Non-Abelian Gauge Configuration with a Magnetic Field Concentrated at a Point

Minoru HIRAYAMA†, Takeshi HAMADA††, and Masafumi HASEGAWA†

Department of Physics, Toyama University, Toyama 930
†Department of Physics, Kanazawa University, Kanazawa 920-11

Abstract

A specific SU(2) gauge configuration yielding a magnetic field concentrated at a point is investigated. Its relation to the Aharonov-Bohm gauge potential and its cohomological meaning in a three dimensional space are clarified. Quantum mechanics of a spinning particle in such a gauge configuration is briefly discussed.

To be published in Progress of Theoretical Physics Vol. 98, No. 6 (1997)
In a recent paper, two of the present authors and H.-M. Zhang considered static $SU(2)$ gauge configurations of the following type:

$$ A_i(x) \equiv \frac{g}{\hbar c} a_i(x) = \frac{\lambda(r)}{r^2} \epsilon_{ijk} x_j T_k, $$

$$ i = 1, 2, 3, \quad x = r(x_1, x_2, x_3), \quad r = |x|, \quad (1) $$

where $a_i(x), g$ and T_k are the gauge potential, the gauge coupling constant and a representation of the generator of $su(2)$ satisfying

$$ [T_i, T_j] = i \epsilon_{ijk} T_k, $$
$$ \text{tr}(T_i T_j) = \sigma \delta_{ij}, \quad \sigma > 0, \quad (2) $$

respectively. Under the Wu-Yang Ansatz, (1), the field equation is given by2

$$ r^2 \frac{d^2}{dr^2} \lambda(r) = \lambda(r) \{ \lambda(r) - 1 \} \{ \lambda(r) - 2 \}. \quad (3) $$

Obvious solutions of (3) are $\lambda(r) = 0, 1$ and 2. The Yang-Mills action, S, is maximum for $\lambda(r) = 0$ and $\lambda(r) = 2$ with $S = 0$ and minimum for $\lambda(r) = 1$ with $S = -\infty$. The case $\lambda(r) = 0$ is uninteresting. The case $\lambda(r) = 1$ corresponds to the much-discussed point-like $SU(2)$ magnetic monopole which is known as the Wu-Yang monopole.1-3 In this article, we concentrate on the case

$$ \lambda(r) = 2. \quad (4) $$

In this case, the gauge potential can be rewritten as a pure gauge.1

$$ A_i(x) = i U(\hat{x}) \partial_i U^\dagger(\hat{x}), $$
$$ U(\hat{x}) = e^{i \pi \hat{x} \cdot T}, \quad \hat{x} = \frac{x}{r}. \quad (5) $$

It can be seen that $U(\hat{x})$ satisfies $U(\hat{x}) = U^{-1}(\hat{x}) = U^\dagger(\hat{x})$. This configuration is gauge-equivalent to the trivial configuration $A(x) = 0$ in the space $\mathbb{R}^3 \setminus \{0\}$. It is, however, nontrivial in \mathbb{R}^3 including the origin 0. The field strength $F_{ij}(x) = \partial_i A_j(x) - \partial_j A_i(x) - i[A_i(x), A_j(x)]$ is calculated to be

$$ F_{ij}(x) = -4 \delta(r^2) \epsilon_{ijk} T_k. \quad (6) $$

The singularity of $F_{ij}(x)$ at the origin implies the property $\partial_i \partial_j U(\hat{x})|_{x=0} \neq \partial_j \partial_i U(\hat{x})|_{x=0}$, $i \neq j$. To better understand the meaning of the magnetic field $B_i(x) \equiv \frac{1}{2} \epsilon_{ijk} F_{jk}(x) = -4 \delta(r^2) T_i$, which is nonvanishing only at the origin, we temporarily introduce a small scale parameter s and replace the factor r^{-2} in $A_i(x)$ by $(r^2 + s^2)^{-1}$. Then, the field strength $F_{ij}(x)$ becomes $-4s^2(r^2 + s^2)^{-2} \epsilon_{ijk} T_k$. Defining a projection of the magnetic field by $b_i(x) = \text{tr}\{ (\hat{x} \cdot T) B_i(x) \}/\sigma$, we obtain

$$ b(x) = -\text{grad}_x \int \mathbb{R}^3 d^3 x' \frac{\rho(r')}{|x - x'|}, \quad (7) $$

$$ \rho(r') = 4 \pi r'^2 |x - x'|^{-3} \delta(r - |x - x'|), \quad (8) $$
\[\rho(r) = \frac{2s^2(r^2 - s^2)}{\pi r(r^2 + s^2)^3}. \]

(9)

The function \(\rho(r) \) can be interpreted as the density of the projected magnetic charge. The \(\rho(r) \) is positive in the exterior region \(r > s \) and negative in the interior region \(r < s \). The total positive and negative charges in the respective regions are given by \(\int_{r>s} \rho(r)d^3x = -\int_{r<s} \rho(r)d^3x = 1 \). In the limit \(s \to 0 \), the above type of magnetic charge distribution gives rise to the magnetic field of the prescribed property. Through a similar discussion to the above, we find, in contrast with the case of the Wu-Yang monopole,\(^3\) the Bianchi identity

\[\epsilon_{ijk}[D_i, F_{jk}(x)] = 0, \quad D_i = \partial_i - iA_i(x), \]

(10)

is not violated.

The gauge configuration that we are discussing should be compared with Aharonov and Bohm’s one.\(^4\) The Aharonov-Bohm gauge potential, \(A^{AB}(x) \), can be expressed by our \(A(x) \) in the following way. In \(\mathbb{R}^3 \), it is given by

\[
A^{AB}(x) = \frac{\alpha}{x_1^2 + x_2^2} \begin{pmatrix} x_2 \\ -x_1 \\ 0 \end{pmatrix} = \frac{\alpha}{4\sigma} \int_{-\infty}^{\infty} \frac{dZ}{|x-Z|} \text{tr}\{T_3A(x-Z)\},
\]

\(x \in \mathbb{R}^3, \quad \alpha = \text{const.}, \quad Z = \hat{z}(0, 0, Z). \)

(11)

It is a superposition of \(A(x - Z) \) which is singular at the point \(Z \) on the \(x_3 \)-axis. In \(\mathbb{R}^2 \), the \(A^{AB}(x) \) is more simply given by

\[
A_i^{AB}(x) = \frac{\alpha}{x_1^2 + x_2^2} \epsilon_{ij}x_j, \]

\[
= \frac{\alpha}{2\sigma} \text{tr}\{T_3A_i(x)\}|_{x_3=0},
\]

\(\epsilon_{ij} = -\epsilon_{ji}, \quad \epsilon_{12} = 1, \quad x \in \mathbb{R}^2, \quad i = 1, 2. \)

(12)

We next consider a cohomological meaning of the configuration \(A(x), x \in \mathbb{R}^3 \). Denoting the \(p \)th de Rham cohomology group of the space \(X \) by \(H^p(X) \), the existence of the Aharonov-Bohm gauge potential is due to the nontrivial \(H^1(\mathbb{R}^3 \setminus \{0\}) \). On the other hand, we know that, for the space \(M \equiv \mathbb{R}^3 \setminus \{0\} \), \(H^1(M) \) is trivial but \(H^2(M) \) is nontrivial.\(^5\) As an example, we investigate the 2-form \(\omega \) defined by

\[\omega = \text{tr}\{U(\hat{x})A_i(x)A_j(x)\}dx_i \wedge dx_j. \]

(13)

It is straightforward to obtain

\[d\omega = 0, \quad x \in M. \]

(14)

The period of \(\omega \) for a sphere surrounding the origin, however, is proportional to the integral of \(\text{tr}\{\hat{x} \cdot T\}U(\hat{x}) \) on the sphere and does not vanish. We see, through de Rham’s first theorem,\(^5\) that \(\omega \) cannot be given as an exact form. We conclude that \(\omega \) belongs to \(H^2(M) \).
and that any closed 2-form λ on M can be written as $\lambda = d\omega_1 + a\omega$ with an appropriate 1-form ω_1 and a constant a. We thus see that $U(\hat{x})$ and $A(x)$ are convenient quantities to describe $H^2(M)$.

For our $A(x)$, a loop integral $\int_\gamma A(x) \cdot d\mathbf{x}$ for a loop $\gamma \subset M$ is in general nonvanishing. For example, for $\gamma_0 \equiv \{(r\sin \varphi \cos \varphi, r\sin \varphi \sin \varphi, r \cos \theta)|0 \leq \varphi < 2\pi, r, \theta : \text{fixed}\}$, we have $\int_{\gamma_0} A(x) \cdot d\mathbf{x} = -4\pi T_3 \sin^2 \theta$ which is not equal to a multiple of 2π in general. We see, however, that the loop variable $V(\gamma)$ defined by

$$V(\gamma) = Pe^{i\int_\gamma A(x) \cdot d\mathbf{x}}, \quad P: \text{path ordering},$$

is equal to 1:

$$V(\gamma) = 1.$$ (16)

This result is obtained with the help of the non-Abelian Stokes’ theorem, 68

$$V(\gamma) = P\exp \left(i \int_S d\sigma_{ij} u(x) F_{ij}(x) u^\dagger(x) \right),$$

where $P, S, d\sigma_{ij}$ and $u(x)$ are a certain 2-dimensional ordering factor, a surface with $\partial S = \gamma$, a surface element of S and an x-dependent unitary matrix, respectively. By (7) and (17), we easily understand that $V(\gamma) = 1$ if the surface S does not contain the origin. When the origin 0 lies on S, we have $V(\gamma) = \exp[-4\pi i u(0)(\mathbf{n} \cdot \mathbf{T}) u^\dagger(0)]$, where \mathbf{n} is the normal of S at 0. Since all the eigenvalues of $2u(0)(\mathbf{n} \cdot \mathbf{T}) u^\dagger(0)$ are integral, we conclude $V(\gamma) = 1$ in this case, too.

One more interesting property of $A(x)$ is that it yields an angular momentum satisfying a desired algebra. If we define j by

$$j = U(\hat{x}) \left(x \times \frac{1}{i} \mathbf{\nabla} \right) U^\dagger(\hat{x})$$

$$= x \times \frac{1}{i} (\mathbf{\nabla} - iA)$$

$$= \frac{1}{i} x \times \nabla - \frac{2}{r^2} x \times (x \times T),$$

it satisfies the relation $[j_l, j_m] = i\epsilon_{lmn} \{j_n - 4x_n (x \cdot T) \delta(r^2)\}$. Noticing the relation $r^2 \delta(r^2) = 0$, we have

$$[j_l, j_m] = i\epsilon_{lmn} j_n,$$ (19)

even at the origin.

In the above, we have considered a gauge configuration yielding a magnetic field at one point. Of course, any configuration of the form (5) with U singular at a point will exhibit similar properties to (7) and (19). If we consider $A^\nu(x) = iU^\nu(\hat{x}) \{\nabla U^{\nu\dagger}(\hat{x})\}$ with $U^\nu(\hat{x}) = e^{i\nu \hat{x} \cdot T}, 0 \leq \nu < 2\pi$, we are led to $A^\nu(x) = [(\hat{x} \times T)(1 - \cos \nu) - (\hat{x} \times (\hat{x} \times T))] \sin \nu r^{-1}$. In contrast with our $A(x)$, the $A^\nu(x)$, $\nu \neq 0, 1$, does not satisfy the Wu-Yang Ansatz and is not a solution of the field equation. If we do not restrict ourselves to the solutions of the Yang-Mills field equation, we can think of many interesting configurations. For instance, it is clear that the $A_i^{(N)}(x)$ defined by

$$A_i^{(N)}(x) = iU^{(N)} \partial_i U^{(N)\dagger},$$ (20)
\[U^{(N)} = U_1 U_2 \cdots U_N, \quad U_n = \exp \left\{ i \pi \frac{x - r_n}{|x - r_n|} \cdot T \right\}, \]

causes a magnetic field located at the points \(r_1, r_2, \ldots, r_N \). An appropriate limit of the gauge potential of this type yields the Aharonov-Bohm potential as is seen in (11).

We now turn to a brief discussion of quantum mechanics of a spinning particle put in the gauge configuration given by (1) and (4). The Hamiltonian of the system is

\[\mathcal{H} = -\frac{\hbar^2}{2m} \{ \sigma \cdot (\nabla - i A(x)) \}^2 + V(r) \]

\[= -\frac{\hbar^2}{2m} \left\{ (\nabla - i A)^2 + \sigma \cdot B(x) \right\} + V(r), \]

where \(m \) and \(\sigma = (\sigma_1, \sigma_2, \sigma_3) \) denote the mass of the particle and the Pauli matrices, respectively. The potential term \(V(r) \) is assumed to be independent of the spin \(\frac{1}{2} \hbar \sigma \) and the isospin \(T \) and dependent only on \(r \). The nontriviality of this example is manifest in the term \(\sigma \cdot B(x) = -4(\sigma \cdot T)\delta(r^2) \). Since the \(\mathcal{H} \) can be written as

\[\mathcal{H} = U(\hat{x})\mathcal{H}_0 U^\dagger(\hat{x}), \]

\[\mathcal{H}_0 = -\frac{\hbar^2}{2m} (\sigma \cdot \nabla)^2 + V(r), \]

its eigenfunction \(\psi(x) \) takes the form

\[\psi(x) = U(\hat{x}) \varphi(x) v. \]

In (24), \(\varphi(x) \) is an eigenfunction of \(-\frac{\hbar^2}{2m} \nabla^2 + V(r) \) and is regular at the origin, \(v \) describing the spin and the isospin degrees of freedom. Note that \(\varphi(x) v \) satisfies the relation \((\sigma \cdot \nabla)^2 \{ \varphi(x) v \} = \{ \nabla^2 \varphi(x) \} v \). The angular momentum \(\hbar J \) of the system is given by

\[\hbar J = \hbar \left(j + \frac{\sigma}{2} \right) \]

with \(j \) defined by (18). The commutativity of \(J \) with \(\mathcal{H} \) is assured not on \(\varphi(x) v \) but on \(\psi(x) \):

\[[\mathcal{H}, J] \psi(x) = 0. \]

If we respect this property, we are forced to make use of \(\psi(x) \) which is not single-valued unless \(\varphi(x) \) vanishes at the origin. \(\text{i} \)From (19) and (25), the components of \(\hbar J \) satisfy the desired algebra of angular momentum. Because of the afore-mentioned property \(\partial_i \partial_j U(\hat{x})|_{x=0} \neq \partial_i \partial_j U(\hat{x})|_{x=0}, \text{ } i \neq j \), we see that the canonical commutation relation \([p_i, p_j] = 0, \text{ } p_i = (\hbar/i)\partial_i \) is violated unless \(\varphi(x) \) vanishes at the origin:

\[[p_i, p_j] \psi(x)|_{x=0} \neq 0 \text{ } (i \neq j) \text{ if } \varphi(0) \neq 0. \]

On the other hand, if the \(\varphi(x) \) with \(\varphi(0) \neq 0 \) is excluded, the completeness of the set \(\{ \psi(x) \} \) and the self-adjointness of \(\mathcal{H} \) will be lost.

In a future communication, we will discuss whether the multi-valuedness of \(\psi(x) \) and the violation of the canonical commutation relation at the origin cause physical effects or not.
References

1) M. Hirayama, H.-M. Zhang and T. Hamada, Prog. Theor. Phys., 97, (1997), 679.
2) A. Actor, Rev. Mod. Phys. 51 (1979), 461.
3) T. T. Wu and C. N. Yang, in Properties of Matter under Unusual Conditions, ed. H. Mark and S. Feshbach (Interscience, New York, 1968).
4) Y. Aharonov and D. Bohm, Phys. Rev. 115, 1959, 485.
5) H. Flanders, Differential Forms with Applications to the Physical Sciences (Academic Press, New York, 1963).
6) N. E. Bralić, Rev. D22, 1980, 3090.
7) Y. Aref’eva, Theor. Math. Phys. 43 (1980), 353.
8) B. Broda, in Advanced Electromagnetism : Foundation, Theory and Applications, ed. T. Barrett and D. Grimes (World Sci. Pub. Co., Singapore, 1995).