On eigenfunctions and maximal cliques of Paley graphs of square order✩

Sergey Goryainova,c,d,e, Vladislav V. Kabanovc, Leonid Shalaginovc,d, Alexandr Valyuzhenichb

aShanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, Shanghai, China
bSobolev Institute of Mathematics, Ak. Koptyug av. 4, Novosibirsk, 630090, Russia
cKrasovskii Institute of Mathematics and Mechanics, S. Kovalevskaja st. 16, Yekaterinburg, 620219, Russia
dChelyabinsk State University, Brat’ev Kashirinyh st. 129, Chelyabinsk, 454021, Russia

Abstract

In this paper we find new maximal cliques of size $q+1$ or $q+3$ accordingly as $q \equiv 1(4)$ or $q \equiv 3(4)$, in Paley graphs of order q^2, where q is an odd prime power. After that we use new cliques to define a family of eigenfunctions corresponding to both non-principal eigenvalues and having the cardinality of support $q+1$, which is the minimum by the weight-distribution bound.

Keywords: Paley graph; finite field; maximal clique; eigenvalue; eigenfunction; affine plane; oval

2010 MSC: 05E18, 05E30, 15A18

1. Introduction

Let q be an odd prime power, $q \equiv 1(4)$. The Paley graph $P(q)$ is the Cayley graph on the additive group \mathbb{F}_q^* of the finite field \mathbb{F}_q with the generating set of all squares in the multiplicative group \mathbb{F}_q^*. The Paley graphs $P(q)$ are known to be strongly regular with parameters $(q, \frac{q-1}{2}, \frac{q-5}{4}, \frac{q+1}{4})$. The well-known Delsarte bound applied to $P(q)$ says that the cardinality of a largest independent set (coclique) is at most \sqrt{q}. Since the Paley graphs are self-complementary, the same bound holds for a largest clique of $P(q)$.

✩The reported study was funded by RFBR according to the research project 17-51-560008. The first author is partially supported by the grant NSFC 11671258. The first and the third authors are partially supported by RFBR according to the research project 16-31-00316.

Corresponding author

Email addresses: 44g@ma11.ru (Sergey Goryainov), vvk@imm.uran.ru (Vladislav V. Kabanov), 44sh@ma11.ru (Leonid Shalaginov), graphkiper@mail.ru (Alexandr Valyuzhenich)
The problem of finding clique (independence) number of Paley graphs is open in general. In [5], the Delsarte bound was improved for infinitely many parameter tuples that correspond to Paley graphs.

Further we consider only the particular case when finite field F_{q^2} is a quadratic extension over F_q, where q is any odd prime power. In this case the subfield F_q of F_{q^2} gives a clique of order q, which meets the Delsarte bound. In 1984, Blokhuis [2] determined all cliques and all cocliques of size q in $P(q^2)$ and showed that they are affine images of the subfield F_q.

In 1996, maximal cliques of order $q^2 + 1$ and $q^2 + 3$ respectively, were found [1] by Baker et al., but an exhaustive computer search done by them showed that these cliques are not the only cliques of such size. Moreover, there are no known maximal cliques whose size belongs to the gap from $q^2 + 1$ (from $q^2 + 3$, respectively) to q.

Let θ be an eigenvalue of a graph Γ. A real-valued function on the vertex set of Γ is called an eigenfunction of the graph Γ corresponding to the eigenvalue θ, if it has at least one non-zero value and for any vertex γ in Γ the condition

$$\theta \cdot f(\gamma) = \sum_{\delta \in \Gamma(\gamma)} f(\delta)$$

holds, where $\Gamma(\gamma)$ is the set of neighbours of the vertex γ. Note that, given eigenvalue θ of a graph Γ, a vector consisting of values of an eigenfunction of Γ corresponding to the eigenvalue θ is an eigenvector of the adjacency matrix of this graph corresponding to the eigenvalue θ, where the values of the eigenfunction and the indexes of the adjacency matrix have matched ordering.

There are several papers devoted to the extremal problem of studying graph eigenfunctions with minimum cardinality of support (for more details and motivation, see [6]). In [7], Valyuzhenich found the minimum cardinality of support of an eigenfunction corresponding to the largest non-principal eigenvalue of a Hamming graph $H(n, q)$ and characterised such eigenfunctions with the minimum cardinality of support. In [8], Vorob’ev, Mogilnykh and Valyuzhenich, for all eigenvalues of a Johnson graph $J(n, \omega)$, characterised eigenfunctions with minimum cardinality of support, where n is sufficiently large. In [9], the weight-distribution lower bound for cardinality of support of an eigenfunction of a distance-regular graph is discussed. It follows from [9, Corollary 1] that an eigenfunction of $P(q^2)$ corresponding to the eigenvalue $\theta_2 = -\frac{1+q}{2}$ has at least $q + 1$ non-zero values. Since $P(q^2)$ is self-complementary, the same bound holds for an eigenfunction of $P(q^2)$ corresponding to the eigenvalue $\theta_1 = -\frac{1-q}{2}$.

In this paper we present a new family of maximal cliques in Paley graphs of square order. Moreover, we use these new maximal cliques to construct a family of eigenfunctions of Paley graphs of square order, whose cardinality of support meets the weight-distribution bound. This implies that the weight-distribution bound is tight in the case of Paley graphs of square order.

The paper is organized as follows. In Section 2 we recall some basic notation and some preliminary results. In Section 3 we construct new maximal cliques in Paley graphs. In Section 4 for both non-principal eigenvalues of $P(q^2)$, we present a family of eigenfunctions with the minimum cardinality of support.
2. Preliminaries

In this section we list some useful notation and results.

2.1. Affine plane $A(2, q)$

Let q be an odd prime power. Denote by $A(2, q)$ the point-line incidence structure, whose points are the vectors of 2-dimensional vector space $V(2, q)$ over \mathbb{F}_q, and the lines are the additive shifts of 1-dimensional subspaces of $V(2, q)$. It is well-known that $A(2, q)$ satisfies the axioms of a finite affine plane of order q. In particular, each line contains q points and there exist $q + 1$ lines through a point. An oval in the affine plane $A(2, q)$ is a set of $q + 1$ points such that no three are on a line. A line meeting an oval in one point (in two points) is called tangent (secant). For any point of an oval there exists a unique tangent at this point and q secants. By Qvist’s theorem (see, for example, [4, p. 147]), given a point that does not belong to an oval in a projective plane (and, consequently, in an affine plane) of odd order, there are either 0 or 2 tangents to the oval through this point.

2.2. Finite fields of square order

Let d be a non-square in \mathbb{F}_q^*. The elements of the finite field of order q^2 can be considered as $\mathbb{F}_{q^2} = \{x + y\alpha \mid x, y \in \mathbb{F}_q\}$, where α is a root of the polynomial $f(t) = t^2 - d$. Since \mathbb{F}_{q^2} is 2-dimensional vector space over \mathbb{F}_q, we can assume that the points of $A(2, q)$ are the elements of \mathbb{F}_{q^2} and a line l is presented by the elements $\{x_1 + y_1\alpha + c(x_2 + y_2\alpha)\}$, where $x_1 + y_1\alpha \in \mathbb{F}_{q^2}$, $x_2 + y_2\alpha \in \mathbb{F}_q^*$ are fixed and c runs over \mathbb{F}_q. The element $x_2 + y_2\alpha$ is called the slope of line l. A line l is called quadratic (non-quadratic), if its slope is a square (non-square) in \mathbb{F}_q^*. Let β be a primitive element of the finite field \mathbb{F}_q. Since the elements of $\mathbb{F}_{q^2}^* = \langle \beta^{q+1} \rangle$ are squares in $\mathbb{F}_{q^2}^*$, the difference between any two points of quadratic (non-quadratic) line is a square (non-square) in $\mathbb{F}_{q^2}^*$.

Lemma 1. For any point of $A(2, q)$, there exists $(q + 1)/2$ quadratic and $(q + 1)/2$ non-quadratic lines through this point.

For any $\gamma = x + y\alpha \in \mathbb{F}_{q^2}^*$ define the norm mapping N by $N(\gamma) = \gamma^{q+1} = \gamma^q = (x + y\alpha)(x - y\alpha) = x^2 - y^2d$. The norm mapping is a homomorphism from $\mathbb{F}_{q^2}^*$ to \mathbb{F}_q^* with $\text{Im}(N) = \mathbb{F}_q^*$. Thus, the kernel $\text{Ker}(N)$ is the subgroup of order $q + 1$ in $\mathbb{F}_{q^2}^*$. Since the kernel $\text{Ker}(N)$ is defined by the quadratic equation $x^2 - y^2d = 1$, each line of $A(2, q)$ has at most 2 points (elements) of $\text{Ker}(N)$. Thus, the points of $\text{Ker}(N)$ form an oval by definition.

Now we make some remarks on squares in finite fields.

Lemma 2. (1) The element -1 is a square in \mathbb{F}_q^* iff $q \equiv 1(4)$;
(2) For any non-square d in \mathbb{F}_q^* the element $-d$ is a square in \mathbb{F}_q^* iff $q \equiv 3(4)$.

The following lemma can be used to test whether an element $\gamma = x + y\alpha \in \mathbb{F}_{q^2}^*$ is a square.
Lemma 3 ([1], Lemma 2). An element $\gamma = x + y\alpha \in \mathbb{F}^*_q$ is a square iff $N(\gamma) = x^2 - y^2d$ is a square in \mathbb{F}_q.

Lemma 3 immediately follows from Lemma 3, Lemma 2 and the fact that $N(\alpha) = -d$.

Lemma 4. The element α is a square in \mathbb{F}^*_q iff $q \equiv 3(4)$.

3. Family of new maximal cliques

In this section, for any odd prime power q, we give a construction of maximal cliques in the Paley graph $P(q^2)$.

Let β be a primitive element of the finite field \mathbb{F}_q. Put $\omega := \beta^{q-1}$. Note that ω is a square in \mathbb{F}^*_q. Then the subgroup of order $q+1$ in \mathbb{F}^*_q is presented by $Q = \langle \omega \rangle$. Put $Q_0 := \{1, \omega^2, \omega^4, \ldots, \omega^{q-1}\}$, $Q_1 := \{\omega, \omega^3, \omega^5, \ldots, \omega^q\}$. We have $Q = Q_0 \cup Q_1$. It was noticed in Section 2 that the elements of Q form an oval as points of $A(2, q)$.

The main goal of this section is to prove the following result.

Theorem 1.
(1) If $q \equiv 1(4)$, then Q_0 and Q_1 are maximal cocliques of size $\frac{q+1}{2}$ in the graph $P(q^2)$;
(2) If $q \equiv 3(4)$, then $Q_0 \cup \{0\}$ and $Q_1 \cup \{0\}$ are maximal cliques of size $\frac{q+3}{2}$ in the graph $P(q^2)$.

It follows from Theorem 1 that, for any $q \equiv 1(4)$, the sets Q_0 and Q_1 induce maximal cliques of size $\frac{q+1}{2}$ in the complementary graph $\overline{P(q^2)}$, which is isomorphic to $P(q^2)$.

For any $\beta_1 \in \mathbb{F}^*_q$, $\beta_2 \in \mathbb{F}_q$ define an affine transformation $\psi_{\beta_1, \beta_2} : \mathbb{F}^*_q \to \mathbb{F}_q$ by the following rule

$$\psi_{\beta_1, \beta_2}(\gamma) = \beta_1 \gamma + \beta_2.$$

The set $T := \{\psi_{\beta_1, \beta_2} \mid \beta_1 \in (\mathbb{F}^*_q)^2\}$ forms a subgroup in $\text{Aut}(P(q^2))$.

Let us consider the sets $T_Q := \{\psi_{\beta_1, 0} \mid \beta_1 \in Q\} = \langle \psi_{\omega, 0} \rangle$, $T_{Q_0} := \{\psi_{\beta_1, 0} \mid \beta_1 \in Q_0\} = \langle \psi_{\omega^2, 0} \rangle$, $T_{Q_1} := \{\psi_{\beta_1, 0} \mid \beta_1 \in Q_1\}$, where T_{Q_0} and T_{Q_1} are subgroups of T such that $T_{Q_0} < T_{Q} < T$ holds.

Lemma 5. The following statements hold.
(1) T_Q preserves the lines of $A(2, q)$;
(2) T_Q stabilizes setwise the oval Q;
(3) T_Q acts transitively on the points of Q;
(4) T_Q acts transitively on the tangents to the oval Q;
(5) T_{Q_0} stabilizes setwise the sets Q_0 and Q_1 and acts transitively on each of them;
(6) each element of T_{Q_0} swaps the sets Q_0 and Q_1;
(7) T_Q stabilizes setwise the sets of quadratic and non-quadratic lines of $A(2, q)$.

4
Lemma 6. The following statements hold.
(1) If $q \equiv 1(4)$, then all tangents to the oval Q are non-quadratic;
(2) If $q \equiv 3(4)$, then all tangents to the oval Q are quadratic.

Proof. Note that the line $l = \{1 + c\alpha \mid c \in \mathbb{F}_q\}$ is a tangent to the oval Q at the point $(1, 0)$. By Lemma 5(4) and 5(7), T_Q acts transitively on the tangents to Q and stabilizes the set of quadratic and non-quadratic lines. This means that a tangent to Q is quadratic iff the tangent l is quadratic. The tangent l has the slope α, which is a square iff $q \equiv 3(4)$ by Lemma 4. The lemma is proved.

Lemma 7. The following statements hold.
(1) If $q \equiv 1(4)$, then the identity 1 is adjacent to each element of Q_1 and has no neighbours in $Q_0 \setminus \{1\}$;
(2) If $q \equiv 3(4)$, then the identity 1 is adjacent to each element of $Q_0 \setminus \{1\}$ and has no neighbours in Q_1.

Proof. Pick an arbitrary element $\gamma = x + y\alpha \in Q \setminus \{1\}$. Then the element $\gamma^2 = x^2 + dy^2 + 2xy\alpha$ represents an arbitrary element of $Q_0 \setminus \{1\}$. Moreover, since γ is a point of the oval Q, the equality $x^2 - dy^2 = 1$ holds.

Let us consider the difference

$$\gamma^2 - 1 = x^2 - 1 + dy^2 + 2xy\alpha = 2dy^2 + 2xy\alpha.$$

By Lemma 8, this difference is a square in \mathbb{F}_q^* iff the element $N(\gamma^2 - 1) = N(2dy^2 + 2xy\alpha) = 4d^2y^4 - 4x^2y^2d = 4dy^2(dy^2 - x^2) = -4dy^2$ is a square in \mathbb{F}_q^*. By Lemma 2(1), the element $-4dy^2$ is a square in \mathbb{F}_q^* iff $q \equiv 3(4)$.

Thus, one of the following two cases holds. If $q \equiv 1(4)$, then a non-quadratic line through 1 either contains a point from $Q_0 \setminus \{1\}$ or is a tangent. Consequently, a quadratic line through 1 contains a point from Q_1. If $q \equiv 3(4)$, then a quadratic line through 1 either contains a point from $Q_0 \setminus \{1\}$ or is a tangent. Consequently, a non-quadratic line through 1 contains a point from Q_1. The lemma is proved.

Lemma 8. The following statements hold.
(1) If $q \equiv 1(4)$, then the graph induced by Q is a complete bipartite with parts Q_0 and Q_1;
(2) If $q \equiv 3(4)$, then the graph induced by Q is a disjoint union of cliques Q_0 and Q_1.

Proof. The lemma immediately follows from Lemmas 7 and 5(5).

Now let us complete the proof of Theorem 1.

(1) By Lemma 6(6), Q_0 and Q_1 induce isomorphic subgraphs, so, it is enough to prove that coclique Q_0 is maximal.

Suppose that the coclique Q_0 can be extended by an element $\delta \in \mathbb{F}_q^* \setminus Q_0$. Each quadratic line through the point 0 is a secant of the oval Q; such a line
contains a point from \(Q_0 \) and a point from \(Q_1 \). Thus, the line, which contains
the points 0 and \(\delta \), is non-quadratic.

Consider a line \(L \) that connects the point \(\delta \) with a point from \(Q \). Suppose
\(L \) is a quadratic. Then \(L \) is a secant that contains a point from \(Q_0 \), which is a
contradiction. So, \(L \) is non-quadratic.

Consider all lines connecting \(\delta \) with each point of the oval \(Q \). Since each
such a line is non-quadratic, we obtain \(\left(q + 1 \right)/2 \) secants of \(Q \); these \(\left(q + 1 \right)/2 \) secants are exactly \(\left(q + 1 \right)/2 \) non-quadratic lines through the point \(\delta \); one of them
contains the point 0. Since each secant of \(Q \) through the point 0 is quadratic,
we obtain a contradiction.

(2) Recall that \(Q \) is the set of all elements with the norm 1. For any element
\(s \in \mathbb{F}_q^* \) the set \(sQ = sQ_0 \cup sQ_1 \) is the set of all elements with the quadratic norm
\(s^2 \); the sets \(sQ_0 \cup \{ s \} \) and \(sQ_1 \cup \{ s \} \) induce cliques of order \((q + 3)/2 \). Each
square of \(\mathbb{F}_q^* \) belongs to a unique set \(sQ \) for some \(s \in \mathbb{F}_q^* \). Suppose that the clique
\(Q_0 \cup \{ 0 \} \) can be extended by a square \(\delta \in sQ_i \), where \(i \in \{ 0, 1 \} \) and \(s \in \mathbb{F}_q^*, s \neq 1 \).
Since \(TQ_0 \) stabilizes (setwise) the clique \(Q_0 \cup \{ 0 \} \) and acts transitively on the
set of vertices of the clique \(sQ_i \), each vertex of the clique \(sQ_i \) is adjacent to each
vertex of the clique \(Q_0 \cup \{ 0 \} \). We obtain the clique \(sQ_i \cup Q_0 \cup \{ 0 \} \) of the size
\(|sQ_i \cup Q_0 \cup \{ 0 \}| = |sQ_i| + |Q_0| + 1 = (q + 1)/2 + (q + 1)/2 + 1 = q + 2 > q, \)
which is a contradiction. The theorem is proved.

An exhaustive computer search shows that the maximal cliques presented
in [1] and the maximal cliques given by Theorem 1 are not the only maxima l
cliques of size \(q^2 + 1/2 \) \((q^2 + 3/2, \) respectively) in \(P(q^2) \).

4. Family of eigenfunctions with minimum cardinality of support

The goal of this section is to prove the following theorem.

Theorem 2. Let \(f : \mathbb{F}_{q^2} \rightarrow \mathbb{R} \) be a function defined by the following rule.

\[
f(\gamma) := \begin{cases}
1, & \text{if } \gamma \in Q_0; \\
-1, & \text{if } \gamma \in Q_1; \
0, & \text{otherwise.}
\end{cases}
\]

(1) If \(q \equiv 1(4) \), then \(f \) is an eigenfunction of \(P(q^2) \) corresponding to the eigen-
value \(\theta_2 = -\frac{1-q}{2} \) and \(|\text{Supp}(f)| = q + 1 \) holds;
(2) If \(q \equiv 3(4) \), then \(f \) is an eigenfunction of \(P(q^2) \) corresponding to the eigen-
value \(\theta_1 = -\frac{1+q}{2} \) and \(|\text{Supp}(f)| = q + 1 \) holds.

Proof. We prove the theorem by checking the equality (1) for each vertex of
\(P(q^2) \).

(1) Let \(\gamma \) be a vertex of \(P(q^2) \) that represents a point of the oval \(Q \). By Lemma
[8,1], the vertices of \(Q \) induce a complete bipartite graph with parts \(Q_0 \) and \(Q_1 \)
of cardinality \(\frac{q^2+1}{2} \). Assume that \(\gamma \) belongs to \(Q_i \), where \(i \in \{ 0, 1 \} \). Then the
neighbours of γ with non-zero value of f are exactly elements of Q_{1-i}. So, for any vertex $\gamma \in Q$ the equality holds.

Suppose γ does not belong to the oval Q. Note that $f(\gamma) = 0$ holds. We consider the set L_γ of lines that connect the point γ with a point of Q. Then L_γ contains either 0 or 2 tangents to the oval Q.

If L_γ contains no tangents to the oval Q, then each line in L_γ is a secant of the oval Q. So, the neighbours of γ with non-zero value of f are exactly those points of Q that belong to quadratic lines of L_γ. Each such quadratic line contains some pair of adjacent vertices of Q. By Lemma any edge in Q connects a vertex from Q_0 and a vertex from Q_1. Thus, the equality holds.

If L_γ contains two tangents to the oval Q, then by Lemma these tangents are quadratic. Each line in L_γ excepting the two tangents is either a quadratic or has no points of Q. So, the neighbours of γ with non-zero value of f are exactly those points of Q that belong to quadratic secants of L_γ. Each such quadratic secant contains a unique pair of adjacent vertices of Q. By Lemma any edge in Q connects a vertex from Q_0 and a vertex from Q_1. Thus, the equality holds.

(2) Let γ be a vertex of $P(q^2)$ that represents a point of the oval Q. By Lemma, the vertices of Q induce the disjoint pair of cliques Q_0 and Q_1 of cardinality $\frac{1+q}{2}$. Assume that γ belongs to Q_i, where $i \in \{0,1\}$. Then the neighbours of γ with non-zero value of f are exactly elements of $Q_i \setminus \{\gamma\}$. So, for any vertex $\gamma \in Q$ the equality holds.

Suppose γ does not belong to the oval Q. Note that $f(\gamma) = 0$ holds. We consider the set L_γ of lines that connect the point γ with a point of Q. Then L_γ contains either 0 or 2 tangents to the oval Q.

If L_γ contains no tangents to the oval Q, then each line in L_γ is either a secant of the oval Q or has no points of Q. So, the neighbours of γ with non-zero value of f are exactly those points of Q that belong to quadratic secants of L_γ. Each such quadratic secant contains some pair of adjacent vertices of Q. By Lemma any edge in Q connects a pair of vertices either both from Q_0 or both from Q_1. This means that γ is adjacent to each vertex of Q. Thus, the equality holds.

If L_γ contains two tangents to the oval Q, then by Lemma these tangents are quadratic. Each line in L_γ excepting the two tangents is either a secant of the oval Q or has no points of Q. So, the neighbours of γ with non-zero value of f are exactly those points of Q that belong to quadratic secants of L_γ. Any non-quadratic line from L_γ is a secant of the oval Q and connects a vertex from Q_0 with a vertex from Q_1. This means that non-quadratic lines from L_γ contain the same number of points from Q_0 and Q_1. Since $|Q_0| = |Q_1|$, quadratic lines from L_γ contain the same number of points from Q_0 and Q_1. Thus, the equality holds. The theorem is proved.
Acknowledgment

We thank Alexander Gavrilyuk, Elena Konstantinova and Denis Krotov for useful suggestions, which significantly improved this paper.

References

References

[1] R. D. Baker, G. L. Ebert, J. Hemmeter, A. J. Woldar, Maximal cliques in the Paley graph of square order J. Statist. Plann. Inference 56 (1996) 33–38.

[2] A. Blokhuis, On subsets of $GF(q^2)$ with square differences, Indag. Math. 46 (1984) 369–372

[3] P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Research Reports Suppl., 10 (1973).

[4] P. Dembowski, Finite Geometries. Number 44 in Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin Heidelberg (1968)

[5] G. R. W. Greaves, L. H. Soicher, On the clique number of a strongly regular graph. arxiv:1604.08299v1

[6] D. Krotov, I. Mogilnykh, V. Potapov. To the theory of q-ary Steiner and other-type trade. Discrete Mathematics 339, 3 (2016) 1150–1157.

[7] A. Valyuzhenich. Minimum supports of eigenfunctions of Hamming graphs. Discrete Mathematics 340, 5 (2017) 1064–1068.

[8] K. Vorob’ev, I. Mogilnykh, A. Valyuzhenich. Minimum supports of eigenfunctions of Johnson graphs. arXiv:1706.03987.