Air quality in a hospital dental department

Chien-Tien Hsu a, Shih-Chang Hsusb, c, Shau-Ku Huang d, Chon-Lin Lee e, f, g**, Yi-Shing Shieha, h*

a Department of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
b Emergency Department, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
c Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
d National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
e Department of Marine Environment and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
f Department of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan
g Department of Applied Chemistry, Providence University, Taichung, Taiwan
h Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan

Received 20 March 2022; Final revision received 23 March 2022
Available online 7 April 2022

KEYWORDS
Dental clinic; PM2.5; Polycyclic aromatic hydrocarbons; Volatile organic compounds

Abstract Background/purpose: Documented studies demonstrated that particulate matter 2.5 (PM2.5) are relatively high in dental clinics. However, the PM2.5 composition is unclear. This study aimed to evaluate the dental department’s air quality in a teaching hospital.
Materials and methods: The SKC AirChek XR5000 pumps and canister samplers were used to collect PM2.5 and volatile organic compounds (VOCs). The PM2.5 composition analysis (polycyclic aromatic hydrocarbons (PAHs) and metals) was conducted, and in the dental clinic and waiting room, the air quality comparison was investigated. Moreover, the dental clinic’s air quality was compared before and after air purifier use.
Results: In the dental clinic and waiting room, the results revealed high PM2.5 concentration exceeding the standard of the United States Environmental Protection Agency (USEPA) (35 μg/m3); the values were 41.08–108.23 μg/m3 and 17.89–62.72 μg/m3, respectively. In both investigated locations, VOCs had no significant difference. Among 16 priority PAHs, the result indicated high level of benzo(b)fluoranthene (B(b)f), benzo(k)fluoranthene (B(k)f), benzo(a)pyrene (B(a)p), and indenopyrene (IP). B(b)f and B(k)f and lead (Pb) concentrations were detected with a significant difference in the clinic as compared to the waiting room. In addition,
Introduction

Among developing countries, air pollution is a serious problem. It has been an issue of public concern and was confirmed to have a huge impact on human health. Exposure to fine suspended particles is shown to be associated with worsening asthma, chronic obstructive pulmonary disease, pneumonia, lung cancer, and cardiovascular diseases. Fine suspended particles are very tiny particles floating in the air. PM2.5 have a particle size range of 2.5 μm and are easy to bound with toxic substances such as germs, polycyclic aromatic hydrocarbons (PAHs), and heavy metals. As reported, PAHs bound to toxic substances can be toxic even at low levels. PAHs have been classified as carcinogens by the International Agency for Research on Cancer (IARC), which are thus harmful to the immune system. Several metals are neurotoxic and can be toxic even at low levels.

From the chemical point of view, few research focus on air quality status of a dental clinic. Different suspended particle concentrations, physical properties, and composition have different effects on health. By chemical composition understanding, the impact of specific components in PM2.5 can be clarified on the certain environment and human health.

In dental treatment, many factors affect air quality. Teeth grinding and drilling and dental material were the principal dental activities to produce particles and aerosol. Dental practitioners use a large variety of materials for procedures. Some dental materials have volatile character that might be the main source of VOCs. Documented studies demonstrated that PM2.5 are relatively high in dental clinics. However, the PM2.5 composition is unclear. In this study, PM2.5 and VOCs were investigated in a dental clinic and waiting room. The PM2.5 composition (PAHs and metals) was measured and analyzed. A dental clinic’s air quality after air purifier use was also evaluated.

Materials and methods

Sampling locations

The sampling period is from August 6 to October 31, 2019, each sampling collected during working hour. A dental clinic and waiting room were selected as air sample collection locations. In each selected location, PM2.5 and VOCs were collected 3 days/week for 8 h. Common environmental pollutants were measured and analyzed.

Sampling instruments

For air pollutants collecting, two SKC AirChek XR5000 personal air-sampling pumps (SKC Inc, Eighty Four, PA, USA) were concomitantly run with the CS1200E Flow Controller (Entech Instruments, Simi Valley, CA, USA) and evacuated canister sampler (Entech Instruments). PM2.5 monitoring was conducted using a 37-mm quartz filter paper housed inside a cassette and coupled with SKC AirChek XR5000 personal air-sampling pumps operating at approximately 4.0 L per minute for 24 h.

PM2.5 concentration was determined by gravimetric analysis in an environmentally controlled room with guidance from the United States Environmental Protection Agency (USEPA) Quality Assurance Guidance Document 2.12 January 2016. PM2.5 samples were pre- and post-weighed on an electronic micro-balance. The difference between the two weights and the total sample volume determine the PM2.5 final mass concentration.

For PAHs and metal, PM2.5 samples were further analyzed. Gas chromatography mass spectrometry (GC–MS) (Agilent, Santa Clara, CA, USA) was used to analyze the 16 PAHs announced by the USEPA, while inductively coupled plasma mass spectrometry (ICP-MS) (Agilent) for metals. Canister samplers were employed for VOCs measurement. VOCs were determined by GC–MS method to identify its emission characteristics.

Intervention with air purifier

This sampling period is from April 6, 2020, to May 11, 2021, the location is in the dental clinic, and the sequence is to sample with Blueair480i (Blueair, Stockholm, Sweden) and without air purifier. In the first phase, difference in the PM2.5 concentration and composition between the clinic and waiting room was compared. In the second phase, an air purifier was used to reduce PM2.5 concentration in the clinic. PM2.5 samples with air purifier were collected on the first 3 days and then air samples without the purifier for the next sampling time. Air samples were collected for 5 months.

Statistical analysis

Statistical analysis obtained was made using R 4.1.0 software (R Foundation for Statistical Computing, Vienna, Austria). Since a parametric distribution was not followed, nonparametric statistics were used. Continuous variables were expressed as medians and quartiles. In the groups’ comparison, the Mann–Whitney U-test was used. The
statistical tests were two-sided, and P values less than 0.05 were considered statistically significant.

Result

Concentration of particulate matter 2.5 and polycyclic aromatic hydrocarbons in clinic

The sampling results are shown in Table 1. The maximum sampling concentration of PM2.5 was 108.231 μg/m3, the minimum was 41.078 μg/m3, and the median was 79.910 μg/m3. The maximum sampling concentration of benzo(b)fluoranthene (B(b)f) was 0.511 ng/m3, the minimum was 0.010 ng/m3, and the median was 0.032 ng/m3. The maximum sampling concentration of benzo(k)fluoranthene (B(k)f) was 0.257 ng/m3, the minimum was 0.005 ng/m3, and the median was 0.016 ng/m3. The maximum sampling concentration of benzo(a)pyrene (B(a)p) was 0.163 ng/m3, and the minimum and median was 0 ng/m3. The maximum sampling concentration of indeno[1,2,3-cd]pyrene (IP) was 0.014 ng/m3, and the minimum and median was 0 ng/m3.

Particulate matter 2.5 and polycyclic aromatic hydrocarbons in waiting room

The maximum sampling concentration of PM2.5 was 62.731 μg/m3, the minimum was 17.888 μg/m3, and the median was 46.102 μg/m3. The maximum sampling concentration of B(b)f was 0.042 ng/m3, and the minimum and median was 0 ng/m3. The maximum sampling concentration of B(k)f was 0.038 ng/m3, and the minimum sampling concentration and median was 0 ng/m3. B(a)p was undetectable. The maximum sampling concentration of IP was 0.014 ng/m3, and the minimum and median was 0 ng/m3. In this result, PM2.5, B(b)f, and B(k)f had higher concentrations in the clinic with significant difference.

Volatile organic compounds

VOCs concentrations remained lower levels in the clinic lower than the international limits. The analysis results are shown in Table 2. Pentane, Cis-2-butene, Difluorochloromethane, 2-Methylpentane, Isopentane, Toluene, Methyl methacrylate, Acetone, Methanol, and Propane were detected, and there was no significant difference in the concentration between the rooms.

Metals

The measurements of metal concentration are shown in Table 3. Eleven metals (Iron (Fe), Vanadium (V), Chromium (Cr), Manganese (Mn), Cobalt (Co), Nickel (Ni), Copper (Cu), Zinc (Zn), Arsenic (As), Cadmium (Cd), Lead (Pb)) were identified, of which (Fe), (V), (Cr), (Mn), (Co), (Ni), (Cu), (Zn), (As), and (Cd) had no significant difference between the rooms.

In the clinic, the maximum sampling concentration of Pb in the clinic was 4.829 ng/m3, the minimum was 1.341 ng/m3, and the median was 3.917 ng/m3. In the waiting room, the maximum sampling concentration was 4.621 ng/m3, the minimum was 1.114 ng/m3, and the median was 2.962 ng/m3 with significant difference.

The effect of air purifier

The sampling results are shown in Table 4. Before air purifier use, the maximum sampling concentration of PM2.5 was 101.8 μg/m3, the minimum was 27.6 μg/m3, and the median was 31.9 μg/m3. The maximum sampling concentration of B(b)f was 0.42 ng/m3, the minimum was 0.08 ng/m3, and the median was 0.19 ng/m3. The maximum sampling concentration of B(k)f was 4.41 ng/m3, the minimum was 0.29 ng/m3, and the median was 0.55 ng/m3. The maximum sampling concentration of Pb was 8.67 ng/m3, the minimum was 5.53 ng/m3, and the median was 6.61 ng/m3.

After air purifier use, the maximum sampling concentration of PM2.5 was 78.1 μg/m3, the minimum was 15.7 μg/m3, and the median was 22.3 μg/m3. The maximum sampling concentration of B(b)f was 0.18 ng/m3, the minimum was 0.06 ng/m3, and the median was 0.11 ng/m3. The maximum sampling concentration of B(k)f was 4.31 ng/m3, the minimum was 0.18 ng/m3, and the median was 0.23 ng/m3. The highest sampling concentration of Pb was 7.54 ng/m3, the minimum was 4.94 ng/m3, and the median was 5.52 ng/m3.

Table 1: PM2.5 and PAHs concentration value in dental clinic and waiting room.

	Clinic	Waiting Room					
	Frequency Distribution	Minimum	Maximum	Frequency Distribution	Minimum	Maximum	P-value
	25th	50th	75th	25th	50th	75th	
PM2.5 (μg/m3)	61.024	79.910	88.834	41.078	108.231		33.350
B(b)f(ng/m3)	0.031	0.032	0.071	0.010	0.511		0.000
B(k)f(ng/m3)	0.011	0.016	0.035	0.005	0.257		0.000
B(a)p(ng/m3)	0.000	0.000	0.048	0.000	0.163		0.000
IP(ng/m3)	0.000	0.000	0.005	0.000	0.014		0.000

a PM2.5: particulate matter 2.5.
b B(b)f: benzo(b)fluoranthene.
c B(k)f: benzo(k)fluoranthene.
d B(a)p: benzo(a)pyrene.
e IP: indeno[1,2,3-cd]pyrene.
Discussion

PM2.5, B(b)f, B(k)f, and Pb values were found to be higher in the dental clinic than in the waiting room, and the VOC concentration has no significant difference in both locations. After air purifier use, the B(b)f concentration in the dental clinic significantly reduced.

In this study, PM2.5 concentration was higher in the dental clinic than that in the waiting room, in accordance with Helmis et al. and Godwin et al.’s studies, and both studies have reduced PM2.5 concentrations in dental clinics through natural and mechanical ventilation. Ventilation may be considered as another option to reduce PM2.5 concentrations. As noted in this study, PM2.5 levels were significantly higher than PM2.5 standard (35 μg/m³) (24-h average) announced by USEPA, and both monitoring sites exhibited relatively high levels exceeding the global air quality guideline limits by WHO. In the dental clinic, PM2.5 levels were significantly higher than PM2.5 standard (35 μg/m³) (24-h average) announced by USEPA, and both monitoring sites exhibited relatively high levels exceeding the global air quality guideline limits by WHO. In the dental clinic, PM2.5 concentrations reach high values. PM2.5 harm many human body parts, including the nerves, gastrointestinal, heart, lung, liver, kidney, and skin. Long-term exposure may cause allergies, asthma, lung and liver cancer, cardiovascular disease, blood disease, etc.

Various factors influence air quality in hospitals including the use of chemicals, pharmaceutical products, biological contaminants, cleaning compounds, sterilization,
and dust. The places recommended by USEPA are often with a high density of activity people, such as outpatient waiting areas, registration areas, emergency rooms, food courts, and halls, and the air quality standards should be more stringent. Since people who come and go are mostly patients with low resistance, the area needs to be clean for medical procedures, such as the clinic in this study.

It was confirmed that plaster and dental materials’ trimming during dental treatment or high-speed hand pieces’ cutting causes debris, generating powder layers and fine suspended particles, which are possible PM2.5 sources. PAHs usually exist in plastics, rubber, and synthetic resins, and in dental practice, there are many materials derived from these, including composite resins for dental caries filling, temporary crown resins, and resin denture base materials with polyethylene terephthalate (PET), and the impression material made of synthetic rubber.

The average concentration of Pb was measured highly in the clinic. Metal alloys also play important roles in dental practice, including direct and indirect dental restorations and instruments for teeth preparation. Common metals include gold (Au), palladium (Pd), platinum (Pt), silver (Ag), aluminum (Al), Co, and Cr, while Pb is not commonly used. It was found that polysulfide impression materials have Pb components and may be a possible Pb source in the dental clinics. In this study, there are significant differences in Pb exposure. Pb is a neurotoxic substance. Lead can exert severe and chronic health effects.

According to the IARC, most of the individual PAHs are classified as either probably carcinogenic to humans (Group 2A) or possibly carcinogenic to humans (Group 2B). There is evidence that B(b)f in PM2.5 increases the risk of individuals to suffer from chronic kidney disease. Various studies have found that there are multiple mechanistic links between B(b)f exposure and kidney damage, and that B(b)f damages DNA and mitochondria, induces early cell apoptosis, and leads to offspring defects. Previous studies not only provided evidence for the toxic effects of B(b)f but also clarified the underlying mechanism of B(b)f inducing oocyte quality reduction. Maternal B(b)f exposure can interfere with the normal sperm function of the offspring, leading to abnormal human male reproductive function. B(k)f has immunotoxicity and induces an immunosuppressive response. PAHs are famous for their mutagenic and carcinogenic effects. B(a)P and B(k)f, which are environment-related PAHs, can together induce estrogenic effects in the body, which may affect its toxic effects and carcinogenicity.

This study demonstrates potential health impact of air quality for dental practitioners. Air purifier use can improve a dental clinic’s air quality, and all air pollutants are significantly reduced. In the future, the efficacy of different ways of air quality reduction should be discussed. PM2.5 concentration in the dental clinic is higher than the standards of the Taiwan Environmental Protection Agency and the USEPA. High exposure of B(b)f, B(k)f PAHs, and Pb may cause health hazard to the human body. Air purifier use effectively reduces the air pollutants, and the dental department should establish air quality regulation for dental practitioners, to provide an ideal working environment and occupational safety protection.

Declaration of competing interest

The authors have no conflicts of interest relevant to this article.

Acknowledgments

This study was supported by research grants from the Tri-Service General Hospital, Taiwan (TSGH-D-111144); and Wan Fang Hospital, Taiwan (111-wf-swf-03).

References

1. Feng S, Gao D, Liao F, Zhou F, Wang X. The health effects of ambient PM2.5 and potential mechanisms. *Ecotoxicol Environ Saf* 2016;128:67–74.
2. Wang F, Liu J, Zeng H. Interactions of particulate matter and pulmonary surfactant: implications for human health. *Adv Colloid Interface Sci* 2020;284:102244.
3. Pope III CA, Burnett RT, Thun MJ, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. *JAMA* 2002;287:1132–41.
4. Song Q, Christiani DC, Xiaorong Wang Ren J. The global contribution of outdoor air pollution to the incidence, prevalence, mortality and hospital admission for chronic obstructive...
5. Wang N, Mengersen K, Tong S, et al. Short-term association between ambient air pollution and lung cancer mortality. Environ Res 2019;179:108748.
6. Hayes RB, Lim C, Zhang Y, et al. PM2.5 air pollution and cause-specific cardiovascular disease mortality. Int J Epidemiol 2020; 49:25–35.
7. Bosetti C, Boffetta P, La Vecchia C. Occupational exposures to polycyclic aromatic hydrocarbons, and respiratory and urinary tract cancers: a quantitative review to 2005. Ann Oncol 2007; 18:431–46.
8. Sharma MD, Elanjickal AI, Mankar JS, Krupadam RJ. Assessment of cancer risk of microplastics enriched with polycyclic aromatic hydrocarbons. J Hazard Mater 2020;398:122994.
9. Win-Shwe TT, Fujimaki H, Arashidani K, Kunugita N. Indoor volatile organic components and chemical sensitivity reactions. Clin Dev Immunol 2013;2013:623812.
10. Zhang JJ, Wei Y, Fang Z. Ozone pollution: a major health hazard worldwide. Front Immunol 2019;10:2518.
11. Andrade VM, Aschner M, Marreilha Dos Santos AP. Neurotoxicity of metal mixtures. Adv Neurobiol 2017;18:227–65.
12. Heo J, Schauer JJ, Yi O, Paek D, Kim H, Yi SM. Fine particle air pollution and mortality: importance of specific sources and chemical species. Epidemiology 2014;25:379–88.
13. Lighty JS, Veranth JM, Sarofim AF. Combustion aerosols: factors governing their size and composition and implications to human health. J Air Waste Manag Assoc 2000;50:1565–618. ; discussion 619–22.
14. Helmis CG, Tzouzas J, Flocas HA, et al. Indoor air quality in a dental office. Sci Total Environ 2007;377:349–65.
15. Polednik B. Aerosol and bioaerosol particles in a dental office. Environ Res 2014;134:405–9.
16. Rautemaar R, Nordberg A, Wuolijoki-Saaristo K, Meurhan JM. Bacterial aerosols in dental practice - a potential hospital infection problem? J Hosp Infect 2006;64:76–81.
17. Rivera-Hidalgo F, Barnes JB, Harrel SK. Aerosol and splatter production by focused spray and standard ultrasonic inserts. J Periodontol 1997;70:473–7.
18. Schmalz G, Hickel R, van Landuyt KL, Reichl FX. Nanoparticles in dentistry. Dent Mater 2017;33:1298–314.
19. Liu MH, Tung TH, Chung FF, Chuang LC, Wan GH. High total volatile organic compounds pollution in a hospital dental department. Environ Monit Assess 2017;189:571.
20. Godwin CC, Battrerman SA, Sahni SP, Peng CY. Indoor environment quality in dental clinics: potential concerns from particulate matter. Am J Dent 2003;16:260–6.
21. Tran BL, Chang CC, Hsu CS, Chen CC, Tseng WC, Hsu SH. Threshold effects of PM2.5 exposure on particle-related mortality in China. Int J Environ Res Public Health 2019;16:3549.
22. Ireland AJ, Moreno T, Price R. Airborne particles produced during enamel cleanup after removal of orthodontic appliances. Am J Orthod Dentofacial Orthop 2003;124:683–6.
23. Hedayaat A, Nagy N, Packota G, et al. Synchrotron-radiation-based X-ray micro-computed tomography reveals dental bur debris under dental composite restorations. J Synchrotron Radiat 2016;23:777–82.
24. Fisner M, Majer A, Taniguchi S, Bicego M, Turra A, Gorman D. Colour spectrum and resin-type determine the concentration and composition of polycyclic aromatic hydrocarbons (PAHs) in plastic pellets. Mar Pollut Bull 2017;122:323–30.
25. Geiss O, Senaldi C, Bianchi I, Lucena A, Tirendi S, Barrero-Moreno J. A fast and selective method for the determination of 8 carcinogenic polycyclic aromatic hydrocarbons in rubber and plastic materials. J Chromatogr A 2018;1566:13–22.
26. Hamanaka I, Takahashi Y, Shimizu H. Mechanical properties of injection-molded thermoplastic denture base resins. Acta Odontol Scand 2011;69:75–9.
27. Galo Silva G, Valente M, Bachmann L, Dos Reis AC. Use of polyethylene terephthalate as a prosthetic component in the prosthesis on an overdenture implant. Mater Sci Eng C Mater Biol Appl 2019;99:1341–9.
28. Krauss J, Faltermeyer A, Behr M, Proff P. Evaluation of alternative polymer bracket materials. Am J Orthod Dentofacial Orthop 2010;137:362–7.
29. Roberts HW, Berzins DW, Moore BK, Charlton DG. Metal ceramic alloys in dentistry: a review. J Prosthodont 2009;18:188–94.
30. Gettleman L, Nathanson D, Sklar G, et al. Preliminary evaluation of the histotoxicity and radiopacity of lead-containing elastic impression materials. J Am Dent Assoc 1978;96:987–93.
31. Spranley TJ, Gettleman L, Zimmerman KL. Acute tissue irritation of polysulfide rubber impression materials. J Dent Res 1983;62:548–51.
32. Ahmad F, Liu P. (Ascorb)ing Pb neurotoxicity in the developing Brain. Antioxidants 2020;9:1311.
33. Flora G, Gupta D, Tiwari A. Toxicity of lead: a review with recent updates. Intercidiscip Toxicol 2012;5:47–58.
34. Zhang Y, Liu D, Liu Z. The benzo[b]fluoranthene in the atmospheric fine particulate matter induces mouse glomerular podocytes injury via inhibition of autophagy. Ecotoxical Environ Saf 2020;195:110403.
35. Guo J, Huang J, Zhang L, et al. Benzo[b]fluoranthene impairs mouse oocyte maturation via inducing the apoptosis. Front Pharmacol 2020;11:1226.
36. Kim A, Park M, Yoon TK, et al. Maternal exposure to benzo[b]fluoranthene disturbs reproductive performance in male offspring mice. Toxicol Lett 2011;203:54–61.
37. Jeon TW, Jin CH, Lee SK, et al. In vivo and in vitro immunosuppressive effects of benzo[k]fluoranthene in female Balb/c mice. J Toxicol Environ Health 2005;68:2033–50.
38. Machala M, Vondracek J, Blaha L, Ciganek M, Neva JV. Aryl hydrocarbon receptor-mediated activity of mutagenic polycyclic aromatic hydrocarbons determined using in vitro reporter gene assay. Mutat Res 2001;497:49–62.
39. Spink DC, Wu SJ, Spink BC, et al. Induction of CYPIA1 and CYP1B1 by benzo(a)pyrene and benzo(a)pyrene in T-47D human breast cancer cells: roles of PAH interactions and PAH metabolites. Toxicol Appl Pharmacol 2008;226:213–24.
40. Arcaro KE, Yang Y, Gerthel JF. Benzo[k]fluoranthene enhancement and suppression of 17 beta-estradiol caabolsim in MCF-7 breast cancer cells. J Toxicol Environ Health 1999;58:413–26.