The Variable CTCF Site from *Drosophila melanogaster* Ubx Gene is Redundant and Has no Insulator Activity

A. N. Ibragimov*, O. V. Bylino, O. V. Kyrchanova, Y. V. Shidlovskii, R. White, P. Schedl, and Academician P. G. Georgiev

Received April 30, 2022; revised May 5, 2022; accepted May 5, 2022

Abstract—CTCF is the most thoroughly studied chromatin architectural protein and it is found in both *Drosophila* and mammals. CTCF preferentially binds to promoters and insulators and is thought to facilitate formation of chromatin loops. In a subset of sites, CTCF binding depends on the epigenetic status of the surrounding chromatin. One such variable CTCF site (*vCTCF*) was found in the intron of the *Ubx* gene, in close proximity to the BRE and *abx* enhancers. CTCF binds to the variable site in tissues where *Ubx* gene is active, suggesting that the *vCTCF* site plays a role in facilitating contacts between the *Ubx* promoter and its enhancers. Using CRISPR/Cas9 and *attP/attB* site-specific integration methods, we investigated the functional role of *vCTCF* and showed that it is not required for normal *Drosophila* development. Furthermore, a 2161-bp fragment containing *vCTCF* does not function as an effective insulator when substituted for the *Fab-7* boundary in the Bithorax complex. Our results suggest that *vCTCF* function is redundant in the regulation of *Ubx*.

Keywords: insulators, CTCF, Bithorax complex, Ubx

DOI: 10.1134/S1607672922040044

Parasegment-specific expression of the *Ubx, abd-A*, and *Abd-B* homeotic genes in the *Drosophila melanogaster* Bithorax complex (BX-C) is controlled by nine autonomous regulatory domains, which are separated by special elements called boundaries or insulators [1]. Boundaries ensure autonomy by blocking contacts between regulatory elements in one domain with regulatory elements in adjacent domains. Boundaries can also prevent enhancers from interacting with promoters [2–4]. In addition to insulator activity, some boundaries have an ability to specifically interact with their target gene in BX-C, enabling enhancers in distant regulatory domains to stimulate their target promoter [5]. These properties of the boundaries ensure correct parasegment-specific expression of the BX-C genes during *Drosophila* development. Consistent with this idea, *Fab-6, Fab-7*, and *Fab-8* were shown to specifically interact with the promoter upstream region of *Abd-B* gene [6]. It is likely that this interaction determines the correct topological positioning of the corresponding regulatory domains (*iab5 – iab7*) with *Abd-B* promoter in parasegments 10–12.

Most of the BX-C boundaries contain binding sites for *Drosophila* CTCF (dCTCF), and these sites are important for the insulator activity of these boundaries (Fig. 1) [7]. In the intron of the *Ubx* gene 30 kb downstream from the promoter, a variable dCTCF binding site (*vCTCF*) was identified (Fig. 1) [8]. dCTCF does not occupy this site in tissues where *Ubx* is inactive (imaginal discs of the first pair of legs), but binds to it when the *Ubx* gene is transcriptionally active (imaginal discs of the third pair of legs). Moreover, dCTCF binding to *vCTCF* is associated with changes in the topology of the *abx/bx* regulatory domain: in tissues where *Ubx* is active an increase in the frequency of *vCTCF* contacts with the *Ubx* promoter is observed [8]. A model was proposed according to which binding of dCTCF to *vCTCF* facilitates tissue-specific interaction of the *abx, BRE* enhancers with the *Ubx* promoter [9, 10]. The aim of this study was to test this hypothesis.

To study *vCTCF* function in enhancer-promoter interactions, we used the CRISPR/Cas9 system to delete a 3408-bp DNA fragment (3R:16701239..16704646) that spans the *vCTCF* site and the *bx* PRE (polycomb response element) 1 kb downstream, and in its place we introduced an *attP* site (*Δ3.4attP*, Fig. 1). Flies homozygous for *Δ3.4attP* deletion show evidence of variable LOF transformations. The deletion transforms the anterior third thoracic segment toward the anterior second thoracic, a phenotype known as *bithorax* (*bx*) [11, 12]. In mutant flies the anterior third leg resembles the second leg, and in ~10% of flies anterior natal tissue is present on the dorsal surface of the third thoracic segment (Fig. 2). These transformations are caused by a disruption in the interactions of enhancers...
downstream of vCTCF with Ubx promoter. The Δ3.4αntP deletion overlaps with a previously described 9.5 kb deletion, bx3ke-prv. Like Δ3.4αntP, it also has a variable bx phenotype which is caused by a decrease in Ubx expression in the imaginal discs of segment T3 [111]. Next, we used attP site in Δ3.4αntP as an integration platform to find minimal element that can rescue the mutant phenotype. We carried out attP-attB mediated integration of the 831-bp bx PRE fragment (PRE831, 3R:16702487..16703317) into Δ3.4αntP deletion and discovered that PRE831 completely reverts bx phenotype to wild type. This finding suggests that vCTCF is

Fig. 1. Schematic organization of the genes and regulatory domains in BX-C. abx/bx, bxd/pbx and iab-2–iab-8 domains responsible for the regulation of Ubx, abd-A, and Abd-B genes and for the development of parasegments 5–13/T3–A8 segments are shown. Ubx embryonic enhancers are shown as purple boxes. The lines with colored circles mark boundaries. The binding sites for insulator proteins dCTCF, Pita, and Su(Hw) are shown as red, blue, and yellow circles. On the lower part of the figure, regulatory regions containing dCTCF variable site and Fab-7 boundary, as well as their deletions are shown. Fab-7 boundary Deoxyribonuclease I hypersensitive sites HS*, HS1, HS2, HS3 are shown as black rectangles on the coordinate bar. The bx PRE hypersensitive site is depicted as a green box, sites for Pho and GAGA-factor proteins as orange and blue ovals. attP, lox, and frt sites used for genetic manipulations are shown as white, gray, and blue triangles.

Fig. 2. (a) Phenotypic comparison of T3-A1 tergites of wt, Δ3.4αntP and PRE831 flies. Δ3.4αntP has a variable phenotype, ~10% of flies have an enlarged A1 segment, a subset of dorsal T3 cells (marked with a red arrow) are transformed toward mesonotum, while their neighbors are untransformed. PRE831 integration restores the mutant phenotype to wild type. (b) Phenotypic comparison of T3 legs of wt, Δ3.4αntP and PRE831 flies. In wild type flies, T2 legs have a pair of long bristles, which are absent on T3 legs. Δ3.4αntP flies develop one long bristle on T3 legs (marked with a red arrow), which indicates a partial transformation toward T2. T2 legs of PRE831 flies look wild type. (c) Bright and dark field images of abdominal cuticle of wt, Fab-7attP50, vCTCF+PRE males. In wt males, A7 segment is absent, A6 sternite is banana-shaped and has no bristles, while A5 sternite is rectangular and covered with bristles. A5 tergite is completely covered with trichomes, while A6 has bristles only along anterior and ventral margins (see dark field). In Fab-7attP50 males, A6 segment is transformed toward A7 (does not develop) due to the fusion of iab-6 and iab-7 regulatory domains. vCTCF+PRE males also do not develop A6 segment.
redundant, while bx PRE may play a role in facilitation of enhancer-promoter interaction.

In order to test vCTCF insulator activity we used Fab-7utP50 replacement platform (Fig. 1). In this platform, Fab-7 boundary is removed, resulting in the fusion of iab-6 and iab-7 regulatory domains. This leads to ectopic activation of the iab-7 regulatory domain in PS11, which in turn results in the loss of the sixth abdominal segment in adult males [13–15]. It was demonstrated previously that PREs are often located in close proximity to insulators and contribute to the formation of a functional boundary [16, 17]. Therefore, a fragment containing both bx PRE and vCTCF in reverse orientation, vCTCF+PRE (2161-bp, 3R:16702487..16704647) was tested in Fab-7utP50. We found that the 6th abdominal segment is still missing in males carrying vCTCF+PRE insertion. This finding indicates that the vCTCF+PRE sequence does not have insulator activity.

Altogether, our data do not support a model in which vCTCF is a necessary mediator of enhancer-promoter interactions in abx/bx domain. Moreover, the data suggest that the bx PRE may play that role. However, further research is needed to explore the functions of this element in Ubx regulation. Since the loss of the bx PRE leads only to a variable LOF phenotype, it can be assumed that, in contrast to the Abd-B enhancers, Ubx enhancers are much more autonomous and less dependent on other regulatory elements to form appropriate promoter contacts.

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation projects nos. 20-14-00201 and 19-74-30026. CRISPR/Cas9 mutagenesis and attP/attB site-specific integration were supported by grant 20-14-00201. Phenotype analysis was supported by grant 19-74-30026 from the Russian Science Foundation.

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

OPEN ACCESS

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

REFERENCES

1. Maeda, R.K. and Karch, F., The open for business model of the bithorax complex in Drosophila, Chromosoma, 2015, vol. 124, no. 3, pp. 293–307.
2. Özdemir, I. and Gambetta, M.C., The role of insulator in patterning gene expression, Genes (Basel), 2019, vol. 10, no. 10, p. 767.
3. Valenzuela, L. and Kamakaka, R.T., Chromatin insulators, Annu. Rev. Genet., 2006, vol. 40, no. 1, pp. 107–138.
4. West, A.G., Gaszner, M., and Felsenfeld, G., Insulators: many functions, many mechanisms, Genes Dev., 2002, vol. 16, no. 3, pp. 271–288.
5. Kyrchanova, O., et al., The boundary paradox in the bithorax complex, Mech. Dev., 2015, vol. 138, pp. 122–132.
6. Kyrchanova, O., Ivlieva, T., Toshchakov, S., Parshikov, A., Maksimenko, O., and Georgiev, P., Selective interactions of boundaries with upstream region of Abd-B promoter in Drosophila bithorax complex and role of dCTCF in this process, Nucleic Acids Res., 2011, vol. 39, no. 8, pp. 3042–3052.
7. Bowman, S.K., et al., H3K27 modifications define segmental regulatory domains in the Drosophila bithorax complex, eLife, 2014, vol. 3, article ID e02833.
8. Magbanua, J.P., Runneburger, E., Russell, S., and White, R., A variably occupied CTCF binding site in the ultrabithorax gene in the Drosophila bithorax complex, Mol. Cell Biol., 2015, vol. 35, no. 1, pp. 318–330.
9. Qian, S., Capovilla, M., and Pirrotta, V., The bx region enhancer, a distant cis-control element of the Drosophila Ubx gene and its regulation by hunchback and other segmentation genes, EMBO J., 1991, vol. 10, no. 6, pp. 1415–1425.
10. Simon, J., Peifer, M., Bender, W., and O’Connor, M., Regulatory elements of the bithorax complex that control expression along the anterior-posterior axis, EMBO J., 1990, vol. 9, no. 12, pp. 3945–3956.
11. Peifer, M. and Bender, W., The anterobithorax and bithorax mutations of the bithorax complex, EMBO J., 1986, vol. 5, no. 9, pp. 2293–2303.
12. Bender, W., et al., Molecular genetics of the bithorax complex in Drosophila melanogaster, Science, 1983, vol. 221, no. 4605, pp. 23–29.
13. Hagstrom, K., Muller, M., and Schedl, P., Fab-7 functions as a chromatin domain boundary to ensure proper segment specification by the Drosophila bithorax complex, Genes Dev., 1996, vol. 10, no. 24, pp. 3202–3215.
14. Mihaly, J., et al., Chromatin domain boundaries in the Bithorax complex, Cell Mol. Life Sci., 1998, vol. 54, no. 1, pp. 60–70.
15. Mateo, L.J., Murphy, S.E., Hafner, A., Cinquini, I.S., Walker, C.A., and Boettiger, A.N., Visualizing DNA folding and RNA in embryos at single-cell resolution, Nature, 2019, vol. 568, no. 7750, pp. 49–54.
16. Kyrchanova, O., et al., The insulator functions of the droso- phila polydactyl C2H2 zinc finger protein CTCF: necessity versus sufficiency, Sci. Adv., 2020, vol. 6, no. 13.
17. Mihaly, J., Hogg, I., Gausz, J., Gyurkovics, H., and Karch, F., In situ dissection of the Fab-7 region of the bithorax complex into a chromatin domain boundary and a polycomb-response element, Development, 1997, vol. 124, no. 9, pp. 1809–1820.