Utility of Immunophenotypic Measurable Residual Disease in Adult Acute Myeloid Leukemia—Real-World Context

Nikhil Patkar1, Chinmayee Kakirde1, Prasanna Bhanse1, Swapnali Joshi1, Shruti Chaudhary1, Yajamanam Badrinath1, Sitaram Ghoghale1, Nilesh Deshpande1, Shraddha Kadechkar1, Gaurav Chatterjee1, Sadhana Kannan2, Dhanalaxmi Shetty2, Anant Gokarn4, Sachin Punatkar4, Avinash Bonda4, Lingaraj Nayak4, Hasmukh Jain4, Bhausaheb Bagal4, Hari Menon5, Manju Sengar4, Syed Hasan Khizer4, Navin Khattry4, Prashant Tembhare1, Sumeet Gujral1 and Papagudi Subramanian1

1 Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Mumbai, India, 2 Biostatistics, ACTREC, Tata Memorial Centre, Mumbai, India, 3 Department of Cytogenetics, ACTREC, Tata Memorial Centre, Mumbai, India, 4 Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India, 5 Haemat-Oncology, CyteCare Cancer Hospital, Bangalore, India

Introduction: One of the mainstays of chemotherapy in acute myeloid leukemia (AML) is induction with a goal to achieve morphological complete remission (CR). However, not all patients by this remission criterion achieve long-term remission and a subset relapse. This relapse is explained by the presence of measurable residual disease (MRD).

Methods: We accrued 451 consecutive patients of adult AML (from March 2012 to December 2017) after informed consent. All patients received standard chemotherapy. MRD testing was done at post-induction and, if feasible, post-consolidation using 8- and later 10-color FCM. Analysis of MRD was done using a combination of difference from normal and leukemia-associated immunophenotype approaches. Conventional karyotyping and FISH were done as per standard recommendations, and patients were classified into favorable, intermediate, and poor cytogenetic risk groups. The presence of \(\text{FLT3}\text{-ITD, NPM1} \) and \(\text{CEBPA} \) mutations was detected by a fragment length analysis-based assay.

Results: As compared to Western data, our cohort of patients was younger with a median age of 35 years. There were 62 induction deaths in this cohort (13.7%), and 77 patients (17.1%) were not in morphological remission. The median follow-up was 26.0 months. Poor-risk cytogenetics and the presence of MRD in intermediate cytogenetic and \(\text{NPM1} \) mutated groups was also highly predictive of inferior outcome. On multivariate analysis, immunophenotypic MRD at the end of induction and \(\text{FLT3}\text{-ITD} \) emerged as independent prognostic factors predictive for outcome.
INTRODUCTION

Acute myeloid leukemia (AML) is a biologically heterogeneous disease in which the karyotype is highly predictive of outcome (1). Chromosomal translocations resulting in chimeric gene fusions such as RUNX1-RUNX1T1, CBFB-MYH11, KMT2A, BCR-ABL1, DEK-NUP214, NUP98-NSD1, GATA2, and MECOM are the important determinants of outcome in AML (2). The last few years have seen an explosion of information in terms of newer gene mutations in AML that affect diverse biological pathways. Some of these genes are of prognostic relevance and may offer newer avenues for risk stratification of AML (3-10). The presence of mutations in genes encoding for activated signaling pathways (e.g., KIT and FLT3), or NPM1, chromatin-splicesome complex, tumor suppressor genes (such as TP53 and WT1) and transcription factors (such as RUNX1 and CEBPA), and cohesion complex are increasingly recognized as important genetic alterations in AML (2). Patients who bear favorable risk mutations (NPM1 and CEBPA) do not benefit from intensive therapeutic regimens such as allogeneic bone marrow transplantation (aBMT), as this has a transplant-related mortality risk of 10-20% (11). Patients who harbor unfavorable mutations such as FLT3-internal tandem duplications (FLT3-ITD) are less than likely to attain long-term disease-free survival unless treated with intense regimens (11).

In addition to cytogenetics and molecular risk stratification, early response to chemotherapy is an important variable. Traditionally, evaluation of this remission has been done by light microscopy, where morphological remission is defined by <5% blasts in the post-treatment bone marrow (12). The detection of residual disease by techniques more sensitive than light microscopy is called measurable residual disease (MRD) and is an important prognostic marker, which dictates outcome of disease. Importantly, detectable MRD is a measure of impending relapse and offers a therapeutic window to modify treatment to prevent overt relapse or de-intensify treatment. For AML with recurrent cytogenetic abnormalities as well as NPM1 gene mutations, real-time PCR is the most efficient method of detecting the tumor burden. For patients who do not harbor these abnormalities, immunophenotyping is the most accepted and established technique to detect MRD (13, 14). Immunophenotyping-based AML MRD (FCM-MRD) is conceptually different from MRD detection in B or T-ALL. This is because of a lack of common cell surface antigens or a uniform definition for abnormal myeloid blasts. Even so, with knowledge of normal regenerative hematopoiesis and use of carefully selected antibody combinations that characterize myeloid maturation from normal progenitors as well as detect leukemia-associated immunophenotype (LAIP), FCM-MRD can be reliably performed (15). The clinical significance of MRD in AML has been proved in numerous studies. Earlier studies by San Miguel et al. demonstrated the utility of post-induction MRD in risk stratification of AML (16, 17). Following this, a number of studies have been published across Europe and North America that have established the role of MRD in AML as a prognostic and predictive marker for children as well as adults (18-26). Based on these data, it seems that morphologic estimation of blasts to evaluate response to chemotherapy is a thing of the past and MRD-based risk assessment is ready for primetime in AML (27). There have been very few studies on MRD in acute lymphoblastic leukemia from India (28) and none on AML. Furthermore, very few studies have been published from developing countries on FCM-MRD in AML. From a resource-constrained setting such as India, conventional treatment strategies of AML therapy, which include bone marrow transplant, are beyond the reach of majority of patients due to socioeconomic considerations. So, there is a clinical need to identify patients with good prognosis to target scarce available resources effectively. With that goal in mind, this lacuna in literature needs to be addressed.

In this manuscript, which is a first from India, we describe a single center experience on FCM-MRD for AML. We also describe the follow-up details of these patients and describe how MRD contributes to early determination of relapse.

MATERIALS AND METHODS

Patient Accrual and Initial Work Up

The protocol was approved by the Institutional ethics committee. We accrued all consecutive adult (>18 years) patients of de novo AML who consented to being a part of the study and who received standard chemotherapy from March 2012 to December 2017. In all patients, the diagnosis of AML was made as per WHO 2008 recommendations. Conventional karyotyping and FISH were performed as per standard recommendations (29).

Treatment Protocols and Sampling for MRD

All patients received “3+7” induction therapy with daunorubicin (60 mg/m² D1–D3) and cytarabine (100 mg/m²/day continuous infusion D1–D7). We initially defined complete remission (CR) and CR with incomplete hematological recovery (CRi) as per European LeukemiaNet (ELN) recommendations. However, as we could not detect any clinical relevance of this distinction in our cohort (OS (p = 0.4) and RFS (p = 0.8), we then
defined CR as a morphologic leukemia-free state. Thus, CR was defined as per morphology (≤5% blasts in bone marrow/absence of circulating blasts and blasts with Auer rods) at the end of induction. If they achieved CR, they received three courses of 12–18 g/m² high-dose cytarabine (HiDAC) or underwent allogeneic transplant if feasible. BM aspiration was performed 21–28 days after the start of induction chemotherapy for MRD and morphology. If BM showed morphological remission (i.e., normocellular marrow with ≤5% blasts and normal peripheral blood counts), then patients received first post-remission consolidation therapy with 12–18 g/m² of cytosine arabinoside (HiDAC) over a 5-day period. BM aspiration was repeated 21–28 days after first consolidation chemotherapy for MRD and morphology.

Detection of Gene Mutations
Genomic DNA was extracted from bone marrow or peripheral blood using commercial silica membrane-based columns (QIAamp DNA Blood Mini Kit, Qiagen, Germany) and was used for downstream applications.

a. FLT3-ITD and NPM1 mutation detection: A multiplex PCR procedure was used, with fluorescently labeled (FAM, NED) primer combinations that detected the FLT3-ITD and NPM1 insertion mutations. Amplicons generated by FLT3 and NPM1 primers spanned the commonly occurring ITD regions and the common type A–F mutations (30).

b. CEBPA: Mutation analysis for this gene was approached by fragment length analysis as well (31). Fluorescently labeled primers flanking TAD1 and ZIP domains were multiplexed in a single PCR reaction, whereas a separate reaction amplified the TAD2 domain. PCR was followed by capillary electrophoresis on an ABI3500 genetic analyzer.

Immunophenotypic Assessment of MRD
Our approach to detection of immunophenotypic MRD detection has been published previously (32). The analysis was performed as follows: Familiarity with normal myeloid maturation and standardization of templates were achieved on stressed regenerative bone marrows (e.g., ALL post-induction that were MRD negative) using the antibody panels described previously (32). Patients accrued from July 2012 to February 2015 (138 patients) were processed using a three-tube, eight-color MRD assay. Subsequently, patient samples of 225 patients were processed using a two-tube, 10-color MRD assay. Identical panel was used for diagnostic sample, post-induction, and post-consolidation. A total of 500,000 events were acquired per tube with the three-tube assay, and 1.6 million events per tube were obtained per tube with the two-tube, 10-color assay. Analysis of MRD was done using Kaluza 1.3 by a combination of difference from normal approach that focused on the development of myeloid progenitors to mature cells and LAIP approaches. Any detectable MRD was called as MRD positive, and MRD was calculated as a percentage of abnormal leukemic cells per total nucleated cells. To demonstrate sensitivity of the MRD assay, we performed a linearity experiment where we serially diluted an OCIAML3 cell line in a normal bone marrow. The results for the 10-color assay have been published recently (32). To demonstrate that the eight-color assay has a comparable sensitivity, we performed a similar experiment where the OCIAML3 cell line was diluted in normal bone marrow. We could demonstrate that the eight-color assay has a similar sensitivity of 0.01% (see Supplementary Data Sheet).

| TABLE 1 | Demographic and clinical characteristics of patients. |
Parameter	Observation (%)
Demographics	
Age	Range: 18–63 years; median: 35 years
Sex	Male:female: 1.6:1
Clinical characteristics	
Total number of patients accrued	451
Induction deaths	62
Refractory cases	77
Remission characteristics	
Complete remission (CR)	58
CR with incomplete hematologic recovery (CRI)	254
Laboratory characteristics (n = 312)	
Cytogenetics	
1. Favorable risk cytogenetics	110 (35.3%)
2. Intermediate-risk cytogenetics*	164 (52.6%)
3. Poor-risk cytogenetics	38 (12.2%)
Molecular testing	
1. FLT3-internal tandem duplication	68 positive out of 311 tested (21.9%)
2. NPM1 mutation	92 positive out of 311 tested (29.9%)
3. CEBPA mutation	24 positive out of 293 tested (8.2%)
FCM—measurable residual disease	
1. Post-induction MRD measurements	300
a. MRD positive	109 positive out of 300 (36.3%)
b. MRD negative	191 negative (63.7%)
2. Post-consolidation MRD measurements	188
a. MRD positive	48 positive out of 188 (25.5%)
b. MRD negative	140 negative (74.5%)
3. Interaction between MRD measurements	183 (58.7%) out of 312
a. Paired (PI and PC) MRD measurements	41 (22.4%)
b. MRD positive at all measurements (PI and PC)	40 (21.9%)
c. PI MRD positive; negative subsequently	4 (2.2%)
d. PC MRD positive; negative at PI time point	98 (53.6%)
e. Negative at all time points	

*Includes patients that could not be classified as either favorable or poor risk due to metaphase failures.
Evaluation of Treatment Outcome

Overall survival (OS) was calculated from date of diagnosis to time of last follow-up or death. Relapse-free survival (RFS) was calculated from date of CR until time to relapse or death or last follow-up if in CR. Results of the MRD assays, cytogenetic and molecular risk groups were analyzed for their impact on OS and RFS using log-rank test (33). Statistical analysis was done using MedCalc 14.8. Univariate analysis of the MRD assays and cytogenetic and molecular risk groups was analyzed for their impact on OS and RFS using the Kaplan–Meier technique and compared using log-rank test (Figure 1F). All variables found significant in the univariate analysis were considered for multivariate analysis. A Cox proportional hazards regression model was used for multivariate analysis to assess the effect of risk factors on the OS and RFS. Separate Cox regression models were reported for post-induction and consolidation sampling of MRD results.

NPM1 NGS MRD

Our strategy for NPM1 MRD using ultradeep sequencing has been described recently (32). Briefly, Illumina adapter-linked locus-specific primers were incorporated in a one-step PCR reaction along with sample-specific dual indices using 600 ng of DNA as template. Data were analyzed using PANDAseq, bwa v0.7.12, Samtools v0.1.19, and VarScan v.2.3.7. The assay was validated to have a sensitivity of 0.001%. NPM1 NGS MRD was measured as a 1-log reduction between PI and PC time points. Here, patients with <1-log reduction were classified as NPM1 NGS MRD positive and those with >1-log reduction were classified as NPM1 NGS MRD negative. In the present manuscript, we specifically combined the two modalities of MRD detection (NGS and FCM), where patients classified as dual MRD negative were compared to the rest.

Differences in Relapse Characteristics of Patients Where Post-induction MRD Was Assessed

To determine any differences in PI MRD-positive patients who relapsed and those who did not relapse, we compared the baseline characteristics of these groups for FLT3-ITD, NPM1, CEBPA, and cytogenetic risk using chi-squared test. A similar analysis was done to ascertain differences in PI MRD-negative patients.

RESULTS

A summary of clinical and laboratory parameters can be appreciated in an overview in Table 1.
years (age ranging from 18 to 63 years), with a slight male predominance (M/F = 1.6:1). There were 62 induction deaths in our patient cohort, and additionally, 77 patients were not in morphological remission. After exclusion of these patients, a total of 312 patients remained. The subsequent analysis refers to these 312 patients.

Clinical Outcome

The median follow-up was 26.0 months. The survival analysis indicated that the mean OS was 41.4 months (median not reached; 95% CI: 38.2–44.6) and median RFS was 26 months (95% CI: 20.3–32.1). Only 20 patients (6.4%) out of the 312 analyzed here received allogeneic bone marrow transplantation. There was no difference in outcome for OS ($p = 0.2$) and RFS ($p = 0.3$) between patients who underwent transplantation in comparison to patients who did not undergo it. As compared to Western data, this lack of difference in survival is presumably due to the very small numbers of patients in the transplant group. This is typical of a resource-constrained setting.

Cytogenetics and Gene Mutations

Patients could be classified as favorable cytogenetic risk ($n = 110$, 35.3%), intermediate risk ($n = 69$, 22.1%), and poor risk ($n = 38$, 12.2%). We were unable to classify 95 patients because of metaphase failures (30.4%). The presence of poor-risk cytogenetics predicted for an inferior OS ($p = 0.02$) as well as RFS ($p = 0.01$) as can be seen in Figures 2A,B. FLT3-ITD was harbored by 21.9% of 311 patients tested ($n = 68$). The presence of FLT3-ITD predicted for an inferior OS ($p = 0.09$) and RFS ($p = 0.3$) between patients who underwent transplantation in comparison to patients who did not undergo it. As compared to Western data, this lack of difference in survival is presumably due to the very small numbers of patients in the transplant group. This is typical of a resource-constrained setting.

Prevalence of MRD

Post-induction MRD sampling was done in 300 patients, out of which MRD could be detected in 109 patients (36.3%) at a range from 0.02% to 17.3% (median = 0.9%). Post-consolidation MRD results were available in 188 samples, out of which MRD was detected in 48 (25.5%) ranging from 0.002 to 7.7% (median = 0.3%). The presence of post-induction MRD assessment was significantly associated with adverse outcome with respect to OS ($p = 0.01$) as well as RFS ($p = 0.004$) as seen in Figures 1A,B. However, the presence of MRD at the end of consolidation was not associated with an adverse outcome with respect to OS ($p = 0.16$) and RFS ($p = 0.09$). These details can be appreciated in Tables 1–3.

Correlation of MRD With Specific Risk Groups

We then examined whether the assessment of MRD in individual cytogenetic and molecular risk groups was predictive of outcome. The presence of post-induction MRD was predictive of an
in this subgroup (AML. We found a strong correlation of MRD and outcome in favorable or poor-risk cytogenetic AML. We with inferior OS as well as RFS (post-consolidation was associated the presence of MRD at the end of induction (MRD negative Mean OS: 46.7 months; 95% CI (39.7–51.6 months)

Post-induction MRD intermediate cytogenetic risk

	Overall survival (OS)	Relapse-free survival (RFS)
MRD negative	Mean OS: 42.8 months; 95% CI (39.0–46.5 months)	Mean RFS: 32.1 months; 95% CI (28.3–35.9 months)
	Median OS: not reached	Median RFS: 31.8 months; 95% CI (24.8–38.8 months)
MRD positive	Mean OS: 35.5 months; 95% CI (30.0–41.1 months)	Mean RFS: 25.0 months; 95% CI (20.4–29.7 months)
	Median OS: 34.3 months; 95% CI (16.5–35.8 months)	Median RFS: 17.3 months; 95% CI (13.7–26.6 months)

Post-consolidation MRD intermediate cytogenetic risk

	Overall survival (OS)	Relapse-free survival (RFS)
MRD negative	Mean OS: 41.2 months; 95% CI (37.1–45.2 months)	Mean RFS: 33.3 months; 95% CI (29.2–37.5 months)
	Median OS: not reached	Median RFS: 34.7 months; 95% CI (25.3–45.0 months)
MRD positive	Mean OS: 36.3 months; 95% CI (29.1–43.5 months)	Mean RFS: 28.1 months; 95% CI (21.4–34.7 months)
	Median OS: 12.1 months; 95% CI (8.8–20.4 months)	Median RFS: 18.0 months; 95% CI (10.7–37.1 months)

Post-induction MRD NPM1 mutated AML

	Overall survival (OS)	Relapse-free survival (RFS)
MRD negative	Mean OS: 46.7 months; 95% CI (39.7–51.6 months)	Mean RFS: 35.7 months; 95% CI (29.5–41.9 months)
	Median OS: not reached	Median RFS: 41.9 months; 95% CI (25.3–45.0 months)
MRD positive	Mean OS: 25.9 months; 95% CI (16.5–35.4 months)	Mean RFS: 21.7 months; 95% CI (13.1–30.3 months)
	Median OS: 15.5 months; 95% CI (9.6–35.8 months)	Median RFS: 9.7 months; 95% CI (7.7–32.1 months)

OS, overall survival; RFS, relapse-free survival; CI, confidence interval. The parameters with statistically significant P-values are highlighted in bold.

Interaction Between MRD Time Points

A total of 183 paired MRD samples were analyzed, where FCM-MRD assessment was done at both PI and PC time points. These results can be appreciated in Table 1 and Figures 2E,F. Patients with detectable MRD at both time points had an inferior OS [mean OS: 33.9 months; 95% CI (26.1–41.6 months), median OS: 32.3 months; 95% CI (13.1–34.3 months); p = 0.05] as compared to FCM-MRD patients [mean OS: 24.6 months; 95% CI (18.0–31.2 months), median RFS: 17.3 months; 95% CI (8.9–32.3 months); p = 0.01] as seen in Figures 1D, F. Similar trend was seen at the end of consolidation for OS and RFS (n = 7 out of 49 cases, 8.2%, p = 0.06). We further assessed the relevance of MRD at the end of induction in NPM1 and FLT3-ITD mutated AML (n = 38). Here, the presence of MRD (n = 10, 26.3%) was significantly predictive of an inferior outcome for OS (p = 0.02) but not RFS (p = 0.14). Multivariate models included cytogenetics, FLT3-ITD, and MRD. Separate models were considered for PI and PC MRD. On multivariate analysis, both immunophenotypic MRD (end of induction) and FLT3-ITD emerged as independent prognostic factors for RFS (p = 0.003) as seen in Table 4. For OS, only the presence of end induction MRD mattered in the multivariate model (Table 4).

NPM1 NGS MRD

Poor correlation of values was found when single time point NPM1 NGS MRD measurements (for example, NPM1 NGS MRD measured at PI time point) were compared to FCM MRD (32). We then assessed NPM1 NGS MRD in 54 cases (where paired samples were available and MRD was defined by log reduction values) in combination with FCM-MRD. Here, we determined that patients who were dual MRD negative had a far superior OS (p = 0.002) and RFS (p < 0.001) as compared to other patients [for dual MRD-negative group; mean OS: 53.8 months;
TABLE 4 | Prognostic significance of MRD, gene mutations, and cytogenetics in AML by multivariate Cox analysis.

MRD time point	Factors	HR	95% CI	p-value
MULTIVARIATE COX ANALYSIS: OVERALL SURVIVAL				
Post-induction MRD	Cytogenetic risk—Intermediate risk	1.43	0.91–2.25	0.12
	Cytogenetic risk—Poor risk	1.74	0.93–3.24	0.08
	Post-induction MRD positive	**1.62**	**1.1–2.37**	**0.015**
	FLT3-internal tandem duplication positive	1.4	0.9–2.2	0.15
Post-consolidation MRD	Cytogenetic risk—Intermediate risk	1.55	0.89–2.7	0.12
	Cytogenetic risk—Poor risk	2.1	1.0–4.4	0.06
	Post-consolidation MRD positive	1.41	0.84–2.4	0.19
	FLT3-internal tandem duplication positive	1.31	0.7–2.55	0.4
MULTIVARIATE COX ANALYSIS: RELAPSE-FREE SURVIVAL				
Post-induction MRD	Cytogenetic risk—Intermediate risk	1.14	0.79–1.64	0.5
	Cytogenetic risk—Poor risk	1.41	0.84–2.4	0.2
	Post-induction MRD positive	**1.61**	**1.17–2.22**	**0.003**
	FLT3-internal tandem duplication positive	1.51	1.04–2.2	0.03
Post-consolidation MRD	Cytogenetic risk—Intermediate risk	1.11	0.70–1.75	0.7
	Cytogenetic risk—Poor risk	1.52	0.80–2.89	0.2
	Post-consolidation MRD positive	1.4	0.90–2.17	0.14
	FLT3-internal tandem duplication positive	1.42	0.80–2.51	0.14

ITD, internal tandem duplication; MRD, measurable residual disease; OS, overall survival; RFS, relapse-free survival; HR, hazards ratio; CI, confidence interval. The parameters with statistically significant P-values are highlighted in bold.

FIGURE 2 | Impact of cytogenetics, FLT3-internal tandem duplication, paired time point (PI and PC) FCM MRD analysis, and combined modality (FCM + NGS) MRD in NPM1 mutated AML on outcome in patients of acute myeloid leukemia. OS, overall survival; RFS, relapse-free survival. (A,B) The presence of poor-risk cytogenetics predicted for an inferior OS (p = 0.02) as well as RFS (p = 0.01) as compared to favorable risk. (C,D) The presence of FLT3-ITD predicted for an inferior OS (p = 0.09) and RFS (p = 0.02). (E,F) Patients with detectable MRD at both time points had an inferior OS [median OS: 32.3 months; 95% CI (13.1–34.3 months); p = 0.06] and RFS [median RFS: 17.3 months; 95% CI (8.9–32.9 months); p = 0.01] as compared to patients who were MRD negative at both time points [median not reached] and RFS [median RFS: 36.0 months; 95% CI (26.0–45.0 months)]. (G,H) For NPM1 mutated patients, who were MRD negative by both FCM and NGS had a far superior OS (p = 0.002) and RFS (p = 0.001) as compared to other patients.

95% CI (45.6–62.0 months), median not reached; mean RFS: 49.8 months; 95% CI (40.3–59.3 months), median not reached; for either MRD-positive group; mean OS: 26.9 months; 95% CI (17.7–36.0 months), median OS: 15.5 months; 95% CI (9.4–18.9 months); mean RFS: 20.9 months; 95% CI (7.0–15.7 months). These results are seen in Table 2 and Figures 2G,H.
Differences in Relapse Characteristics of Patients Where Post-induction MRD Was Assessed

No differences were found in characteristics of patients who were MRD positive and relapsed/did not relapse. Similarly, there were no differences in patients who were MRD negative. These results can be seen in Supplementary Data Sheet.

DISCUSSION

There have been a number of recently published papers that have specifically addressed issues pertaining to the treatment of AML in a resource-constrained setting (34–42). What is common to these studies is a younger patient cohort, higher percentage of deaths during induction, and survival metrics that are inferior when compared to western data. Higher mortality during induction in these cohorts has been attributed to suboptimal infrastructure in hospitals resulting in fungal and bacterial infections, which are often multi-drug resistant (34, 37). We are in agreement with other studies that financial constraints (34, 43) are a hurdle to the treatment of AML in India and result in some of the patients not getting treated. We are also in agreement with Lima and colleagues (37), in which the results seen in specific biological subtypes of AML (cytogenetics or gene mutations) may not be identical to what has been seen in well-controlled western clinical trials. However, what is unique to our paper is that none of these studies has addressed assessment of immunophenotypic MRD in a real-world context.

Analogous to others (17–19, 22, 44), we found that the presence of MRD at early time points is highly predictive of relapse. We also document a slightly higher frequency of MRD-positive cases in our cohort as compared to others, perhaps reflecting suboptimal intensity of drugs administered or scheduling of chemotherapy cycles. We are in agreement with other published papers that MRD is an independent prognostic factor in predicting outcome. Importantly, it predicts relapse in cases that are in morphological remission and indicates that morphological assessment of remission is perhaps unreliable (27, 45). We found that MRD assessment may not offer additional information in favorable and poor-risk AML and yields maximum information in intermediate-risk cytogenetics group (22). We also demonstrate that there is a definitive advantage of MRD assessment in NPM1 mutated AML. Here, the absence of MRD in even relatively not so favorable subsets for NPM1-positive FLT3-ITD-positive group predicted for a favorable outcome.

In our study, assessment of MRD was most useful in the intermediate cytogenetic risk group. Based on these data, we suggest that MRD-positive patients in the intermediate cytogenetic risk groups could perhaps be treated as high risk given their high potential to relapse. It has been published that nearly a quarter of AML patients who are MRD negative go on to relapse due to technical considerations, immunophenotypic shifts, or rapid emergence of chemoresistant clones (19, 22). Perhaps tracking of leukemia-specific mutations in the course of treatment using droplet digital PCR or next-generation sequencing will overcome the hurdles seen with immunophenotypic measurement of MRD.

Overall, our data seem to indicate that assessment of MRD in a resource-constrained setting adds much meaningful information supplementing conventional metrics such as cytogenetics and detection of mutations in FLT3, NPM1, and CEBPA genes. This information can be used for intensification of therapy for MRD-positive AMLs or de-intensification in MRD-negative AML patients. We hope that our results will add to the evidence that early assessment of AML MRD should be routinely done to guide post-remission treatment strategies.

DATA AVAILABILITY

All datasets generated for this study are included in the manuscript and/or the Supplementary Files.

ETHICS STATEMENT

This study was approved by the IEC III (project no 163) at ACTREC, Tata Memorial Centre. All the subjects were accrued only after proper informed consent and ethics approval by the institutional ethics committee.

AUTHOR CONTRIBUTIONS

NP: designed study, performed research, accrued the data, analyzed data, and wrote the paper. SHK: accrued the data. SKad, DS, AG, SP, AB, LN, HJ, BB, HM, MS, NK, and PS: accrued the data, analyzed data. CK, PB, SJ, SC, YB, SiG, ND, and GC: performed research. SKan, PT, and SuG: oversaw data analysis. PS and NP: designed study, performed research, accrued data, analyzed data, and wrote the paper.

FUNDING

This work was supported by the Wellcome Trust/DBT India Alliance Fellowship (grant number IA/CPhi/14/1/501485) awarded to NP. Initial part of the study (eight-color FCM) was funded by a Lady Tata Memorial Trust Grant awarded to NK.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2019.00450/full#supplementary-material
REFERENCES

1. Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH, et al. Refinement of cytogenetic classification in acute myeloid leukemia determination of prognostic significance of rare recurring clonal chromosomal abnormalities among 8576 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. (2010) 116:354–65. doi: 10.1182/blood-2009-11-254441

2. Dohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. (2017) 129:424–47. doi: 10.1182/blood-2016-08-733196

3. Abbas S, Lughart S, Kavelaars FG, Schelen A, Koenders JE, Zeilemaker A, et al. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood. (2010) 116:2122–6. doi: 10.1182/blood-2009-11-259087

4. Paschka P, Schlenk RF, Gaidzik VI, Hubank M, Kronke J, Bullinger L, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol. (2010) 28:3636–43. doi: 10.1200/jco.2010.28.3762

5. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan WMD, Chen K, et al. Genomic recommendations from an international expert panel. Blood. (2009) 105:1636–46. doi: 10.1182/blood-2009-07-254357

6. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood. (2011) 118:3803–10. doi: 10.1182/blood-2011-02-339747

7. Ommen HB. Monitoring minimal residual disease in acute myeloid leukemia: a review of the current evolving strategies. Ther Adv Hematol. (2016) 7:3–16. doi: 10.1177/2040620715614529

8. Hokland P, Cotter F, Mathews: standardizing minimal residual disease by flow cytometry for precursor B lineage acute lymphoblastic leukemia in a developing country. Cytometry B Clin Cytom. (2012) 82:252–8. doi: 10.1002/cyto.b.21017

9. San Miguel JF, Vidriales MB, Lopez-Berges C, Gutierrez N, Grimwade D, Russell N, Hills RK, et al. Prognostic relevance of treatment response measured by flow cytometric residual disease detection in older patients with acute myeloid leukemia. J Clin Oncol. (2013) 31:4123–31. doi: 10.1200/jco.2013.49.1753

10. Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. (2016) 374:2209–21. doi: 10.1056/NEJMoai1516192

11. Kern W, Bacher U, Haferlach T, Schnittger S, Haferlach C. The role of multiparameter flow cytometry for disease monitoring in AML. Best Pract Res Clin Haematol. (2010) 23:379–90. doi: 10.1016/j.beha.2010.06.007

12. San Miguel JF, Martinez A, Macedo A, Vidrias MB, Lopez-Berges C, Gonzalez M, et al. Immunophenotyping investigation of minimal residual disease is a useful approach for predicting relapse in acute myeloid leukemia patients. Blood. (1997) 90:2465–70.

13. San Miguel JF, Vidrias MB, Lopez-Berges C, Diaz-Mediavilla J, Gutierrez N, Canizzi C, et al. Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification. Blood. (2001) 98:1746–51. doi: 10.1182/blood.v98.e1746

14. Freeman SD, Virgo P, Couzens S, Grimwade D, Russell N, Hills RK, et al. Prognostic value of monitoring minimal residual disease in patients with acute myeloid leukemia. J Clin Oncol. (2013) 31:4076–85. doi: 10.1200/jco.2013.49.1753
an eight-year experience at a university hospital. Acta Haematol. (2014) 132:144–51. doi: 10.1159/000356794

37. Lima AS, de Mello MR, Fernandes E, Bezerra MF, Oliveira MM, Duarte BK, et al. Clinical outcomes of patients with acute myeloid leukemia: evaluation of genetic and molecular findings in a real-life setting. Blood. (2015) 126:1863–5. doi: 10.1182/blood-2015-07-657551

38. Sandes AE, Ribeiro JC, Barroso RS, Silva MR, Chauffaille ML. Improving the outcomes of elderly patients with acute myeloid leukemia in a Brazilian University Hospital. Clinics. (2011) 66:1335–40. doi: 10.1590/s1807-59322011000800005

39. Nucci M, Garnica M, Gloria AB, Lehugeur DS, Dias VC, Palma LC, et al. Invasive fungal diseases in haematopoietic cell transplant recipients and in patients with acute myeloid leukaemia or myelodysplasia in Brazil. Clin Microbiol Infect. (2013) 19:745–51. doi: 10.1111/1469-0691.12002

40. Bahl A, Sharma A, Raina V, Kumar L, Bakhshi S, Gupta R, et al. Long-term outcomes for patients with acute myeloid leukaemia: a single-center experience from AIIMS, India. Asia Pac J Clin Oncol. (2015) 11:242–52. doi: 10.1111/acoj.12333

41. Hokland P, Cotter F. Real world data on acute myeloid leukaemia therapy from the developing world–an eye-opener. Br J Haematol. (2015) 170:1–2. doi: 10.1111/bjh.13410

42. Callera F, Callera AF, Rosa ES. Trends in mortality of adult patients diagnosed with myeloid leukemia from 1994 to 2011 in southeastern Brazil. Rev Bras Hematol Hemoter. (2015) 37:7–11. doi: 10.1016/j.rbh.2014.11.011

43. Gupta VG, Arora B, Radhakrishnan V, Banavali S, Bakhshi S. Treatment rates of paediatric acute myeloid leukaemia: a view from three tertiary centres in India. Br J Haematol. (2016) 175:346–7. doi: 10.1111/bjh.13858

44. Buccisano F, Maurillo L, Spagnoli A, Del Principe ML, Fraboni D, Panetta P, et al. Cytogenetic and molecular diagnostic characterization combined to postconsolidation minimal residual disease assessment by flow cytometry improves risk stratification in adult acute myeloid leukemia. Blood. (2010) 116:2295–303. doi: 10.1182/blood-2009-12-258178

45. Ravandi F, Jorgensen JL. Monitoring minimal residual disease in acute myeloid leukemia: ready for prime time? J Natl Compr Cancer Netw. (2012) 10:1029–36. doi: 10.6004/jnccn.2012.0105

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Patkar, Kakirde, Bhanshe, Joshi, Chaudhary, Badrinath, Ghoghale, Deshpande, Kadechkar, Chatterjee, Kannan, Shetty, Gokarn, Punatkar, Bonda, Nayak, Jain, Bagal, Menon, Khizer, Khattri, Tembhare, Gujral and Subramanian. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.