XMU’s Simultaneous Translation System at NAACL 2021

Shuangtao Li, Jinming Hu, Boli Wang, Xiaodong Shi, Yidong Chen

Xiamen University, China
Outline

- Tasks
- Data and preprocessing
- Text-to-text system
- Speech-to-text system
- Experiments
- Conclusion and future work
Tasks

- We participated in two tasks:
 - Zh->En Translation, input: streaming transcription. (text-to-text)
 - Zh->En Translation, input: audio file. (speech-to-text)
Data and preprocessing

• Datasets
 • Our MT model is pretrained on CWMT19 (9.1M parallel sentence pairs).
 • Our MT model is fine-tuned on Baidu Speech Translation Corpus (39K parallel sentence pairs).

• Preprocessing
 • Filter out long sentence pairs.
 • Convert full-width characters into half-width characters.
 • Segment Chinese text and tokenize English text.
 • Apply byte-pair-encoding to all sentences.
Text-to-text system

How the system translates streaming text.
Text-to-text system

- The MU segmentor is a text classifier based on BERT.
- Once the probability of class 1 is larger than a threshold δ, the input text is segmented.
To train the MU segmentor, we extract MUs and generate training data.

Generating examples for training the MU segmentor.
Text-to-text system

- Algorithm 1 extracts the MUs in an input sentence.
- We only use the basic method proposed by Zhang et al, 2020 for extracting MUs.

The algorithm for extracting MUs:

```
Algorithm 1: Extract MUs

Input: \( x = x_1, \ldots, x_T \) \> streaming input
Output: \( S_{MU} \) \> list of MU segmentation

1. \( k = 0 \) \> position of last MU boundary
2. \( \tilde{y} = M_{nmt}(src=x, tgt_{force}=None) \) \> full sentence decoding
3. while Reading \( x_t \) do
4. \( y^t = M_{nmt}(src=x_{\leq t}, tgt_{force}=y^k) \)
5. if \( y^t \) is a prefix of \( \tilde{y} \) then
6. \( S_{MU} = S_{MU} \cup \{x_{k+1}, \ldots, x_t\} \)
7. \( k = t \)
8. return \( S_{MU} \)
```
Speech-to-text system

- The speech-to-text system is a pipeline of three components:
 - Baidu’s real time ASR service.
 - A repunctuation model, which is a BERT-based sequence labeling model.
 - A text-to-text translation subsystem.
Experiments

- The two systems are evaluated on the development set of the Baidu Speech Translation Corpus.

The text-to-text system.

The speech-to-text system.
Conclusion and future work

- Adaptive Segmentation Policy (Zhang et al., 2021) is effective.

- Our systems use a conventional MT model that is not designed for simultaneous translation. We will study how to train the MT model that is more suitable for simultaneous translation.