Rapid Profiling of Chemical Constituents in Qingfei Paidu Granules Using High Performance Liquid Chromatography Coupled with Q Exactive Mass Spectrometry

Shuai Fu1 · Rongrong Cheng1 · Zilei Xiang1 · Zixin Deng1,2 · Tiangang Liu1,2,3

Received: 16 June 2021 / Revised: 5 August 2021 / Accepted: 23 August 2021 / Published online: 12 September 2021 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Qingfei Paidu (QFPD) granules have played a critical role during the Coronavirus Disease 2019 (COVID-19) in China. However, worldwide acceptance has been a problem because of the complex ingredients and unique theory of treatment. In this study, high-performance liquid chromatography (HPLC)-Q Exactive Orbitrap-mass spectrometry (MS) and the Orbitrap traditional Chinese medicine library (OTCML) were used to investigate the chemical constituents of QFPD granules. By comparing retention times, masses, isotope ion patterns, and MS² profiles, 108 compounds were putatively identified using the OTCML combined with manual verification, including 12 alkaloids, 49 flavonoids, 13 terpenoids, 14 phenylpropanoids, 4 phenolic acids, 5 phenols, and 11 other phytochemicals. Of these compounds, 17 were confirmed using reference standards. In addition, representative compounds of these different chemical types were used as examples to analyze the fragmentation pathways and characteristic product ions. Moreover, 20 herbs within the QFPD granules were also identified to establish the sources of these chemical components. This is the first rapid profiling of the chemical constituents of QFPD granules using HPLC-Q Exactive Orbitrap-MS and yields valuable information for further quality control and mechanistic studies of QFPD granules.

Keywords Chemical constituent identification · Qingfei Paidu granules · HPLC-Q Exactive Orbitrap-MS · Orbitrap traditional Chinese medicine library

Introduction
Qingfei Paidu (QFPD) granules and decoctions are effective traditional Chinese medicines (TCMs) that are included in the Guidelines for Diagnosis and Treatment of COVID-19 Pneumonia, issued by the National Heath Commission of the People’s Republic of China [1]. QFPD granules and decoctions are based on the following four formulae: Maxing-Shigan-Tang, Wuling-San, Xiaocaihu-Tang, and Shegan-Mahuang-Tang [2], which are different forms of prescription QFPD. QFPD granules contain 20 herbs: Ephedrae Herba, Glycyrrhizae Radix Et Rhizoma Praeparata Cum Melle, Armeniacae Semen Amarum, Cinnamomi Ramulus, Pogoste- monis Herba, Alismatis Rhizoma, Polyporus, Atractylodis Macrocephalae Rhizoma, Poria, Bupleuri Radix, Scutellariae Radix, Pinelliae Rhizoma Praeparatum Cum Zingibere Et Alumine, Zingiberis Rhizoma Recens, Asteris Radix Et Rhizoma, Farfarae Flos, Belamcandae Rhizoma, Asari Radix Et Rhizoma, Dioscoreae Rhizoma, Aurantii Fructus Immaturus, and Citri Reticulatae Pericarpium. In addition, QFPD contains the mineral Gypsum Fibrosum.

In China, QFPD granules and decoctions have been widely used to treat patients infected with SARS-CoV-2 owing to positive treatment results. Early treatment with prescription QFPD was associated with favorable patient outcomes and may be an effective strategy for epidemic control...
Functional network pharmacology analysis units showed that QFPD protected against COVID-19 through anti-viral and anti-inflammatory activities [2]. A systematic pharmacological study illustrated that QFPD exhibited immune regulation, anti-infection and anti-inflammatory properties, and multi-organ protection [3]. QFPD granules were, therefore, approved for market use by the National Medical Products Administration in China [4]. However, worldwide acceptance of QFPD granules is challenging because of the TCM complexity, and unique theory of treatment, in addition to quality and safety issues [5, 6]. Thus, comprehensive identification of the chemical components of QFPD granules is extremely critical for quality control, in addition to identification of the active ingredients and investigation of the mechanism-of-action.

Few analytical strategies have been applied to study the chemical constituents of QFPD decoctions, and no detailed analysis of the chemical composition of QFPD granules has been reported [7–9]. Hybrid quadrupole-Orbitrap mass spectrometry (MS) is a powerful tool for structure elucidation of TCMs due to its high resolution and high-quality MS² fragmentation patterns. In this study, high-performance liquid chromatography (HPLC)-Q Exactive Orbitrap-MS was used to analyze the chemical constituents of QFPD granules, with 108 compounds putatively identified, including 12 alkaloids, 49 flavonoids, 13 terpenoids, 14 phenylpropanoids, 4 phenolic acids, 5 phenols, and 11 other phytochemicals. The individual herbs within the QFPD granules were also analyzed. The aim of this study is to develop an analytical method for elucidating the chemical constituents of QFPD granules and provide valuable quality control and mechanism-of-action data.

Material and Methods

Reagents and Materials

QFPD granules were a gift from Renmin Hospital of Wuhan University. The 21 raw materials were purchased from Yifeng Pharmacy Chain Co., Ltd. (Changde, China). Acetonitrile (HPLC grade) and methanol (HPLC grade) were purchased from Merck (Darmstadt, Germany). Formic acid was purchased from Thermo Fisher Scientific (Waltham, MA, USA). Watsons distilled water was obtained from Jinrong Mall (Beijing, China).

Authentic standards of cytokine, sucrose, citric acid, uridine, adenosine, 2-pyridinelinecarboxylic acid, and guanosine were purchased from Sigma-Aldrich (St. Louis, MO, USA). Nicotinic acid was obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Nicotinamide and tangeterin were purchased from Shanghai Aladdin Bio-Chem Technology Co., Ltd. (Shanghai, China). Salicylic acid was acquired from Ascender Chemical Co., Ltd. (Shanghai, China). Glycyrrhizin acid, 18-β-glycyrrhetinic acid, isoliquiritigenin, baicalin, and narirutin were purchased from Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China). Chlorogenic acid was a gift from Thermo Fisher Scientific.

Standard Solutions and Sample Preparations

The QFPD granules were ground, and the resultant powder (0.4 g) was accurately weighed, dissolved in 60% methanol (v/v; 20 mL), and sonicated for 30 min, resulting in partial precipitation of the QFPD granules. The solution was centrifuged, and the supernatant was filtered through a 0.22 μm membrane prior to HPLC-Q Exactive Orbitrap-MS.

The individual raw materials were treated using the same procedure.

The authentic standards were dissolved in 50% methanol and stored at – 80 °C. Prior to qualitative analysis, they were mixed appropriate concentrations and filtered using a 0.22 μm membrane.

HPLC-Q Exactive Hybrid Quadrupole-Orbitrap MS

LC–MS was performed using an UltiMate 3000 UPLC system (Thermo Fisher Scientific), autosampler, a vacuum degasser, binary pump, and column compartment. A Hypersil Gold aQ C18 column (2.1 × 150 mm, 3 μm) was used at 40 °C for chromatography. The mobile phase consisted of acetonitrile/0.1% formic acid (A) and water/0.1% formic acid (B) at a flow rate of 0.2 mL/min. The following gradient elution program was used: 0–2 min, 0–5% (A); 2–42 min, 5–95% (A); 42–46.9 min, 95% (A); 46.9–47 min, 95–5% (A); 47–50 min, 5% (A). The total run time was 50 min, and the sample injection volume was 5 μL.

A Q Exactive hybrid quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific) with heated electrospray ionization (ESI) was used. Source parameters were optimized with a spray voltage of 3.5 kV (+)/3.2 kV (−). The other parameters were set as follows: capillary temperature, 320 °C; auxiliary gas temperature, 350 °C; sheath gas, 40 Arb; auxiliary gas, 15 Arb; sweep gas, 0 Arb; S-lens RF level, 50.

The Orbitrap mass detector was operated in full scan plus data-dependent MS² mode. The MS resolution was set at 70,000 for the full scan and 17,500 for the MS² scan. The automatic gain control target and maximum injection time were 1 × 10⁶ ions capacity and 100 ms, respectively. The top N (N: the number of most abundant ions for fragmentation) was five, while the scan range was m/z 100–1500. The normalized collision energies were 20%.
Data Analysis Using the Orbitrap Traditional Chinese Medicine Library (OTCML) and Manual Verification

The raw data were imported into the Compound Discoverer (CD) software, which is integrated into the OTCML. The molecular masses, retention times, fragments, and peak areas from both the positive and negative ESI modes were compared to the mzVault library, which was integrated into CD. The mzVault spectral library (Thermo Fisher Scientific) contained the retention times, precise mass ions, and MS² fragments of 1200 commercial reference standards, which were analyzed using Q Exactive Orbitrap-MS. The software identified peaks with high mass accuracy (< 10 ppm) and an isotope pattern variation within 85%. The molecular compositions adhered to the H/C ratio rules and were matched to potential compounds using ring and double-bond equivalents. The MS² profiles were compared with the reference spectra from the mzVault library. Compounds were identified only when the match score was > 85. In addition, compound identification accuracy was improved by comparing the obtained data and possible fragmentation patterns with those in the literature, and the corresponding individual herb pieces components were analyzed to determine the source of each compound and elucidate chemical compositions.

Results and discussion

Positive and negative ion modes were used to detect the chemical compounds within the QFPD granules. The base peak chromatograms (BPCs) of the QFPD granules are shown in Fig. 1. In total, 108 compounds are putatively identified (Table 1). The BPCs of the individual herb pieces are shown in Figs. S1 and S2. Compound identification is summarized below.

Alkaloids

Twelve alkaloids were detected. Compounds 19, 20, 21, 15, and 16 are observed in the positive BPC of QFPD, with no matching identification results after data processing using the OTCML. The mass spectra of compounds 15, 19, and 21 display the same fragment ions at m/z 117.0701 (Fig. S3). The mass spectra of compounds 19 and 20 exhibit the same [M+H]+ ions at m/z 166.1226 (C10H15NO), with the same fragment ions also observed at m/z 148.1120 [M+H]

![Fig. 1 Base peak chromatograms of QFPD granules obtained using high performance liquid chromatography-Q Exactive hybrid quadrupole-Orbitrap mass spectrometry. A Electrospray ionization in the positive mode (ESI(+)), B electrospray ionization in the negative mode (ESI(−))](image-url)
Table 1 Identification of the chemical components of QFPD granules using high performance liquid chromatography-Q Exactive hybrid quadrupole-Orbitrap mass spectrometry combined with the Orbitrap traditional Chinese medicine library

No.	RT (min)	Formula	Potential compound	Detected m/z	Characterized MS²	Compound class	Herb	Refs
1	2.11	C₁₂H₂₂O₁₁	Sucrose	341.1069 [M – H]⁻	89.0235	Miscellaneous	PR	[10]
2	2.12	C₄H₆NO₂	2-Pyrrolidinocarboxylic acid	116.0709 [M + H]⁺	116.0708	Miscellaneous	DR	[11]
3	2.12	C₅H₇NO₂	Cytosine	112.0508 [M + H]⁺	112.0508b	Alkaloids	AR	
4	2.13	C₅H₁₁NO₂	Betaine	118.0865 [M + H]⁺	118.0864b	Alkaloids	AE	
5	2.14	C₆H₈O₇	Trigonelline	138.0550 [M + H]⁺	138.0550b	Alkaloids	PC	[12]
6	2.2	C₆H₈O₇	Citric acid	191.0185 [M – H]⁻	111.0078b	Miscellaneous	GR	
7	2.66	C₆H₇NO₂	Nicotinic acid	124.0395 [M + H]⁺	124.0394b	Alkaloids		
8	2.69	C₉H₁₂N₂O₅	Uridine	243.0608 [M – H]⁻	200.0554	Miscellaneous	PR	[13]
9	2.69	C₉H₁₂N₂Oₐ	Nicotinamide	123.0555 [M + H]⁺	123.0554b	Alkaloids	FF	
10	2.73	C₁₀H₁₃N₂O₅	Adenosine	268.1041 [M + H]⁺	136.0618b	Miscellaneous	PC	[14]
11	2.87	C₁₀H₁₅N₂Oₐ	Guanosine	284.0989 [M + H]⁺	152.0567b	Miscellaneous	PC	[14]
12	3.41	C₁₀H₁₃O₇	Gallic acid	169.013 [M – H]⁻	125.0233b	Phenolic acids		
13	3.9	C₉H₁₅N₂O	l-Phenylalanine	166.0863 [M + H]⁺	120.0809b	Miscellaneous		
14	4.22	C₆H₈O₇	5-Hydroxymethylfurfural	127.0392 [M + H]⁺	109.0288b	Miscellaneous	PC	[15]
15	4.68	C₆H₆NO	l-norephedrine	152.1069 [M + H]⁺	134.0965b	Alkaloids	EH	[16]
16	5.12	C₆H₆NO	d-norpseudoephedrine	152.1069 [M + H]⁺	134.0965b	Alkaloids	EH	[16]
17	5.24	C₁₅H₁₄O₇	(−)-Gallocatechin	305.0651 [M – H]⁻	219.0654	Phenols		
18	5.32	C₇H₆O₄	Protocatechuic acid	153.0181 [M – H]⁻	109.0284b	Phenolic acids	GR	[15]
19	6.09	C₉H₁₃NO	l-ephedrine	166.1226 [M + H]⁺	148.1120b	Alkaloids	EH	[16]
20	6.47	C₁₀H₁₃NO	d-pseudoephedrine	166.1226 [M + H]⁺	148.1120b	Alkaloids	EH	[16]
21	6.99	C₁₁H₁₂NO	Methylephedrine	180.1382 [M + H]⁺	162.1276b	Alkaloids	EH	[16]
22	7.26	C₆H₆O₃	Protocatechualdehyde	137.0233 [M – H]⁻	137.0233b	Phenols	CR	[15]
Table 1 (continued)

No.	RT (min)	Formula	Potential compound	Detected m/z	Characterized MS²	Compound class	Herb	Refs
23c	9.16	C₂₀H₂₇NO₁₁	Amygdalin	456.1492 [M – H][−]	323.0963, 221.0653, 161.0443, 59.0132^b	Miscellaneous	AS	[17]
24^{ad}	9.43	C₁₆H₁₈O₉	Chlorogenic acid	353.0862 [M – H][−]	191.0548^b, 135.0441, 179.0337	Phenylpropanoids	FF	[18]
25	9.46	C₉H₁₀O₄	Esculetin	177.0181 [M – H][−]	177.0180^b, 149.0236, 133.0284, 105.0336	Phenylpropanoids		
26	9.48	C₁₀H₁₆O₅	p-Hydroxybenzaldehyde	212.0285 [M – H][−]	121.0284^b, 93.0336	Phenols		
27	9.78	C₈H₁₀O₄	Caffeic acid	179.0337 [M – H][−]	135.0441^b	Phenolic acids		
28^a	10.49	C₁₃H₁₄O₆	Catechin hydrate	289.0703 [M – H][−]	245.0805, 123.044, 109.0284^b	Flavonoids		
29^a	10.63	C₁₅H₂₀O₇	Taxifolin	303.0494 [M – H][−]	177.018, 125.0233^b	Flavonoids	SR	[19]
30^c	10.98	C₂₂H₂₆O₁₅	Vicenin II	593.1482 [M – H][−]	353.0648^b, 383.0753, 473.1062, 297.075	Flavonoids	GR	[8]
31	11.12	C₂₃H₂₅O₁₂	1,3-Dicaffeoylquinic acid	515.1168 [M – H][−]	353.0859, 191.0547^b, 179.0336, 135.0444	Phenylpropanoids		
32	11.87	C₉H₁₀O₄	p-Coumaric acid	163.0400 [M – H][−]	119.0496^b, 163.0394	Phenylpropanoids		
33^{ae}	11.95	C₂₆H₂₈O₁₄	Isoschaftoside	563.1376 [M – H][−]	353.0648^b, 383.0754, 473.1073	Flavonoids	GR	[20]
34	11.96	C₁₀H₁₄O₄	3,5-Dimethoxy-4-hydroxybenzaldehyde	183.0652 [M + H]⁺	140.0469, 123.0443, 95.0497^b	Phenols	CR	[15]
35	12.18	C₂₁H₂₀O₁₁	Orientin	447.0913 [M – H][−]	357.06, 327.0496^b, 299.0541, 133.028	Alkaloids	CP	[21]
36	12.6	C₁₀H₁₄O₄	Scopoletin	193.0497 [M + H]⁺	193.0496^b, 178.026, 133.0285	Phenylpropanoids	AF	[22]
37^{ae}	12.7	C₂₀H₂₁O₁₃	Naringenin 7-O-(2-β-D-apiofuranosyl)-β-D-glucopyranoside	549.1588 [M – H][−]	255.0649, 135.0077, 119.0492^b	Flavonoids	GR	[20]
38	12.84	C₁₀H₁₄O₄	Ferulic acid	193.0492 [M – H][−]	178.0258, 134.0362^b	Phenylpropanoids		
39	13.03	C₁₁H₁₀O₅	Isofraxidin	223.0601 [M + H]⁺	223.0601^b, 190.0261, 162.0311	Phenylpropanoids		
40^f	13.04	C₂₅H₃₀O₁₅	Eriocitrin	595.1638 [M – H][−]	459.1152, 151.0025^b, 135.0441	Flavonoids	CP	[21]
41^c	13.04	C₂₈H₃₀O₁₃	Liquiritin apioside	549.1586 [M – H][−]	119.0491^b, 135.0077, 255.0649	Flavonoids	GR	[20]
No.	RT (min)	Formula	Potential compound	Detected m/z	Characterized MS²	Compound class	Herb	Refs
-----	----------	---------	--------------------	--------------	-----------------------------	----------------	------	------
42^c	13.18	C₂₇H₃₀O₁₆	Rutin	609.1431[m – H][−]	300.0258^b 271.0234 255.0284	Flavonoids		
43	13.39	C₉H₆O₄	5,7-Dihydroxychromone	177.0180[m – H][−]	177.0180^b 135.0076	Flavonoids		
44^d	13.75	C₉H₆O₃	Salicylic acid	137.0233[m – H][−]	137.0233^b 93.0337^b	Phenolic acids	AE [15]	
45	13.8	C₁₄H₁₂O₄	Piceatannol	243.0648[m – H][−]	243.0648^b 201.0544 159.0439	Phenols		
46	13.84	C₂₅H₂₆O₁₂	Isochlorogenic acid B	515.1165[m – H][−]	353.0856 191.0547 179.0336 135.0440^b	Phenylpropanoids	FF [18]	
47^{cd}	13.89	C₂₅H₂₆O₁₄	Narirutin	581.1863 [M+H]⁺	273.0755^b 153.0181 85.0289 71.0498	Flavonoids	CP [21]	
48^a	14.02	C₂₉H₃₆O₁₅	Verbascoside	623.1945[m – H][−]	461.1639 161.0231^b 133.0283	Phenylpropanoids	PH [15]	
49	14.13	C₂₅H₂₆O₁₂	3,5-Dicaffeoylquinic acid	515.1165[m – H][−]	353.0878 191.0558^b 179.0346 135.0448^b	Phenylpropanoids	FF [18]	
50	14.14	C₂₂H₂₂O₄	Tectoridin	463.1234[M+H]⁺	301.0705^b 286.047	Flavonoids	BH [24] [25]	
51^{ad}	14.27	C₂₇H₂₆O₁₄	Naringin	579.1688[m – H][−]	271.0597 151.0025^b 119.0491 107.0129	Flavonoids	AF [23] CP [21]	
52	14.57	C₉H₆O₄	Azelaic acid	187.0962[m – H][−]	125.0960^b 97.0649	Miscellaneous		
53	14.62	C₂₄H₂₄O₁₅	Neohesperidin	609.1796[m – H][−]	609.1791 301.0700^b 286.0466	Flavonoids	CP	
54	14.95	C₂₅H₂₆O₁₂	Isochlorogenic acid C	515.1166[m – H][−]	353.0888 191.0558 173.0452 135.0448^b	Phenylpropanoids	FF [18]	
55^c	15	C₂₆H₂₆O₁₅	Hesperidin	609.1796[m – H][−]	609.1791 301.0699^b 286.0466	Flavonoids	CP [26]	
56	15.06	C₂₆H₂₆O₁₃	Iridin	523.1445[M+H]⁺	361.0915^b 346.0679 331.0445	Flavonoids	BH [25]	
57	15.06	C₉H₆O₂	Coumarin	147.0440[M+H]⁺	147.0440^b 103.0546 91.0547	Phenylpropanoids	CR [15] EH	
58^a	15.63	C₁₄H₁₂O₆	Eriodictyol	287.0547[m – H][−]	287.0547 161.0231 125.0233^b	Flavonoids	AF [23]	
59^c	15.86	C₂₆H₃₀O₁₃	Isoliquiritin apioside	549.1589[m – H][−]	255.0649 153.0181 135.0077 119.0491^b	Flavonoids	GR [20]	
Table 1 (continued)

No.	RT (min)	Formula	Potential compound	Detected \(m/z \)	Characterized MS\(^2\)	Compound class	Herb	Refs
60	16.06	C\(_{22}\)H\(_{22}\)O\(_9\)	Ononin	431.1336 [M + H]\(^+\)	269.0807\(^b\)	Flavonoids	GR	[27]
61\(^{ed}\)	16.08	C\(_{21}\)H\(_{18}\)O\(_{11}\)	Baicalin	445.0753 [M – H]\(^-\)	269.0439\(^b\)	Flavonoids	SR	[19]
62	16.15	C\(_{21}\)H\(_{20}\)O\(_{10}\)	Oroxin A	433.1129 [M + H]\(^+\)	271.0599\(^b\)	Flavonoids	SR	[19]
63\(^{e}\)	16.23	C\(_{21}\)H\(_{22}\)O\(_9\)	Isoliquiritin	419.1334 [M + H]\(^+\)	257.0806\(^b\)	Flavonoids	GR	[20]
64\(^{e}\)	16.51	C\(_{15}\)H\(_{12}\)O\(_4\)	Liquiritigenin	255.0651 [M – H]\(^-\)	135.0078\(^b\)	Flavonoids	GR	[20]
65	16.87	C\(_{11}\)H\(_{4}\)O\(_4\)	Bergaptol	201.0180 [M – H]\(^-\)	201.0192\(^b\)	Phenylpropanoids		
66\(^{e}\)	16.92	C\(_{21}\)H\(_{18}\)O\(_{11}\)	Norwogonin-8-gluconide	445.0753 [M – H]\(^-\)	269.0441\(^b\)	Flavonoids	SR	[19]
67	17.2	C\(_{24}\)H\(_{34}\)O\(_{14}\)	Poncirin	593.1842 [M – H]\(^-\)	593.184	Flavonoids	AF	[23]
68	17.24	C\(_{21}\)H\(_{18}\)O\(_{11}\)	Norwogonin-7-gluconide	445.0752 [M – H]\(^-\)	269.0439\(^b\)	Flavonoids	SR	[19]
69\(^{e}\)	17.51	C\(_{22}\)H\(_{20}\)O\(_{11}\)	Oroxylin A-7-O-β-d-gluconide	459.0910 [M – H]\(^-\)	283.0595	Flavonoids	SR	[19]
70\(^{e}\)	18.11	C\(_{21}\)H\(_{18}\)O\(_{11}\)	Baicalein-6-gluconide	445.0754 [M – H]\(^-\)	269.0441\(^b\)	Flavonoids	SR	[19]
71\(^{e}\)	18.14	C\(_{22}\)H\(_{20}\)O\(_{11}\)	Wogonoside	459.0909 [M – H]\(^-\)	283.0595	Flavonoids	SR	[19]
72	18.58	C\(_{13}\)H\(_{12}\)O\(_3\)	Naringenin chalcone	273.0756 [M + H]\(^+\)	273.0757	Flavonoids	GR	[20]
73\(^{e}\)	19.32	C\(_{16}\)H\(_{14}\)O\(_6\)	Hesperetin	301.0702 [M – H]\(^-\)	301.0702\(^b\)	Flavonoids	CP	[26]
74	19.38	C\(_{16}\)H\(_{12}\)O\(_6\)	Tectorigenin	299.0546 [M – H]\(^-\)	284.0301\(^b\)	Flavonoids		
75\(^{ec}\)	20.01	C\(_{18}\)H\(_{16}\)O\(_8\)	Irigenin	359.0756 [M – H]\(^-\)	344.0519\(^b\)	Flavonoids	BH	[24]
76	20.03	C\(_{16}\)H\(_{12}\)O\(_7\)	Isorhamnetin	315.0496 [M – H]\(^-\)	315.0496\(^b\)	Flavonoids	AE	[28]
77\(^{e}\)	20.15	C\(_{13}\)H\(_{14}\)O\(_7\)	Iristectorigenin B	329.0652 [M – H]\(^-\)	314.0417\(^b\)	Flavonoids	BH	[24]
78	20.39	C\(_{15}\)H\(_{10}\)O\(_5\)	Baicalein	269.0443 [M – H]\(^-\)	269.0457\(^b\)	Flavonoids	SR	[19]
79\(^{ed}\)	20.97	C\(_{15}\)H\(_{12}\)O\(_4\)	Isoliquiritigenin	255.0650 [M – H]\(^-\)	135.0076\(^b\)	Flavonoids	GR	[20]
80	21.08	C\(_{16}\)H\(_{12}\)O\(_4\)	Formononetin	269.0807 [M + H]\(^+\)	269.0807\(^b\)	Flavonoids	GR	[20]
No.	RT (min)	Formula	Potential compound	Detected m/z (ESI)	Characterized MS²	Compound class	Herb	Refs
------	---------	---------------	-----------------------------	-------------------	-------------------	----------------	------	------
81a	21.35	C_{15}H_{16}O_{4}	Isomeranzin	261.1119 [M + H]⁺	189.0546b, 159.0439, 131.0492	Phenylpropanoids		
82a	21.65	C_{42}H_{62}O_{17}	Licorice-saponin G2	837.3869 [M – H]⁻	837.386, 351.0552, 193.0341, 113.0235b	Terpenoids	GR	[20]
83c	21.83	C_{26}H_{30}O_{8}	Limonin	469.1846 [M – H]⁻	469.1831b, 249.0909, 229.1214	Terpenoids	AF	[22]
84	21.83	C_{15}H_{22}O_{2}	Curcumenol	235.1693 [M + H]⁺	235.169, 217.1558, 199.1482b	Terpenoids		
85	22.15	C_{20}H_{20}O_{7}	Isosinensetin	373.1283 [M + H]⁺	373.1281b, 343.0812	Flavonoids	CP	[26]
86c	22.64	C_{30}H_{46}O_{4}	18 β-Glycyrrhetinic acid	471.3469 [M + H]⁺	417.3471b, 453.3362	Terpenoids	GR	[29]
87c	22.65	C_{42}H_{62}O_{16}	Glycyrrhizic acid	821.3926 [M – H]⁻	821.3915b, 351.056, 113.0234	Terpenoids	GR	[20]
88	22.72	C_{20}H_{16}O_{6}	Irisflorentin	387.1073 [M + H]⁺	387.1073b, 372.0843, 357.0603, 329.0654	Flavonoids	BH	[25]
89	22.84	C_{20}H_{20}O_{7}	Senisetin	373.1282 [M + H]⁺	373.1281b, 343.0809	Flavonoids	CP	[26]
90	22.98	C_{14}H_{14}O_{6}	Dichotomitin	359.0762 [M + H]⁺	359.0761b, 344.0526, 326.0421, 299.0549	Flavonoids	BH	[24]
91a	23.16	C_{16}H_{12}O_{5}	Wogonin	285.0757 [M + H]⁺	285.0756, 270.0521b	Flavonoids	SR	[19]
92	23.34	C_{42}H_{62}O_{16}	isomer of Glycyrrhizic acid	821.3922 [M – H]⁻	821.3919b, 351.0551, 113.0235	Terpenoids	GR	
93c	23.57	C_{42}H_{68}O_{13}	Saikosaponin A	825.4599 [M + COOH]⁻	779.4534b, 617.4010, 59.0132	Terpenoids	BR	[26]
94	23.91	C_{17}H_{14}O_{6}	Pectolinarigenin	313.0703 [M – H]⁻	313.0701, 283.0233b, 255.0286	Flavonoids	SR	[19]
95	23.99	C_{21}H_{22}O_{6}	Nobiletin	403.1388 [M + H]⁺	403.1388, 373.0917b, 211.0238, 183.0288	Flavonoids	CP	[26]
96a	24.04	C_{19}H_{14}O_{6}	6-Demethoxytangeretin	343.1174 [M + H]⁺	343.1173, 313.0705b, 285.0756	Flavonoids	CP	[26]
97c	24.09	C_{42}H_{68}O_{13}	Saikosaponin B1	825.4599 [M + COOH]⁻	779.4542b, 617.4028, 59.0132	Terpenoids	BR	
98c	24.13	C_{16}H_{12}O_{5}	Oroxylin A	285.0758 [M + H]⁺	285.0757, 270.0523b, 168.0054	Flavonoids	SR	[19]

GR: Glycyrrhiza uralensis; CP: C. pachypodi; BH: B. hirsutum; SR: S. root; Refs: [19]–[26].
– H2O]+ and 133.0887 [M + H – H2O – CH3]+. According to the literature [16], they are identified as L-ephedrine (19) and D-pseudoephedrine (20). The mass spectrum of compound 21 (methylephedrine) reveals a peak representing the protonated molecule [M + H]+, at m/z 180.1382, and fragment ion peaks at m/z 162.1276 [M + H – H2O]+ and 147.1041 [M + H – H2O – CH3]+. The mass spectra of compounds 15 (α-norephedrine) and 16 (D-norpseudoephedrine) reveal the same peak at m/z 152.1069, and MS2 peaks at m/z 134.0965 [M + H – H2O]+ and 117.0701 [M + H – H2O – NH3]+. However, they exhibit different retention times. These compounds are phytochemicals present in Ephedrae Herba.

Table 1 (continued)

No.	RT (min)	Formula	Potential compound	Detected m/z	Characterized MS2	Compound class	Herb	Refs
99	24.21	C15H20O3	Atractylenolide III	249.1486 [M + H]+	231.1379b	Terpenoids	AM	[30]
				249.1481	213.1276			
				163.0752				
100	24.49	C22H25O9	Heptamethoxyflavone	433.1493 [M + H]+	403.1021	Flavonoids	GR	[26]
				433.1492	165.0546			
101	24.7	C42H68O13	Saikosaponin D	825.4594 [M + COOH]−	779.4537b	Terpenoids	BR	
				617.4034	59.0132			
102	25.67	C20H20O7	Tangeretin	373.1280 [M + H]+	373.1278	Flavonoids	CP	[26]
				358.1043	343.0808b			
				328.0573				
103	26.41	C20H20O8	5-O-Demethylnobiletin	389.1230 [M + H]+	389.1227b	Flavonoids	CP	[21]
				359.076	341.0652			
104	26.68	C32H48O6	Alisol C 23-acetate	529.3526 [M + H]+	529.3521b	Terpenoids	AR	[31]
				469.3314	451.3204			
				415.2842				
105	27.85	C15H20O2	Atractylenolide II	233.1536 [M + H]+	233.1536b	Terpenoids	AM	[30]
				215.1432	187.1482			
				151.0753				
106	27.94	C12H16O4	Pogostone	225.1122 [M + H]+	207.1015	Miscellaneous	PH	[32]
				139.039	81.0705b			
107	34.7	C32H50O5	Alisol B 23-acetate	515.3733 [M + H]+	437.3412	Terpenoids	AR	[31]
				339.2679	419.3305			
				97.0653b				
108	35.79	C18H30O2	α-Linolenic acid	279.2318 [M + H]+	95.086	Alkaloids		
				81.0705	67.055b			

RT retention time

a Representative retention time, as more than one peak was identified for this compound

b Base fragment ion

c Compounds detected using both the positive and negative electrospray ionization modes. m/z: mass-to-charge ratio

d Compounds identified by comparison with reference standards. Herb: Compound detected within herb experimentally and also the reference reported the source of the compound. Ref.: The references that reported the sources of the compounds. EH (Ephedrae Herba), GR (Glycyrrhizae Radix Et Rhizoma Praeparata Cum Melle), AS (Armeniacae semen Amarum), CR (Cinnamomi Ramulus), PH (Pogostemonis Herba), AR (Alismatis Rhizoma), PP (Polytropus), AM (Atractylodis Macrocephalae Rhizoma), PR (Poria), BR (Bupleuri Radix), SR (Scutellariae Radix); PC (Pinelliae Rhizoma Praeparatum Cum Zingibere Et Alumine), ZR (Zingiberis Rhizoma Recens), AE (Asteris Radix Et Rhizoma), FF (Farfarae Flos), BH (Belamcandae Rhizoma), RE (Asari Radix Et Rhizoma), DR (Dioscoreae Rhizoma), AF (Aurantii Fructus Immaturus); CP (Citri Reticulatae Pericarpium)
standards. Nicotinic acid and nicotinamide exhibit the same structural skeleton, and fragment ion peaks at \(m/z \) 96.0448 \([\text{M} + \text{H} – \text{CO}]^+\) are observed in the MS\(^2\) profiles. Their possible fragmentation pathways and library match results are shown in Fig. S4. The MS\(^2\) profile of compound 5 reveals a peak representing a protonated molecule, \([\text{M} + \text{H}]^+\), at \(m/z \) 138.0550 and peaks at \(m/z \) 110.0603 \([\text{M} + \text{H} – \text{CO}]^+\) and 94.0656 \([\text{M} + \text{H} – \text{CO} – \text{O}]^+\). Therefore, compound 5 is deduced to be trigonelline.

Flavonoids

Forty-nine compounds were identified as flavonoids. Compounds 47 and 51 were identified as narirutin and naringin, respectively, by comparison with the OTCML. Furthermore, compound 47 was confirmed using a reference standard. They were detected in both the positive and negative ESI modes, displaying similar MS and MS\(^2\) profiles and library match results are shown in Fig. S5. As examples, the mass spectra of compounds 85 and 89 reveal peaks representing \([\text{M} + \text{H}]^+\) ions at \(m/z \) 373.1283 and characterized fragment ions at \(m/z \) 343.08 \([\text{M} + \text{H} – 2\text{CH}_3]^+\). The spectra are very similar, and the compounds were identified using the OTCML by the different retention times and slight differences in the spectra. Compound 102 (tangeretin) was further confirmed using a reference standard. Compounds 30 and 33 showed similar MS\(^2\) patterns, but the molecular ions were different, indicating the same basic structure. These compounds were assigned as vicenin II [8] and isoschaftoside [20, 33], respectively. For example, the mass spectrum of compound 30 revealed peaks representing the \([\text{M} – \text{H}]^-\) ion at \(m/z \) 593.1482 and fragment ions at \(m/z \) 297.0750 \([\text{M} – \text{H} – \text{Glc} – \text{Glc}]^-\), \(m/z \) 473.1062 \([\text{M} – \text{H} – 120]^-\), \(m/z \) 383.0753 \([\text{M} – \text{H} – 210]^-\), and \(m/z \) 353.0648 \([\text{M} – \text{H} – 240]^-\). These are characterized fragment ions of the hexose ring-opening reaction [33]. The similarities of the MS and MS\(^2\) profiles of compounds 37, 41, and 59 indicated isomers. By comparing the data in the OTCML combined with literature data [20], they were deduced as naringenin 7-O-(2-β-D-apiofuranosyl)-β-D-glucopyranoside (37), liquiritin apioside (41), and isoliquiritin apioside (59). The mass spectra of compounds 61, 68, 66, and 70 revealed peaks representing \([\text{M} – \text{H}]^-\) ions at \(m/z \) 445.07 and dominant fragment ions at \(m/z \) 269.04, along with \([\text{M} + \text{H}]^+\) ions at \(m/z \) 447.09 and dominant fragment ions at \(m/z \) 271.05. Individual herb pieces component mass spectra showed that these compounds, baicalin (61), norwogonin-7-glucuronide (68), norwogonin-8-glucuronide (66) and baicalein-6-glucuronide (70), were chemical components of Scutellariae Radix [19], and baicalin (61) was identified using a reference standard. Based on the literature [26], compounds 73 and 100 were assigned as hesperetin and heptamethoxyflavone, respectively. Compound 79 (isoliquiritigenin) was identified using a reference standard.

Phenylpropanoids

Fourteen compounds were identified as phenylpropanoids. Compounds 31 (1,3-dicaffeoylquinic acid), 46 (isochlorogenic acid B), 49 (3,5-dicaffeoylquinic acid) and 53 (isochlorogenic acid C) were identified using the OTCML. Compound 24 (chlorogenic acid) was identified using a reference standard. Compounds 31, 46, 49 and 53 were isomers with skeletons similar to those of quinic and caffeic acid, generating similar MS and MS\(^2\) profiles and distinguished by their retention times. For example, the MS\(^2\) profile of compound 46 revealed peaks representing fragment ions at \(m/z \) 191.0547 \([\text{quinic acid} – \text{H}]^-\), 179.0336 \([\text{caffeic acid} – \text{H}]^-\) and 135.0440 \([\text{caffeic acid} – \text{CO}_2 – \text{H}]^-\). The mass spectrum of compound 38 (ferulic acid) showed peaks representing a \([\text{M} – \text{H}]^-\) ion at \(m/z \) 193.0492 and the main fragment ions at \(m/z \) 134.0362 \([\text{M} – \text{H} – \text{CH}_3 – \text{CO}_2]^+\) and 178.0258 \([\text{M} – \text{H} – \text{CH}_3]^+\). Compounds 32 (p-coumaric acid), 57 (coumarin), 65 (bergaptole) and 25 (esculetin) were assigned using the OTCML.

Phenolic Acids and Phenols

Four phenolic acids were identified, and they exhibited the same fragmentation pattern. The MS\(^2\) profile of compound 12 (gallic acid) revealed peaks representing \([\text{M} – \text{H}]^-\) at
and dominant fragment ions at m/z 529.3521 [M + H]+, 97.0285 [M – H – CO2 – CO]− and 69.0337 [M – H – CO2 – CO – CO]−. The mass spectrum of compound 18 (protocatechuic acid) revealed a peak representing a base fragment ion at m/z 109.0284 [M – H – CO2]−. Compound 44 (salicylic acid) was identified by comparison with a reference standard. All of these compounds exhibited successive losses of H2O, CO and CO2 during fragmentation [34, 35].

Five phenols were identified. Compound 26 (p-hydroxybenzaldehyde) produced several clear fragment ions at high collision energies. Compound 22 (protocatechualdehyde) was identified using the OTCML. The phenols also showed neutral losses of CO, CH3 and H2O in the MS2 profiles.

Terpenoids

Thirteen terpenoids are identified. The mass spectra of compounds 82 and 87 reveal peaks representing [M + H]+ ions at m/z 839.4061 and 823.4108, respectively. The mass spectrum of compound 82 (licorice-saponin G2) reveals peaks representing fragment ions at m/z 469.3314 [Aglycone + H – H2O]+, 487.3412 [Aglycone + H]+ and 451.3212 [Aglycone + H – 2H2O]− [36]. Compound 87 displays a similar fragmentation pattern, yet is 16 Da smaller than compound 82. Compound 87 was then confirmed as glycyrrhetic acid through a comparison between the negative ESI mode data, a reference standard, and literature data [20]. These spectra are shown in Fig. S6. The mass spectrum of compound 86, 18 β-glycyrrhetinic acid, reveals a peak representing [M + H]+ at m/z 471.3469. These are triterpenic acids. Compound 86 (18 β-glycyrrhetinic acid) was also identified using a reference standard.

The MS2 profile of compound 104 showed peaks representing a protonated molecule, [M + H]+, at m/z 529.3526 and dominant fragment ions at m/z 529.3521 [M + H]+, 469.3314 [M + H – HAc]−, 451.3204 [M + H – HAc – H2O]− and 415.2842 [M + H – C4H8O – H2O]−. This compound was identified as alisol C 23-acetate using the OTCML. The mass spectrum of compound 107, alisol B 23-acetate, revealed a peak representing [M + H]+ at m/z 515.3733.

The mass spectrum of compound 93 revealed peaks representing a [M + H]+ ion at m/z 781.4732 and fragment ions at m/z 455.3518 [M + H – H2O – Fuc (fucose) Glc]− and 437.3412 [M + H – 2H2O – FucGlc]−. This compound was identified as saikosaponin A by comparison with data obtained from the OTCML. The mass spectrum of compound 83 exhibited peaks representing [M + H]+ at m/z 471.2016 and fragment ions at m/z 425.1957 [M + H – 46]− and 161.0597. According to the literature [23] and the data in the OTCML, it was limonin.

The mass spectra of compounds 99 and 105 revealed peaks representing [M + H]+ ions at m/z 249.1486 and 233.1536, respectively. They were identified as atractylenolide III and atractylenolide II, respectively, using the OTCML. The MS2 profile of atractylenolide III revealed peaks representing fragment ions at m/z 249.1481 [M + H]+, 231.1379 [M + H – H2O]+, 213.1276 [M + H – 2H2O] and 203.1140 [M + H – H2O – CO]− [30].

Other Phytochemicals

Eleven compounds were identified by comparing the obtained data to the information in the OTCML, including the hydrophilic compounds 1 (sucrose), 2 (2-pyrollidine-carboxylic acid), 6 (citric acid), 8 (uridine), 10 (adenosine) and 11 (guanosine). These compounds were also confirmed using reference standards.

Quantification Analysis

The extracted ion chromatograms (EICs) of 17 authentic standards compared with those of their corresponding detected compounds within QFPD granules are shown in Fig. 2. The HPLC-Q Exactive hybrid quadrupole-Orbitrap MS method was also used for quantification analysis of these 17 constituents within QFPD granules. The concentration of each constituent was obtained using the respective calibration curve and their contents within the QFPD granules are listed in Table 2.

Compounds from Individual Herbs Within QFPD Granules

In total, 265 compounds were putatively identified using the OTCML combined with manual verification from 20 herbs that are components of QFPD granules (Table S1), including 33 alkaloids, 106 flavonoids, 28 terpenoids, 41 phenylpropanoids, 10 phenolic acids, 18 phenols and 29 other phytochemicals. Of these, 172 compounds were from only one herb, and 104 compounds were from more than two herbs. Within the QFPD granules, 59 compounds were from only one herb and 49 compounds were from more than two herbs.

Conclusions

In this study, HPLC-Q Exactive hybrid quadrupole-Orbitrap MS coupled with the OTCML which is an automatic data analysis platform, was used to study the chemical profile of QFPD granules, an effective TCM prescribed to treat the symptoms of SARS-CoV-2 infections. Furthermore, manual
verification ensured compound identification. A total of 108 compounds were putatively identified from QFPD granules, including alkaloids, flavonoids, phenylpropanoids, phenolic acids, phenols, terpenoids and other phytochemicals. This allowed rapid chemical composition screening of QFPD granules, providing potentially valuable information for quality control and further clinical application.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10337-021-04085-0.

Acknowledgements This work was financially supported by the National Key R&D Program of China (No. 2018YFA0900400), and the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (No.2020-PT320-004).
Table 2 Contents of the constituents within QFPD granules

No	Compound	Conc. (mg/g)
1	Sucrose	0.683 ± 0.185
2	2-Pyrrolidinocarboxylic acid	0.803 ± 0.017
3	Cytosine	0.009 ± 0.0008
4	Citric acid	4.309 ± 0.352
5	Nicotinic acid	0.011 ± 0.0007
6	Uridine	0.029 ± 0.005
7	Nicotinamide	0.006 ± 0.0003
8	Guanosine	0.135 ± 0.004
9	Chlorogenic acid	0.854 ± 0.015
10	Salicylic acid	0.016 ± 0.002
11	Narirutin	0.699 ± 0.119
12	Baicalin	4.383 ± 1.107
13	Isoliquiritigenin	0.007 ± 0.00005
14	18 β-Glycyrrhetinic Acid	0.0005 ± 0.000007
15	Glycyrrhizic acid	2.199 ± 0.127
16	Tangeretin	0.003 ± 0.0003

Data present the (average ± standard deviation) of three replicates. Conc. (mg/g): mg of the constituent/g of QFPD granules

Declarations

Conflict of Interest The authors declare that there are no conflicts of interest.

Ethical Statement We certify that this manuscript is original, has not been previously published and will not be submitted elsewhere for publication while under consideration by *Chromatographia*. This study is not split into several parts and submitted to various journals. Results are presented clearly, honestly and without fabrication. No data, text, or theories by others are presented as our own.

Human and Animal Rights Explicit permission to submit has been received from all co-authors. All the authors whose name appear on the submission have contributed sufficiently to this study. This manuscript does not contain any studies involving humans or animals.

References

1. Shi N, Liu B, Liang N, Ma Y, Ge Y, Yi H, Wu H, Gu H, Huang Y, Tang S, Zhao Y, Tong L, Liu S, Zhao C, Chen R, Bai W, Fan Y, Shi Z, Li L, Liu J, Gu H, Zhi Y, Wang Z, Li Y, Li H, Wang J, Jiao L, Tian Y, Xiong Y, Huo R, Zhang X, Bai J, Chen H, Chen L, Feng Q, Guo T, Hou Y, Hu G, Hu X, Hu Y, Huang J, Huang Q, Huang S, Ji L, Jin H, Lei X, Li C, Wu G, Li J, Li M, Li Q, Li X, Liu H, Liu J, Liu Z, Ma Y, Mao Y, Mo L, Na H, Wang J, Song F, Sun S, Wang D, Wang M, Wang X, Wang Y, Wang Y, Wu W, Wu L, Xiao Y, Xie H, Xu H, Xu S, Xue R, Yang C, Yang K, Yang P, Yuan S, Zhang G, Zhang J, Zhang L, Zhao S, Zhao W, Zheng K, Zhou Y, Zhu J, Zhu T, Li G, Wang W, Zhang H, Wang Y, Yang Y (2020) Pharmacol Res 161:105290. https://doi.org/10.1016/j.phrs.2020.105290
2. Chen J, Wang YK, Gao Y, Hu LS, Yang JW, Wang JR, Sun WJ, Liang ZQ, Cao YM, Cao YB (2020) Biomed Pharmacother 129:110281. https://doi.org/10.1016/j.biopharma.2020.110281
3. Zhao J, Tian S, Lu D, Yang J, Zeng H, Zhang F, Tu D, Ge G, Zheng Y, Shi T, Xu X, Zhao S, Yang Y, Zhang W (2020) Phytomedicine. https://doi.org/10.1016/j.phymed.2020.153315
4. National Medical Products Administration. https://www.nmpa.gov.cn/zhuanti/yqjyxz/yqjyxz/20210303190503177.html
5. Li Y, Shen Y, Yao CL, Guo DA (2020) J Pharm Biomed Anal 185:113215. https://doi.org/10.1016/j.jpba.2020.113215
6. Liu C, Guo DA, Liu L (2018) Phytomedicine 44:247–257. https://doi.org/10.1016/j.phymed.2018.03.006
7. Yang R, Liu H, Bai C, Wang Y, Zhang X, Guo R, Wu S, Wang J, Leung E, Chang H, Li P, Liu T, Wang Y (2020) Pharmacol Res 157:104820. https://doi.org/10.1016/j.phrs.2020.104820
8. Zhou YY, Gao WY, Gu XR, Chen ZQ, Zhao HY, Bian BL, Yang LX, Si N, Wang HJ, Tan Y (2020) China J Chin Materia Med 45:3035–3044. https://doi.org/10.19540/j.cnki.cjcm.2020.0432.200035
9. Zhang F, Huang J, Liu W, Wang CR, Liu YF, Tu DZ, Liang XM, Yang L, Zhang WD, Chen HZ, Ge GB (2021) Food Chem Toxicol 149:111998. https://doi.org/10.1016/j.fct.2021.111998
10. Zhang Y, Cheng Y, Liu Z, Ding L, Qiu T, Chai L, Qiu F, Wang Z, Xiao W, Zhao L, Chen X (2017) J Chromatogr B 1061–1062:474–486. https://doi.org/10.1016/j.jchromb.2017.07.021
11. Chen MY, Liu W, Chou GX, Wang YL (2020) Acta Chin Med Pharmacol 48:62–66. https://doi.org/10.19664/j.cnki.1002-2392.2020023013
12. Zhang JY, Zhang XJ, Sun YK (2014) Chin J Inform TCM 21:71–73. https://doi.org/10.3969/j.issn.1005-5304.2014.05.022
13. Liu J, Xu YH, Zhang QQ, Zhu MH, Zhu ML, Zhou J (2020) Chin Tradit Patent Med 42:2003–2008. https://doi.org/10.3969/j.issn.1001-1528.2020.08.008
14. Yang BY, Li M, Jing Y, Lai YY, Liu J, Peng L (2018) Chin Tradit Herb Drugs 49:4349–4355. https://doi.org/10.7501/j.issn.0253-2670.2018.18.020
15. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, Compilation prepared by Center for Bio-informatics, Northwest University.
16. Sun QH, Cao HJ, Zhou YY, Wang X, Jiang HQ, Gong LL, Yang Y, Rong R (2016) Biomed Chromatogr 30:1820–1834. https://doi.org/10.1002/bmc.3758
17. Zheng L, Fang L, Cong H, Xiang T, Xue M, Yao Z, Wu B, Lin W (2015) Biomed Chromatog 29:1750–1758. https://doi.org/10.1002/bmc.3489
18. Cheng XY, Zhan X, Liao M, Liang CJ, Xiao DP, Zhang LT (2017) Chin Tradit Herbal Drugs 48:2390–2400. https://doi.org/10.7501/j.issn.0253-2670.2017.12.006
19. Qiao X, Li R, Song W, Miao WJ, Liu J, Chen HB, Guo DA, Ye M (2016) J Chromatogr A 1441:83–95. https://doi.org/10.1016/j.chroma.2016.02.079
20. Xu T, Yang M, Li Y, Chen X, Wang Q, Deng W, Pang X, Yu K, Jiang B, Guan S, Guo DA (2013) Rapid Commun Mass Spectrom 27:2297–2309. https://doi.org/10.1002/rcm.6696
21. Zheng YN, Zeng X, Peng W, Wu Z, Su W (2018) Phytochem Anal 30:278–291. https://doi.org/10.1002/pca.2812
22. Zhou J, Cai H, Tu S, Duan Y, Pei K, Xu Y, Liu J, Niu M, Zhang Y, Shen L, Zhou Q (2018) Molecules 23:3128. https://doi.org/10.3390/molecules23123128
23. Bai Y, Zheng Y, Pang W, Peng W, Wu H, Yao H, Li P, Deng W, Cheng J, Su W (2018) Molecules 23:803. https://doi.org/10.3390/molecules23048083
24. Zhang YY, Wang Q, Qi LW, Qin XY, Qin MJ (2011) J Pharm Biomed Anal 56:304–314. https://doi.org/10.1016/j.jpba.2011.05.040

25. Li J, Li WZM, Huang W, Cheung AWH, Bi CWC, Duan R, Guo AJY, Dong TTX, Tsim KWK (2009) J Chromatogr A 1216:2071–2078. https://doi.org/10.1016/j.chroma.2008.05.082

26. Zheng GD, Zhou P, Yang H, Li YS, Li P, Liu EH (2013) Food Chem 136:604–611. https://doi.org/10.1016/j.foodchem.2012.08.040

27. Cheng M, Ding L, Kan H, Zhang H, Jiang B, Sun Y, Cao S, Li W, Koike K, Qiu F (2019) J Nat Med 73:847–854. https://doi.org/10.1007/s11418-019-01329-0

28. Wang CC, Liu YY, Yang HT, Zhang QY, Liao M, Zhang X, Zhang LT (2016) Chin Tradit Herbal Drugs 47:2534–2539. https://doi.org/10.7501/j.issn.0253-2670.2016.14.024

29. Xu L, Liu B, Wang F, Gao XH, Wang YQ, Wang HJ, Li N, Zhang JY (2018) China J Chin Materia Med 43:4534–4540. https://doi.org/10.19540/j.cnki.cjcmm.2018.0120

30. Sun X, Wen H-M, Cui XB, Lu TL, Li W, Shan CX (2016) Chin Tradit Herbal Drugs 47:3494–3501. https://doi.org/10.7501/j.issn.0253-2670.2016.19.023

31. Zhao W, Huang X, Li X, Zhang F, Chen S, Ye M, Huang M, Xu W, Wu S (2015) Molecules 20:13958–13981. https://doi.org/10.3390/molecules200813958

32. Li K, Zhang H, Xie H, Liang Y, Wang X, Ito Y (2011) J Liq Chromatogr Relat Technol 34:1617–1629. https://doi.org/10.1080/10826076.2011.580486

33. Zhang K, Xu X, Li T, Song YL, Zhao YF, Song QQ, Tu PF (2020) China J Chin Materia Med 45:899–909. https://doi.org/10.19540/j.cnki.cjcmm.20191106.201

34. Huang WP, Tan T, Li ZF, OuYang H, Xu X, Zhou B, Feng YL (2018) J Pharm Biomed Anal 154:236–244. https://doi.org/10.1016/j.jpba.2018.02.020

35. Shen Y, Feng Z, Yang M, Zhou Z, Han S, Hou J, Li Z, Wu W, Guo DA (2018) J Sep Sci 41:1888–1895. https://doi.org/10.1002/jssc.201701134

36. Zheng ZG, Xu YH, Liu F, Zhao TT, Wang RX, Huang PY, Wang RS, Yang AP, Zhu Q (2019) J Pharm Biomed Anal 169:127–132. https://doi.org/10.1016/j.jpba.2019.03.007

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.