Implementation of linear maps with circulant matrices via modulo 2 rectifier circuits of bounded depth

Igor S. Sergeev†

Abstract
In the present note we show that for any constant \(k \in \mathbb{N} \) an arbitrary Boolean circulant matrix can be implemented via modulo 2 rectifier circuit of depth \(2k - 1 \) and complexity \(O\left(n^{1+1/k}\right) \), and also via circuit of depth \(2k \) and complexity \(O\left(n^{1+1/k} \log^{1/k}n\right) \).

Recall that rectifier \((m,n)\)-circuit is an oriented graph with \(n \) vertices labeled as inputs and \(m \) vertices labeled as outputs. Modulo 2 rectifier circuit implements a Boolean \(m \times n \) matrix \(A = (a_{i,j}) \) iff for any \(i \) and \(j \) the number of oriented paths from \(j \)-th input to \(i \)-th output is congruent to \(a_{i,j} \) modulo 2. Complexity of a circuit is the number of edges in it, circuit depth is the maximal length of an oriented path. See details in [3, 4].

\(n \times n \) matrix \(Z = (z_{i,j}) \) is circulant iff for any \(i, j \) one has \(z_{i,j} = z_{0,k} \), where \(k = (j - i) \mod n \).

Consider a linear map with Boolean circulant \(n \times n \) matrix — it computes a cyclic (algebraic, over \(GF(2) \)) convolution with some constant vector \(A \). Indeed, components of vector \(C = (C_0, \ldots, C_{n-1}) \) which is a convolution of vectors \(A = (A_0, \ldots, A_{n-1}) \) and \(B = (B_0, \ldots, B_{n-1}) \) satisfy formulae:

\[
C_k = \sum_{i+j=k \mod n} A_i B_j.
\]

The following theorem allows to extend results [1, 2] on comparison of complexity of implementation of some circulant matrices via rectifier circuits and modulo 2 rectifier circuits to bounded depth circuits.

*Research supported in part by RFBR, grants 11–01–00508, 11–01–00792, and OMN RAS “Algebraic and combinatorial methods of mathematical cybernetics and information systems of new generation” program (project “Problems of optimal synthesis of control systems”).

†e-mail: isserg@gmail.com
Theorem 1. For any \(k \in \mathbb{N}\) an arbitrary Boolean circulant \(n \times n\) matrix \(Z\) can be implemented via modulo 2 rectifier circuit:

a) of depth \(2k - 1\) and complexity at most \(f(2k-1)n^{1+1/k}\);

b) of depth \(2k\) and complexity at most \(f(2k)n\left(\frac{n}{\log n}\right)^{1/k}\).

The proof is by induction. For \(k = 1\) we use a trivial depth-1 circuit of complexity \(O(n^2)\) and a circuit of depth 2 and complexity \(O(n^2/\log n)\) provided by O.B. Lupanov’s method [4].

Now we prove an induction step from \(k - 1\) to \(k\). We use the polynomial multiplication method due to A.L. Toom [6] together with Schönhage’s idea [5] allowing to extend the method to binary polynomials. The depth-\(d\) polynomial multiplication is reduced to several parallel depth-\((d - 2)\) multiplications.

Split a vector of variables into \(q\) blocks of length \(n/q\) and interpret each block as a vector of coefficients of a polynomial from the ring

\[R = GF(2)[y]/(y^{2 \cdot 3^s} + y^{3^s} + 1)\]

Parameter \(s\) satisfies condition \(3^s \geq n/q\).

So, multiplication of binary polynomials of degree \(n - 1\) can be performed as a multiplication of polynomials of degree \(n/q - 1\) over \(R\). The latter multiplication can be performed via DFT of order \(3^m \geq 2q\) with primitive root \(\zeta = y^{s+1-m} \in R\).

Next, we describe a circuit.

Its input is a polynomial \(B(x) = \sum B_i x^i \in R[x]\) of degree \(q - 1\). A constant factor is denoted by \(A(x) = \sum A_i x^i\). Output is the product \(C(x) = A(x)B(x) = \sum C_i x^i\).

1. Compute \(B(\zeta^0), \ldots, B(\zeta^{3^m-1})\).
2. Compute \(C(\zeta^i) = A(\zeta^i)B(\zeta^i)\) for all \(i = 0, \ldots, 3^m - 1\).
3. Compute coefficients of \(C(x)\).

We implement stages 1 and 3 via depth-1 circuits and stage 2 — via circuit of depth \(d - 2\). Next, we estimate the circuit complexity, denote it by \(M(d, n)\).

1. Multiplication by a power of \(y\) in \(R\) has linear complexity. Hence, the value of polynomial \(F(x)\) at the point \(y^p\) can be computed with linear complexity as well. Therefore, the complexity of stage 1 is \(O(3^m3^s q)\).

2. Every multiplication at the stage 2 is a multiplication of binary polynomials of degree \(2 \cdot 3^s - 1\) with a subsequent modulo reduction. Perform multiplication via circuit of depth \(d - 2\) and complexity \(M(d - 2, 2 \cdot 3^s)\) provided by induction hypothesis. Reduction of a polynomial \(g(y)\) (here, of degree \(4 \cdot 3^s - 1\)) modulo \(y^{2 \cdot 3^s} + y^{3^s} + 1\) is performed via duplication of some
of its coefficients (that is, outputs of a preceding subcircuit) and identifying of some coefficients, since every coefficient of \(g \) is to be used at most twice. Henceforth, modulo reduction can be embedded into multiplication circuit with no depth increasing and with at most doubling of the circuit complexity. Thus, the total complexity of stage 2 is at most \(2 \cdot 3^m M(d - 2, 2 \cdot 3^*) \).

3. By the fundamental property of DFT, coefficients of \(C(x) \) satisfy \(C_i = C^*(\zeta^{-i}) \), where polynomial \(C^*(x) \) has coefficients \(C(\zeta^i) \). Thus, the complexity of stage 3 is that of stage 1, \(O(3^m 3^* q) \).

To transform the product of polynomials over \(R \) backward to the product of binary polynomials, one performs a substitution \(x = y^{2^3} \). The substitution preserves depth and complexity of the circuit. The choice of parameters to obtain required complexity bounds is: \(q = n^{1/k} \) for \(d = 2k - 1 \) and \(q = (n / \log n)^{1/k} \) for \(d = 2k \); \(3^* = \Theta(n/q), 3^m = \Theta(q) \).

(By construction, \(f(k) = O(c^k) \) for some constant \(c \).)

References

[1] Gashkov S. B., Sergeev I. S. On the complexity of linear Boolean operators with thin matrices. J. Applied and Industrial Math. 2011. 5(2), 202–211.

[2] Grinchuk M. I., Sergeev I. S. Thin circulant matrices and lower bounds on the complexity of some Boolean operators. Diskretn. Anal. Issled. Oper. 2011. 18(5), 38–53 (in Russian).

[3] Jukna S. Boolean function complexity. Advances and frontiers. Springer–Verlag, 2012.

[4] Lupanov O. B. On rectifier and switching-and-rectifier circuits. Dokl. Akad. Nauk SSSR. 1956. 111(6), 1171–1174 (in Russian).

[5] Schönhage A. Schnelle multiplikation von polynomen über körpern der charakteristik 2. Acta Inf. 1977. 7, 395–398.

[6] Toom A. L. The complexity of a scheme of functional elements realizing the multiplication of integers. Soviet Math. Doklady. 1963. 4, 714–716.
Реализация линейных преобразований с циркулянтными матрицами вентильными схемами по модулю 2 ограниченной глубины*

И. С. Сергеев†

Аннотация

В настоящей заметке показано, что при любой постоянной $k \in \mathbb{N}$ произвольную булеву циркулянтную матрицу можно реализовать вентильной схемой по модулю 2 глубины $2k - 1$ и сложности $O\left(n^{1+1/k}\right)$, а также схемой глубины $2k$ и сложности $O\left(n^{1+1/k}\log^{-1/k} n\right)$.

Напомним, что вентильная (m, n)-схема — это ориентированный ациклический граф, в котором n вершин отмечены как входы и m вершин отмечены как выходы. Вентильная схема по модулю 2 реализует булеву $m \times n$-матрицу $A = (a_{i,j})$ тогда и только тогда, когда при любых i и j число ориентированных путей из j-го входа в i-й выход сравнимо с $a_{i,j}$ по модулю 2. Сложностью схемы называется число ребер в ней, а глубиной — максимальная длина ориентированного пути. Подробнее см. в [3, 5].

$n \times n$-матрица $Z = (z_{i,j})$ называется циркулянтной, если при любых i, j выполнено $z_{i,j} = z_{0,k}$, где $k = (j - i) \mod n$.

Рассмотрим линейный булев оператор размера $n \times n$ с циркулянтной матрицей — он реализует циклическую (алгебраическую, над $GF(2)$)

*Работа выполнена при финансовой поддержке РФФИ, проекты 11–01–00508 и 11–01–00792, и программам фундаментальных исследований ОМН РАН «Алгебраические и комбинаторные методы математической кибернетики и информационные системы нового поколения» (проект «Задачи оптимального синтеза управляющих систем»).
†эл. адрес: isserg@gmail.com
свертку с некоторым постоянным вектором A. Действительно, компоненты вектора $C = (C_0, \ldots, C_{n-1})$ — свертки векторов $A = (A_0, \ldots, A_{n-1})$ и $B = (B_0, \ldots, B_{n-1})$, выражаются формулами:

$$C_k = \sum_{i+j\equiv k \mod n} A_i B_j.$$

Следующая теорема позволяет распространить результаты [1, 2] о сравнении сложности реализации некоторых циркулянтных матриц вентильными схемами и вентильными схемами по модулю 2 на схемы ограниченной глубины.

Теорема 1. При $k \in \mathbb{N}$ произвольную булеву циркулянтную $n \times n$-матрицу Z можно реализовать вентильной схемой по модулю 2:

а) глубины $2k - 1$ и сложности не более $f(2k - 1)n^{1+1/k}$;

б) глубины $2k$ и сложности не более $f(2k)n\left(\frac{n}{\log n}\right)^{1/k}$.

Рассуждение проведем по индукции. При $k = 1$ предъявляются тривиальная схема глубины 1 и сложности $O(n^2)$, а также схема глубины 2 и сложности $O(n^2/\log n)$, которая строится методом О.Б. Лупанова [3].

Докажем индуктивный переход от $k - 1$ к k. Для доказательства используется метод А.Л. Тоома умножения многочленов [4] вместе с приемом А. Шёнхаге [6], позволяющим распространить метод на двоичные многочлены. Умножение многочленов с глубиной d сводится к нескольким параллельным умножениям глубины $d - 2$.

Разобьем вектор переменных на q частей длины n/q. Эти части интерпретируем как вектора коэффициентов многочленов из кольца

$$R = GF(2)[y]/(y^{2\cdot 3^s} + y^{3^s} + 1)$$

при младших степенях y. Параметр s выбирается из условия $3^s \geq n/q$.

Сведем умножение двоичных многочленов степени $n - 1$ к умножению многочленов степени $n/q - 1$ над R. Последнее умножение выполним при помощи ДПФ порядка $3^m \geq 2q$ с примитивным корнем $\zeta = y^{s+1-m} \in R$.

Опишем схему.

На входе многочлен $B(x) = \sum B_i x^i \in R[x]$ степени $q - 1$. Постоянный сомножитель обозначим через $A(x) = \sum A_i x^i$. На выходе — произведение $C(x) = A(x)B(x) = \sum C_i x^i$.

1. Вычисляем $B(\zeta^0), \ldots, B(\zeta^{3^m-1})$.
2. Вычисляем $C(\zeta^i) = A(\zeta^i)B(\zeta^i)$ для всех $i = 0, \ldots, 3^m - 1$.
3. Вычисляем коэффициенты многочлена $C(x)$.
Этапы 1 и 3 реализуем схемами глубины 1, а этап 2 — схемой глубины \(d - 2\). Оценим сложность схемы, обозначим ее \(M(d, n)\).

1. Умножение на степень \(y\) в кольце \(R\) выполняется с линейной сложностью, поэтому с линейной сложностью вычисляется значение многочлена \(F(x)\) в точке \(y^p\). Следовательно, сложность первой схемы оценивается как \(O(3^m 3^q)\).

2. Каждое из умножений на шаге 2 есть умножение двоичных многочленов степени \(2 \cdot 3^s - 1\) с последующим приведением по модулю. Умножение выполним методом из индуктивного предположения глубины \(d - 2\) и сложности \(M(d - 2, 2 \cdot 3^s)\). Приведение многочлена (в данном случае, степени \(4 \cdot 3^s - 1\)) по модулю \(y^{2 \cdot 3^s} + y^{3^s} + 1\) достигается дублированием некоторых его коэффициентов (выходов предшествующей схемы) и отождествлением некоторых коэффициентов, т.к. каждый коэффициент приводимого многочлена используется не более чем дважды. Следовательно, приведение по модулю можно реализовать без увеличения глубины и с не более чем двукратным увеличением сложности. Общую сложность второго этапа теперь можно оценить как \(2 \cdot 3^m M(d - 2, 2 \cdot 3^s)\).

3. Согласно основному свойству ДПФ искомые коэффициенты многочлена \(C(x)\) находятся как \(C_i = C^*(\zeta^{-i})\), где многочлен \(C^*(x)\) имеет коэффициенты \(C(\zeta^i)\). Поэтому сложность этапа 3 можно оценить также, как и сложность этапа 1, \(O(3^m 3^q)\).

Чтобы результат умножения многочленов над \(R\) преобразовать (обратно) в результат умножения двоичных многочленов, надо выполнить подстановку \(x = y^{2 \cdot 3^s}\) и привести подобные. Это преобразование реализуется отождествлением выходов и не влияет на глубину и сложность схемы.

Оценки теоремы получаются при следующем выборе параметров: \(q = n^{1/k}\) при \(d = 2k - 1\) и \(q = (n/\log n)^{1/k}\) при \(d = 2k\); \(3^s = \Theta(n/\log n)\), \(3^m = \Theta(q)\).

(По построению, \(f(k) = O(c^k)\) при некоторой константе \(c\).)

Список литературы

1. Гашков С. Б., Сергеев И. С. О сложности линейных булевых операторов с редкими матрицами. Дискретный анализ и исследование операций. 2010. 17(3), 3–18.

2. Гринчук М. И., Сергеев И. С. Редкие циркулиличные матрицы и нижние оценки сложности некоторых булевых операторов. Дискретный анализ и исследование операций. 2011. 18(5), 38–53.
[3] Лупанов О. Б. О вентильных и контактно-вентильных схемах. ДАН СССР. 1956. 111(6), 1171–1174.

[4] Тоом А. Л. О сложности схемы из функциональных элементов, реализующей умножение целых чисел. Доклады АН СССР. 1963. 150(3), 496–498.

[5] Jukna S. Boolean function complexity. Advances and frontiers. Springer–Verlag, 2012.

[6] Schönhage A. Schnelle multiplikation von polynomen über körpern der charakteristik 2. Acta Inf. 1977. 7, 395–398.