Multifunctional 2D materials for antiviral protection and detection

Daria V. Andreeva1,* and Kostya S. Novoselov1,2,3,*

1Department of Materials Science and Engineering, National University of Singapore, Singapore;
2National Graphene Institute, University of Manchester, UK;
3Chongqing 2D Materials Institute, China

*Corresponding authors. E-mails: daria@nus.edu.sg; kostya@nus.edu.sg

Two-dimensional (2D) materials with their high surface to volume ratio, flexibility, tunable or controllable electronic properties, and most importantly – the large variety of the properties covered by the members of the 2D family – have already found their way to many applications in very different areas of technology. One of the most promising areas of applications for 2D crystals remains healthcare, where such materials have been considered for drug delivery, artificial tissue, biosensing and many other important technologies. Among different biological usage of 2D materials – multifunctional antiviral coatings are probably the most interesting and timely due to the large demand for smart healthcare solutions caused by the COVID-19 pandemics.

Despite the variety of properties collectively covered by different members of 2D materials family, interaction with biological objects would require additional functionality. Thus, antiviral coatings need to be able to control the surface work function, be pH responsive, demonstrate switchable wetting among other properties to actively protect against viruses, and possibly even to help to eliminate those. Furthermore, such properties need to be adaptive to the external conditions. To this end, composite materials based on 2D crystals and polyelectrolytes might be very effective. 2D materials produce a solid, continuous, and robust framework, which have specific conductivity, optical adsorption and work function. At the same time polyelectrolytes are known to change their characteristics depending on the immediate environment, adsorbing, or desorbing various chemical species and water. Thus, polyelectrolytes can change their charging state and their conformation in response to the changes in the chemical, physical and biological environments. The combination of the adaptive nature of polyelectrolytes with the optical, electronic, and mechanical properties of 2D materials might be extremely beneficial for antiviral applications. Furthermore, such a combination gives very interesting opportunities not only in protective applications but also for biological sensing.

The 2D composite membranes formed by the self-assembly of negatively charged graphene oxide and positively charged polyelectrolytes (polycations) are capable to regulate pH and ionic gradients and, therefore, regulate ionic currents under a large range of external conditions. We believe that such structures will also be useful for antiviral applications. In particular, polycations (e.g., synthetic...
polyamines, chitosan, amino groups in proteins) have strong affinity to protons they can selectively bind protons and regulate their diffusion. The 2D composites of graphene oxide with polycations form positively charged surfaces (due to protonation of polyelectrolyte molecules) and can interact with negatively charged viral proteins. Upon exposing to viruses such composite materials can release protons from the interior of the structure into the environment and change the surface charge of the viruses. Thus, such 2D composite materials can affect the structure of viruses and actively fight viruses, providing the barrier as well as the active antiviral protection, Fig. 1.

Furthermore, regulated charging of the polyelectrolytes as well as conductivity and gating properties of 2D materials can be used for sensing functionalities. For most biological sensors, a conversion from ionic to electronic currents is crucial – biological systems generally rely on ionic currents, whereas modern electronics deal with electrons. The efficient conversion, which allows fast and reliable detection of the changes in the chemical, physical and biological environment, can be done via the utilisation of polyelectrolytes combined with 2D materials. Different polyelectrolytes can dope 2D materials to a different polarity. By interfacing such 2D materials doped with different polyelectrolytes one can form ionic p-n junctions. A complex structure with several different layers which are differently charged can be self-assembled into bipolar ionic transistors with intrinsic amplification of the signal and, therefore, high sensitivity of new devices. The change of ionic concentration in the interior of the composite material, due to the presence of the virus, can be used as gating for control of ionic currents in the transistor structures.

In particular, graphene oxide doped with different polycations can be used to form a variety of ionic conductors with ionic p-n junctions and then can be assembled into an array of ionic transistors. Figure 1 is a schematic representation of such transistors. The surfaces made of cationic polyelectrolytes will interact with biological objects, including COVID-19. Due to electrostatic interactions between viruses and polyelectrolytes we can achieve: 1) trigger release of protons from polyelectrolyte chains to compensate negative charge of viruses' surfaces; 2) a highly localized acidic environment can affect viral proteins and deactivate them (deactivation) and 3) switch ionic current in the transistors (detection and signalling function). In perspectives such devices can be combined with information transmitters, energy harvesting and energy storage materials and can be attached to flexible substrates to create smart healthcare devices.

There are many other 2D materials beyond graphene which can be used in the formation of such self-assemble heterostructures to be explored for a variety of biological applications, including antiviral and antimicrobial protection. MoS$_2$, MoSe$_2$, WS$_2$, WSe$_2$, MoTe$_2$, InS, InSe, GaS, GaSe, hBN present a rich set of useful optical and electronic properties for the construction of ionic devices controlled by gating. Semiconductors can generate photoinduced carriers upon illumination, changing their reduction or oxidation properties, opening yet another avenue for a remote control of antiviral and antimicrobial activities. Furthermore, as the band-gap of these materials (and thus the position of HOMO and LUMO orbitals) can be controlled by the number of layers – tunability towards a particular part of the spectrum is possible (transition metal dichalcogenides have a band gap energy \sim1.2–1.8 eV matching the spectral range of the visible light, for instance). The selection of 2D heterostructures increases the range of possible devices which might include temperature, light, and pressure sensing.

In general, smart responsive composite nanomaterials, based on 1D and 2D materials, are capable of adaptation to biological environment (viruses, bacteria, and fungi) in tandem with intrinsic sensing capabilities. In order to assemble such devices, the broad expertise in 2D materials, colloid synthesis and characterization, colloid assembly, and stimuli-responsive polymers is required. Low
dimensional multifunctional coatings and surfaces that can detect biological environment and prevent its undesirable invasion in our life do not aggressively suppress natural processes but regulate environment and adapt it to our needs. In future, smart composites can be created through the proposed platform and are applicable to a broad range of areas, including corrosion protection, medicine, filtration and wearable electronics for healthcare applications.

Conflict of interest statement. None declared.

REFERENCES

1. Novoselov KS, Jiang D and Schedin F et al. Two-dimensional atomic crystals. *Proc Natl Acad Sci USA* 2005; **102**: 10451-3.
2. Geim AK and Novoselov KS. The rise of graphene. *Nat Mater* 2007; **6**: 183-91.
3. Kostarelos K and Novoselov KS. Exploring the interface of graphene and biology. *Science* 2014; **344**: 261-3.
4. Bolotsky A, Butler D and Dong C et al. Two-dimensional materials in biosensing and healthcare: from *in vitro* diagnostics to optogenetics and beyond. *ACS Nano* 2019; **13**: 9781-810.
5. Palmieri V and Papi M. Can graphene take part in the fight against COVID-19? *Nano Today* 2020; **33**, 100883.
6. Menard-Moyon C, Bianco A and Kalantar-Zadeh K. Two-dimensional material-based biosensors for virus detection. *ACS Sens* 2020; **5**: 3739-69.
7. Geim AK and Grigorieva IV. Van der Waals heterostructures. *Nature* 2013; **499**: 419-25.
8. Andreeva DV, Trushin M and Nikitina A et al. Two-dimensional adaptive membranes with programmable water and ionic channels. *Nat Nanotechnol* 2021; **16**: 174-80.
9. Andreeva DV, Fix D and Mohwald H et al. Self-healing anticorrosion coatings based on pH-sensitive polyelectrolyte/inhibitor sandwich-like nanostructures. *Adv Mater* 2008; **20**: 2789-94.
10. Novoselov KS, Mishchenko A and Carvalho A et al. 2D materials and van der Waals heterostructures. *Science* 2016; **353**: aac9439.
Figure 1. The new 3-in-1 transistors combine the materials that can sense the presence of viruses, protect the surfaces against viruses and function as a substrate with switchable ionic current. In perspectives such devices together with information transmitters, energy harvesting and energy storage components can be attached to flexible substrates and used for the assembly of smart healthcare devices.