ROBUSTNESS OF PD-PI CONTROLLER USED WITH THIRD ORDER PROCESSES

Akram F. Singer¹, Galal A. Hassaan², Mohamed A. Elgamil³

Abstract- Robustness is one of the requisites used in controllers design. The objective of this research is to investigate the robustness of a PD-PI controller used to control a third-order process against uncertainty in the process parameters. A variation of ±20 % in process parameters is considered through simulation to study its effect on the system performance parameters using the tuned controller. The variation of the process integral gain produced a change of 0.7 % in the settling time, a change of 0.8 % in maximum percentage overshoot and a change of 0.4 % in undershoot. The variation in process time constant T₁ resulted in a change of 0.4 % in the settling time but it has no effect in both maximum percentage overshoot and undershoot. However, for all the changes in the process parameters the phase margin is from 58.1 to 73 (deg), and the gain margin is infinity (dB) at infinity (rad/s), which indicates the good robustness of the used PD-PI controller when used with third order process.

Keywords – Third order process; PD-PI controller; uncertainty in process parameters; controller robustness; control system performance

I. INTRODUCTION

During operation, processes are subject to uncertainty in their parameters. Therefore, it is important to investigate the effectiveness of the used controller in dealing with such uncertainty. Hu, Chang, Yeh and Kwatny (2000) used the H∞ approximate I/O linearization formulation and μ-synthesis to design a nonlinear controller for an aircraft longitudinal flight control problem and address tracking, regulation and robustness issues [1]. Gong and Yao (2001) generalized a neural network adaptive robust control design to synthesize performance oriented control laws for a class of nonlinear systems in semi-strict feedback forms through the incorporation of back stepping design techniques [2]. Lee and Na (2002) designed a robust controller for a nuclear power control system. They used the Kharitonov and edge theorem to determine the controller which was simpler than that obtained by the H∞ [3]. Arvanitis, Syrkos, Stellas and Sigrimis (2003) analyzed PDF controllers designed and tuned to control integrator plus dead time processes in terms of robustness. They performed the robustness analysis in terms of structured parametric uncertainty description [4]. Lhommeau, Hardouin, Cottenceau and Laulín (2004) discussed the existence and the computation of a robust controller set for uncertain systems described by parametric models with unknown parameters assumed to vary between known bounds [5]. Dechanupaprittha, Hongsombut, Watanabe, Mitani and Ngammroo (2005) introduced the design of robust superconducting magnetic energy storage controller in a multi machine power system by using hybrid tabu search and evolutionary programming. The objective function of the optimization problem considered the disturbance attenuation performance and robust stability index [6]. Chin, Lau, Low and Seet (2006) proposed a robust PID controller based on actuated dynamics and an un actuated dynamics shown to be global bounded by the Sordalen lemma giving the necessary sufficient condition to guarantee the global asymptotic stability of the URV system [7]. Vagja and Tzes (2007) introduced a robust PID controller coupled into a Feed forward compensator for set point regulation of an electrostatic micromechanical actuator. They tuned the PID

¹M.Sc. candidate, Department of Mechanical Design & Production, Faculty of Engineering Cairo University, Cairo, Egypt
²Emeritus Prof. Department of Mechanical Design & Production, Faculty of Engineering Cairo University, Cairo, Egypt
³Assistant Prof. Department of Mechanical Design & Production, Faculty of Engineering Cairo University, Cairo, Egypt
controller using the LMI-approach for robustness against the switching nature of the linearized system dynamics [8]. Fiorentini and Bolender (2008) described the design of a nonlinear robust/adaptive controller for an air-breathing hypersonic vehicle model. They adapted a nonlinear sequential loop-closure approach to design a dynamic state-feedback control for stable tracking of velocity and altitude reference trajectories [9]. Labibi, Marquez and Chen (2009) presented a scheme to design decentralized robust PI controllers for uncertain LTI multi-variable systems. They obtained sufficient conditions for closed-loop stability of multi-variable systems and robust performance of the overall system [10]. Matusu, Vanekova, Porkop and Bakosova (2010) presented a possible approach to design simple PI robust controllers and demonstrate their applicability during control of a laboratory model with uncertain parameters through PLC [11].

Kada and Ghazzawi (2011) described the structures and design of a robust PID controller for higher order systems. They introduced a design scheme combining deadbeat response, robust control and model reduction techniques to enhance the performance and robustness of the PID controller [12]. Surjan (2012) applied the genetic algorithm for the design of the structure specified optimal robust controllers. The parameters of the chosen controller were obtained by solving the nonlinear constrained optimization problem using IAE, ISE, ITAE and ITSE performance indices. He used constraints on the frequency domain performances with robust stability and disturbance rejection [13]. Jiao, Jin and Wang (2013) analyzed the robustness of a double PID controller for a missile system by changing the aerodynamic coefficients. They viewed the dynamic characteristics as a two-loop system and designed an adaptive PID control strategy for the pitch channel linear model of supersonic missile [14]. Hassaan (2014) stated that, With the Sallen-Key compensator, the control system is stable for the whole range of the process parameters variation (±20%) [15]. Hassaan (2014) investigates the robustness of PDF, PDFF, PIDF and PID plus first-order lag controllers when used to control second-order processes with bad dynamics. He showed that the PDF, PDFF and PIDF controllers are robust [16]. Hassaan (2014) investigated the robustness of I-PD, PD-PI and PI-PD, controllers used to control second-order processes against uncertainty in the process parameters. A variation of ±20% in process parameters is considered through simulation to study its effect on the system performance parameters using the tuned controllers. He concluded that Tuned I-PD, PD-PI and PI-PD controllers are robust [17]. Pradham, Ray, Sahu and Moharana (2014) proposed a control strategy to improve the power factor and voltage regulation at a distribution supply system for more robustness [18]. Hassaan (2014) studied the robustness of a feedback PD compensator used with both second-order and third-order processes. He showed that this compensator is completely robust for process parameters variation in the range ± 20% [19].

Hassaan (2015) investigated the robustness of feedback first-order lag-lead, feed-forward second-order lag-lead and feed-forward first-order lag-lead compensators used to control second-order processes against uncertainty in the process parameters. A variation of ±20% in process parameters is considered through simulation to study its effect on the system performance parameters using the tuned controllers. He stated that, tuned feedback first-order lag-lead, feed-forward second-order lag-lead and feed-forward first-order lag-lead compensators used to control a second order process are robust [20]. Emma D. Welson et al (2018), introduced that evaluation of closed-loop robustness has generally relied on empirical methods. They have proved that, expressions for the H∞ norm of two commonly used PI/P control implementations, the feedback and forward path forms, are used, for the first time, to quantify closed-loop robustness [21]. Bharat Verma and Prabin Kumar Padhy (2019), focused on online PID controller tuning with the guaranteed robustness of the controller. A new single variable tuning method is developed for the online robustness and performance adjustment. They implemented that, the proposed rules only depend upon the previously optimized PID parameters.[22].

Min Zheng, Tao Huang and Guangfeng Zhang (2019), proposed that robust tuning of controller parameter is considered an effective way to deal with continuously changing end-user specs and raw product properties. They showed that, the specifications such as settling time, overshoot and robustness have a direct meaning in terms of process output and remain most popular amongst process engineers. They implemented an intuitive tuning procedure for robustness which is based on linear system tools such as frequency response and band limited specifications thereof, loop shaping remains a mature and easy to use methodology [23]. Clara M. Ionesco et al (2020), showed that successful operation in a globalization context can only be ensured by robust tuning of controller parameter as an effective way to deal with continuously changing end-user specs and raw product properties. They presented that; Recently next to these popular loop shaping methods, new tools have emerged, i.e. fractional order controller tuning rules. The key feature of the latter group is an intrinsic robustness to variations in the gain, time delay and time constant values, hence ideally suited for loop shaping purpose. They sketched and discussed both methods in terms of their advantages and disadvantages [24]. Singer, Hassaan and ElHamil (2020) studied the robustness of a PI-PD controller used to control a third order process. They proved the good robustness of the PI-PD controller when used to control the prescribed process [25].
II. PROPOSED ALGORITHM

A. The Process

The process considered in this analysis is a third order process having the following forward transfer function in a unity feedback system as shown in Fig.1:

\[G_p(s) = \frac{K_{ip}\omega_n^2}{s^3 + 2\zeta\omega_n s^2 + \omega_n^2 s + K_{ip}} \]

(1)

where

- \(G_p(s) \) is the close loop transfer function of the third order process.
- \(K_{ip} \) integral gain (\(K_i \)) of the process (in this prescribed third order process \(K_i = 0.5 \))
- \(\omega_n \) natural frequency (\(\omega_n = 0.447 \) rad/s)
- \(\zeta \) damping ratio (\(\zeta = 1.34 \))

B. The PD-PI Controller

The controller used in this study is a proportional + derivative (PD) - proportional + integral (PI) controller. In this controller, the PD and PI parts of the controller are connected in series. The input to the PD part is the system error, while the input of the PI part is the output of the PD part [26]. The controller transfer function, \(G_c(s) \), is:

\[G_c(s) = (K_{pc1} + K_d) [K_{pc2} + (K_i/s)] \]

(2)

C. Control System Transfer Function

The closed loop transfer function of the control system incorporating the PD-PI controller and the third order process, \(M(s) \), is obtained from the block diagram of Fig.3 and Eqs.2 and 3.

\[M(s) = \frac{b_2 s^2 + b_3 s + b_4}{a_0 s^4 + a_1 s^3 + a_2 s^2 + a_3 s + a_4} \]

(3)

Where

\[
\begin{align*}
b_2 &= (K_{pc2}K_dK_{ip}\omega_n^2), \\
b_3 &= (K_{pc1}K_{pc2}K_{ip}\omega_n^2 + K_cK_dK_{ip}\omega_n^2), \\
b_4 &= (K_{pc1}K_{ip}\omega_n^2), \\
K_i &= \text{Integral gain of the PI controller}
\end{align*}
\]

\[
\begin{align*}
a_0 &= 1, \\
a_1 &= (2\zeta \omega_n), \\
a_2 &= (K_{pc2}K_dK_{ip}\omega_n^2 + \omega_n^2), \\
a_3 &= (K_{pc1}K_cK_{ip}\omega_n^2 + K_{ip}\omega_n^2), \\
a_4 &= (K_{pc1}K_{ip}\omega_n^2).
\end{align*}
\]
Robustness of PD-PI Controller Used With Third Order Processes

- K_d: Derivative gain of the PD controller
- K_{pc1}: Proportional gain of the PD controller
- K_{pc2}: Proportional gain of the PI controller

The controller has four parameters to be identified to control the third order process and produce the desired performance: K_{pc1}, K_d, K_{pc2}, and K_i.

D. Controller Tuning

The PD-PI controller was tuned by the authors to control this third order process [27]. The controller parameters are tuned as follows:

$$K_{pc1} = 0.0713, K_{pc2} = 8.1791, K_i = 0.01, K_d = 0.3026$$

E. Process Uncertainty

Due to the variation in the operation conditions during operation, the process is submitted to parametric changes. It is supposed that this change be as large as ±20% of the assigned process parameters.

III. Controller Robustness

The control system considered robust if it has acceptable changes in its performance due to model changes or inaccuracy [28]. Furthermore, Lee and Na add the stability requirement to the robustness definition besides the plants having uncertainty [3]. Toscano added that the controller has to be able to stabilize the control system for all the operating conditions [29]. In this research, the robustness of the controller and hence of the whole control system is assessed as follows:

- Nominal process parameters are identified.
- The controller is tuned for those process parameters.
- A variation of the process parameters is assumed within a range of ±20% of the nominal value.
- Using the same controller parameters, the step response of the system using the new process parameters is drawn and the control system performance is evaluated through the maximum percentage overshoot, maximum percentage undershoot and settling time.
- The variation in process parameters is increased and the procedure is repeated.

The effect of the variation of process parameters on the settling time, maximum percentage overshoot, maximum percentage undershoot, gain margin and phase margin of the closed loop control system using the tuned PI-PD controller parameters are shown in Figs.3, 4, 5 and 6.

Figure 3 Effect of process parameters change on system settling time
According to Ogata [30], for a control system with good performance:
- Gain margin: has to be > 6 dB.
- Phase margin: has to be in the range: 30 <= PM <= 60 degrees.

According to Lei and Man [31], the phase margin range can be widened to be: 30 <= PM <= 90

The open loop transfer function of the closed loop control system incorporating the PD-PI controller and the third order process, using the block diagram of Fig. 2, is:

$$G(s)H(s) = \frac{(k_{ip}k_{d}k_{pc2})s^2 + (k_{pc1}k_{pc2}k_{ip} + k_{ip}k_{pc1}s + k_{pc1}k_{ip})s + k_{pc1}k_{ip}}{(T_1T_2)s^4 + (T_1 + T_2)s^3 + s^2 + k_{ip}s}$$ \hspace{1cm} (4)

Where

$$K_{pc1} = 0.0731, \ K_d = 0.3026, \ K_{pc2} = 8.1791, \ K_i = 0.01, \ K_{ip} = 0.5, \ T_1 = 1 \ s, \ T_2 = 5 \ s.$$

Using the open loop transfer function of Eq.4 and the command 'margin' of the MATLAB program, the Phase Margin of the control system against the variations in the process parameters are shown in Fig. 6. The gain margin of the control system is infinity and it is unchangeable during the robustness study.
IV. CONCLUSION

- Variation in third order process parameters within ± 20% was considered.
- Tuned PD-PI controller is robust since it controlled the third order process for set-point change maintaining good performance and stable control system for the range of parameters change.
- A variation of ± 20% in process integral gain K_{ip}, time constant T_1 and Time constant T_2; has no effect in the maximum percentage overshoot.
- A variation of ± 20% in process integral gain K_{ip} resulted in a change of (-1.23%) to (1.23%) in the maximum percentage undershoot, and (10.34%) to (2.6%) in the settling time of the control system.
- A variation of ± 20% in Time constant T_1 resulted in a change of (0.41%) to (-1.23%) in the maximum percentage undershoot, and (5.5%) to (6.47%) in the settling time of the control system.
- A variation of ± 20% in Time constant T_2 resulted in a change of (1.44%) to (2.46%) in the maximum percentage undershoot, and (31.36%) to (11.72%) in the settling time of the control system.
- The gain margin is infinity for all the process change parameters.
- The phase margin is in the range of the control system good performance according to Lei and Man [31].

REFERENCES

[1] S. Hu, B. Chang, H. Yeh and H. Kwany, "Robust nonlinear controller design for a longitudinal flight control problem", Asian J. of Control, Vol.2, No.2, pp.111-121, June 2000.
[2] J. Gong and B. Yao, "Neural network adaptive robust control of nonlinear systems in semi-strict feedback form", Automatica, Vol.37, pp.1149-1160, 200.
[3] Y. Lee and M. Na, "Robust controller design of nuclear power reactor by parametric method", J. of the Korean Nuclear Society, Vol.34, Issue 5, pp.436-444, October 2002.
[4] K. Arvanitis, G. Dyrkos, I. Stellas and N. Sigrimis, "Controller tuning for integrating processes with time delay – Part II: Robustness analysis under structured parametric uncertainty", 11th IEEE Mediterranean Conference on Control and Automation, Rodos, Greece, Paper T07-41, 28-30, June 2003.
[5] M. Lhommeau, L. Hardouin, B. Cottenceau and L. Laulin, "Interval analysis and dioid: application to robust controller design for timed event graphs", Automatica, Vol.40, pp.1923-1930, 2004.
[6] S. Dechanupaprittha, K. Hongesombut, M. Watanabe, Y. Mitani and I. Ngamroo, "Design of robust SMES controller in a multimachine power system by using hybrid TS/EP", 15th PSCC, Liege, 22-26, Session 28, Paper 3, August 2005.
[7] C. Chin, M. Lau, E. Low and G. Seet, "A robust controller design method and stability analysis of an underactuated underwater vehicle", International Journal of Applied Mathematics and Computer Science, Vol.16, Issue 3, pp.345-356, 2006.
[8] M. Vagja and A. Tzes, "Robust PID control design for an electrostatic micromechanical actuator with structured uncertainty", Proceedings of the 15th Mediterranean Conference on Control and Automation, Athens, Greece, July 27-29, 2007.
[9] L. Fiorentini and M. Bolender, "Robust nonlinear sequential loop closure control design for an air-breathing hypersonic vehicle model", American Control Conference, Western Seattle Hotel, Seattle, Washington, USA, pp.3458-3463 June 11–13, 2008.
[10] B. Labibi, H. Marquez and T. Chen, "Decentralized robust PI controller design for an industrial boiler", Journal of Process Control, Vol.19, pp.216-230, 2009.
[11] R. Matusu, K. Vanekova, R. Prolop and M. Bakosova, "Design of robust PI controllers and the application to nonlinear electronic systems", Journal of Electrical Engineering, Vol.61, Issue 1, pp.44-51, 2010.
[12] B. Kada and Y. Ghazzawi, "Robust PID controller design for an UAV flight control system", Proceedings of the World Congress on Engineering and Computer Science, San Francisco, USA, Vol. II, October 2011.

[13] R. Surjan, "Design of fixed structure optimal robust controller using genetic algorithm and particle swarm optimization", International Journal of Engineering and Advanced Technology, Vol.2, Issue 1, pp.187-190, October 2012.

[14] G. Jiao, Y. Jin and S. Wang, "Research on the robustness of an adaptive PID control of a kind of supersonic missile", Journal of Applied Sciences, Engineering and Technology, Vol.5, Issue 1, pp.37-41, 2013.

[15] G. A. Hassaan, "Robustness of feedforward notch and Sallen-Key compensators used with second-order process", International Journal of Applied Sciences, Vol. 2, Issue 3, pp. 999-1007, September 2014.

[16] G. A. Hassaan, "Robustness of PDF, PDFF, PIDF and PID + First-order controllers used with second-order processes", International Journal of Research and Innovative Technology, Vol. 3, Issue 4, pp. 56-61, October 2014.

[17] G. A. Hassaan, "Robustness of I-PD, PD-PI and PI-PD controllers Used With Second-Order Processes", International Journal of Scientific & Technology Research, Vol. 3, Issue 10, pp. 27-31, October 2014.

[18] P. Pradhan, P. Ray, R. Sahu and J. Moharana, "Performance of FACTS controller for power quality improvement in distribution supply system", International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Vol.3, Issue 6, pp.10019-10029, 2014.

[19] G. A. Hassaan, "Robustness of the feedback PD compensator used with second-order and third-order processes", International Journal of Advanced Research in Computer Science and Technology, Vol. 2, Issue 4, October - December 2014.

[20] G. A. Hassaan, "Robustness of feedback first-order, lag-lead feedforward second-order lag-lead and feedforward first-order lag-lead compensators used with second-order processes", International Journal of Advances in Engineering & Technology, Vol.7, Issue 6, January 2015.

[21] E. D. Welson, Quentin Clairon, Robin Hiderson and C. James Taylor, "Robustness evaluation and robust design for proportional-integral-plus control", International Journal of Control, Vol.92, Issue 12, Pages 2939-2951, 2019.

[22] Bharat Verma and Prabin Kumar Padhy, "Robust Fine tuning of optimal PID controller with guaranteed robustness", IEEE Transactions on Industrial Electronics, Vol.67, Issue 6, pp 4911-4920, July 2019.

[23] Min Zheng, Tao Huang and Guangfeng Zhang, "A new design method for PI-PD control of unstable fractional-order-system with time delay", Hindaway, Complexity, Vol. 2019, pp.1-12, 2019.

[24] Clara M. Ionesco, Eva H. Dulf, Maria Ghita and Cristina I. Muresan, "Robust controller design: Recent emerging concepts for control of mechatronic systems", ScienceDirect, Volume 357, Issue 12, pp. 7818-7844, August 2020.

[25] A. F. Singer, G.A.Hassan and M.A.Elgamil, "Robustness of PI-PD controller used with third order process", International Journal of Engineering and Techniques (IJET), Vol. 6, Issue 4, pp. 1-6, August 2020.

[26] T. Jain and M. Nagar, "Optimization of PD-PI controller using swarm intelligence", Journal of Theoretical and Applied Information Technology, Vol.14, Issue 11, pp.1013-1018, 2008.

[27] A. F. Singer, G.A.Hassan and M.A.Elgamil, "Tuning of a PD-PI controller used with a third order process", International Journal of Application or Innovation in Engineering & Management (IJAEM), Vol. 9, Issue 8, pp. 6-12, August 2020.

[28] F. G. Martins, "Tuning PID controllers using ITAE criterion." International Journal of Engineering Education, Vol. 21, Issue 5, pp. 867-873, 2005.

[29] R. Toscano, “A simple robust PI/PID controller design via numerical optimization approach”, Journal of Process Control, Vol.15, Issue 1, pp.21-88, 2005.

[30] K. Ogata, "Modern Control Engineering", Prentice Hall, 1970.

[31] W. Lei and T. Man, “Advanced approach for optimizing dynamic response for buck converter”, Semiconductor Components Industries, January 2011.