Proteomic Analysis of a Global Regulator GacS Sensor Kinase in the Rhizobacterium, *Pseudomonas chlororaphis* O6

Chul Hong Kim†, Yong Hwan Kim‡, Anne J. Anderson§ and Young Cheol Kim¶*

1Department of Floriculture, Chunnam Techno University, Jeonnam 516-911, Korea
2Korea Institute of Planning & Evaluation for Technology on Food, Agriculture, Forestry & Fisheries, Anyang 431-060, Korea
3Department of Biology, Utah State University, Logan, Utah 843220-5305, USA
4Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju 500-757, Korea

(Received on February 4, 2014; Revised on March 26, 2014; Accepted on March 27, 2014)

The GacS/GacA system in the root colonizer *Pseudomonas chlororaphis* O6 is a key regulator of many traits relevant to the biocontrol function of this bacterium. Proteomic analysis revealed 12 proteins were down-regulated in a *gacS* mutant of *P. chlororaphis* O6. These GacS-regulated proteins functioned in combating oxidative stress, cell signaling, biosynthesis of secondary metabolism, and secretion. The extent of regulation was shown by real-time RT-PCR to vary between the genes. Mutants of *P. chlororaphis* O6 were generated in two GacS-regulated genes, *trpE*, encoding a protein involved in tryptophan synthesis, and *prnA*, required for conversion of tryptophan to the antimicrobial compound, pyrrolitrin. Failure of the *trpE* mutant to induce systemic resistance in tobacco against a foliar pathogen causing soft rot, *Pectobacterium carotovorum* SCC1, correlated with reduced colonization of root surfaces implying an inadequate supply of tryptophan to support growth. Although colonization was not affected by mutation in the *prnA* gene, induction of systemic resistance was reduced, suggesting that pyrrolitrin was an activator of plant resistance as well as an antifungal agent. Study of mutants in the other GacS-regulated proteins will indicate further the features required for biocontrol activity in this rhizobacterium.

Keywords: induced systemic resistance, proteomic analysis, tryptophan metabolism

Certain rhizobacteria stimulate plant growth and responses to stress (Bloemberg and Lugtenberg, 2001). Some beneficial bacteria inhibit growth of phytopathogenic fungi by production of antifungal metabolites, and/or exoenzymes. The antifungal agents include hydrogen cyanide (HCN), siderophores, biosurfactants and antibiotics, and enzymes including proteases, lipases, chitinases, and glucanases (Dubis et al., 2007; Haas and Defago, 2005; Raaijmakers et al., 2002). The root colonizer *Pseudomonas chlororaphis* O6 produces several compounds with antifungal activity including a pyoverdine-like siderophore, phenazines, pyrrolnitrin and HCN (Kang et al., 2007; Lee et al., 2011; Park et al., 2011). Effective root colonization by *P. chlororaphis* O6 also protects plants from pathogens through induction of systemic resistance against various plant diseases as well as drought and salinity stress (Cho et al., 2008; 2012; Han et al., 2006).

The two component sensor kinase system involving GacS and GacA is conserved in plant-associated pseudomonads and regulates production of many of the biocontrol active components. The system involves activation of phosphorylation of GacS by an as yet unknown signal followed by phospho-transfer to the GacS regulator. Phosphorylated GacA activates changes expression from genes encoding small regulatory RNAs, such as RsmX, RsmY and RsmZ, which compete with translational repressors, RsmA and RsmB (Brencic et al., 2009). The GacS/GacA regulon is extensive, for example encompassing about 10% of the genes in *P. fluorescens* Pf-5 (Hassan et al., 2010). The genome of *P. chlororaphis* O6 (Loper et al., 2012) possesses genes potentially encoding GacS, GacA, and the proteins, RsmA and RsmB interacting with rRNAs. However, findings with *P. chlororaphis* O6 and other pseudomonads reveal that the GacS-regulated traits differ between strains. For example, a *gacS* mutant of *P. chlororaphis* O6

†These authors contributed equally to this study
*Corresponding author.
Phone) +82-62-530-2071, FAX) +82-62-530-2079
E-mail) yckimyc@jnu.ac.kr
has increased swimming and swarming motilities (Kim et al., 2014a), whereas lack of GacS in _P. fluorescens_ Pf-5 has no effect on swimming, and decreases swarming activity, due to mainly loss in production of a surfactant (Hassan et al., 2010).

This study employed a proteomic approach for better understanding the genes regulated by GacS in _P. chlororaphis_ O6, and we compared proteomes from the wild type and _gacS_ mutant strains. Proteins that were down regulated in the _gacS_ mutant were identified and their potential functions deduced. The role of two of these proteins, one involved in pyrrolnitrin production and the second in tryptophan biosynthesis, was explored using mutants in the GacS-regulated genes, _prnA_ and _trpE_. The abilities of the _prnA_ and _trpE_ mutants to colonize roots and induce systemic resistance were investigated.

Bacteria were stored at –70°C in 25% glycerol. The _gacS_ mutant and the _gacS_-complemented strain of _P. chlororaphis_ O6 were constructed previously (Kang et al., 2004) and grown at 28°C with shaking at 200 rpm in King’s medium B broth. A _prnA_ mutant of _P. chlororaphis_ O6 was constructed previously (Park et al., 2011). Cultures of _Escherichia coli_ DH5α were grown at 37°C on Luria-Bertani (LB) broth.

Extracts were prepared from the wild type, the _gacS_ mutant and the complemented mutant by sonication of cells grown to stationary phase in LB and harvested by centrifugation. Proteins were extracted by washing cells twice in ice-cold phosphate buffered saline before suspension in sample buffer containing 7 M urea, 2 M thiourea, 4% (w/v) 3-[3-cholamidopropyl dimethyammonio-1-propanesulfonate, 1% (w/v) dithiothreitol and 2% (v/v) pharmalyte and 1 mM benzamidine. After sonication for 10 seconds and incubation for one h at room temperature, the mixture was vortexed and centrifuged at 15,000 × g for one h at 15°C to obtain the soluble fraction used in gel analysis. Changes in protein profiles between the wild type, the _gacS_ mutant, and the complemented _gacS_ mutant were detected by two-dimensional gel electrophoresis using procedures described previously (Oh et al., 2013b). Protein spot intensities of wild type and _gacS_ mutant on 2-D PAGE analyses were assessed by Student’s _t_ test. Three independent two dimensional protein analyses were performed, and significantly up- or down-regulated protein spots in the _gacS_ mutant were selected and identified using Q-TOF analysis (Oh et al., 2013b).

Twelve protein spots were observed in the _gacS_ mutant at lesser intensities than in the gels from the wild type strain (Fig. 2A). Based on a cut-off value of two-fold change, peptide identification revealed they were a catalase/peroxidase with homology to KatG from _P. fluorescens_ Pf-01 (Table 1), a tryptophan halogenase (PrnA), catalyzing the first step in pyrrolnitrin synthesis, a single-strand DNA binding protein (Ssb), a serine protease (PspB), a recombination associated protein (RdgC), and a potential secretin (CpaC), involved in pilus synthesis, and an outer membrane protein (OprF) (Table 1). Proteins showing fold changes between two- and four- fold were: a protein

Fig. 1. Representative images of two-dimensional electrophoresis gels showing proteins from the wild type _Pseudomonas chlororaphis_ O6 (wild type) and the _gacS_ mutant (gacS-). Extracts were from cells grown to stationary phase in rich medium. The proteins were stained with silver. Locations of proteins that were present in extracts from the wild type but to a lesser extent in the extracts from the mutant are shown by arrows.
with a LysM domain associated with binding peptidoglycan (LysM), the anthranilate/para-aminobenzoate synthase component I (TrpE), involved in tryptophan synthesis from chorismate, glucose 1-phosphate thymidilate transferase (RmlA) required for rhamnose synthesis, a protein functioning in isoprenoid biosynthesis (ElbP), and glutathione peroxidase (Gpx) (Table 1).

The study was continued with a transcript analysis to determine the extents to which changes protein level in the \textit{gacS} mutant correlated with altered gene expression. RNA accumulation from the genes predicted to encode the GacS-regulated proteins was evaluated by endpoint RT-PCR. Cells grown in LB broth were harvested in stationary phase (OD\textsubscript{600 nm} = 2.4). Total RNA was isolated using the Trizol method following the user's manual (GIBCO BRL, Rockville, MD, USA). RT-PCR was performed using the QuantiTect SYBR Green reverse transcription-PCR kit (Qiagen Inc., Valencia, USA). A reaction mixture of 25 μl was incubated at 50°C for 30 min for reverse transcription, followed by RT-PCR with each primer set (Supplementary Table 1). A Rotor-Gene 2000 Real Time Cycler machine (Corbett Research Inc., Australia) was used for 35 cycles with denaturation at 94°C for 15 seconds, annealing at 55°C for 30 seconds, and extension at 72°C for 30 seconds. PCR reactions were stop after 20 cycles and PCR products were loaded on 2% agarose gel. The results provided are typical of three independent studies. Findings shown in Fig. 2 are from stationary phase cells and comparable loading between samples was demonstrated from the consistency of the PCR products for the 16S rRNA genes (Fig. 2).

Transcripts in the \textit{gacS} mutant compared to the wild type were most reduced for \textit{katG}, \textit{prnA}, \textit{rdgC}, \textit{cpaC} and \textit{trpE}. For other genes, expression was impaired (\textit{psbB}, \textit{ssb} and \textit{rmlA}) by the \textit{gacS} mutation. However, for \textit{gpx}, \textit{lysM}, and \textit{oprF} transcript levels were near wild type. These findings suggest that other mechanisms other than direct effects on transcription for control of protein levels may be operating.

We have prior evidence that genes, such as \textit{prnA} and \textit{trpE}, showing changes in transcript levels in the \textit{gacS} mutant, were part of the RpoS regulon in \textit{P. chlororaphis} O6 (Oh et al., 2013a; Park et al., 2011). These findings agree with control of pyrronitrin production by quorum sensing as shown in another \textit{P. chlororaphis} isolate PA23 (Selin et al., 2012) and specifically by mutation in \textit{gacA} in \textit{P. chlororaphis} isolate 30–84 (Wang et al., 2013). Indeed, extraction and assay showed pyrrolinitrin formation was eliminated in an \textit{rpoS} mutant (Park et al., 2011), as later confirmed for another isolate by Selin et al. (2012). We believe that the observations with the \textit{gacS} mutant occurred because \textit{rpoS} transcription and RpoS protein abundance are controlled by GacS (Kang et al. 2004: Oh et al., 2013a). Two other proteins also were regulated similarly, the catalase/peroxidase KatG and a potential glutathione peroxidase, Gpx. Both of these proteins have significant roles in cellular protection against oxidative stress. Identical changes in catalase/peroxidase and superoxide dismutase isozyme patterns were observed in \textit{rpoS} and \textit{gacS} mutants (Oh et al., 2013b). A recent report indicated that \textit{P. chlororaphis} 30-84 expression from \textit{rpoS} is under GacA control (Wang et al., 2013).

It is interesting that two of the other GacS-regulated proteins have roles in DNA repair: the single strand DNA binding protein Ssb could be associated with repair of DNA breaks caused by hydrogen peroxide (Ananthaswamy and Eisenstark, 1977) and the protein, RdgC, is proposed to act with RecA to aid in DNA repair when there is damage in replication forks or by double strand breaks (Briggs et
Proteomic Analysis of a Global Regulator GacS Sensor Kinase in the Rhizobacterium, *Pseudomonas chlororaphis* O6

Two proteins down-regulated in the absence of GacS, OprF and LysM, were associated with cell wall functions. OprF is a major outer membrane protein with multiple potential roles that includes the formation of outer membrane vesicles (Wessel et al., 2012). Studies with other pseudomonads also linked *oprF* expression with quorum sensing and Gac regulation. Crespo and Valverde (2009) observed mutations in the *oprF* gene sequence in *P. fluorescens* CHA0 that affected activity of the repressor proteins RsmA/E which are involved in GacA regulation. Additionally an *oprF* mutant in *P. aeruginosa* showed reduced production of the quorum-sensing signals, acyl homoserine lactones (Fito-Boncompte et al., 2011). The second GacS-regulated protein has a LysM domain associated with peptidoglycan binding (Bateman and Bycroft, 2000). It is possible that changes in the peptidoglycan binding proteins in the *gacS* mutant were

Spot number	Mr (kDa)	pl	Protein	Identified protein	Mr (kDa)	pl	Mean ± SE	Fold change
5727R	81	6.12	Catalase/peroxidase I, KatG (P. fluorescens Pf0-1 YP347933)	FLANPQDADAFAR(84) FAPLNNSPWDMVSLDK(51) DWPQNYLNLK(19)	83	5.30	>-100	0.001
8606R	62	7.64	Tryptophan halogenase, PrmA (P. chlororaphis ACM AAD46360)	IGVGEATIPSQK(76) TSLPTNYDLR(39) DQATADFNLWGLSDMQLNQIK(55)	61	5.80	>-100	0.001
4022R	21	5.77	Single-strand DNA-binding protein, Ssb (P. putida pWVO NP542825)	VAEIAGEYLR(28) VILVGTCQGDEVR(53)	21	6.13	>-100	0.002
1511R	50	4.99	Serine protease, PspB (P. brassicaceum AE286062)	VNLYDYGDLGSR SFSDVGLTPNQR	107	5.19	>-100	0.018
0313R	37	4.59	Recombination associated protein, RggC (P. fluorescens Pf5 AAY39657)	LTQDLPFDEAELET	34	4.93	>-100	0.029
3402R	40	5.30	Pilus assembly protein, CpaC (P. fluorescens Pf0-1 ABA723932)	LTLTPLTVGND	44	8.46	>-100	0.011
0025R	21	4.71	Outer membrane protein, OprF (P. chlororaphis AAD24553)	QVLTTSQYGVRESSR(59) VQSVGYESRVPQVANTEAGR(36) VAPAPAPVPEPTPEAPEAPVEVR(48) QYPTTTTVEGHTDSVPGDAYNQK(36)	34	5.59	-56.6 3.65	0.012
3015R	17	5.44	Peptidoglycan-binding LysM, LysM (P. fluorescens Pf0-1 ABA72026)	LLQPLPGANASEQLK(52)	15	5.25	-4.2 0.60	0.020
2608R	56	5.10	Anthranilate/para-aminobenzoate synthases component I, TrpE (P. fluorescens Pf0-1 YP350846)	LADQPNSSLSESVQGKEK(56) EYILAGDCMQVVPQSR(20)	55	5.02	-2.7 0.61	0.028
2210R	30	5.11	Glucose 1-phosphate thymidylate transferase, RmlA (P. putida CAC44166)	GFAWLDLTDGTHDSLLEASQYVQTIEHR(80)	28	4.83	-2.6 0.17	0.004
0107R	25	4.41	Isoprenoid biosynthesis protein, GATase1_ES1, ElbP (P. protegens Pf5 YP263046)	LTQDLPFDEAELET(57)	23	5.28	-2.6 0.17	0.011
3011R	21	5.38	Glutathione peroxidase, Gpx (P. fluorescens Pf5 YP258072)	LLAGEGAEFPGDIWNFEK(80)	18	5.35	-2.3 0.3	0.017

The Mr and pl values were estimated from 2-dimensional gels obtained in three independent experiments. Ions score is –10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 49 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits. Amino acid sequences without ion scores were determined by Q-TOF analysis.

The Mr and pl values were estimated from 2-dimensional gels obtained in three independent experiments. Ions score is –10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 49 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits. Amino acid sequences without ion scores were determined by Q-TOF analysis.

The mean and standard error (SE) of fold change of the selected spot was calculated by comparing spot intensities between wild type and gacS mutant of three independent gels using quantitative image analysis (PDQuest 2-D analysis Software).

Student’s t-test.

Table 1. Identification of the down-regulated proteins by GacS from *Pseudomonas chlororaphis* O6

Source: Table 1. Identification of the down-regulated proteins by GacS from *Pseudomonas chlororaphis* O6
involved in the elongated growth of these cells observed by atomic force microscopy for cells grown in a biofilm (Anderson et al., 2005) and SEM analysis (Kim et al., 2014b). Additional cell surface changes also are implicated due to the control by GacS in isolate *P. chlororaphis* O6 of the enzyme, RmlA, involved in generating rhamnose (Zuccotti et al., 2001), and a potential secretin, CpaC, involved in pilus formation (Bitter, 2003). We note changes in colony surface morphology and in biofilm formation for the *gacS* mutant compared to the wild type strain (Anderson et al., 2005; Kim et al., 2014b).

To characterize the role of the GacS-regulated genes, *trpE* and *prnA* mutants were constructed. A *trpE* mutant was made by homologous marker exchange mutagenesis. A PCR product from the *trpE* gene was generated using genomic DNA and two specific primers based on the genome sequence of *P. chlororaphis* O6 (Loper et al., 2012); forward (5′-ATG ATC CGC GAA GAA TTC CT-3′) and reverse (5′-TCA GTC CGG GGT TTG CTC GG-3′) in polymerase chain reactions (PCR). The PCR fragment (about 1.5 kb) was cloned into cloning vector pGEM-7Z. The *trpE* sequence in the pGEM-7Z plasmid was disrupted by the insertion of a 0.9 kb *KpnI* fragment containing the kanamycin resistance gene from the plasmid pRL648 (Elhai and Wolk, 1988). The chromosomal *trpE* gene in *P. chlororaphis* O6 was mutated using the exchange vector pCPP54 (Tc R) and pRK2073 helper plasmid strain as previously described (Miller et al., 1997). The mutants were selected on LB agar containing 5% sucrose based on their sensitivity to tetracycline and resistance to kanamycin. A *prnA* mutant of *P. chlororaphis* O6 was constructed previously (Park et al., 2011).

The effects of mutations in *prnA* and *trpE* mutants on the requirement for tryptophan for growth was studied (Fig. 3) using cells pre-grown on LB agar plates for 2 days at room temperature. The cells were washed several times by re-suspension in sterile distilled water, and the suspension adjusted to OD_{600nm} = 0.1 before being applied to M9 minimal medium agar plates with or without a supplement of 5 mM tryptophan (Sigma Co., MO, USA) to assess growth. As anticipated, the *trpE* mutation rendered the mutant unable to grow on minimal medium without the addition of 5 mM tryptophan (Fig. 3). The *prnA* mutant grew well on the minimal medium with or without the tryptophan (Fig. 3).

Induction of systemic resistance by colonization of roots with the mutants was measured in tobacco cv. Xanthi seedlings using a challenge of the soft rot bacterium, *Pectobacterium carotovorum* SCCI (Han et al., 2006). Briefly, sterilized seeds were placed on 1 ml of 0.5% (w/v) MS agar supplemented with 3% sucrose contained in the wells of a 12-well microtiter plate (SPL Inc., Korea). After growth for three weeks, the seedlings were inoculated with suspensions of cells of the wild type, the *gacS* mutant, the complemented *gacS* mutant, the *trpE* mutant and the *prnA* mutant. The cells for the inocula were grown to an OD_{600nm} = 2.0 in LB broth, pelleted by centrifugation and suspended in sterile 50 mM potassium phosphate buffer (pH 7.5) to an OD_{600nm} = 0.2. The inocula, 10 μl, of bacterial suspensions containing 1 × 10⁸ colony forming units (cfu)/ml, were applied to the seedling roots. Sterile 50 mM potassium phosphate buffer was applied to control plants. One week after bacterial treatments, tobacco plants were

Fig. 3. Auxotrophic phenotype of *Pseudomonas chlororaphis* O6 *trpE* mutant under minimal growth conditions. Each bacterial strain O6 (wild type), the *gacS* mutant (GacS-), the complemented *gacS* mutant (cGacS-), and the *trpE* mutant (TrpE-) was applied to Luria Bertani agar (LB), M9 minimal agar (M9), or M9 minimal agar with 5 mM tryptophan. The growth images were photographed two days after inoculation on the plates. The images are representative of three independent experiments.
Proteomic Analysis of a Global Regulator GacS Sensor Kinase in the Rhizobacterium, *Pseudomonas chlororaphis* O6

challenged with *P. carotovorum* subsp. *carotovora* SCCI by pipetting 2 μl of pathogen inoculum onto a leaf (1 × 10^8 cfu/ml) as described by Han et al. (2006). One to two days after pathogen challenge, the extent of soft-rot was rated visually and the disease severity assessed. The *trpE* and *prnA* mutants displayed less ability than the wild type or the complemented gacS mutant to protect the plants against the pathogen (Fig. 4). The extent of protection from the *prnA* and *trpE* mutants was low and similar to that displayed by the *gacS* mutant.

The efficacy of root colonization of the wild type, the *trpE* mutant and *prnA* mutant was compared on the tobacco cv. *Xanthi* seedlings using methods described previously with three week old seedlings raised in the well plates (Han et al., 2006). Roots were excised at defined times after inoculation, and the fresh weight was measured before transferred into 10 ml of sterile distilled water. After vigorous vortexing for 1 min, serial dilutions of these washings were plated onto LB-agar plates containing antibiotics appropriate to the strain. Colonies were scored after incubation at 28°C for two days. Studies were repeated two times with three plants/each treatment. Root colonization in terms of cfu/g fresh weight roots was calculated for each time point. Data were statistically analyzed by ANOVA with the IBM SPSS Statistics version 21 (IBM Corp., Somers, New York, USA). The lack of induced resistance for the *trpE* mutant correlated with loss of root colonization which declined with time over a 15-d trial (Fig. 5). In contrast both the wild type and the *prnA* mutant colonized the root surfaces with increases in cfu/root during the first 10 d of the 15 d assessment period (Fig. 5).

The failure of the *trpE* mutant to colonize the plant roots suggested that the supply of tryptophan in the tobacco root exudates was inadequate to maintain wild type level of growth at the root surface. The ability of the *prnA* mutant to colonize but not to induce systemic resistance suggested that pyrrolnitrin was active as an effector. This suggestion indicated that pyrrolnitrin had a dual role for the biocontrol-active pseudomonad, both as a direct anti-microbial compound as well as an effector of induced resistance (Park et al., 2011). A similar role was determined for the phenazines produced by this bacterial isolate (Kang et al., 2007). However, our findings of impaired colonization with the *trpE* mutant emphasized that the formation of pyrrolnitrin in the rhizosphere would be influenced by the supply of tryptophan in the plant root exudates.

In summary, the proteomics analysis of control by GacS confirmed its role as a key regulator of proteins with anti-
pated roles not only in the formation of antimicrobials but also in oxidative stress, cell signaling, secretion and cell surface properties. Production of KatG and Gpx, involved in protection against oxidative stress, overlapped between the rpoS mutant and the gacS mutant. The newly identified GacS-regulated proteins in this paper, Ssb, PspB, RdgC, LysM, RmlA, and ElbP, indicate further the diverse role of this regulatory system in a rhizosphere-competent pseudomonad with biocontrol potential.

Acknowledgments

This work was supported by a grant from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0011555).

References

Ananthaswamy, H. N. and Eisenstark, A. 1977. Repair of hydrogen peroxide-induced single-strand breaks in Escherichia coli deoxyribonucleic acid. J. Bacteriol. 130:187–191.

Anderson, A. J., Britt, D. W., Johnson, J., Narisimhan, G. and Rodriguez. 2005. Physicochemical parameters influencing the formation of biofilms compared in mutant and wild-type cells of Pseudomonas chlororaphis O6. Water Sci. Tech. 52:21–25.

Bateman, A. and Bycroft, M. 2000. The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylate D (MltD). J. Mol. Biol. 299:1113–1119.

Bitter, W. 2003. Secretins of Pseudomonas aeruginosa: large holes in the outer membrane. Arch. Microbiol. 179:307–314.

Bloomberg, G. V. and Lugtenberg, B. J. 2001. Multiple basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4:335–350.

Brencic, A., McFarland, K. A., McManus, H. R., Castang, S., Mogno, I., Dove, S. L. and Lory, S. 2009. The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol. Microbiol. 73:434–445.

Briggs, G. S., Yu, J., Mahdi, A. A. and Lloyd, R. G. 2010. The RdgC protein employs a novel mechanism involving a finger domain to bind to circular DNA. Nucleic Acids Res. 38:6433–6446.

Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J.-Y., Lee, Y.-H., Cho, B. H., Yang, K.-Y., Ryu, C.-M. and Kim, Y. C. 2008. 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21:1067–1075.

Cho, S. M., Kang, B. R., Kim, J. J. and Kim, Y. C. 2012. Induced systemic drought and salt tolerance by Pseudomonas chlororaphis O6 root colonization is mediated by ABA-independent stomatal closure. Plant Pathol. J. 28:202–206.

Crespo, M. C. A. and Valverde, C. 2009. A single mutation in the oprF mRNA leader confers strict translational control by the Gac/Rsm system in Pseudomonas fluorescens CHA0. Curr. Microbiol. 58:182–188.

Dubis, C., Keel, C. and Haas, D. 2007. Dialogues of root-colonizing biocontrol pseudomonads. Eur. J. Plant Pathol. 119:311–328.

Elhai, J. and Wolk, C. P. 1988. A versatile class of positive-selection vectors based on the nonviability of palindrom-containing plasmids that allows cloning into long polynucleotides. Gene 68:119–138.

Fito-Boncompte, L., Chapalain, A., Bouffartigues, E., Chaker, H., Lesouhaitier, O., Gicquel, G. Bazire, A., Madi, A., Connil, N., Veron, W., Taquin, L., Toussaint, B., Cornelis, P., Wei, Q., Shiroya, K., Deziel, E., Feuilloley, M. G. J., Orange, N., Dufour, A. and Chevalier, S. 2011. Full virulence of Pseudomonas aeruginosa requires OprF. Infect. Immun. 79:1176–1186.

Haas, D. and Defago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3:307–319.

Han, S. H., Anderson, A. J., Yang, K. Y., Cho, B. H., Kim, K. Y., Lee, M. C., Kim, Y. H. and Kim, Y. C. 2006. Multiple determinants influence root colonization and induction of induced systemic resistance by Pseudomonas chlororaphis O6. Mol. Plant Pathol. 7:463–472.

Hassan, K. A., Johnson, A., Shaffer, B. T., Ren, Q., Kida, T. A., Elbourne, L. D. H., Hartney, S., Duboy, R., Goebel, N. C., Zabriskie, T. M., Paulsen, I. T. and Loper, J. E. 2010. Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ. Microbiol. 12:899–915.

Kang, B. R., Cho, B. H., Anderson, A. J. and Kim, Y. C. 2004. The global regulator GacS of a biocontrol bacterium Pseudomonas chlororaphis O6 regulates transcription from the rpoS gene encoding a stationary-phase sigma factor and affects survival in oxidative stress. Gene 325:137–143.

Kang, B. R., Han, S. H., Zodor, R. E., Anderson, A. J., Spencer, M., Yang, K. Y., Kim, Y. H., Lee, M. C., Cho, B. H. and Kim, Y. C. 2007. Inhibition of seed germination and induction of systemic disease resistance by Pseudomonas chlororaphis O6 requires phenazine production regulated by the global regulator, GacS. J. Microbiol. Biotechnol. 17:586–593.

Kim, J. S., Kim, Y. H., Anderson, A. J. and Kim, Y. C. 2014a. The sensor kinase GacS negatively regulates flagellar formation and motility in a biocontrol bacterium, Pseudomonas chlororaphis O6. Plant Pathol. J. 30:215–219.

Kim, J. S., Kim, Y. H., Park, J. Y., Anderson, A. J. and Kim, Y. C. 2014b. The global regulator GacS regulates biofilm formation in Pseudomonas chlororaphis O6 differently with carbon source. Can. J. Microbiol. 60:133–138.

Lee, J. H., Ma, K. C., Ko, S. J., Kang, B. R., Kim, I. S. and Kim, Y. C. 2011. Nematicidal activity of nonpathogenic biocontrol
Proteomic Analysis of a Global Regulator GacS Sensor Kinase in the Rhizobacterium, *Pseudomonas chlororaphis* O6

bacterium, *Pseudomonas chlororaphis* O6. *Curr. Microbiol.* 62:746–751.

Loper, J. E., Hassan, K. A., Mavrodi, D. V., Davis, E. W. 2nd, Lim, C. K., Shaffer, B. T., Elbourne, L. D., Stockwell, V. O., Hartney, S. L., Breakwell, K., Henkels, M. D., Tetu, S. G., Rangel, L. I., Kidarsa, T. A., Wilson, N. L., van de Mortel, J. E., Song, C., Blumhagen, R., Radune, D., Hostetler, J. B., Brinkac, L. M., Durkin, A. S., Kluepfel, D. A., Wechter, W. P., Anderson, A. J., Kim, Y. C., Pierson, L. S. 3rd, Pierson, E. A., Lindow, S. E., Kobayashi, D. Y., Raaijmakers, J. M., Weller, D. M., Thomashow, L. S., Allen, A. E. and Paulsen, I. T. 2012. Comparative genomics of plant-associated *Pseudomonas* spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. *PLoS Genet.* 8:e1002784.

Miller, C. D., Kim, Y. C. and Anderson, A. J. 1997. Cloning and mutational analysis of the gene for the stationary-phase inducible catalase (*catC*) from *Pseudomonas putida*. *J. Bacteriol.* 179:5241–5245.

Oh, S. A., Kim, J. S., Han, S. H., Park, J. Y., Dimkpa, C., Edlund, C., Anderson, A. J. and Kim, Y. C. 2013a. The GacS-regulated sigma factor RpoS governs production of several factors involved in biocontrol activity of the rhizobium *Pseudomonas chlororaphis* O6. *Can. J. Microbiol.* 59:556–562.

Oh, S. A., Kim, J. S., Park, J. Y., Han, S. H., Dimkpa, C., Anderson, A. J. and Kim, Y. C. 2013b. The RpoS sigma factor negatively regulates production of IAA and siderophore in a biocontrol rhizobacterium, *Pseudomonas chlororaphis* O6. *Plant Pathol.* J. 29:323–329.

Park, J. Y., Oh, S. A., Anderson, A. J., Neiswender, J., Kim, J. C. and Kim, Y. C. 2011. Production of the antifungal compounds phenazine and pyrrolnitrin from *Pseudomonas chlororaphis* O6 is differentially regulated by glucose. *Lett. Appl. Microbiol.* 52:532–537.

Raaijmakers, J. M., Vlami, M. and de Souza, J. T. 2002. Antibiotic production by bacterial biocontrol agents. *Annot. Leuven. Int. J. G.* 81:537–547.

Selin, C., Fernando, W.G., and de Kievit, T. 2012. The PhzI/PhzR quorum-sensing system is required for pyrrolnitrin and phenazine production, and exhibits cross-regulation with RpoS in *Pseudomonas chlororaphis* PA23. *Microbiol.* 158: 896–907.

Wang, D., Lee, S.H., Seeve, C., Yu, J. M., Pierson, L. S. 3rd, and Pierson, E. A. 2013. Roles of the Gac-Rsm pathway in the regulation of phenazine biosynthesis in *Pseudomonas chlororaphis* 30–84. *MicrobiologyOpen* 2:505–524.

Wessel, A. K., Liew, J., Kwon, T., Marcotte, E. M. and Whiteley, M. 2013. Role of *Pseudomonas aeruginosa* peptidoglycan-associated outer membrane proteins in vesicle formation. *J. Bacteriol.* 195:213–219.

Zuccotti, S., Zanardi, D., Rosano, C., Sturla, L., Tonetti, M. and Bolognesi, M. 2001. Kinetic and crystallographic analyses support a sequential-ordered Bi Bi catalytic mechanism for *Escherichia coli* glucose-1-phosphate thymidylyltransferase. *J. Mol. Biol.* 313:831–843.