Neutral to charged kaon yield fluctuations in Pb – Pb collisions at \( \sqrt{s_{NN}} = 2.76 \) TeV

ALICE Collaboration

Abstract

We present the first measurement of event-by-event fluctuations in the kaon sector in Pb – Pb collisions at \( \sqrt{s_{NN}} = 2.76 \) TeV with the ALICE detector at the LHC. The robust fluctuation correlator \( \nu_{\text{dyn}} \) is used to evaluate the magnitude of fluctuations of the relative yields of neutral and charged kaons, as well as the relative yields of charged kaons, as a function of collision centrality and selected kinematic ranges. While the correlator \( \nu_{\text{dyn}}[K^+, K^-] \) exhibits a scaling approximately in inverse proportion of the charged particle multiplicity, \( \nu_{\text{dyn}}[K^0_S, K^\pm] \) features a significant deviation from such scaling. Within uncertainties, the value of \( \nu_{\text{dyn}}[K^0_S, K^\pm] \) is independent of the selected transverse momentum interval, while it exhibits a pseudorapidity dependence. The results are compared with HIJING, AMPT and EPOS–LHC predictions, and are further discussed in the context of the possible production of disoriented chiral condensates in central Pb – Pb collisions.

*See Appendix A for the list of collaboration members
The primary intent of high-energy heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) and at the Large Hadron Collider (LHC) is the production and study of the state of matter in which quarks and gluons are deconfined. The matter formed in these collisions is characterised as a low-viscosity fluid, which undergoes a transition to the hadronic phase, after it expands and cools down [1]. The transition from the hadronic to the QGP phase involves a partial restoration of chiral symmetry and color deconfinement. Deconfinement of quarks and gluonic degrees of freedom, and the production of QGP were brought to light by measurements of jet quenching [2–6], quarkonium state suppression, and measurements of anisotropic flow [7–12]. Anomalous fluctuations of conserved charges were predicted to arise in the vicinity of the phase boundary and potential signals of the production of a deconfined phase [13–17].

Several studies of particle yield fluctuations have already been reported [18–21] but their interpretation is largely a matter of debate. More recently, the ALICE collaboration has also investigated fluctuations of net charge, net protons, as well as fluctuations of the relative yields of pions, kaons, and protons [22–24]. Measurements of such fluctuations are of interest, in particular, as they are nominally sensitive to QGP susceptibilities [25], the proximity of the hadron gas-QGP phase boundary, as well as, when considered at lower beam energy, the existence of a critical point [26, 27] in the phase diagram of nuclear matter. Additionally, measurements of fluctuations are also of interest to probe the existence (or proximity) of the chiral phase transition, which should manifest itself by the production of anomalous fluctuations [17].

A specific manifestation of this transition from the chiral symmetric phase (high temperature) to a broken phase (low temperature) involves the production of disoriented chiral condensates (DCCs) [28], a region in isospin space where the chiral order parameter is misaligned from its vacuum orientation. Theoretical studies of the production and decay of DCCs are typically formulated in the context of the SU(2) symmetry. It is predicted that the production and decay of DCCs shall manifest through enhanced fluctuations of neutral and charged pion multiplicities [29, 30]. The past searches in this sector have yielded no evidence for DCC production [31–33]. However, the production of distinct DCC domains might result in “isospin fluctuations” in the kaon sector, i.e., enhanced fluctuations of the relative yields of neutral and charged kaons which can be measured by means of the $v_{\text{dyn}}(K^0, K^\pm)$ [34–38]. Specifically, it was predicted that the production of DCC domains in A–A collisions might lead to an anomalous scaling of the net charge correlator $v_{\text{dyn}}$, defined in the following, as a function of charged particle multiplicity $p_T$. A search of kaon isospin fluctuations at LHC energies is thus of significant interest. Given that kaons from DCC are expected to be produced at modest transverse momentum [40], the present study is restricted to measurements of $K^0_s$ and $K^\pm_s$ at the lowest possible transverse momenta ($p_T$) aiming at checking whether data support some basic expectations from the DCC production.

A measurement of dynamical neutral-to-charged kaon fluctuations, with $v_{\text{dyn}}$, is also of interest in the broader context of two-particle correlations induced by the hadronization of the QGP, via e.g., quark coalescence, and the transport of produced hadrons, as well as the possibility that high mass resonances lead to the production of pairs of kaons. Examples of such resonance decays that contribute to the $v_{\text{dyn}}$ correlator include $\phi(1020) \rightarrow K^+ + K^-$, $\phi_3(1850) \rightarrow K + \overline{K}$, $f_2(2300) \rightarrow \phi + \phi$, as well as several D-mesons states. As they decay in-flight, these high-mass states would induce pair correlations of charged and neutral kaons. The relative abundance of such states might be larger in central collisions because of higher initial temperature and density conditions. The relative yield of neutral and charged kaons, and their fluctuations, might then exhibit a centrality dependence as a result of feed-down contributions from such states. Additionally, given that the relative yield of neutral kaons and charged kaons in general is determined by the relative yields of strange, up, and down quarks (and their anti-particles) before hadronization, and given that the production of strangeness is both energy and collision centrality dependent, one might anticipate a change in the size of the fluctuations from peripheral to central heavy-ion collisions. Note, however, that the presence of kaons resulting from feed-down contributions, which, for central Pb–Pb collisions at LHC energy, amount to about 50 percent at the lowest momenta considered [41], reduces but does not eliminate the sensitivity of the method to the presence of strange DCCs.
or other processes inducing variations of the direct kaon production [39].

In this letter, we report measurements of event-by-event fluctuations of inclusive multiplicities of charged and neutral kaons based on the robust statistical observable, $v_{\text{dyn}}$, defined as

$$v_{\text{dyn}} = R_{cc} + R_{00} - 2R_{c0},$$

where the indices $c$ and 0 stand for charged and neutral kaons, respectively. The correlators $R_{xy}$ are normalized factorial cumulants calculated according to

$$R_{xy} = \frac{\langle N_x(N_y - \delta_{xy}) \rangle}{\langle N_x \rangle \langle N_y \rangle} - 1,$$

Here $\delta_{xy} = 1$ for $x = y$ and 0 for $x \neq y$. The correlators $R_{xy}$ and $v_{\text{dyn}}$ vanish in the absence of pair correlations, i.e., for Poisson fluctuations, but deviate from zero in the presence of particle correlations. Their magnitudes are expected to approximately scale in inverse proportion of the charged particle multiplicity, $N_{\text{ch}}$, produced in heavy-ion collisions and shall be insensitive to detection inefficiencies, and only weakly dependent on the acceptance of the measurement [38].

In order to reduce the challenge of measuring neutral kaon multiplicities on an event-by-event basis, the neutral kaon measurement is restricted to $K^0_S$ by means of their decay into a pair of $\pi^+$, $\pi^-$ (69.2% branching ratio [42]) with a displaced vertex. The wide acceptance and high detection efficiency of charged pions enables event-by-event reconstruction of $K^0_S$ with high efficiency and small combinatorial background. It is thus possible to measure their multiplicity event-by-event and compute the first, $\langle N_{K^0_S} \rangle$, as well as second, $\langle N_{K^0_S}(N_{K^0_S} - 1) \rangle$ factorial moments. These constitute estimators to moments of neutral kaon (and anti-kaon) yields. Indeed, given neutral kaons have a 50% probability of being a $K^0_S$, with a binomial probability distribution, a measurement of the ratio $\langle N_{K^0_S}(N_{K^0_S} - 1) \rangle/\langle N_{K^0_S} \rangle^2$ is thus strictly equivalent to $\langle N_{K^0}(N_{K^0} - 1) \rangle/\langle N_{K^0} \rangle^2$. Likewise, $\langle N_{K^0_S}N_{K^0} \rangle/\langle N_{K^0_S} \rangle \langle N_{K^0} \rangle$ is equivalent to $\langle N_{K^0}N_{K^0} \rangle/\langle N_{K^0} \rangle \langle N_{K^0} \rangle$. A measurement of $v_{\text{dyn}}[N_{K^0_S},N_{K^0}]$ thus provides a proper and unbiased proxy to that of $v_{\text{dyn}}[N_{K^0},N_{K^0}]$ even without a measurement of $K^0_L$.

The results presented in this letter are based on $1.3 \times 10^7$ minimum bias (MB) Pb–Pb collisions at center-of-mass energy per nucleon pair, $\sqrt{s_{\text{NN}}} = 2.76$ TeV collected during the 2010 LHC heavy-ion run with the ALICE detector. The reported correlation functions are measured for charged particles reconstructed within the Inner Tracking System (ITS) [43] and the Time Projection Chamber (TPC) [44]. The TPC consists of a 5 m long gas volume contained in a cylindrical electric field cage oriented along the beam axis, which is housed within a large solenoidal magnet designed and operated to produce a uniform longitudinal magnetic field of 0.5 T. Signals from charged particles produced in the TPC gas are readout at both end caps. The ITS is comprised of three subsystems, each consisting of two cylindrical layers of silicon detectors designed to match the acceptance of the TPC and provide high position resolution. Together, the TPC and ITS provide charged particle track reconstruction and momentum determination with full coverage in azimuth over the pseudorapidity range $|\eta| < 0.8$ and with good reconstruction efficiency for charged particles with $p_T > 0.2$ GeV/c. Two forward scintillator systems, known as V0A and V0C, covering the pseudorapidity ranges $2.8 < \eta < 5.1$ and $-3.7 < \eta < -1.7$, respectively, are additionally used for triggering and event classification purposes. Detailed descriptions of the ALICE detector components and their respective performances are given in Refs. [45, 46]. The MB interaction trigger required at least two out of the following three conditions: i) two pixel chips hit in the outer layer of the silicon pixel detectors ii) a signal in V0A iii) a signal in V0C. The hit multiplicity in the V0 detectors is additionally used to estimate the collision centrality reported in seven classes corresponding to 0–5% (most central), 5–10%, 10–15%, 15–20%, 20–40%, 40–60%, and 60–80% (most peripheral) of the hadronic Pb–Pb cross section [47]. The approximate position along the beam line of the primary vertex ($z_{\text{vtx}}$) of each collision is first determined based on hits recorded in the two inner layers of the ITS detector. Reconstructed charged particle tracks in the ITS and TPC are finally propagated to the primary vertex.
neutral to charged kaon yield fluctuations

ALICE Collaboration

vertex to achieve optimal position resolution. In the context of this analysis, the vertex is required to be in the range \(|z_{\text{ent}}| \leq 10\) cm of the nominal interaction point in order to ensure a uniform detector acceptance and minimize variations of the efficiency across the fiducial volume of the experiment. In addition, the standard track quality selections were used to ensure that only well-reconstructed tracks were taken in the analysis. All selected tracks of each event are processed to identify pions and kaons with the techniques described below. Event-by-event combinations of two oppositely charged pions are formed to reconstruct topological \(K_0^s\) candidates. Standard ALICE topological criteria, also detailed below, are then used to identify and select \(K_0^s\) candidates. Charged and neutral kaons are counted, event-by-event, to calculate the moments \(<N_e>, <N_0>, \langle N_e(N_e-1)\rangle, \langle N_0(N_0-1)\rangle\) and \(\langle N_eN_0\rangle\), in each collision centrality class. The corrections for particle losses are obtained event-by-event by dividing single and pseudorapidity dependent efficiencies were evaluated from GEANT simulations (discussed below) of the particle detection performance with the HIJING model. The moments are finally combined to calculate \(\nu_0\) values in each class according to Eq. 1.

Charged particle identification (PID) is performed in the pseudorapidity range \(|\eta| < 0.5\) using the \(n\sigma\) method based on their energy loss \((dE/dx)\) and their time of flight, measured in the TPC and TOF detectors, respectively [45, 46]. A selection resulting in a PID with a high purity is crucial in order to minimize biases in measurements of \(\nu_0\). Kaons are selected from TPC \(dE/dx\) with \(|n\sigma| < 2\) in the ranges \(0.2 < p < 0.39 \text{ GeV/}c\) and \(0.47 < p < 0.5 \text{ GeV/}c\), and \(-0.5 < n\sigma < 2\) in the range \(0.39 < p < 0.47 \text{ GeV/}c\) to reduce contamination from electrons. Both TPC and TOF signals, with \(|n\sigma| < 2\), are used in the range \(0.5 < p < 1.5 \text{ GeV/}c\). Furthermore, kaon tracks are selected based on their distance of closest approach (DCA) to the collision primary vertex in order to select primary tracks and suppress contamination from secondary particles and processes. Only tracks with DCAs smaller than 3.2 cm and 2.4 cm along and transverse to the beam direction, respectively, are included in the analysis. These selection cuts lead to charged kaon contamination ranging from 1.0% (TPC) to 1.4% (TPC+TOF) in 5% most central collisions.

Neutral kaons, \(K_0^s\), are reconstructed and selected within \(0.4 < p_T < 1.5 \text{ GeV/}c\) and \(|\eta| < 0.5\) based on their weak decay \(K_0^s \rightarrow \pi^+ + \pi^-\) topology and an invariant mass selection criterion, \(0.480 < M_{\pi^+\pi^-} < 0.515 \text{ GeV/}c^2\) with their decay-product tracks within the acceptance window \(|\eta| < 0.8\). Standard ALICE topological cuts [48] are used towards the selection of \(K_0^s\) candidates formed from \(\pi^+\) and \(\pi^-\) tracks identified with the TPC and TOF detectors with \(p_T > 0.2 \text{ GeV/}c\). The maximum DCA of neutral kaons is set to 0.1 cm in all directions. The required \(n\sigma\) values for the pions were \(|n\sigma| < 2\) in both TPC and TOF detectors for \(0.2 < p < 1.5 \text{ GeV/}c\). These selection criteria yield a combinatorial \(\pi^+ + \pi^-\) pair contamination ranging from 1.3% in peripheral collisions to 4.0% in 5% most central collisions, shown as a red-brown area in Fig. 1.

Event-by-event fluctuations of the combinatorial background artificially increase the factorial moment \(\langle N_0(N_0-1)\rangle\) and may bias \(\langle N_eN_0\rangle\). A correction for such contamination is accomplished by additionally measuring correlators involving moments of the number of background pion pairs, \(N_b\), in side band mass ranges \(0.430 < M < 0.460 \text{ GeV/}c^2\) and \(0.540 < M < 0.575 \text{ GeV/}c^2\) used as proxies of the number of background pairs in the nominal mass range \(0.480 < M < 0.515 \text{ GeV/}c^2\), shown in Fig. 1 as yellow and red-brown areas. The background suppressed correlators \(R_{00}\) and \(R_{c0}\) are thus calculated according to

\[
R_{00} = (1 - f_{ab})^{-2} \left[ R_{aa} - 2 f_{ab} R_{ab} + f_{ab}^2 R_{bb} \right],
\]

\[
R_{c0} = (1 - f_{ab})^{-1} \left[ R_{ac} - f_{ab} R_{bc} \right],
\]

where the labels a, b, and c represent pairs in the nominal mass range, pairs observed in either side bands, and pairs of charged kaons, respectively. The fraction \(f_{ab} = \langle N_b \rangle / \langle N_a \rangle\) is determined for each collision centrality bin as the average number of background pairs in the range \(0.480 < M < 0.515 \text{ GeV/}c^2\) estimated from a polynomial fit to the background, as illustrated in Fig. 1. Corrections for combinatorial
Figure 1: Invariant mass distribution of $\pi^+ + \pi^-$ pairs measured in central (0–5%) Pb – Pb collisions. The yellow and black solid lines show a second order polynomial fit of the combinatorial background and a Gaussian+second order polynomial fit to the invariant mass spectrum, respectively. The vertical dash lines delineate the mass range used for the determination of neutral-kaon yields. Given the red-brown area, which corresponds to combinatorial background, cannot be properly assessed event by event, the average of the yellow areas is used as proxy, event-by-event, to estimate the true combinatorial yield represented by the red-brown area.

contamination based on Eqs. (3,4) range from 4.7% in peripheral to 2.5% in central collisions. Additionally, given the number of charged and neutral kaons grows monotonically with collision centrality, values of $v_{\text{dyn}}[K^0_S, K^\pm]$ are corrected for finite centrality bin widths. The bin width correction is calculated by considering the weighted average of $v_{\text{dyn}}$ evaluated in 1% intervals of collision centrality across the reported bin widths [49]. These corrections range from 3.9% in peripheral to 2.1% in central collisions.

Statistical uncertainties are evaluated with the event sub-sampling method using 10 subsamples [24,50]. The systematic uncertainties include contributions from secondary particles, as well as from the $p_T$ dependence of the tracking efficiency which is not perfectly canceled in the determination of the normalized cumulants $R_{xy}$. The event and track selection criteria were varied, and a statistical test [51] was used to identify significant sources of systematic uncertainties. The largest sources of systematic uncertainties include: (i) the effect of varying the minimum or maximum decay length (< 4%), (ii) variations of the $K^\pm$ purity when changing the sigma selection criteria (< 4%), (iii) variations during the data taking period of the $K^\pm$ and $K^0_S$ yields (< 3%), and (iv) variations of $R_{00}$ when correcting for combinatorial background using different fiducial invariant mass ranges and side bands (< 2%). Additional uncertainties arise when varying the range of accepted primary vertices (< 4%). Adding all sources in quadrature, systematic uncertainties are estimated to be smaller than 13%, independently of collision centrality.

Heavy-ion collisions simulated with the HIJING v2.0 [52] and AMPT v2.21 [53] Monte Carlo (MC) event generators, including the propagation of the produced particles through the detectors using GEANT3 [54], are used to validate the correction method. To that end, the reconstructed values of $v_{\text{dyn}}$ obtained from full MC simulations are processed as data, then the fully corrected $v_{\text{dyn}}$ values are compared to those obtained at generator level, i.e., from simulations without detector effects. The agreement between the reconstructed and generator level values of $v_{\text{dyn}}$ are found to be within 1%. Generator level MC simulations performed with the AMPT and EPOS–LHC [55] models are additionally used to obtain basic theoretical expectations for the magnitude of charged to neutral kaon yield fluctuations. AMPT events produced with the options of string melting on (SON) and rescattering off (ROFF), string melting off (SOFF) and rescattering on (RON), and SON and RON are considered. Furthermore, EPOS–LHC events are analyzed at generator level for Pb – Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV. All sets of simulated data are analyzed with selection parameters and conditions identical to those used in the analysis of the experi-
Neutral to charged kaon yield fluctuations

ALICE Collaboration

Figure 2: (a) Measured values of $V_{\text{dyn}}[K^0_S, K^\pm]$ (top) and $V_{\text{dyn}}[K^+, K^-]$ (bottom) compared with HIJING and AMPT model calculations of these observables at generator level. (b) Values of $V_{\text{dyn}}[K^0_S, K^\pm]$ (top) and $V_{\text{dyn}}[K^+, K^-]$ (bottom) scaled by $\alpha \equiv ((K^0_S)^{-1} + (K^\pm)^{-1})$. Statistical and systematic uncertainties are represented as vertical bar and boxes, respectively.

The top panel of Fig. 2(a) presents $V_{\text{dyn}}[K^0_S, K^\pm]$ (red solid circles) as a function of the Pb–Pb collision centrality. The largest $V_{\text{dyn}}$ is observed in the most peripheral collisions and monotonically decreases for more central collisions. Such a behavior is qualitatively well described by HIJING, AMPT and EPOS–LHC calculations, but these models underestimate the magnitude of $V_{\text{dyn}}[K^0_S, K^\pm]$ by an approximate factor of two in peripheral collisions and by an order of magnitude in most central collisions. The magnitude of $V_{\text{dyn}}[K^0_S, K^\pm]$ is expected to approximately scale in inverse proportion to the number of sources of correlated particles, $N_s$, for a collision system involving independent nucleon–nucleon collisions and no scattering of produced particles. This scaling is explored in the top panel of Fig. 2(b) which displays the centrality dependence of $V_{\text{dyn}}$ scaled by the factor $\alpha \equiv ((K^0_S)^{-1} + (K^\pm)^{-1})$. This factor is known to be approximately proportional to $N_s$ [56]. Scaled values predicted by the models are found to be essentially invariant with collision centrality. HIJING, in particular, exhibits nearly constant values of $V_{\text{dyn}}[K^0_S, K^\pm]/\alpha$ as a function of collision centrality, whereas AMPT calculations with SON and ROFF options display a very modest collision centrality dependence, hardly visible in Fig. 2(b). The measured data, by contrast, feature a strong variation with decreasing centrality. In particular, $V_{\text{dyn}}[K^0_S, K^\pm]/\alpha$ rises from $\approx 0.053 \pm 0.005(\text{stat}) \pm 0.007(\text{sys})$ in the 60–80% collision centrality range to $0.213 \pm 0.021(\text{stat}) \pm 0.025(\text{sys})$ in 5% most central collisions and thus one then concludes the expected $1/N_s$ scaling of $V_{\text{dyn}}[K^0_S, K^\pm]$ is strongly violated.

In order to interpret the dependence of $V_{\text{dyn}}[K^0_S, K^\pm]$ on collision centrality and identify the origin of the $1/N_s$ scaling violation, we study the collision centrality dependence of the components $R_{cc}$, $R_{c0}$, and $R_{00}$ relative to those obtained with HIJING. Correlators computed with HIJING have a nearly perfect $1/N_s$ scaling as a function of collision centrality. This means they can be used as “no-scaling-violation” baselines to investigate the collision centrality dependence of the evolution of the measured $R_{cc}$, $R_{c0}$, and $R_{00}$ correlators with collision centrality. Figure 2 presents ratios of measured correlators to those
obtained with HIJING as a function of collision centrality. The ratio $R_{cc}/R_{c0}^{\text{HIJING}}$ exhibits the largest deviation from unity but is otherwise independent, within uncertainties, of collision centrality. This term thus essentially features the $1/N_{s}$ scaling expected from a system consisting of a number of independent sources, albeit with a magnitude larger by about 15% than that expected from HIJING. By contrast, the ratio $R_{cc}/R_{c0}^{\text{HIJING}}$ is closest to unity but features a modest collision centrality dependence. This modest dependence, discussed further below, is not the main cause of the observed scaling violation of $v_{\text{dyn}}[K^0_S, K^\pm]$ with collision centrality. Indeed, it is found that the ratio $R_{c0}/R_{c0}^{\text{HIJING}}$ manifests a more significant collision centrality dependence. The ratio is of the order of unity in the 60–80% collision centrality range with a deviation from unity consistent, more or less, with that observed for the ratio $R_{cc}/R_{c0}^{\text{HIJING}}$ across all centralities. HIJING thus appears to provide a reasonable approximation of the measured correlation strength of neutral to charged kaons in peripheral collisions. However, the deviation of the measured $R_{c0}$ from HIJING predictions increases monotonically from peripheral to central Pb–Pb collisions, with the largest deviation observed for the 0–5% Pb–Pb collisions. We then conclude that it is the $R_{c0}$ term that most affect the collision centrality dependence and scaling violation of $v_{\text{dyn}}[K^0_S, K^\pm]$. Interestingly, it happens to be the term most sensitive to variations in the make up of kaons: combining a strange quark ($s$) with anti-up ($\bar{u}$) and anti-down quark ($\bar{d}$), one obtains $K^-$ and $K^0$, respectively (similarly, combining $\bar{s}$ to $u$ and $d$ quarks, one obtains $K^+$ and $K^0$). Fluctuations in the relative number of neutral and charged kaons, measured by the $R_{c0}$ term, are thus sensitive to fluctuations in the relative local abundances of $u$ ($\bar{u}$) and $d$ ($\bar{d}$) quarks. The observed scaling violation of $R_{c0}$ with collision centrality thus suggests the relative abundances of $\bar{u}$ and $\bar{d}$ (as well as $u$ and $d$) available for the makeup of kaons might be evolving with collision centrality.

The strength of charged kaon correlations is examined in closer detail by plotting measured values of $v_{\text{dyn}}[K^+, K^-]$ and predictions by AMPT, HIJING and EPOS–LHC for this observable as a function of collision centrality in the bottom panel of Fig. 2(a), and values scaled by $\alpha$ in Fig. 2(b). The deviations of measured $v_{\text{dyn}}[K^+, K^-]$ from model predictions are smaller than those for $v_{\text{dyn}}[K^0_S, K^\pm]$ but measured $v_{\text{dyn}}[K^+, K^-]$ values lie systematically above those obtained from the models. Although HIJING, AMPT and EPOS–LHC do not perfectly capture the magnitude and collision dependence of $v_{\text{dyn}}[K^+, K^-]$, they nonetheless provide a relatively accurate description of the role of charge conservation, for charged kaons, in Pb–Pb collisions. Additionally note that scaled values $v_{\text{dyn}}[K^+, K^-]/\alpha$ are invariant, within uncertainties, with collision centrality, much like values obtained with the three models. Scaling violations of $v_{\text{dyn}}[K^+, K^-]$ with collision centrality, if any, are not observable within the uncertainties of this

Figure 3: Ratio (Data/HIJING) of individual terms of $v_{\text{dyn}}[K^0_S, K^\pm]$ as a function of collision centrality. Statistical and systematic uncertainties are represented as vertical bars and boxes, respectively.
The collision centrality evolution of the scaled values of $R_{c0}/R_{c0}^\text{HIJING}$ in central collisions indicates that the level of correlations between neutral and charged kaons is weakening in this range relative to that predicted by HIJING. A weaker correlation is expected from the production of large strange DCCs, as shown in Fig. 5 of Ref. [39] presenting a simple phenomenological model of kaon DCC production. The observed dependence of $v_{\text{dyn}}[K_S^0,K^\pm]$ on collision centrality is consistent with expectations based on a simple DCC model. However, significant contributions from other final state effects in central collisions might also dilute the correlation developed in initial stages.

Nominally, the production of strange DCCs should manifest itself by the emission of relatively low-$p_T$ kaons in the rest frame of the DCC [37]. Even though there is no quantitative prediction in the literature, the radial acceleration [57, 58] known to occur in relativistic A–A collisions may affect the DCCs and the particles they produce. Therefore, the strength of the $v_{\text{dyn}}[K_S^0,K^\pm]$ correlator is studied in different ranges of transverse momentum.

The collision centrality evolution of the scaled values of $v_{\text{dyn}}[K_S^0,K^\pm]$ is shown in Fig. 4 for selected $p_T$ ranges. The $v_{\text{dyn}}/\alpha$ scaling violation is observed in both the higher and lower selected $p_T$ ranges. Contrary to what one expects from DCC production, within uncertainties, the scaled correlation strength does not show a significant enhancement at low $p_T$. As shown in the bottom panel of Fig. 4 HIJING also predicts larger correlation strengths in the lower $p_T$ range. Additionally, Fig. 5 presents the dependence of $v_{\text{dyn}}[K_S^0,K^\pm]$, in panel (a), and $v_{\text{dyn}}[K_S^0,K^\pm]/\alpha$, in panel (b), on the width of the pseudorapidity acceptance, $\Delta \eta$, for 0–5% and 5–10% Pb–Pb collision centrality ranges. In panel (a), the data exhibit a monotonic decrease of $v_{\text{dyn}}[K_S^0,K^\pm]$ with increasing $\Delta \eta$, which reflects the finite correlation width of all three integral correlator terms $R_{xy}$, whereas in panel (b), scaled values of $v_{\text{dyn}}[K_S^0,K^\pm]$ exhibit a monotonically decreasing trend with decreasing $\Delta \eta$ acceptance that stems largely from the decrease of the

![Figure 4](image-url)
integrated yield of kaons with shrinking $\Delta \eta$ acceptance. DCCs are expected to produce relatively low $p_T$ particles [29, 36] and should thus be characterized by relatively narrow correlation functions in momentum space. Radial acceleration associated with the collision system expansion shall further narrow the correlation dependence on $\Delta \eta$. We note, however, that the peak widths, $\sigma_{\Delta \eta}$, observed in data are not significantly smaller than those obtained with the HIJING calculations. Qualitatively, one would expect radial flow to further reduce the $\sigma_{\Delta \eta}$ difference among low-$p_T$ kaons produced by the decay of strange DCCs. Unfortunately, the absence of a prediction of the effect of radial flow on DCCs and given that the observed widths are only slightly smaller than those estimated with HIJING, the measured data thus do not make a compelling case for the production of strange DCCs in Pb – Pb collisions at the TeV scale.

In this letter, we presented measurements of event-by-event fluctuations of the relative yield of the neutral and charged kaons in Pb – Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV based on the $v_{\text{dyn}}$ observable. The centrality dependence of $v_{\text{dyn}}$ is observed to violate the $1/N_s$ multiplicity scaling expected from a system of $N$ independent sources, but this effect is not reproduced by HIJING, AMPT, and EPOS–LHC models. Close examination of the three terms of $v_{\text{dyn}}$ reveals that the strength of correlations among charged kaons features a collision centrality dependence close to that expected with these three models. The $R_{c0}$ cross-term, however, is found to weaken considerably, in most central collisions, relative to a naive $1/N_s$ expectation. This indicates correlations between charged and neutral kaons are significantly suppressed in central collisions. Given the fact that at this time it is unknown if other processes could mimic the signature of kaon production via DCCs and that the expected momentum dependence is not observed in the data, the reported measurement does not support the case for strange DCC production in heavy-ion collisions at LHC energies. Further measurements of differential correlations in $\Delta \eta$ vs. $\Delta \phi$ and higher factorial moments are of interest, as they could provide information on the momentum correlation length and the typical size of correlated kaon sources.

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources.
and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF); [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of China (MOEC), Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the VILLUM FONDEN and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Education and Science, National Science Centre and WUT ID-UB, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics, Ministry of Research and Innovation and Institute of Atomic Physics and University Politehnica of Bucharest, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, National Research Centre Kurchatov Institute, Russian Science Foundation and Russian Foundation for Basic Research, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSDTA) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Energy, Nuclear and Mineral Research Agency (TENMAK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.
Neutral to charged kaon yield fluctuations

References

[1] W. Busza, K. Rajagopal, and W. van der Schee, “Heavy ion collisions: The big picture and the big questions”. Ann. Rev. Nucl. and Part. Sc. 68 (2018) 339–376.

[2] STAR Collaboration, C. Adler et al., “Disappearance of back-to-back high pt hadron correlations in central Au–Au collisions at \( \sqrt{s_{NN}} = 200 \text{ GeV} \)”, Phys. Rev. Lett. 90 (2003) 082302. arXiv:nucl-ex/0210033 [nucl-ex].

[3] PHENIX Collaboration, A. Adare et al., “Dihadron azimuthal correlations in Au–Au collisions at \( \sqrt{s_{NN}} = 200 \text{ GeV} \)”. Phys. Rev. C 78 (2008) 014901. arXiv:0801.4545 [nucl-ex].

[4] STAR Collaboration, J. Adams et al., “Direct observation of dijets in central Au+Au collisions at s(NN)**(1/2) = 200-GeV”. Phys. Rev. Lett. 97 (2006) 162301. arXiv:nucl-ex/0604018.

[5] PHENIX Collaboration, A. Adare et al., “Transverse momentum and centrality dependence of dihadron correlations in Au+Au collisions at \( \sqrt{s_{NN}} = 200 \text{ GeV} \): Jet-quenching and the response of partonic matter”, Phys. Rev. C 77 (2008) 011901. arXiv:0705.3238 [nucl-ex].

[6] STAR Collaboration, B. I. Abelev et al., “Mass, quark-number, and \( \sqrt{s_{NN}} \) dependence of the second and fourth flow harmonics in ultra-relativistic nucleus-nucleus collisions”, Phys. Rev. C 81 (2010) 054905. arXiv:1003.0194 [nucl-th]. [Erratum: Phys. Rev. C 82,039903(2010)].

[7] ALICE Collaboration, K. Aamodt et al., “Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV”, Phys. Rev. Lett. 105 (2010) 252302. arXiv:1011.3914 [nucl-ex].

[8] ALICE Collaboration, K. Aamodt et al., “Elliptic flow of charged particles in Pb–Pb collisions at \( \sqrt{s_{NN}} = 2.76 \text{ TeV} \)”, Phys. Rev. Lett. 105 (2010) 252302. arXiv:1011.3914 [nucl-ex].

[9] ALICE Collaboration, J. Adam et al., “Flow dominance and factorization of transverse momentum correlations in Pb-Pb collisions at the LHC”, arXiv:1702.02665 [nucl-ex].

[10] M. A. Stephanov, “QCD phase diagram and the critical point”. Prog. Theor. Phys. Suppl. 153 (2004) 139–156. arXив:hep-ph/0402115.

[11] A. Bazavov et al., “The chiral and deconfinement aspects of the QCD transition”, Phys. Rev. D 85 (2012) 054503. arXив:1111.1710 [hep-lat].

[12] B. Friman, F. Karsch, K. Redlich, and V. Skokov, “Fluctuations as probe of the QCD phase transition and freeze-out in heavy ion collisions at LHC and RHIC”, Eur. Phys. J. C 71 (2011) 1694. arXив:1103.3511 [hep-ph].

[13] S. Borsanyi, Z. Fodor, J. N. Guenther, S. K. Katz, K. K. Szabo, A. Pasztor, I. Portillo, and C. Ratti, “Higher order fluctuations and correlations of conserved charges from lattice QCD”, JHEP 10 (2018) 205. arXив:1805.04445 [hep-lat].
Neutral to charged kaon yield fluctuations

ALICE Collaboration

[17] K. Redlich, B. Friman, and C. Sasaki, “Density fluctuations and chiral phase transition”, *J. Phys. G* 35 (2008) 044013, arXiv:0712.2926 [hep-ph].

[18] C. Pruneau, S. Gavin, and S. Voloshin, “Net charge dynamic fluctuations”, *Nucl. Phys. A* 715 (2003) 661–664.

[19] STAR Collaboration, C. A. Pruneau, “Event by event net charge fluctuations”, *Acta Phys. Hung. A* 21 (2004) 261–266, arXiv:nucl-ex/0304021.

[20] Z.-w. Lin and C. M. Ko, “Baryon number fluctuation and the quark gluon plasma”, *Phys. Rev. C* 64 (2001) 041901, arXiv:nucl-th/0103071.

[21] D. Bower and S. Gavin, “Baryon fluctuations and the QCD phase transition”, *Phys. Rev. C* 64 (2001) 051902, arXiv:nucl-th/0106010.

[22] ALICE Collaboration, B. I. Abelev et al., “Net-Charge Fluctuations in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, *Phys. Rev. Lett.* 110 (2013) 152301, arXiv:1207.6068 [nucl-ex].

[23] ALICE Collaboration, S. Acharya et al., “Global baryon number conservation encoded in net-proton fluctuations measured in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, *Phys. Lett. B* 807 (2020) 135564, arXiv:1910.14396 [nucl-ex].

[24] ALICE Collaboration, S. Acharya et al., “Relative particle yield fluctuations in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, *Eur. Phys. J. C* 79 (2019) 236, arXiv:1712.07929 [nucl-ex].

[25] P. Braun-Munzinger, A. Kalweit, K. Redlich, and J. Stachel, “Confronting fluctuations of conserved charges in central nuclear collisions at the lhc with predictions from lattice qcd”, *Nuclear Physics A* 956 (2016) 805 – 808, http://www.sciencedirect.com/science/article/pii/S0375947416001111 The XXV International Conference on Ultrarelativistic Nucleus-Nucleus Collisions: Quark Matter 2015.

[26] V. Vovchenko, L. Jiang, M. I. Gorenstein, and H. Stoecker, “Critical point of nuclear matter and beam energy dependence of net proton number fluctuations”, *Phys. Rev. C* 98 (2018) 024910, arXiv:1711.07260 [nucl-th].

[27] M. A. Stephanov, K. Rajagopal, and E. V. Shuryak, “Signatures of the tricritical point in QCD”, *Phys. Rev. Lett.* 81 (1998) 4816–4819, arXiv:hep-ph/9806219.

[28] K. Rajagopal and F. Wilczek, “Static and dynamic critical phenomena at a second order QCD phase transition”, *Nucl. Phys. B* 399 (1993) 395–425, arXiv:hep-ph/9210253.

[29] J.-P. Blaizot and A. Krzywicki, “Soft pion emission in high-energy heavy ion collisions”, *Phys. Rev. D* 46 (1992) 246–251.

[30] H. Hiro-Oka and H. Minakata, “Dynamical pion production via parametric resonance from disoriented chiral condensate”, *Phys. Rev. C* 61 (2000) 044903, arXiv:hep-ph/9906301 [hep-ph].

[31] MiniMax Collaboration, T. C. Brooks et al., “A Search for disoriented chiral condensate at the Fermilab Tevatron”, *Phys. Rev. D* 61 (2000) 032003, arXiv:hep-ex/9906026.

[32] M. Venables et al., “Strangeness production in the WA94 experiment at CERN”, *J. of Phys. G: Nucl. and Part. Phys.* 23 (1997) 1857, http://stacks.iop.org/0954-3899/23/i=12/a=009.

[33] STAR Collaboration, L. Adamczyk et al., “Charged-to-neutral correlation at forward rapidity in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV”, *Phys. Rev. C* 91 (2015) 034905, arXiv:1408.5017 [nucl-ex].
[34] J. I. Kapusta and S. M. H. Wong, “Is anomalous production of Omega and anti-Omega evidence for disoriented chiral condensates?”, *Phys. Rev. Lett.* **86** (2001) 4251–4254, arXiv:nucl-th/0012006.

[35] S. Gavin and J. I. Kapusta, “Kaon and pion fluctuations from small disoriented chiral condensates”, *Phys. Rev. C* **65** (2002) 054910, arXiv:nucl-th/0112083 [nucl-th].

[36] M. Abdel-Aziz and S. Gavin, “Strange fluctuations at RHIC”, *Nuclear Physics A* **715** (2003) 657–660c, nucl-th/0209019.

[37] S. Gavin, “Strange disoriented chiral condensate”, in *18th Winter Workshop on Nuclear Dynamics (WWND 2002) Nassau, Bahamas, January 20-22, 2002*. 2002. arXiv:nucl-th/0204064 [nucl-th].

[38] C. Pruneau, S. Gavin, and S. Vološin, “Methods for the study of particle production fluctuations”, *Phys. Rev. C* **66** (2002) 044904, arXiv:nucl-ex/0204011 [nucl-ex].

[39] R. Nayak, S. Dash, B. Nandi, and C. Pruneau, “Modeling of charged kaon and neutral kaon fluctuations as a signature for the production of a disoriented chiral condensate in $A-A$ collisions”, *Phys. Rev. C* **101** (2020) 054904, arXiv:1908.01130 [hep-ph].

[40] S. Gavin, “Disoriented chiral condensates”, *Nucl. Phys. A* **590** (1995) 163C–177C.

[41] A. Andronic, P. Braun-Munzinger, K. Redlich, and J. Stachel, “Decoding the phase structure of QCD via particle production at high energy”, *Nature* **561** (2018) 321–330, arXiv:1710.09425 [nucl-th].

[42] P. Zyla *et al.*, “The review of particle physics”, *Prog. Theor. Exp. Phys.* (2020) 083C01.

[43] ALICE Collaboration, D. Nouais *et al.*, “The Alice silicon drift detector system”, *Nucl. Instrum. Meth. A**501** (2001) 119–125.

[44] ALICE Collaboration, J. Baechler and T. C. Meyer, “The ALICE time projection chamber: A technological challenge in LHC Heavy-ion physics”, *Nucl. Instrum. Meth. A**518** (2004) 94–99.

[45] ALICE Collaboration, K. Aamodt *et al.*, “The ALICE experiment at the CERN LHC”, *JINST* **3** (2008) S08002.

[46] ALICE Collaboration, B. B. Abelev *et al.*, “Performance of the ALICE Experiment at the CERN LHC”, *Int. J. Mod. Phys. A**29** (2014) 1430044, arXiv:1402.4476 [nucl-ex].

[47] ALICE Collaboration, B. Abelev *et al.*, “Centrality determination of Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with ALICE”, *Phys. Rev. C**88** (2013) 044909, arXiv:1301.4361 [nucl-ex].

[48] ALICE Collaboration, B. Abelev *et al.*, “$K_{S}^{0}$ and $\Lambda$ production in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, *Phys. Rev. Lett.**111** (2013) 222301, arXiv:1307.5530 [nucl-ex].

[49] X. Luo, J. Xu, B. Mohanty, and N. Xu, “Volume fluctuation and auto-correlation effects in the moment analysis of net-proton multiplicity distributions in heavy-ion collisions”, *J. of Phys. G: Nucl. and Part. Phys.* **40** (2013) 105104, https://doi.org/10.1088%2F0954-3899%2F40%2F10%2F105104.

[50] STAR Collaboration, N. M. Abdelwahab *et al.*, “Energy Dependence of $K/\pi$, $p/\pi$, and $K/p$ Fluctuations in Au+Au Collisions from $\sqrt{s_{NN}} = 7.7$ to 200 GeV”, *Phys. Rev. C**92** (2015) 021901, arXiv:1410.5375 [nucl-ex].
[51] R. Barlow, “Systematic errors: Facts and fictions”, in Advanced Statistical Techniques in Particle Physics. Proc. Conf., Durham, UK, March 18–22, 2002, pp. 134–144. 2002. 
http://www.ippp.dur.ac.uk/Workshops/02/statistics/proceedings//barlow.pdf

[52] X.-N. Wang and M. Gyulassy, “HIJING: A Monte Carlo model for multiple jet production in p p, p A and A A collisions”, Phys. Rev. D 44 (1991) 3501–3516.

[53] Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang, and S. Pal, “A Multi-phase transport model for relativistic heavy ion collisions”, Phys. Rev. C 72 (2005) 064901, arXiv:nucl-th/0411110 [nucl-th].

[54] R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Maire, A. McPherson, G. Patrick, and L. Urban, “GEANT Detector Description and Simulation Tool”, http://cds.cern.ch/record/1082634.

[55] T. Pierog, I. Karpenko, J. M. Katzy , E. Yatsenko, and K. Werner, “EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider”, Phys. Rev. C 92 (2015) 034906, arXiv:1306.0121 [hep-ph].

[56] M. I. Gorenstein, “Identity Method for Particle Number Fluctuations and Correlations”, Phys. Rev. C84 (2011) 024902

[57] P. F. Kolb and U. W. Heinz, “Hydrodynamic description of ultrarelativistic Heavy-ion collisions”, arXiv:nucl-th/0305084 [nucl-th].

[58] F. Retiere and M. A. Lisa, “Observable implications of geometrical and dynamical aspects of freeze out in Heavy-ion collisions”, Phys. Rev. C70 (2004) 044907, arXiv:nucl-th/0312024 [nucl-th].
## The ALICE Collaboration

| Name 1 | Name 2 | Name 3 | Name 4 | Name 5 | Name 6 | Name 7 | Name 8 | Name 9 | Name 10 | Name 11 | Name 12 | Name 13 | Name 14 | Name 15 | Name 16 | Name 17 | Name 18 | Name 19 | Name 20 | Name 21 | Name 22 | Name 23 | Name 24 | Name 25 | Name 26 | Name 27 | Name 28 | Name 29 | Name 30 | Name 31 | Name 32 | Name 33 | Name 34 | Name 35 | Name 36 | Name 37 | Name 38 | Name 39 | Name 40 | Name 41 | Name 42 | Name 43 | Name 44 | Name 45 | Name 46 | Name 47 | Name 48 | Name 49 | Name 50 | Name 51 | Name 52 | Name 53 | Name 54 | Name 55 | Name 56 | Name 57 | Name 58 | Name 59 | Name 60 | Name 61 | Name 62 | Name 63 | Name 64 | Name 65 | Name 66 | Name 67 | Name 68 | Name 69 | Name 70 | Name 71 | Name 72 | Name 73 | Name 74 | Name 75 | Name 76 | Name 77 | Name 78 | Name 79 | Name 80 | Name 81 | Name 82 | Name 83 | Name 84 | Name 85 | Name 86 | Name 87 | Name 88 | Name 89 | Name 90 | Name 91 | Name 92 | Name 93 | Name 94 | Name 95 | Name 96 | Name 97 | Name 98 | Name 99 | Name 100 | Name 101 | Name 102 | Name 103 | Name 104 | Name 105 | Name 106 | Name 107 | Name 108 | Name 109 | Name 110 | Name 111 | Name 112 | Name 113 | Name 114 | Name 115 | Name 116 | Name 117 | Name 118 | Name 119 | Name 120 | Name 121 | Name 122 | Name 123 | Name 124 | Name 125 | Name 126 | Name 127 | Name 128 | Name 129 | Name 130 | Name 131 | Name 132 | Name 133 | Name 134 | Name 135 |
Affiliation Notes

I Deceased
II Also at: Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Bologna, Italy
III Also at: Dipartimento DET del Politecnico di Torino, Turin, Italy
IV Also at: M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics, Moscow, Russia
V Also at: Department of Applied Physics, Aligarh Muslim University, Aligarh, India
VI Also at: Institute of Theoretical Physics, University of Wroclaw, Poland
VII Also at: University of Kansas, Kansas, United States

Collaboration Institutes

1 A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
2 AGH University of Science and Technology, Cracow, Poland
3 Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
4 Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India
5 Budker Institute for Nuclear Physics, Novosibirsk, Russia
Neutral to charged kaon yield fluctuations

ALICE Collaboration

111 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
112 Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
113 St. Petersburg State University, St. Petersburg, Russia
114 Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
115 SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France
116 Suranaree University of Technology, Nakhon Ratchasima, Thailand
117 Technical University of Košice, Košice, Slovakia
118 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
119 The University of Texas at Austin, Austin, Texas, United States
120 Universidad Autónoma de Sinaloa, Culiacán, Mexico
121 Universidade de São Paulo (USP), São Paulo, Brazil
122 Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
123 Universidade Federal do ABC, Santo Andre, Brazil
124 University of Cape Town, Cape Town, South Africa
125 University of Houston, Houston, Texas, United States
126 University of Jyväskylä, Jyväskylä, Finland
127 University of Kansas, Lawrence, Kansas, United States
128 University of Liverpool, Liverpool, United Kingdom
129 University of Science and Technology of China, Hefei, China
130 University of South-Eastern Norway, Tonsberg, Norway
131 University of Tennessee, Knoxville, Tennessee, United States
132 University of the Witwatersrand, Johannesburg, South Africa
133 University of Tokyo, Tokyo, Japan
134 University of Tsukuba, Tsukuba, Japan
135 University Politehnica of Bucharest, Bucharest, Romania
136 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
137 Université de Lyon, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, Lyon, France
138 Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Strasbourg, France
139 Université Paris-Saclay Centre d’Etudes de Saclay (CEA, IRFU, Département de Physique Nucléaire (DPhN), Saclay, France
140 Università degli Studi di Foggia, Foggia, Italy
141 Università di Brescia, Brescia, Italy
142 Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India
143 Warsaw University of Technology, Warsaw, Poland
144 Wayne State University, Detroit, Michigan, United States
145 Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany
146 Wigner Research Centre for Physics, Budapest, Hungary
147 Yale University, New Haven, Connecticut, United States
148 Yonsei University, Seoul, Republic of Korea