu L, Irwin WR, Chen S, Brinton RD: Regenerative potential of allopregnanolone. Brain Res Rev 2008, 57:398-409.
30. Wang JM, Singh C, Irwin WR, Liu L, Chen S, Thompson RF, Brinton RD: Allopregnanolone reverses the neurogenic and cognitive deficits of triple transgenic Alzheimer’s mice. Alzheimer’s Dementia 2007, 3:S194.
31. Nilsen J, Chen S, Brinton RD: Dual action of estrogen on glutamate-induced calcium signaling: mechanisms requiring interaction between estrogen receptors and src/mitogen activated protein kinase pathway. Brain Res 2002, 930:216-234.
32. Wu TW, Wang JM, Chen S, Brinton RD: 17Beta-estradiol induced Ca2+ influx via L-type calcium channels activates the Src/ERK/cyclic-AMP response element binding protein signal pathway and BCL-2 expression in rat hippocampal neurons: a potential initiation mechanism for estrogen-induced neuroprotection. Neuroscience 2005, 135:59-72.
33. Henry PD: Atherogenesis, calcium and calcium antagonists. Am J Cardiol 1990, 66:31-61.
37. Raeburn D: Calcium entry blocking drugs: their classification and sites of action in smooth muscle cells. *Med Biol 1987, 65:75-180.

38. Son M, Dietrich A, Brinton RD: Allopregnanolone induces a rapid transient rise in intracellular calcium in embryonic hippocampal neurons. In Program No. 272.8. 2002 Abstract Viewer/Itinerary Planner Washington, DC: Society for Neuroscience; 2002.

39. Son M, Lan NC, Bolger MB, Wieland S, Belelli D, Chen JS: Pharmacology of a GABA(A) receptor coupled steroid recognition site. *Adv Biochem Psychopharmacol 1992, 47:111-117.

40. Gee KW, McAuley LD, Lan NC: A putative receptor for neurosteroids on the GABA(A) receptor complex: the pharmacological properties and therapeutic potential of epalons. *Crit Rev Neurobiol 1995, 9:207-227.

41. Grobin AC, Matthews DB, Wilson WA, Morrow AL, Son M, Dietrich A, Brinton RD: Neurosteroid modulation of recombinant rat hippocampal neurons. *Brain Res 1997, 78:253-258.

42. Obrietan K, Pol AN van den: Neurosteroid modulation of recombinant rat hippocampal neurons in newborn mice and organotypic cerebellar culture. *Dev Neurosci 1997, 19:117-119.

43. Delpere E: Cation-chloride cotransporters in neuronal communication. *Neurosci Lett 2000, 15:309-312.

44. Swartzwelder HS: Use-dependent and trophic action of GABA and related substances in newborn mice and organotypic cerebellar culture. *Brain Res Dev Brain Res 2002, 154:57-552.

45. Rupprecht R, di Michele F, Hermann B, Strohle A, Lancel M, Romeo E, Holsboer F: Neuroactive steroids: molecular mechanisms of action and implications for neuropsychopharmacology. *Neuroscience 1995, 66:130-136.

46. Rupprecht R, di Michele F, Hermann B, Strohle A, Lancel M, Romeo E, Holsboer F: Neuroactive steroids: molecular mechanisms of action and implications for neuropsychopharmacology. *Brain Res Brain Res Rev 2001, 37:59-67.

47. Sanford LD, Purvis B, Tang YX: GABAergic regulation of the central nucleus of the amygdala: implications for sleep control. *Brain Res 2002, 956:276-284.

48. Lambert JJ, Belelli D, Hill-Vennig C, Peters JA: Neurosteroids and GABA(A) receptor function. *Trends Pharmacol Sci 1995, 16:305-303.

49. Impagnatiello F, Pesold C, Longone P, Caruncho H, Fritschy JM, Costa A: Gamma-aminobutyric acid(A) receptor subunit expression in organotypic hippocampal cultures. *Curr Top Med Chem 2001, 1:169-181.

50. Obrietan K, Pol AN van den: Gamma-Aminobutyric acid(A) receptor subunit expression predicts functional changes in hippocampal dentate granule cells during postnatal development. *J Neurochem 2001, 77:1266-1278.

51. Behringer KA, Gault LM, Siegel RE: Differential regulation of GABA A receptor subunit mRNAs in rat cerebellar granule neurons: importance of environmental cues. *J Neurochem 1996, 66:1347-1353.

52. Montpied P, Yan GM, Paul SM, Morrow AL: Transient increase in cerebellar transcriptional activity precedes the expression of GABA(A) receptor alpha6 subunit mRNA during postnatal maturation. *Dev Neurosci 1998, 20:74-82.

53. Poulter MO, Brown LA: Transient expression of GABA receptor subunit mRNAs in the cellular processes of cultured cortical neurons and glia. *Brain Res Mol Brain Res 1999, 69:44-52.

54. Holopainen IE, Lauren HB: Neuronal activity regulates GABA(A) receptor subunit expression in organotypic hippocampal slice cultures. *Neuroscience 2003, 118:967-974.

55. Didelon F, Madonic M, Cherubini E, Bradbury A: Early expression of GABA(A) receptor delta subunit in the neonatal rat hippocampus. *J Neurosci Res 2000, 62:638-643.

56. Lambert JJ, Harney SC, Belelli D, Peters JA: Neurosteroid modulation of recombinant and synaptic GABA receptors. *Int Rev Neurobiol 2001, 46:177-205.

57. Rahman M, Lindblad C, Johnson IM, Backstrom T, Wang MD: Neurosteroid modulation of recombinant rat alpha5beta2gamma2L and alpha1beta2gamma2L GABA(A) receptors in Xenopus oocytes. *Eur J Pharmacol 2001, 47:37-44.

58. Matura R, Reynolds JN: Subunit dependent modulation of GABA(A) receptor function by neuroactive steroids. *Brain Res 1999, 819:75-82.

59. Maric D, Liu QY, Maric I, Chaudry S, Chang YH, Smith SV, Sieghart W, Fritschi J, Barker JL: GABA expression dominates neuronal lineage progression in the embryonic rat neocortex and facilitates neurite outgrowth via GABA(A) autoreceptor/C1- channels. *J Neurosci 2001, 21:2343-2360.

Publish with *BioMed Central* and every scientist can read your work free of charge

"BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:
* available free of charge to the entire biomedical community
* peer reviewed and published immediately upon acceptance
* cited in PubMed and archived on PubMed Central
* yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp