Quadratic programming model for optimal decision making of supplier selection problem integrated with inventory control problem

D U H E Hakim\(^1\), Sutrisno\(^2\) and Widowati\(^3,\ast\)
\(^1,2,3\)Dept. of Mathematics, Diponegoro University, Jalan Prof. Soedarto, SH., Semarang, Indonesia, 50275
\(\ast\)Email: widowati_math@undip.ac.id

Abstract. In this paper, we propose a quadratic programming model to determine the optimal decision for integrated supplier selection and inventory control. The corresponding optimization is solved by using constrained quadratic optimization method i.e. Karush-Kuhn-Tucker Method performed in LINGO 17.0 to determine the optimal joint decisions which are the optimal supplier and the optimal inventory. A numerical experiment was performed to analyze the model with a multi-product, multi-supplier, multi-carrier and multi-period inventory system. From the results we have found, we can find the optimal supplier for each product and each period.

1. Introduction
In recent years, along with the development of technology and knowledge, the economic process is growing up where every businessman trying to develop their company so it can compete with other companies. For its development, company needs to get the maximum profit by optimizing the purchase of logistics to reduce the total cost. There are two processes in industrial company which can be optimized for cost minimizing which are supplier selection and inventory control. Supply of logistics for a company can be satisfied from multiple suppliers. By solving the supplier selection problem, the company can determine the number of logistics to be purchased from each supplier so that it minimizes the purchasing cost. If the company wants to minimize the purchasing cost for several time periods, the companies can save some logistics units on their warehouses so that the saved items can be used for the future/next period of time. Because of that, supplier selection and inventory control problem is needed to be solved in order for good plan determining and reaches the minimal total cost hence the company continues to grow up.

There are several articles that were discussed about supplier selection and inventory control problem. In [1] supplier selection problem solving considering contingency planning for failures on supplier was discussed whereas in [2] the integrating of DEA and MODE was discussed for sustainable supplier selection problem solving. Furthermore, references [3], [4] and [5] were discussed about the solution of the supplier selection problem considering quantity discount. In [6], it was described the fuzzy TOPSIS combined with MCGP model for supplier selection problem solving while in reference [7] it was compared about supplier selection problem solving by using fuzzy AHP and fuzzy TOPSIS. For inventory control, in [8], the joint replenishment inventory control with deterministic and stochastic model was discussed whereas in [9] the inventory control model for an incapacitated warehouse in a manufacturing facility under demand and lead time uncertainty was
supplied some product. In our model, it is assumed that the total value based on robust model predictive control for inventory control system considering random demand. Reference [12] discussed about the decision of the problem of selection of suppliers integrated inventory controls of inventory system considering purchase discount. In article [13], it was discussed about application of fuzzy optimization for solving of supplier selection problem combined with inventory control problem considering fuzzy demand by using fuzzy expected value based approach. Furthermore, in [14], it was discussed about inventory control model for split transport.

In this paper, we formulate a mathematical model in an integer quadratic optimization that will be used to solve supplier selection problem integrated with inventory control problem with several constraints. We conduct some numerical experiments to be used to describe and analyze the formulated model.

2. Mathematical model
Suppose a company will purchase some materials from \(S \) supplier alternatives. We have formulated a mathematical model that minimizes the total cost which is containing supplier selection and inventory control problem solving. In our model, it is assumed that in case of delay in delivery from some supplier, it will be sent in the following time period. To formulate the mathematical model, parameters and variables that will be used are defined as follows:

- \(T \): Optimization time set
- \(S \): Supplier set
- \(P \): Product set
- \(X_{tp} \): Product volume (unit) \(p \in P \) which should be supplied by supplier \(s \in S \) for time period \(t \in T \)
- \(UC_{tp} \): Product unit price of product \(p \in P \) which supplied by supplier \(s \in S \) for time period \(t \in T \)
- \(TC_{ts} \): Total transportation cost for all products supplied by supplier \(s \in S \) for time period \(t \in T \)
- \(Y_{ts} \): Binary variable which is 1 if supplier \(s \in S \) is chosen to supply some product for time period \(t \in T \) or 0 if supplier \(s \in S \) is not chosen at time period \(t \in T \)
- \(SC_{ts} \): Maximum capacity (unit) for supplier \(s \in S \) to supply product \(p \in P \) for time period \(t \in T \)
- \(D_{tp} \): Volume (unit) of the demand of product \(p \in P \) for time period \(t \in T \)
- \(UPC_{tp} \): Penalty cost per unit for unqualified delivered product (under quality standard) for product \(p \in P \) from supplier \(s \in S \) for time period \(t \in T \)
- \(UDC_{tp} \): Delay cost per unit for product \(p \in P \) that will be delivered from supplier \(s \in S \) at time period \(t \in T \)
- \(DLT_{tp} \): Delay rate for product \(p \in P \) that will be delivered from supplier \(s \in S \) for time period \(t \in T \)
- \(Q_{ts} \): Quality level requirement for product \(p \in P \) that will be supplied by supplier \(s \in S \) for time period \(t \in T \)
- \(Q_o \): Minimum standard quality percentage of all product set by the company
- \(H_p \): Holding Cost per unit for any product \(p \) at time period \(t \)
- \(M_p \): Capacity of storage/warehouse for product \(p \) at any time period
- \(I_{tp} \): Number of unit product \(p \in P \) that will be stored in the warehouse at time period \(t \)
B_t : Budget value provided by the company for the procurement for whole optimization or decision making time period

r_{tp} : Reference inventory level for control purposes at time period t for product p that it decided by the company.

This supplier selection problem considering inventory management can be modelled as follows:

$$\begin{align*}
\text{min} & \quad \sum_{t=1}^{T} \sum_{s=1}^{S} \sum_{p=1}^{P} X_{tsp}UC_{tsp} + \sum_{t=1}^{T} \sum_{s=1}^{S} T_{is} Y_{is} + \sum_{t=1}^{T} \sum_{s=1}^{S} \sum_{p=1}^{P} (1 - Q_{tsp}) UPC_{tsp} X_{tsp} \\
& + \sum_{t=1}^{T} \sum_{s=1}^{S} \sum_{p=1}^{P} UDC_{tsp} DLT_{tsp} X_{tsp} + \sum_{t=1}^{T} \sum_{p=1}^{P} H_{p} I_{tp} + \sum_{t=1}^{T} \sum_{p=1}^{P} \left(I_{tp} - r_{tp} \right)^2
\end{align*}$$

(1)

subject to:

$$X_{tsp} \leq SC_{tsp}, \forall t \in T, \forall s \in S, \forall p \in P$$

(2)

$$\sum_{t=1}^{T} X_{tsp} Y_{is} \geq \sum_{t=1}^{T} D_{tp}, \forall s \in S, \forall p \in P$$

(3)

$$Y_s = \begin{cases} 1 & \text{for } X_{tsp} > 0 \\ 0 & \text{for } X_{tsp} \leq 0 \end{cases} \forall s \in S$$

(4)

$$X_{tsp} \geq 0, \forall t \in T, \forall s \in S, \forall p \in P$$

(5)

$$\sum_{s=1}^{S} X_{tsp} - I_{tp} - \sum_{s=1}^{S} (1 - Q_{tsp}) X_{tsp} - \sum_{s=1}^{S} DLT_{tsp} X_{tsp} \geq D_{tp}, t = 1, \forall p \in P$$

(6)

$$I_{(t-1)p} + \sum_{s=1}^{S} DLT_{(t-1)sp} X_{(t-1)sp} + \sum_{s=1}^{S} X_{tsp} - \sum_{s=1}^{S} (1 - Q_{tsp}) X_{tsp} -$$

(7)

$$- \sum_{s=1}^{S} DLT_{tsp} X_{tsp} - I_{tp} \geq D_{tp}, t > 1, \forall p \in P$$

(8)

$$I_{tp} \leq M_{tp}, \forall t \in T, \forall p \in P$$

(9)

$$\left(\sum_{s=1}^{S} \sum_{p=1}^{P} X_{tsp} UC_{tsp} \right) + \left(\sum_{s=1}^{S} T_{is} Y_{is} \right) + \left(\sum_{s=1}^{S} \sum_{p=1}^{P} (1 - Q_{tsp}) UPC_{tsp} X_{tsp} \right)$$

(10)

$$+ \left(\sum_{s=1}^{S} \sum_{p=1}^{P} UDC_{tsp} DLT_{tsp} X_{tsp} \right) + \sum_{p=1}^{P} H_{p} \leq B_{s}, \forall t \in T, \forall s \in S, \forall p \in P$$

$$X_{tsp}, I_{tp} \geq 0 \text{ and integer.}$$

The above model consists of 10 mathematical expressions where expression (1) is the objective function that should be minimized that it is consisting of product purchasing cost, transportation cost, penalty cost for defected product, delay delivering product cost, holding cost and set point/reference tracking objective term. Expression (2) presents the supplier capacity constraint and expression (3) is demand constraint that must be satisfied for each time period. Expression (4) is the binary constraint for Y while expression (5) is constraint so that X must be nonnegative. Expression (6) is used for inventory constraint for period 1 while constraint (7) is inventory constraint for period 2 and the following period. Constraint (8) is presenting the storage capacity constraint whereas (9) is presenting the budget constraint for each time period. The last constraint, (10) is presenting the integer constraint.

The solution existence analysis of the model can be explained as follows. The first five terms in the objective function are linear functions where the last term is a one dimensional quadratic function.
with positive coefficient. Hence, the objective function is a convex function. Furthermore, if the feasible set is not empty, then it guarantees that the solution is exist.

3. Numerical experiment
A numerical experiment was performed to illustrate and analyze the model. This experiment was considered with five suppliers which are S1, S2, S3, S4 and S5, and four product types which are P1, P2, P3 and P4, and we were optimized for 12 time periods. The parameter values for the performed experiment were randomly generated given in table 1 to table 10 and the reference point value for inventory level target point for all product for all time periods is 50 units.

Table 1. Unit price UC_{isp} for all t

Supplier	Product	T1	T2	T3	T4	T5	T6	T7	T8	T9	T10	T11	T12
S1	P1	23	27	35	21	25	17	27	19	15	23	17	23
	P2	17	18	25	31	28	30	21	21	28	24	21	17
	P3	18	29	29	20	26	33	31	15	35	29	28	19
	P4	15	24	21	16	18	25	22	19	21	19	18	17
S2	P1	20	31	32	29	31	19	30	16	28	32	15	27
	P2	19	34	15	17	15	32	23	21	17	22	21	19
	P3	15	20	24	15	28	20	23	19	24	29	29	19
	P4	31	18	31	18	30	16	31	25	30	21	18	19
S3	P1	29	16	26	24	16	29	18	19	15	27	34	30
	P2	19	32	19	30	31	19	34	30	23	21	17	22
	P3	25	21	35	19	30	32	21	15	30	16	35	29
	P4	26	19	29	18	29	23	32	21	31	35	19	24
S4	P1	28	20	16	29	35	25	21	19	35	31	18	22
	P2	19	26	27	22	30	31	32	24	21	20	30	20
	P3	23	29	32	16	19	24	24	20	19	16	19	25
	P4	29	19	16	20	21	35	17	32	28	21	15	17
S5	P1	16	20	30	21	35	30	20	34	27	34	19	29
	P2	30	35	24	30	17	24	34	35	21	28	35	31
	P3	33	22	31	34	35	23	25	18	31	24	35	24
	P4	30	35	29	23	30	17	33	28	29	16	31	21

Table 2. Maximum supplier capacity

Supplier	Product	T1	T2	T3	T4	T5	T6	T7	T8	T9	T10	T11	T12
S1	P1	520	670	500	1200	1150	800	670	540	680	1000	890	950
	P2	680	720	820	590	790	900	750	950	1120	1200	850	700
	P3	1200	1130	930	1000	750	670	740	780	500	590	680	900
	P4	900	650	590	910	880	650	1120	1000	670	900	560	670
S2	P1	780	800	1200	1130	1000	950	1150	980	650	790	550	870
	P2	870	1200	1180	780	590	760	890	650	870	590	900	760
Table 2. (Cont.)

Supplier	Product	Time Period
	P1	T1 1000 740 1100 990 870 970 740 690 590 600 680
	P2	T2 900 950 890 650 790 520 590 660 760 850 1000 940
	P3	T3 1000 970 910 750 650 550 860 1200 970 890 650 1170
	P4	T4 570 680 500 540 700 750 900 1120 870 510 1000 1200
S3	P1	T5 870 1200 750 650 690 1120 980 1100 980 790 990 970
	P2	T6 930 530 990 1000 710 940 870 760 540 650 910 990
	P3	T7 500 1200 900 820 1180 660 900 790 1120 730 860 880
	P4	T8 660 890 600 520 890 750 1190 650 910 940 870 1200
S4	P1	T9 700 1150 750 650 1050 1200 950 600 900 700 950 1000
	P2	T10 500 950 700 600 650 850 900 800 850 550 850
	P3	T11 650 800 650 1150 900 750 1100 550 850 950
	P4	T12 1100 1050 900 850 650 600 800 900 650 900 800 550

Table 3. Penalty cost per unit

UPC	Product	Time period
	P1	T1 3.0 4.0 1.5 2.5 2.5 2.0 3.0 1.5 2.0 1.5 3.0 4.0
S1	P2	T2 2.5 3.5 2.5 3.0 3.5 1.5 2.5 3.0 2.5 3.0 1.5 2.5
	P3	T3 1.5 1.5 3.0 4.0 1.5 3.0 1.5 2.5 4.0 3.5 2.0 3.0
	P4	T4 3.0 2.5 3.5 1.5 1.5 2.5 3.0 1.5 2.0 1.5 2.5 1.5
	P1	T5 3.5 4.0 2.0 3.0 4.0 2.0 2.5 3.5 1.5 4.0 1.5 4.0
S2	P2	T6 1.5 3.0 2.5 2.5 3.0 3.5 2.0 3.0 1.5 3.0 1.5 2.5
	P3	T7 1.5 2.0 4.0 3.0 2.0 1.5 2.5 1.5 2.5 3.5 4.0 2.0
	P4	T8 2.5 3.5 2.0 1.5 3.5 4.0 3.0 2.0 1.5 1.5 3.5 1.5
	P1	T9 3.0 2.0 1.5 3.5 2.5 3.0 3.5 3.0 3.5 3.0 2.5 4.0
S3	P2	T10 2.5 1.5 1.5 3.0 1.5 2.5 2.5 1.5 1.5 4.0 1.5 3.5
	P3	T11 1.5 3.0 2.0 4.0 2.5 1.5 2.0 3.0 4.0 2.5 3.5 2.5
	P4	T12 3.0 3.5 1.5 2.5 3.5 2.5 3.5 1.5 3.5 2.0 4.0 2.5
	P1	T13 4.0 1.5 4.0 2.0 2.5 1.5 2.0 1.5 3.0 1.5 3.5 3.5
S4	P2	T14 3.5 1.5 2.0 3.0 1.5 2.5 3.0 3.5 1.5 2.0 2.5 1.5
	P3	T15 1.5 2.5 4.0 2.5 1.5 3.0 2.0 1.5 4.0 2.5 3.5 1.5
	P4	T16 2.5 3.5 3.0 2.5 3.5 3.0 2.5 3.5 3.0 3.5 2.0 2.5
	P1	T17 3.0 2.0 4.0 1.5 2.0 3.0 2.5 4.0 2.0 2.5 1.5 3.0
S5	P2	T18 1.5 2.5 3.0 2.0 2.5 3.5 3.0 1.5 1.5 4.0 3.5 3.5
	P3	T19 4.0 1.5 2.0 2.5 3.0 2.5 4.0 2.5 4.0 3.5 2.0 1.5
Supplier	Product	Time Period
----------	---------	-------------
S1	P1	0.00 0.05 0.03 0.05 0.02 0.01 0.04 0.02 0.04 0.02 0.01 0.03
	P2	0.02 0.04 0.02 0.04 0.04 0.02 0.05 0.04 0.00 0.05 0.04 0.01
	P3	0.04 0.02 0.05 0.00 0.03 0.01 0.04 0.05 0.04 0.02 0.03 0.04
	P4	0.03 0.05 0.01 0.04 0.04 0.03 0.02 0.05 0.02 0.05 0.03 0.05
S2	P1	0.01 0.03 0.05 0.04 0.02 0.04 0.04 0.01 0.04 0.00 0.04 0.00
	P2	0.05 0.04 0.01 0.04 0.05 0.01 0.05 0.02 0.02 0.04 0.03 0.05
	P3	0.04 0.03 0.04 0.02 0.04 0.03 0.04 0.03 0.00 0.03 0.01 0.05
	P4	0.01 0.04 0.01 0.04 0.05 0.04 0.01 0.05 0.04 0.05 0.03 0.02
S3	P1	0.03 0.05 0.04 0.04 0.02 0.03 0.05 0.04 0.03 0.02 0.04 0.05
	P2	0.05 0.04 0.02 0.02 0.00 0.05 0.00 0.05 0.01 0.05 0.03 0.00
	P3	0.05 0.01 0.04 0.04 0.05 0.04 0.05 0.03 0.04 0.03 0.04 0.05
	P4	0.00 0.04 0.05 0.03 0.01 0.04 0.01 0.04 0.02 0.00 0.04 0.03
S4	P1	0.02 0.04 0.00 0.04 0.02 0.05 0.04 0.03 0.04 0.04 0.05 0.02
	P2	0.05 0.04 0.05 0.02 0.04 0.01 0.04 0.03 0.01 0.05 0.01 0.04
	P3	0.04 0.02 0.00 0.04 0.05 0.04 0.05 0.00 0.05 0.03 0.04 0.05
	P4	0.01 0.05 0.05 0.04 0.01 0.05 0.02 0.05 0.04 0.04 0.02 0.01
S5	P1	0.02 0.01 0.04 0.02 0.05 0.01 0.00 0.02 0.03 0.00 0.01 0.02
	P2	0.04 0.04 0.05 0.00 0.04 0.03 0.01 0.03 0.05 0.03 0.04 0.01
	P3	0.03 0.02 0.03 0.05 0.01 0.02 0.04 0.00 0.02 0.02 0.01 0.05
	P4	0.01 0.03 0.02 0.04 0.04 0.03 0.02 0.02 0.01 0.04 0.05 0.00

Table 4. Delay lead time

Supplier	Product	Time Period
S1	P1	2.5 3.0 3.5 2.0 5.0 4.0 3.0 2.5 3.5 4.0 2.0 3.5
	P2	3.0 4.5 3.0 2.5 3.0 4.5 2.0 4.5 5.0 2.5 3.5 2.5
	P3	4.0 2.0 2.5 4.0 4.5 5.0 4.5 4.0 2.0 4.5 5.0 4.5
	P4	3.5 4.5 3.5 4.5 2.0 2.0 3.5 4.5 2.0 3.0 3.5 5.0
S2	P1	4.0 5.0 4.0 5.0 4.5 3.5 2.5 3.5 3.0 4.5 5.0 4.5
	P2	2.0 3.0 4.5 2.0 5.0 4.5 4.0 4.5 5.0 2.5 3.0 2.5
	P3	4.5 2.5 5.0 2.5 4.0 2.5 4.5 3.0 3.5 4.5 4.5 3.5
	P4	4.0 2.0 4.0 4.5 3.0 4.5 2.5 4.5 2.5 3.0 2.5 5.0
S3	P1	4.5 2.5 4.5 2.5 4.5 4.0 2.0 3.5 5.0 2.5 4.5 4.0
	P2	3.5 5.0 3.0 4.0 5.0 3.5 4.5 3.0 4.5 4.0 3.0 4.5
	P3	2.0 3.5 4.5 2.0 4.5 4.0 3.5 4.5 3.5 4.0 4.5 2.5
	P4	2.5 4.5 5.0 2.5 3.5 2.5 3.0 5.0 2.0 4.5 2.5 4.0

Table 5. Unit delay cost

Supplier	Product	Time Period
S1	P1	2.5 3.0 3.5 2.0 5.0 4.0 3.0 2.5 3.5 4.0 2.0 3.5
	P2	3.0 4.5 3.0 2.5 3.0 4.5 2.0 4.5 5.0 2.5 3.5 2.5
	P3	4.0 2.0 2.5 4.0 4.5 5.0 4.5 4.0 2.0 4.5 5.0 4.5
	P4	3.5 4.5 3.5 4.5 2.0 2.0 3.5 4.5 2.0 3.0 3.5 5.0
S2	P1	4.0 5.0 4.0 5.0 4.5 3.5 2.5 3.5 3.0 4.5 5.0 4.5
	P2	2.0 3.0 4.5 2.0 5.0 4.5 4.0 4.5 5.0 2.5 3.0 2.5
	P3	4.5 2.5 5.0 2.5 4.0 2.5 4.5 3.0 3.5 4.5 4.5 3.5
	P4	4.0 2.0 4.0 4.5 3.0 4.5 2.5 4.5 2.5 3.0 2.5 5.0
S3	P1	4.5 2.5 4.5 2.5 4.5 4.0 2.0 3.5 5.0 2.5 4.5 4.0
	P2	3.5 5.0 3.0 4.0 5.0 3.5 4.5 3.0 4.5 4.0 3.0 4.5
	P3	2.0 3.5 4.5 2.0 4.5 4.0 3.5 4.5 3.5 4.0 4.5 2.5
	P4	2.5 4.5 5.0 2.5 3.5 2.5 3.0 5.0 2.0 4.5 2.5 4.0

Table 5. Cont.
Table 6. Quality level of product

Supplier	Product	Time Period
S4		
	P1	4.5 2.0 4.5 3.0 5.0 4.5 5.0 3.5 4.5 3.0 3.5 2.0
	P2	5.0 4.5 3.0 3.5 4.5 3.0 4.5 3.0 3.5 5.0 4.0 3.5
	P3	3.5 5.0 3.5 4.5 5.0 2.0 3.5 4.5 3.0 4.5 2.0 2.5
	P4	3.0 4.5 2.0 5.0 3.0 2.5 3.5 2.0 2.5 4.0 3.5 5.0
S5		
	P1	2.0 4.0 4.5 2.5 4.0 2.5 3.0 4.5 5.0 3.0 2.5 3.0
	P2	2.5 3.5 3.5 4.0 2.0 4.0 5.0 3.5 5.0 5.0 2.5 2.0
	P3	4.5 5.0 3.0 3.5 5.0 4.5 2.5 2.0 3.5 5.0 4.5 5.0
	P4	3.0 2.5 3.5 5.0 4.0 5.0 4.5 5.0 5.0 3.0 2.5 2.0

Table 7. Volume of demand

Product	Time Period
P1	1200 1800 2100 1300 1500 2200 1900 1500 1900 1700 1500 1700
P2	1400 1900 2300 1600 1300 1400 2300 1600 2500 2100 2200 2000

Time Period
P1 1200 1800 2100 1300 1500 2200 1900 1500 1900 1700 1500 1700
P2 1400 1900 2300 1600 1300 1400 2300 1600 2500 2100 2200 2000
Table 8. Total transportation cost

Supplier	Time Period											
	T1	T2	T3	T4	T5	T6	T7	T8	T9	T10	T11	T12
S1	350	400	450	550	600	700	950	1000	1200	1250	1350	1600
S2	300	400	500	550	650	750	1000	1100	1150	1200	1400	1450
S3	250	300	350	450	550	700	800	900	1050	1250	1300	1350
S4	400	450	550	600	650	800	900	950	1200	1400	1450	1600
S5	300	350	450	600	700	900	1150	1200	1300	1350	1450	1550

Table 9. Budget provided per period

Time Period	T1	T2	T3	T4	T5	T6	T7	T8	T9	T10	T11	T12
Budget (×1000)	350	450	500	375	300	400	425	375	400	350	475	500

Table 10. Holding cost and capacity storage

Product	H	M
P1	4	75
P2	2	75
P3	3	75
P4	1	75

The following figures are the results of the optimization process performed in LINGO 17.0 that was used quadratic optimization solver. Figure 1 to figure 3 show the optimal decision which is the optimal product volume for all time periods for all products.
Figure 2. Optimal product volume per time period 5 to period 8

Figure 3. Optimal product volume per time period 9 to period 12

From figure 1 to figure 3 above, it can be seen that at time period 1, 16 units of product P1 should be purchased from S1, 780 units of product P1 should be purchased from S2, 1 units of product P1 should be purchased from S3, and 700 units of product P1 should be purchased from S4. From the amount of product 1 that purchased from each supplier, as many as 33 units of product 1 must be stored. Whereas for product 2 on period 1, 680 units of product 2 should be purchased from S1, 870 units of product 2 should be purchased from S2, and 199 units of product 2 should be purchased from S4. From the amount of product 2 that purchased from each supplier, as many as 36 units of product 2 must be stored. The solution for the following time periods can be derived analogously. The iteration of optimization process is 243.372 steps that was performed in LINGO 17.0 software and the minimum total cost was 1,917,964. From figure 4, it can be derived the optimal product volume stored in the inventory for each time period and it can be seen that the inventory level for each time period for each product was sufficiently closed to the reference point.

4. Conclusions

In this paper, an integrated dynamic supplier selection with inventory level control problem was solved by using the formulated model in the form of integer quadratic programming model. From the obtained model, the optimal decision in determining of the number of product purchased from each supplier was derived. From the conducted numerical experiment, the optimal decision was obtained and the inventory level was followed and located near the reference level.
Figure 4. Inventory level for each time period for each product

Acknowledgement
This work was supported by DIPA PNPB FSM UNDIP 2018 research grant under contract No. 3055e/UN7.5.8/PG/2018.

References
[1] Ruiz-Torres A J, Mahmoodi F and Zeng A Z 2013 Comput. Ind. Eng 66 374
[2] Jauhar S K and Pant M 2017 J. Comput. Sci 21 299
[3] Lee A H I, Kang H Y, Lai C M and Hong W Y 2013 Appl. Math. Model 37 4733
[4] Mansini R, Savelsbergh M W P and Tocchella B 2012 Omega 40 445
[5] Zhang J L and Chen J 2013 Comput. Oper. Res 40 2703
[6] Rouyendegh (Babek Erdebilli) B D and Saputro T E 2014 Procedia - Soc. Behav. Sci 116 3957
[7] Junior L F R, Osiro L and Carpinetti L C R 2014 Appl. Soft Comput. J 21 194
[8] Goyal S K and Satir A T 1989 Eur. J. Oper. Res 38 2
[9] Rahdar M, Wang L and Hu G 2018 Int. J. Prod. Econ 195 96
[10] Sutrisno, Widowati and R H Tjahjana 2017 J. Phys. Conf. Ser 893
[11] Saputra A, Widowati and Sutrisno 2017 AIP Conf. Proc 1913 020017-1
[12] Widowati, Tjahjana R H and Sutrisno 2017 Int. J Sup. Chain. Mgt 6 61
[13] Sutrisno, Widowati, Sunarsih and Kartono 2018 IOP Conf. Ser. : Mater. Sci. Eng 300 012009
[14] Dong C, Transchel S and Hoberg K 2018 Eur. J. Oper. Res 264 89