Burden and correlates of atrial fibrillation among hypertensive patients attending a tertiary hospital in Tanzania

Smita Bhalia, Pedro Pallangyo, Abuu Dalidali, Saada Salum, Richard Kawajika, Edna Kajuna, Happiness Kusiima, Engerasiya Kifai, Peter Kisenge, Tatizo Waane and Mohamed Janabi

Abstract

Background: Atrial fibrillation (AF) is the most common supra ventricular cardiac arrhythmia, which presents with variety of clinical symptoms. Hypertension increases risk of developing Atrial fibrillation by 1.5 fold. Together Atrial fibrillation and hypertension doubles the risk of morbidity and mortality. We aimed to determine the prevalence of AF and describe associated factors among hypertensive patients attending tertiary hospital in Tanzania.

Methods: A cross-sectional hospital-based study, involving 391 hypertensive patients visiting the Jakaya Kikwete Cardiac Institute was conducted between October to December 2017. Categorical variables were analyzed using chi square while student t-test was used to analyze continuous variables. Multivariate logistic regression analysis was performed to determine factors associated with AF. All analysis was two sided and p-value of < 0.05 was used to be not significant.

Results: AF was detected in 40 (10.2%) patients. Atrial fibrillation was associated with BMI ≥ 25 (OR 4.4, 95% CI 1.1–7.7, p-value 0.02), ejection fraction < 50% (OR 3.0, 95%CI 1.1–8.2, p-value 0.03), Left Atrial diameter > 40 mm (OR 9.4, 95%CI 2.1–43.2, p-value < 0.01) and eGFR< 60 (OR 2.9, 95%CI 1.1–7.8, p-value 0.04).

Conclusion: Atrial fibrillation is considerably prevalent among the hypertensive sub-population. Prompt diagnosis and timely management is vital to prevent complications and premature mortality.

Keywords: AF, Hypertension, Tanzania

Background

Hypertension is on the rise in low and middle-income countries who historically have battled communicable diseases. European society of cardiology (ESC) in 2016 reported that there were 20.9 million men and 12.6 million females living with atrial fibrillation around the world [1]. Health facilities in Tanzania are now faced with an ever growing number of hypertensive patients with multiple co-morbidities including atrial fibrillation. There is a five-fold increase of atrial fibrillation in the presence of hypertension and hypertension related heart diseases [2]. The link between hypertension and atrial fibrillation is unclear. Timely diagnosis of Atrial fibrillation and maintaining blood pressure at optimal levels have been shown to significantly lower morbidity and mortality among hypertensive patients. This situation calls for keener clinical assessment of hypertensive patients for timely diagnosis and management of AF as well as maintenance of blood pressure at target levels.

Methodology

Recruitment

A total of 491 hypertensive patients were consecutively enrolled in this Cross-sectional hospital-based study conducted at Jakaya Kikwete Cardiac Institute. For the
purpose of this study and after thorough literature re-
view we developed and pre tested a questionnaire, com-
prising of sociodemographic, and clinical history fol-
lowed by anthropometric measurement and 12 lead ECG testing using Phillips machine, echocardiography using Siemens SC300 and blood test results of lipid pro-
file, serum creatinine and random blood sugar. An-
thropometric measurement and ECG were performed by
trained medical assistant and echocardiography were
performed by blinded senior cardiologist.

Statistical analysis
Data analysis was done using SPSS (Statistical package
for social sciences) version 20 Categorical variables were
analyzed using chi square while student t- test was used
to analyze continuous variables. Multivariate logistic re-
gression analysis was performed to determine factors as-
sociated with AF. All analysis was two sided and p-
value of < 0.05 was used to be not significant.

Results
A total of 391 hypertensive patients were enrolled into
the study during Oct – Dec 2017. Mean age of partici-
pants was 58 ± 13.47 years, 56% were male, 53.7% used
alcohol and 11.3% smoked. Mean SBP, DBP and pulse
rate were 150.1 ± 28.1, 85.7 ± 18.6 and 81.8 ± 20.3 re-
spectively. 79.8% of the participants were on anti-
hypertensive medication, 28.1% had renal insufficiency
and 58.3% had anemia. General characteristics of partici-
pants are summarized in the Table 1.

The sociodemographic characteristics associated with AF
among hypertensive patients at JKCI
AF was detected in 40 (10.23%) patients. The sociodemo-
graphic characteristics in both patients with AF and with-
out AF group were similar and the prevalence doubled
from the age 58 years and above, alcohol consumption
189 (55.2%) and smoking 38 (12%) as shown in Table 2.

Clinical characteristics associated with atrial fibrillation
among hypertensive patients at JKCI. (N=391)
The most common clinical presentation of participants
with AF were easy fatigability (42.5%) and palpitation
(35%) and both were statistically significant compared to
those without AF. Similarly, majority of the participants
with AF had reduced ejection fraction < 50% (adjusted
odds ratio 4.371, p-value 0.021, 95% CI 1.077–7.820) and
dilated left atrial size ≥40 mm (adjusted odds ratio 9.417,
p-value 0.004, 95%CI 2.051–43.247) and both were
found to be independent predictors of AF. Left ventricu-
lar hypertrophy was assessed on ECG and ECHO. On
ECG using Sokolow- Lyon criteria 30.8% (OR 2.05, p-
value 0.044, 95%CI 1.019–4.008) while on echocardiog-
raphy 57.7% of the participants with AF and 70.1% of

Table 1 The baseline characteristics of study population at JKCI
(N=391)

Characteristics	Sociodemographic	Clinical characteristics	Lab characteristics
Age mean (SD)	58.01 (13.5)	No (%):	Creatinine umol/l
Sex; Male (%)	221 (56.5)	Chest pain:	185.41 ± 289
Female (%)	170 (43.5)	Easy fatigability:	77.88 ± 36.35
Marital status;		Cough:	5.02 ± 1.5
Married/ Cohabiting (%)	301 (77)	Awareness of heartbeat:	1.7 ± 0.88
Single/divorced/ widow/widower (%)	90 (23)	Shortness of breath:	1.08 ± 0.34
Education; Formal (%)	326 (83.4)	Body swelling:	3.3 ± 1.3
Informal (%)	65 (16.6)	Cerebral vascular event:	81.86 ± 20.32
Alcohol (%)	210 (53.7)	Others*:	85.71 ± 18.60
Smoking (%)	44 (11.3)	Diabetes Mellitus:	85.71 ± 20.32
SBP mean (SD) mmHg	150.1 ± 28.1	Antihypertensive medication use	81.86 ± 20.32
DBP mean (SD) mmHg	85.71 ± 18.60	Weight mean (SD) in kg	185.41 ± 289
Pulse	81.86 ± 20.32	BMI	77.88 ± 36.35
BMI	28.75 ± 5.3	SBP mean (SD) mmHg	5.02 ± 1.5
Creatinine umol/l	185.41 ± 289	Triglyceride (mmol/l)	1.7 ± 0.88
eGFR(ml/min/1.73 m2)	77.88 ± 36.35	HDL (mmol/l)	1.08 ± 0.34
Total cholesterol (mmol/l)	5.02 ± 1.5	LDL (mmol/l)	3.3 ± 1.3
Glucose (mmol/l)	7.8 ± 3.65	Anemia	228 (58.3%)
Hemoglobin (mmol/l)	14.3 ± 4.35	ECG	24 (6.1)
ESR (mmol/l)	14.3 ± 4.35	AF	40 (10.23%)
CRP (mmol/l)	14.3 ± 4.35	No AF	351 (89.77%)
Echo (N = 265)			
IVSD ≥12 mm	14.31 ± 3.4		
LVEF (%)	184 (70%)		
LAD ≥40 mm	566 ± 18.8		
Continuous variables are presented as mean ± standard deviation, while categorical variables are presented as proportions, number of patients, Height and weight were used to calculate body mass index (BMI = weight in kg /height in meters²), SBP systolic blood pressure, DBP diastolic blood pressure, eGFR estimated glomerular filtration rate calculated using modification of diet in renal disease study equation, HDX high density lipoprotein, LDL low density lipoprotein, IVSD interventricular septal diameter, LVEF left ventricular ejection fraction, LAD left atrial diameter. *Other clinical presentation included: nausea, vomiting, fainting drug refill, follow-up clinic and referral from other clinic for investigation			
the participants without AF had LVH as shown in Table 3.

Logistic regression model of 15 variables was used to assess for AF associated factors. In the bivariate model out of which nine variables were found to increase probability of developing AF, however, when those nine characteristics were adjusted for confounders in a multivariate model, four characteristics i.e. (BMI ≥ 25, EF < 50%, LAD > 40 mm and eGFR < 60 ml/min/1.73m²) were found to be independent predictors of AF as shown in Table 4 below.

Discussion
This study showed that the prevalence of AF in the patients visiting JKCI with hypertension is 10.23%. Similar results were observed previously in both western and Asian populations, (9.75%) Kosovo, (9.1%) Turkey and (8%) Brazil and slightly lower in studies conducted in Senegal (5.35%), South Africa (4.6%), and Thailand (3.4%) [3–7]. The prevalence of AF in our study is likely to be a valid estimate for the Tanzanians hypertensive population. The center attends patients from the entire country tertiary center in the country serving patients with cardiovascular diseases. The preponderance of AF and high BP seen in males compared with females in our study has been reported in other studies could be due to degenerative process of atrial muscle and conducting cell [8–12].

Alcohol consumption was common among study population (42.5%). Studies have shown that alcohol is known to produces arrythmogenic substrates thus triggering AF [13–15].

In our study more than half of the patients with AF were found to have low total cholesterol, triglyceride, HDL and high LDL, similar trend was seen in MESA, FHS and post hoc analysis of lipid lowering treatment to prevent heart attack trial (ALLHAT) [16, 17]. however a study from Japan showed high levels of cholesterol, HDL, LDL being associated with decreased risk of AF while triglyceride were not associated with AF [18].

The most common clinical presentation of participants with AF were palpitation and easy fatigability which were significantly higher compared to no AF group similar

Characteristics	AF (%) (N = 40)	NO AF (%) (N = 351)	P value	
Age (years)				
< 65	22 (55)	242 (68.9)	0.074	
≥ 65	18 (45)	109 (31.1)		
Sex	Male	23 (57.5)	198 (56.4)	0.895
	Formal education	32 (80)	294 (83.8)	0.507
Alcohol	Ever used	17 (42.5)	189 (53.8)	0.172
Smoking	Ever smoked	3 (7.3)	41 (11.7)	0.428

Presenting complain	AF N = 40%	NO AF N = 351%	P value
Chest pain	11 (27.5)	74 (21.1)	0.351
Shortness of breath	16 (40)	105 (29.9)	0.165
Palpitation	14 (35)	42 (12)	< 0.001
Easy fatigability	17 (42.5)	76 (21.7)	0.003
Body swelling	7 (17.5)	37 (10.5)	0.187
Cough	6 (15)	31 (8.8)	0.207
Stroke	4 (10)	20 (5.7)	0.856
Others*	4 (10)	117 (33.3)	0.002
SBP ≥140 mmHg	21 (52.5)	244 (69.5)	0.029
DBP ≥90 mmHg	11 (27.5)	202 (57.5)	0.068

Heart rate

- ≥ 100b/m: 8 (20) vs 48 (13.7) 0.189
- 99-60b/m: 25 (62.5) vs 265 (75.5) 0.087
- < 59b/m: 7 (17.5) vs 37 (10.5) 0.279

Biochemical characteristics

Parameter	AF N = 40%	NO AF N = 351%	P value
Total Cholesterol	1.45 ± 0.5	1.47 ± 0.5	0.584
≥ 5.2 mmol/l	18 (45)	174 (49.6)	0.584
< 5.2 mmol/l	22 (55)	177 (50.4)	0.584
Triglyceride	1.61 ± 0.8	1.7 ± 0.88	0.421
< 1.69 mmol/l	27 (67.5)	214 (61)	0.421
≥ 1.69 mmol/l	13 (32.5)	137 (39)	0.421
HDL	1.00 ± 2.92	1.08 ± 0.3	0.251
≥ 1.04 mmol/l	16 (40)	174 (49.6)	0.251
< 1.039 mmol/l	24 (60)	177 (50.4)	0.251
LDL	3.2 ± 1.26	3.3 ± 1.3	0.163
< 3.39 mmol/l	17 (42.5)	190 (54.1)	0.163
≥ 3.4 mmol/l	23 (57.5)	161 (45.9)	0.163
BMI(N=377)	29.53 ± 5.25	28.82 ± 5.21	0.043
≥ 25	30 (83.3)	228 (66.9)	0.043
≤ 25	7 (20.8)	73 (21.1)	0.043
Ecgf	65.95 ± 31.2	79.24 ± 36.3	0.003
LVH (Sokolov)	14 (35)	73 (21.1)	0.043

ECG

Parameter	AF N = 263	NO AF N = 351%	P value
EF ≥50	8 (30.8)	171 (69.5)	< 0.001
< 50	18 (69.2)	75 (30.5)	0.193
IVS < 12 mm	11 (42.3)	72 (29.8)	0.001
≥ 12 mm	15 (57.7)	169 (70.1)	0.001
LAD < 40 mm	2 (8)	129 (54)	< 0.001
≥ 40 mm	23 (92)	110 (46)	< 0.001

*represents fever and diarrhea

Systolic blood pressure, DBP diastolic blood pressure, Cholesterol > 5.2 mmol/l was raised, triglyceride > 1.69 mmol/l raised, hdl < 1.04 mmol/l low, LDL 3.4 mmol/l raised were identified as dyslipidemia. Reduced ejection fraction was defined as EF < 50%, normal ≥50%, LVH on echocardiography was seen if IVS was ≥12 mm, dilated left atrial diameter > 40 mm

Table 2: Showing sociodemographic characteristics associated with AF among hypertensive patients (N = 391)

Characteristics	AF (%) (N = 40)	NO AF (%) (N = 351)	P value	
Age (years)				
< 65	22 (55)	242 (68.9)	0.074	
≥ 65	18 (45)	109 (31.1)		
Sex	Male	23 (57.5)	198 (56.4)	0.895
	Formal education	32 (80)	294 (83.8)	0.507
Alcohol	Ever used	17 (42.5)	189 (53.8)	0.172
Smoking	Ever smoked	3 (7.3)	41 (11.7)	0.428

Table 3: Clinical presentation of patients with atrial fibrillation among Hypertensive patients (N = 391)
pattern was observed in Kenya at Aga Khan University Hospital, Nairobi looking at clinical characteristics and outcomes of atrial fibrillation and flutter [19].

More than half of the participants with AF had their systolic blood pressure ≥ 140 mmHg and normal pulse rate with majority of them on antihypertensive medication, most common groups of medication used were (60%) ACEI/ARB, (70%) diuretics and (55%) beta-blockers. As shown in the study patients with AF presented with symptoms of palpitation and are more likely to receive beta blocker in the combination of their anti-hypertensive medication thus rate controlled AF. In the current study it was also observed that atrial fibrillation was more common among those with dilated left atrial and ejection fraction < 50% which supports the pathogenesis theory of atrial fibrillation.

Results of our study have some clinical implications. Our prevalence estimate of AF 10.25% in hypertensive is high considering the chronic course of this disease that might cause serious thromboembolic stroke. Our study has demonstrated that there are other factors that could even further increase prevalence of AF for example, males older than 58 years of age with BP ≥ 140/80 mmHg. Awareness and education on regular monitoring and compliance may help reduce the number of serious strokes related to AF by giving stroke prophylaxis treatment.

This study was not short of limitations. For instance, owing to the cross section nature of this study both predictor and outcomes variable were measured simultaneously and thus our findings cannot infer causality. Furthermore, as this study was conducted in a tertiary level hospital, referral filter bias is probable. The strength of this study it was conducted at tertiary center where patients from all over Tanzania are referred for advanced management thus the sample is representative of the whole nation.

Conclusion

Prevalence of AF in hypertensive population was found to be high. We recommend every hypertensive patient to have 12 lead ECG for early recognition of AF and prompt management.

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10.1186/s12872-020-01517-x.

Table 4 Logistic Regression analysis to determine factors associated with AF

Variable	Odds ratio	P value	95% CI	Adjusted odd ratio	95% CI	P value
Age ≥ 65 yr	1.817	0.077	0.936–3.524	–	–	–
Male	1.045	0.895	0.540–2.026	–	–	–
HDL ≥1.04 mmol/l	1.475	0.253	0.757–2.871	–	–	–
LDL < 3.4 mmol/l	1.597	0.165	0.824–3.093	–	–	–
SBP > 140 mmHg	0.485	0.032	0.250–0.939	–	–	–
DBP > 90 mmHg	0.514	0.072	0.249–1.062	–	–	–
Alcohol use	0.605	0.1312	0.312–1.172	–	–	–
Cigarette Smoking	0.613	0.432	0.181–2.078	–	–	–
Diabetes Mellitus	0.246	0.022	0.074–0.818	–	–	–
BMI ≥ 25	2.478	0.049	1.002–6.126	4.371	1.077–7.820	0.021
EF ≥ 50%	5.130	<0.001	2.136–12.318	3.013	1.106–8.21	0.031
LAD > 40 mm	13.486	0.001	3.110–58.487	9.417	2.051–43.247	0.004
IVSD	0.581	0.197	0.254–1.326	–	–	–
LVH on ECG	2.051	0.044	1.019–4.008	–	–	–
eGFR < 60 ml/min/1.73m2	2.050	0.036	1.049–4.008	2.902	0.035	1.077–7.820

Abbreviations
AF: Atrial fibrillation; ECG: Electrocardiography; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; LDL: Low density lipoprotein; HDL: High density lipoprotein; JKCI: Jakaya Kikwete cardiac institute; BP: Blood pressure; LAD: Left atrial diameter; BMI: Body mass index; EF: Ejection fraction; eGFR: Estimated glomerular filtration rate; OR: Odds ratio; ESC: European society of cardiology; SPSS: Statistical package for social sciences; ACEI: Angiotensin converting enzyme inhibitor; ARB: Angiotensin receptor blocker; CI: Confidence interval; LVH: Left ventricular hypertrophy; IVSD: Intraventricular septal defect

Acknowledgements
Sincere thanks to all JKCI staff and patients for their kind support and cooperation during data collection.

Authors’ contributions
SB and MJ conceived the study, SB performed all the data collection and entry, SB and PP performed the analysis and developed the first draft of the manuscript. EK, PK and TW performed the detailed echocardiography. AD and SS performed the ECGs. RK and HK interpreted the ECGs. EK took all the...
participant’s samples for investigation. All authors contributed to this latest version of the manuscript and agreed on its submission.

Funding
Self-Funded.

Availability of data and materials
The final version of Data set supporting the findings of this paper is submitted together with this manuscript to the editorial committee. All the raw data is included in this manuscript.

Ethics approval and consent to participate
Ethical clearance to carry out this study was obtained from the Research and Publications Committee of Muhimbili University of Health and Allied Sciences (MUHAS), and permission to conduct the study was sought from the Director of research, training and consultancy of Jakaya Kikwete Cardiac Institute (JKCI). All participants (or caretakers) provided written consent to participate prior to enrolment.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interest.

Author details
1Department of Adult Cardiology, Jakaya Kikwete Cardiac Institute, P. O Box 65141, Dar es Salaam, Tanzania. 2Department of Clinical Support Services, Jakaya Kikwete Cardiac Institute, P. O Box 65141, Dar es Salaam, Tanzania. 3Department of Nursing, Jakaya Kikwete Cardiac Institute, P. O Box 65141, Dar es Salaam, Tanzania.

Received: 9 January 2020 Accepted: 10 May 2020
Published online: 19 May 2020

References
1. Kirchhof P, Benussi S, Kotecha D, Ahlson A, Atar D, Casadei B, et al. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace. 2016;18(11):1609–78.
2. Lloyd-Jones DM, Wang TJ, Leip EP, Larson MG, Levy D, Vasan RS, et al. Lifetime risk for development of atrial fibrillation the Framingham heart study. Circulation. 2004;110(1042–7).
3. Sliwa K, Carrington MJ, Klug E, Opie L, Lee G, Ball J, et al. Predisposing factors and incidence of newly diagnosed atrial fibrillation in an urban African community: insights from the heart of Soweto study. Heart. 2010;96(23):1787–82.
4. Kittayaphong R, Rangsan R, Thamkhaenap B, Hurst C, Rattanamongkolgul S, Sripaiboonkij N, et al. Prevalence and associating factors of atrial fibrillation in patients with hypertension: a nation-wide study. BMC Cardiovasc Disord. 2016;16(1):1–7.
5. Mbaye A, Pessinaba S, Bodian M, Ndiaye Mouhamadou B, Mbaye F, Kane A, et al. Atrial fibrillation, frequency, etiologic factors, evolution and treatment in a cardiology department in Dakar, Senegal. Pan Afr Med J. 2010;6:16.
6. Elezi S, Qerkini G, Bujupi L, Shabani D, Bajraktari G. Alcohol consumption and risk of atrial fibrillation: a prospective study and dose-response meta-analysis. J Am Coll Cardiol. 2014;64(3):281–9.
7. Mbaye A, Pessinaba S, Bodian M, Ndiaye Mouhamadou B, Mbaye F, Kane A, et al. Blood lipid levels, lipid-lowering medications, and the incidence of atrial fibrillation the atherosclerosis risk in communities study. Circ Arrhythm Electrophysiol. 2012;5(1):65–62.
8. Alonso A, Yin X, Roetker NS, Magnani JW, Kronmal RA, Ellinor PT, et al. Blood lipids and the incidence of atrial fibrillation: the multi-ethnic study of atherosclerosis and the Framingham heart study. J Am Heart Assoc. 2014;3(5):e001211.
9. Hill H. Fixing teacher professional development. Phi Delta Kappan. 2009;90:470–6.
10. Shavadia J, Yonga G, Mwanzi S, Jinah A, Moriasi A, Otieno H. Clinical characteristics and outcomes of atrial fibrillation and flutter at the Aga Khan University Hospital, Nairobi. Cardiovasc J Afr. 2013;24(2):16–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.