Plasma, Platelet, and Aorta Fatty Acids Composition in Response to Dietary n-6 and n-3 Fats Supplementation in a Rat Model of Non-Insulin-Dependent Diabetes

Ryutaro TAKAHASHI,* ** N. MORSE, and D. F. HORROBIN

Efamol Research Institute, Kentville, Nova Scotia, Canada B4N 4H8
(Received April 6, 1988)

Summary Male Sprague-Dawley rats were injected with 90 mg/kg of streptozotocin at 2 days of age. After weaning, they were put on a fat-free diet supplemented with safflower oil (S), a combination of S and linseed oil (L) or a combination of evening primrose oil (E) and L for 8 weeks. Plasma glucose levels and glycosuria were significantly elevated in all 3 groups of diabetic rats in comparison with the corresponding control rats. The percentage of arachidonic acid (20:4n-6) in plasma phospholipids of the S+L and E+L groups was similar to that of the S group and did not differ between control and diabetic rats while adrenic acid (22:4n-6) and docosahexaenoic acid (22:6n-3) changed in proportion to dietary n-3 and n-6 fats content. Arachidonic acid in aorta phospholipids significantly reduced in all 3 groups of diabetic rats as compared to the corresponding control groups. Dihomo-gamma-linolenic acid (20:3n-6) and arachidonic acid in aorta phospholipids increased by the E+L treatment. These results suggest that arachidonic acid in plasma phospholipids is kept constant regardless of the presence of diabetes of non-insulin-dependent type or dietary n-3 and n-6 fats supplementation. In aorta phospholipids, arachidonic acid in diabetic animals reduced and this may be compensated by gamma-linolenic acid supplementation, which leads to increase of dihomo-gamma-linolenic acid and arachidonic acid levels.

Key Words essential fatty acids, arachidonic acid, dihomo-gamma-linolenic acid, diabetes, aorta, dietary fat, rat

Linoleic acid (LA; 18:2n-6) is the parent fatty acid for n-6 fatty acids synthesis. Its desaturated and elongated metabolites, dihomo-gamma-linolenic acid (DGLA; 20:3n-6) and arachidonic acid (AA; 20:4n-6) act as precursors of 1- and 2-series...
prostaglandins, respectively, and as determinants of membrane physical properties (1, 2). Arachidonic acid level in plasma phospholipids is controlled within a narrow range and its level in human blood is thought to reflect essential fatty acids (EFAs) status of an individual (3). N-3 fatty acids are relatively minor components in plasma, but are found in abundance in retina, brain, and heart phospholipids mainly as docosahexaenoic acid (DHA; 22:6n-3)(4). Their parent fatty acid is alfa-linolenic acid (ALA; 18:3n-3). LA and ALA are thought to compete with each other when metabolized to AA and DHA, respectively (5, 6).

Increased EFAs requirement and defective AA synthesis have been well documented in experimentally induced diabetic rats (7, 8). Decreased activity of delta-6-desaturase, which is a strongly insulin-dependent enzyme and converts LA to gamma-linolenic acid (GLA; 18:3n-6), seems to be responsible (8). Streptozotocin treatment in adult rats is the most frequently used animal model of diabetes. In this model of diabetes, insulin production is completely abolished and glucose metabolism is severely impaired. Animals show extreme hyperlipidemia and weight reduction (9), which themselves might affect EFAs metabolism (10, 11). Recently, an animal model for non-insulin-dependent diabetes was described (12). The animals are moderately hyperglycemic and show impaired insulin biosynthesis (13) but are normolipidemic and show normal weight gain (14). In the present study, the effects of combination of dietary n-6 and n-3 fats on the EFAs composition in plasma, platelet, and aorta phospholipids were examined in this model of diabetes.

MATERIALS AND METHODS

Pregnant Sprague-Dawley rats (Canadian Hybrid Farms, Halls Harbour, Nova Scotia, Canada) had free access to Purina Rodent Chow (No. 5001, Ralston Purina Co., St. Louis, Mo.) and water. Two-day-old male neonates from seven randomly chosen litters were injected intraperitoneally with 90mg/kg streptozotocin (Sigma Chemical Co., St. Louis, Mo.) in 0.1 M citrate buffer, pH 4.5. Control rats were injected with an equivalent volume of citrate buffer. Animals were weaned at 3 weeks of age and then both control and diabetic rats were randomly divided into 3 groups and received a fat-free diet (Teklad Test Diets, Madison, Wis.) supplemented with either 10% by weight of safflower oil (S, commercial source), a combination of each 5% by weight of S and linseed oil (L, commercial source) or a combination of each 5% by weight of evening primrose oil (E; Efamol Ltd., Guildford, England) and L. The fat-free diet contained 70.7% sucrose, 19.3% vitamin-free casein, 5.0% cellulose, 3.5% mineral mix (AIN-76), 1.0% vitamin mix (AIN-76A), 0.3% DL-methionine, and 0.2% choline chloride. The fatty acid compositions of the rodent chow and the supplemented oils are shown in Table 1.

At 11 weeks of age, the animals were killed. Blood was collected by cardiac puncture under ether anesthesia into plastic syringes and anticoagulated using 9 vol. of blood with 1 vol. of 3.8% trisodium citrate. The thoracic aorta was removed,
Table 1. Fatty acid composition of the rodent chow and the supplemented oils.

Fatty Acid	Chow	Oil supplemented		
	S	L	E	
14:0	1.5	0.2	—	
16:0	21.9	6.8	5.2	6.4
16:1	3.1	—	0.4	—
18:0	9.9	2.4	3.3	1.7
18:1n-9	32.2	11.5	21.3	8.6
18:2n-6	24.3	78.4	20.4	73.8
18:3n-3	3.7	—	48.8	—
18:3n-6	—	—	—	9.1
Others	3.4	0.7	0.5	0.3

The rodent chow contained 4.5% fat.

trimmed, rinsed in saline, blotted, and frozen at −20°C. Platelets and plasma were separated by centrifugation, washed by calcium-free Tyrode’s buffer, and frozen at −20°C (15). Plasma, platelet, and aortic lipids were extracted by the method of Bligh and Dyer (16). The phospholipid fractions were separated by thin-layer chromatography, methylated, and subjected to gas-liquid chromatography for determination of fatty acid composition as previously described (17). A 10% Silar 10C on Gas Chrom Q column was used with a Hewlett Packard 5880A machine with automated integration. Identification was based on retention time with respect to standard methyl ester mixtures (Nu-Chek Preps, Elysian, Minn.).

Plasma and urine glucose concentrations and plasma cholesterol and triglyceride levels were determined enzymatically using a Cobas-Bio centrifugal analyzer (Hoffmann-La Roche, Nutley, N.J.).

Statistical analysis was performed using the Tukey-Kramer test preceded by ANOVA (18) while the difference between control and the corresponding diabetic rats was assessed by Student’s t-test.

RESULTS

General

At 11 weeks of age, body weight and food intake of streptozotocin-treated rats fed on the S (mean ± SD; 315 ± 25 g, 18 ± 3 g/day) or S + L (306 ± 24 g, 18 ± 3 g/day) diet did not differ from those of the corresponding controls (S: 330 ± 20 g, 17 ± 3 g/day; S + L: 329 ± 19 g, 18 ± 3 g/day) whereas diabetic rats fed on the E + L diet showed reduced body weight and increased food intake (291 ± 25 g, 23 ± 4 g/day) as compared to the corresponding controls (326 ± 16 g, 19 ± 3 g/day, p < 0.05). Plasma glucose levels in all 3 groups of diabetic rats were significantly higher than those in the corresponding control groups, but plasma total cholesterol
Table 2. Plasma glucose, cholesterol, and triglyceride concentrations in control and diabetic rats fed for 8 weeks on different lipid diets.

Diet	S	S + L	E + L
Glucose, mg/100 ml			
Control	147 ± 9*	152 ± 15*	149 ± 14*
Diabetic	176 ± 21	184 ± 18	200 ± 26
Cholesterol, mg/100 ml			
Control	47 ± 9a,b	56 ± 8a	38 ± 7b
Diabetic	53 ± 9	50 ± 6	49 ± 10
Triglyceride, mg/100 ml			
Control	126 ± 37a	79 ± 19b	85 ± 15b
Diabetic	110 ± 29	104 ± 32	96 ± 30

Each value represents the mean ± SD of samples from 5–7 rats. Means in a horizontal row that do not share a common superscript letter differ significantly (p < 0.05 or better). *p < 0.05 or better; control vs. diabetic rats.

Table 3. Fatty acid composition (mg/100 mg total fatty acids) of plasma phospholipids from control and diabetic rats fed for 8 weeks on different lipid diets.

Diets	S	S + L	E + L			
Control						
16:0	22.6 ± 1.6	23.5 ± 1.4a	24.0 ± 2.2	18.8 ± 1.9b		
18:0	22.9 ± 1.7	21.3 ± 1.8a	22.5 ± 1.6	24.9 ± 1.0	25.0 ± 1.3b	
18:1	6.1 ± 1.1a	6.5 ± 0.8	5.9 ± 0.9a	5.7 ± 1.0	4.6 ± 0.6b	5.6 ± 0.5
18:2n-6	15.0 ± 2.4ab	16.5 ± 0.9a	16.5 ± 1.9a	13.7 ± 1.4b	19.3 ± 2.3b*	
18:3n-3						
20:3n-6	0.7 ± 0.3	0.6 ± 0.3a	0.7 ± 0.2	0.8 ± 0.2	1.2 ± 0.4b	
20:4n-6	26.4 ± 1.3	26.4 ± 2.3	24.4 ± 2.7	26.8 ± 1.6	24.2 ± 2.0	
20:5n-3			0.5 ± 0.1a	0.4 ± 0.1a	0.4 ± 0.1b	0.3 ± 0.1b
22:4n-6	1.1 ± 0.1a	1.2 ± 0.1a			0.3 ± 0.1b	
22:5n-6	4.2 ± 0.8	2.8 ± 0.6			2.8 ± 0.6	
22:5n-3			1.6 ± 0.2	1.5 ± 0.2	1.1 ± 0.2	1.4 ± 0.3
22:6n-3	0.3 ± 0.1a	0.3 ± 0.0a	5.3 ± 0.6b	4.6 ± 0.6b	5.0 ± 0.2b	3.6 ± 1.1b
18:2n-6/metabolites	0.46	0.53	0.66	0.67	0.49	0.75

Each value represents the mean ± SD of samples from 5–7 rats. Means in a horizontal row that do not share a common superscript letter differ significantly (control: a, b; diabetic: a', b', p < 0.05 or better). *The sum of 20:3n-6 + 20:4n-6 + 22:4n-6 + 22:5n-6. *p < 0.05 or better; control vs. diabetic rats.

J. Nutr. Sci. Vitaminol.
and triglyceride levels did not differ between control and diabetic rats on any dietary regimen (Table 2). In control rats, plasma total cholesterol in the E+L group was lower than in the S+L group and plasma triglyceride in the S+L and E+L groups was lower than in the S group, but these effects were not observed in diabetic rats.

Fatty acid analysis

Plasma phospholipids. AA content did not differ between control and diabetic rats, or between different fat diets (Table 3). Minor differences were observed for palmitic acid (16:0) and stearic acid (18:0) composition among the diabetic groups and for oleic acid (18:1) composition among the control groups. Dietary ALA supplementation (the S+L and the E+L groups) increased eicosapentaenoic acid (EPA; 20:5n-3), docosapentaenoic acid (22:5n-3), and DHA and led to an absence or remarkable reduction of adrenic acid (22:4n-6) and docosapentaenoic acid (22:5n-6) content. In diabetic rats fed the E+L diet, compositions of LA and DGLA were significantly higher than those in the S and the S+L groups.

Aorta phospholipids. Palmitic acid was lower and stearic acid and LA were higher in the E+L fed diabetic rats as compared to the corresponding controls (Table 4). On all 3 dietary regimens, AA content significantly decreased in diabetic rats in comparison with the controls. Adrenic acid and docosapentaenoic acid

Table 4. Fatty acid composition (mg/100mg total fatty acids) of aorta phospholipids from control and diabetic rats fed for 8 weeks on different lipid diets.

Diets	Control	Diabetic	Control	Diabetic	Control	Diabetic
16:0	20.4 ± 1.5	19.0 ± 1.0	20.6 ± 0.9	19.1 ± 1.6	21.9 ± 1.9	17.9 ± 1.2*
18:0	20.0 ± 2.8	22.1 ± 3.0^b^v	21.9 ± 0.7	21.6 ± 1.3^a	22.5 ± 1.1	24.7 ± 0.8^b^{.*}
18:1	10.7 ± 1.2^a	10.8 ± 0.6^v	12.9 ± 1.4^b	13.0 ± 1.3^b	11.6 ± 1.1^a^b	10.9 ± 1.2^a
18:2n-6	12.9 ± 2.6^a	15.1 ± 3.2^v	13.1 ± 1.7^a	17.6 ± 1.5^b	5.5 ± 0.8^b	12.3 ± 2.1^b^{.*}
18:3n-3	—	—	—	—	—	—
20:3n-6	1.0 ± 0.2^a	1.0 ± 0.1^a	1.4 ± 0.2^b	1.6 ± 0.2^b	1.8 ± 0.2^c	2.1 ± 0.2^c
20:4n-6	25.9 ± 1.6^a	23.2 ± 1.5^{.*}	20.6 ± 1.4^b	17.9 ± 0.9^b^{.*}	25.5 ± 2.1^c	22.2 ± 1.1^c^{.*}
20:5n-3	—	—	0.8 ± 0.1^a	0.8 ± 0.1^a	0.6 ± 0.1^b	0.5 ± 0.1^b
22:4n-6	5.3 ± 0.7^a	5.9 ± 0.5^a	2.6 ± 0.3^b	2.3 ± 0.3^b	4.1 ± 0.4^a	3.5 ± 0.4^a
22:5n-6	3.7 ± 0.7	3.0 ± 0.3	—	—	—	—
22:6n-3	—	—	3.1 ± 0.2	3.1 ± 0.2	3.0 ± 0.3	3.3 ± 0.4
18:2n-6/metabolites¹	0.36	0.46	0.53	0.81	0.18	0.44

Each value represents the mean ± SD of samples from 5–7 rats. Means in a horizontal row that do not share a common superscript letter differ significantly (control: a, b, c; diabetic: a', b', c'). ¹The sum of 20:3n-6 + 20:4n-6 + 22:4n-6 + 22:5n-6. ^{.*}p < 0.05 or better; control vs. diabetic rats.
(22:5n-6) in the S groups were replaced with EPA, docosapentaenoic acid (22:5n-3) and DHA in the S+L and the E+L groups. Levels of DGLA were significantly higher both in control and diabetic rats of the E+L groups than those in the S or the S+L groups.

Platelet phospholipids. There were no significant differences in fatty acid compositions between control and diabetic rats, except for increased LA and decreased oleic acid and DHA in the E+L fed diabetic rats. As similarly observed in aorta phospholipids, adrenic acid and docosapentaenoic acid (22:5n-6) in the S groups were replaced by EPA, docosapentaenoic acid (22:5n-3), and DHA in the S+L and the E+L groups. DGLA in the E+L groups was significantly higher than that in the S and the S+L groups both in control and diabetic rats.

DISCUSSION

It has been documented that conversion of LA to AA is reduced in experimental diabetic rats induced by injecting diabetogenic chemicals (streptozotocin, alloxan, etc.) to adult animals (7, 8). Consequently, AA deficiency has been shown in the phospholipid fraction of plasma, liver, aorta, platelet, and so on (19–21). Decreased delta-6-desaturase activity seems to be at least partly responsible for

Diets	S	S+L	E+L
16:0	26.6±4.7	30.8±3.0	30.2±2.0
18:0	17.3±1.9	17.6±1.4	18.2±2.2
18:1	6.9±0.8	7.4±0.5	7.2±0.4
18:2n-6	9.2±1.4	9.5±0.6	6.7±0.5
18:3n-3	20:3n-6	1.0±0.2	1.5±0.1
20:4n-6	30.3±2.9	26.2±1.3	29.2±2.7
20:5n-3	1.5±0.2	2.8±0.1	3.9±0.3
22:4n-6	6.4±0.6	3.6±0.3	4.7±0.3
22:5n-6	6.8±0.5	3.5±0.6	3.9±0.3
18:2n-6/metabolites	2.0±0.1	0.7±0.0	1.6±0.1
	0.24	0.31	0.19

Each value represents the mean ± SD of samples from 5–7 rats. Means in a horizontal row that do not share a common superscript letter differ significantly (control: a, b, c; diabetic: a', b', p<0.05 or better). *p<0.05 or better; control vs. diabetic rats.

Table 5. Fatty acid composition (mg/100 mg total fatty acids) of platelet phospholipids from control and diabetic rats fed for 8 weeks on different lipid diets.
this (8, 11, 22). In the present study, we observed no significant changes of AA in plasma phospholipids in a rat model for insulin-independent diabetes. It is, however, noteworthy that ratios of LA to its desaturated and elongated products are increased (especially in the E+L treatment) in diabetic rats, suggesting slow metabolic rate of LA in these animals (Tables 3 to 5). Our previous study in human non-insulin-dependent diabetes showed no significant changes of fatty acid composition in plasma total lipid (23), and similar results were also reported on liver lipid analysis (24). Hypercholesterolemia is common in severe diabetes. Both endogenous and diet-induced hypercholesterolemia have been demonstrated to lower AA in plasma and liver lipids (10, 25). In addition, our recent study indicated a possibility that distribution of AA among various lipid fractions is disturbed by metabolic acidosis, which commonly complicated with severe diabetes (26). In the present study, plasma total cholesterol and triglyceride levels (Table 2) and blood pH values (data not shown) were not different between control and diabetic rats. AA deficiency in plasma and liver phospholipids of severe diabetic animals might be induced by these factors.

AA levels in plasma phospholipids were hardly altered by the 8-week treatment of various combinations of n-6 and n-3 fats. Although ALA inhibits the conversion of LA to AA (6, 27), its inclusion in the diet does not change AA content in the liver if dietary ALA/LA ratio does not exceed 0.5 and a basic requirement of LA is provided (28). This may explain our results (in the present study, ALA/LA+GLA ratios were 0.49 and 0.47 in the S+L and E+L diet, respectively, and caloric intake of LA was more than 9%) and agrees with other studies in rats (6, 27, 29) and in humans (30).

In contrast, compositions of C-22 polyenoic fatty acids were substantially affected by dietary n-6 and n-3 fats replacing each other according to the type of fats available. Moreover, ratios of arachidonic acid/docosapentaenoic acid (22:5n-6) or docosapentaenoic acid (22:5n-3)/DHA (indices of delta-4-desaturase activity) were markedly different between plasma phospholipids and aorta and platelet phospholipids (in plasma, 0.22–0.30; in aorta, 0.83–1.43; in platelet, 2.29–5.82; data from controls). Little is known about the pathophysiological role of delta-4-desaturase in EFAs metabolism. These results might also be explained by the preferential incorporation of arachidonic and docosapentaenoic acid (22:5n-3) into aorta and platelet phospholipids (31).

AA in aorta phospholipids was reduced in diabetic rats regardless of the different fat diets (Table 4). The same results have been shown in insulin-requiring ketoacidotic diabetic rats induced by streptozotocin treatment in adult animals (19, 21) and may be related to diminished aortic prostacyclin production in both types of diabetic animals (14, 32). Recently, it has been shown that AA has a protective effect against hyperglycemia-induced teratogenesis in vitro and in vivo (33, 34), suggesting the importance of reduced AA content in the pathological events of diabetes.

DGLA content in plasma, aorta, and platelet phospholipids was significantly
raised in the E+L groups as compared to the other 2 diet groups. GLA, which is included in the former diet, is the direct precursor of DGLA. Undesirable effects of AA deficiency in aorta from diabetic rats may be neutralized by dietary GLA supplementation, partly because possible reduction of prostacyclin production seems to be compensated by increase of DGLA (substrate for anti-aggregatory prostaglandin E₁ synthesis) content and partly because GLA treatment facilitates incorporation of AA into aorta phospholipids (Table 4)(35).

REFERENCES

1) Horrobin, D. F. (1982): Essential fatty acids: a review, in Clinical Uses of Essential Fatty Acids, ed. by Horrobin, D. F., Eden Press, Montreal, pp. 3–36.
2) Stubbs, C. D., and Smith, A. D. (1984): The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. *Biochim. Biophys. Acta*, 779, 89–137.
3) Holman, R. T. (1986): Control of polyunsaturated fatty acids in tissue lipids. *J. Am. Coll. Nutr.*, 5, 183–211.
4) Tinoco, J., Babcock, R., Hincenbergs, I., Medwadowski, B., Miljanich, P., and Williams, M. A. (1979): Linolenic acid deficiency. *Lipids*, 14, 166–173.
5) Rahm, J. J., and Holman, R. T. (1964): Effect of linoleic acid upon the metabolism of linolenic acid. *J. Nutr.*, 84, 15–19.
6) Mohrhauser, H., and Holman, R. T. (1963): Effect of linolenic acid upon the metabolism of linoleic acid. *J. Nutr.*, 81, 67–74.
7) Friedmann, N., Gellhorn, A., and Benjamin, W. (1966): Synthesis of arachidonic acid from linoleic acid in vivo in diabetic rats. *Isr. J. Med. Sci.*, 2, 677–682.
8) Brenner, R. R. (1974): The oxidative desaturation of unsaturated fatty acids in animals. *Mol. Cell. Biochem.*, 3, 41–52.
9) Bar-On, H., Roheim, P. S., and Eder, H. A. (1976): Hyperlipoproteinemia in streptozotocin-treated rats. *Diabetes*, 25, 509–515.
10) Huang, Y. S., Manku, M. S., and Horrobin, D. F. (1984): The effects of dietary cholesterol in blood and liver polyunsaturated fatty acids and on plasma cholesterol in rats fed various types of fatty acids. *Lipids*, 19, 664–672.
11) Faas, F. H., and Carter, W. J. (1980): Altered fatty acid desaturation and microsomal fatty acid composition in the streptozotocin diabetic rat. *Lipids*, 15, 953–961.
12) Bonner-Weir, S., Trent, D. F., Honey, R. N., and Weir, G. C (1981): Responses of neonatal rat islets to streptozotocin. Limited B-cell regeneration and hyperglycemia. *Diabetes*, 30, 64–69.
13) Weir, G. C., Clore, E. T., Zmachinski, C. J., and Bonner-Weir, S. (1981): Islet secretion in a new experimental model for non-insulin-dependent diabetes. *Diabetes*, 30, 590–595.
14) Wey, H. E., and Subbiah, M. T. R. (1984): Altered aortic prostaglandin synthesis in a mild form of diabetes and the influence of dietary cholesterol. *J. Lab. Clin. Med.*, 104, 312–320.
15) Mustard, J. F., Perry, D. W., Ardlie, N. G., and Packham, M. A. (1972): Preparation of suspensions of washed platelets from humans. *Br. J. Haematol.*, 22, 193–204.
16) Bligh, E. G., and Dyer, W. J. (1959): A rapid method of total lipid extraction and purification. *Can. J. Biochem. Physiol.*, 37, 911–917.
17) Manku, M. S., Horrobin, D. F., Huang, Y.-S., and Morse, N. (1983): Fatty acids in plasma and red cell membranes in normal humans. *Lipids*, 18, 906–908.
18) Sokal, R. R., and Rohlf, F. J. (1981): Biometry. W. H. Freeman, New York.
19) Holman, R. T., Johnson, S. B., Gerrard, J. M., Mauer, S. M., Kupcho-Sandberg, S., and Brown, D. M. (1983): Arachidonic acid deficiency in streptozotocin-induced diabetes. Proc. Natl. Acad. Sci. U.S.A., 80, 2375–2379.
20) Huang, Y.-S., Horrobin, D. F., Manku, M. S., Mitchell, J., and Ryan, M. A. (1984): Tissue phospholipid fatty acid composition in the diabetic rat. Lipids, 19, 367–370.
21) Takahashi, R., Morita, I., Murota, S., and Ito, H. (1986): Regulation of platelet aggregation and arachidonate metabolism in streptozotocin-diabetic rats. Prostaglandins Leuk. Med., 25, 123–129.
22) Eck, M. G., Wynn, J. O., Carter, W. J., and Faas, F. H. (1979): Fatty acid desaturation in experimental diabetes mellitus. Diabetes, 28, 479–485.
23) Morita, I., Takahashi, R., Ito, H., Orimo, H., and Murota, S. (1983): Increased arachidonic acid content in platelet phospholipids from diabetic patients. Prostaglandins Leuk. Med., 11, 33–41.
24) Cairns, S. R., and Peters, T. J. (1983): Biochemical analysis of hepatic lipid in alcoholic and diabetic and control subjects. Clin. Sci., 65, 645–652.
25) Nichaman, M. Z., Sweeley, C. C., and Olson, R. E. (1967): Plasma fatty acids in normolipemic and hyperlipemic subjects during fasting and after linoleate feeding. Am. J. Clin. Nutr., 20, 1057–1069.
26) Takahashi, R., Horrobin, D. F., Watanabe, Y., Kyte, V., and Billard, V. (1987): Short-term diabetes increases triglyceride arachidonic acid content in the rat liver. Biochim. Biophys. Acta, 921, 151–153.
27) Sinclair, A. J. (1975): Incorporation of radioactive polyunsaturated fatty acids into liver and brain of developing rat. Lipids, 10, 175–184.
28) Blond, J. P., Poisson, J. P., and Lemarchal, P. (1978): Influence of α-linolenic acid upon the conversion in vivo of [1-14C]linoleic acid and of [1-14C]-α-linolenic acid to arachidonic acid in the adult rat. Arch. Int. Physiol. Biochim., 86, 741–754.
29) Chern, J. C., and Kinsella, J. E. (1983): The effect of unsaturated fatty acids on the synthesis of arachidonic acid in rat kidney cells. Biochim. Biophys. Acta, 750, 465–471.
30) Adam, O., Wolfram, G., and Zöllner, N. (1986): Effect of α-linolenic acid in the human diet on linoleic acid metabolism and prostaglandin biosynthesis. J. Lipid Res., 27, 421–426.
31) Takahashi, R., Manku, M. S., and Horrobin, D. F. (1987): Impaired platelet aggregation and thromboxane generation in essential fatty acid-deficient rats. J. Nutr., 117, 1520–1526.
32) Harrison, H. E., Reece, A. H., and Johnson, M. (1978): Decreased vascular prostacyclin in experimental diabetes. Life Sci., 23, 351–360.
33) Goldman, A. S., Baker, L., Piddington, R., Marx, B., Herold, R., and Egler, J. (1985): Hyperglycemia-induced teratogenesis is mediated by a functional deficiency of arachidonic acid. Proc. Natl. Acad. Sci. U.S.A., 82, 8227–8231.
34) Pinter, E., Reece, E. A., Leranth, C. Z., Garcia-Segura, M., Hobbins, J. C., Mahoney, M. J., and Naftolin, F. (1986): Arachidonic acid prevents hyperglycemia-associated yolk sac damage and embryopathy. Am. J. Obstet. Gynecol., 155, 691–702.
35) De Gomez Dunn, I. N. T., De Alainz, M. J. T., and Brenner, R. R. (1983): Effect of dietary fatty acids on Δ5 desaturase activity and biosynthesis of arachidonic acid in rat liver microsomes. Lipids, 18, 781–788.