PseudoGA: Cell pseudotime reconstruction based on genetic algorithm

Pronoy Kanti Mondal, Udit Surya Saha and Indranil Mukhopadhyay*

Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, West Bengal, India
*Corresponding author

1 Our algorithm for data simulation

We assume that read counts follow Gamma-Poisson distribution and we allow the parameters of the Gamma distribution to change with pseudotime. Let us assume that there are n cells with ordering \(i_1, i_2, ..., i_n\) where \((i_1, i_2, ..., i_n)\) is a permutation of \((1, 2, ..., n)\). The following data generation model has been used for simulating read counts from a set of genes:

Step 1:
We construct \(\lambda_{kj} = \alpha_j + \beta_j k\) which is the shape parameter of the Gamma distribution in the \(k\)-th cell for \(j\)-th gene, \(\alpha_j\) and \(\beta_j\) are gene specific parameters. For any given gene with index \(j\), \(\lambda_{kj}\) changes with the position of cells on the pseudotime trajectory and exhibits linear trend along pseudotime ordering. Next, we simulate \(X_{kj}\) where \(X_{kj} \sim \text{Gamma}(\lambda_{kj}, r_j)\), and \(\lambda_{kj}\) is the shape parameter and \(r_j\) is a gene specific scale parameter. Then, we generate \(Z_{kj}\) that indicates whether \(j\)-th gene is expressed in \(k\)-th cell or not. We assume \(Z_{kj} \sim \text{Bernoulli}(\Phi(c_j + \alpha X_{kj}))\), \(c_j\) is a gene specific constant, \(\alpha \geq 0\). Note that, in scenario I, the probability that a gene is expressed is an increasing function of the Gamma variable \(X_{kj}\) \((\alpha > 0)\) whereas in scenarios II and III, they are independent \((\alpha = 0)\). Finally, we generate \((Y_{kj}|Z_{kj} = 0) = 0\) and...
\(Y_{kj} | Z_{kj} = 1 \sim \text{Poisson}(X_{kj}) \) where \(Y_{kj} \) denotes the read count of \(j \)-th gene in \(k \)-th cell. Let \(Y_j = (Y_{1j}, \ldots, Y_{nj}) \).

Step 2:
After Step 1, the set of expression values for any particular gene has increasing linear trend along pseudotime trajectory if \(\beta_j \) is taken positive. If we want \(j \)-th gene to have decreasing mean expression level with pseudotime, we modify the set of expression values for \(j \)-th gene as \(Y''_j = \text{reverse}(Y_j) \) where \(\text{reverse}(x_1, x_2, \ldots, x_n) = (x_n, x_{(n-1)}, \ldots, x_1) \). To include genes with both increasing and decreasing trend, we apply \(Y''_j = \text{reverse}(Y_j) \) for some genes and keep \(Y''_j = Y_j \) for the rest.

Step 3:
To construct a gene with approximate quadratic trend with respect to pseudotime, we modify \(Y'_j \) from Step 2 in the following manner:

\[
Y'''_j = Y'_j[1, 3, 5, \ldots, (2n - 1), (2n), (2n - 2), \ldots, 2]
\]

To construct a gene with approximate cubic trend or sinusoidal trend with respect to pseudotime, we modify \(Y'_j \) in the following manner:

\[
u = (1, 3, 5, \ldots, (2n - 1))
\]
\[
v = (2n, (2n - 2), (2n - 4), \ldots, 2)
\]
\[
Y''''_j = Y'''_j[u[(\frac{n}{2} + 1) : n], v, u[1 : (\frac{n}{2})]]
\]

To generate genes that are not associated with pseudotime, we take \(Y''_j \) as a random permutation of \(Y'_j \).

To include variety of trends in our final gene expression matrix, we consider four types of genes: genes with quadratic trend, genes with cubic trend, genes with linear trend from Step 2 that we keep unchanged in Step 3 and genes with no association with pseudotime. In scenarios I and II, we assume relatively high values of \(c_j (c_j \sim N(1, \frac{1}{4})) \) implying lower occurrence of zeros. In scenario III, relatively lower values of \(c_j (c_j \sim N(0, \frac{1}{4})) \) are considered to incorporate higher incidence of dropouts.

The expression values for the \(j \)-th gene corresponding to the ordering \((i_1, i_2, \ldots, i_n)\), \(s_j \) is obtained by equating \((s_{i_1j}, s_{i_2j}, \ldots, s_{i_nj}) = Y''''_j \)

2 Simulation with Splatter

Using the Bioconductor package Splatter (1), single cell RNA-seq data were generated using three different methods: PROSSTT (2), Splat (1) and PhenoPath
(3). Under PROSSTT simulation method, the datasets of the specified size were generated with 100 steps keeping all other parameters as default.

Similarly, datasets with the specified number of features and cells were generated by Splat simulation method with 100 steps keeping all other parameters as default. Let i-th gene has the highest variance of expression values. The expression values of the i-th gene X_i is changed into $\sigma(X_i)$ where $\sigma(.)$ represents a random permutation of $(1, 2, \ldots, n)$, n being the number of cells.

Similarly, simulations using PhenoPath with the specified size were performed with all default parameters. PhenoPath generates expression values comparable to log normalized expressions. To convert them into actual expression values, the following transformation is applied on expression vectors X_i for the i-th gene: $Y_i = 10^{X_i - \min(X_i) - 3}$. Y_i values for all 100 genes are used for estimation by different methods. The distribution of Y_i can be thought of as left truncated unimodal log-normal, which is known to be a good approximation of normalized single cell expression data (4).

3 Operators in genetic algorithm

We explain different operators like mutation, recombination and selection that are used in our algorithm. We explain these using two chromosomal representations of eight objects as given in Figure S1.

| Chromosome A | 7 6 5 1 2 3 4 8 |
| Chromosome B | 6 1 4 2 5 7 3 8 |

Figure S1: Two different chromosomal representations of permutations.

Mutation operator, when applied on one permutation, arranges the objects in the segment between two positions in reverse order (Figure S2). We can also think of similar kinds of other mutation operators.

We apply recombination operator on two parental chromosomal configurations. This would produce two new offspring chromosomes that are different from parental chromosomes (Figure S3).
Figure S2: Mutation with the segment between position 4 to 6 being reversed.
Offspring 1

Missing entries in string 1

\[\begin{array}{cccccc}
0 & O & O & O & O & 2 & 3 & 4 & 8
\end{array} \]

Missing entries from string 1 in string 2

\[\begin{array}{cccccc}
X & X & 4 & 2 & X & X & 3 & 8
\end{array} \]

O: Occupied positions
U: Unoccupied positions
X: Ignored positions

Position of missing entries in string 1

\[\begin{array}{cccccc}
O & O & O & O & U & U & U & U
\end{array} \]

Position of missing entries from string 1 in string 2

\[\begin{array}{cccccc}
X & X & X & X & X & X
\end{array} \]
Offspring 2

Missing entries in string 2 Missing entries from string 2 in string 1

\[
\begin{array}{cccccccc}
6 & 1 & 4 & 2 & 0 & 0 & 0 & 0 \\
X & 6 & X & 1 & 2 & X & 4 & X \\
\end{array}
\]

Position of missing entries in string 2 Position of missing entries from string 2 in string 1

\[
\begin{array}{cccccccc}
U & U & U & U & 0 & 0 & 0 & 0 \\
X & X & X & X & X & X & X & X \\
\end{array}
\]

Result of recombination

\[
\begin{array}{cccccccc}
7 & 6 & 5 & 1 & 2 & 4 & 3 & 8 \\
4 & 6 & 2 & 1 & 5 & 7 & 3 & 8 \\
\end{array}
\]

Figure S3: Recombination with breakpoint between position 4 and 5
If there are N chromosomal configurations, recombination produces another N new offspring configurations making a total of $2N$ configurations. Again applying mutation operator we get $4N$ configurations (permutations). Now we apply selection operator (Figure S4) to select top N permutations based on the chosen cost function.

Permutation	Cost
7 6 5 1 2 3 4 8	100
6 1 4 2 5 7 3 8	200
1 2 4 7 6 8 5 3	150
6 5 7 1 4 2 8 3	130
8 1 5 3 4 2 7 6	250
5 1 2 3 8 7 6 4	300
3 8 1 6 2 4 7 5	275
5 8 3 7 4 6 1 2	225

Figure S4: Selection with 8 permutations
Figure S5: t-SNE plot of the HSMM data with memberships obtained from k-means clustering.

Figure S6: Network between clusters in HSMM data estimated by Pseu-
doGA.
Figure S7: Visualization of PseudoGA ordering with (A) PCA, (B) t-SNE, and (C) Diffusion Map, using HSMM dataset. Clustering was performed using k-means clustering on reduced dimensional data obtained using t-SNE. We calculate 23 different indices and choose the optimum number of clusters by majority voting. This can be done using R package “NbClust” (5).
Figure S8: Pseudotime ordering by PseudoGA with multiple subsamples based on large data.
Figure S9: Plot of second principal component on the whole data with pseudotime estimated by PseudoGA. PC II shows quadratic pattern with pseudotime estimated by PseudoGA.
Figure S10: Absolute Spearman’s rank correlation between HSMM data capture time and pseudotime produced by different methods. PseudoGA remains among top three methods across all three clusters.
Figure S11: (A) Pseudotime ordering by PseudoGA on HSMM dataset on three different clusters (B) Functional relationship between first two principal components and pseudotime estimated by PseudoGA on three different clusters. In all cases, the relationship is either linear or quadratic.
Figure S12: Change of expression pattern with pseudotime in HSMM dataset showing top 6 genes with highest correlation on the entire dataset.
Figure S13: Change of expression pattern with pseudotime in HSMM dataset showing top 6 genes with highest correlation in each of the three clusters.
Figure S14: (A) Pseudotime estimated by PseudoGA on the dataset where mouse dendritic cells are treated with LPS, PAM and PIC respectively. (B) Functional relationship between PC II and the pseudotime estimated by PseudoGA on the same datasets.
Figure S15: Change of expression pattern with pseudotime when dendritic cells are treated with LPS stimulus showing top 6 genes with highest correlation.
Figure S16: Change of expression pattern with pseudotime when dendritic cells are treated with PAM stimulus showing top 6 genes with highest correlation.
Figure S17: Change of expression pattern with pseudotime when dendritic cells are treated with PIC stimulus showing top 6 genes with highest correlation.
Figure S18: Pseudotime ordering by PseudoGA on mouse lung dataset and the functional relationship between PC II and the pseudotime estimated. The plot shows monotonic pattern of PC II with pseudotime.

Figure S19: Change of expression pattern with pseudotime in mouse lung dataset showing top 6 genes with highest correlation.
Figure S20: Pseudotime ordering by PseudoGA on mouse cell cycle dataset and the functional relationship between PC II and the pseudotime estimated. PC II shows linear pattern with the pseudotime estimated.

Figure S21: Change of expression pattern with pseudotime in mouse cell cycle dataset showing top 6 genes with highest correlation.
Figure S22: Pseudotime ordering by PseudoGA on human brain development dataset and the functional relationship between PC II and the pseudotime estimated. PC II shows cubic relationship with the estimated pseudotime.

Figure S23: Change of expression pattern with pseudotime in human brain development dataset showing top 6 genes with highest correlation. These genes show either cubic or bursting type patterns with the estimated pseudotime.
Figure S24: (A) An instance of pseudotime ordering by PseudoGA with a subset of cells and (B) Pseudotime ordering of all cells with our suggested algorithm for large data based on the same subset.
Cluster id	Genes with highest correlation	Common function
Entire dataset | TNNT2, MT2A, TXN, ACTC1, NCAM1, MACF1 | Muscle functioning

Table S1: Top 6 genes having highest correlation with pseudotime estimated by PseudoGA ignoring clusters and their common function in the HSMM dataset.

Cluster id	Genes with highest correlation	Common function
Cluster I	TXN, LTBP1, HMGAI, EEF1A1, H19, FN1 MT2A, CD59, MT1E, MT1L, TAGLN2, TXN HMGAI, COX6A2, MT1G, MT2A, TAGLN2, AC112721.2	Oxidative stress
Cluster II		Oxidative stress
Cluster III		Heme binding

Table S2: Top 6 genes having highest correlation with pseudotime estimated by PseudoGA in each cluster and their common functions in HSMM dataset.
Cluster id	Genes with highest correlation	Common function
Entire dataset	LYZ1, LYZ2, CCL6, H2-AA, CD74, CTSD	Immune response

Table S3: Top 6 genes having highest correlation with pseudotime estimated by PseudoGA and their common function in dendritic cells dataset with LPS stimulus.

Cluster id	Genes with highest correlation	Common function
Entire dataset	SOCS2, IRF8, RPS19, BASP1, AK041746, ROGDI	Apoptosis(except AK041746)

Table S4: Top 6 genes having highest correlation with pseudotime estimated by PseudoGA and their common function in dendritic cells dataset with PAM stimulus.

Cluster id	Genes with highest correlation	Common function
Entire dataset	AK141672, COX2, ATPASE6, MT-ND4, CYTB, AK140265	Mitochondrial functions

Table S5: Top 6 genes having highest correlation with pseudotime estimated by PseudoGA and their common function in dendritic cells dataset with PIC stimulus.

Cluster id	Genes with highest correlation	Common function
Entire dataset	AGER, THEM123, EMP2, AKAP5, HOPX, TIMP3	Lung functioning

Table S6: Top 6 genes having highest correlation with pseudotime estimated by PseudoGA and their common function in mouse lung dataset.
Table S7: Top 6 genes having highest correlation with pseudotime estimated by PseudoGA and their common function in mouse cell cycle dataset.

Cluster id	Genes with highest correlation	Common function
Entire dataset	Gm13341(Pseudogene), mt-Co1(mtRNA), Gm14303(Pseudogene), mt-Rnr2(mtRNA), RetrogenDB(Pseudogene), mt-Cytb (mtRNA)	Unknown

Table S8: Top 6 genes having highest correlation with pseudotime estimated by PseudoGA and their common function in human brain development dataset.

Cluster id	Genes with highest correlation	Common function
Entire dataset	LIN28A, RPL23A, RPS19, NPM1, SEPT7, SEPT2	Development
References

[1] Zappia, L., Phipson, B. and Oshlack, A. (2017). Splatter: simulation of single-cell RNA sequencing data. *Genome Biology*, **18**:174.

[2] Papadopoulos, N., Gonzalo, P.R. and Soding, J. (2019). PROSSTT: probabilistic simulation of single-cell RNA-seq data for complex differentiation processes. *Bioinformatics*, **35**(18), 3517–3519.

[3] Campbell, K.R. and Yau, C. (2018) Uncovering pseudotemporal trajectories with covariates from single cell and bulk expression data. *Nature Communications*, **9**:2442.

[4] Wan, C., Chang, W., Zhang, Y., Shah, F., Lu, X., Zang, Y., Zhang, A., Cao, S., Fishel, M.L. and Ma, Q. et al. (2019) LTMG: a novel statistical modeling of transcriptional expression states in single-cell RNA-seq data. *Nucleic Acids Research*, **47**(18):e111.

[5] Charrad, M., Ghazzali, N., Boiteau, V. and Niknafs, A. (2014). NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. *Journal of Statistical Software*, **61**(6).