The Horizontal Variation Process and Rule of Bottom Waters Impacted by Cd Contents from Sources

Dongfang Yang1,2,3,a, Chunhua Su1,2, Yunjie Wu1,2, Bailing Fan1,2, and Sixi Zhu1,2
1Research Center for Karst Wetland Ecology, Guizhou Minzu University, Guizhou Guiyang, Guizhou Guiyang, China
2College of Chemistry and Environmental Science, Guizhou Minzu University, Shanghai, 550025, China
3North China Sea Environmental Monitoring Center, SOA, Qingdao 266033, China
a dfyang_dfyang@126.com

Abstract: According to the investigation data of Jiaozhou Bay in 1991, the current content and horizontal distribution of Cd contents in bottom waters from central to southern Jiaozhou Bay were studied in this paper. The results showed that in May, Cd content in this area was 0.06-0.10μg/L, and Jiaozhou Bay was not polluted by Cd content. In August, the range was 0.06-0.38μg/L, and Jiaozhou Bay was not polluted by Cd content. In October, the range was 0.26μg/L, and there was no pollution of Cd content in Jiaozhou Bay. Hence, in May, August and October, Cd contents in this area were low, far lower than 1.00μg/L, the Case I Sea Water Quality Standard. In terms of Cd content, water is clean, not polluted by Cd content. In May, in surface waters of bay center, there is not source to transport Cd content. In bottom waters from bay center to northern bay mouth, Cd content decreased from 0.08μg/L in bay center to 0.06μg/L in northern bay mouth along with the gradients. In August, Cd was high as 0.40μg/L in surface waters of bay center, mainly from atmospheric sedimentation, which is relatively high. In bottom waters from bay center to northern bay mouth, Cd content decreased from 0.38μg/L in bay center to 0.16μg/L in northern bay mouth along with the gradients. In this paper, the impact of Cd contents from sources on bottom waters was studied. Besides, the horizontal variation of Cd contents disclose the variation of bottom waters influenced by Cd contents from sources.

1. Introduction
In the rapid development of industries, such as metallurgy, chemical engineering and electroplating, the Cd contents emitted and discharged by human are increasing. It is transported constantly in the environment, causing the changing quality of sea water [1-32]. Cd content reaches waters from surface. Through the vertical transportation of Cd content in waters, the changing Cd contents in bottom waters of bay mouth were shown. Therefore, this paper, according to investigation data of Cd content in Jiaozhou Bay in 1991, studied the volume, distribution and horizontal variation of Cd contents in bottom waters from bay center to bay mouth, and displayed the variation of waters impacted by Cd contents from sources, in order to provide scientific evidence for the studies on the existence and transport of Cd contents in bottom waters.

Published under licence by IOP Publishing Ltd
2. Investigation Waters, Materials and Methods

2.1 Natural environment of Jiaozhou Bay
Jiaozhou Bay, located in southern Shandong Peninsula, is a typical semi-closed bay. The geographical location is 120°04′-120°23′E, 35°58′-36°18′N. Bounded by the line connecting Tuandao Cape and Xuejiadao Island, it connects with Yellow Sea, covering an area of about 446km², with the average depth of about 7m. There are dozens of rivers reaching the ocean in Jiaozhou Bay, among of which, the rivers with a larger volume of runoff and sand content include Dagu River, Yang River, Haibo River in Qingdao, Licun River, Loushan River and so on. These rivers are seasonal streams, and hydrological characteristics vary seasonally [33, 34].

2.2 Materials and methods
The materials about Cd in Jiaozhou Bay waters in May, August and October of 1991 was provided by North China Sea Environment Monitoring Center, State Oceanic Administration. In May, four sites were established for sampling in Jiaozhou Bay: 52, 55, 60 and 61; in August, four sites were established: 55, 60, 61 and 2106; in October, one site was established: 60. These are shown in Figure 1. Samplings were performed in May, August and October in 1991, respectively. According to the depth of water, sampling and survey were conducted (surface and bottom layers were sampled when the depth of water is more than 10m, but just surface layer when less than 10m). The survey on Cd of Jiaozhou Bay waters was in accordance with national standard method, which is included in The Specification for Marine Monitoring (1991) [35].

3. Results

3.1 The contents in bottom waters
In May, August and October, in bottom waters from bay center to southern bay, the variation range of Cd content was 0.06-0.38μg/L, in accordance with 1.00μg/L, the Case I Sea Water Quality Standard. In May, the range was 0.06-0.10μg/L, satisfying the Case I Sea Water Quality Standard. In August, the range was 0.06-0.38μg/L, satisfying the Case I Sea Water Quality Standard. In October, the range was 0.26μg/L, satisfying Case I Sea Water Quality Standard. In May, August and October, the variation range of Cd content was 0.06-0.38μg/L, in accordance with Case I Sea Water Quality Standard. It indicated that in May, August and October, in bottom waters from bay center to southern bay, there
was not any pollution of Cd, shown in Table 1.

	May	August	October
Cd content in sea water/μg·L⁻¹	0.06-0.10	0.06-0.38	0.26
National Sea Water Standard	Case I Sea Water	Case I Sea Water	Case I Sea Water

3.2 Horizontal distribution in bottom waters

In May and August, in bottom waters from bay center to northern bay mouth, the investigation was conducted in sites 55 and 60. The horizontal distribution of Cd content in bottom waters was presented.

In May, in bottom waters from bay center to northern bay mouth, Cd content reached high 0.08μg/L in 55 site. Cd content was high in bay center, forming a series of paralleling lines with different gradients. Cd content decreased from 0.08μg/L in bay center to 0.06μg/L in northern bay mouth along with gradients, shown in Figure 2.

In August, in bottom waters from bay center to northern bay mouth, Cd content reached high 0.38μg/L in 55 site. Cd content was high in bay center, forming a series of paralleling lines with different gradients. Cd content decreased from 0.38μg/L in bay center to 0.16μg/L in northern bay mouth along with gradients, shown in Figure 3.
4. Discussion

4.1 Water quality

In Jiaozhou Bay, the source of Cd content was atmospheric sedimentation, from surface waters to bottom waters through the waters. In this way, influenced by vertical waters [12-14], the variation range of Cd content in bottom waters from bay center to southern bay mouth was 0.06-0.38μg/L, in accordance with Case I Sea Water Quality Standard, and the water was not polluted by Cd.

In May, in bottom waters from bay center to southern bay mouth, the variation range of Cd was 0.06-0.10μg/L, showing that Jiaozhou Bay was not polluted by Cd. In bottom waters from bay center to southern bay mouth, Cd content was less than 0.11μg/L, indicating that it reached Case I Sea Water Quality Standard, and the water was not polluted by Cd.

In August, in bottom waters from bay center to southern bay mouth, the Cd content was high in surface waters of bay center, mainly from atmospheric sedimentation. The Cd content was 0.40μg/L, high in volume. In bottom waters from bay center to northern bay mouth, Cd content decreased from 0.38μg/L in bay center to 0.16μg/L in northern bay mouth along with gradients. It indicated that in surface waters of bay center, when there was no source, Cd content was very low in bottom waters. In this way, Cd content was not sedimentated into seafloor rapidly, but changed slightly with the movement of waters. It was evenly mixed. The horizontal variation of Cd content was 0.02μg/L, which was minor.

4.2 Bottom waters impacted by Cd content from sources

In May, in surface waters of bay center, there was no source to transport Cd content. In bottom waters from bay center to northern bay mouth, Cd content decreased from 0.08μg/L in bay center to 0.06μg/L in northern bay mouth along with gradients. It indicated that in surface waters of bay center, when there was no source, Cd content was very low in bottom waters. In this way, Cd content was not sedimentated into seafloor rapidly, but changed slightly with the movement of waters. It was evenly mixed. The horizontal variation of Cd content was 0.02μg/L, which was minor.

In August, Cd content was high in the surface waters of bay center, mainly from atmospheric sedimentation. The Cd content was 0.40μg/L, high in volume. In bottom waters from bay center to northern bay mouth, Cd content decreased from 0.38μg/L in bay center to 0.16μg/L in northern bay mouth along with gradients. It indicated that in surface waters of bay center, when there was source to transport Cd, Cd content was relatively high in bottom waters. In this way, Cd was rapidly sedimentated into seafloor, and Cd content in bottom waters changed greatly with the movement of
waters. The horizontal variation of Cd content was 0.22μg/L, which was relatively great. Therefore, the variation of bottom waters impacted by Cd content from sources was concluded. When there was no source, Cd content was very low in waters. Cd content in bottom waters was evenly mixed. The horizontal variation of Cd content in bottom waters from bay center to northern bay mouth was minor. When there exist source, it was high with changing gradients, and the horizontal variation of Cd content was great.

5. Conclusion
In Jiaozhou Bay, the source of Cd content was atmospheric sedimentation, from surface waters to bottom waters through the waters. In this way, influenced by vertical waters, the variation range of Cd content was 0.06-0.38μg/L, in accordance with Case I Sea Water Quality Standard, and the water was not polluted by Cd.

In bottom waters from bay center to southern bay mouth, the variation range of Cd was 0.06-0.10μg/L in May, Cd content was 0.06-0.38μg/L in August, and Cd content was 0.26μg/L in October, indicating that Jiaozhou Bay was not polluted by Cd in May, August and October. Thus, in May, August and October, Cd content was low in bottom waters from bay center to southern bay mouth, less than 0.40μg/L, far lower than 1.00μg/L, Case I Sea Water Quality Standard. Water was not polluted by Cd content.

In May, in surface waters of bay center, there was no source to transport Cd content. In bottom waters from bay center to northern bay mouth, Cd content decreased from 0.08μg/L in bay center to 0.06μg/L in northern bay mouth along with gradients. It indicated that in surface waters of bay center, when there was no source, Cd content was very low in bottom waters, it was evenly mixed, and in bottom waters from bay center to northern bay mouth, the horizontal variation of Cd content was 0.02μg/L, which was minor.

In August, Cd content was high as 0.40μg/L in surface waters of bay center, mainly from atmospheric sedimentation. In bottom waters from bay center to northern bay mouth, Cd content decreased from 0.38μg/L in bay center to 0.16μg/L in northern bay mouth along with gradients. It indicated that in surface waters of bay center, when there was source to transport Cd, Cd content was relatively high in bottom waters. In bottom waters from bay center to northern bay mouth, the horizontal variation of Cd content was 0.22μg/L, which was relatively great.

In May and August, in bottom waters from bay center to southern bay mouth, the horizontal variation of Cd content disclosed the changing Cd content in bottom waters from sources.

Acknowledgement
This research was sponsored by Research Projects of Guizhou Nationalities University ([2014]02), Research Projects of Guizhou Province Ministry of Education (KY [2014] 266), Research Projects of Guizhou Province Ministry of Science and Technology (LH [2014] 7376).

References
[1] Dongfang Yang, Zhenqing Miao, Marine Bay Ecology (I) [M]. Beijing, China Ocean Press, 2010, 1-320.
[2] Dongfang Yang, Zhenhui Gao, Marine Bay Ecology (II) [M]. Beijing, China Ocean Press, 2010, 1-330.
[3] Dongfang Yang, Yu Chen, Hong Wang, Chunru Yang, Junhui Guo. Environmental Background Composition and Transfer Process of Cadmium in Jiaozhou Bay [J]. Coastal Engineering, 2010, 29(4): 73-82.
[4] Dongfang Yang, Yu Chen, Yanxiang Chang, Chunxiu Liu, Yichan Weng. The Source and Distribution of Cadmium in Jiaozhou Bay [J]. Coastal Engineering, 2013, 32(3): 68-78.
[5] Dongfang Yang, Sixi Zhu, Fengyou Wang, Huazhong He and Yunjie Wu. The distribution and content of Cadmium in Jiaozhou Bay [J]. Applied Mechanics and Materials Vols.644-650. 2014, 5325-5328.
[6] Dongfang Yang, Fengyou Wang, Youfu Wu, Huazhong He and Sixi Zhu. The structure of environmental background value of Cadmium in Jiaozhou Bay waters [J]. Applied Mechanics and Materials Vols.644-650. 2014, 5333-5335.

[7] Dongfang Yang, Sixi Zhu, Fengyou Wang, Youfu Wu and Huazhong He. Study on the Cadmium in surface waters in Jiaozhou Bay [M]. 2014 IEEE workshop on advanced research and technology industry applications. Part D, 2014, 1012-1014.

[8] Dongfang Yang, Sixi Zhu, Xuqin Yang, Xiaoli Zhao and Fengyou Wang. Pollution level and Sources of Cd in Jiaozhou Bay [J]. Materials Engineering and Information Technology Application. 2015, 558-561.

[9] Dongfang Yang, Sixi Zhu, Fengyou Wang, Xuqin Yang and Xiaoli Zhao. Distribution and aggregation process of Cd in JiaozhouBay [J]. Advances in Computer Science Research. 2015, 2352: 194-197.

[10] Dongfang Yang, Shengtao Chen, Baolei Li, Xiao Geng and Zijun Xu. Research on the vertical distribution of Cadmium in Jiaozhou Bay waters [J]. Proceedings of the 2015 international symposium on computers and informatics. 2015, 2667-2674.

[11] Dongfang Yang, Fengyou Wang, Zhaohui Sun, Xiaoli Zhao, Sixi Zhu. Research on Vertical distribution and settling process of Cd in Jiaozhoubay [J]. Advances in Engineering Research. 2015, 40: 776-781.

[12] Dongfang Yang, Fengyou Wang, Xuqin Yang, Ming Wang, Sixi Zhu. Cadmium background pollution in Jiaozhou Bay [J]. Advances in Engineering Research. 2016, 60: 1347-1350.

[13] Dongfang Yang, Danfeng Yang, Sixi Zhu, Fengyou Wang, Zhikang Wang. Spatial-temporal variations of Cd in Jiaozhou Bay [J]. Advances in Engineering Research. 2016, 60: 403-407.

[14] Dongfang Yang, Xuqin Yang, Ming Wang, Sixi Zhu, Fengyou Wang. The slight impacts of marine current to Cd contents in bottom waters in Jiaozhou Bay [J]. Advances in Engineering Research. 2016, 60: 412-415.

[15] Dongfang Yang, Fengyou Wang, Sixi Zhu, Ming Wang, Xuqin Yang. Homogeneity of Cd contents in Jiaozhou Bay waters [J]. Advances in Engineering Research. 2016, Vol.65: 298-302.

[16] Dongfang Yang, Xiancheng Qu, Yu Chen, Shubo Fang and Yinjiang Zhang. Sedimentation mechanism of Cd in Jiaozhou Bay waters [J]. Advances in Engineering Research. 2016, 80: 993-997.

[17] Dongfang Yang, Danfeng Yang, Sixi Zhu, Zhikang Wang, Ming Wang. Sedimentation process and vertical distribution of Cd in Jiaozhou Bay [J]. Advances in Engineering Research. 2016, 80: 998-1002.

[18] Dongfang Yang, Sixi Zhu, Zhikang Wang, Xuqin Yang, Fengyou Wang. Spatial-temporal changes of Cd in Jiaozhou Bay [J]. Computer Life, 2016, 4(5): 446-450.

[19] Dongfang Yang, Fengyou Wang, Sixi Zhu, Ming Wang, Xuqin Yang. The influence of marine current to Cd in Jiaozhou Bay [J]. World Scientific Research Journal, 2016, 2(1): 38-42.

[20] Dongfang Yang, Sixi Zhu, Ming Wang, Xuqin Yang, Fengyou Wang. High settling process of Cd in Jiaozhou Bay [J]. International Core Journal of Engineering, 2016, 2(8): 1-4.

[21] Dongfang Yang, Danfeng Yang, Sixi Zhu, Zhikang Wang and Ming Wang. Transfer process of Cd in the bay mouth of Jiaozhou Bay [J]. Journal of Computing and Electronic Information Management, 2016, 3(5): 467-474.

[22] Dongfang Yang, Sixi Zhu, Zhikang Wang, ChunhuaSu and Fengyou Wang. Dynamic change of Cd's sedimentation process in Jiaozhou Bay [J]. Journal of Computing and Electronic Information Management, 2017, 4(1): 1-9.

[23] Dongfang Yang, Fengyou Wang, Sixi Zhu, Zhikang Wang and Xuqin Yang. Three different types of Cd content's modes [J]. Computer Life, 2017, 5(1): 1-7.

[24] Dongfang Yang, Zhikang Wang, ChunhuaSu, Sixi Zhu, Fengyou Wang. Sedimentation process and mechanism of Cd in Jiaozhou Bay [J]. Advances in Engineering Research, 2017, 123: 1477-1480.
[25] Dongfang Yang, Fengyou Wang, Sixi Zhu, Zhikang Wang, Chunhua Su. Three different types of Cd content's modes [J]. Computer Life, 2017, 5(2): 91-95.

[26] Dongfang Yang, Fengyou Wang, Sixi Zhu, Chunhua Su and Xiuqin Yang. The influence of river on Cd contents in Jiaozhou Bay [J]. World Scientific Research Journal, 2017, 3(1): 1-5.

[27] Dongfang Yang, Haixia Li, Xiaolong Zhang, Jiangmin Li, Nan Nan. The back and forth transformation between homogeneity and heterogeneity of Cd in marine bay [J]. Advances in Engineering Research, 2017, 138: 847-850.

[28] Dongfang Yang, Zhenqing Miao, Haixia Li, Longlei Zhang, Qi Wang. Different stages of Cd's transporting process in waters in Jiaozhou Bay [J]. Earth and Environment Science, 2017, 81(012094): 1-6.

[29] Dongfang Yang, Qiang Wang, Zhikang Wang, Sixi Zhu, Chunhua Su. The changes of Cd sources in Jiaozhou Bay 1979-1983 [J]. Earth and Environment Science, 2017, 81(012095): 1-4.

[30] Dongfang Yang, Linzhen Wei, Ming Feng, Mei Chen, Zhenqing Miao. Transport process and block diagram of Cd in Jiaozhou Bay [J]. Earth and Environment Science, 2017, 81(012096): 1-5.

[31] Dongfang Yang, Qiang Wang, Ming Wang, Zhikang Wang, Sixi Zhu. Annual changes and seasonal variations of Cd in Jiaozhou Bay 1979-1983 [J]. Advances in Engineering Research, 2017, 141: 1587-1590.

[32] Dongfang Yang, Haixia Li, Xiaolong Zhang, Qi Wang, Zhenqing Miao. Spatial-temporal migration laws of Cd in Jiaozhou Bay [J]. Earth and Environment Science, 2018, 113(012129): 1-4.

[33] Dongfang Yang, Yu Chen, Zhenhui Gao, et al. Silicon Limitation on primary production and its destiny in Jiaozhou Bay, China IV transect offshore the coast with estuaries [J]. Chinese Journal of Oceanology and Limnology. 2005, 23(1): 72-90.

[34] Dongfang Yang, Fan Wang, Zhenhui Gao et al. Ecological phenomena of phytoplankton in Jiaozhou Bay [J]. Marine Sciences, 2004, 28(6): 71-74.

[35] State Oceanic Administration. The Specification for Marine Monitoring (HY003.4-91) [M]. Beijing: China Ocean Press, 1991: 205-282.