Antioxidant, Antimicrobial, and Anticancer Effects of Anacardium Plants: An Ethnopharmacological Perspective

Bahare Salehi 1, Mine Gültekin-Özgüven 2, Celale Kirkin 3, Beraat Özçelik 2,4, Maria Flaviana Bezerra Morais-Braga 5, Joara Nalyda Pereira Carneiro 5, Camila Fonseca Bezerra 5, Teresinha Gonçalves da Silva 6, Henrique Douglas Melo Coutinho 7, Benabdallah Amina 8, Lorene Armstrong 9, Zeliha Selamoglu 10, Mustafa Sevindik 11, Zubaida Yousaf 12, Javad Sharifi-Rad 12*, Ali Mahmoud Muddathir 14, Hari Prasad Devkota 15,16, Miquel Martorell 17,18*, Arun Kumar Jugran 19*, William C. Cho 20* and Natália Martins 21,22*

1 Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran, 2 Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey, 3 Department of Gastronomy and Culinary Arts, School of Applied Sciences, Özgeyn University, Istanbul, Turkey, 4 Bioactive Research & Innovation Food Manufac. Indust. Trade Ltd., Istanbul, Turkey, 5 Laboratory of Applied Mycology of Cariri, Department of Biological Sciences, Cariri Regional University, Crato, Brazil, 6 Laboratory of Planning and Synthesis of Drugs, Department of Antibiotics, Federal University of Pernambuco, Recife, Brazil, 7 Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato, Brazil, 8 Department of Agronomy, SAPVES Laboratory, Nature and Life Sciences Faculty, University Chadi Bendjedid, El-Tarf, Algeria, 9 State University of Ponta Grosso, Department of Pharmaceutical Sciences, Ponta Grossa, Paraná, Brazil, 10 Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Campus, Nigde, Turkey, 11 Osmaniye Korkut Ata University, Bahçe Vocational School, Department of Food Processing, Osmaniye, Turkey, 12 Department of Botany, Lahore College for Women University, Lahore, Pakistan, 13 Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran, 14 Department of Horticulture, Faculty of Agriculture, University of Khartoum, Shambat, Sudan, 15 School of Pharmacy, Kumamoto University, Kumamoto, Japan, 16 Program for Leading Graduate Schools, Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, Kumamoto, Japan, 17 Department of Nutrition and Dietetics, Faculty of Pharmacy, Centre for Healthy Living, University of Concepción, Concepción, Chile, 18 Instituto de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepción, Chile, 19 G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Garhwal Regional Centre, Uttarkhand, India, 20 Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China, 21 Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, Porto, Portugal, 22 Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal

Anacardium plants have received increasing recognition due to its nutritional and biological properties. A number of secondary metabolites are present in its leaves, fruits, and other parts of the plant. Among the diverse Anacardium plants’ bioactive effects, their antioxidant, antimicrobial, and anticancer activities comprise those that have gained more attention. Thus, the present article aims to review the Anacardium plants’ biological effects. A special emphasis is also given to their pharmacological and clinical efficacy, which may trigger further studies on their therapeutic properties with clinical trials.

Keywords: Anacardium, cashew nut, phytotherapy, antioxidant, antimicrobial, anticancer
INTRODUCTION

Anacardium plants have received an increasing attention in recent years. Among the Anacardium plants, Anacardium occidentale (cashew apple) leaf extract is traditionally used in treating various diseases in tropical America, especially in North-Eastern Brazil. Indeed, the popular drinks in Brazil include fresh and processed cashew apple juice. Cashew plants have been used for centuries as folk medicine in South America and West Africa. Quite a number of biological properties have been reported, among them antimicrobial, antioxidant, antiulcerogenic, and anti-inflammatory effects have drawn public attention. In Nigeria, these species have also been used to treat cardiovascular disorders. While in Brazil, these species are used as infusion for curing ailments.

Anacardium species contain various secondary metabolites in its leaf and shoot powder, fruits and other parts of the plant, which can be used regarding their nutraceutical, medicinal and biological aspects (Table 1).

Interestingly, cashew fruit is tasty and rich in minerals, vitamins, and some essential nutrients. It has high vitamin C, nearly to five times higher than oranges and also with high minerals content. The fruit comprises of some volatile compounds, e.g., esters, terpenes, and carboxylic acids. Cashew bark and leaves have a rich amount of tannins. Cashew nut kernel testa contains tannin as an interesting economical source of antioxidants that can be used for both food and nutraceutical purposes. The species also contain a rich amount of flavonoids with diverse physiological effects. Anacardic acids were detected in higher amount in nutshell. Cardanol (decarboxylated anacardic acid) and cardol are found as the main components of commercial cashew nut shell liquid. Cardanol is extensively used as a synthon for the synthesis of several polymers and agricultural products. Cashew nut shell liquid extracted by solvent is a mixture of alkylphenols, including anacardic acid. As defatted, cashew kernel flour is a good source of protein and minerals. Furthermore, it can serve as low-fat fabricated food and animal feed. Animal or poultry feeds are mostly formulated using a substantial amount of cashew fiber. Besides, cashew fiber along with cashew nut shell liquid, both possess high anacardic acids contents and therefore can be utilized in functional food formulations.

ANACARDIUM PLANTS. KEY FOCUS ON BIOLOGICAL EFFECTS

Herbal treatments are the most popular form of traditional medicine and commonly used as primary health care. All parts of cashew tree (mainly leaf and stem bark) have been extensively used as traditional herbal medicine, contributing health benefits all over the world. Thus, in the last decades, Anacardium plants folk medicinal properties, and multiple biological effects being studied extensively (Tables 3, 4).

Antioxidant Activity

Oxidation process produces free radicals which contain unpaired electron. They can cause DNA damages and attack lipids and proteins. Antioxidants can protect free radical-induced damages by transferring electrons or hydrogen. Thus, foods with antioxidants may provide defense against free radical damage in the body and may prolong the shelf life of food products.

Fermented fruit juice of A. occidentale was reported with high antioxidant activity. Tan and Chan reported that fresh A. occidentale leaves exhibit high antioxidant and phenolic contents as assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, potassium ferricyanide, ferric reducing antioxidant power (FRAP), ferrous ion chelating ability, ferrozine, Folin–Ciocalteu, aluminiumchloride, and molybdate assays. Cashew apple juice and pulp have been reported to have considerable amount of vitamin C. Higher contents of polyphenols, tannins and dietary fiber were also reported. Furthermore, it was reported that copper, iron, zinc, and antioxidant compounds are also present in cashew apple juice, which were more abundant compared to cashew apple fiber.

In vitro Studies

A. occidentale revealed high antioxidant activity through DPPH radical scavenging, ferric thiocyanate, and thiobarbituric acid assays. However, it did not exhibit nitric oxide (NO) inhibitory activity. Good antioxidant capacity of red and yellow cashew was also observed using 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and DPPH radical scavenging assays. Moreover, Kongkachuchai et al. reported that young cashew leaves demonstrate high antioxidant capacity by oxygen radical absorbance capacity (ORAC) and FRAP assays.

Different parts of A. occidentale have strong antioxidant potency. For instance, ethanol extract of cashew nut skin demonstrated high total phenolic content and good antioxidant capacity as assessed by ABTS radical scavenging, superoxide scavenging, deoxyribose oxidation, and lipid peroxidation assays. Andrade et al. found that technical cashew nut shell liquid has high antioxidant capacity, perhaps due to its high content of cardanol and cardol, and thus it can be used as a natural antioxidant for nutraceutical and pharmaceutical purposes. The significant correlation between antioxidant capacity and the contents of anacardic acids, cardols, and cardanol is also reported, where anacardic acid content was found higher in cashew apple and fiber, whereas cardols and cardonols contents were higher in cashew nut shell liquid.

Antioxidant capacity of Semecarpus anacardium is also worth noting. Barman et al. reported that S. anacardium nut ethanol extract had high antioxidant activity as assessed by DPPH and ABTS radical scavenging and metal chelating assays. It should be noted that antioxidant activities of plants can be affected by manufacturing process. Tan and Chan reported that up to 30% decrease can be obtained in phenolic content and antioxidant activity of A. occidentale after blanching. However, no changes due to microwave treatment was observed. Interestingly, Trox et al. reported that bioactive content of cashew nut kernels decreased after conventional shell cracking method to minimize losses. Moreover, the contents of...
vitamin C, flavonoids, and polyphenols in cashew apple juice were increased after cold plasma treatment. Yet decreases in bioactive contents were observed at excessive exposure (156). Liao et al. (157) reported that antioxidant activity of cashew nut kernels were not affected by hot air-assisted radio frequency roasting. Moreover, sonication treatment improved the bioactive compound extraction yield from cashew apple bagasse compared to conventional heat treatment, and the optimum conditions were recommended as treatment for 6 min at an intensity of 226 W/cm² and 1:4 bagasse-to-water ratio resulting the highest vitamin C and total phenolic contents (158). In addition, total phenolic and tannin contents of A. occidentale were increased by gamma-irradiation (159).

There are changes in the antioxidant and phenolic contents of cashew during ripening. Gordon et al. (41) observed a decrease in phenolic content of cashew apple during ripening compared unripe apple, but ascorbic acid concentration and antioxidant activity was increased during ripening. Thus, it is plausible that the antioxidant activity of cashew apple may depend on ascorbic acid rather than phenolic content (41).

The antioxidant capacity of anacardium also depends on the extraction method. Razali et al. (42) reported that A. occidentale shoots methanol extract exhibited higher antioxidant activity compared to ethyl acetate and hexane extracts as assessed by ABTS, DPPH, superoxide anion, and NO radical scavenging assays; moreover, total phenolic content of methanol extract was found to be higher. De Abreu et al. (160) reported that carotenoids content of cashew apple was higher compared to aqueous extracts. In another study, it was observed that ethyl acetate extract of S. anacardium stem bark exhibited higher phenolic content compared to that of hexane and chloroform extracts (161). Chotphruethipong et al. (162) recommended extraction at 34.7°C for 64 min with ethanol-to-solid ratio of 18:1 (v/w) as optimum conditions for cashew leaves extraction. Aqueous, ethanol and petroleum ether (60–80°C) extract from A. occidentale leaves were studied for antioxidant activities through NO production and DPPH radical assays. Ethanol extract revealed the higher potential, followed by aqueous and petroleum ether extracts (43).

The antioxidant effect of A. occidentale leaf extract was measured and exerted noticeable activity in treating RAW 264.7 macrophage cells. Leaf extract administration (0.5 and 5 µg/mL doses) reduced oxidative damage in macrophage cells. Moreover, oxidative damage attributes induced in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells was inverted by leaf extract (44). Antioxidant activity of whole cashew nuts products, treated with low- and high-temperature was also determined. Results indicated that antioxidant activities of cashew nut, kernel, and testa phenolics extracted increased with the increasing roasting temperature. The highest activity was observed in nuts roasted at 130°C for 33 min, as revealed by DPPH, ORAC, Trolox equivalent antioxidant capacity (TEAC), FRAP, and hydroxyl radical scavenging assays (163). Frozen cashew pulps from A. occidentale were investigated for antioxidant activity using FRAP and DPPH assays (164).

Methanol, hexane and ethyl acetate extracts of A. occidentale shoots were investigated through using ABTS and DPPH radicals, superoxide anion radicals, NO radicals, and ferric ions reducing assays. A. occidentale methanol extract was the most potent reducing agent and radical-scavengers. In case of ethyl acetate extract, some antioxidant effects were detected, and hexane extract was the least reactive. Methanol extract revealed 7-fold higher total phenolic content than the hexane and ethyl acetate extracts, suggesting the possible contribution of phenolics in the observed effects (42). Anacardium microcarpum antioxidant effects were also investigated on human leukocytes and erythrocytes using in vitro methods. The half maximal inhibitory concentration (IC₅₀), for DPPH, varied from 27.9 (ethyl acetate fraction) to 32.9 µg/mL (ethanol fraction), and Fe²⁺ (10 µM)-induced lipid peroxidation was strongly inhibited by all fractions in rat brain and liver homogenates. Interesting, all the studied fractions were not cytotoxic to leukocytes and were able to inhibit against H₂O₂-induced cytotoxicity. No effects was found on human erythrocytes osmotic fragility, thus suggesting that A. microcarpum infusion can be safely consumed (1).

In vivo Studies

Technical cashew nut shell liquid decreased oxidative stress induced by paraquat or H₂O₂ exposure in Saccharomyces cerevisiae, demonstrating the antioxidant activity in the in vivo model assessed by DPPH scavenging and xanthine oxidase assays (152). Moreover, Encarnação et al. (15) observed antioxidant
TABLE 2 | Traditional medicinal uses of different *Anacardium* plant parts.

Part of the plant used	Medicinal uses, preparation, and applications	Locations	Reference
Bark	Hemorrhoids and severe diarrhea	Brazil	(11)
	Treatment of lower extremity pains and skin injury; exerts anti-inflammatory effects	Pataxó Indians, Xucuru Indians, Africa	(12–14)
	Treatment of type 2 diabetes	Portugal	(15)
	Strengthened the womb by washing of the decoction	Guatemala	(16)
	Treatment of inflammation of extremities, usually as hot baths	Panama	(17)
	Enteric condition, worms	Nigeria	(18)
	Rheumatic diseases	Brazil	(6)
	Diarrhea, fever, skin rashes, and sore. Topical for aches and pains	Nicaragua	(19, 20)
	Used for infectious, inflammatory and oxidative stress conditions	Nigeria	(21, 22)
	To relieve toothache and sore gums, treat dysentery, diarhea and piles, as also to treat pellagra	Tropical Africa, Ghana	(23, 24)
	Allergy, yellow fever, eye pains, external and internal wounds, stomach ache (diarrhea of children), cough, teeth pains (teeth bleeding, caries), hypertension, diabetes, hemorrhoid, sexual weakness	Benin	(25)
Leaves	Diarrhea, fever, skin rashes, and sore. Topical for aches and pains	Nicaragua	(19, 20)
	Enteric condition, worms	Nigeria	(18)
	Cancerous diseases	Nigeria	(26)
	Dysentery, pain-killers, venereal diseases	Africa	(27)
	Anti-hypertensive	Indonesia	(28)
	Malaria and yellow fever as well as diarrhea	Malaysia	(29, 30)
	Blisters, itching, ulcers, and warts	India	(31)
	Rheumatic disorders and hypertension	Indonesia. Malaysia	(2, 28)
	Gastrointestinal disorders (acute gastritis, diarhea), mouth ulcers, and throat problems	West Africa and South America	(18, 29, 30)
	Eczema, genital problems, venereal diseases, impotence, bronchitis, cough, and syphilis-related skin disorders	Brazil	(32)
	Toothache and sore gums, dysentery, diarhea, and piles, and to treat pellagra	Tropical Africa, Ghana	(23, 24)
	Fever, malaria, dysentery, teeth's caries, cough, and hypertension	Benin	(25)
	Dysentery, diarhea, piles, toothache and sore gums. Uses for remedy of rheumatism and hypertension	Southeast Asia	(2, 28, 29)
Root	Cough, stomach pain, tooth decay, hypertension, and malaria	Benin	(25)
	Diarhea, stomach pains, and as purgative	Guatemala	(12, 16)
Buds	Asthma.	Guatemala	(16)
Stalk	Teeth’s caries as toothpick	Benin	(25)
Apple	Scorpion and bee sting, application of juice at the sting	Benin	(25)
Cashew apple juice	Syphilis, cholera and kidney disease, as antiscorbutic, astringent and diuretic	Africa	(12)
Liquid nuts	Tinea as ointment	Benin	(25)
	Mental derangement, heart palpitation and rheumatism	Africa	(12)
Kernel	Demulcent and emollient and for diarhea	Africa	(12)
Nut oil	Antifungal and for healing cracked heels, antihypertensive and purgative; for blood sugar, kidney diseases, cholera, hookworms, corns, and warts	Benin, Brazil, Africa	(12, 33)
Cashew gum	Anti-inflammatory, analgesic, antiasthmatic, and antidiabetic agent; for gastrointestinal diseases, including diarhea, warts, coughs, and wounds.	Brazil	(34–36)
Cashew syrup	Coughs and colds	Africa	(12)

The antioxidant capacity of *Anacardium* plants can also be related to the antimicrobial and anticancer properties. For instance, Premalatha and Sachdanandam (166) reported that *S. anacardium* nut extract has anticancer properties, and it was related to the high antioxidant capacity of the product, as it triggered antioxidant defense system in an *in vivo* setting.
TABLE 3 | Pharmacological effects of Anacardium species.

Anacardium plant	Pharmacological effect	Reference
A. occidentale	Antioxidant	(9, 39–71)
	Anti-inflammatory	(44, 61, 72–77)
	Antimicrobial	(29, 40, 49, 54, 56, 58, 60, 63, 78–97)
	Antibacterial	(59, 46, 71, 75, 98–110)
	Cytotoxic	(71, 80)
	Diabetic induction	(55, 110–112)
	Hypolipidemic	(50, 64, 67, 113)
	Antinutagenic	(45)
	Analgesic	(70, 72, 73)
	Antithyroinase	(39)
	Genotoxic	(114)
	Hypoglycemic	(64, 102, 115–119)
	Wound healing	(58, 61)
	Acetylcholinesterase	(47)
	Anticancer	(97)
	Antultraderent	(78)
	Reduction of dental	(120)
	plaque and gingivitis	(81)
	Insecticidal	(121)
	Antifungal	(110)
	Antisicking	(79, 93)
	Antibiofilm	(122)
	Vermicidal effect in	(123)
	human ancylostomiasi	(124)
	Antivectorial	(125–127)
	Schistosomicidal	(127)
	Larvicidal	(117)
	Ovicial	(128)
	Renal protective	(129)
	Antihypertensive	(130)
	Antidepressant	(131)
	Anticonvulsant	(132)
	Antihelminetic	(133)
A. humile	Antioxidant	(133)
	Antifungal	(1)
A. microcarpum	Antioxidant	(1)
	Cytotoxic	(134)
	Antibacterial	(135)
A. excelsum	Antimicrobial	(136)
A. giganteum	Cytotoxic effect	(137)
A. othonianum	Antifungal	(137)
	Cytotoxic	(137)

Vivo study performed on male Wistar rats. The antioxidant effects of S. anacardium were also investigated by Ramprasath et al. (167) on arthritic rats. The results of this study shows that S. anacardium extract restored the increment in C-reactive protein and erythrocyte sedimentation rate observed in arthritic animals.

Antimicrobial Activity

The ethnomedicinal use of Anacardium plants for the treatment of bacterial and fungal infections is practically limited to A. occidentale (Table 5). The applicability of this plant for these therapeutic purposes has been reported in South America, Central America, Africa, and Asia. The bark is commonly used, although the leaves, roots, seeds, and fruits also can be utilized. Despite many ethno biological studies omitting information regarding preparation, decoction is more incidental and oral administration predominates. The species is mainly used for...
gastrointestinal and skin disorders, where these can be caused by action of various bacterial and fungal species. On the other side, the adaptive capacity of microorganisms has contributed to their resistance to current drugs available, with this encouraging the search for new antimicrobial substances (179).

In vitro Studies

Antibacterial properties

In antibacterial property of medicinal plants from Nigeria, *A. occidentale* hydroethanolic extracts (leaf/bark) showed positive effects against *Escherichia coli*, *Staphylococcus aureus*, *Enterobacter* species, *Streptococcus pneumoniae*, *Corynebacterium pyogenes*, *Enterococcus faecalis*, multiresistant *S. aureus*, *Acinetobacter* species, *Pseudomonas aeruginosa*, and multiresistant *P. aeruginosa* during cavity diffusion tests with inhibition halos varying from 6 to 14 mm (18).

In the study by Akinpelu (29), *A. occidentale* bark methanol extract (60%) exhibited antimicrobial activity against 13 out of 15 bacterial isolates, obtaining the activity against *Shigella dysenteriae* and *Klebsiella pneumoniae*, using the agar and broth microdilution methods (20 mg/mL). In the study by Melo-Cavalcante et al. (45), the antibacterial effect of fresh (25, 50, and 100 µL/plate) and processed (100, 500, and 2,000 µL/plate) cashew juices (*A. occidentale*) were assessed against *Salmonella typhimurium*, and all tested doses revealed to be effective. Melo et al. (180) demonstrated the action of the *A. occidentale* stem bark hydroalcoholic extract against *Streptococcus mitis*, *Streptococcus mutans*, and *Streptococcus sanguis* using diffusion and microdilution techniques. The extract concentrations (50 to 0.04 mg/mL) presented halos varying from 19 to 0 mm for *S. mitis*, 16 to 20 mm for *S. mutans* and 18 to 20 mm for *S. sanguis*. Chlorhexidine (0.12 to 0.001875%) obtained inhibition halos of 14 to 12 mm. The bacterial surface adherence analysis revealed the extract interferes with adhesion at 0.31 and 0.15 mg/mL.

Silva et al. (181) demonstrated that methicillin resistant and sensitive *S. aureus* samples were sensitive to pure (100 mg/mL) and diluted (1:2-1:64) *A. occidentale* stem bark extract, presenting inhibition halos ranging from 10 to 20 mm. The norfloxacin control inhibition halos ranged from 11 to 36 mm.

The liquid from *A. occidentale* cashew bark was evaluated as a food additive for ruminants, where prior to its addition to feed, cashew nut shell liquid was tested by microdilution (0 to 50 µg/mL). The lower MIC values were obtained (1.56–6.25 µg/mL) against *Ruminococcus flavefaciens*, *Ruminococcus albus*, *Ehrlichia ruminantium*, and *Butyrivibrio fibrisolvens* and moderate values (25 to 50 µg/mL) against *Streptococcus bovis* and *Lactobacillus ruminis*. Four of the tested bacteria (*Succinivibrio dextrinosolvens*, *Ruminobacter amylophilus*, *Elenomonas ruminantium*, and *Megagphaera elsdenii*) were insensitive to cashew nut shell liquid (MIC ≥ 50 µg/mL). The bacteria *Fibrobacter succinogenes*, *Prevotella ruminicola*, and *Succinimonas amylolytica* were sensitive to the cashew nut shell liquid (MIC: 3.13 to 12.5 µg/mL). Thus, cashew nut shell liquid inhibits rumen-specific bacteria and its activity is promising (182).

The dried extract obtained from *A. occidentale* leaf powder dye (20%; 200 mg/mL) showed an effect against *S. aureus* which produced the largest inhibition halo (12 mm). In comparison, gentamicin and chloramphenicol produced halos of 20 and 21 mm, respectively (98).

Campos et al. (183) evaluated two *A. occidentale* starch (10 to 60 mg/mL) samples (crude and purified) against *E. coli*, *S. aureus*, *Listeria innocua*, *P. aeruginosa*, *Enterococcus faecium*, and *Lactobacillus acidophilus* strains. Both samples were able to inhibit growth, with MICs ranging from 20 to 30 mg/mL for the crude starch, and 40 to 60 mg/mL for the purified starch. The result was obtained for *P. aeruginosa* (20 mg/mL). In the subculture assay (Minimum bactericidal concentration, MBC), only the purified starch sample displayed action at 50 mg/mL. In the cell’s structural analysis, changes such as pili loss and cell lysis (10 mg/mL) were observed.

Kaewpiboon et al. (184) confirmed the action of *A. occidentale* dry leaf ethanolic extract (5%) by disc-diffusion and microdilution, obtaining 15- and 13-mm inhibition halos and MICs of 250 and 500 µg/mL against *E. coli* and *P. aeruginosa*, respectively. Chloramphenicol (20 µg/disc) obtained a diameter varying from 15 to 30 mm and a MIC ranging from 7.1 to 125 µg/mL.

The methanolic and n-hexane extracts from *A. occidentale* aerial parts showed inhibitory effects against bacteria (*S. aureus*, *E. faecalis*, *E. coli*, *P. aeruginosa*, *K. pneumoniae*, and *Mycobacterium smegmatis*) with MICs ranging from 62.5 to 250 µg/mL (n-hexane) and 7.5 to >250 µg/mL (MeOH), with the effect for both extracts being obtained against *S. aureus* (185). *A. occidentale* bark ethanolic extract (3.125, 6.25, 9.375, and 12.3 mg/mL) was investigated against *Streptococcus sanguinis* biofilm formation. The extract inhibited biofilm formation as the concentration increased, ranging from 67.22 to 94.20%. The chlorhexidine control (0.12%) presented 89.55% inhibition (186).

An *A. occidentale* tincture (20%) obtained from a homeopathic Pharmacy was tested for oral bacteria biofilm-forming inhibition, and MICs of 3.12 and 0.78 mg/mL were obtained against *S. mutans* and *Streptococcus oralis* by microdilution (187). As for the diffusion, the tincture (pure 1:1) from the same *Anacardium* species obtained from a Manipulation Pharmacy (diluted in 20% in 70% alcohol) showed inhibition halos of 12, 13, 11, and 15 mm against *S. mutans*, *S. salivary*, *E. faecalis*, and *Eikenella corrodens*, respectively. For Chlorhexidine, the values obtained were 17, 15, 17, and 19 mm respectively (188).

Menezes et al. (78) extracted tannins from *A. occidentale* stem bark and evaluated by cavity diffusion its antibacterial effect against *S. mutans*, *S. mitis*, *S. sanguis*, *Streptococcus salivarius*, and *Lactobacillus casei* at 1:1, 1:2, to 1:16 µg/mL, with inhibition halos ranging from 11 to 17 mm. In the presence of 5% sucrose, the bacterial anti-adherence effect was observed using concentrations from 1.8 to 1:512 µg/mL, obtaining in some cases, a better effect than 0.12% chlorhexidine gluconate (1:16–1:32 µg/mL).

Fresh and processed (bleached and irradiated) leaves extracts of *A. occidentale* showed antibacterial effect. The minimum inhibitory doses capable of forming inhibition halos were 0.06 to 0.50 mg/disk, having an effect against *Brevibacillus brevis*, *Micrococcus luteus*, *Staphylococcus cohnii*, *E. coli*, and
TABLE 5 | Traditional medicinal uses of Anacardium plants related to bacterial and fungal infection.

Species	Applications	Part of teh plant	Preparations	Method	Location	Reference
Anacardium sp	Diarrhea, skin wounds	Bark	Infusion and soak in water	Oral use	Brazil	(168)
A. occidentale	Dysentery and stomach ache	Bark	Infusion and soak in water	Oral use	Brazil	(169)
A. occidentale	Aphtha	Nil	Nil	NI	Brazil	(170)
A. occidentale	Infectious processes	Bark	Infusion and soak in water	Oral use	Brazil	(171)
A. occidentale	Rheumatism	Bark, leaves	Sauce, decoction	NI	Brazil	(172)
A. occidentale	Skin infection, dysentery, diarrhoea, thrush	Leaves, root, bark	Infusion and soak in water	NI	Nigeria	(173)
A. occidentale	Stomach ulcer	Leaves	Infusion and soak in water	NI	Cuba	(174)
A. occidentale	Stomach ulcer, wounds.	Leaves	Infusion and soak in water	NI	India	(175)
A. occidentale	Asthma	Fruit	Raw	Oral use	India	(176)
A. occidentale	Wound	Root, seeds, fruit	Decocction	Oral use	India	(177)
A. occidentale	Oral syphilis	Unripe fruits	Decocction	Mouth rinse	Cameroon	(178)
A. occidentale	Stomach ache	Bark	Decocction	Oral use	Nigeria	(179)

P. aeruginosa with the best performance being obtained for the irradiated extract (39). The *A. occidentale* leaf extract was investigated by Ayu et al. (189) against *Aggregatibacter actinomycetemcomitans*, a bacterium responsible for gingivitis. Inhibition zones ranging from 4.47 to 8.05 mm were observed for the tested concentrations (8, 41, 145, 164, 189, 190), and 96%) using agar diffusion method. The metronidazole control displayed a halo of 13.91 mm.

The cashew pulp juice extract (1 at 7.8 mg/mL) was tested against *S. aureus* planktonic cells and for the first time, against *S. aureus* biofilms where the cashew pulp juice extract was also tested in association with antimicrobials using the broth microdilution method and MBC. A MIC of 15.6 µg/mL, a MBC of 125 µg/mL and a biofilm Eradication Concentration of 500 µg/mL were obtained, demonstrating its antimicrobial and antibiofilm activity (79). The crude *A. occidentale* hydroalcoholic extract bark also showed good effects against *S. aureus* through disk diffusion (20 µL), presenting an inhibition halo of 11 mm (191).

In the study by Muraina et al. (192), *A. occidentale* leaf extract (10,000 µg/mL) was used against *Mycoplasma* spp., using the broth microdilution method. The antibiotic tylosin (1,280 µg/mL) was used as a positive control and acetone as a negative control. The authors obtained a significant result for the extract as an anti-mycoplasma product (MIC = 310 µg/mL).

Cajado et al. (193) investigated the aqueous and hydroalcoholic *A. occidentale* dry leaf limb extract against *E. coli*, *S. aureus*, and *K. pneumoniae* strains. The agar diffusion technique demonstrated *S. aureus* inhibition at 75 and 150 mg/mL (aqueous: 9.5 mm and hydroalcoholic: 8 and 10 mm). Moreover, amoxicillin in association with clavulanic acid (30 µg/mL) presented an action range from 12 to 38 mm.

Harsini (194) investigated the action of *A. occidentale* stem bark ethanolic extract against *S. aureus* by analyzing Ca²⁺ and K⁺ ion leakage inside the bacterial cell. Ca²⁺ leakage at 0% (control), 3, 5 and 7% concentrations varied from 2.42 to 66.73 mM, and for K⁺ this ranged from 15.28 to 1,251 mM, destabilizing the cell.

Quelemes et al. (195) evaluated the *A. occidentale* cashew starch (CG) antibacterial effect by microdilution, as well as that of its quaternized derivatives (QCG-1, QCG-2, and QCG-3) against a series of bacteria. QCG-2 and QCG-3 presented antimicrobial activity against *S. aureus* and *Staphylococcus epidermidis* (standard and resistant) where a MIC of 31.5 to 250 µg/mL and a MBC of 62.5 to 500 µg/mL were obtained. These results show the quaternized derivatives may be a promising tool in development of biomaterials with antiseptic action.

The purified *A. occidentale* bark liquid was able to inhibit *Bacillus subtilis* growth (0.6%) and alter its morphology (0.4%). The activity of the purified cashew nut shell liquid was tested using the colony counting method, where an IC₅₀ of 0.35% (v/v) was observed, presenting a bactericidal effect as well as cellular elongation suggesting bacterial cell division proteins may be a cashew nut shell liquid target (196).

Dos Santos et al. (197) obtained crude and fractionated extracts [hexane, dichloromethane, ethyl acetate, and methanol; ethyl acetate (9:1)] from *A. occidentale* leaves and evaluated these before and after being irradiated with gamma radiation, showing its effect over several *S. aureus* species was intensified after gamma radiation exposure (non-irradiated: MIC of 500 to >2,000 µg/mL; irradiated: MIC of 250 to >2,000 µg/mL).

De Araujo et al. (198) tested by microdilution, extracts rich in tannins obtained from *A. occidentale* stem bark which inhibited cariogenic bacteria growth from the *Streptococcus* genus, obtaining a MIC of 3,125 µg/mL (*S. mitis*, *S. mutans*) and of 6.25 µg/mL (*S. oralis*, *S. salivarius*, *S. sanguinis*, and *Streptococcus sobrinus*). The 0.12% chlorhexidine control presented MICs ranging from 0.390 to 3,125 µg/mL.

A. occidentale cashew bark oil (heated and raw—1,600 to 0.7812 µg/mL) as well as 16 isolated compounds (anacardic acids, cardols and cardanol) were investigated by Himejima and Kubo (99). Using microdilution method, the following strains were tested: *B. subtilis*, *Brevibacterium ammoniagenes*, *S. aureus*, *S. mutans*, *E. aerogenes*, *E. coli*, *P. aeruginosa*, and *Propionibacterium acnes*. The oil’s best result was obtained against *B. subtilis* (heated: 6.25 µg/mL and crude: 12.5 µg/mL) and *S. mutans* (heated: 3.13 µg/mL and crude: 3.13 µg/mL). The isolates obtained MIC values ranging from 0.39 to 100 µg/mL, with *P. acnes* being the most susceptible strain. Kubo et al.
isolated from *A. occidentalis* cashew, and tested through microdilution, a series of anacardic acids and (Z)-2-alkenyls against *H. pylori*, obtaining MIC values ranging from 200 to 800 µg/mL. In the study by Green et al. (200), a series of anacardic acid analogs (200 µg/mL) extracted from *A. occidentale* with different side chains were evaluated, where phenolic, branched and acyclic analogs were synthesized and their antibacterial activity was tested against methicillin-resistant *S. aureus* (MRSA) using microdilution method. The result was obtained for the side chain branched analog, 6-(4,80-dimethylnonyl) salicylic acid, and the side chain acyclic analog, 6-cyclododecylmethyl salicylic acid (MIC = 0.39 µg/mL), respectively. This activity was greater than that of the most potent isolated antibacterial anacardic acid. Based on the previous antibacterial anacardic acid study, 6-pentadecenyl salicylic acids isolated from *A. occidentale* cashew tree, a series of 6-alk(en)yl salicylic acids (200 µg/mL) were synthesized and tested for their antibacterial activity against *S. mutans* using broth microdilution. Among these, 6-(4,80-dimethylnonyl) salicylic acid was found to exhibit the most potent antibacterial activity against this cariogenic bacterium with a MIC of 0.78 µg/mL (201).

S. aureus and *Streptococcus pyogenes* were sensitive to *A. occidentale* cashew hexane and anacardic acid (both 20 mg/mL) extracts. When using agar diffusion, 18- and 16-mm halos were obtained for the extract and 16 mm for the acid, while microdilution analysis revealed MIC values ranging from 20 to 1:256 µg/mL. The amoxicillin control (20 mg/mL) inhibited total growth in the strains (179).

Anacardic acid (2, 10, 50, and 250 µg/mL) extracted from the cashew bark oil (*A. occidentale*) inhibited *S. aureus* biofilm formation at 40, 76, 80, and 99.96% as the concentration increased. The acid also reduced *S. aureus* adherence to catheters by 20% at the lowest tested dose (202). *A. occidentale* stem bark methanolic extract and isolated compounds (Pinostrobin, Pinocembrin, and 4-hydroxybenzaldehyde) presented inhibition zones, through disc diffusion, varying from 6.43 to 12.56 mm against *Salmonella dysenteriae*, *Salmonella typhi*, *S. aureus*, and *E. coli*, with the best results being obtained using Pinocembrin. Chloramphenicol exhibited inhibition zones of 18.71 to 21.50 mm. The IC₅₀ varied from 62.5 to 500 (4,098 µM), with the best effect being observed using the extract against all strains (46).

These studies using the *A. occidentalis* species prioritized the evaluation of hydroethanolic and methanolic extracts, using mainly the stem bark from the species. The method chosen for most of the tests was microdilution, followed by disk diffusion. Moreover, isolated compounds have already been evaluated, mostly anacardic acids. In addition to *A. occidentale*, two other species, *A. microcarpum* and *Anacardium humile* were tested against bacteria.

The crude ethanolic extract, ethyl acetate fraction and methanolic fraction from fresh *A. microcarpum* bark had their intrinsic antibacterial activity evaluated displaying antibacterial activity at 512 µg/mL (*E. coli, P. aeruginosa*, and *S. aureus*), which when combined with antibiotics, potentiated the effect of amikacin and gentamicin against the strains (134). In another study by Barbosa-Filho et al. (1), *A. microcarpum* ethyl acetate fraction and methanolic fraction were tested in isolation or in combination with antibiotics (amikacin, gentamicin, ciprofloxacin, and imipenem) against *E. coli, P. aeruginosa*, and *S. aureus*. All extracts revealed low antibacterial activity against multiresistant strains (MIC = 512 µg/mL). However, the association of natural products with antibiotics presented a synergistic effect against the multiresistant *E. coli* strain. Moreover, the extract and ethyl acetate fraction, in conjunction with amikacin and gentamicin, also demonstrated synergism with imipenem against *S. aureus*.

Antifungal Properties

The increase in fungal resistance and the incidence of infections has led to the realization of tests aiming to evaluate the antifungal potential of species from the *Anacardium* genus against primary and opportunistic pathogenic fungi. *A. occidentale* stem bark extract (1:1 to 1:512 mg/mL) presented action against *Candida tropicalis* and *Candida stellatoidea* strains with inhibition halos ranging from 17 to 12 and 18 to 12 mm, respectively, where the chlorhexidine gluconate control obtained halos ranging from 12 to 22 mm (204). Bahadur et al. (205) found that *A. occidentale* cashew bark methanol extract (150, 200, and 300 ppm) reduced conidia germination (11% at 300 ppm) of *Erysiphe pisi* in humid chambers for analysis under the microscope. Kolaczkowski et al. (190) assessed the *A. occidentale* methanol extract (aerial parts) effect against *Candida glabrata*, by broth microdilution, obtaining a MIC of 0.08 mg/mL, while that of the control drug fluconazole was 0.008 mg/mL.

A. occidentale burnt cashew pulp extract was evaluated against fungi from the *Fusarium* genus. Disc diffusion assay revealed the action of burnt cashew pulp extract (5 mg/mL) on *Fusarium oxysporum* (±30%), *Fusarium moniliforme*, and *Fusarium lateritium* (±60%) growth decrease. KHCO₃ (20 mg/mL) control had a zone ranging from ±15% to ±28%, and the Cercobin fungicide (10 ppm) had a zone ranging from ±25 to ±30% (206).

Harsini (207) observed through colony counting that rinse solutions made from the *A. occidentale* bark ethanol extract (1, 2, 3, 4, and 5%) influenced *C. albicans* adherence to acrylic resin. The number of colonies ranged from 1757.50 to 670.00 CFU/mL, showing better results than the control (1912.50 CFU/mL).

Santos et al. (159) observed that *A. occidentale* leaf and bark hydroalcoholic extracts (70%) had their action improved when exposed to gamma irradiation (0, 5.0, 7.5, and 10 kGy). Disc diffusion assays showed that, against *C. albicans*, the extracts (2,000 µg/disc) presented halos ranging from 14 to 0 mm and from 58 to 0 mm for bark and leaves, respectively. *A. occidentale*
Microdilution test revealed strong inhibition at 400 µg/mL, especially by the CABA compound. Membrane and cell wall were observed using scanning electron microscopy, especially by the CABA compound (16 µg/mL) and cardanol (64 µg/mL). In the microdilution assay, the density for the control containing dimethyl sulfoxide (DMSO−) obtained was of 0.107 nm, with a potent action compared to the controls (CHX: 0.102 nm and PI: 0.186 nm).

Muzaffar et al. (139) tested anacardic acid (0 to 100 µM) against Magnaporthe oryzae. A strong conidial germination inhibition was observed by counting colony forming units in samples treated with anacardic acid (75 µM−70%), while no inhibition was observed in the control containing dimethyl sulfoxide (DMSO−0.1%).

Mahata et al. (208) evaluated the cardanol activity extracted from A. occidentale cashew, and its derivatives against C. albicans. The best MIC values were obtained for 4-[(4-cardanyl)aazo] benzoic acid (CABA) hydrogel derivatives (8 µg/mL), followed by Self-assembled CABA (16 µg/mL) and cardanol (64 µg/mL). Drastic damages (lysis) caused by products in the fungus' membrane and cell wall were observed using scanning electron microscopy, especially by the CABA compound.

A. humile dried leaf (50 and 400 µg/mL) hydroalcoholic extract and its fractions (hexane, dichloromethane, ethyl acetate, and isobutanol) presented activity against C. albicans. Microdilution test revealed strong inhibition at 400 µg/mL for both extracts and fractions (133).

Investigations reporting the antifungal activity of Anacardium species mostly highlighted the A. occidentale species, in a similar manner to the antibacterial activity. The hydroethanolic extract was the most commonly tested extract type with the bark being the most commonly investigated plant part through microdilution and against opportunistic Candida spp. pathogens. No in vivo studies have been reported and no reports have been found against dermatophyte fungi. As observed in ethnobiological research, the medical use of this genus is the treatment of gastrointestinal symptoms and skin disorders and, therefore, studies carried out involving fungi which act with this pathogenesis profile are of extreme relevance.

Anticancer Activity
Cancer is the major cause of death worldwide, researchers are working to develop more therapeutic components for cancer treatment with less side effects. Plants are the main sources of pharmacologically active molecules, used for therapeutic purposes (209–211).

Taiwo et al. (26) conducted a study with Nigerian A. occidentale leaves in cultured HeLa cells. Four isolated compounds, zoapatanolide A, agathisflavone, anacardicin, and methyl gallate, were identified, and authors found that these components exhibited HeLa cell viability reduction in a dose-dependent manner, although with distinct efficiencies: zoapatanolide A > anacardicin > agathisflavone > methyl gallate. The cytotoxic potential of zoapatanolide A is well-documented in literature (212). This class of compounds act as Michael acceptor for the cysteine thiol groups, covalently modifying proteins (213, 214). Kubo et al. (215) found that the biflavonoid, agathisflavone, has antiproliferative activity against Jurkat cells (IC₅₀ = 4.45 µM), although other compounds isolated from A. occidentale juice have also revealed cytotoxic abilities, such as anacardicin, gallic acid, and other salicylic acid derivatives. The agathisflavone effect in several cancer cell lines (colon, lung, renal, breast, and ovarian cancer) was assessed, but only a marginal activity was stated, while to the methylated derivatives promissory effects were listed against these cancer cells (216) and even against chronic myeloid leukemia cell line K562 (217). Later, the agathisflavone effect on leukemia cells growth was further studied by Konan et al. (218); this compound induced lymphopenia in vivo and selectively triggered apoptosis. In addition, it was also stated that in Jurkat cells the antiproliferative ability of agathisflavone is more effective than on acute promyeloid leukemia (APL) cell line HL60, with IC₅₀ of 2.4 and 11.03 µg/mL, respectively. On the other hand, the identification by liquid chromatography–mass spectrometry (LC-MS) of the cashew nut shell liquid purified from Indian A. occidentale, revealed a chemical composition of cardanol, anacardic acid, and methyl cardol. It inhibited HeLa cells proliferation, triggered moderate mitotic block and HeLa cells apoptosis, besides to accelerate wound closure in L929 cells, without causing toxic effects on normal cells (196).

Kishore et al. (219) reported that anacardic acid enhance aurora kinase A activity through induction of structural changes. This compound exerted cytotoxic effects on several human cancer cell lines in vitro. In view of histone acetyltransferase (HAT) inhibition, cashew nut shell liquid, anacardic acid, and their derivatives were assessed for tumor suppressing effects. There were no-mutagenic effects up to 0.003% with and without S. typhimurium strains metabolic activation (220). Anacardic acid also inhibited cardiomyocytes hypertrophy in isolated neonatal rat in response to phenylephrine or urocinor. Anacardic acid was also as effective as Spiruchostatin A (221).

Anacardic acid-induced Aurora kinase A autophosphorylation was shown in an in silico approach, and this effects was attributed to its ability to bind and induce structural changes on the enzyme (219). Furthermore, Schultz et al. (222) stated that anacardic acid displayed effective inhibition toward estrogen receptor alpha (ERα)-expressing breast cancer cells proliferation, regardless of endocrine/tamoxifen sensitivity, while no effect was observed in ERα-negative cells. In addition, cell cycle progression inhibition and apoptosis induction in ERα -expressing cells was stated ERα-dependently. In short, as anacardic acid inhibited ERα-expressing breast cancer cells proliferation, but not the primary HuMECs, this finding reveals of utmost interest for further delineation of medical actions in cancer therapy.

Besides, marked effects were also reported by Sukumari-Ramesh et al. (223) on pituitary adenoma cells. Anacardic acid triggered polymerase cleavage induction, sub-G1 arrest, and
annexin-V expression, reduced survivin and X-linked inhibitor of apoptosis protein and anti-apoptotic proteins expression, all associated with cell survival. However, carbobenzoxy-valyl-alanyl-aspartyl-(O-methyl)-fluoromethylketone failed to revert anacardic acid-induced cell death. Moreover, Chandregowda et al. (224), tested diverse benzamide derivatives synthesized for cytotoxic capacity on HeLa cells, being these compounds classified as potent as garcinol, with interesting IC50 values.

CONCLUSIONS AND FUTURE PERSPECTIVES

Anacardium plants have extensively been largely reported for its antioxidant, anti-inflammatory, anticancer, and antimicrobial effects. A number of in vitro studies have been reported with promising results. On the other hand, the anticancer potential of Anacardium secondary metabolites is also quite prominent. Thus, Anacardium plants should be further studied to better elucidate their therapeutic potential not only in the in vitro and in vivo studies, but also the clinical application.

AUTHOR CONTRIBUTIONS

JS-R: conceptualization. JS-R, MM, AJ, WC, and NM: reviewed and editing. All authors: validation investigation, resources, data curation, writing, read and approved the final manuscript, and contributed equally to the manuscript.

ACKNOWLEDGMENTS

AJ acknowledged the funding from Uttarakhund council for Biotechnology, Pantnagar, Uttarakhand, India (File No. UCB/R&D Project/2018-311) for this work. MM would like to thank the support offered by CONICYT PIA/APOYO CCTE AFB170007.

REFERENCES

1. Barbosa-Filho VM, Waczuk EP, Kamdem JP, Abolaji AO, Lacerda SR, Da Costa JGM, et al. Phytochemical constituents, antioxidant activity, cytotoxicity and osmotic fragility effects of Caju (Anacardium microcarpum). Indus Crops Prod. (2014) 55:280–8. doi: 10.1016/j.indcrop.2014.02.021

2. Andarwulan N, Kurniasih D, Aprüday RA, Rahmat H, Roto AV, Bolling BW. Polyphenols, carotenoids, and ascorbic acid in underutilized medicinal vegetables. J Funct Foods. (2012) 4:339–47. doi: 10.1016/j.jff.2012.01.003

3. Alves AM, Dias T, Hassimoto NMA, Naves MMV. Ascorbic acid and phenolic contents, antioxidant capacity and flavonoids composition of Brazilian Savannah native fruits. Food Sci Technol. (2017) 37:364–9. doi: 10.1590/1678-457X-2017-0056

4. Rufino MDSM, Alves RE, De Brito ES, Pérez-Jiménez J, Saura-Calixto F, Mancini-Filho J. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem. (2010) 121:996–1002. doi: 10.1016/j.foodchem.2010.01.037

5. Bicalho B, Rezende CM. Volatile compounds of cashew apple (Anacardium occidentale L.) genetic resources in Benin. J Ethnopharmacol. (2004) 95:139–42. doi: 10.1016/j.jep.2004.06.033

6. Mota MLR, Thomas G, Barbosa Filho JM. Anti-inflammatory actions of tannins isolated from the bark of Anacardium occidentale L. J Ethnopharmacol. (1985) 13:289–300. doi: 10.1016/0378-8741(85)90074-1

7. Viswanath V, Leo VV, Prabha SS, Prabhakumari C, Potty VP, Jaiha MS. Thermal properties of tannin extracted from Anacardium occidentale L. using TGA and FT-IR spectroscopy. Nat Prod Res. (2016) 30:223–7. doi: 10.1080/14786419.2015.1049992

8. Kumar P, Paramashivappa R, Vithayathil PJ, Subba Rao PV, Srinivasara Rao, A. Process for isolation of cardanol from technical cashew (Anacardium occidentale. L.) nut shell liquid. J Agric Food Chem. (2002) 50:4705–8. doi: 10.1021/jf020224w

9. Trevisan MTS, Pfundstein B, Haubner R, Würtele G, Spiegelhalter B, Bartsch H, et al. Characterization of alkyl phenols in cashew (Anacardium occidentale) products and assay of their antioxidant capacity. Food Chem Toxicol. (2006) 44:188–97. doi: 10.1016/j.fct.2005.06.012

10. WHO. Traditional Medicine [Online]. (2018). Available online at: https://afro.who.int/health-topics/traditional-medicine—accessed.

11. Di Stasi LC, Hiruma-Lima CA. Plantas Medicinais na Amazonia e na Malra Atlântica. São Paulo: UNESP (2002).

12. Iwu MM. Hand Book of African Medicinal Plants. 2nd ed. Boca Raton: CRC Press (2014). doi: 10.1201/b16292

13. Silva VA, Andrade LHC. Etnobotânica Xucuru: plantas medicinais. Rev Bras Farmacol. (1998) 79:33–6.

14. Thomas MB. An analysis of the Pataká pharmacopeia of Bahia, Brazil, using an object oriented database model. (Ph.D.). University of Florida. (2001).

15. Encarnação S, De Mello-Sampaio C, Graça NG, Catarino L, Da Silva IBM., and Silva OMĐ. Total phenolic content, antioxidant activity and pre-clinical safety evaluation of an Anacardium occidentale stem bark Portuguese hypoglycemic traditional herbal preparation. Indus Crops Prod. (2016) 82:171–8. doi: 10.1016/j.indcrop.2015.11.001

16. Giron LM, Freire V, Alonzo A, Caceres A. Ethnobotanical survey of the medicinal flora used by the Caribs of Guatemala. J Ethnopharmacol. (1991) 34:173–87. doi: 10.1016/0378-8741(91)90035-C

17. Gupta MP, Arias TD, Correà M, Lamba SS. Ethnopharmacognostic observations of Panamanian medicinal plants Part I. Pharm Biol. (1979) 17:115–30. doi: 10.3109/13880207909065163

18. Kudí AC, Umoh JU, Eduze LO, Gefa J. Screening of some Nigerian medicinal plants for antibacterial activity. J Ethnopharmacol. (1999) 67:225–8. doi: 10.1016/S0378-8741(98)00214-1

19. Barrett B. Medicinal plants of Nicaragua’s Atlantic coast. Econ Bot. (1994) 48:8–20. doi: 10.1007/BF02901375

20. Cee FG, Anderson GJ. Ethnobotany of the Garifuna of Eastern Nicaragua. Econ Bot. (1996) 50:71–108. doi: 10.1007/BF02862114

21. Ojewole JA. Potentiation of the anti-inflammatory effect of Anacardium occidentale L. stem-bark extract by grape fruit juice. J Clin Pharmacol. (2004) 44:165–8. doi: 10.1177/0022376004268972

22. Olajide OA, Aderogba MA, Adebapo AD, Makinde JM. Effects of Anacardium occidentale stem bark extract on in vivo inflammatory models. J Ethnopharmacol. (2004) 95:139–42. doi: 10.1016/j.jep.2004.06.033

23. Dalziel I. The Useful Plants of West Tropical Africa. London: Crown Agents for the Colonies (1937). p. 337.

24. Irvine F. Woody Plants of Ghana. London: Oxford University Press (1961). p. 552–3.

25. Chabi S, Adoukonou-Sagbadja H, Ahoton L, Adebo I, Adigoun F, Saidou A, et al. Indigenous knowledge and traditional management of cashew (Anacardium occidentale L.) genetic resources in Benin. JEBAS. (2013) 1:375–82.

26. Taiwo BJ, Fatokun AA, Olubiyi OO, Bamigboye-Taiwo OT, Van Heerden FR, Wright CW. Identification of compounds with cytotoxic activity from the leaf of the Nigerian medicinal plant, Anacardium occidentale L. (Anacardiaceae). Bioorg Med Chem. (2017) 25:2327–35. doi: 10.1016/j.bmc.2017.02.040

27. Neuwing H. African Traditional Medicine. A Dictionary of Plants Uses and Applications. 1st ed. Stuttgart: Scientific Publications (2000).
cashew leaves (Anacardium occidentale L.). Int Food Res J. (2013) 20:299–305.
29. Akinpelu DA. Antimicrobial activity of Anacardium occidentale bark. Fitoterapia. (2001) 72:286–7. doi: 10.1016/S0367-326X(00)00310-5
30. Gonçalves J, Lopes R, Oliveira D, Costa S, Miranda M, Romanos M, et al. In vitro ant-nutatorvirus activity of some medicinal plants used in Brazil against diarrhea. J Ethnopharmacol. (2005) 99:403–7. doi: 10.1016/j.jep.2005.01.032
31. Hassan N, Ali M, Mirad R. Antimicrobial potency of essential oil from cashew (Anacardium occidentale L.) clones. J Trop Agric Food Sci. (2016) 44:73–80.
32. Franca F, Cubas C, Moreira E, Miguel O, Almeida M, et al. Plantas medicinais de uso comum no Nordeste do Brasil. Asia Pac Biotech News. (2007) 11:689–706. doi: 10.1142/S0219030307000584
33. Anderson D, Bell P, Millar R. Comparison of gum exudates from Anacardium occidentale. Phytochemistry. (1974) 13:2189–93. doi: 10.1016/0031-9422(74)85026-0
34. Agra M, Frano P, Barbosa-Filho J. Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Rev Bras Farmacogn. (2007) 17:114–40. doi: 10.1590/S0102-695X20070001000021
35. Lima J, Furtado D, Pereira J, Baracuhy J, Xavier H. Plantas medicinais de uso comum no Nordeste do Brasil. Universidade Federal de Campina Grande, Campina Grande (2016).
36. Cano JH, Volpato G. Herbal mixtures in the traditional medicine of Eastern Cuba. J Ethnopharmacol. (2004) 90:293–316. doi: 10.1016/j.jep.2003.10.012
37. Brandao MG, Zanetti NN, Oliveira P, Grael CF, Santos AC, Monte-Mor RL. Brazilian medicinal plants described by 19th century European naturalists and in the Official Pharmacopoeia. J Ethnopharmacol. (2008) 120:141–8. doi: 10.1016/j.jep.2008.08.004
38. Tan YP, Chan EWC. Antioxidant, antityrosinase and antibacterial properties of fresh and processed leaves of Anacardium occidentale and Piper betle. Food Sci. (2014) 6:17–23. doi: 10.1016/j.jsfo.2014.03.001
39. Rajesh B, Potty V, Kumari P, Miranda M, Sreeleekshmy S. Antioxidant and antimicrobial activity of leaves of Terminalia catappa and Anacardium occidentale: a comparative study. J Pharmacogn Phytochem. (2015). 4.
40. Gordon A, Friedrich M, Da Matta VM, Herbst Moura CF, Marx F. Changes in phenolic composition, ascorbic acid and antioxidant capacity in cashew apple (Anacardium occidentale L.) during ripening. Fruits. (2012) 67:267–76. doi: 10.1015/fruits/20120023
41. Razali N, Razab R, Junit SM, Aziz AA. Radical scavenging and reducing properties of extracts of cashew shoots (Anacardium occidentale). Food Chem. (2008) 113:38–44. doi: 10.1016/j.foodchem.2008.03.024
42. Jaiswal YS, Tatke PA, Gabhe SY, Ashok V. Antioxidant activity of various extracts of cashew shoots (Anacardium occidentale). Evid Based Complement Alternat Med. (2011) 26:19–30. doi: 10.4067/S0718-07642015000600001
43. Souza NC, De Oliveira JM, Morrone MDS, Albanus RD, Amarante M, et al. Effects of immature cashew nut-shell liquid (Anacardium occidentale) against oxidative damage in Saccharomyces cerevisiae and inhibition of aetylcholinesterase activity. Genet Mol Res. (2008) 7:806–18. doi: 10.4238/vol7-3mrn473
44. Doss V, Thangavel K. Antioxidant and antimicrobial activity using different extracts of Anacardium occidentale L. Int J Appl Biol Pharm Technol. (2011) 2:436–43.
45. Razali N, Zulkhairi A, Nurhaizan M, Kamal N, Zamree M, Shahidan M. Phytochemical screening, in vitro and in vivo antioxidant activities of aqueous extract of Anacardium occidentale Linn. and its effects on endogenous antioxidant enzymes in hypercholesterolemic induced rabbits. Res J Bio Sci. (2011) 6:69–74. doi: 10.3923/irbsci.2011.69.74
46. Wahyuni MMH, Yanti NA, Hartati R, Asno S, Sahidin I. Antimicrobial activity of immature cashew nut-shell liquid (Anacardium occidentale) against clostridium in rice. Int Food Res J. (2013) 20:495–501. doi: 10.5455/jmp.20160904104639
47. Dwivedi S, Sood S, Pradeep V, Meena A. Antioxidant activity of different parts of Anacardium occidentale L.: a comparative study. Int J Appl Biol Pharm Technol. (2015) 6:299–305. doi: 10.9734/IJIPBART/2015/2347
48. Mohkatar N, Khamimuthi M, Aziz A. Comparisons between the antioxidant activities of the extracts of Anacardium occidentale and piper betle. Malay J Biochem Mol Biol. (2008) 16:16–21.
Anacardium occidentale Linn. (Cashew) is a tree native to tropical and subtropical regions of the Americas. Its leaves, stems, and nuts contain a variety of bioactive compounds, including tannins, flavonoids, and terpenoids.

Antimicrobial Activity

- **Marques M, Albuquerque P, Xavier-Filho J.** In vivo and in vitro antibacterial and antifungal activities of methanolic leaf extracts of Anacardium occidentale. J Ethnopharmacol. (2016) 174:194-202. doi: 10.1016/j.jep.2015.12.031

Anti-inflammatory Activity

- **Baek A, Nishimba B, Shehinas C, Redha D.** Comparison of anti-inflammatory activity of crude extracts of Mangifera indica, Psidium guajava, Piper nigrum, Anacardium occidentale and Syzygium aromaticum against dexamethasone in vitro. Afr J Microbiol Res. (2014) 8:2548-67. doi: 10.5897/AJMR2014.6859

Antioxidant Activity

- **Sudjaroen Y, Thongkao K, Suwannahong K.** Antioxidant, antibacterial, and cytotoxicity activities of cashew (Anacardium occidentale) nut shell waste. Int J Green Pharm. (2012) 15:22-34.

Analgesic Activity

- **Bouttier S, Fourniat J, Garofalo C, Gleye C, Laurens A, Hocquemiller R.** Anti-inflammatory and analgesic activity of tannins isolated from Anacardium occidentale leaves. J Ethnopharmacol. (2016) 174:1-8. doi: 10.1016/j.jep.2015.12.031

Antimicrobial Activity of Cashew Tree Gum

- **Boukta S, Chandrasekaran B, Gobinay S, Nair M, Cotta S.** Antimicrobial and anti-adherent activity of cashew (Anacardium occidentale) gum-based silver nanoparticles. Int J Pharm. (2015) 490:167-75. doi: 10.1016/j.ijpharm.2015.08.041

Staphylococcus aureus (MRSA)

- **Yano aya O, Ajayi A, Adedapo A.** Hyplipidemic and antioxidant effects of the Methanolic stem bark extract of Anacardium occidentale Linn. in triton-X 100 induced hyperlipidemic rats. Orient Pharm Exp Med. (2017) 17:211-21. doi: 10.1007/s13596-017-0262-1

Antimicrobial Activity of Cashew Leaf Extracts

- **Rajeswaramma G, Jayasree D.** Antimicrobial and insecticidal property of Anacardium occidentale Linn. leaves against Staphylococcus aureus, Enterococcus faecalis, and Candida albicans. Int J Clin Dent. 6.

Antimicrobial Activity of Cashew Leaf Extracts

- **Adekoya TA, Oparah KO, Akinbule CMS, Adebiyi JO.** Antimicrobial activities of cashew (Anacardium occidentale L.) kernel extracts against Staphylococcus aureus (MRSA) by minimum inhibition concentration (MIC). J Chem Pharm Res. (2011) 3:736–42.

Antimicrobial Activity of Cashew Leaf Extracts

- **Olugbuyi J.** In vitro activities of methanol extracts of some plants used as herbal remedies. Am J Phytother. (2013) 6:470–9.

Antimicrobial Activity of Cashew Leaf Extracts

- **Alia AHN.** Shukri MM, Razali M. Antimicrobial potency of essential oil from cashew (Anacardium occidentale Linn.) clones. J Trop Agric. (2016) 4:473–80.

Antimicrobial Activity of Cashew Leaf Extracts

- **Martinez Aguilar Y, Rodriguez FS, Saavedra MA, Hermosilla Espinosa R, Yero OM.** Secondary metabolites and in vitro antibacterial activity of extracts from Anacardium occidentale L. (Cashew tree) leaves. Rev Cubana Plantas Med. (2012) 17:320–9.

Antimicrobial Activity of Cashew Leaf Extracts

- **Izah S, Unuwanngo E, Dunga K, Giftiga L.** Synergy of methanolic leaf extracts of Anacardium occidentale L. (cashew) against some enteric and superficial bacteria pathogens. MOJ Toxicol. (2018) 4:209–11. doi: 10.15406/mojt.2018.04.00101

Antimicrobial Activity of Cashew Leaf Extracts

- **Sudjaroen Y, Thongkao K, Suwannahong K.** Inappropriate of in vitro antimicrobial and anticancer activities from cashew (Anacardium occidentale L.) nut shell extracts. J Pharm Neg Results. (2018) 9:33–47. doi: 10.1101/jpnrr.6518_16

Antimicrobial Activity of Cashew Leaf Extracts

- **Himejima M, Kubo I.** Antibacterial agents from the cashew Anacardium occidentale (Anacardiaceae) nut shell oil. J Agric Food Chem. (1991) 39:418–21. doi: 10.1021/jf00020a039

Antimicrobial Activity of Cashew Leaf Extracts

- **Aswarya G, Reza K, Radhika G, Farook S.** Study for antibacterial activity of cashew apple (Anacardium occidentale) extracts. Der Pharm Lett. (2011) 3:193–200.

Antimicrobial Activity of Cashew Leaf Extracts

- **Aremekase M, Oyeyiola G, Aliyu M.** Antibacterial activity of Anacardium occidentale on some enterotoxigenic bacteria. Int J Mol Sci. (2011) 3:202–7. doi: 10.3390/ijms12122011

Antimicrobial Activity of Cashew Leaf Extracts

- **Vaidya A, Joshi V, Joshi A.** Antimicrobial screening of different extract of Anacardium occidentale Linn. Leaves. Int J Chem Tech Res. (2009) 1:858–67.

Antimicrobial Activity of Cashew Leaf Extracts

- **Afif human FG, Mokhtar NA, Ahmad NM.** Development and antibacterial activity of cashew gum-based silver nanoparticles. Int J Mol Sci. (2013) 14:4909–81. doi: 10.3390/ijms14094909

Antimicrobial Activity of Cashew Leaf Extracts

- **Aderiye B, David O.** In vitro antibacterial activity of aqueous extracts of cashew (Anacardium occidentale L.) fruit peels using bioautography method. Eur J Med Plants. (2014) 4:284. doi: 10.9734/EJMP/2014/6722

Antimicrobial Activity of Cashew Leaf Extracts

- **Belonwu D, Ibegbulem C, Chikezie P.** Systemic evaluation of antibacterial activity of Anacardium occidentale L. J Phytopharmacol. (2014) 3:193–9.

Antimicrobial Activity of Cashew Leaf Extracts

- **Vivek M, Hansa M, Pallavi S, Swamy H, Kumar T, Kekuda T.** Antibacterial activity of Cashew (Anacardium occidentale L.) apple juice against antibiotic resistant urinary tract pathogens. World J Pharm Sci. (2014) 2:1-10. doi: 10.33441/starc.v2i3.98756

Antimicrobial Activity of Cashew Leaf Extracts

- **Adesowo J, Adewusi I, Akinpelu D, Wadim L, Mcdonald A.** Phytochemical screening, antibacterial activity study and isolation of chemicals from Anacardium occidentale stem bark extract. J Pharm Res. (2016) 5:208–12.
108. Kamath K, Ramakrishna A. Comparison of antibacterial activity of leaves extracts of Tectona grandis, Mangifera indica, and Anacardium occidentale. Int J Curr Pharm Res. (2017) 9:36–9. doi: 10.22159/ijcpfr.2017.v9i16.1660

109. Osnaiye A, Catherine B, Anoze A. Antibacterial activity of Anacardium occidentale (cashew) leaf extracts on Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. Int J Health Res. (2018) 4:19–27.

110. Tiashma C, Tuhlanda D, Tshibangu D, Ngombe N, Mbemba T, Mpiana P. Antidiabetic, antiscilling and antibacterial activities of Anacardium occidentale (L.) (Anacardiaceae) and Zanthoxylum rubescens Planch. Ex Hook (Rutaceae) from DRC. Int J Diabet Endocrinol. (2018) 3:7–14. doi: 10.11648/j.ijde.20180301.12

111. Eliaikim-Ikechukwu C, Obri A, Akpa O. Phytochemical and micronutrient composition of Anacardium occidentale (cashew) stem bark hydroethanolic extract and its effect on the fasting blood glucose levels and body weight of diabetic wistar rats. Int J Nutr Wellness. (2010) 10:1–6. doi: 10.5580/efb

112. Sambo S, Olatunde A, Luka C. Antidiabetic activity of aqueous extract of Anacardium occidentale (L.) stem bark in normal and alloxan-induced diabetic albino rats. J Biol Sci Bioconserv. (2016) 6:41–57.

113. Hasan MKN, Kamarazaman IS, Arapoc DJ, Taza NZM, Amom ZH, Ali RM, et al. antichoesterol activity of Anacardium occidentale Linn. Does it involve in reverse cholesterol transport? Sains Malays. (2015) 44:1501–10. doi: 10.17576/jsm-2015-v03m-1410-16

114. Konan NA, Bacchi EM, Lincopan N, Varela SD, Varanda EA. Acute, subacute toxicity and genotoxic effect of a hydroethanolic extract of the cashew (Anacardium occidentale L.). J Ethnopharmacol. (2007) 110:30–8. doi: 10.1016/j.jep.2006.08.033

115. Sokeng S, Lontsi D, Moundipa P, Jatsa H, Watcho P, Kamtchoui ng Laurens A, Fourneau C, Hocquemiller R, Cave A, Bories C, Araujo JX, et al. Hypotensive, vasorelaxant and antihypertensive activities of the hexane extract of Anacardium occidentale Linn. Arch Biol Sci. (2018) 70:459–68. doi: 10.2298/ABS171109006C

116. Da Costa CDE, Hercuclano EA, Silva JCG, Paulino ET, Bernardino AC, Panjwani D, Purohit V, Siddiqui H. Antidepressant-like effects of Anacardium occidentale L. leaves in the mouse forced swim and tail suspension tests. Pharmacologia. (2015) 6:186–91. doi: 10.5567/pharmacologia.2015.186.191

117. Panwani D, Purohit V, Siddiqui H. Anticonvulsant activity of Anacardium occidentale L. leaves extract in experimental mice. Asian J Pharm Clin Res. (2014) SI:90–3.

118. Kamath K, Shabarrya A, Azharuddin M, Gopikrishna K, Srinivas U. Anthemilic activity of leaves extracts of Anacardium Occidentale and Mangifera Indica (anacardiaceae). J Pharmaceut Res. (2003) 3:560–4.

119. Porto R, Fett R, Areas J, Brandao A, Morgano M, Soares R, et al. Bioactive compounds, detoxifying activity and minerals of Caju (Anacardium humile St. Hill) during the ripening. Afr J Agric Res. (2014) 11:4924–30. doi: 10.5965/AJAR2016.1145

120. Royo VA, Mercadante-Simoes MO, Ribeiro LM, Oliveira DA, Aguiar MM, Costa ER, et al. Anatomy, histochemistry, and antifungal activity of Anacardium humile (Anacardiaceae) leaf. Microsc Microanal. (2015) 21:1549–61. doi: 10.1017/S1431927615015457

121. Barbosa-Filho VM, Waczuk EP, Leite NF, Meireis ER, Da Costa JG, Lacerda SR, et al. Phytochemicals and modulatory effects of Anacardium microspermum (caju) on antibiotic drugs used in clinical infections. Drug Des Devel Ther. (2015) 9:5965–72. doi: 10.2147/DDDT.S93145

122. Célis C, García A, Sequeda G, Mendez G, Torrenegra R. Antimicrobial activity of extracts obtained from Anacardium excelsum against some pathogenic microorganisms. Emirates J Food Agric. (2011) 29:49–57.

123. Ramos F, Osorio C, Duque C, Cordero A, Aristizábal L, Garzon F, et al. Estudio quimico de la nuez del marañon gigante (Anacardium giganteum). Rev Acad Colomb Cien. (2004) 28:565–76.

124. Curado F, Gazolla A, Pedroso R, Pimenta L, De Oliveira P, Tavares D, et al. Antifungal and cytotoxicity activities of Anacardium othonianum. J Med Plants Res. (2016) 10:450–6. doi: 10.5897/JMPR2016.6115

125. Melo-Cavalcante AA, Picada J, Rubensam G, Henriques J. Antimutagenic activity of cashew apple (Anacardium occidentale) Sapindales, Anacardiaceae) fresh juice and processed juice (cajuina) against methyl methanesulfonate, 4-nitroquinoline N-oxide and benzo[a] pyrene. Genet Mol Biol. (2008) 31:759–66. doi: 10.1590/S1413-927620080004000024

126. Muzzafar S, Bose C, Banerji A, Nair BG, Chattoo BB. Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae. Appl Microbiol Biotechnol. (2016) 100:523–35. doi: 10.1007/s00253-015-6915-4

127. Patra JK, Singdevsachan SK, Swain MR. Biochemical composition and antioxidant potential of fermented tropical fruits juices. Agro Food Indus Hi Tech. (2016) 27:29–33.

128. Campos DCP, Santos AS, Wolkoff DK, Matta VM, Cabral LM, Couri S. Cashew apple juice stabilization by microfiltration. Desalination. (2002) 148:61–5. doi: 10.1016/S0011-9164(02)00654-9

129. Assunção RB, Mercadante AZ. Carotenoids and ascorbic acid composition from commercial products of cashew apple (Anacardium occidentale L.). J Food Compos Anal. (2003) 16:467–57. doi: 10.1016/S0893-1318(03)00098-X

130. Eça KS, Machado MTC, Hubinger MD, Menegalli FC. Development of active films from pectin and fruit extracts: light protection, antioxidant capacity, and compounds stability. J Food Sci. (2015) 80:C2389–96. doi: 10.1111/1750-3841.13074

131. Silva LMR, Lima ACS, Maia AG, Sousa PHM, Gonzaga MLC, Ramos AM. Development of mixed nectar of cashew apple, mango and acerola. Int Food Res J. (2017) 24:232–7.
amostras multiresistentes de Staphylococcus aureus. Rev Bras Farmacogn. (2007) 17:572–7. doi: 10.1590/S0102-695X2007000400016

182. Watanabe Y, Suzuki R, Koike S, Nagashima K, Mochizuki M, Forster RJ, et al. In vitro evaluation of cashew nut shell liquid as a methane-inhibiting and propionate-enhancing agent for ruminants. J Dairy Sci. (2010) 93:2528–67. doi: 10.3168/jds.2009-2754

183. Campos DA, Ribeiro AC, Costa EM, Fernandes JC, Tavares FK, Araruna FB, et al. Study of antimicrobial activity and atomic force microscopy imaging of the action mechanism of cashew tree gum. Carbohydr Polym. (2012) 90:207–4. doi: 10.1016/j.carbpol.2012.05.034

184. Kaewpiboon C, Lirdprapamongkol K, Srismoss C, Winanuawattikun P, Yongvanich T, Puwaprisirisan P, et al. Studies of the in vitro cytotoxic, antioxidant, lipase inhibitory and antimicrobial activities of selected Thai medicinal plants. BMC Complement Altern Med. (2012) 12:217. doi: 10.1186/1472-6882-12-217

185. Madureira A, Ramalhete C, Mulhovo S, Duarte A, Ferreira M. Anti bacterial activity of some African medicinal plants used traditionally against infectious diseases. Pharm Biol. (2012) 50:481–9. doi: 10.3109/1568011093765976

186. Amalirah S, Larmani S, Wahyudi I. Inhibition effect of cashew stem bark extract (Anacardium occidentale L.) on biofilm formation of Streptococcus sanguinis. Dent J Majalah Kedokteran Gigi. (2012) 45:212–6. doi: 10.20473/djmkg.v45.i4.p212-216

187. Cardoso A, Cavalcanti Y, Almeida L, Padilha W. Atividade antibacteriana de tinturas à base de plantas sobre microrganismos do biofilme dental. Arq Cien Tecnol. (2012) 6. doi: 10.20473/j.djmkg.v45.i4.p212-216

188. Kolaczkowski M, Kolaczkowska A, Sroda K, Ramalhete C, Michalak K, et al. Impregnation of catheters with anacardic acid from cashew nut shell prevents Staphylococcus aureus biofilm development. J Appl Microbiol. (2018) 125:1286–95. doi: 10.1111/jam.14040

189. Pereira EM, Gomes RT, Freire NR, Aguiar EG, Brandao M, Santos VR. In vitro antimicrobial activity of Brazilian medicinal plant extracts against pathogenic microorganisms of interest to dentistry. Planta Med. (2011) 77:401–4. doi: 10.1055/s-0030-1250354

190. Araújo C, Pereira M, Higino J, Pereira J, Martins A. Atividade antifúngica in vitro da casca do Anacardium occidentale linn. sobre leveduras do gênero candida. Arq Estud Odontostomatol. (2005) 41:263–70.

191. Bahadur A, Singh UP, Singh DP, Sarma BK, Singh KP, Singh A, et al. Control of Escherichia coli causing powdery mildew of pea (Pisum sativum) by cashewnut (Anacardium occidentale) shell extract. Mycobiology. (2008) 36:60–5. doi: 10.4489/MYCO.2008.36.1.060

192. Santos R, Sá R, Marinho M, Martins J, Teixeira E, Alves F, et al. Compositional analysis of cashew (Anacardium occidentale L.) prunule bagasse ash and its in vitro antifungal activity against Fusarium species. Rev Bras Biotecnol. (2011) 9.

193. Harsini H. Pengaruh Ekstrak Etaiolik Kulit Batang Jambu Mete (Anacardium occidentale Linn) seabagi Bahan Kumur terhadap Daya Perlekatan C. albicans pada Plat Resin Akrilik. Majalah Kedokteran Gigi Indonesia. (2016) 18:137–40. doi: 10.22146/majkedgiind.15398

194. Fazio A, Iacobetta D, La Torre C, Ceramella J, Muia N, Catalanino A, et al. Finding solutions for agricultural wastes: antioxidant and antitumor properties of pomegranate Akko peel extracts and beta-glucan recovery. Food Funct. (2018) 9:6618–31. doi: 10.1039/C8FO01394B

195. Chartier C, Loizzo MR, Iacopetta D, Bonesi M, Sicari V, Pellicano TM, et al. Anthocyanin aurea Mill. (Boraginaceae) aerial parts methanol extract interfering with cytoskeleton organization induces programmed cancer cells death. Food Funct. (2019) 10:4820–90. doi: 10.1039/C9FO00582Y

196. Maldonado EM, Svensson D, Oredsson SM, Sterner O. Cytotoxic sesquiterpene lactones from Kauna lasiophthalma Griseb. Sci Pharm. (2014) 82:147–60. doi: 10.3797/scipharm.1310-2018

197. Zhang S, Won YK, Ong CN, Shen HM. Anti-cancer potential of sesquiterpene lactones: bioactivity and molecular mechanisms. Curr Med Chem Anticancer Agents. (2005) 5:239–49. doi: 10.2174/15680105057396796

198. Scotti MT, Fernandes MB, Ferreira MJP, Emerenciano VP. Quantitative structure-activity relationship of sesquiterpene lactones with cytotoxic activity. Bioorg Med Chem. (2007) 15:2927–34. doi: 10.1016/j.bmc.2007.02.005

199. Kubo J, Lee JR, Kubo I. Anti-Helicobacter pylori agents from the cashew apple. J Agric Food Chem. (1999) 47:533–7. doi: 10.1021/jf9808980

200. Green IR, Toccoli FE, Lee SH, Nihei K, Kubo I. Molecular design of anti MRSA agents based on the anacardic acid scaffold. Bioorg Med Chem. (2007) 15:6236–41. doi: 10.1016/j.bmc.2007.03.035

201. Green I, Toccoli F, Lee S, Nihei K, Kubo I. Design and evaluation of anacardic acid derivatives as anticavity agents. Eur J Med Chem. (2008) 43:1315–20. doi: 10.1016/j.ejmech.2007.08.012

202. Araújo C, Pereira M, Higino J, Pereira J, Martins A. Atividade antifúngica in vitro da casca do Anacardium occidentale linn. sobre leveduras do gênero candida. Arq Estud Odontostomatol. (2005) 41:263–70.
218. Konan NA, Lincopan N, Collantes Díaz IE, De Fátima Jacysyn J, Tanae Tiba MM, Pessini Amarante Mendes JG, et al. Cytotoxicity of cashew flavonoids towards malignant cell lines. Exp Toxicol Pathol. (2012) 64:435–40. doi: 10.1016/j.etp.2010.10.010

219. Kishore H, Vedamurthy R, Mantelingu K, Agrawal S, Ashok R, Roy S. Kundu specific small-molecule activator of aurora kinase a induces autophosphorylation in a cell-free system. J Med Chem. (2008) 51:792–7. doi: 10.1021/jm700954w

220. George J, Kuttan R. Mutagenic, carcinogenic and cocarcinogenic activity of cashewnut shell liquid. Cancer Lett. (1997) 112:11–6. doi: 10.1016/S0304-3835(96)04540-5

221. Davidson SM, Townsend PA, Carroll C, Yurek-George A, Balasubramanyam K, Kundu TK, et al. The transcriptional coactivator p300 plays a critical role in the hypertrophic and protective pathways induced by phenylephrine in cardiac cells but is specific to the hypertrophic effect of urocortin. ChemBioChem. (2005) 6:162–70. doi: 10.1002/cbic.200400246

222. Schultz DJ, Wickramasinghe NS, Ivanova MM, Isaacs SM, Dougherty SM, Imbert-Fernandez Y, et al. Anacardic acid inhibits estrogen receptor alpha-DNA binding and reduces target gene transcription and breast cancer cell proliferation. Mol Cancer Ther. (2010) 9:594–605. doi: 10.1158/1535-7163.MCT-09-0978

223. Sukumari-Ramesh S, Singh N, Jensen M, Dhandapani K, Vender J. Anacardic acid induces caspase-independent apoptosis and radiosensitizes pituitary adenoma cells laboratory investigation. J Neurosurg. (2011) 114:1681–90. doi: 10.3171/2010.12.JNS10588

224. Chandregowda V, Kush A, Reddy GC. Synthesis of benzamide derivatives of anacardic acid and their cytotoxic activity. Eur J Med Chem. (2009) 44:2711–9. doi: 10.1016/j.ejmech.2009.01.033

Conflict of Interest: BO was employed by the company Bioactive Research and Innovation Food Manufac. Indust. Trade Ltd.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Salehi, Gültekin-Özgüven, Kirkin, Özçelik, Morais-Braga, Carneiro, Bezerra, Silva, Coutinho, Amin, Armstrong, Selamoglu, Sevindik, Yousaf, Sharifi-Rad, Muddathir, Devkota, Martorell, Jugran, Chohan and Martins. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.