Data Article

KFuji RGB-DS database: Fuji apple multi-modal images for fruit detection with color, depth and range-corrected IR data

Jordi Gené-Mola a, Verónica Vilaplana b, Joan R. Rosell-Polo a, Josep-Ramon Morros b, Javier Ruiz-Hidalgo b, Eduard Gregorio a,*

a Research Group in AgroICT & Precision Agriculture, Department of Agricultural and Forest Engineering, Universitat de Lleida (UdL) – Agrotecnio Center, Lleida, Catalonia, Spain
b Department of Signal Theory and Communications, Universitat Politècnica de Catalunya, Barcelona, Catalonia, Spain

ARTICLE INFO

Article history:
Received 7 May 2019
Received in revised form 9 July 2019
Accepted 11 July 2019
Available online 19 July 2019

Keywords:
Multi-modal dataset
Fruit detection
Depth cameras
RGB-D
Fruit reflectance
Fuji apple

ABSTRACT

This article contains data related to the research article entitled “Multi-modal Deep Learning for Fruit Detection Using RGB-D Cameras and their Radiometric Capabilities” [1]. The development of reliable fruit detection and localization systems is essential for future sustainable agronomic management of high-value crops. RGB-D sensors have shown potential for fruit detection and localization since they provide 3D information with color data. However, the lack of substantial datasets is a barrier for exploiting the use of these sensors. This article presents the KFuji RGB-DS database which is composed by 967 multi-modal images of Fuji apples on trees captured using Microsoft Kinect v2 (Microsoft, Redmond, WA, USA). Each image contains information from 3 different modalities: color (RGB), depth (D) and range corrected IR intensity (S). Ground truth fruit locations were manually annotated, labeling a total of 12,839 apples in all the dataset. The
The KFuji RGB-DS database contains a total of 967 multi-modal images of Fuji apples on trees and the corresponding ground truth fruit location annotations. Each image contains data from three different modalities: color (RGB), depth (D), and range-corrected IR intensity (S). Fig. 1 illustrates three selected images from the dataset, showing ground truth annotations and the modalities that compose each image.

This dataset was built to be used for training, validation and benchmarking of fruit detection algorithms using RGB-D sensors. For instance, in Ref. [1], the deep convolutional neural network Faster R-CNN [2] was used to detect and localize fruits from the presented dataset.

Images are 548 × 373px and were saved in three different files:

- RGB_{hr} (high resolution color image): Raw color image. These images are saved in 8-bit JPG files.
- RGB_{p} (projected color image): Projection of the color 3D point cloud onto the camera focal plane. The RGB_{p} and the D-S modalities are obtained following the same procedure, allowing the comparison between these modalities for fruit detection. These images are saved in 8-bit JPG files.
DS (depth and range-corrected IR image): Projection of the range-corrected IR 3D point cloud onto the camera focal plane. The D channel corresponds to the depth values, while the S channel corresponds to the range-corrected IR intensity values. These modalities are saved in a unique 64-bit MAT file.

S and D data were normalized between 0 and 255 –like RGB images—to achieve similar mean and variance between channels. This normalization allows a faster learning convergence of machine learning algorithms (such as deep convolutional neural networks).

All images were manually annotated with rectangular bounding boxes, labelling a total of 12,839 apples in all the dataset. Annotations are provided in XLM and CSV formats, where each row corresponds to an apple annotation, giving the following information: item, topleft-x, topleft-y, width, height, label id.

2. Experimental design, materials, and methods

The data acquisition was carried out in a commercial Fuji apple orchard (Malus domestica Borkh. cv. Fuji), three weeks before harvesting (85 BBCH growth stage [3]). The RGB-D sensors used were two Microsoft Kinect v2 (Microsoft, Redmond, WA, USA), which are composed by an RGB camera and a time-of-flight (ToF) depth sensor. For each capture, the sensor provides a 3D point cloud with RGB and backscattered IR intensity data, and a raw RGB image. Due to the performance of the depth sensor drops under direct sunlight exposure [4], data was acquired at night using artificial lighting.

Pre-processing of data was carried out to build the multi-modal images with pixel-wise correspondence between channels. Fig. 2 shows an outline of the data preparation steps. To overcome the IR signal attenuation, the IR intensity data was range-corrected (Fig. 2a) following the methodology
described in Ref. [1]. Then the acquired 3D point clouds were projected onto the camera focal plane (Fig. 2b), generating the RGB, range-corrected IR and depth projected images. These images were geometrically wrapped and registered (Fig. 2c) with RGB\textsubscript{hr} so that different image modalities have pixel-wise correspondence. Finally, to reduce the number of fruits per image, and considering that fruit size is small compared with the image size, each capture was split into 9 images of 548 × 373 px (Fig. 2d).

Acknowledgments

This work was partly funded by the Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya, the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (ERDF) under Grants 2017 SGR 646, AGL2013-48297-C2-2-R and MALEGRA, TEC2016-75976-R. The Spanish Ministry of Education is thanked for Mr. J. Gené’s pre-doctoral fellowships (FPU15/03355). We would also like to thank Nufri and Vicens Maquinària Agrícola S.A. for their support during data acquisition.
Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] J. Gené-Mola, V. Vilaplana, J.R. Rosell-Polo, J.R. Morros, J. Ruiz-Hidalgo, E. Gregorio, Multi-modal deep learning for Fuji apple detection using RGB-D cameras and their radiometric capabilities, Computers and Electronics in Agriculture 162 (2019) 689–698, https://doi.org/10.1016/j.compag.2019.05.016.
[2] S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: towards real-time object detection with region proposal networks, IEEE Trans. Pattern Anal. Mach. Intell. 39 (2017) 1137–1149, https://doi.org/10.1109/TPAMI.2016.2577031.
[3] U. Meier, Growth stages of mono- and dicotyledonous plants, BBCH Monograph (2001), https://doi.org/10.5073/bbch0515.
[4] J.R. Rosell-Polo, F.A. Cheein, E. Gregorio, D. Andújar, L. Puigdomènech, J. Masip, A. Escolà, Advances in structured light sensors applications in precision agriculture and livestock farming, Adv. Agron. (2015), https://doi.org/10.1016/bs.agron.2015.05.002.