A New Technique for Determining the Properties of a Narrow s-channel Resonance at a Muon Collider

R. Casalbuonia,b, A. Deandreac, S. De Curtisb, D. Dominicia,b, R. Gattod and J. F. Gunione

aDipartimento di Fisica, Universitá di Firenze, I-50125 Firenze, Italia
bI.N.F.N., Sezione di Firenze, I-50125 Firenze, Italia
cInstitut Theor. Physik, Heidelberg University, D-69120 Heidelberg, Germany
dDépart. de Physique Théorique, Université de Genève, CH-1211 Genève 4, Suisse
eDepartment of Physics, University of California, Davis, CA 95616, USA

(September 25, 2018)

We explore an alternative to the usual procedure of scanning for determining the properties of a narrow s-channel resonance. By varying the beam energy resolution while sitting on the resonance peak, the width and branching ratios of the resonance can be determined. The statistical accuracy achieved is superior to that of the usual scan procedure in the case of a light SM-like Higgs boson with $M_H > 130$ GeV or for the lightest pseudogoldstone boson of a strong electroweak breaking model if $M_{\rho} > 150$ GeV.

PACS: 14.80.Bn, 14.80Mz, 12.20.Fv

The optimal means for studying s-channel resonance production at a lepton collider depends critically on the resonance width Γ compared to the natural resolution, σ_E (the Gaussian width), in $E \equiv \sqrt{s}$. If Γ is at least as large as the natural value of σ_E at $E = M$, the best procedure is to simply scan the resonance using measurements at $E = M$ and at several locations off the resonance peak. However, either a light Standard Model (SM) (or SM-like) Higgs boson, H, or the lightest pseudogoldstone boson of a strong electroweak breaking model, P^0, will typically have such a small width that $\Gamma \gtrsim \sigma_M$ can only be achieved by compressing the beams to R values far smaller than the natural value, which can only be accomplished with substantial loss of instantaneous luminosity. Writing $\Delta E_{\text{beam}}/E_{\text{beam}} = 0.01 R$, with R in percent, $\sigma_E = 0.01 R(\%)/\sqrt{2} \sim 2$ MeV $\left(\frac{E}{100 \text{ GeV}}\right) \left(\frac{R}{0.003}\right)$, where $R = 0.003\%$ is the best resolution that can be achieved at a $\sqrt{s} \sim 100$ GeV muon collider. For comparison, $\Gamma_H \sim 1, 2, 4, 16$ MeV at $M_H = 50, 100, 130, 150$ GeV while $\Gamma_{\rho_0} \sim 2, 5, 11, 21$ MeV at $M_{\rho_0} = 50, 100, 150, 200$ GeV (for $N_{\text{TC}} = 4$ and the model parameter choices of Ref. [4]).

At a muon collider, the natural R range yielding maximal luminosity is $R = 0.1\% \div 0.15\%$. \mathcal{L} declines rapidly as R is decreased below this range. For $E = 100$ GeV, one finds \cite{5} (see also Table 5 in \cite{6}) $L_{\text{year}} = 1.2 \text{ fb}^{-1} \left(\frac{R}{0.12\%}\right)^{0.67362}$ for $0.003\% \lesssim R \lesssim 0.12\%$, yielding $L_{\text{year}} = 0.1 \text{ fb}^{-1} (0.22 \text{ fb}^{-1})$ at $R = 0.003\% (0.01\%)$. We will presume that a machine specifically designed for operation at any given energy within a factor of 2 of $E = 100$ GeV will have the same L_{year}. Variations of the luminosity of a machine designed for operation at $E = 100$ GeV, but run at some other energy will not be accounted for.

A scan determination of the properties of a SM-like Higgs boson at a muon collider has been studied in Ref. \cite{6} (see also \cite{7}), where it was shown that the accuracy of the $R = 0.003\%$ measurements might make it possible to distinguish a SM Higgs from the lightest Higgs of the minimal supersymmetric model (MSSM). Precision measurements of the properties of the P^0 would also be possible via scanning \cite{6} and very valuable. In this letter, we explore an alternative technique to scanning. The new procedure consists of collecting two sets of data at $E = M$, one while operating with $\Gamma > \sigma_M$ (or at least $\sim \sigma_M$) and one with $\sigma_M > \Gamma$. We demonstrate that this alternative procedure leads to smaller statistical errors for resonance properties than the con-
ventional scanning procedure for some ranges of M_H and $M_{P_{10}}$.

We presume that the initial scan required to precisely locate the resonance provides a rough determination of its width. A Breit-Wigner form for the resonance cross section convoluted with a Gaussian energy distribution in E of width σ_M centered at $E = M$ yields the effective cross section σ_c. For a given final state F, one finds (see Fig. 2): $\sigma_F^c = \frac{4\pi B_{\pi^+\pi^-}B_F}{M^2} \frac{1}{\sqrt{\Gamma}}$ for $\Gamma \gg \sigma_M$ and $\sigma_F^c = \frac{\pi B_{\pi^+\pi^-}B_F}{2\sqrt{\Gamma}}$ for $\Gamma \ll \sigma_M$. Here $B_{\pi^+\pi^-}$ and B_F are the $\mu^+\mu^-$ and F branching ratios. If we operate the collider at $\sigma_M^\text{min} \ll \Gamma$ and $\sigma_M^\text{max} \gg \Gamma$, we find $\sigma_c (\sigma_M^\text{min})/\sigma_c (\sigma_M^\text{max}) = [2\sqrt{\sigma_M^\text{max}}]/[\sqrt{\Gamma}]$.

Since σ_M will be precisely known, Γ can be determined from the ratio. The best determination of Γ is obtained by combining results for all viable final state channels F. Once Γ is known, the two measurements of σ_F^c determine $B_{\mu^+\mu^-}B_F$ for any F. The total width and branching ratios (converted to partial widths using Γ) are key to understanding the nature of the resonance.

In practice, $\sigma_M^\text{max}/\sigma_M^\text{min}$ will be limited in size. We define $\sigma_M^\text{central} = \sqrt{\sigma_M^\text{max}\sigma_M^\text{min}}$ and compute $r_c \equiv \sigma_c (\sigma_M^\text{min})/\sigma_c (\sigma_M^\text{max})$ (we temporarily drop the final state F label) as a function of Γ. In Fig. 3 we plot $\Gamma/\sigma_M^\text{central}$ as a function of r_c. We denote the magnitude of the slope in the log – log plot by $|s|$. For a known σ_M^central, the $|s|$ at any $\Gamma/\sigma_M^\text{central}$ gives the relation $(\Delta \Gamma / \Gamma) = |s| (\Delta r_c / r_c)$, where $\Delta r_c / r_c$ is computed by combining the fractional statistical errors for $\sigma_c (\sigma_M^\text{min})$ and $\sigma_c (\sigma_M^\text{max})$ in quadrature. We observe that $\Gamma/\sigma_M^\text{central} \sim 2$ at $s \sim 1$ is not that much larger. The larger $\sigma_M^\text{max}/\sigma_M^\text{min}$, the smaller $|s|$ at any given $\Gamma/\sigma_M^\text{central}$. For example, for $\Gamma/\sigma_M^\text{central}$ in the range 2 to 3 (near 1), $\sigma_M^\text{max}/\sigma_M^\text{min} = 5,10,20$ gives $|s| \sim 2,1.55,1.3$ $(2.5,1.8,1.44)$; $|s| \rightarrow 1$ for very large $\sigma_M^\text{max}/\sigma_M^\text{min}$.

The $\Delta r_c / r_c$ fractional statistical error depends upon how L behaves as a function of σ_M. For the H and the P^0 it is best to use σ_M^min corresponding to $R = 0.003\%$ and σ_M^max corresponding to $R = 0.03\%$. The variation of L_{year} given earlier implies $L_{\text{year}} = 0.1 \text{ fb}^{-1}$ (0.47 fb^{-1}) for $R = 0.003\%$ (0.03%). If, for example, $\Gamma/\sigma_M^\text{central} = 1$, one finds $\sigma_c (\sigma_M^\text{min})/\sigma_c (\sigma_M^\text{max}) = 4.5$, implying that the signal rate $S(\sigma_M) = L_{\text{year}} (\sigma_M) \sigma_c (\sigma_M)$ is nearly the same for σ_M^max as for σ_M^min. However, the background rate B is proportional to L and thus B/L is a factor of 4.7 times larger at σ_M^max than at σ_M^min. Consequently, the statistical error in the measurement of $\sigma_c (\sigma_M^\text{max})$ will be worse than for $\sigma_c (\sigma_M^\text{min})$ for the same S.

For a given running time at a given σ_M, one must compute the channel-by-channel S and B rates, compute the fractional error in $\sigma_c (\sigma_M)$ for each channel, and then combine all channels to get the net $\sigma_c (\sigma_M)$ error. This must be done for $\sigma_M = \sigma_M^\text{min}$ and $\sigma_M = \sigma_M^\text{max}$. One then computes the net r_c and net σ_c errors following standard procedures. The error $\Delta \sigma_c / \sigma_c$ is minimized by running only at σ_M^min, but $\Delta r_c / r_c$ is typically minimized for $L (\sigma_M^\text{max}) / L (\sigma_M^\text{min}) \lesssim 1$. For the SM Higgs, a good compromise is to take $L (\sigma_M^\text{min}) / L (\sigma_M^\text{max}) = 1$.

SM-Higgs boson - Below 110 GeV, the width of the Higgs increases approximately linearly with the mass (aside from logarithmic effects due to the running of the quark masses) which means that the ratio Γ_H/σ_M is approximately constant. By choosing $R = 0.003\%$ we get $\Gamma_H/\sigma_M \approx 1$. The analysis at a muon collider done in Ref. 6 gives statistical errors for a three-point scan using scan points at $E = M, E = M \pm 2\sigma_M$ and $R = 0.003\%$, assuming $L = 0.4 \text{ fb}^{-1}$ total accumulated luminosity (corresponding to 4 years of operation), with $L/5$ employed at $E = M, 2L/5$ at $E = M + 2\sigma_M$ and $2L/5$ at $E = M - 2\sigma_M$. The results of that analysis are summarized in Table 6.

Let us now compare to the r_c-ratio technique. We have followed the procedure outlined in the previous section. We employ the same total of 4 years of operation as considered for the three-point scan, but always with $E = M_H$. We adopt the compromise choice of devoting two years to running at $R = 0.003\%$, accumulating $L = 0.2 \text{ fb}^{-1}$, and a second two years to running at $R = 0.03\%$, corresponding to $L = 0.94 \text{ fb}^{-1}$ of accumulated luminosity. The resulting statistical errors are summarized in Table 6.

We observe that the ratio technique becomes superior to the scan technique for the larger M_H values. This is correlated with the fact that $\Gamma_H/\sigma_M^\text{min}$ (where σ_M^min is that for $R = 0.003\%$) becomes substantially
larger than 1 for such M_H. In particular, for larger M_H, $\Gamma_H/\sigma_M^\text{central}$ is in a range such that $|s|$ and, consequently, the error in Γ_H will be minimal. Thus, the two techniques are actually quite complementary — by employing the best of the two procedures, a very reasonable determination of Γ_H and very precise determinations of the larger channel rates will be possible for all M_H below $2M_N$.

For the larger M_H values such that $\Gamma_H/\sigma_M(R = 0.003\%)$ is substantially above 1, one could ask whether the scan-procedure errors could be reduced by running at larger R. In fact, the statistical errors for Γ_H are much poorer if a larger value of R is employed; the $R = 0.003\%$ results are the best that can be achieved despite the smaller luminosity at $R = 0.003\%$ as compared to higher R values. For example, the error in Γ_H for a given luminosity using $R = 0.01\%$ can be read off from Fig. 13 of [4]. One finds that $L(R = 0.01\%)/L(R = 0.003\%) = 20, 10, 2$ is required in order that the Γ_H statistical errors for $R = 0.01\%$ be equal to those for $R = 0.003\%$ at $M_H = 130, 140, 150$ GeV, respectively. Existing machine designs are such that $L_{\text{year}}(R = 0.01\%)/L_{\text{year}}(R = 0.003\%) = 0.22 \text{ fb}^{-1}/0.1 \text{ fb}^{-1} = 2.2$. Thus, increasing R would not improve the scan-procedure errors until $M_H > 150$ GeV.

The lightest PNGB - The s-channel production of the lightest neutral pseudo-Nambu-Goldstone boson (PNGB) (P^0), present in models of dynamical breaking of the electroweak symmetry which have a chiral symmetry larger than $SU(2) \times SU(2)$, has recently been explored [1]. The P^0 is much lighter than any other state in the models considered in [4] — 10 GeV < M_{P^0} < 200 GeV is expected. The width Γ_{P^0} as a function M_{P^0} was summarized earlier. For low (high) M_{P^0} it is somewhat larger (smaller) than that of a SM Higgs boson. Very high $\mu^+\mu^- \rightarrow P^0$ s-channel production rates are predicted for typical $\mu^+\mu^- \rightarrow P^0$ coupling strength if one operates the $\mu^+\mu^-$ collider so as to have extremely small beam energy spread, $R = 0.003\%$, for which $\sigma_M < \Gamma_{P^0}$. Once discovered at the LHC (or Tevatron) in the $\gamma \gamma$ mode, the $\mu^+\mu^-$ collider could quickly (in less than a year) scan the mass range indicated by the previous discovery (for the expected uncertainty in the mass determination) and center on $\sqrt{s} \approx M_{P^0}$ to within $< \sigma_M$. Using the optimal three-point scan [4] of the P^0 resonance (with measurements at $E = M_{P^0}$ and $E = M_{P^0} \pm 2\sigma_M$ using $R = 0.003\%$) one can determine with high statistical precision all the $\mu^+\mu^- \rightarrow P^0 \rightarrow F$ channel rates and the total width Γ_{P^0}. For the particular technicolor model parameters analyzed in [4], 4 years of the pessimistic yearly luminosity ($L_{\text{year}} = 0.1 \text{ fb}^{-1}$) devoted to the scan yields the results presented in Fig. 19 of [1]. Sample statistical errors for $\sigma_c B(P^0 \rightarrow all)$ and Γ_{P^0} are given in Table [1].

Let us now consider the r_c-ratio technique for the P^0. We will compare to the scan technique using the choices $R = 0.003\%$ for σ_M^min and $R = 0.03\%$ for σ_M^max. This means $\sigma_M^\text{central} \sim 6.3 \text{ MeV} (M_{P^0}/100 \text{ GeV})$, implying that $\Gamma_{P^0}/\sigma_M^\text{central}$ rises from ~ 0.7 at $M_{P^0} = 50 \text{ GeV}$ to ~ 1.6 at $M_{P^0} = 200 \text{ GeV}$. This region is that for which the slope $|s|$ (see Fig. [6]) is smallest. Consequently, the error in Γ_{P^0} will be small if that for r_c is. We follow the procedure outlined earlier for computing $\Delta r_c/\Gamma_{P^0}$. We scale the errors given in Fig. 19 of [1] to $L = 0.2 \text{ fb}^{-1} f$ (corresponding to 2f years of operation at $R = 0.003\%$), where f will be chosen to minimize the error in r_c. We also compute $\Delta \sigma_c/\sigma_c$ for $L = 0.94 \text{ fb}^{-1} (2-f)$ devoted to $R = 0.03\%$ running (corresponding to 4$-2f$ years of operation at this latter R). The net errors, $\Delta \sigma_c/\sigma_c$ and $\Delta \Gamma_{P^0}/\Gamma_{P^0}$, computed after combining all final state channels, are given in Table [4] for σ_c, the r_c-ratio procedure statistical errors are similar to the 4-year three-point scan statistical errors. The r_c-ratio procedure errors for Γ_{P^0} are smaller than the scan errors for larger M_{P^0} values where $\Gamma_{P^0}/\sigma_M^\text{central}$ is significantly bigger than unity.

Summary - We have compared the statistical accuracy with which the width and cross sections of a very narrow resonance can be determined at a muon collider via the usual scan procedure vs. a technique in which one sits on the resonance peak and takes the ratio of cross sections for two different beam energy resolutions. For the same total machine operation time, the ratio technique gives smaller statistical errors than the scan technique for a SM-like Higgs with $M_H > 130 \text{ GeV}$ or a light pseudogoldstone boson with $M_{P^0} > 120 \text{ GeV}$. Further, systematic errors associated with uncertainty in σ_M are smaller for the ratio technique than for the scan technique.
Acknowledgements JFG is supported in part by the U.S. Department of Energy and by the Davis Institute for High Energy Physics.

[1] R. Casalbuoni, S. De Curtis, A. Deandrea, D. Dominici, R. Gatto and J.F. Gunion, Proceedings of the Workshop on Physics at the First Muon Collider and at the Front End of a Muon Collider, Batavia, IL, 6-9 Nov 1997, eds. S. Geer and R. Raja, Amer. Inst. Phys., p. 772 (1998); ibidem, hep-ph/9809523 (to be published in Nucl. Phys.).

[2] C.M. Ankenbrandt et al., [Muon Collider Collaboration], Status of Muon Collider Research and Development and Future Plans, FERMILAB-PUB-98-179, January, 1999.

[3] B. Autin et al., Report of Prospective Study of Muon Storage Rings in Europe, to be published as a CERN yellow Report.

[4] V. Barger, M.S. Berger, J.F. Gunion, and T.Han, Phys. Rev. Lett. 75 (1995) 1462; ibidem, Phys. Rep. 286 (1997) 1.

[5] J.F. Gunion, Proceedings of the 5th International Conference on Physics Beyond the Standard Model, Balholm, Norway, 29 Apr – 4 May 1997, eds. G. Eigen, P. Osland and B. Stugu, AIP (1997), p. 234.

[6] K. Lane, BUHEP-98-01; hep-ph/9801383, E. Eichten, K. Lane and J. Womersley, Phys. Rev. Lett. 80 (1998) 5489.

FIG. 1. Γ/Γ_M plotted as a function of the cross section ratio $\sigma_e(\sigma_M^{\text{max}})/\sigma_e(\sigma_M^{\text{min}})$ for the indicated values of $\sigma_M^{\text{central}} = \sqrt{\sigma_M^{\text{max}} \sigma_M^{\text{min}}}$ keeping $\sigma_M^{\text{central}}$ fixed.

TABLE I. Percentage errors (1σ) for Γ_H and $\sigma_e H \rightarrow b\bar{b}, WW^*, ZZ^* \rightarrow H$. For the scan procedure [5] we use $R = 0.003$% and 4-year luminosity of $L = 0.4$ fb$^{-1}$, using $L/5$ at $E = M_H$, 2$L/5$ at $E = M_H + 2\sigma_M$ and 2$L/5$ at $E = M_H - 2\sigma_M$. For the r_c-ratio procedure, we assume $E = M_H$ and accumulate $L = 0.2$ fb$^{-1}$ at $R = 0.003$% and $L = 0.94$ fb$^{-1}$ at $R = 0.03$%, corresponding to two years of running at each R. For efficiencies and cuts, see [5].

Quantity	Errors for the scan procedure
Mass (GeV)	100 110 120 130 140 150
$\sigma_e(\sigma_M^{\text{max}})$	4% 4% 3% 3% 5% 5% 9% 28%
$\sigma_e(\sigma_M^{\text{min}})$	32% 15% 10% 8% 7% 7% 9%
$\sigma_e(\sigma_M^{\text{central}})$	190% 50% 30% 26% 26% 34%
Γ_H	30% 16% 16% 18% 29% 165%

Quantity	Errors for the r_c-ratio procedure
Mass (GeV)	100 110 120 130 140 150
$\sigma_e(\sigma_M^{\text{max}})$	3.8% 2.8% 2.8% 4.4% 7.6% 21%
$\sigma_e(\sigma_M^{\text{min}})$	26% 12% 7.7% 5.7% 5.0% 5.0% 5.6%
$\sigma_e(\sigma_M^{\text{central}})$	190% 46% 25% 29% 22%
Γ_H	45% 25% 20% 19% 17% 18%

TABLE II. Fractional statistical errors (1σ) for $\sigma_e H \rightarrow P^0$ (combining bb, $\tau^+\tau^-$, $c\bar{c}$ and gg tagged-channel rates) and Γ_P for $\mu^+\mu^- \rightarrow P^0$. The $R = 0.003$% three-point scan with total $L = 0.4$ fb$^{-1}$ ($L/5$ at $E = M_P$, 2$L/5$ at $E = M_P + 2\sigma_M$ and 2$L/5$ at $E = M_P - 2\sigma_M$) is compared to the r_c-ratio technique with $E = M_P$ luminosities of $L = 0.2$ fb$^{-1}$ at $R = 0.003$% and $L = 0.94$ fb$^{-1}$ (2f) at $R = 0.03$% (corresponding to 2f and 4 $-2f$ years of running, respectively). f (tabulated below) is chosen to minimize the error in Γ_P. Efficiencies, cuts and tagging procedures are from [5].

Quantity	Errors for the scan procedure
Mass	60 80 M_P M_P M_P M_P M_P
$\sigma_e(\sigma_M^{\text{max}})$	0.0029 0.0054 0.043 0.0003 0.012 0.018
Γ_P	0.014 0.029 0.25 0.042 0.052 0.10

Quantity	Errors for the r_c-ratio procedure
Mass	60 80 M_P M_P M_P M_P M_P
f	0.8 0.7 0.6 0.8 0.9 1.0
$\sigma_e(\sigma_M^{\text{max}})$	0.0029 0.0062 0.055 0.010 0.011 0.016
Γ_P	0.014 0.028 0.24 0.041 0.039 0.053