Combinatorial optimization in geometry

Igor Rivin Mathematics Institute, Warwick University
Coventry, The United Kingdom
and
Mathematics Department, California Institute of Technology
Pasadena, CA 91125

current address:
Institut des Hautes Études Scientifiques,
35 Route de Chartres, 91440, Bures-sur-Yvette, France

In this paper we extend and unify the results of [20] and [19]. As a consequence, the results of [20] are generalized from the framework of ideal polyhedra in H^3 to that of singular Euclidean structures on surfaces, possibly with an infinite number of singularities (by contrast, the results of [20] can be viewed as applying to the case of non-singular structures on the disk, with a finite number of distinguished points). This leads to a fairly complete understanding of the moduli space of such Euclidean structures and thus, by the results of Epstein, Penner, (15, 7, 13) and others, further insights into the geometry and topology of the Riemann moduli space.

The basic objects studied are the canonical Delaunay triangulations associated to the aforementioned Euclidean structures.

The basic tools, in addition to the results of [19] and combinatorial geometry are methods of combinatorial optimization – linear programming and network flow analysis; hence the results mentioned above are not only effective but also efficient. Some applications of these methods to three-dimensional topology are also given (to prove a result of Casson’s).

Additional Key Words and Phrases: linear programming, network flow, moduli space, Euclidean structures, hyperbolic structures, Delaunay triangulations

Introduction

In the paper [20] we gave the following description of the angles of ideal polyhedra in H^3: let P be a combinatorial polyhedron, and let $A : E(P) \rightarrow [0, \pi)$ be a function. Then, there exists an ideal polyhedron combinatorially equivalent to P, such that the exterior angle at every edge e is given by $A(e)$ if and only if the sum of $A(e)$ over all edges adjacent to a vertex of P is equal to 2π, while the sum of $A(e)$ over any nontrivial cutset of edges of P (that is, a collection of edges which separates the 1-skeleton of P, but which are not all adjacent to the same vertex) is strictly greater than 2π. Furthermore, it was shown in [19] that the dihedral angles determine the ideal polyhedron up to congruence.

It was observed in [18, 19] that this was a special case of the problem of characterizing the Delaunay tessellations of singular Euclidean surfaces – there is a canonical way to associate ideal polyhedra to Delaunay triangulations of a convex flat disk with convex polygonal boundary. The general situation is described in detail below, but one of the goals of this paper is to extend the characterization

This is a slightly modified version of a preprint first distributed in September 1996.
above to the completely general case of singular Euclidean surfaces with boundary. This is duly done, see, eg, Theorems 3.3, 4.8, 4.11.

Consider a surface S, equipped with a Euclidean (or, more generally, a similarity) structure E, possibly with cone singularities. Assume that there is a discrete collection $P = \{p_1, \ldots, p_n\}$ of distinguished points on S, and assume that P contains the cone points of S. There is a canonical tessellation attached to the triple (S, E, P) – the so-called Delaunay tessellation (see, eg, [5, 19]). The moduli space M of such triples is then naturally decomposed into disjoint subsets M_T, corresponding to the different combinatorial types T of the Delaunay tessellation. This is a canonical decomposition of M. In the paper [19] I studied the subsets M_T, and showed that the dihedral angles of the Delaunay triangulation are natural coordinates (moduli) for M_T, which induce on M_T the structure of a convex polytope.

The aforementioned decomposition of moduli space then becomes a polyhedral complex, the top-dimensional cells of which corresponds to Delaunay tessellations which are triangulations, while pairs of adjacent top-dimensional cells differ combinatorially by a diagonal flip. This decomposition is closely related to the well-known Harer complex (see, eg, [10]). As mentioned above, the top-dimensional cells of this complex are identified along some of their lower-dimensional faces, while other lower dimensional faces correspond to degenerations of the Euclidean structures of (S, E, P). It is then clear that the polyhedral structure of the cells M_T is of considerable interest. However, in [19] only an indirect description was given – M_T was shown to be a convex polytope by virtue of being an image of another convex polytope under a fairly complicated linear map. The methods of [20] come from hyperbolic geometry and are based on the study of dihedral angles of compact hyperbolic polyhedra in [16], so do not easily generalize to the case of general singular Euclidean and similarity structures alluded to above. In the current paper, methods of mathematical programming and the results of [19] are used to give a completely general extension of the result of [20] (described in the beginning of this Introduction) to Delaunay triangulations of arbitrary singular surfaces (Theorems 3.3, 4.8, 4.11). Since the arguments do not depend on the results of [20], we have a different, essentially combinatorial, proof of a principal result (Theorem 0.1) of that paper (Theorem 4.11 here). The other result of [20] – the characterization of finite-volume polyhedra – is, seemingly, not accessible by current methods. The above-mentioned result permit us to get good understanding of the boundary structure of the cells M_T, and, consequently, of M itself. Since M_T fibers (in multiple ways) over the moduli space of finite area hyperbolic structures on S, some information is obtained about the latter moduli space.

In addition, the methods, combined with a geometric estimate, allow us to give a description of dihedral angles of Delaunay tessellations of (S, E, P), where (S, P) is not necessarily of finite topological type (Theorem 6.1). This stops well short of solving the moduli problem, unlike in the finite case, but a conjectural picture seems fairly clear.

The methods are also brought to bear onto some questions in combinatorial geometry, and to provide efficient algorithms for solving the “inverse problem” of determining when a combinatorial complex, or a combinatorial complex equipped with dihedral angle data, can be realized as the Delaunay tessellation of a singular Euclidean surface.
In addition, we use our methods to prove some observations of Casson on ideally triangulated 3-manifolds. That subject is not so far removed from the geometry of similarity and Euclidean structures on surfaces. Indeed, the basic idea of [19] is to study the similarity and Euclidean structures by means of constructing a canonical hyperbolic polyhedral complex as a “cone” over the surface being studied.

The plan of the paper is as follows: In section 1 the relevant definitions and results of [13] are recalled. In section 2 we describe a set of constraints which must be satisfied by the dihedral angles of any (not necessarily Delaunay) triangulation. In section 3 we show that these constraints are actually sufficient under the assumption that the triangulation is Delaunay, and refine them to a minimal set of constraints. In section 4 we show how the results apply to ideal polyhedra, and in particular to characterize infinite ideal polyhedra. In section 5 we comment on the boundary structure of the moduli space of singular Euclidean structures, and describe a correspondence between the Euclidean and hyperbolic structures, which hopefully clarifies the picture. In section 10 we apply the methods of section 3 to the study of ideal triangulations of 3-manifolds. In section 6 we give a network flow interpretation of the results of section 4. In addition to the intrinsic interest, this allows us to give efficient algorithms for deciding whether a weighed graph is the 1-skeleton of a Delaunay triangulation (with weights being the dihedral angles). These computational issues are discussed in section 8. In section 9 we discuss some combinatorial-geometric applications of the results of section 4.

1. BACKGROUND
1.1 Singular similarity structures.

Consider an oriented surface S, possibly with boundary, and with a number of distinguished points $\{p_1, \ldots, p_n\}$. A similarity structure on S is given by an atlas for $S \setminus \{p_1, \ldots, p_n\}$, such that the transition maps are Euclidean similarities. A similarity structure induces a holonomy representation H_s of $\Gamma = \pi_1(S \setminus \{p_1, \ldots, p_n\})$ into the similarity $\text{Sim}(\mathbb{E}^2) \simeq \tilde{\mathbb{C}}^\ast$, where the tilde indicates the universal cover. We define the dilatational holonomy as the induced representation $H_d : \Gamma \to \mathbb{R}$, where $H_d(\gamma) = \log \text{dilatation}H_s(\gamma) = \log |H_s(\gamma)|$. The rotational holonomy can almost be defined as $H_r(\gamma) = \arg H_s(\gamma)$, but for the slight complication that we need to take the argument in \mathbb{C}^\ast, since we want to distinguish, eg, the angle of 4π from one of 2π. This notion of argument is what is used in the sequel. In particular, if γ is a loop surrounding one of the distinguished points p_i, then $H_r(\gamma)$ is the cone angle at p_i. In the case where $H_d(\Gamma) = \{0\}$, the similarity structure is a singular Euclidean structure, with cone angles defined by H_r as above. In the sequel, references to the holonomy of a similarity structure will actually mean the dilatational holonomy H_d. A more concrete way to think of both similarity and Euclidean structure is by assembling our surface out of Euclidean triangles, in the pattern given by some complex T. In the case where the lengths of the edges of the triangles being glued together agree, then we have a singular Euclidean structure. If not, then we have a similarity structure. In either case, the vertices of T are potentially cone points, with cone angles given by the sums of the appropriate angles of the incident triangles.
Consider an oriented surface S, possibly with boundary, and assume that S has a Euclidean metric (or, more generally, a similarity structure – with the exception of the results of Section 6, some of which depend on the metric Theorem 6.3, the metric structure or lack thereof plays no role in the arguments). With cone singularities. We will be dealing with semi-simplicial triangulations of S, that is, triangulations where two and where distinct closed cells might intersect in a collection of lower-dimensional cells. All triangulations will be assumed semi-simplicial, unless specified otherwise. A subcomplex \mathcal{F} of T will be called closed if whenever an open face F is in \mathcal{F}, so are all of the faces of ∂F.

Assume now that the surface S is equipped with a finite geodesic semi-simplicial triangulation T, such that the 0-skeleton of T, which is denoted by $V(t)$, contains all of the cone points of S. Each face of T is then a Euclidean triangle. There are two kinds of edges of T – the interior edges, incident to two faces of T, and the boundary edges, incident to only one face of T.

Definition 1.1. Let e be an edge of T. First, suppose that e is a boundary edge, and let $t = ABC$ be a face of T incident to e, so that $e = AB$. Then the dihedral angle $\delta(e)$ at e is the angle of t at the vertex C. Now, assume that e is an internal edge of T, so that e is incident to $t_1 = ABC$ and $t_2 = ABD$, so that $e = AB$. Then the dihedral angle at e is the sum of the angle of t_1 at C, and the angle of t_2 at D.

The exterior dihedral angle $\delta'(e)$ at e is defined to be $\delta'(e) = \pi - \delta(e)$.

The cone angle at an interior vertex v of T is the sum of all the angles of the faces of T incident to v; the boundary angle at a boundary angle is defined in the same way.

The following is a slight extension of [19, Lemma 4.2].

Lemma 1.2. The cone angle at an interior vertex $v \in V(T)$ is equal to the sum of the exterior dihedral angles at the edges of T incident to v. At a boundary vertex, the boundary angle is equal to the sum of the exterior dihedral angles as above, less π.

Proof. First, let v be an interior vertex. Suppose that there are n triangles t_1, \ldots, t_n incident to v. The sum of all of their angles is $n\pi$. The cone angle at v is the sum of the angles of the triangles t_i at v. On the other hand, the sum of the dihedral angles of the edges e_1, \ldots, e_n incident to v is the sum of all of the angles of t_i not incident to v. Thus,

$$n\pi = \text{Cone angle at } v + \sum_{i=1}^{n} \delta(e_i). \tag{1}$$

The result follows by rearranging the terms.

If v is a boundary vertex, and there are n faces incident to v, then there are $n+1$ edges, and equation (1) becomes:

$$n\pi = \text{boundary angle at } v + \sum_{i=1}^{n+1} \delta(e_i), \tag{2}$$

and the result follows by rearranging terms, as above. □
Observation 1.3. The sum of all of the dihedral angles of all of the edges of T is equal to the $\pi|V(T)|$ – in combination with the Lemma above this gives the Gauss-Bonnet theorem in this polyhedral context, since the curvature at an interior vertex v of T is defined to be 2π – Cone angle at v, while the curvature at a boundary vertex is defined to be π – boundary angle at v.

Proof. Every angle of every face of T is opposite to exactly one edge of T. \hfill \Box

The next theorem is [19, Theorem 6.16].

Theorem 1.4. Let $\Delta : E(T) \to (0, 2\pi)$ be an assignment of dihedral angles to the edges of T, and H_d a holonomy representation. There exists at most one singular similarity structure on S with holonomy H_d (and in particular, at most one singular Euclidean structure, up to scaling), such that so that $\delta(e) = \Delta(e)$, for every edge $e \in E(T)$.

Definition 1.5. A triangulation T with $\delta(e) \leq \pi$ for every interior $e \in E(T)$ is called a Delaunay triangulation.

Let Δ be a map $\Delta : E(T) \to (0, 2\pi)$. When does there exist a singular Euclidean metric on S with the dihedral angles prescribed by Δ? It is clear that there are certain linear constraints which must be satisfied – to wit, for every face $t = ABC$ of T, we must be able to find angles α, β, and γ, such that:

- Positivity. All angles are strictly positive.
- Euclidean Faces. For every face t, $\alpha_t + \beta_t + \gamma_t = \pi$.
- Boundary edge dihedral angles. For every boundary edge $e = AB$, incident to the triangle ABC, $\gamma = \Delta(e)$.
- Interior edge conditions. For every interior edge $e = AB$, incident to triangles ABC and ABD, $\alpha + \delta = \Delta(e)$.

The system of equations and inequalities above specify a linear program L. The feasible region (set of solutions) of L must be non-empty in order for us to have any hope of having a singular Euclidean metric on S with prescribed dihedral angles. One of the principal results (Theorem 6.1) of [19] is that if all of the dihedral angles are no greater than π (that is, the triangulation is Delaunay), then Conditions 1-4 are also sufficient, thus:

Theorem 1.6. If the feasible region of L is non-empty and every dihedral angle is at most π, then there exists a similarity structure with any prescribed holonomy H_d and, in particular, a singular Euclidean metric on S with the prescribed dihedral angles – this structure is unique by Theorem 1.4 (and the metric is unique up to scaling).

2. NECESSARY CONDITIONS ON DIHEDRAL ANGLES

In order for the linear program L to have any chance of having a solution, the dihedral angles Δ must satisfy some constraints. Indeed, suppose L has a solution.

Condition 2.1. All of the dihedral angles must be positive.
Furthermore, the sum of all of the dihedral angles of all of the edges of T must be equal to the sum of all of the angles of all of the faces of T, or $F(T)\pi$. On the other hand, it is almost equally obvious that if $t_1, \ldots, t_n \in F(T)$ is some proper subset of the faces of T, then the sum of the dihedral angles at the edges incident to one of the t_i must be strictly greater than the $n\pi$. In other words:

Condition 2.2. Let $F \subseteq F(T)$, and let $E(F)$ be the set of all edges incident to an element of F. Then

$$\sum_{e \in E(F)} \Delta(e) \geq \pi |F|,$$

with equality if and only if $F = F(T)$ or $E(F) = \emptyset$.

Definition 2.3. For a subcomplex F of T, we define the excess of F to be

$$\text{excess } F = \sum_{e \in E(F)} \Delta(e) - \pi |F|, \quad (3)$$

Definition 2.4. An edge e of a subcomplex F of T is a relative boundary edge of F if it is incident to a top-dimensional face of F on exactly one side, and is not a boundary edge of T.

The following lemma will prove useful in the sequel.

Lemma 2.5. Let $\Delta : E(T) \to (0, \pi]$ be an assignment of dihedral angles to edges of T satisfying condition 2.2. Let t_1, t_2, \ldots, t_n be a collection of closed triangles of T, and let $F = t_1 \cup t_2 \cup \ldots \cup t_n$ – assume $F \neq T$. Let $\sum_{\partial F}$ be the sum of the dihedral angles of the boundary edges of F. Then

$$0 < \text{excess } F < \sum_{\partial} F. \quad (4)$$

Proof. The first inequality of 4 is a restatement of Condition 2.2 applied to the subcomplex F. To show the second inequality, let

$$\overline{F} = \bigcup_{t \in F(T) \setminus \{t_1,\ldots,t_n\}} t.$$ Evidently,

$$F \cup \overline{F} = T,$$

while

$$F \cap \overline{F} = \partial F.$$ Applying the conditions 2.2 to F, we see that

$$0 < \sum_{e \in E(F)} \Delta(e) - \pi |F(F)|,$$

while applying them to \overline{F}, we see that

$$0 < \sum_{e \in E(\overline{F})} \Delta(e) - \pi |F(\overline{F})|. \quad (6)$$
Note now that
\[|F(F)| + |F(F)| = |F(T)|, \quad (7) \]
while
\[\sum_{e \in E(F)} \Delta(e) + \sum_{e \in E(F)} \Delta(e) - \sum_{\partial} F = \sum_{e \in E(T)} \Delta(e). \quad (8) \]
Adding inequalities (5) and (6) and applying equations (7) and (8) we obtain
\[
\sum_{e \in E(F)} \Delta(e) - \pi|F(F)| < \left(\sum_{e \in E(F)} \Delta(e) - \pi|F(F)| \right) + \left(\sum_{e \in E(F)} \Delta(e) - \pi|F(F)| \right)
= \left(\sum_{e \in E(F)} \Delta(e) + \sum_{e \in E(F)} \Delta(e) \right) - (\pi|F(F)| + \pi|F(F)|)
= \sum_{e \in E(T)} \Delta(e) + \sum_{\partial} F + \pi|F(T)| = \sum_{\partial},
\]
where the last equality is obtained by applying the equality case of Condition 2.2.

3. SUFFICIENCY OF CONDITIONS 2.1 AND 2.2

Somewhat surprisingly, the trivial conditions 2.1 and 2.2 guarantees that the linear program \(L \) has a solution:

Theorem 3.1. Let \(T \) be a semi-simplicial triangulation of a surface \(S \), possibly with boundary, let \(\Delta : E(T) \to (0, \pi] \) be a function on the edges of \(T \), \(H_d \) a representation \(\pi_1(S \setminus V(T)) \to \mathbb{R} \). There exists a similarity structure with holonomy \(H_d \) on \(S \), with the Delaunay triangulation of \((S, E) \) combinatorially equivalent to \(T \), and with dihedral angles given by \(\Delta \) if and only if conditions 2.1 and 2.2 are satisfied.

We will use the Duality Theorem of linear programming to prove Theorem 3.1. Before stating the Duality Theorem we need to recall some notions: A **linear program** \(L \) consists of a collection \(\mathcal{C}(L) \) of **constraints**, which are linear equations or (nonstrict) inequalities, and the **objective function** \(F(L) \), which is a linear function. The set of points in \(\mathbb{R}^n \) satisfying the constraints \(\mathcal{C}(L) \) is called the **feasible region** of \(L \), which is, by definition, a polyhedral region, possibly unbounded, possibly not of full dimension, and possibly empty. The **solution** of the linear program is a point where the objective function attains an extremum (which may be a maximum or a minimum). The value of the objective function at the solution is the **objective** of \(L \). If the feasible region of \(L \) is empty, the program is said to be infeasible. Now we can state the Duality Theorem:

Theorem 3.2 (Duality Theorem of Linear Programming). Let \(P \) be a linear program of the form:
Minimize $c^T x$, subject to the constraints $Ax = a, x \geq 0$.

Then the dual of P is the program P^*:

Maximize $a^T \lambda$, subject to the constraints $\lambda^T A \leq c$.

The feasible region of P is nonempty if and only if the objective of P^* is bounded. Conversely, the feasible region of P^* is nonempty if and only if the objective of P is bounded. If neither feasible region is empty, then the values of the objective functions of P and P^* are equal.

Remark. While the primal program P in the statement of Theorem 3.2 appears to be of a very special form, it is not hard to see that any linear program can be written in this form. Indeed, if our linear program asked us to maximize the objective, we can always convert it to a minimization problem by multiplying c by -1. If our program did not require the variables to be non-negative, we can always replace a variable x by $x_+ - x_-$, where x_+ and x_- are both required to be non-negative. If the program had some inequalities of the form $a_i^T x \geq a$, or of the form $a_i^T x \leq a$ we can first convert all the inequalities of the first type to those of the second type by negation, and then convert them to equations by introducing slack variables $x_i \geq 0$, and requiring $a_i^T x + x_i = a$. Similarly, any program can be made to look like the dual program P^* in the statement of Theorem 3.2.

Program L is almost in the primal form needed by the duality theorem, but for two differences: there is no objective function, and we want the primal variables (the angles of the triangles) to be strictly positive, rather than just non-negative.

For the moment, let us sweep these issues under the rug, by setting the objective function to be 0, and allowing the angles to vanish – it will be quickly apparent how to fix things up later. Let the modified program be L_1. The dual L_1^* of L_1 is the following:

The dual program. Maximize $F(u,v) : \pi \sum_{t \in F(T)} u_t + \sum_{e \in E(T)} \Delta(e) v_e$, subject to the conditions $u_t + v_e \leq 0$ whenever e is an edge of t.

Theorem 3.3. Assume that the conditions described in conditions 2.1 and 2.2 are satisfied. Then the objective function of L_1^* is nonpositive. It equals 0 if and only if there is a u, such that $u_t = -v_e = u$, for all $t \in F(T), e \in E(T)$.

Proof. Observation 1. Note that if there is a u as required in the statement of the Theorem, the objective function is, indeed, equal to 0. This is nothing other than the equality case of Condition 2.2.

Now, let $u = \min(u_1, \ldots, u_{F(T)})$. Let $u_i^{(1)} = u_i - u$, and let $v_j^{(1)} = v_j + u$, for all values of the indices. The new variables are still feasible for L_1^*, and by the observation 1 above, this transformation does not change the value of the objective. Furthermore, if $u_i^{(1)} = 0$ for all i, then the objective is non-positive, and is equal to zero only if all of $v_j^{(1)}$ are equal to zero as well – this is so, since all of the v_j must be non-positive, and all of their coefficients are positive, by Observation 2.1. Assume, then, that $u_i^{(1)} > 0$ for $t \in \mathcal{F}(1); \mathcal{F}(1)$ is a proper subset of $F(T)$ by construction.

Observation 2. Suppose now that $u_i^{(1)} = 0$, for all $t \in \mathcal{F}_1$. Then

$$F \leq \pi \sum_{t \in \mathcal{F}(1)} u - \sum_{e \in E(\mathcal{F}(1))} \Delta(e) u < 0,$$
Now, let \(u^{(1)} = \min_{t \in F(1)} (u_t^{(1)}) \), and let \(u_0^2 = u_t^{(1)} = 0 \) if \(t \notin \mathcal{F}(1) \), and otherwise \(u_t^{(2)} = u_t^{(1)} - u_t^{(1)} \). Likewise, \(v_e^{(2)} = v_e^{(1)} \) if \(e \notin E(\mathcal{F}(1)) \), and otherwise \(v_e^{(2)} = v_e^{(1)} + u_t^{(1)} \).

This still leaves us in the feasible region of \(L^*_1 \) and strictly increases the value of the objective (by Observation 2). The new nonzero set \(\mathcal{F}(2) \) is a proper subset of \(\mathcal{F}(1) \), and we can repeat this process. In the end, we will wind up with a feasible point \(u^{(k)}, v^{(k)} \), with \(u^{(k)} = 0 \), where the value of the objective is non-positive (by Observation 1), and strictly greater than the value of the objective at \(u, v \) (by Observation 2), thus completing the proof. \(\square \)

The above theorem shows that the feasible region of \(L_1 \) is non-empty. In order to find a solution with strictly positive angles, we write our angles \(\alpha_i \), as \(\alpha_i = \beta_i + \epsilon \). We require all of the \(\beta_i \) to be non-negative, and our new objective is simply \(-\epsilon \).

Call the resulting program \(L_2 \). Its dual \(L^*_2 \) has the following form:

Second dual. Maximize \(F(u, v) : = \pi \sum_{t \in F(T)} u_t + \sum_{e \in E(T)} \Delta(e) v_e \), subject to the conditions \(u_t + v_e \leq 0 \) whenever \(e \) is an edge of \(t \), and also \(3 \sum_{t \in F(T)} u_t + 2 \sum_{e \in E(T), e \notin \partial T} v_e + \sum_{e \in E(T), e \in \partial T} v_e \leq -1 \).

Theorem 3.4. The optimal value of the objective of \(L^*_2 \) is strictly negative.

Proof. Suppose the contrary. Then \(u_t = -v_e = u \), for some \(u \), by Theorem 3.3. However, in that case the last inequality of \(L^*_2 \) is not satisfied, since the left hand side of the last constraint of \(L^*_2 \) vanishes. Indeed, it is equal to

\[
\left(3 \sum_{t \in F(T)} u_t + 2 \sum_{e \in E(T), e \notin \partial T} v_e + \sum_{e \in E(T), e \in \partial T} v_e \right) .
\]

Observe, however, that \(3 \sum_{t \in F(T)} u_t \) counts each non-boundary edge with multiplicity 2, and each boundary edge with multiplicity 1. \(\square \)

4. DIHEDRAL ANGLES OF DELAUNAY TRIANGULATIONS

In the preceding section it was shown that in order for the linear program \(L \) to have a solution, it is necessary and sufficient that the putative dihedral angles \(\delta(e) \) satisfy the inequalities \(4.1 \) and \(4.2 \). Below, we use these to derive another set of necessary conditions \(4.3 \) and show that under the additional assumption that the original dihedral angles do not exceed \(\pi \), these are equivalent to the inequalities \(4.2 \).

The virtue of the inequalities \(4.3 \) is that it is easier to interpret them geometrically. A special case of them is one of the main results of [20] – the connection will be explained in section 4.

First, some definitions (these are the analogs of the definitions of section 4 without reference to face angles) – as before \(T \) is a triangulation of \(S, V(T) \) is the set of vertices of \(T, E(T) \) is the set of edges, and \(F(T) \) is the set of faces. We assume that each edge \(e \in E(T) \) is given a weight \(\delta(e) \in \mathbb{R} \). The weight \(\delta(e) \) will be called the dihedral angle at \(e \). The quantity \(\delta'(e) = \pi - \delta(e) \) will be called the exterior dihedral angle at \(e \).
If \(v \) is a vertex of \(T \), then the cone angle \(C_v \) is defined to be
\[
C_v = \sum_{e \text{ incident to } v} \delta'(e),
\]
while the curvature \(\kappa_v \) is defined to be \(\kappa_v = 2\pi - C_v \).

Note. The cone angle of a boundary point is, thus, not the same as the boundary angle (in the language of section 1, but smaller by \(\pi \)).

Below, it will often be useful to talk of the Poincaré dual of \(T \). Recall that this is the complex \(T^* \), such that the set of vertices of \(T^* \) is in one-to-one correspondence with the set of faces of \(T \), the set of edges of \(T^* \) are in one to one correspondence with the edges of \(T \) — two vertices of \(T^* \) are joined by an edges if and only if the corresponding faces of \(T \) share an edge, and finally the faces of \(T^* \) correspond to the vertices of \(T \) — the vertices of a face \(v^* \) of \(T^* \) correspond to the faces of \(T \) incident to the corresponding vertex \(v \).

Definition 4.1. A subcomplex \(F \) of \(T \) is closed, if whenever a cell \(t \) is in \(F \), then so are all of the lower-dimensional cells incident to \(t \).

Definition 4.2. The total curvature of a subcomplex \(F \) of \(T \) is defined as
\[
K(F) = \sum_{v \in V(F)} \kappa_v.
\]

Notation. Let \(F \) be a subcomplex of \(T \), and let \(E'(F) \) be the set of those edges \(e \) of \(T \) which are not edges of faces of \(T \), but such that at least one endpoint of \(e \) belongs to \(F \). For each edge \(e \) of \(T \), define \(n_F(e) \) to be the number of endpoints of \(e \) which belong to \(F \).

For example, if \(e \in E(F) \), then \(n_F(e) = 2 \); if \(e \notin E(F) \cup E'(F) \), then \(n_F(e) = 0 \).

Theorem 4.3. For every non-empty subcomplex \(F \) of \(T \) the following are equivalent:

(a). \[
\sum_{e \in E'(F)} n_F(e) \delta'(e) \geq 2\pi \chi(F) - K(F),
\]
with equality if and only if \(F = T \).

(b). Conditions \(\ref{2.2} \) and \(\ref{2.3} \) hold.

Proof. We will show that \((b) \Rightarrow (a) \); the converse is immediate.

\[
K(F) = \sum_{v \in V(F)} (2\pi - \sum_{v \in e} \delta'(e)) = 2\pi |V(F)| - \sum_{v \in V(F)} \sum_{v \in e} \delta'(e). \tag{9}
\]

The last sum of equation \(\ref{9} \) can be rewritten thus:
\[
\sum_{v \in V(F)} \sum_{e \text{ incident to } v} \delta'(e) = 2 \sum_{e \in E(F)} \delta'(e) + \sum_{e \in E'(F)} n_F(e) \delta'(e). \tag{10}
\]

Finally, using the definition of \(\delta'(e) \), and combining equations \(\ref{9} \) and \(\ref{10} \) it follows that
\[
K(F) = 2\pi \chi(F) + 2(\sum_{e \in E(F)} \delta(e) - \pi |F(F)|) - \sum_{e \in E'(F)} \delta'(e). \tag{11}
\]
Now, assume that the dihedral angles satisfy the inequalities 2.2. This means that the middle term on the right hand side of equation 11 is non-negative (and strictly positive unless \(F = T \)).

4.1 Some corollaries and refinements

Here are some easy consequences of Theorem 4.3:

Special case 1. \(F = T \). Then, since \(E'(F) = \emptyset \), we just get the Gauss-Bonnet theorem (with curvature defined in terms of the dihedral angles).

Special case 2. The complement of \(F \) is an annulus containing no vertices of \(T \) – this corresponds to a simple cycle in the Poincaré dual \(T^* \). For every edge in \(E'(F) \), \(n_e = 2 \). Theorem 4.3 just says that \(\sum_{e \in E'} \delta'(e) > 0 \).

Special case 3. For every edge in \(E'(F) \), \(n_e = 1 \). This will hold in the case where \(F \) is a subset of \(T \) with a collar, and removing the edges in \(E' \) separates the 1-skeleton of \(T \) into (at least) two connected components. In this case, Theorem 4.3 tells us that

\[
\sum_{e \in E'(F)} \delta'(e) \geq 2\pi \chi(F) - K(F).
\]

A drawback of both conditions 2.2 and Theorem 4.3 is that they require their respective inequalities to be checked for every subcomplex of \(T \) in order to verify whether a given assignment of dihedral angles is admissible. It is not hard to see that this requirement can be weakened somewhat.

Let \(F \) be the subcomplex in question.

Observation 4.4. It can assumed that every edge in \(E(F) \) is an edge of at least one face.

Observation 4.5. The 1-skeleton of the Poincaré dual \(F^* \) of \(F \) can be assumed connected – this is somewhat stronger than saying that \(F \) is connected.

Observation 4.6. It can be assumed that the 1-skeleton of \(F^* \) – the Poincaré dual of the complement of \(F \) – has no isolated vertices.

It is straightforward to check all of the above observations.

In the special situation where \(\delta(e) \leq \pi \) for all \(e \in E(T) \) – that is, \(\delta \) is Delaunay, one can further assume that every face \(f \) of \(F \) is adjacent to at most one face of \(F \). Otherwise, adjoin \(f \) to \(F \), to create a new complex \(F' \). This complex has one more face than \(F \), but its sum of dihedral angles is at most \(\pi \) greater than that of \(F \). Hence, it is enough to check that \(F' \) satisfies the hypotheses of Theorem 4.3, or the conditions 2.2.

Definition 4.7. A simple subcomplex of \(T \) is a subcomplex \(F \) such that both \(F \) and \(T \setminus F \) are connected.

Theorem 4.8. To verify that Conditions 2.1 and 2.2 (or equivalently, conditions of Theorem 4.3(b)) hold for all subcomplexes of \(T \), it is necessary and sufficient to check them for simple subcomplexes.
Proof. By Observation 4.3, it is enough to check the connected subcomplexes of \(T \). If such a subcomplex \(F \) is simple, then we are done. Otherwise, its complement is not connected. Let \(C \) be a connected component of the complement of \(F \).

Lemma 4.9. The complex \(C \) is simple.

Proof. By construction, \(C \) is connected. Also, every point of \(T \setminus C \) can be connected by a path to a point of \(F \). Since \(F \) is assumed connected, the lemma follows.

Consider \(F' = F \cup C \). By assumption, \(F' \neq T \). Now

\[
\left(\sum_{e \in E(F)} \Delta(e) - \pi|F(F)| \right) + \left(\sum_{e \in E(C)} \Delta(e) - \pi|F(C)| \right) - \sum_{\partial} C \tag{12}
\]

\[
= \left(\sum_{e \in E(F')} \Delta(e) - \pi|F'(F')| \right). \tag{13}
\]

By lemma 2.5 (more precisely, a version for simple complexes),

\[
\left(\sum_{e \in E(C)} \Delta(e) - \pi|F(C)| \right) - \sum_{\partial} C < 0, \tag{14}
\]

thus,

\[
\left(\sum_{e \in E(F)} \Delta(e) - \pi|F(F)| \right) > \left(\sum_{e \in E(F')} \Delta(e) - \pi|F'(F')| \right). \tag{15}
\]

Thus, in order to check that condition 2.2 holds for \(F \), it is enough to check that it holds for \(F' \). The proof of Theorem 4.8 is finished by the obvious induction argument on the number of connected components of the complement of \(F \).

In the case where \(T \) is a genuine simplicial complex (that is, two cells intersect in a lower-dimensional cell), simple subcomplexes corresponds to non-coterminous minimal cutsets of edges of \(T \):

Definition 4.10. A collection \(C \) of edges of \(T \) is a cutset if removing the edges in \(C \) disconnects the 1-skeleton of \(T \). A cutset \(C \) is minimal if no proper subset of \(C \) is a cutset. A cutset \(C \) is coterminous if all of the edges in \(C \) are incident to the same vertex.

In other words, a minimal cutset corresponds to a separating simple curve in the Poincaré dual \(T^* \) of \(T \) (the curve need not be closed if \(T \) has boundary). A coterminous cutset corresponds to a boundary of a face in the dual. The non-coterminous simple cutset corresponding to the subcomplex \(F \) is nothing other than the set of edges \(E'(F) \) define just before the statement of theorem 4.3.

In the case where the surface \(S \) is a flat disk, theorems 3.3, 1.6, 4.3, and 4.8 immediately imply:
Theorem 4.11. Let T be a triangulation of the disk, let $\Delta : E(T) \to (0, \pi]$ be an assignment of dihedral angles to the edges of T, let $V_\partial(T)$ be the set of boundary vertices of T and let $\Lambda : V_\partial(T) \to (0, \pi]$ be the assignment of boundary angles. Then, there exists a collection of points $p_1, \ldots, p_{V(T)}$ in the plane \mathbb{E}^2 whose Delaunay triangulation is combinatorially equivalent to T, has dihedral angles given by Δ, and whose convex hull is a polygon with angles given by Λ, if and only if:

- If v is an interior vertex of T, then
 \[\sum_{e \in E(T) \text{ incident to } v} (\pi - \Delta(e)) = 2\pi. \] (16)

- If v is a boundary vertex of T, then
 \[\sum_{e \in E(T) \text{ incident to } v} (\pi - \Delta(e)) + (\pi - \Lambda(v)) = 2\pi. \] (17)

- If E is a non-coterminous minimal cutset corresponding to a simple closed curve in the Poincaré dual T^* of T, then
 \[\sum_{e \in E} (\pi - \Delta(e)) > 2\pi. \] (18)

- If E is a non-coterminous minimal cutset not corresponding to a simple closed curve in T^*, and E separates the boundary vertices of T into two groups v_1, \ldots, v_k and $v_{k+1}, \ldots, v_{|V_\partial(T)|}$, then
 \[\sum_{e \in E} (\pi - \Delta(e)) + \sum_{i=1}^{k} (\Pi - \Lambda(v_i)) > 2\pi. \] (19)

Remark. Theorem 4.11 is nothing but one of the main results (Theorem 0.1) of [20], stated in a different language (without mentioning convex ideal polyhedra), so we have succeeded in deducing that theorem in a purely combinatorial way from the results of [14]. In addition, Theorem 4.8 is seen to be a direct generalization of [20] [Theorem 0.1] to a characterization of dihedral angles of Delaunay triangulations of arbitrary, possibly singular, Euclidean surfaces.

5. A NETWORK FLOW APPROACH

There is an alternative way to prove Theorem 3.3 which uses the Max Flow-Min Cut theorem of network flow instead of the duality theorem of linear programming. It should be noted that the difference between the two arguments is largely superficial, since the proof of Theorem 3.3 can be seen to essentially prove the Max Flow-Min Cut theorem. There are two reasons to set up the question as a result on network flow. The first is that the proof (hopefully) becomes clearer and more intuitive. The second is that the special sorts of linear programs that arise in the theory of network flow have been heavily analyzed from the viewpoint of complexity, which will allow us to give a very satisfactory estimate (section 8) for the running time of an algorithm to determine whether a structure with prescribed dihedral angles actually exists.
A network is a directed (multi)graph N, with two distinguished vertices – s (the source), and S (the sink). Each edge of N has a certain capacity, which is a real number, which is an upper bound on the amount of the commodity which can flow from the tail to the head of the edge. A cutset C of N is a collection of edges, the removal of which leaves s and S in two different connected components of $N \setminus C$. The capacity of the cutset C is simply the sum of the capacities of the edges comprising C. The capacity of an empty collection of edges is, of course, 0.

The Max Flow-Min Cut theorem of network flow (see, for example, [26, Chapter 7]) says the following:

Theorem 5.1 (Max Flow – Min Cut). The maximal amount of a commodity that can flow from the source s to the sink S of a network N is equal to the capacity of the smallest cutset in N.

This theorem can be proved in a number of ways. The interested reader can adapt the proof of Theorem 3.3 to show Theorem 5.1.

To use Theorem 5.1 for our purposes, we need to set up a network of a special sort, starting with a triangulation \mathcal{T}.

The vertices of this network are divided into four classes: \{s\}, $F(\mathcal{T})$, $E(\mathcal{T})$, and \{S\}.

The source s is connected to all of the vertices corresponding to the faces of \mathcal{T} with edges of capacity 1. We call them edges of level 1. Every vertex corresponding to a face t is connected to the three vertices, corresponding to the three edges of t by edges of capacity 1. These are edges of level 2. Finally, each $e \in E(\mathcal{T})$ is connected to the sink S by an edge of capacity $\delta(e)$. These are edges of level 3.

The following statement is self-evident:

Observation 5.2. There exists a solution of the linear program L_1 if and only if the maximal flow through the above-constructed network N_1 is equal to $|F(\mathcal{T})|$.

Proof of theorem 3.1. Consider a cut C of N_1. This will have some edges at level 1, removing which which will disconnect a subset F_0 of the faces of \mathcal{T} from the source. It is then not necessary to remove any edges of level 2 emanating from F_0. Let $F(\mathcal{T}) \setminus F_0 = F_1$. Let $F_2 \subseteq F_1$ be those faces f for which the cutset contains all three edges of level 2 emanating from f. Finally, $F_3 = F_1 \setminus F_2$. All of the edges of level 3 (indirectly) emanating from F_3 must be in the cutset C. These are precisely the edges corresponding to the edges of the subcomplex of \mathcal{T} whose faces are in F_3.

What is the capacity of C? Evidently, it is equal to

$$F_0 + 3F_2 + \sum_{e \in E(F_3)} \delta(e).$$

If we want the flow through N_1 to be F, we must have

$$F_0 + 3F_2 + \sum_{e \in E(F_3)} \delta(e) \geq F,$$

Or, noting that $F_1 = F - F_0$,

$$3F_2 + \sum_{e \in E(F_3)} \delta(e) \geq F_1.$$
In the special case where $F_2 = 0$, it follows that
\[\sum_{e \in E(F_3)} \delta(e) \geq F. \] (20)

Since F_3 could have been any subset of F, it follows that condition 2.2 is necessary (this is, in any event, self evident).

On the other hand, if condition 2.2 holds for any subcomplex of T, substituting the inequality 2.2 into (4), we see that
\[c(C) \geq F_0 + 3F_2 + F_3 = F + 2F_2 \geq F. \]

\[\Box \]

The above result is not quite what is required: the non-strict inequality 20 implies the existence of a consistent assignment of angles to the faces of T, but some of these angles may be equal to 0. In order to have the angles strictly positive, we must modify the weights in the network N_1 as follows:

Modify the capacity of level 1 edges to be $1 - 3\epsilon$; those of level 2 to be $1 - \epsilon$, and those of level 3 to be $1 - 2\epsilon$. Call the resulting network N_2. The existence of a consistent assignment of angles to the faces of T where all the angles are no smaller than ϵ is obviously equivalent to the maximal flow in N_2 being equal to $F(T)(1 - 3\epsilon)$.

Consider now a cut C in N_2, with notation as before. The capacity of C will be:
\[(1 - 3\epsilon)F_0 + 3(1 - \epsilon)F_2 + \sum_{e \in E(F_3)} \delta(e) - 2\epsilon E(F_3). \] (21)

Assume that $F_2 = 0$. The MinCut condition together with expression 21 gives:
\[(1 - 3\epsilon)F_0 + \sum_{e \in E(F_3)} \delta(e) - 2\epsilon E(F_3) \geq (1 - 3\epsilon)F, \]

or
\[\sum_{e \in E(F_3)} \delta(e) \geq (1 - 3\epsilon)F_3 + 2\epsilon E(F_3). \]

If $\emptyset \subset F_3 \subset F$, then $E(F_3) > \frac{3}{2}F_3$, and so $\sum_{e \in E(F_3)} \delta(e) > F_3$.

Suppose now that $\delta(F') - F' \geq \psi > 0$, for all proper non-empty subsets F' of F. Then the expression 21 is no smaller than
\[(1 - 3\epsilon)F_0 + 3(1 - \epsilon)F_2 + F_3 + \psi - 2\epsilon E(F_3). \] (22)

The edges of F_3 can be divided into two classes: interior edges (those incident to two triangles of F_3) – these number $E_3(F_3)$, and boundary edges of F_3 – those incident to only one triangle. These number $E_{\partial}(F_3)$. Since F_3 is a proper subset of F, $E_{\partial}(F_3) > 0$. Clearly,
\[2E(F_3) = 3F_3 + E_{\partial}(F_3). \] (23)

The lower bound 22 can thus be rewritten as
\[c(C) \geq (1 - 3\epsilon)F_0 + 3(1 - \epsilon)F_2 + (1 - 3\epsilon)F_3 + \psi - \epsilon E_{\partial}(F_3) \]
\[= (1 - 3\epsilon)F + \psi + (1 - 3\epsilon)F_2 - \epsilon E_{\partial}(F_3). \] (24)

(25)
16

Since $\epsilon \leq \frac{1}{3}$ (a triangle cannot have all angles greater than $\pi/3$), we get

$$c(C) - (1 - 3\epsilon)F \geq \psi - \epsilon E_\partial(F_3).$$

(26)

In other words, if $\sum_{e \in E(F')} \delta(e) - F' \geq \psi$ for every $\emptyset \subset F' \subset F$, there is a solution of the linear program L_1 with all face angles of all triangles no smaller than $\psi/E(T)$.

6. DELAUNAY TRIANGULATIONS OF INFINITE SETS OF POINTS

In this section we will show that theorem 3.1 for singular Euclidean structures can be extended without change to infinite locally finite complexes:

Theorem 6.1. Let T be an infinite but locally finite complex, and let $\Delta : E(T) \to (0, \pi]$. Then there exists a singular euclidean structure on T, with cone points at vertices of T, whose Delaunay triangulation is combinatorially equivalent to T, and whose dihedral angles are given by Δ if and only if each finite subcomplex $F \subset T$ with $E(F) \neq \emptyset$ has positive excess.

There are two ingredients in the argument. The first (Lemma 6.2) is an extension of section 3, the second (6.3) is a geometric estimate which will enable us to extract the necessary subsequences.

Lemma 6.2. Let T be a complex, and let $\Delta : E(T) \to (0, \pi]$. Then there exists a Euclidean structure with cone angles at vertices of T, and dihedral angles given by Δ, except at the boundary edges of T, where they are smaller than prescribed by Δ if the excess of any subcomplex $F \subset T$ such that $E(F) \neq \emptyset$ is positive.

Remark. Lemma 6.2 can be viewed as a relative version of theorem 3.1.

Proof. The argument parallels very closely that of section 3. The existence of the desired structure is, as before, equivalent to a negative objective of a linear program, and as before, we set up a slightly simpler linear program first. To wit, the program L' is:

Positivity. All angles are strictly positive.

Euclidean Faces. For every face t, $\alpha_t + \beta_t + \gamma_t = \pi$.

Boundary edge dihedral angles. For every boundary edge $e = AB$, incident to the triangle ABC, $\gamma + x_e = \Delta(e)$, where the slack variables (see the comments following the statement of Theorem 3.2) x_e are also non-negative.

Interior edge conditions. For every interior edge $e = AB$, incident to triangles ABC and ABD, $\alpha + \delta = \Delta(e)$.

We relax the program L' to a program L'_1 by dropping the requirement that the angles be strictly positive, make the objective 0, as before, and we see that the dual to the new weakened linear program L'_1 is the following:

The dual program. Maximize $F(u, v) : \pi \sum_{t \in F(T)} u_t + \sum_{e \in E(T)} \Delta(e)v_e$, subject to the conditions

- the inequalities of L'_1: $u_t + v_e \leq 0$ whenever e is an edge of t.
- new inequalities. Whenever e is a boundary edge of T, $v_e \leq 0$.
Since the constraints of the above program L_1^* are a superset of the constraints of L_1^*, Theorem 3.3 still tells us that the objective function is maximized if there exists a u, such that $u_t = -v_e = u$, for all $t \in F(T)$, $e \in E(T)$. Now, this is not enough to guarantee that the objective is zero, since the equality case of condition 2.2 (when $F = T$) no longer exists. Since the new inequalities require u to be non-negative, it follows that for the objective function to equal 0, u must be 0.

Now, we follow Section 3 again, to define a program L_2^* in the same way as before (that is, since we want the angles to be strictly positive, we set $\alpha_i = \beta_i + \epsilon$, etc, and to also define its dual $L_2^{*\prime}$. By the same reasoning as before, it follows that the objective of $L_2^{*\prime}$, and hence of L_2^*, is negative. In fact, we can do more: we can also require all of the slack variables x_e to be strictly positive. The (yet another) new dual program L_3^* will have the form:

Third dual. Maximize $F(u, v) : \pi \sum_{t \in F(T)} u_t + \sum_{e \in E(T)} \Delta(e)v_e$, subject to the conditions

$$u_t + v_e \leq 0 \text{ whenever } e \text{ is an edge of } t.$$
$$v_e \leq 0, \text{ when } e \text{ is a boundary edge of } T.$$
$$3\sum_{t \in F(T)} u_t + 2\sum_{e \in E(T), e \notin \partial T} v_e + 2\sum_{e \in E(T), e \in \partial T} v_e \leq -1.$$

If we omit the last constraint, we remain with the dual program $L_1^{*\prime}$, and as the discussion above showed, the objective of that can only be 0 if $u_t \equiv v_e \equiv 0$, which is at odds with the last constraint of L_3^*.

Theorem 6.3. Let p_1, \ldots, p_n be a set of points in the plane, and D their Delaunay triangulation. Assume that the shortest edge of D has length 1, and the excess of every non-trivial subcomplex of D is no smaller than d_0. Then

$$\text{diameter } D \leq \left(\frac{4n}{d_0}\right)^n.$$

The proof of Theorem 6.3 will depend on a couple of easy auxiliary results:

Lemma 6.4. Let ABC be a triangle with $a/c, a/b < \epsilon$, $0 < \epsilon < 1/10$. Then, $\alpha < 2\epsilon$.

Proof. This is an immediate consequence of the theorem of Cosines, or the theorem of Sines.

Lemma 6.5. Let F be a subcomplex of D. Then the excess of F is

$$\sum_{\text{triangles } ABC \text{ such that } AB \in F} \gamma(ABC),$$

where $\gamma(ABC)$ is the angle at C.

Proof. This is immediate from the definition of excess.

Proof of Theorem 6.3. Suppose that the conclusion of the theorem does not hold. Assume, without loss of generality, that the edge between the vertices p_0 and p_1 is the shortest one (and thus of length 1).

We construct a family of disks D_1, D_2, \ldots, D_n, all centered on p_0, and such that the radius of D_i is equal to $\left(\frac{4n}{d_0}\right)^n$. Let $A_i = D_{i+1}\setminus D_i$, and let F_i to be the
maximal closed subcomplex of D contained in D_i. The hypothesis of the theorem ensures that at least one of the annuli A_i contains no vertices of D, let this annulus be A_j. Then we claim that the excess of F_j is smaller than d_0. Indeed, consider a triangle ABC of D adjacent to F_j along an edge AB. The vertex C of ABC lies outside D_{j+1}, and thus the lengths of AC and BC are at least \(\left(\frac{4n}{d_0} \right)^{j+1} - \left(\frac{4n}{d_0} \right)^j \), while the length of AB is at most \(\left(\frac{4n}{d_0} \right)^j \). Thus,

\[
\gamma(ABC) < \frac{2}{\frac{4n}{d_0} - 1} < \frac{d_0}{n},
\]

by lemma 6.4. Thus, by lemma 6.5, it follows that

\[
\text{excess } F_j < d_0,
\]

contradicting the hypothesis of the theorem. \(\square \)

Proof of Theorem 6.1. We only need to show that the positive excess conditions are sufficient, since they are obviously necessary. In addition, we may assume that the 1-skeleton of the Poincaré dual T^* is connected (if not, we prove the theorem for each connected component separately).

Now, we pick a pair of adjacent base vertices $v_1, v_2 \in V(T)$, and fix $d(v_1, v_2) = 1$. Now, for $v, w \in V(T)$ we define $d_c(v, w)$ to be equal to the combinatorial distance between v and w in the 1-skeleton of T. Now, define F_i to be the span of all vertices u, such that $d_c(v_1, u) \leq i$. The complex F_i is finite by local finiteness of T. In addition, $\bigcup_i F_i = T$, so every finite subcomplex of T belongs to some F_i. For each F_i, we consider a geometric realization $S(F_i)$, whose existence is guaranteed by lemma 6.2 (there are many such realizations, we pick any one of them).

Now, enumerate the faces of T, in such a way that t_1 contains the edge v_1v_2, and, for any j, the faces t_j and t_{j+1} are adjacent (that is, share an edge) in T. For each triangle, we have the space of shapes (similarity classes), given (for example) by the complex parameter z, obtained by placing the first two vertices of the triangle at the points 0 and 1 in the complex plane, and reading off the position of the third point (in the upper half-plane, assuming the triangle is positively oriented). Theorem 6.3 tells us that for any face t of T, the set of shape parameters of realizations of t is contained in a compact set C_t (since the ratio of lengths of any two sides is bounded by some constant, depending on the function Δ). We can think of each $S(F_i)$ as being an element of $C = \prod_j C_{t_j}$, which is a compact set by Tykhonov’s theorem, and hence we can extract a convergent subsequence from $S(F_1), \ldots, S(F_k), \ldots$. Call the limit of that subsequence S. Since the dihedral angles are obviously continuous functions of the triangle parameters, the dihedral angles of S will be given by Δ, and so S is the sought-after realization. \(\square \)

Note. For the comfort of more analytically inclined readers, it should be pointed out that the last argument is just an Arzela-Ascoli – uniform convergence on compact sets argument.
6.1 Remarks and Corollaries

Let us assume that the complex T has no boundary, and that the function Δ is such that all of the cone angles (computed using Lemma 1.2) are equal to 2π, so that any realization is Euclidean (and hence can be developed into the plane). Then, we can combine theorems 6.1 and 4.11 to get

Corollary 6.6. Let T be an infinite locally finite triangulation, and let $\Delta : E(T) \to (0, \pi]$ be an assignment of dihedral angles to the edges of T, let Then there exists a flat surface S, and a collection of points p_1, \ldots, p_n, \ldots in S whose Delaunay triangulation is combinatorially equivalent to T and which has dihedral angles given by Δ if and only if:

- If v is an interior vertex of T, then
 \[\sum_{e \in E(T) \text{ incident to } v} (\pi - \Delta(e)) = 2\pi. \]
 \[(27) \]

- If E is a non-coterminous minimal cutset, then
 \[\sum_{e \in E} (\pi - \Delta(e)) > 2\pi. \]
 \[(28) \]

The above Corollary can be viewed as an extension of Theorem 0.1 of [20] to the case of ideal polyhedra with infinitely vertices (and hence also of Andre’ev’s theorem for ideal polyhedra [2]), but not without certain caveats: even when T is topologically a disk, it is not at all obvious whether the metric on the surface S (or, even, any surface S) is geodesically complete. If it is complete, it follows that S is the Euclidean plane, and that the developing map is a global isometry, but otherwise the developing map is, only an immersion. Checking if the given simply-connected Euclidean surface S is the Euclidean plane is nothing other than the type problem – that is, we want to know whether a Riemann surface is parabolic, hyperbolic, or elliptic. If we know the shapes of all the triangles, this can be shown to be equivalent to the recurrence of a random walk on the 1-skeleton of the complex T, where an edge AB, incident to triangles ABC and ABD has weight $1/(\cot C + \cot D)$ ([21]).

Using this, it can be shown without too much difficulty that in the case where all of the dihedral angles are rational multiples of π, bounded away from 0 and π, then this is equivalent to the recurrence of the symmetric random walk on the 1-skeleton of T.

In the special case of all dihedral angles being equal to π or $\pi/2$, corollary 6.6 reduces to an existence theorem for infinite locally finite circle packings. In this case, the type problem, and a number of others, has been studied at great length by a number of authors, starting with Koebe, but more recently by A. Marden (in the context of Schottky groups), W. Thurston, B. Rodin and D. Sullivan, Z.-X. He, O. Schramm, and others.

It should be noted the Theorem 6.1 says nothing about uniqueness, and the proof certainly does not show any form of uniqueness. In view of Theorem 1.4 one might suspect that perhaps this could be shown with more work. In fact, it is quite clear from the above-mentioned work on circle packing that uniqueness fails, though in a controlled manner described in the conjecture below:
Conjecture 6.7. Let T be a infinite locally finite complex, Δ a system of dihedral angles satisfying the hypotheses of Theorem 6.4. If there is a realization of T supported on a simply-connected domain $\Omega_0 \subset \mathbb{C}$, then there is one supported on every simply-connected domain $\Omega \subset \mathbb{C}$. Furthermore, such a realization is determined uniquely by Ω (up to the group of Möbius transformations fixing Ω).

7. DELAUNAY CELLS IN MODULI SPACE

In the Introduction we alluded to the cell decomposition of the moduli space \mathcal{M} of Euclidean structures, where the cells are given by Euclidean structures where the Delaunay triangulation has a fixed combinatorial type T. Each cell is a convex polytope $\mathcal{P}(T)$, and the results above can be used to describe the combinatorial and geometric structure of $\mathcal{P}(T)$ in some detail, although some interesting questions (discussed at the end of this section) remain open.

Consider a codimension 1 face f of $\mathcal{P}(T)$. The face f may be either a boundary face of the moduli space \mathcal{M} (viewed as a polyhedral complex) or an interior face. In the latter case, f corresponds to a change of combinatorial type of Delaunay triangulation from T to T', and it is well understood that the primitive such change is given by a diagonal flip, so f corresponds to a cyclic quadrilateral $ABCD$, where in T the Delaunay triangulation has triangles (for example) ABC and CDA, while in T', the triangles are DAB and BCD. On f, the quadrilateral $ABCD$ can be triangulated either way, but the dihedral angle along (either) diagonal is equal to π.

Suppose now that f is a boundary face of \mathcal{M} – in particular, this will mean that none of the dihedral angles of the Euclidean structures in the interior of f are equal to π. By Theorems 4.8 and 4.3, it follows that there is a simple cocycle c^* of T^* where the inequality 4.3(b) becomes an equality. This means, by the geometric estimates in the beginning of section 6, that the collar C of c^* is becoming long and thin (that is, the conformal modulus of C diverges to ∞), and so f corresponds to the Euclidean structure pinching off along the curve c^*. The following construction (discussed in greater detail in an upcoming paper of the author) helps visualize this pinching off in terms of the more usual degeneration of hyperbolic surfaces:

Consider a triangulated singular Euclidean surface (S, E, P). The data given by (S, E, P) (initially using a triangulation, though it is easy to show that the result is independent of triangulation) can be used to construct a cusped hyperbolic surface, as follows:

1. To each triangle t of the triangulation T of (S, E, P), associate an ideal triangle $h(t)$.
2. For each pair of adjacent triangles $t_1 = ABC$ and $t_2 = ABD$ of T, we have the log of the modulus of the cross-ratio of the four corresponding points:
 \[r(t_1, t_2) = \log \frac{|AC||BD|}{|BC||AD|}. \]
3. For each pair of adjacent triangles t_1 and t_2 as above, glue the hyperbolic triangles $h(t_1)$ and $h(t_2)$ along the edge corresponding to AB with shear (see, eg. [18]) equal to $r(t_1, t_2)$.

It is not hard to see that if we start with a Euclidean structure \((S, E, P)\), we will wind up with a complete cusped hyperbolic structure (actually, it is sufficient, but not necessary, to start with a Euclidean structure -- some similarity structures will give a complete structure also). The construction thus defines a map (certainly not injective, but which can be shown to be surjective using the construction of \([5, 7, 13]\)) between the moduli space of Euclidean structures with cone points and that of complete finite-area hyperbolic structures. It can be shown (this was an important part of \([6, 20]\) for the case of genus 0) that the degeneration, as above, of the Euclidean structure on \((S, E, P)\), corresponds precisely to the pinching off along a simple closed curve of the hyperbolic structure on \((S, H(E), P)\).

Remark. Another surjection between the space of singular Euclidean structures and the space of cusped hyperbolic structures is well-known, and is discussed in the well-known paper of Troyanov \([24]\). The two surjections are not the same -- this was remarked by C. T. McMullen.

8. COMPUTATIONAL COMPLEXITY

Consider the following two decision problems:

Problem 1. Let \(T\) be a simplicial complex, homeomorphic to a surface \(S\) (possibly with boundary), and let \(\alpha : V(T) \to \mathbb{R}^+\) be an assignment of cone angles to the vertices of \(T\). Does there exist a Euclidean structure \(E\) on \(S\) with the prescribed cone angles, such that the Delaunay triangulation of \((S, E)\) is combinatorially equivalent to \(T\)?

Problem 2. Let \(T\) be a simplicial complex, homeomorphic to a surface \(S\) (possibly with boundary), and let \(\Delta : E(T) \to (0, \pi]\) be an assignment of dihedral angles to the edges of \(T\). Does there exist a singular Euclidean structure \(E\) on \(S\), such that the Delaunay triangulation of \((S, E)\) is combinatorially equivalent to \(T\), and whose dihedral angles are given by \(\Delta\).

By Theorem 1.6, there are efficient algorithms for both problems, since they reduce to the linear program \(L\) of section 1. If the angles (cone angles in problem 1, dihedral angles in problem 2) are rational multiples of \(\pi\), such that the numerator and denominator are both bounded by \(C\), then (by now) standard interior point methods allow us to solve the linear program \(L\) using \(O(n^4(1 + \log C))\) arithmetic operation, each involving arithmetic using precision \(O(n(1 + \log C))\). In the case where all of the prescribed cone angles are equal to \(2\pi\), the \(\log C\) can be disposed with, and we wind up with an algorithm of bit-complexity \(O(n^3 \log^2 n)\).

Remark. In practice, the simplex algorithm appears much more efficient, and this has been used by M. B. Dillencourt to analyze all planar triangulations of up to 14 vertices, and to determine which of them are combinatorially equivalent to planar Delaunay tessellations \([4, 3]\).

For problem 2, the network flow formulation of section 5 turns out to give a markedly superior complexity. Indeed, it has been shown in \([4]\) that for a network with \(n\) nodes, \(m\) arcs, and the (integer) capacity of each arc bounded by \(U\), we can determine the maximal flow in time bounded by \(O(nm \log((n/m)(\log U)^{1/2} + 2))\).

For the network \(N_1\) of section 5, assuming the genus of the surface is fixed, the number of arcs and nodes in the network are both bounded by constant mul-
tiples of the number \(F \) of faces in the complex \(T \). If all of the dihedral angles are rational multiples of \(\pi \), with numerators and denominators all bounded in absolute value by \(C \), the quantity \(U \) is bounded by \(C^{O(F)} \) (since we need to compute the least common multiple of the denominators), giving a running time bound of \(O(F^{5/2}) \). For the program \(N_2 \), the bound is the same, since the only difficulty consists of picking the right value of \(\epsilon \), and this can be made to be 1/least common denominator of the dihedral angles.

9. SOME APPLICATIONS TO COMBINATORIAL GEOMETRY

A well-known theorem of Steinitz says that every three-connected planar graph can be realized as the 1-skeleton of a convex polyhedron in \(\mathbb{R}^3 \), while a famous theorem of Aleksandrov states that every Euclidean metric on \(S^2 \) with positively curved cone-points can be realized as the induced metric on the surface of a convex polyhedron in \(\mathbb{R}^3 \). Below, we show a negative result, which should be compared with the final example of [17]:

Theorem 9.1. There exist infinitely many triangulations of \(S^2 \) which can not be realized as a Delaunay triangulation with respect to the cone-points of any Euclidean metric on \(S^2 \) with positively curved cone-points.

First a definition:

Definition 9.2. Let \(T \) be a triangulation. The stellation \(s(T) \) of \(T \) is the complex obtained by replacing each face \(ABC \) of \(T \) by three faces \(AOB \), \(AOC \), and \(BOC \).

Theorem 9.1 follows immediately from the following claim.

Claim 9.3. Let \(T \) be any triangulation of \(S^2 \) with at least eight faces. Then the stellation \(s(T) \) of \(T \) is not combinatorially equivalent to the Delaunay triangulation of any Euclidean metric on \(S^2 \) with positively curved cone-points, where the cone-points correspond to vertices of \(s(T) \).

Proof. Let an old vertex of \(s(T) \) be one that was already a vertex of \(T \), while a new vertex be one that was added at stellation. The set \(\mathcal{N} \) of new vertices of \(s(T) \) corresponds to the set of faces of \(T \). For any vertex \(v \), recall that \(C(v) \) denotes the cone angle at \(v \). The Gauss-Bonnet theorem tells us that

\[
\sum_{v \in V(s(T))} (2\pi - C(v)) = 4\pi. \tag{29}
\]

Or, recombining the terms:

\[
\sum_{v \in V(s(T))} C(v) = 2\pi(|V(s(T))| - 2). \tag{30}
\]

Note that every edge of \(s(T) \) is incident to an old vertex, and to at most one new vertex. Combining this observation with Lemma 1.2, we see that for any Delaunay triangulation combinatorially equivalent to \(s(T) \), it must be true that

\[
\sum_{v \in \{\text{old vertices of } s(T)\}} C(v) \geq \sum_{v \in \{\text{new vertices of } s(T)\}} C(v). \tag{31}
\]
Combining Eq. 31 with Eq. 30, it follows that
\[\sum_{v \in \text{old vertices of } s(T)} C(v) \geq \pi(|V(s(T)) - 2|). \] (32)

Note now that \(|V(s(T))) = |V(T)| + |F(T)|\). By a standard computation using Euler’s formula for triangulations of the sphere, we know that \(|V(T)| = \frac{1}{2}|F(T)| + 2\), thus \(|F(T)| = 2|V(T)| - 4\). Thus,
\[|V(s(T)) - 2| = 3|V(T)| - 6. \] (33)

Equations 33 and 32 together imply that the average cone angle at an old vertex of \(s(T)\) is at least \(\pi(3|V(T)| - 6)/|V(T)| = 3\pi - 6/|V(T)|\). If \(|V(T)| > 6\) it follows that the average cone angle at an old vertex is greater than \(2\pi\), which contradicts the assumption that the cone angles were positively curved. □

10. LINEAR HYPERBOLIC STRUCTURES ON 3-MANIFOLDS

As explained in [19], the study of Euclidean triangulations on surfaces is essentially equivalent to the study of hyperbolic ideally triangulated complexes, which are combinatorially just cones over the triangulated surface. Hence, the contents of this section are closely related to the subject-matter of much of the rest of the paper, in more than just the linear programming approach.

Consider a 3-manifold \(M^3\) with boundary a collection of tori, and consider a topological ideal triangulation \(T\) of \(M^3\). We would like to know when there is a complete hyperbolic structure on \(M^3\), such that \(T\) is a geometric ideal triangulation. In general, this is a very difficult question, at least as hard as Thurston’s hyperbolization conjecture (since even if \(M^3\) admits a hyperbolic structure of finite volume, there might not be an ideal triangulation combinatorially equivalent to \(T\)). However, below we will consider a “linear” version of the question above.

Recall that an ideal simplex \(S\) in \(H^3\) has the properties that

- **Euclidean links.** The link of each vertex is a Euclidean triangle.
- **Equal opposite dihedral angle.** If \(S = ABCD\), then the dihedral angles at the edges \(AB\) and \(CD\) are equal (this is actually a consequence of the condition on the links).

An ideal simplex is thus determined by the angles of the link of any one of its vertices (all links are easily seen to be the same).

Now, if \(T\) comes from a genuine hyperbolic structure, it must be true that the sum of the dihedral angles incident to the edges of \(T\) must equal \(2\pi\), and so for \(T\) to correspond to such a structure, the following linear program must have a strictly positive solution:

- **The variables.** These are the dihedral angles of the simplices. For each simplex \(S\) we use three angles \(\alpha, \beta, \gamma\) corresponding to the angles of the link of one vertex of \(S\).

- **Simplex conditions.** For each simplex \(S\), the sum of the dihedral angles is equal to \(\pi\):
 \[f_S : \alpha + \beta + \gamma = \pi. \] (34)
Edge conditions. For each edge e of T the sum of the dihedral angles of all simplices incident to e equals 2π:

$$f_e : \sum \lambda_i = 2\pi. \quad (35)$$

Definition 10.1. We say that if the above linear program has a non-negative solution, then the pair (M^3, T) admits a weak linear hyperbolic structure. If the linear program has a strictly positive solution, then we say that the pair (M^3, T) admits a linear hyperbolic structure.

It is clear that the existence of a linear hyperbolic structure is, in general, no guarantee of the existence of a genuine hyperbolic structure, since the linear conditions do not preclude “Dehn surgery” singularities, as well as translational singularities along edges of T (see [25; 14] for discussion). Conversely, as remarked above, the existence of a complete hyperbolic structure on M^3 is no guarantee that there is a positively oriented ideal triangulation combinatorially equivalent to T (or, indeed, any positively oriented triangulation). However, linear hyperbolic structures have the advantage of being considerably more tractable.

Theorem 10.2. In order for there to exist a weak linear hyperbolic structure for (M^3, T), every normal surface with respect to T must have non-negative Euler characteristic. In order for there to exist a linear hyperbolic structure for (M^3, T), every non-boundary-parallel normal surface with respect to T must have strictly negative Euler characteristic.

Proof. We will use the method of Section 3. First, let us write the dual program of the linear program (referred to as Lh in the sequel) for weak hyperbolic structure: Our variables are $\{v_S\}$, where S ranges over all the simplices of T, and $\{v_e\}$ where S ranges over all the edges of T.

The dual program L^*_h is:

1. Maximize $\sum_{S \in S(T)} v_S + 2 \sum_{e \in E(T)} v_e$.
2. Subject to $v_S + v_{e_1} + v_{e_2} \leq 0$ for all faces S and pairs of opposite edges e_1, e_2.

In order for the primal program to have a non-empty feasible region, the objective of the dual must be non-positive.

Consider now a normal surface S (see, eg, [3; 12; 3] for rudiments of normal surface theory). The surface S intersects each simplex S in a collection of disks, which are combinatorially either triangles (cutting off one vertex of S from the other three), or quadrilaterals (separating one pair of vertices from another). For each simplex S, define $t_S(S)$ to be the number of triangular components of $S \cap S$, and $q_S(S)$ to be the number of quadrilateral components. For each edge e of T, define $i_e(S)$ to be the number of intersections of S with e. The intersections of S with the simplices of T induces a triangulation T of S, where each triangular disk contributes one triangle, and each quadrangle contributes two. Define $u_S(S)$ to be the number of triangles of T sitting inside a simplex S. Evidently, $u_S = t_S + 2q_S$.

Note that, by Euler’s formula, $\chi(S) = \sum_{e \in E(T)} i_e - \frac{1}{2} \sum_{S \in S(T)} u_S$. This is seen to be very similar in form to the objective function of L^*_h, so let us set $v_S = -u_S$, and $v_e = i_e$.
Lemma 10.3. The assignment of the variables as above satisfies the inequality constraints of L^*_h.

Proof of Lemma. We need to check that for S a simplex and e_1, e_2 a pair of disjoint edges of S. We need to check that

$$i_{e_1} + i_{e_2} \leq u_S.$$

(36)

By linearity, we need just check the inequality (36) for connected components of $S \cap S$. If that component is a triangle t, then t contributes 1 to $i_{e_1} + i_{e_2}$ (since a “normal triangle” intersects exactly one of each pair of opposite edge). Also, t contributes 1 to u_S, so for a triangular face, the right and left hand sides of (36) are equal.

Suppose now we have a quadrilateral component q. It contributes 2 to the right hand side of (36). As for the left hand sides, q hits two pairs of opposite sides of S, so if e_1 and e_2 is one of those pairs, then we have a contribution of 2 to the left hand side, and otherwise we have a contribution of 0.

Remark 10.4. Notice that if S is such that all of the components of $S \cap S$, for all $S \in S(T)$ are triangles, then all of the constraints of L^*_h are equalities with the assignment of variables as above. Any such S is easily seen to be a union of boundary tori.

Lemma 10.3 concludes the proof of the “weak” part of Theorem 10.2, since if any S had positive Euler characteristic, the program L^*_h would have a positive objective, and thus the program L_h would have no solution.

For the proof of the “strong part” we use the same trick as in Section 3. Define new variables $\alpha' = \alpha + \epsilon$, etc. Our primal linear hyperbolicity program L_h is now:

- Minimize: $-\epsilon$
- subject to face constraints $\alpha' + \beta' + \gamma' + 3\epsilon = \pi$.
- and to edge constraints $\sum_{\alpha \in \text{prime}} v(e) \epsilon = 2\pi$, where $v(e)$ is the valence of e.

The dual program L^*_s is then

- Maximize $\sum_{S \in S(T)} v_S + 2 \sum_{e \in E(T)} v_e$.
- Subject to the old constraints $v_S + v_{e_1} + v_{e_2} \leq 0$ for all faces S and pairs of opposite edges e_1, e_2.
- and the new constraint $3 \sum_{S \in S(T)} v_S + \sum_{e \in E(T)} v(e) v_E \leq -1$.

In order for (M^3, T) to be linearly hyperbolic, the objective must be strictly negative.

Observe that the sum of the left hand sides of the old constraints is equal to the left hand side of the new constraint. Indeed, each v_S occurs three times (once for each pair of opposite edges), and each v_e occurs the number of times equal to the valence of e. Hence, the new constraints simply says that in at least one of the old constraints the inequality must be strict. Keeping in mind Remark 10.3, this implies that every non-boundary-parallel normal surface must have strictly negative Euler characteristic, thus proving the second part of Theorem 10.2.

Some remarks may be in order: It is easy to see (and not surprising) that an identical theorem can be proved if the cone angles around the edges of T are required.
to not be smaller than 2π, while if the angles are smaller than 2π, one can show an analogous “orbifold” version of the theorem. A more interesting question is whether the converse of Theorem 10.2 holds. This is equivalent to asking whether every assignment of variables satisfying the constraints of programs L^*_h and L^*_s comes from a normal surface.

ACKNOWLEDGMENTS

The author would like to thank the École Normale Superieure de Lyon and the Institut Henri Poincaré for their hospitality. The special case of Theorem 3.1 for Euclidean structures (that is, trivial holonomy) has been independently shown for closed surfaces by W. Veech ([27]) and B. H. Bowditch ([6]) using completely different methods. Theorem 10.2 is due to A. Casson.

References

[1] K. Ahuja, J. B. Orlin, and R. E. Tarjan. *Improved time bounds for the maximum flow problem*, SIAM Journal on Computing, 18(1989), pp. 939-954.

[2] E. M. Andreev. *On convex polyhedra of finite volume in Lobachevskii space*. Math. USSR, Sbornik, 12:255–259, 1970.

[3] M. B. Dillencourt, private communication.

[4] M. Dillencourt. *Polyhedra of small order and their Hamiltonian properties*. J. Combin. Theory Ser. B 66(1), 1996, pp. 87–122.

[5] B. H. Bowditch and D. B. A. Epstein. *Natural triangulations associated to a surface*. Topology 27(1), pp. 91-117.

[6] B. H. Bowditch. *Singular Euclidean structures on surfaces*. Journal of the London Mathematical Society 44(3), pp 553-565.

[7] D. B. A. Epstein and R. C. Penner. *Euclidean decompositions of non-compact hyperbolic manifolds*, Journal of Differential Geometry 27 (1988), pp 67-80.

[8] W. Haken. *Theorie der Normalflächen*, (German) Acta Math. 105, 1961, pp. 245–375.

[9] G. Hemion. The classification of knots and 3-dimensional spaces. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1992.

[10] John Harer. *The virtual cohomological dimension of the mapping class group of an orientable surface*. Invent. Math. 84 (1986), no. 1, pp. 157–176.

[11] C. D. Hodgson, Igor Rivin and W. D. Smith. *A characterization of convex hyperbolic polyhedra and of convex polyhedra inscribed in the sphere*, Bulletin of the American Mathematical Society 27(3), October 1992.

[12] W. Jaco. Lectures on three-manifold topology. CBMS Regional Conference Series in Mathematics, 43. American Mathematical Society, Providence, R.I., 1980.

[13] M. Niitçänen and R. C. Penner. *The convex hull construction for compact surfaces and the Dirichlet polygon*, Bulletin of the London Mathematical Society 6, 1991, pp 568-574.

[14] W. D. Neumann and D. Zagier. *Volumes of hyperbolic 3-manifolds*, Topology 24(3), pp. 307-332.

[15] R. C. Penner. *The decorated Teichmüller space of punctured surfaces*, Comm. Math. Phys. 113(2), 1987, pp. 299-339.

[16] Igor Rivin and C. D. Hodgson. *A characterization of compact convex polyhedra in hyperbolic 3-space*, Inventiones Mathematicae 111(1), 1993.

[17] Igor Rivin. *On geometry of convex ideal polyhedra in hyperbolic 3-space*, Topology 32(1), 1993.

[18] Igor Rivin. *Intrinsic geometry of convex ideal polyhedra in hyperbolic 3-space*, Analysis, algebra, and computers in mathematical research (Proceedings of the 1992 Nordic Congress of Mathematicians, Luleaa, 1992), Lecture Notes in Pure and Applied Mathematics 156, Marcel Dekker, 1994.

[19] Igor Rivin. *Euclidean structures on simplicial surfaces and hyperbolic volume*, Annals of mathematics 139(3), 1994.
[20] Igor Rivin. A characterization of ideal polyhedra in hyperbolic 3-space, Annals of mathematics 143(1), 1996.
[21] Igor Rivin. Personal communication.
[22] Jakob Steiner, Systematische Entwicklung der Abhängigkeit geometrischer Gestalten von einander, Reimer, Berlin, 1832; Appeared in J. Steiner’s Collected Works, 1881.
[23] E. Steinitz. Uber isoperimetrische Probleme bei konvexen Polyedern, J. Reine Angew. Math. 159, pp. 133-143, 1928.
[24] M. Troyanov. Les surfaces euclidiennes à singularites coniques, Enseignement Mathematique, 32(1-2), 1986, pp. 79-94.
[25] W. P. Thurston. Geometry and topology of 3-manifolds, Unpublished Princeton lecture notes for 1978, distributed by MSRI, Berkeley.
[26] J. van Lint, R. M. Wilson. A Course in Combinatorics, Cambridge University Press, Cambridge, 1992.
[27] W. Veech. Delaunay Partitions, Topology 36, no. 1, 1997, pp. 1-28.