EXPERIENCE WITH NON-INVASIVE VENTILATION IN TYPE II RESPIRATORY FAILURE AT DEPARTMENT OF PULMONARY MEDICINE, KURNOOL MEDICAL COLLEGE, KURNOOL

K. Sailaja¹, K. Bharat², H. Naga Sreedhar Rao³, P. Swetha⁴

HOW TO CITE THIS ARTICLE:
K. Sailaja, K. Bharat, H. Naga Sreedhar Rao, P. Swetha. “Experience with Non-Invasive Ventilation in Type II Respiratory Failure at Department of Pulmonary Medicine, Kurnool Medical College, Kurnool”. Journal of Evidence based Medicine and Healthcare; Volume 2, Issue 28, July 13, 2015; Page: 4134-4142, DOI: 10.18410/jebmh/2015/587

ABSTRACT: BACKGROUND: Non-invasive ventilation (NIV) is the delivery of positive pressure ventilation through an interface to upper airways without using the invasive airway. Use of NIV is becoming common with the increasing recognition of its benefits. OBJECTIVES: This study was done to evaluate the feasibility and outcome of NIV (BiPAP) in Type II Respiratory Failure in Department of Pulmonary Medicine, Kurnool Medical College. Materials and Methods: An observational study conducted over a period of 18 months in Department of pulmonary medicine, Kurnool Medical College in 40 patients who were treated by NIV (BiPap). Patients were stratified on basis of set of exclusion and inclusion criteria. NIV was given in accordance with the arterial blood gas (ABG) parameters defining Type II respiratory failure. RESULTS: In the present study NIPPV was successful in 34(85%) and failed in 6(15%) patients. The most common indication of NIV in our hospital was acute exacerbation of chronic obstructive pulmonary disease (AE-COPD) 90% and 88% of AE-COPD patients were improved by NIV. Application of NIV resulted in significant improvement of pH and blood gases in COPD patients. Kyphoscoliosis, Obstructive Sleep Apnea (OSA) patients with Type II Respiratory failure also showed significant improvement in partial pressure of oxygen and carbon dioxide. CONCLUSION: This study demonstrates and encourages the use of NIV as the first-line ventilator treatment in AE-COPD patients with Type II respiratory failure. It also supports NIV usage in other causes of type II Respiratory failure as a promising step toward prevention of mechanical ventilation.

KEYWORDS: Non-invasive ventilation, AE- COPD, OSA, Kyphoscoliosis, Type II Respiratory Failure.

INTRODUCTION: The term non-invasive ventilation (NIV) refers to the application of artificial ventilation without any conduit access to the airways i.e., without an endotracheal or tracheostomy tube. Earlier negative pressure ventilation was used but in the modern era positive-pressure ventilation has supplanted negative-pressure ventilation as the dominant mode of delivery of noninvasive ventilation. Recently, NIV has assumed a prominent role in the management of acute respiratory failure.¹⁻⁴ By avoiding endotracheal intubation, NIV prevents complications associated with invasive ventilation like airway problems, nosocomial pneumonia (21%) and sinusitis (5-25%).⁵⁻⁹ In addition, the patient with an intact upper airway retains the ability to eat, swallow and verbalize. Epidemiologic studies suggest that respiratory failure will become more common as the population ages, increasing by as much as 80 percent in the next 20 years.¹⁰ Two recent publications from India suggested that NIV was beneficial in cohorts of
patients presenting with chronic obstructive pulmonary disease (COPD), as well as respiratory failure of varied etiology.11,12 NIV is becoming the preferred method of treatment for patients with Neuro Muscular Disorders including daytime ventilator support13

AIMS AND OBJECTIVES:

1. To study the role of Non-invasive positive pressure ventilation in patients with Type II Respiratory Failure.
2. To assess and compare the clinical and physiological parameters before and after the application of NIPPV in the study population.
3. To determine the outcome of non-invasive ventilation in the study population.

** PATIENTS & METHODS:** A Prospective Observational Study that was conducted among 40 patients with Type II Respiratory failure admitted to The Department of Pulmonary Medicine, Government general hospital affiliated to Kurnool medical college, Kurnool during the period of January 2013 to August 2014.

INCLUSION CRITERIA: Moderate to severe dyspnoea lasting <2 weeks plus any two of the following Respiratory rate >25/min, pH < 7.35 – 7.25, Partial pressure of carbon dioxide (PaCO\(_2\)) >45 mmHg, Partial pressure of Oxygen (PaO\(_2\)) <60mm Hg, oxygen saturation (SpO\(_2\)) <92% with oxygen by mask.

EXCLUSION CRITERIA: Cardiac/respiratory arrest, claustrophobia, Severe upper gastrointestinal bleeding, Hemodynamic instability: Shock (either cardiogenic or septic) with a systolic blood pressure of <90 mm Hg despite fluid challenge or need for pressor agents, Unstable arrhythmias, Encephalopathy, Glasgow Coma Score (GCS) <8, Recent Myocardial infarction, Facial surgery/trauma/deformity, Severe co-morbidity, Upper airway obstruction, non-cooperative, copious respiratory secretions, Seropositive for HIV, active Tuberculosis and Life threatening hypoxia.

INTIATION OF NIV: once eligibility verified and after taking the consent patients were included in the study. The mention of "noninvasive ventilation" (NIV) will refer to Noninvasive Positive-Pressure Ventilation (NIPPV) delivery in this study. Noninvasive ventilation was administered by the use of portable noninvasive ventilator BiPAP (Phillips Respironics) delivered to patients in bed at an angle of 30–45 and in all patients a well-fitting oro nasal mask was used as an interface for delivery of positive pressure. Procedure was explained to the patient and started on an IPAP of 8 and EPAP of 4 cm H2O. The pressures were gradually adjusted as tolerated. Adjustments were made based on continuous pulse-oximetry, arterial blood gases, alleviation of patient's dyspnea and decrease in respiratory rate. Humidified oxygen, antibiotics, bronchodilators and steroids were given along with NIV. Arterial blood gas analysis, at the end of 1 hour of application of NIPPV and at subsequent intervals as required, including, at the time of weaning and 6 hours after weaning were done. Parameters that were recorded include dyspnoea by modified Borg dyspnoea score, respiratory rate (RR), heart rate (HR), arterial blood quantitated gas analysis
(ABG). Presence of sustained clinical improvement with reduction of RR <24/ min, HR <100/ min and presence of normal pH and O₂ saturation >90% on ABG analysis were required before patients were considered for weaning from NIPPV. If there was clinical and/or laboratory evidence of deterioration at any point during NIPPV endotracheal intubation was considered.

The outcome of NIV usage was measured in terms of 1. NIPPV Failure: The need for endotracheal intubation 2. NIPPV Success: Improvement of patient condition. Successful weaning from the NIPPV 3. Patients taking discharge against medical advice.

The variables collected in the study included clinical (dyspnoea score, RR, HR), ABG parameters (pH, PaCO₂, and PaO₂), the mean duration of NIPPV application, duration of hospital stay and any complications related to the procedure. Any complications developed during the procedure were treated adequately. Statistical analysis was done using standard methods. A p value <0.05 is considered significant and p value <0.001 is considered extremely significant.

RESULTS:

Age	No. of patients (n = 40)	Percentage (%)
41 – 50	6	15
51 – 60	16	40
61- 70	16	40
71- 80	2	5

Table 1: Age distribution

The mean age of study cohort was 60.7 years with an age range of 40-80 years.

Gender	No. of patients (n=40)	Percentage (%)
Male	36	90
Female	4	10

Table 2: Sex Distribution

The present study group has a male preponderance (36/40) of 90%.

Disease	Males	Females	No. of patients (n=40)	Percentage
AE COPD	34	2	36	90
Kyphoscoliosis	1	1	2	5
Obstructive sleep apnea	1	1	2	5

Table 3: Causes of Type II Respiratory Failure

Causes of Type II Respiratory Failure were Acute exacerbation of COPD in 36, Kyphoscoliosis in 2 and as Obstructive Sleep Apnea in 2.
The Borg dyspnoea score improved from 5 at baseline to 1.4±0.07 at discharge (p <0.0001). The mean respiratory rate dropped from 34.8±4.4 before NIV to 13.82±1.96 (p <0.0001) at discharge.

The mean pH changed from 7.29±0.02 at baseline to 7.4±0.03 at discharge (p <0.0001). There was also a marked improvement in mean PaCO₂ and PaO₂ which changed from, 67.3±5.61, 54.6±8.85 at baseline to 50.02±4.08, 75.1±9.71 at the time of discharge respectively(p<0.0001 for both parameters).

Success defined by avoidance of ETI, *p value significant (<0.05) between failed and successful groups at baseline, †p value significant (<0.001) between failed and successful groups at 1hr, ψ p value <0.05 between failed and successful groups at 1hr. Respiratory rate at baseline was significantly higher in the patients who failed to respond to NIV and there was a significant improvement in the clinical and blood gas parameters within the 1st hour of NIV in the successful group whereas no such improvement was observed in the failure group.
Table 7: Outcome of NIPPV

Outcome	Number	Percentage
Success	34	85
Failure	6	15

NIPPV was successful in 34 patients (85%) and 6 patients (15%) failed to respond and required intubation.

DISCUSSION: The mean age of study cohort was 60.7 years with an age range of 40-80 years similar to other studies.14,15 (Table 1)

The present study group has a male preponderance (36/40) of 90% similar to other studies.15,16,17 (Table 2). The most common indication of NIV in our Study was acute exacerbation of chronic obstructive pulmonary disease (AE-COPD) 90% (Table 3) as in other studies.14,15,18 NIV was successful in 83.3% of patients in our study cohort of Acute exacerbation of COPD. The results obtained in the study were consistent with previous studies.14,18,19,20 Two patients of kyphoscoliosis with Type II Respiratory failure were put on NIV and both survived with improvement in \(\text{PaO}_2 \) and \(\text{PaCO}_2 \).18,21 Two patients with Obstructive sleep apnea with Type II Respiratory failure treated with NIV and these patients survived with significant improvement in \(\text{PaO}_2 \), \(\text{PaCO}_2 \).22 The results obtained in the present study are comparable to the previous studies.18,21,22

In our study a significant improvement was observed in the clinical and the blood gas parameters within 1hr of application of NIPPV. (Table 4, 5). The dyspnoea score has improved from 5 at baseline to 3.2±0.02 (p<0.0001) at 1 hr. The results obtained in the study regarding improvement in dyspnoea score and RR were comparable with the other studies.23,24,25 The RR has fallen from a baseline of 34.8±4.4 to 26.9±5.66 (p<0.0001).

In the present study there was a significant improvement (P<0.0001) in the average \(\text{PaCO}_2 \) levels within 1hr from 67.3±5.61 to 62.8±5.74. The results obtained are comparable with the other studies14,16,26 which showed significant decrease in \(\text{PaCO}_2 \) after 1hr of administration of NIV. The change in \(\text{PaCO}_2 \) also reflected in pH with improvements from 7.29±0.02 to 7.31±0.02 (p<0.001). The \(\text{PaO}_2 \) has also changed from 54.6±8.85 to 61.7±7.17. Brochard et al19 found that in the NIV group RR has fallen from 35±7 to 25±8, pH improved from 7.27±0.1 to 7.31±0.09 (p<0.001) in 1hr whereas \(\text{PaCO}_2 \) improved significantly at 3 hrs. Plant et al27 in their study noted that NIV led to a significant improvement in pH in 1st hr whereas \(\text{PaCO}_2 \), RR changed significantly at 4 hrs. In the current study, the clinical improvement of patients on NIV was corroborated with improvements in the physiological variables. These physiological improvements are similar to that reported in literature in similar cohorts of patients.11,28

In the present study further significant improvement was obtained at 24 hrs and it maintained up to the time of discharge. The pH, \(\text{PaCO}_2 \) and \(\text{PaO}_2 \) changed from baseline of 7.29±0.02, 67.3±5.61, 54.6±8.85 to 7.4±0.03, 50.02±4.08, 75.1±9.71 at the time of discharge respectively. The above results were very close to the results obtained in the Verma et al18 study.
Although the PaCO\textsubscript{2} of patients who failed NIPPV was higher than the patients who succeeded this did not reach statistical significance. After 1 hr of NIPPV, pH was significantly higher and PaCO\textsubscript{2} was significantly lower in the success group as compared to failed group (7.31±0.01 vs 7.29±0.01, 61.2±5.2 vs 73.8±4.6, p<0.0001) (Table 6). When compared to baseline values there was a significant increase in pH and fall in PaCO\textsubscript{2} in the success group. Garpested et al29 have shown that an improvement in pH and PaCO\textsubscript{2} within 1hr to be associated with success of NIPPV. Whereas there was no change in pH and PaCO\textsubscript{2} deteriorated in the failure group (Table 6).

These findings suggests that respiratory rate at admission and an improvement in gas exchange parameters within the 1st hour of NIPPV could possibly be used to predict response to NIPPV.29 However other determinants of success (like comorbidities, BMI etc.) NIPPV were not evaluated in the present study.

In the present study NIPPV was successful in 34 (85%) and failed in 6 (15%) patients (Table 7) RR at baseline was significantly higher in the patients who failed NIPPV (p value 0.03). Although the PaCO\textsubscript{2} of patients who failed NIPPV was higher than the patients who succeeded this did not reach statistical significance. (70.3±5.7 vs 67.2±5.8, p 0.19 NS) No other differences were observed in baseline characteristics of patients who failed versus those who succeeded.

The mean duration of hospital stay in our study was 10.32 days similar to other studies.23,27 Majority of patients discharged within the 2nd week. The shorter hospital stay may be due to rapid reversal of blood gases, absence of sedation, less complications and shorter weaning time.

In the present study the success rate with NIPPV was 85%, with 34 patients weaned off successfully and discharged. Of the six patients who failed NIPPV, 2 patients did not consent for intubation and left against medical advice. The other 4 were intubated and mechanically ventilated. Out of these 4 patients 2 patients eventually expired, 1 due to ventilator associated pneumonia, 1 from gram negative sepsis and multi organ dysfunction syndrome. No mortality was observed in the patients improved and continued on NIPPV. The success rate in the present study is comparable with the previous studies14,15,16,27,30

In our study NIPPV was used for a mean duration of 38.5±13 hrs. In the study of Umberto Meduri et al31 it was 23±17 hrs.

Only 4 (10%) complications occurred in our study similar to the complication rate in Umberto Meduri et al31 One (2.5%) was aspiration pneumonia19 treated with antibiotics, two (5%) patients experienced irritation of eyes treated with adjustment of mask and lubricant eye drops, and one (2.5%) patient experienced dryness of mouth treated with mouth care.

CONCLUSION: The results of the present study showed that NIPPV is a promising therapeutic modality for management of selected patients with exacerbations of COPD who have respiratory failure. The protocol is simple to implement and monitor. In the present study a relatively lower respiratory rate at baseline and a significant improvement in clinical and blood gas parameters within the 1st hr of NIPPV indicated a favourable response. However further studies are required to establish this and to evaluate other potential predictors of success for better outcomes with NIPPV. Proper selection of patients, proper interface & proper monitoring to recognize complications is the corner stone in success of NIPPV.
REFERENCES:

1. Burns KE, Sinuff T, Adhikari NK, Meade MO, Heels-Ansdell D, Martin CM, et al. Bilevel noninvasive positive pressure ventilation for acute respiratory failure: Survey of Ontario practice. Crit. Care Med 2005; 33: 1477-83.

2. Majid A, Hill N. Noninvasive ventilation for acute respiratory failure. Curr Opin Crit Care 2005; 11: 77-81.

3. S. Baudouin, S Blumenthal, B Cooper, C Davidson, A Davison, M Elliot, W Kinnear, R Paton, E Sawicka Non-invasive ventilation for acute respiratory failure. Thorax 2002; 57: 192-211.

4. International Consensus Conferences in Intensive Care Medicine: noninvasive positive pressure ventilation in acute Respiratory failure. Organized jointly by the American Thoracic Society, the European Respiratory Society, the European Society of Intensive Care Medicine, and the Société de Réanimation de Langue Française, and approved by ATS Board of Directors, December 2000. Am J Respir Crit Care Med 2001; 163(1):283-91.

5. C. Roussos, A. Koutsoukou. Respiratory failure European Respiratory Journal, 2003; 22: Suppl. 47.

6. Pingleton SK. Complications associated with mechanical ventilation. In: Tobin MJ (ed) Principles and Practice of Mechanical Ventilation. McGraw-Hill Inc, New York pp 1994; 775-792.

7. Torres A, Aznar R, Gatell JM, et al. Incidence, risk and prognosis factors of nosocomial, pneumonia in mechanically ventilated patients. Am Rev Respir Dis 1990; 142: 523-8.

8. Craven DE, Kunches LM, Kilinsky V, Lichtenberg DA, Make BJ, McCabe WR. Risk factors for pneumonia and fatality in patients receiving mechanical ventilation. Am Rev Respir Dis 1986; 133: 792-6.

9. Fagon JY, Chastre J, Hance AJ, Montravers P, Novara A, Gibert C. Nosocomial pneumonia in ventilated patients: A cohort study evaluating attributable morality and hospital stay. Am J Med 1993; 94: 281-2.

10. Carson SS, Cox CE, Holmes GM, Howard A, Carey TS. The changing epidemiology of Mechanical ventilation: a population-based study. J Intensive Care Med 2006; 21: 173–182.

11. Khilnani GC, Saikia N, Sharma SK, Pande JN, Malhotra OP. Efficacy of noninvasive pressure ventilation for the management of COPD with acute or acute on chronic respiratory failure: A randomized controlled trial. Am J Respir Crit Care Med 2002; 165: A387.

12. Singh VK, Khanna P, Rao BK, Sharma SC, Gupta R. Outcome predictors for non-invasive positive pressure ventilation in acute respiratory failure. J Assoc Physicians India 2006; 54: 361-5.

13. Bach JR. Noninvasive ventilation is more than mask ventilation. Chest 2003; 123: 2156–2157.

14. George IA, John G, John P, Peter JV, Christopher S. An evaluation of the role of noninvasive positive pressure ventilation in the management of acute respiratory failure in a developing country. Indian J Med Sci. 2007; 61: 495-504.

15. Lt Col S P Rai, Brig B N Panda, Lt. Col K. K. Upadhyay. Noninvasive Positive Pressure Ventilation in Patients with Acute Respiratory Failure. MJAFI, Vol. 60, No. 3, 2004, p 224-26.
16. Vanani V, Patel M. A study of patients with type II respiratory failure put on non-invasive positive pressure ventilation. Ann Trop Med Public Health 2013; 6: 369-77.
17. M.A. Soliman, M.I. El-Shazly, Y.M.A. Soliman, A.I Mostafa. Effectiveness of non-invasive positive pressure ventilation in chronic obstructive pulmonary disease patients. Egyptian journal of chest diseases and Tuberculosis, April 2014, pages 309-312.
18. Ajay Verma, Mayank Mishra, Surya kant, Anand Kumar, Sushil K Verma, Sudhir Chaudhri, J Prabhum. Noninvasive mechanical ventilation: An 18-month experience of two tertiary care hospitals in north India. Lung India 2013, page :307-311.
19. Brochard L, Mancebo i, Sibbald Wi, et al. Non-invasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N. Eng. J. Med., 1995; 333: 817-22.
20. Avdeev SN, Tret'iakov AV, Grigor'iants RA, Kutsenko MA, Chuchalin AG. Study of the use of noninvasive ventilation of the lungs in acute respiratory insufficiency due exacerbation of chronic obstructive pulmonary disease. Anesteziol Reanimatol 1998: 45-51.
21. Finlay G, Concannon D, McDonnell TJ. Treatment of respiratory failure due to kyphoscoliosis with nasal intermittent positive pressure ventilation (NIPPV). Ir. J Med Sci 1995; 164: 28-30.
22. Sturani C, Galavotti V, Scarduelli C, Sella D, Rosa A, Cauzzi R, Buzzi G. Acute respiratory failure, due to severe obstructive sleep apnoea syndrome, managed with nasal positive pressure ventilation., Monaldi Arch Chest Dis. 1994 Dec;49(6):558-60
23. Barbé F, Togores B, Rubí M, Pons S, Maimó A, Agustí AG. Noninvasive ventilatory support does not facilitate recovery from acute respiratory failure in chronic obstructive pulmonary disease. Eur Respir J 1996; 9: 1240-5.
24. Keenan SP, Sinuff T, Cook DJ, Hill NS. Which patients with acute exacerbation of chronic obstructive pulmonary disease benefit from noninvasive positive-pressure ventilation? A systematic review of the literature. Ann Intern Med 2003; 138: 861-70.
25. Martin TJ, HovisJD, Costatino et al. A randomized prospective evaluation of noninvasive ventilation for acute respiratory failure. Am J Respir Crit Care Med 2000; 161: 807-813.
26. Mc Laughlin KM, I.M. Murray, G. Thain and G.P. Currie Ward-based non-invasive ventilation for hypercapnic exacerbations of COPD: a ‘real-life’ perspective QJM J vol 103, issue 7: 505-510.
27. Plant PK, Owen JL, Elliot MW. Early use of non-invasive ventilation for acute exacerbations of chronic obstructive pulmonary disease on general respiratory wards: a multicentre randomized controlled trial. Lancet., 2000; 355: 1931-5.
28. Brochard L, Mancebo i, Sibbald Wi, et al. Non-invasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N. Eng. J. Med., 1995; 333: 817-22.
29. Garpested E. Brennan J Hill SN Non-invasive ventilation for critical care CHEST 2007, 132: 711-20.
30. Brochard, Isabey, Amaro, Messadi AA et al Reversal of acute exacerbations of chronic obstructive lung disease by inspiratory assistance with a face mask. N Engl. J Med 1990; 323: 1523–1530.
G. Umberto Meduri, Robert E. Turner, Nabil Abou-Shala, Richard Wunderink, Elizabeth Tolley. Noninvasive Positive Pressure Ventilation via Face Mask: First-Line Intervention in Patients with Acute Hypercapnic and Hypoxemic Respiratory Failure Chest 1996; 109(1): 179-193.

AUTHORS:
1. K. Sailaja
2. K. Bharat
3. H. Naga Sreedhar Rao
4. P. Swetha

PARTICULARS OF CONTRIBUTORS:
1. Associate Professor, Department of Pulmonary Medicine, Kurnool Medical College.
2. Post Graduate, Department of Pulmonary Medicine, Kurnool Medical College.
3. Assistant Professor, Department of Pulmonary Medicine, Kurnool Medical College.
4. Post Graduate, Department of Pulmonary Medicine, Kurnool Medical College.

NAME ADDRESS EMAIL ID OF THE CORRESPONDING AUTHOR:
Dr. K. Sailaja,
50-760-118-1,
Kotla Railway Station Road,
Beside Dr. Narasaram Clinic,
Gayatri Estates, Kurnool-518002,
Andhra Pradesh.
E-mail: bharanikumarreddy@yahoo.co.in

Date of Submission: 06/07/2015.
Date of Peer Review: 07/07/2015.
Date of Acceptance: 09/07/2015.
Date of Publishing: 13/07/2015.