Abstract. The aim of the present study was to investigate the presence and biological function of microRNA-92a (miR-92a) in chondrogenesis and cartilage degeneration. Human adipose-derived mesenchymal stem cells (hADSCs) in micromass and chondrocyte-like ATDC5 cells were induced to chondrogenesis, and primary human/mouse chondrocytes (PHCs/PMCs) and chondrogenic ATDC5 cells were stimulated with interleukin-1β (IL-1β). An miR-92a mimic/inhibitor was transfected into the ATDC5 cells using lipofectamine 2000. Gene expression was analyzed using reverse transcription-quantitative polymerase chain reaction. Alcian blue was used to stain the cartilage nodules and chondrogenic micromass. The potential target genes, signaling pathways and functions of miR-92a were examined using miRanda, miRDB, CLIP-Seq, TargetScan and Kyoto Encyclopedia of Genes and Genomes. The expression of miR-92a was elevated in the chondrogenic ATDC5 cells and hADSCs, and also in the IL-1β-induced ATDC5 cells, PMCs and PHCs. Forced expression of miR-92a enhanced the expression levels of col9a2 and aggrecan. A total of 279 genes were predicted as potential target genes of miR-92a. The phosphoinositide 3-kinase/Akt, ErbB and focal adhesion kinase pathways, extracellular matrix (ECM)–receptor interaction and the mammalian target of rapamycin (mTOR) signaling pathway were suggested to mediate the effects of miR-92a on chondrogenesis and cartilage degeneration. These results demonstrated that miR-92a was involved in chondrogenesis and the chondrocyte response induced by IL-1β. miR-92a positively contributed to the expression of col9a2 and of aggrecan.

Introduction

Cartilage tissues are degenerated and are destroyed in osteoarthritic joints, which are more prevalent in elderly individuals (1). Although arthroplasty can efficiently relieve the symptoms of osteoarthritis, implant loosening is inevitable in the years following arthroplasty (1). Tissue engineered cartilage has been suggested as an improved substitution for conventional arthroplasty. Therefore, it is necessary to understand the molecular mechanisms underlying cartilage generation and degeneration.

Subsequent to mesenchymal condensation, mesenchymal stem cells sense cell-cell and cell-extracellular matrix (ECM) contact, which is termed focal adhesion (2), followed by differentiation into chondrocytes and expression of ECM. There are other exogenous stimuli and intracellular signaling pathways regulating chondrogenesis and cartilage degeneration, including the phosphoinositide 3-kinase(Akt), ErbB and focal adhesion kinase pathways, extracellular matrix (ECM)-receptor interaction and the mammalian target of rapamycin (mTOR) signaling pathway were suggested to mediate the effects of miR-92a on chondrogenesis and cartilage degeneration. These results demonstrated that miR-92a was involved in chondrogenesis and the chondrocyte response induced by IL-1β. miR-92a positively contributed to the expression of col9a2 and of aggrecan.

Key words: chondrogenesis, cartilage, osteoarthritis, microRNA-92a, col9a2
Materials and methods

The Ethics Committee of Sun Yat-Sen University (Guangzhou, China) approved the experiments performed in the present study. Procedures involving human subjects were performed in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki). Informed consent was obtained from the patients prior to inclusion in the study. The experiments involving mice were performed in accordance with the Laboratory Animal Center of Sun Yat-Sen University and the Guide for the Care and Use of Laboratory Animals.

Primary chondrocyte isolation. Subsequent to obtaining informed consent, primary human chondrocytes (PHCs) were isolated from the cartilage of patients undergoing hip surgery. The patients included two females, aged 31 and 24 years, who were undergoing surgery for a femoral neck fracture at the First Affiliated Hospital of Sun Yat-Sen University. Patients with degraded cartilages, local or systemic immunological disorders or tumors were excluded from the investigation. The cartilage was carefully cut into sections and digested sequentially in pronase (cat. no. 10165921001; Roche Diagnostics, Basel, Switzerland) for 90 min and collagenase P (cat. no. 11213865001; Roche Diagnostics) for ~7 h on a 37˚C stirring-plate. The chondrocytes were then collected by centrifugation (1,000 x g for 3 min) of the digestion solution and then were rinsed with Ca/Mg-free phosphate-buffered saline (cat. no. 14190-094; Gibco Life Technologies, Paisley, UK) three times. The chondrocytes were seeded into flasks containing Dulbecco’s modified Eagle’s medium (DMEM/F12; cat. no. SH30023.01B; GE Healthcare Life Sciences, Logan, UT, USA) with 5% fetal bovine serum (FBS; cat. no. 10165-092; Gibco Life Technologies, Paisley, UK) three times. The chondrocytes were then subcultured when cells reached 90–100% confluence during the subcultures. The culture medium was replaced every 2 days and the cells were subcultured when cells reached 90-100% confluence during the expansion culture. All the experiments were completed within 20 passages. The chondrogenic differentiation was induced using ITS+ Premix (15-17). The chondrogenic culture medium was then replaced daily.

PHCs were cultured in DMEM/F12, 5% FBS, 1% penicillin and streptomycin and ITS+ at 37˚C in a 5% CO₂ humidified atmosphere.

The PMCs were cultured for expansion in M199 (cat. no. 11150-059; Gibco Life Technologies), 10% FBS, 1% penicillin and streptomycin, basic fibroblast growth factor (cat. no. 450-33; PeproTech, Oakland Park, CA, USA) and epidermal growth factor (cat. no. 315-09; PeproTech), at 37°C in a 5% CO₂ humidified atmosphere.

Interleukin-1β (IL-1β)-treated chondrocytes. ATDC5 cells were maintained in chondrogenic medium with 1% ITS+ for 14 days at 37°C to form chondrogenic ATDC5 cells. Chondrogenic ATDC5 cells, PHCs and PMCs, at the fourth passage, were treated with recombinant IL-1β (cat. no. 200-01B; PeproTech) at 1 ng/ml for 4 h (18-20).

Morphological analysis. The stained ATDC5 cells were fixed in formalin for 4 h at room temperature, and were stained with 1 mg/ml alcan blue 8GX for 20 min at room temperature, followed by examination using microscopy (Axio Imager Z1; Carl Zeiss AG, Oberkochen, Germany). The micromass was harvested at 0, 7 and 14 days. The micromass was examined by imaging with the M205 FA microscope [Leica Microsystems AG, Heerbrugg, Switzerland]. The micromass was fixed in formalin, embedded in paraffin, and stained with alcan blue (14). Images were then captured under microscopy.

Reverse transcription-quantitative polymerase chain reaction (RT–qPCR) assays. Total RNA was extracted from the cells using an miRNeasy Mini kit (cat. no. 271004; Qiagen, Hilden, Germany), according to the manufacturer's instructions. The concentration and purity of the extracted RNA was analyzed using an Epoch Multi-Volume Spectrophotometer System (BioTek Instruments, Inc., Winooski, VT, USA). The cDNA of...
was obtained from mRNA and miRNAs using a PrimeScript® miRNA cDNA Synthesis kit (cat. no. DRR350; Takara Bio, Inc., Otsu, Japan), according to the manufacturer’s instructions.

Semi-qPCR was performed using SYBR® Premix Ex Taq™ II (cat. no. DRR081; Takara Bio, Inc.) and a Bio-Rad IQ5 system (Bio-Rad Laboratories, Inc., Hercules, CA, USA). The concentration of reagents and cycling conditions were according to the manufacturer’s instructions. The cycles began at 95˚C for 30 sec, followed by 40 cycles of 95˚C for 5 sec and 60˚C for 30 sec. Ten nanograms of cDNA was added into the 25 µl reaction volume. The primer sequences are presented in Table I.

Transfection assays. The condition and efficiency of transfection assays were verified using a CY3-labelled siR‑Ribo™ Transfection Control (cat. no. siN05815122149‑1‑1; Guangzhou RiboBio Co., Ltd., Guangzhou, China). The ATDC5 cells (4x10^4) were seeded into a 6-well plate with DMEM/F12 with 10% FBS, and were allowed to grow at 37˚C until they had reached 50-70% confluence. Lipofectamine® 2000 transfection reagent (cat. no. 11668; Invitrogen Life Technologies, Carlsbad, CA, USA) was then used to transfect the micrON™ mmu-miR-92a-3p mimic/inhibitor (cat. nos. miR10000539-1-2 and miR20000539-1-2; Guangzhou RiboBio Co., Ltd.) and micrON™ mimic/inhibitor negative control (cat. no. miR01101‑1‑2 and miR02101‑1‑2; Guangzhou RiboBio Co., Ltd.) into the cells, according to the manufacturer's instructions. Subsequent to 6 h transfection, chondrogenic differentiation was induced by replacing the medium with chondrogenic medium containing 1% ITS+ Premix.

Target prediction. The potential target genes of miRNAs were predicted using the following online algorithms: miRanda (August 2010 release; http://www.microrna.org/), miRDB (MirTarget2_v4.0; http://www.mirdb.org/miRDB/), CLIP-Seq (2012-03-28; http://mirtarclip.mbc.nctu.edu.tw/) and TargetScan (version 6.2; http://targetscan.org/). Genes predicted by three or four separate algorithms were considered as potential target genes.

Based on these predicted target genes, the signaling pathways potentially regulated by miR-92a were analyzed using the Kyoto Encyclopedia of Genes and Genomes (KEGG, kobas2.0-20120208; http://www.genome.jp/kegg/) database and the possible function of miR-92a was predicted.

Table I. Primer sequences for reverse transcription-quantitative polymerase chain reaction.

Gene	Primer sequence (5’-3’)
Mmu/hsa-U6	Forward: CTCGCTTCGGCAGCACA
 | Reverse: AACGCTTACGAATTTGCGT |
| Mmu-GAPDH | Forward: TGTGTCGGTCTGCTGAGATCTGA
 | Reverse: TTGCTGGTTGAGATTCTGAGGAGGG |
| Mmu/hsa-mir-92a | TATTCGACTTGGCCCGCCGCTG
 | Forward: CCCGCCTTCCCAATTAGGAC
 | Reverse: GGGATTAAGAGCTCAAGGTGTGTTT |
| Mmu-col2a1 | Forward: TTCTGCTGATAATTCTGAGGGACAGAGAGG
 | Reverse: GCACTCACTGACTCGGTGGG |
| Mmu-Sox9 | Forward: ATGCTTTACGCTTGCTACCAA
 | Reverse: GCCATGTTTGTGAGTGTGAG |
| Mmu-Col10a1 | Forward: ATGCATTCAGCTATCCTGAGCGCAGAGAG
 | Reverse: AAGATGGAAGATTTGCTGAGCTGTG |
| Mmu-run2 | Forward: GCCATCGTGATGTTCTGCTGCTGCTGCTGCTG |
| Hsa-GAPDH | Forward: GGAGCGAGATCCCTCCAAAT
 | Reverse: GGCTGTTTGTGAGTGTGAG |
| Hsa-mmp13 | Forward: TCCCTATGTTGGGATAAACATATG
 | Reverse: GCCATCGTGAAAGATCTGTGAAAAT |
| Hsa-col2a1 | Forward: GAGGGCAATAGCAGGTTCAGTA
 | Reverse: TGGGGTCAATGTCATAGTGG |
| Hsa-col10a1 | Forward: CACCAAGCATTCCAGAGGATCC
 | Reverse: AGGTTTGTGCTGATAGCTC |

MOLECULAR MEDICINE REPORTS 12: 4877–4886, 2015
Results

Expression of miR-92a is elevated in chondrogenic differentiation. The micromass produced from the hADSCs in chondrogenic medium was embedded in paraffin, cut into sections and stained with alcian blue (Fig. 1A). The expression levels of miR-92a, col2a1 and col10a1 increased in the chondrogenic hADSCs (Fig. 1B). The expression levels of mir-92a and the chondrogenic marker of col2a1 peaked at day 7 of chondrogenic induction, and the hypertrophic marker of col10a1 peaked at day 14.

Statistical analysis. All experiments were performed in triplicate. The quantitative data was expressed as the mean ± confidence interval (mean ± 1/2 CI). Differences between the groups were analyzed using Student’s t-test or analysis of variance with SPSS, version 13.0 (SPSS, Inc., Chicago, IL, USA). The least significant difference test and Tamhane’s T2 test were used in conditions with, and without, equal variances, respectively. The qualitative data was analyzed using Fisher’s Exact test. P<0.05 was considered to indicate a statistically significant difference.
Following 14 days of chondrogenic differentiation with ITS+ Premix, ATDC5 cells exhibited marked staining with alcian blue, compared with the cells without ITS+ Premix (Fig. 2A and B). The expression of col2a1 peaked at day 14, coll0a1 peaked at day 28 and miR-92a peaked at day 21 (Fig. 2C).

Expression of miR-92a is increased in IL-1β-treated chondrocytes. Expression levels of miR-92a and mmp13 were upregulated in the PHCs and PMCs treated with 1 ng/ml IL-1β for 4 h, compared with the control (Fig. 3A and B). The expression levels of miR-92a and mmp13 were elevated, and that of col2a1 was suppressed in a time-dependent manner.

Table II. Relative mRNA expression levels in ATDC5 cells transfected with miR-92a mimic or inhibitor.

Gene	Mimic (50 nM)	Mimic (100 nM)	Inhibitor (50 nM)	Inhibitor (100 nM)
	Fold change P-value	Fold change P-value	Fold change P-value	Fold change P-value
Col2a1	0.89 0.24 0.14	0.74 0.02 0.10	1.11 0.14 0.10	0.40 <0.001 0.10
Coll0a1	1.10 0.17 0.06	1.11 0.12 0.01	1.36 <0.001 0.12	0.75 0.001 0.05
Comp	0.61 <0.001 0.07	1.24 <0.001 0.07	0.91 0.014 0.06	0.24 <0.001 0.04
Agc	3.52 0.001 0.47	6.89 <0.001 0.76	0.56 <0.001 0.01	0.26 <0.001 0.01
Mmp-13	1.94 0.004 0.47	3.03 <0.001 0.14	1.00 0.994 0.03	0.67 <0.001 0.02
Co9a2	3.80 0.01 0.60	14.97 <0.001 1.95	0.37 <0.001 0.09	0.10 <0.001 0.02
Sox9	2.45 <0.001 0.26	4.15 <0.001 0.50	1.18 0.15 0.16	1.10 0.40 0.23
Runx2	1.59 <0.001 0.16	2.16 <0.001 0.12	0.91 0.19 0.02	1.00 0.98 0.13

Expression of chondrogenic markers in ATDC5 cells transfected with miR-92a mimic or inhibitor at the indicated doses. Subsequent to transfection, ATDC5 cells were cultured in chondrogenic medium with ITS+ Premix for 4 days. Chondrogenic markers were measured using reverse transcription-quantitative polymerase chain reaction. Co9a2 and aggrecan were markedly upregulated in the miR-92a mimic groups, but were downregulated in the inhibitor groups, in a dose-dependent manner. No clear trends were observed for the other markers. miR-92a, microRNA-92a; SD, standard deviation.
miR-92a AND CHONDROGENESIS

HOU et al: miR-92a AND CHONDROGENESIS

4882

in the chondrogenic ATDC5 cells treated with 1 ng/ml IL-1β (Fig. 3C).

Col9a2 and aggrecan may be regulated by miR‑92a. In order to investigate the effect of miR-92a on chondrogenesis, the expression levels of miR-92a were manipulated via transfection with a mimic or inhibitor. The altered expression of miR-92a affected chondrogenic markers, increasing the expression levels of col9a2 and aggrecan in a dose-dependent manner, compared with the untransfected control. In addition, the miR-193b-3p inhibitor reduced the expression levels of col9a2 and aggrecan in a dose-dependent manner, compared with the control (Table II).

Predicted target genes, signaling pathways and functions of miR‑92a.
The four algorithms, miRanda, miRDB, CLIP-Seq and TargetScan, were used for prediction of the miR-92a target genes. The general distribution of the predicted potential target genes is shown in Fig. 4. A total of 279 genes were predicted as potential target genes of miR-92a. In order to minimize possible false positive predictions, only genes predicted by three or four algorithms were identified as potential target genes of miR-92a. miR-92a, microRNA-92a. Numbers refer to genes predicted by one of the four software programs.

Table III. Predicted signaling pathways, based on the potential target genes of miR-92a.

Signaling pathway	P-value	Predicted target gene	Function in chondrogenesis
PI3K-Akt	0.064	Sgk3, Phlp2, Pten, Pik3r3, Tsc1, Itga5, Itga6, Colla2, Akt1, Bcl2111 and Itgav	Synergizing with runx2 to enhance normal hypertrophic differentiation and endochondral bone growth; promoting matrix synthesis and chondrocyte survival in adult articular chondrocytes (22).
ErbB	0.076	Akt1, Pik3r3, Map2k4 and Braf	Contributing to expression of aggrecanases and matrix metalloproteinases, delayed chondrogenesis and inhibition of the PI3K-Akt signaling pathway via downstream MAPK activation (23).
Focal adhesion	0.014	Rap1b, Pten, Pik3r3, Itga5, Itga6, Braf, Colla2, Akt1 and Itgav	Inhibiting chondrogenesis via expression of actin and activation of the RhoA/ROCK pathway (24).
ECM-receptor interaction	0.024	Colla2, Sdc2, Itga5, Itga6 and Itgav	Inhibiting chondrogenesis via Itga5-mediated cellular-ECM interaction (25).
mTOR	0.007	Pten, Tsc1, Pik3r3, Braf and Akt1	Reducing bone growth and hypertrophy; enhancing insulin-like growth factor I mediated proteoglycan synthesis in adult articular chondrocytes (5).

PI3K, phosphoinositide 3-kinase; MAPK, mitogen-activated protein kinase; ROCK, Rho-associated protein kinase; ECM, extracellular matrix; mTOR, mammalian target of rapamycin.

PBK, phosphoinositide 3-kinase; MAPK, mitogen-activated protein kinase; ROCK, Rho-associated protein kinase; ECM, extracellular matrix; mTOR, mammalian target of rapamycin.
Figure 5. Predicted signaling pathways mediating the effects of miR-92a on chondrogenesis and cartilage degeneration. Predicted potential target genes of miR-92a are indicated by the red boxes. (A) PI3K-Akt, (B) ErbB and (C) focal adhesion signaling pathways were predicted based on the potential target genes of miR-92a. miR-92a, microRNA-92a; PI3K, phosphoinositide-3 kinase; mTOR, mammalian target of rapamycin.
Previous studies have suggested a role for miR-92a in renal tumorigenesis via the gene expression of VHL (26), and in human acute promyelocytic leukemia via the expression of p63 (27). An additional study identified the positive effects of miR-92a on the proliferation, differentiation and survival of chondrogenic progenitors via the targeting of nog3, an inhibitor of the bone morphogenetic protein (BMP) signaling pathway (28). Although miR-92a was observed to contribute to chondrogenesis by enhancing the expression of col2a1 in the study by Ning et al (28), no significant trend in the expression of col2a1 was not observed in the present study following transfection of either the miR-92a mimic or inhibitor. This discrepancy may be due to differences in experimental subjects and signaling pathways. In the study by Ning et al (28), the BMP signaling pathway (smad2/3) was observed to mediate the effects of miR-92a on in vivo pharyngeal chondrogenesis. In the present study, cultured ATDC5 cells were used for the investigation of miR-92a and chondrogenesis, which are associated with the autocrine transforming growth factor-β (smad2/3) signaling pathway (29).

In the study by Ning et al (28), the morphological defects resulting from the inhibition of nog3, one of the target genes of miR-92a’s, were partially reversed by p53 co-inhibition, suggesting a contribution of miR-92a-nog3-apoptosis/proliferation to in vivo morphological regulation of pharyngeal cartilage formation. During chondrogenesis, high levels of type 9 collagen and aggrecan are expressed, along with additional matrix proteins to form the cartilage matrix, with col9a2 and aggrecan considered as chondrogenic markers (30). Col9a2 and aggrecan were previously demonstrated to be associated with a number of diseases, including osteoarthritis (31,32), degeneration of intervertebral discs (33,34) and multiple epiphyseal dysplasia, characterized as the deformed deposition

Figure 5. Continued. Predicted signaling pathways mediating the effects of miR-92a on chondrogenesis and cartilage degeneration. Predicted potential target genes of miR-92a are indicated by the red boxes. (D) ECM-receptor interaction and (E) mTOR signaling pathways were predicted based on the potential target genes of miR-92a. miR-92a, microRNA-92a; PI3K, phosphoinositide-3 kinase; mTOR, mammalian target of rapamycin.
of cartilage at the ends of the bones (32,35,36). The present study hypothesized that col9a2 may be another mediator of the degeneration of cartilage, followed by miR-92a knockdown. For the upstream regulation of col9a2 and aggrecan, Sox9 has been previously suggested as to be critical in initiating the expression of col9a2 and aggrecan (37), although multiple enhancers have been observed to initiate expression of aggrecan (38). However, more detailed information is required on the regulation of the expression levels of col9a2 and aggrecan in order to identify the cure for these diseases.

In the present study, the results indicated that miR-92a may contribute to the upregulation of col9a2 and aggrecan, without enhancing the expression of sox9. These results provided novel insight into the upstream regulation of col9a2 and aggrecan, beyond what is already known about sox9 in relation to col9a2 and aggrecan. In addition, the results suggested another possible mechanism of a miR-92a-col9a2-cartilage deformity axis contributing to cartilage deformity following miR-92a knockdown. Further investigations are required in order to verify the effect of miR-92a on the in vivo expression levels of col9a2, aggrecan, and cartilage degeneration, and to determine the underlying mechanisms.

Several previous studies investigating miRNAs used one or two algorithms to predict the target genes, with subsequent mechanistic experiments, based on the predicted genes (39,40). However, each of these widely used algorithms has an intrinsic false positive rate. The false positive rate is 22-31% for TargetScan, 24-39% for miRanda and ~30% for PicTar (41). In the present study, four algorithms were used, and an intersection set of predicted genes from at least three algorithms was identified as a potential target gene. Based on the potential target genes, KEGG analysis was then used to predict several signaling pathways that possibly contribute to the effect of miR-92a on chondrogenesis. KEGG is a database, which is usually used for the prediction of function and signaling pathways from large scale molecular information of high-throughput experiments, including sequencing. This prediction method enables the minimization of false positive rates and assist in understanding the possible function of miR-92a in a wider context (42). Investigations of underlying mechanisms can be performed using these predictions, including luciferase reporter assays of miR-92a and 3'-UTR of Akt1.

In conclusion, the present study demonstrated the presence of miR-92a in chondrogenesis and the chondrocyte response induced by IL-1β. The positive contribution of miR-92a in the expression of col9a2 and aggrecan was observed and the PI3K-Akt, ErbB and focal adhesion kinase pathways, ECM-receptor interaction, and mTOR signaling pathway were indicated as potential mediators of the effects of miR-92a on chondrogenesis and cartilage degeneration.

Acknowledgements

The authors would like to thank to Dr Xuerong Li, Dr Shan Li and Dr Shang Mei at the Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University (Guangzhou, China) for their technical assistance.

The present study was supported by the National Natural Science Foundation of China (grant nos. 81301558, 81371941 and 81171709), the Doctoral Scientific Fund Project of the Ministry of Education of China (grant no. 2013011120074) and the Natural Science Foundation of Guangdong Province, China (grant no. s2013040016269). The sponsors had no involvement in the study design; collection, analysis and interpretation of data; the writing of the manuscript; or in the decision to submit the manuscript for publication.

References

1. Li Y, Wei X, Zhou J and Wei L: The age-related changes in cartilage and osteoarthritis. Biomed Res Int 2013: 916530, 2013.
2. Mathieu PS and Loboa EG: Cytoskeletal and focal adhesion influences on mesenchymal stem cell shape, mechanical properties and differentiation down osteogenic, adipogenic and chondrogenic pathways. Tissue Eng Part B Rev 18: 436-444, 2012.
3. Beier F and Loeser RF: Biology and pathology of Rho GTPase, PI-3 kinase-Akt and MAP kinase signaling pathways in chondrocytes. J Cell Biochem 110: 573-580, 2010.
4. Chen J, Crawford R and Xiao Y: Vertical inhibition of the PI3K/Akt/mTOR pathway for the treatment of osteoarthritis. J Cell Biochem 114: 245-249, 2013.
5. Rokutanda S, Fujita T, Kanatani N, Yoshiida CA, Komori H, Liu W, Mizuno A and Komori T: Akt regulates skeletal development through GSK3, mTOR and FoxOs. Dev Biol 328: 78-93, 2009.
6. Mirnad CE: Intracellular signaling pathways in rheumatoid arthritis. J Clin Cell Immunol 4: 160, 2013.
7. Xiang CJ: Roles of epidermal growth factor family in the regulation of postnatal somatic growth. Endocr Rev 28: 284-296, 2007.
8. Barth RW and Sontheimer EJ: Origins and Mechanisms of miRNAs and siRNAs. Cell 136: 642-655, 2009.
9. Hong E and Reddi AH: MicroRNAs in chondrogenesis, articular cartilage and osteoarthritis: Implications for tissue engineering. Tissue Eng Part B Rev 18: 445-453, 2012.
10. Zhang Z, Kang Y, Zhang Z, Zhang H, Duan X, Liu J, Li X and Liao W: Expression of microRNAs during chondrogenesis of human adipose-derived stem cells. Osteoarthritis Cartilage 20: 1638-1646, 2012.
11. Thirion S and Berenbaum F: Culture and phenotyping of chondrocytes in primary culture. Methods Mol Med 100: 1-14, 2004.
12. Zhang ZJ, Zhang H, Kang Y, Sheng PY, Ma YC, Yang ZB, Zhang ZQ, Fu M, He AS, Liao WM, et al: miRNA expression profile during osteogenic differentiation of human adipose-derived stem cells. J Cell Biochem 113: 888-898, 2012.
13. Zhang L, Su P, Xu C, Yang J, Yu W and Huang D: Chondrogenic differentiation of human mesenchymal stem cells: A comparison between micromass and pellet culture systems. Biotechnol Lett 32: 1339-1346, 2010.
14. Estes BT, Diekman BO, Gimble JM and Guilak F: Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat Protoc 5: 1294-1311, 2010.
15. Yao Y and Wang Y: ATDC5: An excellent in vitro model cell line for skeletal development. J Cell Biochem 114: 1223-1229, 2013.
16. Newton PT, Staines KA, Spevak L, Boskey AL, Teixeira CC, Macrane VE, Canfield AE and Farquharson C: Chondrogenic ATDC5 cells: An optimised model for rapid and physiological matrix mineralisation. Int J Mol Med 30: 1187-1193, 2012.
17. Atsumi T, Miwa Y, Kimata K and Ikawa Y: A chondrogenic cell line derived from a differentiating culture of AT805 teratocarcinoma cells. Cell Differ Dev 30: 109-116, 1990.
18. Miyuki S, Nakata T, Otsuki S, Grogan SP, Higashiyama R, Inoue A, Kato Y, Sato T, Lutz MK, Asahara H, et al: MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum 60: 2723-2730, 2009.
19. Simsma-Maziel S and Monsonego-Ornan E: Interleukin-1β promotes proliferation and inhibits differentiation of chondrocytes through a mechanism involving down-regulation of FGFR-3 and p21. Endocrinology 153: 2296-2310, 2012.
20. MacRae VE, Farquharson C and Ahmed SF: The restricted potential for recovery of growth plate chondrogenesis and longitudinal bone growth following exposure to pro-inflammatory cytokines. J Endocrinol 189: 319-328, 2006.
21. Schmittgen TD and Livak KJ: Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3: 1101-1108, 2008.
22. Kita K, Kimura T, Nakamura N, Yoshikawa H and Nakano T: PI3K/Akt signaling as a key regulatory pathway for chondrocyte terminal differentiation. Genes Cells 13: 839-850, 2008.

23. Fisher MC, Clinton GM, Mahle NJ, Dealy CN: Requirement for ErbB2/ErbB signaling in developing cartilage and bone. Dev Growth Differ 49: 503-513, 2007.

24. Takahashi I, Onodera K, Sasano Y, et al: Effect of stretching on gene expression of beta1 integrin and focal adhesion kinase and on chondrogenesis through cell-extracellular matrix interactions. Eur J Cell Biol 82: 182-192, 2003.

25. Knudson CB: Hyaluronan and CD44: strategic players for cell-matrix interactions during chondrogenesis and matrix assembly. Birth Defects Res C Embryo Today 69: 174-196, 2003.

26. Valera VA, Walter BA, Linehan WM and Merino MJ: Regulatory Effects of microRNA-92 (miR-92) on VHL Gene Expression and the Hypoxic Activation of miR-210 in clear cell renal cell carcinoma. J Cancer 2: 515-526, 2011.

27. Sharifi M, Salehi R, Gheisari Y and Kazemi M: Inhibition of microRNA miR-92a induces apoptosis and inhibits cell proliferation in human acute promyelocytic leukemia through modulation of p63 expression. Mol Biol Rep 41: 2799-2808, 2014.

28. Ning G, Liu X, Dai M, Meng A and Wang Q: MicroRNA-92a upholds Bmp signaling by targeting noggin3 during pharyngeal cartilage formation. Dev Cell 24: 283-295, 2013.

29. Kawai J, Akiyama H, Shigeno C, Ito H, Konishi J and Nakamura T: Effects of transforming growth factor-beta signaling on chondrogenesis in mouse chondrogenic EC cells, ATDC5. Eur J Cell Biol 78: 707-714, 1999.

30. Okazaki K and Sandell LF: Extracellular matrix gene regulation. Clin Orthop Relat Res (427 Suppl): S123-S128, 2004.

31. Nakki A, Videnan T, Kujala UM, Suohonen M, Männikkö M, Peltonen L, Battie MC, Kaprio J and Saarela J: Candidate gene association study of magnetic resonance imaging-based hip osteoarthritis (OA): Evidence for COL9A2 gene as a common predisposing factor for hip OA and lumbar disc degeneration. J Rheumatol 38: 747-752, 2011.

32. Gelehrzer L, Ramesar R, Beighton P and Wallis G: A mutation in the variable repeat region of the aggrecan gene (AGC1) causes a form of spondyloepiphyseal dysplasia associated with severe, premature osteoarthritis. Am J Hum Genet 77: 484-490, 2005.

33. Aladin DM, Cheung KM, Chan D, Yee AF, Jim JJ, Luk KD and Lu WW: Expression of the Trp2 allele of COL9A2 is associated with alterations in the mechanical properties of human intervertebral discs. Spine (Phila Pa 1976) 32: 2820-2826, 2007.

34. Kim NK, Shin DA, Han IB, Yoo EH, Kim SH and Chung SS: The association of aggrecan gene polymorphism with the risk of intervertebral disc degeneration. Acta Neurochir (Wien) 153: 129-133, 2011.

35. Fiedler J, Stöve J, Heber F and Brenner RE: Clinical phenotype and molecular diagnosis of multiple epiphyseal dysplasia with relative hip sparing during childhood (EDM2). Am J Med Genet 112: 144-153, 2002.

36. Briggs MD, Choi H, Warman ML., Loughlin JA, Wordsworth P, Sykes BC, Irven CM, Smith M, Wynne-Davies R, Lipson MH, et al.: Genetic mapping of a locus for multiple epiphyseal dysplasia (EDM2) to a region of chromosome 1 containing a type IX collagen gene. Am J Hum Genet 55: 678-684, 1994.

37. Bi W, Denga JM, Zhang Z, Behringer RR and de Crombrugghe B: Sox9 is required for cartilage formation. Nat Genet 22: 85-89, 1999.

38. Hu G, Codina M and Fisher S: Multiple enhancers associated with ACAN suggest highly redundant transcriptional regulation in cartilage. Matrix Biol 31: 328-337, 2012.

39. Ge YZ, Xu LW, Xu Z, et al.: Expression Profiles and Clinical Significance of MicroRNAs in Papillary Renal Cell Carcinoma: A STROBE-Compliant Observational Study. Medicine (Baltimore) 94: e767, 2015.

40. Xie J, Tan ZH, Tang X, et al: MiR-374a-5p suppresses RECK expression and promotes gastric cancer cell invasion and metastasis. World J Gastroenterol 20: 17439-17447, 2014.

41. Bentwich I: Prediction and validation of microRNAs and their targets. Feds Lett 579: 5904-5910, 2005.

42. EIHeftawi M, Soliman B, Abu-Shahha N and Amer M: An integrative meta-analysis of microRNAs in hepatocellular carcinoma. Genomics Proteomics Bioinformatics 11: 354-367, 2013.