Impaired cognition is often overlooked in the clinical management of depression, despite its association with poor psychosocial functioning and reduced clinical engagement. There is an outstanding need for new treatments to address this unmet clinical need, highlighted by our consultations with individuals with lived experience of depression. Here we consider the evidence to support different pharmacological approaches for the treatment of impaired cognition in individuals with depression, including treatments that influence primary neurotransmission directly as well as novel targets such as neurosteroid modulation. We also consider potential methodological challenges in establishing a strong evidence base in this area, including the need to disentangle direct effects of treatment on cognition from more generalised symptomatic improvement and the identification of sensitive, reliable and objective measures of cognition.

INTRODUCTION

Cognitive impairment is a core feature of major depressive disorder (MDD), broadly characterised by heterogeneous reductions in executive functioning, learning and memory [1–3]. Although cognitive impairment occurs in most clinical cases of depression (approximately 85–94%) [4], it is rarely a primary focus of routine clinical management compared with other core features of MDD (e.g. mood disturbances) [5–7]. Cognitive impairment presents inimical challenges to quality of life, is associated with poor functional outcomes [8–10], and is a key mediator of perceived disability in MDD [11, 12]. Consistent with this, our consultations with individuals with lived experience of depression highlight the impact of impaired cognition on daily living and service engagement (Box 1). Few treatment options for cognitive impairment in depression are available, with no recommended strategies in current clinical practice guidelines for MDD for the United Kingdom, United States or Germany [6, 13–16]. However, there are several promising novel pharmacological targets, with an increasing evidence base in humans.

In this review, we consider existing evidence from human clinical studies and evaluate potential new directions for pharmacological treatment development for cognitive impairment in MDD. We consider conventional agents which target primary neurotransmission, such as antidepressants, as well as novel pathophysiological targets. In addition, we highlight some methodological challenges of research in this area. The scope of the current review is limited to pharmacological approaches, although psychotherapeutic and transcranial electrotherapy stimulation approaches for cognitive impairment in psychiatric disorders are also being investigated [17–20].

The body of evidence in this narrative review was identified using a literature search to determine relevant human experimental studies, meta-analyses and systematic reviews (further details of the search strategy are described within these databases are described within Supplementary Material 2). Findings from the scientific literature were interpreted in the context of information gathered through consultations with individuals with lived experience of depression.

PHARMACOLOGICAL AGENTS TARGETING PRIMARY NEUROTRANSMISSION

SSRIs and SNRIs

Systematic reviews and meta-analyses of the effects of conventional antidepressant treatment (compared with placebo) on cognitive function in MDD have reported modest positive effect sizes, including improvements across domains of psychomotor speed and delayed recall [21–23]. However, these analyses pool data from a broad range of pharmacological agents, including the multimodal agent vortioxetine and the cholinergic agent donepezil [24, 25], which may have inflated the effects seen. Indeed, in one meta-analysis, the effect of antidepressant treatment on cognition became non-significant when vortioxetine studies were excluded [26]. Further, these meta-analyses included heterogeneous clinical populations (e.g. depression in Parkinson’s disease), and many studies did not use standardised cognitive assessment.
batteries, instead making use of highly variable cognitive tasks within ICD-10 [30] and DSM-V [31] diagnostic classifications. In contrast, a single dose of buspirone did not affect cognition in older adults with vascular dementia and anxiety (MDD) [53]. In contrast, a single dose of tandospirone did not affect cognition in older adults with vascular dementia and anxiety (MDD) [53]. In contrast, a single dose of tandospirone did not affect cognition in older adults with vascular dementia and anxiety (MDD) [53]. In contrast, a single dose of tandospirone did not affect cognition in older adults with vascular dementia and anxiety (MDD) [53]. In contrast, a single dose of tandospirone did not affect cognition in older adults with vascular dementia and anxiety (MDD) [53]. In contrast, a single dose of tandospirone did not affect cognition in older adults with vascular dementia and anxiety (MDD) [53]. In contrast, a single dose of tandospirone did not affect cognition in older adults with vascular dementia and anxiety (MDD) [53]. In contrast, a single dose of tandospirone did not affect cognition in older adults with vascular dementia and anxiety (MDD) [53]. In contrast, a single dose of tandospirone did not affect cognition in older adults with vascular dementia and anxiety (MDD) [53]. In contrast, a single dose of tandospirone did not affect cognition in older adults with vascular dementia and anxiety (MDD) [53]. In contrast, a single dose of tandospirone did not affect cognition in older adults with vascular dementia and anxiety (MDD) [53]. In contrast, a single dose of tandospirone did not affect cognition in older adults with vascular dementia and anxiety (MDD) [53]. In contrast, a single dose of tandospirone did not affect cognition in older adults with vascular dementia and anxiety (MDD) [53]. In contrast, a single dose of tandospirone did not affect cognition in older adults with vascular dementia and anxiety (MDD) [53]. In contrast, a single dose of tandospirone did not affect cognition in older adults with vascular dementia and anxiety (MDD) [53]. In contrast, a single dose of tandospirone did not affect cognition in older adults with vascular dementia and anxiety (MDD) [53]. In contrast, a single dose of tandospirone did not affect cognition in older adults with vascular dementia and anxiety (MDD) [53]. In contrast, a single dose of tandospirone did not affect cognition in older adults with vascular dementia and anxiety (MDD) [53]. In contrast, a single dose of tandospirone did not affect cognition in older adults with vascular dementia and anxiety (MDD) [53]. In contrast, a single dose of tandospirone did not affect cognition in older adults with vascular dementia and anxiety (MDD) [53]. In contrast, a single dose of tandospirone did not affect cognition in older adults with vascular dementia and anxiety (MDD) [53]. In contrast, a single dose of tandospirone did not affect cognition in older adults with vascular dementia and anxiety (MDD) [53]. In contrast, a single dose of tandospirone did not affect cognition in older adults with vascular dementia and anxiety (MDD) [53]. In contrast, a single dose of tandospirone did not affect cognition in older adults with vascular dementia and anxiety (MDD) [53]. In contrast, a single dose of tandospirone did not affect cognition in older adults with vascular dementia and anxiety (MDD) [53]. In contrast, a single dose of tandemospirone has been found to dose dependently impair explicit verbal memory in a small sample (N = 9, crossover design) of healthy male volunteers [57]. These limited studies show promise for 5-HT1A as a target for cognitive impairment in depression, although its paradoxical effects in healthy volunteers require further elucidation. In summary, there is a body of support for the idea that selective 5-HT receptor agonism may be a useful target for lateralizing cognition in depression.
cognitive impairment in depression. However, it is important to note that many current 5-HTR modulator agents, such as buspirone and vortioxetine have complex neuropharmacological actions and may also impact cognition via other mechanisms, such as direct pro-dopaminergic [58] or indirect glutamnergic modulation. Further investigation of more selective agonists of 5-HTR subtypes, such as the 5-HT₄ receptor agonist prucalopride [59], will further elucidate potential serotonergic targets for cognitive amelioration in MDD. Additionally, many novel 5-HT agonists have recently, or are currently, crossing the clinical threshold, including 5-HT₅ receptor agonists and 5-HT₇ receptor antagonists [60, 61]. These agents appear to improve cognition in both healthy and neurological rodent models (including Alzheimer’s disease and schizophrenia) [62–71], and serve as promising novel targets for ameliorating cognitive impairment in MDD.

Dopaminergic modulators

A large body of evidence supports the regulatory role of dopaminergic signalling in cognitive functioning [72–74]. Consistent with this, pharmacological manipulation of dopaminergic signalling function with piribedil (D₂ and D₃ receptor agonist) and methylphenidate (inhibitor of dopamine transporters [DAT]) results in well-replicated improvements in cognitive performance in healthy individuals [75–77]. It is therefore interesting to consider whether dopaminergic antidepressant agents, such as bupropion, might have the potential as treatments for cognitive impairment in MDD.

Bupropion (which inhibits the reuptake of dopamine and noradrenaline) has been shown to improve cognitive function in MDD when taken as an adjunct to other antidepressants or as monotherapy [78, 79]. For example, improved visual and verbal memory and executive functioning was observed in patients with MDD after 8-week administration (N = 36) [79], although this effect was not apparent in a separate study of healthy volunteers [80].

Modafinil (which has a complex mechanism of action, including weak inhibition of dopamine reuptake) has also been shown to have pro-cognitive effects in patients with depression. In currently depressed patients 4-weeks administration of modafinil improved executive function (N = 31) [81]. In patients who have recovered from depression, modafinil was shown to improve episodic memory but not executive functioning after one week in remitted depression (N = 60) [82]. This evidence is consistent with multiple studies in healthy adults demonstrating broad improvements in verbal and visuospatial working memory, learning, attention and executive functioning following modafinil administration [81, 83–86].

Although modafinil and bupropion overlap mechanistically as inhibitors of DAT, bupropion acts on ≤22% of DAT binding sites [87], while modafinil produces weak atypical inhibition of DAT [88, 89]. Bupropion also blocks the reuptake of noradrenaline, with downstream modulation of tumour necrosis factor alpha and upregulation of brain-derived neurotrophic factor (BDNF) in MDD, which may be an alternative intra- and extracellular mechanism by which it exerts its antidepressant and cognitive effects [90, 91]. Similarly, the cognitive effects of modafinil may be explained by intracellular actions, including decreased neuronal free radical, adenosine 5’-triphosphate production, and promotion of cellular metabolism [89]. Further, given the role of the mesolimbic-dopamine circuitry in reward processing and motivation, it is important to consider the extent to which the cognitive effects of bupropion and modafinil are related to non-specific changes in motivation and affect [35, 36].

NMDA antagonists, AMPAkines, and metabotropic glutamate receptor inhibitors

Glutamatergic neurotransmission accounts for most excitatory activity in cortical structures, and is a predominant regulator of cognitive and sensory functioning [92, 93]. Glutamatergic transmission has gained much attention within the context of depression following the discovery of the potent antidepressant effects of the N-methyl-d-aspartate (NMDA) antagonist ketamine [94]. A single subanaesthetic infusion of ketamine has rapid, transient antidepressant effects in treatment-resistant depression (TRD) [95, 96]. Interestingly, several TRD studies have reported improved cognitive function postinfusion, including improved executive function, visual memory and complex working memory [97–99]. Ketamine is also associated with a reduction in suicidal ideation and planning, which it has been suggested could result from improved inhibitory control [100, 101]. The cognitive effects of ketamine may be attributable to the rapid promotion of neuronal plasticity via intracellular protein modulation, including rapamycin complex 1 and BDNF [102, 103], and inhibition of excitotoxicity through modulation of ionotropic and metabotropic glutamate receptors (mGlURs) [104].

It is unclear if ketamine has a direct effect on cognitive function, or if its cognitive effects are an indirect result of its rapid antidepressant properties. In two active placebo-controlled RCTs by Shiroma et al. [105] (N = 43) and Murrough et al. [106] (N = 62), postketamine-infusion improvements in speed of processing and working memory were independent of antidepressant response; however, the cognitive change reported in Murrough et al. [106] was associated with a significant main effect of time only and there were no differences in cognition between the ketamine and active placebo, suggesting the cognitive improvement may have been driven by a non-specific learning effect. An RCT of similar design by Liu et al. [107] (N = 50) found that change in speed of processing post-ketamine was associated with improved anxiety symptoms comorbid to TRD, and improved visual learning and memory performance were associated with improved depressive symptoms in TRD without comorbid anxiety. Two further studies investigating the cognitive effects of ketamine found a moderating effect of depressive symptom improvement on DSST performance and self-reported cognitive deficits, but not visual attention and task-switching performance [108], and a relationship between depressive symptomatic improvement and response inhibition performance [109].

Paradoxically, acute ketamine may induce cognitive impairment in some circumstances: an RCT of non-refractory MDD showed a single subanaesthetic dose reduced performance in executive function, attention and verbal memory [110]. Healthy volunteer studies have demonstrated similar reductions in episodic and working memory, attention and long-term memory both during and 1-hr post-infusion [111–114], with a return to baseline functioning 3 days post-infusion [115]. Interestingly, fronto-striatal functional connectivity increases in individuals with TRD and decreases in healthy individuals 2-days postinfusion [116], mirroring the opposing effects of ketamine on cognitive ability across these populations. Taken together, the apparent beneficial effects of ketamine on cognition may be specific to TRD, although further work is required. Additionally, the cognitive effects of ketamine may vary depending on dose frequency (single dose vs. repeat dose) and length of treatment [97].

Beyond ketamine, other glutamatergic agents have been investigated for potential cognition improving effects in MDD, including other NMDA antagonists, glutamatergic inhibitors, positive allosteric modulators of AMPAR (AMPAkines) and modulators of mGlURs. The NMDA antagonist rituxolize has well-replicated antidepressant effects [117, 118], but did not improve self-reported cognitive impairment when administered as an adjunct to antidepressants [118]. Another NMDA receptor antagonist, memantine, has been shown to have antidepressant effects when administered as an adjunct to escitalopram [119–121]. Compared with escitalopram monotherapy, memantine and escitalopram combination therapy improved verbal memory and executive functioning in older adults with MDD [119] (N = 62), although not in younger adults with MDD (N = 80) [122]. The AMPAkine, Org 26576, improved executive functioning...
Cholinesterase inhibitors

Cholinergic signalling plays a key role in memory processing and cognitive decline [131, 132]. Meta-analyses have demonstrated that cholinergic agents such as citicoline (cholinergic donor for acetylcholine synthesis [133]) administered in neurological populations (e.g. ischemic stroke) facilitate functional and cognitive recovery [134, 135], although these effects are not always replicated [136, 137].

Of the cholinesterase inhibitors investigated within the context of depression [138], donepezil is among the most promising and frequently studied [139]. A two-year placebo-controlled RCT investigating donepezil administered as an adjunct to antidepressants (escitalopram or duloxetine) reported improved global cognition (visuospatial functioning, language processing, executive functioning, delayed memory and processing speed) after one year in older adults with remitted MDD (N = 130); however, these effects did not persist at year two [140]. Similarly, in a pilot placebo-controlled RCT, donepezil administered as an adjunct to open-label antidepressant therapy improved verbal episodic memory in older adults with MDD (N = 12), although there was no effect on executive functioning or attention [141]. In contrast, another placebo-controlled RCT [142] showed that 16-weeks of donepezil administered as an adjunct to citalopram or venlafaxine did not improve cognitive function. These conflicting results may possibly be explained by the measures of cognition used in each study; cognitive improvements were observed following donepezil pharmacotherapy (i.e. [140, 141]) in studies in which batteries of standardised neuropsychological tests not specific to neurological disease were employed (e.g. WAIS-R). In contrast, studies in which no effects were observed (i.e. [142]) used the Alzheimer’s Disease Assessment Scale-Cognitive Subscale [143], which may not be sufficiently sensitive to changes in cognitive function in depressed patients and healthy volunteers [144].

Although donepezil appears promising as a potential cognitive ameliorating agent for MDD, it is important to note that no studies have yet investigated the effects of donepezil on cognitive functioning in younger adults with MDD. Moreover, the cognitive profile of donepezil in healthy volunteer studies is inconclusive; when acutely administered in healthy adults, donepezil improved cognitive function in two studies [145, 146], while it impaired cognition in two further studies [147, 148].

Administration of galantamine, another cholinesterase inhibitor, as an adjunct to antidepressants was shown to have no effect on cognitive function or mood symptoms in older adults with MDD (N = 38) in a placebo-controlled RCT [149]. Consistent with this, galantamine monotherapy did not change cognitive function or mood symptoms in adults with partially remitted MDD in another placebo-controlled RCT [143], although this study had a small sample size (N = 19).

Although galantamine and donepezil are both cholinesterase inhibitors [150], they have divergent secondary mechanisms of action which may explain differences in their cognitive profiles; in particular, donepezil but not galantamine is a potent agonist of sigma-1 receptors (σ1R) [151]. σ1R agonism is associated with promotion of neuroplastic and neuroprotective processes [152, 153], in addition to amplifying signal transduction across glutamnergic and dopaminergic pathways [143, 154, 155].

BEYOND PRIMARY NEUROTRANSMISSION – NOVEL CLINICAL TARGETS

Recently, novel approaches to the pharmacological targeting of cognitive impairment have emerged. The proposition that cognitive impairment in MDD may be the result of progressive neurotoxic and neuroinflammatory processes, as well as volumetric reductions in neuroanatomical areas such as the hippocampus, striatum, and fronto-cingulate cortices [126, 156–161], suggests the modulation of neurosteroid, neurotrophi and pro-inflammatory cytokine activity might be useful targets for treatment development [126, 162–165].

Neurosteroid dysregulation is suggested to play a role in the pathophysiology of stress, neuroinflammation, and depression [165–170]; thus pharmacologically targeting neurosteroid dysregulation may be a useful approach for the treatment of depression and cognitive impairment. In particular, excitatory neurosteroids such as dehydroepiandrosterone and pregnenolone sulphate modulate the function of glutamergic signalling pathways, thus promoting long-term potentiation [171–173]. Consistent with this idea, dehydroepiandrosterone administration was shown to improve verbal memory function in older adults with MDD in a small (N = 6) proof-of-concept study [174, 175]. Two Cochrane systematic reviews concluded there is inadequate evidence supporting a positive effect of dehydroepiandrosterone on cognitive function in healthy older adults and those presenting with age-related cognitive decline [176, 177]. However, a more recent small-scale placebo-controlled study in healthy young males (N = 24) showed dehydroepiandrosterone administration improved verbal episodic memory via cortisol inhibition [178].

Modulation of the σ1R ligands is another potential target for the treatment of cognitive impairment in MDD [179]. Fluvoxamine, an SSRI with high-affinity σ1R agonist properties [180], has been shown to be associated with improvements in the Wechsler Adult Intelligence Scale (WAIS-R) and DSST. However, the effects of fluvoxamine on cognition have not yet been tested against a placebo control; in a double-blind RCT [182], the effects of fluvoxamine were compared with the tetracyclic antidepressant mianserin which is known to have cognition-improving effects [183]. In another, [184], cognitive improvements were observed only in treatment responders, suggesting a potential confounding effect of symptomatic improvement.

The cognitive effects of σ1R agonists such as fluvoxamine and donepezil are difficult to separate from their serotonergic and cholinergic properties, respectively. Studies using comparator agents such as sertraline and galantamine may further elucidate these effects [179], controlling for potential affective changes associated with neurosteroid modulation [185].

Stimulation of mineralocorticoid receptors via fludrocortisone may indirectly influence cognition [186]. In healthy volunteers (n = 24) and depressed adults (n = 24), verbal memory and executive functioning improved after fludrocortisone administration, with improved verbal memory associated with cortisol inhibition [187]. However, in older adults with MDD (N = 23), a similar experimental paradigm resulted in impairments of psychomotor speed, verbal learning and memory, and executive functioning [188].

Melatonin, when administered as an adjunct to buspirone, was associated with decreased self-reported cognitive impairment in antidepressant non-responders, indicating a potential pro-cognitive effect that is independent of pseudo-specific effects (N = 113) [189]. In multiple studies of healthy individuals, melatonin improved cognitive ability [190], although it is unclear if these cognitive gains might be due to improved sleep.
Clinical populations

Inconsistency of cognitive effects across clinical and non-psychiatric presentation, future research may provide scope for the identification of appropriate polypharmacy for the individual case.

Translational Psychiatry (2022) 12:484

It is also important to consider the influence of other affective domains beyond core depression symptoms, such as motivation, alertness/fatigue, and anxiety, as these may all have an indirect effect on cognitive task performance [205–209].

Inconsistency of cognitive effects across clinical and non-clinical populations

A phenomenon commonly emerging in the reviewed literature is that pharmacological agents often lack shared and domain-specific cognitive effects between individuals with MDD and healthy controls. For example, buspirone and bupropion have both been shown to have cognitive-enhancing effects in patients with MDD [53, 78] but not in healthy volunteers [54, 79, 80]. In contrast, modafinil and citicoline broadly improved cognition in neurological and nonclinical populations, but showed limited or no change in MDD [81, 89, 210]. Furthermore, fludrocortisone resulted in cognitive improvement young adults with MDD but impaired cognitive function in older adults with MDD [187, 188].

One explanation for these differences between patient and healthy control studies is that pharmacologically-induced improvements in cognition may only be seen in those with cognition-related pathophysiological abnormalities, such as progressive neurotoxicity and reduced neurogenesis [126, 211]. Indeed, baseline BDNF, including mature BDNF, and pro-inflammatory cytokine levels in individuals with MDD predicts cognitive improvement and antidepressant effects across a range of agents, including sertraline and vortioxetine [220–223], although it is important to note that peripheral measures of BDNF may not reflect central BDNF concentration [224]. Further, age and adjunctive therapy may influence antidepressant pharmacodynamics, where the former might explain the inefficacy of cholinergic agents for cognitive impairment in young adults compared with older adults [225]. To better understand pharmacologically-induced cognitive effects across specific populations, the identification of shared and independent treatment-response biomarkers would be beneficial [226, 227]. In particular, if early treatment-induced changes in such biomarkers (e.g., changes in the function of relevant neurocircuitry) were predictive of subsequent efficacy in treating cognitive symptoms, they would lend valuable support to drug development decision-making in this field.

An alternative explanation for inconsistent effects across healthy volunteer and patient samples is that the cognitive tasks used in many studies have insufficient sensitivity to detect pharmacologically-induced cognitive changes in healthy volunteers. Healthy volunteer studies often include high-functioning individuals who perform at ceiling on many standard neuropsychological tests, thus limiting the detection of pharmacologically induced changes [228, 229]. The use of implicit, automatic measures of cognition may be potentially useful for increasing the sensitivity of pharmacologically-induced cognitive effects in healthy volunteers [77, 228].

Heterogeneity of cognitive impairment in MDD

Cognitive impairment in depression is heterogeneous in presentation, due to the pathophysiology of depression itself and external factors such as effects of medication [230]; impairments in specific domains of cognitive function such as memory, executive function and learning differ case-by-case [231, 232]. In future, a better understanding of the specific effects of
Table 1. Pharmacological agents where improvements in cognitive function have been observed in individuals with MDD.

Pharmacological agent	Agent properties	Study	Clinical population (N; age span)	Therapy type, dose	Periods of cognitive testing	Cognitive domain improved	Effect size of agent-related cognitive change**	Related affective change*	
Bupropion	NA, DAT inhibition	[78]	MDD (N = 26; 20–50 yrs)	Monotherapy for 8 weeks, 150 mg q.d.	Week 0 and week 8	↑ Verbal WM processing speed ↑ Attentional processing RT	No placebo arm	$\epsilon^2 = 0.53$	–
		[79]	MDD (N = 41; 20–50 yrs)	Monotherapy for 8 weeks, 150 mg q.d.	Week 0 and week 8	↑ Immediate verbal recall ↑ Delayed verbal recall ↑ Immediate non-verbal recall ↑ Delayed non-verbal recall	No placebo arm	$g = 0.44$	–
Buspirone	5-HT1A partial agonist	[53]	MDD (N = 89, 20–65 yrs)	Adjunct with escitalopram for 8 weeks, starting at 5 mg b.i.d. titrated to 60 mg q.d.	Week 0 and week 8	↑ Digit span ↑ Verbal fluency*	No placebo arm	$g = 0.81$	–
DHEA (+ Sulfate)	Exogenous steroid/sulfate ester	[174]	MDD (N = 6, 51–72 yrs)	Monotherapy for 4 weeks, 30–90 mg q.d.	Week 0 and week 3	↑ Verbal recall accuracy	No placebo arm	$g = 0.84$	–
Donepezil	Cholinesterase inhibitor; sigma-1 receptor agonist	[140]	MDD (N = 130, ≥65 yrs)	Adjunct to standard antidepressants for 2 years, 5 mg q.d. or 10 mg q.d.	Day 0; Week 52; Week 104	↑ Global cognition b	$d = 0.27$ (week 52); <0.05 (week 104)	–	–
		[141]	MDD (N = 21, ≥50 yrs)	Adjunct to antidepressants, starting at 5 mg q.d. for 12 or 52 weeks, titrated to 10 mg q.d.	Week 8 (Baseline); Week 20; Week 52	↑ Immediate verbal recall	–	$g = 0.41$ (week 8–20); 0.42 (week 8–52)	–
Duloxetine	NA, 5-HTT inhibition	[243]	MDD (N = 21, 18–45 yrs)	Monotherapy for 12 weeks, starting at 30 mg/day for first 4 days which increased to 60 mg/day	Week 0 and week 12	↑ Psychomotor function ↑ Visual WM accuracy ↑ Visual WM processing speed ↑ Pattern recognition accuracy ↑ Immediate verbal recall accuracy ↑ Response inhibition	No placebo arm	$g = 0.46$	Change in verbal WM related to symptomatic change
		[244]	MDD (N = 311, ≥65 yrs)	Monotherapy for 8 weeks, 60 mg q.d.	Week 0 and week 8	↑ Verbal learning and memory	Insufficient data	Insufficient data	Related to reduced depressive symptoms
Table 1. continued

Pharmacological agent	Agent properties	Study	Clinical population (N; age span)	Therapy type, dose	Periods of cognitive testing	Cognitive domain improved	Effect size of agent-related cognitive change**	Between-groups, post-intervention drug vs. placebo	Within-groups, repeated measures	Related affective change*
Erythropoietin	Exogenous protein growth factor	[191]	TRD (N = 40, 18–65 yrs)	Adjunct with standard antidepressant for, 3 weekly 40,000 IU/ml infusions for 8 weeks	Week 1 (Baseline); Week 9; Week 14	† Verbal learning and memory recall composite	$\eta_p^2 = 0.25$ (week 1–9); 0.16 (week 14)	–	No relationship observed	–
Fludrocortisone	Mineralocorticoid receptor agonist	[187]	MDD (n = 24, 18–40 yrs)	Monotherapy for 5 days, 0.4 mg q.d.	1.5 hr after dose	† Verbal memory † Executive function	$\eta_p = 0.15$; $\eta_g = 0.18$	No repeated measures data	–	–
Fluoxetine	5-HTT inhibition	[181]	MDD (N = 40, 60–80 yrs)	Monotherapy for 6 weeks, fluoxetine 20 mg q.d. or mianserin 40 mg q.d.	Week 1 (Baseline); Week 6	† Visuo-spatial working memory	Insufficient data	Insufficient data	–	–
Org 26576	Positive allosteric modulator of AMPA	[123]	MDD (N = 30, 18–65 yrs)	Monotherapy for 1 month, 100 mg BID or 400 mg BID	Days 1 (Baseline), 7, 14 and 28 (Post)	† Executive functioning	$g = 1.06$ (100 mg BID); 0.65 (400 mg BID)	–	–	–
Ketamine	NMDA antagonist	[99]	MDD (N = 47, no data)	Adjunct with standard antidepressants and augmenting agents, single dose of 0.25 mg/kg 5-ketamine or 0.5 mg/kg racemic ketamine	Day 1 (Baseline); Day 2 (Post)	† Improved cognitive impairment depressive symptoms	No placebo arm	$g = 0.60$	–	–
[109]	TRD (N = 71, 21–65 yrs)		Monotherapy, single dose 0.2 mg/kg or 0.5 mg/kg	Days 1 (Baseline), 3 and 14	† Response control †	Insufficient data	Insufficient data	–	–	–
[105]	TRD (N = 43, 18–75 yrs)		Single 0.5 mg/kg IV and five 0.045 mg/kg midazolam IVs (placebo) or six 0.5 mg/kg IVs (intervention)	Day 1 (Baseline); Day 13	† Processing speed † Set-shifting ability † Complex working memory † Continuous visual recognition † Visuospatial WM	$\eta_g = 0.14$; $\eta_g^2 = 0.09$; $\eta_g = 0.1$; $\eta_g^2 = 0.08$	No relationship observed	–	–	–
Table 1. continued

Pharmacological agent	Agent properties	Study	Clinical population (N; age span)	Therapy type, dose	Periods of cognitive testing	Cognitive domain improved	Effect size of agent-related cognitive change**	Between-groups, post-intervention drug vs. placebo	Within-groups, repeated measures	Related affective change*
TRD				Adjunct with standard antidepressant and augmenting agents, 0.5 mg/kg 3 times weekly over a 12-day period	Weeks 1 (Baseline), 3, 4, 5 and 6	† Continuous visual recognition	Simple WM † Complex WM	No placebo arm \(\eta_p^2 = 0.38\)	No placebo arm \(\eta_p^2 = 0.35\)	Changes related to symptomatic change
[98]				Adjunct standard antidepressant and augmenting agents, six IVs of 0.5 mg/kg	Days 1 (Baseline), 13 and 26	† Speed of processing † Verbal learning and memory	No placebo arm \(g = 0.93\) (Day 13); 0.95 (Day 26)	0.51 (Day 13 only)	–	
[107]	TRD with anxiety symptoms * (N = 30, 18–65 yrs)	Adjunct standard antidepressant and augmenting agents, six IVs of 0.5 mg/kg IV	† DSST performance † Attentional processing and task-switching † General subjective cognitive function	No placebo arm \(\eta_p^2 = 0.26\) & \(\eta_p^2 = 0.41\) & \(\eta_p^2 = 0.46\) & DSST and subjective cognition improvements mediated by symptomatic change						
Melatonin	Exogenous pineal hormone	MDD (N = 113, no data)	Adjunct with buspirone for 6 weeks, 15 mg q.d.	Weeks 1 (Baseline), 2, 4 and 6	† Self-report cognitive functioning	–	\(\eta_p^2 = 0.603\) f & No relationship observed			
Memantine	5-HTT inhibition	MDD with subjective memory complaints (N = 62, ≥60 years)	Adjunct with escitalopram for 1 year, mean daily dose of 11.1 mg q.d.	Week 0 (Baseline); Week 24; Week 52	† Delayed verbal recall † Executive function † Global cognition	No placebo arm \(\eta_p^2 = 0.09\) (Week 52)	\(\eta_p^2 = 0.11\) (Week 52)	\(\eta_p^2 = 0.15\) (Week 52)	–	No relationship observed
Modafnil	DAT inhibitor	MDD (N = 31, no data)	Adjunct with standard antidepressants for 4 weeks, starting at 100 mg q.d., titrated to 400 mg q.d.	Weeks 1 (Baseline), 2 and 4	† Executive function	Insufficient data	Insufficient data	–	–	
[82]	Remitted MDD (N = 60, 18–65 yrs)	Adjunct with standard antidepressant for one day, 200 mg q.d.	Pre-dose; 2 hr after initial dose	† Episodic memory † Working memory	–	–	–	–	–	
Reboxetine	NA inhibition	MDD (N = 74, 18–65 yrs)	Monotherapy for 8 weeks, 8–10 mg q.d.	Day 0 (Baseline), 14 and 56	† Attentional processing † Executive function	Insufficient data	Insufficient data	–	–	
[204]				Adjunct with standard antidepressant for 6 weeks, starting at 800 mg q.d., which increased to 1600mg q.d.	Weeks 0 (Baseline) and 6	† Subjective word recall	g = 0.42	–	–	
Table 1. continued

Pharmacological agent	Agent properties	Study	Clinical population (N; age span)	Therapy type, dose	Periods of cognitive testing	Cognitive domain improved	Effect size of agent-related cognitive change***	Between-groups, post-intervention drug vs. placebo	Within-groups, repeated measures	Related affective change*
Tandospirone	5-HT_{1A} agonist	[56]	Vascular MDD (N = 89, ≥50 yrs)	Adjunct with escitalopram for 8 weeks, 5 mg t.i.d	Weeks 0 (Baseline), 4 and 8	† MMSE performance	g = 0.59 (Week 4); 1.31 (Week 8)	–	–	–
Vortioxetine	5-HTT inhibition; 5-HT_{1A, 9} agonist; 5-HT_{1B}, 5-HT₇ and 5-HT_{1D} antagonist	[245]	MDD (N = 508, 18–65 yrs)	Monotherapy for 8 weeks, 10–20 mg q.d	Weeks 0 (Baseline) and 8	† DSST performance	d = 0.25	–	–	No relationship observed
Venlafaxine	NA, 5-HTT inhibition	[246]	MDD (N = 64, ≥18 yr)	Monotherapy for 8 weeks, 10 mg or 20 mg q.d	Week 0 (Baseline), 1 and 8	† DSST performance	d = 0.52			
† Verbal learning and memory
† Executive function
† Attentional processing
† Processing speed
† Subjective memory and executive functioning | – | – | – |

*Buspirone augmentation on cognitive improvement was only significant in individuals with MDD without atypical features.
**This effect size refers to a time x treatment effect for global cognition (processing speed, executive function, verbal memory, language, and visuospatial ability) and was only significant at week 52. This increase was significant at 1 year although the effect size was small and not sustained at 2 years.
†Complex cognitive processing refers to a composite score across several cognitive measures, including tasks of verbal learning and memory, processing speed, simple and sustained attention, and executive functioning
‡The significant slight increase in sustained attention and response control was only found with 0.5mg/kg of ketamine.
§Significant improvements in speed of processing and verbal learning and memory were only found in individuals with anxious TRD but not among individuals with non-anxious TRD.
||This effect size refers to treatment (melatonin adjunct to buspirone) non-responders only
\|These effect sizes are averaged from cognitive outcomes for the vortioxetine 10mg q.d. and 20mg q.d. treatment groups.
\|Cells containing “—” denotes analysis not undertaken or effect is not statistically significant.
\|Effect size is dependent on analysis performed: Hedges’ g (g) is reported for significant t-test analyses between intervention groups or across two time points (usually baseline and follow-up). Partial eta squared (η^p), Cohen’s d (d) or epsilon squared (ε^p) is reported for analysis of variance models where a significant main effect of intervention group or across two time points was found. Hedges’ g or partial eta squared were derived from the study report where available or calculated where appropriate statistical values were reported. Values for g, d and η^p were polarised to positive values where appropriate.
\|Note: Meta-analyses discussed within the review were not included in the above table; only single studies where positive cognitive properties were observed in a psychiatric population, predominantly MDD or TRD, are included.
\|DHEA(S) refers to dehydroepiandrosterone steroid precursor or sulfate forms, SAMe factor S-Adenosylmethionine, MMSE Mini-mental state examination, DSST Digit symbol substitution test. WM Working Memory, RT Response Time.
pharmacological agents on different cognitive domains, when given alone or as an adjunct to antidepressant treatment, may facilitate the more targeted and personalised treatment of cognitive impairment in depression (Fig. 1). It will also be important to define the conditions necessary for successful clinical use of these agents, and where their clinical practicality lies; in particular, whether these agents are best used as preventative therapy, or as treatment for impaired cognitive function during active MDD episodes, or for residual cognitive impairments in remitted MDD.

Efforts to account for the heterogeneity of premorbid intelligence quotients between intervention groups have been made (e.g. [106]), making use of reliable [233] measures of reading and vocabulary, including the National Adult Reading Test; however, as Douglas et al. [234] note, these measures may not generalise to broad metrics of memory, learning and executive function used within studies. A potential solution is subgroup analysis of patient clusters based on cognitive presentations (e.g. working memory impaired vs. intact), although this requires large samples for sufficient power; alternatively, future studies could restrict study inclusion to participants with particular cognitive presentations that align with a priori hypotheses about the cognitive effects of the drug within MDD.

Discrepancies in cognitive outcome measurement

There is considerable heterogeneity in how cognition is measured within the reviewed literature, with both objective neuropsychological measures and subjective self-report of the cognitive function used as outcome measures. Importantly, objective and self-report measures are not reliably correlated [235, 236]. While self-report measures may highlight cognitive deficits which are more meaningful to the individual with depression, they may be confounded by emotional state. Lower self-reported cognitive ability is known to be associated with higher depressive symptomatology [237], which may be the result of negative biases in appraisals of cognitive ability. Our consultations with individuals with lived experience of MDD highlighted the need for person-centred neuropsychological assessments, which focus on the specific cognitive impairments the individual describes affecting their lives. Given the benefits objective and subjective measures of cognition independently offer, both approaches should be used in future research investigating pro-cognitive efficacy of candidate compounds.

CONCLUSIONS

Developing better treatments for cognitive impairment is an area of clinical priority in depression, underscored by accounts from individuals with lived experience of depression [Box 3]. Throughout this review, we highlight pharmacological agents which hold promise (Table 1), including vortioxetine, modafinil and donepezil. These agents have complex mechanisms of action, and it is unclear whether cognitive change is mediated through primary neurotransmission or through indirect and/or intracellular processes. Better characterisation and consolidation of shared mechanisms between these agents may facilitate future drug discovery and development in this area [238]. There are novel agents such as fludrocortisone and erythropoietin which act on promising mechanistic targets beyond primary neurotransmission; the evidence is however preliminary, requiring further replication.

Box 3. Openness to pharmacological approaches to improving cognitive impairment—accounts from individuals with lived experience of depression
Throughout consultations, lived experience group members agreed they would be open to these interventions, both separately and in tandem, as appropriate.
• “I would be open to a drug that enhances my cognitive ability, but I would want something with minimal side effects.”
• “I’m open to medication […], as long as it was specifically targeted and individualised for me.”
• “Targeting concentration would be a really good first step, because it would clear the way to targeting other things.”
Finally, the lived experience group expressed a preference for treatments to be personalised, designed to consider the different ways in which depression and cognitive impairment may present in the individual.
• “It needs to be patient-centred; you need to take them seriously, as they are the only one who knows what’s going through their brain.”
• “I felt that the team who had worked with me hadn’t treated me as an individual.”

Table 2. Key considerations for investigations of pharmacological interventions which target cognitive impairment in depression.
Pseudo-specificity
Considerations:
• Use of relevant measures of affect and motivation, not only symptom-based outcome measures (e.g. BDI, MADRS).
Consistency of translation
Considerations:
• Use of cognitive outcome measures which have greater sensitivity to cognitive change in healthy populations.
Heterogeneity of cognitive impairment
Considerations:
• Consider recruitment of samples with specific cognitive presentation.
Discrepancies in cognitive measurement
Considerations:
• Consider a combination of both objective and subjective cognitive outcome measures.
Therapeutic specificity
Considerations:
• Identify whether treatment should be given during active episodes or to treat residual impairments during remission.
Beyond this, the present review has highlighted multiple methodological challenges of human clinical research in this area (see Table 2), including pseudo-specificity and the selection of sensitive outcome measures.

While the present review is limited in scope to MDD, cognitive deficits in neuropsychiatric populations may be considered transdiagnostically [239], and as such it is worth considering the generalisability of clinical pharmacological evidence beyond MDD. In addition, this review has focussed on non-affective cognitive function, although there are many aspects of affective cognition that are known to play a core role in depression, such as rumination and emotion regulation [240]. Given the association between impaired executive functioning and increased rumination [241] and reduced cognitive reappraisals [242], future research may consider if these aspects of psychopathology are influenced by drugs which improve cognitive function in depression.

Beyond those reviewed here, there are many further novel promising targets for improving cognitive impairment in MDD where placebo-controlled RCTs have yet to demonstrate cognitive improvement in MDD, or the agents have not yet crossed the preclinical threshold, including creatine, α2-adrenergic receptor antagonists, glucagon-like peptide-1 agonists, GABA_A receptor antagonists, 5-HT_1A biased agonists, and histamine H_1 receptor antagonists. With continued efforts in this space, and by adopting robust and consistent methodological approaches across the translational pipeline, there is real promise that the treatment of cognitive impairment in depression may be improved in the future.

REFERENCES

1. Riser JP, Elliott R, Sahakian BJ. Cognitive Mechanisms of Treatment in Depression. Neuropsychopharmacology 2012;37:117–36.
2. Marazziti D, Consoli G, Picchetti M, Carlini M, Faravelli F. Cognitive impairment in major depression. Eur J Pharm. 2010;526:83–86.
3. Zaremba D, Schulze Kalthoff I, Förster K, Redlich R, Grotegerd D, Leehr EJ, et al. The effects of processing speed on memory impairment in patients with major depressive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2019;92:494–500.
4. Conradi HJ, Ormel J, De Jonge P. Presence of individual (residual) symptoms during depressive episodes and periods of remission: a 3-year prospective study. Psychol Med. 2011;41:1165.
5. Perini G, Cotta Ramusino M, Sinofrani E, Bernini S, Petracchi R, Costa A. Cognitive impairment in depression: recent advances and novel treatments. Neuropsychiatr Dis Treat. 2019;15:1249–58.
6. Miskowiak KW, Petersen CS. Neuronal underpinnings of cognitive impairment and - improvement in mood disorders. CNS Spectr. 2019;24:30–53.
7. Czerwińska A, Pawłowski T. Cognitive dysfunctions in depression-significance, description and treatment prospects. Psychiatr Pol. 2020;54:453–66.
8. Knight MJ, Air T, Baune BT. The role of cognitive impairment in psychosocial functioning in remitted depression. J Affect Disord. 2018;235:129–34.
9. Koenig AM, Bhalla RK, Butters MA. Cognitive functioning and late-life depression. J Int Neuropsychol Soc. 2014;20:461.
10. Knight MJ, Lyttrijs E, Baune BT. The association of cognitive deficits with mental and physical Quality of Life in Major Depressive Disorder. Compr Psychiatry. 2020;97:152147.
11. Naismith SL, Longley WA, Scott EM, Hickie I. Disability in major depression related to self-rated and objectively-measured cognitive deficits: a preliminary study. BMC Psychiatry. 2007;7:32.
12. Lam RW, Kennedy SH, McIntyre RS, Khullar A. Cognitive dysfunction in major depressive disorder: effects on psychosocial functioning and implications for treatment. Can J Psychiatry. 2014;59:649–54.
13. The National Institute for Health and Care Excellence. Depression in adults: recognition and management. Clinical guideline [CG090], 2009. https://www.nice.org.uk/guidance/cg090. Accessed 4 February 2021.
14. Qaseem A, Barry MJ, Kansagara D. Nonpharmacologic Versus Pharmacologic Treatment of Adult Patients With Major Depressive Disorder: A Clinical Practice guideline. From the American College of Physicians. Ann Intern Med. 2016;164:350–9.
15. Schneider F, Härter M, Schorr S S3-Leitlinie/Nationale VersorgungsLeitlinie Unipolare Depression. Springer-Verlag: 2017.
16. Hollon SD, Shelton RC. Treatment guidelines for major depressive disorder. Behav Ther. 2001;32:235–58.
96. Vidal S, Gex-Fabry M, Bancila V, Michalopoulos G, Warrot D, Jermann F, et al. Efficacy and safety of a rapid intravenous injection of ketamine 0.5 mg/kg in treatment-resistant major depression: an open 4-week longitudinal study. J Clin Psychopharmacol. 2018;38:590–7.

97. Gill H, Gill B, Rodrigues NB, Lipitzis O, Rosenblat JD, El-Halabi S, et al. The Effects of Ketamine on Cognition in Treatment-Resistant Depression: A Systematic Review and Priority Avenues for Future Research. Neurosci Biobehav Rev. 2021;120:78–85.

98. Shiroma PR, Albott CS, Johns B, Thuras P, Wels J, Lim KO. Neurocognitive performance and serial intravenous subanesthetic ketamine in treatment-resistant depression. Int J Neuropsychopharmacol. 2014;15:283–9.

99. Vidal S, Gex-Fabry M, Bancila V, Michalopoulos G, Warrot D, Jermann F, et al. Efficacy and safety of a rapid intravenous injection of ketamine 0.5 mg/kg in treatment-resistant major depression: an open 4-week longitudinal study. J Clin Psychopharmacol. 2018;38:590–7.

100. Zhang MWB, Ho R. Controversies of the effect of ketamine on cognition. Front Translational Psychiatry. 2022;12:484.

101. Lavretska H, Laird KT, Krause-Sorio B, Heimberg BF, Yeagin J, Grzenda A, et al. A Randomized Double-Blind Placebo-Controlled Trial of Combined Escitalopram and Memantine for Older Adults With Major Depression and Subjective Memory Complaints. Am J Geriatr Psychiatry. 2020;28:178–90.

102. Lenze EJ, Skidmore ER, Begley AE, Newcomer JW, Butters MA, Whyte EM. Memantine for late-life depression and apathy after a disabling medical event; a 12-week, double-blind placebo-controlled pilot study. Int J Geriatr Psychiatry. 2012;27:974–80.

103. Chen M-H, Lin W-C, Wu H-J, Cheng C-M, Li C-T, Hong C-J, et al. Antisuicidal efficacy and safety of a rapid intravenous injection of ketamine 0.5 mg/kg in treatment-resistant major depressive or bipolar disorders: Results from the Canadian randomized double-blind, placebo-controlled trial. J Stroke Cerebrovasc Dis. 2016;25:1984–9.

104. Colucci L, Bosco M, Rosario Zelio A, Rea R, Amenta F, Sfassano EM. Effectiveness of nootropic drugs with cholinergic activity in treatment of cognitive dysfunction in the elderly: a review of the literature. Alter Med Rev. 2011;94:360–40.

105. M.J. Colwell et al. Translational Psychiatry (2022) 12:484
1. Devanand DP, Pelton GH, D’Antonio K, Carllegio A, Scodes J, Andrews H, et al. Donepezil Treatment in Patients With Depression and Cognitive Impairment on Stable Antidepressant Treatment: A Randomized Controlled Trial. Am J Geriatr Psychiatry. 2018;26:1050–60.

2. Mohs RC. The Alzheimer’s disease assessment scale: an instrument for assessing treatment efficacy. Psychopropharmacol Bull. 1983;19:498–50.

3. Carin A, Hannevitz J, Juergens A, Gisler J, Jørgensen EK, et al. A novel approach to the pharmacological treatment of depression: serotonin reuptake inhibition in a double-blind, randomized, placebo-controlled trial. J Psychiatr Res. 2011;45:114–22.

4. Fitzgerald DB, Cruciuc GP, Melbye JB, Shenal BV, Burks D, Womack KB, et al. Effects of donepezil on verbal memory after semantic processing in healthy older adults. Cogn Behav Neurol. 2008;21:57–64.

5. Zannitano ALC, Bueno DOA, Pradella-Hallman WV, Fuxi S, Rusted J, Stough C, et al. Acute cognitive effects of donepezil in young, healthy volunteers. Hum Psychopharmacol Clin Exp. 2009;24:453–64.

6. Beglinger LJ, Tangphao-Daniels O, Kareken DA, Zhang L, Mohs R, Siemers ER. Neuropsychological test performance in healthy volunteers before and after donepezil administration. J Psychopharmacol. 2004;18:102–8.

7. Beglinger LJ, Tangphao-Daniels O, Kareken DA, Zhang L, Mohs R, Siemers ER. Neuropsychological test performance in healthy elderly volunteers before and after donepezil administration: a randomized, controlled study. J Clin Psychopharmacol. 2005;25:159–65.

8. Holtzheimer PE III, Meeks TW, Kelley ME, Mufti M, Young R, McWhorter K, et al. A double blind, placebo-controlled pilot study of galantamine augmentation of antidepressant treatment in older adults with major depression. Int J Geriatr Psychiatry. J Psychopharmacol Late Life Allied Sci. 2008;23:625–31.

9. Pepeu G, Giovannini MG. Cholinesterase inhibitors and beyond. Curr Alzheimer Res. 2009;6:86–96.

10. Maurice T, Su T-P. The pharmacology of sigma-1 receptors. Pharm Ther. 2009;124:195–206.

11. Maurice T, Grégoire G, Espallergues J. Neuro (active) steroids actions at the neuropeptidyl sigma1 (σ1) receptor: biochemical and physiological evidences, consequences in neuroprotection. Pharm Biochem Behav. 2006;84:581–97.

12. Ryskamp DA, Korban S, Zhemkov V, Kraskovskaya N, Bezprozvanny I. Neuronal signal transduction. Curr Med Chem. 2003;10:2073.

13. Hindmarch I, Hashimoto K. Cognition and depression: the effects of NMDA receptor stimulation. J Psychiatr Res. 2015;69:120–8.

14. Targum SD, Wedel PC, Fava M. Changes in cognitive symptoms after a melatonin combination treatment for Major Depressive Disorder. J Psychiatr Res. 2015;68:392–6.

15. Targum SD, Wedel PC, Fava M. Changes in cognitive symptoms after a melatonin combination treatment for Major Depressive Disorder. J Psychiatr Res. 2015;68:392–6.

16. Otte C, Wingenfeld K, Kuelh LK, Kazmarczyk M, Richter S, Quante A, et al. Mineralocorticoid Receptor Stimulation Improves Cognitive Function and Decreases Cortisol Secretion in Depressed Patients and Healthy Individuals. Neuropsychopharmacology 2015;40:386–93.

17. Tangum SD, Wedel PC, Fava M. Changes in cognitive symptoms after a buspirole–melatonin combination treatment for Major Depressive Disorder. J Psychiatr Res. 2015;68:392–6.

18. Obayashi K, Saeki K, Iwamoto J, Toh N, Tanaka K, Katoaka H, et al. Physiological levels of melatonin relate to cognitive function and depressive symptoms: the HEIKO-KYO cohort. J Clin Psychopharmacol. 2015;35:309–10.

19. Misokawia KW, Vinberg M, Christensen EM, Buhr JD, Harmer CJ, Ehrenreich H, et al. Recombinant Human Erythropoietin for Treating Treatment-Resistant Depression: A Double-Blind, Randomized, Placebo-Controlled Phase 2 Trial. Neuropsychopharmacology 2014;39:1399–408.

20. Ott C, Vinberg M, Kesing LV, Misokawia KW. The effect of erythropoietin on cognition in affective disorders – Associations with baseline deficits and change
in subjective cognitive complaints. Eur Neuropsychopharmacol. 2016;26:1264–73.

193. Miskowiak K, Inkerler B, O’ Sullivan U, Selvaraj S, Goodwin GM, Harmer CJ. Differential effects of erythropoietin on neural and cognitive measures of executive function 3 and 7 days post-administration. Exp Brain Res. 2008;184:313–21.

194. Miskowiak K, O’Sullivan U, Harmer CJ. Erythropoietin enhances hippocampal response during memory retrieval in humans. J Neurosci. 2007;27:2782–92.

195. Adanico B, Sarquin D, Stradomska A, Medrihan L, Gertler C, Theis F, et al. Erythropoietin enhances hippocampal long-term potentiation and memory. BMC Biol. 2008;6:1–16.

196. Said MF, Islam AA, Massi MN, Prihantono. Effect of erythropoietin administration on the expression of brain-derived neurotrophic factor, stromal cell-derived factor-1, and neuron-specific enolase in traumatic brain injury: A literature review. Ann Med Surg. 2021;69:102666.

197. Vinberg M, Miskowiak K, Hoejman P, Pedersen M, Kessing LV. The effect of recombinant erythropoietin on plasma brain derived neurotrophic factor levels in patients with affective disorders: a randomised controlled study. PLoS One. 2015;10:e0127629.

198. Mischoulon D, Price LH, Carpenter LL, Tyryk AR, Papakostas GL, Baer L, et al. A double-blind, randomized, placebo-controlled clinical trial of S-adenosyl-L-methionine (SAMe) versus escitalopram in major depression disorder. J Clin Psychiatri. 2013;74:27–28.

199. Cuomo A, Beccarini Crescenzii B, Bolognesi S, Garacci A, Kourkouda A, Rossi R, et al. S-Adenosylmethionine (SAMe) in major depressive disorder (MDD): a clinician-oriented systematic review. Ann Gen Psychiatry. 2020;19:550.

200. Sachinvala ND, Teramoto N, Stergiou A. Proposed neuroimmune roles of inflammatory cytokines in Patients with Major Depressive Disorder. Clin Psychopharmacol Neurosci. 2021;19:449–58.

201. Choi S, Han K-M, Won E, Yoon B-J, Lee M-S, Ham B-J. Association of brain-derived neurotrophic factor DNA methylation and reduced white matter integrity in the anterior corona radiata in major depression. J Affect Disord. 2015;172:74–80.

202. Smagula SF, Lotrich FE, Alizenstein HJ, Diniz BS, Krystek J, Wu GF, et al. Immuno-inflammatory biomarkers associated with brain structure and executive function in late-life depression: exploratory pilot study. Int J Geriatr Psychiatry. 2017;32:692–9.

203. Bortolato B, Carvalho AF, Soczynska JK, Perini G, McIntyre RS. The involvement of TNF-α in Cognitive Dysfunction Associated with Major Depressive Disorder: An Opportunity for Domain Specific Treatments. Curr Neuropsychopharmacol. 2015;13:558–78.

204. Mikoteit T, Beck J, Eckert A, Hemmeter U, Brand S, Bischof R, et al. High baseline BDNF serum levels and early psychopathological improvement are predictive of treatment outcome in major depression. Psychopharmacol (Berl). 2014;231:2055–65.

205. Sagud M, Nikolac Perkovic M, Dvojkovic A, Jakic N, Vukan-Cusa B, Zivkovic M, et al. Distinct association of plasma BDNF concentration and cognitive function in patients treated with vortioxetine or escitalopram. Psychopharmacol (Berl). 2021;238:1575–84.

206. Wagner S, Kayser S, Engelmann J, Schlicht KF, Dreimüller N, Tüscher O, et al. Plasma brain-derived neurotrophic factor (pBDNF) and executive functions in patients with major depressive disorder. World J Biol Psychiatry. 2019;20:519–30.

207. Le Nedelec M, Glue P, Winter H, Goutton C, Broughton L, Medlentic N. Acute low-dose ketamine produces a rapid and robust increase in plasma BDNF without altering brain BDNF concentrations. Drug Deliv Transl Res. 2018;8:780–6.

208. Perucca EBT-IR of N. Age-related changes in the prefrontal cortex: A positron-emission tomography study. Psychiatry Res Neuroimaging. 2020;298:111045.

209. Mohn C, Mehta MA, Cognitive enhancement by drugs in health and disease. Trends Cogn Sci. 2011;15:28–36.

210. Porter RJ, Bourke C, Gallagher P. Neuropsychological impairment in major depression: its nature, origin and clinical significance. Aust N Z J Psychiatry. 2007;41:11–28.

211. Zakzanis KK, Leach L, Kaplan E. On the nature and pattern of neurocognitive dysfunction in major depressive disorder. Neuropsychol Behav Neurol. 1998;11:111–9.

212. Snyder HR. Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: a meta-analysis and review. Psychol Bull. 2013;139:81.

213. Crawford JR, Deary I, Starr J, Whalley L. The NART as an index of prior intellectual functioning: a retrospective validity study covering a 66-year interval. Psychiatr Med. 2001;31:451–8.

214. Douglas KM, Gallagher P, Robinson LJ, Carter JD, McIntosh VW, Frampton CMA, et al. Prevalence of cognitive impairment in major depression and bipolar disorder. Bipolar Disord. 2018;20:260–74.

215. Yamada S, Takahashi S, Ohoshi Y, Ishida T, Tsuji T, Shinosaki K, et al. Widespread white matter microstructural abnormalities and cognitive impairment in schizophrenia, bipolar disorder, and major depressive disorder: Trait-based spatial statistics study. Psychiatry Res Neuroimaging. 2020;298:110145.

216. Kakeda S, Watanabe K, Nguyen H, Katsuki A, Sugimoto K, Igaru N, et al. An independent component analysis reveals brain structural networks related to TNF-α in drug-naive, first-episode major depressive disorder: a source-based morphometric study. Transl Psychiatry. 2020;10:187.

217. Lim J, Sohn H, Kwon M-S, Kim B. White Matter Alterations Associated with Pro-inflammatory Cytokines in Patients with Major Depressive Disorder. Clin Psychopharmacol Neurol. 2021;19:449–58.

218. Pringle A, Browning M, Parsons E, Cowen PJ, Harmer CJ. Early markers of cognitive dysfunction associated with major depression: a source-based morphometric study. Psychiatry Res Neuroimaging. 2020;298:111045.
238. Pushpakom S, Iorio F, Eyers PA, Escott KI, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18:41–58.

239. Petersen CS, Miskowiak KW. Toward a transdiagnostic neurocircuitry-based biomarker model for pro-cognitive effects: challenges, opportunities, and next steps. CNS Spectr. 2021;26:333–7.

240. Snyder HR, Miyake A, Hankin BL. Advancing understanding of executive function impairments and psychopathology: bridging the gap between clinical and cognitive approaches. Front Psychol. 2015;6:328.

241. Zetsche U, D’Avanzato C, Joormann J. Depression and rumination: Relation to components of inhibition. Cogn Emot. 2012;26:758–67.

242. Quinn ME, Joormann J. Executive control under stress: Relation to reappraisal ability and depressive symptoms. Behav Res Ther. 2020;131:103634.

243. Greer TL, Sunderajan P, Grannemann BD, Kurian BT, Trivedi MH. Does duloxetine improve cognitive function independently of its antidepressant effect in patients with major depressive disorder and subjective reports of cognitive dysfunction? Depress Res Treat. 2014;2014:627863.

244. Raskin J, Wiltse CG, Siegal A, Sheikh J, Xu J, Dinkel JJ, et al. Efficacy of duloxetine on cognition, depression, and pain in elderly patients with major depressive disorder: an 8-week, double-blind, placebo-controlled trial. Am J Psychiatry. 2007;164:900–9.

245. Mahableshwarkar AR, Zajecka J, Jacobson W, Chen Y, Keefe RSE. A Randomized, Placebo-Controlled, Active-Reference, Double-Blind, Flexible-Dose Study of the Efficacy of Vortioxetine on Cognitive Function in Major Depressive Disorder. Neuropsychopharmacology 2015;40:2025–37.

246. Tian Y, Du J, Spagna A, Mackie M-A, Gu X, Dong Y, et al. Venlafaxine treatment reduces the deficit of executive control of attention in patients with major depressive disorder. Sci Rep. 2016;6:28028.

ACKNOWLEDGEMENTS
We thank the individuals with lived experience of depression who took the time to offer valuable consultations, providing enlightening insight and direction for this review. We thank Alice Quinton for help facilitating lived experiences consultations. This research was funded by the Medical Research Council and supported by the NIHR Oxford Health Biomedical Research Centre and the NIHR Oxford Cognitive Health Clinical Research Facility. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. CH has received consultancy fees from P1vital Ltd., Janssen Pharmaceuticals, Sage Therapeutics, Pfizer, Zogenix, Compass Pathways, and Lundbeck. SM has received consultancy fees from Zogenix, Sumitomo Dainippon Pharma, P1vital Ltd., UCB Pharma and Janssen Pharmaceuticals. CH and SM hold grant income from Zogenix, UCB Pharma, Syndesi and Janssen Pharmaceuticals. CH and PC hold grant income from a collaborative research project with Pfizer. ALG has received consultancy fees from Zogenix/UCB Pharma. The other authors report no conflicts of interest.

AUTHOR CONTRIBUTIONS
Author MC conceptualised and drafted the article; all authors contributed to revisions to the paper for critically important intellectual content and approval of the final draft.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41398-022-02249-6.

Correspondence and requests for materials should be addressed to Susannah E. Murphy.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and you intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022