ON A CONJECTURE OF R. M. MURTY AND V. K. MURTY II

YUCHEN DING

Abstract. Let $\omega^*(n)$ be the number of primes p such that $p - 1$ divides n. In 1955, Prachar proved that $\sum_{n \leq x} \omega^*(n)^2 = O(x(\log x)^2)$. Recently, Murty and Murty improved this to

$$x(\log \log x)^3 \ll \sum_{n \leq x} \omega^*(n)^2 \ll x \log x.$$

They further conjectured that there is some positive constant C such that

$$\sum_{n \leq x} \omega^*(n)^2 \sim Cx \log x$$

as $x \to \infty$. In a former note, the author gave the correct order of it by showing that

$$\sum_{n \leq x} \omega^*(n)^2 \approx x \log x.$$

In this subsequent article, we provide a conditional proof of their conjecture.

The investigations of the normal order of certain arithmetic functions start from the paper of Hardy and Ramanujan [6]. Let $\omega(n)$ be the number of distinct prime divisors of n. Hardy and Ramanujan found that all most all integers n satisfy $\omega(n) \sim \log \log n$ as $x \to \infty$. Later, Turán [11] simplified the proof significantly. After Turán, the theorem of Hardy and Ramanujan follows from the following two asymptotic formulae:

$$\sum_{n \leq x} \omega(n) = x \log \log x + Bx + O(x/ \log x)$$

and

$$\sum_{n \leq x} \omega(n)^2 = x(\log \log x)^2 + O(x \log \log x),$$

where B is a constant.

In 1955, Prachar [10] considered a variant arithmetic function of ω. Let $\omega^*(n)$ be the number of primes p such that $p - 1$ divides n. Prachar proved that

$$\sum_{n \leq x} \omega^*(n) = x \log \log x + Bx + O(x/ \log x)$$

and

$$\sum_{n \leq x} \omega^*(n)^2 = O(x(\log x)^2).$$

Also, Prachar proved that

$$\omega^*(n) > \exp \left(a \log n/(\log \log n)^2 \right)$$
for infinitely many integers \(n \), where \(a \) is an absolute constant. Adleman, Pomerance and Rumely [1] improved this to

\[
\omega^*(n) > \exp\left(a \log \frac{n}{\log \log n}\right).
\]

Motivated by Prachar’s work, Erdős and Prachar [5] proved that the number of pairs of primes \(p \) and \(q \) so that the least common multiple \([p - 1, q - 1] \leq x \) is bounded by \(O(x \log \log x) \). Following a remark of Erdős and Prachar, Murty and Murty [8] improved this to \(O(x) \). By this improvement, they reached the nice bounds

\[
x(\log \log x)^3 \ll \sum_{n \leq x} \omega^*(n)^2 \ll x \log x.
\]

As remarked by Murty and Murty, the above lower bound means that \(\omega^*(n) \) does not have a normal order. With these in hands, Murty and Murty conjectured that there is some some positive constant \(C \) such that

\[
\sum_{n \leq x} \omega^*(n)^2 \sim Cx \log x
\]
as \(x \to \infty \), or equivalently,

\[
\sum_{\lcm[p - 1, q - 1] \leq x} \frac{1}{[p - 1, q - 1]} \sim C \log x.
\]

In a former note, the author [3] gave a slight improvement of the result of Murty and Murty by showing that there are two absolute constants \(a_1 \) and \(a_2 \) such that

\[
a_1 x \log x \leq \sum_{n \leq x} \omega^*(n)^2 \leq a_2 x \log x.
\]

In this subsequent article, we shall confirm their conjecture under the following remarkable assumption which is well–believed to be true.

Elliott–Halberstam Conjecture. [4] Let \(x \geq 2 \) be a number. For any \(A > 0 \), the following estimates

\[
\sum_{d \leq x^\theta} \max_{y \leq x} \left| \pi(y; d, 1) - \frac{\text{liy}}{\phi(d)} \right| \ll_{\theta, A} \frac{x}{(\log x)^A}
\]

holds for all \(\theta < 1 \), where \(\pi(y; d, 1) \) is the number of primes \(p \equiv 1 \pmod{d} \) up to \(y \) and

\[
\text{li}_y = \int_2^y \frac{1}{\log t} \, dt.
\]

In our proof, we shall use frequently the following classical inequality.

Brun–Titchmarsh inequality. [9] Let \(x \) be a positive real number, and let \(k, a \) be relatively prime positive integers. Then

\[
\pi(x; k, a) \leq \frac{2x}{\phi(k) \log(x/k)},
\]

provided that \(x > k \).
Theorem 1. Assuming the Elliott–Halberstam Conjecture, there is a constant C such that

$$\sum_{n \leq x} \omega^*(n)^2 \sim Cx \log x$$

as $x \to \infty$.

Proof. Throughout our proof, the number x is sufficiently large. The implied constants are absolute unless otherwise indicated. From the paper of Murty and Murty [8, equation (4.10)], we have

$$\sum_{n \leq x} \omega^*(n)^2 = x \sum_{m \leq x} \varphi(m) \left(\sum_{\substack{p \leq x \mod m \equiv 1 \mod m}} \frac{1}{p} \right)^2 + O(x). \tag{1}$$

Note that

$$\sum_{\substack{p \leq x \mod m \equiv 1 \mod m}} \frac{1}{p(p-1)} < 2 \sum_{n \equiv 1 \mod m} \frac{1}{n^2} \ll \frac{1}{m^2}, \tag{2}$$

it follows from equations (1) and (2) that

$$\sum_{n \leq x} \omega^*(n)^2 = x \sum_{m \leq x} \varphi(m) \left(\sum_{\substack{p \leq x \mod m \equiv 1 \mod m}} \frac{1}{p} + O\left(\frac{1}{m^2}\right) \right)^2 + O(x)$$

$$= x \sum_{m \leq x} \varphi(m) \left(\sum_{\substack{p \leq x \mod m \equiv 1 \mod m}} \frac{1}{p} \right)^2 + O(x), \tag{3}$$

where we have used the trivial estimate

$$\sum_{\substack{p \leq x \mod m \equiv 1 \mod m}} \frac{1}{p} \leq \sum_{n \leq x \mod m \equiv 1 \mod m} \frac{1}{n} \ll \frac{\log x}{m}.$$ Integrating by parts, we get

$$\sum_{\substack{p \leq x \mod m \equiv 1 \mod m}} \frac{1}{p} = \frac{\pi(x; m, 1)}{x} + \int_2^x \frac{\pi(t; m, 1)}{t^2} dt.$$

This together with equation (3) lead to

$$\sum_{n \leq x} \omega^*(n)^2 = S_1(x) + S_2(x) + S_3(x) + O(x), \tag{4}$$

where

$$S_1(x) = x \sum_{m \leq x} \varphi(m) \left(\int_2^x \frac{\pi(t; m, 1)}{t^2} dt \right)^2,$$

$$S_2(x) = 2 \sum_{m \leq x} \varphi(m) \pi(x; m, 1) \int_2^x \frac{\pi(t; m, 1)}{t^2} dt.$$
and
\[S_3(x) = \frac{1}{x} \sum_{m \leq x} \varphi(m) \pi(x; m, 1)^2. \]

It turns out that \(S_2(x) \) and \(S_3(x) \) offer the error terms. The sum \(S_3(x) \) is easy to bound. By the Brun–Titchmarsh inequality, we have
\[
\frac{1}{x} \sum_{m \leq x} \varphi(m) \pi(x; m, 1)^2 \ll x \sum_{m \leq x} \frac{1}{\varphi(m)} \frac{1}{\log^2(x/m)} \\
\ll x \sum_{m \leq x} \frac{\log \log m}{m} \frac{1}{\log^2(x/m)} \\
\ll x \log \log x.
\]

Thus, by trivial estimate we obtain
\[
S_1(x) = \frac{1}{x} \sum_{x/\log x < m \leq x} \varphi(d) \pi(x; m, 1)^2 + O(x \log \log x) \\
\ll x \sum_{x/\log x < m \leq x} \frac{\varphi(m)}{m^2} + x \log x \log x \\
\ll x \log \log x. \tag{5}
\]

Next, we bound the sum \(S_2(x) \). Since \(\pi(t; m, 1) = 0 \) for \(t \leq m \), we have
\[
\int_{x/2}^{x} \frac{\pi(t; m, 1)}{t^2} \, dt = \int_{m}^{2m} \frac{\pi(t; m, 1)}{t^2} \, dt + \int_{2m}^{x/2} \frac{\pi(t; m, 1)}{t^2} \, dt + \int_{x/2}^{x} \frac{\pi(t; m, 1)}{t^2} \, dt \\
\ll \int_{m}^{2m} \frac{dt}{mt} + \int_{2m}^{x/2} \frac{dt}{\varphi(m) t \log(t/m)} + \int_{x/2}^{x} \frac{dt}{mt} \\
\ll \frac{1}{m} + \frac{\log \log x - \log \log m}{\varphi(m)}. \tag{6}
\]

via the trivial estimate and the Brun–Titchmarsh inequality, provided that \(8 < m \leq x/8 \). From which we deduce that
\[
\sum_{8 < m \leq x/8} \varphi(m) \pi(x; m, 1) \int_{x/2}^{x} \frac{\pi(t; m, 1)}{t^2} \, dt \ll x \sum_{8 < m \leq x/8} \frac{\varphi(m)}{m \log(x/m)} \frac{\log \log x}{\varphi(m)} \\
\ll x(\log \log x)^2.
\]

For \(x/8 < m \leq x \), by trivial estimate we have
\[
\sum_{x/8 < m \leq x} \varphi(m) \pi(x; m, 1) \int_{x/2}^{x} \frac{\pi(t; m, 1)}{t^2} \, dt \ll x \sum_{x/8 < m \leq x} \frac{\varphi(m)}{m} \int_{m}^{x} \frac{1}{mt} \, dt \\
\ll x \sum_{x/8 < m \leq x} \frac{\log x - \log m}{m} \\
\ll x.
\]
And from equation (6), it is clear that
\[\sum_{m \leq 8} \varphi(m) \pi(x; m, 1) \int_2^x \frac{\pi(t; m, 1)}{t^2} dt \ll x \log \log x. \]
Thus, we have proved that \(S_2(x) \ll x(\log \log x)^2 \). We are left over to compute \(S_1(x) \).

Let \(\varepsilon > 0 \) be an arbitrarily small number. The sum \(S_1(x) \) can be split into the following three shorter sums:

\[
S_1(x) = x \left(\sum_{8 < m \leq x} + \sum_{x < m \leq x^{1-\varepsilon}} + \sum_{x^{1-\varepsilon} < m \leq x} \right) \varphi(m) \left(\int_2^x \frac{\pi(t; m, 1)}{t^2} dt \right)^2 + O(x(\log \log x)^2)
\]
\[= S_{11}(x) + S_{12}(x) + S_{13}(x) + O(x(\log \log x)^2), \]

where the error term comes from estimate of \(m \leq 8 \) via equation (6). Again by equation (6), we have

\[
S_{11}(x) \ll x \sum_{m \leq x^{\varepsilon}} \varphi(m) \left(\frac{1}{m} + \frac{\log \log x - \log \log m}{\varphi(m)} \right)^2
\]
\[\ll \varepsilon x \log x + x \sum_{8 < m \leq x^{\varepsilon}} \frac{\log \log x - \log \log m}{m} + x \sum_{8 < m \leq x^{\varepsilon}} \frac{(\log \log x - \log \log m)^2}{\varphi(m)}
\]
and

\[
S_{13}(x) \ll x \sum_{x^{1-\varepsilon} < m \leq x} \varphi(m) \left(\frac{1}{m} + \frac{\log \log x - \log \log m}{\varphi(m)} \right)^2
\]
\[\ll \varepsilon x \log x + x \sum_{x^{1-\varepsilon} < m \leq x} \frac{\log \log x - \log \log m}{m} + x \sum_{x^{1-\varepsilon} < m \leq x} \frac{(\log \log x - \log \log m)^2}{\varphi(m)}.
\]

It is plain that
\[
\sum_{8 < m \leq x^{\varepsilon}} \frac{\log \log x - \log \log m}{m} \ll \int_8^{x^{\varepsilon}} \frac{\log \log x - \log \log t}{t} dt \ll \varepsilon \log x + 1
\]
and
\[
\sum_{x^{1-\varepsilon} < m \leq x} \frac{\log \log x - \log \log m}{m} \ll \int_{x^{1-\varepsilon}}^{x} \frac{\log \log x - \log \log t}{t} dt \ll \varepsilon \log x + 1.
\]

We are in a position to introduce the following well-known results (see for example [7]) due to Landau

\[
\sum_{m \leq y} \frac{1}{\varphi(m)} = A \log y + O(1) \quad \text{and} \quad \sum_{m \leq y} \frac{m}{\varphi(m)} = Ay + O(\log y),
\]
where \(A \) is an absolute constant. (We shall show later that the constant \(C \) in our theorem is actually equal to \(2A \).) Integrating by parts and then using equation (8), we
have
\[
\sum_{8 < m \leq x^\varepsilon} \frac{(\log \log x - \log \log m)^2}{\varphi(m)} \ll \int_{8}^{x^\varepsilon} \frac{(\log \log x - \log \log t)^2}{t} d \sum_{8 < m \leq t} \frac{m}{\varphi(m)} \ll \varepsilon \log x + (\log \log x)^2.
\]

The same argument yields
\[
\sum_{x^{1-\varepsilon} < m \leq x} \frac{(\log \log x - \log \log m)^2}{\varphi(m)} \ll \varepsilon \log x + (\log \log x)^2.
\]

Hence, we get
\[
S_{11}(x) + S_{13}(x) \ll \varepsilon x \log x + x(\log \log x)^2.
\]

The rest of the proof will be devoted to the manipulations of \(S_{12}(x)\). For any \(0 \leq j \leq \left\lfloor \frac{\log x}{(1-2\varepsilon) \log 2} \right\rfloor\), let \(Q_j = 2^j x^\varepsilon\). Then \(x^\varepsilon \leq Q_j \leq x^{1-\varepsilon}\) for all \(0 \leq j \leq \left\lfloor \frac{\log x}{(1-2\varepsilon) \log 2} \right\rfloor\). By the Elliott–Halberstam Conjecture, the estimate
\[
\sum_{Q_j < m \leq 2Q_j} \max_{y \leq z} \left| \pi(y; m, 1) - \frac{\li y}{\varphi(m)} \right| \ll \varepsilon \frac{z}{(\log z)^5}
\]
holds for any \(0 \leq j \leq \left\lfloor \frac{\log x}{(1-2\varepsilon) \log 2} \right\rfloor\) and \(Q_j^{1+\varepsilon} < z \leq x\). It follows from equation (10) that for any \(Q_j^{1+\varepsilon} < z \leq x\) the estimate
\[
\max_{y \leq z} \left| \pi(y; m, 1) - \frac{\li y}{\varphi(m)} \right| < \frac{\li y}{\varphi(m) \log z}
\]
holds for all \(Q_j < m \leq 2Q_j\) with at most \(O(Q_j/(\log Q_j)^2)\) exceptions. This immediately leads to the fact that
\[
\pi(y; m, 1) = \frac{\li y}{\varphi(m)} + O\left(\frac{\li y}{\varphi(m) \log y}\right) \quad (z/2 < y \leq z)
\]
is valid for all \(Q_j < m \leq 2Q_j\) but at most \(O(Q_j/(\log Q_j)^2)\) exceptions. Considering the dichotomy of \(z\) between the interval \((Q_j^{1+\varepsilon}, x]\), we have
\[
\pi(y; m, 1) = \frac{\li y}{\varphi(m)} + O\left(\frac{\li y}{\varphi(m) \log y}\right) \quad (\forall Q_j^{1+\varepsilon} < y \leq x)
\]
for all \(Q_j < m \leq 2Q_j\) but at most
\[
\frac{\log x}{\log 2} - Q_j/(\log Q_j)^2 \ll \varepsilon Q_j / \log x
\]
exceptions. Let \(\mathcal{J}_j\) be the set of all exceptions in the interval \(Q_j < m \leq 2Q_j\) for \(0 \leq j \leq \left\lfloor \frac{\log x}{(1-2\varepsilon) \log 2} \right\rfloor\). Then \(|\mathcal{J}_j| \ll \varepsilon Q_j / \log x\). Thus, we conclude that for all
\[
m \in \left((x^\varepsilon, x^{1-\varepsilon}] \setminus \bigcup_{j=0}^{\left\lfloor \frac{\log x}{(1-2\varepsilon) \log 2} \right\rfloor} \mathcal{J}_j\right) := \mathcal{R}, \quad \text{say},
\]
we have
\[
\int_{m^{1+\varepsilon}}^{x} \frac{\pi(t; m, 1)}{t^2} dt = \int_{m^{1+\varepsilon}}^{x} \frac{1}{\varphi(m)t \log t} dt + O \left(\int_{m^{1+\varepsilon}}^{x} \frac{1}{\varphi(m)t \log^2 t} dt \right) \\
= \log \log x - \log \log m \frac{1}{\varphi(m)} + O \left(\frac{1}{\varphi(m) \log m} + \frac{\varepsilon}{\varphi(m)} \right)
\]
from equation (11). Note that
\[
\int_{m^{1+\varepsilon}}^{x} \frac{\pi(t; m, 1)}{t^2} dt \ll \int_{m}^{m^{1+\varepsilon}} \frac{1}{mt} dt \ll \frac{1}{m \log m}
\]
from the trivial estimate, hence, for integers \(m \) located in (12) we have
\[
\int_{2}^{x} \frac{\pi(t; m, 1)}{t^2} dt = \log \log x - \log \log m \frac{1}{\varphi(m)} + O \left(\frac{1}{\varphi(m) \log m} + \frac{\varepsilon}{\varphi(m)} \right)
\]
from equation (13). We now turn back to calculate \(S_{12}(x) \). By definition of \(S_{12}(x) \),
\[
S_{12}(x) = x \left(\sum_{j=0}^{[\log x/(1-2\varepsilon) \log 2]} \sum_{m \in \mathcal{S}_j} \varphi(m) \left(\int_{2}^{x} \frac{\pi(t; m, 1)}{t^2} dt \right)^2 \right) \]
\[
+ O \left(x \sum_{\frac{1}{2} x^{1-\varepsilon} \leq m \leq x^{1-\varepsilon}} \varphi(m) \left(\int_{2}^{x} \frac{\pi(t; m, 1)}{t^2} dt \right)^2 \right),
\]
where the error term comes from the possible overlaps between the sets. From equation (6), the error term can be bounded as
\[
x \sum_{x^{1-\varepsilon} / 2 \leq m \leq x^{1-\varepsilon}} \varphi(m) \left(\int_{2}^{x} \frac{\pi(t; m, 1)}{t^2} dt \right)^2 \ll x (\log \log x)^2.
\]
Employing equation (6) again, we obtain
\[
x \left(\sum_{j=0}^{[\log x/(1-2\varepsilon) \log 2]} \sum_{m \in \mathcal{S}_j} \varphi(m) \left(\int_{2}^{x} \frac{\pi(t; m, 1)}{t^2} dt \right)^2 \right) \ll x \sum_{j=0}^{[\log x/(1-2\varepsilon) \log 2]} \sum_{m \in \mathcal{S}_j} \frac{(\log \log x)^2}{\varphi(m)}
\]
\[
\ll \varepsilon x (\log \log x)^2 \sum_{j=0}^{[\log x/(1-2\varepsilon) \log 2]} \frac{1}{\log x}
\]
\[
\ll \varepsilon x (\log \log x)^2,
\]
where we have used the facts \(|\mathcal{S}_j| \ll \varepsilon Q_j / \log x\) and (hence)
\[
\sum_{m \in \mathcal{S}_j} \frac{1}{\varphi(m)} \ll \varepsilon \frac{1}{\log x}.
\]
For \(m \in \mathcal{R} \), from equation (14) we have
\[
x \sum_{m \in \mathcal{R}} \varphi(m) \left(\int_{2}^{x} \frac{\pi(t; m, 1)}{t^2} dt \right)^2 \]
\[
= x \sum_{m \in \mathcal{R}} \varphi(m) \left(\frac{\log \log x - \log \log m}{\varphi(m)} + O \left(\frac{1}{\varphi(m) \log m} + \frac{\varepsilon}{\varphi(m)} \right) \right)^2 \]
\[
= x \sum_{m \in \mathcal{R}} \frac{(\log \log x - \log \log m)^2}{\varphi(m)} + O \left(x(\log \log x)^2 + \varepsilon x \log x \right). \]

Noting that
\[
\sum_{m \in \mathcal{R}} \frac{(\log \log x - \log \log m)^2}{\varphi(m)} \]
\[
= \sum_{x^\varepsilon < m \leq x^{1-\varepsilon}} \frac{(\log \log x - \log \log m)^2}{\varphi(m)} + O_\varepsilon \left((\log \log x)^2 \right) \]
in view of equation (16) and
\[
\sum_{x^\varepsilon < m \leq x^{1-\varepsilon}} \frac{(\log \log x - \log \log m)^2}{\varphi(m)} = \int_{x^\varepsilon}^{x^{1-\varepsilon}} \frac{(\log \log x - \log \log t)^2}{t} dt \sum_{x^\varepsilon < m \leq t} \frac{m}{\varphi(m)} = A f(\varepsilon) \log x + O((\log \log x)^2) \]
via equation (8), we can conclude that
\[
x \sum_{m \in \mathcal{R}} \varphi(m) \left(\int_{2}^{x} \frac{\pi(t; m, 1)}{t^2} dt \right)^2 = A f(\varepsilon) x \log x + O(x(\log \log x)^2 + \varepsilon x \log x), \quad (17) \]
where
\[
f(\varepsilon) = 2(1 - \varepsilon) + (1 - \varepsilon) \log^2(1 - \varepsilon) - \varepsilon \log^2 \varepsilon + 2(1 - \varepsilon) \log \frac{1}{1 - \varepsilon} + 2 \varepsilon \log \varepsilon. \]
Thus, we finally get
\[
S_{12}(x) = A f(\varepsilon) x \log x + O_\varepsilon(x(\log \log x)^2) + O(\varepsilon x \log x). \]

Looking back the estimates from equations (4) to (17), we have established
\[
\sum_{n \leq x} \omega^*(n)^2 = A f(\varepsilon) x \log x + O_\varepsilon(x(\log \log x)^2) + O(\varepsilon x \log x) \quad (18) \]
for any \(\varepsilon > 0 \). From above equation (18), we have
\[
Af(\varepsilon) + O(\varepsilon) \leq \liminf_{x \rightarrow \infty} \frac{\sum_{n \leq x} \omega^*(n)^2}{x \log x} \leq \limsup_{x \rightarrow \infty} \frac{\sum_{n \leq x} \omega^*(n)^2}{x \log x} \leq Af(\varepsilon) + O(\varepsilon). \]
Making \(\varepsilon \rightarrow 0 \), we have
\[
2A \leq \liminf_{x \rightarrow \infty} \frac{\sum_{n \leq x} \omega^*(n)^2}{x \log x} \leq \limsup_{x \rightarrow \infty} \frac{\sum_{n \leq x} \omega^*(n)^2}{x \log x} \leq 2A \]
since \(f(\varepsilon) \rightarrow 2 \) for \(\varepsilon \rightarrow 0 \). Therefore,
\[
\sum_{n \leq x} \omega^*(n)^2 \sim 2Ax \log x, \quad (as \ x \rightarrow \infty). \]
Remark. It is clear that we have the following corollary
\[
\sum_{p,q \leq x} \frac{1}{|p-1, q-1|} \sim C \log x
\]
as \(x \to \infty\) under the Elliott–Halberstam Conjecture due to (see \([8, \text{page 6, last line}]\))
\[
\sum_{n \leq x} \omega^*(n)^2 = \sum_{p,q \leq x} x \frac{x}{|p-1, q-1|} + O(x).
\]

Acknowledgments

The author is supported by the Natural Science Foundation of Jiangsu Province of China, Grant No. BK20210784, China Postdoctoral Science Foundation, Grant No. 2022M710121, the foundations of the projects "Jiangsu Provincial Double–Innovation Doctor Program", Grant No. JSSCBS20211023 and "Golden Phoenix of the Green City–Yang Zhou" to excellent PhD, Grant No. YZLYJF2020PHD051.

References

[1] L. Adleman, C. Pormance, R. Rumely, On distinguishing prime numbers from composite numbers, Ann. of Math. 117 (1983) 173–206.
[2] H. Davenport, Multiplicative Number Theory, Second edition, Graduate Texts in Mathematics 74, Springer-Verlag, New York, 1980.
[3] Y. Ding, On a conjecture of R. M. Murty and V. K. Murty. http://arxiv.org/abs/2208.06704.
[4] P.D.T.A. Elliott, H. Halberstam, A conjecture in prime number theory, in: Symposia Mathematica, Vol. IV (INDAM, Roma, 1968/69), Academic Press, London, (1970) 59–72.
[5] P. Erdős, K. Prachar, Über die Anzahl der Lösungen von \([p-1, q-1] \leq x\), Monatsh. Math. 59 (1955), 318–319.
[6] G.H. Hardy, S. Ramanujan, The normal number of prime factors of a number \(n\), Quart. J. Math. 48 (1917), 76–92.
[7] E. Landau, Über die zahlentheoretische Funktion \(\phi(n)\) und ihre beziehung zum Goldbachschen Satz, Nachr. Koeniglichen Gesellschaft wiss, Gottingen Math. Phys. Klasse (1900), 177–186.
[8] R.M. Murty, V. K. Murty, A variant of the Hardy–Ramanujan theorem, Hardy–Ramanujan J. 44 (2021), 32–40.
[9] H.L. Montgomery, R. C. Vaughan, The large sieve, Mathematika 20 (1973) 119–134.
[10] K. Prachar, Über die Anzahl der Teiler einer natürlichen Zahl, welche die Form \(p-1\) haben, Monatsh. Math. 59 (1955), 91–97.
[11] P. Turán, On a theorem of Hardy and Ramanujan, J. London Math. Soc. 9 (1934), 274–276.

(Yuchen Ding) School of Mathematical Science, Yangzhou University, Yangzhou 225002, People’s Republic of China

Email address: ycding@yzu.edu.cn