Indicator System for Environmental Impact Assessment Of Water Resources Protection And Utilization Planning

Haonan Liu¹,², Pan Guo³ and Xin Jin¹,²,*

¹Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, the University of Technology in Guilin, Guilin, Guangxi 541004, China
²Collaborative Innovation Center for Water Pollution Control and Water Safety Guarantee, the University of Technology in Guilin, Guilin, Guangxi 541004, China
³Guilin Farmland Irrigation Experimental Center Station, Guilin, Guangxi 541105 China

*Corresponding author e-mail: jinxin1390@163.com

Abstract. The environmental impact assessment of water resources protection and utilization planning is a comprehensive assessment of the natural, economic, and social environment of the project area and its neighboring areas caused by water resources projects. The rational development and utilization of water resources, protection of ecology and the environment, and promotion of regional Sustainable development provides scientific decisions and basis. This paper analyzes the characteristics of the environmental impact assessment indicator system for water resources protection and utilization planning, points out the basic framework and principles for establishing an indicator system, proposes a specific indicator system, and clarifies the significance of each indicator.

1. Introduction
In order to rationally develop, utilize and protect water resources, prevent adverse effects on the environment after the implementation of the plan, and promote the coordinated and sustainable development of the economy, society and the environment. At the same time as the planning, the environmental impact assessment of water resources planning must be carried out. The evaluation must be objective, open and fair from a macro, strategic level, and comprehensively consider the possible impact on the various factors and the ecosystem they constitute after the implementation of the plan, and provide a scientific basis for decision-making; the establishment and improvement of the indicator system is the water environment The environmental impact assessment of protection, utilization, and planning provides the basis, and the environmental impact assessment of different projects can promote the deepening and improvement of the environmental impact assessment of water resources protection and utilization planning, thereby building a more complete evaluation indicator system. The establishment of an environmental assessment indicator system for water resources protection and utilization planning has important guiding significance for China's sustainable development of water conservancy.
2. Concept and connotation

2.1. Water protection
Water resources protection refers to legal, administrative, technical and economic measures adopted to protect the resource attributes of surface water and groundwater and to achieve sustainable use of water resources. Water connects the upstream, downstream, and the left and right banks in the basin through mobility, and links the socio-economic system with the eco-environment system through its support for the economic, social, and eco-environment systems [1]. Water quality, quantity and its ecosystem are the basic conditions for the sustainable function of water resources. Water quality, water quantity, and aquatic ecology are the organic whole of interaction and influence. Water resources protection should consider goals and needs of water quality, water quantity, and aquatic ecological protection.

2.2. Water resources planning
Water resources planning is based on guaranteeing a virtuous cycle of water resources and aquatic ecology, with the goal of realizing the continuous functioning of water resources. Based on the investigation and evaluation of water pollution, water resources, and aquatic ecology, in accordance with the principles of unified planning and coordinated management of water quality, water quantity, and aquatic ecology, consider the surface and groundwater as a whole, and formulate water conservation and protection, water pollution prevention, and aquatic ecological protection and restoration, Supervision and management of water resources protection measures. This will guide the protection and management of water resources in the near and long term [2].

2.3. Environmental Impact Assessment and Environmental Water Conservancy
The concept of Environmental Impact Assessment (EIA) was first proposed by scholars at the International Conference on Environmental Quality Assessment in 1964. China's environmental impact assessment law describes the definition of environmental impact assessment as "the environmental impact assessment referred to in this law, which refers to the analysis, prediction and assessment of environmental impacts that may be caused after the implementation of planning and construction projects, and proposes to prevent or mitigate adverse environmental impacts Countermeasures and measures, methods and systems for tracking and monitoring [3]. "

Environmental water conservancy not only solves water conservancy and environment-related issues (such as the impact of water conservancy on the environment and environmental problems caused by water damage), but also studies environmental and water conservancy-related issues (such as the impact of environmental changes on water resources, water areas and water conservancy projects). Including research and put forward the mutual requirements of environment and water conservancy, as well as countermeasures and measures to be taken to coordinate the development, utilization, governance, allocation, protection, conservation and conservation of ecological water resources to achieve the purpose of water conservancy, water pollution and environmental improvement [4].

3. Construction of environmental impact assessment indicator system for water resources protection and utilization planning
An indicator is a signal of a complex event or system. It is a set of information that reflects the characteristics of the system or shows what is happening. It is a quantitative description of certain attributes or characteristics of a certain social phenomenon. Its "language" is a number. The so-called indicator system is a scientific and complete population composed of a series of interconnected and mutually restricted indicators [5]. In planning environmental impact assessment, indicators can be used to describe, characterize, and judge the current state of the environment, predict environmental impacts, provide alternatives, and track changes in environmental quality after the implementation of the plan and its relationship with environmental protection goals. The essence of establishing an
evaluation indicator system is to establish the specific content of the environmental impact assessment of water conservancy planning. Only by establishing a series of indicators, can the environmental impact of planning behavior be predicted, monitored, evaluated, and feedback. Planning provides information support. The indicator system for environmental impact assessment of water resources protection and utilization planning reflects the internal structure, external state and development trend indicators of the regions affected by the strategy, the sustainable development system of the river basin environment, and a collection of indicators that partially reflect the status of relevant social and economic factors.

3.1. Principles for the establishment of an indicator system

The environmental impact assessment indicator system for water resources protection and utilization planning should not only reflect the leading thinking of coordinated development of economy, society, population, resources and ecological environment, but also make each evaluation indicator the most sensitive. The most convenient measurement and the most abundant leading indicators make this indicator system accurately describe the degree of environmental impact and possible impact trends in water resources protection and utilization planning [6] [7]. The following principles should be followed when determining the environmental impact assessment indicator system for water resources protection and utilization planning, [8] [9]:

1) The establishment of the indicator system should follow the systematic and scientific principles
 There is an intricate and hierarchical relationship between water resources protection and utilization planning and the ecosystem. It is necessary to determine the corresponding evaluation level, consider each evaluation indicator from the perspective of a system theory, and form a systematic evaluation indicator system. At the same time, the evaluation indicator must be based on science. On the basis of that, it truly reflects the level of the quality of the ecological environment, and each indicator must have a clear concept and clear scientific meaning. There must be internal links between the indicators and avoid duplication.

2) Sustainability
 The water environment is one of the subsystems of the ecological environment, which can provide many service functions for human beings. Reasonable development and utilization planning is the direction of sustainable use and management of water resources. The selection of evaluation indicators must follow the principle of sustainability, with the goal of achieving scientific development and sustainable use of water resources.

3) Combining stability and dynamics
 Static indicators take into account the actual production capacity and level of the system. Dynamic indicators can well reflect the succession laws of system composition, function, and benefits, predict the development trend of the system, and analyze the stability and buffer capacity of the system structure. Ability to resist external shocks. In practical application, the two should be combined to reflect the overall view of the system in which the research object is located from both vertical and horizontal perspectives.

4) Practical and operable principles
 At present, although the indicator system established in the field of water resources sustainability research is relatively complete in theory, it is not very operable. Therefore, the evaluation indicators cannot be separated from the reality of relevant data and information. The indicator system established should be simple and clear, have strong comparability, easy to obtain parameters, and be easy to calculate and analyze in order to achieve quantitative indicators and improve operability.

5) Combining qualitative and quantitative indicators principles
 Qualitative indicators can vividly describe and clarify the attribute characteristics of the research object; while quantitative indicators can improve the accuracy of evaluation. Quantitative indicators and qualitative indicators are complementary to each other. Both are indispensable. In practice, the two must be combined.

6) Indicator sensitivity and stability principle
The selection of the environmental impact assessment indicator system for water resources protection and utilization planning should be sensitive to changes in the state of the water environment, and should also have a certain stability.

(7) Unity of space and time principles

Water environment health is a dynamic concept, which refers to a certain period of time and a certain region state, which require water resources to be orderly, stable, and coordinated under the constraints of the environment, resources, and population, to prevent the instability of water environment systems and the decline of functions. Therefore, when establishing the indicator system, we must fully consider the imbalance and multi-level of regional economic and social development, and divide the economic and social development into layers and stages, and combine with the regionality of the natural ecological environment to establish The corresponding indicator system, and strive to unify space and time.

3.2. Selection of indicator system

The evaluation indicators are mainly used to describe and identify the environmental background conditions and the overall trend of environmental changes, and grasp the possible environmental impact of the implementation of the plan from a macro perspective, as an important basis for determining environmental protection goals and optimizing the planning scheme [10]. The selection of evaluation indicators should not be too detailed and too much, and factors with macro, comprehensive and regional influences should be evaluated. According to the principles for determining the evaluation indicators, a total of 38 indicators from the three aspects of water environment, ecological environment, and social environment are selected to constitute the environmental impact assessment index system for water resources protection and utilization planning. The specific indicators are shown in Table 1.

Evaluation indicators	Determine method or basis
Z_1 Water resources quantity	Data obtained by the water resources department survey or available
Z_2 Available water resources	Data obtained by the water resources department survey or available
Z_3 Development and utilization of water resources	Water resources exploitation / water resources exploitation resources
Z_4 Water quality condition	Environmental testing data
Z_5 Water quality target	Planning regulations for water administration
Z_6 Water function goal	Planning regulations for water administration
Z_7 Water environment capacity	Hydrological data calculation
Z_8 Water pollution index	Sewage water volume / total water volume
Z_9 Wastewater treatment efficiency	Sewage treatment capacity / total sewage discharge
Z_{10} Surface Water Modulus	Local surface water resources / calculated area
Z_{11} Groundwater recharge water modulus	Groundwater recharge / calculated area
Z_{12} Groundwater recoverable resource modulus	Groundwater recoverable resources / calculated area
Ecological Z_{13} Natural economic growth	Statistics based on population changes
Environmental and Social Indicators

Indicator	Description
Z_{14} Vegetation coverage	Vegetation area / land area
Z_{15} Soil erosion modulus	Salinized area / land area
Z_{16} Ecologically sensitive area	On-site investigation or consultation with relevant departments
Z_{17} Biodiversity	On-site investigation or consultation with relevant departments
Z_{18} Fish habitat	On-site investigation or consultation with relevant departments
Z_{19} Instream flow	Flow-based hydrology
Z_{20} Ecological water demand	Flow-based hydrology
Z_{21} Environmental water requirements	Flow-based hydrology
Z_{22} Ecological and environmental water requirements	Flow-based hydrology
Z_{23} Landscape water requirements	Consulting related departments
Z_{24} Geolocation	GPS positioning system
Z_{25} Economic status	Consultation with government agencies
Z_{26} Human health	Consultation with the Bureau of Health Statistics
Z_{27} Ground subsidence rate	$\frac{\Delta t\text{ ground subsidence during the period}}{\Delta t}$
Z_{28} Water resources per capita	Water resources / population
Z_{29} Hectares of arable land	Water resources / arable land area
Z_{30} Agricultural water ratio	Agricultural water withdrawal / total water use
Z_{31} Industrial water ratio	Industrial water withdrawal / total water consumption
Z_{32} Proportion of population with poor drinking water	Number of people with poor drinking water / total population
Z_{33} Annual growth rate of agricultural output	Statistics on the scale of agricultural economic development
Z_{34} GDP growth rate	Statistics according to the scale of economic development
Z_{35} Water consumption per 10,000 yuan of GDP	Total social production and living water consumption / GDP output value
Z_{36} Water consumption per 10,000 yuan of industrial output	Industrial water withdrawal / industrial output value
Z_{37} Water-saving irrigation area	Water-saving irrigation area / arable land area
Z_{38} Farmland irrigation water quota	Effective irrigation area / arable land area

3.3. Explanation of the indicator system

Table 2 shows the significance of each evaluation index in the environmental impact evaluation index system of water resources protection and utilization planning.

Table 2. Explanation of each indicator of the environmental impact assessment indicator system for water resources protection planning.

5
Evaluation indicators	Representational meaning
Z_1 Water resources quantity	Sum of effective quantities of surface water and groundwater recharge
Z_2 Available water resources	The amount of water resources that can be developed and used in a certain area under certain social and economic conditions
Z_3 Development and utilization of water resources	Water use as a percentage of water available
Z_4 Water quality condition	Reflects the stress of the water environment on external influences
Z_5 Water quality target	Reflects the stress of the water environment on external influences
Z_6 Water function goal	Reflects the stress of the water environment on external influences
Z_7 Water environment capacity	Reflect the natural carrying capacity of the water environment
Z_8 Water pollution index	Reflects the stress of the water environment on external influences
Z_9 Wastewater treatment efficiency	Reflects the stress of the water environment on external influences
Z_{10} Surface Water Modulus	Reflect the impact of surface water on the water environment
Z_{11} Groundwater recharge water modulus	Reflect ground water renewable performance
Z_{12} Groundwater recoverable resource modulus	Reflect the ability of groundwater to resist external stress
Z_{13} Natural economic growth rate of population	Reflects the stress of the water environment on external influences
Z_{14} Vegetation coverage	Reflect the stress of water environment stability on ecological environment
Z_{15} Soil erosion erosion modulus	Reflect the stress of water environment stability on ecological environment
Z_{16} Ecologically sensitive area	Reflects the stress of the water environment on external influences
Z_{17} Biodiversity	Reflects the stress of the water environment on external influences
Z_{18} Fish habitat	Reflects the stress of the water environment on external influences
Z_{19} Instream flow	Reflect the stress of water environment stability on ecological environment
Z_{20} Ecological water demand	Maintain corresponding water demand characteristic values under different water body ecosystem states
Z_{21} Environmental water requirements	Demand for water that is dependent on the environment corresponding to the water ecosystem
Z_{22} Ecological and environmental water requirements	Based on the ecological water requirements of the water body ecosystem, it meets the requirements of the environment with different functional requirements
Z_{23} Landscape water requirements	Reflects the stress of the water environment on external influences
Z_{24} Geolocation	Reflecting the natural attributes of water resources
Z_{25} Economic status	Reflects the stress of the water environment on external influences
Z_{26} Human health	Reflects the stress of the water environment on external influences
4. Discussion and suggestions

The environmental impact assessment index system for water resources protection and utilization planning is a health assessment of water collection environment, rational development and utilization planning of water resources, rational allocation of water resources, implementation of water abstraction permits, water resources environment supervision and management, ecological environmental protection, planning analysis, identification of environmental impacts, determination of environmental targets and evaluation indicators, environmental impact analysis and evaluation, environmental protection countermeasures, recommended planning schemes, public participation, monitoring and follow-up evaluation plans, etc. It is a systematic reflection of the functions of society and the government on groundwater resources. It involves many aspects such as nature, society, politics, economy, and technology. It is a complex system engineering of collection of technical, social, and policy aspects. The core content of the environmental assessment of water resources protection and utilization planning is to coordinate the relationship among water resources, water environment, economic society and ecological environment, and to achieve sustainable use of water resources. Each evaluation index in the evaluation index system constructed in this paper refers to the standards promulgated by the state and the previous indicators of sustainable use of water resources, water conservation planning, groundwater environment vulnerability assessment, and water environment assessment research [11 ~ 22]. Environmental impact assessment of water resources planning has just begun in China. The comprehensiveness of China's water conservancy planning indicators, the difficulty in obtaining environmental indicator data, and the problems in quantification. And research on the relationship between water conservancy development and the environment on a macro scale is still ongoing. This has brought new challenges to the environmental impact assessment of water conservancy planning in China.

It is suggested to strengthen basic research in the process of environmental impact assessment of water conservancy planning, establish a spatial system for environmental impact assessment of water conservancy planning, and build a basic database for evaluation [23]. At the same time, thematic management system [24] was established to construct thematic information, combining spatial data and
attribute data required for water resources and ecological environment assessment into an organic whole. Make the spatial data information serve the water resources and ecological assessment, and complete the two-way query of spatial data and attribute data on this basis. It can not only perform various types of query on the attribute database, but also directly display the query results on the map, or use the map as a tool to query the detailed information of each spatial element on the map. In this way, the information is visually detailed, detailed, and unified.

Acknowledgments
This work was supported by the National Natural Science Foundation of China (Grants No. 51369009), the Natural Science Foundation of Guangxi Province, China (Grants No. 2016GXNSFAA380116)

References
[1] Wang Zhongjing, Zheng Jilin, Liu Minghua. Some problems in modern water resources planning and their solutions and technical methods (2): Scale effects of water resources planning [J]. Haihe Water Resources, 2003 (2): 16 ~ 18.
[2] Zhu Dangsheng, Zhang Jianyong, Shi Xiaoxin, Yin Wei. Modern Water Resources Protection Planning Technology System [J]. Water Resources Protection, 2011, 9, 27 (5).
[3] Lu Shuyu, Luan Shengji, Zhu Tan, etc. Environmental Impact Assessment [M]. Beijing: Higher Education Press, 2001.
[4] Huang Xianjin. Circular economy: industrial model and policy system [M]. 2005.
[5] Ye Zhengbo. Construction theory of regional sustainable development index system based on three-dimensional integration [J]. Environmental Protection Science, 2002, 28 (1): 35 ~ 37.
[6] Jiang Jiyi. Research and application of groundwater environmental health theory and evaluation system [M]. Jilin University, 2007, 6.
[7] Wang Jinye, Cheng Daopin, Hu Xintian, etc. Guangxi Ecological Environment Evaluation Index System and Fuzzy Evaluation [J]. Journal of Northwest Forestry University, 2006, 21 (4): 5 ~ 8.
[8] Chen Qingwei, Liu Changming, Hao Fanghua. Research on Environmental Impact Assessment Index System of Water Conservancy Planning [J]. Water Resources and Hydropower Technology, 2007, 4 (28).
[9] Zou Jiaxiang, Zhu Dangsheng. Review and prospect of environmental water conservancy research [J]. Water Resources Protection, 2011, 9, 27 (5).
[10] Gu Hongbin, Yu Weqi, Cui Lei. Preliminary Study on Environmental Impact Assessment of Hydropower Planning in China [J]. Hydropower Station Design, 2007 (03).
[11] Shen Zhenyao, Yang Zhifeng. Evaluation Index System and Evaluation Method of Water Resources Renewability in the Yellow River Basin [J]. Journal of Natural Resources, 2002, 17 (2): 188 ~ 196.
[12] Yang Xiaohua, Yang Zhifeng, Shen Zhenyao, et al. Genetic projection pursuit method for evaluation of water resources reproducibility [J]. Advances in Water Science, 2004, 15 (1): 73 ~ 76.
[13] Department of Geology and Environment, Ministry of Land and Resources. Guidelines for Mapping of Groundwater Resources [M]. Beijing: Geological Publishing House, 2001.
[14] Song Yinsheng, Li Gongyan. Quantitative Evaluation of Environmental Hydrogeological Conditions in Xincheng District, Zaozhuang, Shandong Province [J]. Achievements and Methods, 1999, 20 (2): 49 ~ 51.
[15] Zhang Guanghui, Fei Yuhong, Liu Keyan, et al. Groundwater evolution and countermeasures in the Haihe Plain [M]. Beijing: Science Press, 2004.
[16] Lu Shuyu. Environmental Impact Assessment [M]. Beijing: Higher Education Press, 2001.
[17] Ministry of Water Resources of the People's Republic of China. Guidelines for the evaluation of groundwater over-extraction areas (SL 286 ~ 2003). Beijing: China Water Resources and Hydropower Press, 2003.
[18] Cheng Yuhui. Application of analytic hierarchy process in comprehensive evaluation of regional water resources [J]. Haihe Water Resources, 1992 (4): 21 ~ 25.

[19] Qin Yisu, Zhu Yanhua, Cao Shulin, et al. Rational development and utilization of groundwater resources in the Yellow River Basin [M]. Zhengzhou: Yellow River Water Resources Press, 1998.

[20] Lin Xueyu, Wang Jinshe, et al. Research on groundwater resources and its renewable capacity in the Yellow River Basin. Zhengzhou: Yellow River Water Resources Press, 2006.

[21] Tong Geya, Dong Zengchuan, Chen Kangning et al. Evaluation of sustainable development of regional water resources comprehensive planning [J]. Journal of Hohai University (Journal of Natural Science), 2006, 34 (3): 254 ~ 257.

[22] Shandong Academy of Water Conservancy. Research report on water-saving society construction in Shandong Province [R]. 2006.

[23] Zhou Yonghong, Zhao Yanwen, Shi Guoqing, etc. Environmental Impact Assessment of Water Conservancy Planning [J]. Water Resources Protection, 2008, 9, 24 (5).

[24] Jiang Yunzhong, Zhao Hongli, Han Suhua. Construction of management information system for water resources and ecological environment assessment [J]. China Water Resources, 2004, 3.