Aspects of intelligent electronic device based switchgear control training model application

Dimitar Bogdanov¹ and Ivaylo Popov²

¹ Technical University-Sofia, Faculty of electrical engineering, Electrical power engineering chair, “Relay protection” laboratory, Bulgaria, dbogdanov@tu-sofia.bg

² Intertest Ltd., Sofia, Bulgaria, i.popov@intertest.bg

Abstract. The design of the protection and control equipment for electrical power sector application was object of extensive advance in the last several decades. The modern technologies offer a wide range of multifunctional flexible applications, making the protection and control of facilities more sophisticated. In the same time, the advance of technology imposes the necessity of simulators, training models and tutorial laboratory equipment to be used for adequate training of students and field specialists.

1. Introduction
In the last decade the control systems of switchgears, substations and power plant facilities were designed on SCADA based architecture and IED (Intelligent Electronic Devices) application.

The “IED” definition is likely over-characterizing the microprocessor multifunctional devices properties, since “artificial intellect” has not yet been implemented. It can be noted, that modern protection and control equipment requires sophisticated preparedness and periodic training from the side of the personnel [1]. The application specifics of IEDs impose requirements for their high reliability [2,3,4,5].

2. Problem
Problems, intended to be solved in some extent with the presented in the paper IED based switchgear control training model: The accumulated experience of tutorial activity in the control and protection area of electrical power facilities indicated some gaps between theoretically presented data (lectures, projects, seminars, etc.) and the practical preparedness of the students to operate industrial equipment.

Some main shortages of practical knowledge were found:

- Insufficient preparedness to operate modern digital (microprocessor) based devices and to work with the respective firmware.
- Insufficient knowledge for practical application of control functions in design aspect – interlocks, etc.
- Psychological “barrier” to operate control gear – lack of self-confidence to perform switching sequences.

The tutorial plans of many disciplines needed harmonization with the requirements of the respective companies, hiring the young engineers, upgrade of the experimental base was necessary.

The presented model is aimed to solve part of some educational gaps, and is subject to further “upgrade”.
3. IED based switchgear control model design features

For the purposes students training in the Electrical Engineering Faculty of Technical University - Sofia, model based on multifunctional protection and control device (IED) with HMI full size LCD display, able to display the switchgear bay single line diagram (SLD) was designed and constructed. The realization was accomplished in collaboration with company working in the area of design, diagnostics and commissioning of electrical power facilities. The model is intended for demonstrations, training of students and collecting statistical data [1,6,7]. The modeled scheme is applicable for single busbar feeder connection of open – air HV switchyard bay or for compact metal clad MV switchgear as well.

![Figure 1. Primary scheme used for model base.](image)

![Figure 2. Model front panel design.](image)
The modeled primary scheme represents a feeder bay, equipped with breaker and all typical commutation apparatus. The design of the model may vary from the “typical industrial design” of some MV schemes, as typically combined commutation devices are used there. Elements of the primary scheme in the scope of the model:

- Feeder circuit breaker;
- Disconnectors;
- Earthling switches.

The modeled scheme is presented in Figure 1. The scheme can be subject of modification – in the IED part functions via the configuration software of the IED. The “hardwire modeled” part – the Bay Local Control Cabinet (BLCC) is realized with physical elements and for functional modification changes shall be made in the scheme wiring.

4. Model design rules

In the practical “field” situation a commutation device, part of primary scheme – breaker, disconnector can be controlled from 4 locations:

- Substation control room via operator’s SCADA control station, typical “control tool”;
- Protection and control panels via HMI of bay control unit (BCU), used typically during commissioning maintenance, etc.;
- Bay local control cabinet (BLCC) – the existence of BLCC depends on the particular company requirements. If foreseen – used typically for local control during commissioning, in emergency cases, maintenance, etc.;
- Local control buttons on the commutation apparatus control mechanism casing, typically used for testing during commissioning, maintenance.

Another possible level of control is the remote dispatch control, applicable for larger and non-manned facilities – typical from dispatch center over communication protocols like IEC 60870-5-101 and IEC 60870-5-104. For the purposes of the training model at the present state the BLCC and HMI of IED devices levels have been realized.

For the particular case, the model hardware structure has 3 main sections:

- IED based control part (multifunctional device resources: protection, control, signalization, data acquisition, communication to PC/controller);
- Control panel, simulating the BLCC (command buttons, mode switch, LED position indicators);
- Breaker model and accessories (bi-stable relays, auxiliary relays, time relays and elements to simulate the breaker and other commutation devices drive mechanisms and their auxiliary block-contacts).

The model front panel design is presented in Figure 2. The arrangement of all components was designed in one 19” rack cabinet with access to all the components from the front and rear side. The logic has been hard-wired between the IED, control panel and auxiliary elements.

At next stage it is foreseen the BLCC simulating control panel to be reconfigured as detachable unit, remotely located with integrated controller and fiber – optic connection to IED.

The currently constructed functional specifics and the future extensions of the technical solution in limited extent may deviate from the “industrial applications”, but the designed structure was targeted mostly to provide access points for students and options to simulate secondary circuit failures, to test Breaker Failure Protection (BFP), autorecloser function, etc.

The BLCC was fitted with additional push button for “permission”. The permission button must be kept pressed simultaneously with the respective command button (Close / Open) in order to make the intended commutation operation possible. The functionality was foreseen to avoid erroneous commands by inadvertent button pressing.

The functional scheme (the data/command exchange scheme) of the model is presented in Figure 3.

5. Method of application of the model
The typical tasks which the students must accomplish, performing laboratory practices:
- Check the operation functionality of the model, test interlocks between the commutation devices;
- Test of the commutation devices permitted switching sequence: circuit breaker, disconnectors and earthing switches. The typical performed sequence is taking the breaker bay into “safe” position with all pertaining disconnectors opened and respective grounding switches closed (or reconnection of the feeder to the bus);
- Test of the commutation sequence of grounding switches – check of the possibility for incorrect grounding of live parts;
- Transfer of control mode via the Local / Remote switch on the BLCC panel;
- Verification the configuration of the BCU IED – matrix of signals, etc.;
- Test of protection functions;
- Test of BFP function – option to change the “breaker response time” with modification of the time relay setting, used for breaker operation modeling;
- Overall IEC61850 messages (GOOSE messages) readings with the respective signals verifications;
- Configuration and testing the communication to dispatch center (virtual);
- Learning the structure and the specifics of different communication protocols.

The model allows “errors”/“faults” to be simulated with the IED firmware settings changes and/or wiring changes in the hardware part. The collected information for “personnel response” can be statistically analyzed in different aspects. The response of the “operator” can be estimated in respect to:
- Time to perform successfully a commutation sequence;
- Time to respond to fault conditions (simulated with IED testing device to trigger protection function);
- Time to perform successfully a modification in software / detect and clear a mistake in configuration;
- Time to download records from IED.
In order to estimate ambient conditions impact on the personnel response, the following variants are possible:

- Ambient light variation / low level of lighting;
- Presence of noise source in the surrounding area (alarm siren);
- Presence of other personnel in the vicinity of IED HMI, BLCC.

Definitely, other possible situation can occur “on the field”, in the paper is presented limited scope of disturbing factors, related to the switchgear ambience. The performed experiments were organized as a set of switching sequences, accomplished by group of students.

Table 1 presents the results for experimental operation of the model, for several cases of ambient conditions. One series of operations was performed in normal conditions (without “disturbances” for the operator) and the other three series were made with presence of disturbance factors.

Table 1. Results of model experimental operation

Disturbance factor	Light	Sound	Attendance	
in the expected Norm	42.86	28.57	39.29	32.14
In Norm t +05%	17.86	25.00	17.86	21.43
In Norm t +10%	11.00	14.29	14.29	14.29
In Norm t +15%	7.14	10.71	14.29	7.14
In Norm t +20%	10.71	17.86	14.29	10.71
In Norm t +25%	7.14	0.00	3.57	7.14
In Norm t +30%	3.57	3.57	3.57	7.14

The expected time for correct accomplishment of the task was assumed as sum of the operator’s switching actions plus the “own time” of the respective devices (commutation apparatus).

\[t_{SO} = t_{OA} + t_{DM} \]

where: \(t_{SO} \) – time for switching operations, \(t_{OA} \) - time for operator’s actions, \(t_{DM} \) - time for operation of the commutation devices drive mechanism (operator independent, design characteristic).

The time for operator’s actions can be regarded as sum of the time for accomplishment of the task in normal conditions plus additional time delay caused by the respective disturbance:

\[t_{OA} = t_{OA\ norm} + t_{OA\ ad} \]

where: \(t_{OA\ norm} \) – time for switching operations in normal conditions (without disturbance), \(t_{OA\ ad} \) – additional time imposed by disturbing factor.

The sensitivity of the “successful mission time” in respect of the interfering factors can be calculated as:

\[S_{TOA} = \frac{t_{OA-t_{OA\ norm}}}{t_{OA\ norm}} \]

In case of combination of the disturbances, the importance of the different impacts on operator’s response, can be weighted and combined in common expressions for estimation of the response time.

\[t_{OA} = \sum C_{DFi} \cdot t_{OA\ norm} \]

where: \(C_{DFi} \) – coefficient of importance for the impact of disturbing factor “i” (for the particular case \(n = 3 \)).

Preliminary experiments of combined ambient area disturbances indicated, that such “combined impact” situation may lead not only to delay in correct response, but to incapability of finalizing successfully a task. The results presented in Table 1 are for experiments accomplished with a single disturbing factor.
The conditional probabilities of task successful accomplishment can be defined, if the probabilities for occurrence of interfering factors are known. Such conditional probabilities can be used for prognosis of “failure” or “success” scenarios for particular conditions.

For correct estimation of the results related to operation of real control panel – for instance BCU in HV switchgear, the probabilities of interfering conditions shall be precisely identified, whether they can occur simultaneously and if there are in mutual dependences. Incorrect assumption of independent or mutual excluding factors may distort the assessment probabilistic results.

6. Conclusions
The performed experiments with the model, operated by students proved that it can be used for training purposes and in the same time to collect statistical data for the response of operators, impact of ambient conditions on operator’s actions and demonstration of IEC61850 based communication. The procedures for statistical data processing are under development and will target obtaining qualitative and quantitative indices for dependence of the “human factor” in equipment control in respect of the site conditions [8,9,10,11].

The performed tests indicated, that for the particular case the ambient light caused more significant effect on the “operator’s response”, compared with other disturbance factors. For the particular model – it can be explained with the design specifics: the position indicators are illuminated, but the labeling is “passive” – no back light.

The model in combination with experiments related to ambient work conditions can be used for improvement of control panel’s ergonomic design and in the same time to evaluate the impact of the operator working conditions on the probability for successful task accomplishment [11,12,13].

The facility operability dependences in respect of ambient conditions (levels/values of parameters characterizing the equipment ambience) can help finding optimal design towards working environment. The applicable regulations for ergonomic design and safety shall also be taken into account for particular design final decisions.
Further extension of the model is foreseen for creating a second BCU model for different bus configuration and link to larger existing switchgear model [12]. Combination with primary injection of current in physical busbar system model is also estimated [14]. The option for the students to analyze records of simulated “primary” faults can improve further the training process for response to emergency situations and general level of education in the area of electrical power engineering [14,15].

References
[1] Ching-Lai Hor1, Peter A. Crossley, Knowledge Extraction from Intelligent Electronic Devices; Transactions on Rough Sets III 82-111 p., January 2005.
[2] K. Stouffer, J. Falco, K. Scarfone, Guide to Industrial Control Systems (ICS) Security; Recommendations of the National Institute of Standards and Technology, June 2011.
[3] S. Brahma, J. De La Ree, Vice-Chairman, J. Gers, A. A. Girgis, S. Horowitz, R. Hunt, M. Kezunovic, V. Madani, P. McLaren, A. G. Phadke, M. S. Sachdev, T. S. Sidhu, J. S. Thorp, S. S. Venkata, Chairman, T. Wiedman, “The Education and Training of Future Protection Engineers: Challenges, Opportunities, and Solutions,” IEEE Transactions on Power Delivery, pp. 538-544, Vol. 24(2), 2009.
[4] European Network and Information Security Agency, Protecting Industrial Control Systems, Annex I: Desktop Research Results [Del. 2011-12-09], ENISA, 2011.
[5] European Network and Information Security Agency, Protecting Industrial Control Systems Recommendations for Europe and Member States [Del. – 2011-12-09] ENISA, 2011.
[6] Rangelov Y., N. Nikolaev, New approach for laboratory exercises for students in major electric power engineering; Proceedings of SIELA2016 conference: Bourgas, Bulgaria, 29 May-01 June 2016: 268 - 274 p.
[7] Rangelov Y., N. Nikolaev, M. Ivanova, The IEC 61850 standard — Communication networks and automation systems from an electrical engineering point of view; Proceedings of SIELA2016 conference: Bourgas, Bulgaria, 29 May-01 June 2016: 274 - 278 p.
[8] Paralleling Switchgear: Documenting the Sequence of Operation with Charts, KOHLER POWER SYSTEMS, www.KohlerPower.com 2016.
[9] Blackout Tracker United States: Annual Report 2016, EATON, https://switchon.eaton.com/blackout-tracker, 2017.
[10] Sahoo P., Probability and mathematical statistics; University of Louisville, 2013.
[11] Shappell S. A., D. A. Wiegmann, The Human Factors Analysis and Classification System—HFACS; Office of Aviation Medicine Federal Aviation Administration, 2000.
[12] Todorov D., A. Krumov, A. Ovcharov, K. Boev, Simulator for operative command panels; Energetika magazine, vol. 4, 2016, Sofia, 44-50 p. (In Bulgarian).
[13] L.D. Feisel, A.J. Rosa. The Role of the Laboratory in Undergraduate Engineering Education. Journal of Engineering Education, pp. 121-130, Jan. 2005.
[14] Tatyana R. Radeva, Iv. S. Yatchev, D. N. Karastoyanov, N. I. Stoimenov, S. D. Gyoshev. Coupled Electromagnetic and Thermal Field Modeling of a Laboratory Busbar System. World Academy of Science, Engineering and Technology International Journal of Electrical and Computer Engineering Vol:8, No:9, 2014 1393-1397 p.
[15] J. Ren, M. Kezunovic. Modeling and Simulation Tools for Teaching Protective Relaying Design and Application for the Smart Grid. Proceedings of the International Symposium “Modern Electric Power Systems (MEPS)”, 2010.