An Experimental Study to determine the Impact of Active Release Technique, Core Strengthening on Pain, Muscle Stiffness, Hardness and Quality of Life on Non-Specific Low Back Pain

Laukik Vaidya a and Pratik Phansopkar a*

a Department of Musculoskeletal Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Medical Science, Sawangi (Meghe), Wardha, India.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i50A33377

Editor(s):
(1) Dr. Sawadogo Wamtinga Richard, Ministry of Higher Education, Scientific Research and Innovation, Burkina Faso.

Reviewers:
(1) Najla Mouhli, Military Hospital of Tunis, Tunisia.
(2) Raquel Leirós-Rodríguez, Universidad de León, Spain.

Complete Peer review History: https://www.sdiarticle4.com/review-history/76185

Received 01 September 2021
Accepted 05 November 2021
Published 15 November 2021

Abstract

Introduction: Active Release Technique (ART), works by releasing adhesions and repairing the integrity of soft tissue, thereby extending and restoring functional flexibility entirely. Core stabilization workout (CSE) aims to treat back pain by boosting your muscular strength and stamina, strengthening muscle motor patterns to relieve low-back pain.

Aim: Aim of the study was to evaluate impact of active release technique and core strengthening on pain, mobility and quality of life on non-specific low-back pain.

Study Design: Simple random convenient sampling, envelope method

Place and Duration: A study of 40 people with non-specific low back pain and aging between 18 and 25 years was conducted at Musculoskeletal OPD, Ravi Nair Physiotherapy College, DMIMS(DU), Sawangi (Meghe), and Wardha in the duration of one year.

Procedure: In this experimental investigation, the influence of active released and impacting non-specific low back pain on suffering, muscular soreness, hardness, strength, ODI, and quality of life was determined. Both groups received hot fomentation and core strengthening, but only the ART group was actively released. The findings have been obtained from NPRS to algometer, durometer,

*Corresponding author: E-mail: drpratik77@gmail.com;
Results: in this study both the groups showed reduction in pain, muscle tenderness, muscle hardness as well as increase in core strength and quality of life. When compared ART group shows significant improvement with p value of 0.001.

Conclusion: In this study we find that the pain threshold, muscular hardness, muscle tenderness, deficiency and quality of life of both groups improved. The ART group was proven to be more effective than the Hpk group when the two groups were compared. In the two groups, the core strength did not change greatly, perhaps after four weeks, from pre- treatment to post- treatment to 4 weeks after.

Keywords: Active release technique (ART); Stuart McGill’s “Big 3”; Nonspecific-low back pain; core strengthening; EQ-5D-5L.

1. INTRODUCTION

Low back pain is described as “pain, tension in the muscle or stiffness located above and below the costal border, with or without referred leg pain”[1]. Low back pain (LBP) has significant socioeconomic influences being one of the most frequent musculoskeletal disorders[2], causes immense pain when doing daily activities which results in a significant degree of impairment[3]. In most cases (>80%), the symptoms of LBP were not explained by any particular disease or anatomic abnormalities; this is called non-specific LBP. In most situations (NSLBP)[4]. Mechanical low back pain, commonly called non-specific low back pain, caused due to repeated strain or trunk muscular weaknesses, most usually[3].

The most prevalent active trp is iliocostalis lumbarum, gluteus medius and quadratus lumbarum has a larger ammount of active (trigger points)trps identified as the non-specific LBP associated with increasing pain intensity[5]. TrPs are usually identified by taut bands of muscular fibres with palpable nodules[6]. They are characterized by pain, muscular stiffness and tenderness which irradiate to other areas[7]. Precise pathophysiology of TrPs is unknown. One famous theory is that muscle fibres suffer an energy crisis. Repetitive or persistent activity will produce muscle fibre overload, due to muscle hypoxia and ischemia. Furthermore, owing to energy deficiency, intracellular calcium pumps are dysfunctional. Increased intracellular calcium causes prolonged muscle contraction, resulting in the formation of taut bands. Besides, inflammatory mediators released as a result of muscle injury led to pain and tenderness in the involved muscles[8].

ART is a soft tissue management method including tendon, nerve and myofascial, which may serve for the treatment of repeated strain injury, acute injury, long-term dysfunction, scar-tissue treatments and tissue adhesions which cause muscle weakness, pain, spasms, tingling, and other symptoms[9,10]. Thus completely lengthen and restore functional flexibility[11]. It involves developing a conceptual framework to understand the increase in tissue stiffness or tension within cumulative damage cycle. With such a tight muscle, repeated micro injury promotes friction and stress among myofascial components. Used to stretch fascia, tendons and muscles, and to relax. ART functions through simply breaking adhesions and also rebuilding the integrity of the soft tissue[11,12].

Core stabilization workout (CSE) focuses on treating back pain by enhancing your muscular strength and endurance, strengthening muscle motor patterns to relieve low back pain[13]. The core muscles are typically targeted with isometric and dynamic activities. Although other isometrical exercise results in enough strength to minimize core stiffness, dynamic exercises provide fewer angle-specific changes, higher dynamic strength growth, and may be managed easily to raise intensity quickly throughout therapeutic phases[14].

Core strength and myofascial trigger points and adhesions are the main reason for lower back flexibility and force, leading to unspecified low back pain. Most research suggest to an improvement in core muscular strength and to decrease the non-special low back pain trigger sites. The low back pain procedure for active release has no relevant studies. At the same time, core enhancement has proved to boost strength. Active Release technique as proven effects on pain reduction. The Aim of the study was to evaluate impact of active release technique and core strengthening on pain, mobility and quality of life on non-specific low
back pain, while objectives were to evaluate the 
impact of active release technique and core 
strengthening on pain, mobility and quality of life 
in patients with non-specific low back pain, to 
evaluate the impact of core strengthening on 
pain, mobility and quality of life in patients with 
non-specific low back pain and to compare the 
effects of active release technique and core 
strengthening on pain, mobility and quality of life 
in patients with non-specific low back pain.

2. METHODOLOGY

This study of 40 people with non-specific low 
back pain and aging between the 18 and 25 
years was conducted at Musculoskeletal OPD, 
Ravi Nair Physiotherapy College, DMIMS(DU), 
Sawangi (Meghe), and Wardha. They are 
separated into Group 1 (ART) and Group 2 
(HPK) groups using simple random convenient 
sampling utilizing the envelope method (20 per 
group). The criteria for inclusion were individuals 
with non-specific low back pain whereas grounds 
for exclusion were patients with radiculopathies 
with or without neurological impairments, spinal 
degeneration, tumour x-rays, pregnancy, back or 
thorax, spinal and chest anatomy deformity and 
unwillingness. Prior to participation, each 
participant got an understanding and consent. 
For those who satisfied inclusion, algometer 
tenderness criteria, durum muscle hardness and 
pressure biofeedback (70 mmHg prone, and 
abdominal “draw in”), muscle hardness and 
muscles strength have been assessed [15]. 
Numeric Pain Rating Scale(NPRS), Oswestry 
Disability Index(ODI)(with permission) difficulty 
and EQ- 5D- 5L life quality (with permission). The 
patient had a hot fermentation for 10 minutes 
after pre-test measurement and was lied and 
changed according to heat tolerance[16–18].

![Flowchart of sample analysis](image-url)
2.1 Procedure

2.1.1 Active release technique group (ART group/ Group 1)

The subject was instructed to actively modify the muscle from a short to an extended posture, by placing the thumb and applying tension on the painful location of the TrPs of the muscle[10,19–21]. In all, 15 reps were given three times a week for 2 weeks for 10 minutes in ART group[10]. Core strengthening along with stretching exercises were then given after the ART procedure was done.

2.1.2 Conservative group (Hot pack group/ Group 2)

Only Hot Fomentation was given in this group form 10 minutes followed by core strengthening.

2.1.3 Core strengthening (For both groups)

Core strengthening along with stretching exercises were to both the groups. The exercise was repeated for 10 times with hold time of 5-10 sec in one set 3 sets per day. Post-test reading was taken after 6 sessions and 4 weeks after treatment was done.

2.1.4 Static exercises

i. Static Abs:- Subjects were laying in a crook lying. Transverse abdominus (TrA) contraction was described as "Draw in your abdomen without moving the spine or pelvis" and retain those contractors [15](Fig. 2.5).

2.1.5 Dynamic exercises

i. Curl-Up:- Participants were supine and the neutral curvature of spine held by both hands under the lower back. Turn around the sternum and lift the blades from the mat keeping neutral neck[22,23](Fig. 2.4).

ii. Dead-Bug:- The right hand of individuals under the spine of the lumbar was supine. They started bending hips, knees and shoulders to 90 degrees and progressively extending the right hip and left hand shoulder to both horizontal and somewhat away from the Table(1,2)(Fig. 2.1).

iii. Side-Bridge:- The right hip and elbow were supported (flexed to 90°). Individuals were on the right side. Hips have been lifted off the table and hips have been neutrally extended to the right knee from the right hip (Fig. 2.2).

v. Bird-Dog:- Participants started out in a quadruped posture. Began by lifting only their left arm, then moved to only their right leg (Fig. 2.3).

Fig. 2. Exercises done for core strengthening
3. OBSERVATIONS AND RESULTS

The statistical analysis was done with descriptive and inferential statistics, including a chi square test, an unpaired t test for students and the version SPSS 27.0 and GraphPad Prism 7.0 versions software and the degree of importance assumed for p0.05 was assumed. Table 1 demonstrates that Hpk Groups are of greater age, gender, muscular wise distribution than ART Group, however 20-24 and 24-25 exhibit higher ART group involvement in Hpk group 18-20 years. More female Iliocostalis Lumbarum (ICL) than Quadratus Lumbarum are in both the groups and (QL). Table 2, Graph 1 indicates marked improvement in NPRS, algometers, durometers, ODI and total health score while there is no significant difference in the pressure biofeedback score. Graph 2 demonstrates considerable improvement for each EQ-5D-5L component, and there are considerable improvements.

4. DISCUSSION

Our objective in this experimental investigation was to identify an effect on persons with non-specific low-back pain from active release and how it impacts them in terms of suffering, soreness to the muscles, hardness, power, ODI and quality of life. Hot fomentation and core strengthening were made in both groups, but only the ART group was actively released. In pre-treatment, post-treatment and after four weeks data were analysed to assess effects, the results were taken from NPRS to Algometer, Durometer, pressure biofeedback, ODI, and EQ-5D-5L.

Active MTRP was associated with increased pain intensity in the muscles quadratus lumbarum and iliocostalis lumbarum. The development and duration of non-specific LBP can occur in active MTRP inside of lumbarum or iliocostal lumborum muscles [5]. In our investigation, iliocostalis lumborum and lumbarum quadrates were shown to be mainly engaged in both groups with more participants than QL (Iliocostalis lumborum) (Quadratus Lumborum).

The pain deduction was measured by means of the Numeric Pain Rating or NPRS or NRS scale in this study. Results have demonstrated that, while preserving their pain levels, most patients may also be assessed with a base "zero-to-10" or NRS scale even in a hectare hospital. Minimal issues of language translation[24]. Compared to the ART group, we observed that the pain reduction, both in activity and in rest, from pre-treatment to post-treatment to after four weeks was higher than that of the Hpk group.

High precision pressure algometry has been demonstrated[25] to evaluate musculoskeletal pain both local and systemic[26]. In the after-treatment ART group pain was significantly reduced in comparison with Hpk group and after four weeks. ART helps to dissolve the adhesion and MTrP on the applied muscle which decreases the sensitivity raising the pain pressure threshold(PPT).

Taking into account US elastography, the muscle hardening and smoothing outcomes following exercise have been shown to display comparable alterations [27]. Muscle hardness in ART group was considerably reduced by a durometer in that Hpk group. Due to the heated production of the pain-producing chemicals, the impact of the ART disruption increases circulation in the tissue and therefore reduces the hardness of the muscles produced by damaged tissue and adhesion due to muscular weakness.

| Table 1. Demographic data and affected muscle comparison |
| --- | --- | --- |
| **Age Group(years)** | ART | Hpk | \( \chi^2 \)-value |
| 18-20 years | 5(25%) | 8(40%) | 1.02 |
| 21-23 years | 10(50%) | 8(40%) | P=0.59 |
| 24-26 years | 5(25%) | 4(20%) | |
| **Total** | 20(100%) | 20(100%) |
| **Mean ± SD** | 21.75 ± 2.24 | 21.25 ± 2.33 |
| **Range** | 18-25 years | 18-25 years |
| **Gender** | | | |
| Male | 7(35%) | 8(40%) | 0.10 |
| Female | 13(65%) | 12(60%) | P=0.74 |
| **Total** | 20(100%) | 20(100%) |
| **Affected Muscle** | | | |
| ICL | 12(60%) | 11(55%) | 0.10 |
| QL | 8(40%) | 9(45%) | P=0.74 |
| **Total** | 20(100%) | 20(100%) |
Table 2. Comparison of NPRS, algometer, durometer, pressure biofeedback and total health score

| Groups | Category       | NPRS    | Algometer | Durometer | ODI     | Pressure Biofeedback | EQ-5D-5L Total Health Score |
|--------|----------------|---------|-----------|-----------|---------|----------------------|-----------------------------|
|        | On Activity    | On Rest |           |           |         |                      |                             |
| ART    | Pre-Treatment  | 7.34 ± 0.47 | 5.75 ± 0.65 | 0.56 ± 0.07 | 25.19 ± 0.36 | 47.74 ± 9.01 | 5.90±1.37 | 59.25 ± 6.12 |
|        | Pos-Treatment  | 2.28 ± 0.51 | 1.45 ± 0.36 | 5.90 ± 0.44 | 19.71 ± 0.44 | 20.53 ± 8.67 | 10.20±1.28 | 78 ± 5.47 |
|        | Baseline Comparison | 57.57, p=0.0001 | 38.50, p=0.0001 | 48.25, p=0.0001 | 63.60, p=0.0001 | 12.02, p=0.0001 | 14.33, p=0.0001 | 12.58, p=0.0001 |
|        | 4 weeks        | 0.92 ± 0.36 | 0.50 ± 0.22 | 6.67 ± 0.47 | 16.82 ± 0.40 | 6.19 ± 4.17 | 12.80±1.50 | 89.50 ± 3.94 |
|        | Baseline Comparison | 81.25, p=0.0001 | 39.10, p=0.0001 | 73.89, p=0.0001 | 99.62, p=0.0001 | 20.19, p=0.0001 | 20.32, p=0.0001 | 20.54, p=0.0001 |
| HPK    | Pre-Treatment  | 7.35 ± 0.55 | 6.56 ± 0.46 | 0.56 ± 0.08 | 25.19 ± 0.39 | 50.40 ± 6.10 | 5.69±1.53 | 59.25 ± 7.99 |
|        | Pos-Treatment  | 4.85 ± 0.64 | 4.04 ± 0.41 | 2.42 ± 0.43 | 23.62 ± 0.43 | 40.73 ± 7.37 | 10.20±1.28 | 59.25 ± 7.99 |
|        | Baseline Comparison | 16.28, p=0.0001 | 21.32, p=0.0001 | 19.99, p=0.0001 | 15.13, p=0.0001 | 4.84, p=0.0001 | 9.97, p=0.0001 | - |
|        | 4 weeks        | 3.80 ± 0.47 | 3.15 ± 0.42 | 3.65 ± 0.40 | 20.87 ± 0.45 | 28.95 ± 4.11 | 12.80±1.50 | 68.79 ± 4.72 |
|        | Baseline Comparison | 39.10, p=0.0001 | 28.70, p=0.0001 | 34.80, p=0.0001 | 45.19, p=0.0001 | 14.68, p=0.0001 | 13.07, p=0.0001 | 4.41, p=0.0001 |
| Intergroup Comparison | Pre-test | 0.09, p=0.92 | 4.47, p=0.0001 | 0.00, p=1.00 | - | 1.09, p=0.28 | 0.65, p=0.51 | 0.00, p=1.00 |
|        | Post-Test      | 1, p=0.0001 | 20.93, p=0.0001 | 24.83, p=0.0001 | 28.19, p=0.0001 | 7.9, p=0.0001 | 0.00, p=1.00 | 8.65, p=0.0001 |
|        | 4 weeks        | 21.54, p=0.0001 | 24.63, p=0.0001 | 23.70, p=0.0001 | 29.68, p=0.0001 | 17.36, p=0.0001 | 0.00, p=1.00 | 14.36, p=0.0001 |
The ODI showed good internal consistency, a single elements structure and the confirmed factor analysis indicated a possible structural model that would describe properly the data gathered from the study sample[28]. We concluded that the co-position of NSLBA with ODI exists, i.e. both in the ART and in the Hpk Group, whereby ODI scores decreased to 4 weeks after a treatment, as pain initially rose and leaded to maximum disability, while the disability rate decreased after 4 weeks after treatment. The disability rate drops to a low disability rate. The ODI score in the ART group was considerably improved as pain and PPT were lowered more freely so that individuals could walk freely without trouble and do daily life activities.

In their research Ciarns and colleagues used PBU for the assessment of the abdominal muscle dysfunction in LBP [29]. Prior to the testing, 70 mmHg was appropriate for prone positions, while 40 mmHg was good for hook, supine, side and upright positions[30]. Although pain reduction in the ART group was higher, muscular strength was enhanced in both groups comparably.
Graph 2. Quality of life score comparing both groups

EQ-5D-5L was higher than SF-6D in individuals with lower back pain with higher ODI and better known group[31]. EQ-5D-5L is an EQ-5D-3L system that demonstrates valid allocation, reduced levels of discrimination and convergent validity and improves disagreement[32]. EQ-5D-5L was used for HRQoL evaluation for the research in light of all these criteria. During a comparison between the two groups, the ART group has demonstrated improved mobility outcomes than the Hpk group, which suggests that all components considerably increase. ART can help boost QoL.

Both Hpk and ART groups utilized heat fomenting or hydrocollator packs since research on heat transmission showed that wet heat enters the body faster and more efficiently than
dry heat[33]. It is estimated that it takes almost 10 minutes to get the maximum heat depth of 86-104°F and 4-8 thicknesses of dry towels between the two, up to 1 cm lower than skin[34]. Moist heat increases the temperature of the surface tissue, expands vascular, improves the supplies of oxygen and food, and increases emission of carbon dioxide gas and metabolic waste[33]. Heat promotes rapid vasodilating primarily via increased endothelial neurotransmitter release (e.g., calcitonin gene related peptide and substance P). A second separate, longer-term blood flow growth resulting from heat may be controlled by endothelial synthases of nitric oxide (NO) and the production of NO to produce vasodilation[16]. Reduction of low back pain by hot packs is explained by physiological changes that enhance flexibility of soft tissue, improve blood circulation through the muscles, easier and better smooth muscle contraction, and improve muscle motor function[18]. In view of these physiological characteristics and its impact on low back pain, our investigation reinforced hot fomentation for 10 minutes in both groups. We discovered that the pain reduction, the pain pressure threshold rose, the muscular hardmess reduced, ODI score improved and the standard of living were both significant. The facelifting core strengthened its strength.

Transversal abdominal activation is delayed in LBP[35]. Dynamic strength training involves spinal movement, which displays strong core, global stabilization techniques and endurance of muscles. They only impact the strength and mobility of the spinal muscles[36]. Stabilization exercises from the basic to the higher. The “big three” from McGill are included in basic training levels[35]. In this study, the core strength of both groups was increased in comparison with a pre-test post-test after 4 weeks, enabling the patients to perform without any pain and as a pattern.

Increased tissue stiffness or tension that causes friction and stress within myofascial structures at this time of recurrent micro-injury in tight muscle referring to cumulative damage cycle[11]. Tight and weak tissues generally produce CTDs to enhance the inner tissue forces, such as stress and friction[37].

Touch triggered the inhibitory neurotransmitter endocannabinoid(EC) in the ART, which was used to stimulate the supraspinal pathway[19,20]. If endocannabinoids engage the CNS receptor, it results in presynaptic inhibition that decreases the tone of the muscle and breaches the pain–spasm–pain cycle. The lowest-class tone increases circulation and removes inflammatory chemicals from the spasmodic muscle, leading to a reduction in the transmission of pain through the supra thalamic pathway. While the pain and tone perception diminish, the irritability of the Motor Alpha Nerve results in a reduction in Hoffman's reflex, which scientifically considers the monosynaptic stretch reflex as an alternative measure of motor alpha neuron excitation or muscle activation[19,38].

Ruffini endings and mechano receptors of type IV, which control pain reactions in response to persistent deep stress and autonomous response, can generate relaxed effects in muscle tissue associated to poor persistence (i.e. strain) by decreasing alpha-motoneurons, which decrease muscle tone when stimulated mechanically (algometer readings of post intervention), lower pain thresholds[38].

The release of endocannabinoids in response to mechanical tissue stimulation is a matter of dispute. It is thought that during tissue mechanical stimulation, endocannabinoids are generated to block the descending path and provide analgesia[38]. We observed that in this research, pain in the ART group decreased significantly compared with the Hpk group. Pain reduction by breaking the TRPs reduces PPT and muscular hardness, which in turn reduces the ODI score and improves the quality of life. This core strengthening improves strength, minimizing the recurrence of muscle weakness.

5. CONCLUSION

In this study, we discovered that both groups improved in terms of pain, pain pressure threshold, muscle hardmess, muscle tenderness, impairment, and quality of life. When the two groups were compared, the ART group was shown to be more successful than the Hpk group. The core strength did not differ significantly between the two groups, although it did improve from pre-treatment to post-treatment after four weeks.

CONSENT

Patients involved in the study provided informed permission.

ETHICAL APPROVAL

Authorization from the Institute of Medical Science Committee for Institutional Ethics
Subjects. J Bodyw Mov Ther. – – – – – –

Kalam college of Physiotherapy, Loni , Maharashtra , India., Kothawale S, Rao K, A.P.J Abdul Kalam college of Physiotherapy, Loni , Maharashtra , India. Effectiveness of positional release technique versus active release technique on hamstrings tightness. JPR, 2018;6(1):2619–22.

Kage V, Ratnam R. Immediate effect of active release technique versus mulligan bent leg raise in subjects with hamstring tightness: a randomized clinical trial. . ISSN: 4.

Department of Physical Medicine and Rehabilitation, Health Sciences University, Antalya Training and Research Hospital, Antalya, Turkey, Bilgilişoy Filiz M, Cubukcu Firat S, Department of Physical Medicine and Rehabilitation, Akdeniz University School of Medicine, Antalya, Turkey. Effects of Physical Therapy on Pain, Functional Status, Sagittal Spinal Alignment, and Spinal Mobility in Chronic Non-specific Low Back Pain. Eurasian J Med. 2019;51(1):22–6.

ACKNOWLEDGEMENT

This study was carried out by both the authors. Under guidance of second author. Manuscription was done by first author. Funding for required equipment’s was done by the university i.e. Datta Meghe Institute of Medical Science and carried out in Ravi Nair college of Physiotherapy.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Violante FS, Mattioli S, Bonfiglioli R. Chapter 21 - Low-back pain. In: Lotti M, Bleecker ML, editors. Handbook of Clinical Neurology [Internet]. Elsevier. 2015 [cited 2021 Apr 25];9780444626271000202.

2. Dewitte V, De Pauw R, De Meulemeester K, Peersman W, Danneels L, Bouche K, et al. Clinical classification criteria for nonspecific low back pain: A Delphi-survey of clinical experts. Musculoskeletal Science and Practice. 2018;34:66–76.

3. Jothi S, Ram PS, Vpr S. The Efficacy of Core Muscle Release Technique in Mechanical Low Back Pain a Quasi Experimental Study. International Journal of Clinical Skills [Internet]. 2017 [cited 2020 Jun 28];11(5). Available: http://www.ijocs.org/clinical-journal/the-efficacy-of-core-muscle-release-technique-in-mechanical-low-back-pain-a-quasi-experimental-study-12192.html

4. Department of Physical Medicine and Rehabilitation, Health Sciences University, Antalya Training and Research Hospital, Antalya, Turkey, Bilgilişoy Filiz M, Cubukcu Firat S, Department of Physical Medicine and Rehabilitation, Akdeniz University School of Medicine, Antalya, Turkey. Effects of Physical Therapy on Pain, Functional Status, Sagittal Spinal Alignment, and Spinal Mobility in Chronic Non-specific Low Back Pain. Eurasian J Med. 2019;51(1):22–6.

5. Dayanir IO, Birinci T, Kaya Mutlu E, Akcetin MA, Akdemir AO. Comparison of Three Manual Therapy Techniques as Trigger Point Therapy for Chronic Nonspecific Low Back Pain: A Randomized Controlled Pilot Trial. The Journal of Alternative and Complementary Medicine. 2020 Apr 1;26(4):291–9.

6. Farasyn A, Lassat B. Cross friction algometry (CFA): Comparison of pressure pain thresholds between patients with chronic non-specific low back pain and healthy subjects. J Bodyw Mov Ther. 2016;20(2):224–34.

7. Money S. Pathophysiology of Trigger Points in Myofascial Pain Syndrome. Journal of Pain & Palliative Care Pharmacotherapy. 2017;31(2):158–9.

8. Tantanatip A, Chang K-V. Myofascial Pain Syndrome [Internet]. StatPearls [Internet]. StatPearls Publishing; 2020 [cited 2021 Apr 25]. Available:https://www.ncbi.nlm.nih.gov/booksNBK499882/

9. Kim JH, Lee HS, Park SW. Effects of the active release technique on pain and range of motion of patients with chronic neck pain. J Phys Ther Sci. 2015;27(8):2461–4.

10. Trivedi P, Sathiavanyi D, Nambi G, Khuman R, Shah K, Bhatt p. Comparison of active release technique and myofascial release technique on pain, grip strength & functional performance in patients with chronic lateral epicondylitis. . Issn: 8.

11. A.P.J Abdul Kalam college of Physiotherapy, Loni , Maharashtra , India., Kothawale S, Rao K, A.P.J Abdul Kalam college of Physiotherapy, Loni , Maharashtra , India. Effectiveness of positional release technique versus active release technique on hamstrings tightness. JPR, 2018;6(1):2619–22.

12. Kage V, Ratnam R. Immediate effect of active release technique versus mulligan bent leg raise in subjects with hamstring tightness: a randomized clinical trial. . ISSN: 4.

13. Gordon R, Bloxham S. A Systematic Review of the Effects of Exercise and Physical Activity on Non-Specific Chronic Low Back Pain. Healthcare. 2016;4(2):22.

14. Calatayud, Escriche-Escuder, Cruz-Montecinos, Andersen, Pérez-Alenda, Aiguadé, et al. Tolerability and Muscle Activity of Core Muscle Exercises in Chronic Low-back Pain. IJERPH. 2019; 16(19):3509.
15. Oliveira IO de, Pilz B, Santos RLG, Vasconcelos RA, Mello W, Grossi DB. Reference values and reliability for lumbopelvic strength and endurance in asymptomatic subjects. Brazilian Journal of Physical Therapy. 2018;22(1):33–41.

16. Petrofsky J, Laymon M, Donatelli R. A comparison of moist heat, dry heat, chemical dry heat and icy hot for deep tissue heating and changes in tissue blood flow. MRAJ [Internet]. 2021 [cited 2021 Jul 4];9(1). Available:https://esmed.org/MRA/mra/artic/e/view/2336

17. Poitras S, Brosseau L. Evidence-informed management of chronic low back pain with transcutaneous electrical nerve stimulation, interferential current, electrical muscle stimulation, ultrasound, and thermotherapy. The Spine Journal. 2008;8(1):226–33.

18. Tawrej P, Kaur R, Ghodey S. Lumbar Muscle in Patients with Non-Specific. 2020;14(1):5.

19. Sadria G, Hosseini M, Rezasoltani A, Akbarzadeh Bagheban A, Davari A, Seifolahi A. A comparison of the effect of the active release and muscle energy techniques on the latent trigger points of the upper trapezius. J Bodyw Mov Ther. 2017;21(4):920–5.

20. Kojidi MM, Okhovatian F, Rahimi A, Baghban AA, Azimi H. Comparison Between the Effects of Passive and Active Soft Tissue Therapies on Latent Trigger Points of Upper Trapezius Muscle in Women: Single-Blind, Randomized Clinical Trial. Journal of Chiropractic Medicine. 2016;15(4):235–42.

21. Mishra D, Prakash RH, Mehta J, Dhudak A. Comparative Study of Active Release Technique and Myofascial Release Technique in Treatment of Patients with Upper Trapezius Spasm. JCDR [Internet]. 2018 [cited 2020 May 27]; Available:https://jcdr.net/article_fulltext.asp?issn=0973-709x&year=2018&volume=12&issue=11&page=YC01&issn=0973-709x&lid=12218

22. McGill SM, Karpowicz A. Exercises for Spine Stabilization: Motion/Motor Patterns, Stability Progressions, and Clinical Technique. Archives of Physical Medicine and Rehabilitation. 2009;90(1):118–26.

23. Schilling JF, Murphy JC, Bonney JR, Thich JL. Effect of core strength and endurance training on performance in college students: Randomized pilot study. Journal of Bodywork and Movement Therapies. 2013;17(3):278–90.

24. Karcioğlu O, Topacoglu H, Dikme O, Dikme O. A systematic review of the pain scales in adults: Which to use? The American Journal of Emergency Medicine. 2018;36(4):707–14.

25. Ebadi S, Ansari NN, Ahadi T, Fallah E, Forogh B. No immediate analgesic effect of diadynamic current in patients with nonspecific low back pain in comparison to TENS. Journal of Bodywork and Movement Therapies. 2018;22(3):693–9.

26. Koppenhaver SL, Walker MJ, Rettig C, Davis J, Nelson C, Su J, et al. The association between dry needling-induced twitch response and change in pain and muscle function in patients with low back pain: a quasi-experimental study. Physiotherapy. 2017;103(2):131–7.

27. Niitsu M, Michizaki A, Endo A, Takei H, Yanagisawa O. Muscle hardness measurement by using ultrasound elastography: a feasibility study. J Physiother. 2013;59(2):73–5.

28. Saltchev M, Mattie R, McCormick Z, Bärlund E, Laimi K. Psychometric properties of the Oswestry Disability Index. International Journal of Rehabilitation Research. 2017;40(3):202–8.

29. Giggins OM, Persson UM, Caulfield B. Biofeedback in rehabilitation. 2013;11.

30. Li X, Lo WLA, Lu S, Liu H, Lin K, Lai J, et al. Trunk muscle activity during pressure feedback monitoring among individuals with and without chronic low Back pain. BMC Musculoskeletal Disorders. 2020;21(1):569.

31. Ye Z, Sun L, Wang Q. A head-to-head comparison of EQ-5D-5 L and SF-6D in Chinese patients with low back pain. Health Qual Life Outcomes. 2019;17(1):57.

32. Janssen MF, Pickard AS, Golicki D, Gudex C, Niewada M, Scalone L, et al. Measurement properties of the EQ-5D-5L compared to the EQ-5D-3L across eight patient groups: a multi-country study. Qual Life Res. 2013;22(7):1717–27.

33. Qadeer U, Aftab A, Zahra I. Effectiveness of Heat Therapy on Musculoskeletal Pain Before and After Exercise Therapy in Females. 2(1):5.

34. Lohman III EB, Bains GS, Lohman T, DeLeon M, Petrofsky JS. A comparison of the effect of a variety of thermal and vibratory modalities on skin temperature
and blood flow in healthy volunteers. Med Sci Monit. 2011;17(9):MT72–81.

35. Akuthota V, Nadler SF. Core strengthening. No commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit upon the author(s) or upon any organization with which the authors is/are associated. Archives of Physical Medicine and Rehabilitation. 2004;85:86–92.

36. Bhadauria EA, Gurudut P. Comparative effectiveness of lumbar stabilization, dynamic strengthening, and Pilates on chronic low back pain: randomized clinical trial. J Exerc Rehabil. 2017;13(4):477–85.

37. Drover JM, Forand DR, Herzog W. Influence of Active Release Technique on Quadriceps Inhibition and Strength: A Pilot Study. Journal of Manipulative and Physiological Therapeutics. 2004;27(6):408–13.

38. Robb A, Pajaczkowski J. Immediate effect on pain thresholds using active release technique on adductor strains: Pilot study. Journal of Bodywork and Movement Therapies. 2011;15(1):57–62.

© 2021 Vaidya and Phansopkar; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle4.com/review-history/76185