Theoretical studies of novel high energy density materials based on oxadiazoles

Wenxin Xia¹, Renfa Zhang¹, Xiaosong Xu¹, Congming Ma¹,²*, Peng Ma¹,*, Yong Pan¹, Juncheng Jiang¹

¹College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China
²Wisdom Pharmaceutical Co., Ltd.

*Corresponding authors: Congming Ma 6390@njtech.edu.cn, Peng Ma mapeng@njtech.edu.cn
Abstract

In this study, 32 energetic compounds were designed using oxadiazoles (1,2,5-oxadiazole, 1,3,4-oxadiazole) as the parent by inserting different groups as well as changing the bridge between the parent. These compounds had high-density and excellent detonation properties. The electrostatic potentials of the designed compounds were analyzed using density functional theory (DFT). The structure, heat of formation (HOF), density, detonation performances (detonation pressure \(P \), detonation velocity \(D \), detonation heat \(Q \)), and thermal stability of each compound were systematically studied based on molecular dynamics. The results showed that the \(-N_3\) group has the greatest improvement in HOF. For the detonation performances, the directly linked, \(-N=N-\), \(-NH-NH-\) were beneficial when used as a bridge between 1,2,5-oxadiazole and 1,3,4-oxadiazole, and it can also be found that bridge changing had little effect on the trend of detonation performance, while energetic gourps changing influenced differently. The designed compounds (except for A2, B2, B4) all had higher detonation properties than TNT, \(A6(D = 9.41 \text{ km s}^{-1}, P = 41.86 \text{ GPa}, Q = 1572.251 \text{ cal g}^{-1}) \) was the highest, followed \(D6 \) had poorer performance \((D = 8.96 \text{ km s}^{-1}, P = 37.46 \text{ GPa}, Q = 1354.51 \text{ cal g}^{-1}) \).

Key Words: Theoretical study, Detonation properties, Oxadiazoles, Thermal stability

1. Introduction

In recent years, the design and synthesis of new high energy density materials is an important part of research in the field of energetic materials [1-3]. High energy density materials (HEDMs) are compounds of a given volume that can generate a considerable amount of energy simply through the creation and breaking of chemical bonds within the molecule. High energy density materials have a series of advantages such as high energy density, intensity, and stability. In addition, to complete the research on HEDMs, high-nitrogen energetic materials as a new type of energetic material have also received more and more attention due to their considerable positive heat of formation, high density, excellent detonation properties (detonation velocity and detonation pressure), and admissible thermal stability.

1,2,5-oxadiazole (Furazan), with the molecular formula \(\text{C}_2\text{H}_2\text{ON}_2 \), is a five-membered ring. Zelinskii [4-6] Institute of Organic Chemistry, Russian Federation Academy of Science had synthesized a variety of furazan energetic compounds after more than 20 years of research. Chaoyang Zhang [7] reported nitro-furazan to increase in density of 0.06-0.08 \(\text{g cm}^3 \) and detonation velocity of about 300 \(\text{m s}^{-1} \). 1,3,4-oxadiazole is an isomer of furazan with a low enthalpy of production; however, the synthesis of energetic compounds with high nitrogen content using 1,3,4-oxadiazole can reduce the sensitivity of energetic compounds and improve the oxygen balance. Shreeve et al. reported the use of 1,3,4-oxadiazole to stabilize the nitrofurazan ring [8]. Based on 1,3,4-oxadiazole and the nitrofurazan backbone, a series of high nitrogen energetic salts were synthesized with good detonation properties and satisfactory susceptibility and stability (detonation velocities>7493\(\text{m s}^{-1} \), detonation
pressures $>20.4 \text{GPa}$, IS = 15J, FS = 120N). Lu Ming et al. concluded that the compounds formed by incorporating azo 1,3,4-oxadiazole with nitramino furazan and nitro furazan have significant thermal stability ($T_d > 233^\circ\text{C}$, $T_d (\text{RDX}) = 204^\circ\text{C}$), and 1,3,4-oxadiazole is expected to contribute to the construction of thermally stable oxadiazole molecules [9]. Qian Wang combined isomers of oxadiazoles into bicyclic compounds using a simple synthetic strategy and obtained energetic materials with the excellent detonation properties. (3,3’-dinitramino-4,4’-bifurazane features a detonation velocity of 9086 m s$^{-1}$; 3’-dinitroxazafurazan, which includes two nitro-furazan fragments, has an excellent detonation performance, $D= 9390 \text{ m s}^{-1}$; $P= 40.5 \text{ GPa}$)

In this work, we conducted a systematic research on 1,3,4-oxadiazole and 1,2,5-oxadiazole as a backbone with different bridges and various energetic groups inserted (shown in Scheme 1). Density functional theory (DFT) and electrostatic potential (ESP) studies were used to analyze these compounds, along with their HOFs, densities, and detonation properties.

$$R_1=-\text{N}_3, R_2=-\text{NH}_2, R_3=-\text{NHNO}_2, R_4=-\text{HNH}_2, R_5=-\text{CH(NO}_2)_2, R_6=-\text{C(NO}_2)_3, R_7=-\text{NO}_2, R_8=-\text{ONO}_2$$

Scheme 1. Designed energetic molecules based on oxadiazoles

2. Computational methods
In this work, all quantum mechanical calculations were done using Gaussian 16 software [10]. Structural optimization of the designed compounds was at B3LYP/6-311g (d,p) level [11-13], with all structures reaching “no imaginary frequency” to achieve stable structures. The frontier molecular orbitals (FMOs) and the electrostatic potential were both calculated at the identical theoretical level. After that, the total energy of the molecules was determined at the B3LYP/def2-TZVPP level. The reactions and associated schemes designed to anticipate the gas-phase HOFs of the designed compounds were as follows (shown in Scheme 2):

\[\text{R1} = \text{N}_3, \text{R2} = \text{NH}_2, \text{R3} = \text{NHNO}_2, \text{R4} = \text{NHNH}_2, \]
\[\text{R5} = \text{CH(NO}_2\text{)}_2, \text{R6} = \text{C(NO}_2\text{)}_3, \text{R7} = \text{NO}_2, \text{R8} = \text{ONO}_2 \]

Scheme 2. Representative isodesmic reactions for designed compounds

The advantage of designing isodesmic reaction calculations was that the types and numbers of various bonds of the reactants and products in the isodesmic reaction are
correspondingly the same, which can effectively reduce errors in the calculation of HOFs. HOFs at a certain temperature (ΔH_{298K}) was calculated by the following equation:

$$\Delta H_{298K} = \sum \Delta H_{f,p} - \sum \Delta H_{f,R}$$ \hspace{1cm} (1)

$$\Delta H_{298K} = \Delta E_{298K} + \Delta (PV) = \Delta E_0 + \Delta ZPE + \Delta H_T + \Delta nRT$$ \hspace{1cm} (2)

The ΔH_{298K}, HOFs in equations (1) and (2) were calculated. $\Delta H_{f,p}$, and $\Delta H_{f,R}$ are the HOFs of the reactants and products, respectively. ΔE_0, single-point energy, changes in energy from product to reactant; ΔZPE is the difference between the zero-point energy (ZPE) of the target product and reactant; ΔH_T is thermal correction starting with 0 will 298 K; n is energy group in numbers.; $\Delta (PV)$ equals should ΔnRT.

Most of the energetic compounds are not in the gas state but the solid-state. In the calculation of detonation performance (heat of detonation, detonation velocity, detonation pressure), the calculation of the solid-phase HOFs ($\Delta H_{f,\text{solid}}$) was the first step. According to Hess's law, the relationship between $\Delta H_{f,\text{solid}}$ and $\Delta H_{f,\text{gas}}$ can be expressed by the following formula [14]:

$$\Delta H_{f,\text{solid}} = \Delta H_{f,\text{gas}} - \Delta H_{\text{sub}}$$ \hspace{1cm} (3)

The relational equation proposed by Politzer et al. can be used to calculate the ΔH_{sub} [15, 16]:

$$\Delta H_{\text{sub}} = aA^2 + b(\nu \sigma_{tot}^2)^{0.5} + c$$ \hspace{1cm} (4)

where a, b, and c are constants of 0.000267 kcal mol$^{-1}$ A$^{-4}$, 1.650 kcal mol$^{-1}$, and 2.966 kcal mol$^{-1}$, respectively [16]. A denotes the surface area of a molecule with an electron density of 0.001 e Bohr$^{-3}$ equivalents. ν is the degree of equilibrium between positive and negative potentials in the isotropic plane, σ_{tot}^2 represents a measurement of the electrostatic potential variability of the molecular surface, which can be obtained by Multiwfn [17].

The computational formula proposed by Politzer et al [18]. can be used to calculate the density of the detonation velocity and pressure.

$$\rho = \alpha \left(\frac{M}{V} \right) + \beta (\nu \sigma_{tot}^2) + \gamma$$ \hspace{1cm} (5)

a, β, and γ are constants with values of 0.9183, 0.0028, and 0.0443, correspondingly. M represents the molar mass of the molecule (g mol$^{-1}$) and V represents the volume of the molecule (m3 mol$^{-1}$). $\nu \sigma_{tot}^2$ indicate the same as above.

Detonation performance (detonation velocity and detonation pressure) is calculated according to the Kamlet-Jacobs equation [19].

$$D = 1.01(N \overline{M}^{0.5} Q^{0.5})^{0.5}(1 + 1.3\rho)$$ \hspace{1cm} (6)

$$P = 1.558\rho^2 N \overline{M}^{0.5} Q^{0.5}$$ \hspace{1cm} (7)

Here, D stands for blast velocity (km s$^{-1}$), the P indicates the burst pressure (GPa). N, \overline{M} and Q are the number of moles of initiating gases per gram of explosive (mol g$^{-1}$), the average
combined molecular weight of these gases (g mol\(^{-1}\)), and the heat of detonation (cal g\(^{-1}\)), respectively.

3. Results and Discussion

3.1 Electronic structures

The frontier molecular orbital, i.e., the highest occupied molecular orbitals (HOMO) and the lowest unoccupied molecular orbitals (LUMO) can gather suitable information on optical polarizability, dynamic stability, and reactivity [20, 21]. The HOMO, LUMO, and their energy gaps (\(\Delta E_{\text{LUMO-HOMO}}\)) of the designed structures are shown in Table 1.

Table 1. Calculated HOMO and LUMO energies (eV) and energy gaps (\(\Delta E_{\text{LUMO-HOMO}}\)) of the designed compounds

Compd.	A1	A2	A3	A4	A5	A6	A7	A8
HOMO	-7.47	-6.62	-8.25	-6.59	-9.17	-9.41	-9.36	-8.29
LUMO	-2.78	-1.93	-3.25	-2.05	-3.78	-4.16	-4.15	-3.69
\(\Delta E_{\text{HOMO-LUMO}}\)	4.69	4.69	5.00	4.55	5.39	5.25	5.21	4.60

Compd.	B1	B2	B3	B4	B5	B6	B7	B8
HOMO	-7.05	-6.37	-7.56	-6.44	-8.06	-8.42	-8.33	-7.56
LUMO	-2.92	-2.40	-3.12	-2.55	-3.78	-4.23	-4.05	-3.64
\(\Delta E_{\text{HOMO-LUMO}}\)	4.13	3.96	4.43	3.89	4.28	4.19	4.29	3.91

Compd.	C1	C2	C3	C4	C5	C6	C7	C8
HOMO	-7.55	-6.71	-8.06	-6.85	-8.69	-9.00	-8.80	-8.21
LUMO	-4.06	-3.35	-4.16	-3.47	-4.75	-5.09	-4.94	-4.50
\(\Delta E_{\text{HOMO-LUMO}}\)	3.50	3.35	3.89	3.38	3.94	3.91	3.86	3.70

Compd.	D1	D2	D3	D4	D5	D6	D7	D8
HOMO	-7.13	-6.63	-7.45	-6.67	-7.99	-8.15	-8.01	-7.48
LUMO	-2.06	-0.97	-2.70	-1.40	-3.63	-4.39	-3.75	-3.22
\(\Delta E_{\text{HOMO-LUMO}}\)	5.07	5.66	4.75	5.27	4.36	3.76	4.26	4.25

From Table 1, it is not difficult to find that for HOMO, when inserting different energetic groups, the four series of A, B, C, D have similar trends in energy level changes. Particularly for each series, HOMO energy increases with the substitution of -NH\(_2\) and -NHNNH\(_2\), while the HOMO energy decreased when -CH(NO\(_2\))\(_2\), -C(NO\(_2\))\(_3\), and -NO\(_2\) were inserted. The ranking of the contribution of each group to HOMO is as follows: -NH\(_2\) ≈ -NHNNH\(_2\) > -N\(_3\) > -ONO\(_2\) > -NHNO\(_2\) > -CH(NO\(_2\))\(_2\) > -NO\(_2\) > -C(NO\(_2\))\(_3\). The same is true for the LUMO energy level. Overall, the bridge has little effect on the trend of HOMO and LUMO energy changes for each designed compound. However, comparing to other bridging links, D series (-NH-NH-) has the highest LUMO energy level except for D\(_6\), which meant the backbone played a proactive role in LUMO.

The trend of \(\Delta E_{\text{LUMO-HOMO}}\) for each series can also be seen in Table 1. It is easy to find that three series A, B, and C have similar trends in \(\Delta E_{\text{LUMO-HOMO}}\), in which the gap is relatively small when the energetic groups are -N\(_3\), -NHNNH\(_2\), and -ONO\(_2\), the structure is relatively less
stable and the intensity of interatomic interactions is higher. It indicates a shift towards lower frequencies in their electronic absorption spectra. The difference is that in the D series, the $\Delta E_{\text{LUMO-HOMO}}$ changes drastically, yet the D7 (4.26 eV) and B7 (4.29 eV) have similar gap values. Figure 1 shows the varied trends of the $\Delta E_{\text{LUMO-HOMO}}$ of A series (directly linked) in the designed compounds. Clearly, all compounds of A series have comparatively larger energy gaps from 4.55 eV-5.38 eV, meaning that these molecules possess good chemical stabilities. The findings indicate that the parent structure is the main influence of the $\Delta E_{\text{LUMO-HOMO}}$ variation in series A, B, and C, the order of these series in average $\Delta E_{\text{LUMO-HOMO}}$ can be written as: directly linked > -C=C- > -N=N-; the energy group is the main influence of the D series. According to previous studies, the smaller the $\Delta E_{\text{LUMO-HOMO}}$ in a similar structure, the more unstable the structure is, which implies that the polarization rate is larger when the energy difference between occupied and non-occupied orbitals is smaller [22]. In the case where the bridges are both conjugated, the addition of the -N=N- makes $\Delta E_{\text{LUMO-HOMO}}$ smaller than when -C=C- is added. From all designed compounds, D2 (5.66 eV) has the highest $\Delta E_{\text{LUMO-HOMO}}$, while C2 (3.35 eV) has the lowest. In other words, compound C2 responds most strongly to external stimuli, while compound D2, on the other hand, exhibits inertia in response to these stimuli.

![Figure 1](image.png)

Figure 1 The variation trends of $\Delta E_{\text{LUMO-HOMO}}$ of the designed compounds

3.2 Heat of formation

The heat of formation (HOFs) is generally employed as an indicator with regard to the "energy content" of a HEDM. Additionally, HOF is a key parameter that predicts the detonation properties (especially the heat of detonation) of energetic materials. In order to predict accurate HOFs, calculations are usually performed by atomization reactions (mainly for small molecules) or isodesmic reactions (mainly for complex compounds). Table 2
HOFs can give a great contribution to the detonation properties (heat of detonation, detonation of common HEDMs (HMX 272.6 kJ mol\(^{-1}\)) for the energetic group has the most important effect in improving HOFs, however, from 203.34 kJ mol\(^{-1}\) shown that almost all compounds have positive \(\Delta H\) for the reference compounds in the isodesmic reactions.

Table 2. Calculated total energies, zero-point energies, thermal corrections and heats of formation (HOFs) of the reference compounds

Compd.	\(E_0\)^{a}(a.u.)	ZPE^b (kJ mol\(^{-1}\))	\(H_T^b\) (kJ mol\(^{-1}\))	\(\Delta H_{f, \text{gas}}\)(kJ mol\(^{-1}\))
CH\(_4\)	-40.541022	115.77	10.07	-74.6^c
1,3,4-oxadiazole	-262.2014424	193.07	11.70	-72.2[23]
1,2,5-oxadiazole	-262.1523045	120.05	11.57	216.9[23]
CH\(_3\)N\(_3\)	-204.1799052	118.28	11.66	293.4[24]
CH\(_2\)NH\(_2\)	-95.9042735	130.21	14.30	-23.0^e
CH\(_3\)NHNO\(_2\)	-300.4823831	165.66	11.51	-73.2[25]
CH\(_3\)NHNH\(_2\)	-151.2445419	174.47	16.16	94.5^e
CH\(_3\)CH(NO\(_2\)\(_2\))	-489.0267629	210.60	13.81	-105.1[26]
CH\(_3\)C(NO\(_2\)\(_3\))	-693.5864309	209.95	22.89	-73.9[26]
CH\(_3\)NO\(_2\)	-245.1218931	213.14	29.48	-81.0^e
CH\(_3\)ONO\(_2\)	-320.3346593	129.00	14.04	-122.0^e
CH\(_3\)CH\(_3\)	-79.8662227	193.07	11.70	-84.0^e
CH\(_3\)CH-CH\(_3\)	-157.291682	279.23	17.06	-10.8^e
CH\(_3\)N=NCH\(_3\)	-189.3547063	218.08	16.11	146.0^e
CH\(_3\)NNHCH\(_3\)	-190.5669799	282.71	17.09	90.0[27]

^a Calculated at the B3LYP/def2-TZVPP level. ^b Calculated at the B3LYP/6-311G (d, p) level. ^c Obtained from http://webbook.nist.gov. ^d Obtained by isodesmic reaction. ^e Calculated at the G4 level.

Table 3 lists the total energies, ZPEs, thermal corrections, \(\Delta H_{f, \text{gas}}\), A, \(\nu\), \(\sigma_{tot}^2\), \(\Delta H_{sub}\) and \(\Delta H_{f, \text{solid}}\) of designed materials. Except for A8 (-97.87kJ mol\(^{-1}\)), B8 (-67.23kJ mol\(^{-1}\)), it is shown that almost all compounds have positive \(\Delta H_{f, \text{gas}}\) range from A5 (18.95 kJ mol\(^{-1}\)) to C1 (1248.67 kJ mol\(^{-1}\)). About \(\Delta H_{f, \text{solid}}\), 24 compounds have positive HOFs (except for B8, -203.34 kJ mol\(^{-1}\); A8, -202.70 kJ mol\(^{-1}\); B5, -122.96 kJ mol\(^{-1}\); A5, -120.25 kJ mol\(^{-1}\); D8, -112.99 kJ mol\(^{-1}\); D5, -72.33 kJ mol\(^{-1}\); B7, -72.33 kJ mol\(^{-1}\); A7, -72.33 kJ mol\(^{-1}\)) in the range from B6 (129.07 kJ mol\(^{-1}\)) to C1 (1123.86kJ mol\(^{-1}\)). Noted, for each designed series, -N\(_3\) energetic group has the most important effect in improving HOFs, however, -CH(NO\(_2\)\(_2\)) and -ONO\(_2\) both play a negative role to HOFs. Overall, after comparing with solid-phase HOFs of common HEDMs (HMX 272.6 kJ mol\(^{-1}\)), 12 compounds are higher than HMX. These high HOFs can give a great contribution to the detonation properties (heat of detonation, detonation pressure, detonation velocities).

Table 3. Calculated total energies, thermal corrections, zero-point energies, molecular properties, and heats of formation of the designed compounds

Compd.	\(E_0\)^{a}(a.u.)	ZPE^b	\(H_T^b\)	\(\Delta H_{f, \text{gas}}\)	A(Å^2)	\(\nu\)	\(\sigma_{tot}^2\)	\(\Delta H_{sub}\)	\(\Delta H_{f, \text{solid}}\)
A8	-97.87								
B8	-67.23								
A5	18.95								
C1	1248.67								
B6	129.07								
C6	1123.86								

^a Calculated at the B3LYP/def2-TZVPP level. ^b Obtained at the B3LYP/6-311G (d, p) level.
The order of contributions to HOF by bridge groups changes due to the variation of the high-energy groups. The more N=N and -NHNH₂ are used as substituents, HOFs of each series are higher. The order of influences about different energetic groups is as follows: -N₃ -> -NHNH₂ -> -NHNO₂ -> -NH₂ -> C(NO₂)₂ -> -NO₂ -> CH(NO₂)₂ -> -ONO₂. The results are similar to those of the analysis of the electronic structure above. The order of contributions to HOF by bridges is as follows: -N=N- > directly linked > -C=C- ≈ -NH-NH-. The more N-H bonds in the structure, the larger the HOF value is.

	(kJ mol⁻¹)	(kJ mol⁻¹)	(kJ mol⁻¹)	(kcal mol⁻¹)²	(kJ mol⁻¹)	(kJ mol⁻¹)			
A1	-850.4524512	203.59	34.90	980.34	219.414	0.249	144.296	107.62	872.7
A2	-633.9413714	275.67	28.29	242.14	177.681	0.204	286.809	100.54	141.6
A3	-1043.04008	287.49	40.68	289.98	235.786	0.177	217.059	117.29	172.7
A4	-744.6186212	365.50	35.61	533.37	208.823	0.232	178.152	105.54	427.8
A5	-1420.157817	358.47	55.82	-14.65	295.554	0.089	202.017	139.21	-153.9
A6	-1829.200855	362.32	70.00	114.66	331.032	0.072	115.357	154.73	-40.1
A7	-932.2762806	198.56	34.80	88.84	207.206	0.123	185.933	93.40	-4.6
A8	-1082.741002	217.21	40.83	-97.87	229.635	0.202	116.307	104.83	-202.7
B1	-927.8975195	291.30	40.45	930.58	253.653	0.241	137.737	124.06	806.5
B2	-711.3735603	362.80	34.15	225.95	216.143	0.228	347.469	126.02	99.9
B3	-1120.480478	375.68	46.13	252.88	269.739	0.165	185.482	131.86	121.0
B4	-822.0466839	453.01	41.01	527.92	244.827	0.235	238.901	131.13	396.8
B5	-1497.549631	445.51	61.75	-56.74	330.694	0.164	189.198	173.02	-229.8
B6	-1906.645059	449.26	76.13	66.99	370.514	0.122	127.465	193.02	-126.0
B7	-1009.724951	286.74	40.14	29.90	239.954	0.197	154.542	114.85	-84.9
B8	-1160.18314	303.76	47.02	-140.43	270.969	0.246	148.029	136.11	-276.5
C1	-959.9343283	226.81	39.71	996.28	248.033	0.250	160.022	124.81	871.5
C2	-743.4283614	299.17	33.19	245.03	204.380	0.201	302.779	112.89	132.1
C3	-1152.518066	311.49	45.24	316.67	264.775	0.142	220.488	129.37	187.3
C4	-854.0972268	390.30	39.62	558.69	233.842	0.221	195.129	118.83	439.9
C5	-1529.585535	381.36	60.71	11.36	324.246	0.113	218.754	164.21	-152.8
C6	-1938.680492	385.14	75.17	136.45	364.404	0.096	123.989	184.54	-48.1
C7	-1041.757284	221.88	39.58	110.15	235.702	0.127	183.212	107.74	-0.6
C8	-1192.219533	239.86	46.09	-73.25	261.376	0.243	147.708	130.08	-203.3
D1	-961.1648723	292.56	41.00	949.73	242.970	0.216	237.618	127.81	821.9
D2	-744.6504534	365.21	34.14	220.63	210.941	0.235	276.621	117.81	102.8
D3	-1153.759631	376.67	46.63	240.72	265.213	0.136	243.335	130.76	110.0
D4	-855.3216102	455.72	40.95	528.03	235.528	0.233	209.936	122.66	405.4
D5	-1530.829428	447.23	61.65	-70.45	316.299	0.121	280.886	164.48	-234.9
D6	-1939.930363	451.08	76.30	39.20	367.524	0.114	213.187	197.40	-158.2
D7	-1043.004266	287.45	40.79	17.18	234.243	0.134	377.147	122.72	-105.5
D8	-1193.461871	305.07	47.33	-131.54	263.227	0.163	269.407	135.64	-287.0

* Calculated at the B3LYP/def2-TZVPP level. * Calculated at the B3LYP/6-31G (d, p) level.

Figure 2 shows the gas-phase heat of formation for the designed structures. It can be observed that the HOFs of each series change due to the variation of the high-energy groups.
Figure 2 The variation trends of $\Delta H_{f,\text{gas}}$ of the designed compounds.

3.3 Detonation property

Oxygen balance (OB), density (ρ), the heat of detonation (Q), detonation velocity (D), and detonation (P) are the detonation properties and are shown in Table 4. Clearly, after calculating detonation performances of common energetic materials (TNT, RDX, HMX), the results are in agreement with the experimental data, proving that the calculation method is feasible. OB represents the degree to which all carbon atoms in the molecule are oxidized to carbon dioxide; hydrogen atoms are oxidized to water, and the increased production of CO_2 and H_2O represents the increased heat of formation [28, 29]. At the same time, an excessively high OB results in a large amount of energy being taken away, so the ideal value for OB should be zero. Apparently, A6(7.3%), C6(6.9%), D6(3.4%), C8(0.0%), A8(0.0%), D8(-5.5%), B6(-10.4%) own acceptable values of OB. It can infer that -ONO$_2$ and -C(NO$_2$)$_3$ play an important role in dominating OB among all compounds.

Compd.	OB (%)	ρ (g cm$^{-3}$)	Q (cal g$^{-1}$)	D (km s$^{-1}$)	P (GPa)
A1	-43.61	1.74	1491.56	7.94	27.36
The densities of all designed compounds range from 1.5 to 2.0 g cm\(^{-3}\). When -CH(NO\(_2\))\(_2\), -C(NO\(_2\))\(_3\), -NO\(_2\) or -ONO\(_2\) are inserted, the density of the compounds is comparable to that of TNT, RDX, etc. Whatever, the compounds with the substituent -C(NO\(_2\))\(_3\) has the highest densities.

Detonation velocity (\(D\)) and detonation pressure (\(P\)) are two main parameters to determine detonation performance of high-energy materials [31]. Table 4 lists detonation performance of the designed structures and representative HEDMs. Four series of designed structures have good performance in detonation velocity (between 6.10-9.41 km s\(^{-1}\)), 27

Design	\(Q \)	\(D \)	\(P \)	\(\rho \)	
A2	-76.13	1.62	1031.76	6.80	19.28
A3	-18.59	1.83	1403.25	8.51	32.59
A4	-72.67	1.60	1226.61	7.45	22.88
A5	-13.87	1.88	1379.50	8.52	33.01
A6	7.34	2.00	1572.25	9.41	41.86
A7	-14.03	1.89	1330.04	8.35	31.76
A8	0.00	1.91	1356.44	8.64	34.37
B1	-71.49	1.64	1329.27	7.13	21.32
B2	-107.12	1.53	873.48	6.11	14.86
B3	-45.04	1.73	1281.40	7.69	25.66
B4	-110.48	1.52	981.99	6.10	14.82
B5	-34.39	1.79	1284.93	7.89	27.54
B6	-10.39	1.91	1482.35	8.79	35.52
B7	-44.07	1.77	1180.75	7.47	24.50
B8	-27.96	1.80	1235.12	7.80	26.95
C1	-38.68	1.75	1338.50	7.84	26.70
C2	-65.26	1.64	887.89	6.75	19.10
C3	-16.77	1.83	1288.14	8.34	31.10
C4	-63.66	1.62	1101.42	7.38	22.65
C5	-12.83	1.87	1292.81	8.40	31.97
C6	6.89	1.98	1285.95	9.06	38.47
C7	-12.49	1.87	1201.62	8.19	30.39
C8	0.00	1.90	1244.94	8.44	32.57
D1	-44.77	1.71	1326.31	7.80	26.16
D2	-72.67	1.60	849.43	6.78	18.91
D3	-22.21	1.80	1253.53	8.25	30.20
D4	-70.11	1.58	1154.01	7.66	24.04
D5	-17.01	1.84	1262.55	8.36	31.53
D6	3.43	1.96	1354.51	9.10	38.62
D7	-18.59	1.84	1150.68	8.09	29.40
D8	-5.51	1.86	1209.10	8.38	31.76
TNT	-74.0	1.68/1.64\(^a\)	1386.14/1386.00\(^b\)	7.20/6.95\(^b\)	22.02/19.00\(^b\)
RDX	-21.6	1.78/1.80\(^b\)	1622.25/1622\(^b\)	8.91/8.75\(^b\)	34.97/34.70\(^b\)
HMX	-21.6	1.81/1.91\(^c\)	1635.64/1634.08\(^b\)	9.03/9.10\(^b\)	36.25/39.00\(^b\)

\(^a\) Calculated data. \(^b\) Experimental \(Q\), \(D\), \(P\), and \(\rho\) are from reference [30]. \(^c\) Obtained from http://webbook.nist.gov.
compounds (C4, A4, B7, D4, B3, B8, C1, B5, A1, D7, C7, D3, C3, A7, D5, D8, C5, C8, A3, A5, A8, B6, C6, D6, A6) are found to excel in TNT. After a comparison, the velocity of RDX and HMX are found to have a close value than 5 compounds (A8, B6, D6, A6), it can be regarded that -C(NO2)3 give the greatest contribution to the detonation velocity. This is also consistent with the results of the OB analysis. In the four series of designed objects, it can be seen that the -C=C- bond has a small detonation velocity when joined, and the -NH-NH- and -N=N- join have a small difference in detonation velocity (except D5).

Compounds with a substitution base of -NH2 perform poorly in detonation velocity and are also relatively low in detonation pressure. The detonation pressure of the designed structure is basically in the range of 21.32-41.86 GPa, removing B4(14.82 GPa), B2(14.86 GPa), D2 (18.91 GPa), C2 (19.10 GPa), A2 (19.28 GPa). Similarly, the detonation pressure is greatest at the insertion of the -C(NO2)3 energetic group. It can also be seen from Figure 3 (d) that the order of effect of substituents in the pressure is: -C(NO2)3 > -ONO2 ≈ -CH(NO2)2 ≈ -NHNO2 ≈ -NO2 > -N3 > -NHNH2 > -NH2. A, C, D three series of detonation pressure size approximate, in this comparison B detonation pressure is small.

![Graphs showing variation trends of ρ, D, P, and Q](image)

Figure 3 a, b, c, d stand for variation trends of ρ, D, P, and Q of the designed compounds

When there are more bi-atomic molecular gases CO and H2 in the product, it indicates that less CO2 and H2O will be produced, which will lead to a decrease in Mave and a decrease in Q [22]. It is clear from Figure 3 (b) that the structure with the -C(NO2)3 or -N3 substituents in the same series has the largest Q and the smallest -NH2. When single bond (A series) is added, the heat of detonation is relatively larger than the other bridging.
3.4 Thermal stability

There is an essential problem in the design and synthesis of new high-energy materials: whether HEDMs have sufficient dynamic stability to be of practical interest. The bond dissociation energy (BDE) can be regarded as an indispensable indicator in understanding thermal stability and decomposition process of high-energy materials [32]. Moreover, previous studies [33, 34] on the BDE of nitro compounds especially nitroaromatic and nitramine molecules showed that the BDE of energetic material is related to its sensitivity and stability directly, and the smaller the BDE is, the more sensitive the compound is. Generally speaking, the smaller the bond dissociation energy required for bond dissociating, the weaker the bond is, which is also one of the ways to find out the trigger bond. Bond order is one of the quantitative descriptions of chemical bonds, which can be used for understanding the molecular electronic structure and predicting the molecular reactivity and stability Therefore, certain relative bonds are selected as the dissociating bond to calculate BDE according to the bond overlap population Laplacian bond order (LBO) [35]. Table 5 shows the BDE of almost designed compounds.

Table 5. Bond dissociation energies (BDEs, kJ mol\(^{-1}\)) of certain relative bonds for the designed compounds

Compd.	Ring-R	Bonds in R	NH-NH (bridge)	
	Rupture Bonds	BDE	Rupture Bonds	BDE
A1	2(N)-16(C)	354.78		
A3	11(N)-15(N)	80.43	80.43	
A4	11(N)-16(N)	200.42	200.42	
A6	12(C)-28(N)	97.86	97.86	
A7	10(C)-14(N)	231.14	231.14	
A8	11(O)-16(N)	49.09	49.09	
B2	2(C)-15(N)	468.45	468.45	
B3	2(C)-15(N)	423.49	423.49	
B4	2(C)-15(N)	376.36	376.36	
B5	2(C)-15(C)	402.92	402.92	
B6	2(C)-15(C)	390.44	390.44	
B7	2(C)-18(N)	249.89	249.89	
B8	2(C)-16(O)	385.83	385.83	
C1	2(N)-15(C)	358.96	358.96	
C3	11(N) 15(N)	71.18	71.18	
C4	13(N)-16(N)	218.66	218.66	
C5	13(C)-21(N)	118.93	118.93	
C6	11(C)-16(N)	71.59	71.59	
C7	9(C)-11(N)	236.76	236.76	
D1	17(N)-19(N)	90.44	90.44	
It is interesting that as listed in Table 5, most of the trigger bonds in the B series (-C=C-) are chemical bonds between the parent and the energetic group, and the value of BDE is relatively high (range from 249.89 kJ mol\(^{-1}\) to 468.45 kJ mol\(^{-1}\)), thus series B are more stable. Analysis also shows that most of the trigger bonds in the series D (-NH-NH-) are bridges. For series A (directly linked) and series C (-N=N-), the chemical bonds in substitution groups becomes destroying bonds. Overall, it can indicate that the different bridges have a great influence on the determination of trigger bonds. Chung et al. [36] proposed that the BDE of a stable HEDM compound should be over the barrier 83.60 kJ/mol which means that almost all of designed compounds possess suitable thermal stability (except for A3, A8, C3, C8, D2, D3, D4, D6).

3.5 Electrostatic potential

According to previous studies [21, 37, 38], there is a connection between the sensitivities of energetic compounds and the electrostatic potential (ESP) that is on the surface of the molecule. For ordinary organic molecules, the positive electrostatic potential will cover a larger area than the negative potential, but the latter tends to be a little stronger. However, in the case of the introduction of energetic groups (e.g. -C(NO\(_2\))\(_3\), -NO\(_2\), etc.) into the molecule, the positive potential will be strengthened and the negative potential will be weakened, so that the dominant position may become a positive potential.

Figure 4 shows the ESP and surface area of representative designed compounds (series D), where the ESP is calculated based on an electron density of 0.001 a.u. (electron/Bohr\(^3\)) and a lattice spacing of 0.25 Bohr. The local maximum and minimum values of the significant surface in the figure are shown in red and blue, respectively. It was observed that the red region (positive potential) was mainly concentrated on the parent, while the blue region (negative potential) was mainly distributed at the edges of the molecule, represented by the carbon atom on the parent oxadiazole and the oxygen atom on the nitro. The positive potential areas of the D1-D8 compounds were calculated as 149 Å\(^2\) (ratio 61%), 114 Å\(^2\) (ratio 54%), 145 Å\(^2\) (ratio 55%), 136 Å\(^2\) (ratio 58%), 153 Å\(^2\) (ratio 48%), 249 Å\(^2\) (ratio 68%), 117 Å\(^2\) (ratio 50%), 165 Å\(^2\) (ratio 62%). Previous results [39] have shown that relatively sensitive molecules have regions of high electron indeed on covalent bonds throughout the molecular internal backbone, which are shown on the graph as a larger positive electrostatic potential on the surface area histogram. Easily D1, D6, and D8 were the most sensitive.
Figure 4 Electrostatic potential of representative designed molecules

4. Conclusions

In this work, we have designed 32 energetic materials based on 1,2,5-oxadiazole and 1,3,4-oxadiazole calculated their energetic properties and stability at the B3LYP/6-311g (d, p) level, resulting in the following conclusions:

1. Energetic groups play an important role in increasing the energy of HOMO and LUMO. When -NH$_2$, -NHNH$_2$ inserted, it contributes to the energy of HOMO, LUMO greatly.

2. -N$_3$ and -NH$_2$, two nitrogen-containing groups, contribute to the HOF, especially the group of -N$_3$, which contributes the most to the HOF. For the bridge, the different links do not have a significant impact on HOFs.

3. The detonation pressure and detonation velocity show approximately the same trend when different energetic groups are added. The participation of -C(NO$_2$)$_3$ is beneficial for the improvement of the detonation performance. When a single bond (directly linked) is bridged, the design compound has a low detonation performance.

4. After analysis, most of the trigger bonds of the B series (-C=C-) are chemical bonds
linked to the parent and substituent groups, the bonds of A series and C series are in the energetic groups.

Overall, -C(NO$_2$)$_3$ is the most effective strategy to improve the detonation performance of the design compounds (A_6, $D = 9.41$ km s$^{-1}$, $P = 41.86$ GPa, $Q = 1572.25$ cal g$^{-1}$). Except for B_4, B_2, C_2, D_2, A_2, B_1 the detonation velocities and detonation pressures of all the design compounds were higher than those of the conventional energetic material TNT.

In summary, the designed compounds are forecast to have outstanding detonation properties and affordable sensitivity, information that would probably prove valuable to researchers interested in these compounds. The findings of this research should contribute to the development of other new high explosives designs and discoveries.

Funding

This study was supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (NO. 20KJB620001) and the National Natural Science Foundation of China (Grant No. 11702129).

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Availability of data and material

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Authors' contributions

Wenxin Xia: Software, Data curation, Writing-Original draft preparation, Formal analysis, Congming Ma: Conceptualization, Methodology, Peng Ma: Resources, Project administration, Renfa Zhang: Investigation, Formal analysis, Xiaosong Xu: Investigation, Validation, Yong Pan: Resources, Juncheng Jiang: Resources, Supervision.

References

[1]V. Thottempudi, H. Gao, J.M. Shreeve, Trinitromethyl-substituted 5-nitro-or 3-azo-1, 2, 4-triazoles: synthesis, characterization, and energetic properties, J. Am. Chem. Soc. 133 (2011) 6464–6471.

[2]Q. Wu, W. Zhu, H. Xiao, A new design strategy for high-energy low-sensitivity explosives: combining oxygen balance equal to zero, a combination of nitro and amino groups, and N-oxide in one molecule of 1-amino-5-nitrotetrazole-3 N-oxide, J. Mater. Chem. A. 2 (2014) 13006–13015.

[3]A.K. Sikder, N. Sikder, A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications, J. Hazard. Mater. 112 (2004) 1–15.

[4]A.B. Sheremetev, Chemistry of furazans fused to five-membered rings, J. Heterocycl. Chem. 32 (1995) 371–385.
[5] T.S. Pivina, D. V Sukhachev, A. V Evtushenko, L.I. Khmelnitskii, Comparative characteristic of energy content calculating methods for the furazan series as an example of energetic materials, Propellants, Explos. Pyrotech. 20 (1995) 5–10.

[6] A.B. Sheremetev, E. V Mantseva, One-pot synthesis of 4, 4′-diamino-3, 3′-bifurazan, Mendeleev Commun. 6 (1996) 246–247.

[7] C. Zhang, Computational investigation of the detonation properties of furazans and furoxans, J. Mol. Struct. THEOCHEM. 765 (2006) 77–83.

[8] Y. Tang, C. He, L.A. Mitchell, D.A. Parrish, M.S. Jean′Ne, Energetic compounds consisting of 1, 2, 5-and 1, 3, 4-oxadiazole rings, J. Mater. Chem. A. 3 (2015) 23143–23148.

[9] Q. Wang, Y. Shao, M. Lu, Azo1,3,4-oxadiazole as a Novel Building Block to Design High-Performance Energetic Materials, Cryst. Growth Des. 19 (2019) 839–844. https://doi.org/10.1021/acs.cgd.8b01404.

[10] M.J. Frisch, Gaussian 98, Revis. A. 9. (1998).

[11] X. Fan, X. Ju, Theoretical studies on four-membered ring compounds with NF2, ONO2, N3, and NO2 groups, J. Comput. Chem. 29 (2008) 505–513.

[12] T. Wei, W. Zhu, X. Zhang, Y.-F. Li, H. Xiao, Molecular design of 1, 2, 4, 5-tetrazine-based high-energy density materials, J. Phys. Chem. A. 113 (2009) 9404–9412.

[13] Y. Pan, J. Li, B. Cheng, W. Zhu, H. Xiao, Computational studies on the heats of formation, energetic properties, and thermal stability of energetic nitrogen-rich furazano [3, 4-b] pyrazine-based derivatives, Comput. Theor. Chem. 992 (2012) 110–119.

[14] P.W. Atkins, Physical Chemistry, 2nd edn, 1095 pp, (1982).

[15] P. Politzer, Y. Ma, P. Lane, M.C. Concha, Computational prediction of standard gas, liquid, and solid-phase heats of formation and heats of vaporization and sublimation, Int. J. Quantum Chem. 105 (2005) 341–347. https://doi.org/10.1002/qua.20709.

[16] E.F.C. Byrd, B.M. Rice, Improved prediction of heats of formation of energetic materials using quantum mechanical calculations, J. Phys. Chem. A. 110 (2006) 1005–1013.

[17] T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer, J Comput Chem. 33 (2012) 580–592. https://doi.org/10.1002/jcc.22885.

[18] P. Politzer, J. Martinez, J.S. Murray, M.C. Concha, A. Toro-Labbé, An electrostatic interaction correction for improved crystal density prediction, Mol. Phys. 107 (2009) 2095–2101. https://doi.org/10.1080/00268970903156306.

[19] M.J. Kamlet, S.J. Jacobs, Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives, J. Chem. Phys. 48 (1968) 23–35.

[20] H. Lin, Q. Zhu, C. Huang, D.-D. Yang, N. Lou, S.-G. Zhu, H.-Z. Li, Dinitromethyl, fluorodinitromethyl derivatives of RDX and HMX as high energy density materials: a computational study, Struct. Chem. 30 (2019) 2401–2408.

[21] A. Stobiecka, M. Sikora, R. Bonikowski, J. Kula, An exploratory study on the peroxyl-radical-scavenging activity of 2, 6-dimethyl-5-hepten-2-ol and its heterocyclic analogues, J. Mol. Struct. 1107 (2016) 82–90.

[22] P. Politzer, J.S. Murray, High Performance, Low Sensitivity: The Impossible (or
Possible) Dream?, in: Energ. Mater., 2017: pp. 1–22. https://doi.org/10.1007/978-3-319-59208-4_1.

[23]Y. Qu, S.P. Babailov, Azo-linked high-nitrogen energetic materials, J. Mater. Chem. A. 6 (2018) 1915–1940.

[24]K.E. Gutowski, R.D. Rogers, D.A. Dixon, Accurate thermochemical properties for energetic materials applications. II. Heats of formation of imidazolium-, 1, 2, 4-triazolium-, and tetrazolium-based energetic salts from isodesmic and lattice energy calculations, J. Phys. Chem. B. 111 (2007) 4788–4800.

[25]E.A. Miroshnichenko, T.S. Kon’kova, Y.N. Matyushin, Thermochemistry of primary nitramines, in: Dokl. Phys. Chem., Springer, 2003: pp. 253–255.

[26]D. Zhai, J. Wang, L. Hao, C. Ma, P. Ma, Y. Pan, J. Jiang, Molecular design and properties of bridged energetic pyridines derivatives, RSC Adv. 9 (2019) 37747–37758.

[27]Á. Furka, Relative energy of organic compounds II. Halides, nitrogen, and sulfur compounds, Struct. Chem. 20 (2009) 605–616.

[28]Q. Wu, Y. Pan, X. Xia, Y. Shao, W. Zhu, H. Xiao, Theoretic design of 1, 2, 3, 4-tetrazine-1, 3-dioxide-based high-energy density compounds with oxygen balance close to zero, Struct. Chem. 24 (2013) 1579–1590.

[29]Q. Yu, Z. Wang, B. Wu, H. Yang, X. Ju, C. Lu, G. Cheng, A study of N-trinitroethyl-substituted aminofurazans: high detonation performance energetic compounds with good oxygen balance, J. Mater. Chem. A. 3 (2015) 8156–8164.

[30]C.L. Mader, Numerical modeling of explosives and propellants, CRC press, 2007.

[31]L. Hao, X. Liu, D. Zhai, L. Qiu, C. Ma, P. Ma, J. Jiang, Theoretical Studies on the Performance of HMX with Different Energetic Groups, ACS Omega. (2020).

[32]D.J. Henry, C.J. Parkinson, P.M. Mayer, L. Radom, Bond dissociation energies and radical stabilization energies associated with substituted methyl radicals, J. Phys. Chem. A. 105 (2001) 6750–6756.

[33]B.M. Rice, S. Sahu, F.J. Owens, Density functional calculations of bond dissociation energies for NO2 scission in some nitroaromatic molecules, J. Mol. Struct. THEOCHEM. 583 (2002) 69–72.

[34]N.J. Harris, K. Lammertsema, Ab initio density functional computations of conformations and bond dissociation energies for hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine, J. Am. Chem. Soc. 119 (1997) 6583–6589.

[35]T. Lu, F. Chen, Bond order analysis based on the Laplacian of electron density in fuzzy overlap space, J. Phys. Chem. A. 117 (2013) 3100–3108.

[36]G. Chung, M.W. Schmidt, M.S. Gordon, An ab initio study of potential energy surfaces for N8 isomers, J. Phys. Chem. A. 104 (2000) 5647–5650.

[37]J.S. Murray, M.C. Concha, P. Politzer, Links between surface electrostatic potentials of energetic molecules, impact sensitivities and C–NO2/N–NO2 bond dissociation energies, Mol. Phys. 107 (2009) 89–97.

[38]J.S.M.P.L. Peter, Effects of strongly electron-attracting components on molecular
surface electrostatic potentials: application to predicting impact sensitivities of energetic molecules, Mol. Phys. 93 (1998) 187–194.

[39] B.M. Rice, J.J. Hare, A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules, J. Phys. Chem. A. 106 (2002) 1770–1783.