QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core

Yuke Wang, Boyuan Feng, Yufei Ding
UC at Santa Barbara
Background

• Graph Neural Network Basics.

\[a^{(k+1)}_v = \text{Aggregate}^{(k+1)}(h^{(k)}_u | u \in N(v) \cup h^{(k)}_v) \]

\[h^{(k+1)}_v = \text{Update}^{(k+1)}(a^{(k+1)}_v) \]

• The adjacent matrix of GNNs is naturally well-suited for quantization.

• The quantization of weight and node embedding can also be beneficial.

Using 0/1 to indicate the existence of edge connections.

The precision loss in quantization can largely be offset through the iterative neighbor aggregation.
Background (cont’d)

• GPU Tensor Cores (TCs).
 • TC supports the compute primitive of \(D = A \times B + C \).
 • Matrix tile A and B are certain precision (e.g., 1-bit), while matrix tile C and D use uint32.

• Programming of TCs.
 • cuBLAS cublasSgemmEX APIs with limited precision option (e.g., INT8, FP16)
 • Warp Matrix Multiply-Accumulate (WMMA) (nvcuda::wmma) API in CUDA C.

Listing 1. Basic WMMA APIs for TCU in CUDA C.

```c
// define the register fragment for matrix A (1-bit).
wmma::fragment<matrix_a, M, N, K, b1, row_major> a_frag;
// load a tile of matrix A to register fragment.
wmma::load_matrix_sync(a_frag, A, M);
// matrix-matrix multiplication (1-bit x 1-bit -> 32-bit)
wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
// store the C matrix tile from register to matrix C.
wmma::store_matrix_sync(C, c_frag, N, mem_row_major);
```
Challenges

• The current TC can only support limited choices of bitwidth (e.g., 1-bit and 4-bit)

• TC initially tailored for dense GEMM computation may not directly fit the context of sparse GNN computation.

• The low-bit computation would cause the compatibility issue.

Unable to meet the demands of users for any-bitwidth (e.g., 2-bit) computation.

A huge waste of computation and memory access on those non-existed edges.

Unable to integrate with the existing deep-learning frameworks that operate on well-defined data type (e.g., FP32).
Contributions

- **Input level:** METIS for generating dense small subgraphs from sparse large graphs.

- **Algorithm level:**
 1-bit computation for anybitwidth QGNN computation.

- **GPU kernel level:**
 (i) 1-bit binarized representation for subgraph adjacent matrices;
 (ii) 3D-stacked bit compression;
 (iii) Zero-tile skipping and non-zero tile reuse.

- **Framework level:**
 Integration with PyTorch framework.
Quantized Computation in GNNs

Any-bitwidth Scalar-Scalar Multiplication: Assuming we have a 3-bit scalar value \((a)\) and multiply it with a 2-bit scalar value \((b)\), we can first represent these two values as

\[
\begin{align*}
 a &= at_2 \cdot 2^2 + at_1 \cdot 2^1 + at_0 \cdot 2^0 \\
 b &= bt_1 \cdot 2^1 + bt_0 \cdot 2^0
\end{align*}
\]

where \(at_n\) and \(bt_n\) indicate the bit value (0/1) at the certain bit position after bit decomposition. By following the general rule of multiplication, we can get \(a \cdot b\) as

\[
a \cdot b = (at_2 \cdot 2^2 + at_1 \cdot 2^1 + at_0 \cdot 2^0)(bt_1 \cdot 2^1 + bt_0 \cdot 2^0) \quad (4)
\]

through simplification we can get that

\[
a \cdot b = at_2 bt_1 \cdot 2^3 + (at_1 bt_1 + at_2 bt_0) \cdot 2^2 \\
+ (at_0 bt_1 + at_1 bt_0) \cdot 2^1 + at_0 bt_0 \cdot 2^0 \quad (5)
\]

Any-bitwidth Vector-Vector Multiplication: We extend the any-bitwidth scalar-scalar computation towards any-bitwidth vector-vector computation between a 3-bit vector \(\overrightarrow{a}^y\) and 2-bit vector \(\overrightarrow{b}^y\), each of which has \(k\) elements. Therefore, the above scalar-scalar multiplication formula can be extended to \(k\)-dimension vector-vector multiplication

\[
\overrightarrow{a}^y \cdot \overrightarrow{b}^y = \sum_{y}^{k} a(y) \cdot b(y) = \sum_{y}^{k} at_2^{(y)} bt_1^{(y)} \cdot 2^3 \\
+ \sum_{y}^{k} (at_1^{(y)} bt_1^{(y)} + at_2^{(y)} bt_0^{(y)}) \cdot 2^2 \\
+ \sum_{y}^{k} (at_0^{(y)} bt_1^{(y)} + at_1^{(y)} bt_0^{(y)}) \cdot 2^1 + \sum_{y}^{k} at_0^{(y)} bt_0^{(y)} \cdot 2^0
\]

Such a 1-bit vector-vector multiplication can be effectively implemented as

\[
ans_{i,j} = popcnt(\overrightarrow{a}^i & \overrightarrow{b}^j)
\]

where \(popcnt()\) counts the total number of 1s of the result in its bit representation (e.g., \(popcnt\) will return 3 for a binary number 1011). A similar procedure can be applied to generate
Quantized Computation in GNNs (cont’d)

Algorithm 1: 1-layer Quantized GNN Computation.

```
input: Full-bit adjacent matrix A (N × N), node embedding matrix X (N × D), and weight matrix W (N × H),
output: Updated full-bit node embedding matrix X (N × H).

/* Bit decomposition of the input matrices. */
A_bin = bitDecompose(A, 1)[0];
X_list = bitDecompose(X, s);
W_list = bitDecompose(W, t);

X_new_list = list(); C_dict = dict(); X = zeros_as(X);

/* Neighbor aggregation by bit-GEMM (A × X). */
for xIdx in len(X_list) do
    X_new_list.append(BMM(A_bin, X_list[xIdx]));
end

/* Node update by bit-GEMM (X_new × W). */
for xIdx in len(X_new_list) do
    for wIdx in len(W_new_list) do
        /* Compute bit-matrix at target bit level. */
        bitIdx = xIdx + wIdx;
        tmp_C = BMM(X_new_list[xIdx], W_list[wIdx]);
        C_dict[bitIdx].append(tmp_C);
    end
end

/* Elementwise reduction of results. */
for bitIdx in len(C_dict) do
    for idx in len(C_dict[bitIdx]) do
        X[idx] += C_dict[bitIdx][idx] << bitIdx;
    end
end
```

- Input bit-Decomposition
- Neighbor Embedding Aggregation (X’=AX)
- Node Embedding Update (H=X’W)
3D-Stacked Bit Compression

Figure 4. 3D-Stacked Bit Compression. Note that every 32 bits are compressed and stored in little-endian.

Zero-tile Jumping

Figure 5. Zero-tile Jumping. Note that each small grey square box (on the left side) indicates an edge connection between two nodes within a graph. Each grey rectangular box (on the right side) indicates at least one of its 32 consecutive small square boxes is grey (the presence of an edge).
Non-zero Tile Reuse

Figure 6. Non-zero Tile Reuse. Note that the grey box indicates the zero-tile of the subgraph adjacent matrix, while the white box with a block solid dot inside represents the non-zero tiles of the subgraph adjacent matrix.

PyTorch Integration

Bit-Tensor Data Type:
- We use the 32-bit integer tensor in PyTorch as the “vehicle” for holding any-bitwidth quantized numbers.
- Tensor.to_bit(nbits) to encode a int32/fp32 regular tensor as a bit tensor.
- Tensor.to_val(nbits) to decode a bit Tensor as int32/fp32 regular tensor.

Bit-Tensor Computation:
- bitMM2Bit(C, A, B, bit_A, bit_B, Bit_C) for bit tensor input (A, B) to bit tensor output (C).
- bitMM2Int(C, A, B, bit_A, bit_B) for bit tensor input (A, B) to regular (int32/fp32) tensor output (C).
Evaluation

• **GNN models:**
 - Cluster GCN
 - Batched GIN

• **Baselines:**
 - Deep Graph Library (DGL)
 - cuBLAS
 - CUTLASS

• **Platform Configuration:**
 - 8-core 16-thread Intel Xeon Silver 4110 CPU 2.8GHz with 64GB host memory.
 - NVIDIA Ampere RTX3090 GPU with 24GB device memory.

Type	Dataset	#Vertex	#Edge	Dim.	#Class
I	Proteins	43,471	162,088	29	2
	artist	50,515	1,638,396	100	12
II	BlogCatalog	88,784	2,093,195	128	39
	PPI	56,944	818,716	50	121
III	ogbn-arxiv	169,343	1,166,243	128	40
	ogbn-products	2,449,029	61,859,140	100	47
Figure 7. End-to-end performance comparison with (a) DGL on Cluster GCN and (b) DGL on Batched GIN. (c) Compared with TC-based cuBLASgemmEX (int8) on GNN aggregation kernel throughput performance (in TFLOPs). Note that “QGTC_3” stands for QGTC with 3-bit data representation for node embedding matrix.
Additional Studies

Table 3. Compared with CUTLASS-int4 (TFLOPs).

N	Dim	CUTLASS (int4)	QGTC (1-bit)	QGTC (2-bit)	QGTC (3-bit)	QGTC (4-bit)
2048	32	10.36	32.65	19.99	14.40	11.30
4096	32	12.28	81.41	46.23	32.27	24.75
8192	32	12.67	94.58	50.82	35.22	26.31
2048	64	21.40	63.94	39.41	29.83	22.15
4096	64	24.66	89.18	51.21	35.17	25.38
8192	64	24.70	104.66	55.16	40.77	31.07

Figure 8. Zero-tile jumping efficiency. The percentage (%) on each green bar indicates the ratio of the number of tiles processed w/ jumping versus w/o jumping solution.
Additional Studies (cont’d)

Figure 9. Adjacency matrix size impact. Note that we choose the common subgraph size $N=\{128, 256, \ldots, 32768\}$ and the hidden embedding dimension $D=\{16, 32, \ldots, 1024\}$.

Figure 10. Non-zero tile reuse effectiveness. Note that we choose subgraph size $N=\{1024, 2048, 4096, 8192\}$ for this study.
Thank You

QGTC is open-sourced at https://github.com/YukeWang96/PPoPP22_QGTC.git