Density functional theory and demixing of binary hard rod-polymer mixtures

P. Bryk

Department for the Modeling of Physico-Chemical Processes,
Maria Curie-Skłodowska University, 20-031 Lublin, Poland
(Dated: November 9, 2018)

A density functional theory for a mixture of hard rods and polymers modeled as chains built of hard tangent spheres is proposed by combining the functional due to Yu and Wu for the polymer mixtures [J. Chem. Phys. 117, 2368 (2002)] with the Schmidt’s functional [Phys. Rev. E 63, 50201 (2001)] for rod-sphere mixtures. As a simple application of the functional, the demixing transition into polymer-rich and rod-rich phases is examined. When the chain length increases, the phase boundary broadens and the critical packing fraction decreases. The shift of the critical point of a demixing transition is most noticeable for short chains.

The addition of the nonadsorbing polymer to a monodisperse suspension of colloidal particles can lead to a phase separation due to depletion interactions arising from a tendency of the system to reduce the volume excluded to the polymer coils. One of the simplest theoretical models taking into account this phenomenon is the so-called Asakura-Oosawa (AO) model of colloid-polymer mixtures where the ideal polymer coils (modeled as spheres) can freely interpenetrate each other but the polymer-colloid and colloid-colloid interactions are of the hard sphere type. Initial studies of such systems focused on the bulk phase behavior, however recently developed density functional theory (DFT) for the AO model initiated investigations of inhomogeneous colloid-polymer mixtures. When brought close to a hard wall, such mixtures may develop a sequence of layering transitions in the partial wetting regime prior to a transition to complete wetting.

Similar mechanism of fluid-fluid phase separation can be found if other mesoscopic particles such as hard rods are used as depletant agents. Bolhuis and Frenkel (BF) used computer simulations and free volume theory to study bulk phase behavior of mixtures of colloidal hard spheres and vanishingly thin hard rods. They found a surprisingly good agreement (c.f. Fig. 3 in BF) between the free volume theory and Gibbs ensemble Monte Carlo simulations. Although the vanishing thickness and volume constitutes a significant simplification (e.g. it rules out the isotropic-nematic transition), the BF model is relevant for some experimental systems e.g. mixtures of silica spheres and silica coated boehmite rods. In order to describe inhomogeneous hard rod-hard sphere systems Schmidt proposed a density functional theory which in its structure closely resembles the AO functional. The functional for the BF model incorporates the exact low-density limit and yields the same equation of state as in Ref. BF. Moreover, entropic surface phase transitions found previously in model colloid-polymer mixtures close to a hard wall were also recently encountered in hard rod-hard sphere mixtures. This further demonstrates deep similarities between the two models.

The aim of the present work is to construct a functional for a mixture of vanishingly thin hard rods and polymers. Such systems can be regarded as simple microscopic models of the liquid crystal-polymer mixtures. The functional is constructed by combining the Schmidt’s functional for the BF model with the Yu and Wu functional for mixtures of polymeric fluids. To make this conjecture we take the advantage of the fact that both functionals underlie the fundamental measure theory (FMT) of Rosenfeld. As a simple application we investigate bulk phase diagrams resulting from the proposed theory.

Consider a mixture of hard, vanishingly thin needles (species N) of length L and polymers (species P) modeled as chains composed from M tangentially bonded hard-sphere segments of diameter $σ$. The hard-sphere monomers building up the chains are freely jointed i.e. they can adopt any configuration as long as it is free of the intermolecular and intramolecular overlap. The interaction potential between needles $V_{NN} = 0$ for all separations, while the pair potential between a polymer segment and a hard rod, V_{NP}, and between two polymer segments, V_{PP}, is of a hard-core type i.e. is infinite if a pair of objects overlap and zero otherwise. The grand potential of such system as a functional of local densities of polymers $ρ_P(\mathbf{r})$ and needles $ρ_P(\mathbf{r}, \mathbf{ω})$ can be written as

$$\Omega[ρ_P(\mathbf{r}, \mathbf{ω})] = F_{id}[ρ_P(\mathbf{r}), ρ_P(\mathbf{r}, \mathbf{ω})] + F_{ex}[ρ_P(\mathbf{r}), ρ_P(\mathbf{r}, \mathbf{ω})] + \int dR ρ_P(\mathbf{r})(V_{ext}^{(P)}(\mathbf{r}) - μ_P)$$

$$+ \int dr \int \frac{dω}{4π} ρ_P(\mathbf{r}, \mathbf{ω})(V_{ext}^{(N)}(\mathbf{r}, \mathbf{ω}) - μ_N),$$

where $\mathbf{R} \equiv (\mathbf{r}_1, \mathbf{r}_2, \cdots, \mathbf{r}_M)$ denotes a set of coordinates describing the segment positions, $\mathbf{ω}$ describes the orientation of the rod, $V_{ext}^{(P)}(\mathbf{r})$, $μ_P$, $V_{ext}^{(N)}(\mathbf{r}, \mathbf{ω})$ and $μ_N$ are the external and the chemical potentials for polymers and rods, respectively. The ideal part of the free energy is known exactly

$$βF_{id}[ρ_P(\mathbf{r}), ρ_P(\mathbf{r}, \mathbf{ω})] = β \int d\mathbf{r} ρ_P(\mathbf{r})V_0(\mathbf{r}) +$$
\[\int d\mathbf{r} \rho_P(\mathbf{r}) \ln(\Lambda_P^3 \rho_P(\mathbf{r})) - 1 + \int d\mathbf{r} \int \frac{d\omega}{4\pi} \rho_N(\mathbf{r}, \omega) \ln(\Lambda_N^3 \rho_N(\mathbf{r}, \omega)) - 1, \] (2)

where \(\Lambda_P \) and \(\Lambda_N \) are the thermal wavelengths for polymers and needles, respectively. The total bonding potential \(V_b(\mathbf{R}) \) is a sum of bonding potentials \(v_b \) between the segments. We assume that \(\Phi \) can be represented as a sum of the hard-sphere \(\Phi_{HS} \) and needle \(\Phi_n \) contributions and the orientation-dependent polymer-needle contribution, \(\Phi_{PN} \).

Within the framework of the fundamental measure theory the excess free energy density \(\Phi \) is expressed as a simple function of the weighted densities \(n^{(i)}_\alpha \). We assume that \(\Phi \) can be represented as a sum of the hard-sphere \(\Phi_{HS} \) and needle \(\Phi_n \) contributions and the orientation-dependent polymer-needle contribution, \(\Phi_{PN} \).

The equation above implies that the polymer-needle contribution arising due to the chain connectivity is evaluated using the Wertheim’s first-order perturbation theory for a bulk fluid \(15 \) and extended (using FMT-style weighted densities) by Yu and Wu to inhomogeneous systems \(12 \).

\[\Phi_P(\{n^{(P)}_{\alpha}\}) = \frac{1}{M} n_0^P \ln[y_{hs}(\sigma, \{n^{(P)}_{\alpha}\})], \] (10)

where \(\zeta = 1 - n_{v_2}^{(P)} / n_{v_2}^{(P)} \), while \(y_{hs} \) is connected with the Carnahan-Starling expression for the contact value of the radial distribution function of a hard-sphere mixture

\[y_{hs}(\sigma, \{n^{(P)}_{\alpha}\}) = \frac{1}{1 - n_3^{(P)}} + \frac{n_2^{(P)} \sigma \zeta}{4(1 - n_3^{(P)})^2} + \frac{(n_2^{(P)})^2 \sigma^2 \zeta}{72(1 - n_3^{(P)})^3}. \] (11)

The needle weighted densities, \(n^{(N)}_\alpha \), are obtained through spatial convolutions of the needle local density and the corresponding orientation-dependent weight functions

\[n^{(N)}_{\alpha}(\mathbf{r}, \omega) = \int d\mathbf{r}' \rho_N(\mathbf{r}', \omega) w^{(N)}_{\alpha}(\mathbf{r} - \mathbf{r}', \omega), \quad \alpha = 0, 1, \] (13)

while the “mixed” polymer-segment-needle weighted density, \(n^{(PN)}_2 \), is obtained via spatial convolution of the polymer segment density and an orientation-dependent weight function

\[n^{(PN)}_2(\mathbf{r}, \omega) = \int d\mathbf{r}' \rho_{PS}(\mathbf{r}') w^{(PN)}_2(\mathbf{r} - \mathbf{r}', \omega). \] (14)

The equation above implies that the excess free energy stems solely from the hard-core repulsion between the needle and the hard sphere forming the polymer segment.

The needle weighted densities, \(n^{(N)}_\alpha \), are obtained through spatial convolutions of the needle local density and the corresponding orientation-dependent weight functions

\[n^{(N)}_{\alpha}(\mathbf{r}, \omega) = \int d\mathbf{r}' \rho_N(\mathbf{r}', \omega) w^{(N)}_{\alpha}(\mathbf{r} - \mathbf{r}', \omega), \quad \alpha = 0, 1, \] (13)

while the “mixed” polymer-segment-needle weighted density, \(n^{(PN)}_2 \), is obtained via spatial convolution of the polymer segment density and an orientation-dependent weight function

\[n^{(PN)}_2(\mathbf{r}, \omega) = \int d\mathbf{r}' \rho_{PS}(\mathbf{r}') w^{(PN)}_2(\mathbf{r} - \mathbf{r}', \omega). \] (14)

Corresponding weight functions are given as

\[w^{(N)}_1(\mathbf{r}, \omega) = \frac{1}{4} \int_{-L/2}^{L/2} dl \delta(\mathbf{r} + \omega l), \]
\[w^{(N)}_0(\mathbf{r}, \omega) = \frac{1}{2} \delta(\mathbf{r} + \omega l) + \delta(\mathbf{r} - \omega l), \]
\[w^{(PN)}_2(\mathbf{r}, \omega) = 2 |w^{(P)}_{v_2}(\mathbf{r}) \cdot \omega|. \] (15)

This completes the prescription for the functional. The present theory reduces to the Schmidt’s functional \(11 \) if \(M = 1 \) and to Yu and Wu functional \(13 \) if the density
of rods \(\rho_N = 0 \). Note also that, similarly to \(\Phi \), the functional is linear in the local density of rods.

Although the proposed DFT is intrinsically designed to study inhomogeneous systems, here we restrict ourselves to the isotropic bulk phases where the density of both species are constant. In this case the scalar weighted densities become proportional to the bulk densities of needles and polymers, while the vector weighted densities vanish. Consequently from Eq. 6 we obtain \(n_0^{(P)} = \xi_0^{(P)} \rho_P = \xi_0^{(P)} \rho_{PS} \), with \(\xi_0^{(P)} = \pi/6 \sigma^3 \), \(\xi_1^{(P)} = \pi \sigma^2 \), \(\xi_2^{(P)} = \sigma/2 \) and \(\xi_0^{(P)} = 1 \). Likewise Eq. 13 yields \(n_0^{(N)} = \xi_0^{(N)} \rho_N \) where \(\xi_1^{(N)} = L/4 \) and \(\xi_0^{(N)} = 1 \). Finally Eq. 14 leads to \(n_2^{(PN)} = \xi_2^{(PN)} \rho_{PS} \). After inserting the above expressions for the weighted densities into the Eq. 6 and Eqs. 10,12 the total free energy per unit volume, \(\Phi_c \), is evaluated as \(\Phi_c = \Phi_{HS} + \Phi_P + \Phi_{PN} + \beta^{-1} \rho_P [ln(\rho_P \Lambda_P^3) - 1] + \beta^{-1} \rho_N [ln(\rho_N \Lambda_N^3) - 1] \). From \(\Phi_c \) the pressure, \(p \), and the chemical potentials of both species are easily calculated

\[
\beta p = -\Phi_c + \sum_{j=P,N} \rho_j \frac{\partial \Phi_c}{\partial \rho_j}, \quad \beta \mu_j = \frac{\partial \Phi_c}{\partial \rho_j}. \tag{16}
\]

Under appropriate conditions a mixture of polymers and hard rods undergoes entropically driven demixing transition to polymer-rich (rod-poor) and polymer-poor (rod-rich) phases. The coexisting equilibrium densities (binodals) were obtained by solving simultaneously equations for the equality of pressures and chemical potentials in two phases. The binodals delimiting the regions stable against fluctuations of density and composition were evaluated from the condition \(\det[\frac{\partial^2 \Phi_c}{\partial \rho_i \partial \rho_j}] = 0 \), \(i,j = P,N \). The critical points were evaluated from

\[
s \frac{\partial^3 \Phi_c}{\partial \rho_P^3} + 3s^2 \frac{\partial^3 \Phi_c}{\partial \rho_P^2 \partial \rho_N} + 3s \frac{\partial^3 \Phi_c}{\partial \rho_P \partial \rho_N^2} + \frac{\partial^3 \Phi_c}{\partial \rho_N^3} = 0, \tag{17}
\]

The above equation arises from the fact that at the critical point the tie-line connecting the coexisting densities becomes tangent to the spinodal line \(\Phi \).

In Fig. 1 we show examples of binodals (solid lines), spinodals (dashed lines) and critical points (black circles) resulting from the present theory. The phase diagrams plotted in the polymer packing fraction \(\eta_p = \frac{\sigma^3 M \rho_P}{\Lambda_P^3} \) versus scaled needle reservoir density, \(\rho_N^{(r)} L^2 \sigma \) representation (see the inset) were evaluated for systems with \(M = 1, 10, 100 \) for constant \(q = L/\sigma = 1 \). For the special case \(M = 1 \) (the uppermost diagram) the system reduces to the BF model \(\Phi \).

As the chain length is increased, the phase boundary becomes more asymmetric and the critical point moves towards lower polymer packing fractions and towards lower reservoir needle densities. Another interesting feature observed in Fig. 1 is that when the polymer packing fraction-actual needle density representation instead of the polymer packing fraction-reservoir needle density representation is chosen, the critical points for different size ratios \(q \) are located on the spinodal of the system with \(q = 1 \). We find the same behavior also in the present model i.e. for \(M > 1 \). In the main plot of Fig. 1 we show phase diagram for a mixture of 10-mers and hard rods. The critical points for mixtures with different size ratios (open diamonds, from top to bottom for \(q = 20, 15, 8 \) and 0.1) lie on the spinodal for the system with \(q = 1 \) (dashed line).

Let us now consider the limit of very long polymer chains. Intuitively one could argue, that in this regime the phase behavior of a needle-polymer mixture should barely depend on the rod length to polymer-segment diameter ratio \(q = L/\sigma \) because the physical dimensions of the polymer e.g. the gyration radius, \(R_g \) become much bigger than the rod elongation. This scenario is captured within the present theory. In Fig. 2 we show the phase diagram for a mixture of hard-sphere monomers (\(M = 1 \)) and hard rods for the size ratio \(q = 1 \). The critical points for different size ratios \(q \) (black diamonds) are located on the spinodal. Open diamonds denote the critical points for the systems with \(M = 2, 5, 20, 100, \) and 1000, respectively. As the chain length increases the critical points for the systems with different size ratios but the
FIG. 2: The phase diagram for a hard rod-hard sphere monomer ($M = 1$) mixture with the size ratio $q = 1$. Solid and dashed line denote the binodal and the spinodal, respectively. Black diamonds on the spinodal indicate the critical points of a demixing transition for monomer-hard rod mixtures with different size ratios $q = 8, 5, 1$ and 0.4 (going from top to bottom). Open diamonds denote the critical points of a demixing transition for a mixture of polymers consisting of M monomers and hard rods for fixed q and for $M = 2, 5, 20, 100$ and 10000 (starting from the right hand side). Dotted lines serve as a guide to the eye and connect the critical points for the systems with the same size ratio q.

In conclusion, in this work we propose a density functional theory for a mixture of vanishingly thin hard rods and polymers modeled as chains built of hard tangent spheres. The functional is constructed by combining the functional due to Yu and Wu for polymer mixtures [13] with Schmidt’s functional for hard rod-sphere mixtures [11]. The proposed theory predicts a demixing transition similar in its nature to that observed for sphere-rod systems. The present functional is well suited to study inhomogeneous systems. It would be of interest to consider a fluid-fluid interface or to investigate surface phase transitions such as entropic wetting or layering that have been discovered in colloid-polymer and colloid-rod mixtures. It is also straightforward to incorporate the Onsager limit [21] of the needle contribution to the functional generating thus a more sophisticated model of inhomogeneous liquid crystal-polymer mixtures. Some of these topics are already under study in our laboratory.

This work has been supported by KBN of Poland under the Grant ”Wpływ samoorganizacji na równowagi fazowe w płynach złożonych”.

[1] S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954).
[2] A. Vrij, Pure Appl. Chem. 48, 471 (1976).
[3] A.P. Gast, C.K. Hall, and W.B. Russell, J. Colloid Interface Sci. 96, 251 (1983).
[4] H.N.W. Lekkerkerker, W.C.K. Poon, P.N. Pusey, A. Stroobants, and P.B. Warren, Europhys. Lett. 20, 559 (1992).
[5] M. Schmidt, H. Löwen, J.M. Brader, and R. Evans, Phys. Rev. Lett. 85, 1934 (2000).
[6] J.M. Brader, R. Evans, M. Schmidt, and H. Löwen, J. Phys.: Condens. Matter 14, L1 (2002).
[7] M. Dijkstra and R. van Roij, Phys. Rev. Lett. 89, 208303 (2002).
[8] P. Bolhuis and D. Frenkel, J. Chem. Phys. 101, 9869 (1994).
[9] G.A. Vliegenthart and H.N.W. Lekkerkerker, J. Chem. Phys. 111, 4153, (1999).
[10] G.H. Koenderink, G.A. Vliegenthart, S.G.J.M. Kluitmans, A. van Blaaderen, A.P. Philipse, and H.N.W. Lekkerkerker, Langmuir 15, 4693, (1999).
[11] M. Schmidt, Phys. Rev. E 63, 50201 (2001).
[12] R. Roth, J.M. Brader, and M. Schmidt, Europhys. Lett. 63, 549 (2003).
[13] Y.-X. Yu and J. Wu, J. Chem. Phys. 117, 2368 (2002).
[14] Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989).
[15] M.S. Wertheim, J. Chem. Phys. 87, 7323 (1987).
[16] In the Ref. 3 Carnahan-Starling equation of state was used.
[17] J.S. Rowlinson, Liquids and Liquid Mixtures, (Butterworths, London, 1959), p. 205.
[18] P. Bolhuis, A.A. Louis, and J.-P. Hansen, Phys. Rev. Lett. 89, 128302 (2002).
[19] R.P. Sear, Phys. Rev. E 66, 51401 (2002).
[20] P. Paricaud, S. Varga, and G. Jackson, J. Chem. Phys. 118, 8525 (2003).
[21] J.M. Brader, A. Esztermann, and M. Schmidt, Phys. Rev. E 66, 31401 (2002).