Equivariant quantization of Poisson homogeneous spaces and Kostant’s problem

E. Karolinsky, A. Stolin, and V. Tarasov

Abstract

We find a partial solution to the longstanding problem of Kostant concerning description of the so-called locally-finite endomorphisms of highest weight irreducible modules. The solution is obtained by means of its reduction to a far-reaching extension of the quantization problem. While the classical quantization problem consists in finding \(\star \)-product deformations of the commutative algebras of functions, we consider the case when the initial object is already a noncommutative algebra, the algebra of functions within \(q \)-calculus.

Mathematics Subject Classifications (2000). 17B37, 17B10, 53D17, 53D55.

Key words: quantized universal enveloping algebra, Kostant’s problem, highest weight module, equivariant quantization, reduced fusion element.

1 Introduction

Let \(\tilde{U}_q \mathfrak{g} \) be the quantized universal enveloping algebra “of simply connected type” that corresponds to a finite dimensional split semisimple Lie algebra \(\mathfrak{g} \). Let \(L(\lambda) \) be the irreducible highest weight \(\tilde{U}_q \mathfrak{g} \)-module of highest weight \(\lambda \). The aim of this paper is to show that for certain values of \(\lambda \), the action map \(\tilde{U}_q \mathfrak{g} \to (\text{End} \ L(\lambda))_{\text{fin}} \) is surjective. Here \((\text{End} \ L(\lambda))_{\text{fin}} \) stands for the locally finite part of \(\text{End} \ L(\lambda) \) with respect to the adjoint action of \(\tilde{U}_q \mathfrak{g} \). For the Lie-algebraic case \((q = 1) \), this problem is known as the classical Kostant’s problem, see [3, 4, 10, 11]. The complete answer to it is still unknown even in the \(q = 1 \) case. However, there are examples of \(\lambda \) for which the action map \(U(\mathfrak{g}) \to (\text{End} \ L(\lambda))_{\text{fin}} \) is not surjective. Such examples exist even in the case \(\mathfrak{g} \) is of type \(A \) [12].

The main idea of our approach to Kostant’s problem, both in the Lie-algebraic and quantum group cases, is that \((\text{End} \ L(\lambda))_{\text{fin}} \) has two other presentations. First, it follows from the results of [8] that \((\text{End} \ L(\lambda))_{\text{fin}} \) is canonically isomorphic to \(\text{Hom}_U(L(\lambda), L(\lambda) \otimes F) \), where \(U \) is \(U(\mathfrak{g}) \) (resp. \(\tilde{U}_q \mathfrak{g} \)), and \(F \) is the algebra of (quantized) regular functions on the connected simply connected algebraic
group G corresponding to the Lie algebra \mathfrak{g}. In other words, F is spanned by matrix elements of finite dimensional representations of U with an appropriate multiplication.

One more presentation of the algebra $(\text{End} \ L(\lambda))_{\text{fin}}$ comes from the fact that $\text{Hom}_U\left(L(\lambda), L(\lambda) \otimes F\right)$ is isomorphic as a vector space to a certain subspace F' of F. The subspace F' can be equipped with a \ast-multiplication obtained from the multiplication on F by applying the so-called reduced fusion element. Then $(\text{End} \ L(\lambda))_{\text{fin}}$ is isomorphic as an algebra to F' with this new multiplication. For certain values of λ, the same \ast-multiplication on F' can be defined by applying the universal fusion element, that yields the affirmative answer to Kostant’s problem in such cases.

More exactly, consider the triangular decomposition $U = U^- U^0 U^+$. We have $L(\lambda) = M(\lambda)/K_\lambda \mathbf{1}_\lambda$, where $M(\lambda)$ is the corresponding Verma module, $\mathbf{1}_\lambda$ is the generator of $M(\lambda)$, and $K_\lambda \subset U^-$. Consider also the opposite Verma module $\tilde{M}(\lambda)$ with the lowest weight $-\lambda$ and the lowest weight vector $\tilde{1}_{-\lambda}$. Then its maximal U-submodule is of the form $\tilde{K}_\lambda \cdot \tilde{1}_{-\lambda}$, where $\tilde{K}_\lambda \subset U^+$. We have $F' = F[0]^{K_\lambda + \tilde{K}_\lambda}$ — the subspace of U^0-invariant elements of F annihilated by both K_λ and \tilde{K}_λ. The \ast-product on $F[0]^{K_\lambda + \tilde{K}_\lambda}$ has the form

$$f_1 \ast_\lambda f_2 = \mu \left(J^{\text{red}}(\lambda)(f_1 \otimes f_2)\right),$$

where μ is the multiplication on F, and the reduced fusion element $J^{\text{red}}(\lambda) \in U^- \hat{\otimes} U^+$ is computed in terms of the Shapovalov form on $L(\lambda)$. Notice that for generic λ the element $J^{\text{red}}(\lambda)$ is equal up to an U^0-part to the fusion element related to the Verma module $M(\lambda)$, see for example [1].

We also investigate limiting properties of $J(\lambda)$. In particular, for some values of λ_0 we can guarantee that $f_1 \ast_\lambda f_2 \to f_1 \ast_{\lambda_0} f_2$ as $\lambda \to \lambda_0$. Also, for any λ_0 having a “regularity property” of this kind, the action map $U \to (\text{End} \ L(\lambda_0))_{\text{fin}}$ is surjective. This gives the affirmative answer to the (quantum version of) Kostant’s problem.

For some values of λ, the subspace $F[0]^{K_\lambda + \tilde{K}_\lambda}$ is a subalgebra of $F[0]$, and can be considered as (a flat deformation of) the algebra of regular functions on some Poisson homogeneous space G/G_1. In those cases, the algebra $(F[0]^{K_\lambda + \tilde{K}_\lambda}, \ast)$ is an equivariant quantization of the Poisson algebra of regular functions on G/G_1.

This paper is organized as follows. In Section 2 we recall the definition of the version of quantized universal enveloping algebra used in this paper, and some related constructions that will be useful in the sequel. Section 3 is the core of the paper. We provide there a construction of a star-product on $F[0]^{K_\lambda + \tilde{K}_\lambda}$ in terms of the Shapovalov form on $L(\lambda)$. Finally, in Section 4 we study limiting properties of fusion elements and the corresponding star-products.
Acknowledgments

The authors are grateful to Maria Gorelik, Jiang-Hua Lu, and Catharina Stroppel for useful discussions on the topic of the paper.

2 Algebra $\tilde{U}_q\mathfrak{g}$

Let \mathbb{k} be the field extension of $\mathbb{C}(q)$ by all fractional powers $q^{1/n}$, $n \in \mathbb{N} = \{1, 2, 3, \ldots\}$. We use \mathbb{k} as the ground field.

Let (a_{ij}) a finite type $r \times r$ Cartan matrix. Let d_i be relatively prime positive integers such that $d_ia_{ij} = d_ja_{ji}$. For any positive integer k, define

$$[k]_i = \frac{q^{kd_i} - q^{-kd_i}}{q^{d_i} - q^{-d_i}} , \quad [k]_i! = [1]_i [2]_i \ldots [k]_i.$$

The algebra $U = \tilde{U}_q\mathfrak{g}$ is generated by the elements t_i, t_i^{-1}, e_i, f_i, $i = 1, \ldots, r$, subject to the relations

$$t_it_i^{-1} = t_i^{-1}t_i = 1 ,$$
$$t_ie_it_i^{-1} = q^{d_i\delta_{ij}}e_j ,$$
$$t_if_it_i^{-1} = q^{-d_i\delta_{ij}}f_j ,$$
$$e_if_j - fjej = \delta_{ij} \frac{k_i - k_i^{-1}}{q^{d_i} - q^{-d_i}} , \text{ where } k_i = \prod_{j=1}^r t_{ij}^{a_{ij}} ,$$

$$\sum_{m=0}^{1-a_{ij}} \frac{(-1)^m}{[m]_i! [1 - a_{ij} - m]_j} e_i^m e_j e_i^{1-a_{ij}-k} = 0 \text{ for } i \neq j ,$$
$$\sum_{m=0}^{1-a_{ij}} \frac{(-1)^m}{[m]_i! [1 - a_{ij} - m]_j} f_i^m f_j f_i^{1-a_{ij}-k} = 0 \text{ for } i \neq j .$$

Notice that $k_ie_jk_i^{-1} = q^{d_{aij}}e_j$, $k_if_jk_i^{-1} = q^{-d_{aij}}f_j$.

The algebra U is a Hopf algebra with the comultiplication Δ, the counit ε, and the antipode σ given by

$$\Delta(t_i) = t_i \otimes t_i , \quad \varepsilon(t_i) = 1 , \quad \sigma(t_i) = t_i^{-1} ,$$
$$\Delta(e_i) = e_i \otimes 1 + k_i \otimes e_i , \quad \varepsilon(e_i) = 0 , \quad \sigma(e_i) = -k_i^{-1}e_i ,$$
$$\Delta(f_i) = f_i \otimes k_i^{-1} + 1 \otimes f_i , \quad \varepsilon(f_i) = 0 , \quad \sigma(f_i) = -f_i k_i .$$

In what follows we will sometimes use the Sweedler notation for comultiplication.

Let U^0 be the subalgebra of U generated by the elements $t_1, \ldots, t_r, t_1^{-1}, \ldots, t_r^{-1}$. Let U^+ and U^- be the subalgebras generated respectively by the elements e_1, \ldots, e_r and f_1, \ldots, f_r. We have a triangular decomposition $U = U^- U^0 U^+$.

3
Denote by \(\theta \) the involutive automorphism of \(U \) given by \(\theta(e_i) = -f_i, \theta(f_i) = -e_i \), \(\theta(t_i) = t_i^{-1} \). Notice that \(\theta \) gives an algebra isomorphism \(U^- \rightarrow U^+ \). Set \(\omega = \sigma \theta \), i.e., \(\omega \) is the involutive antiautomorphism of \(U \) given by \(\omega(e_i) = f_i k_i, \omega(f_i) = k_i^{-1} e_i, \omega(t_i) = t_i \).

Let \((\mathfrak{h}, \Pi, \Pi^\vee) \) be a realization of \((a_{ij}) \) over \(\mathbb{Q} \), that is, \(\mathfrak{h} \) is a (rational form of) a Cartan subalgebra of the corresponding semisimple Lie algebra, \(\Pi = \{ \alpha_1, \ldots, \alpha_r \} \subset \mathfrak{h}^* \) the set of simple roots, \(\Pi^\vee = \{ \alpha_1^\vee, \ldots, \alpha_r^\vee \} \subset \mathfrak{h} \) the set of simple coroots. Let \(R \) be the root system, \(R_+ \) the set of positive roots, and \(W \) the Weyl group. Denote by \(s_\alpha \in W \) the reflection corresponding to a root \(\alpha \). For \(w \in W \), \(\lambda \in \mathfrak{h}^* \) we set \(w \cdot \lambda = w(\lambda + \rho) - \rho \). Let \(u_1, \ldots, u_l \in \mathfrak{h} \) be the simple coweights, i.e., \(\langle \alpha_i, u_j \rangle = \delta_{ij} \). We denote by \(\rho \) the half sum of the positive roots. For \(w \in W \) and \(\lambda \in \mathfrak{h}^* \), we set \(w \cdot \lambda = w(\lambda + \rho) - \rho \).

Let
\[
Q_+ = \sum_{\alpha \in \Pi} \mathbb{Z}_+ \alpha.
\]
For \(\beta = \sum_j c_j \alpha_j \in Q_+ \), denote \(\text{ht} \beta = \sum_j c_j \in \mathbb{Z}_+ \). For \(\lambda, \mu \in \mathfrak{h}^* \) we set \(\lambda \geq \mu \) iff \(\lambda - \mu \in Q_+ \).

Take an invariant scalar product \((\cdot | \cdot) \) on \(\mathfrak{h}^* \) such that \((\alpha | \alpha) = 2 \) for any short root \(\alpha \). Then \(d_i = \frac{(\alpha_i | \alpha_i)}{2} \).

Denote by \(T \) the multiplicative subgroup generated by \(t_1, \ldots, t_r \). Any \(\lambda \in \mathfrak{h}^* \) defines a character \(\Lambda : T \rightarrow \mathbb{K} \) given by \(t_i \mapsto q^{d_i(\lambda, u_i)} \). We will write \(\Lambda = q^\lambda \).

Notice that \(q^{\lambda}(k_i) = q^{d_i(\lambda, \alpha_i^\vee)} \). We extend \(q^\lambda \) to the subalgebra \(U^0 \) by linearity.

We say that an element \(x \in U \) is of weight \(\lambda \) if \(ttx^{-1} = q^\lambda(t)x \) for all \(t \in T \).

For a \(U \)-module \(V \), we denote by
\[
V[\lambda] = \{ v \in V \mid tv = q^\lambda(t)v \text{ for all } t \in T \}
\]
the weight subspace of weight \(\lambda \). We call the module \(V \) admissible if \(V \) is a direct sum of finite-dimensional weight subspaces \(V[\lambda] \).

The Verma module \(M(\lambda) \) over \(U \) with highest weight \(\lambda \) and highest weight vector \(1_\lambda \) is defined in the standard way:
\[
M(\lambda) = U^- 1_\lambda, \quad U^+ 1_\lambda = 0, \quad t 1_\lambda = q^\lambda(t) 1_\lambda, \quad t \in T.
\]
The map \(U^- \rightarrow M(\lambda), y \mapsto y 1_\lambda \) is an isomorphism of \(U^- \)-modules.

Set \(U_+^\pm = \text{Ker} \varepsilon|_{U^\pm} \) and denote by \(x \mapsto (x)_0 \) the projection \(U \rightarrow U^0 \) along \(U^- \cdot U + U \cdot U_+^\pm \). For any \(\lambda \in \mathfrak{h}^* \) consider \(\pi_\lambda : U^+ \otimes U^- \rightarrow \mathbb{K}, \pi_\lambda(x \otimes y) = q^\lambda((\sigma(x)y)_0), \) and \(S_\lambda : U^- \otimes U^- \rightarrow \mathbb{K}, S_\lambda(x \otimes y) = \pi_\lambda(\theta(x) \otimes y) = q^\lambda((\omega(x)y)_0) \). We call \(S_\lambda \) the Shapovalov form on \(U^- \) corresponding to \(\lambda \). We can regard \(S_\lambda \) as a bilinear form on \(M(\lambda) \).

Set
\[
K_\lambda = \{ y \in U^- \mid \pi_\lambda(x \otimes y) = 0 \text{ for all } x \in U^+ \},
\]
\[\tilde{K}_\lambda = \{ x \in U^+ | \pi_\lambda(x \otimes y) = 0 \text{ for all } y \in U^- \}. \]

Clearly, \(K_\lambda \) is the kernel of \(S_\lambda \), \(\tilde{K}_\lambda = \theta(K_\lambda) \). Notice that \(K(\lambda) = K_\lambda \cdot 1_\lambda \) is the largest proper submodule of \(M(\lambda) \), and \(L(\lambda) = M(\lambda)/K(\lambda) \) is the irreducible \(U \)-module with highest weight \(\lambda \). Denote by \(\overline{T}_\lambda \) the image of \(1_\lambda \) in \(L(\lambda) \).

The following propositions are well known for the Lie-algebraic case. They also hold for the case of \(U = \hat{U}_q \mathfrak{g} \). Proposition 1 follows from a simple \(U_q \mathfrak{sl}(2) \) computation. For Propositions 2, 3, see [5, 9].

Proposition 1. Assume that \(\lambda \in \mathfrak{h}^* \) satisfies \(\langle \lambda + \rho, \alpha_i^\vee \rangle = n \in \mathbb{N} \) for a simple root \(\alpha_i \). Then \(f_i^n \) is in \(K_\lambda \).

Proposition 2. Let \(\lambda \in \mathfrak{h}^* \) be dominant integral. Then the \(U \)-module \(L(\lambda) \) is finite dimensional, and \(\dim(L(\lambda)) = \dim(L(\lambda))[w\mu] \) for any \(\mu \in \mathfrak{h}^* \) and \(w \in W \).

Proposition 3. Assume that \(\lambda \in \mathfrak{h}^* \) satisfies \(\langle \lambda + \rho, \alpha_i^\vee \rangle = n \in \mathbb{N} \) for some \(\alpha \in \mathbb{R}_+ \) and \(\langle \lambda + \rho, \beta^\vee \rangle \notin \mathbb{N} \) for all \(\beta \in \mathbb{R}_+ \setminus \{ \alpha \} \). Then \(K_\lambda \) is generated by a single element of weight \(-n\alpha \).

Proposition 4. Let \(\lambda \in \mathfrak{h}^* \) be dominant integral, \(\langle \lambda + \rho, \alpha_i^\vee \rangle = n_i \), \(i = 1, \ldots, r \). Then \(K_\lambda \) is generated by the elements \(f_i^{n_i} \), \(i = 1, \ldots, r \).

In the sequel we need some properties of the universal \(R \)-matrix of \(U \). Namely, let \(V_1 \), \(V_2 \) be \(U \)-modules such that \(V_1 \) is a direct sum of highest weight modules or \(V_2 \) is a direct sum of lowest weight modules. Then the \(R \)-matrix induces an isomorphism \(\tilde{R} : V_1 \otimes V_2 \rightarrow V_2 \otimes V_1 \) of \(U \)-modules. Moreover, if \(V_1 \) is a highest weight module with highest weight \(\lambda \) and highest weight vector \(1_\lambda \), and \(V_2 \) is a lowest weight module with lowest weight \(\mu \) and lowest weight vector \(1_\mu \), then
\[\tilde{R}(1_\lambda \otimes \overline{1}_\mu) = q^{-\langle \lambda + \rho, \alpha_i^\vee \rangle} \overline{1}_\mu \otimes 1_\lambda. \]

Let \(F = \mathbb{k}[G]_q \) be the quantized algebra of regular functions on a connected simply connected algebraic group \(G \) that corresponds to the Cartan matrix \((a_{ij}) \) (see [3, 6]). We can consider \(F \) as a Hopf subalgebra in the dual Hopf algebra \(U^* \). We will use the left and right regular actions of \(U \) on \(F \) defined respectively by the formulae \((a f)(x) = f(xa) \) and \((f a')(x) = f(ax) \). Notice that \(F \) is a sum of finite-dimensional admissible \(U \)-modules with respect to both regular actions of \(U \) (see [9]).

3 Star products and fusion elements

3.1 Algebra of intertwining operators

Let us denote by \(U_{\text{fin}} \subset U \) the subalgebra of locally finite elements with respect to the right adjoint action of \(U \) on itself. We will use similar notation for any (right) \(U \)-module.
For any (left) U-module M we equip F with the left regular U-action and consider the space $\text{Hom}_{U}(M, M \otimes F)$. For any $\varphi, \psi \in \text{Hom}_{U}(M, M \otimes F)$ define

$$\varphi \ast \psi = (\text{id} \otimes \mu) \circ (\varphi \otimes \text{id}) \circ \psi,$$

where μ is the multiplication in F. We have $\varphi \ast \psi \in \text{Hom}_{U}(M, M \otimes F)$, and this definition equips $\text{Hom}_{U}(M, M \otimes F)$ with a unital associative algebra structure.

Consider the map $\Phi : \text{Hom}_{U}(M, M \otimes F) \to \text{End}_{U}M$, $\varphi \mapsto u_{\varphi}$, defined by $u_{\varphi}(m) = (\text{id} \otimes \varepsilon)(\varphi(m))$; here $\varepsilon(f) = f(1)$ is the counit in F. Consider U_{fin}, \text{Hom}_{U}(M, M \otimes F)$ and $\text{End}_{U}M$ as right U-module algebras: U_{fin} via right adjoint action, $\text{Hom}_{U}(M, M \otimes F)$ via right regular action on F (i.e., $(\varphi \cdot a)(m) = (\text{id} \otimes \varepsilon)(\varphi(m))$), and $\text{End}_{U}M$ in a standard way (i.e., $u \cdot a = \sum_{(a)} \sigma(a_{1})Mua(2)_{M}$).

Then $\text{Hom}_{U}(M, M \otimes F)_{\text{fin}} = \text{Hom}_{U}(M, M \otimes F)$, and $\Phi : \text{Hom}_{U}(M, M \otimes F) \to (\text{End}_{U}M)_{\text{fin}}$ is an isomorphism of right U-module algebras (see [8, Proposition 6]).

Now we apply this to $M = M(\lambda)$ and $M = L(\lambda)$. Since $U_{\text{fin}} \to (\text{End}_{U}M(\lambda))_{\text{fin}}$ is surjective (see [3, 6]), we have the following commutative diagram

$$\begin{array}{ccc}
\text{Hom}_{U}(M(\lambda), M(\lambda) \otimes F) & \longrightarrow & \text{Hom}_{U}(L(\lambda), L(\lambda) \otimes F) \\
\Phi_{M(\lambda)} & & \Phi_{L(\lambda)} \\
(\text{End } M(\lambda))_{\text{fin}} & \longrightarrow & (\text{End } L(\lambda))_{\text{fin}}
\end{array}$$

(see [8, Proposition 9]).

For any $\varphi \in \text{Hom}_{U}(L(\lambda), L(\lambda) \otimes F)$ the formula $\varphi(T_{\lambda}) = T_{\lambda} \otimes f_{\varphi} + \sum_{\mu < \lambda} v_{\mu} \otimes f_{\mu}$, where v_{μ} is of weight μ, defines a map $\Theta : \text{Hom}_{U}(L(\lambda), L(\lambda) \otimes F) \to F[0], \varphi \mapsto f_{\varphi}$.

Theorem 5. Θ is an embedding, and its image equals $F[0]^{K_{\lambda} + \widetilde{K}_{\lambda}}$.

To prove Theorem 5 we need some preparations.

In the sequel V stands for an U-module which is a direct sum of finite dimensional admissible U-modules.

For an admissible U-module M we will denote by M^{*} its restricted dual.

Let $\widetilde{M}(\lambda)$ be the “opposite Verma module” with the lowest weight $\lambda \in \mathfrak{h}^{*}$ and the lowest weight vector $\widetilde{1}_{\lambda}$. It is clear that $\widetilde{K}_{-\lambda} \cdot \widetilde{1}_{\lambda}$ is the largest proper submodule in $\widetilde{M}(\lambda)$.

Lemma 6. $\text{Hom}_{U^{-}}(M(\lambda), V) = (V \otimes M(\lambda))^{U^{-}}, \text{Hom}_{U^{+}}(\widetilde{M}(\lambda), V) = (V \otimes \widetilde{M}(\lambda)^{*})^{U^{+}}$.

Proof. For any $\varphi \in \text{Hom}_{U^{-}}(M(\lambda), V)$ the image of φ is equal to the finite-dimensional U^{-}-submodule $U^{-}\varphi(1_{\lambda})$. Therefore for any $x \in U^{-}$ such that $x1_{\lambda}$ is a weight vector whose weight is large enough we have $\varphi(x1_{\lambda}) = x\varphi(1_{\lambda}) = 0$. Thus φ corresponds to an element in $(V \otimes M(\lambda)^{*})^{U^{-}}$.

The second part of the lemma can be proved similarly. □
Choose vectors $1^*_\lambda \in M(\lambda)^*[-\lambda]$ and $\tilde{1}^*_\lambda \in \tilde{M}(-\lambda)^*\langle\lambda\rangle$ such that $\langle 1^*_\lambda, 1_\lambda \rangle = \langle \tilde{1}^*_\lambda, \tilde{1}_\lambda \rangle = 1$. Define maps $\zeta : \text{Hom}_U(M(\lambda), V \otimes \tilde{M}(-\lambda)^*) \to V[0]$ and $\tilde{\zeta} : \text{Hom}_U(M(-\lambda), V \otimes M(\lambda)^*) \to V[0]$ by the formulae $\varphi(1_\lambda) = \zeta \otimes \tilde{1}^*_\lambda + \text{lower order terms}$, $\varphi(\tilde{1}_\lambda) = \tilde{\zeta} \otimes 1^*_\lambda + \text{higher order terms}$.

Consider also the natural maps

\[r : \text{Hom}_U(M(\lambda) \otimes \tilde{M}(-\lambda), V) \to \text{Hom}_U(M(\lambda), V \otimes \tilde{M}(-\lambda)^*), \]
\[\tilde{r} : \text{Hom}_U(M(\lambda) \otimes \tilde{M}(-\lambda), V) \to \text{Hom}_U(\tilde{M}(-\lambda), V \otimes M(\lambda)^*). \]

Proposition 7. Maps ζ, $\tilde{\zeta}$, r, and \tilde{r} are vector space isomorphisms, and the diagram

\[
\begin{array}{ccc}
\text{Hom}_U(M(\lambda) \otimes \tilde{M}(-\lambda), V) & \xrightarrow{r} & \text{Hom}_U(M(\lambda), V \otimes \tilde{M}(-\lambda)^*) \\
\downarrow{\tilde{r}^{-1}} & & \downarrow{q^{-\langle\lambda\rangle}} \\
\text{Hom}_U(\tilde{M}(-\lambda) \otimes M(\lambda), V) & \xrightarrow{\tilde{r}} & \text{Hom}_U(\tilde{M}(-\lambda), V \otimes M(\lambda)^*)
\end{array}
\]

is commutative.

Proof. First of all notice that we have the natural identification

\[\text{Hom}_U(M(\lambda), V \otimes \tilde{M}(-\lambda)^*) = (V \otimes \tilde{M}(-\lambda)^* U^+)^{\langle\lambda\rangle}, \]

Further on, we have

\[\text{Hom}_U(M(\lambda) \otimes \tilde{M}(-\lambda), V) = \text{Hom}_U(M(\lambda), \text{Hom}(\tilde{M}(-\lambda), V)) = \text{Hom}_U(\tilde{M}(-\lambda), V)[\lambda] = V[0]. \]

On the other side, $\text{Hom}_U(\tilde{M}(-\lambda), V) = (V \otimes \tilde{M}(-\lambda)^* U^+)^{\langle\lambda\rangle}$ by Lemma 3. Now it is clear that the map r (resp. ζ) corresponds to the identification $\text{Hom}_U(M(\lambda) \otimes \tilde{M}(-\lambda), V) = (V \otimes \tilde{M}(-\lambda)^* U^+)^{\langle\lambda\rangle}$ (resp. $(V \otimes \tilde{M}(-\lambda)^*)^{U^+}[\lambda] = V[0]$).

The second part of the proposition concerning \tilde{r} and $\tilde{\zeta}$ can be verified similarly.

Finally, since $\tilde{r}^{-1}(\tilde{1}^- \otimes 1_\lambda) = q^{-\langle\lambda\rangle} 1_\lambda \otimes \tilde{1}^- \lambda$, the whole diagram is commutative. \qed

Now note that the pairing $\pi_\lambda : U^+ \otimes U^- \to \mathbb{k}$ naturally defines a pairing $\tilde{M}(-\lambda) \otimes M(\lambda) \to \mathbb{k}$. Denote by $\chi_\lambda : M(\lambda) \to \tilde{M}(-\lambda)^*$ the corresponding morphism of U-modules. The kernel of χ_λ is equal to $K(\lambda) = K_\lambda \cdot 1_\lambda$, and the image of χ_λ is $(\tilde{K}_\lambda \cdot \tilde{1}_\lambda) L(\lambda)$. Therefore χ_λ can be naturally represented as $\chi_\lambda^\vee \otimes \chi_\lambda^\prime$, where

\[M(\lambda) \xrightarrow{\chi_\lambda} L(\lambda) \xrightarrow{\chi_\lambda^\prime} \tilde{M}(-\lambda)^*. \]
The morphisms χ'_λ and χ''_λ induce the commutative diagram of embeddings

$$
\begin{array}{c}
\text{Hom}_U(L(\lambda), V \otimes L(\lambda)) \\
\downarrow \\
\text{Hom}_U(L(\lambda), V \otimes \widetilde{M}(-\lambda)^*) \\
\downarrow \\
\text{Hom}_U(L(\lambda), V \otimes \tilde{M}(-\lambda)^*) \\
\end{array}
\rightarrow
\begin{array}{c}
\text{Hom}_U(M(\lambda), V \otimes L(\lambda)) \\
\downarrow \\
\text{Hom}_U(M(\lambda), V \otimes \widetilde{M}(-\lambda)^*) \\
\downarrow \\
\text{Hom}_U(M(\lambda), V \otimes \tilde{M}(-\lambda)^*).
\end{array}
$$

It is clear that the following lemma holds:

Lemma 8. The image of $\text{Hom}_U(L(\lambda), V \otimes L(\lambda))$ in $\text{Hom}_U(M(\lambda), V \otimes \tilde{M}(-\lambda)^*)$ under the embedding above consists of the morphisms $\varphi : M(\lambda) \to V \otimes \tilde{M}(-\lambda)^*$ such that $\varphi(K\lambda 1_\lambda) = 0$ and $\varphi(M(\lambda)) \subset V \otimes (K\lambda \tilde{1}_{-\lambda})^\perp$. □

Proposition 9. Let $\varphi \in \text{Hom}_U(M(\lambda), V \otimes \tilde{M}(-\lambda)^*)$. Then $\varphi(M(\lambda)) \subset V \otimes (K\lambda \tilde{1}_{-\lambda})^\perp$ iff $K\lambda \zeta_\varphi = 0$.

Proof. First notice that $\varphi(M(\lambda)) \subset V \otimes (K\lambda \tilde{1}_{-\lambda})^\perp$ iff $\varphi(1_\lambda) \in V \otimes (K\lambda \tilde{1}_{-\lambda})^\perp$. Indeed, for any $x \in U$ we have $\varphi(x1_\lambda) = \sum (x_1 \otimes x_2) \varphi(1_\lambda)$ and $U.(K\lambda \tilde{1}_{-\lambda})^\perp = (K\lambda \tilde{1}_{-\lambda})^\perp$.

Denote by ψ the element in $\text{Hom}_{U^+}(\tilde{M}(-\lambda), V)$ that corresponds to $\varphi(1_\lambda) \in (V \otimes \tilde{M}(-\lambda)^*)^U^\perp$ (see Lemma 6). Under this notation $\varphi(1_\lambda) \in V \otimes (K\lambda \tilde{1}_{-\lambda})^\perp$ iff $\psi(K\lambda \tilde{1}_{-\lambda}) = 0$. On the other hand, $\zeta_\varphi = \psi(\tilde{1}_{-\lambda})$ and $\psi(K\lambda \tilde{1}_{-\lambda}) = K\lambda \psi(\tilde{1}_{-\lambda}) = \tilde{K}\lambda \zeta_\varphi$. This completes the proof. □

Proposition 10. Let $\varphi \in \text{Hom}_U(M(\lambda), V \otimes \tilde{M}(-\lambda)^*)$. Then $\varphi(K\lambda 1_\lambda) = 0$ iff $K\lambda \zeta_\varphi = 0$.

Proof. Consider $\hat{\varphi} = r^{-1}(\varphi) \in \text{Hom}_U(M(\lambda) \otimes \tilde{M}(-\lambda), V)$, $\varphi = \hat{\varphi} \circ \hat{R}^{-1} \in \text{Hom}_U(M(-\lambda) \otimes M(\lambda), V)$, and $\bar{\varphi} = \bar{r}(\varphi) \in \text{Hom}_U(M(-\lambda), V \otimes M(\lambda)^{\perp^*})$ (see Proposition 7). Since $K\lambda 1_\lambda \otimes \tilde{M}(-\lambda)$ is an $U \otimes U$-submodule in $M(\lambda) \otimes M(-\lambda)$, one has $\varphi(K\lambda 1_\lambda) = 0$ iff $\bar{\varphi}(M(-\lambda) \otimes K\lambda 1_\lambda) = 0$ iff $\bar{\varphi}(\tilde{M}(-\lambda)) \subset V \otimes (K\lambda 1_\lambda)^\perp$.

Arguing as in the proof of Proposition 9 we see that $\bar{\varphi}(\tilde{M}(-\lambda)) \subset V \otimes (K\lambda 1_\lambda)^\perp$ iff $K\lambda \zeta_{\bar{\varphi}} = 0$. Now it is enough to notice that $\zeta_{\bar{\varphi}} = q^{-(\lambda|\lambda)} \zeta_\varphi$ by Proposition 7 and therefore $K\lambda \zeta_{\bar{\varphi}} = 0$ iff $K\lambda \zeta_\varphi = 0$. □

Define maps $u : \text{Hom}_U(L(\lambda), L(\lambda) \otimes V) \to V[0]$ and $v : \text{Hom}_U(L(\lambda), V \otimes L(\lambda)) \to V[0]$ via $\varphi \mapsto u_\varphi$, where $\varphi(\tilde{1}_\lambda) = \tilde{T}_\lambda \otimes u_\varphi + \text{lower order terms}$, and $\psi \mapsto v_\psi$, where $\psi(\tilde{1}_\lambda) = v_\psi \otimes \tilde{T}_\lambda + \text{lower order terms}$.

Proposition 11. The map v defines the isomorphism $\text{Hom}_U(L(\lambda), V \otimes L(\lambda)) \simeq V[0]^{K\lambda + K\lambda}$. 8
Remark 1. For \(\beta = 0 \) we have \(y^0 = 1 \) and \(f^{\beta,i} = f \).

Proposition 13. \(f^{\beta,i} = \sum_j \left(\mathcal{S}_\lambda^{-1} \right)_{ij} \theta \left(y^i \right) f. \)

Proof. For any \(\beta = \sum_j c_j \alpha_j \in Q_+ \) set \(k_\beta = \prod_j k^{c_j}_j \in T \) and \(\Lambda_\beta = q^\lambda(k_\beta) = \prod_j q^{d_j c_j(\lambda, \alpha)} \).

Set \(\xi = \varphi(\overline{T}_\lambda) \). Clearly, \(\xi \) is a singular element in \(L(\lambda) \otimes F \). In particular, \((k_i \otimes k_i) \xi = q^{d_j(\lambda, \alpha)} \xi \) and \((e_i \otimes 1 + k_i \otimes e_j) \xi = 0 \). Thus \((e_i \otimes 1) \xi = q^{\delta_i(\lambda, \alpha)^{-1}}(1 \otimes \sigma^{-1}(e_i)) \xi \). By induction we get \((x \otimes 1) \xi = \Lambda_\beta(1 \otimes \sigma^{-1}(x)) \xi \) for any \(x \in U^+[\beta] \).
Let ω' be the involutive antiautomorphism of U given by $\omega'(e_i) = f_i$, $\omega'(f_i) = e_i$, $\omega'(t_i) = t_i$. Set $x^i_\beta = \omega'(y^i_\beta)$. Then we have

$$\left(S^\lambda \otimes \text{id} \right) \left(T^\lambda \otimes (x^i_\beta \otimes 1) \xi \right) = \Lambda^\beta \left(S^\lambda \otimes \text{id} \right) \left(T^\lambda \otimes (1 \otimes \sigma^{-1}(x^i_\beta)) \xi \right). \quad (2)$$

It is easy to show by induction on $\text{ht} \beta$ that $\omega(x^i_\beta) = q^{c(\beta)}y^i_\beta k^i_\beta$ and $\sigma^{-1}(x^i_\beta) = q^{c(\beta)}\theta(y^i_\beta)k^i_\beta$ for a certain $c(\beta)$. (Actually $c(\beta) = d_1 + \ldots + d_i - \frac{1}{2}(\beta, d_1 \alpha_1' + \ldots + d_i \alpha_i')$.) Hence the l. h. s. of (2) equals

$$\sum_i S^\lambda \left(\omega(x^i_\beta) T^\lambda, y^i_\beta T^\lambda \right) f^{\beta,i} = q^{c(\beta)}\Lambda^\beta \sum_i S^\lambda \left(y^i_\beta T^\lambda, y^i_\beta T^\lambda \right) f^{\beta,i}$$

and the r. h. s. of (2) equals

$$\Lambda^\beta \sigma^{-1}(x^i_\beta) f = q^{c(\beta)}\Lambda^\beta \theta(y^i_\beta) f.$$

Combining these together we get

$$\sum_i S^\lambda \left(y^i_\beta T^\lambda, y^i_\beta T^\lambda \right) f^{\beta,i} = \theta(y^i_\beta) f,$$

and the proposition follows. \hfill \square

For any $\lambda \in \mathfrak{h}^*$ consider

$$J^{\text{red}}(\lambda) = \sum_{\beta \in \mathbb{Q}^+} \sum_{i,j} \left(S^\lambda \right)^{-1}_{ij} y^i_j \otimes \theta(y^j_\beta). \quad (3)$$

One can regard $J^{\text{red}}(\lambda)$ as an element in a certain completion of $U^- \otimes U^+$.

Remark 2. This element $J^{\text{red}}(\lambda)$ is not uniquely defined (e.g., because $U^- \to L(\lambda)$ has a kernel), but this does not affect our further considerations.

Remark 3. For $f \in F[0]^{K_\lambda + \tilde{K}_\lambda}$ and $\varphi = \Theta^{-1}(f)$ one has $\varphi(T^\lambda) = J^{\text{red}}(\lambda)(T^\lambda \otimes f)$.

Let us define an associative product \ast_λ on $F[0]^{K_\lambda + \tilde{K}_\lambda}$ by means of Θ, i.e., for any $f_1, f_2 \in F[0]^{K_\lambda + \tilde{K}_\lambda}$ we define $f_1 \ast_\lambda f_2 = \Theta(\varphi_1 \ast \varphi_2)$, where $\varphi_1 = \Theta^{-1}(f_1)$, $\varphi_2 = \Theta^{-1}(f_2)$, and \ast is the product on $\text{Hom}_U(L(\lambda), L(\lambda) \otimes F')$ given by (1). By this definition, we get a right U-module algebra $(F[0]^{K_\lambda + \tilde{K}_\lambda}, \ast_\lambda)$.

Theorem 14. We have

$$f_1 \ast_\lambda f_2 = \mu \left(J^{\text{red}}(\lambda)(f_1 \otimes f_2) \right). \quad (4)$$
Proof. Observe that

\[(\varphi_1 \ast \varphi_2)(\mathbf{1}_\lambda) = (\text{id} \otimes \mu)(\varphi_1 \otimes \text{id})(\varphi_2(\mathbf{1}_\lambda)) = \]

\[(\text{id} \otimes \mu)(\varphi_1 \otimes \text{id}) \left(\mathbf{1}_\lambda \otimes f_2 + \sum_{\beta \in Q_+ \setminus \{0\}} \sum_i y_\beta^i \cdot \mathbf{1}_\lambda \otimes f_2^{\beta,i} \right) = \]

\[(\text{id} \otimes \mu) \left(\varphi_1(\mathbf{1}_\lambda) \otimes f_2 + \sum_{\beta \in Q_+ \setminus \{0\}} \sum_i (\Delta(y_\beta^i)\varphi_1(\mathbf{1}_\lambda)) \otimes f_2^{\beta,i} \right) = \]

\[\mathbf{1}_\lambda \otimes \left(f_1 f_2 + \sum_{\beta \in Q_+ \setminus \{0\}} \sum_i \left(\overleftarrow{y_\beta f_1} \right) f_2^{\beta,i} \right) + \text{lower order terms}, \]

where in the last equation we use the fact that for any \(y \in U_+ \) we have \(\Delta(y) = 1 \otimes y + \sum_k y_k \otimes z_k \) with \(y_k \in U_+ \). Therefore

\[f_1 \ast_\lambda f_2 = f_1 f_2 + \sum_{\beta \in Q_+ \setminus \{0\}} \sum_i \left(\overleftarrow{y_\beta f_1} \right) f_2^{\beta,i} = \sum_{\beta \in Q_+} \sum_i \left(\overleftarrow{y_\beta f_1} \right) f_2^{\beta,i}. \]

To finish the proof it is enough to apply Proposition 13 to \(f_2 \). \qed

Remark 4. Theorem 14 together with results of [8] implies that the algebras \(\text{Hom}_U(L(\lambda), L(\lambda) \otimes F) \), \(\text{End}_{\mathcal{L}}(\lambda) \) \(), \text{fin} \), and \((F[0]^{K_\lambda + \tilde{K}_\lambda}, \ast_\lambda)\) are isomorphic as right Hopf module algebras over \(U \).

4 Limiting properties of the fusion element

We say that \(\lambda \in \mathfrak{h}^* \) is \textit{generic} if \(\langle \lambda + \rho, \beta^\vee \rangle \not\in \mathbb{N} \) for all \(\beta \in \mathbb{R}_+ \). In this case \(L(\lambda) = M(\lambda) \), and we set \(J(\lambda) = J^{\text{reg}}(\lambda) \). Notice that \(J(\lambda) \) up to a \(U_0 \)-part equals the fusion element related to the Verma module \(M(\lambda) \) (see, e.g., [1]).

4.1 Regularity

Let \(\lambda_0 \in \mathfrak{h}^* \). Since \(J(\lambda) \) is invariant w. r. to \(\tau(\theta \otimes \theta) \) (where \(\tau \) is the tensor permutation), one can easily see that the following conditions on \(\lambda_0 \) are equivalent: 1) for any \(U^- \)-module \(M \) the family of operators \(J(\lambda)^M : M \otimes F[0]^{K_{\lambda_0}} \to M \otimes F \) naturally defined by \(J(\lambda) \) is regular at \(\lambda = \lambda_0 \), 2) for any \(U^+ \)-module \(N \) the family of operators \(J(\lambda)_N : F[0]^{K_{\lambda_0}} \otimes N \to F \otimes N \) naturally defined by \(J(\lambda) \) is regular at \(\lambda = \lambda_0 \). We will say that \(\lambda_0 \) is \(J \)-\textit{regular} if these conditions are satisfied. Clearly, any generic \(\lambda_0 \) is \(J \)-regular.

Proposition 15. Assume that \(\lambda_0 \in \mathfrak{h}^* \) is \(J \)-regular. Then \(F[0]^{K_{\lambda_0}} = F[0]^{\tilde{K}_{\lambda_0}} = F[0]^{K_{\lambda_0} + \tilde{K}_{\lambda_0}} \).
Proof. Let $g \in F[0]^{\tilde{K}_{\lambda_0}}$. If $\lambda \in \mathfrak{h}^*$ is generic, then the element $J(\lambda)^{M(\lambda)}(1_{\lambda} \otimes g)$ is a singular vector of weight λ in $M(\lambda) \otimes F$. Therefore $Z := \lim_{\lambda \to \lambda_0} J(\lambda)^{M(\lambda)}(1_{\lambda} \otimes g)$ is a singular vector of weight λ_0 in $M(\lambda_0) \otimes F$, and hence we have $\varphi_Z \in \text{Hom}_U(M(\lambda_0), M(\lambda_0) \otimes F)$, $\varphi_Z(1_{\lambda_0}) = Z$.

Under the natural map $\text{Hom}_U(M(\lambda_0), M(\lambda_0) \otimes F) \to \text{Hom}_U(L(\lambda_0), L(\lambda_0) \otimes F)$ we have $\varphi_Z \mapsto \varphi_Z$, where $\varphi_Z(T_{\lambda_0}) = Z$ is the projection of Z onto $L(\lambda_0) \otimes F$. Now notice that $g = \Theta(\varphi_Z) \in F[0]^{K_{\lambda_0} + \tilde{K}_{\lambda_0}}$.

The proof of $F[0]^{K_{\lambda_0}} = F[0]^{K_{\lambda_0} + \tilde{K}_{\lambda_0}}$ is similar. □

Proposition 16. Assume that $\lambda_0 \in \mathfrak{h}^*$ is J-regular. Then the natural map $\text{Hom}_U(M(\lambda_0), M(\lambda_0) \otimes F) \to \text{Hom}_U(L(\lambda_0), L(\lambda_0) \otimes F)$ is surjective.

Proof. We have the isomorphism

$$\Theta : \text{Hom}_U(L(\lambda_0), L(\lambda_0) \otimes F) \to F[0]^{K_{\lambda_0} + \tilde{K}_{\lambda_0}} = F[0]^{\tilde{K}_{\lambda_0}}.$$

Now take $g \in F[0]^{\tilde{K}_{\lambda_0}}$. Consider $Z = \lim_{\lambda \to \lambda_0} J(\lambda)^{M(\lambda)}(1_{\lambda} \otimes g) \in M(\lambda_0) \otimes F$. Since Z is a singular vector of weight λ_0, we have $\varphi_Z \in \text{Hom}_U(M(\lambda_0), M(\lambda_0) \otimes F)$, $\varphi_Z(1_{\lambda_0}) = Z$. Clearly, under the mapping $\text{Hom}_U(M(\lambda_0), M(\lambda_0) \otimes F) \to \text{Hom}_U(L(\lambda_0), L(\lambda_0) \otimes F)$ the image of φ_Z equals to $\Theta^{-1}(g)$, which proves the proposition. □

Proposition 17. Assume that $\lambda_0 \in \mathfrak{h}^*$ is J-regular. Then the action map $U_{\text{fin}} \to (\text{End } L(\lambda_0))_{\text{fin}}$ is surjective.

Proof. Recall that we have the isomorphisms

$$\text{Hom}_U(M(\lambda_0), M(\lambda_0) \otimes F) \simeq (\text{End } M(\lambda_0))_{\text{fin}},$$

$$\text{Hom}_U(L(\lambda_0), L(\lambda_0) \otimes F) \simeq (\text{End } L(\lambda_0))_{\text{fin}}.$$

It is well known that the action map $U_{\text{fin}} \to (\text{End } M(\lambda_0))_{\text{fin}}$ is surjective for any $\lambda_0 \in \mathfrak{h}^*$ (see [5, 6]). Since by Proposition 16 the map $(\text{End } M(\lambda_0))_{\text{fin}} \to (\text{End } L(\lambda_0))_{\text{fin}}$ is surjective, the map $U_{\text{fin}} \to (\text{End } L(\lambda_0))_{\text{fin}}$ is also surjective. □

Proposition 18. Assume that $\lambda_0 \in \mathfrak{h}^*$ is J-regular. Then for any $f, g \in F[0]^{K_{\lambda_0}}$ we have $\overrightarrow{J(\lambda)}(f \otimes g) \to \overrightarrow{J^{\text{red}}(\lambda_0)}(f \otimes g)$ as $\lambda \to \lambda_0$.

Proof. For any $\lambda \in \mathfrak{h}^*$ we may naturally identify $M(\lambda)$ with U^- as U^--modules. Therefore we know by definition of J-regularity that $J(\lambda)^{M(\lambda)}(1_{\lambda} \otimes g)$ is regular at $\lambda = \lambda_0$. Thus $J(\lambda)^{M(\lambda)}(1_{\lambda} \otimes g) \to Z \in M(\lambda_0) \otimes F$ as $\lambda \to \lambda_0$. In an arbitrary basis $y_{\beta} \in U^{-}[\beta]$ we have

$$J(\lambda)^{M(\lambda)}(1_{\lambda} \otimes g) = \sum_{\beta \in Q_+} \sum_{i,j} (S_{\lambda}^{\beta})^{-1}_{i,j} y_{\beta}^i 1_{\lambda} \otimes \overrightarrow{\theta(y_{\beta}^j)g},$$

12
and

\[Z = \sum_{\beta \in Q_+} \sum_{i,j} a_{ij}^\beta \cdot y_\beta^i 1_{\lambda_0} \otimes \theta (y_\beta^j) g \]

for some coefficients \(a_{ij}^\beta \).

Now choose a basis \(y_\beta^i \in U^-[-\beta] \) in the following way: first take a basis in \(K_{\lambda_0}[-\beta] = K_{\lambda_0} \cap U^-[-\beta] \) and then extend it arbitrarily to a basis in the whole \(U^-[-\beta] \). In this basis the projection \(Z \in L(\lambda_0) \otimes F \) of the element \(Z \) is given by

\[Z = \sum_{\beta \in Q_+} \sum_{y_\beta^i \notin K_{\lambda_0}[-\beta]} a_{ij}^\beta \cdot y_\beta^i 1_{\lambda_0} \otimes \theta (y_\beta^j) g. \quad (5) \]

Now notice that \(Z \), being the limit of singular vectors of weight \(\lambda \) in \(M(\lambda) \otimes F \), defines the intertwining operator \(\varphi_Z \in \text{Hom}_U(M(\lambda_0), M(\lambda_0) \otimes F) \), \(\varphi_Z(1_{\lambda_0}) = Z \).

Under the natural map \(\text{Hom}_U(M(\lambda_0), M(\lambda_0) \otimes F) \to \text{Hom}_U(L(\lambda_0), L(\lambda_0) \otimes F) \) we have \(\varphi_Z \mapsto \varphi_Z^{-1} \), where \(\varphi_Z^{-1}(1_{\lambda_0}) = Z^{-1} \). Therefore \(Z = J^{\text{red}}(\lambda_0)^{-1} \). Comparing this with \((5) \) we conclude that for all \(i, j \) such that \(y_\beta^i, y_\beta^j \notin K_{\lambda_0}[-\beta] \) we have \(a_{ij}^\beta = (S_{\lambda_0}^\beta)^{-1}_{ij} \).

Finally,

\[\sum_{\beta \in Q_+} \sum_{y_\beta^i \notin K_{\lambda_0}[-\beta]} a_{ij}^\beta \rightarrow (y_\beta^i f) \otimes \theta (y_\beta^j) g = \]

\[\sum_{\beta \in Q_+} \sum_{y_\beta^i \notin K_{\lambda_0}[-\beta]} a_{ij}^\beta f \otimes \theta (y_\beta^j) g = \]

\[\sum_{\beta \in Q_+} \sum_{y_\beta^i \notin K_{\lambda_0}[-\beta]} (S_{\lambda_0}^\beta)^{-1}_{ij} y_\beta^i f \otimes \theta (y_\beta^j) g = J^{\text{red}}(\lambda_0)(f \otimes g) \]

as \(\lambda \to \lambda_0 \).

\[\square \]

Corollary 19. Assume that \(\lambda_0 \in \mathfrak{h}^* \) is \(J \)-regular. Let \(f_1, f_2 \in F[0]^{K_{\lambda_0}} \). Then \(f_1 \ast_\lambda f_2 \to f_1 \ast_{\lambda_0} f_2 \) as \(\lambda \to \lambda_0 \).

\[\square \]

4.2 One distinguished root case

Theorem 20. Let \(\alpha \in \mathbb{R}_+ \). Consider \(\lambda_0 \in \mathfrak{h}^* \) that satisfies \(\langle \lambda_0 + \rho, \alpha^\vee \rangle = n \in \mathbb{N} \), \(\langle \lambda_0 + \rho, \beta^\vee \rangle \notin \mathbb{N} \) for all \(\beta \in \mathbb{R}_+ \setminus \{ \alpha \} \). Then \(\lambda_0 \) is \(J \)-regular.

Proof. Fix an arbitrary line \(l \subset \mathfrak{h}^* \) through \(\lambda_0 \), \(l = \{ \lambda_0 + t\nu \mid t \in \mathbb{R} \} \), transversal to the hyperplane \(\langle \lambda + \rho, \alpha^\vee \rangle = n \).

Identify \(M(\lambda) \) with \(U^- \) in the standard way. Recall that we have a basis \(y_\beta^i \in U^-[-\beta] \) for \(\beta \in Q_+ \). Let \(L(S_{\lambda}^\beta) \in \text{End} U^-[-\beta] \) be given by the matrix \((S_{\lambda}^\beta)_{ij}\).
in the basis y^α. Notice that $\text{Ker} \, L \left(S^\beta_{\lambda_0} \right) = \text{Ker} \, S^\beta_{\lambda_0} = K_{\lambda_0}[-\beta] = K_{\lambda_0} \cap U^{-}[-\beta]$. For any $\lambda \in l$ sufficiently close to λ_0, $\lambda \neq \lambda_0$ we have $M(\lambda)$ is irreducible, and $L \left(S^\beta_{\lambda} \right)$ is invertible for any $\beta \in Q_+$. In this notation we have

$$J(\lambda) = \sum_{\beta \in Q_+} \sum_j L \left(S^\beta_{\lambda} \right)^{-1} y^\beta_j \otimes \theta \left(y^\beta_j \right).$$

Take $\lambda = \lambda_0 + t\nu \in l$. Fix any $\beta \in Q_+$ and set $V = U^{-}[-\beta]$, $A_t = L \left(S^\beta_{\lambda} \right)$, $V_0 = \text{Ker} \, A_0 = K_{\lambda_0}[-\beta] \subset V$. Write $A_t = A_0 + tB_t$, where B_t is regular at $t = 0$.

Since $J(\lambda)$ may have at most simple poles (see, e.g., [2]) we have $A_t^{-1} = \frac{1}{t} C + D_t$, where D_t is regular at $t = 0$.

Lemma 21. $\text{Im} \, C \subset V_0$.

Proof. We have $A_t A_t^{-1} = \text{id}$ for any $t \neq 0$, i.e., $\frac{1}{t} A_0 C + A_0 D_t + B_t C + tB_t D_t = \text{id}$. Since the left hand side should be regular at $t = 0$, we have $A_0 C = 0$, which proves the lemma. □

For $t \neq 0$ set $J_t = \sum_j A_t^{-1} y_j \otimes \theta(y_j)$ (from now on we are omitting the index β for the sake of brevity). By Lemma 21 we have $C y_j \in V_0 = K_{\lambda_0}[-\beta]$. Hence for $f \in F[0]^{K_{\lambda_0}}$ we have $\overrightarrow{C y_j f} = 0$. Therefore $A_t^{-1} y_j f = \frac{1}{t} \overrightarrow{C y_j f} + \overrightarrow{D_t y_j f}$. This proves the regularity of $(J_t)_N(f \otimes \cdot)$ at $t = 0$, i.e., the regularity of $J_0(\lambda)_N(f \otimes \cdot)$ at $\lambda = \lambda_0$. □

4.3 Subset of simple roots case

Theorem 22. Let $\Gamma \subset \Pi$. Consider $\lambda_0 \in \mathfrak{h}^*$ that satisfies $\langle \lambda_0 + \rho, \alpha^\vee \rangle \in \mathbb{N}$ for all $\alpha_i \in \Gamma$, $\langle \lambda_0 + \rho, \beta^\vee \rangle \notin \mathbb{N}$ for all $\beta \in \mathbb{R}_+ \setminus \text{Span} \, \Gamma$. Then λ_0 is J-regular.

Proof. Recall that the only singularities of $J(\lambda)$ near λ_0 are (simple) poles on the hyperplanes $\langle \lambda - \lambda_0, \alpha^\vee \rangle = 0$ for $\alpha \in \mathbb{R}_+ \cap \text{Span} \, \Gamma$ (see, e.g., [2]). Therefore it is enough to show that for any $f \in F[0]^{K_{\lambda_0}}$ the operator $J(\lambda)_N(f \otimes \cdot)$ has no singularity at any such hyperplane.

Take $\alpha \in \mathbb{R}_+ \cap \text{Span} \, \Gamma$ and consider a hyperplane $\langle \lambda - \lambda_0, \alpha^\vee \rangle = 0$. Take an arbitrary $\lambda' \in \mathfrak{h}^*$ such that $\langle \lambda' - \lambda_0, \alpha^\vee \rangle = 0$, and $\langle \lambda' + \rho, \beta^\vee \rangle \notin \mathbb{N}$ for all $\beta \in \mathbb{R}_+ \setminus \{\alpha\}$.

Lemma 23. $K_{\lambda'} \subset K_{\lambda_0}$.

Proof. First, assume that λ_0 is dominant integral, i.e., $\Gamma = \Pi$. Set $n = \langle \lambda_0 + \rho, \alpha^\vee \rangle$. Consider the irreducible U-module $L(\lambda_0)$ with a highest weight vector $\overrightarrow{T_{\lambda_0}}$. The inclusion $K_{\lambda'} \subset K_{\lambda_0}$ is equivalent to the equality $K_{\lambda'} \overrightarrow{T_{\lambda_0}} = 0$. By Proposition 3 $K_{\lambda'}$ is generated by an element $x_{\lambda'} \in U^{-}$ of weight $-n\alpha$. Hence the vector $x_{\lambda'} \overrightarrow{T_{\lambda_0}}$ has weight $\lambda_0 - n\alpha$. Thus it suffices to show that $\lambda_0 - n\alpha$
is not a weight of $L(\lambda_0)$. Indeed, easy computations show that $s_\alpha(\lambda_0 - n\alpha) = \lambda_0 + (\rho, \alpha^*)\alpha > \lambda_0$, and since the set of weights of $L(\lambda_0)$ is W-invariant, the lemma is proved in this case.

Now, let us consider the general case. Let λ_0 be an arbitrary weight satisfying the assumptions of the theorem. Set $n_i = \langle \lambda_0 + \rho, \alpha_i^* \rangle$. Denote by K'_{λ_0}, the right ideal in U^- generated by the elements $f_i^{n_i}$, $\alpha_i \in \Gamma$. By Proposition [10] we have $K'_{\lambda_0} \subset K_{\lambda_0}$.

Denote by $X(\lambda_0)$ the set of dominant integral weights μ such that $\langle \mu + \rho, \alpha_i^* \rangle = n_i$ for all $\alpha_i \in \Gamma$. We have proved that $K'_{\lambda_0} \subset K_\mu$ for any $\mu \in X(\lambda_0)$. Thus $K_{\lambda'} \subset \bigcap_{\mu \in X(\lambda_0)} K_\mu$.

For $\mu \in X(\lambda_0)$, Proposition [4] yields that K_μ is generated by K'_{λ_0} and the elements $f_j^{\langle \mu + \rho, \alpha_j^* \rangle}$, $j \in \Pi \setminus \Gamma$. Notice that choosing $\mu \in X(\lambda_0)$, all the numbers $\langle \mu + \rho, \alpha_j^* \rangle$ can be made arbitrary large. Hence, $K'_{\lambda_0} = \bigcap_{\mu \in X(\lambda_0)} K_\mu$. Therefore, $K_{\lambda'} \subset K'_{\lambda_0} \subset K_{\lambda_0}$. The lemma is proved.

The lemma implies that $F[0]K_{\lambda'} \supset F[0]K_{\lambda_0}$, and applying Theorem [20] to λ' we complete the proof of the theorem.

Remark 5. In fact, it is possible to prove that if λ_0 satisfies the assumptions of Theorem [22] then K_{λ_0} is generated by the elements $f_i^{\langle \lambda_0 + \rho, \alpha_i^* \rangle}$, $\alpha_i \in \Gamma$. Indeed, this fact is well-known in the classical case $q = 1$, see [3]. Let us consider the highest weight module $V_q = M_q(\lambda_0)/K_{\lambda_0}$ (we have used at this point the notation M_q for the Verma modules over $\hat{U}_q\mathfrak{g}$). We have to prove that it is irreducible under assumptions of the theorem. If not, there exists some weight space $V_q[\mu]$ such that the determinant of the restriction of the Shapovalov form on V_q to $V_q[\mu]$ is zero. Let us denote the Shapovalov form on V_q by S_q and its restriction to $V_q[\mu]$ by $S_q[\mu]$. Taking limit $q \to 1$ (it can be done in the same way as in [5] Sections 3.4.5–3.4.6] we see that $S_q[\mu] \to S[\mu]$ and det $S_q[\mu] \to$ det $S[\mu]$. However, the latter determinant is non-zero because V_1 is irreducible. Hence, V_q is also irreducible.

4.4 Application to Poisson homogeneous spaces

Let $\Gamma \subset \Pi$. Assume that $\lambda \in \mathfrak{h}^*$ is such that $\langle \lambda, \alpha^* \rangle = 0$ for all $\alpha \in \Gamma$, and $\langle \lambda + \rho, \beta^* \rangle \notin \mathbb{N}$ for all $\beta \in \mathbb{R}_+ \setminus \text{Span}\Gamma$. By Theorem [22] λ is J-regular. In particular, $F[0]K_{\lambda + \rho} = F[0]K_\lambda$.

In what follows it will be more convenient to write F_q, J_q, and $K_{q,\lambda}$ instead of F, J, and K_λ. We will also need the classical limits $F_1 = \lim_{q \to 1} F_q$ and $K_{1,\lambda} = \lim_{q \to 1} K_{q,\lambda}$. They can be defined in the same way as in [5] Sections 3.4.5–3.4.6].

Clearly, F_1 is the algebra of regular functions on the connected simply connected group G, whose Lie algebra is \mathfrak{g}. Let \mathfrak{h} be a reductive subalgebra of \mathfrak{g} which contains \mathfrak{h} and is defined by Γ, K the corresponding subgroup of G, and $F(G/K)$
the algebra of regular functions on the homogeneous space \(G/K \). According to [8, Theorem 33], we have \(F(G/K) = F_1[0]^{K_{1,\lambda}} \). Therefore we get

Proposition 24. \(\lim_{q \to 1} F_q[0]^{K_q,\lambda} = F(G/K) \).

Furthermore, since \(F_q[0]^{K_q,\lambda} \) is a Hopf module algebra over \(U \), \(F(G/K) \) is a Poisson homogeneous space over \(G \) equipped with the Poisson-Lie structure defined by the Drinfeld-Jimbo classical \(r \)-matrix \(r_0 = \sum_{\alpha \in \mathbb{R}_+^+} e_\alpha \wedge e_{-\alpha} \).

All such structures on \(G/K \) were described in [7]. It follows from [7] that any such Poisson structure on \(G/K \) is uniquely determined by an intermediate Levi subalgebra \(n \) satisfying \(\mathfrak{k} \subset n \subset \mathfrak{g} \) and some \(\lambda \in \mathfrak{h}^* \) which satisfies certain conditions, in particular, \(\langle \lambda, \alpha^\vee \rangle = 0 \) for \(\alpha \in \Gamma \) and \(\langle \lambda, \beta^\vee \rangle \not\in \mathbb{Z} \) for \(\beta \in \text{Span} \Gamma \setminus \text{Span} \Gamma_n \). Here \(\Gamma_n \) is the set of simple roots defining \(n \).

Now we can describe the Poisson bracket on \(G/K \) defined by \(\star_{\lambda} \)-multiplication on \(F_q[0]^{K_q,\lambda} \).

Theorem 25. Assume that \(\langle \lambda_0, \alpha^\vee \rangle = 0 \) for \(\alpha \in \Gamma \) and \(\langle \lambda_0, \beta^\vee \rangle \not\in \mathbb{Z} \) for \(\beta \in \mathbb{R}_+ \setminus \text{Span} \Gamma \). Then the classical limit of \((F_q[0]^{K_q,\lambda_0}, \star_{\lambda_0}) \) is the algebra \(F(G/K) \) of regular functions on \(G/K \) equipped with the Poisson homogeneous structure defined by \(n = \mathfrak{g} \) and \(\lambda_0 \).

Proof. By Theorem [22], \(\lambda_0 \) is \(J \)-regular, i.e., for \(f_1, f_2 \in F_q[0]^{K_q,\lambda_0} \) we have

\[
f_1 \star_{\lambda_0} f_2 = \lim_{\lambda \to \lambda_0} f_1 \star_{\lambda} f_2 = \mu \left(J_q(\lambda)(f_1 \otimes f_2) \right).
\]

Take \(q = e^{-\frac{\hbar}{2}} \). Then \(J_q(\lambda) = 1 \otimes 1 + hj(\lambda) + O(h^2) \), and \(r(\lambda) = j(\lambda) - j(\lambda)^2 \) is the standard trigonometric solution of the classical dynamical Yang-Baxter equation (see, e.g., [1]). Thus the Poisson bracket on \(F(G/K) \) that corresponds to \((F_q[0]^{K_q,\lambda_0}, \star_{\lambda_0}) \) is given by

\[
\{f_1, f_2\} = \lim_{\lambda \to \lambda_0} \mu \left(r(\lambda)(f_1 \otimes f_2) \right)
\]

for \(f_1, f_2 \in F(G/K) \). By [7], this is exactly the Poisson structure defined by \(n = \mathfrak{g} \) and \(\lambda_0 \).

Notice that an analogous result for simple Lie algebras of classical type was obtained in [13] using reflection equation algebras.

References

[1] P. Etingof and O. Schiffmann. Lectures on the dynamical Yang-Baxter equations. In: Quantum groups and Lie theory (Durham, 1999): 89–129, London Math. Soc. Lecture Note Ser., 290, Cambridge Univ. Press, Cambridge, 2001.
[2] P. Etingof and K. Styrkas. Algebraic integrability of Macdonald operators and representations of quantum groups. *Compositio Math.*, **114** (1998), 125–152.

[3] J.C. Jantzen. *Einhüllende Algebren halbeinfacher Lie-Algebren*. Springer-Verlag, Berlin, 1983.

[4] A. Joseph. *Kostant’s problem, Goldie rank and the Gelfand-Kirillov conjecture*. *Invent. Math.*, **56** (1980), 191–213.

[5] A. Joseph. *Quantum groups and their primitive ideals*. Springer-Verlag, New York, 1995.

[6] A. Joseph and G. Letzter. Verma modules annihilators for quantized enveloping algebras. *Ann. Sci. Ecole Norm. Sup.*, **28** (1995), 493–526.

[7] E. Karolinsky, K. Muzykin, A. Stolin, and V. Tarasov. Dynamical Yang-Baxter equations, quasi-Poisson homogeneous spaces, and quantization. *Lett. Math. Phys.*, **71** (2005), 179–197.

[8] E. Karolinsky, A. Stolin, and V. Tarasov. Irreducible highest weight modules and equivariant quantization. *Advances in Math.*, **211** (2007), 266–283.

[9] L. Korogodski and Y. Soibelman. *Algebras of functions on quantum groups*. American Mathematical Society, 1998.

[10] V. Mazorchuk. A twisted approach to Kostant’s problem. *Glasgow Math. J.*, **47** (2005), 549–561.

[11] V. Mazorchuk, C. Stroppel. Categorification of (induced) cell modules and the rough structure of generalized Verma modules. *Advances in Math.*, **219** (2008), 1363–1426.

[12] V. Mazorchuk, C. Stroppel. Categorification of Wedderburns basis for $C[S_n]$. *Arch. Math.*, **91** (2008), 1–11.

[13] A. Mudrov. Quantum conjugacy classes of simple matrix groups. *Comm. Math. Phys.*, **272** (2007), 635–660.

E.K.: Department of Mathematics, Kharkov National University,
4 Svobody Sq., Kharkov 61077, Ukraine
e-mail: eugene.a.karolinsky@univer.kharkov.ua

A.S.: Department of Mathematics, University of Göteborg,
SE-412 96 Göteborg, Sweden
e-mail: astolin@math.chalmers.se
