Temperature Width and Spin Structure of Superfluid 3He-A_1 in Aerogel

G.A. Baramidze and G.A. Kharadze

Andronikashvili Institute of Physics, Georgian Academy of Sciences
Tamarashvili str. 6, 380077 Tbilisi, Georgia.

March 22, 2022

Abstract

The influence of spin-exchange scattering centers on the triplet Cooper pairing is considered to explore the behavior of superfluid 3He in high porosity aerogel containing 3He atoms localized at the surface of silica strands. The homogeneously located and isotropically scattering system of spin-polarized “impurity” centers is adopted as a simple model to investigate the contribution of spin-exchange scattering channel for quasiparticles to the formation of non-unitary superfluid A_1-phase in aerogel environment. It is demonstrated that an interference between the potential and exchange parts of quasiparticle scattering against spin-polarized “impurity” centers can change considerably the temperature width and the spin structure of A_1-phase in aerogel.

Among recent achievements in physics of superfluid 3He the studies of the properties of this ordered Fermi liquid in presence of quasiparticle scattering medium is of a great importance. This situation is realized for liquid 3He confined to a high porosity aerogel.

The quasiparticle scattering against silica strands forming skeleton of aerogel has a profound influence on the properties of such superfluid as liquid 3He in the millikelvin temperature region. The gross effect of a finite mean free path l of quasiparticles is manifested in a sizable suppression of the transition temperature of an ordered (superfluid) state, as is expected for a phase with an unconventional structure of the order parameter in the momentum space. This behavior of superfluid 3He in aerogel has been observed in a number of experiments using various techniques [1-5]

A more delicate question is about possible rearrangement of the phase diagram of superfluid 3He in presence of quasiparticle scattering medium [1-10]. In bulk superfluid 3He the isotropic B-phase is a favorable one in the sense that in major part of the (P, T) phase diagram (in zero magnetic field) it appears as an equilibrium superfluid state. Only at sufficiently high pressures (above the polycritical value $P_{c0} \simeq 21$ bars) and at not too low temperatures an anisotropic
A-phase is a preferable equilibrium state due to so called strong-coupling effects [11] which take into account the inverse action of the ordering on the Cooper pairing interaction between quasiparticles.

In terms of $\beta_i \ (i = 1, 2, \ldots 5)$ coefficients which appear in the expansion of the free energy of superfluid 3He near the transition to a normal state (at $T_{c0}(p)$) in power series of the order parameter components, the condition of thermodynamical stability of $^3He - A$ is (in what follows $\beta_{ij} = \beta_i + \beta_j + \ldots$)

$$\frac{2\beta_{345}}{3\beta_{13}} < 1.$$ (1)

This inequality is not satisfied in a weak-coupling approximation where

$$-2\beta_{1w} = \beta_{2w} = \beta_{3w} = \beta_{4w} = -\beta_{5w} = \frac{7\zeta(3)}{120} \frac{N_F}{\pi T_{c0}},$$ (2)

and N_F stands for the quasiparticle density of states (DOS) at the Fermi level.

On introducing pressure-dependent strong-coupling corrections δ'_{sc} ($\beta_i = \beta_{iw} + \delta'_{sci}$) it can be shown that criterion of the priority of the A-phase over the B-phase reduces to

$$\delta'_{sc}(P) > 1/4,$$ (3)

where a dimensionless strong-coupling parameter $\delta'_{sc}(P)$ is defined according to an equation

$$\delta'_{sc} = 1 - \frac{\beta_{345}}{2\beta_{13}}.$$ (4)

It should be noted that along with δ'_{sc}, which is useful to describe an interplay between A- and B-phases, some other strong-coupling parameters can be introduced in an appropriate way. On imposing an external magnetic field $^3He-A_1$, characterized by Cooper pairing in a single equal-spin-projection state, is stabilized in the vicinity of T_{c0}. A_1-phase appears as an equilibrium state below $T_{c1} > T_{c0}$ and extends down to $T_{c2} < T_{c0}$. As is well known, the $A_1 - A_2$ splitting asymmetry ratio

$$r = \frac{T_{c1} - T_{c0}}{T_{c0} - T_{c2}} = -\frac{\beta_5}{\beta_{245}}.$$ (5)

In the weak-coupling approximation $r = 1$ so that the critical temperatures T_{c1} and T_{c2} should be positioned symmetrically with respect to T_{c0}. In reality a sizable asymmetry of the $A_1 - A_2$ splitting has been observed experimentally [12,13], which is due to strong-coupling effects. In this case it is convenient to introduce another strong-coupling parameter δ''_{sc} defined by an equation

$$\frac{\beta_5}{\beta_{245}} = 1 + \delta''_{sc}/2 = 1 - \delta''_{sc}/2,$$ (6)

or alternatively as $\delta''_{sc} = -2(1 + 2\beta_5/\beta_{245})$
The phenomenological parameters δ_sc' and δ_sc'' describe the role of the strong-coupling effects relative to a weak-coupling contribution $|\beta_1^{wc}|$. Generally spiking $\delta_\text{sc}' \neq \delta_\text{sc}''$. In a simple (static) paramagnon model [14] $\delta\beta_1^{sc} = \delta\beta_3^{sc} = 0$, $\delta\beta_2^{sc} = -\delta\beta_4^{sc} = -\delta\beta_5^{sc} = \delta\beta_{sc}$ and within this crude approximation $\delta_\text{sc}' = \delta_\text{sc}''$ (here $\delta\beta_{sc}$ describes the contribution to the strong-coupling effects stemming from an attractive interaction between quasiparticles via the exchange of magnetic excitations, the retardation being discarded).

The full temperature width $\Delta T = T_{c1} - T_{c2}$ of the A_1-phase in bulk ^3He is linear in the magnetic field strength (at list up to 10 T [12]) and is proportional to the Ambegaokar-Mermin coefficient η [15]. In bulk ^3He $\eta \neq 0$ due to a small particle-hole asymmetry of DOS near the Fermi level. For ΔT we have

$$\frac{\Delta T}{T_{c0}} = \frac{2\eta h}{1 + \delta_\text{sc}''/2},$$

(7)

where $h = \gamma H/2T_{c0}$.

Now, on addressing the question of how the phase diagram of superfluid ^3He could be modified in aerogel environment, one has to understand in which way the key parameters δ_sc', δ_sc'' and η, introduced above, react to quasiparticle scattering events.

The strong-coupling parameter δ_sc' defines, according to Eq.(3), the region of thermodynamical preference of the A-phase which in bulk superfluid ^3He is attained at $P > P_{c0} \simeq 21$ bars. The recent acoustic studies [4,5] of superfluid ^3He confined to 98% silica aerogel established that in zero magnetic field the B-phase-like superfluid state near $T_s(P)$ is stabilized at $P > P_{c0}$ up to the melting pressure P_m. This observation indicates that scattering of quasiparticles against spatial irregularities of a porous medium promotes the stability of the B-phase at the pressures where in bulk superfluid ^3He the A-phase is an equilibrium ordered state. In terms of the strong-coupling parameter δ_sc' this means that the equality $\delta_\text{sc}' = 1/4$ is not reached at $P < P_m$ in 98% porosity aerogel and the polycritical pressure P_s in such quasiparticle momentum non-conserving environment is pushed to an unobservable region ($P > P_m$).

This conclusion is supported by theoretical investigations based on so-called homogeneous scattering model (HSM) treating the weak-coupling effect [16] and on a simple (static) paramagnon model estimating the strong-coupling contribution [17]. According to Ref.17 in the quasiparticle scattering medium

$$\delta_\text{sc}' = R(w_c)\delta_\text{sc}'0,$$

(8)

where the subscript “0” refers to the corresponding value in bulk superfluid ^3He and the “impurity” renormalization factor

$$R(w_c) = a(w_c) \frac{T_c}{T_{c0}},$$

(9)

with

$$a(w_c) = \frac{\psi^{(1)}(1/2 + w_c)}{\psi^{(1)}(1/2)} - \frac{\psi^{(2)}(1/2)}{\psi^{(2)}(1/2 + w_c)}.$$

(10)
Here $\psi^{(m)}(z)$ is the poly-gamma function of m-th order, $w_c = \Gamma/2\pi T_c$, where the “impurity” scattering rate $\Gamma = v_F/2l$, and the critical temperature T_c of the “dirty” superfluid 3He is found according to the Abrikosov-Gorkov equation

$$\ln \left(\frac{T_c}{T_{c0}} \right) + \psi(1/2 + w_c) - \psi(1/2) = 0. \quad (11)$$

The two co-factors in Eq. (10) have opposite behavior as concerns their dependence on the scattering parameter $w_c: a(w_c)$ is an increasing function of w_c whereas the ratio T_c/T_{c0} decreases with increasing w_c. This competition is in favor of T_c/T_{c0} so that $R(w_c) < 1$ at $w_c \neq 0$ (for $w_c \approx 1$ $R(w_c) = 1 - 2.56w_c$).

As a result strong-coupling parameter δ_{sc}' is suppressed in quasiparticle scattering medium thus opening a way to the appearance of a B-like superfluid state in the pressure region $P > P_{c0}$.

In what follows we concentrate on the $A_1 - A_2$ splitting of superfluid transition in aerogel in presence of an external magnetic field. This effect is characterized by the temperature width of the A_1-phase

$$\Delta T = \frac{\eta}{1 + \delta_{sc}''/2} \gamma H, \quad (12)$$

and by the field-independent splitting asymmetry ratio

$$r = \frac{1 + \delta_{sc}''/2}{1 - \delta_{sc}''/2}. \quad (13)$$

According to an estimate of strong-coupling effects, mentioned above, it is expected that δ_{sc}'' is suppressed in aerogel and $r < r_0$. On the other hand, the A_1-phase width ΔT needs a more careful examination. In bulk 3He the splitting coefficient η_0 stems from a small particle-hole asymmetry of DOS at the Fermi level. In the weak-coupling approximation

$$\eta_0 = \frac{N_F'}{N_F} T_{c0} \ln \left(\frac{2\gamma_E}{\pi} \cdot \frac{\omega_c}{T_{c0}} \right), \quad (14)$$

where N_F' is the derivative of DOS $N(\varepsilon)$ with respect to the quasiparticle excitation energy, γ_E stands for the Euler constant and ω_c is a cut-off parameter.

In aerogel environment η_0 is suppressed because of suppression of the critical temperature, although this is not the only source of modification of the splitting parameter η. Below it will be shown that more generally

$$\eta = \eta_0 T_c/T_{c0} + \delta \eta, \quad (15)$$

where an extra contribution $\delta \eta$ is due to the interference part of the spin-exchange scattering of the quasiparticles against localized 3He “impurity” atoms adsorbed at the surface of silica strands of aerogel and spin-polarized under the action of an externally imposed magnetic field. The presence of such “frozen” layers of 3He atoms covering aerogel silica strands was demonstrated in Ref. 18.
The spin-triplet Cooper pair condensate is described by an order parameter $\vec{\Delta}(\hat{k})$ transforming as a vector on the rotation in spin space. The lowest ordered contribution in $\vec{\Delta}$ to the free energy is proportional to $\langle |\vec{\Delta}|^2 \rangle$ with brackets $\langle \ldots \rangle$ showing an average across the Fermi surface (over the direction of an unity vector \hat{k} in the momentum space). In presence of a magnetic field $\vec{H} = H\hat{h}$ a new term $i\langle \vec{\Delta} \times \vec{\Delta}^* \rangle \vec{H}$ appears which contributes to the free energy of superfluid 3He, as long as the particle-hole asymmetry (proportional to η_0) is taken into account.

In case of spin-triplet Cooper pairing in presence of spin-polarized scattering centers one more contribution to the free energy emerges proportional to $i\langle \vec{\Delta} \times \vec{\Delta}^* \rangle \vec{S}_T$, where \vec{S}_T is the thermal average of the localized “impurity” spins [19]. In order to establish explicitly the quasiparticle spin-exchange scattering contribution $\delta \eta$ (as defined by Eq. (15)) we adopt the Abrikosov-Gorkov HSM which mimics the effects of incoherent scattering of quasiparticles against a system of localized 3He atoms adsorbed at the surface of aerogel silica strands. The details about HSM of aerogel could be found in Ref. 20. In the AG HSM the “impurity” scattering interaction is described by 2×2 matrix

$$\vec{U} = u_0\vec{I} + u_\text{ex}\vec{\alpha}\vec{S}. \quad (16)$$

The rate of potential (spin-independent) part of scattering is characterized by

$$\Gamma = n_\text{imp} \sin^2 \frac{\delta_0}{\pi N_F} = \frac{v_F}{2l}, \quad \tan \delta_0 = -\pi N_F u_0, \quad (17)$$

where n_imp stands for an effective concentration of paramagnetic centers and δ_0 is an s-wave phase shift. In presence of a magnetic field interference part of the scattering becomes operative as long as the polarization of the impurity spins $\vec{S}_T \neq 0$. As a result the interference scattering rate

$$\Gamma_{\text{int}} = 2\pi N_F n_\text{imp} u_\text{ex} u_0 \quad (18)$$

appears in the field-dependent contribution to the free energy:

$$\delta F_{\text{SH}} = -N_F \left[\left(\frac{N_F'}{N_F} \right) \left(\frac{\gamma H}{2} \right) a_1(T_c) i\langle \vec{\Delta} \times \vec{\Delta}^* \rangle \vec{h} - \Gamma_{\text{int}} \cos^4 \delta_0 a_2(T_c) i\langle \vec{\Delta} \times \vec{\Delta}^* \rangle \vec{S}_T \right], \quad (19)$$

where

$$a_1 = 2\pi T \sum_{\omega > 0} \frac{1}{\omega + \Gamma} = \ln \left(\frac{2\gamma_F \omega_c}{\pi T} \right) + \psi(1/2) - \psi(1/2 + \Gamma/2\pi T), \quad (20)$$

$$a_2 = 2\pi T \sum_{\omega > 0} \frac{1}{(\omega + \Gamma)^2} = \frac{1}{2\pi T} \psi^{(1)}(1/2 + \Gamma/2\pi T) \quad (21)$$

Noticing that $\Gamma_{\text{int}} \cos^2 \delta_0 = (v_F/l)(u_\text{ex}/u_0)$ and adopting a free impurity spin model with $S_T = \frac{1}{2} \tanh (\gamma H/2T)$, it is concluded that quadratic-in-$\vec{\Delta}$ contribution to the free energy of superfluid 3He in aerogel reads as
\[F_S^{(2)} = N_F \left(t(\bar{\Delta})^2 - \eta h i(\bar{\Delta} \times \bar{\Delta}^\ast) \bar{h} \right), \]
(22)

where \(t = (T - T_c)/T_c \), \(h = \gamma H/2T_c \) and the \(A_1 - A_2 \) splitting parameter \(\eta \) is given by Eq. (15) with the spin-exchange scattering contribution

\[\delta \eta(h) = -\frac{\pi^2 \xi_{c0} T_{c0} u_{ex} \tanh(h)}{8 \frac{l}{T_c} u_0 h}. \]
(23)

Here the coherence length \(\xi_{c0} = v_F/(2\pi T_{c0}) \) and it is assumed that \(\cos^2 \delta_0 \to 1/2 \) and \(\Gamma \ll 2\pi T_c \).

According to Eq. (12) the temperature width of the \(A_1 \)-phase in aerogel (relative to the bulk value) reads as

\[\frac{\Delta T}{(\Delta T)_0} = \frac{\eta 1 + \delta_{sc0}/2}{\eta_0 1 + \delta_{sc}/2}, \]
(24)

As is evident from Eq. 15, in case of \(\delta \eta < 0 \) (realized at \(u_{ex}/u_0 > 0 \)) the \(A_1 - A_2 \) splitting parameter \(\eta \) may attain negative values (see below). The measurement of temperature width \(\Delta T \) do not contain information about the sign of \(\eta \) which can be fixed only in the experiments where the spin structure (\(\uparrow \uparrow \) or \(\downarrow \downarrow \)) of the \(A_1 \)-phase Cooper condensate is established (see Ref.21 and citations therein). That is why \(|\eta| \) stands in Eq. 24.

The spin-exchange scattering part \(\delta \eta \) can be contribute appreciably to \(\Delta T \) at

\[\frac{\xi_{c0}}{l} \frac{|u_{ex}|}{u_0} \frac{\tanh(h)}{h} \sim \left(\frac{T_c}{T_{c0}} \right)^2 \eta_0. \]
(25)

In the low magnetic field case \((\gamma H \ll T_c) \) this condition is fulfilled at \(l = 100 \) nm, \(P = 15 \) bars and \(|u_{ex}/u_0| = 0.1 \).

According to existing experimental data (see Ref. 5) the \(A_1 \)-phase temperature width \(\Delta T \) is suppressed in aerogel environment. Adopting a view that this happens due to the presence of quasiparticle spin-exchange scattering contribution \(\delta \eta < 0 \), we concentrate on this possibility. Figs.1 and 2 show the dependence \(\eta = \eta(h) \) for the pressures \(P = 21 \) bars and \(P = 15 \) bars. It is seen that the spin-polarized scattering centers \(^3He \) atoms adsorbed at the surface of aerogel silica strands) suppress considerably the \(A_1 - A_2 \) splitting parameter \(\eta \) in relatively low magnetic fields (Fig. 1). In the limit of high magnetic fields \(\eta \) tends to its asymptotic value \((T_c/T_{c0})\eta_0 \).

The spin-exchange scattering contribution \(\delta \eta \) can even change sign in low fields.
Figure 1: η as a function of h, for $P = 21$ bar

Figure 2: η as a function of h, for $P = 15$ bar
In Figs. 3 and 4 the values of
\[\frac{\Delta T}{H} = \frac{|\eta|}{1 + \delta_{sc}^\eta/2 k_B} = \frac{1.56|\eta|}{1 + \delta_{sc}^\eta/2} \frac{mK}{T} \] (26)
are plotted as a function of \(h \) for the pressures \(P = 21 \) bars and \(P = 15 \) bars.
A rather peculiar situation is expected for \(P = 15 \) bars at \(u_{ex}/u_0 = 0.2 \) and \(l = 200 \) nm (Fig. 4). At low magnetic fields (where \(\eta < 0 \)) the \(A_1 \)-phase with a reversed spin configuration \(\downarrow \downarrow \) of Cooper pairs is stabilized. On the increase of the magnetic field the temperature width of this superfluid state decreases and vanishes at a field strength for which \(\eta = 0 \) (see Fig. 2). On further increase of the magnetic field the \(A_1 \)-phase reappears, this time in a spin configuration \(\uparrow \uparrow \) (appropriate to bulk \(A_1 \)-phase with \(\eta > 0 \)). The reversing of the Cooper pairs spin configuration from \(\downarrow \downarrow \) to \(\uparrow \uparrow \) is shown in the inset of Fig. 4 at \(u_{ex}/u_0 = 0.2 \) and \(l = 150 \) nm.

In summary, it has been shown that the spin-exchange scattering of quasiparticles against magnetically polarized \(^3 \)He atoms adsorbed at the surface of aerogel silica strands can cause substantial modification of \((P, T, H) \) phase diagram of superfluid \(^3 \)He in the region where non-unitary \(A_1 \)-phase is stabilized by an externally imposed magnetic field. This effect could be manipulated by the variation of the magnetic field strength or by preplating \(^3 \)He in aerogel with some amount of \(^4 \)He atoms which remove paramagnetic scattering centers from silica strands surface.

After having completed this article, we learned from Prof. W.P. Halperin about the Archive preprint (cond-mat/0306099) by J.A. Sauls and P. Sharma on the same subject.
Figure 4: $\Delta T/H$ as a function of h, for $P = 15$ bar

Acknowledgments
The correspondence with Prof. W.P. Halperin is highly appreciated. We are thankful to Irakli Titvinidze for his assistance in numerical constructions. This work was partly supported by the Grant N2.17.02 of Georgian Academy of Sciences.

References
[1] J.V. Porto, J.M. Parpia, Phys. Rev. Lett. 74, 4667 (1995).
[2] D.T. Sprague et al., Phys. Rev. Lett. 75, 661 (1995).
[3] K. Matsumato et al., Phys. Rev. Lett. 79, 253 (1997).
[4] G.Gervais et al., Phys. Rev. Lett. 87, 035701 (2001).
[5] G.Gervais et al., Phys. Rev. B 65, 054528 (2002).
[6] H.Alles et al., Phys. Rev. Lett. 83, 1367 (1999).
[7] B.I. Barker et al., Phys. Rev. Lett. 85, 2148 (2000).
[8] P. Brussaard et al., Phys. Rev. Lett. 86, 4580 (2001).
[9] J.E. Baumgardner et al., submitted to LT23 Proceedings.

[10] V.V. Dmitriev et al., submitted to LT23 Proceedings.

[11] P.W. Anderson, W.F. Brinkman, Phys. Rev. Lett. 30, 1108 (1973).

[12] D.C. Sagan et al., Phys. Rev. Lett. 53, 1939 (1984).

[13] U.E. Israelson et al., Phys. Rev. Lett. 53, 1943 (1984).

[14] A.J. Leggett, Rev. Mod. Phys. 47, 331 (1975)

[15] V. Ambegaokar, N.D. Mermin, Phys. Rev. Lett. 30, 81 (1973).

[16] E.V. Thuneberg et al., Phys. Rev. Lett. 80, 2861 (1998).

[17] G. Baramidze, G. Kharadze, J. Phys.: Condens. Matter 14, 7471 (2002).

[18] D.T. Sprague et al., Phys. Rev. Lett. 77, 4568 (1996).

[19] G. Baramidze, G. Kharadze, Physica B 284-288, 305 (2000).

[20] E.V. Thuneberg, in: “Quasiclassical Methods in Superconductivity and Superfluidity”, ed. D. Rainer and J.A. Sauls, p.53 (Verditz 96)(1998).

[21] R.Ruel, H. Kojima, Phys. Rev. B 28, 6582 (1983).