Emerging analytical tools for the detection of the third gasotransmitter H2S, a comprehensive review

Hany Ibrahim a,1, Ahmed Serag b,1, Mohamed A. Farag c,d,*

a Analytical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
b Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
c Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
d Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt

GRAPHICAL ABSTRACT

ABSTRACT

Background: Hydrogen sulfide (H2S) is currently considered among the endogenously produced gaseous molecules that exert various signaling effects in mammalian species. It is the third physiological gasotransmitter discovered so far after NO and CO. H2S was originally ranked among the toxic gases at elevated levels to humans. Currently, it is well-known that, in the cardiovascular system, H2S exerts several cardioprotective effects including vasodilation, antioxidant regulation, inhibition of inflammation, and activation of anti-apoptosis. With an increasing interest in monitoring H2S, the development of analysis methods should now follow.

Aim of review: This review stages special emphasis on the several analytical technologies used for its determination including spectroscopic, chromatographic, and electrochemical methods. Advantages and limitations with regards to the application of each technique are highlighted with special emphasis on its employment for H2S in vivo measurement i.e., biofluids, tissues.

Key Scientific Concepts and important findings of Review: Fluorescence methods applied for H2S measurement offer an attractive non-invasive and promising approach in addition to its selectivity, however they cannot be considered as H2S-specific probes. On the other hand, colorimetric assays are among the most common methods used for in vitro H2S detection, albeit their employment in vivo H2S measurement has not yet been possible. Despite all the developed analytical procedures used...
Introduction

Hydrogen sulfide (H\textsubscript{2}S) is an important gaseous signaling molecule that sits with nitric oxide and carbon monoxide as the biologically active family of “gaseous mediators” or “gasotransmitters” [1]. It is produced at low concentrations in mammalian systems mainly via enzymatic interconversions of sulfur-containing substrates to fulfill a vast number of biological functions in almost every organ [2]. For example, in the central nervous system it acts as a neuromodulator [3] in addition to its effect for controlling perception of pain and neuronal potentiation [4]. In the cardiovascular system, it causes vasodilation and protects vasculature from reperfusion injury [5,6]. Besides, H\textsubscript{2}S plays other pivotal biological roles viz., angiogenesis, anti-inflammation, inhibition of insulin signaling, regulation of blood pressure [7], and even involved in longevity [8]. On the other hand, H\textsubscript{2}S also participates in many pathological activities of various diseases, such as Parkinson’s disease [9], Alzheimer’s disease [10], Down’s syndrome [11] and diabetes [12].

Owing to its vast involvement in various physiological processes, H\textsubscript{2}S-based therapeutics have been recently investigated [1]. Consequently, it is of great importance to develop fast and sensitive determination methods to scrutinize H\textsubscript{2}S levels. However, in vivo monitoring and detection of H\textsubscript{2}S faces many serious challenges owing to its promiscuous chemical properties such as volatility, high reactivity, and rapid catabolism. Besides, H\textsubscript{2}S presents, under physiological conditions, pH 7.4 and 37 °C, in different chemical ionization forms i.e. approximately 18.5% H\textsubscript{2}S, 81.5% hydrosulfide anion (HS-) and a negligible contribution of S2- [13]. Moreover, it might also exist in different bound forms such as acid-, base-labile and reducible forms, which are utilized in liberating free hydrogen sulfide following physiological stimuli in biological systems [14]. In addition, the extraction and sample treatment of H\textsubscript{2}S may face interference from the biological matrices such as proteins present in blood, plasma, serum and cells [15,16] thus the real concentration of H\textsubscript{2}S in different biological samples was in debate for a long time due to the disaccording reported data [17].

Owing to the previously mentioned challenges for H\textsubscript{2}S determination, developed analytical methodologies should fulfill certain criteria to be successfully implemented including sufficient sensitivity for endogenous H\textsubscript{2}S, real-time monitoring for H\textsubscript{2}S level changes and high selectivity for H\textsubscript{2}S over other endogenous biothiols (e.g. glutathione, cysteine …) or other ions present in the blood or tissues under investigation. Hence, a plethora of different analytical methods has evolved for H\textsubscript{2}S measurements such as fluorescence-based assays [18], colorimetric sensors [19], chromatographic methods (HPLC and GC) [20] and electrochemical methods (ion-selective electrodes and polarographic H\textsubscript{2}S sensors) [21]. However, each of these techniques has its advantages and limitations. Colorimetric and chromatographic assays have been used for the bulk measurement of both plasma and tissue H\textsubscript{2}S, however, they do not have the capability for real-time monitoring of H\textsubscript{2}S within intact tissues or living cells, in addition, they are denounced to be sample-destructive. On the other hand, fluorescence-based sensors have been developed to meet these challenges and to provide sensitive and biocompatible detection tools for H\textsubscript{2}S not only within certain tissues but also within subcellular organelles. Ion selective electrodes have also been widely used as an effective method to measure the H\textsubscript{2}S in different biological matrices with distinct advantages of low detection limit and fast response, however, vigorous alkaline conditions are required to convert H\textsubscript{2}S and HS- to S2- as this is the only form the electrode can measure. Unfortunately, liberation of sulfur from other biomolecules has been detected at such conditions which could lead to an overestimation of molecular H\textsubscript{2}S concentrations.

Several reviews have reported on the different analytical approaches applied for the determination of this gaseous signaling molecule [18,22–28]. However, most of these reviews focused only on spectroscopic techniques with special emphasis on probe materials [18,19,29], design strategies [27,30], and detection mechanisms [28,31]. Besides, very few reports have discussed other analytical methodologies such as electrochemical and chromatographic methods [21,22]. In this review, we summarize the information about the currently available state-of-the-art analytical techniques used to measure physiological H\textsubscript{2}S levels. The reported methods were organized into categories following their instrumentation type and then subdivided based on their working principle. Also, the advantages and limitations of these methods have been addressed to guide researchers through the appropriate analytical tool to choose for their application.

Fluorescence-based sensors

While chromatographic assays and electrochemical sensors have been used to determine H\textsubscript{2}S levels in the blood, homogenized tissues, and cell lysates [32], these methods are mostly less suitable for its determination in living biological specimens. Though, fluorescence techniques have attracted much attention as sensors offering excellent sensitivity, good selectivity, rapid response, and non-invasive detection with a high spatiotemporal resolution for both in vitro and in vivo imaging as typically needed for quantifying H\textsubscript{2}S. Moreover, fluorescence-based sensors offer real-time H\textsubscript{2}S monitoring not only within certain tissues but also within subcellular organelles. Therefore, the evolution of H\textsubscript{2}S fluorescent probes is considered one of the most rapid-growing areas in the field of H\textsubscript{2}S biology [17]. Though, a substantial increase in the number of developed small molecule-based sensors was remarked in the past decade. Diverse small organic compounds and metal chelates have been explored with different H\textsubscript{2}S-reaction sites. Recently, nanotechnology was implemented for the development of effective and highly sensitive fluorescent nanosensors used for H\textsubscript{2}S detection [33] as typical in the detection of other signaling molecules or drugs.

Monitoring H\textsubscript{2}S in subcellular structures is considered crucial for biomarkers discovery and related drug discovery. Therefore, the emergence of organelle-targeted fluorescent probes is essential for subcellular imaging revealing the physiological and pathological functions of these highly reactive, interactive, and interconvertible molecules during diverse biological events, which are significant for the understanding of diseases etiology. Organelle-targeted fluorescent probes should encompass three moieties: targeting groups, fluorophores, and recognition units. Many cellular organelles-targeting scaffolds were coupled with the fluorophore and the H\textsubscript{2}S-recognition moieties. For example, the mitochondrial-targeting entities comprise positively charged groups as triphenylphosphonium, quaternary ammonium, isoquinolinium, acridine, indolium, and pyridium [34]. Whereas the sulfide-recognition entities include azides, nitro, hydroxylamine, dinitrophenyl, NBD. After reaching subcellular locations of interest, probes can subsequently react with free sulfide through and specific reaction mechanisms and consequently fluorescence response.
measurements via turn-on, -off, or ratiometric, which enables the monitor of targeted species in different organelles [35,36].

The determination of endogenous H2S in vivo presents indeed many challenges due to its low concentration, short half-life time with fast catabolism, and high reactivity. Although there are limits of measurement techniques and the quantification of biological H2S levels is debated, H2S physiological levels may range from 50 to 160 μM in the mammalian brain, to 30 nM–100 μM in the peripheral blood, 25 μM in the synovial fluid of non-inflammatory arthritic patients [37], 8.9 nM in mice liver tissue [38]. An ideal fluorescent probe should thus fulfill the following criteria:

i) to be sufficiently sensitive for endogenous H2S detection and real-time monitoring for the changes in H2S fluxes in living cells,

ii) to react rapidly (spontaneously) under physiological conditions (i.e., aqueous solutions, blood, plasma) without the need of organic solvents or surfactant.

iii) to display high selectivity and not to interact with other endogenous bio-thiols (i.e., glutathione, cysteine …) or other ions present in blood or tissues under investigation.

iv) to exhibit very low or no cytotoxicity to be promising for further development (bio-compatible & bio-degradable).

v) to emit in the near-infrared preferably at 700–900 nm as this permits greater tissue penetration, causes less cellular photo-damage or phototoxicity and minimizes the interference from background auto-fluorescence. The emission is preferably accompanied by large Stokes shift, as small Stokes shifts may lead to measurement errors such as auto-quenching and/or excitation back-scattering [39].

vi) to be functionalized to target certain subcellular organelles (mitochondria, lysosome, nucleus, endoplasmic reticulum, …), certain cells (hepatocytes, …), tissues, or organs.

Based on H2S main chemical properties i.e., nucleophilicity, reducibility, and metal precipitation capability, researchers have developed a large number of fluorescent molecules which can be classified according to their H2S-reactive sites or chemical reaction-based sensors as detailed in the next sections and summarized in Table 1 highlighting the main advantages, disadvantages, and applications of each probe.

Reduction-based fluorescence compounds:

These compounds contain an easily reducible group such as azide [40], nitro [41], or hydroxylamine [42], which act generally as fluorescence quenchers. These quenchers are linked to a fluorophore nucleus such as coumarin [43], rhodamine [44], chromone [45], cyanine [41], benzopryan derivative [46], dansyl [47], naphthalimide either as a molecular sensor [42,48] or incorporated in a nanosensor [49]. The reaction proceeds via their reduction to their corresponding amines under physiological conditions.

H2S-activated fluorescent sensors are mainly based on the difference of emission wavelength and quantum yield before and after reaction with free sulfide or measuring differential fluorescence response at two different wavelengths. Based on the fluorescence signal(s) and post-measurement data analysis, such category can be further subdivided into:

i) Fluorescence Turn-on: Principle entails measuring the increase in fluorescence emission. Since the first reported probe based on the reduction of non-fluorescent azides to fluorescent amines, compound F1, many azide-containing probes were developed, Table 1. Although compound F1 exhibits fluorescence emission in the near infra-red region (700 nm) and was used for monitoring H2S in HEK293 T cells it displays lower selectivity with relatively long response time (30 min) [40]. Another compound F4 was developed to target lysosome, containing a spiroractam moiety which opens in lysosomal acidic microenvironments, while its azide group is reduced by H2S giving a fluorescent derivative, albeit it exhibits small Stokes shift [44]. Whereas compound F5, was synthesized to target the mitochondria and for the first time to target the nucleus, however, it suffers from photosensitivity alongside a slow response (60 min) [43]. A sensitive fluorogenic nanoprobe containing azide having a good sensitivity (LOD = 18 nM) was introduced to determine H2S in vitro (living cells and mice serum) and the differentiation between sera of diabetic and non-diabetic mice [50]. Recently, a hepatocyte-targeting sensor, F7 containing galactosyl moiety was developed due to the specific recognition of ASGPR over-expressed in hepatocytes by galactose group. It displays fast response (~1 min) with good selectivity and sensitivity (LOD = 126 nM) [51].

ii) Fluorescence Turn –Off: It is based on measuring the decrease in fluorescence emission. Many sensors were developed exhibiting “turn-off” fluorescence response, Table 1. For example compound F9 contains an azide group linked to rhodamine derivative as a fluorophore [52]. This compound was used for quantifying H2S in human embryonic kidney 293 T cells and could target mitochondria but it suffers from relatively long response time (40 min). Another boron-dipyrromethene (BODIPY) derivative was developed to detect H2S in normal human oral fibroblast cells with good sensitivity 170 nM but still suffers from long response time (20 min) in a medium containing 33% methanol [53]. Organic solvents have certain limitations which may hamper further development for in vivo applications. For example, DMSO exhibits hemolytic activity and a significant effect on cellular membrane permeability. Moreover, it induces apoptosis of the vascular endothelial cells [54], whereas ethanol mediates for red blood cell hemolysis [55].

iii) Ratiometric analysis: It measures the intensity ratio changes at two emission wavelengths which generally offers more accurate results than turn-on and turn-off because it does not generate false positive/negative signals nor it is affected by analyte-independent interfering factors, such as the excitation source fluctuation, sample matrix background light scattering and autofluorescence, the microenvironment around the probe, and variation of the local concentration of the probe [33]. The first ratiometric fluorescent probe is an azido-heptamethine cyanine dye (compound F2) that exhibits emission in NIR (greater than700 nm) with good sensitivity (LOD = 80 nM) and was found able to detect changes in H2S levels in macrophage RAW264.7 cells, though to display long response time (20 min) as its only caveat [49,56].

Recently, a portable H2S analyzer was proposed as a simple determination of H2S in both aqueous solution and plasma using a fluorescent probe. The developed method was applied and validated for the quantification of H2S in plasma of cardiovascular patients [15]. The developed fluorescent sensor relied on the use of an azide derivative (an H2S reduction-based mechanism) [47]. However, this probe was not examined against the most abundant biothiols as GSH which represents a limitation for its biological application. Moreover, the derivatizing medium contains tween 20 which is known for its hemolytic activity [57] and to account for its validation using plasma and not on whole blood. Another recent study developed a microfluidic method for the measure-
ment of sulfide in blood plasma that relied on using the same fluorescent sensor dansyl azide, which confirmed the plasma matrix interference. Though a dilution step 3.3-fold dilution is required to reduce plasma interaction with exogenous sulfide [58].

Electrophile-based probes

These chemicals encompass at least one or two electrophilic centers to be attacked via nucleophilic addition/substitution reaction.

Table 1
Representative examples of certain fluorescent sensors for H$_2$S determination with the advantages and disadvantages of each probe.

N	Sensor	Properties & Applications	Ref.
A) Reduction-based fluorescence compounds	F1	Adv.: emission in the NIR (700 nm)	[40]
		Disadv.: relative long response (sulfide-sensor reaction) time (30 min), detection medium contains DMF, unsatisfactory selectivity (2- & 5-fold increased selectivity versus O$_2$ & GSH/Cys, respectively)	
		Application: living Cells (HEK293T cells)	
	F2	Adv.: emission in the NIR (> 700 nm), Stokes shift = 90 nm; low LOD (80 nM); detection medium: 100% aqueous	[56]
		Disadv.: relative high response time (20 min)	
		Application: living Cells (RAW264.7) Macrophage cells	
	F3	Adv.: near infrared emission (670 nm) with large Stokes shift (150 nm)	[165]
		Disadv.: detection medium contains high DMSO concentration (50%), long response time (60 min), high LOD 3050 nM	
		Application: bovine serum, living cells (HeLa & MCF-7), tissues (fresh rat liver cancer slice) & live mice (monitoring localized diffusion after a dorsal skin-pop injection)	
	F4	Adv.: targeting lysosome (morpholine moiety), small Stokes shift (25 nm)	
		Disadv.: not specified LOD, small Stokes shift (45 nm)	
		Application: exogenous & endogenous H$_2$S in lysosomes of living cells (HeLa)	
	F5	Adv.: 35-fold fluorescence enhancement, mitochondria-targeted and 1st time target nucleus	[43]
		Disadv.: photosensetive, large response time (60 min), detection medium contains DMSO (2%), small Stokes shift (45 nm)	
		Application: living cells (HeLa)	
	F6	Adv.: near infrared emission (710 nm), detection medium aqueous (PBS)	[52]
		Disadv.: long response time (40 min); small Stokes shift (60 nm), detection medium contains DMSO (25%)	
		Application: mitochondria / human embryonic kidney (HEK) 293 T & HeLa cells	
	F7	Adv.: good hepatocyte-targeting, excellent water solubility, low cytotoxicity, fast response (within 1 min), high selectivity, good sensitivity (LOD 126 nM)	[51]
		Application: hepatocyte-targeting	
	F8	Adv.: wide pH range (4–9), good sensitivity (LOD = 10 nM)	[49]
		Disadv.: relative long response time (15 min), the medium contains ethanol (25%), UV excitation (340 nm)	
		Application: in vitro exogenous H$_2$S in HeLa (human cervical cancer cell) and L929 (murine aneuploid fibrosarcoma cell)	
	F9	Adv.: both excitation and emission in the NIR (755/809 nm), aqueous medium, large linear range 0 – 350 µM, wide pH range 4.2 – 8.2	[41]
		Disadv.: relative small Stokes shift (54 nm), moderate quantum yield (0.11); 12.7 fold fluorescence enhancement, the long response time (60 min); biothiols as GSH & Cys interfere with H$_2$S determination	
		Application: living cells (RAW264.7)	
	F10	Adv.: 13-fold fluorescence enhancement, satisfactory sensitivity (LOD 500 nM), Quantum yield 0.12 $\lambda_{ex/em} = 435 / 544$ nm	[42]
		Disadv.: very long response time (120 min); Interference with sod. ascorbate	
		Application: living cells (Astrocyte cells)	
Table 1 (continued)

No.	Sensor	Properties & Applications	Ref.
B) Electrophile-based probes (containing 2,4-dinitrophenyl moiety)			
F11			
Adv.: very fast response time (4 sec.), NIR emission (680 nm), 115 fold fluorescence enhancement, linearity range 1–10 μM, good sensitivity (LOD = 11 nM), satisfactory Stokes shift (90 nm, λex/em = 590/680 nm), aqueous detection medium (PBS), low cytotoxicity against different cellular lines		[59]	
Application: lysosome-targeting/cell (HeLa) and mice (monitoring localized diffusion after intraperitoneal injection)			
F12			
Adv.: relative rapid response time (10 min), NIR emission (663 nm), very large Stokes shift (244 nm), 105-fold fluorescence enhancement, good sensitivity (LOD = 42 nM), good selectivity, linear range 0 – 100 μM, wide pH range (6 – 10), good quantum yield = 0.22		[166]	
Disadv.: detection medium contains DMSO (30%), not for acidic pH			
Application: exo & endogenous H2S in vitro (HeLa cells)			
F13			
Adv.: rapid response time (4 min), 32-fold fluorescence enhancement, good quantum yield (0.45); good sensitivity (LOD = 150 nM) linear range 0 – 100 μM, pH range (5 – 10), aqueous detection medium [4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer]		[167]	
Disadv.: GSH reacts with the probe but at a lesser extent (slower rate) than sulfide			
Application: target endoplasmic reticulum, endogenous & exogenous H2S imaging in living cells			
F14			
Adv.: NIR fluorescent probe, linear range (12–38 μM), large Stokes shift (97 nm, λex/em = 543 nm / 640 nm)		[94]	
Disadv.: high LOD 3900 nM, very long response time (170 min) & time-dependent fluorescence increase, certain anions as dihydrogen phosphate respond to the probe, The sensor was not tested against biological thiols (GSH, Cys, ...) to evaluate their possible interferences.			
Application: detect molecular H2S in the gaseous state, H2S in real water, red wine and living cells (MCF-7 (human breast carcinoma) cells)			
F15			
Adv.: rapid response (3 min); near-infrared fluorescent probe, 11-fold fluorescence enhancement; large Stokes shift (107 nm, λex/em = 557 / 664 nm), quantum yield (0.11), linear range (0 to 30 μM) with LOD (68.2 nM), high selectivity		[168]	
Disadv.: medium contains DMSO & disodium phosphate dodecahydrate			
Application: living cells (HeLa cells) / lysosome-targeting			
F16			
Adv.: NIR emission, 169-fold fluorescence enhancement, LOD = 121 nM, pH range 5 – 8.5, good selectivity		[67]	
Disadv.: time – dependent fluorescence increase (linearly up-to 180 min); small Stokes shift (49 nm, λex/em = 590/639 nm), detection medium contains DMSO (10%)			
Application: HeLa cells / lysosome-targeting			
F17			
Adv.: rapid response time (less than1 min), fluorescence enhancement 130-fold, very large Stokes shift (221 nm, λex/em = 445/666 nm), good sensitivity (LOD = 6 nM)		[63]	
Disadv.: detection medium contains DMSO (20%)			
Application: HeLa cells/mice			
F18			
Adv.: good sensitivity (LOD = 50 nM), wide linear range 0 – 275 μM, Stable over wide pH range, good selectivity, large Stokes shift (140 nm, λex/em = 415 / 555 nm)		[64]	
Disadv.: slow response time (40 min), 6-fold fluorescence enhancement, detection medium contains DMSO (2.5%)			
Application: spiked rat urine samples, exogenous & artificially generated endogenous H2S in living cells (HeLa) & in vivo living Caenorhabditis elegans (nematodes)			
F19			
Adv.: relative rapid response time (2 min), NIR emission (652 nm), 35-fold FL enhancement, good sensitivity (LOD = 10 nM), good selectivity, large Stokes shift (128 nm, λex/em = 512 / 652 nm), Stable over 6 – 10 pH, Linear range 0 – 30 μM		[65]	
Disadv.: weak quantum yield (0.067), detection medium contains high organic solvent DMF (50%), not for acidic pH			
Application: imaging exogenous H2S in Hela cells & artificially generated endogenous H2S in RAW264.7 cells, in vivo (Kunming mice)			

(continued on next page)
Table 1 (continued)

Sensor	Properties & Applications	Ref.
F20	**Adv.:** relative rapid response time (10 min), good selectivity, high sensitivity (LOD = 0.89 nM), wide linear range 2 nM – 1500 nM, Low cytotoxicity	
Disadv.: small Stokes shift (54 nm, $\lambda_{em} = 480/534$ nm)		
Application: living cells (MCF7)	[62]	
F21	**Adv.:** 45-fold fluorescence enhancement, satisfactory Stokes shift (75 nm, $\lambda_{em} = 405/480$ nm), 1st fluorescent probe based on thiolysis of NBD amine	
Disadv.: relative slow response time (30 min), low sensitivity (LOD = 9000 nM), **Application:** living cells (HEK293 & HeLa cells)	[72]	
F22	**Adv.:** mitochondria-targeting, 68-fold fluorescence enhancement, low cytotoxicity, biocompatible, good selectivity.	
Disadv.: slow response time (40 min), moderate sensitivity (LOD = 2460 nM), small Stokes shift (53 nm $\lambda_{em} = 394 / 532$ nm) and detection medium contains CH$_3$CN (10%)		
Application: HeLa cells (Mitochondria.)	[71]	
F23	**Adv.:** 45-fold fluorescence enhancement, good sensitivity (LOD = 56 nM), good selectivity, good Stokes shift (92 nm, $\lambda_{em} = 394/486$ nm)	
Disadv.: response time (20 min), narrow pH range (7.4–8.5), medium contains DMSO (10%)		
Application: H$_2$O$_2$-induced H$_2$S release in Yeast cells	[66]	
F24	**Adv.:** rapid response (~3 min), 4.5-fold fluorescence enhancement, Quantum yield = 0.36, linear range (0–30$ \mu$m), satisfactory sensitivity (LOD = 580 nM), pH range (6–8.5)	
Disadv.: sulfites ions react but at a lesser extent than sulfides, small Stokes shift (22 nm, $\lambda_{em} = 567/589$ nm)		
Application: H$_2$O$_2$-induced H$_2$S biogenesis in living cells.	[68]	
F25	**Adv.:** rapid response time (5 min), 17-fold fluorescence enhancement, LOD = 9.6 nM, pH range 5–8, good selectivity	
Disadv.: detection medium contains DMSO (10%); small Stokes shift (49 nm, $\lambda_{em} = 590 / 639$ nm)
Application: HeLa cells / Lysosome-targeting | [67] |

B) Electrophile-based probes (containing aromatic carbonyl with adjacent α,β-unsaturated carbonyl compound)

Sensor	Properties & Applications	Ref.
F26	**Adv.** relative rapid response time (20 min), 13-fold fluorescence enhancement, better quantum yield = 0.208	
Disadv. small red shift (Stokes shift = 45 nm, $\lambda_{em} = 465 / 510$ nm) with low sensitivity (LOD = 5000 nM), detection medium contains DMSO (1%) & time-dependent (0 – 60 min) fluorescent increase		
Application: in vitro HeLa cells	[73]	
F27	**Adv.** satisfactory Stokes shift 55 nm, pH range (5–8),	
Disadv. energetic excitation (308 nm), Medium contains DMSO (10%), limited sensitivity (high LOD 1700 nM), **Application:** living cells (Vero) | [74] |
Table 1 (continued)

No.	Sensor	Properties & Applications	Ref.
F28	![Chemical structure](image)	**Adv.**: good sensitivity (LOD = 160 nM), linear range (0 – 10 μM), wide pH range (3 – 9), large Stokes shift (108 nm, λex/em = 445 – 577 nm)	
Disadv.: long response time (40 min), detection medium contains DMSO			
Application: HepG2 cells and Chlorella	[75]		
F29	![Chemical structure](image)	**Adv.**: fluorescence enhancement 15-fold; good selectivity, good sensitivity LOD = 790 nM, large Stokes shift (108 nm, λex/em = 345/453 nm), linear range (0–300 μM)	
Disadv.: long response time (30 min); energetic excitation wavelength, detection medium contains CH3CN (30%) and CTAB 1 mM			
Application: endogenous and exogenous H2S in HeLa cells, Drosophila, melanogaster and C. elegans	[169]		
F30	![Chemical structure](image)	**Adv.**: NIR emission, good sensitivity LOD (1.1 nM), large Stokes shift (120 nm, λex/em = 560/680 nm)	
Disadv.: long response time (30 min), detection medium: containing 50% DMSO/PBS			
Application: living cells	[76]		
F31	![Chemical structure](image)	**Adv.**: 10-fold fluorescence enhancement, linear range: 2–14 μM; LOD 25.7 nM, pH range (7–10),	
Disadv.: relative long reaction time (15 min), biothiols as (L- Cys, Hcy, GSH) were tested at the same H2S concentrations (50 μM) medium contains DMF (10%),			
Application: living cells (HeLa)	[170]		
F32	![Chemical structure](image)	**Adv.**: NIR emission, Quantum yield (0.19), 22-fold fluorescence enhancement, pH range 6–12, good sensitivity 36 nM, large Stokes shift (129 nm, λex/em = 510/639 nm)	
Disadv.: narrow linear range (1–6 μM), the medium contains DMF (10%), the long response time (60 min), biothiols as (L- Cys, L-methionine) reacts with the probe but at the lesser extent and they were tested at lower concentrations (50 μM vs 20 μM H2S)			
Application: target mitochondria, in vitro (HeLa cell), in vivo (mice)	[80]		
F33	![Chemical structure](image)	**Adv.**: 100% aqueous medium, rapid response time (instantaneous), large Stokes shift (161 nm, λex/em = 256, 417 nm), good selectivity, no cytotoxicity (up to 100 μM, WST-1 cells)	
Disadv.: UV excitation range (energetic), relative low sensitivity (LOD = 3900 nm), pH range is not checked			
Application: living cells, HeLa cells treated with exogenous H2S	[83]		
F34	![Chemical structure](image)	**Adv.**: 100% aqueous medium, rapid response time (1 min), satisfactory Stokes shift (55 nm, λex/em = 375, 430 nm), high quantum yield (0.65), good sensitivity (205 nM),	
Disadv.: biothiols as Cys react with the sensor but at a lesser extent than sulfide
Application: living cells (HeLa), in vivo (Zebra fish) | [171] |

(continued on next page)
tion to yield a thio-derivative, followed by another intramolecular nucleophilic addition/substitution of H₂S to the probe. This results in one or two fluorescent compounds

i) 2,4-dinitrophenyl-based probes: The 2,4-dinitrophenyl moiety acts as a quencher of the fluorophore moiety via photo-induced electron transfer (PET). 2,4-Dinitrophenyl moiety can be linked to the fluorophore nucleus such as cyanine [59], xanthene [60], pyridinium derivative [46], pyrimidine derivative [61], functionalized graphene quantum dots [62] via an ether linkage, or a sulfonamide linkage to fluorophore as dicyanoisophorone [63], curcumin [64], coumarin [65].

The reaction with H₂S proceeds via nucleophilic addition of H₂S to the probe generating a thiol derivative which undergoes subsequent intramolecular nucleophilic substitution (thiolysis) and cleavage of the linkage (i.e., ether, sulfonamide, and ester) liberating the fluorophore (parent fluorescent dye).

As illustrated in Table 1, this family of compounds exhibits various advantages according to the fluorophore derivatives being employed leading to emission in NIR as compounds F11, 12, 15, 17, 19 with very large Stokes shift (244 nm) exemplified in compound F12. Certain intracellular organelles could be targeted as lysosomes (F17), endoplasmic reticulum (F13), or mitochondria (F15). A sensitive fluorescent sensor, F23 (LOD = 11 nM) contains an ether-linkage and cyanine derivative (fluorophore) was developed to react instantaneously with H₂S (4 sec) exhibiting 115-fold fluorescence enhancement (Turn-on). It offers a water-soluble sensor that has been used in cellular imaging (HeLa and HepG2), lysosomes, and in vivo in mice [59]. The fluorescence enhancement is generally reflecting the increase in the fluorescence intensity in the presence of sulfide compared to that of the probe alone under the given reaction conditions (Time, temperature, pH, ...).

The first developed sensor containing sulphonamide linkage was that of compound F17, as a new selective reaction site for H₂S between the 2,4-dinitrophenyl moiety (quencher) and dicyanoisophorone (fluorophore) exhibited high sensitivity (LOD = 6 nM), rapid response (less than 1 min), large Stokes shift (221 nm) and has been used in cellular imaging and in vivo in mice [63].

Graphene quantum dots-based sensor, F20 offers the highest sensitivity (LOD 0.89 nM) of this family with wide linear range (2 – 1500 nM) and used for H₂S detection in MCF7 but it displays excitation/emission out of the NIR with relative short Stokes shift and relative long response time (10 min).

ii) NBD (7-nitro-1,2,3- benzoxadiazole)-based probes: The 7-nitro-1,2,3- benzoxadiazole acts as a quencher of the fluorophore. The fluorophore moiety can belong to coumarins [66], rhodamine B amines [68,69], Tetrahydro [5] helicene [70], naphthalimide [71] all linked to NBD via different linkers as ether or thioether bond. As the reaction proceeds, under physiological pH via the attack of the nucleophilic sulfhydryl group to the probe generating a thiol derivative which undergoes subsequent intramolecular nucleophilic substitution (thiolysis), liberating the non-fluorescent thio-NBD derivative and the fluorophore. Therefore, all the NBD-based H₂S sensors exhibit turn off–on fluorescence response.

As illustrated in Table 1, compound F21 was the first synthesized NBD-based H₂S sensor used for its detection in vitro in living cells (HEK293 and HeLa cells) [72], after which many NBD-based H₂S sensors were developed to improve sensor features such as sensitivity level [66], or to target certain organelles as lysosomes using compound F25 [67] or mitochondria using compound F22 [71]).

iii) Aromatic carbonyl with adjacent α,β-unsaturated carbonyl-based probes (Michael acceptor):

The reaction in these probes proceeds via two mechanisms. First, it involves a double nucleophilic addition in which H₂S attacks the aromatic carbonyl group generating a thiol derivative which undergoes subsequent Michael addition to yield the acrylate ester (α,β-unsaturated carbonyl compound (Michael acceptor) leading to cyclic fluorescent thio-derivative [73,74]). Second, it functions via a double nucleophilic attack, initially through HS⁻ nucleophilic substitution generating a thiol derivative that undergoes subsequent intramolecular nucleophilic addition that leads to cyclic non-fluorescent compound (Turn-off) carbazole derivative [75]. As illustrated in Table 1, compounds F26-28 were used for in vitro H₂S cellular imaging (HeLa, Vero, and HepG2 cells), albeit they use relatively energetic excitation wavelengths (308–465 nm) with subsequent increased risk of cellular photodamage or phototoxicity. Furthermore, these sensors displayed a relatively long response time (20–40 min) and moreover failing to attain high sensitivity (160 nM – 5000 nM).

iv) Probes containing (disulfide or selenenyl sulfide) benzoate ester-linked to a fluorophore

The reaction proceeds via two consecutive nucleophilic substitutions initially through HS⁻ nucleophilic substitution generating

...
a thiol derivative which undergoes subsequent intramolecular nucleophilic substitution and cleavage leading to a fluorophore and cyclic non-fluorescent thio-compound [76,77]. The first disulfide-based sensors were developed [78] with the drawback of overconsumption of biothiols and thus high probe loading was needed. Certain biothiols (RSH) as glutathione, L-cysteine, and Homocysteine could undergo the first substitution step consuming part of the sensor but could not proceed beyond. As these biothiols do not possess more than one replaceable proton, which prevents the achievement of the second nucleophilic substitution step and consequently blocking the cyclization and the fluorophore liberation. It is worth noting that glutathione (GSH) represents the most abundant cellular biothiols (1–10 mM) [79]. Though GSH should be evaluated its potential interference at least (1 mM) 10 times H₂S biologically concentrations which were in the nano-micromolar range [38]. Many sensors were tested even at a higher GSH/H₂S concentration ratio (20x) as in the case of compounds F11, F15, F19, and F26. However, the selectivity is questionable for certain sensors which evaluated at lower GSH/H₂S concentration ratio or even at the same sulfide concentration as in the case of compounds F31 and F32. As shown in Table 1, compounds belonging to this family of sensors exhibit emission in NIR with very large Stokes shift (120 and 129 nm) and display good sensitivity (LOD = 1.1 and 36 nM) as exemplified in compounds F30 and F32, respectively. Certain intracellular organelles could be targeted as mitochondria to detect H₂S as compound F53. However, biothiols still show slight interference [80], which may be attributed to the contribution of other nucleophilic centers in these interfering molecules leading to cyclization and liberation of the fluorophore.

As the pKₐ of H₂S (6.9) is lower than that of most abundant cellular biothiols such as GSH (9.2), HcyS (8.9), Cys (8.3), indicating that H₂S has a stronger nucleophilicity than other biothiols under physiological conditions pH (7.4). However, it is still somewhat difficult to distinguish GSH/HcyS/Cys from H₂S simply via nucleophilic reaction-based strategies and affecting quantification results due to such interference.

Probes induced metal-sulfide precipitation

- These probes (metal–ligand compounds) contain a fluorescent moiety, chelating agent, and transition metal cations as Cu²⁺, Zn²⁺, Hg²⁺, with to act as a quencher (Turn-off) [29]. The fluorescence turn-on, is driven by precipitation of the metal sulfide (CuS, ZnS, Kₛₓ = 6.4 × 10⁻³⁶, 1.6 × 10⁻²⁴) [81,82]. As shown in Table 1, a copper-based H₂S fluorescent sensor compound F33 was synthesized, containing anthracene derivative (fluorophore) attached to azamacroyclic ring (ligand) as a Cu²⁺-chelator to form a stable metal complex [83]. The paramagnetic Cu²⁺ center serves to quench the fluorophore's fluorescence upon H₂S binding to Cu²⁺, which is then extracted from the azamacroyclic ring resulting in enhanced fluorescence. The probe compound F33 exhibited a fast response with good selectivity for in vitro fluorescence imaging of cellular H₂S in HeLa cells treated with exogenous H₂S. A zinc-based sensor F36, exhibits emission in NIR with fast response displaying good sensitivity (LOD = 92 nM). It is used for H₂S monitoring and quantification in living cells (C-6) and human and bovine sera. However, this sensor is highly pH-dependent with a narrow pH range (7–8).

- Nanotechnology has been increasingly implemented in the development of nanosensor based on metal-sulfide precipitation. A turn-on fluorescent probe based on Cu-porphyrin coordination complex combined with gold nanoparticles was developed and applied for H₂S in vitro measurement in two carcinoma cell lines (A549 and H1299 cells). Although this nanosensor exhibited NIR emission (650 nm) and good sensitivity (LOD = 17 nM) and selectivity against most interfering ions and biothiols, certain biothiol as Cys showed cross-reaction but at a less extent than sulfide, besides from its relatively slow response time (20 min) than H₂S itself [84]. Another fluorescent nanosensor based on carbon quantum dots/silver nanoparticles (CQDs-AgNPs) exhibits one of the most sensitive methods with an LOD = 0.4 nM. This sensor was used for the in vivo monitoring of H₂S basal level (3.08 μM) and cerebral H₂S level in rat brain during the calm/ischemia states, whereas the linear detection level ranged from 0.001 to 1.9 μM [85]. An easily synthesized fluorescent gold-based nanoclusters were recently reported for H₂S detection in living cells (SMMC-7721). This sensor offers several advantages as good aqueous solubility, biocompatibility, high selectivity, wide linear range (27 picom - 850 μM), and with an outstanding LOD (24 picom) [86].

However, Cu (II) containing probes, turn-on via CuS precipitation may be interfered by other biological reducing species such as NO, HNO, which occur via metal displacement by His and Cys, reduction of Cu(II) to Cu(I), or hampered by other competitive pathways to remove the metal quencher [87]. Though, a more selective or even specific chemical reaction may be needed to overcome the interfering endogenous similar chemical species or other competitive pathways. Taking into consideration the chemical properties of H₂S and the expected sulfide form. [48]

\[
H₂S(g) \rightarrow H₂S[48] \rightarrow H^+ + S^2- = S^2- + 2H^+(1)
\]

According to pKₐ of H₂S, temperature, and medium pH, H₂S equilibrates with its two anions HSO⁻ and S²⁻ where the three forms exist at different proportions and Eq.1 represents the real dynamics of H₂S in solution [13]. However, and according to Le Châtelier’s principle, this equilibrium will continuously shift to either side. For example, it has been reported that half of H₂S escapes from solution in five minutes in cell culture wells and 0.5 min in the Langendorff heart apparatus [88]. In subcellular organelles the relative free sulfide proportions, from 90% of HSO⁻ in mitochondria (pH > 8) to more than 90% of H₂S in lysosomes (pH = 4.7) [89]. Therefore, according to the reaction mechanism and the effective working pH, H₂S-probe is destined selectively to one form of the three H₂S species. Considering that certain H₂S-sensors were selectively reacted with the unionized form (H₂S₂) in a reduction-based reaction (azide, nitro, hydroxyamine…) [23,14]. Whereas electrophile-based probes based on the double nucleophilic attack were destined to the most abundant physiological sulfide ion (HS⁻) [90], while metal displacement-based reactions (Cu²⁺, Zn²⁺, Hg²⁺, ...) are destined selectively to the dianionic counterpart (S²⁻). [91]. It is worth mentioning that most of the analytical methods used mainly Na₂S, the least abundant physiological sulfide ion (S²⁻), in different pH media to carry out either in vitro or in vivo investigations [15,47,92–94].

Colorimetric based assays

Colorimetric methods are assays that are based on spectral changes upon the interaction of chromogen with a particular analyte. Such changes could be monitored using simple instrumentation i.e. spectrophotometers. Colorimetric methods have particularly been employed for H₂S determination (Table 2) due to ease of use, fast reaction time and characteristic absorption bands to overcome interference especially in the case of biological samples [95].

Classical colorimetric methods

One of the earliest and most common methods used for H₂S measurements is the methylene blue reaction of sulfide with N, N-dimethyl-p-phenylenediamine, in the presence of ferric chloride to yield a blue color that could be measured spectrophotometri-

Table 2

Probe	Principle	Properties & applications	Ref.
N,N-dimethyl-p-phenylenediamine	Spectrophotometric detection of the developed methylene blue dye at 670 nm after trapping of H₂S with Zn²⁺	Adv.: a simple protocol	[97]
		Disadv.: lack of selectivity for H₂S, not suitable for in vivo H₂S determination	
		Application: in vitro samples	
NBD-Cl	Thiolyis of NBD-Cl upon reaction with H₂S to form nitrobenzofurazan thiol (Pluth red) via a nucleophilic aromatic substitution reaction	Adv.: fast reaction time, used for both biological and environmental applications; selective	[98]
		Application: fetal bovine serum	
Azine based sensor	Deprotonation of the sensor –OH	Adv.: selective, fast response time (less than a minute)	[95]
		Disadv.: low sensitivity (LOD 18.2 µM)	
I-(2-Pyridylazo)-2-naphthol-Cu²⁺	Displacing Cu²⁺ from its complex through a metal S²⁻ formation	Adv.: enhanced sensitivity with LOD 2.5 µM	[99]
		Disadv.: No biological studies or real sample analysis	
		Application: aqueous H₂S	
		Adv.: detection of gaseous H₂S with LOD 16 ppb	[100]
		Application: gaseous H₂S	
		Adv.: good sensitivity for the H₂S, LOD (0.167 µM), fast reaction time	
		Disadv.: no biological studies or real sample analysis	
		Application: aqueous H₂S	
Boron-dipyrromethene-Cu²⁺			
Ag NPs/Nafion polymer	The reaction of Ag NPs with S²⁻ to form Ag₂S with strong absorbance band at 310 nm	Adv.: simple microplate-based colorimetric assay	[101]
		Application: mouse liver homogenate	
		Adv.: wide linear dynamic range for H₂S (6.25 to 50 µM) with LOD 1 µM.	[102]
		Application: C6 glioma cells	
		Adv.: long reaction time (2 h for detection)	
		Application: cellular endogenous H₂S gas.	
		Adv.: environmentally friendly, LOD 0.03 µM	
		Application: fetal bovine serum	
		Adv.: narrow linear range from 2 to 15 µM,	
		Application: various biological and environmental samples	
		Adv.: SPR peak is located in the NIR region	[104]
		Application: serum	
		Adv.: long time (30 min)	
Ag NPs in a layer-by-layer polyelectrolyte multilayer film	UV-vis measurement of the formed Ag₂S/Ag NPs at 430 nm.		
Dopamine functionalized AgNPs	Decrease in the plasmon absorbance of AgNPs at 400 nm with a color change from bright yellow to dark brown observed by the naked eye.		
PPF-AgNPs	Decrease in PPF-AgNPs absorption band at 400 nm upon reaction with H₂S	Adv.: good sensitivity and specificity, fast response time	[103]
		Application: various biological and environmental samples	
Ag/Au core–shell nanoprism	Decrease in Ag/Au core–shell nanoprism absorption band at NIR region upon reaction with H₂S	Adv.: SPR peak is located in the NIR region	
		Application: serum	
Au–Ag core–shell nanoprism	Decrease in Ag/Au core–shell nanoprism absorption band at NIR region upon reaction with H₂S	Adv.: HS-SDME methodology, smartphone nanocolourimetry based detection set up, sensitive LOD 7 nM (UV – vis), and 65 nM(SCN).	[105]
		Application: egg and milk	
		Adv.: RGB colorimetric analysis, linear (50 nM to 100 µM)	[176]
		Application: cell culture medium and the blood serum	
		Adv.: linear (0 to 80 µM) with LOD of 0.5 µM (UV–vis spectrophotometer)	
		Application: HepG2 cell	
		Adv.: simple	[106]
		Disadv.: lower sensitivity level LOD (5 µM) with a UV–vis spectrophotometer	
		Adv.: capable of evaluating the activity of CBS	
		Application: human and mouse serum samples	
Glutathione capped AuNPs	AuNPs aggregation upon reaction with H₂S via ligand exchange reaction which results in a color change from red to purple/blue	Adv.: static headspace extraction was applied, with LOD 7.5 nM	[108]
		Application: newborn cattle serum	
		Adv.: linear range 0.05–50 µM with a LOD of 19 nM	
		Application: monitoring extracellular H₂S in rat brain	[177]

H. Ibrahim et al. / Journal of Advanced Research 27 (2021) 137–153
has been widely employed for \(\text{H}_2\text{S} \) measurement due to its rapid response, reversibility, and robustness. Among the different metals-ligands displacement systems, copper complexes are the most widely employed sensors for \(\text{H}_2\text{S} \) analysis due to the very low solubility product of the formed CuS. Besides, the outstanding plasticity of the copper sphere facilitates Cu-complexes formation with a variety of chelating ligands [31].

Copper complex of 1-(2-pyridylazo)-2-naphthol was synthesized for the colorimetric sensing of aqueous sulfide with a pink to yellow color change upon displacement of Cu(II) from its complex [99]. Interestingly, the same probe has been developed for the quantification of gaseous \(\text{H}_2\text{S} \) via impregnating the probe with alkali on paper support [100]. The alkali will trap and convert the acidic \(\text{H}_2\text{S} \) gas to sulfide ion with a color change from pink to yellow. The probe could be coupled with a handheld colorimeter and a smartphone allowing quantification of \(\text{H}_2\text{S} \) gas or for its rapid detection with LOD of 16 ppb of gas. In another study, BODIPY and 8-aminoquinoline were incorporated for designing a colorimetric probe employed for \(\text{H}_2\text{S} \) detection. The probe forms a 1:1 complex with \(\text{Cu}^{2+} \) in HEPES buffer with a decrease in the absorption band at 569 nm and an increase of a new band at 520 nm with a color change from pink to orange in rather fast reaction time. This method displays excellent selectivity towards sulfide over other competitive anions and thiols and with LOD of 0.167 \(\mu \text{M} \) in aqueous media [92].

Nanomaterials based colorimetric analysis

A recent colorimetric approach used for \(\text{H}_2\text{S} \) detection and quantification is based on the localized surface plasmon resonance (LSPR) optical traits of metal nanoparticles e.g. Ag NPs and Au NRs [19]. Compared to conventional colorimetric methods, plasmonic metal nanoparticles provide an exciting avenue for rapid and accurate determination of \(\text{H}_2\text{S} \) due to its higher photostability, lower photobleaching and intensity fluctuations, much higher scattering cross-section and extinction molar coefficients (REF). Exploiting the affinity of Ag+ to \(\text{S}^2- \), a wide range of colorimetric methods have been developed for \(\text{H}_2\text{S} \) determination. For example, Jarosz et al. [101] reported a microplate-based colorimetric assay using Nafion polymer doped with Ag+ ions for \(\text{H}_2\text{S} \) determination. Nafion polymer served as a template for Ag NPs synthesis where the formed Ag, S NPs showed a strong UV absorbance at 310 nm. The same principle has been implemented in another study where polyvinylpyrrolidone (PVP) was utilized for Ag NPs construction being applied for measuring endogenous \(\text{H}_2\text{S} \) concentration in living C6 glioma cells [102]. Cross-linked polymer cages have been also employed as a potential medium for novel Ag NPs fabrication that was used in \(\text{H}_2\text{S} \) determination e.g. cross-linked polyhedral oligomeric silsesquioxane-formaldehyde polymer (PFF) [103]. PPF-AgNPs exhibit strong absorption at 400 nm which decreased quantitatively upon reaction with \(\text{H}_2\text{S} \) due to the formation of Ag-S shell on the surface of PPF-AgNPs. The PPF-AgNPs exhibited excellent selectivity towards sulfide against other thiols and anionic species due to the specific Ag-S interaction within a linear range of 0.7–10 \(\mu \text{M} \) and a detection limit of 0.2 \(\mu \text{M} \). Analysis of \(\text{H}_2\text{S} \) in various water and biological samples e.g. spring waste, urine, human serum and fetal calf serum using this novel probe have been demonstrated.

It is worth to note that some reports raised though doubt about the selectivity of silver nanoprobes for \(\text{H}_2\text{S} \) quantification, particularly in real samples with complicated matrices due to their susceptibility for oxidation in the presence of coordination agents such as hydrogen peroxide. Hence, several approaches were attempted to increase the selectivity of these nanoprobes via silver coating with a thin gold layer to form Ag/Au core-shell nanoprisms that protect Ag from direct reaction with interfering species thus increasing the latter’s selectivity toward \(\text{H}_2\text{S} \) [104]. The defects in gold outer layer lateral walls allow reaction of only strong etching agents such as hydrogen sulfide with Ag nanoprisms and mitigate against interaction with other anions. This method exhibited a wide linear dynamic range from 0.1 and 10 \(\mu \text{M} \) with a detection limit of 54 nM and was applied for \(\text{H}_2\text{S} \) detection in serum. Interestingly, the same core-shell nanoprisms has also been used in another study coupled with headspace single-drop microextraction (HS-SDME) to quantify \(\text{H}_2\text{S} \). Smartphone nanocolorimetry and UV – vis spectrophotometry were utilized to measure the change of Ag/Au core-shell SPR peak as a result of \(\text{H}_2\text{S} \) etching and both to demonstrate potential application for determining \(\text{H}_2\text{S} \) levels in real biological samples (egg and milk). In contrary to previous reports that employed Au as a protective shield for Ag NPs, Zeng et al [105] reported another strategy to increase Ag NPs selectivity based on engineering Au/Agl dimeric nanoparticles where the Agl acts as sensing agent and the Au acts as the signal-receptor core. Based on the fact that Agl exhibits the lowest solubility product among all silver halides, very few interfering compounds can react with stable Agl shell. These Au/Agl NPs have been immobilized into agarose gels to produce a solid form of “test strips” that has been applied successfully to determine \(\text{H}_2\text{S} \) gas concentrations released from Hep G2 cells during their cultivation. Similar to AgNPs, AuNPs have been also widely used for \(\text{H}_2\text{S} \) determination due to the strong Au-S interaction. Such assays are based on the induction of AuNPs aggregation by inter-AuNPs crosslinking to result in color changes that can be easily observed by naked eyes (qualitative) or spectrophotometers (quantitative).

For example, glutathione capped AuNPs have been used as an \(\text{H}_2\text{S} \) sensor via a ligand exchange reaction where sulfide will replace glutathione molecule on the AuNPs surface resulting in AuNPs aggregation and subsequent color change [106]. In a similar study, non-ionic fluorosurfactant capped with gold nanorods (FSN-AuNRs) has also been reported for the determination of \(\text{H}_2\text{S} \) [107]. In contrary to AuNPs, gold nanorods (AuNRs) possess two plasmon absorption bands responsible for their unique color change upon \(\text{H}_2\text{S} \) induced aggregation. This method exhibits high specificity towards sulfide over other anions and has been applied successfully for the determination of biological \(\text{H}_2\text{S} \) in both human and mouse serum as well as determining the activity of cystathionine \(\beta \)-synthase activity, the enzyme responsible for \(\text{H}_2\text{S} \) production. Interestingly, another AuNPs colorimetric strategy used for \(\text{H}_2\text{S} \) quantitative estimation is based on the \(\text{H}_2\text{S} \)-induced deactivation of (gold core)@(ultrathin platinum shell) nanocatalysts (Au@TPt-NCs) [108]. Upon target introduction, Au@TPt-NCs were deactivated to different degrees depending on \(\text{H}_2\text{S} \) levels, static headspace extraction was used with the Au@TPt-NCs as an effective sample pretreatment method for this system. This method displayed higher sensitivity for \(\text{H}_2\text{S} \) determination with a linear range of 10–100 nM and LOD of 7.5 nM. Besides, the method was applied for \(\text{H}_2\text{S} \) measurement in spiked real samples such as newborn cattle serum and although it is expedited route for the sensitive determination of biological \(\text{H}_2\text{S} \) in vitro, it has not been validated yet in vivo.

Phosphorescence analysis

Unlike fluorescence, phosphorescence is characterized by much longer emission lifetime which demonstrates its superiority in the bioimaging field [109]. Besides, the slow process of light emission entails the elimination of autofluorescence short-lived interference and improves S/N ratios. Among different phosphorescence probes for \(\text{H}_2\text{S} \) determination, transition metal complexes are known for their simple synthesis procedures and easy tuning of photophysical properties [110]. Novel iridium (III)-based luminescent turn-on-off-on probe has been developed for the in vitro
and in vivo determination of sulfide ion [111]. This method is based on quenching of iridium (III) probe by Fe3+, followed by restoring its luminescence upon the addition of sulfide. The probe exhibited a linear range from 0.01 to 1.5 mM, with LOD of 2.9 μM, and was successfully applied for sulfide imaging in living cells. In another report, an H2S-associated phosphorescence turn-on probe was developed based on the in situ capturing of sulfide by Zn2+ and Mn2+ to form Mn-doped ZnS quantum dots [112]. These dots emit orange phosphorescence allowing elimination of autofluorescence interference from biological matrix and was thus employed for H2S quantification in fetal calf serum with LOD of 0.2 μM.

Chemiluminescence analysis

Unlike other analytical techniques, chemiluminescence (CL) methods offer higher sensitivity and the wide dynamic range since the CL signal can be generated in the absence of any light sources which eliminates any background signal and improves the signal to noise for in vivo studies. Hence, they have been widely applied for the detection of disease biomarkers [113,114], including H2S.

Among different CL systems, the reaction between luminol and hydrogen peroxide in the presence of horseradish peroxidase (HRP) as a catalyst is widely applied due to its simplicity and enhanced CL signal intensity. This triple system has been applied recently for H2S determination in which H2S deactivates HRP resulting in CL quenching of the system in a quantitative manner [115]. The method exhibits a linear dynamic range of 0.78–40 μM with a detection limit of 0.30 μM and has been applied successfully for H2S determination in rat brain microdialysis. Another method used the irreversible reaction of H2S with two masked azide-luminol scaffolds has been reported [116]. H2S mediates the reduction of the azide moiety liberating luminol orisolomil with enhanced CL intensity in the presence of H2O2 / HRP. The isolomil based probe displays excellent selectivity for H2S over a wide range of other biologically relevant reactive sulfur species, including thiols. Hence, it has been applied to measure the enzymatically produced H2S effectively.

Electrochemiluminescence (ECL) is another luminescence process where an electrochemical reaction is employed to generate excited luminophore on an electrode surface via electron-transfer reactions [117]. ECL systems have been widely applied in H2S detection due to their simplified optical setup, superior sensitivity, and low background signal level. For example, a cyclometallic iridium(III) complex has been synthesized as luminophore with high ECL intensity during cyclic voltammetry that quenches upon reacting with H2S [118]. ECL signal of the system decreased linearly upon reacting with H2S over a concentration range 40–140 μM with an estimated LOD of 11 nM. Another sensitive ECL was developed based on quenching ECL signal of the activated CdS nanocrystals film upon reaction with H2S on a glass carbon electrode, in presence of other co-reactants such as H2O2 and citric acid, via bonding of sulfide to excess Cd2+ ions on the nanocrystals surface [119]. The method showed a wide linear range spanning from 5 nM to 20 μM and has been successfully applied for the determination of H2S in calf serum. Furthermore, NBD-amine, a sensitive compound to H2S, has been integrated with Ru(bpy)32+-doped silica nanophotore for sulfide quantification [120]. Nafion was used to immobilize Ru(bpy)32+-doped silica on the surface of a glassy carbon electrode. The methods showed a linear range from 0.1 to 1 × 10−4 nM, LOD 1.7 × 10−6 nM and applied successfully to spiked human serum.

Cataluminescence (CTL) is another type of chemiluminescence in which the catalytic oxidation of analytes occurs on the surface of a solid material [121]. Among different types of CTL, metal-based catalysts represent the main type that exhibits high sensitivity for H2S determination namely mesoporous SnO2 [122], α-Fe2O3 [123,124], microsphere In2O3 [125] and several alkaline-earth metal salts viz., CaCO3, SrCO3, and BaCO3 [126]. Also, metal–organic frameworks are also used for H2S determination due to their large surface area, good thermal stability, and metal catalytic sites. ZIF-8 and Zn2(BTC)2·12 H2O are two examples of metal–organic frameworks whose LODs are 3.0 and 4.4 ppm for H2S analysis, respectively [127]. Nevertheless, metal-based catalysts suffer from high cost, environmental pollution by heavy metals, and poor long-term stability. Albeit, these limitations can be overcome using metal-free catalysts such as nanocarbon catalysts which are stable on the long-terms, environmentally friendly, cost-effective, and highly selective. Silicon carbide (SiC) is a promising metal-free carbon material with distinct catalytic potential that has been enhanced by controlling its morphology through ion doping with fluorine [128]. SiC CTL signals display a linear relationship for H2S quantitation in the range of 6.1–30.4 ppm with LOD 3.0 ppm.

Chromatographic methods

Although chromatographic methods for H2S analysis could not be applied for real-time monitoring, they offer higher selectivity and specificity compared to direct spectrophotometric or fluorescence measurements. Separation technique as gas and liquid chromatography coupled to different sensitive detectors are considered as the mainstay for analysis of biological samples [38]. Chromatographic techniques are applied for H2S detection in a wide range of biological matrices including breast [129], saliva [130], heart tissue, and urine [131], plasma, tissue, and cell culture lysates [26]. Chromatographic methods used in H2S analysis include:

i) GC coupled to different detectors as electrochemical [132], electron capture [133], flame photometry [134], mass spectrometry [135,136], ion mobility spectrometry [137].

ii) LC coupled to different detectors as spectrophotometry [138], spectrophoaurimetry [139], atomic fluorescence spectrometry [140], mass spectrometry [141], and electrochemical [142].

These chromatographic coupled techniques represent the most used chromatographic methods for H2S analysis. However, these coupled techniques were used for different applications i.e., ion chromatography coupled to electrochemical detector was used for sulfide determination in water [143], in rat and human brain tissue [144], in rat brain different regions (brainstem, cerebellum hippocampus, striatum, and cortex) [145], in its liberation by the dithiothreitol treatment of brain tissue [146], in organic-rich, anaerobic waters from peat bogs [147], and in gastrointestinal contents and whole blood [142].

Generally, pre-column derivatization, (i.e., with methylene blue, pentafluorobenzyl bromide, etc) is required for H2S detection. Therefore, during the derivatization step, the biomolecule-bound sulfur pool presents significant interferences during the analysis of biological samples alongside rigorous analytical precautions to be followed [22,148].

H2S exists either in a gaseous state (unionized form) or liquid phase (unionized and two ionized forms). Unionized H2S could be directly trapped (gaseous state) or liberated from its liquid phase in the headspace above the sample and was then directly analyzed by GC coupled to different detectors, as flame photometry and sulfur chemiluminescence detection. While H2S in the liquid phase generally needs precolumn derivatization followed by GC or LC analysis [149]. Table 3 summarizes the analysis of sulfide using different chromatographic methods. Gas chromatographic analysis of sulfides was initially carried out via its pentafluorobenzyl derivative detection using mass spectrometry [150]. This technique was applied to post mortem analysis in forensic studies for
sulfide fatal toxicity [151] and to investigate blood sulfide as a marker of bowel fermentation processes [93]. Later on, sulfide analysis was achieved in the headspace for tissue homogenates [38] or post silylation in human sera [152]. GC–MS analysis of human breath revealed the contribution of H₂S in oral malodor and halitosis [129]. Moreover, GC–MS analysis of human serum revealed elevation of H₂S level in a certain serious type of heart attack (ST-elevation myocardial infarction) [152].

A coupling electrochemical detector (ECD) with ion chromatography (IC) was applied for the determination of the sulfide in brain tissue. However, the main limitation resides in the liberation of the acid-labile sulfur during the high acid extraction protocol [22]. Another example of IC coupled to ECD was investigating the protein-rich diet effect on sulfide level in the gut contents and whole blood [142]. Monobromobimane was the derivatizing agent for H₂S in alkaline medium (pH 9.5) and analyzed by HPLC coupled with fluorescence detection which offers good sensitivity compared to that obtained with the methylene blue method [26], whereas via coupling with a mass spectrometer, (ESI–MS), it surpasses other methods concerning sensitivity and specificity [141].

A validated liquid chromatography-mass spectrometry (LC-MS/MS) method for the determination of H₂S in various biological matrices by determination of a derivative of hydrogen sulfide and monobromobimane named sulfide dibimane (SDB) was used to measure its levels in a broad range of biological matrices, such as blood, plasma, tissues, cells, and enzymes, across different species [153]. The later technique revealed diurnal H₂S fluctuations in mice plasma [154].

Our aim in this review is not though to provide an inclusive overview of all chromatographic methods used in the assessment of biological H₂S, but rather to highlight certain examples of chromatographic techniques available as tools for its determination.

Electrochemical determination of H₂S

Electrochemical methods offer an improved expedited route for real-time detection of H₂S in biological samples due to their low detection limit, high sensitivity and selectivity, miniaturization capabilities, fast response time, and absence of chemical reagents [21]. Among different types of electrochemical sensors, potentiometric ion-selective electrodes and polarographic sensors have been employed extensively for H₂S determination in biological samples.

Ag/Ag₂S ion-selective electrode (ISE) is one of the most commonly used potentiometric methods for measuring sulfide ion in biological systems. This method was first reported fifty years ago by Mason et al. for measuring sulfide concentration in plasma with limited details of the methodology [155]. A full detailed procedure for plasma sulfide concentrations measurement using this electrode was later reported by Khan et al. [156]. Orion Research used this method to develop a commercial sulfide sensitive electrode (Model 9616, Orion Research, Beverly, MA) that has been widely used in serum H₂S measurement [157]. Interestingly, Lazar Research Laboratories (Los Angeles, CA) has developed another small commercial Ag/Ag₂S ISE known as ArrowH₂STM that measures H₂S in volumes down to 10 μl directly in its micro containers with 100 nM detection limit, thus preventing H₂S loss from the sample and increasing the accuracy of its measurement [7]. However, Ag/Ag₂S electrodes exhibit some disadvantages such as the requirement for rendering the medium alkaline via adding "antioxidant buffer" to shift the H₂S equilibrium into the S²⁻ ions which are the only form of H₂S that the electrode can measure [158,159]. Asides, the electrode must be reconditioned (typically for 1 h in 5 mM Na₂S) to ensure that no silver is exposed to the surface otherwise, selectivity is lost [160]. Other potentiometric sulfide sensors based on the reversible electrochemical reaction of a redox mediator viz., ferricyanide and conductive polymer as sensing film
have been also reported [161,162]. These methods exhibit high reproducibility and sensitivity.

Polarography is another reliable electrochemical technique that has been applied for the determination of H$_2$S in whole blood and tissues [21]. It has the advantage of real-time monitoring even for free H$_2$S gas without altering the sample. The first polarographic sensor used for H$_2$S determination in biological samples is based on a Clark-type oxygen electrode [163]. Platinum wires were used as the anode and cathode altogether with an alkaline K$_3$[Fe(CN)$_6$] as an internal electrolyte solution held in the sensor tip reservoir using H$_2$S-permeable membrane and a sensor housing of polyether ether ketone. During H$_2$S measurement, [Fe(CN)$_6$]$^{3-}$ is reduced to [Fe(CN)$_6$]$^{4-}$ while H$_2$S gas is oxidized to HS$^-$. Then S0 upon its permeation through the membrane layers. A current proportional to H$_2$S concentration is produced upon electrochemical oxidation of [Fe(CN)$_6$]$^{4-}$ back into [Fe(CN)$_6$]$^{3-}$ on the surface of the platinum electrode. Following this sensor, another miniature polarographic H$_2$S sensor was developed having several advantages including sensitive detection limit (10 nM) and low response time (20–30 s) posing it as an ideal sensor for kinetic studies of H$_2$S metabolism in broken cell systems, intact tissues, and whole organisms [164]. Moreover, the sensor could be combined with other real-time polarographic sensors such as polarographic oxygen sensor and polarographic nitric oxide sensor owing to its higher selectivity to determine the correlation of these species with H$_2$S in biological systems. Additionally, an ultra-mini polarographic H$_2$S sensor having a diameter of only 100 µm has been developed offering several advantages, including durability for long-term use, rapid response time, and absence of sleeves and filling solutions [21]. Despite the numerous advantages for H$_2$S polarographic sensors as one of the widely used techniques for real-time H$_2$S measurement, their main disadvantage lies in the necessity of liquid electrolytes in their design which are prone to dryness and leakage in addition to the possible large residual current associated with impurities in the samples.

Conclusion

Owing to the major clinical importance of H$_2$S as the third gasotransmitter, a wide variety of quantification methods have been developed for its measurement in biological systems. In contrast to colorimetric, ion-selective electrodes, and chromatographic methods, fluorescence offers an attractive non-invasive and promising approach accounting for the substantial increase in the number of newly developed fluorescent probes in the past few years. Although a lot of effort has been made towards fluorescence imaging, it faces challenges such as the low levels of endogenous H$_2$S and the presence of many interfering biomolecules. Besides, tissue penetration, fluorophore stability at high excitation wavelengths have also largely limited their application for in vivo H$_2$S quantification. Although fluorescence sensors offer good selectivity they cannot be considered as H$_2$S-specific probes, as biothiols may interact, even at a lesser extent, with these sensors. Consequently, significant work has been to be done towards developing highly sensitive and selective fluorescent probes for such purpose. Promising fluorescent probes, for monitoring the endogenous short-lived H$_2$S, are expected to meet certain requirements, such as a photostability, NIR optical window, enhanced fluorescence, fast and sensitive response, specificity or high selectivity, water solubility and low cytotoxicity. On the other hand, colorimetric assays are among the earliest and most common methods used for in vitro H$_2$S detection, however, their employment in vivo H$_2$S measurement has not yet been possible even after the introduction of plasmatic metal nanoparticles that have provided an expedited route for rapid and accurate detection of H$_2$S in plasma. Separation techniques as gas or liquid chromatography offer higher selectivity compared to direct spectrophotometric or fluorescence H$_2$S measurements, albeit they also could not be applied for H$_2$S real-time monitoring. These methods are suitable for endpoint measurements i.e. plasma or tissue samples. Despite a myriad of developed analytical procedures used for H$_2$S determination, the need for highly selective, highly sensitive, biocompatible, reproducible, and accurate H$_2$S measurement methods seems imperative to untangle the non-resolved pitfalls of the current methods.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Declaration of Competing Interest

The authors have declared no conflict of interest.

Acknowledgment

Dr. Farag thanks Jesour grant number 30, Academy of Scientific Research and Technology, ASRT, Egypt for funding.

References

[1] Zheng Y, Yu B, de la Cruz LK, Roy Choudhury M, Anifowose A, Wang B. Toward Hydrogen Sulfide Based Therapeutics: Critical Drug Delivery and Developability issues. Med Res Rev 2018;38(1):57–100.
[2] Li L, Moore P. Putative biological roles of hydrogen sulfide in health and disease: a breath of not so fresh air?. Trends Pharmacol Sci 2008;29(2):84–90.
[3] Kimura H. Hydrogen sulfide as a neuromodulator. Mol Neurobiol 2002;26:113–9.
[4] Cunha TM, Dal-Secco D, Verri WA, Guarneri AT, Jorjani J, Vieira SM, et al. Dual role of hydrogen sulfide in chemical inflammatory hypernociception. Eur J Pharmacol 2008;590(1):127–35.
[5] Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L, et al. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci 2007;104(39):15560–5.
[6] Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, et al. H$_2$S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science (New York, NY) 2008;322(5901):587–90.
[7] Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, et al. H$^+$ substitution for H$_2$S as a Physiologic Vasorelaxant: Hypertension in Mice with Deletion of Cystathionine gamma-Lyase. Science 2008;322(5901):587–90.
[8] Kimura H. Hydrogen Sulfide: From Brain to Gut. Antioxid Redox Signal 2009;12(9):1111–23.
[9] Hu L-F, Lu M, Tong CX, Dawe GS, Hu G, Bian J-S. Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging Cell 2010;9(2):135–46.
[10] Eto K, Asada T, Arima K, Makifuchi T, Kimura H. Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochim Biophys Acta (BBA)—General Subjects 2002;153(5):1485–8.
[11] Kamoun P, Belardinelli M-C, Chabili A, Lallouchi K, Chadefaux-Vekemans B. Endogenous hydrogen sulfide overproduction in Down syndrome. American Journal of Medical Genetics Part A 2003;116A(3):310–1.
[12] Jain SK, Bull R, Rain JL, Bass PF, Levine SN, Reddy S, et al. Low levels of hydrogen sulfide in the blood of diabetes patients and streptozotocin-treated rats causes vascular inflammation?. Antioxid Redox Signal 2010;12(11):1333–7.
[13] Hughes MN, Centelles MN, Moore KP. Mapping and working with hydrogen sulfide: The chemistry and generation of hydrogen sulfide in vitro and its measurement in vivo: A review. Free Radical Biol Med 2009;47(10):1346–53.
[14] Nagy P, Pilimskis Z, Nagy A, Budai B, Toth I, Vasas A: Chemical aspects of hydrogen sulfide measurements in physiological samples. Biochimica et Biophysica Acta (BBA)—General Subjects 2014;1840(2):876–91.
[15] Aylan AK, Hanafi RS, Gad MZ. Point-of-care testing and optimization of sample treatment for fluorometric determination of hydrogen sulfide in plasma of cardiovascular patients. J Adv Res 2021;27:1–10.
[16] Shen X, Peter EA, Bir S, Wang R, Kevil CG. Analytical measurement of discrete hydrogen sulfide pools in biological specimens. Free Radical Biol Med 2002;32(11–12):2276–83.
[17] Cao X, Ding L, Xie Z-M, Yang Y, Whiteman M, Moore PK, Bian J-S: A review of hydrogen sulfide synthesis, metabolism, and measurement: is modulation of hydrogen sulfide a novel therapeutic for cancer?. Antioxid Redox Signal 2019;31(1):1–38.
Luo Y, Zhu C, Du D, Lin Y. A review of optical probes based on nanomaterials for the detection of hydrogen sulfide in biosystems. Anal Chem Acta 2019;1061:1–12.

Pendey SK, Kim K-H, Tang K-T. A review of sensor-based methods for hydrogen sulfide detection. Anal Chim Acta 2018;1061:485–95.

Xiong B, Peng L, Cao X, He Y, Yeung ES. Optical analysis of biological hydrogen sulfide: an overview of recent advancements. Analyst 2015;140 (6):1763–71.

PanHui SK, Kim K-H, Tang K-T. A review of sensor-based methods for monitoring hydrogen sulfide. TrAC, Trends Anal Chem 2012;32:87–99.

Shen X, Pattillo CL, Pardue S, Bir SC, Wang R, Koval CG. Measurement of plasma hydrogen sulfide in vivo and in vitro. Free Radical Biol Med 2011;50 (9):1021–31.

Yi L, Xiong H. Thiolyis of NBD-based dyes for colorimetric and fluorescence detection of H2S and its applications: design and biological applications. Org Biomol Chem 2017;15(18):3828–39.

Li J, Yin C, Huo F. Chromogenic and fluorescent chemosensors for hydrogen sulfide: review of detection mechanisms since the year 2005. RSC Adv 2015;5 (3):21921–32.

Vikrant K, Kumar V, Ok YS, Kim K-H, Deep A. Metal-organic framework (MOF)-based advanced sensing platforms for the detection of hydrogen sulfide. TrAC, Trends Anal Chim 2018;105:263–81.

Yi Fu, Han X, Chen L. Fluorescent probes for hydrogen sulfide detection and bioimaging. Chem Commun 2014;50(82):12344–49.

Kausik R, Ghosh A, Amilan Jose D. Recent progress in hydrogen sulfide (H2S) sensors by metal displacement approach. Coord Chem Rev 2017;347:141–51.

Tangeman A. Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biofluids and mammalian tissues. J Chromatogr B 2009;877(28):3366–77.

Luo Y, Zhu C, Du D, Lin Y. A review of optical probes based on nanomaterials for the detection of hydrogen sulfide in biosystems. Anal Chim Acta 2019.

Ma Y, Wang H, Su S, Chen Y, Li Y, Wang X, et al. A red mitochondria-targeted AlleGEn for visualizing H 2 S in living cells and tumours. Analyst 2019;144 (10):3381–8.

Monroy LA, Pluth MD. Organelle-targeted H2S probes enable visualization of the subcellular distribution of H2S donors. Anal Chem 2016;88(11):5769–74.

Guo P, Pan W, Liu J, Tang B. Fluorescent probes for organelle-targeted bioactive species imaging. Chem Sci 2019;10(19):7734–40.

Furne J, Saeed A, Levitt MD. Whole tissue hydrogen sulfide concentrations are measurable in living tissues. Proc Natl Acad Sci U S A 2008;105(41):15399–404.

Peng X, Song F, Lu E, Wang Y, Zhou W, Fan J, et al. Heptamethine cyanine dyes for fluorogenic chemosensors for hydrogen sulfide. Tetrahedron Lett 2018;59(31):2183–6.

Yu F, Li P, Song P, Wang B, Zhao J, Han K. An ICT-based strategy to a colorimetric and ratiometric fluorescence probe for hydrogen sulfide in living cells. Chem Commun 2012;48(23):2852–4.

Chi L-M. Wu W-g: Mechanism of hemolysis of red blood cell mediated by hydrogen sulfide. Acta Biochim Biophys Sin (Shanghai) 2016;48(1):46–50.

Yu F, Li P, Song P, Wang B, Zhao J, Han K. An ICT-based strategy to a colorimetric and ratiometric fluorescence probe for hydrogen sulfide in living cells. Chem Commun 2012;48(23):2852–4.

Caron E, Cocchi A, Poretti M, Melino S. Hydrogen sulfide as potential bioactive species imaging. Chem Sci 2019;10(24):6035–71.

Lu J, Chen X, Zhang Y, Gao Z, Yang N, Hou S. A novel xanthene-based fluorescence probe for hydrogen sulfide detection. Dyes Pigm 2020;175:108107.

Qiao Z, Zhang H, Wang K, Zhang Y. A highly sensitive and responsive fluorescence probe for hydrogen sulfide detection. BiochemBiophys Res Commun 2018;500(1):71–7.

Yi L, Xi Z, Yi L. Thiolysis of NBD-based dyes for colorimetric and fluorescence probe for detection of H2S at submicromolar concentrations in cells. Chem Commun 2012;48(86):10669–71.

Wei C, Wei L, Xi Z. Thiolysis of NBD-based dyes for colorimetric and fluorescence probe for detection of H2S at submicromolar concentrations in cells. Chem Commun 2012;48(86):10669–71.

Montoya LA, Pluth MD. Organelle-targeted H2S probes enable visualization of the subcellular distribution of H2S donors. Anal Chem 2016;88(11):5769–74.

Guo P, Pan W, Liu J, Tang B. Fluorescent probes for organelle-targeted bioactive species imaging. Chem Sci 2019;10(24):7734–40.

Furne J, Saeed A, Levitt MD. Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2008;295 (3):R1479–85.

Peng X, Song F, Lu E, Wang Y, Zhou W, Fan J, et al. Heptamethine cyanine dyes with a large Stokes shift and strong fluorescence: a paradigm for excited-state intramolecular charge transfer. J Am Chem Soc 2005;127(12):4170–1.

Lippert AR, New Ej, Chang CJ. Reaction-based fluorescent probes for selective imaging of hydrogen sulfide in living cells. J Am Chem Soc 2011;133 (26):10078–80.

Wang R, Yu F, Chen L, Chen H, Wang L, Zhang W. A highly selective turn-on near-infrared fluorescent probe for hydrogen sulfide detection and imaging in living cells. Chem Commun 2012;48(96):11757–9.

Xuan W, Pan R, Cao Y, Liu K, Wang W. A fluorescent probe capable of detecting H 2 S in living mammalian cells. Chem Commun 2012;48(186):10669–71.

Chen J, Zhao M, Jiang X, Sizova A, Wang MC, Provost CR, et al. Genetically anchored fluorescent probes for subcellular specific imaging of hydrogen sulfide. Chem Commun 2014;50(1):1209–11.

Yang S, Qiu Y, Liu C, Wang Y, Zhao Y, Wang L, et al. Design of a simultaneous target and location-activatable fluorescent probe for visualizing hydrogen sulfide in lysosomes. Anal Chem 2014;86(15):7508–15.

Ooster K, Zhang Y, Li H. A highly sensitive and responsive fluorescence probe based on 6-azido-chromen dye for detection and imaging of hydrogen sulfide in cells. Talanta 2019;195:850–6.

Kang N, Pei S, Zhang C, Zhang G, Zhou Y, Shi L, et al. A turn-on fluorescence probe for hydrogen sulfide in absolute aqueous solution. Spectrochim Acta Part A: Molecular and Biomolecular Spectroscopy. 2020. p. 118316.

Peng H, Cheng Y, Dai C, King AL, Premore BL, Lefer DJ, et al. A fluorescent probe for fast and quantitative detection of hydrogen sulfide in blood. Angew Chem Int Ed 2011;50(41):10672–5.

Zhang Y, Zhang L. A novel “turn-on” fluorescent probe based on hydroxy functionalized napthalimide as a logical platform for visual recognition of H2S in environment and living cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015;133:285–90.

Yu C, Li X, Zeng F, Zheng F, Wu S. Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chem Commun 2017;53:11760–3.

Kim M, Seo YH, Kim Y, Heo J, Jang W-D, Sim SJ, et al. A fluorescent molecular nanoprobe with an engineered internal environment for sensitive and selective detection of biological hydrogen sulfide. Chem Commun 2017;53:11760–3.

Shen D, Liu J, Sheng L, Li Y, Wu G, Wang P, et al. Design, synthesis and evaluation of a novel fluorescent probe to accurately detect H2S in hepatocytes and natural waters. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020. p. 117090.

Ji A, Fan Y, Ren W, Zhang S. Ai H-W: a sensitive near-infrared fluorescent sensor for mitochondrial hydrogen sulfide. ACS Sensors 2018;3(5):992–7.

Paul N, Sarkar R, Sarkar R, Baruji A, Sarkar S. Detection of hydrogen sulfide using BODIPY based colorimetric and fluorescent turn-on-off chemosensor. J Chem Soc 2020:132(1):21.

Yi X, Li M, Luo Q, Zhou H, Cao H, Wang J, et al. Toxic effects of dimethyl sulfoxide on red blood cells, platelets, and vascular endothelial cells in vitro. FEBS Open Bio 2017;7(4):485–94.

Vitvitsky V, Banerjee R: Chapter Seven - H2S Analysis in Biological Samples. In: Handbook of H2S Analysis. 2017. p. 118156.

Sunzini F, De Stefano S, Chimenti MS, Melino S. Hydrogen sulfide as potential bioactive species imaging. Chem Sci 2019;10(24):6035–71.

Wei C, Wei L, Xi Z. Thiolysis of NBD-based dyes for colorimetric and fluorescence probe for detection of H2S in living cells. Talanta 2019;195:850–6.

Wei C, Wei L, Xi Z. A FRET-based fluorescent probe for imaging H2S in living cells. Trehadocrin Lett 2013;17(2):349–53.
Radford-Knowery J, Cutter GA. Determination of carbonyl sulfide and hydrogen sulfide species in natural waters using specialized collection procedures and gas chromatography with flame photometric detection. Anal Chem 1993;65 (8):976–82.

Suarez F, Furne J, Springer J, Levitt MD. Morning breath odor: influence of treatments on sulfur gases. J Dent Res 2000;79(10):1773–7.

Ali SE, Farag MA, Holpeft P, Hanafi RS, Gad MAZ. A comparative metabolomics approach reveals early biomarkers for metabolic response to acute myocardial infarction. Sci Rep 2016;6:36359.

Tiele A, Daly A, Hattersley J, Pinto A, Evans S, Ashmore C, et al. Investigation of paediatric PKU breath malodour, comparing glycocarnocitide with phenylalanine free L-amino acid supplements. J Breath Res 2019;14 (1):016001.

Savage J, Gould D. Determination of sulfide in brain tissue and rumen fluid by ion-interaction reversed-phase high-performance liquid chromatography. Journal of Chromatography, Biomedical Applications 1990;526(2):540–5.

Wintner EA, Deckworth TL, Langston W, Bengtsson A, Leviten D, Hill P, et al. A monobromobimane-based assay to measure the pharmacokinetic profile of reactive sulfide species in blood. Br J Pharmacol 2010;160(4):941–57.

Bramanti E, D’Ulivo L, Lomonte C, Onor M, Zamboni R, Raspi G, et al. Determination of hydrogen sulfide and volatile thiols in air samples by mercury probe derivatization coupled with liquid chromatography–atomic fluorescence spectrometry. Anal Chem Acta 2006;579(1):38–46.

Lee D-Y, Huang W-C, Gu T-J, Chang G-D. Quantitative and comparative liquid chromatography-electrospay ionization-mass spectrometry analyses of hydrogen sulfide and thiol metabolites derivitized with 2-iodooctadecyl alkanethiol. J Chromatogr A 2018;1552:59–62.

Richardson CJ, Magee EA, Cummings JH. A new method for the determination of sulphide in gastrointestinal contents and whole blood by microdilution and ion chromatography. Clin Chem Acta 2000;293(1–2):115–21.

Goodwin LR, Francom D, Urso A, Dieken FP. Determination of trace sulfides in turbid waters by gas dialysis/ion chromatography. Anal Chem 1988;60 (3):216–9.

Goodwin LR, Francom D, Dieken FP, Taylor JD, Warenycia MW, Reifenstein R, et al. Determination of sulfide in brain tissue by gas dialysis/ion chromatography: postmortem studies and two case reports. J Anal Toxicol 1989;13(2):105–9.

Warenycia MW, Goodwin LR, Benishin CG, Reifenstein R, Francom DM, Taylor JD, et al. Acute hydrogen sulfide poisoning: demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochem Pharmacol 1989;38(6):973–81.

Warenycia MW, Goodwin LR, Francom DM, Dieken FP, Kombian SB, Reifenstein R. Dithiohrebitol liberates non-acid labile sulfide from brain tissue of H 2 S-poisoned animals. Arch Toxicol 1990;64(8):650–5.

Steinmann P, Shoytik W. Ion chromatography of organic-rich natural waters from peatlands IV. Dissolved sulfide and acid-volatile sulfur. J Chromatogr A 1995;706(1–2):287–92.

Ditoti T, Nagy A, Martineilli D, Rosta A, Kozich V, Nagy P. Comprehensive analysis of how experimental parameters affect H2S measurements by the monobromobimane method. Free Radical Res Med 2010;136:146–58.

Hine C, Zhu Y, Hollenberg AN, Mitchell JR. Dietary and endocrine regulation of endogenous hydrogen sulfide production: implications for longevity. Antioxid Redox Signal 2018;29(16):1495–502.

Funazo K, Tanaka M, Morita K, Kamin M, Shono T, Wu H-L. Pentfluoro benzyl p-toluenesulphonate as a new derivatizing reagent for gas chromatographic determination of anions. J Chromatogr A 1985;346:215–25.

Kimura K, Hasegawa M, Matsumura K, Masaeda C, Kagawa M, Takahashi S, Tanabe K-i: A fatal disaster case based on exposure to hydrogen sulfide—an enzymology. vol. 554: Elsevier; 2015: 111-123.

Chuan A, Hirschel FG, Hidaqou M. Rapid determination of sulfide in rumen and blood with a sulfide-specific ion electrode. Microchem J 1989;30(1):388–95.

Zhao W, Zhang J, Lu Y, Wang R. The vasoelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. The EMBO Journal 2001;20 (21):6008–16.

Chen Y-H, Yao W-Z, Geng B, Ding Y-L, Lu M, Zhao M-W, et al. Endogenous Hydrogen Sulfide in Patients With COPD. Chest 2005;128(5):3265–11.

Olson KR. A Practical Look at the Chemistry and Biology of Hydrogen Sulfide. Antioxid Redox Signal 2011;17(1):32–44.

Li C, Polk BJ, Mezalettine LA, Hatchett DW, ISE Analysis of Hydrogen Sulfide in Cigarette Smoke. J Chem Educ 2000;77(8):1049.

Ri K, Kim S, Paek H, Hong C, Kim J. Determination of sulfide at screen-printed electrode modified with ferrocyanide-doped partially quaternized poly (4-vinylpyridine). J Electroanal Chem 2019;853:113540.

Atta NF, Galal A, Mark HB, Patel H, Patel RP, et al. Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Anal Biochem 2005;341(1):40–51.

Sun W, Fan J, Hu C, Cao J, Zhang H, Xiong X, et al. A two-photon fluorescence probe with near-infrared emission for hydrogen sulfide imaging in biosystems. Chem Commun 2013;49(37):3890–2.

Hong J, Zhou E, Zeng S, Feng G, A red to near-infrared fluorescence probe featuring a super large Stokes shift for light-up detection of endogenous H2S. Dyes Pigm 2019;160:787–93.

Zhang Y, Zhang B, Li Z, Wang L, Ren X, Ye Y. Endoplasmic reticulum targeted fluorescent probe for the detection of hydrogen sulfide based on a twist-blockage strategy. Org Biomol Chem 2019;17(38):8778–83.

Kraus DW, Doeller JE. Sulfide consumption by mussel gill mitochondria is not strictly tied to oxygen reduction: measurements using a novel polarographic sulfide sensor. J Exp Biol 2004;207(1):3667–79.

Doeller JE, Iseblust, SS, Benavides G, Keenitzer J, Patel H, Patel RP, et al. Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Anal Biochem 2005;341(1):40–51.

Zheng H, Liu M, Zhang C, Zhang G, Chao J, Shi L, et al. The design of hydrogen sulfide fluorescence probe based on dual nucleic reaction and its application for bioimaging. Spectrochim Acta A 2019;207:150–5.

Palanisamy S, Lee L-Y, Wang Y-L, Chen Y-J, Chen C-Y, Wang Y-M. A water soluble and fast response fluorescent turn-on copper complex probe for H2S detection in zebra fish. Talanta 2016;147:445–52.

Li X, Gong Y, Wu K, Liang SH, Cao J, Yang B, et al. A highly sensitive and water soluble fluorescent probe for rapid detection of hydrogen sulfide in living cells. RSC Adv 2014;4(48):36106–9.

Fu H, Duan X, He HH, Liu JH. Fluorescent and colorimetric detection of hydrogen sulfide by in situ formation of Ag2S@Ag nanoparticles in polyelectrolyte multilayer film. RSC Adv 2015;5(5):3508–11.

Zhou L, Zhao L, Maoa Y, Liu C, Zhang C. A Colorimetric Sensor for the Highly Selective Detection of Sulfide and 1,4-Dithiothreitol Based on the In Situ Formation of Silver Nanoparticles Using Dopamine. Sensors 2017;17(3):626.

Tang S, Qi T, Xia D, Xu M, Xu M, Zhu A, et al. Smartphone Nanocolorimetric Determination of Hydrogen Sulfide in Biosamples after Silver-Gold Core–Shell Nanopirn-Based Headspace Single-Drop Microextraction. Anal Chem 2019;91(9):5888–95.

Hao J, Xiong B, Cheng X, He Y, Yeung ES. High-Throughput Sulfide Sensing with Colorimetric Analysis of Single Au–Ag Core–Shell Nanoparticles. Anal Chem 2014;86(10):4663–7.

Chen Z, Chen C, Huang H, Luo F, Guo L, Zhang L, et al. Target-Induced Horseradish Peroxidase Deactivation for Multicolor Colorimetric Assay of Hydrogen Sulfide in Rat Brain Microdialysis. Anal Chem 2018;90(10):6222–8.

Varlet Y, Guilani M, Palmeiri C, Magneau G, Augsburg M. Hydrogen sulfide measurement by headspace-gas chromatography-mass spectrometry (HS-GC-MS): Application to gaseous samples and gas dissolved in muscle. J Anal Toxicol 2014;38(1):52–7.

Vitvitsky V, Banerjee R: H2S analysis in biological samples using gas chromatography with sulfur chemiluminescence detection. In: Methods in enzymology. vol. 354: Elsevier; 2015: 111-123.