Studies

Integrated genetic analysis of leaf blast resistance in upland rice: QTL mapping, bulked segregant analysis and transcriptome sequencing

Qingqun Tan*, Haiyong He*, Wen Chen, Lu Huang, Dailin Zhao, Xiaojun Chen, Jiye Li and Xuehui Yang*

Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China
*Corresponding authors’ e-mail addresses: tanqingqun321@163.com; xuehuiyang321@163.com
#These authors contributed equally to this work.

Abstract

Elite upland rice cultivars have the advantages of less water requirement along with high yield but are usually susceptible to various diseases. Rice blast caused by Magnaporthe oryzae is the most devastating disease in rice. Identification of new sources of resistance and the introgression of major resistance genes into elite cultivars are required for sustainable rice production. In this study, an upland rice genotype UR0803 was considered an emerging source of blast resistance. An F2 mapping population was developed from a cross between UR0803 and a local susceptible cultivar Lijiang Xintuan Heigu. The individuals from the F2 population were evaluated for leaf blast resistance in three trials 7 days after inoculation. Bulked segregant analysis (BSA) by high-throughput sequencing and SNP-index algorithm was performed to map the candidate region related to disease resistance trait. A major quantitative trait locus (QTL) for leaf blast resistance was identified on chromosome 11 in an interval of 1.61-Mb genomic region. The candidate region was further shortened to a 108.9-kb genomic region by genotyping the 955 individuals with 14 SNP markers. Transcriptome analysis was further performed between the resistant and susceptible parents, yielding a total of 5044 differentially expressed genes (DEGs). There were four DEGs in the candidate QTL region, of which, two (Os11g0702400 and Os11g0703600) were upregulated and the remaining (Os11g0704000) was downregulated after inoculation. These novel candidate genes were functionally annotated to catalytic response against disease stimulus in cellular membranes. The fine-mapping of a novel QTL for blast resistance by integrative BSA mapping and transcriptome sequencing enhanced the genetic understanding of the mechanism of blast resistance in upland rice. The most suitable genotypes with resistance alleles would be useful genetic resources in rice blast resistance breeding.

Keywords: Blast resistance; BSA; bulk segregant analysis; mapping; QTL; resistance breeding; transcriptome; upland rice.

Introduction

Rice (Oryza sativa) is a staple and the most important food crop, feeding more than half of the world’s population (Fang et al. 2019; Kalia and Rathour 2019). It is grown in both upland and lowland areas of many countries in Asia, Europe and Africa (Fongfon et al. 2021). China is among the top producers and consumers of rice grains. Here, the upland rice has a significant contribution to total rice production and also plays an important role in crop rotation in the South to northern areas of the country (Fongfon et al. 2021). It provides various economic benefits regarding fertilizers in rotation with potato, wheat and maize in various parts of the country. The productivity of upland rice is often limited by various constraints, including biotic and abiotic stresses (Chumpol et al. 2018). Rice blast caused by Pyricularia grisea (synonymous Pyricularia oryzae; teleomorph Magnaporthe grisea) is considered one of the most devastating biotic stresses due to its destructive influences and extensive distribution in various vegetative parts of the plant throughout the crop life cycle. During the vegetative growth stage, it is typically characterized by spindle-shaped lesions on the leaf blade and necrotic lesions at leaf collar (Kalia and Rathour 2019). It spreads quickly in rainy seasons and can cause up to 80% yield loss in favourable conditions (Chumpol et al. 2018; Wangsawang et al. 2019; Kumar et al. 2021). Therefore, searching for resistant genetic resources of rice and developing control strategies against the continuously evolving pathogens of leaf blast are key research topics in rice.

The development and use of genetically resistant rice varieties are the most economical and effective way to control the disease (Chumpol et al. 2018; Fongfon et al. 2021). Exploration and exploitation of effective sources of...
resistance genes and their fine-mapping in the rice genome is a basic step towards effective manipulation of these genes in resistance breeding programmes. Since the first genetic study for rice blast in 1922 (Sasaki 1922), 118 genes have been mapped and 28 genes have been cloned (Ashkan et al. 2016; Fang et al. 2019; Kalia and Rathour 2019). A significant chromosome-specific linkage for resistance genes has been reported on chromosomes 6, 11 and 12 (Ning et al. 2020). The major clusters or quantitative trait loci (QTLs) for leaf blast resistance were observed on chromosomes 6, 11 and 12 of rice harbouring 21, 27 and 27 genes, respectively, while the minimum number of resistance genes (one gene on each chromosome) was observed on chromosome 3 and 7 (Chen et al. 2016; Fang et al. 2019; Kalia and Rathour 2019; Meng et al. 2021; Mishra et al. 2021). The first successful tagging of blast resistance genes was reported for Pi-b (Miyamoto et al. 1996). The Pi2 cluster on chromosome 6 has been reported for the four successfully cloned genes (Pi2, Pi9, Pi-gm and Pi-t) (Fang et al. 2019; Kalia and Rathour 2019; Meng et al. 2021; Mishra et al. 2021). Among the 27 mapped genes on chromosome 11, six genes (Pik, Pik-b, Pik-m, Pik-p, PiI1 and Pi-ke) were located in Pik cluster (Wu et al. 2012; Chen et al. 2015; Zhang et al. 2016; Fang et al. 2019; Meng et al. 2021; Mishra et al. 2021). The functional evaluation of the majority of cloned resistance genes revealed their role to encode the nucleotide-binding site-leucine rich repeat proteins (Fang et al. 2019). The Pi-d2 was reported to encode a B-lectin receptor kinase (Kouzai et al. 2013), while the recessive gene pi2I encodes a proline-rich protein (Fang et al. 2019), Bsr-d1 encodes a C2H2-type transcription factor protein (Li et al. 2017), and Bsr-k1 encodes a tetrapiricopeptide repeats-containing protein (Zhou et al. 2018). Up till now, the most economic and effective way to control leaf blast disease is introducing and pyramidng the resistance genes into susceptible elite cultivars (Fang et al. 2019; Kalia and Rathour 2019). Various resistance genes (Pi1, Pi5, Piz-5, Pita and Pi-gm) have been introgressed into elite cultivars by the marker-assisted selection method (Deng et al. 2017; Kumar et al. 2021). However, few genes were effective in the control of leaf blast resistance specifically in upland rice. Hence, the identification of novel QTL/gene(s) is required for broader spectrum blast resistance in rice.

Bulked segregant analysis (BSA) (Liang et al. 2014) is a cluster separation analysis which refer to the use of two parents with contrasting target traits to construct families and the selection of offspring with parental phenotypes. Bulked segregant analysis has been used as an alternative approach to genome-wide association analysis for complex traits in segregating populations (Ehrenreich et al. 2010). It has been proven an easy and efficient technique to reveal large-effect QTLs and/or genes for quantitative traits (Liu et al. 2012).

Transcriptome sequencing includes the entire repertoire of transcripts in a species, representing functionally expressed biological information in the genome with respect to target traits (Rani and Sharma 2017). With the rapid development of massively parallel sequencing or next-generation sequencing and the maturation of analytical tools during the last few years, the whole-transcriptome analyses to reveal the differentially expressed genes (DEGs) have become a significant tool to evaluate the contrasting traits (Wolf 2013; Chase et al. 2021; Ghimire et al. 2021). It is an important tool to pinpoint candidate genes involved in important agronomic traits.

The objective of this study was to detect new QTLs and candidate genes for blast resistance using the upland rice genotype UR0803 as a novel source of blast resistance. We mapped the leaf blast resistance QTL and candidate genes in UR0803, and further fine-mapped using the BSA approach and characterized the candidate genes by transcriptome analysis. The study will be helpful and will be a reference for the utilization of this genotype and the candidate genes in rice breeding for blast resistance.

Materials and Methods

Plant materials and growth

An upland rice blast-resistant cultivar UR0803 and susceptible rice variety Lijiang Xintuan Heigu (LTH) (Singh et al. 2014) were acquired from Guizhou Institute of plant protection, China. Lijiang Xintuan Heigu is a very popular rice genotype in China (Singh et al. 2014) while UR0803 is a local farm rice variety resource collected in Youmai Village, Youmai Township, Wangmo County, Qianxinan Prefecture, Guizhou Province in 2008 (longitude 105.59.879°, latitude 25.03.353°, altitude 738 m). It is locally called precocious dry waxy. To explore the resistance potential and the QTL/gene(s) related to blast resistance in UR0803, the F1, F2, and BC, F segregating populations were designed from the cross of UR0803 and LTH. The F1 population was subjected to QTL mapping for blast resistance. The parental genotypes, F1, and BC, F hybrids, and the F2 mapping population were grown at Guizhou Institute of plant protection experiment station (Jinzhu Town, Xiaohe District, Guiyang City, Guizhou Province, China) in 2019, 2020 and 2021. Each time, the experiment was laid out in the randomized complete block design (RCBD) with three replications. The plants were grown in two rows per plot. The parent genotypes were grown adjacent to the plots, as resistant and susceptible controls, respectively. At the three leaves stage, the leaves of these plants were inoculated with Magnaporthe oryzae for evaluation of blast resistance.

Inoculation and resistance evaluation

The Guizhou M. grisea compulsory strain 07-91-1 from Guizhou, China was used for inoculation in this study, which was provided by Guizhou Institute of plant protection, China. The F1 individuals and two parents were inoculated with the pathogen by a spray method as previously described (Fang et al. 2019). Three leaves per plant and five plants for each line were inoculated with conidial suspension (3 × 104 conidia per mL). Disease severity rate (for leaf blast) was evaluated based on a visual assessment of disease severity employing the standards of the International Rice Research Institute (score from 0 to 9, where 0 = no lesion; 1 = small brown specks; 3 = small necrotic brown spots, about 1–2 mm; 5 = infection of 4–10% of the leaf area; 7 = infection of 26–50% of the leaf area; and 9 = infection of greater than 51% of the leaf area, in which many leaves are dead) (Chumpol et al. 2018).

Statistical analysis

The analyses of genotypic and environmental variances in accordance with RCBD were performed in SPSS v19. Three years were considered to evaluate the environmental effect. The frequency distribution among the resistant and susceptible plants was estimated and drawn in Microsoft Excel.
2010. The observed and expected Mendelian ratio for frequency distribution was validated by chi-square test at the threshold of 0.99 confidence of interval.

BSA for QTL mapping
The DNA pools of 30 disease-resistant and 30 susceptible individuals of the F$_2$ generation [see Supporting Information—Table S1] were constructed, respectively. In order to further locate the rice blast resistance genes, a high-throughput BSA sequencing was performed and the SNP-index algorithm (Üstünkar et al. 2012) was used to obtain the candidate region related to disease resistance in upland rice (Fig. 1).

Bulked DNA sequencing and evaluation.

Sample detection. In order to ensure the quality of the DNA library, the genomic DNA was detected and evaluated with three threshold criteria. (i) Agarose gel electrophoresis detection showed the complete and clear main band of genomic DNA, and there was no degradation and RNA contamination. (ii) The ratio of optical density (OD) 260/280 detected by Nanodrop ranged from 1.8 to 2.2, and there was no contamination of protein and visible impurities. (iii) The detection concentration of Qubit 3.0 was greater than 20 ng µL$^{-1}$, and the total amount was more than 2 µg.

Library construction. The purified genomic DNA of the samples was used to construct the library as per the protocol developed for the high-throughput SNP typing method. It was performed in the four major steps; (i) designing the target site-specific primers, and mixing the primers according to the site information for mapping; (ii) taking genomic DNA as a template, and using KAPA2G Fast Multiplex Mix to amplify the target site; (iii) adding the sequencing adapters by secondary PCR; and finally (iv) pooling all the PCR products and purified them with AMPure XP Beads.

Library quality control and on-machine sequencing. The constructed libraries were further used for the quality assessment and sequencing. The quality standards were obtained by: (i) using Qubit3.0 for preliminary quantification; (ii) using Agilent 2100 to detect the insert size of the library with no linker contamination; (iii) using the German ANALYTIKJENA (Jena) QTOWER real-time fluorescent quantitative PCR instrument to accurately quantify the effective concentration of the library, the effective concentration threshold was maintained for >2 nM. The library was pooled according to the target offline data

![Flow chart diagram of scheme for bulk sergeant analysis to explore the upland rice UR0803 as a resistance source for rice blast.](image)

Figure 1. Flow chart diagram of scheme for bulk sergeant analysis to explore the upland rice UR0803 as a resistance source for rice blast.
volume, and paired-end 150-bp (PE150) sequencing was performed on the Illumina HiSeq platform. Cleaning raw data and extraction of SNP and InDel markers. Raw sequencing data were subjected to quality enhancement by script-based (using C Script) analysis. The reads with (i) more than 10 % of N bases (undetermined bases), (ii) base quality value less than 5 in a read that accounts for

| Table 1. The SNP markers and their primers used to shorten the candidate QTL region on chromosome 11 for rice blast resistance. |
|---|---|---|---|---|---|---|
| Name | Position | Reference allele | Alternate allele | Forward primer | Reverse primer | Product size |
| V000652 | 27954376 | A | G | TGAAGCAGTTCAATCCCCTTGT | GCAGTAGATGTCACAACACTCA | 76 |
| V000943 | 27643915 | G | A | CGTAGTCCTTAAATGATTCCTCC | TCCAGTGGTGTTTGGTATT | 90 |
| V001248 | 27671082 | G | A | TCGCTATCCTCAGACCCAGC | AGGATGCCTAGAATGATCT | 80 |
| V001856 | 27705656 | A | G | AGCAGCTCAGATCTGAGCA | GCCCACTACGCTTGGCTGCCA | 70 |
| V003234 | 27823925 | G | A | TCTGGCTCAGAGGCATGGA | TCTCCTCTTCTGCTGTTAAGATG | 70 |
| V004520 | 27996638 | T | C | ATGGCCCTAAAAGGGCTC | TGACACAAGTATCGATTT | 76 |
| V008885 | 28485963 | G | A | TACATCTACAGCCTGCCAT | TGTATGCTCTCTCCAGGTGAC | 77 |
| V009560 | 28640344 | T | C | TGCCAACCTACGGGTATAGGTTGC | CGCAAGGAGGGTATAAAATCTC | 76 |
| V010425 | 28715309 | T | G | AGCAACATCCACTGGAAGCT | TCCTCATCTAGTCATCCACCTCACA | 75 |
| V010563 | 28743785 | C | T | TTTAGTAAAGTTGCCGCGCA | GCATGTCCTACATAAGTATCA | 80 |
| V011893 | 28824438 | A | C | CATCTGTAAGTGGCAGAAGC | TGCCATATCTGTTGGAATGTC | 79 |
| V012072 | 28847850 | G | A | AATTCGAAGCAGAAATTCTCACA | ACCTCATGGTACCTGGTACTGGT | 108 |
| V012234 | 28867805 | T | C | ATGACTGTCTTGGAGTCAA | CACGCATGAATTGGCTT | 74 |
| V012491 | 28894574 | G | A | TGCGCGACGATTGAGTATG | TCCCCAATATCTGAGATG | 72 |
| V012708 | 28936971 | G | A | TTCTCTAGCTAGCTTGCTCCTT | ACTGCACCCTACAAGTGCTG | 78 |
| V012878 | 28980329 | G | T | ACACATAAATTTCACGTTTTC | GTGATTTATTGTCCTCA | 78 |
| V013013 | 29000230 | A | G | AGCCCTGCAAAATGACAA | CTCGTTTTTAAAGCAGTG | 71 |
| V013232 | 29011816 | A | G | TGCACTGTAATCTTGGACTGGA | AAGTGCGCAATCTGGTAC | 70 |
more than 50% of the bases, (iii) more than 10 linker sequence bases, allowing base mismatch rate to be within 10% and/or (iv) redundant sequences caused by PCR in the process of library construction were removed to get the clean reads for further analyses. The BWA software (Li and Durbin 2010) was used to compare for mapping and alignment of the sequencing data with the reference genome, and SAMTOOL (Danecek et al. 2011) was used to convert the comparison results into a BAM file. The mutation (InDels) and variants (SNPs) detection and markers filtration from all samples were performed by GATK (version 4.1.4) software (McKenna et al. 2010). The ANNOVAR software (Wang et al. 2010) was used to analyse the SNP according to the ‘gff’ file of the reference genome, and InDel to get the VCF file. The polymorphic markers among two parental genotypes were then identified, and their index value of paternal alleles in the two mixed (BSA) pools was calculated. The sliding window processing on the markers of the whole gene was performed by default strategy of 1 Mb to 10 kb to exclude individual false-positive points. The average index value of the selected markers was estimated and used to calculate the ΔSNP index between the two mixed pools to locate the candidate QTL.

Fine-mapping and prediction of candidate genes. A high-throughput SNP typing technique was performed for fine-mapping of disease resistance genes in the candidate QTL region. Eighteen SNP sites evenly distributed in the candidate region were selected, and their amplification primers were designed by Primer3 software using standard parameters (Table 1). Meanwhile, the ePCR program (Iacumin et al. 2020) was used to detect the amplification specificity of these primers to ensure that each pair of primers only amplifies the target site. Fourteen selected SNP markers were used to genotype and screen all of the 955 individual plants in the F2 population for identification of recombinant events. The genotypic data and the recombinant genotypes were further evaluated for exact estimation of the candidate gene region. The selected region was mapped against the Rice Annotation Project Database (https://rapdb.dna.affrc.go.jp/) to find the candidate genes and their annotations.

Transcriptome analysis

The RNA samples from blast-resistant genotype UR0803 and -susceptible genotype LTH were collected at different growth stages after inoculation and the expression analysis was performed to identify the DEGs.

RNA extraction and transcriptome sequencing. The leaf samples were collected from disease-resistant (UR0803) and -susceptible (LTH) parents at 0, 24, 48 and 72 h after inoculation for RNA sequencing. The total RNA was extracted by RNAsimple Total RNA Kit (Tiangene, China). The step-by-step process including, the total RNA quantification,
mRNA enrichment, double-strand cDNA synthesis, end repair, splice selection, quality assessment for the PCR amplification library and sequencing was performed at MajorBio Company Limited, Shanghai, China.

Expression evaluation and identification of DEGs. The bowtie2 v 2.3.4 program (Langmead and Salzberg 2012) with zero mismatch parameter was used to compare the reads to the assembled transcriptome. The results were compared with RSEM 2 (v 1.3.1) (Li and Dewey 2011). The number of reads counts on each gene was obtained from each sample and the gene expression level was estimated by the reads per kilobase of transcript per million mapped reads (RPKM) method. The differential gene expression was analysed by comparing read count data from the two subspecies using the DESeq2 program (Anders and Huber 2010) with the Q-value < 0.05 and log₂ fold change > 1 as a threshold.

Functional annotation of DEGs. The functional annotation of genes was performed by mapping the genes to the Kyoto Encyclopaedia of Genes and Genomes (KEGG) (Kanehisa et al. 2021), and gene ontology (GO) (Ashburner et al. 2000; Camon et al. 2004) databases. The results from DEG analysis, candidate region analysis and the functional annotation evaluation were visualized by Microsoft Office (Excel and PowerPoint) 2010 and the R-program v 4.2.0.

Expression validation by quantitative real-time PCR

The DEGs were further evaluated by qRT–PCR. Total RNAs were extracted from fresh leaf samples with the Easy Spin RNA kit (Aidlab, Beijing, China). The quality of RNA samples was assessed by 1 % agarose gel electrophoresis, while the quantity or concentration of RNA was estimated as per A260/ A280 wavelength absorption ratio on the ultraviolet spectrophotometer measurement. The 1.5 μg of RNA was reverse-transcribed by Superscript III kit (Invitrogen, Carlsbad, CA, USA) for cDNA synthesis. The quantitative real-time PCR was performed using SYBR green mixture on an ABI 7500 real-time PCR detection system following the descriptions of Dossa et al. (Komivi et al. 2018). Each 20 μL reaction mixture included 10 μL of 2x SYBR qPCR Master Mix, 6 μL of nuclease-free water, 2 μL of primer (10 mM) and 2 μL of 4-fold diluted cDNA. The cDNA evaluation was triplicated. The denaturation at 95 °C for 30 s, followed by 40 cycles of 95 °C for 10 s, and then annealing and synthesis at 60 °C for 30 s was set as reaction profile. The *Ubiquitin* gene was used as an internal control for normalization. The previously reported method developed by Livak and Schmittgen (2001) was employed for the data analysis.

Results

Characterization of resistance to leaf blast in rice

The upland rice cultivar UR0803 resistant to rice blast was used as a donor for disease resistance genes and crossed to the susceptible rice variety Lijiang Xintuan Heigu (LTH) to develop a mapping population. All the F₁ individuals were resistant to blast; therefore, the F₂ segregating population was generated. The characterization for blast resistance in parental genotypes, F₁ hybrids and the F₂ population was performed by inoculation with blast compulsory strain 07-91-1 at the three leaves stage. The UR0803 was clearly observable as a

Population	Individuals	Resistant (R)	Infected (S)	Disease rate (%)
P₁ (Lijiang Xintuan Heigu)	17	17	17	100
P₂ (UR0803)	21	21		0
F₁	22	22		0
BC₁F₁	20	16	4	20
F₂	160	124	36	22.5

![Table 2. Pathogen infestation rate and plants resistance evaluation for parental and hybrid individuals, and segregating populations for rice blast resistance.](image-url)
resistant genotype in all three replicates (Fig. 2); while among the 160 individuals in the F₂ population 124 were resistant and 36 were susceptible indicating a clear 3:1 frequency distribution (Table 2). The frequency distribution ratio was non-significantly different from the Mendelian monohybrid F₂ segregation ratio which clearly indicated the availability of a major gene contributing to the blast resistance in the mapping population.

BSA and fine QTL mapping of blast resistance by sequencing

A high-throughput BSA sequencing study was carried out to map the rice blast resistance gene(s). The DNA pools of 30 disease-resistant and 30 -susceptible individuals from the F₂ generation were constructed [see Supporting Information—Table S1], respectively. A total of 50.98 GB of sequencing data was obtained which was reduced to 50.38 GB of cleaned data after filtering. The sequencing depth was 13.6× for parental genotypes while 38.8× for the bulked samples. The sequencing depth was 13.6× for parental genotypes while 38.8× for the bulked samples. The sequencing depth was 13.6× for parental genotypes while 38.8× for the bulked samples. The sequencing depth was 13.6× for parental genotypes while 38.8× for the bulked samples. The sequencing depth was 13.6× for parental genotypes while 38.8× for the bulked samples. The sequencing depth was 13.6× for parental genotypes while 38.8× for the bulked samples.

In order to further shorten the candidate genomic interval, a high-throughput SNP genotyping technique based on fine-mapping of disease resistance genes was carried out for all the 955 plants of the F₂ population. Fourteen SNP markers (Fig. 3B) were developed and used to genotype the mapping population. Finally, the target region was determined between the markers V010425 and V011893 from recombinant individuals (Fig. 3C). The total candidate interval was shortened to 108.9 kb, containing 39 candidate genes [see Supporting Information—Table S4].

Transcriptome evaluation, DEGs and their functional annotation

Transcriptome sequencing. The leaf tissue samples (three biological replicates) from resistant and susceptible parental genotypes were collected for the whole-transcriptome sequencing. The DEG analysis was performed to find the candidate gene(s) in the QTL region. A total of 64.76 million raw reads were obtained which was reduced to 50.38 GB of cleaned reads (%)

Samples	Repeat	Q30 (%)	Unique reads (%)	GC (%)	Raw reads	Clean reads	Clean and raw reads ratio (%)	Raw base (Gb)	Clean base (Gb)	Clean and raw base ratio (%)
0-h LTH	1	98.95	47.55	49.5	49 240 246	46 712 896	94.87	7.39	6.85	92.69
	2	99.05	48.05	49	48 281 596	45 769 318	94.8	7.24	6.71	92.68
	3	99.05	45	49.5	56 395 208	53 535 626	94.93	8.46	7.85	92.79
0-h UR0803	1	99.05	49.95	49.5	48 955 216	46 643 676	95.28	7.34	6.82	92.92
	2	99.05	47.65	49.5	52 714 584	50 204 548	95.24	7.91	7.34	92.79
	3	98.95	47.7	49.5	53 331 286	50 672 832	94.66	8.03	7.4	92.15
24-h LTH	1	99	48	50	58 199 992	55 435 778	95.28	8.73	8.11	92.9
	2	99.05	47.1	50	50 672 010	47 919 584	94.7	7.6	7.03	92.5
	3	99.05	45.65	49.5	60 282 596	56 914 450	94.41	9.04	8.34	92.26
24-h UR0803	1	99.05	51.55	49	56 410 656	53 713 286	95.22	8.46	7.83	92.55
	2	98.85	53.25	49.5	45 682 162	43 303 802	94.79	6.85	6.32	92.26
	3	99	51.5	49.5	49 045 986	46 535 696	94.88	7.36	6.79	92.26
48-h LTH	1	99.05	54.15	49.5	48 229 216	45 820 738	95.01	7.23	6.7	92.67
	2	99.05	51.7	49.5	61 317 586	58 218 536	94.95	9.2	8.3	92.39
	3	99.1	53.45	49.5	53 459 344	51 166 006	95.71	8.02	7.49	93.39
48-h UR0803	1	99	51.05	49	44 124 690	41 990 836	95.16	6.62	6.17	93.2
	2	99.05	50.05	49.5	50 339 648	48 082 746	95.52	7.55	7.04	93.25
	3	99	48.75	49.5	53 975 892	51 390 380	95.21	8.1	7.53	92.96
72-h LTH	1	99.05	50.55	49	55 903 836	53 525 032	95.74	8.39	7.85	93.56
	2	99	49.7	49	58 985 333	56 305 662	95.46	8.85	8.24	93.11
	3	98.95	52.1	49.5	50 968 700	48 660 396	95.47	7.65	7.12	93.07
72-h UR0803	1	99.1	46.3	49.5	64 759 242	61 668 734	95.23	9.71	9.05	93.2
	2	99.1	46.7	49.5	63 239 318	60 252 470	95.28	9.49	8.82	92.94
	3	99.1	50.25	49.5	54 466 208	52 034 410	95.54	8.17	7.63	93.39

Table 3. Data summary for transcriptome assembly of RNA samples collected after 0, 24, 48 and 72 h of inoculation from the upland rice blast-resistant and -susceptible parents.
reads were obtained with 61.67 million clean reads (Table 3; see Supporting Information—Table S2).

Differential expression and functional enrichment analyses of genes. A non-standard normal distribution was observed for RPKM values-based gene expression level among the samples. There was a total of 5044 genes observed to be differentially expressed in the resistant parent (UR0803) and susceptible parent (LTH) at 72 h after inoculation. Among these DEGs, 423 were on chromosome 11 (Fig. 4; Table 4), out of which four DEGs including two upregulated (Os11g0700900, Os11g0704000) and two downregulated (Os11g0702400, Os11g0703600) genes detected as candidate genes in this study. All candidate DEGs showed a significant expression variation with −log (P) values ranging from 7.02 to 25.20 (see Supporting Information—Table S5; Fig. 5).

Candidate genes in fine-mapped region and their functional annotation. Among the identified DEGs, four were located in the mapped QTL region in this study: (i) Os11g0702400 was downregulated in the sensitive parent after inoculation and annotated for zinc finger, C2H2-type domain-containing protein involved in response to stimulus, nucleic acid binding, regulation of gene expression and metabolic processes like ontological processes; (ii) Os11g0703600 was also downregulated in the sensitive parent after inoculation and annotated for conserved hypothetical protein in membrane and membrane-bounded organelles; (iii) Os11g0700900 was upregulated in the sensitive parent after inoculation and annotated for glycoside hydrolase, catalytic core domain-containing protein functional for responses to various stresses and environmental factors; and (iv) Os11g0704000 was upregulated in the sensitive parent after inoculation and annotated for seleno-protein (SelT/SelW/SelH) family protein to be expressed in intracellular membrane-bounded organelles [see Supporting Information—Tables S4–S7].

Validation of RNA analysis by qRT–PCR
To validate the expression of identified DEGs for blast resistance in the mapped QTL region, all four up-, and downregulated genes were selected and used for qRT–PCR expression profiling. The qRT–PCR results of the selected genes were consistent with that of RNA-Seq analysis (Pearson correlation = 95 %) (Fig. 6). This result supports the DEG analysis and subsequent interpretations.

Discussion
The development of resistant varieties is one of the most adopted ways to protect crops from biotic stresses. Nevertheless, it is not a durable method as the resistance in elite varieties often diminishes within a few years of being released (Mishra et al. 2021). The causal fungus for rice blast *M. oryzae* is continuously evolving due to environmental changes, resulting in natural mutations with a significantly high mutation rate (Mishra et al. 2021). Therefore,
the induction of blast resistance in rice remains challenging. Although the trait is not durable, the resistance caused by a single major gene may remain effective for many years (Mishra et al. 2021). Therefore, it is imperative to understand the regulation of plant defence mechanisms, identification of novel sources of durable resistance as well as determine the

Treatment**	Expression regulation	DEGs in chromosome												
		1	2	3	4	5	6	7	8	9	10	11	12	Total
L0 vs. U0	Up	279	172	163	151	101	123	117	118	99	115	174	97	1709
	Down	509	379	444	350	312	294	257	217	158	207	251	190	3568
	Total	788	551	607	501	413	417	374	335	257	322	425	287	5277
L24 vs. U24	Up	440	310	275	264	182	229	219	181	165	171	212	131	2779
	Down	493	359	382	371	276	280	257	230	164	195	246	184	3437
	Total	933	669	637	535	358	417	341	252	319	448	572	415	6216
L48 vs. U48	Up	587	493	477	357	330	345	316	283	197	228	332	235	4180
	Down	412	309	308	299	199	225	208	174	156	139	214	153	2796
	Total	999	802	785	656	529	570	524	457	353	367	546	388	6976
L72 vs. U72	Up	279	213	180	155	124	170	141	164	94	130	201	119	1970
	Down	467	313	361	296	249	241	242	186	148	159	219	193	3074
	Total	746	526	541	451	411	438	459	334	289	420	312	5044	
U0 vs. U24	Up	141	83	105	123	72	70	72	44	60	70	88	51	979
	Down	236	156	155	152	96	100	119	94	93	87	122	87	1497
	Total	377	239	260	275	168	170	191	138	153	157	210	138	2476
U0 vs. U48	Up	617	404	474	420	285	338	287	253	237	223	309	210	4057
	Down	851	671	793	548	484	454	441	388	306	296	326	332	5890
	Total	1468	1075	1267	968	769	792	728	641	543	519	635	542	9947
U0 vs. U72	Up	477	315	344	298	223	269	237	200	161	166	243	204	3137
	Down	580	445	524	369	358	313	283	284	188	217	239	220	4020
	Total	1057	760	868	667	581	582	520	484	349	383	482	424	7157

**In treatments ‘L’ stands for LTH, and ‘U’ stands for UR0803; 0, 24, 48 and 72 indicate that the RNA samples collected after 0, 24, 48 and 72 h after inoculation of Magnaporthe oryzae.

Figure 5. Differentially expressed genes and their log fold change (logFC) values between susceptible (LTH) and resistant (UR0803) rice genotypes.
functional genes and controlling elements responsible for the effectiveness and breakdown of resistance.

Resistance to blast disease is also known to be host-specific and the identified resistance genes have been reported to be effective against specific strains of *M. oryzae* (Mishra et al. 2021). Hence, the traditional rice varieties are known to possess one or two dominant genes (Mishra et al. 2021). Historically, the rice genotype PS2 containing at least two dominant genes *Pi-b* and *Pi54* (Rahim et al. 2013; Tanweer et al. 2015) and IR64 containing *Pi* genes (Windarsih and Utami 2017) have been widely used as a source for blast resistance in the development of high-yielding rice cultivars (Mishra et al. 2021). Nonetheless, the genetic resources for blast resistance in upland strains are still less reported. In this study, a blast-resistant upland rice genotype was evaluated. It was used as a donor parent of rice blast resistance allele to develop the mapping population. Thereby, it resulted in the mapping of a major QTL on chromosome 11 followed by fine-mapping of four candidate genes.

Previously, different populations of diverse rice germplasm have been screened with various molecular markers such as SSR, InDel, SNP and gene-specific markers that have been reported for most of the mapped and cloned blast resistance genes. It has been shown that the diverse germplasm had resistant marker alleles (Mishra et al. 2021). However, it has been observed that many of these markers are non-functional for blast resistance breeding in rice. It may be due to the lack of tightly linked markers to the candidate genes. To overcome this shortcoming, SNP markers were obtained from the high-throughput sequencing of DNA pools of resistant and susceptible genotypes in this study. The BSA and SNP marker-based genotyping resulted in the identification of a very short QTL region (108 kb) as compared to previous reports on QTL mapping in rice (Wang et al. 2016).

The high-throughput sequencing of cDNA obtained from extracted RNA of plant tissues has become an important technique to explore gene expression and the DEGs among various treatments and genotypes (Zhang et al. 2021). In this study, the expression analysis revealed four DEGs located in the fine-mapped candidate region. Two of them were upregulated and the other two were downregulated in the susceptible plant after inoculation. None of these genes has been reported previously, indicating the novelty of candidate QTL for leaf blast resistance. The locus is situated close to the previously reported R-gene cluster that has been mapped on the telomeric end of rice chromosome 11 containing at least nine resistance genes of which seven genes were the alleles of a single gene *Pi*-k locus (Hua et al. 2012; Singh et al. 2015; Fang et al. 2019; Fongton et al. 2021; Mishra et al. 2021). A similar report has also been found in which a QTL *qPbh-11-1* was mapped in the *Pi*-k gene cluster (Wu et al. 2013). A major leaf blast resistance gene *Pi-bk1(t)* has also been identified from the donor genotype Heikezijing (Wu et al. 2013). Another gene *Pi-jnw1* conferring the panicle and leaf blast resistance has been identified from a *japonica* landrace Jiangnanwan on chromosome 11 between markers RM27273 and RM27381 (Wang et al. 2016).

Among the downregulated candidate genes, *Os11g0702400* was annotated for zinc finger, C2H2-type domain-containing protein involved in various gene ontological processes including the response to stimulus, nucleic acid bind, regulation of gene expression and metabolic processes. Previously, a gene *Bsr-d1* encoding C2H2-type transcription factor protein has also been reported to confer broad-spectrum blast resistance in rice (Li et al. 2017). Its downregulation could inhibit the degradation of H2O2 resulting in the enhanced blast resistance in rice (Fang et al. 2019). Hence, the available upland germplasm and the resistant hybrid individuals from the *F2* population used in this study for the QTL/gene mapping may a useful genetic resource for durable blast resistance in upland rice.

Conclusions

The study aimed at mining QTLs for blast resistance in the upland rice UR0803 as a novel source of blast resistance. Using an integrative approach of BSA, SNP genotyping and transcriptome analysis, we successfully identified a novel candidate QTL and four candidate genes linked to blast resistance in rice. The novel QTL region will be useful for the
development of durable resistance to rice blast. The functions of its underlying genes should be analysed to better understand the varying levels of resistance exhibited against the blast isolates. The identification of blast resistance genes in this study contributes to the genetic understanding of disease resistance and will help for marker-assisted breeding against blast resistance in upland rice.

Supporting Information

The following additional information is available in the online version of this article—

Table S1. List of parental genotypes along with 30 most resistant and 30 most susceptible individuals from F2 mapping population for bulked segregant analysis.

Table S2. Summary of sequencing data for bulked segregant analysis (BSA) from the blast-resistant and -susceptible DNA pools obtained from upland rice mapping populations.

Table S3. Characterization descriptive in candidate region of quantitative trait locus (QTL) mapping by comparison of sequences from resistant and susceptible parents.

Table S4. List of 39 candidate genes and their functional annotations in mapped quantitative trait locus (QTL) region.

Table S5. List of 423 differentially expressed genes between resistant and susceptible parents on chromosome 11.

Table S6. Functional annotation of four candidate genes in gene ontology and Kyoto Encyclopaedia of Genes and Genomes (KEGG) databases.

Table S7. The genomic variants, their alternate alleles, and physical position in candidate genes.

Figure S1. Chromosome-wide SNP index estimated by two sequence pools; index1 indicates susceptible pool; index2 indicates resistant pool; while Delta indicates the variation of SNP index between two pools.

Sources of Funding

This work was financially supported by the National Natural Science Foundation of China (31672057) and the Natural Science Foundation of Guizhou Province (qian[2018]1156).

Conflict of Interest

None declared.

Acknowledgements

Not applicable.

Contributions by the Authors

Q.T., H.H., and X.Y. designed the experiments. Q.T., H.H., and W.C., L.H., and D.Z. performed the experiments. Q.T., H.H., X.C., and J.L. analyzed the data. X.Y. supervised the study. Q.T. wrote the manuscript. X.Y. revised the manuscript. All authors read and approved the final manuscript.

Data Availability

The raw sequencing data have been submitted to NCBI SRA under the project numbers: PRJNA754205 (transcriptome) and PRJNA793286 (BSA).

Literature Cited

Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Nature Proceedings 2010:1–1.

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. 2000. Gene ontology: tool for the unification of biology. Nature Genetics 25:25–29.

Ashkani S, Rafii M, Shabanimofrad M, Ghasezmadeh A. 2016. Molecular progress on the mapping and cloning of functional genes for blast disease in rice (Oryza sativa L.): current status and future considerations. Critical Reviews in Biotechnology 36:353–367.

Camon E, Magrane M, Barrell D, Lee V. 2004. The gene ontology annotation (goa) database: sharing knowledge in uniprot with gene ontology. Nucleic Acids Research 32:D262–D266.

Chase MA, Ellegren H, Mugal CF. 2021. Positive selection plays a major role in shaping signatures of differentiation across the genomic landscape of two independent Ficedula flycatcher species pairs. Evolution 75:2179–2196.

Chen J, Peng P, Tian J, He Y. 2015. Pike, a rice blast resistance allele consisting of two adjacent NBS–LRR genes, was identified as a novel allele at the Pik locus. Molecular Breeding 35:1–15.

Chen S, Wang W-J, Su J, Wang C-Y. 2016. Rapid identification of rice blast resistance gene by specific length amplified fragment sequencing. Biotechnology & Biotechnological Equipment 30:462–468.

Chumpol A, Chankaew S, Saepaisan S, Monkham T. 2018. New sources of rice blast resistance obtained from Thai indigenous upland rice germplasm. Euphytica 214:1–10.

Danecek P, Bonfield JK, Liddle J, Marshall J. 2021. Twelve years of SAMtools and BCFtools. GigaScience 10:giab008.

Deng Y, Zhai K, Xie Z, Yang D. 2017. Epigenetic regulation of antagonist receptors confers rice blast resistance with yield balance. Science 355:962–965.

Ehrenreich IM, Torabi N, Jia Y, Kent J. 2010. Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature 464:1039–1042.

Fang N, Wei X, Shen L, Yu Y. 2019. Fine mapping of a panicle blast resistance gene Pb-bd1 in japonica landrace Bodao and its application in rice breeding. Rice 12:1–12.

Fongfon S, Pusadee T, Prom-u-thai C, Rerkasem B. 2021. Diversity of purple rice (Oryza sativa L.) landraces in Northern Thailand. Agronomy 11:2029.

Ghimire P, Dahal N, Karna AK, Karki S. 2021. Exploring potentialities of avian genomic research in Nepalese Himalayas. Avian Research 12:1–7.

Ghimiire P, Dahal N, Karna AK, Karki S. 2021. Exploring potentialities of avian genomic research in Nepalese Himalayas. Avian Research 12:1–7.

Hua L, Wu J, Chen C, Wu W. 2012. The isolation of P11, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theoretical Applied Genetics 125:1047–1053.

Jacumin L, Cecchini F, Vendrame M, Comi G. 2020. Emulsion PCR (ePCR) as a tool to improve the power of DGGE analysis for microbial population studies. Microorganisms 8:1099.

Kalita S, Rathour R. 2019. Current status on mapping of genes for resistance to leaf-and neck-blast disease in rice. 3 Biotech 9:1–14.

Kanahisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M. 2021. KEGG: integrating viruses and cellular organisms. Nucleic Acids Research 49:D545–D551.

Komivi D, Marie AM, Rong Z, Qi Z. 2018. The contrasting response to drought and waterlogging is underpinned by divergent DNA methylation programs associated with transcript accumulation in sesame. Plant Science 277:207–217.

Kouzai Y, Kaku H, Shibuya N, Minami E. 2013. Expression of the Pik locus which confers broad spectrum resistance to rice blast. The functions of its underlying genes should be analysed to better understand the varying levels of resistance exhibited against the blast isolates. The identification of blast resistance genes in this study contributes to the genetic understanding of disease resistance and will help for marker-assisted breeding against blast resistance in upland rice.

Kalia S, Rathi M, Shabanimofrad M, Ghasezmadeh A. 2016. Molecular progress on the mapping and cloning of functional genes for blast disease in rice (Oryza sativa L.): current status and future considerations. Critical Reviews in Biotechnology 36:353–367.

Camon E, Magrane M, Barrell D, Lee V. 2004. The gene ontology annotation (goa) database: sharing knowledge in uniprot with gene ontology. Nucleic Acids Research 32:D262–D266.

Chase MA, Ellegren H, Mugal CF. 2021. Positive selection plays a major role in shaping signatures of differentiation across the genomic landscape of two independent Ficedula flycatcher species pairs. Evolution 75:2179–2196.

Chen J, Peng P, Tian J, He Y. 2015. Pike, a rice blast resistance allele consisting of two adjacent NBS–LRR genes, was identified as a novel allele at the Pik locus. Molecular Breeding 35:1–15.

Chen S, Wang W-J, Su J, Wang C-Y. 2016. Rapid identification of rice blast resistance gene by specific length amplified fragment sequencing. Biotechnology & Biotechnological Equipment 30:462–468.

Chumpol A, Chankaew S, Saepaisan S, Monkham T. 2018. New sources of rice blast resistance obtained from Thai indigenous upland rice germplasm. Euphytica 214:1–10.

Danecek P, Bonfield JK, Liddle J, Marshall J. 2021. Twelve years of SAMtools and BCFtools. GigaScience 10:giab008.

Deng Y, Zhai K, Xie Z, Yang D. 2017. Epigenetic regulation of antagonist receptors confers rice blast resistance with yield balance. Science 355:962–965.

Ehrenreich IM, Torabi N, Jia Y, Kent J. 2010. Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature 464:1039–1042.

Fang N, Wei X, Shen L, Yu Y. 2019. Fine mapping of a panicle blast resistance gene Pb-bd1 in japonica landrace Bodao and its application in rice breeding. Rice 12:1–12.

Fongfon S, Pusadee T, Prom-u-thai C, Rerkasem B. 2021. Diversity of purple rice (Oryza sativa L.) landraces in Northern Thailand. Agronomy 11:2029.

Ghimire P, Dahal N, Karna AK, Karki S. 2021. Exploring potentialities of avian genomic research in Nepalese Himalayas. Avian Research 12:1–7.

Hua L, Wu J, Chen C, Wu W. 2012. The isolation of P11, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theoretical Applied Genetics 125:1047–1053.

Jacumin L, Cecchini F, Vendrame M, Comi G. 2020. Emulsion PCR (ePCR) as a tool to improve the power of DGGE analysis for microbial population studies. Microorganisms 8:1099.

Kalita S, Rathour R. 2019. Current status on mapping of genes for resistance to leaf-and neck-blast disease in rice. 3 Biotech 9:1–14.

Kanahisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M. 2021. KEGG: integrating viruses and cellular organisms. Nucleic Acids Research 49:D545–D551.

Komivi D, Marie AM, Rong Z, Qi Z. 2018. The contrasting response to drought and waterlogging is underpinned by divergent DNA methylation programs associated with transcript accumulation in sesame. Plant Science 277:207–217.

Kouzai Y, Kaku H, Shibuya N, Minami E. 2013. Expression of the chimeric receptor between the chitin elictor receptor CEBiP and the receptor-like protein kinase Pt-d2 leads to enhanced responses to the chitin elictor and disease resistance against Magnaporthe oryzae in rice. Plant Molecular Biology Reporter 81:287–295.
Li B, Jain P, Venkadesan S, Karkute SG. 2021. Understanding rice–Magnaporthe oryzae interaction in resistant and susceptible cultivars of rice under panicle blast infection using a time-course transcriptome analysis. *Genes* 12:301.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Burrows-Wheeler transform. *Bioinformatics* 28:589–595.

Li W, Zhu Z, Chern M, Yin J. 2017. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. *Cell* 170:114–126.e15.

Liang X, Jiang Q-W, Jian W, Yan W. 2014. Identification and molecular mapping of the RsDmR locus conferring resistance to downy mildew at seedling stage in radish (*Raphanus sativus* L.). *Journal of Integrative Agriculture* 13:2362–2369.

Liu S, Yeh CT, Tang HM, Nettleton D. 2012. Gene mapping via bulked segregant RNA-Seq (BSR-Seq). *PLoS One* 7:e36406.

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. *Methods* 25:402–408.

McKenna A, Hanna M, Banks E, Sivachenko A. 2010. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Research* 20:1297–1303.

Meng F, He Y, Chen J, Long X. 2021. Analysis of natural variation of the rice blast resistance gene Pi-2 and identification of a novel allele Pki. *Molecular Genetics and Genomics* 296:939–952.

Mishra A, Wickneswari R, Bhuiyan M, Jena K. 2021. Broad spectrum blast resistance alleles in newly developed Malaysian rice (*Oryza sativa* L.) genotypes. *Euphytica* 217:1–17.

Miyamoto M, Ando I, Rybka K, Kodama O. 1996. High resolution mapping of the indica-derived rice blast resistance genes. I. Pi-b. *Molecular plant-microbe interactions* 9:6–13.

Ning X, Yunyu W, Aihong L. 2020. Strategy for use of rice blast resistance genes in rice molecular breeding. *Rice Science* 27:263–277.

Rahim HA, Bhuiyan MAR, Saad A, Azhar M. 2013. Identification of virulent pathotypes causing rice blast disease (‘Magnaporthe oryzae’) and study on single nuclear gene inheritance of blast resistance in F2 population derived from Pongsu Seribu 2 × Mahshuri. *Australian Journal of Crop Science* 7:1597–1603.

Rani B, Sharma V. 2017. Transcriptome profiling: methods and applications—a review. *Agricultural Reviews* 38:271–281.

Rasak R. 1922. Existence of strains in rice blast fungus. *Japanese Journal of Plant Protection* 9:631–644.

Singh N, Jayaswal PK, Panda K, Mandal P. 2015. Single-copy gene based 50 K SNP chip for genetic studies and molecular breeding in rice. *Scientific Reports* 5:1–9.

Singh P, Thakur S, Rathour R, Variar M. 2014. Transposon-based high sequence diversity in Avr-Pita alleles increases the potential for pathogenicity of Magnaporthe oryzae populations. *Functional Integrative Genomics* 14:419–429.

Tanweer FA, Rafii MY, Sijam K, Rahim HA. 2015. Current advance methods for the identification of blast resistance genes in rice. *Comptes Rendus Biologies* 338:321–334.

Ustünkar G, Özşüz-Akşüz S, Weber GW, Friedrich CM. 2012. Selection of representative SNP sets for genome-wide association studies: a metaheuristic approach. *Optimization Letters* 6:1207–1218.

Wang K, Li M, Hakonarson H. 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. *Nucleic Acids Research* 38:e164–e164.

Wang R, Fang N, Guan C, He W. 2016. Characterization and fine mapping of a blast resistant gene Pi-jn1 from the *Japonica* rice landrace Jiangnananwan. *PLoS One* 11:e0169417.

Wangswawang T, Waiyalert A, Nonsiri C, Sripichitt P. 2019. Assistance of phenotype–genotype selections for developing blast disease resistance of Thai jasmine rice, RD15. *International Journal of Molecular Sciences* 20:402–408.

Windarshih G, Utami DW. 2017. Evaluation of neck blast resistance and agronomical performances on double haploid rice population in greenhouse and endemic field. *Nusantara Bioscience* 9:371–377.

Wolf JB. 2013. Principles of transcriptome analysis and gene expression quantification: an RNA-seq tutorial. *Molecular Ecology Resources* 13:559–572.

Wu B, Zhang B, Dai Y, Zhang L. 2012. Brittle culm15 encodes a membrane-associated chitinase-like protein required for cellulose biosynthesis in rice. *Plant Physiology* 159:1440–1452.

Wu Y, Yao Y, Xie L, Su Y. 2013. Fine mapping and identification of blast resistance gene Pi-hk1 in a broad-spectrum resistant *Japonica* rice landrace. *Phytopathology* 103:1162–1168.

Zhang H, Zhang M, Tan J, Huang S. 2021. Transcriptome based high-throughput SSRs and SNPs discovery in the medicinal plant *Lagenaria siceraria*. *Biocell* 45:371.

Zhang X, Zhang H, Li L, Lan H. 2016. Characterizing the population structure and genetic diversity of maize breeding germplasm in Southwest China using genome-wide SNP markers. *BMC Genomics* 17:697.

Zhou X, Liao H, Chern M, Yin J. 2018. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. *Proceedings of the National Academy of Sciences of the United States of America* 115:3174–3179.