Injectivity and Projectivity Properties of The Category of Representation Modules of Rings

N Hijriati 1,2, S Wahyuni 1 and I E Wijayanti 1

1Dept. of Mathematics, Universitas Gadjah Mada, Yogyakarta.
2Dept. of Mathematics, Universitas Lambung Mangkurat, Banjarmasin

Corresponding author: naimah.hijriati@mail.ugm.ac.id

Abstract. Let \(R, S \) be two rings with unity, \(M \) an \(S \)-module, and \(f : R \to S \) a ring homomorphism. If the map \(M \to M \), \(m \mapsto f(r)m \) is \(S \)-linear for any \(r \in R \), then \(M \) is a representation module of ring \(R \). This condition will be true if \(sf(r) - f(r)s \in \text{Ann}(M) \) for all \(r \in R \) and \(s \in S \). The class of \(S \)-modules \(M \), where \(sf(r) - f(r)s \in \text{Ann}(M) \) for all \(r \in R \) and \(s \in S \), forms a category with its morphisms are all module homomorphisms. This class is denoted by \(\mathcal{S} \). The purpose of this paper is to prove that the category \(\mathcal{S} \) is an abelian category which is under sufficient conditions enabling the category \(\mathcal{S} \) has enough injective objects and enough projective objects. First, we prove the category \(\mathcal{S} \) is stable under kernel and image of module homomorphisms, and a finite direct sum of objects of \(\mathcal{S} \) is also the object of \(\mathcal{S} \). By using this two properties, we prove that \(\mathcal{S} \) is the abelian category. Next, we determine the properties of the abelian category \(\mathcal{S} \), such that it has enough injective objects and enough projective objects. We obtain that, if \(S \) as \(R \)-module is an element of \(\mathcal{S} \), then the category \(\mathcal{S} \) has enough projective objects and enough injective objects.

1. Introduction

Let \(f : R \to S \) be a ring homomorphism, where \(R \) is a ring with unity and \(S \) is a commutative ring with unity. The \(f \)-representation of \(R \) on an \(S \)-module \(M \) is a ring homomorphism \(\mu \) from \(R \) to a ring of all \(S \)-module endomorphisms of \(M(\text{End}_S(M)) \), where for every \(r \in R \), \(\mu(r) := \mu_r \in \text{End}_S(M) \) is defined as

\[
\mu_r : M \to M, m \mapsto f(r)m
\]

Furthermore, the \(S \)-module \(M \) is called an \(f \)-representation module of \(R \)[1]. The \(f \)-representation of rings on modules is generalization of the representation of rings on vector space. The representation of a ring \(R \) on a vector space \(V \) is a ring homomorphism from \(R \) to the ring of all linear transformations of \(V \)[2].
An \(R \)-algebra \(A \) is a ring (not necessary commutative) with a ring homomorphism \(g : R \to Z(A) \), where \(Z(A) \) is a center of \(A \). The class of \(S \)-modules \(M \), where \(S \) is an \(R \)-algebra, is an abelian category. It also has enough projective objects and enough injective objects, and this class satisfy the Krull-Schmidt Theorem [3]. Since \(S \) is commutative, \(Z(S) = S \). Hence \(S \) is an \(R \)-algebra and the class of \(S \)-modules \(M \), which is representation modules of \(R \), is an abelian category and has enough projective objects and enough injective objects.

In [4] and [5], Auslander introduce a category mod \(C \), i.e. the category of all functors from \(C^{op} \) to \(Ab \), where \(C \) is a skeletally small category and \(Ab \) is category of all abelian groups. He also give some properties that a bijection between representation finite Artin algebras and algebras satisfying \(gl.\dim \Gamma \leq 2 \leq \text{dom.\dim} \Gamma \) (is called Auslander algebra) and If \(A \) is the finite-dimension algebra such that \(\text{add} \ M = \text{mod} \ A \), then \(\text{End}_{A}(M) \) is Auslander algebra[6]. This property is very useful in representation theory, since to study representation theory, we must study the properties of \(\text{End}_{A}(M) \) where \(M \) is \(A \)-algebra. There are many mathematicians who examine the representation dimension of Artin algebra, such as Iyama, in [6], proved that the representation dimension of an Artin algebra is always finite; Rouquier proved in [7] that the representation dimension of Artin algebras can be arbitrary large. Based on this result, Yin and Zhang, in [8], proved that the representation dimension of triangular matrix algebras \(T_{2}(A) \) is at most three if \(A \) is Dynkin type and is at most four if \(A \) is not Dynkin type. Another result is given by Assem et al. in [9] and [10].

If the ring \(S \) is not commutative, then for all \(r \in R \), \(\mu_{r} : M \to M, m \mapsto f(r)m \) is not guaranteed to be in \(\text{End}_{A}(M) \). We give an example to show this statement to be true. Let \(R \) be a ring of integer \(Z \), \(S \) a ring of all \(2 \times 2 \) matrices with entries in \(Z \), and \(M = \{(a,b) \mid a,b \in Z\} \) a module over \(S \) with scalar multiplication defined as matrix multiplication. Consider the ring homomorphism

\[
 f : R \to S, \ a \mapsto \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}
\]

For \(1 \in R \), \(\mu : M \to M, m \mapsto f(1)m \) is not an endomorphism of \(M \), since there is \(s = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \in S \), such that for \(0 \neq m \in M \) we have \(\mu_{1}(sm) \neq s\mu_{1}(m) \).

The following proposition is the condition for the map \(\mu_{r} : M \to M, m \mapsto f(r)m \) to be an \(S \)-module endomorphism of \(M \).

Proposition 1.1. Let \(R, S \) be rings with unity, \(f : R \to S \) be a ring homomorphism, and \(M \) be an \(S \)-module. For every \(r \in R \), the map \(\mu_{r} : M \to M, m \mapsto f(r)m \) is an \(S \)-linear if and only if \(sf(r) - f(r)s \in \text{Ann}(M) \).

Proof. Consider \(\mu_{r} \) is an \(S \)-linear. Then for any \(m \in M \) and \(s \in S \) we have

\[
 s\mu_{r}(m) = \mu_{r}(sm) \iff sf(r)m = f(r)sm \iff (sf(r) - f(r)s)m = 0.
\]

Hence \(sf(r) - f(r)s \in \text{Ann}(M) \). Conversely, if \(sf(r) - f(r)s \in \text{Ann}(M) \), then \(sf(r)m = f(r)sm \) for all \(m \in M \). So for any \(s \in S \) and \(m \in M \)

\[
 \mu_{r}(sm) = f(r)sm = sf(r)m = sf(r)m = s\mu_{r}(m).
\]

Thus \(\mu_{r} \) is an \(S \)-linear. \(\blacksquare \). Base on this, the \(S \)-module \(M \) (a ring \(S \) is not necessary commutative) is a representation module of ring \(R \) if \(sf(r) - f(r)s \in \text{Ann}(M) \). The class of \(S \)-modules \(\mathcal{M} \) which is a representation module of \(R \), we denoted as \(\mathcal{Z} \). The class \(\mathcal{Z} \) is more general then the class module over algebra, since the
annihilator of module not always equal to zero. In this paper, we show that the class \mathcal{C} is an abelian category and investigate when \mathcal{C} has enough projective and enough injective objects.

2. Main Result
Recall $\mathcal{C} = \{ M \mid M \text{ is an } S\text{-module and } sf(r) = f(r)s \in \text{Ann}(M) \}$. We define a morphism on \mathcal{C} as an S-module homomorphism and we denote $\text{Hom}_S(M_1, M_2)$ as the set of the morphisms from M_1 to M_2. From [11], we have $\beta \alpha \in \text{Hom}_S(M_1, M_3)$ for any $\alpha \in \text{Hom}_S(M_1, M_2)$ and $\beta \in \text{Hom}_S(M_2, M_3)$, and the identity $1_M \in \text{Hom}_S(M, M)$ is equal with identity $1_M \in \text{Hom}_{S\text{-Mod}}(M, M)$. Hence by Definition 7.2 [12] the class \mathcal{C} is full subcategory of $S\text{-Mod}$.

Let $\alpha : M_1 \to M_2$ be an arbitrary S-module homomorphism. The kernel and image of α are consecutively defined by $\ker \alpha = \{ a \in M_1 \mid \alpha(a) = 0 \}$ and $\text{Im} \alpha = \{ a \in M_2 \mid a \in M_1 \}$. We know $\ker \alpha$ is a submodule of M_1 and $\text{Im} \alpha$ is a submodule of M_2[13]. The following lemma shows that if M_1 and M_2 are objects of \mathcal{C}, then $\ker \alpha$ and $\text{Im} \alpha$ are also objects of \mathcal{C}.

Lemma 2.1. The class \mathcal{C} is stable under kernel and image of homomorphism

Proof. Let $\alpha : M_1 \to M_2$ be an arbitrary S-module homomorphism, for $M_1, M_2 \in \mathcal{C}$. Suppose that $a \in \ker \alpha$ and $b \in \text{Im} \alpha$. Then $\alpha(a) = 0$ and there is $c \in M_1$ such that $\alpha(c) = b$. For any $r \in R$, and $s \in S$ we have

$$\alpha((sf(r) - f(r)s)a) = (sf(r) - f(r)s)\alpha(a) = 0,$$

(5)

and

$$(sf(r) - f(r)s)b = (sf(r) - f(r)s)\alpha(c) = \alpha((sf(r) - f(r)s)c) = \alpha(0) = 0.$$

Hence $sf(r) - f(r)s$ is an element of $\text{Ann} (\ker \alpha)$ and is also an element of $\text{Ann} (\text{Im} \alpha)$. Thus $\ker \alpha$ and $\text{Im} \alpha$ are objects in the category \mathcal{C}, in another words the category \mathcal{C} is stable under kernel and image of homomorphism.

From Lemma 2.1, we have that $\text{Im} \alpha$ is an object of category \mathcal{C} for any morphism $\alpha : M_1 \to M_2$ in category \mathcal{C}. Since for any $m \in M_2$, $r \in R$, and $s \in S$,

$$(sf(r) - f(r))(m + \text{Im} \alpha) = (sf(r) - f(r)s)m + \text{Im} \alpha = \text{Im} \alpha,$$

(7)
a quotient S-module $M'/\text{Im} \alpha$ is also an object category \mathcal{C}.

Suppose that M_1, M_2, \ldots, M_k are S-modules. Then a finite direct sum

$$\bigoplus_{i=1}^k M_i = \{(m_1, m_2, \ldots, m_k) \mid m_i \in M_i \}$$

is an S-module with a scalar multiplication over S defined as

$$sm_1, m_2, \ldots, m_k = (sm_1, sm_2, \ldots, sm_k)$$

for all $s \in S$ and $(m_1, m_2, \ldots, m_k) \in \bigoplus_{i=1}^k M_i[13]$. Analog with kernel and image of homomorphism in the category \mathcal{C}, a finite direct sum of objects of \mathcal{C} is also an object of \mathcal{C}. It shown in the following lemma.

Lemma 2.2. The finite direct sum of objects of \mathcal{C} is object of \mathcal{C}.

Proof. Let M_1, M_2, \ldots, M_k be objects of \mathcal{C}. For any $r \in R$, $s \in S$ and $(m_1, m_2, \ldots, m_k) \in \bigoplus_{i=1}^k M_i$, we have

$$(sf(r) - f(r)s)(m_1, m_2, \ldots, m_k) = ((sf(r) - f(r)s)m_1, (sf(r) - f(r)s)m_2, \ldots, (sf(r) - f(r)s)m_k)$$
\[= (0,0,\ldots,0). \]

Hence \(sf(r) - f(r)s \in \text{Ann}(\bigoplus_{i=1}^{k} M_i) \), such that \(\bigoplus_{i=1}^{k} M_i \) is an object of \(\mathcal{A} \). \(\blacksquare \)

Consider \(\mathcal{A} \) is the full subcategory of \(S\text{-Mod} \). Then for every \(\gamma \in \text{Hom}_S(M_0,M_1) \), \(\alpha_1, \alpha_2 \in \text{Hom}_S(M_1,M_2) \), and \(\beta \in \text{Hom}_S(M_2,M_3) \), we have that

\[
\beta(\alpha_1 + \alpha_2) = \beta \alpha_1 + \beta \alpha_2
\]

(9)

\[
(\alpha_1 + \alpha_2)\gamma = \alpha_1 \gamma + \alpha_2 \gamma,
\]

(10)

and a zero object of \(S\text{-Mod} \) is a zero object of \(\mathcal{A} \). Hence \(\mathcal{A} \) is an additive category. Furthermore, by using Lemma 2.1 and Lemma 2.2, we show that \(\mathcal{A} \) is the abelian category.

Proposition 2.3. The additive category \(\mathcal{A} \) is an abelian category.

Proof. Let \(\theta : M \to N \) be any morphism in \(\mathcal{A} \). The kernel and cokernel of \(g \) in \(S\text{-Mod} \) are the kernel and cokernel of \(\theta \) in \(\mathcal{A} \). Furthermore, we have the direct sum of two objects of \(\mathcal{A} \) is also in \(\mathcal{A} \) (by Lemma 2.2). Hence based on Proposition 5.92 [14], the additive category \(\mathcal{A} \) is the abelian category. \(\square \)

An abelian category is called having enough injective (projective) object if each object of it is contained in its injective (projective) object[12]. The category \(S\text{-Mod} \) for any ring \(S \) is an abelian category that has enough injective objects and enough projective objects. However, it does not necessarily apply to every full subcategory of \(S\text{-Mod} \), although the full subcategory of the \(S\text{-Mod} \) is an abelian category[14]. The abelian category \(\mathcal{A} \) has enough injective (projective) objects, if it satisfies the following proposition.

Proposition 2.4. If the ring \(S \) is an object of \(\mathcal{A} \) then \(\mathcal{A} \) has enough injective (projective) objects.

Proof.

(i) Let \(M \) be any object of \(\mathcal{A} \). Then By Theorem 3.38 [14], \(M \) can imbedded as a submodule of an injective \(S \)-module, i.e. the \(S \)-module of all \(Z \)-module homomorphism from \(S \) to \(Q(\text{Hom}_Z(S,Q)) \), where \(Q \) is an injective \(Z \)-module containing \(M \) as \(Z \)-module. Next we prove that \(\text{Hom}_Z(S,Q) \) is an object of \(\mathcal{A} \).

Let \(h \in \text{Hom}_Z(S,Q) \) be any element. For any \(r \in R \), \(s,t \in S \),

\[
(sf(r) - f(r)s)h(t) = h((sf(r) - f(r)s)t)
\]

(11)

Since \(S \) is an object of \(\mathcal{A} \),

\[
h((sf(r) - f(r)s)x) = h(0) = 0.
\]

(12)

Hence the \(S \)-module \(\text{Hom}_Z(S,Q) \) is an object of \(\mathcal{A} \). Thus \(\mathcal{A} \) has enough injective objects.

(ii) Let \(M \) be any object of \(\mathcal{A} \). Recall Theorem 2.35[14], \(M \) is a quotient of free \(S \)-module \(F(X) \), i.e. \(M \cong F(X)/\ker h \), where \(h : F(X) \to M \) is an \(S \)-module epimorphism and \(X \) is a generating set of \(M \).

Since every free \(S \)-module is projective, a free \(S \)-module \(F(X) \) is projective. Next we prove \(F(X) \) is an object of \(\mathcal{A} \). Let \(\sum a_i x_i \in F(X) \) be any element. For any \(r \in R \), and \(s \in S \),

\[
(sf(r) - f(r)s)\sum a_i x_i = \sum (sf(r) - f(r)s)a_i x_i
\]

(13)

Since \(S \) is an object of \(\mathcal{A} \),

\[
\sum (sf(r) - f(r)s)a_i x_i = \sum 0 x_i = 0
\]

(14)

Thus the free \(S \)-module is an object of \(\mathcal{A} \). Therefore the category \(\mathcal{A} \) has enough projective objects. \(\square \)
From Proposition 2.4, it is known that the sufficient condition of category \(\mathcal{A} \) has enough injective(projective) objects if the ring \(S \) is an object of \(\mathcal{A} \). As a result, the category \(\mathcal{A} \) is equivalent to the category of the modules over an \(R \)-algebra \(S \), because if \(S \) is an object of \(\mathcal{A} \), then \(S \) is an \(R \)-algebra with a ring homomorphism \(g : R \rightarrow S, r \rightarrow f(r)1_S \).

3. Conclusion

The kernel and image of homomorphism in the category \(\mathcal{A} \) and the finite direct sums of objects of \(\mathcal{A} \) are objects of \(\mathcal{A} \) such that \(\mathcal{A} \) is an abelian category. Furthermore, if the ring \(S \) is an object of \(\mathcal{A} \), then the abelian category \(\mathcal{A} \) has enough injective objects and enough projective objects.

Acknowledgment

This paper is part of the results of the Doctoral Dissertation Research Grant (Hibah Penelitian Disertasi Doktor) from the Ministry of Research, Technology and Higher Education by Contract No. 040/UN8.2/PL/2018.

References

[1] Hijriati N, Wahyuni S and Wijayanti I E 2018 Generalization of Schur’ s Lemma in Ring Representations on Modules over a Commutative Ring Eur. J. Pure Appl. Math. 11 751–61
[2] Burrow M 1965 Representation theory of finite groups-Dover Publications (New York: Academic Press)
[3] Auslander M, Reiten I and Smalo S O 1997 Representation Theory of Artin Algebras (United Kingdom: Cambridge University Press)
[4] Auslander M 1974 Representation Theory Of Artin Algebras I Commun. Algebr. 1 177–268
[5] Auslander M 1974 Representation Theory Of Artin Algebras II Commun. Algebr. 1 269–310
[6] Iyama O 2002 Finiteness of representation dimension Proceeding of The American Mathematics Society vol 131 pp 1011–4
[7] Rouquier R 2006 Representation dimension of exterior algebras Invent. Math. 367 357–67
[8] Yin H and Zhang S 2017 Representation dimensions of triangular matrix algebras ♡ Linear Algebra Appl. 438 2004–17
[9] Assem I, Skowroński A and Trepode S 2016 The representation dimension of a selfinjective algebra of euclidean type J. Algebr. 459 157–88
[10] Assem I, Skowroński A and Trepode S 2017 The representation dimension of a selfinjective algebra of wild tilted type J. Algebr. 477 163–94
[11] Adkins W A and Weintraub S H 1992 Algebra: An Approach Via Module Theory ed S Axler, F W Gehring and K A Ribet (New York: Springer-Verlag)
[12] Wisbauer R 1991 Foundations of Module and Ring Theory (Amsterdam: Gordon and Breach Science Publishers)
[13] Anderson F W and Fuller F K 1992 Rings and Categories of Modules (New York: Springer-Verlag)
[14] Rotman J J 2009 An Introduction to Homological Algebra (New York: Springer)