Local rings of embedding codepth 3.
A classification algorithm

Lars Winther Christensen*
Texas Tech University, Lubbock, TX 79409, U.S.A.
lars.w.christensen@ttu.edu

Oana Veliche
Northeastern University, Boston, MA 02115, U.S.A.
o.veliche@neu.edu

17 February 2014

Abstract

Let I be an ideal of a regular local ring Q with residue field k. The length of the minimal free resolution of $R = Q/I$ is called the codepth of R. If it is at most 3, then the resolution carries a structure of a differential graded algebra, and the induced algebra structure on $\text{Tor}_Q^*(R, k)$ provides for a classification of such local rings.

We describe the Macaulay 2 package CodepthThree that implements an algorithm for classifying a local ring as above by computation of a few cohomological invariants.

1 Introduction and notation

Let R be a commutative noetherian local ring with residue field k. Assume that R has the form Q/I where Q is a regular local ring with maximal ideal n and $I \subseteq n^2$. The embedding dimension of R (and of Q) is denoted e. Let

$$F = 0 \longrightarrow F_c \longrightarrow \cdots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow 0$$

be a minimal free resolution of R over Q. Set $d = \text{depth} R$; the length c of the resolution F is by the Auslander–Buchsbaum formula

$$c = \text{proj.dim}_Q R = \text{depth} Q - \text{depth}_Q R = e - d,$$

and one refers to this invariant as the codepth of R. In the following we assume that c is at most 3. By a theorem of Buchsbaum and Eisenbud [3, 3.4.3] the resolution F carries a differential graded algebra structure, which induces a unique graded-commutative algebra structure on $A = \text{Tor}_Q^*(R, k)$. The possible structures were identified by Weyman [5] and by Avramov, Kustin, and Miller [2]. According to the multiplicative structure on A, the ring R

*Part of this work was done while the authors visited MSRI during the Commutative Algebra program in spring 2013. LWC was partly supported by NSA grant H98230-11-0214.
belongs to exactly one of the classes designated B, $C(c)$, $G(r)$, $H(p, q)$, S, and T. Here the parameters p, q, and r are given by

$$p = \text{rank}_k(A_1 \cdot A_1), \quad q = \text{rank}_k(A_1 \cdot A_2), \quad \text{and} \quad r = \text{rank}_k(\delta: A_2 \to \text{Hom}_k(A_1, A_3)),$$

where δ is the canonical map. See [1, 2, 5] for further background and details.

When, in the following, we talk about classification of a local ring R, we mean the classification according to the multiplicative structure on A. To describe the classification algorithm, we need a few more invariants of R. Set

$$l = \text{rank}_Q F_1 - 1 \quad \text{and} \quad n = \text{rank}_Q F_c;$$

the latter invariant is called the type of R. The Cohen–Macaulay defect of R is $h = \dim R - d$. The Betti numbers β_i and the Bass numbers μ_i record ranks of cohomology groups,

$$\beta_i = \beta^R_i(k) = \text{rank}_k \text{Ext}^i_R(k, k) \quad \text{and} \quad \mu_i = \mu_i(R) = \text{rank}_k \text{Ext}^i_R(k, R).$$

The generating functions $\sum_{i=0}^{\infty} \beta_i t^i$ and $\sum_{i=0}^{\infty} \mu_i t^i$ are called the Poincaré series and the Bass series of R.

2 The algorithm

For a local ring of codepth $c \leq 3$, the class together with the invariants e, c, l, and n completely determine the Poincaré series and the Bass series of R; see [1]. Conversely, one can determine the class of R based on e, c, l, n, and a few Betti and Bass numbers; in the following we describe how.

Lemma 1. For a local ring R of codepth 3 the invariants p, q, and r are determined by e, l, n, β_2, β_3, β_4, and μ_{e-2} through the formulas

$$p = n + le + \beta_2 - \beta_3 + \binom{e-1}{3}, \quad q = (n - p)e + l\beta_2 + \beta_3 - \beta_4 + \binom{e-1}{4}, \quad \text{and} \quad r = l + n - \mu_{e-2}.$$

Proof. The Poincaré series of R has by [1, 2.1] the form

$$\sum_{i=0}^{\infty} \beta_i t^i = \frac{(1 + t)^{e-1}}{1 - t - lt^2 - (n - p)t^3 + qt^4 + \cdots},$$

and expansion of the rational function yields the expressions for p and q.

One has $d = e - 3$ and the Bass series of R has, also by [1, 2.1], the form

$$\sum_{i=0}^{\infty} \mu_i t^i = t^d n + (l - r)t + \cdots.$$

expansion of the rational function now yields the expression for r. \qed
Proposition 2. A local ring R of codepth 3 can be classified based on the invariants e, h, l, n, $\beta_2, \beta_3, \beta_4$, μ_{e-2}, and μ_{e-1}.

Proof. First recall that one has $h = 0$ and $n = 1$ if and only if R is Gorenstein; see [3, 3.2.10]. In this case R is in class $C(3)$ if $l = 2$ and otherwise in class $G(l + 1)$.

Assume now that R is not Gorenstein. The invariants p, q, and r can be computed from the formulas in Lemma 1. It remains to determine the class, which can be done by case analysis. Recall from [1, 1.3 and 3.1] that one has

Class	p	q	r
T	3	0	0
B	1	1	2
$G(r)$ [$r \geq 2$]	0	1	r
$H(p,q)$	p	q	q

In case $q \geq 2$ the ring R is in class $H(p,q)$; for $q = 0,1$ the case analysis shifts to p.

In case $p = 0$ the distinction between the classes $G(r)$ and $H(0,q)$ is made by comparing q and r; they are equal if and only if R is in class $H(0,q)$.

In case $p = 1$ the distinction between the classes B and $H(1,q)$ is made by comparing q and r; they are equal if and only if R is in class $H(1,q)$.

In case $p = 3$ the distinction between the classes T and $H(3,q)$ is drawn by the invariant μ_{e-1}. Recall the relation $d = e - 3$; expansion of the expressions from [1, 2.1] yields $\mu_{e-1} = \mu_{e-2} + ln - 2$ if R is in T and $\mu_{e-1} = \mu_{e-2} + ln - 3$ if R is in $H(3,q)$.

In all other cases, i.e. $p = 2$ or $p \geq 4$, the ring R is in class $H(p,q)$. □

Remark 3. One can also classify a local ring R of codepth 3 based on the invariants e, h, l, n, β_2, \ldots, β_5, and μ_{e-2}. In the case $p = 3$ one then discriminates between the classes by looking at β_5, which is $\beta_4 + \ell \beta_3 + (n - 3) \beta_2 + \tau$ with $\tau = 0$ if R is in class $H(3,q)$ and $\tau = 1$ if R is in class T. However, it is not possible to classify R based on Betti numbers alone. Indeed, rings in the classes B and $H(1,1)$ have identical Poincaré series and so do rings in the classes $G(r)$ and $H(0,1)$.

Remark 4. A local ring R of codepth $c \leq 2$ can be classified based on the invariants c, h, and n. Indeed, if $c \leq 1$ then R is a hypersurface; i.e. it belongs to class $C(c)$. If $c = 2$ then R belongs to class $C(2)$ if and only if it is Gorenstein ($h = 0$ and $n = 1$); otherwise it belongs to class S.

Algorithm 5. From Remark 4 and the proof of Proposition 2 one gets the following algorithm that takes as input invariants of a local ring of codepth $c \leq 3$ and outputs its class.

INPUT: c, e, h, l, n, $\beta_2, \beta_3, \beta_4$, μ_{e-2}, μ_{e-1}

- In case $c \leq 1$ set $Class = C(c)$
- In case $c = 2$
 - If ($h = 0$ and $n = 1$) then set $Class = C(2)$
 - Else set $Class = S$
In case $c = 3$

 - if $(h = 0$ and $n = 1$) then set $r = l + 1$
 - if $r = 3$ then set $\text{Class} = C(3)$
 - else set $\text{Class} = G(r)$
 - else compute p and q
 - if $(q \geq 2$ or $p = 2$ or $p \geq 4$) then set $\text{Class} = H(p, q)$
 - else compute r
 - In case $p = 0$
 - if $q = r$ then set $\text{Class} = H(0, q)$
 - else set $\text{Class} = G(r)$
 - In case $p = 1$
 - if $q = r$ then set $\text{Class} = H(1, q)$
 - else set $\text{Class} = B$
 - In case $p = 3$
 - if $\mu_{e-1} = \mu_{e-2} + ln - 2$ then set $\text{Class} = T$
 - else set $\text{Class} = H(3, q)$

OUTPUT: Class

Remark 6. Given a local ring $R = Q/I$ the invariants e and h can be computed from R, and c, l, and n can be determined by computing a minimal free resolution of R over Q. The Betti numbers $\beta_2, \beta_3, \beta_4$ one can get by computing the first five steps of a minimal free resolution F of k over R. Recall the relation $d = e - c$; the Bass numbers μ_{e-2} and μ_{e-1} one can get by computing the cohomology in degrees $d+1$ and $d+2$ of the dual complex $F^* = \text{Hom}_R(F, R)$. For large values of d, this may not be feasible, but one can reduce R modulo a regular sequence $x = x_1, \ldots, x_d$ and obtain the Bass numbers as $\mu_{d+i}(R) = \mu_i(R/(x))$; cf. [3, 3.1.16].

3 The implementation

The *Macaulay 2* package *CodepthThree* implements Algorithm 5. The function *torAlgClass* takes as input a quotient Q/I of a polynomial algebra, where I is contained in the irrelevant maximal ideal \mathfrak{N} of Q. It returns the class of the local ring R obtained by localization of Q/I at \mathfrak{N}. For example, the local ring obtained by localizing the quotient

$$Q[x, y, z]/(xy^2, xyz, yz^2, x^4 - y^3z, xz^3 - y^4)$$

is in class $G(2)$; see [4]. Here is how it looks when one calls the function *torAlgClass*.

Macaulay2, version 1.6
with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "CodepthThree";
i2 : Q = QQ[x,y,z];
i3 : I = ideal (x*y^2,x*y*z,y*z^2,x^4-y^3*z,x*z^3-y^4);
o3 : Ideal of Q
i4 : torAlgClass (Q/I)
o4 = G(2)

Underlying \texttt{torAlgClass} is the workhorse function \texttt{torAlgData} which returns a hash table with the following data:

Key	Value
"c"	codepth of R
"e"	embedding dimension of R
"h"	Cohen–Macaulay defect of R
"m"	minimal number of generators of defining ideal of R
"n"	type of R
"Class"	(non-parametrized) class of R
"p"	rank of $A_1 \cdot A_1$
"q"	rank of $A_1 \cdot A_2$
"r"	rank of $\delta : A_2 \to \text{Hom}_k(A_1, A_3)$
"PoincareSeries"	Poincaré series of R
"BassSeries"	Bass series of R

In the example from above one gets:

i5 : torAlgData(Q/I)

\[
\begin{align*}
2 & + 2T - T - T + T \\
1 - T - 4T - 2T + T
\end{align*}
\]

c => 3
Class => G
e => 3
h => 1
m => 5
n => 2
p => 0

\[
\begin{align*}
2 \\
2 & - (1 + T)
\end{align*}
\]

PoincareSeries => ----------------------

To facilitate extraction of data from the hash table, the package offers two functions \texttt{torAlgDataList} and \texttt{torAlgDataPrint} that take as input a quotient ring and a list of keys. In the example from above one gets:
As discussed in Remark 6, the computation of Bass numbers may require a reduction modulo a regular sequence. In our implementation such a reduction is attempted if the embedding dimension of the local ring R is more than 3. The procedure involves random choices of ring elements, and hence it may fail. By default, up to 625 attempts are made, and with the function `setAttemptsAtGenericReduction`, one can change the number of attempts. If none of the attempts are successful, then an error message is displayed:

```plaintext
i11 : torAlgClass R
stdio:11:1:(3): error: Failed to compute Bass numbers. You may raise the number of attempts to compute Bass numbers via a generic reduction with the function `setAttemptsAtGenericReduction` and try again.

i12 : setAttemptsAtGenericReduction(R,25)

i13 : torAlgClass R
o13 = G(2)
```

Notice that the maximal number of attempts is n^2 where n is the value set with the function `setAttemptsAtGenericReduction`.

```
2
(1 + T)
```

```
\{3, G, 0, 1, 2, \ldots\} \\
\frac{2}{1 - T - 4T - 2T + T}
```

```
io6 : List
```
Notes. Given Q/I our implementation of Algorithm 5 in $torAlgData$ proceeds as follows.

1. Check if a value is set for $attemptsAtBassNumbers$; if not use the default value 25.

2. Initialize the invariants of R (the localization of Q/I at the irrelevant maximal ideal) that are to be returned; see the table in Section 3.

3. Handle the special case where the defining ideal I or Q/I is 0. In all other cases compute the invariants $c, e, h, m (= l + 1)$, and n.

4. If possible, classify R based on c, e, h, m, and n. At this point the implementation deviates slightly from Algorithm 5, as it uses that all rings with $c = 3$ and $h = 2$ are of class $H(0, 0)$; see [1, 3.5].

5. For rings not classified in step 3 or 4 one has $c = 3$; cf. Remark 4. Compute the Betti numbers β_2, β_3, and β_4, and with the formula from Lemma 1 compute p and q. If possible classify R based on these two invariants.

6. For rings not classified in steps 3–5, compute the Bass numbers μ_{e-2} and μ_{e-1}. If $d = e - 3$ is positive, then the Bass numbers are computed via a reduction module a regular sequence of length d as discussed in above. Now compute r with the formula from Lemma 1 and classify R.

7. The class of R together with the invariants $c, l = m - 1$, and n determine its Bass and Poincaré series; cf. [1, 2.1].

If I is homogeneous, then various invariants of R can be determined directly from the graded ring Q/I. If I is not homogeneous, and R hence not graded, then functions from the package $LocalRings$ are used.

References

[1] Luchezar L. Avramov. A cohomological study of local rings of embedding codepth 3. $J. Pure Appl. Algebra$, 216(11):2489–2506, 2012.

[2] Luchezar L. Avramov, Andrew R. Kustin, and Matthew Miller. Poincaré series of modules over local rings of small embedding codepth or small linking number. $J. Algebra$, 118(1):162–204, 1988.

[3] Winfried Bruns and Jürgen Herzog. Cohen-Macaulay rings, volume 39 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1993.

[4] Lars Winther Christensen and Oana Veliche. Local rings of embedding codepth 3. Examples. $Algebr. Represent. Theory$ 17(1):121–135, 2014.

[5] Jerzy Weyman. On the structure of free resolutions of length 3. $J. Algebra$, 126(1):1–33, 1989.