Sigma Models, Minimal Surfaces and Some Ricci Flat Pseudo Riemannian Geometries

Metin Gürses
Department of Mathematics, Faculty of Science
Bilkent University, 06533 Ankara - Turkey
email:gurses@fen.bilkent.edu.tr

Geometry, Integrability, and Quantization
July 7-15, 2000 Varna, Bulgaria
Eds. I.M. Mladenov and G.L. Naber

Abstract: We consider the sigma models where the base metric is proportional to the metric of the configuration space. We show that the corresponding sigma model equation admits a Lax pair. We also show that this type of sigma models in two dimensions are intimately related to the minimal surfaces in a flat pseudo Riemannian 3-space. We define two dimensional surfaces conformally related to the minimal surfaces in flat three dimensional geometries which enable us to give a construction of the metrics of some even dimensional Ricci flat (pseudo-) Riemannian geometries.

1 Introduction

Let M be a 2-dimensional manifold with local coordinates $x^\mu = (x, y)$ and $A^{\mu\nu}$ be the components of a tensor field in M. Let P be an 2×2 matrix with a nonvanishing constant determinant. We assume that P is a hermitian ($P^\dagger = P$) matrix. Then the field equations of the sigma-model we consider is given as follows
\[
\frac{\partial}{\partial x^\alpha} \left(\Lambda^{\alpha \beta} P^{-1} \frac{\partial P}{\partial x^\beta} \right) = 0. \tag{1}
\]

The integrability of the above equation has been studied in [1] where the matrix function \(P \) and the tensor \(\Lambda^{\alpha \beta} \) were considered independent. The sigma model equation given above is integrable provided \(\Lambda \) satisfies the conditions

\[
\partial_\alpha \left(\frac{1}{\sigma} \Lambda^{\alpha \beta} \partial_\beta \sigma \right) = 0, \quad \partial_\alpha \left(\frac{1}{\sigma} \Lambda^{\alpha \beta} \partial_\beta \phi \right) = 0 \tag{2}
\]

where \(\sigma \) and \(\phi \) are determinant and antisymmetric part of the tensor \(\Lambda^{\alpha \beta} \) respectively.

We have classified in [1] possible forms of the tensor \(\Lambda^{\alpha \beta} \) under these conditions of integrability. The case where \(\Lambda \) and \(P \) are related has been considered in [2]. As an example, let \(P = g \) where \(g \) is a \(2 \times 2 \) symmetric matrix. Letting also \(\Lambda^{\alpha \beta} = g^{\alpha \beta} \), the inverse components of the metric \(g_{\alpha \beta} \), then (1) becomes

\[
\frac{\partial}{\partial x^\alpha} \left(g^{\alpha \beta} g^{-1} \frac{\partial g}{\partial x^\beta} \right) = 0. \tag{3}
\]

The above sigma model equation is integrable and the Lax equation is simply given by [3]

\[
\epsilon^{\alpha \beta} \frac{\partial}{\partial x^\beta} \Psi = \frac{1}{k^2 + \sigma} \left(k g^{\alpha \beta} - \sigma \epsilon^{\alpha \beta} \right) g^{-1} \frac{\partial g}{\partial x^\beta} \Psi. \tag{4}
\]

Integrability conditions are satisfied because \(\det g = \sigma \) (a constant) and \(g \) is symmetric. Here \(k \) is an arbitrary constant (the spectral parameter), \(\epsilon^{\alpha \beta} \) is the Levi-Civita tensor with \(\epsilon^{12} = 1 \).

In the theory of surfaces in \(\mathbb{R}^3 \) there is a class, the minimal surfaces, which have special importance both in physics and mathematics [3], [4]. Let \(S = \{ (x, y, z) \in \mathbb{R}^3 ; z = h(x, y) \} \) define a surface \(S \in \mathbb{R}^3 \) which is the graph of a differentiable function \(\phi(x, y) \). This surface is called minimal if \(\phi \) satisfies the condition

\[
(1 + \phi_x^2) \phi_{yy} - 2 \phi_x \phi_y \phi_{xy} + (1 + \phi_y^2) \phi_{xx} = 0. \tag{5}
\]

The Gaussian curvature \(K \) of the surface \(S \) is given by

\[
2
Here in this work we generalize the above treatment to more general geometries. Instead of \(\mathbb{R}^3 \) we take a pseudo Euclidean manifold \(M_3 \) and two surfaces with any signature.

Let \((S, g)\) denote a two dimensional geometry where \(S \) is a surface in a three dimensional flat manifold \(M_3 \) and \(g \) is a \((\text{pseudo-})\) Riemannian metric on \(S \) with a non vanishing determinant, \(\text{det}(g) \). Furthermore we assume that the metric components \(g_{\alpha\beta} \) satisfies the following conditions

\[
\partial_\mu (g_{\mu\nu} g^{-1} \partial_\nu g) = 0, \tag{7}
\]

\[
R + \frac{1}{4} \text{tr}[g^{\mu\nu} \partial_\mu g^{-1} \partial_\nu g] = 0, \tag{8}
\]

where \(R \) is the Ricci scalar of \(S \). We shall see in the following sections that some surfaces which are conformally related to minimal surfaces satisfy the above conditions.

The importance of such surfaces arises when we are interested in even dimensional Ricci flat geometries. By the utility the metric \(g \) of these surfaces we shall give a construction (without solving any further differential equations) of the metric of a \(2N \) dimensional Ricci flat \((\text{pseudo-})\) Riemannian geometries. Ricci flat geometries are important not only in differential geometry and general relativity but also in gravitational instantons and in brane solutions of string theory [6].

2 Locally Conformal minimal surfaces

Let \(\phi \) be a differentiable function of \(x^1 = x \) and \(x^2 = y \) and \(S_0 \) be the surface in a three dimensional manifold \(M_3 \) with a pseudo-Euclidean metric \(g_3 \) defined through \(ds^2 = g_{0\mu\nu} dx^\mu dx^\nu + \epsilon (dx^3)^2 \), where \(\mu, \nu = 1, 2 \), \(\epsilon = \pm 1 \) and \(g_0 \) is a constant everywhere in \(M_3 \), invertible, symmetric \(2 \times 2 \) matrix. In this work we assume Einstein summation convention, i.e., the repeated indices are summed up. Let \(S_0 \) be given as the graph of the function \(\phi \), i.e., \(S_0 = \{(x^1, x^2, x^3) \in M_3 | x^3 = \phi(x^1, x^2) \} \). Then the metric on \(S_0 \) is given by

\[
K = \frac{\phi_{xx} \phi_{yy} - \phi_{xy}^2}{(1 + \phi_x^2 + \phi_y^2)^2}. \tag{6}
\]
\[h_{\mu\nu} = g_{0\mu\nu} + \epsilon \phi_{,\mu} \phi_{,\nu}. \] (9)

Since \(\det h = (\det g_0) \rho \) where

\[\rho = 1 + \epsilon g_{0\mu}^{\alpha} \phi_{,\mu} \phi_{,\nu} \] (10)

then \(h \) is everywhere (except at those points where \(\rho = 0 \)) invertible. Its inverse is given by

\[h^{\mu\nu} = g_0^{\mu\nu} - \frac{\epsilon}{\rho} \phi^\mu \phi^\nu \] (11)

where \(g_0^{\mu\nu} \) are the components of the inverse matrix \(g_0^{-1} \) of \(g_0 \). Here the indices are lowered and raised by the metric \(g_0 \) and its inverse \(g_0^{-1} \) respectively. For instance, \(\phi_{,\mu\nu} = g_0^{\alpha\mu} \phi_{,\alpha\nu} \). The Ricci tensor corresponding to the metric in (9) is given by

\[r_{\mu\nu} = \frac{\epsilon}{\rho} (\nabla^2 \phi) \phi_{,\mu\nu} - \frac{\epsilon}{\rho} \phi_{,\mu}^\alpha \phi_{,\nu\alpha} + \frac{1}{4\rho^2} \rho_{,\mu} \rho_{,\nu}, \] (12)

where

\[\nabla^2 \phi = h^{\mu\nu} \phi_{,\mu\nu} = g_0^{\mu\nu} \phi_{,\mu\nu} - \frac{1}{2\rho} \phi \rho_{,\alpha}, \] (13)

The Ricci scalar or the Gaussian curvature \(K \) and the mean curvature \(H \) are obtained as

\[K = \frac{\epsilon}{\rho^2} \left[(\phi^\alpha_{,\alpha})^2 - \phi^\alpha_{,\alpha\beta} \phi_{,\alpha\beta} \right], \] (14)

\[H = \frac{1}{\sqrt{\rho}} h^{\mu\nu} \phi_{,\mu\nu}, \] (15)

The following equation is valid only for the case of two dimensional geometries.

\[\phi_{,\alpha\mu} \phi_{,\beta\nu} - \phi_{,\alpha\beta} \phi_{,\mu\nu} = -\lambda_0 (g_{0\alpha\mu} g_{0\beta\nu} - g_{0\alpha\beta} g_{0\mu\nu}), \] (16)

where
\[\lambda_0 = \frac{1}{2} [\phi^\alpha \alpha_{\phi \beta} - (\phi^\alpha_\alpha)^2]. \] (17)

Contracting this equation with \(g^{\alpha \beta} \) leads to

\[\phi^\alpha_\mu \phi_{\alpha \nu} - \phi^\alpha_\alpha \phi_{\mu \nu} = \lambda_0 g_{0 \mu \nu}. \]

We also have

\[r_{\alpha \beta} = \frac{K}{2} h_{\alpha \beta}, \quad \lambda_0 = -\frac{\epsilon}{2} \rho^2 K. \]

For the minimal surfaces we have \(H = 0 \) and the following important properties of the metric \(h_{\alpha \beta} \) on \(S_0 \)

\[\partial_\alpha [\sqrt{\rho} h^{\alpha \beta} \partial_\beta \phi] = 0, \quad (18) \]

\[\partial_\alpha (\sqrt{\rho} h^{\alpha \beta}) = 0. \quad (19) \]

We now define surfaces which are locally conformal to minimal surfaces. Let \(S \) be such a surface, i.e., locally conformal to \(S_0 \). Then the metric on \(S \) is given by

\[g_{\alpha \beta} = \frac{1}{\sqrt{\rho}} h_{\alpha \beta}. \quad (20) \]

It is clear that \(\det g = \det g_0 \neq 0 \). In the sequel we shall assume that the surface \(S_0 \) is minimal and hence the metric defined on it satisfies all the equivalent conditions in (18) and (19). The corresponding Ricci tensor of \(g \) is given as

\[R_{\alpha \beta} = r_{\alpha \beta} - (\nabla^2_g \psi_0) g_{\alpha \beta}, \quad (21) \]

where \(\psi_0 = -\frac{1}{4} \log(\rho) \) and \(\nabla^2_g \) is the Laplace-Beltrami operator with respect to the metric \(g \). We then have

Proposition 1. The following equation is an identity related to the conformal surface \(S \).
Here \(g \) is the \(2 \times 2 \) matrix of \(g_{\alpha\beta} \) and \(g^{-1} \) is its inverse. The operation \(\text{tr} \) is the standard trace operation for matrices.

In the following parts of the work we need some harmonic functions with respect to the metric \(g \). For this purpose we introduce some vectors on \(S \). Let \(v_\alpha = (1, 0) \), \(v'_\alpha = (0, 1) \) and \(u^\alpha = (1, 0) \), \(u'^\alpha = (0, 1) \). We now define some functions over \(S \).

\[
\begin{align*}
\xi_1 &= g^{\alpha\beta} v_\alpha v_\beta, \quad \xi_2 = g^{\alpha\beta} v'_\alpha v'_\beta, \quad (23) \\
w_1 &= \sqrt{\rho} g^{\alpha\beta} u^\alpha u^\beta, \quad w_2 = \sqrt{\rho} g^{\alpha\beta} u'^\alpha u'^\beta. \quad (24)
\end{align*}
\]

It is now easy to prove

Proposition 2.

\[
\begin{align*}
\nabla_g^2 \zeta - a_0 R &= -a_0 \sqrt{\rho} K, \quad (25) \\
\nabla_g^2 \psi_1 - (a_1 + a_2) R &= 0, \quad (26) \\
\nabla_g^2 \psi_2 - 2(b_1 + b_2) R &= -(b_1 + b_2) \sqrt{\rho} K, \quad (27)
\end{align*}
\]

where

\[
\begin{align*}
\zeta &= \frac{a_0}{2} \log(\rho), \quad (28) \\
\psi_1 &= a_1 \log(\xi_1) + a_2 \log(\xi_2), \quad (29) \\
\psi_2 &= b_1 \log(w_1) + b_2 \log(w_2). \quad (30)
\end{align*}
\]

Here \(a_0, a_1, a_2, b_1, \) and \(b_2 \) are arbitrary constants.

The function \(\mu \) defined by \(\mu = (b_1 + b_2) \zeta - a_0 \psi_2 \) satisfies similar equation as \(\psi_1 \)

\[
\nabla_g^2 \mu = -a_0 (b_1 + b_2) R. \quad (31)
\]

Hence we have two different solutions of the equation
\[\nabla^2_g \sigma = -\frac{c}{4} g^{\alpha \beta} \text{tr}[(\partial_\alpha g^{-1}) \partial_\beta g], \quad (32) \]

for some function \(\sigma \). If \(\sigma = \psi_1 \) then \(c = a_1 + a_2 \), if \(\sigma = \mu \) then \(c = -a_0(b_1 + b_2) \).

It is straightforward to show that

\[\xi_1 = \frac{w_2}{\text{det} g_0 \sqrt{\rho}}, \quad \xi_2 = \frac{w_1}{\text{det} g_0 \sqrt{\rho}} \quad (33) \]

Hence \(\psi_1 \) will not be considered as an independent function. It is interesting and important to note that under the minimality condition the matrix \(g \) satisfies the following condition as well.

Proposition 3. Minimality of \(S_0, H = 0 \), also implies a sigma model \([7], [8]\) like equation for \(g \), i.e.,

\[\partial_\alpha [g^{\alpha \beta} g^{-1} \partial_\beta g] = 0. \quad (34) \]

Proof: The metric \(g_{\alpha \beta} \) and its inverse \(g^{\alpha \beta} \) are written in a nice form

\[g_{\alpha \beta} = \frac{1}{\sqrt{\rho}}(g_0_{\alpha \beta} + \epsilon \phi_{,\alpha} \phi_{,\beta}), \quad (35) \]

\[g^{\alpha \beta} = \sqrt{\rho}(g_0^{\alpha \beta} - \frac{\epsilon}{\rho} \phi^{\alpha} \phi^{\beta}) \quad (36) \]

where \(g_{0 \alpha \beta} \) are the components of the matrix \(g_0 \). The minimality condition \(H = 0 \) reduces to \(g^{\alpha \beta} \phi_{,\alpha} \phi_{,\beta} = 0 \) or

\[\phi^{\alpha}_{,\alpha} = \frac{\phi^{\alpha} \rho_{,\alpha}}{2 \rho}. \quad (37) \]

This condition also implies

\[\partial_\mu g^{\mu \nu} = 0. \quad (38) \]

Hence the sigma model equation (34) to be proved takes the form

\[h^{\mu \nu} \partial_\nu [g^{\alpha \gamma} \partial_\mu g_{\gamma \beta}] = 0, \quad (39) \]

where \(h_{\alpha \beta} = \sqrt{\rho} g_{\alpha \beta} \). It is straightforward to show that

7
\((g^{-1} \partial_{\mu} g)^{\alpha}_{\beta} = g^{\alpha\gamma} \partial_{\mu} g_{\beta\gamma} \)
\[= -\frac{1}{2} \frac{\rho}{\rho} \delta^{\alpha}_{\beta} - \frac{\epsilon}{\rho} \frac{\rho}{\mu} \phi_{\alpha} \phi_{\beta} + \epsilon \phi_{\beta} \phi_{\alpha} \mu + \frac{\epsilon}{\rho} \phi_{\alpha} \phi_{\mu\beta}, \quad (40) \]

Using the identity (16) and the minimality condition (37) we obtain the following

\[\rho \mu \phi_{\beta\gamma} - \rho_{\lambda} \phi_{\mu\gamma} = 2\epsilon \lambda_0 \left(\phi_{\mu} g_{0\beta\gamma} - \phi_{\beta} g_{0\gamma\mu} \right), \quad (41) \]
\[\rho^{\mu} \phi_{\mu\beta} = \phi^{\mu} \alpha \rho_{\beta} - 2\epsilon \lambda_0 \phi_{\beta}, \quad (42) \]
\[h^{\alpha\beta} \partial_{\alpha} \left(\frac{1}{\rho} \partial_{\beta} \rho \right) + \frac{2\lambda_0}{\rho^2} (1 + \rho) = 0. \quad (43) \]

Utilizing these identities we get

\[h^{\alpha\beta} \phi_{\alpha\beta} = -\frac{2\epsilon \lambda_0}{\rho} \phi_{\mu}, \quad (44) \]
\[h^{\alpha\beta} \phi_{\mu\alpha} \phi_{\nu\beta} = -\frac{\lambda_0}{\rho} \delta_{\mu\nu} - \frac{\epsilon \lambda_0}{\rho} \phi_{\mu\phi_{\nu}}, \quad (45) \]
\[h^{\alpha\beta} \partial_{\alpha} \left(\phi_{\nu\beta} \phi_{\mu} \right) = -\frac{\lambda_0}{\rho} \delta_{\mu\nu} - \frac{3\epsilon \lambda_0}{\rho} \phi_{\nu\phi_{\mu}}, \quad (46) \]
\[\rho_{\alpha} h^{\alpha\beta} \partial_{\beta} \left(\phi_{\nu} \phi_{\mu} \right) = -4\epsilon \lambda_0 \phi_{\nu} \phi_{\mu}. \quad (47) \]

Now applying \(\partial_{\nu} \) to (44) then multiplying by \(h^{\mu\nu} \) and using the above identities (by virtue of the minimality condition (37)) it is easy to show (39).

Hence for every minimal surface \(S_0 \) and its metric \(h \) we have a conformally related surface \(S \) with metric \(g = \frac{h}{\sqrt{\rho}} \) \((\det h = \rho \det g_0) \) satisfying the conditions

\[R + \frac{1}{4} g^{\alpha\beta} tr[\partial_{\alpha} g^{-1} \partial_{\beta} g] = 0, \quad (48) \]
\[\partial_{\alpha} [g^{\alpha\beta} g^{-1} \partial_{\beta} g] = 0. \quad (49) \]

Here \(g \) has determinant equals to \(\det g_0 \) which is a nonzero constant. This does not violate the covariance of our formulation because we could formulate
everything in terms of the metric h of the minimal surfaces S_0 but the above identities become lengthy and complicated. We lose no generality by using surfaces S and the metric g on them.

3 Ricci flat pseudo Riemannian geometries

We start first with four dimensions. Let the metric of a four dimensional manifold M_4 be given by

$$ds^2 = e^{2\psi} g_{\alpha\beta} dx^\alpha dx^\beta + \epsilon_1 g_{\alpha\beta} dy^\alpha dy^\beta,$$

where ψ is a function of x^α and $\epsilon_1 = \pm 1$. Local coordinate of M_4 are denoted as $x^a = (x^\alpha, y^\alpha), \ a = 1 - 4$

Proposition 4. The Ricci flat equations $R_{ab} = 0$ for the metric (50) are given in two sets. One set satisfied identically due to the Proposition 3 above and the second one is given by

$$\nabla_g \psi = 0.$$

There are two independent functions satisfying the above Laplace equation, ϕ and μ. Using (31) we find that $\psi = e_0 \phi + e_1 \mu$ where e_0 and e_2 are arbitrary constants and $b_2 = -b_1$. Combining all these constants we find that

$$e^{2\psi} = e^{2e_0 \phi} w_1^{-2m_1} w_2^{-2m_2},$$

where m_1 and m_2 are constants satisfying $m_1 + m_2 = 0$. Then the line element (50) becomes

$$ds^2 = \frac{e^{2e_0 \phi} h_{\alpha\beta} dx^\alpha dx^\beta}{\sqrt{\rho}} + \frac{h_{\alpha\beta} dy^\alpha dy^\beta}{\sqrt{\rho}},$$

where ϕ satisfies the minimality condition ($H = 0$) (15) which is explicitly given by

$$[k_2 + \epsilon (\phi_y)^2] \phi_{xx} - 2[k_0 + \epsilon \phi_x \phi_y] \phi_{xy} + [k_1 + \epsilon (\phi_x)^2] \phi_{yy} = 0.$$

where we take $(g_0)_{11} = k_1, (g_0)_{01} = k_0, (g_0)_{22} = k_2$ and assume that $\det (g_0) = k_1 k_2 - k_0^2 \neq 0$. Hence the functions w_1 and w_2 are given explicitly as

$$w_1 = k_1 + \epsilon (\phi, x)^2, \quad w_2 = k_2 + \epsilon (\phi, y)^2.$$ \hspace{1cm} (55)

The metric in (53) with $e_0 = 0, m_1 = m_2 = 0$ reduces to an instanton metric [10].

We shall now generalize Proposition 4 for an arbitrary even dimensional pseudo-Riemannian geometry. Let M_{2+2n} be a $2 + 2n$ dimensional manifold with a metric

$$ds^2 = e^{2\Phi} g_{\alpha\beta} dx^\alpha dx^\beta + G_{AB} dy^A dy^B,$$ \hspace{1cm} (56)

where the local coordinates of M_{2+2n} are given by $x^{\alpha+A} = (x^\alpha, y^A), A = 1, 2, \cdots, 2n, \Phi$ and G_{AB} are functions of x^α alone. The Einstein equations are given in the following proposition

Proposition 5. The Ricci flat equations for the metric in (56) are given by

$$\partial_\alpha [g^{\alpha\beta} G^{-1} \partial_\beta G] = 0,$$ \hspace{1cm} (57)

$$\nabla^2 g \Phi = \frac{1}{8} g^{\alpha\beta} \text{tr}[\partial_\alpha G^{-1}] \partial_\beta G] + \frac{R}{2},$$ \hspace{1cm} (58)

where G is $2n \times 2n$ matrix of G_{AB} and G^{-1} is its inverse.

Let us choose G as a block diagonal matrix and each block is the 2×2 matrix g. This means that the metric in (56) reduces to a special form

$$ds^2 = e^{2\Phi} g_{\alpha\beta} dx^\alpha dx^\beta + \epsilon_1 g_{\alpha\beta} dy_1^\alpha dy_1^\beta + \cdots + \epsilon_n g_{\alpha\beta} dy_n^\alpha dy_n^\beta,$$ \hspace{1cm} (59)

where the local coordinates of M_{2+2n} are given by $x^{\alpha+A} = (x^\alpha, y_1^\alpha, \cdots, y_n^\alpha), \epsilon_i = \pm 1, i = 1, 2, \cdots, n$. Then we have the following theorem

Theorem. For every two dimensional minimal surface S_0 immersed in a three dimensional manifold M_3 there corresponds a $2N = 2 + 2n$-dimensional Ricci flat (pseudo-) Riemannian geometry with the metric given in (56) with

$$e^{2\Phi} = e^{2\psi} w_1^{-2n_1} w_2^{-2n_2} \rho^{n_1+n_2},$$ \hspace{1cm} (60)
where ψ is given in (52), w_1 and w_2 are given in (53), n_1 and n_2 satisfy
\begin{equation}
n_1 + n_2 = \frac{n - 1}{2}.
\end{equation}

Proof: Using proposition 5 for the metric (59) the Ricci flat equations reduce to the following equation
\begin{equation}
\nabla_g \Phi = \frac{n - 1}{8} g^{\alpha\beta} tr[(\partial_\alpha g^{-1}) \partial_\beta g]
\end{equation}

By using (32) and letting $a_0 b_1 = n_1$, $a_0 b_2 = n_2$ and $\Phi = \mu + \psi$ we find (60) with the condition (61). Here ψ is a harmonic function (51) with respect to the metric $g_{\alpha\beta}$. A solution of this function is given in the previous section in (52). Metric functions ψ, w_1, w_2 and $g_{\alpha\beta}$ are expressed explicitly in terms the function ϕ and its derivatives ϕ_x and ϕ_y. This means that for each solution ϕ of (54) there exists a $2N$-dimensional metric (59).

The dimension of the manifold is $4 (1 + n_1 + n_2)$. Here $n = 1$ or $n_1 + n_2 = 0$ corresponds to the four dimensional case. The signature of the geometry depends on the signature of S. If S has zero signature then M_{2N} has also zero signature, but if the signature of S is 2 then the signature of M_{2N} is $2 (1 + \epsilon_1 + \cdots + \epsilon_n)$.

This work is partially supported by the Scientific and Technical Research Council of Turkey (TUBITAK) and Turkish Academy of Sciences (TUBA).

References

[1] M. Gürses and A. Karasu, *Int. Journ. Mod. Phys.* 6A, 487 (1991).
[2] M. Gürses, *Lett. Math. Phys.*, 26, 265 (1992).
[3] M. Do Carmo, *Differential geometry of Curves and Surfaces*, Prentice-Hall, New Jersey, 1976.
[4] U. Dierken, S. Hildebrandt, S. Künster, and O. Wohlrab, *Minimal Surfaces I*, Grundlehren Mth. Wiss. 295, Springer-Verlag, Berlin, Heidelberg, 1992.
[5] J.Eells and J.H. Sampson, *Am. J. Math.* **86**, 109 (1964).

[6] D. Brecher and M.J. Perry, *Nucl. Phys. 566B*, 15 (2000). ([hep-th/9908018](https://arxiv.org/abs/hep-th/9908018)).

[7] M. Gürses, *Lett. Math. Phys.* **44**, 1 (1998).

[8] J.C. Brunelli, M. Gürses and K. Zheltukhin, *On the integrability of a class of Monge Ampere Equations*, to be published, 1999. To be published in *Reviews in Mathematical Physics*, 2000. ([hep-th/9909003](https://arxiv.org/abs/hep-th/9909003)).

[9] M. Gürses, *Some Ricci flat pseudo-Riemannian geometries*, 2000. ([math.DG/0006041](https://arxiv.org/abs/math.DG/0006041)).

[10] Y. Nutku, *Phys. Rev. Lett.*, **77**, 4702 (1996).