重ねすみ肉アーク溶接におけるガスシールド性に関する実験的検討

1．緒　　言

自動車には軽量化や性能信頼性の観点から高強度の薄鋼材の部品が採用されており、各部品の組立てには継手効率や気密性に優れた溶接が多く用いられる。中でもアーク溶接は溶接可能な姿勢や母材の種類などの自由度が高く、さらに消耗電極式のマグ(MAG: Metal Active Gas)溶接や炭酸ガスアーク溶接などの場合は連続溶接が可能であること、産業用ロボットによる自動化が容易であることから、自動車の製造工程で広く用いられている。

組み立てられた製品は、その表面に塗装処理を施すことにより、錆などの腐食から保護される。しかし、例えば接合部にシリコン主体のスラグが残存している場合、スラグは非伝導性であり電着膜が付着しにくいことから、その箇所は十分に被覆されないことがある1)。このスラグは溶接中に電極であるワイヤなどに含まれる脱酸成分(シリコン、マンガンなど)とアーク熱によって揮発した酸素が反応する。もしくはこれら脱酸成分と溶融金属中の酸素が反応することによって生成される1,2)。塗装の破損が十分でないと、スラグを介して鉄素地表面に水が浸入しやすくなり、そこから腐食が生じ、周囲へと広がることで接合部の強度が低下する恐れがある。スラグが残存する位置は溶接条件などによって異なり、応力集中が生じやすい溶接止端部3)は腐食の発生を避けるべきであり、ここにスラグが残存することを防がなければならない。

スラグの量や輸送位置は、溶融池の流れやシールド状況によって変わることが報告されている1,4,5)。溶融池の流れを変えるためには硫黄などの元素を添加する必要があるが、同時に接合部の機械的性質も変えるため安易に添加できない。山﨑らはシールドノズルの大径化によってスラグの発生量の低減や溶融池後方の凝固界面における酸化物の生成の抑制について報告した1,5)。このことから溶接部近傍のシールド状況を改善することによって、酸化物であるスラグの発生量の低減や溶接ビード止端部へのスラグの輸送を避けることが可能であると考えられる。そして、より効率的なスラグの発生量の低減や溶接の制御を実現するためには、シールド性に大きく寄与する溶接部上のシールドガスの流れ場とシールド性の関係を明らかにする必要がある。

アーク溶接におけるシールドガス流の可視化やシールド性の評価に取り組んだ先行研究はいくつか報告されている。
例えば三木らは母材表面の圧力分布や酸素濃度分布を計測し、従来のティグ（TIG: Tungsten Inert Gas）溶接および狭帯ノズルと呼ばれる銅製のノズルを取り付けた狭帯ティグ溶接中のシールド性について検討した。その結果、従来のティグ溶接ではシールドガスのみを流した場合と比較してアークを点弧した場合の方が、酸素濃度が1%を下回る低酸素濃度の領域が半径方向に広まった。また狭帯ティグ溶接中のアークは強い指向性を有し、従来のティグ溶接と同程度に酸素巻込み量を抑えられていたと報告した。

鈴木らはマグ溶接を用いた突合せ多層溶接を対象とし、溶接中のシールド性が確保できる風速とシールドガス流量の関係、および風速とシールドガス噴出速度の関係について調査した。鈴木らはシュリーレン法を用いてシールドガス流の可視化を行い、横風によって大気がアーク近傍に到達する様子を可視化した。そしてシールド性を確保する目安として、ノズルの出口風速が風速の2倍を超えるように最低ガス流量を管理することを示唆した。

迎井らはオゾンノズル式トーチを用いた拡散性水素低減プロセスを開発し、そのシールド性を数値シミュレーションによって検討した。またアークを点弧していない状態ではあるものの、シュリーレン法を用いてシールドガス内の流れの可視化を行った。

Siewertらはティグ溶接やプラズマアーク溶接を対象としたシュリーレン法による可視化実験において、シールドガスの流れを可視化した。ShnckらはPIV（Particle Image Velocimetry）法を用いてアーク点弧中のガス流れを可視化した。加えて、シュリーレン法によってアーク近傍の温度分布や酸素濃度分布、速度分布を明らかにしました。

これらの先行研究では母材表面の酸素濃度の計測やシールドガス流れの可視化によって、そのシールド性を検討したり、シールドガス流れの挙動を明らかにしたりした。しかしながら、アークを点弧した状態でのシールドガス流れの可視化例は少なく、また点弧した状態でのアーク光の影響を抑えることが難しかった。1万K以上の温度や、高速のプラズマガス流を有するアークの有無がシールドガス流れにも影響を与えると考えられるため、シールドガス内の流れの可視化やシールド性の評価はアークを点弧した状態で行うことが望ましい。加えて先行研究では簡便なビードオンプレート溶接を対象としたものが多く、実施工で用いられるような継手を対象とした可視化例は少ない。

そこで本研究では自動車の製造工程で多用される重ねすみ肉溶接を対象に、まずは重ね継手を模した段差を有する水冷銅上の酸素濃度の計測を行い、実際にシールドされる範囲を調査する。次にシュリーレン法や、中空電極とキセノンガスを用いた観察によって、シールド性に影響を及ぼすシールドガス流れとアーク中心軸上を流れる高速のプラズマガス流の可視化を行う。これらの実験ではシールド性を左右する要素として、高い皮膜を考慮した距離（アーク長）とトーチ位置に注目し、これらの違いによるシールド性に及ぼす影響を調査する。また点弧した状態でのシールドガス流れを可視化するため、溶接電極の溶接プロセスではなく、溶滴移行の生じない非消耗電極形のティグ溶接を用いる。

そして上記の実験から得られた知見を合わせて考察することで、重ねすみ肉溶接においてスラグ形成過程に影響を及ぼすと考えられるシールドガス流れとシールド性の関係を明らかにすることを目的とする。

2. 実験方法

2.1 母材表面における酸素濃度の計測

Fig.1に酸素濃度分布計測に用いた実験装置の模式図を、Table 1に実験条件を示す。実験装置は溶接機（DAIHEN, W-2 wt.% La₂O₃）を用いて行った。実験装置は溶接機の種類や溶接方法によって異なり、溶接方法はターボアーク溶接、低電流のガスメタルアーク溶接、プラズマアーク溶接などがある。溶接方法によっては、溶接条件や溶接性が大きく影響される。溶接条件は溶接電流、溶接電極、溶接ガス、溶接速度などから成り立っている。

Table 1 Experimental conditions for oxygen concentration measurement.

オPTION	値
焼結电流	150 A
极性	双極性
保護ガス	Ar
ガス流量	20 L/min
ノズル内径	12.6 mm
アーケード	W-2 wt.% La₂O₃
アーケード直径	1.6 mm
アーケード角度	45 deg.
アーケード長さ	10 mm
アーケード触点	Cu

Fig.1 Schematic illustration of oxygen concentration measurement.
溶接トーチ（DAIHEN, AW-18）, 水冷銅, 酸素濃度計（TORAY, LC-450A）から構成されている。溶接トーチは0.1 mm/s の速さで走査され、0.1秒ごとに酸素濃度を計測した。電極の突出しは実施工で用いられるマグ溶接を想定し、一般的なティグ溶接の突出しよりも長く設定した。また本研究では全ての実験においてタングステン電極が陰極、水冷銅が陽極である。

本実験では陽極は平坦な水冷銅の他、Fig. 2に示す模式図のような重ね継手を模した2 mm の段差を有する水冷銅を用いた。平坦な水冷銅の中心にはその場のガスを吸入するために直径 1 mm の小孔を 1 つ設け、2 mm の段差を有する水冷銅にも直径 1 mm の小孔を 1 つ設けた。この2 mm の段差を有する水冷銅については小孔の位置が異なる 21 種類を作製しており、段差から上端側に 1, 2, ..., 9, 10 mm 離れた位置に小孔を設けた10種類および下段側に 0.5, 1, 2, ..., 9, 10 mm 離れた位置に小孔を設けた11種類によって構成されている。そして、この小孔を介してアーク放電中のその場のガスを 60 mL/min で酸素濃度計へと吸入することで、小孔の位置における酸素濃度を計測した。

平坦な水冷銅を用い、溶接トーチを鉛直に設置して酸素濃度計測を行う場合は、酸素濃度分布が陰極中央軸に対して軸対称であると仮定し、Fig. 1に示すように小孔と陰極先端の位置を一致させた状態を原点として溶接トーチを片側方向に水平に走査した。一方、重ね縫いを模した水冷銅を用いた場合には酸素濃度分布がFig. 2のx 軸に対して線対称であると仮定した。そして、アークを点弧した状態で陰極の先位置を段差下部の角に沿わせながら原点からy方向に溶接トーチを走査することで、水冷銅表面における2次元の酸素濃度分布を求めた。なお本研究ではこれ以降のいずれの実験においても、重ね縫いを模した水冷銅を用いる場合のアーク長は陰極中央軸から段差下部の角の先位置までの距離と定義した。

2.2 シュリーレン法によるシールドガス流の可視化

Fig. 3 にシュリーレン観察に用いた実験装置の模式図を、Table 2 に実験条件を示す。溶接条件はTable 1 と同じ条件を用いた。実験装置は溶接機（DAIHEN, DA-300P）、溶接トーチ（WELDCRAFT, TA-27A）、水冷銅、高速度カメラ（nac, MEMRECAM Q1v）、ミラー、ナイフエッジ、レーザ発振器（Nobby Tech., CAVILUX HF）から構成されている。図中の赤線はレーザ光を示しており、青の矢印はレーザの通る方向を示している。発振器から出射したレーザ光は直径1.9 mm のビンホールを経て、直径50 mm の円形同時スリットと光電子管の間に配置され、レーザ光は光電子管に照射される。このミラーは平行光束を反射し、レーザ光は平行光束と垂直な面に集光される。この集光位置はレーザ光をレンズ前面の黒化位置に配置し、シールドガスに含まれる酸素ガスの密度分布を可視化した。なお本実験においても全部の実験においても、溶接トーチの位置を段差下部の角の先位置までの距離と定義した。
のシールドガス内の密度勾配の可視化を行った。本実験では、光源であるレーザを高速度カメラと同期してバルス発振させた。バルス発振させることで1秒あたりのレーザの照射時間が短くなるため、レーザから観察対象への入熱は無視できるほど小さくなる。また観察の際は中心波長640 nm、半値幅12 nmのバンドパスフィルタを使用した。640 nm近傍はアルゴンアークの発光強度が他の波長域に比べて弱く、レーザの発光強度をアークの発光強度よりも相対的に強く設定できたため、アーク光の影響を抑えながらシールドガス内の密度勾配の観察が可能であった。

2.3 中空電極によるプラズマ気流の可視化

2.2節で示したシュリーレン法はシールドガス流を可視化できるものの、アーク中心軸付近のプラズマ気流についてはその流れ場の乱れが少ないために、シュリーレン法による可視化は難しいと考えられる。しかもプラズマ気流は高速であるため、その内部のシールドガスの流動やシールド性に与える影響は大きいと考えられる。したがって、本研究の目的であるシールドガス流とシールド性の関係を明らかにするためには、このプラズマ気流も可視化し、アーク長やトーチ角度による挙動の違いを明らかにする必要がある。そこで本研究では、以下に示す中空電極とキセノンガスを用いた実験観察を行うことで、アーク中心軸付近の高速のプラズマ気流の可視化を試みた。

Fig. 5に本実験の実験装置の模式図を、Table 3に実験条件を示す。実験装置は溶接機（DAIHEN, DA-300P）、溶接トーチ（DAIHEN, AW-18）、水冷銅、アナログマスフローコントローラ（HORIBA STECH, SEC-E40）、高速度カメラ（nac, MEMRECAM Q1v）から構成されている。実験で中空電極として平たんな水冷銅で、高さ2 mmの段差を有する水冷銅の2種類を用いており、これらの水冷銅上でアークを点弧した。中心軸に直径1 mmの貫通穴を設けた中孔のタンクステン電極ではなく、中心軸に直径1 mmの貫通穴を設けた中孔のタンクステン電極を用いており、アーク点弧中にシールドガスとは別にこの貫通穴を介してキセノンガスを流した。キセノンガスの流量はアナログマスフローコントローラによりアーク中のキセノンガス流を観察できる。
陰極先端からの流れを可視化した。本研究でキセノンを選択した理由は、電離エネルギーが12.1 eV、原子量が131であり、ヘリウム（電離エネルギー：24.6 eV、原子量：4）とアルゴン（電離エネルギー：15.8 eV、原子量：40）と比べて、キセノンとアルゴンの方が電離エネルギーの差が小さく、アルゴンプラズマへの擾乱が少ないものと考えたためである。加えて、キセノンは、アークランプに使われるほど発光強度が強いため、少量でもトレースしやすいものと考えた。

3. 実験結果および考察

3.1 階極表面におけるアーク放電中の酸素濃度分布

まずはシールド性の基礎的な検証として、平坦な階極に対して溶接トーチを鉛直に配置し、アーク長を5 mmと設定して階極表面の酸素濃度の計測を行った。Fig. 6にアークを点弧しない場合と、溶接電流をそれぞれ80 A、150 Aと設定してアークを点弧した場合の、階極表面における酸素濃度分布を示す。Fig. 6は2.1節で述べたように、アークを軸対称と仮定している。なお酸素濃度の計測レンジの最大値は1,200 ppmであるため、酸素濃度が1,200 ppmを超える場合でも計測値は1,200 ppmとすることに注意されたい。

Fig. 6より、階極表面での酸素濃度が100 ppm以下になる低酸素濃度領域がアークの存在によって半径方向に拡大し、電流値の増加によってさらにこの領域が広がったことがわかる。アーク中心軸近傍には電磁気力に誘起されるプラズマ気流が存在しており、その速さは最大で180 m/sを上回ることが知られている18-20。この高速のプラズマ気流がその周囲の高速化したシールドガスが階極表面への大気の侵入を抑制することに、アークが存在しない場合に比べて、アークが存在する場合の方がシールド性が向上したと考えられる。加えて、キセノンは、アークランプに使われるほど発光強度が強いため、少量でもトレースしやすいものと考えた。

3.2 陽極表面におけるアーク放電中の酸素濃度分布

続いて、トーチ角度が重ね継ぎを模した段差を有する階極表面上のシールド性に与える影響を調査した。Fig. 7(a)に溶接トーチを鉛直に配置した場合のアーク外観を、Fig. 7(b)に溶接トーチを鉛直方向から30度傾斜させた場合のアーク外観を示す。どちらの条件においても陽極の段差の下側の角を狙い位置としており、アーク長を5 mmに設定した。また図中の白の破線は陽極表面を表している。Fig. 7からわかるように、溶接トーチの傾きによらずアークの発光は段差の上下段を覆っていた。Fig. 8(a)とFig. 8(b)に、Fig. 7(a)とFig. 7(b)のそれぞれの条件に対応した陽極表面の酸素濃度分布を示す。Fig. 8内の黒の破線は陽極の段差の位置を示しており、この線よりも左側が段差の上段、右側が下段である。Fig. 8の両図を見比べると溶接トーチを傾斜させることで、酸素濃度が100 ppm以下となる低酸素濃度領域が陽極の段差の上下段共にx軸の負の方向にやや偏ったことがわかる。これはアークが傾くことで、x軸の負の方向に向かって流れているプラズマ気流の流量が増加したためであると考えられる。またトーチ角度によらず、陽極の段差の上下段側と下段側で酸素濃度分布に差異が生じており、低酸素濃度領域は上下段側よりも下段側の方がy方向に広かった。これは下段における段差に通されたガス流がy方向に流れたためである。

次に、アーク長を段差を有する陽極表面のシールド性に与える影響を調査した。Fig. 9(a)に溶接トーチを鉛直に配置してアーク長を3 mmと設定したときのアーク外観を、Fig. 9(b)に溶接トーチを鉛直方向から30度傾斜させてアーク
ク長を2mmと設定したときのアーク外観を示す。Fig.7と同様に、図中の白の破線は陽極表面を表している。またFig.10(a)とFig.10(b)に、Fig.9(a)とFig.9(b)のそれぞれの条件に対応した陽極表面の酸素濃度分布を示す。Fig.10内の黒の破線はFig.8と同様に、陽極の段差の位置を示している。ここで溶接トーチを垂直に配置した際にアーク長を2mmではなく3mmとした理由は、陽極に設けた段差の高さが2mmであったためである。Fig.9から、溶接トーチを傾斜させたときの陽極の段差上段側におけるアークの発光領域は陽極下段側の発光領域に比べて小さく、アークが段
差によって遮られていることが確認された。また溶接トーチを鉛直に配置した場合、陽極上の低酸素濃度領域はアーク長が長いFig. 8(a)と大きな差が見られなかったが、溶接トーチを傾斜させた場合では陽極の段差上段側の低酸素濃度領域はアーク長が長いFig. 8(b)に比べて狭くなった。これは陰極先端からの高速のシールドガス流が段差によって遮られたためだと推測される。しかしながら下段側の低酸素濃度領域の広さはアーク長が長いFig. 8(b)と変わらなかったことから、溶接トーチを傾けることで低酸素濃度領域が狭くなり、シールド性は悪くなったといえる。

以上の結果より、アーク長が長い場合は溶接トーチを傾けることで低酸素濃度領域の広さはあまり変わらずシールド性は維持されたが、アーク長が短い場合は溶接トーチを傾けることで低酸素濃度領域が縮小してシールド性が悪化し、アーク長によってトーチ角度に対するシールド性の傾向が変わることが明らかとなった。

3.2 シュリーレン法によるアーク放電中のシールドガス流の観察

ここでは初めに、アーク放電中のシールドガス流内の密度勾配の観察に対する、シュリーレン法の有効性を検証した。Fig.11(a)にレーザ光源、バンドパスフィルタ、ナイフエッジを用いずに撮影したアーク外観を示すとともに、Fig.11(b)にこれらの装置を用いて撮影されたシュリーレン観察結果を示す。Fig.11では図中のシールドガス内の流れ場が、陰極中心軸を通る平行光束に平行な面に対して変数であると仮定した。そして陰極の中心軸からやや左側の領域を明瞭に撮影できるようナイフエッジを調整することで、水平方向に広い領域の流れを観察した。Fig.11(a)と比較して、Fig.11(b)に示すシュリーレン観察結果ではアーク光が確認されなかった。またFig.11(b)内にはFig.11(a)よりも明瞭な輝度値のムラが生じていた。この結果から、本実験で行ったシュリーレン法はシールドガス流内に生じる密度勾配の観察に有効だといえる。さらにFig.11(a)とFig.11(b)の比較から、低温のシールドガスの領域は不均一な分布を示しており、乱流といえるほどではないが流れがやや複雑に揺らいでいることがわかる。その一方で、高温のアークプラズマの領域は均一な分布を示しており、流れ場の乱れが少ないことを表している。このような場が形成されることが多いのでプラズマにおいても同様の報告がなされており21-28、本可視化結果も妥当であるといえる。

Fig.12に、Fig.11(b)中の各ピクセルの輝度値を16色に振り分けて表示したものを示す。図中の赤の破線は陽極の表面を表している。Fig.12より、白の太い線で示すような陰極先端付近から図の左下に向かう輝度値の小さい帯状の領域が観察された。この領域はシールドガスの密度勾配が大きいことを示していることから、この領域を境に流れ場が異なっていたと考えられる。そしてアーク内には前述の高温のプラズマ気流が存在するため、図中の白い破線より下の領域を流れるシールドガスの流速が大きいことが推測される。

次に、段差が有する陽極を用いて、トーチ角度がシールドガス内の流れ場に及ぼす影響を調査した。以降の図については重ね継手を模した段差の上下で生じる流れを観察するため、陰極および段差部が画像の中央に位置するように配置し、アーク近傍の領域を明瞭に撮影できるようナイフエッジを調整して撮影を行った。またいずれの図もFig.12と同様に輝度値によって16色に色づけられており、図中の赤の破線は陽極の表面を表している。
Fig. 13(a)に溶接トーチを鉛直に配置したときのシュリーレン観察結果を示し、Fig. 13(b)に溶接トーチを鉛直方向から30度傾けて配置したときのシュリーレン観察結果を示す。平坦な陽極を用いた場合と同様に、Fig. 13(a)中では陰極先端部から図の左下および右下にかけて、白の太い破線で示す輝度値が小さい帯状の領域が確認された。このことから、電極の付着位置に段差がある場合においても、段差上下段の表面上にプラズマ気流を含む高速のガス流が存在していたといえる。そして溶接トーチを傾斜させた場合にも陰極先端の左右両側において白の太い破線で示す輝度値が小さい帯状の領域が確認されたことから、この場合でも段差の上下段の表面上で高速のガス流が存在していたと考えられる（Fig. 13(b)）。

最後に段差を有する陽極を用いて、アーク長がシールドガス内の流れ場に及ぼす影響を調査した。Fig. 14(a)にアーク長を3 mmと設定して溶接トーチを鉛直に配置したときのシュリーレン観察結果を、Fig. 14(b)にアーク長を2 mmと設定し、溶接トーチを鉛直方向から30度傾斜させたときのシュリーレン観察結果を示す。Fig. 14(a)については図から陽極の形状が確認しづらいため、黒の破線によってその形状を表している。Fig. 14(a)からわかるように、陰極先端の左右には灰色の太い点線より下に輝度値の小さい領域が存在していた。この領域内にはプラズマ気流が存在することから、領域内を流れる気流の速度は大きいと考えられる。この領域はFig. 14(b)の陽極下段側でも見られた。しかしながら陽極上段側では図中の灰色の太い点線の下に輝度値の小さい領域が存在するものの、これまでのように陰極から陽極表面にかけて存在するものではなかった。したがって段差上段側においては灰色の太い点線の上に存在する輝度の高い領域はシールドガスの揺らぎを表しており、段差の上段側を流れる気流は全体として低速であるといえる。Fig. 14(b)より、陰極の左側を流れる気流は段差を境に段差下段部と下段部に分かれて流れれれたと考えられ、陰極側に引き込まれた流れは陰極近傍でその速度を増加させるが、段差上段側へと流れれたガス流は電磁気力によって加速されない。このことから、段差の上段側では下段側ほどシールドガス流が高速化していなかったと考える。Fig. 14(b)より、陰極の左側を流れる気流は段差を境に段差下段部と下段部に分かれて流れれたと考えられ、陰極側に引き込まれた流れは陰極近傍でその速度を増加させるが、段差上段側へと流れれたガス流は電磁気力によって加速されない。このことから、段差の上段側では下段側ほどシールドガス流が高速化していなかったと考える。

以上の結果より、シュリーレン法による観察はシールドガス内の密度勾配を可視化し、高速なシールドガス流が存在する領域が示唆された。しかしながら、いずれの結果に

![Fig. 13 Schlieren images on anode with step using different torch angles (arc length = 5 mm).](image1)

![Fig. 14 Schlieren images on anode with step using different short arc lengths and torch angles.](image2)
おいても、この高速なシールドガス流を誘起すると考えられるプラズマ気流については確認することができなかった。

3.3 中空陰極による陰極先端からの高速の流れの可視化

Fig. 15に陰極先端から流すキセノンガスの有無によるアーク外観の差異を示す。図中の実線は電極の形状を示し、白の破線は陰極の内径を示している。ここでは平坦な陽極を使用し、アーク長は5mmと設定した。Fig.15(a)はキセノンガスを流していない場合のアーク外観であり、Fig.15(b)は陰極先端からキセノンガスを100mL/minで流した場合のアーク外観である。Fig.15(b)のアーク中心軸近傍には、キセノンガスの供給によってFig.15(a)には見られなかった強い発光領域が確認された。これは陰極先端から供給されたキセノンガスが、高速のプラズマ気流によって陽極表面に向かって輸送された軌跡上の発光と考えられる。したがって、このキセノンガス由来と考えられる発光を高速のプラズマ気流の流脈線とみなすことができる。したがって、この観察結果から、Fig.15(b)で確認されたアーク中心軸近傍の強い発光領域はキセノン原子の線スペクトルであることが明らかとなった。

Fig.16に中心波長820nm、半値幅10nmのバンドパスフィルタを用いて撮影したアーク外観を示す。ここでは陰極内に流したキセノンガス流量の影響を明らかにするため、キセノンガス流量を0から100mL/minの範囲で設定した。Fig.16(a)はキセノンガスを流さなかった場合の観察結果であり、Fig.16(b)はキセノンガスを100mL/minで流した場合の観察結果である。キセノンガス流量を0から100mL/minの範囲で設定した。Fig.16(a)はキセノンガスを流さなかった場合の観察結果であり、Fig.16(b)はキセノンガスを100mL/minで流した場合の観察結果である。Fig.16(b)の実線は電極の形状を示し、破線は陰極の内径を示している。ここでは平坦な陽極を使用し、アーク長は5mmと設定した。Fig.15(a)はキセノンガスを流していない場合のアーク外観であり、Fig.15(b)は陰極先端からキセノンガスを100mL/minで流した場合のアーク外観である。Fig.15(b)のアーク中心軸近傍には、キセノンガスの供給によってFig.15(a)には見られなかった強い発光領域が確認された。これは陰極先端から供給されたキセノンガスが、高速のプラズマ気流によって陽極表面に向かって輸送された軌跡上の発光と考えられる。したがって、このキセノンガス由来と考えられる発光を高速のプラズマ気流の流脈線とみなすことができる。したがって、この観察結果から、Fig.15(b)で確認されたアーク中心軸近傍の強い発光領域はキセノン原子の線スペクトルであることが明らかとなった。

Fig.17にキセノンガス流量とアーク電圧の関係を示す。これらのアーク電圧はアーク点弧生後30秒から60秒の間に0.01秒ごとに測定した3,001個のデータの平均値である。図より、キセノンガス流量の増加に伴ってアーク電圧も増加したことがわかる。本研究と同様の中空陰極を用いて、陰極内とノズルからアルゴンガスを供給した際のアークの数値計算を行った先行研究では、電極中心軸近傍ではアークが陰極をなす分光観察によって、陽極近傍におけるこのアーク中心軸の流れを明らかに可視化することを試みた。
先端から供給されるガスによって冷却され、電気伝導度が低下することが報告されている30). しかしながら、先行研究の場合、中空陰極先端から供給されるアルゴンガス流量は500, 1,000, 2,000 mL/minであり、本研究に比べて圧倒的に大きい。したがって本実験においても、陰極先端から供給されるキセノンガスのガス流量の増加に伴ってアークプラズマが冷却され、アーク内の電気伝導度が低下し、アーク電圧が増加したことは排除できないものの、アーク電圧の変化量が12.05 Vから12.4 V程度であり、その変化率は約3%であった。このことから、キセノンガスによるアークプラズマ特性の擾乱は比較的小さいものと考えている。

Fig. 18(a) と Fig. 18(b) にキセノンガス流量をそれぞれ0および100 mL/minと設定したときのアーク外観を示す。またFig. 18(c) はFig. 18(b) からFig. 18(a) の輝度値を差し引くことで得られた画像である。この減算処理はキセノンとアルゴンの発光から、アルゴンのみの発光を差し引くことできセノン原子由来の発光をより明確に可視化したに等しい。図中の白の実線は電極の形状を示し、白の破線は陰極の内径を示している。

Fig. 18(a)より、キセノン原子由来の発光領域は陽極の段差に沿って中心軸よりもやや右側に流されており、段差の上段の表面におけるキセノン原子由来の発光は僅かであった。一方Fig. 18(b) からは微弱ではあるものの、Fig. 18(a) よりも広い領域で段差上段の表面においてキセノン原子由来の発光が確認された。すなわちこの結果は、溶接トーチを傾けることによって陰極中心軸に沿って流れるアルゴンプラズマ気流が段差に遮られつつ、溶接トーチを傾けない場合に比べて段差上段に流れるプラズマ気流の流量が増加したことを示している。この高速のプラズマ気流によってその周りのシールドガスも流速が増加したため、Fig. 8 に示したように溶接トーチを}

Fig. 17 Arc voltage for each inner gas flow rate.

Fig. 18 Images of xenon light emitting area by image processing.

(a) Arc appearance without xenon
(b) Arc appearance with xenon
(c) Subtracted image ((b)–(a))

Fig. 19 Images of xenon light emitting area on the anode with step after image processing using different torch angles (arc length = 5 mm).
傾けることで段差上段側におけるシールド性が向上したと考えられる。次にアーク長がアーク中心部の流れを与える影響を調査した。Fig. 20(a)にアーク長を3 mmと設定し、溶接トーチを鉛直に配置したときの結果を、Fig. 20(b)にアーク長を2 mmと設定し、溶接トーチを鉛直方向から30度傾斜させたときの結果を示す。図中の白の破線は電極の形状を示している。溶接トーチを鉛直に配置した場合のアーク長を5 mmと設定したFig. 19(a)と同様に、陽極の上段と下段の表面でケシノン原子由来の発光が確認された。しかしながら溶接トーチを傾けたFig. 20(b)では、ケシノン原子由来の発光領域は段差上段側では確認できなかった。このことからアーク長が短い場合は、溶接トーチを傾けることで高速なプラズマ気流のほとんどが重ね継手部の段差によって遮られたことが明らかとなった。

以上の結果より本実験では、中空のタングステン電極先端からケシノンガスを流し、ケシノン原子の固有の線スペクトルを観察することで、陰極先端近傍で高速化したプラズマ気流の可視化に成功した。また段差を有する陽極を用いた場合、アーク長が長いと溶接トーチを傾けることで段差上段側のケシノンの発光領域は広がり、段差上段側に流れプラズマ気流の流量が増加したことが示唆された。一方、アーク長が短いと溶接トーチを傾けた際に高速化したプラズマ気流は段差上段側では確認されなかった。このことからアーク長が短い場合において、溶接トーチを傾けた場合でも、アーカーの指向性によって高速なプラズマ気流は電極中心軸に沿って流れ、この場合には段差上段側が風下側であり、また段差から陰極先端までの距離が長いために、狙い位置に到達したプラズマ気流は重ね継手の上段側へ流れやすくなる。その結果、溶接トーチを傾けることで重ねた上段側と流れプラズマ気流の流量が増加する。この比率気流によって段差の上段側では周囲のシールドガスの流速を密度勾配が生じるほど増加し、大気の侵入を防ぐことで低酸素濃度領域が広がる。一方、もはや電極を傾けない場合のシールドガスの流量が溶接トーチを傾けない場合に比べて減少する。これにより周囲のシールドガスの流速は密度勾配が生じるほど増加するものの、低酸素濃度領域は狭くなり、段差上段側の低酸素濃度領域は段差上段側にやや偏る(Fig. 21(b))。溶接トーチを傾けることで重ねた上段側と流れプラズマ気流の流量が増加する。この比率気流によって段差の上段側では、周囲のシールドガスの流速を密度勾配が生じるほど増加し、大気の侵入を防ぐことで低酸素濃度領域が広がる。一方、もはや電極を傾けない場合のシールドガスの流量が溶接トーチを傾けない場合に比べて減少する。これにより周囲のシールドガスの流速は密度勾配が生じるほど増加するものの、低酸素濃度領域は狭くなり、段差上段側の低酸素濃度領域は段差上段側にやや偏る(Fig. 21(b))。

3.4 重ねすぎ肉溶接におけるシールドガス流がシールド性に及ぼす影響

本研究で示した結果から、重ねる線上のスラック形成過程に影響を及ぼすと考えられるシールドガス流とシールド性の関係や、トーチ角度やアーク長が重ねすぎ肉溶接中のシールド性に及ぼす影響について考察する。Fig. 21とFig. 22に、本研究から得られた結果をまとめた模式図を示す。Fig. 21はアーク長が長い場合の模式図であり、Fig. 22はアーク長が短い場合の模式図である。どちらの場合においても、緑色の矢印は母材表面の低酸素濃度領域を表している。また、赤や青に色づけられた実線の矢印と破線の矢印はそれぞれプラズマ気流とシールドガス流であり、赤が高速の流れ、青が低速の流れを表している。

アーク長が長い条件において、溶接トーチの傾きがない場合には高速のプラズマ気流は重ね継手部の段差の上段側および下段側に分かれて流れ、そして高速なプラズマ気流によって、周囲のシールドガスの流速は密度勾配が生じるほど増加し、大気の侵入を防ぐことで重ね継手部をシールドし低酸素濃度領域が形成される(Fig. 21(a)。溶接トーチを傾けた場合でも、アークの指向性によって高速のプラズマ気流は電極中心軸に沿って流れ、この場合には段差上段側が風下側であり、また段差から陰極先端までの距離が長いために、狙い位置に到達したプラズマ気流は重ね継手の上段側へ流れやすくなる。その結果、溶接トーチを傾けることで重ねた上段側と流れプラズマ気流の流量が増加する。この比率気流によって段差の上段側では周囲のシールドガスの流速を密度勾配が生じるほど増加し、大気の侵入を防ぐことで低酸素濃度領域が広がる。反対に、段差の下段側ではプラズマ気流の流量が溶接トーチを傾けない場合に比べて減少する。これにより周囲のシールドガスの流速は密度勾配が生じるほど増加するものの、低酸素濃度領域は狭くなり、段差上段側の低酸素濃度領域は段差上段側にやや偏る(Fig. 21(b))。
このように本研究では、酸素濃度計測によってシールド性を可視化した。またシュリーレン法や、中空電極とキセノンガスを用いた実験観察によってシールドガス流や高速のプラズマ気流を可視化した。その結果、重ね縦手を模擬した段差の上段側と下段側に高速のプラズマ気流が分かれて流れることで周囲のシールドガスの流れが増加し、縦手部表面をシールドして大気の侵入を防いで低酸素濃度領域が形成されるという。シールドガス流とシールド性の関係が明らかとなった。また重ね縦肉溶接では、アーク長によってトーチ角度を与えた際のプラズマ気流の流れが異なり、シールド性に影響を及ぼすことが明らかとなった。これらの結果は、重ね縦肉溶接ではアーク長を適切に制御することによりシールド性を改善し、スラグの発生量を低減できる可能性を示唆している。

4. 結 言

本研究では、重ね縦肉溶接中のスラグ形成過程に影響を及ぼすと考えられるシールドガス流とシールド性の関係を明らかにすることを目的とし、重ね縦手を模した段差上における酸素濃度の計測を行った。またシュリーレン法による観察および中空電極とキセノンガスを用いた観察によって、シールドガス流やアーク中心軸上を流れる高速のプラズマ気流を可視化した。本研究で得られた知見を以下に示す。

(1) 陽極上の酸素濃度を計測したところ、陽極に設けた段差の上段側、下段側に表面において酸素濃度が100 ppm以下となる低酸素濃度領域が確認された。アーク長を長く設定した場合、溶接トーチを傾けることによってこの低酸素濃度領域は段差の上段側へとやや偏った。一方でアーク長が短い場合、溶接トーチを傾けることで段差下段側の低酸素濃度領域に大きな変化はなかったが、上段側の低酸素濃度領域は狭くなり、シールド性が悪くなった。

(2) シュリーレン法を用いた観察によって、陰極端端付近から陽極表面に向かって輝度値が大きい帯状の領域が確認される。アーク長を短く設定し溶接トーチを傾ける場合では、陽極に設けた段差上段において陰極先端付近から陽極表面に向かう輝度値が小さい帯状の領域は確認されず、段差の上段を流れるシールドガス流は低速であることが示唆された。

(3) 陰極中心軸に設けられた貫通穴を介してキセノンガスを供給し、アーク内のキセノン原子由来の発光を観察した結果、陰極中心軸に沿った高速のプラズマ気流が可視化された。溶接トーチを傾けない場合、もしくは溶接トーチを傾けてアーク長を長く設定した場合では、段差の上下段に近い低酸素濃度領域においてキセノン原子由来の発光が確認された。しかしながら溶接トーチを傾け、アーク長を短く設定した場合では段差の下段側においてキセノン原子由来の発光は確認されず、段差の上段を流れるシールドガス流は低速であることが示唆された。

Fig. 21 Schematic illustration of shieldability with long arc length.

Fig. 22 Schematic illustration of shieldability with short arc length.
されなかった。

(4) 本研究で得られた実験結果から、重ね継手を模擬した段差の上段側と下段側に高速のプラズマ気流が分かれて流れることで周囲のシールドガスの流速が増加し、継手部表面をシールドして大気の侵入を防いで低酸素濃度領域が形成されるという、シールドガス流とシールド性の関係が明らかとなった。

(5) アーク長が長い場合は溶接トーチを傾けると低酸素濃度領域は短かくなる。しかしながらアーク長が短い場合は、溶接トーチを傾けると高速のプラズマ気流がシールドガスを流すことで周囲のシールドガスの流速が増加し、継手部シールド性が悪化した。これらは重ねすみ肉溶接においてアーク長を適切に制御することによりシールド性を改善し、スラグの発生量を低減できる可能性を示唆していた。

参考文献
1) K. Ikai, R. Yamasaki, Y. Yokota, M. Tanaka, N. Saito and M. Fukahori: Welding Consumables and Processes to Improve Rust Prevention Performance, Journal of the Japan Welding Society, 89-6 (2020), 409-415. (in Japanese)
2) I. Masumoto: On the Chemical Reactions in Molten Steel with CO₂, O₂, Argon Welding (Report 2) - Oxidizing Reactions of Carbon, Silicon and Manganese-, Journal of the Japan Welding Society, 29-6 (1960), 464-473. (in Japanese)
3) 溶接学会・日本溶接協会編：溶接・接合技術総論，産報出版，(2016).
4) M. Tanaka, M. Fukahori, T. Ogawa, M. Miyata and R. Suzuki: Basic examination aimed to develop low slag welding process for galvanized steel sheet -2nd Report: Study on influence that gas shield nozzle gives to atmosphere involution-, Preprints of the National Meeting of JWS, 97 (2015), 444-445. (in Japanese)
5) R. Yamasaki, K. Ikai and Y. Yokota: Low-Slag Welding Process for Automotive Steel Sheets, Research and development, Kobe Steel engineering reports, 69-1 (2019), 98-104. (in Japanese)
6) S. Miki, K. Konishi, M. Shigeta, M. Tanaka, A. Murata and T. Murata: Experimental Measurements of Gas Shielding Characteristics in TIG Welding with a Constricted Nozzle, Quarterly Journal of the Japan Welding Society, 36-1 (2018), 21-25. (in Japanese)
7) R. Suzuki, S. Sasaki, Y. Yokota, T. Sato, Y. Shigemori, A. Uenaka, H. Nishimura and H. Kiso: Study of wind-toughness in consideration of multi-pass weld metal quality about Gas Metal Arc Welding, Quarterly Journal of the Japan Welding Society, 32-4 (2014), 242-250. (in Japanese)
8) 流れの可視化学会編：新版流れの可視化ハンドブック，朝倉書店，(1986).
9) N. Mukai, T. Maruyama and R. Suzuki: Research and Development on the Welding Process for Reducing Diffusible Hydrogen, Quarterly Journal of the Japan Welding Society, 36-1 (2018), 86-93. (in Japanese)
10) N. Mukai, S. Tashiro, A. B. Murphy, Y. Inoue, T. Suga and M. Tanaka: Study of Shieldability of the Low Hydrogen Welding Process by Numerical Simulation, Journal of Smart Processing, 9-4 (2020), 199-207. (in Japanese)
11) M. Mizutani: Old and New Visualization Technique of Airflow -Shadowgraph Using Diverging Light-, Journal of the Japan Welding Society, 86-8 (2017), 579-583. (in Japanese)
12) R. J. Adrian: Twenty years of particle image velocimetry, Experiments in fluids, 39-3 (2005), 159-169.
13) M. Schnick, M. Drehers, J. Zschetsche, U. Füssel and A. Spilko-Kohoff: Visualization and optimization of shielding gas flows in arc welding, Welding in the World, 56-1 (2012), 54-61.
14) E. Siewert, G. Wilhelm, M. Hässler, J. Schein, T. Hansen, M. Schnick and U. Füssel: Visualization of gas flows in welding arcs by the Schlieren measuring technique, Welding Journal, 93-1 (2014), 15-58.
15) M. Kabasawa: Welding of High Strength Steel Sheets for Automobiles, Journal of the Japan Welding Society, 60-6 (1991), 495-498. (in Japanese)
16) M. S. Weglowski: Investigation on the electric arc light emission in TIG welding, International Journal of Computational Materials Science and Surface Engineering, 1-6 (2007), 734-749.
17) National Institute of Standards and Technology, the U.S. Department of Commerce: NIST Atomic Spectra Database (https://www.nist.gov/pml/atomic-spectra-database).
18) M. Tanaka, T. Terasaki, M. Ushio and J. J. Lowke: Numerical study of a free-burning argon arc with anode melting, Plasma Chemistry and Plasma Processing, 23-3 (2003), 585-606.
19) M. Tanaka: Physics of Welding Arcs, Journal of the Japan Welding Society, 87-8 (2018), 555-574. (in Japanese)
20) M. Shigeta, M. Tanaka and E. Ghedin: Numerical analysis of correlation between arc plasma fluctuation and nanoparticle growth-transport under atmospheric pressure, Nanomaterials, 9-12 (2019), 1736-1963 (pages).
21) M. Shigeta, T. Sato and H. Nishiyama: Numerical simulation of a potassium-seeded turbulent RF inductively coupled plasma with particles, Thin Solid Films, 435 (2003), 5-12.
22) V. Colombo, E. Ghedini, M. Gherardi, P. Sanibondi and M. Shigeta: A two-dimensional nodal model with turbulent effects for the synthesis of Si nanoparticles by inductively coupled thermal plasma, Plasma Sources Science and Technology, 21-2 (2012), 025001-(12 pages).
23) M. Shigeta: Time-Dependent 3-D Simulation of an Argon RF Inductively Coupled Thermal Plasma, Plasma Sources Science and Technology, 21-5 (2012), 055029-(14 pages).
24) M. Shigeta: Three-dimensional flow dynamics of an argon RF plasma with dc jet assistance: a numerical study, Journal of Physics D: Applied Physics, 46-1 (2013), 015401-(12 pages).
25) M. Shigeta: Turbulence modelling of thermal plasma flows, Journal of Physics D: Applied Physics, 49-49 (2016), 493901-(18 pages).
26) M. Shigeta: Numerical Study of Axial Magnetic Effects on a Turbulent Thermal Plasma Jet for Nanopowder Production Using 3D Time-Dependent Simulation, Journal of Flow Control, Measurement & Visualization, 6 (2018), 107-123.
27) M. Shigeta: Modeling and Simulation of a Turbulent-like Thermal Plasma Jet for Nanopowder Production, IEEE Transactions on Electrical and Electronic Engineering, 14 (2019), 16-28.
28) M. Shigeta: Simulating Turbulent Thermal Plasma Flows for Nanopowder Fabrication, Plasma Chemistry and Plasma Processing, 40-3 (2020), 775-794.
29) 溶接アーク物理研究委員会編：溶接プロセスの物理，図書館法人溶接学会，(1996).
30) S. Tashiro, M. Tanaka, M. Nakatani, M. Furubayashi and Y. Yamazaki: Properties of Mass and Heat Transfer for Tube Cathode Arcs, Quarterly Journal of the Japan Welding Society, 25-1 (2007), 3-9. (in Japanese)