A FAMILY OF SUMMATION FORMULAS INVOLVING GENERALIZED HARMONIC NUMBERS

1CHUANAN WEI, 2QINGLUN YAN, 3DIANXUAN GONG

1Department of Information Technology
Hainan Medical College, Haikou 571101, China
2College of Mathematics and Physics
Nanjing University of Posts and Telecommunications, Nanjing 210046, China
3College of Sciences
Hebei Polytechnic University, Tangshan 063009, China

ABSTRACT. Combining the derivative operator with a binomial sum from the telescoping method, we establish a family of summation formulas involving generalized harmonic numbers.

1. INTRODUCTION

For \(x \in \mathbb{C} \) and \(l, n \in \mathbb{N}_0 \), define the functions \(H_{n}^{(l)}(x) \) by

\[
H_{0}^{(l)}(x) = 0 \quad \text{and} \quad H_{n}^{(l)}(x) = \sum_{k=1}^{n} \frac{1}{(x+k)^l} \quad \text{with} \quad n = 1, 2, \ldots .
\]

Fixing \(x = 0 \) in the functions just mentioned, we obtain the generalized harmonic numbers:

\[
H_{0}^{(l)}(0) = 0 \quad \text{and} \quad H_{n}^{(l)}(0) = \sum_{k=1}^{n} \frac{1}{k^l} \quad \text{with} \quad n = 1, 2, \ldots .
\]

When \(l = 1 \), they reduce to the classical harmonic numbers:

\[
H_{0}^{(1)} = 0 \quad \text{and} \quad H_{n}^{(1)} = \sum_{k=1}^{n} \frac{1}{k} \quad \text{with} \quad n = 1, 2, \ldots .
\]

There exist many elegant identities involving generalized harmonic numbers. They can be found in the papers [1]-[8].

For a differentiable function \(f(x) \), define the derivative operator \(D_x \) by

\[
D_x f(x) = \frac{d}{dx} f(x).
\]

Then it is not difficult to show the following two derivatives:

\[
D_x \left(\frac{x+n}{n} \right) = \left(\frac{x+n}{n} \right) H_n(x),
\]

\[
D_x H_n^{(l)}(x) = -l H_n^{(l+1)}(x).
\]
For a complex sequence \(\{ \tau_k \}_{k \in \mathbb{Z}} \), define the difference operator by
\[
\nabla \tau_k = \tau_k - \tau_{k-1}.
\]
Then we have the following relation:
\[
\nabla \left(\frac{(y+k+1)}{(x+k)} \right) = \frac{(y+k)}{(x+k)} \frac{y - x + 1}{y + 1}.
\]
Combining the last equation and the telescoping method:
\[
\sum_{k=1}^{n} \nabla \tau_k = \tau_n - \tau_0,
\]
we get the simple binomial sum:
\[
\sum_{k=1}^{n} \left(\frac{y+k}{n} \right) = \left(\frac{y+n+1}{n} \right) \frac{y + 1}{y - x + 1} - \frac{y + 1}{y - x + 1}.
\]

By means of the derivative operator \(D_x \) and the binomial sum \((\text{I})\), we shall explore systematically closed expressions for the family of sums:
\[
\sum_{k=1}^{n} k^i H_k^{(l)}(x) \quad \text{with} \quad i, l \in \mathbb{N}_0.
\]
When \(x = p \) with \(p \in \mathbb{N}_0 \), they give closed expressions for the following sums:
\[
\sum_{k=1}^{n} k^i H_p^{(l+k)}.
\]

2. Summation Formulas

Theorem 1. For \(x \in \mathbb{C} \) and \(l \in \mathbb{N}_0 \), there holds the summation formula:
\[
\sum_{k=1}^{n} H_k^{(l+1)}(x) = (x + n + 1)H_n^{(l+1)}(x) - H_n^{(l)}(x).
\]

Proof. Applying the derivative operator \(D_x \) to \((\text{I})\), we achieve the identity:
\[
\sum_{k=1}^{n} \left(\frac{y+k}{x+k} \right) H_k(x) = \frac{y + 1}{y - x + 1} \left(\frac{y+n+1}{n} \right) \left(H_n(x) - \frac{1}{y - x + 1} \right) + \frac{y + 1}{(y - x + 1)^2}.
\]
Letting \(y = x \) in \((2)\), we attain the case \(l = 0 \) of Theorem \(\text{I}\)
\[
\sum_{k=1}^{n} H_k(x) = (x + n + 1)H_n(x) - n.
\]
Suppose that the following identity
\[
\sum_{k=1}^{n} H_k^{(l+1)}(x) = (x + n + 1)H_n^{(l+1)}(x) - H_n^{(l)}(x)
\]
is true. Applying the derivative operator \(D_x \) to the last equation, we have
\[
\sum_{k=1}^{n} H_k^{(l+2)}(x) = (x + n + 1)H_n^{(l+2)}(x) - H_n^{(l+1)}(x).
\]
This proves Theorem \(\text{I}\) inductively. \(\square\)

Making \(x = p \) in Theorem \(\text{I}\) we get the following equation.
Corollary 2. For \(l, p \in \mathbb{N}_0 \), there holds the summation formula:

\[
\sum_{k=1}^{n} H_{p+k}^{(l+1)} = (p + n + 1)H_{p+n}^{(l+1)} - (p + 1)H_p^{(l+1)} - H_{p+n}^{(l)} + H_p^{(l)}.
\]

3. Summation formulas with the factor \(k \)

Setting \(y = x + 1 \) in (2) and considering the relation:

\[
\sum_{k=1}^{n} \frac{(x+1)^k}{k} H_k(x) = \sum_{k=1}^{n} H_k(x) + \sum_{k=1}^{n} kH_k(x),
\]

we gain the following equation by using Theorem 1.

Proposition 3. For \(x \in \mathbb{C} \), there holds the summation formula:

\[
\sum_{k=1}^{n} kH_k(x) = \frac{(x + n + 1)(n - x)}{2} H_n(x) + \frac{(2x - n + 1)n}{4}.
\]

Corollary 4 \((x = p \text{ with } p \in \mathbb{N}_0 \text{ in Proposition 3})\):

\[
\sum_{k=1}^{n} kH_{p+k} = \frac{(n - p)(p + n + 1)}{2} H_{p+n} + \frac{p(p + 1)}{2} H_p - \frac{n(n - 2p - 1)}{4}.
\]

Theorem 5. For \(x \in \mathbb{C} \) and \(l \in \mathbb{N}_0 \), there holds the summation formula:

\[
\sum_{k=1}^{n} kH_k^{(l+2)}(x) = \frac{(x + n + 1)(n - x)}{2} H_n^{(l+2)}(x) + \frac{2x + 1}{2} H_n^{(l+1)}(x) - \frac{H_n^{(l)}(x)}{2}.
\]

Proof. Applying the derivative operator \(D_x \) to Proposition 3, we achieve the case \(l = 0 \) of Theorem 5:

\[
\sum_{k=1}^{n} kH_k^{(2)}(x) = \frac{(x + n + 1)(n - x)}{2} H_n^{(2)}(x) + \frac{2x + 1}{2} H_n(x) - \frac{n}{2}.
\]

Suppose that the following identity

\[
\sum_{k=1}^{n} kH_k^{(l+2)}(x) = \frac{(x + n + 1)(n - x)}{2} H_n^{(l+2)}(x) + \frac{2x + 1}{2} H_n^{(l+1)}(x) - \frac{H_n^{(l)}(x)}{2},
\]

is true. Applying the derivative operator \(D_x \) to the last equation, we have

\[
\sum_{k=1}^{n} kH_k^{(l+3)}(x) = \frac{(x + n + 1)(n - x)}{2} H_n^{(l+3)}(x) + \frac{2x + 1}{2} H_n^{(l+2)}(x) - \frac{H_n^{(l+1)}(x)}{2}.
\]

This proves Theorem 5 inductively.

Taking \(x = p \) in Theorem 5, we attain the following equation.

Corollary 6. For \(l, p \in \mathbb{N}_0 \), there holds the summation formula:

\[
\sum_{k=1}^{n} kH_{p+k}^{(l+2)} = \frac{(p + n + 1)(n - p)}{2} H_{p+n}^{(l+2)} + \frac{p(p + 1)}{2} H_p^{(l+2)} + \frac{2p + 1}{2} \left(H_{p+n}^{(l+1)} - H_p^{(l+1)} \right) - \frac{H_{p+n}^{(l)} - H_p^{(l)}}{2}.
\]
4. Summation formulas with the factor k^2

Letting $y = x + 2$ in (2) and considering the relation:

$$
\sum_{k=1}^{n} \frac{(x+2)^k}{(x+k)} H_k(x) = \sum_{k=1}^{n} H_k(x) + \frac{2x + 3}{(x+1)(x+2)} \sum_{k=1}^{n} k H_k(x)
$$

$$
+ \frac{1}{(x+1)(x+2)} \sum_{k=1}^{n} k^2 H_k(x),
$$

we get the following equation by using Theorem 1 and Proposition 3.

Proposition 7. For $x \in \mathbb{C}$, there holds the summation formula:

$$
\sum_{k=1}^{n} k^2 H_k(x) = \frac{x(x+1)(2x+1) + n(n+1)(2n+1)}{6} H_n(x)
$$

$$
- \frac{(12x^2 + 12x - 6xn + 4n^2 - 3n - 1)n}{36}.
$$

Corollary 8 ($x = p$ with $p \in \mathbb{N}_0$ in Proposition 7).

$$
\sum_{k=1}^{n} k^2 H_{p+k} = \frac{(p+1)(2p+1)(2p^2 + n - 2pn + p + 2p^2)}{6} H_{p+n}
$$

$$
- \frac{p(p+1)(2p+1)}{6} H_p - \frac{n(4n^2 - 3n + 6pn + 12p + 12p^2 - 1)}{36}.
$$

Applying the derivative operator \mathcal{D}_x to Proposition 7, we gain the following equation.

Proposition 9. For $x \in \mathbb{C}$, there holds the summation formula:

$$
\sum_{k=1}^{n} k^2 H_k^{(2)}(x) = \frac{x(x+1)(2x+1) + n(n+1)(2n+1)}{6} H_n^{(2)}(x)
$$

$$
- \frac{6x^2 + 6x + 1}{6} H_n(x) + \frac{(4x + 2 - n)n}{6}.
$$

Corollary 10 ($x = p$ with $p \in \mathbb{N}_0$ in Proposition 9).

$$
\sum_{k=1}^{n} k^2 H_{p+k}^{(2)} = \frac{p(p+1)(2p+1) + n(n+1)(2n+1)}{6} H_{p+n}^{(2)} - \frac{p(p+1)(2p+1)}{6} H_p^{(2)}
$$

$$
- \frac{6p^2 + 6p + 1}{6} (H_{p+n} - H_p) + \frac{(4p + 2 - n)n}{6}.
$$

Theorem 11. For $x \in \mathbb{C}$ and $l \in \mathbb{N}_0$, there holds the summation formula:

$$
\sum_{k=1}^{n} k^2 H_k^{(l+3)}(x) = \frac{x(x+1)(2x+1) + n(n+1)(2n+1)}{6} H_n^{(l+3)}(x)
$$

$$
- \frac{6x^2 + 6x + 1}{6} H_n^{(l+2)}(x) + \frac{2x + 1}{2} H_n^{(l+1)}(x) - \frac{H_n^{(l)}(x)}{3}.
$$

Proof. Applying the derivative operator \mathcal{D}_x to Proposition 9, we achieve the case $l = 0$ of Theorem 11.

$$
\sum_{k=1}^{n} k^2 H_k^{(3)}(x) = \frac{x(x+1)(2x+1) + n(n+1)(2n+1)}{6} H_n^{(3)}(x)
$$

$$
- \frac{6x^2 + 6x + 1}{6} H_n^{(2)}(x) + \frac{2x + 1}{2} H_n(x) - \frac{n}{3}.
Suppose that the following identity
\[
\sum_{k=1}^{n} k^2 H_k^{(l+3)}(x) = \frac{x(x+1)(2x+1) + n(n+1)(2n+1)}{6} H_n^{(l+3)}(x)
\]
\[
- \frac{6x^2 + 6x + 1}{6} H_n^{(l+2)}(x) + \frac{2x + 1}{2} H_n^{(l+1)}(x) - \frac{H_n^{(l)}}{3}
\]
is true. Applying the derivative operator \(D_x\) to the last equation, we have
\[
\sum_{k=1}^{n} k^2 H_k^{(l+4)}(x) = \frac{x(x+1)(2x+1) + n(n+1)(2n+1)}{6} H_n^{(l+4)}(x)
\]
\[
- \frac{6x^2 + 6x + 1}{6} H_n^{(l+3)}(x) + \frac{2x + 1}{2} H_n^{(l+2)}(x) - \frac{H_n^{(l+1)}}{3}.
\]
This proves Theorem 13 inductively.

Making \(x = p\) in Theorem 13 we attain the following equation.

Corollary 14. For \(l, p \in \mathbb{N}_0\), there holds the summation formula:
\[
\sum_{k=1}^{n} k^2 H_k^{(l+3)} = \frac{p(p+1)(2p+1) + n(n+1)(2n+1)}{6} H_p^{(l+3)}
\]
\[
- \frac{p(p+1)(2p+1)}{6} H_p^{(l+3)} - \frac{6p^2 + 6p + 1}{6} \left(H_{p+n}^{(l+2)} - H_p^{(l+2)} \right)
\]
\[
+ \frac{2p + 1}{2} \left(H_{p+n}^{(l+1)} - H_p^{(l+1)} \right) - \frac{H_{p+n}^{(l)} - H_p^{(l)}}{3}.
\]

5. **Summation Formulas with the Factor \(k^3\)**

Setting \(y = x + 3\) in (2) and considering the relation:
\[
\sum_{k=1}^{n} \left(\frac{x+k}{k} \right) H_k(x) = \sum_{k=1}^{n} H_k(x) + \frac{3x^2 + 12x + 11}{(x+1)(x+2)(x+3)} \sum_{k=1}^{n} kH_k(x)
\]
\[
+ \frac{3}{(x+1)(x+3)} \sum_{k=1}^{n} k^2 H_k(x)
\]
\[
+ \frac{1}{(x+1)(x+2)(x+3)} \sum_{k=1}^{n} k^3 H_k(x),
\]
we get the following equation by using Theorem 13, Proposition 3 and Proposition 7.

Proposition 13. For \(x \in \mathbb{C}\), there holds the summation formula:
\[
\sum_{k=1}^{n} k^3 H_k(x) = \frac{(n-x)(x+n+1)(x^2 + x + n + n^2)}{4} H_n(x)
\]
\[
- \frac{(12x^3 + 18x^2 - 6nx^2 + 2x - 6xn + 4n^2x - 2 + 3n + 2n^2 - 3n^3)n}{48}.
\]

Corollary 14 (\(x = p\) with \(p \in \mathbb{N}_0\) in Proposition 13).
\[
\sum_{k=1}^{n} k^3 H_{p+k} = \frac{(n-p)(p+n+1)(p^2 + p + n + n^2)}{4} H_{p+n} + \frac{p^2(p+1)^2}{4} H_p
\]
\[
- \frac{(12p^3 + 18p^2 + 2p - 6pn + 4n^2p - 2 + 3n + 2n^2 - 3n^3)n}{48}.
\]
Corollary 18. For $x = p$ with $p \in \mathbb{N}_0$ in Proposition 15,

$$
\sum_{k=1}^{n} k^3 H_p^{(2)}(x) = \frac{(n-p)(p+n+1)(p^2 + p + n + n^2)}{4} H_p^{(2)} + \frac{p(p+1)(2p+1)}{2} (H_{p+n} - H_p) - \frac{6p^2 + 6p + 1}{4} (H_{p+n} - H_p) + \frac{6p + 3 - n}{8}.
$$

Applying the derivative operator D_x to Proposition 15, we achieve the following equation.

Proposition 16. For $x = p$ with $p \in \mathbb{N}_0$ in Proposition 15,

$$
\sum_{k=1}^{n} k^3 H_p^{(2)}(x) = \frac{(n-p)(p+n+1)(p^2 + p + n + n^2)}{4} H_p^{(2)} + \frac{p(p+1)(2p+1)}{2} (H_{p+n} - H_p) - \frac{6p^2 + 6p + 1}{4} (H_{p+n} - H_p) + \frac{6p + 3 - n}{8}.
$$

Applying the derivative operator D_x to Proposition 17, we gain the following equation.

Proposition 17. For $x = p$ with $p \in \mathbb{N}_0$ in Proposition 17.

$$
\sum_{k=1}^{n} k^3 H_p^{(3)}(x) = \frac{(n-p)(p+n+1)(p^2 + p + n + n^2)}{4} H_p^{(3)} + \frac{p(p+1)(2p+1)}{2} (H_{p+n} - H_p) - \frac{6p^2 + 6p + 1}{4} (H_{p+n} - H_p) + \frac{6p + 3 - n}{8}.
$$

Applying the derivative operator D_x to Proposition 17, we attain the case $l = 0$ of Theorem 19.

Theorem 19. For $x \in \mathbb{C}$ and $l \in \mathbb{N}_0$, there holds the summation formula:

$$
\sum_{k=1}^{n} k^3 H_k^{(l+4)}(x) = \frac{(n-x)(x+n+1)(x^2 + x + n + n^2)}{4} H_n^{(l+4)}(x) + \frac{x(x+1)(2x+1)}{2} H_n^{(l+3)}(x) - \frac{6x^2 + 6x + 1}{4} H_n^{(l+2)}(x) + \frac{2x + 1}{4} H_n^{(l+1)}(x) - \frac{n}{4}.
$$

Proof. Applying the derivative operator D_x to Proposition 17, we attain the case $l = 0$ of Theorem 19.
Suppose that the following identity
\[
\sum_{k=1}^{n} k^3 H_k^{(l+4)}(x) = \frac{(n-x)(x+n+1)(x^2 + x + n + n^2)}{4} H_n^{(l+4)}(x) + \frac{x(x+1)(2x+1)}{2} H_n^{(l+3)}(x) - \frac{6x^2 + 6x + 1}{4} H_n^{(l+2)}(x) + \frac{2x+1}{2} H_n^{(l+1)}(x) - \frac{H_n^{(l)}}{4}
\]
is true. Applying the derivative operator \(D_x\) to the last equation, we have
\[
\sum_{k=1}^{n} k^3 H_k^{(l+5)}(x) = \frac{(n-x)(x+n+1)(x^2 + x + n + n^2)}{4} H_n^{(l+5)}(x) + \frac{x(x+1)(2x+1)}{2} H_n^{(l+4)}(x) - \frac{6x^2 + 6x + 1}{4} H_n^{(l+3)}(x) + \frac{2x+1}{2} H_n^{(l+2)}(x) - \frac{H_n^{(l+1)}}{4}.
\]
This proves Theorem 19 inductively.

Taking \(x = p\) in Theorem 19 we get the following equation.

Corollary 20. For \(l, p \in \mathbb{N}_0\), there holds the summation formula:
\[
\sum_{k=1}^{n} k^3 H_{p+k}^{(l+4)} = \frac{(n-p)(p+n+1)(p^2 + p + n + n^2)}{4} H_{p+n}^{(l+4)} + \frac{p^2(p+1)^2}{4} H_p^{(l+4)} + \frac{p(p+1)(2p+1)}{2} (H_{p+n}^{(l+3)} - H_p^{(l+3)}) - \frac{6p^2 + 6p + 1}{4} (H_{p+n}^{(l+2)} - H_p^{(l+2)}) + \frac{2p+1}{2} (H_{p+n}^{(l+1)} - H_p^{(l+1)}) - \frac{H_{p+n}^{(l)}}{4} + \frac{H_p^{(l)}}{4}.
\]

6. **Summation formulas with the factor \(k^4\)**

Letting \(y = x + 4\) in (2) and considering the relation:
\[
\sum_{k=1}^{n} \frac{(x+4+k)}{(x+k)} H_k(x) = \sum_{k=1}^{n} H_k(x) + \frac{2(2x + 5)(x^2 + 5x + 5)}{(x+1)(x+2)(x+3)(x+4)} \sum_{k=1}^{n} k H_k(x)
\]
\[
+ \frac{6x^2 + 30x + 35}{(x+1)(x+2)(x+3)(x+4)} \sum_{k=1}^{n} k^2 H_k(x)
\]
\[
+ \frac{4x + 10}{(x+1)(x+2)(x+3)(x+4)} \sum_{k=1}^{n} k^3 H_k(x)
\]
\[
+ \frac{1}{(x+1)(x+2)(x+3)(x+4)} \sum_{k=1}^{n} k^4 H_k(x),
\]
we gain the following equation by using Theorem 1, Proposition 3, Proposition 7 and Proposition 13.
Proposition 21. For $x \in \mathbb{C}$, there holds the summation formula:

$$
\sum_{k=1}^{n} k^4 H_k(x) = \frac{6x^5 + 15x^4 + 10x^3 - x - n + 10n^3 + 15n^4 + 6n^5}{30} H_n(x) \\
- \frac{(72n^4 - 45n^3 - 130n^2 + 75n + 28)n}{1800} \\
- \frac{(12x^3 + 24x^2 + 7x - 6nx^2 - 9nx + 4n^2x - 5 + 2n + 4n^2 - 3n^3)nx}{60}.
$$

Corollary 22 ($x = p$ with $p \in \mathbb{N}_0$ in Proposition 21).

$$
\sum_{k=1}^{n} k^4 H_{p+k}(x) = \frac{6p^5 + 15p^4 + 10p^3 - p - n + 10n^3 + 15n^4 + 6n^5}{30} H_{p+n}^{(2)}(x) \\
- \frac{6p^5 + 15p^4 + 10p^3 - p}{30} H_p - \frac{(72n^4 - 45n^3 - 130n^2 + 75n + 28)n}{1800} \\
- \frac{(12p^3 + 24p^2 + 7p - 6np^2 - 9np + 4n^2p - 5 + 2n + 4n^2 - 3n^3)np}{60}.
$$

Applying the derivative operator D_x to Proposition 21 we achieve the following equation.

Proposition 23. For $x \in \mathbb{C}$, there holds the summation formula:

$$
\sum_{k=1}^{n} k^4 H_k^{(2)}(x) = \frac{6x^5 + 15x^4 + 10x^3 - x - n + 10n^3 + 15n^4 + 6n^5}{30} H_n^{(2)}(x) \\
- \frac{30x^2(x + 1)^2 - 1}{30} H_n(x) \\
+ \frac{(48x^3 + 72x^2 - 18nx^2 + 14x - 18nx + 8n^2x - 5 + 2n + 4n^2 - 3n^3)n}{60}.
$$

Corollary 24 ($x = p$ with $p \in \mathbb{N}_0$ in Proposition 23).

$$
\sum_{k=1}^{n} k^4 H_{p+k}^{(2)}(x) = \frac{6p^5 + 15p^4 + 10p^3 - p - n + 10n^3 + 15n^4 + 6n^5}{30} H_{p+n}^{(2)}(x) \\
- \frac{6p^5 + 15p^4 + 10p^3 - p}{30} H_p - \frac{30p^2(p + 1)^2 - 1}{30} (H_{p+n} - H_p) \\
+ \frac{(48p^3 + 72p^2 - 18np^2 + 14p - 18np + 8n^2p - 5 + 2n + 4n^2 - 3n^3)n}{60}.
$$

Applying the derivative operator D_x to Proposition 23 we attain the following equation.

Proposition 25. For $x \in \mathbb{C}$, there holds the summation formula:

$$
\sum_{k=1}^{n} k^4 H_k^{(3)}(x) = \frac{6x^5 + 15x^4 + 10x^3 - x - n + 10n^3 + 15n^4 + 6n^5}{30} H_n^{(3)}(x) \\
- \frac{30x^2(x + 1)^2 - 1}{30} H_n^{(2)}(x) + x(x + 1)(2x + 1)H_n(x) \\
- \frac{(72x^2 + 72x - 18nx + 7 - 9n + 4n^2)n}{60}.
$$
Corollary 26 \((x = p \text{ with } p \in \mathbb{N}_0 \text{ in Proposition } [25])\).

\[
\sum_{k=1}^{n} k^4 H_{p+k}^{(3)} = \frac{6p^5 + 15p^4 + 10p^3 - p - n + 10n^3 + 15n^4 + 6n^5}{30} H_{p+n}^{(3)} \\
- \frac{6p^5 + 15p^4 + 10p^3 - p}{30} H_p^{(3)} - \frac{30p^2(p + 1)^2 - 1}{30} (H_{p+n}^{(2)} - H_p^{(2)}) \\
+ p(p + 1)(2p + 1)(H_{p+n} - H_p) - \frac{(72p^2 + 72p - 18np + 7 - 9n + 4n^2)n}{60}.
\]

Applying the derivative operator \(\mathcal{D}_x\) to Proposition [25], we get the following equation.

Proposition 27. For \(x \in \mathbb{C}\), there holds the summation formula:

\[
\sum_{k=1}^{n} k^4 H_k^{(4)}(x) = \frac{6x^5 + 15x^4 + 10x^3 - x - n + 10n^3 + 15n^4 + 6n^5}{30} H_n^{(4)}(x) \\
- \frac{30x^2(x + 1)^2 - 1}{30} H_n^{(3)}(x) + x(x + 1)(2x + 1)H_n^{(2)}(x) \\
- \frac{6x^2 + 6x + 1}{3} H_n(x) + \frac{(8x + 4 - n)n}{10}.
\]

Corollary 28 \((x = p \text{ with } p \in \mathbb{N}_0 \text{ in Proposition } [27])\).

\[
\sum_{k=1}^{n} k^4 H_{p+k}^{(4)} = \frac{6p^5 + 15p^4 + 10p^3 - p - n + 10n^3 + 15n^4 + 6n^5}{30} H_{p+n}^{(4)} \\
- \frac{6p^5 + 15p^4 + 10p^3 - p}{30} H_p^{(4)} - \frac{30p^2(p + 1)^2 - 1}{30} (H_{p+n}^{(3)} - H_p^{(3)}) \\
+ p(p + 1)(2p + 1)(H_{p+n}^{(2)} - H_p^{(2)}) - \frac{6p^2 + 6p + 1}{3} (H_{p+n} - H_p) \\
+ \frac{(8p + 4 - n)n}{10}.
\]

Theorem 29. For \(x \in \mathbb{C}\) and \(l \in \mathbb{N}_0\), there holds the summation formula:

\[
\sum_{k=1}^{n} k^4 H_k^{(l+5)}(x) = \frac{6x^5 + 15x^4 + 10x^3 - x - n + 10n^3 + 15n^4 + 6n^5}{30} H_n^{(l+5)}(x) \\
- \frac{30x^2(x + 1)^2 - 1}{30} H_n^{(l+4)}(x) + x(x + 1)(2x + 1)H_n^{(l+3)}(x) \\
- \frac{6x^2 + 6x + 1}{3} H_n^{(l+2)}(x) + \frac{2x + 1}{2} H_n^{(l+1)}(x) - \frac{H_n^{(l)}(x)}{5}.
\]

Proof. Applying the derivative operator \(\mathcal{D}_x\) to Proposition [27], we gain the case \(l = 0\) of Theorem [29].

\[
\sum_{k=1}^{n} k^4 H_k^{(5)}(x) = \frac{6x^5 + 15x^4 + 10x^3 - x - n + 10n^3 + 15n^4 + 6n^5}{30} H_n^{(5)}(x) \\
- \frac{30x^2(x + 1)^2 - 1}{30} H_n^{(4)}(x) + x(x + 1)(2x + 1)H_n^{(3)}(x) \\
- \frac{6x^2 + 6x + 1}{3} H_n^{(2)}(x) + \frac{2x + 1}{2} H_n(x) - \frac{n}{5}.
\]
Suppose that the identity
\[\sum_{k=1}^{n} k^4 H_{k}^{(l+5)}(x) = \frac{6x^5 + 15x^4 + 10x^3 - x - n + 10n^3 + 15n^4 + 6n^5}{30} H_{n}^{(l+5)}(x) \]
\[- \frac{30x^2(x+1)^2 - 1}{30} H_{n}^{(l+4)}(x) + x(x+1)(2x+1) H_{n}^{(l+3)}(x) \]
\[- \frac{6x^2 + 6x + 1}{3} H_{n}^{(l+2)}(x) + \frac{2x + 1}{2} H_{n}^{(l+1)}(x) - \frac{H_{n}^{(l)}(x)}{5} \]
is true. Applying the derivative operator \(\mathcal{D}_x \) to the last equation, we have
\[\sum_{k=1}^{n} k^4 H_{k}^{(l+6)}(x) = \frac{6x^5 + 15x^4 + 10x^3 - x - n + 10n^3 + 15n^4 + 6n^5}{30} H_{n}^{(l+6)}(x) \]
\[- \frac{30x^2(x+1)^2 - 1}{30} H_{n}^{(l+5)}(x) + x(x+1)(2x+1) H_{n}^{(l+4)}(x) \]
\[- \frac{6x^2 + 6x + 1}{3} H_{n}^{(l+3)}(x) + \frac{2x + 1}{2} H_{n}^{(l+2)}(x) - \frac{H_{n}^{(l+1)}(x)}{5} \]
This proves Theorem 29 inductively. \(\square \)

Making \(x = p \) in Theorem 29, we obtain the following equation.

Corollary 30. For \(l, p \in \mathbb{N}_0 \), there holds the summation formula:
\[\sum_{k=1}^{n} k^4 H_{p+k}^{(l+5)} = \frac{6p^5 + 15p^4 + 10p^3 - p - n + 10n^3 + 15n^4 + 6n^5}{30} H_{p+n}^{(l+5)} \]
\[- \frac{6p^5 + 15p^4 + 10p^3 - p}{30} H_{p+n}^{(l+4)} - \frac{30p^2(p+1)^2 - 1}{30} (H_{p+n}^{(l+4)} - H_{p}^{(l+4)}) \]
\[+ p(p+1)(2p+1)(H_{p+n}^{(l+3)} - H_{p}^{(l+3)}) - \frac{6p^2 + 6p + 1}{3} (H_{p+n}^{(l+2)} - H_{p}^{(l+2)}) \]
\[+ \frac{2p + 1}{2} (H_{p+n}^{(l+1)} - H_{p}^{(l+1)}) - \frac{H_{p+n}^{(l)} - H_{p}^{(l)}}{5}. \]

Remark: Further summation formulas with the factor \(k^i \), where \(i \) is a positive integer greater than 4, can also be derived in the same way. Considering that the resulting identities will become more complicated, we shall not lay out them here.

References

[1] G. E. Andrews, K. Uchimura, Identities in combinatorics IV: differentiation and harmonic numbers, Utilitas Math. 28 (1985) 265-269.
[2] Y. Chen, Q. Hou, H. Jin, The Abel-Zeilberger algorithm, Electron. J. Comb. 18 (2011) #P17.
[3] F. Chyzak, An extension of Zeilberger’s fast algorithm to general holonomic functions, Discrete Math. 217 (2000) 115-134.
[4] H. Liu, W. Wang, Harmonic number identities via hypergeometric series and Bell polynomials, Integral Transforms Spec. Funct. 23 (2012) 49-68.
[5] P. Paule, C. Schneider, Computer proofs of a new family of harmonic number identities, Adv. Appl. Math. 31 (2003) 359-378.
[6] C. Schneider, Symbolic summation assists Combinatorics, Sém. Lothar. Combin. 56 (2006) Article B56b.
[7] A. Sofo, Some more identities involving rational sums, Appl. Anal. Discr. Math. 2 (2008) 56-66.
[8] D. Zheng, Further summation formulas related to generalized harmonic numbers, J. Math. Anal. Appl. 335 (2007) 692-706.