Analytical buckling temperature prediction of FG piezoelectric sandwich plates with lightweight core

Mohammed Sobhy
Department of Mathematics and Statistics, College of Science, King Faisal University, PO Box 400, Al-Ahsa 31982, Saudi Arabia
Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
E-mail: msobhy@kfup.edu.sa and msobhy@sci.kfu.edu.eg

Keywords: thermal buckling, honeycomb core, porous core, functionally graded, piezoelectric

Abstract
Buckling temperature prediction of a functionally graded piezoelectric (FGP) sandwich plate with lightweight core is studied in the present work. The composite plate is made of three layers. The upper and lower layers are made of two different piezoelectric materials so that the electrical and mechanical properties are smoothly varied through the thickness based on a power law distribution. Whereas, the lightweight core is considered as hexagonal honeycomb structure or functionally graded porous structure. The porous core contains internal pores with different porosity distributions. According to a modified four–unknown shear deformation plate theory, the displacement field is described. The smart advanced plate is subjected to thermal and humid loadings as well as external electric voltage. The thermal and humid loadings may be uniform, linear or non-linear through the thickness. The stability equations are constructed from the principle of virtual work based on the proposed shear deformation plate theory. The obtained results will be validated by introducing some comparison examples. Finally, the influences of different parameters like the side-to-thickness ratio, aspect ratio, core type, core thickness, power law index, moisture concentration, external applied voltage and boundary conditions on the buckling temperature change of the sandwich plates with honeycomb core or with porous core are discussed. It is found that the buckling temperature of the sandwich plate with honeycomb core is greater than that of the sandwich plate with porous core. Moreover, with increasing the lightweight core thickness, the sandwich plate stiffness decreases leading to a reduction of the buckling temperature.

Nomenclature

Symbol	Description	Units
a	Length of the sandwich plate	
b	Width of the sandwich plate	
h	Total thickness of the sandwich plate	
h_p	Thickness of the face sheets	
h_c	Core thickness	
x_1	x-coordinate	
x_2	y-coordinate	
x_3	z-coordinate	
t_1	Bottom surface coordinate	
t_2,t_5	Interfaces coordinates	
t_4	Top surface coordinate	
E_m	Metal Young’s modulus	
G_m	Metal shear modulus	
ρ_m	Metal mass density	
λ_p	Piezoelectric coefficients	
ε_p	Dielectric coefficients	
β_p	Pyroelectric constants	
Ξ	Electric potential	
φ	Electric potential in the mid-plane of the face sheets	
T	Temperature	
C	Moisture	
T_0	Initial temperature (moisture)	
T_f	Final temperature (moisture)	
T_b	Temperature (moisture) of the bottom surface	
T_s(C)	Temperature (moisture) of the top surface	
ζ	Hygrothermal exponent	
H(x_3)	Shape function	

© 2021 The Author(s). Published by IOP Publishing Ltd
(Continued.)

Symbol	Description
α_m	Metal thermal expansion coefficient
β_m	Metal moisture expansion coefficient
k_v	Poisson’s ratio
ν	Stress tensor
σ_{ij}	Strain components
ϵ_{ij}	Elastic coefficients
a_{xv}	Vertical cell length
b_x	Inclined cell length
t_x	Thickness cell rib
χ	Cell inclined angle
$P_{eff}^{(i)}$	Effective material properties of face
P_{p1}	Material properties of PZT-4
u_i	Displacements along x_i — axes
u_x	In-plane displacements along x — axes
w	Bending displacement
δ	Shear displacement
δ_f	Variation of strain energy
δ_i	Variation of the work done by the external loads

1. Introduction

Porous and cellular structures are attracting significant attention as advanced engineering materials in aerospace engineering, automotive industry and civil constructions because of their excellent multi-functionality such as low specific weight, good marine buoyancy capability, reduced thermal and electrical conductivity, acoustic damping, enhanced recyclability, efficient capacity of energy dissipation and machinability. Lightweight porous materials with cellular structures such as metal foams consist of a solid metal containing a large volume fraction of gas-entrapped porosities. Porous and honeycomb cores are now commercially available for manufacturing lightweight sandwich structures. Cellular and porous cores sandwich structures have gained significant interest to study their behaviors. Within the context of Timoshenko beam theory, nonlinear vibrational behavior of sandwich beam with a functionally graded (FG) porous core was illustrated by Chen et al [1] considering different porosity distributions. While, Zeng et al [2] studied the nonlinear vibrational behavior of piezoelectric sandwich nanoplates with FG porous core based on first order shear deformation plate theory and Von Karman’s nonlinear strain theory. Setoodeh et al [3] investigated natural frequency of doubly curved smart sandwich shells with FG porous core and FG carbon nanotube (CNT) reinforced face sheets using the higher-order shear deformation theory. Rostami and Mohammadimehr [4] employed the first-order shear deformation theory of shells to illustrate the vibration of spinning sandwich cylindrical shell with FG porous core, nanocomposite face sheets and FG magnetoelectrical layers. Hamed et al [5] demonstrated the mechanical buckling of three-layered sandwich beam having FG porous core with various porosity distributions and FG face sheets reinforced by the CNTs. Duc et al [6] illustrated the post-buckling behavior of stiffened truncated conical sandwich shells having FG porous core and FG face sheets on elastic foundations. Akbari et al [7] presented the vibrational analysis of sandwich cylindrical shells with homogenous face sheets and FG porous core. Whereas, Alambeigi et al [8] investigated the free and forced vibration of sandwich beams with composite face layers reinforced by shape memory alloy and FG porous core resting on Vlasov’s elastic foundation.

In addition, the mechanical properties of the honeycomb auxetic cells were discussed by Scarpa and Tomlinson [9] employing the cellular material theory. The hygrothermal static analysis of CNT-reinforced plastic sandwich shells with a honeycomb core exposed to hot and moisture conditions was illustrated by Arao et al [10]. Katunin [11] employed wavelet analysis method to study vibration behavior of sandwich structures with honeycomb core. Duc et al [12] utilized the first-order plate theory and Galerkin method to investigate the nonlinear dynamic response and vibration analysis of sandwich cylindrical shells with honeycomb core within the framework of the fourth-order Runge-Kutta method. The vibrational behavior of sandwich plate with honeycomb core was demonstrated by Zhu et al [13] employing Reddy’s third-order shear deformation theory and Galerkin technique. Sobhy [14] analyzed the displacements and stresses in sandwich curved beams with graphene/Al reinforced skins and auxetic honeycomb core utilizing the differential quadrature method. There are several works presented in the literature considering the sandwich structures with cellular cores such as Nguyen et al [15], Khorasani et al [16], Yaghoobi and Taheri [17], Sobhy [18, 19], Abazid et al [20] and Singh and Harsha [21].

Piezoelectric materials have previously motivated a considerable interest for industrial products, sensors and actuators products, medical products, civilian products, military products, etc. The piezoelectric materials are usually designed as single-layered, bilayer or multi-layered structures. Moreover, the concept of FG materials is extended by many authors ([22–30]) to improve the features of the piezoelectric materials. According to the
FGM concept, the material properties are graded smoothly along one or more directions, therefore they avoid delamination and resistant unwanted fatigue and cracks. Piezoelectric materials may be integrated with other structures providing the ability to perform self-diagnosis and adaptation to the environment change of these structures, which have caused to widely increase their applications over the last decade. Dai et al [24] analyzed the bending response of FG piezoelectric sphere and solid cylinder exposed to a magnetic field, electric loading and external pressure. The thermal stress distributions in FG piezoelectric strip containing an embedded crack were studied by Ueda [25]. In the framework of the three-dimensional theory of piezoelectricity, the axisymmetric bending of an FG piezoelectric circular plate was investigated by Wang et al [26] utilizing a semi-inverse method. The hygrothermal bending analysis of FG piezoelectric hollow cylinders exposed to a mechanical load and an electric potential was presented by Zenkour [27, 28]. In Zenkour’s studies, the effective material properties of the cylinder as well as the temperature and moisture are changed in the radial direction. The buckling response of FG piezoelectric plates was illustrated by Abdollahi et al [29] utilizing the higher-order shear deformation theory containing thickness stretching effect. Whereas, Su et al [30] employed the first order shear deformation theory to investigate the transient response and free vibration of FG piezoelectric plates exposed to electric voltage with various boundary conditions. Marzbanrad et al [31] demonstrated the nonlinear free vibration of FGP nanobeam subjected to hygrothermal as well as electro-magnetic loads based on Von Karman geometric nonlinearity. The electro-elastic surface/interface theory and Von-Karman-Donnell-type kinematics of nonlinearity were employed by Fang et al [32] to illustrate the nonlinear buckling and postbuckling behavior of FGP cylindrical nanoshells considering the surface energy effect. While, Gao et al [33] employed Eringen’s nonlocal elasticity theory to investigate the nonlinear bending, buckling temperature and postbuckling of FG piezoelectric nanobeams with immovable clamped ends. Li et al [34] used the classical plate theory and Rayleigh–Ritz method to investigate the active vibration control of FG piezoelectric plates. Zenkour and Aljadani [35] and Zenkour and Hafed [36] illustrated the buckling temperature and bending response of porous FG piezoelectric nanoplates exposed to electric voltages depending on a higher-order shear deformation theory. Wang et al [37] investigated the free and forced vibration of FG piezoelectric plates based on the first-order shear deformation theory and the domain energy decomposition method.

As viewed in the previous studies, several investigations have been performed to analyze the different behaviors of FG piezoelectric plates, beams and shells with neglecting sandwich ones. Furthermore, the previous studies have been especially focused on the structures that have lightweight core and homogeneous

Figure 1. FG piezoelectric sandwich plate with lightweight core.
or nonhomogeneous face sheets without paying any attention to the lightweight core sandwiched by FGP. Therefore, our study is devoted to fill this gap focusing on the buckling temperature of an FGP sandwich plate with lightweight core subjected to thermal load, humid load and external electric voltage. The top and bottom layers are made of FG two piezoelectric materials. The properties of these layers are graded through the thickness according to a power law distribution. The middle layer is composed of FG porous materials or hexagonal honeycomb structures. Three porosity distributions of the porous core are considered. The thermal and humid loadings may be uniform, linear or non-linear through the thickness. The governing equations are derived based on a four-unknown shear deformation plate theory. An analytical solution procedure is employed to solve the stability equations. The accuracy and reliability of the solution are verified by comparing the present buckling temperature with that existed in the open literature. Eventually, a parametric study is introduced to demonstrate the influences of some geometrical and physical parameters on the buckling temperature of the sandwich plates.

2. Plate configuration

Consider a rectangular sandwich plate with length a, width b and total thickness h as displayed in figure 1. It is presumed that the lightweight core is glued perfectly with the two FG piezoelectric (FGP) sheets. In addition, the adhesive thickness of the bonding interface is neglected. The thickness of the FG piezoelectric sheets is h_p. While, the thickness of the core is h_c. The coordinate system (x_1, x_2, x_3) is established in the middle plane of the sandwich plate. The coordinates of the bottom surface, two interfaces between the layers and top surface are defined as: $t_1 = -h/2$, $t_2 = -h_c/2$, $t_3 = h_c/2$, and $t_4 = h/2$. As mentioned above, the lightweight core is composed of FG porous materials or hexagonal honeycomb structures. The mechanical properties of the core layer and face layers will be discussed in the following subsections.

2.1. Porous core of the sandwich plate

The material of the porous core is aluminium foam. The following three different porosity distributions ([2, 17]) are assumed in the present analysis:
Porous-I

In this case, the material properties such as Young’s modulus, shear modulus and mass density are assumed to be constant through the thickness direction of the core (layer 2), see figure 2(a).

\[
E^{(2)}(x_3) = E_m(1 - k_0 \psi), \quad t_2 \leq x_3 \leq t_3,
\]
\[
G^{(2)}(x_3) = G_m(1 - k_0 \psi), \quad t_2 \leq x_3 \leq t_3,
\]
\[
\rho^{(2)}(x_3) = \rho_m(1 - k_0 \psi)^{0.5}, \quad t_2 \leq x_3 \leq t_3,
\]
\[
\alpha^{(2)}(x_3) = \alpha_m(1 - k_0 \psi), \quad t_2 \leq x_3 \leq t_3,
\]
\[
\beta^{(2)}(x_3) = \beta_m(1 - k_0 \psi), \quad t_2 \leq x_3 \leq t_3,
\]

where \(E_m, G_m, \rho_m, \alpha_m\) and \(\beta_m\) are, respectively, the maximum values of Young’s modulus, shear modulus, mass density, thermal expansion coefficient and moisture expansion coefficient of the porous core; \(k_0\) is the porosity coefficient that takes values between 0 and 1, i.e., \(0 \leq k_0 < 1\), and

\[
\psi = \frac{1}{k_0} - \frac{1}{k_0} \left[\frac{2}{\pi} \sqrt{1 - k_0} - \frac{2}{\pi} + 1 \right]^2.
\]

Porous-II

For Porous-II, the maximum values of the properties will occur at the interfaces, whereas the lowest values of the properties are at the mid-plane of the core, see figure 2(b).

\[
E^{(2)}(x_3) = E_m \left[1 - k_0 \cos \left(\frac{\pi x_3}{h_c} \right) \right], \quad t_2 \leq x_3 \leq t_3,
\]
\[
G^{(2)}(x_3) = G_m \left[1 - k_0 \cos \left(\frac{\pi x_3}{h_c} \right) \right], \quad t_2 \leq x_3 \leq t_3,
\]
\[
\rho^{(2)}(x_3) = \rho_m \left[1 - k_m \cos \left(\frac{\pi x_3}{h_c} \right) \right], \quad t_2 \leq x_3 \leq t_3,
\]
\[
\alpha^{(2)}(x_3) = \alpha_m \left[1 - k_0 \cos \left(\frac{\pi x_3}{h_c} \right) \right], \quad t_2 \leq x_3 \leq t_3,
\]
\[
\beta^{(2)}(x_3) = \beta_m \left[1 - k_0 \cos \left(\frac{\pi x_3}{h_c} \right) \right], \quad t_2 \leq x_3 \leq t_3,
\]

where

\[
k_m = 1 - \sqrt{1 - k_0}.
\]

Porous-III

As shown in figure 2(c), the properties are graded from the maximum values at the upper interface to the lowest values at the bottom interface.

\[
E^{(2)}(x_3) = E_m \left[1 - k_0 \cos \left(\frac{\pi x_3}{2h_c} + \frac{\pi}{4} \right) \right], \quad t_2 \leq x_3 \leq t_3,
\]
\[
G^{(2)}(x_3) = G_m \left[1 - k_0 \cos \left(\frac{\pi x_3}{2h_c} + \frac{\pi}{4} \right) \right], \quad t_2 \leq x_3 \leq t_3,
\]
\[
\rho^{(2)}(x_3) = \rho_m \left[1 - k_m \cos \left(\frac{\pi x_3}{2h_c} + \frac{\pi}{4} \right) \right], \quad t_2 \leq x_3 \leq t_3,
\]
\[
\alpha^{(2)}(x_3) = \alpha_m \left[1 - k_0 \cos \left(\frac{\pi x_3}{2h_c} + \frac{\pi}{4} \right) \right], \quad t_2 \leq x_3 \leq t_3,
\]
\[
\beta^{(2)}(x_3) = \beta_m \left[1 - k_0 \cos \left(\frac{\pi x_3}{2h_c} + \frac{\pi}{4} \right) \right], \quad t_2 \leq x_3 \leq t_3.
\]
For the above three cases, Poisson’s ratio of the FG porous core can be estimated as [38]:

\[
\nu^{(2)}(x) = \nu_m(0.342\varphi^2 - 1.21\varphi + 1) + 0.221\varphi, \quad \varphi = 1 - \frac{\rho^{(2)}(x)}{\rho_m}
\]

(6)

The constitutive equations of the porous core layer are given as:

\[
\begin{bmatrix}
\sigma_{11}^{(2)} \\
\sigma_{22}^{(2)} \\
\sigma_{12}^{(2)} \\
\sigma_{23}^{(2)} \\
\sigma_{13}^{(2)}
\end{bmatrix} = \begin{bmatrix}
\tilde{\alpha}_1^{(2)} & 0 & 0 & 0 & 0 \\
0 & \tilde{\alpha}_2^{(2)} & 0 & 0 & 0 \\
0 & 0 & \xi_{66}^{(2)} & 0 & 0 \\
0 & 0 & 0 & \xi_{44}^{(2)} & 0 \\
0 & 0 & 0 & 0 & \xi_{55}^{(2)}
\end{bmatrix} \begin{bmatrix}
\varepsilon_{11}^{(2)} \\
\varepsilon_{22}^{(2)} \\
\varepsilon_{12}^{(2)} \\
\varepsilon_{23}^{(2)} \\
\varepsilon_{13}^{(2)}
\end{bmatrix} - \begin{bmatrix}
\tilde{\beta}_1^{(2)} \\
\tilde{\beta}_2^{(2)} \\
\tilde{\beta}_3^{(2)} \\
\tilde{\beta}_4^{(2)} \\
\tilde{\beta}_5^{(2)}
\end{bmatrix},
\]

where \(\sigma^{(2)}_i\) are the stress tensor for layer 2, \(\varepsilon^{(2)}_i\) are the strain components, \(\tilde{\alpha}_i^{(2)}\) and \(\tilde{\beta}_i^{(2)}\) are the coefficients, and \(\tilde{\alpha}_i\) and \(\tilde{\beta}_i\) are thermal and moisture moduli that defined as:

\[
\tilde{\alpha}_i^{(2)} = \frac{E^{(2)}}{1 - \nu^{(2)} F_i}, \quad \tilde{\beta}_i^{(2)} = \frac{E^{(2)}}{1 - \nu^{(2)} F_i}, \quad \varepsilon^{(2)}_1 = \varepsilon^{(2)}_6 = \varepsilon^{(2)}_{11} = \varepsilon^{(2)}_{66} = G^{(2)}
\]

(7)

2.2. Honeycomb core of the sandwich plate

The hexagonal honeycomb cells are made of aluminum and their geometry are displayed in figure 3. Based on Gibson model, the properties of the honeycomb core are given as [14, 39]:

\[
\begin{align*}
E_i^{(2)} &= E_m \frac{J^3 \cos \chi}{(\kappa + \sin \chi) \sin^2 \chi}[1 - J^2 \cot^2 \chi], \\
E_{12}^{(2)} &= E_m \frac{J^4 (\kappa + \sin \chi)}{\cos^3 \chi}[1 - J^2 (\kappa \sec^2 \chi + \tan^2 \chi)], \\
\nu_{12}^{(2)} &= \frac{J^4 \chi}{(\kappa + \sin \chi) \sin \chi}[1 - J^2 \csc^2 \chi], \\
\nu_{21}^{(2)} &= \frac{J^4 \chi}{(\kappa + \sin \chi) \sin \chi}[1 - J^2 (1 + \kappa) \sec^2 \chi], \\
G_{12}^{(2)} &= E_m \frac{J^3 (\kappa + \sin \chi)}{\kappa^2 (1 + 2 \kappa) \cos \chi}, \\
\rho^{(2)} &= \rho_m \frac{J (\kappa + 2)}{2 (\kappa + \sin \chi) \cos \chi}, \quad \alpha^{(2)} = \alpha_m \frac{J (\kappa + 2)}{2 (\kappa + \sin \chi) \cos \chi}, \\
\beta^{(2)} &= \beta_m \frac{J (\kappa + 2)}{2 (\kappa + \sin \chi) \cos \chi},
\end{align*}
\]

(9)

where \(a_h, b_h,\) and \(t_h\) denote the vertical cell rib length, inclined cell rib length and thickness cell rib and \(\chi\) is the inclined angle as shown in figure 3. Note that, equation (7) also represents the constitutive equations of the honeycomb core, where the elastic coefficients are given as...
The smart composite layers consist of two different piezoelectric materials PZT-4 (p1) and PZT-5H (p2). According to the piezoelasticity theory, the effective material properties of the face layers \(P_{eff}^{(j)}, j = 1, 3 \) are given as:

\[
P_{eff}^{(1)}(x_3) = P_{p1} + (P_{p2} - P_{p1}) \left(\frac{x_3 - \xi}{t_2 - \eta} \right)^\eta, \quad \xi \leq x_3 \leq t_2,
\]

\[
P_{eff}^{(3)}(x_3) = P_{p3} + (P_{p2} - P_{p3}) \left(\frac{x_3 - t_4}{t_3 - t_4} \right)^\eta, \quad t_3 \leq x_3 \leq t_4,
\]

where \(P_{p1} \) and \(P_{p2} \) stand for the material properties of PZT-4 and PZT-5H, respectively, and \(\eta \) is the power index. According to the piezoelectricity theory, the constitutive equations and electric displacements \(D_{ij}^{(f)} \) of the upper and lower layers can be expressed as:

\[
\begin{align*}
\sigma_{ij}^{(f)} &= \begin{bmatrix}
\tilde{\sigma}_{11} & \tilde{\sigma}_{12} & 0 & 0 & 0 & 0 \\
0 & \tilde{\sigma}_{22} & 0 & 0 & 0 & 0 \\
0 & 0 & \tilde{\epsilon}_{44} & 0 & 0 & 0 \\
0 & 0 & 0 & \tilde{\epsilon}_{55} & 0 & 0
\end{bmatrix} + \begin{bmatrix}
\tilde{\alpha}_{11} & 0 & 0 & 0 & 0 & 0 \\
0 & \tilde{\alpha}_{22} & 0 & 0 & 0 & 0 \\
0 & 0 & \tilde{\beta}_{44} & 0 & 0 & 0 \\
0 & 0 & 0 & \tilde{\beta}_{55} & 0 & 0
\end{bmatrix} \begin{bmatrix}
\tilde{E}_{11}^{(f)} \\
\tilde{E}_{22}^{(f)} \\
\tilde{E}_{44}^{(f)} \\
\tilde{E}_{55}^{(f)}
\end{bmatrix}, \\
D_{ij}^{(f)} &= \begin{bmatrix}
\tilde{D}_{11}^{(f)} \\
\tilde{D}_{22}^{(f)} \\
\tilde{D}_{33}^{(f)}
\end{bmatrix}, \\
D_{ij}^{(f)} &= \begin{bmatrix}
\tilde{D}_{11}^{(f)} \\
\tilde{D}_{22}^{(f)} \\
\tilde{D}_{33}^{(f)}
\end{bmatrix} \begin{bmatrix}
\tilde{E}_{11}^{(f)} \\
\tilde{E}_{22}^{(f)} \\
\tilde{E}_{33}^{(f)}
\end{bmatrix} + \begin{bmatrix}
\tilde{\beta}_1 & 0 & 0 \\
0 & \tilde{\beta}_2 & 0 \\
0 & 0 & \tilde{\beta}_3
\end{bmatrix} \begin{bmatrix}
\tilde{E}_{11}^{(f)} \\
\tilde{E}_{22}^{(f)} \\
\tilde{E}_{33}^{(f)}
\end{bmatrix}.
\end{align*}
\]

where \(f = 1, 3 \), \(\tilde{E}_{ij}^{(f)} \) are the electric field components for layer \(f \), \(\tilde{\lambda}_{ij} \) stand for piezoelectric coefficients, \(\tilde{\epsilon}_i \) stand for dielectric coefficients, and \(\tilde{\beta}_j \) and \(\tilde{\alpha}_j \) are pyroelectric constants that are given as [41–44]:

\[
\begin{align*}
\tilde{z}_{i1}^{(f)}(x_3) &= \tilde{c}_{i1}^{(f)} - \frac{\tilde{c}_{13}^{(f)}}{\tilde{c}_{33}^{(f)}} \tilde{z}_{13}^{(f)}(x_3), \\
\tilde{z}_{i2}^{(f)}(x_3) &= \tilde{c}_{i2}^{(f)} - \frac{\tilde{c}_{i3}^{(f)}}{\tilde{c}_{33}^{(f)}} \tilde{z}_{13}^{(f)}(x_3), \\
\tilde{z}_{i3}^{(f)}(x_3) &= \tilde{c}_{i3}^{(f)} - \frac{\tilde{c}_{13}^{(f)}}{\tilde{c}_{33}^{(f)}} \tilde{z}_{13}^{(f)}(x_3), \\
\tilde{z}_{i4}^{(f)}(x_3) &= \tilde{c}_{i4}^{(f)} - \frac{\tilde{c}_{i3}^{(f)}}{\tilde{c}_{33}^{(f)}} \tilde{z}_{13}^{(f)}(x_3), \\
\tilde{z}_{i5}^{(f)}(x_3) &= \tilde{c}_{i5}^{(f)} - \frac{\tilde{c}_{i3}^{(f)}}{\tilde{c}_{33}^{(f)}} \tilde{z}_{13}^{(f)}(x_3), \\
\tilde{z}_{i6}^{(f)}(x_3) &= \tilde{c}_{i6}^{(f)} - \frac{\tilde{c}_{i3}^{(f)}}{\tilde{c}_{33}^{(f)}} \tilde{z}_{13}^{(f)}(x_3), \\
\tilde{\lambda}_{i3}^{(f)}(x_3) &= \tilde{\lambda}_{i3}^{(f)} - \frac{\tilde{\lambda}_{i3}^{(f)}}{\tilde{\lambda}_{33}^{(f)}} \tilde{\lambda}_{33}^{(f)}(x_3), \\
\tilde{\lambda}_{i5}^{(f)}(x_3) &= \tilde{\lambda}_{i5}^{(f)} - \frac{\tilde{\lambda}_{i3}^{(f)}}{\tilde{\lambda}_{33}^{(f)}} \tilde{\lambda}_{33}^{(f)}(x_3), \\
\tilde{\lambda}_{i6}^{(f)}(x_3) &= \tilde{\lambda}_{i6}^{(f)} - \frac{\tilde{\lambda}_{i3}^{(f)}}{\tilde{\lambda}_{33}^{(f)}} \tilde{\lambda}_{33}^{(f)}(x_3), \\
\tilde{\lambda}_{33}^{(f)}(x_3) &= \tilde{\lambda}_{33}^{(f)} - \frac{\tilde{\lambda}_{i3}^{(f)}}{\tilde{\lambda}_{33}^{(f)}} \tilde{\lambda}_{i3}^{(f)}(x_3), \\
\tilde{\lambda}_{55}^{(f)}(x_3) &= \tilde{\lambda}_{55}^{(f)} - \frac{\tilde{\lambda}_{i3}^{(f)}}{\tilde{\lambda}_{33}^{(f)}} \tilde{\lambda}_{i3}^{(f)}(x_3), \\
\tilde{\lambda}_{66}^{(f)}(x_3) &= \tilde{\lambda}_{66}^{(f)} - \frac{\tilde{\lambda}_{i3}^{(f)}}{\tilde{\lambda}_{33}^{(f)}} \tilde{\lambda}_{i3}^{(f)}(x_3).
\end{align*}
\]
2.3.1. Electric field

The electric field applied to the face sheets is expressed as \([41, 42]\):

\[
\mathcal{E}_i^{(r)} = -\Xi, \quad i = 1, 2, 3, \tag{15}
\]

where \(X = \partial X/\partial x_i\) and \(\Xi(x_1, x_2, x_3)\) denotes the electric potential of the smart composite plate that is defined as \([41, 42, 45]\):

\[
\Xi(x_1, x_2, x_3) = -\phi(x_1, x_2)\cos \left(\frac{\pi x^{(r)}}{h_p} \right) + 2V_0 \frac{x^{(r)}}{h_p}, \quad r = 1, 3, \tag{16}
\]

where \(\phi(x_1, x_2)\) is the electric potential in the mid-plane of the face sheets and

\[
x^{(1)} = x_3 + \frac{h_c}{2} + \frac{h_p}{2}, \quad x^{(3)} = x_3 - \frac{h_c}{2} - \frac{h_p}{2}. \tag{17}
\]

Incorporating equation (16) into equation (15) leads to the electric field as:

\[
\begin{pmatrix}
\mathcal{E}_1^{(r)} \\
\mathcal{E}_2^{(r)} \\
\mathcal{E}_3^{(r)}
\end{pmatrix} =
\begin{pmatrix}
\phi_1 \cos \left(\frac{\pi x^{(r)}}{h_p} \right) \\
\phi_2 \cos \left(\frac{\pi x^{(r)}}{h_p} \right) \\
-\frac{\pi}{h_p} \phi \sin \left(\frac{\pi x^{(r)}}{h_p} \right)
\end{pmatrix} - \begin{pmatrix}
0 \\
0 \\
2V_0
\end{pmatrix}, \quad r = 1, 3. \tag{18}
\]

2.3.2. Hygrothermal field

For precise description of the temperature and moisture influences, different temperature and moisture distributions through-the-thickness are taken into account in the present analysis as follows:

Uniform hygrothermal rise

The temperature and moisture are expressed as

\[
T(x_3) = \Delta T_T = T_f - T_0, \quad C(x_3) = \Delta C_C = C_f - C_0, \tag{19}
\]

where \(T_0\) and \(C_0\) are the initial temperature and moisture, respectively. The temperature and moisture are uniformly raised to the final values \(T_f\) and \(C_f\), respectively.

Linear hygrothermal rise

In this case, it is assumed that the temperature and moisture are linearly increased from \(T_b\) and \(C_b\) at the bottom surface to \(T_t\) and \(C_t\) at the top surface. Accordingly, the temperature and moisture are defined as:

\[
\begin{align*}
T(x_3) &= \Delta T_T \left(x_3 + \frac{1}{2} \right) + T_0, \quad \Delta T_T = T_f - T_0, \\
C(x_3) &= \Delta C_C \left(x_3 + \frac{1}{2} \right) + C_0, \quad \Delta C_C = C_f - C_0. \tag{20}
\end{align*}
\]

Non-linear hygrothermal rise

The temperature and moisture are distributed through-the-thickness according to the following two cases:

1. The temperature and moisture of the bottom and top surfaces are \(\Theta_b\) and \(\Theta_t\) (\(\Theta = T, C\)), respectively, and they are considered to vary from \(\Theta_b\) to \(\Theta_t\) according to the power law variation through-the-thickness as \([18, 46]\):

\[
\begin{align*}
T(x_3) &= \Delta T_T \left(x_3 + \frac{1}{2} \right)^\zeta + T_0, \quad \Delta T_T = T_f - T_0, \\
C(x_3) &= \Delta C_C \left(x_3 + \frac{1}{2} \right)^\zeta + C_0, \quad \Delta C_C = C_f - C_0. \tag{21}
\end{align*}
\]

where \(\zeta\) is the hygrothermal exponent, \(0 < \zeta < \infty\) and \(\zeta \neq 1\).

2. In this case, the variations of the temperature and moisture through the thickness direction follow a sinusoidal law as \([47]\):

\[
\text{Mater. Res. Express 8 (2021) 095704} \quad M \text{ Sobhy}
\]
4. Stability equations

The principle of virtual work containing the variation of strain energy \(\delta J_s \) and the variation of the work done by the external loads \(\delta J_f \) is given as:

\[
\delta J_s - \delta J_f = 0,
\]

where

\[
\delta J_s = \int_A \int_0^1 \sigma_{ij}^{(i)} \delta \varepsilon_{ij} + D_{ij}^{(i)} \delta \varepsilon_{ij}^{(i)} \, dx^3 \, dA + \int_A \int_0^1 \sigma_{ij}^{(2)} \delta \varepsilon_{ij} \, dx^3 \, dA
\]

\[
+ \int_A \int_0^1 \sigma_{ij}^{(3)} \delta \varepsilon_{ij} - D_{ij}^{(3)} \delta \varepsilon_{ij}^{(3)} \, dx^3 \, dA,
\]

\[
i, j = 1, 2, 3.
\]

Inserting equations (18) and (25) into (28) leads to

\[
\delta J_s = \int_A (\mathcal{N}_1 \delta \varepsilon_{11}^{(0)} + \mathcal{M}_1 \delta \varepsilon_{11}^{(1)} + \mathcal{R}_1 \delta \varepsilon_{12}^{(1)} + N_{12} \delta \varepsilon_{12}^{(2)} + \mathcal{N}_{12} \delta \varepsilon_{12}^{(3)} + R_{12} \delta \varepsilon_{12}^{(3)} + S_{13} \delta \varepsilon_{13}^{(2)} + S_{23} \delta \varepsilon_{23}^{(2)} + K_1 \delta \phi_1 + K_2 \delta \phi_2 + K_3 \delta \phi_3) \, dA,
\]

where

\[
T(x_3) = \Delta T \left(1 - \cos \left(\frac{\pi x_3}{h} + \frac{1}{2} \right) \right) + T_0, \quad \Delta T = T_i - T_0,
\]

\[
C(x_3) = \Delta C \left(1 - \cos \left(\frac{\pi x_3}{h} + \frac{1}{2} \right) \right) + C_0, \quad \Delta C = C_i - C_0.
\]
where

\[
\begin{align*}
\{N_{jk}, M_{jk}, R_{jk}\} &= \sum_{i=1}^{n+1} \frac{\sigma_{ij}^{(i)}[1, x_j, H]}{h_{p}} \, dx_3, \\
S_{ij} &= \sum_{i=1}^{n+1} \frac{\sigma_{ij}^{(i)}H}{h_{p}} \, dx_3, \\
K_j &= \int_{t_1}^{t_2} D_j^{(i)} \cos \left(\frac{\pi x^{(i)}}{h_{p}} \right) \, dx_3 + \int_{t_1}^{t_2} D_j^{(i)} \cos \left(\frac{\pi x^{(i)}}{h_{p}} \right) \, dx_3 + \int_{t_1}^{t_2} D_j^{(i)} \sin \left(\frac{\pi x^{(i)}}{h_{p}} \right) \, dx_3, \\
K_3 &= \int_{t_1}^{t_2} D_j^{(i)} \sin \left(\frac{\pi x^{(i)}}{h_{p}} \right) \, dx_3 + \int_{t_1}^{t_2} D_j^{(i)} \sin \left(\frac{\pi x^{(i)}}{h_{p}} \right) \, dx_3, \\
&\quad j, k = 1, 2. (30)
\end{align*}
\]

Substituting equations (7), (12) and (13) into equation (30) gives

\[
\begin{align*}
\left\{N_{11}, N_{21}, M_{11}, M_{21}, R_{11}, R_{21}, K_1\right\} &= \left\{N_{11}^T, N_{21}^T, M_{11}^T, M_{21}^T, R_{11}^T, R_{21}^T, K_1^T\right\}, \\
\left\{N_{12}, M_{12}, R_{12}\right\} &= \left\{N_{12}^T, M_{12}^T, R_{12}^T\right\}, \\
\left\{S_{13}, S_{23}\right\} &= \left\{S_{13}^T, S_{23}^T\right\}.
\end{align*}
\]

where

\[
\begin{align*}
\{b_{jk}, s_{jk}, r_{jk}\} &= \sum_{i=1}^{n+1} \int_{t_i}^{t_{i+1}} e_{jk}^{(i)} \left[1, x_j, H\right] \, dx_3, \\
\{g_{jk}, d_{jk}, f_{jk}\} &= \sum_{i=1}^{n+1} \int_{t_i}^{t_{i+1}} e_{jk}^{(i)} \left[x_j^2, x_j H, H^2\right] \, dx_3, \\
\tilde{f}_{44} &= \sum_{i=1}^{n+1} \int_{t_i}^{t_{i+1}} e_{jk}^{(i)} H^2 \, dx_3, \\
\{a_{11}, a_{12}, a_{13}\} &= \int_{t_1}^{t_2} \frac{\pi}{h_{p}} \alpha_{11} \sin \left(\frac{\pi x^{(i)}}{h_{p}} \right) \, dx_3 + \int_{t_1}^{t_2} \frac{\pi}{h_{p}} \alpha_{13} \sin \left(\frac{\pi x^{(i)}}{h_{p}} \right) \, dx_3, \\
\{a_{33}\} &= -\int_{t_1}^{t_2} \frac{\pi^2}{h_{p}} \epsilon_{33} \sin^2 \left(\frac{\pi x^{(i)}}{h_{p}} \right) \, dx_3 + \int_{t_1}^{t_2} \frac{\pi^2}{h_{p}} \epsilon_{33} \sin^2 \left(\frac{\pi x^{(i)}}{h_{p}} \right) \, dx_3, \\
a_{44} &= \int_{t_1}^{t_2} \frac{\pi}{h_{p}} \alpha_{44} \cos \left(\frac{\pi x^{(i)}}{h_{p}} \right) H' \, dx_3 + \int_{t_1}^{t_2} \frac{\pi}{h_{p}} \alpha_{44} \cos \left(\frac{\pi x^{(i)}}{h_{p}} \right) H' \, dx_3, \\
\tilde{a}_{44} &= \int_{t_1}^{t_2} \frac{\pi}{h_{p}} \alpha_{44} \cos \left(\frac{\pi x^{(i)}}{h_{p}} \right) H' \, dx_3 + \int_{t_1}^{t_2} \frac{\pi}{h_{p}} \alpha_{44} \cos \left(\frac{\pi x^{(i)}}{h_{p}} \right) H' \, dx_3.
\end{align*}
\]
\[
\{ \mathcal{N}^E_{11}, \mathcal{M}^E_{11}, \mathcal{R}^E_{11} \} = \{ \mathcal{N}^E_{22}, \mathcal{M}^E_{22}, \mathcal{R}^E_{22} \} = \frac{2V_0}{h_p} \left[\int_{x_1}^{x_3} \chi^{(1)}_{31} \{ 1, x_3, \overline{H} \} \, dx_3 + \int_{x_1}^{x_3} \chi^{(3)}_{31} \{ 1, x_3, \overline{H} \} \, dx_3 \right]
\]

\[
K^E_{3} = - \frac{2V_0}{h_p} \frac{\pi}{h_p} \int_{x_1}^{x_3} \phi_1 \, dx_3 + \int_{x_1}^{x_3} \phi_3 \, dx_3,
\]

\[
\{ \mathcal{N}^T_{11}, \mathcal{M}^T_{11}, \mathcal{R}^T_{11} \} = \sum_{i=1}^{3} \int_{x_1}^{x_3} \phi_{i1}^{(1)} \{ 1, x_3, \overline{H} \} \, dx_3,
\]

\[
\{ \mathcal{N}^C_{11}, \mathcal{M}^C_{11}, \mathcal{R}^C_{11} \} = \sum_{i=1}^{3} \int_{x_1}^{x_3} \phi_{i1}^{(3)} \{ 1, x_3, \overline{H} \} \, dx_3,
\]

\[
K^C_{3} = - \frac{\pi}{h_p} \int_{x_1}^{x_3} \phi_3^{(1)} \, dx_3 + \int_{x_1}^{x_3} \phi_3^{(3)} \, dx_3.
\]

Now, the variation of the work done by the temperature and humid loads as well as the external electric voltage \(\delta f\) is expressed as [42]:

\[
\delta f = \int_A \left[F_1(w_{0,11} + w_{x,11}) + F_2(w_{0,22} + w_{x,22}) \right] \delta(w_0 + w) \, dA,
\]

where

\[
F_j = \mathcal{N}^E_j + \mathcal{N}^T_j + \mathcal{N}^C_j, \quad j = 1, 2,
\]

in which \(\mathcal{N}^E_j, \mathcal{N}^T_j\) and \(\mathcal{N}^C_j\) are the in-plane force due to the external electric voltage, temperature and humid loads, respectively, that are defined in equation (35).

The concept of virtual displacement concept ([18, 46, 56–59]) is employed to present the stability equations at a neighboring stable state. The displacements of equilibrium state are defined as \((u_1^0, u_2^0, w_0^0, w)^0\), while the virtual displacements of a neighboring stable state are \((u_1^1, u_2^1, w_0^1, w)^1\). The total displacement components of a neighboring state are given by:

\[
u_1 = u_1^0 + u_1^1, \quad u_2 = u_2^0 + u_2^1, \quad w_0 = w_0^0 + w_0^1, \quad w = w_0^0 + w_1.
\]

By substituting equations (29) and (36) into equation (27) considering equation (38), one obtains the stability equations as:

\[
\mathcal{N}^{1,1}_{11} + \mathcal{N}^{1,2}_{12,2} = 0,
\]

\[
\mathcal{N}^{1,1}_{12,1} + \mathcal{N}^{1,2}_{22,2} = 0,
\]

\[
\mathcal{M}^{1,1}_{11,11} + 2\mathcal{M}^{1,1}_{12,12} + \mathcal{M}^{1,1}_{22,22} + F_1(w_{0,11} + w_{x,11}) + F_2(w_{0,22} + w_{x,22}) = 0,
\]

\[
\mathcal{R}^{1,1}_{11,11} + 2\mathcal{R}^{1,1}_{12,12} + \mathcal{R}^{1,1}_{22,22} + S^{1,1}_{13,1} + S^{1,1}_{23,2} + F_1(w_{0,11} + w_{x,11}) + F_2(w_{0,22} + w_{x,22}) = 0,
\]

\[
\mathcal{K}^{1,1}_{11} + \mathcal{K}^{1,1}_{22,2} + \mathcal{K}^{1,1}_3 = 0.
\]

where the superscript 1 indicates the neighboring stable state.

5. Solution procedure

In this section, the above stability equations will be analytically solved for simply supported and clamped boundary conditions that given as:

simply supported (S)

\[
u_1 = w_1^0 = w_1^1 = w_{x,11}^0 = w_{x,11}^1 = \mathcal{N}^{1,1}_{11} = \mathcal{M}^{1,1}_{11} = \mathcal{R}^{1,1}_{11} = 0, \quad \text{at} \quad x_1 = 0, a,
\]

\[
u_1 = w_1^0 = w_1^1 = w_{x,11}^0 = w_{x,11}^1 = \mathcal{N}^{1,1}_{22} = \mathcal{M}^{1,1}_{22} = \mathcal{R}^{1,1}_{22} = 0, \quad \text{at} \quad x_2 = 0, b.
\]
Table 1. The admissible functions $\Lambda_j(x_k)$ and $\tilde{\Lambda}_i(x_k)$.

B.C.	The functions				
$x_1 = 0$	$x_1 = a$	$x_2 = 0$	$x_2 = b$	$\Lambda_j(x_k)$	$\tilde{\Lambda}_i(x_k)$
S	S	S	S	$\sin(\mu x_1)$	$\sin(\xi x_1)$
C	S	S	S	$\sin(\mu x_1)[1 - \cos(\mu x_1)]$	$\sin(\xi x_1)$
C	C	S	S	$\sin^2(\mu x_1)$	$\sin^2(\xi x_1)$
C	C	C	S	$\sin(\mu x_1)[1 - \cos(\mu x_1)]$	$\sin^2(\xi x_1)$
C	C	C	C	$\sin^2(\mu x_1)$	$\sin^2(\xi x_1)$

Clamped (C)

$$u_1^i = u_2^i = w_1^i = w_2^i = \phi_1^i = w_{b,i} = w_{s,i} = \phi^1 = 0,$$

at \(x_1 = 0, a, \quad x_2 = 0, b, \quad i = 1, 2. \)

The solutions of the stability equations (39), which satisfy the conditions (40) and (41), are presumed as:

$$u_1^i = \sum_{j} \sum_{k} U_{jk} \Lambda_{j,1}(x_1) \tilde{\Lambda}_k(x_2),$$

$$u_2^i = \sum_{j} \sum_{k} U_{jk} \Lambda_{j,1}(x_1) \tilde{\Lambda}_k(x_2),$$

$$[w_1^i, w_2^i, \phi^1] = \sum_{j} \sum_{k} [W_{jk}, W_{jk}, \Upsilon_{jk}] \Lambda_j(x_1) \tilde{\Lambda}_k(x_2),$$

where \(U_{jk}, \ U_{jk}, \ W_{jk}, \ W_{jk} \) and \(\Upsilon_{jk} \) are constant coefficients and the admissible functions $\Lambda_j(x_1)$ and $\tilde{\Lambda}_k(x_2)$ are defined in table 1 noting that $\mu = \pi/\alpha$ and $\xi = 2\pi/b$.

Inserting equations (31)–(33) into 39 subject to equations (26), (38) and (42) gives the stability equations as:

$$\begin{bmatrix}
A_{11} & A_{12} & A_{13} & A_{14} & A_{15} \\
A_{21} & A_{22} & A_{23} & A_{24} & A_{25} \\
A_{31} & A_{32} & A_{33} & A_{34} & A_{35} \\
A_{41} & A_{42} & A_{43} & A_{44} & A_{45} \\
A_{51} & A_{52} & A_{53} & A_{54} & A_{55}
\end{bmatrix}\begin{bmatrix}
U_{jk} \\
U_{jk} \\
W_{jk} \\
W_{jk} \\
\Upsilon_{jk}
\end{bmatrix} = 0,$$

where the elements A_{ij} are given as:

$$A_{11} = \chi_{11}(12) + \chi_{13}(10) b_{11}, \quad A_{12} = \chi_{13}(12) (b_{12} + b_{66}), \quad A_{13} = -\chi_{13}(12) (s_{12} + 2 s_{66}) - \chi_{13}(10) r_{12}, \quad A_{14} = -\chi_{13}(12) (s_{12} + 2 s_{66}) - \chi_{13}(10) r_{12},$$

$$A_{15} = \chi_{13}(10) a_{11}, \quad A_{21} = \chi_{22}(21) (b_{12} + b_{66}), \quad A_{22} = \chi_{22}(12) b_{22} + \chi_{22}(21) b_{66},$$

$$A_{23} = -\chi_{22}(21) (s_{12} + 2 s_{66}) - \chi_{22}(23) s_{22}, \quad A_{24} = -\chi_{22}(21) (s_{12} + 2 s_{66}) - \chi_{22}(23) s_{22},$$

$$A_{31} = \chi_{22}(21) (s_{12} + 2 s_{66}) + \chi_{22}(23) r_{12}, \quad A_{32} = \chi_{22}(21) (s_{12} + 2 s_{66}) + \chi_{22}(23) s_{22},$$

$$A_{33} = -\chi_{22}(21) (s_{12} + 2 s_{66}) - \chi_{22}(23) g_{12} + \chi_{22}(21) g_{66} + \chi_{22}(23) (N_{11} + N_{11} + N_{11} + b_{11} + b_{11} + b_{11} + b_{11} + b_{11}),$$

$$A_{34} = -\chi_{22}(23) (d_{12} + 2 d_{66}) - \chi_{22}(23) g_{12} + \chi_{22}(23) g_{66} + \chi_{22}(23) (N_{11} + N_{11} + b_{11} + b_{11} + b_{11} + b_{11} + b_{11} + b_{11} + b_{11}),$$

$$A_{35} = (\chi_{22}(21) + \chi_{22}(23)) a_{22}, \quad A_{41} = \chi_{22}(21) (s_{12} + 2 s_{66}) + \chi_{22}(23) r_{12},$$

$$A_{42} = \chi_{22}(21) (s_{12} + 2 s_{66}) + \chi_{22}(23) s_{22}, \quad A_{43} = -\chi_{22}(21) (s_{12} + 2 s_{66}) - \chi_{22}(23) (d_{12} + 2 d_{66}) - \chi_{22}(23) (d_{12} + 2 d_{66}) + \chi_{22}(23) g_{12} + \chi_{22}(23) g_{66} + \chi_{22}(23) (N_{11} + N_{11} + b_{11} + b_{11} + b_{11} + b_{11} + b_{11} + b_{11}),$$

$$A_{44} = -\chi_{22}(23) (d_{12} + 2 d_{66}) - \chi_{22}(23) g_{12} + \chi_{22}(23) g_{66} + \chi_{22}(23) (N_{11} + N_{11} + b_{11} + b_{11} + b_{11} + b_{11} + b_{11} + b_{11}),$$

$$A_{45} = (\chi_{22}(21) + \chi_{22}(23)) a_{22}, \quad A_{51} = \chi_{22}(21) (s_{12} + 2 s_{66}) + \chi_{22}(23) r_{12},$$

$$A_{52} = \chi_{22}(21) (s_{12} + 2 s_{66}) + \chi_{22}(23) (d_{12} + 2 d_{66}) - \chi_{22}(23) g_{12} + \chi_{22}(23) g_{66} + \chi_{22}(23) (N_{11} + N_{11} + b_{11} + b_{11} + b_{11} + b_{11} + b_{11} + b_{11}),$$

$$A_{53} = (\chi_{22}(21) + \chi_{22}(23)) a_{22}, \quad A_{54} = \chi_{22}(21) (s_{12} + 2 s_{66}) + \chi_{22}(23) s_{22},$$

$$A_{55} = \chi_{22}(21) (s_{12} + 2 s_{66}) + \chi_{22}(23) s_{22},\quad (44)$$
Table 2. The properties of the piezoelectric materials PZT-4 and the PZT-5H [44, 60].

Properties	PZT-4 (p1)	PZT-5H (p2)
c_{11} (GPa)	139	126
c_{12} (GPa)	77.8	79.1
c_{13} (GPa)	74	83.9
c_{44} (GPa)	115	117
c_{66} (GPa)	25.6	23
λ_f (C m$^{-2}$)	30.6	23.5
λ_f (C m$^{-2}$)	-5.2	-6.5
λ_f (C m$^{-2}$)	15.1	23
λ_f (C m$^{-2}$)	12.7	17
ϵ_f (10^{-9}F m$^{-1}$)	6.46	15.05
ϵ_f (10^{-9}F m$^{-1}$)	5.62	13.02
α_f (10^6Pa K$^{-1}$)	4.738	3.468
α_f (10^6Pa K$^{-1}$)	4.529	3.468
β_f (GPa wt%H$_2$O)	94.219	93.636
β_f (GPa wt%H$_2$O)	85.212	92.275

Table 3. Comparison of critical buckling temperature T_{cr} of FGM sandwich square plates subjected to uniform temperature rise for different values of the power-law index g and core thickness.

g	h_c/h	Source	$a/h = 5$	$a/h = 10$	$a/h = 15$	$a/h = 25$	$a/h = 50$
0.5	0	SPT [46]	2.87276	0.80328	0.36504	0.13294	0.03340
		TPT [46]	2.87073	0.80313	0.36501	0.13294	0.03340
		Present	2.87219	0.80324	0.36503	0.13295	0.03340
1/5		SPT [46]	2.83194	0.79232	0.36010	0.13116	0.03295
		TPT [46]	2.83029	0.79220	0.36007	0.13115	0.03295
		Present	2.83144	0.79229	0.36010	0.13116	0.03295
1/3		SPT [46]	2.83331	0.79463	0.36134	0.13164	0.03308
		TPT [46]	2.83224	0.79456	0.36132	0.13164	0.03308
		Present	2.83292	0.79461	0.36134	0.13164	0.03308
1/2		SPT [46]	2.86992	0.80925	0.36841	0.13430	0.03376
		TPT [46]	2.86971	0.80925	0.36841	0.13430	0.03376
		Present	2.86971	0.80924	0.36841	0.13430	0.03376
2	0	SPT [46]	2.63459	0.71815	0.32462	0.11789	0.02958
		TPT [46]	2.63018	0.71783	0.32455	0.11788	0.02958
		Present	2.63356	0.71808	0.32461	0.11789	0.02958
1/5		SPT [46]	2.39953	0.65098	0.29396	0.10671	0.02677
		TPT [46]	2.39637	0.65075	0.29392	0.10670	0.02676
		Present	2.39875	0.65092	0.29396	0.10670	0.02677
1/3		SPT [46]	2.36195	0.64253	0.29031	0.10541	0.02600
		TPT [46]	2.35999	0.64238	0.29028	0.10540	0.02645
		Present	2.36138	0.64249	0.29031	0.10541	0.02645
1/2		SPT [46]	2.42899	0.66689	0.30189	0.10972	0.02754
		TPT [46]	2.42873	0.66687	0.30189	0.10972	0.02754
		Present	2.42875	0.66687	0.30189	0.10972	0.02754
Table 4. Critical buckling temperature T_{cr} of a SSSS FG piezoelectric sandwich plate with honeycomb core ($\eta = 1$, $V^e_0 = 0.05$, $\zeta = 1$, $a/b = 1$, $\Delta C = 0.01\%$, $k_0 = 0.2$, $a/h = 10$).

B.C.	h_c/h	TPT	SPT	EPT	Present
SSSS	0.1	207.24952	207.16773	207.18876	
	0.2	171.88266	171.48845	171.01645	171.58533
	0.3	129.09010	128.26631	128.37072	128.47543
	0.4	80.09555	79.03130	77.78808	79.30473
	0.5	30.70511	30.03296	29.30613	30.20382
CSSS	0.1	219.96472	220.04615	220.02919	
	0.2	187.49955	187.38087	187.21279	187.41277
	0.3	148.24129	147.85835	147.38929	147.96024
	0.4	102.68992	102.15889	101.54059	102.30750
	0.5	54.59835	54.32201	54.01127	54.40765
CCSS	0.1	227.19277	227.36196	227.32411	
	0.2	196.26020	196.27902	196.26352	196.27373
	0.3	158.83400	158.66034	158.42174	158.71011
	0.4	113.05745	114.77374	114.42820	114.85610
	0.5	67.60000	67.57259	67.44208	67.60781
CCSS	0.1	234.79479	235.04237	234.98310	
	0.2	205.37249	205.52150	205.65132	205.48719
	0.3	169.74377	169.75511	169.72441	169.75646
	0.4	127.69030	127.62288	127.51343	127.64594
	0.5	81.04568	81.07633	81.09397	81.06794
CCCC	0.1	241.23864	241.56827	241.98310	
	0.2	213.05364	213.30216	213.54388	213.24212
	0.3	178.85901	179.00099	179.12114	178.96598
	0.4	138.17139	138.30216	138.30216	138.22857
	0.5	92.12633	92.24497	92.35880	92.20648

Table 5. Critical buckling temperature T_{cr} of a SSSS FG piezoelectric sandwich plate for different core types ($\eta = 1$, $V^e_0 = 0.05$, $\zeta = 1$, $a/b = 1$, $\Delta C = 0.01\%$, $k_0 = 0.2$, $a/h = 10$).

B.C.	h_c/h	Honeycomb	Porous I	Porous II	Porous III
SSSS	0.1	207.18876	87.01350	86.41127	85.99058
	0.2	171.58533	41.80985	41.43391	40.90958
	0.3	128.47543	20.56936	20.36762	19.93560
	0.4	79.30473	8.97292	8.88775	8.61373
	0.5	30.23082	2.53676	2.52662	2.40855
CSSS	0.1	220.02919	92.41792	91.77685	91.33173
	0.2	187.41277	45.55405	45.14573	44.57368
	0.3	147.96024	23.42077	23.19434	22.70043
	0.4	102.30750	11.20642	11.10515	10.76061
	0.5	54.40765	4.27342	4.25555	4.06410
CCSS	0.1	227.32411	95.52727	94.86675	94.40477
	0.2	196.27737	47.71147	47.28446	46.68503
	0.3	158.71011	25.06756	24.82660	24.29726
	0.4	114.85610	12.50039	12.38924	12.00438
	0.5	67.60781	6.38237	6.32604	6.02699
CCSS	0.1	234.98310	98.82257	98.13958	97.66165
	0.2	205.48719	50.00053	49.55366	48.92528
	0.3	169.75646	26.81780	26.56124	25.99444
	0.4	127.64594	13.87878	13.75676	13.32928
	0.5	81.06794	6.36268	6.33357	6.05557
CCCC	0.1	241.49121	101.64418	100.94198	100.43041
	0.2	213.24212	51.96264	51.49871	50.84560
	0.3	178.96598	28.30256	28.05040	27.45166
	0.4	138.22857	15.06500	14.93322	14.46945
	0.5	92.20648	7.29413	7.25892	6.94332
Figure 4. Influences of the external electric voltage V_0^* on the critical buckling temperature T_{cr} of SSSS FGP sandwich plates with (a) honeycomb core, (b) porous core (porous-I), (c) porous core (porous-II) and (d) porous core (porous-III) ($\eta = 1$, $h_c/h = 0.4$, $\zeta = 1$, $a/b = 1$, $\Delta C = 0.01\%$, $k_t = 0.2$).

\[
\begin{align*}
\chi_{10} &= \int_0^a A_1 A_{1,xx} \, dx, & \chi_{11} &= \int_0^a A_{1,xx} \, dx, & \chi_{13} &= \int_0^a A_{1,111} \, dx; \\
\chi_{20} &= \int_0^a A_2^2 \, dx, & \chi_{21} &= \int_0^a A_1 A_{2,xx} \, dx, & \chi_{34} &= \int_0^a A_1 A_{1,111} \, dx; \\
\gamma_{10} &= \int_0^b \lambda_2 \, dx, & \gamma_{12} &= \int_0^b \lambda_k \lambda_{k,xx} \, dx, & \gamma_{20} &= \int_0^b \lambda_k \lambda_{k,xx} \, dx; \\
\gamma_{21} &= \int_0^b \lambda_{k,xx} \, dx, & \gamma_{23} &= \int_0^b \lambda_k \lambda_{k,111} \, dx, & \gamma_{34} &= \int_0^b \lambda_k \lambda_{k,111} \, dx;
\end{align*}
\]

\begin{align}
&b_{j1}^{T \text{ uniform}} = \frac{1}{2}, & b_{j2}^{T \text{ uniform}} = \frac{1}{2}, & b_{j1}^{T \text{ linear}} = \sum_{i=1}^{3} \int_{t_i}^{t_{i+1}} \hat{\alpha}_{j}^{(i)} \, dx_3, & b_{j2}^{T \text{ linear}} = \sum_{i=1}^{3} \int_{t_i}^{t_{i+1}} \hat{\alpha}_{j}^{(i)} \left(\frac{x_3}{h} + \frac{1}{2} \right) \, dx_3, \\
b_{j1}^{T \text{ nonlinear}, 1} = b_{j1}^{T \text{ nonlinear}, 2} = b_{j1}^{T \text{ linear}}, & b_{j2}^{T \text{ nonlinear}, 1} = \sum_{i=1}^{3} \int_{t_i}^{t_{i+1}} \hat{\alpha}_{j}^{(i)} \left(\frac{x_3}{h} + \frac{1}{2} \right) \, dx_3, & b_{j2}^{T \text{ nonlinear}, 2} = \sum_{i=1}^{3} \int_{t_i}^{t_{i+1}} \hat{\alpha}_{j}^{(i)} \left(1 - \cos \left(\frac{\pi}{2} \left(\frac{x_3}{h} + \frac{1}{2} \right) \right) \right) \, dx_3, & j = 1, 2.
\end{align}

(45)
For nontrivial solution of equation (43), the determinant $|A|$ equals zero. Solving equation $|A| = 0$ gives the buckling temperature change ΔT of the FG piezoelectric sandwich plates with lightweight core under the effects of the moisture conditions and external electric voltage.

6. Numerical results

6.1. Verification
The accuracy of the present results for the buckling temperature $T_{cr} = 10^{-3} \Delta T$ of simply supported FGM sandwich square plates subjected to uniform temperature rise obtained by the present refined shear deformation theory has been examined by comparing the obtained results with those presented by Zenkour and Sobhy [46] based on the sinusoidal shear deformation plate theory (SPT) and third-order theory (TPT) as shown in table 3. It is shown from this comparison that the present results are in a good agreement with the results of [46]. Table 4 shows the comparison between the results obtained by the current theory and those obtained by the TPT [53], SPT [54] and EPT [55] for different boundary conditions and core thickness. It can be noted for all boundary conditions and core thickness values that the present theory predicts results very close to those of other theories.

![Figure 5. Influences of the moisture change ΔC on the critical buckling temperature T_{cr} of SSSS FGP sandwich plates with (a) honeycomb core, (b) porous core (porous-I), (c) porous core (porous-II) and (d) porous core (porous-III) ($\eta = 1, h_c/h = 0.4$, $\zeta = 1, a/b = 1, V_k = 0.05\%$, $k_0 = 0.2$).]
6.2. Buckling results of sandwich plates with lightweight core

In this subsection, the numerical results of buckling temperature of the FG piezoelectric sandwich plates with lightweight core are presented. The mechanical and electrical properties of the piezoelectric materials are defined in Table 2.

The material properties of the lightweight core are: \(E_m = 70 \) GPa, \(\nu_m = 0.3 \), \(\rho_m = 2700 \) kg/m\(^3\), \(\alpha_m = 23 \times 10^{-6} \) K\(^{-1}\), \(\beta_m = 0.44 \) (wt%H\(_2\)O\(^-1\)). The following data are used in the present analysis: \(J = 0.0138571 \), \(\kappa = 2 \), \(\chi = -45 \), \(h = 3 \) mm, \(T_b = 100 \) K, \(C_b = 0 \). Table 5 lists the critical buckling temperature of FG piezoelectric sandwich plates with honeycomb core and porous core for different boundary conditions and core thickness. It can be noticed that the thermal conductivity of the honeycomb core is less than that of porous core, therefore the sandwich plate with honeycomb core needs more temperature to buckle. Care must be taken to note that the clamped condition enhances the plate stiffness. Accordingly, the buckling temperature of clamped sandwich plate is greater than that of the simply supported one. Moreover, increasing the lightweight core thickness weakens the strength of the plate leading to a reduction of the buckling temperature. Figures 4, 5 and 6
investigate the influences of the external electric voltage \((V_0^* = \frac{V_0}{k_0})\), moisture change \(\Delta C\) and core thickness, respectively, on the critical buckling temperature \(T_{cr}\) of SSSS FGP sandwich plates with honeycomb core and porous core (porous-I, porous-II and porous-III). As mentioned above, the critical buckling temperature \(T_{cr}\) of the sandwich plates with honeycomb core is greater than that of the sandwich plates with porous core. It is also noted that the increase of the side-to-thickness ratio, electric voltage \(V_0^*\), moisture change \(\Delta C\) and core thickness leads to a severe reduction in the buckling \(T_{cr}\). Moreover, the effects of the electric voltage \(V_0^*\) and moisture change \(\Delta C\) are more pronounced for thin plates. Since the increase of the lightweight core thickness weakens the plate strength, the sandwich plate needs a little heat to buckle.

Influences of the power law index \(\eta\) and plate aspect ratio \(b/a\) on the critical buckling temperature \(T_{cr}\) of SSSS FGP sandwich plates with honeycomb core and porous core (porous-II) are discussed in figure 7. It is noted that the buckling temperature \(T_{cr}\) gradually decreases as the ratio \(b/a\) increases. While, it is no longer decreasing as the power law index \(\eta\) increases.

Critical buckling temperature \(T_{cr}\) of SSSS FGP sandwich plates with honeycomb core and porous core (porous-III) under uniform, linear and nonlinear temperature rise through the thickness is depicted in figure 8. It can be seen that the uniform temperature load leads to a minimum buckling temperature while the nonlinear one leads to a maximum buckling temperature. However, the intermediate buckling temperature occurs with the linear temperature rise. Figure 9 displays the impacts of the porosity factor \(k_0\) on the critical buckling temperature \(T_{cr}\) of SSSS FGP sandwich plates for different porous types (porous-I, porous-II and porous-III). It is noted from this figure that the critical buckling temperature \(T_{cr}\) increases as the porosity factor increases because the thermal conductivity decreases with increasing the pores in the core layer.

7. Conclusions

Thermal buckling load of an FGP sandwich plate with lightweight core under various boundary conditions and subjected to elevated temperature and humid conditions as well as external electric voltage is studied based on a modified four-unknown shear deformation plate theory. The temperature and moisture conditions are uniformly, linearly or nonlinearly varied through the thickness of the sandwich plate. The upper and lower face layers are made of FG piezoelectric materials. While, the lightweight core is considered as hexagonal honeycomb structure or functionally graded porous structure with different porosity distributions. The principle of virtual work is utilized to establish the stability equations involving the thermal, humid and electric resultant forces. The obtained results for FGM sandwich plates are compared with those available in the literature. In addition, the impacts of several parameters such as the plate geometry parameters, core type, power law index, moisture concentration, external applied voltage and boundary conditions on the buckling temperature of the sandwich plates with lightweight core are discussed. The numerical results support the ensuing conclusions:
The buckling temperature of clamped sandwich plate is greater than that of the simply supported one because the clamped condition enhances the plate stiffness.

Increasing the lightweight core thickness, external electric voltage and moisture concentration weakens the strength of the sandwich plate leading to a reduction of the buckling temperature.

Since increasing the porosity factor reduces the thermal conductivity of the core layer, the buckling temperature increases.

The results of the current study may help in designing and manufacturing more applicable structures that can be used in aerospace, automotive and high speed trains industry.

For more generality, the nonlinear temperature buckling of the FGP sandwich plate with lightweight core will be considered in a future work.

Acknowledgments

The author acknowledges the Deanship of Scientific Research, King Faisal University for the financial support under Nasher Track (Grant No. 206 126).

Figure 9. Influences of the porosity factor k_0 on the critical buckling temperature T_{cr} of SSSS FGP sandwich plates for differen porous types (a) porous-I, (b) porous-II and (c) porous-III ($t_h = 0.4k$, $\Delta C = 0.01$, $\zeta = \eta = 1$, $a/b = 1$, $V_{c0}^* = 0.05\%$).
Data availability statement

No new data were created or analysed in this study.

ORCID iDs

Mohammed Sobhy © https://orcid.org/0000-0002-5999-2169

References

[1] Chen D, Kitiyorchai S and Yang J 2016 Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core Thin-Walled Struct. 107 39–48
[2] Zeng S, Wang B L and Wang K F 2019 Nonlinear vibration of piezoelectric sandwich nanoplates with functionally graded porous core with consideration of flexoelectric effect Compos. Struct. 207 340–51
[3] Setoodeh A R, Shojaee M and Malekzadeh P 2019 Vibrational behavior of doubly curved smart sandwich shells with fg-entrc face sheets and fg porous core Composites Part B: Engineering 165 798–822
[4] Rostami R and Mohammadimehr M 2020 Vibration control of rotating sandwich cylindrical shell–reinforced nanocomposite face sheet and porous core integrated with functionally graded magneto–electro–elastic layers Eng. Comput. (https://doi.org/10.1007/s00366-020-01052-3)
[5] Hamed M A, Abo-bakre R M, Mohamed S A and Eltaher M A 2020 Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core Eng. Comput. 36 1929–46
[6] Duc N D, Seung-Eock K, Khoe N D and Chan D Q 2020 Nonlinear buckling and post-buckling analysis of shear deformable stiffened truncated conical sandwich shells with functionally graded face sheets and a functionally graded porous core Journal of Sandwich Structures & Materials 109963620906821
[7] Akbari H, Azadi M and Fahham H 2020 Free vibration analysis of thick sandwich cylindrical panels with saturated FG–porous core Mech. Based Des. Struct. Mach. (https://doi.org/10.1080/15399734.2020.1748051)
[8] Alambeigi K, Mohammadimehr M, Bamdad M and Rabczuk T 2020 Free and forced vibration analysis of a sandwich beam considering porous core and sma hybrid composite face layers on vlasov’s foundation Acta Mech. 231 199–218
[9] Scarpa F and Tomlinson G 2000 Theoretical characteristics of the vibration of sandwich plates with in-plane negative poisson’s ratio values Int. Sound Vib. 230 45–67
[10] Arzoo Y, Koyanagi I, Utsunomiya S and Kawada H 2010 Analysis of thermal deformation on a honeycomb sandwich cfpr mirror Mech. Adv. Mater. Structure. 17 328–34
[11] Katunin A 2014 Vibration–based spatial damage identification in honeycomb–core sandwich composite structures using wavelet analysis Compos. Struct. 118 385–91
[12] Duc N D, Seung-Eock K, Tuan N D, Tran P and Khoa N D 2017 New approach to study nonlinear dynamic response and vibration of sandwich composite cylindrical panels with auxetic honeycomb core layer Aerosp. Sci. Technol. 70 396–404
[13] Zhu X, Zhang J, Zhang W and Chen J 2019 Vibration frequencies and energies of an auxetic honeycomb sandwich plate Mech. Adv. Mater. Structure. 26 1951–7
[14] Sobhy M 2021 Differential quadrature method for magneto-hygrothermal bending of functionally graded graphene/al sandwich-curved beams with honeycomb core via a new higher-order theory Journal of Sandwich Structures & Materials 23 1662–700
[15] Nguyen N V, Nguyen-Xuan H, Nguyen T N, Kang J and Lee J 2021 A comprehensive analysis of auxetic honeycomb sandwich plates with graphene nanoplatelets reinforcement Compos. Struct. 259 115213
[16] Khorasani M, Soleimaniemjad Z, Arshid E, Lampiani L and Civalek O 2021 Thermo-elastic buckling of honeycomb micro plates integrated with fg-gips reinforced epoxy skins with stretching effect Compos. Struct. 258 113430
[17] Yaghooibi H and Taheri F 2020 Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous core reinforced with graphene nanoplatelets Compos. Struct. 252 112700
[18] Sobhy M 2020 Size dependent hygro-thermal buckling of porous fgm sandwich microplates and microbeams using a novel four-variable shear deformation theory International Journal of Applied Mechanics 12 2050017
[19] Sobhy M 2021 Piezoelectric bending of GPL-reinforced annular and circular sandwich nanoplates with FG porous core integrated with sensor and actuator using DQM Archives of Civil and Mechanical Engineering 21 78
[20] Abazid M A, Zenkour A M and Sobhy M 2020 Wave propagation in FG porous GPLs-reinforced nanoplates under in-plane mechanical load and Lorentz magnetic force via a new quasi 3D plate theory Mech. Based Des. Struct. Mach. (https://doi.org/10.1080/15399734.2020.1769651)
[21] Singh S J and Harsha S P 2021 Analysis of porosity effect on free vibration and buckling responses for sandwich sigmoid function based functionally graded material plate resting on Pasteernak foundation using Galerkin Vlasov’s method Journal of Sandwich Structures & Materials 23 1717–60
[22] Kumar P and Harsha S P 2021 Response analysis of hybrid functionally graded material plate subjected to thermo-electro-mechanical loading Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 235 613–27
[23] Kumar P and Harsha S P 2021 Vibration response analysis of exponential functionally graded piezoelectric (EFGP) plate subjected to thermo-electro-mechanical load Compos. Struct. 267 113901
[24] Dai H L, Fu Y M and Yang J H 2007 Electromagnetoelastic behaviors of functionally graded piezoelectric solid cylinder and sphere Acta Mech. Sin. 23 55–63
[25] Ueda S 2008 A cracked functionally graded piezoelectric material strip under transient thermal loading Acta Mech. 199 53–70
[26] Wang Y, Xu R Q and Ding H J 2010 Analytical solutions of functionally graded piezoelectric circular plates subjected to axisymmetric loads Acta Mech. 215 287–305
[27] Zenkour A M 2014 Exact solution of thermal stress problem of an inhomogeneous hygrothermal piezoelectric hollow cylinder Appl. Math. Modell. 38 6135–43
[28] Zenkour A M 2014 Hygrothermoelastic responses of inhomogeneous piezoelectric and exponentially graded cylinders Int. J. Press. Vessels Pip. 119 8–18
[29] Abdollahi M, Saidi A R and Mohammad M 2015 Buckling analysis of thick functionally graded piezoelectric plates based on the higher-order shear and normal deformable theory Acta Mech. 226 2497–510
[30] Su Z, Jin G and Ye T 2018 Electro-mechanical vibration characteristics of functionally graded piezoelectric plates with general boundary conditions Int. J. Mech. Sci. 138 42–53
[31] Marzbanrad J, Ebrahimi-Nejad S, Shaghagh S and Boreiry M 2018 Nonlinear vibration analysis of piezoelectric functionally graded nanobeam exposed to combined hygro-magneto-electro-thermo-mechanical loading Mater. Res. Express 5 075022
[32] Fang X Q, Zhu C S, Liu X and Zhao J 2018 Surface energy effect on nonlinear buckling and postbuckling behavior of functionally graded piezoelectric cylindrical nanoshells under lateral pressure Mater. Res. Express 5 045017
[33] Gao Y, Xiao W S and Zhu H 2019 Nonlinear bending and thermal post-buckling behavior of functionally graded piezoelectric nanosize beams using a refined model Mater. Res. Express 6 065065
[34] Li J, Xue Y, Li F and Narita Y 2019 Active vibration control of functionally graded piezoelectric material plate Compos. Struct. 207 509–18
[35] Zenkour A M and Aljadiani M H 2019 Porosity effect on thermal buckling behavior of actuated functionally graded piezoelectric nanoplates European Journal of Mechanics-A/Solids 78 103835
[36] Zenkour A M and Hafez Z S 2020 Bending analysis of functionally graded piezoelectric plates via quasi-3d trigonometric theory Mech. Adv. Mater. Struct. 27 1551–62
[37] Wang Q, Zhong R, Qin B and Yu H 2020 Dynamic analysis of stepped functionally graded piezoelectric plate with general boundary conditions. Smart Mater. Struct. 29 035022
[38] Bamdad M, Mohammadi M and Alamgei K 2019 Analysis of sandwich Timoshenko porous beam with temperature-dependent material properties: Magneto-electro-elastic vibration and buckling solution J. Vib. Control 25 2875–93
[39] Gibson I J and Ashby M F 1997 Cellular Solids: Structure and Properties (Cambridge, UK: Cambridge University Press)
[40] Zenkour A M 2005 A comprehensive analysis of functionally graded sandwich plates: Part 1 Deflection and stresses Int. J. Solids Struct. 42 5224–42
[41] Ke L L, Liu C and Wang Y S 2015 Free vibration of nonlocal piezoelectric nanoplates under various boundary conditions Physica E 66 93–106
[42] Ke L L, Wang Y S and Wang Z D 2012 Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory Compos. Struct. 94 2038–47
[43] Zenkour A M and Sobhy M 2018 Nonlocal piezo-hygrothermal analysis for vibration characteristics of a piezoelectric kelvin-voigt viscoelastic nanoplate embedded in a viscoelastic medium Acta Mech. 229 3–19
[44] Abazid M A and Sobhy M 2018 Thermo-electro-mechanical bending of FG piezoelectric microplates on Pasternak foundation based on a four-variable plate model and the modified couple stress theory Microsyst. Technol. 24 1227–45
[45] Sobhy M 2018 Magneto-electro-thermal bending of FG-graphene reinforced polymer doubly-curved shallow shells with piezoelectromagnetic faces Compos. Struct. 203 844–60
[46] Zenkour A M and Sobhy M 2010 Thermal buckling of various types of FGM sandwich plates Compos. Struct. 93 93–102
[47] Fazzolari F A and Carrera E 2014 Thermal stability of FGM sandwich plates under various through-the-thickness temperature distributions J. Therm. Stresses 37 1449–81
[48] Shimp R P 2002 Refined plate theory and its variants AIAA J. 40 137–46
[49] Zenkour A M and Sobhy M 2021 Axial magnetic field effect on wave propagation in bi-layer FG graphene platelet-reinforced nanobeams Eng. Comput. 1–17
[50] Radwan A F and Sobhy M 2020 Transient instability analysis of viscoelastic sandwich CNTs-reinforced microplates exposed to 2D magnetic field and hygrothermal conditions Compos. Struct. 245 112349
[51] Sobhy M and Radwan A F 2020 Influence of a 2D magnetic field on hygrothermal bending of sandwich CNTs-reinforced microplates with viscoelastic core embedded in a viscoelastic medium Acta Mech. 231 71–99
[52] Sobhy M and Zenkour A M 2018 Thermal buckling of double-layered graphene system in humid environment Mater. Res. Express 5 015028
[53] Reddy J N 1984 A simple higher-order theory for laminated composite plates J. Appl. Mech. 51 745–52
[54] Touratier M 1991 An efficient standard plate theory Int. J. Eng. Sci. 29 901–16
[55] Karama M, Afag K S and Moust S 2003 Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity Int. J. Solids Struct. 40 1523–46
[56] Brush D O and Almroth B O 1975 Buckling of Bars, Plates, and Shells (New York: McGraw-Hill)
[57] Meyers C A and Hyster M W 1991 Thermal buckling and postbuckling of symmetrically laminated composite plates J. Therm. Stresses 14 519–40
[58] Samsam Sharlat B A and Eslami M R 2007 Buckling of thick functionally graded plates under mechanical and thermal loads Compos. Struct. 78 433–9
[59] Sobhy M 2021 3-D elasticity numerical solution for magneto-hygrothermal bending of FG graphene/metal circular and annular plates on an elastic medium European Journal of Mechanics-A/Solids 88 104265
[60] Bodaghi M and Shakeri M 2012 An analytical approach for free vibration and transient response of functionally graded piezoelectric cylindrical panels subjected to impulsive loads Compos. Struct. 94 1721–35