Lup-Like Cantilever Beam for Small Deflection

Sparisoma Viridi*
Department of Physic, Faculty of Mathematics and Natural Sciences,
Institut Teknologi Bandung, Bandung 40132, Indonesia

Lehrstuhl für Theoretische Physik I, Fakultät Physik,
Technische Universität Dortmund, D-44227 Dortmund, Germany

Mitra Djamal
Department of Physic, Faculty of Mathematics and Natural Sciences,
Institut Teknologi Bandung, Bandung 40132, Indonesia

Yusaku Fujii
Department of Electronic Engineering, Faculty of Engineering,
Gunma University, Kiryu 376-8515, Japan

23 February 2014

Abstract
A lup-like cantilever beam are discussed in this work. For small deflection it can be approximated as a spring-mass system with certain spring constant whose effective mass is larger than the usual constant rectangular cross section cantilever beam. A new parameter β is introduced to relates some the properties of lup-like cantilever beam to the usual one. Influence of beam width B_0 and head width B_t to value of β is also presented.

1 Introduction
Cantilever beams play important role in many today applications. It is used as components in common bridge [1], railway bridge [2], and aeroplane wing [3]. In smaller scale it is in sensors for viscosity [4] and acceleration [5]. In nanoscopic scale application for atomic force microscope (AFM) is already common [6], even it can be used to measure weight of single virus [7]. Common form for cantilever beam is with constant rectangular cross section, where different form will have its own first mode natural frequency [8]. A recent application uses also a lup-like form which is not yet common [9], that needs a theoretical approach to characterize the cantilever beam, which is discussed in this work. Limitation to small deflection is still required here.

*viridi@kt.physik.tu-dortmund.de
Figure 1: Model of lup-like cantilever beam with mass \(M \), density \(\rho \), arm width \(B_0 \), arm length \(\alpha L \), head width \(B_t \), head length \(B_t - \delta \), and thickness \(H \) (in \(z \) direction, perpendicular to drawing plane).

2 Mass and area of moment inertia

A cantilever beam that has a lup-like form is illustrated in Figure 1. It has length of \(L \), thickness \(H \), density \(\rho \), and mass \(M \). The cantilever consists of two parts, which are arm and head. Arm has length of \(\alpha L \) and width of \(B_0 \), while head has length of \(B_t - \delta \) and width of \(B_t \).

A function to represent width of cantilever beam \(B \) as function of \(x \) for this case can be defined as

\[
B(x) = \begin{cases}
B_0, & 0 \leq x < \alpha L, \\
2 \sqrt{\frac{1}{4}B_t^2 - \left[x - (\alpha L + \frac{1}{2}\sqrt{B_t^2 - B_0^2}) \right]^2}, & \alpha L \leq x \leq L,
\end{cases}
\]

with head length to beam length ratio \((1 - \alpha) \) defined as

\[
(1 - \alpha) = \frac{B_t - \delta}{L},
\]

and parameter \(\delta \) as

\[
\delta = \frac{1}{2} \left(B_t - \sqrt{B_t^2 - B_0^2} \right),
\]

which makes the cross section of the beam

\[
A(x) = \begin{cases}
HB_0, & 0 \leq x < \alpha L, \\
2H \sqrt{\frac{1}{4}B_t^2 - \left[x - (\alpha L + \frac{1}{2}\sqrt{B_t^2 - B_0^2}) \right]^2}, & \alpha L \leq x \leq L.
\end{cases}
\]
Mass of the beam with constant density ρ is then determined using

$$M = \int_0^L \rho A(x)dx,$$

which gives result

$$M = \alpha \rho HB_0L + \frac{1}{4}(1 - \alpha)\rho HB_tL \left[\pi - \sin^{-1} \left(\frac{B_0}{B_t} \right) + \frac{B_0 \sqrt{B_t^2 - B_0^2}}{B_t^2} \right].$$ (6)

In Equation (6) parameter α and B_t are dependent to each other, e.g. value $\alpha = 1$ corresponds to $B_t = 0$, while $\alpha = 0$ corresponds to $B_t = L$ as in Equation (2), and at these limits it is required that $\delta = 0$.

Area of moment inertia for a cantilever beam with width B which is deflected in the direction of its thickness H is [10]

$$I = \frac{1}{12}H^3B.$$ (7)

In this work width of the beam is not constant but function of x as it is previously given in Equation (1), then it turns Equation (7) into

$$I(x) = \frac{1}{12}H^3B(x).$$ (8)

3 Small deflection

The lup-like cantilever beam is tipped in the center of the head in z direction (perpendicular to the drawing plane in Figure 1 or along the drawing plane in Figure 2) so it deflects. For linear analysis of small deflection, the curvature κ of the deflected beam is approximated as [11]

$$\kappa = \frac{d^2z}{dx^2}.$$ (9)

There is relation between curvature κ, elastic modulus E, bending moment along x axis $\tau(x)$, and area of moment inertia I [12]

$$\kappa = \frac{\tau(x)}{EI}.$$ (10)

If a force F is applied to the center of cantilever head as illustrated in Figure 2 with fixed end at $x = 0$ and free end at $x = L$, then the bending moment would be

$$\tau(x) = \left[x - \left(L - \frac{1}{2}B_t \right) \right] F.$$ (11)
Figure 2: A force F is applied to center of the head of lup-like cantilever beam.

Substitute Equations (9) and (11) into Equation (10) will produce a second order differential equation

$$\frac{d^2z}{dx^2} = \frac{F}{EI} \left[x - \left(L - \frac{1}{2}B_t \right) \right],$$

whose solution is

$$z(x) = \frac{F}{EI} \left[\frac{1}{6}x^3 - \frac{1}{2} \left(L - \frac{1}{2}B_t \right) x^2 \right]$$

which is a little bit different than for uniform rectangular cross section cantilever beam, which is tipped in the free end of the beam [13]. Equation (13) also assumes that area of moment inertia is constant.

Different result will be obtained if Equation (8) is substituted first into Equation (10) before solving the second order differential equation. Then following second order differential equation will be produced

$$\frac{d^2z}{dx^2} = 12 \frac{F}{EH^3} \left[x - \left(L - \frac{1}{2}B_t \right) \right] \times$$

$$\begin{cases} B_0^{-1}, & 0 \leq x < \alpha L, \\ \left(2\sqrt{\frac{x}{B_0}} - \left[x - \left(\alpha L + \frac{1}{2} \sqrt{B_t^2 - B_0^2} \right) \right] \right)^{-1}, & \alpha L \leq x \leq L. \end{cases}$$

For $0 \leq x < \alpha L$ the solution of Equation (14) is similar to Equation (13), which is

$$z(x) = \frac{12F}{EH^3B_0} \left[\frac{1}{6}x^3 - \frac{1}{2} \left(L - \frac{1}{2}B_t \right) x^2 \right].$$

And for $\alpha L \leq x \leq L$, following constants
\[c_2 = L - \frac{1}{2} B_t = \alpha L + \frac{1}{2} \sqrt{B_t^2 - B_0^2}, \tag{16} \]
\[c_3 = \frac{1}{2} B_t, \tag{18} \]

and also functions and other constants

\[\cos \theta(x) = \frac{x - c_2}{c_3}, \tag{19} \]
\[\sin \theta(x) = \frac{\sqrt{c_3^2 - (x - c_2)^2}}{c_3}, \tag{20} \]
\[\cos \theta_\alpha = \frac{\sqrt{B_t^2 - B_0^2}}{B_t}, \tag{21} \]
\[\sin \theta_\alpha = \frac{B_0}{B_t}. \tag{22} \]

are defined. Constants and functions in Equation (16) - (22) will simplify Equation (14) for \(\alpha L \leq x \leq L \) to

\[\frac{d^2 z}{dx^2} = \frac{c_1 (x - c_2)}{\sqrt{c_3^2 - (x - c_2)^2}}. \tag{23} \]

First integration from \(x = \alpha L \) to \(x \) will turn Equation (23) into

\[\frac{dz}{dx} \bigg|_{x=\alpha L} = c_1 \sqrt{c_3^2 - (x - c_2)^2} - \frac{1}{2} c_1 B_0. \tag{24} \]

Further integration within the same range will lead to

\[z(x) - z(\alpha L) = \frac{c_1 c_3^2}{2} \left[\sin \theta(x) \cos \theta(x) - \frac{B_0 \sqrt{B_t^2 - B_0^2}}{B_t^2} \right] \tag{25} \]
\[\frac{-\theta(x) + \sin^{-1} \left(\frac{B_0}{B_t} \right) + \frac{dz}{dx} \bigg|_{x=\alpha L}}{\frac{c_1 B_0}{2}} (x - \alpha L) \tag{26} \]

Values of \(z(\alpha L) \) and its derivative \(\left[\frac{dz}{dx} \right](\alpha L) \) are obtained from Equation (15), which are

\[z(\alpha L) = \frac{12F}{EH^3 B_0} \left[\frac{1}{2} \alpha^2 L^3 \left(\frac{\alpha}{3} - 1 \right) + \frac{1}{4} \alpha^2 L^2 B_t \right], \tag{27} \]
\[\left. \frac{dz}{dx} \right|_{x=\alpha L} = \frac{12F}{EH^3 B_0} \left[\alpha L^2 \left(\frac{\alpha}{2} - 1 \right) + \frac{1}{2} \alpha LB_t \right]. \tag{28} \]
Using Equations \((27)\) and \((28)\) and by setting \(x = c_2\) deflection of the head of cantilever beam where the force \(F\) tips it can be found, which is

\[
z(c_2) = \frac{12F}{EH^3B_0} \left[\frac{1}{2} \alpha^2 L^3 \left(\frac{\alpha}{3} - 1 \right) + \frac{1}{4} \alpha^2 L^2 B_t \right] - \frac{3F B_t^2}{4EH^3} \left[B_0 \sqrt{B_t^2 - B_0^2} + \frac{\pi}{2} - \sin^{-1} \left(\frac{B_0}{B_t} \right) \right] + \frac{1}{2} \sqrt{B_t^2 - B_0^2} \left\{ \frac{12F}{EH^3 B_0} \left[\alpha L^2 \left(\frac{\alpha}{2} - 1 \right) + \frac{1}{2} \alpha L B_t \right] - \frac{3FB_0}{EH^3} \right\}.
\]

Identity from Equation \((17)\) can simplify Equation \((29)\) into

\[
z(c_2) = \frac{F}{EH^3} \left\{ \frac{9}{2} B_0 \left[(1 - \alpha)L + \frac{1}{2} B_t \right] + \frac{3}{4} B_t^2 \left[\sin^{-1} \left(\frac{B_0}{B_t} \right) - \frac{\pi}{2} \right] + \frac{6\alpha LB_t}{B_0} \left[(2 - \alpha)L - \frac{1}{2} B_t \right] - \frac{12L^3}{B_0} \left(\alpha - \alpha^2 + \frac{1}{3} \alpha^3 \right) \right\}.
\]

For \(\alpha = 1\) and \(B_t = 0\) Equations \((30)\) and \((13)\) give the same result, which can be considered as proof for the first equation.

4 Spring constant and natural frequency

For small deflection in \(z\) direction of a cantilever beam with one fixed end and the other end is under influence of certain force \(F\), the beam can be considered as a spring which has spring constant \(k\). Then the beam obeys Hook’s law

\[
F = -kz.
\]

Using result from Equation \((30)\) spring constant of lup-like cantilever beam tipped in \(x = c_2\) can be found

\[
k = - \left(\frac{EH^3 B_0}{4L^3} \right) \left\{ \frac{9B_0^2}{8L^3} \left[(1 - \alpha)L + \frac{1}{2} B_t \right] + \frac{3B_t^2 B_0}{16L^3} \left[\sin^{-1} \left(\frac{B_0}{B_t} \right) - \frac{\pi}{2} \right] \right. \right.
\]
\[
+ \frac{3\alpha B_t}{2L^2} \left[(2 - \alpha)L - \frac{1}{2} B_t \right] - 3 \left(\alpha - \alpha^2 + \frac{1}{3} \alpha^3 \right) \right\}^{-1}.
\]

The term in first () is the spring constant for cantilever beam with constant rectangular cross section [14]. Or alternatively, Equation \((32)\) can be written in form of

\[
k = k_{\text{cr}} \beta,
\]

\[
k_{\text{cr}} = k_{\text{cr}}/\beta,
\]

\[
k_{\text{cr}} = k_{\text{cr}}/\beta.
\]
where \(k_\Box \) is spring constant for cantilever beam with constant rectangular cross section and \(\beta \) is correction factor for other form due to geometry difference

\[
k_\Box = \frac{EH^3B_0}{4L^3}, \tag{34}
\]

\[
\beta = -\left\{ \frac{9B_t^2}{8L^4} \left[(1 - \alpha)L + \frac{1}{2}B_t \right] + \frac{3B_t^2B_0}{16L^4} \left[\sin^{-1} \left(\frac{B_0}{B_t} \right) - \frac{\pi}{2} \right] + \frac{3\alpha B_t}{2L^2} \left[(2 - \alpha)L - \frac{1}{2}B_t \right] - 3 \left(\alpha - \alpha^2 + \frac{1}{3} \alpha^3 \right) \right\}^{-1}. \tag{35}
\]

This factor can also put in the frequency instead in the spring constant [8]. From this spring-mass system, where not all mass of the cantilever beam contributes to the oscillation (only effective mass \(m^* \) instead of the whole mass \(m \)), the natural frequency can be found

\[
\omega = \sqrt{\frac{k}{m^*}}, \tag{36}
\]

or explicitly

\[
\omega = \sqrt{\frac{EH^3B_0\beta}{4L^3m^*}}. \tag{37}
\]

5 Effective mass of the vibration

Equation of motion of a uniform beam, by neglecting shear deformation and rotary inertia, will lead to frequency equation [15]

\[
1 + \cos \eta_n L + \cosh \eta_n L = 0, \quad n = 1, 2, \ldots, \tag{38}
\]

whose solutions are related to the natural frequency of the beam vibration (with constant rectangular cross section)

\[
\omega_n = \eta_n^2 \sqrt{\frac{EIL}{m}} = \eta_n^2 \sqrt{\frac{EH^3BL}{12m}}. \tag{39}
\]

For the lowest vibration frequency \(n = 1 \) solution of Equation (38) is about \(1.875/L \). Then using Equations (37) and (39) and the solution of frequency equation
\[\omega^2 = \omega_1^2 \]
\[
\frac{EH^3B_0\beta}{4L^3m^*} = \left(\frac{1.875}{L}\right)^4 \frac{EH^3BL}{12m}
\]
\[
\frac{\beta}{m^*} = \frac{1.875^4}{3m}
\]
\[
m^* \approx 0.243\beta m.
\]

For common cantiler beam with constant rectangular cross section value of β is 1 [10, 14]. It can be said that β shows the contribution of mass from the circular head of the cantiler beam.

6 Influence of B_0, B_t, and L

With a certain beam length L four values of B_0, which are 1, 2, 3, and 4, are used to plot β against B_t as illustrated in Figure 3.

![Figure 3: Plot of β as function of B_t for B_0: 1 (□), 2 (○), 3 (△), and 4 (◊).](image)

It can be seen from Figure 3 that B_0 does not play a significant role. All curves with different values of B_0 seem to coincide. But values of B_t does change value of β significantly but still in the same order. The curves are also grouped with the same value of L, which means it has also a strong influence to β. Higher value of L will coincide different B_0 better than lower one for the same range of B_t.

7 Conclusion

Derivation of mass, area of moment inertia, spring constant, and effective mass for lup-like cantiler beam are already presented in this work. A parameter β is
also defined, which relates effective mass for constant rectangular cross section cantilever beam to the discussed lup-like cantiler beam. Width of the beam \(B_0 \) does not change significantly value of \(\beta \) but width of the head \(B_t \) and beam length \(L \) do, which has been showed graphically.

References

[1] A. A. Shama, J. B. Mander, S. S. Chen, and A. J. Aref. Ambient Vibration and Seismic Evaluation of a Cantilever Truss Bridge. *Engineering Structures*, 23(10):1281–1292, 2001.

[2] Y. Koyama. Railway Construction in Japan. *Japan Railway and Transport Review*, 14:36–41, 1997.

[3] E. A. Armanios and A. M. Badir. Free Vibration Analysis of Anisotropic Thin-Walled Closed-Section Beams. *The American Institute of Aeronautics and Astronautics*, 33(10):1905–1910, 1995.

[4] C. Bergaud and L. Nicu. Viscosity Measurements Based on Experimental Investigations of Composite Cantilever Beam Eigenfrequencies in Viscous Media. *Review of Scientific Instruments*, 71(6):2487–2491, 2000.

[5] J. Fricke and E. Bermeier. Cantilever Beam Accelerometer Based on Surface Micromachining Technology. *Journal of Micromechanics and Microengineering*, 3(4):1993, 190-192.

[6] J. E. Sader. Frequency Response of Cantilever Beams Immersed in Viscous Fluids with Applications to the Atomic Force Microscope. *Journal of Applied Physics*, 84(1):64–76, 1998.

[7] A. Gupta, D. Akin, and R. Bashir. Single Virus Particle Mass Detection using Microresonators with Nanoscale Thickness. *Applied Physics Letters*, 84(11):1976–1978, 2004.

[8] J. A. Hoffmann and T. Wertheimer. Cantilever Beam Vibration. *Journal of Sound and Vibration*, 229(5):1269–1276, 2000.

[9] M. Djamal, I. Aji Prayogi, K. Watanabe, A. Takita, Y. Fujii, and S. Viridi. Measuring Quasi-Static and Kinetic Coefficient of Restitution Simultaneously using Levitation Mass Method: Experiment and Simulation. *ArXiv e-prints*, February 2014.

[10] U. Rabe, K. Janser, and W. Arnold. Vibrations of Free and Surface-Coupled Atomic Force Microscope Cantilevers: Theory and Experiment. *Review of Scientific Instruments*, 67(9):3281–3293, 1996.

[11] Y. Zhang, Q. Ren, and Y. p Zhao. Modelling Analysis of Surface Stress on a Rectangular Cantilever Beam. *Journal of Physics D: Applied Physics*, 37(15):2140–2145, 2004.

[12] L. L. Bucciarelli Jr. Engineering Mechanics of Solids: A First Course in Engineering. http://web.mit.edu/emech/dontindex-build/full-text/emechbk_8.pdf, 2002. [Online; accessed 17-February-2014].
[13] S. Whitney. Vibrations of Cantilever Beams: Deflection, Frequency, and Research Uses. http://emweb.unl.edu/Mechanics-Pages/Scott-Whitney/325hweb/Beams.htm, 23 April 1999. [Online; accessed 17-February-2014].

[14] J. P. Cleveland, S. Manne, D. Bocek, and P. K. Hansma. A nondestructive Method for Determining the Spring Constant of Cantilevers for Scanning Force Microscope. Review of Scientific Instruments, 64(2):403–405, 1993.

[15] J. S. Wu and T. L. Lin. Free Vibration Analysis of a Uniform Cantilever Beam with Point Masses by an Analytical-and-Numerical-Combined Method. Journal of Sound and Vibration, 136(2):201–213, 1990.