The q-Diode

R. V. Ramos
rubens.ramos@ufc.br

Lab. of Quantum Information Technology, Department of Teleinformatic Engineering – Federal University of Ceara - DETI/UFC,
C.P. 6007 – Campus do Pici - 60455-970 Fortaleza-Ce, Brazil.

Abstract

The present work introduces the new function $R_{q, Q}(z)$, solution of the equation $R_{q, Q}(z) \times Q \exp_{q}(R_{q, Q}(z)) = z$. It is shown this new function can be used to construct a new disentropy as well it is used to model the q-diode, a hypothetical electronic device whose electrical current depends q-exponentially on the voltage between its terminals.

Key words – Lambert-Tsallis W_q function; q-exponential; disentropy; diode

1. Introduction

The Lambert W function is an important elementary mathematical function that finds applications in different areas of mathematics, computer Science and physics [1-6]. The Lambert W function is defined as the solution of the equation

$$W(z)e^{W(z)} = z. \quad (1)$$

In the interval $-1/e \leq x \leq 0$ there exist two real values of $W(z)$. The branch for which $W(x) \geq -1$ is the principal branch named $W_0(z)$ while the branch satisfying $W(z) \leq -1$ is named $W_{-1}(z)$. For $x \geq 0$ only $W_0(z)$ is real and for $x < -1/e$ there are not real solutions. The point $(z_b = -1/e, W(z_b) = -1)$ is the branch point where the solutions W_0 and W_{-1} have the same value.

On the other hand, the q-exponential function proposed by Tsallis [7] is given by

$$e_{q}^{z} = \begin{cases} e^{z} & q = 1 \\ \left[1+(1-q)z\right]^{1/(1-q)} & q \neq 1 \ & 1+(1-q)z \geq 0 \\ 0 & q \neq 1 \ & 1+(1-q)z < 0 \end{cases} \quad (2)$$
Using Tsallis q-exponential (2) in the Lambert equation (1), one has the Lambert-Tsallis equation

$$W_q(z)e_q^{W_q(z)} = z$$

(3)

whose solutions are the Lambert-Tsallis W_q functions [8]. Using the definition of exp_q given in eq. (2) in eq. (3), the W_q function can be found solving the equation [8]

$$x(r+x)_r = r'z,$$

(4)

where $x = W_{(r-1)}(z)$, $r = 1/(1-q)$ and $(x)_r = \text{max}\{x,0\}$. When $q = 1$, one has $e_1(z) = e^z$

and, consequently, $W_1(z) = W(z)$. For example, for $q = \{2, 3, 3/2, 1/2\}$ one has the following Lambert-Tsallis W_q upper branches

$$W_2(z) = \frac{z}{z+1}, \quad z > -1,$$

(5)

$$W_3(z) = z\sqrt{z^2 + 1 - z^2} \quad (z \geq 0).$$

(6)

$$W_{3/2}^+(z) = \frac{2(z+1) + 2\sqrt{2z+1}}{z}, \quad z > -1/2,$$

(7)

$$W_{3/2}^-(z) = \left[\frac{3\sqrt{2z + \sqrt{\left(2z + \frac{8}{27}\right)^2 - \frac{64}{729} + \frac{8}{27} - 2}}}{9\sqrt{2z + \sqrt{\left(2z + \frac{8}{27}\right)^2 - \frac{64}{729} + \frac{8}{27}}} - \frac{64}{729} + \frac{8}{27} - 2} \right]^{1/2}, \quad z \geq -0.29629,$$

(8)

Figure 1 shows the plot of $W_{q=3/2}$ versus z.
Fig. 1. $W_{q=3/2}$ versus z.

More details about the Lambert-Tsallis function and its applications can be found in [8-15].

In order to handle with the exp_q function, one has to use the q-operations. The important ones used in this work are:

\[
\begin{align*}
\alpha \times_q b &= \max \left\{ \left[a^{(1-q)} + b^{(1-q)} - 1 \right]^{1/(1-q)} , 0 \right\} = \left[a^{(1-q)} + b^{(1-q)} - 1 \right]^{1/(1-q)} \\
(e_q^x)^\alpha &= e^{\alpha x_{1-(1-q)/q}} - (10)
\end{align*}
\]

2. The $R_{q,Q}$ function

In this section a new function is introduced. It is named $R_{q,Q}$ function and it is the solution of the following equation

\[
R_{q,Q}(z) \times_Q e_q^{R_{q,Q}(z)} = z. \tag{11}
\]

Equation (11) is the Lambert-Tsallis equation using the q-product operation. Obviously, $R_{q,Q=1}(z) = W_q(z)$. Using (2) and (9) in (11) one gets
\[R^{i,q}_q(z) + \left[1 + (1-q)R_{q,q}(z) \right] \frac{z^{i-q}}{i-q} - (z^{i-q} + 1) = 0. \] (12)

The general solutions of (12) will be published elsewhere. Here, the important case for introduction of a new disentropy and the \(q \)-diode modelling is \(Q = q \). In this case eq. (12) is reduced to

\[R^{i,q}_q(z) + (1-q)R_{q,q}(z) - z^{i-q} = 0. \] (13)

For example, for \(q = 2 \) and \(q = 1/2 \) one has

\[R_{2,2}(z) = -\frac{1}{2z} \pm \frac{1}{2} \sqrt{\frac{1}{z^2} + 4}. \] (14)

\[R_{q/2,1/2}(z) = 2 \left(z^{1/2} + 1 \right) - 2\sqrt{2z^{1/2} + 1}. \] (15)

Figure 2 shows the plot of the parts of the functions \(R_{2,2} \) and \(R_{1/2,1/2} \) that obey eq. (11).

\[\text{Fig. 2. } R_{q,q}(z) \text{ versus } z \text{ for } q = 1/2 \text{ and } q = 2. \]
3. Disentropy

The disentropy based on the Lambert and Lambert-Tsallis functions and its applications in quantum and classical information theory, image processing and black hole, among others, have been discussed in [8-14]. Taking the \log_q in both sides of eq. (11) with $q = Q$, one gets

$$\log_q(z) = R_{q,q}(z) + \log_q\left[R_{q,q}(z)\right].$$

(16)

Hence, Tsallis q-entropy can be written as

$$S_q = \sum_i p_i^q \log_q(p_i) = \sum_i p_i^q R_{q,q}(p_i) + \sum_i p_i^q \log_q\left[R_{q,q}(p_i)\right].$$

(17)

The term

$$D_q = \sum_i p_i^q R_{q,q}(p_i)$$

(18)

is a disentropy. It can be shown it is maximal for delta distribution and minimal for a uniform distribution. Its quantum version is

$$D_q(\rho) = \sum_i \lambda_i^q R_{q,q}(\lambda_i)$$

(19)

where λ_i is the i-th eigenvalue of the density matrix ρ. The disentropy based on the $R_{q,q}$ function can be used in the same problems that the disentropy based on the Lambert-Tsallis function is used. For example, it can be used to measure the disentanglement of bipartite of qubit states [8]. Figure 3 shows the behaviour of D_q for the distribution $\{p, 1-p\}$ using the values $q = 0.5$, $q = 1$ and $q = 2$.
4. The q-Diode

For a semiconductor diode that obeys the Schottky’s model, the relation between current and voltage is given by

$$I = I_s e^{\frac{V_D}{\eta kT}},$$

(20)

where I_s is the saturation current of the diode, V_D is the voltage between the diode terminals, $V_T = kT/q_e$ (q_e – electron charge, k – Boltzman constant, T - temperature in Kelvin) and, finally, η is the diode ideality factor ($1 < \eta < 2$ for silicon diodes). Figure 4 shows the very basic electrical circuit composed by a power supply, a resistor and the diode.
The current that flows through the diode in the circuit shown in Fig. 3 is given by

$$I = I_s e^{\frac{V - RI}{\eta V_T}}. \tag{21}$$

Using the Lambert W function in (21) one gets the following relation between electrical current (I) and power supply voltage (V)

$$I = \frac{\eta V_T}{R} W \left(\frac{I_s R}{\eta V_T} e^{\frac{V}{\eta V_T}} \right). \tag{22}$$

The q-diode, by its turn, is defined as the hypothetical device whose relation between current and voltage between its terminals (V_D) is given by

$$I = I_s e^{\frac{V_D}{q \eta V_T}}. \tag{23}$$

Using the q-diode in the circuit shown in Fig. 4, the value of the electric current flowing through the diode is given by
Using the q-operations in (20) one gets

\[
I = I_s e^{\frac{V-IR}{\eta T}}. \tag{24}
\]

Now, using the function $R_{q,q}$ in (25), after some algebra one gets the following solutions for the electrical current I, for $q = 2$ and $q = 0.5$,

\[
I_2(V) = \frac{\eta V_T}{R} \left[-1 + \frac{1}{2} \sqrt{\frac{1}{2e_q^\frac{V}{\eta T}}} + \frac{4\eta V_T}{I_s R} \right] \tag{26}
\]

\[
I_{\frac{1}{2}}(z) = \frac{\eta V_T}{R} \left[2 \left(e_q^\frac{V}{\eta T} \right)^{\frac{1}{2}} + \frac{\eta V_T}{I_s R} \right] - 2 \sqrt{\frac{2\eta V_T}{I_s R} \left(e_q^\frac{V}{\eta T} \right)^{\frac{1}{2}} + \left(\frac{\eta V_T}{I_s R} \right)^2} \tag{27}
\]

One may note that (26) and (27) are, respectively, equal to (14) and (15) when $(\eta V_T/I_s R) = 1$. In Fig. 5 one can see the comparison between the cases $q = 1$, $q = 0.75$ and $q = \frac{1}{2}$. The smaller the value of q the slower is the growth of the current. The q-diode with $q > 1$ operates at very low voltage since $\exp_q(x)$ goes too fast to zero. For example, for $q = 1.25$, one must have $V/(\eta V_T) < 4$ ($V < ~0.1 \text{mV}$).
Fig. 5 – q-Diode current versus voltage curve for $q \in [0.5, 0.75, 1]$.

5. Conclusions

Initially, the present work introduced the solutions of the equation $R_{q,q}(z) \times Q \exp_q(R_{q,q}(z)) = z$ and showed two applications of the function $R_{q,q}(z)$: 1) It was used to construct a new disentropy formula. This new disentropy can be applied in a large variety of problems in physics and engineering. A comparison between the disentropy based on the $R_{q,q}$ function and the disentropy based on the Lambert-Tsallis W_q function is a question for future investigation. 2) It was used to model the q-diode. Basically, compared to the classical diode, the q-diode with $q > 1$ has to operate with lower voltage while the q-diode with $q < 1$ requires a larger voltage. Since, the q-diode shows the nonlinear behaviour (between I and V) it can be used in an electronic circuit as modulator or mixer, for example. Which values of q will result in a q-diode that can be realized physically is still a problem to be investigated.

Acknowledgements
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, and CNPq via Grant no. 307184/2018-8. Also, this work was performed as part of the Brazilian National Institute of Science and Technology for Quantum Information.

References

1. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, *On the Lambert W function*, Advances in Computational Mathematics, vol. 5, 329 – 359, 1996.
2. S. R. Valluri, D. J. Jeffrey, R. M. Corless, Some applications of the Lambert W function to Physics, Canadian Journal of Physics, vol. 78 n° 9, 823-831, 2000.
3. D. C. Jenn, Applications of the Lambert W function in Electromagnetics, IEEE Antennas and Propagation Magazine, vol. 44, n° 3, 2002.
4. F. C.-Blondeau and A. Monir, Numerical evaluation of the Lambert W function and application to generation of generalized Gaussian noise with exponent ½, IEEE Transactions on Signal Processing, vol. 50, no. 9, 2160-2165, 2002.
5. D. Veberic, Having fun with Lambert W(x) function, GAP-2009-114 [Online]. Available: http://arxiv.org/abs/1003.1628.
6. K. Roberts, S. R. Valluri, Tutorial: The quantum finite square well and the Lambert W function, Canadian Journal of Physics, vol. 95, no. 2, 105-110, 2017.
7. C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52, 479, 1988.
8. G. B. da Silva and R.V. Ramos, The Lambert-Tsallis W_q function, Physica A, 525, 164-170, 2019. https://doi.org/10.1016/physa.2019.03.046.
9. L. E. da Silva, G. B. da Silva. R. V. Ramos, The Lamber-Kaniadakis W_κ function, Phys. Lett. A, 2019. DOI: 10.1016/j.physleta.2019.126175
10. R. V. Ramos, Disentropy of the Wigner function, J. of Opt. Soc. of Am. B, 36, 8 2244, 2019.
11. J. L. M. da Silva, F. V. Mendes, R. V. Ramos, Radial basis function network using Lambert–Tsallis W_q function, Physica A 534, 122168/1-9 (2019).
12. R. V. Ramos, Quantum and classical information theory with disentropy, ArXiv/quant-ph:1901.04331, 2020.
13. J. L. E. da Silva, R. V. Ramos, Calculation of the Disentropy of the Wigner Function using the Lambert-Tsallis W_q Function with non-integer q values, Researchgate.net, 2019.

14. L. E. da Silva, G. B. da Silva, R. V. Ramos, Applications of Lambert-Tsallis and Lambert-Kaniadakis Functions in Differential and Difference Equations with Deformed Exponential Decay, ArXiv/cond-mat: 2001.11995, 2020.

15. R. V. Ramos, Using the Lambert-Tsallis Function in the Solution of Basic Relativistic Problems, Researchgate.net, 2020.