An in-frame deletion at the polymerase active site of POLD1 causes a multisystem disorder with lipodystrophy

Michael N Weedon1,12, Sian Ellard1,12, Marc J Prindle2,12, Richard Caswell1, Hana Lango Allen1, Richard Oram1, Koumudi Godbole3,4, Chittaranjan S Yajnik4, Paolo Sbraccia5,6, Giuseppe Novelli5,6, Peter Turnpenny7, Emma McCann8, Kim Jee Goh9,10, Yukai Wang9,10, Jonathan Fulford1, Laura J McCulloch1, David B Savage9,10, Stephen O’Rahilly9,10, Katarina Kos1, Lawrence A Loeb2,11, Robert K Semple9,10 & Andrew T Hattersley1

DNA polymerase δ, whose catalytic subunit is encoded by POLD1, is responsible for lagging-strand DNA synthesis during DNA replication1. It carries out this synthesis with high fidelity owing to its intrinsic 3′- to 5′-exonuclease activity, which confers proofreading ability. Missense mutations affecting the exonuclease domain of POLD1 have recently been shown to predispose to colorectal and endometrial cancers2. Here we report a recurring heterozygous single-codon deletion in POLD1 affecting the polymerase active site that abolishes DNA polymerase activity but only mildly impairs 3′- to 5′-exonuclease activity. This mutation causes a distinct multisystem disorder that includes subcutaneous lipodystrophy, deafness, mandibular hypoplasia and hypogonadism in males. This discovery suggests that perturbing the function of the ubiquitously expressed POLD1 polymerase has unexpectedly tissue-specific effects in humans and argues for an important role for POLD1 function in adipose tissue homeostasis.

Progressive loss of subcutaneous adipose tissue, or lipodystrophy, with concomitant severe insulin resistance is a major feature of the recently described mandibular hypoplasia, deafness and progeroid features (MDP) syndrome3. Defining the genetic basis of this newly described form of progressive partial lipodystrophy would provide insights into the regulation of adipose tissue. Several genetic causes of partial lipodystrophy have previously been described4. Some of these affect genes with established roles in adipocyte differentiation or function, including PPARG, PLIN1 and CIDEC. However, for other commonly implicated genes, including LMNA and ZMPSTE24, the link between the cellular defect and the adipose phenotype is poorly understood4. The mechanism underlying loss of some adipose depots across all these conditions is also currently unclear.

Because all reported individuals with MDP syndrome have unrelated parents and no other affected family members, we hypothesized that the syndrome was caused by a heterozygous de novo mutation in a single gene. We therefore performed exome sequencing on two probands with MDP syndrome (Fig. 1 and Supplementary Table 1) and their unaffected parents to look for candidate de novo disease-causing mutations. Exonic sequences were enriched from genomic DNA using the Agilent SureSelect Human All Exon kit (version 4) and then sequenced on an Illumina HiSeq 2000 sequencer using 100-bp paired-end reads. We used Burrows-Wheeler aligner (BWA v0.6.2)5 to align sequence reads to the hg19 reference genome and the Genome Analysis Toolkit (GATK v2.2–10)6 to call single-nucleotide variants (SNVs) and indels. We covered 88% of targeted bases at >20×.

We identified an in-frame deletion (c.1812_1814delCTC, p.Ser605del) of a single codon in POLD1 affecting the polymerase active site in both probands but in none of the four parents. We confirmed these results by Sanger sequencing (Online Methods). The c.1812_1814delCTC variant is absent from dbSNP137, the 1000 Genomes Project7 and the Exome Variant Server8. We then screened two additional individuals with MDP syndrome by Sanger sequencing and identified an identical in-frame deletion in both subjects. These findings provide convincing genetic evidence that the mutation encoding p.Ser605del is the disease-causing mutation in these four unrelated cases.

The most prominent phenotype of all four affected individuals was lack of subcutaneous adipose tissue, which was first noted in early childhood, although each proband was born with normal birth weight and appearance (Supplementary Table 1). The minimal subcutaneous adipose tissue at all sites contrasted with the marked increase in visceral adipose tissue (Fig. 1 and Supplementary Table 1). The ratio of visceral to subcutaneous adipose tissue was greatly elevated at 15.2:1 in subject 1 with MDP syndrome in contrast to the median

1Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK. 2Joseph Gottstein Memorial Laboratory, Department of Pathology, University of Washington, Seattle, Washington, USA. 3Department of Genetic Medicine, Deenanath Mangeshkar Hospital and Research Center, Erandawane, Pune, India. 4Diabetes Unit, King Edward Memorial Hospital and Research Center, Erandawane, Pune, India. 5Department of Genetic Medicine, Deenanath Mangeshkar Hospital and Research Center, Erandawane, Pune, India. 6Department of Genetic Medicine, Deenanath Mangeshkar Hospital and Research Center, Erandawane, Pune, India. 7Department of Genetics, King Edward Memorial Hospital Research Center, Rasta Peth, Pune, India. 8Department of Biomedicine, Tor Vergata University, Rome, Italy. 9Clinical Genetics Department, Royal Devon and Exeter Hospital, Exeter, UK. 10Department of Clinical Genetics, Gian Chywl Hospital, Rhyi, UK. 11Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK. 12National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, Institute of Metabolic Science, University of Cambridge, Cambridge, UK. 13Department of Biochemistry, University of Washington, Seattle, Washington, USA. 14These authors contributed equally to this work. Correspondence should be addressed to A.T.H. (a.t.hattersley@exeter.ac.uk).

Received 27 March; accepted 22 May; published online 16 June 2013; doi:10.1038/ng.2670
value of 0.84 (interquartile range of 0.64–1.10) in 1,680 middle-aged men. All affected individuals had clinical and biochemical evidence of insulin resistance, despite having body mass index (BMI) values of <20 kg/m². Other common clinical features included skin scleroderma and telangiectasia, ligament contractures, reduced mass of limb muscles, mandibular hypoplasia, hypogonadism and undescended testes in males, and sensorineural deafness (Supplementary Table 1). None of the affected individuals in our relatively young series or in a previous report has been diagnosed with cancer.

DNA polymerase 6 has been shown to cooperate with WRN, a DNA helicase, to help maintain genome stability. Loss of WRN function in humans leads to Werner syndrome, which presents with the premature onset of features associated with normal aging. Werner syndrome includes progressive loss of limb adipose tissue and fat with severe insulin resistance, prominent joint contractures, scleroderma, hypogonadism and pinched nose, similar to MDP syndrome. However, individuals with MDP syndrome lack several key features of Werner syndrome, including short stature, premature balding and/or graying and cataracts (Supplementary Table 1 and ref. 11). Similarly, there are clear differences of MDP syndrome from the progeroid syndrome mandibular acral dysplasia (MAD), which is caused by mutations in LMNA or ZMPSTE24 (ref. 13), as individuals with MDP syndrome do not have short stature, premature hair loss, clavicle hypoplasia or acroosteolysis, and individuals with MAD do not have hearing loss.

DNA replication is fundamental to the successful division of all nucleated cells, and POLD1, which encodes the catalytic subunit of the key, processive lagging-strand polymerase, thus serves a ubiquitous and critical cellular function. Correspondingly, knockout of the mouse ortholog Pold1 does not result in viable animals. The tissue-specific effect of the heterozygous deletion mutation we have found is thus unexpected. POLD1 mRNA was well expressed across a panel of human tissues, including muscle and fat, but differential expression did not account for the phenotype (Supplementary Fig. 1). Moreover, there was no evidence in the commonly used mouse 3T3-L1 model of adipogenesis that Pold1 expression changed during the differentiation of preadipocytes into fat cells (Supplementary Fig. 2).

Subcutaneous abdominal adipose tissue from subject 1 (BMI of 19.1 kg/m²) showed abundant fibrosis dividing the remaining fat tissue but no obvious inflammatory cell infiltrates (Fig. 1 and Supplementary Fig. 3). Consistent with this observation, the expression levels of key extracellular matrix genes were markedly different from those in five lean controls (BMI values of 20.0–21.8 kg/m²), with increased expression of transforming growth factor (TGF)-β (TGBF1), a hallmark of tissue fibrosis, and markedly higher expression of fibronectin (FN1) (Supplementary Fig. 4). Increased fibrosis has been correlated with adipose tissue dysfunction and insulin resistance in a variety of settings, including in individuals with lipodystrophy due to PLIN1 mutations and common obesity.

Figure 1 Clinical characteristics of individuals with MDP syndrome. (a) Subject 1 (aged 15 years), demonstrating prominent lipodystrophy, small nose, ‘pseudoproptosis’ secondary to lack of subcutaneous periorbital fat, light skin, mandibular hypoplasia, bilateral hearing aids and reduced limb muscles. Informed consent was obtained to publish this photograph. (b,c) Abnormal fat distribution in abdominal magnetic resonance imaging (MRI) at level L3 of subject 1 (b) and an age-, sex- and BMI-matched control (c) showing marked reduction of subcutaneous fat and increase in intra-abdominal fat in subject 1 as demonstrated by an increase in high-intensity signal. (d,e) Picrosirius red staining of abdominal subcutaneous adipose tissue from subject 1 (d) and a representative comparative image of a BMI-matched subject (e). Scale bars, 500 μm. Adipose tissue from subject 1 with a POLD1 mutation shows a considerable amount of fibrosis (red staining). Full clinical details of all four affected individuals are presented in Supplementary Table 1.

Figure 2 Protein schematic and modeling of POLD1 alterations. (a) Schematic of the POLD1 protein. Mutations predisposing to cancer (encoding p.Pro327Leu and p.Ser478Asn) affect residues within the exonuclease (proofreading) domain, whereas the mutation encoding p.Ser605del (found in four individuals with MDP syndrome) affects the polymerase active site. (b) Global structure of POLD1 showing relevant alterations. The structure of POLD1 (residues 77–983; modeled on template 3iaj) is shown in ribbon form, colored by secondary structure succession (N terminus (blue) to C terminus (red)). The backbone and side chains are displayed in stick format for residues Pro327 and Ser478 (pink), Asp602 and Asp757 (yellow), Ser604 (dark green), Ser605 (red) and Leu606 (blue). The trinucleotide substrate is shown in stick format (light blue), with hydrogen bonds to the polymerase catalytic site indicated by green dashed lines. Template DNA has been omitted for clarity. (c,d) Detail of the polymerase catalytic site, shown from the same viewpoint as in b, for wild-type POLD1 (c) and Ser605del mutant POLD1 (d). Note the predicted deformation of the catalytic domain and loss of hydrogen bonding to substrate in the Ser605del mutant compared to wild-type POLD1.
In contrast, mice harboring a homozygous mutation in \(POLD1 \) encoding p.Asp400Ala in the proofreading domain showed a tenfold increase in the base-substitution error rate over wild-type mice, and 94% of these mice developed cancer by the age of 18 months\(^2\). In contrast, mice with a heterozygous substitution encoding p.Leu604Lys (equivalent to human p.Leu606Lys and neighboring the Ser605 residue deleted in individuals with MDP syndrome) showed an 18% reduction in lifespan, a small increase in tumorigenesis and a clear increase in chromosome aberrations\(^19\). Subsequent work suggested that this phenotype is due to an increase in the incidence of stalled replication forks, particularly at sites of DNA damage\(^24\). Lipodystrophy was not observed in mice expressing the p.Leu604Lys mutant; however, it has proved very challenging to replicate other forms of partial lipodystrophy in mice, which may require extreme caloric loads to manifest metabolic disease\(^25\).

In conclusion, whereas missense mutations of \(POLD1 \) affecting the proofreading domain predispose to cancer, we show that a single-codon deletion in \(POLD1 \) affecting the polymerase active site causes a markedly different phenotype that includes lipodystrophy. We further show that this mutation results in complete loss of polymerase activity but very little loss of exonuclease capacity. In addition to aiding in

Figure 3 Polymerase \(\delta \) with Ser605del mutant \(POLD1 \) has no detectable polymerase activity but has robust exonuclease activity. (a) Polymerase reactions using increasing concentrations of polymerase \(\delta \) with either wild-type (WT) or Ser605del (Del) \(POLD1 \) show that the mutant is incapable of extending the primer band (23 nt) in a 2-min reaction with 25 \(\mu \)M of all four dNTPs. (b) Exonuclease reactions on the same 23-nt primer–46-nt template duplex DNA as in a, in the absence of dNTPs, show that polymerase \(\delta \) with Ser605del mutant \(POLD1 \) exhibits a two- to threefold decrease in exonuclease activity compared to wild-type polymerase. Values for the percent of the primer band degraded reflect the results of three independent experiments and are derived from a comparison of the intensity of the primer band (P) and the exonuclease product bands (E), given by the following equation: percent degradation = \(1 - \frac{P}{P + E} \). The values of percent degradation for polymerase \(\delta \) with Ser605del mutant \(POLD1 \) at 90, 150 and 300 fmol were plotted against the line obtained from measurements with the wild-type polymerase (\(y = 0.0029x + 0.445; R^2 = 0.96 \)). The values derived indicate that 1.7- to 2.5-fold more mutant enzyme is required to observe the same amount of primer degradation as with the wild-type enzyme under these experimental conditions.

The Ser605 deletion occurs in motif A, a highly conserved region of the polymerase \(\delta \) catalytic subunit. This motif comprises 11 amino acids that are involved in the alignment of the incoming complementary dNTP with the primer terminus, as well as in the coordination and catalysis of phosphodiester bond formation\(^17\). Alterations in this domain have been shown to affect base selection and, consequently, polymerase fidelity in nearly every family of DNA polymerases from viruses to mammals\(^18,19\). In silico modeling predicted that the Ser605 deletion profoundly affects the structure of the polymerase active site, in particular, by disrupting the hydrogen bonding between the substrate trinucleotide and the catalytic aspartic residues. As a comparison, the predicted structure of the catalytic site and bonding to the trinucleotide substrate were identical to those of wild-type \(POLD1 \) for both Pro327Leu and Ser478Asn mutants (data not shown). The proofreading domain was not predicted to be affected, in contrast to the expected changes previously reported for the cancer-predisposing mutations\(^2\) (Fig. 2 and Online Methods). We therefore hypothesized that the Ser605del mutant polymerase would be able to bind DNA but not catalyze polymerization.

To test this hypothesis, we generated the Ser605 deletion mutant by PCR-mediated mutagenesis and purified the four-subunit human DNA polymerase \(\delta \) holoenzyme from Escherichia coli (Online Methods). We quantified the polymerase activity of the purified enzyme by measuring primer elongation on a 23-nt primer–46-nt template duplex in the presence of all four dNTPs (Fig. 3a). Under conditions in which wild-type polymerase \(\delta \) (150 fmol) extended 81% of the primer, DNA extension using the same amount of the mutant enzyme was not detected.

To assess the exonuclease activity of polymerase \(\delta \) with wild-type and Ser605del mutant \(POLD1 \), we adapted the extension assay by excluding dNTPs. The exonuclease activity of the wild-type enzyme was linear in reactions using 30, 90 and 150 fmol of enzyme, and comparison of the amount of primer degradation using different amounts of mutant enzyme (90, 150 and 300 fmol) against this linear range showed that polymerase \(\delta \) with Ser605del \(POLD1 \) had 1.7- to 2.5-fold lower exonuclease activity than wild-type polymerase (Fig. 3b). Despite this difference, the exonuclease activity of the mutant polymerase \(\delta \) enzyme was considerable. Collectively, these findings demonstrate decoupling of the enzymatic activities of the mutant enzyme. Its preserved exonuclease activity indicates that it can bind DNA and suggests that the inability to extend DNA primers is due to an inability to efficiently interact with and incorporate dNTPs.
understanding the basis of a complex syndrome, the Ser605del mutant POLD1 protein could serve as an important tool to explore more fundamental aspects of DNA polymerase biology.

URLs. SWISS-MODEL, http://swissmodel.expasy.org/; ImageJ64, http://imagej.nih.gov/ij.

METHODS
Methods and any associated references are available in the online version of the paper.

Accession codes. Human POLD1 cDNA (NCBI), NM_002691.3; yeast DNA polymerase \(\delta\) crystal structure (Protein Data Bank), 3iay.

Note: Supplementary information is available in the online version of the paper.

ACKNOWLEDGMENTS
We thank M. Day, A. Danhuis and R. Gilbert for technical assistance. We thank K. Knapp for providing the data for the DEXA calculations. We thank L. Tung (University of Cambridge) for providing the human tissue RNA panel. This work was supported by the NIHR Exeter Clinical Research Facility through funding for S.E. and A.T.H., and general infrastructure. S.E., A.T.H. and S.O. are supported by Wellcome Trust Senior Investigator awards 098395/Z/12/A and 098395/Z/12/Z. D.B.S. and R.K.S. are supported by Wellcome Trust Senior Research Fellowships in Clinical Science (098498/Z/12/Z). M.N.W. is supported by the Wellcome Trust as part of Wellcome Trust Biomedical Informatics Hub funding. R.O. is supported by Diabetes UK. D.B.S., R.K.S. and S.O. are supported by the UK NIHR Cambridge Biomedical Research Centre. K.J.G. is supported by the Agency for Science, Technology and Research, Singapore (A*STAR). Research reported in this publication by M.J.P. and L.A.L. was supported by the National Cancer Institute of the US National Institutes of Health under awards RO1CA102029 and P01CA077852. The opinions in this paper are solely those of the authors and do not necessarily represent the views of the US National Institutes of Health, the Department of Health (England) or other funders.

AUTHOR CONTRIBUTIONS
S.E. and A.T.H. designed the study. M.N.W. and H.L.A. performed bioinformatics analyses. R.C. performed the Sanger sequencing analysis and interpreted the results. R.O., K.G., C.S.Y., P.S., G.N., P.T., E.M., D.B.S., S.O., R.K.S. and A.T.H. analyzed the clinical data. M.N.W., S.E., M.J.P. and H.L.A. performed bioinformatics analyses. R.C. performed the exome sequencing and structural modeling. M.N.W., S.E. and A.T.H. designed the study. M.N.W. and H.L.A. performed bioinformatics analysis of 6,515 exomes reveals the recent origin of most human DNA polymerase-\(\alpha\) transforming DNA polymerase-\(\delta\). J. Biol. Chem. 287, 12480–12490 (2012).

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Prindle, M.J. & Loeb, L.A. DNA polymerase \(\delta\) in DNA replication and genome maintenance. Environ. Mol. Mutagen. 53, 666–682 (2012).

2. Palles, C. et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat. Genet. 45, 136–144 (2013).

3. Shastry, S. et al. A novel syndrome of mandibular hypoplasia, deafness, and progeroid features associated with lipodystrophy, undescended testes, and male hyponagonism. J. Clin. Endocrinol. Metab. 95, E192–E197 (2010).

4. Semple, R.K., Savage, D.B., Cochran, E.K., Gorden, P. & O’Rahilly, S. Genetic syndromes of severe insulin resistance. Endocr. Rev. 32, 498–514 (2011).

5. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

6. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

7. Abecasis, G.R. et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

8. Fu, W. et al. Analysis of 6,515 exomes reveals the recent origin of most human DNA-polymerase-\(\gamma\) and -\(\delta\). Mol. Cell. Biol. 42, 426–431 (2002).

9. Agarwal, A.K., Fries, J.P., Autsch, R.J. & Garg, A. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum. Mol. Genet. 12, 1995–2001 (2003).

10. Uchimura, A., Hidaka, Y., Hirabayashi, T., Hirabayashi, M. & Yagi, T. DNA polymerase delta is required for early mammalian embryogenesis. PLoS ONE 4, e4184 (2009).

11. Gandotra, S. et al. Perilipin deficiency and autosomal dominant partial lipodystrophy. N. Engl. J. Med. 364, 740–748 (2011).

12. Henegar, C. et al. Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biol. 10, R14 (2008).

13. Swan, M.K., Johnson, R.E., Prakash, L., Prakash, S. & Aggarwal, A.K. Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase-\(\delta\) and -\(\alpha\). Nat. Struct. Mol. Biol. 16, 978–986 (2009).

14. Reha-Krantz, L.J. & Nonay, R.L. Motif A of bacteriophage T4 DNA polymerase: role in primer extension and DNA replication fidelity. Isolation of new antimitigator and mutator DNA polymerases. J. Biol. Chem. 275, 7669–7682 (2000).

15. Venkatesan, R.N. et al. Mutation at the polymerase active site of mouse DNA polymerase-\(\delta\) increases genomic instability and accelerates tumorigenesis. Mol. Cell. Biol. 27, 7669–7682 (2007).

16. Branchi, D. & Folani, M. Maintaining genome stability at the replication fork. Nat. Rev. Mol. Cell Biol. 11, 208–219 (2010).

17. Krokoska, R.J., Stefanovic, L., DeMai, J. & Petes, T.D. Increased rates of genomic deletions generated by mutations in the yeast gene encoding DNA polymerase-\(\delta\). Mol. Cell. Biol. 20, 7490–7504 (2000).

18. Lemoine, F.J., Degtareva, N.P., Koski, R.J. & Petes, T.D. Reduced levels of DNA polymerase-\(\delta\) induce chromosome fragile site instability in yeast. Mol. Cell. Biol. 28, 5359–5368 (2008).

19. Goldtoby, P.E. et al. High incidence of epithelial cancers in mice deficient for DNA polymerase-\(\alpha\) proofreading. Proc. Natl. Acad. Sci. USA 99, 15560–15565 (2002).

20. Schmitt, M.W. et al. Active site mutations in mammalian DNA polymerase-\(\delta\) alter accuracy and replication fork progression. J. Biol. Chem. 285, 32264–32272 (2010).

21. Savage, D.B. Mouse models of inherited lipodystrophy. Dis. Model. Mech. 2, 554–562 (2009).
ONLINE METHODS

Subjects. Individuals with MDP syndrome were identified by their clinicians and referred for molecular genetic analysis in the Exeter Molecular Genetics Laboratory. All subjects gave informed consent for genetic testing, and the study was approved by the North Wales Research Ethics Committee.

Exome sequencing. Exonic sequences were enriched from genomic DNA using Agilent’s SureSelect Human All exon kit (version 4) and then sequenced on an Illumina HiSeq 2000 sequencer using 100-bp paired-end reads. We used BWA (v0.6.2) to align sequence reads to the hg19 reference genome and GATK (v2.2-10) to call SNVs and indels.

Sanger sequencing confirmation. We amplified POLD1 exon 15 using the primers whose sequences are listed in Supplementary Table 2. PCR products were sequenced on an ABI3730 capillary machine (Applied Biosystems) and analyzed using Mutation Surveyor v3.98 (SoftGenetics).

Protein modeling. The sequence of full-length POLD1 was submitted for automated modeling and template selection using the SWISS-MODEL web interface. This returned a structure for POLD1 residues 77–983 based on template 3hay, chain A (Saccharomyces cerevisiae DNA polymerase δ, catalytic subunit; 49% sequence identity), which was the same template used for the model of human POLD1 in the Protein Model Portal database (P28340).

Subsequently, all modeling of mutant sequences was carried out using template 3hay (chain A), and structures were visualized in the Swiss-PdbViewer.

Human tissue expression profiling. A human tissue whole-RNA panel was purchased from AMS Biotechnology and was provided by L. Tung. cDNA synthesis was performed using the ImProm-ITM Reverse Transcription System (Promega) according to the manufacturer’s recommendation. Human POLD1 mRNA and 18S mRNA levels were determined using TaqMan Gene Expression assays (Hs01100821_m1 for POLD1 and custom designed for 18S (sequences available upon request); Applied Biosystems). Serially diluted human cDNA was used to generate a standard curve for each assay, and all mRNA determinations were performed in duplicate using TaqMan PCR Master Mix on an ABI 7900 detection system (Applied Biosystems). POLD1 mRNA expression levels were normalized to the levels of 18S rRNA for comparison between tissues.

Site-directed mutagenesis. The 3-nucleotide deletion was introduced into the pET303-hpold1 plasmid using 5′-phosphorylated primers flanking the deletion site (Supplementary Table 3). PCR products were gel purified and ligated before transformation into XL10-Gold Ultracompetent Cells (Stratagene). A region between the AgeI and ClaI sites of POLD1 was amplified and sequenced verified, and this region was then subcloned back into AgeI- and ClaI-digested pET303-hpold1 vector that had not been PCR amplified.

Purification of polymerase δ with Ser605del POLD1. The mutant polymerase δ holoenzyme was purified as described. Briefly, the pET303-hpold1 plasmid and the pCOLA-2, pCOLA-3 and pCOLA-4 plasmids, with sequences encoding the p66, p55 and p12 subunits of the polymerase δ holoenzyme, respectively, were cotransformed into BL21-tRARE cells by electroporation. Protein expression was induced in mid-log phase cells by the addition of β–1-thiogalactopyranoside (IPTG). Cells were sonicated, and the crude extract was subjected to nickel column (Novagen) chromatography in which polymerase δ was bound via the polyhistidine tag on the p12 subunit. Bound enzyme was eluted with 300 mM imidazole and was further purified by ion exchange chromatography on a HiTrap SP HP column (GE) using a linear (0.2–1.0 M) NaCl gradient.

Polymerase and exonuclease assays. The polymerase and exonuclease activities of wild-type polymerase δ and polymerase δ with Ser605del mutant POLD1 were measured using the same reaction mixtures and enzyme dilutions. Reactions included the indicated concentrations of enzyme, 40 mM Tris–HCl (pH 7.4), 4 mM MgCl₂, 0.1 mg/ml BSA, 5 mM DTT, 25 µM each dNTP (polymerase reactions only) and 10 mM 5′-end-labeled primer-template DNA duplex (Supplementary Table 4). Reactions were incubated for 2 min at 37 °C and stopped by the addition of 95% formamide in 20 mM EDTA. Samples were resolved on a 14% polyacrylamide TBE-urea gel; reaction products were visualized following imaging on a PhosphorImager (Molecular Dynamics) and analyzed using ImageJ6 software.

Expression and fibrosis studies from fat. Abdominal subcutaneous adipose tissue biopsies were obtained from subject 1 (BMI of 19.1 kg/m²) from below and lateral to the umbilicus and from five healthy, lean controls of European ancestry (BMI range of 20.0–21.8 kg/m²) obtained during elective surgery and with consent and ethical approval from the NIHR Exeter Tissue Bank. Biopsies were immediately snap frozen in liquid nitrogen and stored at −80 °C until processing. Total RNA was extracted using the phenol–chloroform–guanidinium-thiocyanate method. Briefly, ~100 mg of tissue was homogenized in TRI reagent (Life Technologies) using a Retsch Mixer MM400 in accordance with the manufacturer’s instructions, and RNA concentrations were determined spectrophotometrically using NanoDrop technology. RNA was treated with DNase to remove residual genomic contamination, and 500 ng was reverse transcribed in a random–primed single-strand synthesis reaction using high-capacity reverse transcriptase (Life Technologies). cDNA was diluted 1:20 in 0.01 M Tris–HCl, and amplification was performed using Universal PCR Master Mix (Life Technologies) and extracellular matrix gene–specific probes (probe sequences available upon request). All samples were amplified in triplicate for each assay and were run alongside a standard curve to allow assay efficiency determination. Samples amplified in the absence of reverse transcriptase enzyme and samples without template were used as negative controls. Amplification was performed using an ABI 7900 thermal cycler with the following cycling parameters: 50 °C for 2 min, 95 °C for 10 min and 40 cycles of 95 °C for 15 s and 60 °C for 1 min. Gene expression levels were calculated using the 2−∆∆CT analysis method modified by Pfaffl, normalizing to the levels of the adipose-specific housekeeping genes PPIA and UBCH.

For fibrosis studies, fat tissue biopsies from subject 1, as well as from a lean individual (BMI of 20 kg/m²) and an obese individual (BMI of 43.6 kg/m²) obtained during elective surgery, were formalin fixed, paraffin embedded and stained with picrosirius red (Sigma–Aldrich) for fibrosis as previously described.

MRI. Abdominal images were collected via an MRI T1 (spin–lattice relaxation time)-weighted breath-hold sequence to obtain images with high fat contrast. Subcutaneous and visceral fat volumes were calculated via semi-automated processing based on signal intensity thresholding between the L5/S1 disk and the bottom of the lung.

26. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidium thiocyanate–phenol–chloroform extraction. Anal. Biochem. 162, 156–159 (1987).
27. Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).
28. Neville, M.J., Collins, J.M., Glyn, A.L., McCarthy, M.I. & Karpe, F. Comprehensive human adipose tissue mRNA and microRNA endogenous control selection for quantitative real-time-PCR normalization. Obesity (Silver Spring) 19, 888–892 (2011).
29. Fazlieva, R. et al. Proofreading exonuclease activity of human DNA polymerase δ and its effects on lesion-bypass DNA synthesis. Nucleic Acids Res. 37, 2854–2866 (2009).
30. Schmitt, M.W., Matsumoto, Y. & Loeb, L.A. High fidelity and lesion bypass capability of human DNA polymerase δ. Biochimie 91, 1163–1172 (2009).

doi:10.1038/ng.2670