TWISTED FOURIER–MUKAI PARTNERS
OF ENRIQUES SURFACES

NICOLAS ADDINGTON AND ANDREW WRAY

Abstract. Bridgeland and Maciocia showed that a complex Enriques surface X has no Fourier–Mukai partners apart from itself: that is, if $D^b(X) \cong D^b(Y)$ then $X \cong Y$. We extend this to twisted Fourier–Mukai partners: if α is the non-trivial element of $\text{Br}(X) = \mathbb{Z}/2$ and $D^b(X, \alpha) \cong D^b(Y, \beta)$, then $X \cong Y$ and β is non-trivial. Our main tools are twisted topological K-theory and twisted Mukai lattices.

Introduction

Two smooth projective varieties X and Y are called Fourier–Mukai partners if they have equivalent derived categories of coherent sheaves $D^b(X) \cong D^b(Y)$, and twisted Fourier–Mukai partners if they have equivalent derived categories of twisted sheaves $D^b(X, \alpha) \cong D^b(Y, \beta)$ for some Brauer classes $\alpha \in \text{Br}(X)$ and $\beta \in \text{Br}(Y)$. In the early 2000s, Bridgeland, Maciocia, and Kawamata showed that among complex surfaces, only K3, abelian, and elliptic surfaces have non-trivial Fourier–Mukai partners; see [13, Ch. 12] for a textbook account. Recently several authors have been interested in extending this result to positive characteristic and to twisted Fourier–Mukai partners. Here we carry out one step in this program:

Theorem. Let X be a complex Enriques surface, let $\alpha \in \text{Br}(X) = \mathbb{Z}/2$, and let Y be another smooth complex projective variety and $\beta \in \text{Br}(Y)$. If $D^b(X, \alpha) \cong D^b(Y, \beta)$, then $X \cong Y$, and via that isomorphism $\alpha = \beta$.

If α and β are trivial then this was proved by Bridgeland and Maciocia in [6, Prop. 6.1]. Some special cases of the twisted result were obtained by Martinez Navas in [17, Ch. 3].

Dimension, order of the canonical bundle, and Hochschild homology are invariant under twisted derived equivalence, just as they are under untwisted equivalence: the proofs of [13, Prop. 4.1 and Rem. 6.3] go through unchanged, relying on existence and especially uniqueness of kernels for twisted equivalences due to Canonaco and Stellari [8, Thm. 1.1]. Thus Y is an Enriques surface. In §1 we use twisted topological K-theory to show that we cannot have α trivial and β non-trivial. In §2 we show that if α and β are both non-trivial then $X \cong Y$; our proof follows the outline of Bridgeland and Maciocia’s, but is more delicate.
Acknowledgements. This paper grew out of conversations with K. Honigs and S. Tirabassi, related to [12]. We thank them for a fruitful exchange. We also thank A. Beauville and D. Dugger for helpful advice. Our first attempts at Proposition 2.6 made heavy use of Macaulay2 [11]; we thank B. Young for computer time.

1. One twisted, one untwisted

Given a smooth complex projective variety X and a class $\alpha \in \text{Br}(X)$ with image $\bar{\alpha} \in H^3(X, \mathbb{Z})$, we let $K^i_{\text{top}}(X, \bar{\alpha})$ denote twisted topological K-theory; for the definition and first properties we refer to Atiyah and Segal [1, 2]. It is a 2-periodic sequence of finitely generated Abelian groups, and can be computed using an Atiyah-Hirzebruch spectral sequence.

An untwisted derived equivalence induces an isomorphism on topological K-theory, and recent work of Moulinos [18, Cor. 1.2], together with uniqueness of dg enhancements [9, §6.3], extends this to the twisted case: if $D^b(X, \alpha) \sim D^b(Y, \beta)$ then $K^i_{\text{top}}(X, \bar{\alpha}) \sim K^i_{\text{top}}(Y, \bar{\beta})$.

We will show that if X is an Enriques surface then $K^1_{\text{top}}(X) = \mathbb{Z}/2$, but if α is the non-trivial element of $\text{Br}(X) = \mathbb{Z}/2$ then $K^1_{\text{top}}(X, \bar{\alpha}) = 0$, and thus an untwisted Enriques surface cannot be derived equivalent to a twisted one.

By [4, Lem. VIII.15.1], an Enriques surface has $\pi_1 = \mathbb{Z}/2$ and Hodge diamond

\[
\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 10 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & & & \\
\end{array}
\]

By the universal coefficient theorem and Poincaré duality, it follows that

\[H^i(X, \mathbb{Z}) = \begin{cases}
\mathbb{Z} & i = 0 \\
0 & i = 1 \\
\mathbb{Z}^{10} \oplus \mathbb{Z}/2 & i = 2 \\
\mathbb{Z}/2 & i = 3 \\
\mathbb{Z} & i = 4.
\end{cases}\]

Now the claims about K^1_{top} above follow from:

Proposition 1.1. If X is any compact complex surface, then

\[K^1_{\text{top}}(X) \cong H^1(X, \mathbb{Z}) \oplus H^3(X, \mathbb{Z}).\]

If $\alpha \in \text{Br}(X)$ has image $\bar{\alpha} \in H^3(X, \mathbb{Z})$, then

\[K^1_{\text{top}}(X, \bar{\alpha}) \cong H^1(X, \mathbb{Z}) \oplus H^3(X, \mathbb{Z})/\bar{\alpha}.

1This reference is very ∞-categorical; a more down-to-earth reader might want to say that for any kernel $P \in D^b(X \times Y, \alpha^{-1} \boxtimes \beta)$, the class $[P] \in K^0_{\text{top}}(X \times Y, \alpha^{-1} \boxtimes \beta)$ induces a map $K^i_{\text{top}}(X, \bar{\alpha}) \rightarrow K^i_{\text{top}}(Y, \bar{\beta})$ in a way that’s functorial with respect to composition of kernels. But this would require a compatibility between pushforward on algebraic and topological twisted K-theory, comparable to [3]. This seems to be missing from the literature, and to prove it here would take us too far afield.
Proof. We abbreviate $H^i(X, \mathbb{Z})$ as H^i. The E_3 page of the Atiyah–Hirzebruch spectral sequence is

\[
\begin{array}{cccccc}
\vdots & \vdots & \vdots & \vdots & \vdots & \\
0 & 0 & 0 & 0 & 0 & 0 \\
H^0 & H^1 & H^2 & H^3 & H^4 & \\
0 & 0 & 0 & 0 & 0 & 0 \\
H^0 & H^1 & H^2 & H^3 & H^4 & \\
0 & 0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \\
\end{array}
\]

For untwisted K-theory, the map d_3 is given by

\[Sq_3^Z = \beta \circ Sq^2 \circ r, \]

where r is reduction mod 2, Sq^2 is the usual Steenrod square, and β is the Bockstein homomorphism associated to the short exact sequence of coefficient groups

\[0 \rightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{r} \mathbb{Z}/2 \rightarrow 0. \]

This vanishes on H^0 and H^1 for degree reasons, so the spectral sequence degenerates. The filtration of $K^1_{\text{top}}(X)$ splits because H^1 is free.

For twisted K-theory, the E_3 page has the same terms, but now $d_3(x) = Sq_3^Z(x) - \bar{\alpha} \cup x$

by [2, Prop. 4.6]. This maps $1 \in H^0$ to $-\bar{\alpha} \in H^3$, and vanishes on H^1 because $\bar{\alpha}$ is torsion and H^4 is free. Thus the E_4 page is

\[
\begin{array}{cccccc}
\vdots & \vdots & \vdots & \vdots & \vdots & \\
0 & 0 & 0 & 0 & 0 & 0 \\
k \cdot H^0 & H^1 & H^2 & H^3/\bar{\alpha} & H^4 & \\
0 & 0 & 0 & 0 & 0 & 0 \\
k \cdot H^0 & H^1 & H^2 & H^3/\bar{\alpha} & H^4 & \\
0 & 0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \\
\end{array}
\]

where k is the order of $\bar{\alpha}$. At this point the spectral sequence degenerates, and again the filtration of $K^1_{\text{top}}(X, \alpha)$ splits because H^1 is free. \hfill \square
2. Both twisted

We begin by recalling the outline of Bridgeland and Maciocia’s proof that if X and Y are complex Enriques surfaces and $D^b(X) \cong D^b(Y)$, then $X \cong Y$; see [6, Prop. 6.1] for the original or [13, Prop. 12.20] for another account. Take universal covers $p: \tilde{X} \to X$ and $q: \tilde{Y} \to Y$, so \tilde{X} and \tilde{Y} are K3 surfaces, and let τ denote the covering involution of either \tilde{X} or \tilde{Y}. An equivalence $D^b(X) \to D^b(Y)$ lifts to an equivalence $D^b(\tilde{X}) \to D^b(\tilde{Y})$ that commutes with τ^*. The induced Hodge isometry $H^*(\tilde{X}, \mathbb{Z}) \to H^*(\tilde{Y}, \mathbb{Z})$ commutes with τ^*, and hence restricts to a Hodge isometry between the τ^*-anti-invariant parts $H^2_-(\tilde{X}, \mathbb{Z}) \to H^2_-(\tilde{Y}, \mathbb{Z})$. Using Nikulin’s lattice theory, this extends to a Hodge isometry on all of H^2, still commuting with τ^*. Thus $X \cong Y$ by the Torelli theorem for Enriques surfaces.

Now let $\alpha \in \text{Br}(X)$ and $\beta \in \text{Br}(Y)$ be non-trivial. First we will check that an equivalence $D^b(X, \alpha) \to D^b(Y, \beta)$ lifts to an equivalence $D^b(\tilde{X}, p^*\alpha) \to D^b(\tilde{Y}, q^*\beta)$ that commutes with τ^*. Next we will make a careful choice of B-fields in $H^2(\tilde{X}, \mathbb{Q})$ and $H^2(\tilde{Y}, \mathbb{Q})$ that lift $p^*\alpha$ and $q^*\beta$ and satisfy $\tau^*B = -B$. Then we have an induced isometry $\varphi: H^2(\tilde{X}, \mathbb{Z}) \to H^2(\tilde{Y}, \mathbb{Z})$, such that $e^{-B} \circ \varphi \circ e^B$ preserves H^2_0 and commutes with τ^*. This yields a Hodge isometry $H^2_-(\tilde{X}, \mathbb{Q}) \to H^2_-(\tilde{Y}, \mathbb{Q})$, and the delicate step is to show that it takes $H^2_-(\tilde{X}, \mathbb{Z})$ into $H^2_-(\tilde{Y}, \mathbb{Z})$. Then we can conclude as in the untwisted case.

2.1. Lifting the kernel.

Proposition 2.1. With the notation introduced above, if $D^b(X, \alpha) \cong D^b(Y, \beta)$ then there is a kernel $\tilde{P} \in D^b(\tilde{X} \times \tilde{Y}, p^*\alpha^{-1} \boxtimes q^*\beta)$ that induces an equivalence $D^b(\tilde{X}, p^*\alpha) \to D^b(\tilde{Y}, q^*\beta)$ and satisfies $(\tau \times \tau^*)^*\tilde{P} \cong \tilde{P}$.

Remark 2.2. The expert reader might worry that $(\tau \times \tau^*)^*\tilde{P}$ lies a priori in $D^b(\tilde{X} \times \tilde{Y}, \tau^*p^*\alpha^{-1} \boxtimes \tau^*q^*\beta)$, and that in order to identify this with $D^b(\tilde{X} \times \tilde{Y}, p^*\alpha^{-1} \boxtimes q^*\beta)$ we might have to make some non-canonical choice; cf. [10, Rmk. 1.2.9]. But once we fix a cocycle $\{U_i, \alpha_{ijk}\}$ representing α, the cocycle $\{p^{-1}(U_i), \alpha_{ijk} \circ p\}$ representing $p^*\alpha$ is actually the same as the cocycle $\{\tau^{-1}(p^{-1}(U_i)), \alpha_{ijk} \circ p \circ \tau\}$ representing $\tau^*p^*\alpha$, not just cohomologous, because $p \circ \tau = p$. The same is true of β. So the identification is canonical.

Proof of Proposition 2.1. By [8, Thm. 1.1], the equivalence is induced by a kernel $P \in D^b(X \times Y, \alpha^{-1} \boxtimes \beta)$. To lift it to a kernel \tilde{P} as in the statement of the proposition, we can follow Bridgeland and Maciocia [7, Thm. 4.5], or Huybrechts’ book [13, Prop. 7.18], or Lombardi and Popa [16, Thm. 10] with no changes. The key point is an equivalence between:

1. $(p^*\alpha^{-1} \boxtimes q^*\beta)$-twisted sheaves on $\tilde{X} \times \tilde{Y}$,
(2) \((p^* \alpha - 1 \boxtimes \beta)\)-twisted sheaves on \(\tilde{X} \times Y\) that are modules over
\[(1 \times q)_* \mathcal{O}_{\tilde{X} \times Y} = \mathcal{O}_{\tilde{X} \times Y} \oplus \omega_{\tilde{X} \times Y},\]
and

(3) \((p^* \alpha - 1 \boxtimes \beta)\)-twisted sheaves \(F\) on \(\tilde{X} \times Y\) with
\(F \otimes \omega_{\tilde{X} \times Y} \sim F\).

In fact there is a subtlety in identifying (2) and (3), which the references above elide, but which Krug and Sosna treat carefully in \([15, \text{Lem. 3.6(ii)}]\). To turn a sheaf as in (3) into a \((\mathcal{O} \oplus \omega)\)-module as in (2), one needs the chain of isomorphisms
\(F \otimes \omega^{2} \sim F \otimes \omega \sim F\) to agree with the global identification
\(\omega^{2} \sim \mathcal{O}\). But in our case, the complex \((p \times 1)^* P\) that we wish to lift is simple,
so any discrepancy can be scaled away before we start lifting cohomology sheaves.

To see that \((p \times 1)^* P\) is simple, first observe that it is the composition of
the kernels \(P \in D_{b}(X \times Y)\) and \(O_{\Gamma_{p}} \in D_{b}(\tilde{X} \times X)\), where \(\Gamma_{p}\) is the graph of
\(p\), by \([13, \text{Ex. 5.12 and 5.4(ii)}]\). Moreover, because \(P\) induces an equivalence,
composition with \(P\) is an equivalence
\(D_{b}(\tilde{X} \times X) \to D_{b}(\tilde{X} \times Y)\), so
\(\text{Hom}_{\tilde{X} \times Y}((p \times 1)^* P, (p \times 1)^* P) = \text{Hom}_{\tilde{X} \times X}(O_{\Gamma_{p}}, O_{\Gamma_{p}}) = H^{0}(O_{\Gamma_{p}})\).

This is 1-dimensional because \(\Gamma_{p} \cong \tilde{X}\). \(\square\)

2.2. Choice of B-field. To get induced maps on cohomology from our
kernel \(\tilde{P}\), we must choose B-field lifts of our Brauer classes, that is, a class
\(B \in H^{2}(\tilde{X}, \mathbb{Q})\) with \(\exp(B^{0,2}) = p^* \alpha\), and similarly with \(q^* \beta\).

By [4, Lem. VIII.19.1], we can choose an isometry
\[H^{2}(\tilde{X}, \mathbb{Z}) \cong -E_{8} \oplus -E_{8} \oplus U \oplus U \oplus U\] \hspace{1cm} (1)
under which the involution \(\tau^*\) acts as
\[(x, y, z_{1}, z_{2}, z_{3}) \mapsto (y, x, z_{2}, z_{1}, -z_{3})\]. \hspace{1cm} (2)

Here \(-E_{8}\) is the unique negative definite even unimodular lattice of rank 8, and \(U\) is the standard hyperbolic lattice, with basis \(e\) and \(f\) satisfying
\(e^{2} = f^{2} = 0\) and \(e.f = 1\).

Proposition 2.3 (Beauville [5]). Under the isometry (1), the class
\[B := (0, 0, 0, 0, \frac{1}{2} e + \frac{1}{2} f) \in H^{2}(\tilde{X}, \mathbb{Q})\]
satisfies \(\exp(B^{0,2}) = p^* \alpha \in \text{Br}(\tilde{X}) \subset H^{2}(\mathcal{O}_{\tilde{X}}^*)\).

Remark 2.4. Note that \(p^* \alpha\) may be trivial: it may be that \(B\) has the same
(0, 2) part as some integral class in \(H^{2}(\tilde{X}, \mathbb{Z})\). Indeed, the point of
Beauville’s beautiful paper is that set of Enriques surfaces for which this
happens form a countable union of divisors in the moduli space.
Proof of Proposition 2.3. Beauville’s set-up is a bit different from ours, so we explain how to deduce the proposition from his paper.

Consider the diagram of sheaves

\[
\begin{array}{c}
0 \\ r \\
\end{array}
\begin{array}{c}
\mathbb{Z} \\
\mathbb{Z}/2
\end{array}
\begin{array}{c}
\exp(\frac{1}{2} -) \\
_{z \rightarrow z^2}
\end{array}
\begin{array}{c}
\mathcal{O}^* \\
\mathcal{O}^*
\end{array}
\begin{array}{c}
2\pi i \\
0
\end{array}
\begin{array}{c}
\mathbb{O} \\
\mathbb{O}
\end{array}
\begin{array}{c}
r \\
\exp(\frac{1}{2} -)
\end{array}
\begin{array}{c}
\mathcal{O}^* \\
\mathcal{O}^*
\end{array}
\begin{array}{c}
0 \\
0
\end{array}
\begin{array}{c}
\end{array}
\end{array}
\]

on either X or \tilde{X}. On the Enriques surface X, we have $H^0.1 = H^0.2 = 0$, so $Br(X) = H^2(\mathcal{O}_X^*) = H^3(X, \mathbb{Z}) = \mathbb{Z}/2$, and taking cohomology we get

\[
\begin{array}{c}
0 \\
Pic(X)
\end{array}
\begin{array}{c}
\xrightarrow{c_1} \\
\xrightarrow{r}
\end{array}
\begin{array}{c}
H^2(X, \mathbb{Z}) \\
H^2(X, \mathbb{Z}/2)
\end{array}
\begin{array}{c}
\rightarrow \\
\rightarrow
\end{array}
\begin{array}{c}
Br(X) \\
Br(X)
\end{array}
\]

On the K3 surface \tilde{X}, we get

\[
\begin{array}{c}
0 \\
Pic(\tilde{X})
\end{array}
\begin{array}{c}
\xrightarrow{c_1} \\
\xrightarrow{r}
\end{array}
\begin{array}{c}
H^2(\tilde{X}, \mathbb{Z}) \\
H^2(\tilde{X}, \mathbb{Z}/2)
\end{array}
\begin{array}{c}
\rightarrow \\
\rightarrow
\end{array}
\begin{array}{c}
H^2(\mathcal{O}_X^*) \\
H^2(\mathcal{O}_X^*)
\end{array}
\]

Moreover the pullback p^* maps the first diagram to the second.

In the second diagram, consider $2B \in H^2(\tilde{X}, \mathbb{Z})$. By [5, Prop. 5.3], we can choose $x \in H^2(X, \mathbb{Z}/2)$ with $p^*x = r(2B)$ (= ε in Beauville’s notation). To prove the proposition, it is enough to show that x maps to $\alpha \in Br(X)$; or equivalently that x is not the reduction of an integral class $y \in H^2(X, \mathbb{Z})$. If $x = r(y)$ then $x^2 = r(y^2) = 0$, because the intersection pairing on $H^2(X, \mathbb{Z})$ is even [4, Lem. VIII.15.1(iii)]. But $(2B)^2 = 2$, so $x^2 = 1$ by [5, Lem. 5.4]. □

2.3. Induced map on cohomology. From here on we fix bases for $H^*(\tilde{X}, \mathbb{Z})$ and $H^*(\tilde{Y}, \mathbb{Z})$ as in (1). We continue to let τ^* denote the involution on both sides, which in our basis acts by (2). From Proposition 2.3 we get B-fields on both \tilde{X} and \tilde{Y}, both denoted B.

Following Huybrechts and Stellari [14, §4], the twisted Mukai vector

\[v^{-B\otimes B}(\tilde{P}) \in H^*(\tilde{X} \times \tilde{Y}, \mathbb{Z})\]

induces an isometry

\[\varphi: H^*(\tilde{X}, \mathbb{Z}) \rightarrow H^*(\tilde{Y}, \mathbb{Z}),\]

whose complexification takes $e^B H^0.2(\tilde{X})$ into $e^B H^0.2(\tilde{Y})$.

Proposition 2.5. \(e^{-B} \circ \varphi \circ e^B \) commutes with \(\tau^* \).

Proof. We have
\[
(\tau \times \tau)^* v^{-B \oplus B}(\tilde{P}) = v^{\tau^*(-B) \oplus \tau^* B}((\tau \times \tau)^* \tilde{P}) = v^{B \oplus (-B)}(\tilde{P}) = \text{ch}^{2B \oplus (-2B)}(\mathcal{O}_{\tilde{X} \times \tilde{Y}}) \cdot v^{-B \oplus B}(\tilde{P}) = e^{2B \oplus (-2B)} \cdot v^{-B \oplus B}(\tilde{P}),
\]
where in the third line we have used [14, Prop. 1.2(iii)], and in the fourth we have used [ibid., Prop. 1.2(ii)].

This implies that \(\tau^* \circ \varphi \circ \tau^* = e^{-2B} \circ \varphi \circ e^{2B} \), which can be manipulated to give the desired result. \(\square \)

2.4. Integrality. If we denote the \(\tau^* \)-invariant and -anti-invariant parts of \(H^* \) by \(H^*_+ \) and \(H^*_-=H^2 \), then we have constructed a Hodge isometry
\[
e^{-B} \circ \varphi \circ e^B: H^2_-(\tilde{X}, \mathbb{Q}) \to H^2_-(\tilde{Y}, \mathbb{Q}).
\]

It remains to show that it maps integral classes to integral classes.

To that end, suppose that \(x \in H^2(\tilde{X}, \mathbb{Z}) \) satisfies \(\tau^* x = -x \), and write
\[
\varphi(e^B x) = (r, c, s) \in H^*(\tilde{Y}, \mathbb{Q}).
\]
Then
\[
e^{-B}(r, c, s) = (r, c - rB, s - cB + \frac{1}{2}rB^2)
\]
is \(\tau^* \)-anti-invariant, so \(r = 0 \), and \(s - cB = 0 \): that is,
\[
e^{-B} \varphi(e^B x) = (0, c, 0).
\]

So we wish to show that the degree-2 part of \(\varphi(e^B x) \) is integral. We have
\[
e^B x = (0, x, y) \in H^*(\tilde{X}, \mathbb{Q}),
\]
where \(y = x.B \in \frac{1}{2}\mathbb{Z} \). Since \(x \) is integral and \(y \) is half-integral, we will have proved our main theorem once we prove:

Proposition 2.6. For any isometry \(\varphi: H^*(\tilde{X}, \mathbb{Z}) \to H^*(\tilde{Y}, \mathbb{Z}) \) that commutes with \(T := e^B \circ \tau^* \circ e^{-B} \), the degree-2 part of \(\varphi(0, 0, 1) \) is divisible by 2.

Proof. Observe that \(T \) is integral: \(T = e^{2B} \circ \tau^* \).

By Poincaré duality, the statement of the proposition is equivalent to
\[
\langle \varphi(0, 0, 1), \ell \rangle \equiv 0 \pmod{2}
\]
for all \(\ell \in H^2(\tilde{X}, \mathbb{Z}) \). Because \(T \) is an isometry and \((0, 0, 1) \) is \(T \)-invariant,
\[
\langle \varphi(0, 0, 1), \ell \rangle = \langle \varphi(0, 0, 1), \frac{1}{2}(\ell + T\ell) \rangle,
\]
so it is enough to show that
\[
\langle \varphi(0, 0, 1), \ell + T\ell \rangle \equiv 0 \pmod{4}.
\]
Now our proof will consist of two calculations:
Claim 1. For any $\ell \in H^2(\tilde{X}, \mathbb{Z})$,
\[(\ell + T\ell)^2 \equiv 0 \pmod{4}.
\]

Claim 2. For any T-invariant class $v \in H^*(\tilde{X}, \mathbb{Z})$,
\[
\langle (0, 0, 1), v \rangle \equiv v^2 \pmod{4}.
\]

Observe that this property is preserved by T-equivariant isometries, so $\varphi(0, 0, 1)$ has the same property.

To prove the first claim, write $(\ell + T\ell)^2 = \ell^2 + 2(\ell, T\ell) + (T\ell)^2 = 2\ell^2 + 2\ell.\tau^*\ell$.

Since ℓ^2 is even, it is enough to show that $\ell.\tau^*\ell$ is even. Using the basis (1), write
\[
\ell = (x, y, z_1, z_2, z_3).
\]

Then
\[
\ell.\tau^*\ell = 2xy + 2z_1z_2 - z_3^2,
\]

which is even because z_3^2 is even. Thus the first claim is proved.

To prove the second claim, write
\[
v = (r, x, y, z_1, z_2, ae + bf, s) \in H^0 \oplus H^2 \oplus H^4,
\]

where again we use the basis (1) for H^2. Then
\[
Tv = e^{2B}\tau^*v
= e^{2B}(r, y, x, z_2, z_1, -ae - bf, s)
= (r, y, x, z_2, z_1, (r - a)e + (r - b)f, s - a - b + r).
\]

From $Tv = v$ we find that $x = y$, $z_1 = z_2$, $r = 2a$, and $a = b$. Thus
\[
v = (2a, x, x, z_1, z_1, ae + af, s),
\]

so
\[
v^2 = 2x^2 + 2z_1^2 + 2a^2 - 4as.
\]

Since x^2 and z_1^2 are even,
\[
v^2 \equiv 2a^2 \equiv 2a \pmod{4},
\]

and moreover
\[
\langle (0, 0, 1), v \rangle = -2a,
\]

so the second claim is proved.

\[\square\]

2What’s going on is that the pairing on the T-invariant sublattice of $H^*(\tilde{X}, \mathbb{Z})$ is two times an odd unimodular pairing, and $(0, 0, 1)$ is what’s sometimes called a “characteristic” or “parity” vector.
References

[1] M. Atiyah and G. Segal. Twisted K-theory. Ukr. Mat. Visn., 1(3):287–330, 2004. Also math/0407054.

[2] M. Atiyah and G. Segal. Twisted K-theory and cohomology. In Inspired by S. S. Chern, volume 11 of Nankai Tracts Math., pages 5–43. World Sci. Publ., Hackensack, NJ, 2006. Also math/0510674.

[3] M. F. Atiyah and F. Hirzebruch. The Riemann-Roch theorem for analytic embeddings. Topology, 1:151–166, 1962.

[4] W. Barth, K. Hulek, C. Peters, and A. Van de Ven. Compact complex surfaces, volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer-Verlag, Berlin, second edition, 2004.

[5] A. Beauville. On the Brauer group of Enriques surfaces. Math. Res. Lett., 16(6):927–934, 2009. Also arXiv:0902.3721.

[6] T. Bridgeland and A. Maciocia. Complex surfaces with equivalent derived categories. Math. Z., 236(4):677–697, 2001.

[7] T. Bridgeland and A. Maciocia. Fourier-Mukai transforms for quotient varieties. J. Geom. Phys., 122:119–127, 2017. Also math/0911.0103.

[8] A. Canonaco and P. Stellari. Twisted Fourier-Mukai functors. Adv. Math., 212(2):484–503, 2007. Also math/0605229.

[9] A. Canonaco and P. Stellari. Uniqueness of dg enhancements for the derived category of a Grothendieck category. J. Eur. Math. Soc., to appear. Also arXiv:1507.05509.

[10] A. Căldăraşu. Derived categories of twisted sheaves on Calabi-Yau manifolds. PhD thesis, Cornell, 2000. Available at www.math.wisc.edu/~andreic/publications/ThesisSingleSpaced.pdf.

[11] D. Grayson and M. Stillman. Macaulay2, a software system for research in algebraic geometry. Available at www.math.uiuc.edu/Macaulay2/.

[12] K. Honigs, M. Lieblich, and S. Tirabassi. Fourier-Mukai partners of Enriques and bielliptic surfaces in positive characteristic. Preprint, arXiv:1708.03409.

[13] D. Huybrechts. Fourier-Mukai transforms in algebraic geometry. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, Oxford, 2006.

[14] D. Huybrechts and P. Stellari. Equivalences of twisted K3 surfaces. Math. Ann., 332(4):901–936, 2005. Also math/0409030.

[15] A. Krug and P. Sosna. Equivalences of equivariant derived categories. J. Lond. Math. Soc. (2), 92(1):19–40, 2015. Also arXiv:1411.0824.

[16] L. Lombardi and M. Popa. Derived equivalence and non-vanishing loci II. In Recent advances in algebraic geometry, volume 417 of London Math. Soc. Lecture Note Ser., pages 291–306. Cambridge Univ. Press, Cambridge, 2015. Also arXiv:1302.2259.

[17] H. J. Martinez Navas. Fourier-Mukai transform for twisted sheaves. PhD thesis, Bonn, 2010. Available at has.ulb.uni-bonn.de/2010/2230/2230.pdf.

[18] T. Moulinos. Derived Azumaya algebras and twisted K-theory. Preprint, arXiv:1710.05810.

Nicolas Addington, Department of Mathematics, University of Oregon, Eugene, Oregon 97403, United States
E-mail address: adding@uoregon.edu

Andrew Wray, Department of Mathematics, University of Oregon, Eugene, Oregon 97403, United States
E-mail address: awray3@uoregon.edu