Author Mentions in Science News Reveal Wide-Spread Ethnic Bias

Hao Peng, Misha Teplitskiy, David Jurgens*

School of Information, University of Michigan
105 S State St, Ann Arbor, MI 48109, USA

*To whom correspondence should be addressed; E-mail: jurgens@umich.edu.

Abstract

Media outlets play a key role in spreading scientific knowledge to the general public and raising the profile of researchers among their peers. Yet, given time and space constraints, not all scholars can receive equal media attention, and journalists’ choices of whom to mention are poorly understood. In this study, we use a comprehensive dataset of 232,524 news stories from 288 U.S.-based outlets covering 100,208 research papers across all sciences to investigate the rates at which scientists of different ethnicities are mentioned by name. We find strong evidence of ethnic biases in author mentions, even after controlling for a wide range of possible confounds. Specifically, authors with non-British-origin names are significantly less likely to be mentioned or quoted than comparable British-origin named authors, even within the stories of a particular news outlet covering a particular scientific venue on a particular research topic. Instead, minority scholars are more likely to have their names substituted with their role at their institution. This ethnic bias is consistent across all types of media outlets, with even larger disparities in General-Interest outlets that tend to publish longer stories and have dedicated editorial teams for accurately reporting science. Our findings reveal that the perceived ethnicity can substantially shape scientists’ media attention, and, by our estimation, this bias has affected thousands of scholars unfairly.

Scientific breakthroughs often attract media attention, which serves as a key mechanism for public dissemination of new knowledge (Scheufele, 2013; Brossard and Scheufele, 2013). Science reporting not only distills research insights but also puts a face on who was responsible for the research. The media coverage can then feed back into researchers’ careers (Cronin and
Besides well-established gender and ethnic disparities in conventional scientific outcomes including funding allocation (Ley and Hamilton, 2008; Ginther et al., 2011; Oliveira et al., 2019; Hoppe et al., 2019), hiring decisions (Xie et al., 2003; Turner et al., 2008; Moss-Racusin et al., 2012; Way et al., 2016), publishing (Ding et al., 2006; West et al., 2013), citations (Larivière et al., 2013; Huang et al., 2020), and monetary or non-monetary rewards (Holden, 2001; Shen, 2013; Xie, 2014), emerging evidence has pointed to demographic disparities in general media coverage (Behm-Morawitz and Ortiz, 2013; Jia et al., 2016; Merullo et al., 2019; Smith, 1997; Devitt, 2002), raising the possibility that some scientists are not receiving their due attribution (Jia et al., 2015; Amberg and Saunders, 2018).

Going unnamed as an author in science reporting not only removes the reputational benefits associated with the report, signalling a person is not worthy of public mention, but also potentially shifts the public’s perception of who is a scientist (Miller et al., 2018). Under-representing certain demographics groups can perpetuate the stereotype that scientists are white males (Turner et al., 2008; Banchefsky et al., 2016), which in turn weakens the pipeline of recruiting and training diverse students into new scientists, exacerbating the current representation issues (Cole, 1979; Reuben et al., 2014; Hill et al., 2018).

Academic careers are characterized by cumulative advantage, where successes compound, amplifying each other and become easier to sustain (Merton, 1968). As a result, the inhibitory biases against minority groups have a cumulative penalty that reduce representation and visibility, and can result in a loss of symbolic capital for advancing one’s career (Leahey, 2007).

Given known institutional and cultural barriers faced by minority scholars during the early stages of research (e.g., gathering resources) and middle stages (e.g., publishing), a sizable gap still remains in our understanding of the latter stages as research disseminates to the public. While it is possible that, once published in the academic literature and covered by the news media, similar contributions receive similar attention regardless of the authors’ perceived identities, a number of mechanisms may produce divergence between contribution and attention in science coverage.

Here, we present the first large-scale and science-wide effort to measure demographic biases
in science news through a computational analysis of 232,524 news stories mentioning 100,208 published scholarly work (Section S1). Specifically, we investigate whether the first author of a scientific paper is mentioned by name in news stories that reference their paper. In multi-author papers, first authors are commonly junior scholars who are directly responsible for the work and stand the most to gain in recognition from being mentioned.

We use mixed-effects regression models to examine and quantify demographic differences in author mentions, while controlling for a broad range of plausible confounding factors. The complexity of our models and the scale of the data enable unusually strict controls, such as measuring differential mentions within a particular news outlet covering a particular academic journal on a particular research topic. These controls help ensure that we are comparing media mentions of researchers doing comparable work.

Furthermore, the richness of the data enables us to delve into the mechanisms causing the disparities, and to refer to them using the stronger language of “bias.” Ethnic and gender biases in mentions may be plausibly caused by a number of mechanisms, involving different actors. First, journalists may not be the relevant actors at all. Some news coverage originates from press releases created by in-house public relation staff at universities to disseminate their researchers’ work. News outlets often reprint these press releases in part or in full, and any biases therein may thus be passed on to the outlets’ audiences. We test this hypothesis by comparing mentions in journalist-written pieces versus press releases, and by whether journalists differentially mention additional information about particular researchers, such as their institutions.

Second, biases may be driven by pragmatic difficulties of interviewing researchers in distant time-zones and possibly with limited English proficiency. Journalists (and/or their editors) may use researchers’ names and institutions to “statistically discriminate” and infer from them scheduling or other difficulties. We test this hypothesis by focusing on a subset of the data where journalists and researchers are located in relatively close geographic proximity (within the U.S.), and by comparing simple mentions of names vs. direct quotes.

Lastly, journalists may have personal animus towards particular ethnic or gender groups or expectations of animus from their audience members to whom they cater. We use “animus”
to refer to direct negative attitudes towards particular demographic groups and/or incorrect or unfounded negative inferences about their English proficiency and other factors that can affect article quality. We test for the possible role of audience by comparing mentions across outlet (and presumably audience) types, and statistically control for English proficiency using ease-of-reading measures on the abstracts of the research papers.

Results

Who Gets Named?

We find strong ethnic bias in mentioning first authors by name in science news reporting scientific papers. This bias is robust to the inclusion of increasingly stringent controls (Model 5 in Table S5). Specifically, compared to British-origin named authors, all minority-ethnicity authors are significantly less likely to receive name attributions in science reporting. Indeed, this bias appears to increase with English-centric assessments of cultural distance, with other European ethnicities penalized the least while Asian and African authors penalized the most.

Surprisingly, we find no gender bias in author mentions. However, when random effects for news outlets and publication venues are not considered, the first author gender variable appears to have a significant effect. As gender representation varies widely across academic disciplines (Xie et al. 2003; Handelsman et al. 2005), this result suggests that gender differences in mention rates are likely to be explained by relative attention rates to publication venues in different fields. This phenomenon is reminiscent of the Simpson’s paradox observed for gender bias in graduate school admissions (Wagner 1982), which, when academic department was controlled for, revealed no gender bias.

To quantify the exact effect of having a name with a perceived demographic on the probability of being mentioned by name in media coverage, we calculated the average marginal effects for the first author ethnicity and gender variable respectively using our finest model.

As shown in Fig. 1, the estimated probability of being mentioned decreases by an absolute 1.0%–6.4% for authors with minority-ethnicity names, compared to their British-origin named counterparts. As the average mention rate is only 36.6% (Section S1), these absolute drops
represent significant disparities: the 6.3% and 6.4% marginal decreases for Chinese and African authors represent a 17.5% relative decrease in media representation. This result reveals that the mainstream U.S. media outlets have profound bias against authors from all minority ethnicities in mentioning them by name in science news: Given the current disparities, we estimate that more than four thousand minority scholars have gone unmentioned in our data alone.

Does Location Matter?

In reporting on research, journalists often directly seek out the authors by phone or email to contextualize and explain their results. If an author is at a non-U.S. institution, a journalist from a U.S.-based outlet could be less likely to reach out due to perceived challenges in time-zone differences or lower expectations of fluency, potentially resulting in a lower rate of being mentioned or quoted. Since non-U.S. institutions typically have more Asian and African authors due to their locations, this mechanism could potentially explain the disparity in being mentioned.

To examine the effect of geographical factors, we measured the bias separately for (i) the
subset of our data where the first author is from U.S.-based institutions, and (ii) that for non-U.S. authors. Compared to U.S.-based authors, international scientists have far lower rates of being mentioned, with coefficients (negatively) decreased by a factor of 2-4 for each ethnicity compared with their domestic counterparts (Table S6). This considerable gap reveals that geographic location is one major issue influencing mention biases in science news. However, international location alone does not explain all disparities in who is mentioned: The average marginal effects shown in Fig. 2 indicate that similar magnitude of mention biases still exist among U.S.-based authors. This comparative result indicates that other factors besides location play a substantial effect in which authors are named.

How Authors Are Referred To?

![Figure 2: U.S.-based authors with minority-ethnicity names are less likely to be mentioned by name (left) or quoted (middle), and are more likely to be substituted by their institution (right). The average marginal effects are estimated based on 169,984 observations where the first author is from U.S.-based institutions. A negative (positive) marginal effect indicates a decrease (increase) in probability compared to authors with Male (for gender) or British-origin (for ethnicity) names. The colors are proportional to the absolute probability changes. Female is colored as blue to reflect its difference from ethnicity identities. The error bars indicate 95% bootstrapped confidence intervals.](image)

Journalists have multiple options in how they incorporate the scientists performing the research. They may go beyond simply naming the scientist and incorporate quotes from them...
about the research; alternatively, they may have the scientist play a minimal agentive role by using references like “researchers from University.” These discourse mechanisms serve to further integrate or distance the scientist from their role in the described research—giving them a name and a voice or removing their individuality.

Our prior result demonstrates that, even within the U.S., African and Asian authors experience substantial under-reporting in being named. As U.S.-based authors may still differ in their perceived fluency in oral English, and also journalists may simply be less willing to contact certain ethnic authors even if they speak fluent English, we hypothesize that authors from privileged demographics will be more likely to receive a quote, whereas those from disadvantaged demographics will be more likely to indirectly mentioned as a role associated with their institutions, rather than explicitly named.

To test these hypotheses we further identified (i) authors who are named as part of quotations (a subset of name mentions), and (ii) authors who get unnamed but their institution is named instead (Section S1). Since fluency is correlated with location, we focused on the U.S. subset and applied the same mixed-effects regression framework to model two dependent variables: (1) whether the first author is quoted, and (2) whether the first author is indirectly mentioned by their institution instead being named or quoted.

The average marginal effects in Fig. 2 reveal that U.S.-based African and Asian authors are less likely to be quoted, and instead are more likely to be substituted by their role within their institutions (See Fig. S3 for results based on our full data). The significant differences in being quoted in U.S. subset indicate that the perceived English fluency may play a major role in name mentions. However, language proficiency is not the only driving mechanism, as a strong bias appears for authors with Indian names, despite English being an official language in India. This, along with the “positive” effect in being substituted by institutions when name is not mentioned for Asian and African authors, suggests that journalist animus also plays a role in author mentions. This is the case especially given that journalists can always contact authors perceived to be less fluent via email to get a quote as a way to bypass potential challenges in oral communications, and that overall journalists are dealing with authors of research papers
written in English, which would potentially signal some English proficiency for all authors.

Note that the result on institution substitution also demonstrates that the mention bias does not result from a potential mechanism where Asian and African authors working on research that is more likely to be used in news stories where there is no need for agency at all (e.g., survey-like stories summarizing lots of recent results that briefly mention research papers on their topic without any form of attribution).

Does It Matter Who Is Reporting?

Understanding whether this ethnic bias is related to journalists’ own demographics is another crucial step towards uncovering its mechanisms, as they are the actors who are directly responsible for writing the stories. First, journalists may differ in their overall tendencies to mention first authors when covering science. Second, there might exist interaction effects between authors and journalists. One intuitive hypothesis, which we call “cultural hierarchy,” is that all journalists, regardless of their gender and ethnicity, prefer to mention Male and British-origin named scholars over minority others. At the same time, journalist may also prefer to mention authors from demographic categories that match their own, which we call “cultural homophily.” (McPherson et al., 2001)

Our model controls for journalists’ demographics and their interactions with that of first authors (Section S1). Due to insufficient instances of identified journalists (Table S3), we report the result based on our finest model trained with the full data. No meaningful ethnic preferences are seen for author-journalist interactions to suggest either cultural hierarchy or cultural homophily hypothesis. However, when dropping controls for outlets (Table S5, Models 3-4), journalists’ ethnicities become significant, suggesting that journalists’ behavior might be explained by variations at the outlet level, i.e., certain news outlets mention authors more or less often and certain groups of journalists are under- or over-represented in those outlets.
Differences Across Outlet Types

Outlets vary in the depth and breadth of their reporting, e.g., Science & Technology outlets write about 650 words per story on average, while General News outlets write about 850 words (Section S1, Fig. S2). These differences suggest potentially important variability in the nature of journalists’ day-to-day work and backgrounds. To explore the discrepancy of bias across different types of outlets in author mentions, we fitted the specification of Model 5 separately for three outlet types in our data and quantified the average marginal effects.

![Figure 3: Probability of being mentioned compared to Male/British-origin named authors](image)

Surprisingly, the ethnic bias remains consistent across all outlet types, as shown in Fig. 3, with authors having non-British-origin names being mentioned less frequently across all three outlet types. Larger disparities are found for ethnic categories that are more distant from British-origin (e.g., Asian and African). However, outlet types vary substantially in the magnitude of their bias: Science & Technology outlets and General News outlets are, on average, three times more biased against non-British-origin named scholars than outlets in Press Releases (6% vs. 2% marginal decrease).
The bias in stories from Press Releases outlets is particularly notable, as stories in these outlets typically reuse content from university press-releases, suggesting that universities’ press offices themselves, while less biased than other outlet types, still prefer to mention scholars with British-origin names. This result is surprising because local press offices are expected to have greater direct familiarity with their researchers, reducing the misuse of stereotypes, and to be more responsible for representing minority researchers equitably.

The largest disparities are seen in General News outlets, e.g., The New York Times and The Washington Post, where again African and Chinese scholars have nearly a 10% absolute drop in representation. General News outlets mention first authors with a 22.1% chance on average (Table S4), so this drop in author coverage nearly halves the perceived role of a large community of scientists. As General News outlets have well trained editorial staff and science journalists dedicated to accurately reporting science and tend to publish longer stories that have room to mention and engage with authors, this result is alarming. Historically, these ethnic minorities have been underrepresented, stereotyped, or even completely avoided in U.S. media (Behm-Morawitz and Ortiz, 2013), which has continued in objective science reporting across all outlet types. The mechanisms behind variations by outlet type deserve further investigation.

Is the Situation Getting More Equitable?

The longitudinally-rich nature of our dataset allows us to examine how author mentions in science news have changed over the last decade. Mention rates are on average decreasing over time, as shown by the coefficient for the mention year scalar variable in Model 5 (Table S5).

To examine the time trends across demographic categories, separate models (Model 5) were trained to quantify the marginal change per year increase for each gender and ethnicity in our data. Note that demographic attributes not under study are still included in each model, e.g., when examining the temporal changes in mention rates for male and female authors, ethnicity is still included as a factor, and vice versa.

As shown in Fig. 4, the mention year has a negative association with author mentions for Male and most ethnicity groups, indicating that most authors are less likely to be mentioned
Figure 4: Average marginal effects on mention probability for a one-unit increase in mention year for authors in each gender (blue) and ethnicity (red) group, revealing that the benefits of prestiged demographics (Male, British-origin) are decreasing over time. However, only small improvements are seen for Chinese and Indian first authors. African is not shown due to insufficient data for fitting a Model 5. Error bars show 95% bootstrapped confidence intervals.

in later years. When compared with the average marginal effects of minority ethnicities on the likelihood of being mentioned (Fig. 1), the larger decreases for ethnic groups such as British-origin and Scandinavian & Germanic indicate that their overall advantages are shrinking.

Indeed, Chinese and Indian authors, two of the most disadvantaged groups in this study, have mention rates that are increasing over time, although more data is needed for precise estimation. However, their estimated rates of increase are relative small, suggesting that ethnic biases for these authors are unlikely to disappear soon without purposeful behavior change. Based on the absolute mention rate disparities between minority and British-origin named authors shown in Fig. 1 and assuming a constant change rate per year for each ethnicity shown in Fig. 4, we estimate that only authors with Romance Language, Chinese, or Indian names will reach parity with their British-origin named colleagues within 5-12 years in their rates of being mentioned; all other ethnicities see their overall mention rates drop similarly to that for British-origin names, indicating the current gap will persist.
Discussion

Our analyses reveal that the attention researchers get in news coverage is strongly associated with their ethnicities. The associations are robust to a variety of plausible confounds, and even appear when controlling for the (1) particular news outlet, (2) particular scientific venue, and (3) particular research topic. Although we cannot claim the reported associations as causal, this unusually strong observational evidence is a “smoking gun” of bias in coverage and deserves attention.

Ethnicity and Gender

Authors with non-British-origin names are mentioned substantially less when their research is discussed. The disparity appears for all non-British-origin names. However, mention rates are especially low for Asian and African names, less pronounced for Indian, Middle Eastern, and Romance Language names, are even less pronounced for Scandinavian & Germanic and Eastern European names. The pattern is suggestive of stronger biases against non-Western ethnicities, but more evidence is needed to explain it. As science becomes more global and is increasingly driven by non-Western ethnicities, the way English-language media responds to non-British-named scholars will only grow in importance.

In contrast to ethnicity, we do not find bias in mentions of female scholars, once research fields are controlled for. One possible reason is that fields vary in their overall level of coverage and in their gender representation (Handelsman et al., 2005). Looking within fields may thus mask or sidestep gender bias that is manifested between them.

Ruling in and out different mechanisms

Our analyses above point to a multi-causal generation of ethnic biases, in which both pragmatic difficulties of interviewing distant researchers and journalists’ personal biases play key roles. In support of the pragmatic difficulties mechanism, we find that biases are substantially smaller when both the journalists and researchers are U.S.-based. Additionally, the largest biases appear in direct quotations, which may be more difficult to acquire from researchers in different time-
zones and who are likely to have non-British-origin names. In these cases, journalists appear to “substitute” the researcher’s institution for a direct quote.

Nevertheless, biases remain even among geographically proximate actors, and journalists’ choices are key. Supportive evidence comes from outlet types: when journalists’ role in the news articles is minimal—when the outlet simply republishes a university press release—the biases are also minimal (however, the disparities for many groups are still statistically distinguishable from 0); when the news stories were written by journalists themselves, the biases are the largest. The data does not allow us to rule out that journalists’ choices reflect personal animus-based biases or the expected biases of their audiences. For example, the biases remain even when controlling for readability of the research abstract, a potential signal of English proficiency that might influence journalists’ decisions (Table SS). Furthermore, the fact that Science & Technology and General News outlets have biases of similar magnitude yet likely differ in their audiences, suggests again the important role played by journalists’ personal biases.

Lastly, we cannot rule out that the biases stem from the academic literature itself, and in particular which author is designated as “corresponding” (our data did not include this designation). Further disentangling these mechanisms is an important avenue for future work.

Limitations

Although the scale and the breadth of our dataset enable the use of unusually fine-grained controls, the analysis is not without limitations. First, the observational nature of the data precludes strong causal statements. Second, some plausible explanatory covariates are unavailable for inclusion, such as which author is designated as corresponding or the number of citations a paper received at the time of being mentioned. However, we anticipate the effect of such covariates to be small given current controls. Fig. SI shows that the majority of papers were mentioned within one year after publication, which limits the citations a paper can accrue in such a short academic time period. Third, the Ethnea classifier is unable to identify African American scholars by name due its definition of ethnicity at the country level. A manual analysis shows that authors with stereotypical African American names are classified as English (British-origin) if
they have common English surnames. However, as a robustness test, we repeated our experiments using an additional ethnicity classification based on coarser-grained U.S. census data (Fig. S3), which is able to identify such authors as Black; the result therein does not show any significant under-representation of Black scholars. Note that African-named authors (based on Ethnea) are not necessarily classified as Black based on the Census data (Table S7-S8). Finally, we note that our data contains too few examples of some ethnicities (e.g., Polynesian and Caribbean) to accurately estimate biases; such ethnicities are regrettably omitted, though we recognize that these groups likely experience bias from their minority status as well.

Conclusions and Implications

Our work shows that science journalism is rife with biases in who receives favorable coverage, with certain ethnic groups receiving much more name mentions and quotations than their peers conducting comparable research. These ethnic biases likely have direct negative consequences for the careers of unmentioned scientists, and skew the public perception of who a scientist is—a key factor in recruiting and training new scientists.

Our findings have two important implications for science policy and science journalism. First, simply identifying large-scale ethnic disparities in science news, of which journalists may themselves have been unaware, can be an agent of change. Second, decision-makers at U.S. research institutions may take ethnic disparities of media attention into account when making hiring or promotion decisions. More importantly, addressing this problem requires more research to investigate the mechanisms leading to it, which we hope this paper helps stimulate.

References

Anurag Ambekar, Charles Ward, Jahangir Mohammed, Swapna Male, and Steven Skiena. Name-ethnicity classification from open sources. In KDD, pages 49–58, 2009.

Amanda Amberg and Darren N Saunders. Cancer in the news: Bias and quality in media reporting of cancer research. bioRxiv, page 388488, 2018.
Pierre Azoulay, Toby Stuart, and Yanbo Wang. Matthew: Effect or fable? *Management Science*, 60(1):92–109, 2013.

Sarah Banchefsky, Jacob Westfall, Bernadette Park, and Charles M Judd. But you don't look like a scientist!: Women scientists with feminine appearance are deemed less likely to be scientists. *Sex Roles*, 2016.

Elizabeth Behm-Morawitz and Michelle Ortiz. Race, ethnicity, and the media. *Oxford Handbook of Media Psychology*, pages 252–266, 2013.

Deborah Blum and et al. *A field guide for science writers*. Oxford University Press, 2006.

Dominique Brossard and Dietram A Scheufele. Science, new media, and the public. *Science*, 339(6115), 2013.

Clifford C Clogg, Eva Petkova, and Adamantios Haritou. Statistical methods for comparing regression coefficients between models. *American Journal of Sociology*, 100(5):1261–1293, 1995.

Jonathan R Cole. *Fair science: Women in the scientific community*. Free Press, 1979.

Blaise Cronin and Cassidy R Sugimoto. *Beyond bibliometrics: Harnessing multidimensional indicators of scholarly impact*. MIT Press, 2014.

James Devitt. Framing gender on the campaign trail: Female gubernatorial candidates and the press. *Journalism & Mass Communication Quarterly*, 79(2):445–463, 2002.

Waverly W Ding, Fiona Murray, and Toby E Stuart. Gender differences in patenting in the academic life sciences. *Science*, 313(5787):665–667, 2006.

Donna K Ginther, Walter T Schaffer, Joshua Schnell, Beth Masimore, Faye Liu, Laurel L Haak, and Raynard Kington. Race, ethnicity, and NIH research awards. *Science*, 333(6045), 2011.

Mott Greene. The demise of the lone author. *Nature*, 450(7173):1165, 2007.
Roger Guimera, Brian Uzzi, Jarrett Spiro, and Luis A Nunes Amaral. Team assembly mechanisms determine collaboration network structure and team performance. *Science*, 308(5722):697–702, 2005.

Jo Handelsman, Nancy Cantor, Molly Carnes, Denice Denton, Eve Fine, Barbara Grosz, Virginia Hinshaw, Cora Marrett, Sue Rosser, Donna Shalala, et al. More women in science. *Science*, 309(5738):1190–1191, 2005.

Erin Hengel. Publishing while female. are women held to higher standards? evidence from peer review. *Cambridge Working Papers in Economics 1753*, 2017.

Patricia Wonch Hill, Julia McQuillan, Amy N Spiegel, and Judy Diamond. Discovery orientation, cognitive schemas, and disparities in science identity in early adolescence. *Sociological Perspectives*, 2018.

Constance Holden. General contentment masks gender gap in first aaas salary and job survey. *Science*, 294(5541):396–411, 2001.

Travis A Hoppe, Aviva Litovitz, Kristine A Willis, Rebecca A Meseroll, Matthew J Perkins, B Ian Hutchins, Alison F Davis, Michael S Lauer, Hannah A Valantine, James M Anderson, et al. Topic choice contributes to the lower rate of nih awards to african-american/black scientists. *Science Advances*, 5(10):eaaw7238, 2019.

Junming Huang, Alexander J Gates, Roberta Sinatra, and Albert-László Barabási. Historical comparison of gender inequality in scientific careers across countries and disciplines. *PNAS*, 117(9):4609–4616, 2020.

Sen Jia, Thomas Lansdall-Welfare, and Nello Cristianini. Measuring gender bias in news images. In *Proceedings of the 24th International Conference on World Wide Web*, pages 893–898. ACM, 2015.

Sen Jia, Thomas Lansdall-Welfare, Saatviga Sudhahar, Cynthia Carter, and Nello Cristianini. Women are seen more than heard in online newspapers. *PLOS ONE*, 11(2):e0148434, 2016.
Simon M Laham, Peter Koval, and Adam L Alter. The name-pronunciation effect: Why people like mr. smith more than mr. colquhoun. *Journal of Experimental Social Psychology*, 48(3): 752–756, 2012.

Vincent Larivièrère, Chaoqun Ni, Yves Gingras, Blaise Cronin, and Cassidy R Sugimoto. Bibliometrics: Global gender disparities in science. *Nature News*, 504(7479):211, 2013.

Erin Leahey. Not by productivity alone: How visibility and specialization contribute to academic earnings. *American Sociological Review*, 72(4):533–561, 2007.

Timothy J Ley and Barton H Hamilton. The gender gap in nih grant applications. *Science*, 322 (5907), 2008.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social networks. *Annual Review of Sociology*, 27(1):415–444, 2001.

Robert K Merton. The matthew effect in science: The reward and communication systems of science are considered. *Science*, 159(3810):56–63, 1968.

Jack Merullo, Luke Yeh, Abram Handler, II Grissom, Brendan O’Connor, Mohit Iyyer, et al. Investigating sports commentator bias within a large corpus of american football broadcasts. In *EMNLP*, 2019.

David I Miller, Kyle M Nolla, Alice H Eagly, and David H Uttal. The development of children’s gender-science stereotypes: a meta-analysis of 5 decades of us draw-a-scientist studies. *Child Development*, 2018.

Staša Milojević. Principles of scientific research team formation and evolution. *PNAS*, 2014.

Corinne A Moss-Racusin, John F Dovidio, Victoria L Brescoll, Mark J Graham, and Jo Handelsman. Science facultys subtle gender biases favor male students. *PNAS*, 109(41):16474–16479, 2012.
Diego FM Oliveira, Yifang Ma, Teresa K Woodruff, and Brian Uzzi. Comparison of national institutes of health grant amounts to first-time male and female principal investigators. *JAMA*, 321(9):898–900, 2019.

Ernesto Reuben, Paola Sapienza, and Luigi Zingales. How stereotypes impair women’s careers in science. *PNAS*, 111(12):4403–4408, 2014.

Soo Young Rieh and Nicholas J Belkin. Understanding judgment of information quality and cognitive authority in the www. In *Proceedings of the 61st Annual Meeting of the American Society for Information Science*, volume 35, pages 279–289, 1998.

Dietram A Scheufele. Communicating science in social settings. *PNAS*, 110:14040–14047, 2013.

Helen Shen. Inequality quantified: Mind the gender gap. *Nature News*, 495(7439):22, 2013.

Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-june Paul Hsu, and Kuansan Wang. An overview of microsoft academic service (mas) and applications. In *WWW*, 2015.

Kevin B Smith. When all’s fair: Signs of parity in media coverage of female candidates. *Political Communication*, 14(1):71–82, 1997.

Hyunjin Song and Norbert Schwarz. If it’s difficult to pronounce, it must be risky: Fluency, familiarity, and risk perception. *Psychological Science*, 20(2):135–138, 2009.

Gaurav Sood and Suriyan Laohaprapanon. Predicting race and ethnicity from the sequence of characters in a name. *arXiv:1805.02109*, 2018.

S Shyam Sundar. Effect of source attribution on perception of online news stories. *Journalism & Mass Communication Quarterly*, 75(1):55–68, 1998.

Andrew Tomkins, Min Zhang, and William D Heavlin. Reviewer bias in single-versus double-blind peer review. *PNAS*, 114(48):12708–12713, 2017.
Pucktada Treeratpituk and C Lee Giles. Name-ethnicity classification and ethnicity-sensitive name matching. In Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

Caroline Sotello Viernes Turner, Juan Carlos González, and J Luke Wood. Faculty of color in academe: What 20 years of literature tells us. Journal of Diversity in Higher Education, 1(3):139, 2008.

Clifford H Wagner. Simpson’s paradox in real life. The American Statistician, 36(1):46–48, 1982.

Kuansan Wang, Zhihong Shen, Chi-Yuan Huang, Chieh-Han Wu, Darrin Eide, Yuxiao Dong, Junjie Qian, Anshul Kanakia, Alvin Chen, and Richard Rogahn. A review of microsoft academic services for science of science studies. Frontiers in Big Data, 2:45, 2019.

Samuel F Way, Daniel B Larremore, and Aaron Clauset. Gender, productivity, and prestige in computer science faculty hiring networks. In WWW, pages 1169–1179, 2016.

Jevin D West, Jennifer Jacquet, Molly M King, Shelley J Correll, and Carl T Bergstrom. The role of gender in scholarly authorship. PLOS ONE, 8(7):e66212, 2013.

Yu Xie. undemocracy: inequalities in science. Science, 344(6186):809–810, 2014.

Yue Xie, Kimberlee A Shauman, and Kimberlee A Shauman. Women in science: Career processes and outcomes. Harvard University Press, 2003.
Supplemental Material

S1 Materials and Methods

To test for and quantify gender and ethnic bias across media outlets, we constructed a massive dataset by combining news media reports with metadata for the scientific papers they cover, and then inferring demographics of the papers’ authors.

We focused on mentions of the first authors for two reasons: (i) the first author position is more likely to be occupied by early career researchers, and as a result, media coverage may be more consequential for their careers; (ii) science journalism guidelines highlight the first author as the one who has likely contributed most to the work (Blum and et al., 2006) and therefore is a natural person to mention. Papers in a few research fields that commonly use the alphabetic-based authorship contributions are also included since journalists may be unfamiliar with this norm.

S1.1 News Stories Mentioning Research Papers

The dataset of news stories mentioning scientific papers was collected from Altmetric.com (accessed on Oct 8, 2019), which tracks a variety of sources for mentions of research papers, including coverage from over 2,000 news outlets around the world. To control for differences in the frequency of scientific reporting and potential confounds from variations in journalistic practices across different countries, the list of news outlets was curated to 423 U.S.-based news media outlets, with each having at least 1,000 mentions in the Altmetric database. Location data for each outlet is provided by Altmetric. This exclusion criterion ensures that the dataset has sufficient volume to estimate outlet-level biases, while still retaining sufficient diversity in outlet types, stories, and the scientific articles they cover. This initial dataset consists of 2.4M mentions of 521K papers by 1.7M news articles before 2019-10-06. Each mention in the Altmetric data has associated metadata that allows us to retrieve the original citing news story as well as the DOI for the paper itself.
S1.2 Scraping News Content and Identifying Journalists

Due to access and permission limitations when retrieving news stories, 135 outlets were excluded due to insufficient volume (27 outlets denied our access entirely; 65 outlets had less than 100 urls crawled; 43 outlets had at least 100 urls crawled, but only with non-news content such as subscription ads). For the remaining 288 outlets, 48.6% of the stories were successfully retrieved. The stories were then cleaned to remove all html tags and unrelated content such as advertisements. Stories with less than 100 words were removed (0.7%) as a manual inspected showed the vast majority of these do not contain the complete content of the story. This process results in 568,785 downloaded stories mentioning 290,469 papers from the 288 outlets.

In order to control for the effects of journalists’ ethnicity and gender (cf. Section S1.3), we used the newspaper Python package (https://github.com/codelucas/newspaper) to extract the journalists’ names from the retrieved html news content. Since not all stories in each outlet contain the journalist information and the newspaper package does not work perfectly for every story that has journalist information, we focused on the top 100 outlets (ranked by the story count). With manual inspection, we verified that this package can consistently and reliably identify journalist names for 41 of the top 100 outlets. We excluded extracted names with words signaling institutions and organizations (such as “University”, “Hospital”, “World”, “Arxiv”, “Team”, “Staff”, and “Editors”). We also cleaned names by removing prefix words, such as “PhD.”, “M.D.”, and “Dr.”. We eventually obtained the journalist names in 100,163 news stories for 41 outlets (17.5%).

S1.3 Retrieving Paper Metadata

The Altmetric database does not contain author information and therefore an additional dataset is needed to identify the authors for mentioned papers. We used the Microsoft Academic Graph (MAG) snapshot data (accessed on June 01, 2019) to retrieve information for each paper based on its DOI [Sinha et al., 2015]. Not all papers with a DOI in the Altmetric database are indexed in the MAG. We were ultimately able to retrieve 269,509 papers from MAG based on DOIs (matching based on lower-cased strings). MAG also provides rich metadata for papers, includ-
ing author names, author rank, author affiliation rank, publication year, publication venue, the paper abstract, and paper topical keywords. As all of this information will be used in our regression models (cf. Section S1.8), we excluded papers with missing metadata and two papers that list organizations as first authors, leaving us with 100,208 papers.

S1.4 Inferring Author and Journalist Gender and Ethnicity

We used Ethnea to infer the gender and ethnicity for authors. The library makes its prediction based on the nearest-neighbor matches on authors’ first and last names using a ground-truth database of scholars’ country of origin, which offers superior performance over alternative approaches (Ambekar et al., 2009; Treeratpituk and Giles, 2012).

Author names in the MAG have varying amounts of completeness. While most have the first name and surname, special care is taken for three cases: (1) If the name has a single word (e.g., Curie), the ethnicity and the gender are both set to Unknown, as Ethnea requires at least an initial. Single-word name cases occurred for seven authors total. (2) If the name has an initial and surname (e.g., M. Curie), we directly feed it into the API, which provides an ethnicity inference but returns Unknown for gender due to the inherent ambiguity. (3) If the name has at three or more words, we take the first word as the given name and the last word as the surname. However, if the first word is an initial and the second word is not an initial, we take the second word as the given name (e.g., M. Salomea Curie would be Salomea Curie) to improve prediction accuracy and retrieve a gender inference.

While Ethnea is trained with scholar names, we also applied it to predict the gender and ethnicity for journalists (cf. Section S3 for robustness check).

Ethnea assigns fine-grained ethnic categories based on nationality. Here, we follow their same term of ethnicity, recognizing that while ethnicity and nationality are closely related, the two are not synonymous (discussed in the main text). To test for macro-level trends around larger ethnic categories and to ensure sufficient samples to estimate the effects, we group the 24 observed ethnicities into 9 higher-level categories based on linguistic families and cultural distance (Table S1).
Table S1: 24 individual ethnicities are grouped into the 9 broad ethnic categories.

Note that due to sample size and our hypotheses, African, Chinese, Indian, and English (renamed as “British-origin”) are kept as separate high-level categories. Caribbean and Polynesian are excluded due to less than 50 mentions in total. Examples of names classified into each ethnicity are provided in Table S9. Ethnea returns binary gender categories: Female and Male, though we recognize that researchers may identify with genders outside of these two categories. For both gender and ethnicity separately, some names are classified as “Unknown” if no discernable signal is found for the respective attribute by Ethnea.

S1.5 Final Dataset and Statistics

The final dataset consists of 232,524 news stories referencing 100,208 research papers. As some stories mentioned more than one paper and some papers were mentioned in more than one story, we have 285,708 total observations to test whether a paper’s first author is mentioned in a story.

Figs. S1a-b show the distribution of papers and news stories over time and attention per paper. News story data is left censored and primarily includes stories written after 2010. Censoring can be explained by the fact that Altmetric.com was only launched in 2012, limiting the collection of earlier news. As shown in Fig. S1c, news stories can mention papers that were published several decades before, highlighting the potential lasting value of scientific work. However, the majority of papers are mentioned within the same year or just a few years after publication. Table S2 shows the mention counts for authors in each broad ethnicity group, and
Figure S1:

a, The number of news stories and research papers in our mention date over time.
b, The distribution of the number of news mentions per paper.
c, The distribution of the *year gap* between paper publication date and news story mention date for all 285,708 story-paper mention pairs in the final dataset.

Table S3 shows the mention counts by journalist ethnicity.

Authors Broad Ethnic Category	# Papers	# Mentions	# Mentions Per Paper
British-origin	41,446	12,189	2.94
Scandinavian & Germanic	14,982	41,982	2.80
Romance Language	14,982	41,156	2.75
Chinese	9,262	25,968	2.80
Middle Eastern	5,291	15,267	2.89
Eastern European	4,313	12,222	2.83
Indian	4327	12,576	2.91
non-Chinese East Asian	4,408	11,254	2.55
African	682	1902	2.79
Unknown Ethnicity	515	1,490	2.89
Total	100,208	285,708	2.85

Table S2: The number of mentioned papers (unique ones), the total number of story-paper mention pairs, and the average number of mentions per paper for authors in each of the 9 high-level ethnicity groups.

S1.6 News Outlets Categorization

To estimate differences across outlets, we grouped 288 news outlets into three categories according to their news report publishing mechanisms. The three categories are: (1) Press Releases,
Table S3: The number of story-paper mention pairs by journalists in each of the 9 high-level ethnicity groups.

(2) Science & Technology, and (3) General News. The categorization is based on manual inspections of three random stories for each outlet (Appendix Table S10 shows the full list).

The Press Releases category is unique since many outlets in this category commonly—if not exclusively—republish university press-releases as stories, making them reasonable proxies for estimating bias from a university’s own press office. The Science & Technology category consists of magazines that primarily focus on reporting science, such as “MIT Technology Review” and “Scientific American.” These outlets typically construct a large scientific narrative referencing several papers in their stories. The General News category includes mainstream news media such as “The New York Times” and “CNN.com” that publish stories in a wide variety of topics. They also have well-trained editorial staff and science journalists who are focused on accurately reporting science.

Table S4 shows the paper-story mention pairs for three types of outlets. The average number of words per story for each outlet type is shown in Fig. S2.
Table S4: The number of outlets for three outlet types, their number of story-paper mentions, and the percentage of mentions that have named the first authors. The full list of 288 outlets are available in Appendix Table S10.

Outlet Type	# Outlets	Example Outlet	# Mentions	Perc. Aut. Ment.
Press Releases	18	EurekAlert!	81,486	44.9%
Science & Technology	79	MIT Technology Rev.	69,966	51.8%
General News	171	The New York Times	125,241	22.1%

Figure S2: The average story length for three types of outlets. Error bars show 95% confidence intervals.

S1.7 Check Author Attributions in Science News

S1.7.1 Author Name Mentions

We normalized both the news content and the author names to ensure that this computational approach works for names with diacritics. For each story-paper mention pair, each author’s last name is searched for using a regular expression with word boundaries around the name, requiring that the name’s initial letter be capitalized. While the chance exists that this process may introduce false positives for authors with common words as last names (e.g., “White”), such cases are rare because (i) few authors in our dataset have common English words as their last names, and (ii) these words rarely appear at the beginning of a sentence in the story when they would be capitalized. However, a particular exception is for two common Chinese last names “He” and “She,” which can appear as third person pronouns at the start of sentences. We thus imposed additional constraints for these two names such that they must be immediately preceded with one of the following titles to be considered as a name mention: “Professor”,

26
“Prof.”, “Doctor”, “Dr.”, “Mr.”, “Miss”, “Ms.”, ‘Mrs.”. Ultimately, first authors were found in 104,569 of the 285,708 story-paper mention pairs (36.6%).

S1.7.2 Author-Quote Detection

Authors can be mentioned by name in different forms, including quotation (e.g., “‘We are getting close to the truth.’ said Dr. Xu”), paraphrasing (e.g., “Timnit says she is confident, however, that the process will soon be perfected.”), and simple passing (e.g., “A recent research conducted by Dr. Jha found that drinking coffee has no harmful effects on mental health.”).

We used a rule based matching method to detect explicit quotes for each story-paper pair. We first parsed our news corpus using spacy (https://spacy.io/). We identified 18 verbs that were commonly used to integrate quoted materials in news stories, from the most 50 frequently used verbs in our news corpus, including “describe”, “explain”, “say”, “tell”, “note”, “add”, “acknowledge”, “offer”, “point”, “caution”, “advise”, “emphasize”, “see”, “suggest”, “comment”, “continue”, “confirm”, “accord”. A sentence is determined to contain a quote from the first author if the following two conditions are met: (i) both the quotation mark and the author’s last name appear in the sentence, and (ii) any of the 18 quote-signaling verbs (or their verb tenses) appear with five tokens before or after the author’s last name. A manual inspection of 100 extracted quotes revealed no false quote attributes. This conservative method only gives an underestimate of the quote rate, as it may not be able to detect every quote due to unusual writing styles or article formatting. So the benefit of English-named scholars in getting a quote (Fig. 2 in the main text) may be even higher.

S1.7.3 Institution Mentions

We checked institution mentions based on exact string matching with the reported institution name for the first author in the MAG, i.e., for each story-paper pair, we examined whether the first author’s full institution name appeared in the news story. Similar to quote detection, this method may not be able to identify every instance of institution mentions due noise in the MAG or the story using slightly different nomenclature such as institutions’ abbreviation. However, a full list of alternate names for each institution is not available to us, we thus used
this conservative method. For this reason, minority scholars’ the trend in being substituted by
institutions (Fig. 2 in the main text) is likely an underestimation.

S1.8 Regression Models

We adopted a logistic regression framework to examine the demographic bias in author men-
tions in science reporting. Many factors are known to influence name mentions that could
confound the analysis of ethnicity and gender, such as author reputation, institutional prestige
and location, publication topics and venues, or outlets and journalist demographics.

Here, we provide details of these factors and present a series of five regression models
that build upon one another by adding more rigorous control variables at each step. In our
regression framework, each story-paper mention pair is an observation, with the dependent
variable indicating whether the first author of the paper is mentioned or not in the story. We
designed a mixed-effects model with five groups of variables: (1) first author demographics
(gender and ethnicity); (2) paper author controls, including prestige factors, last name factors,
and other authors; (3) paper and story content, including temporal factors, paper readability,
story length, number of papers mentioned per story, and journalist demographics; (4) fixed-
effects for paper domains and topics; (5) random effects for outlets, publication venues, and
popular last authors. The increasing level of model complexity allows us to test the robustness
of the effects of ethnicity and gender, and also to examine potential factors at play in science
coverage. Table S5 shows the step-wise regression results.

Model 1: Naive Bias

The first model directly encodes our two variables of focus, gender and ethnicity, as the sole
categorical factors of the regression model. Here and throughout the study, we treat the ref-
ence coding for ethnicity as British-origin and for gender as Male. While overly simplistic
in its modeling assumptions, Model 1 nevertheless tests for systematic differences for whether
authors of a particular demographic are mentioned less frequently and serves as a baseline for
layering on controls to explain such bias.
Model 2: Paper Author Controls

Many author-level attributes other than demographics could influence journalistic perceptions on authors and the coverage of them. Model 2 introduces 20 additional factors for controlling for features of the paper’s authors.

Prestige Factors. The reputation of the first author may also influence the chance of being named. High-status actors and institutions tend to receive preferential treatment within science (Merton, 1968; Azoulay et al., 2013; Tomkins et al., 2017), and we hypothesize that these prestige-based disparities may carry over to media coverage as well. To account for prestige effects, we include the author rank and institution rank provided by the MAG (Wang et al., 2019). This ranking estimates the relative importance of authors and institutions using paper-level features derived from a heterogeneous citation network; while similar to h-index, the method has been shown to produce more fine-grained and robust measurements of impact and prestige. Institution and author ranks are not necessarily directly related, as institutions may be home to authors of varying ranks (e.g., early- or late-career faculty) and the same author may appear with different affiliations on separate papers due to a career move. Note that for rank values, negative-valued coefficients in the regression models would indicate that higher-ranked individuals and those from higher-ranked institutions are more likely to be mentioned.

We also add a variable indicating the location of the first author’s institution with three categories: (1) domestic, (2) international, (3) unknown. This variable controls for the geographical factor that may influence journalists’ willingness to contact by phone or video chat service and therefore influence whether they mention the author. We infer the country of origin for institutions based on their latitude and longitude provided in the MAG.

Last Name Factors. People are known to have a preference for both familiar and more easily-pronounceable names (Song and Schwarz, 2009; Laham et al., 2012), and this preference could potentially bias which author a journalist mentions. Therefore, we introduce two factors as proxies: (1) the number of characters in the last name as a proxy for pronounceability, and (2) the log-normalized count of the last name per 100K Americans from the 2018 census data. As journalists are drawn from U.S.-based news sources, the latter reflects potential familiarity.
Other Authors. Scientific knowledge is increasingly discovered by large teams, as tackling complex problems often require the collaboration between experts with diverse sets of specialization (Guimera et al., 2005; Greene 2007; Milojević 2014). On these multi-author projects, the last author is typically the senior author responsible for directing the project—a trend that is known in science journalism guidelines when determining whom to interview (Blum and et al., 2006). The last author could be more likely to be mentioned in press coverage, which could potentially reduce the chance for the first author. Therefore, we control for whether the last author is mentioned in the news article using a binary factor. As the demographics of the last author may influence whom a journalist decides to mention, we control for the ethnicity and gender of the last author, using *British-origin* and *Male* as the reference category respectively. Note that some papers are monographs with no last author. To control for these cases, we include a binary factor *Solo* which is set to 1 for monographs, at which point all factors related to the last author (gender, ethnicity, and is-mentioned) are set to 0.

When journalists examine a paper’s author list, the team size may influence their understanding of the distribution of credits among authors, potentially reducing the chance of any author being mentioned for papers with many authors. We thus include a factor for the number of authors.

Model 3: Paper and Story Content

Besides author-level attributes, the content of the paper and story, and journalist demographics also can play a role in affecting author mentions. We thus control for the following factors in Model 3.

Year of News Story (Mention Year). Bias in science coverage may have temporal variations due to unpredictable factors that are directly or indirectly related to research. For instance, the available funding resources can affect the number of research outputs in a year, which would in turn influence the amount of time and space journalists devote to scientists in news articles. We thus control for the year of the news story, i.e., the mention year of the paper. We treat it as a scalar variable (zero-centered).

Year Gap between Story and Paper. News stories often reference older scientific papers in
the narrative, as shown in Fig. S1c. For older papers, at the time of a recent story publication, the original authors may be unable to be reached or the story may be framed differently from recent science that is considered “fresh.” Indeed, citing timely scientific evidence in a news report can increase credibility perceptions of a story (Sundar 1998; Rieh and Belkin 1998). Therefore we include a factor that quantifies the year difference between the mention year and the publication year of the mentioned paper.

Number of papers mentioned in a story. A story can mention several papers to help frame and construct its scientific narrative, and potentially increase its news credibility perception. However, the more papers being referenced in a story may reduce the amount of space and attention allocated to each paper by journalists, and therefore may decrease the chance of its authors being mentioned. We thus control for the number of mentioned papers in a story.

News Story Length. Longer articles provide more space in depicting stories about the science being covered, we thus control for the length of each story, measured as the total number of words.

Paper Readability. Given the tight timelines under which journalists work, quickly identifying and understanding insights is likely critical to what is said about a paper. A paper’s readability may thus influence whether a journalist feels the need to reach out to the author, with more readable papers requiring less contact. Readability, in turn, may also be tied to author’s demographics like gender (Hengel 2017), making it important to take readability into account. Due to licensing restrictions, the full text of the majority of papers is unavailable freely; therefore we compute readability over the paper abstract using three factors: (1) the Flesch-Kincaid readability score, which estimates the grade-level needed to understand the passage; (2) the number of sentences per paragraph, which is a proxy for information content and density; and (3) the type-token ratio, which is a measure of lexical variety. Another reason we focus particularly on the abstract is that journalists may not read the entire paper but very likely read the abstract.

Journalist Demographics. It is ultimately the journalist’s decision to mention authors when writing science reports. Motivated by the commonly observed homophily principle in social
networks (McPherson et al., 2001), we hypothesize that the mentioning behavior in science reporting is associated with homophilous effects by ethnicity and gender. To model such effects, we include the journalists’ demographics and their interactions with first authors’ gender and ethnicity.

Due to insufficient instances of journalists identified in news stories (cf. Section S1.2: Table S3), we further coarsen the 9 broad ethnicity categories into 4 groups: (1) Asian (Chinese, Indian, and non-Chinese East Asian), (2) British-origin, (3) European (Eastern European, Romance Language, and Scandinavian & Germanic), and (4) Other Unknown (Middle Eastern, African, and Unknown).

Model 4: Paper Domains and Topics

Some scientific domains and topics may be inherently more news-worthy than others. Furthermore, journalists’ academic backgrounds may be unequally distributed across scientific fields, resulting in different propensities to reach out to authors. Therefore, in Model 4, we include factors to capture the domain of a paper using metadata from the MAG, which includes a large volume of keywords (665K) at different levels of specificity. A paper can have multiple keywords, with each having an associated confidence score between 0 and 1. To capture high-level topical and methodological differences, we restrict our focus to the most-common 533 keywords that occur in at least 500 papers in our dataset. Each keyword is used as an independent variable in the regression, whose value is the keyword’s confidence score for the paper.

Model 5: Outlets, Venues, and Famous Research Labs

News outlets and publication venues both reflect extra sources of variability in the regression models. Individual news outlets may follow different standards of practice in how they describe science, creating a separate source of variability in who is mentioned. Publication venues each come with different levels of impact and topical focus that potentially affect the depth of journalistic focus on papers published in them. Additionally, famous research labs managed by senior researchers may be more likely to receive media attention and name attribution as a benefit of their visibility gained by previous research outputs. Such popularity can be approximated
by famous last authors based on their number of mentioned papers in our data. To accurately model these sources of variations, we treat outlets, venues, and top 100 last authors as *random effects* in regression Model 5. This mixed-effect regression model implicitly captures a robust set of factors involved in science reporting such as the tendency of specific journals to be mentioned more frequently (e.g., *Nature*, *Science*, or *JAMA*), the focus of news outlets on specific topics covered by different journals, and the attention benefits for authors working with famous research labs.

S2 Regression Results

S2.1 Coefficients for Five Models in Author Mentions

The coefficients for five regression models are shown in Table S5. For space, all variables in Model 5, including the paper keywords and author-journalist interaction terms, are shown in Appendix Table S11.

S2.2 Influence of Control Variables

Although our focus is on ethnicity and gender, we find that many controls are also strongly associated with author mention rates. Examining the influence of these factors can lead to a better understanding of the mechanisms at play in science reporting. Below we interpret their effects based on Model 5 (Table S5) along three themes: (1) prestige related inequality, (2) impact of co-authorship, and (3) story content effects.

Scholars who have a high professional rank or are affiliated with prestigious institutions receive outsized attention in science news. This result suggests that the benefits of status, the so-called “Matthew Effect” ([Merton, 1968](#)), persist even after publication.

Although having more authors has a weak negative effect on the first author being mentioned, if the last author is mentioned, the first author is substantially more likely to be mentioned as well, suggesting that many stories tend to only engage with a few authors per referenced paper. Surprisingly, the demographics of last authors also play a weak role in first author
mentions, with slightly negative effects for last authors with Eastern European, Middle Eastern, and Chinese names.

Solo-authored papers have been decreasing over time and are associated with lower impact on average (Greene 2007; Milojević 2014). However, our results highlight an underappreciated benefit—conditional on a paper being referenced in the news, a solo author is significantly more likely to be mentioned compared to the first author of a multi-author paper. Although seemingly counter to previous studies, this result has a natural explanation—there is only one author to mention if need be.

The coefficients for story features point to the multifaceted nature of science reporting. Although the volume of science reporting is increasing over time (Fig. S1a), journalists tend to mention authors less frequently in later years. At the same time, while older papers are still discussed in the media (Fig. S1c), journalists are less likely to mention authors of these studies as often. When more papers are referenced in a story, their first authors are less likely to be mentioned. We hypothesize that such stories are often citing multiple scientific papers to construct a large narrative and thus those papers are only mentioned in passing.

S2.3 U.S. vs. non-U.S. Institutions in Author Mentions

When fitting a model for the U.S. subset (or non-U.S. subset), we omitted the location variable introduced in Section S1.8 (Model 2). The coefficients for gender and ethnicity in two models are shown in Table S6, which reveal that scholars from non-U.S. institutions are much less likely to be mentioned by U.S. media than their counterparts from U.S.-based institutions, with four categories reaching statistical significance, including Romance Language, Scandinavian & Germanic, Chinese, and Middle Eastern.

S2.4 Who is Quoted or Institutionally Substituted?

The three subplots in Fig. S3 show the average marginal effects for minority gender and ethnicity authors in being mentioned by name, quoted, or substituted by institution when author name is not mentioned, respectively. Note that each model is fitted with our full data.
Figure S3: Authors with minority-ethnicity names are less likely to be mentioned by name (left) or quoted (middle), and are more likely to be substituted by their institution (right). The average marginal effects are estimated based on 285,708 observations in our data. A negative (positive) marginal effect indicates a decrease (increase) in probability compared to authors with Male (for gender) or British-origin (for ethnicity) names. The colors are proportional to the absolute probability changes. *Female* is colored as blue to reflect its difference from ethnicity identities. The error bars indicate 95% bootstrapped confidence intervals.

S3 Additional Ethnicity Coding

While *Ethnea* provides a large set of nationality-based ethnicity codings specifically tailored to scientists, the library could potentially introduce artifacts in its labeling. As a robustness check, we re-coded the ethnicities of all authors and journalists using two separate sources to test whether the observed bias persists. Specifically, we used the *ethnicolr* library (https://pypi.org/project/ethnicolr/) to code ethnicity using either data derived from (i) the nationalities listed in Wikipedia infoboxes to infer nationality-based ethnicity, or (ii) self-reported ethnicity data associated with last names from the 2010 U.S. census. While these two new sources of data use different definitions and granularities of ethnicity from *Ethnea*, they nonetheless provide approximately-similar categories to *Ethnea* that enable us to validate our results.

Ethnicity based on Wikipedia Data. We used the Wikipedia infobox data to code author and journalist ethnicity based on the first name and the last name ([Ambekar et al., 2009; Sood and Laohaprapanon, 2018](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844167/)). To make the results comparable to that based on *Ethnea* (Section S1.4), we placed 13 individual ethnicities defined in the Wikipedia data into 8 broad
categories:

- (1) African (*Africans*),
- (2) British-origin (*British*),
- (3) East Asian (*EastAsian, Japanese*),
- (4) Eastern European (*EastEuropean*),
- (5) Indian (*IndianSubContinent*),
- (6) Middle Eastern (*Muslim, Jewish*)
- (7) Roman Language (*French, Hispanic, Italian*),
- (8) Scandinavian & Germanic (*Germanic, Nordic*).

Note that Chinese ethnicity (defined in *Ethnea*) is by default incorporated into the *EastAsian* ethnicity in the Wikipedia data. We further placed the 8 categories into 4 groups for journalist ethnicity due to insufficient data size: (1) Asian (East Asian, Indian), (2) British-origin, (3) European (Eastern European, Roman Language, Scandinavian & Germanic), (4) Other Unknown (African, Middle Eastern, Unknown). We fitted the specification of Model 5 using this coding scheme (British-origin and Male are still used as the reference categories).

Race in U.S. Census Data. Similarly, we coded the race for authors and journalists using the 2010 U.S. Census data based on the last name ([Ambekar et al., 2009](#) [Sood and Laohaprapanon, 2018](#)). The four race categories: (1) Asian (*api*; [note that *api* denotes Asian and Pacific Islander]), (2) Black (*black*), (3) Hispanic (*hispanic*), (4) White (*white*), are directly used to fit the specification of Model 5 with White and Male used as the reference categories.

Fig. S4 shows the average marginal effects in mention rates for scholars of minority ethnicity (or race) compared to British-origin (or White) named authors. As neither tool infers gender, we thus report the result for gender here using *Ethnea’s* labels. Like the case of *Ethnea*, we find
Figure S4: The average marginal effects in mention probability for first authors’ demographic variables, using (Left) Wikipedia data for coding ethnicity or (Right) U.S. Census data for coding race based on author (or journalist) names. Note that the gender is still inferred using Ethnea.

strong anti-Asian biases in author mentions in science news, highlighting the robustness of our findings in the main text.
Table S5: Coefficients of five increasing-complexity regression models in predicting if the first author is mentioned using 285,708 observations. For author-journalist interactions (AUT-JRN.), only significant terms are shown. All variables in Model 5, including 533 keywords, are provided in Appendix Table S11. *** p<0.001, ** p<0.01, and * p<0.05.
Table S6: The gender and ethnicity coefficients of regression Model 5 in predicting author mentions. A separate model is trained for the U.S.-based institutions subset, and the non-U.S. institutions subset, respectively. Stars indicate the significance level for each coefficient (Sig. levels: *** p<0.001, ** p<0.01, and * p<0.05). The p-values are based on the statistical test of differences in coefficients between two models using the equation provided in (Clogg et al., 1995).

Gender/Ethnicity	U.S.-based	non-U.S.	p-value
Female	0.08	0.06	0.851
Romance Language	−0.14*	−0.52***	0.000
Scandinavian & Germanic	−0.14*	−0.48***	0.001
Eastern European	−0.09	−0.50***	0.013
non-Chinese East Asian	−0.70***	−0.53***	0.388
Chinese	−0.67***	−1.07***	0.005
Middle Eastern	−0.16	−0.62***	0.004
Indian	−0.26**	−0.42*	0.462
African	−0.27	−0.87*	0.206

Table S7: A random sample of 10 African authors predicted by Ethnea (out of 613 in total in our data) and their ethnicity or race categories based on the U.S. census or the Wikipedia data.
Table S8: A random sample of 10 Black authors predicted based on the U.S. census data (out of 560 in total in our data) and their ethnicity categories based on *Ethnea* or the Wikipedia data.

First Author Name	U.S. Census	Ethnea	Wikipedia
E. Robinson	Black	British-origin	British-origin
Momar Ndao	Black	Romance Language	African
Angela F Harris	Black	British-origin	British-origin
Daddy Mata-Mbemba	Black	Romance Language	African
A Bolu Ajiboye	Black	African	African
Lasana T. Harris	Black	British-origin	British-origin
John M. Harris	Black	British-origin	British-origin
Edwin S Robinson	Black	British-origin	British-origin
Eric A. Coleman	Black	British-origin	British-origin
Mp Coleman	Black	British-origin	British-origin

A Tables

Table S9: A random sample of 10 names for each of the 24 individual ethnicities and the “Unknown” category. All 6 MONGOLIAN names in our data are shown here.

Ethnicity	Name Example	Gender	
AFRICAN	Dora Wynchank	F	
	Benjamin D. Charlton	M	
	J. Nwando Olayiwola	unknown	
	Ayodeji Olayemi	M	
	Elizabeth Gathoni Kibaru	F	
	Christopher Changwe Nshimbi	M	
	Naganna Chetty	unknown	
	Benjamin Y. Ofori	M	
	Khadijah Essackjee	F	
	Jeanine L. Marnewick	F	
	Habtamu Fekadu Gemed	M	
ARAB	Zaid M. Abdelsattar	M	
	Alireza Dirafzoon	M	
	Ahmad Nasiri	M	
	Saleh Aldasouqi	M	
	Ibrahim A. Arif	M	
	Sameer Ahmed	M	
	A Elgalib	unknown	
	Taha Adnan Jan	M	
	Mohsen Taghizadeh	M	
	Behnam Nabet	M	
BALTIC	Skirmantas Kriaucionis	M	
	Airidas Korolkovas	M	
	Egle Cekanaviciute	F	
	Arunas L. Radzvilavicius	M	
	Ieva Tolmane	F	
	Alberts B	M	
	Gediminas Gaigalas	M	
	Armandas Balcytis	unknown	
	Ruta Ganceviciene	F	
	Andrius Paukonis	M	
CHINESE	Chin Hong Tan	unknown	
	Li Yuan	unknown	
	Yalin Li	unknown	
Name	Gender	Affiliation	
--------------------	--------	-----------------	
Xian Adiconis	unknown		
Philip Sung-En Wang	M		
Xiaohui Ni	unknown		
Minghua Li	unknown		
Fang Fang Zhang	F		
Li-Qiang Qin	M		
Jian Tan	unknown		
Pieter A. Cohen	M		
I. Vandersmissen	unknown		
Marleen Temmerman	F		
Gerard 't Hooft	M		
A. Yool	unknown		
G. A W Rook	unknown		
Fatima Foflonker	F		
Mirjam Lukasse	F		
Sander Kooijman	M		
Izaak D. Neveln	M		
Isabel Hilton	F		
Gavin J. D. Smith	M		
Katherine A. Morse	F		
Andrew S. Bowman	M		
T. M. L. Wigley	unknown		
Francis Markham	M		
Neil T. Roach	M		
Brooke Catherine Aldrich	F		
Vaughn I. Rickert	M		
Kellie Morrissey	F		
Lucas V. Joel	M		
Daniel Clery	M		
Pierre Jacquemot	M		
Scott Le Vine	M		
Nathalie Dereuadde-Bosquet	F		
Stphane Colliac	unknown		
Adelaide Haas	F		
Julie M. D. Paye	F		
Justine Lebeau	F		
Arnaud Chiolero	M		
Laure Schnabel	F		
Jeff M. Kretschmar	M		
E. Homeyer	unknown		
Maren N. Vitousek	F		
Name	Gender	Country	
-----------------------------	--------	---------	
D. Wild	unknown		
Hany K. M. Dweck	M		
E. M. Fischer	unknown		
Paul Marek	M		
Hans-Jrg Rheinberger	M		
Daniel James Cziczo	M		
Mary J. Scourboutakos	F	GREEK	
Anita P Courcoulas	F		
Elgidius B. Ichumbaki	unknown		
Stavros G. Drakos	M		
Nikolaos Konstantinides	M		
Constantine Sedikides	M		
Maria A. Spyrou	F		
Panos Athanasopoulos	M		
Aristeidis Theotokis	M		
Amy H. Mezulis	F		
Mirela Donato Gianeti	F	HISPANIC	
Julio Cesar de Souza	M		
Paulina Gomez-Rubio	F		
Jos A. Pons	M		
Arnau Domenech	M		
Nicole Martinez-Martin	F		
Mauricio Arcos-Burgos	M		
Raquel Muoz-Miralles	F		
Annmarie Cano	F		
Merika Treants Koday	F		
Andrea Tabi	F	HUNGARIAN	
Robert Erdlyi	M		
Gabor G. Kovacs	M		
Xenia Gonda	F		
Erzsbet Bukodi	unknown		
Julianna M. Nemeth	F		
Ian K. Toth	M		
Zoltan Arany	M		
Cory A. Toth	M		
Ashley N. Bucsek	unknown		
Sachin M. Shinde	M	INDIAN	
Govindsamy Vediyappan	M		
Ashish K. Jha	M		
Tamir Chandra	M		
Hariharan K. Iyer	M		

Row 43
Name	Gender	Language	
Chanpreet Singh	unknown		
Ravi Chinta	M		
Madhukar Pai	M		
Lalitha Nayak	F		
Ravi Dhingra	M		
INDONESIAN			
Dewi Candraningrum	unknown		
Richard Tjahjono	M		
T. A. Hartanto	unknown		
Johny Setiawan	M		
Truly Santika	unknown		
Chairul A. Nidom	unknown		
Christine Tedijanto	F		
Alberto Purwada	M		
Ardian S. Wibowo	M		
Anna I Corwin	F		
ISRAELI			
Ron Lifshitz	M		
Martin H. Teicher	M		
Ruth H Zadik	F		
Gil Yosipovitch	M		
Mor N. Lurie-Weinberger	unknown		
J. Tarchitzky	unknown		
Ilana N. Ackerman	F		
B. Trakhtenbrot	unknown		
Yoram Barak	M		
Mendel Friedman	M		
ITALIAN			
Tiziana Moriconi	F		
Marco Gobbi	M		
Marco De Cecco	M		
F. Govoni	unknown		
Theodore L. Caputi	M		
Mark A Bellis	M		
Fernando Migliaccio	M		
Julien Granata	M		
Jennifer M. Poti	F		
Brendan Curti	M		
JAPANESE			
Takuji Yoshimura	M		
Maki Inoue-Choi	F		
Masaaki Sadakiyo	M		
Moeko Noguchi-Shinohara	F		
Naoto Muraoka	M		
Shigeki Kawai	M		
Country	Name	Gender	Status
-------------	---------------------------	--------	------------
KOREAN	Jih-Un Kim	M	unknown
	Hanson Cho	unknown	
	Hyung-Soo Kim	M	
	Yun-Hee Youm	F	
	Yoon-Mi Lee	unknown	
	Soo Bin Park	F	
	Yungi Kim	unknown	
	Woo Jae Myung	unknown	
	Kunwoo Lee	unknown	
	Sandra Soo-Jin Lee	F	
MONGOLIAN	C. Jamsranjav	unknown	
	Jigjidsurengiin Batbaatar	unknown	
	Khishigjav Tsogbaatar	unknown	
	Migeddoj Batchimeg	unknown	
	Tsolmon Baatarzorig	unknown	
NORDIC	Steven G. Rogelberg	M	
	Kirsten K. Hanson	F	
	Jan L. Lyche	M	
	Morten Hesse	M	
	Karolina A. Aberg	F	
	Britt Reuter Morthorst	F	
	Kirsten F. Thompson	F	
	Shelly J. Lundberg	F	
	G Marckmann	unknown	
	David Hgg	M	
ROMANIAN	Afrodita Marcu	F	
	Iulia T. Simion	F	
	Liviu Giosan	M	
	Alina Sorescu	F	
	Liviu Giosan	M	
	Mircea Ivan	M	
	Dana Dabelea	F	
	Constantin Rezlescu	M	
	Christine A. Conelea	F	
	R. A. Popescu	unknown	
SLAV	Nomi Koczka	F	
	Mikhail G Kolonin	M	
Name	Gender	Country	
-------------------------------	--------	---------------	
Richard Karban	M		
Branislav Dragovi	M		
H Illnerov	unknown		
Marte Bjrk	F		
Jacek Niesterowicz	M		
Justin R. Grubich	M		
Mikhail Salama Hend	M		
Snejana Grozeva	F		
THAI			
Piyamas Kanokwongnuwut	unknown		
Clifton Makate	M		
Noppol Kobmoo	unknown		
Kabkaew L. Sukontason	unknown		
Aroonsiri Sangarlangkarn	unknown		
Yossawan Boriboonthana	unknown		
Ekalak Sitthipornvorakul	unknown		
Tony Rianprakaisang	M		
Apiradee Honglawan	F		
Wonngarm Kittanamongkolchai	unknown		
TURKISH			
Iris Z. Uras	F		
Metin Gurcan	unknown		
Mustafa Sahmaran	M		
Pinar Akman	F		
Joshua Aslan	M		
Selin Kesebir	F		
Tan Yigitcanlar	unknown		
Thembela Kepe	unknown		
Ulrich Rosar	M		
Selvi C. Ersoy	F		
VIETNAMESE			
Huong T. T. Ha	unknown		
Vu Van Dung	M		
H ChuongKim	unknown		
Daniel W. Giang	M		
Nhung Thi Nguyen	unknown		
V. Phan	unknown		
Oanh Kieu Nguyen	F		
Phuc T. Ha	M		
Bich Tran	unknown		
Oanh Kieu Nguyen	F		
Unknown			
Gene Y. Fridman	M		
Judith Glick	F		
Noor Edi Widya Sukoco	unknown		
Name	Gender		
---------------------	--------		
Charlene Laino	F		
Benot Brard	unknown		
David Znd	M		
Katarzyna Adamala	F		
K.A. Godfrin	unknown		
Shadd Maruna	M		
Mariette DiChristina	F		
Table S10: The 288 U.S.-based outlets are grouped into 3 categories based on their topics of reports. Note that other 135 U.S.-based outlets, which are not shown in this table, are excluded in our analyses due to technical limitations in accessing sufficient volumes of their content (e.g., view-limited paywalls or anti-crawling mechanisms).

Outlet	Type
OnMedica Sci. & Tech.	
Huffington Post General News	
KiiiTV 3 General News	
Carbon Brief Sci. & Tech.	
PR Newswire Press Releases	
Nutra Ingredients USA Sci. & Tech.	
The Bellingham Herald General News	
CNN News General News	
Health Medicinet Press Releases	
Herald Sun General News	
EurekAlert! Press Releases	
AJMC Press Releases	
The University Herald General News	
Lincoln Journal Star General News	
Cardiovascular Business Sci. & Tech.	
MinnPost General News	
CNET Sci. & Tech.	
Infection Control Today Sci. & Tech.	
Science 2.0 Sci. & Tech.	
Lexington Herald Leader General News	
Statesman.com General News	
Nanowerk Press Releases	
The San Diego Union-Tribune General News	
The Daily Beast General News	
Lab Manager Press Releases	
SDPB Radio General News	
New Hampshire Public Radio General News	
Health Day Press Releases	
Rocket News General News	
KPBS General News	
Technology.org Press Releases	
UPI.com General News	
WUWM General News	
Source	Category
---	-------------------
Central Coast Public Radio	General News
The Hill	General News
The Epoch Times	General News
Biospace	Sci. & Tech.
Minyanville: Finance	General News
Nature World News	Sci. & Tech.
New York Post	General News
Action News Now	General News
WUNC	General News
Futurity	Press Releases
Reason	General News
azfamily.com	General News
Idaho Statements	General News
Google News	General News
Tri States Public Radio	General News
American Physical Society - Physics	Press Releases
KTEP El Paso	General News
LiveScience	Sci. & Tech.
KUNC	General News
The Daily Meal	Sci. & Tech.
AOL	General News
Women’s Health	Sci. & Tech.
Prevention	Sci. & Tech.
ECN	Sci. & Tech.
Iowa Public Radio	General News
Becker’s Hospital Review	Sci. & Tech.
7th Space Family Portal	Press Releases
Springfield News Sun	General News
Environmental News Network	Press Releases
Sky Nightly	Sci. & Tech.
Quartz	Sci. & Tech.
Benzinga	General News
Headlines & Global News	General News
The Denver Post	General News
Science Daily	Press Releases
The Advocate	General News
ABC News	General News
Newswise	Press Releases
hellogiggles.com	General News
WLRN	General News
EarthSky	Sci. & Tech.
Source	Category
---	-------------------
Becker’s Spine Review	Sci. & Tech.
MIT News	Press Releases
MarketWatch	General News
Arstechnica	Sci. & Tech.
Journalist’s Resource	Sci. & Tech.
Northern Public Radio	General News
Everyday Health	Sci. & Tech.
Star Tribune	General News
TCTMD	Sci. & Tech.
The Verge	General News
She Knows	General News
SeedQuest	Sci. & Tech.
Tech Times	Sci. & Tech.
Wichita’s Public Radio	General News
Oncology Nurse Advisor	Sci. & Tech.
Delmarva Public Radio	General News
Medical Daily	Sci. & Tech.
Homeland Security News Wire	General News
Discover Magazine	Sci. & Tech.
Washington Post	General News
MSN	General News
Hawaii News Now	General News
The Daily Caller	General News
News Tribune	General News
The Fresno Bee	General News
King 5	General News
Star-Telegram	General News
CNBC	General News
Salon	General News
WJCT	General News
WVPE	General News
KTEN	General News
Wired.com	General News
Daily Kos	General News
USA Today	General News
Men’s Health	Sci. & Tech.
Boise State Public Radio	General News
Voice of America	General News
PR Web	Press Releases
Georgia Public Radio	General News
FiveThirtyEight	General News
Website	Category
---------------------------------	-------------------
ABC News WMUR 9	General News
Healthline	Sci. & Tech.
Mongabay	Sci. & Tech.
Vox.com	General News
WPTV 5 West Palm Beach	General News
Popular Mechanics	Sci. & Tech.
PM 360	Sci. & Tech.
SFGate	General News
Seed Daily	Sci. & Tech.
Table S11: The coefficients of all independent variables (including 533 keywords) in Model 5 in predicting whether the first author is mentioned or not by name in a news story referencing their research papers. Random effects for 100 top last authors, 288 outlets, and 8,268 publication venues are also included in the model. Note that “FA” denotes the first author and “J” denotes the journalist.

Dependent variable:	First author mentioned	
FA_African	\(-0.468 (-0.883, -0.052)\) p = 0.028	
FA_Chinese	\(-0.800 (-0.927, -0.674)\) p = 0.000	
FA_EastAsian	\(-0.570 (-0.748, -0.392)\) p = 0.000	
FA_EasternEuropean	\(-0.190 (-0.347, -0.033)\) p = 0.018	
FA_Indian	\(-0.328 (-0.498, -0.158)\) p = 0.0002	
FA_MiddleEastern	\(-0.307 (-0.456, -0.159)\) p = 0.0001	
FA_RomanceLanguage	\(-0.244 (-0.338, -0.150)\) p = 0.00000	
FA_ScandinavianGermanic	\(-0.203 (-0.296, -0.110)\) p = 0.00002	
FA_unknown	\(-0.131 (-0.577, 0.315)\) p = 0.565	
J_Asian	\(-0.152 (-0.331, 0.026)\) p = 0.095	
J_European	\(-0.050 (-0.135, 0.035)\) p = 0.248	
J_OtherUnknown	\(-0.030 (-0.117, 0.058)\) p = 0.505	
FA_gender_F	\(0.045 (-0.043, 0.133)\) p = 0.315	
FA_gender_unknown	\(-0.096 (-0.207, 0.016)\) p = 0.093	
J_gender_F	\(-0.051 (-0.124, 0.022)\) p = 0.169	
J_gender_unknown	\(-0.020 (-0.109, 0.068)\) p = 0.653	
FA_African:J_Asian	\(0.050 (-1.682, 1.782)\) p = 0.956	
FA_Chinese:J_Asian	\(0.191 (-0.234, 0.615)\) p = 0.379	
FA_EastAsian:J_Asian	\(0.405 (-0.282, 1.093)\) p = 0.248	
FA_EasternEuropean:J_Asian	\(0.547 (-0.047, 1.141)\) p = 0.072	
FA_Indian:J_Asian	\(0.255 (-0.264, 0.774)\) p = 0.336	
FA_MiddleEastern:J_Asian	\(0.445 (-0.125, 1.016)\) p = 0.127	
FA_RomanceLanguage:J_Asian	\(0.183 (-0.198, 0.565)\) p = 0.347	
FA_ScandinavianGermanic:J_Asian	\(0.374 (0.034, 0.714)\) p = 0.032	
FA_unknown:J_Asian	\(-1.314 (-3.553, 0.924)\) p = 0.250	
FA_African:J_European	\(0.045 (-0.714, 0.805)\) p = 0.907	
FA_Chinese:J_European	\(0.278 (0.057, 0.499)\) p = 0.014	
FA_EastAsian:J_European	\(0.144 (-0.187, 0.476)\) p = 0.393	
FA_EasternEuropean:J_European	\(0.112 (-0.184, 0.409)\) p = 0.458	
FA_Indian:J_European	\(0.150 (-0.165, 0.466)\) p = 0.351	
FA_MiddleEastern:J_European	\(0.245 (-0.024, 0.514)\) p = 0.074	
FA_RomanceLanguage:J_European	\(0.185 (0.012, 0.357)\) p = 0.037	
FA_ScandinavianGermanic:J_European	\(0.150 (-0.019, 0.318)\) p = 0.082	
FA_unknown:J_European	\(0.578 (-0.236, 1.393)\) p = 0.164	
FA_African:J_OtherUnknown	\(-0.035 (-0.473, 0.404)\) p = 0.877	
FA_Chinese:J_OtherUnknown	\(0.362 (0.230, 0.494)\) p = 0.00000	
FA_EastAsian:J_OtherUnknown	\(0.135 (-0.051, 0.321)\) p = 0.155	
FA_EasternEuropean:J_OtherUnknown	\(0.116 (-0.050, 0.281)\) p = 0.172	
Category	Mean (Lower, Upper)	p-value
---	--------------------	---------
FA_Indian:J_OtherUnknown	0.093 (-0.085, 0.271)	0.308
FA_MiddleEastern:J_OtherUnknown	0.144 (-0.012, 0.300)	0.071
FA_RomanceLanguage:J_OtherUnknown	0.028 (-0.071, 0.127)	0.576
FA_ScandinavianGermanic:J_OtherUnknown	0.131 (0.033, 0.229)	0.009
FA_unknown:J_OtherUnknown	-0.131 (-0.603, 0.341)	0.587
FA_gender_F:J_gender_F	-0.082 (-0.200, 0.036)	0.172
FA_gender_unknown:J_gender_unknown	0.125 (-0.021, 0.271)	0.095
FA_gender_F:J_gender_unknown	-0.049 (-0.141, 0.042)	0.289
FA_gender_unknown:J_gender_unknown	0.002 (-0.114, 0.117)	0.975
eth_last_authorAfrican	0.106 (-0.065, 0.277)	0.225
eth_last_authorChinese	-0.081 (-0.136, -0.025)	0.005
eth_last_authorEastAsian	0.043 (-0.029, 0.115)	0.240
eth_last_authorEasternEuropean	-0.153 (-0.212, -0.095)	0.00000
eth_last_authorIndian	-0.015 (-0.077, 0.047)	0.631
eth_last_authorMiddleEastern	-0.117 (-0.172, -0.061)	0.00004
eth_last_authorRomanceLanguage	-0.026 (-0.061, 0.009)	0.144
eth_last_authorScandinavianGermanic	0.002 (-0.032, 0.035)	0.928
eth_last_authorsolo	0.672 (0.616, 0.727)	0.000
eth_last_authorunknown	-0.640 (-0.806, -0.473)	0.000
gender_last_authorF	0.042 (0.014, 0.070)	0.004
gender_last_authorunknown	-0.032 (-0.070, 0.006)	0.102
last_author_mentionedeyes	0.669 (0.643, 0.696)	0.000
first_fname_length	-0.007 (-0.012, -0.002)	0.004
first_fname_prob	0.005 (-0.0002, 0.011)	0.061
first_author_name	-0.0001 (-0.0001, -0.0001)	0.000
affi_rank	-0.00002 (-0.00002, -0.00001)	0.00001
affi_cateinternational	-0.267 (-0.292, -0.242)	0.000
affi_cateunknown	0.212 (-0.037, 0.461)	0.095
gap_in_years	-0.125 (-0.129, -0.121)	0.000
mention_year_center	-0.021 (-0.029, -0.014)	0.000
num_authors	-0.003 (-0.003, -0.002)	0.000
num_words	0.0002 (0.0002, 0.0002)	0.000
num_mentioned_papers	-0.101 (-0.105, -0.096)	0.000
FleschReadingEase	-0.001 (-0.001, -0.0004)	0.000
sentences_per_paragraph	0.008 (0.002, 0.013)	0.005
type_token_ratio	0.176 (0.018, 0.333)	0.029
Composite_material	-0.526 (-0.905, -0.147)	0.007
Chemistry	0.149 (-0.170, 0.468)	0.361
Chromatography	0.331 (-0.283, 0.944)	0.291
Botany	-0.364 (-0.729, 0.0004)	0.051
Surgery	-0.062 (-0.253, 0.129)	0.526
Medicine	0.005 (-0.254, 0.263)	0.973
Cognitive_psychology	0.060 (-0.180, 0.300)	0.626
Affect_psychotherapy	-0.518 (-0.811, -0.225)	0.001
Aggression	0.368 (0.044, 0.693)	0.027
Psychology	0.761 (0.484, 1.038)	0.00000
Psychiatry	0.067 (-0.111, 0.245)	0.461
Cell_biology	-0.502 (-0.679, -0.325)	0.00000
Transcriptome	-0.381 (-0.697, -0.066)	0.018
Term	Coefficient (95% CI)	p-value
-------------------------------------	----------------------	---------
Molecular biology	-0.732 (-0.930, -0.534)	0.000
Carcinogenesis	0.527 (0.140, 0.913)	0.008
Biology	0.136 (-0.139, 0.410)	0.333
Human sexuality	-0.518 (-1.019, -0.017)	0.043
Physical therapy	0.200 (0.036, 0.364)	0.017
Testosterone	-0.375 (-0.845, 0.094)	0.018
Psychotherapist	-0.334 (-0.724, 0.055)	0.093
Prostate cancer	-0.559 (-0.863, -0.256)	0.0004
Mood	-0.612 (-0.871, -0.352)	0.0001
Disease	0.070 (-0.062, 0.201)	0.300
Genetics	-0.596 (-0.777, -0.414)	0.000
Genome	-0.058 (-0.286, 0.170)	0.620
Randomized controlled trial	0.156 (0.008, 0.304)	0.039
Quality of life	0.055 (-0.210, 0.321)	0.683
Comorbidity	0.203 (-0.117, 0.522)	0.214
Severity of illness	-0.475 (-0.978, 0.027)	0.064
Diabetes mellitus	-0.107 (-0.237, 0.023)	0.107
Prospective cohort study	-0.299 (-0.472, -0.127)	0.001
Ideology	-0.788 (-1.214, -0.362)	0.0003
China	-0.138 (-0.497, 0.220)	0.450
Law	-0.644 (-1.057, -0.231)	0.003
Sociology	1.368 (0.983, 1.753)	0.000
Environmental engineering	0.283 (-0.187, 0.754)	0.238
Environmental resource management	0.264 (-0.038, 0.566)	0.087
Economics	0.857 (0.510, 1.204)	0.0001
Climate change	-0.143 (-0.313, 0.027)	0.100
Population	-0.177 (-0.250, -0.104)	0.0001
Evolutionary biology	0.268 (-0.011, 0.547)	0.061
Cell	0.067 (-0.186, 0.319)	0.605
Phylogenetics	-0.164 (-0.551, 0.223)	0.407
Ecology	0.544 (0.370, 0.717)	0.000
Taxon	0.503 (0.032, 0.974)	0.037
Biodiversity	0.213 (-0.027, 0.453)	0.083
Atmospheric sciences	0.745 (0.444, 1.046)	0.0001
Environmental science	0.614 (0.300, 0.928)	0.0002
Global warming	-0.322 (-0.539, -0.105)	0.004
Meteorology	-0.059 (-0.496, 0.378)	0.792
Pedagogy	-0.227 (-0.664, 0.210)	0.309
Social science	0.075 (-0.342, 0.492)	0.725
Social psychology	-0.050 (-0.208, 0.107)	0.530
Confidence interval	-0.214 (-0.402, -0.026)	0.026
Referral	0.259 (-0.230, 0.749)	0.299
Young adult	-0.131 (-0.309, 0.047)	0.149
Medical prescription	0.485 (0.215, 0.756)	0.0005
Molecule	-0.331 (-0.714, 0.052)	0.091
Organic chemistry	-0.652 (-1.126, -0.178)	0.007
Materials science	0.290 (-0.050, 0.630)	0.096
Environmental health	-0.172 (-0.361, 0.017)	0.076
Obesity	-0.276 (-0.479, -0.074)	0.008

58
Entity	Coefficient	95% Confidence Interval	p-value
Body_mass_index	-0.161	(-0.366, 0.044)	0.125
Public_health	-0.291	(-0.456, -0.127)	0.001
Biochemistry	-0.853	(-1.087, -0.620)	0.000
Endocrinology	-0.471	(-0.645, -0.297)	0.00000
Internal_medicine	0.557	(0.376, 0.737)	0.000
Mitochondrion	-0.452	(-0.859, -0.045)	0.030
Democracy	-0.751	(-1.304, -0.198)	0.008
Political_economy	1.491	(0.862, 2.119)	0.00001
Public_administration	0.766	(0.266, 1.266)	0.003
Politics	0.251	(-0.008, 0.511)	0.058
Public_opinion	-0.449	(-0.991, 0.092)	0.104
Gerontology	-0.548	(-0.758, -0.339)	0.00000
Cohort_study	-0.142	(-0.299, 0.016)	0.078
Lower_risk	-0.067	(-0.421, 0.287)	0.709
Developmental_psychology	-0.022	(-0.203, 0.159)	0.810
Paleontology	0.876	(0.613, 1.140)	0.000
Geology	1.215	(0.893, 1.537)	0.000
Neuroscience	-0.511	(-0.725, -0.297)	0.00001
Biophysics	-0.243	(-0.643, 0.156)	0.233
RNA	0.425	(0.104, 0.745)	0.010
Atomic_physics	0.015	(-0.489, 0.518)	0.955
Physics	0.757	(0.406, 1.107)	0.00003
Ion	-0.102	(-0.554, 0.349)	0.657
Photon	-0.210	(-0.699, 0.279)	0.400
Optics	0.148	(-0.206, 0.502)	0.412
Climatology	0.028	(-0.244, 0.300)	0.840
Geography	0.901	(0.560, 1.241)	0.00000
Precipitation	-0.181	(-0.487, 0.125)	0.248
Chemical_engineering	0.142	(-0.381, 0.665)	0.595
Membrane	-0.093	(-0.521, 0.336)	0.672
Inorganic_chemistry	-0.632	(-0.962, -0.301)	0.00002
Environmental_chemistry	-0.943	(-1.408, -0.478)	0.00001
Psychological_resilience	0.383	(-0.051, 0.816)	0.084
Risk_assessment	0.433	(0.125, 0.741)	0.006
Cardiology	-0.189	(-0.488, 0.109)	0.215
Cause_of_death	-0.516	(-0.826, -0.206)	0.002
Atrial_fibrillation	0.270	(-0.192, 0.732)	0.252
Stimulus Physiology	-0.047	(-0.369, 0.274)	0.774
Schizophrenia	-0.449	(-0.814, -0.084)	0.016
Neuroimaging	-0.151	(-0.596, 0.293)	0.505
Perception	0.074	(-0.162, 0.311)	0.539
Intensive_care_medicine	0.286	(0.039, 0.533)	0.024
Nursing	0.137	(-0.123, 0.398)	0.301
Developing_country	0.045	(-0.362, 0.451)	0.830
Health_care	-0.259	(-0.412, -0.107)	0.001
Drug	0.313	(0.018, 0.607)	0.038
Distress	0.260	(-0.050, 0.569)	0.100
Political_science	0.779	(0.360, 1.197)	0.0003
Prefrontal_cortex	-0.467	(-0.810, -0.124)	0.008
Term	Correlation	p Value	
---	-------------	---------	
Social relation	0.469	0.010	
Chromatin	-0.126	0.506	
Microbiology	-0.228	0.179	
Antimicrobial	-0.177	0.508	
Antibiotics	-0.373	0.059	
Pregnancy	-0.342	0.003	
Pathology	-0.295	0.173	
Applied psychology	0.224	0.007	
Anxiety	-0.572	0.000	
Radiology	-0.640	0.004	
Radiation therapy	0.364	0.091	
Biopsy	-0.552	0.017	
Chemotherapy	-0.361	0.051	
Multimedia	1.214	0.0001	
Autism	0.100	0.538	
Socioeconomics	0.721	0.00004	
Agriculture	0.110	0.471	
Gynecology	-0.228	0.208	
Breast_cancer	0.329	0.001	
Obstetrics	0.667	0.0001	
Gestation	0.329	0.162	
Pharmacology	-1.027	0.000	
Clinical_trial	-0.401	0.001	
Food_science	-0.936	0.00002	
Escherichia_coli	0.177	0.496	
Agriculture	-0.411	0.021	
Photochemistry	-0.797	0.003	
Injury_prevention	0.263	0.086	
Human_factors_and_ergonomics	-0.345	0.042	
Suicide_prevention	-0.026	0.851	
Social_environment	-0.249	0.278	
Occupational_safety_and_health	-0.413	0.009	
Heart_failure	-1.016	0.000	
Predation	0.026	0.851	
In_vivo	-0.703	0.00001	
CRISPR	-0.010	0.958	
Crop	0.159	0.499	
Carbon	-0.310	0.086	
Public_relations	-0.109	0.454	
Demography	0.452	0.00000	
Dentistry	1.135	0.012	
Logistic_regression	0.852	0.000	
Health_equity	-0.299	0.135	
Medicaid	0.227	0.136	
Epidemiology	-0.195	0.046	
Threatened_species	0.033	0.872	
Species richness	0.109	0.619	
Harm	0.200	0.333	
Term	Estimate (95% CI)	p-value	
---	-------------------------	---------	
Classical mechanics	-0.055 (-0.637, 0.528)	0.855	
Quantum mechanics	0.290 (-0.238, 0.817)	0.282	
Odds_ratio	-0.160 (-0.327, 0.008)	0.062	
Homeostasis	-0.084 (-0.508, 0.341)	0.699	
Type_2_diabetes	0.033 (-0.231, 0.297)	0.808	
Cohort	-0.069 (-0.215, 0.077)	0.352	
Anatomy	0.047 (-0.247, 0.342)	0.754	
Interpersonal relationship	-0.498 (-0.904, -0.092)	0.017	
Norm_social	0.065 (-0.408, 0.538)	0.788	
Crystallography	-0.368 (-0.993, 0.257)	0.249	
Physiology	0.171 (-0.207, 0.549)	0.377	
Placebo	0.369 (0.169, 0.570)	0.0004	
MEDLINE	-0.978 (-1.458, -0.498)	0.0001	
Pediatrics	-0.158 (-0.355, 0.038)	0.115	
Adverse_effect	0.139 (-0.076, 0.354)	0.207	
Transplantation	0.136 (-0.126, 0.398)	0.309	
Dopamine	-0.600 (-1.038, -0.161)	0.008	
Embryonic_stem_cell	-0.478 (-0.871, -0.084)	0.018	
Criminology	-0.033 (-0.620, 0.554)	0.913	
Astrophysics	-0.240 (-0.610, 0.130)	0.205	
Astronomy	0.933 (0.613, 1.253)	0.000	
Condensed_matter_physics	-0.892 (-1.207, -0.576)	0.00000	
Optoelectronics	-0.614 (-0.939, -0.289)	0.0003	
Molecular_physics	-0.015 (-0.517, 0.488)	0.955	
Nanotechnology	-0.646 (-0.940, -0.353)	0.0002	
Crystal	0.112 (-0.359, 0.582)	0.642	
Animal_science	0.497 (-0.014, 1.009)	0.057	
Sediment	0.170 (-0.264, 0.604)	0.443	
Melanoma	-0.258 (-0.663, 0.146)	0.211	
Cell_culture	-0.011 (-0.443, 0.421)	0.961	
Electronic_engineering	-0.178 (-0.663, 0.307)	0.472	
Odds	0.511 (0.208, 0.813)	0.001	
Overweight	0.039 (-0.210, 0.288)	0.759	
Confounding	0.870 (0.521, 1.220)	0.00001	
Communication	0.117 (-0.211, 0.444)	0.486	
Child_development	-0.062 (-0.465, 0.340)	0.762	
Psychological_intervention	0.081 (-0.087, 0.249)	0.343	
Gene	-0.721 (-0.917, -0.525)	0.000	
Management_science	0.092 (-0.559, 0.743)	0.782	
Offspring	0.135 (-0.147, 0.418)	0.348	
Epigenetics	-0.669 (-1.030, -0.308)	0.0003	
Mental_health	0.473 (0.286, 0.659)	0.00000	
Well_being	-0.193 (-0.574, 0.188)	0.321	
Immigration	0.539 (0.084, 0.993)	0.021	
Coping_psychology	-0.076 (-0.583, 0.431)	0.769	
Physical_exercise	0.606 (0.042, 1.170)	0.036	
Personality	-0.199 (-0.509, 0.110)	0.207	
Particle_physics	-0.846 (-1.670, -0.021)	0.045	
Alternative_medicine	-0.459 (-0.799, -0.119)	0.009	
Category	Correlation Coefficient	p-value	
-------------------------------------	-------------------------	-----------	
Immunology	-0.499 (-0.684, -0.313)	0.00000	
Big_Five_personality_traits	-0.217 (-0.640, 0.205)	0.313	
PsyCNINFO	-0.294 (-0.946, 0.357)	0.376	
Happiness	-0.104 (-0.422, 0.214)	0.522	
Extinction	-0.358 (-0.622, -0.093)	0.009	
Environmental_protection	-0.728 (-1.107, -0.349)	0.00002	
Land_use	0.323 (-0.128, 0.774)	0.161	
Agroforestry	-0.180 (-0.613, 0.252)	0.414	
Vegetation	1.243 (0.831, 1.654)	0.000	
Habitat	0.110 (-0.165, 0.386)	0.433	
Ecosystem	0.190 (-0.053, 0.433)	0.125	
Mineralogy	-0.607 (-1.118, -0.096)	0.020	
Geochemistry	1.164 (0.726, 1.603)	0.00000	
Economic_growth	0.219 (-0.137, 0.576)	0.229	
Vaccination	0.305 (0.046, 0.563)	0.022	
Recall	0.035 (-0.399, 0.470)	0.873	
Working_memory	0.620 (0.217, 1.023)	0.003	
Radiation	-0.353 (-0.645, -0.062)	0.018	
Atmosphere	0.294 (-0.021, 0.608)	0.068	
Vulnerability	-0.656 (-1.083, -0.229)	0.003	
Catalysis	-0.315 (-0.723, 0.092)	0.130	
Anesthesia	-0.522 (-0.791, -0.253)	0.00002	
Toxicology	-1.432 (-1.933, -0.932)	0.00000	
Cannabis	-0.118 (-0.433, 0.198)	0.465	
Government	0.042 (-0.250, 0.333)	0.781	
European_union	-0.291 (-0.688, 0.107)	0.152	
Risk_factor	0.120 (-0.080, 0.319)	0.239	
Systematic_review	-0.870 (-1.310, -0.430)	0.00002	
General_surgery	0.524 (0.076, 0.971)	0.022	
Clinical_endpoint	-0.738 (-1.043, -0.433)	0.00001	
Lung_cancer	-0.223 (-0.563, 0.116)	0.198	
Polymer	-0.024 (-0.396, 0.347)	0.898	
Geophysics	1.045 (0.691, 1.398)	0.000	
Geomorphology	0.798 (0.472, 1.124)	0.00001	
Advertising	-0.035 (-0.499, 0.430)	0.885	
Cross_sectional_study	-0.194 (-0.460, 0.071)	0.152	
Interquartile_range	-0.156 (-0.470, 0.158)	0.330	
Weight_loss	-0.356 (-0.610, -0.102)	0.006	
Health_promotion	0.141 (-0.325, 0.608)	0.553	
Academic_achievement	0.273 (-0.182, 0.728)	0.240	
Finance	0.283 (-0.261, 0.827)	0.309	
Chronic_pain	-0.132 (-0.508, 0.244)	0.493	
Immune_system	-0.235 (-0.452, -0.018)	0.034	
T_cell	0.056 (-0.292, 0.403)	0.754	
Immunity	0.191 (-0.201, 0.583)	0.341	
Virology	-1.108 (-1.365, -0.851)	0.000	
Dementia	-0.459 (-0.730, -0.187)	0.001	
Alzheimer_s_disease	0.052 (-0.369, 0.474)	0.809	
Socioeconomic_status	-0.053 (-0.296, 0.189)	0.668	
Term	Value	p_value	
----------------------------------	-------------------------------	--------	
Allele	0.071 (−0.299, 0.441)	0.706	
Insulin	−0.192 (−0.491, 0.106)	0.207	
Hormone	−0.251 (−0.689, 0.188)	0.263	
Evidence_based_medicine	1.052 (0.502, 1.602)	0.002	
Meta_analysis	−0.676 (−0.913, −0.438)	0.0000	
Medical_emergency	−0.561 (−0.851, −0.272)	0.002	
Zoology	0.113 (−0.165, 0.391)	0.427	
Actuarial_science	−1.394 (−1.893, −0.895)	0.0000	
Hydrology	0.192 (−0.601, 0.984)	0.636	
Functional_magnetic_resonance_imaging	0.870 (0.434, 1.305)	0.001	
Electroencephalography	−0.017 (−0.502, 0.469)	0.947	
Machine_learning	−0.758 (−1.268, −0.249)	0.004	
Artificial_intelligence	0.666 (−0.077, 1.409)	0.079	
Clinical_psychology	−0.245 (−0.452, −0.038)	0.021	
Nanoparticle	−0.285 (−0.655, 0.085)	0.131	
Laser	−0.138 (−0.517, 0.241)	0.476	
Ethnic_group	0.552 (0.285, 0.819)	0.0001	
Cancer	−0.254 (−0.404, −0.105)	0.001	
Magnetic_field	0.353 (−0.074, 0.780)	0.106	
Antigen	0.125 (−0.234, 0.485)	0.495	
Antibody	0.054 (−0.264, 0.372)	0.739	
Seismology	−0.344 (−0.893, 0.205)	0.219	
Addiction	0.054 (−0.290, 0.398)	0.758	
Vitamin_D_and_neurology	−0.016 (−0.447, 0.416)	0.943	
Athletes	0.797 (0.335, 1.259)	0.001	
Marketing	0.414 (−0.033, 0.860)	0.070	
Receptor	−0.365 (−0.626, −0.105)	0.007	
Social_support	−0.886 (−1.227, −0.546)	0.0000	
Sleep_deprivation	−0.302 (−0.644, 0.039)	0.084	
Microeconomics	0.258 (−0.230, 0.746)	0.300	
Legislation	−0.489 (−1.018, 0.039)	0.070	
Transcription_factor	0.104 (−0.207, 0.414)	0.512	
Fertility	−0.675 (−1.062, −0.289)	0.001	
Dermatology	−0.237 (−0.882, 0.409)	0.473	
Pathogenesis	−0.614 (−1.040, −0.189)	0.005	
Apoptosis	−0.845 (−1.302, −0.388)	0.0003	
Proinflammatory_cytokine	0.205 (−0.193, 0.604)	0.313	
Ovarian_cancer	−0.150 (−0.663, 0.364)	0.568	
Stem_cell	−0.236 (−0.502, 0.031)	0.083	
Multivariate_analysis	−0.424 (−0.930, 0.083)	0.102	
Fishery	1.242 (0.877, 1.608)	0.000	
Mortality_rate	−0.482 (−0.707, −0.257)	0.00003	
Virulence	−0.808 (−1.313, −0.303)	0.002	
Malaria	−1.124 (−1.628, −0.619)	0.00002	
Knowledge_management	−0.169 (−0.819, 0.481)	0.611	
Analytical_chemistry	−0.851 (−1.248, −0.455)	0.00003	
Graphene	−0.396 (−0.742, −0.051)	0.025	
Semiconductor	−0.422 (−0.932, 0.088)	0.106	
Coronary_artery_disease	0.056 (−0.356, 0.468)	0.791	
Heart disease $-0.135 (-0.429, 0.158)$ $p = 0.366$			
Cholesterol $-0.212 (-0.607, 0.182)$ $p = 0.292$			
Veterinary medicine $-0.432 (-1.216, 0.352)$ $p = 0.281$			
Engineering $0.074 (-0.418, 0.566)$ $p = 0.768$			
Biomarker medicine $0.185 (-0.100, 0.470)$ $p = 0.204$			
Electron $-0.182 (-0.602, 0.238)$ $p = 0.397$			
Microbiome $-0.630 (-0.903, -0.358)$ $p = 0.00001$			
Gut flora $-0.317 (-0.657, 0.024)$ $p = 0.069$			
Physical medicine, and rehabilitation $-0.165 (-0.615, 0.286)$ $p = 0.474$			
Stroke $-0.079 (-0.312, 0.154)$ $p = 0.509$			
Bioinformatics $-0.910 (-1.238, -0.582)$ $p = 0.00000$			
Arctic $-0.060 (-0.377, 0.258)$ $p = 0.714$			
Poverty $-0.235 (-0.587, 0.117)$ $p = 0.191$			
Exoplanet $-0.065 (-0.518, 0.388)$ $p = 0.780$			
Planet $0.669 (0.333, 1.005)$ $p = 0.0001$			
Stars $0.173 (-0.219, 0.565)$ $p = 0.388$			
Foraging $0.330 (-0.010, 0.670)$ $p = 0.058$			
National Health Nutrition Examination $0.154 (-0.171, 0.479)$ $p = 0.354$			
Urine $0.126 (-0.416, 0.667)$ $p = 0.649$			
Hazard ratio $0.501 (0.322, 0.680)$ $p = 0.00000$			
Observational study $-0.178 (-0.455, 0.099)$ $p = 0.207$			
Proportional hazards model $-0.031 (-0.287, 0.225)$ $p = 0.813$			
Inflammation $-0.253 (-0.522, 0.016)$ $p = 0.065$			
Kidney disease $-0.307 (-0.765, 0.152)$ $p = 0.190$			
Gastroenterology $0.372 (-0.015, 0.759)$ $p = 0.060$			
Text mining $0.261 (-0.500, 1.021)$ $p = 0.502$			
Locus genetics $0.311 (-0.070, 0.693)$ $p = 0.110$			
Genome wide association study $-0.789 (-1.160, -0.418)$ $p = 0.00004$			
Urology $0.591 (-0.042, 1.223)$ $p = 0.068$			
Ranging $-0.206 (-0.481, 0.069)$ $p = 0.142$			
Survival rate $0.142 (-0.336, 0.621)$ $p = 0.560$			
Incentive $0.212 (-0.021, 0.633)$ $p = 0.325$			
Phenomenon $-0.135 (-0.410, 0.140)$ $p = 0.338$			
Statistics $-0.503 (-1.148, 0.142)$ $p = 0.127$			
Longitudinal study $0.157 (-0.096, 0.409)$ $p = 0.225$			
Brain mapping $0.194 (-0.668, 0.281)$ $p = 0.424$			
Metabolic syndrome $-0.816 (-1.221, -0.411)$ $p = 0.0001$			
Agronomy $-0.921 (-1.407, -0.434)$ $p = 0.0003$			
Asthma $0.495 (0.160, 0.830)$ $p = 0.004$			
Relative risk $0.378 (0.157, 0.599)$ $p = 0.001$			
Breastfeeding $-0.168 (-0.593, 0.257)$ $p = 0.439$			
Endangered species $0.199 (-0.234, 0.633)$ $p = 0.368$			
Climate model $0.095 (-0.211, 0.400)$ $p = 0.544$			
Social perception $-0.063 (-0.516, 0.390)$ $p = 0.785$			
Social media $0.429 (0.121, 0.736)$ $p = 0.007$			
Social network $-0.129 (-0.437, 0.179)$ $p = 0.413$			
Business $0.973 (0.550, 1.396)$ $p = 0.00001$			
Etiology $-0.224 (-0.834, 0.386)$ $p = 0.472$			
Mesenchymal stem cell $-0.275 (-0.736, 0.185)$ $p = 0.241$			
Category	Estimate (95% CI)	p-value	
---	---	---	---
Weight gain	-0.057 (-0.384, 0.270)	0.733	
Mathematics	1.821 (1.257, 2.385)	0.000	
Nicotine	-0.762 (-1.206, -0.318)	0.001	
Emergency_department	-0.630 (-0.915, -0.345)	0.00002	
Myocardial_infarction	-0.114 (-0.392, 0.163)	0.420	
Emergency_medicine	0.311 (0.018, 0.604)	0.038	
Labour_economics	-0.161 (-0.574, 0.252)	0.445	
Health_policy	-0.405 (-0.767, -0.043)	0.029	
Qualitative_research	-0.133 (-0.612, 0.346)	0.586	
Guideline	-0.746 (-1.102, -0.389)	0.00005	
Wildlife	0.725 (0.352, 1.098)	0.000	
Family_medicine	-0.481 (-0.683, -0.280)	0.00001	
Regulation_of_gene_expression	-0.545 (-0.927, -0.163)	0.006	
Cellular_differentiation	-0.100 (-0.455, 0.255)	0.581	
microRNA	-0.400 (-0.909, 0.110)	0.125	
Downregulation_and_upregulation	-0.266 (-0.675, 0.143)	0.204	
Computer_science	0.519 (0.161, 0.877)	0.005	
Developed_country	-0.223 (-0.742, 0.297)	0.402	
Demographic_economics	-0.176 (-0.580, 0.228)	0.393	
Colorectal_cancer	0.057 (-0.265, 0.379)	0.728	
Nutrient	-0.441 (-0.962, 0.079)	0.097	
Mutant	-0.266 (-0.647, 0.115)	0.171	
Cancer_research	-0.723 (-0.943, -0.503)	0.000	
Allergy	0.086 (-0.419, 0.590)	0.740	
Biological_dispersal	0.182 (-0.179, 0.542)	0.324	
Magnetic_resonance_imaging	-0.330 (-0.751, 0.091)	0.125	
Transmission_mechanics_	0.095 (-0.413, 0.603)	0.714	
Retrospective_cohort_study	0.319 (0.095, 0.542)	0.006	
Metastasis	-0.376 (-0.726, -0.025)	0.036	
Feeling	0.058 (-0.252, 0.369)	0.712	
Metabolism	-0.834 (-1.386, -0.282)	0.004	
Signal_transduction	-0.505 (-0.802, -0.208)	0.001	
Traumatic_brain_injury	-0.619 (-1.136, -0.101)	0.020	
Genomics	-0.667 (-1.063, -0.272)	0.001	
DNA_methylation	0.027 (-0.374, 0.429)	0.895	
Oncology	-0.364 (-0.634, -0.094)	0.009	
Mutation	-0.096 (-0.357, 0.165)	0.472	
Phenotype	-0.031 (-0.347, 0.285)	0.846	
Smoking_cessation	0.410 (0.050, 0.770)	0.026	
Black_hole	1.086 (0.673, 1.500)	0.00000	
Air_pollution	-0.420 (-0.798, -0.042)	0.030	
Hippocampus	-0.569 (-0.970, -0.167)	0.006	
Biotechnology	-1.509 (-2.080, -0.937)	0.00000	
Biomass	-0.874 (-1.326, -0.421)	0.0002	
Volcano	-0.189 (-0.630, 0.251)	0.400	
Longevity	-0.587 (-1.000, -0.174)	0.006	
Empathy	-0.445 (-0.863, -0.028)	0.037	
Psychosocial	0.089 (-0.195, 0.374)	0.539	
Greenhouse_gas	-0.115 (-0.378, 0.149)	0.394	
Term	Coefficient	95% CI	P
--	-------------	--------------	---------
Focus_group	0.716	(0.140, 1.291)	0.015
Regimen	0.461	(−0.011, 0.932)	0.056
Fetus	−0.374	(−0.788, 0.040)	0.077
Computer_vision	−0.255	(−0.742, 0.231)	0.304
Computational_biology	−0.407	(−0.803, −0.011)	0.044
Gene_expression	0.597	(0.272, 0.921)	0.0004
DNA	−0.202	(−0.520, 0.117)	0.215
Nuclear_magnetic_resonance	−0.836	(−1.355, −0.318)	0.002
Solar_System	0.572	(0.225, 0.918)	0.002
Astrobiology	0.001	(−0.334, 0.336)	0.995
Audiology	0.088	(−0.290, 0.466)	0.648
Circadian_rhythm	−0.312	(−0.604, −0.019)	0.037
Rehabilitation	−1.482	(−2.004, −0.960)	0.0000
Toxicity	−0.385	(−0.895, 0.124)	0.139
Global_health	−0.045	(−0.397, 0.307)	0.802
Reproductive_health	−0.443	(−0.904, 0.019)	0.061
Neurodegeneration	−0.506	(−0.909, −0.102)	0.015
Galaxy	0.195	(−0.101, 0.492)	0.198
Virus	0.079	(−0.214, 0.372)	0.596
InnateImmune_system	−0.585	(−0.976, −0.195)	0.004
Early_childhood	−0.168	(−0.604, 0.268)	0.450
Amygdala	−0.040	(−0.446, 0.366)	0.847
Vitamin	−0.765	(−1.299, −0.232)	0.005
Adipose_tissue	−0.591	(−0.962, −0.219)	0.002
Architecture	−0.146	(−0.520, 0.228)	0.445
Data_mining	−0.758	(−1.352, −0.164)	0.013
Quantum	−0.685	(−1.169, −0.202)	0.006
Blood_pressure	−0.104	(−0.380, 0.172)	0.460
Waste_management	−0.122	(−0.577, 0.334)	0.601
Sustainability	−0.121	(−0.502, 0.261)	0.535
Incidence_epidemiology	0.617	(0.307, 0.928)	0.0001
Substance_abuse	−0.326	(−0.666, 0.014)	0.061
In_vitro	−0.290	(−0.786, 0.206)	0.252
The_Internet	−0.581	(−0.923, −0.239)	0.001
Attention_deficit_hyperactivity_disorder	−0.709	(−1.117, −0.301)	0.001
Opioid	−0.497	(−0.821, −0.174)	0.003
DNA_damage	0.421	(−0.048, 0.889)	0.079
Visual_perception	−0.011	(−0.465, 0.444)	0.964
Sensory_system	−0.391	(−0.722, −0.061)	0.021
Genotype	0.055	(−0.425, 0.535)	0.824
Antibiotic_resistance	−0.190	(−0.665, 0.285)	0.434
Multiple_sclerosis	0.170	(−0.389, 0.728)	0.552
Case_control_study	−0.046	(−0.431, 0.338)	0.814
Single_nucleotide_pseudopolymorphism	−0.305	(−0.798, 0.189)	0.227
Cancer_cell	−0.120	(−0.455, 0.214)	0.481
Trait	0.799	(0.280, 1.317)	0.003
Empirical_research	−0.006	(−0.454, 0.441)	0.978
Simulation	0.851	(0.267, 1.436)	0.005
Oxidative_stress	0.237	(−0.199, 0.673)	0.287
Antioxidant $-0.877 (-1.576, -0.177)$ $p = 0.015$
Progenitor_cell $-0.495 (-0.847, -0.142)$ $p = 0.006$
Lung $-0.218 (-0.623, 0.187)$ $p = 0.293$
Oceanography 0.444 (0.118, 0.769) $p = 0.008$
Immunotherapy 0.307 (-0.077, 0.691) $p = 0.117$
Cytokine $-0.442 (-0.857, -0.026)$ $p = 0.038$
Kinase $-0.423 (-0.903, 0.058)$ $p = 0.085$
Development_economics 0.081 (-0.411, 0.573) $p = 0.748$
Cell_type $-0.070 (-0.488, 0.348)$ $p = 0.742$
Social_cognition $-0.457 (-0.803, -0.111)$ $p = 0.010$
Major_depressive_disorder $-0.812 (-1.183, -0.440)$ $p = 0.00002$
Hippocampal_formation 0.186 (-0.281, 0.653) $p = 0.435$
Central_nervous_system $-0.802 (-1.295, -0.310)$ $p = 0.002$
Medical_record 0.497 (0.054, 0.939) $p = 0.029$
Psychopathology 0.504 (0.092, 0.915) $p = 0.017$
Skeletal_muscle $-0.508 (-0.931, -0.086)$ $p = 0.019$
Transcription_biology_1.776 (1.309, 2.243) $p = 0.000$
Ecosystem_services $-0.801 (-1.155, -0.447)$ $p = 0.00001$
Heart_rate $-0.074 (-0.651, 0.503)$ $p = 0.803$
Outbreak $-0.378 (-0.692, -0.064)$ $p = 0.019$
Phylogenetic_tree 0.504 (0.092, 0.915) $p = 0.017$
Enzyme $-0.309 (-0.775, 0.158)$ $p = 0.195$
Genetic_variation 0.049 (-0.328, 0.425) $p = 0.801$
Psychosis 0.625 (0.085, 1.166) $p = 0.024$
Pathogen 0.924 (0.450, 1.398) $p = 0.0002$
History 1.167 (0.284, 2.050) $p = 0.010$
Atom $-0.863 (-1.312, -0.414)$ $p = 0.0002$
Arousal 0.004 (-0.467, 0.474) $p = 0.987$
Remote_sensing $-0.800 (-1.629, 0.029)$ $p = 0.059$
Crossover_study 0.180 (-0.347, 0.706) $p = 0.504$
Programmed_cell_death 1.163 (0.707, 1.619) $p = 0.00000$
Human_brain 0.596 (0.191, 1.001) $p = 0.004$
Stimulation $-0.573 (-0.930, -0.216)$ $p = 0.002$
Scattering $-0.072 (-0.548, 0.403)$ $p = 0.766$
Antidepressant $-0.437 (-0.993, 0.120)$ $p = 0.124$
Population_study 0.015 (-0.411, 0.442) $p = 0.944$
Corporate_governance $-0.264 (-0.889, 0.362)$ $p = 0.409$
Interpersonal_communication 1.040 (0.596, 1.484) $p = 0.00001$
Osteoporosis $-0.206 (-0.828, 0.415)$ $p = 0.516$
Alcohol $-0.232 (-0.756, 0.293)$ $p = 0.387$
Biomedical_engineering $-1.278 (-1.815, -0.742)$ $p = 0.00001$
Induced_pluripotent_stem_cell $-0.118 (-0.463, 0.227)$ $p = 0.504$
Insulin_resistance $-0.456 (-0.812, -0.100)$ $p = 0.012$
Autism_spectrum_disorder $-0.707 (-1.068, -0.346)$ $p = 0.0002$
Mindfulness $-0.487 (-0.988, 0.014)$ $p = 0.057$
Cretaceous 1.414 (0.997, 1.830) $p = 0.000$
Spectroscopy 0.301 (-0.197, 0.800) $p = 0.237$
Prosocial_behavior $-0.183 (-0.564, 0.198)$ $p = 0.346$
Computer_security 0.470 (-0.176, 1.116) $p = 0.154$

67
Variable	Coefficient	95% Confidence Interval	p-value
Gestational age	-0.108	(-0.522, 0.305)	0.607
Archaeology	1.034	(0.628, 1.440)	0.0000
Welfare	-0.234	(-0.747, 0.279)	0.372
Mental illness	-0.267	(-0.680, 0.146)	0.205
Phosphorylation	-0.401	(-0.871, 0.068)	0.094
Life expectancy	-0.080	(-0.428, 0.268)	0.654
Spin half	-0.153	(-0.541, 0.235)	0.440
Thin film	-0.398	(-0.902, 0.105)	0.122
Narrative	0.103	(-0.394, 0.600)	0.685
Gender studies	0.123	(-0.418, 0.663)	0.657
Public policy	-0.142	(-0.560, 0.276)	0.506
Epilepsy	-0.140	(-0.605, 0.325)	0.555
Metal	-0.135	(-0.666, 0.397)	0.620
Instability	-0.341	(-0.759, 0.076)	0.109
Particle	-0.424	(-0.935, 0.087)	0.104
Spectral line	0.236	(-0.300, 0.773)	0.388
Cell growth	-0.568	(-0.984, -0.153)	0.008
Cytotoxic T cell	-0.098	(-0.518, 0.322)	0.648
Cycling	0.037	(-0.457, 0.531)	0.884
Intracellular	0.453	(-0.048, 0.955)	0.077
Ageing	-0.001	(-0.474, 0.472)	0.998
Bipolar disorder	-0.672	(-1.113, -0.230)	0.003
Meal	-0.583	(-1.132, -0.034)	0.038
Ingestion	0.931	(0.443, 1.419)	0.0002
DNA sequencing	-0.542	(-1.055, -0.029)	0.039
Amino acid	-0.373	(-0.854, 0.108)	0.129
Constant	1.525	(1.177, 1.873)	0.000

Observations: 285,708
Log Likelihood: -114,476.700
Akaike Inf. Crit.: 230,167.500
Bayesian Inf. Crit.: 236,579.100