Altered somatosensory evoked potentials associated with improved reaction time in a simple sensorimotor response task following repetitive practice

CURRENT STATUS: POSTED

Mayu Akaiwa
Sapporo Medical University

Koki Iwata
Sapporo Medical University

Hidekazu Saito
Sapporo Medical University

Takeshi Sasaki
Sapporo Medical University

Kazuhiro Sugawara
kaz.sugawara@sapmed.ac.jp
Sapporo Medical University
Corresponding Author
ORCiD: 0000-0003-0803-9922

DOI: 10.21203/rs.2.13725/v1

SUBJECT AREAS
Developmental Neuroscience

KEYWORDS
reaction time task, somatosensory evoked potentials, N140, N250, P300
Abstract

Background Repetitive practice of sensorimotor tasks is widely used for neurorehabilitation; however, it is unknown how practice alters sensory processing (e.g., recognition, discrimination, and attentional allocation) and associated cognitive processing, such as decision-making. The purpose of this study was to investigate whether somatosensory evoked potentials (SEPs) reflecting sensory processing, attention, and decision-making are altered by sensorimotor learning. 15 participants preformed a simple sensorimotor response task (thumb opposition in response to surface electrical stimulation), with experimental recording sessions before and after three days of practice. We then compared multiple SEP waveforms and reaction times (RTs) between pre- and postpractice trials. Results As expected, the RT was reduced after practice of three days, and this was associated with shorter N140 and N250 latencies and larger P300 amplitude. Conclusions The present study suggests that motor learning improves somatosensory processing and attentional allocation via neuroplasticity and that these alterations are reflected by specific SEP changes.

Background

Improved sensorimotor performance is a major aim of rehabilitation; however, quantitative tests for evaluating gains are lacking. Reaction time (RT) is widely used as a general measure of sensorimotor performance. It is commonly defined as the time elapsed from stimulus presentation to the onset of the electromyogram (EMG) response (i.e., the earliest sign of muscle activity). The relationship between RT and somatosensory processing efficiency has been examined in several studies using somatosensory evoked potentials (SEPs) and somatosensory evoked fields (SEFs). Hiraoka et al. [1] investigated SEPs during rest and voluntary movement and reported that the amplitudes of N18 and
P40 were significantly larger during short-RT (fast motor response) trials compared to longer-RT (slow motor response) trials. Similarly, Kida et al. [2] recorded the event-related potentials (ERPs) during a somatosensory discrimination task and reported that P300 was larger in fast-RT trials than in slow-RT trials. Sugawara et al. [3] found that both RT and activation latency of the posterior parietal cortex (PPC), an area related to visuomotor integration and control, were significantly reduced after three days of visuomotor task repetition. Collectively, these results demonstrate that sensorimotor task practice induces neuroplastic changes that improve sensory processing. Yamashiro et al. [4] compared baseball players to athletes in sports such as track and field events and soccer who do not require quick responses to hand sensation using a simple hand RT task, and they found shorter RT and reduced P100 and N140 peak latencies in the baseball group. It has been posited in previous studies that changes in P100 and N140 following somatosensory stimulation are related to a passive shift in attention [5] and that the amplitude of N140 in particular increases with spatial selective attention [6]. In addition, N250 and P300 reflect active target detection by attentive processing, and P300 is associated with working memory [5]. It has been reported in previous studies that decreasing the RT through training also reduces ERP latencies in athletes, but no study has investigated SEP changes in nonathletes after brief training. We hypothesized that motor practice and a concomitantly shorter RT would increase the amplitude and reduce the latency of various SEP waveforms reflecting stimulus processing, attention, and/or response decisions.

Methods

Participants

The participants were 15 healthy young adults (mean ± standard deviation [SD]: 22.5 ± 3.1 years, all right-handed) who all provided written informed consent. The study conformed to the Declaration of Helsinki and the Code of Ethics of the World Medical
Association and was approved by the ethics committee of Sapporo Medical University (No. 29-2-58).

Experimental Procedure
The participants sat on a reclining chair and were instructed to relax during the SEP measurements. They then performed a simple sensorimotor response task, in which they were asked to oppose their right thumb in response to electrical stimuli delivered to the right median nerve at the right wrist. The duration of the electrical stimulus was 0.2 ms, and the intensity of the stimulus was set so that the amplitude of the evoked M-wave in the abductor pollicis brevis muscle was 1 mV [1]. The interstimulus interval (ISI) was varied randomly between 300 and 1,000 ms. Between each set of 60 trials, an intermission was allowed to minimize the effect of fatigue. In total, six sets were conducted during the prepractice (Pre) period, and the average SEP amplitudes, SEP latencies, and RTs were recorded. The subjects then practiced this task for three days. We then recorded the same metrics (SEPs and RTs) again after practice (Post). Between the Pre and Post points, we performed continuous recording or recorded every other day.

Recordings and analysis
All electrophysiological recordings were acquired using the Neuropack system (Nihon Kohden, Tokyo, Japan). The electroencephalography (EEG) was measured by Ag/AgCl electrodes placed over three scalp sites—F3, Cz, and C3’ (2 cm posterior to C3)—according to the 10-20 system, and another electrode was placed on the left earlobe (A1) as a reference. The electrode impedance at all recording sites was maintained below 5 kΩ. The electrooculogram (EOG) was recorded from the right suborbital region. Trials in which the EOG waveform exceeded 50 µV were rejected. EEG signals were recorded with a 2–2,000
Hz band-pass filter at a sampling rate of 10 kHz and analyzed with low-pass filtering at 100 Hz. The analysis period of SEPs was from 100 ms before to 600 ms after the stimulus onset. The 100 ms period before the stimulus onset was used as the baseline. The amplitudes of SEPs were measured from baseline to peak. The average of more than 300 recordings was obtained during pre- and postpractice sessions for all subjects. The time windows (relative to the stimulus onset) for measuring peak amplitudes and latencies were as follows [4, 17]: P100 (50–120 ms), N140 (100–190 ms), N250 (180–280 ms), and P300 (250–500 ms). We defined the changes (D) in all metrics as postpractice-prepractice.

The EMG was recorded from the right abductor pollicis brevis muscle. We calculated the time from the median nerve stimulus onset to the EMG onset as the RT. Trials with RTs shorter than 50 ms and longer than 400 ms were excluded from the analysis [24]. The EMG signals were recorded with a 1–300 Hz band-pass filter at a sampling rate of 1,000 Hz. The mean RT and SEP waveforms were compared within subjects by paired t-tests. Moreover, we analyzed the bivariate correlations between the change in RT and changes in P100, N140, N250, and P300 latencies and amplitudes.

Results

After three days of practice, 14 participants demonstrated a reduction in RT, and overall there was a significant RT decrease from pre- to postpractice \((14) = 4.71, < 0.01 \) (Fig. 1). Typical example waveforms during individual trials are shown in Fig. 2. Tables 1 summarize the SEP amplitude and latency changes at F3, Cz, and C3′. Correlation analyzes revealed no significant relationship between the change in RT (DRT) and either the change in P100 amplitude (DP100_{amp}) or P100 latency (DP100_{lat}). There was also no correlation between DN140_{amp} and DRT at any electrode site. However, there was a significant positive correlation between DRT and DN140_{lat} at F3, Cz, and C3′ (F3, = 0.67, < 0.05; Cz,
There was no significant correlation between DN250\textsubscript{amp} and DRT, but DN250\textsubscript{lat} was significantly and positively correlated with DRT at F3. There was also a significant negative correlation between DN300\textsubscript{amp} and DRT at C3' (\(r = -0.53, p < 0.05\)), but not between DRT and DN300\textsubscript{lat} at any electrode site (Fig. 3).

Discussion

After three days of practice, there were significant differences in RT, N140\textsubscript{lat}, N250\textsubscript{amp}, and P300\textsubscript{amp} compared to the prepractice condition, with shorter RT, N140 latency, and N250 latency as well as larger N250 amplitude. It has been reported in previous studies that the N140 amplitude increases during selective attention tasks requiring discrimination, such as the oddball task [6, 7]. In addition, the N140 amplitude was enhanced by voluntary movements, but not passive movements [8]. Moreover, the N140 amplitude was larger in a difficult stimulus discrimination task compared to a simple RT task [9]. Thus, N140 appears to reflect the degree of attention to the stimulus required by the task. Yamashiro et al. [4] also found shorter P100 and N140 latencies in baseball players compared to other athletes during index finger stimulation of the dominant hand. Baseball players require superior somatosensory processing in the cortical hand area for catching, batting, and throwing compared to athletes in sports like soccer. Repetitive grasping movements facilitate neuroplastic alterations in the cortical hand field, resulting in faster processing as reflected by reduced P100 and N140 peak latencies. Shorter N140 latencies have also been reported in recent studies in athletes compared to nonathletes [10, 11]. Therefore, long-term training can alter SEPs by inducing neuroplastic alterations in specific cortical areas. In the current study, sensorimotor task practice for three days must have also altered task-relevant sensorimotor networks as a shorter RT was associated with a reduced N140 peak latency. The generator of the N140 is still uncertain,
but it has been reported in recent studies that the anterior cingulate cortex (ACC) is activated from 128 to 150 ms following somatosensory stimulation, suggesting a contribution to N140 [12-14]. Moreover, the ACC is considered to serve attentional, cognitive, and emotional functions [14], so it is possible that the reduced N140 latency and RT are related to faster processing by circuits involving the ACC. We speculate that more efficient pathways or shortcut circuits are formed by practice-associated neuroplasticity, resulting in information reaching the ACC earlier than before practice. It has been suggested in previous studies that the N250 may reflect conscious target detection [5, 15] as it is effectively elicited by rare target stimuli [16]. In addition, Kida et al. [17] found that the N250 latency was strongly correlated with the RT. The cerebral generators of the somatosensory N250 are still unknown, but it appears that reduced latency concomitant with shorter task RT following practice reflects more rapid decision-making [17]. However, the simple RT task used in the current study required only detection of the somatosensory stimulus, so we cannot assume that changes in the N250 component reflect higher-order cognitive processes like decision-making. Further studies with more difficult tasks are required to assess the significance of the N250 change. In contrast to these other SEP waveforms, in which amplitude was unchanged by practice, the P300 amplitude increased in association with reduced RT. Enhancement of the P300 amplitude is associated with increases in the delay between a given target and the preceding target [18]. It has been reported in previous studies that the P300 amplitude is enhanced by task difficulty (e.g., dual tasks compared to single tasks) and that amplitude is proportional to the attentional resources devoted to a given task [19, 20]. Therefore, the amplitude of P300 may provide an indication of the amount of attention required for task success. Kida et al. [17] suggested that larger P300 in fast-RT trials reflects faster stimulus evaluation due to greater attentional resources. Athletes also demonstrated a
significantly larger P300 amplitude compared to nonathletes [11]. In summary, we suggest that higher-level performance is associated with greater attention to the task. It is possible that improvements to somatosensory processing, decision-making, and allocation of attentional resources lead to improvements of task performance. In contrast to our results, Iwadate et al. [11] found that athletes demonstrated a significantly shorter P300 latency compared to nonathletes and suggested that this latency reflects the stimulus evaluation time [21]. We suggest that the absence of an association between RT and DP300_{lat} in our study reflects low task demands. The simple RT task is easier than the oddball task used by Iwadate et al. [11], so allocation of attention was less important for performance. Alternatively, the subjects in the aforementioned study received long-term training, so it is possible that three days of practice may be insufficient to alter the P300 latency.

There was no significant correlation between RT and P100 amplitude or latency. It has been suggested in previous studies that P100 and N140 reflect passive attention and that P100 is generated mainly by the secondary somatosensory cortex (SII) [14]. It has been reported in magnetoencephalography (MEG) studies that SII is activated 70–140 ms after somatosensory stimulation and is involved in higher-order processing for somatosensory perception [22] and integration with motor actions [23]. The generators of P100 and N140 may not coincide and so could be activated independently, resulting in distinct associations with RT.

Conclusions

In conclusion, this study investigated that the effects of motor practice for three days on P100, N140, N250, and P300, which related in cognition, attention, and decision making. Our major results were that there were significant differences in RT, N140_{lat}, N250_{amp},
and P300\textsubscript{amp} compared to the prepractice condition, with shorter RT, N140\textsubscript{lat}, and N250\textsubscript{lat} as well as larger N250\textsubscript{amp}. These results indicated that motor learning improves somatosensory processing and attentional allocation via neuroplasticity and that these alterations are reflected by specific SEP changes.

Abbreviations

SEP: Somatosensory evoked potential; RT: Reaction time; ERPs: event-related potentials; EMG: electromyogram; SEFs: somatosensory evoked fields; PPC: posterior parietal cortex; ACC: anterior cingulate cortex; SII: secondary somatosensory cortex; MEG: magnetoencephalography; SD: standard deviation; ISI: interstimulus interval; EEG: electroencephalography; EOG: electrooculogram

Declarations

Authors’ contributions

MA, KI and KS were responsible for experimental design, data collection, data analysis, and manuscript preparation. TS and HS was responsible for participant recruitment and manuscript preparation. All authors read and approved the final manuscript.

Author details

1 Graduate School of Health Sciences, Sapporo Medical University, West 17, South 1, Chuo-ku, Sapporo, Hokkaido, Japan.

2 Department of Occupational Therapy, School of Health Science, Sapporo Medical University, West 17, South 1, Chuo-ku, Sapporo, Hokkaido, Japan.

3 Department of Physical Therapy, School of Health Science, Sapporo Medical University, West 17, South 1, Chuo-ku, Sapporo, Hokkaido, Japan.
Acknowledgements

We would like to express our appreciation to the late Prof. Taketo Furuna, whose contribution to this work and our activities was of great significance.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (Sapporo Medical University (No. 29-2-58)) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent for publication

Participants gave informed written consent to participate in the study. They consented (informed written consent) that the data reported in the research can be published.

Funding

This study was supported by a Grant-in-Aid for scientific research (C) 17K01526 from the Japan Society for the Promotion of Science.

References
1. Hiraoka K, Kori C, Sato K: The somatosensory-evoked potential in reaction time is gated and elicited earlier when the motor response to a somatosensory cue is faster. Neuroreport 2017, 28(8):451-456.

2. Kida T, Nishihira Y, Hatta A, Wasaka T: Somatosensory N250 and P300 during discrimination tasks. Int J Psychophysiol 2003, 48(3):275-283.

3. Sugawara K, Onishi H, Yamashiro K, Soma T, Oyama M, Kirimoto H, Tamaki H, Murakami H, Kameyama S: Repeated practice of a Go/NoGo visuomotor task induces neuroplastic change in the human posterior parietal cortex: an MEG study. Exp Brain Res 2013, 226(4):495-502.

4. Yamashiro K, Sato D, Onishi H, Yoshida T, Horiuchi Y, Nakazawa S, Maruyama A: Skill-specific changes in somatosensory-evoked potentials and reaction times in baseball players. Exp Brain Res 2013, 225(2):197-203.

5. Kekoni J, Hamalainen H, McCloud V, Reinikainen K, Naatanen R: Is the somatosensory N250 related to deviance discrimination or conscious target detection? Electroencephalogr Clin Neurophysiol 1996, 100(2):115-125.

6. Michie PT, Bearpark HM, Crawford JM, Glue LC: The effects of spatial selective attention on the somatosensory event-related potential. Psychophysiology 1987, 24(4):449-463.

7. Desmedt JE, Robertson D: Differential enhancement of early and late components of the cerebral somatosensory evoked potentials during forced-paced cognitive tasks in man. J Physiol 1977, 271(3):761-782.

8. Nakata H, Inui K, Wasaka T, Nishihira Y, Kakigi R: Mechanisms of differences in gating effects on short-and long-latency somatosensory evoked potentials relating to movement. Brain Topogr 2003, 15(4):211-222.

9. Kida T, Nishihira Y, Wasaka T, Sakajiri Y, Tazoe T: Differential modulation of the
short- and long-latency somatosensory evoked potentials in a forewarned reaction time task. Clin Neurophysiol 2004, 115(10):2223-2230.

10. Bulut S, Ozmerdivenli R, Bayer H: Effects of exercise on somatosensory-evoked potentials. Int J Neurosci 2003, 113(3):315-322.

11. Iwadate M, Mori A, Ashizuka T, Takayose M, Ozawa T: Long-term physical exercise and somatosensory event-related potentials. Exp Brain Res 2005, 160(4):528-532.

12. Waberski TD, Gobbele R, Darvas F, Schmitz S, Buchner H: Spatiotemporal imaging of electrical activity related to attention to somatosensory stimulation. Neuroimage 2002, 17(3):1347-1357.

13. Gobbele R, Lamberty K, Stephan KE, Stegelmeyer U, Buchner H, Marshall JC, Fink GR, Waberski TD: Temporal activation patterns of lateralized cognitive and task control processes in the human brain. Brain Res 2008, 1205:81-90.

14. Tanaka E, Inui K, Kida T, Miyazaki T, Takeshima Y, Kakigi R: A transition from unimodal to multimodal activations in four sensory modalities in humans: an electrophysiological study. BMC Neurosci 2008, 9:116.

15. Josiassen RC, Shagass C, Roemer RA, Ercegovac DV, Straumanis JJ: Somatosensory evoked potential changes with a selective attention task. Psychophysiology 1982, 19(2):146-159.

16. Kujala T, Alho K, Kekoni J, Hamalainen H, Reinikainen K, Salonen O, Standertskjold-Nordenstam CG, Naatanen R: Auditory and somatosensory event-related brain potentials in early blind humans. Exp Brain Res 1995, 104(3):519-526.

17. Kida T, Nishihira Y, Hatta A, Wasaka T, Nakata H, Sakamoto M, Nakajima T: Changes in the somatosensory N250 and P300 by the variation of reaction time. Eur J Appl Physiol 2003, 89(3-4):326-330.
18. Gonsalvez CJ, Barry RJ, Rushby JA, Polich J: Target-to-target interval, intensity, and P300 from an auditory single-stimulus task. Psychophysiology 2007, 44(2):245-250.

19. Kok A: Event-related-potential (ERP) reflections of mental resources: a review and synthesis. Biol Psychol 1997, 45(1-3):19-56.

20. Kok A: On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology 2001, 38(3):557-577.

21. Kutas M, McCarthy G, Donchin E: Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science 1977, 197(4305):792-795.

22. Mima T, Nagamine T, Nakamura K, Shibasaki H: Attention modulates both primary and second somatosensory cortical activities in humans: a magnetoencephalographic study. J Neurophysiol 1998, 80(4):2215-2221.

23. Hari R, Forss N: Magnetoencephalography in the study of human somatosensory cortical processing. Philos Trans R Soc Lond B Biol Sci 1999, 354(1387):1145-1154.

24. Yotani K, Tamaki H, Yuki A, Kirimoto H, Kitada K, Ogita F, Takekura H: Response training shortens visuo-motor related time in athletes. Int J Sports Med 2011, 32(8):586-590.

Tables

Table 1: Changes of amplitude and latency in somatosensory evoked potential (SEP) components.

Electrode	Component	Amplitude (µV)	Latency (ms)		
		Mean	SD	Mean	SD
F3	P100	0.5	3.1	2.0	7.6
	N140	0.0	0.8	-0.1	10.4
	N250	0.6	3.6	3.4	18.7
	P300	0.3	6.2	-24.4	43.1
	P100	0.0	2.9	5.0	11.1
	N140	0.8	2.7	0.0	17.0
	N250	1.2	4.5	0.7	20.6
	P300	0.4	3.1	21.5	101.2
Cz	P100	-0.4	2.9	-0.5	9.9
	N140	0.9	1.9	-2.7	21.8
	N250	0.9	2.8	2.6	7.6
	P300	0.4	3.2	7.0	26.0
Figures

Figure 1
Mean reaction times (RTs) before (Pre) and after (Post) three days of practice (* p = 0.0003)
Figure 2

Typical examples of somatosensory evoked potentials (SEPs) in a sensorimotor response task. The thick and thin lines represent SEPs recorded before practice (Pre) and after three days of practice (Post), respectively.

Figure 3

Correlations between Δ,RT and (a) Δ,N140lat at F3, (b) Δ,N250lat at F3, and (c) Δ,N300amp at C3′.
