NATHÁLIA FERREIRA LIMA

Métodos moleculares para detecção e quantificação de gametócitos de *Plasmodium*

Dissertação apresentada ao Programa de Pós-Graduação em Biologia da Relação Patógeno-Hospedeiro do Instituto de Ciências Biomédicas da Universidade de São Paulo, para obtenção do Título de Mestre em Ciências.

São Paulo
2012
NATHÁLIA FERREIRA LIMA

Métodos moleculares para detecção e quantificação de gametócitos de *Plasmodium*

Dissertação apresentada ao Programa de Pós-Graduação em Biologia da Relação Patógeno-Hospedeiro do Instituto de Ciências Biomédicas da Universidade de São Paulo, para obtenção do Título de Mestre em Ciências.

Área de concentração: Biologia da Relação Patógeno-Hospedeiro

Orientador: Prof. Dr. Marcelo Urbano Ferreira

Versão original

São Paulo
2012
Métodos moleculares para detecção e quantificação de gametócitos de Plasmodium / Nathália Ferreira Lima. -- São Paulo, 2012.

Orientador: Prof. Dr. Marcelo Urbano Ferreira.

Dissertação (Mestrado) – Universidade de São Paulo. Instituto de Ciências Biomédicas. Departamento de Parasitologia. Área de concentração: Biologia da Relação Patógeno-Hospedeiro. Linha de pesquisa: Métodos moleculares para detecção de Plasmodium.

Versão do título para o inglês: Molecular methods for detection and quantification of gametocytes of Plasmodium.

1. Doenças parasitárias 2. Reação em cadeia por polimerase 3. Malária 4. Plasmodium 5. Diagnóstico 6. Amplificação de gene I. Ferreira, Prof. Dr. Marcelo Urbano II. Universidade de São Paulo. Instituto de Ciências Biomédicas. Programa de Pós-Graduação em Biologia da Relação Patógeno-Hospedeiro III. Título.
Candidato(a): Nathália Ferreira Lima

Título da Metodologia: Métodos moleculares para detecção e quantificação de gametócitos de Plasmodium.

Orientador(a): Prof. Dr. Marcelo Urbano Ferreira.

A Comissão Julgadora dos trabalhos de Defesa da Dissertação de Mestrado, em sessão pública realizada a/.........../..........., considerou

() Aprovado(a) () Reprovado(a)

Examinador(a):
Assinatura: ..
Nome: ...
Instituição: ..

Examinador(a):
Assinatura: ..
Nome: ...
Instituição: ..

Presidente:
Assinatura: ..
Nome: ...
Instituição: ..
São Paulo, 26 de novembro de 2010.

PARECER 965/CEP

A Comissão de Ética em Pesquisas com Seres Humanos do ICB, na sessão de 26.10.2010, APROVOU o projeto intitulado: “Detecção de gametócitos em infecções maláricas sintomáticas e assintomáticas na Amazônia rural brasileira” sob responsabilidade de execução dos autores Prof. Dr. MARCELO URBANO FERREIRA e a aluna NATHÁLIA FERREIRA LIMA.

Cabe aos pesquisadores executantes elaborar e apresentar a este Comitê, relatórios anuais (parciais ou final), de acordo com a resolução 196/06 do Conselho Nacional da Saúde, item IX. 2 letra c.

O primeiro relatório deverá ser encaminhado à Secretaria deste CEP em 26.10.2011.

Atenciosamente,

Prof. Dr. PAULO M. A. ZANOTTO
Coordenador da Comissão de Ética em Pesquisas com Seres Humanos - ICB/USP

Comissão de Ética em Pesquisa com Seres Humanos do Instituto de Ciências Biomédicas / USP Aprovada pela Comissão Nacional de Ética em Pesquisa - CONEP, em 10 de fevereiro de 1998.
Aos meus queridos pais e a minha irmã, que sempre compreenderam minhas escolhas, me apoiaram e me auxiliaram em todos os dias da minha vida.
AGRADECIMENTOS

Ao Professor Marcelo Urbano Ferreira, pelos ensinamentos transmitidos, por seu exemplo profissional, competência, dedicação, disponibilidade irrestrita e principalmente pela oportunidade, tão gratificante, de conhecer a área endêmica de malária.

À população do Ramal do Remansinho, Ramal dos Goianos, Ramal da Castanheira, Ramal da Linha 1 e Ramal dos Seringueiros sem a participação dos quais este trabalho não teria sido concebido. Gostaria de agradecê-los também pelos momentos enriquecedores.

A todos que compartilharam comigo os bons momentos durante o trabalho de campo: Raquel Muller Gonçalves, Susana Viana, Camilla Batista, Roseli Malafronte, Márcia Castro, Pablo Secato Fontoura, Mônica da Silva Nunes.

A toda equipe do Laboratório de Epidemiologia Molecular de Malária, Raquel Muller Gonçalves, Michelle C. Brandi, Camilla Batista, Maria José Menezes, Melissa da Silva Bastos, Vanessa Cristina Nicolete, Priscila Thiara Rodrigues, Bianca Ceccheco Carlos, Amanda Begosso Gozze, Rosa Del Carmem Miluska, Simone Ladeia-Andrade pelas trocas de experiências, favores cedidos e pelos bons momentos de convivência.

A toda equipe do Instituto de Ciências Biomédicas II da Universidade de São Paulo pelo suporte logístico e administrativo para consecução desta dissertação.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela bolsa de Mestrado concedida.

Especial agradecimento à Raquel Muller Gonçalves, Michelle C. Brandi pelo apoio e principalmente pela amizade durante essa jornada da minha vida, sem o companheirismo de vocês teria sido, com certeza, muito mais difícil. Obrigada por terem compartilhado momentos tão alegres comigo.
Agradecimento mais que especial a Melissa da Silva Bastos sem a qual o trabalho provavelmente não teria sido possível. Obrigada por sua irrestrita disposição em me ajudar, por ter sido a minha dupla!

A Natália Silveira por ter participado por tabela, de todo esse processo e ter me ajudado tanto. Você é uma amiga muito especial!

A minha família. Vocês são as pessoas mais importantes da minha vida! Obrigada por compreenderem minha ausência e pelo apoio na realização dos meus sonhos! Saibam que cada conquista minha é mérito de vocês!

Ao Dr. Gerhard Wunderlich por todo auxílio durante o trabalho.

Aos professores Dr. Cláudio Marinho, Dra. Cristina Brito e Dra. Ester Sabino, pela participação em meu exame de qualificação e pelas suas sugestões.

Enfim, muito obrigada a todos que contribuíram para realização deste trabalho.
"Não deixe que a saudade sufoque, que a rotina acomode, que o medo impeça de tentar. Desconfie do destino e acredite em você. Gaste mais horas realizando que sonhando, fazendo que planejando, vivendo que esperando porque, embora quem quase morre esteja vivo, quem quase vive já morreu."

Luiz Fernando Veríssimo
RESUMO

LIMA, N. F. Métodos moleculares para detecção e quantificação de gametócitos de Plasmodium. 2012. 91 f. Dissertação (Mestrado em Biologia da Relação Patógeno Hospedeiro) – Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 2012.

A detecção microscópica de gametócitos pode subestimar sua prevalência e induzir a uma avaliação errônea do potencial de transmissão da malária em áreas endêmicas, mantendo desconhecida a real proporção de indivíduos infectados que são potenciais transmissores da doença. Este trabalho teve como objetivo a padronização de métodos moleculares para detecção e quantificação de gametócitos de P. falciparum e P. vivax. Descrevemos um método de transcrição reversa (RT) seguida por PCR quantitativa em tempo real (qRT-PCR), que tem como alvo transcritos do gene pvs25 e pfs25 presentes apenas em gametócitos maduros dessas espécies. Detectamos transcritos de pvs25 em 53 das 55 (96,4%) amostras sanguíneas provenientes de indivíduos infectados por P. vivax, diagnosticados durante um estudo de corte realizado em um assentamento agrícola localizado no sul do estado do Amazonas. qRT-PCR foi mais sensível do que a RT-PCR convencional, que tem como alvo o mesmo gene. Padronizamos uma PCR aninhada para detecção de gametócitos de P. vivax em amostras colhidas em membranas FTA, com base no mesmo alvo molecular, obtendo resultados positivos em 71,4% (23/35) das amostras de P. vivax testadas. A estimativa do número de transcritos do gene pvs25 permitiu examinar a potencial infecciosidade de portadores de gametócitos de forma quantitativa. Descobrimos que a maioria (61,9%) dos portadores de gametócitos são assintomáticos ou tem parasitemias subpatentes e não teriam sido detectados pelas estratégias de controle de rotina da malária. No entanto, esses portadores de gametócitos não identificados, geralmente possuem baixas densidades de gametócitos e contribuem com uma pequena fração (até 4%) da carga global de gametócitos na comunidade. Assim, mais estudos são necessários para determinar a contribuição relativa, para a transmissão da malária, das infecções assintomáticas de longa duração mas com baixasdensidades de gametócitos, que não são diagnosticadas e tratadas.

Palavras-chave: Malária. Plasmodium. Gametócitos. Diagnóstico. Real time PCR.
ABSTRACT

LIMA, N. F. Molecular methods for detection and quantification of gametocytes of Plasmodium. 2012. 91 p. Masters thesis (Biology of the Relation Pathogen-Host) – Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 2012.

The microscopic detection of gametocytes may underestimate their prevalence, leading to an inaccurate assessment of the potential for malaria transmission in receptive areas and a poor estimate of the proportion of infected individuals who are infectious. We aimed to standardize molecular methods for detection and quantification of gametocytes of Plasmodium falciparum and Plasmodium vivax. Here, we describe a quantitative reverse transcriptase (RT) real-time PCR (qRT-PCR) that targets transcripts of the mature gametocyte-specific pvs25 gene. We found mature gametocytes in 53 of 55 (96.4%) P. vivax infections diagnosed during an ongoing cohort study in a farming settlement located in the southern of Amazonas state. SYBR green qRT-PCR was more sensitive than a conventional RT-PCR that targets the same gene. We also standardized a nested PCR, with the same target, for detecting P. vivax gametocytes in blood samples spotted onto FTA membranes and obtained positive results in 71.4% (23 of 35) samples tested. Most (61.9%) gametocyte carriers were either asymptomatic or had subpatent parasitemias, and would have been missed by routine malaria control strategies. However, potentially undiagnosed gametocyte carriers usually had low-density infections and contributed a small fraction (up to 4%) to the overall gametocyte burden in the community. Further studies are required to determine the relative contribution to malaria transmission of long-lasting but low-density gametocytsemias in asymptomatic carriers that are left undiagnosed and untreated.

Keywords: Malaria. Plasmodium. Gametocytes. Diagnosis. Real-time PCR.
LISTA DE ILUSTRACÕES

Figura 1 – Distribuição das áreas sob risco de transmissão de malária no mundo, em 2010........20
Figura 2 – Distribuição dos casos de malária no Brasil..22
Figura 3 – Áreas de transmissão de malária no Brasil, do ano de 2000 e 2008, de acordo com o Índice Parasitário Anual (IPA)..23
Figura 4 – Ciclo de vida de *Plasmodium* e desenvolvimento de gametócitos de *Plasmodium falciparum*..26
Figura 5 – Localização do assentamento agrícola conhecido como Remansinho, a principal área de estudo, em relação ao município de Acrelândia e à rodovia BR 364.....................37
Figura 6 – Distribuição da localização dos domicílios de acordo com as coordenadas geográficas obtidas nos inquéritos ..38
Figura 7 – Locais de origem das amostras venosas adicionais de episódios agudos de malária Municípios de Nova Califórnia e Plácido de Castro...40
Quadro 1 - Primers empregados na amplificação dos genes específicos *Pfs25* em *P. falciparum* e *Pvs25* em *P. vivax*..52
Figura 8 – Fragmentos obtidos ao final da PCR convencional para detecção de gametócitos visualizados em gel de agarose 1,5%..53
Quadro 2- Primers empregados na amplificação do plasmídeo M13..56
Figura 9 – Exemplo de curva-padrão, obtida em PCR de tempo real, para a quantificação do número de cópias de *pvs25* e *pfs25*..57
Figura 10 – Correlação entre número de cópias de *pvs25* detectado pela PCR quantitativa em tempo real e parasitemia das amostras venosas criopreservadas...62
Figura 11 – Proporção de portadores gametócito que seriam diagnosticados em 53 infecções por *P. vivax* no noroeste do Brasil, em um cenário hipotético onde são rastreados apenas indivíduos assintomáticos, de acordo com a densidade de gametócitos, estimado pelo número de transcritos do gene *pvs25* detectado pela PCR quantitativa em tempo real..64
Figura 12 – Proporção de portadores de gametócito que seriam diagnosticados em 53 infecções por *Plasmodium vivax* no noroeste do Brasil, em um cenário hipotético onde apenas infecções com o exame de gota espessa positivos são detectadas, de acordo com a
densidade de gametócitos, estimado pelo número de transcritos do gene *pvs25* detectado pela PCR quantitativa em tempo real.

Figura 13 – Proporção de portadores de gametócito que seriam diagnosticados e **infecções por Plasmodium vivax** no noroeste do Brasil, em um cenário hipotético onde são selecionados apenas indivíduos sintomáticos cuja infecção foi detectada por microscopia convencional, de acordo com a densidade de gametócitos, estimado pelo número de transcritos do gene *pvs25* detectado pela PCR quantitativa em tempo real.

Figura 14 – Fragmentos obtidos ao final da RT-PCR Aninhada para detecção de gametócitos de *P. vivax* visualizados em gel de agarose 1,5%.
LISTA DE TABELAS

Tabela 1 – Tipos de amostra sanguínea e métodos de armazenamento e processamento para a extração de RNA e amplificação de Pvs25..53

Tabela 2 – Dados das amostras venosas criopreservadas colhidas no Remansinho........58

Tabela 3 – Dados das amostras venosas adicionais de episódios agudos de malária colhidas em Nova Califórnia e Plácido de Castro..61

Tabela 4 – Comparação entre os resultados obtidos com a RT-PCR convencional qualitativa (RT)-PCR quantitativo e RT-PCR em tempo real, (qRT-PCR), ambas tendo como alvo o gene pvs25, para a detecção de gametócitos em 64 infecções por Plasmodium vivax de noroeste do Brasil..62
LISTA DE ABREVIATURAS, SIGLAS E SÍMBOLOS

Sigla	Significado
AC	Acre
AM	Amazonas
C	Citosina
CEP	Comissão de Ética e Pesquisa em Seres Humanos
DARC	Duffy antigen receptor for chemokines
DBP	Duffy binding protein
DDT	Diclorodifenilclororoetano
DNA	Ácido desoxirribonucleico
DNTP	Desoxirribonucleotídeos fosfatados
DTT	Dithiothreitol
EDTA	Ethylenediamine tetraacetic acid
FTA	Filter paper-based DNA extraction
g	Gravidade
H	Horas
ICB	Instituto de Ciências Biomédicas
INCRA	Instituto Nacional de Colonização e Reforma Agrária
IPA	Índice Parasitário Anual
IPTG	Isopropil-1-tio-β-D-galactopiranosida
Km	quilômetros
ml	mililitro
mRNA	Ácido ribonucleico mensagem
N	Tamanho amostral
Neg	Negativo
No.	Número
OMS	Organização Mundial da Saúde
p	Nível de significância
PCR	Reação em cadeia da polimerase
PDS	Projeto de desenvolvimento sustentável
pH	Potencial hidrogeniônico
QT	Quantitative nucleic acid sequence-based amplification
RDTs – *Rapid Diagnostic Tests* (Teste rápido)
RNA – ácido ribonucleico
rRNA – ácido ribonucleico ribossômico
RT– Transcriptase reversa
RT- LAMP – *Reverse Transcription-Loop-mediated Isothermal Amplification*
RT-PCR – Reação em cadeia da polimerase em tempo real
SIVEP – Sistema de Informação de Vigilância Epidemiológica
SOC – MacConKey Agar Medium
SPSS – *Statistical Package for the Social Sciences*
T – timina
Tris- HCL – tris (hydroxymethyl)aminomethane hydrocloryde
USP – Universidade de São Paulo
Xgal – 5-bromo-4-cloro-3-indolil-B-D-galactosídeo
°C – graus Celsius
ρ – coeficiente de correlação de Pearson
µl – microlitro
SUMÁRIO

1 INTRODUÇÃO .. 18
 1.1 A Malária .. 19
 1.2 A Malária no Brasil .. 21
 1.3 Ciclo de vida de plasmodium e desenvolvimento de gametócitos .. 24
 1.4 Gametócitos: morfologia e biologia .. 26
 1.5 Gametocitogênese .. 28
 1.6 Métodos moleculares para detecção de gametócitos ... 30
 1.7 Importância das infecções assintomáticas na transmissão da malária .. 32
2 OBJETIVOS .. 34
 2.1 Objetivo geral .. 35
 2.2 Objetivos específicos .. 35
3 METODOLOGIA ... 36
 3.1. Área e população de estudo .. 37
 3.1.1 Remansinho .. 37
 3.1.2 Amostras venosas adicionais de episódios agudos de malária .. 39
 3.2 Processamento das amostras .. 41
 3.2.1 Amostras venosas criopreservadas .. 41
 3.2.2 Amostras venosas impregnadas em cartões ... 41
 3.2.3 Amostras capilares impregnadas em cartões FTA ... 42
 3.3 Diagnóstico molecular de malária ... 43
 3.4 Detecção de gametócitos ... 44
 3.4.1 Extração de RNA de amostras venosas criopreservadas ... 44
 3.4.2 Extração de RNA de amostras venosas impregnadas em diferentes cartões e de amostras capilares impregnadas em cartões FTA .. 44
 3.4.3 Transcrição Reversa ... 45
 3.4.4 RT- PCR convencional para detecção de gametócitos .. 45
 3.4.5 RT- PCR quantitativa em tempo real para detecção de gametócitos .. 46
 3.4.6 RT- PCR Aninhada para detecção de gametócitos de P. vivax .. 46
 3.5. Aspectos éticos ... 46
 3.6 Análises estatísticas ... 47
4 RESULTADOS ... 48
4.1 População de estudo ... 49

4.1.1 Remansinho: doadores de amostras venosas criopreservadas ... 49

4.1.2 Nova Califórnia e Plácido de Castro: doadores das amostras venosas adicionais de episódios agudos de malária ... 49

4.2 Controles de extração e amplificação .. 50

4.3 Extração de RNA .. 51

4.4 RT-PCR convencional para detecção de gametócitos .. 52

4.5 PCR quantitativa em tempo real .. 55

4.6 Teste de eficiência de cartões de coleta na conservação de RNA ... 63

4.7 qRT-PCR e RT-PCR aninhada para detecção de gametócitos de P. vivax em amostras 66

4.8 Amostras capilares impregnadas em cartões FTA .. 67

5. DISCUSSÃO ... 70

5.1 Detecção molecular de gametócitos ... 71

5.2 Gametócitos em portadores assintomáticos de parasitemias subpatente 73

5.3 Detecção de gametócitos de P. vivax em amostras impregnadas em cartões 75

6 CONCLUSÃO ... 79

REFERÊNCIAS ... 81

APÊNDICE - Artigo de periódico ... 91
1 INTRODUÇÃO
1.1 A Malária

A malária é uma infecção potencialmente grave e a mais importante das parasitoses, ocasionando significante morbidade e mortalidade no mundo. Atualmente, considera-se que cinco espécies de plasmódios são causadores de infecção em seres humanos: *Plasmodium falciparum*, *P. vivax*, *P. ovale*, *P. malariae* e *P. knowlesi* (WORLD HEALTH ORGANIZATION, 2011). A infecção por essas diferentes espécies tem suas características próprias, bem como apresenta diferenças nas suas áreas de distribuição.

Plasmodium falciparum e *P. vivax* são os principais parasitos causadores da doença e são responsáveis pela maior parte dos casos de malária em todo o mundo. *Plasmodium falciparum* é considerada a espécie mais virulenta devido aos elevados níveis de mortalidade aos quais se encontra associada, principalmente na África (MENDIS et al., 2001). No que se refere a distribuição geográfica, entretanto, *P. vivax* é a espécie mais amplamente distribuída no mundo (GUERRA et al., 2010). Estima-se que em 2010, 2.480 bilhões de pessoas viviam em áreas de risco para *P. vivax*, a grande maioria vivendo na Ásia Central (82%) com frações muito menores no Sudeste da Ásia (9%), Américas (6%) e África (3%) (HAY et al., 2012). Além disso, estudos realizados têm mostrado que a infecção por essa espécie também pode causar manifestações graves, incluindo insuficiência renal, insuficiência respiratória e anemia grave, além de outras complicações, mostrando que a malária vivax não é tão benigna como anteriormente se pensava (ANSTHEY et al., 2009; KASLIWAL et al., 2009; KOCHAR et al., 2005).

A malária mantém-se como um dos maiores problemas globais de saúde pública, colocando em risco cerca de 3,3 bilhões de pessoas, quase metade da população mundial (Figura 1). É transmitida em 106 países, a maioria deles situada em áreas tropicais e subtropicais, onde a temperatura e a pluviosidade propiciam o desenvolvimento do parasito em seus vetores, insetos do gênero *Anopheles* (WHO, 2011).

Em 2010, foram registrados cerca de 250 milhões de casos de malária em todo o mundo, dos quais 91% causados por *P. falciparum*. A maioria dos casos (85%) ocorreu na África subsaariana, seguida pelo Sudeste Asiático (10%) e o Oriente Médio e Norte da África (4%) (WHO, 2010). Entre os anos de 2000 e 2009, observou-se tendência de aumento no número de casos até 2005, com declínio a seguir, atribuído ao sucesso parcial das medidas de vigilância e controle da malária em escala global. Nas Américas, reduziu-se em 42% o
número de casos de malária registrados entre 2005 e 2009. O relatório da Organização Mundial da Saúde mostrou também que o número de óbitos por malária no mundo diminuiu em cerca de 20% entre 2000 e 2009, com a região das Américas sendo responsável pela maior redução proporcional (48%) (WHO, 2010).

Figura 1 - Distribuição das áreas sob risco de transmissão de malária no mundo, em 2010.

Estas estimativas globais são um resultado direto da crescente capacidade de recolher e assimilar grandes conjuntos de dados, que permite o monitoramento de tendências na incidência de malária e prevalência do parasito. Estas estimativas em larga escala de países onde a malária é endêmica (GUERRA, 2008), juntamente com exemplos de países específicos, têm destacado a tendência recente de redução da intensidade de transmissão da malária em muitas áreas endêmicas. Essas análises têm, pelo menos em parte, estimulado (ou reestimulado) a agenda de eliminação da malária (MENDIS, 2009). Embora haja muito debate sobre os fundamentos e provável sucesso dos programas de eliminação, as discussões em curso levaram a uma reavaliação das atuais estratégias para reduzir ou acabar com a transmissão dos plasmódios humanos.
O controle da malária baseia-se atualmente no tratamento dos indivíduos infectados e no tratamento profilático de populações que residem em áreas de alto risco, além do controle do mosquito vetor, que é realizado pela borrifação intradomiciliar de inseticidas e o uso de mosquiteiros impregnados com inseticidas (KAPPE et al., 2010).

A transmissão da malária de um hospedeiro humano infectado para um mosquito suscetível é mediada por estágios sexuados altamente especializados, os gametócitos. Um importante determinante da transmissão é a frequência com que o vetor se alimenta em hospedeiros infectados com densidades de gametócitos suficientes em seu sangue periférico. Portanto, é extremamente importante definir o reservatório infeccioso da malária dentro de uma área, isto é, as pessoas capazes de transmitir a malária aos mosquitos, já que este reservatório constitui a parcela da população que deve ser alvo das intervenções para diminuição da transmissão da malária (BOUSEMA; DRAKELEY, 2011).

1.2 A Malária no Brasil

A malária permanece entre as principais endemias parasitárias brasileiras. Entre 1970 e meados da década de 1990, a incidência anual de malária no Brasil multiplicou-se por dez, estabilizando-se por vários anos em torno de 500.000 casos anuais, dos quais mais de 99% são adquiridos na Região Amazônica (PAN AMERICAN HEALTH ORGANIZATION, 2008). De acordo com a Organização Pan-Americana de Saúde (PAHO, 2009), em 2008 o número de casos clínicos de malária no Brasil correspondia a 56% de todos os casos relatados nas Américas e no Caribe, sendo que 42% destes casos foram relatados no Estado do Amazonas.

Em 2011, 265.919 casos foram registrados, com mais de 99% das notificações provenientes da Amazônia Legal, que compreende os estados do Amazonas, Pará, Acre, Roraima, Rondônia, Amapá, Mato Grosso, Tocantins e Maranhão, onde a transmissão da doença geralmente está relacionada às condições ambientais e socioculturais (OLIVEIRA-FERREIRA et al., 2010; SISTEMA DE INFORMAÇÃO DE VIGILÂNCIA EPIDEMIOLÓGICA, 2012). Segundo o Ministério da Saúde, mais de 60% do território brasileiro possui condições propícias à transmissão da doença, sendo o principal vetor no Brasil o mosquito da espécie Anopheles darlingi, que está amplamente distribuído no país.

Dados do Programa Nacional de Controle da Malária revelaram que, em 2009, apenas três estados, Amazonas, Pará e Rondônia, registraram 78% dos casos de malária,
aproximadamente 240 mil infecções confirmadas por microscopia. Nestes estados, a grande maioria dos casos foi diagnosticada em residentes da zona rural, mas há registros também nas áreas urbanas, de cerca de 15%.

Figura 2 - Distribuição dos casos de malária no Brasil.

Entretanto, é na região extra-amazônica que se observa a maior letalidade da malária, seja devido ao diagnóstico tardio, seja devido ao manejo inadequado dos casos esporádicos importados de áreas endêmicas ou mesmo autóctones em poucos estado (Sistema de Informação de Vigilância Epidemiológica, 2010).

Dentre as três espécies de plasmódios humanos transmitidas no País, *P. vivax* é a espécie responsável por 83,7% dos casos, embora *P. falciparum* e *P. malariae* também sejam encontradas, em menores proporções (OLIVEIRA-FERREIRA et al., 2010).

O risco de contrair malária não se mostra uniforme no Brasil. A estratificação de risco é baseada em um indicador, a incidência parasitária anual (IPA), que corresponde ao número de infecções diagnosticadas em cada localidade ao longo de um ano dividido por sua população. Com base no IPA, definem-se áreas de alto risco (IPA maior que 49,9 casos de
malária/1.000 habitantes), médio risco (IPA, entre 10 e 49,9 casos/1.000 habitantes) e baixo risco (IPA de 0,1 a 9,9 casos/1.000 habitantes) (SARAIVA et al., 2009). É possível observar que, apesar das diversas estratégias de controle aplicadas no país, os níveis de transmissão estão em constante mudança, e isso requer um monitoramento frequente a fim de aperfeiçoar o alcance e eficácia das medidas empregadas (OLIVEIRA-FERREIRA et al., 2010).

Figura 3 - Áreas de transmissão de malária no Brasil, do ano de 2000 e 2008, de acordo com o Índice Parasitário Anual (IPA).

IPA baixo: < 10 casos; IPA médio: 10 a 49,9 casos; IPA alto: > 50 casos notificados.
Fonte: OLIVEIRA-FERREIRA et al., 2010.

As populações migrantes com escassa imunidade e moradias precárias geralmente possuem as condições mais propícias para a infecção. As florestas tropicais correspondem as áreas de alto risco, pois a população está mais exposta e há maior densidade de mosquitos transmissores. Populações mais antigas, residentes em florestas menos densas, com infraestrutura social mais desenvolvida, possuem níveis elevados de proteção. As áreas em que vivem apresentam geralmente médio risco, pois têm menor densidade de A. darlingi, com reativação focal e predominio de P. vivax. As áreas de baixo risco são aquelas com incidência de malária instável, apresentando populações com infraestrutura social bem desenvolvida, onde a transmissão foi interrompida, mas ainda conserva o potencial de surtos da doença. As áreas sem risco são aquelas com ausência de fatores epidemiológicos necessários para a transmissão de malária (FUNDAÇÃO NACIONAL DE SAÚDE, 1996).
1.3 Ciclo de vida de Plasmodium e o desenvolvimento de gametócitos

A transmissão natural da malária ocorre quando fêmeas de mosquitos anofelinos inoculam no hospedeiro vertebrado, durante seu repasto sanguíneo, as formas infectantes do parasito, denominadas esporozoítos. Embora os esporozoítos possam ser injetados diretamente nos capilares sanguíneos do hospedeiro, a maior parte deles é inoculada no tecido subcutâneo (AMINO et al., 2006; PRUDENCIO; RODRIGUEZ; MOTA, 2006; VANDERBERG, FREVERT, 2004). Aproximadamente 70% dos esporozoítos alcançam a circulação sanguínea; os 30% restantes invadem o sistema linfático, apesar de alguns conseguirem se desenvolverem em formas similares as formas exoeritrocitárias, são fagocitados por células dendriticas (PRUDENCIO; RODRIGUEZ; MOTA, 2006).

Pela circulação sanguínea os esporozoítos migram até o fígado onde, após atravessar as células de Kupffer, penetram nos hepatócitos. Nos hepatócitos, os esporozoítos se multiplicam por reprodução assexuada (esquizogonia), originando milhares de merozoitos hepáticos (15.000 a 40.000, dependendo da espécie). O desenvolvimento nas células do fígado requer aproximadamente uma semana para o *P. falciparum* e *P. vivax* e cerca de duas semanas para o *P. malariae*. Nas infecções por *P. vivax* e *P. ovale*, o mosquito inocula distintas populações de esporozoítos; algumas se desenvolvem rapidamente enquanto outras ficam quiescentes (hipnozoítos) no fígado do hospedeiro e podem ser reativadas mediante sinais pouco compreendidos (KROTOSKI, 1985). A produção de hipnozoítos dificulta ainda mais o controle da doença, pois, apesar de tratados, alguns indivíduos ainda apresentam recaídas após períodos variáveis de incubação (GARCIA, 2010).

Os merozoítos liberados na corrente sanguínea possuem vida curta e são altamente suscetíveis à fagocitose. Por isso, rapidamente invadem os glóbulos vermelhos, iniciando o ciclo assexuado eritrocitário (BAER et al., 2007). Os merozoitos, após invadirem os eritrócitos, transformam-se em trofozoítos jovens e, posteriormente, em trofozoítos maduros e esquizontes que, por esquizogonia, originarão outros merozoitos capazes de infectar novos eritrócitos.

A fase eritrocitária do parasito coincide com a patogenia e as manifestações clínicas da malária, caracterizadas por síndromes febris cíclicas (paroxismo malárico), que variam de 48 a 72 horas, de acordo com a espécie, acompanhadas de mal-estar, cefaleia, cansaço, mialgia,
entre outros. O início dos sinais clínicos pode variar, dependendo da espécie, de 7 a 15 dias após a inoculação de esporozoitos (BAER et al., 2007).

Além dos sintomas citados acima, que correspondem a um quadro de malária não complicada, pode ocorrer um agravamento do quadro infeccioso, com surgimento de hemorragia, convulsão, edema pulmonar, dentre outros, levando a quadros de malária grave. Diversos fatores, como a espécie e quantidade de parasitas circulantes e o grau de imunidade do hospedeiro, podem influenciar o quadro clínico da malária. Os grupos com manifestações mais graves são as gestantes, crianças e primoinfectados. Na malária, os quadros mais severos ocorrem em infecções pelo *P. falciparum*.

Uma fração dos merozoítos liberados a partir de glóbulos vermelhos infectados se diferencia em estágios sexuais do parasito, os gametócitos (STURM et al., 2006). Enquanto os estágios assexuados do ciclo de vida são responsáveis pela doença clínica, os gametócitos são responsáveis pela transmissão do parasito do hospedeiro vertebrado ao vetor (BABIKER et al., 2008).

Na transmissão do parasito ao mosquito, gametócitos maduros presentes na microvasculatura dos hospedeiros vertebrados são ingeridos durante o repasto sanguíneo realizado pelo inseto. Mudanças ambientais abruptas, como a queda na temperatura de aproximadamente 5 °C e aumento no pH de 7,4 a 8 para 8,2, desencadeiam a saída dos parasitos dos eritrócitos em aproximadamente 20 minutos (BILLKER et al., 1997). Cada gametócito masculino se transforma em oito microgametas móveis, após três ciclos de replicação extremamente rápidos do genoma seguido pela divisão nuclear e montagem do axonema; já os gametócitos femininos saem do eritrócito já como um macrogameta.

No intestino médio do mosquito, a fusão de gametas resulta na formação de um zigoto que se desenvolve em um oocineto tetraploide móvel, que pode penetrar na parede do intestino médio e após meiose, formar oocistos. Os oocistos aumentam de tamanho ao longo do tempo e rompem-se para liberar esporozoitos que migram para a glândula salivar do mosquito, tornando o mosquito capaz de transmitir o parasito para os hospedeiros vertebrados (ALANO, 2007; BOUSEMA; DRAKELEY, 2011).
Figura 4 - Ciclo de vida de *Plasmodium* e desenvolvimento de gametócitos de *Plasmodium falciparum*.

Fonte: Bousema e Drakeley, 2011.

1.4 Gametócitos: morfologia e biologia

A transição do parasito de um ambiente relativamente estável e protegido, encontrado no interior dos eritrócitos do hospedeiro humano, para o lúmen do intestino médio do mosquito vetor, obviamente, requer do parasito, características consideravelmente diferentes. Por este motivo, gametócitos são marcadamente diferentes dos seus precursores assexuados. Análises iniciais de transcriptoma e proteoma de gametócitos mostrou que a mudança da fase assexuada para o desenvolvimento sexual, envolve uma reprogramação significativa da atividade de transcrição, resultando na
expressão específica ou regulação positiva de mais de 25% dos 5.500 genes do genoma de *Plasmodium* durante o desenvolvimento sexual e formação do zigoto (FLORENS et al., 2002; HAYWARD et al., 2000; LASONDER et al., 2002; LE ROCH et al., 2003). Estes resultados refletem a natureza altamente especializada dos gametócitos.

O desenvolvimento de gametócitos pode ser dividido em cinco estágios morfologicamente reconhecíveis (HAWKING; WILSON; GAMMAGE, 1971) (Figura 3), em que eles crescem e se alongam ocupando gradualmente a maior parte do eritrócito (BAKER, 2010). As características morfológicas mais marcantes são a presença do citoesqueleto subpelicular baseado em microtúbulos e membrana dupla circundante, que criam sua forma característica (MESZOELY et al., 1987).

As diferenças entre gametócitos femininos e masculinos em *P. falciparum* tornam-se morfologicamente mais aparente a partir estágio IV, quando são caracterizados por uma forma alongada com extremidades pontiagudas (Figura 3). Gametócitos femininos são caracterizados por um núcleo relativamente pequeno, com um nucléolo e pigmento concentrado. O núcleo é maior e o pigmento mais difuso em gametócitos masculinos, que parecem não ter um nucléolo e aparecem em lâminas coradas com Giemsa, como células cor de rosa, ao contrário dos femininos que se coram em violeta (BOUSEMA; DRAKELEY, 2011), já os gametócitos de *P. vivax* de ambos os sexos são grandes, redondos ou ovais, preenchendo quase todo o eritrócito do hospedeiro.

Gametócitos de *P. falciparum* são detectáveis na circulação sanguínea 7 a 15 dias após a onda inicial de parasitas assexuados de que são derivados, isso acontece, pois durante a infecção, gametócitos imaturos são sequestrados da circulação no hospedeiro, presumivelmente para evitar eliminação imune no baço e uma vez maduros (fase V), voltam para a circulação ficando, assim, acessíveis aos mosquitos. Gametócitos maduros de *P. vivax*, em contraste com os de *P. falciparum*, encontram-se na corrente sanguínea no início do curso da infecção, muitas vezes antes do surgimento dos sintomas e de que o tratamento seja iniciado. Como consequência, uma transmissão significativa de *P. vivax* pode persistir mesmo em áreas onde o diagnóstico seja realizado brevemente e o tratamento realizado adequadamente (BOUSEMA; DRAKELEY, 2011; SATABONGKOT et al., 2004).

Estudos sobre a biologia de gametócitos de *P. vivax* a nível celular e molecular têm sido complicados pelo fato de que a cultura de rotina de *P. vivax*, por mais de algumas semanas, ainda não foi estabelecida (UDOMSANGPETCH et al., 2008). Nossa compreensão
atual sobre gametócitos de *P. vivax* é amplamente baseada em infecções naturais e experimentais dos seres humanos (BOUSEMA; DRAKELEY, 2011).

1.5 Gametocitogênese

Apesar de *Plasmodium* ter sido descoberto há mais de um século através da observação da exflagelação de microgametas masculinos em uma gota de sangue extraída de um paciente com malária, a gametocitogênese no hospedeiro humano é, ironicamente, a parte menos compreendida do ciclo de vida do parasito (PRICE et al., 1996). Embora um progresso significativo tenha sido feito nesta área, permanecem ainda muitas questões abertas para investigação.

A gametocitogênese é o processo pelo qual gametócitos masculinos e femininos se desenvolvem a partir de parasitos assexuados. A decisão de desenvolvimento para entrar em gametocitogênese ocorre durante a formação assexuada do esquizonte, que pode comprometer sua descendência inteira de merozoítos quer para se desenvolver mais uma vez de forma assexuada, ou para entrar em diferenciação sexual (TALMAN et al., 2004).

Dados recentes indicam que parasitos assexuados comprometidos com a via sexual podem estar presentes logo no primeiro ciclo de replicação assexuada em infecções por *P. falciparum* (SCHNEIDER et al., 2004), e em trabalho com *P. berghei*, mostrou que alguns dos merozoítos produzidos por esquizontes exoeritrocitários podem se diferenciar diretamente em gametócitos sem uma intervenção da esquizogonia eritrocítica (KILLICK-KENDRICK; WARREN, 1968).

Não se sabe até que ponto a gametocitogênese é um processo estocástico, no qual uma subpopulação de parasitos assexuados aleatoriamente se diferencia em estágios sexuais, ou se é especificamente estimulada por fatores ambientais, como o tratamento medicamentoso, a anemia ou a resposta imune do hospedeiro (KUEHN; PRADEL, 2010).

Estudos observacionais associaram a presença de gametócitos com o aparecimento dos sintomas clínicos (DRAKELEY et al., 2006), estresse imunológico, e com fatores ligados à anemia (NACHER, 2002). A presença de infecções de genótipos mistos do parasito também pode afetar a gametocitemia; infecções mistas com *P. falciparum*, por exemplo, mostraram-se relacionadas com a diminuição do risco de ambas as espécies produzirem gametócitos (no caso de *P. vivax*), e aumento do risco (no caso do *P. malariae*) em comparação com
infecções com uma única espécie. Em infecções multiclonais por *P. falciparum*, genótipos individuais têm sido mostrados produzindo gametócitos simultaneamente e, em comparação com infecções simples, esses gametócitos persistem por um maior período de tempo (BOUSEMA et al., 2008; NWAKANMA et al., 2008; PRICE et al., 1999).

É bem conhecido que isolados de *P. falciparum* mantidos em cultura contínua, por um longo período de tempo, podem perder a capacidade de produzir gametócitos, em um caso específico, causado por uma deleção de parte do braço direito do cromossomo 9. Esses achados indicam que existem fatores intrínsecos relacionados à produção de gametócitos onde genes no cromossomo 9 tem algum papel na gametocitogênese. Um trabalho posterior demonstrou que as cepas do parasito com o gene *Pfgig* interrompido dentro desta região no cromossomo 9, possuía a produção de gametócitos reduzida em cinco vezes (GARDINER et al., 2005).

Assim como os mecanismos moleculares que desencadeiam a gametocitogênese, os fatores que determinam o sexo de gametócitos são também pouco compreendidos. *Plasmodium* não possui cromossomos sexuais, um clone do parasito pode produzir tanto gametócitos masculinos quanto femininos que podem se auto-fertilizar (SINDEN, 1983). O sexo dos gametócitos é determinado no início da fase de compromisso sexual, e todos os merozoitos libertados a partir de um esquizonte comprometido sexualmente tornam-se somente gametócito masculino ou somente gametócito feminino (SILVESTRINI; ALANO; WILLIAMS, 2000).

Características morfológicas sexuais específicas aparecem nos gametócitos após 22-26 horas da maturação em *P. berghei* (JANSE; ÁGUAS, 2004), e por volta do sexto dia no amadurecimento em *P. falciparum* (ALANO; BILLKER, 2005). A evidência de que o sexo do gametócito é predeterminado no esquizonte comprometido sexualmente (SILVESTRINI; ALANO; WILLIAMS, 2000), sugere, no entanto, que gametócitos femininos e masculinos se diferenciam molecularmente muito antes na maturação do que quando o dimorfismo sexual se torna aparente.

Estudos de proteômica revelaram que gametócitos masculinos e femininos são molecularmente muito mais diferentes do que o previsto pela sua morfologia. Apenas 69 proteínas específicas de gametócitos (de um total de 406) são compartilhadas por ambos os sexos. Além das 302 proteínas compartilhadas por ambos os sexos e pelos estágios assexuados, o proteoma de gametócitos masculinos continha o maior percentual (36%) das
proteínas específicas, caracterizadas por várias moléculas envolvidas na motilidade flagelar e na rápida replicação do genoma, enquanto que 19% das proteínas de gametócitos femininos foram exclusivas para este sexo (KHAN et al., 2005).

As razões entre gametócitos femininos e masculinos são tipicamente enviesadas para o sexo feminino. Isto é intuitivamente correto, uma vez que gametócitos masculinos podem produzir até oito microgametas e, portanto, fertilizar vários gametas femininos, já que cada um é derivado de um único gametócito feminino (PAUL; BREY; ROBERT, 2002). Níveis consideráveis de endogamia são encontrados em populações de parasitos, podendo sugerir que a estratégia ideal de transmissão é de assegurar um equilíbrio entre microgametas masculino e macrogametas femininos no intestino médio do mosquito.

A proporção entre gametócitos femininos e masculinos tem um impacto imediato no sucesso de transmissão (MITRI et al., 2009), e a proporção ideal varia em diferentes circunstâncias. Razões de 3 ou 4 gametócitos femininos para 1 masculino são comumente observados em infecções naturais por *P. falciparum*, mas há variações na proporção de sexos entre clones e durante o curso das infecções (BOUSEMA; DRAKELEY, 2011).

1.6 Métodos moleculares para detecção de gametócitos

O exame microscópico de esfregaço sanguíneo é o exame de rotina utilizado para detectar *Plasmodium*. No entanto, este método tem limitações inerentes, com um limite de detecção de aproximadamente 10-20 parasitos/μl, dependendo da preparação do esfregaço sanguíneo, da experiência do microscopista, do método de contagem e do tempo gasto para a contagem. Assim, a microscopia de rotina muitas vezes resulta em subestimação da prevalência do parasito e imprecisão das contagens, especialmente para gametócitos que durante a infecção malária, são encontrados na circulação dos pacientes em densidades muito mais baixas do que as fases assexuadas e frequentemente situadas em um nível perto ou abaixo do limiar de detecção microscópica (DRAKELEY et al., 2006). Em infecções por *P. vivax*, por exemplo, que são caracterizadas por baixas parasitemias, somente 2% dos estágios sanguíneos circulantes são gametócitos (MCKENZIE et al., 2006). Portanto, a detecção microscópica de gametócitos pode subestimar sua prevalência e, assim, induzir a uma avaliação errônea do potencial de transmissão da malária em áreas endêmicas,
mantendo desconhecida a proporção de indivíduos infectados que são potenciais transmissores da doença.

A subestimação de gametócitos por microscopia e presença de níveis submicroscópicos foram suspeitados por muitos anos, pois pacientes com esfregaços sanguíneos negativo eram capazes de infectar mosquitos (SCHNEIDER et al., 2006). Entretanto, evidências diretas de infecciosidade dos níveis submicroscópicos de gametócitos para os mosquitos só foram mostradas recentemente, com os métodos moleculares recém-desenvolvidos para a detecção e quantificação de gametócitos, cuja sensibilidade é suficiente para detectar e quantificar gametócitos em densidades muito baixas. Esta abordagem tem contornado a limitação da microscopia e proporcionou uma sensível, específica e poderosa ferramenta para o diagnóstico e pesquisa, permitindo estudos sobre a biologia e epidemiologia de gametócitos em infecções naturais.

Portadores submicroscópicos de gametócitos existem em uma frequência maior do que a esperada e em todos os níveis de endemicidade (BDEL-WAHAB et al., 2002; SCHNEIDER et al., 2006), e mais importante, trazem contribuições consideráveis à transmissão (SCHNEIDER et al., 2007). Embora pareça improvável que densidades abaixo de 0,3 gametócitos por µL possam infectar mosquitos suscetíveis, as densidades submicroscópicas (isto é, abaixo de dez gametócitos por µL) e acima desse limiar têm sido mostrados como sendo infectantes (SCHNEIDER et al., 2007). Nossa compreensão sobre a prevalência e relevância de baixas densidades de gametócitos tem sido também facilitada enormemente pelo uso de ferramentas de detecção molecular. Estudos mostram que o número de cópias de transcritos de RNA específico de gametócitos maduros em amostras de sangue, prevê o sucesso da infecção experimental de mosquitos anofelinos (BHARTI et al., 2006; CHANSAMUT et al., 2012).

Ferramentas moleculares de detecção de gametócitos são baseadas na amplificação de transcritos de mRNA que são exclusivamente expressos durante as fases do gametócito. RNA é exigido especificamente para detecção de gametócitos, visto que os parasitos assexuados também carregam a codificação de DNA dos transcritos de RNA específico dos gametócitos (BABIKER; SCHNEIDER, 2008). Alguns desses transcritos são sintetizados em coordenação com períodos específicos do desenvolvimento do gametócito podendo, portanto, ser utilizados como marcadores apropriados para o diagnóstico de diferentes estágios do seu desenvolvimento (BAKER, 2010; PRADEL, 2007).
Um procedimento de detecção de gametócitos com base em transcrição reversa seguida de PCR (RT-PCR) foi desenvolvido com base na detecção de transcritos específicos do gene pfs25 e de seu ortólogo em *P. vivax*, *pvs25*. Quando submetidos à gametocitogênese, os parasitos entram em um período de intensa síntese de RNA. Entre as proteínas que são produzidas rapidamente e em grandes quantidades após a ativação do gametócito no intestino médio do mosquito, está a proteína de superfície *Pfs25* e *Pvs25* em *P. falciparum* e *P. vivax* respectivamente (VERMEULEN, 1986). Esta proteína e, suas moléculas de mRNA são específicas para gametócitos maduros e para as fases de zigoto e oocineto em que são transformados. Ambos, *Pfs25* e *Pvs25*, e seus mRNAs estão totalmente ausentes na fase assexuada dos parasitos de *P. falciparum* e *P. vivax*.

Transcritos de *Pfs25* e *Pvs25* são o alvo principal de métodos para a detecção e a quantificação de gametócitos por RT-PCR, *quantitative nucleic acid sequence-based amplification* (QT-NASBA) (BABIKER; SCHNEIDER, 2008) e *reverse transcription loop-mediated isothermal amplification* (RT-LAMP) (BUATES et al., 2010). O gene *pfpg377* também é transcrito exclusivamente em gametócitos e, como alvo, resulta em uma sensibilidade semelhante à de *pfs25* para a detecção de gametócitos (BABIKER; SCHNEIDER, 2008). Os métodos de detecção molecular têm sensibilidade na faixa de 0,02-0,1 gametócitos por µL, variando de acordo com a técnica utilizada para a coleta e o armazenamento da amostra sanguínea, para o isolamento do RNA e para a amplificação do fragmento específico.

1.7 Importância das infecções assintomáticas na transmissão da malária

O desenvolvimento de imunidade clínica é comumente relatado em áreas hiperendêmicas e mesoendêmicas, permitindo o estudo de potenciais mecanismos imunológicos de proteção contra as principais manifestações clínicas da doença (BLOLAND et al., 1999; TRAPE et al., 1994). Contudo, alguns estudos recentes têm apontado para o desenvolvimento deste fenômeno em áreas hipoendêmicas, como é o caso do Brasil. Este fato foi sugerido em estudos feitos com os mais diversificados tipos populacionais: mineradores (de ANDRADE et al., 1995), populações ribeirinhas (ALVES et al., 2002), e populações assentadas (da SILVA-NUNES et al., 2008), indicando que o desenvolvimento de imunidade aos sintomas da doença é mais frequente do que o imaginado, inclusive em áreas de baixa transmissão.
As infecções assintomáticas podem contribuir significativamente para a transmissão uma vez que servem como reservatório para a malária humana, e se encontram inacessíveis às medidas profiláticas focadas no diagnóstico e tratamento precoces de infecções sintomáticas.

Um estudo realizado por Alves et al. (2005) testou a infectividade de mosquitos entre pacientes sintomáticos e assintomáticos, a fim de verificar a importância desses tipos de infecções para o quadro epidemiológico. Observou-se que, apesar da taxa de infecção obtida no estudo ser menor entre os mosquitos alimentados com o sangue de indivíduos sem sintomas, o trabalho mostra claramente que mesmo assim indivíduos assintomáticos são capazes de infectar mosquitos. O estudo ainda relaciona o tempo em que os pacientes continuam sem sintomas e a menor taxa de infecção, sugerindo um efeito compensatório, isto é, indivíduos assintomáticos permanecem infectantes para o vetor por mais tempo devido à ausência de sinais clínicos.

Com muitos portadores assintomáticos contribuindo para a transmissão, a viabilidade e impacto na saúde pública do controle direcionado ao gametócito talvez tenha de ser revisto (DUNYO et al., 2006; SHEKALAGHE et al., 2007). Estratégias de controle destinadas à interrupção do processo de transmissão da malária exigem, portanto, conhecimento sobre os portadores de gametócitos em cada área endêmica.
2 OBJETIVOS
2.1 Objetivo geral

O objetivo deste trabalho foi a padronização de métodos moleculares para detecção e quantificação de gametócitos de *Plasmodium falciparum* e *Plasmodium vivax*.

2.2 Objetivos específicos

1- Padronização e determinação da melhor técnica de extração de RNA para amostras de sangue infectadas por *Plasmodium*;
2- padronização da amplificação e quantificação dos genes *pvs25* e *pfs25* expressos em *P. vivax* e *P. falciparum* respectivamente;
3- aplicação das técnicas em amostras do estudo de campo.
3 METODOLOGIA
3.1 Área e população de estudo

3.1.1 Remansinho

A maioria das amostras utilizadas neste estudo foram colhidas entre março e outubro de 2011 ou em abril de 2012 em um assentamento agrícola de fronteira conhecido como Remansinho (Figura 5).

Figura 5 - Localização do assentamento agrícola conhecido como Remansinho, a principal área de estudo, em relação ao município de Acrelândia (sede do laboratório de campo) e à rodovia BR 364, que liga Rio Branco e Acrelândia, no Acre, a Rondônia e ao restante do país.

Amostras de sangue venoso foram colhidas em três ocasiões (março e outubro de 2011 e abril de 2012) de todos os habitantes dos domicílios da área com idade superior a três meses que consentissem, ou no caso das crianças, que tivesse a autorização dada pelos responsáveis. Durante esses inquéritos, foram diagnosticadas por PCR quantitativa em tempo real, infecções maláricas acompanhadas ou não de sintomas. Entre os inquéritos
transversais, foram colhidas 53 amostras de sangue capilar, transferidas para membranas FTA Classic cards (Whatman) de indivíduos (sintomáticos ou não) com diagnóstico de malária também confirmado por PCR quantitativa em tempo real.

A área é composta por uma via principal, chamada Ramal do Remansinho que se encontra a aproximadamente 40 km da BR-364, no estado do Amazonas, e de quatro vias menores em seu entorno. Essas zonas são denominadas: Ramal dos Goianos, Ramal da Castanheira, Ramal da Linha 1, e Ramal dos Seringueiros (Figura 6).

Figura 6 - Distribuição da localização dos domicílios de acordo com as coordenadas geográficas obtidas nos inquéritos.

Esta é uma área de ocupação recente, que foi sede do conflito entre trabalhadores rurais e um latifundiário que havia ocupado a área com documentos questionáveis de posse. Essa região totaliza 37 mil hectares de terras pertencentes à União. Na época da ocupação (2005), e, do conflito que perdurou até 2007, os agricultores rurais permaneciam antes da ponte do Rio Remansinho, supostamente fora das terras do latifundiário. Com a ação do INCRA e da Polícia Federal o suposto proprietário destas terras foi expulso e hoje a
população ocupa 12 mil hectares da área em questão (INCRA, 2007). Os lotes que foram distribuídos na área são, basicamente, PDS - Projeto de Desenvolvimento Sustentável, uma forma não reformadora de distribuição de terras, que visa o reconhecimento de terras e beneficiários (ROCHA, 2008).

A população é composta tipicamente por migrantes do centro-sul do país que se estabeleceram nesse assentamento há menos de cinco anos, provenientes de outros assentamentos em Rondônia e Mato Grosso onde habitam pequenos lotes agrícolas. Trata-se de área de ocupação de terras devolutas, sem que os ocupantes tenham escritura de suas terras.

3.1.2 Amostras venosas adicionais de episódios agudos de malária

Amostras venosas adicionais foram coletadas no mês de abril de 2012 de nove pacientes com episódio agudo de malária diagnosticado por microscopistas das Unidades Básicas de Saúde (UBS) dos municípios de Nova Califórnia, situado no estado de Rondônia e Plácido de Castro situado no estado do Acre, localizando-se respectivamente a 75 e 35 km da cidade de Acrelândia, sede do laboratório de campo (Figura 7).

Os microscopistas de ambas as Unidades Básicas de Saúde foram contatados a fim de que os pacientes que fossem diagnosticados com malária vivax no determinado período fossem convidados a doar uma amostra sanguínea, colhida pelos próprios profissionais das Unidades Básicas.
Figura 7 - Locais de origem das amostras venosas adicionais de episódios agudos de malária. Municípios de Nova Califórnia e Plácido de Castro.

Da mesma maneira, amostras de sangue de cinco pacientes com resultados do exame microscópico de gota espessa positivos para infecção por *P. vivax* foram coletados na Unidade Básica de Saúde de Plácido de Castro em janeiro de 2011. Neste caso, alíquotas de sangue total foram armazenados em quatro diferentes cartões comerciais existentes: FTA Classic Card (Whatman Inc., Florham Park, NJ), 903 Protein Saver Cards (Whatman Inc., Florham Park, NJ), Filter paper Whatman 3 (Whatman Inc., Florham Park, NJ) e QIAcard FTA Spots (Hilden, Alemanha).

Todos os indivíduos ou o seu representante legal forneceram consentimento para a doação da amostra, tendo assinado o termo de consentimento livre e esclarecido, além de responderem a um questionário clínico-epidemiológico.
3.2 Processamento das amostras

3.2.1 Amostras venosas criopreservadas

Foram colhidos cerca de 14 ml de sangue de cada participante do estudo, embora o volume varie, principalmente para as crianças pequenas. O sangue foi colhido em dois tubos a vácuo, com “scalp” de diâmetro 21G ou 23G, e transportado até o laboratório em Acrelândia em frasco térmico contendo gelo reciclável. O tempo entre a coleta das amostras, no Remansinho, em Plácido de Castro e em Nova Califórnia e o seu congelamento pós-processamento, no laboratório em Acrelândia variou de quatro a 12 horas.

No Remansinho, no momento da coleta foram preparadas duas lâminas de gota espessa para a realização de diagnóstico microscópico de malária por um microscopista de Acrelândia, para a identificação de portadores de infecção por Plasmodium. Caso a lâmina fosse positiva, esta era analisada novamente pela microscopista do assentamento para a liberação da medicação. Os portadores de infecção, independentemente de sintomas, diagnosticada por microscopia, no campo, foram imediatamente tratados segundo os esquemas terapêuticos preconizados pelo Ministério da Saúde.

Para as amostras colhidas em Plácido de Castro e Nova Califórnia, os procedimentos e tratamento realizados foram os utilizados normalmente nas respectivas Unidades Básicas de Saúde. Antes do processamento das amostras uma nova lâmina era preparada para confirmação do diagnóstico dado pelos microscopistas das Unidades Básicas de Saúde.

No laboratório em Acrelândia, as amostras de sangue foram devidamente alíquotadas. As alíquotas de sangue total foram rapidamente colocadas a -70 °C e posteriormente mantidas em nitrogênio líquido, sendo enviadas ainda em nitrogênio líquido para o laboratório do Instituto de Ciências Biomédicas (ICB) da Universidade de São Paulo, onde foram realizados o diagnóstico molecular e a detecção de gametócitos.

3.2.2 Amostras venosas impregnadas em cartões

Amostras de sangue de cinco pacientes com resultados do exame microscópico de gota espessa positivos para infecção por P. vivax foram coletados na Unidade Básica de Saúde de Plácido de Castro. Alíquotas de 125 µL de sangue total foram pipetados em quatro
diferentes cartões comerciais: FTA Classic Card (Whatman Inc., Florham Park, NJ), 903 Protein Saver Cards (Whatman Inc., Florham Park, NJ), papel-filtro Whatman 3 (Whatman Inc., Florham Park, NJ) e QIAcard FTA Spots (Hilden, Alemanha). FTA Classic Card e QIAcard FTA Spots foram utilizados, uma vez que são impregnados com produtos químicos que lisam células, desnaturam proteínas e protegem de ácidos nucleicos das nuclease, dos danos oxidativos e da UV. 903 Protein Saver Cards não possuem propriedades de estabilização, embora tenham demonstrado previamente como sendo adequado para coleta de RNA (MENS et al., 2006; MLAMBO et al., 2008). O papel-filtro Whatman 3 também não possui propriedades estabilizantes de ácido nucleico, porém é largamente utilizado, com bons resultados em estudos com DNA, e tem a seu favor o seu baixo custo.

Cada uma das amostras foi colocada em dois cartões de cada tipo. Os cartões foram secados à temperatura ambiente e armazenados em sacos de plástico selados com dessecante, durante 1-2 meses, até o isolamento de RNA. Um cartão foi mantido à temperatura ambiente, enquanto a sua duplicata foi congelada a -20 ºC. Além da armazenagem das amostras nos cartões, uma alíquota de sangue total de cada indivíduo infectado foi armazenada a -20 ºC para posterior confirmação do diagnóstico e quantificação da parasitemia.

3.2.3 Amostras capilares impregnadas em cartões FTA

Amostras foram colhidas entre os inquéritos transversais em cartões tipo FTA Classic Card (Whatman) entre os meses de março e setembro de 2010. A coleta foi feita da polpa digital. O sangue, depois de colocado no cartão, foi deixado secar em temperatura ambiente. Os cartões foram armazenados no local de coleta em campo, à temperatura ambiente durante 1-3 meses, sem dessecante, antes de serem colocados em sacos plásticos selados, com dessecante, e congelados a -20 ºC por aproximadamente oito meses quando foram então descongelados para realização da extração de DNA e RNA para o diagnóstico molecular de infecção e para a detecção de gametócitos respectivamente.
3.3 Diagnóstico molecular de malária

Para diagnóstico confirmatório, da infecção pelo *Plasmodium*, DNA das amostras foram isolados a partir de 200 μl de sangue venoso utilizando QIAamp DNA Mini Kit (Hilden, Alemanha), sendo a extração automatizada pelo equipamento QIAcube (Qiagen), ou a partir de cartões FTA Whatman (Whatman Inc., Florham Park, NJ), a partir de 1 disco de 3 mm de diâmetro impregnados com cerca de 2-3 μl de sangue capilar. Para a extração de amostras de DNA a partir de cartões FTA, utilizamos o QIAamp DNA micro kit (Hilden, Alemanha) seguindo o protocolo do Qiacube de isolamento de DNA total do kit QIAamp DNA investigator Kit (Hilden, Alemanha).

Foi utilizada PCR quantitativa em tempo real que tem como alvo o gene que codifica a subunidade menor (18S) do RNA ribossômico (rRNA) para diagnóstico e quantificação de parasitemias de *P. vivax* e *P. falciparum* em todas as amostras. Cada reação de 20 μl contém 2 μl de DNA, 10 μl de 2 × Maxima SYBR Green qPCR master mixture (Fermentas, Vilnius, Lituânia) e 0.5 μM de cada primer. Foi utilizado o primer gênero-específico P1 (ACG ATC AGA TAC CGT CGT AAT CTT), combinado com um dos oligonucleotídeos iniciadores (primers) espécie-específicos, V1 (CAA AAT AAA AAG TCT CGA CTC AGA GAA A) ou F2 (TCT CAA AAA AGT CAC CTC GAA AGA TG), para *P. vivax* e *P. falciparum*, respectivamente. Estes primers permitiram a amplificação de um fragmento espécie-específico de 100 pb do gene 18S rRNA (KIMURA et al., 1997).

As curvas padrão foram preparadas com as diluições em série de dez vezes da sequência alvo clonados em vetores pGEM-T Easy (Promega, Madison, WI). A PCR foi realizada em um termociclador Mastercycler gradient (Eppendorf, Hamburg, Alemanha) com as seguintes condições de ciclagem, desnaturação a 95 ºC por 10 minutos e 40 ciclos de 15 segundos a 95 ºC e 1 minuto a 60 ºC, com aquisição de fluorescência no final de cada etapa de extensão. Amplificação será imediatamente seguida por um programa de fusão que consiste em 15 segundos a 9 ºC, 15 segundos a 60 ºC, e um gradual aumento de temperatura de 0,2 ºC por segundo até 95 ºC, com a aquisição da fluorescência em cada temperatura de transição.
3.4 Detecção de gametócitos

3.4.1 Extração de RNA de amostras venosas criopreservadas

As amostras com diagnóstico molecular positivo para presença de *Plasmodium* foram descongeladas e o RNA das mesmas foi extraído utilizando o Kit comercial QIAamp Viral Mini Kit (Hilden, Nordrhein-Westfalen, Alemanha) seguindo as instruções do fabricante, partindo de um volume de sangue total de 200 µl. Resumidamente, as amostras foram incubadas com tampão AVL durante 10 minutos à temperatura ambiente para a lise celular, as quais foram adicionadas etanol. As amostras foram então aplicadas nas colunas QIAamp Mini spin, centrifugadas e lavadas com tampões AW1 e AW2. O RNA foi então eluído das colunas utilizando o tampão AVE e armazenado a -70 ºC até que a síntese do DNA complementar (cDNA) fosse realizada.

Para amplificação dos transcritos, é essencial eliminar qualquer contaminação com DNA genômico residual já que com o método de extração utilizado RNA e DNA são isoladas em paralelo. Para isso, o RNA (4 µl) foi tratado por três vezes com a enzima DNase I livre de RNase (Fermentas, Ontário, Canadá) como descrito pelo manual do fabricante. O tratamento com DNase I consistiu de 3 × 15 minutos de incubação a 20 ºC e inativação da enzima pela adição de 2,5 mM de EDTA e a sua incubação a 65 ºC por 10 minutos.

3.4.2 Extração de RNA de amostras venosas impregnadas em diferentes cartões e de amostras capilares impregnadas em cartões FTA

As amostras capilares colhidas em FTA Classic Card (Whatman) e as amostras venosas colhidas nos demais cartões – FTA Classic Card (Whatman), 903 Protein Saver Cards (Whatman Inc., Florham Park, NJ), Filter paper Whatman 3 (Whatman Inc., Florham Park, NJ), e QIAcard FTA Spots (Hilden, Alemanha) – foram cortadas com *micropunch* Harris de 3 mm e o disco colocado em tubos de 2 ml. Foram adicionados 400 µl de RNA Processing buffer (10 mM Tris-HCL, pH 8.0, 0.1 mM EDTA, 800U/ml RNaseOUT™ (Invitrogen), 200 µg/ml de Glicogênio (Fermentas, Ontário, Canadá), 2 mM de DTT (Fermentas, Ontário, Canadá) a cada amostra e estas foram incubadas por 15 minutos em gelo, sendo vortexeadas por 15 segundos a cada 5 minutos. Os discos de papel foram removidos e 750 µl de Trizol LS foram
adicionados. As amostras foram submetidas então a extração pelo método Trizol-clorofórmio, iniciando-se com a adição de 0,2 ml de clorofórmio às amostras, que foram homogeneizadas por 15 segundos e posteriormente incubadas à temperatura ambiente por 15 minutos. Após essa etapa, as amostras foram centrifugadas a 12000 x g por 15 minutos a 4 °C para separação das fases fenólica e aquosa. A fase aquosa foi transferida para um novo tubo, onde foi adicionado 0,5 ml de isopropanol livre de RNase. As amostras foram deixadas por 12 horas em freezer a -20 °C e posteriormente centrifugadas por mais 60 minutos a 4 °C. O RNA precipitado foi lavado com etanol a 75%, livre de RNase, centrifugado por 5 min a 12000 x g a 4 °C. O sobrenadante foi desprezado, deixando-se o precipitado secar à temperatura ambiente e posteriormente eluído em 10 µl de água livre de RNase. As amostras foram também tratadas com DNAse a fim de se eliminar qualquer contaminação com DNA genômico residual e mantidas a -70 °C até a realização da síntese do DNA complementar.

3.4.3 Transcrição Reversa

A reação de transcrição reversa para síntese do DNA complementar (cDNA) foi realizada utilizando-se o Kit comercial Maxima® First Strand cDNA Synthesis Kit for RT-qPCR (Fermentas Inc, Ontário, Canadá), segundo orientações do fabricante. Para identificar possível contaminação de DNA genômico no produto da transcrição reversa, cada amostra foi processada em pares: RT+ (transcriptase reversa presente) e RT- (transcriptase reversa ausente).

3.4.4 RT-PCR convencional para detecção de gametócitos

A detecção de portadores de gametócitos foi realizada por meio da amplificação de um alvo expresso somente por gametócitos (o gene pfs25 em P. falciparum e seu ortólogo pvs25 em P. vivax), a partir dos transcritos obtidos como descrito na seção 3.4.3. Os protocolos para amplificação de transcritos do gene pfs25 e pvs25 foram padronizados tendo como base os métodos descritos por Mlambo et al. (2008) e Bharti et al. (2006) respectivamente.
3.4.5 RT-PCR quantitativa em tempo real para detecção de gametócitos

A PCR quantitativa em tempo real para detecção de gametócitos foi padronizada utilizando os mesmos primers e ciclos de amplificação utilizados na RT-PCR convencional, como será visto na seção 5.4. Para a construção da curva-padrão de amplificação, foi necessário realizar a clonagem dos segmentos específicos em plasmídeo bacteriano para posterior diluição seriada dessa solução para calcular o número de cópias do transcrito de interesse presentes na amostra.

3.4.6 RT-PCR aninhada para detecção de gametócitos de P. vivax

Com o objetivo de aumentar a sensibilidade diagnóstica obtida com amostras colhidas em cartões FTA e armazenadas em condições de campo, foi padronizado um protocolo de PCR aninhado para detecção de gametócitos de P. vivax. A reação consiste em duas etapas aninhadas: para a primeira reação foi utilizado os mesmos primers e condições de ciclagem utilizadas na RT-PCR convencional para detecção de gametócitos (seção 5.4), que amplifica um fragmento de 270 pb do gene pv525. Para segunda reação, primers internos foram desenhados utilizando o software Primer Express, disponibilizado pela Applied Biosystems, (Custom TaqMan SNP Genotyping Assays - Primers and Probes Assay-by-Design). O fragmento resultante desta segunda amplificação é de 101 pb.

3.5 Aspectos éticos

Os únicos riscos a que os sujeitos de pesquisa estão expostos são aqueles decorrentes de punção venosa para coleta de sangue (dor local, com mínima possibilidade de sangramento local). O uso de material descartável para coleta de sangue, associado à assepsia local, reduzem ao mínimo o risco de infecção local decorrente da punção venosa ou de polpa digital. O protocolo de pesquisa foi avaliado e aprovado pela Comissão de Ética em Experimentação com Seres Humanos do Instituto de Ciências Biomédicas da USP (parecer 965/CEP, 26/10/2011).
3.6 Análise estatística

Um banco de dados foi elaborado no software SPSS 16.0 - Statistical Package for the Social Sciences - (SPSS Inc., Chicago, IL). Variáveis foram resumidas como mediana ou média geométrica e intervalos interquartis e comparados com testes não paramétricos Mann-Whitney U. A concordância entre os testes foi avaliada pelo coeficiente kappa. As correlações foram avaliadas através de testes de correlação não-paramétricos de Spearman. As análises foram também realizadas utilizando o programa SPSS 16.0, com o conjunto de significância estatística ao nível de 5%.
4 RESULTADOS
4.1 População de estudo

4.1.1 Remansinho: doadores de amostras venosas criopreservadas

Durante os três inquéritos transversais realizados, 55 amostras foram diagnosticadas como positivas pela PCR em tempo real para infecção por *P. vivax* e nenhuma para infecção por *P. falciparum*. Dentre as amostras positivas apenas 28 (50,9%) haviam sido detectadas por microscopia pelo exame de gota espessa.

As amostras pertencem a 42 indivíduos (12 indivíduos contribuíram com duas amostras e um contribuiu com três amostras coletadas em diferentes ocasiões) sendo 22 do sexo masculino e 20 do sexo feminino. A média de idade dos participantes foi de 26,8 anos (27; 5-56 anos; mediana e intervalo inter-quartil respectivamente). A maioria dos indivíduos que compõem o estudo tem tempo médio de área endêmica, anterior à residência nestes ramos, de 18 anos (15; 1,2- 48 mediana e intervalo inter-quartil respectivamente).

No momento da coleta das amostras os indivíduos foram questionados sobre presença de algum sintoma, nos últimos sete dias, característico da infecção malária como: febre, calafrios, sudorese, fraqueza, cefaléia, perda de apetite, dor abdominal, náuseas, vômitos, mialgia, artralgia, ou algum outro sintoma, sendo que os sintomas mais frequentemente relatados foram cefaleia (47.3%), febre (32,7%) e mialgia (30.9%). Dos infectados 58,2% (32/55) relataram a presença de pelo menos um sintoma nos sete dias anteriores a coleta. Portanto observou-se 20 indivíduos assintomáticos, o que corresponde a 45,5% (24/55) dos casos de malária estudados. Dos indivíduos infectados, 47,3% tinham anemia (26 de 51 infecções analisadas).

4.1.2 Nova Califórnia e Plácido de Castro: doadores das amostras venosas adicionais de episódios agudos de malária

No mês de abril de 2012 nove pacientes diagnosticados infectados por *P. vivax* nas Unidades Básica de Saúde dos municípios de Nova Califórnia (n=6) e Plácido de Castro (n=3) forneceram uma amostra sanguínea para o presente estudo. Os participantes tinham idade média de 27, 7 anos, variando entre 11 e 52 anos, dois eram do sexo feminino e sete do sexo masculino. O tempo médio de moradia na Amazônia foi de 13,7 anos, sendo que o que vivia
há menos tempo em áreas endêmicas para malária se encontrava há quatro meses no local e o que se encontrava exposto há mais tempo vivia há 52 anos em regiões com incidência de malária. A parasitemia média detectada por PCR em tempo real, desses indivíduos foi de 2259,8 parasitos/µL, e dois deles se encontravam anêmicos no momento da coleta.

4.2 Controles de extração e amplificação

Uma das limitações para o uso de RT-PCR no diagnóstico molecular de gametócitos é a falta de controles positivos (amostras sabidamente com gametócitos circulantes, principalmente para *P. vivax*). Por este motivo, dois tipos de controle positivos foram padronizados. O primeiro controle visa confirmar que a extração de RNA e a transcrição reversa (síntese de DNA complementar ou cDNA) foram bem sucedidas. Para isso, utilizamos um gene multicópias, o gene 18S rRNA o mesmo gene que utilizamos para realizar o diagnóstico molecular de malária, que é expresso por todos os estágios sanguíneos do parasito. No caso das amostras que não apresentaram amplificação dos gene *pvs25* ou *pfs25* partindo-se de cDNA como molde, essa reação adicional permitiu diferenciar amostras em que a técnica de extração ou transcrição reversa falhou das amostras que realmente não apresentavam gametócitos circulantes no momento da coleta do sangue. O segundo controle positivo utilizado foi específico de cada reação: utilizamos amostras de DNA genômico sabidamente positivas para presença de *Plasmodium* como controle das reações de PCR convencional, PCR quantitativo em tempo real e da PCR aninhada para amplificação dos genes *pvs25* e *pfs25*.

Para monitorar a contaminação por DNA genômico, um importante problema em estudos utilizando RNA, foi utilizado um controle negativo da transcrição reversa, onde para cada amostra de RNA uma alíquota era preparada contendo todos os reagentes utilizados na reação da transcrição reversa com exceção da *Maxima enzyme* (Fermentas), e para controlar a contaminação dos reagentes, utilizamos um controle contendo todos os reagentes da transcrição reversa, exceto RNA. Este controle foi utilizado também em todas as reações de PCR convencional, PCR quantitativo em tempo real e da PCR aninhada para amplificação dos genes *pvs25* e *pfs25*.
4.3 Extração de RNA

Ao longo deste trabalho, amostras adicionais de sangue venoso e capilar foram colhidas para testar diversos métodos de coleta e conservação de amostras sanguíneas e de extração de RNA (Tabela 1). O grupo de amostras adicionais inclui: amostras de sangue venoso criopreservadas colhidas de casos agudos de malária vivax em Plácido de Castro (n=3) e Nova Califórnia (n=6); amostras de sangue venoso colhidas em Plácido de Castro e armazenadas em cartões de diferentes tipos; e amostras de sangue capilar colhidas entre os inquéritos transversais em membranas FTA Classic cards (n=53).

O padrão-ouro são as amostras de sangue venoso mantidas a -70°C ou em nitrogênio líquido até a extração. Entretanto, testamos também se amostras de sangue venoso ou capilar colhidas em membranas FTA, papel-filtro ou material semelhante, mantidas a -20 °C, representavam uma alternativa aceitável para a detecção molecular de gametócitos em trabalho de campo.

Tabela 1 - Tipos de amostra sanguínea e métodos de armazenamento e processamento para a extração de RNA e amplificação de *Pvs25*.

Tipo de amostra	Número de amostras	Condições de armazenamento	Métodos de extração de RNA	PCR convencional ou PCR em tempo real
Sangue venoso	64*	Sangue total a -70°C e nitrogênio líquido	Kit QIAamp Viral	Ambas
Sangue venoso	5	FTA Classic Card; 903 Proteins Saver cards; Filter paper Whatman 3; QIAcard FTA Spots a -20°C e temperatura ambiente	Lise com RNA Processing buffer e extração com Trizol-clorofórmio	PCR em tempo real
Sangue capilar	52	FTA Classic Card a -20°C	Lise com RNA Processing buffer e extração com Trizol-clorofórmio	PCR em tempo real (n=42) PCR aninhado (n=52)

* Remansinho (n = 55), Plácido de Castro (n = 3) e Nova Califórnia (n = 6). Fonte: Lima (2012).

As amostras de sangue venoso armazenadas a -70 °C ou em nitrogênio líquido foram submetidas à extração de RNA pelo kit comercial. Todas as 64 amostras tiveram a extração
bem sucedida. O critério para definir sucesso de extração foi a amplificação, a partir de cDNA, de transcritos do gene rRNA 18S de *P. vivax*.

Nas seções 5.6 e 5.7, descrevem-se os resultados obtidos com as amostras de sangue venoso e capilar colhidas em membranas FTA, papel-filtro ou material semelhante, mantidas a -20 °C até a extração de RNA.

4.4 RT-PCR convencional para detecção de gametócitos

A PCR qualitativa para detecção de portadores de gametócitos foi realizada por meio da amplificação de um alvo expresso somente por gametócitos (o gene *pfs25* em *P. falciparum* e seu ortólogo *pvs25* em *P. vivax*). Os protocolos para amplificação de transcritos do gene *pfs25* foram padronizados tendo como base os métodos descritos por Mlambo *et al.* (2008), enquanto a padronização da amplificação dos transcritos do gene *pvs25* tiveram como base no método descrito por Bharti *et al.* (2006).

A Tabela 2 apresenta as seqüências dos oligonucleotídeos iniciadores (*primers*) utilizados para a amplificação por PCR dos segmentos de cada um dos genes espécie específica.

Quadro 1 - Primers empregados na amplificação dos genes específicos *Pfs25* em *P. falciparum* e *Pvs25* em *P. vivax*

Espécie	Primer	Sequência
P. falciparum	Anterior: *pfs25*	5’- TCCATCAACAGCTTTACAGG -3’
	Reverso: *pfs25*	5’- TAATGCAGAAAGTTACCGTG -3’
P. vivax	Anterior: *pvs25*	5’-AACGAAGGGCTGTTGCACCTTT -3’
	Reverso: *pvs25*	5’-AGCAACCTGCACCTTTGGATTCCCG -3’

Para a realização da reação de amplificação foram utilizados 12,5 μL de uma mistura comercial (*Go Taq® Green Master Mix*, Promega) composta por tampão de reação Green Go *Taq®* 2 × pH 8,0, 400 μM de cada dNTP, e 3 μM de MgCl$_2$, 0,8 μL de cada primer (10 μM
cada) e 9 μL de água livre de nucleases, totalizando um volume de 23,5 μL. Adicionou-se, então, 1,5 μL de cDNA das amostras a serem testadas. O material foi levado ao termociclador GenAmp PCR System 9700 equipament (Applied Biosystems, Foster City, CA), procedendo ao seguinte programa de amplificação: desnaturação a 94 °C por 2 minutos e 35 ciclos de 30 segundos a 95 °C, 35 segundos a 55 °C (P. vivax) e 50 °C (P. falciparum), 2,5 minuto a 68 °C e 10 minutos a 68 °C para extensão final.

Os fragmentos amplificados foram visualizados em gel de agarose 1,5%, corados com brometo de etídio (100 μM) e identificados com base no padrão de tamanho marcador de 100 pb (Fermentas Life Sciences). Em todas as reações foram utilizados controles positivos para P. falciparum e P. vivax (DNA genômico de amostras sabidamente positivas para cada uma das espécies), além de controles negativos para monitorar contaminações. Amostras positivas apresentaram fragmentos de 470 pb para P. falciparum, de 267 pb para P. vivax.

Figura 8 - Fragmentos obtidos ao final da PCR convencional para detecção de gametócitos visualizados em gel de agarose 1,5%.

A) Amostras de P. vivax positivas com amplificação do fragmento específico de 267 pb; C+ controle positivo; C- controle negativo; B) Amostras de P. falciparum positivas com amplificação do fragmento específico de 470 pb; C+ controle positivo; C- controle negativo.

A PCR convencional para detecção de gametócitos foi padronizada para as espécies P. falciparum e P. vivax, porém como já foi visto, das amostras utilizadas neste estudo,
colhidas nos três inquéritos transversais, nenhuma foi diagnosticada como positiva para *P. falciparum*.

A detecção de portadores de gametócitos por meio da amplificação por PCR convencional do gene *pvs25* foi realizada em 55 amostras do Remansinho, destas 83,6% (46) foram positivas para presença de gametócitos. A integridade do cDNA dos parasitos foi confirmada em todas as amostras gametócitos-negativas pela amplificação dos transcritos do gene 18S rRNA.

A maioria das amostras positivas para presença de gametócitos pertence a indivíduos sintomáticos (31/46) e que apresentaram exame microscópico de gota espessa positivos (28/46), porém uma parcela significativa tinham o exame microscópico de gota espessa negativo (18/46), e 15 das 46 amostras foram provenientes de indivíduos assintomáticos (tabela 3), isto é, os indivíduos não relataram ter sentido nenhum sintoma relacionado à infecção malária nos últimos sete dias precedentes a coleta. Entre os indivíduos sintomáticos com gametócitos detectados os principais sintomas relatados foram: cefaléia (25 indivíduos), febre e mialgia (17 indivíduos). As nove amostras que não apresentaram amplificação do gene *pvs25* foram provenientes de indivíduos assintomáticos e tiveram o resultado da gota espessa negativo. A ocorrência de anemia, definida com base na concentração de hemoglobina no sangue (g/100 ml), foi observada em 24 das 43 amostras analisadas (55,8%).

Considerando o total de amostras venosas criopreservadas analisadas (colhidas no Remansinho, Plácido de Castro e Nova Califórnia (n=64); 55 (85,9%) foram positivas para gametócitos.

Não surpreendentemente, amostras gametócitos positivas tiveram uma densidade parasitária significativamente maior, estimada pela PCR quantitativa que quantifica tanto as fases assexuadas quanto as fases sexuais, que as amostras negativas. A média geométrica das parasitemias dos não portadores de gametócitos (n=9) foi 7,15 parasitos/µL variando entre 2 e 31 parasitos/µL, e a média geométrica das parasitemias dos portadores de gametócitos (n=55) foi de 187,84 parasitos/µL com amplitude de no mínimo 2,41 e máximo de 7478 parasitos/µL.
4.5 PCR quantitativa em tempo real

Para detecção e quantificação de transcritos do gene pvs25 em amostras clínicas foi realizada a padronização da PCR quantitativa em tempo real. Para isso nós utilizamos em cada reação de 15 μl, 2 μl de DNA, 7.5 μl de 2 × Maxima SYBR Green qPCR master mixture (Fermentas, Vilnius, Lithuania) e 0.3 μM de cada primer. Os primers utilizados foram os mesmos utilizados na reação da PCR convencional, descritos no Quadro 1.

A PCR foi realizada em um termociclador Mastercycler gradient (Eppendorf, Hamburg, Alemanha) com as condições de ciclagem iguais a do PCR convencional: desnaturação a 94 °C por 2 minutos e 35 ciclos de 30 segundos a 95 °C, 35 segundos a 55 °C (P. vivax) e 50 °C (P. falciparum), 2,5 minutos a 68 °C e 10 minutos a 68 °C, com aquisição de fluorescência no final de cada etapa de extensão. A amplificação é imediatamente seguida por um programa de fusão que consiste em 15 segundos a 95 °C, 15 segundos a 60 °C, e um gradual aumento de temperatura de 0,2 °C por segundo até 95 °C, com a aquisição da fluorescência em cada temperatura de transição.

Para construção da curva-padrão de amplificação, foi necessário realizar a clonagem dos segmentos específicos em plasmídeo bacteriano para posterior diluição seriada dessa solução para análise por PCR, já que a correlação entre a concentração de DNA (em número de cópias) com o momento em que a quantidade de luz de cada tubo atinge o CT é necessária para que o aparelho calcule o número de cópias amplificadas do seguimento alvo. Para isso os produtos de PCR amplificados com os pares de primers pvs25F/ pvs25R e pfs25F/pfs25R a partir de DNA genômico de amostras sabidamente positivas, foram purificados utilizando-se o kit comercial “GFX PCR DNA and gel band purification Kit” (Amersham-Pharmacia, NJ, EUA) e ligados ao vetor pGEM-T Easy (Promega, Madison, WI), seguindo as instruções do fabricante.

Transformação de bactérias competentes – Os produtos resultantes das ligações (fragmento de pvs25 ou pfs25 + plasmídeo pGEM-T Easy) foram utilizados para transformar bactérias competentes Escherichia coli da linhagem DH10B, em incubação em gelo por 30 min seguida de choque térmico de 45 seg em bloco térmico a 42°C, seguido por 30 min de recuperação das bactérias em meio SOC a 37 °C.

Crescimento e seleção das colônias – As bactérias transformadas foram semeadas em placas de Petri com meio LB-ágar contendo 100 μg/mL de ampicilina e 20 μL de IPTG-Xgal
(IPTG: isopropil-1-tio-β-D-galactopiranosaída; Xgal: 5-bromo-4-cloro-3-indolil-B-D galactosídeo). As placas foram incubadas a 37 ºC por um período de 12-14 horas. Colônias resistentes à ampicilina possuem o plasmídeo, mas somente as colônias brancas apresentam plasmídeos com inserto, capaz de interromper o gene de βgalactosidase do plasmídeo. As colônias azuis indicam que o plasmídeo não incorporou o inserto de DNA. Em seguida, os plasmídeos com inserto foram obtidos de acordo com o protocolo de triagem em pequena escala descrito por Sambrook et al. (1989).

Plasmídeos PCR- pGEM-T Easy contendo os inserts foram primeiramente digeridos com a enzima de restrição EcoRI (Fermentas, ON, Canadá) em incubação à 37 ºC por 2 horas. O produto da digestão foi submetido à eletroforese de gel TAE-agarose 1,2% para verificação da presença do fragmento alvo.

Sequenciamento – Para confirmar que os segmentos de DNA clonados correspondiam aos genes pvs25 e pfs25, realizou-se a reação de sequenciamento, utilizando as mesmas sequências de primers empregadas na amplificação destes genes (Tabela 3), como também as sequências de primers necessárias para amplificação do plasmídeo M13 (Promega, Madison, WI).

O Quadro 2 apresenta as sequências de primers utilizadas na amplificação por PCR do plasmídeo M13.

Quadro 2- Primers empregados na amplificação do plasmídeo M13.

PRIMER	SEQUÊNCIA
Anterior: M13F	5’-CGCCAGGGTTTCCCAGTCAGAC-3’
Reverso: M13R	5’-TCACACAGGAACAGCTATGAC-3’

A reação de sequenciamento foi realizada utilizando-se o seguinte protocolo (10 µL): Primer forward (5 µM), Primer reverse (5 µM), 0,75 µL de Big dye terminator, 3,25 µL de Tampão Save money e 0,5 µL da amostra de DNA. As condições de ciclagem utilizadas foram:
desnaturação a 96 °C por 1 minuto e 30 ciclos de 15 segundos a 96 °C, 15 segundos a 50 °C e 4 minutos a 60 °C.

O produto da reação de sequenciamento foi precipitado adicionando-se 90 µL de isopropanol 66% em cada amostra, agitou-se e incubou-se em temperatura ambiente por 15 minutos. Centrifugou-se por 60 minutos a 2460 × g, por 30 segundos a 260 × g. Adicionou-se 150 µL de isopropanol 75%, agitou-se novamente e a centrifugação foi repetida como mencionado anteriormente. O produto da reação de sequenciamento foi seco em temperatura ambiente por 10 minutos e o sequenciamento foi realizado em sequenciador automático ABI 3100 (Applied Biosystems, EUA).

As soluções contendo os plasmídeos com a sequência alvo foram quantificadas por espectrofotometria e o número de cópias por µl da sequência-alvo foi calculado. Para cada espécie foi construída uma curva padrão de 10 pontos a partir de diluição seriada (fator de diluição: 10) da solução plasmidial. O primeiro ponto corresponde a 1,39 x 10^9 cópias da sequência alvo. Um exemplo de curva-padrão é apresentado na Figura 9.

Figura 9 - Exemplo de curva-padrão, obtida em PCR de tempo real, para a quantificação do número de cópias de *pvs25 e pfs25*.

Na parte superior da figura são mostrados valores de fluorescência a cada ciclo de amplificação, enquanto na parte inferior da figura mostra-se a curva-padrão obtida com esses dados.
Das amostras venosas criopreservadas provenientes do Remansinho (n= 55), 96,4% apresentaram amplificação do gene *pvbs25*, indicativo da presença de gametócitos e apenas 3,6% (o que corresponde a apenas duas amostras), não amplificaram.

Entre os indivíduos portadores de gametócitos 25 possuíam resultados do exame microscópico de gota espessa negativos e 28 tiveram a infecção malárica detectada pelo mesmo exame. 21 indivíduos não apresentaram sintomas nos sete dias que precederam a coleta sanguínea. Dos sintomáticos (32/53) os sintomas mais frequentes foram cefaléia (26 indivíduos), febre (18 indivíduos) e mialgia (17 indivíduos). Apenas 48 indivíduos entre os portadores de gametócitos tiveram os níveis de hemoglobina examinados e destes 26 se encontravam anêmicos.

No total, considerando amostras venosas colhidas no Remansinho, Plácido de Castro e Nova Califórnia (n=64), 96,9% dos indivíduos infectados tiveram gametócitos detectados por qRT-PCR.

As duas amostras com resultados negativos pela qRT-PCR foram provenientes de infecções assintomáticas e não detectadas por gota espessa. Ambas possuíam baixa densidade parasitária, estimada pela PCR em tempo real, como pode ser visto na tabela 3, (6 e 11 parasitos/µL), e também não tiveram gametócitos detectados pela RT-PCR convencional. Entretanto, foi possível a amplificação de transcritos do gene 18S rRNA de seus respectivos cDNA. As amostras em que gametócitos estavam presentes (n=62) tiveram média de 129,23 parasitos/µL, variando entre 2 parasitos/µL e 7478 parasitos/µL.

Um resumo de todos os dados das amostras colhidas no Remansinho e das amostras adicionais colhidas em Plácido de Castro e Nova Califórnia são apresentados nas tabelas 2 e 3.

Tabela 2 - Dados das amostras venosas criopreservadas colhidas no Remansinho.

(continua)
Tabela 2 - Dados das amostras venosas criopreservadas colhidas no Remansinho.

(continuação)

Amostra	Período da coleta	Sexo	Idade (anos)	TA (anos)	Hb	Sintomas	GE	Par/μl	qRT-PCR	RT-PCR
6	03/11	Masc	18	16	14,4	Não	Pos	18,1	5660000	Pos
7	03/11	Masc	36	15	14	Não	Neg	23,5	1390	Pos
8	03/11	Fem	15	14	11,2	Não	Neg	32,6	4261	Pos
9	03/11	Masc	48	1,2	12,1	Sim	Pos	7478	76668	Pos
10	03/11	Masc	28	26	14,5	Não	Neg	20,5	2888	Pos
11	03/11	Masc	9	9	11,4	Não	Neg	2,45	316000	Pos
12	03/11	Fem	22	22	14,8	Não	Neg	15,6	7310000	Pos
13	03/11	Masc	33	30	15,7	Não	Neg	6,31	0	Neg
14	10/11	Masc	27	26	11,7	Sim	Pos	2147	1050000	Pos
15	10/11	Fem	37	34	11,5	Sim	Pos	855	48300000	Pos
16	10/11	Fem	37	34	NC	Sim	Neg	2,4	22560	Pos
17	10/11	Masc	15	15	13,7	Não	Pos	1597	5880000	Pos
18	10/11	Fem	12	12	12,2	Sim	Pos	225	1260000	Pos
19	10/11	Masc	5	2	9,9	Não	Neg	12,8	911	Pos
20	10/11	Masc	48	48	13,5	Não	Neg	4,5	915	Pos
21	10/11	Fem	12	9	11,8	Sim	Neg	10,1	5430000	Pos
22	10/11	Masc	49	31	9,6	Sim	Pos	767	10199	Pos
23	10/11	Masc	27	2	9,2	Sim	Pos	111	38417	Pos
24	10/11	Fem	46	46	13,7	Sim	Pos	2709	14194	Pos
25	10/11	Fem	46	47	NC	Sim	Pos	1861	34385	Pos
26	10/11	Masc	12	12	11,7	Sim	Pos	418	10932	Pos
27	10/11	Fem	15	14	11,5	Sim	Neg	12,9	9396	Pos
28	10/11	Masc	37	37	9,6	Não	Neg	15,6	9759	Neg
29	10/11	Fem	27	27	10,6	Sim	pos	1276	59819	Pos
30	10/11	Fem	22	11	13,5	Sim	Pos	115	5599	Pos
31	10/11	Masc	19	19	10,8	Sim	Pos	742	10478,5	Pos
32	10/11	Masc	5	5	11,6	Não	Neg	30,9	4783	Pos
33	10/11	Fem	21	21	12,8	Sim	Pos	1428	64913	Pos
34	10/11	Fem	22	22	13	Sim	Pos	124	4340000	Pos
35	10/11	Masc	56	2,6	14	Não	Neg	11	0	Neg
36	10/11	Masc	56	2,6	NC	Sim	Neg	10,3	43151	Pos
37	10/11	Fem	25	25	11,9	Não	Neg	4,72	4100000	Pos
38	10/11	Fem	25	25	NC	Não	Neg	3,53	786	Neg
39	10/11	Fem	15	15	12,8	Não	Neg	8,35	2	Neg
40	10/11	Fem	15	15	11,6	Sim	Pos	59,9	10990	Pos
41	10/11	Masc	29	29	11,4	Sim	Pos	6023	38190	Pos
42	10/11	Fem	8	8	13,8	Sim	Pos	47,6	1590000	Pos
43	10/11	Masc	31	6	16	Sim	Pos	794	10250	Pos
44	10/11	Fem	27	NC	13	Sim	Neg	1978	39696	Pos
Tabela 2 - Dados das amostras venosas criopreservadas colhidas no Remansinho.

(conclusão)

Amostra	Período da coleta	Sexo	Idade (anos)	TA (anos)	Hb	Sintomas	GE	Par/µl	qRT-PCR	RT-PCR
45	04/12	Masc	12	12	12,8	Sim	Pos	219,4	17892	Pos
46	04/12	Fem	7	7	12	Sim	Pos	277,7	21020	Pos
47	04/12	Masc	49	49	15	Não	Neg	67	3221,5	Pos
48	04/12	Fem	12	9	13	Sim	Pos	1114,8	66000	Pos
49	04/12	Masc	9	9	11,9	Sim	Neg	312	352000	Neg
50	04/12	Fem	49	40	10,9	Não	Neg	3,28	2969,5	Pos
51	04/12	Fem	21	21	11,2	Sim	Pos	190,2	7547,5	Pos
52	04/12	Fem	32	9	14,7	Sim	Pos	2055,4	2350000	Pos
53	04/12	Masc	31	29	12	Sim	Pos	2814	37398	Pos
54	04/12	Fem	27	20	12,5	Sim	Pos	1170,5	3090000	Pos
55	04/12	Fem	36	NC	13,3	Não	Neg	2,4	147000	Pos

TA: Tempo de Amazônia; Hb: hemoglobina; GE: exame microscópico de Gota Espessa; Par/µl: parasitemia quantificada por PCR em tempo real; qTR-PCR: número de copias do gene pvrs25 quantificado por PCR em tempo real(parasitos/ µl); RT-PCR: PCR convencional para amplificação do gene pvrs25; NC: dados não coletados. Os critérios indicados pela Organização Mundial da Saúde (OMS) para diagnosticar anemia baseiam-se na concentração de hemoglobina, considerando-se anêmicos homens, mulheres, crianças de 1 a 10 anos e crianças de 10 a 12 anos com valores inferiores a 13 g/100 ml, 12 g/100 ml e 11 g/100 ml e 11,5 g/100 ml respectivamente.
Tabela 3 - Dados das amostras venosas adicionais de episódios agudos de malária colhidas em Nova Califórnia e Plácido de Castro.

Amostra	Sexo	Idade	Tempo de Amazônia (anos)	Hb	GE	Parasitemia	qRT-PCR	RT-PCR
1NC	Fem	11	1	11,6	Sim	4129,4	680000	pos
2NC	Masc	18	18	13	Sim	4615,2	23267,5	Pos
3NC	Fem	20	0,4	11,5	Sim	3534,7	7500000	pos
4NC	Masc	21	0,4	13,3	Sim	2565,2	40589,5	pos
5NC	Masc	38	14	13,7	Sim	31,2	5900000	pos
6NC	Masc	20	20	14,3	Sim	898,5	3300000	pos
7NC	Masc	26	1	14,9	Sim	1636	71000	pos
8NC	Masc	17	17	15	Sim	1101,7	1600000	pos
9NC	Masc	52	52	14	Sim	1826,4	1290000000	pos

Hb: hemoglobina; GE: exame microscópico de Gota Espessa; Parasitemia: parasitemia quantificada por PCR em tempo real (parasitos/µl); qTR-PCR: número de cópias do gene pvs25 quantificado por PCR em tempo real (parasitos/µl); RT-PCR: PCR convencional para amplificação do gene pvs25; NC: Nova Califórnia; PC: Plácido de Castro. Os critérios indicados pela Organização Mundial da Saúde (OMS) para diagnosticar anemia baseiam-se na concentração de hemoglobina, considerando-se anêmicos homens, mulheres, crianças de 1 a 10 anos e crianças de 10 a 12 anos com valores inferiores a 13 g/100 ml, 12 g/100 ml e 11 g/100 ml e 11,5 g/100 ml respectivamente.

A detecção de gametócitos pela PCR quantitativa em tempo real provou ser substancialmente mais sensível que o PCR convencional, sendo capaz de detectar transcritos do gene pvs25 em 62 das 64 (96,9%) amostras de sangue total testadas, enquanto que com o PCR qualitativo convencional a detecção foi de 85,9%, ou seja, 55 de 64 das amostras testadas (tabela 5), com uma concordância significativa entre os dois métodos (kappa = 0,329, P = 0,001).
Tabela 4 - Comparação entre os resultados obtidos com a RT-PCR convencional qualitativa e RT-PCR quantitativa em tempo real, (qRT-PCR), ambas tendo como alvo o gene *pvs25*, para a detecção de gametócitos em 64 infecções por *Plasmodium vivax*. Observamos uma concordância significativa entre os dois métodos (kappa = 0,329, P = 0,001).

RT-PCR Convencional	qRT-PCR	
Negativo	Negativo	2
	Positivo	7
	Total	9
Positivo	0	55
	55	
Total	2	62
	64	

O número de cópias de transcritos do gene *pvs25* detectados por qRT-PCR, se correlacionou positivamente, como visto na Figura 10, com a densidade de parasitas geral estimada pela PCR em tempo real que tem como alvo o gene de rRNA 18S, que quantifica tanto estágios assexuados quanto estágios sexuais do parasita (ρ=0,445, P=0,0001).

Figura 10 - Correlação entre número de cópias de *pvs25* e parasitemia das amostras venosas criopreservadas (ρ=0,445, P=0,0001), n=64.
4.6 Gametócitos em portadores assintomáticos de parasitemias subpatentes

Infecções assintomáticas, que deixam de ser diagnosticadas por busca ativa e busca passiva de casos (BA e BP, respectivamente), podem representar uma importante fonte de gametócitos infectantes em toda a Bacia Amazônica do Brasil (ALVES et al., 2005; DA SILVA-NUNES et al., 2012). BA implica visitas periódicas às famílias, com coleta de lâminas de gota espessa de cada pessoa que tenha tido febre desde a última visita, enquanto na BP indivíduos febris que visitam os postos avançados de diagnóstico de malária têm uma amostra de sangue testada para presença de parasitas da malária. Tanto a BA quanto a BP têm como alvo apenas infecções sintomáticas (definido como "casos de febre" na literatura clássica [por exemplo, MACDONALD, 1957]); portadores assintomáticos permanecem sem ser detectados e, portanto, tratados (COURA; SUAREZ-MUTIS; LADEIA-ANDRADE, 2006).

A contribuição relativa de portadores assintomáticos que apresentam baixa densidade de parasitas circulantes, que não teriam sido detectadas pela BA e BP por meio de microscopia convencional, foi analisada utilizando o número total de gametócitos de P. vivax (estimada pela soma do número de transcritos do gene pvs25) nas 53 infecções positivas para a presença de gametócitos, diagnosticadas por qRT-PCR. No primeiro cenário hipotético, apenas indivíduos sintomáticos são selecionados, mas um método de diagnóstico altamente sensível é utilizado para a detecção de parasitas. Trinta e dois de 53 (60,3%) portadores de gametócitos encontrados por qRT-PCR (correspondente aos segmentos pretos nas barras da Figura 11) não teriam sido identificados pela BA e BP, simplesmente porque eles não têm sintomas relacionados com a malária. No entanto, a maioria dessas infecções não diagnosticadas tem baixas densidades de gametócitos (isto é, baixo número de transcritos do gene pvs25). Como consequência, indivíduos assintomáticos que são portadores de gametócitos contribuem com uma fração muito pequena (cerca de 0,4%) da carga global de gametócitos.
Figura 11 - Proporção de portadores de gametócito que seriam diagnosticados (representados como segmentos de barras pretas), em 53 infecções por *Plasmodium vivax* no noroeste do Brasil, sob diferentes cenários hipotéticos para diagnóstico da malária, de acordo com a densidade de gametócitos, estimado pelo número de transcritos do gene *pvs25* (número de cópias /µl de sangue) detectado pela PCR quantitativa em tempo real.

Apenas os indivíduos sintomáticos são rastreados para os parasitos da malária, mas um método de diagnóstico extremamente sensível é utilizado para detecção de parasitos. Como consequência, mesmo infecções com alta densidade de parasitos podem ser perdida se os portadores permanecem assintomáticos. Os valores no eixo x são mostrados em escala logarítmica.

No segundo cenário, apenas infecções detectadas pela gota espessa, independentemente da presença de sintomas, são analisadas. Isso corresponde à estratégia conhecida como busca ativa agressiva (BAA) (MACAULEY, 2005), que consiste na realização de triagem de toda a população na busca de infecções pelo parasito da malária através de microscopia convencional, independentemente de quaisquer sintomas clínicos. A microscopia convencional não detectaria 28 de 53 (52,8%) portadores de gametócitos detectadas por qRT-PCR, porém a maioria das infecções não detectadas por gota espessa tem baixas densidades de gametócitos (Figura 12). Portanto, os portadores de gametócitos não detectados por microscopia convencional contribuem com uma pequena fração (em torno de 1,7%) da carga gametócitos geral.
Figura 12 - Proporção de portadores de gametócito que seriam diagnosticados (representados como segmentos de barras pretas), em 53 infecções por *Plasmodium vivax* no noroeste do Brasil, sob diferentes cenários hipotéticos para diagnóstico da malária, de acordo com a densidade de gametócitos, estimado pelo número de transcritos do gene *pvs25* (número de cópias /μl de sangue) detectado pela PCR quantitativa em tempo real.

São detectadas apenas infecções com exame de gota espessa positivos, independentemente da presença de sintomas. Como consequência, infecções com baixa densidade de parasitos (ou subpatente) são perdidas, mesmo quando os indivíduos infectados são sintomáticos. Os valores no eixo x são mostrados em escala logarítmica.

No último cenário, apenas a indivíduos sintomáticos são selecionados para detecção de parasitos da malária por meio de microscopia convencional. Isto é exatamente o que rotina da BA e BP fazem no Brasil (OLIVEIRA-FERREIRA et al., 2010) e em outros países endêmicos com programas nacionais de controle da malária bem estruturados. Esta estratégia perderia uma porção substancial (26 de 44, 61,9%) dos portadores de gametócitos, que contribuem com 4,0% da carga gametócitos total (Figura 13).
Figura 13 - Proporção de portadores de gametócito que seriam diagnosticados (representados como segmentos de barras pretas), em 53 infecções por *Plasmodium vivax* no noroeste do Brasil, sob diferentes cenários hipotéticos para diagnóstico da malária, de acordo com a densidade de gametócitos, estimado pelo número de transcritos do gene *pvs25* (número de cópias /µl de sangue) detectado pela PCR quantitativa em tempo real.

São selecionados apenas indivíduos sintomáticos cuja infecção foi detectada por microscopia convencional. Como consequência, todas as infecções com exame microscópico negativo (independentemente da presença de sintomas) e infecções assintomáticas (independentemente da densidade de parasitos) são perdidas. Observe que a maioria das infecções potencialmente não diagnosticados tem baixas densidades de gametócitos (ou seja, baixos números de transcritos do gene *pvs25*). Os valores no eixo x são mostrados em escala logarítmica; números representam o limite superior do número de cópias de cada classe.

4.7 Teste de eficiência de cartões de coleta na conservação de RNA

O amplo uso de métodos moleculares para detecção de gametócitos como uma ferramenta de saúde pública é fortemente limitada pela necessidade de congelamento das amostras sanguíneas coletadas em trabalhos de campo a -70 °C ou em nitrogênio líquido, até o isolamento do RNA e síntese de cDNA. Testamos, portanto, se a qRT-PCR em tempo real pode detectar transcritos do gene *pvs25* a partir de cDNA provenientes de RNA extraído de amostras sanguíneas impregnadas em membranas FTA, papel-filtro ou material semelhante, já que a possibilidade de detecção de gametócitos em amostras colhidas nestes
materiais seriam de grande relevância, especialmente em estudos de campo como o nosso, onde a manutenção do sangue e transporte a -70 °C para análise do RNA é complexa e onerosa.

A fim de avaliar quais os tipos de cartões de coleta seriam mais adequados na conservação de mRNA de amostras sanguíneas, realizamos um teste de eficiência onde comparamos a eficiência dos cartões FTA Classic Card (Whatman Inc., Florham Park, NJ), 903 Protein Saver Cards (Whatman Inc., Florham Park, NJ), Filter paper Whatman 3 (Whatman Inc., Florham Park, NJ), e QIAcard FTA Spots (Hilden, Alemanha) na conservação de amostras sanguíneas de pacientes infectados por P. vivax. Para isso amostras de cinco pacientes com resultados do exame microscópico de gota espessa positivos para infecção por P. vivax foram colhidas nos diferentes cartões, em duplicatas, e mantidas em temperatura ambiente ou a -20 °C, totalizando 40 amostras.

Uma alíquota de sangue total dos indivíduos foi armazenada para realização da quantificação da parasitemia pela PCR em tempo real que variou entre 859 e 10433 parasitos/µL. O RNA das 40 amostras foi extraído e todas tiveram a extração bem sucedida, ou seja, houve amplificação no PCR controle que utiliza o gene 18S rRNA como alvo. As amostras foram então submetidas a PCR quantitativa em tempo real para detecção de gametócitos, porém nenhuma apresentou amplificação do gene pvs25.

4.8 qRT-PCR e RT-PCR Aninhada para detecção de gametócitos de P. vivax em amostras capilares impregnadas em cartões FTA

Entre os inquéritos transversais amostras de sangue capilar foram colhidas em FTA Classic Card e mantidas em campo a temperatura ambiente por aproximadamente três meses, quando foram então armazenadas a -20 °C. Estas amostras foram submetidas ao diagnóstico molecular pela PCR em tempo real para confirmação da infecção pelo Plasmodium. 52 das amostras se mostraram positivas para infecção por P. vivax apresentando parasitemia média de 24,48 parasitos/µL, variando entre 0,26 e 258 parasitos/µL.

O RNA das 52 amostras foi extraído e seus transcritos foram submetidos a PCR controle, 17 amostras (32,7%) não apresentaram amplificação do gene 18S rRNA, indicando que algumas das etapas (extração do RNA ou transcrição reversa) não foram bem sucedidas.
As extrações e transcrições reversas foram refeitas e as amostras se mantiveram negativas sugerindo que o problema tenha sido provavelmente da conservação das amostras. Para detecção de gametócitos foi realizada a PCR quantitativa em tempo real, não havendo amplificação do gene pvs25 em nenhuma das 35 amostras.

Com o objetivo de aumentar a sensibilidade diagnóstica nestas amostras colhidas em cartões FTA, foi padronizado um protocolo de PCR aninhado para detecção de gametócitos de *P. vivax*. A reação consiste em duas etapas aninhadas: para a primeira reação foi utilizado os mesmos *primers* e condições de ciclagem utilizadas na RT-PCR convencional para detecção de gametócitos (seção 5.4), que amplifica um fragmento de 270 pb do gene *pvs25*. Para segunda reação de amplificação, um par de *primers* internos ao fragmento gerado na primeira reação foram desenhados, utilizando o software Primer Express, disponibilizado pela Applied Biosystems, (Custom TaqMan SNP Genotyping Assays - Primers and Probes Assay-by-Design) (*Pvs25F*-2 – GAAAGAAACCTAGGCAAAGCA e *Pvs25R*-2 – GCCCTCAATGCAACCACATT) que amplificam um fragmento de 101pb. Para segunda reação foram utilizados 12,5 μL de uma mistura comercial (Go Taq® Green Master Mix, Promega), 0,8 μL dos *primer* *Pvs25F*-2 e *Pvs25R*-2 e 9μL de água livre de nuclease, totalizando um volume de 23,5 μL. Adicionou-se, então, 1,5 μL do produto da primeira reação. O material foi levado ao termociclador GenAmp PCR System 9700 equipament (Applied Biosystems, Foster City, CA), procedendo ao seguinte programa de amplificação: desnaturação a 94 °C por 2 minutos e 38 ciclos de 30 segundos a 94 °C, 40 segundos a 58 °C, 50 segundos a 72 °C e 5 minutos a 72 °C para extensão final.

Ao final da segunda reação os fragmentos amplificados foram visualizados em gel de agarose 1,5%, corados com brometo de etídio (100 μM) e identificados com base no padrão de tamanho marcador de 100 pb (Fermentas Life Sciences).

Quando submetidas a RT-PCR aninhada para a detecção de gametócitos 71,4% (23 das 35 amostras testadas) foram positivas, ou seja, houve amplificação do gene *pvs25* indicativo da presença de gametócitos na amostra como mostrado na Figura 14.
Figura 14 - Fragmentos obtidos ao final da RT-PCR Aninhada para detecção de gametócitos de *P. vivax* visualizados em gel de agarose 1,5%.

Amostras positivas com amplificação do fragmento específico de 100 pb; C+ controle positivo; C- controle negativo.
5 DISCUSSÃO
5.1 Detecção molecular de gametócitos

Ao longo dos anos a prevalência de gametócitos das principais espécies de parasitos causadoras de malária humana tem sido largamente subestimada pelo exame microscópico, muitas vezes pelo fato das pessoas infectadas possuírem densidades de gametócitos abaixo do nível de detecção microscópica. Estudos de campo, utilizando métodos moleculares para a detecção de parasitos da malária e seus gametócitos, tem revelado um reservatório infeccioso muito maior do que tinha sido previsto entre os casos clínicos (BABIKER; SCHNEIDER, 2008). O desenvolvimento de métodos moleculares para detecção de gametócitos tem, portanto, contornado a limitação da microscopia e se mostra uma poderosa ferramenta para o diagnóstico e pesquisa, permitindo estudos sobre a biologia e epidemiologia de gametócitos em infecções naturais.

Neste trabalho, padronizamos dois diferentes métodos para detecção molecular de gametócitos: a PCR qualitativa convencional e a RT-PCR quantitativa em tempo real, ambas tendo como alvo a amplificação dos genes pvs25 (P. vivax) e pfs25 (P. falciparum). A fim de validar as técnicas padronizadas, ambas as técnicas foram aplicadas em amostras colhidas em estudo de campo realizado no noroeste do Brasil.

A detecção de gametócitos pela RT-PCR quantitativa em tempo real provou ser substancialmente mais sensível que a RT-PCR convencional, sendo capaz de detectar transcritos do gene pvs25 em 62 das 64 (96,9%) amostras de sangue total testadas, enquanto que com a PCR qualitativa convencional a percentagem de positividade foi de 85,9%, ou seja, 55 de 64 das amostras testadas. A PCR quantitativa em tempo real utilizando SYBR Green, padronizada por nós, mostrou-se, portanto, uma ferramenta valiosa para detectar e quantificar gametócitos de P. vivax. Além de ser uma técnica de custo relativamente baixo, tem alta sensibilidade e, mais importante, é um sistema de fluorescência bastante flexível e, portanto, uma alternativa às sondas TaqMan (BHARTI et al., 2006) e a outras técnicas moleculares (BEURSKENS et al., 2009) utilizadas nesse tipo de estudo.

Nossos resultados mostram que a prevalência de gametócitos de P. vivax em áreas endêmicas é muito maior do que aquela geralmente detectada por microscopia. Mostramos que quase todos os indivíduos infectados por P. vivax em nossa área de estudo, quer
sintomáticos ou não, e independentemente da sua carga parasitária, têm gametócitos maduros circulantes no sangue periférico.

A maioria das estimativas da taxa de portadores de gametócitos de *P. vivax* atualmente disponível para comparação provém de ensaios clínicos que incluíram pacientes sintomáticos e com gota espessa positiva (BOUSEMA; DRAKELEY, 2011). Nestas populações selecionadas, as taxas de detecção de gametócitos por microscopia convencional variou amplamente de 22% a 100%. Em um estudo de campo realizado no Afeganistão e no Paquistão, por exemplo, todos os pacientes com infecção por *P. vivax* confirmada microscopicamente tiveram gametócitos detectados (LESLIE et al., 2007). Porém outros estudos encontram diferentes prevalências de portadores de gametócitos. Pukrittayakamee e colaboradores (2012), em estudo realizado em Bancoc, mostraram que 77 dos 349 (22%) pacientes infectados por *P. vivax* eram portadores de gametócitos. McKenzie et al. (2006) encontraram gametócitos em 57% das lâminas em que formas assexuadas de *P. vivax* haviam sido encontradas. O exame microscópico de gota espessa mostra-se pouco sensível para a detecção de gametócitos de *P. vivax* circulantes e apresenta uma ampla variação nos resultados encontrados. Esses resultados são esperados, já que esta técnica apresenta várias limitações inerentes, diretamente relacionadas com a preparação da lâmina, a experiência do microscopista entre outros fatores.

A utilização de técnicas moleculares, no entanto, tem-se mostrado mais sensível, permitindo a identificação de portadores de gametócitos submicroscópicas. Em geral, a prevalência de gametócitos detectada por métodos moleculares é 4 a 10 vezes superior à estimada por microscopia (NWAKANMA et al., 2008; OUEDRAOGO et al., 2007; SAUERWEIN, 2007).

Até o momento, poucos estudos foram realizados utilizando métodos moleculares para detecção de gametócitos de *P. vivax*; aqueles que se encontram disponíveis utilizam diferentes metodologias e diferentes alvos para detecção de gametócitos. Beurkens et al. (2009) utilizaram QT- NASBA e encontraram transcritos de *pvs25* em 51 das 74 (69%) amostras clínicas rastreadas. Uma RT-PCR multiplex aninhada, tendo como alvo também o gene *pvs25*, foi recentemente desenvolvida por Kuamsab et al. (2012) e detectou gametócitos em 91,1% das amostras de pacientes infectados por *P. vivax* analisadas. A detecção molecular foi 9,5 vezes maior que a detecção por microscopia encontrada neste estudo. Chansamut et al. (2012) padronizaram uma RT-PCR quantitativa em tempo real,
tendo como alvo o gene ortólogo ao gene Pfg377 em *P. vivax*. Das 70 amostras sanguíneas com gametócitos detectados por microscopia submetidas a RT-PCR, 82,8% das amostras foram positivas.

Dentre as diferentes técnicas existentes para detecção de gametócitos de *P. vivax*, a RT-PCR quantitativa em tempo real padronizada por nós parece ser a técnica mais sensível, já que foi possível a detecção de gametócitos em uma porcentagem superior à das demais técnicas descritas, levando em consideração que nosso grupo de amostras analisadas é bastante heterogêneo (incluindo amostras com parasitemias submicroscópicas).

Encontramos uma correlação positiva entre o número de cópias de transcritos do gene *pvs25*, detectados por qRT-PCR e a densidade de parasitária total (estágios assexuados e estágios sexuais do parasita) \(p=0,445, P=0,0001 \). O número de cópias de transcritos de *pvs25* correlaciona-se positivamente com o número de gametócitos maduros circulantes (BHARTI et al., 2006), podendo ser utilizado como uma estimativa indireta da densidade de gametócitos na amostra. Estes dados são consistentes com estudos anteriores, que também correlacionam positivamente densidade de gametócitos e densidade de parasitas assexuados determinados por microscopia convencional (MCKENZIE et al., 2006).

5.2 Gametócitos em portadores assintomáticos de parasitemias subpatente

Uma grande limitação das estratégias de controle baseadas em BA e BP é que as infecções assintomáticas passam despercebidas e consequentemente não são tratadas (COURA; SUAREZ-MUTIS; LADEIA-ANDRADE, 2006; MACAULEY, 2005) e podem representar uma fonte significativa de gametócitos infectantes em toda a Bacia Amazônica do Brasil (ALVES et al., 2005).

Infecções maláricas assintomáticas e a doença com típicos paroxismos febris são pontos extremos do amplo espectro da doença clínica causada por parasitos da malária. A imunidade clínica naturalmente adquirida, a carga parasitária, a virulência do parasito, a idade do hospedeiro e os fatores genéticos do hospedeiro provavelmente modulam, de diferentes maneiras, a expressão clínica da malária. Portanto, estratégias de controle baseadas em BA e BP, atualmente utilizada no Brasil, têm de lidar com uma doença heterogênea em que a febre alta e os paroxismos cíclicos com calafrios, sudorese profusa, as
marcas registrada da malária descrita nos livros, não são necessariamente as características encontradas (da SILVA et al., 2010).

Por este e outros motivos uma proporção considerável de portadores de gametócitos deixa de ser detectada por estratégias de controle baseadas em BA e BP. Por exemplo, mais de dois terços das infecções maláricas em assentamentos agrícolas na Amazônia possuem gotas espessas negativas (sendo detectadas apenas por PCR) e são provenientes de indivíduos assintomáticos (da SILVA et al., 2010).

Em estudo realizado também no assentamento agrícola do Remansinho, foi encontrada uma prevalência global de infecções maláricas a partir do exame microscópico de 6,5%, enquanto pelo diagnóstico molecular foi de 17,8%, evidencianço assim que o RT-PCR foi capaz de detectar cerca de três vezes mais infecções do que a microscopia. Entre as infecções diagnosticadas, observou-se que 66,3% eram provenientes de indivíduos assintomáticos (Amanda B. Gozze e Marcelo U. Ferreira, dados não publicados).

No entanto, uma vez que a maioria das infecções não diagnosticadas e não tratadas tem densidades muito baixa de gametócitos, sua contribuição em relação à carga total de gametócitos e a transmissão da malária pode ser considerada insignificante. Na verdade, o número de gametócitos de P. vivax circulantes correlaciona-se positivamente com a taxa de sucesso de infecções experimentais de anofelinos sul-americanos (BARTHI et al., 2006) e do Sudeste Asiático (CHANSAMUT et al., 2012), com doadores de sangue com baixa densidade de gametócitos sendo menos infecciosos para esses vetores. No entanto, infecções assintomáticas não tratadas permitem a circulação de gametócitos potencialmente infectantes por períodos de tempo prolongados, enquanto gametócitos de P. vivax em pacientes tratados têm um tempo de clareamento médio de 2 horas após o tratamento com cloroquina e primaquina (PUKRITTAYAKAMEE et al., 2008). Como consequência, a contribuição relativa das infecções assintomáticas e submicroscópicas na transmissão de P. vivax nas comunidades pode ser subestimada, se não se considerar a duração do período infeccioso, que por sua vez pode ser medida em estudos bem desenhados de coorte.

Curiosamente, alguns indivíduos nesta área podem permanecer assintomáticos apesar das suas parasitemias e densidades de gametócitos relativamente elevadas (isto é, elevado número de transcritos do gene pvs25), provavelmente devido à imunidade clínica adquirida (da SILVA-NUNES et al., 2012). Na verdade, não foi encontrada nenhuma clara associação entre a carga parasitária total (número de estágios sanguíneos sexuais e
assexuados circulantes) com a frequência e intensidade dos sintomas relacionada à malária nesta população (Amanda B. Gozze e Marcelo U. Ferreira, dados não publicados), sugerindo que o limiar de densidade parasitária associado com os sintomas, varia muito de acordo com a idade dos hospedeiros e a exposição cumulativa à malária.

5.3 Detecção de gametócitos de *P. vivax* em amostras impregnadas em cartões

Embora a detecção molecular baseada na amplificação de transcritos de mRNA tenha ajudado a investigação epidemiológica de gametócitos de *Plasmodium*, a natureza lábil do RNA e a presença de RNases representam desafios para a amostragem em condições de campo, onde o calor e a umidade podem levar a degradação do mRNA (BAUER; POLZIN; PATZELT, 2003). Um melhor tratamento das amostras de RNA utilizando, por exemplo, tampões de estabilização, realizando o transporte em gelo seco, e armazenando a -70 °C permite a manutenção da integridade dos ácidos nucleicos, mas restringe o uso desse tipo de amostra a laboratórios bem equipados.

Para facilitar a amostragem e armazenamento em ambientes com recursos limitados a utilização de papéis filtro tem sido proposta para estudos de detecção de gametócitos (MLAMBO et al., 2008). Papéis de filtro têm sido rotineiramente utilizados de maneira bem sucedida no armazenamento de amostras de sangue total para a recuperação tanto de DNA quanto de anticorpos (CORRAN et al., 2008; TAYLOR et al., 2011), além de serem amplamente utilizados com sucesso como uma fonte de RNA para quantificação de carga viral de HIV-1. Um estudo recente realizado na Índia, por exemplo, demonstrou uma sensibilidade de 95% para a detecção de HIV-1 a partir de amostras sanguíneas armazenadas em *903 Protein saver cards* mantidas à temperatura ambiente por 3 a 6 meses (VIDYA et al., 2012).

Um dos objetivos deste estudo foi determinar se papéis-filtro e materiais semelhantes são uma alternativa viável para o armazenamento de mRNA em amostras de sangue total colhidas em estudo de campo, para detecção de gametócitos de *P. vivax*.

Primeiramente testamos quais os tipos de papéis-filtro seriam mais adequados para o armazenamento de mRNA em amostras sanguíneas, além de tentar explorar a flexibilidade das condições de armazenagem verificando se condições menos rigorosas (temperatura ambiente) poderia ser utilizada sem afetar as estimativas de prevalência de gametócitos.
Para isso amostras de cinco pacientes com malária aguda foram colhidas em quatro diferentes cartões comerciais existentes, destinados à coleta, transporte e armazenagem de amostras sanguíneas, e mantida em duas condições de armazenagem, -20 °C e a temperatura ambiente. Optamos por utilizar como metodologia para detecção de gametócitos nessas amostras, a PCR quantitativa em tempo real tendo como alvo a amplificação do gene pvs25, por esta ter demonstrado bons resultados, apresentando alta sensibilidade quando utilizada em amostras venosas criopreservadas, como demonstrado por este estudo.

A detecção de gametócitos utilizando esta metodologia falhou, não havendo amplificação do fragmento específico em nenhuma das amostras. Excluímos falha nas etapas de extração e amplificação, pelo uso dos controles que possibilitaram monitorar a execução destas etapas. Esta metodologia não se mostrou, portanto, a mais indicada para detecção de gametócitos neste tipo de amostra. Porém todos os papéis utilizados se mostraram eficientes na conservação de RNA, já que todas as amostras apresentaram amplificação do gene 18S rRNA utilizado como controle.

O trabalho de Jones et al. (2012) comparou a detecção de gametócitos de *P. falciparum* por meio de RT-PCR e QT-NASBA, em amostras impregnadas em três diferentes tipos de cartões de coleta (FTA classic card, 903 Protein Saver Card e 3MM filter papers) submetidos a diferentes condições de armazenamento, e mostraram que 903 Protein Saver Card é melhor para amostragem de mRNA de *pfs25* em comparação com FTA classic card, e que 3MM filter papers pode vir a ser uma opção de baixo custo, satisfatória para amostragem de mRNA de *pfs25*, desde que sejam secados adequadamente.

Pritsch et al. (2012) também sugere que a utilização de 3MM filter papers para quantificação de gametócitos de *P. falciparum* utilizando como metodologia QT-NASBA em tempo real é prática e recomendável, onde o método mostra-se sensível o suficiente para a detecção de densidades submicroscópicas de gametócitos mesmo depois de um armazenamento prolongado.

Trabalhos de detecção de gametócitos de *P. falciparum* em amostras sanguíneas colhidas em papel filtro utilizam PCR aninhada tendo como alvo o gene *pfs25*, obtendo sucesso na amplificação do fragmento específico em tais amostras (JONES et al., 2012; MLAMBO et al., 2008; STRESMAN et al., 2010). Nenhum trabalho semelhante havia sido realizado utilizando-se o gene *pvs25* em amostras de *P. vivax*. Por isso, padronizamos uma
RT-PCR aninhada para detecção de gametócitos de *P. vivax* a partir de amostras conservadas em mebranas FTA. Esta metodologia foi capaz de detectar a presença de gametócitos em 71,4% das amostras de *P. vivax* colhidas em FTA Classic Card, entre os inquéritos transversais.

Jones e colaboradores mostraram recentemente que a detecção de gametócitos utilizando *FTA Classic Card* é mais eficiente quando os cartões são armazenados após a coleta a -80 °C, sendo a detecção menos eficaz quando armazenados a -20 °C ou 22 °C e ainda mais baixa, quando armazenado a 35 °C. Mostraram também que amostras armazenadas em *FTA Classic Card* foram mais suscetíveis a mudanças de temperatura de armazenamento, resultando em uma perda de detectabilidade de gametócitos desses cartões.

Nossas amostras submetidas a PCR aninhada foram colhidas de polpa digital e mantidas em campo a temperatura ambiente de 1-3 meses sem dessecante, antes de serem colocados em sacos plásticos selados, com dessecante, e congelados a -20 °C. Com auxílio dos dados obtido por Jones et al. (2012), podemos explicar a baixa prevalência de gametócitos (quando comparadas as amostras venosas criopreservadas) nas amostras colhidas em cartões FTA como consequência do período prolongado em que elas foram mantidas, a temperaturas elevadas, além de terem sido expostas a alta umidade, condições características da Amazônia.

Das amostras colhidas em FTA, 32,4% apresentaram falha na extração, provavelmente em função da exposição das amostras ao calor e à umidade que tem sido sugerida como causadores de danos ou desnaturação do RNA, não só através da formação de cortes nas cadeias de ácidos nucleicos, ou por hidrólise da fita, mas também pela degradação de amplificação causada por exposição à luz UV (KANSAGARA et al., 2008). A remoção de umidade por secagem durante a noite, juntamente com inclusão de dessecante pode ser uma alternativa em trabalhos futuros, pois não só previne a destruição física do papel, mas vai também diminui a degradação do RNA.

Concluímos, portanto, que os papéis-filtro podem ser uma fonte conveniente para armazenagem de amostras, sendo uma alternativa as amostras venosas criopreservadas na coleta em campo. No entanto, melhorias no armazenamento da amostra, no isolamento do RNA e nas estratégias de amplificação do gene *pvs25* são necessários para que este tipo de amostra possa ser recomendado para uso em grande escala em pesquisas de detecção
gametócitos de *P.vivax*. A detecção de gametócitos em amostras de sangue coletadas em papel filtro e cartões semelhantes seria importante especialmente em estudos de campo como o nosso, onde a manutenção do sangue e transporte a -70 ºC para análise do RNA é complexa e onerosa.
6 CONCLUSÕES
1. Comparamos diversas técnicas para a conservação de amostras no campo para posterior extração de RNA, tendo como material de partida sangue venoso ou sangue capilar. Concluímos que as amostras de sangue venoso congeladas em nitrogênio líquido, sem nenhum estabilizante, representam a melhor opção em termos de custo-benefício;

2. Padronizamos técnicas de extração de RNA a partir de sangue venoso e sangue capilar, priorizando-se aquelas que podem ser utilizadas em larga escala e automatizadas;

3. Padronizamos métodos moleculares para a detecção e quantificação de gametócitos maduros de *P. falciparum* e *P. vivax* tendo como alvo transcritos dos genes *pfs25* e *pvs25*, respectivamente. Concluímos que a PCR quantitativa em tempo real tem maior sensibilidade do que a PCR convencional para a detecção de transcritos de *pvs25* em amostras de campo;

4. Padronizamos um ensaio de PCR qualitativa aninhada para detecção de transcritos de *pvs25* colhidas e preservadas em condições de campo. Esta técnica, quando aplicada a amostras colhidas em cartões tipo FTA, mostrou-se mais sensível do que a PCR quantitativa em tempo real;

5. Com a aplicação das técnicas padronizadas em amostras de campo, mostramos que a grande maioria dos indivíduos com infecções por *P. vivax*, sintomáticas ou não e patentes ou subpatentes, apresenta gametócitos maduros circulantes no momento do diagnóstico, com implicações claras para o controle da malária causada por esta espécie.
REFERÊNCIAS

ALANO, P. Plasmodium falciparum gametocytes: still many secrets of a hidden life. Mol. Microbiol., v. 66, p. 291-302, 2007.

ALVES, F. P.; GIL, L. H.; MARRELLI, M. T.; RIBOLLA, P. E.; CAMARGO, E. P.; DA SILVA, L. H. Asymptomatic carriers of Plasmodium spp. as infection source for malaria vector mosquitoes in the Brazilian Amazon. J. Med. Entomol., v. 42, p. 777-779, 2005.

AMINO, R.; THIBERGE, S.; SHORTE, S.; FRISCHKNECHT, F.; MENARD, R. Quantitative imaging of Plasmodium sporozoites in the mammalian host. C. R. Biol., v. 329, p. 858-862, 2006.

ANSTEY N. M.; RUSSELL B.; YEO T. W.; PRICE R N. The pathophysiology of vivax malaria. Trends in Parasitology, v. 25, p. 220-227, 2009.

BAER, K.; KLOTZ, C.; KAPPE, S. I.; SCHNIEDER, T.; FREVERT, U. Release of hepatic Plasmodium yoelli merozoite into the pulmonary microvasculature. Plos Pathogens, v. 3, p. 171, 2007.

BABIKER, H. A.; SCHNEIDER, P. Application of molecular methods for monitoring transmission stages of malaria parasites. Biomed. Mater., v. 3, p. 34-37, 2008.

BAKER, D. A. Malaria gametocytogenesis. Mol. Biochem. Parasitol., v. 172, p. 57-65, 2010.

BAUER M.; POLZIN S.; PATZELT D. Quantification of RNA degradation by semiquantitative duplex and competitive RT-PCR: a possible indicator of the age of bloodstains? Forensic Sci Int., v. 138, p. 94-103, 2003.

BEURSKENS, M.; MENS, P.; SCHALLIG, H; SYAFRUDDIN, D.; ASIH, P.B.; HERMSEN, R.; SAUERWEIN, R. Quantitative determination of Plasmodium vivax gametocytes by real-time quantitative nucleic acid sequence-based amplification in clinical samples. Am. J. Trop. Med. Hyg., v. 81, p. 366-369, 2009.

BDEL-WAHAB, A.; BDEL-MUHSIN, A. M.; ALI, E.; SULEIMAN, S.; AHMED, S.; WALLIKER, D.; BABIKER, H. A. Dynamics of gametocytes among Plasmodium falciparum clones in natural infections in an area of highly seasonal transmission. J. Infect. Dis., v. 185, p. 1838-1842, 2002.

BHARTI, A. R.; CHUQUIYAURI, R.; BROUWER, K. C.; STANCIL, J.; LIN, J.; LLANOS-CUENTAS, A.; VINETZ, J. M. Experimental infection of the neotropical malaria vector Anopheles darlingi by human patient-derived Plasmodium vivax in the Peruvian Amazon. Am. J. Trop. Med. Hyg., v. 75, p. 610-616, 2006.

BILLKER, O.; SHAW, M. K.; MARGOS, G.; SINDEN, RE. The roles of temperature, pH and mosquito factors as triggers of male and female gametogenesis of Plasmodium berghei in vitro. Parasitology, v. 115, p. 1-7, 1997.

1 De acordo com: ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6023: informação e documentação: referências: elaboração. Rio de Janeiro, 2002
BOUSEMA, J. T.; DRAKELEY, C. J.; MENS, P. F.; ARENS, T.; HOUBEN, R.; OMAR, S. A.; GOUAGNA, L. C.; SCHALLIG, H.; SAUERWEIN, R. W; Increased Plasmodium falciparum gametocyte production in mixed infections with P. malariae. Am. J. Trop. Med. Hyg., v. 78, p. 442-448, 2008.

BOUSEMA, T.; DRAKELEY, C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin. Microbiol. Rev., v. 24, p. 377-410, 2011.

BUATES, S.; BANTUCHAI, S.; SATTABONGKOT, J.; HAN, E. T.; TSUBOI, T.; UDOMSANGPETCH, R.; SIRICHAISINTHOP J.; TAN-ARIYA, P. Development of a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) for clinical detection of Plasmodium falciparum gametocytes. Parasitol. Int., v. 59, p. 414-420, 2010.

BLOLAND, P. B.; BORIGA, D. A.; RUEBUSH, T. K.; MCCORMICK, J. B.; ROBERTS, J. M.; OLOO, A. J., HAWLEY, W., LAL, A., NAHLEN, B., CAMPBELL, C. C. Longitudinal Cohort study of the epidemiology of malaria infections in an area of intense malaria transmission II, descriptive epidemiology of malaria infection and disease among children. Am. J. Trop. Med. Hyg., v. 6, p. 641-648, 1999.

CHANSAMUT, N.; BUATES, S.; TAKHAMPUNYA, R.; UDOMSANGPETCH, R.; BANTUCHAI, S.; SATTABONGKOT, J. Correlation of Pfg377 ortholog gene expression of Plasmodium vivax and mosquito infection. Trop. Med. Int. Health., 2012. In press.

CORRAN, P. H.; COOK J.; LYNCH, C.; LEENDERTSE, H; MANJURANO A., GRIFFIN, J.; COX, J.; ABEKU, T.; BOUSEMA, T.; GHANI, A.C.; DRAKELEY, C.; RILEY, E. Dried blood spots as a source of antimalarial antibodies for epidemiological studies. Malar. J., v. 7, p. 195-198, 2008.

COURA, J. R.; SUAREZ-MUTIS, M.; LADEIA-ANDRADE, S. A new challenge for malaria control in Brazil: asymptomatic Plasmodium infection – a review. Mem. Inst. Oswaldo Cruz, v. 101, p. 229–237, 2006.

COX-SINGH, J.; HIU, J.; LUCAS, S. B.; DIVIS, P. C.; ZULKARNAEN, M.; CHANDRAN, P.; WONG.K. T.; ADEM, P.; ZAKI, S. R.; SINGH, B.; KRISHNA, S. Severe malaria - a case of fatal Plasmodium knowlesi infection with post-mortem findings: a case report. Malar. J., v. 9, p. 10-18, 2010.

DAS, A.; SHARMA, M.; GUPTA, B.; DASH, A P. Plasmodium falciparum and Plasmodium vivax: so similar, yet very different. Parasitol. Res., v. 105, p. 1169-1171, 2009.

DRAKELEY, C.; SUTHERLAND, C.; BOUSEMA, J. T.; SAUERWEIN, R. W.; TARGETT, G. A. The epidemiology of Plasmodium falciparum gametocytes: weapons of mass dispersion. Trends Parasitol., v. 22, p. 424-430, 2006.

DA SILVA-NUNES, M.; FERREIRA, M. U. Clinical spectrum of uncomplicated malaria in semi-immune Amazonians: beyond the "symptomatic" vs "asymptomatic" dichotomy. Mem. Inst. Oswaldo Cruz, v. 102, p. 341-347, 2007.
DA SILVA-NUNES, M.; CODEÇO, C. T.; MALAFRONTE, R. S.; DA SILVA, N. S.; JUNCASEN, C.; MUNIZ, P. T.; FERREIRA, M. U. Malaria on the Amazonian frontier: transmission dynamics, risk factors, spatial distribution, and prospects for control. Am. J. Trop. Med. Hyg., v. 79, p. 624-635, 2008.

DA SILVA, N. S.; DA SILVA-NUNES, M.; MENEZES, M. J.; D'ARCADIA, R. R.; KOMATSU, N. T.; SCOPEL, K. K.; BRAGA, E. M.; CAVASINI, C. E.; CORDEIRO, J. A.; FERREIRA, M. U. Epidemiology and control of frontier malaria in Brazil: lessons from community-based studies in rural Amazonia. Trans. R. Soc. Trop. Med. Hyg., v. 104, p. 343-350, 2010.

DA SILVA-NUNES, M.; MORENO, M.; CONN, J. E.; GAMBOA, D.; ABELES, S.; VINETZ, J. M.; TRANTER, J. K. R.; PINDER, M. Chloroquine/sulphadoxine-pyrimethamine for Gambian children with malaria: transmission to mosquitoes of multidrug-resistant Plasmodium falciparum. PLoS Med., v. 5, p. 38-50, 2008.

GUERRA, C. A.; HOWES, R. E.; PATIL, A. P.; GETHING, P. W.; VAN BOECKEL, T. P.; TEMPERLEY, W. H.; KABARIA, C. W.; TATEM, A. J.; MANH, B. H.; ELYAZAR, I. R.; BAIRD, J. K.; SNOW, R. W.; HAY, S. I. The international limits and population at risk of Plasmodium vivax transmission PLoS Negl. Trop. Dis., v. 4, p. 774, 2009.
HAY, S. I.; GETING, P. W; ELYAZAR, I. R. F; MOYES, C. L; SMITH, D. L; BATTLE, K. E; GUERRA, C. A; PATIL, A. P.; TATEM, A. J.; HOWES, R. E; MYERS, M. F.; GEORGE, D. B.; HORBY, P.; WERTHEIM, H. F. L.; PRICE, R. N.; KEVIN-BAIRD. M. A Long Neglected World Malaria Map: Plasmodium vivax Endemicity in 2010. Plos Neg. Trop. Dis., v. 38, p. 231-241, 2012.

HAYWARD, R. E. Plasmodium falciparum phosphoenolpyruvate carboxykinase is developmentally regulated in gametocytes. Mol. Biochem. Parasitol., v. 107, p. 227–240, 2000.

HAWKING, F.; WILSON, M. E.; GAMMAGE, K. Evidence for cyclic development and short-lived maturity in the gametocytes of Plasmodium falciparum. Trans. R. Soc. Trop. Med. Hyg., v. 65, p. 549-559, 1971.

Incra, 2007. Incra atua para resolver conflito fundiário no sul de Lábrea (AM). Disponível em <http://www.incra.gov.br/portal/index.php?option=com_content&view=article&id=4693:0&catid=1:ultimas&Itemid=278>. Acesso em sete de julho de 2011. Brasília, Brasil: Instituto Nacional de Colonização e Reforma Agrária.

JONES, S.; SUTHERLAND, C. J.; HERMSEN, C.; ARENS, T.; TEELEN, K.; HALLETT, R.; CORRAN, P.; VAN DER VEGTE-BOLMER, M.; SAUERWEIN, R.; DRAKELEY, C.J.; BOUSEMA, T. Filter paper collection of Plasmodium falciparum mRNA for detecting low-density gametocytes. Malar. J., v. 11, p. 388-400, 2012.

KANSAGARA, A. G.; MCMAHON, H. E.; HOGAN, M. E. Dry-state, room-temperature storage of DNA and RNA. Nature Meth, v. 5, p. 850, 2008.

KAPPE, S. H.; KAISER, K.; MATUSCHEWSKI, K. The Plasmodium sporozoite journey: a rite of passage. Trends Parasitol., v. 19, p. 135-143, 2003.

KASLIWAL, P.; RAO, M.S.; KUJUR, R. Plasmodium vivax malaria: an unusual presentation. Indian Journal of Critical Care Medicine, v. 13, p. 103-105, 2009.

KILICK-KENDRICK, R.; WARREN, M. Primary exoerythrocytic schizonts of a mammalian Plasmodium as a source of gametocytes. Nature, v. 220, p. 191-192, 1968.

KIMURA, M.; O. KANEKO, Q.; LIU, M.; ZHOU, F.; KAWAMOTO, Y.; WATAYA, S.; OTANI, Y.; YAMAGUCHI, K. Identification of the four species of human malaria parasites by nested PCR that targets variant sequences in the small subunit rRNA gene. Parasitol., v. 16, p. 91-95, 1997.

KOCHAR, D. K.; SAXENA, V.; SINGH, N.; KOCHAR, S. K.; KUMAR, S.V.; DAS, A. Plasmodium vivax malaria. Emerging Infectious Diseases, v. 11, p. 132-134, 2005.

KUEHN, A.; PRADEL, G. The coming-out of malaria gametocytes. J. Biomed. Biotechnol., v. 97 p.68-74, 2010.
KHAN, S. M.; FRANKE-FAYARD, B.; MAIR, G. R.; LASONDER, E.; JANSE, C. J.; MANN, M.; WATERS, A. P. Proteome analysis of separated male and female gametocytes reveals novel sex-specific *Plasmodium* biology. *Cell*, v. 121, p. 675-687, 2005.

KROTOSKI, W. A. Discovery of the hypnozoite and a new theory of malarial relapse. *Trans. R. Soc. Trop. Med. Hyg.*, v. 79, p. 1-11, 1985.

LASONDER, E.; ISHIHAMA, Y.; ANDERSEN, J. S.; VERMUNT, A. M.; PAIN, A.; SAUERWEIN, R. W.; ELING, W. M.; HALL, N.; WATERS, A. P.; STUNNENBERG, H. G.; MANN, M. Analysis of the *Plasmodium falciparum* proteome by high-accuracy mass spectrometry. *Nature*, v. 419, p. 537-542, 2002.

LE ROCH, K. G.; ZHOU Y.; BLAIR P.L.; GRAINGER M.; MOCH J.K.; HAYNES J.D.; de LA VEGA P.; HOLDER A. A.; BATALOW S.; CARUCCI D. J.; WINZELER E. A. Discovery of gene function by expression profiling of the malaria parasite life cycle. *Science*, v. 301, p. 1503–1508, 2003.

LESLIE T.; MAYAN M. I.; HASAN M. A.; SAFI M. H.; KLINKENBERG E.; WHITTY C.J.; ROWLAND M. Sulfadoxine-pyrimethamine, chlorproguanil-dapsone, or chloroquine for the treatment of *Plasmodium vivax* malaria in Afghanistan and Pakistan: a randomized controlled trial. *JAMA*, v. 297, p. 2201–2209, 2007.

MACAULEY, C. Aggressive active case detection: a malaria control strategy based on the Brazilian model. *Soc. Sci. Med.*, v. 60, p. 563–573, 2005.

MACDONALD, G. The Epidemiology and Control of Malaria. *Oxford University Press*, v. 21, p. 12-23, 1957.

MENS P. F.; SCHOOONE G. J.; KAGER P. A.; SCHALLIG H. D. Detection and identification of human *Plasmodium* species with real-time quantitative nucleic acid sequence-based amplification. *Malar J.*, v. 5, p. 80, 2006.

MENDIS, K.; SINA, B. J.; MARCHESINI, P.; CARTER, R. The neglected burden of *Plasmodium vivax* malaria. *Am. J. Trop. Med. Hyg.*, v. 64, p. 97-106, 2001.

MENDIS, K.; RIETVELD A.; WARSAME M.; BOSMAN A.; GREENWOOD B.; WERNSDORFER WH. From malaria control to eradication: the WHO perspective. *Trop. Med. Int. Health.*, v. 14, p. 802–809, 2009.

MESZOELEY, C. A.; ERBE, E. F.; STEERE, R. L.; TROSPER, J.; BEAUDOIN, R. L. *Plasmodium falciparum*: freeze-fracture of the gametocyte pellicular complex. *Exp. Parasitol.*, v. 64, p. 300-309, 1987.

Ministério da Saúde. Situação Epidemiológica da malária no Brasil. 2008. Disponível em: <http://portal.saude.gov.br/portal/arquivos/pdf/folder_malaria_2008_final.pdf> Acesso em: 21 jan 2010 as 13:58 horas.
MITRI, C.; THIERY, I.; BOURGOUIN, C.; PAUL, R. E. Density-dependent impact of the human malaria parasite Plasmodium falciparum gametocyte sex ratio on mosquito infection rates. *Proc. Biol. Sci.*, v. 276, p. 3721-3726, 2009.

MCKENZIE, F. E.; WONGSRICHANALAI, C.; MAGILL, A. J.; FORNEY, J.R.; PERMPANICH B.; LUCAS, C.; ERHART, L. M.; O’MEARA, W.P.; SMITH, D.L.; SIRICHAISINTHOP, J. Gametocytemia in *Plasmodium vivax* and *Plasmodium falciparum* infections. *J. Parasitol.*, v. 92, p. 1281–1285, 2006.

MLAMBO, G.; VASQUEZ, Y.; LEBLANC, R.; SULLIVAN, D.; KUMAR, N. A filter paper method for the detection of Plasmodium falciparum gametocytes by reverse transcription polymerase chain reaction. *Am. J. Trop. Med. Hyg.*, v. 78, p. 114-116, 2008.

MLAMBO, G.; VASQUEZ, Y.; LEBLANC, R.; SULLIVAN, D.; KUMAR, N. A filter paper method for the detection of Plasmodium falciparum gametocytes by reverse transcription polymerase chain reaction. *Am. J. Trop. Med. Hyg.*, v. 78, p. 114-116, 2008.

NACHER, M.; SILACHAMROON, U.; SINGHASIVANON, P.; WILAIRATANA, P.; PHUMRATANAPRAPIN, W.; FONTANET, A.; LOOAREESUWAN, S. Risk factors for Plasmodium vivax gametocyte carriage in Thailand. *Am. J. Trop. Med. Hyg.*, v. 78, p. 114-116, 2008.

NWAKANMA, D.; KHEIR, A.; SOWA, M.; DUNYO, S.; JAWARA, M.; PINDER, M.; MILLIGAN, P.; WALLIKER, D.; BABIKER, H. A. High gametocyte complexity and mosquito infectivity of Plasmodium falciparum in the Gambia. *Int. J. Parasitol.*, v. 38, p. 219-227, 2008.

OLIVEIRA-FERREIRA, J.; LACERDA, M. V.; BRASIL, P.; LADISLAU, J. L.; TAUIL, P L.; NIEL-RIBEIRO, C. T. Malaria in Brazil: an overview. *Malar. J.*, v. 9, p. 115, 2010.

OUEDRAOGO, A L.; BOUSEMA, T.; SCHNEIDER, P.; DE VLAS, S. J.; ILBOUDO-SANOGO, E.; CUZIN-OUATTARA, N.; NEBIE, I.; ROEFFEN, W.; VERHAVE, J.P.; LUTY, A.J.; SAUERWEIN, R. Substantial contribution of submicroscopical *Plasmodium falciparum* gametocyte carriage to the infectious reservoir in an area of seasonal transmission. *PLoS One*, v. 4, p. 8410-8418, 2009.

PALMER, C. J.; MAKLER, M.; KLASKALA, W. I.; LINDO, J. F.; BAUM, M. K.; AGER, A. L. Increased prevalence of Plasmodium falciparum malaria in Honduras, Central America. *Rev. Panam. Salud Publica*, v. 4, p. 40-42, 1998.

PAN AMERICAN HEALTH ORGANIZATION (PAHO). Report on the Situation of Malaria in the Americas, 2008. *Pan American Health Organization*, 2009.

PAUL, R. E.; BREY, P. T.; ROBERT, V. Plasmodium sex determination and transmission to mosquitoes. *Trends Parasitol.*, v. 18, p. 32-38, 2002.

PUKRITTAYAKAMEE, S.; IMWONG, M.; SINGHASIVANON, P.; STEPNIIEWSKA, K.; DAY, N. J.; WHITE, N . J. Effects of different antimalarial drugs on gametocyte carriage in *P. vivax* malaria. *Am. J. Trop. Med. Hyg.*, v. 79, p. 378 384 , 2008.

PRADEL, G. Proteins of the malaria parasite sexual stages: expression, function and potential for transmission blocking strategies. *Parasitol.*, v. 134, p. 1911–1929, 2007.
PRICE, R. N.; TJITRA, E.; GUERRA, C. A.; YEUNG, S.; WHITE, N. J.; ANSTEY, N. M. Vivax malaria: neglected and not benign. *Am. J. Trop. Med. Hyg.*, v. 77, p.79–87, 2007.

PRICE, R. N.; NOSTEN, F.; LUXEMBURGER, C.; TER KUILE, F.O.; PAIPHUN, L.; CHONGSUPHAJASIDDHI, T.; WHITE, N. J. Effects of artemisinin derivatives on malaria transmissibility. *Lancet.*, v. 347, p. 1654–1658, 1996.

PRICE, R.; NOSTEN, F.; SIMPSON, J.A.; LUXEMBURGER, C.; PHAIPUN, L.; TER KUILE, F.; VAN VUGT, M.; CHONGSUPHAJASIDDHI, T.; WHITE, N. J. Risk factors for gametocyte carriage in uncomplicated *falciparum* malaria. *Am. J. Trop. Med. Hyg.*, v. 60, p. 1019–1023, 1999.

PRITSCH, M.; WIESER, A.; SOEDERSTROEM, V.; POLUDA, D.; ESHETU, T.; HOELSCHER, M.; SCHUBERT, S.; SHOCK, J.; BERENS-RIHA, N. Stability of gametocyte-specific Pfs25-mRNA in dried blood spots on filter paper subjected to different storage conditions. *Malar. J.*, v. 11, p. 138-145, 2012.

PRUDENCIO, M.; RODRIGUEZ, A.; MOTA, M. M. The silent path to thousands of merozoites: the *Plasmodium* liver stage. *Nat. Rev. Microbiol.*, v. 4, p. 849-856, 2006.

ROCHA, H. F. Análise e mapeamento dos tipos de assentamentos no Brasil. Presidente Prudente Relatório (Iniciação Científica em Geografia) – Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista, 2008.

SARAIVA, M. G. G.; AMORIM, R. D. S.; MOURA, M.A.S.; MARTINEZ-ESPINOS, F. E.; BARBOSA, M. G. V. Expansão urbana e distribuição espacial da malária no município de Manaus, Estado do Amazonas. *Revista da Sociedade Brasileira de Medicina Tropical*, v. 42, p. 515-522, 2009.

SATTABONGKOT, J.; TSUBOI, T.; ZOLLNER, G.E.; SIRICHAISINTHOP, J.; CUI, L. Plasmodium vivax transmission: chances for control? *Trends Parasitol.*, v. 20, p. 192–198, 2004.

SAUERWEIN R. W. Malaria transmission-blocking vaccines: the bonus of effective malaria control. *Microbes Infect.*, v. 9, p. 792–795, 2007.

SCHNEIDER, P.; BOUSEMA, J. T.; GOUAGNA, L. C.; OTIENO, S.; VAN, D. V.; OMAR, S. A.; SAUERWEIN, R. W. Submicroscopic *Plasmodium falciparum* gametocyte densities frequently result in mosquito infection. *Am. J. Trop. Med. Hyg.*, v. 76, p. 470-474, 2007.

SCHNEIDER, P.; BOUSEMA, T.; OMAR, S.; GOUAGNA, L.; SAWA, P.; SCHALLIG, H.; SAUERWEIN, R. (Sub)microscopic *Plasmodium falciparum* gametocytæmia in Kenyan children after treatment with sulphadoxine-pyrimethamine monotherapy or in combination with artesunate. *Int.J.Parasitol.*, v. 36, p. 403-408, 2006.

SHARMA, A. AND KHANDURI, U. How benign is benign tertian malaria? *J. Vector. Borne. Dis.*, v. 46, p. 141-144, 2009.

SHARMA, V. P. Current scenario of malaria in India. *Parasitologia*, v. 41, p. 349-353, 1999.
Primaquine clears submicroscopic Plasmodium falciparum gametocytes that persist after treatment with sulphadoxine-pyrimethamine and artesunate. *PLoS One.*, v. 2, p. 1023, 2007.

SILVESTRINI, F.; ALANO, P.; WILLIAMS, J. L. Commitment to the production of male and female gametocytes in the human malaria parasite Plasmodium falciparum. *Parasitology*, v. 121, p. 465-471, 2000.

SINDEN, R. E. Sexual development of malarial parasites. *Adv. Parasitol.*, v. 22, p. 153-216, 1983.

STRESMAN, G. H.; KAMANGA, A.; MOONO, P.; HAMAPUMBU, H.; MAHAKURWA, S.; KOBYASHI, T.; MOSS, W. J.; SHIFF, C. A method of active case detection to target reservoirs of asymptomatic malaria and gametocyte carriers in a rural area in Southern Province Zambia. *Malar. J.*, v. 9, p. 265, 2010.

STURM, A.; AMINO R.; VAN DE, S. C.; REGEN, T.; RETZLAF, S.; RENNENBERG, A.; KRUEGER, A.; POLLOK, J. M.; MENARD, R.; HEUSSLER, V. T. Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. *Science*, v. 313, p. 1287-1290, 2006.

TALMAN, A. M.; PAUL R. E.; SOKHNA C. S.; DOMARLE, O.; ARIEY F.; TRAPE J. F.; ROBERT V. Influence of chemotherapy on the Plasmodium gametocyte sex ratio of mice and humans. *Am. J. Trop. Med. Hyg.*, v. 71, p. 739–744, 2004.

TAUIL, P. L. The prospect of eliminating malaria transmission in some regions of Brazil. *Mem. Inst. Oswaldo Cruz*, v. 106, suppl. 1, p. 105-106, 2011.

TAYLOR, B. J.; MARTIN, K. A.; ARANGO, E.; AGUDELO, O.M.; MAESTRE, A.; YANOW, S. K. Real-time PCR detection of Plasmodium directly from whole blood and filter paper samples. *Malar J.*, v. 10 p. 244-250, 2011.

TRAPE, J. F. Rapid evaluation of malaria parasite density and standardization of thick smear examination for epidemiological investigations. *Trans. R. Soc. Trop. Med. Hyg.*, v. 79, p. 181-184, 1985.

UDOMSANGPETCH, R.; KANEKO, O.; CHOTIVANICH, K.; SATTABONGKOT, J. Cultivation of Plasmodium vivax. *Trends Parasitol.*, v. 24, p. 85-88, 2008.

VIDYA, M.; SARAVANAN, S.; RIFKIN, S.; SOLOMON, S. S.; WALDROP, G.; MAYER, K. H.; SOLOMON, S.; BALAKRISHNAN, P. Dried blood spots versus plasma for the quantification of HIV-1 RNA using a real-time PCR, m2000rt assay. *J. Virol. Methods*, v. 181, p. 177–181, 2012.

WORLD HEATH ORGANIZATION (WHO). Ten facts on malaria. 2011. Disponível em: <http://www.who.int/features/factfiles/malaria/en/index.html>. Acesso em: 13 Mar 2012.
WORLD HEALTH ORGANIZATION (WHO). World malaria report, 2010. Geneva 2010. Disponível em: <http://www.who.int/malaria/world_malaria_report_2010/en/index.html>. Acesso em: 12 Feb 2012.
APÊNDICE
Plasmodium vivax: Reverse transcriptase real-time PCR for gametocyte detection and quantitation in clinical samples

Nathália F. Lima, Melissa S. Bastos, Marcelo U. Ferreira

Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil

HIGHLIGHTS

- Molecular methods can detect gametocytes in nearly all Plasmodium vivax infections.
- Most P. vivax gametocyte carriers would be missed by routine malaria control strategies.
- Low-density (subpatent) gametocyte carriage may be a major contributor to malaria transmission.

ABSTRACT

The proportion of Plasmodium vivax-infected subjects that carry mature gametocytes, and thus are potentially infectious, remains poorly characterized in endemic settings. Here, we describe a quantitative reverse transcriptase (RT) real-time PCR (qRT-PCR) that targets transcripts of the mature gametocyte-specific pvs25 gene. We found mature gametocytes in 42 of 44 (95.4%) P. vivax infections diagnosed during an ongoing cohort study in northwestern Brazil. SYBR green qRT-PCR was more sensitive than a conventional RT-PCR that targets the same gene. Molecular detection of gametocytes failed, however, when dried bloodspots were used for RNA isolation and complementary DNA synthesis. Estimating the number of pvs25 gene transcripts allowed for examining the potential infectiousness of gametocyte carriers in a quantitative way. We found that most (61.9%) gametocyte carriers were either asymptomatic or had sub-patent parasitemias and would have been missed by routine malaria control strategies. However, potentially undiagnosed gametocyte carriers usually had low-density infections and contributed a small fraction (up to 4%) to the overall gametocyte burden in the community. Further studies are required to determine the relative contribution to malaria transmission of long-lasting but low-density gametocyte-mias in asymptomatic carriers that are left undiagnosed and untreated.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Plasmodium vivax, the most widespread human malaria parasite, causes up to 390 million episodes of disease each year in Central and South America, the Middle East, Central, South and Southeast Asia, Oceania and East Africa (Price et al., 2007), where 2.85 billion people are currently at risk of infection (Guerra et al., 2009). Mature gametocytes of P. vivax, in contrast with those of Plasmodium falciparum, are found in the bloodstream early in the course of infection, often before symptoms emerge and drug
treatment is started. As a consequence, significant transmission of \(P. \) \textit{vivax} may persist even in areas where timely diagnosis and treatment can be achieved (Sattabongkot et al., 2004; Bousema and Drakeley, 2011).

Microscopic examination of Giemsa-stained thick blood smears is poorly sensitive for detecting circulating \(P. \) \textit{vivax} gametocytes. Under ideal conditions, the detection limit of microscopy is around 10–20 parasites/\(\mu \)l blood (Gilles, 1993). \(P. \) \textit{vivax} infections are characterized by low parasitemias, since this parasite finds a limited supply of reticulocytes to infect in the peripheral blood, and only a small proportion of circulating blood stages (around 2\%) are gametocytes (McKenzie et al., 2006). Therefore, the proportion of infected subjects that are potentially infectious (i.e., carry mature gametocytes) remains largely unknown in \(P. \) \textit{vivax}-endemic settings.

Over the past decade, molecular methods have been developed to detect RNA transcripts that are specific of mature \(P. \) \textit{falciparum} gametocytes, with a detection limit of 0.02–10 gametocytes per microliter of blood (Babiker et al., 2008). Molecular diagnosis requires the amplification of RNA transcripts of genes expressed exclusively by gametocytes, such as \(pfs25 \) and \(pf377 \), with the use of techniques such as reverse transcriptase (RT)-polymerase chain reaction (PCR), quantitative nucleic acid sequence-based amplification (Q-NASBA) and RT loop-mediated isothermal amplification (RT-LAMP) (Babiker et al., 2008). More recently, these methods have been adapted to \(P. \) \textit{vivax} orthologs of gametocyte-expressed genes (Bharti et al., 2006; Beurskens et al., 2009; Chansamut et al., in press). QT-NASBA detected gametocyte transcripts in nearly two thirds of \(P. \) \textit{vivax}-infected subjects (Beurskens et al., 2009) and the number of copies of mature gametocyte-specific RNA transcripts in blood samples predicted the success of experimental infection of anopheline mosquitoes (Bharti et al., 2006; Chansamut et al., in press).

Here, we compare techniques for field sample preservation and describe a quantitative RT-PCR for \(P. \) \textit{vivax} gametocyte detection and quantitation. With the use of properly processed samples, we found mature gametocytes in nearly all \(P. \) \textit{vivax} infections diagnosed during an ongoing cohort study in northwestern Brazil, even among asymptomatic carriers of subpatent parasitemias that are missed by conventional microscopy. We discuss the potential implications of these findings for malaria control and elimination strategies.

2. Materials and methods

2.1. Study area and clinical samples

Our study subjects are participants in an ongoing prospective cohort study in the farming settlement of Remansinho, in the state of Amazonas, in the Western Amazon Basin of Brazil, close to the borders with Peru, Bolivia and the Brazilian states of Rondônia and Acre (da Silva-Nunes et al., 2012). The field site is characterized by year-round hypendemic malaria transmission, with \(P. \) \textit{vivax} prevalence rates varying between 5\% and 11\%. \(P. \) \textit{vivax} accounts for more than 90\% of all malaria infections diagnosed in this area. All samples used throughout this study were collected from subjects with laboratory-confirmed \(P. \) \textit{vivax} infection under protocols approved by the Institutional Review Board of the University Hospital, University of São Paulo (1025/10), and by the National Research Ethics Committee of the Ministry of Health of Brazil (551/2010).

Three sample sets were analyzed (Table 1). The first set consisted of 44 venous blood samples collected during mass blood surveys between September 2010 and October 2011. Donors were 36 subjects (seven contributed 2 samples and one contributed 3 samples collected on different occasions) aged 5–56 years (median, 26 years) presenting with either symptomatic (\(n=24 \)) or asymptomatic (\(n=20 \)) single-species infection with \(P. \) \textit{vivax} confirmed by quantitative real-time PCR (qPCR) targeting a species-specific fragment of the 18S rRNA gene. Parasitemias estimated by qPCR were usually low (geometric mean, 70.9 parasites/\(\mu \)l blood), ranging between 2 and 7478 parasites/\(\mu \)l blood; only 21 of these infections were also diagnosed by microscopic examination of Giemsa-stained thick smears. To determine the presence and intensity of 13 malaria-related symptoms (fever, chills, sweating, headache, myalgia, arthralgia, abdominal pain, nausea, vomiting, dizziness, cough, dyspnea, and diarrhea) up to seven days prior to enrollment, we used a structured questionnaire as described (da Silva-Nunes and Ferreira, 2007).

Blood samples drawn into ethylenediaminetetraacetic acid (EDTA)-treated vacuum tubes were placed on ice packs until processed in the field laboratory, 4–12 h later. One 1-ml aliquot of each sample was transferred to cryotubes and frozen at \(-70^\circ \text{C}\). After 2–4 weeks, samples were transferred to liquid nitrogen and thawed 1–3 months later for RNA isolation. A 200-\(\mu \)l aliquot of the same samples was kept at \(-20^\circ \text{C}\) and used for DNA isolation.

The second set consisted of venous blood samples collected from five febrile subjects presenting with single-species \(P. \) \textit{vivax} infection confirmed by both microscopy and qPCR (parasitemia ranging between 859 and 10433 parasites/\(\mu \)l blood). Up to 4 h after blood collection, 125-\(\mu \)l aliquots of EDTA-treated whole blood were pipetted onto four types of cards: FTA classic cards, Whatman #3 filter papers, 903 protein saver cards (all from Whatman, Clifton, NJ) and QIAcard FTA cards (Qiagen, Hilden, Germany). Two cards of each type were spotted with each blood sample, air-dried at room temperature and stored in sealed plastic bags with desiccant, for 1–2 months. One card was kept at ambient temperature, while the duplicate was frozen at \(-20^\circ \text{C}\) until RNA isolation. A 200-\(\mu \)l aliquot of each blood sample was kept at \(-20^\circ \text{C}\) and used for DNA isolation.

The third set consisted of archived capillary blood samples (volume, 10–30 \(\mu \)l) collected by finger prick between March and September 2010 and spotted onto FTA classic cards (Whatman). Donors (\(n=36 \)) were patients presenting at the malaria clinic of Remansinho with either symptomatic or asymptomatic infection with single-species \(P. \) \textit{vivax} confirmed by qPCR. Cards had been stored in the field site at ambient temperature for 1–3 months, with no desiccant, before being placed in sealed plastic bags with desiccant and frozen at \(-20^\circ \text{C}\) until DNA and RNA isolation, up to 8 months later.

2.2. RNA isolation and complementary DNA synthesis

RNA isolation from 200-\(\mu \)l aliquots of venous blood samples was carried out using the QIAamp Viral RNA Mini Kit (Qiagen, Hilden, Germany), following the manufacturer’s protocol (QIAamp Viral RNA Mini Handbook, third edition, April 2010). Briefly, clinical samples were incubated with buffer AVL for 10 min at room temperature for cell lysis, mixed with ethanol, applied to a spin column, centrifuged and washed with buffers AW1 and AW2. RNA was then eluted from the columns with the AVE buffer and stored at \(-70^\circ \text{C}\) until complementary DNA (cDNA) synthesis, up to 1 week later. Since RNA and DNA are isolated in parallel with this procedure, the eluate (4 \(\mu \)l) was treated three times with a RNAse-free DNase (Fermentas, Burlington, Canada), according to the manufacturer’s protocol, for removal of residual genomic DNA from RNA preparations to be used as templates for cDNA synthesis.

For RNA isolation from bloodspots on FTA classic cards, Whatman #3 filter papers, 903 protein saver cards and QIAcard FTA cards, we excised 3-mm dried-blood discs with a Harris micro-punch. We used the classical TRizol LS reagent protocol for RNA
Table 1
Methods for field sample processing and storage, RNA isolation and amplification used in this study.

Type of sample	No. samples	Field sample processing and storage	RNA isolation	RT-PCR method
Venous blood	44	1 ml blood transferred to cryotubes and kept at −70 °C for 2–4 weeks and afterwards in liquid nitrogen (1–3 months) until RNA isolation	QIAamp Viral RNA kit (Qiagen)	Conventional and quantitative real-time RT-PCR
Venous blood	5	125 μl blood spotted onto FTA classic cards, Whatman#3 filter papers, 902 protein saver cards (Whatman) or QIAQuick FTA cards (Qiagen), and stored in sealed plastic bags with desiccant at ambient temperature or −20 °C (1–2 months) until RNA isolation	RNA elution with RNA processing buffer (Whatman FTA Protocol BR01) followed by standard TRIzol LS protocol	Quantitative real-time RT-PCR
Capillary blood	36	10–30 μl blood spotted onto FTA classic cards (Whatman), stored at ambient temperature (1–3 months) and afterwards at −20 °C, in sealed plastic bags with desiccant (up to 8 months) until RNA isolation	RNA elution with RNA processing buffer (Whatman FTA Protocol BR01) followed by standard TRIzol LS protocol	Quantitative real-time RT-PCR

extraction, essentially as described by the manufacturer (Invitrogen, Carlsbad, CA). Discs were placed in 2-ml reaction tubes, incubated with 400 μl RNA processing buffer (10 mM Tris–HCl, pH 8.0; 0.1 mM EDTA, 800 U/ml RNase Out (Invitrogen), 200 μg/ml glycogen and 2 mM dithiothreitol (DTT)) on ice for 15 min, with mixing every 5 min. The disc was removed and 750 μl of TRIzol LS reagent (Invitrogen) was added. The sample was vortexed for 15 s and incubated at room temperature for 15 min. After adding 200 μl of chloroform, the solution was centrifuged (12,000g for 15 min at 4 °C) and the aqueous phase was transferred to a clean reaction tube. RNA was precipitated with 500 μl isopropanol alcohol on ice for 1 h. The pellet resulting from centrifugation (12,000g for 45 min at 4 °C) was washed with 75% ethanol, air dried, resuspended in 10 μl RNAse-free water and treated with DNase, as described above, prior to use for cDNA synthesis. Regardless of the source of template RNA, cDNA was synthesized using the single-tube procedure of the Maxima First Strand cDNA synthesis kit for RT-qPCR (Fermentas), according to the manufacturer’s instructions.

2.4. Gametocyte detection and quantification by reverse transcriptase real-time PCR

We standardized a SYBR green quantitative real-time RT-PCR (qRT-PCR) to detect and quantify pvs25 gene transcripts using the same oligonucleotide primers described above. The 267-bp amplified gene fragment was cloned into the pGEM-T Easy plasmid vectors (Promega); in every PCR microplate, a standard curve was prepared with 10 tenfold dilutions of the plasmid DNA, starting with 1.4×10^6 plasmid copies/μl. Real-time PCR was carried out in triplicate, on a Mastercycler reaoplex S real-time thermal cycler (Eppendorf, Hamburg, Germany). Each 15-μl reaction mixture contained 2 μl of sample cDNA, 7.5 μl of 2× Maxima SYBR Green qPCR master mixture (Fermentas) and 0.3 μM of each oligonucleotide primer. Amplification included a template denaturation step at 95 °C (2 min) followed by 35 cycles of 30 s at 95 °C, 35 s at 55 °C and 2.5 min at 68 °C, with fluorescence acquisition at the end of each extension step and a final extension step of 10 min at 68 °C, with a final melting program consisting of 15 s at 95 °C, 15 s at 60 °C, and a stepwise temperature increase of 0.03 °C/s until 95 °C. Fluorescence acquisition was done at each temperature transition.

2.5. Laboratory diagnosis of malaria

Whenever available, Giemsa-stained thick blood smears had at least 100 fields examined for malaria parasites under 1000× magnification by two experienced microscopists before being declared negative. Blood samples were further examined for malaria parasites by qPCR. When venous blood samples were available, DNA isolation from 200-μl aliquots, using QIAamp DNA blood kits (Qiagen), was fully automated on a QIAcube equipment (Qiagen) following the manufacturer’s protocol. DNA isolation from finger-prick blood samples spotted onto FTA classic cards was also carried out on a QIAcube equipment (Qiagen); we used the QIAamp DNA micro kit combined with the QIAcube protocol for the QIAamp DNA investigator kit for optimal DNA yield.

Each 15-μl qPCR mixture contained 2 μl of template DNA (or one washed disk), 7.5 μl of 2× Maxima SYBR Green qPCR master mixture (Fermentas) and 0.5 μM of each primer. We used the forward primer P1 (ACG ATC AGA TAC CGT CGT AAT CTT) and the reverse primer V1 (CAA TCT AAG AAT AAA CTC CGA AGA GAA A), which allow the amplification of a 100 kb fragment of the 18S rRNA gene (Kimura et al., 1997). Standard curves were prepared with serial tenfold dilutions of the target sequence, cloned into pGEM-T Easy vectors (Promega, Madison, WI), to allow for species-specific quantitation of parasite loads (number of parasites/μl blood). We used a Mastercycler reaoplex S real-time thermal cycler (Eppendorf) for PCR amplification with an initial step at 50 °C (2 min), followed by template denaturation at 95 °C (10 min) followed by 40 cycles of 15 s at 95 °C and 1 min at 60 °C, with
fluorescence acquisition at the end of each extension step. Amplification was immediately followed by a melting program consisting of 15 s at 95 °C, 15 s at 60 °C, and a stepwise temperature increase of 0.03 °C/s until 95 °C, with fluorescence acquisition at each temperature transition.

2.6. Data analysis

Variables with overdispersed distribution were summarized as medians or geometric means and interquartile ranges and compared with nonparametric Mann–Whitney U tests. Agreement between tests was assessed using the kappa coefficient. Correlations were assessed using nonparametric Spearman rank correlation tests. Analyses were performed using SPSS 16.0 software (SPSS, Chicago, IL), with statistical significance set at a 5% level.

3. Results and discussion

3.1. Amplification of pvs25 gene transcripts by conventional RT-PCR

We first standardized a conventional, qualitative RT-PCR protocol to detect pvs25 gene transcripts in clinical samples. With this method, 35 of 44 (79.5%) whole-blood samples assayed were positive (Table 2). Parasite cDNA integrity was confirmed in all gametocyte-negative samples by amplification of 18S rRNA gene transcripts from the same templates. Not surprisingly, gametocyte-positive samples had a significantly higher parasite density, as estimated by a qPCR that quantifies both asexual and sexual stages, than negative samples (Mann–Whitney U test, \(P < 0.0001 \)). The respective geometric mean parasitemias were 131.2 parasites/\(\mu l \) for 35 positive samples (range, 2.4–7478 parasites/\(\mu l \)) and 6.5 parasites/\(\mu l \) for 9 negative samples (range, 2.0–15.6 parasites/\(\mu l \)).

3.2. Amplification of pvs25 gene transcripts by quantitative real-time RT-PCR

Next, we standardized a simple qRT-PCR to detect and quantify pvs25 gene transcripts in clinical samples. We chose SYBR green dye, a cheap, efficient and flexible fluorescence reporting system, as an alternative to TaqMan probes (Bharti et al., 2006) or molecular beacons (Beurskens et al., 2009). SYBR green qRT-PCR proved to be substantially more sensitive than conventional RT-PCR, being able to detect pvs25 gene transcripts in 42 of 44 (95.4%) whole-blood samples assayed, with a fair but significant agreement between both methods (kappa = 0.312, \(P = 0.004 \); Table 2). Both samples with negative results by qRT-PCR had low parasite density (6.3 and 12.8 parasites/\(\mu l \)) estimated by qPCR and were also negative by conventional RT-PCR, but we were able to amplify 18S rRNA gene transcripts from the respective cDNA templates. We thus conclude that nearly all \(P. \) vivax-infected subjects in our field site in northwestern Brazil, either symptomatic or not, and regardless of their parasite load, have mature gametocytes circulating in their peripheral blood. Most estimates of \(P. \) vivax gametocyte carriage rate currently available for comparison derive from clinical trials that enrolled slide-positive and symptomatic patients (Bousema and Drameley, 2011). In these selected populations, gametocyte detection rates, by conventional microscopy, in clinical vivax malaria varied widely from 29% to nearly 100% (McKenzie et al., 2006; Nacher et al., 2004; Bousema and Drameley, 2011). Beurskens et al. (2009) found pvs25 transcripts in 51 of 74 (69%) clinical samples screened with QT-NASBA.

The number of copies of pvs25 gene transcripts detected by qRT-PCR, which correlates positively with (and indirectly estimates) the number of circulating mature gametocytes (Bharti et al. (2006)), correlated positively with the overall parasite density estimated by qPCR that targets the 18S rRNA gene and quantifies both asexual and sexual stages (\(r_s = 0.391, P = 0.009 \)). These data are consistent with previous comparisons of gametocyte and asexual parasite densities determined by conventional microscopy (McKenzie et al., 2006). Interestingly, the number of pvs25 gene transcripts in the gametocyte-positive population (\(n = 42 \)) was clearly overdispersed, with a variance (5.5 \(\times \) \(10^7 \) copies/\(\mu l \)) much greater than the mean (1.2 \(\times \) \(10^8 \) copies/\(\mu l \)), ranging between 1.1 and 4.8 \(\times \) \(10^8 \) copies/\(\mu l \) blood. The overdispersed nature of these data is further illustrated in Fig. 1, which shows the frequency distribution of pvs25 gene transcript copy number per microliter of blood. The originally overdispersed distribution has been nearly normalized by presenting copy number data on x-axis in a logarithmic scale.

3.3. Gametocytes in asymptomatic carriers of subpatent \(P. \) vivax parasitemias

Asymptomatic infections, which are missed by routine active and passive case detection (ACD and PCD, respectively), have been hypothesized to represent a major source of infective gametocytes across the Amazon Basin of Brazil (Alves et al., 2005; da Silva-Nunes et al., 2012). ACD implies periodic visits to households, with collection of thick blood smears from every person having had fever since the last visit, while PCD targets febrile subjects visiting malaria diagnosis outposts who have a blood sample tested positive for malaria parasites. Because both ACD and PCD target only symptomatic infections (defined as “fever cases” in the classical literature (e.g., MacDonald, 1957)), asymptomatic carriers remain undetected and untreated (Coura et al., 2006). We thus examined

Table 2

	qRT-PCR	Positive	Total
Negative	2	7	9
Positive	0	35	35
Total	2	42	44

Fig. 1. Frequency distribution of individual gametocyte densities, estimated as the number of pvs25 gene transcripts (copy number/\(\mu l \) blood) detected by quantitative reverse transcriptase real-time PCR, in 42 Plasmodium vivax-infected subjects from northwestern Brazil. The arrow indicates the arithmetic mean of pvs25 gene transcript copy number (1.2 \(\times \) \(10^7 \) copies/\(\mu l \)) in this population. Numbers on x-axis represent the upper limit of each copy number class. Note that by presenting values on x-axis in logarithmic scale we have nearly normalized the originally overdispersed frequency distribution.
the relative contribution of asymptomatic carriers of low-density parasitemias, who would have been missed by ACD and PCD based on conventional microscopy, to the overall *P. vivax* gametocyte burden (estimated by summing *pvs25* gene transcript numbers) in the 42 gametocyte-positive infections diagnosed by qRT-PCR.

In the first hypothetical scenario, only symptomatic subjects are screened, but a highly sensitive diagnostic method is used for parasite detection. Twenty of 42 (47.6%) gametocyte carriers found by qRT-PCR (corresponding to the black bar segments in Fig. 2A) would have been missed by ACD and PCD simply because they have no malaria-related symptoms. Interestingly, some subjects in this area may remain asymptomatic despite their relatively high parasitemias and gametocyte densities (i.e., high numbers of copies of *pvs25* gene transcripts), most likely due to acquired clinical immunity (da Silva-Nunes et al., 2012). In fact, we have found no clear-cut association between overall parasite burden (number of circulating asexual and sexual blood stages) and frequency and intensity of malaria-related symptoms in this population (Amanda B. Gozze and MUF, unpublished results), suggesting that the parasite density threshold associated with symptoms varies widely according to the hosts’ age and cumulative exposure to malaria. However, most potentially undiagnosed asymptomatic infections have low gametocyte densities; as a consequence, symptom-less gametocyte carriers overall contribute a very small (around 0.04%) fraction of the total gametocyte burden in the host population.

In the second scenario, only slide-positive infections, regardless of the presence of symptoms, are detected. This corresponds to the strategy known as aggressive active case detection (AACD; Macaulay, 2005), which consists of population-wide screenings for malaria parasites using conventional microscopy, irrespective of any clinical symptoms. We show that conventional microscopy would miss 23 of 42 (54.8%) gametocyte carriers detected by qRT-PCR, but most slide-negative infections have low gametocyte densities (Fig. 2B). Therefore, gametocyte carriers missed by conventional microscopy contribute a small (around 1.7%) fraction of the overall gametocyte burden.

In the last scenario, only symptomatic subjects are screened for malaria parasites by conventional microscopy. This is exactly what routine ACD and PCD do in Brazil (Oliveira-Ferreira et al., 2010) and other endemic countries with well-structured national malaria control programs. This strategy would miss a substantial proportion (26 of 44, 61.9%) of gametocyte carriers, who contribute 4.0% of the total gametocyte burden in the host population (Fig. 2C).

We therefore show that routine ACD and PCD miss a sizeable proportion of *P. vivax* gametocyte carriers. For example, more than two thirds of malaria infections in farming settlements in the Amazon are slide-negative (being detected only by PCR) and asymptomatic (da Silva et al., 2010). However, since most undiagnosed and untreated infections have very low gametocyte densities, their relative contribution to total gametocyte burden and thus malaria transmission might be considered almost negligible. In fact, the number of circulating *P. vivax* gametocytes correlates positively with the success rate of experimental infections of both South American (Bharti et al., (2006)) and Southeast Asian (Chansamut et al., in press) anopheline mosquitoes, with blood donors carrying low-density gametocytемias being less infectious to these vectors. Nevertheless, the correlation between gametocyte density and mosquito infection rates is by no means linear and submicroscopic infections may still be important for malaria transmission (Alves et al., 2005). In addition, untreated asymptomatic infections allow for gametocyte carriage and potential infectiousness over extended periods of time, while *P. vivax* gametocytes in treated patients have a median clearance time of 2 h following standard chloroquine-primaquine chemotherapy (Pukrittayakamee et al., 2008). As a consequence, the relative contribution of asymptomatic and/or submicroscopic gametocyte carriage to *P. vivax* transmission in communities may be severely underestimated if one does not consider the duration of the infectious period, which in turn can be measured in well-designed cohort studies with frequent blood sampling.

3.4. Failed attempts to amplify *pvs25* gene transcripts from dried bloodspots

The widespread use of molecular methods for gametocyte detection as a public health tool is severely constrained by the
need to freeze field-collected blood samples at –70°C or in liquid nitrogen until RNA isolation and cDNA synthesis. A previous report showed that \(P. \) \textit{falciparum} material culture spotted onto 903 protein saver cards and stored at 25 or 37°C for up to 3 months remained suitable for amplifying \(pf525 \) transcripts by nested RT-PCR (Mlambo et al., 2008). This method for sample storage has been used for active detection of \(P. \) \textit{falciparum} gametocyte carriers in Zambia (Stresman et al., 2009). No similar study has been carried out with \(P. \) vivax gametocytes from patient-derived blood samples. We thus tested whether our qRT-PCR can detect \(pv525 \) gene transcripts from cDNA templates prepared from dried bloodspots.

From blood samples spotted on four different types of cards (FTA classic cards, Whatman #3 filter papers, 903 protein saver cards, and QIAcard FTA cards; Table 1), kept at ambient temperature or frozen at –20°C for 1–2 months prior to further processing, we were able to obtain parasite cDNA templates and amplify transcripts of the 18S rRNA gene of \(P. \) vivax. However, \(pv525 \) gene transcript amplification failed in all 40 cDNA templates tested (five whole-blood samples spotted on duplicates of four different cards and maintained at different temperatures). Similarly, we amplified 18S rRNA gene transcripts from most (28 of 36; 77.8%) archived bloodspots collected on FTA classic cards and stored in the field at ambient temperature, but none of these samples yielded \(pv525 \) gene transcripts. We thus were able to amplify only highly abundant \(P. \) vivax-specific transcripts, such as those of the 18S rRNA gene (Kamau et al., 2011), from dried blood spots.

Mlambo et al. (2008) were able to detect \(pf525 \) gene transcripts by nested RT-PCR, which may be more sensitive that our qRT-PCR, by using a commercial kit (RNAeasy Mini-kit, Qiagen) for RNA extraction from in vitro culture material spotted onto 903 protein saver cards. Moreover, dried blood spots stored under different temperatures have been successfully used as a source of RNA for quantification of HIV-1 viral load. A recent report from India, for example, showed a sensitivity of 95% for HIV-1 detection from dried blood spots on 903 protein saver cards kept at room temperature for 3–6 months (Vidyai et al., 2012). However, a weak correlation was found between viral RNA measurements from dried blood spots and plasma samples from patients with low (<2000 copies/mL) viral loads (Vidyai et al., 2012). These findings suggest that further improvements in RNA isolation and \(pv525 \) gene amplification strategies may render our qRT-PCR suitable for gametocyte transcript amplification from dried blood spots, although the ability of accurately quantifying low-density gametocytemias from these samples remains to be determined.

4. Conclusions

We describe methods for RNA isolation and SYBR green qRT-PCR quantitation of mature \(P. \) vivax gametocytes from whole-blood samples. We show that qRT-PCR is more sensitive than a conventional RT-PCR that targets the same transcripts. In addition, qRT-PCR is faster and has a reduced risk of carry-over contamination, since amplicon handling (e.g., agarose gel electrophoresis) is not required. Molecular detection of gametocytes failed, however, when dried bloodspots were used for RNA isolation and cDNA synthesis.

Estimating the number of transcripts that are specific for mature gametocytes allows for examining the potential infectiousness of gametocyte carriers in a quantitative way. To illustrate this point, we found that nearly all asymptomatic carriers of submicroscopic \(P. \) vivax infections from an endemic setting in Brazil have circulating mature gametocytes, but usually at very low densities, contributing a small fraction to the overall gametocyte burden in the community. However, carriers of low gametocyte densities can still infect mosquitoes (Bharti et al., 2006; Chansamut et al., in press) and, if left untreated, may potentially remain infectious over several months. We conclude that further community-based studies are required to determine the relative contribution of long-lasting but low-density gametocyte carriage to \(P. \) vivax transmission in areas approaching malaria elimination, where most high-density infections result in clinical episodes of malaria that are diagnosed by ACD or PCD and promptly treated.

Acknowledgments

We thank the patients from Remansinho for their enthusiastic cooperation, and Amanda B. Gozze, Vanessa C. Nicolette, Raquel M. Gonçalves, Pablo S. Fontoura, Mônica da Silva-Nunes, Carlos E. Cavasiní, and Rosely S. Malafrente for their support during field work, and Maria José Menezes and Gerhard Wunderlich (University of São Paulo) for their laboratory support and advice. This research was supported by research grants from the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health of USA (RO1 AI 075416 to M.U.F. and U19 AI089681 to Joseph M. Vinetz) and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, 2009/52729-9 to M.U.F.), Brazil. N.F.L received a research training scholarship from FAPESP and is currently supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil. M.U.F. receives a senior researcher scholarship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) of Brazil. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

Alves, F.P., Gil, L.H., Marrelli, M.T., Ribolla, P.E., Camargo, E.P., da Silva, L.H., 2005. Asymptomatic carriers of Plasmodium spp. as infection source for malaria vector mosquitoes in the Brazilian Amazon. J. Med. Entomol. 42, 777–779.
Babiker, H.A., Schneider, P., Reece, S.E., 2008. Gametocytes: insights gained during a decade of molecular monitoring. Trends Parasitol. 24, 525–530.
Beurskens, M., Mens, P., Schallig, H., Sysfuddin, D., Ash, P.R., Hermsen, R., Sauerwein, R., 2009. Quantitative determination of Plasmodium vivax gametocytes by real-time quantitative nucleic acid sequence-based amplification in clinical samples. Am. J. Trop. Med. Hyg. 81, 366–369.
Bharti, A.R., Chiquiquiri, R., Brouwer, K.C., Stancil, J., Liu, J., Llanos-Cuentas, A., Vinetz, J.M., 2006. Experimental infection of the neotropical malaria vector \(Anopheles darlingi \) by human patient-derived Plasmodium vivax in the Peruvian Amazon. Am. J. Trop. Med. Hyg. 75, 610–616.
Bousema, T., Drakeley, C., 2011. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin. Microbiol. Rev. 24, 377–410.
Chansamut, N., Buates, S., Takampunya, R., Udomsangphet, R., Bantuichi, S., Sattabongkot, J., in press. Correlation of \(Pf577 \) ortholog gene expression of Plasmodium vivax and mosquito infection. Trop. Med. Int. Health. http://dx.doi.org/10.1111/j.1365-3156.2011.02940.x.
Coura, J.R., Suarez-Mutis, M., Ladeira-Andrade, S., 2006. A new challenge for malaria control in Brazil: asymptomatic Plasmodium infection – a review. Mem. Inst. Oswaldo Cruz 101, 229–237.
da Silva-Nunes, M., Ferreira, J.M., 2007. Clinical spectrum of uncomplicated malaria in semi-immune Amazonians: beyond the “symptomatic” vs. “asymptomatic” dichotomy. Mem. Inst. Oswaldo Cruz 102, 341–347.
da Silva, N.S., da Silva-Nunes, M., Malafrente, R.S., Menezes, M.J., D’Acardia, R.R., Komatsu, N.T., Scopel, K.K., Braga, E.M., Cavassini, C.E., Cordeiro, J.A., Ferreira, M.U., 2010. Epidemiology and control of frontier malaria in Brazil: lessons from community-based studies in rural Amazonia. Trans. R. Soc. Trop. Med. Hyg. 104, 343–350.
da Silva-Nunes, M., Moreno, M., Conn, J.E., Gamboa, D., Abeles, S., Vinetz, J.M., Ferreira, M.U., 2012. Amazonian malaria: asymptomatic human reservoirs, diagnostic challenges, environmentally driven changes in mosquito vector populations, and the mandate for sustainable control strategies. Acta Trop. 121, 281–291.
Gilles, H.M., 1993. Diagnostic methods in malaria. In: Gilles, H.M., Warrell, D.A. (Eds.), Bruce Chwatt’s Essential Malariology. Edward Arnold, London, pp. 78–95.
Guerra, C.A., Howes, R.E., Patil, A.P., Gething, P.W., Van Boeckel, T.P., Temperley, W.H., Kabaria, C.W., Tatem, A.J., Manh, B.H., Elyazar, I.R., Baird, J.K., Snow, R.W., Hay, S.I., 2009. The global limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Negl. Trop. Dis. 3, e774.
Kamau, E., Tolbert, L.S., Kortepeter, L., Pratt, M., Nyako, N., Moringo, L., Ogutu, B., Waitumbi, J.N., Ockenhouse, C.F., 2011. Development of a highly sensitive
genus-specific quantitative reverse transcriptase real-time PCR assay for detection and quantitation of *Plasmodium* by amplifying RNA and DNA of the 18S rRNA genes. J. Clin. Microbiol. 49, 2946–2953.

Kimura, M., Kaneko, O., Liu, Q., Zhou, M., Kawamoto, F., Wataya, Y., Otani, S., Yamaguchi, Y., Tanabe, K., 1997. Identification of the four species of human malaria parasites by nested PCR that targets variants in the *small subunit rRNA* gene. Parasitol. Int. 46, 91–99.

Macauley, C., 2005. Aggressive active case detection: a malaria control strategy based on the Brazilian model. Soc. Sci. Med. 60, 563–573.

MacDonald, C., 1957. The Epidemiology and Control of Malaria. Oxford University Press, Oxford.

Mckenzie, F., Wongsrichanalai, C., Magill, A.J., Forney, J.R., Permpahanich, B., Lucas, C., Erhart, L.M., O’Meara, W.P., Smith, D.L., Sirichaisinthop, J., Gasser Jr., R.A., 2006. Gametocytemia in *Plasmodium vivax* and *Plasmodium falciparum* infections. J. Parasitol. 92, 1281–1285.

Mlambo, G., Vasquez, Y., LeBlanc, R., Sullivan, D., Kumar, N., 2008. Short report: a filter paper method for the detection of *Plasmodium falciparum* gametocytes by reverse transcription-polymerase chain reaction. Am. J. Trop. Med. Hyg. 78, 114–116.

Nacher, M., Silachamroon, U., Singhasivanon, P., Wilairatana, P., Phumratanaprapin, W., Fontanet, A., Looareesuwan, S., 2004. Risk factors for *Plasmodium vivax* gametocyte carriage in Thailand. Am. J. Trop. Med. Hyg. 71, 693–695.

Oliveira-Ferreira, J., Lacerda, M.V., Brasil, P., Ladelau, J.L., Taui, F.L., Daniel-Ribeiro, C.T., 2010. Malaria in Brazil: an overview. Malar. J. 9, 115.

Price, R.N., Tjitra, E., Guerra, C.A., Yeung, S., White, N.J., Anstey, N.M., 2007. Vivax malaria: neglected and not benign. Am. J. Trop. Med. Hyg. 77 (6 Suppl), 79–87.

Pukrittayakamee, S., Imwong, M., Singhasivanon, P., Stepniewska, K., Day, N.J., White, N.J., 2008. Effects of different antimalarial drugs on gametocyte carriage in *P. vivax* malaria. Am. J. Trop. Med. Hyg. 79, 378–384.

Stresman, G.H., Kamanga, A., Moono, P., Hamapumbu, H., Mharakurwa, S., Kobayashi, T., Moss, W.J., Shiff, C., 2009. A method for active case detection to target reservoirs of asymptomatic malaria and gametocyte carriers in a rural area in Southern Province, Zambia. Malar. J. 9, 265.

Sattabongkot, J., Tsuboi, T., Zollner, C.E., Sirichaisinthop, J., Cui, L., 2004. *Plasmodium vivax* transmission: chances for control? Trends Parasitol. 20, 192–198.

Vidy, M., Saravanam, S., Rifkin, S., Solomon, S.S., Waldrop, C., Mayer, K.H., Solomon, S., Balakrishnan, P., 2012. Dried blood spots versus plasma for the quantification of HIV-1 RNA using a real-time PCR, m2000rt assay. J. Virol. Methods 181, 177–181.