Contributions of HOX genes to cancer hallmarks: Enrichment pathway analysis and review

Danielle Barbosa Brotto1,2, Ádamo Davi Diógenes Siena1,2, Isabela Ichihara de Barros1,2, Simone da Costa e Silva Carvalho1,2, Bruna Rodrigues Muys1,2, Lucas Goedert2,3, Cibele Cardoso1,2, Jessica Rodrigues Placax2, Anelisa Ramão1,2, Jeremy Andrew Squire1,4, Luiza Ferreira Araújo1,2 and Wilson Araújo da Silva Jr1,2,5,6

Abstract

Homeobox genes function as master regulatory transcription factors during development, and their expression is often altered in cancer. The HOX gene family was initially studied intensively to understand how the expression of each gene was involved in forming axial patterns and shaping the body plan during embryogenesis. More recent investigations have discovered that HOX genes can also play an important role in cancer. The literature has shown that the expression of HOX genes may be increased or decreased in different tumors and that these alterations may differ depending on the specific HOX gene involved and the type of cancer being investigated. New studies are also emerging, showing the critical role of some members of the HOX gene family in tumor progression and variation in clinical response. However, there has been limited systematic evaluation of the various contributions of each member of the HOX gene family in the pathways that drive the common phenotypic changes (or “hallmarks”) and that underlie the transformation of normal cells to cancer cells. In this review, we investigate the context of the engagement of HOX gene targets and their downstream pathways in the acquisition of competence of tumor cells to undergo malignant transformation and tumor progression. We also summarize published findings on the involvement of HOX genes in carcinogenesis and use bioinformatics methods to examine how their downstream targets and pathways are involved in each hallmark of the cancer phenotype.

Keywords

HOX genes, transcription factors, embryogenesis, hallmarks of cancer

Date received: 4 October 2019; accepted: 10 March 2020

Background

HOX genes are members of the major homeobox gene family of transcription factors that encode a highly conserved 61-amino-acid helix-turn-helix DNA binding homeodomain.1,2 In mammals, there are 39 HOX genes that are highly conserved at the genomic level and are organized tandemly in four clusters—each one mapped on different chromosomes: HOXA on chromosome 7, HOXB on chromosome 17, HOXC on chromosome 12, and HOXD on chromosome 2.3 Homeobox genes were first discovered after genetic characterization of Drosophila melanogaster mutants that led to distinct...
Mutations in HOX genes are associated with several human developmental disorders, including limb malformation such as synpolydactyly (SPD), hand-foot-genital syndrome (HFGS), and Charcot–Marie–tooth disease (CMT). Deregulation of HOX genes has also been identified in cancer. Several studies reported differences between normal and tumor conditions as reviewed by Bathlekar et al. and also the role of HOX genes in cancer susceptibility and progression; however, assigning a specific role for HOX genes as drivers of the malignant phenotype requires further investigation. Evidence that HOX genes may be deregulated in different ways in different types of cancer is accumulating. The mechanisms that cause deregulation of these genes in tumors appear to vary; sometimes HOX transcripts appear to be downregulated and in other situations they are upregulated. These findings imply that factors related to tissue specificity may lead to HOX genes acting as tumor suppressor genes in some cell types, while in others, they might be more involved in oncogenic effects.

HOX genes seem to undergo deregulation by at least three different mechanisms. The first way is through tumor-specific loss of control of the spatiotemporal patterns of expression in comparison with the expression that is usually seen in related normal tissues. The second mechanism is through gene dominance. This type of HOX gene deregulation occurs in a tumor, but the corresponding normal tissue does not usually express the HOX gene. The third mechanism is due to epigenetic alterations that lead to loss of control due to methylation changes at regulatory regions of HOX genes.

Through these three mechanisms, HOX genes become disrupted and can influence a large number of pathways that are crucial for proliferation and maintenance during tumor growth. As proposed by Hanahan and Weinberg, cancer has a highly complex etiology that begins when a normal cell acquires some essential new capability for tumorigenesis that will allow it to develop the cancer phenotype. These so-called capabilities or “hallmarks of cancer” encompass sustained proliferative signaling, insensitivity to anti-growth signals, resistance to cell death, limitless reproductive potential, immune system evasion, sustained angiogenesis, and invasion and metastasis potential. All these steps are triggered by enabling characteristics such as genomic instability and tumor-promoting inflammation.

This review highlights the role of the HOX genes in the regulation of the hallmarks of cancer by reviewing recent literature and by an enrichment pathway analysis based on their target genes and pathways.

Review strategy

We investigated the downstream HOX gene targets and pathways in which they are involved to determine how the deregulation of the HOX family can interfere with each of the hallmarks of cancer. Our overall strategy was to search for targets of human HOX genes using transcription factor databases and then to perform a gene set enrichment analysis (GSEA) based on these targets (Figure 1). The enriched gene set was then used to identify biological processes associated with the cancer hallmarks that could be affected by HOX target pathways. We reasoned that by applying this strategy, we could assign each HOX gene to specific cancer hallmarks. We extract target data from tfTargets package available in https://github.com/slowkow/tftargets. The database assembles data from five other databases, which are TRED, ITFP, Neph2012, TRRUST, and Marbach. After generating the target list for each
one of the 39 HOX genes (shown in Supplemental Table S2), we used the GSEA method to identify the biological process pathways enriched by those targets. Within GSEA, we used the Molecular Signature Database, selecting specifically the hallmark gene set collection (MSigDB Collection: H). For the biological pathway selection, we applied the false discovery rate (FDR) \(q \)-value < 0.05 and used the top 20 enriched pathways. After that, each pathway in GSEA was assigned to a specific hallmark, and we ranked HOX genes whose target list showed the highest number of occurrence of pathways related to each of the hallmarks, according to our assignment (Supplemental Table S3). Table 1 shows the top five HOX genes highly associated with each hallmark of cancer. The consensus of the target genes by hallmarks is listed in Supplemental Table S3. Interestingly, only two cancer hallmarks—evasion of growth suppressors and replicative immortality—did not have an association with HOX gene targets based on this enrichment approach.

HOX genes contributing to cancer cell capabilities

Sustaining proliferative signaling

Normal cells will usually proliferate when supplied with appropriate stimuli for cell growth, such as mitogenic factors, but tumor cells show a reduced dependence on exogenous proliferation signals. Several HOX genes are deregulated in many cancer types and play critical roles in tumor proliferation. Our enrichment analysis showed that **HOXC4**, **HOXB2**, **HOXB3**, **HOXC6**, and **HOXA13** exhibited the highest number of enriched targets involving pathways related to sustained proliferative signaling (Table 1). The five HOX genes have either tumor-suppressive or tumor-promoting properties, depending on which tumor type they are expressed. We found that **HOXC4** had more targets enriched in proliferation pathways in keeping with studies that have shown its involvement in stem cell expansion and lymphocyte proliferation. However, there are presently no reports of a direct influence of **HOXC4** on tumor cell growth. Interestingly, Frasor et al. demonstrated that **HOXC4** is upregulated by estradiol stimulation of breast cancer cells. This hormone is associated with initiation and proliferation in breast cancer cells, indirectly suggesting a role for **HOXC4** in breast cancer growth. In a study of acute myeloid leukemia, **HOXB2** was identified as one of the negative regulators of FLT3-internal tandem duplication (ITD)-dependent proliferation. Similarly, a functional screen for novel repressors of breast cancer tumorigenesis identified **HOXB2** as a growth inhibitor. In prostate cancer, **HOXB3** was shown to bind to the cell division cycle associated 3 (**CDCA3**) promoter region, transactivating its expression and promoting proliferation (Figure 2). Transcriptional silencing of **HOXB3** expression has also been shown to promote proliferation and invasion in glioblastoma. It was demonstrated that **HOXC6** is capable of promoting cell proliferation and colony formation in gastric cancer cell lines, allowing tumor cells to grow in both an anchorage-dependent and independent way. In contrast, overexpression of **HOXC6** in prostate cancer cell lines strongly reduced tumor cell growth. Luo et al. identified, by high-throughput chromosome conformation capture (Hi-C) analysis, a loop between a prostate cancer risk region with the **HOXA13** gene. The anchor point from the repressive loop region was removed using the CRISPR/Cas9 system. The lack of that resulted in positive regulation of **HOXA13**, leading to transcriptome changes, including oncogene overexpression. Both **HOXA13** and **HOTTIP** promoted cell proliferation and growth and were associated with a higher grade of gliomas. In addition to these top five HOX genes, several other members of the gene family were shown to be involved in the proliferation of different types of cancer. Li et al. demonstrated that **HOXA7** has an essential role in the regulation of cell cycle progression in hepatocellular carcinoma (Figure 2). It was also found that aberrant expression of **HOXB9** inhibited the differentiation of acute myeloid progenitor cells and maintained the undifferentiated and rapidly proliferative state of

Hallmarks	HOX members
Sustaining proliferative signaling	**HOXC4**
Resisting cell death	**HOXB9**
Inducing angiogenesis	**HOXB2**
Activating invasion and metastasis	**HOXB5**
Genome instability and mutation	**HOXC6**
Tumor-promoting inflammation	**HOXA9**
Deregulating cellular energetics	**HOXA3**
Avoiding immune destruction	**HOXB7**
	HOXB8

Table 1. Top five HOX genes associated with the hallmarks of cancer.

Genes HOX in bold type contain targets with similar scores within the hallmark.
leukemic cells.39 Similarly, other examples can be found, such as HOXB7 in breast cancer,40,49,50 HOXA4 and HOXA9 in colorectal cancer,41 and HOXC8 in epithelial ovarian cancer.33

Evading growth suppressors

A crucial growth control mechanism disrupted by the loss of tumor suppression is limitless replication and evasion of growth arrest.51 Curiously, in our analysis, no HOX genes had targets enriched for this particular hallmark. However, there are a few studies that have explored the role of individual HOX genes in the regulation of genetic pathways related to cell growth control. For example, in prostate cancer, HOXB13 can contribute to tumorigenesis by inhibiting p21, a cyclin kinase inhibitor involved in the control of cell proliferation and differentiation (Figure 2).52 It has also been shown that a prostate cancer risk-associated rs339331 single-nucleotide polymorphism (SNP) is within a functional HOXB13 binding site. The risk-associated allele in rs339331 enhances the binding of HOXB13 to a transcription enhancer, conferring allele-specific upregulation of the RFX6 gene, a gene that is related to prostate cancer cell proliferation and migration.53,54 Similarly, Carbone et al.55 showed that HOXB9 mediates resistance to treatment with a vascular endothelial growth factor (VEGF) inhibitor in colorectal cancer. In another study, Hakami et al.56 demonstrated that HOXD10 suppresses miR-146a expression in head and neck squamous cell carcinoma (HNSCC) (Figure 2). Loss of growth control occurred because miR-146a is a well-known inhibitor of cell proliferation and a metastasis suppressor.56 The onset of ovarian cancer may be involved in pathways mediated by HOXA10 expression. This HOX gene was shown to confer a growth advantage to ovarian surface epithelial cells, by enhancing cell adhesion, probably by overexpressing $\alpha\beta3$ integrin and preventing anoikis in target cells for tumorigenesis.57

Resisting cell death

The response to physiological cell death may contribute either positively or negatively to tumor development. In cancer, both apoptosis and autophagy are mainly impaired by loss of function of tumor suppressor genes or by modulating expression of pro-apoptotic or anti-apoptotic factors, which may lead to immortalization of cancer cells.24 Necrosis, on the other hand, will enhance the pro-tumoral activity by releasing bioactive regulatory factors which will stimulate neighboring cells to proliferate, contributing to tumor progression.23,24 According to our data, HOXB9, HOXB2, HOXB5, HOXA9, and HOXC8 were the five HOX genes that targeted signaling pathways that were the most related to the hallmark of resisting cell death (Table 1). In addition to those genes, HOXA13 and HOXB13 are also known to be associated with evasion of apoptosis.58-62 HOXB9 expression has been reported as significantly increased
in tumor tissues and to be associated with a poor prognosis, chemotherapy resistance, invasion, and metastasis. Vychytilova-Faltejskova et al. showed in their recent study that HOXB9 downregulation in p53-proficient colorectal cell lines led to significant increases in the number of apoptotic cells and decreased proliferation and migration rates (Figure 2). However, depending on the type of tumor, the anti-apoptotic activity of HOXB9 could be associated either with oncogenic or with tumor suppressor activities. In acute myeloid leukemia, loss of expression of HOXB2 is associated with an enrichment of oncogenic pathways, and its overexpression decreased cell proliferation and further increased apoptosis rates. In contrast, HOXB2 overexpression in pancreatic cancer was associated with a poor prognosis. It has been also demonstrated that the knockdown of HOTTIP, another HOX-associated long non-coding RNA (lncRNA) that has pro-oncogenic functions similar to those reported for HOTAIR, promotes the downregulation of HOXB2, which induced apoptosis and decreased cell proliferation and migration (Figure 2). The HOXB5 gene also has anti-apoptotic activity, which was first observed by Kam et al. Their study showed that HOXB5 regulated neural crest development in vivo, by repressing apoptosis through directly inducing Foxd3. Although HOXB5 is well known as an oncogene and is overexpressed in many cancer types, it has been shown that HOXB5 is repressed in the oral squamous cell and ovarian and papillary thyroid carcinomas. Its downregulation and repression were associated with methylation or microRNA (miRNA) regulation. Both HOXB5 and HOXA9 have been reported to have anti-apoptotic activity in human astrocytes, glioblastoma, and leukemia cells and to be associated with poor prognosis, chemotherapy resistance, invasion, and metastasis.

Figure 2. HOX genes in the hallmarks of cancer. HOX genes positively (black arrows) or negatively (red) regulate the expression of genes involved in cancer pathways. Modified from Hanahan and Weinberg.
associated with increased proliferation.76,77 It has also been shown that \textit{PI3K} may reduce \textit{HOXA9} expression since a decrease in \textit{PI3K} activity led to a reduction in \textit{HOXA9} transcript levels.76,77 \textit{PI3K} is well known as a regulator of cell growth, survival, and proliferation, and the \textit{PI3K} downregulation is also associated with autophagy and/or apoptosis induction.24,79 \textit{HOXC8} has been reported as a potential oncogene, regulating many genes involved in tumor progression. Its expression is associated with cell proliferation, migration inhibition, and induction of apoptosis in ovarian and laryngeal squamous cancer cells. \textit{HOXC8} serves as a cadherin-11 (\textit{CDH11})-specific transcription factor, and as expected, its expression is associated with increased \textit{CDH11}-dependent metastatic potential.33,80–83 In chondrocytes, depletion of \textit{HOXc8} protein decreased proliferation rates (probably associated with increased cell death), and M-phase appeared to be prolonged with cell cycle arrest.84 In addition to the five \textit{HOX} genes associated with the hallmark of cell death, \textit{HOXA13} and \textit{HOXB13} have also been reported to be involved in apoptosis modulation. In prostate tumors, \textit{HOXA13} overexpression promoted tumor cell proliferation, migration, and invasion and inhibited tumor cell apoptosis, which was correlated with an unfavorable survival.58 \textit{HOXA13} is also upregulated in gastric cancer tissues, and its expression has been directly correlated with \textit{Wnt/\beta-catenin} activation, which explains how its increased expression enhances cell proliferation and invasion rates and decreases rates of cell apoptosis in cancer cells.59,60 Conversely, \textit{HOXB13} is a known activator of apoptotic pathways, and \textit{HOXB13} loss-of-function mutations are highly associated with an increased risk of prostate cancer related to increased levels of cell proliferation and decreased rates of apoptosis.61,62,73,85,86 Collectively, the \textit{HOX} genes that are involved in cell death responses can act as oncogenes or as tumor suppressor genes. Their functional relationship to this cancer hallmark will depend on the specific role the \textit{HOX} gene had in maintaining cellular homeostasis in normal tissues.85

Enabling replicative immortality

Cancer cells acquire immortality by escaping from the limitations on the total number of cell cycle divisions that can occur before senescence, non-proliferative state, crisis, and apoptosis take place. There are several mechanisms involved in cellular immortalization, including telomere length stabilization, genomic instability, epigenetic gene silencing by selective promoter methylation, oxidative DNA damage, inactivation of cell cycle regulatory genes, or overexpression of cellular oncogenic proteins.24 Telomeres (chromosome ends) are essential for imposing a replication limit. Telomerase is a ribonucleoprotein enzyme involved with integrity of chromosome ends.78 This catalysis occurs by adding new DNA repetitive sequences (TTAGGG) to the 3’ ends of the telomeres. The telomerase enzyme complex consists of a protein component hTERT (human telomerase reverse transcriptase) and an RNA molecule, which serves as a template for the enzymatic complex to ensure the maintenance of telomeres. The hTERT activity has a restricted profile, and its expression has a tight correlation with telomerase activity. In somatic cells, telomerase expression is strongly repressed, resulting in telomere shortening throughout replication cycles.79 About 85\% of human cancers show TERT expression reactivation. This way, cancer cells can reactivate TERT expression as a mechanism to bypass the process of cellular senescence by extending cell life span and thus supporting tumor proliferation and progression.80

The role of the \textit{HOX} genes on these mechanisms is unclear. In our analysis, we did not identify any enrichment of the \textit{HOX} target genes in the replicative immortality hallmark. There is a report that knockdown of \textit{HLX1} (H2.0-like homeobox 1) and \textit{HOXA9} repressed INK4a expression by recruiting HDAC1 and polycomb repressive complex (PCR2), promoting cell cycle arrest and senescence in leukemia.87 Zhang et al.88 have also shown that \textit{HOXA10} knockdown decreases p21 expression and promotes cell cycle arrest in endometrial cancer(Figure 2). It is well known that telomerase is activated in cancer cells and hTERT inhibition suppresses cell proliferation.89,90 Yan et al.91 demonstrated a strong negative correlation between \textit{HOXC5} and hTERT expression in thymoma and testicular germ cell tumor. They identified that \textit{HOXC5} overexpression decreased hTERT expression in cancer cells, and the \textit{HOXC5} knockdown increased hTERT expression and telomerase elongation. hTERT regulation by \textit{HOXC5} involved transcriptional regulation by promoting the \textit{HOXC5:PBX4} complex formation by recruiting histone deacetylase (HDAC) proteins to repress hTERT expression in cancer cells91(Figure 2). These findings were the first to suggest that \textit{HOX} genes play a role in telomerase shortening and telomerse dysfunction in cancer cells, leading to inhibition of cell proliferation.

Inducing angiogenesis

Angiogenesis is the process by which new blood vessels are formed to provide nutrients and oxygen for adequate cell function and survival of normal and tumor tissues. Tumors acquired the ability of sustained angiogenesis by counterbalancing the positive and negative signals to activate or inhibit this process.24 Several \textit{HOX} genes have been shown to promote sustained angiogenesis by activating VEGF signaling pathways or by inhibiting TSP-1 (thrombospondin-1), the main respective inducers and inhibitors of angiogenesis.92 The result of our enrichment analysis with \textit{HOX} target genes against the GSEA hallmarks shows that the
HOX genes most associated with angiogenesis were HOXC9, HOXC5, HOXA2, HOXB6, and HOXB7 (Table 1). Among the HOX genes upregulated in tumors and associated with the activation of angiogenesis is HOXB7, which activates gene expression of fibroblast growth factor (bFGF) and many other pro-angiogenic factors such as vascular endothelial growth factor A (VEGFA), interleukin-8 (IL-8), and angiopoietin-2 (ANGPT2) in breast cancer cell lines⁹³ and in multiple myeloma cells.⁹⁴ Activation of pro-angiogenic factors has also been associated with HOXB9, which is upregulated in breast carcinoma.⁹⁵ Similarly, HOXB13 upregulates pro-angiogenic factors in pancreatic carcinoma.⁹⁶ Integrin signaling and extracellular matrix proteases also contribute to the balance between pro- and anti-angiogenic factors.²³ An important HOX gene that is associated with these pathways is HOXD3, which promotes tumor-specific angiogenesis through upregulating expression of αvβ3 integrin, urokinase plasminogen activator (uPA), and integrin α5β1. Promotion of tumor blood vessels occurs in tumors but not in quiescent endothelial cells.⁹⁷,⁹⁸ HOXC9 was suggested to have a role in quiescence of endothelial cells and to negatively regulate tumor angiogenesis by inhibition of IL-8.⁹⁹ This growth factor is closely involved in angiogenesis since it has been demonstrated to contribute to enhanced blood vessel density in tumors¹⁰⁰ and it acts as an autocrine growth factor produced by tumor cells.¹⁰¹ HOXA9 is also involved in multiple mechanisms of angiogenesis activation in ovarian cancer. It has been shown to upregulate transforming growth factor-β2 (TGF-β2), which together with VEGFA and BMP4 has been suggested to influence RUNX1T1-regulated angiogenesis.¹⁰²,¹⁰³ Furthermore, the expression of HOXA9 by progenitor endothelial cells was demonstrated to influence gene regulation of essential endothelial genes such as eNOS, VEGFR2, and VE-cadherin in the tumor microenvironment, which are essential for angiogenesis.¹⁰⁴ We also found an association of HOXB3 with angiogenesis in cancer, verified in canine hemangiosarcoma samples.¹⁰⁵

Activating invasion and metastasis

Invasion and metastasis are the leading cause of mortality in patients with cancer. Recent studies have identified several gene targets and molecular pathways that underlie both these complex processes.²⁴ We focused on the top five HOX genes that had targets enriched for invasion and metastatic pathways. Our data analyses ranked HOXD1, HOXA1, HOXA2, HOXB7, and HOXA3 genes in decreasing order for target enrichment (Table 1). HOXD1 has previously been shown to have increased expression in ovarian cancer in comparison with control ovarian tissue, suggesting that its activation may be associated with ovarian carcinoma development.¹⁰⁶ HOXA1 is a known oncogene¹⁰⁷ that can be targeted and inhibited by miR-100, resulting in the inhibition of downstream genes MET, SMO, and SEMA3C, all of which have been implicated in lower rates of cell migration and invasion.¹⁰⁸ Other studies illustrate diverse regulation of HOXA1 gene by miRNAs and also demonstrate an association with invasiveness and metastasis, which includes miR-10 family members in pancreatic cancer, gastric cancer, and cervical cancer;¹⁰⁹–¹¹¹ miR-30 family members in esophageal cancer and giant cell tumor of bone;¹¹²,¹¹³ miR-99a in nasopharyngeal carcinoma and breast cancer;¹¹⁴,¹¹⁵ and miR-433 in colon cancer.¹¹⁶ Similar regulation occurs for HOXB3, which is targeted by multiple miRNAs, such as the miR-375 that inhibits cancer stem cell traits by degrading HOXB3 messenger RAN (mRNA) in breast cancer.¹¹⁷ HOXB3 is also inhibited by specific targeting and degradation by the miR-10 family, leading to upregulation of metastasis in pancreatic cancer¹¹⁸ and increased invasion in endometrial cancer.¹¹⁹ Interestingly, Li et al.¹²⁰ demonstrated that HOXA2 promotes cell invasion by degradation of extracellular components in nasopharyngeal carcinoma, competing with TATA-box binding protein (TBP) for TATA-box near metalloproteinase-9 (MMP-9) transcription start site and thus repressing MMP-9 expression (Figure 2). Recent studies have shown that the HOXB7 gene may contribute to malignant progression and metastasis by direct binding and activation of TGFβ2 in breast cancer¹²¹ or through activation of TGF-β/SMAD3 signaling in lung adenocarcinoma.¹²² Overexpression of HOXB7 has also linked to activation of the AKT pathway via upregulation of c-Myc and Slug, resulting in epithelial-to-mesenchymal transition and malignant progression of hepatocellular carcinoma¹²³(Figure 2). In another study, Wang et al.¹²⁴ demonstrated that HOXB7 may also have a critical role in cell invasion through the activation of the MAPK/ERK pathway in hepatocellular carcinoma.

Promotion of genome instability and mutation

Underlying the cancer cell features, there is genome instability, which promotes the genetic diversity that will contribute to the acquisition of the hallmarks. Tumors have diverse progression and proliferation profiles as well as defects in genomic maintenance, cell cycle control, and errors in DNA repair machinery, all of which favor carcinogenesis.²⁴ The top five HOX genes most associated with genomic instability and DNA repair pathways after the enrichment analysis were HOXC12, HOXC11, HOXC5, HOXB2, and HOXA9 (Table 1). Although there is good evidence that these HOX genes are involved in cancer development, their role in DNA repair and genomic instability is presently unknown.
Some studies suggest that *HOXC12, HOXC11*, and *HOXC5* play a role in cellular proliferation and epigenetic modifications. The *HOXC12* gene has been assumed to be a tumor suppressor gene since it is inactivated in HNSCC and lymphomas due to somatic mutations and alterations on DNA methylation. The methylation of a CpG island located between *HOXC11* and *HOXC12* is positively correlated with *HOTAIR* IncRNA expression, which is associated with increased proliferation and cancer progression and also with unfavorable outcomes in breast cancer patients. The *HOXC5* gene has been associated with both replicative immortality and cellular metabolic pathways, as discussed more extensively elsewhere in this review. Cohesins comprise a crucial mitotic protein complex that regulates the separation and segregation of chromatids and safeguards genome stability during cell division. Manini et al. evaluated cohesins and found that among other genes, *HOXB2* was significantly downregulated when the cells were depleted for SMC1B cohesin. Leunen et al. compared BRCA-related ovarian cancer to sporadic ovarian tumors. Both *BRCA1* and *BRCA2* play a crucial role in homologous repair (HR) of double-stranded breaks on DNA (DSBs). The *BRCA1* ovarian tumors were characterized by complex alterations affecting the HOX gene cluster, with some genes being upregulated and others downregulated, suggesting they had different contributions to the instability processes in ovarian cancer. In another study, *HOXA9* expression correlated with HR gene expression and DNA repair, with overexpression being significantly increased when there was recruitment of RAD51 to DNA damage foci. These data suggest that *HOXA9* might act as an upstream regulator of *RAD51* in acute leukemia cell lines (Table 1). Other studies showed that the loss of *HOXA9* resulted in an increased radiation sensitivity in mice and that *HOXA9* gene was also found to be silenced by methylation in more than half of the cases of ovarian carcinomas. As discussed above, *HOXA9* is also involved in other hallmarks of cancer such as sustained proliferative signaling, apoptosis, or resistance to cell death pathways (Table 1 and Supplemental Table S1).

In addition to the top five HOX genes found in our enrichment analysis, *HOXA10* and *HOXB7* have both been described as having a role in DNA repair and genomic stability maintenance. *HOXA10* has been reported as a regulator of the nuclear function of *PTEN*, a tumor suppressor gene that is known to be involved in aspects of DNA repair. Kim et al. demonstrated that after *HOXA10* knockdown, the expression of *PTEN* in the nucleus was significantly reduced, and impaired HR DNA repair activity was observed (Figure 2). In agreement with these data, the high expression levels of *HOXA10* and *HOXA9* were associated with shorter survival times in pediatric high-grade glioma patient. Similarly, in breast cancer cell lines, *HOXB7*-expressing cells was related to better survival after irradiation exposure, probably due to interactions with proteins involved in DNA DSB repair that act as genomic caretakers. *HOXB7* promoted an enhanced non-homologous end joining (NHEJ) activity, an error-prone DNA repair pathway. However, the increased NHEJ mutation rate may lead to decreased genomic stability, suggesting that *HOXB7* may also lead to oncogene activations during progression. Overexpression of *HOXB7* has also been associated with increased proliferation rates and invasive characteristics in ovarian cancer cells. Some HOX gene clusters may contribute differently to the various pathways of genome stability and maintenance, and these functional characteristics may be useful as therapeutic targets.

Tumor-promoting inflammation

Chronic inflammation can cause DNA damage and lead to cancer development due to alterations in cellular and molecular events such as altered proliferative rates, resistance to apoptosis, neovascularization, epigenetic events, and changes in gene expression. The inflammatory process involves the activation of innate immunity in response to oxidative stress and/or the stimulation of the nuclear factor κB (NF-κB) pathway. In many types of cancer, NF-κB activation has been associated with an inflammatory response, and tumor initiation and progression. In our enrichment pathway analysis, we identify the *HOXA1, HOXD1, HOXC11, HOXC9*, and *HOXC13* genes as the top five HOX highly associated with the inflammatory process in cancer (Table 1). Some HOX genes have previously been reported to be involved in tumor-promoting inflammation and other tumor-enabling characteristics. For instance, *HOXA1* promotes the activation of the NF-κB pathway in breast cancer cells. This transcription factor acts upstream of IκB and by triggering TAB2, IκBa, IκKa/β, and p65 phosphorylation. The collective regulation of these pathways suggests that activation of the NF-κB pathway by *HOXA1* overexpression can promote the inflammatory process in breast cancer cells (Figure 2). We did not find any evidence that *HOXD1* participated in tumor inflammatory processes. However, Guo et al. have shown that *HOXD1* participates in the inflammatory process when activated by the nerve growth factor (NGF)/tropomyosin-related kinase A receptor (TrKA) pathway during development in the mouse. Interestingly, we found that 53 out of 1945 *HOXD1* targets are involved in the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway (unpublished data). In addition, the IncRNA *HOXD-AS1*, localized between...
HOXD1 and HOXD3, regulates the expression of genes correlated with the inflammatory process by the JAK/STAT pathway in neuroblastoma cells. These data implicate the participation of HOXD1 during tumor inflammation by regulation of the JAK/STAT pathway. Wang et al. demonstrated that the expression levels of HOXC8, HOXC9, FABP4, and HSL were inversely correlated with TNFa and MCP-1 levels in adipose tissue adjacent to malignant breast tumors. These findings suggest that low levels HOXC9 increased the cytokine expression and led to the participation of this gene in the inflammatory process. HOXA10 overexpression increases the FGF2 levels in myeloid progenitor cells by Triad1-induced ubiquitination and degradation of Fgf-R1.148,149 In HOXA10 knockout mice, the opposite result was demonstrated, with decreased levels of Fgf2 in HOX10-deficient mice and an increase in granulocyte/monocyte cells that promoted an inflammatory response during leukemogenesis148,149 (Figure 2). We were unable to find published evidence in current literature indicating that HOXC13 participated directly in tumor-promoting inflammation. Its identification by our enrichment analysis as one of the top five genes in this hallmark may mean that other functions related to inflammation have yet to be determined.

Deregulating cellular energetics

Metabolic reprogramming of tumor cells has been indicated as a hallmark of cancer since Otto Warburg pointed out that even in the presence of oxygen, cancer cells reprogram their metabolism, relying more on glycolysis than oxidative phosphorylation (OXPHOS). Although this metabolic switch does not seem efficient to ATP production, it supports the elevated biomass demands of the highly proliferative cells typical of cancer. So far, only one study has associated an HOX gene with the metabolic reprogramming in cancer. Jiang et al., showed that latent membrane protein 1 (LMP1), one of the oncoproteins of the Epstein–Barr virus (EBV), represses HOX to maintain tumor growth. A direct role of the HOXC8 gene in energy metabolism was shown by restoring HOXC8 expression. Ectopic expression of HOXC8 arrested tumor growth and downregulated glycolytic enzymes, such as GLUD1 and HK2, and upregulated tricarboxylic acid (TCA) cycle–related genes. Enrichment analysis using HOX target genes showed that, in addition to HOXC8, other HOX members are also involved in energetic metabolism. Here, we show that HOXA4, HOXA5, HOXB6, HOXB4, and HOXC5 could modulate different metabolic pathways such as oxidative phosphorylation, fatty acid metabolism, adipogenesis, and glycolysis (Table 1). Corroborating these findings, Cantile et al. showed that HOXA4 was involved in adipocyte differentiation. In addition, both HOXB4 and HOXC5 regulate the enzymes ACSL5 and ACADM: the former is responsible for activating long-chain fatty acids for lipid synthesis and beta-oxidation degradation, and the latter is involved in the first step of peroxisomal beta-oxidation. Similarly, HOXA5 is known to regulate ACOX1, which acts in the first step of the mitochondrial beta-oxidation. Fatty acid metabolism has been described as an alternative energy source for the cancer cells, and HOX genes might play an important role in regulating this pathway.

HOX genes also appear to regulate OXPHOS and glycolysis, two metabolic pathways commonly altered in cancer cells. In normal cells under normoxia, glucose is converted to pyruvate and then to acetyl-CoA, which undergoes oxidation in the TCA cycle, generating the electron transporters NADH and FADH2. These molecules feed the electron respiratory chain, formed by five mitochondrial complexes, which are held in the OXPHOS structures in the inner mitochondrial membrane. Our in silico analysis based on transcription factor databases showed that many genes coding for subunits of mitochondrial complexes are regulated by HOXB4 and HOXC5, especially concerning the ATP synthase complex that is responsible for the ATP synthesis. Altered subunit expression can impact OXPHOS functioning and decrease ATP production. In addition, key glycolysis and hypoxia genes, such as HK1, CDKN1A, and PPARGCA, are regulated by HOXA5. In normal cells, hypoxia triggers metabolic rewiring using the hypoxia-inducible factor (HIF)-1, which induces the expression of genes associated with metabolism and angiogenesis. Many HOX targets are involved in this pathway, suggesting an association of HOX and hypoxia response, which could have both metabolic and pro-tumorigenic consequences. Although HOX genes have been commonly deregulated in different cancer types, not much is known regarding the role of the HOX family in energy metabolism. Our findings show that HOX could modulate different metabolic pathways and support the metabolic rewiring inherent to cancer cells (Table 1). However, more studies employing both genomic and metabolic tools are necessary to unravel details of the role of HOX genes in tumor metabolism.

Avoiding immune destruction

Despite protecting the host from tumor cells, the loss of the immune system can also contribute to the development of a tumor. Tumor cells can evade immune cell surveillance by downregulating the antigen-processing machinery. This evasion is mediated by the production of immunosuppressive cytokines (by tumor cells or from surrounding cells in the tumor microenvironment), which in turn activate immunosuppressive cells like
Tregs, and by promoting tolerance or apoptosis in T-cells. These processes support immunoediting—the selection of tumor cells resistant to immune system components, which contributes to tumor development. Nevertheless, not much is known about the role of HOX genes in facilitating tumor cell evasion of immune destruction. Noman et al. reported that miR-210, which is induced under hypoxic conditions in lung cancer and melanoma, targets PTEN, HOXA1, and TP53I1 genes, which, in turn, decreased tumor cell susceptibility to cytotoxic T-lymphocyte-mediated lysis. Sio et al. demonstrated that mammary tumor cells produce granulocyte colony-stimulating factor (G-CSF), which acts together with hematopoietic regulatory cytokines FLT3L and granulocyte macrophage colony-stimulating factor (GM-CSF) to enhance hematopoietic stem and progenitor cell (HSPC) production. This treatment caused global and gene-specific changes in histone methylation patterns associated with enhanced HOX9 gene expression in bone marrow cultures. As a result, activated bone marrow cells and progenitors of hematopoietic origin could instigate the growth of indolent tumors and metastases. Taminiau et al. showed that there is a highly significant positive correlation between expression of HOX1 and of members of the tumor necrosis factor (TNF)/NF-κB signaling pathway in breast tumors and that HOX1 can activate NF-κB in a transcription-independent manner. NF-κB is a nuclear factor that promotes inflammation by activation of proinflammatory cytokines and also has a role in cancer initiation, development, metastasis, and resistance to treatment. As chronic inflammation can lead to the promotion of tumor cell growth and angiogenesis, HOX1 has a potential role in evasion of the immune system in breast cancer. Most of the targets from HOX1, which was found to be one of the most enriched HOX genes associated with immune evasion in this work, are enriched to TNFα signaling via the NF-κB pathway. Among those targets are genes that are subunits of NF-κB complex, such as NFKB1 and REL, or genes that are also activated by this complex, including CCL2, CCL20, and PTGS2. These findings corroborate the critical role of HOX1 in this pathway. In summary, as specific HOX genes can be deregulated in different ways depending on tumor type or site, their role in tumor destruction evasion seems to be similarly dependent both on the type of tumor and on the genes that are being regulated.

Conclusion and future perspectives

Although the involvement of HOX genes in tumorigenesis is well known, there has been no study systematically evaluating their various roles in cancer progression in the context of the global functions of their target genes. As previously mentioned, the HOX genes act in different biological processes, which include proliferation, differentiation, migration, and apoptosis. Their role in regulating these processes may continue during carcinogenesis by modulation of the cancer hallmarks. In this review, we employed a strategy analyzing the collective functions of each HOX gene’s regulatory pathways to investigate the direct link between their potential roles in the various cancer hallmark phenotypes. Thus, we can infer in which genetic mechanisms the HOX genes would be most likely to act. The HOX genes present quite variable expression in different tumor types. In this review, we showed that the 39 members of the HOX family regulate a large number of targets that are differently enriched in biological pathways. These pathways can be associated with each of the cancer hallmarks. The diverse role of HOX genes is a reflection of their versatility as a transcription factor, since they regulate the most diverse targets, displaying a broad biological role within cells. In addition, its multifunctional role can be explained by interaction with transcriptional cofactors. For example, HOX genes (paralog groups 1–8) linked to PBX transcription show higher affinity and specificity to DNA sequences. Interestingly, inhibition of this interaction can be accomplished by the use of HXR9 peptides that mimic an HOX protein hexapeptide, leading to the antagonism of HOX/PBX formation. Thus, HOX genes can be used as therapeutic targets by the use of this peptide.

In conclusion, the studies presented here corroborate the idea that they may have a dual function with oncogenic or tumor suppressor potential. Further studies are necessary to address whether the deregulation of HOX genes is the cause or a consequence of carcinogenesis. Indeed, a better understanding of how HOX genes and their downstream pathways are involved in each cancer is likely to bring new insights for the development of specific tumor biomarkers and new therapeutic approaches that target the most clinically important hallmarks.

 Acknowledgements

We thank the Genomics Core Facility at the Center for Medical Genomics of the Clinics Hospital of Ribeirão Preto Medical School, University of São Paulo, for providing the bioinformatics infrastructure.

 Author contributions

D.B.B., A.D.D.S., I.I.B., S.C.S.C., B.R.M., C.C., J.A.S., and L.F.A. wrote the manuscript. J.R.P. conducted in silico analysis for HOX gene targets. D.B.B., A.D.D.S., I.I.B., S.C.S.C., B.R.M., C.C., and L.F.A. conducted gene set enrichment analysis. L.G. set up Supplementary Table 1. D.B.B. coordinated the review drafting. A.R. contributed to the writing. W.A.S.
supervised and contributed to the writing structure of the manuscript. All authors reviewed and approved the final manuscript.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical approval
The analysis reported in the present study was performed using public data and did not require approval by the research ethics committee or patient consent forms.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was jointly supported by The National Council for Scientific and Technological Development (CNPq), grant no. 465539/2014-9; São Paulo Research Foundation (FAPESP), grant nos. 2009/53853-5 and 2013/08135-2; and by Research Support of the University Sao Paulo, CISBI-NAP/USP, grant no. 12.1.25441.01.2.

ORCID iD
Wilson Araujo da Silva Jr (https://orcid.org/0000-0001-9364-2886

Supplemental material
Supplemental material for this article is available online.

References
1. Gehring W and Hiromi Y. Homeotic genes and the homobox. Annu Rev Genet 1986; 20: 147–173.
2. Gehring WJ, Affolter M and Burglin T. Homeodomain proteins. Annu Rev Biochem 1994; 63: 487–526.
3. Holland PWH, Booth HAF and Bruford EA. Classification and nomenclature of all human homeobox genes. BMC Biol 2007; 5: 47.
4. Lewis EB. A gene complex controlling segmentation in Drosophila. Nature 1978; 276(5688): 565–570.
5. Ladam F and Sagerström CG. HOX regulation of transcription: more complex(es). Dev Dyn 2014; 243(1): 4–15.
6. García-Bellido A. Genetic control of wing disc development in Drosophila. Ciba Found Symp 1975; 29: 161–182.
7. Rezsohazy R, Saurin AJ, Maurel-Zaffran C, et al. Cellular and molecular insights into HOX protein action. Development 2015; 142(7): 1212–1227.
8. Duboule D and Morata G. Colinearity and functional hierarchy among genes of the homeotic complexes. Trends Genet 1994; 10(10): 358–364.
9. Rux DR, Song JY, Swinehart IT, et al. Regionally restricted HOX function in adult bone marrow multipotent mesenchymal stem/stromal cells. Dev Cell 2016; 39(6): 653–666.
10. Takahashi Y, Hamada J, Murakawa K, et al. Expression profiles of 39 HOX genes in normal human adult organs and anaplastic thyroid cancer cell lines by quantitative real-time RT-PCR system. Exp Cell Res 2004; 293(1): 144–153.
11. Morgan R. HOX genes: a continuation of embryonic patterning? Trends Genet 2006; 22(2): 67–69.
12. Bhatelekar S, Fields JZ and Boman BM. Role of HOX genes in stem cell differentiation and cancer. Stem Cells Int 2018; 2018: 3569493.
13. Goodman FR, Mundlos S, Muragaki Y, et al. Synpolydactyly phenotypes correlate with size of expansions in HOXD13 polyalanine tract. Proc Natl Acad Sci USA 1997; 94(14): 7458–7463.
14. Mortlock DP and Innis JW. Mutation of HOXA13 in hand-foot-genital syndrome. Nat Genet 1997; 15: 179–180.
15. Shrimpton AE, Levinsohn EM, Yozawitz JM, et al. A HOX gene mutation in a family with isolated congenital vertical talus and Charcot-Marie-Tooth disease. Am J Hum Genet 2004; 75(1): 92–96.
16. Kuo TL, Cheng KH, Chen LT, et al. Deciphering the potential role of Hox genes in pancreatic cancer. Cancers 2019; 11(5): 734.
17. Idaikakkad P, Morgan R and Michael A. HOX genes in high grade ovarian cancer. Cancers 2019; 11(8): 1107.
18. Shah N and Sukumar S. The HOX genes and their roles in oncogenesis. Nat Rev Cancer 2010; 10(5): 361–371.
19. Li B, Huang Q and Wei H. The role of HOX transcription factors in cancer predisposition and progression. Cancers 2019; 11: 528.
20. Jung C, Kim R-S, Lee S-J, et al. HOXB13 homeodomain protein suppresses the growth of prostate cancer cells by the negative regulation of T-cell factor 4. Cancer Res 2004; 64(9): 3046–3051.
21. Wang Z, Dahiya S, Provencher H, et al. The prognostic biomarkers HOXB13, IL17BR, and CHDH are regulated by estrogen in breast cancer. Clin Cancer Res 2007; 13(21): 6327–6334.
22. Abate-Shen C. Deregulated homeobox gene expression in cancer: cause or consequence? Nat Rev Cancer 2002; 2: 777–785.
23. Hanahan D and Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70.
24. Hanahan D and Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.
25. Jiang C, Xuan Z, Zhao F, et al. TRED: a transcriptional regulatory element database, new entries and other development. Nucleic Acids Res 2007; 35: D137–D140.
26. Zheng G, Tu K, Yang Q, et al. ITFP: an integrated platform of mammalian transcription factors. Bioinformatics 2008; 24(20): 2416–2417.
27. Neph S, Stergachis AB, Reynolds A, et al. Circuitry and dynamics of human transcription factor regulatory networks. Cell 2012; 150(6): 1274–1286.
28. Han H, Shim H, Shin D, et al. TRRUST: a reference database of human transcriptional regulatory interactions. Sci Rep 2015; 5: 11432.
29. Marbach D, Lamparter D, Quon G, et al. Tissue-specific regulatory circuits reveal variable modular perturbations across complex diseases. *Nat Methods* 2016; 13(4): 366–370.
30. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc Natl Acad Sci USA* 2005; 102(43): 15545–15550.
31. Chen J, Zhu S, Jiang N, et al. HOXB3 promotes prostate cancer cell progression by transactivating CDCA3. *Cancer Lett* 2013; 330(2): 217–224.
32. Xu K, Qiu C, Pei H, et al. Homeobox B3 promotes tumor cell proliferation and invasion in glioblastoma. *Oncol Lett* 2018; 15(3): 3712–3718.
33. Lu S, Liu R, Su M, et al. Overexpression of HOXC8 is associated with poor prognosis in epithelial ovarian cancer. *Reprod Sci* 2016; 23(7): 944–954.
34. Chen SW, Zhang Q, Xu ZF, et al. HOXC6 promotes gastric cancer cell invasion by upregulating the expression of MMP9. *Mol Med Rep* 2016; 14(4): 3261–3268.
35. Hamid ARAH, Hoogland AM, Smit F, et al. The role of HOXB4 as a regulator of tumor growth in breast cancer. *HOXB2 as a regulator of tumor growth in breast cancer. Genomics* 2011; 98(3): 164–172.
36. Luo Z, Rhie SK, Lay FD, et al. A prostate cancer risk element functions as a repressive loop that regulates HOXA13. *Cell Rep* 2017; 21(6): 1411–1417.
37. Jin K, Park S, Teo WW, et al. HOXB7 is an ERα cofactor in the activation of HER2 and multiple ER target genes leading to endocrine resistance HHS public access. *Cancer Discov* 2015; 5: 944–959.
38. Heinonen H, Lepikhova T, Sahu B, et al. Identification of several potential chromatin binding sites of HOXB7 and its downstream target genes in breast cancer. *Int J Cancer* 2015; 137(10): 2374–2383.
39. Amin ARM, Karpowicz PA, Carey TE, et al. Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds. *Semin Cancer Biol* 2015; 35: S55–S77.
40. Kim YR, Kang TW, To PK, et al. HOXB13-mediated suppression of p21WAF1/CIP1 regulates JNK/c-Jun signaling in prostate cancer cells. *Oncol Rep* 2016; 35(4): 2011–2016.
41. Spisak S, Lawrenson K, Fu Y, et al. CAUSEL: an epigenome- and genome-editing pipeline for establishing function of noncoding GWAS variants. *Nat Med* 2015; 21(11): 1357–1363.
42. Huang Q, Whittington T, Gao P, et al. A prostate cancer susceptibility allele at 6q22 increases RFX6 expression by modulating HOXB13 chromatin binding. *Nat Genet* 2014; 46(2): 126–135.
43. Carbone C, Piro G, Simionato F, et al. HOXB9-mediated resistance to anti-VEGF therapy in colorectal cancer patients. *Clin Cancer Res* 2017; 23(15): 4312–4322.
44. Hakami F, Darda L, Stafford P, et al. The roles of HOXD10 in the development and progression of head and neck squamous cell carcinoma (HNSCC). *Br J Cancer* 2014; 111(4): 807–816.
45. Ko SY, Lengyl E and Naora H. The Müllerian HOXA10 gene promotes growth of ovarian surface epithelial cells by stimulating epithelial-stromal interactions. *Mol Cell Endocrinol* 2010; 317: 112–119.
46. Dong Y, Cai Y, Liu B, et al. HOXA13 is associated with unfavorable survival and acts as a novel oncogene in prostate carcinoma. *Future Oncol* 2017; 13(17): 1505–1516.
47. Duan R, Han L, Wang Q, et al. HOXA13 is a potential GBM diagnostic marker and promotes glioma invasion by activating the Wnt and TGF-β pathways. *Oncotarget* 2015; 6: 27778–27793.
48. Qu L-P, Zhong Y-M, Zheng Z, et al. CDH11 is a downstream effector of HOXA13 in modulating the Wnt/β-catenin signaling pathway in gastric cancer. *Eur Rev Med Pharmacol Sci* 2017; 21: 1234–1241.
49. Cardoso M, Maia S, Paulo P, et al. Oncogenic mechanisms of HOXB13 missense mutations in prostate carcinogenesis. *Oncoscience* 2016; 3(9-10): 288–296.
50. Economides KD, Zeltser L and Capecchi MR. HOXB13 mutations cause overgrowth of caudal spinal cord and tail vertebral. *Dev Biol* 2003; 256(2): 317–330.
prognosis in colon cancer. *Chin J Cancer Res* 2014; 26(1): 72–80.

64. Shrestha B, Ansari KI, Bhan A, et al. Homeodomain-containing protein HOXB9 regulates expression of growth and angiogenic factors, facilitates tumor growth in vitro and is overexpressed in breast cancer tissue. *FEBS J* 2012; 279(19): 3715–3726.

65. Kelly Z, Moller-Levet C, McGrath S, et al. The prognostic significance of specific HOX gene expression patterns in ovarian cancer. *Int J Cancer* 2016; 139(7): 1608–1617.

66. Vychytilova-Faltejskova P, Merhautova J, Machackova T, et al. MiR-215-5p is a tumor suppressor in colorectal cancer. *Oncogene* 2017; 6(11): 399.

67. Segara D, Biankin AV, Kench JG, et al. Expression of HOXB2, a retinoic acid signaling target in pancreatic cancer and pancreatic intraepithelial neoplasia. *Clin Cancer Res* 2005; 11(9): 3587–3596.

68. Cheng Y, Jutooru I, Chadalapaka G, et al. The long non-coding RNA HOTTIP enhances pancreatic cancer cell proliferation, survival and migration. *Oncotarget* 2015; 6(13): 10840–10852.

69. Kam MKM, Cheung M, Zhu JJ, et al. Homeobox B5 (HOXB5) regulates the expression of Forkhead box D3 gene (FOXD3) in neural crest. *Int J Biochem Cell Biol* 2014; 55: 144–152.

70. Luo J, Cai Q, Wang W, et al. A microRNA-7 binding site polymorphism in HOXB5 leads to differential gene expression in bladder cancer. *PLoS ONE* 2012; 7(6): e40127.

71. Lee J-Y, Hur H, Yun HJ, et al. HOXB5 promotes the proliferation and invasion of breast cancer cells. *Int J Biol Sci* 2015; 11(6): 701–711.

72. Korshunov A, Neben K, Wrobel G, et al. Gene expression patterns in ependymomas correlate with tumor location, grade, and patient age. *Am J Pathol* 2003; 163(5): 1721–1727.

73. Destro MF, Dietz MS, Zecchin KG, et al. Overexpression of HOXB7 homeobox gene in oral cancer induces cellular proliferation and is associated with poor prognosis. *Int J Oncol* 2009; 36: 141–149.

74. Wu Q, Lothe RA, Ahlquist T, et al. DNA methylation profiling of ovarian carcinomas and their in vitro models identifies HOXA9, HOXB5, SCGB3A1, and CRABP1 as novel targets. *Mol Cancer* 2007; 6: 45.

75. Kim HJ, Kim YH, Lee DS, et al. In vivo imaging of functional targeting of miR-221 in papillary thyroid carcinoma. *J Nucl Med* 2008; 49(10): 1686–1693.

76. Costa BM, Smith JS, Chen Y, et al. Reversing HOXA9 oncogene activation by PI3K inhibition: epigenetic mechanism and prognostic significance in human glioblastoma 2011; 70: 453–462.

77. Chen S, Yu J, Lv X, et al. HOXA9 is critical in the proliferation, differentiation, and malignancy of leukemia cells both in vitro and in vivo. *Cell Biochem Funct* 2017; 35(7): 433–440.

78. Guerriero I, D’Angelo D, Pallante P, et al. Analysis of miRNA profiles identified miR-196a as a crucial mediator of aberrant PI3K/AKT signaling in lung cancer cells. *Oncotarget* 2017; 8(12): 19172–19191.
96. Zhai L-L, Wu Y, Cai C-Y, et al. Overexpression of homeobox B-13 correlates with angiogenesis, aberrant expression of EMT markers, aggressive characteristics and poor prognosis in pancreatic carcinoma. *Int J Clin Exp Pathol* 2015; 8(6): 6919–6927.

97. Boudreau NJ and Varner JA. The homeobox transcription factor HOX D3 promotes integrin alpha5beta1 expression and function during angiogenesis. *J Biol Chem* 2004; 279(6): 4862–4868.

98. Boudreau N, Andrews C, Srebrow A, et al. Induction of the angiogenic phenotype by HOX D3. *J Cell Biol* 1997; 139(1): 257–264.

99. Stoll SJ and Kroll J. HOXC9: a key regulator of endothelial cell quiescence and vascular morphogenesis. *Trends Cardiovasc Med* 2012; 22(1): 7–11.

100. Huang D, Ding Y, Zhou M, et al. Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. *Cancer Res* 2010; 70(3): 1063–1071.

101. Ning Y, Manegold PC, Hong YK, et al. Interleukin-8 is associated with proliferation, migration, angiogenesis and chemosensitivity in vitro and in vivo in colon cancer cell line models. *Int J Cancer* 2011; 128(9): 2038–2049.

102. Ko SY and Naora H. Adaptation of ovarian cancer cells to the peritoneal environment: multiple mechanisms of the developmental patterning gene HOXA9. *Cancer Cell Microenvir* 2014; 1(6): e379.

103. Liao K-H, Chang S-J, Chang H-C, et al. Endothelial angiogenesis is directed by RUNX1T1-regulated VEGFA, BMP4 and TGF-β2 expression. *PLoS ONE* 2017; 12: e0179758.

104. Rössig L, Urbich C, Brühl T, et al. Histone deacetylase activity is essential for the expression of HOXA9 and for endothelial commitment of progenitor cells. *J Exp Med* 2005; 201(11): 1825–1835.

105. Kodama A, Sakai H, Murakami M, et al. Immunohistochemical demonstration of angiogenesis-associated homeobox proteins in canine vascular tumours. *J Comp Pathol* 2009; 141(2-3): 199–203.

106. Goode EL, Chenevix-Trench G, Song H, et al. A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24. *Nat Genet* 2010; 42(10): 874–879.

107. Zhang X, Zhu T, Chen Y, et al. Human growth hormone-regulated HOXA1 is a human mammary epithelial oncogene. *J Biol Chem* 2003; 278(9): 7580–7590.

108. Chen D, Sun Y, Yuan Y, et al. miR-100 induces epithelial-mesenchymal transition but suppresses tumorigenesis, migration and invasion. *PLoS Genet* 2014; 10(2): e1004177.

109. Ohuchida K, Mizumoto K, Lin C, et al. MicroRNA-10a is overexpressed in human pancreatic cancer and involved in its invasiveness partially via suppression of the HOXA1 gene. *Ann Surg Oncol* 2012; 19(7): 2394–2402.

110. Jia H, Zhang Z, Zou D, et al. MicroRNA-10a is down-regulated by DNA methylation and functions as a tumor suppressor in gastric cancer cells. *PLoS ONE* 2014; 9(1): e88057.

111. Zou D, Zhou Q, Wang D, et al. The downregulation of MicroRNA-10b and its role in cervical cancer. *Oncol Res* 2016; 24(2): 99–108.

112. Li Q, Zhang X, Li N, et al. miR-30b inhibits cancer cell growth, migration, and invasion by targeting homeobox A1 in esophageal cancer. *Biochem Biophys Res Commun* 2017; 485(2): 506–512.

113. Ni L-Y, Zhao J-D, Lu Y-H, et al. MicroRNA-30c suppresses giant-cell tumor of bone cell metastasis and growth via targeting HOXA1. *Eur Rev Med Pharmacol Sci* 2017; 21(21): 4819–4827.

114. Wang J-G, Tang W-P, Liao M-C, et al. MiR-99a suppresses cell invasion and metastasis in nasopharyngeal carcinoma through targeting HOXA1. *Onco Targets Ther* 2017; 10: 753–761.

115. Wang X, Li Y, Qi W, et al. MicroRNA-99a inhibits tumor aggressive phenotypes through regulating HOXA1 in breast cancer cells. *Oncotarget* 2015; 6(32): 32737–32747.

116. Li H, Li J, Yang T, et al. MicroRNA-433 represses proliferation and invasion of colon cancer cells by targeting homeobox A1. *Oncol Res* 2018; 26(2): 315–322.

117. Fu H, Fu L, Xie C, et al. miR-375 inhibits cancer stem cell phenotype and tamoxifen resistance by degrading HOXB3 in human ER-positive breast cancer. *Oncol Rep* 2017; 37(2): 1093–1099.

118. Weiss FU, Marques IJ, Woltering JM, et al. Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. *Gastroenterology* 2009; 137(6): 2136–2145.e7.

119. Chen H, Fan Y, Xu W, et al. miR-10b inhibits apoptosis and promotes proliferation and invasion of endometrial cancer cells via targeting HOXB3. *Cancer Biother Radiopharm* 2016; 31(6): 225–231.

120. Li H-P, Peng C-C, Chung I-C, et al. aberrantly hypermethylated Homeobox A2 derepresses metalloproteinase-9 through TBP and promotes invasion in nasopharyngeal carcinoma. *Oncotarget* 2013; 4(11): 2154–2165.

121. Liu S, Jin K, Hui Y, et al. HOXB7 promotes malignant progression by activating the TGFβ signaling pathway. *Cancer Res* 2015; 75: 709–719.

122. Zhuang L, Li W-H, Li K, et al. HOXB7 promotes malignant progression of hepatocellular carcinoma. *J Exp Clin Cancer Res* 2015; 34: 709–719.

123. Huan H, Yang D, Wen X, et al. HOXB7 accelerates the malignant progression of hepatocellular carcinoma by promoting stemness and epithelial-mesenchymal transition. *J Exp Clin Cancer Res* 2017; 36(1): 86.

124. Wang W-M, Xu Y, Wang Y-H, et al. HOXB7 promotes growth and metastasis of lung adenocarcinoma cells through regulation of the tgf-β/smads signaling. *J Biol Regul Homeost Agents* 2015; 29: 601–608.

125. Huan H, Yang D, Wen X, et al. HOXB7 accelerates the malignant progression of hepatocellular carcinoma by promoting stemness and epithelial-mesenchymal transition. *J Exp Clin Cancer Res* 2017; 36(1): 86.

126. Lu L, Zhu G, Zhang C, et al. Association of large non-coding RNA HOTAIR expression and its downstream intergenic CpG island methylation with survival in breast cancer. *Breast Cancer Res Treat* 2012; 136(3): 875–883.
127. Li CH and Chen Y. Targeting long non-coding RNAs in cancers: progress and prospects. *Int J Biochem Cell Biol* 2013; 45(8): 1895–1910.

128. Bennett LB, Schnabel JL, Kelchen JM, et al. DNA hypermethylation accompanied by transcriptional repression in follicular lymphoma 2010; 48: 828–841.

129. Imanishi H, Hattori K, Wada R, et al. Mitochondrial DNA mutations regulate metastasis of human breast cancer cells. *PLoS ONE* 2011; 6(8): e23401.

130. Mannini L, Cucco F, Quarantotti V, et al. SMC1B is present in mammalian somatic cells and interacts with mitotic cohesin proteins. *Sci Rep* 2015; 5: 18472.

131. Leunen K, Gevaert O, Daemen A, et al. Recurrent copy number alterations in BRCA1-mutated ovarian tumors alter biological pathways. *Hum Mutat* 2009; 30(12): 1693–1702.

132. Esposito MT, Zhao L, Fung TK, et al. Synthetic lethal targeting of oncogenic transcription factors in acute leukemia by PARP inhibitors. *Nat Med* 2015; 21(12): 1481–1490.

133. Lawrence HJ, Christensen J, Fong S, et al. Loss of expression of the HOXA-9 homeobox gene impairs the proliferation and repopulating ability of hematopoietic stem cells. *Blood* 2005; 106(12): 3988–3994.

134. Pojo M, Gonçalves CS, Xavier-Magalhães A, et al. A transcriptomic signature mediated by HOXA9 promotes human glioblastoma initiation, aggressiveness and resistance to temozolomide. *Oncotarget* 2015; 6(10): 7657–7674.

135. Kim JW, Kim JY, Kim JE, et al. HOXA10 is associated with temozolomide resistance through regulation of the homologous recombinant DNA repair pathway in glioblastoma cell lines. *Genes Cancer* 2014; 5(5–6): 165–174.

136. Gaspar N, Marshall L, Perryman L, et al. MGMT-independent temozolomide resistance in pediatric glioblastoma cells associated with a PI3-kinase-mediated HOX stem cell gene signature. *Cancer Res* 2010; 70(22): 9243–9252.

137. Rubin E, Wu X, Zhu T, et al. A role for the HOXB7 homeodomain protein in DNA repair. *Cancer Res* 2007; 67(4): 1527–1535.

138. Kelly Z, Michael a Butler-Manuel S, et al. HOX genes in ovarian cancer. *J Ovarian Res* 2011; 4: 16.

139. Kundu JK and Suri YJ. Inflammation: gaining the journey to cancer. *Mutat Res* 2008; 659(1-2): 15–30.

140. Bondar T and Medzhitov R. The origins of tumor-promoting inflammation. *Cancer Cell* 2013; 24(2): 143–144.

141. Crusz SM and Balkwill FR. Inflammation and cancer: advances and new agents. *Nat Rev Clin Oncol* 2015; 12(10): 584–596.

142. Zhang Q, Zhu B and Li Y. Resolution of cancer-promoting inflammation: a new approach for anticancer therapy. *Front Immunol* 2017; 8: 71.

143. Hoesel B and Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. *Mol Cancer* 2013; 12: 861–815.

144. Tamniau A, Draime A, Tys J, et al. HOXA1 binds RBCK1/HOIL-1 and TRAF2 and modulates the TNF/NF-κB pathway in a transcription-independent manner. *Nucleic Acids Res* 2016; 44: 7331–7349.

145. Guo T, Mandai K, Condie BG, et al. An evolving NGF-HOXD1 signaling pathway mediates development of divergent neural circuits in vertebrates. *Nat Neurosci* 2011; 14(1): 31–36.

146. Yarmishyn AA, Batagov AO, Tan JZ, et al. HOXD-AS1 is a novel lncRNA encoded in HOXD cluster and a marker of neuroblastoma progression revealed via integrative analysis of noncoding transcriptome. *BMC Genomics* 2014; 15: 57.

147. Wang F, Gao S, Chen F, et al. Mammary fat of breast cancer: gene expression profiling and functional characterization. *PLoS ONE* 2014; 9(10): e109742.

148. Wang H, Bei L, Shah CA, et al. HOXA10 terminates emergency granulopoiesis by increasing expression of Triad1. *J Immunol* 2015; 194(11): 5375–5387.

149. Shah CA, Bei L, Wang H, et al. HOXA10 protein regulates transcription of gene encoding fibroblast Growth Factor 2 (FGF2) in myeloid cells. *J Biol Chem* 2012; 287(22): 18230–18248.

150. Warburg O. The metabolism of carcinoma cells. *J Cancer Res* 1925; 9: 148–163.

151. Jiang Y, Yan B, Lai W, et al. Repression of HOX genes by LMPI in nasopharyngeal carcinoma and modulation of glycolytic pathway genes by HOXC8. *Oncogene* 2015; 34(50): 6079–6091.

152. Cantile M, Procino A, D’Armiento M, et al. HOX gene network is involved in the transcriptional regulation of in vivo human adipogenesis. *J Cell Physiol* 2003; 194(2): 225–236.

153. Currie E, Schulze A, Zechner R, et al. Cellular fatty acid metabolism and cancer. *Cell Metab* 2013; 18: 153–161.

154. Ward PS and Thompson CB. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. *Cancer Cell* 2012; 21: 297–308.

155. Krebs HA and Johnson WA. The role of citric acid in intermediate metabolism in animal tissues. *FEBS Lett* 1980; 117: K2–K10.

156. Poon E, Harris AL and Ashcroft M. Targeting the hypoxia-inducible factor (HIF) pathway in cancer. *Expert Rev Mol Med* 2009; 11: e26.

157. Lakshmi Narendra B, Eshvendar Reddy K, Shantikumar S, et al. Immune system: a double-edged sword in cancer. *Inflamm Res* 2015; 64(11): 1209–1221.

158. Vinay DS, Ryan EP, Pawelec G, et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. *Semin Cancer Biol* 2015; 35: S185–S198.

159. Noman MZ, Buart S, Romero P, et al. Hypoxia-inducible factor (HIF) pathway in cancer: an overview. *Cell Death Dis* 2015; 6: e1928.

160. Sio A, Chehal MK, Tsai K, et al. Dysregulated hematopoietic cells associated with a PI3-kinase-mediated HOX/stem cell gene signature. *Cancer Res* 2010; 70(22): 9243–9252.

161. Mcallister SS, Gifford AM, Greiner AL, et al. Systemic endocrine instigation of indolent tumor growth requires osteopontin 2014; 133: 994–1005.
162. Lawrence T. The nuclear factor NF-kappa B pathway in inflammation. *Cold Spring Harb Perspect Biol* 2009; 1: 1–10.
163. Barkett M and Gilmore TD. The Rel/NF-kappaB signal transduction pathway: introduction. *Oncogene* 1999; 18: 6842–6844.
164. Grivennikov S and Karin M. Dangerous liaisons: STAT3 and NF-κB collaboration and crosstalk in cancer. *Cytokine* 2011; 21: 11–19.
165. Geismann C, Grohmann F, Dreher A, et al. Role of CCL20 mediated immune cell recruitment in NF-κB mediated TRAIL resistance of pancreatic cancer. *Biochim Biophys Acta: Mol Cell Res* 2017; 1864: 782–796.
166. Surh YJ, Chun KS, Cha HH, et al. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. *Mutat Res: Fundam Mol Mech Mutagen* 2001; 480–481: 243–268.
167. Bhatlekar S, Fields JZ and Boman BM. HOX genes and their role in the development of human cancers. *J Mol Med* 2014; 92(8): 811–823.
168. Sánchez-Herrero E. HOX targets and cellular functions. *Scientifica* 2013; 2013: 738257.
169. Beh CY, El-Sharnouby S, Chatzipli A, et al. Roles of cofactors and chromatin accessibility in HOX protein target specificity. *Epigenetics Chromatin* 2016; 9: 1.
170. Morgan R, Pirard PM, Shears L, et al. Antagonism of HOX/PBX dimer formation blocks the in vivo proliferation of melanoma. *Cancer Res* 2007; 67(12): 5806–5813.
171. Shen LY, Zhou T, Du YB, et al. Targeting HOX/PBX dimer formation as a potential therapeutic option in esophageal squamous cell carcinoma. *Cancer Sci* 2019; 110(5): 1735–1745.