Abstract

The problem of indirect violation of discrete symmetries CP, T and CPT in a neutral meson system can be described using two complex parameters ε and δ, which are invariant under rephasing of meson and quark fields. For the B_d system, where the width difference between the physical states is negligible, only $\text{Re}(\delta)$ and $\text{Im}(\varepsilon)$ survive. As a consequence, the traditional observables constructed for kaons, which are based on flavour tag, are not useful for the analogous study in this system. We describe how using a CP tag and studying CP-to-flavour transitions of the B mesons, we may build asymmetries, alternative to those used for the kaon, which enable us to test T and CPT invariances of the effective hamiltonian for the B_d system.
Indirect Violation of CP, T and CPT in the B_d-system

M.C. Bañulsa

aIFIC (Centro Mixto Univ. Valencia - CSIC) 46100 Burjassot (Valencia), Spain

The problem of indirect violation of discrete symmetries CP, T and CPT in a neutral meson system can be described using two complex parameters ϵ and δ, which are invariant under rephasing of meson and quark fields. For the B_d system, where the width difference between the physical states is negligible, only $\text{Re}(\delta)$ and $\text{Im}(\epsilon)$ survive. As a consequence, the traditional observables constructed for kaons, which are based on flavour tag, are not useful for the analogous study in this system. We describe how using a CP tag and studying CP-to-flavour transitions of the B mesons, we may build asymmetries, alternative to those used for the kaon, which enable us to test T and CPT invariances of the effective hamiltonian for the B_d system.

1. Introduction

The time evolution of a neutral meson system is governed by an effective hamiltonian \[H \]. The problem of indirect violation of discrete symmetries refers to the non-invariance of this hamiltonian under the corresponding operations.

For the kaon system, this study has been performed by the CP-LEAR experiment \[2\] from the preparation of definite flavour states $K^0 - \bar{K}^0$. These tagged mesons evolve in time and their later decay to a semileptonic final state projects them again on a definite flavour state. The study of this flavour-to-flavour evolution allows the construction of observables which violate CP and T, or CP and CPT.

Contrary to what happens in the kaon case, for the B_d-system the width difference $\Delta \Gamma$ between the physical states is expected to be negligible. In this system the T- and CPT-odd observables proposed for kaons, which are based on flavour tag, vanish. but, making use of CP tag, the B_d entangled states can be used to construct alternative observables which are sensitive to T and CPT independently of the value of $\Delta \Gamma$ \[3\].

2. The parameters

In the neutral B-meson system the physical states are a linear combination of B^0 and \bar{B}^0. If they are written in terms of CP eigenstates, one has to introduce two complex parameters, $\epsilon_{1,2}$, to describe the CP mixing.

\begin{equation}
|B_{\pm}\rangle = \frac{1}{\sqrt{1 + |\epsilon_{1,2}|^2}} \left[|B_+\rangle + \epsilon_{1,2} |B_-\rangle \right],
\end{equation}

where $|B_{\pm}\rangle \equiv \frac{1}{\sqrt{2}}((I \pm CP)|B^0\rangle)$. Then $\epsilon_{1,2}$ are invariant under rephasing of the meson states, and physical when the CP operator is well defined \[4\].

Alternatively, one may use the parameters $\epsilon \equiv (\epsilon_1 + \epsilon_2)/2$ and $\delta \equiv \epsilon_1 - \epsilon_2$, whose interpretation in terms of symmetries is simpler.

Discrete symmetries impose different restrictions on the effective mass matrix, $H = M - \frac{i}{2} \Gamma$:

- CPT invariance requires $H_{11} = H_{22}$,
- T invariance imposes $\text{Im}(M_{12} \text{CP}_{12}^*) = \text{Im}(\Gamma_{12} \text{CP}_{12}^*) = 0$, and
- CP conservation requires both conditions to be simultaneously satisfied. Furthermore, in the exact limit $\Delta \Gamma = 0$, customary for the B_d-system, both $\text{Re}(\epsilon)$ and $\text{Im}(\delta)$ vanish. Therefore we have four real parameters which carry information on the symmetries of the effective mass matrix

- $\text{Re}(\epsilon) \Rightarrow$ CP and T violation, with $\Delta \Gamma \neq 0$;
- $\text{Im}(\epsilon) \Rightarrow$ CP and T violation;
- $\text{Re}(\delta) \Rightarrow$ CP and CPT violation;
- $\text{Im}(\delta) \Rightarrow$ CP and CPT violation, $\Delta \Gamma \neq 0$.

3. The entangled state: CP tag

In a B factory operating at the $\Upsilon(4S)$ peak, correlated pairs of neutral B-mesons are pro-
duced through $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$. The special features of this system can be used to study CP [5] and CPT [6] violation in B mesons.

In the CM frame, the resulting B-mesons travel in opposite directions, each one evolving with the effective hamiltonian. The $B\bar{B}$ state has definite $L = 1$, $C = -$ and $\mathcal{P} = -$, being \mathcal{P} the operator which permutes the spatial coordinates, so that the initial state may be written as

$$|i> = \frac{1}{\sqrt{2}} \left(|B^0, \Upsilon^0\rangle > - |\bar{B}^0, B^0\rangle \right)$$

(2)

The correlation between both sides of the entangled state holds at any time after the production. As a consequence, one can never simultaneously have two identical mesons at both sides of the detector. This permits the performance of a flavour tag: if at $t = 0$ one of the mesons decays through a channel, such as a semileptonic one, which is only allowed for one flavour of the neutral B, the other meson in the pair must have the opposite flavour at $t = 0$.

The entangled $B-\bar{B}$ state can also be expressed in terms of the CP eigenstates $|B_\pm\rangle$ as

$$|i> = \frac{1}{\sqrt{2}} \left(|B_-, B_+\rangle > - |B_+, B_-\rangle \right)$$

(3)

Thus it is also possible to carry out a CP tag, once we have a CP-conserving decay into a definite CP final state, so that its detection allows us to identify the decaying meson as a B_+ or a B_-. In Ref. [7] we described how this determination is possible and unambiguous to $O(\lambda^3)$, which is sufficient to discuss both CP-conserving and CP-violating amplitudes in the effective hamiltonian for B_d mesons. Here λ is the flavour-mixing parameter of the CKM matrix [8]. The determination is based on the requirement of CP conservation, to $O(\lambda^0)$, in the (sd) and (bs) sectors. To this order, however, CP-violation exists in the (bd) sector, and it can be classified by referring it to the CP-conserving direction. A B_d decay that is governed by the couplings of the (sd) or (bs) unitarity triangles, or by the $V_{td}V_{tb}^*$ side of the (bd) triangle, will not show any CP violation to $O(\lambda^3)$. We may say that such a channel is free from direct CP violation. Examples are $J/\Psi K_S$, with CP $= -$, and $J/\Psi K_L$, with CP $= +$.

To extract information on the symmetry parameters we may study the time evolution of the entangled state [4] and its decay into a final configuration (X, Y). In our notation, X is the decay product observed on one side of the detector at a certain time, and Y the product detected on the opposite side after a Δt.

We will only consider here decay channels X, Y which are either flavour or CP conserving. Then the final configuration (X, Y) corresponds to a certain transition at the mesonic level, i.e. the B state tagged by the X decay evolves for a period Δt and is then projected into a flavour or CP eigenstate by means of the Y decay.

4. The asymmetries

By comparing the probabilities corresponding to different processes we build time-dependent asymmetries that allow the extraction of the relevant parameters. The observables can be classified into three types.

4.1. Flavour-to-flavour genuine asymmetries

If one detects semileptonic decays on both sides of the detector, then the transition at the mesonic level is of the kind flavour-to-flavour. The mesonic transitions for such a final configuration appear in Table 4, where ℓ^\pm represents the final decay product of a semiinclusive decay $B \rightarrow \ell^\pm X^\mp$. From these processes we can construct

Table 1
Flavour-to-flavour transitions
(X, Y)
$(\ell^+, \ell^+)\quad B^0 \rightarrow B^0$
$(\ell^-, \ell^-)\quad B^0 \rightarrow \bar{B}^0$
$(\ell^+, \ell^-)\quad \bar{B}^0 \rightarrow B^0$
$(\ell^-, \ell^+)\quad B^0 \rightarrow \bar{B}^0$

two non-trivial asymmetries, which are the analogous, in the B-system, to the traditional observables used for kaons. The first two processes in Table 4 are conjugated under CP and also under
T, then we may construct a genuine asymmetry by comparing the corresponding intensities

\[A(\ell^+, \ell^+) \approx \frac{\text{Re}(\varepsilon)}{1 + |\varepsilon|^2}. \]

(4)

On the other hand, the last two processes in Table 2 are related by a CP or a CPT transformation. Therefore, the corresponding asymmetry,

\[A(\ell^+, \ell^-) \approx -2 \left[\text{Ch} \frac{\Delta m}{2\pi} + \cos(\Delta m \Delta t) \right]^{-1} \left[\text{Re} \left(\frac{\varepsilon}{\Delta m} \right) \text{Sh} \frac{\Delta m}{2\pi} - \text{Im} \left(\frac{\varepsilon}{\Delta m} \right) \sin(\Delta m \Delta t) \right], \]

(5)

is also a genuine CP and CPT observable.

In both cases, the resulting asymmetry vanishes unless \(\Delta \Gamma \neq 0 \). Thus measuring a small value for these observables does not impose a straightforward bound on the size of symmetry violation, because the vanishingly small \(\Delta \Gamma \) of B-mesons would hide any symmetry breaking effect.

4.2. CP-to-flavour genuine asymmetries

We may construct alternative asymmetries making use of the CP eigenstates, which can be identified in this system by means of a CP tag. If the first decay product, \(X \), is a CP eigenstate produced along the CP-conserving direction, and \(Y \) is a semileptonic channel, then the mesonic transition corresponding to the configuration \((X, Y)\) is of the type CP-to-flavour. The order of appearance of both final states matters, because for the reverted configuration, \((Y, X)\), we have a flavour-to-CP transition. In Table 2 we show the mesonic transitions, with their related final configurations, connected by genuine symmetry transformations to \(B_+ \rightarrow B^0 \), i.e. \((J/\Psi K_S, \ell^+)\). Comparing the intensity of \((J/\Psi K_S, \ell^+)\) with each of them we construct three genuine asymmetries. Next, we show the results to linear order in \(\delta \) and in the limit \(\Delta \Gamma = 0 \).

\[
A_{CP} = -2 \frac{\text{Im}(\varepsilon)}{1 + |\varepsilon|^2} \sin(\Delta m \Delta t) \\
+ \frac{\text{Im}(\varepsilon)}{1 + |\varepsilon|^2} \left(\frac{2 \text{Re}(\varepsilon)}{1 + |\varepsilon|^2} \sin^2 \left(\frac{\Delta m \Delta t}{2} \right) \right),
\]

(6)

is the CP odd asymmetry, which has contributions from T-violating and CPT-violating terms. The first term, odd in \(\Delta t \), is governed by the T-violating \(\text{Im}(\varepsilon) \), whereas the second term, \(\Delta t \) even, is sensitive to CPT violation through the parameter \(\text{Re}(\delta) \).

\[
A_{T} = -2 \frac{\text{Im}(\varepsilon)}{1 + |\varepsilon|^2} \sin(\Delta m \Delta t) \\
\left[1 - \frac{\text{Im}(\varepsilon)}{1 + |\varepsilon|^2} \frac{2 \text{Re}(\varepsilon)}{1 + |\varepsilon|^2} \sin^2 \left(\frac{\Delta m \Delta t}{2} \right) \right],
\]

(7)

the T asymmetry, needs \(\varepsilon \neq 0 \), and includes CPT even and odd terms. Moreover, in the limit we are considering, turns out to be purely odd in \(\Delta t \).

\[
A_{CPT} = \frac{\text{Im}(\varepsilon)}{1 + |\varepsilon|^2} \frac{\text{sin}^2 \left(\frac{\Delta m \Delta t}{2} \right)}{1 - \frac{\text{Im}(\varepsilon)}{1 + |\varepsilon|^2} \text{sin}(\Delta m \Delta t)},
\]

(8)

is the CPT asymmetry. It needs \(\delta \neq 0 \), and includes both even and odd time dependences, so that there is no definite symmetry under a change of sign of \(\Delta t \).

Measuring the presented asymmetries with good time resolution, so to separate even and odd \(\Delta t \) dependences, should be enough to determine the parameters \(\frac{2 \text{Im}(\varepsilon)}{1 + |\varepsilon|^2} \) and \(\frac{\text{Im}(\varepsilon)}{1 + |\varepsilon|^2} \frac{2 \text{Re}(\varepsilon)}{1 + |\varepsilon|^2} \), which govern CP, T violation and CP, CPT violation, respectively, in the \(B_d \) mixing.

Contrary to what happened in the case of flavour tag, the CPT and T asymmetries based on a CP tag do not vanish due to the smallness of \(\Delta \Gamma \). Instead, they provide a set of observables which could separate the parameters \(\delta \) and \(\varepsilon \).

4.3. CP-to-flavour non-genuine asymmetries

The asymmetries defined in the previous paragraphs are genuine observables, since each of them compares the original process with its conjugated under a certain symmetry and is thus odd under the corresponding transformation. Nevertheless the measurement of all those quantities requires to tag both \(B_+ \) and \(B_- \) states. The last needs, from the experimental point of view, a good reconstruction of the decay \(B \rightarrow J/\Psi K_L \),

Table 2

(X, Y)	Transition	Transformation
\((J/\Psi K_S, \ell^-)\)	\(B_+ \rightarrow B^0\)	CP
\((\ell^-, J/\Psi K_L)\)	\(B^0 \rightarrow B_+\)	T
\((\ell^+, J/\Psi K_L)\)	\(B^0 \rightarrow B_+\)	CPT
not so easy to achieve as for the corresponding $J/\Psi K_S$ channel.

But it is also possible to construct useful asymmetries from final configurations (X, Y) with only $J/\Psi K_S$. In Table 3 we show the different transitions we may study from such final states. From the comparison between $(J/\Psi K_S, \ell^+)$ and each process in the table we can construct three asymmetries. The first one will correspond to the genuine CP asymmetry $A(J/\Psi K_S, \ell^-) = A_{CP}$. We find that, in the exact limit $\Delta \Gamma = 0$, Δt and T operations become equivalent, so that $A(\ell^+, J/\Psi K_S) = A_T$ and $A(\ell^-, J/\Psi K_S) = A_{CPT}$. But these asymmetries are not genuine. They do not correspond to true T- and CPT-odd observables, for the processes we are comparing are not related by a symmetry transformation. This implies that the presence of $\Delta \Gamma \neq 0$ may induce non-vanishing values for them, even if there is no true T or CPT violation. But even if that is the case, it is possible to separate out the different parameters, if good enough Δt is provided.

Table 3
Final configurations with only $J/\Psi K_S$.

(X, Y)	Transition	Transformation
$(J/\Psi K_S, \ell^-)$	$B_+ \rightarrow B^0$	CP
$(\ell^+, J/\Psi K_S)$	$B^0 \rightarrow B_-$	Δt
$(\ell^-, J/\Psi K_S)$	$B^0 \rightarrow B_-$	$\Delta t + CP$

We classify the observables into three different types:

- Genuine asymmetries for T or CPT violation, based on flavour-to-flavour transitions at the meson level, which need $\Delta \Gamma \neq 0$.
- Genuine observables, based on the combination of flavour and CP tags, which do not need $\Delta \Gamma$.
- Making use of the equivalence between Δt and T reversal operations for $\Delta \Gamma = 0$, we have also considered non genuine observables, involving only the hadronic decay $J/\Psi K_S$.

5. Conclusions

We present an overview of the possibilities to explore indirect violation of CP, T and CPT in a neutral meson system from the quantities that B-factories can measure. The asymmetries analyzed here exploit their time dependences in order to separate out two different ingredients: on one hand CP and T violation, described by ε, and on the other CP and CPT violation, given by δ. Such a study is possible, even if $\Delta \Gamma = 0$, if one goes beyond flavour-to-flavour transitions and makes use of CP tags.

This work has been supported by CICYT, Spain, under Grant AEN99-0692. M.C.B. is indebted to the Spanish Ministry of Education and Culture for her fellowship.

REFERENCES

1. P. K. Kabir, The CP Puzzle, Academic Press (1968), p. 99
2. A. Apostolakis et al., Phys. Lett. B456 (1999) 297.
3. M. C. Bañuls and J. Bernabéu, Phys. Lett. B464 (1999) 117.
4. M. C. Bañuls and J. Bernabéu, Phys. Lett. B423 (1998) 151.
5. L. Wolfenstein, Nucl. Phys B246 (1984) 45; M. B. Gavela et al., Phys. Lett. B162 (1985) 197; Z. Xing, Phys. Rev. D53 (1996) 204.
6. M. Kobayashi and A. I. Sanda, Phys. Rev. Lett. 69 (1992) 3139; Z. Xing, Phys. Rev. D50 (1994) 2957; V. A. Kostelecký and R. Van Kooten, Phys. Rev. D54 (1996) 5585; P. Colangelo and G. Corcella, Eur. Phys. J. C1 (1998) 515.
7. M. C. Bañuls and J. Bernabéu, JHEP 9906 (1999) 032.
8. M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49 (1973) 652; L. Wolfenstein, Phys. Rev. Lett. 51 (1983) 1945.
9. M. C. Bañuls and J. Bernabéu, hep-ph/0005323