Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
342483 Integrating implementation science frameworks to guide tele-dermatology implementation in an academic medical setting
Ethan D. Borre, BA, Duke University School of Medicine; Meenal K. Khetarpal, MD, Duke University School of Medicine; Matilda W. Nicholas, MD, PhD, Duke University School of Medicine

Background: Teledermatology can increase patient access, however little is known on how to systematically plan for its implementation.

Methods: We identified a teledermatology process to meet patient access needs. We applied the Exploration, Preparation, Implementation, and Sustainment (EPIS) framework to guide implementation. We identified outer and inner context through literature review, key informant interviews, and quantitative surveys and selected factors were synthesized into an applied framework.

Results: Patient wait times >5 months motivated collaboration between Dermatology, Primary Care (PC) and institutional leadership to develop a teledermatology service that included e-consult referrals from PC to Dermatology forwarding still images, followed by a video visit between patient and Dermatologist within 5-7 days. Applying EPIS, the exploration phase included a systems assessment to ensure compatibility with state policies on billing and provision of telehealth, identification of space and provider availability and Dermatology and PC champions. A business plan identified resources. For Preparation, Dermatology leadership and technology analysts mapped a workflow in the electronic medical record and held trainings for providers. Readiness-to-change surveys were distributed to identify barriers and facilitators. During Implementation, we will obtain ongoing feedback, with ad hoc adaptation guided by survey responses and key informant interviews.

For Sustainment, we will collect implementation outcomes based on the Reach, Efficacy, Adoption, Implementation, and Maintenance framework with key outcomes selected through stakeholder interviews.

Conclusions: We present a systematic organization of key considerations for implementation and outcomes for teledermatology using the EPIS framework. This framework may be used in other similar settings seeking to implement teledermatology.

Commercial Disclosure: None identified.

34466 Invasive melanoma among Veterans: A comparative analysis with the SEER registry, 2009-2017
Nicole Trepanowski, BS, Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Jamaica Plain, MA; Michael S. Chang, BA, Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Jamaica Plain, MA; Jennifer Lu, PhD, Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Jamaica Plain, MA

Veterans constitute a high-risk population for melanoma, but they are often underrepresented in national registries. We examined differences in melanoma patient and tumor characteristics and melanoma-specific survival between Surveillance, Epidemiology, and End Results (SEER) registry patients and patients in the Veteran Affairs Central Cancer Registry (VACCR). Data were collected from SEER (18 registries) and the VACCR from 2009 to 2017. A total of 15,534 VA enrollees were diagnosed with a primary invasive melanoma vs. 166,265 SEER registry patients. VA enrollees were more frequently greater than 65 years at diagnosis and male compared with their SEER counterparts. VA enrollees were more likely to present with regional or distant disease (17.5% vs. 13.0% in SEER) and more likely to present with tumors greater than 2.00 mm in thickness (20.6% vs. 14.5% in SEER). Comparing melanoma-specific survival, 2-year survival for stage IV melanomas improved from 57.8% in 2011-2014 to 51.5% in 2015-2017. Survival also improved in SEER during these timeframes from 36.4% to 44.8%, respectively. We found that Veterans more commonly present with thicker tumors at more advanced stages than the general population. However, it appears that Veterans with metastatic melanoma are likely benefitting from novel therapies such as PD-1 inhibitors, with a greater increase in survival for stage IV melanomas diagnosed in recent years. Further research is needed to determine if this survival benefit is attributable to novel therapies or if other factors contributed.

Commercial Disclosure: None identified.

34296 Introduction of BELCOMID: Belgian Cohort study of COVID-19 in Immune Mediated Inflammatory Diseases
Tom Hillary, MD, University Hospitals Leuven, Department of Dermatology, Leuven, Belgium; An Van Laethem, University Hospitals Leuven, Department of Dermatology, Leuven, Belgium; Francisca Castelijns, University Hospitals Leuven, Department of Dermatology, Leuven, Belgium

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) pandemic is turning into a significant wrinkle in the history of modern health care. It remains unclear what the exact risk and impact of COVID-19 is on patients with immune mediated inflammatory diseases (IMIDs). Targeted immune-modulating therapies (TIMT) for treatment of IMIDs could influence humoral immune response against COVID-19. To analyze exposure to SARS-CoV2 and to map the effect of TIMT on humoral immune response after COVID-19 infection or COVID-19 vaccination, a Belgian IMID Cohort study was founded: all patients with IMIDs of the gut (Crohn’s disease, ulcerative colitis and indeterminate colitis), joints (rheumatoid arthritis, psoriatic arthritis and spondyloarthritis), and skin (psoriasis, hidradenitis suppurativa and atopic dermatitis) in clinical follow-up at the cooperating sites were included. In addition, patients with IMIDs of the eye (uveitis), lungs (idiopathic pulmonary fibrosis), and urogenital tract (interstitial cystitis) were also included.

In this poster we present the levels of SARS-CoV2 IgG (Spike and Nucleocapsid antibodies) both at baseline and six months later (after COVID-19 vaccination). Sampling was repeated between July 1st, 2021 and September 30th, 2021. Antisera were obtained between December 17th, 2020 and February 28th, 2021, before COVID-19 vaccination. We report on the effect of four different treatment groups (JAKi/biologic treatment; conventional/immunomodulatory treatment; combination treatment; systemic steroid treatment) on the degree of COVID-19 humoral immunity after infection and/or vaccination. This poster aims to inform the dermatological community about the effect of commonly used drugs on the humoral immune response after COVID-19 infection and/or COVID-19 vaccination.

Commercial Disclosure: This work was supported by research grants by Almirall, A mgen, Biogen, Celltrion, Eli Lilly, Janssen, Leo Pharma, Mylan, Pfizer, Roche.