BIGRADED BETTI NUMBERS OF SOME SIMPLE POLYTOPES

IVAN LIMONCHENKO

Abstract. The bigraded Betti numbers $\beta^{-i,2j}(P)$ of a simple polytope P are the dimensions of the bigraded components of the Tor groups of the face ring $k[P]$. The numbers $\beta^{-i,2j}(P)$ reflect the combinatorial structure of P as well as the topology of the corresponding moment-angle manifold \mathcal{Z}_P, and therefore they find numerous applications in combinatorial commutative algebra and toric topology. Here we calculate some bigraded Betti numbers of the type $\beta^{-i,2(i+1)}$ for associahedra, and relate the calculation of the bigraded Betti numbers for truncation polytopes to the topology of their moment-angle manifolds. These two series of simple polytopes provide conjectural extrema for the values of $\beta^{-i,2j}(P)$ among all simple polytopes P with the fixed dimension and number of facets.

1. Introduction

We consider simple convex n-dimensional polytopes P in the Euclidean space \mathbb{R}^n with scalar product $\langle \cdot, \cdot \rangle$. Such a polytope P can be defined as an intersection of m halfspaces:

\begin{equation}
P = \{ x \in \mathbb{R}^n : \langle a_i, x \rangle + b_i \geq 0 \quad \text{for } i = 1, \ldots, m \},
\end{equation}

where $a_i \in \mathbb{R}^n$, $b_i \in \mathbb{R}$. We assume that the hyperplanes defined by the equations $\langle a_i, x \rangle + b_i = 0$ are in general position, that is, at most n of them meet at a single point. We also assume that there are no redundant inequalities in (1.1), that is, no inequality can be removed from (1.1) without changing P. Then P has exactly m facets given by

$$F_i = \{ x \in P : \langle a_i, x \rangle + b_i = 0 \}, \quad \text{for } i = 1, \ldots, m.$$

Let A_P be the $m \times n$ matrix of row vectors a_i, and let b_P be the column vector of scalars $b_i \in \mathbb{R}$. Then we can write (1.1) as

$$P = \{ x \in \mathbb{R}^n : A_P x + b_P \geq 0 \},$$

and consider the affine map

$$i_P : \mathbb{R}^n \rightarrow \mathbb{R}^m, \quad i_P(x) = A_P x + b_P.$$

It embeds P into

$$\mathbb{R}_\geq^m = \{ y \in \mathbb{R}^m : y_i \geq 0 \quad \text{for } i = 1, \ldots, m \}.$$
Following [3, Constr. 7.8], we define the space \mathcal{Z}_P from the commutative diagram

$$
\begin{array}{ccc}
\mathcal{Z}_P & \xrightarrow{iz} & \mathbb{C}^m \\
\downarrow & & \downarrow \mu \\
P & \xrightarrow{ip} & \mathbb{R}^{m+}_{\geq 0}
\end{array}
$$

(1.2)

where $\mu(z_1, \ldots, z_m) = (|z_1|^2, \ldots, |z_m|^2)$. The latter map may be thought of as the quotient map for the coordinatewise action of the standard torus

$$
\mathbb{T}^m = \{ z \in \mathbb{C}^m : |z_i| = 1 \text{ for } i = 1, \ldots, m \}
$$
on \mathbb{C}^m. Therefore, \mathbb{T}^m acts on \mathcal{Z}_P with quotient P, and iz is a \mathbb{T}^m-equivariant embedding.

By [3, Lemma 7.2], \mathcal{Z}_P is a smooth manifold of dimension $m + n$, called the moment-angle manifold corresponding to P.

Denote by K_P the boundary ∂P^* of the dual simplicial polytope. It can be viewed as a simplicial complex on the set $[m] = \{1, \ldots, m\}$, whose simplices are subsets $\{i_1, \ldots, i_k\}$. The face ring (also known as the Stanley–Reisner ring) of a simplicial complex K on $[m]$ is the quotient ring

$$
\mathbb{k}[K] = \mathbb{k}[v_1, \ldots, v_m]/\mathcal{I}_K
$$

where \mathcal{I}_K is the ideal generated by those square free monomials $v_{i_1} \cdots v_{i_k}$ for which $\{i_1, \ldots, i_k\}$ is not a simplex in K. We refer to \mathcal{I}_K as the Stanley–Reisner ideal of K.

Let \mathbb{k} be a field, let $\mathbb{k}[v_1, \ldots, v_m]$ be the graded polynomial algebra on m variables, $\deg(v_i) = 2$, and let $\Lambda[u_1, \ldots, u_m]$ be the exterior algebra, $\deg(u_i) = 1$. The face ring (also known as the Stanley–Reisner ring) of a simplicial complex K on $[m]$ is the quotient ring

$$
\mathbb{k}[K] = \mathbb{k}[v_1, \ldots, v_m]/\mathcal{I}_K
$$

where \mathcal{I}_K is the ideal generated by those square free monomials $v_{i_1} \cdots v_{i_k}$ for which $\{i_1, \ldots, i_k\}$ is not a simplex in K. We refer to \mathcal{I}_K as the Stanley–Reisner ideal of K.

Note that $\mathbb{k}[K]$ is a module over $\mathbb{k}[v_1, \ldots, v_m]$ via the quotient projection. The dimensions of the bigraded components of the Tor-groups,

$$
\beta^{-i,2j}(K) := \dim_{\mathbb{k}} \text{Tor}^i_{\mathbb{k}[v_1, \ldots, v_m]}(\mathbb{k}[K], \mathbb{k}), \quad 0 \leq i, j \leq m,
$$

are known as the bigraded Betti numbers of $\mathbb{k}[K]$, see [8] and [3, §3.3]. They are important invariants of the combinatorial structure of K. We denote

$$
\beta^{-i,2j}(P) := \beta^{-i,2j}(K_P).
$$

The Tor-groups and the bigraded Betti numbers acquire a topological interpretation by means of the following result on the cohomology of \mathcal{Z}_P:

Theorem 1.1 ([3, Theorem 8.6] or [6, Theorem 4.7]). The cohomology algebra of the moment-angle manifold \mathcal{Z}_P is given by the isomorphisms

$$
H^*(\mathcal{Z}_P; \mathbb{k}) \cong \text{Tor}_{\mathbb{k}[v_1, \ldots, v_m]}(\mathbb{k}[K_P], \mathbb{k})
$$

$$
\cong H[\Lambda[u_1, \ldots, u_m] \otimes \mathbb{k}[K_P], d],
$$

where the latter algebra is the cohomology of the differential bigraded algebra whose bigrading and differential are defined by

$$
bideg u_i = (-1, 2), \quad bideg v_i = (0, 2); \quad du_i = v_i, \quad dv_i = 0.\]
Therefore, cohomology of Z_P acquires a bigrading and the topological Betti numbers $b^q(Z_P) = \dim_k H^q(Z_P; k)$ satisfy
\begin{equation}
\label{eq:3}
b^q(Z_P) = \sum_{-i+2j=q} \beta^{-i,2j}(P).
\end{equation}

Poincaré duality in cohomology of Z_P respects the bigrading:

Theorem 1.2 ([3, Theorem 8.18]). The following formula holds:
\[
\beta^{-i,2j}(P) = \beta^{-(m-n)+i,2(m-j)}(P).
\]

From now on we shall drop the coefficient field k from the notation of (co)homology groups. Given a subset $I \subset [m]$, we denote by K_I the corresponding full subcomplex of K (the restriction of K to I). The following classical result can be also obtained as a corollary of Theorem 1.1:

Theorem 1.3 (Hochster, see [3, Cor. 8.8]). Let $K = K_P$. We have:
\[
\beta^{-i,2j}(P) = \sum_{J \subset [m], |J| = j} \dim \tilde{H}^{j-i}(K_J).
\]

We also introduce the following subset in the boundary of P:
\begin{equation}
\label{eq:4}P_I = \bigcup_{i \in I} F_i \subset P.
\end{equation}

Note that if $K = K_P$ then K_I is a deformation retract of P_I for any I. The following is a direct corollary of Theorem 1.3.

Corollary 1.4. We have
\[
\beta^{-i,2(i+1)}(P) = \sum_{I \subset [m], |I| = i+1} (cc(P_I) - 1),
\]
where $cc(P_I)$ is the number of connected components of the space P_I.

The structure of this paper is as follows. Calculations for Stasheff polytopes (also known as associahedra) are given in Section 2. In Section 3 we calculate the bigraded Betti numbers of truncation polytopes (iterated vertex cuts of simplices) completely. These calculations were first made in [10] using a similar but slightly different method; an alternative combinatorial argument was given in [4]. We also compare the calculations of the Betti numbers with the known description of the diffeomorphism type of Z_P for truncation polytopes [1].

The author is grateful to his scientific adviser Taras Panov for fruitful discussions and advice which was always so kindly proposed during this work.

2. Stasheff polytopes

Stasheff polytopes, also known as associahedra, were introduced as combinatorial objects in the work of Stasheff on higher associativity [9]. Explicit convex realizations of Stasheff polytopes were found later by Milnor and others, see [2] for details.

We denote the n-dimensional Stasheff polytope by As^n. The i-dimensional faces of As^n ($0 \leq i \leq n - 1$) bijectively correspond to the sets of $n-i$ pairwise
nonintersecting diagonals in an \((n+3)\)-gon \(G_{n+3}\). (We assume that diagonals having a common vertex are nonintersecting.) A face \(H\) belongs to a face \(H'\) if and only if the set of diagonals corresponding to \(H\) contains the set of diagonals corresponding to \(H'\).

In particular, vertices of \(\text{As}^n\) correspond to complete triangulations of \(G_{n+3}\) by its diagonals, and facets of \(\text{As}^n\) correspond to diagonals of \(G_{n+3}\). We therefore identify the set of diagonals in \(G_{n+3}\) with the set of facets \(\{F_1, \ldots, F_m\}\) of \(\text{As}^n\), and identify both sets with \([m]\) when it is convenient. Note that \(m = \frac{n(n+3)}{2}\).

We shall need a convex realization of \(\text{As}^n\) from [2, Lecture II, Th. 5.1]:

Theorem 2.1. \(\text{As}^n\) can be identified with the intersection of the parallelepiped

\[
\{\mathbf{y} \in \mathbb{R}^n : 0 \leq y_j \leq j(n+1-j) \text{ for } 1 \leq j \leq n\}
\]

with the halfspaces

\[
\{\mathbf{y} \in \mathbb{R}^n : y_j - y_k + (j-k)k \geq 0 \text{ for } 1 \leq k < j \leq n\}
\]

Proposition 2.2. We have:

\[
b_3(\mathcal{Z}_{\text{As}^n}) = \beta^{-1,4}(\text{As}^n) = \binom{n+3}{4}.
\]

Proof. The number \(\beta^{-1,4}(P)\) is equal to the number of monomials \(v_i v_j\) in the Stanley–Reisner ideal of \(P\) [3, §3.3], or to the number of pairs of disjoint facets of \(P\). In the case \(P = \text{As}^n\) the latter number is equal to the number of pairs of intersecting diagonals in the \((n+3)\)-gon \(G_{n+3}\), see [2, Lecture II, Cor 6.2]. It remains to note that, for any 4-element subset of vertices of \(G_{n+3}\) there is a unique pair of intersecting diagonals whose endpoints are these 4 vertices. \(\square\)

Remark. The above calculation can be also made using the general formula \(\beta^{-1,4}(P) = \left(\begin{array}{c} \frac{n}{2} \\ i \end{array}\right) - f_i\), see [3, Lemma 8.13], where \(f_i\) is the number of \((n-i-1)\)-faces of \(P\). The numbers \(f_i\) for \(\text{As}^n\) are well-known, see [2, Lecture II].

In what follows, we assume that there are no multiple intersection points of the diagonals of \(G_{n+3}\), which can be achieved by a small perturbation of the vertices. We choose a cyclic order of vertices of \(G_{n+3}\), so that 2 consequent vertices are joined by an edge. We refer to the diagonals of \(G_{n+3}\) joining the \(i\)th and the \((i + 2)\)th vertices (modulo \(n + 3\)), for \(i = 1, \ldots, n + 3\) as short; other diagonals are long.

We refer to intersection points of diagonals inside \(G_{n+3}\) as distinguished points. A diagonal segment joining two distinguished points is called a distinguished segment. Finally, a distinguished triangle is a triangle whose vertices are distinguished points and whose edges are distinguished segments.

Theorem 2.3. We have:

\[
b_4(\mathcal{Z}_{\text{As}^n}) = \beta^{-2,6}(\text{As}^n) = 5\binom{n + 4}{6}.
\]
Proof. We need to calculate the number of generators in the 4th cohomology group of $H[\Lambda[u_1, \ldots, u_m] \times k[As^n], d]$, see Theorem 1.1 (note that here $m = \binom{n+3}{2} m$ is the number of diagonals in G_{n+3}). This group is generated by the cohomology classes of cocycles of the type $u_i u_j v_k$, where $i \neq j$ and $u_i v_k$, $u_j v_k$ are 3-cocycles. These 3-cocycles correspond to the pairs $\{i, k\}$ and $\{j, k\}$ of intersecting diagonals in G_{n+3}, or to a pair of distinguished points on the kth diagonal. It follows that every cocycle $u_i u_j v_k$ is represented by a distinguished segment. The identity

$$d(u_i u_j u_k) = u_i u_j v_k - u_i v_j u_k + v_i u_j u_k$$

implies that the cohomology classes represented by the cocycles in the right hand side are linearly dependent. Every such identity corresponds to a distinguished triangle.

We therefore obtain that $\beta^{-2,6}(As^n) = S_{n+3} - T_{n+3}$ where S_{n+3} is the number of distinguished segments and T_{n+3} is the number of distinguished triangles inside G_{n+3}. These numbers are calculated in the next three lemmas.

Lemma 2.4. The number of distinguished triangles in G_{n+3} is given by

$$T_{n+3} = \binom{n + 3}{6}$$

Proof. We note that there is only one distinguished triangle in a hexagon (see Fig. 1); and therefore every 6 vertices of G_{n+3} contribute one distinguished triangle.

![Figure 1.](image)

Given a diagonal d of G_{n+3}, denote by $p(d)$ the number of distinguished points on d. We define the length of d as the smallest of the numbers of vertices of G_{n+3} in the open halfplanes defined by d. Therefore, short diagonals have length 1 and all diagonals have length $\leq \frac{n+1}{2}$. We refer to diagonals of maximal length simply as maximal. Obviously $p(d)$ depends only on the length of d, and we denote by $p(j)$ the number of distinguished points on a diagonal of length j.

Lemma 2.5. If $n = 2k - 1$ is odd, then

$$S_{n+3} = \frac{n + 3}{2} \sum_{l=1}^{k-1} \left(4l^2 k^2 - 2k(2l^3 + l) \right) + \frac{n + 3}{4} k^2 (k^2 - 1).$$
If \(n = 2k - 2 \) is even, then
\[
S_{n+3} = \frac{n+3}{2} \sum_{l=1}^{k-1} \left(4l^2k^2 - 2k(2l^3 + 2l^2 + l) + (l^4 + 2l^3 + 2l^2 + l) \right).
\]

Proof. First assume that \(n = 2k - 1 \). Then
\[
S_{n+3} = \sum_d \frac{p(d)(p(d) - 1)}{2} = (n + 3) \left(\sum_{j=1}^{n+1} \frac{p(j)(p(j) - 1)}{2} \right) - \left(\frac{n+3}{2} \right) p(\frac{n+1}{2})p(\frac{n+1}{2}) - 1,
\]
since the number of distinguished segments on the maximal diagonals is counted in the sum twice.

We denote by \(v \) the \((n+3)\)th vertex of \(G_{n+3} \) and numerate the diagonals coming from \(v \) by their lengths. We denote by \(c(i, j) \) the number of intersection points of the \(j \)th diagonal coming from \(v \) with the diagonals from the \(i \)th vertex, for \(1 \leq i \leq j \leq \frac{n+1}{2} \), and set \(c(i, j) = 0 \) for \(i > j \). Then we have
\[
(2.1) \quad p(j) = \sum_{i=1}^{n+1} c(i, j),
\]
To compute \(c(i, j) \) we note that
\[
c(1, 1) = n; \quad c(i, j - 1) = c(i, j) + 1 \quad \text{for} \quad 1 \leq i < j \leq \frac{n+1}{2}; \quad c(i + 1, j + 1) = c(i, j) - 1 \quad \text{for} \quad 1 \leq i < j \leq \frac{n+1}{2}.
\]
It follows that
\[
(2.2) \quad c(i, j) = c(1, j - i + 1) - (i - 1) = c(1, 1) - (j - i) - (i - 1) = n - j + 1,
\]
for \(i \leq j \). Note that \(c(i, j) \) does not depend on \(i \). Substituting this in (2.1) and then substituting the resulting expression for \(p(j) \) in the sum for \(S_{n+3} \) above we obtain the required formula.

The case \(n = 2k - 2 \) is similar. The only difference is that there are two maximal diagonals coming from every vertex of \(G_{n+3} \), so that no subtraction is needed in the sum for \(S_{n+3} \).

Lemma 2.6. The number of distinguished segments is given by
\[
S_{n+3} = (n + 3) \binom{n+3}{5}.
\]
Proof. This follows from Lemma 2.5 by summation using the following formulae for the sums \(\Sigma_n \) of the \(n \)th powers of the first \((k-1)\) natural numbers:
\[
\begin{align*}
\Sigma_1 &= \frac{k(k-1)}{2}, & \Sigma_2 &= \frac{k(k-1)(2k-1)}{6}, \\
\Sigma_3 &= \frac{k^2(k-1)^2}{4}, & \Sigma_4 &= \frac{k(k-1)(2k-1)(3k^2 - 3k - 1)}{30}.
\end{align*}
\]
Now Theorem 2.3 follows from Lemma 2.5 and Lemma 2.6. □

The following fact follows from the description of the combinatorial structure of A_s^n (see also [2, Lecture II, Cor. 6.2]):

Proposition 2.7. Two facets F_1 and F_2 of the polytope A_s^n do not intersect if and only if the corresponding diagonals d_1 and d_2 of the polygon G_{n+3} intersect (in a distinguished point).

Lemma 2.8. The number of distinguished points on a maximal diagonal of G_{n+3} is given by

$$q = q(n) = \begin{cases} \frac{n(n+2)}{4}, & \text{if } n \text{ is even;} \\ \frac{(n+1)^2}{4}, & \text{if } n \text{ is odd.} \end{cases}$$

Proof. The case $n = 2$ is obvious. If n is odd, then setting $j = \frac{n+1}{2}$ in (2.1) and using (2.2) we calculate

$$p(j) = \sum_{i=1}^{\frac{n+1}{2}} c(i, \frac{n+1}{2}) = \frac{(n+1)^2}{4}.$$

If n is even, then the maximal diagonal has length $j = \frac{n}{2}$. It is easy to see that we have $p(j) = \sum_{i=1}^{n/2} c(i, j)$ instead of (2.1), and (2.2) still holds. Therefore,

$$p(j) = \sum_{i=1}^{\frac{n}{2}} c(i, \frac{n}{2}) = \frac{n(n+2)}{4}.$$

Theorem 2.9. Let $P = A_s^n$ be an n-dimensional associahedron, $n \geq 3$. The bigraded Betti numbers of P satisfy

$$\beta^{-q, 2(q+1)}(P) = \begin{cases} n+3, & \text{if } n \text{ is even;} \\ \frac{n+1}{2}, & \text{if } n \text{ is odd;} \end{cases}$$

$$\beta^{-i, 2(i+1)}(P) = 0 \text{ for } i \geq q+1;$$

where $q = q(n)$ is given in Lemma 2.8.

Proof. We prove the theorem by induction on n. The base case $n = 3$ can be seen from the tables of bigraded Betti numbers below. By Corollary 1.4, in order to calculate $\beta^{-i, 2(i+1)}(P)$, we need to find all $I \subset [m], \ |I| = i + 1$, whose corresponding P_I has more than one connected component. In the case $i = q$ we shall prove that $cc(P_I) \leq 2$ for $|I| = q + 1$, and describe explicitly those I for which $cc(P_I) = 2$. In the case $i > q$ we shall prove that $cc(P_I) = 1$ for $|I| = i + 1$. These statements will be proven as separate lemmas; the step of induction will follow at the end.

We numerate the vertices of G_{n+3} by the integers from 1 to $n + 3$. Then every diagonal d corresponds to an ordered pair (i, j) of integers such that $i < j - 1$. It is convenient to view the diagonal corresponding to (i, j) as the segment $[i, j]$ inside the segment $[1, n+3]$ on the real line. Then Proposition 2.7 may be reformulated as follows:
Proposition 2.10. The facets F_1 and F_2 of $P = A s^n$ do not intersect if and only if the corresponding segments $[i_1, j_1]$ and $[i_2, j_2]$ overlap, that is, $F_1 \cap F_2 = \emptyset \iff i_1 < i_2 < j_1 < j_2$ or $i_2 < i_1 < j_2 < j_1$.

Proof. Follows directly from Proposition 2.10.

Proposition 2.11. If $I = I_1 \cup I_2$ then the subsets $e(I_1)$ and $e(I_2)$ are disjoint.

Proof. Given an integer $m \in [1, n + 3]$ and a set of segments I, we denote by $c_I(m)$ the number of segments in I that have m as one of their endpoints (equivalently, the number of diagonals in I with endpoint m). Then $0 \leq c_I(m) \leq n$.

Proposition 2.12. If $I = I_1 \cup I_2$ then there exists m such that $c_I(m) \leq \frac{n + 1}{2}$.

Proof. Assume the opposite is true. Choose integers $m_1 \in e(I_1)$ and $m_2 \in e(I_2)$. Since $c_I(m_1) > \frac{n + 1}{2}$, $c_I(m_2) > \frac{n + 1}{2}$ and $e(I_1)$, $e(I_2)$ are disjoint by the previous proposition, we obtain that the total number of elements in $e(I)$ is more than $2 + \frac{n + 1}{2} + \frac{n + 1}{2} = n + 3$. A contradiction.

Lemma 2.13. We have that $cc(P_I) \leq 2$ for $|I| > l(n) = \frac{n(n + 2)}{4}$.

Proof. We prove this lemma by induction on n.

First let $n = 3$, and assume that the statement of the lemma fails, i.e. there is a set $I = I_1 \cup I_2 \cup I_3 \cup \ldots$ of diagonals of G_6, $|I| \geq 4$, such that $cc(P_I) \geq 3$. As there are only 3 long diagonals in G_6, there exists a short diagonal $d \in I$; assume $d \in I_1$. Since $cc(P_I) \geq 3$, every $e \in I_2$ and $f \in I_3$ intersect d. Hence, e and f meet at a vertex A of G_6. This contradicts the fact that $e(I_2)$ and $e(I_3)$ are disjoint (see Proposition 2.11).

Now let $n > 3$ and assume that there is a set $I = I_1 \cup I_2 \cup I_3 \cup \ldots$ of diagonals of G_{n+3}, $|I| > \frac{n(n+2)}{4}$, with $cc(P_I) \geq 3$.

If there exists $m \in [1, n + 3]$ with $c_I(m) = 0$, then we may assume that m is the first vertex, and view I as a set of diagonals of G_{n+2} (the segment $[2, n + 3]$ cannot belong to I, since otherwise $cc(P_I) = 1$). As $l(n) > l(n-1)$, the induction assumption finishes the proof of the lemma.

Now $c_I(m) \geq 1$ for every $m \in [1, n + 3]$. Then by the argument similar to that of Proposition 2.12, there exists m with $c_I(m) \leq \frac{n}{2}$. Consider 2 cases: 1. There exists $m_0 \in e(I_k)$ for some $1 \leq k \leq cc(P_I)$ with the smallest value of $c_I(m) \leq \frac{n}{2}$, such that $|I_k| > c_I(m_0)$.

We may assume that one of these m_0 is the first vertex. Removing from I all segments with endpoint 1, we obtain a new set I of segments inside $[2, n + 3]$ (the segment $[2, n + 3]$ cannot belong to I, as otherwise $cc(P_I) \leq 2$). We have:

$$|I| = |I| - c_I(1) > \frac{n(n + 2)}{4} - \frac{n}{3} > \frac{(n - 1)(n + 1)}{4} = l(n - 1).$$

By the induction assumption, $2 \geq cc(P_I) \geq cc(P_I) \geq 3$. A contradiction.
2. For every vertex m_0 with the smallest value of $c_I(m) \geq 1$ we have $|I_k| = c_I(m_0)$, where $m_0 \in e(I_k)$.

Again, we may assume that one of these m_0 is the first vertex $1 \in I_k$. We have $c_I(1) = 1$, as otherwise there are ≥ 2 integer points m inside $[2, n + 3]$ which belong to $e(I_k)$ and have $c_I(m) = 1$ (remember that $|I_k| = c_I(m_0)$).

Without loss of generality we may assume that $k = 1$. Then

$$|I| = 1 + |I_2| + |I_3| + \ldots \leq 1 + (1 + q(n - 1)) \leq 2 + \frac{n^2}{4} \leq \frac{n(n + 2)}{4}.$$

The first inequality above holds since $\bar{I} = I_2 \sqcup I_3 \sqcup \ldots$ is a set of diagonals of G_{n+3} (the segment $[2, n + 3]$ cannot belong to I, because $cc(P_I) \geq 3$), and we can apply to \bar{I} the induction assumption in the proof of the main Theorem 2.9, which gives us $|\bar{I}| \leq 1 + q(n - 1)$. We get a contradiction with the assumption $|I| > \frac{n(n+2)}{4}$. \hfill \qed

Lemma 2.14. Assume that $I = I_1 \sqcup I_2$, $|I| \geq q + 1$, $|I_1| \geq 2$ and $|I_2| \geq 2$. Then there exists another I' such that $I' = I_1' \sqcup I_2'$, $|I'| = 1$ and $|I'| > |I|$.

Proof. The proof is by induction on n. The cases $n = 3, 4, 5$ are checked by a direct computation (see also the tables at the end of this section).

Changing the numeration of vertices of G_{n+3} if necessary, we may assume that the first vertex has the smallest value of $c_I(m)$. Then $c_I(1) \leq \frac{n+1}{2}$ by Proposition 2.12. Without loss of generality we may assume that $1 \not\in e(I_1)$.

We claim that the segment $[2, n + 3]$ does not belong to I. Indeed, in the opposite case $c_I(1) > 0$ (otherwise $cc(P_I) = 1$), $1 \in e(I_2)$, $[2, n + 3] \in I_1$. If $c_I(1) \geq 2$, then there is an integer point $m \in e(I_2)$ inside $[2, n + 3]$ with $c_I(m) = 1 < c_I(1)$, which contradicts the choice of the first vertex. Then $c_I(1) = 1$ and $[2, n + 3] \in I_1$ imply that $|I_2| = c_I(1) = 1$ which contradicts the assumption $|I_2| \geq 2$ in the lemma.

Removing from I all segments with endpoint 1, we obtain a new set \bar{I} of integer segments inside $[2, n + 3]$. Note that

$$(2.3) \quad |\bar{I}| = |I| - c_I(1) \geq |I| - \left[\frac{n+1}{2} \right].$$

We want to apply the induction assumption to the set \bar{I} of integer segments inside $[2, n + 3]$, viewed as diagonals in an $(n + 2)$-gon G_{n+2}. To do this, we need to check the assumptions of the lemma for \bar{I}.

First, we claim that $\bar{I} = \bar{I}_1 \sqcup \bar{I}_2$, i.e. $P_{\bar{I}}$ has exactly two connected components. Indeed, it obviously has at least two components, and the number of components cannot be more than two by Lemma 2.13, since

$$|\bar{I}| \geq |I| - \frac{n+1}{2} \geq q + 1 - \frac{n+1}{2} > \frac{(n+1)^2}{4} - \frac{n+1}{2} = l(n-1).$$

Second, $|\bar{I}_1| = |I_1| \geq 2$ and $|\bar{I}_2| \geq |\bar{I}_2| \geq 1$. If $|\bar{I}_2| = 1$ then we have either $c_I(1) = 1$ or $c_I(1) = 2$. (Indeed, if $c_I(1) = 0$ then $|I_2| = |\bar{I}_2| = 1$, which contradicts the assumption, and $c_I(1)$ cannot be more than 2 as otherwise $c_I(1)$ is not the smallest one.) Therefore, $|I_2| \leq 3$. We also have $|I_1| = |I_1| \leq p(d)$, where $d \in I_2 = \{d\}$, because d intersects every diagonal from I_1. Due to Lemma 2.8, $p(d) \leq q(n - 1) \leq \frac{n^2}{4}$. Hence,

$$|I| = |I_1| + |I_2| \leq p(d) + 3 \leq \frac{n^2}{4} + 3 \leq \frac{(n+1)^2}{4} \leq q(n) + 1 \leq |I|$$
for \(n \geq 6 \). A contradiction. Thus, \(|\tilde{J}_2| \geq 2\).

It remains to check that \(|\tilde{I}| \geq q(n-1)+1 \). If \(n \) is odd, then
\[
|\tilde{I}| \geq |I| - \frac{n+1}{2} \geq \frac{(n+1)^2}{4} + 1 - \frac{n+1}{2} = \frac{(n-1)(n+1)}{4} + 1 = q(n-1)+1.
\]

If \(n \) is even, then
\[
|\tilde{I}| \geq |I| - \frac{n}{2} \geq \frac{n(n+2)}{4} + 1 - \frac{n}{2} = \frac{n^2}{4} + 1 = q(n - 1) + 1.
\]

Now, applying the induction assumption to \(\tilde{I} \), we find a new set of integer segments \(J \) inside \([2, n + 3]\) with \(|J| > |\tilde{I}| \) and \(|\tilde{J}_1| = 1\). Then \(\tilde{J}_1 = \{d\} \), where \(d \) is a diagonal of \(G_{n+2} \). Hence, \(|J| = |\tilde{J}_1| + |\tilde{J}_2| \leq 1 + p(d)\). We have \(p(d) \leq q(n-1) \), and the equality holds if and only if \(d = d_{\text{max}} \) is a maximal diagonal in \(G_{n+2} \). Therefore, we can replace \(\tilde{J} \) by \(J' = J'_1 \cup J'_2 \), where \(J'_1 = \{d_{\text{max}}\} \) and \(J'_2 \) is the set of diagonals in \(G_{n+2} \) which intersect \(d_{\text{max}} \) at its distinguished points. Indeed, we have
\[
|J'| = 1 + q(n-1) \geq 1 + p(d) \geq |\tilde{J}| > |\tilde{I}|.
\]

Choosing \(d_{\text{max}} \) in \(G_{n+3} \) as the diagonal corresponding to the segment \([2, k]\) where \(k = \left\lceil \frac{n+2}{2} \right\rceil \) we observe that it is also a maximal diagonal for \(G_{n+3} \). Now take \(I'_1 = \{d_{\text{max}}\} \) and take \(I'_2 \) to be the union of \(J'_2 \) and all diagonals with endpoint 1 intersecting \(d_{\text{max}} \). Since the number of distinguished points on \(d_{\text{max}} \) is \(\left\lceil \frac{n+1}{2} \right\rceil \), we obtain from (2.4) and (2.3)
\[
|I'| = 1 + |I'_2| = 1 + |J'_2| + \left\lceil \frac{n+1}{2} \right\rceil = |J'| + \left\lceil \frac{n+1}{2} \right\rceil > |\tilde{I}| + \left\lceil \frac{n+1}{2} \right\rceil \geq |I|,
\]
which finishes the inductive argument. \(\square \)

Lemma 2.15. Suppose \(cc(P_I) = 2 \), \(I = I_1 \sqcup I_2 \) and \(|I| \geq q + 1\). Then either \(|I_1| = 1\) or \(|I_2| = 1\).

Proof. Assume the opposite, i.e. \(|I_1| \geq 2\) and \(|I_2| \geq 2\). By Lemma 2.14, we may find another \(I' = I'_1 \sqcup I'_2 \) such that \(|I'_1| = 1\) and \(|I'| > |I| \geq q + 1\). On the other hand \(|I'_1| = 1\) implies that \(I'_1 = \{d\} \) and \(|I'| \leq 1 + p(d) \leq 1 + q\). A contradiction. \(\square \)

Lemma 2.16. Suppose \(cc(P_I) = 2 \), \(I = I_1 \sqcup I_2 \) and \(|I| = q + 1\). Then \(I_1 \) consists of a single maximal diagonal \(d_{\text{max}} \), and \(I_2 \) consists of all diagonals of \(G_{n+3} \) which intersect \(d_{\text{max}} \).

Proof. By Lemma 2.15, we may assume that \(I_1 \) consists of a single diagonal \(d \). Then
\[
1 + q = |I| = |I_1| + |I_2| \leq 1 + p(d) \leq 1 + q,
\]
which implies that \(p(d) = q \) and \(|I_2| = p(d)|. \(\square \)

Lemma 2.17. Suppose \(|I| > q + 1\). Then \(cc(P_I) = 1\).

Proof. We have \(|I| > q + 1 \geq l(n)\). Hence, \(cc(P_I) \leq 2 \) by Lemma 2.13. Assume \(cc(P_I) = 2 \) and \(I = I_1 \sqcup I_2 \). Then \(|I_1| = 1\) by Lemma 2.15, i.e. \(I_1 = \{d\} \) and \(|I| \leq 1 + p(d) \leq 1 + q\). This contradicts the assumption \(|I| > q + 1\).
\(\square \)
Now we can finish the induction in the proof of Theorem 2.9. From Corollary 1.4 and Lemma 2.16 we obtain that the number \(\beta^{-q,2(q+1)}(P) \) is equal to the number of maximal diagonals in \(G_n+3 \). The latter equals \(n+3 \) when \(n \) is even, and \(\frac{n+3}{2} \) when \(n \) is odd. The fact that \(\beta^{-i,2(i+1)}(P) \) vanishes for \(i \geq q+1 \) follows from Corollary 1.4 and Lemma 2.17.

We also calculate the bigraded Betti numbers of \(As^n \) for \(n \leq 5 \) using software package Macaulay 2, see [5].

The tables below have \(n-1 \) rows and \(m-n-1 \) columns. The number in the intersection of the \(k \)th row and the \(l \)th column is \(\beta^{-l,2(l+k)}(As^n) \), where \(1 \leq l \leq m-n-1 \) and \(2 \leq l+k \leq m-2 \). The other bigraded Betti numbers are zero except for \(\beta^{0,0}(As^n) = \beta^{-(m-n),2m}(As^n) = 1 \), see [3, Ch.8]. The bigraded Betti numbers given by Theorem 2.9 are printed in bold.

1. \(n = 2, m = 5 \).

\[
\begin{array}{cccccc}
5 & 5 & 5 & 5 & 5 & 5 \\
\end{array}
\]

2. \(n = 3, m = 9 \).

\[
\begin{array}{cccccc}
15 & 35 & 24 & 3 & 0 & 0 \\
0 & 3 & 24 & 35 & 15 & 0 \\
\end{array}
\]

3. \(n = 4, m = 14 \).

\[
\begin{array}{cccccccc}
35 & 140 & 217 & 154 & 49 & 7 & 0 & 0 \\
0 & 28 & 266 & 784 & 1094 & 784 & 266 & 28 & 0 \\
0 & 0 & 0 & 7 & 49 & 154 & 217 & 140 & 35 \\
\end{array}
\]

4. \(n = 5, m = 20 \).

\[
\begin{array}{cccccccc}
70 & 420 & 1089 & 1544 & 1300 & 680 & 226 & 44 & 4 & 0 & 0 \\
0 & 144 & 1796 & 8332 & 20924 & 32309 & 32184 & 20798 & 8480 & 2053 & 264 \\
0 & 0 & 12 & 264 & 2053 & 8480 & 20798 & 32184 & 32309 & 20924 & 8332 \\
0 & 0 & 0 & 0 & 0 & 0 & 4 & 44 & 226 & 680 & 1300 & 1544 \\
\end{array}
\]

The topology of moment-angle manifolds \(Z_P \) corresponding to associahedra is far from being well understood even in the case when \(P \) is 3-dimensional. In this case the cohomology ring \(H^*(Z_P) \) has nontrivial triple Massey products by a result of Baskakov (see [3, §8.4] or [6, §5.3]), which implies that \(Z_P \) is not formal in the sense of rational homotopy theory.

3. Truncation polytopes

Let \(P \) be a simple \(n \)-polytope and \(v \in P \) its vertex. Choose a hyperplane \(H \) such that \(H \) separates \(v \) from the other vertices and \(v \) belongs to the positive halfspace \(H_\geq \) determined by \(H \). Then \(P \cap H_\geq \) is an \(n \)-simplex, and \(P \cap H_\leq \) is a simple polytope, which we refer to as a vertex cut of \(P \). When the choice of the cut vertex is clear or irrelevant we use the notation \(vc(P) \).

We also use the notation \(vc^k(P) \) for a polytope obtained from \(P \) by iterating the vertex cut operation \(k \) times.

As an example of this procedure, we consider the polytope \(vc^k(\Delta^n) \), where \(\Delta^n \) is an \(n \)-simplex, \(n \geq 2 \). We refer to \(vc^k(\Delta^n) \) as a truncation polytope; it has \(m = n + k + 1 \) facets. Note that the combinatorial type of \(vc^k(\Delta^n) \) depends on the choice of the cut vertices if \(k \geq 3 \), however we shall not reflect this in the notation.
Simplicial polytopes dual to $vc^k(\Delta^n)$ are known as stacked polytopes. They can be obtained from Δ^n by iteratively adding pyramids over facets.

The Betti numbers for stacked polytopes were calculated in [10], but the grading used there was different. We include this result below, with a proof that uses a slightly different argument and our ‘topological’ grading and notation:

Theorem 3.1. Let $P = vc^k(\Delta^n)$ be a truncation polytope. Then for $n \geq 3$ the bigraded Betti numbers are given by the following formulæ:

$$
\beta^{-i,2(i+1)}(P) = i \binom{k+1}{i+1}, \\
\beta^{-i,2(i+n-1)}(P) = (k+1-i) \binom{k+1}{k+2-i}, \\
\beta^{-i,2j}(P) = 0, \text{ for } i+1 < j < i+n-1.
$$

The other bigraded Betti numbers are also zero, except for $\beta^0,0(P) = \beta^{-m-n,2m}(P) = 1$.

Remark. The first of the above formulæ was proved in [4] combinatorially.

Proof. We start by analysing the behavior of bigraded Betti numbers under a single vertex cut. Let P be an arbitrary simple polytope and $P' = vc(P)$. We denote by Q and Q' the dual simplicial polytopes respectively, and denote by K and K' their boundary simplicial complexes. Then Q' is obtained by adding a pyramid with vertex v over a facet F of Q. We also denote by V, V' and $V(F)$ the vertex sets of Q, Q' and F respectively, so that $V' = V \cup v$.

The proof of the first formula is based on the following lemma:

Lemma 3.2. Let P be a simple n-polytope with m facets and $P' = vc(P)$. Then

$$
\beta^{-i,2(i+1)}(P') = \binom{m-n}{i} + \beta^{-i,2(i-1)}(P) + \beta^{-i,2(i+1)}(P).
$$

Proof. Applying Theorem 1.3 for $j = i+1$, we obtain:

$$
\beta^{-i,2(i+1)}(P') = \sum_{W \subseteq V' : |W| = i+1} \dim \tilde{H}_0(K'_W) = \sum_{W \subseteq V', v \in W : |W| = i+1} \dim \tilde{H}_0(K'_W) + \sum_{W \subseteq V', v \notin W : |W| = i+1} \dim \tilde{H}_0(K'_W).
$$

Sum (3.2) above is $\beta^{-i,2(i+1)}(P)$ by Theorem 1.3.

For sum (3.1) we have: in W there are i ‘old’ vertices and one new vertex v. Therefore, the number of connected components of K'_W (which is by 1 greater than the dimension of $\tilde{H}_0(K'_W)$) either remains the same (if $W \cap F \neq \emptyset$) or increases by 1 (if $W \cap F = \emptyset$, in which case the new component is the new vertex v). The number of subsets W of the latter type is equal to the
number of ways to choose i vertices from the $m - n$ ‘old’ vertices that do not lie in F. Sum (3.1) is therefore given by

$$\sum_{W \subset V, |W| = i} \dim \tilde{H}_0(K_W) + \binom{m - n}{i} = \beta^{-(i-1),2}(P) + \binom{m - n}{i},$$

where we used Theorem 1.3 again. □

Now the first formula of Theorem 3.1 follows by induction on the number of cut vertices, using the fact that $\beta^{-(i-1),2(i+1)}(\Delta^n) = 0$ for all i and Lemma 3.2.

The second formula follows from the bigraded Poincare duality, see Theorem 1.2.

The proof of the third formula relies on the following lemma.

Lemma 3.3. Let P be a truncation polytope, K the boundary complex of the dual simplicial polytope, V the vertex set of K, and W a nonempty proper subset of V. Then

$$\tilde{H}_i(K_W) = 0 \quad \text{for} \quad i \neq 0, n - 2.$$

Proof. The proof is by induction on the number $m = |V|$ of vertices of K. If $m = n + 1$, then P is an n-simplex, and K_W is contractible for every proper subset $W \subset V$.

To make the induction step we consider $V' = V \cup v$ and $V(F)$ as in the beginning of the proof of Theorem 3.1. Assume the statement is proved for V and let W be a proper subset of V'.

We consider the following 5 cases.

Case 1: $v \in W$, $W \cap V(F) \neq \emptyset$.

If $V(F) \subset W$, then K'_W is a subdivision of $K_W - \{v\}$. It follows that $\tilde{H}_i(K'_W) \simeq \tilde{H}_i(K_W - \{v\})$.

If $W \cap V(F) \neq V(F)$, then we have

$$K'_W = K_W - \{v\} \cup K'_{W \cap V(F) \cup \{v\}}, \quad K_W - \{v\} \cap K'_{W \cap V(F) \cup \{v\}} = K_W \cap V(F),$$

and both $K_W \cap V(F)$ and $K'_{W \cap V(F) \cup \{v\}}$ are contractible. From the Mayer–Vietoris exact sequence we again obtain $\tilde{H}_i(K'_W) \cong \tilde{H}_i(K_W - \{v\})$.

Case 2: $v \in W$, $W \cap V(F) = \emptyset$.

In this case it is easy to see that $K'_W = K_W - \{v\} \sqcup \{v\}$. It follows that

$$\tilde{H}_i(K'_W) \cong \begin{cases} \tilde{H}_i(K_W - \{v\}) \oplus k, & \text{for} \ i = 0; \\ \tilde{H}_i(K_W - \{v\}), & \text{for} \ i > 0. \end{cases}$$

Case 3: $W = V' - \{v\} = V$.

Then K'_W is a triangulated $(n - 1)$-disk and therefore contractible.

Case 4: $v \notin W$, $V(F) \subset W$, $W \neq V$.

We have

$$K_W = K'_W \cup F, \quad K'_W \cap F = \partial F,$$
where ∂F is the boundary of the facet F. Since ∂F is a triangulated $(n-2)$-sphere and F is a triangulated $(n-1)$-disk, the Mayer–Vietoris homology sequence implies that

$$\tilde{H}_i(K'_W) \cong \begin{cases} \tilde{H}_i(K_W), & \text{for } i < n-2; \\ \tilde{H}_i(K_W) \oplus k, & \text{for } i = n-2. \end{cases}$$

Case 5: $v \notin W$, $V(F) \subset W$. In this case we have $K'_W \cong K_W$.

In all cases we obtain

$$\tilde{H}_i(K'_W) \cong \tilde{H}_i(K_W - \{v\}) = 0 \quad \text{for } 0 < i < n-2,$$

which finishes the proof by induction. □

Now the third formula of Theorem 3.1 follows from Theorem 1.3 and Lemma 3.3.

The last statement of Theorem 3.1 follows from [3, Cor. 8.19]. □

For the sake of completeness we include the calculation of the bigraded Betti numbers in the case $n = 2$, that is, when P is a polygon.

Proposition 3.4. If $P = vc^k(\Delta^2)$ is an $(k+3)$-gon, then

$$\beta^{-i,2(i+1)}(P) = i \left(\frac{k+1}{i+1} \right) + (k+1-i) \left(\frac{k+1}{k+2-i} \right),$$
$$\beta^{0,0}(P) = \beta^{-(k+1),2(k+3)}(P) = 1,$$
$$\beta^{-i,2j}(P) = 0, \quad \text{otherwise.}$$

Proof. This calculation was done in [3, Example 8.21]. It can be also obtained by a Mayer–Vietoris argument as in the proof of Theorem 3.1. □

Corollary 3.5. The bigraded Betti numbers of truncation polytopes $P = vc^k(\Delta^n)$ depend only on the dimension and the number of facets of P and do not depend on its combinatorial type. Moreover the numbers $\beta^{-i,2(i+1)}$ do not depend on the dimension n.

The topological type of the corresponding moment-angle manifold Z_P is described as follows:

Theorem 3.6 (see [1, Theorem 6.3]). Let $P = vc^k(\Delta^n)$ be a truncation polytope. Then the corresponding moment-angle manifold Z_P is diffeomorphic to the connected sum of sphere products:

$$\bigoplus_{j=1}^{k} \left(S^{j+2} \times S^{2n+k-j-1} \right)^{\#j^{(k+1)}},$$

where $X^{\#k}$ denotes the connected sum of k copies of X.

It is easy to see that the Betti numbers of the connected sum above agree with the bigraded Betti numbers of P, see (1.3).
References

[1] Frédéric Bosio and Laurent Meersseman. \textit{Real quadrics in }\mathbb{C}^n, complex manifolds and convex polytopes. Acta Math. 197 (2006), no. 1, 53–127.

[2] Victor M. Buchstaber. \textit{Lectures on toric topology.} In \textit{Proceedings of Toric Topology Workshop KAIST 2008.} Trends in Math. 10, no. 1. Information Center for Mathematical Sciences, KAIST, 2008, pp. 1–64.

[3] Victor M. Buchstaber and Taras E. Panov. \textit{Torus Actions in Topology and Combinatorics} (in Russian). MCCME, Moscow, 2004, 272 pages.

[4] Suyoung Choi and Jang Soo Kim. \textit{A combinatorial proof of a formula for Betti numbers of a stacked polytope.} Electron. J. Combin. 17 (2010), no. 1, Research Paper 9, 8 pp.; arXiv:math.CO/0902.2444.

[5] \textit{Macaulay 2.} A software system devoted to supporting research in algebraic geometry and commutative algebra. Available at \url{http://www.math.uiuc.edu/Macaulay2/}

[6] Taras Panov. \textit{Cohomology of face rings, and torus actions,} in “Surveys in Contemporary Mathematics”. London Math. Soc. Lecture Note Series, vol. 347, Cambridge, U.K., 2008, pp. 165–201; arXiv:math.AT/0506526.

[7] Taras Panov. \textit{Moment–angle manifolds and complexes.} In \textit{Proceedings of Toric Topology Workshop KAIST 2010.} Trends in Math. 12, no. 1. Information Center for Mathematical Sciences, KAIST, 2010, pp. 43–69.

[8] Richard P. Stanley. \textit{Combinatorics and Commutative Algebra,} second edition. Progr. in Math. 41. Birkhäuser, Boston, 1996.

[9] James D. Stasheff. \textit{Homotopy associativity of H-spaces. I.} Transactions Amer. Math. Soc. 108 (1963), 275–292.

[10] Naoki Terai and Takayuki Hibi. \textit{Computation of Betti numbers of monomial ideals associated with stacked polytopes.} Manuscripta Math., 92(4): 447–453, 1997.

Department of Geometry and Topology, Faculty of Mathematics and Mechanics, Moscow State University, Leninskiye Gory, Moscow 119992, Russia
E-mail address: iylim@mail.ru