On the lettericity of paths

ROBERT FERGUSON

Department of Mathematics
University of Florida
Gainesville, Florida
U.S.A.

rferguson94@ufl.edu

Abstract

Verifying a conjecture of Petkovšec, we prove that the lettericity of an n-vertex path is precisely \(\left\lfloor \frac{n+4}{3} \right\rfloor \).

1 Introduction

The concept of lettericity was introduced in 2002 by Petkovšec [2]. We begin by presenting his definitions. Let \(\Sigma \) be a finite alphabet, and consider \(D \subseteq \Sigma^2 \), which we call the decoder. Then for a word \(w = w_1w_2\ldots w_n \) with each \(w_i \in \Sigma \), the letter graph of \(w \) is the graph \(\Gamma_D(w) \) with \(V(\Gamma_D(w)) = \{1, 2, \ldots, n\} \) and for indices \(i < j \), \((i, j) \in E(\Gamma_D(w)) \) if and only if \((w_i, w_j) \in D \).

If \(\Sigma \) is an alphabet of size \(k \), we say that \(\Gamma_D(w) \) is a \(k \)-letter graph. For some graph \(G \), the minimum \(k \) such that \(G \) is a \(k \)-letter graph is known as the lettericity of \(G \), denoted \(\ell(G) \). Note that every finite graph is the letter graph of some word over some alphabet, and in particular the lettericity of a graph \(G \) is at most \(|V(G)| \).

Petkovšec determined bounds or precise values for the lettericity of a number of different families of graphs, most notably threshold graphs, cycles, and paths. We focus our attention on paths, proving a conjecture of Pekovšec’s and giving a precise value for their lettericity. Before we begin our proof, however, we first introduce a few pieces of additional notation.

Given a letter graph \(\Gamma_D(w) \) and some letter \(a \in \Sigma \), we then say that \(a \) encodes the set of vertices that correspond to some instance of \(a \) in the word. In particular, these vertices must form a clique if \((a, a) \in D \), and an anticlique otherwise. Further, given a graph \(G \) such that \(G = \Gamma_D(w) \), we say that \((D, w) \) is a lettering of \(G \), and in particular an \(r \)-lettering if \(w \) uses an alphabet of size \(r \).

2 Lemmas

We now establish a few lemmas necessary for the proof of our theorem. We begin with a simple but useful property of letter graphs.
Lemma 1. If a letter graph $\Gamma_D(w)$ has some pair of vertices with indices i and k such that $i < k$ and $w_i = w_k$, and this pair is distinguished by some third vertex j (that is, j is adjacent to exactly one of i and k), then $i < j < k$.

Proof. If it were the case that $j < i < k$ or that $i < k < j$, then the vertex j of $\Gamma_D(w)$ is adjacent to either both of the vertices i and k or neither of them, depending on whether $(w_j, w_i) \in D$, in the first case, and $(w_i, w_j) \in D$ in the second. Thus $i < j < k$.

With this established, we now move on to examining matchings. Petkovšec noted that $\ell(rK_2) = r$, and this was explicitly proven by Alecu, Lozin and De Werra [1]. We will reprove this in a different way.

Lemma 2. In any lettering of rK_2, no letter encodes more than two vertices.

Proof. Suppose there exists some lettering (D, w) of rK_2 with some letter a that encodes at least three vertices of $\Gamma_D(w)$, say i, j, and k with $i < j < k$. Our graph contains no cliques of size greater than 2, so these vertices form an anti-clique. Each of these vertices is incident with a distinct edge, so there must be some vertex, say x, which is adjacent to j but not i or k. Then, by Lemma 1 it must be that $i < x < j$ but also that $j < x < k$. This is a clear contradiction, so no such lettering exists.

This lemma establishes r as a lower bound for the lettericity of rK_2. To establish the upper bound, we examine any word w over the alphabet $\Sigma = \{1, 2, \ldots, r\}$ in which each letter occurs exactly twice, with the decoder $D = \{(1, 1), (2, 2), \ldots, (r, r)\}$, so that the vertices of each letter form a clique of size two. Then (D, w) is an r-lettering of rK_2, and we can show further that each r-lettering of rK_2 must be of a similar type.

Lemma 3. In every r-lettering of rK_2, each letter encodes the two vertices of a K_2.

Proof. That each letter encodes exactly two vertices follows easily from Lemma 2. Now suppose rK_2 has some other r-lettering, and choose a to be the earliest occurring letter that encodes an anti-clique. In particular, suppose it first occurs at index i. Then vertex i is adjacent to some vertex encoded by a different letter, say b. Then b also encodes an anti-clique, and by our choice of a, both of the vertices it encodes must lie after i in the word. They then must both be adjacent to i; since rK_2 has no vertices of degree two, no such r-lettering exists.

3 Theorem and Proof

We now prove our main result.

Theorem 4. For $n \geq 3$, the lettericity of P_n is $\left\lfloor \frac{n+4}{3} \right\rfloor$.

Proof. We begin with the lower bound; it suffices to examine a path P_n with $n = 3r + 1$, which our theorem claims has lettericity $r + 1$. Label the vertices of P_n as $i_1, i_2, \ldots, i_{3r + 1}$ so that its edge set is $E(P_n) = \{(i_1, i_2), (i_2, i_3) \ldots (i_{3r}, i_{3r+1})\}$, and consider its subgraph $P_n[i_2, i_3, i_5, i_6, \ldots, i_{3r-1}, i_{3r}] = rK_2$, as shown below.
Suppose, for the sake of contradiction, that P_n has some r-lettering (D, w). Then rK_2 is a letter graph for some subword of w, which must still require an alphabet of size r. By Lemma 3, this is only possible if each letter is assigned to a distinct adjacent pair. The vertices encoded by each letter thus form cliques; they then do so in $\Gamma_D(w)$ as well. As $\Gamma_D(w)$ contains no cliques of size larger than 2, no such lettering exists, and so $\ell(P_n) \geq r + 1$.

The upper bound has already been established by Petkovšek, but here we show how this bound is obtained from an $r + 1$-lettering of rK_2. Take an ordering of the adjacent pairs in rK_2, and take the lettering of rK_2 which assigns to the ith adjacent pair the letters $i, i + 1$. Since we have r pairs, this requires $r + 1$ letters in total.

The graph above is the letter graph of the word $21324354 \ldots (r - 1)(r + 1)$ with the decoder $D = \{(2, 1), (3, 2), \ldots (r + 1, r)\}$.

We now add $r - 1$ new vertices, giving the jth new vertex the label $j + 1$ and connecting it to the vertex in the jth pair labelled j and the vertex in the $j + 1$st pair labeled $j + 2$. Finally, we add a vertex labeled 1 adjacent to the vertex in the first pair labeled 2 and a vertex labeled $r + 1$ adjacent to the vertex in the last pair labeled r.

This new graph, shown above, is the letter graph of the word $21321432543 \ldots (r + 1)r(r - 1)(r + 1)r$ with the same decoder $D = \{(2, 1), (3, 2), \ldots (r + 1, r)\}$. This gives us a path on $3r + 1$ vertices; to obtain a path on $3r$ vertices we remove the first instance of 1 in our word, and to obtain a path on $3r - 1$ we additionally remove the last instance of $r + 1$. \[\square\]
References

[1] B. Alecu, V. V. Lozin and D. de Werra, The micro-world of cographs, In Combinatorial Algorithms, (Eds.: L. Gąsieniec, R. Klasing and T. Radzik), Lec. Notes in Comp. Sci. Vol. 12126, Springer, Cham, Switzerland, 2020, pp. 30–42.

[2] M. Petkovšek, Letter graphs and well-quasi-order by induced subgraphs, Discrete Math. 244 (1-3) (2002), 375–388.

(Received 8 July 2020; revised 1 Aug 2020)