Signal Transducer and Activator of Transcription 3 (STAT3) Protein Suppresses Adenoma-to-carcinoma Transition in \textit{Apc}^{\text{min/+}} Mice via Regulation of Snail-1 (SNAI) Protein Stability*5

Jongdae Lee1, Joanna C. K. Kim, Shee-Eun Lee2, Christine Quinley, HyeRi Kim, Scott Herdman, Maripat Corr, and Eyal Raz3

From the Department of Medicine, University of California at San Diego, La Jolla, California 92093-0663

Background: STAT3 suppresses carcinogenesis of intestinal tumors in \textit{Apc} min mice.

Results: STAT3 suppresses expression of SNAI in intestinal epithelium by regulating GSK3\textbeta activity.

Conclusion: STAT3 induces degradation of SNAI by promoting GSK3\textbeta activity and thereby suppresses adenoma-to-adeno-carcinoma transition in \textit{Apc} min mice.

Significance: Our data provide a new insight into the role of STAT3 in colorectal cancer biology.

STAT3 was recently reported to suppress tumor invasion in \textit{Apc}^{\text{min/+}} mice. We investigated the mechanisms by which STAT3 inhibits intestinal epithelial tumors using \textit{Apc}^{\text{min/+}} / \textit{Stat3IEC-KO} mice (intestinal epithelial cell (IEC)-specific deletion of STAT3 in the \textit{Apc}^{\text{min/+}} background) to determine the role of STAT3 in carcinogenesis \textit{in vitro} as well as colorectal cancer cell lines \textit{in vivo}. To inhibit invasion of IEC tumors, STAT3 functions as a molecular adaptor rather than a transcription factor. Accordingly, the tumors in \textit{Apc}^{\text{min/+}} / \textit{Stat3IEC-KO} mice undergo adenoma-to-carcinoma transition and acquire an invasive phenotype. Similarly, STAT3 knockdown in a colorectal cell line enhances IEC invasion. We demonstrate that STAT3 down-regulates SNAI (Snail-1) expression levels and hence suppresses epithelial-mesenchymal transition of colorectal cancer cells. Mechanistically, STAT3 facilitates glycogen synthase kinase (GSK) 3\textbeta-mediated degradation of SNAI by regulating phosphorylation of GSK3\textbeta. Our data identified a new role for STAT3 in the adenoma-to-carcinoma sequence of intestinal tumors.

STAT3 is a multifunctional transcription factor that is activated by various growth factors (e.g., epidermal growth factor and hepatocyte growth factor) and cytokines (e.g., IL-6 and IL-10). Consequently, STAT3 plays a key role in many biological processes such as cell growth, apoptosis, and inflammation (1). STAT3 is phosphorylated on a tyrosine residue (Tyr-705) by an upstream kinase JAK2 (Janus kinase 2). The phosphorylated protein forms either a homo- or heterodimer with other STAT proteins, then translocates to the nucleus and transcribes target genes. Rare nontranscriptional activities of STAT3 have also been reported. For example, STAT3 functions as an adaptor protein connecting IFNAR1 (interferon \alpha receptor 1) and the p85 regulatory subunit of PI3K (phosphoinositide 3-kinase) (2), and it inhibits statinmediated microtubules (3). Recently, STAT3 was shown to inhibit intestinal epithelial cell (IEC)2 tumor invasion in \textit{Apc}^{\text{min/+}} mice (4), but the underlying mechanisms remain unclear.

The development of human colon adenomas is initially induced by mutations in APC or \beta-catenin, and its transition to carcinoma is followed by sequential genetic mutations in K-Ras, SMAD2 or SMAD4, and p53. Whereas deletion of p53 does not provoke malignant transformation in \textit{Apc}^{\text{min/+}} mice (5), at least two genes were found critical for adenoma-to-adenocarcinoma transition. Tumors in \textit{Smad4}^{\text{2/2}} / \textit{Ap}^{\text{cmin/+}} mice become malignant, showing an extensive stromal cell proliferation and submucosal invasion (6), and \textit{Ephb3}^{\text{2/2}} / \textit{Ap}^{\text{cmin/+}} mice develop carcinomas that invade the muscle layer (7). However, the mechanisms by which these genes suppress IEC carcinogenesis are not fully understood.

The invasion of epithelial tumors to the surrounding tissues is associated with epithelial-mesenchymal transition (EMT), a process in which the epithelial tumor cells lose their epithelial phenotype and acquire a mesenchymal phenotype. Epithelial cells that have undergone EMT display reduced intercellular interactions but increased motility and invasiveness. Several transcriptional repressors were identified as inducers of EMT, including SNAI, Slug (Snail-2), E47, Twist, and the Zeb factors (8). Main targets of these proteins are cell adhesion molecules such as E-cadherin and Claudins (CLDNs) that link epithelial cells together (8–11).

*This work was supported, in whole or in part, by National Institutes of Health Grants A1068685, A1095623, DK35108, and DK080506. This work was also supported by a grant from Crohns and Colitis Foundation of America.

This article contains supplemental Figs. 1–3.

1. To whom correspondence may be addressed: 9500 Gilman Dr., La Jolla, CA 92093-0663. Tel.: 858-822-5762; E-mail: j142lee@ucsd.edu.
2. Present address: Dental Science Research Institute, Chonnam National University, 500-757 Gwangju, Korea.
3. To whom correspondence may be addressed: 9500 Gilman Dr., La Jolla, CA 92093-0663. Tel.: 858-822-5762; E-mail: eraz@ucsd.edu.

The abbreviations used are: IEC, intestinal epithelial cell; CA, constitutively active; CLDN, claudin; CRC, colorectal cancer; EMT, epithelial-mesenchymal transition; GSK3\textbeta, glycogen synthase kinase 3\beta; min, multiple intestinal neoplasia; MMP, matrix metalloproteinase; qPCR, quantitative PCR; SNAI, Snail-1; APC, adenomatous polyposis coli.
Glycogen synthase kinase 3β (GSK3β) performs multiple cellular functions (12). As an important regulator of metastasis, it suppresses the level of SNAI by being phosphorylated on two different sites: phosphorylation on the first site leads to ubiquitination and proteasomal degradation of SNAI whereas that on the second site controls the subcellular localization of SNAI (13). GSK3β is inactivated by phosphorylation by several different kinases at the Ser-9 residue (12, 14) but also can be regulated by phosphorylation at other residues: it is inactivated by phosphorylation at Thr-390 (15) and is activated by phosphorylation by other kinases at the Ser-9 residue (12, 14) but also can be regulated by phosphorylation at other residues: it is inactivated by phosphorylation at Thr-390 (15) and is activated by phosphorylation at Tyr-216 (16, 17). In addition, GSK3β phosphorylation at Thr-390 (15) and is activated by phosphorylation by other kinases at the Ser-9 residue (12, 14) but also can be regulated by phosphorylation at other residues: it is inactivated by phosphorylation at Thr-390 (15) and is activated by phosphorylation at Tyr-216 (16, 17). In addition, GSK3β activity is modulated by protein complex formation mediated by GSK3β-binding proteins and its subcellular localization (18). GSK3β is also a key regulator of β-catenin (19, 20), an effector molecule for the Wnt signaling pathway. Constitutive activation of β-catenin due to a mutation in the APC gene is the major cause of colorectal cancers (CRCs) (21) and induces the multiple intestinal neoplasia (min) phenotype in Apc^{−/−} mice (21–23)

Here, we identified a novel adaptor function for STAT3 in IECs, which has a broad implication to CRC. Our data show that in a nontranscriptional fashion, STAT3 suppresses expression of SNAI, a major driving force in EMT and in the invasion of CRC cells. STAT3 interacts with GSK3β and negatively regulates phosphorylation of GSK3β, thereby inducing degradation of SNAI.

EXPERIMENTAL PROCEDURES

Reagents and Antibodies—Anti-STAT3, anti-β-catenin, anti-phospho-β-catenin, anti-GSK3β, anti-phospho-GSK3β (Ser-9), anti-SNAI, anti-Slug, anti-Zeb-1, anti-matrix metalloproteinase 7 (MMP7), anti-MMP9, and anti-E-cadherin antibodies were obtained from Cell Signaling Technologies (Danvers, MA). Anti-β-actin came from Sigma. Anti-ubiquitin, anti-MMP14, and anti-MMP15 antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Anti-claudin and anti-occludin antibodies were obtained from Lab Vision (Fremont, CA). Anti-vimentin and anti-fibronectin antibodies were obtained from BD Biosciences. Anti-axon antibody is from Invitrogen. The GFP-STAT3 transgene was generously provided by Nancy C. Reich (24). Myc-GSK3β-CA plasmid (13) was obtained from Addgene (Cambridge MA). LiCl was obtained from Sigma and SB216763 from EMD Biosciences (Darmstadt, Germany).

Isolation of IECs from Mouse Intestines—Isolation was performed as described previously (25, 26).

Cell Culture—Culture conditions of IEC cells have been described previously (25). HCA-7 cells were cultured in low glucose DMEM, and HCT116 and RKO cells in high glucose DMEM (Mediatech, Manassas, VA).

Cell Invasion Assay—The cell invasion assay was performed with a basement membrane-coated CytoSelect[™] 24-well cell invasion assay kit according to the manufacturer’s instructions (Cell Biolabs, San Diego, CA). IECs (1 × 10⁵ cells/well) were plated into each well 3 days after siRNA transfection and cultured for 2 days. The number of invaded cells per 4 high powered fields/well was visually counted using a microscope. The results are the average of two independent experiments, and the statistical analysis was performed by one-way ANOVA.

Quantitative PCR (qPCR), Immunoblotting, Immunohistochemistry, and Immunoprecipitation—These procedures were performed as described previously (25, 26). PCR primers are shown in Table 1.

Cell Proliferation Assay in Mice—Mice were administrated BrdU intraperitoneally (2 mg/mouse) and killed 2 h after the injection. BrdU incorporation (proliferation) in paraffinized colonic tissues and the TUNEL assay in paraffinized colonic tissues were performed and analyzed according to the manufacturer’s instructions (BD Biosciences).

siRNA-mediated Knockdown—Knockdown in IECs was performed with Nucleofector (Amaza, Germany). Nontargeting siRNA #2 (luciferase targeting siRNA) from Dharmacon was used as a control. STAT3 siRNA (5′-CAACATGTCAATT-GCTGAA-3′), GSK3β siRNA (5′-TCCGGAGGAAC-CCAATGTTCGTATA-3′), and SNAI siRNA (Applied Biosystems, Cat. No. s13186) were used.

Generation of STAT3^{IEC-KO} Mice—To generate STAT3 deficiency specifically in IEC in mice, Stat3^{IEC-IEC-KO} mice (gift from Shizou Akira, Osaka University, Osaka, Japan) were crossed to villin-Cre mice (on the C57BL/6) background; The Jackson Laboratory, Bar Harbor, ME), to create Stat3^{IEC-KO} mice. Genotyping was performed as described (27). Apc^{−/−} mice were obtained from The Jackson Laboratory. Apc^{−/−}/Stat3^{IEC-KO} mice were generated by crossing Apc^{−/−} mice with Stat3^{IEC-KO} mice. All animal protocols received prior approval by the Institutional Animal Care and Use Committee.

RESULTS

STAT3 Suppresses Invasion of Intestinal Tumors in Apc^{−/−} Mice—To determine the role of STAT3 in intestinal tumorigenesis, we conditionally deleted STAT3 in IEC (STAT3^{IEC-KO}) in Apc^{−/−} mice (supplemental Fig. 1, A and B). At 20 weeks of age, the tumor count in Apc^{−/−}/Stat3^{IEC-KO} mice was comparable with that in Apc^{−/−} mice (supplemental Fig. 1C). In addition, proliferation of IECs in normal or tumor IEC was not significantly affected by STAT3 deletion (supplemental Fig. 1D).

Whereas the IEC tumors in Apc^{−/−} mice were strictly confined to the mucosal crypts, those in the Apc^{−/−}/Stat3^{IEC-KO} mice invaded the mucosal stroma, submucosa, and muscle (Fig. 1A). Such invasive tumors were found in all of the Apc^{−/−}/Stat3^{IEC-KO} mice examined at 20 weeks (n = 20) of age and were confirmed by β-catenin immunostaining (Fig. 1A). At 25 weeks of age, the IEC tumors in Apc^{−/−}/Stat3^{IEC-IEC-KO} mice penetrated through the intestinal serosa (Fig. 1B). Although some of the

Gene names	Forward primer	Reverse primer
h-GAPDH	5′-CAT GGG CAT GGG TGT GAA CCA-3′	5′-AGT GAT GGC ATG GAC TGT CAT-3′
h-SNAI	5′-TAC AAG CAG TCC AGC GAC TCT ATT-3′	5′-AGG ACA GAG TCC CAG ATG AGC ATT-3′
Nontranscriptional STAT3 and Intestinal Carcinogenesis

STAT3 Suppresses EMT—Because EMT often precedes tumor invasion, we next investigated whether STAT3 deletion induces EMT in IEC tumors. Expression of E-cadherin or β-catenin (lower panel) staining of the small intestines shows the invasion of tumors in Apcmin/+ /Stat3IEC-KO mice. B, tumors in Apcmin/+ /Stat3IEC-KO mice penetrate the intestinal walls into the peritoneum. The boxed area in the upper left panel was analyzed by H&E and β-catenin staining. C, STAT3 does not regulate expression of β-catenin in Apcmin/+ mice. Expression of β-catenin in the small intestines was measured by immunohistochemistry. D, STAT3 suppresses activation of β-catenin in a CRC cell line. HCT116 cells were transfected with GFP or GFP-STAT3-WT (ST3), and the levels of the indicated proteins were measured by immunoblotting.

STAT3 Suppresses Tumor Invasion via Down-regulation of SNAI—To examine further the suppressive effect of STAT3 on EMT, known regulators of EMT were examined. Whereas expression of Slug and Zeb-1 were barely detectable, and their levels were not significantly different in IEC tumors from both strains of mice (supplemental Fig. 3), SNAI expression was significantly elevated in Apcmin/+ /Stat3IEC-KO mouse tumors (Fig. 3A). To investigate further the role of STAT3 in SNAI expression and the role of SNAI in invasion, we used CRC cell lines in the subsequent studies. In three different CRC cell lines, HCT116, HCA-7, and RKO, STAT3 knockdown increased the expression of SNAI (Fig. 3B). Conversely, ectopic expression of STAT3-WT suppressed expression of SNAI (Fig. 3C).

We next tested whether the elevated SNAI was responsible for the invasive phenotype of STAT3-depleted CRC cells. STAT3, SNAI, or STAT3 with SNAI was silenced in HCT116 cells, and the transfected cells were subjected to an in vitro cell invasion assay. STAT3 knockdown significantly enhanced invasion (28, 29). Whereas MMP7 expression in tumor cells was significantly lower in Apcmin/+ /Stat3IEC-KO mice than that in Apcmin/+ mice, MMP9 or MMP15 (MT2-MMP) expression was minimal and observed mostly in nonepithelial cells in both strains of mice (supplemental Fig. 2). In contrast, MMP14 (MT1-MMP) expression in tumor cells was highly induced in Apcmin/+ /Stat3IEC-KO mice but undetectable in Apcmin/+ mice (Fig. 2E). Interestingly, MMP14, a membrane type metalloproteinase, is particularly efficient in hydrolyzing basement membranes (30, 31), and its expression can be induced by SNAI in carcinomas (30).

Vimentin was expressed mainly in mesenchymal cells and rarely in tumor cells in Apcmin/+ /Stat3IEC-KO mice; however, all of the tumor cells in the Apcmin/+ /Stat3IEC-KO mice expressed vimentin at a high level (Fig. 2C). Fibronectin was also up-regulated in tumor cells of Apcmin/+ /Stat3IEC-KO mice whereas it was not detectable in tumor from Apcmin/+ mice (Fig. 2D). Interestingly, fibronectin in Apcmin/+ /Stat3IEC-KO was observed only in IEC tumor cells around the necrotic regions (Fig. 2D). Collectively, these data highly suggest that STAT3 suppresses EMT in IEC tumor cells in Apcmin/+ mice.

STAT3 Suppresses Expression of MMP14—We next checked the expression of MMPs, which are important for tumor invasion (28, 29). Whereas MMP7 expression in tumor cells was significantly lower in Apcmin/+ /Stat3IEC-KO mice than that in Apcmin/+ mice, MMP9 or MMP15 (MT2-MMP) expression was minimal and observed mostly in nonepithelial cells in both strains of mice (supplemental Fig. 2). In contrast, MMP14 (MT1-MMP) expression in tumor cells was highly induced in Apcmin/+ /Stat3IEC-KO mice but undetectable in Apcmin/+ mice (Fig. 2E). Interestingly, MMP14, a membrane type metalloproteinase, is particularly efficient in hydrolyzing basement membranes (30, 31), and its expression can be induced by SNAI in carcinomas (30).
invasiveness compared with control. In addition, SNAI knock-
down alone or a combination of STAT3 and SNAI knockdown
significantly curtailed the invasion (Fig. 3D). Thus, these data
indicate that SNAI promotes invasion and that STAT3 down-
regulates SNAI and thereby suppresses invasion of CRC cells.

STAT3 Promotes GSK3β Activity to Induce Degradation of
SNAI—We next studied how STAT3 regulates SNAI expres-
sion. STAT3 deletion or knockdown in IEC did not signifi-
cantly affect the transcription of SNAI (Fig. 4, A and B). We therefore
examined whether STAT3 regulated SNAI via post-transla-
tional modification. SNAI in HCT116 cells was constitutively
ubiquitinated and degraded by proteasomes (Fig. 4C). STAT3
knockdown significantly diminished the levels of SNAI ubiq-
uitination, even though the levels of SNAI were higher than
control (Fig. 4C). Because GSK3β phosphorylates SNAI, which
leads to ubiquitination and proteasomal degradation (13), we
investigated whether STAT3 is involved in the ubiquitin-medi-
ated proteasomal degradation of SNAI via GSK3β. First, we
found that GSK3β also down-regulates SNAI in CRC cell lines
(Fig. 5A) and that inhibition of GSK3β activity with pharmaco-
logical inhibitors significantly increases SNAI (Fig. 5B). In addi-
tion, STAT3 forms a complex with GSK3β (Fig. 5C). Because

FIGURE 2. STAT3 suppresses EMT in Apc^{min}/+ mice. A, STAT3 does not regulate expression of E-cadherin in Apc^{min}/+ mice. Expression of E-cadherin in the small intestines was measured by immunohistochemistry. B, STAT3^{IEC} maintains the expression of CLDNs in Apc^{min}/+ mice. Expression of the indicated proteins was measured by immunoblotting with the isolated tumor cells from the small intestines. C, STAT3 suppresses the expression of mesenchymal marker vimentin in Apc^{min}/+ mice. Expression of vimentin was measured by confocal imaging in the small intestines (lower panel original magnification, ×100). D, STAT3 suppresses the expression of mesenchymal marker fibronectin in Apc^{min}/+ mice. Expression of vimentin was measured by confocal imaging in the small intestines. Note that most of the fibronectin expression in Apc^{min}/+/Stat3^{IEC-KO} mice is found in tumor cells around the necrotic regions. E, STAT3 suppresses the expression of MMP14 in Apc^{min}/+ mice. Expression of MMP14 was measured by immunohistochemistry in the small intestines.
STAT3 deletion or knockdown did not significantly affect the expression of GSK3β/H9252 (Fig. 5C), we examined whether STAT3 regulates activation (or phosphorylation) of GSK3β by Phos-tag SDS-PAGE (13, 32). Whereas there was no noticeable difference in GSK3β/H9252 expression level between control and STAT3-deleted cells in a traditional SDS-PAGE analysis, the putative phosphorylated (retarded in mobility) GSK3β level was much higher in STAT3-deleted cells compared with that in control cells (Fig. 5D). STAT3 knockdown significantly increased the phosphorylation level on Ser9 residue of GSK3β (Fig. 5E). This result indicated that STAT3 negatively affects phosphorylation of GSK3β and suggested that STAT3 regu-
lates SNAI expression and tumor invasion by promoting GSK3β activity. Therefore, we tested whether a constitutively active GSK3β (GSK3β-CA) mutant can reverse the effects of STAT3 depletion in HCT116 cells. Indeed, expression of GSK3β-CA reversed the increased SNAI expression and the increased invasiveness induced by STAT3 depletion (Fig. 5F).

Taken together, these data provide evidence for a nontranscriptional and inhibitory role of STAT3 in IEC tumor invasion.

DISCUSSION

Although no naturally occurring mutations in STAT3 have been identified as a cause of any human cancer, it is considered as a strong promoter of carcinogenesis. STAT3 is activated in multiple solid and hematologic human malignancies, and its role in carcinogenesis has been validated in animal models (1, 33). For example, STAT3 was found to be crucial in initiation and progression of skin carcinoma (34), and the growth and survival of lymphomas are dependent on STAT3 (35). Recently, constitutively activating STAT3 mutations were identified in human hepatocellular adenomas, where the Tyr-640 mutant homodimerizes independently of upstream signals and is hypersensitive to IL-6 stimulation (36). In CRC, STAT3 activation (phosphorylation) was considerably up-regulated during adenoma-to-carcinoma progression (37, 38), but the precise role of STAT3 in CRC has not been yet defined.

Our data provide the mechanisms by which STAT3 suppresses tumor invasion both in an animal model and in CRC cell lines. STAT3 in IEC tumors of Apcmin+/−/Stat3IEC-KO mice inhibits expression of an EMT inducer SNAI and mesenchymal markers, such as vimentin and fibronectin. Similarly, in CRC cell line

FIGURE 5. STAT3 promotes GSK3β activity to induce degradation of SNAI. A, GSK3β suppresses SNAI expression in CRC lines. The indicated protein levels were measured by immunoblotting 3 days after siRNA transfection. B, GSK3β suppresses SNAI via its kinase activity. HCT116 cells were treated with either LiCl (4 mM) or SB216763, GSK3β inhibitors as indicated for 4 h, and the indicated proteins were measured by immunoblotting. C, STAT3 interacts with GSK3β. GSK3β in isolated mouse tumor cells or in HCT116 cells was immunoprecipitated and immunoblotted for STAT3 (S3, STAT3; G3, GSK3β). D, STAT3 regulates phosphorylation levels of GSK3β. Lysates from HCT116 cells transfected with the indicated siRNA were divided and separated by either traditional SDS-PAGE or Phos-tag SDS-PAGE, and the indicated proteins were measured by immunoblotting. E, STAT3 inhibits phosphorylation at Ser-9 of GSK3β. HCT116 cells were transfected with the indicated siRNA (C, control; S3, STAT3), total cell lysates were collected 1 or 3 days after transfection, and the levels of indicated proteins were measured by immunoblotting. F, GSK3β-CA reverses the effects of STAT3 depletion. HCT116 cells were transfected with control siRNA (C), STAT3 siRNA (S3), GSK3β-CA plasmid, or STAT3 siRNA (S3) plus GSK3β-CA plasmid. Cell invasion assay (n = 3) and immunoblotting were performed 3 days after transfection.
HCT116, STAT3 suppresses invasiveness by limiting expression of SNAIL. Overexpression of a dominant negative STAT3 mutant in a CRC cell line was reported to cause down-regulation of E-cadherin (39). Although SNAIL is widely known as a suppressor of E-cadherin, our data and another recent report (4) show that its expression is not significantly affected by STAT3 deletion in IEC. However, overexpression of SNAIL did not suppress E-cadherin in a breast cancer cell line, whereas a mutant form (6SA) was able to do so (13). Therefore, it is possible that Ser-6 of SNAIL may be phosphorylated in STAT3-deficient tumor cells.

Like STAT3, GSK3\(\beta\) is also a multifunctional protein involved in a wide range of physiological activities such as metabolism, cell development, and body pattern formation (12). It also plays a key role in Wnt signaling whose dysregulation is the most common cause of human CRC (2, 20). Our data show that STAT3 regulates GSK3\(\beta\) activity to control SNAIL expression. We also found that STAT3 inhibits activation of \(\beta\)-catenin in a CRC cell line, but the mechanisms behind this phenomenon are yet to be investigated.

Interestingly, STAT3 in IECs is required for tumor induction in models of colitis-associated cancer. In colitis-associated cancer, STAT3 activation in IEC regulates cell survival and cell cycle progression through its transcriptional activation of downstream targets such as Bcl-\(X_L\), c-Myc, and cyclin D1 (40–42). This colitis-associated cancer model employs a chemical mutagen, azoxymethane, and three cycles of the chemical irritant, dextran sodium sulfate, to induce colorectal tumors. Despite the observation that STAT3IEC-KO mice are more susceptible to dextran sodium sulfate-induced colitis (41), it appears that STAT3 in IEC in Apc min model is necessary for their malignant transformation.

Overall, our data document the restraining role of STAT3 on the acquisition of an invasive phenotype of IEC tumors and explain the molecular basis that controls this process. We therefore propose that the inhibition of STAT3 in patients with CRC especially in advanced stages should be practiced with caution.

Acknowledgements—We thank Jennifer Meerloo for assistance in confocal imaging at the University of California at San Diego Neuroscience Microscopy Shared Facility funded by National Institutes of Health Grant P30 NS047101 through the NINDS.

REFERENCES

1. Yu, H., Pardoll, D., and Jove, R. (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9, 798–809
2. Pfeffer, L. M., Mullersman, J. E., Pfeffer, S. R., Murti, A., Shi, W., and Yang, C. H. (1997) STAT3 as an adapter to couple phosphorylidyinositol 3-kinase to the IFNAR1 chain of the type I interferon receptor. Science 276, 1418–1420
3. Ng, D. C., Lin, B. H., Lim, C. P., Huang, G., Zhang, T., Poli, V., and Cao, X. (2006) Stat3 regulates microtubules by antagonizing the depolymerization activity of stathmin. J. Cell Biol. 172, 245–257
4. Musteau, M., Blaas, L., Mair, M., Schlederer, M., Bilban, M., Tauber, S., Esterbauer, H., Mueller, M., Casanova, E., Kenner, L., Poli, V., and Eferl, R. (2010) Stat3 is a negative regulator of intestinal tumor progression in Apc(Min) mice. Gastroenterology 138, 1003–1011.e1–5
5. Halberg, R. B., Katzung, D. S., Hoff, P. D., Moser, A. R., Cole, C. E., Lubet, R. A., Donehower, L. A., Jacoby, R. F., and Dove, W. F. (2000) Tumorigenesis in the multiple intestinal neoplasia mouse: redundancy of negative regulators and specificity of modifiers. Proc. Natl. Acad. Sci. U.S.A. 97, 3461–3466
6. Takaku, K., Oshima, M., Miyoshi, H., Matsui, M., Seldin, M. F., and Taketo, M. M. (1998) Intestinal tumorigenesis in compound mutant mouse of both Dpc4 (Snad4) and Apc genes. Cell 92, 645–656
7. Battle, E., Bacani, J., Begthel, H., Jonker, S., Gregorieff, A., van de Born, M., Malats, N., Sancho, E., Boon, E., Pawson, T., Gallinger, S., Pals, S., and Clevers, H. (2005) Epha receptor activity suppresses colorectal cancer progression. Nature 435, 1126–1130
8. Pinhado, H., Olmeda, D., and Cano, A. (2007) Snail, Zeb, and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat. Rev. Cancer 7, 415–428
9. Carrozzino, F., Soulié, P., Huber, D., Mensi, N., Orci, L., Cano, A., Féraillé, E., and Montesano, R. (2005) Inducible expression of Snail selectively increases paracellular ion permeability and differentially modulates tight junction proteins. Am. J. Physiol. Cell Physiol. 289, C1002–C1014
10. Ikenouchi, J., Matsuda, M., Furuse, M., and Tsukita, S. (2003) Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J. Cell Sci. 116, 1959–1967
11. Martínez-Estrada, O. M., Cullerés, A., Soriano, F. X., Peinado, H., Bolós, V., Martínez, F. O., Reina, M., Cano, A., Fabre, M., and Vilard, S. (2006) The transcription factors Slug and Snail act as repressors of claudin-1 expression in epithelial cells. Biochem. J. 394, 449–457
12. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M., and Hemmings, B. A. (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789
13. Zhou, B. P., Deng, J., Xia, W., Xu, J., Li, Y. M., Gunduz, M., and Hung, M. C. (2000) Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat. Cell Biol. 6, 931–940
14. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M., and Hemmings, B. A. (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789
15. Thornton, T. M., Pedraza-Alva, G., Deng, B., Wood, C. D., Aronshtam, A., Clements, J. L., Sabio, G., Davis, R. J., Matthews, D. E., Doble, B., and Rincon, M. (2008) Phosphorylation by p38 MAPK as an alternative pathway for GSK3β inactivation. Science 320, 667–670
16. Hartigan, J. A., and Johnson, G. V. (1999) Transient increases in intracellular calcium result in prolonged site-selective increases in tau phosphorylation through a glycogen synthase kinase 3β-dependent pathway. J. Biol. Chem. 274, 21395–21401
17. Lesort, M., Jope, R. S., and Johnson, G. V. (1999) Insulin transiently increases tau phosphorylation: involvement of glycogen synthase kinase-3β and Fyn tyrosine kinase. J. Neurochem. 72, 576–584
18. Schaffer, B., Wiedau-Pazos, M., and Geschwind, D. H. (2003) Gene structure and alternative splicing of glycogen synthase kinase 3β (GSK-3β) in neural and non-neural tissues. Gene 302, 73–81
19. Peifer, M., Pai, L. M., and Casey, M. (1994) Phosphorylation of the Drosophila adherens junction protein Armadillo: roles for wingless signal and zeste-white 3 kinase. Dev. Biol. 166, 543–556
20. Yost, C., Torres, M., Miller, J. R., Huang, E., Kimelman, D., and Moon, R. T. (1996) The axis-inducing activity, stability, and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 10, 1443–1454
21. Fearon, E. R. (2011) Molecular genetics of colorectal cancer. Annu. Rev. Pathol. 6, 479–507
22. Bilger, A., Shoemaker, A. R., Gould, K. A., and Dove, W. F. (1996) Manipulation of the mouse germ line in the study of Min-induced neoplasia. Semin. Cancer Biol. 7, 249–260
23. Fearon, E. R., and Vogelstein, B. (1990) A genetic model for colorectal tumorigenesis. Cell 61, 759–767
24. Liu, L., McBride, K. M., and Reich, N. C. (2005) STAT3 nuclear import is independent of tyrosine phosphorylation and mediated by importin-α3. Proc. Natl. Acad. Sci. U.S.A. 102, 8150–8155
25. Lee, J., Mo, J. H., Takakura, K., Alkalay, I., Rucker, A. N., Liu, Y. T., Lee, H. K., Shen, C., Cojocaru, G., Shenouda, S., Kagnoff, M., Eckmann, L., and
Ben-Neriah, Y., and Raz, E. (2006) Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. *Nat. Cell Biol.* **8**, 1327–1336

26. Lee, S. H., Hu, L. L., Gonzalez-Navajas, J., Seo, G. S., Shen, C., Brick, I., Herdman, S., Varki, N., Corr, M., Lee, J., and Raz, E. (2010) ERK activation drives intestinal tumorigenesis in Apcmin−/− mice. *Nat. Med.* **16**, 665–670

27. Kobayashi, M., Kweon, M. N., Kuwata, H., Schreiber, R. D., Kiyono, H., Takeda, K., and Akira, S. (2003) Toll-like receptor-dependent production of IL-12p40 causes chronic enterocolitis in myeloid cell-specific Stat3-deficient mice. *J. Clin. Invest.* **111**, 1297–1308

28. Kessenbrock, K., Plaks, V., and Werb, Z. (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. *Cell* **141**, 52–67

29. Zucker, S., and Vacirca, J. (2004) Role of matrix metalloproteinases (MMPs) in colorectal cancer. *Cancer Metastasis Rev.* **23**, 101–117

30. Holter, K. B., Allen, E. D., Brooks, P. C., Datta, N. S., Long, M. W., and Weiss, S. J. (2003) Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. *Cell* **114**, 33–45

31. Ota, I., Li, X. Y., Hu, Y., and Weiss, S. J. (2009) Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1. *Proc. Natl. Acad. Sci. U.S.A.* **106**, 20318–20323

32. Kinoshita, E., and Kinoshita-Kikuta, E. (2011) Improved Phos-tag SDS-PAGE under neutral pH conditions for advanced protein phosphorylation profiling. *Proteomics* **11**, 319–323

33. Catlett-Falcone, R., Landowski, T. H., Oshiro, M. M., Turkson, J., Levitzki, A., Savino, R., Ciliberto, G., Moscinski, L., Fernandez-Luna, J. L., Nuñez, G., Dalton, W. S., and Jove, R. (1999) Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. *Immunity* **10**, 105–115

34. Chan, K. S., Sano, S., Kiguchi, K., Anders, J., Komazawa, N., Takeda, J., and DiGiovanni, J. (2004) Disruption of Stat3 reveals a critical role in both the initiation and the promotion stages of epithelial carcinogenesis. *J. Clin. Invest.* **114**, 720–728

35. Chiarle, R., Simmons, W. J., Cai, H., Dhall, G., Zamo, A., Raz, R., Karas, J. G., Levy, D. E., and Inghirami, G. (2005) Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. *Nat. Med.* **11**, 623–629

36. Pilati, C., Amessou, M., Bihl, M. P., Balabaud, C., Nhieu, J. T., Paradis, V., Nault, J. C., Izard, T., Bioulac-Sage, P., Couchy, G., Poussin, K., and Zucman-Rossi, J. (2011) Somatic mutations activating STAT3 in human inflammatory hepatocellular adenomas. *J. Exp. Med.* **208**, 1359–1366

37. Kusaba, T., Nakayama, T., Yamazumi, K., Yata, Y., Yoshizaki, A., Nagayasu, T., and Sekine, I. (2005) Expression of p-STAT3 in human colorectal adenocarcinoma and adenoma: correlation with clinicopathological factors. *J. Clin. Pathol.* **58**, 833–838

38. Park, J. K., Hong, R., Kim, K. J., Lee, T. B., and Lim, S. C. (2008) Significance of p-STAT3 expression in human colorectal adenocarcinoma. *Oncol. Rep.* **20**, 597–604

39. Rivat, C., De Wever, O., Bruyneel, E., Mareel, M., Gespach, C., and Attoub, S. (2004) Disruption of STAT3 signaling leads to tumor cell invasion through alterations of homotypic cell-cell adhesion complexes. *Oncogene* **23**, 3317–3327

40. Bollrath, J., Phesse, T. J., von Burstin, V. A., Putoczki, T., Bennecke, M., Bateman, T., Nebelsiek, T., Lundgren-May, T., Canli, O., Schwitalla, S., Matthews, V., Schmid, R. M., Kirchner, T., Arkan, M. C., Ernst, M., and Greten, F. R. (2009) gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell cycle progression during colitis-associated tumorigenesis. *Cancer Cell* **15**, 91–102

41. Grivennikov, S., Karin, A., Terzic, J., Mucida, D., Yu, G. Y., Vallabhapurapu, S., Scheller, J., Rose-John, S., Cheroutre, H., Eckmann, L., and Karin, M. (2009) IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. *Cancer Cell* **15**, 103–113

42. Grivennikov, S. I., and Karin, M. (2010) Dangerous liaisons: STAT3 and NF-κB collaboration and cross-talk in cancer. *Cytokine Growth Factor Rev.* **21**, 11–19