Original Article

Preoperative T1 magnetic resonance imaging changes carry a poor postoperative prognosis in cervical myelopathy: A retrospective study of 182 patients

Akash Shakya¹, Ayush Sharma¹, Vijay Singh¹, Ajay Jaiswal¹, Nandan Marathe², Vinayak Garje³

¹Department of Orthopaedics and Spine Surgery, Dr. B.A.M. Hospital, ²Spine Services, KEM Hospital, ³Department of Orthopaedics, ESIC Hospital, Mumbai, Maharashtra, India.

E-mail: *Akash Shakya - akashshakya.gmc@gmail.com; Ayush Sharma - drayush@gmail.com; Vijay Singh - vijay201080@gmail.com; Ajay Jaiswal - jaisajay66@gmail.com; Nandan Marathe - nandanmarathe88@gmail.com; Vinayak Garje - garjevinayakr@gmail.com

ABSTRACT

Background: T2 scans are widely used to determine the prognosis for patients undergoing surgery for cervical myelopathy. In this study, we determined whether T1 MR changes in addition to T2 MR changes could have prognostic importance.

Methods: This retrospective analysis involved 182 patients undergoing surgery for cervical myelopathy (2017–2020). There were 110 patients in Group 1 (only T2 MR changes) and 72 in Group 2 (both T1 and T2 MR changes). In addition, demographic, visual analog score (VAS), modified Japanese Orthopaedic Association (mJOA) scores, and operative details were recorded at 1 month, 3 months, 6 months, and 1 year postoperatively.

Results: Notably, VAS scores were comparable at each point in time and were significantly better than the preoperative scores at 1 year postoperatively. Although mJOA scores were comparable at 1 month in both groups, they were better thereafter for Group 1 patients.

Conclusion: The presence of T1 changes on the preoperative magnetic resonance imaging represented a poor prognostic indicator for the postoperative outcome compared to the presence of T2 changes alone.

Keywords: Cervical myelopathy, Magnetic resonance imaging changes, Modified Japanese Orthopaedic Association, Prognostic, Visual analog score

INTRODUCTION

The prognostic impact of T1 MR findings in patients with myelopathy undergoing surgery needs to be further studied.⁵⁻¹⁰ Notably, the majority of prior studies have focused on the prognostic importance of preoperative T2-weighted MR studies alone, with very little weight being given to T1 findings. Here, we have focused on the value of T1 MR changes to better predict whether patients undergoing surgery for cervical myelopathy will have poorer outcomes.

MATERIALS AND METHODS

This retrospective analysis involved 182 patients undergoing cervical surgery for myelopathy (2017–2020) [Table 1]. Patients were then placed in two groups based on the presence of signal
changes on the preoperative magnetic resonance imaging (MRI). Of these, 110 belonged to Group 1 (only T2 changes) and 72 belonged to Group 2 (both T1 and T2 changes). We could not find any patient who had only T1 change on their MRI in the absence of T2 changes.

The criteria used in the study and the respective times of assessment are shown in [Table 2]. All patients had preoperative MR scans, and the presence of the signal changes was assessed by the radiologist who was blinded to the study design.

Statistical analysis

The statistical analysis was performed using SPSS version 23.0. Paired Student's t-test was used for statistical testing of difference in mean values for comparing between preoperative and postoperative outcomes. \(P = 0.05 \) was considered to be statistically significant. Pearson's correlation was used to analyze the association between two variables. The analysis of variance test was used to analyze multiple variables. Values were reported as mean ± standard deviation of the mean.

RESULTS

The demographic, baseline characteristics, baseline functional scores, and operative were comparable for the two groups [Table 3]. A majority of the patients were operated by the anterior approach and most had a single-level procedure [Table 4]. Modified Japanese Orthopaedic Association (mJOA) scores were comparable preoperatively for both groups, and both significantly improved at postoperative 1 year. Nevertheless, the scores at each point of assessment were significantly better in Group 1 (only T2 changes) [Table 5].

Visual analog score (VAS) was also comparable preoperatively. However, in contrast to the mJOA scores, the VAS was comparable among the two groups at each point of assessment postoperatively [Table 6].

DISCUSSION

MRI and the wide and huge data that it provides have led to various prognostic factors being increasingly studied \([1,3,4,7]\). The outcomes following the presence of T2 changes have been discussed widely [Table 7].

Grading T2 changes

Grading of T2 changes on the MRI ranged from no change to mild with fuzzy borders, intense, and well-defined border of the hyperintensity in the cord \([4]\). Notably, some found intense hyperintensity was associated with a poor outcome, while others saw no correlation \([4,9]\).

T1 cord changes on MRI

T1 changes have also been studied and have been shown to be independent predictors of functional outcomes. T1 changes most likely represent irreversible changes that occur in the cord and thus provide a better indication regarding prognosis.

Table 1: Inclusion and exclusion criteria.

Inclusion criteria	Exclusion criteria
Age > 45 years	No MRI changes
Follow-up ≥ 1 year	Preexisting spondyloarthropathies
Consent for participation	History of trauma
	History of the previous cervical spine surgery

Table 2: Various criteria used for assessment in the study.

Clinical and demographic	Perioperative	Functional			
Variable	Assessed at	Variable	Assessed at	Variable	Assessed at
Age	Preoperative	Duration of surgery	Immediate postsurgery	Visual analog score	Preoperative, 3 months postoperative, 6 months postoperative, and 1 year postoperative
Sex		Blood loss		Modified Japanese Orthopaedic Association score	
BMI		Approach	Number of levels operated on Hospital stays	Discharge from the hospital	
Duration of symptoms					
Comorbidities					
Follow-up	Last follow-up visit				
after the surgery. T2 changes, typically due to cord edema, obstruction of the cerebrospinal fluid, degeneration of the gray matter, or myelomalacia, have a greater chance of being reversible. Thus, in the absence of T1 changes, T2 changes alone might represent an ideal window for intervention to prevent further and permanent deterioration.

Table 3: Demographic variables of the study population.

Variable	Group 1 (only T2)	Group 2 (both T1 and T2)	P-value
Age (years)			
Mean	55.4	57.5	0.16
Standard deviation	10.2	9.5	
Gender			
Male	65	38	0.40
Female	45	34	
BMI			
Mean	27.5	28.4	0.20
Standard deviation	5.1	3.8	
Duration of symptoms (months)			
Mean	5.2	5.8	0.28
Standard deviation	3.5	3.8	
Symptoms			
Neck pain	89	60	0.83
Radiculopathy	31	19	0.92
Gait imbalance	42	34	0.29
Bowel/bladder involvement	15	9	0.99
Follow-up (months)			
Mean	16.4	17.0	0.20
Standard deviation	3.4	2.5	
Comorbidities			
Smoking	17	8	0.54
Hypertension	24	15	0.98
Diabetes mellitus	29	20	0.97
Cardiac disease	20	11	0.76
COPD	4	3	0.83
Thyroid disorder	12	11	0.52
Dyslipidemia	18	10	0.81

BMI: Body mass index; COPD: Chronic obstructive respiratory disease

Table 4: Perioperative variables of the patients in the two groups.

Variable	Group 1 (only T2)	Group 2 (both T1 and T2)	P-value
Duration of surgery (minutes)			
Mean	125.8	131.5	0.14
Standard deviation	20.1	32.1	
Blood loss (milliliters)			
Mean	145.7	151.4	0.31
Standard deviation	35.8	38.9	
Hospital stays (days)			
Mean	6.4	6.9	0.14
Standard deviation	2.4	2.0	
Number of levels			
1	72	43	0.73
2	33	25	
3	5	4	
Approach			
Anterior	60	46	0.35
Posterior	42	20	
Combined	8	6	
Are T1 and T2 changes combined better predictors of outcome?

The combined T1 and T2 MR cord changes in patients with cervical myelopathy are more predictive of poorer outcomes. Suri et al. also observed that a combination of T1 and T2 changes represents a poor prognostic indicator. In our study as well, the presence of T1 changes in addition to the T2 changes showed a significantly inferior outcome, likely due to irreversible damage.
CONCLUSION
Both T1 and T2 MR changes constitute a poorer prognostic sign versus T2 changes alone for those about to undergo cervical spine surgery for myelopathy.

Declaration of patient consent
Patient's consent not required as patients identity is not disclosed or compromised.

Financial support and sponsorship
Publication of this article was made possible by the James I. and Carolyn R. Ausman Educational Foundation.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Ahn JS, Lee JK, Kim BK. Prognostic factors that affect the surgical outcome of the laminoplasty in cervical spondylotic myelopathy. Clin Orthop Surg 2010;2:98-104.
2. Alafifi T, Kern R, Fehlings M. Clinical and MRI predictors of outcome after surgical intervention for cervical spondylotic myelopathy. J Neuroimaging 2007;17:315-22.
3. Avadhani A, Rajasekaran S, Shetty AP. Comparison of prognostic value of different MRI classifications of signal intensity change in cervical spondylotic myelopathy. Spine J 2010;10:475-85.
4. Chen H, Pan J, Nisar M, Zeng HB, Dai LF, Lou C, et al. The value of preoperative magnetic resonance imaging in predicting postoperative recovery in patients with cervical spondylosis myelopathy: A meta-analysis. Clinics (Sao Paulo, Brazil) 2016;71:179-84.
5. Chikhale CB, Khurjekar KS, Shyam AK, Sancheti PK. Correlation between preoperative magnetic resonance imaging signal intensity changes and clinical outcomes in patients surgically treated for cervical myeloradiculopathy. Asian Spine J 2017;11:174-80.
6. Suri A, Chabbra RP, Mehta VS, Gaikwad S, Pandey RM. Effect of intramedullary signal changes on the surgical outcome of patients with cervical spondylotic myelopathy. Spine J 2003;3:33-45.
7. Vedantam A, Rajeshkhar V. Does the type of T2-weighted hyperintensity influence surgical outcome in patients with cervical spondylotic myelopathy? A review. Eur Spine J 2013;22:96-106.
8. Wada E, Yonenobu K, Suzuki S, Kanazawa A, Ochi T. Can intramedullary signal change on magnetic resonance imaging predict surgical outcome in cervical spondylotic myelopathy? Spine 1999;24:455-62.
9. Yone K, Sakou T, Yanase M, Ijiri K. Preoperative and postoperative magnetic resonance image evaluations of the spinal cord in cervical myelopathy. Spine 1992;17 Suppl 10:S388-92.

How to cite this article: Shakya A, Sharma A, Singh V, Jaiswal A, Marathe N, Garje V. Preoperative T1 magnetic resonance imaging changes carry a poor postoperative prognosis in cervical myelopathy: A retrospective study of 182 patients. Surg Neurol Int 2021;12:629.