Phytochemical Analysis and Antibacterial Activities of *Terminalia pallida* against *Bacillus subtilis*, *Klebsiella pneumoniae*, *Proteus vulgaris*, and *Pseudomonas aeruginosa*

M. John Paul¹, Dr. Ek. Dorcas Joy², Dr. SKM. Basha³

¹Research Scholar, Research and Development Centre, Bharatiar University, Coimbatore, Tamilnadu, India

²Lecturer in Botany, D. K. Government College (A), Nellore Dt, Andhra Pradesh, India

³Department of Botany, Vikrama Simhapuri University, Kavali, Nellore Dt, Andhra Pradesh, India

Abstract: Indian medicine is known as the richest, the first and the foremost among other branches of medical knowledge that is available elsewhere on the globe. Much of the information was amply recorded by experienced individuals of this art. The earliest written record of the preparation and use of medicine from plants is in the Rig-Veda. Atharvanaveda documented more details on medicinal herbs and their varied utility. Throughout the history of man, plant drugs have played a vital role in healing and curing illness. Many indigenous methods were in use for centuries to treat various ailments. To elevate the medicinal properties, Different parts of *Terminalia pallida* were collected from different localities of Veligonda hill range, Eastern Ghats, Nellore Dt, Andhra Pradesh, India. The methanolic extracts of various parts of the plants were qualitatively screened for phytochemicals by using standard procedures which revealed the presence of various important bioactive chemical entities. Antibacterial activity of the methanolic extracts of stem bark and fruit were evaluated against *Bacillus subtilis*, *Klebsiella pneumoniae* and *Proteus vulgaris*, *Pseudomonas aeruginosa*. The methanolic extracts of these plant parts have exhibited significant broad spectrum antibacterial activities.

Keywords: Stem bark, Antibacterial, Bioactive

1. General Introduction

Organic analytical study is one of the important and rapidly extending areas of plant drugs useful in pharmacognostical studies. The study helps in standardizing and differentiating the drugs and to provide adequate data for laying down pharmacopoeial standards. The Phytochemical evaluation of the selected crude drugs involves 1) organic analysis for active principles and 2) chromatography of different extracts.

Preliminary Phytochemical studies

2. Introduction

Phytochemical constituents are the basic source for the establishment of several pharmaceutical industries. The constituents present in a drug or plant play a significant role of crude drug. It is a qualitative chemical evaluation which indicates spectrum of chemical constituents present in a plant drug. Thus the Phytochemical screening is very important in identifying new sources of therapeutically and industrially important compounds like alkaloids, flavonoids, phenolic compounds, saponins, steroids, tannins, terpenoids etc. In pharmacognostical study, detection of these active principles are of great importance since many plant based drugs like aconite, atropine, brucine, caffeine, codeine, colchicines, digitoxin, digoxin, ephedrine, morphine, papaverine, pilocarpine, physostigmine, protopine, quinine, reserpine, scopalamine, strychnine, vinblastine, vincristine and taxol are widely used now-a-days in medicine for production of various pharmaceutical drugs. In general the organic compounds in plants can be categorised into three groups viz., primary metabolites, secondary metabolites and semantides. The primary metabolites (carbohydrates, proteins, lipids, cellulose and chlorophyll) are the basic constituents of the plant. They occur universally in the plant and play a vital role in the function of cell.

The compounds that are responsible for therapeutic effect are usually the secondary metabolites. These are selective and accumulate in the various parts of the plant cells. They synthesize either for a particular plant or may be translocated from other areas of active synthesis in the plant. Semantides are the information carrying molecules. DNA is primary, RNA is secondary and proteins are tertiary semantides.

Plant Material Collection

During the exploration of ethno-medico-botanical survey, the stem bark and fruits of *Terminalia pallida* were collected from different localities of Veligonda hill range, Eastern Ghats, Nellore Dt, Andhra Pradesh, India. These plant parts (Stem bark and fruit) were thoroughly washed with water and sufficient quantity of samples collected and chopped off into small fragments and shade dried. The dried samples were ground to make coarse powder (each 1 kg) and stored in polythene containers at room temperature. These samples were used for the detection of various secondary metabolites. Phytochemical screening was done following standard procedure adopted by Harborne (1973) and Gibbs (1974).
3. Experimental Studies

Alkaloids test: The methanolic extract was evaporated to dryness and the residue obtained was digested with 1% Hydrochloric acid. The resulting acidic solution was divided into two parts. To one part was added Mayer’s reagent and to the second part dragendorff’s reagent. Appearance of precipitate or turbidity indicates the presence of alkaloids.

Preparation of reagents
1) Mayer’s reagent: 1.3 g of Mercuric chloride and 5 g of Potassium iodide were dissolved separately in 60 ml and 10 ml of double distilled water and both the solutions were mixed and diluted to 100 ml.
2) Dragendorff’s reagent: 8 g of the Bismuth nitrate was dissolved in 20 ml of conc. nitric acid and 27.2 g of Potassium iodide in 50 ml of double distilled water. Both the solutions were allowed to stand till KIO₃ crystallized out. Supernatant was decanted and final volume was adjusted to 100 ml.
3) Flavonoids: The plant extract was tested for flavonoids by shinoda’s reaction. To a few ml of Methanolic extract, conc. Hydrochloric acid, Magnesium powder and a few fragments of Mg metal was added. The presence of flavonoids was identified by the development of pink or magenta or red coloured flame.
4) Terpenoids (Liebermann - Burchard’s test): The Liebermann-Burchard’s reaction was carried out by adding 0.5 ml of H₂SO₄ along the side of the test tube containing a mixture of Methanolic HCl and Acetic anhydride (0.5 ml each). Formation of colour from green to bluish-green (sometimes via red or blue) indicate the presence of terpenoids.
5) Steroids (Salkowski reagent): Development of wine red colour on adding conc. H₂SO₄ and CHCl₃ to the Methanolic extract indicate the positive test for steroidal compounds.
6) Lignans: The plant extract was tested for the presence of lignins by adding conc. HCl and 2% Forfuraldehyde. Development of red colour indicates the presence of lignans.
7) Indoles: The development of violet colour in the methanolic extract on adding Ehrlich reagent is considered as a positive reaction test.
8) Carbohydrates (Molisch test): To the methanolic extract, α-naphthol solution (1.0g dissolved in 100 ml of each ethanol w/v) was added. Then Conc. H₂SO₄ was added gently along the walls of the inclined test tube. Formation of a red to violet colour indicate the presence of carbohydrates.
9) Test for reducing sugars: To 5 ml of Benedict’s reagent, 5 ml of the test solution was added. The tubes were incubated in boiling water on water bath for 10-30 minutes. The development of an orange red precipitate indicates the presence of reducing sugars.
10) Proteins (Million’s test): Million’s reagent (solution of Mercuric nitrate in nitric acid) was added to 20 ml of boiling Methanolic extract. Formation of white precipitate that gradually turns red upon heating was observed for the presence of proteins.
11) Phenolic compounds: To the test solution 1-4 drops of 1% Ferric chloride was added. Appearance of intense colour in the extract was observed for the presence of phenolic compounds.
12) Anthocyanidins: The formation of red or purple colour with the plant extract, on adding equal volume of Methanolic HCl was taken as a positive reaction for anthocyanidins.
13) Anthraquinones: 20 ml of benzene was added to 5 g of plant powder and filtered. To the filtrate 5 ml of 10% Ammonium hydroxide solution was added and shaken well. The formation of pink, red or violet colour in the ammonial phase indicates the presence of anthraquinones (Wall et al., 1954 anf Frans Woth, 1966).
14) Saponin test: The plant extract was evaporated to dryness. Tap water was added and shaken vigorously in a graduated cylinder for 15 minutes. Formation of a persistent foam was taken as a positive reaction test.
15) Tannins: The Methanolic extract was concentrated and the residue was dissolved in water and tested with 1% Gelatin solution and 1% Gelatin salt solution (1g gelatin dissolved in 10g NaCl w/w) to separate volumes. The appearance of white precipitate indicates the presence of tannins.

Table 1 (a): Preliminary Phytochemical screening of Terminalia pallida (Methanolic Extract)

Compound	Stem Bark	Fruit
Alkaloids	-	-
Flavonoids	+	+
Indoles	+	
Leucoantho-cyanins	+	+
Steroids	+	
Carbohydrates	+	+
Steroids	+	
Saponins	+	+
Steroidal nucleus	+	
Tannins	+	+
Proteins	+	+
Lignins	+	+
Methylenedioxy functional compounds	-	

4. Screening for Selective Secondary Constituents

A. Phenolic compounds

a) Extractive procedure
The phenolic constituents were extracted by following the method given by Bate Smith (1954) and Ibrahim and Towers (1960). About 25g of healthy plant material was macerated with 100ml of 2N Hydrochloric acid,(HCL). The homogenate was digested on a boiling water bath for about half-an-hour. The contents were cooled and filtered through Whatman No.1 filter paper. The filtrate was extracted repeatedly with pexoxide free diethyl ether. All the extracts were pooled and concentrated to 100ml and was treated three times with 25ml of 5% anhydrous sodium carbonate solution. The pooled carbonate solution was adjusted to pH 2.0 with Conc. Hydrochloric acid.

The acidified fraction at pH 2.0 was extracted with equal volumes (25ml) of fresh diethyl ether thrice. The combined
other extracts were washed with distilled water repeatedly till all traces of hydrochloric acid was removed. The other soluble water was removed by freezing the extract. The ether was evaporated to dryness on water bath at 98°C and the resulting phenolic compound residue was dissolved in 1ml of 95% ethanol. This was stored at low temperature in dark container for ready use.

b) Identification

About 2g of fresh weight equivalent to the final alcoholic extract was spotted on 23 x 29 cm whatmann No.1 Chromatographic filter paper with the help of micro pipette. The origin of the spot area was dried immediately with the help of hair-drier. Two dimensional ascending Chromatographic technique was adapted with benzene-acetic acid-water (60:70:30 v/v/v, upper layer) in the direction and sodium formate-formic acid-water (10:1:200 w/v/v) in the second direction. The Chromatographic chambers were saturated with the above solvent systems one day before the development of the Chromatograms at 22 to 24°C. The sheets after development were removed from the chambers and dried at room temperature. The dried sheets were observed under Ultra violet light and fluorescent regions were marked. The papers while exposing to Ammonia vapours were also observed under UV light and new fluorescent spots were marked.

The separated phenolic compounds on the Chromatograms were identified by comparison of Rf values and individual spot colours of Chromogenic sprays. The final confirmation was made with authentic samples by co-chromatography.

c) Chromogenic spray reagents

i) Diazotized sulphanilic acid reagent

25ml of freshly prepared 5% sodium nitrate was slowly added to 5ml of sulphanilic acid solution (900mg of sulphanilic acid was dissolved in 9ml of Conc. HCl and the solution was diluted to 100ml with H2O) at 0°C. To intensify the colours of the developed spots, 20% Sodium Carbonate solution was sprayed to the wet sheets (sprayed at 0°C immediately after spraying the above solution).

Table 1b: Phenols

Compound	Terminalia patilida	Stem Bark	Fruit
Digallic acid	+	+	+
Gallic acid	+	+	+
Ellagic acid	-	-	-
Aesculetin	-	-	-
Cis-p-coumaric acid	-	-	-
Iso-chlorogenic acid	-	-	-
Chlorogenic acid	+	+	+
Caffeic acid	-	-	-
Protocatechic acid	+	+	+
Gentisic acid	-	-	-
Scoopoletin acid	-	-	-
Phloretic acid	+	+	+
p-Hydroxy benzoic acid	+	+	+
α-Resorcylic acid	+	+	+
β-Resorcylic acid	-	-	-
trans-p-coumaric acid	+	+	+
Cinnamon acid	+	+	+
Syringic acid	+	+	+

Table 1c: Rf values and colour reactions of Phenolic compounds on Paper Chromatograms

Compound	Rf values in solvent	U.V fluorescence	Silphanic reagent	P-Nitraniline reagent	
	1	2	Without NH3	With NH3	
Digallic acid	0.29	0.69	None	Blue	Violet
Gallic acid	0.45	0.66	violet	Violet	Blue
Ellagic acid	0.02	0.28	None	Blue green	Blue green
Aesculetin	0.28	0.33	white blue	Very bright blue	Brown
Cis-p-coumaric acid	0.42	0.77	Light blue	Deep blue	Dark brown
iso-chlorogenic acid	0.01	0.31	Faint blue	Duck egg green	Light orange
chlorogenic acid	0.01	0.76	Faint blue	Duckegg green	Orange
Caffeic acid	0.06	0.38	Blue	Bright blue	Buff
Protocatechic acid	0.05	0.58	None	Buff	Light brown
Gentisic acid	0.14	0.68	Bright blue	Yellow	Buff
Scoopoletin acid	0.30	0.51	Blue	Very bright blue	Yellow
Phloretic acid	0.66	0.77	None	Yellow	Purple white
p-Hydroxy benzoic acid	0.38	0.68	None	Bright yellow	Light pink
α-Resorcylic acid	0.16	0.83	None	None	Brown
β-Resorcylic acid	0.28	0.75	None	None	Dark brown
trans-p-coumaric acid	0.50	0.45	Light blue	Deep blue	Light brown
Cinnamon acid	0.78	0.57	None	Orange	None
Syringic acid	0.97	0.64	None	None	Orange yellow
p-Coumarylquinic acid	0.42	0.77	Light blue	Deep blue	Dark brown
Meliolic acid	0.51	0.76	None	Orange yellow	Purple
Cis-Ferulic acid	0.89	0.65	Light blue	Blue	Purple
trans-Ferulic acid	0.80	0.31	Light blue	Blue	Purple
B. Flavonoids Compounds

a) Extractive procedure
The flavonoid compounds were extracted according to the method given by Markham (1982). About 5g of powdered plant material was extracted in two steps. First 18ml of Methanol and 2 ml of water (9:1) were added, shaken well and kept for one day at room temperature. The supernatant solution of the extract was taken and transferred to another test tube. Secondly Methanol and water of 5ml each (1:1) was added to the remaining residue, stirred well and the mixture left for 24 hours. The two extracts were combined, mixed well and filtered through cotton wool. Later the filtrate was evaporated to about 1/3 the original volume till most of the methanol was removed. The resultant aqueous extract was extracted with chloroform repeatedly for 3 times. The solvent extracted aqueous chloroform layer was evaporated to dryness under vacuum in a rotary evaporator. The dried residue was saturated with 1 ml of 95% alcohol and stored in a dark place at low temperature.

b) Identification
The extracts containing flavonoids were separated in suitable quantities on Whatmann No.1 Chromatographic filter paper(23x29 cm) adopting the ascending technique using the solvent system iso-propyl alcohol : Ammonia (25%) : Water(8:1:1/v/v/v) and n-butanol:acetic acid: water(4:1.5/v/v/v) (top layer was used). The dried Chromatograms were examined under UV lamp and the fluorescent spots were marked. The papers while exposed to Ammonia Vapours were also observed under UV lamp and the new fluorescent regions were marked. The flavonoid compounds were identified by comparing the Rf values and colours with those of the authentic samples on the Chromatograms. Co-Chromatographic studies were conducted with authentic markers to confirm the identification.

C. Chromogenic spray reagents

Diazoitized sulphalnic acid reagent (Markham, 1982)
0.3% solution of sulphalnic acid in 8% HCl (25ml) was mixed with 5% Sodium nitrite solution(1.5ml) just before use. The Chromatographic sheets were sprayed with this mixture and with a 20% solution of anhydrous Sodium carbonate.

1% Alcoholic ferric chloride: 1g of Ferric chloride was dissolved in alcohol and made up to 100ml.
1% Alcoholic Aluminium chloride: 1g of Aluminium chloride was dissolved in alcohol and made up to 100ml, just before spraying of the chromatographic sheets.

Solvent	Method	Description
Benzene : Acetic acid : Water(60:70:30)	Sodium Extractive Identification	New Compound kept dried flavonoid Myricetin Luteolin Rutin天酸 given Acetic acid

D. Amino acids

a) Extrative procedure
Amino acids were extracted following the method of Das Chowdary et al., (1967). About 5g of plant material was cut into small pieces and plunged immediately into a round bottomed flask containing 20ml of 80% Ethanol. It was refluxed for 30 minutes over a boiling water bath. The boiled material was ground in mortar using additional volumes of 10ml ethanol 80% (v) and centrifuged at 2000 rpm. The supernatant was collected and the Ethanol removed in vacuum. The aqueous extract was passed through Dowex 50W-X8 (H+ from 20-50 mesh) column (1x10cm), the amino acids were eluted from the column with 50ml of 2N Ammonium hydroxide. The elute was evaporated to dryness and the residue was saturated with 95% Ethanol (1ml).

b) Identification
The extracts containing amino acids were separated on Whatmann No.1 Chromatographic filter paper(23x28 cm)

Compounds	Terminalia pallida	Stem	Bark	Fruit
Quercetin	+	+	+	
Rutin	+	+	+	
Myricetin	+			
Luteolin	-			
Apigenin	+			
Orientin	-			
Vitexin	+			

Compound	Rf values in solvent	U.V. fluorescence	Sulphanilic Reagent	1% Alcoholic Ferric Chloride	1% alcoholic Aluminium Chloride				
	1	2	Without NH3	With NH3	Without NH3	With NH3			
Quercetin	0.26	0.64	yellow	Light yellow	Bright yellow	Green	Yellow		
Rutin	0.03	0.57	Orange brown	Yellow	Green	Olive	Grey yellow		
Myricetin	0.07	0.43	Yellow	Bright yellow	Light yellow	Olive	Grey yellow		
Luteolin	0.44	0.78	Dull yellow	Yellow	Light red	Pale green	Pale yellow		
Apigenin	0.61	0.91	Red brown	Red brown	Pink	Pale green	None		
Orientin	0.78	0.31	Yellow	Yellow green	Grey	None	None		
Vitexin	0.91	0.42	Dull yellow	yellow	Bright red	none	None		
employing two-dimensional ascending technique using the solvent system:
1) Sec. butanol : Formic acid : Water(75:13:12v/v/v)-1st direction.
2) Buffer saturated phenol (1:2v/v)-2nd direction(6.3 g of Sodium citrate and 3.7g of Potassium dihydrogen phosphate were dissolved in 100ml of distilled water. To this 200ml of distilled phenol was added)
The amino acids were identified based on comparision of Rf values, colours and with those of authentic samples by co-chromatographic studies.

C) Chromogenic spray reagents

Ninhydrin: It was prepared by dissolving 200 mg of Ninhydrin in 98ml of n-butanol with 2ml of glacial acetic acid.

Table 3a: Amino acids
Compounds
Aspartic acid
Arginine
Asparagine
α-Alanine
β-Alanine
2-Aminobutyric acid
Cystaine
Cystine
Glutamic acid
Glutamine
Glycine
Histidine
Isoleucine
Leucine
Lysine
γ-Methylene glutamic acid
γ-Methylene glutamine
Norleucine
Ornithine
Phenylalanine
Proline
Serine
Threonine
Tryptophan
Valine
Tyrosine

Table 3b: Rf values and colour reactions of Amino acids on Paper Chromatograms
Compounds
L-Aspartic acid
DL-Arginine
DL-Asparagine
α-Alanine
β-Alanine
DL-2-Aminobutyric acid
L-Cystaine
L-Cystine
L-Glutamic acid
L-Glutamine
L-Glycine
L-Histidine
DL-Isoleucine
L-Leucine
L-Lysine
γ-Methylene glutamic acid
γ-Methylene glutamine
DL-Norleucine
DL-Ornithine
DL-Phenylalanine
L-Proline
DL-Serine
DL-Threonine
DL-Tryptophan
DL-Valine
L-tyrosine

Solvents: 1. Sec. butanol : Formic acid : Water(75:13:12)
2. Buffer: Phenol(1:2)

E. Anthocyanidins

a) Extractive procedure
The anthocyanidin constituents were extracted according to the method described by Harborne (1973).

About 5g of plant material was immersed in 20ml of 2N HCl in a boiling test tube and heated for 30-40 minutes at60c. The extract was cooled and filtered. The filtrate was washed twice with 20 ml of ethyl acetone to remove flavones. The remaining aqueous extract was further heated at 80c for 3 minutes to remove the last traces of ethyl acetate. The pigment was re-extracted again with a small volume of Isoamyl alcohol. The Ethyl acetate extract was evaporated to dryness on a boiling water bath. The anthocyanidin in the residue was diluted with 1ml of 1% Methanolic HCl and preserved at low temperature in dark for future use.

b) Identification
The extracts containing anthocyanidins was separated on 23 x 29 cm Whatmann No.1 Chromatographic filter paper. Uni-dimensional Chromatographic ascending technique was employed with Conc. Hydrochloric acid, Formic acid, Water (2:5:3 v/v/v) and n-butanol : Acetic acid : water (4:1:5). The Chromatograms developed from the said solvent systems were taken out from the glass chambers and dried at room temperature. The fluorescent regions of dried papers were marked under UV light. The Rf values and colours of the spots were determined by comparing those of the authentic markers on the Chromatograms.

Table 4b: Rf Values and Colours of Anthocyanidins on Paper Chromatograms
Compounds
Compound
1
2
3

Solvents: 1. Conc. Hydrochloric acid : Formic acid : Water(2:5:3)
2. n-butanol : Acetic acid : Water(4:1:5).

Volume 6 Issue 12, December 2017

www.ijsr.net

Licensed under Creative Commons Attribution CC BY

Paper ID: ART20178685

DOI: 10.21275/ART20178685

197
F. Lipids

a) Extractive procedure

Lipids were extracted following the method adopted by Hoppe and Heitefuss (1974).

A solvent mixture consisting of 30ml Chloroform, 60ml of Methanol and 20 ml Water(1:2:0.8 v/v/v) was taken and allowed to boil. About 5g of plant material was homogenized in the above solvent mixture. The contents were filtered and taken separately. The residual mixture was treated with 70ml Methanol and the filtrate taken. The residue was again washed with 100ml Chloroform. All the above filtrate mixtures were taken in a separating funnel and 90ml of water added. The mixture now contains Chloroform: Methanol: Water in the ratio of 2:2:1.8 respectively and the mixture were allowed to settle. The lower lipid layer containing chloroform was separated and transferred into a breaker. The upper water layer was treated with 50ml of Chloroform successively for three times. All the extracted Chloroform layers were evaporated to dryness in a vacuum by rotary evaporation maintained at 40°C. The residue was treated with 2ml of Benzene to remove the traces of chlorophyll if present. Now the final lipid residue was dissolved in 2 ml of Chloroform and stored at low temperature in dark until use.

Using micropipette, one gram equivalent of lipid extract was taken and potted on TLC plates. The spotted areas were allowed for immediate dryness with the help of a drier. The dried plates were run in unidimensional ascending Chromatography by using TLC glass chambers. The chambers were saturated with developing solvents one day before the plates were developed.

Solvent systems

1) Chloroform: Methanol: Acetic acid: Water (170:25:25:3 v/v/v/v)
2) Acetone: Benzene: Water(91:30:8 v/v/v).

The plates were placed in airtight tanks. The developed plates were removed and dried at room temperature and exposed to Iodine vapours to visualize all the lipid compounds.

The TLC plates were sprayed with 25% Sulphuric acid reagent with the help of an automizer for the clear detection of various lipid layers. The lipids were identified by comparison of Rf values, color and with those of authentic samples by Co-Chromatographic studies.

c) Chromogenic spray reagent

The TLC plates were sprayed with 25% Sulphuric acid and heated to 230°C for 15 minutes, and the colour observed. Glycolipids gave red brown while phospholipids gave bright, red and other lipids gave pale brown colour spots on white background.

Table 5a: Lipids
Compound
Phosphatidyl serine
Phosphatidyl inositol
Phosphatidyl Cioline
Phosphatidyl ethanolamine
Di galactosyl diglyceride
Phosphatidyl glycerol
Sulphoquinovosyl diglyceride
Monogalactosyl diglyceride
Steryl glycoside

Table 5b: Rf values and colour reaction of lipids on thin layer Chromatograms
Compound
Phosphatidyl serine
Phosphatidyl inositol
Phosphatidyl Cioline
Phosphatidyl ethanolamine
Di galactosyl diglyceride
Phosphatidyl glycerol
Sulphoquinovosyl diglyceride
Monogalactosyl diglyceride
Steryl glycoside

Physicochemical studies:

For several years, the crude drugs were identified by comparison only with the standard descriptions available. But recently, due to advancement in the field of Pharmacognosy, various techniques are followed to the standardization of crude drugs. Among such techniques, ash and extractive values are considered very important in promoting the quality and in establishing the Pharmacopeial standards of the drug.

Substandard quality of many drugs is due to either faulty collection or incorrect storage. When the constituents of a drug cannot be readily estimated by any other means, ash and extractive values are very useful especially for their evaluation. To prove its acceptability as a drug, studies of ash and extractive values are basically required in determining the quality and purity of selected crude drug.

5. Materials and Methods

The physical constants like ash and extractive values were determined by standard methods (Anonymous, 1985 and Kokate, 1991).

6. Experimental Studies

A. Determination of ash values

The object of ashing crude drugs is to remove all traces of organic matter which may otherwise interfere in an analytical determination. The inorganic salts naturally occurring in drug or adhering to it or deliberately added to as
a form of adulteration are removed by gradual incineration of the drug. Thus the residue remaining after incineration of the powdered drug is known as ash content. The ash values are a criterion to judge the identity or purity and quality of the crude drug.

a) Determination of total ash
Total ash usually consists of Phosphates, Silicates and Carbonates of Potassium, Calcium and Magnesium. About 2 gm of the air dried powdered drug was accurately weighed and taken in a tared silica crucible, which was previously ignited and weighed. The powdered drug was spread as a fine even layer at the bottom of the crucible. The crucible containing the drug was gradually incinerated in a muffle furnace by increasing the temperature. It was heat dull red hot until free from carbon or converted into ash. Later the crucible was allowed to cool and kept in desiccators. The residue was weighed the percentage of total ash calculated with reference to the air dried sample. The residue was weighed the percentage of total ash calculated with reference to the air dried sample. The procedure was repeated till constant result was obtained.

b) Determination of acid insoluble ash
Acid insoluble ash is a part of total ash insoluble in dilute Hydrochloric acid. The acid insoluble ash content is determined and recommended for certain drugs may be coated with dirt and sand. The total ash obtained as described above was treated with 25ml of 10% Hydrochloric acid and boiled for 5 minutes. The insoluble matter was filtered and collected on ashless filter paper (Whatman No.42) and the paper washed with hot water. The insoluble ash was ignited and weighed in a tared silica crucible. The acid insoluble ash of the drug was repeated to get constant results.

c) Determination of water soluble ash
The total ash obtained from the above process was boiled with 25 ml of distilled water for 5 minutes. The insoluble ash was filtered through ash less filter paper (Whatman No.42). The residue was once again washed with water and ignited up to temperature not exceeding 450°C and converted into ash. The difference between the weight of total ash and insoluble matter represent the weight of water soluble ash. The percentage of water soluble ash was calculated with reference to the air dried drug.

B. Determination of extractive values
Extractive values indicate the nature of the constituents present in a crude drug. Based on the diversity in chemical nature and properties of the contents of the drug, various solvents were used for the determination of extractives. The solvents used for extraction dissolve appreciable quantity of substances desired. The methods used to find out the extractive values were as follows.

a) Determination of alcohol soluble extract
Alcohol is an ideal solvent frequently employed to determine various chemical contents like Tannins, Resins etc. Generally, Ethyl alcohol is used for determination of alcohol-soluble extractive. Dilute Alcohol a may also be used in some cases, depending upon solubility of constituents in a crude drug. In the present work, the author used 100 ml of 90% Alcohol for determining crude drug was macerated with 100 ml of 90% Alcohol in a stoppered flask for 24 hours. It was shaken frequently every 6 hours and allowed to stand to 18 hours. Then the extract was filtered rapidly through filter paper, taking precaution against loss of alcohol, about 25 ml of the filtrate was evaporated to dryness in a tared flat bottomed shallow dish, transferred to the oven and dried at 105°C and weighed. The percentage of alcohol soluble extract was calculated with reference to the air dried drug.

Table 6: Ash value of various parts of Terminalia pallida

S.No.	Plant species	Plant Parts	Total ash (%)	Acid insoluble ash (%)	Water insoluble ash (%)
1.	Terminalia pallida	Stem bark	8.65	0.15	0.4
		Fruit	4.00	0.35	2.4

Table 7: Extractive value of the stem bark and fruit of Terminalia pallida

S.No.	Species	Plant Parts	90% alcohol soluble extract (% w/w)	Water soluble extract (% w/w)	Chloroform soluble extract (%w/w)	Pet.Ether soluble extract (%w/w)
1	Terminalia pallida	Stem bark	28.8	32	1.2	1.6
		Fruit	18	4.8	0.4	0.8

Antibacterial Activity
The presence of antimicrobial substances in the higher plants provide a source of inspiration for novel drug compounds as plants derived medicines have made significant contribution towards human health. The antimicrobial compounds from plants may inhibit microbial growth by different mechanism than those presently used antimicrobials and may have a significant clinical value in treatment of resistant microbial strains. Therefore, random screening of plants for active chemicals is as important as the screening of ethnobotanically targeted species (Principle, 1989).

7. Materials and Methods
Collection of medicinal plants: Selected medicinal plant, Terminalia pallida, has been used in the present study and it was collected from Veligonda hill range, Eastern Ghats, Nellore Dt, Andhra Pradesh, India.

Bacterial Cultures: The bacterial cultures were procured from the Department of Microbiology, Sri Venkateswara Institute of Medical Sciences (SVIMS), Tirupati. Pathogenic Gram positive bacteria such as Bacillus subtilis, Klebsiella pneumoniae, and Gram negative bacteria Proteus vulgaris, Pseudomonas aeruginosa, were maintained on nutrient agar slants at 4°C until further used for experimental studies.

Volume 6 Issue 12, December 2017
www.ijsr.net
Licensed Under Creative Commons Attribution CC BY
Preparation of the medium

Nutrient Agar media (P.H 7.0)
For the preparation of 1 lt of Nutrient Agar media ingredients like 1.5 g of beef extract, 1.5 g of yeast extract, 5 g of peptic digest of animal tissue and 5 g of sodium chloride were weighed and added in 500 ml of distilled water and heated with agitation to dissolve the constituents. Finally, the volumes were made upto 1 lt. Before the addition of agar (15 g) the pH of the medium was adjusted to 7.0 by adding few drops of 0.1 N NaOH or HCl using digital pH meter (Elico Pvt. Ltd., Hyderabad). These were then sterilized by autoclaving at 15 lbs pressure at 120°C for 15 min; cooled to 40°C and approximately 20 ml of medium was poured to each 90mm sterilized petridish.

Preparation of inoculum:
Bacteria: 18 hrs old bacterial broth cultures were used as inoculae after adjusting its population to 10^6 CFU/ml (Colony Forming Units) using 0.9% (w/v) sterile saline by the method described by Forbes et al.,(1990).

Preparation of plant extract: The methanolic extracts of the four selected medicinal plants were prepared by dissolving 10gm of fine powder of each medicinal plants separately in 100 ml of methanol solvent. The contents were kept in orbital shaker for 48 h. Then the extract was filtered and it is dried in hot air oven at 40°C. Then the extract was stored under refrigeration at 4°C for further studies.

Preparation of sterile disc: Whatman’s No.3 filter paper was punched into 5 mm disc form and they sterilized, each sterile disc was incorporated individually with 20 – 60 mg/ml of extracts using micropipette. Precautions were taken to prevent the flow of the solvent extract from the discs to the outer surface. The condensed extracts were applied in small quantities on discs and they were allowed to dry in air. Then they were stored at 4°C.

Assay of antimicrobial activity using Disc diffusion method :The antimicrobial activity was performed by employing the disc diffusion method adopted by Bauer et al., (1966) and Cruickshank (1968). The 20 ml of sterilized Muller Hinton Agar was poured into sterile petriplates, after solidification, 100 µl of fresh culture of human pathogens were swabbed on the respective plates. Sterile discs of Whatman No. 1 filter paper of about 6 mm were prepared. The discs were kept over the agar plates using sterile forceps at various concentrations (20, 40, and 60 mg/ml). Streptomycin 10mg/ml containing disc used as standard control. The plates were incubated for 24 h at 37°C and the diameter of the inhibition zones was recorded. The assessment of antimicrobial activity was based on measurement of inhibition zones formed around discs. A zone of inhibition around the disc indicates that the compounds, which diffused into the agar from the disc, inhibited the growth of the organism.

8. Results
Present investigation, antibacterial activity of Terminalia pallida on pathogenic bacterial strains, the plant exhibited significant antibacterial activity. For the Methanol extract of Terminalia pallida at the concentration 60 mg/ml P. vulgaris (16.5mm) was more susceptible, followed by K. pneumonia (15.8mm), B.subtilis (15.4mm) and P. aeruginosa (13mm).

Antibacterial activity of Terminalia pallida:
References

[1] Abdul Rasheed Miah (1995)“Fruit Decoction – Its Soluble Constituents”
[2] Anonymous (1969), Satyavathi, Gupta (1987), Nagaraju&Rao (1989), Vedavathy et al.,(1997) “Medicinal plants use for Diseases”.
[3] Ahmad I, Mehmood Z, Mohammad F.. Screening of some Indian medicinal plants for their antimicrobial properties. J Ethnopharmacol., 1998; 62: 183-193.
[4] Anonymous (1985)&Kokate (1991)Ash and Extracted Values of Physical Constant Values Adopted by Standard Method
[5] Agarwal, S.R,(1981). Trees, flowers and fruits in Indian folk songs, folk proverbs and folk tales.In Jain, S.K. (Ed.), Glimpses of Indian Ethno-botany, 3 – 12.
[6] Ayyappan, A. (1948). Report on the socio-economic studies on aboriginal Tribes of the province of Madras. Government press, Madras.
[7] Amalraj, V.A. (1983).Secondary plant constituents Science Reporter.June issue, CSIR, New Delhi.
[8] Arora, R.K. (1996) Role of Ethno botany in the conservation and use of plant genetic resources in India in S.K. Jain (ed.) Ethno biology in Human Welfare 287-296 Deep publications, New Delhi.
[9] Anuradha S. Upadhye, V.D. Vartak and M.S. Kumbhojkar, (1994) Ethno – Medico Balakrishnan.N.P& K. Subrahmanyam(1960).A New Species of Euphorbia from India.Bull. bot. Surv. India, 2:175 - 176.
[10] Balandrin.M.F&Klocke J.A.(1985) Natural plant chemicals: sources of Industrial and Medicinal Material. Science 228: 1154 – 1160.
[11] Balandrin MFJ, Klocke A, Wurtele E. Natural plant chemicals: sources of industrial and medicinal materials. Science, 1985; 228: 1154-1160.
[12] Balasubramanian, P. & S.N. Prasad. (1996) Ethnobotany and conservation of Medicinal plants of Irulas of Nilgiri Biosphere reserve, In S.K. Jain. (ed.) Ethnobiology in Human Welfare.271-273.Deep publications, New Delhi.

[13] Banerjee (1857) Agency Areas of North Circars&NallaMalai Hills.
[14] Banerjee,L.K, Rao.T.A. Sastry,R.K&Ghosh D 2002 Diversity of Coastal Plants Communicaties in india Botanical Survey of India, Kolkatta.

S. No	Name of the microorganism	20 mg/ml	40 mg/ml	60 mg/ml	Standard (Streptomycin 10 mg/ml)
1.	Bacillus subtilis	7.4 ± 0.44mm	9.84 ± 0.63mm	14.5 ± 0.28mm	23.45 ± 0.65mm
2.	Klebsiella pneumoniae	8.5 ± 1.2mm	10.3 ± 0.6mm	15.82 ± 0.24mm	24.4 ± 0.53mm
3.	Proteus vulgaris	9.4 ± 0.39mm	11.04 ± 0.56mm	16.5 ± 0.35mm	28.53 ± 0.74mm
4.	Pseudomonas aeruginosa	7.2 ± 0.66mm	11.4 ± 0.57mm	13.65 ± 0.56mm	26.25 ± 0.36mm