Intersecting pathways in inflammation and cancer: Hepatocellular carcinoma as a paradigm

Philip Y Wai, Paul C Kuo

Philip Y Wai, Paul C Kuo, Department of Surgery, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, United States

Author contributions: Both Wai PY and Kuo PC contributed to the writing of this manuscript.

Correspondence to: Paul C Kuo, MD, MS, MBA, Department of Surgery, Loyola University Medical Center, 2160 S. First Avenue, EMS Building, Maywood, IL 60153, United States. pkuo@lumc.edu

Telephone: +708-3272705 Fax: +708-3272582

Received: November 2, 2011 Revised: January 29, 2012
Accepted: February 6, 2012
Published online: February 10, 2012

Abstract

Viral infection and chemical carcinogens trigger somatic changes resulting in activation of oncogenes during tumor initiation in the development of cancer. However, a critical interaction resides in the synergism between these somatic changes and an inflamed tumor microenvironment where myeloid and hematopoietic cells are subverted to enhance tumor progression. The causative molecular mechanisms leading to the development of hepatocellular cancer remain incompletely understood but appear to result from multiple factors related to direct hepatocyte injury and the ensuing inflammatory changes mediated by the host response to tissue injury, DNA damage, repair of cellular damage, and chronic, repetitive injury. In this review, the molecular and cellular changes that regulate inflammation and tissue repair will be compared to the activated local tumor microenvironment. Cell-cell signaling within this microenvironment that enhances tumor progression and inhibits anti-tumor immunity will be discussed

© 2012 Baishideng. All rights reserved.

Key words: Hepatocellular cancer; Inflammation; Tumor microenvironment

INTRODUCTION

Cellular injury resulting in inflammation, tissue repair, and fibrosis has been hypothesized to play a functional role in cancer development since Virchow’s original observations1. Key somatic changes caused by viral or chemical carcinogens establishing a “subthreshold neoplastic state” (initiation) is often supplemented by a subsequent stimulus from the local niche or microenvironment, such as chronic inflammation (promotion). These synergistic pathways complement each other to augment tumor invasiveness2,3. In certain types of cancers, inflammatory conditions are present before a malignant change occurs and investigators have sought to define a causal relationship between inflammation, innate immunity and cancer development. Certainly, epidemiological studies have shown that chronic inflammation predisposes individuals to various types of cancer including bladder, cervical, gastric, intestinal, esophageal, ovarian, prostate, liver, and thyroid tumors. Perhaps the most
convincing evidence is the fact that adoptive transfer of inflammatory cells from the local tumor environment or overexpression of inflammatory cytokines promotes tumor development\[4\]. Despite these observations, the fundamental mechanisms by which inflammation leads to cancer or supports the progression of cancer remain unclear.

In this editorial, we will discuss the critical components of the inflammatory milieu or tumor microenvironment (TME) that promote a neoplastic and/or metastatic phenotype. The canonical physiology of inflammation will be examined within the context of cancer development highlighting similarities and differences between the two analogous processes. Finally, hepatitis and chronic liver cirrhosis will be discussed as a model of fibrogenesis and hepatic carcinogenesis with potential therapeutic targets.

INFLAMMATION, TISSUE REPAIR, TUMOR PROGRESSION AND METASTASIS

Mantovani and colleagues defined the complementary oncogenic and inflammatory processes in cancer development as the “intrinsic” and “extrinsic” pathways\[5\]. The intrinsic pathway activates oncogenes and inhibits tumor suppressors by mutation, chromosomal rearrangement or amplification and drives transformation within targeted cells. Tumor cells generated in this fashion subsequently produce cytokines that recruit and populate the inflammatory TME. The extrinsic pathway derives from inflammatory or infectious conditions that amplify the cancer risk (e.g., inflammatory bowel disease, hepatitis, *Helicobacter pylori*). These two mutually dependent pathways eventually converge, appropriating necessary components and signals from the other while also supplying reciprocally useful building blocks to fuel transformation and metastasis in a cooperated fashion. Oncogenes that can produce signals for inflammatory cell recruitment include the RET proto-oncogene in papillary thyroid cancer, K-RAS in pancreatic cancer, and BRAF-MAPK in melanoma\[6\]. It is no coincidence that inflammation and wound healing physiology parallels the tissue remodeling processes that occur in cancer progression. Dvorak\[6\] recognized that the composition of the tumor stroma strongly resembles the granulation tissue of healing skin wounds. These important, essential inflammatory cascades promote cell proliferation, migration, invasion through the extracellular matrix, angiogenesis, and ultimately provide the necessary components for host tissue repair and survival. In many types of cancer, these attributes can be subverted by nascent tumor cells as tools for cancer progression and metastasis.

The steps of the inflammatory cascade associated with tissue repair are well characterized. Tissue injury created by toxins, infection, or a chronic inflammatory stimulus results in a host response focused on recruiting cells that initiate healing (Figure 1). Critical members of this microenvironment include neutrophils, monocytes, macrophages, mast cells, dendritic cells, fibroblasts and endothelial cells. The wound healing process often involves partially overlapping phases: blood clotting, inflammation, new tissue formation, and tissue remodeling\[7\] with key cell types recruited to the niche during specific phases. Important pro-inflammatory signals produced during this cascade include IL-1β, IL-6, IL-23, TNF-α, and TGF-β1. Activation of the selectin family of adhesion molecules (L-, P-, and E-selectin) facilitates leukocyte "rolling" along the injured vascular endothelium, activating integrin binding and immobilization (α4β1 and α4β7 binding to VCAM-1 and MadCAM-1), and ultimately transmigration through the endothelium into the site of injury\[8\]. Release of cytokines, chemokines, and prostaglandins to recruit additional inflammatory cells, the production of reactive oxygen species (ROS) to destroy infectious vectors, the generation of pro-angiogenic factors, and modulation of apoptosis represent other essential activated functions.

Physiological inflammation is often self-limiting through downstream release of anti-inflammatory regulators (IL-10, IL-11, IL-13) which temper the pro-inflammatory cascade. However, cancer-associated inflammation can often persist, or be driven without regulation, to elicit pathologically persistent signals for cellular proliferation, migration, basement membrane invasion and angiogenesis. In this context, tumors have been comparatively described as “wounds that do not heal”\[9\]. The key cells residing in the TME are the same constituents that facilitate wound healing and inflammation as described above. However, the tumor-associated cells recruited often display altered functions that lend themselves to cancer development. This alteration in function derives from the upregulated expression of pro-tumor cytokines. For example, dendritic cells in neoplastic infiltrates are regulated by tumor-derived granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4 and are frequently immature, less effective at capturing antigens, and defective in T-cell stimulatory capacity\[10\]. IL-10 released into the TME is a potent inhibitor of dendritic cell activation and differentiation allowing evasion of host adaptive immunity\[10\]. Similar processes occur in tumor-associated macrophages (TAMs) which produce a number of potent angiogenic and lymphangiogenic growth factors, cytokines and proteases that mediate neoplastic progression. For example, in human cervical carcinogenesis, TAMs express VEGF-C, VEGF-D, and VEGF receptor-3, to facilitate angiogenesis\[11\]. In a murine mammary cancer metastasis model, CSF-1 regulates tumor growth by supporting and cultivating the TME. In CSF-1/- mice, advanced mammary tumors and pulmonary metastases fail to develop due to decreased TAMs recruitment into the neoplastic tissue\[11\]. CSF-1 has been shown to promote progression of mammary tumors to malignancy as replacement of transgenic CSF-1 into mammary epitheli-
um restores macrophage recruitment, primary tumor development, and metastatic potential[9]. A powerful stimulus for tumor progression within the TME includes the ROS derived from infiltrating leukocytes. In the presence of chronic inflammation and repetitive injury, leukocytes and other phagocytic cells induce DNA damage in proliferating cells through the generation of reactive oxygen and nitrogen species such as peroxynitrite. Irreversible DNA mutations generated by these reactive species can provide the critical trigger for neoplastic transformation. In addition to these mechanisms, the inhibition of tumor-suppressor pathways represent yet another strategy for promoting tumor growth. Macrophage migration inhibitory factor (MIF) released from TAMs and T lymphocytes is a potent cytokine that suppresses p53 transcriptional activity. MIF released into the TME creates a niche with a deficient response to DNA damage[10]. TAMs will be diverted into the M2 phenotype in human tumors so that macrophage functions will be focused on promoting tumor growth, remodeling tissues, promoting angiogenesis, and suppressing adaptive immunity[11,12]. Another class of cells that are recruited to the TME include the myeloid-derived suppressor cells (MDSCs). These cells are abundant in tumors and strongly inhibit anti-tumor immunity[13]. MDSCs represent an immature population of myeloid cells that inhibit both innate and adaptive immunity and are present in cancer patients and in experimental animals with sizable tumor burden[13]. Although no definitive molecular characterization exists, many investigators have found human MDSCs to express CD33, CD11b and CD15 cell surface markers[13]. MDSC inhibition of anti-tumor immunity is mediated by suppression of CD4+ T-cells[14], inducing T regulatory cells[15], by down-regulating macrophage production of the type 1 cytokine, IL-12[16], and potentially suppressing natural killer cell cytoxicity[17]. In hepatocellular carcinoma models, trafficking and accumulation of MDSCs appears to be gp130 dependent and downregulation of NK cell cytokine production to be NKp30 dependent[18]. Recent studies have also focused on the myofibroblast as another cell type that is commonly found in wounds and in the TME and has been implicated in tumor progression. The presence of large numbers of fibroblasts and myofibroblasts is a hallmark of cancer with many tumors producing a desmoplastic response[7]. Although tumor fibroblasts can be derived from the stroma surrounding tumors, there is evidence to suggest that cells recruited from the bone-marrow also ‘home in’ on the TME[19]. Auto- and paracrine PDGF and TGF-β dependent signaling centered on the myofibroblast is considered fundamental to tumor progression, the development of epithelial-mesenchymal transition (EMT), and generation of cancer stem cells (CSCs). CSCs exhibit a CD44high/CD24low antigenic phenotype, demonstrate upregulation of the mesenchymal markers and the transcription factors, N-cadherin, fibronectin, vimentin, FOXC2, SIP1, Hedgehog (Hh), Snail, and Twist, and possess self-renewal capability enabling CSCs to exit tissue reservoirs,
enter and survive in the circulation, and exit into secondary tissue sites (“stemness”)[28]. In the liver, cancer-associated fibroblasts are important contributors to the TME[22] and their precise origin continue to be unclear with a variety of hepatic cells able to generate stem-cell characteristics including hepatocytes, oval cells/hepatic progenitor cells, and bone marrow-derived cells[22].

HEPATIC FIBROGENESIS AND TUMOR PROGRESSION

 Constituents of the cancer-associated inflammatory stroma vary between different tumor types suggesting that TMEs can be disease-specific. Distinguishing mechanistic pathways that are conserved versus pathways that are tissue- and tumor-specific is important. Friedman and colleagues described the difference between “core” and “non-core” pathways leading to end-stage inflammation or fibrosis with “core” pathways maintaining a dominant role through different organ systems, processes, and species[23]. Non-core pathways may regulate core pathways, but are not necessarily fundamental to the fibrotic process, and may be specific to one model system without correlation to other disease states. Discovery of universal anti-fibrotic cures may require specific attention to core pathways. However, such integral proteins and signals (e.g., TGF-β) may be required in normal tissue function and may not be appropriate targets for inhibition. In this context, regulatory signaling pathways that are tissue-specific or even disease/pathology-specific may provide realistic targets that can be candidates for therapeutic intervention.

 Hepatic fibrosis is a reversible wound-healing response to liver injury and is characterized by inflammation, accumulation of extracellular matrix (ECM), and ultimately scarring, as described above. If the injury is self-limiting, the inflammatory changes are transient and the liver tissue is restored to its normal configuration. However, when the injury or the resultant inflammatory response is persistent, the liver architecture is irreversibly transformed leading to progressive fibrosis and cirrhosis. Agents that injure the liver in such a way include toxins (CCL4, alcohol, or bile from biliary stasis), chronic infections (hepatitis B, hepatitis C), or remodeling processes (adipose tissue in non-alcoholic fatty liver disease). Chemical toxicity, viral infection, and metabolic derangements damage hepatocytes and this injury triggers a cascade designed to contain the injury by removing or repairing damaged cells, defense against further infection or injury, tissue regeneration and repair. Chronic inflammation due to repetitive injury (toxin) or inability to remove the offending agent (viral infection) results in a deranged, decompensated response (Figure 1). The liver is composed of constitutive cells capable of mounting a robust inflammatory response. The space of Disse is a subendothelial space that separates the hepatic sinusoids from the hepatocytes. It contains a low density basal membrane-like matrix that is essential for maintaining the differentiated function of parenchymal cells but can become porous enough to enable metabolic exchange between the bloodstream and hepatocytes[24]. Inflammatory cells that can be activated to secrete cytokines and regulate ECM in this space include the hepatic macrophages (Kupffer cells), hepatic stellate cells (HSCs) (that can be activated to become fibroblasts), dendritic cells, natural killer cells, hepatocytes and cholangiocytes. Progression to cirrhosis leads to the formation of nodules of regenerative parenchyma surrounded by sheets of fibrotic septae. During chronic liver injury, extracellular matrix (ECM) deposition is upregulated. Interactions between the ECM and its surrounding cells then become mutually dependent with decorin and biglycan binding of TGF-β; fibronectin and laminin binding of TNF-α; and collagen binding to PDGF, HGF, and IL-2[26]. HSCs become activated from a quiescent vitamin A-rich cell to a contractile, highly fibrogenic, myofibroblast cell-type. Activated HSCs leads to upregulation of integrin receptors αβ1, αβ4, αβ8, αβ6, and αβ1, regulation of TGF-β1, PDGF, and Hedgehog (Hh) signaling pathways, expression of ADAMTS-13, ADAMTS-1, and secretion of collagenase-1 and -3, stromelysin-1 and -2, gelatinases, metalloelastases (MT-MMP1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) (Figure 2).

 Accumulating evidence suggests that hepatocellular epithelial mesenchymal transition (EMT) plays a pivotal role in the dissemination of malignant hepatocytes during HCC progression[21]. Complete EMT often occurs in cancer cells as they lose cell-cell contacts, acquire a fibroblast-like morphology, and express mesenchymal marker proteins such as alpha smooth muscle actin (αSMA) and fibroblast-specific protein 1 (FSP1)[7], while shedding the epithelial cell markers cytokeratin and E-cadherin. This process often allows a firmly attached epithelial cell with appropriate apical-basal polarity to migrate into the interstitium and acquire characteristics of mesenchymal cells (highly motile, invasive, resistant to apoptosis, produce ECM, transmigrate through basement membrane, and intravasate into endothelium). Hepatic cancer cells that undergo EMT appear to acquire the properties of stem cells[25]. After liver injury occurs, the major trigger of EMT is the release of chemokines, MMPs, and other growth factors with PDGF, TGF-β and Hh occupying principal roles in this process (Figure 2).

 TGF-β

 TGF-β is secreted by a variety of cell types and exists as the following isoforms: TGF-β1, TGF-β2, and TGF-β3. The predominant isoform in inflammation and fibrosis is TGF-β1 and signaling is mediated through the type II receptor. PDGF receptors transduce their signals through the PI3K/Akt pathways while TGF-β mediates signaling through the Smad proteins. Inhibition of PDGF signaling decreases migration in vitro and efficient tumor suppression in vivo indicating that TGF-β mediated EMT of neoplastic hepatocytes is PDGF-dependent[23,26]. Activation of the type II receptor results in di-
merization with the type I receptor and promotes binding to Smad2 and Smad3. The phosphorylated Smad2/Smad3 complex associates with Smad4 and activates transcription. TGF-β is a tumor suppressor protein that is frequently involved in tumor progression of human cancer and also in tumor-promoting inflammation. Many liver cell types, including HSCs, hepatocytes, and liver sinusoidal endothelial cells are regulated by TGF-β. Interestingly, as in other cancer cell types, TGF-β has been shown to have a dual role in HCC with TGF-β displaying antitumor effects initially. For example, loss-of-function of TGF-β type II receptor results in enhanced susceptibility to HCC, suggesting that TGF-β retains some tumor-suppressor functions[2]. Alternatively, transgenic mice with upregulated Smad7 expression restricted to hepatocytes demonstrate significantly diminished liver damage and fibrosis, demonstrating that TGF-β signaling in hepatocytes is required for fibrogenesis progression[26]. The significance of the dual nature of these effects is unclear but are reflected across other cancer cell types and suggest that the effects of TGF-β may be time-, and context-dependent. For example, inactivation of type II TGF-β receptor in an animal model of breast carcinoma increases CXCL5 and CXCL12-mediated recruitment of myeloid-derived suppressor cells (MDSCs) which are potent suppressors of the adaptive immune response to tumors[23]. Smad7 activation or RNA interference against Smad4 decreases TGF-β signaling and attenuates the expression of pro-fibrotic genes[25,26]. However, hepatocytes isolated from livers exposed to high TGF-β in vivo demonstrate elongated, fibroblastoid hepatocytes expressing vimentin and collagen I in comparison to healthy mouse livers[31]. Other evidence for tumoral TGF-β-mediated downstream effects include studies by Morris et al[32] that show loss of TGF-β receptor type II in the context of loss of p53 decreased the incidence of HCC in a murine model of liver cancer. Cumulative evidence from the Fabregat group demonstrates that TGF-β signaling regulates seemingly contradictory processes in normal liver cells and in HCC. TGF-β-mediated growth inhibition and apoptosis (tumor-suppressor characteristics) occur in non-transformed human fetal hepatocytes while transdifferentiation into a mesenchymal-stem cell-like phenotype with increased expression of Snail, decreased E-cadherin expression, increased Vimentin and N-cadherin expression (pro-tumor) is also TGF-β-mediated[33]. Indeed, parallel experiments using siRNA-mediated down regulation of Snail showed that hepatocytes became sensitized to TGF-β mediated apoptosis and that Snail and induction of the EMT phenotype impairs TGF-β apoptosis in HCC cells[34].

Nuclear factor-kappa B

Nuclear factor-kappa B (NF-κB) is an important regula-
tor of innate immunity, inflammation and also of tumor progression. NF-κB is activated downstream from Toll-like receptor (TLR)-MyD88 signaling and by signaling through the TNF-α and IL-1β pathways. NF-κB can also be activated as a result of genetic alterations (amplification, mutations, or deletions) in tumor cells. NF-κB activation is controlled by multiple factors and its transcriptional activity is linked to various inflammatory or pro-tumor states. Deficiency of TIR8, an inhibitor of Toll/IL-1 (TIR)-mediated NF-κB signaling, results in increased NF-κB activation with increased susceptibility to intestinal inflammation and carcinogenesis\(^{[5,6,36]}\). The causative role of NF-κB in inflammation and cancer is further supported by studies in mice where the p50 homodimers confer a pro-tumor phenotype through constitutively activated NF-κB\(^{[37]}\). Inhibition of IKK-α releases inhibition of maspin, a tumor suppressor, and reduces metastatic spread in malignant prostate epithelial cells\(^{[38]}\). Evidence also suggests that NF-κB determines the balance between pro- and anti-tumor effects. When NF-κB signaling is inhibited specifically in TAMS, they switch to a "classically" activated M1 phenotype (IL-12\(^{[39]}\); IL-10\(^{[40]}\)) and TAMS become cytotoxic to tumor cells again\(^{[41]}\). Clearly, the mechanisms involved in NF-κB activation are complex and contradictory functions occur in liver physiology and hepatic carcinogenesis. In Mrh2-knockout mouse (a murine model of chronic inflammation induced-HCC), NF-κB inhibition with inducible iκB super-repressor resulted in decreased tumor progression\(^{[42]}\). In contrast, Maeda and colleagues demonstrated that IKK-β knockout in hepatocytes during an acute liver injury model with diethylnitrosamine (DEN) knockout in hepatocytes during an acute liver injury model with diethylnitrosamine (DEN) resulted in mice with an absence of chronic inflammation but increased hepatocarcinogenesis\(^{[43]}\). The timing and context of NF-κB activation or inhibition determines the associated phenotype.

Signal transducer and activator of transcription

The signal transducer and activator of transcription (STAT) family of transcription factors also play a critical role in tumor and immune cells. STAT1 and STAT3 play a key role in liver fibrosis, antiviral defense, liver regeneration, and liver regeneration. STAT1 confers a protective effect and functions in down-regulating pro-fibrotic mechanisms in the liver by inhibiting HSC proliferation, suppression of β-PDGF receptor expression, inhibition of TGF-β/Smad3 signaling, and stimulation of NK cell cytotoxicity\(^{[44]}\). In these loss of function studies, STAT1\(^{−}\) mice demonstrated accelerated CCL4-induced liver fibrosis and HSC proliferation.

STAT3 is one of the main signaling proteins activated by HGF and EGF receptors, and is involved in oncogenesis, inhibition of apoptosis, inhibition of dendritic cells, and increased evasion of the immune system\(^{[45]}\). Mice that lack STAT3 in the epidermis suffer from reduced wound re-epithelization, and are resistant to carcinogen-induced skin cancer development. Conversely, mice that overexpress a constitutively active form of STAT3 develop skin cancers with a shorter latency period\(^{[46]}\).

Chemokines

Tumor cells can regulate their chemokine expression profile to recruit inflammatory cells, but also use these factors to enhance tumor growth and expression\(^{[2]}\). The chemokines CXCL1, CXCL2, CXCL3, and CXCL8 have been extensively studied in melanoma and they play a role in the regulation of tumor growth. Inhibition of the CXCR2 receptor attenuates melanoma cell proliferation\(^{[47]}\), whereas overexpression of CXCL1, CXCL2, CXCL3 enhances tumor cell colony-forming activity and tumorigenicity in nude mice\(^{[48,49]}\). Macrophage pro-inflammatory chemokine 3α (CCL20), is a CC chemokine where the two cysteine (C) residues lie adjacent to each other, is overexpressed in pancreatic carcinoma cells and infiltrating macrophages adjacent to tumor cells, and enhances migration of TAMS\(^{[50]}\). Angiogenesis is associated with chronic inflammatory states including arthritis, infections, tumor growth and metastasis. The Glutamic acid-Leucine-Arginine (ELR) motif upstream of the CXC domain in the chemokine family can stimulate endothelial cell chemotaxis and retains pro-angiogenic function. Metastatic potential also appears in part to be governed by chemokine receptors and chemokine signaling. CXCL12 [stromal-cell derived factor-1 (SDF-1)] is a product of resting cells in multiple organs and also myofibroblasts. Binding to its receptor CXCR4 appears to play a critical role in cancer metastasis. Use of CXCR4 antibodies can limit CXCL12-mediated chemotaxis of mammmary cells to distant organs during metastasis\(^{[51]}\). Indeed the amount of CXCR4 expression in primary human tumors correlates with the extent to which metastasis to the lymph nodes occurs in colorectal, breast, liver and esophageal cancer\(^{[52-54]}\). The critical threshold of pro-inflammatory cytokines reached by the myriad of contributing cells within the local tumor environment may augment the invasive capacity of transforming cells in a para- and autocrine fashion. For example, autocrine TNF-α upregulates the expression of CXCR4 in ovarian cancer\(^{[55]}\).

IAP

Recently, the inhibitor of apoptosis (IAP) family of proteins have been shown to play a significant role in cancer-related inflammation and metastasis\(^{[44]}\). Alterations in IAPs are found in many types of human cancer including HCC and are associated with chemoresistance, disease progression, and poor prognosis\(^{[56,57]}\). IAP function by regulating caspases (cysteine proteases that are involved in apoptosis) and through ubiquitin (Ub)-dependent activation of NF-κB transcription factors. IAP1 (cIAP1; encoded by BIRC2), cIAP2 (encoded by BIRC3) and XIAP (encoded by BIRC4) have particular roles that have been demonstrated in tumor maintenance and progression and deserve particular attention. Using a model of breast cancer metastasis with MDA-MB-231 cells and also MCF-7 cells stably transfected with survivin, Mchrotra and colleagues demonstrated that the
Other signals

Hepatic EMT defined as loss of cell polarity and decrease in cell-cell adhesion was shown to be associated with reduced hepatocyte nuclear factor (HNF)-4 expression while restoration of HNF-4a expression in aggressive HCC cells re-programmed the cells into resting hepatocytes. Analysis of Wnt/β-catenin signaling demonstrated that nuclear accumulation of β-catenin results in loss of epithelial markers and increases expression of hepatic mesenchymal markers such as M2-pyruvate kinase (M2-PK) and cytokeratin (CK19). In vivo loss of E-cadherin, upregulation of Twist (a negative inhibitor of E-cadherin transcription) and reduction of cytosolic β-catenin correlate with more invasive HCC phenotypes, increases metastasis and reduces patient survival. Recent studies have also shown that HCV core proteins lower Smad3 expression and decrease E-cadherin expression promoting EMT in human HCC cells, while hepatitis B virus encoded HBX upregulates STAT5b in HCC cell lines to augment EMT and cell invasion by repressing E-cadherin.

CONCLUSION

Chronic inflammation and fibrosis in the liver can generate a local environment or niche that supports oncogenesis, tumor progression and metastasis, and in this regard the generation of hepatocellular carcinoma parallels the key inflammatory physiology that is observed in wound healing and EMT. The current increased interest in cancer-associated inflammation may identify targets that modulate the more advanced or metastatic phenotypes in cancer and may yield novel therapeutic options.

REFERENCES

1. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001; 357: 539-545
2. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420: 860-867
3. Roux P, Kidd JG. CONDITIONAL NEOPLASMS AND SUBTHRESHOLD NEOPLASTIC STATES: A STUDY OF THE TAR TUMORS OF RABBITS. J Exp Med 1941; 79: 365-390
4. Jinushi M, Chiba S, Yoshiyama H, Masutomi K, Kinoshita I, Dosaka-Akita H, Yagita H, Takaoka A, Tahara H. Tumor-associated macrophages regulate tumorigenicity and anti-cancer drug responses of cancer stem/initiating cells. Proc Natl Acad Sci U S A 2011; 108: 12425-12430
5. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008; 454: 436-444
6. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315: 1650-1659
7. Schäfer M, Werner S. Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol 2008; 9: 628-638
8. Schoppmann SF, Birner P, Stöckl J, Kalt R, Ulrich R, Cau- cig C, Kriehuber E, Nagy K, Alitalo K, Kerjaschki D. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 2002; 161: 947-956
9. Lin EY, Nguyen AV, Russell RG, Pollard JW. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 2001; 193: 727-740
10. Hudson JD, Shoaib MA, Maestro R, Carnero A, Hannon GI, Beach DH. A proinflammatory cytokine inhibits p53 tumor suppressor activity. J Exp Med 1999; 190: 1375-1382
11. De Palma M, Venneti MA, Galli R, Sergi Sergi L, Politi LS, Sampaololesi M, Naldini L. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 2005; 8: 211-226
12. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002; 23: 549-555
13. Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 2009; 182: 4499-4506
14. Sinha P, Clements VK, Ostrand-Rosenberg S. Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J Immunol 2005; 174: 636-645
15. Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM, Chen SH. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 2006; 66: 1123-1131
16. Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 2007; 179: 977-983
17. Li H, Han Y, Guo Q, Zhang M, Cao X. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol 2009; 182: 240-249
18. Hoechst B, Voigtlaender T, Ormandy L, Gammelshøj E, Zhao J, Wedemeyer H, Lehrer F, Manns MP, Goren T, Korany F. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 2009; 50: 799-807
19. Direkze NC, Hodivala-Dilke K, Jeffery R, Hunt T, Poulson R, Oukrif D, Alison MR, Wright NA. Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res 2004; 64: 8492-8495
20. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Poljak K, Briskin C, Yang J, Weinberg RA. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704-715
21. Berdiel-Acer M, Boheim ME, López-Doriga A, Vidal A, Salazar R, Martinez-Iniesta M, Santos C, Sanjuan X, Villanueva A, Molleví DG. Hepatic carcinoma-associated fibroblasts promote an adaptive response in colorectal cancer cells that inhibit proliferation and apoptosis: nonresistant cells die by nonapoptotic cell death. Neoplasia 2011; 13: 931-946
22. Alison MR, Chooong C, Lim S. Application of liver stem cells for cell therapy. Semin Cell Dev Biol 2007; 18: 819-826
23. Mehdi WZ, Iredale J, Friedman SL. Scraping fibrosis: expressway to the core of fibrosis. Nat Med 2011; 17: 552-553
24. Hernandez-Gea V, Friedman SL. Pathogenesis of liver fi-
with homozygous disruption of the mdr2 P-glycoprotein gene. A novel animal model for studies of nonsuppressive inflammatory cholangitis and hepatocarcinogenesis. Am J Pathol 1994; 145: 1237-1245

40 Maeda S, Kamata H, Luo JL, Leffert H, Karin M. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 2005; 121: 977-990

41 Jeong WI, Park O, Radaeva S, Gao B. STAT1 inhibits liver fibrosis in mice by inhibiting stellate cell proliferation and stimulating NK cell cytotoxicity. Hepatology 2006; 44: 1441-1451

42 Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, Pilon-Thomson S, Niu G, Kay H, Mule J, Kerr WG, Jove R, Pardoll D, Yu H. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antimetastatic immunity. Nat Med 2005; 11: 1314-1321

43 Sano S, Chan KS, Di Giovannni J. Impact of Stat3 activation upon skin biology: a dichotomy of its role between homeostasis and diseases. J Dermatol Sci 2008; 50: 1-14

44 Norgauer J, Metzner B, Schraufstätter I. Expression and growth-promoting function of the IL-8 receptor beta in human melanoma cells. J Immunol 1996; 156: 1132-1137

45 Balentien E, Mufson BE, Shattuck RL, Deryck R, Richmond A. Effects of MGSA/GRO alpha on melanocyte transformation. Oncogene 1991; 6: 1115-1124

46 Owen JD, Strieter R, Burdick M, Hagnegahdar H, Nanney L, Shattuck-Brandt R, Richmond A. Enhanced tumor-forming capacity for immortalized melanocytes expressing melanoma growth stimulatory activity/growth-regulated cytokine beta and gamma proteins. Int J Cancer 1997; 73: 94-103

47 Kleeff J, Kusama T, Rossi DL, Ishiwata T, Maruyama H, Friess H, Büchler MW, Zlotnik A, Kore M. Detection and localization of Mip-3alpha/LARC/Exodus, a macrophage proinflammatory chemokine, and its CC(R)R6 receptor in human pancreatic cancer. Int J Cancer 2009; 125: 650-657

48 Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verástegui E, Zlotnik A. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410: 50-56

49 Kaili JT, Yekebas EF, Schurr P, Oboonyo D, Wachowiak WS, Ricono JM, Korchynskyi O, Zhang M, Goles Foshag L, Bilchik AJ, Hoon DS. Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. J Clin Oncol 2005; 23: 2744-2753

50 Kim J, Takeuchi H, Lam ST, Turner RR, Wang HJ, Kuo C, Wilganowski N, Bick J, Bick J, Hageman T, Szsorszay PW, Balkewit FR, Wilson JL. The inflammatory cytokine tumor necrosis factor-alpha regulates chemokine receptor expression on ovarian cancer cells. Cancer Res 2005; 65: 10355-10362

51 Guizzi CE, Mott JL, Bronk SF, Kuroki S, Fingas CD, Gores GJ. Cellular inhibitor of apoptosis 1 (cIAP-1) degradation by caspase 8 during TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Exp Cell Res 2011; 317: 107-116

52 Gyrd-Hansen M, Meier P. IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer 2010; 10: 561-574

53 Melirotta S, Languino LR, Raskett CM, Mercurio AM, Dohi T, Altieri DC. IAP regulation of metastasis. Cancer Cell 2010;
Progression of HCC in mice is associated with a downregulation in the expression of hepatocyte nuclear factors. *Hepatology* 2004; 39: 1038-1047

Nuclear beta-catenin induces an early liver progenitor phenotype in hepatocellular carcinoma and promotes tumor recurrence. *Am J Pathol* 2010; 176: 472-481

Reduced expression of E-cadherin/catenin complex in hepatocellular carcinomas. *World J Gastroenterol* 2008; 14: 5665-5673

Blocking transforming growth factor-beta up-regulates E-cadherin and reduces migration and invasion of hepatocellular carcinoma cells. *Hepatology* 2008; 47: 1557-1566

Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition. *Clin Cancer Res* 2006; 12: 5369-5376

Liver cancer-derived hepatitis C virus core proteins shift TGF-beta responses from tumor suppression to epithelial-mesenchymal transition. *PLoS One* 2009; 4: e4355

Signal transducers and activators of transcription 5b activation enhances hepatocellular carcinoma aggressiveness through induction of epithelial-mesenchymal transition. *Cancer Res* 2006; 66: 9948-9956