Supplementary Information

Biomolecular Systems of Disease Buried Across Multiple GWAS
Unveiled by Information Theory and Ontology

Younghoe Lee, PhD1, Jianrong Li, MSc1, Eric Gamazon, PhD1, James L. Chen, MD2, Anna Tikhomirov, PhD1, Nancy J. Cox, PhD1,3,*, and Yves A. Lussier, MD1,4*

1Sect. of Genetic Medicine, 2Sect. of Hematology/Oncology, Dept. of Medicine; 3Dept. of Human Genetics; 4Inst. of Genomics and Systems Biology; Inst. for Translational Medicine, UC Cancer Research Center, Ludwig Center for Metastasis Research and Computational Inst., University of Chicago, IL, USA * Corresponding authors

A. Abbreviation used in the manuscript

Abbreviation	Description
SNP	Single Nucleotide Polymorphism
GWAS	Genome-wide association study
GO	Gene Ontology
QTL	Quantitative Trait Loci
PHG	Prioritized Host Gene
ITS	Information Theory Similarity
AODM	Adult Onset Diabetes mellitus
OR	Odds Ratio
WTCCC	Wellcome Trust Case Control Consortium
FUSION	Finland - United State Investigation of NIDDM Genetics
DGI	Diabetes Genetics Initiative
HUGO	HUMAN Genome Organizations
GS-GO	Gold Standard Gene Ontology
HGNC	Gene Nomenclature Committee

B. Supplementary Methods

Intragenic SNP in Genome-Wide Association Study (GWAS) Each intragenic single nucleotide polymorphism (SNP) was annotated to its host gene with the data sources. Genomic coordinates of intragenic SNPs (chromosome and base position) were mapped to the human genome reference assembly (build 36). The SNPs’ RefSeq alleles and host genes were defined using RefSeq genomic coordinates for the gene. As a standard identifier for the host gene of the SNP, the approved gene symbol of core data from HUMAN Genome Organizations (HUGO)’s Gene Nomenclature Committee (HGNC) was used. In the rare instances for which more than one host gene was assigned to a SNP, each gene was counted as an independent entry. The final annotated files include 12,387, 13,442, and 12,185 distinct host genes in Wellcome Trust Case Control Consortium (WTCCC), Finland - United State Investigation of NIDDM Genetics (FUSION), and the Diabetes Genetics Initiative (DGI) respectively.

Odds Ratio and Gold Standard of Biomolecular Systems from Known Diabetes Genes and “Evaluation of Predicted Biomolecular Systems” (Figure 1, Panel III) To evaluate predictions of Gene Ontology (GO) terms associated with Adult Onset Diabetes mellitus (AODM), we developed a biased gold standard with no significant bias of GO terms associated with diabetes genes from 20 AODM genes published by Meigs et al. [1],[2-4]. 19 of these genes were annotated in GO generating 245 distinct GO terms that we call our “gold standard” (GS-GO). GO terms of GS-GO were used to systematically calculate the odds ratio (OR) of the predicted GO biomolecular systems by Information Theory Similarity (ITS). The OR was calculated by 2x2 contingency table with two variables; GS-GO and GO terms
Supplementary Information

predicted by ITS. We further conducted an unbiased control to confirm that GS-GO terms to AODM were more likely to contain biomolecular systems associated with diabetes than GO terms from other host genes. We verified that the distribution of ITS between every combination of GO terms in the GS-GO was significantly different from the ITS found in the 6,000 GO terms found in any of the three GWAS.

Hierarchical Refinement of Enriched GO Terms To further refine the results and establish the most significant biomolecular systems among the P-values in an enrichment study, we represented the ontological structure of GO as a directed acyclic graph, composed of nodes (the terms of the GO) and edges (relationships between or among the terms of the GO) [5]. Recent reports demonstrated that enrichment studies conducted over genes in GO can generate falsely significant P-values due to the inheritance of genes in ancestry classes of a significantly enriched class [6, 7]. We provide a novel set-theoretic approach for filtering out false positive signals. Equations 2, 3 and 4 describe the refinement algorithm we developed to retain true positive results. \(V\) is the set of nodes, and \(E\) is the set of edges. The Open Biomedical Ontologies (OBO; http://obo.sourceforge.net/) represent a hierarchical relationship as “is_a”, with \(i\) and \(j\) which stand for a child and a parent respectively. For each node \(v_i \in V\), \(v_i\) contains two elements of its relation with neighboring nodes \(v_j\) namely, \(e_{ij} \in E\) and the P-value from the enrichment study symbolized as \(p_i\). Each node \(v_i\) is defined in terms of a hierarchical relationship such as \(A_i\) for all parents (1st degree Ancestors), \(C_i\) for all children, and \(D_i\) for all descendants. These are represented as \(A_i = \{ v_j \in V \mid \exists e_{ij} \in E \} \), \(C_i = \{ v_j \in V \mid \exists e_{ji} \in E \} \), and \(D_i = \{ v_j \in V \mid \exists e_{k_1,k_2,k_3,\ldots,k_n,i} \in E \}\) to describe the hierarchical relationship. The nodes that have the most statistically significant P-values as compared to their hierarchical neighbors were identified as Regional Minima of P-values (\(V_{RM}\)) and defined by Equation 1. Among Regional Minimum nodes, we further excluded parents that have the same P-values as their children to conserve the most informative nodes to yield the Refined Regional Minimum (\(V_{RRM}\), Equation 2). The subsumed significant associations (Significant Descendants of Refined Regional Minimum or SDRRM) are defined in Equation 3. Finally, Equation 4 defines the subset of retained nodes found in either Equation 2 or 3 excluding falsely significant P-values due to the inherited genes. The algorithm removed 25% false positive GO terms. An example of a false positive ancestor identified by the algorithm is as follows; assume GO term \(j\) is a heretical child of GO term \(J\). A number of genes are annotated in child GO \(j\), while \(b\) genes are annotated in parent GO \(J\). When a disproportionate number of genes annotated in GO \(J\) are also annotated to child GO \(j\) (for example if all genes are the same), then we can assume that the statistical enrichment is inherited as a statistical artifact of our enrichment methods that use inheritance of gene annotations of children to parents. The algorithm uses the dispersion or spread of the P-values in the hierarchies to identify these false positive signals.

Equation 1 \(V_{RM} = \{ v_i \in V \mid \forall v_j \in A_i \cup C_i, p_j \geq p_i \} \)

Equation 2 \(V_{RRM} = \{ v_i \in V \mid \exists v_j \in V_{RM}, v_j \in A_i, v_i \in V_{RM} \} \)

Equation 3 \(V_{SDRRM} = \{ v_i \in V \mid \exists v_j \in V_{RRM}, v_i \in D_j, v_i \not\in V_{RRM}, v_i \not\in V_{RM} \} \)

Equation 4 \(V_{included} = \{ v_i \in V \mid v_i \in V_{RRM} \cup V_{SDRRM} \} \)

Theoretical Statistics, Software Implementation and Availability Non-parametric comparison of a distribution to a theoretical value (Wilcoxon signed-rank test) and non-parametric comparison of medians (Mann-Whitney test) were used to calculate the significance. The ITS was previously implemented in JAVA [8]. Network figure was drawn with Cytoscape ver. 2.5.2 [9].
C. Supplementary Results

Gold Standard of Biomolecular Systems Associated with AODM As described in the Methods, the gold standard comprised 245 distinct GO terms (GS-GO) associated with 19 genes. This group of 245 GS-GO terms constitutes an imperfect gold standard as it certainly is incomplete and comprises GO terms related to the function of these genes that are likely unrelated to diabetes mellitus. However we demonstrated that this gold standard is most likely to be enriched in biomolecular system associated with AODM. Additionally, there is no proof that a manually curated, and possibly biased, gold standard of biological systems related to the pathophysiology of diabetes mellitus would be more relevant to the complex inheritance of AODM than one derived from its intragenic SNPs discovered in GWAS using unbiased computational approaches. We compared the median ITS between every combination of the GS-GO terms (ITS_GS-GO) to those associated with random draws of 245 GO terms which the genes are annotated in GO and repeated this bootstrap 1,000 times to generate an empirical distribution. The observed molecular functions and biological processes of ITS_GS-GO were respectively 1.4 times and 1.2 times that of the expected values (P<0.0001 in both cases, Wilcoxon Signed Rank test).

Reproducibility and Validation of Biomolecular Systems in three GWAS Exactly as Predicted To our knowledge, there has been no study showing either independent replication or validation of a biomolecular system derived from GWAS beyond those systems immediately derived from a single gene polymorphism. As shown in Figure 1, enriched GO terms were further refined to remove about 25% of trivial results considered as false positive signals inherited up the GO hierarchies (Supplementary Methods). Enriched GO terms were stratified according to their respective unadjusted P-value (indeed, very few results meet the Bonferroni correction in a single study as the signal is weak in lists of intragenic SNPs prioritized in a single GWAS. We determined the likelihood of a straightforward replication of a specific enriched GO term in two or three studies. Table 1 (main manuscript) provides the number of GO terms independently enriched in more than one study, and whether these overlaps (reproduced GO terms in independent studies) can be explained by chance or not according to two types of evaluations: I) false discovery rate (FDR) derived from bootstrap (in silico replication) and II) significantly increased OR of finding a GO term of GS-GOs expected. The FDR tends to increase with the increasing number of prioritized host genes (PHG). A lower initial P-value of the enriched GO terms is associated with a lower FDR and predictions matched in three studies are better than those from two studies. However, the latter merits more attention as the bottom panel of the table suggests that GO terms matched in two studies are more numerous and therefore more likely to comprise some noise. While the FDR is low for an initial enrichment of P<0.05 of GO terms in each of the studies, the large number of predicted GO do satisfy statistical significance for the OR of discovering a gold standard gene better than chance. In other words, one needs to be careful when replicating GO terms across two studies only as replicate. GO terms across three studies are significantly enriched in gold standard genes for a broader range of parameters. Using the Bonferroni corrections, we observed that the majority of results in two studies do not meet the criteria. These drawbacks suggest that there is an opportunity for improving the accuracy of predictions of replicated GO terms between two studies using ITS and for increasing the number of accurate predictions between three studies. These results also indicate that at P<0.025 and for PHGs ranging from 300-1000, exactly repeated GO terms between three studies can serve as accurate anchors of biomolecular systems in an ITS conducted over the same dataset or as gold standards of biomolecular systems in future independent studies. Specific names of the GO terms found significant in Table 1 between three studies are provided in Figure 2 (black circles) and Suppl. Tables 1&2.

Detail Description of Visualization and Analysis of Predicted Biomolecular System (Figure 2, Supplementary Figure 1, Supplementary Tables 1&2). To demonstrate biomolecular systems predicted by ITS, one specific case was chosen according to the parameters, 1000 PHG with unadjusted P-value of GO<0.01 and with ITS>0.7. This case comprised 69 GO terms, union GO terms of any combinatorial ITS experiments of three GWAS. The visualization was computed automatically by
the Cytoscape software with the default parameter, “Organic Layout” [9]. The initially computed biomolecular systems, which were defined by experts in biology, clustered into 11 biomolecular terms. To visualize the evaluation of predictions, GS-GO terms and GO terms overlap in three studies were also presented in this network. 69 predicted GO terms are visually assembled in 11 distinct “biomolecular systems” using inter GO similarity. They are also enriched with 12 GO terms of the gold standard (P=4.81e-05, cumulative hypergeometric test). Thickness of all edges between GO represents the level of ITS similarity, range from 0.6 to 1 in order to easily recognize new connection of our predictions to GS-GO by ITS method. **Legend:** increased line thickness corresponds with increased ITS (ITS of 1 indicates an exact GO match). Grey circles indicate ITS predicted GO terms. Black circles indicate 14 GO terms exactly overlap across three GWAS. Red rimmed circles correspond to 12 gold standard GO terms. Circle size indicates the number of GWAS contributing to the GO terms.

Biomolecules Defined:

A, voltage-gated ion channel activity; B, synapse (one is from biological process and the other is from molecular function); C, GTPase regulator; D, ion transport; E, membrane; F, receptor activity and neurotransmitter; G, signal transduction; H, Ras/Rho protein signal transduction; I, ion binding; J, adhesion; K, glutamate receptor. 69 predicted GO terms are visually assembled in 11 distinct “biomolecular systems” using inter GO similarity. They are also enriched with 12 GO terms of the gold standard (P=4.81e-05, cumulative hypergeometric test). Predictions were conducted at ITS>0.7. **Legend:** increased line thickness corresponds with increased ITS (ITS of 1 indicates an exact GO match). Grey circles indicate ITS predicted GO terms. Black circles indicate 14 GO terms exactly overlap across three GWAS. Red rimmed circles correspond to 12 gold standard GO terms. Circle size indicates the number of GWAS contributing to the GO terms. **Biomolecules Defined:**

A, voltage-gated ion channel activity; B, synapse (one is from biological process and the other is from molecular function); C, GTPase regulator; D, ion transport; E, membrane; F, receptor activity and neurotransmitter; G, signal transduction; H, Ras/Rho protein signal transduction; I, ion binding; J, adhesion; K, glutamate receptor. The 69 GO terms and corresponding IDs are listed in **Suppl. Table 2**.

Funding & Acknowledgements. This work was supported in part by the NIH/NLM/NCI National Center for Multiscale Analyses of Genomic and Cellular Networks (MAGNET, 1U54CA121852), the NIH/NCRR Clinical & Translational Science Awards (1U54 RR023560-01A1), The Cancer Research Foundation, The UCCRC, ENDGAMe (U01 HL084715), P60 DK20595, 2L01 GM61393, and ADA Mentored Fellow Award (AT). WTCCC and DGI were downloaded when publicly available. We thank Dr. M. Bochnke for graciously providing FUSION and Dr. Yang Liu with the assistance in the programming of the enrichment studies.
Supplementary Figure 1. Biomolecular Systems of Adult Onset Diabetes Mellitus Discovered using Information Theory Similarity. 69 predicted GO terms are visually assembled in 11 distinct "biomolecular systems" using inter GO similarity. For detailed description, see Suppl. Results (above).
Supplementary Table 1. 11 Biomolecular Systems in Figure 2 and Suppl. Fig. 1.

ID	Name / description	# of GO	# of GS-GO	Known Gene annotated to GS-GO
A	Voltage-gated ion channel activity	17	1	KCNJ11
B	Synapse	9	0	
C	GTPase regulator activity	7	0	
D	Ion transport	6	2	KCNJ11, SLC30A8
E	Membrane	6	4	CDKAL1, KCNJ11, LGR5, MOTCH2, SLC30A8, TSPAN8, VEGFA
F	Receptor activity and neurotransmitter	6	2	LGR5, NOTCH2, TSPAN8
G	Signal transduction	4	1	LGR5, PPARG
H	Ras/Rho protein signal transduction	4	0	
I	Ion binding	3	2	ADAMTS9, BCL11A, CAMK1D, CDKAL1, JAF1, NOTCH2, PPARG
J	Adhesion	2	0	
K	Glutamate receptor activity	2	0	
Supplementary Table 2. Details of 69 GO Terms found similar in three GWAS in Fig. 2 and Suppl. Fig. 1.

GO ID	GO TERM	Biomolecular ID
GO:0022843	voltage-gated cation channel activity	A
GO:0022838	substrate specific channel activity	A
GO:0022836	gated channel activity	A
GO:0022834	ligand-gated channel activity	A
GO:0022832	voltage-gated channel activity	A
GO:0022803	passive transmembrane transporter activity	A
GO:0015278	calcium-release channel activity	A
GO:0015276	ligand-gated ion channel activity	A
GO:0015267	channel activity	A
GO:0005267	potassium channel activity	A
GO:0005262	calcium channel activity	A
GO:0005261	cation channel activity	A
GO:0005245	voltage-gated calcium channel activity	A
GO:0005244	voltage-gated ion channel activity	A
GO:0005234	extracellular-glutamate-gated ion channel activity	A
GO:0005230	extracellular ligand-gated ion channel activity	A
GO:0005216	ion channel activity	A
GO:0044456	synapse part	B
GO:0045202	synapse	B
GO:0045211	postsynaptic membrane	B
GO:0042734	presynaptic membrane	B
GO:0016079	synaptic vesicle exocytosis	B
GO:0019226	transmission of nerve impulse	B
GO:0007269	neurotransmitter secretion	B
GO:0003001	generation of a signal involved in cell-cell signaling	B
GO:0007268	synaptic transmission	B
GO:0005100	Rho GTPase activator activity	C
GO:0019887	protein kinase regulator activity	C
GO:0005083	small GTPase regulator activity	C
GO:0005085	guanyl-nucleotide exchange factor activity	C
GO:0005096	GTPase activator activity	C
GO:0030695	GTPase regulator activity	C
GO:0005089	Rho guanyl-nucleotide exchange factor activity	C
GO:0006811	ion transport	D
GO:0006813	potassium ion transport	D
GO:0006812	cation transport	D
GO:0030001	metal ion transport	D
GO:0006816	calcium ion transport	D
GO:0015674	di-, tri-valent inorganic cation transport	D
Supplementary Information

GO:0016020	membrane	E
GO:0044459	plasma membrane part	E
GO:0005887	integral to plasma membrane	E
GO:0005886	plasma membrane	E
GO:0016021	integral to membrane	E
GO:0031226	intrinsic to plasma membrane	E
GO:0030594	neurotransmitter receptor activity	F
GO:0004888	transmembrane receptor activity	F
GO:0019199	transmembrane receptor protein kinase activity	F
GO:0060089	molecular transducer activity	F
GO:0004871	signal transducer activity	F
GO:0004872	receptor activity	F
GO:0007165	signal transduction	G
GO:0007154	cell communication	G
GO:0007167	enzyme linked receptor protein signaling pathway	G
GO:0007242	intracellular signaling cascade	G
GO:0035023	regulation of Rho protein signal transduction	H
GO:0046578	regulation of Ras protein signal transduction	H
GO:0051056	regulation of small GTPase mediated signal transduction	H
GO:0007265	Ras protein signal transduction	H
GO:0043167	ion binding	I
GO:0005509	calcium ion binding	I
GO:0046872	metal ion binding	I
GO:0022610	biological adhesion	J
GO:0007155	cell adhesion	J
GO:0008066	glutamate receptor activity	K
GO:0004970	ionotropic glutamate receptor activity	K
GO:0046658	anchored to plasma membrane	
GO:0008067	metabotropic glutamate, GABA-B-like receptor activity	
GO:0030054	cell junction	
References

1. Meigs JB, Shrader P, Sullivan LM, McAteer JB, Fox CS, Dupuis J, Manning AK, Florez JC, Wilson PW, D'Agostino RB, Sr. et al: Genotype score in addition to common risk factors for prediction of type 2 diabetes. *N Engl J Med* 2008, 359(21):2208-2219.

2. Meigs JB, Dupuis J, Herbert AG, Liu C, Wilson PW, Cupples LA: The insulin gene variable number tandem repeat and risk of type 2 diabetes in a population-based sample of families and unrelated men and women. *J Clin Endocrinol Metab* 2005, 90(2):1137-1143.

3. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, Roix JJ, Kathiresan S, Hirschhorn JN, Daly MJ et al: Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. *Science* 2007, 316(5829):1331-1336.

4. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, de Bakker PI, Abecasis GR, Almgren P, Andersen G et al: Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. *Nat Genet* 2008, 40(5):638-645.

5. Rhee SY, Wood V, Dolinski K, Draghici S: Use and misuse of the gene ontology annotations. *Nat Rev Genet* 2008, 9(7):509-515.

6. Barry WT, Nobel AB, Wright FA: Significance analysis of functional categories in gene expression studies: a structured permutation approach. *Bioinformatics* 2005, 21(9):1943-1949.

7. Prufer K, Muetzel B, Do HH, Weiss G, Khaitovich P, Rahm E, Paabo S, Lachmann M, Enard W: FUNC: a package for detecting significant associations between gene sets and ontological annotations. *BMC Bioinformatics* 2007, 8:41.

8. Tao Y, Sam L, Li J, Friedman C, Lussier YA: Information theory applied to the sparse gene ontology annotation network to predict novel gene function. *Bioinformatics* 2007, 23(13):i529-538.

9. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Res* 2003, 13(11):2498-2504.