 Phytochemical Properties and Antimicrobial Activities of Some Important Medicinal Plants of Dhemaji District of Assam

Konwar Maya¹, Das Priyanka², Sarma Manash Pratim², Bhagawati Prasenjit³

¹Department of Botany, Moridhal College, Dhemaji 787057, Assam, India; ²Department of Biotechnology, Assam downtown University, Panikhaiti, Guwahati 781026, Assam, India; ³Department of Botany, Assam Downtown University, Panikhaiti, Guwahati 781026, Assam, India.

ABSTRACT

Background: Assam along with the other North Eastern States i.e., Manipur, Mizoram, Sikkim, Tripura, Arunachal Pradesh, Meghalaya and Nagaland contribute 50% of India’s entire plant biodiversity. Phytochemicals are bioactive chemical compounds obtained from the plants and are widely used as traditional herbal medicine. These herbal medicines are used by the local people to cure various diseases.

Objectives: The objective of the present study is the phytochemical as well as antimicrobial activity of ten medicinal plants i.e., Vitex negundo L., Oldenlandia corymbosa L., Centella asiatica (L.) Urb., Costus speciosus (J. Koenig) Sm., Ocimum sanctum L., Piper nigrum L., Mimusops pudica L., Phlogacanthus thyrsiflorus Nees., Andrographis paniculata (Burm. F) Nees and Ipomoea aquatica Forssk.

Methodology: Taxonomy of the studied plants were confirmed using the existing tools. Plant extracts were subjected to phytochemical and antimicrobial testing based on the standard protocol previously described.

Results: It was found that steroids were present in the leaves of Costus speciosus, Piper nigrum, Mimusops pudica, Ipomoea aquatica. Terpenoids were most commonly observed in the leaves of Oldenlandia corymbosa, Piper nigrum, Phlogacanthus thyrsiflorus, Andrographis paniculata. The flavonoids were absent in the leaves of Ocimum sanctum. There were mixed results for the presence of the phytochemicals such as tannins, glycosides, coumarins etc. The antimicrobial study was carried out by the disc diffusion method against the human pathogenic bacteria. It was found that the selected medicinal plants are good sources of antimicrobial against pathogens like Salmonella typhi, E. coli and Klebsiella pneumonia.

Conclusion: It was concluded that the plants studied were rich in phytochemicals with significant pharmacological and medicinal properties.

Key Words: Phytochemicals, E. coli, Oldenlandia corymbosa L, Ipomoea aquatica Forssk, antimicrobial, Assam

INTRODUCTION

Phytochemicals are chemicals that are present naturally in plants in the form of organic compounds. These phytochemicals synthesized in plant parts are used up by the local people for the healing of certain disorders. Primary metabolites are essential for growth and development. Secondary metabolites produced by plants are often colourful and flavoured compounds. In recent years, secondary plant metabolites i.e. phytochemicals have been extensively investigated as a source of medicinal agents. It’s a standard process to look for the presence of newer drugs from natural products derived from plant species using pharmacological activity studies. These are synthesized in almost all parts of the plant like roots, tubers, stems, leaves, flowers, barks, fruits, seeds etc. These organic compounds provide definite physiological action on the human body and these bioactive substances include tannins, alkaloids, carbohydrates, terpenoids, steroids, flavonoids, coumarins, proteins and glycosides.

In the present work phytochemical analysis and antimicrobial activity were carried out in ten plants i.e., Vitex negundo, Oldenlandia corymbosa, Centella asiatica, Costus speciosus, Ocimum sanctum, Piper nigrum, Mimusops pudica, Phlogacanthus thyrsiflorus, Andrographis paniculata and Ipomoea aquatica of Dhemaji district of Assam.The scientific names, diagram, distribution and medicinal properties of the studied plants has been tabulated below (Table 1).
Details of the studied plants:

Table 1: Features of selected plants

Serial no	Plants Scientific name/ Common Name	Distribution	Medicinal use	
1	Vitex negundo L / Pachatia	Assam, particularly in Lakhimpur and Dhemaji district.	Leaves are used for the treatment of eye disease, ulcers, fever and jaundice.	
2	Oldenlandia corymbosa L / Bonjaluk	Assam, particularly in the Dhemaji district.	Gastric irritation, jaundice, nervous depression and boils.	
3	Centella asiatica (L.) Urb/Bormanimoni	Almost all plains districts of Assam.	Wounds, skin irritations, headache, stomach trouble.	
4	Costus speciosus (J. Koenig) Sm / Jomlakhuti	Occurs throughout the foothills of Arunachal Pradesh and Dhemaji District.	Leaves and stem sareuses in diarrhoea, wounds, jaundice, leprosy, asthma, Intestinal worms.	
5	Ocimum sanctum L / Tulsi	Almost all districts of Assam.	Malaria, periodic fever, asthma, cough, pyorrhea, insect bites, skin disorders, eye disorder.	
6	Piper nigrum L / Jaluk	Plains of Assam	Fruits used in cough, tonsillitis.	
Serial no	Plants Scientific name/ Common Name	Picture	Distribution	Medicinal use
-----------	-------------------------------------	---------	--------------	---------------
7	*Mimusapudica*./Nila-jibon		Dhemaji,Kamrup district.	Piles, ulcers, wounds. Dysentery, fever.
8	*Phlogacanthus thyrsiflorus* Nees/Teetaphool		Lakhimpur, Dhemaji district.	Skin diseases.
9	*Andrographis paniculata* (Burm. F) Nees/ Sirata		Kamrup, Lakhimpur district.	Diabetes, dysentery, fever.
10	*Ipomoea aquatic* Forssk/Kolmou		Almost all districts of Assam.	Flower juice is applied in the early morning around the eye to cure the black ring around the eyes.

MATERIALS AND METHODS

Collection of Plants Sample

Fresh plant parts of *Vitex negundo*, *Oldenlandiacorymbosa*, *Centella asiatica*, *Costus speciosus*, *Ocimum sanctum*, *Piper nigrum*, *Mimusapudica*, *Phlogacanthus thyrsiflorus*, *Andrographispaniculata*, *Ipomoea aquatica* were collected from different villages of Dhemaji district of Assam. The plant materials were identified using taxonomic tools. The plant materials were washed under running water, shaded and dried until all the water molecules evaporated and plants become well dried for grinding. After completion of the drying process, the plant materials were ground in a grinder and fine powder was transferred into the sealed container with proper labeling. 50 grams of powder of plant sample was taken to extract with an adequate amount of ethanol (4:1) using soxhlet apparatus. The liquid part is stored at 4°C in a separate container.
Chemicals and reagents
Distilled water, methanol, Di-ethyl ether hexane, Sodium phosphate buffer, DNS, Starch, DPPH, Ethanol, MH agar, Sodium acetate, sodium hydroxide, hydrogen peroxide, 95% ethanol, 1% lead acetate, hydrochloric acid, sulphuric acid, sodium carbonate, Chloroform [Jaldhara and Co.].

Glassware and plastic wares:
Beaker, conical flask, test tubes, measuring cylinder, Pipette, Petri dishes, test tube stand, plastic tray, micropipette tips.

Equipment:
Some of the equipment utilized for the study included-AN-AMED Electronic Balance, spectrophotometer, pipettes, soxhlet apparatus, micropipettes, centrifuge, Hot plate water bath, Laminar air flow, -70°C Temperature Freezer were the major equipment used in the study.

Preparation of plant extracts:
Water extract:
The water extraction was done using the standard method, where ground plant material of 5gm weighed was crushed in 100ml of sterile distilled water. The mixture was boiled at50-60°C for 30 minutes on the water bath and it was filtered through what-man No.1 filter paper. Then the filtrate was centrifuged at 2500 rpm for 15 minutes. The extract was collected, labelled and stored in sterile bottles at5°C for further different experimental use.

Ethanol extract:
Ground samples (5gm) were extracted with 100 ml of 95% ethanol on a water bath at 70°C for 2 hours. The extracted samples were centrifuged and the supernatant was transferred into 50 ml volumetric flask and adjust volume to 50 ml with 95% ethanol. The sample was stored at -4°C.

Qualitative analysis of phytochemicals:
Chemical tests were carried by using aqueous and ethanol extracts to identify various phytochemicals using standard methods 47. The qualitative analysis for the extracts for the presence of chemical constituents was performed by various chemical tests like Steroids (Salkowski test), Terpenoids (Salkowski test), Flavonoids (Alkaline reagent test, sulfuric acid test, Lead acetate test), Tannins (Lead acetate test), Glycosides (Keller kiliani test), Coumarins (NaCl test).

Antimicrobial activity of plant extracts:
Antimicrobial tests using the leaf extracts of V .negundo, O.corymbosa, C.asiatica, C.speciosus, O. sanctum, P.nigrum, M.pudica, P.thrysiflorus, A.paniculata, L.aquatica were carried out against the pure culture of Salmonellatyphi, Klebsiella species and Escherichia coli. Bacteria were cultured overnight at 37°C for 72 hours. The antibacterial activity of the leaf was determined using the good diffusion method. The bacterial strain was spreading on Muller Hinton Media with the help of the “L” rod. Wells (5mm diameter) were punched in the agar in the petri dish. Then the concentrated leaf extracts were added to the well. The plates were inoculated for 48 hours and the bacterial was assessed by measuring the diameter of the zone of inhibition in mm.

RESULTS

Phytochemical analysis
The phytochemical characteristics of ten medicinal plants tested were summarized in the table-2. The results revealed the presence of medically active compounds in the ten plants studied. The leaves of V . negundo have positive results for the test flavonoid, tannin, glycosides, coumarin. For O.corymbosa, we have found positive results for terpenoid, flavonoid, tannin, coumarin. In the case of C.asiatica, we have found positive results for terpenoid, flavonoid, tannin, coumarin. C.speciosus, showed a positive result for steroid, flavonoid, tannin, glycoside. O.sanctum, have positive results for tannin, glycoside, coumarin. P.nigrum, have a positive result for the tested steroid, tannin, terpenoid, flavonoid, glycoside. M.pudica have found positive result for steroid, flavonoid, tannin, coumarin, P.thrysiflorus showed positive results for terpenoid, flavonoid, tannin and glycoside. A.paniculata have positive result for terpenoid, tannin, glycoside, a flavonoid. The plantL.aquaticashowed positive result for steroid, flavonoid and tannins.

Antimicrobial activity
Antimicrobial activity for the leaves of V .negundo, O.corymbosa, C.asiatica, C.speciosus, O. sanctum, P. nigrum, M. pudica, P. thrysiflorus, A. paniculata, L.aquatica against Salmonella typhi, E. coli and Klebsiella species are given below. (Table 3).

DISCUSSION
Analysis of plant extract revealed the presence of phytochemicals like steroids, terpinoids, flavonoids, tannins, glycosides, carbohydrates, proteins and amino acids. The important thing is that except for O. sanctum all plant samples contain one common and abundant secondary metabolite flavonoid. The literature survey of a previous study by Yadavet al. revealed the presence of phytochemicals in different solvents extracts and also find total phenolic and flavonoid contents of the selected medicinal plants8. Worked on phytochemical evaluation and determination of the antimicrobial activity of the plants like Ricinuscom-
Table 2: Phytochemical constituents of ten medicinal plants studied.

PLANTS	AQUEOUS EXTRACT	STEROIDS	TERPENOIDS	FLAVONOIDS	TANNINS	GLYCOSIDES	COUMARINS
Vitex negundo leaves	-	+	+	-	+	+	+
Oldenlandia corymbosa leaves	-	+	+	-	+	+	+
Centella asiatica leaves	-	-	+	+	-	-	+
Costus speciosus leaves	+	-	+	+	+	+	+
Ocimum sanctum leaves	+	-	-	-	+	+	+
Piper nigrum leaves	+	+	-	-	+	+	+
Mimusapudica leaves	+	-	+	-	+	+	+
Phlogacanthus thyrsiflorus leaves	-	+	-	+	-	+	-
Andrographis paniculata leaves	-	+	+	-	+	+	-
Ipomoea Aquatica leaves	+	-	+	+	+	+	-

Table 3: Antimicrobial activity for ten medicinal plants

Plants name	Aqueous extract	Bacterial pathogen	Diameter of zone of inhibition
Vitex negundo leaves	Leaves	Salmonella typhi	1.6cm
Oldenlandia corymbosa leaves	Leaves	E.coli	0.9cm
Centella asiatica leaves	Leaves	Klebsiella species	1.1cm
Costus speciosus leaves	Leaves	E.coli	0.2cm
Ocimum sanctum leaves	Leaves	E.coli	0.4cm
Piper nigrum leaves	Leaves	E.coli	0.2cm
Mimusapudica leaves	Leaves	Klebsiellapnuemonia	0.7cm
Phlogacanthus thyrsiflorus leaves	Leaves	E.coli	0.3cm
Andrographis paniculata leaves	Leaves	E.coli	0.3cm
Ipomoea Aquatica leaves	Leaves	E.coli	0.3cm

munis (leaves, stem, roots), Ipomoea Aquatica (stem) had shown antimicrobial activity against E.coli. Xanthium strumarium (leaves, roots) and Mentha piperita (stem) had shown strong antimicrobial activity against Staphylococcus aureus. Oldenlandia corymbosa had not shown antimicrobial activity against Staphylococcus aureus and E. coli. In the current study leaves of Oldenlandia corymbosa and Ipomoea Aquatica had shown antimicrobial activity. Previous work on the phytochemical analysis of four selected medicinal plants i.e., Trigonella foenum – graecum, Syzygium cumini, Terminalia chebula and Salvadorapersica revealed the presence of phytochemicals, flavonoid, Saponnins and tannins in all of them except Ocimum sanctum, which did not contain flavonoids. Previous work by Sharma et al. on five medicinal plants such as Tinosporacordifolia, Bryophyllum pinnatum, Terminalia bellerica, Xanthium strumarium and Oldenlandia corymbosa revealed that Glycosides were absent from the leaves of Tinosporacordifolia, steroids and terpenoids were absent in the leaves of Xanthium strumarium. Alkaloids were absent in the leaves of Terminalia bellerica and also in the leaves of Tinosporacordifolia. Tannins bind to proline-rich protein and thereby interfere in the protein synthesis. Hydroxylated phenolic substances, Flavonoids are manufacture by plants in response to microbial infections and they are effective antimicrobial substances against a wide range of microorganisms in vitro. Their activity is due to their...
ability to complex with extracellular and soluble protein and to complex with bacterial cell wall15. They are effective antioxidants and show strong anticancer activities also 14-16. Plant extracts were also containing saponins, which are known to produce inhibitory effects on inflammation17. Steroids have been reported to have antibacterial properties and they are very important compounds especially due to their relationship with compounds such as sex hormones18. Alkaloids have been associated with medicinal uses for centuries and one of their common biological properties is their cytotoxicity 19. Glycosides are known to lower blood pressure according to many reports20. The phenolic compounds are one of the largest and most ubiquitous groups of plant metabolites21.

CONCLUSION

Medicinal plants have had considerable global interest in recent years. The chosen ten medicinal plants are the source of the secondary metabolites i.e. steroidal, terpenoidal, flavonoids, tannins, glycosides and coumarins. Medicinal plants play an important role in treating various diseases. Due to the presence of secondary metabolites in medicinal plants they can activate in anti-diuretic, anti-inflammatory, anti-cancer, anti-malarial, anti-bacterial, anti-fungal, anti-diabetic and hepato-protective activity.

Nowadays, researchers can develop drugs from selected medicinal plants. But there are much more issues and challenges which have to be solved very effectively for these medicinal plants having antibacterial and phytochemical properties to promote them to the field of application. Since these medicinal plants are used by the traditional people for a long back so proper isolation, identification and mode of action of individual phenolic, as well as other biologically active compounds, would surely open the door for developing drugs from these plant resources. Finally, we will also have to give importance to the proper conservation of these medicinal plant species.

ACKNOWLEDGEMENT

The author acknowledges the immense help received from the scholars whose articles are cited and included in references of this manuscript. The authors were also grateful to authors/ editors/ publishers of all those articles, journals and books from where the literature for this article has been reviewed and discusses.

Conflicts of interest: There is no conflict of interest.

Author’s Contribution

MK: Did the wet lab experiments

PD: Did the survey component

MPS: Designed the study

PB: Expertise in taxonomy and drafting the paper

Financial Disclosure: None

REFERENCES

1. Solomon CU, Arukwe UI, Onuoha I. Preliminary phytochemical screening of different solvent extracts of stem bark and roots of Dennettatricetata G. Baker. Asian J Plant Sci2013;3(3):10-3.
2. Okoli RI, Turay AA, Mensah JK, Aigbe AO. Phytochemical and antimicrobial properties of four herbs from Edo State, Nigeria. Rep Opinion2009;1(5):67-73.
3. Charles A, Stanly AL, Joseph M, Ramani VA. GC-MS analysis of bioactive components on the bark extract of Alseodaphnese-mecarpifolia Nees (Lauraceae). Asian J Plant Sci2011;1(4):25-32.
4. Kumar U, Kumar B, Bhandari A, Kumar Y. Phytochemical investigation and comparison of antimicrobial screening of clove and cardamom. Int J Pharm Sci Res2010;1(12):138-47.
5. Dhanasekaran M, Abraham GC, Mohan S. Preliminary phytochemical and histochemical investigation on Kigeliaapetata DC. Int J Pharm Sci Res2014;5(7):413-9.
6. Bargah RK. The preliminary test of phytochemical screening of crude ethanolic and aqueous extract of Moringapterygosperma-Gaertn. J PharmacognPhytochem2015;4(1):7-9.
7. Yadav M, Chatterji S, Gupta SK, Watal G. Preliminary phytochemical screening of six medicinal plants used in traditional medicine. Int J Pharm Sci Res2014;6(5):539-42.
8. Yadav RNS, Agarwala M. Phytochemical analysis of some medicinal plants. J Phyto2011;3(12):10-14.
9. Bhattacharjee M, Devi J, Elanbam CD, Talukdar N, Kalita PP, Neog K, et al. Phytochemical analysis of traditional medicinal plants and their antimicrobial activity: An experience from northeast India. J Pharm Res2016;1(1):1-7.
10. Bansode TS, Salalkar BK. Phytochemical analysis of some selected Indian medicinal plants. Int J Pharm Bio Sci2015;6(1):550-6.
11. Sharma AK, Upadhyyay SK, Chauhan SK, Sharma S. Phytochemical analysis of some medicinal plants of district Saharanpur. Int J Pharm Chem2017;7(3):54-7.
12. Shimada T. Salivary proteins as a defence against dietary tannins. JChemEcol2006;32(6):1149-63.
13. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev1999;12(4):564-82.
14. Salah N, Miller NJ, Paganta G, Tijburg L, Bolwell GP, Rice-Evans C. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch BiochemBiophys1995;322(2):339-46.
15. Benavente-Garcia O, Castillo J, Marin FR, Ortuno A, Del Rio JA. Uses and properties of citrus flavonoids. J Agric Food Chem1997;45(12):4505-15.
16. Okwu DE. Phytochemicals and vitamin content of indigenous spices of South Eastern Nigeria. J Sustain Agric Environ2004;6(1):30-7.
17. Just MJ, Recio MC, Giner RM, Cuéllar MJ, Mañez S, Bilia AR, Rios JL. Anti-inflammatory activity of unusual lupanesaponins from Bupleurumfruticosum. Planta med1998;64(05):404-7.
18. Okwu DE. Evaluation of chemical composition of medicinal plants belonging to Euphorbiaceae. Pak Vet J2001;14:160-2.
19. Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA. Deletion of cyclin-dependent kinase –4 inhibitor gene in multiple human cancers. Nature1994; 368(6473):753-6.
20. Nyarko AA, Addy ME. Effect of aqueous extract of Adenia acissampeloides on blood pressure and serum analytes of hypertensive patients. Phytother Res 1990;4(1):25-8.
21. Singh R, Singh S, Kumar S, Arora S. Evaluation of antioxidant potential of ethyl acetate extract/fractions of Acacia auriculiformis A Cunn. Food Chem Toxicol2007;45(7):1216-23.