A functional paradigm for evaluating culture: An example with cetaceans

Alison Linda GREGGOR*

Department of Psychology, University of California, 3210 Tolman Hall, Berkeley, CA 94720-1650, USA

Abstract Nonhuman culture was first considered in nonhuman primates because they are genetically similar to humans. However, evolution is not progressive and therefore many species may occupy niches that favor socially transmitted, group specific behavior. Not surprisingly, evidence for culture has accrued in several taxonomic groups, including cetaceans. If culture is an adaptation, it is imperative we understand the factors that favor its formation. Understanding the evolutionary origin of culture will allow for a wider range of species to be studied, including those that are difficult to test in the laboratory. I propose a broad-based functional paradigm for evaluating nonhuman culture; based on the idea that while not all cultural behaviors may garner fitness benefits to the individual, the ecological and social environments in which cultural behaviors evolved must have favored the physical attributes and social learning capabilities that allow for cultural formation. Specifically this framework emphasizes the relationships between social learning, ecology, social systems, and biology in relation to culture. I illustrate the utility of the functional paradigm with evidence from the cetacean group, while setting the stage for a stringent species by species analysis. By means of contextualizing culture, the Functional Paradigm can evaluate a species' potential to exhibit culture and can investigate potentially cultural behaviors [Current Zoology 58 (2): 271–286, 2012].

Keywords Nonhuman culture, Social learning, Evolutionary function, Cetaceans

There is no denying the complexity of human culture. However, focusing on an anthropocentric definition of culture occludes evidence of culture in other species. Some bottlenose dolphins Tursiops truncatus use sponges as specialized feeding tools (Smolker et al., 1997), sperm whales Physeter macrocephalus form groups that define feeding and movement patterns (Whitehead and Rendell, 2004), and killer whale Orcinus orca groups share stable and unique vocalizations (Ford, 1991; Strager, 1995; Yurk, 2002). From Darwin’s perspective these differences between humans and animals are a matter of degree, not kind. Nonetheless, without a concrete understanding of the origin of cultural behavior, we cannot assume that similar evolutionary pressures created culture across a variety of taxonomic groups.

This paper serves as a preliminary step towards creating a framework for evaluating the evolutionary influences on cultural behavior. While many have advocated for a broader view on culture (Marler, 1996; Kamil, 1998; Fragaszy and Perry, 2003), sought to understand the biological precursors of culture (Fragaszy and Perry, 2003) and explored the precursors of cultural behavior across the animal kingdom (Bonner, 1980), a cohesive view of the dynamic forces that favor group specific behavior has yet to be explored. This interdisciplinary schematic allows species from a wider range of taxonomic groups to be included in the cultural discussion, including species that are difficult or impossible to study in the laboratory.

A serious objection to adopting an evolutionary perspective on culture is that cultural variants may be neutral or even maladaptive (Boyd and Richerson, 1985; Laland and Williams, 1998; see also Lachland and Slater’s “culture trap”, 1999). While specific cultural behaviors may not have adaptive value, the biological capacity to learn from conspecifics and maintain a behavior within a group must have arisen due to fitness benefits (Bonner, 1980). Therefore, even if culture is a byproduct of selection, the cognitive mechanisms, life histories, and social structures that facilitate its formation must have been favored at some point over evolutionary time.

1 Studying Culture

1.1 Why we need the functional paradigm

The study of nonhuman culture is plagued by confusion over nomenclature and the fundamental debate
whether human and nonhuman culture should be considered together (see Laland and Galef, 2009, for a concise historical perspective on the debate.). Most definitions of culture share several core characteristics: culture is comprised of behaviors, those behaviors are shared by groups of individuals, and social learning plays a role in the transmission of those behaviors (Rendell and Whitehead, 2001; Laland and Janik, 2006). Disagreement stems from the defining details: behavioral differences must not result from genetic or environmental variability (Morgan, 1900; Menzel et al. 1972, Mainardi, 1980; Galef, 1992; Whiten and Ham, 1992), or behaviors are cultural only if they are transmitted by imitation or teaching (Galef, 1992). Additionally, “culture” is sometimes said to be comprised of multiple “traditions” (Boyd and Richerson, 1985; Fragaszy and Perry, 2003; Whiten and van Schaik, 2007). Yet, this division is not clear because definitions of “tradition” vary as much as definitions of the word “culture”, and often overlap with similar meaning. Traditions can be socially transmitted information that must persist over several generations (Mundinger, 1980; Cavalli-Sforza and Feldman, 1981, Whiten et al., 1999), or simply persist for some time (Fragaszy and Perry, 2003). For the purpose of this framework, “culture” and “tradition” will be considered interchangeable, for the reasons stated below.

Dividing human and nonhuman culture into discrete phenomena masks many of the similarities between the two. The assumption that animals cannot modify culture as humans do, i.e. “ratchet” culture (Tomasello et al., 1993), has served as justification for their separation. However, this assumption has been partially dismantled by evidence that zebra finches can ratchet song culture (Fehér et al., 2009), and dolphins can produce one of the processes involved in ratcheting; i.e. process-orientated imitation (Hereman, 2002). The theory that animals lack social motivation to maintain culture has also generated objections to nonhuman culture (Tennie et al., 2009), however there is evidence of social conformity in humpbacks (Noad, et al., 2000), and orcas (Yurk et al., 2001). The accretion of nonhuman evidence indicates why separating human from nonhuman culture creates a false dichotomy and is unproductive to understanding the roots of culture.

Additional controversy focuses on how cultural behaviors are transmitted. By definition, cultural behaviors (or traditions) must be transmitted through some form of social learning (Mundinger, 1980; Cavalli-Sforza and Feldman, 1981; Rendell and Whitehead, 2001; Fragaszy and Perry, 2003; Laland and Janik, 2006). If social learning is simply defined as changes in behavior as a result of observation or interaction with a conspecific (Box, 1984; Galef, 1988; Heyes, 1994), many animals are social learners. For example, guppies can learn travel routes from others (Laland and Williams, 1997; 1998), archer fish may imitate (Schuster et al., 2006), and rats gain information from conspecifics about food preferences and foraging techniques (Laland and Plotkin, 1992). However, the categories of social learning are not straightforward, nor can they be organized neatly into a hierarchy of complexity (Heyes, 1994). Imitation and teaching are assumed to be the most cognitively taxing (Galef, 1992), even though the cognitive mechanisms behind social learning are still not understood.

Imitation has been proposed as a crucial transmission mechanism for cultural learning (Mundinger, 1980; Whiten, 1989; Tomasello, 1993, Galef, 1992). Historically this was used as justification for denying nonhuman culture because imitation and teaching were not considered in animals until recently. So much so that the concept of imitation recently lacked a coherent theoretical framework (Heyes, 1993), and teaching was not considered in reviews of social learning (Heyes, 1994). However, the literature on imitation and teaching in many species continues to grow, threatening the idea that imitation and teaching are “advanced”. Additionally, there is insufficient evidence that humans always use imitation, and teaching in transmitting our own culture (Boesch, 2001). Finally, imitation does not support sufficient fidelity to explain the stability of traditions (Claïdière and Sperber, 2010). Therefore, limiting culture by imposing a hierarchy of social learning types denies the full scope of culture and is irrelevant for the mechanisms that maintain culture.

Social learning is not inherently more advanced than asocial learning because they share the same neural substrate, and differ solely by the context in which the learning takes place (Fragaszy and Perry, 2003). Social and asocial learning are not mutually exclusive, nor do they act in conflict of each other (Heyes, 1994), because social learning is correlated with overall greater learning capacities (Reader, 2003). Because the neural mechanisms behind the forms of social learning are unknown, any assessment of their cognitive load is purely theoretical at this point. Potentially, therefore, all types of social learning could contribute to culture.

The definition of culture adopted by this paradigm allows for the inclusion of taxonomic groups that would otherwise be ignored by excluding nonhuman animals or imposing a hierarchy of social learning. Therefore, a
definition of tradition, “a distinctive behavior pattern shared by two or more individuals in a social unit, which persists over time and that new practitioners acquire in part through socially aided learning” (Fragaszy and Perry, 2003), will be used to define culture, as has been done before (Laland and Hoppitt, 2003).

1.2 Proposal for a WIDER paradigm

Separating human and nonhuman culture and assuming a hierarchy of social learning types impedes the study of culture while demonstrating the need for a broad and evolutionarily relevant conception of culture. Efforts have been made to analyze human and nonhuman culture together. According to Byrne and colleagues (2004), culture is not formed nor defined by one element, but each species has its own unique “package” of six different and broadly applicable definitions (Bryne et al., 2004). Putting this perspective into an evolutionary framework allows for an understanding of the unique environment that has shaped behavior at the individual level to create each species’ “package”. This paper reviews the interdisciplinary factors that would contribute to culture and classifies them into one of four dynamic and interacting categories: social learning, ecology, social system, and biological predispositions (see Fig. 1). The following discussion will explain the origin of the Functional Paradigm and will outline how to apply it at the individual and behavioral level with examples from cetaceans. Using a notoriously difficult to study taxonomic group demonstrates the full implications of the framework.

Fig. 1 General paradigm: Functional perspective on culture

2 The Functional Paradigm

2.1 Social learning

By definition cultural behaviors are transmitted by social learning. Therefore, the first concern of the Functional Paradigm is to identify if an individual of a species can interpret social cues and learn from them. This may be answered through both laboratory and field studies, and must consider all forms of social learning. Species that cannot learn socially should be excluded from the discussion of culture. Since social learning may be better predicted on a trait by trait basis (Laland and Kendal, 2003), specific behaviors must be considered. Candidate behaviors include those that are found repeatedly among individuals of a community (Whiten et al., 1999) or those that differ in rate or intensity between communities (Whitehead, 2008). Evaluation of the transmission mechanisms of a specific behavior must occur in an ecologically valid setting. Simply because a species has the capacity to learn socially does not mean that they do in the context of a specific behavior.

Identifying social learning is a demanding task because it may be evoked too easily and wrongly used to explain behavioral differences between populations (Galef, 1992; Heyes, 1993; Tomasello et al., 1993; Laland and Hoppitt, 2003; Laland and Janik, 2006). We cannot judge sociality—a gregariousness between individuals of the same species, as defined by Deputte (2000)—as evidence of social learning. Moreover, observed learning might result from individual learning in a social context (Kuczaj, 2001), and stable differences in behavior between groups may be a reflection of what each group encounters in its lifetime (Schiel and Huber, 2006).

Despite the difficulties, there are a variety of experimental tests available that aim to identify a type of social learning in the laboratory. However, it is often difficult to isolate which type of social learning is being utilized to solve a behavioral task (Hoppitt and Laland, 2008). Using the definition of culture that this framework employs, the differences between social learning types are inconsequential because all could potentially contribute to culture. Therefore the extensive list of methods given by Hoppitt and Laland (2008) are all relevant to identifying whether a species has the ability to learn socially. A separate set of techniques exist for determining social learning outside of the laboratory (Kendal et al., 2010). Care must be taken to distinguish between those techniques that introduce a new behavior and therefore test a group’s capacity for social learning and those that assess an existing, potentially cultural behavior. Additionally many of the methods are limited in their applicability across contexts and vary in the type of data needed for an assessment of social learning. For example, the Cue Reliability Approach (Dewar, 2003) determines a cost/benefit ratio for individual social learning, but only applies to situations where an individual must classify a
stimulus or tactic as safe or harmful, and a classification error is costly. Meanwhile the Option Bias Method (Kendal et al., 2009) is useful for identifying social learning of a novel behavior, but cannot be used to analyze existing cultural candidates like movement patterns. While this list represents an accumulation of many years of progress on the topic, there is still the need for continued exploration into reliable identification methods that can be applied across behaviors.

Regardless of the identification method, applying broad and conceptually testable definitions of social learning processes allows a greater range of species to be included in the cultural discussion. Heyes’s (1994) definition of imitation—an observer performing a topographically matching behavior acquired from a demonstrator—eliminates the questionable role of goal-directedness and perspective taking in imitation. The Caro and Hauser (1992) definition of teaching—in which an at-cost behavior for the demonstrator produces accelerated learning in the observer—eliminates anthropomorphic limitations that require a Theory-of-mind. Focusing on humanistic conceptions of social learning limits our understanding of behavior and ignores behaviors with different proximate mechanisms whose end result is a behavioral copy (Heyes, 1994) or the facilitation of learning (Hoppitt et al., 2008).

While identifying social learning is crucial to identifying culture, it only explains the transmission of cultural behaviors. Other aspects of a behavior such as the source, the ecological setting, the content, and the reward from performing it contribute to the formation of a cultural tradition (Claidiére and Sperber, 2009). Therefore the contextual details that would favor social learning must be examined when assessing species and specific behaviors.

2.2 Ecology

There is no consensus on the precise environment that would favor social learning, due in part to the way environmental change is measured. When measured in a general way, an environment that is highly stable does not favor learning because species would have time to evolve appropriate adaptations. Therefore, a degree of change or heterogeneity is necessary to make any type of learning adaptive. In an environment that is changing too quickly, asocial learning is favored because socially learned behaviors may be outdated or inappropriate, making an environment with an intermediate rate of change optimal for social learning (Laland and Kendal, 2003). Others argue that social learning would be favored in stable environments because it is more likely that an observing individual will occupy a similar environment to the one their behavioral model experienced (Boyd and Richerson, 1988; 1996). Through both perspectives, learning from conspecifics becomes advantageous in environments where individual learning is costly or inaccurate, or when social learning permits an individual to acquire behaviors that increase fitness (Boyd and Richerson, 1988; Mann and Sargeant, 2003; Laland, 2004).

When environmental variation is considered spatially, an environment that changes over short distances would cause pressure for culture because groups would be forced to move considerably and adapt to different conditions (Rendell and Whitehead, 2001). In such environments, behavioral flexibility and cultural transmission of feeding strategies would be favored for species with low travel costs and reduced territorial restrictions (Knight, 2001) because they encounter more varieties of habitat. When considered temporally, over the period of an individual’s lifetime, incidents of severe weather may also favor culturally retained memories of such events (Barrett-Lennard, 2001).

Whether the ecosystem preferentially selects for social learning depends upon each species’ unique relationship with its environment. A species’ generational rate, the distribution of their prey, whether they can transmit information vertically and horizontally, and the size of an animal’s home range (Laland and Kendal, 2003) all contribute to that relationship. For example, habitat complexity based on the ecology of available foods may contribute to larger brains and greater levels of social complexity in spider monkeys *Ateles geoffroyi*; two factors that promote social learning. Meanwhile, howler monkeys *Alouatta palliata* that inhabit the same area of forest experience it differently and have not responded the same way (Milton, 1988).

An intriguing theory linking the environment to the evolution of cultural practices proposes that culture itself may modify the environment. Niche construction—otherwise known as behavioral drive (Wilson, 1985), or ecosystem engineering (Jones et al., 1994)—is a mechanism by which species alter their environment through their metabolism, and/or behavior to modify natural selection pressures (Odling-Smee, 2003). Cultural niche construction in human models amplifies these effects, by influencing a species’ rate of evolutionary change (Laland et al., 2000; Laland et al., 2001). This same process may exist to a lesser degree in other species that use culture to exploit unoccupied niches (Rendell et al., 2011), such as the sponging behavior of...
Shark Bay’s bottlenose dolphins (Kreicker, 2010), or pine cone stripping by black rats (Terkel, 1996). Currently cultural niche construction is best understood through human models; however, efforts are being made to expand this to an evolutionarily broader perspective (Laland et al., 2000).

In examining whether the environment would have favored social learning at the level of the individual, a series of questions must be answered. (1) How stable is the environment? Both spatial and temporal rates of change, the number of habitats experienced through travel, home range, and biotic factors such as prey abundance are part of this assessment. (2) Could social learning provide reliable information that may offer fitness benefits? In this case, the potential reliability and usefulness of socially learned information must be considered. In examining these questions at the behavioral level, the behavior must be contextualized within the environment, with consideration that the behavior and environment may be mutually manipulative. (1) What is the source of the behavior? (2) What rewards does the behavior offer? (3) How does it interact with the surrounding environment?

### 2.3 Social system

Social structures are a product of the selective forces of the ecological environment in the form of predation, and the spatial and temporal distribution of food and resources (Wilson, 1975; Eisenberg, 1981). Importantly though, social structure may not optimize the fitness of the population because it operates and forms under the decisions of individuals (Whitehead, 2008). What forms of social structure make social learning favorable for individuals?

Basic components of sociality, such as gregariousness and tolerance, promote social learning (Coussi-Korbel and Fragaszy, 1995; van Schaik, 2003). Social species have been predicted to use social learning more often than solitary species (Lee, 1991; Lefebvre et al., 1996; Lefebvre and Giraldeau, 1996; Reader and Lefebvre, 2001). However, group size alone is not correlated with a higher frequency of social learning, and a measure of social complexity may better predict social learning (Reader, 2003). A complex social environment has been suggested to select for social intelligence and also been used to explain the evolution of general intelligence as a side-effect (Byrne, 1997; Humphrey, 1976). However, the “Social Intelligence Hypothesis”, or theory of “Machiavellian intelligence” is still under scrutiny because—as suggested by Fitch et al. (2010)—unforeseen levels of intelligence are seen in solitary species such as the octopus (Fiorito and Scotto, 1992), and red-footed tortoise (Wilkinson et al., 2010). Nonetheless, the idea that social organization may be connected with cognitive capabilities is highly relevant when considering the evolutionary origin of culture in species with complex social structures.

While there are statistical methods available for determining the complexity of a social system (Whitehead, 2008), “complex” is not an operationalized term. De Waal and Tyack (2003) define complex societies as those that are stable over time, individualized, and may be characterized by the propensity for social behavior and survival strategies. In contrast, unstable social groups, such as fission-fusion systems, are often assumed to be complex because they require higher levels of behavioral flexibility. However, fission-fusion structure may simply be a correlate of advanced cognition, as it could result from several evolutionary trajectories (Aureli et al., 2008). Instead of endowing superior cognition to all species with high fission-fusion dynamics, it is best acknowledged that social structure is an adaptation to a variety of ecological and biological necessities that differ for each species. The same applies for social systems such as monogamy that are assumed to be simple because the details of relationship maintenance may contribute to unexpected complexity (Emery et al., 2007).

Aside from the influence of social complexity, culture could prove adaptive if it occurs within groups of related individuals. The selective advantage of maintaining culture—the type which offers a fitness benefit (an adapted category of Bryne et al., 2004)—for an individual within a group of relatives is clear since any advantages associated with efficient information transmission increases indirect fitness.

Matrilineal groups may favor culture, yet culture may have unique genetic consequences when groups are divided along female lines. “Cultural hitchhiking” may be the reason behind the presence of low levels of diversity of mtDNA in sperm whales, killer whales, pilot whales and possibly narwhals (Whitehead, 1998; 2005). A theory previously only applied to humans (Feldman and Laland, 1996), cultural hitchhiking—a form of gene culture co-evolution—is analogous to genetic hitchhiking where neutral neighboring genes are passed along due to the fitness benefits of others. Genes and culture may also interact within matrilineal groups if female genes are selfishly passing on culture as a way to limit the genomic imprinting effects of males (Brown, 2001). Through this theory, culture could mediate genomic
conflict in favor of the mother. As of now, all of these theories are controversial but stress the wide-ranging evolutionary implications of social systems.

Classifying social systems is not a simple task; therefore, the first step in evaluating their role in mediating cultural behavior is to identify the details of the species’ social structure. Whitehead (2008) outlines methods for assessing social structure given varying levels of sampling difficulty. Apart from sheer complexity, family groups, mother/infant interactions, and relationship maintenance should be considered. Second, the system’s propensity for social learning can be assessed by analyzing its potential benefits within the kin organization and social structure. With a deeper understanding of the pressures put on the individual from the social system, a cultural candidate can be evaluated by investigating how the social system may facilitate the transmission and maintenance of the behavior.

2.4 Biology

Biological attributes such as advanced cognition, long lifetimes, and extended infant care are suggested to favor social learning (Roper, 1986). These attributes evolved in response to the social and ecological environment and potentially indicate selection for culture. For instance, an increase in social interactions increases an individual’s cognitive load, selecting for a larger brain over time (Eisenberg, 1981), including an enlarged neocortex (Bryne, 1995). In environments with patchy resources, selection will favor an increase in the amount of life span young spend in social learning situations (Eisenberg, 1986). And certain mating and dispersal patterns may increase the relatedness of females to a group as they age, making post-reproductive investment advantageous (Johnstone and Cant, 2010). The functional significance and evolutionary origin of these traits will be considered below. However, biological attributes that could facilitate cultural formation vary depending upon the species and should not be limited by these examples. Theoretically, traits such as distinctive coloration that divides social groups, or a finely tuned vocal organ that produces complex song could promote culture.

Increased brain size is noteworthy because the brain is metabolically expensive, and neurogenesis is extremely conservative across all mammals (Finlay, Darlington, and Nicastro, 2001). Therefore, larger brains and the expansion of neural circuits should have some functional significance for the individual (Bryne, 1995). Innovation and social learning require increases in brain size as they evolve (Wilson, 1991). Following this logic, there is a significant positive correlation between absolute brain volume and social learning (Fragaszy and Perry, 2003). Additionally brain size is important because brains and behavior co-evolved in a general way, rather than evolving specific structures for unique behaviors (Fragaszy and Perry, 2003). Therefore relatively large brains should correlate with behavioral flexibility and social sophistication (two correlates of social learning), regardless of their evolutionary history.

The fitness benefits of prolonged infant dependency must outweigh the potential costs from predation during that time. Although social structure may lessen predation risk, (as has been theorized for sperm whales, Connor and Mann, 2006), prolonged juvenile development must still provide fitness benefits. Prolonged mother-infant associations may allocate more time for social learning and facilitate the formation of culture.

Menopause does not occur simply because of longevity. Other long lived mammals remain reproductively active throughout their lives; as Johnstone and Cant (2010) point out, elephants breed into their 60’s (Moss, 2001) and baleen whales can breed into their 90’s (Mizroch, 1981). The grandmother hypothesis—originally devised for explaining menopause in humans—proposes that menopause is highly adaptive when older females serve as a source of information that significantly increases the fitness of her kin (Boran and Heimlich 1999; Norris and Pryor 1991). When viewed as a form of kin selection (Williams 1957; Hamilton 1966; Hawkes et al., 1998), menopause could serve an equally important function in species beyond humans given they have the capacity to pass on information.

3 Example with Cetaceans

In practice the functional framework should be applied one species at a time to truly map each species’ unique evolutionary context. However, for the sake of discussion, I will bring in examples from several species to highlight the flexibility of the framework. The method for utilizing this paradigm is outlined in Table 1 and a species-specific application of the paradigm is outlined in Table 2.

3.1 Can cetaceans learn socially?

The bottlenose dolphin *T. truncates* has been the primary subject of most cognition and social learning studies because experiments with large cetaceans are extraordinarily challenging. There is robust evidence that bottlenose dolphins can understand the referential meaning of gaze. Captive dolphins can pick up gaze following through informal interactions with humans
Table 1  Analyzing the cultural potential of a species and a specific behavior

| SPECIES LEVEL | BEHAVIORAL LEVEL |
|---------------|------------------|
| SOCIAL        |                  |
| LEARNING      | (1) Can they learn socially? |
|               | -Consider all types of social learning |
| ECOLOGY       | (1) Is the behavior transmitted socially? |
|               | -An ecologically valid setting is required to answer |
| SOCIAL        | (1) How variable is it? |
| SYSTEM        | -Consider spatial and temporal rates of change, home range, travel patterns and prey distribution |
|               | (2) Could social learning offer reliable information related to survival? |
| BIOLOGY       | (1) How does the social system facilitate the transmission of the behavior? |
|               | (1) What are the details of the social structure? |
|               | -Consider complexity, kin organization and relationship maintenance |
|               | (2) Does this structure facilitate social learning? |
|               | (1) What are the source of the behavior? |
|               | (2) What rewards does the behavior offer? |
|               | (3) How does it interact with the surrounding environment? |
|               | (1) Are there biological traits that may indicate selection for culture? |
|               | (2) What are the evolutionary origins of these traits? |

Table 2  Initial evaluation of killer whales *Orcinus orca* and their group-specific calls through the Functional Paradigm

| SPECIES LEVEL | Group-specific vocalizations |
|---------------|-------------------------------|
| SOCIAL        |                               |
| LEARNING      | (1) Yes.                        |
|               | • Vocal learners.               |
|               | • Observations of imitation in captivity (*a*), the wild (*b*), and of teaching (*c*). |
|               | * Experimental studies are needed. |
| ECOLOGY       | (1) Foraging orcas must separate hundreds of meters—outside the reliable sight range in water—and group specific calls can occur across long distances |
|               | (2) Calls could maintain proximity (*h*). |
|               | (3) This allows effective foraging across larger distances |
| SOCIAL        | (1) Close matrilineal groups often associate in larger pods and pods sometimes with large clans. |
| SYSTEM        | • Young live with their mothers throughout life. |
|               | • Males mate with females from other pods. |
|               | * More research is needed on relationship maintenance. |
| BIOLOGY       | (1) Call repertoires are maintained over generations, and certain calls change more rapidly than others (*i*). |
|               | • Pod-specific calls could make inter-pod communication more efficient, and strengthen group membership (*j*). |
|               | • Could help avoid inbreeding (*k*). |
|               | (1) Large brains could help navigate social groups and maintain call repertoires. |
|               | • Menopause indicates the importance of matrilineal groups, in which group-specific calls function. |

Sources: (*a*) Bain, 1986; (*b*) Ford, 1991; (*c*) Guinet & Bouvier 1995; (*d*) Marino, 2006; (*e*) Olesiuk, Bigg, & Ellis, 1990; (*f*) Whitehead, 1998; 2005; (*g*) Weiss et al., 2006; (*h*) Ford et al., 2000; (*i*) Yurk et al., 2002; (*j*) Ford,1989; (*k*) Sayigh et al., 1990; Ford, 1991; Barrett-Lennard, 2000.
serve the full ‘teaching’ label because it is unknown. Authors did note however, that the data does not yet de-
changed their hunting/feeding behavior when their calves were observing them (Bender et al., 2008). The Stenella frontalis
comes from a study on the Atlantic spotted dolphin calves’ learning.
whether or not the mother’s behavior accelerated the learning capabilities across cetaceans, evidence is needed in other species with the same level of scientific fidility of imitation is necessary for any behavior to spread accurately (Heyes, 2009; Huber et al., 2009), and dolphins are more accurate at producing behavioral copies of the Do-as-I-Do behaviors (Herman, 2002) than apes are (Custance et al., 1998; despite greater anatomical differences from humans.

There have been numerous studies on wild cetaceans, documenting their mimicry and synchronous behavior. It has been suggested that the innate capabilities of dolphins for synchronous behavior reflect a precursor to true imitative abilities that develop later in life (Fellner, 2006). In wild settings, dolphins have been observed copying each other’s signature whistles (Janik, 1997; 2000). While the large body of evidence from captivity must be interpreted with caution—because the subjects are highly enculturated—field observations of dolphin imitation suggest that this capacity could be employed in social contexts as a form of social learning.

Preliminary field evidence for cetacean teaching comes from a study on the Atlantic spotted dolphin Stenella frontalis, in which nursing females significantly changed their hunting/feeding behavior when their calves were observing them (Bender et al., 2008). The authors did note however, that the data does not yet deserve the full ‘teaching’ label because it is unknown whether or not the mother’s behavior accelerated the calves’ learning.

In order to make similar conclusions about social learning capabilities across cetaceans, evidence is needed in other species with the same level of scientific scrutiny under which dolphins have been tested (Day, 2001). Outside of dolphins, the only research on imitation and teaching stems from behavioral observations. For example, bowhead whales Balaena mysticetus have been seen apparently imitating conspecific calls (Clark, 1990), sperm whales have been reported to match their “codas” to arbitrary click rates (Backus and Schevill, 1966), and captive orca imitation has been reported (Bain, 1986), as well as interpod mimicry in the wild (Ford, 1991). Because of the difficulties in experimentally testing imitation in larger cetaceans, the strong laboratory evidence from bottlenose dolphins may be the only link between field observations and conclusions about their imitative abilities.

3.2 How variable is their environment?
The relative rate of stability and the relative rate of instability of the marine environment have been proposed separately to support the formation of culture in cetaceans. This confusion partially stems from the different ways that environmental change can be measured. The stable marine environment lends itself to the development of social learning (Thomas, 2001) because the heat capacity of the ocean lessens temperature variability over short time scales (Steele, 1985; 1991) and the atmosphere and ocean work as one system to reduce variability over long time scales (Steele, 1991). However, when the rate of change is considered as a function of spatial makeup, it has been proposed that the marine environment is actually less stable than the terrestrial one because habitats change quite rapidly over short distances. Cetaceans low travel costs and few territorial restrictions would amplify the amount of spatial variability they experience, favoring culture (Whitehead, 1998; Rendell and Whitehead, 2001). Temperature and spatial variability are inseparable elements of the environment; therefore cetaceans would have experienced more varieties of habitat but less variability in temperatures when they adapted to the marine environment.

Marine predators must hunt abundant but patchy schools of fish; prey patterns that may explain why group foraging strategies may have evolved (Barrett-Lennard et al., 2001; Laland and Kendal, 2003). Again, a species by species analysis of the effects of prey distribution must be considered because prey type also may have contributed to variability within the cetacean order. For example, humpback whales have

1 Xitco MJ, Harley HE, Brill R, 1998. Action level imitation by bottlenose dolphins. Napoli Social Learning Conference (Abstract), Naples, Italy.
2 Harley HE, Xitco MJ, Roitblat HL, Herman LM, 1998. Imitation of human models by bottlenose dolphins. Napoli Social Learning Conference (Abstract) Naples: Italy.
fewer, less-complex feeding strategies as well as shorter periods of maternal investment and calf dependence than certain delphinid species (Clapham, 2000; Whitehead and Mann, 2000) and seek very different albeit patchily distributed prey.

Cooperative feeding strategies within cetaceans that merit evolutionary analysis at the behavioral level include: bubble net feeding in humpback whales (Jursaz and Juras, 1979; Hain et al., 1982), use of the water surface to catch prey in dusky dolphins (Wursig and Wursig, 1980), and ‘strand feeding’ by bottlenose dolphins (Leatherwood, 1975; Petricig, 1995). These behaviors exploit prey more effectively than lone foraging; therefore they potentially offer fitness benefits.

3.3 What are the details of their social structure?

Several cetacean species clearly illustrate the inability of the fission-fusion label to describe the details and complexities of social organization. The social system of sperm whales (Mesnick, 2001), bottlenose dolphins (Connor et al. 1998), and humpback whales (Clapham, 1993) have all been labeled “fission-fusion”, yet, the dynamics of each species vary markedly. Female and immature male sperm whales form long-lasting units and often aggregate in temporary groups preferentially with members of their own acoustic clan (Rendell and Whitehead, 2003). The social structure of bottlenose dolphins is characterized by stable male alliances, a network of flexible female relationships (Connor et al., 2000a; 2000b; Connor and Mann, 2006), and a hierarchy that is one of the most complex in the mammalian world (Connor et al., 2000a). Meanwhile, humpback whales form loose fission-fusion groups (Clapham, 1993) but show neither the group specific vocalizations of sperm whale groups nor the hierarchical organization of bottlenose dolphins. Because the character of social complexity is different in each of these systems, culture and its mechanisms would have unique functions in each; producing distinctive fitness consequences.

The evolutionary interplay of a social system at the individual level should take into account its relationship with that species’ ecology and biology. For example, most large cetaceans, such as sperm whales, are not affected by predators as adults, but their young are vulnerable and need protection. Predation pressures may therefore explain alliances between sperm whales that allow for alloparenting while mothers dive deeply in search of food (Connor and Mann, 2006). Sociality would also be favored over evolutionary time if the patchy distribution of food has made cooperative feeding methods adaptive. Membership in sperm whale groups is based on coda vocalizations and specific membership also determines feeding patterns. Marcoux, Rendell, and Whitehead (2007) tracked several sperm whale groups and used defecation rates as evidence of feeding success, finding different rates of success for different groups depending on environmental conditions. Therefore, it is clear that social groups play a role in mediating feeding behavior and movement patterns; both forms of niche construction that can have implications for fitness. Analysis at the behavioral level, choosing coda vocalizations for example, would analyze how the social structure facilitates the behavior and vice versa. Experimental tests are needed to fully prove that groups are formed via cultural associations; however, framing coda vocalizations in an evolutionary perspective shows how group traditions could be adaptive for sperm whales in changing environments.

3.4 Is there evidence for costly biological traits?

Certain cetaceans have large brain-to-body ratios, otherwise known as encephalization quotients (EQ), and life histories which are costly to the individual. Human’s EQ is roughly 7.0—while 1.0 corresponds to the ratio predicted for a mammal—and four species of dolphins have the next highest ratio with 4.14 to 4.56 (Marino, 2002) or roughly double that of chimpanzees and orangutans (Ridgway, 1986). In addition, a prolonged period of development in infancy (Connor et al., 2000a) and the evolution of menopause in some cetaceans also points to a biological need for extended care and perhaps to pass on knowledge (Rendell and Whitehead, 2001).

While closely related species may be utilized to form initial conclusions about the evolution of a trait, final analyses should look at the unique evolutionary trajectory of a species. For example, a general analysis of cetacean evolution may be useful, but brain size is not consistent across cetaceans, with as much variation between two species of similarly sized odontocetes (toothed whales) as there are between humans and great apes (Connor and Mann, 2006). A detailed investigation into the origin of any trait must be conducted before conclusions can be made about its evolutionary contribution to cultural behavior.

There are several hypotheses surrounding the origin of large brains in cetaceans. They may have evolved as an adaptation to the aquatic environment, as a byproduct of diet, as a tool for echolocation, or as a response to a complex social structure. Each of these possibilities will be explored below. Extra giilial cells and a larger overall body size may have evolved to allow cetaceans maintain
heat effectively in cooler temperatures (Manger, 2006). However, Marino and colleagues (2007) refute this claim because odontocete bodies actually decreased in size, and were already above the body size threshold that would respond to temperature with increased size (Downhower, 1988). Additionally, an analysis of brain size in extant cetaceans (values obtained from Slijper, 1979) shows, that mystocetes (baleen whales) did not respond to the cooling temperatures by evolving larger brains, despite occupying the same cooling aquatic environment, indicating that other factors promoted brain growth in odontocetes.

Perhaps certain cetaceans could afford large brains because their high energy diet could support them. Interestingly, cetaceans have a higher metabolic rate than similarly sized land mammals (Ridgway and Patton, 1971), which would be supported by their high protein diet (Ridgway, 1986). The energy rich diet of dolphins in comparison to the grazing manatee, with a much lower EQ, illustrates how diet could have facilitated the metabolically expensive large brain (Connor and Mann, 2006). However, while diet may explain how it was possible for large brains to evolve, it does not explain why they increased in size.

Conceivably, the large brains of certain odontocetes are attributable to the physiological demands of echolocation (Jerison, 1986; Ridgway, 1986). Auditory structures are large in the dolphin brain (Brethnach, 1960; Ridgway, 2000), however, evidence is lacking that other enlarged parts of the brain, such as the cerebral cortex are used for auditory processing (Pabst et al., 1999). Additionally, several species of echolocating odontocetes lack high EQ’s, (data obtained from Marino, 2006)) thus other factors must contribute to brain size as well.

Another theory proposes that complex social organization necessitated larger brains (Eisenberg, 1981) because a high encephalization quotient is correlated with pod size in dolphins (Marino, 1996). Evidence for this theory stems from specific brain structures as well. The ratio of neocortex to brain size in dolphins lies between humans and chimpanzees, with values closer to us (Tschudin, 1999), and in cetaceans, relative neocortex size is positively correlated with social group size (Connor et al., 1998, Tschudin et al., 1996). Because cetaceans evolved in a marine environment, their bodies adapted to different conditions than terrestrial animals. Therefore cognitive similarities between primates and cetaceans are evolutionary convergent (Marino, 2002) and universalities in brain function must not be assumed. Despite that the dolphin neocortex is the most convoluted in the animal world (Elias and Schwartz 1969; Marino, 2007), it is relatively thin and its neuronal characteristics mirror that of a primitive mammalian brain (Huggenberger, 2008). However this organizational structure may have simply been the result of an alternative evolutionary solution to improve brain performance; supporting an increase in cortical size instead of an increase in complexity (Huggenberger, 2008; Hof and van der Gucht, 2007; Marino et al., 2007). This evolutionarily analogous solution would still allow odontocetes to exploit a new prey niche with echolocation while supporting the brain structures necessary for social communication and complex group feeding.

The debate about the origins of large brains in cetaceans demonstrates why the diversity within cetaceans cannot be explained by one theory alone and that diet, echolocation and a complex social structure all may have contributed to their evolution. Whatever combination of factors caused an increase of EQ in several cetacean species, it did so on a rapid timescale; at a pace just lagging behind the pattern of human brain evolution (Marino, 2002). Because the EQ for archaeocetes was low (Marino et al., 2000), this evolutionary trajectory suggests that a larger brains must have been extremely favorable at one time. However, these evolutionary changes did not occur in isolation and are correlated in odontocetes with social competition (Huggenberger, 2008; Connor, 2007) and a lengthened life span (Le-fevre et al., 2006).

Apart from longevity and prolonged infant care (Herman et al. 1994; Marten and Psarakos, 1995; Tyack 1986), certain cetaceans also display senescence; a rare physical attribute that may indicate selection for culture. The fact that killer whales (Olesiuk, Bigg, and Ellis, 1990), pilot whales (Marsh and Kasuya, 1984; 1986) and possibly sperm whales (Marsh and Kasuya, 1986; Whitehead, 2003) have menopause demonstrates that there is value in older, non-reproductive females within their social organization. The unique dispersal patterns

---

1 Tschudin A, Daji K, Henzi SP, Peddemors V, Royston D, 1996. Relative brain size and social structure in dolphins. Integrating Zoology: subdisciplines and the subcontinent. Symposium of the Zoological Society of Southern Africa, University of Pretoria.
of certain cetaceans allow for an increasing ratio of relatedness of females to the group as they age, favoring the investment of energy by post menopausal females (Johnstone and Cant, 2010). Their investment is especially potent given their social learning skills could confer both direct benefits (Baird, 2000) and the transference of information (Connor et al., 2000a; Whitehead and Mann, 2000; McAuliffe and Whitehead, 2005; Rendell and Whitehead, 2001) to their social group. There is no denying that older individuals are tolerated in orca groups, a puzzling behavior if there were not value in having non-reproducing elders around (Bigg et al., 1990).

4 Conclusion

Studying nonhuman culture and its mechanisms could potentially help us understand the evolution behind our own culture without retroactively assuming its basis (Knight, 2001). However, the search for culture in species that are difficult to study is often left to estimates of plausibility (Laland and Hoppitt, 2003) than sound science, and efforts even dismissed as futile (Premack and Hauser 2001). This framework will help guide judgments about whether cultural candidates are indeed cultural and offer an alternative to abandoning the cultural search. The key to this model is that the four aspects that contribute culture have not contributed equally in every case; instead a unique combination of factors has facilitated each cultural example. This does not eliminate the need for experimental tests to validate that behaviors are socially transmitted, but provides a context in which cultural candidates from numerous taxonomic groups can be discussed. Overall this is a work in progress; continued study and future innovations will embellish this theory with growing examples and quantitative measures. In particular, universal measurements for evaluating environmental change and new field techniques for identifying social learning need to be developed. For cetaceans, details about the social structure of more species are desperately needed. Analysis of other taxonomic groups using this paradigm will highlight areas where more species-specific study is needed.

Acknowledgments I owe my sincerest thanks to Dr. Mark Laidre, Dr. Lucia Jacobs, her lab, Julian Tyne, and the entire SAPPHIRE group for their invaluable feedback, brainstorming and editing support.

References

Aureli F, Schaffner CM, Boesch C, Bearder SK, Call J et al., 2008. Fission fusion dynamics: New research frameworks. Curr. Anthropol. 49: 627–654.
Backus RH, Schevill WE, 1966. Physeter clicks. In: Norris KS eds. Whales, Dolphins and Porpoises. Berkeley: University of California Press, 510–527.
Bain D, 1986. Acoustic behavior of Orcinus: Sequences, periodicity, behavioral correlates and an automated technique for call classification. Zoo Biol. 1: 335–371.
Barrett-Lennard LG, 2000. Population Structure and Mating Patterns of Killer Whales Orcinus orca as Revealed by DNA Analysis. Ph.D. Thesis, University of British Columbia, Vancouver.
Barrett-Lennard LG, Deecke VB, Yurk H, Ford JKB, 2001. A sound approach to the study of culture. Behav. Brain Sci. 24: 325–326.
Bauer G, Johnson CM, 1994. Trained motor imitation by bottlenose dolphins Tursiops truncatus. Percept Motor Skill 79: 1307–1315.
Bender CE, Herzing DL, Bjorklund D F, 2008. Evidence of teaching in Atlantic spotted dolphins Stenella frontalis by mother dolphins foraging in the presence of their calves. Anim. Cogn. 12: 43–53.
Bigg MA, Olesiuk PF, Ellis GM, Ford JKB, Balcomb KC, 1990. Social organization and genealogy of resident killer whales Orcinus orca in the coastal waters of British Columbia and Washington State. Rep. Int. Whal. Commn. 12: 383–405.
Boesch C, 2001. Sacrileges are welcome in science! Opening a discussion about culture in animals. Behav. Brain Sci. 24: 327–328.
Bonner JT, 1980. The Evolution of Culture in Animals. Princeton, NJ: Princeton University Press.
Boran JR, Heimlich SL, 1999. Social learning in cetaceans: Hunting, hearing and hierarchies. Sym. Zoo. S.73: 282–307.
Box HO, 1984. Primate Behavior and Social Ecology. London: Chapman & Hall.
Boyd R, Richerson PJ, 1985. Culture and the Evolutionary Process. Chicago: Chicago University Press.
Boyd R, Richerson PJ, 1988. An evolutionary model of social learning: The effects of spatial and temporal variation. In: Zentall T, Galef BG eds. Social Learning: Psychological and Biological Perspectives. Hillsdale, NJ: Lawrence Erlbaum, 29–48.
Boyd R, Richerson PJ, 1996. Why culture is common but cultural evolution is rare. Proc. Brit. Ac. 88:77–93.
Breathnach AS, 1960. The cetacean central nervous system. Biol. Rev. 35: 187–230.
Brown MW, 2001. Genomic imprinting and culture in mammals. Behav. Brain Sci. 24: 328–329.
Bryne RW, 1995. The Thinking Ape. New York: Oxford Univer-
sity Press.
Byrne RW, Barnard PJ, Davidson I, Janik VM, McGrew WC, 2004. Understanding culture across species. Trends Cogn. Sci. 8:341–346.

Caro TM, Hauser MD, 1992. Is there teaching in nonhuman animals? Q. Rev. Biol. 67: 151–174.

Cavalli-Sforza LL, Feldman MW, 1981. Cultural Transmission and Evolution: A Quantitative Approach. Princeton: Princeton University Press.

Claidière N, Sperber D, 2010. Imitation explains the propagation, not the stability of animal culture. P. Roy. Soc. B-Biol. Sci. 277: 651–659.

Clapham PJ, 1993. Social organization of humpback whales on a North Atlantic feeding ground. Sym. Zoo. S 66:131–45.

Clapham P, 2000. The humpback whale: Seasonal feeding and breeding in a baleen whale. In: Mann J, Connor RC, Tyack PL, Whitehead H eds. Cetacean Societies: Field Studies of Dolphins and Whales. Chicago: University of Chicago Press, 173–196.

Clark CW, 1990. Acoustic behaviour of mysticete whales. In: Thomas J, Kastelein R eds. Sensory Abilities of Cetaceans. New York: Plenum Press, 571–583.

Connor RC, 2007. Dolphin social intelligence: Complex alliance relationships in bottlenose dolphins and a consideration of selective environments for extreme brain size evolution in mammals. Philos. T. R. Soc. B 362: 587–602.

Connor RC, Mann J, 2006. Social cognition in the wild: Machairovellian dolphins? In: Hurley S, Nudds M eds. Rational Animals. Oxford: Oxford University Press, 329–384.

Connor RC, Mann J, Tyack PL, Whitehead H, 1998. Social evolution in toothed whales. Trends Ecol. Evol. 13: 228–232.

Connor RC, Read AJ, Wrangham R, 2000a. Male reproductive strategies and social bonds. In: Mann J, Connor RC, Tyack PL, Whitehead H ed. Cetacean Societies: Field Studies of Dolphins and Whales. Chicago: University of Chicago Press. Chicago: University of Chicago Press. Chicago: University of Chicago Press.

Connor RC, Wells RS, Mann J, Read AJ, 2000b. The bottlenose dolphin. Social relationships in a fission-fusion society. In: Mann J, Connor RC, Tyack PL, Whitehead H eds. Cetacean Societies. Chicago: University of Chicago Press, 91–126.

Coussi-Korbel S, Fragaszy DM, 1995. On the relation between social dynamics and social learning. Anim. Behav. 50: 1441–1453.

Custance DM, Whiten A, Bard KA, 1995. Can young chimpanzees Pan troglodytes imitate arbitrary actions? Hayes and Hayes (1952) revisited. Behaviour 132: 837–859.

Day RL, Kendal JR, Laland KN, 2001. Validating cultural transmission in cetaceans. Behav. Brain Sci. 24: 330–331.

de Waal FBM, Tyack PL, 2003. Preface. In: de Waal FBM, Tyack PL eds. Animal Social Complexity: Intelligence Culture, and Individualized Societies. Cambridge, M.A.: Harvard University Press, ix–xiv.

Deputte, BL 2000. Primate socialization revisited: Theoretical and practical issues in social ontogeny. In: Slater PJB, Rosenblatt JS, Snowdon CT, Roper TJ eds. Advances in the Study of Behavior. London: Academic Press.

Dewar G, 2003. The cue reliability approach to social transmission: Designing tests for adaptive traditions. In: Fragaszy DM, Perry S, eds. The Biology of Traditions, Models and Evidence. New York: Cambridge University Press, 127–158.

Downhower JF, Blumer LS, 1988. Calculating just how small a whale can be. Nature 335: 675.

Eisenberg JF, 1981. The Mammalian Radiations. Chicago: University of Chicago Press.

Eisenberg JF, 1986. Dolphin behavior and cognition: Evolutionary and ecological aspects. In: Schusterman RJ, Thomas JA, Wood FG eds. Dolphin Cognition and Behavior: A Comparative Approach. Hillsdale: Lawrence Erlbaum Associates, 261–270.

Elias H, Schwartz D, 1969. Surface areas of the cerebral cortex of mammals determined by stereological methods. Science 166: 111–113.

Emery N, Seed AM, von Bayern AMP, Clayton NS, 2007. Cognitive adaptations of social bonding in birds. Phil. Trans. R. Soc. B 29: 489–505.

Fehr O, Wang H, Saar S, Mitra PP, Tchernichovski O, 2009. De novo establishment of wild-type song culture in the zebra finch. Nature 459: 564.

Feldman MW, Laland KN, 1996. Gene-culture coevolutionary theory. Trends Ecol. Evol. 11: 453–457.

Fellner W, Bauer GB, Harley HE, 2006. Cognitive implications of synchrony in dolphins: A review. Aquat. Mamm. 32: 511–516.

Finlay BL, Darlington RB, Nicastro N, 2001. Developmental structure in brain evolution. Behav. Brain Sci. 24: 263–278.

Fiorito G, Scotto P, 1992. Observational learning in Octopus vulgaris. Science 256: 545–547.

Fitch TW, Huber L, Bugnyar T, 2010. Social cognition and the evolution of language: Constructing cognitive phylogenies. Neuron 65: 795–815.

Ford JKB, 1989. Acoustic behavior of resident killer whales Orcinus orca off Vancouver Island, British Columbia. Can. J. Zool. 67: 727–745.

Ford JKB, 1991. Vocal traditions among resident killer whales Orcinus orca in coastal waters of British Columbia. Can. J. Zool. 69: 1454–1483.

Ford JKB, Ellis GM, Balcomb KC, 2000. Killer Whales: The Natural History and Genealogy of Orcinus orca in British Columbia and Washington, 2nd edn. Vancouver: UBC.

Fragaszy DM, Perry S, 2003. The Biology of Traditions, Models and Evidence. New York: Cambridge University Press.

Galef BG, 1992. The question of animal culture. Hum. Nature 459: 564.
Biological Perspectives. Hillsdale: Lawrence Erlbaum. 3–28.
Guinet C, Bouvier J, 1995. Development of intentional stranding
hunting techniques in killer whale Orcinus orca calves at Croz-
et Archipelago. Can. J. Zool. 73: 27–33.
Hain JHW, Carter GR, Kraus SD, Mayo CA, Evans HE, 1982. Feeding behaviour of the humpback whale Megaptera
novaeangliae in the western north Atlantic. Fish. Bull. U.S. 2: 259–268.
Hamilton, WD, 1966. The molding of senescence by natural selec-
tion. J. Theor. Biol. 12: 12–45.
Hawkes K, O’Connell JF, Blurton-Jones NG, Alvarez H, Charnov
EL. 1998. Grandmothers, menopause, and the evolution of
human life histories. P. Natl. Acad. Sci USA 95: 1336–1339.
Herman LM, 2002. Vocal, social, and self-imitation by bottlen-
osed dolphins. In: Nehaniv C, Dautenhahn K eds. Imitation in
Animals and Artifacts. Cambridge, MA: MIT Press.
Herman LM, Abichandani SL, Elhajj AN, Herman EYK, Sanchez
JL et al., 1999. Dolphins Tursiops truncatus comprehend the
referential character of the human pointing gesture. J. Comp.
Psychol. 113: 347–364.
Herman LM, Pack AA, 2001. Laboratory evidence for cultural
transmission mechanisms. Behav. Brain Sci. 24: 335–336.
Herman LM, Pack AA, Morrel-Samuels P, 1993. Representational and
cognitive skills of dolphins. In: Roitblat HL, Herman LM,
Nachtigall PE eds. Language and Communication: Compara-
tive Perspectives. Hillsdale: Lawrence Erlbaum, 273–298.
Herman LM, Pack AA, Wood AM, 1994. Bottlenose dolphins can
generalize rules and develop abstract concepts. Mar. Mammal.
Sci. 10:70–80.
Herman LM, Uyeyama RK, 1999. The dolphin’s grammatical
competency: Comments on Kako (1999). Anim. Learn. Behav.
27: 18–23.
Heyes CM, 1993. Imitation, culture and cognition. Anim. Behav.
46: 999–1010.
Heyes CM, 1994. Social learning in animals: Categories and
mechanisms. Biol. Rev., 69: 207–231.
Heyes CM, 1996. Introduction: Identifying and defining imitation.
In: Heyes CM, Galef BG eds. Social Learning in Animals: The
Roots of Culture. San Diego: Academic Press, 211–220.
Heyes CM, 2009. Evolution, development and intentional control
of imitation. Philos. T Roy. Soc. B 364, 2293–2298.
Hof PR, van der Gucht E, 2007. Structure of the cerebral cortex of
the humpback whale Megaptera novaeangliae (Cetacea, Myst-
iceti, Balaenopteridae). Anat. Rec. 290: 1–31.
Hoppe JWE, Brown GR, Kendal R, Rendell L, Thornton A, 2008.
Lessons from animal teaching. Trends Ecol. Evol. 23:
486–493.
Hoppe J, Laland KN, 2008. Social processes influencing learn-
ing in animals: A review of the evidence. Adv. Study Behav.
38, 105–165.
Huber LRF, Voelkl B, Szucsich A, Virányi Z, Miklósi A, 2009.
The evolution of imitation: What do the capacities of nonhu-
man animals tell us about the mechanisms of imitation? Philos.
T Roy. Soc. B 364: 2299–2309.
Huguenberger S, 2008. The size and complexity of dolphin brains:
A paradox? J. Mar. Biol. Assoc. UK 6: 1103–1108.
Humphrey NK, 1976. The social function of intellect. In: Bateson
PPG, Hinde R eds. Growing Points in Ethology. London:
Cambridge University Press, 303–317.
Janik VM, 1997. Whistle matching in wild bottlenose dolphins. J.
Acoust. Soc. Am. 101: 3136.
Janik VM, 2000. Whistle matching in wild bottlenose dolphins.
Science 289: 1355–57.
Jerison HJ, 1986. The perceptual world of dolphins. In: Schuster-
man RJ, Thomas JA, Wood FG eds. Dolphin Cognition and
Behavior: A Comparative Approach. Hillsdale: Lawrence Erl-
baum, 141–166.
Johnstone RA, Cant MA, 2010. The evolution of menopause in
cetaceans and humans: The role of demography. P. Roy. Soc.
B-Biol. Sci. 277: 3765–3771.
Jones CG, Lawton JH, Shack M, 1994. Organisms as Ecosystem
engineers. Oikos 69: 373–386.
Jurazs CM, Jurazs VP, 1979. Feeding modes of the humpback
whale Megaptera novaeangliae in southeast Alaska. Sci. Rep.
Whales Res. Inst. Tokyo 31: 69–83.
Kamil A, 1998. On the proper definition of cognitive ethology.
In: Balda R, Pepperberg I, Kamil A eds. Animal Cognition in
Nature. New York: Academic Press, 1–28.
Kendal RL, Galef B, Van Schaik C, 2010. Social learning research
outside the laboratory: How and why? Learn. Beh. 38:
187–194.
Kendal RL, Kendal JR, Hoppitt W, Laland KN, 2009. Identifying
social Learning in animal populations: A new ‘Option-Bias’
method. PLOS ONE 4: e6541.
Knight C, 2001. Does cultural evolution need matriliny? Behav.
Brain Sci. 24: 339–340.
Kreicker S, 2010. Culturally transmitted tool use in bottlenose
dolphins Tursiops sp.: Utilization of an unexploited niche?
MSc thesis, University of Zurich, Switzerland.
Kuczaj SA, 2001. Cetacean culture: Slippery when wet. Behav.
Brain Sci. 24: 340–341.
Kuczaj SA, Gory JD, Xitco MJ, 1998. Using programs to solve
problems: Imitation versus insight. Behav. Brain Sci. 21:
695–696.
Lachlan RN, Slater PB, 1999. The maintenance of vocal learning
by gene-culture interaction: The cultural trap hypothesis. P
Roy. Soc. Lond. B Bio. 266: 701–706.
Laland KN, 2004. Social learning strategies. Learn. Behav. 32:
4–14.
Laland KN, Hoppitt W, 2003. Do animals have culture? Evol.
Anthropol. 12:150–159.
Laland KN, Janik VM, 2006. The Animal cultures debate. Trend
Ecol. Evol. 21: 542–547.
Laland KN, Galef BG, 2009. Introduction. In: Laland KN, Galef
Lefebvre L, Palameta B, Hatch KK, 1996. Is group-living associated with social learning? In: Frugaszy DM, Perry S eds. The Biology of Traditions, Models and Evidence. New York: Cambridge University Press, 33–55.

Laland KN, Odling-Smee J, Feldman MW, 2000. Niche construction, biological evolution, and cultural change. Behav. Brain Sci. 23: 131.

Laland KN, Odling-Smee J, Feldman MW, 2001. Cultural niche construction and human evolution. J. Evolution. Bio. 14: 22–33.

Laland KN, Odling-Smee J, Myles S, 2010. How culture shaped the human genome: Bringing genetics and the human sciences together. Nat. Rev. Genet. 11: 137–148.

Laland KN, Plotkin HC, 1992. Further experimental analysis of the social learning and transmission of foraging information amongst Norway rats. Behav. Process. 27: 53–64.

Laland KN, Williams K, 1997. Shoualing generates social learning of foraging information in guppies. Anim. Behav. 53: 1161–1169.

Laland KN, Williams K, 1998. Social transmission of maladaptive information in the guppy. Behav. Ecol. 9: 493–499.

Laland KN, 2002. Convergence of complex cognitive abilities in cetaceans and primates. Brain Behav. Evol. 59: 21–32.

Laland KN, 2006. The relationship between gestation length, encephalization, and body weight in odontocetes. Mar. Mamm. Sci. 13: 133–138.

Laland KN, 2007. Cetacean brains: How aquatic are they? Anat. Rec. 290: 694–700.

Laland KN, Connor RC, Fordyce RE, Herman L, Hof PR et al., 2007. Cetaceans have complex brains for complex cognition. PLoS Biol. 5: e139.

Laland KN, Uhen MD, Frolich B, Aldag JM, Blance C et al., 2000. Endocranial volume of mid-late Eocene archaeocetes (Order: Cetacea) revealed by computed topography: Implications for cetacean brain evolution. J. Mamm. Evol. 7: 81–94.

Marler P, 1996. Social cognition: Are primates smarter than birds? In: Nolan V, Keterson ED eds. Current Ornithology, Vol 13. New York: Plenum Press, 1:32.

Marsh H, Kasuya T, 1984. Ovarian changes in the short-finned pilot whale Globicephala macrorhynchus. Rep. Int. Whal. Commn. 6: 311–335.

Marsh H, Kasuya T, 1986. Evidence for reproductive senescence in female cetaceans. Rep. Int. Whal. Commn. Special Issue 8: 57–74.

Marten K, Psarakos S, 1994. Evidence of self-awareness in the bottlenose dolphin Tursiops truncatus. In: Sue TP, Mitchell RW, Boccia ML ed. Self-awareness in Animals and Humans: Developmental Perspectives. Cambridge, U.K. Cambridge Univ. Press, 361–379.

Marten K, Psarakos S, 1995. Using self-view television to distinguish between self-examination and social behavior in the bottlenose dolphin Tursiops truncatus. Conscious. Cogn. 4: 205–24.

Melville K, Whitehead H, 2005. Eusociality, menopause and information in matrilineal whales. Trends Ecol. Evol. 20: 650.

Menzel EW, Davenport RK, Rogers CM, 1972. Protocultural aspects of chimpanzee’s responsiveness to novel objects. Folia Primatol. 17: 161–170.

Mesnick SL, 2001. Genetic relatedness in sperm whales: Evidence and cultural implications. Behav. Brain Sci. 24: 346–347

Milton K, 1988. Foraging behaviour and the evolution of primate intelligence. In: Byrne RW, Whiten A ed. Machiavellian Intelligence: Social Expertise and the Evolution of Intellect in Monkeys, Apes and Humans. Oxford: Clarendon, 535–543.

Mizroch SA, 1981 Analyses of some biological parameters in the Antarctic fin whale. Rep. Int. Whal. Commn. 31: 425–434.

Morgan CL, 1900. Animal Behavior. London: Edward Arnold.

Moss CJ, 2001. The demography of an African elephant Loxodonta africana population in Amboseli, Kenya. J. Zool. 255: 145–156.

Mundinger PC, 1980. Animal cultures and a general theory of differences among vocal clans of sperm whales. Behav. Ecol. Sociobiol. 61: 1093–1098.

Marino L, 2002. Convergence of complex cognitive abilities in cetaceans and primates. Brain Behav. Evol. 59: 21–32.

Marino L, 2006. The relationship between gestation length, encephalization, and body weight in odontocetes. Mar. Mamm. Sci. 13: 133–138.

Marino L, 2007. Cetacean brains: How aquatic are they? Anat. Rec. 290: 694–700.

Marino L, Connor RC, Fordyce RE, Herman L, Hof PR et al., 2007. Cetaceans have complex brains for complex cognition. PLoS Biol. 5: e139.

Marino L, Uhen MD, Frolich B, Aldag JM, Blance C et al., 2000. Endocranial volume of mid-late Eocene archaeocetes (Order: Cetacea) revealed by computed topography: Implications for cetacean brain evolution. J. Mamm. Evol. 7: 81–94.

Marler P, 1996. Social cognition: Are primates smarter than birds? In: Nolan V, Keterson ED eds. Current Ornithology, Vol 13. New York: Plenum Press, 1:32.

Marsh H, Kasuya T, 1984. Ovarian changes in the short-finned pilot whale Globicephala macrorhynchus. Rep. Int. Whal. Commn. 6: 311–335.

Marsh H, Kasuya T, 1986. Evidence for reproductive senescence in female cetaceans. Rep. Int. Whal. Commn. Special Issue 8: 57–74.

Marten K, Psarakos S, 1994. Evidence of self-awareness in the bottlenose dolphin Tursiops truncatus. In: Sue TP, Mitchell RW, Boccia ML ed. Self-awareness in Animals and Humans: Developmental Perspectives. Cambridge, U.K. Cambridge Univ. Press, 361–379.

Marten K, Psarakos S, 1995. Using self-view television to distinguish between self-examination and social behavior in the bottlenose dolphin Tursiops truncatus. Conscious. Cogn. 4: 205–24.

McAuliffe K, Whitehead H, 2005. Eusociality, menopause and information in matrilineal whales. Trends Ecol. Evol. 20: 650.

Menzel EW, Davenport RK, Rogers CM, 1972. Protocultural aspects of chimpanzee’s responsiveness to novel objects. Folia Primatol. 17: 161–170.

Mesnick SL, 2001. Genetic relatedness in sperm whales: Evidence and cultural implications. Behav. Brain Sci. 24: 346–347.

Milton K, 1988. Foraging behaviour and the evolution of primate intelligence. In: Byrne RW, Whiten A ed. Machiavellian Intelligence: Social Expertise and the Evolution of Intellect in Monkeys, Apes and Humans. Oxford: Clarendon, 535–543.

Mizroch SA, 1981 Analyses of some biological parameters in the Antarctic fin whale. Rep. Int. Whal. Commn. 31: 425–434.

Morgan CL, 1900. Animal Behavior. London: Edward Arnold.

Moss CJ, 2001. The demography of an African elephant Loxodonta africana population in Amboseli, Kenya. J. Zool. 255: 145–156.

Mundinger PC, 1980. Animal cultures and a general theory of
cultural evolution. Ethol. Sociobiol. 1: 183–223.
Noad MJ, Cato DH, Bryden MM, Jennen MN, Jenner KCS, 2000. Cultural revolution in whale songs. Nature 408: 537.
Norris KS, Pryor K, 1991. Some thoughts on grandmothers. In: Pryor K, Norris KS eds. Dolphin Societies: Discoveries and Puzzles. Berkeley: University of California Press.
Odling-Smee FJ, Laland KN, Feldman MW, 2003. Niche Construction: The Neglected Process in Evolution. Princeton: Princeton University Press.
Olesiuk PF, Bigg MA, Ellis GM, 1990. Life history and population dynamics of resident killer whales Orcinus Orca in the coastal waters of British Columbia and Washington State. Rep. Int. Whal. Commn. 12: 209–243.
Pabst DA, Rommel SA, McLellan WA, 1999. The functional morphology of marine mammals. In: Reynolds JE, Rommel SA eds. Biology of Marine Mammals. Washington: Smithsonian Institution Press, 15–72.
Pack AA, Herman LM, 2004. Bottlenosed dolphins Tursiops truncatus comprehend the referent of both static and dynamic human gazing and pointing in an object-choice task. J. Comp. Psychol. 118: 160–171.
Petricig RO, 1995. Bottlenose dolphin Tursiops truncatus in Bull Creek, South Carolina. Ph.D. Dissertation, University of Rhode Island, USA.
Premack D, Hauser MD, 2001. A whale of a tale: Calling it culture doesn’t help. Behav. Brain Sci. 24: 350–351.
Reader SM, 2003. Relative brain size and the distribution of innovation and social learning across the nonhuman primates. In: Fragaszy DM, Perry S eds. The Biology of Traditions, Models and Evidence. New York: Cambridge University Press, 56–93.
Reader SM, Lefebvre L, 2001. Social learning and sociality. Behav. Brain Sci. 24: 353–355.
Rendell L, Fogarty L, Laland KN, 2011. Runaway cultural niche construction. Phil. Trans. R. Soc. B. 366: 823–835.
Rendell L, Whitehead H, 2001. Culture in whales and dolphins. Behav. Brain Sci. 24: 309–24.
Richards DG, Wolz JP, Herman LM, 1984. Vocal mimicry of computer-generated sounds and vocal labeling of objects by a bottlenosed dolphin Tursiops truncatus. J. Comp. Psychol. 98: 10–28.
Richards DG, 1986. Dolphin vocal mimicry and vocal object labeling. In: Schusterman RJ, Thomas RA, Wood FG eds. Dolphin Cognition and Behavior: A Comparative Approach. Hillsdale: Lawrence Erlbaum.
Ridgway SH, 1986. Physiological observations on dolphin brains. In: Schusterman RJ, Thomas RA, Wood FG eds. Dolphin Cognition and Behavior: A Comparative Approach. Hillsdale: Lawrence Erlbaum, 31–59.
Ridgway SH, 2000. The auditory central nervous system of dolphins. In: Au WWL, Popper AN, Fay RR eds. Hearing by Whales and Dolphins. New York: Springer, 273–294.
Ridgway SH, Patton GS, 1971. Dolphin thyroid: Some anatomical and physiological findings. Z. Vergl. Physiol., 71: 129–141.
Roper TJ, 1986. Cultural evolution of feeding behaviour in animals. Sci. Prog. 70: 571–583.
Sayigh LS, Tyack PL, Wells RS, Scott MD, 1990. Signature whistles of free-ranging bottlenose dolphins Tursiops truncatus: Stability and mother-offspring comparison. Behav. Ecol. Sociobiol. 26: 247–260.
Schiel N, Huber L, 2006. Social influences on the development of foraging behavior in free-living common marmosets Callithrix jacchus. Am. J. Primatol. 68: 1150–1160.
Schuster S, Wohlt S, Griebisch M, Klotzkermeier I, 2006. Animal cognition: How archer fish learn to down rapidly moving targets. Curr. Biol. 16: 378–383.
Weiss BM, Ladich F, Spong P, Symonds H, 2006. Vocal behavior of resident killer whale matrilines with new newborn calves: The role of family signatures. J. Acoust. Soc. Am. 119: 627–635.
Whitehead H, 1998. Cultural selection and genetic diversity in matrilineal whales. Science 282: 1708–1711.
Whitehead H, 2003. Society and culture in the deep and open ocean: The sperm whale and other cetaceans. In: de Waal FBM, Tyack PL eds. Animal Social Complexity: Intelligence, culture, and individualized societies. Cambridge: Harvard University Press, 444–464.
Whitehead H, 2005. Genetic diversity in the matrilineal whales: Models of cultural hitchhiking and group-specific non-heritable demographic variation. Mar. Mammal. Sci. 21: 58–79.
Whitehead H, 2008. Analyzing Animal Societies. Chicago: University of Chicago Press.
Whitehead H, 2009. How might we study culture? A perspective from the ocean. In: Laland RN, Galef BG eds. The Question of Animal Culture. Cambridge: Harvard University Press.
Whitehead H, Mann J, 2000. Female reproductive strategies of cetaceans: Life histories and calf care. In: Mann J, Connor RC, Tyack PL, Whitehead H eds. Cetacean Societies: Field Studies of Dolphins and Whales. Chicago: University of Chicago Press, 173–196.
Whitehead H, Rendell L, 2004. Movements, habitat use and feeding success of cultural clans of south Pacific sperm whales. J. Anim. Ecol. 73: 190–196.
Whiten A, 1989. Transmission mechanisms in primate cultural-evolution. Trends Ecol. Evol. 4: 61–62.
Whiten A, 2000. Primate culture and social learning. Cog. Sci. 24: 477–508.
Whiten A, Goodall J, McGrew WC, Nishiads T, Reynolds V et al., 1999. Cultures in chimpanzees. Nature 399: 48–55.
Whiten A, Ham R, 1992. On the nature and evolution of imitation in the animal kingdom: Reappraisal of a century of research. In: Slater PJB, Rosenblatt JS, Beer C, Milinski M eds. Advances in the Study of Behavior, Vol. 21. New York: Academic Press, 238–283.
Whiten A, van Schaik, 2007. The evolution of animal ‘cultures’ and social intelligence. Philos. T. R. Soc. B. 362:603–620.
Wilkinson A, Kuenstner K, Mueller J, Huber L, 2010. Social learning in a non-social reptile Geochelone carbonaria. Biol. Lett. 6: 614–616.
Williams GC, 1957. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11: 398–411.
Wilson AC, 1991. From molecular evolution to body and brain evolution. In: Campisi J, Cunningham D, Inouye M, Riley M eds. Perspectives on Cellular Regulation: From Bacteria to Cancer. New York: Wiley-Liss, 331–340.
Wilson EO, 1975. Sociobiology, the New Synthesis. Cambridge: Harvard University Press.
Wursig B, Wursig M, 1980. Behavior and ecology of the dusky dolphin Lagenorhynchus obscurus in the South Atlantic. Fish. B-NOAA 77: 871–890.
Xitco MJ, 1988. Mimicry of Modeled Behaviors by Bottlenose Dolphins. MSc Thesis, University of Hawaii.
Yurk H, Barrett-Lennard L, Ford JKB, Matkin CO, 2002. Cultural transmission within maternal lineages: Vocal clans in resident killer whales in southern Alaska. Anim. Behav. 63: 1103–1119.