REVIEW

Research advances in plant–insect molecular interaction
[version 1; peer review: 2 approved]

Chun-Yu Chen¹,², Ying-Bo Mao¹

¹Chinese Academy of Sciences (CAS) Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
²National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China

Abstract
Acute and precise signal perception and transduction are essential for plant defense against insects. Insect elicitors—that is, the biologically active molecules from insects' oral secretion (which contains regurgitant and saliva), frass, ovipositional fluids, and the endosymbionts—are recognized by plants and subsequently induce a local or systematic defense response. On the other hand, insects secrete various types of effectors to interfere with plant defense at multiple levels for better adaptation. Jasmonate is a main regulator involved in plant defense against insects and integrates with multiple pathways to make up the intricate defense network. Jasmonate signaling is strictly regulated in plants to avoid the hypersensitive defense response and seems to be vulnerable to assault by insect effectors at the same time. Here, we summarize recently identified elicitors, effectors, and their target proteins in plants and discuss their underlying molecular mechanisms.

Keywords
Plant defense, Insect herbivory, Jasmonate (JA), Elicitor, Effector
Corresponding author: Ying-Bo Mao (ybmao@sibs.ac.cn)

Author roles: Chen CY: Writing – Original Draft Preparation; Mao YB: Writing – Original Draft Preparation

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by Ministry of Science and Technology of China grant 2016YFA0500803, the Ministry of Agriculture of China grant 2016ZX08009001-009, National Natural Sciences of China grants 31772177 and 31788103, and Chinese Academy of Sciences grant QYZDY-SSW-SMC026.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2020 Chen CY and Mao YB. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Chen CY and Mao YB. Research advances in plant–insect molecular interaction [version 1; peer review: 2 approved] F1000Research 2020, 9(F1000 Faculty Rev):198 (https://doi.org/10.12688/f1000research.21502.1)

First published: 19 Mar 2020, 9(F1000 Faculty Rev):198 (https://doi.org/10.12688/f1000research.21502.1)
Introduction
There are about 1 million insects and over 300,000 plants on our planet, and plant–insect interactions are the driving force of biodiversity. With long-term co-evolution, plants and insects have developed sophisticated mechanisms for adaptation. In general, plants can recognize herbivore/damage/microbe-associated molecular patterns (HAMPs/DAMPs/MAMPs) and make the right defense. The early defense responses contain depolarization of the plasma transmembrane potential, changes of cytosolic Ca^{2+}, reactive oxygen species (ROS) burst, and mitogen-activated protein kinase (MAPK). Most of these reactions are able to activate jasmonate (JA)-mediated plant defense. JA is a main regulator of plant defense and its synthesis and regulation have been extensively studied. Recent studies reveal new insights in JA oxidative metabolism and their negative regulation in the JA pathway. In most plants, JA-Ile is the active signal recognized by the COI1 and promotes JAZ–COI1 interaction leading to JAZ degradation. This relieves the JAZ-interacting transcription factors to activate downstream defense gene expressions. In Arabidopsis, MpCOI1 recognized OPDA-Ile instead of JA-Ile. That work revealed the ligand-receptor co-evolution of the JA signaling pathway in land plants. MYC2 is a well-studied transcription factor in JA signaling and can interact with both JAZ and MED25, the subunit of the mediator complex. The JAZ proteins recruit TOPELESS scaffold protein to inhibit gene transcription, whereas MED25 brings COI1 to MYC2 targeting promoters. In this model, COI1 is thought to be the nuclear receptor. JAT1, which localizes at the nuclear envelope and plasma membrane, is the transporter responsible for the influx of JA-Ile into nucleus. To balance the tradeoff between growth and defense, plants strictly regulate JA signaling to avoid a hypersensitive defense response. Some development regulators, including SPLs and DELLAs, target JAZ or MYC transcription factors to modulate JA signaling output. Interestingly, some insects use similar strategies to attenuate plant defense for fitness.

Herbivorous insects have different mouthparts and feeding habits. Active molecules from insects’ oral secretion (OS) (which contains regurgitant and saliva), frass, ovipositional fluids, and the endosymbionts of insects have a large impact on plant defense. Some of these molecules used by plants to trigger specialized defense are called elicitors, and those to weaken the plant defense response are defined as effectors. Plant–insect recognition is the first and also the key step of an effective defense in plants. In this review, we discuss recent research advances in insect elicitors and effectors and their roles in plant–insect interactions.

Plant perceptions of insect herbivory
Plant perception of an insect attack is the first step of defense. Insect herbivory raised diverse active molecules such as damage-associated molecules, insect-derived elicitors, and the plant endogenous molecules activated by insect digestive enzymes (Figure 1). The specific and efficient recognition of these active molecules guarantees the timely priming of plant defense.

Plant-derived signal molecules activated by herbivory
Wounding damage caused by insect herbivory will quickly trigger plant defense signaling. The first reported damage-related peptide signal was systemin, an 18–amino acid polypeptide cleaved from prosystemin (inactive form) in tomato upon wounding stimulus. Systemin promotes JA accumulation and activates the expression of genes encoding protease inhibitors which have insecticidal activity. Whereas systemin had been reported long before, its receptor SYR1, a leucine-rich repeat receptor kinase (LRR-RK), was identified recently. The introgression line, which lacks SYR1 expression, is highly sensitive to Spodoptera littoralis. Besides systemin, other wound-induced peptides had been identified in plants, including Arabidopsis, maize, and rice. The application of synthetic 23–amino acid maize Peps could mimic the Spodoptera exigua attack, and similar Peps were found in rice recently. In Arabidopsis, AtPeps, which is generated from PROPEPs under the catalyzation of the cysteine protease METACASPASE4 (MC4), acts as signals to trigger both JA and SA signaling pathways. Like the systemin-SYR1 module, the reported receptors of AtPeps—AtPEPR1 and AtPEPR2—are also classified in the LRR-RK family.

From Spodoptera frugiperda larval OSs, researchers isolated a disulfide-bridged peptide (+ICDINGVCVDA−), termed inceptin, that can induce the accumulation of defense hormones such as ethylene, JA, and SA in cowpea plants. Inceptin is the proteolytic fragment of chloroplastic ATP synthase γ-subunit of cowpea plants digested by S. frugiperda larvae. Recently, on BioRxiv, it was reported that the receptor of inceptin in plants was a leucine-rich repeat receptor-like protein, INR, which is distinguished from LRR-RKs by lacking an intracellular kinase domain. These findings expand the paradigm of plant surface recognition of insect herbivory.

Elicitors secreted by insects
Besides plant signal molecules activated by insect feeding, a number of reported elicitors are derived from insects themselves and most of them belong to HAMPs. It had been reported that the OS, the oviposition and the honeydew of insects could induce a plant defense response, including the accumulation of JA and secondary metabolism. These insect-derived elicitors can be classified as fatty acid derivatives, enzymes, and some other proteins.

The first identified fatty acid–amino acid conjugate (FAC) elicitor was volicitin, which was isolated from S. exigua larval OSs. Volicitin can induce the emission of volatiles in maize to attract predators. After volicitin, other forms of FACs from various insect OSs had been found in succession. In Nicotiana attenuate, FACs from Manduca sexta activate the MAPK pathway. Besides FACs, califerins, the sulfooxy fatty acids that exist in OSs of grasshopper (Schistocerca americana) larvae, also have elicitor activity. Glucose oxidases (GOXs) and β-glucosidase are enzyme-like elicitors. GOX is identified from Helicoverpa zea and specifically activates defense response in tomato. The β-glucosidase in Pieris brassicae larval OSs triggers the emission of volatiles from wounded cabbage.
Schematic diagram of herbivory-associated elicitors and effectors manipulating plant defense. Receptors (SYR, PEPR, INR, and LecRKs) located on the plant cell surface recognize small peptides (systemine, inceptin, and Peps) and, together with the co-receptors (SERKs/BAK1 and SOBIR1), trigger downstream defense signaling. Also, elicitors derived from insects, including FACs, β-Glu, and GOX, are able to activate plant defense with the unknown mechanisms. On the other hand, insects secrete effectors to weaken plant defenses. Some effectors interfere with jasmonate (JA) signaling directly (HARP1, 2b, C2, βC1, and SSGP-71) or indirectly (Armet and Bt56) by enhancing salicylic acid (SA) accumulation to compromise JA signaling. Some effectors (Mp1 and Me10) target plant proteins (VPS52 and TFT7) that are directly involved in defense. The DNase II eliminates the extracellular DNA which is released by damaged cells to trigger plant defense. MIF and CO02 from aphids are of benefit to insects living on the host plants, but the underlying mechanisms remain elusive. Notably, some elicitors/effectors are plant-specific. Here, the GOX from Helicoverpa zea acts as an effector, inhibiting nicotine accumulation in tobacco, and, on the other hand, acts as an elicitor specifically inducing plant response in tomato.
leaves and this attracts predators such as parasitic wasp52,53. Lipase and phospholipase C are other types of salivary enzyme-like elicitors. Lipase of \textit{Schistocerca gregaria} OS elevates oxylipin accumulation and defense response in \textit{Arabidopsis}54. Phospholipase C of \textit{Spodoptera frugiperda} induces the accumulation of proteinase inhibitors in corn55.

The above-mentioned elicitors are from chewing insects. The elicitors from the piercing-sucking insects are isolated largely from salivary glands. The mucin-like salivary protein (NIMLP) of plant hopper (\textit{Nilaparvata lugens}) is a double-edged sword. On one hand, it contributes to the formation of salivary sheaths for successful feeding; on the other hand, it was used by plants to trigger a defense response, like Ca2+ mobilization, the MEK2 MAPK cascades, and JA signaling transduction, thereby reducing the performance of \textit{N. lugens}56. Tetranins is another characterized elicitor identified from \textit{Tetranychus urticae}. Tetranins increases the expression of defense genes and activates JA, salicylic acid (SA), and abscisic acid biosynthesis in plant. It also promotes volatile emission to attract predatory mites57.

Some elicitors are from endosymbionts. MAMPs could be released through herbivory OSs and recognized by plants to induce pattern-triggered immunity (PTI)58,59. The chaperon GroEL from the endosymbionts \textit{Buchnera} of potato aphids (\textit{Macrosiphum euphorbiae}) induces oxidative bursts and PTI in \textit{Arabidopsis}60. From the \textit{S. littoralis} larval OSs, the porin-like proteins most likely of bacterial origin can induce the early response of plant defense61. A recent report reveals that some elicitors are from honeydew-associated microbes in sucking arthropods62.

Insect effectors twist plant defense

To adapt to their host plants, insects have developed multilayered means for fitness. Besides releasing elicitors, the insect releases effectors that disturb host plant defense response for successful feeding63. The reported insect effectors are identified from both the herbivory itself and insect-secreted microbiomes (Figure 1).

The first reported insect effector was GOX from the chewing insect, \textit{H. zea}, which inhibits nicotine accumulation and elevates the SA-mediated PR-1a protein level in tobacco64,65. Notably, the same GOX protein induces plant response in tomato66,67, which we discussed in the ‘Elicitors secreted by insects’ section. This suggests that the same protein acts as the effector or as the elicitor depending on their interacted host plant. Another piece of evidence in support of insect effectors is that the \textit{S. littoralis} larvae that fed on OS pretreated plants had a greater weight increase68.

The direct interaction with JA signaling-related components is an efficient way for herbivory effectors to inhibit plant defense. In our recent work, we isolated a venom-like protein termed HARPI, which is identified from the OS of \textit{Helicoverpa armigera}. HARPI can interact with multiple JAZ proteins of \textit{Arabidopsis} and cotton plants to prevent COI1-mediated JAZ degradation, thereby blocking the JA signaling output69. SSGP-71 is an E3 ubiquitin ligase-mimicking protein in Hessian fly (\textit{Mayetiola destructor}). It allows the insect to hijack the plant proteasome and block the basal immunity70. These studies fill in the gap of the working mechanism about how insects manipulate effectors to block plant defense for better adaptation.

Some insect effectors inhibit plant defense by interfering with the crosstalk between SA and JA. For example, Bt56 from the whitefly (\textit{Bemisia tabaci}) enhanced the performance of the whitefly on tobacco by decreasing JA signaling through the antagonism between JA and SA. Bt56 could directly interact with KNOTTED 1-like homeobox transcription factor NTH202 and eliminate the negative modulation of NTH202 on SA accumulation71. Armet, the effector of pea aphid (\textit{Acyrthosiphon pisum}) protein, induced SA accumulation by blocking SA methylation and enhanced the pathogen resistance in plants, reflecting a novel tripartite interaction of insect–plant–pathogen72,73.

The extracellular DNA and hydrogen peroxide that are released by damaged cells can trigger plant defense74. Therefore, some insects secrete effectors to eliminate the production of these DAMPs. The plant hopper (\textit{Laodelphax striatellus}) secretes salivary DNase II, which acts as an effector by erasing extracellular DNA, and the \textit{Trichoplusia ni} salivary catalase functions as an ROS scavenger to reduce hydrogen peroxide, thus inhibiting ROS burst and other plant defense responses75,76.

Moreover, some effectors were reported to target other defense-related proteins in plants. A set of saliva proteins in aphids were proven to have effector activity through proteomic combined RNA sequencing (RNA-seq) analysis77,78,79. A macrophage migration inhibitory factor (MIF) from pea aphid saliva inhibits immune response in \textit{N. benthamiana} and improves aphid performance. Interestingly, the MIFs in vertebrates are also involved in the immune pathway, suggesting the highly conserved function of MIF80,81. Vacuolar protein sorting-associated protein 52 (VPS52) in potato (\textit{Solanum tuberosum}) has negative impacts on green peach aphid (\textit{Myzus persicae}) infection. \textit{M. persicae} saliva-secreted protein Mp1 targets the VPS52 as an effective virulence strategy72,82. Mel10 from \textit{M. euphorbiae} interacts with tomato TKT7, a 14-3-3 isoform involved in aphid resistance, and enhances aphid longevity and fecundity83. Some effectors can target the host cell wall. Expansin-like protein (HaEXPB2) from the nematode (\textit{Heteroder aavenue}) binds to cellulose of tobacco, thereby increasing nematode infectivity84.

The effectors mentioned above are generated from the insect itself. Other effectors are also derived from insect-borne microbe. Although the exact effector components need to be explored, it was found that Colorado potato beetle (\textit{Leptinotarsa decemlineata}) larvae suppress tomato defense response by exploiting bacteria in their OSs and gut85,86. Besides bacteria, some active molecules from vector-borne pathogens are reported to interfere with plant defense and are of benefit for their insect vectors living on host plants87. The phytoplastm protein SAP11 and SAP54 of aster yellows phytoplasma strain witches’ broom was proposed to promote aphid colonization
and also interfere with plant development. The βC1 of tomato yellow leaf curl China virus directly interacts with MYC2 protein to decrease the MYC2-regulated terpene synthase, thereby reducing plant resistance to the whitefly. The C2 protein of tomato yellow leaf curl virus can also compromise JA signaling in tobacco by interacting with plant ubiquitin to block JAZ1 protein degradation, thereby reducing plant resistance to the insect vector whitefly. These studies reveal the intricate interaction of plant–virus–insect vector. In Table 1, we summarize the reported insect-associated elicitors and effectors from different species and their probable roles.

Prospects

JA is a conserved defense regulator in the plant kingdom. On one hand, various elicitors can be recognized by plants to trigger JA signaling. On the other hand, the JA pathway tends to be targeted by a diverse range of attackers for fitness (Figure 1). Some insect effectors have a mechanism similar to that of the virus proteins in blocking JA signaling. It would be interesting to study whether there are relationships between the phylogeny of insect effectors and viral proteins. Although numerous elicitors and effectors were identified, their target proteins, the underlying mechanisms, and the transportation mechanisms of the effectors entering plant cells are largely unknown and deserve further investigation. In plants, JA is integrated with multiple signaling to

Table 1. Herbivory-associated elicitors and effectors.
Name
Plant-derived
Systemin
PEPs
Inceptin
Volicitin
Caeliferins
GOX
β-glucosidase
Lipase
Phospholipase C
Bruchins
NIMLP
Tetransins
GroEL
Porin-like proteins
Unidentified
Unidentified

Page 6 of 11
Name	Origin	Biofunction	References
GOX	*H. zea*	Decrease nicotine accumulation in tobacco	64
HARP1	*Helicoverpa armigera*	Interact with and stabilize JAZs, depress JA signaling in *Arabidopsis*	67
SSGP-71	*Mayetiola destructor*	Interact with Skp, decrease plant proteasome activity, thus block hormone signaling in wheat	68
BT56	*Bemisia tabaci*	Interact with NTH202 to increase SA biosynthesis, thus decrease JA response in tobacco	69
Armet	*Acyrthosiphon pisum*	Help feeding of insect, induce SA accumulation and pathogen response in *N. benthamiana* and *Medicago truncatula*	70,71
DNase II	*Laodelphax striatellus*	Erase extracellular DNA released by damaged cell in rice	72
Catalase	*Trichoplusia ni*	Reduce H$_2$O$_2$ in tomato	73
C002	*A. pisum, Myzus persicae*	ApC002 and MpC002 help insect foraging and feeding on fava bean and *N. benthamiana*, respectively	63,74
MIF	*A. pisum, M. persicae*	Improve aphid performance, inhibit immune response in *N. benthamiana*	80
Mp1	*M. persicae*	Interact with VPS52 to relocalize to vesicle-like structures and enhance insect virulence in *Arabidopsis* and potato	82
Me10	*M. euphorbiae*	Interact with TFT7, enhance the longevity and fecundity on tomato	83
Mp42, Mp55 Me23	*M. persicae, M. euphorbiae*	Increase aphid reproduction, suppress *N. benthamiana* defenses	99,100
HaEXPB2	*Heterodera avenae*	Bind to cellulous and target cell wall when parasitizing *N. benthamiana*	84
Phosphatase 2C	*M. destructor*	Interfere with the wheat signal transduction pathway possibly by phosphatase ability	101
Endo-beta-1,4-Glucanase (NIEG1)	*N. lugens*	Degrade cellulosics in plant cell wall, enable insect stylet to reach the rice phloem	102
NcSP75	*Nephotettix cincticeps*	Help successful ingestion from sieve elements of rice	103
NcSP84	*N. cincticeps*	Suppress accumulation of Ca$^{2+}$ and H$_2$O$_2$ and sieve element clogging in rice	104
NISEF1	*N. lugens*	Help successful ingestion from sieve elements of rice	105
Unidentified	Gut and oral secretion–associated bacteria in Colorado potato beetle	Suppress tomato defense response Bind and destabilize TCPs, reduce plant defense in *Arabidopsis*	85,86
SAP11	Aster yellows witches’ broom in *Macrosteles quadrilineatus*	Degrade MTFs through interacting with RAD23, influence floral development in *Arabidopsis*	106
SAP54	Aster yellows witches’ broom in *M. quadrilineatus*	Interact with MYC2 and suppress MYC2-regulated terpene synthesis in *Arabidopsis*	90
βC1	Tomato yellow leaf curl China virus in *B. tabaci*	Interact with plant ubiquitin, blocking JA signaling in tobacco	93
2b	Cucumber mosaic virus (CMV) in *M. persicae*	Interact with and stable JAZ protein, blocking JA signaling in *Arabidopsis*	92
C2	Tomato yellow leaf curl virus in *B. tabaci*	Interact with and stable JAZ protein, blocking JA signaling in tobacco	93
form a complex and flexible defense network. Recent research has revealed the intricate defense network shaped by insect herbivory\(^9,10,11,12,13\). Studies have also shown that insects can use plant defense metabolites to find their host plants and to fend off predators\(^,10,11,12\); this gives new insight into plant–insect interactions. Further investigations will greatly enrich our knowledge of the complex and flexible interactions between plants and insects and will also be helpful for breeding insect-proof crops\(^,12,13\).

References

1. Wu J, Baldwin IT: "New insights into plant responses to the attack from insect herbivores." Ann Rev Genet. 2010; 44: 1–24. PubMed Abstract | Publisher Full Text

2. Li J, Liu X, Wang Q, et al.: "A Group D MAPK Protects Plants from Autoxidation by Suppressing Herbivore-Induced Defense Signaling." Plant Physiol. 2019; 179(4): 1386–401. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

3. Ye M, Glauser G, Lou Y, et al.: "Molecular Dissection of Early Defense Signaling Underlying Volatile-Mediated Defense Regulation and Herbivore Resistance in Rice." Plant Cell. 2018; 31(3): 697–808. PubMed Abstract | Publisher Full Text | Free Full Text

4. Zebelo SA, Maffei ME: "Role of early signalling events in plant-insect interactions." J Exp Bot. 2015; 66(2): 435–48. PubMed Abstract | Publisher Full Text | Free Full Text

5. Erb M, Meidls S, Howe GA: "Role of phytohormones in insect-specific plant reactions." Trends Plant Sci. 2012; 17(5): 250–9. PubMed Abstract | Publisher Full Text | Free Full Text

6. Howe GA, Jander G: "Jasmonate Signaling for Multistress Resilience." Annu Rev Plant Biol. 2018; 69: 387–415. PubMed Abstract | Publisher Full Text

7. Howe GA: "Plant hormones: Metabolic end run to jasmonate." Nat Chem Biol. 2016; 14(2): 102–10. PubMed Abstract | Publisher Full Text

8. Huang H, Liu B, Liu L, et al.: "Jasmonate action in plant growth and development." J Exp Bot. 2017; 68(6): 1349–59. PubMed Abstract | Publisher Full Text

9. Browse J, Jaskólski M: "Jasmonate passes muster: a receptor and targets for the defense hormone." Annu Rev Plant Biol. 2009; 60: 183–205. PubMed Abstract | Publisher Full Text

10. Smirnova E, Marquis V, Poitier L, et al.: "Jasmonic Acid Oxidase 2 Hydroxylates Jasmonic Acid and Represses Basal Defense and Resistance Responses against Botrytis cinerea Infection." Mol Plant. 2017; 10(6): 1159–73. PubMed Abstract | Publisher Full Text

11. Caetés L, Elberse J, Awanan M, et al.: "Arabidopsis JASMONATE-INDUCED OXYGENASES down-regulate plant immunity by hydrolisation and inactivation of the hormone jasmonic acid." Proc Natl Acad Sci U S A. 2017; 114(24): 6398–9. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

12. Chini A, Gimenez-Ibanez S, Gossens A, et al.: "Redundancy and specificity in jasmonate signalling." Curr Opin Plant Biol. 2016; 33: 147–56. PubMed Abstract | Publisher Full Text

13. Xie DX, Feys BF, James S, et al.: "COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility." Science. 1996; 270(5266): 1091–4. PubMed Abstract | Publisher Full Text

14. Shepard LB, Tan X, Mao H, et al.: "Jasmonate perception by inositol-phosphate-potential COI1-JAZ co-receptor." Nature. 2010; 468(7325): 400–5. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

15. Chini A, Fonseca S, Fernandez G, et al.: "The JAZ family of repressors is the missing link in jasmonate signalling." Nature. 2007; 448(7154): 666–71. PubMed Abstract | Publisher Full Text

16. Thines B, Katuro L, Meloto M, et al.: "JAZ repressor proteins are targets of the SCF\(^{HAZ}\) complex during jasmonate signalling." Nature. 2007; 448(7154): 661–5. PubMed Abstract | Publisher Full Text | Free Full Text

17. Monte I, Ishida S, Zamarreño AM, et al.: "Ligand-receptor co-evolution shaped the jasmonate pathway in land plants." Nat Chem Biol. 2018; 14(5): 480–8. PubMed Abstract | Publisher Full Text | F1000 Recommendation

18. An C, L, L, Zhai C, et al.: "Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin." Proc Natl Acad Sci U S A. 2017; 114(42): EB8900–EB8909. PubMed Abstract | Publisher Full Text | Free Full Text

19. Li Q, Zhang J, Li S, et al.: "Transporter-Mediated Nuclear Entry of Jasmonoyl-Isoleucine Is Essential for Jasmonate Signaling." Mol Plant. 2017; 10(5): 695–708. PubMed Abstract | Publisher Full Text | F1000 Recommendation

20. Guo Q, Yoshida Y, Major IT, et al.: "JAZ repressors of metabolic defense promote growth and reproductive fitness in Arabidopsis." Proc Natl Acad Sci U S A. 2018; 115(45): E10768–E10777. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

21. Guo Q, Major IT, Howe GA: "Resolution of growth-defense conflict: mechanistic insights from jasmonate signalling."Curr Opin Plant Biol. 2018; 44: 72–81. PubMed Abstract | Publisher Full Text | F1000 Recommendation

22. Hou X, Lee YL, Xia K, et al.: "DELLAs modulate jasmonate signaling via competitive binding to JAZs." Dev Cell. 2010; 19(6): 884–94. PubMed Abstract | Publisher Full Text

23. Yang DL, Yao J, Mei CS, et al.: "Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascades." Proc Natl Acad Sci U S A. 2012; 109(19): E1192–200. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

24. Hong GJ, Xue XY, Mao YB, et al.: "Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression." Plant Cell. 2012; 24(6): 2635–48. PubMed Abstract | Publisher Full Text | Free Full Text

25. Wild M, Daviere JM, Cheminant S, et al.: "The Arabidopsis DELLA DELLA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses." Plant Cell. 2012; 24(4): 3307–19. PubMed Abstract | Publisher Full Text | Free Full Text

26. Mao YB, Liu YQ, Chen DY, et al.: "Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance." Nat Commun. 2017; 8: 13925. PubMed Abstract | Publisher Full Text | Free Full Text

27. Howe GA, Jander G: "Plant immunity to insect herbivores." Annu Rev Plant Biol. 2008; 59: 41–66. PubMed Abstract | Publisher Full Text

28. Alibary Z, Chen MS: "Indirect plant defense against insect herbivores: a review." Insect Sci. 2018; 25(1): 2–23. PubMed Abstract | Publisher Full Text | F1000 Recommendation

29. Erb M, Reymond P: "Molecular Interactions Between Plants and Insect Herbivores." Annu Rev Plant Biol. 2019; 70: 527–57. PubMed Abstract | Publisher Full Text | F1000 Recommendation

30. Dettmer K, Raper S, Bower C, et al.: "An expression of an antifeeding protein gene in tomato plants reduces resistance toward Manduca sexta larvae." Proc Natl Acad Sci U S A. 1993; 90(17): 8273–6. PubMed Abstract | Publisher Full Text | Free Full Text

31. Wang L, Eirig E, Almeda-Teppar M, et al.: "The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects." Nat Plants. 2018; 4(3): 152–6. PubMed Abstract | Publisher Full Text | F1000 Recommendation

32. Shinya T, Yasuda S, Hyodo K, et al.: "Integration of danger peptide signals with herbivore-associated molecular pattern signaling amplifies anti-herbivore defense responses in rice." Plant Cell. 2012; 24(4): 636–37. PubMed Abstract | Publisher Full Text | F1000 Recommendation

33. Huffaker A, Dafoe NJ, Schmelz EA: "ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance." PubMed Abstract | Publisher Full Text | F1000 Recommendation
Schäfer M, Fischer C, Meldau S, Hopke J, Donath J, Blechert S, Mattiacci L, Dicke M, Posthumus MA:
Louis J, Peiffer M, Ray S, Yoshinaga N, Aboshi T, Ishikawa C, Halitschke R, Schittko U, Pohnert G, Alborn HT, Turlings TCJ, Jones TH, Yamaguchi Y, Pearce G, Ryan CA:
Huffaker A, Pearce G, Ryan CA:
Wu J, Hettenhausen C, Meldau S, Schmitz EA, Carroll MJ, LeC蕾re S, et al.: Fragments of ATP synthase mediate plant perception of insect attack. Proc Natl Acad Sci U S A. 2006; 103(23): 8894–9.
Schmitz EA, LeC蕾re S, Carroll MJ, et al.: Cowpea chloroplastic ATP synthase is the source of multiple plant defense elicitors during insect herbivory. Plant Physiol. 2007; 144(2): 793–805.
Steinbrenner AD, Muñoz-Amatriain M, Aguilar Venegas JM, et al.: A receptor for herbivore-associated molecular patterns mediates plant immunity. bioRxiv. 2019; 679030.
Bonaventure G, VanDoorn A, Baldwin IT: Herbivore-associated elicitors: FAC signaling and metabolism. Trends Plant Sci. 2011; 16(6): 294–9.
Stam JM, Koes A, Li Y, et al.: Plant interactions with multiple insect herbivores: from community to genes. Annu Rev Plant Biol. 2014; 65: 689–713.
Abom HT, Turings TCJ, Jones TH, et al.: An elicitor of plant volatiles from beet armyworm salivary secretion. Science. 1997; 278(5344): 845–9.
Yoshinaga N, Aberisi T, Ishikawa C, et al.: Fatty acid amidases, previously identified in caterpillars, found in the cricket Teleogryllus townsendi and fruit fly Drosophila melanogaster larvae. J Chem Ecol. 2007; 33(7): 1376–81.
Wu J, Hettenhausen C, Molda S, et al.: Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell. 2007; 19(3): 1096–1106.
Abom HT, Hansen TV, Jones TH, et al.: Disulfuoxo fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles. Proc Natl Acad Sci U S A. 2007; 104(2): 1259–61.
Tian D, Pfeiffer M, Shoemaker E, et al.: Salivary glucose oxidase from caterpillars mediates the induction of rapid and delayed-induced defenses in the tomato plant. PLoS One. 2013; 7(4): e38168.
Louis J, Pfeiffer M, Ray S, et al.: Host-specific salivary elicitor(s) of European corn borer induces defenses in tomato and maize. New Phytol. 2013; 199(1): 66–73.
Mattiacli L, Dicke M, Posthumus MA: beta-Glucosidase: an elicitor of herbivore-injured plant odor that attracts host-searching parasitic wasps. Proc Natl Acad Sci U S A. 1995; 92(6): 2036–40.
Hopley J, Donath J, Blecher S, et al.: Herbivore-injured volatiles: the emission of acyclic homoteleolefins from leaves of Phaseolus lunatus and Zea mays can be triggered by a beta-glucohydrolysis and jasmonic acid. FEBS Lett. 1994; 352(2): 146–60.
Schieler M, Fischer C, Moldau S, et al.: Lipase activity in insect oral secretions mediates defense responses in Arabidopsis. Plant Physiol. 2011; 156(3): 1520–34.
Acevedo FE, Pfeiffer M, Ray S, et al.: Intraspecific differences in plant defense induction by fall armyworm strains. New Phytol. 2018; 218(1): 310–21.
Shangguan X, Zhang J, Liu B, et al.: A Mucin-Like Protein of Plantophorus is Required for Feeding and Induces Immune Response in Plants. Plant Physiol. 2015; 167(1): 552–66.
Iida J, Desaki Y, Hata K, et al.: Tetranins: new putative spider mite elicitors of host plant defense. New Phytol. 2019; 224(2): 875–85.
Kaloshian I: Gone-for-genec disease resistance: bridging insect pest and pathogen defense. J Chem Ecol. 2004; 30(12): 2419–38.
Noman A, Aqiel M, Qasim M, et al.: Plant-insect-microbe interaction: A love triangle between enemies in ecosystems. Sci Total Environ. 2020; 699: 134181.
Chaudhary R, Atamian HS, Shen Z, et al.: GroEL from the endosymbiont Buchnera aphidicola betrays the aphid by triggering plant defense. Proc Natl Acad Sci U S A. 2014; 111(24): 8919–24.
Guo H, Wielchi N, Hafie JB, et al.: A porin-like protein from oral secretions of Spodoptera littoralis larvae induces defense-related early events in plant leaves. Insect Biochem Mol Biol. 2013; 43(8): 849–58.
Wani D, Kabir MA, Mujorno K, et al.: Honeydew-associated microbes elicit defense responses against brown planthopper in rice. J Exp Bot. 2019; 70(5): 1683–96.
Bos JIB, Prince D, Pitino M, et al.: A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PLoS Genet. 2010; 6(11): e1001216.
Messer RO, Hum-Musser SM, Eichensser H, et al.: Herbivory: caterpillar salivat plants. Nature. 2002; 418(6901): 599–600.
Messer RO, Cipolli DF, Hum-Musser SM, et al.: Evidence that the caterpillar salivary enzyme glycoside oxidase provides herbivore offense in solanaceous plants. Arch Insect Biochem Physiol. 2005; 60(8): 128–37.
Conseil S, Schweizer F, Erb M, et al.: Insect oral secretions suppress wound-induced responses in Arabidopsis. J Exp Bot. 2012; 63(2): 727–37.
Chen CY, Liu YQ, Song WM, et al.: An effecter from cotton bollworm oral secretion impairs host plant defense signaling. Proc Natl Acad Sci U S A. 2019; 116(18): 4331–8.
Zhao C, Escalante LN, Chen H, et al.: A massive expansion of effector genes underlies giga-feeding in the wheat pest Mayetella destructor. Curr Biol. 2015; 25(5): 613–20.
Chen CY, Liu YQ, Song WM, et al.: An effecter from cotton bollworm oral secretion impairs host plant defense signaling. Proc Natl Acad Sci U S A. 2019; 116(18): 4331–8.
Xu HX, Qian LK, Wang XX, et al.: A salivary effector allows whites to feed on host plants by eliciting salicylic acid-signalizing pathway. Proc Natl Acad Sci U S A. 2019; 116(2): 490–5.
Cai N, Lu H, Wang T, et al.: Armel, an aphid effector protein, induces pathogen resistance in plants by promoting the accumulation of salicylic acid. Ploks Trans R Soc Lond B Biol Sci. 2019; 374(1767): 20180314.
Wang D, Dai H, Zhang Y, et al.: Armel is an effector protein mediating aphid-plant interactions. FASEB J. 2015; 29(5): 2032–45.
Huang HJ, Cui JR, Xia X, et al.: Salivary Dhsae ii from Laodelphax struttellus acts as an effector that suppresses plant defense. New Phytol. 2019; 224(2): 860–74.
Rivera-Vega LJ, Stanley BA, Stanley A, et al.: Proteomic analysis of labial salivary of the generalist cassette looper (Trichoplusia ni) and its role in interactions with host plants. J Insect Physiol. 2018; 107: 97–103.
Mutti NS, Park Y, Reese JC, et al.: Knockdown of a salivary transcript leading to lethality in the pea aphid, Acrystosiphon pisum, is essential in feeding on a host plant. Proc Natl Acad Sci U S A. 2008; 105(29): 9965–9.
Pitino M, Coleman AD, Maffei ME, et al.: Silencing of aphid genes by dsRNA feeding from plants. PLoS One. 2011; 6(10): e265709.
Pitino M, Hogenhout SA: Aphid protein effectors promote aphid colonization in specific plant species-specific manner. Plant Microbe Interact. 2013; 26(1): 130–9.
Olievire M, Leges F, Rispe C: Comparative analysis of the Acrystosiphon pisum
94. Hilker M, Meiners T: Transcriptome Analysis of Green Peach Aphid (Myzus persicae): Insight into Developmental Regulation and Inter-Species Divergence. Front Plant Sci. 2016; 7: 1562. PubMed Abstract | Publisher Full Text

90. Naessens E, Dubreuil G, Giordanengo P, et al: A Secreted MIF Cytokine Enables Aphid Feeding and Represses Plant Immune Responses. Curr Biol. 2015; 25(14): 1898–903. PubMed Abstract | Publisher Full Text

89. Calandra T, Roger T: Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol. 2003; 3(10): 791–800. PubMed Abstract | Publisher Full Text

88. Rodriguez PA, Escudero-Martinez C, Bos J: An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence. Plant Physiol. 2017; 173(2): 1892–903. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

87. Chaudhary R, Peng HC, He J, et al: Aphid effector Me10 interacts with tomato TTFT1, a 14-3-3 isoform involved in aphid resistance. New Phytol. 2019; 221(2): 1618–28. PubMed Abstract | Publisher Full Text | F1000 Recommendation

86. Liu J, Peng H, Cui J, et al: Molecular Characterization of A Novel Effector Expansin-like Protein from Neterotera avenae thatInduces Cell Death in Nicotiana benthamiana. Sci Rep. 2016; 6: 35677. PubMed Abstract | Publisher Full Text | Free Full Text

85. Chung SH, Rosa C, Scully ED, et al: Herbivore exploits orally secreted bacteria to suppress plant defenses. Proc Natl Acad Sci U S A. 2012; 110(39): 15728–33. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

84. Sugio A, MacLean AM, Hogenhout SA: Oral Interaction of Bacterial Proteins with Gut-Associated Bacteria Indirectly Induces Defensive Responses in Tomato by Triggering a Salivary Effector(s). New Phytol. 2017; 214(3): 1294–306. PubMed Abstract | Publisher Full Text

83. Wang J, Yang M, Song Y, et al: Gut-Associated Bacteria of Helicoverpa zea Indirectly Trigger Plant Defense Responses in Maize. J Chem Ecol. 2018; 44(7-8): 690–9. PubMed Abstract | Publisher Full Text | F1000 Recommendation

82. Wang J, Yang J, Wang Z, et al: Novel crosstalk between ethylene- and jasmonic acid-pathway responses to a piercing-sucking insect in rice. New Phytol. 2019; 225(1): 474–87. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

81. Li P, Liu C, Deng WH, et al: Plant begomoviruses subvert ubiquitination to suppress plant defenses against insect vectors. PLoS Pathog. 2019; 15(2): e1007607. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

80. Wu D, Qi T, Li WX, et al: Viral effector protein manipulates host hormone signaling to attract insect vectors. Cell Res. 2017; 27(3): 402–15. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

79. Li P, Liu C, Deng WH, et al: Plant begomoviruses subvert ubiquitination to suppress plant defenses against insect vectors. PLoS Pathog. 2019; 15(2): e1007607. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

78. Hilker M, Meiners T: Early herbivore alert: insect eggs induce plant defense. J Chem Ecol. 2006; 32(7): 1379–97. PubMed Abstract | Publisher Full Text

77. Hilker M, Fatouros NE: Resisting the onset of herbivore attack: plants perceive and respond to insect eggs. Curr Opin Plant Biol. 2016; 32: 9–16. PubMed Abstract | Publisher Full Text

76. Wang J, Peiffer M, Hooper K, et al: Helicoverpa zea gut-associated bacteria indirectly induce defenses in tomato by triggering a salivary effector(s). New Phytol. 2017; 214(3): 1294–306. PubMed Abstract | Publisher Full Text

75. Wang J, Yang J, Song Y, et al: Gut-Associated Bacteria of Helicoverpa zea Indirectly Trigger Plant Defense Responses in Maize. J Chem Ecol. 2018; 44(7-8): 690–9. PubMed Abstract | Publisher Full Text | F1000 Recommendation

74. Wang J, Yang M, Song Y, et al: Gut-Associated Bacteria of Helicoverpa zea Indirectly Trigger Plant Defense Responses in Maize. J Chem Ecol. 2018; 44(7-8): 690–9. PubMed Abstract | Publisher Full Text | F1000 Recommendation

73. Zhao C, Shukle R, Navarro-Escalante L, et al: Avirulence gene mapping in the Hessian fly (Mayetioia destructor) reveals a protein phosphatase 2C effector gene family. J Insect Physiol. 2016; 84: 22–31. PubMed Abstract | Publisher Full Text

72. Liu J, Wu H, Chen H, et al: A salivary Endo-1,4-Glucanase Acts as an Effector That Enables the Brown Plant hopper to Feed on Rice. Plant Physiol. 2017; 173(2): 1500–29. PubMed Abstract | Publisher Full Text | Free Full Text

71. Sugio A, MacLean AM, Hogenhout SA: The small phytoplasma virulence effector SAP11 contains distinct domains required for nuclear targeting and CIN-TCP binding and destabilization. New Phytol. 2014; 202(3): 838–48. PubMed Abstract | Publisher Full Text | Free Full Text

70. Ma F, Yang X, Shi Z, et al: Novel crosstalk between ethylene- and jasmonic acid-pathway responses to a piercing-sucking insect in rice. New Phytol. 2019; 229(1): 474–87. PubMed Abstract | Publisher Full Text | F1000 Recommendation

69. Liu L, Sonbol FM, Huot B, et al: Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity. Nat Commun. 2016; 7: 13599. PubMed Abstract | Publisher Full Text | Free Full Text

68. Li R, Li R, Li C, et al: ZeTULPE in the Roots of Wild Tobacco Regulates Jasmonate-Mediated Nicotine Biosynthesis and Resistance to a Generalist Herbivore. Plant Physiol. 2018; 177(2): 833–46. PubMed Abstract | Publisher Full Text | Free Full Text

67. Ye M, Veyrat N, Xu H, et al: An herbivore-induced plant volatile reduces parasitoid attraction by changing the smell of caterpillars. Sci Adv. 2018; 4(5): eaar4767. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

66. Hu L, Mateo P, Ye M, et al: Plant iron acquisition strategy exploited by an insect herbivore. Science. 2018; 361(6403): 694–7. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

65. Zhao Y, Huang J, Wang Z, et al: Allelic diversity in an NLR gene BPH9 enables rice to combat plant hopper variation. Proc Natl Acad Sci U S A. 2016; 113(45): 12850–5. PubMed Abstract | Publisher Full Text | Free Full Text

64. Liu Y, Wu H, Chen H, et al: A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice. Nat Biotechnol. 2019; 37(3): 301–5. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Peer Review Status: ✓ ✓

Editorial Note on the Review Process
F1000 Faculty Reviews are written by members of the prestigious F1000 Faculty. They are commissioned and are peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

Version 1

1. **Gregg Howe**
 MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
 Competing Interests: No competing interests were disclosed.

2. **Gary Felton**
 Department of Entomology, Pennsylvania State University, University Park, PA, USA
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com