ANTICIPATION DECIDES ON LANE FORMATION IN PEDESTRIAN COUNTERFLOW – A SIMULATION STUDY

EMILIO N.M. CIRILLO
Dipartimento di Scienze di Base e Applicate per l’Ingegneria,
Sapienza Università di Roma,
via A. Scarpa 16, I-00161, Roma, Italy.
(E-mail: emilio.cirillo@uniroma1.it)

and

ADRIAN MUNTEAN
Department of Mathematics and Computer Science,
Karlstad University, Sweden.
(E-mail: adrian.muntean@kau.se)

Abstract. Human crowds base most of their behavioral decisions upon anticipated states of their walking environment. We explore a minimal version of a lattice model to study lanes formation in pedestrian counterflow. Using the concept of horizon depth, our simulation results suggest that the anticipation effect together with the presence of a small background noise play an important role in promoting collective behaviors in a counterflow setup. These ingredients facilitate the formation of seemingly stable lanes and ensure the ergodicity of the system.

Communicated by Editors; Received April 21, 2020
AMS Subject Classification: 60J20, 37B15, 60K35.
Keywords: stochastic dynamics, lane formation, anticipation.