1. Introduction.

Let S be an algebraic space, A an S-abelian algebraic space, X an A-torsor on S for the étale topology and L a finite étale S-equivalence relation on X. Thus, X is representable by an S-algebraic space and its quotient, in the sense of étale topology, by the finite étale S-equivalence relation L, is representable by a proper and smooth S-algebraic space Y with geometrically irreducible fibers. In the following we define the property for L to be a basic finite étale equivalence relation and show that this property is remarkably rigid and our first goal is to prove:

Theorem 1.1. — Let $f : Y \to S$ be a proper smooth morphism of algebraic spaces with S connected. Assume that for one geometric point t of S there is a finite étale t-morphism from a t-abelian variety A'_t onto $Y_t = f^{-1}(t)$ with degree $[A'_t : Y_t]$ prime to the residue characteristics of S.

Then:

a) There exist an S-abelian algebraic space A, an A-torsor X on S for the étale topology and a basic finite étale S-equivalence relation L on X such that Y is S-isomorphic to the quotient X/L.

b) Let (A, X, L) be as in a). Then X is a f^*G-torsor on Y for the étale topology where the S-group $G = f_*\text{Aut}_Y(X)$ is a finite étale S-algebraic space. The functor

$$(A', X', L') \mapsto P' = f_*\text{Isom}_Y(X, X')$$

induces a bijection from the set of all triples as in a) up to isomorphisms onto $H^1(S, G)$.

The proof is in §9.

When f degenerates to $\overline{f} : \overline{Y} \to \overline{S}$ where \overline{f} is separated of finite type and universally open with \overline{S} locally noetherian, then a geometric fiber $\overline{f}^{-1}(\overline{s})$, if it is non-empty and does not have uniruled irreducible components, is irreducible; see §10, which, as a continuation of §4 and our main objective, contains further support for the Principle: Non-uniruled abelian degenerations are almost non-degenerate.

2. Definition.
Definition 2.1. — Let S be an algebraic space, A an S-abelian algebraic space, X an A-torsor on S for the étale topology and L a finite étale S-equivalence relation on X. We say that L is basic at a geometric point s of S provided the following condition holds:

If E is a finite étale s-subgroup of A_s such that the morphism

$$E \times_s X_s \to X_s \times_s X_s, \ (e, x) \mapsto (e \cdot x, x)$$

factors through the graph of L_s, then $E = 0$.

We say that L is basic if it is basic at every geometric point of S.

Thus, put in words, L is basic at s if and only if no sub-equivalence relation of $L(s)$ other than the identity is generated by a translation. Let Y denote the quotient X/L. The graph of L is then identical to $X \times_Y X$. With the above notations, saying that the morphism

$$E \times_s X_s \to X_s \times_s X_s, \ (e, x) \mapsto (e \cdot x, x)$$

factors through the graph of L_s amounts to saying that the translations of X_s defined by the elements of $E(s)$ are Y_s-automorphisms.

2.2. Let $s' \to s$ be a morphism of geometric points of S. The base change

$$L_s \mapsto L_s \times_s s'$$

establishes a bijection between the collection of finite étale s-equivalence relations on X_s which are basic at s and the collection of finite étale s'-equivalence relations on $X_{s'}$ which are basic at s'. Indeed, for every proper s-algebraic space Z, the functor of base change by $s' \to s$ is an equivalence from the category of finite étale Z-algebraic spaces onto the category of finite étale $Z_{s'}$-algebraic spaces (SGA 4 XII 5.4). This same base change provides also an equivalence between the category of finite étale s-subgroups of A_s and the category of finite étale s'-subgroups of $A_{s'}$. In particular, a given finite étale S-equivalence relation L on X is basic at s if and only if it is basic at s'. The collection of basic finite étale equivalence relations on X_s and on $X_{s'}$ are in canonical bijective correspondence. One deduces also that if L is basic, so is $L_{s'}$ for every base change $S' \to S$. When $S' \to S$ is surjective, the condition that L be basic is then equivalent to that $L_{s'}$ be basic.

3. Automorphisms I.

We study now the Y-automorphisms of X.

Lemma 3.1. — Keep the notations of (2.1). With each S-morphism $q : X \to X$ there is associated a unique S-group homomorphism $p : A \to A$ such that q is p-equivariant.
Proof. One may assume the torsor X to be trivial, as the existence of a unique homomorphism p is an étale local question on S.

Each S-morphism $q : A \to A$ is the unique composite of a translation $(x \mapsto x + q(0))$ and an S-group homomorphism $p : A \to A$ ("Geometric Invariant Theory" 6.4). It is clear that q is p-equivariant: for every two local S-sections a, x of A, one has

$$q(a + x) = p(a) + q(x).$$

\[\square\]

Lemma 3.2. — Keep the notations of (2.1). Assume that L is basic. Then every Y-endomorphism of X is a Y-automorphism. If X admits furthermore an S-section x, the only Y-automorphism of X preserving x is the identity morphism.

Proof. Every Y-morphism $X \to X$ is finite étale, as X is finite étale over Y. Let q be such a Y-endomorphism of X. By (3.1), q is equivariant relative to a unique S-group homomorphism $p : A \to A$. And, p is finite étale, since it is étale locally on S isomorphic to q. In particular, $E = \text{Ker}(p)$ is a finite étale S-subgroup of A. Observe that the morphism

$$E \times_S X \to X \times_S X, \ (e, x) \mapsto (e + x, x)$$

factors through the graph of L. That is to say, for every local S-section e (resp. x) of E (resp. X), $(e + x, x)$ is a local S-section of $X \times_Y X$. Indeed, as q is a Y-endomorphism of X, the sections x and $q(x)$ (resp. $e + x$ and $q(e + x) = p(e) + q(x) = q(x)$) have the same image in Y.

So $E = 0$, as L is basic. So p, hence q as well, is an isomorphism.

Let $Z = \text{Ker}(q, \text{Id}_X)$, which is an open and closed sub-Y-algebraic space of X. If $q(x) = x$, that is, if $x \in Z(S)$, then $Z = X$ and $q = \text{Id}_X$, since X has geometrically irreducible S-fibers.

\[\square\]

Lemma 3.3. — For $i = 1, 2$, let $X_i, L_i, Y_i = X_i/L_i$ be as in (2.1), with L_i basic, let $x_i \in X_i(S)$ and let $y_i \in Y_i(S)$ be the image of x_i. Let $r : Y_1 \to Y_2$ be an S-isomorphism satisfying $r(y_1) = y_2$.

Then there exists a unique r-isomorphism $h : X_1 \to X_2$ satisfying $h(x_1) = x_2$.

Proof. Identify Y_1 with Y_2 by r. Write $Y = Y_1 = Y_2$ and $y = y_1 = y_2$. The uniqueness of h follows from (3.2). Thus, the existence of h is an étale local question on S.

One may assume that S is strictly local with closed point s. For, if the lemma is proven under this assumption, then h exists in an étale
neighborhood of s in S by a “passage à la limite projective” (EGA IV 8). As the closed immersion $Y_s \hookrightarrow Y$ induces an equivalence between the category of finite étale Y-algebraic spaces and the category of finite étale Y_s-algebraic spaces (SGA 4 XII 5.9 bis), one may further assume that $S = s$ is the spectrum of a separably closed field k.

Let X be an algebraic space which is connected and finite étale Galois over Y and which dominates X_1 and X_2, say by $q_i : X \to X_i$, $i = 1, 2$. By SGA 1 XI 2, X is a (trivial) torsor under a k-abelian variety A and q_i is equivariant relative to a unique étale k-group homomorphism $p_i : A \to A_i$, $i = 1, 2$.

With each element $g \in \Gal(X/Y) = G$, there is associated a unique group automorphism $a(g)$ of the k-abelian variety A such that g is $a(g)$-equivariant. The map $g \mapsto a(g)$ is a homomorphism of groups and its kernel $a^{-1}(1) = E$ consists of translations by elements of $A(k)$.

By definition, $\Ker(p_1)$ and $\Ker(p_2)$ are k-subgroups of E_k. Hence, X/E is dominated by X_1 and by X_2. So $E_k = \Ker(p_1) = \Ker(p_2)$, as L_1 and L_2 are basic.

There exist therefore a unique Y-isomorphism $q : X_1 \to X_2$ and a unique isomorphism of k-abelian varieties $p : A_1 \to A_2$ such that q is p-equivariant and such that $qq_1 = q_2$, $pp_1 = p_2$.

Identify X_1 with X_2 by q and identify A_1 with A_2 by p. Then, $X_1 = X_2 = X/E$ is Galois over Y with Galois group G/E. Clearly, a unique element h of G/E transforms x_1 to x_2.

□

Proposition 3.4. — Keep the notations of (2.1). Assume that L is basic. Let $f : Y \to S$ denote the structural morphism.

Then the S-group $G = f_*\Aut_Y(X)$ is a finite étale S-algebraic space and the canonical morphism

$$u : G \times_S X \to X \times_Y X, \ (g, x) \mapsto (g(x), x)$$

is an isomorphism.

Proof. The finite étale Y-group $N = \Aut_Y(X)$, considered as a proper smooth S-algebraic space, has Stein factorization $N \to f_*N \to S$ (SGA 1 X 1.2). By loc. cit., $f_*N \to S$ is finite étale and the formation of the Stein factorization commutes with every base change $S' \to S$. It remains only to verify that $u \times_S S$ is an isomorphism for each geometric point s of S. One can thus assume that S is the spectrum of a separably closed field. Then, by the proof of (3.3), $X \to Y$ is Galois and hence u is an isomorphism.

□
Proposition 3.5. — For $i = 1, 2$, let $X_i, L_i, Y_i = X_i / L_i$ be as in (2.1) with L_i basic, let $f_i : Y_i \to S$ be the structural morphism, let $G_i = f_i^* \text{Aut}_{Y_i}(X_i)$ and let $r : Y_1 \to Y_2$ be an S-isomorphism. Write X'_i, L'_i, Y'_i for the base change of X_i, L_i, Y_i, r by a morphism $S' \to S$. Then the sheaf on (Sch/S) for the étale topology, $S' \mapsto \text{Isom}_r(X'_1, X'_2)$, is a (G_2, G_1)-bitorsor. The map
\[\text{Isom}_r(X_1, X_2) \to \text{Isom}_r(X'_1, X'_2), \quad h \mapsto h \times_S S' \]
is a bijection if $S' \to S$ is 0-acyclic (SGA 4 XV 1.3).

Proof. Identify Y_1 with Y_2 by r, write $Y = Y_1 = Y_2$ and $f = f_1 = f_2$. Let $I = \text{Isom}_Y(X_1, X_2)$, which is a finite étale Y-algebraic space. By SGA 1 X I.2, $f_* I$ is a finite étale S-algebraic space and its formation commutes with every base change $S' \to S$ and it is a (G_2, G_1)-bitorsor by the same argument of (3.4). When $u : S' \to S$ is 0-acyclic, the adjunction morphism
\[f_* I \to u_* u^* f_* I \]
is an isomorphism and in particular
\[\Gamma(Y, I) = \Gamma(S, f_* I) \to \Gamma(Y', I') = \Gamma(S, u_* u^* f_* I) \]
is a bijection. □

4. Factorization over a separably closed field.

Proposition 4.1. — Over a separably closed field k, every finite étale surjective k-morphism from a k-abelian variety A' to a k-algebraic space Y, $A' \to Y$, factors up to k-isomorphisms in a unique way as the composite of an étale isogeny of k-abelian varieties $A' \to A$ and a quotient $A \to A / L = Y$ by a basic finite étale k-equivalence relation L on A.

Proof. Let $A' \to Y$ be dominated by a finite étale Galois k-morphism $A'' \to Y$ with A'' connected. By SGA 1 XI 2, A'' may be endowed with a k-abelian variety structure so that the projection $A'' \to A'$ is an étale k-group homomorphism. Let E'' denote the kernel of this homomorphism.

Let E consist of the elements of $G = \text{Gal}(A''/Y)$ which are translations of A'', namely, of the form $x \mapsto x + a$, with $a \in A''(k)$. Evidently, E is a subgroup of G, $E \supset E''(k)$ and the quotient $A = A'' / E$ inherits a k-abelian variety structure from that of A''.

The factorization
\[A' = A'' / E'' \to A = A'' / E \to Y = A'' / G \]
is then as desired. One argues as in (3.3) that such a factorization is unique up to k-isomorphisms.

\[\square \]

5. Basicness is an open and closed property.

Proposition 5.1. — Keep the notations of (2.1). Let

\[F : (\text{Sch}/S)^{\circ} \to (\text{Sets}) \]

be the following sub-functor of the final functor:

For an S-scheme S', $F(S') = \{\emptyset\}$, if $L \times_S S'$ is basic, and $F(S') = \emptyset$, otherwise.

Then F is representable by an open and closed sub-algebraic space of S.

Lemma 5.2. — Keep the notations of (2.1). Assume that S is the spectra of a discrete valuation ring with generic point t and closed point s.

Then the following conditions are equivalent:

1) L_s is basic.
2) L_t is basic.

Proof. One may assume that S is strictly henselian.

Assume 1). The finite étale morphism $X_s \to X_s/L_s$ is Galois (3.4). So by SGA 4 XII 5.9 bis, X is Galois over $X/L = Y$, as S is strictly henselien and $Y \to S$ is proper. Let $G = \text{Gal}(X/Y)$. Each element $g \in G$ is equivariant relative to a unique group automorphism $a(g)$ of the S-abelian algebraic space A. The homomorphism $g \mapsto a(g)_s$ is injective, as L_s is basic. It follows that $g \mapsto a(g)_t$ is injective. For, the specialization homomorphism

\[\text{Aut}_t(A_t) \hookrightarrow \text{Aut}_s(A) \to \text{Aut}_s(A_s) \]

is injective. So L_t is basic.

Assume 2). Let \overline{t} be the spectrum of a separable closure of $k(t)$. By (3.4), $X_{\overline{t}} \to Y_{\overline{t}}$ is Galois with Galois group, say G. Replacing if necessary S by its normalization S' in a finite sub-extension of $k(\overline{t})/k(t)$, X by $X \times_S S'$, Y by $Y \times_S S'$ and L by $L \times_S S'$, one may assume that X_t is a G-torsor on Y_t and that L_t is defined by the G-action on X_t. Now X being the S-Néron model of X_t, each t-automorphism of X_t uniquely extends to an S-automorphism of X. In particular, the G-action on X_t extends to an action on X with graph evidently equal to that of L. For each $g \in G$, let $a(g)$ be the unique S-automorphism of the S-abelian algebraic space A relative to which $g : X \to X$ is equivariant. The
homomorphism $g \mapsto a(g)_t$ is injective, as L_t is basic. Then $g \mapsto a(g)_s$ is injective, for the specialization homomorphism
\[
\text{Aut}_t(A_t) \hookrightarrow \text{Aut}_S(A) \rightarrow \text{Aut}_s(A_s)
\]
is injective. So L_s is basic.

\[\square\]

Lemma 5.3. — Keep the notations of (2.1). Assume that L is basic. Assume that S is an affine scheme and that (S_i) is a projective system of affine noetherian schemes, indexed by a co-directed set I, with limit S.

Then there exist an index $i \in I$, an S_i-abelian algebraic space A_i, an A_i-torsor X_i on S_i for the étale topology and a basic finite étale S_i-equivalence relation L_i on X_i such that $A = A_i \times_{S_i} S$, $X = X_i \times_{S_i} S$ and $L = L_i \times_{S_i} S$.

Proof. By the technique of “passage à la limite projective” (EGA IV 8, 9), there exist $i_o \in I$ and $A_{i_o}, X_{i_o}, L_{i_o}$ as desired except possibly the property of being basic. By (5.2), for each $j \geq i_o$, $L_{i_o} \times_{S_{i_o}} S_j$ is basic at precisely the points of an open and closed sub-scheme S'_j of S_j. The projection $S \rightarrow S'_j$ factors through S'_{j_o}, as L is basic. Now $(S_j - S'_{j_o})_{j \geq i_o}$ is a projective system of affine noetherian schemes with empty limit. So $S_i = S'_i$ for some $i \geq i_o$.

\[\square\]

5.4. Proof of (5.1).

The question being an étale local question on S, one may assume that S is a scheme, then affine and by (5.3) noetherian. The claim is now immediate by (5.2).

\[\square\]

6. Automorphisms II.

We study the S-automorphisms of Y.

Lemma 6.1. — Keep the notations of (2.1). Assume that L is basic. Let $p : X \rightarrow X/L = Y$ denote the projection. Let r be an S-automorphism of Y.

Then there is at most one S-section a of A which verifies $rp = pT_a$, where $T_a : x \mapsto a + x$ is the S-automorphism of X, the translation by a.

Proof. If $rp = pT_a = pT_b$ holds for two S-sections a, b of A, then T_{a-b} acts on X as a Y-automorphism. In particular, T_{a-b} is locally on S of finite order. So $T_{a-b} = \text{Id}_X$ and $a = b$, as L is basic.
Lemma 6.2. — Keep the notations and assumptions of (6.1).

Let \(F : (\text{Sch}/S)^o \to (\text{Sets}) \) be the following sub-functor of the final functor:

For an \(S \)-scheme \(S' \), \(F(S') = \{\emptyset\} \), if \(r_{S'}p_{S'} = p_{S'}T_{a'} \) for an \(S' \)-section \(a' \) of \(A_{S'} \), and \(F(S') = \emptyset \), otherwise.

Then \(F \) is representable by an open and closed sub-algebraic space of \(S \).

Proof. The question being by (6.1) an étale local question on \(S \), one may assume \(S \) to be a scheme, then affine and by (5.3) noetherian.

— The functor \(F \) verifies the valuative criterion of properness:

Namely, given an \(S \)-scheme \(S' \) which is the spectra of a discrete valuation ring and which has generic point \(t' \), then \(F(S') = F(t') \). For, if \(r_{t'}p_{t'} = p_{t'}T_{a'} \) holds for some point \(a' \in A(t') \), then \(a' \) extends uniquely to an \(S' \)-section \(a' \) of \(A_{S'} \) and the equation \(r_{S'}p_{S'} = p_{S'}T_{a'} \) holds.

— The functor \(F \) is formally étale:

Namely, \(F(S') = F(S'') \) for every nilpotent \(S \)-immersion \(S'' \hookrightarrow S' \). Indeed, assume \(r_{S''}p_{S''} = p_{S''}T_{a'} \) holds for some section \(a'' \in A(S'') \). As both \(p \) and \(rp \) are étale, there is a unique \(S' \)-automorphism \(T' \) of \(X_{S'} \) such that \(T' \) restricts to \(T_{a''} \) on \(X_{S''} \) and such that \(r_{S''}p_{S''} = p_{S''}T' \) holds. This \(T' \) is equivariant with respect to a unique \(S' \)-group automorphism \(\varphi' \) of \(A_{S'} \). As the \(S \)-group \(\text{Aut}_S(A) \) is unramified over \(S \) and as \(\varphi' \) restricts to the identity automorphism of \(A_{S''} \), it follows that \(\varphi' = \text{Id}_{A_{S'}} \). So \(T' \) is of the form \(T_{a'} \) for an \(S' \)-section \(a' \in A(S') \).

It is now evident that \(F \to S \) is representable by an open and closed immersion.

□

Proposition 6.3. — Keep the notations of (2.1). Assume that \(L \) is basic. Let \(p : X \to X/L = Y \) denote the projection and \(f : Y \to S \) the structural morphism.

Then:

a) The \(S \)-subgroup \(R \) of \(\text{Aut}_S(Y) \) defined to consist of the local \(S \)-automorphisms \(r \) satisfying \(rp = pT_a \) for some local \(S \)-sections \(a \) of \(A \) is open and closed in \(\text{Aut}_S(Y) \).

b) The homomorphism \(r \mapsto a \) is a closed immersion of \(R \) into \(A \). In particular, \(R \) is commutative and representable by a proper \(S \)-algebraic space.
c) An S-section a of A lies in the image of R if and only if $T_ag = gT_a$ for all local S-sections g of $G = f_! \text{Aut}_{X}(X)$.

Proof. Note that $R \to A, r \mapsto a$, is a well-defined morphism by (6.1). This morphism is a monomorphism because p, being \'{e}tale surjective, is an epimorphism in the category of S-algebraic spaces.

The claim that the sub-S-group functor $R \subset \text{Aut}_S(Y)$ is open and closed is a rephrase of (6.2), hence a).

If an S-section a of A satisfies $T_ag = gT_a$ for every local S-section g of G, then T_a, being G-equivariant, defines by passing to the G-quotient an S-automorphism r of $X/G = Y$ (3.4). One has thus $rp = pT_a$ by construction. Conversely, the identity $rp = pT_a$ implies that, for every local S-section g of G, one has $rp = rpg^{-1} = pgT_ag^{-1}$ and then by (6.1) $gT_ag^{-1} = T_a$. The characterization in c) therefore follows and it implies evidently that the monomorphism $R \to A, r \mapsto a$, is a closed immersion, hence b).

\[\square\]

7. Rigidity of torsors and albanese.

Lemma 7.1. — Let S be the spectra of a discrete valuation ring and t (resp. s) a geometric generic (resp. closed) point of S. Let X be a proper smooth S-algebraic space.

Then the following conditions are equivalent :

1) $X \times_S s$ has an s-abelian variety structure.

2) $X \times_S t$ has a t-abelian variety structure.

Proof. One may assume that S is strictly henselian. Then X has S-sections by EGA IV 17.16.3. Fix an S-section o of X. When 1) (resp. 2)) holds, after a translation of the origin, $X \times_S s$ (resp. $X \times_S t$) has an abelian variety structure over s (resp. t) with o_s (resp. o_t) as its zero section. Under either assumption, X has geometrically irreducible S-fibers and admits a unique S-abelian algebraic space structure with o being the zero section (“Geometric Invariant Theory” 6.14).

\[\square\]

Proposition 7.2. — Let S be an algebraic space and X a proper smooth S-algebraic space. Let $T : (\text{Sch}/S)^{\circ} \to (\text{Sets})$ be the following sub-functor of the final functor :

For an S-scheme S', $T(S') = \{\emptyset\}$, if $X \times_S s'$ has an s'-abelian variety structure for each geometric point s' of S', and $T(S') = \emptyset$, otherwise.
Then T is representable by an open and closed sub-algebraic space of S. And $X \times_S T = X_T$ is a $\text{Pic}^o_{P_T/T}$-torsor on T for the étale topology where $P_T = \text{Pic}^o_{X_T/T}$ is a T-abelian algebraic space.

Proof. From (7.1) and by a “passage à la limite”, one deduces that $T \to S$ is representable by an open and closed immersion. Replacing S by T, one may assume $T = S$. Let $S' \to S$ be a smooth morphism with geometrically irreducible fibers such that $X' = X \times_S S'$ admits an S'-section e'. One may for instance take $S' = X$ and e' to be the diagonal section Δ_X/S. Notice that in $S'' = S' \times_S S'$ the only open and closed neighborhood of the diagonal is S''. By “Geometric Invariant Theory” 6.14, on X' there is a unique S'-abelian algebraic space structure with zero section e'. It follows that $P = \text{Pic}^o_{X/S}$, being representable by an S-algebraic space (Artin), is an S-abelian algebraic space and that $\text{Pic}^o_{X/S} = \text{Pic}^o_{X/S}$, as one verifies after the fppf base change $S' \to S$ on the S'-abelian algebraic space X'. Let the dual S-abelian algebraic space of P be A. Let p_1, p_2 be the two projections of S'' onto S' and $u : p_1^*X' \to p_2^*X'$ the descent datum on X' relative to $S' \to S$ corresponding to X. By (3.1)+(7.3) u is equivariant with respect to a unique S''-group automorphism a of $A'' = A \times_S S''$. It suffices evidently to show that $a = 1$. Now the S-group $\text{Aut}_S(A)$ being unramified and separated over S, the relation “$a = 1$” is an open and closed relation on S'' and holds on the diagonal and so holds.

□

Lemma 7.3. — Let S be an algebraic space, A an S-abelian algebraic space and X an A-torsor on S for the étale topology.

Then there exists a canonical isomorphism

$$X A \times \text{Pic}^o_{A/S} \cong \text{Pic}^o_{X/S}$$

which induces isomorphisms

$$\text{Pic}^o_{A/S} = X A \times \text{Pic}^o_{A/S} \cong \text{Pic}^o_{X/S},$$

$$\text{NS}_{A/S} = X A \times \text{NS}_{A/S} \cong \text{NS}_{X/S}.$$

Proof. This is “Faisceaux amples sur les schémas en groupes et les espaces homogènes” XIII 1.1, by which it is justified to call A the albanese of X.

□
8. Specialization and descent.

Proposition 8.1. — Let S be the spectra of a discrete valuation ring and t (resp. s) a geometric generic (resp. closed) point of S. Let Y be a proper smooth S-algebraic space. Suppose that Y_t is the quotient of a t-abelian variety A_t by a basic finite étale t-equivalence relation such that $[A_t : Y_t]$ is prime to the characteristic of $k(s)$.

Then Y_s is the quotient of an s-abelian variety by a basic finite étale s-equivalence relation.

Proof. One may assume that S is strictly henselian with closed point s. Recall that by (3.4) A_t is Galois over Y_t. As Y is proper smooth over S, S strictly henselian and $G = \text{Gal}(A_t/Y_t)$ of order prime to the characteristic of $k(s)$, the specialization morphism

$$H^1(Y, G) \to H^1(Y_t, G)$$

is by SGA 4 XVI 2.2 a bijection. One finds thus a G-torsor on Y for the étale topology, $A \to Y$, which specializes to $A_t \to Y_t$ at t. In particular, A is proper smooth over S and has S-sections by EGA IV 17.16.3 and has by (7.2) an S-abelian algebraic space structure. The finite étale S-equivalence relation on A of graph $A \times_Y A$ is basic because it is basic at t (5.1).

□

Proposition 8.2. — Let S be an algebraic space. Let Y be an algebraic space which is proper flat of finite presentation over S.

Let $U : (\text{Sch}/S)^\circ \to \text{(Sets)}$ be the following sub-functor of the final functor:

For an S-scheme S', $U(S') = \{\emptyset\}$, if $Y \times_S S'$ is the quotient of s'-abelian variety by a finite étale s'-equivalence relation for each geometric point s' of S', and $U(S') = \emptyset$, otherwise.

Then $U \to S$ is representable by an open immersion of finite presentation. There exist a U-abelian algebraic space A, an A-torsor X on U for the étale topology and a basic finite étale U-equivalence relation L on X such that $Y \times_S U$ is U-isomorphic to the quotient X/L.

Proof. Observe that, by (4.1), for a given geometric point s of S, $U(s) = \{\emptyset\}$ if and only if Y_s is the quotient of an s-abelian variety by a basic finite étale s-equivalence relation.

— Reduction to the case where Y is S-smooth:

Consider the functor $V : (\text{Sch}/S)^\circ \to \text{(Sets)}$:

For an S-scheme S', $V(S') = \{\emptyset\}$, if $Y \times_S S'$ is smooth over s' for each geometric point s' of S', and $V(S') = \emptyset$, otherwise.
It is evident that $V \to S$ is representable by an open immersion of finite presentation, that $Y \times_S V$ is proper and smooth over V and that V contains U as a sub-functor. Restricting to V, one may assume that $S = V$, namely, that Y is smooth over S.

— Assume that Y is S-smooth. Then $U \to S$ is representable by an open immersion of finite presentation. There exist an étale surjective morphism $U' \to U$, a U'-abelian algebraic space A', an A'-torsor X' on U' for the étale topology and a basic finite étale U'-equivalence relation L' on X' such that $Y \times_S U'$ is U'-isomorphic to the quotient X'/L'.

The question being an étale local question on S, one may assume that S is a scheme, then affine, then by (5.3) noetherian and strictly local with closed point s and finally that $U(s) = \{ \emptyset \}$, i.e., that Y_s is the quotient of an s-abelian variety A_s by a basic finite étale s-equivalence relation L_s. By SGA 4 XII 5.9 bis, there is a finite étale S-morphism $A \to Y$ which specializes to $A_s \to A_s/L_s = Y_s$ at s. This algebraic space A is in particular proper smooth over S and has closed fiber the abelian variety A_s. As S is strictly local, A admits S-sections (EGA IV 17.16.3). So by (7.2) A has an S-abelian algebraic space structure. The finite étale S-equivalence relation L on A of graph $A \times_Y A$, basic at s, is basic (5.1).

— Assume that Y is S-smooth. Then up to an étale localization on U' there exists a descent datum on (A', X', L') relative to $U' \to U$:

Restricting to the open sub-algebraic space U, one may assume that $U = S$. Write S' for U' and Y' for $Y \times_S S'$. It suffices to prove the existence of a finite étale Y'-algebraic space X such that the finite étale Y'-algebraic space $\text{Isom}_{Y'}(X \times_Y Y', X')$ is surjective over Y', for then X is an A-torsor on S for the étale topology (7.2) where the S-abelian algebraic space A satisfies $\text{Pic}^0_{A/S} = \text{Pic}^0_{X/S}$ (7.3) and $X \times_Y X$ is the graph of a basic finite étale S-equivalence relation L on X.

i) Case where Y has an S-section y:

By an étale localization on S', one may assume that there is an S'-section x' of X' which is mapped to $y' = y \times_S S'$ by $X' \to Y'$. Let $S'' = S' \times_S S'$ and p_1, p_2 the two projections of S'' onto S'. By (3.3), there exists a unique $(Y \times_S S'')$-isomorphism $h : p_1^*X' \to p_2^*X'$ which transforms $p_1^*(x')$ to $p_2^*(x')$. That is, h is a gluing datum on (X', x') relative to $S' \to S$. By (3.3) again, h is a descent datum. This descent provides a finite étale Y-algebraic space X which verifies $X \times_Y Y' = X'$ and which is equipped with an S-section x having image y in $Y(S)$.

ii) General case:
By the second projection, \(Y \times_S Y = Y_1 \) has a \(Y \)-algebraic space structure which admits the \(Y \)-section \(\Delta_{Y/S} \). One finds by i) a finite étale \(Y_1 \)-algebraic space \(X_1 \) such that the finite étale \(Y_1' \)-algebraic space

\[
\text{Isom}_{Y_1'}(X_1 \times_{Y_1} Y_1', X' \times_{Y'} Y_1')
\]

is surjective over \(Y_1' \), where \(Y_1' := Y \times_S Y' = Y_1 \times_Y Y' \). Let the Stein factorization of the proper smooth \(Y \)-algebraic space \(X_1 \) be

\[
X_1 \to X \to Y
\]

and let \(c \) be the canonical morphism

\[
c : X_1 \to X \times_Y Y_1.
\]

By SGA 1 X 1.2, the morphism \(X \to Y \) is finite étale and the formation of the Stein factorization commutes with every base change \(T \to S \). It suffices to show that \(c \) is an isomorphism, for then

\[
\text{Isom}_{Y_1'}(X_1 \times_{Y_1} Y_1', X' \times_{Y'} Y_1') = \text{Isom}_{Y_1'}(X \times_Y Y', X') \times_{Y'} Y_1'
\]

and \(X \) is the sought after \(Y \)-algebraic space. This amounts to showing that \(c \times_S s \) is an isomorphism for each geometric point \(s \) of \(S \). One may thus assume that \(S \) is the spectrum of a separably closed field. Then \(S' \), being étale surjective over \(S \), is a non-empty disjoint union of \(S \). Index these components of \(S' \) as \(S_i \), \(i \in \pi_0(S') = \Pi \), write \(X' = \sum_{i \in \Pi} X_i \), fix a point \(y \in Y(S) \) and choose a point \(x_i \in X_i(S_i) \) above \(y \) for each \(i \in \Pi \). These \((X_i, x_i) \)'s are all mutually \(Y \)-isomorphic by (3.3). Clearly, \(c \) is an isomorphism.

\[\square\]

9. Proof of Theorem 1.1.

a) Let the open sub-algebraic space \(U \) of \(S \), the \(U \)-abelian algebraic space \(A \), the \(A \)-torsor \(X \) on \(U \) for the étale topology be as in (8.2) so that \(Y \times_S U = Y_U \) is the quotient of \(X \) by a basic finite étale \(U \)-equivalence relation \(L \). It suffices to show that \(U = S \).

Factor \(A'_t \to Y_t \) as \(A'_t \to X_t \to Y_t \) (4.1). The degree \([X_t : Y_t] = d \), which divides \([A'_t : Y_t] \), is prime to the residue characteristics of \(S \). By (3.4), there is a maximal open and closed sub-algebraic space \(U' \) of \(U \) such that \(X_{U'} \) is of constant degree \(d \) over \(Y_{U'} \). By (8.1), \(U' \) is closed in \(S \). So \(U' = U = S \), as \(S \) is connected.

b) The assertion is immediate by (3.5)+(7.3). And the map which with \(P' \in H^1(S, G) \) associates

\[
X' = P' \wedge X
\]

provides the inverse.
10. Irreducibility of non-uniruled degenerate fibers. Almost non-degeneration.

The irreducibility of non-uniruled degenerate fibers of an abelian fibration is shown in [4], hence:

Proposition 10.1. — Keep the notations of (1.1). Assume that S is open in an algebraic space \(\overline{S} \) and that \(Y \) is open dense in a separated finitely presented \(\overline{S} \)-algebraic space \(\overline{Y} \) with structural morphism \(\overline{f} \). Let \(\overline{s} \) be a geometric point of \(\overline{S} \) with values in an algebraically closed field.

Then \(\overline{f}^{-1}(\overline{s}) \) is irreducible if it is non-empty and does not have uniruled irreducible components and if one of the following two conditions holds:

a) \(\overline{f} \) is flat at all maximal points of \(\overline{f}^{-1}(\overline{s}) \).

b) \(\overline{S} \) is locally noetherian and \(\overline{f} \) is universally open at all maximal points of \(\overline{f}^{-1}(\overline{s}) \).

Proof. By standard arguments one may assume that \(\overline{S} \) is the spectra of a complete discrete valuation ring with \(\overline{S} - S = \{ \overline{s} \} \), that \(\overline{f} \) is flat and that \(\overline{f}^{-1}(\overline{s}) \) has no imbedded components. Let \(X \) be as in (1.1) and \(X_\overline{s} \) the normalization of \(Y \) in \(X \). Then \(X_\overline{s} \) is non-empty and does not have uniruled irreducible components and hence by [4] 4.1 is irreducible. So \(\overline{f}^{-1}(\overline{s}) \) is irreducible.

Theorem 10.2. — Let \(S \) be the spectra of a discrete valuation ring and \(\overline{t} \) (resp. \(\overline{s} \)) a geometric generic (resp. closed) point of \(S \) with values in an algebraically closed field. Let \(Y \) be an \(S \)-algebraic space with structural morphism \(f \). Assume that \(f \) is separated of finite type, that \(Y \) is normal integral and at each of its geometric codimension \(\geq 2 \) points either regular or pure geometrically para-factorial of equal characteristic, that \(f^{-1}(\overline{t}) \) is the quotient of a \(\overline{t} \)-abelian variety \(A_{\overline{t}} \) by a finite étale \(\overline{t} \)-equivalence relation with degree \([A_{\overline{t}} : f^{-1}(\overline{t})] \) prime to the characteristic of \(k(\overline{s}) \) and that \(f^{-1}(\overline{s}) \) is non-empty, proper, of total multiplicity prime to the characteristic of \(k(\overline{s}) \) and does not have uniruled irreducible components.

Then \(f \) factors canonically as \(Y \to E \to S \) with \(Y \to E \) proper and smooth, where \(E \) is a finite flat \(S \)-algebraic stack, regular, tame over \(S \) and satisfies \(E \times_S \overline{t} = \overline{t} \).

Proof. Notice that \(f \) is faithfully flat and, being separated of finite type with geometrically irreducible (10.1) and proper fibers, that \(f \) is also
proper (EGA IV 15.7.10). Let the total multiplicity of \(f^{-1}(\mathfrak{s}) \), that is by definition, the greatest common divisor of the lengths of the local rings of \(f^{-1}(\mathfrak{s}) \) at its maximal points, be \(\delta \), which by hypothesis is prime to the characteristic of \(k(\mathfrak{s}) \). Thus, the 1-codimensional cycle on \(Y \) with rational coefficients, \(\Delta = f^* \text{Cyc}_{S}(\pi)/\delta \), where \(\pi \) is a uniformizer of \(S \), has integral coefficients and is a prime cycle and is locally principal, for \(Y \), being normal and geometrically para-factorial at all its geometric codimension \(\geq 2 \) points, has geometrically factorial local rings (EGA IV 21.13.11). With \(\Delta \) one associates a canonical \(\mu_{\delta} \)-torsor on \(Y \) for the étale topology, \(Y' \to Y \). Let \(S' = \text{Spec} \Gamma(Y', \mathcal{O}_{Y'}) \). There is by quotient by \(\mu_{\delta} \) an \(S \)-morphism
\[
Y = [Y'/\mu_{\delta}] \to [S'/\mu_{\delta}] = E.
\]

It suffices evidently to show that \(Y' \to S' \) is smooth, for then
\[
Y \to E \to S
\]
is the desired factorization of \(f \). Replacing \(f \) by \(Y' \to S' \), we assume from now on that \(\delta = 1 \), namely, that \(f^{-1}(\mathfrak{s}) \) is integral. And, replacing \(f \) by \(f \times_{S} S(\mathfrak{s}) \), where \(S(\mathfrak{s}) \) is the strict henselization of \(S \) at \(\mathfrak{s} \), we assume that \(S \) is strictly henselian.

Let \(t \) (resp. \(s \)) be the generic (resp. closed) point of \(S \). Choose by (1.1) a triple \((A_t, X_t, L_t)\) so that, for a \(t \)-abelian variety \(A_t \), \(Y_t = f^{-1}(t) \) is the quotient of an \(A_t \)-torsor \(X_t \) by a basic finite étale \(t \)-equivalence relation \(L_t \). Let \(G_t = f_{ts} \text{Aut}_{A_t}(X_t) \). The degree \([X_t : f^{-1}(t)] = [G_t : t]\), which divides \([A'_t : f^{-1}(t)]\) (4.1), is prime to the characteristic of \(k(s) \).

Let \(X \) be the normalization of \(Y \) in \(X_t \). Then \(X_{\mathfrak{s}} \) is non-empty and does not have uniruled irreducible components and hence is irreducible (10.1). Let \(p : X \to Y \) be the projection and \(x \) (resp. \(y = p(x) \)) the generic point of \(X_{s} \) (resp. \(Y_{s} \)). Note that there is an open neighborhood of \(x \) (resp. \(y \)) in \(X \) (resp. \(Y \)) which is a scheme (2 3.3.2).

--- Reduction to the case where \(G_t \) is constant and cyclic ---

One has that \([X_t : Y_t] = [\mathcal{O}_{X,t} : \mathcal{O}_{Y,y}] = e[k(x) : k(y)]\) is prime to the characteristic of \(k(s) \), where \(e \) is the ramification index of \(\mathcal{O}_{X,t} \) over \(\mathcal{O}_{Y,y} \). One deduces that there is an open sub-scheme \(V \) of \(Y \) containing \(y \) such that \(V \) is \(S \)-smooth, that \((U_{s})_{\text{red}} \) is finite étale surjective over \(V_{s} \) of rank \([k(x) : k(y)]\), where \(U = p^{-1}(V) \), and that the ideal of \(U \) defining the closed sub-scheme \((U_{s})_{\text{red}} \) is generated by one section \(h \in \Gamma(U, \mathcal{O}_{U}) \). In particular, \(U \) is regular with \(h_{u} \) being part of a regular system of parameters at each point \(u \) of \(U_{s} \). Now \(S \) being strictly henselian, choose a point \(u \in U_{s}(s) \), let \(v = p(u) \), let \(n = \text{dim}_{h}(U_{s}) \) and choose \(h_{1}, \ldots, h_{n} \in \mathcal{O}_{U,u} \) so that \(\{h_{1} \text{ mod } h, \ldots, h_{n} \text{ mod } h\} \) is the
image of a regular system of parameters of V_s at v. Then h, h_1, \cdots, h_n form a regular system of parameters of U at u. Let

$$R = \text{Spec}(\mathcal{O}_{U,u}/(h_1, \cdots, h_n)),$$

which is regular local of dimension 1 and finite flat tame along s of rank e over S. Let r be the generic point of R. The closed image of $p(r)$ in Y is an S-section lying in V and one obtains the following commutative diagram of S-schemes:

$$\begin{array}{ccc}
R & \longrightarrow & U = p^{-1}(V) \\
\downarrow & & \downarrow p \\
S & \longrightarrow & V
\end{array}$$

The G_t-torsor structure on $p^{-1}(p(r))$, where one identifies the t-rational point $p(r)$ with t, induces an epimorphism

$$G_t \times_t r \to p^{-1}(p(r)), \quad (g, \lambda) \mapsto g.\lambda$$

and an isomorphism

$$G_t/\text{Norm}_{G_t}(r) \cong \pi_o(p^{-1}(p(r))).$$

Let $Z_t = X_t/N$ be the quotient of X_t by $N = \text{Norm}_{G_t}(r)$ and let Z be the normalization of Y in Z_t. The fiber Z_s is irreducible with generic point z being the image of x. Observe that, on writing w for the image of u in Z, Z is by construction étale over Y at w and a priori at z. So $Z \to Y$ is étale, as Y by hypothesis is pure at all its geometric codimension ≥ 2 points. Observe next that N is constant and cyclic. Replacing Y by Z and G_t by N, one may assume that $G_t \simeq \mathbb{Z}/e\mathbb{Z}$.

Assume $G_t = \mathbb{Z}/e\mathbb{Z}$. Reduction to the case where $p : X \to Y$ is étale:

Identify $\mathbb{Z}/e\mathbb{Z}$ with μ_e. The μ_e-torsor $X_t \to Y_t$ corresponds to a pair (J_t, α_t) which consists of an invertible module J_t on Y_t and of an isomorphism $\alpha_t : \mathcal{O}_{Y_t} \cong J_t^{\otimes e}$. There is an invertible \mathcal{O}_Y-module J extending J_t, since Y has geometrically factorial local rings. Since furthermore f has geometrically integral fibers, $J^{\otimes e}$ is isomorphic to \mathcal{O}_Y, say by $\beta : \mathcal{O}_Y \cong J^{\otimes e}$. The difference in $H^1(Y_t, \mu_e)$ of the classes of (J_t, α_t) and (J_t, β_t), that is, the class of $\mathcal{O}_{Y_t}/\beta_t^{-1}\alpha_t$, is contained in the image of the map

$$f^* : H^1(t, \mu_e) \to H^1(Y_t, \mu_e),$$

for one has $\Gamma(Y_t, \mathcal{O}_{Y_t}) = k(t)$. By (1.1) b replacing X_t by the μ_e-torsor $X'_t \to Y_t$ defined by (J_t, β_t), one may assume that $p : X \to Y$ is étale. It suffices to show that X is smooth over S. This follows from (4) 4.3. \qed
Lemma 10.3. — Keep the notations of (1.1). Assume that S is a noetherian local scheme with closed point s such that one of the following two conditions holds:

a) S is regular of dimension > 0.

b) S is pure geometrically para-factorial along s of equal characteristic.

Let $U = S - \{s\}$. Then each U-section of $f|U$ extends uniquely to an S-section of f.

Proof. In case a) one applies [4] 2.1 as the geometric fibers of f do not contain rational curves. Assume b). One may assume S strictly local. Choose (A, X, L) as in (1.1), let $G = f_*\text{Aut}_Y(X)$, $p : X \to Y$ the projection and $y : U \to Y$ a section of $f|U$. The finite étale S-group G is constant and the $G|U$-torsor $p^{-1}(y)$ is trivial, for S is strictly local and pure along s. By loc.cit. 5.2+5.3 each U-section of $p^{-1}(y)$ extends uniquely to an S-section of X, hence the claim.

Lemma 10.4. — Let S be a noetherian normal local scheme of equal characteristic zero pure geometrically para-factorial along its closed point s. Let $U = S - \{s\}$. Let E be the fiber category on the category of S-algebraic spaces whose fiber over each S-algebraic space S' is the full sub-category of the category of S'-algebraic spaces consisting of the S'-algebraic spaces Y' which, for an S'-abelian algebraic space A', an A'-torsor X' on S' for the étale topology of finite order and a basic finite étale S'-equivalence relation L' on X', is representable as the quotient X'/L'.

Then the restriction functor $E(S) \to E(U)$ is an equivalence of categories.

Proof. This restriction functor is fully faithful by (10.3), since every S-smooth algebraic space is pure geometrically para-factorial along its closed S-fiber.

This functor is essentially surjective. For, U-abelian algebraic spaces extend to S-abelian algebraic spaces ([4] 5.1). And, as S is pure along s, if n is an integer ≥ 1, A an S-abelian algebraic space and $\pi A = \text{Ker}(n.\text{Id}_A)$, $nA|U$-torsors on U for the étale topology extend to nA-torsors on S for the étale topology. Thus, every object of $E(U)$ is a quotient $(X|U)/(G|U)$ where, for an S-abelian algebraic space A, X is an A-torsor on S for the étale topology of finite order and G is a finite étale S-group such that $G|U$ acts and defines a basic finite étale U-equivalence relation on $X|U$. Each such action $G|U \times_U X|U \to X|U$
extends by \[\mu : G \times_S X \to X\], since \(G \times_S X\) is geometrically para-factorial along its closed \(S\)-fiber. Clearly, \(\mu\) represents a \(G\)-action and defines a basic finite étale \(S\)-equivalence relation on \(X\). And \(X/G\) is the desired extension of \((X|U)/(G|U)\).

\[
\square
\]

Theorem 10.5. — Let \(S\) be an integral scheme with generic point \(t\). Let \(F\) be the fiber category on the category of \(S\)-algebraic spaces whose fiber over each \(S\)-algebraic space \(S'\) is the full sub-category of the category of \(S'\)-algebraic spaces consisting of the \(S'\)-algebraic spaces \(Y'\) which, for an \(S'\)-abelian algebraic space \(A'\), an \(A'\)-torsor \(X'\) on \(S'\) for the étale topology and a basic finite étale \(S'\)-equivalence relation \(L'\) on \(X'\), is representable as the quotient \(X'/L'\). Let \(Y\) be an \(S\)-algebraic space with structural morphism \(f\). Assume that \(Y\) is locally noetherian normal integral of residue characteristics zero and at all its geometric codimension ≥ 2 points pure and geometrically para-factorial. Assume furthermore that \(f^{-1}(t)\) is an object of \(F(t)\) and that, for each geometric codimension 1 point \(\overline{\gamma}\) of \(Y\), \(f \times_S S_{[\overline{\gamma}]}\) is separated of finite type and flat at \(\overline{\gamma}\) and the geometric fiber \(f^{-1}(\overline{s})\) is proper and does not have uniruled irreducible components, where \(S_{[\overline{s}]}\) denotes the strict localization of \(S\) at \(s = f(\overline{s})\).

Then up to unique isomorphisms there exists a unique groupoid in the category of \(S\)-algebraic spaces whose nerve \((Y, d, s)\) satisfies the following conditions:

a) \(Y = Y_o\).

b) The \(Y\)-algebraic space with structural morphism \(d_1 : Y_1 \to Y_o\) is an object of \(F(Y)\).

c) Over \(t\), \(Y_t = \cosq_o(f^{-1}(t)/t)\).

Proof. Notice that for each geometric codimension 1 point \(\overline{\gamma}\) of \(Y\) the localization of \(S\) at the image \(s\) of \(\overline{\gamma}\) is noetherian regular of dimension ≤ 1, since \(f\) is by hypothesis flat at \(\overline{\gamma}\). If \(S\) is local of dimension 1 with closed point \(s\), then with the notations of (10.2) the asserted \(S\)-groupoid is \(\cosq_o(Y/E)\) which, as \(Y\) is regular (10.2), is unique up to unique isomorphisms (10.3). By a “passage à la limite” and by gluing, one obtains in the general case an \(S\)-groupoid \(U\) satisfying the following conditions:

a) \(U_o\) is open in \(Y\) such that \(\text{codim}(Y - U_o, Y) \geq 2\).

b) The \(U_o\)-algebraic space with structural morphism \(d_1 : U_1 \to U_o\) is an object of \(F(U_o)\).

c) Over \(t\), \(U_t = \cosq_o(f^{-1}(t)/t)\).
As \(d_1 : U_1 \to U_o \) has the canonical section \(s_o : U_o \to U_1 \), one may by the proof of (8.2) write \(d_1 \) as a quotient by a basic finite étale \(U_o \)-equivalence relation on a \(U_o \)-abelian algebraic space with \(s_o \) being the image of the zero section. Hence, by (10.4) there is a cartesian diagram of \(S \)-algebraic spaces

\[
\begin{array}{ccc}
U_1 & \longrightarrow & Y_1 \\
\downarrow d_1 & & \downarrow d_1 \\
U_o & \longrightarrow & Y_o
\end{array}
\]

where \(Y_o = Y \) whose vertical arrow on the right is an object of \(F(Y_o) \). By (10.3) this diagram is unique up to unique isomorphisms and there is a unique extension of \(s_o : U_o \to U_1 \) to a section \(s_o : Y_o \to Y_1 \) of \(d_1 : Y_1 \to Y_o \). By again (10.3) and arguing as in [4] 5.7 one finds a unique \(S \)-groupoid \(Y \) with \(d_1 : Y_1 \to Y_o \) being a face.

\[
\square
\]

Similarly as [4] 3.1, we call every groupoid \(Y \) satisfying the conditions (10.5) \(a)+b \) an almost non-degenerate fibration structure on \(f : Y \to S \) with \([Y]\) being called the ramification \(S \)-stack. Each such fibration has again a tautological factorization

\[
f : Y \to [Y] \to S.
\]

We say that this structure is non-degenerate if the groupoid \(Y \) is simply connected with \(\text{Coker}(d_o, d_1) = S \), that is, if \(f : Y \to S \) is an object of \(F(S) \) of (10.5). Note that \(Y \to [Y] \) is then non-degenerate in this sense as in loc.cit.

Proposition 10.6. — Keep the notations of (10.5). Consider the following conditions:

1) \(f \) is proper, \(S \) is excellent regular.

2) \(f \) is proper, \(S \) is locally noetherian normal and at each of its points satisfies the condition (W) (EGA IV 21.12.8).

Then, if 1) (resp. 2)) holds, \(S \) is the cokernel of \((d_o, d_1)\) in the full sub-category of the category of \(S \)-algebraic spaces consisting of the \(S \)-algebraic spaces (resp. \(S \)-schemes) which are \(S \)-separated and locally of finite type over \(S \).

Proof. One argues as in [4] 5.11.

\[
\square
\]

References

1. D. Mumford. Geometric Invariant Theory. *Ergebnisse der Mathematik und ihrer Grenzgebiete*, 1965.
2. M. Raynaud. Spécialisation du foncteur de Picard. *Publications Mathématiques de l’IHÉS*, 38, 1970.

3. M. Raynaud. Faisceaux amples sur les schémas en groupes et les espaces homogènes. *Lecture Notes in Mathematics*, 119, 1971.

4. Y. Zong. Almost non-degenerate abelian fibrations. arxiv.org/abs/1406.5956.

Department of Mathematics, University of Toronto

E-mail address: zongying@math.utoronto.ca