Strictures, diaphragms, erosions or ulcerations of ischemic type in the colon should always prompt consideration of nonsteroidal anti-inflammatory drug-induced lesions

Manfred Stolte, Diana Karimi, Michael Vieth, Hildegard Volkholz, Klaus Dirschmid, Sigrid Rappel, Birgit Bethke

AIM: To investigate whether NSAIDs/ASA lesions in the colon can histologically be diagnosed on the basis of ischemic necrosis similar to biopsy-based diagnosis of NSAIDs/ASA-induced erosions and ulcers of the stomach.

METHODS: In the period between 1997 and 2002, we investigated biopsy materials obtained from 611 patients (415 women, 196 men, average age 60.5 years) with endoscopic focal erosions, ulcerations, strictures or diaphragms in the colon. In the biopsies obtained from these lesions, we always established the suspected diagnosis of NSAID-induced lesions whenever necroses of the ischemic type were found. Together with the histological report, we enclosed a questionnaire to investigate the use of medication. The data provided by the questionnaire were then correlated with the endoscopic findings, the location, number and nature of the lesions, and the histological findings.

RESULTS: At the time of their colonoscopy, 86.1% of the patients had indeed been taking NSAID/ASA medication for years (43.9%) or months (29.5%). The most common indication for the use of these drugs was pain (64.3%), and the most common indication for colonoscopy was bleeding (55.5%). Endoscopic inspection revealed multiple erosions and/or ulcers in 60.6%, strictures in 15.8%, and diaphragms in 3.0% of the patients. The lesions were located mainly in the right colon including the transverse colon (79.9%). A separate analysis of age and sex distribution, endoscopic and histological findings for NSAIDs alone, ASA alone, combined NSAID/ASA, and for patients denying the use of such drugs, revealed no significant differences among the groups.

CONCLUSION: This uncontrolled retrospective study based on the histological finding of an ischemic necrosis shows that the histologically suspected diagnosis of NSAID-induced lesions in the colon is often correct. The true diagnostic validity of this finding and the differentiation from ischemic colitis should, however, be investigated in a prospective controlled study.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.

Key words: Erosion; Ulceration; Stricture; Diaphragm; Ischemic necrose; NSAIDs; ASA

INTRODUCTION: The first publications of NSAID-induced strictures in the small bowel[1,2] and colon[3,4] were followed by a number of reports that the intake of NSAIDs leads not only to such pathological changes as chemically-induced reactive gastritis, subepithelial bleeding, erosions and ulcerations complicated by bleeding or perforation in the stomach and duodenum[5,6], but also to erosions, ulcerations, perforations, bleeding[7-10,12,17], strictures and symptomatic diverticular disease[8,9] in the small and large bowel[5,10]. In animal experiments, it has been shown that as little as a single dose of NSAIDs can result in a high incidence of mortality after 3 d due to intestinal lesions and perforations[10,11].

With regard to the incidence of NSAID-induced lesions in the ileum and colon, the literature contains no reports on data obtained from controlled prospective endoscopic or endoscopy/biopsy studies. From the large Arthritis, Rheumatism, and Ageing Medical Information System databank of arthritic patients, however, it can be seen that 32% of gastrointestinal (GI) hospitalizations in osteoarthritis patients, and 13% of GI hospitalizations of patients with rheumatoid arthritis are due to lower GI diagnosis. In addition, studies of patients with spondyloarthropathy receiving conventional NSAID treatment over the long term have shown that 30-70% of these patients developed a macroscopic or microscopic ileitis, and, with varying frequency, inflammation of the cecum or colon[12-20].

In a post hoc analysis of 8,076 patients with rheumatoid arthritis who were treated with a non-selective NSAID (naproxen) or coxib (rofecoxib), serious lower intestinal events (bleeding, perforation, obstruction, ulceration, and...
diverticulitis) were found. The rate of events per 100 patient years was 0.41 for rofecoxib and 0.89 for naproxen. Serious lower GI events accounted for 39.4% of all serious GI events among patients taking naproxen, and 42% among those taking rofecoxib\cite{25}.

NSAIDs preparations not only inhibit prostaglandin synthesis via COX inhibition\cite{26}, but also uncouple mitochondrial oxidative phosphorylation\cite{27}. These substances also cause local topical toxicity\cite{28}, since they are lipid-soluble weak acids that can lead to interaction with surface membrane phospholipids and thus disruption of the gastric epithelial cell barrier and to back diffusion of acid into the mucosa\cite{29,30}.

Mucosal injuries in the gastrointestinal tract (GIT) are also a consequence of NSAID-induced liberation of vasoc-onstricting leukotrienes\cite{31,32}, free radicals, platelet thrombi and proteases\cite{33,34,36}. Other publications have demonstrated a connection between NSAID-induced microcirculatory disorders and the adhesion of neutrophil granulocytes to vascular endothelium. In addition, liberation of TNF-α is triggered, which is responsible for the liberation of the intracellular adhesion molecule-1 at the vessel walls, and which can lead to local microcirculatory disorders due to vascular spasms\cite{35,37}. All these synergistic interactions\cite{38,39}, particularly the microcirculatory disorders caused by spasms of the tiny blood vessels, can give rise to ischemic erosions and ulcerations in the GIT\cite{40-44} and to diaphragm-like strictures\cite{46,48-51}. Since these lesions may be the cause of blood in the stools or a positive hemoccult test, and the bleeding may lead to chronic hemorrhagic anemia\cite{45,54}, the indication for colonoscopy is now being established more frequently in this group of patients. Since colonoscopic biopsies are always taken from macroscopically identifiable lesions, the question arises as to whether the pathologist can establish a suspected diagnosis of NSAID-induced lesions in the biopsy material, and how reliable this suspected diagnosis is. Having already shown that NSAID-induced erosions\cite{52} and ulcerations\cite{56} of the gastric mucosa can often be identified on the basis of necrosis of the ischemic type, we have now examined the question whether this type of necrosis might not also be a suitable diagnostic criterion for NSAID-induced lesions in the colon.

MATERIALS AND METHODS

From 1997 to 2002, we investigated biopsy materials obtained from 611 patients (415 women, 196 men, average age 60.5 years) with focal erosions, ulcerations, strictures or diaphragms at endoscopy. In the biopsies obtained from these lesions, we always established the suspected diagnosis of NSAID-induced lesions in the biopsy material, and how reliable this suspected diagnosis is. Having already shown that NSAID-induced erosions\cite{52} and ulcerations\cite{56} of the gastric mucosa can often be identified on the basis of necrosis of the ischemic type, we have now examined the question whether this type of necrosis might not also be a suitable diagnostic criterion for NSAID-induced lesions in the colon.

RESULTS

An analysis of the information provided on NSAID/ASA ingestion by the 501 patients with a histologically suspected diagnosis of NSAID/ASA-induced lesion in the colon is presented in Table 2 and shows that 86.1% of those patients actually were on NSAID/ASA medication at the time of their colonoscopy. In most cases, NSAIDs had been used for a period of years or months (Table 3). The most common indication for the use of these drugs was pain (Table 4). The symptoms that had led to an indication for colonoscopy are shown in Table 5. Lumping together the symptoms melena and anemia, and the positive occult blood test, it can be seen that bleeding complications occur in 55.5% of the cases, and are the most common indication for colonoscopy.

The most commonly cited medication (70.5%) was diclofenac (Table 6). In 60.6% of the cases, endoscopy revealed multiple lesions (erosions or ulcers), strictures (15.8%), while diaphragm-like formations (3.0%) were relatively rare. The distribution of the location of these
lesions identifies the right colon, in particular Bauhin’s valve, as the most frequently affected site (Table 7).

An analysis of the frequency of the various lesions in terms of solitary or multiple lesions showed that multiple lesions were most commonly ulcers or ulcers in combination with erosions, while solitary lesions were mostly focal erosions. Strictures or diaphragms were also frequently associated with multiple lesions (Table 8).

A separate analysis of patient’s age and sex distribution and endoscopic findings, after dividing cases into those with NSAID use alone, ASA use alone, combined use of NSAID and ASA, and cases denying NSAID/ASA intake, are shown in Table 9. A similar analysis of the histological findings is shown in Table 10. These two analyses revealed no statistically significant differences among the four groups of patients.

DISCUSSION

Our analysis showed that the histologically established diagnosis of suspected NSAID/ASA-induced lesion of the colonic mucosa is probably correct in a high percentage of cases (86.1%), and focal lesions were found, mainly in the right colon, such as Bauhin’s valve, cecum and ascending colon. However, since our study was an uncontrolled retrospective study based on histological findings, the results must be considered preliminary, and needs to be checked in prospective studies.

The topographic clustering of the lesions at Bauhin’s valve, in the cecum and ascending colon prompts the hypothesis that the lesions are not very likely caused by a

Table 2	Answers to the questionnaire in Table 1	
	n	%
NSAID	326	58.3
ASA	122	20.0
NSAID/ASA	48	7.8

Table 3	Duration of ingestion of NSAID/ASA (%)	
	D	4.6
	Wk	13.9
	Mo	21.5
	Yr	43.9
	No information	16.1

Table 4	Indication for use of NSAID/ASA (%)
Pain	64.3
Polyarthritis	12.3
Coronary heart disease	10.2
Peripheral occlusive arterial disease	7.9
Others	5.7

Table 5	Indications for colonoscopy (%)
Melena	23.9
Positive occult blood test	11.0
Anemia	21.6
Diarrhea	19.4
Abdominal pain	17.7
Weight loss	1.9
Ileus or subileus	1.1
Others	1.1

Table 6	Frequency distribution of used NSAID preparations (%)
Diclofenac	70.5
Ibuprofen	7.3
Piroxicam	1.4
Ketoprofen	0.4
Phenylbutazone	0.2
Combinations	17.6

Table 7	Localization of the lesions (%)
Ileum	4.5
Bauhin’s valve	21.3
Cecum	14.8
Ascending colon	19.1
Right flexure	7.0
Transverse colon	15.7
Left flexure	2.8
Descending colon	6.7
Sigmoid colon	5.3
Rectum	2.8

Table 8	Frequency of lesion type (solitary and multiple lesions)	
Erosions	63.3	21.3
Ulcers	21.7	56.4
Erosions+ulcers	0	12.2
Regenerative mucosa	15.0	10.1
Strictures	11.1	18.8
Diaphragms	1.0	4.4

Table 9	Age and sex distribution, location of lesions in right colon, and histological findings in the four groups of patients							
	n	F:M	Age (yr)	Location right colon	Endoscopic solitary lesion	Endoscopic multiple lesions	Endoscopic stricture	Endoscopic diaphragm
NSAID	58.3	2.4:1	28:98	n = 131	n = 225	n = 55	n = 13	
ASA	20%	1.6:1	23:90	n = 61	n = 61	n = 15	n = 1	
NSAID+ASA	7.8%	4.3:1	47:89	n = 15	n = 33	n = 12	n = 1	
NoNSAID/ASA	13.9%	1.4:1	19:90	n = 58	n = 27	n = 7	n = 1	
generalized, but by a topical local injurious effect of the
NSAID/ASA preparations. This hypothesis is supported
by the fact that these lesions were, in many cases, associated
with the use of retard preparations, and that in particular
the “bottleneck” at Bauhin's valve was involved. In those
patients using non-retard preparations, it might be interesting
to establish whether diarrhea associated with rapid transit
of the medication into the colon was present. This point
would have to be clarified in a prospective study, since we
did not request information about a temporal relationship
to diarrhea and the use of the medication. In support of a
topical mucosa-injuring effect of NSAID/ASA, there are
also numerous case reports on the use of retard preparations
and on the preferential sites of the lesions in the right
colon[42,44,50,53].

Also surprising are the results of our comparative analysis
of the four groups of patients (only NSAIDs, only ASA,
NSAIDs in combination with ASA, and no known use of
NSAID/ASA). Neither the endoscopic nor the histological
findings differed among these four groups; this might indicate
either that the patients in the no NSAID/ASA group often
simply denied using such medication, or that the physicians
had not questioned the patients specifically about over-the-
counter painkillers.

Our retrospective study should prompt a prospective
study. Ideal would be a prospective colonoscopic investigation
of patients taking NSAIDs, with consideration being given
to the nature and duration as also of the galenic formulation
of the preparations employed. Of particular interest would
be an investigation of the side effects of COX-1 inhibitors
in comparison with COX-2 inhibitors, which also can cause
lesions in the lower GIT[51,53]. Only in this way could we
obtain data on the incidence, localization and type of lesions
as a function of the medication. Such a study in patients
with no colon-specific symptoms would, however, hardly
be ethically justifiable. Worthy of discussion, however, is
the question whether, in patients on NSAIDs, a hemocult
test could be performed and, in the event of positive results,
an indication for colonoscopy established. Also, an investigation
of the incidence of NSAID-induced lesions in the small
intestine employing capsule endoscopy should receive
consideration.

What the results of our retrospective study definitely
show, however, is that the pathologist who finds focal
erosions, ulcers and strictures, together with necroses of
the ischemic type in biopsies from the (mainly right) colon,
should, more than previously, suggest in his report the
possibility of an NSAID-induced mucosal injury. This would
then prompt the care-providing physician to look into the
patient's use of NSAIDs, the type of preparation employed,
its dosage and galenic formulation, and then possibly replace
or discontinue the medication with the aim of clarifying the
etiopathogenesis of the lesion and preventing such serious
complications such as perforation, chronic bleeding, and
strictures. In principle, however, the NSAID/ASA-induced
lesions cannot be differentiated histologically from ischemic
lesions. This, too, should be emphasized in the histological
report. Although arteriosclerosis-induced ischemic colitis is
usually located in the left colon, and often manifests as
multiple lesions distributed over a large area, other rare
causes of ischemic colitis (e.g., vasculitis, distension colitis,
embolii) may also give rise to irregularly distributed focal
lesions at atypical locations. In our experience as consultant
pathologists investigating biopsy and surgical material, the
most common endoscopic and histological wrong diagnosis
in NSAID-induced colonopathy is Crohn's disease established
on the basis of the discontinuous changes due to NSAID
colonopathy. This diagnostic error can, however, be avoided
by giving consideration to the age of the patient, since
NSAID-induced colonopathy is seen mainly in the elderly
people. However, also in the case of young patients with

NSAID (%)	n = 22	n = 17	n = 101	n = 30	n = 17
NSAID+ASA (%)	n = 16	n = 9	n = 16	n = 6	n = 8
ASA (%)	n = 16	n = 34	n = 34	n = 32	n = 6
No NSAID/ASA (%)	n = 4	n = 10	n = 7	n = 19	n = 5

Table 10 Frequency of histological findings in the four groups of patient
no other clinical and laboratory findings suggestive of Crohn’s disease, the physician should be prompted to enquire about the use of NSAIDs, and if such use is denied, to apply ASA serology to test for possible misuse of painkillers[54].

In conclusion, the present study shows that our retrospective suspected diagnosis of NSAID/ASA-induced enterocolitis, the physician should be prompted to enquire about the use of NSAIDs, and if such use is denied, to apply ASA serology to test for possible misuse of painkillers[54].

REFERENCES

1. Lennert KA, Kootz F. Nil nocere. Arzneimittelbedingte Dünndarmulzera. Münch Med Wochenschr 1967; 40: 2058-2062
2. Sturges HF, Krone CL. Ulcerations and strictures of the jejunum in a patient of long-standing indomethacin therapy. Am J Gastroenterol 1973; 59: 162-169
3. Huber T, Ruchti C, Halter F. Non-steroidal anti-inflammatory drug-induced colonic structures: a case report. Gastroenterology 1991; 100: 1119-1122
4. Fellows IW, Clarke JM, Roberts PF. Non-steroidal anti-inflammatory drug-induced jejunal and colonic diarrhoea: a report of two cases. Gut 1992; 33: 1424-1426
5. Lanas A, Bajador E, Serrano P, Fuentes J, Carreno S, Guardia J, Sanz M, Monforto M, Sainz R. Nitrosodisulphides, low-dose aspirin, other nonsteroidal anti-inflammatory drugs, and the risk upper gastrointestinal bleeding. N Engl J Med 2000; 343: 834-839
6. Rockall TA, Logan RF, Devlin HB. Incidence of and mortality from acute upper gastrointestinal haemorrhage in the united kingdom. Steering committee and members of the national audit of acute upper gastrointestinal haemorrhage. BMJ 1995; 311: 222-226
7. Bjarnason I, Hayllar H, MacPherson AJ, Russell AS. Side effects of non steroidal anti-inflammatory drugs on the small and large intestine in humans. Gastroenterology 1993; 104: 1832-1847
8. Langman MJS, Morgan L, Worrall A. Use of anti-inflammatory drugs by patients admitted with small or large bowel perforations and haemorrhage. Br Med J 1985; 290: 347-349
9. Allison MC, Howison AG, Torrance CJ, Lee FK, Russell RI, Gastrointestinal damage associated with the use of nonsteroidal anti-inflammatory drugs. N Engl J Med 1992; 327: 749-754
10. Lanas A, Sekar MC, Hirschowitz BI. Objective evidence of aspirin use in both ulcer and nonulcer upper and lower gastrointestinal bleeding. Gastroenterology 1992; 103: 862-869
11. Lanas A, Serrano P, Bajador E, Esteva F, Benito R, Sainz R. Evidence of aspirin use in both upper and lower gastrointestinal perforation. Gastroenterology 1997; 112: 683-689
12. Wilcox CM, Alexander LN, Cotsonis GA, Clark WS. Nonsteroidal antiinflammatory drugs are associated with both upper and lower gastrointestinal bleeding. Dig Dis Sci 1997; 42: 990-997
13. Holt S, Rigoglioso V, Sidhu M, Irshad M, Howden CW, Mañero M. Nonsteroidal anti-inflammatory drugs and lower gastrointestinal bleeding. Dig Dis Sci 1993; 38: 1619-1623
14. Wilson RG, Smith AN, MacIntyre IMC. Complications of diverticular disease and non-steroidal anti-inflammatory drugs: a prospective study. Br J Surg 1990; 77: 1103-1104
15. Campbell K, Steele RC. Non-steroidal anti-inflammatory drugs and complicated diverticular disease: a case-control study. Br J Surg 1991; 78: 190-191
16. Aldoori WH, Giovannucci EL, Rimm EB, Wing AL, Willett WC. Use of acetaminophen and nonsteroidal anti-inflammatory\n
……
Sukumar L
Sacanella E
Gibson GR
Bjarnason I
Gut A
Levi S
Gargot D
Whittle BJR
Withcomb DC

Stolte M et al. NSAID-induced colonopathy 5833

piroxicam. Recurrent small bowel obstruction with secondary to nonsteroidal anti-inflammatory drugs. Urbano-Marquez A. Massive haemorrhage due to colitis secondary to nonsteroidal anti-inflammatory drugs. Report of four cases and literature review. Gastroenterology 1995; 100: 2035-2038

Gargot D, Chaussade S, d’Alteroche L. Non-steroidal anti-inflammatory drug-induced colonic strictures: two cases and literature review. Gastroenterology 1995; 100: 2035-2038

Recurrence of small bowel obstruction with secondary to nonsteroidal anti-inflammatory drugs. Schweiz Med Wochenschr 1996; 126: 616-625

Bjarnason I, Hayllar J, MacPherson AJ, Russel AS. Side effects of nonsteroidal anti-inflammatory drugs on the small and large intestine in humans. Gastroenterology 1993; 104: 1832-1847

Gibson GR, Whitacre EB, Ricotti CA. Colitis induced by non-steroidal anti-inflammatory drugs. Report of four cases and review of the literature. Arch Intern Med 1992; 152: 625-632

Sacanella E, Munoz F, Cardellach F, Estruch R, Miro O, Urbano-Marquez A. Massive haemorrhage due to colitis secondary to nonsteroidal anti-inflammatory drugs. Postgrad Med J 1996; 72: 57-58

Sukumar L. Recurrent small bowel obstruction with piroxicam. Br J Surg 1987; 74: 186

Bjarnason I, Price AB, Zanelli G, Smethurst P, Burke M. Clinicopathological features of nonsteroidal anti-inflammatory drug induced small intestinal strictures. Gastroenterology 1988; 94: 1070-1074

Lang J, Price AB, Levi AJ, Burke M, Gumpel JM, Bjarnason I. Diaphragm disease: pathology of disease of small intestine induced by non-steroidal anti-inflammatory drugs. J Clin Pathol 1988; 41: 516-526

Levi S, de Lacey G, Price AB, Gumpel MJ, Levi AJ, Bjarnason I. “Diaphragm-like” strictures of the small bowel in patients treated with non-steroidal anti-inflammatory drugs. Br J Radiol 1990; 63: 186-189

Withcomb DC, Martin SP, Trellis AR, Evans BA, Becich MJ, “Diaphragmlike” stricture and ulcer of the colon during diclofenac treatment. Arch Intern Med 1992; 152: 2341-2343

Halter F, Weber B, Huber T, Eigenmann F, Frey M, Ruchti C. Diaphragm disease of the ascending colon. Association with sustained-release diclofenac. J Clin Gastroenterol 1993; 61: 74-80

Anthony A, Dhillon AP, Sim R, Nygard G. Pounder RE, Wakefield AJ. Ulceration, fibrosis and diaphragm-like lesions in the caecum of rats treated with indomethacin. Aliment Pharmacol Ther 1994; 8: 417-424

Robinson MWT, Leach JCH. Nonsteroidal anti-inflammatory drug-induced colonic stricture. An unusual cause of large bowel obstruction and perforation. Dig Dis Sci 1995; 40: 315-319

Klee M, Vogel CU, Diehl HG, Stolte M. Das Diaphragma-Kolon - Eine schwerwiegende Nebenwirkung nichtsteroidaler Antirheumatika (NSAR). Leber Magen Darm 1998; 28: 137-141

Stolte M, Panayiotou S, Schmitz J. Can NSAID/ASA-induced erosions of the gastric mucosa be indentified at histology? Pathol Res Pract 1999; 195: 137-142

Vieth M, Muller H, Stolte M. Can the diagnosis of NSAID-induced or Hp-associated gastric ulceration be predicted from histology? J Gastroenterol 2002; 40: 783-788

The RISC Group. Risk of myocardial infarction and death during treatment with low dose aspirin and intravenous heparin in men with unstable coronary artery disease. Lancet 1990; 336: 827-830

The SALT Collaborative Group. Swedish Aspirin Low-Dose Trial (SALT) of 75 mg aspirin as secondary prophylaxis after cerebrovascular ischaemic events. Lancet 1991; 338: 1345-1349

Patrono C. Aspirin as an antiplatelet drug. N Engl J Med 1994; 330: 1287-1294

Newman JR, Cooper MA. Lower gastrointestinal bleeding and ischemic colitis. Can J Gastroenterol 2002; 16: 597-600

MacDonald PH. Ischaemic colitis. Best Pract Res Clin Gastroenterol 2002; 16: 51-61

Singh G, Ramey DR. NSAID induced gastrointestinal complications: the ARAMIS perspective -1997. Arthritis, Rheumatism, and Aging Medical Information System. J Rheumatol 1998; 25: 8-16