Transmission Incompetence of Culex quinquefasciatus and Culex pipiens pipiens from North America for Zika Virus

Joan L. Kenney,† Hannah Romo,† Nisha K. Duggal,† Wen-Pin Tzeng, Kristen L. Burkhalar, Aaron C. Brault, and Harry M. Savage

†Centers for Disease Control and Prevention, Fort Collins, Colorado

Abstract. In late 2014, Zika virus (ZIKV; Flaviviridae, Flavivirus) emerged as a significant arboviral disease threat in the Western hemisphere. Aedes aegypti and Aedes albopictus have been considered the principal vectors of ZIKV in the New World due to viral isolation frequency and vector competence assessments. Limited reports of Culex transmission potential have highlighted the need for additional vector competence assessments of North American Culex species. Accordingly, North American Culex pipiens and Culex quinquefasciatus were orally exposed and intrathoracically inoculated with the African prototype ZIKV strain and currently circulating Asian lineage ZIKV strains to assess infection, dissemination, and transmission potential. Results indicated that these two North American Culex mosquito species were highly refractory to oral infection with no dissemination or transmission observed with any ZIKV strains assessed. Furthermore, both Culex mosquito species intrathoracically inoculated with either Asian or African lineage ZIKVs failed to expectorate virus in saliva. These in vivo results were further supported by the observation that multiple mosquito cell lines of Culex species origin demonstrated significant growth restriction of ZIKV strains compared with Aedes-derived cell lines. In summation, no evidence for the potential of Cx. pipiens or Cx. quinquefasciatus to serve as a competent vector for ZIKV transmission in North America was observed.

INTRODUCTION

Zika virus (ZIKV), a member of the genus Flavivirus, has recently surfaced as a significant threat to global public health despite only having been found in the Western hemisphere since late 2014. The first ZIKV isolates were made from a sentinel Rhesus monkey and subsequently from arboreal Aedes africanus mosquitoes, a suspected sylvatic cycle vector, in Uganda in 1947 and 1948. The first described clinical case was identified in Nigeria in 1954 in which the individual exhibited symptoms similar to many arthralgic arboviruses including fever, headache, diffuse joint pain, and slight jaundice. Serological evidence of ZIKV infection was subsequently identified in Nigeria, Egypt, India, Malaysia, Indonesia, Philippines, Thailand, Vietnam, and Senegal. Phylogenetic analysis demonstrates three distinct ZIKV genotypes corresponding to the initial emergence in east Africa and subsequent spread to west Africa and Asia. ZIKV was associated with sporadic limited human disease prior to 2007 when ZIKV caused outbreaks in Yap and Gabon. By 2013, ZIKV had spread to French Polynesia and other islands of the South Pacific including New Caledonia, the Cook Islands, and Easter Island prior to its first detection in the Western hemisphere in 2014.

First detected in the peridomestic vector, Aedes aegypti, in Malaysia in 1966, subsequent vector competence and ecological studies have established ZIKV to be vectored primarily by members of the genus Aedes in both sylvatic and urban cycles through field studies. However, recent ZIKV detection in Culex mosquitoes and reports of experimental evidence of transmission of ZIKV by Culex quinquefasciatus have raised public concerns that mosquitoes of the Culex pipiens complex could play a role in transmission as well. Vector competence by mosquitoes of alternative genera would have possible implications for many regions of North America where the known Aedes vectors, A. aegypti and Aedes albopictus, are absent and a significant number of Culex species are present. The utilization of both Aedes and Culex mosquitoes as vectors would alter the discourse and strategy for control efforts. Surveillance and control of Culex mosquitoes requires utilization of different tools and greatly increases the area of surveillance based on the wide geographic range of potential Culex vectors.

There have been a number of recent studies directly evaluating the vector competence of Culex mosquitoes for circulating strains of ZIKV and the results have been mixed. Two studies using Cx. pipiens and Cx. quinquefasciatus from North America showed a lack of ZIKV infection, dissemination, or saliva infection after oral exposure by artificial or viremic mice as blood meal sources. A study from Brazil showed a low level of experimental infection in Cx. quinquefasciatus after artificial blood meal exposure, but no dissemination from the midgut or transmission. An Italian study indicated a lack of infection in Cx. pipiens mosquitoes after oral exposure, whereas a second study in Europe examining ZIKV oral infection of Cx. pipiens and Cx. quinquefasciatus found evidence of infection and low rates of dissemination but no transmission. The findings from experiments described above are in direct contrast with two reports of highly efficient transmission potential from Brazil and China. In an attempt to rule out the role of Culex mosquitoes as possible ZIKV vectors in North America, we evaluated Cx. quinquefasciatus and Cx. pipiens mosquitoes for susceptibility to infection after oral and intrathoracic (IT) exposure to recent Asian genotype ZIKV isolates from Puerto Rico and Honduras as well as the original African lineage isolate from Uganda. Additionally, we compared the growth capacity of each virus in model Aedes and Culex cell lines to highlight the lack of replication competence of ZIKV for in vitro and in vivo Culex models.
MATERIALS AND METHODS

Viruses and mosquitoes. ZIKV isolates MR766 (Uganda 1947), PRVABC59 (Puerto Rico 2015), and R103451 (Honduras 2016) were used for mosquito infections in this study. The MR766 strain had a history of 149 passages in unknown sources, including suckling mouse brain, and two known passages in African green monkey kidney (Vero) epithelial cells. PRVABC59 was isolated from the serum of a febrile traveler returning to the continental United States from Puerto Rico in 2015 and was passaged three times in Vero cells. The MR766 isolate was derived from a human placenta from a patient who had traveled to Honduras in 2015 and passaged in C6/36 mosquito cells. PRVABC59 was isolated from the serum of a patient who had traveled to Puerto Rico in 2015 and was passaged three times in Vero cells. The R103451 isolate was derived from a human placenta from a patient who had traveled to Honduras in 2015 and passaged in C6/36 mosquito cells once. Colonized Cx. quinquefasciatus (Sebring) and Cx. pipiens pipiens (Chicago) were used for in vivo exposure experiments. The colony of Cx. quinquefasciatus was originally established in Florida in 1988 and has since been maintained at the Centers for Disease Control and Prevention in Fort Collins, CO, since 2004. The original Cx. pipiens were collected in Chicago as mated, overwintering females in 2010 and distinguished from Cx. pipiens form molestus through microsatellite testing.

Oral mosquito infections. For each exposure dose of each virus, cohorts of 5- to 6-day-old female Cx. quinquefasciatus and Cx. pipiens were orally exposed to individual ZIKV strain containing blood meals through an artificial Hemotek membrane feeder (Discovery Workshops, Accrington, United Kingdom). Frozen stocks of known titers were thawed and used for blood meal exposure. For Cx. quinquefasciatus, two cohorts of 50 adult females were exposed to the same dose of MR766 (6.0 log\(_{10}\) plaque-forming units [PFU]/mL); three cohorts were exposed to 4.0, 5.9, and 7.1 log\(_{10}\) (PFU/mL) of PRVABC59; and two cohorts were exposed to 6.4 and 7.6 log\(_{10}\) (PFU/mL) of R103451. For orally exposed Cx. pipiens, one cohort each was exposed to 6.0 log\(_{10}\) (PFU/mL) of MR766 and PRVABC59. Female mosquitoes were allowed to feed for 45 minutes on the heated artificial blood meals containing immersion oil (Cargille Laboratories, Cedar Grove, NJ) to induce salivation for approximately 45 minutes. Legs and wings were removed from anesthetized mosquitoes and placed in microcentrifuge tubes with 500 μL of complete media composed of Dulbecco’s modified Eagle’s essential medium (DMEM) complete with penicillin (100 U/mL), streptomycin (100 mg/mL), 10% FBS, amphotericin B (50μg/mL), and a sterile copper bead. After salivation, bodies and salivary capillary tubes were separated into 1.5-mL tubes with a sterile copper bead. After salivation, bodies and salivary capillary tubes were centrifuged to clarify supernatants. Each sample was tested for cytotoxicity using a Mixer Mill 300 (Retsch, Newton, PA). Samples containing salivary capillary tubes were centrifuged to clarify supernatants. Each sample was tested for cytotoxicity using qRT-PCR to confirm negative results. Viral RNA was extracted using the QIAamp Viral RNA kit (QIAGEN). PCR analysis was performed for ZIKV and PRVABC59 using primers and probes designed by the manufacturer. The MR766 isolate was derived from a human placenta from a patient who had traveled to Honduras in 2015 and passaged in C6/36 mosquito cells once. Colonized Cx. quinquefasciatus (Sebring) and Cx. pipiens pipiens (Chicago) were used for in vivo exposure experiments. The colony of Cx. quinquefasciatus was originally established in Florida in 1988 and has since been maintained at the Centers for Disease Control and Prevention in Fort Collins, CO, since 2004. The original Cx. pipiens were collected in Chicago as mated, overwintering females in 2010 and distinguished from Cx. pipiens form molestus through microsatellite testing.

Table 1

Species	Virus	N	Blood meal titer (PFU/mL) log\(_{10}\)	Infection (%)	Dissemination (%)
Culex quinquefasciatus	MR766	95	6	1 (1)	0 (0)
	PRVABC59	36	7.1	0 (0)	0 (0)
		48	5.9	0 (0)	0 (0)
		43	4	0 (0)	0 (0)
	R103451	35	7.6	0 (0)	0 (0)
		30	6.4	0 (0)	0 (0)
Culex pipiens pipiens	MR766	20	6	1 (5)	0 (0)
	PRVABC59	38	6	4 (10)	0 (0)

CPE = cytopathic effect; PFU = plaque-forming units; ZIKV = Zika virus. MR766 was isolated from Uganda in 1947, PRVABC59 was isolated from Puerto Rico in 2015, and R103451 was isolated from Honduras in 2016.

Saliva samples not tested for transmission in the absence of dissemination.
DMEM supplemented with 5% FBS, penicillin (100 U/mL), and streptomycin (100 mg/mL). Cells were grown to 90% confluence in 6-well plates, and monolayers were infected in triplicate at a multiplicity of infection (MOI) of 0.1 PFU/cell. 50-μL aliquots of supernatant were collected daily, followed by plaque assays to measure viral yield. Plaque assays used serial 10-fold dilutions of virus seeded onto 6-well plates containing monolayers of Vero cells, as previously described.37 To compare the viral replication curves, a two-way analysis of variance (ANOVA) test with repeated measures and post hoc multiple comparisons test with a Tukey correction was performed, version 6.0h (Prism Graphpad Software, La Jolla, CA). P values < 0.05 were considered significant.

RESULTS

Oral infection, dissemination, and transmission in Culex mosquitoes. Oral infection rates were low for both Cx. quinquefasciatus (0–1%) and Cx. pipiens (1–10%) regardless of the virus used (Table 1). For example, only 1/95 Cx. quinquefasciatus was identified to be infected after oral exposure with 6.0 log10 PFU/mL of MR766. Similarly, no infected Cx. quinquefasciatus mosquitoes were observed after oral exposure to PRVABC59 with doses ranging from 4.0 to 7.1 log10 (PFU/mL) or to R103451 with doses of either 6.4 or 7.6 log10 (PFU/mL) (Table 1). There was no detectable dissemination of virus from the midgut of the single Cx. quinquefasciatus mosquito body identified to be ZIKV positive after oral exposure to MR766 as determined by CPE testing of legs/wings. For Cx. pipiens, 1/20 (5%) and 4/38 (11%) were found to have detectable virus in their bodies after exposure to 6.0 log10 (PFU/mL) of MR766 or PRVABC59, respectively (Table 1). It should be noted that the four positive Cx. pipiens mosquitoes only had one plaque per well after undiluted inoculation of Vero cells, indicating an approximate concentration of 3 PFU/mosquito body. None of these Cx. pipiens were identified to have a disseminated infection as defined by the presence of virus in legs/wings. Infection and transmission of inoculated mosquitoes. To determine whether Cx. pipiens and Cx. quinquefasciatus have the capability to transmit regardless of their apparent inability to establish infection of the midgut and disseminate virus, IT inclusions were performed to bypass the midgut infection and escape barriers. This allowed for direct assessment of ZIKV to infect the salivary glands and subsequently be transmitted during salivation. Seven days after IT inoculation, 16/23 (70%) and 5/33 (15%) Cx. quinquefasciatus bodies were identified to be positive for MR766 and PRVABC59 viruses, respectively (Table 2). Plaque assay and subsequent qRT-PCR showed no virus or viral RNA–positive saliva samples. Experiments on Cx. pipiens provided similar results with 17/28 (61%) triturated bodies demonstrating virus 7 days after inoculation with PRVABC59 (Table 2), yet no evidence of transmissibility was observed by plaque assay or qRT-PCR assessments of expectorants. In contrast, evaluation of the IT susceptibility of Ae. aegypti showed that 12/12 (100%) of the surviving mosquitoes became infected after inoculation and 8/12 (67%) of infected mosquitoes demonstrated the presence of virus in salivary material indicating transmission potential.

In vitro growth of ZIKV strains in Aedes and Culex mosquito cells. Culex quinquefasciatus, Cx. tarsalis, Ae. aegypti, and Ae. albopictus cell lines were each inoculated at an MOI of 0.1 PFU/cell with PRVABC59 and MR766 and sampled daily for 7 days. A two-way repeated measures ANOVA for each virus demonstrated a significantly different level of growth between the three types of mosquito cells (P < 0.0001) (Figure 1). PRVABC59 reached a mean peak titer of 8.5 log10 (PFU/mL) on day postinoculation (dpi)
The potential vector competence of *Cx. pipiens* and *Cx. quinquefasciatus* was evaluated after oral and IT exposure of multiple ZIKV strains at a range of doses. Only a small percentage of mosquitoes were susceptible to infection orally (up to 10% for *Cx. pipiens*) and a range of 15–70% of intrathoracically inoculated mosquitoes demonstrated virus-positive bodies. However, unlike what was observed after IT inoculation of *Ae. aegypti* mosquitoes, there was no observed dissemination in any of the orally exposed *Culex* mosquitoes or salivary infection in any of the 38 intrathoracically inoculated mosquitoes showing body infection. The lack of detectable viral RNA or infectious virus in saliva, despite obviation of the midgut infection/escape barriers through IT inoculation, strongly suggests that ZIKV is incapable of infection of the salivary glands and/or entering the salivary fluids of *Cx. quinquefasciatus* and *Cx. pipiens*. Further, in vitro experiments demonstrate that ZIKV was unable to replicate in *Culex* cell lines.

The conclusions reported here regarding the inability of *Culex* mosquitoes to vector ZIKV correspond with a majority of recent studies addressing ZIKV transmission in *Culex* mosquitoes. In contrast, two accounts report differing ZIKV transmission potential of *Culex* mosquitoes. The first case is a summary of findings presented during a ZIKV workshop in Brazil in 2016 in which the authors report detection of virus from the salivary glands of *Cx. quinquefasciatus* at 7 and 15 days postexposure. To date, that presented data has not been formally published. However, a published study using several Brazilian ZIKV isolates with locally established *Culex* mosquito populations demonstrated incompetence of *Cx. quinquefasciatus* from Rio de Janeiro for infection, dissemination, and transmission. Guo and others orally exposed colonized *Cx. quinquefasciatus* from the Hainan Province of China with a low passage strain isolated from a traveler returning from Samoa (GenBank: KU866423). In this report, 8/10 (80%) saliva samples demonstrated the presence of ZIKV RNA by RT-PCR 8 days after exposure, with the ZIKV RNA positivity rate in saliva dropping at later time points. These results could indicate the possibility of differential susceptibility between Asian and American populations of *Cx. quinquefasciatus*. However, the incongruous comparison between detection of infectious virus, as traditionally measured by plaque formation or CPE assay, to RNA detection precludes drawing definitive conclusions between the two studies.

Phylogenetic analysis of mosquito-borne flaviviruses (MBFV) have long shown two distinct clades, one of which is primarily associated with *Aedes* mosquitoes with the other associated with *Culex* vectors. For instance, dengue-1, 2, 3, and 4 viruses are transmitted by *Ae. aegypti* mosquitoes, but not *Culex* mosquitoes. Considering the evolutionary precedent of MBFV steadfast adherence to being vectored by either *Aedes* or *Culex* mosquitoes but not both, it would be consistent that ZIKV would be vectored by *Aedes* mosquitoes. Similarly, *Culex*-borne flaviviruses typically use avian amplification hosts. Transmission of ZIKV to humans by *Culex* mosquitoes would require replication to high titers in avian hosts and potential epizootic spillover into humans as the *Culex* mosquitoes of concern primarily feed on avians and less frequently on humans.

DISCUSSION

Blood meal analysis studies typically show humans to be a source of 0–2% of all blood meals taken by North American *Cx. pipiens*, *Cx. quinquefasciatus*, and *Cx. tarsalis* mosquitoes. Lack of suitable ZIKV avian hosts combined with low human blood feeding rates for *Culex* mosquitoes diminish the potential role of *Culex* mosquitoes as vectors regardless of their vector competence for ZIKV.

Our use of oral and IT exposure in *Cx. pipiens* and *Cx. quinquefasciatus* to show the inability of ZIKV to disseminate to the salivary glands in addition to the lack of observed ZIKV replication in *Culex* cell lines, strongly indicates that these North American *Culex* mosquitoes are not competent vectors of ZIKV. In conjunction with previously mentioned ecological requirements of utilizing *Culex* mosquitoes as vectors, we conclude that there is no evidence to support *Culex* mosquito monitoring or management with regard to ZIKV control efforts.

ACKNOWLEDGMENTS

We would like to thank Sean Masters of the Centers for Disease Control for infection, dissemination, and transmission. Authors’ addresses: Joan L. Kenney, Hannah Romo, Nisha K. Duggal, Wen-Pin Tzeng, Kristen L. Burkhalter, Aaron C. Brault, and Harry M. Savage, Centers for Disease Control and Prevention, Fort Collins, CO, E-mails: vwx1@cdc.gov, vym8@cdc.gov, wwd3@cdc.gov, wdt6@cdc.gov, ktb3@cdc.gov, zlu5@cdc.gov, and hms1@cdc.gov.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

REFERENCES

1. Wang E, Ni H, Xu R, Barrett ADT, Watowich SJ, Gubler DJ, Weaver SC. 2000. Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses. J Virol 74: 3227–3234.
ZIKA VIRUS IN CULEX MOSQUITOES

2. Dick GWA, 1952. Zika virus (I). Isolations and serological specificity. Trans R Soc Trop Med Hyg 46: 509–520.

3. MacNamara FN, 1954. Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans R Soc Trop Med Hyg 48: 139–145.

4. Faquini A, 1957. Epidemiological investigations on arbovirus infections at Igbio-Ora, Nigeria. Trop Geogr Med 29: 187–191.

5. Smithburn KC, 1954. Neutralizing antibodies against arthropod-virus in sera of residents of India. J Immunol 72: 248–257.

6. Smithburn KC, 1954. Neutralizing antibodies against arthropod-virus in sera of long-time residents of Malaya and Borneo. Am J Epidemiol 59: 157–163.

7. Olson JG, Ksiazek TG, Gubler DJ, Lubis SI, Simanjuntak G, 2016. Zika virus outbreak on Yap Island, Federated States of Micronesia. PLoS Negl Trop Dis 10: e0004933.

8. Smithburn KC, Taylor RM, Chong CS, Ng LC, Tan CH, 2013. Aedes (Stegomyia) albopictus (Skuse): a potential vector of Zika virus in Singapore. PLoS Negl Trop Dis 7: e2348.

24. Chouin-Carneiro T, Vega-Rua A, Vazeille M, Yebakima A, Girod R, Goïdin D, Dupont-Rouzyrol M, Lourenco-de-Oliveira R, Failoux AB, 2016. Differential susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika virus. PLoS Negl Trop Dis 10: e0004943.

25. Diao D, Sall AA, Deng YQ, Liu QM, Wu Q, Sun AJ, Dong YD, Cao WC, Qin CF, Zhao TY, 2016. Culex pipiens quinquefasciatus: a potential vector to transmit Zika virus. Emerg Microbes Infect 5: e102.

26. Aliota MT, Peinado SA, Osorio JE, Bartholomay LC, 2016. Culex pipiens and Aedes triasseriatus mosquito susceptibility to Zika virus. Emerg Infect Dis 22: 1857–1859.

27. Hwang YS, Ayers VB, Lyons AC, Unlu I, Alto BW, Cohnstaedt LW, Higgs G, Vanlandingham DL, 2016. Culex species mosquitoes and Zika virus. Vector Borne Zoonotic Dis 16: 673–676.

28. Fernandez RS, Campos SS, Ferreira-de-Brito A, Miranda RM, Barbosa da Silva KA, Castro MG, Raphael LM, Brasil P, Failoux AB, Lourenco-de-Oliveira R, 2016. Culex quinquefasciatus from Rio de Janeiro is not competent to transmit the local Zika virus. PLoS Negl Trop Dis 10: e0004933.

29. Boccellini D, Toma L, Di Luca M, Severini F, Romi R, Remoli ME, Sabbatucci M, Venturi G, Rezza G, Fortuna C, 2016. Experimental investigation of the susceptibility of Italian Culex pipiens mosquitoes to Zika virus infection. Euro Surveill 21.

30. Amraoui F, Atyame-Ntenc V, Vega-Rua A, Lourenco-de-Oliveira R, Vazeille M, Failoux AB, 2016. Culex mosquitoes are experimentally unable to transmit Zika virus. Euro Surveill 21.

31. Lanciotti RS, Lambert MJ, Holodniy M, Saavedra S, Signor Ldel ME, Sabbatucci M, Venturi G, Rezza G, Fortuna C, 2016. Experimental investigation of the susceptibility of Italian Culex pipiens mosquitoes to Zika virus infection. Euro Surveill 21.

32. Failloux AB, Bonaldo MC, Lourenco-de-Oliveira R, 2016. Phylogeny of Zika virus in Western Hemisphere, 1947–2016: a meeting report. J Med Entomol 53: 1008–1010.

33. Spalding KJ, Pressman JR, Hardy JL, 1990. Effect of the anesthetizing agent triethylamine on western equine encephalomyelitis and St. Louis encephalitis viral titers in mosquitoes. J Med Entomol 27: 1008–1010.

34. Beauch FJ, Calisher CH, Shope RE, 1989. Arboviruses. Schmidt NJ, Emmons RW, eds. Diagnostic Procedures for Viral Rickettsial and Chlamydial Infections, 6th edition. Washington, DC: American Public Health Association.

35. Weger-Lucarelli J, Rücker C, Chotiwan N, Nguyen C, Garcia Luna SM, Fauver JR, Ebel GD, Kating RC, Ebel GD, 2016. Vector competence of American mosquitoes for three strains of Zika virus. PLoS Negl Trop Dis 10: e0005101.

36. Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert MJ, Johansson AJ, Stanfield SM, Duffy MR, 2006. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis 14: 1232–1239.

37. Gaunt MW, Sall AA, de Lammallerie X, Falconar AK, Zhivhianin TI, Gould EA, 2001. Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J Gen Virol 82: 1867–1876.

38. Gould EA, de Lammallerie X, Zanotto PM, Holmes EC, 2003. Origins, evolution, and vector/host coadaptations within the genus Flavivirus. Adv Virus Res 59: 277–314.
42. Rosen L, Roseboom LE, Gubler DJ, Lien JC, Chaniotis BN, 1985. Comparative susceptibility of mosquito species and strains to oral and parenteral infection with dengue and Japanese encephalitis viruses. *Am J Trop Med Hyg* 34: 603–615.

43. Apperson CS, Harrison BA, Unnasch TR, Hassan HK, Irby WS, Savage HM, Aspen SE, Watson DW, Rueda LM, Engber BR, Nasci RS, 2002. Host-feeding habits of *Culex* and other mosquitoes (Diptera: Culicidae) in the Borough of Queens in New York City, with characters and techniques for identification of *Culex* mosquitoes. *J Med Entomol* 39: 777–785.

44. Molaei G, Andreadis TG, Armstrong PM, Anderson JF, Vossbrinck CR, 2006. Host feeding patterns of *Culex* mosquitoes and West Nile virus transmission, northeastern United States. *Emerg Infect Dis* 12: 468–474.

45. Patrican LA, Hackett LE, Briggs JE, McGowan JW, Unnasch TR, Lee JH, 2007. Host-feeding patterns of *Culex* mosquitoes in relation to trap habitat. *Emerg Infect Dis* 13: 1921–1923.

46. Molaei G, Andreadis TG, Armstrong PM, Diuk-Wasser M, 2008. Host-feeding patterns of potential mosquito vectors in Connecticut, USA: molecular analysis of bloodmeals from 23 species of *Aedes*, *Anopheles*, *Culex*, *Coquillettidia*, *Psorophora*, and *Uranotaenia*. *J Med Entomol* 45: 1143–1151.

47. Garcia-Rejon JE, Blitvich BJ, Farfan-Ale JA, Lorono-Pino MA, Chi Chim WA, Flores-Flores LF, Rosado-Paredes E, Baak-Baak C, Perez-Mutul J, Suarez-Solis V, Fernandez-Salas I, Beatty BJ, 2010. Host-feeding preference of the mosquito, *Culex quinquefasciatus*, in Yucatan State, Mexico. *J Insect Sci* 10: 32.

48. Mackay AJ, Kramer WL, Meece JK, Brumfield RT, Foil LD, 2010. Host feeding patterns of *Culex* mosquitoes (Diptera: Culicidae) in East Baton Rouge Parish, Louisiana. *J Med Entomol* 47: 238–248.

49. Thiemann TC, Lemenager DA, Kluh S, Carroll BD, Lothrop HD, Reisen WK, 2012. Spatial variation in host feeding patterns of *Culex tarsalis* and the *Culex pipiens* complex (Diptera: Culicidae) in California. *J Med Entomol* 49: 903–916.

50. Savage HM, Aggarwal D, Apperson CS, Katholi CR, Gordon E, Hassan HK, Anderson M, Chametzky D, McMillen L, Unnasch EA, Unnasch TR, 2007. Host choice and West Nile virus infection rates in blood-fed mosquitoes, including members of the *Culex pipiens* complex, from Memphis and Shelby County, Tennessee, 2002–2003. *Vector Borne Zoonotic Dis* 7: 365–386.