The Complex 0.1-100 keV X-Ray Spectrum of PKS 2155-304

P. Giommi1, F. Fiore1,2, M. Guainazzi1, M. Feroci3, F. Frontera1,5, G. Ghisellini4, P. Grandi1, L. Maraschi6, T. Mineo7, S. Molendi8,1, A. Orr9, S. Piraino7, A. Segreto7, G. Tagliaferri6, A. Treves10

1 BeppoSAX Science Data Center, ASI, Via Corcolle, 19 I-00131 Roma, Italy
2 Osservatorio Astronomico di Roma, Monteporzio Catone, Italy
3 Istituto di Astrofisica Spaziale, CNR, Via Enrico Fermi, 21 I-00044 Frascati, Italy
4 Dipartimento di Fisica, Università di Ferrara, Via Paradiso 12, I-44100 Ferrara, Italy
5 Istituto TESRE, CNR, Via Gobetti 101, I-40129 Bologna, Italy
6 Osservatorio Astronomico di Brera, via Brera 28, I-20121 Milano, Italy
7 Istituto di Fisica Cosmica ed Applicazioni dell’Informatica, C.N.R. Via Ugo La Malfa, 156 Palermo, Italy
8 Istituto di Fisica Cosmica, CNR, Via Bassini 15 I-20133 Milano, Italy
9 Space Science Department of ESA, ESTEC, Keplerlaan, Noordwijk, The Netherlands
10 Universita’ di Milano, sede di Como, Via Lucini 3, I-22100 Como, Italy

Abstract. A long (> 100,000 seconds) observation of the bright BL Lac object PKS 2155-304 has been carried out with the Narrow Field Instruments of the BeppoSAX satellite as part of the Science Verification Phase. The source was detected between 0.1 and about 100 keV at an intermediate intensity level compared to previous observations. The unique spectral coverage of BeppoSAX has allowed us to detect a number of spectral features. Between 0.1 and 10 keV the spectrum can be well described by a convex spectrum with (energy) slope gradually steepening from 1.1 to 1.6. At higher energies evidence for a sharp spectral hardening is found, while in the soft X-rays (0.1-1.0 keV) some evidence for an absorption feature was found. Indication for an emission line at 6.4 keV in the source rest frame is present. Repeated variability of ≈ 20 – 30% around the mean flux is clearly detected on time scales of a few hours. From the symmetry and timescale of the observed variations we derive limits on the magnetic field and on the maximum energy of the emitting particles, implying that PKS 2155-304 should not be bright at TeV energies.

Key words: galaxies, Active
Boella et al. 1997) covering the 1.5-10 keV band. During the BeppoSAX SVP PKS 2155-304 was observed for more than 2 days using all the Narrow Field Instruments. The effective exposure time in the MECS was 107,702 seconds. Since at the LECS instrument can only be operated when the spacecraft is in the earth shadow the exposure time in this instrument was limited to 36,303 seconds. The data analysis was based on the linearized, cleaned event files obtained from the BeppoSAX SDC on-line archive (Giommi & Fiore 1997) and on the XIMAGE package (Giommi et al. 1991) upgraded to support the analysis of BeppoSAX data. The average count rate in the MECS was 1.66 cts/s (three units) and 1.59 cts/s in the LECS, after corrections for the instrument PSF and dead time.

The Phoswich Detector System (PDS, Frontera et al. 1997) is made up of four units, and was operated in collimator rocking mode, with a pair of units pointings to the source and the other pair pointing at the background, the two pairs switching on and off every 96 seconds. The net source spectra have been obtained by subtracting the ‘off’ from the ‘on’ counts. The data from the four units have been summed after gain equalization. The Seyfert galaxy NGC7172 is located at about 1.6 degrees from PKS2155-304, but we do not expect any detectable flux contamination in the 1.3 degrees FWHM field of view of the PDS. The High Pressure Gas Scintillation Proportional Counter (HPGSPC, Manzo et al. 1997) observation resulted in an upper limit of 5×10^{-12} erg cm$^{-2}$ s$^{-1}$ between 10 and 20 keV, which is consistent with the PDS data in the same energy range.

3. Time and spectral variability

PKS 2155-304 is well known to be a highly variable source. During the ten EXOSAT observations, which were carried out over a period of two years, PKS 2155-304 changed its flux by about a factor 10 (e.g. Giommi et al. 1990) from $\approx 2 \times 10^{-11}$ to $\approx 2 \times 10^{-10}$ erg cm$^{-2}$ s$^{-1}$ in the 2-10 keV band. The average flux seen by the BeppoSAX imaging instruments of $\approx 6 \times 10^{-11}$ erg cm$^{-2}$ s$^{-1}$ (2-10 keV) is therefore a medium flux level. A detailed timing analysis of the BeppoSAX observation of PKS 2155-304 will be presented elsewhere. Here we briefly describe and comment on the main features seen.

A visual inspection of the light curve of PKS 2155-304 (see figure 1) shows rapid (timescale of $\approx 10^4$ seconds) and moderate amplitude (up to about 50% peak to peak) intensity variations. Single flares are clearly resolved with rise time approximately equal to decay time suggesting that the geometry within the emitting region is driving the observed light curve.

The PKS 2155-304 spectral slopes seen during EXOSAT and GINGA observations (Giommi et al. 1991, Sambruna et al. 1994, Sembay et al. 1993) are a strong function of intensity up to a flux of $\approx 6 - 8 \times 10^{-11}$ erg cm$^{-2}$ s$^{-1}$ above which the spectral slope does not change much with flux level. Spectral variability was not observed during ROSAT observations when PKS2155-304 was found to be in a very high intensity state (Brinkmann et al. 1994). When X-ray spectral variability is present the spectrum hardens when the source intensity increases, a behaviour that is typical of HBL BL Lacertae objects where the synchrotron break is in the UV/X-ray band (Giommi et al. 1990, Padovani & Giommi 1995). At the medium flux level seen during the BeppoSAX observation spectral variations not larger than ≈ 0.1 in slope are to be expected for the range of variability observed (see figure 10 in Sembay et al. 1993). A simple power law fit to the BeppoSAX data confirms that the spectral slope changed less than 0.1 from the brightest to the lowest intensity state. In the following we study the 0.1-100 keV spectrum using data from the entire observation.

4. Spectral fits

4.1. The 1-10 keV continuum

Spectra were extracted from a 9.0 arcmin radius circular region around PKS2155-304 for the LECS, (which allows the detection of 95% of the photons at 0.28 keV) and from a 4 arcmin region for the MECS which includes about 90% of the flux. Spectral analysis was performed using the XSPEC package and the best instrument calibration available in November 1997. In all cases the N_H has been constrained to be equal or higher than the Galactic value along the line of sight of 1.36×10^{20} cm$^{-2}$ (measured by F.J Lockman. See Madejski et al. 1997).

Figure 2 shows the 0.1-100 keV data from the LECS, MECS and PDS instruments together with a fit to a simple power law model. The residuals from the best fit clearly

![Figure 1. The 1.5-10 keV MECS lightcurve of PKS2155-304. The plotted count rate is $\approx 90\%$ of the actual one due to the 4 arcminutes extraction radius for the lightcurve data.](image-url)
Fig. 2. Fit to a power law spectrum. The residuals from the best fit model clearly show spectral curvature up to 10 keV and an excess above 10-20 keV.

Fig. 3. The spectrum of PKS 2155-304 divided by the spectrum of the Crab Nebula. A flux excess at around 5.7 keV (6.4 keV in the rest frame of PKS 2155-304) is apparent.

show a curvature between 0.1 and 8-10 keV and an excess above \(\approx 20 \) keV. The best fit power law energy slope, which is a reasonable representation of the data only in the 1.5-10 keV band, is well within the range observed with EXOSAT (Treves et al. 1989) and close to the one measured with GINGA (Sembay et al. 1993) when PKS2155-304 was observed at the same flux level of the BeppoSAX observation. The simple power law model over the entire band is clearly unacceptable so we also fitted the data with more complex models. Table 1 summarises the best fit parameters for a power law, a broken power law and a "curved spectrum" defined as

\[
F(E) = E^{-(f(E)\alpha_E + (1-f(E))\alpha_H)}
\]

where \(f(E) = (1-exp(-E/E_0))^{\beta} \) and \(\alpha_E \) and \(\alpha_H \) are the low and high energy asymptotic slopes (G. Matt, private communication). The \(\chi^2 \) values are unacceptably large for the power law and the broken power law model and the improvement obtained using the curved spectrum is highly significant.

More complex fitting involving one or more absorption features have been attempted. The last line in Table 1 shows that the addition of one notch to the "curved" model reduces the \(\chi^2 \) to 188.5 at the expenses of adding three parameters. An F test shows that the \(\chi^2 \) improvement is significant at more than 99% level. We note however, that the magnitude of the feature is very close to the current calibration limit of the LECS instrument and more observations are probably needed to confirm the detection.

4.2. The hard tail

The power law fit to joint LECS, MECS and PDS data (see figure 2) shows an excess of radiation above the steep 2-10 keV power law from \(\approx 20 \) keV and up to the highest energy where the source is detected. A different way of showing the presence of the hard component is presented in figure 3 where the MECS–PDS spectrum of PKS 2155-304 is divided by the BeppoSAX spectrum of the Crab Nebula obtained with the same instruments. This method provides a direct way of visualising the shape of a spectrum and avoids potential problems in the cross-calibration of the instruments since uncertainties apply in equal way to both sources. Since the soft X-ray spectrum of PKS 2155-304 is steeper than that of the Crab Nebula, the data in figure 3 follow a steep power law up to about 20 keV followed by a sharp hardening with a slope similar or even flatter than that of the Crab Nebula (\(\alpha \approx 1 \)). A fit to the 20–200 PDS points with a power law yields an energy index of \(0.7 \pm 0.7 \).

4.3. A 6.4 keV Iron line?

From figure 3 we see that there is indication for an emission feature around 5.7 keV, consistent with a Fe \(K_{\alpha} \) line from cold Fe in the rest frame of PKS 2155-304 (\(z=0.116 \) Falomo, Pesce & Treves 1993). We tested the significance of the line detection both on the original data and on the spectral ratio between PKS 2155-304 and Crab. Adding of a Gaussian emission profile to a simple power-law continuum in the 4.-7.5 keV band yields a \(\Delta \chi^2 = 11 \) for 79 d.o.f. corresponding to an F test significance of \(> 99\% \).

Rest frame line parameters are \(E = 6.40^{+0.12}_{-0.13} \) keV and \(EW = 40^{+30}_{-20} \) eV. Although the statistical significance is
Table 1. PKS 2155-304 spectral fits

model	N_H	α_E	α_H	E_{break}	E_{notch}	cov. frac.	χ^2 (dof)
PL	2.6+/−0.1	1.60+/−0.01	−	−	−	−	774.1 (181)
Broken PL	1.46+/−0.04	1.24+/−0.03	1.68+/−0.02	1.4+/−0.2	−	−	237.0 (179)
Curved	1.36+/−0.02	1.09+/−0.02	1.63+/−0.02	2.3+/−0.3	0.78	−	194.0 (178)
Curved+ notch	0.55+/−0.04	0.05+/−0.06	0.03	188.5 (175)			

a in 10^{20} cm$^{-2}$; b in keV.

rather high and no significant calibration problems are known around 5.7 keV, we feel that more systematic analysis of BeppoSAX data is necessary for a final confirmation of the K_α line.

5. Discussion

The analysis of the average broad-band X-ray spectrum of PKS 2155-304 in a medium intensity state shows a sharp break above 10-20 keV, and a possible detection of a Fe K_α line. Intensity variability is limited to $\pm 25\%$ around a mean value and does not affect the presence of the hard tail. Statistical evidence for a low energy absorption feature was also found close to the calibration limit.

A hard tail above 10 keV was reported in PKS 2155-304 during one HEAO1 observation (Urry & Mushotzky 1982) but GINGA observations did not confirm such a finding (Sembay et al. 1993). A spectral hardening in the hard X-ray band is expected from the SSC mechanism and is necessary to explain the gamma ray emission detected by CGRO (Vestrand et al. 1995).

The detection of a Fe K_α line indicates the presence of cold gas, possibly associated with an accretion disk (George & Fabian 1991). Disk emission from PKS 2155-304 might have become detectable in the X-ray band because this part of the spectrum is no longer strongly dominated by the synchrotron component which peaks at UV frequencies (see however the constraints posed by simultaneous optical UV photometry, Urry et al 1993). In this scenario the hard tail could include a component due to Compton reflection from the cold disk.

From the light curve it can be seen that the flares have approximately equal rising and decaying timescales, with no indications of a plateau. It is highly unlikely that the two timescales correspond to the particle acceleration and cooling timescales, since a priori there is no reason for them to be equal. Instead, these timescales may be associated with the dimension of the emitting region, and hence with the light crossing time, provided that both the electron injection and cooling processes operate on time–scales shorter than R/c (where R is the source radius). In this scenario the light crossing time is the only characteristic time that can be observed (Massaro et al., 1996, Ghisellini et al. 1997). Assuming that the flares are due to quasi–instantaneous injection of electrons and rapid cooling, we require that the synchrotron and self Compton cooling times are equal to or shorter than R/c: $t_{\text{cool}} = \frac{6\pi mc^2}{\sigma_T c n_B (1 + U_B/U_S)} \leq \frac{R}{c}$, where σ_T is the Thomson scattering cross section, $\gamma_0 mc^2$ is the energy of the particles emitting at the observed frequency, $U_B = B^2/(8\pi)$ is the magnetic energy density, and U_S is the radiation energy density of the synchrotron emission (as measured in the comoving frame). The ratio U_S/U_B measures the relative importance of the self–Compton to the synchrotron luminosity, and in PKS 2155–304 it can be estimated by making the ratio of the γ–ray luminosity (Vestrand et al. 1995) to the optical–UV luminosity, where the synchrotron spectrum peaks. The energy γ_0 is related to the observed frequency $\nu_o \approx 3.7 \times 10^6 \gamma_0^2 B \delta/(1 + z)$ (assuming synchrotron radiation), and a limit on R is found using $R \approx c t_{\text{var}} \delta/(1 + z)$, where δ is the beaming factor. We then obtain the two limits: $B \geq 1.16 \nu_{17}^{-1/3} t_h^{-2/3} (1 + U_S/U_B)^{-2/3} (\frac{\sigma_T}{c})^{1/3}$, $\gamma_0 \leq 1.5 \times 10^5 \nu_{17}^{2/3} \left(\frac{t_h (1 + U_S/U_B) (1 + z)}{\sigma_T c z} \right)^{1/3}$, where B is in Gauss, t_h is the variability timescale measured in hours, and $\nu_o = 10^{17} \nu_{17} Hz$. Assuming $\delta = 10$, $t_h = 8$, $\nu_{17} = 1$ and $U_S/U_B = 0.5$, we find $B \geq 0.11$ G and $\gamma_0 \leq 1.6 \times 10^5$. The upper limit on the energy is particularly important, since it immediately corresponds to an upper limit on the maximum photon energies that can be emitted (by, e.g. the inverse Compton process): $h\nu_{\text{obs}} < \gamma_0 mc^2 \delta/(1 + z) = 182 \delta^2/(3\gamma_0^2)$ GeV. We then conclude that PKS 2155–304 should not be an important TeV emitter, unlike Mkn 421 and Mkn 501, unless a very high degree of beaming is present.

Acknowledgements. We thank G. Fossati and F. Haart for their contribution to the calibration of the low energy response of the LECS instrument. We are also grateful to G. Matt for providing the code used for the “curved spectrum” model.

References

Boella G. et al. 1997 A&AS, 122, 327
Bregman J. 1994, in Multi-Wavelength Continuum Emission of AGN, T.J.L. Courvoisier and A. Blecha eds., IAU Symp no. 159, p. 5
Brinkmann W. et al. 1994, A&A, 288, 433
Canizares, C.R., Kruper J. 1984 ApJ, 278, L99
Falomo, R., Pesce, J. E., & Treves, A. 1993, APJ 411, L63
Frontera F. et al. 1997 A&AS, 122, 357
Königl A., Kartje J.F., Bowyer S., Kahn, S.M., and Hwang C.Y. 1995, ApJ 446, 598
George, I.M., & Fabian, A. C. 1991, MNRAS, 249, 352
Ghisellini, G., Villata, M., Raiteri, C.M. et al. 1997, submitted to A&A
Giommi P., Barr P., Garilli B., Maccagni D., Pollock A. 1990, ApJ, 356, 455
Giommi, P., Angelini, L., Jacobs, P. & Tagliaferri G. 1991 in "Astronomical Data Analysis Software and Systems I", D.M.Worrall, C. Biemesderfer and J. Barnes eds, 1991, A.S.P. Conf. Ser. 25, 100
Giommi P., Ansari, S.G., & Miclo, A. 1995, A&AS 109, 267
Giommi P.,& Fiore F. 1997, Proc. of "5th International Workshop on Data Analysis in Astronomy, Erice.
Madejski G.M., Mushotzky R.F., Weaver K.A., Arnaud K.A. 1991, ApJ 370, 198
Madejski G.M. et al. 1997 ApJ, submitted.
Manzo G. et al. 1997 A&AS, 122, 341
Massaro, E., Nesci, R. Trevese, D. et al. , 1996, A& A 314, 87
Padovani, P., Giommi, P. 1995 ApJ, 444, 567
Parmar A. et al. 1997 A&AS, 122, 309
Stark A. A., Gammie C. F., Wilson R. W., Bally J., Linke R. A., Heiles C., Hurwitz M. 1992 ApJS, 77
Sambruna R.M., Barr P., Giommi P., Maraschi L., Tagliaferri, A. Treves 1994 ApJ, 434,468
Sembay, S. et al. 1993, ApJ 404,112
Treves A. et al. 1989, ApJ, 341, 733
Urry, C.M., & Moshotsky R.F. 1982, ApJ, 253, 38
Urry, C.M. et al. 1993, ApJ, 411, 614
Vestrand, W.T., Stacy, G., Sreekumar, P. 1995, ApJ 454, L93

This article was processed by the author using Springer-Verlag\LaTeX A&A style file L-AA version 3.