Coherence length of magnetic field in the mixed state of type-II superconductors

P. Belova1,2, M. Safonchik1,3, K. B. Traito1, E. Lähderanta1

1 Lappeenranta University of Technology, P.O.Box 20, FI-53851, Lappeenranta, Finland
2 Petrozavodsk State University, Lenin str. 33, RU-185640, Petrozavodsk, Russia
3 A. F. Ioffe Physico-Technical Institute, St. Petersburg, 194021, Russia

E-mail: Polina.Belova@lut.fi

Abstract. Influence of impurities on coherence length ξ_h in the mixed state of s-wave superconductors is investigated in framework of quasiclassical Eilenberger theory. The increasing of impurity scattering rate results in decreasing of ξ_h. The obtained field dependence of ξ_h for clean superconductors has a minimum and it is similar to that in Hao-Clem and Miranović-Ichioka-Machida theories for order parameter of coherence length. It is found that growing behavior of ξ_h with magnetic field in dirty superconductors is different from order parameter coherence length determining by pairing potential near with vortex core. The magnetic field dependence of coherence length in normalized units, $\xi_h/\xi_2(B/B_{c2})$, is nonuniversal and depends on impurity scattering potential.

Last ten years much attention has been paid to the investigation of the field distribution in high-κ superconductors [1–3]. On the theoretical level, there are four widely used methods: solving of the Bogoliubov-de Geennes (BdG) equations [4], the quasiclassical nonlocal Eilenberger theory [5–7] (this is the quasiclassical limit of the BdG theory for $k_F\xi_{BCS} \gg 1$), solving of the Usadel theory [8] (this is the dirty local limit of the Eilenberger equations with the strong impurity scattering rates ($\Gamma/T_c \gg 1$)) and the phenomenological Ginzburg-Landau (GL) theory [9–13] which is valid near T_c. Because BdG method is very time consuming for the self-consistent numerical calculation [4], the Eilenberger or Usadel theories are used in the microscopical consideration. In analysis of the experimental data, the analytical GL model (AGL) with penetration depth λ and cutoff parameter ξ_h as a fitting parameters is used very often. The cutoff parameter ξ_h (in the notation of the AGL ξ_v) is connected with GL coherence length ξ_2, determined by the relation $B_{c2} = \Phi_0/2\pi\xi_2^2$. From theoretical reasons (see discussion in Ref. [14]), λ can not be taken arbitrarily and should be taken as a differential operator L_{ij} [15], for the description of the nonlocal effects giving the additional field dependence in the mixed state, or its local limit obtained from microscopical consideration of the Meissner state [16] independent on the magnetic field.

There is no consensus about the meaning of ξ_h, the problem was discussed originally by de Geennes group [17]. There are several proposes for the value of ξ_h: it can be taken as a coherence length ξ_2 with some numerical coefficient [18], or as the order parameter coherence length ξ_1, or as a proportional to the superconducting current coherence length ξ_2. Characteristic length ξ_1 is determined as $1/\xi_1 = (\partial|\Delta(r)|/\partial r)|_{r=0}/|\Delta_{NN}|$, where $|\Delta_{NN}|$ is the maximum value of the order parameter along the nearest-neighbor direction which is the direction of taking the derivative [19] and ξ_2 is determined by maximum of screening current around the vortex [20].
But connections between ξ_h, ξ_1, and ξ_2 is not investigated in detail yet. The microscopical model allowing to obtain analytical solution for $\xi_h(B)$ has been suggested in Ref. [21] (the KZ model). In this model linearized Eilenberger equation has been solved and uniform magnetic field has been suggested. It means that Kramer-Pesch effect is not included in the consideration. The exact form equation of $\xi_h(B)$ for the zero-T clean case for both Fermi sphere and cylinder has been obtained. The result can be represented as $\xi_{KZ}(B)/\xi_{A}(B) = U(B)/\xi_{A}(B)$ with U being an universal function. The most important features of the KZ model and $\xi(B)$ dependence are as follows: (i) this dependence is weakened by scattering and disappears in the dirty limit; (ii) the B dependence of ξ vanishes as $T \to T_c$; (iii) in reduced variables, the dimensionless coherence length $\xi^* = \xi/\xi_n$ should be nearly universal function of the reduced field $b = B/\xi_n$ for clean materials in high fields and low temperatures; and (iv) for materials on the clean side ($\Gamma < 1$) the low-T slope $d\xi^*/db^{(-1/2)}$ is nearly universal in high fields ($b \to 1$). It is found that the microscopical calculations of ξ_1 [5] do not agree with the KZ theory. In particular, these calculations don’t confirm the KZ assertion about weakening of the field dependence of the core size with the increasing scattering. As noted in Ref. [14] the question still remains: which of these two theoretical approaches, Ref. [5] or Ref. [21], describes better various data on $\xi_h(B)$? It is important to note also that the GL theory predictions is not reproduced by the KZ theory.

Recently, an effective London model with the magnetic coherence length $\xi_h(B)$ as a fitting parameter has been obtained for clean [22] and dirty [23] superconductors, using self-consistent solution of quasiclassical nonlocal Eilenberger equations. Such theory looks appropriate for the description of the vortex core where strong nonlinear and nonlocal effects are expected. In this approach the coherence length obtained from the Ginzburg-Landau model is extended over the whole field and temperature range. The Fourier components of magnetic field in this model are described by London equation with GL type cutoff function

$$h_{EGL}(r) = \frac{\phi_0}{S} \sum G \frac{F(G)e^{iGr}}{1 + \lambda^2 G^2}, \quad (1)$$

where $F(G) = uK_1(u)$, $u = \xi_h G$. It is important to note that ξ_h in Eq. (1) is obtained by solving the Eilenberger equations and ξ_h doesn’t coincide with the variational parameter of the AGL model. We will call obtained field distribution as an Eilenberger - Ginzburg-Landau field distribution $h_{EGL}(r)$. In Eq. (1) $\lambda(T)$ is calculated from microscopical theory for the Meissner state and renormalized by impurity scattering [24]. In dirty superconductors the value of λ increases considerable and gives the main effect of impurities in the field distribution (Eq. (1)) suppressing deviation of the field from the mean value B. Thus, in this model there is only one fitting parameter for the description of the vortex state, ξ_h, similar to Ref. [14].

The aim of our paper is to calculate $\xi_h(B)$ in the framework of the Eilenberger theory and to study the applicability of the above mentioned theories in wide temperature range and at different impurity scattering rates. In particular, we are interested in looking for possible predicted universal behavior. With the Riccati transformation of the Eilenberger equations, quasiclassical Green functions f and g can be parameterized via functions a and b [5]

$$\bar{f} = \frac{2a}{1 + ab}, \quad \bar{f} = \frac{2b}{1 + ab}, \quad \frac{g}{1 + ab}, \quad (2)$$

satisfying the nonlinear Riccati equations. In Born approximation for impurity scattering we have

$$u \cdot \nabla a = -a[2(\omega_n + G) + iu \cdot A] + (\Delta + F) - a^2(\Delta^* + F^*), \quad (3)$$

$$u \cdot \nabla b = b[2(\omega_n + G) + iu \cdot A] - (\Delta^* + F^*) + b^2(\Delta + F), \quad (4)$$
where $\omega_n = \pi T (2n + 1)$, $F = 2\pi \langle f \rangle \cdot \Gamma$ and $G = 2\pi \langle g \rangle \cdot \Gamma$. Here, $\Gamma = \pi n_F |u|^2$ is the impurity scattering rate, u is impurity scattering amplitude and \mathbf{u} is a unit vector of the Fermi velocity. The FLL create the anisotropy of the electron spectrum [19]. Therefore the impurity impurity scattering rate, $\Gamma = 0$ (b) with impurity scattering $\Gamma = 0$ (a). The renormalization correction in Eq. (3) and (4) are averaged over Fermi surface and can be reduced to averages over the polar angle θ, i.e. $\langle \ldots \rangle = (1/2\pi) \int \ldots d\theta$.

To take into account the influence of screening the vector potential $A(r)$ in Eqs. (3) and (4) is obtained from the equation $\nabla \times \nabla \times A_E = \frac{1}{\kappa^2} \mathbf{J}$, where the supercurrent $\mathbf{J}(r)$ is given in terms of $g(\omega_n, \theta, \mathbf{r})$ by

$$\mathbf{J}(r) = 2\pi T \sum_{\omega_n > 0} \int_{0}^{2\pi} \frac{d\theta}{2\pi} \frac{\hat{k}}{i} g(\omega_n, \theta, \mathbf{r}).$$

Here A and \mathbf{J} are measured in units of $\phi_0/2\pi \xi_0$ and $2e v_F N_0 T_c$, respectively. The self-consistent condition for the pairing potential $\Delta(r)$ is given by

$$\Delta(r) = V^{SC} 2\pi T \sum_{\omega_n > 0} \int_{0}^{2\pi} \frac{d\theta}{2\pi} f(\omega_n, \theta, \mathbf{r}),$$

where V^{SC} is the superconducting coupling constant and ω_c is the ultraviolet cutoff determining T_{c0}[23]. All over this paper the energy, the temperature, and the length are measured in units of T_{c0} and the coherence length $\xi_0 = v_F / T_{c0} = \xi_{BCS} \pi \Delta_0 / T_{c0}$. Here $\xi_{BCS} = v_F / \pi \Delta_0$, where v_F is the Fermi velocity and Δ_0 is temperature dependent uniform gap. The magnetic field \mathbf{h} is given in units of $\phi_0/2\pi \xi_0^2$. The impurity scattering rates are in units of $2\pi T_{c0}$.

Calculations in the present paper are based on the Eilenberger equations (Eq. 3 and 4) are solved by the Fast Fourier Transform (FFT) method [23]. This method is reasonable for dense FLL discussed in this paper. In high field the pinning effects are weak and they are not considered in our paper. After solving the Eilenberger equations the obtained magnetic field distribution $h_E(r)$ is fitted with the London field distribution $h_{EGL}(r)$ (Eq. (1)). To study high field regime we should calculate upper critical field $B_{c2}(T)$ [25].

Our calculations show that in clean superconductors $\xi_h(B)$ dependence has minimum which disappears at low temperatures. The absolute values of ξ_h are smaller than those of the AGL theory predictions, with increasing temperature ξ_h dependences move to higher values.
These effects can be seen in Fig. 1 (a), where $\xi_h(B/B_{c2})$ are presented with $\Gamma = 0$ at $T/T_c = 0.2, 0.4, 0.6, 0.8, 0.95$. The same tendency is also visible in the presence of impurity scattering, but shifting of ξ_0 to direction of AGL curve is slower. Fig. 1 (b) presents $\xi_h(B/B_{c2})$ dependence with $\Gamma = 0.5$ at $T/T_c = 0.2, 0.4, 0.6, 0.8, 0.95$. Strong decreasing of ξ_h with decreasing of temperature can be explained by Kramer-Pesch effect [7]. The change of the shape of $\xi_h(B)$ curve in low fields with increasing of scattering rate Γ is shown in details at Fig. 2 (a) at $T/T_c = 0.5$. At high scattering rate, a flat dependence is clearly visible.

We also calculate magnetic field dependence of mean square deviation of h_{EGL} distribution of the magnetic field from the Eilenberger distribution normalized by the variance of the Eilenberger distribution, ε, for $T/T_c = 0.5$ with different impurity scattering Γ.

These effects can be seen in Fig. 1 (a), where $\xi_h(B/B_{c2})$ are presented with $\Gamma = 0$ at $T/T_c = 0.2, 0.4, 0.6, 0.8, 0.95$. The same tendency is also visible in the presence of impurity scattering, but shifting of ξ_0 to direction of AGL curve is slower. Fig. 1 (b) presents $\xi_h(B/B_{c2})$ dependence with $\Gamma = 0.5$ at $T/T_c = 0.2, 0.4, 0.6, 0.8, 0.95$. Strong decreasing of ξ_h with decreasing of temperature can be explained by Kramer-Pesch effect [7]. The change of the shape of $\xi_h(B)$ curve in low fields with increasing of scattering rate Γ is shown in details at Fig. 2 (a) at $T/T_c = 0.5$. At high scattering rate, a flat dependence is clearly visible.

We also calculate magnetic field dependence of mean square deviation of h_{EGL} distribution of the magnetic field from the Eilenberger distribution normalized by the variance of the Eilenberger distribution $\varepsilon = \sqrt{(h_{EGL} - h_{EGL})^2 / (h_{E} - B)^2}$, where $\overline{\cdots}$ is average over unit vortex cell. Fig. 2 (b) shows $\varepsilon(B)$ dependence for $T = 0.5$ with different impurity scattering Γ. It can be seen from this picture that accuracy of EGL model is getting better with increasing impurity scattering and saturates at the $\Gamma \approx 1.5$.

We should note that the the similarity of our results to the AGL theory (which is suppose to be quantitatively incorrect [11]) can be considered only as a coincidence. First, in our methods there is only one fitting parameter ξ_h, while in the AGL theory there are two of them, ξ_e and f_∞ ($f_\infty = 1$ in our case). Because of the boundary condition of the field distribution ($h(r) \to B$ at $B \to B_{c2}$) ξ_h is growing function of B at the high fields resulting in the appearance of the minimum. In the AGL theory (and ”improved” analytical GL theory [11]) the boundary condition is satisfied by the limit $f_\infty \to 0$ at $B \to B_{c2}$, so the behavior of $\xi_e(B)$ dependence is not predetermined. For example, in the ”improved” analytical GL theory there is no minimum in $\xi_e(B)$ [11]. Absence of the minimum in $\xi_h(B)$ results also from local Usadel theory for $\xi_1(B)$ [26] and $\xi_2(B)$ [27] dependences. Second, there is clear impurity dependence of the ξ_h/ξ_{c2} value even at high temperatures (compare Fig. 1 (a) and Fig. 1 (b)), which can not be explained by the local Usadel or ”improved” analytical GL theories, where scaling $\xi_h/\xi_{c2} = Const$ (independent on Γ) is expected.

In Fig. 1 the normalization constant ξ_{c2} is dependent on impurity scattering rate Γ. It is well known that at high Γ $\xi_{c2} \sim \sqrt{1/\Gamma} \sim \sqrt{l}$, where l is the mean-free path. Therefore, the

![Figure 2](image-url)
visible from Fig. 2 (a) that dependence resulting in nonmonotonous behavior of ξ found that at low temperatures impurity scattering suppresses Kramer-Pesch effect in ξ of superconductors and different temperatures are presented. Strong suppression of the Kramer-Pesch effect there. This can be seen from Fig. 3, where predictions of the various theories for clean superconductors and different temperatures are compared with the behavior of the another characteristic length h. It has been found that at low temperatures impurity scattering suppresses Kramer-Pesch effect in $\xi_1(T)$ dependence resulting in nonmonotonous behavior of $\xi_1(\Gamma)$. On the another hand, it is clearly visible from Fig. 2 (a) that ξ_h monotonously decreases with Γ, where normalization constant ξ_{BCS} is used (ξ_{BCS} is not dependent on Γ).

The data in Figs. 1 and 2 demonstrate nearly universal behavior near T_c and small scattering rates: (i) the nonmonotonous field dependence with a minimum and (ii) the similar slope $d(\xi_h/\xi_{c2})/db$ at $b = 1$ which is weakly dependent on temperature and scattering rate. But the results are very different from the prediction of the KZ theory because of negligence of the Kramer-Pesch effect there. This can be seen from Fig. 3, where predictions of the various theories for clean superconductors and different temperatures are presented. Strong suppression of ξ_h (the ξ_h curves) and ξ_1 (the ξ_1 curves) with temperature lowering is visible in contrast to the increasing of ξ_{KZ} (the KZ curves). But impurity induced behavior is similar for ξ_h/ξ_{c2} and ξ_{KZ}/ξ_{c2}: both decreases with increasing impurity rates.

To conclude, the magnetic coherence length ξ_h (cutoff parameter) in the mixed state of high-κ s-wave superconductors is investigated in framework of quasiclassical Eilenberger theory. Nearly universal field dependence with a minimum is found near critical temperature in clean superconductors. A similar slope $d(\xi_h/\xi_{c2})/d(B/B_{c2})$ at $B/B_{c2} = 1$ weakly dependent on temperature and scattering rate is discovered. Quasiparticle scattering by impurities and lowering of the temperature reduce the value of ξ_h shifting it considerably downward from the AGL curve and at low temperatures strong influence of the Kramer-Pesch effect is found. It

\begin{equation}
\frac{\xi_h(B, T, \tau)}{1 + \frac{\tau_0(B, T)}{\tau}} = \frac{\xi_{pure}(B, T)}{1 + \frac{\tau_0(B, T)}{\tau}}
\end{equation}

where $\xi_{pure}(B, T)$ is the effective coherence length in clean superconductors [22] and τ_0 is a characteristic relaxation time. It results in $\xi_h \sim l$ dependence at high Γ similar to the behavior of nonlocality radius [18] resulting in decreasing of ξ_h/ξ_{c2} at high Γ. Such fast decreasing of ξ_h can be compared with the behavior of the another characteristic length ξ_1. It has been found that at low temperatures impurity scattering suppresses Kramer-Pesch effect in $\xi_1(T)$ dependence resulting in nonmonotonous behavior of $\xi_1(\Gamma)$. On the another hand, it is clearly visible from Fig. 2 (a) that ξ_h monotonously decreases with Γ, where normalization constant ξ_{BCS} is used (ξ_{BCS} is not dependent on Γ).
can explain muon spin rotation experimental results in some low temperature superconductors, where the ratio $\xi_h/\xi_c^2 \ll 1$ [3] is observed in intermediate fields. A comparison with the behavior of the order parameter coherence length ξ_1 and another theories is done. It is found that impurities influence by different way on ξ_h and ξ_1.

This work was supported by the Finnish Cultural Foundation.

References

[1] Sonier J, Brewer J and Kiefl R 1977 Rev. Mod. Phys. 72 769
[2] Sonier J E 2004 J. Phys.: Condens. Matter 16 S4499
[3] Sonier J E 2007 Rep. Prog. Phys. 70 1717
[4] Atkinson W A and Sonier J E 2008 Phys. Rev. B 77 024514
[5] Miranović P, Ichioka M and Machida K 2004 Phys. Rev. B 70 104510
[6] Ichioka M, Hasegawa A and Machida K 1999 Phys. Rev. B 59 8902
[7] Nakai N, Miranović P, Ichioka M and Machida K 2006 Phys. Rev. B 73 172501
[8] Usadel K 1970 Phys. Rev. Lett. 25 507
[9] Hao Z, Clem J R, McElfresh M W, Civale L, Malozemoff A P and Holtzberg F 1991 Phys. Rev. B 43 2844
[10] Yaouanc A, de Reotier P D and Brandt E H 1997 Phys. Rev. B 55 11107
[11] Pogosov V V, Kugel K I, Rakhmanov A L and Brandt E H 2001 Phys. Rev. B 64 064517
[12] de Oliveira I G and Thompson A M 1998 Phys. Rev. B 57 7477
[13] Brandt E H 2003 Phys. Rev. B 68 054506
[14] Kogan V G, Prozorov R, Bud’ko S L, Canfield P C, Thompson J R, Karpinski J, Zhigadlo N D and Miranović P 2006 Phys. Rev. B 74 184521
[15] Laiho R, Safonchik M and Traito K B 2007 Phys. Rev. B 75 174524
[16] Lemberger T R, Ginsberg D M and Rickayzen G 1978 Phys. Rev. B 18 6057–6065
[17] de Gennes P 1989 Superconductivity of Metals and Alloys Addison–Wesley, New York
[18] Kogan V G, Gurevich A, Cho J H, Johnston D C, Xu M, Thompson J R and Martynovich A 1996 Phys. Rev. B 54 12386
[19] Ichioka M, Hasegawa A and Machida K 1999 Phys. Rev. B 59 184
[20] Kadono R, Higemoto W, Koda A, Larkin M I, Luke G M, Savici A T, Uemura Y J, Kojima K M, Okamoto T, Kakeshita T, Uchida S, Ito T, Oka K, Takigawa M, Ichioka M and Machida K 2004 Phys. Rev. B 69 104523
[21] Kogan V G and Zhelezina N V 2005 Phys. Rev. B 71 134505
[22] Laiho R, Safonchik M and Traito K B 2007 Phys. Rev. B 76 140501(R)
[23] Laiho R, Safonchik M and Traito K B 2008 Phys. Rev. B 78 064521
[24] Lemberger T, Ginsberg D and Rickayzen G 1978 Phys. Rev. B 18 6057
[25] Ovchinnikov Y N and Kresin V Z 1995 Phys. Rev. B 52 3075
[26] Golubov A A and Hartmann U 1994 Phys. Rev. Lett. 72 3602
[27] Sonier J E, Kiefl R F, Brewer J H, Chakhalian J, Dunsiger S R, MacFarlane W A, Miller R I, Wong A, Luke G M and Brill J W 1997 Phys. Rev. Lett. 79 1742