The Fourier transform infrared spectroscopy from Diplazium esculentum and Rivina humilis analysis to reveals the existence of necessary components in oil palm plantations of Ganoderma boninense control

WISMAROH SANWINI SARAGIH1, EDISON PURBA2, LISHAWITA2, MOHAMMAD BASYUNI3
1Doctoral Program in Agricultural Science, Faculty of Agriculture, Universitas Sumatra Utara. Jl. Prof. Dr. A. Sofian No. 3, Campus USU Padang Bulan, Medan 20155, North Sumatra, Indonesia. Tel.: +62-61-8213236, Fax.: +62-61-8211924, *email: edisonpurba@usu.ac.id
2Program of Agrotechnology, Faculty of Agriculture, Universitas Sumatra Utara. Jl. Prof. Dr. A. Sofian No. 3, Campus USU Padang Bulan, Medan 20155, North Sumatra, Indonesia
3Department of Forestry, Faculty of Forestry, Universitas Sumatra Utara. Jl. Tri Dharma Ujung No. 1 Campus USU Padang Bulan Medan 20155, North Sumatra, Indonesia

Abstract. Saragih WS, Purba E, Lisnawita, Basyuni M. 2021. The Fourier transform infrared spectroscopy from Diplazium esculentum and Rivina humilis analysis reveals necessary components in oil palm plantations of Ganoderma boninense control. Biodiversitas 22: 3645-3651. The Fourier transform infrared spectroscopy (FTIR) has been widely utilized for biological samples and biomolecular characterization. We aim to identify Ganoderma boninense through FTIR and obtain a functional group that can facilitate early basal stem rot detection. Here, positive control (KP) was not inoculated with G. boninense and negative control (KN) was inoculated with G. boninense. However, the treatment samples, Diplazium esculentum leaf extract, Rivina humilis leaf extract, and fungicide treatment, were not inoculated with G. boninense. The positive control oil-palm leaf samples exhibited spectral bands similar to those in the D. esculentum extract, R. humilis extract, and fungicide treatment. Strong bonds were observed at wavelengths 3379 cm⁻¹, 2927 cm⁻¹, 1639 cm⁻¹, and 1056 cm⁻¹. Others were moderate to weak, except the negative control samples with strong bonds at 2044 cm⁻². This indicates amine N–H functional groups, alkane functional group C–H, functional group alkene C=O, functional group ester, and functional group isothiocyanate N=C=S (C≡H:NS or CH[≡C≡N]=CHCH₂N≡C≡S). The FTIR plot result denotes G. boninense through N≡C=S isothiocyanate functional group presence at 2140-1990 cm⁻¹. This unique structure is only found in infected oil-palm leaf tissues of G. boninense. Our study suggests that FTIR spectroscopy is more beneficial than conventional methods in early detection of G. boninense infection in oil palm.

Keywords: Diplazium esculentum, Ganoderma boninense, oil palm, Rivina humilis

Abbreviations: BSR: Basal Stem Rot; FTIR: Fourier Transform Infrared

INTRODUCTION

Oil palm plantations are the world’s largest agricultural plantations, with Indonesia leading oil palm production, followed by Malaysia (Mohd et al. 2020). With a total export value of Rp. 304 trillion, oil palm plantations contribute significantly to the Indonesian economy (Junaidi, 2020). Furthermore, according to BPS-Statistics Indonesia (2020), oil palm plantations span 14,724 million hectares, with 45,861 million tons of oil palm produced in 2019 alone. This number rose to 14,996 million hectares in 2020 (49,117 million tons). However, the G. boninense fungus, which causes Sal stem rot, threatens the expansion of oil palm production (Hashim et al. 2021).

Weeds contain various phytochemicals, such as coumarins, flavonoids, phenolics, etc., which exhibit antifungal activity and can be isolated (Gadisa and Tadesse, 2021). As such, carotenoids, phenolics (containing nitrogen, i.e., alkaloids), amines, and organosulfur compounds (isothiocyanate and ally sulfide) are among the phytochemicals categorized according to their chemical characteristics and functional groups (Mitsiogianni et al. 2019). For example, when D. esculentum is extracted with medium ethanol, the secondary flavonoid metabolite components are 110.8±11.12; however, when extracted with water, the flavonoid content is 16.2±0.7 (Tongco et al. 2014). As an antifungal, R. humilis contains n-Hexadecanoic acid, Hexadecanoic acid, and 1(hydroxymethyl)-1.2-ethenyl ester (Kavita and Mary, 2020). In light of this, through gas chromatography-mass spectroscopy (GC-MS) analysis, the bioactivity of hexadecanoic acid, methyl ester, and 1Heneicosanol chemical compound as an antifungal were investigated in vitro against Candida albicans fungus. Such plant secondary metabolites can be applied to control oil palm trunk rot since they contain natural ingredients and do not pollute the environment (Supraptani, 2016).

The G. boninense pathogen causes BSR, which infects young and old (15 years) plants (Priviratama et al. 2020) and decreases over 50% of production (Susanto, 2011).
Despite numerous efforts, this disease is difficult to control (Viera-Torres et al. 2020) due to its detection delay (Cooper et al. 2011). Moreover, the rotting stem is always asymptomatic and emerges only at the final infection stage when over half the root tissue has decomposed, leading to plant death.

Thus, early detection methods are urgently required. Only a few methods have been reported to detect this disease before symptoms manifest as fruiting bodies, including enzyme-linked immunosorbent assay (ELISA) (Kayalvizhi and Antony, 2011; Utomo and Niepold, 2000; Kandan et al. 2009; Siddiqui et al. 2021), polymerase chain reaction (PCR) (Chong et al. 2011; Midot et al. 2019; Bahari et al. 2018; Goh et al. 2016), sequencing (Hayati and Basyuni, 2019), laser machine learning (ML) through laser beam scanning (Husin et al. 2020), hyperspectral imagery visible near-infrared (VIS-NIR) (Azmi et al. 2020; Ahmadi et al. 2017; Isha et al. 2019), scanning electron microscopy (Alexander et al. 2017), and network detection through Ganoderma selective media (GSM) network (Rakib et al. 2014; Darus and Seman, 1992; Penido et al. 2013). Furthermore, weeds as markers of the organism’s presence based on dominant species have also been reported (Saragih and Purba, 2018), with the nutrients in weed leaves compared to infected and uninfected oil palm (Saragih and Purba, 2019). However, this method is expensive and time-consuming for large-scale applications.

Ganoderma FTIR quantification detection reported (Alexander et al. 2014) success in detecting G. boninense through different functional groups in healthy oil palms. Detection using FTIR reported (Liaghat et al. 2014) that samples prepared with KBr with linear discriminant analysis (LDA) based models yielded the highest mean overall classification accuracy of 92%, with individual classification accuracy greater than about 90% using the raw dataset and verifying spectroscopic potential mid-infrared for detection of Ganoderma in early stages of asymptomatic infection in oil palm. FTIR detects blast disease in rice by absorbing chemical groups with differences in fat and cutin content, which increases due to infection (Gaoqiang et al. 2020). The physiological measurements of leaves showed differences between control and plants that were given NaCl, and biochemical changes that occurred in functional groups were detected using FTIR-ATR (attenuated total reflectance) spectroscopy (Westworth et al. 2019). However, there are no reports regarding the detection of this organism’s control through the administration of D. esculentum, R. humilis secondary metabolite compounds, and fungicides. Furthermore, the detection and identification of microorganisms using FTIR spectroscopy are promising due to their sensitivity, speed, low cost, and simplicity (Salman et al. 2010). We thus aimed to identify G. boninense through FTIR and obtain a functional group as an indicator in the early detection of BSR in infected and treated oil palms.

MATERIALS AND METHODS

Plant materials

Oil palm seedling plant material crossing Dura x Pisifera is tolerant of the G. boninense (isolate NJ72 TG 147) from the PT Socindo collection. The isolates of the fungus G. boninense inoculated in oil palm seedlings were reported molecularly in the Socindo plant disease laboratory (Purba et al. 2020). Furthermore, D. esculentum leaves were collected from PT. PP. London Sumatra, Tbk Langkat area, North Sumatra position 3°26’02,38” N and 98°12’56,67” E, while the R. humilis leaves were obtained from Deli Serdang area, North Sumatra position 3°28’08,23” N and 98°49’04,11’’ E.

Figure 1 presents the locations where D. esculentum and R. humilis leaves were collected. These plants are unique since they are considered weeds in oil palm plantations, but D. esculentum is consumed as a young leafy vegetable and sold to consumers, indicating that it has certain commercial value. Due to its abundance in the plantation area, it can be marketed and employed as a source of additional revenue. D. esculentum is also an additional source of income since it is consumed as a vegetable and thrives in a humid climate with humidity levels ranging from 65-80% and a high annual rainfall of 2,205,43 mm. R. humilis found in plantation areas is a unique weed species. Additionally, suppose the oil palm dies as a result of the invasion of G. boninense. In that case, the R. humilis species thrive and take over the surrounding region since the humidity and organic matter are suitable for their growth.

Procedures

The FTIR analysis was conducted in the Faculty of Pharmacy, University of Sumatera Utara, Medan, Indonesia, and the research was conducted in the greenhouse of the university’s Faculty of Agriculture. This method of producing weed leaf involved the application of ethanol extract to the crop, as described by Rattanata et al. (2014). The modified extract was applied to the oil palm seedlings maintained in the greenhouse without fertilizer. The plants were treated with extracts from metabolite compounds of D. esculentum (DE), R. humilis (RE), and pyraclostrobin fungicide, each amounting to a volume of 50 mL (Said et al. 2019; Rebetanim et al. 2020; Bivi et al. 2016). Plants as positive (healthy plant, not inoculated with G. boninense) and negative controls (inoculated with G. boninense but without treatment) were included to perform a comparison (Idris et al. 2006). Each treatment consisted of three replicates.

The seedlings indicated that BSR disease progressed after five months of inoculation, but the only symptom of the disease was the color of the infected leaves, which were yellowing (Figure 2). The FTIR analysis used five plant samples from each treatment: healthy plants (KP), infected (KN), D. esculentum extract, R. humilis, and a comparison synthetic fungicide. Furthermore, oil palm leaves were taken from the base leaves, middle leaves, and leaves near the shoots that had not opened yet. They were brought to the laboratory and thoroughly washed with running water.
to remove the impurities. Then, the leaves were crushed with liquid nitrogen into a fine powder (Khan et al. 2021) and the FTIR was performed by the KBr pellet method (Lai et al. 2021). The spectrum was adjusted at 4 cm\(^{-1}\) and the scanning range was selected between 400 cm\(^{-1}\) to 4000 cm\(^{-1}\) (Alexander et al. 2014). Subsequently, analysis was conducted on a total of 0.0020 g of samples and 0.1980 g KBr, which was smoothed and printed onto thin or transparent plates utilizing the Shimadzu tool (IRPrestige-21). The resulting chromatograms were compared to the IR Table (Lai et al. 2021).

![Figure 1](image1.png)

Figure 1. Map of weed collection locations: A. *Diplazium esculentum* leaves, B. *Rivina humilis* leaves in PT. PP. London Sumatra, Tbk, North Sumatra Province, Indonesia

![Figure 2](image2.png)

Figure 2. Oil palm seedlings three months after treatment. A. Healthy; B. Infected; C. *Diplazium esculentum* extract; D. *Rivina humilis* extract; and E. Treatment fungicides
RESULTS AND DISCUSSION

Results

The FTIR demonstrated the oil palm functional group compounds after inoculation and treatment by the secondary metabolite extracts of D. esculentum and R. humilis that utilized the oil palm leaf extract (Figure 3). FTIR was applied to obtain biomarker spectroscopy from oil palm leaves and screening to detect and identify the differences in the functional groups that played a significant role in controlling G. boninense. The positive control oil palm leaf samples spectrum was similar to that of the D. esculentum leaf extract, R. humilis leaf extract, and the fungicide treatment. There was no difference in the spectral band, as illustrated in Figure 3. Strong bonds were observed at wavelengths 3379 cm$^{-1}$, 2927 cm$^{-1}$, 1639 cm$^{-1}$, and 1056 cm$^{-1}$, while the others varied moderately to weakly, except for the negative control leaf sample with strong bonds at the wavelength 2044 cm$^{-1}$. This indicated the presence of the following functional groups: N–H (amine, C–H (alkane), C=C (alkene), C–O (ester), and N=C=S (isothiocyanate). The molecular formula of the compound is C$_h$H$_n$NS or CH$_2$=CHCH$_2$N=C=S. Tiznado-hernández (2008) reported that, in vitro, the isothiocyanate functional group (N=C=S) was able to react with an amino group from an amino acid and formed an N-allylthiocarbamoyl derivative. This reaction occurs between alanine, glycine, dipeptides (glycine-glycine, glycine-alanine, alanine-glycine), tripeptides (glycine-glycine-glycine and glycine-glycine-alanine), and 2-propenylisothiocyanate. The compound 2–propenyl-thiocarbamoyl-peptide is formed from the reaction of 2–propenylisothiocyanate with amino acids and peptides. This reaction specifically occurs at pH values of 8 and 10 (Cejpek et al. 2000). Furthermore, isothiocyanate is a plant secondary metabolite hydrolyzed from glucosinolates into various derivative products, such as thiocyanates and nitriles (Liu et al. 2020). Phytochemicals are secondary metabolites found in plants that serve a variety of biological and ecological functions including protection against herbivorous insects and pathogenic microorganisms (Xue et al. 2019).

Figure 3 illustrates a unique spectrum in the negative control with wavelengths ranging from 2140 to 1990 cm$^{-1}$ and is compared to other samples, as shown in Table 1. This difference provides an early indication that spectral parameters can detect G. boninense from palm leaf tissue (Erukhimovitch et al. 2005). Accordingly, it is evident that oil palm infected with this organism exhibit a different spectrum; hence, the pathogen can be detected or identified directly from the leaf tissue. According to Brandl. (2013), the infected biomass will produce a different FTIR compared to the healthy counterpart, owing to fungal metabolism in the plant tissues. It has been naturally tested that isothiocyanate is a synergistically efficient fungicide against pathogens that attack plants, glucosinolates of isothiocyanate derivatives exhibit high bioaccumulation potential and lipophilic properties that enable it to penetrate membranes (Dubey et al. 2021).

Discussion

The FTIR spectrum was utilized to identify functional groups of leaves that were healthy, infected, fungicide-treated, and applied with leaf extracts of D. Esculentum and R. Humilis. The wavelengths ranging from 2140 to 1990 cm$^{-1}$ belonged to the isothiocyanate compound in the infected leaves of G. boninense. The isothiocyanate group (N=C=S) is a nucleophilic group that can bind thiols, amino groups, peptides, and proteins. The inhibition of key enzymes, such as reductases, acetate kinases, and oxidases, is primarily responsible for the antifungal and antiaflatoxin effects (Nazareth et al. 2016). Isothiocyanate (N=C=S) is classified as a plant organic compound, namely the metabolite unit S-β-D-glucopyranose, which is periodically related to the O-sulfated (z)-thiohydroximate function (Cedrowski et al. 2021).

Table 1. FTIR assisted identification of functional groups in oil palm leaves

Wave number (cm$^{-1}$)	Functional groups
3300-3500	N–H (Amine)
2850-2970	C–H (Alkane)
2140-1990	N=C=S (Isothiocyanate)
1610-1680	C=C (Alkene)
1500-1600	C–C (Aromatic rings)
1340-1470	C–H (Alkane)
1180-1360	C–N (Amine, Amide)
1050-1300	C–O (Ester)
976-400	C–H (Isoprenoids)

Note: Empty box indicates the absence of respective compounds in the sample. KP: Positive Control, KN: Negative control; DE: D. esculentum extract, RE: R. humilis extract, FT: Fungicide treatment
Isothiocyanate compounds are synthesized from glucosamine with acetic anhydride/pyridine that glucosamine isothiocyanate is formed through N, N-(acetyl) derivatives of phenylthiocarbamoyl glucosamine and analyzed by the FTIR at a wavelength of 2048 cm\(^{-1}\) derived from the N=C=S group were observed (Nishida et al. 2019). The precursor of isothiocyanate is glucosinolate (β-thioglucoside-N-hydroxysulfates), which acts as an antifungal and several studies have proven it to be anticancer (Fahey et al. 2001). Additionally, Colletotrichum coccodes, Rhizoctonia solani, and Helminthosporium solani are diseases that infect soil-borne potato plants and isothiocyanate compounds—which are hydrolyzed from natural glucosinolates—and can inhibit fungal growth colonies in vitro based on the concentration of isothiocyanate mixed into agar (Taylor et al. 2014).

The isothiocyanates were utilized for biological, agricultural, and pharmaceutical interests for synthetic treatment and function as a strong antifungal against Candida albicans and Aspergillus niger (Chniti et al. 2020). Furthermore, isothiocyanate exhibits inhibition against fungi, nematodes, bacteria, insects, and weeds (Zhang et al. 2020). Isothiocyanate has been reported to have fungistatic and fungi toxic compounds that can control soil-borne phytopathogenic fungi (Tiznado-hernández, 2008). Moreover, isothiocyanate compounds have anti-proliferative properties. For instance, a naturally occurring isothiocyanate is sulforaphane. Phenethyl isothiocyanate and benzyl isothiocyanate synthetically create a blue color, which is beneficial for anti-inflammatory and anti-cancer properties.

Figure 3. The N=C=S (Isothiocyanate) functional groups of infected oil palm leaves and leaf tissue in the region with 4000-400 cm\(^{-1}\) FTIR spectrum is healthy and infected by D. esculentum extract, R. humilis extract, and fungicides treatment.
modify the atomic structure of phosphorus which has antibacterial, antifungal properties (Reagant et al. 2021). Furthermore, plants infected with *G. boninense* possessed N=C=S isothiocyanate functional group (Chen et al. 2020), which is metabolized through its conjugation to glutathione and hydrolysis into amines to fight the pathogen *Sclerotinia sclerotiorum*, which attacks *brassicas*.

The study was conducted in vitro to evaluate the efficacy of isothiocyanate with a concentration of 50 μL/L, inhibiting the growth of the fungus *Penicillium verrucosum* in barley (Nazartheast et al. 2019). Isothiocyanates in vitro is an antifungal compound in pears. The mechanism underlying the antifungal effect on *Alternaria alternata* may be through the impairment of the permeability of its cell membranes (Zhang et al. 2020). Isothiocyanate compounds operate as allelochemicals for sulfur storage, water transportation, heat tolerance, stomata regulation, apoptosis, and inhibition signaling in host plants as a defense against pests and diseases (Bones et al. 1991). According to this study, palm oil tissue can produce isothiocyanate chemicals as a defense mechanism against these infections. Furthermore, the isothiocyanate found in plants is claimed to operate as a defensive chemical released following cell tissue damage (Dose et al. 2021).

In conclusion, the FTIR spectroscopic method proved that the functional groups of different chemical compounds in infected oil palm leaf tissue contained N=C=S isothiocyanate compounds with a wave number of 2044 cm⁻¹, compared to healthy samples, D. esculentum, R. humilis, and fungicides that were not identified. The clear and strong absorption of infrared radiation from infected samples containing the compound N=C=S isothiocyanate indicates a potential functional group as an indicator of *G. boninense* infection as well as a biological marker between healthy and infected oil palms. These findings suggest that FTIR spectroscopy can be a useful tool for the early detection of diseases in oil palm plants compared to conventional methods.

ACKNOWLEDGEMENTS

The authors are grateful to the Beasiswa Unggulan Dosen Indonesia Dalam Negeri (BUDI DN) scholarship for supporting and funding this research through the Educational Fund Management Institution (LPDF). The authors are also grateful to the Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia.

REFERENCES

Ahmadi P, Muharam FM, Ahmad K, Mansor S, Seman IA. 2017. Early detection of *Ganoderma* basal stem rot of oil palms using artificial neural network spectral analysis. *Plant Dis* 101: 1009-1016. DOI: 10.1094/PDIS-12-16-1699-RE.

Alexander A, Dayou J, Sipaut CS, Phin CK, Chin LP. 2014. Some interpretations on FTIR results for the detection of *Ganoderma boninense* in oil palm tissue. *Adv Environ Biol* 8: 30-32.

Alexander A, Sipaut CS, Dayou J, Chong KP. 2017. Oil palm roots colonisation by *Ganoderma boninense*: An insight study using scanning electron microscopy. *J Oil Palm Res* 29: 262-266. DOI: 10.21894/joppr.2017.2902.10.

Azmi ANN, Bejo SK, Jahari M, Muharam FM, Yule I, Husin NA. 2020. Early detection of *Ganoderma boninense* in oil palm seedlings using support vector machines. *Remote Sens* 12: 3920-3940. DOI: 10.3390/rs12233920.

Bahari MNA, Sakeh NM, Abdullah SNA, Ramli RR, Kadkhodaei S. 2018. Transcriptome profiling at early infection of *Elaeis guineensis* by *Ganoderma boninense* provides novel insights on fungal transition from biotrophic to necrotrophic phase. *BMC Plant Biol* 18: 1-26. DOI: 10.1186/s12870-018-1594-9.

Bones AM, Thangstad OP, Haugen OA, Essevikt T. 1991. Fate of myrosinase: Characterization of monoclonal antibodies against myrosinase. *J Exp Bot* 42: 1541-1550. DOI: 10.1093/jxb/42.12.1541.

BPS Statistics Indonesia. 2020. Indonesian Oil Palm Statistics 2019. 1-155. Indonesia. https://bps.go.id. [Indonesian]

Brandl H. 2013. Detection of fungal infection in *Lolium perenne* by Fourier transform infrared spectroscopy. *J Plant Ecol* 6: 265-269. DOI: 10.1093/jpet/rt043.

Cedrowski J, Dąbrowa K, Przybylski P, Krogul-Sobczak A, Litwinienko G. 2021. Antioxidant activity of two edible isothiocyanates: Sulforaphane and erucin is due to their thermal decomposition to sulfenic acids and methylsulfonyl radicals. *Food Chem* 353: 129213. DOI: 10.1016/j.foodchem.2021.129213.

Chen J, Ullah C, Reichelt M, Beran F, Yang ZL, Gershenzon J, Brandl H. 2013. Detection of fungal infection in *Lolium perenne* by Fourier transform infrared spectroscopy. *J Plant Pathol* 91: 1016-1024. DOI: 10.1002/cbic.2021000169.

Chniti I, Thebti A, Sanhoury MAK, Cherif HIO, Chehidi I. 2020. Synthesis, in vitro antibacterial and antifungal activities of Trifluralinatoxyl-N, N'-Disubstituted Thioureas. *Org Med Chem* DOI: 10.1002/omcij.202009.555770.

Chniti I, Thebti A, Sanhoury MAK, Cherif HIO, Chehidi I. 2020. Synthesis, in vitro antibacterial and antifungal activities of Trifluralinatoxyl-N, N'-Disubstituted Thioureas. *Org Med Chem* DOI: 10.1002/omcij.202009.555770.

Chong KP, Lam MS, Foong CP, Wong CMVL, Atong M, Rossall S. 2011. First identification of *Ganoderma boninense* isolated from Sabah based on PCR and sequence homology. *Afr J Adv Biotechnol* 10: 14718-14723. DOI: 10.5055/AJAB1.1096.

Cooper RM, Flood J, Rees RW. 2011. *Ganoderma boninense* in oil palm plantations: current thinking on epidemiology, resistance and pathology. *The Planter* 87: 515-526.

Darus A, Seman IA. 1992. The *Ganoderma* selective medium (GSM). *PORIM* Information Series: 1-2. http://palmoilis.mpob.gov. [Malaysian]

Dose B, Niehs SP, Scherlach K, Shahuda S, Flórez LV, Kaltenpoh M, Hertweck C. 2021. Biosynthesis of sinapiglaooside, an antifungal isothiocyanate from *Burkholderia symbionts*. *ChemBioChem* 22: 1920-1924. DOI: 10.1002/cbic.2021000089.

Dubey S, Guignet P, Pellaud S, Pedrazzetti M, van der Schuren A, Gaume A, Schnee S, Gindro K, Dubey O. 2021. Isothiocyanate derivatives of glucosinolates as efficient natural fungicides. *PhytoFront* 1: 40-50. DOI: 10.1094/PHYTOFR-08-20-0010-R.

Erukhimovich V, Toror L, Hazanovsky M, Talashynsky M. 2005. Identification of fungal phytopathogens by Fourier transform infrared (FTIR) microscopy. *J Agric Sci Technol* 24: 145-152. DOI: 10.1155/2010/507295.

Fahy JW, Zalcman AT, Talalay P. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. *Phytochemistry* 56: 5-31. DOI: 10.1016/S0031-9422(00)00316-2.

Gaongang L, Changwen D, Fei M, Yazhen S, Jianmin Z. 2020. Responses of leaf cuticles to rice blast: Detection and identification using depth-profiling Fourier transform mid-infrared photoacoustic spectroscopy. *Plant Dis* 104: 847-852. DOI: 10.1094/PDIS-05-19-1004-RE.

Goh KM, Dickinson M, Alderson P, Yap LV, Supramaniam CV. 2016. Development of an in planta infection system for the early detection of *Ganoderma* spp. in oil palm. *J Plant Pathol* 98: 255-264. DOI: 10.4545/JPP/V98II.019.

Hashim IC, Sharif AR, Bejo SK, Muharam FM, Ahmad K. 2021. Machine learning approach using SAR data for the classification of oil palm trees that are non-infected and infected with basal stem rot disease. *Agronomy* 11: 532-548. DOI: 10.3390/agronomy11030532.

Hayati R, Basyuni M. 2019. Sequence approach of *Elaeis guineensis* for early detection of *Ganoderma boninense* resistance. *IOP Conference Series: Earth Environ Sci* 260: 2127-2131. DOI: 10.1088/1755-1315/260/1/012127.

Husin NA, Khairuminza-Bejo S, Abdullah AF, Kassim MSM, Ahmad D, Aziz MHA. 2020. Classification of basal stem rot disease in oil palm
plantations using terrestrial laser scanning data and machine learning. Agromony 10: 1624-1646. DOI: 10.1390/agronomy10111624.

Iridis AS, Kushairi D, Ariffin D, Basri MW. 2006. Technique for inoculation of oil palm germinated seeds with Ganoderma. MPPOB Information Series 314: 1-4. http://palmoilis.mpob.gov.my. [Malaysian]

Isita A, Akandees C, Punam A, Osman R, Mui-Yun W, Abdullah SNA. 2019. An NMR metabolomics approach and detection of Ganoderma boninense infected oil palm leaves using MWCNT-based electrochemical sensor. J Nanomater 47: 706-717. DOI: 10.1155/2019/4729706.

Janczewski L, Kerguelen D, Kolesinska B. 2021. Synthesis of isothiocyanates using DMT/NMM/TIO as a new desulfurization reagent. Molecules 26: 2740-2763. DOI: 10.3390/molecules26029740.

Junaedi D. 2020. Data dan fakta sawit Indonesia : Luas, sebaran dan tantangannya. Webinar : Ngopi Sawit #2. Jakarta, 24 Juni 2020. www.auriga.or.id [Indonesian]

Khandan A, Radjaccomare R, Ramanathan A, Raguchander T, Balasubramanian P, Samiyappan R. 2009. Molecular biology of Ganoderma pathogenicity and diagnosis in coconut seedlings. Folia Microbiol 54: 147-152. DOI: 10.1007/s12223-009-0022-9.

Kavitha A, Mary Kensa V. 2020. GC-MS Analysis of the whole plant ethanolic extract of the Rivina humilis L. J Inst Comput Sci 10: 55-59.

Kayalvizhi V, Antony U. 2011. Microbial and physicochemical changes in tomato juice subjected to pulsed electric field treatment. Afr J Agric Res 6: 6348-6353. DOI: 10.5897/AJR.10.069.

Khan A, Ansari AA, Numan M, Abdullahkareem NM, Mahboob A, Al-Awadi K. 2021. Spectroscopic and molecular methods to differentiate gender in immature date palm (Phoenix dactylifera L.). Plants 10: 536-550. DOI: 10.3390/plants10030536.

Lai DS, Osman AF, Adnan SA, Ibrahim I, Al-Ashri SA, Salimi MNA, Ul-Khidir A. 2020. On the use of GFB derivative microcrystalline cellulose and nano bentonite for development of thermoplastic starch hybrid bio-composites with improved performance. Polymers 13: 897-918. DOI: 10.3390/polym13060897.

Liaghat S, Mansor S, Ehsani R, Shafii HZM, Meon S, Sankaran S. 2014. Mid-infrared spectroscopy for early detection of basal stem rot disease in oil palm. Comput Electron Agric 101:48-54. DOI: 10.1016/j.compag.2013.12.012.

Midof F, Lau SYL, Wong WC, Tang HJ, Yap ML, Lo ML, Jee MS, Dom SP, Melling L. 2019. Genetic diversity and demographic history of Ganoderma boninense in oil palm plantations of Sarawak, Malaysia inferred from ITS regions. Microorganisms 7: 464-480. DOI: 10.3390/microorganisms7020046.

Ministry of Agriculture. 2019. Tree crop estate statistics of Indonesia 2018-2020: Palm Oil. Secretariate of Directorate General of Estates and Crop Economics. 1-2. [Indonesian]

Misisogame Kostakis G, Mavroudis N, Tsakirios D, Biondini D, Tsakirios G, Zoroupolis V, Arvanitakis A, Papadakis P, Koroneos N, Kostakis G. 2019. The role of isothiocyanates as cancer anti-melanoma agents. Antioxidants 8: 106-137. DOI: 10.3390/antiox8040106.

Mohd Najib NE, Kanniah KD, Cracknell AP, Yu L. 2020. Synergy of FB derived microcrystalline cellulose and nano bentonite for development of thermoplastic starch hybrid bio-composites with improved performance. Polymers 13: 897-918. DOI: 10.3390/polym13060897.

Nasarz T de M, Bordin K, Manyes L, Meca G, Manes J, Luciano FB. 2016. Control of basal stem rot disease in oil palm by supplementation of calcium, copper, and salicylic acid. Plant Pathol 33: 396-406. DOI: 10.5425/PPAJO.03.2016.0052.

Nagahama M, Paiko AS, Kharulmazumi A, Akhtar MS, Idris AS. 2016. Secondary metabolites of basal stem rot disease in oil palm by supplementation of cyclohexane, sucrose, and salicylic acid. Pakistan J Bot 48: 1015-1020. DOI: 10.12980/APJT.B.4.2014APJT-20140422.

Rebitanim NA, Hanafi MM, Idris AS, Abdullah SNA, Mohdin H, Rebitanim NZ. 2020. Ganocare® improves oil palm growth and resistance against Ganoderma basal stem rot disease in nursery and field trials. BioMed Res Int 2020: 10637110. DOI: 10.1155/2020/10637110.

Sadn I, Omar D, Nasehi A, Wong MY. 2019. Pyraclostrobin suppressed Ganoderma basal stem rot (BSR), promoted plant growth and induced early expression of β-1,3-glucanase in oil palm (Elaeis guineensis). J Oil Palm Res 31: 248-261. DOI: 10.21894/jopr.2019.0021.

Salman A, Tsor L, Pomerantz A, Moreh R, Mordechai S, Huleihel M. 2010. FTIR spectroscopy for detection and identification of fungal pathogen pathogens. Spectroscopy 24: 261-267. DOI: 10.33233/SPS-2010-0448.

Saragih WS, Purba E. 2019. Identification and analysis of weed vegetation as Ganoderma presence marker on oil palm plantation. Natural 18: 135-140. DOI: 10.24815/jvnt.v10i01.11595. [Indonesian]

Saragih WS, Purba E. 2019. Analisis Hara Cu dan Zn pada vegetasi gulma sebagai penanda keberadaan jamur Ganoderma dari kebun kelapa sawit. J Agrotek Tropika 7: 519-525. DOI: 10.29360/jat.v7i3.3237. [Indonesian]

Siddiqui Y, Surendran A, Paterson RRM, Ali A, Ahmad K. 2021. Current strategies and perspectives in detection and control of basal stem rot of oil palm. Saudi J Biol Sci 28: 2840-2849. DOI: 10.1016/j.sjbs.2021.02.016.

Suprata DN. 2016. A review of tropical plants with antifungal activities against plant fungal pathogens. Preprints 1-13. DOI: 10.20944/preprints201610.0049.v1.

Susanto A. 2011. Informasi organisme pengganggu tanaman: Penyakit busuk panjang batang Ganoderma boninense. Patu Penelitian Kelapa Sawit P-0001-1-1. [Indonesian]

Taylor FI, Kenyon D, Rossier S. 2014. Isothiocyanates inhibit fungal pathogens of potato in in vitro assays: Isothiocyanates inhibited growth of several economically important potato pathogens. Plant Soil 382: 281-289. DOI: 10.1007/s11104-014-2157-y.

Tiznado-hernández ME. 2008. Control of fungal diseases with isothiocyanates. Stewart Postharvest Rev 2: 1-14. DOI: 10.2212sp.2006.1.4.

Tongco JFF, Villalder RA, Aguda RM, Razal RA. 2014. Nutritional and phytochemical screening, and total phenolic and flavonoid content of Diplazium esculentum (O. Kuntze) Sw. from Philippines. J Chem Pharm Res 6: 238-242.

Utomo C, Niepold F. 2000. Development of diagnostic methods for detecting Ganoderma infected oil palms. J Phytopath 148: 507-514. DOI: 10.1046/j.1439-0454.2000.00478.x.

Viera-Torres M, Sinde-González I, Gil-Docampo M, Bravo-Yáñez V, Toulkeridis T. 2020. Generating the baseline in the early detection of bud rot and red ring disease in oil palms by geospatial technologies. Remote Sens 12: 3229-3249. DOI: 10.3390/rs12193229.

Westcott S, Ashrath N, Covazzi D. 2019. Application of FTIR-ATR spectroscopy in the Beauty Leaf Tree (Calophyllum inophyllum L.) Energy Procedia 160: 761-768. DOI: 10.1016/j.egypro.2019.02.182.

Xue H, Jiang Y, Zhao H, Köllner TG, Chen S, Chen F. 2019. Characterization of composition and antifungal properties of leaf secondary metabolites from thirteen cultivars of Chrysanthemum morifolium Ramat. Molecules 24: 4202-4212. DOI: 10.3390/molecules24234202.

Zhang M, Li Y, Bi Y, Wang T, Dong Y, Yang Q, Zhang T. 2020. 2-Phenylethyl isothiocyanate exerts antifungal activity against Alternaria alternata by affecting membrane integrity and mycotoxin production. Toxins 12: 124-136. DOI: 10.3390/toxins12010124.