Agronomic Evaluation of Groundnut Advanced Varietal Entries with Varieties, Varied Fertilizer Levels and Spacing

V. Vasuki*

Department of Agriculture, AEC & RI, Tamil Nadu Agricultural University, Tiruchirapalli, 621 712, India

*Corresponding author

ABSTRACT

Field experiment was conducted during Rabi/Summer season of 2009-10, 2010-11 and 2011-12, at Coconut Research Station, Aliyarnagar, Tamil Nadu, India, to evaluate the best suited advanced varietal entries for improving pod yield in Pollachi tract of Tamil Nadu. Three factors mainly, Varieties (3), Fertilizer levels (3 viz., 125 %, 100 % and 75 % of Recommended Dose of Fertilizers, 25:50:75 kg ha⁻¹ of NPK) and Spacing (two levels, 30 x 10 cm and 30 x 15 cm) in Factorial Randomized Block Design (FRBD) with three replications. Results of three years of experimentation with AVT entries J 71 (first year), ICGV 95386 (second year), Dh 216 (third year) are as follows, during first year pod yield recorded with VRI-2 (1751 kg ha⁻¹) and J-71 (1877 kg ha⁻¹) were on par with each other followed by ALR-3 (1505 kg ha⁻¹). Among different fertilizer levels application of 125 % (1878 kg ha⁻¹) and 100 % (1831 kg ha⁻¹) RDF recorded highest pod yield followed by 75 % of RDF (1425 kg ha⁻¹). Experimental results of second year revealed that pod yield recorded with medium bold culture ICGV 95386 (3820 kg ha⁻¹) was 57.9 and 75.8 per cent higher over TMV 13 (2420 kg ha⁻¹) and VRI-6 (2173 kg ha⁻¹), respectively. Application of 125 % RDF (3187 kg ha⁻¹) produced 20.9 and 40.7 per cent higher pod yield over RDF 75 % (2034 kg ha⁻¹) and 100 % (2460 kg ha⁻¹) and was comparable with each other. Spacing of 30 x 10 cm recorded higher pod yield of 3015 kg ha⁻¹ over spacing of 30 x 15 cm (2592 kg ha⁻¹). During third year experimentation AVT entry Dh 216 recorded higher pod and kernel yield (3216 kg ha⁻¹, 2189 kg ha⁻¹ respectively) as compared to VRI 6 (2861 kg ha⁻¹, 1757 kg ha⁻¹ respectively) and TMV 13 (2759 kg ha⁻¹, 1982 kg ha⁻¹, respectively). Spacing of 30 x 15 cm recorded significantly higher pod and kernel yield (3221 kg ha⁻¹ and 2098 kg ha⁻¹) as compared to 30 x 10 cm spacing (2670 kg ha⁻¹ and 1725 kg ha⁻¹) and application of 75, 100 and 125 % of RDF recorded no significant difference among treatments. Among three AVT entries J-71, ICGV 95386 and Dh 216, J-71 experimented agronomically for higher yield, J-71 was on par with VRI -2, Medium bold ICGV 95386 and Dh 216 recorded significantly higher yield than the other two high yielding groundnut varieties and were promising for promotion as a high yielding variety.

Keywords
Recommended Dose of fertilizer, Spacing, Advanced varietal trial

Article Info
Accepted: 10 January 2021
Available Online: 10 February 2021
Introduction

Groundnut (Arachis hypogaea L.) is an important oil seed crop of India. In India, Groundnut is cultivated in 26.4 M ha contributing 37.1 million tonnes out of total world production (Central Statistics Office, 2008). Groundnut is known for its rich source of vegetable fats, protein and also for its use as cattle feed and concentrated organic manure.

It can be grown in tropical, sub-tropical and warm temperate regions (Sogut et al., 2016) with average yield of 1520 kg ha⁻¹ (FAOSTAT, 2011). Choice of the variety plays a significant role in groundnut production. Some of the groundnut varieties have shown that low source and sink relationship resulted in formation of more unfilled pods and lesser seed yield.

Fertility management is another key principle in maximizing groundnut yield. Parasuraman et al., (1998) reported higher availability of plant nutrients consequently had higher growth parameters in the fertilized treatments and higher yield of groundnut. Remunerative responses of groundnut crop to fertilizer application have been observed both under irrigated and rainfed conditions in India (Kanwar et al., 1983). Increase in groundnut yield due to the application of NPK was also reported by Angadi et al., (1990). Plant density is highly associated with yield potential and optimum plant density per unit area is an important non-monetary input to decide the maximum groundnut productivity.

Yield is a function of plant density and there is a considerable scope for increasing the yield by adjusting the plant density to an optimum level (Chaniyara, 2001). Hence, this study was done to evaluate the response of new AVT entries for different spacing and fertilizer levels in comparison with already existing varieties.

Materials and Methods

Field experiments were conducted at Coconut Research Station, Aliyarnagar during Rabi/Summer 2009-10, 2010-11 and 2011-12 with three different AVT entries namely J-71, ICGV 95386 and Dh 216, respectively. The experimental field soil was sandy clay loam with organic carbon content of 0.25 %. The nutrient status of the soil was low in available nitrogen 272 kg ha⁻¹, medium in available phosphorus 20.6 kg ha⁻¹ and high in available potassium 420 kg ha⁻¹ with soil EC of 0.08 dSm⁻¹ and pH of 7.12. The experiment was laid out in Factorial Randomized Block Design with three replications and plot size of 20 m² (4 x 5 m²). For fertilizer levels, 100 %, 125 % and 75% of recommended dose of NPK (17:35:54 kg ha⁻¹) were applied as basal. 12.5 t ha⁻¹ of FYM was applied as basal. Gypsum @ of 400 kg ha⁻¹ was applied in two equal splits of 200 kg ha⁻¹ as basal and 200 kg ha⁻¹ as top dressing at 45 DAS during earthing up.

Two different spacing of 30 x 10 cm and 30 x 15 cm were experimented. During first year AVT entry J-71 was compared with VRI 2 and ALR 3, second year AVT entry ICGV 95386 was compared with VRI-6and TMV 13and for third year AVT entry Dh 216 was compared with VRI-6, and TMV 13. The collected data were statistically analyzed using the method Gomez and Gomez (1984) and data interpreted where ever significance observed.

Results and Discussion

AVT Culture – J-71, Varieties – VRI 2 and ALR 3 (Table 1)

The results of field experiment conducted during 2009-10, recorded that 100 seed weight was significantly highest with ALR-3 (40.2) and VRI 2 (38.1) followed by J-71 (32.5). There was no response for different fertilizer levels. The variety VRI-2 (87.53) and AVT
entry J-71 (83.62) recorded significantly higher number of pods followed by ALR-3 (79.65). The fertilizer level 125 % (86.67) and 100 % (83.77) RDF recorded highest number of pods followed by 75 % (80.37) of fertilizer RDF.

The shelling percentage was influenced only by different fertilizer levels. The highest shelling percentage was recorded with 125 % (62.82) and 100 % (60.42) RDF followed by 75 % (53.42) of fertilizer RDF. Among different fertilizer levels the application of 125 % (1878 kg ha\(^{-1}\)) and 100 % (1831 kg ha\(^{-1}\)) RDF recorded highest pod yield followed by 75 % (1425).

For haulm yield in kg ha\(^{-1}\) the significantly best treatment was ALR-3 (7937 kg ha\(^{-1}\)) followed by VRI-2 (3411 kg ha\(^{-1}\)) and J-71 (3288 kg ha\(^{-1}\)). Among different fertilizer levels 125 % (5376 kg ha\(^{-1}\)) % of RDF recorded significantly higher haulm yield followed by 100 (4825 kg ha\(^{-1}\)) and 75 (4436 kg ha\(^{-1}\)) % of RDF.

The results are in confirmation with the findings of Subrahmaniyan \textit{et al.}, (2000) that increased dose of NPK fertilizers up to 150 per cent of the RDF (26:51:81 kg NPK ha\(^{-1}\)) recorded significantly higher plant height, greater number of matured pods per plant, higher 100 kernel weight, shelling percentage, sound matured kernel percentage and pod yield of groundnut.

\textbf{AVT Culture – ICGV 95386, Varieties – VRI 6 and TMV13 (Table 2)}

The results of the field experiment conducted during 2010-2011, revealed that there was significant difference in yield attributes like Sound matured kernels and shelling percentage.

The varieties VRI 6 (89.1) and TMV 13 (88.8) recorded significantly higher SMK than AVT entry ICGV 95386 (87.2) and were comparable with each other. Application of 125 % RDF registered highest SMK of 92.9 than 100 % (90.0).

Spacing of 60 x 15 cm recorded higher SMK (89.8) than 30 x 15 cm (88.3). Highest shelling percentage was recorded with AVT entry ICGV 95386 (62.62) followed by TMV 13 (60.81) and then by VRI 6 (57.23). 125 % RDF recorded (62.85) higher shelling percentage followed by 100 % RDF (60.24) and 75 % RDF (57.58). The shelling percentage was higher with 30 x 10 cm (62.34) than 30 x 15 cm (58.11).

ICGV 95386 recorded highest pod weight per plant 15.25 g followed by TMV 13 (9.43g) and VRI 6 (8.76 g). Similar trend was observed with kernel yield also. ICG 95386 recorded 2402 kg ha\(^{-1}\) followed by TMV 13 (1486 kg ha\(^{-1}\)) and VRI 6 (1252 kg ha\(^{-1}\)). 125 % RDF recorded highest kernel yield (2025 kg ha\(^{-1}\)) followed by 100 % (1676 kg ha\(^{-1}\)) and 75 % (1439 kg ha\(^{-1}\)).

Spacing of 30 x 10 cm recorded higher kernel yield of 1899 kg ha\(^{-1}\) than 30 x 15 cm with 1527 kg ha\(^{-1}\). Pod yield recorded with ICGV 95386 (3820 kg ha\(^{-1}\)) was 57.9 and 75.8 per cent higher over cv. TMV 13 (2420 kg ha\(^{-1}\)) and VRI-6 (2173 kg ha\(^{-1}\)), respectively.

The application of 125 % RDF (3187 kg ha\(^{-1}\)) produced 20.9 and 40.7 per cent higher pod yield over RDF 75 % RDF (2034 kg ha\(^{-1}\)) and 100 % (2460 kg ha\(^{-1}\)) which is comparable with each other. The spacing of 30 x 10 cm recorded higher pod yield of 3015 kg ha\(^{-1}\) over the spacing of 30 x 15 cm (2592 kg ha\(^{-1}\)).
Table 1: Effect of fertilizer levels and spacing on yield parameters of Groundnut AVT entry J-71 and varieties VRI 2 and ALR 3

Treatments	Shelling percentage	Sound matured kernels (Nos.)	Matured Pods Plant⁻¹ (Nos.)	100 seed weight (g)	Pod yield (kg ha⁻¹)	Haulm yield (kg ha⁻¹)
V1 – ALR-3	61.83	79.65	12.47	40.20	1508	7988
V2 – J-71	55.65	83.62	15.52	32.53	1877	3288
V3 – VRI-2	59.17	87.53	15.23	38.04	1751	3411
SE d	2.73	3.84	0.72	1.71	82	251
CD (P=0.05)	NS	NS	1.46	3.46	167	511
F1 – 75 % RDF	53.42	80.37	11.52	35.07	1426	4436
F2 – 100 % RDF	60.42	83.77	15.22	36.71	1831	4825
F3 - 125 % RDF	62.82	86.67	16.48	38.99	1878	5376
SE d	2.73	3.84	0.72	1.71	82	251
CD (P=0.05)	5.55	NS	1.46	NS	167	511
S1 – 30 x 10 cm	58.13	82.96	14.12	36.53	1694	4833
S2 – 30 x 15 cm	59.64	84.25	14.69	37.32	1728	4924
SE d	2.23	3.14	0.58	1.39	67	205
CD (P=0.05)	NS	NS	NS	NS	NS	NS
VF	**SE d**	4.73	6.66	1.24	2.95	142
CD (P=0.05)	NS	NS	NS	NS	NS	NS
FS	**SE d**	3.86	5.43	1.01	2.41	116
CD (P=0.05)	NS	NS	NS	NS	NS	NS
VS	**SE d**	3.86	5.43	1.01	2.41	116
CD (P=0.05)	NS	NS	NS	NS	NS	NS
VFS	**SE d**	6.67	9.41	1.75	4.17	201
CD (P=0.05)	NS	NS	NS	NS	NS	NS
Table 2: Effect of fertilizer levels and spacing on yield parameters of Groundnut AVT entry ICGV 95386 and varieties VRI 6 and TMV 13

Treatment	Shelling percentage	Sound matured kernels (Nos.)	Pod weight plant\(^{-1}\) (g)	Kernel yield (kg ha\(^{-1}\))	Pod yield (kg ha\(^{-1}\))	Haulm yield (kg ha\(^{-1}\))
V\(_1\) – VRI 6	57.23	88.8	8.76	1252	2172	3805
V\(_2\) – ICGV 95386	62.62	87.2	15.25	2402	3820	4806
V\(_3\) – TMV 13	60.81	89.1	9.43	1486	2420	4342
SEd	0.62	0.9	0.51	69	107	108
CD (0.05)	1.26	1.7	1.04	141	NS	220
F\(_1\) – 75 % RDF	57.58	84.4	10.01	1439	2473	3660
F\(_2\) – 100 % RDF	60.24	90.0	10.82	1676	2751	4005
F\(_3\) – 125 %RDF	62.85	92.9	12.61	2025	3187	4342
SEd	0.62	0.85	0.51	69	107	108
CD (0.05)	1.26	1.73	1.04	141	217	220
S\(_1\) – 30 x 10 cm	62.34	88.3	12.00	1899	3015	4172
S\(_2\) – 30 x 15 cm	58.11	89.8	10.29	1527	2592	3833
SEd	0.51	0.70	0.42	56	87	88
CD (0.05)	1.03	1.41	0.85	115	177	179
VF	SEd	1.07	1.48	0.89	98	185
	CD (0.05)	NS	NS	NS	NS	NS
FS	SEd	0.87	1.21	0.73	120	151
	CD (0.05)	NS	NS	NS	NS	NS
VS	SEd	0.874	1.21	0.73	98	151
	CD (0.05)	NS	NS	NS	NS	NS
VFS	SEd	1.51	2.09	1.26	170	262
	CD (0.05)	NS	NS	NS	NS	NS

SEd = Standard Error of Difference
CD (0.05) = Critical Difference at 0.05 level of probability
VF = Variety x Fertilizer
FS = Flower x Spacing
VS = Variety x Spacing
VFS = Variety x Flower x Spacing
NS = Not Significant
Table 3 Effect of fertilizer levels and spacing on yield parameters of Groundnut AVT entry Dh 216 and varieties VRI 6 and TMV 13

Treatment	Shelling percentage	Sound Matured kernels (Nos.)	Pod weight plant$^{-1}$ (g)	Pod yield (kg ha$^{-1}$)	Kernel yield (kg ha$^{-1}$)	Haulm yield (kg ha$^{-1}$)
V1 – VRI 6	60.70	93.33	20.40	2862	1757	4258
V2 – Dh 216	67.99	95.50	24.94	3216	2189	4805
V3 – TMV 13	64.68	95.61	19.22	2759	1788	4251

SEd 1.17 0.79 0.75 120 88 145
CD (0.05) 2.38 1.62 1.53 243 179 294

F1 – 75 % RDF | 64.04 | 95.38 | 18.74 | 2917 | 1857 | 4330 |
| F2 – 100 % RDF | 64.21 | 95.40 | 18.89 | 2852 | 1895 | 4487 |
| F3 – 125 % RDF | 64.06 | 95.33 | 18.78 | 3068 | 1982 | 4497 |

SEd 1.17 0.79 0.75 120 88 145
CD (0.05) NS NS NS NS NS NS

S1 – 30 x 10 cm | 63.84 | 94.78 | 20.95 | 2670 | 1724 | 4048 |
| S2 – 30 x 15 cm | 65.07 | 94.85 | 22.10 | 3221 | 2098 | 4828 |

SEd 0.95 0.65 0.61 98 72 118
CD (0.05) NS NS NS 199 146 240

VF | SEd 2.02 | 1.38 | 1.30 | 208 | 152 | 250 |
| CD (0.05) | 4.12 | NS | 2.65 | NS | NS | NS |

FS | SEd 1.65 | 1.12 | 1.06 | 169 | 124 | 204 |
| CD (0.05) | 3.36 | NS | 2.16 | NS | 253 | NS |

VS | SEd 1.65 | 1.12 | 1.06 | 169 | 124 | 204 |
| CD (0.05) | NS | NS | NS | 344 | 253 | 416 |

VFS | SEd 2.86 | 1.94 | 1.84 | 293 | 215 | 354 |
| CD (0.05) | NS | NS | NS | NS | NS | NS |
The reduction in pod yield in 75% plant density (2.5 lakhs plants ha\(^{-1}\)) with under rows spacing might be due to the cover plant population per unit areas (Kalra et al., 1984). Closer spacing of 30 x 10 cm (100% plant density) was found to be more economical in groundnut than wider spacing as reported by Ramesh and Sabale, 2001.

AVT Culture – Dh 216, Varieties – VRI 6 and TMV 13 (Table 3)

From the field experiment conducted during 2011-12, the results obtained showed that AVT entry and varieties differed significantly among themselves with pod yield, kernel yield and haulm yield. The shelling percentage recorded with Dh 216 (67.99) was significantly higher than TMV 13 (64.68) and VRI 6 (60.70). Sound matured kernels recorded with TMV 13 (95.61) and Dh 216 (95.50) was higher and comparable with each other followed by VRI 6 (93.33). The pod weight per plant was highest with Dh 216 (24.94 g) followed by TMV 13 (19.22 g) and VRI 6 (20.40 g). The different levels of RDF and spacing recorded no significant difference among themselves for shelling percentage, SMK and pod weight per plant. The AVT entry Dh 216 recorded higher pod and kernel yield(3216 kg ha\(^{-1}\), 2189 kg ha\(^{-1}\), respectively) compared to VRI 6 (2861 kg ha\(^{-1}\), 1757 kg ha\(^{-1}\),respectively) and TMV 13 (2759 kg ha\(^{-1}\), 1982 kg ha\(^{-1}\), 0.42, respectively). Groundnut showed good response to wider spacing and no response to different fertilizer levels. Spacing of 30 x 15 cm recorded significantly higher pod and kernel yield as compared to 30 x 10 cm. The AVT entry Dh 216 recorded higher pod and kernel yield and higher harvest index compared to VRI 6 and TMV 13. Spacing of 30 x 15 cm recorded significantly higher pod and kernel yield as compared to 30 x 10 cm.

References

Agasimani, C.A., A.B. Palled, H.D. Naik, and G.K. Kulkarni, 1984. Response of groundnut cultivars to different spacing, Indian Journal of Agronomy, 29 (2):209-212.

Angadi, V.V., S.V. Patil, M.N. Shilvantar, and B.M. Chittapur. 1990. Effect of NPK levels and split application of N on growth and yield of bunch groundnut in vertisol under irrigation system. Karnataka J. Agric. Sci. 3(1-2): 9 – 14.

Central Statistics Office, Ministry of Statistics and Programme Implementation, Govt. of India. Economic Survey of India., Government of India, New Delhi. 2008.

Chaniyara, N.J., R.M. Solanki and V.B. Bhaly, 2001. Response of summer groundnut to spacing and plant
population. Legume Research, 24: 252-255.

FAOSTAT. 2011. Production data. http://faostat.fao.org/2011

Hameed Ansari, A., S.M. Qayym and M. Usman Usmani Khali, 1993. Impact of row spacing and NPK fertilizer levels on the growth, seed yield and seed oil content in peanut (Arachis hypogaea) Oil Crops Newsletter, No.10.

Kalra, G.S., S.T. Thorat and A.B. Pawar, 1984. Response of improved groundnut varieties to different spacing under irrigated condition. Indian Journal of Agricultural Science, 29(1): 40-42.

Kanwar, J.S., H.L. Nijhawan, and S.K. Raheja. 1983. Groundnut nutrition and fertilizer responses in India. ICAR, New Delhi.

Parasuraman, P., M.N. Budher, P. Manickasundaram and Nandanam, M. 1998. Response of sorghum, finger millet and groundnut to the silt application and combined use of organic matter and inorganic fertilizer under rainfed conditions. Indian J. Agron. 43(3): 528-532

Ramesh, R and R.N., Sabale, 2001. Phosphorus and plant population management in groundnut (Arachis hypogaea) – fenugreek (Trigonella foenum – graecum) – cropping system. Indian J. Agron., 46(4): 621-626.

Sogut T., Ozturk F. and Kizil S. 2016. Agriculture and Agricultural Science Procedia, 10, 76-82.

Subrahmaniyan, K., P. Kalaiselvan, G. Manickam and N. Arulmozhi. 2000. Spacing and fertilizer requirement for confectionery groundnut varieties. Crop Res. 19(2): 210-212

How to cite this article:

Vasuki, V. 2021. Agronomic Evaluation of Groundnut Advanced Varietal Entries with Varieties, Varied Fertilizer Levels and Spacing. Int.J.Curr.Microbiol.App.Sci. 10(02): 1434-1441. doi: https://doi.org/10.20546/ijcmas.2021.1002.172