INTRODUCTION

Because of its anatomical complexity, it is generally difficult to safely insert interstitial brachytherapy applicators in the head and neck region. Therefore, brachytherapy is rarely used in the head and neck region except early-stage tongue cancer,\(^1\)\(^2\) or other oral cavity cancers.\(^8\)\(^-\)\(^11\) It is true that intracavitary brachytherapy (ICBT) is used for nasopharyngeal cancer (NPC),\(^12\)\(^-\)\(^15\) because in ICBT, the source is located in the nasopharyngeal cavity; it is usually difficult to deliver adequate dose deeper than 5 mm from the surface of the cavity.

The vast majority of NPC consists of non-keratinizing squamous cell carcinoma (NKSCC) and it is well-known that carcinogenesis of NKSCC is related to Epstein-Barr virus (EBV) infection.\(^16\)\(^-\)\(^17\) While NKSCC responds well to radiation therapy or chemotherapy, keratinizing squamous cell carcinoma (KSCC) respond poorly to such treatments and is associated with worse clinical outcomes.\(^18\)\(^-\)\(^19\)

In our single institutional retrospective study, it was also shown that 3-year locoregional control for patients with KSCC and NKSCC were 25 and 92%, respectively (\(p < 0.001, \text{HR } 16.045 (95\%CI 3.181–80.931)\)).\(^20\)

In this case report, authors successfully applied CT image-guided high-dose-rate interstitial brachytherapy (HDR-ISBT) as a boost for poorly responding NPC with KSCC subtype. Written informed consent was obtained from the patients and this case report was approved by the Institutional Review Board of National Cancer Center Hospital (the approved number is 2017–091) according to the ethical standards laid down in the Declaration of Helsinki.
CLINICAL PRESENTATION

A 76 year-old-female, who had a 7.5 pack-year smoking history, suffered from clinically T3N0M0 keratinizing squamous cell carcinoma of the nasopharynx. While most NPCs develop from the fossa of Rosenmüller or the posterior wall, the main tumour was located in the inferior wall of the nasopharynx (the superior surface of the soft palate) penetrating the soft palate which can be visual per-orally (Figure 1). The tumour extended to the left sidewall of the nasopharynx. Pretreatment MRI pointed out its slight cranial extension into left sphenoid bone (Figure 2), then it was diagnosed as T3. Histopathologic analysis of the pretreatment biopsy specimen showed KSCC subtype with negative for EBER-ISH. p16 status of the tumour was also investigated and it was found to be negative. Serum EBV-DNA was also negative. According to the standard treatment for NPC, concurrent chemoradiation (CCRT) was performed. Radiation therapy was delivered by conventional 2 Gy per fraction with volumetric modulated arc therapy (Figure 3) concurrent with three cycles of tri-weekly cisplatin (80 mg/m²). The tumour response was assessed weekly by physical examination and a flexible laryngofiberscope. Unlike usual NPC with NKSCC subtype, the tumour responded poorly to the CCRT; still a thick tumour could be seen in the inferior wall of the nasopharynx and a hard tumour could still be palpable even after 60 Gy was delivered (Figure 4). At this time, it was anticipated that tumour control could not be obtained only by 70 Gy of external beam radiation therapy. Since the main portion of the tumour was located in the inferior wall of the nasopharynx which consists the superior surface of the soft palate where no dangerous anatomical structures such as internal carotid artery or nerve exist, HDR-ISBT boost was offered to the patient. Because this patient received nutritional support by means of gastrostomy, she only had mild mucositis in the soft palate and it was supposed that she could tolerate additional HDR-ISBT intercalated with the external beam radiation therapy (EBRT). A single fraction of HDR-ISBT boost was inserted after 64 Gy of VMAT and the rest of VMAT were continued from the next day of HDR-ISBT until 70 Gy; therefore, a total of 74 Gy was given in 52 days (7.4 weeks). HDR interstitial needle insertion was performed on the simulation CT table. Under local anaesthesia and sedation, four 5 French ProGuide® sharp plastic needles (Nucletron, an Elekta company, Elekta AB, Stockholm, Sweden) were inserted trans-orally under flexible laryngofiberscope and CT guidance (Figure 5A and B). CTV at the time of HDR-ISBT included inferior and left sidewall of the nasopharynx; because of its difficulty in inserting needles, the sphenoid bone extension was not covered by HDR-ISBT. Dose calculation was performed using Oncentra Brachy v.4.5.1 (Nucletron, an Elekta company, Elekta AB, Stockholm, Sweden)
based on the CT image (image-guided brachytherapy) (Figure 5). Dose calculation was performed so that the 100% prescribed isodose line of 4 Gy covered the CTV while avoiding the hyperdose-sleeve, representing 200% of the prescribed reference dose, as small as possible. Because patterns of failure for NPC with KSCC subtype is generally locoregional, in contrast to NPC with NKSCC whose dominant failure pattern is distant, no adjuvant chemotherapy (the combination of cisplatin and 5-fluorouracil which is given one month after finish of CCRT) was administered to the patient.

MRI taken 2 and 5 months after completion of the combination of VMAT and HDR-ISBT showed marked shrunk of the primary disease with increased apparent diffusion coefficient value in diffusion-weighted imaging, suggesting a decrease in tumour viability (Figure 6).

DISCUSSION

For those NPCs that respond poorly to CCRT, ICBT could be an option for boosting local dose after EBRT.12–14 However, since the source is located in the nasopharyngeal cavity in ICBT, it is generally difficult to deliver an adequate dose deeper than 5 mm from the surface of the cavity; otherwise, a huge dose would be delivered to the surface of the nasopharyngeal mucosa which could result in devastating consequences. In the management of head and neck cancer, ISBT is used with or without a combination of EBRT. The most commonly used site is oral cavity1–3,5–8,10,11 followed by oropharynx.21–24 ISBT is also used in the recurrent cases.25–28 Recently, there are several reports regarding ISBT for NPC.29–32 However, these tumours were located mainly on posterior or lateral part of the nasopharynx. In the current case, because the main tumour was located in the inferior wall...
where no dangerous anatomic structure exists, it was possible to insert interstitial needles without causing any severe complications. A single dose of 4 Gy was selected in the current case, because several guidelines for head and neck brachytherapy recommended a dose per fraction between 2.5 and 6 Gy.33–36 However, optimal dose per fraction for NPC boost HDR-ISBT should be investigated in the following future studies. To the best of our knowledge, this is a first report concerning with HDR-ISBT for inferior wall of the NPC. Co LA et al reported in a systematic review and meta-analysis37 that dose-escalation for NPC patients were only beneficial if tumours were T1-2 and patients were treated by RT alone. However, in this study, ICBT was mostly applied as a modality to deliver additional dose after EBRT; therefore, the benefit of giving additional dose for NPC patients by means of ISBT is unknown and should be investigated in the future studies. The limitation of this case report is that not all pretreatment gross tumour volume (GTV) was encompassed by HDR-ISBT, but only GTV after EBRT was covered. Therefore, further careful follow-up is needed to see the long-term efficacy of boost HDR-ISBT for NPC.

In this case report, a KSCC subtype NPC patient with an additional dose given by means of image-guided HDR-ISBT after EBRT was presented. For persistent tumours against conventional EBRT, it could be an alternative option to give additional dose by HDR-ISBT even in patients with NPC.

Figure 5. (a) Under local anesthesia and sedation, four 5 French ProGuide* sharp plastic needles (Nucletron, an Elekta company, Elekta AB, Stockholm, Sweden) were inserted transorally through the tumour. Depth of the needles was determined by CT image. (b) Isodose distribution of the interstitial implant with the red and blue line representing the 100 and 200% isodose, respectively.

Figure 6. Magnetic resonance image taken 5 months after interstitial brachytherapy. No evident residual tumour was found in the nasopharynx.
LEARNING POINTS
Although intracavitary brachytherapy long has been performed for nasopharyngeal cancer, interstitial brachytherapy is rarely performed for nasopharyngeal cancer. However, if it is possible to insert needles to the residual tumour after external beam radiation therapy, it was shown that interstitial brachytherapy boost could be given even for nasopharyngeal cancer.

ACKNOWLEDGMENT
This study was partially supported by the Japan Agency for Medical Research and Development (AMED, 19ck0106300h0003), the National Cancer Center Research and Development Fund (26-A-18 and 26-A-28).

REFERENCES
1. Bansal A, Ghoshal S, Onam AS, Sharma SC, Dhanireddy B, Kapoor R, et al. High-dose-rate interstitial brachytherapy in early stage oral tongue cancer - 15 year experience from a tertiary care institute. J Contemp Brachytherapy 2016; 8: 56–65. doi: https://doi.org/10.5114/jcb.2016.58082
2. Inoue T, Inoue T, Teshima T, Murayama S, Shimizuuti K, Fuchihata H, et al. Phase III trial of high and low dose rate interstitial radiotherapy for early oral tongue cancer. Int J Radiat Oncol Biol Phys 1996; 36: 1201–4. doi: https://doi.org/10.1016/0360-3016(96)00420-8
3. Shibuya H, Hoshina M, Takeda M, Matsumoto S, Suzuki S, Okada N, et al. Brachytherapy for stage I & II oral tongue cancer: an analysis of past cases focusing on control and complications. Int J Radiat Oncol Biol Phys 1993; 26: 51–8. doi: https://doi.org/10.1016/0360-3016(93)00172-R
4. Takács-Nagy Z, Oberna F, Koltai P, Hitre E, Major T, Fodor J, et al. Long-term outcomes with high-dose-rate brachytherapy for the management of base of tongue cancer. Brachytherapy 2013; 12: 535–41. doi: https://doi.org/10.1016/j.brachy.2013.07.001
5. Yoshida K, Takenaka T, Akiyama H, Yamazaki H, Yoshida M, Masui K, et al. Three-Dimensional image-based high-dose-rate interstitial brachytherapy for mobile tongue cancer. J Radiat Res 2014; 55: 154–61. doi: https://doi.org/10.1093/jrr/rtr079
6. Akiyama H, Major T, Polgár C, Takács-Nagy Z. Dose-volume analysis of target volume and critical structures in computed tomography image-based multichanether high-dose-rate interstitial brachytherapy for head and neck cancer. J Contemp Brachytherapy 2017; 9: 553–60. doi: https://doi.org/10.5114/jcb.2017.72584
7. Yoshida K, Yamazaki H, Kobu T, Akiyama H, Takenaka T, Masui K, et al. Edema worsens target coverage in high-dose-rate interstitial brachytherapy of mobile tongue cancer: a report of two cases. J Contemp Brachytherapy 2017; 9: 66–70. doi: https://doi.org/10.5114/jcb.2017.65163
8. Murakami N, Ueno T, Yatsuoka W, Okamoto H, Tsélis N, Masui K, et al. Dose coverage comparison between “interstitial catheter-only” and “hybrid intracavitary-interstitial brachytherapy” for early stage squamous cell carcinoma of the buccal mucosa. J Contemp Brachytherapy 2018; 10: 486–91. doi: https://doi.org/10.5114/jcb.2018.79471
9. Strnad V. Treatment of oral cavity and oropharyngeal cancer. indications, technical aspects, and results of interstitial brachytherapy. Strahlenther Onkol 2006; 180: 710–7. doi: https://doi.org/10.1007/s00066-009-1196-x
10. Yamazaki H, Yoshida K, Yoshioka Y, Shimizuuti K, Furukawa S, Koizumi M, et al. High dose rate brachytherapy for oral cancer. J Radiat Res 2013; 54: 1–17. doi: https://doi.org/10.1093/jrr/jrr103
11. Yoshimura R-i, Shibuya H, Miura M, Watanabe H, Ayukawa F, Hayashi K, et al. Quality of life of oral cancer patients after low-dose-rate interstitial brachytherapy. Int J Radiat Oncol Biol Phys 2009; 73: 772–8. doi: https://doi.org/10.1016/j.ijrobp.2008.05.001
12. Leung T-W, Tung SY, Wong YY, Sez W-K, Lui CMM, Wong FCS, et al. Nasopharyngeal intracavitary brachytherapy: the controversy of T2b disease. Cancer 2005; 104: 1648–55. doi: https://doi.org/10.1002/cncr.21371
13. Rosenblatt E, Abdel-Wahab M, El-Gantiry M, Elattar I, Bourque JM, Afane MHamid, et al. Brachytherapy boost in loco-regionally advanced nasopharyngeal carcinoma: a prospective randomized trial of the International atomic energy agency. Radiat Oncol 2014; 9: 67. doi: https://doi.org/10.1186/1748-717X-9-67
14. Wu J, Guo Q, Lu J, Zhang C, Zhang X, Pan J, et al. Addition of intracavitary brachytherapy to external beam radiation therapy for T1-T2 nasopharyngeal carcinoma. Brachytherapy 2013; 12: 479–86. doi: https://doi.org/10.1016/j.brachy.2012.10.004
15. Levendag PC, Keskin-Cambay F, de Pan C, Idzes M, Wildeman MA, Noever I, et al. Local control in advanced cancer of the nasopharynx: a boost dose by endocavitary brachytherapy of prognostic significance? Brachytherapy 2013; 12: 84–9. doi: https://doi.org/10.1016/j.brachy.2012.06.001
16. Chan KCA, Woo JKS, King A, Zee BCY, Lam WKJ, Chan SL, et al. Analysis of plasma Epstein-Barr virus DNA to screen for nasopharyngeal cancer. N Engl J Med 2017; 377: 513–22. doi: https://doi.org/10.1056/NEJMoa1701717
17. Kim KY, Lee Q-T, Yon SS, Ng RHW, Chan KCA, Bratman SV, et al. Clinical utility of Epstein-Barr virus DNA testing in the treatment of nasopharyngeal carcinoma patients. Int J Radiat Oncol Biol Phys 2017; 98: 996–1001. doi: https://doi.org/10.1016/j.ijrobp.2017.03.018
18. Ou S-H, Zell JA, Ziogas A, Anton-Culver H. Epidemiology of nasopharyngeal carcinoma in the United States: improved survival of Chinese patients within the keratinizing squamous cell carcinoma histology. Ann Oncol 2007; 18: 29–35. doi: https://doi.org/10.1093/annonc/mdl320
19. Vazquez A, Khan MN, Govindaraj S, Baredes S, Eloy JA. Nasopharyngeal squamous cell carcinoma: a comparative analysis of keratinizing and nonkeratinizing subtypes. Int Forum Allergy Rhinol 2014; 4: 675–83. doi: https://doi.org/10.1002/ialr.21332
20. Murakami N, Mori T, Kubo Y, Yoshimoto S, Ito K, Homma Y, et al. Prognostic impact of immunohistopathologic features in definitive radiation therapy for nasopharyngeal cancer patients. J Radiat Res 2020; 61: 161–8. doi: https://doi.org/10.1093/jrr/rjz071
21. Al-Mamani A, Levendag PC, van Rooij P, Meeruwis CA, Sewnaik A, Teguh DN, et al. Intensity-Modulated radiotherapy followed by a brachytherapy boost for oropharyngeal cancer. Head Neck 2013; 35: 1689–97. doi: https://doi.org/10.1002/hed.23244
22. Perment M, Hofstetter S, Peifert D, Aletti P, Lapreye M, Marchal C, et al. Role of interstitial brachytherapy in oral and oropharyngeal carcinoma: reflection of a series of 1344 patients treated at the time of initial presentation. Otolaryngol Head Neck
Case Report: HDR-Isbt boost for keratinizing type NPC.

head and neck cancer. Radiother Oncol 2011; 98: 57–62. doi: https://doi.org/10.1016/j.radonc.2010.10.025
28. Murakami N, Yoshimoto S, Nakamura S, Uematsu M, Kashihara T, Takahashi K, et al. Per-Oral interstitial brachytherapy catheter insertion for boost in case of recurrent tonsillar carcinoma: dosimetry and clinical outcome. BJR Case Rep 2020; 6: 20190059.
29. Ren Y-F, Gao Y-H, Cao X-P, Ye W-J, Teh BS. 3D-CT implanted interstitial brachytherapy for T2b nasopharyngeal carcinoma. Radiat Oncol 2010; 5: 113. doi: https://doi.org/10.1186/1748-717X-5-113
30. Wan X-B, Jiang R, Xie F-Y, Qi Z-Y, Li A-J, Ye W-J, et al. Endoscope-guided interstitial intensity-modulated brachytherapy and intracavitary brachytherapy as boost radiation for primary early T stage nasopharyngeal carcinoma. PLoS One 2014; 9: e90048. doi: https://doi.org/10.1371/journal.pone.0090048
31. Zhang X, Wu N, Zhao Z, Han D, He M, Yang W, et al. Fibre-Optic endoscope-guided three-dimensional high-dose-rate interstitial brachytherapy for residual nasopharyngeal carcinoma after conventional external beam radiotherapy. J Contemp Brachytherapy 2019; 11: 243–9. doi: https://doi.org/10.5114/jcb.2019.86157
32. Murakami N, Cheng G, Yoshimoto S, Itami J. Image-Guided interstitial brachytherapy boost for nasopharyngeal carcinoma: technical aspects. J Contemp Brachytherapy 2020; 12: 294–302. doi: https://doi.org/10.5114/jcb.2020.96874
33. Kovács G. Modern head and neck brachytherapy: from radiation towards intensity modulated interventional brachytherapy. J Contemp Brachytherapy 2015; 6: 404–16. doi: https://doi.org/10.5114/jcb.2014.47813
34. Kovács G, Martinez-Monge R, Budrukkar A, Guinot JL, Johansson B, Strnad V, et al. GEC-ESTRO ACROP recommendations for head & neck brachytherapy in squamous cell carcinomas: 1st update - Improvement by cross sectional imaging based treatment planning and stepping source technology. Radiother Oncol 2017; 122: 248–54. doi: https://doi.org/10.1016/j.radonc.2016.10.008
35. Mazeron J-J, Ardiet J-M, Haie-Médé C, Kovács G, Levendag P, Peiffert D, et al. GEC-ESTRO recommendations for brachytherapy for head and neck squamous cell carcinomas. Radiother Oncol 2009; 91: 150–6. doi: https://doi.org/10.1016/j.radonc.2009.01.005
36. Nag S, Cano ER, Demanes DJ, Pathawala AA, Vikram B, et al. American Brachytherapy Society The American brachytherapy Society recommendations for high-dose-rate brachytherapy for head-and-neck carcinoma. Int J Radiat Oncol Biol Phys 2001; 50: 1190–8. doi: https://doi.org/10.1016/S0360-3016(01)01567-X
37. Lester Bryan A, Co RAFA JC, Kennetth M, Kelvin Ken L, Yu MA, Mejia WRB. Radiotherapy dose escalation in the primary treatment of nasopharyngeal carcinoma: a systematic review and meta-analysis. Annals of Nasopharynx Cancer 2019; 3: 1–11.