The $\text{Al}_{61.49}\text{Mn}_{11.35}\text{Ni}_4$ phase in the Al–Mn–Ni system

Qiża Hu, Bin Wen and Changzeng Fan*

State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People’s Republic of China. *Correspondence e-mail: chzfan@ysu.edu.cn

An intermetallic phase in the Al–Mn–Ni system crystallizing in space group Cmcm (No. 63) and refined formula $\text{Al}_{61.49}\text{Mn}_{11.35}\text{Ni}_4$ (called the R^0 phase) has been synthesized by high-temperature sintering of a mixture with initial chemical composition $\text{Al}_{60}\text{Mn}_7\text{Ni}_3$. In comparison with the structure model of the previously reported R phase with composition $\text{Al}_{60}\text{Mn}_{11}\text{Ni}_4$ [Robinson (1954). Acta Cryst. 7, 494–497], there are two mutually exchanged Mn and Ni sites together with one positionally disordered Al site [occupancy ratio 0.811 (8):0.121 (7)] and one partially occupied Mn site [s.o.f. 0.677 (5)] in the current structure model of the R^0 phase.

Structure description

The ternary Al–Mn–Ni alloy system contains a variety of phases with complex or even quasicrystalline structures, most of which are not completely determined. Phase equilibria in the Al-rich region of the Al–Mn–Ni alloy system have been investigated previously. In this regard, a ternary phase with composition close to $\text{Al}_{60}\text{Mn}_{11}\text{Ni}_4$ was reported as thermodynamically stable, crystallizing in space group Bbmm (non-conventional setting of space group Cmcm) with unit-cell parameters of $a = 23.8$, $b = 12.5$, $c = 7.55$ Å (Raynor, 1944). Its chemical composition was determined to be $\text{Al}_{60.0}\text{Mn}_{14.3}\text{Ni}_{5.3}$ for the same sample. This phase was later denominated the R phase (Robinson, 1954). The derived crystal-structure model for the R phase had some ambiguities because at that time it was not possible to accurately model the deficiencies or the type of element for some of the atomic sites (Robinson, 1954). The R phase with similar composition/crystal structure has also been discovered in other systems, such as the T_3 phase in the Al–Mn–Zn system or the $\text{Al}_{30}\text{Mn}_3\text{Cu}_2$ phase (Damjanovic, 1961). It is interesting to note that the orthorhombic phase in the Al–Mn system is isostructural with...
Al61.49Mn11.35Ni4, in accordance with complementary Cmcm phase has similar unit-cell parameters to the previously reported phase. This phase has two reversed sites compared to the original model, and vice versa. In addition, the R' phase shows positional disorder of one Al site (Al7), and one Mn site (Mn2) with partial occupancy. Fig. 1 shows the distribution of all atoms in the unit cell of Al61.49Mn11.35Ni4 with four distorted icosahedra illustrated for simplicity. The environments of the Mn3 and Mn4 sites are shown in Fig. 2a and 2b, respectively. The icosahedron centered at Mn3 is surrounded solely by Al atoms (Al1, Al4, Al5, Al6, Al10, Al11, Al12 and Al13) while that centered at Mn4 atom is composed of eleven Al atoms (Al1, Al2, Al4, Al5, Al9, Al11 and Al12) and one Mn atom (Mn4); all of the corresponding atomic sites are fully occupied. The polyhedron centered at Al3 is composed of a pentagonal prism capped by two atoms at the base faces, as shown in Fig. 3a. The environments of Al3 are displayed in Fig. 3b, where ten Al atoms (Al6, Al12 and Al13) and two Mn atoms (Mn3) surround the central atom.

Synthesis and crystallization

The high-purity elements Al (indicated purity 99.8%; 2.4285 g), Mn (indicated purity 99.96%; 0.5768 g) and Ni (indicated purity 99.9%; 0.2641 g) were mixed in the molar ratio 60:7:3 and ground in an agate mortar. The blended powders were placed into a cemented carbide grinding mound of 9.6 mm diameter and pressed at 4 MPa for about 5 min. The obtained cylindrical block was put into a silica glass tube and vacuum-sealed by a home-made sealing machine. The resulting ampoule then was placed in a furnace (SG-XQL1200) and heated up to 473 K for 10 min with a heating rate of 10 K min$^{-1}$ and then heated up to 1373 K for 30 min with the same heating rate. Finally, the sample was slowly cooled to room temperature by turning off the furnace power. Suitable pieces of single-crystal grains were broken and selected from the product for single-crystal X-ray diffraction.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. Manganese site Mn2 is partially

![Diagram](image-url)
Table 1
Experimental details.

Crystal data
Chemical formula
M_r
Crystal system, space group
Temperature (K)
a, b, c (Å)
V (Å³)
Z
Radiation type
μ (mm⁻¹)
Crystal size (mm)

Data collection
Diffractometer
Absorption correction
T_{min}, T_{max}
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections
R_{int}
$(\sin \theta/\lambda)_{\text{max}}$ (Å⁻¹)

Refinement
$R(F^2 > 2\sigma(F^2))$, $wR(F^2)$, S
No. of reflections
No. of parameters
Δp_{max}, Δp_{min} (e Å⁻³)

Computer programs: APEX3 and SAINT (Bruker, 2015), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2017) and publCIF (Westrip, 2010).

occupied, and its site occupation factor (s.o.f.) was refined to 0.677 (5). The aluminium site Al17 was found to be disordered over two positions with refined s.o.f.s of 0.811 (8) and 0.121 (7) for Al7A and Al7B, respectively. The same anisotropic displacement parameters were used for these two split Al sites. All Ni sites in the present model show full occupancy. The maximum and minimum residual electron densities in the final difference map are located 1.42 Å from site Al11 and 0.57 Å from site Al7A, respectively.

Funding information

Funding for this research was provided by: The National Natural Science Foundation of China (grant No. 52173231 and 51771165).

References

Brandenburg, K. & Putz, H. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Damjanovic, A. (1961). Acta Cryst. 14, 982–987.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
Li, X. & Kuo, K. (1992). Philos. Mag. B, 65, 525–533.
Raynor, G. V. (1944). J. Inst. Met. 70, 507.
Robinson, K. (1954). Acta Cryst. 7, 494–497.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
The Al$_{61.49}$Mn$_{11.35}$Ni$_4$ phase in the Al–Mn–Ni system

Qiřa Hu, Bin Wen and Changzeng Fan

(I)

Crystal data
Al$_{61.49}$Mn$_{11.35}$Ni$_4$
D_x = 3.672 Mg m$^{-3}$
M_r = 2517.49
Mo $K\alpha$ radiation, λ = 0.71073 Å
Orthorhombic, $Cmcm$
θ = 2.4–30.6°
a = 7.6135 (3) Å
μ = 5.85 mm$^{-1}$
b = 23.9582 (11) Å
T = 296 K
c = 12.4828 (6) Å
$F(000)$ = 2390
V = 2276.93 (18) Å3
Fragment, metallic
Z = 2
θ_{min} = 0.648, θ_{max} = 0.746
ϕ and ω scans
θ_{max} = 28.3°, θ_{min} = 2.4°
40442 measured reflections
$\phi = -10$→10
R_{int} = 0.090
h = −10→10
T_{min} = 0.648, T_{max} = 0.746
k = −31→31
R_{int} = 0.090
l = −16→16

Reefinement
Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)]$ = 0.039
$wR(F^2) = 0.095$
S = 1.06
0 restraints
1584 reflections
114 parameters
$\Delta\rho_{\text{max}}$ = 1.85 e Å$^{-3}$
$\Delta\rho_{\text{min}}$ = −1.03 e Å$^{-3}$

Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

	x	y	z	U_{eq}	Occ. (<1)	
Ni1	0.000000	0.91273 (3)	0.06707 (7)	0.0123 (2)		
Mn1	0.000000	0.54113 (5)	0.750000	0.0070 (3)		
	U¹¹	U²²	U³³	U¹²	U¹³	U²³
---	----------------	----------------	----------------	----------------	----------------	----------------
Mn2	0.000000	0.92062 (7)	0.750000	0.0071 (6)	0.677 (5)	
Mn3	0.000000	0.63847 (3)	0.05426 (6)	0.00525 (19)		
Mn4	0.18574 (11)	0.71395 (3)	0.750000	0.00517 (19)		
Al1	0.000000	0.81074 (10)	0.750000	0.0081 (5)		
Al2	0.000000	0.79366 (10)	0.250000	0.0083 (5)		
Al3	0.000000	0.63386 (10)	0.250000	0.0111 (5)		
Al4	0.000000	0.63837 (6)	0.84947 (13)	0.0066 (3)		
Al5	0.000000	0.73945 (7)	0.93387 (13)	0.0076 (3)		
Al6	0.000000	0.53869 (7)	0.11718 (14)	0.0129 (4)		
Al7A	0.000000	0.98517 (9)	0.9064 (2)	0.0170 (8)	0.811 (8)	
Al7B	0.000000	0.000000	0.000000	0.0170 (8)	0.121 (7)	
Al8	0.2272 (3)	0.01406 (8)	0.250000	0.0250 (5)		
Al9	0.1846 (2)	0.89615 (7)	0.250000	0.0094 (4)		
Al10	0.18981 (16)	0.55406 (5)	0.93399 (9)	0.0075 (3)		
Al11	0.19159 (16)	0.82804 (5)	0.06539 (9)	0.0074 (3)		
Al12	0.18747 (16)	0.71601 (5)	0.12610 (9)	0.0080 (3)		
Al13	0.18943 (17)	0.89124 (5)	0.88587 (11)	0.0135 (3)		

Atomic displacement parameters (Å²)

	U¹¹	U²²	U³³	U¹²	U¹³	U²³
Ni1	0.0055 (4)	0.0074 (4)	0.0241 (5)	0.000	0.000	−0.0016 (3)
Mn1	0.0134 (6)	0.0033 (5)	0.0044 (5)	0.000	0.000	0.000
Mn2	0.0057 (10)	0.0112 (10)	0.0043 (9)	0.000	0.000	0.000
Mn3	0.0080 (4)	0.0039 (4)	0.0039 (4)	0.000	0.000	0.0003 (3)
Mn4	0.0049 (4)	0.0059 (4)	0.0046 (4)	0.0000 (3)	0.000	0.000
Al1	0.0099 (12)	0.0074 (11)	0.0071 (11)	0.000	0.000	0.000
Al2	0.0051 (12)	0.0117 (12)	0.0080 (11)	0.000	0.000	0.000
Al3	0.0182 (14)	0.0106 (12)	0.0045 (11)	0.000	0.000	0.000
Al4	0.0074 (8)	0.0060 (8)	0.0065 (8)	0.000	0.000	0.0008 (6)
Al5	0.0077 (8)	0.0072 (8)	0.0079 (8)	0.000	0.000	0.0011 (6)
Al6	0.0241 (11)	0.0051 (8)	0.0094 (8)	0.000	0.000	0.0021 (6)
Al7A	0.0102 (12)	0.0087 (12)	0.0320 (15)	0.000	0.000	−0.0034 (10)
Al7B	0.0102 (12)	0.0087 (12)	0.0320 (15)	0.000	0.000	−0.0034 (10)
Al8	0.0427 (14)	0.0160 (10)	0.0162 (10)	0.0111 (9)	0.000	0.000
Al9	0.0088 (9)	0.0125 (8)	0.0068 (8)	−0.0031 (7)	0.000	0.000
Al10	0.0073 (6)	0.0069 (5)	0.0082 (6)	−0.0003 (4)	−0.0009 (5)	−0.0003 (4)
Al11	0.0073 (6)	0.0074 (5)	0.0074 (6)	0.0009 (4)	0.0006 (5)	0.0013 (4)
Al12	0.0077 (6)	0.0067 (5)	0.0098 (6)	−0.0012 (5)	0.0003 (5)	−0.0028 (4)
Al13	0.0130 (7)	0.0101 (6)	0.0174 (7)	−0.0008 (5)	−0.0003 (5)	0.0021 (5)

Geometric parameters (Å, °)

	Ni1—Al7Bⁱ	2.2523 (7)	Al2—Al9^v	2.829 (3)
Ni1—Al7Aⁱⁱ	2.468 (2)	Al2—Al9	2.829 (3)	
Ni1—Al10^{iv}	2.4921 (12)	Al2—Al11^{xx}	2.8490 (13)	
Ni1—Al10^v	2.4921 (12)	Al2—Al11^v	2.8490 (13)	
Ni1—Al11	2.4989 (13)	Al2—Al11^{vii}	2.8490 (13)	
Ni1—Al11 2.4989 (13) Al2—Al11 2.8490 (13)				
Ni1—Al17A 2.652 (3) Al3—Al6 2.819 (3)				
Ni1—Al9 2.7106 (12) Al3—Al12 2.819 (3)				
Ni1—Al9vii 2.7107 (12) Al3—Al12 2.881 (2)				
Ni1—Al13 2.7315 (15) Al3—Al12vii 2.881 (2)				
Ni1—Al13vi 2.7315 (15) Al3—Al12v 2.881 (2)				
Mn1—Al8v 2.462 (2) Al3—Al12v 2.9714 (14)				
Mn1—Al8vii 2.462 (2) Al3—Al12iv 2.9714 (14)				
Mn1—Al6v 2.5310 (19) Al3—Al12v 2.9714 (14)				
Mn1—Al6vi 2.5310 (19) Al3—Al12iv 2.9714 (14)				
Mn1—Al14 2.6399 (19) Al3—Al12iv 2.9714 (14)				
Mn1—Al14vii 2.6400 (19) Al4—Al14vii 2.483 (3)				
Mn1—Al10v 2.7312 (12) Al4—Al5 2.641 (2)				
Mn1—Al10v 2.7312 (12) Al4—Al10 2.6985 (18)				
Mn1—Al10xiv 2.7312 (12) Al4—Al10 2.6985 (18)				
Mn1—Al10xii 2.7312 (12) Al4—Al10 2.7001 (15)				
Mn1—Al9 2.8328 (18) Al4—Al10 2.7001 (14)				
Mn1—Al9xi 2.8328 (18) Al4—Al10 2.8270 (18)				
Mn2—Al8xvi 2.333 (2) Al4—Al9iii 2.8270 (18)				
Mn2—Al8xii 2.333 (2) Al5—Al12ii 2.7131 (15)				
Mn2—Al13xiv 2.3349 (14) Al5—Al12iv 2.7131 (15)				
Mn2—Al13xiii 2.3349 (14) Al5—Al12xxiii 2.8480 (18)				
Mn2—Al13vi 2.3349 (14) Al5—Al12xxiv 2.8480 (18)				
Mn2—Al13 2.3349 (14) Al5—Al12xxv 2.8480 (18)				
Mn2—Al13 2.3349 (14) Al6—Al10ii 2.8510 (15)				
Mn2—Al17A 2.491 (3) Al6—Al10ii 2.8510 (15)				
Mn2—Al17A 2.491 (3) Al6—Al10vi 2.722 (2)				
Mn2—Al17 2.633 (3) Al6—Al10vi 2.722 (2)				
Mn3—Al13 2.4459 (8) Al6—Al10xxiv 2.722 (2)				
Mn3—Al12 2.5085 (13) Al6—Al10xxv 2.7266 (19)				
Mn3—Al12 2.5085 (13) Al6—Al10xxvii 2.7266 (19)				
Mn3—Al6 2.5162 (19) Al6—Al10xxviii 2.7300 (19)				
Mn3—Al6 2.5162 (19) Al6—Al10xxix 2.7300 (19)				
Mn3—Al14vi 2.5563 (18) Al6—Al13 2.9000 (16)				
Mn3—Al13iv 2.5563 (18) Al6—Al13iv 2.9000 (16)				
Mn3—Al13iv 2.5563 (18) Al7A—Al7Axxvii 2.442 (5)				
Mn3—Al13ii 2.5800 (14) Al7A—Al7Axxviii 2.608 (3)				
Mn3—Al5vii 2.8481 (18) Al7A—Al7Axxix 2.608 (3)				
Mn3—Al11vii 2.8962 (13) Al7A—Al7Axv 2.685 (2)				
Mn3—Al11viii 2.8962 (13) Al7A—Al13 2.685 (2)				
Mn3—Al10viii 2.9039 (13) Al7A—Al13 2.685 (2)				
Mn3—Al10v 2.9039 (13) Al7A—Al10xxix 2.9016 (17)				
Mn4—Al12iii 2.3996 (9) Al7A—Al10xxvii 2.9016 (17)				
Mn4—Al12iii 2.4779 (13) Al7A—Al10xxvii 2.9016 (17)				
Mn4—Al12ix 2.4779 (13) Al7B—Al10xxvii 2.8166 (12)				
Mn4—Al4 2.6116 (15) Al7B—Al10xxvii 2.8166 (12)				
Mn4—Al4ii 2.6116 (15) Al7B—Al10xxvii 2.8166 (12)				
Mn4—Al11ix 2.6823 (12) Al8—Al9xxiii 2.843 (3)				
Mn4—Al11iii 2.6823 (12) Al8—Al9xxiii 2.843 (3)				
Mn4—Al11 2.716 (2) Al8—Al13xxvii 2.847 (2)				
Mn4—Al5 2.7642 (15) Al8—Al10v 2.8874 (16)				
Bond	Distance	Eps	Bond	Distance
-----------------------	----------	-------	-----------------------	----------
Mn4—Al5	2.7642	15	Al8—Al10	2.8874
Mn4—Al9	2.8163	19	Al9—Al10	2.7591
Mn4—Mn4	2.8282	17	Al9—Al10	2.7591
Al1—Al5	2.861	2	Al9—Al11	2.811
Al1—Al5xiii	2.861	2	Al9—Al11	2.8242
Al1—Al12xvi	2.9093	14	Al9—Al11	2.8242
Al1—Al12i	2.9093	14	Al10—Al13xxxvi	2.7603
Al1—Al12ii	2.9093	14	Al10—Al10	2.890
Al1—Al12xix	2.9093	14	Al11—Al13v	2.7046
Al1—Al13	2.946	2	Al11—Al12xxvii	2.7705
Al1—Al13x	2.946	2	Al11—Al12xxvii	2.7891
Al1—Al13xxi	2.946	2	Al11—Al11v	2.917
Al2—Al12	2.809	2	Al12—Al13xxii	2.7393
Al2—Al12x	2.809	2	Al12—Al12x	2.855
Al2—Al12ii	2.809	2	Al13—Al13v	2.884
Al2—Al12xxx	2.809	2		
Al7Aiv—Ni1—Al10xxxii	71.59	3	Al11v—Al4—Al9xxxiii	177.12
Al7Aiv—Ni1—Al10xiv	71.59	3	Al9v—Al4—Al9xxxiii	116.30
Al7Aiv—Ni1—Al10xvi	142.75	6	Al4—Al5—Al12i	104.51
Al7Aiv—Ni1—Al11v	138.65	3	Al4—Al5—Al12v	104.51
Al7Aiv—Ni1—Al11v	143.68	3	Al12iii—Al5—Al12iv	122.57
Al10iv—Ni1—Al11	72.91	4	Al4—Al5—Mn4	57.73
Al10iv—Ni1—Al11v	144.33	5	Al12iii—Al5—Mn4	53.78
Al7Aiv—Ni1—Al11	56.83	10	Al12iv—Al5—Mn4xxxv	61.54
Al10iv—Ni1—Al11v	77.70	3	Al12iv—Al5—Mn4xxxv	98.93
Al11—Ni1—Al11v	121.67	5	Al12iv—Al5—Mn4xxxv	118.66
Al7B—Ni1—Al9	116.69	4	Mn4—Al5—Mn4xxxv	55.36
Al7B—Ni1—Al10	91.85	7	Al4—Al5—Mn3xxxv	104.50
Al10v—Ni1—Al11v	63.89	4	Al4—Al5—Mn3xxxv	113.56
Al10v—Ni1—Al11	122.86	5	Al12iv—Al5—Mn3xxxv	62.46
Al9—Ni1—Al10v	65.51	4	Al4—Al5—Al12xxxv	113.56
Al11v—Ni1—Al10v	101.00	5	Mn4—Al5—Al12xxxv	155.84
Al7Aiv—Ni1—Al10	137.13	5	Al4—Al5—Al12xxxv	155.84
Al7Aiv—Ni1—Al10v	91.85	7	Al4—Al5—Mn3xxxv	155.84
Al10iv—Ni1—Al10v	122.86	5	Al12iv—Al5—Mn3xxxv	155.84
Al10iv—Ni1—Al10	63.89	4	Al12iv—Al5—Mn3xxxv	155.84
Al11—Ni1—Al10v	100.99	5	Mn4—Al5—Mn3xxxv	113.56
Al11—Ni1—Al10v	65.51	4	Al4—Al5—Mn3xxxv	113.56
Al7Aiv—Ni1—Al10v	137.13	5	Al4—Al5—Mn3xxxv	113.56
Al9—Ni1—Al10v	62.46	7	Al4—Al5—Al11v	58.75
Al7Aiv—Ni1—Al13	107.32	6	Al4—Al5—Al11v	58.75
Bond	Angle (°)	Error (°)		
------	----------	-----------		
Al10ⁱⁱⁱ—Ni1—Al13^{vi}	123.79	(5)		
Al10^{vi}—Ni1—Al13^{xiii}	63.61	(4)		
A11—Ni1—Al13^{vi}	98.53	(4)		
A11⁺—Ni1—Al13ⁱⁱⁱ	62.09	(4)		
A17A^{xii}—Ni1—Al13^{vi}	59.81	(5)		
A9—Ni1—Al13^{vi}	160.69	(5)		
Al9^{xii}—Ni1—Al13ⁱⁱⁱ	113.34	(4)		
A17Aⁱⁱⁱ—Ni1—Al1ⁱⁱⁱ	107.32	(6)		
A10ⁱⁱⁱ—Ni1—Al1ⁱⁱⁱ	63.61	(4)		
A10^{xiv}—Ni1—Al1ⁱⁱⁱ	123.79	(5)		
A11—Ni1—Al1ⁱⁱⁱ	62.09	(4)		
A11⁺—Ni1—Al1ⁱⁱⁱ	98.53	(4)		
A17A^{xiii}—Ni1—Al1ⁱⁱⁱ	59.81	(5)		
A9—Ni1—Al13^{vi}	113.34	(4)		
A9^{xii}—Ni1—Al13ⁱⁱⁱ	160.69	(5)		
A13^{xiii}—Ni1—Al13^{xvi}	63.74	(6)		
A18^{xii}—Mn1—A18^{xii}	66.07	(5)		
A18^{xii}—Mn1—Al6^{xii}	66.07	(5)		
A18^{xii}—Mn1—Al6^{xvi}	66.07	(5)		
A18^{xii}—Mn1—Al6^{xii}	66.07	(5)		
Al6^{xii}—Mn1—Al6^{xii}	81.85	(9)		
A18^{xii}—Mn1—A4	118.28	(5)		
A18^{xii}—Mn1—A4	118.28	(5)		
A16⁺—Mn1—A4	167.13	(6)		
A16⁺—Mn1—A4	111.02	(5)		
A18^{xii}—Mn1—A14^{xii}	118.28	(5)		
A18^{xii}—Mn1—A14^{xii}	118.28	(5)		
A16^{xii}—Mn1—A14^{xii}	111.02	(5)		
A14—Mn1—A4	167.13	(6)		
A14—Mn1—A4	111.02	(5)		
A18^{xii}—Mn1—A10^{xiv}	67.33	(3)		
A18^{xii}—Mn1—A10^{xiv}	67.33	(3)		
A16^{xii}—Mn1—A10^{xiv}	62.28	(4)		
A16^{xii}—Mn1—A10^{xiv}	129.53	(5)		
A14—Mn1—A10^{xiv}	107.18	(5)		
A14^{xii}—Mn1—A10^{xiv}	60.29	(4)		
A18^{xii}—Mn1—A10^{xiv}	67.33	(3)		
A18^{xii}—Mn1—A10^{xiv}	67.33	(3)		
A16^{xii}—Mn1—A10^{xiv}	129.53	(5)		
A16^{xii}—Mn1—A10^{xiv}	62.28	(4)		
A14—Mn1—A10^{xiv}	60.29	(4)		
A14^{xii}—Mn1—A10^{xiv}	60.29	(4)		
A14^{xii}—Mn1—A10^{xiv}	107.18	(5)		
A110^{xvi}—Mn1—A10^{xiv}	114.48	(5)		
A18^{xii}—Mn1—A10^{xiv}	129.48	(3)		
A18^{xii}—Mn1—A10^{xiv}	67.33	(3)		
A16^{xii}—Mn1—A10^{xiv}	62.28	(4)		
A16^{xii}—Mn1—A10^{xiv}	129.53	(5)		
A14—Mn1—A10^{xiv}	60.29	(4)		
A14^{xii}—Mn1—A10^{xiv}	107.18	(5)		
A110^{xvi}—Mn1—A10^{xiv}	114.48	(5)		
A18^{xii}—Mn1—A10^{xiv}	129.48	(3)		
A18^{xii}—Mn1—A10^{xiv}	67.33	(3)		
A16^{xii}—Mn1—A10^{xiv}	62.28	(4)		
A16^{xii}—Mn1—A10^{xiv}	129.53	(5)		
Bond	Al4—Mn1—Al10	107.18 (5)	Mn1—Al6—Al10	130.58 (6)
------	---------------	------------	---------------	------------
	Al4—Mn1—Al10i	60.29 (4)	Al8—Al6—Al10i	97.78 (4)
	Al10—Mn1—Al10i	63.89 (5)	Al10—Al6—Al10i	160.60 (7)
	Al10—Mn1—Al10i	166.98 (7)	Al10—Al6—Al10i	101.20 (7)
	Al10—Mn1—Al10i	120.48 (3)	Al10—Al6—Al10i	68.47 (6)
	Al6—Mn1—Al10i	67.33 (3)	Al10—Al6—Al10i	63.92 (6)
	Al6—Mn1—Al10i	129.54 (5)	Mn3—Al6—Al13	54.21 (5)
	Al4—Mn1—Al10i	62.28 (4)	Mn1—Al6—Al13	103.05 (7)
	Al4—Mn1—Al10i	60.29 (4)	Al8—Al6—Al13	79.47 (6)
	Al4—Mn1—Al10i	107.18 (5)	Al10—Al6—Al13	79.47 (6)
	Al10—Mn1—Al10i	166.98 (7)	Al10—Al6—Al13	142.84 (5)
	Al10—Mn1—Al10i	63.89 (5)	Al10—Al6—Al13	142.84 (5)
	Al10—Mn1—Al10i	114.48 (5)	Al10—Al6—Al13	112.56 (6)
	Al8—Mn1—Al9	179.56 (8)	Al10—Al6—Al13	112.56 (6)
	Al8—Mn1—Al9	64.51 (6)	Mn3—Al6—Al13	56.36 (4)
	Al6—Mn1—Al9	113.63 (3)	Mn1—Al6—Al13	116.48 (5)
	Al6—Mn1—Al9	113.63 (3)	Al8—Al6—Al13	60.75 (5)
	Al4—Mn1—Al9	62.08 (4)	Al8—Al6—Al13	139.08 (8)
	Al4—Mn1—Al9	60.29 (4)	Al10—Al6—Al13	154.26 (6)
	Al10—Mn1—Al9	112.85 (4)	Al10—Al6—Al13	92.09 (4)
	Al10—Mn1—Al9	112.85 (4)	Al10—Al6—Al13	110.04 (7)
	Al10—Mn1—Al9	59.42 (3)	Al10—Al6—Al13	58.63 (4)
	Al10—Mn1—Al9	59.42 (3)	A3—Al6—Al13	62.59 (4)
	A18—Mn1—Al9	64.51 (6)	Mn3—Al6—Al13	56.36 (4)
	A18—Mn1—Al9	179.56 (8)	Mn1—Al6—Al13	116.48 (5)
	A18—Mn1—Al9	113.63 (3)	Al8—Al6—Al13	60.75 (5)
	A18—Mn1—Al9	113.63 (3)	Al8—Al6—Al13	139.08 (8)
	Al4—Mn1—Al9	62.09 (4)	Al10—Al6—Al13	154.26 (6)
	Al4—Mn1—Al9	60.29 (4)	Al10—Al6—Al13	58.63 (4)
	Al4—Mn1—Al9	59.42 (3)	Al10—Al6—Al13	110.04 (7)
	Al4—Mn1—Al9	59.42 (3)	A3—Al6—Al13	62.59 (4)
	Al4—Mn1—Al9	112.85 (4)	Al13—Al6—Al13	109.24 (7)
	A19—Mn1—Al9	115.92 (8)	A17A—Al17A—Ni1	65.38 (9)
	A19—Mn1—Al9	95.71 (13)	A17A—Al17A—Mn2	158.53 (16)
	A18—Mn2—Al8i	131.32 (5)	Ni1—Al17A—Mn2	136.09 (12)
	A18—Mn2—Al8i	75.18 (5)	A17A—Al17A—Ni1	135.57 (7)
	A18—Mn2—Al8i	75.18 (5)	Ni1—Al17A—Al8	95.36 (8)
	A18—Mn2—Al8i	131.32 (5)	Mn2—Al17A—Al8	54.39 (7)
	A18—Mn2—Al8i	75.18 (5)	Al8—Al17A—Al8	83.07 (11)
	A18—Mn2—Al8i	93.17 (7)	Al7A—Al17A—Ni1	57.79 (10)
	A18—Mn2—Al8i	144.92 (10)	Ni1—Al17A—Al8	123.17 (10)
	A18—Mn2—Al8i	75.18 (5)	Mn2—Al17A—Ni1	100.74 (8)
	A18—Mn2—Al8i	131.32 (5)	Al8—Al17A—Ni1	124.80 (8)
	A18—Mn2—Al8i	75.18 (5)	Al8—Al17A—Ni1	124.80 (8)
Bond	Angle (°)			
----------------------	----------------			
Al$_{13}v$—Mn$_2$—Al$_{13}$	76.30 (7)			
Al$_{18}vi$—Mn$_2$—Al$_{17}A_{xxiii}$	65.38 (5)			
Al$_{18}vii$—Mn$_2$—Al$_{17}A_{xxiii}$	65.38 (5)			
Al$_{13}vi$—Mn$_2$—Al$_{17}A_{xxiii}$	67.53 (5)			
Al$_{13}v$—Mn$_2$—Al$_{17}A_{xxiii}$	139.16 (5)			
Al$_{13}$—Mn$_2$—Al$_{17}A$	67.53 (5)			
Al$_{18}vii$—Mn$_2$—Al$_{17}A$	65.38 (5)			
Al$_{13}vi$—Mn$_2$—Al$_{17}A$	139.16 (5)			
Al$_{13}$—Mn$_2$—Al$_{17}A$	67.53 (5)			
Al$_{17}A_{xxiii}$—Mn$_2$—Al$_{17}A$	103.23 (13)			
Al$_{18}vi$—Mn$_2$—Al$_{11}$	132.14 (7)			
Al$_{18}vii$—Mn$_2$—Al$_{11}$	132.14 (7)			
Al$_{13}vi$—Mn$_2$—Al$_{11}$	72.46 (5)			
Al$_{13}$—Mn$_2$—Al$_{11}$	72.46 (5)			
Al$_{17}A_{xxiii}$—Mn$_2$—Al$_{11}$	128.38 (6)			
Al$_{17}A_{xx}$—Mn$_2$—Al$_{11}$	128.38 (6)			
Al$_3$—Mn$_3$—Al$_{12}v$	71.11 (6)			
Al$_3$—Mn$_3$—Al$_{12}$	71.11 (6)			
Al$_{12}$—Mn$_3$—Al$_{12}$	69.36 (6)			
Al$_3$—Mn$_3$—Al$_{16}$	69.22 (7)			
Al$_{12}$—Mn$_3$—Al$_{16}$	126.30 (5)			
Al$_{12}$—Mn$_3$—Al$_{16}$	126.30 (5)			
Al$_3$—Mn$_3$—Al$_{14}vi$	177.36 (8)			
Al$_{12}$—Mn$_3$—Al$_{14}vi$	110.99 (5)			
Al$_{12}$—Mn$_3$—Al$_{14}vi$	110.99 (5)			
Al$_6$—Mn$_3$—Al$_{14}vi$	108.13 (6)			
Al$_3$—Mn$_3$—Al$_{13}v$	72.43 (4)			
Al$_{12}$—Mn$_3$—Al$_{13}v$	65.12 (4)			
Al$_{12}$—Mn$_3$—Al$_{13}v$	128.48 (5)			
Al$_6$—Mn$_3$—Al$_{13}v$	69.36 (3)			
Al$_{14}vi$—Mn$_3$—Al$_{13}v$	106.82 (4)			
Al$_3$—Mn$_3$—Al$_{13}iii$	72.43 (4)			
Al$_{12}$—Mn$_3$—Al$_{13}iii$	128.48 (5)			
Al$_{12}$—Mn$_3$—Al$_{13}iii$	65.12 (4)			
Al$_6$—Mn$_3$—Al$_{13}iii$	69.36 (3)			
Al$_{14}vi$—Mn$_3$—Al$_{13}iii$	106.82 (4)			
Al$_3$—Mn$_3$—Al$_{13}iii$	132.84 (7)			
Al$_3$—Mn$_3$—Al$_{13}iii$	132.84 (7)			
Al$_3$—Mn$_3$—Al$_{13}iv$	106.82 (4)			
Al$_{13}$—Mn$_3$—Al$_{13}iv$	128.48 (5)			
Al$_{13}$—Mn$_3$—Al$_{13}iv$	65.12 (4)			
Al$_6$—Mn$_3$—Al$_{13}iv$	69.36 (3)			
Al$_{14}vi$—Mn$_3$—Al$_{13}iv$	106.82 (4)			
Al$_3$—Mn$_3$—Al$_{13}iv$	132.84 (7)			
Al$_3$—Mn$_3$—Al$_{13}iv$	132.84 (7)			
Al$_3$—Mn$_3$—Al$_{13}v$	106.82 (4)			
Al$_{13}$—Mn$_3$—Al$_{13}v$	132.84 (7)			
Al$_3$—Mn$_3$—Al$_{13}v$	132.84 (7)			
Al$_3$—Mn$_3$—Al$_{13}$i	128.48 (5)			
Al$_3$—Mn$_3$—Al$_{13}$i	65.12 (4)			
Al$_6$—Mn$_3$—Al$_{13}$i	69.36 (3)			
Al$_{14}vi$—Mn$_3$—Al$_{13}$i	106.82 (4)			
Al$_3$—Mn$_3$—Al$_{13}$i	132.84 (7)			
Al$_3$—Mn$_3$—Al$_{13}$i	132.84 (7)			
Data Reports

Al13iv—Mn3—Al5vi	112.78 (3)	Mn2vi—Al8—Al7Axxviii	60.24 (7)
Al13iii—Mn3—Al5vi	112.78 (3)	Mn1v—Al8—Al7Axxviii	124.28 (6)
Al3—Mn3—Al11xvii	121.85 (3)	Al7Axxv—Al8—Al7Axxviii	96.93 (11)
Al12—Mn3—Al11xvii	61.18 (4)	Mn2vi—Al8—Al6xxv	114.85 (7)
Al6—Mn3—Al11xvii	115.10 (3)	Mn1v—Al8—Al6xxv	163.78 (10)
Al4vi—Mn3—Al11xvii	58.97 (3)	Al7Axxviii—Al8—Al6xxv	92.78 (5)
Al13iv—Mn3—Al11xvii	58.86 (4)	Mn2vi—Al8—Al6xxv	114.85 (7)
Al13vi—Mn3—Al11xvii	165.67 (5)	Mn1v—Al8—Al6xxv	58.18 (6)
Al5vi—Mn3—Al11xvii	59.51 (3)	Al7Axxv—Al8—Al6xxv	92.78 (5)
Al3—Mn3—Al11xvii	121.85 (3)	Al7Axxviii—Al8—Al6xxv	163.78 (10)
Al12—Mn3—Al11xvii	116.14 (5)	Al6xxviii—Al8—Al6xxv	75.03 (9)
Al12—Mn3—Al11xvii	61.18 (4)	Mn2vi—Al8—Al9xxviii	125.60 (11)
Al6—Mn3—Al11xvii	115.10 (3)	Mn1v—Al8—Al9xxviii	64.07 (6)
Al4vi—Mn3—Al11xvii	58.97 (3)	Al7Axxv—Al8—Al9xxviii	86.07 (8)
Al13iv—Mn3—Al11xvii	165.67 (5)	Al7Axxviii—Al8—Al9xxviii	86.07 (8)
Al13vi—Mn3—Al11xvii	58.86 (4)	Al6xxviii—Al8—Al9xxviii	107.60 (7)
Al5vi—Mn3—Al11xvii	59.51 (3)	Al6xxv—Al8—Al9xxviii	107.60 (7)
Al11xviii—Mn3—Al11xvii	108.34 (5)	Mn2vi—Al8—Al13xxxiv	52.45 (5)
Al3—Mn3—Al10viii	119.02 (6)	Mn1v—Al8—Al13xxxiv	120.86 (8)
Al12—Mn3—Al10viii	114.67 (4)	Mn2vi—Al8—Al13xxxiv	111.92 (9)
Al12—Mn3—Al10viii	169.66 (5)	Al6xxvii—Al8—Al13xxxiv	58.77 (6)
Al6—Mn3—Al10viii	59.98 (4)	Al6xxviii—Al8—Al13xxxiv	62.71 (5)
Al4vi—Mn3—Al10viii	58.82 (4)	Al6xxv—Al8—Al13xxxiv	105.49 (8)
Al13iv—Mn3—Al10viii	60.10 (4)	Al9xxviii—Al8—Al13xxxiv	141.28 (5)
Al13vi—Mn3—Al10viii	114.44 (5)	Mn2vi—Al8—Al13xxxiv	52.45 (5)
Al5vi—Mn3—Al10viii	108.59 (4)	Mn1v—Al8—Al13xxxiv	120.86 (8)
Al11xviii—Mn3—Al10viii	61.50 (3)	Al7Axxv—Al8—Al13xxxvii	58.77 (6)
Al11xvii—Mn3—Al10viii	109.26 (4)	Al7Axxv—Al8—Al13xxxviii	111.92 (9)
Al3—Mn3—Al10vi	119.02 (6)	Al6xxviii—Al8—Al13xxxviii	105.49 (8)
Al12—Mn3—Al10vi	169.66 (5)	Al6xxv—Al8—Al13xxxviii	62.71 (5)
Al12—Mn3—Al10vi	114.67 (4)	Al9xxviii—Al8—Al13xxxviii	141.28 (5)
Al6—Mn3—Al10vi	59.98 (4)	Al13xxxiv—Al8—Al13xxxvii	73.12 (7)
Al4vi—Mn3—Al10vi	58.82 (4)	Mn2vi—Al8—Al10xxxv	122.79 (6)
Al13iv—Mn3—Al10vi	114.44 (5)	Mn1v—Al8—Al10xxxv	60.78 (5)
Al13vi—Mn3—Al10vi	60.10 (4)	Al7Axxv—Al8—Al10xxxv	63.50 (5)
Al5vi—Mn3—Al10vi	108.59 (4)	Al7Axxviii—Al8—Al10xxxv	138.12 (11)
Al11xviii—Mn3—Al10vi	109.26 (4)	Al6xxviii—Al8—Al10xxxv	116.10 (9)
Al11xvii—Mn3—Al10vi	61.50 (3)	Al6xxv—Al8—Al10xxxv	58.07 (5)
Al10xvi—Mn3—Al10vi	59.69 (5)	Al9xxviii—Al8—Al10xxxv	57.55 (4)
Al2iii—Mn4—Al12iii	70.30 (6)	Al13xxxiv—Al8—Al10xxxv	161.13 (8)
Al2ii—Mn4—Al12xxv	70.30 (6)	Al13xxxviii—Al8—Al10xxxv	89.92 (4)
Al12—Mn4—Al12xxv	77.24 (6)	Mn2vi—Al8—Al10xxxv	122.79 (6)
Al2ii—Mn4—Al12xxv	119.16 (6)	Mn1v—Al8—Al10xxxv	60.78 (5)
Al12—Mn4—Al12xxv	112.57 (5)	Al7Axxv—Al8—Al10xxxv	138.12 (11)
Al12—Mn4—Al12xxv	167.76 (5)	Al7Axxviii—Al8—Al10xxxv	63.50 (5)
Al2ii—Mn4—Al12xvi	119.16 (6)	Al6xxviii—Al8—Al10xxxv	58.07 (5)
Al12—Mn4—Al12xvi	167.76 (5)	Al6xxv—Al8—Al10xxxv	116.10 (9)
Bond Type	Bond Length (Å)	Standard Deviation (Å)					
Al12xix—Mn4—Al4xiii	112.57 (5)	3.68					
Al4—Mn4—Al4xiii	56.78 (7)	2.89					
Al2ii—Mn4—Al11xix	67.93 (4)	2.34					
Al12xix—Mn4—Al11xix	130.89 (5)	3.12					
Al12xix—Mn4—Al4—Al11xix	65.30 (4)	2.56					
Al4—Mn4—Al11xix	109.69 (5)	2.97					
Al4xiii—Mn4—Al11xix	61.32 (4)	2.15					
Al2ii—Mn4—Al11ii	67.93 (4)	2.34					
Al12ii—Mn4—Al11ii	65.30 (4)	2.56					
Al4—Mn4—Al11ii	130.89 (5)	3.12					
Al4xiii—Mn4—Al11ii	61.32 (4)	2.15					
Al11xix—Mn4—Al11ii	109.69 (5)	2.97					
Al11xix—Mn4—Al11	118.44 (6)	2.8					
Al12ii—Mn4—Al11	125.73 (7)	3.5					
Al12ii—Mn4—Al1	67.95 (4)	2.34					
Al12xix—Mn4—Al1	67.95 (4)	2.34					
Al4—Mn4—Al1	108.06 (4)	2.8					
Al4xiii—Mn4—Al1	108.06 (4)	2.8					
Al11xix—Mn4—Al1	120.10 (3)	2.4					
Al11ii—Mn4—Al1	120.10 (3)	2.4					
Al2ii—Mn4—Al5	121.80 (3)	2.5					
Al12ii—Mn4—Al5	62.05 (4)	2.6					
Al12xix—Mn4—Al5	124.60 (5)	3.5					
Al4—Mn4—Al5	58.77 (5)	2.9					
Al4xiii—Mn4—Al5	105.73 (4)	2.8					
Al11xix—Mn4—Al5	167.00 (5)	3.5					
Al11ii—Mn4—Al5	63.11 (4)	2.4					
Al1—Mn4—Al5	62.93 (4)	2.5					
Al2ii—Mn4—Al5xiii	121.80 (3)	2.4					
Al12ii—Mn4—Al5xiii	124.60 (5)	3.5					
Al12xix—Mn4—Al5xiii	62.05 (4)	2.6					
Al4—Mn4—Al5xiii	105.73 (4)	2.8					
Al4xiii—Mn4—Al5xiii	58.77 (5)	2.9					
Al11xix—Mn4—Al5xiii	63.11 (4)	2.4					
Al11ii—Mn4—Al5xiii	167.00 (5)	3.5					
Al1—Mn4—Al5xiii	62.93 (4)	2.5					
Al2ii—Mn4—Al9iii	65.12 (7)	2.7					
Al12ii—Mn4—Al9iii	119.85 (5)	3.5					
Al12xix—Mn4—Al9iii	119.85 (5)	3.5					
Al4—Mn4—Al9iii	62.64 (4)	2.6					
Al4xiii—Mn4—Al9iii	62.64 (4)	2.6					
Al11xix—Mn4—Al9iii	61.75 (3)	2.3					
Al11ii—Mn4—Al9iii	61.75 (3)	2.3					
Al1—Mn4—Al9iii	169.14 (6)	3.6					
Al5—Mn4—Al9iii	112.73 (4)	2.9					
Al5xiii—Mn4—Al9iii	112.73 (4)	2.9					
Al1—Mn4—Mn4iv	175.64 (6)	3.8					
Al10xiii—Al9—Al4xiii	96.50 (4)	2.9					
Al10xiii—Al9—Al4x	55.13 (5)	3.0					
Al11—Al9—Al4x	99.98 (7)	3.2					
Al11—Al9—Al4xii	57.08 (4)	2.9					
Al11—Al9—Al4xx	96.50 (4)	2.9					
Al11—Al9—Al4xii	148.15 (4)	3.1					
Al11—Al9—Al4xii	57.08 (4)	2.9					
Al11—Al9—Al4xii	99.98 (7)	3.2					
Compound	Charge	Bond Angle	Error	Bond Angle	Error	Bond Angle	Error
----------------------------------	--------	------------	-------	------------	-------	------------	-------
Al12_{iii}—Mn4—Mn4^{xiv}	112.93 (3)	Al4^{xi}—Al9—Al4^{xi}	52.11 (7)				
Al12_{iv}—Mn4—Mn4^{xiv}	112.93 (3)	Ni1—Al9—Al2	82.51 (4)				
Al4—Mn4—Mn4^{xiv}	57.21 (3)	Ni1^{xi}—Al9—Al2	82.51 (4)				
Al4^{xiv}—Mn4—Mn4^{xiv}	57.21 (3)	Al10^{xi}—Al9—Al2	123.19 (4)				
Al11^{xi}—Mn4—Mn4^{xiv}	110.38 (3)	Al10ⁱⁱ—Al9—Al2	123.19 (4)				
Al11ⁱⁱ—Mn4—Mn4^{xiv}	110.38 (3)	Al9^{ix}—Al9—Al2	60.21 (4)				
Al1—Mn4—Mn4^{xiv}	58.63 (3)	Mn4ⁱⁱⁱ—Al9—Al2	50.30 (4)				
Al5—Mn4—Mn4^{xiv}	59.23 (2)	Al11—Al9—Al2	60.52 (4)				
Al5^{xii}—Mn4—Mn4^{xiv}	59.23 (2)	Al11^{xi}—Al9—Al2	60.52 (4)				
Al9^{xii}—Mn4—Mn4^{xiv}	110.52 (4)	Al4^{xi}—Al9—Al2	99.67 (6)				
Mn2—Al1—Mn4	148.62 (3)	Ni1—Al9—Mn1ⁱⁱⁱ	111.21 (4)				
Mn2—Al1—Mn4^{xiv}	148.63 (3)	Ni1^{xi}—Al9—Mn1ⁱⁱⁱ	111.21 (4)				
Mn4—Al1—Mn4^{xiv}	62.75 (6)	Al10^{xi}—Al9—Mn1ⁱⁱⁱ	111.21 (4)				
Mn2—Al1—Al5	126.65 (5)	Al10ⁱⁱ—Al9—Mn1ⁱⁱⁱ	58.46 (4)				
Mn4—Al1—Al5	59.36 (5)	Al9^{ix}—Al9—Mn1ⁱⁱⁱ	58.46 (4)				
Mn4^{xiv}—Al1—Al5ⁱⁱⁱ	106.69 (10)	Mn4ⁱⁱⁱ—Al9—Mn1ⁱⁱⁱ	147.96 (4)				
Mn2—Al1—Al5ⁱⁱⁱ	102.72 (5)	Al11—Al9—Mn1ⁱⁱⁱ	106.89 (5)				
Mn4—Al1—Al5ⁱⁱⁱ	59.36 (5)	Al11^{xi}—Al9—Mn1ⁱⁱⁱ	106.89 (5)				
Mn4^{xiv}—Al1—Al5ⁱⁱⁱ	59.36 (5)	Al4^{xi}—Al9—Mn1ⁱⁱⁱ	55.61 (5)				
Al5—Al1—Al5ⁱⁱⁱ	106.69 (10)	A14^{xi}—Al9—Mn1ⁱⁱⁱ	55.61 (5)				
Mn2—Al1—Al12^{xv}	102.72 (5)	Al4—Al10—Al6^{xii}	123.31 (5)				
Mn4—Al1—Al12^{xv}	52.13 (3)	Al4—Al10—Al6^{xii}	98.33 (5)				
Mn4^{xiv}—Al1—Al12^{xv}	103.75 (7)	Al6^{xi}—Al10—Al6^{xii}	78.80 (7)				
Al5—Al1—Al12^{xv}	56.09 (3)	Ni1ⁱⁱ—Al10—Mn1	122.22 (5)				
Al5^{xiv}—Al1—Al12^{xv}	107.16 (6)	Al4—Al10—Mn1	58.18 (5)				
Al12^{vi}—Al1—Al12^{xv}	154.55 (10)	Al6^{xi}—Al10—Mn1	55.26 (5)				
Mn2—Al1—Al12^{vi}	102.72 (5)	Al6^{xii}—Al10—Mn1	114.14 (5)				
Mn4—Al1—Al12^{vi}	52.13 (3)	Ni1ⁱⁱ—Al10—Al9ⁱⁱⁱ	61.91 (5)				
Mn4^{xiv}—Al1—Al12^{vi}	103.75 (7)	Al4—Al10—Al9ⁱⁱⁱ	62.38 (5)				
Al5—Al1—Al12^{vi}	56.09 (3)	Al6^{ix}—Al10—Al9ⁱⁱⁱ	109.94 (6)				
Al5^{xiv}—Al1—Al12^{vi}	107.16 (6)	Al6^{xi}—Al10—Al9ⁱⁱⁱ	159.88 (7)				
Al12^{vi}—Al1—Al12^{vi}	64.22 (5)	Mn1—Al10—Al9ⁱⁱⁱ	62.12 (4)				
Al12ⁱⁱ—Al1—Al12^{vi}	109.74 (6)	Ni1ⁱⁱ—Al10—Al13^{xvi}	62.42 (4)				
Mn2—Al1—Al12ⁱⁱ	102.72 (5)	Al4—Al10—Al13^{xvi}	98.14 (6)				
Mn4—Al1—Al12ⁱⁱ	52.13 (3)	Al6ⁱⁱ—Al10—Al13^{xvi}	138.97 (6)				
Mn4^{xiv}—Al1—Al12ⁱⁱ	103.75 (7)	Al6^{xi}—Al10—Al13^{xvi}	63.76 (5)				
Al5—Al1—Al12ⁱⁱ	107.16 (6)	Mn1—Al10—Al13^{xvi}	156.23 (6)				
Al5^{xiv}—Al1—Al12ⁱⁱ	52.13 (3)	Al9ⁱⁱⁱ—Al10—Al13^{xvi}	110.94 (6)				
Al12ⁱⁱ—Al1—Al12ⁱⁱ	109.74 (6)	Ni1ⁱⁱ—Al10—Al17B^{xli}	49.73 (5)				
Al12^{iv}—Al1—Al12ⁱⁱ	64.22 (5)	Al4—Al10—Al17B^{xli}	155.17 (5)				
Al12^{iv}—Al1—Al12ⁱⁱ	154.55 (10)	Al6ⁱⁱ—Al10—Al17B^{xli}	97.94 (4)				
Mn2—Al1—Al13	49.10 (4)	Al6^{xii}—Al10—Al17B^{xli}	97.86 (4)				
Mn4—Al1—Al13	107.71 (3)	Mn1—Al10—Al17B^{xli}	129.61 (5)				
Angle	Edge 1	Edge 2	Edge 3	Weight			
-----------	--------	--------	--------	--------			
Mn⁴v—Alı—Alı3	144.48 (4)	Alı9—Alı0—Alı7Bvli	98.73 (5)				
Al5—Alı—Alı3	85.93 (4)	Alı13xxxvi—Alı0—Alı7Bvli	72.59 (4)				
Alı5viii—Alı—Alı3	148.52 (3)	Niı iv—Alı0—Alı8x	88.21 (6)				
Alı12v—Alı—Alı3	148.29 (8)	Alı4—Alı0—Alı8x	103.25 (6)				
Alı12iv—Alı—Alı3	55.78 (3)	Alı6vii—Alı0—Alı8x	57.93 (6)				
Alı12v—Alı—Alı3	103.80 (4)	Alı6viii—Alı0—Alı8x	134.91 (7)				
Alı12viii—Alı—Alı3	92.86 (4)	Mnı—Alı0—Alı8x	51.89 (5)				
Mnı—Alı1—Alı3v	49.10 (4)	Alı9vii—Alı0—Alı8x	60.42 (5)				
Mnıv—Alı1—Alı3v	144.49 (4)	Alı13xxxvii—Alı0—Alı8x	147.50 (8)				
Mnıv—Alı1—Alı13v	107.71 (3)	Niı iv—Alı0—Alı10v	161.38 (3)				
Alı5—Alı1—Alı13v	85.93 (4)	Alı4—Alı0—Alı10v	57.62 (3)				
Alı5viii—Alı1—Alı13v	148.52 (3)	Alı6vii—Alı0—Alı10v	57.93 (9)				
Alı12v—Alı1—Alı13v	92.86 (4)	Alı6vii—Alı0—Alı10v	58.04 (3)				
Alı12iv—Alı1—Alı13v	103.80 (4)	Mnı—Alı0—Alı10v	58.05 (3)				
Alı12iv—Alı1—Alı13v	55.79 (3)	Alı9vii—Alı0—Alı10v	110.28 (4)				
Alı12viii—Alı1—Alı13v	148.29 (8)	Alı13xxxvii—Alı0—Alı10v	109.46 (4)				
Alı13—Alı1—Alı13v	58.63 (6)	Alı8x—Alı0—Alı10v	102.64 (6)				
Mnı—Alı1—Alı13viii	49.10 (4)	Niı iv—Alı0—Alı17Avd	53.82 (5)				
Mnıv—Alı1—Alı13viii	107.71 (3)	Alı4—Alı0—Alı17Avd	144.61 (7)				
Mnıv—Alı1—Alı13xiii	144.49 (4)	Alı6vii—Alı0—Alı17Avd	86.56 (5)				
Alı5—Alı1—Alı13xiii	148.52 (3)	Alı6vii—Alı0—Alı17Avd	116.97 (7)				
Alı5viii—Alı1—Alı13xiii	85.93 (4)	Mnı—Alı0—Alı17Avd	105.45 (6)				
Alı12v—Alı1—Alı13xiii	103.80 (4)	Alı9vii—Alı0—Alı17Avd	82.25 (7)				
Alı12iv—Alı1—Alı13xiii	92.86 (4)	Alı13xxxvii—Alı0—Alı17Avd	95.49 (6)				
Alı12v—Alı1—Alı13xiii	55.79 (3)	Alı8x—Alı0—Alı17Avd	53.56 (7)				
Alı12v—Alı1—Alı13xiii	148.29 (8)	Alı10v—Alı0—Alı17Avd	144.48 (4)				
Alı13—Alı1—Alı13xiii	70.31 (7)	Niı iv—Alı0—Alı17Avd	104.59 (4)				
Alı13—Alı1—Alı13xviii	98.19 (9)	Alı4—Alı0—Alı17Avd	54.15 (4)				
Mnıv—Alı2—Mnıv	171.29 (12)	Alı6vii—Alı0—Mnıvxxiii	115.15 (5)				
Mnıv—Alı2—Alı12	117.15 (7)	Alı6vii—Alı0—Mnıvxxiii	52.92 (4)				
Mnıv—Alı2—Alı12	56.15 (4)	Mnı—Alı0—Mnıvxxiii	104.50 (4)				
Mnıv—Alı2—Alı12v	56.15 (4)	Alı9vii—Alı0—Mnıvxxiii	107.56 (5)				
Mnıv—Alı2—Alı12v	117.15 (7)	Alı13xxxvii—Alı0—Mnıvxxiii	54.12 (4)				
Alı12—Alı2—Alı12v	61.08 (6)	Alı8x—Alı0—Mnıvxxiii	156.03 (6)				
Mnıv—Alı2—Alı12vii	56.15 (4)	Alı10v—Alı0—Mnıvxxiii	60.16 (2)				
Mnıv—Alı2—Alı12vii	117.15 (7)	Alı17Avd—Alı0—Mnıvxxiii	149.60 (6)				
Alı12—Alı2—Alı2v	97.05 (9)	Niı—Alı1—Mnıv	120.04 (5)				
Alı12—Alı2—Alı2vii	66.82 (7)	Niı—Alı1—Alı4vi	105.21 (5)				
Mnıv—Alı2—Alı12xx	117.15 (7)	Mnıv—Alı1—Alı4vi	58.05 (5)				
Mnıv—Alı2—Alı12xx	56.15 (4)	Niı—Alı1—Alı13vi	63.18 (4)				
Alı12—Alı2—Alı2xx	66.82 (7)	Mnıv—Alı1—Alı13vi	157.51 (6)				
Alı2—Alı2—Alı2xx	97.05 (9)	Alı4vi—Alı1—Alı13vi	99.47 (6)				
Alı12—Alı2—Alı12xx	61.08 (6)	Niı—Alı1—Alı12viii	120.70 (5)				
Mnıv—Alı2—Alı12vii	64.57 (5)	Mnıv—Alı1—Alı12viii	118.86 (5)				
Mnıv—Alı2—Alı12vii	124.14 (9)	Alı4vi—Alı1—Alı12viii	99.45 (6)				
Alı12—Alı2—Alı12vi	145.81 (4)	Alı11—Alı1—Alı12viii	60.03 (4)				
Alı2—Alı2—Alı12vi	108.81 (4)	Niı—Alı1—Alı12	140.58 (6)				
Alı12—Alı2—Alı12vi	108.81 (4)	Mnıv—Alı1—Alı12	53.81 (4)				
Bond	Angle						
------	-------						
Al12−Al2−Al9	145.82 (4)						
Mn4−Al2−Al9	124.14 (9)						
Mn4−Al2−Al9	64.57 (5)						
Al12−Al2−Al9	108.81 (4)						
Al12−Al2−Al9	145.81 (4)						
Al12−Al2−Al9	108.81 (4)						
Al9−Al2−Al9	59.57 (9)						
Mn4−Al2−Al11	122.17 (3)						
Mn4−Al2−Al11	60.75 (3)						
Al12−Al2−Al11	112.13 (4)						
Al12−Al2−Al11	153.77 (8)						
Al12−Al2−Al11	90.36 (4)						
Al12−Al2−Al11	90.36 (4)						
Al12−Al2−Al11	59.07 (3)						
Al12−Al2−Al11	112.13 (4)						
Al12−Al2−Al11	153.77 (8)						
Al9−Al2−Al11	90.19 (6)						
Al11−Al2−Al11	146.39 (10)						
Mn4−Al2−Al11	60.75 (3)						
Mn4−Al2−Al11	122.17 (3)						
Al12−Al2−Al11	153.77 (8)						
Al12−Al2−Al11	112.13 (4)						
Al12−Al2−Al11	90.36 (4)						
Al9−Al2−Al11	90.19 (6)						
Al11−Al2−Al11	61.59 (5)						
Al11−Al2−Al11	107.97 (6)						
Mn4−Al2−Al11	122.17 (3)						
Mn4−Al2−Al11	60.75 (3)						
Al12−Al2−Al11	59.07 (3)						
Al12−Al2−Al11	90.36 (4)						
Al12−Al2−Al11	153.77 (8)						
Al12−Al2−Al11	112.13 (4)						
Al9−Al2−Al11	90.19 (6)						
Al11−Al2−Al11	59.65 (4)						
Mn3−Al3−Al6	174.83 (12)						
Mn3−Al3−Al6	128.61 (10)						
Mn$_3$—Al$_3$—Al$_6$ 56.56 (5) Al$_{12}$—Al$_{11}$—Al$_{10}$ 156.83 (6)							
Mn$_3$—Al$_3$—Al$_6$ 56.56 (5) Al$_9$—Al$_{11}$—Al$_{10}$ 56.86 (4)							
Mn$_3$—Al$_3$—Al$_6$ 128.61 (10) Al$_2$—Al$_{11}$—Al$_{10}$ 115.42 (6)							
Al$_6$—Al$_3$—Al$_6$ 72.05 (9) Al$_{15}$—Al$_{11}$—Al$_{10}$ 106.83 (5)							
Mn$_3$—Al$_3$—Al$_{12}$ 120.36 (8) Mn$_{3,vi}$—Al$_{11}$—Al$_{10}$ 59.38 (4)							
Mn$_3$—Al$_3$—Al$_{12}$ 55.46 (4) Al$_{11}$—Al$_{11}$—Al$_{10}$ 107.73 (3)							
Al$_6$—Al$_3$—Al$_{12}$ 103.70 (4) Mn$_{4,vi}$—Al$_{12}$—Mn$_3$ 161.15 (6)							
Al$_6$—Al$_3$—Al$_{12}$ 150.24 (3) Mn$_{4,vi}$—Al$_{12}$—Al$_{15}$ 64.16 (5)							
Mn$_3$—Al$_3$—Al$_{12,vii}$ 120.36 (8) Mn$_3$—Al$_{12}$—Al$_{15}$ 133.76 (6)							
Mn$_3$—Al$_3$—Al$_{12,vii}$ 55.46 (4) Mn$_{4,vi}$—Al$_{12}$—Al$_{13}$ 122.41 (6)							
Al$_6$—Al$_3$—Al$_{12,vii}$ 103.70 (4) Mn$_3$—Al$_{12}$—Al$_{13}$ 58.70 (4)							
Al$_6$—Al$_3$—Al$_{12,vii}$ 150.24 (3) Al$_{15}$—Al$_{12}$—Al$_{13}$ 93.09 (6)							
Al$_{12,vi}$—Al$_3$—Al$_{12,vii}$ 59.39 (6) Mn$_{4,vi}$—Al$_{12}$—Al$_{11}$ 131.84 (6)							
Mn$_3$—Al$_3$—Al$_{12}$ 55.46 (4) Mn$_3$—Al$_{12}$—Al$_{11}$ 66.33 (4)							
Mn$_3$—Al$_3$—Al$_{12}$ 120.35 (8) Al$_{15}$—Al$_{12}$—Al$_{11}$ 67.68 (5)							
Al$_6$—Al$_3$—Al$_{12}$ 150.24 (3) Al$_{13}$—Al$_{12}$—Al$_{11}$ 58.79 (4)							
Al$_6$—Al$_3$—Al$_{12}$ 103.70 (4) Mn$_{4,vi}$—Al$_{12}$—Al$_{11}$ 60.89 (4)							
Mn$_3$—Al$_3$—Al$_{12}$ 64.92 (6) Mn$_3$—Al$_{12}$—Al$_{11}$ 128.46 (6)							
Mn$_3$—Al$_3$—Al$_{12}$ 93.84 (8) Mn$_3$—Al$_{12}$—Al$_{11}$ 152.13 (6)							
Mn$_3$—Al$_3$—Al$_{12}$ 93.84 (8) Mn$_3$—Al$_{12}$—Al$_{11}$ 97.38 (5)							
Mn$_3$—Al$_3$—Al$_{12}$ 93.84 (8) Mn$_3$—Al$_{12}$—Al$_{11}$ 53.54 (3)							
Mn$_3$—Al$_3$—Al$_{12}$ 113.47 (5) Mn$_3$—Al$_{12}$—Al$_2$ 111.47 (5)							
Mn$_3$—Al$_3$—Al$_{12}$ 109.70 (6) Mn$_3$—Al$_{12}$—Al$_{12}$ 145.60 (6)							
Al$_6$—Al$_3$—Al$_{12}$ 150.24 (3) Mn$_3$—Al$_{12}$—Al$_{12}$ 153.67 (6)							
Al$_6$—Al$_3$—Al$_{12}$ 103.70 (4) Al$_{11}$—Al$_{12}$—Al$_{12}$ 61.18 (5)							
Al$_6$—Al$_3$—Al$_{12}$ 64.92 (6) Al$_{11}$—Al$_{12}$—Al$_{12}$ 125.99 (6)							
Al$_6$—Al$_3$—Al$_{12}$ 93.84 (8) Al$_{11}$—Al$_{12}$—Al$_{12}$ 63.87 (4)							
Al$_6$—Al$_3$—Al$_{12}$ 55.87 (3) Al$_{13}$—Al$_{12}$—Al$_{12}$ 108.09 (6)							
Al$_6$—Al$_3$—Al$_{12}$ 125.40 (3) Mn$_{4,vi}$—Al$_{12}$—Al$_{12}$ 60.97 (4)							
Al$_6$—Al$_3$—Al$_{12}$ 99.90 (7) Mn$_3$—Al$_{12}$—Al$_{12}$ 65.61 (5)							
Al$_6$—Al$_3$—Al$_{12}$ 60.04 (4) Mn$_3$—Al$_{12}$—Al$_{12}$ 94.51 (5)							
Al$_6$—Al$_3$—Al$_{12}$ 147.01 (8) Mn$_3$—Al$_{12}$—Al$_{12}$ 112.93 (3)							
Al$_6$—Al$_3$—Al$_{12}$ 92.89 (4) Mn$_3$—Al$_{12}$—Al$_{12}$ 55.32 (3)							
Al$_6$—Al$_3$—Al$_{12}$ 103.07 (5) Al$_{15}$—Al$_{12}$—Al$_{12}$ 152.94 (4)							
Al$_6$—Al$_3$—Al$_{12}$ 55.79 (3) Al$_{15}$—Al$_{12}$—Al$_{12}$ 110.01 (4)							
Al$_6$—Al$_3$—Al$_{12}$ 103.07 (5) Al$_{15}$—Al$_{12}$—Al$_{12}$ 109.41 (4)							
Al$_6$—Al$_3$—Al$_{12}$ 147.01 (8) Al$_{15}$—Al$_{12}$—Al$_{12}$ 90.65 (4)							
Al$_6$—Al$_3$—Al$_{12}$ 92.89 (4) Al$_{15}$—Al$_{12}$—Al$_{12}$ 59.46 (3)							
Al$_6$—Al$_3$—Al$_{12}$ 103.07 (5) Al$_{15}$—Al$_{12}$—Al$_{12}$ 59.92 (3)							
Al$_6$—Al$_3$—Al$_{12}$ 156.64 (10) Mn$_{4,vi}$—Al$_{12}$—Al$_{3}$ 108.70 (5)							
Al$_6$—Al$_3$—Al$_{12}$ 125.40 (3) Mn$_3$—Al$_{12}$—Al$_{3}$ 53.43 (4)							
Al$_6$—Al$_3$—Al$_{12}$ 55.87 (3) Al$_{15}$—Al$_{12}$—Al$_{3}$ 148.34 (6)							
Al$_6$—Al$_3$—Al$_{12}$ 60.04 (4) Al$_{13}$—Al$_{12}$—Al$_{3}$ 63.77 (5)							
Al$_6$—Al$_3$—Al$_{12}$ 99.90 (7) Al$_{11}$—Al$_{12}$—Al$_{3}$ 111.56 (5)							
Al$_6$—Al$_3$—Al$_{12}$ 103.07 (5) Al$_{11}$—Al$_{12}$—Al$_{3}$ 143.97 (6)							
Bond	Angle (°) (°)	Bond	Angle (°) (°)				
---	---	---	---	---	---	---	---
Al12v—Al3—Al13xii	55.79 (3)	Al2—Al12—Al3	84.56 (6)				
Al12v—Al3—Al13xii	92.89 (4)	Al5vi—Al12—Al3	109.80 (5)				
Al12—Al3—Al13xii	147.01 (8)	Al12v—Al12—Al3	60.31 (3)				
Al13v—Al3—Al13xii	69.61 (5)	Al12v—Al12—Al3	59.92 (5)				
Al13xv—Al3—Al13xii	105.46 (6)	Mn4iii—Al12—Al1ii	119.49 (6)				
Mn3—Al3—Al13xii	55.87 (3)	Al5vi—Al12—Al1ii	61.05 (5)				
Mn3xv—Al3—Al13xii	125.40 (3)	Al13ii—Al12—Al1ii	62.78 (6)				
Al6xv—Al3—Al13xii	99.90 (7)	Al11viii—Al12—Al1ii	95.91 (5)				
Al6—Al3—Al13xii	60.04 (4)	Al11—Al12—Al1ii	110.32 (6)				
Al12xv—Al3—Al13xii	92.89 (4)	Al2—Al12—Al1ii	105.59 (5)				
Al12ii—Al3—Al13xii	147.01 (8)	Al5vi—Al12—Al1ii	154.32 (5)				
Al12v—Al3—Al13xii	103.07 (5)	Al12v—Al12—Al1ii	144.87 (3)				
Al12—Al3—Al13xii	55.79 (3)	Al3—Al12—Al1ii	88.24 (5)				
Al13v—Al3—Al13xii	105.46 (6)	Mn2—Al13—Mn3iii	149.28 (6)				
Al13xv—Al3—Al13xii	69.61 (5)	Mn2—Al13—Al17A	59.00 (7)				
Al13xviii—Al3—Al13xii	156.64 (10)	Mn3iii—Al13—Al17A	134.09 (6)				
Al4xviii—Al4—Mn3xviii	179.94 (4)	Mn2—Al13—Al11xiii	140.75 (7)				
Al4xviii—Al4—Mn4xvi	61.61 (4)	Mn3iii—Al13—Al11xiii	66.42 (4)				
Mn3xviii—Al4—Mn4xvi	118.34 (5)	Al7A—Al13—Al11xiii	113.16 (8)				
Al4xviii—Al4—Mn4	61.61 (4)	Mn2—Al13—Ni1xiii	102.62 (5)				
Mn3xviii—Al4—Mn4	118.34 (5)	Mn3iii—Al13—Ni1xiii	107.22 (5)				
Mn4xiv—Al4—Mn4	65.57 (5)	Al7A—Al13—Ni1xiii	58.62 (6)				
Al4xviii—Al4—Mn1	61.94 (4)	Al11xiii—Al13—Ni1xiii	54.73 (4)				
Mn3xviii—Al4—Mn1	118.11 (6)	Mn2—Al13—Al12ii	117.03 (7)				
Mn4xiv—Al4—Mn1	112.85 (5)	Mn3iii—Al13—Al12ii	56.18 (4)				
Mn4—Al4—Mn1	112.85 (5)	Al17A—Al13—Al12ii	167.20 (7)				
Al4xviii—Al4—Al5	113.51 (5)	Al11xiii—Al13—Al12ii	61.18 (4)				
Mn3xviii—Al4—Al5	66.43 (6)	Ni1xiii—Al13—Al12ii	113.74 (5)				
Mn4—Al4—Al5	63.50 (5)	Mn2—Al13—Al10xxxvi	130.87 (7)				
Mn4—Al4—Al5	63.50 (5)	Mn3iii—Al13—Al10xxxvi	65.78 (4)				
Mn1—Al4—Al5	175.45 (8)	Al17A—Al13—Al10xxxvi	72.73 (6)				
Al4xviii—Al4—Al10	113.02 (4)	Al11xiii—Al13—Al10xxxvi	65.72 (4)				
Mn3xviii—Al4—Al10	67.03 (5)	Ni1xiii—Al13—Al10xxxvi	53.97 (4)				
Mn4xiv—Al4—Al10	174.21 (8)	Al12ii—Al13—Al10xxxvi	110.08 (6)				
Mn4—Al4—Al10	114.51 (3)	Mn2—Al13—Al8vii	52.37 (6)				
Mn1—Al4—Al10	61.53 (4)	Mn3iii—Al13—Al8vii	107.45 (7)				
Al5—Al4—Al10	122.04 (7)	Al7A—Al13—Al8vii	56.17 (7)				
Al4xviii—Al4—Al10v	113.02 (4)	Al11xiii—Al13—Al8vii	159.89 (6)				
Mn3xviii—Al4—Al10v	67.03 (5)	Ni1xiii—Al13—Al8vii	113.35 (6)				
Mn4xiv—Al4—Al10v	114.51 (3)	Al12ii—Al13—Al8vii	132.88 (7)				
Mn4—Al4—Al10v	174.21 (8)	Al10xxxvi—Al13—Al8vii	94.20 (5)				
Mn1—Al4—Al10v	61.53 (4)	Mn2—Al13—Al13v	51.85 (3)				
Al5—Al4—Al10v	122.04 (7)	Mn3iii—Al13—Al13v	156.42 (3)				
Al10—Al4—Al10v	64.76 (6)	Al7A—Al13—Al13v	57.51 (4)				
Al4xviii—Al4—Al11ii	113.18 (4)	Al11xiii—Al13—Al13v	90.35 (4)				
Mn3xviii—Al4—Al11ii	66.80 (4)	Ni1xiii—Al13—Al13v	58.13 (3)				
Mn4xiv—Al4—Al11ii	116.83 (6)	Al12ii—Al13—Al13v	110.01 (4)				
Mn4—Al4—Al11ii	60.63 (3)	Al10xxxvi—Al13—Al13v	109.45 (4)				
Symmetry	Mn1—Al4—Al11 iii	Al5—Al4—Al11 iii	Al10—Al4—Al11 iii	Al10 vii—Al4—Al11 iii	Al10 viii—Al4—Al11 iii	Al10 vii—Al4—Al11 iii	Al10 viii—Al4—Al11 iii
------------------	------------------	------------------	-------------------	------------------------	------------------------	------------------------	------------------------
	116.63 (4)	64.51 (4)	66.64 (4)	122.34 (7)	113.18 (4)	66.80 (4)	60.63 (3)
Symmetry codes:	(i) x, y+1/2, z;	(ii) −x, −y+2, −z+1; (iii) −x+1/2, −y+3/2, −z+1; (iv) x+1/2, −y+3/2, −z+1; (v) −x, y, z; (vi) x, y, z−1; (vii) −x, y, −z+1/2;	(viii) −x, y, z+1; (ix) x−1/2, −y+1/2, z+1/2; (x) x−1/2, −y+1/2, −z−1/2; (xi) −x, −y+1, z+1/2; (xii) −x, −y+1, −z+1; (xiii) x, y, −z+3/2; (xiv) −x, y, −z+3/2;	(xv) x−1/2, −y+3/2, z+1/2; (xvi) x, −y+1, z+1/2; (xvii) x−1/2, −y+3/2, −z; (xviii) −x+1/2, −y+3/2, −z; (xix) −x+1/2, −y+3/2, z+1/2; (xx) x, y, −z+1/2; (xxi) −x+1/2, −y+3/2, z+1/2; (xxii) x−1/2, −y+3/2, z+1/2; (xxiii) x, y, z+1; (xxiv) −x, y, z+1; (xxv) −x+1/2, y+1/2, −z−1/2; (xxvi) x−1/2, y+1/2, z; (xxvii) x−1/2, −y+1/2, z; (xxviii) −x+1/2, y+1/2, z−1; (xxix) x−1/2, −y+1/2, z+1; (xxx) x, −y+1, z; (xxx) −x−1/2, −y+1, −z+1/2; (xxxii) −x+1/2, −y+1, z; (xxxvii) −x+1/2, −y+1, −z+1; (xxxviii) −x+1/2, −y+1, z; (xxxix) −x+1/2, −y+1, −z+1; (xl) x+1/2, y+1/2, z; (xli) x+1/2, y+1/2, z; (xlii) x+1/2, y+1/2, z; (xliii) x, −y+1, −z+1/2; (xliv) x, −y+1, −z+1/2; (xlv) −x, −y+1, −z+1/2; (xlvi) −x, −y+1, −z+1/2;			