Measuring the top quark mass with m_{T2} at the LHC

Won Sang Cho, Kiwoon Choi, Yeong Gyun Kim and Chan Beom Park

Department of Physics, KAIST, Daejeon 305-017, Korea
E-mail: wscho@muon.kaist.ac.kr, kchoi@muon.kaist.ac.kr,
ygkim@muon.kaist.ac.kr, lunacy@muon.kaist.ac.kr

ABSTRACT: We investigate the possibility to measure the top quark mass using the collider variable m_{T2} at the LHC experiment. Monte Carlo studies of m_{T2} are performed with the events corresponding to the dilepton decays of $t\bar{t}$ produced at the LHC with $10 \, fb^{-1}$ integrated luminosity. Our analysis suggests that the top quark mass can be determined by the m_{T2} variable alone with a good precision at the level of 1 GeV.

KEYWORDS: top quark mass, m_{T2} variable, LHC.
1. Introduction

When the Large Hadron Collider (LHC) is turned on, it will serve as a ‘top quark factory’ [1, 2]. The cross section for $t\bar{t}$ pair production at the LHC is estimated to be 833 pb at the NLO calculation [3], implying roughly 8 million $t\bar{t}$ pairs per year at low luminosity run ($10^{-1} fb^{-1}$/year). Such a large number of $t\bar{t}$ events will enable us to measure the top quark mass with high precision.

Precision measurement of the top quark mass m_t is desirable in many respects. For example, it would help to constrain the allowed Higgs boson mass in the Standard Model (SM). In general, it would affect the constraints on the allowed parameter space of various models of new physics at the TeV scale, including the Minimal Supersymmetric Standard Model and technicolor-like models. The top quark mass measurement can be performed through various methods in different channels, which have their own advantage/disadvantage with different systematic uncertainties. In the overall, the accuracy of m_t measured at the LHC is expected to be around 1 GeV [4].

In the SM, top quark decays mostly into a b-quark and a W boson. The W boson then decays hadronically ($W \rightarrow qq'$) or leptonically ($W \rightarrow l\nu$). Depending on the W boson decay mode, the $t\bar{t}$ events are divided into three channels, i.e., the dilepton channel (both W bosons decay leptonically), the lepton plus jets channel (one W boson decays leptonically and the other hadronically) and the pure hadronic channel (both W bosons decay hadronically).

The dilepton channel has a small branching fraction compared to the lepton plus jets channel and the pure hadronic channel. It also involves two missing neutrinos, which makes a direct event-by-event measurement of m_t not possible. However, it has a cleaner environment, e.g. less combinatorial background and less jet energy scale dependence,
compared to other channels, therefore various approaches for an indirect measurement of \(m_t \) with dilepton channel have been investigated [4].

It has been shown that the collider variable \(m_{T^2} \) can be useful for the determination of new particle masses in the process in which new particles are pair produced at hadron collider and each of them decays into one invisible particle and one or more visible particles [5, 6, 7, 8, 9]. In this paper, we examine the possibility to determine the top quark mass using \(m_{T^2} \) at the LHC experiment. For this, we perform three Monte Carlo studies of \(m_{T^2} \) for the process \(\bar{t}t \rightarrow b\bar{l}^+\nu\bar{l}^\nu \) : the first which determines the endpoint value of the \(m_{T^2} \) distribution for the neutrino mass \(m_\nu = 0 \), the second to examine the functional dependence of \(m_{T^2}^{\text{max}} \) on the trial neutrino mass \(\tilde{m}_\nu \neq 0 \), which would determine \(m_t \) for a given value of the W boson mass \(m_W \), and the third which fits the \(m_{T^2} \) distribution to ‘template’ distributions. Our analysis suggests that the top quark mass can be determined by the \(m_{T^2} \) variable alone with a good precision at the level of 1 GeV.

In sec.2, we briefly introduce the \(m_{T^2} \) variable for the dilepton decay of \(\bar{t}t \). The results of Monte Carlo studies are presented in sec.3, and sec.4 is the conclusion.

2. Transverse mass and \(m_{T^2} \) for top quark

Let us consider a \(\bar{t}t \) pair production and its subsequent decay at the LHC:

\[
pp \rightarrow \bar{t}t \rightarrow bW^+\bar{b}W^-. \tag{2.1}
\]

In case that one of the \(W \) bosons decays into leptons, one can consider the associated transverse mass of \(t \rightarrow b\nu \), which is defined as

\[
m_{T}^2 = m_{bl}^2 + m_\nu^2 + 2(E_{T}^{bl}E_{T}^\nu - p_{T}^{bl} \cdot p_{T}^{\nu}), \tag{2.2}
\]

where \(m_{bl} \) and \(p_{T}^{bl} \) denote the invariant mass and transverse momentum of the \(bl \) system, respectively, while \(m_\nu \) and \(p_{T}^{\nu} \) are the mass and transverse momentum of the missing neutrino, respectively. The transverse energies of the \(bl \) system and neutrino are defined as

\[
E_{T}^{bl} \equiv \sqrt{|p_{T}^{bl}|^2 + m_{bl}^2} \quad \text{and} \quad E_{T}^{\nu} \equiv \sqrt{|p_{T}^{\nu}|^2 + m_{\nu}^2}. \tag{2.3}
\]

If the other \(W \) boson decays into hadrons, i.e. for the process \(\bar{t}t \rightarrow b\nu\bar{b}qq' \), \(p_{T}^{\nu} \) can be read off from the total missing transverse momentum \(p_{T}^{\text{miss}} \). One might then construct the \(m_{T} \) distribution of \(t \rightarrow bl\nu \) from data, which can be used to determine the top quark mass \(m_t \) as its shape and endpoint depend on \(m_t \). However, to determine \(p_{T}^{\nu} \) in the process \(\bar{t}t \rightarrow b\nu\bar{b}qq' \), one needs to measure the full final state momenta of \(\bar{t} \rightarrow \bar{b}qq' \), which by itself would determine \(m_t \) in event-by-event basis. At any rate, if one uses information from \(\bar{t} \rightarrow bqq' \) to determine \(m_t \), the procedure involves more jets, which would result in larger uncertainties in the determined value of \(m_t \).

A method to determine \(m_t \) without using the hadronic decay of \(W \) is to construct \(m_{T^2} \) for the dilepton decay

\[
\bar{t}t \equiv t^{(1)}t^{(2)} \rightarrow b^{(1)}l^{(1)}\nu^{(1)}b^{(2)}l^{(2)}\nu^{(2)}. \tag{2.4}
\]
Although each neutrino momentum cannot be measured in this case, still the total missing transverse momentum $p_T^{\text{miss}} = p_T^{\nu(1)} + p_T^{\nu(2)}$ can be determined experimentally. The m_{T2} variable of each event is defined as

$$m_{T2} \equiv \min_{p_T^{\nu(1)} + p_T^{\nu(2)} = p_T^{\text{miss}}} \left[\max \left\{ m_T^{(1)}, m_T^{(2)} \right\} \right],$$

where $m_T^{(i)}$ ($i = 1, 2$) is the transverse mass of $t^{(i)} \rightarrow b^{(i)} l^{(i)} \nu^{(i)}$, and the minimization is performed over the trial neutrino momenta $p_T^{\nu(i)}$ constrained as

$$p_T^{\nu(1)} + p_T^{\nu(2)} = p_T^{\text{miss}}.$$

The above definition of m_{T2} indicates that m_{T2} for $m_\nu = 0$ is bounded above by m_t in the approximation ignoring the decay width of top quark. One might then determine m_t as

$$m_t = m_{T2}^{\text{max}} (m_\nu = 0) \equiv \max \left[m_{T2}(m_{bl}^{(1)}, p_T^{(1)}, m_{bl}^{(2)}, p_T^{(2)}, m_\nu = 0) \right].$$

In fact, because of nonzero decay width, there can be certain amount of events which give m_{T2} exceeding the physical top quark mass m_t. Our Monte Carlo study suggests that such events do not spoil the sharp edge structure of the m_{T2} distribution with which one can determine m_t rather precisely. Fig. 1 shows the top quark m_{T2} distribution for $m_\nu = 0$ obtained from a parton level Monte Carlo simulation\(^1\) using PYTHIA event generator\(^1\) with an input top mass of $m_t = 170.9$ GeV. One can see that m_{T2} tends to zero rapidly near the input top mass with a minor but long tail beyond the input mass which is mainly due to the nonzero top decay width\(^2\).

One can consider the top quark m_{T2} defined as above for arbitrary trial neutrino mass which is not same as the true neutrino mass. In such case, m_{T2} is not only a function of the observable kinematic variables $m_{bl}^{(i)}$ and $p_T^{b(i)}$ ($i = 1, 2$), but also of the trial neutrino mass. Let \tilde{m}_ν denote the trial neutrino mass to distinguish it from the true neutrino mass $m_\nu = 0$. The endpoint value of m_{T2} for generic \tilde{m}_ν,

$$m_{T2}^{\text{max}} (\tilde{m}_\nu) = \max \left[m_{T2}(m_{bl}^{(1)}, p_T^{(1)}, m_{bl}^{(2)}, p_T^{(2)}, \tilde{m}_\nu) \right],$$

appears to be a function of \tilde{m}_ν, and its functional form provides a relation between m_t, the W boson mass m_W, and the b quark mass m_b. Using the result of Ref.\(^3\), one easily finds that m_{T2}^{max} as a function of \tilde{m}_ν is given by

$$m_{T2}^{\text{max}} (\tilde{m}_\nu) = \frac{m_t^2 + (m_{bl}^{\text{max}})^2}{2m_t} + \sqrt{\left(\frac{m_t^2 - (m_{bl}^{\text{max}})^2}{2m_t} \right)^2 + \tilde{m}_\nu^2},$$

where

$$(m_{bl}^{\text{max}})^2 = m_b^2 + \frac{1}{2} (m_t^2 - m_W^2 - m_b^2) + \frac{1}{2} \sqrt{(m_t^2 - m_W^2 - m_b^2)^2 - 4m_W^2m_b^2}. \quad (2.10)$$

\(^1\)For simplicity, here we switched off the initial and final state radiations as well as the quark fragmentation process.

\(^2\)Such a sharp edge structure of m_{T2} distribution at the input mass of the mother particle can be confirmed also in the m_{T2} distribution for $W^+W^- \rightarrow l^+\nu l^-\bar{\nu}$.

- 3 -
This analytic expression of $m_{T2}^{\text{max}}(\bar{m}_\nu)$ provides another way to determine m_t, i.e. one can determine m_t by fitting $m_{T2}^{\text{max}}(\bar{m}_\nu)$ obtained from data to this analytic expression with the known values of m_W and m_b.

\[m_{T2}^{\text{max}}(\bar{m}_\nu) \]

Figure 1: m_{T2} distribution obtained from partonic-level simulation. The input top quark mass of 170.9 GeV is used for the simulation. One can find a sharp edge at the input top mass, with a small tail which is mainly due to the finite top quark decay width.

3. Experimental feasibility

Measuring the top mass using m_{T2} in real experiment will suffer from a variety of uncertainty factors such as backgrounds, event selection cuts, finite jet energy resolution and combinatorial background. In order to check the feasibility of the m_{T2} method at the LHC, we have generated Monte Carlo samples of $t\bar{t}$ events by PYTHIA \[10\] with the CTEQ5L parton distribution function (PDF) \[11\]. The event sample corresponds to 10 fb^{-1} integrated luminosity.

The generated events have been further processed with a modified version of fast detector simulation program PGS \[12\], which approximate an ATLAS or CMS-like detector with reasonable efficiencies and fake rates. The PGS program uses a cone algorithm for jet reconstruction, with default value of cone size $\Delta R = 0.5$, where ΔR is a separation in the azimuthal angle and pseudorapidity plane. And the b-jet tagging efficiency ϵ_b is introduced as a function of the jet transverse energy and pseudorapidity, with a typical value of $\epsilon_b \sim 50\%$ in the central region for high energy jets.
In the PGS, isolated leptons (electron and muon) are identified with some isolation cuts on the calorimeter activity around the lepton track \[13\]. For electrons, the isolation cuts are (i) $ET_{ISO}/E_T < 0.1$, where ET_{ISO} is the total transverse calorimeter energy in a 3×3 grid around the electron candidate (excluding the candidate cell) and E_T is the transverse energy of the electron candidate, (ii) $PTISO < 5$ GeV, where $PTISO$ is the total p_T of tracks (except the electron track) with $p_T > 0.5$ GeV within a $\Delta R < 0.4$ cone around the electron candidate, and (iii) $0.5 < EP < 1.5$, where EP is the ratio of the calorimeter cell energy to the p_T of the candidate track. For isolated muons, (i) $PTISO < 5$ GeV and (ii) $ETRAT < 0.1125$, where $ETRAT$ is the ratio of E_T in a 3×3 calorimeter array around the muon (including the muon’s cell) to the p_T of the muon.

The dilepton events are selected by requiring (A) only two isolated leptons of opposite charge with $p_T > 25$ GeV and $|\eta| < 2.5$, (B) dilepton invariant mass with $|m_{ll} - m_Z| > 5$ GeV, (C) large missing transverse energy $E_T^{miss} > 40$ GeV, and (D) at least two b-tagged jets with $p_T > 30$ GeV and $|\eta| < 3.0$. After this selection, 5133 events are survived among the 5.5×10^6 generated $t\bar{t}$ events (in which 1.8×10^5 are the dilepton events, considering only electrons and muons), leading to a selection efficiency of about 2.8% for the dilepton channel signal events.

The main backgrounds might come from $Z/\gamma^*/W$ production with additional jets, diboson events with additional jets and bb events with misidentified leptons. We have generated the main background events using PYTHIA, ALPGEN \[14\] and AcerMC \[15\], and required the same selection cuts as the $t\bar{t}$ dilepton events. After the cuts, it turns out that those backgrounds are reduced to a negligible level. We will not include the background events in our further analysis, for simplicity.

With two b-jets and two leptons in each selected event, there are two possible combinations for bl pairing. We calculated m_{T2} variable for each of the two possible bl combinations, and chose the smaller one as the final m_{T2}. This procedure closely follows the idea proposed in Ref. \[8\].

Fig. 2 shows the resulting m_{T2} distribution for the selected events. As anticipated, one can find an edge structure around $m_{T2} = 170$ GeV, on the distribution. We employ three methods to precisely determine the top quark mass from the m_{T2} distribution, which will be discussed in the following three subsections.

3.1 A fit near the end point

Fig. 3 shows the m_{T2} distribution obtained from the selected events for the neutrino mass $m_\nu = 0$. It is fitted with an empirical function which consists of a linear function for signal distribution and an inverse linear function for background distribution. The fit range was chosen within $\pm O(10)$ bins around a plausible endpoint. Such fitting of the m_{T2} distribution results in

$$m_t = 171.1 \pm 1.1 \text{ GeV},$$

which reproduces the input top quark mass of 170.9 GeV with a precision at the level of 1 GeV.
To estimate possible systematic error associated with the fitting procedure, we have repeated the fitting with two linear functions for both signal and background distributions. The resulting top quark mass is then given by $m_t = 169.9 \pm 1.8$ GeV, showing a mass shift of 1.2 GeV. Systematic error from the fitting procedure might be improved by considering a template binned likelihood fit, which will be discussed in subsection 3.3.

Absolute jet energy scale also affects the determination of the top mass. The b-jet energy scale is assumed to be known within 1% accuracy. It is found that the 1% variation of the jet scale leads to a shift of the resulting top mass of 0.5 GeV.

Uncertainty due to initial state radiation (ISR) is estimated by comparing the nominal data (with ISR switched on) to the one which is generated while switching off ISR. The 20% of the resulting top mass shift is found to be 0.4 GeV, which is taken as the systematic error from ISR uncertainty [4]. The same approach to final state radiation induces a systematic error of 0.7 GeV.

For systematic error from PDF uncertainty, it is found that the use of CTEQ3L (GRV94L) PDF, instead of the default CTEQ5L PDF, leads to a shift of the central top mass of 0.3 (1.3) GeV, with a suitable choice of fit range.

3.2 Endpoint as a function of trial neutrino mass

As we have discussed in section 2, the endpoint of m_{T2} distribution can be considered as a function of a trial neutrino mass, if we use a trial neutrino mass $\tilde{m}_\nu \neq 0$ for the m_{T2}
calculation. Using the selected dilepton decays of $t\bar{t}$, we constructed the m_{T2} distributions for different choices of \tilde{m}_ν. Fig. 3(a) shows the m_{T2} distribution for $\tilde{m}_\nu = 80$ GeV. Here we also performed a fit to the m_{T2} distribution with a linear function for signal and an inverse linear function for background. The maximum of m_{T2} is then determined to be $m_{T2}^{\text{max}} = 232.6 \pm 1.5$ GeV for $\tilde{m}_\nu = 80$ GeV. The m_{T2}^{max} as a function of \tilde{m}_ν is shown in Fig. 3(b). Fitting the data points to the theoretical curve (2.7) considering m_t as a free parameter while using $m_W = 80.45$ GeV and $m_b = 4.7$ GeV, we obtain

$$m_t = 170.5 \pm 0.5 \text{ GeV},$$

which is quite close to the input top quark mass $m_t = 170.9$ GeV. The uncertainty due to a variation of m_b is negligible as it is of $O(m_b \delta m_b/m_t)$. To check the effect of the W boson mass, we repeated the fitting procedure while varying m_W by ± 0.5 GeV. The resulting shift of m_t turns out to be negligible.

3.3 Template binned likelihood fit

Perhaps the most reliable way to determine m_t using m_{T2} is to employ the template binned likelihood fit. For this, we attempted to fit the m_{T2} distribution of the ‘nominal data’ (which was generated with $m_t = 170.9$ GeV) to ‘templates’. Here, a template means a simulated m_{T2} distribution with an input top quark mass different from 170.9 GeV. The templates were generated with input top quark mass between 166 GeV and 176 GeV, in steps of 1 or 0.5 GeV, using the same PYTHIA+PGS Monte Carlo programs as the case of nominal data sample.

Figure 3: (a) An example of m_{T2} distribution with a trial neutrino mass. Here, the trial mass is set to $\tilde{m}_\nu = 80$ GeV. (b) The maximum of m_{T2} as a function of trial neutrino mass \tilde{m}_ν. Also shown is the fit of the data points to theoretical curve (2.7) considering m_t as a free parameter.
Figure 4: (a) Three representative m_{T2} distributions for the nominal data (points) and two templates with $m_t = 166$ GeV (blue solid) and $m_t = 176$ GeV (red solid), respectively. (b) The negative logarithm of the likelihood ratio $\mathcal{L}/\mathcal{L}_{\text{max}}$ as a function of m_t for the m_{T2} fit.

Fig. 4(a) shows three representative m_{T2} distributions for the nominal data (points) and two templates with $m_t = 166$ GeV (blue solid) and $m_t = 176$ GeV (red solid), respectively. Each template distribution is normalized to make the total number of events is same as that of the nominal data. One can notice that those three m_{T2} distributions are well separated from each other, showing the sensitivity of the m_{T2} distribution to the input top quark mass.

Each template distribution is compared to the nominal data distribution for a calculation of the logarithm of the binned likelihood. The binned likelihood is defined as the product of the Poisson probability for each bin over the N bins in the fit range:

$$
\mathcal{L} = \prod_{i=1}^{N} \frac{e^{-m_i m_i^{n_i}}}{n_i!},
$$

where n_i and m_i are the event numbers at the i-th bin in the distributions of the nominal data and the normalized template, respectively. The minimum of $-\ln\mathcal{L}$ gives the best fit value of the top quark mass. We have chosen the 1σ deviated value of the top quark mass as the one increasing $-\ln\mathcal{L}$ by 1/2.

We fit the m_{T2} distribution of nominal data to templates in the range 100 GeV < m_{T2} < 180 GeV. The result of the likelihood fit for m_{T2} distributions is shown in Fig. 4(b), where the negative logarithm of the likelihood ratio $\mathcal{L}/\mathcal{L}_{\text{max}}$ as a function of m_t is depicted. The \mathcal{L}_{max} is the maximum likelihood which was determined as the minimum of a parabola fit to the $-\ln\mathcal{L}$ distribution. The top quark mass resulting from our template
likelihood fit is given by
\[m_t = 170.3 \pm 0.3 \text{ GeV}, \]
which reproduces well the input top quark mass with a small statistical error.

Although a detailed analysis of systematic uncertainties in the template fit method is beyond the scope of this work, we expect that systematic errors from b-jet energy scale, ISR/FSR and PDF are also at the level of 1 GeV as those in the endpoint fit method discussed in subsection 3.1.

4. Conclusion

We have examined the possibility to determine the top quark mass using the \(m_{T2} \) distribution of the dileptonic decay channel of \(t\bar{t} \) events at the LHC. For this, we have performed three Monte Carlo studies for the events produced at the LHC with 10 \(fb^{-1} \) integrated luminosity: the first to fit the \(m_{T2} \) distribution near the end point (for the neutrino mass \(m_\nu = 0 \)) with an empirical function, the second to fit the functional dependence of \(m_{T2}^{\text{max}} \) on the trial neutrino mass \(\tilde{m}_\nu \neq 0 \), and the third to perform a template binned likelihood fitting. It is found that the top quark mass can be determined by the \(m_{T2} \) variable alone with a good precision at the level of 1 GeV.

Acknowledgments

We would like to thank T. Kamon and J. Lykken for asking about the possibility to determine \(m_t \) using \(m_{T2} \) variable, and K. Kong for useful discussion. This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2005-210-C000006), the Center for High Energy Physics of Kyungpook National University, and the BK21 program of Ministry of Education.

References

[1] ATLAS Technical Proposal, CERN-LHCC-94-43.
[2] CMS Physics Technical Design Report, CERN-LHCC-2006-021.
[3] R. Bonciani et al., Nucl. Phys. B 529 (1998) 424.
[4] I. Borjanovic et al., Eur. Phys. J. C39S2 (2005) 63-90 [hep-ex/0403021].
[5] C.G.Lester and D.J.Summers, Phys. Lett. B 463 (1999) 99; A.Barr, C.Lester, and P.Stephens, J. Phys. G 29 (2003) 2343.
[6] W.S.Cho, K.Choi, Y.G.Kim and C.B.Park, to appear at Phys. Rev. Lett. [arXiv:0709.0288]; W.S.Cho, K.Choi, Y.G.Kim and C.B.Park, JHEP 0802 (2008) 035 [arXiv:0711.4526].
[7] B. Gripaios, JHEP 0802 (2008) 053 [arXiv:0709.2740].
[8] A.J.Barr, B.Gripaios and C.G.Lester, JHEP 0802 (2008) 014 [arXiv:0711.4008].
[9] G. Ross and M. Serna, arXiv:0712.0943 [hep-ph]; M. Nojiri, Y. Shimizu, S. Okada and K. Kawagoe, arXiv:0802.2412 [hep-ph].

[10] T. Sjostrand, P. Eden, C. Friberg, L. Lonnblad, G. Miu, S. Mrenna and E. Norrbin, Computer Physics Commun. 135 (2001) 238; T. Sjostrand, S. Mrenna and P. Skands, LU TP 06-13, FERMILAB-PUB-06-052-CD-T [hep-ph/0603175].

[11] H. L. Lai et al. [CTEQ Collaboration], Eur. Phys. J. C 12 (2000) 375 [arXiv:hep-ph/9903282].

[12] http://www.physics.ucdavis.edu/~conway/research/software/pgs/pgs4-general.htm.

[13] http://v1.jthaler.net/olympicswiki/doku.php.

[14] M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, JHEP 0307 (2003) 001.

[15] B.P. Kersevan and E. Richter-Was, hep-ph/0405247; Comput. Phys. Commun. 149 (2003) 142.