Comparison of Problematic Behavior According to the Ryouiku Techou Standard

Masayuki Uesugi, RPT1), Yuri Inoue, RPT1), Makoto Goto, RPT3), Yoshimi Nanba, RPT1), Yoshitaka Otani, RPT3), Seiichi Takemasa, RPT1)

1) Kobe International University: 9-1-6 Koyouchou, Higashinada-ku, Kobe City, Hyogo 658-0032, Japan. TEL: +81 78-845-3131

Abstract. [Purpose] We compared problematic behaviors of children according to the severity of their mental retardation (MR) of intellect as categorized by the Ryouiku Techou in this study, to investigate the influence of MR of intellect on children’s problematic behaviors. [Subjects] The subjects were 86 mentally retarded children undergoing physical therapy at hospitals and other facilities. [Methods] The examiners were 13 physical therapists and 8 occupational therapists who worked at the hospital and knew the children well. The examiners individually assessed the subjects using the Japanese version of the Aberrant Behavior Checklist. The subjects were divided into two groups (A and non-A) according to the Ryouiku Techou standard. [Results] No significant differences were observed between the groups except in the items of stereotypy and lethargy. [Conclusion] Problematic behaviors other than stereotypy and lethargy were not influenced by the Ryouiku Techou standard.

Key words: The Japanese version of the Aberrant Behavior Checklist, Ryouiku Techou, Problematic behavior

INTRODUCTION

Tada reported that 55% of the services provided by physical therapists at special needs education schools were for physically handicapped children, and included individual counseling and lectures concerning physical disabilities for such children. The services of physical therapists for mentally retarded children, however, also accounted for a high percentage (30.4%), and include individual counseling for mentally retarded children and lectures concerning mental retardation (MR).

Tada’s report suggests that physical therapists are often involved in the management of mentally retarded children. We assessed 26 mentally retarded children undergoing pediatric physical therapy at one of three facilities, including a child daycare facility. Examiners were a physical therapist and other medical practitioners working at the facilities. Assessment was made using the Japanese version of the Aberrant Behavior Checklist (ABC-J). Out of 26 children, irritability was observed in 23, lethargy in 23, stereotypy in 13, hyperactivity in 23, and inappropriate speech in 12. Pediatric physical therapists must increase their understanding of MR, and physical therapy approaches must consider MR. Development tests commonly used to measure mental retardation of handicapped children do not reveal problematic behaviors that may interfere with physical therapy.

We compared problematic behaviors according to the severity of MR in intellectual children as categorized by the Ryouiku Techou. The purpose of this study was to investigate the influence of MR of the intellect on children’s problematic behaviors.

SUBJECTS AND METHODS

The subjects were 86 mentally retarded children undergoing physical therapy at hospitals and other facilities (56 boys and 30 girls; age 16 months to approximately 20 years; average age 8.5 ± 4.7 years) (Table 1). Subjects’ diagnoses included cerebral palsy (CP) and psychomotor retardation among others. The examiners were 13 physical therapists and 8 occupational therapists who worked at the hospital and knew the children well (Table 2). The examiners individually assessed all subjects using the ABC-J. The subjects were divided into two groups (A and non-A) according to the Ryouiku Techou standard. Ryouiku Techou is distributed available to intellectually disabled persons by the Japanese Government and is used in the assessment of their intellectual disability. Individuals are classified into one of the three stages (A, B1, B2) representing serious, moderate, and slight disability, respectively, based on their intellectual disability. The study objectives, significance, methods, and privacy protection were explained to the caregivers of the subjects in writing, and each participant provided their informed written consent. Wilcoxon’s signed rank sum test was applied to the ABC-J scores of both groups for irritability, lethargy, stereotypy, hyperactivity, and inappropriate speech. Statistical analyses were conducted using R 2.8.1 software. The ABC is a questionnaire developed by Aman et al. to assess problematic behaviors in mentally handicapped persons. It has been used in several studies, including those on syndrome phenotype and pharmacotherapy ef-
Table 1. Subjects

Case	Diagnosis	Age	Sex	the Ryouiku Techou
1	mentally-retarded	2Y5M	Female	
2	Cerebral palsy	5Y9M	Male	
3	Pierre Robin syndrome	3Y3M	Male	B1
4	3P trisomy	12Y1M	Female	A
5	Epilepsy (West syndrome)	6Y6M	Female	A
6	Cerebral palsy	5Y8M	Male	A
7	mentally-retarded	3Y7M	Female	B1
8	mentally-retarded	5Y1M	Male	A
9	mentally-retarded	8Y	Male	A
10	Cerebral palsy	4Y10M	Male	
11	Epilepsy (West syndrome)	5Y1M	Male	A
12	Chromosome aberration (8p-synd)	13Y11M	Male	A
13	Cerebral palsy	7Y4M	Male	
14	Down syndrome	1Y4M	Male	
15	Cerebral palsy	13Y6M	Female	
16	Cerebral palsy	4Y7M	Female	A
17	Cerebral palsy	4Y10M	Male	A
18	autism	9Y4M	Male	A
19	Cerebral palsy	7Y9M	Male	A
20	Mowat Wilson syndrome	5Y3M	Male	A
21	mentally-retarded	15Y5M	Female	A
22	Mowat Wilson syndrome	7Y7M	Male	A
23	Pena-Shokeir	19Y10M	Female	A
24	Bourneville-Pringle	13Y	Male	A
25	microcephaly	16Y	Male	A
26	mentally-retarded	9Y10M	Male	A
27	Chromosome aberration (13 trisomy)	15Y2M	Male	A
28	Cerebral palsy *mentally-retarded	15Y5M	Male	A
29	mentally-retarded	6Y11M	Female	A
30	Cerebral palsy	5Y8M	Male	A
31	Cerebral palsy *mentally-retarded*Epilepsy	13Y7M	Male	A
32	mentally-retarded*Epilepsy	3Y5M	Male	A
33	Cerebral palsy	14Y	Male	A
34	Cerebral palsy *mentally-retarded*Epilepsy	12Y9M	Male	A
35	Cerebral palsy *mentally-retarded	17Y6M	Male	A
36	Head injury aftereffects	13Y7M	Male	A
37	Head injury aftereffects	16Y5M	Female	A
38	Artifact of brain tumor aftereffects*Epilepsy	16Y4M	Female	A
39	HIE*Epilepsy	6Y4M	Male	A
40	Cerebral palsy	15Y	Male	A
41	Cerebral palsy	9Y2M	Female	A
42	Chromosome aberration (6p-) mentally-retarded	3Y5M	Female	B2
43	Cerebral palsy	2Y	Male	B2
44	Cerebral palsy	11Y3M	Male	A
45	Cerebral palsy	10Y5M	Female	A
46	Head injury aftereffects	4Y2M	Male	A
47	Cerebral hemorrhage aftereffects	9Y4M	Male	
48	asplenia	6Y3M	Male	A
49	dwarfism	6Y6M	Male	B2
50	Cerebral palsy	13Y2M	Male	A
fants. Outside Japan, several studies have used ABC3, 5–8, ABC has a total of 58 questionnaire items: 15, 16, 7, 16, and 4 for irritability, lethargy, stereotypy, hyperactivity, and inappropriate speech, respectively. Medical staff, parents, caretakers, and other examiners who know the subjects well assess these items using a 4-point scale: no problems (0 points), minor problems (1 point), moderate problems (2 points), and major problems (3 points) to depict the severity of the problematic behavior. Ryouiku Techou is provided by the Japanese Government to people with intellectual disability, to assist with consultation regarding the disability and the provision of help from various welfare systems. It is classified into three stages (A, B1, B2), as described above. This study was approved by the Research Ethics Committee of Kobe International University (G2009-004).

Table 1. Continue
51 Cerebral palsy
52 mentally-retarded
53 schromosome aberration
54 Cerebral palsy
55 Cerebral palsy
56 hydrocephalus
57 campomelic dysplasia
58 Cerebral palsy
59 Cerebral palsy
60 Cerebral palsy
61 Artifact of brain tumor aftereffects
62 Cerebral palsy
63 Cerebral palsy, mentally-retarded
64 Cerebral palsy, mentally-retarded
65 Acute encephalopathic aftereffects
66 Acute encephalopathic aftereffects
67 Acute brain fever
68 mentally-retarded
69 mentally-retarded
70 Head injury aftereffects
71 mentally-retarded
72 Influenza-associated encephalopathy aftereffects
73 mentally-retarded
74 autism
75 Cerebral palsy
76 Williams's syndrome
77 Cerebral palsy
78 Cerebral palsy
79 Cerebral palsy
80 PVL
81 PVL
82 One side cerebellum loss
83 low birth weight infant
84 mentally-retarded
85 mentally-retarded
86 Epilepsy

Y, year; M, month

RESULTS

Significance of differences (p) observed between the A and non-A groups were as follows: irritability, p = 0.223; lethargy, p = 0.027; stereotypy, p = 0.018; hyperactivity, p = 0.174; inappropriate speech, p = 0.231. There were no significant differences between the groups for any items except those of stereotypy and lethargy (Table 3).

DISCUSSION

Physical therapists use exercise and physical therapy to help physically handicapped adults and children improve their basic physical capabilities. Physically handicapped children are often also mentally retarded31. Pediatric physical therapists must increase their understanding of MR30,
and physical therapy approaches must consider MR\(^1\). According to the National Liaison Council of Four Development Support Facilities Organizations that examined 2,609 children attending schools for mentally retarded children, 56.0% had severe MR, 30.6% had medium MR, and 8.7% had autism\(^9\). Koike reported that 145 children attending a particular pediatric rehabilitation department included 54 with CP or other cerebral disorders, and 43 of these children also had MR. Physical therapists often treat mentally retarded children with CP. The better the motor functions, the lower the percentage of children with MR and problematic behaviors\(^{10}\). With regard to gross motor function classification system levels, the percentages of severe MR and problematic behaviors were reported as follows: Level I, approximately 5% or less of children with both disabilities were capable of ascending/descending stairs; Level II, approximately 20% and 5% or less, respectively, were capable of walking; Level III, approximately 30% and 5% or less, respectively, were capable of walking with assistive mobility devices; Level IV, approximately 25% and 5% or less, respectively, were capable of using electrically powered wheelchairs; and Level V, approximately 85% and 10%, respectively, had limited self-mobility even with the assistance of electrically powered wheelchairs. According to Carlsson et al., MR is observed in 43% of children with CP and 25% of them show severe MR. Twenty-five percent of parents of children with CP assess their children as behaving abnormally, and 18% assess their children as being borderline. Children with CP are known to be at a higher risk of behavioral and psychological problems than healthy children. However, for handicapped children including those with CP, the only problematic behaviors in this research that were influenced by the Ryuoku Techou standard were stereotypy and lethargy. All subjects were receiving physiotherapy and had impaired mobility. Lethargy relates to insufficient activity; stereotypy relates to insufficient movement repertoire. Therefore, the examiners were readily able to evaluate problematic behaviors. The main limitation of this study was that there were some subjects in the non-A group who not Ryuoku Techou holders. Although the examiners knew the subjects well, this study was limited by the fact that examiner knowledge of subjects varied. Few studies address problematic behaviors from a medical perspective. Despite such limitations, this study has significance and offers new contributions as a physical therapy study.

We would like to thank all staff at the hospitals and facilities participating in this study, the children, and their parents for their understanding and assistance.

REFERENCES

1) Tada T: Roles of physical therapists at schools for handicapped children. Rigaku Ryoho J, 2009, 44: 417–425 (in Japanese).

2) Uesugi M, Naruse S, Inoue Y, et al.: What problematic behaviors are observed among mentally handicapped children receiving pediatric physical therapy? J Phys Ther Sci, 2010, 22: 387–390. [CrossRef]

3) Koike J: Current state and view of child’s rehabilitation. Rigaku Ryoho J, 2003, 37: 363–371 (in Japanese).

4) Aman MG, Singh NN: (Ono Yosio): Japanese Manuals of Aberrant Behavior Checklist. Tokyo: Jibo, 2006 (in Japanese).

5) Yokochi K: Assessment of adoptive behaviors of most severely mentally-retarded children and people. Brain Dev, 2005, 37.

6) Hanzawa N: Rehabilitation of Children — Coping with Clinical Conditions and Life Stages. Tokyo: Kanahara Publishing, 2004, p 231 (in Japanese).

7) Dykens EM, Clarke DJ: Correlates of Maladaptive behavior in individuals with 5p-(cri du chat) syndrome. Dev Med Chil Neuro, 1997, 39: 752–756.

8) Clarke DJ, Boer H: Problem behaviors associated with deletion prader-willi, smith-magenis, and cri du chat syndromes. Am J Ment Retard, 1998, 103: 264–271. [Medline] [CrossRef]

9) Meeting EG: National Liaison Council of Four Development Support Facilities Organizations, 2006.

10) Karen D, Christine I, Nicholas FT: Physiotherapy and Occupational Therapy for People with Cerebral Palsy: A Problem-Based Approach to Assessment and Management. London: Mac Keith Press, 2010.