A Novel Hessian-Free Bilevel Optimizer via Evolution Strategies

Daouda Sow1, Kaiyi Ji2, Yingbin Liang1

1Department of ECE, The Ohio State University
2Department of EECS, University of Michigan, Ann Arbor

sow.53@osu.edu, kaiyiji@umich.edu, liang889@osu.edu

February 3, 2022

Abstract

Bilevel optimization has arisen as a powerful tool for solving many modern machine learning problems. However, due to the nested structure of bilevel optimization, even gradient-based methods require second-order derivative approximations via Jacobian- or/and Hessian-vector computations, which can be very costly in practice. In this work, we propose a novel Hessian-free bilevel algorithm, which adopts the Evolution Strategies (ES) method to approximate the response Jacobian matrix in the hypergradient of the bilevel problem, and hence fully eliminates all second-order computations. We call our algorithm as ESJ (which stands for the ES-based Jacobian method) and further extend it to the stochastic setting as ESJ-S. Theoretically, we show that both ESJ and ESJ-S are guaranteed to converge. Experimentally, we demonstrate that the proposed algorithms outperform baseline bilevel optimizers on various bilevel problems. Particularly, in our experiment on few-shot meta-learning of ResNet-12 network over the miniImageNet dataset, we show that our algorithm outperforms baseline meta-learning algorithms, while other baseline bilevel optimizers do not solve such meta-learning problems within a comparable time frame.

1 Introduction

Bilevel optimization has recently arisen as a powerful tool to capture various modern machine learning problems, including meta-learning (Bertinetto et al., 2018; Franceschi et al., 2018; Rajeswaran et al., 2019; Ji et al., 2020a; Liu et al., 2021a), hyperparameter optimization (Franceschi et al., 2018; Shaban et al., 2019), neural architecture search (Liu et al., 2018a; Zhang et al., 2021), etc. Bilevel optimization generally takes the following mathematical form:

\[
\min_{x \in \mathbb{R}^p} \Phi(x) := f(x, y^*(x)) \\
\text{s.t. } y^*(x) = \arg\min_{y \in \mathbb{R}^d} g(x, y),
\]

where the outer and inner objectives \(f : \mathbb{R}^p \times \mathbb{R}^d \to \mathbb{R} \) and \(g : \mathbb{R}^p \times \mathbb{R}^d \to \mathbb{R} \) are both continuously differentiable with respect to (w.r.t.) the inner and outer variables \(x \in \mathbb{R}^p \) and \(y \in \mathbb{R}^d \).
Gradient-based methods have served as a popular tool for solving bilevel optimization problems. Two types of approaches have been widely used: the iterative differentiation (ITD) method (Domke, 2012; Franceschi et al., 2017; Shaban et al., 2019) and the approximate iterative differentiation (AID) method (Domke, 2012; Pedregosa, 2016; Lorraine et al., 2020). Due to the bilevel structure of the problem, even such gradient-based methods typically involve second-order matrix computations, because the gradient of $\Phi(x)$ in eq. (1) (which is called hypergradient) involves the optimal solution of the inner function. Although the ITD and AID methods often adopt Jacobian- or/and Hessian-vector implementations, the computation can still be very costly in practice for high-dimensional problems with neural networks.

To overcome the computational challenge of current gradient-based methods, Evolution Strategies (ES) (often known as zeroth-order method in optimization) can be a good candidate to eliminate the second-order computations, which uses function values for estimating its gradient in blackbox optimization (Nesterov & Spokoiny, 2017). An ES-based bilevel optimizer has recently been proposed in Gu et al. (2021) for hyperparameter optimization, which uses the ES method to approximate the hypergradient of $\Phi(x)$, treating $\Phi(x)$ fully as a blackbox objective. However, the hypergradient in bilevel optimization has a much more involved structure (see eq. 2) than the gradient in standard minimization problems, and hence direct use of the ES method without exploiting the structure of the hypergradient can encounter a large estimation bias and result in poor performance in practice, especially in high-dimensional problems as demonstrated in our experiments in Section 4. This hence motivates the following intriguing question:

Can we design a better hypergradient estimator based on the ES method by leveraging the analytical structure of the hypergradient, and then use such an estimator to construct more efficient ES-based bilevel optimizers?

Furthermore, since the hypergradient in bilevel optimization depends on the minimal solution of the inner function, the accuracy of its ES (i.e., zeroth-order) estimator is affected by the uncertainty of the entire optimization path over the inner function. This is quite different from ES estimators for standard blackbox functions where the function value is known accurately. It is thus unclear whether the ES-based estimator can yield a provably convergent algorithm for bilevel optimization with polynomial efficiency. So far the ES-based bilevel optimizer in Gu et al. (2021) did not come with a finite-time convergence guarantee. This thus motivates the second question we ask:

Can the ES method lead to bilevel optimizers with theoretical finite-time convergence guarantee?

This paper provides the affirmative answers to both questions.

1.1 Main Contributions

Novel ES-based Jacobian bilevel optimizer. We propose a novel bilevel optimizer with the ES-based Jacobian estimation, which we call as ESJ. In contrast to the existing ES-based optimizer in Gu et al. (2021), which estimates the hypergradient by treating the outer-level objective $\Phi(x)$ fully as a blackbox, ESJ estimates only the response Jacobian matrix (i.e., gradient of $y^*(x)$ with respect to x), which is the major computational bottleneck, and then leverages the analytical structure of the hypergradient to construct a much more accurate estimator. Further, ESJ is Hessian-free and has only gradient computations. It is computationally much more efficient than existing AID and ITD bilevel optimizers that require Hessian- and/or Jacobian-vector product computations. We further propose a stochastic bilevel optimizer ESJ-S to allow the algorithm scalable over large dataset.

Convergence guarantee. Theoretically, we provide the convergence guarantee for both ESJ and ESJ-S and characterize their convergence rate. Technically, in contrast to the standard analysis of ES-based methods on
the smoothed blackbox function values, we develop tools to analyze the ES estimator on the output of the
execution of an inner optimizer (i.e., the entire optimization of the inner function). Such an analysis can be
of independent interest for ES-based bilevel optimization.

Superior performance. Experimentally, our algorithms ESJ and ESJ-S achieve superior performance
compared to the current baseline bilevel optimizers. Our approach is not only efficient, but also stable and
robust across various bilevel problems. In particular, on the few-shot meta-learning problem over a ResNet-12
network, ESJ outperforms the state-of-the-art meta learners (not necessarily bilevel optimizers), while other
bilevel optimizers do not scale to solve such meta-learning problems within a comparable time frame.

1.2 Related Work

Bilevel optimization. Bilevel optimization has been studied for decades since Bracken & McGill (1973). A
variety of bilevel optimization algorithms were then developed, including constraint-based approaches (Hansen
et al., 1992; Shi et al., 2005; Moore, 2010), approximate implicit differentiation (AID) approaches (Domke
2012; Pedregosa, 2016; Gould et al., 2016; Liao et al., 2018; Lorraine et al., 2020) and iterative differentiation
(ITD) approaches (Domke, 2012; Maclaurin et al., 2015; Franceschi et al., 2017; Finn et al., 2017; Shaban et al.,
2019; Rajeswaran et al., 2019; Liu et al., 2020a). These methods often suffer from expensive computations of
second-order information (e.g., Hessian-vector products). Hessian-free algorithms were recently proposed
based on interior-point method (Liu et al., 2021b) and Evolution Strategies (ES) (Gu et al., 2021). Liu
et al. (2021c) proposed an initialization auxiliary method to deal with nonconvex inner problem. This
paper proposes a more efficient ES-based approach via exploiting the benign structure of the hypergradient.
Recently, the convergence rate has been established for gradient-based (Hessian involved) bilevel algorithms
(Grazzi et al., 2020; Ji et al., 2021; Rajeswaran et al., 2019; Ji & Liang, 2021). This paper provides the
convergence analysis for the proposed Hessian-free ES-based approach.

Stochastic bilevel optimization. Ghadimi & Wang (2018); Ji et al. (2021); Hong et al. (2020) proposed
stochastic gradient descent (SGD) type bilevel optimization algorithms by employing Neumann series for
Hessian-inverse-vector approximation. Recent works (Khanduri et al., 2021a,b; Chen et al., 2021; Guo et al.,
2021; Guo & Yang, 2021; Yang et al., 2021) then leveraged momentum-based variance reduction to further
reduce the computational complexity of existing SGD-type bilevel optimizers. In this paper, we propose a
stochastic ES-based method, which eliminate the computation of second-order information required by all
aforementioned stochastic methods.

Bilevel optimization applications. Bilevel optimization has been employed in various applications such
as few-shot meta-learning (Snell et al., 2017; Franceschi et al., 2018; Rajeswaran et al., 2019; Zügner &
Günnemann, 2019; Ji et al., 2020a,b), hyperparameter optimization (Franceschi et al., 2017; Mackay et al.,
2018; Shaban et al., 2019), neural architecture search (Liu et al., 2018a, Zhang et al., 2021), etc. This paper
demonstrates the superior performance of the proposed ES-based bilevel optimizer in meta-learning and
hyperparameter optimization.

ES applications. Evolution Strategies (ES) method has been studied for more than two decades (see review
papers (Hansen, 2006; Varelas et al., 2018)). In particular, Nesterov & Spokoiny (2017) proposed a simple
and effective ES-gradient via Gaussian smoothing, which was further extended to the stochastic setting
by Ghadimi & Lan (2013). Such an ES technique has exhibited great effectiveness in various applications
including meta-reinforcement learning (Song et al., 2019), hyperparameter optimization (Gu et al., 2021),
adversarial machine learning (Ji et al., 2019; Liu et al., 2018b), minimax optimization (Liu et al., 2020b; Xu et al., 2020), etc. This paper proposes a novel ES-based Jacobian estimator for accelerating bilevel optimization. The ES method has also been used for studying hyperparameter optimization problems. For example, Mackay et al. (2018) models the response function itself as a neural network (where each layer involves an affine transformation of hyperparameters) using the Self-Tuning Networks (STNs). An improved and more stable version of STNs was further proposed in Bae & Grosse (2020), which focused on accurately approximating the response Jacobian rather than the response function itself.

2 Proposed Algorithms

We describe our proposed algorithms in this section.

2.1 Hypergradients

The key step in popular gradient-based bilevel optimizers is the estimation of the hypergradient (i.e., the gradient of the objective with respect to the outer variable x), which takes the following form:

$$
\nabla \Phi(x) = \nabla_x f(x, y^*(x)) + J^*(x)^\top \nabla_y f(x, y^*(x))
$$

(2)

where the Jacobian matrix $J^*(x) = \frac{\partial y^*(x)}{\partial x} \in \mathbb{R}^{d \times p}$. Following Lorraine et al. (2020), it can be seen that $\nabla \Phi(x)$ contains two components: the direct gradient $\nabla_x f(x, y^*(x))$ and the indirect gradient $J^*(x)^\top \nabla_y f(x, y^*(x))$. The direct component can be efficiently computed using the existing automatic differentiation techniques. The indirect component, however, is computationally much more complex, because $J^*(x)$ takes the form of $J^*(x) = -[\nabla^2_y g(x, y^*(x))]^{-1} \nabla_x \nabla_y g(x, y^*(x))$ (if $\nabla^2_y g(x, y^*(x))$ is invertible), which contains the Hessian inverse and the second-order mixed derivative. Some approaches mitigate the issue by designing Jacobian-vector and Hessian-vector products (Pedregosa, 2016; Franceschi et al., 2017; Grazzi et al., 2020) to replace second-order computations. But the computation is still costly for high-dimensional bilevel problems such as those with neural network variables. We next introduce the ES approach which is at the core of our idea for designing efficient Hessian-free bilevel optimizers.

2.2 Evolution Strategies (ES) Method

Evolution Strategies (ES) (also known as the zeroth-order method in optimization) is a powerful technique to estimate the gradient of a function based on function values, when it is not feasible (such as in black-box problems) or computationally costly to evaluate the gradient. The idea of the ES method in Nesterov & Spokoiny (2017) is to approximate the gradient of a general black-box function $h : \mathbb{R}^n \rightarrow \mathbb{R}$ using the following oracle based only on the function values (i.e., the zeroth-order information)

$$
\hat{\nabla} h(x; u) = \frac{h(x + \mu u) - h(x)}{\mu}
$$

(3)

where $u \in \mathbb{R}^n$ is a Gaussian random vector and $\mu > 0$ is the smoothing parameter. Such an oracle can be shown to be an unbiased estimator of the gradient of the smoothed function $\mathbb{E}_u [h(x + \mu u)]$.

2.3 An Existing ES-based Bilevel Optimizer

In Gu et al. (2021), the ES method was directly applied to estimate the hypergradient of $\Phi(x)$, treating $\Phi(x)$ as a blackbox objective. Since the hypergradient has a complex form as in eq. (2) and can be very sensitive to
both inner and outer functions, such an estimation will likely have a large bias error. As our experiments in Section 4 demonstrate, such a method is not robust and even fails to converge in complex bilevel optimization problems (such as with neural network parameters).

2.4 Our ES-based Bilevel Optimizers

Our key idea is to exploit the analytical structure of the hypergradient in eq. (2), where the derivatives \(\nabla_x f(x, y^*(x)) \) and \(\nabla_y f(x, y^*(x)) \) can be computed efficiently and accurately, and then use the ES method only to estimate the Jacobian \(J(x) \), which is the major term posing computational difficulty. In this way, our estimation of the hypergradient can be much more accurate and reliable.

We propose a novel ES-based Jacobian estimator, which contains two ingredients: (i) for a given \(x \), apply an algorithm to solve the inner optimization problem and use the output as an approximation of \(y^*(x) \); for example, the output \(y^N(x) \) of \(N \) gradient descent steps of the inner problem can serve as an estimate for \(y^*(x) \). Then \(J_N(x) = \frac{\partial y^N(x)}{\partial x} \) serves as an estimate of \(J(x) \); and (ii) construct an ES-based Jacobian estimator \(J_N(x; u) \in \mathbb{R}^{d \times p} \) for \(J_N(x) \) as

\[
\hat{J}_N(x; u) = \frac{y^N(x + \mu u) - y^N(x)}{\mu}
\]

where \(u \in \mathbb{R}^p \) is a Gaussian vector with independent and identically distributed (i.i.d.) entries. Then for any vector \(v \in \mathbb{R}^d \), the Jacobian-vector product can be efficiently computed using only vector-vector dot product \(J_N(x; u)^T v = \langle \hat{\delta}(x; u), v \rangle u \), where \(\delta(x; u) = y^p(x+\mu u) - y^N(x) \in \mathbb{R}^d \).

ESJ: bilevel optimizer with ES Jacobian estimator. For the bilevel problem in eq. (1), we design an optimizer (see Algorithm 1) using the ES-based Jacobian estimator in eq. (4), which we call as the ESJ algorithm. At each step \(k \) of the algorithm, ESJ runs an \(N \)-step full GD to approximate \(y^N_k(x_k) \). ESJ then samples \(Q \) Gaussian vectors \(\{u_{k,j} \in \mathcal{N}(0, I), j = 1, ..., Q\} \), and for each sample \(u_{k,j} \), runs an \(N \)-step full GD to approximate \(y^N_k(x_k + \mu u_{k,j}) \), and then computes the Jacobian estimator \(\hat{J}_N(x; u_{k,j}) \) as in eq. (4).

Then the sample average over the \(Q \) estimators is used for constructing the following hypergradient estimator for updating the outer variable \(x \).

\[
\hat{\nabla} \Phi(x_k) = \nabla_x f(x_k, y^N_k) + \frac{1}{Q} \sum_{j=1}^Q \hat{J}_N(x_k; u_{k,j})^T \nabla_y f(x_k, y^N_k)
\]

\[
= \nabla_x f(x_k, y^N_k) + \frac{1}{Q} \sum_{j=1}^Q \langle \hat{\delta}(x_k; u_{k,j}), \nabla_y f(x_k, y^N_k) \rangle u_{k,j}.
\]

(5)

Computationally, in contrast to the existing AID and ITD bilevel optimizers ([Pedregosa, 2016], [Franceschi et al., 2018], [Grazzi et al., 2020]) that contains the complex Hessian- and/or Jacobian-vector product computations, ESJ has only gradient computations and becomes **Hessian-free**, and hence is computationally much more efficient as demonstrated in our experiments.

ESJ-S: stochastic bilevel optimizer with ES Jacobian estimator. In many bilevel problems, the loss functions \(f \) and \(g \) in eq. (1) take finite-sum forms over a set of given data \(\mathcal{D}_{n,m} = \{\xi_i, \zeta_j, i = 1, ..., n, j = 1, ..., m\} \) as follows:

\[
f(x, y) = \frac{1}{n} \sum_{i=1}^n F(x, y; \xi_i), \quad g(x, y) = \frac{1}{m} \sum_{i=1}^m G(x, y; \xi_i)
\]

(6)

where the sample sizes \(n \) and \(m \) are typically very large. For such finite-sum problems, we design a stochastic bilevel optimizer (see Algorithm 2) based on ES Jacobian estimators, which we call as ESJ-S.
Algorithm 1 Bilevel optimizer via ES Jacobians (ESJ)

1: **Input**: lower- and upper-level stepsizes $\alpha, \beta > 0$, initializations $x_0 \in \mathbb{R}^p$ and $y_0 \in \mathbb{R}^d$, inner and outer iterations numbers K and N, and number of Gaussian vectors Q.

2: **for** $k = 0, 1, 2, ..., K$ **do**
3: Set $y^k_0 = y_0$, $y^k_{0,j} = y_0, j = 1, ..., Q$
4: **for** $t = 1, 2, ..., N$ **do**
5: Update $y^k_t = y^k_{t-1} - \alpha \nabla_y g(x_k, y^k_{t-1})$
6: **end for**
7: **for** $j = 1, ..., Q$ **do**
8: Generate $u_{k,j} = N(0, I) \in \mathbb{R}^p$
9: **for** $t = 1, 2, ..., N$ **do**
10: Update $y^k_{t,j} = y^k_{t,j} - \alpha \nabla_y g \left(x_k + \mu u_{k,j}, y^k_{t-1} \right)$
11: **end for**
12: Compute $\delta_j = \frac{y^N_{k,j} - y^N_{k}}{\mu}$
13: **end for**
14: Compute $\hat{\nabla} \Phi(x_k) = \nabla_x F(x_k, y^N_k; D_F) + \frac{1}{Q} \sum_{j=1}^{Q} \langle \delta_j, \nabla_y f(x_k, y^N_k) \rangle u_{k,j}$
15: Update $x_{k+1} = x_k - \beta \hat{\nabla} \Phi(x_k)$
16: **end for**

Differently from Algorithm 1, which applies GD updates to find $y^N(x_k)$, ESJ-S adopts N stochastic gradient descent (SGD) steps to find $\{Y^N_0, Y^N_1, ..., Y^N_K\}$ to the inner problem, each with the outer variable set to be $x_k + \mu u_{k,j}$. Note that all SGD runs follow the same batch sampling path $\{S_0, ..., S_{N-1}\}$. The Jacobian estimator $\hat{\mathcal{F}}_N(x_k; u_{k,j})$ can then be computed as in eq. (4). At the outer level, ESJ-S samples a new batch D_F independently from the inner batches $\{S_0, ..., S_{N-1}\}$ to evaluate the stochastic gradients $\nabla_x F(x_k, Y^N_k; D_F)$ and $\nabla_y F(x_k, Y^N_k; D_F)$. The hypergradient $\hat{\nabla} \Phi(x_k)$ is then estimated by the following quantity:

$$\hat{\nabla} \Phi(x_k) = \nabla_x F(x_k, Y^N_k; D_F) + \frac{1}{Q} \sum_{j=1}^{Q} \langle \delta_j, \nabla_y f(x_k, Y^N_k) \rangle u_{k,j}. \quad (7)$$

3 Convergence Analysis

3.1 Technical Assumptions

This paper considers the following types of loss functions.

Assumption 1. The inner function $g(x, y)$ is μ_y-strongly convex with respect to the variable y. For the finite-sum case, the same assumption holds for $\nabla G(x, y; \zeta)$, and the outer function $f(x, y)$ is possibly nonconvex w.r.t. x.

The above assumption on $g(x, y)$ has also been adopted in Ghadimi & Wang (2018); Ji et al. (2021); Yang et al. (2021). In fact, many practical bilevel machine learning problems have strongly convex inner functions. For example, in few-shot meta-learning, the task-specific parameters are likely the weights of the last classification layer so that the resulting bilevel problem has a strongly-convex inner problem (Raghu et al. 2019; Liu et al. 2021b).
Algorithm 2 Stochastic bilevel optimizer via ES Jacobians (ESJ-S)

1: **Input**: lower- and upper-level stepsizes $\alpha, \beta > 0$, initializations $x_0 \in \mathbb{R}^p$ and $y_0 \in \mathbb{R}^d$, inner and outer iterations numbers K and N, and number of Gaussian vectors Q.

2: for $k = 0, 1, ..., K$ do
3: Set $Y^0_k = y_0$, $Y^0_k, j = y_0, j = 1, ..., Q$
4: Generate $u_{k,j} = N(0, I) \in \mathbb{R}^p$, $j = 1, ..., Q$
5: for $t = 1, 2, ..., N$ do
6: Draw a sample batch S_{t-1}
7: Update $Y^t_k = Y^{t-1}_k - \alpha \nabla_y G(x_k, Y^{t-1}_k, S_{t-1})$
8: for $j = 1, ..., Q$ do
9: Update $Y^t_{k,j} = Y^{t-1}_{k,j} - \alpha \nabla_y G(x_k + \mu u_{k,j}, Y^{t-1}_{k,j}; S_{t-1})$
10: end for
11: end for
12: Compute $\delta_j = \frac{Y^N_{k,j} - Y^N_k}{\mu}$, $j = 1, ..., Q$
13: Draw a sample batch D_F
14: Compute $\hat{\nabla} \Phi(x_k) = \nabla_x F(x_k, Y^N_k; D_F) + \frac{1}{|Q|} \sum_{j=1}^Q \langle \delta_j, \nabla_y F(x_k, Y^N_k; D_F) \rangle u_{k,j}$
15: Update $x_{k+1} = x_k - \beta \hat{\nabla} \Phi(x_k)$
16: end for

Assumption 2. Let $w = (x, y) \in \mathbb{R}^{d+p}$. The gradient $\nabla g(w)$ is L_g-Lipschitz continuous, i.e., for any $w_1, w_2 \in \mathbb{R}^{d+p}$, $\|\nabla g(w_1) - \nabla g(w_2)\| \leq L_g \|w_1 - w_2\|$. Further, the derivatives $\nabla^2_y g(w)$ and $\nabla_x \nabla_y g(w)$ are ρ- and τ-Lipschitz continuous, i.e., $\|\nabla^2_y g(w_1) - \nabla^2_y g(w_2)\|_F \leq \rho \|w_1 - w_2\|$ and $\|\nabla_x \nabla_y g(w_1) - \nabla_x \nabla_y g(w_2)\|_F \leq \tau \|w_1 - w_2\|$. For the finite-sum case, the same assumptions hold for $G(w; \zeta)$.

Assumption 3. Let $w = (x, y) \in \mathbb{R}^{d+p}$. The objective $f(w)$ and its gradient $\nabla f(w)$ are M- and L_f-Lipschitz continuous, i.e., for any $w_1, w_2 \in \mathbb{R}^{d+p}$,

$$
\begin{align*}
|f(w_1) - f(w_2)| & \leq M \|w_1 - w_2\|, \\
\|\nabla f(w_1) - \nabla f(w_2)\| & \leq L_f \|w_1 - w_2\|,
\end{align*}
$$

which will hold for $F(w; \xi)$ in the finite-sum case.

Assumption 4. For the finite-sum case, the gradient $\nabla G(w; \zeta)$ has bounded variance condition, i.e., $\mathbb{E}_\zeta \|\nabla G(w; \zeta) - \nabla g(w)\|^2 \leq \sigma^2$ for some constant $\sigma \geq 0$.

3.2 Convergence Analysis for ESJ

Differently from the standard zeroth-order analysis for a blackbox function, here we develop new techniques to analyze the ES-based estimator that depend on the entire inner optimization trajectory, which is specific to bilevel optimization. We first establish the following essential proposition which characterizes the Lipschitzness property of the approximate Jacobian matrix $J_N(x) = \frac{\partial y^N(x)}{\partial x}$.

Proposition 1. Suppose that Assumptions 1 and 2 hold. Let $L_\zeta = \left(1 + \frac{L}{\mu_\sigma}\right)\left(\frac{\tau}{\mu_\sigma} + \frac{\rho L}{\mu_\sigma^2}\right)$, with $L = \max\{L_f, L_g\}$. Then, the Jacobian $J_N(x)$ is Lipschitz continuous with constant L_ζ:

$$
\|J_N(x_1) - J_N(x_2)\|_F \leq L_\zeta \|x_1 - x_2\| \quad \forall x_1, x_2 \in \mathbb{R}^p.
$$
We next show that the variance of hypergradient estimation can be bounded for ESJ.

Proposition 2. Suppose that Assumptions 1, 2, and 3 hold. Consider the ESJ algorithm. The second moment of hypergradient estimation error can be upper-bounded as:

$$E\|\nabla \Phi(x_k) - \nabla \Phi(x_k)\|^2 \leq O\left((1 - \alpha \mu_g)^N + \frac{p}{Q} + \mu^2 dp^3 + \mu^2 dp^4\right)$$

where $E[\cdot]$ is conditioned on x_k and taken over the Gaussian vectors $\{u_{k,j} : j = 1, ..., Q\}$.

Proposition 2 upper bounds the hypergradient estimation error, which mainly arises due to the estimation error of the Jacobian matrix J, by the ES estimator, via three types of errors: (a) the approximation error between J_N and J_* via inner-loop gradient descent, which decreases exponentially w.r.t. the number N of inner iterations due to the strong convexity of the inner objective; (b) the error between our ES estimator and the Jacobian J_μ of the smoothed output $E_u y^N(x_k + \mu u)$, which decreases sublinearly w.r.t. the batch size Q, and (c) the error between the Jacobians J_N and J_μ, which can be controlled by the smoothness parameter μ.

By using the smoothness property in Proposition 1 and the upper-bound in Proposition 2, we provide the following characterization of the convergence rate for ESJ.

Theorem 1 (Convergence of ESJ). Suppose that Assumptions 1, 2, and 3 hold. Choose the inner- and outer-loop stepizes respectively as $\alpha \leq \frac{1}{2}$ and $\beta = O(\frac{1}{\sqrt{K}})$. Further, set $Q = O(1)$ and $\mu = O\left(\frac{1}{\sqrt{K dp^2}}\right)$. Then, the iterates x_k for $k = 0, ..., K - 1$ of ESJ satisfy:

$$\frac{1 - \alpha \mu_g}{2K} \sum_{k=0}^{K-1} E\|\nabla \Phi(x_k)\|^2 \leq O\left(\frac{p}{\sqrt{K}} + (1 - \alpha \mu_g)^N\right)$$

Theorem 1 characterizes the convergence rate of ESJ, which is sublinear with respect to the number K of outer iterations due to the nonconvexity of the outer objective, and linear (i.e., exponentially decay) with respect to the number N of inner iterations due to the strong convexity of the inner function.

Theorem 1 also indicates the following features that ensures the efficiency of the algorithms. (i) The batch size Q of the ES estimator can be chosen as a constant (in particular $Q = 1$ as in our experiments) so that the computation of the ES estimator is efficient. (ii) The number of inner iterations can be chosen to be small due to its exponential convergence, and hence the algorithm can run efficiently. (iii) ESJ requires only gradient computations to converge, and eliminates Hessian- and Jacobian-vector products required by the existing AID and ITD based bilevel optimizers (Pedregosa, 2016; Franceschi et al., 2018; Grazzi et al., 2020). Thus, ESJ is computationally more efficient particularly for high-dimensional problems.

3.3 Convergence Analysis for ESJ-S

In this section, we apply the stochastic algorithm ESJ-S to the finite-sum objective in eq. (6) and analyze its convergence rate. We first note that the Lipschitzness property established in Proposition 1 is general and can also be used here. The following proposition establishes an upper bound on the estimation error of Jacobian J_* by $J_N = \frac{\partial Y^N}{\partial x}$, where Y^N is the output of N inner SGD updates.

Proposition 3. Suppose that Assumptions 1, 2, and 3 hold. Consider the ESJ-S algorithm. Choose the inner-loop stepsize as $\alpha = \frac{2}{L + \mu_g}$, where $L = \max\{L_f, L_g\}$. Then, we have:

$$E\|J_N - J_*\|^2_F \leq C_\gamma L^2 \frac{\mu^2}{\mu_g} + \frac{\Gamma(1 - \alpha \mu_g)C_\gamma^{N-1}}{(L + \mu_g)^2(1 - \alpha \mu_g) - (L - \mu_g)^2},$$

where λ, Γ, and $C_\gamma < 1$ are constants (see Appendix D for their precise forms).
We next show that the variance of hypergradient estimation is bounded for ESJ-S.

Proposition 4. Suppose that Assumptions 1, 2, 3, and 4 hold. Consider the ESJ-S algorithm. Set the inner-loop stepsize as \(\alpha = \frac{2}{L^2 + \mu g} \) where \(L = \max\{L_f, L_g\} \). Then, we have:

\[
E\|\hat{\nabla}\Phi(x_k) - \nabla\Phi(x_k)\|^2 \leq O \left((1 - \alpha \mu g)^N + \frac{1}{S} + \frac{1}{D_f} + \frac{p}{Q} + \mu^2 dp^3 + \frac{\mu^2 dp^4}{Q} \right)
\]

where \(S \) and \(D_f \) are the sizes of the inner and outer mini-batches, respectively.

Based on Propositions 1, 3, and 4, we characterize the convergence rate for ESJ-S.

Theorem 2 (Convergence of ESJ-S). Suppose that Assumptions 1, 2, 3, and 4 hold. Set the inner- and outer-loop stepsizes respectively as \(\alpha = \frac{2}{L^2 + \mu g} \) and \(\beta = O(\frac{1}{\sqrt{K}}) \), where \(L = \max\{L_f, L_g\} \). Further, set \(Q = O(1), D_f = O(1), \) and \(\mu = O\left(\frac{1}{\sqrt{Kdp^3}}\right) \). Then, the iterates \(x_k, k = 0, ..., K - 1 \) of ESJ-S satisfy:

\[
\frac{1}{K} \sum_{k=0}^{K-1} E\|\nabla\Phi(x_k)\|^2 \leq O \left(\frac{p}{\sqrt{K}} + (1 - \alpha \mu g)^N + \frac{1}{\sqrt{S}} \right).
\]

Comparing to the convergence bound in Theorem 1 for the deterministic algorithm ESJ, Theorem 2 for the stochastic algorithm ESJ-S captures one more sublinearly decreasing error term \(\frac{1}{\sqrt{S}} \) due to the sampling of inner batches to estimate the objectives. Note that the sampling of outer batches has been included into the sublinear decay term with respect to the number \(K \) of outer-loop iterations.

4 Experiments

We validate our algorithms in four bilevel problems: shallow hyper-representation (HR) with linear/2-layer net embedding model on synthetic data, deep HR with LeNet network (LeCun et al., 1998) on MNIST dataset, few-shot meta-learning with ResNet-12 on miniImageNet dataset, and hyperparameter optimization (HO) on the 20 Newsgroup dataset. We run all models using a single NVIDIA Tesla P100 GPU. All running time are in seconds.

4.1 Shallow Hyper-Representation on Synthetic Data

The hyper-representation (HR) problem (Franceschi et al., 2018; Grazzi et al., 2020) searches for a regression (or classification) model following a two-phased optimization process. The inner-level identifies the optimal linear regressor parameters \(w \), and the outer level solves for the optimal embedding model (i.e., representation) parameters \(\lambda \). Mathematically, the problem can be modeled by the following bilevel optimization:

\[
\min_{\lambda \in \mathbb{R}^p} f(\lambda) = \frac{1}{2n_1} \|T(X_1; \lambda) w^*(\lambda) - Y_1\|^2 \text{ s.t. } w^*(\lambda) = \arg\min_{w \in \mathbb{R}^d} \frac{1}{2n_2} \|T(X_2; \lambda) w - Y_2\|^2 + \frac{\gamma}{2} \|w\|^2
\]

where \(X_2 \in \mathbb{R}^{n_2 \times m} \) and \(X_1 \in \mathbb{R}^{n_1 \times m} \) are matrices of synthesized training and validation data, and \(Y_2 \in \mathbb{R}^{n_2}, Y_1 \in \mathbb{R}^{n_1} \) are the corresponding response vectors. In the case of shallow HR, the embedding function \(T(\cdot; \lambda) \) is either a linear transformation or a two-layer network. We generate data matrices \(X_1, X_2 \) and labels \(Y_1, Y_1 \) following the same process in Grazzi et al. (2020).

We compare our ESJ algorithm with the baseline bilevel optimizers AID-FP, AID-CG, ITD-R, and HOZOG (see Appendix A.1 for details about the baseline algorithms and hyperparameters used).
4.2 Deep Hyper-Representation on MNIST Dataset

In order to demonstrate the advantage of our proposed algorithms in large neural net models, we perform deep hyper-representation to classify MNIST images by learning an entire LeNet network. The corresponding bilevel problem is given by

\[
\begin{align*}
\min_{\lambda} \mathcal{L}_{\text{out}}(\lambda) := \frac{1}{|D_{\text{out}}|} \sum_{(x_i, y_i) \in D_{\text{out}}} \mathcal{L}(w^*(\lambda) f(x_i; \lambda), y_i) \\
\text{s.t.} \quad w^*(\lambda) = \arg \min_{w \in \mathbb{R}^{c \times p}} \mathcal{L}_{\text{in}}(w, \lambda) := \frac{1}{|D_{\text{in}}|} \sum_{(x_i, y_i) \in D_{\text{in}}} \left(\mathcal{L}(w f(x_i; \lambda), y_i) + \beta \|w\|^2 \right).
\end{align*}
\]

where \(f(x_i; \lambda) \in \mathbb{R}^p \) corresponds to features extracted from data point \(x_i \), \(\mathcal{L}(\cdot, \cdot) \) is the cross-entropy loss function, \(c = 10 \) is the number of categories, and \(D_{\text{in}} \) and \(D_{\text{out}} \) are data used to compute respectively inner and outer loss functions. Since the sizes of \(D_{\text{out}} \) and \(D_{\text{in}} \) are large in the case of MNIST dataset, we apply
the more efficient stochastic algorithm ESJ-S in Algorithm 2 with a minibatch size $B = 256$ to estimate the inner and outer losses L_{in} and L_{out}.

Figure 2 compares the classification accuracy on the outer dataset D_{out} among the different methods. Our algorithm ESJ-S converges with the fastest rate and attains the best accuracy with the lowest variance among all algorithms. Note that ESJ-S is able to attain the same accuracy of 0.98+ obtained by the standard training of all parameters with one-phased optimization on the MNIST dataset using the same backbone network. All other methods fail to recover such a level of performance, and instead saturate around an accuracy of 0.93. Further, Figure 2(c) indicates that the convergence of ESJ-S does not change substantially with the number N of inner SGD steps. This demonstrates the robustness of our method when applied to complex function geometries such as deep nets.

4.3 Few-Shot Meta-Learning over MiniImageNet

To study our algorithms over larger neural nets, we study the few-shot image recognition problem, where classification tasks $T_i, i = 1, ..., m$ are sampled over a distribution P_T. In particular, we consider the ANIL meta-learning method [Raghu et al., 2019; Ji et al., 2020a], where all tasks share common embedding features parameterized by ϕ, and each task T_i has its task-specific parameter w_i for $i = 1, ..., m$. More specifically, we
set ϕ to be the parameters of the convolutional part of a deep CNN model (e.g., ResNet-12 network) and w includes the parameters of the last classification layer. All model parameters (ϕ, w) are trained following a bilevel procedure. In the inner-loop, the base learner of each task T_i fixes ϕ and minimizes its loss function over a training set S_i to obtain its adapted parameters w^*_i. At the outer stage, the meta-learner computes the test loss for each task T_i using the parameters (ϕ, w^*_i) over a test set D_i, and optimizes the parameters ϕ of the common embedding function by minimizing the meta-objective L_{meta} over all classification tasks. The problem can be expressed as the following bilevel optimization

$$
\min_{\phi} L_{\text{meta}}(\phi, \tilde{w}^*) := \frac{1}{m} \sum_{i=1}^{m} L_{D_i}(\phi, w^*_i)
$$

s.t. $\quad \tilde{w}^* = \arg \min_{\tilde{w}} L_{\text{adapt}}(\phi, \tilde{w}) := \frac{1}{m} \sum_{i=1}^{m} L_{S_i}(\phi, w_i),$

where we collect all task-specific parameters into $\tilde{w} = (w_1^*, ..., w_m^*)$ and the corresponding minimizers into $\tilde{w}^* = (w_1^*, ..., w_m^*)$. The functions $L_{S_i}(\phi, w_i) = \frac{1}{|S_i|} \sum_{\zeta \in S_i} (L(\phi, w_i; \zeta) + R(w_i))$ and $L_{D_i}(\phi, w_i^*) = \frac{1}{|D_i|} \sum_{\xi \in D_i} L(\phi, w_i^*; \xi)$ correspond respectively to the training and test loss functions for task T_i, with R a strongly-convex regularizer and L a classification loss function. In our setting, since the task-specific parameters correspond to the weights of the last linear layer, the inner-level objective $L_{\text{adapt}}(\phi, \tilde{w})$ is strongly convex with respect to $\tilde{w} = (w_1^*, ..., w_m^*)$. We note that the problem studied in Section 4.2 can be seen as

$$
\begin{array}{c|cc}
\text{Algorithm} & 67\% & 69\% \\
\hline
\text{ESJ} & 2.0 & 2.8 \\
\text{MetaOptNet} & 20+ & 20+ \\
\text{ProtNet} & 3.5 & 4.4 \\
\text{ANIL} & 6.3 & - \\
\text{MAML} & 9.7 & - \\
\end{array}
$$

Table 1: Time (hours) to reach X% accuracy (ResNet-12).

Figure 3: 5way-5shot few-shot classification on the miniImageNet dataset on single GPU. Left plot: Test accuracy (ResNet-12). Right plot: Test accuracy (CNN4).
single-task instances of the more general multi-task learning problem in eq. (12). However, in contrast to the problem in Section 4.2, the sizes of the datasets D_i and S_i are usually small in few-shot learning and full GD can be applied here. Hence, we use ESJ (Algorithm 1) here. Also since the number m of tasks in few-shot classification datasets is often very large, it is preferable to sample a minibatch of i.i.d. tasks by P_T at each meta (i.e., outer) iteration and update the meta parameters based on these tasks.

We conduct few-shot meta-learning on the miniImageNet dataset (Vinyals et al., 2016) using two different backbone networks for feature extraction: ResNet-12 and CNN4 (Vinyals et al., 2016). The dataset and hyperparameter details can be found in Appendix A.4. We compare our algorithm ESJ with four baseline methods for few-shot meta-learning: MAML (Finn et al., 2017), ANIL (Raghu et al., 2019), MetaOptNet (Lee et al., 2019), and ProtoNet (Snell et al., 2017). Also note that since ProtoNet and MetaOptNet are usually presented in the ResNet setting, and are not relevant in smaller scale networks, we include them into comparison only for our ResNet-12 experiment. We run their efficient Pytorch Lightning implementations available at the learn2learn repository (Arnold et al., 2019).

Figure 3(a) and (b) show that our algorithm ESJ converges faster than the other two baseline methods. Further, Table 1 shows that MetaOptNet did not reach 69% accuracy after 20 hours of training. In comparison, our ESJ is able to attain 69% in less than three hours, which is about 1.5 times less than the time taken for ProtoNet to reach the same performance level. Both ESJ and ProtoNet saturate around 70% accuracy after 10 hours of training.

5 Experiments on Hyperparameter Optimization

Hyperparameter optimization (HO) is the problem of finding the set of the best hyperparameters (either representational or regularization parameters) that yield the optimal value of some criterion of model quality (usually a validation loss on unseen data). HO can be posed as a bilevel optimization problem in which the inner problem corresponds to finding the model parameters by minimizing a training loss (usually regularized) for the given hyperparameters and then the outer problem minimizes over the hyperparameters. Hence, HO can be mathematically expressed as follows

$$\min_{\lambda} {\mathcal{L}}_{\text{val}}(\lambda) := \frac{1}{|D_{\text{val}}|} \sum_{\xi \in D_{\text{val}}} {\mathcal{L}}(w^*(\lambda); \xi)$$

subject to

$$w^*(\lambda) = \arg \min_{w} {\mathcal{L}}_{\text{tr}}(w, \lambda) := \frac{1}{|D_{\text{tr}}|} \sum_{\zeta \in D_{\text{tr}}} (\mathcal{L}(w, \lambda; \zeta) + R(w, \lambda)),$$

where \mathcal{L} is a loss function (e.g., logistic loss), $R(w, \lambda)$ is a regularizer, and D_{tr} and D_{val} are respectively training and validation data. Note that the loss function used to identify hyperparameters must be different from the one used to find model parameters; otherwise models with higher complexities would be always favored. This is usually achieved in HO by using different data splits (here D_{val} and D_{tr}) to compute validation and training losses, and by adding a regularizer term on the training loss.

Following (Franceschi et al., 2017; Grazzi et al., 2020), we perform classification on the 20 Newsgroup dataset, where the classifier is modeled by an affine transformation, the cost function \mathcal{L} is the cross-entropy loss, and $R(w, \lambda)$ is a strongly-convex regularizer. We set one l_2-regularization hyperparameter for each weight in w, so that λ and w have the same size.

For ESJ and HOZOG, we use GD with a learning rate of 100 and a momentum of 0.9 to perform the inner updates. The outer learning rate is set to be 0.02. We set the smoothing parameter (\(\mu\) in Algorithm 1) to be 13.
Figure 4: Classification results on 20 Newsgroup dataset. **Left:** number of inner GD step $N = 5$. **Right:** number of inner GD steps $N = 10$.

0.01. For AID-FP, AID-CG, and REVERSE we use the suggested hyperparameters in their implementations accompanying the paper [Grazzi et al., 2020].

It can be seen from Figure 4 that our method ESJ slightly outperforms HOZOG and converges faster than the other AID and ITD based approaches. We note that the similar performance for ESJ and HOZOG can be explained by the fact that in HO, the hypergradient expression in eq. 5 contains only the second term (the first term is zero), which is very close to the approximation in HOZOG method. However, as we have seen in the other experiments, ESJ is a more robust and stable bilevel optimizer than HOZOG, and it achieves good performance across many bilevel problems.

6 Conclusion

In this paper, we propose a novel ES-based approach for bilevel optimization, which eliminates all second-order computations in the gradient-based approaches. Compared to the existing ES-based algorithm, our approach explores the analytical structure of the hypergradient, and hence leads to much more efficient and accurate hypergradient estimation. Thus, our algorithm outperforms the existing algorithms in the experiments, particularly in the high-dimensional applications. We also characterize the convergence rate for our proposed algorithms and show that the polynomial-time complexity can be achieved. We anticipate that our approach will be useful for accelerating bilevel algorithms in various machine learning problems.

References

Sebastien M.R. Arnold, Praateek Mahajan, Debajyoti Datta, and Ian Bunner. *learn2learn*, 2019. https://github.com/learnables/learn2learn.

Juhan Bae and Roger B. Grosse. Delta-stn: Efficient bilevel optimization for neural networks using structured response jacobians. *CoRR*, abs/2010.13514, 2020.

Luca Bertinetto, Joao F Henriques, Philip Torr, and Andrea Vedaldi. Meta-learning with differentiable closed-form solvers. In *International Conference on Learning Representations (ICLR)*, 2018.

Jerome Bracken and James T McGill. Mathematical programs with optimization problems in the constraints. *Operations Research*, 21(1):37–44, 1973.
Tianyi Chen, Yuejiao Sun, and Wotao Yin. A single-timescale stochastic bilevel optimization method. *arXiv preprint arXiv:2102.04671*, 2021.

Justin Domke. Generic methods for optimization-based modeling. *International Conference on Artificial Intelligence and Statistics (AISTATS)*, pp. 318–326, 2012.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In *Proc. International Conference on Machine Learning (ICML)*, pp. 1126–1135, 2017.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse gradient-based hyperparameter optimization. In *International Conference on Machine Learning (ICML)*, pp. 1165–1173, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel programming for hyperparameter optimization and meta-learning. In *International Conference on Machine Learning (ICML)*, pp. 1568–1577, 2018.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic programming. *SIAM Journal on Optimization*, 23(4):2341–2368, 2013.

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. *arXiv preprint arXiv:1802.02246*, 2018.

Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, and Edison Guo. On differentiating parameterized argmin and argmax problems with application to bi-level optimization. *arXiv preprint arXiv:1607.05447*, 2016.

Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. Optimizing millions of hyperparameters by implicit differentiation. *International Conference on Machine Learning (ICML)*, 2020.

Bin Gu, Guodong Liu, Yanfu Zhang, Xiang Geng, and Heng Huang. Optimizing large-scale hyperparameters via automated learning algorithm. *CoRR*, 2021. URL https://arxiv.org/abs/2102.09026.

Zhishuai Guo and Tianbao Yang. Randomized stochastic variance-reduced methods for stochastic bilevel optimization. *arXiv preprint arXiv:2105.02266*, 2021.

Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. On stochastic moving-average estimators for non-convex optimization. *arXiv preprint arXiv:2104.14840*, 2021.

Nikolaus Hansen. The cma evolution strategy: a comparing review. *Towards a new evolutionary computation*, pp. 75–102, 2006.

Pierre Hansen, Brigitte Jaumard, and Gilles Savard. New branch-and-bound rules for linear bilevel programming. *SIAM Journal on Scientific and Statistical Computing*, 13(5):1194–1217, 1992.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhurong Yang. A two-timescale framework for bilevel optimization: Complexity analysis and application to actor-critic. *arXiv preprint arXiv:2007.05170*, 2020.

Kaiyi Ji and Yingbin Liang. Lower bounds and accelerated algorithms for bilevel optimization. *arXiv preprint arXiv:2102.03926*, 2021.
Kaiyi Ji, Zhe Wang, Yi Zhou, and Yingbin Liang. Improved zeroth-order variance reduced algorithms and analysis for nonconvex optimization. In *International Conference on Machine Learning (ICML)*, pp. 3100–3109, 2019.

Kaiyi Ji, Jason D Lee, Yingbin Liang, and H Vincent Poor. Convergence of meta-learning with task-specific adaptation over partial parameter. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2020a.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Multi-step model-agnostic meta-learning: Convergence and improved algorithms. *arXiv preprint arXiv:2002.07836*, 2020b.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and enhanced design. *International Conference on Machine Learning (ICML)*, 2021.

Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A momentum-assisted single-timescale stochastic approximation algorithm for bilevel optimization. *arXiv e-prints*, pp. arXiv–2102, 2021a.

Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A near-optimal algorithm for stochastic bilevel optimization via double-momentum. *arXiv preprint arXiv:2102.07367*, 2021b.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *International Conference on Learning Representations (ICLR)*, 2014.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning with differentiable convex optimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10657–10665, 2019.

Renjie Liao, Yuwen Xiong, Ethan Fetaya, Lisa Zhang, Xaq Yoon, KiJung Pitkow, Raquel Urtasun, and Richard Zemel. Optimizing millions of hyperparameters by implicit differentiation. *International Conference on Machine Learning (ICML)*, 2018.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. *arXiv preprint arXiv:1806.09055*, 2018a.

Risheng Liu, Pan Mu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A generic first-order algorithmic framework for bi-level programming beyond lower-level singleton. In *International Conference on Machine Learning (ICML)*, 2020a.

Risheng Liu, Jiaxin Gao, Jin Zhang, Deyu Meng, and Zhouchen Lin. Investigating bi-level optimization for learning and vision from a unified perspective: A survey and beyond. *arXiv preprint arXiv:2101.11517*, 2021a.

Risheng Liu, Xuan Liu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A value-function-based interior-point method for non-convex bi-level optimization. In *International Conference on Machine Learning (ICML)*, 2021b.
Risheng Liu, Yaohua Liu, Shangzhi Zeng, and Jin Zhang. Towards gradient-based bilevel optimization with non-convex followers and beyond. *Advances in Neural Information Processing Systems (NeurIPS)*, 34, 2021c.

Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini. Zeroth-order stochastic variance reduction for nonconvex optimization. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 3731–3741, 2018b.

Sijia Liu, Songtao Lu, Xiangyi Chen, Yao Feng, Kaidi Xu, Abdullah Al-Dujaili, Mingyi Hong, and Una-May O’Reilly. Min-max optimization without gradients: Convergence and applications to black-box evasion and poisoning attacks. In *International Conference on Machine Learning (ICML)*, pp. 6282–6293, 2020b.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by implicit differentiation. *International Conference on Artificial Intelligence and Statistics (AISTATS)*, pp. 1540–1552, 2020.

Matthew Mackay, Paul Vicol, Jonathan Lorraine, David Duvenaud, and Roger Grosse. Self-tuning networks: Bilevel optimization of hyperparameters using structured best-response functions. In *International Conference on Learning Representations (ICLR)*, 2018.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimization through reversible learning. In *International Conference on Machine Learning (ICML)*, pp. 2113–2122, 2015.

Gregory M Moore. *Bilevel programming algorithms for machine learning model selection*. Rensselaer Polytechnic Institute, 2010.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions. *Foundations of Computational Mathematics*, pp. 527–566, 2017.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In *International Conference on Machine Learning (ICML)*, pp. 737–746, 2016.

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature reuse? towards understanding the effectiveness of MAML. *International Conference on Learning Representations (ICLR)*, 2019.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with implicit gradients. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 113–124, 2019.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhilong Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet large scale visual recognition challenge. *International Journal of Computer Vision*, 3(115):211–252, 2015.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-propagation for bilevel optimization. In *International Conference on Artificial Intelligence and Statistics (AISTATS)*, pp. 1723–1732, 2019.

Chenggen Shi, Jie Lu, and Guangquan Zhang. An extended kuhn–tucker approach for linear bilevel programming. *Applied Mathematics and Computation*, 162(1):51–63, 2005.
Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In *Advances in Neural Information Processing Systems (NIPS)*, 2017.

Xingyou Song, Wenbo Gao, Yuxiang Yang, Krzysztof Choromanski, Aldo Pacchiano, and Yunhao Tang. Es-maml: Simple hessian-free meta learning. In *International Conference on Learning Representations (ICLR)*, 2019.

Konstantinos Varelas, Anne Auger, Dimo Brockhoff, Nikolaus Hansen, Ouassim Ait ElHara, Yann Semet, Rami Kassab, and Frédéric Barbaresco. A comparative study of large-scale variants of cma-es. In *International Conference on Parallel Problem Solving from Nature*, pp. 3–15. Springer, 2018.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, and Daan Wierstra. Matching networks for one shot learning. In *Advances in Neural Information Processing Systems (NIPS)*, 2016.

Tengyu Xu, Zhe Wang, Yingbin Liang, and H Vincent Poor. Gradient free minimax optimization: Variance reduction and faster convergence. *arXiv preprint arXiv:2006.09361*, 2020.

Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably faster algorithms for bilevel optimization. *arXiv preprint arXiv:2106.04692*, 2021.

Miao Zhang, Steven Su, Shirui Pan, Xiaojun Chang, Ehsan Abbasnejad, and Reza Haffari. idarts: Differentiable architecture search with stochastic implicit gradients. *arXiv preprint arXiv:2106.10784*, 2021.

Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta learning. In *International Conference on Learning Representations (ICLR)*, 2019.
Supplementary Material

A Further Specifications for Experiments in Section 4

We note that the smoothing parameter μ (in Algorithms 1 and 2) was easy to set and a value of 0.1 or 0.01 yields a good starting point across all our experiments. The batch size Q (in Algorithms 1 and 2) is fixed to 1 (i.e., we use one Jacobian oracle) in all our experiments.

A.1 Specifications on Baseline Bilevel Approaches in Section 4.1

We compare our algorithm ESJ with the following baseline methods:

- **HOZOG (Gu et al., 2021):** a hyperparameter optimization algorithm that uses evolution strategies to estimate the entire hypergradient (both the direct and indirect component). We use our own implementation for this method.

- **AID-CG (Grazzi et al., 2020; Rajeswaran et al., 2019):** approximate implicit differentiation with conjugate gradient. We use its implementation provided at https://github.com/prolearner/hypertorch.

- **AID-FP (Grazzi et al., 2020):** approximate implicit differentiation with fixed-point. We experimented with its implementation at the repository https://github.com/prolearner/hypertorch.

- **ITD-R (REVERSE) (Franceschi et al., 2017):** an iterative differentiation method that computes hypergradients using reverse mode automatic differentiation (RMAD). We use its implementation provided at https://github.com/prolearner/hypertorch.

A.2 Hyperparameters details for shallow HR experiments in Section 4.1

For the linear embedding case, we set the smoothing parameter μ to be 0.01 for ESJ and HOZOG. We use the following hyperparameters for all compared methods. The number of inner GD steps is fixed to $N = 20$ with the learning rate of $\alpha = 0.001$. For the outer optimizer, we use Adam (Kingma & Ba, 2014) with a learning rate of 0.05. The value of γ in eq. (10) is set to be 0.1. For the two-layer net case, we use $\mu = 0.1$ for ESJ and HOZOG. For all methods, we set $N = 10$, $\alpha = 0.001$, $\beta = 0.001$, and use Adam with a learning rate of 0.01 as the outer optimizer.

A.3 Specifications on Baseline Stochastic Algorithms in Section 4.2

We compare our stochastic algorithm ESJ-S with the following baseline stochastic bilevel algorithms.

- **stocBiO:** an approximate implicit differentiation method that uses Neumann Series to estimate the Hessian inverse. We use its implementation available at https://github.com/JunjieYang97/StocBio.

- **AID-CG-S and AID-FP-S:** stochastic versions of AID-CG and AID-FP, respectively. We use their implementations in the repository https://github.com/prolearner/hypertorch.

A.4 Specifications for Few-shot Meta-Learning in Section 4.3

The miniImageNet dataset (Vinyals et al., 2016) is a large-scale benchmark for few-shot learning generated from ImageNet (Russakovsky et al., 2015) Russakovsky. The dataset consists of 100 classes with each class containing 600 images of size 84×84. Following (Arnold et al., 2019), we split the classes into 64 classes for
meta-training, 16 classes for meta-validation, and 20 classes for meta-testing. More specifically, we use 20000
tasks for meta-training, 600 tasks for meta-validation, and 600 tasks for meta-testing. We normalize all image
pixels by their means and standard deviations over RGB channels and do not perform any additional data
augmentation. At each meta-iteration, we sample a batch of 16 training tasks and update the parameters
based on these tasks. We set the smoothness parameter to be $\mu = 0.1$ and use $N = 30$ inner steps. We use
SGD with a learning rate of $\alpha = 0.01$ as inner optimizer and Adam with a learning rate of $\beta = 0.01$ as outer
(meta) optimizer.

B Supporting Technical Lemmas

In this section, we provide auxiliary lemmas that are used for proving the convergence results for the algorithms
ESJ and ESJ-S.
In the following proofs, we let $L = \max\{L_g, L_f\}$ and D be such that $\|y^*(x)\| \leq D$.
First we recall that for any two matrices $A \in \mathbb{R}^{m \times r}$ and $B \in \mathbb{R}^{r \times n}$, we have the following upper-bound
on the Frobenius norm of their product,
$$\|AB\|_F \leq \|A\| \|B\|_F. \quad (14)$$

The following lemma follows directly from the Lipschitz properties in Assumptions 2 and 3.

Lemma 1. Suppose that Assumptions 2 and 3 hold. Then, the stochastic derivatives
$\nabla F(x, y; \xi)$, $\nabla_x \nabla_y G(x, y; \xi)$, and $\nabla_y^2 G(x, y; \xi)$ have bounded variances, i.e., for any (x, y) and ξ we have:

- $\mathbb{E}_{\xi}\|\nabla F(x, y; \xi) - \nabla f(x, y)\|^2 \leq M^2$;
- $\mathbb{E}_{\xi}\|\nabla_x \nabla_y G(x, y; \xi) - \nabla_x \nabla_y g(x, y)\|^2_F \leq L^2$;
- $\mathbb{E}_{\xi}\|\nabla^2_y G(x, y; \xi) - \nabla^2_y g(x, y)\|^2_F \leq L^2$.

Using Lemma 2.2 in Ghadimi & Wang (2018), the following lemma characterizes the Lipschitz property of
the gradient of the total objective
$\Phi(x) = f(x, y^*(x))$.

Lemma 2. Suppose that Assumptions 1, 2, and 3 hold. Then, we have:
$$\|\nabla \Phi(x_2) - \nabla \Phi(x_1)\| \leq L_\Phi \|x_2 - x_1\| \quad \forall x_1 \in \mathbb{R}^p, x_2 \in \mathbb{R}^p,$$
where the constant $L_\Phi = L + 2L^2 + \tau M^2 + \rho M L^2 + \frac{LM + L^3 + \tau ML}{\mu^2} + \frac{M^2 M}{\mu^2}$.

We next provide some essential properties of the ES-based (i.e., zeroth-order) gradient oracle in eq. (3),
due to Nesterov & Spokoiny (2017).

Lemma 3. Let $h : \mathbb{R}^n \to \mathbb{R}$ be a differentiable function with L-Lipschitz gradient. Define its Gaussian smooth
approximation $h_\mu(x) = \mathbb{E}_u [h(x + \mu u)]$, where $\mu > 0$ and $u \in \mathbb{R}^n$ is a standard Gaussian random vector. Then,
h_μ is differentiable and we have:

- The gradient of h_μ takes the form
$$\nabla h_\mu(x) = \mathbb{E}_u \frac{h(x + \mu u) - h(x)}{\mu} u.$$

- For any $x \in \mathbb{R}^n$,
$$\|\nabla h_\mu(x) - \nabla h(x)\| \leq \frac{\mu^2}{2} L(n + 3)^{3/2}.$$
For any $x \in \mathbb{R}^n$,
\[
E_n \left\| \frac{h(x + \mu u) - h(x)}{\mu} \right\|^2 \leq 4(n + 4) \left\| \nabla h(x) \right\|^2 + \frac{3}{2} \mu^2 L^2 (n + 5)^3.
\]

Note the first item in Lemma 3 implies that the oracle in eq. (3) is in indeed an unbiased estimator of the gradient of the smoothed function h_μ.

Lemma 4. Suppose that Assumptions 1 and 2 hold. The Jacobian $J_* = \frac{\partial y^*(x)}{\partial x}$ has bounded norm:
\[
\left\| J_* \right\|_F \leq \frac{L}{\mu g}.
\]

Proof of Lemma 4 From the first order optimality condition of $y^*(x)$, we have $\nabla_y g(x, y^*(x)) = 0$. Hence, the Implicit Function Theorem implies:
\[
J_* = - \left(\nabla_y^2 g(x, y^*(x)) \right)^{-1} \nabla_x \nabla_y g(x, y^*(x)).
\]
Taking norms and applying eq. (14) together with Assumptions 1 and 2 yield the desired result
\[
\left\| J_* \right\|_F \leq \left\| \nabla_x \nabla_y g(x, y^*(x)) \right\|_F \left\| \left(\nabla_y^2 g(x, y^*(x)) \right)^{-1} \right\| \leq \frac{L}{\mu g}.
\]

Lemma 5. Suppose that Assumptions 1 and 2 hold. The Jacobian $J_N = \frac{\partial y^N}{\partial x_k}$ has bounded norm:
\[
\left\| J_N \right\|_F \leq \frac{L}{\mu g}.
\]

Proof of Lemma 5 The inner loop gradient descent updates writes
\[
y_k^t = y_k^{t-1} - \alpha \nabla_y g(x_k, y_k^{t-1}), \quad t = 1, \ldots, N.
\]
Taking derivatives w.r.t. x_k yields
\[
J_* = J_{t-1} - \alpha \nabla_x \nabla_y g(x_k, y_k^{t-1}) - \alpha J_{t-1} \nabla_y^2 g(x_k, y_k^{t-1})
= J_{t-1} (I - \alpha \nabla_y^2 g(x_k, y_k^{t-1})) - \alpha \nabla_x \nabla_y g(x_k, y_k^{t-1}).
\]
Telescoping over t from 1 to N yields
\[
J_N = \prod_{t=0}^{N-1} (I - \alpha \nabla_y^2 g(x_k, y_k^t)) - \alpha \sum_{t=0}^{N-1} \nabla_x \nabla_y g(x_k, y_k^t) \prod_{m=t+1}^{N-1} (I - \alpha \nabla_y^2 g(x_k, y_k^m))
= -\alpha \sum_{t=0}^{N-1} \nabla_x \nabla_y g(x_k, y_k^t) \prod_{m=t+1}^{N-1} (I - \alpha \nabla_y^2 g(x_k, y_k^m)).
\]

Hence, we have
\[
\left\| J_N \right\|_F \leq \alpha \sum_{t=0}^{N-1} \left\| \nabla_x \nabla_y g(x_k, y_k^t) \right\|_F \left\| \prod_{m=t+1}^{N-1} (I - \alpha \nabla_y^2 g(x_k, y_k^m)) \right\|.
\]
\begin{align*}
(i) & \leq \alpha \sum_{t=0}^{N-1} L \prod_{m=t+1}^{N-1} \left\| I - \alpha \nabla^2 g (x_k, y_m) \right\| \\
(ii) & \leq \alpha L \sum_{t=0}^{N-1} (1 - \alpha \mu_g)^{N-1-t} \\
& = \alpha L \sum_{t=0}^{N-1} (1 - \alpha \mu_g)^t \leq \frac{L}{\mu_g}
\end{align*}

where (i) follows from Assumption 2 and (ii) applies the strong-convexity of function \(g(x, \cdot) \). This completes the proof.

Lemma 6. Suppose that Assumptions 1 and 2 hold. Then, the Jacobian in the stochastic algorithm ESJ-S \(J_N = \frac{\partial y_N}{\partial x_k} \) has bounded norm, as shown below.

\[\left\| J_N \right\|_F \leq \frac{L}{\mu_g}. \] (20)

Proof of Lemma 6. The proof follows similarly to Lemma 5.

B.1 Proof of Proposition 1

Proposition 1 (Re-stated). Suppose that Assumptions 1 and 2 hold. Define the constant

\[L_J = \left(1 + \frac{L}{\mu_g} \right) \left(\frac{\tau}{\mu_g} + \frac{\beta L}{\mu_g^2} \right). \] (21)

Then, the Jacobian \(J_N(x) = \frac{\partial y_N(x)}{\partial x} \) is \(L_J \)-Lipschitz with respect to \(x \) under the Frobenious norm:

\[\left\| J_N(x_1) - J_N(x_2) \right\|_F \leq L_J \| x_1 - x_2 \| \quad \forall x_1 \in \mathbb{R}^p, x_2 \in \mathbb{R}^p. \] (22)

Proof of Proposition 1. Using eq. (19), we have

\[J_N(x) = -\alpha \sum_{t=0}^{N-1} \nabla x \nabla y g (x, y^t(x)) \prod_{m=t+1}^{N-1} \left(I - \alpha \nabla^2 g (x, y_m(x)) \right), \quad x \in \mathbb{R}^p \]

Hence, for \(x_1 \in \mathbb{R}^p \) and \(x_2 \in \mathbb{R}^p \), we have

\[\left\| J_N(x_1) - J_N(x_2) \right\|_F \]

\[= \alpha \left\| \sum_{t=0}^{N-1} \nabla x \nabla y g (x_1, y^t(x_1)) \prod_{m=t+1}^{N-1} \left(I - \alpha \nabla^2 g (x_1, y^m(x_1)) \right) \\
- \sum_{t=0}^{N-1} \nabla x \nabla y g (x_2, y^t(x_2)) \prod_{m=t+1}^{N-1} \left(I - \alpha \nabla^2 g (x_2, y^m(x_2)) \right) \right\|_F \]

\[\leq \alpha \sum_{t=0}^{N-1} \left\| \nabla x \nabla y g (x_1, y^t(x_1)) \prod_{m=t+1}^{N-1} \left(I - \alpha \nabla^2 g (x_1, y^m(x_1)) \right) \\
- \nabla x \nabla y g (x_2, y^t(x_2)) \prod_{m=t+1}^{N-1} \left(I - \alpha \nabla^2 g (x_2, y^m(x_2)) \right) \right\|_F \]
where the last inequality follows from Lemma 5 and Assumptions 1 and 2.

Next we upper bound the quantity \(\|A_t(x_1) - A_t(x_2)\| \), as shown below.

\[
\|A_t(x_1) - A_t(x_2)\| \leq \alpha \sum_{m=0}^{N-t-3} \alpha \rho \left(1 + \frac{L}{\mu_g} \right) (1 - \alpha \mu_g)^{N-t-2-m} \|x_1 - x_2\|
\]

where \(i \) follows from Lemma 5 and Assumptions 1 and 2. Replacing eq. (25) in eq. (23) and using Assumption 2, we have

\[
\|A_t(x_1) - A_t(x_2)\| \leq \alpha \sum_{i=0}^{N-1} \left(\| \nabla_x \nabla_y g(x_1, y^t(x_1)) \|_F \|A_t(x_1) - A_t(x_2)\| + \alpha \sum_{i=0}^{N-1} \|A_t(x_2)\| \| \nabla_x \nabla_y g(x_1, y^t(x_1)) - \nabla_x \nabla_y g(x_2, y^t(x_2)) \| \right)
\]

(23)

where we define \(A_t(x) = \prod_{m=t+1}^{N-1} \left(I - \alpha \nabla_y^2 g(x, y^m(x)) \right) \) and \(i \) follows from eq. 14.

Telescoping eq. (24) over \(t \) yields

\[
\|A_t(x_1) - A_t(x_2)\| \leq (1 - \alpha \mu_g)^{N-t-2} \|A_{N-2}(x_1) - A_{N-2}(x_2)\|
\]

(24)

(25)

where \((i) \) follows from Lemma 5 and Assumption 2. Replacing eq. (25) in eq. (23) and using Assumption 2, we have

\[
\|J_N(x_1) - J_N(x_2)\|_F \\
\leq \alpha \sum_{i=0}^{N-1} L \alpha \rho \left(1 + \frac{L}{\mu_g} \right) (N - t - 1) (1 - \alpha \mu_g)^{N-t-2} \|x_1 - x_2\|
\]

\[
+ \alpha \sum_{i=0}^{N-1} \tau \left(1 + \frac{L}{\mu_g} \right) (1 - \alpha \mu_g)^{N-t-1} \|x_1 - x_2\|
\]

\[
\leq \alpha^2 \rho \left(1 + \frac{L}{\mu_g} \right) \|x_1 - x_2\| \sum_{m=0}^{N-1} m (1 - \alpha \mu_g)^{m-1} + \frac{\tau}{\mu_g} \left(1 + \frac{L}{\mu_g} \right) \|x_1 - x_2\|
\]

23
Then, the Jacobian
\[\text{Jacobian} \]
where \(u \) is approximated as
\[\text{approximation of the vector} \]
For notation convenience, we define the following quantities:
\[\text{C Proofs for Deterministic Bilevel Optimization} \]
Lemma 7. Suppose that Assumptions 1 and 2 hold. Define the constant
\[L_J = \left(1 + \frac{L}{\mu_g} \right) \left(\frac{\tau}{\mu_g} + \frac{\rho L}{\mu_g^2} \right), \]
Then, the Jacobian \(J_N(x) = \frac{\partial y^N(x; \cdot)}{\partial x} \) is \(L_J \)-Lipschitz with respect to \(x \) under the Frobenius norm:
\[\| J_N(x_1; \cdot) - J_N(x_2; \cdot) \|_F \leq L_J \| x_1 - x_2 \| \quad \forall x_1 \in \mathbb{R}^P, x_2 \in \mathbb{R}^P. \]
Proof of Lemma 7. The proof follows similarly to that for Proposition 1.

C Proofs for Deterministic Bilevel Optimization

For notation convenience, we define the following quantities:
\[\hat{J}_{N,j} = \hat{J}_N(x_k, u_j) = \begin{pmatrix} \frac{y^N_i(x_k + \mu u_j) - y^N_i(x_k)}{\mu} & \vdots & \frac{y^N_d(x_k + \mu u_j) - y^N_d(x_k)}{\mu} \end{pmatrix}^T, \quad \hat{J}_N = \frac{\partial y^N_k}{\partial x_k}, \quad J_* = \frac{\partial y_k^*}{\partial x_k}, \]
where \(u_j \in \mathbb{R}^P, j = 1, \ldots, Q \) are standard Gaussian vectors. Let \(y^N_i(x_k) \) be the Gaussian smooth approximation of \(y^N_i(x_k) \). We collect \(y^N_i(x_k) \) for \(i = 1, \ldots, d \) together as a vector \(y^N_k(x_k) \), which is the Gaussian approximation of the vector \(y^N(x_k) \). If \(\mu > 0 \), \(y^N_i(x_k) \) is differentiable and we let \(J_\mu \) be the Jacobian given by
\[J_\mu = \frac{\partial y^N_k(x_k)}{\partial x_k}. \]
We approximate \(\frac{\partial y^N_k}{\partial x_k} \) using the average ES estimator given by \(\hat{J}_N = \frac{1}{Q} \sum_{j=1}^Q \hat{J}_{N,j} \). The hypergradient is then approximated as
\[\hat{\nabla} \Phi(x_k) = \nabla_x f(x_k, y^N_k) + \hat{J}_N^T \nabla_y f(x_k, y^N_k) \]
\[= \nabla_x f(x_k, y^N_k) + \frac{1}{Q} \sum_{j=1}^Q \hat{J}_{N,j}^T \nabla_y f(x_k, y^N_k). \]
Let \(\delta_j = \frac{y^N_i(x_k + \mu u_j) - y^N_i(x_k)}{\mu} \), and let \(\delta_{i,j} \) be the \(i \)-th component of \(\delta_j \). Hence, we have
\[\hat{J}_{N,j} = \begin{pmatrix} \delta_{1,j} u_j^T \\ \delta_{2,j} u_j^T \\ \vdots \\ \delta_{d,j} u_j^T \end{pmatrix} \]
\[\hat{J}_{N:j}^T \nabla_y f(x_k, y_k^N) = \left(\delta_{1,j} u_j \quad \delta_{2,j} u_j \quad \ldots \quad \delta_{d,j} u_j \right) \nabla_y f(x_k, y_k^N) = \langle \delta_j, \nabla_y f(x_k, y_k^N) \rangle u_j. \] (30)

Using eq. (29) and eq. (30), the estimator for the hypergradient can thus be computed as

\[\hat{\nabla} \Phi(x_k) = \nabla_x f(x_k, y_k^N) + \frac{1}{Q} \sum_{j=1}^{Q} \langle \delta_j, \nabla_y f(x_k, y_k^N) \rangle u_j. \]

C.1 Proof of Proposition 2

Proposition 2 (Formal Statement of Proposition 2). Suppose that Assumptions 1, 2, and 3 hold. Then, the variance of hypergradient estimation can be upper-bounded as follows:

\[
\mathbb{E} \| \hat{\nabla} \Phi(x_k) - \nabla \Phi(x_k) \|^2 \leq 2L^2 D^2 (1 - \alpha \mu_g)^N + 4 \frac{L^4}{\mu_g^2} D^2 (1 - \alpha \mu_g)^N + 24(4p + 15) \frac{L^2 M^2}{Q \mu_g^2} \\
+ \frac{\mu^2}{Q} L^2 J^2 M^2 dP_4(p) + \frac{24 L^2 M^2 (1 - \alpha \mu_g)^N}{\mu_g^2} + 6 \mu^2 L^2 g M^2 d(p + 3)^3 \\
+ \frac{48 M^2 (\tau \mu_g + L \rho)^2}{\mu_g^4} (1 - \alpha \mu_g)^N D^2 \\
= \mathcal{D}_{var} = \mathcal{O} \left(\frac{1 - \alpha \mu_g}{Q} + \frac{p^2 \mu_g^2 + \mu^2 d^p}{Q} + \mu^2 d^p \right) \] (31)

where the expectation \(\mathbb{E}[\cdot] \) is conditioned on \(x_k \) and \(y_k^N \).

Proof of Proposition Based on the definitions of \(\nabla \Phi(x_k) \) and \(\hat{\nabla} \Phi(x_k) \) and conditioning on \(x_k \) and \(y_k^N \), we have

\[
\mathbb{E} \| \hat{\nabla} \Phi(x_k) - \nabla \Phi(x_k) \|^2 \\
\leq 2 \| \nabla_x f(x_k, y_k^N) - \nabla_x f(x_k, y_k^N) \|^2 + 2 \mathbb{E} \| \hat{J}_{N:j}^T \nabla_y f(x_k, y_k^N) - J_s^T \nabla_y f(x_k, y_k^N) \|^2 \\
\leq 2L^2 \| y_k^N - y_k^N \|^2 + 4 \| J_s \|_F^2 \| \nabla_y f(x_k, y_k^N) - \nabla_y f(x_k, y_k^N) \|^2 \\
+ 4 \mathbb{E} \| \hat{J}_{N:j} - J_s \|_F^2 \| \nabla_y f(x_k, y_k^N) \|^2 \\
\overset{(i)}{\leq} 2L^2 D^2 (1 - \alpha \mu_g)^N + 4 \frac{L^4}{\mu_g^2} \| y_k^N - y_k^N \|^2 + 4 M^2 \mathbb{E} \| \hat{J}_{N:j} - J_s \|_F^2 \\
\overset{(ii)}{\leq} 2L^2 D^2 (1 - \alpha \mu_g)^N + 4 \frac{L^4}{\mu_g^2} D^2 (1 - \alpha \mu_g)^N + 4 M^2 \mathbb{E} \| \hat{J}_{N:j} - J_s \|_F^2 \] (33)

where (i) follows from Lemma 1 and Assumption 3 and (i) and (ii) also use the following result for full GD (when applied to a strongly-convex function).

\[\| y_k^N - y_k^N \|^2 \leq (1 - \alpha \mu_g)^N D^2. \]

Next, we upper-bound the last term \(\mathbb{E} \| \hat{J}_{N:j} - J_s \|_F^2 \) at the last line of eq. (33). First note that

\[
\mathbb{E} \| \hat{J}_{N:j} - J_s \|_F^2 \leq 3 \mathbb{E} \| \hat{J}_{N:j} - J_s \|_F^2 + 3 \| \hat{J}_{N:j} - J_s \|_F^2 + 3 \| J_s - J_s \|_F^2 \] (34)
We then upper-bound each term of the right hand side of eq. (34). For the first term, we have

\[
E\|\tilde{J}_N - \tilde{J}_\mu\|_F^2 = E\|\frac{1}{Q} \sum_{j=1}^Q (\hat{J}_{N,j} - \tilde{J}_\mu)\|_F^2
\]

\[
= \frac{1}{Q^2} E\|\sum_{j=1}^Q (\hat{J}_{N,j} - \tilde{J}_\mu)\|_F^2
\]

\[
= \frac{1}{Q^2} E\left(\sum_{j=1}^Q \|\hat{J}_{N,j} - \tilde{J}_\mu\|_F^2 + 2 \sum_{i<j} \langle \hat{J}_{N,i} - \tilde{J}_\mu, \hat{J}_{N,j} - \tilde{J}_\mu \rangle\right)
\]

\[
= \frac{1}{Q^2} \sum_{j=1}^Q E\|\hat{J}_{N,j} - \tilde{J}_\mu\|_F^2
\]

\[
= \frac{1}{Q} E\|\hat{J}_{N,j} - \tilde{J}_\mu\|_F^2, \quad j \in \{1, \ldots, Q\}.
\]

We next upper-bound the term \(E\|\hat{J}_{N,j} - \tilde{J}_\mu\|_F^2\) in eq. (35).

\[
E\|\hat{J}_{N,j} - \tilde{J}_\mu\|_F^2 = E\|\hat{J}_{N,j}\|_F^2 - \|\tilde{J}_\mu\|_F^2
\]

\[
\leq \sum_{i=1}^d \left(4(4p + 4)\|\nabla y_{i,j}\|_F^2 + \frac{3}{2} \mu^2 L_\tilde{J} (p + 5)^3\right) - \sum_{i=1}^d \|\nabla y_{i,j}\|_F^2
\]

\[
\leq \sum_{i=1}^d \left(4(4p + 15)\|\nabla y_{i,j}\|_F^2 + \frac{3}{2} \mu^2 L_\tilde{J} (p + 5)^3\right),
\]

where \(i\) follows by applying Lemma 3 to the components of vector \(y^N(x_k)\) which have Lipschitz gradients by Proposition 1. Then, noting that \(\|\nabla y_{i,j}\|_F^2 \leq 2\|\nabla y_{i,j}\|_2^2 + \frac{1}{2} \mu^2 L_\tilde{J} (p + 3)^3\) and replacing in eq. (37), we have

\[
E\|\hat{J}_{N,j} - \tilde{J}_\mu\|_F^2 \leq \sum_{i=1}^d \left(2(4p + 15)\|\nabla y_{i,j}\|_2^2 + \mu^2 L_\tilde{J} \mathcal{P}_4(p)\right)
\]

\[
\leq 2(4p + 15)\|\mathcal{J}_N\|_F^2 + \mu^2 L_\tilde{J} \mathcal{P}_4(p)
\]

\[
\leq 2(4p + 15) \frac{L_\tilde{J}}{\mu^2} + \mu^2 L_\tilde{J} \mathcal{P}_4(p),
\]

where \(i\) follows from Lemma 5 and \(\mathcal{P}_4\) is a polynomial of degree 4 in \(p\). Combining eq. (35) and eq. (37) yields

\[
E\|\hat{J}_N - \tilde{J}_\mu\|_F^2 \leq 2(4p + 15) \frac{L_\tilde{J}}{Q \mu^2} + \frac{\mu^2}{Q} L_\tilde{J} \mathcal{P}_4(p).
\]

We next upper-bound the second term at the right hand side of eq. (34), which can be upper-bounded using eq. (41) in Ji et al. (2021), as shown below.

\[
\|\mathcal{J}_N - \mathcal{J}_\mu\|_F^2 \leq \frac{2L_\tilde{J}^2 (1 - \alpha \mu_g)^{2N}}{\mu^2} + \frac{4(\tau \mu_g + L_p)^2}{\mu^4} (1 - \alpha \mu_g)^{N-1} D^2.
\]

We finally upper-bound the last term at the right hand side of eq. (34) using Lemma 3

\[
\|\tilde{J}_\mu - \hat{J}_N\|_F^2 = \sum_{i=1}^d \|\nabla y_{i,j}^N - \nabla y_i^N\|_2^2
\]

26
Substituting eq. (39), eq. (40) and eq. (41) into eq. (34) yields

\[
\mathbb{E}\|\hat{\mathcal{J}}_N - \mathcal{J}_*\|^2 \leq 6(4p + 15) \frac{L^2}{Q\mu_g^2} + \frac{\mu^2}{Q} L^2 d P_4(p) + \frac{6L^2(1 - \alpha\mu_g)^{2N}}{\mu_g^2} \\
+ \frac{12(\tau\mu_g + L\rho)^2}{\mu_g^2} (1 - \alpha\mu_g)^{N-1} D^2 + \frac{3\mu^2}{2} L^2 d (p + 3)^3.
\]

Finally, the bound for the expected estimation error in eq. (33) becomes

\[
\mathbb{E}\|\hat{\nabla}\Phi(x_k) - \nabla\Phi(x_k)\|^2 \leq 2L^2 D^2 (1 - \alpha\mu_g)^N + 4\frac{L^4}{\mu_g^2} D^2 (1 - \alpha\mu_g)^N + 24(4p + 15) \frac{L^2 M^2}{Q\mu_g^2} \\
+ \frac{\mu^2}{Q} L^2 M^2 d P_4(p) + \frac{24L^2 M^2(1 - \alpha\mu_g)^{2N}}{\mu_g^2} + 6\mu^2 L^2 M^2 d (p + 3)^3 \\
+ \frac{48M^2(\tau\mu_g + L\rho)^2}{\mu_g^4} (1 - \alpha\mu_g)^{N-1} D^2.
\]

This completes the proof. \(\square\)

C.2 Bias of Hypergradient Estimation

Lemma 8. Suppose that Assumptions 1, 2 and 3 hold. Then, the bias of hypergradient estimation can be upper-bounded as follows:

\[
\|\mathbb{E}\hat{\nabla}\Phi(x_k) - \nabla\Phi(x_k)\| \leq D_{bias} = \mathcal{O} \left((1 - \alpha\mu_g)^{N/2} + \mu d^{1/2} p^{3/2} \right).
\]

Proof: We have

\[
\|\mathbb{E}\hat{\nabla}\Phi(x_k) - \nabla\Phi(x_k)\| = \|\nabla f(x_k, y_k^N) - \nabla f(x_k, y_k^*)\| + \|\mathcal{J}_\mu^T \nabla_y f(x_k, y_k^N) - \mathcal{J}_*^T \nabla_y f(x_k, y_k^*)\|
\leq L\|y_k^N - y_k^*\| + \|\mathcal{J}_\mu^T \nabla_y f(x_k, y_k^N) - \mathcal{J}_*^T \nabla_y f(x_k, y_k^*)\|
+ \|\mathcal{J}_\mu^T \nabla_y f(x_k, y_k^N) - \mathcal{J}_*^T \nabla_y f(x_k, y_k^*)\|
\leq L\|y_k^N - y_k^*\| + M\|\mathcal{J}_\mu - \mathcal{J}_*\| + \frac{L}{\mu_g} \|\nabla y f(x_k, y_k^N) - \nabla y f(x_k, y_k^*)\|
\leq L\|y_k^N - y_k^*\| + M\|\mathcal{J}_\mu - \mathcal{J}_*\| + \frac{L^2}{\mu_g} \|y_k^N - y_k^*\|
\]

\[
\|\mathcal{J}_\mu - \mathcal{J}_*\| = \|\mathcal{J}_\mu - \mathcal{J}_N\| + \|\mathcal{J}_N - \mathcal{J}_*\|
\leq \frac{\mu}{2} Ld \frac{d^{1/2} (p + 3)^{3/2}}{\mu_g} + \frac{L(1 - \alpha\mu_g)^N}{\mu_g} + \frac{2(\tau\mu_g + L\rho)}{\mu_g^2} (1 - \alpha\mu_g)^{(N-1)/2} D.
\]

Hence, we have:

\[
\|\mathbb{E}\hat{\nabla}\Phi(x_k) - \nabla\Phi(x_k)\| \leq LD(1 - \alpha\mu_g)^{N/2} + \frac{\mu}{2} Ld \frac{d^{1/2} (p + 3)^{3/2}}{\mu_g} + \frac{LM(1 - \alpha\mu_g)^N}{\mu_g}
\]
\[
+ \frac{2MD(\tau\mu_g + L\rho)}{\mu_g^2} (1 - \alpha\mu_g)^{(N-1)/2} + \frac{L^2 D}{\mu_g} (1 - \alpha\mu_g)^{N/2}
\leq \mathcal{O} \left((1 - \alpha\mu_g)^{N/2} + \mu d^{1/2} p^{3/2} \right).
\]

\(\square\)
C.3 Proof of Theorem 1

Theorem 1 (Formal Statement of Theorem 1). Suppose that Assumptions 1, 2, and 3 hold. Choose the inner- and outer-loop stepsizes respectively as $\alpha \leq \frac{1}{L}$ and $\beta = \frac{1}{L_0 \sqrt{K}}$, where $L_0 = L + \frac{4L^2M^2}{\mu_g} + \frac{\mu g L M}{\mu_g}$ and let M_0 be such that $\|\nabla \Phi(x_k)\| \leq M_0$. Further set $Q = O(1)$ and $\mu = O\left(\frac{1}{\sqrt{Kdp^3}}\right)$. Then, the iterates x_k for $k = 0, \ldots, K - 1$ of ESJ in Algorithm 1 satisfy:

$$\frac{1 - \frac{1}{\sqrt{K}}}{K} \sum_{k=0}^{K-1} \mathbb{E}\|\nabla \Phi(x_k)\|^2 \leq \frac{L_0(\Phi(x_0) - \Phi^*)}{\sqrt{K}} + M_0D_{bias} + \frac{D_{var}}{\sqrt{K}} = O\left(\frac{p}{\sqrt{K}} + (1 - \alpha \mu g)^N\right),$$

with $\Phi^* = \inf_x \Phi(x)$, D_{bias} and D_{var} are the upper-bounds established in Lemma 5 and Proposition 3.

Proof of Theorem 1. Using the Lipschitzness of function $\Phi(x_k)$, we have

$$\Phi(x_{k+1}) \leq \Phi(x_k) + \langle \nabla \Phi(x_k), x_{k+1} - x_k \rangle + \frac{L_0}{2} \|x_{k+1} - x_k\|^2$$

$$\leq \Phi(x_k) - \beta \langle \nabla \Phi(x_k), \nabla \Phi(x_k) \rangle + \frac{L_0}{2} \beta^2 \|\nabla \Phi(x_k)\|^2$$

$$\leq \Phi(x_k) - \beta \langle \nabla \Phi(x_k), \nabla \Phi(x_k) \rangle + \frac{L_0}{2} \beta^2 \left(\|\nabla \Phi(x_k)\|^2 + \|\nabla \Phi(x_k) - \nabla \Phi(x_k)\|^2\right)$$

(46)

Let $\mathbb{E}_k[\cdot] = \mathbb{E}_{u_k,1,Q}[\cdot|x_k, y^N_k]$ be the expectation over the Gaussian vectors $u_{k,1}, \ldots, u_{k,Q}$ conditioned on x_k and y^N_k. Applying the expectation $\mathbb{E}_k[\cdot]$ to eq. (46) yields

$$\mathbb{E}_k \Phi(x_{k+1}) \leq \Phi(x_k) - \beta \langle \nabla \Phi(x_k), \mathbb{E}_k \nabla \Phi(x_k) - \nabla \Phi(x_k) \rangle - \beta \|\nabla \Phi(x_k)\|^2$$

$$+ L_0 \beta^2 \left(\|\nabla \Phi(x_k)\|^2 + \mathbb{E}_k \|\nabla \Phi(x_k) - \nabla \Phi(x_k)\|^2\right)$$

(47)

$$\leq \Phi(x_k) + \beta \|\nabla \Phi(x_k)\| \|\mathbb{E}_k \nabla \Phi(x_k) - \nabla \Phi(x_k)\| - (\beta - L_0 \beta^2) \|\nabla \Phi(x_k)\|^2$$

$$+ L_0 \beta^2 \mathbb{E}_k \|\nabla \Phi(x_k) - \nabla \Phi(x_k)\|^2$$

(48)

$$\leq \Phi(x_k) + \beta M_0 D_{bias} - (\beta - L_0 \beta^2) \|\nabla \Phi(x_k)\|^2 + \beta^2 L_0 D_{var}$$

where D_{bias} and D_{var} represent respectively the upper-bound established for the bias and variance. Now taking total expectation over $U_k = \{u_{1,1,Q}, \ldots, u_{k,1,Q}\}$, we have

$$E_{k+1} \leq E_k - \beta (1 - L_0 \beta) \mathbb{E}_{U_k} \|\nabla \Phi(x_k)\|^2 + \beta M_0 D_{bias} + \beta^2 L_0 D_{var}$$

(49)

where $E_k = \mathbb{E}_{U_{k-1}} \Phi(x_k)$. Summing up the inequalities in eq. (49) for $k = 0, \ldots, K - 1$ yields

$$E_K \leq E_0 - \beta (1 - L_0 \beta) \sum_{k=0}^{K-1} \mathbb{E}_{U_k} \|\nabla \Phi(x_k)\|^2 + \beta K M_0 D_{bias} + \beta^2 K L_0 D_{var}$$

(50)

Setting $\beta = \frac{1}{L_0 \sqrt{K}}$, denoting by $\Phi^* = \inf_x \Phi(x)$, and rearranging eq. (50), we have

$$\frac{1 - \frac{1}{\sqrt{K}}}{K} \sum_{k=0}^{K-1} \mathbb{E}_{U_k} \|\nabla \Phi(x_k)\|^2 \leq \frac{L_0(\Phi(x_0) - \Phi^*)}{\sqrt{K}} + M_0 D_{bias} + \frac{D_{var}}{\sqrt{K}}.$$

(51)

Setting $Q = O(1)$ and $\mu = O\left(\frac{1}{\sqrt{Kdp^3}}\right)$ in the expressions of D_{bias} and D_{var} finishes the proof.
D Proofs for Stochastic Bilevel Optimization

Define the following quantities

\[\hat{J}_{N,j} = \hat{J}_N(x_k, u_j) = \begin{pmatrix} \frac{Y^N_i(x_k + \mu u_j; S)}{\mu} - Y^N_i(x_k; S) u_j^\top \\ \vdots \\ \frac{Y^N_i(x_k + \mu u_j; S)}{\mu} - Y^N_i(x_k; S) u_j^\top \end{pmatrix}, \quad J_N = \frac{\partial Y^N}{\partial x_k}, \quad J_* = \frac{\partial y_*}{\partial x_k} \]

where \(u_j \in \mathbb{R}^p, j = 1, \ldots, Q \) are standard Gaussian vectors and \(Y^N_k \) is the output of SGD obtained with the minibatches \(\{S_0, \ldots, S_{N-1}\} \).

Conditioning on \(x_k \) and \(Y^N_k \) and taking expectation over \(u_j \) yields

\[
\mathbb{E}_{u_j} \hat{J}_{N,j} = \mathbb{E}_{u_j} \begin{pmatrix} \frac{Y^N_i(x_k + \mu u_j; S)}{\mu} - Y^N_i(x_k; S) u_j^\top \\ \vdots \\ \frac{Y^N_i(x_k + \mu u_j; S)}{\mu} - Y^N_i(x_k; S) u_j^\top \end{pmatrix}
= \begin{pmatrix} \nabla_x \frac{Y^N}{1,\mu}(x_k; S) \\ \vdots \\ \nabla_x \frac{Y^N}{d,\mu}(x_k; S) \end{pmatrix}
= J_\mu(S)
\]

where \(\frac{Y^N}{i,\mu}(x_k; S) \) is the \(i \)-th component of vector \(\frac{Y^N}{\mu}(x_k; S) \), which is the entry-wise Gaussian smooth approximation of vector \(Y^N(x_k; S) \). Let \(\mathbb{E}_k[\cdot] = \mathbb{E}[\cdot | x_k, Y^N_k] = \mathbb{E}_{\mathcal{D}_F, u_1, \eta} \) be the expectation over the Gaussian vectors and the sample minibatch \(\mathcal{D}_F \) conditioned on \(x_k \) and \(Y^N_k \).

D.1 Proof of Proposition 3

Proposition 3 (Formal Statement of Proposition 3), Suppose that Assumptions [1, 2] and [4] hold. Choose the inner-loop stepsize as \(\alpha = \frac{2}{L + \mu_g} \). Define the constants

\[
C_\gamma = (1 - \alpha \mu_g) \left(1 - \alpha \mu_g + \frac{\alpha}{\gamma} + \frac{\alpha L}{\gamma \mu_g} \right), \quad C_{xy} = \alpha \left(\alpha + \gamma (1 - \alpha \mu_g) + \alpha \frac{L}{\mu_g} \right), \quad C_y = \frac{L}{\mu_g} C_{xy}
\]

\[
\Gamma = 2(\tau^2 C_{xy} + \rho^2 C_y) \frac{\sigma^2}{\mu_g L S} + 2 \frac{L^2}{S} (C_{xy} + C_y), \quad \lambda = 2(\tau^2 C_{xy} + \rho^2 C_y) D^2,
\]

where \(\gamma \) is such that \(\gamma \geq \frac{L + \mu_g}{\rho^2} \). Then, we have:

\[
\mathbb{E} \left\| J_N - J_* \right\|_F^2 \leq \frac{C_\gamma C_y L^2}{\mu_g^2} + \frac{\lambda (L + \mu_g)^2 (1 - \alpha \mu_g) C_y^{-1}}{(L + \mu_g)^2 (1 - \alpha \mu_g) - (L - \mu_g)^2} + \frac{\Gamma}{1 - C_\gamma}.
\]

Proof of Proposition 3 Based on the SGD updates, we have

\[
Y^t_k = Y^{t-1}_k - \alpha \nabla_y G(x_k, Y^{t-1}_k; S_{t-1}) , \quad t = 1, \ldots, N
\]
Taking the derivatives w.r.t. x_k yields

$$
\mathcal{J}_t - \mathcal{J}_s = - \alpha \nabla_x \nabla_y G (x_k, Y_{k-1}^t; S_{t-1}) - \alpha \nabla_x \nabla_y G (x_k, Y_{k-1}^t; S_{t-1})
+ \alpha \left(\nabla_x \nabla_y g (x_k, y_k^s) + \mathcal{J}_s \nabla_y^2 g (x_k, y_k^s) \right)
= \mathcal{J}_t - \mathcal{J}_s - \alpha \left(\nabla_x \nabla_y G (x_k, Y_{k-1}^t; S_{t-1}) - \nabla_x \nabla_y g (x_k, y_k^s) \right)
+ \alpha (\mathcal{J}_t - \mathcal{J}_s) \nabla_y^2 G (x_k, Y_{k-1}^t; S_{t-1})
+ \alpha \mathcal{J}_s \left(\nabla_y^2 g (x_k, y_k^s) - \nabla_y^2 G (x_k, Y_{k-1}^t; S_{t-1}) \right).
$$

Hence, using the triangle inequality, we have

$$
\| \mathcal{J}_t - \mathcal{J}_s \|_F \leq \| (\mathcal{J}_t - \mathcal{J}_s) (I - \nabla_y^2 G (x_k, Y_{k-1}^t; S_{t-1})) \|_F
+ \alpha \| \nabla_x \nabla_y G (x_k, Y_{k-1}^t; S_{t-1}) - \nabla_x \nabla_y g (x_k, y_k^s) \|_F
+ \alpha \| \mathcal{J}_s \left(\nabla_y^2 g (x_k, y_k^s) - \nabla_y^2 G (x_k, Y_{k-1}^t; S_{t-1}) \right) \|_F,
$$

where (i) follows from Assumption [1]. We then further have

$$
\| \mathcal{J}_t - \mathcal{J}_s \|_F^2 \leq (1 - \alpha \mu_g) \| \mathcal{J}_{t-1} - \mathcal{J}_s \|_F^2 + \alpha^2 \| \nabla_x \nabla_y G (x_k, Y_{k-1}^t; S_{t-1}) - \nabla_x \nabla_y g (x_k, y_k^s) \|_F^2
+ \alpha^2 \frac{L}{\mu_g} \| \nabla_y^2 G (x_k, Y_{k-1}^t; S_{t-1}) - \nabla_y^2 g (x_k, y_k^s) \|_F^2
+ 2\alpha (1 - \alpha \mu_g) \| \mathcal{J}_{t-1} - \mathcal{J}_s \|_F \| \nabla_x \nabla_y G (x_k, Y_{k-1}^t; S_{t-1}) - \nabla_x \nabla_y g (x_k, y_k^s) \|_F
+ 2\alpha (1 - \alpha \mu_g) \left(\frac{L}{\mu_g} \| \mathcal{J}_{t-1} - \mathcal{J}_s \|_F \| \nabla_y^2 G (x_k, Y_{k-1}^t; S_{t-1}) - \nabla_y^2 g (x_k, y_k^s) \|_F \right)
+ 2\alpha^2 \frac{L}{\mu_g} \| \nabla_y^2 G (x_k, Y_{k-1}^t; S_{t-1}) - \nabla_y^2 g (x_k, y_k^s) \|_F \| \nabla_x \nabla_y G (x_k, Y_{k-1}^t; S_{t-1}) - \nabla_x \nabla_y g (x_k, y_k^s) \|_F.
$$

The terms P_1, P_2 and P_3 in the above inequality can be transformed as follows using the Peter-Paul version of Young’s inequality.

$$
P_1 \leq \frac{1}{2\gamma} \| \mathcal{J}_{t-1} - \mathcal{J}_s \|_F^2 + \frac{\gamma}{2} \| \nabla_x \nabla_y G (x_k, Y_{k-1}^t; S_{t-1}) - \nabla_x \nabla_y g (x_k, y_k^s) \|_F^2, \quad \gamma > 0
P_2 \leq \frac{1}{2\gamma} \| \mathcal{J}_{t-1} - \mathcal{J}_s \|_F^2 + \frac{\gamma}{2} \| \nabla_y^2 G (x_k, Y_{k-1}^t; S_{t-1}) - \nabla_y^2 g (x_k, y_k^s) \|_F^2, \quad \gamma > 0
P_3 \leq \frac{1}{2} \| \nabla_y^2 G (x_k, Y_{k-1}^t; S_{t-1}) - \nabla_y^2 g (x_k, y_k^s) \|_F^2
+ \frac{1}{2} \| \nabla_x \nabla_y G (x_k, Y_{k-1}^t; S_{t-1}) - \nabla_x \nabla_y g (x_k, y_k^s) \|_F^2.
$$

Note that the trade-off constant γ controls the contraction coefficient (factor in front of $\| \mathcal{J}_{t-1} - \mathcal{J}_s \|_F^2$). Hence, we have

$$
\| \mathcal{J}_t - \mathcal{J}_s \|_F^2 \leq \left(1 - \alpha \mu_g \right)^2 + \frac{\alpha}{\gamma} (1 - \alpha \mu_g) + \frac{\alpha L}{\gamma \mu_g} (1 - \alpha \mu_g) \right) \| \mathcal{J}_{t-1} - \mathcal{J}_s \|_F^2
$$
\(+ \left(\alpha^2 + \alpha \gamma (1 - \alpha \mu_g) + \alpha^2 \frac{L}{\mu_g} \right) \| \nabla_x \nabla_y G (x_k, Y_{t-1}^{k-1}; S_{t-1}) - \nabla_x \nabla_y g (x_k, y_k) \|_F^2 \)
\(+ \left(\alpha^2 \frac{L^2}{\mu_g^2} + \alpha \gamma (1 - \alpha \mu_g) + \alpha^2 \frac{L}{\mu_g} \right) \| \nabla^2_y G (x_k, Y_{t-1}^{k-1}; S_{t-1}) - \nabla^2_y g (x_k, y_k) \|_F^2. \)

Let \(E_{t-1}[\cdot] = \mathbb{E}[\cdot | x_k, Y_{t-1}^{k-1}] \). Conditioning on \(x_k \) and \(Y_{t-1}^{k-1} \) and taking expectations yield
\[
E_{t-1} \| \mathcal{J}_t - \mathcal{J}_* \|_F^2 \leq C_\gamma \| \mathcal{J}_{t-1} - \mathcal{J}_* \|_F^2 + C_{xy} E_{t-1} \| \nabla_x \nabla_y G (x_k, Y_{t-1}^{k-1}; S_{t-1}) - \nabla_x \nabla_y g (x_k, y_k) \|_F^2
\]
\(+ C_{y} E_{t-1} \| \nabla^2_y G (x_k, Y_{t-1}^{k-1}; S_{t-1}) - \nabla^2_y g (x_k, y_k) \|_F^2, \)

(53)

where \(C_\gamma, C_{xy} \) and \(C_y \) are defined as follows
\[
C_\gamma = (1 - \alpha \mu_g) \left(1 - \alpha \mu_g + \frac{L}{\gamma \mu_g} \right), C_{xy} = \alpha \gamma (1 - \alpha \mu_g) + \frac{L}{\mu_g}, C_y = \frac{L}{\mu_g} C_{xy}. \]

Conditioning on \(x_k \) and \(Y_{t-1}^{k-1} \), we have
\[
E_{t-1} \| \nabla_x \nabla_y G (x_k, Y_{t-1}^{k-1}; S_{t-1}) - \nabla_x \nabla_y g (x_k, y_k) \|_F^2 \leq 2 E_{t-1} \| \nabla_x \nabla_y G (x_k, Y_{t-1}^{k-1}) - \nabla_x \nabla_y g (x_k, y_k) \|_F^2
\]
\(+ 2 E_{t-1} \| \nabla_x \nabla_y G (x_k, Y_{t-1}^{k-1}; S_{t-1}) - \nabla_x \nabla_y g (x_k, Y_{t-1}^{k-1}) \|_F^2 \)
\(\leq \frac{L^2}{S} + 2 \tau^2 Y_{t-1}^{k-1} - y_k \|_2^2. \)

(54)

where \((i) \) follows from Lemma 1 and Assumption 2. Similarly we can derive
\[
E_{t-1} \| \nabla^2_y G (x_k, Y_{t-1}^{k-1}; S_{t-1}) - \nabla^2_y g (x_k, y_k) \|_F^2 \leq 2 \frac{L^2}{S} + 2 \rho^2 \| Y_{t-1}^{k-1} - y_k \|_2^2. \)

(55)

Combining eq. (53), eq. (54), and eq. (55) we obtain
\[
E_{t-1} \| \mathcal{J}_t - \mathcal{J}_* \|_F^2 \leq C_\gamma \| \mathcal{J}_{t-1} - \mathcal{J}_* \|_F^2 + 2 (\tau^2 C_{xy} + \rho^2 C_y) \| Y_{t-1}^{k-1} - y_k \|_2^2
\]
\(+ \frac{L^2}{S} (C_{xy} + C_y). \)

(56)

Unconditioning on \(x_k \) and \(Y_{t-1}^{k-1} \) and taking total expectations of eq. (56) yield
\[
\mathbb{E} \| \mathcal{J}_t - \mathcal{J}_* \|_F^2 \leq C_\gamma \mathbb{E} \| \mathcal{J}_{t-1} - \mathcal{J}_* \|_F^2 + 2 (\tau^2 C_{xy} + \rho^2 C_y) \mathbb{E} \| Y_{t-1}^{k-1} - y_k \|_2^2 + \frac{L^2}{S} (C_{xy} + C_y)
\]
\(\leq C_\gamma \mathbb{E} \| \mathcal{J}_{t-1} - \mathcal{J}_* \|_F^2 + 2 (\tau^2 C_{xy} + \rho^2 C_y) \left(\frac{L - \mu_g}{L + \mu_g} \right)^{2(t-1)} D^2 + \frac{\sigma^2}{\mu_g L S} \)
\(+ \frac{L^2}{S} (C_{xy} + C_y), \)

where \((i) \) follows from the analysis of SGD for a strongly-convex function. Let \(\Gamma = 2 (\tau^2 C_{xy} + \rho^2 C_y) \frac{\sigma^2}{\mu_g LS} + \frac{L^2}{S} (C_{xy} + C_y) \) and \(\lambda = 2 (\tau^2 C_{xy} + \rho^2 C_y) D^2 \). Then, we have
\[
\mathbb{E} \| \mathcal{J}_t - \mathcal{J}_* \|_F^2 \leq C_\gamma \mathbb{E} \| \mathcal{J}_{t-1} - \mathcal{J}_* \|_F^2 + \lambda \left(\frac{L - \mu_g}{L + \mu_g} \right)^{2(t-1)} \Gamma. \)

(57)
Telescoping eq. (57) over \(t \) from \(N \) down to 1 yields

\[
E\|\mathcal{J}_N - \mathcal{J}_*\|_F^2 \leq C_{\gamma}^N E\|\mathcal{J}_0 - \mathcal{J}_*\|_F^2 + \lambda \sum_{t=0}^{N-1} \left(\frac{L - \mu_g}{L + \mu_g} \right)^{2t} C_{\gamma}^{N-1-t} + \Gamma \sum_{t=0}^{N-1} C_{\gamma}^t \tag{58}
\]

which, in conjunction with \(\left(\frac{L - \mu_g}{L + \mu_g} \right)^2 \leq 1 - \alpha \mu_g \) and \(\gamma \geq \frac{L + \mu_g}{\mu_g^2} \) such that \(C_{\gamma} \leq 1 - \alpha \mu_g \), yields

\[
E\|\mathcal{J}_N - \mathcal{J}_*\|_F^2 \leq C_{\gamma}^N \frac{L^2}{\mu_g^2} + \lambda C_{\gamma}^{N-1} \sum_{t=0}^{N-1} \left(\frac{(L - \mu_g)^2}{(L + \mu_g)^2(1 - \alpha \mu_g)} \right)^t + \frac{\Gamma}{1 - C_{\gamma}} \leq C_{\gamma}^N \frac{L^2}{\mu_g^2} + \frac{\lambda(L + \mu_g)^2(1 - \alpha \mu_g)C_{\gamma}^{N-1}}{(L + \mu_g)^2(1 - \alpha \mu_g) - (L - \mu_g)^2} + \frac{\Gamma}{1 - C_{\gamma}} \tag{59}
\]

The proof is then complete. \(\square \)

Lemma 9. Suppose that Assumptions 2, 3, and 4 hold. Set the inner-loop stepsize as \(\alpha = \frac{2}{L + \mu_g} \). Then, we have

\[
E \| E_k \hat{\nabla} \Phi(x_k) - \nabla \Phi(x_k) \|^2 \leq 8M^2 \left(C_{\gamma}^N \frac{L^2}{\mu_g^2} + \frac{\lambda(L + \mu_g)^2(1 - \alpha \mu_g)C_{\gamma}^{N-1}}{(L + \mu_g)^2(1 - \alpha \mu_g) - (L - \mu_g)^2} + \frac{\Gamma}{1 - C_{\gamma}} + \frac{\mu_g^2}{2} L^2 d(p + 3)^3 \right) + 2L^2 \left(1 + 2 \frac{L^2}{\mu_g^2} \right) \left(\frac{L - \mu_g}{L + \mu_g} \right)^{2N} D^2 + \frac{\sigma^2}{\mu_g L S}, \tag{60}
\]

where the expectation \(E \cdot [] \) is conditioned on \(x_k \) and \(Y_k^N \).

Proof of Lemma 9 Conditioning on \(x_k \) and \(Y_k^N \), we have

\[
E_k \hat{\nabla} \Phi(x_k) = \nabla_x f(x_k, Y_k^N) + \mathcal{J}_\mu^T \nabla_y f(x_k, Y_k^N).
\]

Recall \(\nabla \Phi(x_k) = \nabla_x f(x_k, y_k^*) + \mathcal{J}_\mu^T \nabla_y f(x_k, y_k^*) \). Thus, we have

\[
\| E_k \hat{\nabla} \Phi(x_k) - \nabla \Phi(x_k) \|^2 \leq 2\| \nabla_x f(x_k, Y_k^N) - \nabla_x f(x_k, y_k^*) \|^2 + 2\| \mathcal{J}_\mu^T \nabla_y f(x_k, Y_k^N) - \mathcal{J}_\mu^T \nabla_y f(x_k, y_k^*) \|^2 \\
\leq 2L^2 \| Y_k^N - y_k^* \|^2 + 4\| \mathcal{J}_\mu^T \nabla_y f(x_k, Y_k^N) - \mathcal{J}_\mu^T \nabla_y f(x_k, y_k^*) \|^2 \\
+ 4\| \mathcal{J}_\mu^T \nabla_y f(x_k, Y_k^N) - \mathcal{J}_\mu^T \nabla_y f(x_k, y_k^*) \|^2 \\
\leq 2L^2 \| Y_k^N - y_k^* \|^2 + 4M^2 \| J_k - J \|_F^2 + 4 \frac{L^2}{\mu_g^2} \| \nabla_y f(x_k, Y_k^N) - \nabla_y f(x_k, y_k^*) \|^2 \\
\leq 2L^2 \| Y_k^N - y_k^* \|^2 + 8M^2 \| J_k - J \|_F^2 + 8M^2 \| J_N - J_* \|_F^2 + 8M^2 \| J_N - J_* \|_F^2 + 4 \frac{L^4}{\mu_g^2} \| Y_k^N - y_k^* \|^2.
\]

where (i) applies Lemma 4 and Assumption 3. Taking expectation of the above inequality yields

\[
E \| E_k \hat{\nabla} \Phi(x_k) - \nabla \Phi(x_k) \|^2 \leq 2L^2 \left(1 + 2 \frac{L^2}{\mu_g^2} \right) E \| Y_k^N - y_k^* \|^2 + 8M^2 E \| J_N - J_* \|^2_F \\
+ 8M^2 E \| J_N - J_* \|^2_F.
\]

(61)
Using the fact that $Y_i^N(x_k; \cdot)$ has Lipschitz gradient (Proposition 1) and Lemma 3, the last term at the right hand side of eq. (61) can be directly upper-bounded as

$$
\|J_\mu - J_N\|^2_F = \sum_{i=1}^d \|\nabla Y_i^N(x_k; S) - \nabla Y_i^N(x_k; S)\|^2 \leq \frac{\mu^2}{2} L_{J}^2 d(p + 3)^3,
$$

(62)

where L_J is the Lipschitz constant of the Jacobian J_N (and also of its rows $\nabla Y_i^N(x_k; S)$) as defined in Proposition 1. Combining eq. (61), eq. (62), Proposition 3 and SGD analysis (as in eq. (60) in Ji et al. (2021)) yields

$$
\mathbb{E}\|\hat{\Phi}(x_k) - \nabla \Phi(x_k)\|^2 \leq 8M^2 \left(C_\gamma^2 \frac{L^2}{\rho_\gamma^2} + \frac{\lambda(L + \mu_g)^2(L - \mu_g)}{(L + \mu_g)^2} + \frac{\Gamma + \frac{\mu^2}{2} L_{J}^2 d(p + 3)^3}{1 - C_\gamma} + \frac{\mu^2}{\rho_\gamma^2} \right) + 2M^2 \left(1 + 2 \frac{L^2}{\rho_\gamma^2} \right) \left(\frac{L}{L + \mu_g} \right)^{2N} \frac{\sigma^2}{\mu L S}.
$$

(63)

This finishes the proof.

D.2 Proof of Proposition 4

Proposition 4 (Formal Statement of Proposition 4). Suppose that Assumptions 1, 2, 3 and 4 hold. Set the inner-loop stepsize as $\alpha = \frac{2}{L + \rho_\gamma}$. Then, we have:

$$
\mathbb{E}\|\hat{\Phi}(x_k) - \nabla \Phi(x_k)\|^2 \leq \Delta + B_1
$$

(64)

where $\Delta = 8M^2 \left(1 + \frac{1}{D_f} \right)^{\frac{4p+15}{4}} + \frac{\lambda}{D_f} + \frac{1}{D_f} \left(\frac{L}{L + \mu_g} \right)^{2N} \frac{\sigma^2}{\mu L S}$ and B_1 represents the upper bound established in Lemma 3.

Proof of Proposition 4. We have, conditioning on x_k and Y_k^N

$$
\mathbb{E}_k\|\hat{\Phi}(x_k) - \nabla \Phi(x_k)\|^2 = \mathbb{E}_k\|\hat{\Phi}(x_k) - \mathbb{E}_k\hat{\Phi}(x_k)\|^2 + \mathbb{E}_k\|\mathbb{E}_k\hat{\Phi}(x_k) - \nabla \Phi(x_k)\|^2.
$$

(65)

Our next step is to upper-bound the first term in eq. (65).

$$
\mathbb{E}_k\|\hat{\Phi}(x_k) - \mathbb{E}_k\hat{\Phi}(x_k)\|^2 \leq 2\mathbb{E}_k\|\nabla F(x_k, Y_k^N; D_F) - \nabla f(x_k, Y_k^N)\|^2 + 2\mathbb{E}_k\|\hat{J}_N^T \nabla y F(x_k, Y_k^N; D_F) - \hat{J}_\mu^T \nabla y f(x_k, Y_k^N)\|^2 \\
\leq 2 \frac{M^2}{D_f} + 4\mathbb{E}_k\|\nabla F(x_k, Y_k^N; D_F)\|^2 \|\hat{J}_N - \hat{J}_\mu\|^2_F + 4\mathbb{E}_k\|\hat{J}_\mu\|^2_F \|\nabla y f(x_k, Y_k^N)\|^2 \\
\leq 2 \frac{M^2}{D_f} + 4 \frac{M^2}{D_f} \left(1 + \frac{1}{D_f} \right) \mathbb{E}_k\|\hat{J}_N - \hat{J}_\mu\|^2_F + \frac{4 M^2}{D_f} \|\hat{J}_\mu\|^2_F,
$$

(66)

where the last two steps follows from Lemma 4.

Next, we upper-bound the term $\mathbb{E}_k\|\hat{J}_N - \hat{J}_\mu\|^2_F$.

$$
\mathbb{E}_k\|\hat{J}_N - \hat{J}_\mu\|^2_F = \frac{1}{Q} \mathbb{E}_k\|\hat{J}_{N,j} - \hat{J}_\mu\|^2_F, \quad j \in \{1, \ldots, Q\}
$$
Recall that for a function h with L-Lipschitz gradient, we have
\[E_u \left\| \frac{h(x + \mu u) - h(x)}{\mu} \right\|^2 \leq 4(p + 4) \left\| \nabla h(x) \right\|^2 + \frac{3}{2} \mu^2 L^2(p + 5)^3. \] (68)

Then, applying eq. (68) to function $Y_i^N(\cdot; S)$ yields
\[
E_u \left\| \frac{Y_i^N(x_k + \mu u_j; S) - Y_i^N(x_k; S)}{\mu} \right\|^2 \leq 4(p + 4) \left\| \nabla Y_i^N(x_k; S) \right\|^2 + \frac{3}{2} \mu^2 L^2(p + 5)^3.
\]

Hence, eq. (67) becomes
\[
E_k \left\| \tilde{J}_N - J_\mu \right\|^2 \leq \frac{4p + 15}{Q} \sum_{i=1}^d \left\| \nabla Y_i^N(x_k; S) \right\|^2 + \frac{3}{2} \mu^2 dL^2_f^2(p + 5)^3
\]
\[
\leq \frac{2(4p + 15)}{Q} \sum_{i=1}^d \left\| \nabla Y_i^N(x_k; S) \right\|^2 + \frac{\mu^2 dL^2_f^2}{Q} P_4(p)
\]
\[
\leq \frac{2(4p + 15)}{Q} \left\| J_N \right\|^2 + \frac{\mu^2 dL^2_f^2}{Q} P_4(p),
\] (69)

where P_4 is a polynomial of degree 4 in p. Combining eq. (66), eq. (69) and Lemma 3 yields
\[
E_k \left\| \tilde{\nabla} \Phi(x_k) - E_k \tilde{\nabla} \Phi(x_k) \right\|^2 \leq \frac{2M^2}{D_f} + 4M^2 \left(1 + \frac{1}{D_f}\right) \left(\frac{2(4p + 15)}{Q} \left\| J_N \right\|^2 + \frac{\mu^2 dL^2_f^2}{Q} P_4(p)\right)
\]
\[
+ \frac{4M^2}{D_f} \left(2\left\| J_N \right\|^2 + \mu^2 dL^2_f^3 P_3(p)\right)
\]
\[
\leq 8M^2 \left(\left(1 + \frac{1}{D_f}\right) \frac{4p + 15}{Q} + \frac{1}{D_f}\right) \frac{L^2}{\mu^2} + 2 \frac{M^2}{D_f}
\]
\[
+ \left(1 + \frac{1}{D_f}\right) \frac{4M^2}{Q} \mu^2 dL^2_f^2 P_4(p) + \frac{4M^2}{D_f} \mu^2 dL^2_f^3 P_3(p)
\]
\[
= \Delta,
\] (70)

where $\Delta = 8M^2 \left(\left(1 + \frac{1}{D_f}\right) \frac{4p + 15}{Q} + \frac{1}{D_f}\right) \frac{L^2}{\mu^2} + 2 \frac{M^2}{D_f} + \left(1 + \frac{1}{D_f}\right) \frac{4M^2}{Q} \mu^2 dL^2_f^2 P_4(p) + \frac{4M^2}{D_f} \mu^2 dL^2_f^3 P_3(p)$.

Taking total expectations of both eq. (65) and eq. (70) and combining, we have
\[
E \left\| \tilde{\nabla} \Phi(x_k) - \nabla \Phi(x_k) \right\|^2 = E \left\| \tilde{\nabla} \Phi(x_k) - E_k \tilde{\nabla} \Phi(x_k) \right\|^2 + E \left\| E_k \tilde{\nabla} \Phi(x_k) - \nabla \Phi(x_k) \right\|^2
\]
\[
\leq \Delta + E_1
\] (71)

where E_1 representing the upper-bound established in eq. (63). The proof is then complete.

\[\Box\]

D.3 Proof of Theorem 2

Theorem 2 (Formal Statement of Theorem 2). Suppose that Assumptions \ref{as:2}, \ref{as:3}, \ref{as:4} and \ref{as:4} hold. Set the inner- and outer-loop stepsizes respectively as $\alpha = \frac{2}{L + \mu p}$ and $\beta = \frac{1}{L + \sqrt{g}}$, where $L = \max\{L_f, L_g\}$ and the constants
\[L_\Phi \text{ and } M_\Phi \text{ are defined as in Theorem } 1. \]

Further, set \(Q = O(1), \) \(D_f = O(1), \) and \(\mu = O \left(\frac{1}{\sqrt{Kdp^3}} \right). \) Then, the iterates \(x_k, k = 0, \ldots, K - 1 \) of the ESJ-S algorithm satisfy

\[
\frac{1 - \frac{1}{K}}{K} \sum_{k=0}^{K-1} \mathbb{E} \left\| \nabla \Phi(x_k) \right\|^2 \leq \left(\frac{\Phi(x_0) - \Phi^*}{\sqrt{K}} \right) \frac{L_\Phi}{K} + M_\Phi \sqrt{\mathcal{B}_1} + \frac{\mathcal{B}_1 + \Delta}{\sqrt{K}} = O \left(\frac{p}{\sqrt{K}} + (1 - \alpha_{\mu})^N + \frac{1}{\sqrt{S}} \right)
\]

(72)

where \(\Delta \) and \(\mathcal{B}_1 \) have the following forms

\[
\Delta = 8M^2 \left(1 + \frac{D_f}{D_f} \right) \frac{4p + 15}{Q} + \frac{1}{D_f} \frac{L^2}{\mu_\Phi^2} + 2 \frac{M^2}{D_f} + \left(1 + \frac{1}{D_f} \right) \frac{4M^2}{Q} \mu^2 dL_\gamma \mathcal{P}_3(p)
\]

\[
+ \frac{4M^2}{D_f} \mu^2 dL_\gamma \mathcal{P}_3(p)
\]

\[
\mathcal{B}_1 = 8M^2 \left(C_\gamma^2 \frac{L^2}{\mu_\Phi^2} + \frac{\lambda(L + \mu_\Phi)^2(1 - \alpha_{\mu})C_{\gamma}^{N-1}}{(L + \mu_\Phi)^2(1 - \alpha_{\mu}) - (L - \mu_\Phi)^2} + \frac{\Gamma}{1 - C_{\gamma}} + \frac{\mu^2}{2} L_\gamma^2 d(p + 3)^3 \right)
\]

\[
+ 2L^2 \left(1 + 2 \frac{L^2}{\mu_\Phi^2} \right) \left(\frac{L - \mu_\Phi}{L + \mu_\Phi} \right)^{2N} D^2 + \frac{\sigma^2}{\mu_\Phi LS}
\]

and the constants \(\Gamma, \lambda, \) and \(C_\gamma \) are defined in Proposition 3.

Proof of Theorem 2 Using the Lipschitzness of function \(\Phi(x_k) \), we have

\[
\Phi(x_{k+1}) \leq \Phi(x_k) + \langle \nabla \Phi(x_k), x_{k+1} - x_k \rangle + \frac{L_\Phi}{2} \| x_{k+1} - x_k \|^2
\]

\[
\leq \Phi(x_k) - \beta \langle \nabla \Phi(x_k), \hat{\nabla} \Phi(x_k) \rangle + \frac{L_\Phi}{2} \beta^2 \| \hat{\nabla} \Phi(x_k) - \nabla \Phi(x_k) \|^2 + \nabla \Phi(x_k) \|^2
\]

\[
\leq \Phi(x_k) - \beta \langle \nabla \Phi(x_k), \hat{\nabla} \Phi(x_k) \rangle + \frac{L_\Phi}{2} \beta^2 \left(\| \nabla \Phi(x_k) \|^2 + \| \hat{\nabla} \Phi(x_k) - \nabla \Phi(x_k) \|^2 \right)
\]

Hence, taking expectation over the above inequality yields

\[
\mathbb{E} \Phi(x_{k+1}) \leq \mathbb{E} \Phi(x_k) - \beta \mathbb{E} \langle \nabla \Phi(x_k), \hat{\nabla} \Phi(x_k) \rangle + L_\Phi \beta^2 \mathbb{E} \| \nabla \Phi(x_k) \|^2
\]

\[
+ L_\Phi \beta^2 \mathbb{E} \| \hat{\nabla} \Phi(x_k) - \nabla \Phi(x_k) \|^2.
\]

(73)

Also, we have

\[
- \mathbb{E} \langle \nabla \Phi(x_k), \hat{\nabla} \Phi(x_k) \rangle = - \mathbb{E} \langle \nabla \Phi(x_k), \hat{\nabla} \Phi(x_k) - \nabla \Phi(x_k) \rangle - \mathbb{E} \| \nabla \Phi(x_k) \|^2
\]

\[
= \mathbb{E} \left[- \langle \nabla \Phi(x_k), \mathbb{E}_k \hat{\nabla} \Phi(x_k) - \nabla \Phi(x_k) \rangle \right] - \mathbb{E} \| \nabla \Phi(x_k) \|^2
\]

\[
\leq \mathbb{E} \| \nabla \Phi(x_k) \| \mathbb{E} \| \mathbb{E}_k \hat{\nabla} \Phi(x_k) - \nabla \Phi(x_k) \| - \mathbb{E} \| \nabla \Phi(x_k) \|^2
\]

\[
\leq M_\Phi \mathbb{E} \| \mathbb{E}_k \hat{\nabla} \Phi(x_k) - \nabla \Phi(x_k) \| - \mathbb{E} \| \nabla \Phi(x_k) \|^2,
\]

which, in conjunction with eq. (73), yields

\[
\mathbb{E} \Phi(x_{k+1}) \leq \mathbb{E} \Phi(x_k) + \beta M_\Phi \mathbb{E} \| \mathbb{E}_k \hat{\nabla} \Phi(x_k) - \nabla \Phi(x_k) \| - (\beta - L_\Phi \beta^2) \mathbb{E} \| \nabla \Phi(x_k) \|^2
\]

\[
+ L_\Phi \beta^2 \mathbb{E} \| \hat{\nabla} \Phi(x_k) - \nabla \Phi(x_k) \|^2.
\]

(74)

Using the bounds established in Lemma 9 (along with Jensen’s inequality) and Proposition 4, we have

\[
\mathbb{E} \Phi(x_{k+1}) \leq \mathbb{E} \Phi(x_k) + \beta M_\Phi \sqrt{\mathcal{B}_1} - \beta (1 - L_\Phi \beta) \mathbb{E} \| \nabla \Phi(x_k) \|^2 + L_\Phi \beta^2 (\mathcal{B}_1 + \Delta).
\]
Summing up the above inequality over k from $k = 0$ to $k = K - 1$ yields

$$
\mathbb{E}\Phi(x_K) \leq \mathbb{E}\Phi(x_0) + \beta K M_{\Phi} \sqrt{B_1} - \beta (1 - L_{\phi} \beta) \sum_{k=0}^{K-1} \mathbb{E}\|\nabla \Phi(x_k)\|^2 + L_{\phi} K^2 (B_1 + \Delta).
$$

Setting $\beta = \frac{1}{L_{\phi} \sqrt{K}}$ and rearranging the above inequality yields

$$
\frac{1 - \frac{1}{\sqrt{K}}}{K} \sum_{k=0}^{K-1} \mathbb{E}\|\nabla \Phi(x_k)\|^2 \leq \frac{(\Phi(x_0) - \Phi^*)}{\sqrt{K}} L_{\Phi} + M_{\Phi} \sqrt{B_1} + B_1 + \Delta \sqrt{K}.
$$

Setting $Q = O(1)$, $D_f = O(1)$, and $\mu = O\left(\frac{1}{\sqrt{K dp^3}}\right)$ in the expressions of B_1 and Δ completes the proof. \qed