A Review Article on Triazoles and its Pharmacological Activities

Alphonsus D'souza¹, K. D. Venuprasad¹, Prashant Nayak²* and Lisha K. Poonacha³

¹Department of Chemistry, St. Philomena’s College (Autonomous) Mysuru - 560001, Karnataka, India.
²Department of Pharmaceutics, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Mangaluru, India.
³Department of Chemistry, University of Mysore, Karnataka, India.

Authors’ contributions
This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information
DOI: 10.9734/JPRI/2021/v33i43A32491

Received 25 June 2021
Accepted 31 August 2021
Published 06 September 2021

ABSTRACT

Despite the fact that triazole was first synthesised over a century ago, it continues to unique the interest of chemists, biologists, technologists, and other experts. Triazoles have been shown to have antiviral, anti-inflammatory, anti-fertility, anti-tubercular, antimicrobial, anti-cancer, and anti-corrosion properties in recent years. The goal of this review is to describe the structures, synthesis, reactions, and spectral properties of triazoles in order to highlight their potential applications in a variety of bioactive phenomena and analytical applications.

Keywords: triazole, synthesis and pharmacological activities

1. INTRODUCTION

Heterocyclic chemistry is a distinct branch of organic chemistry with a long history and promising future. Heterocyclic compounds, such as purine and pyrimidine bases, are essential for life (building unit of DNA and RNA). Heterocyclic chemistry now contributes reagents and
synthetic methods to the synthesis of drugs [1], pesticides [2], and detergents [3], as well as to related fields like biochemistry [4], polymers [5,6], dyes [7,8], and material sciences [9].

- 1,2,4-Triazole

The triazole is a fascinating class of compounds defined by the presence of three nitrogen heteroatoms in five-membered ring systems. There are two types of triazoles: 1,2,3-triazoles (1) and 1,2,4-triazoles (2).

Five-membered nitrogen heterocycle compounds [10-15] are important structural fragments that are used as biologically active compounds, corrosion inhibitors [16], pesticides [17], dyes [18], acidbase indicators [19], and other industrial chemicals [20]. Bladin was the first scientist to name the carbon nitrogen ring system (C₃N₃H₃) and describe triazole derivatization in 1885.

2. TRIAZOLE STRUCTURAL PROPERTIES

- Aromaticity and Stability

The main reason for the triazole nucleus's stability is its aromaticity. The donation of one electron from each atom connected by double bonds, plus the remaining two electrons from a nitrogen atom, forms an aromatic sextet [21]. Furthermore, resonance stabilises the triazole nucleus, allowing it to be represented by tautomeric forms [22].

- Tautomerism in Triazoles

Tautomerism is possible in both the structural isomers of triazoles.

2.1 Tautomerism in 1,2,3-triazoles

1H-1,2,3-triazole (1) and 2H-1,2,3-triazole (2) are the two tautomeric forms of 1,2,3-triazoles [23].

2.2 Tautomerism in 1,2,4-triazoles

1, 2, 4-Triazoles have two tautomeric forms: 1H-1, 2, 4 triazole (3) and 4H-1,2,4-triazole (4) [24]. Many studies have shown that tautomer (3) is more stable than tautomer (4).

Barot and colleagues reported antibacterial and antifungal activities of a series of novel 1,2,4-triazole-5-thione derivatives of benzimidazole (5) with MICs of 2.0 and 2.5 g/ml; some of the synthesised compounds demonstrated good antibacterial and antifungal activity. Antibacterial activity was demonstrated against Bacillus cereus, Enterococcus faecalis, Staph aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Candida albicans, Aspergillus niger, and Fusarium oxyspora. and Antifungal activity against Candida albicans, Aspergillus niger, and Fusarium oxyspora was measured using Ofloxacin and Metronidazole, while antifungal activity was measured using Fluconazole [32].
Sahin and his coworkers synthesised Novel 1,2,4-triazole derivatives with morpholine moiety (6) and tested for antimicrobial activity. Tested microorganisms were E. coli, E. aerogenes, Y. pseudotuberculosis, P. aeruginosa, S. aureus, E. faecalis, B. cereus, M. smegmatis, C. albicans, C. tropicalis, Aspergillus.niger, and S. cerevisiae. Ampicillin, streptomycin, and fluconazole were the standard antibiotics. [33]

Table 1. Pharmacological activities of Sulphur containing heterocycles

Sulphur Containing Heterocycles	Activity	Reference
[Structure Image] R=H,CF3, Br, NO2, CF3, CN R₁ = H,CH₂=CH₂, COCH₂Cl, CSNHCH₂Ph X= CO ,CH₂	Vasorelaxant/ KATP-Channel Openers	25
[Structure Image]	Vasorelaxant	26
[Structure Image]	Antidiabetic	27
[Structure Image]	KATP Channel Openers Vasorelaxant	28
Compound	Description	
----------	-------------	
Apoptosis		
Intercellular adhesion molecule-I (ICAM-I)		

Fig. 2. Derivatives of Ibuprofen

Abdulla and his Coworkers synthesised derivatives of Ibuprofen (8) by cyclization under various reaction conditions. They obtained promising results and screened for microbial inhibitory effect by using new agents assessed in vitro against Staphylococcus aureus (gram positive) and Escherichia coli (gram negative) using the cup-plate method. In that, three compounds showed the highest antibacterial activities compared to other compounds and standard drugs [34].

Fig. 3. 3-(3,4-substituted-phenyl)-4-(4-fluorophenyl)-5-methyl-4H-1,2,4-triazoles derivatives

Desabatinna and his colleagues synthesised derivatives of 3-(3,4-substituted-phenyl)-4-(4-fluorophenyl)-5-methyl-4H-1,2,4-triazoles (9) and tested them for antimicrobial activity. It was tested using Gram positive bacteria (Staphylococcus aureus, Bacillus cereus), Escherichia coli NCCS 265 and Pseudomonas aeruginosa, while antifungal activity was tested using Aspergillus niger and Candida albicans. To
improve the pharmacological properties of 1,2,4-triazoles, alkyl, alkoxy, and halogen substituents were used. The minimum inhibitory concentration was determined using the broth dilution method. Halogen substituted compounds were found to have superior antimicrobial properties [35].

Gupta and colleagues developed a series of 4-(4-substituted benzylideneamino)-2(morpholinomethyl)-5 (substitutedphenyl)-2H-1,2,4-triazole-4(4H)thione was synthesised by combining a Schiff base with formaldehyde and morpholine to produce an iminium ion. Antifungal screening revealed that five compounds are more effective against Aspergillus niger (MIC 64 g/mL) than fluconazole (the standard antifungal drug). Some synthesised compounds have the same antifungal activity as fluconazole, with a MIC of 32 g/mL. The presence of electronegative groups, 4-chloro, and 2,4-dichloro groups at the aryl moiety attached to the 5th position of the triazole nucleus is credited with the high activity [36].

B. Andrews and his Coworkers reported a series of pyrimidine-bearing 1,2,4-triazoles were synthesised and tested for antifungal activity. When compared to the standard drug Amphotericin-B, the majority of the compounds showed promising antifungal activity. Candida albicans, Penicillium sp., and Aspergillus niger were used to test these compounds for antifungal activity. At a concentration of 10 g/mL, the majority of the synthesised compounds showed moderate to good inhibition. However, when compared to standard drugs, the activity was lower [37].

Sachdeva synthesised Spiro indole-triazoles, and they were tested for antibacterial activity against Gram-positive Bacillus licheniformis, Staphylococcus aureus and Micrococcus luteus, as well as Gram-negative bacteria E. coli and Pseudomonas aeruginosa. Pseudomonas aeruginosa and Escherichia coli are two bacteria that cause infections. Antifungal activity was tested against Aspergillus niger, Penicillium sp., Fusarium oxysporum, Alternaria brassicicola, Chaetomium orium, and Lycopodium sp. at concentrations of 500 ppm and 250 ppm. Streptomycin and erythromycin were used as reference standards. At 500 ppm concentrations, one compound showed excellent activity against the bacteria Pseudomonas aeruginosa, Staphylococcus aureus, and Micrococcus luteus [38].

Jin-Xia Mu synthesised and screened for Herbicidal Activity of 1,2,4-Triazole as a Moiety of Pyrazole. The majority of the synthesised compounds had a moderate herbicidal effect on lettuce and bent grass. Compounds 11 had the strongest herbicidal activity against lettuce and bent grass (80% inhibitory) [38,39].

An improved blend of 1,3,5-trisubstituted 1,2,4-triazoles has been accounted for through 1,3-dipolar cycloaddition of nitrile imine, created in situ from 14 within the sight of Ag₂CO₃ and Et₃N. In an elective two-venture approach, Buzynkin et al originally pre-arranged halfway from the response of with an essential amine and Et₃N, which was then treated with an answer of 30% H₂O₂/fluid KOH to yield. [40,41].
Fig. 5. Series of pyrimidine-bearing 1,2,4-triazoles

![Chemical structure](image)

$\text{Ar} = \text{4-Cl-C}_6\text{H}_4; \text{4-CH}_3\text{-C}_6\text{H}_4; \text{3,4,5-\{(OCH)3-C}_6\text{H}_2}; \text{4-NO}_2\text{-C}_6\text{H}_4; \text{-C}_6\text{H}_2;\{(3,4,5-\text{OCH})3}$

Fig. 6. Compound with high herbicidal activity

![Chemical structure](image)

$R = 4\text{-BrPh}, \text{CN}$

Compounds showing highest herbicidal activity

Fig. 7. Chemical transformation

![Chemical reactions](image)
3. CONCLUSION

As a result, this review covers the various synthetic routes used to produce a biologically rich triazole moiety, as well as the reactions that the molecule undergoes to produce other important molecules. It also emphasises the triazole rings therapeutic properties, as well as the wide range of drugs that contain the ring on the market. It also emphasises the therapeutic properties of the triazole ring, as well as the wide range of drugs on the market that contain the ring. As a result, this paper will benefit future research on the bioactive triazole ring.

CONSENT

It is not applicable.

ETHICAL APPROVAL

As per international standard or university standard written ethical approval has been collected and preserved by the author(s).

ACKNOWLEDGEMENT

The Department of Chemistry at St. Philomenas College (Autonomous) Mysuru and the NGSM Institute of Pharmaceutical Sciences Paneer Deralakatte Mangaluru provided all of the necessary resources. Dr. Bernard Prakash, Dr. Alphonsus DSouza, and Dr. Prasanna Sham Kandige provided excellent technical assistance to this paper.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Kamal A, Syed MA, Mohammed SM. Therapeutic Potential of Benzothaizole, A Patent Review (2010-2104). Informa Healthcare. 2015;25(3):335-349.
2. Bretschneider A, Franken E, Gorgens U, Fusslein M, Hense A, Kluth J, Schwarz HG, Kohler A, Malsam O, Voerste A, Becker A. Heterocyclic Compounds as Pesticides. United states: Patent Application Publisher; 2014.
3. Gourdon P, Andersen JH, Hein KL, Bublitz M, Bendersen BP, Liu X, Yatime L, Nyblom M, Nielsen TT, Olsen C, Moller JV, Nissen P, Morth JP. HiLi De-Systematic Approach to Membrane Protein Crystallization in Lipid and Detergent. Cryst. Growth Des. 2011;11(6):2098-2106.
4. Yang P, Martos PA, Barrett B. Symposium Introduction: 2014 North American Chemical Residue Workshop. J. Agric. Food Chem. Just accepted manuscript; 2015
5. Fuji K, Tampa S, Shono K, Sugie A, Mori A. Murahashi Coupling Polimerization: Nickel (II)-Heterocyclic Carbene Complex-Catalyzed Polycondensation of Organolithium Species of (Hetero)arenes, J. Am. Chem. Soc. 2013;135(33):12208-12211.
6. Andrei Y. Introduction: Small Heterocycles in Synthesis, Chem. Rev. 2014;114(16):7783.
7. Hau Y, Chang S, Huang D, Zhou X, Zhu X, Zhao J, Chen T, Wong WY, Wong WK. Significant Improvement of Dye-Sensitized Solar Cell Performing Using Simple Phenothiazine-Based Dyes, Chem Mater. 2013;25(10):2146-2135.
8. Burschca J, Dueleh A, Kessler F, Baranaoff E, Crevey-Ha N, Yi C, Nazeeruddin MK, Gratzel M. Tris(2-(1H-pyrazol-1-y1)pyridine) cobalt (III) as pType Dopant for Organic Semiconductor and Its Application in Highly Efficient Solid-State DyeSensitized Solar Cells, Am. Chem. Soc. 2011;133(45):18042-18045.
9. V. Thottempudi, F. Foroohar, DA. Parrish, & JM. Shreeve, Tris(triazolo)benzene and Its Derivatives: High-Density Energetic Materials, Angew. Chem. Int.Ed. Engl. 2012;51(39):9881-9885.
10. FA. Hassan, & KW. Younus, Biological Evaluation of Some Azole Derivatives in Cooling Fluids (Lubricant Oils), Res. J. Bio. Sci. 2012;7(1):48-51.
11. Pardeshi SP, Patil SV, Patil R, Bobade VD. Synthesis and Antimicrobial Activities of Some 1,2,4- Triazolo [3,4-b] [1,3,4] thiadiazoles and 1,2,4-Triazolo [3,4-b] [1,3,4] thiadiazines Bearing Bistrifluoromethylphenyl Moiety, J. Chem. Pharma. Res. 2014;6(4):675-681.
12. Atia AJ, Al-Mufgeiry SS. Synthesis and Antibacterial Activities of New 3-Amino-2-MethylQuinazolin-4(3H)-One Derivatives, Am. J. Chem. 2012;2(3):150-156.
13. Tai T, Kamble RR, Gireesh T, Badami BV. An Expeditious Green Synthesis of Schiff Bases and Azetidinones Derivatised with
1,2,4-Triazoles, J. Chem. Sci. 2011;123(5): 657–666.

14. Bekircan O, Menteşe E, Ülker S, Kucuk C. Synthesis of Some New 1,2,4-Triazole Derivatives Starting from 3-(4-Chlorophenyl)-5-(4-methoxybenzyl)-4H-1,2,4-triazol with Anti-Lipase and Anti-Urease Activities, Arch. Pharm. Chem. Life Sci. 2014;347:387–397.

15. Abdullah HM, Jassim IK, Safi MN. Synthesis and Characterization of New Heterocyclic Compounds with Studying Its Biological Activity, Kerbala J. Pharm. Sci. 2012;4:115-135.

16. Sripriya S, Subha C, Selvaraj A. The Inhibition Chemistry of 2-Amino, 5-Phenyl 1, 3, 4-Triazole for Aluminium in Hydrochloric Acid Solution, IOSRJAC. 2013;6(2):25-29.

17. Sengupta AK, Garg M. Studies on Potential Pesticides-Part XIV Synthesis and Biological Activities of Some New Thiosemicarbazide and Triazole Derivatives, Def. Sci., 31 (2), 91-96, 1988.

18. JC. Er, MK. Tang, CG. Chia, H. Liew, M. Vendrell YT. Chang, Megastockes BODIPY-triazoles as Environmentally Sensitive Turn-on Fluorescent Dyes, J. Chem. Sci. 2014;4:2168-2176.

19. Bulut VN, Duran C, Gundogdu A, Soylak M, Yildirim N, Tufekci M, Triazole A Derivatives as A New Acid-Base Indicator, Bull. Chem. Soc. Ethiop. 2010;24(3):457-460.

20. Cassani S, Kovarich S, Roy PP, Van der Wal L, Gramatica P, Daphnia and Fish Toxicity of (Benz)triazoles: Validated QSAR Models, and Interspecies Quantitative Activity-Activity Modeling, J. Haz. Mat. 2013'258-259:50-60.

21. Kotelevskii SI, Prezhdov OV. Aromaticity Indices revisited: Refinement and Application to Certain FiveMembered Ring Heterocycles, Tetrahedron. 2001;57:5715-5729.

22. Obot IB, Johnson AS. Ab initio, DFT and TDDFT Electronic Absorption Spectra Investigations on 3,5-Diamino-1,2,4-triazole, I.B. Obot et al. Elixir Comp. Chem. 2012; 43:6658-6661.

23. Ozimin’ski WP, Dobrowolski JCz, Mazurek AP, DFT Studies on Tautomerism of C5-Substituted 1,2,3- Triazoles, J. Mol. Str. 2003;651-653, 697-704.

24. Chawla A, Kaur P. A Systematic Review: Microwave Synthesis as A Part of Green Chemistry for the Synthesis of Novel 1,2,4-Triazole Derivatives, IRJP. 2013;4(1):49-72.

25. Cecchetti V, Calderone V, Tabarrini O, Sabatini S, Filipponi E, Testai L, Spogli R, Martinotti E, Fravolini A. Highly potent 1,4-benzothiazine derivatives as K(ATP) channel openers. J. Med. Chem. 2003;46(17):3670-3679.

26. Calderone V, Spogli R, Martelli A, Manfroni G, Testai L, Sabatini S, Tabarrini O, Cecchetti V. Novel 1,4-benzothiazine derivatives as large conductance Ca²⁺-activated potassium channel openers. J. Med. Chem. 2008;51(16):5085-5092.

27. Wang Z, Yuan Y, Chen Y, Sun, G, Wu X, Zhang S, Han C, Wang G, Li L, Liu G. Parallel solution-phase synthesis of 4Hbenzo[1,4]thiazin-3-one and 1,1-dioxo-1,4-dihydro-2H-1lambda6-benzo[1,4]thiazin-3-one derivatives from 1,5-difluoro-2,4- dinitrobenzene. J. Comb. Chem. 2007;9(4):652-660.

28. Cecchetti V, Calderone V, Tabarrini O, Sabatini S, Filipponi E, Testai L, Spogli R, Fravolini A. Highly potent 1,4-benzothiazine derivatives as K(ATP)-channel openers. J. Med. Chem. 2005;48:6766.

29. Marchetti C, Ulisse S, Bruscoli S, Russo FP, Migliorati G, Schiaffella F, Cifone MG, Riccardi C, Fringuelli R. Induction of apoptosis by 1,4-benzothiazine analogs in mouse thymocytes. J. Pharmacol. Exp. Ther. 2002;300(3):1053-1062.

30. Kaneko T, Clark RS, Ohi N, Kawahara T, Akamatsu H, Ozaki F, Kamada A, Okano K, Yokohama H, Muramoto K, Okhuro M, Takenaka O, Kobayashi S. Inhibitors of adhesion molecules expression; the synthesis and pharmacological properties of 10Hpyrazino[2,3-b][1,4]benzothiazine derivatives. Chem. Pharm. Bull. (Tokyo). 2002;50(7):922-929.

31. Kaneko T, Clark RS, Ohi N, Ozaki F, Kawahara T, Kamada A, Okano K, Yokohama H, Muramoto K, Okhuro M, Takenaka O, Kobayashi S. Piperidine carboxylic acid derivatives of 10Hpyrazino[2,3-b][1,4]benzothiazine as orally-active adhesion molecule inhibitors. Chem. Pharm. Bull. (Tokyo). 2004; 52(6):675-687.

32. Dolzhenko AV, Pastorian G, Chiu WK. An Aqueous Medium Synthesis and Tautomerism Study 3(5)-Amino-1,2,4-triazole, Tetrahedron Letters. 2009;50 (18):2124-2128.
33. Holam SC, Straub BF. Synthesis of N-Substitute 1,2,4-Triazoles: A Review, New J. Org. Syn. 2011; 43(4):319-347.

34. Palaska E, Şahin G, Kelichen P, Durlu NT, Altinok G. Synthesis and Anti-Inflammatory of 1-Acylthiosemicarbazide, 1,3,4-Oxadiazoles, 1,3,4-Thiadiazoles and 1,2,4-Triazole-3-thiones, 11 Farmaco. 2002; 57(2):101-107.

35. Bahgat K, Fraihat S. Normal Coordinate Analysis, Molecular Structure, Vibrational, Electronic Spectra and NMR Investigation of 4-Amino-3-phenyl-1H-1,2,4-triazole-5(4H)-thione by Ab initio HF and DFT Method, Spectrochimica Acta Part A: Mol. Biomol. Spectro. 2015; 135:1145-1155.

36. IV. Ledeţi, AA. Alexa, & VN. Bercean, Structural NMR Analysis of Triazolic Compounds Derived from Isonicotinic Acid, Annals West Uni. Timisoara: Ser. Chem. 2011; 20(1): 81-86.

37. Andrews B, Ahmed M. Synthesis and Characterization of Pyrimidine bearing 1,2,4-triazole derivatives and their potential antifungal action. International Journal of ChemTech Research. 2014; 6:1013-1021.

38. Sachdeva H, Saroj R, Khaturia S, Dwivedi D. Environeconomic synthesis and characterization of some new 1,2,4-triazole derivatives as organic fluorescent materials and potent fungicidal agents. Organic Chemistry International. 2013; 19.

39. Nayak P, Sandeep DS, Hameed A, Priya S, Kumar P, Kumar A. A Study of Antioxidant and Antibacterial Activities of Borassus flabellifer. Journal of Pharmaceutical Research International. 2021; 33:53-60.

40. Jin-Xia Mu, Zhi-Wen Zhai, Cheng-Xia Tan, Jian-Quan Weng, Hong-Ke Wu, Stephen O. Duke, Yong-Gang Zhang, and Xing-Hai Liub. Synthesis and Herbicidal Activity of 1,2,4-Triazole Derivatives Containing a Pyrazole Moiety; 2019.

41. Bhat A, Rajesh KS, Raghavan R. Evaluation of Antivenom Activity of Cassia alata Leaf Extract against Daboia Russelli Venom. Journal of Pharmaceutical Research International. 2021; 33(38A):288-298. Available: https://doi.org/10.9734/jpri/2021/v33i38A32088