Growth and production of several sweet potato genotypes
(*Ipomoea batatas* L.) on various watering levels in rainfed
paddy fields

A Sobirin¹, N Rahmawati¹,²* and T Irmansyah¹

¹Faculty of Agriculture, Universitas Sumatera Utara, Medan, Sumatera Utara,
Indonesia.
²Centre for Roots and Tuber Study, Universitas Sumatera Utara, Medan, Sumatera
Utara, Indonesia.

E-mail: *nini@usu.ac.id

Abstract. Watering using 3 levels of watering is able to increase production and plant growth,
specifically on suboptimal lands. This research aim was to determine the growth and
production of several sweet potato genotypes (Beta 1 varieties with orange tuber, Perbaungan
Accession with orange tuber and Cengkeh Turi Accession with yellow tuber) on various levels
of watering with 3 levels: very limited watering (watering up to 1 month, intervals 10 days),
limited watering (watering up to 2 months, intervals 10 days) and optimum watering (watering
up to 4 months, intervals 10 days) in rainfed paddy field. This research was conducted in the
paddy fields of Tandem Hilir I Village, Deli Serdang on April-July 2019. The results of this
research represent that local sweet potato genotypes have good production and growth
responses in paddy field cultivation. Perbaungan accessions with orange tuber and Cengkeh
Turi Accession with yellow tuber obtained the highest tuber length, tuber diameter, average
tuber weight and harvest index compared to other genotypes. Application of watering with 3
levels in paddy fields proved not real on all observation parameters. Watering with 3 levels is
best at limited watering (watering up to 2 months).

1. Introduction

Sweet potato is a local food group that has the potential to be developed that supports the non-rice
food diversification program towards food security [1]. Sweet potatoes are generally planted in paddy
fields after harvest season with limited irrigation at the beginning of the dry season or in the field at
the beginning to the middle of the rainy season [2].

Drought stress causes inhibition of plant vegetative growth among others shoot weight, leaf area,
tendrils length and the number of branches also decreases but stomata density tends to increase in
plants that get drought stress under water stress conditions [3]. Watering aims to provide additional
water in sufficient quantities at the time needed by plants [4].

Efforts that can be done to increase sweet potato production include using high-yielding seedlings
or local seedlings that are able to overcome problems on dry land [5,6]. By using superior and local
seeds, it is expected to identify the sweet potato clones that are resistant to drought [7].

The aim of this research was to determine the growth and production of several sweet potato
(*Ipomoea batatas* L.) genotypes (Beta 1 varieties with orange tuber, Perbaungan Accession with
orange tuber and Cengkeh Turi Accession with yellow tuber) on various levels of watering in rainfed paddy field.

2. Materials and methods
The research was carried out in April-July 2019 in the paddy field of Tandem Hilir I Village, Deli Serdang. This research used a randomized block design with two factors, the first factor was the sweet potato local genotype (Beta 1 variety with orange tuber, Perbaungan Accession with orange tuber and Cengkeh Turi Accession with yellow tuber) and the second factor was Watering Level (P) with 3 levels: P1 = Very Limited Watering (watering up to 1 month, intervals 10 days), P2 = Limited Watering (watering up to 2 months, intervals 10 days), P3 = Optimum Watering (watering up to 4 months, intervals 10 days), watering is done by using a Hygrometer watered until the tool shows WET on the Hygrometer screen. This research started from seedling preparation, land preparation, planting, basic fertilization, watering according to treatment, soil moisture is determined using a hygrometer. Morphological parameter analysis which includes stem length, tuber length per sample, tuber diameter, average tuber weight and harvest index.

Data collection on morphological characters is stem length, that was carried out when the plants were 2 weeks old after planting (WAP) to 10 WAP. Observations of tuber length per sample, tuber diameter, average tuber weight and harvest index were done when the plant was 16 WAP.

Data were analysed statistically by the F test and continued by the Duncan’s Multiple Range Test (DMRT) at α 5%.

3. Results and discussion
Data presented in Table 1 and Figure 1 indicated that the three local sweet potato genotypes were not significantly different in the stem length parameters. Beta 1 varieties with orange tuber had the highest stem length compared to other genotypes. It was suspected that Beta 1 variety which is a national superior variety, has better stem growth compared to other genotypes. This is because Beta 1 variety has the advantage of being suitable for planting in paddy fields after rice planting which results in the Beta-1 variety having a higher stem length compared to other sweet potato genotypes. Saleh [8] reported that the superior varieties of Beta 1 had the advantage of being suitable for planting on upland fields from paddy fields after the rice was harvested hence they were more resistant to various conditions in the paddy fields environment.

| Table 1. Stem lengths of several sweet potato genotypes on several watering levels |
|-------------------------------------|-----|
| Treatment | Stem Length (cm) |
| Genotype | |
| Beta 1 Variety with orange tuber | 83.31 |
| Perbaungan Accession with orange tuber | 79.14 |
| Cengkeh Turi Accession with yellow tuber | 79.58 |
| Watering | |
| Very Limited Watering up to 1 month | 78.42 |
| Limited Watering up to 2 months | 75.43 |
| Optimum Watering up to 4 months | 88.18 |

Data in Table 1 and Figure 2 indicated the sweet potato stems length which was watered with 3 different levels were not significantly different. Sweet potato which was watered until 4 months had the highest stem length. Rahayuningsih [3] reported that drought stress caused vegetative growth
inhibition of plants such as shoot weight, leaf area, tendrils length and the number of branches also decreased but stomata density tended to increase in plants that received drought stress.

![Figure 1. Stem lengths of several sweet potato genotypes](image1)

Data in Table 2 indicated that the tuber length in the three genotypes was not significantly different. Cengkeh Turi accession with yellow tubers had higher tuber length than other genotypes, because Cengkeh Turi accession with yellow tubers had a longer tuber shape compared to other sweet potato genotypes Andika et al. [9] reported that sweet potato genotypes had different characteristics among genotypes including leaves, stems, tuber shape, tuber skin colour, and tuber flesh colour. The difference in characteristics is influenced by genetic and environmental factors.

Watering with different levels also did not have significant effects on the tuber length. Sweet potato plants watered to 4 months with 10 days intervals produced tubers with the highest length compared to other watering levels. Drought at each stage of tuber formation and filling greatly affects the characteristics of the tuber. Plants watered for 4 months at 10-day intervals produce tubers length 14.01% longer than the lowest tuber lengths produced by plants watered for 1 month at 10-day intervals. This was presumably because the level of optimum watering to 4 months with 10 days intervals was able to meet the water needs of plants. One of them is to increase plant growth and increase the production of dry matter weight hence the process of photosynthesis can run optimally, finally, photosynthates that are transplanted from the leaves to the tubers run effectively resulted in
better tuber production. Wahyuni et al. [10] reported that in 'not optimal' irrigation of sweet potatoes cultivation, only able to produce small tubers.

Data in Table 3 indicated that the tuber diameters of the three genotypes had a significant effect. Perbaungan accession with orange tuber obtained the highest tuber diameter compared to other genotypes while Beta 1 varieties had the lowest tuber diameter compared to other genotypes at the level of watering. This was because local genotypes have a higher adaptation than superior varieties. Saleh., [8] stated that the superior varieties of Beta 1 had weaknesses which were less than optimal environmental adaptability, lower tuber weights and were not resistant to high soil water content. Zulkadifta et al., [11] stated that local genotypes have high levels of productivity, adaptability and excellent growth hence produce good tubers.

Watering with different levels also did not significantly affect the tuber length. Sweet potato plants watered to 2 months at intervals of 10 days produce tubers with the highest diameter compared to other watering levels. While sweet potato plants watered to 4 months at intervals of 10 days produce the lowest tuber diameter. Soil moisture needed by sweet potatoes at the beginning of growth ranged from 60-70%, in the middle of growth 70-80%, and at the end of growth requires 60% humidity. Although sweet potato is a drought-tolerant plant, long drought will disturb tuber formation.

Table 2. Tuber lengths of several sweet potato genotypes at several watering levels

Treatment	Tuber lengths (cm)
Genotype	
Beta 1 Variety with orange tuber	10.51
Perbaungan Accession with orange tuber	11.96
Cengkeh Turi Accession with yellow tuber	13.57
Watering	
Very Limited Watering up to 1 month	11.42
Limited Watering up to 2 months	11.60
Optimum Watering up to 4 months	13.02

Table 3. Tuber diameters of several sweet potato genotypes at several watering levels

Treatment	Tuber diameters (mm)
Genotype	
Beta 1 Variety with orange tuber	27.75 c
Perbaungan Accession with orange tuber	48.33 a
Cengkeh Turi Accession with yellow tuber	45.15 b
Watering	
Very Limited Watering up to 1 month	44.99
Limited Watering up to 2 months	39.91
Optimum Watering up to 4 months	36.32

Note: Numbers followed by the same letters indicated no significant difference in Duncan's Multiple Range Test at α = 5%.

Data in Table 4 indicated that the genotypes treatment significantly affected the average tuber weight parameters per sample. Cengkeh Turi Accession with yellow tuber obtained the highest average tuber weight per sample compared to other genotypes. Cengkeh Turi accessions with yellow
The tuber had high adaptability even though planted in different environmental conditions from which this genotype originated. Jusuf et al. [12] reported that widely adapted varieties/clones/genotypes have the advantage of being able to produce high yields in diverse agroecosystems.

Watering with different levels also did not significantly affect the average tuber. Sweet potato plants watered to 2 months at 10-day intervals produced the highest results on the average tuber weight parameters and plants watered to 1 month at 10-day intervals produced the lowest average tuber weight. This is because sweet potatoes have a tuber formation phase at 3-8 weeks where plants need adequate water intake. Widodo et al. [13] reported that dry weather is very suitable for tuber formation and development, but if drought conditions occur in the tuber formation phase (3-8 weeks old) it will result in a significant decrease in tuber production.

Table 4. The average tuber weights of several sweet potato genotypes at several watering levels

Genotype	Treatment	Average Tuber Weights (g)
Beta 1 Variety with orange tuber		33.36 c
Perbaungan Accession with orange tuber		75.76 b
Cengkeh Turi Accession with yellow tuber		94.95 a
Watering		
Very Limited Watering up to 1 month		56.63
Limited Watering up to 2 months		81.82
Optimum Watering up to 4 months		65.62

Note: Numbers followed by the same letters indicated no significant difference in Duncan's Multiple Range Test at α = 5%

Table 5. Harvest indexes of several sweet potato genotypes at various levels of watering

Genotype	Treatment	Harvest Index
Beta 1 Variety with orange tuber		0.04 c
Perbaungan Accession with orange tuber		0.16 a
Cengkeh Turi Accession with yellow tuber		0.15 b
Watering		
Very Limited Watering up to 1 month		0.11
Limited Watering up to 2 months		0.13
Optimum Watering up to 4 months		0.11

Note: Numbers followed by the same letters indicated no significant difference in Duncan's Multiple Range Test at α = 5%

Data in Table 5 indicated that the harvest indexes of all three genotypes had a significant effect. Perbaungan Accessions with orange tuber and Cengkeh Turi Accession with yellow tuber yields the highest harvest index when compared to Beta 1 Varieties with orange tuber. Perbaungan accession with orange tuber produced the highest tuber diameter and harvest index compared to other genotypes. This was because local genotypes have a high level of productivity and plant adaptation also a very good growth hence yield good tubers. Watering with different levels also did not significantly affect the harvest index. In the watering level to 1 month, plants experience suboptimal growth due to stress
received by the plants are heavy enough that it inhibits the vegetative growth of the plant. Hapsari et al. [6] stated that the intensity of stress received by plants up to one month of age can be said to be the intensity of severe stress with a value (SI) of 0.79 while irrigation up to the age of 2 months includes moderate stress with a value (SI) of 0.54. Drought stress received by plants makes vegetative growth stunted.

4. Conclusion
The production and growth of local sweet potato genotypes are better in rainfed paddy fields. Sweet potato of Perbaungan accessions with orange tuber and Cengkeh Turi accession with yellow tuber produced tubers with highest tuber length, tuber diameter, average tuber weight and harvest index compared to Beta 1 varieties.

At the level of watering the rainfed paddy field has no significant effect on all observation parameters. Watering with the 3 best levels on limited watering (watering up to 2 months).

References
[1] Serly E L, Sengin and Riadi M 2013 Respon Pertumbuhan dan Produksi Ubi Jalar (Ipomoea batatas L.) yang Diaplikasi Paclobutrazol dan Growmore 6-30-30 (Response of Growth and Production of Sweet Potatoes (Ipomoea batatas L.) Applied by Paclobutrazol and Growmore 6-30-30) (Makassar: Faculty of Agriculture, Universitas Hasanuddin Makassar)
[2] Widodo Y, Sutrisno, Isgiyanto and Slamet P 2003 Peningkatan efisiensi penggunaan input pada sistem budidaya ubi jalar di lahan sawah (Increased efficiency of the use of inputs in sweet potato cultivation systems in paddy fields) Laporan Teknik Balitkabi (Technical Report of Balitkabi) 2003 p 20
[3] Rahayuningsih S A 2010 Deraan kekeringan pada tanaman ubi jalar (Drought stress in sweet potato plants) Buletin Palawija 20 84-95
[4] Kurnia U 2004 Prospek pengairan pertanian tanaman semusim lahan kering (Prospect of irrigation of seasonal crops in dry land) Jurnal Litbang Pertanian 23(4) 130-138
[5] Ballard C, Brown P, Bourke R M and Harwood T 2005 Ubi Jalar di Oseania: Penilaian Ulang (The Sweet Potato in Oceania: A Reappraisal) (Sydney: University of Pittsburgh and Univ of Sydney)
[6] Hapsari R T, Mejaya I M J and Sulistyao A 2011 Uji toleransi beberapa klon ubi jalar terhadap kekeringan berdasarkan karakter agronomik tanaman (Tolerance test of several sweet potato clones against drought based on agronomi characteristics of plants) Malang Seminar Nasional Hasil Penelitian Aneka Kacang dan Umbi p 685-694
[7] Sasonko L A 2009 Perkembangan ubi jalar dan peluang pengembangannya untuk mendukung program percepatan diversifikasi konsumsi pangan di Jawa Tengah (Development of sweet potatoes and their development opportunities to support the acceleration of diversification program in food consumption in Jawa Tengah) MEDIAAGRO 5(1) 36-43
[8] Andika M Y, Rahmagari N and Sitepu F E 2019 Respons pertumbuhan dan produksi beberapa genotip lokal ubi jalar (Ipomoea batatas L.) terhadap aplikasi biochar jerami padi di lahan sawah tadah hujan (Growth and production responses of local sweet potatoes (Ipomoea batatas L.) genotypes on paddy straw biochar application in the paddy fields), IOP Conf Earth and Environmental Science 260 (2019) 012152
[9] Wahyuni T S, Jusuf M and Rahayuningsih S A 2007 Akses plasma nuttah ubi jalar berkandungan β-karoten tinggi dalam Inovasi teknologi kacang-kacangan dan umbi-umbian mendukung kemandirian pangan dan kecukupan energi (Accession of sweet potato germplasm containing high β-carotene content of Pp 238-245 in technological innovations of legumes and tubers supports food independence and energy sufficiency) (Bogor: Puslitbangtan) p 238-245
[11] Zulkadifta T A, Ginting J and Sipayung R 2018 respons pertumbuhan dan produksi beberapa varietas ubi jalar (Ipomoea batatas L.) terhadap pemberian kompos tandan kosong kelapa sawit (TKKS) (Response of growth and production of several sweet potato varieties (Ipomoea batatas L.) towards oil palm empty fruit bunch compost (OPEFB) Compost) *J Pertanian Tropik* 5(1) 120-127

[12] Jusuf M, Rahayuningsih S A and Ginting E 2008 Ubi jalar ungu *Warta Penelitian dan Pengembangan Pertanian* 30(4) 13-14

[13] Widodo Y, Rahayuningsih S A and Saleh N 2009 Perbaikan perbenihan guna mendukung peningkatan ubi jalar (Seeding repairs to support the improvement of sweet potatoes) *Buletin Palawija* 18 48- 57

Acknowledgement

This research is part of the TALENTA USU 2019 research supported by the University of Sumatera Utara with a contract number 4167/UNS.1.R/PPM/2019 April 2019. The author would like to thank for the financial support and facilities for the implementation of this research.