A TRANSIENCE CONDITION FOR A CLASS OF ONE-DIMENSIONAL SYMMETRIC LÉVY PROCESSES

NIKOLA SANDRIĆ

An \(\mathbb{R}^d \)-valued, \(d \geq 1 \), Lévy process \(\{L_t\}_{t \geq 0} \) defined on a probability space \((\Omega, \mathcal{F}, \mathbb{P})\) is said to be transient if \(\lim_{t \to \infty} |L_t| = \infty \) \(\mathbb{P} \)-a.s. and recurrent if \(\liminf_{t \to \infty} |L_t| = 0 \) \(\mathbb{P} \)-a.s. It is well known that every Lévy process is either transient or recurrent.

Further, every Lévy process \(\{L_t\}_{t \geq 0} \) can be completely and uniquely characterized through the characteristic function of a single random variable \(L_t, t > 0 \), that is, by the famous Lévy-Khintchine formula we have

\[
\mathbb{E}\left[\exp\left\{i\langle \xi, L_t \rangle\right]\right] = \exp\{-t\psi(\xi)\} \quad \text{for all} \quad t \geq 0,
\]

where

\[
\psi(\xi) = i\langle \xi, b \rangle + \frac{1}{2} \langle \xi, c\xi \rangle + \int_{\mathbb{R}^d} \left(1 - \exp\left\{i\langle \xi, y \rangle\right\} + i\langle \xi, y \rangle 1_{\{|y| \leq 1\}}(y)\right) \nu(dy).
\]

The characterization of the transience and recurrence property in terms of the characteristic exponent \(\psi(\xi) \) is given by the well-known Chung-Fuchs criterion: A Lévy process \(\{L_t\}_{t \geq 0} \) is transient if and only if

\[
\int_{\{|\xi| < a\}} \text{Re}\left(\frac{1}{\psi(\xi)}\right) d\xi < \infty \quad \text{for some} \quad a > 0.
\]

In many cases this criterion is not applicable, that is, it is not always easy to compute the above integral. In this talk, we present a transience condition for a class of one-dimensional symmetric Lévy processes in terms of the Lévy measure \(\nu(dy) \).

Theorem 1. Let \(\{L_t\}_{t \geq 0} \) be a one-dimensional symmetric Lévy process with the Lévy measure \(\nu(dy) = f(y)dy \) or \(\nu(n) = p_n \), where \(f(y) \) is such that \(f(y) > 0 \) a.e. and \(\{p_n\}_{n \geq 1} \) is such that \(p_n > 0 \) for all \(n \geq 1 \). Then, \(\{L_t\}_{t \geq 0} \) is transient if

\[
\int_1^{\infty} \frac{dy}{y^3f(y)} < \infty \quad \text{or} \quad \sum_{n=1}^{\infty} \frac{1}{n^3p_n} < \infty.
\]

As a simple consequence of Theorem 1 we get a new proof for the transience property of one-dimensional symmetric stable Lévy processes.

Corollary 1. A one-dimensional symmetric \(\alpha \)-stable Lévy process is transient if \(\alpha < 1 \).

Also, let us remark that the analogous transience condition holds for one-dimensional symmetric random walks.

References

[1] James P. Hobert and Jason Schweinsberg. *Conditions for recurrence and transience of a Markov chain on \(\mathbb{Z}^+ \) and estimation of a geometric success probability.* The Annals of Statistics 30(4):1214–1223, 2002.

[2] Terry Lyons. *A simple criterion for transience of a reversible Markov chain.* The Annals of Probability 11(2):393–402, 1983.

[3] Nikola Sandrič. *A transience condition for a class of one-dimensional symmetric Lévy processes.* Preprint, 2013.
[4] Ken-iti Sato. Lévy processes and infinitely divisible distributions, volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.