The principle source of inefficiency in PEM fuel cells is sluggish oxygen-reduction reaction (ORR) kinetics at the cathode. Carbon-supported platinum catalyst is commonly used to enhance the rate of the ORR. In such catalysts, the high surface-to-volume ratio of the platinum particles maximizes the area of the surfaces available for reaction. If the platinum particles cannot maintain their structure over the lifetime of the fuel cell, changes in the morphology of the catalyst layer from the initial state will result in a loss of electrochemical activity. It has been established experimentally that platinum dissolves in PEM fuel cells. In this paper, we develop a mathematical model for the kinetics of platinum dissolution and examine model predictions under a range of PEM fuel cell operating conditions.

The model described in this paper is a spatially lumped model that treats a single, porous platinum electrode and the ionomeric solution that fills the pores of the electrode. The model includes spherical platinum particles that can grow and shrink as platinum plates and dissolves; a platinum oxide layer; and an ionic platinum species in solution (Pt^{2+}). This model contains the basic interfacial reactions and material balances, without including the mass-transport and reaction-rate distributions that come into play in a more detailed electrode model to be published later.

MODEL EQUATIONS

Electrochemistry

We consider three electrochemical reactions: platinum dissolution

$$\text{Pt} = \text{Pt}^{2+} + 2e^-,$$ \hspace{1cm} (1)

platinum oxide film formation

$$\text{Pt} + \text{H}_2\text{O} = \text{PtO} + 2\text{H}^+ + 2e^-,$$ \hspace{1cm} (2)
and chemical dissolution of platinum oxide

\[
\text{PtO} + 2\text{H}^+ = \text{Pt}^{2+} + \text{H}_2\text{O}.
\]

(3)

In a purely thermodynamic analysis, one of these equations could be discarded; only two of them are thermodynamically independent. For example, reaction (3) could be obtained by subtracting reaction (2) from reaction (1). However, we assume that the ion-exchange reaction (3) occurs by a chemical pathway that is distinct from any combination of the two charge transfer reactions. Thus, it is included in the kinetic analysis of the system. \(\text{Pt}^{2+}\) is assumed to be the only ionic platinum species present in significant amounts. Other ionic species with higher oxidation states are reported by Pourbaix\(^3\), but they are not expected to be important in the region of interest. In the literature, the oxide species was often regarded to be \(\text{Pt(OH)}_2\), however, recent quartz microbalance measurements show that the film is not hydrated.\(^4\) This distinction is probably not critical in this work. Further oxidation of the PtO film is not considered explicitly in this work. There are two methods by which we could lose platinum to the solution. The first is by the electrochemical dissolution of Pt to \(\text{Pt}^{2+}\) according to reaction (1), and the second is by the chemical dissolution of the PtO film according to reaction (3).

Rate equations

The platinum dissolution reaction is treated as a single elementary step. We propose a rate expression of the following form:

\[
-r = \frac{i}{n_i F} = k_c \theta_{\text{vac}} \left[\exp \left(\frac{\alpha_{\text{vac}} n_i F}{RT} (\Phi_1 - \Phi_2 - U_1) \right) \right] - \left(\frac{c_{\text{Pt}^{2+}}}{c_{\text{Pt}^{2+},\text{ref}}} \right) \exp \left(\frac{-\alpha_{\text{vac}} n_i F}{RT} (\Phi_1 - \Phi_2 - U_1) \right)
\]

where \(\theta_{\text{vac}} = 1 - \theta_{\text{PtO}}\) is the fraction of the platinum surface that is not covered by oxides. This term is included in the forward rate expression to allow oxide on the surface to insulate the particle and prevent platinum dissolution from beneath the oxide film. \(\theta_{\text{vac}}\) is included in the reverse term to prevent \(\text{Pt}^{2+}\) from plating on Pt through a PtO film.

\[
U_1 = U_1^\text{g} - \frac{\Delta \mu_{\text{Pt}}}{2F}
\]

is the standard equilibrium potential of reaction (1). This potential is shifted away from the literature value for bulk platinum by the factor

\[
\Delta \mu_{\text{Pt}} = \frac{\sigma_{\text{Pt}} M_{\text{Pt}}}{r \rho_{\text{Pt}}}
\]

This factor accounts for the effect of the surface tension of the platinum crystallite on the equilibrium potential. As the platinum particle becomes larger, the shift in the chemical potential of platinum diminishes.
The kinetic expression for platinum oxidation was adapted from the models of Harrington and Heyd,\(^4,5\) and Conway and co-workers.\(^6\) The anodic term, which describes the formation of the oxide, is equivalent to their models. The cathodic term was added in order to describe the reduction of PtO back to platinum metal. The original model of Conway and co-workers allows for unlimited growth of PtO on the Pt surface; our expression reaches equilibrium coverage when the forward and reverse rates are equal in magnitude. The equilibrium coverage may exceed a monolayer.

\[
r_2 = k_2 \left[\exp\left(-\frac{\alpha \theta_{\text{PtO}}}{RT} \right) \exp\left(\frac{\alpha n_2 F}{RT} (\Phi_1 - \Phi_2 - U_2) \right) - \theta_{\text{PtO}} \frac{c_{\text{H}^+}^2}{c_{\text{H}^+,\text{ref}}^2} \exp\left(-\frac{\alpha n_2 F}{RT} (\Phi_1 - \Phi_2 - U_2) \right) \right]
\]

As in reaction (1), the equilibrium potential for this reaction is shifted to account for the surface energy of the platinum crystallite. We also shifted the chemical potential of PtO from the value reported by Pourbaix.\(^3\) In order to match the onset of platinum oxidation observed in cyclic voltammetry data, the platinum oxide must begin to form at lower potentials than would be predicted by using the chemical potential of bulk platinum oxide. Thus, one must assume that the oxide formed on the surface of a platinum crystallite is somehow stabilized by its interactions with the platinum metal and, hence, has a lower chemical potential than a bulk oxide. Alternatively, one might ascribe adsorption at low potentials to PtOH, which further oxidizes to PtO at higher potentials.

\[
U_2 = U_2^0 + \frac{\Delta \mu_{\text{PtO}}}{2F} - \frac{\Delta \mu_{\text{Pt}}}{2F},
\]

where

\[
\Delta \mu_{\text{PtO}} = \Delta \mu_{\text{PtO}}^0 + \frac{\sigma_{\text{PtO}} M_{\text{PtO}}}{r \rho_{\text{PtO}}}
\]

\(U_2\) may either increase or decrease with particle size depending upon the magnitudes of \(\sigma_{\text{Pt}}\) and \(\sigma_{\text{PtO}}\). The value of \(\sigma_{\text{Pt}}\) used in this work exceeds the value of \(\sigma_{\text{PtO}}\), which means that \(U_2\) increases with particle size.

Finally, the rate of the chemical reaction is

\[
r_3 = k_3 \left(\theta_{\text{PtO}} \frac{c_{\text{H}^+}^2}{K_3} - \frac{c_{\text{PtO}}}{K_3} \right),
\]

where the equilibrium constant, \(K_3\), is again shifted from what one would calculate for bulk platinum oxide. The equilibrium constant, \(K_3\), is related to \(U_1\) and \(U_2\) by the equation,

\[
K_3 = \exp \left(\frac{F}{RT} (n_1 U_1 - n_2 U_2) \right).
\]

The proton concentration is related to the water content of the membrane material by the equation,

\[
c_{\text{H}^+} = \frac{E W}{\lambda}
\]
where EW is the equivalent weight of the membrane and λ is the number of water molecules per acid site.

Material balances

To complete the development of the mathematical model, we need an appropriate set of material balances. The kinetic equations involve five species: Pt, PtO, Pt$^{2+}$, H$^+$, and H$_2$O. We assume that the concentrations of protons and water are fixed, and write material balances on the three remaining species. Assuming spherical platinum crystallites we get the following:

For PtO,

$$\frac{d\theta_{\text{PtO}}}{dt} = \left(\frac{r_2 - r_3}{\Gamma_{\text{max}}} \right) \left(\frac{2\theta_{\text{PtO}}}{r} \right) \frac{dr}{dt}$$

where r is the particle radius, and Γ_{max} is the number of moles of active sites per unit of platinum area. This number is taken to be constant in this work, and is calculated assuming a specific charge of 220 μC/cm2 in the hydrogen adsorption region. This equation indicates that PtO grows as a film of uniform thickness, on the surface of the platinum crystallites.

For Pt we obtain

$$\frac{dr}{dt} = -\frac{M}{\rho} (r_1 + r_2)$$

where M and ρ are the molecular weight and density of platinum, respectively. Again, r_1 and r_2 refer to the reaction rates, in moles per second per square centimeter of Pt surface area.

Finally, a balance on Pt$^{2+}$ in solution yields

$$\varepsilon \frac{dc_{\text{Pt}^{2+}}}{dt} = 4\pi r^2 N (r_1 + r_3)$$

where ε is the porosity of the electrode, which is assumed to be constant. N is the number of platinum crystallites per unit electrode volume,

$$N = \frac{a}{4\pi r^3} ,$$

Where a specific surface area of the electrode and r is the mean particle radius measured after initial electrode formation, before cycling alters the particle-size distribution. The current density is

$$i = 8\pi r^2 NFL(r_1 + r_2)$$
where L is the thickness of the catalyst layer. Reaction 3 does not directly affect the current density, as it is a chemical reaction, not an electrochemical reaction.

RESULTS AND DISCUSSION

Figure 1 shows an experimental cyclic voltammogram taken on a commercially available Gore 5510 MEA, and simulations run with the model described above, at a scan rate of 10 mV/s and a temperature of 50°C. Hydrogen adsorption on the platinum surface occurs below 0.4 V. This region of the voltammogram is used to measure the electrochemical area (ECA) of platinum catalysts. Between 0.4 and 0.6 V, no significant electrochemical reactions occur, and the response is dominated by the double-layer capacitance. Finally, above 0.6 V, platinum is oxidized. This is the region of interest in this work, as it corresponds to typical operating potentials in fuel-cell cathodes. The goal of the modeling work is to fit parameters for reactions 1 through 3 at typical cathode potentials. As stated above, the dominant reaction is 2, platinum oxidation. Thus, the fit of the model to the experimental cyclic voltammograms is essentially determined by this reaction. However, platinum dissolution is the mechanism that we are ultimately interested in describing. The rate constant for the dissolution reaction was fit to unpublished data. The chemical dissolution of the platinum oxide film via reaction 3 is more difficult to account for because it is not electrochemical, and so its rate cannot be determined by current measurements. Its rate was arbitrarily set to a low value.

The shape of the voltammogram at high potentials is unusual. On the anodic sweep there is a plateau beginning at approximately 0.85 V and extending to at least 1.5 V (not shown in this set of experimental data, but established in the literature). On the cathodic sweep there is a distinct peak centered at approximately 0.75 V. The long plateau on the cathodic sweep happens because platinum oxide is not limited to monolayer coverage. Rather, multilayers of PtO may form. The onset of PtO formation predicted by the model, using the parameters in table 1, on the anodic sweep is approximately 25 mV too high. The location of the reduction peak predicted by the model matches the experiment, but the shape is different. The model particles discharge much of the film at a higher potential than what is observed experimentally. Table 1 lists the model parameters. Available literature values are given for comparison.

Figure 2 shows the surface coverage and platinum-ion concentration during the potential sweep experiments. The broad loops are the surface coverage, while the dashed lines are the Pt^{2+} concentration. The surface coverage begins to increase rapidly at a potential of approximately 0.8 V, and reaches values that vary from 0.6 at 1 V to 1.6 at 1.4 V. The maximum in surface concentration actually occurs after the sweep is reversed, because the reaction is slow. The system is not quick to come to equilibrium, and so, for finite sweep rates, the oxide coverage is lower than the thermodynamic equilibrium coverage. Figure 3 clarifies this effect. Even as the potential sweep reverses and starts to decrease, the oxide coverage is in equilibrium with a lower potential. Eventually, the decreasing potential and the lagging equilibrium potential cross, and the oxide layer is reduced.

The Pt^{2+} concentration increases rapidly at 1.1 V, but it plateaus at a concentration of 7×10^{-4} M because, at this sweep rate, it is at this concentration that the surface coverage of PtO reaches a monolayer, blocking off the surface from either further
dissolution or plating. The Pt$^{2+}$ concentration drops on the reverse sweep once the PtO coverage falls below a monolayer and exposes the surface for platinum plating. The Pt$^{2+}$ is kinetically stable at the high potentials seen in this work, but it is not thermodynamically stable. Given enough time, the Pt$^{2+}$ would tend to convert to PtO chemically according to reaction 3. We have assumed, however, that this reaction is slow.

Figure 4 shows the predicted equilibrium Pt$^{2+}$ concentration as a function of potential and temperature. The data of Bindra et al.8 is included for the sake of comparison. The slope of the experimental data, taken in 96% H$_3$PO$_4$ at 176 and 196°C, agrees well with the simulations at 176°C. The simulations and experimental data are offset because temperature dependence of the standard equilibrium potentials was neglected, due to a lack of experimental data on PtO. The slopes of the measured and simulated data below 1 V are consistent with the Nernst equation for reaction (1). The solubility of platinum should be lower in a polymer-electrolyte fuel cell than in a high temperature fuel cell. The striking feature in the simulated data is the rapid drop in equilibrium concentration at approximately 1.1 V. At this point, the platinum surface is completely covered with platinum oxide, and the equilibrium is determined by reactions 2 and 3. These simulations show the thermodynamic equilibrium concentrations (as defined by the three reactions), as well as the kinetically stable branch. As the sweeps proceed at higher sweep rates, the concentration of Pt$^{2+}$ in solution at more positive potentials can increase beyond the concentration in equilibrium with the PtO layer, as the Pt dissolution reaction continues as long as the surface is not completely covered. As stated above, the rate of the chemical reaction was assumed to be slow, for lack of better information. Thus, the approach to equilibrium at high potentials is slow.

This slow approach to equilibrium has a rather serious implication for Pt stability: Pt is stable at low potentials due to the low equilibrium concentration of Pt$^{2+}$ at these potentials, and Pt is fairly stable at higher potentials due to the protective oxide layer. Transitions between two potentials, however, can undermine the stability of the Pt crystallites, as the concentration of Pt$^{2+}$ in solution can increase by orders of magnitude over that which is stable at either low or high potentials. It is worth noting that this window of instability occurs between the H$_2$-air open-circuit mixed potential at the cathode (~0.95 V) and the air-air open circuit potential (~1.229 V). Once the Pt$^{2+}$ dissolves into solution, it can be recaptured by the electrode from which it was liberated, but it can also diffuse to other regions of the membrane-electrode assembly and permanently lower Pt content within the cathode. Thus, these transitions at start-up and shutdown can have profound implications on electrochemical area and performance of PEMFC cathodes.

Figure 5 compares, approximately, the platinum dissolution predictions of the model to the triangular-wave potential cycles of Kinoshita et al.5 Kinoshita and co-workers measured platinum dissolution from sheet electrodes subjected to triangular cycles in 1 M H$_2$SO$_4$ at 23°C between 0.4 and 1.4 V at a rate of 1 cycle per minute and found an initial dissolution rate of 4.5 ng/cm2-Pt-cycle*. The rate was essentially unchanged when the upper potential limit was dropped to 1.2 V, but the rate fell to

The numbers reported in the text of reference 2 are 1000 times too large; the correct numbers may be determined from the figures.
approximately 0.8 ng/cm²_p-cycle when the upper potential limit was dropped to 1.0 V. The model predicts initial dissolution rates of 0.5, 0.16, and 3.5×10⁻⁴ ng/cm²_p-cycle for these three cases, respectively. The measured dissolution rates at these potentials are approximately 10 times the predicted rates at 1.2 and 1.4 V. The shapes of the experimental and simulated dissolution curves are similar, although the simulations appear to be shifted to higher potentials by approximately 100 mV. This is probably related to the onset potential for platinum oxidation in the two acids. The experimentally observed plateau in dissolution rate at high potentials appears to confirm the assumption that reaction 3 is slow.

Figure 6 shows model predictions of initial platinum dissolution rate versus initial particle radius. The model predicts that the solubility of platinum changes dramatically in the range of 1.5 to 5 nm, well within the range of commercially available catalyst particle sizes. This figure suggests that gains in ORR activity obtained by fabricating smaller catalyst particles may come at the expense of decreased catalyst stability.

CONCLUSIONS

The model presented in this document describes the oxidation and dissolution of platinum in a PEM fuel cell. Parameters describing the oxidation of platinum were fit to cyclic voltammograms taken on commercially available supported platinum electrodes. The fit is reasonably good. The description of platinum oxidation differs from that proposed in the literature by the inclusion of the cathodic term, which is necessary to describe the reduction of platinum oxide to platinum. This leads to an equilibrium oxide coverage, which differs from the unlimited oxide growth predicted by the literature models. The platinum dissolution kinetics and solubility compare reasonably well with the data available in the literature.

ACKNOWLEDGEMENTS

Thanks to M. Perry, T. Patterson, and J. Bett for their careful reviews of this document, and to UTC Fuel Cells for assistance with publication costs.

LIST OF SYMBOLS

Alphabetical

- \(c_i \) concentration of species \(i \), mol/cm³
- \(C_{dl} \) double-layer capacitance, F/cm²
- \(F \) Faraday’s constant, 96487 C/eq
- \(i \) current density, A/cm²
- \(k_i \) rate constant for reaction \(i \) in the forward direction, units
- \(k_{-i} \) rate constant for reaction \(i \) in the reverse direction, units [used?]
- \(M \) molecular weight of Pt, 195 g/mol
- \(n_i \) number of electrons in reaction \(i \)
- \(N \) number of Pt particles per unit volume, cm⁻³
- \(r \) particle radius, cm
- \(r_i \) rate of reaction \(i \), mol/cm²s

50 Electrochemical Society Proceedings Volume 2002-31
R universal gas constant, J/mol K
t time, s
T temperature, K
U_i thermodynamically reversible potential for reaction i, V

Greek

$\alpha_{a,i}$ anodic transfer coefficient for reaction i
$\alpha_{c,i}$ cathodic transfer coefficient for reaction i
β_i symmetry coefficient for reaction i
ε electrode porosity
Φ_1 solid-phase potential, V
Φ_2 membrane-phase potential, V
Γ_{max} maximum surface coverage on Platinum, 2.18×10^9 mol/cm2
μ_i electrochemical potential of i, J/mol
θ_{PtO} fraction of Platinum surface covered by PtO
θ_{vac} fraction of Platinum surface not covered by PtO
ρ_{Pt} density of Platinum, 21.0 g/cm3
ρ_{PtO} density of Platinum, 14.1 g/cm3
σ_{Pt} surface tension, J/cm2
σ_{PtO} surface tension, J/cm2
ω PtO-PtO interaction parameter, J

REFERENCES

1) T. Patterson, “Effect of Potential Cycling on Loss of Electrochemical Surface Area of Platinum Catalyst in Polymer Electrolyte Membrane Fuel Cell,” Fuel Cell Technology Topical Conference Proceedings, 2002 AIChE Spring National Meeting, March 10-14, 2002.

2) K. Kinoshita, J. T. Lundquist, and P. Stonehart, “Potential cycling effects on platinum electrocatalyst surfaces”, Electroanal Chem. and Interfacial Electrochem., 48, 157-166 (1973).

3) Marcel Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, Oxford, 1966.

4) D. V. Heyd and D. A. Harrington, “Platinum oxide growth kinetics for cyclic voltammetry”, J. Electroanal. Chem., 335, 19-31 (1992).

5) D. A. Harrington, “Simulation of anodic Pt oxide growth”, J. Electroanal. Chem., 420, 101-109 (1997).

6) B. E. Conway, B. Barnett, H. Angerstein-Kozlowska, B. V. Tilak, “A surface-electrochemical basis for the direct logarithmic growth law for initial stages of extension of anodic oxide films formed at noble metals”, J. Chem. Phys., 93, 8361-8373 (1990).

7) J. Bett, personal communication.

8) P. Bindra, S. Clouser, and E. Yeager, “Platinum dissolution in concentrated phosphoric acid”, J. Electrochem. Soc., 126, 1631 (1979).
Table 1: Fitting parameters

Parameter	Fitted value	Literature value	Reference
U_1^θ	1.188 V		
$\alpha_a,1$	0.5		
$\alpha^c,1$	0.5		
k_1	3.4×10^{-13} mol/cm2-s		
U_2^θ	0.98 V		
$\alpha_a,2$	0.35	0.2-0.45	4
$\alpha^c,2$	0.15		
ω	30 kJ/mol	24-35 kJ/mol	4
σ_{Pt}	0.237 mJ/cm2	0.237 mJ/cm2	7
σ_{PtO}	0.1 mJ/cm2	0.1 mJ/cm2	7
$\Delta\mu_{PtO}^0$	-42.3 kJ/mol		
k_2	1.36×10^{-11} mol/cm2-s		
k_3	3.2×10^{-24} mol/cm2-s		
r	3×10^{-7} cm		
C_{dl}	7×10^{-2} F/cm2		

Figure 1. Cyclic voltammograms of MEA to different upper potential-sweep limits.

52 Electrochemical Society Proceedings Volume 2002-31
Figure 2. Coverage and concentration during potential-sweep experiments.