Comparative genomics analysis of *Lactobacillus* species associated with weight gain or weight protection

F Drissi, V Merhej, E Angelakis, A El Kaoutari, F Carrière, B Henrissat and D Raoult

BACKGROUND: Some *Lactobacillus* species are associated with obesity and weight gain while others are associated with weight loss. *Lactobacillus* spp. and bifidobacteria represent a major bacterial population of the small intestine where lipids and simple carbohydrates are absorbed, particularly in the duodenum and jejunum. The objective of this study was to identify *Lactobacillus* spp. proteins involved in carbohydrate and lipid metabolism associated with weight modifications.

METHODS: We examined a total of 13 complete genomes belonging to seven different *Lactobacillus* spp. previously associated with weight gain or weight protection. We combined the data obtained from the Rapid Annotation using Subsystem Technology, Batch CD-Search and Gene Ontology to classify gene function in each genome.

RESULTS: We observed major differences between the two groups of genomes. Weight gain-associated *Lactobacillus* spp. appear to lack enzymes involved in the catabolism of fructose, defense against oxidative stress and the synthesis of dextrin, l-rhamnose and acetate. Weight protection-associated *Lactobacillus* spp. encoded a significant gene amount of glucose permease. Regarding lipid metabolism, thiolases were only encoded in the genome of weight gain-associated *Lactobacillus* spp. In addition, we identified 18 different types of bacteriocins in the studied genomes, and weight gain-associated *Lactobacillus* spp. encoded more bacteriocins than weight protection-associated *Lactobacillus* spp.

CONCLUSIONS: The results of this study revealed that weight protection-associated *Lactobacillus* spp. have developed defense mechanisms for enhanced glycolysis and defense against oxidative stress. Weight gain-associated *Lactobacillus* spp. possess a limited ability to breakdown fructose or glucose and might reduce ileal brake effects.

Nutrition & Diabetes (2014) 4, e109; doi:10.1038/nutd.2014.6; published online 24 February 2014

INTRODUCTION

Obesity is a major public health concern and reflects perturbations of the balance between food intake and energy expenditure. We recently proposed a new area of research based on correlations between intestinal microbiota, weight change, antibiotic and probiotic therapies and malnutrition relief. Although antibiotics have been used for decades as growth promoters in livestock, a correlation between the increasing global use of antibiotics and weight gain or acquired obesity in humans has only recently been proposed, as most studies of antibiotics or probiotics did not measure weight gain. Evidence suggests that some antibiotics are associated with weight gain in malnourished children, neonates and adults. The precise mechanisms by which antibiotics improve growth performance are not well characterized, and it has been suggested that antibiotics, such as avoparcin (vancomycin), exert selective pressures on Gram-positive bacteria, and *Lactobacillus* species are resistant to glycopeptidase.

In the 1940s, it was revealed that the administration of *Streptomyces aureofaciens* probiotics in food resulted in weight gain in animals. Since then, probiotics have commonly been used in agriculture to maintain or improve the health and feed efficiency of livestock. Probiotics have also been used to treat acute malnutrition in humans. Moreover, experiments with animal models have revealed that probiotic therapy might result in weight gain. Evidence suggests that bacteriocins largely determine the effects of probiotics in gut microbiota. The effects of probiotics are strain dependent, and related probiotic strains can significantly differ in genotype and phenotype; thus, the features of one bacterial strain or species are not necessarily present in a related bacterium. The results of a recent meta-analysis revealed that *Lactobacillus acidophilus, Lactobacillus fermentum* and *Lactobacillus ingluviei* probiotic treatment was associated with weight gain, whereas *Lactobacillus plantarum* and *Lactobacillus gasseri* treatment was associated with weight loss. In addition, *Lactobacillus sakei* has also been associated with weight gain.

The gut environment markedly differs between different anatomical regions in terms of physiology, substrate availability, host secretions, pH and oxygen tension. The stomach and proximal small intestine, containing 10⁷ colony-forming units (CFU) per ml of facultative anaerobic bacteria, are responsible for most nutrient digestion and absorption in humans, and ~66–95% of the proteins and all fats are absorbed before entering the large intestine (Figure 1). By contrast, the proportion of carbohydrates digested and absorbed in the small intestine depends on the type of diet and the content of these compounds in the digested substrates. Thus, sucrose, lactose and starch in our diet are digested by human enzymes and absorbed before reaching the colon, whereas all other complex carbohydrates are
Weight influence of Lactobacillus genomes
F Drissi et al

10^10-10^11 CFU/ml
pH: 1.2-1.7
Lactobacillus
Streptococci
Yeasts

10^10-10^10 CFU/ml
pH: 7.6-7.7
Lactobacillus
Enterococci
Enterobacteriaceae
Bacteroidetes
Bilobobacteriia
Fusobacteria

10^10-10^11 CFU/ml
pH: 5.7-6.8
Firmicutes (64%),
Bacteroidetes (23%)
Proteobacteria (8%)
Actinobacteria (3%)
Methanobrevibacter
smithii

10^10-10^12 CFU/ml
pH: 1-2
Lactobacilli
Streptococci
E. coli
Yeasts

Lipids
(fats, waxes, steroids, phospholipids, monoglycerides, diglycerides, triglycerides and others)

Resistant starch carbohydrates
(cellulose, hemicellulose, lignin, pectin, beta-glucans)

Simple carbohydrates
(starch, simple sugars, fructans)

Figure 1. Microbial colonization of the human gastrointestinal tract and nutrients absorbed.

exclusively degraded and fermented by colonic bacteria. Comparative genomics have revealed the unusual diversity of the genus Lactobacillus at both structural and functional levels. The aim of this study was to examine the genomic content of Lactobacillus spp. associated with weight modification to identify the proteins associated with metabolism. Here, we analyzed 13 genomes of Lactobacillus spp. to identify the genes encoding bacteriocins and enzymes involved in carbohydrate and lipid metabolism.

MATERIALS AND METHODS

Search strategies
To identify the Lactobacillus spp. associated with weight modification, we searched PubMed database for peer-reviewed, English-language articles with no date restrictions. The search terms were combinations of ‘Lactobacillus’, ‘probiotics’, ‘microbiota’ and ‘weight’, ‘weight gain’, ‘weight protection’, ‘weight loss’, ‘weight change’, ‘weight modification’, ‘obesity’, ‘growth’, ‘body fat’ or ‘adipose tissue’. We retrieved the full text of the selected studies and searched the references cited in these articles. When necessary, we contacted the corresponding authors for further clarification or additional information.

Alignment and annotation of genomes using a combination of several search tools
The nucleotide sequences of strains belonging to the same species were subjected to genome alignment using Progressive Mauve software using default parameters. All genomes were annotated using the Rapid Annotation using Subsystem Technology (RAST) (http://rast.wmpdr.org/). The enzyme commission (EC) numbers were subsequently obtained from the RAST results (Figure 2). The conserved domains in protein sequences were identified using the Batch CD-Search tool. The Gene Ontology (GO) database was used for annotating and classifying gene function. Using the GO data (http://www.geneontology.org), the correspondence between several identifiers obtained from CD-search and RAST were realized through manual curation between the data to obtain an accurate and non-redundant reference gene set. The resulting annotations of the different databases were retrieved and tabulated for each genome. We focused on the proteins for which the annotated function obtained from our analysis showed involvement in carbohydrate and lipid metabolism. The maps obtained from Kyoto Encyclopedia of Genes and Genomes were used to determine the metabolic pathways in which these enzymes were involved (http://www.genome.jp/kegg/pathway.html). Moreover, Pfam HMM-profiles utilized with HMMER software package facilitated the identification of genes encoding lipases.

Bacteriocins database
We established a bacteriocins database (Figure 2). The available data were obtained from Bactibase (http://bactibase.pfba-lab-tun.org/main.php), and the sequences of all bacteriocins reported in the literature were retrieved from the NCBI database. A multi-Fasta file containing 247 retrieved protein sequences was subsequently generated. The bacteriocin sequences were aligned using the BioEdit program (http://www.mbio.ncsu.edu/BioEdit/bioedit.html) and converted into a MEGA file. A bidirectional protein BLAST of whole genome sequences against the bacteriocin database was performed. The manual examination of best BLAST hits (identity over 30% and coverage over 50%) facilitated the identification of bacteriocins in the Lactobacillus genomes. The bacteriocin sequences were compared using the Artemis Comparison Tool developed by the Sanger Institute. We constructed phylogenetic trees of the consensus sequences of the different types of bacteriocins in Lactobacillus spp. with MEGAS software, using the Neighbor-Joining method under the JTT model with 100 bootstrap sampling.

Clustering and statistical analysis of strains
A hierarchical clustering analysis based on Pearson’s correlation was performed using TIGR Multi experiment Viewer (MeV) Version 2.2 (http://www.tigr.org) to identify the genes present in the different species. The gene content of the strains studied was described using a two-character matrix, with 0 for an enzyme not detected and 1 for the presence of an enzyme. Principal component analyses were performed using the PRINCOMP and BIPLOT functions of the R statistical package (Vienna, Austria, http://www.R-project.org/) to infer relationships between weight gain and weight protection-associated Lactobacillus. A P-value < 0.05 was considered significant.

RESULTS

Strains selection
There are 120 validated Lactobacillus spp., and we identified 14 species associated with weight modification (Supplementary Figure 1). We were able to retrieve the genomes of 13 Lactobacillus strains, including the genomes of three strains of L. plantarum, three strains of L. reuteri, two strains of L. acidophilus, two strains of L. fermentum, one strain of L. sakei and one strain of L. gasseri available on the NCBI website in January 2013 when we initiated this analysis. We also retrieved the draft genome of L. ingluviei. Based on literature analysis, we classified L. reuteri, L. acidophilus, L. fermentum, L. sakei and L. ingluviei as weight gain-associated Lactobacillus strains, whereas L. plantarum and L. gasseri were classified as weight protection-associated Lactobacillus strains.

General features of Lactobacillus genomes
The major features of the Lactobacillus genomes are summarized in Table 1. All of the genomes comprised a circular chromosome of 1.88–3.2 Mb in length. However, the weight protection-associated genomes were larger (2.9 Mb) than the weight gain-associated Lactobacillus genomes (2 Mb). Many Lactobacillus spp. harbor plasmids (L. acidophilus 305C, L. reuteri SD2112, and L. plantarum strains ST-III and WCFS1), and some of these plasmids carry genes for bacteriocin production. The average guanine-cytosine (GC) content of each genome was 42.6%. The number of predicted proteins in lactobacilli ranges from 1051 to 3058. In addition, some Lactobacillus genomes harbor pseudogenes, with
up to 62 pseudogenes in *L. plantarum* ST-III. Lactobacilli also differ in the number of ribosomal RNA operons, ranging from 4 operons in *L. ingluviei* to 21 operons in *L. sakei* (Table 1). The number of transfer RNA (tRNA) ranges from 54 tRNA in *L. gasseri* to 78 tRNA in *L. fermentum*. The mean length of open reading frames for all studied Lactobacillus strains was 927 bp. Strikingly, *L. plantarum* WCFS1 displayed the largest variation in the length of the open reading frames, ranging from 36 bp for the gene encoding the protein for plantaricin biosynthesis to 15 870 bp for the gene encoding the non-ribosomal peptide synthetase NpsA. The global genomic alignment showed several variations in the gene order for *L. acidophilus*, *L. plantarum* and *L. reuteri* spp., potentially associated with bacterial virulence, whereas *L. fermentum* spp. showed strong collinearity (Supplementary Figure 2).

Gene content comparison

Using the previously described bioinformatics procedure in the Materials and methods section, we annotated the 13 *Lactobacillus* spp. genomes retrieved from NCBI. Altogether, 25 122 proteins were annotated. On average, the annotated proteins represented 88% of the genome. We identified a total of 2185 different sequences.

Figure 2. Strategy used for the genome annotation and bacteriocin gene analysis.

Table 1. General genome features

Species	RefSeq	Genome size (Mb)	GC%	Protein	Pseudo-gene	rRNA	tRNA	Other RNA	Gene	Mean ORF size
L. acidophilus 30SC	NC_015214.1	2.08	38.1	2037	—	12	63	—	2112	879
L. acidophilus 30SC pRKC30SC1	NC_015213.1	0.01	35.1	6	—	—	—	—	6	598
L. acidophilus 30SC pRKC30SC2	NC_015218.1	0.01	36.6	16	2	—	—	—	16	583
L. acidophilus NCFM	NC_006814.3	1.99	34.7	1864	—	13	61	—	1938	944
L. fermentum CECT 5716	NC_017465.1	2.1	51.5	1051	24	20	54	—	1149	1135
L. fermentum IFO 3956	NC_010610.1	2.1	51.5	1843	—	15	54	—	1912	916
L. gasseri ATCC 33323	NC_008530.1	1.89	35.3	1755	48	19	78	1	1898	955
L. ingluviei Autruche 4	CAF000000000	1.97	50.90	1923	—	4	64	—	1927	921
L. plantarum ST-III	NC_014554.1	3.25	44.6	2996	62	15	64	—	3137	893
L. plantarum ST-III Pslm	NC_014558.2	0.05	38.7	43	2	—	—	—	45	904
L. plantarum WCFS1	NC_004567.1	3.31	44.5	3058	42	5	62	—	3108	913
L. plantarum WCFS1 PwFCS101	NC_006375.5	0	39.5	3	—	—	—	—	3	429
L. plantarum WCFS1 PwFCS102	NC_006376.1	0	34.3	4	—	—	—	—	4	292
L. plantarum WCFS1 PwFCS103	NC_006377.1	0.04	40.8	43	—	—	—	—	43	718
L. reuteri DSM 20016	NC_009513.1	2	38.9	1900	41	18	68	2	2027	898
L. reuteri JCM 1112	NC_010609.1	2.04	38.9	1820	—	18	63	—	1901	937
L. reuteri SD2112	NC_015697.1	2.32	39.0	2246	36	18	70	36	2425	879
L. reuteri SD2112 pRS80	NC_015699.1	0.01	39.2	7	1	—	—	—	7	696
L. reuteri SD2112 pRS81	NC_015700.1	0.01	40.0	16	—	—	—	—	16	609
L. reuteri SD2112 pRS84	NC_015701.1	0.02	36.9	17	—	—	—	—	1	851
L. reuteri SD2112 pRS85	NC_015698.1	0.01	41.1	14	2	—	—	—	14	821
L. sakei 23K	NC_007576	1.88	41.3	1306	30	21	63	—	1963	866

Abbreviations: GC%, percentage of guanine-cytosine; rRNA, ribosomal RNA; tRNA, transfer RNA; ORF, open reading frame.

© 2014 Macmillan Publishers Limited Nutrition & Diabetes (2014) 1 – 8
functions in the *Lactobacillus* genus: 206 (9%) functions were shared with one or more weight protection-associated *Lactobacillus*, whereas 432 (20%) functions were specific to weight gain-associated *Lactobacillus*. The conserved core of genes present in all *Lactobacillus* spp. analyzed comprised 1546 functions (70%). However, these genes also included 283 genes for which the function is unknown and 303 genes with only a general prediction of biochemical activity. The functional distribution into gene families showed that the genes encoding the proteins involved in transcription (median ± intraquartile range, 178 ± 71 vs 118 ± 9, \(P = 0.28 \)) and carbohydrate transport and metabolism (median ± intraquartile range, 253 ± 54 vs 158 ± 17, \(P = 0.16 \)) were primarily identified in weight protection-associated *Lactobacillus* (Figure 3). In contrast, weight gain-associated *Lactobacillus* primarily contained genes involved in replication, recombination and repair (median ± intraquartile range, 195 ± 86 vs 106 ± 13, \(P = 0.12 \)). In addition, a small number of genes involved in lipid transport and metabolism was observed in both groups (≈53 genes per genome; Figure 3).

On the basis of the EC content observed in the *Lactobacillus* genomes and the number of gene copies, the principal component analyses revealed similar behaviors between the two weight protection-associated species *L. plantarum* and *L. gasseri* (Supplementary Figure 3). The genomes were projected on the first two principal component analyses axes, representing 75 and 14% of the total inertia. A significant difference was observed between weight protection and weight gain-associated *Lactobacillus*, particularly regarding EC 2.7.1.69, which represents the glucose permease involved in carbohydrate metabolism. This sugar phosphotransferase, which mediates the transport of glucose across the membrane, was identified 48 times in weight protection-associated *Lactobacillus*, with a maximum occurrence in the *L. plantarum* strain JDM, whereas glucose permease was only identified an average of 8 times in weight gain-associated *Lactobacilli*.

Carbohydrate metabolism

An examination of the functional categories in genomes revealed that most of the genes present in *Lactobacillus* spp. are involved in carbohydrate metabolism. We therefore focused on the presence or absence of genes involved in the carbohydrate pathways of *lactobacilli* associated with weight gain and weight protection. A total of 31 genes involved in these functions were identified in weight protection-associated *Lactobacillus*, whereas these genes were absent in weight gain-associated *Lactobacillus* (Supplementary Table 1). These genes encoded proteins involved in the conversion of glycerol phosphate into \(\alpha \)-rhamnose (\(\alpha \)-rhamnose isomerase, rhamnulokinase) and aldehyde-lyase rhamnulose-1-phosphate aldolase); the production of dextrin from \(\alpha \)-\(\alpha \)-glucose-1-phosphate (glucose-1-phosphate dehydrogenase); the formation of \(\alpha \)-glucose-1-phosphate; the decomposition of hydrogen peroxide to water and oxygen (catalase; Figure 4). In contrast, six enzymes were identified in weight gain-associated *Lactobacillus* genomes (Supplementary Table 1). These enzymes were primarily involved in the conversion of fructose to sorbitol (sorbitol dehydrogenase); the production of 3-acetoacetyl-CoA from (S)-3-hydroxybutanoyl-CoA (3-hydroxybutyryl-CoA dehydrogenase); the formation of (R)-acetoin from (R,R)-butane-2,3-diol (R,R)-butanediol dehydrogenase); the conversion of 2-deoxy-D-ribose 5-phosphate into \(\alpha \)-glyceraldehyde 3-phosphate (deoxyribose-phosphate aldolase); the phosphorylation of \(\alpha \)-D-glucosyl phosphate into \(\alpha \)-D-glucose-1-phosphate (sucrose phosphorylase); and the conversion of sucrose into \(\alpha \)-fructose and \(\alpha \)-\(\alpha \)-glucose-1-phosphate (sucrose phosphorylase) (Figure 4). The presence of enzymes involved in the conversion of sucrose into glucose and fructose suggests that weight gain-associated *Lactobacillus* genomes are adapted for foods rich in sucrose.

Figure 3. Comparison of the gene content profiles obtained for weight gain or weight protection-associated *Lactobacillus*, proportional to the size of the genomes (radar plot).
Lipid metabolism

The analysis of the genes involved in lipid metabolism revealed four proteins involved in lipid metabolism in weight protection-associated Lactobacillus (Supplementary Table 1). These enzymes were implicated in the production of acyl-CoA from carbohydrate (acetyl-CoA hydrolase); the conversion of glutathione to glutathione disulfide (glutathione peroxidase); the formation of 3-hydroxypropanal from propane-1,3-diol in glycerolipid metabolism; and the conversion of sn-glycerol 3-phosphate into CDP-glycerol in glycerophospholipid metabolism (1,3-propanediol dehydrogenase); and the conversion of glycerone into glyceraldehyde-3-phosphate (acyl-CoA hydrolase); the conversion of glutathione to glutathione disulfide (glutathione peroxidase); the formation of 3-hydroxypropanal from propane-1,3-diol in glycerolipid metabolism (Supplementary Table 1). These enzymes implicated in the production of acyl-CoA from carboxylate (acyl-CoA hydrolase) were only present in weight gain-associated species. The blue arrows show reactions present in weight protection-associated species. The pink arrows show reactions present in weight gain-associated species.

Figure 4. Schematic representation of the metabolic pathways associated with carbohydrate and lipid metabolism involving Lactobacillus genomes. The blue arrows show reactions present in weight protection-associated species. The pink arrows show reactions present in weight gain-associated species.

Lipases

Lipases have an essential role in the mobilization of fatty acids from dietary or storage fats. The HMM search revealed that among the 16 lipase families identified in the libraries in this study, 3 lipases were present in at least one Lactobacillus genome (Supplementary Table 2). Furthermore, all genomes analyzed contain many candidate genes encoding lipases from the families PF00561 (αβ hydrolase 1, including acid lipases and pseudomonas-like lipases) and PF0785 (αβ hydrolase 3 or hormone-sensitive lipase family). PF00561 was the most abundant family in the genomes analyzed, and we identified 14 corresponding genes in L. acidophilus 30SC. The second most abundant lipase family was PF0785, with 12 lipases identified in L. plantarum JDM1. The PF00561 and PF0785 lipase families belong to a superfamily of proteins characterized by an αβ hydrolase fold, representing one of the largest group of enzymes with diverse catalytic functions, such as proteases, lipases, peroxidases, esterases, epoxide hydrolases and dehalogenases. We calculated the number candidate lipases to determine the total lipase content in the genomes (Supplementary Table 2), but we did not observe significant differences between the genomes in weight gain-associated Lactobacillus and those associated with weight protection.

Bacteriocins

In the generated database, we observed that the sequences encoding bacteriocins differ greatly in size and composition: the sequences range from 7 amino acids (microcin C7) to 1585 amino acids (rhizobiocin), with an average length of 110 amino acids. Using BLASTp, we obtained 77 significant hits, which were subsequently compared with the annotations obtained using the RAST server. We identified 18 different types of bacteriocins in Lactobacillus spp., among which several sequences were previously annotated as hypothetical proteins in the NCBI database (Figure 5). Weight gain-associated Lactobacillus spp. encoded more bacteriocins (mean = 6) than weight protection-associated Lactobacillus spp. (mean = 4) (Supplementary Table 3). Moreover, L. plantarum encoded several bacteriocin precursors (from 3 to 5 per genome). L. acidophilus 30SC encoded the largest number of bacteriocins, with 15 putative genes. Plantaricins and colicins were the most commonly encoded bacteriocins. We identified bacteriocins annotated as colicin V proteins in L. ingluviei and L. fermentum genomes. In L. fermentum spp., the potential colicin V gene sequences were identified in regions with high collinearity, but no synteny with the region containing the gene encoding...
colicin V in *L. ingluviei* was observed (Supplementary Figure 4). However, the sequence alignment of the putative colicin V with colicin V obtained from the database showed a high degree of similarity, from 21 to 100%. The clustering analysis showed that *L. plantarum* strains associated with weight protection are separated from the other species based on the bacteriocin content, whereas *L. gasseri* are closely related to weight gain-associated *Lactobacillus* (Supplementary Figure 5).

DISCUSSION

In this study, we analyzed *Lactobacillus* spp. genomes, providing evidence of major differences between weight protection and weight gain-associated *lactobacilli*. The strains analysis was based on previously validated methods commonly used for genome comparisons. A limitation of this study was that only a few *Lactobacillus* spp. genomes associated with weight modification were available at the time of analysis. The weight protection-associated *Lactobacillus* genomes were larger and encoded more bacteriocins and genes involved in transcription, carbohydrate transport and metabolism than the weight gain-associated *Lactobacillus* genomes. Moreover, the weight protection-associated *Lactobacillus* genomes encoded proteins implicated in fructose, mannose, starch and sucrose metabolism and contained a significant amount of glucose permease. Weight gain-associated *Lactobacillus* spp. harbored enzymes involved in lipid metabolism, which were not identified in weight protection-associated genomes.

Comparative genomics showed differences between *Lactobacillus* strains of the same species at the functional level. Different *L. acidophilus*, *L. reuteri*, *L. plantarum* and *L. fermentum* strains presented differences in the number of plasmids and the genes encoding lipases and bacteriocins. Moreover, alignment of these genomes showed wide variations in gene organization (Supplementary Figure 2). In a previous study, the genomes of 34 different *Lactobacillus paracasei* strains showed large variety and variability in the sugar utilization gene cassettes and other genetic variations, such as sugar metabolism, phages or plasmids. Moreover, the analysis of 100 different *Lactobacillus rhamnosus* strains showed two distinctive geno-phenotypes at the species level, associated with carbohydrate metabolism, including D-lactose, D-maltose and L-rhamnose, and the comparison of 18 *L. plantarum* strains identified two distinctive glycerol- and ribitol-type wall teichoic acid structures. Moreover, different *L. reuteri* strains showed different effects on weight. Indeed, the administration of the ATCC strain in mice was associated with weight decrease, whereas the administration of the L6798 strain was associated with weight gain.

Weight gain-associated *Lactobacillus* lack enzymes involved in the catabolism of fructose, but these strains encode several enzymes that participate in the conversion of sucrose into glucose and fructose and enzymes that promote fructose production. These observations suggest that these species are adapted for...
foods rich in sucrose, which contribute to obesity in these individuals. However, weight protection-associated *Lactobacillus* genomes actively participate in the degradation of fructose and promote the synthesis of dextrin, l-rhamnose and acetate. These three molecules respectively prevent obesity in animals by reducing blood glucose levels, serum triacylglycerol levels and body mass and fat accumulation. In addition, the presence of *Salmonella* spp., the fatty acids released through lipases from *Lactobacillus* spp., the fatty acids released through lipases from acylglycerols could be further degraded by weight gain-associated *Lactobacillus* spp. The data obtained in this study also showed that thiolas were only encoded in weight gain-associated *Lactobacillus*. Thiolas are ubiquitous enzymes that have key roles in the β-oxidation pathway of fatty acid degradation (Thiolsal; EC 2.3.1.16) and various biosynthetic pathways (Thiolase II; EC 2.3.1.9), such as poly β-hydroxybutyric acid synthesis or steroid biogenesis. Thus, weight gain-associated *Lactobacillus* genomes mobilize the energy and carbon stored in fatty acids through β-oxidation. As a significant number of lipase genes have been identified in *Lactobacillus* spp., the fatty acids released through lipases from acylglycerols could be further degraded by weight gain-associated *Lactobacillus*. As a result, weight gain-associated *Lactobacillus* spp. could potentially participate in lipid digestion in the upper gastrointestinal tracts of humans through the degradation of dietary fats (acylglycerols). Although all fats are normally absorbed before entering the large intestine, the rate at which these fats are degraded controls satiety mechanisms, such as the ileal brake. This satiety phenomenon is primarily triggered through free fatty acids reaching the distal region of the small intestine, whereas the degradation of other complex carbohydrates from our diet involves a wide variety of enzymes produced almost exclusively by colonic bacteria.

The results of this study revealed that weight protection-associated genomes encoded more bacteriocins than weight gain-associated *Lactobacillus*. The antibacterial effects of bacteriocins largely determine the effect of probiotic strains on gut microbiota. The antibacterial activity of bacteriocins has been extensively demonstrated in vitro. In vivo experimental models have been used to determine the efficiency of *lactobacilli* to limit the dissemination of *Listeria monocytogenes*. This effect is likely mediated through the antibiotic activities of *lactobacilli*, induced through bacteriocins. In humans, obesity is associated with a significant decrease in the level of microbiota diversity and alterations in the representation of bacterial genes and metabolic pathways. Animal models of obesity have also demonstrated an association between the alteration of the microbiota composition with the development of obesity, leading to a reduction of *Bacteroidetes*. Moreover, bacteriocin-producing *L. reuteri* and *L. gasseri* strains inhibited the growth and eliminated the presence of various enteropathogens, such as *Salmonella*, *Listeria* and *Campylobacter*. In conclusion, this genome analysis revealed large differences between weight gain and weight protection-associated *Lactobacillus* genomes with respect to the genes involved in transcription, replication, recombination and repair, lipid metabolism, carbohydrate transport and metabolism, and bacteriocin production. Significant differences were observed between the two groups of genomes, but the resulting hypotheses require further tests using experimental models to further confirm the implication of *lactobacilli* in weight modifications. To the best of our knowledge, this is the first study comparing the genomes of *Lactobacillus* strains associated with weight modifications. Functional foods and yogurts consumed by humans and children can contain large numbers of living bacteria, up to 10^9 CFU g^-1. These probiotic amounts are considerable, compared with the concentration of 10^5 bacteria observed in the upper intestinal tract, where the digestion and absorption of most nutrients occurs in humans. Obtaining a better understanding of the ability of specific probiotic bacteria that promote weight loss or weight gain could result in the specific use of *Lactobacillus* spp. as treatments against obesity or malnutrition.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
This study was financially supported through the Mediterranean Infection Foundation and the CNRS Centre National de la Recherche Scientifique, France.

REFERENCES
1. Angelakis E, Armougom F, Million M, Raoult D. The relationship between gut microbiota and weight gain in humans. *Future Microbiol* 2012; 7: 91–109.
2. Million M, Angelakis E, Drissi F, Raoult D. Occam’s razor and probiotics activity on *Listeria monocytogenes*. *Proc Natl Acad Sci USA* 2013; 110: E1.
3. Angelakis E, Merhej V, Raoult D. Related actions of probiotics and antibiotics on gut microbiota and weight modification. *Lancet Infect Dis* 2013; 13: 889–899.
4. Raoult D. Human microbiome: take-home lesson on growth promoters? *Nature* 2008; 454: 690–691.
5. Trehan I, Goldbach HS, LaGrone LN, Meuli GJ, Wang RJ, Maleta KM et al. Antibiotics as part of the management of severe acute malnutrition. *N Engl J Med* 2013; 368: 425–435.
6. Ajisef SV, Andersen CS, Gamborg M, Sorensen TI, Jess T. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. *Int J Obes (Lond)* 2011; 35: 522–529.
7. Ray K. Gut microbiota: adding weight to the microbiota’s role in obesity-exposure to antibiotics early in life can lead to increased adiposity. *Nat Rev Gastroenterol Hepatol* 2012; 9: 615.
8. Thuny F, Richet H, Casalta JP, Angelakis E, Habib G, Raoult D. Vancomycin treatment of infective endocarditis is linked with recently acquired obesity. *PLoS One* 2010; 5: e9874.
9. Cho Y, Yamanishi S, Cox L, Methe B, Zavadil J, Li K et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. *Nature* 2012; 488: 621–626.
10. Stokstad EL. Antibiotics in animal nutrition. *Physiol Rev* 1954; 34: 25–51.
11. Smith MI, Yatsuenuken T, Manary MJ, Trehan I, Mikakosya R, Cheng J et al. Gut microbiomes of Malawan twin pairs discordant for kwashiorkor. *Science* 2013; 339: 548–554.
12. Angelakis E, Bastelica D, Ben AA, El FA, Dutour A, Mege JL et al. An evaluation of the effects of *Lactobacillus inerslevii* on body weight, the intestinal microbiome and metabolism in mice. *Microb Pathog* 2012; 52: 61–68.
13. Miyoshi M, Ogawa A, Higurashi S, Kadooka Y. Anti-obesity effect of *Lactobacillus gasseri* SBT2055 accompanied by inhibition of pro-inflammatory gene expression in the visceral adipose tissue in diet-induced obese mice. *Eur J Nutr* 2013; e-pub-ahead of print 6 August 2013.
14. Fak F, Backhed F. *Lactobacillus reuteri* prevents diet-induced obesity, but not atherosclerosis, in a strain dependent fashion in *ApoE−/−* mice. *PLoS One* 2012; 7: e46837.
Supplementary Information accompanies this paper on the Nutrition & Diabetes website (http://www.nature.com/nutd)