Further Results on Pinnacle Sets

Quinn Minnich
Department of Mathematics, Michigan State University,
East Lansing, MI 48824-1027, USA, minnichq@msu.edu

November 17, 2021

Key Words: admissible orderings, cyclic permutations, Motzkin walks, permutation, pinnacle set, Stirling numbers of the second kind

AMS subject classification (2010): 05A05 (Primary) 05A10, 05A18, 05A19 (Secondary)

Abstract

The study of pinnacle sets has been a recent area of interest in combinatorics. Given a permutation, its pinnacle set is the set of all values larger than the values on either side of it. Largely inspired by conjectures posed by Davis, Nelson, Petersen, and Tenner and also results proven recently by Fang, this paper aims to add to our understanding of pinnacle sets. In particular, we give a simpler and more combinatorial proof of a weighted sum formula previously proven by Fang. Additionally, we give a recursion for counting the admissible orderings of the elements of a potential pinnacle set. Finally, we give another way of viewing pinnacle sets that sheds light on their structure and also yields a recursion for counting the number of permutations with that pinnacle set.

1 Introduction

Given a permutation π on some subset of the elements in $[n]$, we define its pinnacle set to be

$$\text{Pin} \pi = \{ \pi_i \mid \pi_{i-1} < \pi_i > \pi_{i+1} \}. \quad (1)$$

In other words, the pinnacle set of π is the set of all elements of π that are between two values smaller than itself. This is similar to the peak set of π, except that the peak set keeps track of the indices of such values rather than the values themselves. Let S_n be the symmetric group on n elements. Then given a set $P \subseteq [n]$, we say that P is an admissible pinnacle set or pinnacle set for short if there exists some $\pi \in S_n$ such that $\text{Pin} \pi = P$.

Some of the initial work related pinnacle sets (although under a different name) was done by Strehl in [16] where he studied permutations in which pinacles and non-pinacles alternated. The concept was rediscovered independently by Davis, Nelson, Petersen, and Tenner in [4] where they proved several initial results, including that the number of admissible pinnacle sets $P \subseteq [n]$ is counted by a central binomial coefficient. Not long afterwards, Domagalski et al. gave a formula in [7] for the number of permutations in S_n having a given pinnacle set P using the principle of inclusion and exclusion. Around the same time, Diaz-Lopez et al. gave a different formula for the same number by keeping track of vale sets, which are those elements of a permutation π smaller than those on either side. Both of these formulas however ran in time exponential in the number of elements of P.

1
Shortly afterwards, Falque et al. published some results in [9] which included a recursive formula for the number of permutations having a fixed pinnacle set that ran in time \(nk^2\) where \(k\) was the number of elements in \(P\) and \(n\) was the length of the permutations being counted. Finally, Fang proved a result in [10] which computed the number in \(O(k^2 \log n + k^4)\) time.

In addition to results that pertained to the number of permutations with a given pinnacle set, Rusu in [14] studied transforming a permutation with a given pinnacle set into another permutation with the same pinnacle set such that the pinnacle set was preserved in all intermediate steps if the transformation. Additional work was also done by Rusu and Tenner in [15] characterizing the orderings in which the elements of some pinnacle set \(P\) could appear within a permutation with pinnacle set \(P\).

A cyclic permutation for some \(\pi = \pi_1\pi_2 \cdots \pi_n\), denoted \([\pi]\), is the set of all rotations
\[
[\pi] = \{\pi_1\pi_2 \cdots \pi_n, \pi_n\pi_1 \cdots \pi_{n-1}, \ldots, \pi_2 \cdots \pi_n\pi_1\}.
\]

Alternately, one may think of the cyclic permutation \([\pi]\) as being the linear permutation \(\pi\) where the last elements is considered to be adjacent to the first. The pinnacle set of a cyclic permutation \([\pi]\), denoted \(c\text{Pin}[\pi]\), is then defined to be as in equation (1) with the subscripts taken modulo \(n\). Let \([S_n]\) be the set of all cyclic permutations on \(n\) elements. The pinnacle sets of linear and cyclic permutations are related in the following way. Given some linear permutation \(\pi \in S_n\) with pinnacle set \(P\), we may add the element \(n+1\) to the end of \(\pi\) and wrap it around into a circle to get \([\pi']\), which must then have pinnacle set \(P' = P \cup \{n+1\}\). Therefore, when deriving results about pinnacle sets of linear permutations, we may often switch to the cyclic version of the problem, which can eliminate boundary cases.

Cyclic permutations have been the focus of a lot of recent study. Pattern avoidance in the case of cyclic permutations was examined by Vella in [17] and also independently by Callan in [2]. Further results involving patterns in cyclic permutations were given by Gray, Lanning, and Wang in [11] [12]; by Czabarka and Wang in [3] who proved a cyclic version of the Erdős-Szekeres Theorem; and also by Domagalski et al. in [6]. Elizalde and Sagan then expanded on the results of Domagalski et al. in [8] where they proved some of the remaining conjectures. In [1], Adin et al. studied cyclic quasi-symmetric functions which also related to cyclic shuffling of permutations. Finally, Domagalski et al. used circular permutations in [7] to prove some results about pinnacle sets, including the formula mentioned above.

It was first proven by Davis, Nelson, Petersen, and Tenner in [4] that \(P\) is a pinnacle set of a linear permeation if and only if, for every \(p \in P\), the number of pinnacle elements in \(P\) less than or equal to \(p\) is exceeded by the number of elements not in \(P\) that are less than \(p\). But while it is easy to determine if a given set \(P\) is a pinnacle set, many other aspects about pinnacle sets seem difficult to analyze. One question that has received a good deal of interest has been counting the number of permutation \(\pi \in S_n\) that have a given pinnacle set \(P \subseteq S_n\). To this end, we define
\[
\mathcal{P}_n(P) = \{\pi \in S_n \mid \text{Pin}(\pi) = P\}
\]
to be the set of permutations with a pinnacle set \(P\). Then if for some set \(S\) we let \(|S|\) denote the carnality of \(S\), we have that \(|\mathcal{P}_n(P)|\) is the number of permutations with pinnacle set \(P\). In the event that \(P\) is not a pinnacle set, we will simply have \(\mathcal{P}_n(P) = \emptyset\) and throughout this paper, we assume that \(P\) is an arbitrary subset of \([n]\) and do not require it to necessarily be an admissible pinnacle set. Multiple formulas and recursions for \(|\mathcal{P}_n(P)|\) have been proven, including some in [4] [7] [5] [9] [10].

In [10], Fang proved a formula for the weighted sum of the \(|\mathcal{P}_n(Q)|\) over all \(Q \subseteq P\), but the proof was highly computational and involved Lagrange interpolation. Additionally, his formula needed
to assume that \(P \) was an admissible pinnacle set. In section 1 of this paper, we present a simpler, more combinatorial proof of his formula that also works for any \(P \subseteq [n] \) by forming a bijection between elements of the sum and a weighted version of Motzkin walks.

Given an arbitrary set \(P \subseteq [n] \), we can also study the ordering of the elements of \(P \) within any \(\pi \) having \(\text{Pin}(\pi) = P \). In some cases, only some orderings of \(P \) will appear in any of the \(\pi \in p_n(P) \), and we call all such orderings the \textit{admissible orderings} of \(P \). In [4] the question was raised as to whether there was a way to count the number of admissible orderings of a given \(P \), but to our knowledge, no general formulas have been given. In section 2, we present a recursion that can find the number of admissible orderings of any set \(P \subseteq [n] \) with a run time that depends only on \(|P| \) and not \(n \).

Finally, in section 4 we give an alternate representation of pinnacle sets in the form of blocks consisting of 1’s and 0’s inspired by a suggestion in [9] which sheds some light on the internal structure of pinnacle sets. We then use this representation to prove a recursion that can find \(|p_n(P)| \) in run time equal to the algorithm presented in [10], which is currently the fastest known algorithm, and that can be further used to prove a version of a formula conjectured in [9].

2 A formula for the weighted sum of \(|p_n(P)| \)

Define a \textit{Dyck path} with \(k \) steps to be a path starting at \((0,0)\), ending at \((k,0)\), that uses only down steps \([1,-1]\) and up steps \([1,1]\), and that never drops below the \(x \)-axis. A \textit{Dyck walk} of length \(k \) is a generalised version of a Dyck path where we allow the path to end at any point \((k,y)\) for \(y \geq 0 \). We then define a \textit{modified Dyck walk} to be a Dyck walk where the last step may possibly drop below the \(x \)-axis in other words, a modified Dyck walk is a walk starting at \((0,0)\) consisting of only up steps and down steps that may end at any height \(h \geq -1 \), and that does not drop below the \(x \)-axis except possibly at the final step. Define \(R_k \) be the set of \(y \)-coordinate sequences of modified Dyck walks of length \(k \). A walk \(r \in R_k \) takes the form \((r_0,r_1,…,r_k)\) where \(r_i \) is the height of the end of the \(i \)-th step and \(r_0 = 0 \). From this, we have that \(r_i \geq 0 \) for all \(0 \leq i < k \), \(r_k \geq -1 \), and \(r_i = r_{i-1} \pm 1 \) for all \(1 \leq i \leq k \).

We will give a generalization of Theorem 1.2 found in [10] with a simpler, combinatorial proof.

Theorem 2.1. For \(n \geq 1 \) and \(P = \{p_1 > p_2 > \cdots > p_k\} \subseteq [n] \), we take the convention that \(p_0 = n + 1 \) and \(p_{k+1} = 1 \). Then we have the following.

\[
\sum_{Q \subseteq P} 2^{\text{Vol}(Q)} |p_n(Q)| = 2^{n-k} \sum_{r \in R_k} \prod_{i=0}^{k} (r_i + 1)^{p_i - p_{i+1}}.
\]

This will be proven later, but first we need to set up some combinatorial objects.

Define the set of \textit{decorated Motzkin walks}, \(M_n(P) \), to be the set of all lattice walks with \(n \) steps, starting at \((0,0)\), consisting of steps \([1,-1],[1,0]\), and \([1,1]\), such that every step starts weakly

Figure 1: An example of a walk in \(M_9(P) \) for \(p = \{9,7,5,3\} \)
above the x-axis, and where the steps are numbered $1, 2, \ldots, n$ from right to left. Note that this will allow walks that can go below the x-axis only on their final step. The generating function for those paths of $M_n(P)$ whose last step does not go below the x-axis, along with the generating function for much more general Motzkin walks, has been studied by Alexios in [13] although for our purposes here we will not need the generating function.

Furthermore, we require that in each walk of $M_n(P)$ the step numbered k be either the up step $[1, 1]$ or the down step $[1, -1]$ if $k \in P$, and the horizontal step $[1, 0]$ if $k \notin P$. Finally, we give every step of the walk two labels. The first is an integer in $[h + 1]$ where h is the height of the starting point of the step. The second label is either a right or left designation subject to the condition that down steps are always labeled as left and up steps always labeled as right. An example of an element in $M_n(P)$ is given in Figure 1 where the number of each step is at the bottom of the figure and the label of each step is directly above the step. Note that for simplicity, we have combined both labels by giving l and r subscripts to the height labels. For instance, the label given to the third step in Figure 1 is 2, meaning it has a height label of 2 and a left designation.

The count for the number of walks in $M_n(P)$ is given by the following result.

Theorem 2.2. Suppose $n \geq 1$ and $P \subseteq [n]$. Then the formula

$$|M_n(P)| = 2^{n-k} \sum_{r \in R_k} \prod_{i=0}^{k} (r_i + 1)^{p_i - p_{i+1}}$$

gives the count for the number of distinct decorated Motzkin walks.

Proof. If we consider any walk in $M_n(P)$ we note that by removing all horizontal steps we reduce the walk to one in R_k. We may also reverse this process by starting with a walk $r \in R_k$ and adding horizontal steps as specified by P. Therefore, to find $|M_n(P)|$ we need only sum over all sequences $r \in R_k$ and for each resulting walk, determine how many different labelings are possible.

Consider all walks in $M_n(P)$ corresponding to a fixed $r \in R_k$. Note that the height of the step corresponding to p_{i+1} and the heights of the steps between p_i and p_{i+1} will have starting point at height r_i since the height can only change on a step corresponding to an element in P. Therefore there are $r_i + 1$ choices for each of the labels of these $p_i - p_{i+1}$ steps. Additionally, since only horizontal steps have a choice for subscripts, we must multiply by a factor of 2 for each element not in P. Therefore, the total count is:

$$|M_n(P)| = 2^{n-k} \sum_{r \in R_k} \prod_{i=0}^{k} (r_i + 1)^{p_i - p_{i+1}}$$

This completes the proof. \square

Given a $\pi \in S_n$ and arbitrary $P \subseteq [n]$, let $[\pi']$ be the cyclic permutation obtained by adding the element $n + 1$ to the end of π and wrapping it around into a circle, and let $P' = P \cup \{n + 1\}$. We then have that the cyclic permutations with cP in $[\pi'] = P'$ are in bijection to those in $p_n(P)$, since this operation is invertible, and preserves all pinnacles except $n + 1$. Define an intermediate set to be the set of all elements between (but not including) two consecutive elements of P' in $[\pi']$. Intermediate sets may be empty. Given π a cyclic vale is any vale of $[\pi']$. Because $n + 1$ will always be a pinnacle, all cyclic vales will be in $[n]$ and will alternate with the pinacles, which means there will be exactly $k + 1$ of them in $[\pi']$ where k is the number of pinacles of π.

In order to prove Theorem 2.1, we will interpret the sum

$$\sum_{Q \subseteq P} 2^{|Q|+1} |p_n(Q)|$$
to be counting the number of cyclic permutations such that $[\pi'] \in [S_{n+1}]$, cPin$[\pi'] = Q' = Q \cup \{n + 1\} \subseteq P'$, and where every element is marked as either left or right subject to certain restrictions. If we note that every element of a cyclic permutation is either a pinnacle, a vale, or in the middle of an increasing or decreasing sequence of three elements, we may impose the following labeling.

1. Any element that is a cyclic vale may be marked as either right or left.
2. Any element of P that is not a cyclic vale is always marked as right.
3. Any element not in P that is in the middle of a decreasing sequence of 3 elements is always marked as right.
4. Any element not in P that is in the middle of an increasing sequence of 3 elements is always marked as left.

Let us call the set of all such permutations $V_n(P)$. Note that by this convention, all markings are forced except those at the cyclic vales, which are all free, and therefore the carnality of $V_n(P)$ is

$$\sum_{Q \subseteq P} 2^{|Q|+1}|p_n(Q)|$$

since the number of cyclic vales is $|Q| + 1$ and since the number of cyclic permutations with cPin$[\pi'] = Q'$ is $|p_n(Q)|$.

Next, we define a map f from $M_n(P)$ to $V_n(P)$. To do this, we read the steps of some $m \in M_n(P)$ one at a time and use it to build up a cyclic permutation. The process is described as follows.

1. Start with the cyclic permutation consisting of only $p_0 = n + 1$. In all future steps, an intermediate set will be said to be available if neither of the elements in P' that bound it have a left label. To this end, p_0 is assumed to have a right label.
2. Take the current leftmost step of walk m and insert its step number, i, into the cyclic permutation in the following manner. Let the label of the step be h_x. Counting clockwise from p_0, insert i into the hth available intermediate set and give it the left/right label corresponding to the subscript x. If the intermediate set was empty, there is only one way to insert i_x. If the intermediate set is non-empty, look at the current smallest element of that set, v, and place i adjacent to v on the side corresponding to v’s label. Note that if k was in P', the available intermediate sets for future steps will be renumbered. Finally, delete the step numbered i from the walk.
3. Repeat until all elements have been placed and the walk is empty.

As an example of this algorithm, suppose that $P = \{9, 7, 5, 3\}$ and consider the walk in Figure 1. To compute the output of the map in $V_9(P)$ we successively generate the following permutations as we read the steps of P from left to right, inserting the next element as indicated by the number and label of the step in the walk. Elements in P are in bold to make it easier to see the intermediate sets. Commentary is provided for the first few insertions to aid the reader.
The last line is the final output.

We will now prove some properties about this map so that we may show it is well-defined.

Lemma 2.3. In the final result, all elements in P' that are not cyclic vales are guaranteed to have right labels.

Proof. This follows because when an element of P' with a left label is initially inserted, it will become a cyclic vale. Indeed, it is a cyclic vale upon insertion since it is the smallest element inserted so far. And in all future steps no elements are ever inserted next to it on account of the intermediate sets on either side being unavailable. So it will remain a cyclic vale until the end. □

Lemma 2.4. The output of f will always have pinnacles a subset of P'

Proof. Consider some element $i \notin P'$. Since all elements become vales when initially placed, it is enough to show that i remains next to one of its larger adjacent elements through the end of the algorithm. But this is immediate because if i is labeled as left, then no future element will ever be inserted directly to the right of i, and similarly for a right label. Since no element is ever removed, we have that i will remain next to a larger element and therefore fail to be a pinnacle. □

Lemma 2.5. In the final result, all elements $i \notin P'$ that are also not vales will be in the middle of a decreasing sequence of three elements if i has a right label, and in the middle of an increasing sequence of three elements if i has a left label.

Proof. First, since i cannot be a vale by assumption and since it cannot be a pinnacle by Lemma 2.4, the only remaining possibilities are that it is in the middle of a decreasing or increasing sequence. If such an element i has a left label, then the algorithm forces all future elements placed adjacent to i to be to its left. Therefore, i will always remain adjacent to the value initially on its right, which
Lemma 2.6. At any step of the algorithm, if \(p_i \) was the last element of \(P' \) to be placed, then there will be \(r_i + 1 \) available intermediate sets for the next step.

Proof. Suppose that element \(i \) was just placed in \([\pi]\). If \(i \in P' \) and corresponded to an up step, then \(i \) will have a right label and the net effect on the permutation will be to replace the intermediate set it landed in with two new ones on either side, resulting in an increase of one available intermediate set. If \(i \in P' \) corresponded to a down step however, it will have a left label and therefore make the intermediate set it lands in unavailable, for a net loss of one intermediate set. Finally, if \(i \notin P' \), then \(i \) cannot change the number of intermediate sets since they are completely determined by the positions of the elements in \(P' \). This, combined with the fact that at the start of the process there is always one available intermediate set and that \(r_0 = 0 \), is enough to show the result by induction.

Proposition 2.7. The algorithm defined by \(f \) is well defined. In particular it always terminates, and outputs a permutation in \(V_n(P) \).

Proof. To prove that \(f \) terminates, note that there will always be at least one available intermediate set in which to place elements because every \(r_i \geq 0 \), for \(0 \leq i < k \) and so by Lemma 2.6 there will always be at least one intermediate set at each step. Lemma 2.4 shows that the pinnacles will be a subset of \(P' \), and Lemmas 2.3 and 2.5 together show that those elements which are not cyclic values will be marked as specified by the set \(V_n(P) \). Finally, since the algorithm marks all cyclic values, we have that \(f \) is well-defined.

We now construct the inverse \(g = f^{-1} \) by reversing each step of the algorithm for \(f \).

1. Start with a permutation \([\pi'] \in V_n(P)\). We will build a walk \(m \in M_n(P) \) from right to left with steps numbered 1, 2, . . . , \(n \). To build step number \(i \), we remove the element \(i \) from \([\pi']\) in the following way.

2. Locate the smallest element, \(i \), of \([\pi']\), and remove it to form \([\sigma]\). Now in \([\sigma]\) take note of the intermediate set, \(S \), from which \(i \) was removed. Count how many available intermediate sets \(S \) is clockwise from \(p_0 \) and call this number \(h \). Then add a step to the walk \(m \) with label \(h_x \) where \(x \) corresponds to whether the element was labeled left or right.

The step is placed so that it begins at height \(h - 1 \) where \(h \) is the number of available intermediate sets in \([\pi']\) after \(i \) is removed. The slope of the new step is determined as follows.

(a) If \(i \notin P \), the step will be a horizontal step.
(b) If \(i \in P \) and \(i \) has a left label, the step will be a down step.
(c) If \(i \in P \) and \(i \) has a right label, the step will be an up step.

3. Label \([\sigma]\) as \([\pi']\) and continue with the above process until \([\pi']\) consists of only \(p_0 \). The resulting walk is the final output of the map.

We must prove that this map is well-defined.
Lemma 2.8. At every step of the process, the pinnacles of $[\pi']$ will always be in P', regardless of how many elements have been removed.

Proof. To see this, note that $[\pi']$ starts with all pinnacles in P' by assumption, and no non-pinnacle can ever become a pinnacle since we always remove the smallest element.

Lemma 2.9. At every step where i is removed from $[\pi']$ to form $[\sigma]$, the intermediate set in $[\sigma]$ from which i was removed will be available.

Proof. Suppose the intermediate set in $[\sigma]$ from which i was removed was unavailable in $[\sigma]$, which would force one of the two bounding elements in P' to have a left label. Now any element $p \in P'$ with a left label is a cyclic vale at the start of the algorithm, and since there are no other elements in P' between p and i to be pinnacles, it must be that $i > p$. But this contradicts the assumption that the smallest element is being removed. Therefore, i must have been removed from an available intermediate set.

Lemma 2.10. The algorithm g will produce a connected walk.

Proof. Consider any step, m_i formed by removing element i from $[\pi']$ and let m_{i-1} be the step placed just before that (when $i - 1$ was removed from $[\pi']$). Then by definition of g, if r_i and r_{i-1} are the starting heights of steps m_i and m_{i-1} respectively, we have that $r_i + 1$ must be the number of available intermediate sets in $[\pi']$ right after i was removed while $r_{i-1} + 1$ was the number of available intermediate sets in $[\pi']$ right before i was removed. We now have three cases.

Case 1: Suppose that i was not in P'. Then the number of available intermediate sets will be unchanged once i is removed, and since g will cause m_i to be horizontal in this case, we have that m_i will end at height r_{i-1}, thereby connecting it to the previous step.

Case 2: Suppose that $i \in P'$ and i had a left label. Then the intermediate set it occupied will become available by Lemma 2.9 and there will be a net increase of one available intermediate set. Since in this case g causes m_i to have downward slope, we have that m_i will end at height r_{i-1}, thereby connecting it to the previous step.

Case 3: Suppose that $i \in P'$ and i had a right label. Then the intermediate sets on either side of i must be available or else Lemma 2.9 will be contradicted when i is removed. Removing i will then join these available intermediate sets into one available set, and there will be a loss of one available intermediate set. Since in this case g causes m_i to have upward slope, we have that m_i will end at height r_{i-1}, thereby connecting it to the previous step.

Therefore, since in every case we have that the newly placed step connects to the previous, we will have that the final walk will be connected.

Proposition 2.11. The walk produced by the algorithm is in $M_n(P)$.

Proof. By definition, g causes every step i to have its label in $[r_i + 1]$ because the numeric label for i is chosen from the available intermediate sets after it is removed, which is $r_i + 1$. Also, g forces all slanted steps to have the required left/right label by definition. Additionally, the walk will be connected by Lemma 2.10 and also begin on the x-axis because there will be only one available intermediate set when the process is finished (because at the end, all that is left of the permutation is $[p_0]$). Finally, every step of the walk must start weakly above the x-axis because the only time there can be no available intermediate sets in $[\pi']$ is at the start of the algorithm, since removing an element always leaves behind an available intermediate set by Lemma 2.9. This means that r_i must be at least zero for all i except possibly the last one, which forces all steps to begin weakly above the x-axis.

Therefore, the result $m \in M_n(P)$ and we have that the map is well-defined.
Proposition 2.12. The maps f and g defined above are inverses.

Proof. First, given a walk $m \in M_n(P)$, we let m_i be the step numbered i, that is, the ith step from the right in the original m (note that if segments are deleted from m, we do not re-index or renumber the remaining segments). Let f_i be the step in f that deletes walk segment m_i and adds element i to $[\pi']$, and let g_i be the step in g that adds walk segment m_i and removes element i from $[\pi]$. Then we have that $f = f_1 \circ f_2 \circ \cdots \circ f_n$ and $g = g_n \circ g_{n-1} \circ \cdots \circ g_1$ by definition.

For a given walk $m \in M_n(P)$ we define S_i to be the state of the walk and permutation $[\pi']$ after applying $f_{i+1} \circ \cdots \circ f_n \circ f_i$. Under this notation, we have that S_n is the initial state consisting of the original walk m and $[\pi'] = [n+1]$ and that S_0 is the final state consisting of the empty walk and the final permutation. We can then say that when applying f to a walk, each f_i will convert state S_i into state S_{i-1}. Therefore, if we can show that g_i applied to state S_{i-1} gives state S_i, we will have that $g \circ f$ is the identity because the g_i will move back through all the states step by step.

Consider the walk and permutation at some state S_i. If we apply f_i to this state, we will delete step m_i with label j_x and add element i to $[\pi']$. Then j will be the number of the intermediate set into which i is inserted and the left/right label of i in π will be x. This will give us state S_{i-1}. If we then apply g_i, we will remove i and add step m_i to walk m with label j_x.

Now we must show that the height and slope of m_i are as they were in S_i. As was proven already in Lemma 2.16 the height of the start of step m_i in S_i was $h-1$ where h is the number of available intermediate sets in $[\pi']$ in state S_i. But by definition of g acting on state S_{i-1}, the height of the start of the step that g places must be $h-1$ again since the number of intermediate sets after i is removed from $[\pi']$ is the same as it was in S_i. Therefore, m_i will be placed at the same height. To show that slope is preserved, we consider each of the three cases. If m_i started as horizontal in S_i, then $i \notin P$ because of the restrictions imposed on $M_n(P)$ and when we apply g_i to state S_{i-1} we will get a horizontal step back. If m_i was an up step, we have by the restrictions imposed on $M_n(P)$ that $m_i \in P$ and that m_i has a right label. Since the left/right label for n in $[\pi']$ is the same as that for m_i, we have that g_i will make m_i an up step again. A similar proof shows that if m_i was a down step before it was removed, it will be a down step again after it is returned. Therefore, g_i undoes f_i.

Now for a given permutation $[\pi'] \in V_n(P)$ we define S'_i to be the state of the walk and permutation $[\pi']$ after applying $g_i \cdot \cdots \circ g_2 \circ g_1$. Under this notation, we have that S'_n is the final state consisting of the final walk and permutation $[\pi'] = [n+1]$, and that S'_0 is the initial state consisting of the empty walk and the initial permutation. We can then say that when applying g to a permutation, each g_i will convert state S'_{i-1} into state S'_i. Therefore, if we can show that f_i applied to state S'_i gives state S'_{i-1}, we will have that $f \circ g$ is the identity because the f_i will move back through all the states step by step.

Consider the walk and permutation at some state S_{i-1} and suppose we apply g_i where we remove element i with label x from $[\pi']$ and add step m_i to the walk. Then we will be in state S'_i where the numeric label of m_i will indicate the intermediate set, I, from which i was removed and the left/right label will be x. If we then apply f_i, we will add i back to the intermediate set corresponding to the label of m_i with left/right label x, and so we have that i will arrive back in $[\pi']$ in I and have the same label as in state S'_{i-1}.

We must now show that the position of i in $[\pi']$ is as it was in S'_i. If i was the only element in I in state S'_{i-1}, it will arrive back in the same position in $[\pi']$ and we are done. If i was not the only element, we note that since it was a vale and since all non-pinnacles in I must form a decreasing sequence to the left of i and an increasing sequence to the right of i (or become pinnacles themselves), we have that i was initially positioned next to the second smallest element in I. By the labeling conventions imposed on $[\pi']$, any element in I to the left of i will have a right label
and any elements in S to its right will have a left label. Therefore, no matter which of these two elements becomes the new vale after i is removed, we are guaranteed that f_i will put i adjacent to this element again, and that it will be on the left if the element is labeled left and the right if it is labeled right. Therefore, f_i undoes g_i.

Since f and g undo each other step by step, we have that they are inverses.

Since the maps are inverses, we have that the sets are in bijection which finishes the proof of Theorem 2.1. We finish with a few remarks.

Corollary 2.13. If we define W_k to be the set of y coordinate sequences of all walks using steps $[1,1]$ and $[1,-1]$ and ending at any height, then

$$
\sum_{Q \subseteq \mathbb{P}} 2^{|Q|+1} |p_n(Q)| = 2^{n-k} \sum_{w \in W_k} \prod_{m=0}^{k} (w_m + 1)^{p_m - p_{m+1}}
$$

where we sum over W_k instead of R_k.

Proof. To see this, we note that if any walk $w \in W_k$ has a step that starts below the x-axis, then for some i there will exist a y-coordinate of the walk, $w_i = -1$, for which $i \neq k$. This will cause $w_i + 1 = 0$ and $p_i > p_{i+1}$ so that the weight of walk w zeros out. Therefore, the sum reduces to summing over R_k.

As a final comment, we note that if we require P to be an admissible pinnacle set, Theorem 2.1 reduces to Theorem 1.2 in [10]. This is because if P is admissible, we know that $1 \notin P$ which means the rightmost step of every walk in $M_n(P)$ will be horizontal. This prevents all walks from dipping below the x-axis, and we can safety restrict our definition of R_k in Theorem 2.1 to require that all r_k are non-negative, which is the same set that Fang used. Dividing both sides of Theorem 2.1 by two then gives Fang’s formula.

3 Recursion for Admissible Orderings

Let ω be any ordering of the elements in some set $S \subseteq [n]$. Then for any permutation π of a set of positive integers containing S, we say that $\text{ord}(\pi) = \omega$ if the elements in S appear in the same relative order in π as they do in ω. We also wish to define the notion of standardizing to a set S. Given some permutation π of distinct integers and a set S of distinct integers such that $|S| = |\pi|$, we may use the unique order preserving map to take the elements of π into S to get a new permutation π' with elements in S. In this case, we call π' the standardization of π to S. Note that if $S = [n]$ for n the length of π, then this notion of standardizing coincides with the traditional one.

Now consider some $P = \{p_1 < p_2 < \cdots < p_k\} \subseteq [n]$ which need not be a pinnacle set (note the different indexing from the previous section). For the following theorems, we define an *admissible ordering* of P to be any ordering ω of the elements of P such that there exists a $\pi \in S_n$ with $\text{Pin}(\pi) = P$ and $\text{ord}(\pi) = \omega$. If such a π exists, we call it a *witness* to the ordering. Under this definition, it makes sense to talk about the admissible orderings even when P is not an admissible pinnacle set, since there will just be zero orderings. We will also define $N = \{n_1 < n_2 < \cdots < n_{k+1}\}$ to be the set of the first $k + 1$ positive integers that are not in P.

Theorem 3.1. Suppose $P = \{p_1 < p_2 < \cdots < p_k\} \subseteq [n]$ is an arbitrary subset of $[n]$. Let $N = \{n_1 < n_2 < \cdots < n_{k+1}\}$ be the set of the first $k + 1$ positive integers that are not in P. Then
given a fixed ordering \(\omega \) of \(P \), there exists a \(\pi \in S_n \) with \(\text{Pin}(\pi) = P \) and \(\text{ord}(\pi) = \omega \) if and only if there exists a permutation \(\tau \) of the elements \(P \cup N \) with \(\text{Pin}(\tau) = P \) and \(\text{ord}(\tau) = \omega \).

Proof. Let \(\pi \in S_n \) be a witness to some admissible ordering of \(P \). We will build up a permutation \(\tau \) on the elements of \(P \cup N \) which has \(\text{Pin}(\tau) = P \). An example of this process follows the proof.

To start, let \(\tau = \pi \) and identify each of the \(k + 1 \) blocks of consecutive non-pinnacles in \(\tau \). For each block, delete all but the smallest non-pinnacle. Finally, take the set of all \(k + 1 \) remaining non-pinnacles in the result and standardize them to the set \(N \) to get permutation \(\tau \). Then \(\tau \) will be a permutation of the elements of \(P \cup N \) by definition with elements of \(P \) in order \(\omega \). We must also have that \(\text{Pin}(\tau) = P \) since every \(p \in P \) started as a pinnacle in \(\pi \), and the elements on either side of \(p \) could only decrease throughout the steps of this process. Since all other elements end up adjacent to a pinnacle, there can be no added pinnacles, and so we have \(\tau \) as specified.

To see the reverse direction, simply take any \(\tau \) with a given ordering of the elements of \(P \) as the pinnacle set and add the elements \([n] \setminus (P \cup N) \) in increasing order to the end of \(\tau \). The result will be in \(S_n \) and have pinnacle set \(P \) in the same order as in \(\tau \). \(\square \)

As an example, suppose that \(n = 8, P = \{3, 7\} \) and \(\pi = 57642318 \). Then \(N = \{1, 2, 4\} \), \(\omega = 73 \), and we build up \(\tau \) in the following steps:

\[
\tau = 57642318 \\
\tau = 57231 \\
\tau = 47231
\]

We may now state a corollary which will always allow us to reduce to the case where we only need to look for witnesses in \(S_{2k+1} \).

Corollary 3.2. Given \(P = \{p_1 < p_2 < \cdots < p_k\} \) and \(N \) as above, standardize the set \(P \cup N \) and let \(P' \) and \(N' \) be the sets that \(P \) and \(N \) standardize to, respectively. Then the number of admissible orderings of set \(P \) for \(\pi \in S_n \) is the same as the number of admissible orderings of set \(P' \) for \(\pi \in S_{2k+1} \).

Proof. Simply standardize the permutation \(\tau \) given in the proof of the previous theorem. \(\square \)

For example, if we standardize the the \(\tau = 47231 \) we had at the end of the previous example, we would get \(\tau = 45231 \in S_5 \) where now \(P' = \{5, 3\} \).

In all that follows we will assume that

\[
P = \{p_1 < p_2 < \cdots < p_k\} \quad \text{and} \quad n = 2k + 1
\]

since counting admissible orders when \(n \) is larger can be reduced to this case. Note that because of this, specifying \(P \) is enough to determine \(N \) since \(N = [2k+1] \setminus P \).

Let \(O(P) \) be the set of admissible orderings of set \(P \), and \(o(P) = |O(P)| \). More generally, if we let \(N_i = \{n_1 < n_2 < \cdots < n_i\} \) be the \(i \) smallest elements of \(N \), we define

\[
O_i(P) = \{\omega \in S_{P \cup N_i} \mid \text{there is } \pi \in S_{2k+1} \text{ with } \text{ord}(\pi) = \omega \text{ and } \text{Pin}(\pi) = P\}
\]

where \(S_A \) is the set of all permutations of the set \(A \). We further define \(o_i(P) = |O_i(P)| \) and note that \(O_0(P) = O(P) \).
Essentially, $O_i(P)$ “keeps track” of the positions of not only the elements of P, but of the positions of the i smallest elements of N, too. As an example, consider the set $P = \{3, 5\}$. Then $o(P) = 2$ since all orderings are admissible. However, $o_1(P) = 4$ since

$$O_1(P) = \{135, 315, 513, 531\}$$

with corresponding witnesses

$$\{13254, 23154, 45132, 45231\}.$$

Note that the orderings 351 and 153 are not included however because there is no way to insert the elements 2 and 4 to get a permutation in S_5 having pinnacle set P.

In the following results, we will need to talk about witnesses to specific orderings in $O_i(P)$. The following lemma will allow us to make certain assumptions about the witness we wish to pick.

Lemma 3.3. Consider any $\omega \in O_i(P)$ where the conditions in (2) hold and where $i < p_1$. Then if ω' is obtained by permuting the elements in $[i]$ in ω among their indices, then $\omega' \in O_i(P)$ also.

Proof. Since ω is an admissible ordering, there must exist at least one witness to it which we will call π. Because $n = 2k + 1$ we know that in π the pinnacles and non-pinnacles, which are the elements in P and not in P respectively, alternate beginning and ending with a non-pinnacle. Therefore each element of $[i]$ will be adjacent to two pinnacles larger than itself, and since all values in $[i]$ are smaller than all pinnacles, this will still be the case after permuting the elements in $[i]$. Therefore, no elements in $[i]$ can become pinnacles. Additionally, no pinnacles can be lost because the only elements to move are those in $[i]$ and if an element of $[i]$ adjacent to a pinnacle gets swapped, it will just be replaced by a different value in $[i]$ that is still smaller than the pinnacle. Finally, we have that any element j that is not in P or $[i]$ cannot become a pinnacle because neither j nor the two elements of P initially adjacent to it will move during the swap. Therefore, no pinnacles are gained or lost, and so the resulting permutation will be a witness to the corresponding ordering ω', which shows it must be in $O_i(P)$. \hfill \qed

Given $P \neq \emptyset$ and corresponding N, consider the set $[2k + 1] \setminus \{p_1, n_1\}$ and standardize so that the elements are in $[2k - 1]$. Let P' be the set that the elements in $P \setminus \{p_1\}$ get mapped to which will always be $\{p_2 - 2, p_3 - 2, \ldots p_k - 2\}$ if $i < p_1$. Then define the reduction operator $r(P) = P'$.

We now wish to form a bijection between a subset of the elements in $O_i(P)$ and those in some $O_i'(P')$. To this end, for $j \in \{0, 1, 2\}$ we define

$$O_i^j(P) = \{ \omega \in O_i(P) | p_1 \text{ is adjacent to } j \text{ elements in } [i] \}$$

and let $o_i^j(P) = |O_i^j(P)|$.

We then have the following result.

Lemma 3.4. Suppose $i \geq 0$, that the conditions in (2) hold, and that P is non-empty. Then if for some $j \in \{0, 1, 2\}$ we have that $i < p_1$ and $O_i^j(P) \neq \emptyset$ and we let $P' = r(P)$, then we have the following

$$o_i^j(P) = \begin{cases} \frac{i(i - 1)}{2} o_{i-1}(P') & \text{if } j = 2, \\ 2i o_i(P') & \text{if } j = 1, \\ o_{i+1}(P') & \text{if } j = 0. \end{cases}$$

Proof. Note that since we have that $O_i^j(P) \neq \emptyset$, there must exist at least j elements in $[i]$ and $2 - j$ elements not in $[i]$ but less than p_1 to surround p_1. Therefore, we have the inequalities $i \geq j$ and $i + 2 - j < p_1$.

\[12\]
We will consider the case where \(j = 2 \) in detail and note the changes that must occur for when \(j = 0, 1 \). Note first that by Lemma 3.3 we have that the existence of an ordering \(\omega \in O_2^j(P) \) in which \(\omega \) contains the factor \(x_p 1 \) implies the existence of one containing the factor \(1p_12 \) and visa versa. If we let

\[
A = \{ \omega \in O_2^j(P) \mid 1p_12 \text{ is a factor of } \omega \}
\]

then we will have that

\[
o_2^j(P) = i(i - 1) \cdot |A|.
\]

where we have the factor of \(i(i - 1) \) because there are \(i \) ways to choose an element in \([i] \) to the left of \(p_1 \) and \(i - 1 \) ways to choose a different element in \([i] \) to the right. We may now define a map between set \(A \) and \(O_{i-1}(P') \) in which we remove the factor \(1p_1 \) from \(\omega \) and standardize to the set \(P' \cup [i - 1] \). To show this ordering has a witness, first consider any witness, \(\pi \), to \(\omega \) and note that \(\pi \) must also contain the factor \(1p_12 \) since elements in \(P \) must alternate with those that do not, and so no new elements can be inserted between 1, \(p_1 \), and 2. If we then remove \(1p_1 \) from \(\pi \) and standardize to get \(\pi' \), we are left with a witness to the ordering \(\omega' \). Note that the element to the left of 1 in \(\pi \), if it exists, must have originally a pinnacle, and since in \(\pi' \) it will end up being adjacent to 1 again, it must remain a pinnacle. Furthermore, since 2 cannot become a pinnacle, and since the relative order of all other elements was preserved, we have that the pinnacle set of \(\pi' \) is \(P' \) which shows that \(\omega' \) is admissible.

To reverse this map, consider some \(\omega' \in O_{i-1}(P') \) and standardize to the set \((P \cup [i]) \setminus \{p_1, 1\} \). Note that since \(i \geq j = 2 \), we have that \(\omega' \) will contain the element 1, which will standardize to 2. Replace 2 with \(1p_12 \) to get the ordering \(\omega \) which will be in \(A \) if we can show it has a witness. To show this, consider any witness \(\pi' \) to \(\omega' \), standardize to \([2k + 1] \setminus \{p_1, 1\} \), and replace 2 with \(1p_12 \) to get \(\pi \), which will be a witness to \(\omega \). An argument similar to the one above shows that the pinnacle set will be \(P \), and so we have that \(\omega \) is admissible, completing the proof in this case.

Since these maps are clearly inverses, we have that \(|A| = o_{i-1}(P') \) which completes the case when \(j = 2 \).

For the case where \(j = 1 \), we can use a similar proof where we use Lemma 3.3 to show that

\[
o_2^j(P) = 2i \cdot |\{ \omega \in O_2^j(P) \mid 1p_1 \text{ is a factor of } \omega \}|.
\]

and then define a bijection to simply delete \(p_1 \) from \(\omega \) and standardize to \(P' \cup [i] \) to get \(\omega' \). Care must be taken to prove this results in an ordering in \(O_i(P') \). To prove it has a witness, one can use the fact that \(i + 2 - j < p_1 \) to argue for the existence of a witness \(\pi \in S_{2k+1} \) to \(\omega \) which contains the factor \(1p_1(p_1 - 1) \) where \(p_1 - 1 \notin [i] \). Replacing this factor with 1 and standardizing will result in a witness for \(\omega' \) with pinnacle set \(P' \). The fact that \(i + 2 - j < p_1 \), together with the fact that \(i \geq j \), must be used again when showing that the reverse of this map is well-defined.

For the case where \(j = 0 \), we may define our bijection between \(O_2^j(P) \) and \(O_{i+1}(P') \) by taking some \(\omega \in O_2^j(P) \), replacing \(p_1 \) with 0, and standardizing to \(P' \cup [i + 1] \) to get \(\omega' \). To prove that \(\omega \) has a witness, one can use the fact that \(i + 2 - j < p_1 \) to argue for the existence of a witness \(\pi \in S_{2k+1} \) to \(\omega \) which contains the factor \((p_1 - 2)p_1(p_1 - 1) \) where \(p_1 - 1, p_1 - 2 \notin [i] \). Replacing this factor with 0 and standardizing will then result in a witness for \(\omega' \), which can be shown to be in \(O_{i+1}(P') \). The fact that \(i + 2 - j < p_1 \) must be used again when showing that the reverse of this map is well-defined.

Given some set \(P \), we make the following definition:

\[
\delta_j = \begin{cases}
1 & \text{if } p_1 > j, \\
0 & \text{otherwise}.
\end{cases}
\]
Then we can state our main result.

Theorem 3.5. Let \(|P| \geq 1\), \(P' = r(P), 0 \leq i < p_{1}\), and suppose the conditions in \(\square\) hold. Then we have the following recursion

\[
o_{i}(P) = i(i - 1)o_{i-1}(P') + (2i)\delta_{i+1}o_{i}(P') + \delta_{i+2}o_{i+1}(P').
\]

Proof. Note that \(O_{i}(P)\) can be partitioned into three (possibly empty) subsets depending on whether \(p_{1}\) is directly adjacent to either two, one, or no elements of \(N_{i}\). It follows that

\[
o_{i}(P) = o_{i}^{2}(P) + o_{i}^{1}(P) + o_{i}^{0}(P).
\]

Therefore, we will have our result if we can show that

\[
o_{i}^{2}(P) = \begin{cases} i(i - 1)o_{i-1}(P') & \text{if } j = 2, \\ 2i\delta_{i+1}o_{i}(P') & \text{if } j = 1, \\ \delta_{i+2}o_{i+1}(P') & \text{if } j = 0. \end{cases}
\]

If \(O_{i}^{1}(P)\) is non-empty, then we have our result by Lemma \(\square\) since we will have that \(i + 2 - j < p_{1}\) and the corresponding delta is 1. Therefore, we only need to concern ourselves with the case where \(o_{i}^{1}(P) = 0\), in which we must prove that the corresponding expression for \(o_{i}^{1}(P)\) is also zero.

First, we claim that \(o_{i}^{1}(P) = 0\) if and only if either \(P\) is not admissible, \(i + 2 - j \geq p_{1}\), or \(j > i\). That each of these three conditions independently forces \(o_{i}^{1}(P) = 0\) is not hard to see since we will either have that \(o_{i}(P) = 0\) or that there are not enough of the necessary elements to surround \(p_{1}\) and have it still be a pinnacle. For the reverse direction, we prove the contrapositive. Suppose that \(P\) is admissible, that \(i + 2 - j < p_{1}\), and that \(j \leq i\). In this case, chose any witness to any ordering of \(P\) and call it \(\pi\). Now by our two inequalities, we know there must exist two elements, \(x\) and \(y\), in \(\pi\) such that \(j\) of them are in \([i]\) and \(2 - j\) of them are between \(i\) and \(p_{1}\). If we then swap \(x\) and \(y\) with the pair of elements to either side of \(p_{1}\) in \(\pi\), we will have a witness to an ordering in \(O_{i}^{1}(P)\). The fact that the pinnacle set of this witness is indeed \(P\) can be proven similarly to Lemma \(\square\) since \(\pi\) alternated pinnacles and non-pinnacles, and since all elements swapped were smaller than all pinnacles. Therefore, we have an ordering in \(O_{i}^{1}(P)\), which proves it is non-empty. This finishes the proof of the claim.

Therefore, in the case where \(o_{i}^{1}(P) = 0\) we may suppose that at least one of these three conditions is true. If \(j > i\), we immediately have that all three expressions for \(o_{i}^{1}(P)\) are zero and so we still have equality even in the case when \(j > i\). If we assume that \(i + 2 - j \geq p_{1}\) for some \(j \in \{0, 1, 2\}\), we must have that \(j < 2\) since otherwise we contradict our assumption that \(i < p_{1}\). But if \(j = 0, 1\), we immediately have that \(\delta_{i+2-j}\) is zero and so again we have equality.

To finish the proof, all we have left to show is that all three expressions are zero if \(j < i\), \(i + 2 - j < p_{1}\), and \(P\) is not admissible. Clearly if \(P'\) fails to be admissible too, all three terms will immediately be zero, so suppose that \(P'\) is admissible. This is equivalent to saying that for every element \(p \in P'\), the number of elements in \(P'\) less than \(p\) is exceeded by the number of elements not in \(P'\) less than \(p\). This will still be the case for all corresponding pinnacles in \(P\) since both elements added are smaller than all other pinnacles, and so if \(P\) fails to be admissible, it must be because the added element of \(P, p_{1}\), is less than 3. But supposing \(j \leq i\) and \(i + 2 - j < p_{1}\) together force \(p_{1} > 2\), and so we have a contradiction.

Therefore, since in all cases where \(o_{i}^{1}(P) = 0\) we have that the corresponding expression is also zero, we have our result.

\[\square\]
Corollary 3.6. This recursion can be used to compute $o(P) = o_0(P)$. Furthermore, the number of terms that need to be computed will be asymptotically equal to $k^2/4$.

Proof. First, note that every step reduces the size of P by one, and so if we induct on k, we have the base case $P = \emptyset$, and $|N| = 1$ which always has only one ordering. In order to show that we may repeatedly use this recursion however, we must show that we never need to compute some $o_i(P)$ where $i \geq p_1$.

First, note that on the first step when $i = 0$, we must have that $i < p_1$ since $P \neq \emptyset$. Now consider any application of the recursion on $o_i(P)$ where $i < p_1$. Since $p_1' = p_2 - 2$ forces $p_1' \geq p_1 - 1$ by definition of $r(P)$, we know that $p_1' > i - 1$ and so the recursion may be applied on $o_{i-1}(P')$.

Now we consider $o_i(P')$. If $i < p_1$ we may apply the recursion; if not, then we will have that $i \geq p_1 - 1$ which means $p_1 \leq i + 1$. But then we will have that $\delta_{i+1} = 0$, and so we will not have to calculate $o_i(P')$. Finally, we consider $o_{i+1}(P')$. If $i + 1 < p_1'$ we may apply the recursion; if not, then we will have that $i + 1 \geq p_1 - 1$ and so $p_1 \leq i + 2$. But then we will have that $\delta_{i+2} = 0$, and so we will not have to calculate $o_{i+1}(P')$. Therefore, the recursion never generates a term that cannot then be further broken down.

As to the number of terms that need to be calculated, let $P^j = r^j(P)$ applying the r operator j times where $0 \leq j \leq k$. Note that since i starts out as 0 and i can only increase by at most 1 each step, we must have that $i \leq j$ for any term $o_i(P^j)$. Additionally, since all permutations have elements in $[2(k - j) + 1]$, we know that $i \leq k - j + 1$ since the remaining $k - j$ elements are in P^j.

Therefore when calculating terms of the form $o_i(P^j)$, if $j \leq k/2$ we know that $0 \leq i \leq j$ while if $k/2 \leq j \leq k$ we know that $0 \leq i \leq k - j + 1$. Therefore, if we sum up all the different values that i can take over all values of j, we have that the total number of terms is at most

$$\sum_{j=0}^{\lfloor k/2 \rfloor} (j+1) + \sum_{j=\lceil (k+1)/2 \rceil}^{k} (k-j+2) = \sum_{j=0}^{\lfloor k/2 \rfloor} (j+1) + \sum_{j=0}^{\lfloor k/2 \rfloor} (j+2) = \binom{\lfloor k/2 \rfloor + 2}{2} + \binom{\lfloor k/2 \rfloor + 2}{2} + \lfloor k/2 \rfloor + 1$$

which is asymptotically $k^2/4$.

4 \ Block representation of pinnacle sets

Given a (not necessarily admissible) set $P = \{p_1 < p_2 < \cdots < p_k\} \subseteq [n]$, we may choose to represent P as an array of some length $n \geq p_k$ consisting of 0s and 1s such that a given index i contains a 1 if and only if $i \in P$. For example, if we had

$P = \{3, 6, 7\}$

then the corresponding array for $n = 7$ would be

$[0, 0, 1, 0, 0, 1, 1]$.

For some fixed n, we can clearly we can go back and forth between these representations without loss of information, and the array will correspond to an admissible pinnacle set if and only if it is a ballot sequence, that is, at every index the number the number of 0s exceeds the number of 1s occurring before that index (we will not use this fact, but it is interesting). Now for the purposes of our proofs, it will be useful to think of P using the array notation because it allows use to visually divide P up into “blocks,” which is to say, we may break the array up into sub-arrays. For instance, in our previous example if we let

$B_1 = [0, 0, 1], B_2 = [0, 0, 1, 1]$
Then we may say that P can be written as $B_1 B_2$ where we concatenate the arrays to recover P. We may then apply algorithms recursively to each block, and combine the results to say something about P. For our purposes, it won’t matter how we break up P provided that all blocks are non-empty, and so we will not (at this point) structure our notation to indicate how much of P is contained in B_1.

As an aside (but something that will not be used in the proof) we may choose our blocks carefully so that they correspond to trees. This is done by simply looking at the binary tree representation of P (which is given in greater detail below), and letting B_1 consist of those indices appearing in the first tree, B_2 of those indices appearing in the second tree, and so on. Our approach is a little more general however as it allows us use blocks that contain “part” of a tree, which will be useful in our applications. Using this particular division into blocks however will allow us to say some things about the tree representation of P later.

We now must introduce some new ideas and notation.

Given a block B, which is to say, an array of some length m containing only 0s and 1s, we may define a set, P_B, to contain all those indices in B that are 1s. We then define $P(B)$ to be the set of permutations in S_n with pinnacle set P_B, and further define $p(B) = |P(B)|$. For instance, suppose that in our running example we took $B_1 = [0, 0, 1, 1]$. Then $P_{B_1} = \{3\}$ and $p(B_1) = 2$ since there are two permutations in S_3 that have pinnacle set $\{3\}$. On the other hand, if we took $B_2 = [0, 0, 1, 1]$ we would have $P_{B_2} = \{3, 4\}$ and $p(B_2) = 0$ since P_{B_2} is not an admissible pinnacle set.

We now take this a step further. Given a block B of length n with corresponding pinnacle set P_B, it will be desirable to modify P_B by adding additional elements larger than n (that is to say, we wish to force additional pinnacles). Furthermore, we will want to require that these added elements are indistinguishable from one another, which is a deviation from normal pinnacle sets where all pinnacles are different. Pinnacle sets are still defined however even when considering permutations with repeated numbers, and so the notion still makes sense.

More formally, define $P(B)^i$ to be all permutations of the multiset $\{1, 2, \ldots, m\} \cup \{(n + 1)^i\}$ that have pinnacle multiset $P_B \cup \{(n + 1)^i\}$, and define $p(B)^i = |P(B)^i|$. For instance, if $B = [0, 0, 1, 0, 0, 0]$, then $P_B = \{3\}$ and $m = 6$. To compute $P(B)^2$, we must ask which permutations of the set $\{1, 2, 3, 4, 5, 6, 7\}$ have pinnacle set $\{3, 7, 7\}$, of which there are 36 (there are 3 ways to decide the order of 3, 7, 7 within the permutation, 2 ways to decide the order of 1 and 2 on either side of 3, and 6 ways to arrange the elements 4, 5, 6 to fill the remaining gaps between the pinnacles). On the other hand, $p(B)^5 = 0$ because there would be too many pinnacles forced.

There is a similar idea for forcing cyclic vales. Suppose once again that we have a block B of length n with corresponding pinnacle set P_B. It will be useful to talk about the set of permutations having not only pinnacle set P_B, but also a cyclic vale set that contains a certain set of desired elements. In fact, similar to how above we added new, large elements and forced them to be pinnacles, we will want to add new, small elements and force them to be cyclic vales.

More formally, define $P(B)_j$ to be all permutations of the multiset $\{1, 2, \ldots, n\} \cup \{0^j\}$ that have pinnacle set P_B and cyclic vale set containing the multiset $\{0^j\}$, and define $p(B)_j = |P(B)_j|$. For instance, if $B = [0, 1, 1]$, then $P_B = \{2, 3\}$ and $m = 3$. To compute $P(B)_2$, we must ask how many permutations of the set $\{0, 0, 1, 2, 3\}$ have pinnacle set $\{2, 3\}$ and also cyclic vale set containing $\{0^2\}$, of which there are 6: there are 6 ways to order the elements 1, 2, 3 and then we may always insert the two 0s in a unique way in the remaining positions around 2 and 3 to force them to be pinnacles. On the other hand, $P(B)_4 = 0$ because the only way to force all four zeros to be cyclic vales is if they alternate with the numbers 1, 2, 3, but then this will force 1 to become a pinnacle.

While the above ideas may seem strange, hopefully they will feel more natural in a minute. The gist is that in addition to requiring that a particular set becomes a pinnacle set, we may now throw in additional large elements and require them to be pinnacles, or additional small elements and
require them to be cyclic values. In fact, we will often do both at once, and to this end, define the notation \(P(B)^{i}_j \) to be all permutations of the multiset \(\{1, 2, \ldots, n\} \cup \{0^j, (n+1)^i\} \) that have pinnacle multiset \(P_B \cup \{(n+1)^i\} \) and values set containing \(\{0^j\} \). In the event that no such permutations exist, we simply say that \(P(B)^{i}_j = \emptyset \). Note that if any such permutations do exist, it will always be the case that no two elements of \(\{(n+1)^i\} \) are adjacent, and that no two elements of \(\{0^j\} \) are adjacent, as that would not allow them to all be pinnacles or cyclic values respectively. This fact will be helpful in our first proof.

Finally, we need to remind the reader of cyclic permutations. In general, any linear permutation in \(\{1, 2, \ldots, n\} \cup \{0^j, (n+1)^i\} \) included in \(P(B)^{i}_j \), that is, having pinnacle multiset \(P_B \cup \{(n+1)^i\} \) and cyclic value set containing \(\{0^j\} \), corresponds to a cyclic permutation in \(\{1, 2, \ldots, n, \infty\} \cup \{0^j, (n+1)^i\} \) having cyclic pinnacle multiset \(P_B \cup \{(n+1)^i, \infty\} \) and cyclic value set containing \(\{0^j\} \). This correspondence is achieved simply by appending \(\infty \) onto the beginning of the linear permutation, and wrapping it around into a cyclic permutation. The reverse operation is also well defined.

Therefore, we define \(cP(B)^{i}_j \) to be the set of cyclic permutations corresponding to the linear ones in \(P(B)^{i}_j \).

Theorem 4.1

Suppose that some block \(B \) (as described above) of length \(n \) is decomposed into two, non-empty parts \(B_1 \) and \(B_2 \) such that the concatenation \(B_1B_2 \) gives back \(B \). Suppose further that the number of ones in \(B_2 \) is \(b \). Then

\[
p(B)^{i}_j = \sum_{a=1}^{b+i+1} p(B_1)^{a-1}_j p(B_2)^a_i
\]

Proof. First, let \(L \) be the set of all elements corresponding to those in block \(B_1 \) together with the set \(\{0^j\} \). Similarly let \(H \) be the set of all remaining elements in \([n] \) not in \(L \) together with the set \(\{(n+1)^i, \infty\} \). Then \(L \) will be the “low” set and \(H \) the “high” set in the sense that all elements in \(L \) will be smaller than all elements in \(H \), and given any \([\pi] \in cP(B)^{i}_j\), we have that all elements in \([\pi] \) will be in either \(L \) or \(H \). Since \(p(B)^{i}_j = |cP(B)^{i}_j| \) it suffices to consider only cyclic permutations to prove the result.

Therefore given some \([\pi] \in cP(B)^{i}_j \) we may decompose it into maximal consecutive sequences of elements either entirely in \(H \) or entirely in \(L \). Since such sequences from \(H \) must alternate with those in \(L \), we have that there are the same number of each and we call this number the *alternations* of \([\pi] \) and denote it by \(a \). Note that \(a \) must be at least 1 since we assumed both \(B_1 \) and \(B_2 \) were non-empty, and furthermore we know that \(a \) cannot exceed the number of cyclic pinnacles in \(H \) since every consecutive string of elements in \(H \) is adjacent to two values in \(L \) and so must contain at least one cyclic pinnacle of \([\pi] \). Since every cyclic pinnacle element from \(H \) must either be one of the \(b \) pinnacles from \(B_2, n+1, \) or \(\infty \), we have an upper bound of \(b+i+1 \) for \(a \).

Therefore, if we fix some \(1 \leq a \leq b+i+1 \), we may reduce to proving that the number of permutations in \(cP(B)^{i}_j \) with \(a \) alternations is \(|P(B_1)^{a-1}_j| |P(B_2)^a_i| \) since the values of \(a \) clearly partition all permutations in \(cP(B)^{i}_j \).

We prove this by constructing a bijection. An example follows this proof. Let \(l = |B_1|, h = |B_2|, \) and suppose for the forward direction that \([\pi] \in cP(B)^{i}_j \) has \(a \) alternations. Then in \([\pi] \) we may replace the block of consecutive elements in \(H \) containing \(\infty \) with the element \(\infty \) and each of the other \(a-1 \) blocks of consecutive elements in \(H \) with the element \(l+1 \) to get \([\pi_L] \). Additionally, we may take the original \([\pi] \) and replace each of the \(a \) blocks of consecutive elements in \(L \) with the element \(0 \) and subtract \(l \) from all remaining elements to get the cyclic permutation \([\pi_H] \). We must now show that \([\pi_L] \in cP(B_1)^{a-1}_j \) and \([\pi_H] \in cP(B_2)^a_i \).
From the construction given, it is easy to see that \([\pi_L]\) is a permutation of the elements \(\{1, \ldots, l\} \cup \{(l + 1)^{a-1}, \infty, 0\}\) and that \([\pi_H]\) is a permutation of the elements \(\{1, \ldots, h\} \cup \{(h + 1)^{a}, \infty, 0^a\}\). Therefore, we need only show that all the necessary cyclic pinnacles and vales are formed in both cases.

Consider \([\pi_L]\). Clearly we must have that every element in \(\{(l + 1)^{a-1}\}\) is a cyclic pinnacle since they are larger than all elements in \(\{0, 1, \ldots, l\}\), and since none of them are adjacent to each other or to \(\infty\) because everything in \(\{(l + 1)^{a-1}, \infty\}\) originated from separate blocks of elements in \([\pi]\). Furthermore, given any element \(x \in L\) the relative order between \(x\) and the elements on either side is the same in \([\pi_L]\) as it was in \([\pi]\), since the only change was that an element larger than \(x\) may have been replaced by another element larger than \(x\). Therefore, since all elements in \(P_{B_1}\) and \(\{0^\ell\}\) were cyclic pinnacles and vales respectively in \([\pi]\), they will continue to be so in \([\pi_L]\), and so we are done. The proof for showing \([\pi_H]\) \(\in cP(B_2)^{\ell}\) is almost identical, and therefore omitted.

Therefore, our map is well-defined. To invert it, suppose that \([\pi_L] \in cP(B_1)^{\ell-1}\) and \([\pi_H] \in cP(B_2)^{\ell}\). To combine them, first add \(l\) to all elements of \([\pi_H]\) to get \([\pi'_H]\). Then write \([\pi_L]\) in the form \([\infty L_1(l + 1) L_2(l + 1) \cdots (l + 1) L_a]\) where each \(L_i\) is a maximal consecutive sequence of elements less than \(l + 1\). Similarly, we may write \([\pi'_H]\) in the form \([H_1 L_2 \cdots l H_a]\) where each \(H_i\) is a maximal consecutive sequence of elements greater than \(l\), and where \(H_1\) contains \(\infty\). We then construct the cyclic permutation \([\pi] = [H_1 L_1 H_2 L_2 \cdots H_a L_a]\). It is easy to verify that \([\pi]\) contains \(j\) copies of the element 0, \(i\) copies of the element \(n + 1\), and that all other elements are either \(\infty\) or in \(B\). Furthermore we note that given any element \(x\) in \([\pi]\), the relative sizes of \(x\) and its two adjacent elements will be the same as they were for \(x\) back in either \([\pi_L]\) or \([\pi_H]\). Therefore, all cyclic pinnacles and vales in \([\pi]\) are directly derived from those in \([\pi_L]\) or \([\pi_H]\). This means that all 0’s will be vales, all elements of size \(n + 1\) will be cyclic pinnacles, and all other cyclic pinnacles will correspond to a cyclic pinnacle in either \(B_L\) or \(B_H\). Therefore, \([\pi] \in P(B)^{\ell}\).

Since these maps are clearly inverses step by step, we have our bijection, and therefore our result.

As an example of this process, consider \(B = [00101001]\) where \(B_1 = [001]\) and \(B_2 = [01001]\). Then we have that \(P_B = \{3, 5, 8\}\) while \(P_{B_1} = \{3\}\) and \(P_{B_2} = \{2, 5\}\) which correspond to the elements 5, 8 in \(P_B\) if you add \(|B_1| = 3\). We may then consider the permutation \([\pi] = [\infty0523081964097] \in cP(B)^3\). If we write in boldface those elements of \([\pi]\) that are in set \(L\) defined in the proof, we have

\[[\pi] = [\infty0523081964097] \]

and now it is easier to see that there are 4 alternations were we switch from an element of \(L\) to one in \(H\) and then back. Then we have

\[[\pi_L] = [\infty042304140] \]

and

\[[\pi_H] = [\infty02050631064] \]

which we get by standardizing

\[[\infty05080964097] \]

This recursion is very useful, as it allows us to give an efficient method for calculating \(p_n(P) = |\{\pi \in S_n [\Pi \pi = P]\}|\) using \(O(k^2 \log n + k^4)\) arithmetic operations where \(k = |P|\). It also allows us to derive results on the tree representation of pinnacles sets, which we do later.

For a pinnacle set represented by block \(B\), we will call \(B\) a segregated block if it takes the form \(B = [0^x, 1^y]\) in which we allow \(x\) and \(y\) to potentially be zero. That is to say, \(B\) must consist of some
section segregated lemma

non-empty intermediate permutations is and so to get our result it is enough to show that the number of ways of generating and ordering \((P)\) intermediate permutations, when interleaved with the pinnacle elements, will form a permutation in \((P)\) since every pinnacle is larger than every non-pinnacle, it will be the case that given any ordering and \(c\) we know that the pinnacles must alternate with the intermediate permutations so that \(\pi\) is defined to be a maximal set of consecutive elements in the form \(I\) \(P\) not be a vale, which breaks the requirement of \((P)\) intermediate set can contain at most one 0, since containing more would force one of the 0’s to one cyclic vale, which will always be the smallest element. Additionally, we must have that each \(c\) non-empty intermediate permutations, every ordering of those intermediate permutations, when interleaved with the pinnacle elements, will form a permutation in \((P)\). There are \((c-1)!/i!\) ways to order the pinnacle elements since \(i\) of them are indistinguishable, and so to get our result it is enough to show that the number of ways of generating and ordering \(c\) non-empty intermediate permutations is

\[
p(B)^i_j = 2^{x+j-c} \frac{c!(c-1)!}{i!} \sum_{m=0}^{j} \frac{1}{m!} \binom{c-m}{j-m} S(x, c-m)
\]

where \(c = i + y + 1\) is the number of cyclic pinnacles.

Proof. Given \(\pi \in (P)\) \(i\), we may break \(\pi\) down into a sequence of pinnacles in the set \(P = P_B \cup \{(n+1)i\}\) and a sequence of intermediate permutations, where each intermediate permutation is defined to be a maximal set of consecutive elements in \(\pi\) consisting of no pinnacles. Furthermore, we know that the pinnacles must alternate with the intermediate permutations so that \(\pi\) takes the form \(I_1 p_1' I_2 p_2' \cdots I_y p_y' I_{c}\) where \(I_m\) are the intermediate permutations, \(P = \{p_1', \ldots, p_{y+1}'\}\), and \(c = i + y + 1\) can be viewed as the number of cyclic pinnacles if we count \(\infty\). Therefore, since every pinnacle is larger than every non-pinnacle, it will be the case that given any ordering of the pinnacles \(P\) and any set of \(c\) non-empty intermediate permutations, every ordering of those intermediate permutations, when interleaved with the pinnacle elements, will form a permutation in \((P)\). There are \((c-1)!/i!\) ways to order the pinnacle elements since \(i\) of them are indistinguishable, and so to get our result it is enough to show that the number of ways of generating and ordering \(c\) non-empty intermediate permutations is

\[
2^{x+j-c} c! \sum_{m=0}^{j} \frac{1}{m!} \binom{c-m}{j-m} S(x, c-m)
\]

Note that since intermediate permutations cannot contain pinnacles, they must contain exactly one cyclic vale, which will always be the smallest element. Additionally, we must have that each intermediate set can contain at most one 0, since containing more would force one of the 0’s to not be a vale, which breaks the requirement of \((P)\). Therefore, we may partition all possible sets of intermediate permutations by the number of permutations \(m\) that contain only the element 0. It then follows that each of the \(c - m\) other intermediate permutations must contain at least one element of \([x]\), and will therefore be distinguishable. So for a given \(m\) the number of distinct orderings of a given set of intermediate permutations is \(c!/m!\), as specified in the formula.

Now given an intermediate permutation, let its intermediate set be the corresponding set of elements in the permutation, which will have no repeats since we have already shown that the element 0 cannot appear twice. If an intermediate permutation has \(l\) elements, then we may assign \(l - 1\) of them a left or right label, corresponding to which side of the smallest element they appear. Alternatively, if we start from an intermediate set and give all elements except the smallest a left/right label, then there will be exactly one way to construct an intermediate permutation from it. Namely, all left labeled elements will form a decreasing string to the left of the smallest element, and all the right labeled elements an increasing string to the right. Therefore, counting intermediate permutations can be reduced to counting intermediate sets and multiplying by a power of 2. Since every collection of intermediate sets will have \(x+j\) elements total, and since all of them except the \(c\) cyclic vales will be given a label, this power of 2 will be as stated in the above relation.
Therefore, we have reduced to the case of counting the number of ways of partitioning the \(x + i \) non-pinnacles into \(c \) non-empty intermediate sets such that no set contains more than one 0. This will force exactly \(j \) of the intermediate sets to contain a 0, and so all that remains is to place the final \(x \) elements in the set \([x]\). If we again fix \(m \) to be the number of intermediate sets containing only 0, there will be \(\binom{c-m}{j-m} \) ways to create the remaining \(c-m \) intermediate sets, namely, the number of ways of first partitioning the elements of \([x]\) into \(c-m \) non-empty sets, and then choosing \(j-m \) of those sets to contain the remaining 0’s. Since \(m \) can be at most \(j \), and since \(m \) partitions all possible sets of intermediate sets, we may sum over \(m \) to get the final part of our formula, which completes the proof.

We can now prove our result.

Theorem 4.3. The recursion in Theorem 4.1 together with the result in Lemma 4.2 is enough to compute \(p(A) \) for a general block \(A \) of length \(n \) corresponding to a (not necessarily admissible) set \(P \). Furthermore, if \(|P| = k \) then this can be done using no more than \(O(k^2 \log n + k^4) \) arithmetic operations.

Proof. First we will show that the recursion and above lemma are enough to compute \(p(A)^{j_0} \), which will then imply the result for \(p(A) = p(A)^0 \). Afterwards we will consider the run time.

Suppose that \(0^y \) is the maximal sequence of 0’s at the start of \(A \), and that \(1^x \) is the maximal sequence of 1’s directly following it. Then we may write \(A \) as the block concatenation \(BA’ \) where \(B = [0^y, 1^x] \) is a segregated block and \(A’ \) is the rest of block \(A \). Note that \(A’ \) must either be empty, or have fewer 1’s in it than \(A \) since \(B \) will always take at least the first 1 that appears in \(A \).

If \(A’ \) is empty, then we have that \(A \) started segregated and we are done by Lemma 4.2. If not, then we may apply Theorem 4.1 to write \(p(A)^{j_0} \) in terms of \(p(B)^{j_0} \) and \(p(A’)^{j_0} \), the former of which can be computed directly from Lemma 4.2 and the later of which can be further broken down using Theorem 4.1 again. Since we know that \(A’ \) must either be empty or have fewer 1’s than \(A \), we will only have to repeat this recursion a finite number of times before \(p(A)^{j_0} \) is written entirely in terms of numbers that Lemma 4.2 can calculate, giving us our final answer.

To prove the bound for the run time, suppose that at each step the block break down was \(A = A_0 = B_1A_1, A_1 = B_2A_2, \) and so on until we have \(A_{d-1} = B_dA_d \) where \(A_d \) is the first \(A_i \) to be empty. Since each \(B_i \) contains at least one 1, we have that \(d \) is bounded by \(k \), the number of pinnacles.

It will be useful to find an upper bound on the different values for \(i \) and \(j \) that might appear in our calculations. Note that every time we apply the recursion to \(p(A_i)^{j_0} \), we have that \(i \) must be zero. This is because \(i = 0 \) initially when computing \(p(A)^0 \), and we only ever apply the recursion again on the second factor, which has the same \(i \) as at the start. However, the first factor will take the form \(p(B_{i+1})^{j_0} \) where \(i’ \) ranges over the values 0 to \(b \) where \(b \) is the number of 1’s in \(A_{i+1} \). Therefore in the worst case, \(i’ \) may reach a maximum of \(k-1 \) when using Lemma 4.2 to compute \(p(B_1)^{j_0} \) and so in all cases will be bounded by \(k \). Now suppose that we apply our recursion to \(p(A_i)^{j_0} \) and let \(j’ \) be the maximum value of \(j \) that can arise on any factor of the form \(A_{i+1} \) in the sum. We have that \(j’ \) is at most \(\max\{j, b+1\} \) where \(b+1 \) is maximized on the first step when \(b \) is the number of 1’s in \(A_{i+1} \), which is at most \(k-1 \). Since \(j \) starts out at zero, and the value of \(b \) falls each step, we have that the maximum value that \(j \) can be is \(k \).

We now wish to find the total run time of using Lemma 4.2 to calculate all the \(p(B_i)^{j_0} \). First, let \(n_l \) be the number of 0’s in block \(B_l \) and note that each \(n_l \) is clearly bounded by \(n \), which is the original length of \(A \). Then note that the quantity \(c - m = y + i + 1 - m \) in Lemma 4.2 can be at most \(k + 1 \) since \(y \) is the number of 1’s in the block \(B_l \) while \(i \) can be at most the number of
ones in the block \(A_l \), which totals to no more than \(k \). Therefore, we only have to calculate Stirling numbers of the form \(S(n_l, k') \) where \(l \) is bounded by \(k \) and \(k' \) is bounded by \(k + 1 \).

Using the formula
\[
S(n_l, k') = \frac{1}{k!} \sum_{d=0}^{k'} (-1)^{k'-d} \binom{k'}{d} d^{n_l}
\]
we may first calculate all powers \(d^{n_l} \) where \(d \in [k+1] \) and \(l \in [k] \) using fast exponentiation in at most \(O(k^2 \log n) \) arithmetic operations. We may then calculate all binomial expressions of the form \(\binom{k'}{d} \) with \(k' \leq k + 1 \) and \(d \leq k' \) in \(O(k^3) \) operations and store those too. From this information, we may calculate all Stirling numbers that will be needed in \(O(k^3) \) additional time since the number of distinct \(n_l, k' \) values are bounded by \(k + 1 \). Furthermore, all other factorial and binomial expressions used in Lemma \([1,2]\) along with the power of 2, can be calculated and stored at this point in no more than \(O(k^2 \log n + k^3) \) time. Therefore, if we do this preparation first, we may calculate each \(p(B_l)_j \) in \(O(k) \) time from the stored data. Since \(i, j, \) and \(l \) are each bounded by \(k \), there will be at most \(O(k^3) \) distinct such terms, we have that a look up table for all the \(p(B_l)_j \) can be generated in no more than \(O(k^4) \) time.

Given this look up table, we may then compute and store the \(p(A_l)_j \) in \(O(k) \) algebraic operations each by starting with \(A_{m-1} \) and then accessing all the \(p(B_l)_j \) and previously computed \(p(A_l)_j \) to compute the next \(A_{l-1} \). Since \(l \) and \(j \) are bounded by \(k \), we have that this part of the algorithm takes at most \(O(k^3) \) operations to get to \(p(A_0)_j \), which is our final answer.

Therefore, the total run time is \(O(k^2 \log n + k^3) \) to prepare for Lemma \([1,2]\) plus \(O(k^4) \) to create a look up table of the values \(p(B_k)_j \), plus a final \(O(k^3) \) to use the recursion. Altogether, this results in a final run time of \(O(k^2 \log n + k^4) \) as advertised. \(\square \)

Before concluding, we present one more application of our recursion where we prove a version of a formula conjectured by Falque, Novelli, and Thibon in \([9]\). In their paper, the authors note that there is a map between admissible pinnacle sets in \([n]\) and forests of complete binary trees on \(n \) vertices arranged as a sequence of trees from left to right, and such that the trees are labeled from left to right with nodes labeled in left suffix order. The map is given by the following algorithm.

1. Given some admissible pinnacle set \(P = \{p_1 < p_2 < \ldots < p_k\} \subset [n] \), start with the forest consisting of a single unlabeled node. Let \(i = n \).

2. Label the rightmost unlabeled node \(i \). If \(i \in P \), give this node two unlabeled children.
 Otherwise, create a new tree with one unlabeled node to the left of all existing trees. Let \(i = i - 1 \).

3. Repeat the previous step until a node has been given the label 1, and then stop.

To reverse this map, we start with any complete binary forest with trees arranged in a sequence from left to right and with nodes labeled as specified above. We then simply let \(P \) be the set of labels of internal nodes. An example can be seen in Figure \([2]\).

It is not hard to show that these maps are well defined and that they are inverses of each other. In what follows, we will use the letter \(F \) for forests, and \(T \) for single trees. We may then write an admissible pinnacle set as a tree sequence \((T_1, T_2, \ldots, T_r)\). If a tree has only one vertex, denote it as \(O \). We can also group consecutive trees together as an ordered forest; for instance, we may wish to say \((T_1, T_2, T_3, T_4) = (F_1, F_2)\) where \(F_1 = (T_1) \) and \(F_2 = (T_2, T_3, T_4) \).
Figure 2: The complete binary forest corresponding to pinnacle set \(P = \{4, 6\} \) for \(n = 7 \)

Using this notion of trees, we may use the notation \(p(F) \) to denote the number of permutations in \(S_n \) having pinnacle set represented by \((F) \). It was conjectured in [9] that for pinnacle set \(F = (O, T_2, T_3, \ldots, T_r) \) we have the relation

\[
p(F) = p(O, T_2)P(O, O, T_3, \ldots, T_r).
\]

Unfortunately, this is not true as can be seen by the counterexample when \(n = 4 \) and the pinnacles set is \(\{4\} \). However, a very similar result can be proved.

Theorem 4.4. For a sequence of trees \(F = (O, T_2, T_3, \ldots, T_r) \) encoding a pinnacle set, we have

\[
p(F) = \frac{1}{2} p(O, T_2)p(O, O, T_3, \ldots, T_r).
\]

Proof. Since the trees \(F \) are labeled from left to right, we have that all nodes in \((O, T_2) \) will be smaller than all nodes in the rest of \(F \). Therefore, we may consider a block composition \(B_1B_2 \) corresponding to this pinnacle set where \(B_1 \) corresponds only to the labels of the nodes in \((O, T_2) \) while \(B_2 \) has the rest. Then by our notation, we will have that \(p(B_1) = p(O, T_2) \) and \(p(B_2) = p(T_3, \ldots, T_r) \).

We then have by Theorem 4.3 that

\[
p(F) = p(B_1B_2) = \sum_{m=0}^{b} p(B_1)^m p(B_2)_{m+1}.
\]

Now note that if \(m > 1 \) we will have that \(p(B_1)^m = 0 \) since there will be too many pinnacles for the non-pinnacles to separate, and so this sum simplifies to

\[
p(F) = p(B_1)p(B_2)_{1} + p(B_1)^2p(B_2)_{2}
\]

First, note that \(p(B_1) = p(B_1)^1 \) since there is a simple bijection between the permutations they count. Namely, for any \(\pi \) counted by \(p(B_1) \) there will always exist exactly one index where two non-pinnacles are adjacent and where we may insert a new largest element to get a permutation counted by \(p(B_1)^1 \). Similarly, we may reverse this bijection by deleting the largest element from some \(\pi' \) counted by \(p(B_1)^1 \). This will not create any new pinnacles because all non-pinnacles will still be adjacent to either the end of the permutation or to one of the other pinnacles.

We now consider a block \(B_3 \) corresponding to \((O, O, T_3, \ldots, T_r) \), which will be \(B_2 \) with two zeros appended to the beginning. We claim that \(p(B_3) = 2s \) where \(s = p(B_2)_{1} + p(B_2)_{2} \). To see this, note that every permutation counted by \(p(B_3) \) will either have the 1 and 2 adjacent, or separate. If they are adjacent, replace both by a single 0 and subtract 2 from all other elements. This will not destroy any pinnacles since neither 1 nor 2 were originally pinnacles, and so the result will be a permutation counted by \(p(B_2)_{1} \). Since this map is clearly reversible up to the ordering of 1 and 2, we also see that this is a two-to-one mapping.
On the other hand, suppose that 1 and 2 are not adjacent. Then it is easy to see, by reasons similar to above, that if we replace both 1 and 2 by separate 0’s and then subtract 2 from all other elements we will end up with a permutation counted by $p(B_2)$. This will again be a two-to-one mapping and so we have that $p(B_3) = 2s$.

Therefore, we have

$$p(F) = p(B_1B_2) = p(B_1)p(B_2)+p(B_1)^2p(B_2) = p(B_2) \left(p(B_1) + p(B_2)\right) = p(B_1)^2p(B_3)$$

the last of which is equal to $\frac{1}{2}p(O,T_2)p(O,O,T_3,\ldots,T_r)$ as desired.

\[\square\]

References

[1] Ron M. Adin, Ira M. Gessel, Victor Reiner, and Yuval Roichman. Cyclic quasi-symmetric functions. Sém. Lothar. Combin., 82B:Art. 67, 12, 2020.
[2] David Callan. Pattern avoidance in circular permutations, 2002.
[3] Éva Czabarka and Zhiyu Wang. Erdős-Szekeres theorem for cyclic permutations. Involve, 12(2):351–360, 2019.
[4] Robert Davis, Sarah A. Nelson, T. Kyle Petersen, and Bridget E. Tenner. The pinnacle set of a permutation. Discrete Math., 341(11):3249–3270, 2018.
[5] Alexander Diaz-Lopez, Pamela E. Harris, Isabella Huang, Erik Insko, and Lars Nilsen. A formula for enumerating permutations with a fixed pinnacle set. Discrete Math., 344(6):Paper No. 112375, 15, 2021.
[6] Rachel Domagalski, Jinting Liang, Quinn Minnich, Bruce E. Sagan, Jamie Schmidt, and Alexander Sietsema. Cyclic pattern containment and avoidance, 2021.
[7] Rachel Domagalski, Jinting Liang, Quinn Minnich, Bruce E. Sagan, Jamie Schmidt, and Alexander Sietsema. Pinnacle set properties, 2021.
[8] Sergi Elizalde and Bruce Sagan. Consecutive patterns in circular permutations, 2021.
[9] Justine Falque, Jean-Christophe Novelli, and Jean-Yves Thibon. Pinnacle sets revisited, 2021.
[10] Wenjie Fang. Efficient recurrence for the enumeration of permutations with fixed pinnacle set, 2021.
[11] Daniel Gray, Charles Lanning, and Hua Wang. Pattern containment in circular permutations. Integers, 18B:Paper No. A4, 13, 2018.
[12] Daniel Gray, Charles Lanning, and Hua Wang. Patterns in colored circular permutations. Involve, 12(1):157–169, 2019.
[13] Alexios P. Polychronakos. Length and area generating functions for height-restricted motzkin meanders, 2021.
[14] Irena Rusu. Sorting permutations with a fixed pinnacle set. The electronic journal of combinatorics, 27(3), 2020.
[15] Irena Rusu and Bridget Eileen Tenner. Admissible pinnacle orderings. *Graphs Combin.*, 37(4):1205–1214, 2021.

[16] Volker Strehl. Enumeration of alternating permutations according to peak sets. *J. Combinatorial Theory Ser. A*, 24(2):238–240, 1978.

[17] Antoine Vella. Pattern avoidance in permutations: linear and cyclic orders. volume 9, pages Research paper 18, 43. 2002/03. Permutation patterns (Otago, 2003).