Lindblad approximation and spin relaxation in quantum electrodynamics

L. Amour and J. Nourrigat

Laboratoire de Mathématiques de Reims UMR CNRS 9008, Université de Reims Champagne-Ardenne Moulin de la Housse, BP 1039, 51687 REIMS Cedex 2, France

E-mail: laurent.amour@univ-reims.fr and jean.nourrigat@univ-reims.fr

Received 6 December 2019, revised 25 April 2020
Accepted for publication 28 April 2020
Published 27 May 2020

Abstract
This article is concerned with the time evolution of spin observables for generalized spin boson models. This applies in particular to a model of nuclear magnetic resonance, namely a $\frac{1}{2}$-spin particle in a constant external magnetic field and in interaction with the quantized electromagnetic field (photons). We derive a Lindblad (or GKLS) type approximation of the spin dynamics initially in a photon vacuum state together with a precise control of the error coming from this approximation. The error term is bounded by g^2 where g is the coupling constant of the spin–photon interaction. The point here is the uniformity in time $t > 0$ of this error control.

Keywords: Lindblad, generalized spin boson, NMR, Fermi golden rule, QED, spin dynamics, spin relaxation

1. Introduction

Many different physical phenomena can be described with standard spin boson models [20] and also with a generalization of these models. The spin is one of the two ingredients of the physical system and the Hilbert space of its quantum states is a finite dimensional space denoted by H_{sp} in this paper. When the interaction is turned off, the spin free time evolution is described by a self-adjoint Hamiltonian operator in H_{sp} denoted here H_{mag}. The other ingredient is a quantized electromagnetic field. The Hilbert space of its quantum states is the symmetric Fock space $H_{ph} = \mathcal{F}(H_1)$ over some Hilbert space H_1. The free time evolution of the quantized fields is given by a Hamiltonian operator H_{ph} in H_{ph}. Both H_1 and H_{ph} are recalled in section 2.

The Hilbert space of the full system is then the completed tensor product $H_{ph} \otimes H_{sp}$.

In order to describe the interaction between the spin(s) and the field(s), we consider a finite number of elements B_1, \ldots, B_p belonging to H_1 together with a finite number of self-adjoint operators S_1, \ldots, S_p belonging to the set of bounded operators in H_{sp} denoted $\mathcal{L}(H_{sp})$. We use
standard operators in Fock spaces and in particular the Segal field $\Phi_S(B)$ associated with any $B \in \mathcal{H}_1$ (see [26]). With these notations, the interaction Hamiltonian is written as:

$$H_{\text{int}} = \sum_{j=1}^{p} \Phi_S(B_j) \otimes S_j.$$

(1.1)

The time evolution of the full system is then given by a Hamiltonian $H(g)$ depending on a (coupling constant) parameter $g \neq 0$:

$$H(g) = H_{\text{ph}} \otimes I + I \otimes H_{\text{mag}} + gH_{\text{int}}.$$

(1.2)

This Hamiltonian is a well-defined operator under hypotheses given in section 2. More details are given in section 2, in particular for domains issues.

The Hamiltonian $H(g)$ can be called generalized spin boson model, see, e.g., [5]. A classical example is the standard spin boson model [20]. We are interested in a model of NMR but the main results of this article are valid in the most general case.

Nuclear magnetic resonance (NMR) is the interaction of one or several $\frac{1}{2}$-spin particles fixed at different points of \mathbb{R}^3 with a constant magnetic field, and with the quantized electromagnetic field when it is studied in the quantum electrodynamics (QED) framework. A first mathematical model for NMR is the Bloch model [6] in 1946, where the spin is viewed as a vector in \mathbb{R}^3 which follows the so-called Bloch equations. In the framework of QED, NMR can be described by a model given by Cohen-Tannoudji, Dupont-Roc and Grynberg [8] (see also Reuse [27]). This model, the main application of the present work, is a particular case of the above generalized spin boson model defined in (1.1) and (1.2). This model is called the CTDRG model and we shall describe it more precisely in section 2. A semiclassical approximation for this model was given in [2]. The CTDRG model with a finite number of spins is also an example of generalized spin boson model.

Another example is the N-level system in the dipole approximation (see, e.g., [30]) where, in comparaison to the CTDRG model, the spin matrices are replaced with the matrices of the dipole moments and the quantized magnetic fields are replaced with the quantized electric fields, both having the same infrared asymptotic. Other examples are given in [5] such as the lattice spin system interacting with phonons and other models when the first Hilbert space is infinite dimensional.

Our aim is to find a good approximation of the average of any spin observable at every time $t > 0$. A spin observable is an operator written as $I \otimes X$ with $X \in \mathcal{L}(\mathcal{H}_{\text{sp}})$. Its evolution at time t is the following operator:

$$S(t, X) = e^{iH(g) t} (I \otimes X) e^{-iH(g) t}.

(1.3)$$

We shall actually study the expectation of this observable only when the initial state is in the photon vacuum. These photon vacuum states are written as $\Psi_0 \otimes a$ where Ψ_0 stands for the vacuum in the Fock space $\mathcal{H}_{\text{ph}} = \mathcal{F}(\mathcal{H}_1)$ and a belongs to \mathcal{H}_{sp}. This average value leads us to define, for any arbitrary operator T in $\mathcal{L}(\mathcal{H}_{\text{ph}} \otimes \mathcal{H}_{\text{sp}})$, an operator $\sigma_0(T)$ acting in $\mathcal{L}(\mathcal{H}_{\text{sp}})$ by:

$$< \sigma_0(T) a, b >_{\mathcal{H}_{\text{sp}}} = < T(\Psi_0 \otimes a), (\Psi_0 \otimes b) >_{\mathcal{H}_{\text{ph}} \otimes \mathcal{H}_{\text{sp}}},$$

(1.4)

for all a and b in \mathcal{H}_{sp}.

One notes that the initial observables in (1.3) are chosen as $I \otimes X$ and not as $P_0 \otimes X$ where P_0 denotes the projection on the photon vacuum, as in some earlier works (see, e.g., [30]).
In direct relation with this remark, notice that we use the expectation in the photon vacuum instead of the photon partial trace. Our objective is therefore to study the time evolution $\sigma_0(S(t, X))$. The evolution $S(t, X)$ is commonly given by the Heisenberg equation:

$$\frac{d}{dt}S(t, X) = i[H(g), S(t, X)], \quad S(0, X) = X$$

but it is however not clear that the image of $S(t, X)$ under σ_0 satisfies a differential system. The purpose of this work as many others on that subject is precisely to show that this approximatively holds true. Specifically, we shall prove that $\sigma_0(S(t, X))$ can be approximated as following:

$$\sigma_0(S(t, X)) \sim e^{t^2 g^2 L} \left(e^{iH_{mag}^X} X e^{-iH_{mag}^X} \right), \quad X \in L(H_{sp})$$

where L is an operator from $L(H_{sp})$ in itself of the form:

$$LX = \sum_{(\alpha, \beta) \in E^2} \left[A_{\alpha \beta} [S_{\alpha}, X] S_{\beta}^* - B_{\alpha \beta} S_{\alpha} [S_{\beta}, X] \right]$$

where E is a set of indices, the $A_{\alpha \beta}$ and $B_{\alpha \beta}$ are complex coefficients, the S_{α} are elements of $L(H_{sp})$ and S_{α}^* denotes the adjoint of S_{α}. The equation satisfied by the RHS of (1.5) denoted $\Phi(t)(X)$:

$$\frac{d}{dt} \Phi(t)(X) = g^2 L \Phi(t)(X) + i \Phi(t)([H_{mag}, X])$$

is often called master equation ($\Phi(t)$ is in $L(L(H_{sp}))$.) Let us remark that L and the map $X \to e^{iH_{mag}^X} X e^{-iH_{mag}^X}$ do not commute.

The approximation obtained in this work is of a form introduced by Gorini, Kossakowski and Sudarshan [14] and also by Lindblad [22]. According to the terminology of [7], we can call it a GKLS operator (respectively a GKLS approximation) (respectively approximation). It is often used for open quantum systems [1, 9, 15, 30]. These general forms of GKLS operators ([14, 22] and also [7, 19]) together with the associated semigroups are studied in [1, 13, 14, 22].

A standard method to get a master equation in a GKLS form consists first to use the projection method [24, 25, 33], then to effectuate a weak coupling limit approximation and a temporal average (see [9], see also [30] in the zero temperature case and [1, 28] for positive temperature). GKLS approximations for particular models such as the two-level (spinless) atom in the dipole approximation or spin boson model are considered in [1, 15, 16, 28] and for generalized spin boson model in [30], but with a control of the error in the weak coupling limit sense (see [9, 10, 28, 30–32]) which is not uniform in all positive time. It is our aim here to give a control of the error of the GKLS approximation and also to get a control that is uniform in time $t \in (0, +\infty)$. We do not follow the standard method described above. The other classical method is the Hamiltonian method and the resonances study.

Let us give the following two complementary remarks in the particular case of the CTDGRG model. Our study shows that the spin relaxation in the NMR context is closely related to a GKLS approximation of the CTDGRG dynamics. We emphasize that we do not need neither thermal agitation nor nuclei interaction for that purpose. Besides, other works with Jager for the CTDGRG model concern the semiclassical approximation obtained in [2] which is not uniform in time and the localization of photons in the ground state in [3].
In section 2, an operator L of the form (1.6) is precisely defined in (2.8)–(2.10) for the purpose of the approximation formally written in (1.5). Under general hypotheses, we obtain a differential system of the form:

$$\frac{d}{dt}\sigma_0 \left(S(t, e^{-itH_{mag}} X e^{itH_{mag}}) \right) = g^2 \sigma_0 \left(S(t, e^{-itH_{mag}} L X e^{itH_{mag}}) \right) + R(t, X),$$

where $R(t, X)$ is negligible in some precise sense (see proposition 3.5).

This shows that the operator L indeed plays an important role in the approximation issue in the general case. However, Duhamel principle needs to be applied in order to get the approximation (1.5). This leads us to make an assumption on the sign of the real parts of the eigenvalues of L viewed as an operator acting from $L(H_{sp})$ into itself (hypothesis (H3) in section 2). It is this hypothesis that limits the possible applications. This hypothesis is nevertheless almost always satisfied in the case of NMR with a single spin. Under this hypothesis, we obtain a result (theorems 2.1 and 2.2) giving the exact sense of the approximation (1.5). Note that the control of the error is uniform on time t belonging on the half line $(0, \infty)$.

We recall that our purpose in this article is to control the error in the approximation of the generalized spin boson full evolution initially in the photon vacuum by a GKLS type evolution excluding thermal agitation in the model. An estimate similar to our control holds in the case of positive temperature, see [23] which uses different methods, for spin boson type models (as in [12, 16]), with initial observables other than $I \otimes X$, implying in particular that photons are initially present in the model, describing thermal agitation. See also [17] for positive temperature models.

In section 2, we define more precisely the Hilbert spaces and the Hamiltonians, first in the general case and then for the example of NMR. Then we define the GKLS operator in the general case, and we precisely state the main result (theorems 2.1 and 2.2) together with the main assumptions, namely hypotheses (H1)(H2)(H3). At the end of section 2, theorem 2.3 shows that all our hypotheses are satisfied in the case of the CTDRG model. Sections 3 and 4 are devoted to the proof of these two theorems. The first step of the proof of these two theorems is related to approximate quantum Markovian master equation and is given in section 3, the starting point being the Heisenberg equation. The second step then leading to a GKLS form is in relation in some sense with secular approximation and is provided in section 4. In section 5, theorem 2.3 is proved.

2. Statement of results

We first give more details on Hilbert spaces of quantum states and on Hamiltonian operators involved in this paper. As already mentioned, the Hilbert space of the states for the generalized spin boson model under consideration is the completed tensor product $H_{ph} \otimes H_{sp}$ where H_{ph} and H_{sp} are respectively the Hilbert spaces of the photons and of the spin particles, the latter being here finite dimensional.

Photons. The single-photon Hilbert space is (see [21]):

$$H_1 = \{ f \in L^2(\mathbb{R}^3, \mathbb{C}^3) \mid k \cdot f(k) = 0 \ \text{a.e.} \ k \in \mathbb{R}^3 \}$$

where $|f|_{H_1}^2 = \int_{\mathbb{R}^3} |f(k)|^2 \, dk$ with $| \cdot |$ being the Euclidian norm in \mathbb{C}^3. One denotes by $<f, g>_{H_1}$ the scalar product of two elements f and g of H_1. The mapping $g \mapsto <f, g>_{H_1}$ is here chosen to be antilinear. The Hilbert space H_{ph} of photon quantum states is the symmetrized
Fock space over \mathcal{H}_1 denoted by $F_c(\mathcal{H}_1)$. We follow section X.7 of [26] for Fock space considerations and notations, in particular for the usual operators, $\Phi_S(V)$, $\Gamma(T)$ and $dI(T)$, acting in \mathcal{H}_{ph}, for any V in \mathcal{H}_1 and any operator T acting in \mathcal{H}_1. The vacuum in \mathcal{H}_{ph} is here denoted by Ψ_0.

For each $\alpha \in \mathbb{R}$, let $D(M^\alpha) \subset \mathcal{H}_1$ be the space of $f \in \mathcal{H}_1$ such that the function $k \to |k|^\alpha f(k)$ is in \mathcal{H}_1. For $\alpha = 1$, let M_{α} be the operator with domain $D(M_{\alpha})$ and defined by $M_{\alpha}q(k) = |k|^\alpha q(k)$ almost everywhere in $k \in \mathbb{R}^3$. In the Fock space framework, the photon free energy Hamiltonian operator H_{ph} is defined as $H_{ph} = dI(M_{\alpha})$.

For any $V \in \mathcal{H}_1$, we have:

$$e^{i\beta H_{ph} \Phi_S(V)}e^{-i\beta H_{ph}} = \Phi_S(\chi V),$$

where:

$$\chi V(k) = e^{i|k|}V(k), \quad k \in \mathbb{R}^3.$$ \hfill (2.1)

Spins. Let \mathcal{H}_{sp} be a finite dimensional Hilbert space. The spin Hamiltonian is a self adjoint operator denoted H_{mag} acting in \mathcal{H}_{sp}.

The Hamiltonian. The generalized spin boson Hamiltonian is a self adjoint extension of the following operator initially defined on a dense subspace of $\mathcal{H}_{ph} \otimes \mathcal{H}_{sp}$:

$$H(g) = H_{ph} \otimes I + I \otimes H_{mag} + gH_{int},$$

where H_{ph} acts in the domain $D(H_{ph}) \subset \mathcal{H}_{ph}$, g is a positive constant and:

$$H_{int} = \sum_{j=1}^{P} \Phi_S(B_j) \otimes S_j,$$

where the B_j are elements of \mathcal{H}_1 and the S_j are self adjoint elements of $\mathcal{L}(\mathcal{H}_{sp})$.

As already mentioned, an important example is the nuclear magnetic resonance in the context of QED (the CTDGR model). We limit ourselves to the case of a static single particle of spin $\frac{1}{2}$. The spin state belongs to $\mathcal{H}_{sp} = \mathbb{C}^2$ and the interaction with the constant external magnetic field $B_{ext} = (0, 0, \beta)$ (with $\beta > 0$) is given by the Hamiltonian $H_{mag} = \beta \sigma_3$ where the σ_j are the Pauli matrices:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$ \hfill (2.4)

The quantized electromagnetic field interacting with this particle is modelized by the above Hilbert space and Hamiltonian, $\mathcal{H}_{ph} = F_c(\mathcal{H}_1)$ and H_{ph} respectively. The particle-field interaction is described by an Hamiltonian of the form (1.1) where $P = 3$ and where the operators S_j are the above Pauli matrices σ_j ($1 \leq j \leq 3$). The elements corresponding to the B_j de \mathcal{H}_1 are usually modeling the three components of the magnetic field at the origin:

$$B_j(k) = \frac{e^{i \varphi(|k|)}|k|^{\frac{3}{2}} k \times e_j}{|k|^2}, \quad k \in \mathbb{R}^3 \setminus \{0\},$$ \hfill (2.5)

where the function φ (smooth ultraviolet cutoff) belongs to $\mathcal{S}(\mathbb{R})$ and where (e_j) is the canonical basis of \mathbb{R}^3. This model of RMN is used in [8] (and also Reuse [27]). See also [18], [29].

We now turn to the description of our hypotheses in the general case. First, we make the following assumption.
\((H_1)\) The \(B_j\) belong to the domain \(D(M^{-1/2}_\omega)\).

Let us recall the following points concerning domain issues. Under the hypothesis \((H_1)\), the Segal field \(\Phi_B(B_j)\) is bounded from \(D(H_{ph})\) into \(H_{ph}\) (see e.g., proposition 3.4(ii) in [4] or [11]). Thus, under hypothesis \((H_1)\), the Hamiltonian \(H(g)\) has a self adjoint extension with the same domain as the free Hamiltonian \(H_0 = H_{ph} \otimes I + I \otimes H_{mag}\) domain, according to the Kato–Rellich theorem.

Next, we shall state the second hypothesis. In order to define this operator \(L\), we have to assume:

\[(H_2)\] For all \(j \leq P\) and \(k \leq P:\]

\[\int_0^\infty (1 + t) \left| \langle \chi_t B_j, B_k \rangle \right| dt < \infty.\]

A similar but weaker hypothesis with \((1 + t)\) replaced by \((1 + t)^\varepsilon\) for some \(\varepsilon > 0\), is made in [1, 9, 16, 28, 30]. It is used there for the weak coupling limit approximation, in which the control of the approximation is not uniform in \(\mathbb{R}_+\). This weaker hypothesis is also made in [12].

For the CTDRG model, one easily checks that the \(B_j\) satisfy hypotheses \((H_1)\) and \((H_2)\).

We shall now state the third hypothesis. Recall that our purpose is the study of \(\sigma_0(S(t, X))\).

When \(g = 0\), the free evolution is given by:

\[\gamma_t(X) = e^{itH_{mag}}Xe^{-itH_{mag}},\]

for any \(X \in \mathcal{L}(H_{sp})\). We want to prove that, as \(g\) tends to 0, \(\sigma_0(S(t, X))\) is a small perturbation of the free evolution. This leads us to set:

\[S^{\text{red}}(t, X) = S(t, \gamma_{-\omega}X),\]

for all \(X \in \mathcal{L}(H_{sp})\) and \(t > 0\).

The evolution of \(S^{\text{red}}(t, X)\) will be approximated by the exponential of some operator \(L\) acting from \(\mathcal{L}(H_{sp})\) into itself. This operator \(L\) will be written using eigenvectors of the map \(\text{ad}H_{mag}\). The operator \(\text{ad}H_{mag}\) acting from \(\mathcal{L}(H_{sp})\) into itself is self adjoint when \(\mathcal{L}(H_{sp})\) is endowed with the Hilbert–Schmidt scalar product denoted here \(<\cdot, \cdot>_{HS}\). Thus, the eigenvalues of \(\text{ad}H_{mag} = [H_{mag}, \cdot]\) are real numbers. We denote by \(\Sigma\) the set of these eigenvalues. For each \(\mu\) in \(\Sigma\), we denote by \(E_\mu\) the corresponding eigenspace and \(\pi_\mu\) stands for the orthogonal projection (for the Hilbert Schmidt scalar product) on \(E_\mu\). Note that, if \(\mu \in \Sigma\) then also \(-\mu \in \Sigma\).

The operator \(L\) acting from \(\mathcal{L}(H_{sp})\) into itself and defining the approximate dynamics is written as:

\[L = \sum_{\mu \in \Sigma} L_\mu,\]

where for all \(X \in \mathcal{L}(H_{sp})\):

\[L_\mu X = \frac{1}{2} \sum_{jk \leq P} A_{jk}(\mu) [\pi_\mu(S_j), X] \pi_{-\mu}(S_k) - B_{jk}(\mu) \pi_{-\mu}(S_k) [\pi_\mu(S_j), X]\]

with
\begin{equation}
A_{\lambda}(\mu) = \int_0^\infty e^{i\mu t} \langle B_k, \chi_t B_j \rangle_{H_i} dt, \quad B_{\lambda}(\mu) = \int_0^\infty e^{i\mu t} \langle \chi_t B_j, B_k \rangle_{H_i} dt.
\end{equation}

(2.10)

For operators of the form (2.8) see [14], and in a more particular form (diagonal) but in infinite dimension, see [22]. One finds a similar operator in [12], thus also called Lindblad operator, but being distinct of the one in this article.

Without any other additional hypothesis, we can show that
\[\sigma_0(S^{\text{red}}(t,X)) \]
satisfies a differential system of the following form:

\begin{equation}
\frac{d}{dt} \sigma_0(S^{\text{red}}(t,X)) = g^2 \sigma_0(S^{\text{red}}(t,LX)) + R(t,X)
\end{equation}

(2.11)

where \(R(t,X) \) is negligible in some precise sense (see proposition 3.5).

In order to get a control of \(\sigma_0(S^{\text{red}}(t,X)) - e^{it^2L}X \), we are now led to make an assumption on the sign of eigenvalues of \(L \), actually of \(L \) restricted to some specific subspace.

Note that \(L \) maps the subspace \(E_\mu \) into itself. Indeed, observe that, if \(A \in E_\mu \) and \(B \in E_\nu \), then \(AB \in E_{\mu+\nu} \) and \(A^* \in E_{-\nu} \). In particular, \(L \) maps \(E_0^\perp \) (the subspace \(E_0^\perp \) stands for the orthogonal of the kernel \(E_0 \) of \(\text{ad}H_{\text{mag}} \)) and is also the direct sum of the \(E_\mu \) for \(\mu \neq 0 \) into itself. Also note that \(L \) is not self adjoint when \(L(H_{\text{sp}}) \) is endowed with the Hilbert Schmidt scalar product.

We then need the following third assumption.

\((H_3)\) The real parts of the eigenvalues of \(L \) restricted to \(E_0^\perp \) are all negative.

This hypothesis implies the existence of \(K > 0 \) satisfying:

\begin{equation}
|e^{it^2L}| \leq 1, \quad \int_0^\infty |e^{it^2L}X| dt \leq \frac{K}{g^2}|X|, \quad X \in E_0^\perp.
\end{equation}

(2.12)

Theorem 2.3 below shows that, in the CTDRG model, hypothesis \((H_3)\) is almost always satisfied.

We are now ready to state the main result.

Theorem 2.1. Under hypotheses \((H_1)(H_2)(H_3)\), there exists \(C > 0 \) independent of \(g \) but depending on \(H_{\text{mag}} \) and on the \(S_j \) and \(T_j \) such that, if \(0 < g < 1 \) then:

\[\left| \sigma_0(S^{\text{red}}(t,X)) - e^{it^2L}X \right| \leq C|X|^2|g^2|^2, \quad X \in E_0^\perp. \]

One can also be more precise on the constant \(C \) and give an estimate where the new constant \(C \) only depends on \(N \) (defined below) and on the dimension of \(H_{\text{sp}} \).

Theorem 2.2. Assume that hypotheses \((H_1)(H_2)(H_3)\) hold true and suppose \(0 < g < 1 \). Then, there is \(C > 0 \) depending only on \(N \) and on the dimension of \(H_{\text{sp}} \) such that, for all \(X \in E_0^\perp \):

\begin{equation}
\left| \sigma_0(S^{\text{red}}(t,X)) - e^{it^2L}X \right| \leq Cg^2|X|(1 + K)(1 + (NS^2)^3) \left(1 + \frac{1}{\rho(H_{\text{mag}})} \right)
\end{equation}

(2.13)
where:

\[
\begin{align*}
N &= \sup_{j,k \leq P} \int_0^\infty (1 + t) |\chi_t B_j, B_k \rangle_{\mathcal{H}_1} | dt, \\
S &= \sup_{j \leq P} |S_j|, \\
\rho(\mathcal{H}_{\text{mag}}) &= \inf \{ |\lambda + \mu|, \lambda, \mu \in \Sigma, \lambda + \mu \neq 0 \}.
\end{align*}
\]

(2.14)

Theorem 2.3. Suppose that \(\mathcal{H}_{\text{sp}} = \mathbb{C}^2 \). Assume that the \(S_j \) are the Pauli matrices recalled in (2.4) and that the \(B_j \) are elements of \(\mathcal{H}_1 \) defined in (2.5). Then,\(\mathcal{H}_{\text{mag}} = \beta \sigma_3 \) (\(\beta > 0 \)). The following properties hold true. The operator \(L \), acting from \(\mathcal{L}(\mathcal{H}_{\text{sp}}) \) into itself defined in (2.8)–(2.10), is diagonalizable. The eigenvectors are \(\sigma_1 + i \sigma_2, \sigma_1 - i \sigma_2, \sigma_3 + I, I \) and we denote by \(\nu_+ (\beta) \), \(\nu_- (\beta) \), \(\nu_3 (\beta) \), \(0 \) the corresponding eigenvalues. The first two eigenvalues are complex conjugate to each other, the third is real and the fourth is zero. In addition:

\[
\text{Re} \, \nu_+ (\beta) = -\frac{1}{3(2\pi)^2} \int_{|k| = 2\beta} |\varphi(k)|^2 |k| dm(k)
\]

(2.15)

where \(m \) is the standard measure on the sphere centered at the origin of radius \(2\beta \) and:

\[
\text{Re} \, \nu_3 (\beta) = 2 \text{Re} \, \nu_+ (\beta).
\]

As a consequence, if the integral on the above right hand side is not vanishing (hypothesis usually called Fermi golden rule) the hypothesis \((H_3) \) is verified and theorems 2.1 and 2.2 can then be applied. Note that if the ultraviolet cut-off function \(\varphi \) tends to 1 then the above quantity \(N \) goes to infinity and in order that the approximation stays valid, that is, the right hand side of (2.13) tends to zero, one then requires that the parameter \(g \) goes to zero sufficiently fast.

3. Proof of theorems 2.1 and 2.2. First step

The aim of this section is to prove proposition 3.5 showing that \(S^{\text{red}}(t, X) \) satisfies a differential system of the type (2.11) which is close to the GKLS type in the sense that there is a small perturbation on the right hand side of (2.11). We emphasize that proposition 3.5 holds true without hypothesis \((H_3) \).

In order to get this approximate differential system (2.11), we first derive a differential equation starting from the Heisenberg equation for \(S^{\text{red}}(t, X) \) (proposition 3.1). Let us emphasize that the operator \(\sigma_0 \) does not appear at this stage.

We use the notations of [26] for the creation and annihilation operators \(a^* (V) \) and \(a(V) \) for any \(V \) belonging to the single-photon pure state space \(\mathcal{H}_1 \). In addition, we shall use the following maps:

\[
\begin{align*}
A(t, V) &= e^{iH(\xi)} (a(V) \otimes I) e^{-iH(\xi)} \\
A^*(t, V) &= e^{iH(\xi)} (a^*(V) \otimes I) e^{-iH(\xi)}.
\end{align*}
\]

(3.1)

One knows that ([26]):

\[
a(V) + a^*(V) = \sqrt{2} \Phi_S (V),
\]

(3.3)
for all V in \mathcal{H}_1.

Proposition 3.1. One has, for all $X \in \mathcal{L}(\mathcal{H}_q)$:

$$
\frac{d}{dt} S^{\text{red}}(t, X) = \frac{ig}{\sqrt{2}} \sum_{j=1}^{p} A^*(t, B_j) S^{\text{red}}(t, [\gamma_j, S_j, X]) + S^{\text{red}}(t, [\gamma_j, S_j, X]) A(t, B_j).
$$

(3.4)

Proof. Clearly:

$$
\frac{d}{dt} S(t, \gamma J, X) = \frac{d}{dt} \left[e^{iH(t)} (I \otimes e^{-it\mathcal{H}_{\text{mag}}}) (I \otimes X) (I \otimes e^{it\mathcal{H}_{\text{mag}}}) \right] e^{-it\mathcal{H}(g)}
$$

Therefore:

$$
[H_{\text{int}}, (I \otimes \gamma J, X)] = \frac{1}{\sqrt{2}} \sum_{j=1}^{p} (a^*(B_j) \otimes I) (I \otimes [S_j, \gamma J, X]) + (I \otimes [S_j, \gamma J, X]) (a(B_j) \otimes I)
$$

and thus:

$$
\frac{d}{dt} S(t, \gamma J, X) = \frac{ig}{\sqrt{2}} \sum_{j=1}^{p} A^*(t, B_j) S(t, [S_j, \gamma J, X]) + S(t, [S_j, \gamma J, X]) A(t, B_j).
$$

Then, one deduces (3.4) using (2.7).

The next proposition gives the time evolution of the observables $a(V) \otimes I$ and $a^*(V) \otimes I$ relying again on the Heisenberg equation.

Proposition 3.2. One has:

$$
A(t, \chi J, V) = a(V) \otimes I - i \frac{g}{\sqrt{2}} \sum_{k=1}^{P} \int_{0}^{t} < B_k, \chi J, V > \mathcal{H}_1 S(s, S_k) ds
$$

(3.5)

and

$$
A(t, V) = a(\chi J, V) \otimes I - i \frac{g}{\sqrt{2}} \sum_{k=1}^{P} \int_{0}^{t} < B_k, \chi J, V > \mathcal{H}_1 S(s, S_k) ds
$$

(3.6)

$$
A^*(t, V) = a^*(\chi J, V) \otimes I + i \frac{g}{\sqrt{2}} \sum_{k=1}^{P} \int_{0}^{t} < \chi J, V, B_k > \mathcal{H}_1 S(s, S_k) ds,
$$

(3.7)

for any $V \in \mathcal{H}_1$ and time $t > 0$.

Proof. For each V in \mathcal{H}_1, we set:

$$
F(t, V) = A(t, \chi J - V) = e^{iH(t)} (a(\chi J - V) \otimes I) e^{-it\mathcal{H}(g)}.
$$

One has simple expressions for the creation and annihilation operators analogous to (2.1), namely:

$$
e^{iH(t)} a(V) e^{-it\mathcal{H}(g)} = a(\chi J, V), \quad e^{iH(t)} a^*(V) e^{-it\mathcal{H}(g)} = a^*(\chi J, V).
$$

(3.8)
Therefore:
\[
F(t, V) = e^{iH(t)}(e^{-iH_{ph} \otimes I}) (a(V) \otimes I)(e^{iH_{ph} \otimes I}) e^{-iH(t)}.
\]
Since the operator \(I \otimes H_{mag} \) commutes with \(a(\chi_{-V}) \otimes I \), we deduce that:
\[
\frac{\partial F}{\partial t}(t, V) = i g e^{iH(t)} [H_{int}, (a(\chi_{-V}) \otimes I)] e^{-iH(t)}.
\]
One has, for each \(W \) in \(\mathcal{H}_1 \):
\[
[H_{int}, (a(W) \otimes I)] = -\frac{1}{\sqrt{2}} \sum_{j=1}^{p} < B_j, W >_{\mathcal{H}_1} (I \otimes S_j).
\]
Consequently, with \(W = \chi_{-V} \):
\[
\frac{\partial F}{\partial t}(t, V) = -i \frac{g}{\sqrt{2}} \sum_{j=1}^{p} < B_j, \chi_{-V} >_{\mathcal{H}_1} e^{iH(t)} (I \otimes S_j) e^{-iH(t)}
\]
\[
= -i \frac{g}{\sqrt{2}} \sum_{j=1}^{p} < B_j, \chi_{-V} >_{\mathcal{H}_1} S(t, S_j).
\]
Since \(F(0, V) = a(V) \otimes I \), we get (3.5). Replacing \(V \) by \(\chi_{1} V \), we obtain (3.6). The proof of (3.7) is similar.

Proposition 3.3. For all \(X \in \mathcal{L}(\mathcal{H}_{ph}) \), one has:
\[
\frac{d}{dt} \sigma_0(S^{red}(t, X)) = g^2 \sigma_0(G(t, X))
\]
where:
\[
G(t, X) = \frac{1}{2} \sum_{j,k \leq p} \int_{0}^{t} \left[< B_k, \chi_{t-s} B_j >_{\mathcal{H}_1} S^{red}(t, [\gamma(J)], X)) S^{red}(s, \gamma(S_k)) - < \chi_{t-s} B_j, B_k >_{\mathcal{H}_1} S^{red}(s, \gamma(S_k)) S^{red}(t, [\gamma(J)], X)) \right] ds.
\]

Proof. One applies proposition 3.1, and then proposition 3.2 with \(V = B_j \). From (1.4), one has for all operators \(A \) in \(\mathcal{H}_{th} \otimes \mathcal{H}_{wp} \) and for any \(V \) in \(\mathcal{H}_1 \):
\[
\sigma_0(A(a(V) \otimes I)) = \sigma_0((\sigma^* \otimes I)(V)A) = 0.
\]
Indeed, one sees that \(a(V) \Psi_0 = 0 \) since \(\Psi_0 \) is the vacuum state ([26]). The proposition follows.

The following steps are devoted to get approximations of \(G(t, X) \) defined in (3.10). First, we approximate \(G(t, X) \) by the following expression:
\[
G_{max}(t, X) = \frac{1}{2} \sum_{j,k \leq p} \int_{0}^{t} \left[< B_k, \chi_{t-s} B_j >_{\mathcal{H}_1} S^{red}(t, [\gamma(J)], X)) S^{red}(t, \gamma(S_k)) - < \chi_{t-s} B_j, B_k >_{\mathcal{H}_1} S^{red}(t, \gamma(S_k)) S^{red}(t, [\gamma(J)], X)) \right] ds.
\]
Note that \(s \) in (3.10) is replaced twice by \(t \) in (3.12).
Proposition 3.4. Under hypotheses (H₁) and (H₂), one gets:

\[\sigma_0 (G(t, X) - G_{\text{mark}}(t, X)) = T_1(t, X) \]

where:

\[|T_1(t, X)| \leq C g^2 |X| \sup_{j \leq P} |S_j|^4 \left| \int_0^\infty (1 + t) |< \chi_{i} B_j, B_k >_{\mathcal{H}_1} | dt \right|^2. \]

Proof. One can write:

\[G(t, X) - G_{\text{mark}}(t, X) = E_g(t, X) + E_L(t, X) \]

with:

\[E_g(t, X) = \frac{1}{2} \sum_{j,k \leq P} \int_0^t < B_k, \chi_{t \rightarrow i} B_j >_{\mathcal{H}_1} S^{\text{red}}(t, [\gamma_j(S_j), X]) \left[S^{\text{red}}(s, \gamma_j S_j) - S^{\text{red}}(t, \gamma_j S_j) \right] ds \]

and with \(E_L(t, X) \) defined similarly with straightforward modifications. For any \(t > 0 \), set:

\[\Delta_m(t) = \{(s_1, \ldots, s_m) \mid 0 < s_1 < \cdots < s_m < t\}. \]

One then notes that:

\[E_g(t, X) = -\frac{1}{2} \sum_{j,k \leq P} \int_{\Delta_2(t)} < B_k, \chi_{t \rightarrow s_1} B_j >_{\mathcal{H}_1} S^{\text{red}}(t, [\gamma_j(\gamma_j S_j), X]) \partial_{s_1} S^{\text{red}}(s_2, \gamma_j S_j) ds_1 ds_2. \]

According to proposition 3.1, we have the decomposition:

\[E_g(t, X) = E'_g(t, X) + E''_g(t, X) \]

where:

\[E'_g(t, X) = -\frac{ig}{2\sqrt{2}} \sum_{j,k,m \leq P} \int_{\Delta_2(t)} < B_k, \chi_{t \rightarrow s_1} B_j >_{\mathcal{H}_1} S^{\text{red}}(t, [\gamma_j(S_j), X]) \]

\[\times A^*(s_2, B_m) S^{\text{red}}(s_2, [\gamma_{\gamma_j S_j}, \gamma_{s_1} S_j]) ds_1 ds_2 \]

and where \(E''_g(t, X) \) is similarly defined. One also needs here to carefully take into account that \(A^*(s_2, B_m) \) is not a bounded operator. We use (3.7) in two distinct ways. Firstly:

\[A^*(s_2, B_m) = a^*(\chi_{s_2} B_m) \otimes I + \frac{i \sqrt{2}}{s_2} \sum_{p=1}^P \int_0^{s_2} < \chi_{s_2 - i} B_m, B_p >_{\mathcal{H}_1} S(s, S_p) ds, \]

and secondly:

\[A^*(t, \chi_{t \rightarrow s_2} B_m) = a^*(\chi_{s_2} B_m) \otimes I + \frac{i \sqrt{2}}{s_2} \sum_{p=1}^P \int_0^t < \chi_{t \rightarrow i} \chi_{s_2 - i} B_m, B_p >_{\mathcal{H}_1} S(s, S_p) ds. \]

Therefore, we have:

\[A^*(s_2, B_m) - A^*(t, \chi_{s_2 - i} B_m) = \frac{i \sqrt{2}}{s_2} \sum_{p=1}^P \int_{s_2}^t < \chi_{s_2 - i} B_m, B_p >_{\mathcal{H}_1} S(s, S_p) ds. \]
One notices that:

\[
\left[\operatorname{red}(t, [\gamma(S_j), X]), A^*(t, \chi_{\gamma - t} B_m)\right] = 0,
\]

together with \(\sigma_0(A^*(\chi_{\gamma - t} B_m) \otimes \Pi A) = 0\) for any operator \(A\). As a consequence, one sees that:

\[
E'_R(t, X) = T'_R(t, X) + Z'_R(t, X)
\]

with

\[
|T'_R(t, X)| \leq Cg^2|X| \sup_{j \leq P} |S_j|^4 \sup_{j, k \leq P} \left[\int_0^\infty (1 + t) |\chi_{B_j, B_k}^\perp_1| dt \right]^2
\]

and

\[
\sigma_0(Z'_R(t, X)) = 0.
\]

All the other terms are considered similarly. The proposition then follows. \(\square\)

We are now reaching system (2.11). Note that we shall see in the next section why some terms in the righthand side of (3.15) are negligible.

Proposition 3.5. Assume that hypotheses \((H_1)\)\((H_2)\) are satisfied. Then:

\[
\frac{d}{dt} \sigma_0(\operatorname{red}(t, X)) = g^2 \sigma_0(\operatorname{red}(t, A(t)X)) + T_1(t, X) + T_2(t, X),
\]

where:

\[
A(t)X = \sum_{(\mu, \nu) \in \Sigma} \varepsilon^{(\mu + \nu)} L_{\mu, \nu}X
\]

and:

\[
L_{\mu, \nu}X = \frac{1}{2} \sum_k \int_0^\infty e^{-s} \left[<\chi_{B_k, B_j}^{\perp}_1, \pi_{\mu} S_j, X> \pi_{\nu} S_k - <\chi_{B_j, B_k}^{\perp}_1, \pi_{\nu} S_j, X> \pi_{\mu} S_k \right] ds.
\]

In addition, the three following estimates hold true, where \(N\) and \(S\) are defined in (2.14):

\[
|T_1(t, X)| \leq Cg^2|X| S^4 N^2,
\]

\[
\int_0^\infty |T_2(t, X)| dt \leq Cg^2|X| S^2 N, \quad |T_2(t, X)| \leq Cg^2|X| S^2 N.
\]

Proof of proposition 3.5. We use (3.9) together with the approximation of \(G(t, X)\) by \(G_{\operatorname{mark}}(t, X)\). One then can write:

\[
\frac{d}{dt} \sigma_0(\operatorname{red}(t, X)) = g^2 \sigma_0(G_{\operatorname{mark}}(t, X)) + T_1(t, X)
\]
where $T_1(t, X)$ denotes the operator in proposition 3.4. We observe that $S_{\text{red}}^\text{col}(t, A)S_{\text{col}}^\text{red}(t, B) = S_{\text{col}}^\text{red}(t, AB)$ for any operators A and B in $\mathcal{L}(\mathcal{H}_{\text{sp}})$. Consequently:

$$G_{\text{mark}}(t, X) = S_{\text{red}}^\text{col}(t, L(t)X)$$

where:

$$L(t)X = \frac{1}{2} \sum_{j,k \in \mathbb{P}'} \int_0^t \left[< B_k, \chi_{t-s} B_j >_{\mathcal{H}_1} [\gamma_j(S_j), X] \gamma_k(S_k) - < \chi_{t-s} B_j, B_k >_{\mathcal{H}_1} \gamma_j(S_k) [\gamma_j(S_j), X] \right] ds.$$

One then deduces (3.15) where:

$$T_2(t, X) = g^2 \sigma_0(S_{\text{red}}((L(t) - A(t))X)).$$

where $A(t)$ is defined in (3.16) and (3.17). We now transform the above expression $L(t)$ in the aim that it becomes closer to $A(t)$. To this end, first observe that, for every $\mu \in \Sigma$ and any operator S_j in the eigenspace of $\text{ad}H_{\text{mag}}$ corresponding to the eigenvalue μ, we have:

$$\gamma_j(T) = e^{i\mu T},$$

and thus:

$$\gamma_j(S_j) = \sum_{\mu \in \Sigma} e^{i\mu} \pi_\mu S_j.$$

One then deduces that:

$$L(t)X = \frac{1}{2} \sum_{j,k,\mu,\nu} \int_0^t \left[e^{i(\nu + \mu)} \left[< B_k, \chi_{t-s} B_j >_{\mathcal{H}_1} [\pi_\mu(S_j), X] \pi_\nu(S_k) - < \chi_{t-s} B_j, B_k >_{\mathcal{H}_1} \pi_\mu(S_k) [\pi_\mu(S_j), X] \right] ds \right. \right.$$

$$= \frac{1}{2} \sum_{j,k,\mu,\nu} \int_0^t \left[e^{-i\nu} \left[< B_k, \chi_{t-s} B_j >_{\mathcal{H}_1} [\pi_\mu(S_j), X] \pi_\nu(S_k) - < \chi_{t-s} B_j, B_k >_{\mathcal{H}_1} \pi_\mu(S_k) [\pi_\mu(S_j), X] \right] ds \right. \right.$$

Consequently, one has with $A(t)$ denoting the operator defined in (3.16) and for all $t > 0$:

$$|L(t) - A(t)| \leq C \sup_j |S_j|^2 \sup_{j,k} \int_0^\infty | < B_k, \chi_{s} B_j >_{\mathcal{H}_1} | ds.$$

Therefore, the following equality holds:

$$\int_0^\infty |L(t) - A(t)| dt \leq C \sup_j |S_j|^2 \sup_{j,k} \int_0^\infty s | < B_k, \chi_{s} B_j >_{\mathcal{H}_1} | ds.$$

One then obtains proposition 3.5. \(\square\)
4. Proof of theorems 2.1 and 2.2. Second step

We here apply the Duhamel principle. To this end, we now consider the two sides of (3.15) as two mappings taking values into \(\mathcal{L}(\mathcal{H}_{sp}) \). Thus, we define a function \(U(t) \) taking values in \(\mathcal{L}(\mathcal{L}(\mathcal{H}_{sp})) \) by:

\[
U(t)X = \sigma_0(S^{red}(t, X)), \quad X \in \mathcal{L}(\mathcal{H}_{sp}).
\]

In order to derive a system satisfied by \(U(t) \), one notes from (2.8) and (3.17) that:

\[
L = \sum_{\mu \in \Sigma} L_{\mu} - \mu.
\]

Then, the system (3.15) can be written as:

\[
\frac{dU}{dt}(t) = g^2 U(t)L + \sum_{j=1}^{2} R_j(t) + \sum_{\mu + \nu \neq 0} R_{\mu \nu}(t), \quad U(0) = I
\]

with

\[
R_j(t)X = T_j(t, X), \quad X \in \mathcal{L}(\mathcal{H}_{sp}), \quad j = 1, 2,
\]

\[
R_{\mu \nu}(t) = g^2 e^{i(\mu + \nu) \cdot t} U(t) L_{\mu \nu}.
\]

According to the Duhamel principle:

\[
U(t) = e^{g^2 t L} + \sum_{j=1}^{2} v_j(t) + \sum_{\mu + \nu \neq 0} v_{\mu \nu}(t),
\]

\[
v_j(t) = \int_0^t R_j(s)e^{\frac{1}{2}(t-s)g^2 L} ds, \quad j = 1, 2, \quad v_{\mu \nu}(t) = \int_0^t R_{\mu \nu}(s)e^{\frac{1}{2}(t-s)g^2 L} ds.
\]

In view of (2.12), one has on \(E_0^\perp \):

\[
|v_1(t)|_{\mathcal{L}(E_0^\perp, \mathcal{L}(\mathcal{H}_{sp}))} \leq \frac{K}{g} \sup_{s > 0} |R_1(s)|,
\]

\[
|v_2(t)|_{\mathcal{L}(E_0^\perp, \mathcal{L}(\mathcal{H}_{sp}))} \leq \int_0^\infty |R_2(s)| ds,
\]

where \(\mathcal{L}(E_0^\perp, \mathcal{L}(\mathcal{H}_{sp})) \) denotes the set of bounded operators from \(E_0^\perp \) into \(\mathcal{L}(\mathcal{H}_{sp}) \). One deduces from (3.18) and (3.19) that:

\[
|v_1(t)|_{\mathcal{L}(E_0^\perp, \mathcal{L}(\mathcal{H}_{sp}))} + |v_2(t)|_{\mathcal{L}(E, \mathcal{L}(\mathcal{H}_{sp}))} \leq Kg^2(NS^2)^2 + Cg^2(NS^2).
\]

Thus:

\[
v_{\mu \nu}(t) = g^2 \int_0^t e^{i(\mu + \nu) \cdot s} U(s) L_{\mu \nu} e^{\frac{1}{2}(t-s)g^2 L} ds.
\]

and:

\[
i(\mu + \nu)v_{\mu \nu}(t) = g^2 \int_0^t U(s) L_{\mu \nu} e^{\frac{1}{2}(t-s)g^2 L} \frac{\partial}{\partial s} e^{i(\mu + \nu) \cdot s} ds.
\]
Consequently, for all X linear combination of the σ_j and for μ in $\{2\beta, 0, -2\beta\}$, one has:

$$L_\mu(X) = \frac{1}{2} \sum_{j=1}^{3} [A(\mu) [\pi_\mu(\sigma_j), X] \pi_{-\mu}(\sigma_j) - B(\mu) \pi_{-\mu}(\sigma_j) [\pi_\mu(\sigma_j), X]].$$

Also:

$$\begin{align*}
\pi_{2\beta}(\sigma_1) &= \frac{1}{2}(\sigma_1 + i\sigma_2) \\
\pi_0(\sigma_1) &= 0 \\
\pi_{-2\beta}(\sigma_1) &= \frac{1}{2}(\sigma_1 - i\sigma_2) \\
\pi_{2\beta}(\sigma_2) &= -\frac{i}{2}(\sigma_1 + i\sigma_2) \\
\pi_0(\sigma_2) &= 0 \\
\pi_{-2\beta}(\sigma_2) &= \frac{i}{2}(\sigma_1 - i\sigma_2) \\
\pi_{2\beta}(\sigma_3) &= 0 \\
\pi_0(\sigma_3) &= \sigma_3 \\
\pi_{-2\beta}(\sigma_3) &= 0.
\end{align*}$$
The standard formulas for Pauli matrices and in particular \(\sigma_1 + i \sigma_2, \sigma_1 - i \sigma_2 = 4 \sigma_3 \) show that:

\[
L(\sigma_1 \pm i \sigma_2) = \nu_{\pm}(\beta)(\sigma_1 \pm i \sigma_2)
\]

with:

\[
\nu_+(\beta) = - (A(0) + B(0) + A(-2\beta) + B(-2\beta))
\]

\[
\nu_-(\beta) = - (A(2\beta) + B(2\beta) + A(0) + B(0))
\]

and also:

\[
L(\sigma_3) = \nu_3(\beta)(\sigma_3 + I) + (A(-2\beta) + B(2\beta))(I - \sigma_3)
\]

\[
\nu_3(\beta) = (A(2\beta) + B(-2\beta)).
\]

One notes that \(B(-\mu) \) is the complex conjugate of \(A(\mu) \). One then deduces that \(\nu_-(\beta) \) is the conjugate of \(\nu_+(\beta) \) and that \(\nu_3(\beta) \) is real. Combining this remark with proposition 5.1 below, one also gets that for all \(\mu \geq 0 \), \(A(-\mu) + B(\mu) = 0 \), and then \(\text{Re}A(-\mu) = 0 \). Consequently:

\[
\nu_+(\beta) = - (A(-2\beta) + B(-2\beta))
\]

and

\[
L(\sigma_3) = \nu_3(\beta)(\sigma_3 + I).
\]

Since \(L(I) = 0 \), one sees that \(\sigma_3 + I \) is an eigenvector with eigenvalue \(\nu_3(\beta) \). The sign of the real parts of the eigenvalues then follows from proposition 5.1. Since \(\text{Re}A(-2\beta) = 0 \), one has:

\[
\text{Re} \nu_+(\beta) = - \text{Re} B(-2\beta) = - \lim_{\varepsilon \to 0^+} \frac{2}{3(2\pi)^3} \text{Re} \int_{\mathbb{R}^3 \times \mathbb{R}^+} e^{i(k - 2\beta_\mu)} |\varphi(k)|^2 |k| dk
\]

and similarly \(\text{Re} \nu_3(\beta) = - 2 \text{Re} B(-2\beta) = 2 \text{Re} \nu_+(\beta) \). According to proposition 5.1, one gets (2.15).

\[
\square
\]

Proposition 5.1. Let \(F \) be a smooth function in \(L^1(\mathbb{R}^3) \) taking real values and such that \(F(k)/|k|^2 \) is also integrable. Then, if \(\mu > 0 \):

\[
\lim_{\varepsilon \to 0^+} \text{Re} \int_{\mathbb{R}^3 \times \mathbb{R}^+} e^{i(k - \mu) - \varepsilon t} F(k) dk dt = \pi \int_{|k| = \mu} F(k) dm(k)
\]

and if \(\mu \leq 0 \) then this limit is zero.

Proof. It suffices to notice that, for all \(\varepsilon > 0 \):

\[
\int_{\mathbb{R}^3 \times \mathbb{R}^+} e^{i(k - \mu) - \varepsilon t} F(k) dk dt = \int_{\mathbb{R}^3} \frac{\varepsilon + i(|k| - \mu)}{(|k| - \mu)^2 + \varepsilon^2} F(k) dk.
\]

\[
\square
\]
6. Summary

We have proved for the general spin boson model that the time evolution of the expectation of any spin observable initially in a photon vacuum state is approximated by a GKLS type dynamics. The main assumptions are \((H_1)(H_2)(H_3)\) with \((H_3)\) being the most important. This result is directly applied to a model of nuclear magnetic resonance (NMR) essentially showing that a Fermi golden rule holds true implying the validity of assumption \((H_3)\). As a consequence, we obtain a GKLS type approximation of the spin dynamics for this model in NMR showing strong similarities with the spin relaxation. The error is of the order of the square of the coupling constant and the approximation is valid uniformly on positive times. This is effectuated in the zero temperature case. We have considered here the case of one atom and we expect to obtain the molecular case in a subsequent work.

Acknowledgments

We are very grateful to the anonymous referee for his comments and suggestions leading to a generalization of the result.

ORCID iDs

L Amour https://orcid.org/0000-0002-8464-1782
J Nourrigat https://orcid.org/0000-0002-1672-5087

References

[1] Alicki R and Lendi K 2007 Quantum Dynamical Semigroups and Applications (Lect. Notes Phys.) vol 717 2nd edn (Berlin: Springer)
[2] Amour L, Jager L and Nourrigat J 2019 Infinite dimensional semiclassical analysis and applications to a model in nuclear magnetic resonance J. Math. Phys. 60 071503
[3] Amour L, Jager L and Nourrigat J 2020 Ground state photon number at large distance Rep. Math. Phys. 85 227–38
[4] Amour L, Lascar R and Nourrigat J 2017 Weyl calculus in QED I. The unitary group J. Math. Phys. 58 013501
[5] Arai A and Hirokawa M 1997 On the existence and uniqueness of ground states of a generalized spin-boson model J. Funct. Anal. 151 455–503
[6] Bloch F 1946 Nuclear induction Phys. Rev. 70 460–73
[7] Chruściński D and Pascazio S 2017 A brief history of the GKLS equation Open Syst. Inf. Dyn. 24 1740001
[8] Cohen-Tannoudji C, Dupont-Roc J and Grynberg G 2001 Processus d’interaction entre photons et atomes (Savoirs actuels) (Paris: EDP Sciences/CNRS Editions)
[9] Davies E B 1974 Markovian master equations Commun. Math. Phys. 39 91–110
[10] Davies E B 1976 Quantum Theory of Open Systems (London, New York: Academic)
[11] Dereźniński J and Gérard C 1999 Asymptotic completeness in quantum field theory. Massive Pauli–Fierz Hamiltonians Rev. Math. Phys. 11 383–450
[12] De Roeck W and Kuipainen A 2013 Approach to ground state and time-independent photon bound for massless spin-boson models Ann. Henri Poincaré 14 253–311
[13] Falconi M, Faupin J, Fröhlich J and Schubnel B 2017 Scattering theory for Lindblad master equations Commun. Math. Phys. 350 1185–218
[14] Gorini V, Kossakowski A and Sudarshan E C G 1976 Completely positive dynamical semigroups of N-level systems J. Math. Phys. 17 821–5
[15] Haake F 1973 Statistical treatment of open systems by generalized master equations *Springer Tracts in Modern Physics* ed G Höhler (Berlin: Springer)

[16] Hübner M and Spohn H 1995 Radiative decay: nonperturbative approaches *Rev. Math. Phys.* **7** 363–87

[17] Jakšić V and Pillet C-A 1996 On a model for quantum friction. III. Ergodic properties of the spin-boson system *Commun. Math. Phys.* **178** 627–51

[18] Jeener J and Henin F 2002 A presentation of pulsed nuclear magnetic resonance with full quantization of the radio frequency magnetic field *J. Chem. Phys.* **116** 8036–47

[19] Kossakowski A 1972 On quantum statistical mechanics of non-Hamiltonian systems *Rep. Math. Phys.* **3** 247–74

[20] Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A and Zwerger W 1987 Dynamics of the dissipative two-state system *Rev. Mod. Phys.* **59** 1

[21] Lieb E and Loss M 2004 A note on polarization vectors in quantum electrodynamics *Commun. Math. Phys.* **252** 477

[22] Lindblad G 1976 On the generators of quantum dynamical semigroups *Commun. Math. Phys.* **48** 119–30

[23] Merkli M 2020 Quantum Markovian master equations: resonance theory shows validity for all time scales *Ann. Phys., NY* **412** 167996

[24] Nakajima S 1958 *Prog. Theor. Phys.* **20** 984

[25] Prigogine I and Resibois P 1961 *Physics* **27** 629

[26] Reed M and Simon B 1978 *Methods of Modern Mathematical Physics* (New York, London: Academic)

[27] Reuse F A 2007 *Electrodynamique et Optique Quantiques* (Lausanne: Presses Polytechniques et Universitaires Romandes)

[28] Rivas A and Huelga S 2012 *Open Quantum Systems* (Springer Briefs in Physics) (Heidelberg: Springer)

[29] Romero R H and Aucar G A 2002 QED approach to the nuclear spin–spin coupling tensor *Phys. Rev. A* **65** 053411

[30] Spohn H 2004 *Dynamics of Charged Particles and Their Radiation Field* (Cambridge: Cambridge University Press)

[31] Van Hove L 1955 Quantum-mechanical perturbations giving rise to a statistical transport equation *Physica* **21** 517–40

[32] Van Hove L 1957 The approach to equilibrium in quantum statistics. A perturbation treatment to general order *Physica* **23** 441–80

[33] Zwanzig R 1960 Ensemble method in the theory of irreversibility *J. Chem. Phys.* **33** 1338