Detailed fluvial-geomorphologic mapping of wadeable streams: a proposal of universal map symbology

Jan Miklín and Tomáš Galia

Department of Physical Geography and Geocology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic

ABSTRACT

Detailed maps are important components of fluvial-geomorphological research, connecting several tools, namely field mapping of presented channel and floodplain forms and the assessment of fluvial processes and hydromorphological conditions of current river management. In this paper, we propose a universal map legend for the complex mapping of small stream channels in a detailed scale, which means including both the channel and adjacent floodplain segments. With the help of the symbology we are able to demonstrate both fluvial forms (i.e. individual features, grain size of bed sediments and fluvial deposits) and fluvial processes (i.e. contemporary trends in channels, character of lateral sediment inputs and flow characteristics) in a single map. In total, nearly 150 symbols were proposed and created as a combination of TrueType font and ArcGIS Style files. However, the principle can be used in various software. The work is accompanied by three map examples from the Nízký Jeseník Mts (the Stará Voda Stream) and the Moravskoslezské Beskydy Mts (the Lubina and Bystří Streams).

1. Introduction

Fluvial geomorphology is a science investigating complex behaviour of river channels at spatial scales from individual cross-sections to entire basins (Newson & Sear, 1998). This science contributes to the practical issues of river management and traditional engineering perception of streams and rivers by complex temporal and spatial assessment of fluvial forms and related processes (Dollar, 2002). The cooperation between river engineers and fluvial geomorphologists is necessary especially with regard to the character of the restoration of rivers and their sustainability as the number of restoration projects has dramatically increased in Europe since the ratification of the Water Framework Directive (2000/60/EC) (European Commission, 2000). Although common technical plans of river restorations usually only include ‘forms’ (i.e. individual spatial units) in channels and adjacent floodplain area, the information on participating fluvial processes is equally necessary for successful execution of restoration projects (Dufour & Piégay, 2009). Geomorphological mapping at the scale of channel units (10\(^{-1}\) – 10\(^{-2}\) m) or channel reaches (10\(^{1}\) – 10\(^{-2}\) m) (sensu Montgomery & Buffington, 1998) belongs to the standardised part of the methodology of scientific research and restoration planning in fluvial environment including small wadeable streams. Conventional GPS devices are usually insufficient to cover a very detailed mapping scale (often varying between 1:100 and 1:200) in these streams and spatial inaccuracy can increase if highly confined and densely forested mountain valleys are present in the study area. Therefore, geodetic total stations, terrestrial LiDar, tapes and laser rangefinders with included clinometers are used to obtain the topography of investigated channel reaches, channel and floodplain units and other features such as in-stream wood (e.g. Campana, Marchese, Theule, & Comiti, 2014; David, Wohl, Yochum, & Bledsoe, 2010; Galia & Škarpich, 2016; Owczarek, 2008; Ruiz-Villanueva et al., 2010). The grain-size parameters of bed sediments or deposited material, which belong to the basic characteristics of fluvial systems included in thematic maps, can be quantified by random pebble counts (Wolman, 1954), visual estimations of main grain-size populations (Buffington & Montgomery, 1999) or software processing of images (Graham, Rice, & Reid, 2005).

For scientific and practical purposes, it is notable that mapped channels and adjacent floodplains include both qualitative (individual forms) and quantitative characteristics (e.g. mean grain-size of bed sediments or gravel bars). However, resulting maps often lack information on temporal variations of observed parameters (e.g. development of bars, activity of sediment...

CONTACT Jan Miklín jan.miklin@osu.cz Department of Physical Geography and Geocology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava, Czech Republic

Supplemental data for this article can be accessed at https://doi.org/10.1080/17445647.2017.1355275

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of Journal of Maps

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
inputs) or in-channel processes (e.g. channel reaches with prevailing erosion or sediment deposition). Therefore, such maps usually represent a static ‘snapshot’ of the fluvial landscape at a particular time, which does not correspond to the general perception of fluvial systems provided by geomorphologists. Complex fluvial geomorphological maps displaying both forms and processes are quite rare. In order to add process-based characteristics into these ‘snapshots’, stream channels are sometimes schematised into several individual maps or longitudinal profiles showing the same channel reach from different perspectives. For example, Hooke (2003) conceptualised coarse sediment connectivity in a channel reach into individual maps displaying (i) individual sediment sources (yet not distinguishing their supply potential), (ii) present stream bed grain-size characteristics, (iii) the function of the channel reach (the balance between deposition and erosion), (iv) an interpretation part showing relations between sediment supply, sediment transport and its storage and finally (v) a system map producing connectivity of sediments and the presence of barriers for sediment transport. Similarly, Gália and Škarpich (2016) separately illustrated (i) bed grain-size characteristics, (ii) present function of a channel reach and (iii) stream transport capacity via calculated unit stream power.

Detailed geomorphological maps are an important and standard part of many scientific papers. However, the approaches of authors in cartography vary and there is nothing like standardised symbology, although some symbols often look similar as they proceed from standardised symbology related to general geomorphology proposed by Demek and Embleton (1972), for example, symbols for gully/gorge or landslide used by Harvey (2001) and Hooke (2003). There were some attempts to digitise Demek and Embleton (1972) symbology both for ArcGIS (Létal & Voženilek, 2002) and Microstation (Kusendová, 2000) software. However, these symbols are rather suitable for maps at smaller scales (i.e. Karampoglidas, Benito-Calvo, & Pérez-Gonzáles, 2015; Piacentini, Urbano, Sciarra, Schipani, & Miccadei, 2016) but not for detailed fluvial-geomorphological mapping and/or general geomorphological maps of larger areas (Fonseca, Zezere, & Neves, 2014; Gessert, 2016; Ondicol, 2009). Symbols in detailed maps accompanying fluvial-geomorphological papers differ, for example, in the level of symbolisation/graphicness, from nearly artistic approaches, in some cases even without a legend (Dietrich et al., 2006 or Hassan et al., 2008), to more symbolised forms (Malik & Matyja, 2008; Owczarek, 2008; Ruiz-Villanueva et al., 2010). For complete fluvial-geomorphological characterisation of a mapped area, a series of several maps with a different focus is sometimes used rather than one complex map (Hooke, 2003; Wheaton et al., 2015), although the possibility to use colours in maps facilitates the creation of more complex, yet still uncluttered maps (Poeppl, Keesstrab, & Hein, 2015; Ruiz-Villanueva et al., 2010). Other possibilities of geovisualisation in fluvial-geomorphological mapping can be pseudo-3D visualisation (used both to explain studied problems and processes [Ruiz-Villanueva et al., 2010] or to characterise the study area [Poeppl et al., 2015]), or annotated photographs (Wheaton et al., 2015; Wistuba & Sady, 2011).

The aims of the study are (i) to demonstrate complex fluvial-geomorphological mapping of small stream channels (i.e. easily wadeable channels during ordinary flow conditions) including both the channel-reach and adjacent floodplain segments and related fluvial processes, and (ii) to propose and create universal map symbology for such a purpose. Having used the proposed symbology, the resulting maps provide spatial information on presented in-channel and floodplain forms, prevailing channel processes, median grain-size populations of bed sediments and bars, the character of lateral sediment supply and flow hydraulics, and also the variety of human interventions in the channel. Three morphologically different channel reaches from the temperate climate environment were selected as map examples: (i) a stepped-bed close-to-nature channel in a highly confined mountain valley, (ii) a pool-riffle channel in a semi-confined valley affected by historical mining and (iii) a heavily human-impacted mountain channel with check-dams in poor hydromorphological conditions.

2. Methods

2.1. Building the symbology

The list of symbolised features, divided into hierarchical groups, was created according to standard classifications of channel and floodplain units and other features of wadeable streams (e.g. Halwas & Church, 2002; Jones, Brewer, Johnstone, & Macklin, 2007; Montgomery & Buffington, 1998; Wheaton et al., 2015) and based on practical field observations and mapping results. The symbology comprises TrueType font file and ArcGIS Style file, which is a commonly used approach when building symbology for ESRI ArcGIS software (Létal & Voženilek, 2002; Robinson et al., 2013; Zhang & Qi, 2008). However, despite significant improvements in cartographic possibilities of ArcGIS Desktop in the last years (Eicher & Briat, 2005; Hardy & Kressmann, 2005), some limitations still exist. Therefore, the final form of the symbology is a compromise between the cartographic ideal, possibilities of used software and easy usage not requiring exigent manual readjustment. Since the font includes basic symbols (both final and sub-elementary parts used further in combinations), these are further used in
ArcGIS Style file in various combinations, colours and geometries (point, line, areal). It is thus necessary to have both font installed and Style file loaded for the proper use of symbology. We further created a sample geodatabase of a pre-prepared structure (data layers, attribute fields and symbology) for the storage of mapped data.

2.2. Maps: examples from Nízký Jeseník Mts and Moravskoslezské Beskydy Mts, Czechia

Proposed symbology was applied in three detailed fluvial-geomorphological maps covering various geomorphological settings of streams: channel reaches of Bystrý, Lubina and Stará Voda draining the Moravskoslezské Beskydy Mts and the Nízký Jeseník Mts, Czech Republic (Figure 1).

All investigated channel reaches and included forms were topographically mapped by a 50-m tape and laser rangefinder with included clinometer. Median grain-size characteristics of individual channel units were visually estimated using the procedure of Buffington and Montgomery (1999) and characterised by a simplified Wentworth (1922) scale. Prevailing channel processes were assessed by the presence or absence of typical features: dominant erosional processes in the channel were characterised by unstable banks containing exposed tree roots or by exposed bedrock outcrops in the channel bed. A depositional channel reach was identified on the basis of median grain size and widening of the bankfull channel. A channel reach without the dominance of these features was classified as transport-balanced. A bank failure was classified as stabilised if it was covered by vegetation preventing sediment supply during ordinary flow (up to ca. bankfull flow). However, we assumed reactivation of sediment supply from stabilised bank failures during infrequent high-magnitude floods. The bankfull channel manifested itself by typical marks such as inflexion in the bank slope or the presence of riparian vegetation (Navratil, Albert, Hérouin, & Gresillon, 2006). A low flow channel corresponded to our visual observations of wetted perimeter during an ordinary (ca. mean annual) discharge. The zones of relatively fast and slow flow were distinguished for these ordinary flow conditions. Note that the flow velocities can reversely change during floods, especially in the case of pool-riffles, when pools are understood as zones of high velocities and bed erosion during flood events (Lisle, 1986). Each piece of in-stream wood was measured with a tape, while the orientation against the flow direction (intervals of ±22.5°) was noted in the field. In-stream wood was classified as large wood if its diameter exceeded 0.1 m and length 1 m (Wohl et al., 2010). Any human interventions into the streams or floodplains (e.g. constructed roads and their crossing with a stream, bank stabilisations, grade-control structures) were plotted as well; the height of a check-dam and bed sill was measured in the case of the Bystrý Stream.

The first mapped example (Figure 1(a)) represents the stepped-bed headwater channel Lubina in the Moravskoslezské Beskydy Mts (flysch Western Carpathians, Czech Republic). A typical feature of the mapped stream is the alteration of erosional and depositional reaches accompanied by lateral sediment supply from bank failures and frequent bedload transport. Gravel, cobbles and boulders represent grain-size material of the channel bed and deposits. Additional information on the geomorphic processes in this stream could be obtained from Galia and Škarpich (2013).

The second map illustrates the pool-riffle channel Stará Voda in a semi-confined valley (Nízký Jeseník...
Mt's, Eastern Sudetes, Czech Republic) (Figure 1(b)). The valley was affected by the mining of slate slabs during the nineteenth and the first half of the twentieth century and related dumps represented important inputs of coarse sediments into the stream channel. Prevailing channel bed grain-size fractions were usually cobbles and gravel in riffles and fine sediments <2 mm in pools; the locations directly affected by dumps also contain boulder grain-size fractions. For details of the influence of dumps on local gravel-bed streams and a detailed description of the Stará Voda Stream see Galia (2016).

The channelised part of the Bystrý Stream (Figure 1(c)) is displayed in the third map. This stream was affected by extensive reconstruction of check-dams and bank stabilisations after a high-magnitude flood in 1997. The mapped channel reach had originally pool-riffle morphology, which is now transformed into uniform rapid reaches separated by individual check-dams. Effects of such a type of management on bed sediments and channel-reach morphology in this stream is comprehensively described in Galia and Škarpick (2017).

3. Results and discussion

There are 80 symbols in the font file (Figure 2(a)). These are further used in various combinations and defined colours (Figure 2(b)) to create complex symbology saved as ArcGIS Style file with 148 symbols (see an example of selected symbols in Figure 2(c) or a complete legend in the Main map), colours and labels. With some limitations the proposed symbology can also be used for hand-drawn maps during field mapping. The symbols are arranged into hierarchised and numbered groups: (1) Channel system, (2) Hillslope-channel coupling system, (3) Valley floor (floodplain) system, (4) Artificial objects, (5) Crossings and (6) Mapping. Derived from the classification system, each symbol then has its number, used in parentheses in the following text.

First, bankfull channel (1.1.1) is drawn, defined by areal symbol; its texture denotes (1.3) Bed sediment size (six grades of dominant grain-sizes from clay/silt to bedrock, according to the simplified standard Wentworth (1922) scale), while the colour defines (1.2) a dominant process in the channel (erosion, deposition or transport-balanced). Highly desaturated and very light colours were used for these background symbols. Within the bankfull channel, borders for a low flow channel (1.1.2) can be drawn. The border of floodplain (1.1.2) often lies outside the mapped extent. The symbol for thalweg (1.4.4) defines (1.5) Channel-reach morphology according to Montgomery and Buffington (1997) classification of mountain streams with joined cascades and step-pools into one category ‘stepped-bed channel’ after Comiti and Mao (2012). On the line, point symbols for flow directions and zones of fast/slow flow can be placed. Within the channel, (1.6) Channel units (such as steps, riffle or bars) and (1.7) In-stream wood (according to Wohl et al., 2010; Wohl & Cadol, 2011) are mapped. The length and orientation of in-stream wood should be measured in the field. The texture of (1.6.4) a bar symbol is the same as that used for (1.3) bed sediments. In the case of confined and semi-confined valleys, symbols for (2) Hillslope-channel coupling system are used, divided into groups of (2.1) natural forms (such as a gully or a cone) and (2.2) anthropogenic forms. Similarly, for reaches with developed floodplain segments or valley deposits, (3.1) floodplain vegetation and (3.2) formations (such as oxbows or low floodplain...

![Figure 2](https://example.com/figure2.png)

Figure 2. (a) Map of symbols included in TrueType font file; (b) Predefined colours; (c) Examples of basic symbols combined into final symbology.
terraces) are mapped. The symbols for vegetation (distinguishing grassland, shrubs and broad-leaved/coniferous trees) have a different colour for natural/man-influenced ecosystems. Artificial objects can be grouped into Bed stabilisation, Grade-control structures and Embankments (classified according to the used river engineering techniques in European gravel-bed streams). For Grade-control structures, we use different symbols for structures allowing migration of dominant or interested fish species (by the height of a structure or by the presence of a fishpass), and the symbols can be labelled by their height value above the downstream water level or by mean slope for Boulder ramp, respectively. In the group of Crossings, features as ford or bridge are defined. The last group, Mapping, includes symbols for features like triangulation points, points of data sampling or the position of cross-sections. Triangulation points can be labelled with their name, altitude, denivelation or other parameters.

A part of the symbols (e.g. landslide or embankments) was prepared both with point and line/areal geometry, with the usage depending on the scale and/or the size of mapped features. Similarly, some linear features such as gullies and levees can be mapped either as linear features (one line for a feature) or areal features (where the edges of a feature are mapped and symbolised). When drawing the edge lines using asymmetrical symbols, it is necessary to draw the line in the right direction (or change the line direction when drawing in the reverse direction) in order to have hachures oriented down the slope. In some cases, the geometry of a symbol was selected not only according to the character of a feature, but considering the cartographic possibilities of ArcGIS, for example, crossings are created as point symbols. Thus it is necessary to set the size of a symbol to span the whole width of a stream (floodplain).

For the automation of map creation, simplifying the process of map creation and achieving good-looking results, it is useful to utilise some cartographic functions of ArcGIS Desktop software. First, the size and angle of point symbols can be controlled directly by the attribute value for each feature (Layer properties – Symbology – Advanced). Second, with the Align Marker to Stroke or Fill function (available for Cartographic representation symbology only), point symbols can easily be aligned to be perpendicular (e.g. crossing or grade-control structure symbols) or parallel (e.g. embankment symbols) with thalweg or bank lines. Furthermore, all the symbols can be adjusted manually after converting to graphics.

The process of mapping and map creation (using the proposed symbology and procedures) consists of several subsequent steps (Figure 3). After fieldwork, which often combines various mapping methods like hand sketches, surveying and collection of data and/or materials for laboratory analyses (e.g. grain-size analysis), all the data have to be converted into the digital form usable in ArcGIS. A sample geodatabase with a pre-prepared structure (data layers, attribute fields and symbology saved as Cartographic representation rules) is provided for this (Table 1). The usage of particular symbols (and their geometric variants – point, line and areal) depends on mapped features, type of stream, mapping details and scale of the final map. The final step of map production comprises symbolisation, fine adjustment of symbols and the map (e.g. the smoothing of planar lines into curves, size modification, orientation and feature labelling) and the map export or print. The TrueType font file, ArcGIS Style file and sample geodatabase can be downloaded in archive as Supplementary file of the paper.

The above-mentioned files and procedures were used to create three sample maps. Data from the mapping, originally drawn by hand in field, were digitised in ArcGIS software, stored in a geodatabase and symbolised using the proposed symbology and methods with a detailed 1:150 scale, which allows describing the streams and their floodplains in high detail, nearly without generalisation.

4. Conclusion

Wadeable stream channels belong to the most active landforms from the geomorphic perspective. They are
Code	Description										
31110	Grassland, natural	1610	Step	1410	Stream flow direction	1620	Pool	1120	Low discharge	1311	Clay/silt, erosion
31120	Grassland, man influenced	1660	Bedrock step	1420	Zone of fast flow	1630	Riffle	1130	Valley floor/floodplain	1312	Clay/silt, deposition
31210	Shrubs, natural	2111	Gully (line)	1430	Zone of slow flow	2120	Cone	1510	Stepped bed	1313	Clay/silt, transport-balanced
31220	Shrubs, man influenced	2112	Gully (edge)	1610	Step	2150	Rock flow	1520	Plane bed	1321	Sand, erosion
31311	Trees (forest), deciduous, natural	2131	Landslide, active	1660	Bedrock step	2210	Pile	1530	Pool-riffle	1322	Sand, deposition
31312	Trees (forest), deciduous, man influenced	2132	Landslide, stabilized	1710	Large wood	3210	Avulsion channel	1540	Dune-ripple	1323	Sand, transport-balanced
31321	Trees (forest), conifer, natural	2141	Bank failure, active	1720	Log jam	3220	Oxbow	1550	Bedrock ripple	1331	Gravel, erosion
31322	Trees (forest), conifer, man influenced	2142	Bank failure, stabilized	1730	Small wood accumulation	3230	Oxbow lake	1560	Anabranching channel	1332	Gravel, deposition
31331	Trees (forest), mixed, natural	2150	Rock flow	1740	Beaver dam	3240	Backswamp	3210	Avulsion channel	1333	Gravel, transport-balanced
31332	Trees (forest), mixed, man influenced	2221	Earthwork (line)	2110	Gully	3260	Crevase splays	3220	Oxbow	1341	Cobble, erosion
		2222	Earthwork (edge)	2131	Landslide, active	3280	Debris flow deposits	3230	Oxbow lake	1342	Cobble, deposition
		3251	Natural levees (line)	2132	Landslide, stabilized	4350	Scour hole	4400	Rock groyne	1343	Cobble, transport-balanced
		3252	Natural levees (edge)	2141	Bank failure, active					1351	Boulder, erosion
		3270	Floodplain terrace	2142	Bank failure, stabilized					1352	Boulder, deposition
		4101	Artificial levee (line)	2150	Rock flow					1353	Boulder, transport-balanced
		4102	Artificial levee (edge)	2220	Earthwork					1361	Bedrock channel, erosion
		4311	Bed sill	3250	Natural levees					1362	Bedrock channel, deposition
		4312	Bed sill with fishpass	4311	Bed sill					1363	Bedrock channel, transport-balanced
		4321	Check dam	4312	Bed sill with fishpass					1641	Bar, clay/silt
		4322	Check dam with fishpass	4321	Check dam					1642	Bar, sand
		4331	Boulder ramp	4322	Check dam with fishpass					1643	Bar, gravel
		4332	Boulder ramp with fishpass	4331	Boulder ramp					1644	Bar, cobble
		4341	Weir	4332	Boulder ramp with fishpass					1645	Bar, boulder
		4342	Weir with fishpass	4341	Weir					1650	Island
		4510	Willow spilling	4342	Weir with fishpass					1670	Bedrock chute
		4520	Log walling	4510	Willow spilling					4210	Bed stabilisation, concrete
		4530	Fascine	4520	Log walling					4220	Bed stabilisation, stone path
also perceived as potentially hazardous in inhabited areas for their proneness to flash flooding, which is often accompanied by massive transport of sediments and extensive erosion and deposition (Borga, Stoffel, Marchi, Marra, & Jakob, 2014; Jarrett, 1990). The knowledge not exclusively of in-channel and floodplain forms, but also of fluvial processes and related potential morphological changes in channels is necessary for modern river management practices and designs of sustainable river restorations (Dollar, 2002). Therefore, we proposed a complex mapping approach for small wadeable streams on three detailed map examples, which includes both natural and man-made features as well as related processes (i.e. the activity of lateral sediment supply, presence of erosional/depositional tendency in the channel or delineated zones of fast or slow flows). Apart from the complete symbology list, sample maps of three streams parts from the Nizký Jeseník Mts and the Beskydy Mts (Czechia) were provided.

In the paper, we describe the mapping and symbolisation workflow for ESRI ArcGIS software using a combination of TrueType font file, ArcGIS Style file and a sample geodatabase. All the files are available for download (in Supplementary file) and usage. Nevertheless, the proposed symbology and mapping approach are also applicable in another graphic, cartographic or GIS software (with more or less intensive adjustments of the original work). Similarly, if considered to be insufficient for certain mapping purposes or various geomorphological settings, symbols can be added into the symbology system in order to fulfil mapping needs. We believe that the usage of standardised symbology (and cartographic workflow) for detailed fluvial-geomorphological mapping can simplify the process of geodata visualization and sharing.

Software

Font was created in FontForge (version 2016-10-04) software. Symbol style file, sample geodatabase and maps were created using ESRI ArcGIS (version 10.2.1) software. The supplementary file (an illustrated poster with a complete legend and sample maps) was created in Adobe InDesign (CS6 version) software.

Acknowledgement

The authors would like to thank Monika Hradecká for language editing. We also thank to reviewers (Giedrė Becnytė, David Morche and Ellen Wohl) for positive welcome of the proposed symbology system.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The work was supported by the University of Ostrava (Ostravská Univerzita v Ostravě) [grant number SGS05/Pf/2017-2018].

ORCID

Jan Miklín http://orcid.org/0000-0002-0125-2539

References

Borga, M., Stoffel, M., Marchi, L., Marra, F., & Jakob, M. (2014). Hydrogeomorphic response to extreme rainfall in headwater systems: Flash floods and debris flows. *Journal of Hydrology, 518*, 194–205. doi:10.1016/j.jhydrol.2014.05.022

Buffington, J. M., & Montgomery, D. R. (1999). A procedure for classifying textural facies in Gravel-bed rivers. *Water Resources Research, 35*, 1903–1914. doi:10.1029/1999WR900041

Campana, D., Marchese, E., Theule, J. I., & Comiti, F. (2014). Channel degradation and restoration of an Alpine river and related morphological changes. *Geomorphology, 221*, 230–241. doi:10.1016/j.geomorph.2014.06.016

Comiti, F., & Mao, L. (2012). Recent advances in the dynamics of steep channels. In M. Church, P. M. Biron, & A. G. Roy (Eds.), *Gravel-bed rivers VII: Processes, tools, environments* (pp. 353–377). Chichester: Wiley & Sons.

David, G. C. L., Wohl, E., Yochum, S. E., & Bledsoe, B. P. (2010). Controls on at-a-station hydraulic geometry in steep headwater streams, Colorado, USA. *Earth Surface Processes and Landforms, 35*, 1820–1837. doi:10.1002/esp.2023

Demek, J., & Embleton, C. (Eds.). (1972). *Guide to medium-scale geomorphological mapping*. Brno: IGU Commission on geomorphological survey and mapping.

Dietrich, W. E., Nelson, P. A., Yager, E., Venditti, J. G., Lamb, M. P., & Collins, L. (2006). Sediment patches, sediment supply, and channel morphology. In G. Parker & M. H. Garcia (Eds.), *River, coastal, and estuarine morphodynamics*, *Vol.1.* (pp. 79–90). London: Taylor & Francis.

Dollar, E. S. J. (2002). Fluvial geomorphology. *Progress in Physical Geography, 24*, 385–406. doi:10.1177/030913330002400305

Dufour, S., & Piégay, H. (2009). From the myth of a lost paradise o targeted river restoration: Forget natural references and focus on human benefits. *River Research and Applications, 24*, 1–14. doi:10.1002/rra.1239

Eicher, C., & Briat, M. O. (2005). Supporting interactive editing of cartographic representations in GIS software. In *22nd ICA Conference Proceedings*. A Coruña: International Cartographic Association. Retrieved January 6, 2017, from http://icaci.org/files/documents/ICC_proceedings/ICC2005/htm/pdf/oral/TEMA3/Session204/CORY20EICHER.pdf

European Commission. (2000). Directive 2000/60/EC of the European parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. *Official Journal of the European Communities, L327*, 2000, 1–73. Retrieved January 22, 2017, from http://eur-lex.europa.eu/legal-content/En/TXT/?uri=CELEX:32000L0060
Fonseca, A. F., Zêzere, J. L., & Neves, M. (2014). Geomorphology of the Arrábida Chain (Portugal). Journal of Maps, 10, 103–108. doi:10.1080/17445647.2013.859637

Galía, T. (2016). Geomorphic impact of historical slate mining activity on gravel-bed streams. Zeitschrift für Geomorphologie, 60(3), 247–258. doi:10.1127/zfg/2016/0324

Galía, T., & Škarpich, V. (2013). Coarse sediments in a headwater channel as indicators of fluvial and slope-channel coupling: A case study from the Carpathian mountains (Czech republic). Moravian Geographical Reports, 21, 2–12. doi:10.2478/mgr-2013-0012

Galía, T., & Škarpich, V. (2016). Do the coarsest bed fractions and stream power record contemporary trends in steep headwater channels? Geomorphology, 272, 115–126. doi:10.1016/j.geomorph.2015.07.047

Galía, T., & Škarpich, V. (2017). Response of bed sediments on the grade-control structure management of a small piedmont stream. River Research and Applications, 33, 483–494. doi:10.1002/rra.3111

Gessert, A. (2016). Geomorphology of the Slovak Karst (Eastern Part). Journal of Maps, 12, 285–288. doi:10.1080/17445647.2016.1202874

Graham, D. J., Rice, S. P., & Reid, I. (2005). A transferable method for the automated grain sizing of river gravels. Water Resources Research, 41, W07020. doi:10.1029/2004WR003868

Halwas, K. L., & Church, M. (2002). Channel units in small, high gradient streams on Vancouver Island, British Columbia. Geomorphology, 43, 243–256. doi:10.1016/S0169-555X(01)00136-2

Harvey, A. M., & Kressmann, T. (2005). Cartography, Database and GIS: Not Enemies, but Allies!. In 22nd ICA Conference Proceedings. A Coruña: International Cartographic Association. Retrieved January 6, 2017, from http://www.pghardy.net/paul/papers/2005_icc_coruna_hardy_kressmann.pdf

Harvey, A. M. (2001). Coupling between hillslopes and channels in upland fluvial systems: Implications for landscape sensitivity, illustrated from the Howgill Fells, northwest England. Catena, 42, 225–250. doi:10.1016/S0341-8162(00)00139-9

Hassan, M. A., Smith, B. J., Luzi, D. S., Zimmermann, A. E., & Eaton, B. C. (2008). Sediment storage and transport in coarse beds: Scale considerations. In H. Habersack, H. Piégay, & M. Rinaldi (Eds.), Gravel-Bed Rivers VI: From process understanding to river restoration (pp. 473–496). Amsterdam: Elsevier Science.

Hooke, J. (2003). Coarse sediment connectivity in river channel systems: A conceptual framework and methodology. Geomorphology, 56, 79–94. doi:10.1016/S0169-555X(03)00047-3

Jarrett, R. D. (1990). Hydrologic and hydraulic research in mountain rivers. Water Resources Bulletin, 26, 419–429.

Jones, A. F., Brewer, P. A., Johnstone, E., & Macklin, M. G. (2007). High-resolution interpretative geomorphological mapping of river valley environments using airborne LiDAR data. Earth Surf Processes and Landforms, 32, 1574–1592. doi:10.1002/esp.1505

Karamparglidis, T., Benito-Calvo, A., & Pérez-Gonzáles, A. (2015). Geomorphology of the Lozoya river drainage basin area (Community of Madrid, Spanish Central System). Journal of Maps, 11, 342–353. doi:10.1080/17445647.2014.926103

Kusendová, D. (2000). Digitálna legenda pre geomorfologickej mapy [Digital legend for geomorphological maps]. Kartografické listy, 8, 23–32. Retrieved December 15, 2016, from http://gis.fns.uniba.sk/kartografickelisty/archiv/KLB/3/3.pdf

Létal, A., & Voženilek, V. (2002). Legenda podrobných geomorfologických map (digitální formát) [The legend for detailed geomorphological maps: Digital format]. In K. Kirchner & P. Rošťinský (Eds.), Geomorphological proceedings: State of geomorphological research in the year 2002 (pp. 86–88). Brno: Masaryk University and Czech association of Geomorphologists. Retrieved December 15, 2016, from http://www.kge.zcu.cz/geomorf/sbornik/texty1/rLetal.pdf

Lisle, T. E. (1986). Stabilization of a gravel channel by large streamside obstructions and bedrock bends, Jacoby Creek, northwestern California. Geoscientific Maps. 97, 999–1011.

Malik, L., & Matyja, M. (2008). Bank erosion history of a mountain stream determined by means of anatomical changes in exposed tree roots over the last 100 years (Bílá Opava River — Czech Republic). Geomorphology, 98, 126–142. doi:10.1016/j.geomorph.2007.02.030

Montgomery, D. R., & Buffington, J. M. (1997). Channel-reach morphology in mountain drainage basins. Geoscientific Maps. 109, 596–611. doi:10.1130/0016-7606(1997)109<0596:CRMIMD>2.3.CO;2

Montgomery, D. R., & Buffington, J. M. (1998). Channel processes, classification and response. In R. J. Naiman & R. E. Bilby (Eds.), River ecology and management: Lessons from the Pacific coastal ecoregion (pp. 13–42). New York, NY: Springer.

Navratil, O., Albert, M.-B., Hérouin, E., & Gresillon, J.-M. (2006). Determination of bankfull discharge magnitude and frequency: Comparison of methods on 16 gravel-bed river reaches. Earth Surface Processes and Landforms, 31, 1345–1363. doi:10.1002/esp.1337

Newson, M. D., & Sear, D. (1998). The role of geomorphology in monitoring and managing river sediment systems. Water and Environment Journal, 11, 264–270. doi:10.1111/j.1747-6593.1997.tb00127.x

Ondicil, R. P. (2009). Application of an alpine geomorphological mapping system to an Atlantic mountain environment: The Curavacas Massif (Cantabrian Range, Northwest Spain). Journal of Maps, 5, 194–205. doi:10.1113/jom.2009.1065

Owczarek, P. (2008). Hillslope deposits in Gravel-Bed rivers and their effects on the evolution of alluvial channel forms: A case study from the Sudetes and Carpathian Mountains. Geomorphology, 98, 111–125. doi:10.1016/j.geomorph.2007.02.028

Piacentini, T., Urbano, T., Sciarrà, M., Schipani, I., & Miccadi, E. (2016). Geomorphology of the floodplain at the confluence of the Aventino and Sangro rivers (Abruzzo, Central Italy). Journal of Maps, 12, 443–461. doi:10.1080/17445647.2015.1036139

Poeppel, R. E., Keesstrab, S. D., & Hein, T. (2015). The geomorphic legacy of small dams—An Austrian study. Anthropocene, 10, 43–55. doi:10.1016/j.ancene.2015.09.003

Robinson, A. C., Pezanoski, S., Troedson, S., Bianchetti, R., Blanford, J., Stevens, J.,… MacEachren, A. M. (2013). Symbol store: Sharing map symbols for emergency management. Cartography and Geographic Information Science, 40, 415–426. doi:10.1080/15230406.2013.803833
Ruiz-Villanueva, V., Díez-Herrero, A., Stoffel, M., Bollschweiler, M., Bodoque, J. M., & Ballesteros, J. A. (2010). Dendrogeomorphic analysis of flash floods in a small-ungauged mountain catchment (Central Spain). *Geomorphology, 118*, 383–392. doi:10.1016/j.geomorph.2010.02.006

Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. *Journal of Geology, 30*, 377–392.

Wheaton, J. M., Fryirs, K. A., Brierley, G., Bangen, S. A., Bouwes, N., & O’Brienia, G. (2015). Geomorphic mapping and taxonomy of fluvial landforms. *Geomorphology, 248*, 273–295. doi:10.1016/j.geomorph.2015.07.010

Wistuba, M., & Sady, A. (2011). Walachian colonisation on mountain ridge recorded in alluvia of the Škorňanský stream (The Moravskoslezské Beskydy Mts., Western Carpathians, Czech Republic). *Geomorphologia Slovaca et Bohemica*, 11, 18–27. Retrieved December 20, 2016, from http://www.asg.sav.sk/gfsb/v0111/gfsb0110102.pdf

Wohl, E., & Cador, D. (2011). Neighborhood matters: Patterns and controls on wood distribution in old-growth forest streams of the Colorado Front Range. *Geomorphology, 125*, 132–146. doi:10.1016/j.geomorph.2010.09.008

Wohl, E., Cenderelli, D. A., Dwire, K. A., Ryan-Burkett, S. E., Young, M. K., & Fausch, K. D. (2010). Large in-stream wood studies: A call for common metrics. *Earth Surface Processes and Landforms, 35*, 618–625. doi:10.1002/esp.1966

Wolman, M. G. (1954). A method of sampling coarse river-bed material. *Transactions, American Geophysical Union, 35*, 951–956.

Zhang, A., & Qi, Q. (2008). Symbology in the forest fire emergency map. In Ch. Jun (Ed.), *International archives of the photogrammetry, remote sensing and spatial information sciences, Vol. XXXVII, part B8* (pp. 457–461). Beijing: International Society for Photogrammetry and Remote Sensing. Retrieved January 6, 2017, from http://www.isprs.org/proceedings/XXXVII/congress/8_pdf/2_WG-VIII-2/56.pdf