Observation of the $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ and measurement of their masses

CMS Collaboration; Canelli, Florencia; Kilminster, Benjamin; Aarestad, Thea; Brzhechko, Danyyl; Caminada, Lea; De Cosa, Anna Paola; Del Burgo, Riccardo; Donato, Silvio; Galloni, Camilla; Hreus, Tomas; Leontsinis, Stefanos; Mikuni, Vinicius Massami; Neutelings, Izaak; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Schweiger, Korbinian; Seitz, Claudia; Takahashi, Yuta; Wertz, Sebastien; Zucchetta, Alberto; et al

Abstract: The $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ states are observed through their $\gamma(3S)\gamma$ decays, using an event sample of proton-proton collisions collected by the CMS experiment at the CERN LHC. The data were collected at a center-of-mass energy of 13 TeV and correspond to an integrated luminosity of 80.0 fb$^{-1}$. The $\gamma(3S)$ mesons are identified through their dimuon decay channel, while the low-energy photons are detected after converting to e^+e^- pairs in the silicon tracker, leading to a $\chi_{b1}(3P)$ mass resolution of 2.2 MeV. This is the first time that the $J=1$ and 2 states are well resolved and their masses individually measured: $10513.42\pm0.41\text{(stat)}\pm0.18\text{(syst)}\text{MeV}$ and $10524.02\pm0.57\text{(stat)}\pm0.18\text{(syst)}\text{MeV}$; they are determined with respect to the world-average value of the $\gamma(3S)$ mass, which has an uncertainty of 0.5 MeV. The mass splitting is measured to be $10.60\pm0.64\text{(stat)}\pm0.17\text{(syst)}\text{MeV}$.

DOI: https://doi.org/10.1103/PhysRevLett.121.092002
Observation of the $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ and Measurement of their Masses

A. M. Sirunyan et al.*
(CMS Collaboration)

(Received 28 May 2018; revised manuscript received 8 July 2018; published 29 August 2018)

The $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ states are observed through their $\Upsilon(3S)$ decay modes, using an event sample of proton-proton collisions collected by the CMS experiment at the CERN LHC. The data were collected at a center-of-mass energy of 13 TeV and correspond to an integrated luminosity of 80.0 fb$^{-1}$. The $\Upsilon(3S)$ mesons are identified through their dimuon decay channel, while the low-energy photons are detected after converting to e^+e^- pairs in the silicon tracker, leading to a $\chi_{b}(3P)$ mass resolution of 2.2 MeV. This is the first time that the $J = 1$ and 2 states are well resolved and their masses individually measured: 10513.42 ± 0.41(stat) ± 0.18(syst) MeV and 10524.02 ± 0.57(stat) ± 0.18(syst) MeV; they are determined with respect to the world-average value of the $\Upsilon(3S)$ mass, which has an uncertainty of 0.5 MeV. The mass splitting is measured to be 10.60 ± 0.64(stat) ± 0.17(syst) MeV.

DOI: 10.1103/PhysRevLett.121.092002

Although quantum chromodynamics (QCD) is well established as the theory of the strong interaction, a complete understanding of the (nonperturbative) processes that lead to the binding of quarks and gluons into hadrons is still lacking [1–3]. The bottomonium family, composed of beauty quark-antiquark bound states $b\bar{b}$, plays a special role in understanding how the strong force binds quarks into hadrons because the large quark mass allows two important theoretical simplifications. First, the hard-scattering production of a protoquarkonium quark-antiquark pair can be described in perturbation theory [4–6]. Second, the binding of the quark-antiquark pair can be described in terms of lattice-calculable nonrelativistic potentials [7–9]. Particularly stringent tests of current theories of quarkonium production can be achieved by examining the individual spin states of the quarkonium multiplets [10–14].

The $\chi_{b}(3P)$, observed at a mass of 10.5 GeV by the ATLAS, D0, and LHCB Collaborations [15–18], is especially interesting given that its properties could be affected by the proximity of the open-beauty ($B\bar{B}$) threshold. Measurements of the masses of the $\chi_{b1}(3P)$ triplet states, with total angular momentum $J = 0$, 1, and 2, probe details of the $b\bar{b}$ interaction and test theoretical treatments of the influence of open-beauty states on the bottomonium spectrum. These measurements may also help clarify the nature of several unexpected charmoniumlike states, including the enigmatic $X(3872)$ [19]. Contending interpretations include the possibility that it is a mixture of a $\chi_{c1}(2P)$ state and a $D\bar{D}^{*}$ molecule or a compact tetraquark [20–22] or that it is the $\chi_{c1}(2P)$, modified by strong-interaction effects associated with the coincident $D\bar{D}^{*}$ threshold [23]. The bottomonium analogs of the $\chi_{c1}(2P)$ and $X(3872)$ states would be the $(b\bar{b}) \chi_{b1}(3P)$ state and a possible X_{b} state at the BB^{*} threshold. Confirming that the $\chi_{b1}(3P)$ is well below the open-beauty threshold would suggest differences with the charmonium system, where the $\chi_{c1}(2P)$ state is expected approximately 100 MeV above the $D\bar{D}$ threshold [24]. Among various possibilities, the 10.5 GeV peak could be the X_{b} or a mixture of the $\chi_{b1}(3P)$ and X_{b} [25]; it could also simply be the conventional (unresolved) $\chi_{b}(3P)$, in which case a hypothetical X_{b} might exist with a mass close to the BB^{*} threshold. The observation of a doublet structure in the 10.5 GeV peak and a precise measurement of the mass splitting should confirm the nature of the state and clarify the existence or absence of effects induced by the nearby open-beauty threshold.

This Letter reports the first observation of resolved $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ states, and the measurement of their masses. The analysis uses the $\Upsilon(3S)$ decay channel, with the $\Upsilon(3S)$ decaying to a dimuon and the photon converting into an e^+e^- pair. It is based on pp data samples collected at the CERN LHC by the CMS experiment, at a center-of-mass energy of 13 TeV, in 2015, 2016, and 2017, corresponding to integrated luminosities of 2.7, 35.2, and 42.1 fb$^{-1}$, respectively [26–28]. As happens in the χ_{c}, $\chi_{b}(1P)$, and $\chi_{b}(2P)$ cases, the $J = 0$ state of the $\chi_{b}(3P)$ multiplet is expected to have a negligible radiative-decay branching fraction and not be observable in the present data sample.

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a
magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two end-cap sections. Forward calorimeters extend the pseudorapidity coverage provided by the barrel and end-cap detectors. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [29].

The data used in this analysis were collected using a two-level trigger system [30]. The first level consists of custom hardware processors and uses information from the muon system to select events with two muons. The high-level trigger requires an opposite-sign muon pair of invariant mass within 8.5–11.5 GeV, a dimuon vertex-fit \(\chi^2 \) probability larger than 0.5%, and a distance of closest approach between the two muons smaller than 0.5 cm. The trigger also requires dimuon transverse momentum \(p_T > 7.9 \) GeV (2015–2016) or 11.9 GeV (2017), and dimuon rapidity \(|y| < 1.25\) (2015–2016) or \(|y| < 1.5\) (2017). The analysis uses photons detected through their conversions to \(e^+e^- \) pairs, following the data reconstruction and selection procedures used in Refs. [31,32].

The muon track must have more than five hits in the tracker, at least one of them being in a pixel detector layer. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [29].

The data used in this analysis were collected using a two-level trigger system [30]. The first level consists of custom hardware processors and uses information from the muon system to select events with two muons. The high-level trigger requires an opposite-sign muon pair of invariant mass within 8.5–11.5 GeV, a dimuon vertex-fit \(\chi^2 \) probability larger than 0.5%, and a distance of closest approach between the two muons smaller than 0.5 cm. The trigger also requires dimuon transverse momentum \(p_T > 7.9 \) GeV (2015–2016) or 11.9 GeV (2017), and dimuon rapidity \(|y| < 1.25\) (2015–2016) or \(|y| < 1.5\) (2017). The analysis uses photons detected through their conversions to \(e^+e^- \) pairs, following the data reconstruction and selection procedures used in Refs. [31,32].

The muon track must have more than five hits in the tracker, at least one of them being in a pixel detector layer. The muons selected off-line must match, in pseudorapidity and azimuthal angle, that triggered the detector readout. They are combined to form \(\Upsilon \) candidates, which are kept for further processing if \(|y| < 1.2\) and \(p_T > 14 \) GeV.

The selected dimuon sample contains about \(10 \times 10^6 \Upsilon (1S), 3.9 \times 10^6 \Upsilon (2S), \) and \(2.6 \times 10^6 \Upsilon (3S) \). Figure 1 shows the invariant mass distributions of the selected dimuons, in two halves of the covered rapidity range. Fitting such distributions in fine \(|y|\) bins reveals that the dimuon mass resolution \(\sigma_m \) varies quadratically from 60 MeV at \(y = 0 \) to 120 MeV at \(|y| = 1.2\). The background in the mass distribution of the \(\chi_b(3P) \) candidates is reduced by selecting dimuons with invariant mass between \(M[\Upsilon (3S)] - n_\sigma \sigma_m(y) \) and \(M[\Upsilon (3S)] + 2.5 \sigma_m(y) \), where \(M[\Upsilon (3S)] \) is the world-average \(\Upsilon (3S) \) mass [33]. The low-mass edge of the \(\Upsilon (3S) \) signal window is defined by \(n_\sigma = 2 \) for \(|y| < 0.9\) and \(n_\sigma = 1.5 \) for \(0.9 < |y| < 1.2\), to minimize the contamination from the \(\Upsilon (2S) \) resonance.

Photon candidates are formed from two oppositely charged tracks, of which one has at least four tracker hits and the other at least three. The tracks must have a small angular separation, a small distance of closest approach, a conversion vertex at least 1.5 cm away from the beam axis, and a \(\chi^2 \) probability of the kinematic fit imposing zero mass and a common vertex that exceeds 0.05%. A more detailed account of the selection criteria is given in Ref. [32]. Only photons with pseudorapidity \(|\eta| < 1.2\) and \(p_T > 500 \) MeV are kept.

The dimuon is combined with the converted photon to form the \(\chi_b(3P) \) candidate. A kinematic fit of the dimuon-photon system is performed with the following conditions: the mass of the dimuon is fixed to the \(\Upsilon (3S) \) world-average mass, 10.3552 GeV [33]; the electron-positron pair is constrained to have a common vertex and zero mass; and the two muons and the photon are constrained to have a common vertex. The \(\chi_b(3P) \) candidate is kept if the \(\chi^2 \) probability of the kinematic fit exceeds 1%. Two or more candidates are found in about 1% of the events; only the one with the best fit is retained.

To accurately measure the invariant mass of the \(\chi_b(3P) \) candidate, the photon energy scale (PES) must be calibrated. The PES, defined as the ratio between the reconstructed and true energy, is measured using a sample of \(\chi_c \rightarrow J/\psi \gamma \rightarrow \mu^+\mu^-\gamma \) events, through the ratio \(n_{\mu\mu\gamma}/M[\chi_c]^2 - M(J/\psi)^2 \), where \(n_{\mu\mu\gamma} \) and \(m_{\mu\mu} \) are the \(\mu\mu\gamma \) and \(\mu\mu \) invariant masses, and \(M[\chi_c] \) and \(M(J/\psi) \) are the world-average masses [33] of the \(\chi_c \) and \(J/\psi \) states. The values are obtained in several bins of photon energy, profiling from a large \(J/\psi \rightarrow \mu\mu \) data sample collected in the same running periods as the \(\Upsilon \rightarrow \mu\mu \) data. The energy spectrum of the \(\chi_c \rightarrow J/\psi \gamma \) photons covers the range relevant for the \(\Upsilon \gamma \) analysis. The PES values, shown in Fig. 2 as a function of the measured photon energy \(E_\gamma \), are parametrized with the function \(p_0 + p_1 \exp(-E_\gamma/p_2) \), where \(p_0 \), \(p_1 \), and \(p_2 \) are free parameters in the fit. The resulting function is then used for the event-by-event correction of the photon energy in the computation of the \(\Upsilon \gamma \) invariant mass.

Figure 3 shows the PES-corrected \(\Upsilon (nS) \)-photon invariant mass distributions, with \(n = 1, 2, 3 \). The \(\Upsilon (1S) \gamma \) and \(\Upsilon (2S) \gamma \) events are selected with the same criteria as used for the \(\Upsilon (3S) \gamma \) events, except that the dimuon invariant mass is required to be between \(M[\Upsilon (1S)] - 2.5 \sigma_m(y) \)

FIG. 1. The dimuon invariant mass distribution, in two equidistant \(|y|\) ranges. The midrapidity dimuons have a significantly better mass resolution.
and $M[\Upsilon(1S)] + 2\sigma_m(y)$ and within $M[\Upsilon(2S)] \pm 2\sigma_m(y)$, respectively.

The prominent $\chi_b(1P)$ and $\chi_b(2P)$ peaks seen in the $\Upsilon(1S)\gamma$ and $\Upsilon(2S)\gamma$ distributions in Fig. 3 are fit using a procedure analogous to the one described in the next paragraph. The resulting $\chi_b(1P)$ and $\chi_b(2P)$ masses are in agreement with the world-average values [33], as shown in the inset, confirming the validity of the PES correction function.

Figure 4 shows the $\Upsilon(3S)\gamma$ invariant mass distribution along with the result of an unbinned extended maximum-likelihood fit. The background is described by $(m - q_0)^2 \exp[\nu(m - q_0)]$, where m is the $\chi_b(3P)$ candidate invariant mass, λ and ν are free parameters, and q_0 is fixed to 10.4 GeV. The $\chi_b(1P)$ and $\chi_b(2P)$ signal peaks are modeled with a double-sided crystal ball function [34], which complements a Gaussian core with low- and high-mass power-law tails, defined by the transition points ($\alpha_{L,H}$) and the power-law exponents ($n_{L,H}$). The tails of the signal functions, identical for both peaks, are defined by the parameters $n_L = 3$ and $\alpha_L = 0.6$, for the low-mass tail, and by $n_H = 2$ and $\alpha_H = 1.4$, for the high-mass tail. These values reflect studies of simulated distributions, generated with PYTHIA 8.230 [35], complemented by EVTGEN 1.6.0 [36] to simulate the quarkonium decays and by PHOTOS 3.61 [37] for the modeling of final-state radiation. The generated events undergo a full simulation of the detector response, according to the implementation of the CMS detector within GEANT4 [38]; the samples include multiple $p p$ interactions in the same or nearby beam crossings. The simulation studies show that the resolution of the $\Upsilon\gamma$ mass measurement is linearly proportional to the difference between the mass of the parent P-wave state and the mass of the daughter S-wave state, so that one can impose a linear relationship between the Gaussian widths of the two signal shapes: $\sigma_2/\sigma_1 = \{M[\chi_b(3P)] - M[\Upsilon(3S)]\}/\{M[\chi_b(3P)] - M[\Upsilon(3S)]\}$. This relation assumes that the natural widths of the resonances are negligible with respect to the instrumental resolution. Fitting without this constraint gives a σ_2/σ_1 ratio in agreement with the assumption, albeit with a large uncertainty.
The fitted number of signal events is 372 ± 36 and the fit χ^2 is 46, for 57 degrees of freedom. The masses of the two resonances are measured to be 10513.42 ± 0.41 and 10524.02 ± 0.57 MeV, where the uncertainties are statistical only. The corresponding mass difference is $\Delta M = 10.60 \pm 0.64$ MeV, where the statistical uncertainty takes into account the correlation between the two fitted mass values. The mass resolution of the low-mass peak is 2.18 ± 0.32 MeV, which agrees with the expectations from simulation studies. The corresponding resolutions in the $\Upsilon(1S)\gamma$ and $\Upsilon(2S)\gamma$ mass distributions are 7 and 15 MeV, respectively, justifying why only the $\Upsilon(3S)\gamma$ distribution is used in this analysis. The local significance of the double-peak structure was evaluated for several fixed values of ΔM using a likelihood ratio of two hypotheses, one of them fixing the yield of the second peak to zero: it exceeds nine standard deviations in the range $9 < \Delta M < 12$ MeV.

The mass measurements are expected to be essentially insensitive to the event selection criteria. The analysis was repeated splitting the data sample into subsamples, using different dimuon rapidity or p_T ranges, or different data collection periods. The results are also consistent when the photon p_T thresholds are varied between 400 and 600 MeV, the dimuon p_T thresholds are varied between 12 and 16 GeV, a broader $\Upsilon(3S)$ mass window is used, $M[\Upsilon(3S)] \pm 2.5\sigma_m(y)$, and the minimum dimuon-photon four-track vertex-fit χ^2 probability is increased to 1.5%. Given the absence of significant changes in the results, the systematic uncertainty related to the selection criteria is considered negligible. There is also no significant change in the results if the σ_2/σ_1 ratio is left free in the fit.

A systematic uncertainty is assigned to account for the fact that the parameters α_L, α_H, and q_0 are fixed in the signal and background fit models. The measured mass distribution was refitted 1000 times, each time with different values of those parameters, randomly generated according to Gaussian distributions with nominal mean values and standard deviations reflecting their (correlated) uncertainties. The α_L and α_H uncertainties are evaluated as the difference between the fitted values from the measured and simulated $\chi_{b1}(1P)$ peaks in the $\Upsilon(1S)\gamma$ mass distribution, while the q_0 uncertainty is evaluated from a fit to the data leaving q_0 as a free parameter. The rms of the distribution of the 1000 fit results is taken as the corresponding uncertainty. The choice of the analytical function describing the background shape induces a systematic uncertainty that is evaluated by redoing the fit with two alternative options: a power-law function, $(m - q_0)^4$ with q_0 fixed to 10.4 GeV, and a Chebyshev polynomial of second order. The total fit-model systematic uncertainty is 0.05 MeV, both in the mass and mass difference measurements.

The uncertainty in the final results reflecting the precision of the PES correction function is evaluated with pseudoexperiments, randomly generating 400 correction functions by drawing new values for its parameters from suitable Gaussian functions, respecting the corresponding covariance matrix to account for the correlations among the parameters. The uncertainty associated with the choice of a specific function to fit the photon energy dependence of the PES is evaluated by using a constant correction factor, taken as the average correction in the range $(E_\gamma < 2$ GeV) relevant for the photons emitted in the $\chi_h(3P) \to \Upsilon(3S)\gamma$ decays. The systematic uncertainty reflecting the PES correction is 0.16 MeV for ΔM and 0.17 MeV for $M[\chi_{b1}(3P)]$.

The total systematic uncertainties are obtained by adding the individual terms in quadrature. The invariant mass of the χ_h candidates is determined by fixing the dimuon mass to the world-average $\Upsilon(3S)$ mass [33], presently affected by an uncertainty of 0.5 MeV. The ΔM measurement is insensitive to this uncertainty. The mass difference between the two states is measured to be $\Delta M = 10.60 \pm 0.64$(stat) ± 0.17(syst) MeV, while the two masses are determined to be 10513.42 ± 0.41(stat) ± 0.18(syst) and 10524.02 ± 0.57(stat) ± 0.18(syst) MeV.

These values can be compared to the predictions of theoretical calculations [39–50]. Out of 19 ΔM predictions, 18 range from 8 to 18 MeV, mostly depending on the potentials describing the $b\bar{b}$ nonperturbative interaction. The only exception gives $M[\chi_{b2}(3P)] - M[\chi_{b1}(3P)] = -2$ MeV, the negative sign reflecting the coupling with the open-beauty threshold, whose proximity could have a striking influence on the $\chi_{b2}(3P)$ splitting [45,46]. The measurement reported in this Letter shows that the mass gap between the $J = 1$ and 2 states is significantly larger than 2 MeV, an observation that strongly disfavors the breaking of the conventional pattern of splittings as presented in that specific calculation and supports the standard mass hierarchy, where the $J = 2$ state is heavier than the $J = 1$ state. It is also worth noting that the measured ΔM agrees with the value of 10.5 MeV that was assumed in Ref. [18].

In summary, data samples of pp collisions at $\sqrt{s} = 13$ TeV, collected by CMS in the years 2015–2017, corresponding to an integrated luminosity of 80.0 fb$^{-1}$, were used to measure the invariant mass distribution of the $\chi_h(3P) \to \Upsilon(3S)\gamma$ candidates, with the $\Upsilon(3S)$ mesons detected in the dimuon decay channel and the photons reconstructed through conversions to e^+e^- pairs. The measured distribution is well reproduced by the superposition of the $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ quarkonium states, overlaid on a smooth continuum. This is the first time that the two states are individually observed. Their mass difference is $\Delta M = 10.60 \pm 0.64$(stat) ± 0.17(syst) MeV, and their masses, assuming that the $J = 1$ state is the lighter one, are $M[\chi_{b1}(3P)] = 10513.42 \pm 0.41$(stat) ± 0.18(syst) and $M[\chi_{b2}(3P)] = 10524.02 \pm 0.57$(stat) ± 0.18(syst) MeV, having an additional 0.5 MeV uncertainty reflecting the present precision of the world-average $\Upsilon(3S)$ mass. This measurement fills a gap in the spin-dependent bottomonium spectrum below the open-beauty threshold and should
significantly contribute to an improved understanding of the nonperturbative spin-orbit interactions affecting quarkonium spectroscopy.

We thank Geoff Bodwin, Estia Eichten, and Chris Quigg for important theoretical input on short notice. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); MINECO (Spain); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (U.K.); DOE and NSF (USA).

[1] N. Brambilla et al. (Quarkonium Working Group), Heavy Quarkonium Physics, CERN Yellow Reports: Monographs (CERN, Geneva, 2005).
[2] N. Brambilla et al., Heavy quarkonium: Progress, puzzles, and opportunities, Eur. Phys. J. C 71, 1534 (2011).
[3] N. Brambilla et al., QCD and strongly coupled gauge theories: Challenges and perspectives, Eur. Phys. J. C 74, 2981 (2014).
[4] G. C. Nayak, J.-W. Qiu, and G. F. Sterman, Fragmentation, factorization and infrared poles in heavy quarkonium production, Phys. Lett. B 613, 45 (2005).
[5] G. Nayak, J.-W. Qiu, and G. Sterman, Fragmentation, NRQCD and NNLO factorization analysis in heavy quarkonium production, Phys. Rev. D 72, 114012 (2005).
[6] G. C. Nayak, J.-W. Qiu, and G. F. Sterman, NRQCD factorization and velocity-dependence of NNLO poles in heavy quarkonium production, Phys. Rev. D 74, 074007 (2006).
[7] N. Brambilla, A. Pineda, J. Soto, and A. Vairo, Potential NRQCD: An effective theory for heavy quarkonium, Nucl. Phys. B566, 275 (2000).
[8] N. Brambilla, A. Pineda, J. Soto, and A. Vairo, The QCD potential at O(1/m), Phys. Rev. D 63, 014023 (2000).
[9] N. Brambilla, A. Pineda, J. Soto, and A. Vairo, Effective field theories for heavy quarkonium, Rev. Mod. Phys. 77, 1423 (2005).
[10] G. Bodwin, E. Braaten, and P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51, 1125 (1995); Erratum, 55, 5853 (1997).
[11] G. Bodwin, K.-T. Chao, H. S. Chung, U.-R. Kim, J. Lee, and Y.-Q. Ma, Fragmentation contributions to hadroproduction of prompt J/ψ, χcJ, and ψ(2S) states, Phys. Rev. D 93, 034041 (2016).
[12] P. Faccioli, C. Lourenço, M. Araújo, J. Seixas, I. Krätschmer, and V. Knünz, Quarkonium production at the LHC: A data-driven analysis of remarkably simple experimental patterns, Phys. Lett. B 773, 476 (2017).
[13] P. Faccioli, C. Lourenço, M. Araújo, J. Seixas, I. Krätschmer, and V. Knünz, From identical S- and P-wave pT spectra to maximally distinct polarizations: Probing NRQCD with J states, Eur. Phys. J. C 78, 268 (2018).
[14] P. Faccioli, C. Lourenço, M. Araújo, and J. Seixas, Universal kinematic scaling as a probe of factorized long-distance effects in high-energy quarkonium production, Eur. Phys. J. C 78, 118 (2018).
[15] ATLAS Collaboration, Observation of a New χb State in Radiative Transitions to Υ(1S) and Υ(2S) at ATLAS, Phys. Rev. Lett. 108, 152001 (2012).
[16] V. M. Abazov et al. (D0 Collaboration), Observation of a narrow mass state decaying into Υ(1S)+γ in p+p collisions at √s = 1.96 TeV, Phys. Rev. D 86, 031103 (2012).
[17] LHCb Collaboration, Study of χb meson production in p+p collisions at √s = 7 and 8 TeV and observation of the decay χb3(3P)→Υ(3S)γ, Eur. Phys. J. C 74, 3092 (2014).
[18] LHCb Collaboration, Measurement of the χb3(3P) mass and of the relative rate of χb1(1P) and χb2(1P) production, J. High Energy Phys. 10 (2014) 088.
[19] S. K. Choi et al. (Belle Collaboration), Observation of a Narrow Charmoniumlike State in Exclusive B+→K±π±π±J/Ψ Decays, Phys. Rev. Lett. 91, 262001 (2003).
[20] M. Karliner, J. L. Rosner, and T. Skwarnicki, Multiquark states, Annu. Rev. Nucl. Part. Sci. 68, 17 (2018).
[21] A. Esposito, A. Pilloni, and A. D. Polosa, Multiquark resonances, Phys. Rep. 668, 1 (2017).
[22] S. L. Olsen, A new hadron spectroscopy, Front. Phys. 10, 121 (2015).
[23] E. J. Eichten, K. Lane, and C. Quigg, New states above charm threshold, Phys. Rev. D 73, 014014 (2006); Erratum, 73, 079903 (2016).
[24] E. J. Eichten, K. Lane, and C. Quigg, Charmonium levels near threshold and the narrow state X(3872)→π±π±J/ψ, Phys. Rev. D 69, 094019 (2004).
[25] M. Karliner and J. L. Rosner, X(3872), Xb, and the χb1(3P) state, Phys. Rev. D 91, 014014 (2015).

092002-5
[26] CMS Collaboration, CMS luminosity measurement for the 2015 data-taking period, CMS Physics Analysis Summary Report No. CMS-PAS-LUM-15-001, 2017, http://cds.cern.ch/record/2138682.

[27] CMS Collaboration, CMS luminosity measurements for the 2016 data-taking period, CMS Physics Analysis Summary Report No. CMS-PAS-LUM-17-001, 2017, http://cds.cern.ch/record/2257069.

[28] CMS Collaboration, CMS luminosity measurement for the 2017 data-taking period at $\sqrt{s} = 13$ TeV, CMS Physics Analysis Summary Report No. CMS-PAS-LUM-17-004, 2018, http://cds.cern.ch/record/2621960.

[29] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3, S08004 (2008).

[30] CMS Collaboration, The CMS trigger system, J. Instrum. 12, P01020 (2017).

[31] CMS Collaboration, Measurement of the relative prompt production rate of χ_c2 and χ_c1 in pp collisions at $\sqrt{s} = 7$ TeV, Eur. Phys. J. C 72, 2251 (2012).

[32] CMS Collaboration, Measurement of the production cross section $\sigma(\chi_{c1}(1P)/\sigma(\chi_{c2}(1P))$ in pp collisions at $\sqrt{s} = 8$ TeV, Phys. Lett. B 743, 383 (2015).

[33] C. Patrignani et al. (Particle Data Group), Review of particle physics, Chin. Phys. C 40, 100001 (2016).

[34] M. J. Oreglia, A study of the reactions $\gamma \gamma \rightarrow \gamma \gamma \psi$, Ph.D. thesis, Stanford University, 1980, SLAC-R-236.

[35] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, D. J. Lange, The EVTGEN particle decay simulation package, Comput. Phys. Commun. 191, 159 (2015).

[36] J. Suarez Gonzalez,3 E. A. De Wolf,4 D. Di Croce,4 X. Janssen,4 J. Lauwers,4 M. Pieters,4 M. Van De Klundert,4 Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).

[37] E. Barberio and Z. Was, PHOTOS: A universal Monte Carlo for QED radiative corrections. Version 2.0, Comput. Phys. Commun. 79, 291 (1994).

[38] S. Agostinelli al et. al. (GEANT4 Collaboration), GEANT4—A simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[39] B.-Q. Li and K.-T. Chao, Bottomonium spectrum with screened potential, Commun. Theor. Phys. 52, 653 (2009).

[40] C. O. Dib and N. A. Neill, $\chi_b(3P)$ splitting predictions in potential models, Phys. Rev. D 86, 094011 (2012).

[41] J.-F. Liu and G.-J. Ding, Bottomonium spectrum with coupled-channel effects, Eur. Phys. J. C 72, 1981 (2012).

[42] Bhagyesh and K. B. Vijaya Kumar, Properties of bottomonium in a semi-relativistic model, Chin. Phys. C 37, 023103 (2013).

[43] W.-Z. Tian, L. Cao, Y.-C. Yang, and H. Chen, Bottomonium states versus recent experimental observations in the QCD-inspired potential model, Chin. Phys. C 37, 083101 (2013).

[44] W. W. Repko, M. D. Santia, and S. F. Radford, Three-loop static QCD potential in heavy quarkonia, Nucl. Phys. A924, 65 (2014).

[45] J. Ferretti, G. Galatà, and E. Santopinto, Quark structure of the $X(3872)$ and $\chi_b(3P)$ resonances, Phys. Rev. D 90, 054010 (2014).

[46] J. Ferretti and E. Santopinto, Higher mass bottomonia, Phys. Rev. D 90, 094022 (2014).

[47] S. Godfrey and K. Moats, Bottomonium mesons and strategies for their observation, Phys. Rev. D 92, 054034 (2015).

[48] J. Segovia, P. G. Ortega, D. R. Entem, and F. Fernández, Bottomonium spectrum revisited, Phys. Rev. D 93, 074027 (2016).

[49] Y. Lu, M. N. Anwar, and B.-S. Zou, Coupled-channel effects for the bottomonium with realistic wave functions, Phys. Rev. D 94, 034021 (2016).

[50] W.-J. Deng, H. Liu, L.-C. Gui, and X.-H. Zhong, Spectrum and electromagnetic transitions of bottomonium, Phys. Rev. D 95, 074002 (2017).

A. M. Sirunyan,1 A. Tumasyan,1 W. Adam,2 F. Ambrogi,2 E. Asilar,2 T. Bergauer,2 J. Brandstetter,2 M. Dragicevic,2 J. Erö,2 A. Escalante Del Valle,2 M. Flechl,2 R. Frühwirth,2,V. M. Ghete,2 J. Hrubec,2 M. Jeitler,2,b N. Krammer,2 I. Krátschmer,2 D. Liko,2 T. Madlener,2 I. Mikulec,2 N. Rad,2 H. Rohringer,2 J. Schieck,2 R. Schöfbeck,2 M. Spanning,2 D. Spitzbart,2 A. Taurok,2 W. Waltenberger,2 J. Wittmann,2 C.-E. Wulz,2,b M. Zarucki,2 V. Chekhovsky,3 V. Mossovolov,3 J. Suarez Gonzalez,3 E. A. De Wolf,4 D. Di Croce,4 X. Janssen,4 J. Lauwers,4 M. Pieters,4 M. Van De Klundert,4 H. Van Haevermaet,4 P. Van Mechelen,4 N. Van Remortel,4 S. Abu Zeid,5 F. Blekman,5 J. D’Hondt,5 I. DeBruyn,5 J. De Clercq,5 K. Derroover,5 G. Flours,5 D. Lontkovskiy,5 S. Lowette,5 I. Marchesini,5 S. Moortgat,5 L. Moreels,5 Q. Python,5 K. Skovpen,5 S. Tavernier,5 W. Van Doninck,5 P. Van Mulders,5 I. VanParijs,5 D. Beghin,5 B. Bilin,5 H. Brun,6 B. Clerbaux,6 G. De Lendextecker,6 H. Delannoy,6 D. Dorney,6 G. Fasanella,6 L. Favart,6 R. Goldouzian,6 A. Grebenyuk,6 A. K. Kalsi,6 T. Lenzi,6 J. Luebic,6 N. Postiaux,6 E. Starling,6 L. Thomas,6 C. Vander Velde,6 P. Vanlaer,6 D. Vannerom,6 Q. Wang,6 T. Cornelis,7 D. Dobur,7 A. Fogat,7 M. Gui,7 I. Khvastunov,7 D. Poyraz,7 C. Roskas,7 D. Trocino,7 M. Tytgat,7 W. Verbeke,7 B. Vermassen,7 M. Vit,7 N. Zaganidis,7 H. Bakhshiansohi,8 O. Bondu,8 S. Brochet,8 G. Bruno,8 C. Caputo,8 P. David,8 C. Delaere,8 M. Delcourt,8 B. Francois,8 A. Giannmanco,8 G. Krintiras,8 V. Lenanrte,8 A. Magiiteri,8 A. Mertens,8 M. Musich,8 K. Piotrzkowski,8 A. Saggio,8 M. Vidal Marono,8 S. Wertz,8 J. Zobec,8 F. L. Alves,9 G. A. Alves,9 M. Correa Martins Junior,9 G. Correia Silva,9 C. Hensel,9 A. Moraes,9 M. E. Pol,9 P. Rebello Teles,9 E. Belchior Batista Das Chagas,10 W. Carvalho,10 J. Chinellato,10,d E. Coelho,10 E. M. Da Costa,10 G. G. Da Silveira,10,e

092002-6
9 Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
10 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
11 Universidade Estadual Paulista, Universidade Federal do ABC, São Paulo, Brazil
11a Universidade Estadual Paulista
11b Universidade Federal do ABC
12 Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
13 University of Sofia, Sofia, Bulgaria
14 Beihang University, Beijing, China
15 Institute of High Energy Physics, Beijing, China
16 State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
17 Tsinghua University, Beijing, China
18 Universidad de los Andes, Bogota, Colombia
19 University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
20 University of Split, Faculty of Science, Split, Croatia
21 Institute Rudjer Boskovic, Zagreb, Croatia
22 University of Cyprus, Nicosia, Cyprus
23 Charles University, Prague, Czech Republic
24 Escuela Politecnica Nacional, Quito, Ecuador
25 Universidad San Francisco de Quito, Quito, Ecuador
26 Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
27 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
28 Department of Physics, University of Helsinki, Helsinki, Finland
29 Helsinki Institute of Physics, Helsinki, Finland
30 Lappeenranta University of Technology, Lappeenranta, Finland
31 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
32 Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France
33 Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
34 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
35 Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
36 Georgian Technical University, Tbilisi, Georgia
37 Tbilisi State University, Tbilisi, Georgia
38 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
39 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
40 RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
41 Deutsches Elektronen-Synchrotron, Hamburg, Germany
42 University of Hamburg, Hamburg, Germany
43 Karlsruhe Institut fuer Technology
44 Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
45 National and Kapodistrian University of Athens, Athens, Greece
46 National Technical University of Athens, Athens, Greece
47 University of Ioannina, Ioannina, Greece
48 MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
49 Wigner Research Centre for Physics, Budapest, Hungary
50 Institute of Nuclear Research ATOMKI, Debrecen, Hungary
51 Institute of Physics, University of Debrecen, Debrecen, Hungary
52 Indian Institute of Science (IISc), Bangalore, India
53 National Institute of Science Education and Research, HBNI, Bhubaneswar, India
54 Panjab University, Chandigarh, India
55 University of Delhi, Delhi, India
56 Saha Institute of Nuclear Physics, HBNI, Kolkata, India
57 Indian Institute of Technology Madras, Madras, India
58 Bhabha Atomic Research Centre, Mumbai, India
59 Tata Institute of Fundamental Research-A, Mumbai, India
60 Tata Institute of Fundamental Research-B, Mumbai, India
61 Indian Institute of Science Education and Research (IISER), Pune, India
62 Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
63 University College Dublin, Dublin, Ireland
64 INFN Sezione di Bari, Bari, Italy
65 Università di Bari, Bari, Italy
PHYSICAL REVIEW LETTERS 121, 092002 (2018)

106 P.N. Lebedev Physical Institute, Moscow, Russia
107 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
108 Novosibirsk State University (NSU), Novosibirsk, Russia
109 State Research Center of Russian Federation, Institute for High Energy Physics of NRC 'Kurchatov Institute', Protvino, Russia
110 National Research Tomsk Polytechnic University, Tomsk, Russia
111 University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
112 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
113 Universidad Autónoma de Madrid, Madrid, Spain
114 Universidad de Oviedo, Oviedo, Spain
115 Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
116 University of Ruhuna, Department of Physics, Matara, Sri Lanka
117 CERN, European Organization for Nuclear Research, Geneva, Switzerland
118 Paul Scherrer Institut, Villigen, Switzerland
119 ETH Zurich—Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
120 Universität Zürich, Zurich, Switzerland
121 National Central University, Chung-Li, Taiwan
122 National Taiwan University (NTU), Taipei, Taiwan
123 Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
124 Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
125 Middle East Technical University, Physics Department, Ankara, Turkey
126 Bogazici University, Istanbul, Turkey
127 Istanbul Technical University, Istanbul, Turkey
128 Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
129 National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
130 University of Bristol, Bristol, United Kingdom
131 Rutherford Appleton Laboratory, Didcot, United Kingdom
132 Imperial College, London, United Kingdom
133 Brunel University, Uxbridge, United Kingdom
134 Baylor University, Waco, Texas, USA
135 Catholic University of America, Washington DC, USA
136 The University of Alabama, Tuscaloosa, Alabama, USA
137 Boston University, Boston, Massachusetts, USA
138 Brown University, Providence, Rhode Island, USA
139 University of California, Davis, California, USA
140 University of California, Los Angeles, California, USA
141 University of California, Riverside, California, USA
142 University of California, San Diego, La Jolla, California, USA
143 University of California, Santa Barbara—Department of Physics, Santa Barbara, California, USA
144 California Institute of Technology, Pasadena, California, USA
145 Carnegie Mellon University, Pittsburgh, California, USA
146 University of Colorado Boulder, Boulder, Colorado, USA
147 Cornell University, Ithaca, New York, USA
148 Fermi National Accelerator Laboratory, Batavia, Illinois, USA
149 University of Florida, Gainesville, Florida, USA
150 Florida International University, Miami, Florida, USA
151 Florida State University, Tallahassee, Florida, USA
152 Florida Institute of Technology, Melbourne, Florida, USA
153 University of Illinois at Chicago (UIC), Chicago, Illinois, USA
154 The University of Iowa, Iowa City, Iowa, USA
155 Johns Hopkins University, Baltimore, Maryland, USA
156 The University of Kansas, Lawrence, Kansas, USA
157 Kansas State University, Manhattan, New York, USA
158 Lawrence Livermore National Laboratory, Livermore, California, USA
159 University of Maryland, College Park, Maryland, USA
160 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
161 University of Minnesota, Minneapolis, Minnesota, USA
162 University of Mississippi, Oxford, Mississippi, USA
163 University of Nebraska-Lincoln, Lincoln, Nebraska, USA
164 State University of New York at Buffalo, Buffalo, New York, USA
165 Northeastern University, Boston, Massachusetts, USA
Northwestern University, Evanston, Illinois, USA
University of Notre Dame, Notre Dame, Indiana, USA
The Ohio State University, Columbus, Ohio, USA
Princeton University, Princeton, New Jersey, USA
University of Puerto Rico, Mayaguez, Puerto Rico, USA
Purdue University, West Lafayette, Indiana, USA
Purdue University Northwest, Hammond, Indiana, USA
Rice University, Houston, Texas, USA
University of Rochester, Rochester, New York, USA
Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
University of Tennessee, Knoxville, Tennessee, USA
Texas A&M University, College Station, Texas, USA
Texas Tech University, Lubbock, Texas, USA
Vanderbilt University, Nashville, Tennessee, USA
University of Virginia, Charlottesville, Virginia, USA
Wayne State University, Detroit, Michigan, USA
University of Wisconsin—Madison, Madison, Wisconsin, USA

Deceased.
1 Also at Vienna University of Technology, Vienna, Austria.
2 Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
3 Also at Universidade Estadual de Campinas, Campinas, Brazil.
4 Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
5 Also at Université Libre de Bruxelles, Bruxelles, Belgium.
6 Also at University of Chinese Academy of Sciences, Beijing, China.
7 Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
8 Also at Joint Institute for Nuclear Research, Dubna, Russia.
9 Also at Cairo University, Cairo, Egypt.
10 Also at Helwan University, Cairo, Egypt.
11 Also at Zewail City of Science and Technology, Zewail, Egypt.
12 Also at British University in Egypt, Cairo, Egypt.
13 Also at Fayoum University, El-Fayoum, Egypt.
14 Also at Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia.
15 Also at Université de Haute Alsace, Mulhouse, France.
16 Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
17 Also at Tbilisi State University, Tbilisi, Georgia.
18 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
19 Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
20 Also at University of Hamburg, Hamburg, Germany.
21 Also at Brandenburg University of Technology, Cottbus, Germany.
22 Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.
23 Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
24 Also at Institute of Physics, University of Debrecen, Debrecen, Hungary.
25 Also at IIT Bhubaneswar, Bhubaneswar, India.
26 Also at Institute of Physics, Bhubaneswar, India.
27 Also at Shoolini University, Solan, India.
28 Also at University of Visva-Bharati, Santiniketan, India.
29 Also at Isfahan University of Technology, Isfahan, Iran.
30 Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
31 Also at Universitá degli Studi di Siena, Siena, Italy.
32 Also at Kyunghee University, Seoul, Korea.
33 Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia.
34 Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia.
35 Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico.
36 Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.
37 Also at Institute for Nuclear Research, Moscow, Russia.
38 Also at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.
39 Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
40 Also at University of Florida, Gainesville, FL, USA.
41 Also at P.N. Lebedev Physical Institute, Moscow, Russia.
Also at California Institute of Technology, Pasadena, CA, USA.
Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia.
Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
Also at INFN Sezione di Pavia, Università di Pavia, Pavia, Italy.
Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.
Also at National and Kapodistrian University of Athens, Athens, Greece.
Also at Riga Technical University, Riga, Latvia.
Also at Universität Zürich, Zurich, Switzerland.
Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria.
Also at Adiyaman University, Adiyaman, Turkey.
Also at Istanbul Aydin University, Istanbul, Turkey.
Also at Mersin University, Mersin, Turkey.
Also at Piri Reis University, Istanbul, Turkey.
Also at Gaziosmanpasa University, Tokat, Turkey.
Also at Ozyegin University, Istanbul, Turkey.
Also at Izmir Institute of Technology, Izmir, Turkey.
Also at Marmara University, Istanbul, Turkey.
Also at Kafkas University, Kars, Turkey.
Also at Istanbul Bilgi University, Istanbul, Turkey.
Also at Hacettepe University, Ankara, Turkey.
Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
Also at Monash University, Faculty of Science, Clayton, Australia.
Also at Bethel University, Arden Hills, Minnesota, US.
Also at Karamanoğlu Mehmetbey University, Karaman, Turkey.
Also at Utah Valley University, Orem, UT, USA.
Also at Purdue University, West Lafayette, IN, USA.
Also at Beykent University, Istanbul, Turkey.
Also at Bingol University, Bingol, Turkey.
Also at Sinop University, Sinop, Turkey.
Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
Also at Texas A&M University at Qatar, Doha, Qatar.
Also at Kyungpook National University, Daegu, Korea.