Co-occurrence and metabolic biomarkers of sensory and motor subtypes of peripheral neuropathy from paclitaxel

Ciao-Sin Chen1 · Ellen M. Lavoie Smith2 · Kathleen A. Stringer1,3 · N. Lynn Henry4 · Daniel L. Hertz1,4

Received: 11 January 2022 / Accepted: 3 June 2022 / Published online: 28 June 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

Purpose Chemotherapy-induced peripheral neuropathy (CIPN) is the major treatment-limiting toxicity of paclitaxel, which predominantly presents as sensory symptoms, with motor symptoms in some patients. Differentiating CIPN into subtypes has been recommended to direct CIPN research. The objective of this study was to investigate whether sensory and motor CIPN are distinct subtypes with different predictive biomarkers in patients with breast cancer receiving paclitaxel.

Methods Data were from a prospective cohort of 60 patients with breast cancer receiving up to 12 weekly infusions of 80 mg/m² paclitaxel (NCT02338115). European Organisation for Research and Treatment of Cancer Quality of Life questionnaire CIPN20 was used to evaluate CIPN. Clusters of the time course of sensory (CIPNS), motor (CIPNM), and the difference between sensory and motor (CIPNS–CIPNM) were identified using k-means clustering on principal component scores. Predictive metabolomic biomarkers of maximum CIPNS and CIPNM were investigated using linear regressions adjusted for baseline CIPN, paclitaxel pharmacokinetics, and body mass index.

Results More sensory than motor CIPN was found (CIPNS change: mean = 10.8, ranged [-3.3, 52.1]; CIPNM change: mean = 3.5, range: [-7.5, 35.0]). Three groups were identified with No CIPN, Mixed CIPN, and Sensory-dominant CIPN (maximum CIPNS: mean = 12.7 vs. 40.9 vs. 74.3, p < 0.001; maximum CIPNM: mean = 5.4 vs. 25.5 vs. 36.1, p < 0.001; average CIPNS–CIPNM: mean = 2.8 vs. 5.8 vs. 24.9, p < 0.001). Biomarkers of motor CIPN were similar to previously identified biomarkers of sensory CIPN, including lower serum histidine (p = 0.029).

Conclusion Our findings suggest that sensory and motor CIPN co-occur and may not have differentiating metabolic biomarkers. These findings need to be validated in larger cohorts of patients treated with paclitaxel and other neurotoxic agents to determine the optimal approach to predict, prevent, and treat CIPN and improve patients’ outcomes.

Keywords Chemotherapy-induced peripheral neuropathy · Motor · Sensory · Clustering · Metabolomics · Predictive biomarkers

Introduction

Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side effect caused by several commonly used chemotherapy agents, including taxanes, platinums, and vinca alkaloids. CIPN causes sensory and motor symptoms in the upper and lower extremities that can progress to loss of function. CIPN symptoms can persist for years after chemotherapy [1–5] and severely diminish patient’s quality of life [3, 6]. There are no effective agents to prevent or treat CIPN, so the only recommended management is to reduce or delay chemotherapy dosing or discontinue treatment, which reduces treatment efficacy and patient survival [7].

The clinical presentation of CIPN differs between and within drug classes [8, 9]. Paclitaxel-induced peripheral neuropathy...
neuropathy presents with predominantly sensory symptoms
including tingling, numbness, or burning pain [8, 9]. Some
paclitaxel-treated patients also experience changes in motor
functions caused by muscle weakness [8–11], which is par-
ticularly concerning to older patients with cancer because
can lead to increased risk of falls [12, 13].

Expert panels have suggested differentiating CIPN
into its sensory and motor subtypes in order to investigate
pathophysiological mechanisms and develop preventive
and treatment interventions [14, 15]. Additionally, if sen-
sory and motor CIPN have distinct mechanisms, it would
be reasonable to expect that they have distinct predictive
biomarkers, which could help identify which patients should
be prioritized for prevention trials or monitored more closely
during treatment [14, 16, 17]. A previous analysis of patient-
reported CIPN data prospectively collected from a cohort of
patients receiving various neurotoxic chemotherapy agents
identified four CIPN symptom subtype clusters: Sensory,
Motor-dominant Mixed, Sensory-dominant Mixed, and a
less clear autonomic cluster [18]. The prior study did not
include a sufficient number of patients receiving individual
neurotoxic agents to confirm this clustering pattern within
each drug. Additionally, almost all biomarker studies have
combined sensory and motor CIPN into a single endpoint
or conducted analyses of sensory CIPN [19–28]; few stud-
ies have investigated predictive biomarkers of motor CIPN
subtype [29].

The objective of this study was to investigate whether
sensory and motor CIPN are distinct subtypes with different
predictive metabolic biomarkers in patients with breast can-
cer receiving weekly paclitaxel treatment. We conducted an
exploratory analysis of CIPN data collected weekly through-
out treatment via a patient-reported outcome (PRO) ques-
tionnaire to evaluate the time course of sensory and motor
CIPN, determine how sensory and motor CIPN co-occurred,
and attempt to identify predictive metabolic biomarkers of
the motor CIPN subtype.

Methods

Study patients

This study is an exploratory analysis of a previously
described cohort (NCT02338115) [19]. Adult female
patients with stage I-III or oligometastatic breast cancer
scheduled to receive paclitaxel 80 mg/m2 1-h infusion
weekly for 12 doses were eligible to enroll in this obser-
vational study. Patients were excluded if they had prior or
concurrent neurotoxic chemotherapy (taxane, vinca alkaloid,
platinum, bortezomib, or thalidomide), concurrent dulox-
etine treatment or enrollment in a clinical study of any neu-
roprotective agent, existing severe peripheral neuropathy
affecting activities of daily living, or known family history
of hereditary peripheral neuropathy or Charcot-Marie-Tooth
disease. Patients who withdrew from the study or discon-
tinued paclitaxel treatment before receiving at least 3 doses
were excluded from the analysis. Demographic and lifestyle
information was collected from patients at baseline. All
instances of treatment disruption including dose delay, dose
decrease, and treatment discontinuation were determined
from the electronic medical record. All patients signed
written informed consent, and the study was approved by
Institutional Review Boards of the University of Michigan
Medical School (IRBMED) (HUM00086253). Baseline
metabolomics [27] and nutrients [28] were measured in a
subset of patients who consented to additional biomarker
analyses.

Patient-reported CIPN

Patient-reported CIPN was evaluated at baseline and weekly
before each infusion throughout paclitaxel treatment using
European Organisation for Research and Treatment of Can-
cer (EORTC) Quality of Life Questionnaire Chemotherapy-
Induced Peripheral Neuropathy (CIPN20). The 20 questions
ask about 9 sensory, 8 motor, and 3 autonomic symptoms,
which are graded on a scale from 1 to 4 (1=not at all, 2=a
little, 3 = quite a bit, and 4 = very much). Sensory CIPN
(CIPNS) was defined as the sum score of the first eight sen-
sory items (excluding the ototoxicity item), which are the
most common sensory symptoms, including tingling, numb-
ness, or pain in the hands and feet, and having problems
standing or walking due to difficulty feeling the ground, and
having difficulty distinguishing between hot and cold water
[19]. Motor CIPN (CIPNM) was defined as the eight motor
items, including cramps in the hands and feet, and having
problems holding a pen to write, having difficulty opening a
jar or bottle due to weakness in the hands, having difficulty
walking or climbing stairs due to weakness in the legs, and
having difficulty manipulating small objects or using the
pedals. All scores were converted to a scale of 0–100 with
higher scores indicating more severe CIPN [30].

Statistical analysis

CIPN subtypes and clustering analysis

The time course of sensory (CIPNS), motor (CIPNM), the dif-
fERENCE between sensory and motor CIPN (CIPNS−CIPNM),
and CIPNS vs. CIPNM were plotted for all patients through-
out paclitaxel treatment for visual inspection using R
3.6.3. Clusters of the time course of CIPNS, CIPNM, and
CIPNS−CIPNM were identified using k-means clustering on
principal component analysis (PCA) scores. CIPN scores at
time points with ≥ 80% valid data were included, and CIPN

 Springer
scores at missing time points were imputed using interpolation and extrapolation from individual patient’s time course. CIPNS and CIPNM were scaled to 0–1, and CIPNS–CIPNM were scaled to (−1)–1. The number of clusters was determined by the elbow method of the within-cluster sum of squares. A thousand sets of random centers were tested, and the centers with lowest within-cluster sum of squares and highest between-cluster sum of squares were selected. To depict the characteristics of each cluster, CIPN scores, paclitaxel administration (the amount of paclitaxel administered), paclitaxel pharmacokinetics (Cmax and TC>0.005, which were reported in a prior analysis [19]), and demographics were compared between clusters using analysis of variance (ANOVA) for continuous variables and Chi-square tests for binary variables with α = 0.05. If significant, post hoc analyses were performed using pairwise comparisons with Bonferroni correction.

Metabolic biomarker analysis

Baseline metabolomics [27] and nutrients [28] data generated from a blood sample collected immediately prior to the first paclitaxel infusion were used in metabolic biomarker analyses. Missing data of metabolomics were imputed with half of the limit of detection. All measurements were log2 transformed and z-score normalized. Linear regression analyses were used to identify biomarkers associated with maximum CIPNS and CIPNM after adjusting for baseline CIPNS and CIPNM, paclitaxel maximum concentration (Cmax), and time above paclitaxel concentration threshold (TC>0.05), and two-way interaction terms were included if significant [19]. Baseline clinical covariates such as prior or concurrent chemotherapy, age, race, body mass index, pretreatment neuropathy, diabetes, and use of pain medication were also included if significant.

Results

Patient-reported CIPN

A total of 60 patients were enrolled, but one patient who discontinued treatment after 2 doses due to non-neuropathy toxicity was excluded from the analysis. The average age of the 59 patients included in the analyses was 52 and >90% were Caucasian (Table 1). Most patients had no or limited sensory or motor CIPN at baseline (CIPNS: mean = 1.3 (range: [0, 12.5]), CIPNM: mean = 2.7 (range: [0, 25.0])). As expected, sensory and motor CIPN increased throughout paclitaxel treatment, and the increases were larger for sensory than motor CIPN (CIPNS average change throughout treatment: mean = 10.8 (range: [−3.3, 52.1]); CIPNM average change throughout treatment: mean = 3.5 (range: [−7.5, 35.0])) (Fig. S1).

The time course of the difference between sensory and motor CIPN (CIPNS–CIPNM) indicates that most patients had greater sensory symptoms (CIPNS–CIPNM > 0) or similar sensory and motor symptoms (CIPNS–CIPNM ≈ 0); only one patient experienced meaningfully greater motor than sensory symptoms (Fig. 1). Patients who had similar sensory and motor CIPN was comprised of two groups, those who experienced no or limited symptoms of either, and those who experienced both symptoms with approximately equal severity.

Clustering of CIPN subtypes

The time course of sensory CIPN, motor CIPN, and the difference between the two (CIPNS–CIPNM) from baseline to week 11, which was collected prior to the final planned dose, were included in k-means clustering using PCA scores. Three distinctive clusters were identified, which were annotated as No CIPN (N = 37, 62.5%, black), Mixed CIPN (N = 16, 27%, red), and Sensory-dominant CIPN (N = 6, 10%, green) based on the CIPN score profile (Fig. 2 and S2). These annotations are further supported by the differences in CIPN symptom subtype severity (Table 2 and S1). The No CIPN group had minimal sensory or motor CIPN (maximum CIPNS during treatment: mean = 12.7, maximum CIPNM during treatment: mean = 5.4) compared to the Mixed CIPN group (CIPNS = 40.9, CIPNM = 25.5, both p < 0.001). Those with Sensory-dominant CIPN also had both sensory and motor CIPN, but only sensory CIPN was greater than the Mixed CIPN group (CIPNS = 74.3, p < 0.001). The Sensory-dominant CIPN group had higher CIPNS–CIPNM than Mixed CIPN, further indicating that the primary distinction between these two groups is the dominance of sensory symptoms (average CIPNS–CIPNM during treatment: mean = 24.9 vs. 5.8, p < 0.001).

We then explored whether the differences between the clusters were associated with paclitaxel administration or paclitaxel pharmacokinetics. Patients in the No CIPN group had higher paclitaxel dose intensity than the Mixed CIPN group (0.94 vs. 0.78, p = 0.003), and fewer early treatment discontinuations than the Mixed or Sensory-Dominant CIPN groups (10.8% vs. 62.5% or 66.7%, p = 0.007 or p < 0.001, respectively). There were no differences in dose intensity or treatment disruption between the Mixed and Sensory-Dominant CIPN groups (p = 0.261 and p = 0.910). Interestingly, both Mixed and Sensory-dominant CIPN had nominally longer time that paclitaxel concentration was above the 0.05 micromol/L concentration threshold compared to No CIPN (TC>0.05 = 12.0 and 11.8 vs 9.9 h), although pairwise comparisons were not significant (Table 2 and S1).
Metabolic biomarkers of CIPN subtypes

Prior analyses in this dataset found that lower levels of histidine, phenylalanine, threonine, and vitamin D were associated with more severe sensory CIPN [27, 28] and remained significant after adjusting for relevant covariates including baseline CIPN severity, paclitaxel pharmacokinetics, and body mass index (Table 3). In the current analysis, lower histidine was also associated with more severe motor CIPN (Table 3 and Fig. 3). The other biomarkers that had inverse associations with sensory CIPN had similar, though weaker and not statistically significant, associations with motor CIPN (Table 3 and Fig. S3). None of the other tested metabolomic biomarkers were associated with sensory or motor CIPN (Table S2).

Discussion

The major treatment-limiting toxicity of paclitaxel is CIPN [31–33], which predominantly presents as sensory symptoms [8, 9], with motor symptoms in some patients [8–11]. There are no known effective treatments that can prevent or ameliorate CIPN [7], which can be due to the unclear mechanism of CIPN [31]. Differentiation of CIPN into symptom subtypes has been recommended to improve the success of CIPN intervention and biomarker discovery trials [14, 16, 17]. This exploratory analysis used PRO CIPN data collected prospectively during weekly paclitaxel treatment to investigate whether sensory and motor CIPN are distinct subtypes. As expected, more sensory than motor CIPN was reported. Interestingly, patient groups were identified with no CIPN, mixed CIPN, and sensory-dominant CIPN, but not motor-dominant CIPN. The metabolomics and nutrient biomarker results for motor CIPN were similar to those previously reported for sensory CIPN, suggesting there may not be distinct predictive metabolic biomarkers for motor CIPN from paclitaxel treatment.

Patients with breast cancer receiving taxane treatment experience both sensory and motor CIPN [34], but sensory CIPN is more common, especially with paclitaxel [6, 35–37]. Our findings are consistent with previous studies that sensory symptoms are more common, and we found that

Table 1 Demographics of 59 patients that were included in the analysis
Variable
Age
Race
Body mass index
Other cancer treatment
Paclitaxel administration
Paclitaxel pharmacokinetics^b
Baseline neuropathy predictors
Sensory CIPN (CIPN_S)
Motor CIPN (CIPN_M)
Difference between sensory and motor CIPN (CIPN_S–CIPN_M)

^a All-cause (CIPN- and non-CIPN-related) treatment disruption includes any dose delay, dose decrease, or early treatment discontinuation

^b Pharmacokinetic indicators reported in a prior analysis [19]

AC Adriamycin (doxorubicin) and cyclophosphamide, H/P trastuzumab or pertuzumab
when motor symptoms occur, they usually co-occur with sensory symptoms. We did not find an appreciable group of patients with motor-only or motor-dominant CIPN; the only patient who experienced motor-dominant symptoms was also the only patient with appreciable motor CIPN symptoms at baseline (Fig. 1, CIPN_M = 25). A prior case report described a patient who developed objective evidence of motor-only CIPN based on nerve function impairment, however, the motor symptoms were not detected by a PRO questionnaire [38]. Sensitive nerve conduction studies have found that distal motor symptoms can occur alone [39], but the evidence from patient-report and clinician-assessment indicates that this is rare and motor symptoms are more likely to be a progression from sensory symptoms [39, 40].

Our clustering analysis of paclitaxel-treated patients identified No CIPN, Mixed CIPN, and Sensory-dominant CIPN groups. A previous analysis in patients with any cancer receiving any neurotoxic chemotherapy identified four clusters: Sensory, Motor-dominant Mixed, Sensory-dominant Mixed, and a less clear Autonomic cluster; a subgroup analysis of patients receiving paclitaxel alone (N = 33) or with the somewhat neurotoxic carboplatin (N = 50) had similar clustering results [18]. While both studies agree that there is a lack of a motor-only subgroup from paclitaxel treatment, our study did not identify evidence of a Motor-dominant group. One of the core symptoms in their Motor-dominant Mixed cluster was difficulty manipulating small objects [18], which can be indicative of either motor or sensory impairment [40, 41]. We explored alternative definitions of the motor subtype that removed the two potentially confounded items, manipulating small objects and using pedals [41, 42], and still did not identify any motor-only or motor-dominant clusters (data not shown). The other difference between the studies is that we did not identify an autonomic cluster. We did not analyze the autonomic subscale of the CIPN20 because this subscale has been shown to be unstable and an unreliable indicator of CIPN [41–44], and autonomic CIPN symptoms are uncommon from paclitaxel treatment [3, 45].

Our analysis found that predictive metabolic biomarkers for motor CIPN were generally similar to those we previously reported for sensory CIPN [27, 28]; we did not find any evidence of distinct motor CIPN biomarkers. The majority of paclitaxel CIPN biomarker research has not differentiated between CIPN subtypes or has focused exclusively on the sensory subtype [19–28]. We are aware of only one study, also conducted in patients with breast cancer receiving paclitaxel, that found higher baseline levels of sphingolipids were associated with higher incidence of motor, but not sensory, CIPN [29]. These hypothesis-generating results require validation in independent patient cohorts to
determine whether baseline lipid levels may be predictive biomarkers of motor CIPN in patients treated with paclitaxel and perhaps other neurotoxic chemotherapy agents.

Overall, our results cast some doubt on recent recommendations for differentiating between motor and sensory CIPN in clinical trials and biomarker research, at least for paclitaxel [14, 16, 17]. The lack of a motor-only or motor-dominant subtype, and previous evidence that motor symptoms may be a progression from sensory symptoms, instead favors focusing prevention and treatment efforts on earlier sensory symptoms to avoid onset of the clinically troubling motor effects [12, 13]. In terms of CIPN

Table 2: Patient-reported CIPN scores and treatment disruption between clusters

Variable	Definition	No CIPN (N=37)	Mixed CIPN (N=16)	Sensory-dominant CIPN (N=6)	p-value	Cluster Pairwise Tests
CIPN_S	Maximum during treatment	12.7 (8.4)	40.9 (10.7)	74.3 (12.8)	<0.001	3 > 2 > 1
CIPN_M	Maximum during treatment	5.4 (5.1)	25.5 (14.2)	36.1 (20)	<0.001	3 = 2 > 1
CIPN_S–CIPN_M	Average during treatment	2.8 (4.7)	5.8 (8.4)	24.9 (6.7)	<0.001	3 > 2 = 1
Paclitaxel administration	Relative dose intensity	0.94 (0.10)	0.78 (0.18)	0.85 (0.12)	<0.001	1 > 2
	Early discontinuation	10.8%	62.5%	66.7%	<0.001	3 = 2 > 1
Paclitaxel pharmacokinetics^b	T_{C=0.05} (hr)	9.9 (1.7)	12 (4)	11.8 (1.7)	0.019	

Bold indicates p < 0.05

Continuous variables are shown as mean (standard deviation), binary variables are shown as percentage

^aPost-hoc analyses were performed to identify pairwise differences between clusters, which are indicated by “>” (“=” indicates no significant difference between clusters). Numbers denote each cluster (1 = No CIPN, 2 = Mixed CIPN, 3 = Sensory-dominant CIPN).

^bPharmacokinetic indicators reported in a prior analysis[19]

Fig. 2 The scatter plot of CIPN_S (sensory CIPN) vs CIPN_M (motor CIPN) from baseline to week 11. Values shifting above the diagonal line indicate sensory-dominant symptoms, and values shifting below the diagonal line indicate motor-dominant symptoms. Clusters No CIPN (black), Mixed CIPN (red), and Sensory-dominant Mixed CIPN (green) were identified by k-means clustering. Each line represents a patient. The ellipses indicate 95% confidence intervals of the CIPN score distributions in each cluster from baseline to week 11.
monitoring, PRO questionnaires have several advantages over clinician-assessment [30, 46–49], one of which may be the ability to more clearly differentiate sensory and motor symptoms. This would be particularly helpful if someday there were treatments that were specifically effective in one or the other subtype. Finally, although it was only a single patient, our results indicate that patients with baseline motor neuropathy symptoms may have elevated risk of treatment-induced motor CIPN. This suggests that more sensitive baseline screening may help identify patients who should be considered for non-neurotoxic alternatives or enhanced CIPN monitoring, perhaps using novel wearable or app-based monitoring strategies [50].

This analysis used sensitive PRO data collected weekly throughout treatment in a relatively homogeneous cohort of patients with breast cancer receiving paclitaxel and investigated metabolic and nutrient biomarkers of motor CIPN. Despite these strengths, this study has several limitations. First, the modest sample size limits our confidence in concluding there is no motor-dominant patient group or motor-specific biomarkers. We are attempting to confirm these results by analyzing clinician-assessed and patient-reported CIPN collected during and after paclitaxel treatment on the prospective SWOG S0221 clinical trial [51]. Second, although PRO are more sensitive and reliable than CTCAE [49], there is evidence that the CIPN20 subscale structure may have suboptimal structural validity [41, 43, 44], and the subscales may not optimally characterize the symptom subtypes [42]. The motor subscale contains items that can be affected by sensory symptoms. It therefore may be more informative to analyze CIPN subtype clusters on the item-level or to use alternative motor subscales or objective assessments. Third, we only examined a subset of metabolites and nutrients including vitamin D, vitamin B12, folate, homocysteine, and metabolite data generated by nuclear magnetic resonance spectroscopy; this metabolomics approach is less sensitive and results in fewer named metabolites than liquid chromatography-mass

Table 3	Metabolomics and nutrient biomarkers of sensory and motor CIPN			
	Sensory CIPN		Motor CIPN	
	r	p-value	r	p-value
Histidine	−0.376	0.006	−0.254	0.029
Phenylalanine	−0.336	0.011	−0.124	0.110
Threonine	−0.283	0.014	−0.057	0.400
Vitamin D concentration	−0.352	0.043	−0.136	0.106

Bold indicates $p < 0.05$

*a p-values from linear regression adjusted for baseline CIPN, paclitaxel pharmacokinetics, cumulative dose, relative dose intensity, and body mass index

$ r $ Correlation coefficient

Fig. 3 Correlation between histidine levels and maximum CIPN$_S$ or CIPN$_M$. The scale, correlation coefficient, and p-values of CIPN$_S$ are on the left, and the ones of CIPN$_M$ are on the right. White dots and thin regression line are CIPN$_S$. Black dots and bold regression line are CIPN$_M$. Each patient’s CIPN$_S$ and CIPN$_M$ are connected by a dashed line. In general, the CIPN$_S$ and CIPN$_M$ scores are similar for most patients, resulting in a similar association for histidine with each CIPN subtype.
spectroscopy. Our ongoing lipidomics and proteomics analyses will attempt to validate previously reported biomarker candidates of sensory and/or motor CIPN [26, 29]. Finally, our findings are likely confined to only paclitaxel, and further research is needed to determine whether they should be generalized to docetaxel and perhaps other classes of neurotoxic chemotherapy. We plan to investigate symptom subtype clusters and predictive biomarkers in SWOG 1714 (NCT03939481), a recently completed observational clinical trial investigating clinical and physiological predictors of CIPN in patients receiving paclitaxel or docetaxel treatment.

In conclusion, our findings suggest that in paclitaxel-treated patients, introduce the possibility that sensory and motor are not independent CIPN subtypes. Rather, motor symptoms co-occur with sensory symptoms. Prediction, prevention, and treatment of CIPN from paclitaxel should focus primarily on the more common sensory subtype. These findings need to be validated in larger cohorts of patients treated with paclitaxel and then tested in cohorts receiving docetaxel and other neurotoxic agents to determine the optimal approach to evaluate interventions for CIPN prevention and treatment, which could improve clinical outcomes in patients with cancer.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10549-022-06652-x.

Author contributions All authors contributed to the study conception and design. Data analyses were performed by CSC. The first draft of the manuscript was written by CSC and DLH, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding This research was funded in part by the National Center for Advancing Translation Sciences (NCATS National Cancer Institute 2UL1TR000433, KL2TR000434) (DLH) and National Cancer Institute (NCI P30CA046592) through use of the UM Pharmacokinetics Core. Dr. Kathleen Stringer’s effort was supported, in part, by a Grant from the National Institute of General Medical Sciences (NIGMS R35 GM136312). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH, NCATS, NCI, or NIGMS.

Data availability The datasets analyzed during the current study are not publicly available due to patient privacy requirements but are available from the corresponding author on reasonable request.

Declarations

Conflict of interests The authors have no relevant financial or non-financial interests to disclose.

Ethical approval This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by Institutional Review Boards of the University of Michigan Medical School (IRBMED) (HUM00086259).

Consent to participate Informed consent was obtained from all individual participants included in the study.

References

1. Hershman DL, Unger JM, Crew KD, Till C, Greenlee H, Minsian LM, Moinpour CM, Lew DL, Fehrenbacher L, Wade JL 3rd et al (2018) Two-year trends of taxane-induced neuropathy in women enrolled in a randomized trial of acetyl-L-carnitine (SWOG S0715). J Natl Cancer Inst 110(6):669–676
2. Mustafa Ali M, Moeller M, Rybicki L, Moore HC (2017) Long-term peripheral neuropathy symptoms in breast cancer survivors. Breast Cancer Res Treat 166(2):519–526
3. Simon NB, Danso MA, Alberico TA, Basch E, Bennett AV (2017) The prevalence and pattern of chemotherapy-induced peripheral neuropathy among women with breast cancer receiving care in a large community oncology practice. Qual Life Res 26(10):2763–2772
4. Bao T, Basal C, Seluzicki C, Li SQ, Seidman AD, Mao JJ (2016) Long-term chemotherapy-induced peripheral neuropathy among breast cancer survivors: prevalence, risk factors, and fall risk. Breast Cancer Res Treat 159(2):327–333
5. Osmani K, Vignes S, Aissi M, Wade F, Milani P, Lévy BI, Kubis N (2012) Taxane-induced peripheral neuropathy has good long-term prognosis: a 1- to 13-year evaluation. J Neurol 259(9):1936–1943
6. Kuroi K, Shimozuma K (2004) Neurotoxicity of taxanes: symptoms, neurology and quality of life assessment. Breast cancer (Tokyo, Japan) 11(1):92–99
7. Loprinzi CL, Lacchetti C, Bleeker J, Cavaletti G, Chauhan C, Hertz DL, Kelley MR, Lavino A, Lustberg MB, Paice JA et al (2020) Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: ASCO guideline update. J Clin Oncol 38(28):3325–3348
8. Miltenburg NC, Booger W (2014) Chemotherapy-induced neuropathy: a comprehensive survey. Cancer Treat Rev 40(7):872–882
9. Quasthoff S, Hartung HP (2002) Chemotherapy-induced peripheral neuropathy. J Neurol 249(1):9–17
10. Freilich RJ, Balmaceda C, Seidman AD, Rubin M, DeAngelis LM (1996) Motor neuropathy due to docetaxel and paclitaxel. Neurology 47(1):115–118
11. Boyette-Davis JA, Cata JP, Driver LC, Noy DM, Bruel BM, Moorling DL, Wendelschafer-Crabb G, Kennedy WR, Dougherty PM (2013) Persistent chemoneuropathy in patients receiving the plant alkaloids paclitaxel and vincristine. Cancer Chemother Pharmacol 71(3):619–626
12. Winters-Stone KM, Horak F, Jacobs PG, Trubowitz P, Diekmann NF, Stoyles S, Faithfull S (2017) Falls, functioning, and disability among women with persistent symptoms of chemotherapy-induced peripheral neuropathy. J Clin Oncol 35(23):2604–2612
13. Kolb NA, Smith AG, Singleton JR, Beck SL, Stoddard GJ, Brown S, Mooney K (2016) The association of chemotherapy-induced peripheral neuropathy symptoms and the risk of falling. JAMA Neurol 73(7):860–866
14. Dorsey SG, Kleckner IR, Barton D, Mustian K, O’Marra A, St Germain D, Cavaletti G, Danhauer SC, Hershman DL, Hohmann AG et al (2019) The National Cancer Institute Clinical Trials planning meeting for prevention and treatment of chemotherapy-induced peripheral neuropathy. J Natl Cancer Inst 111(6):531–537
15. Themistocleous AC, Crombez G, Baskozos G, Bennett DL (2018) Using stratified medicine to understand, diagnose, and treat neuropathic pain. Pain 159(Suppl 1):S31–S42
16. Gewander JS, Brell J, Cavalletti G, Dougherty PM, Evans S, Howie L, McDermott MP, O’Mara A, Smith AG, Dastros-Pitei D et al (2018) Trial designs for chemotherapy-induced peripheral neuropathy prevention: ACTTION recommendations. Neurology 91(9):403–413

17. Chan A, Hertz DL, Morales M, Adams EJ, Gordon S, Tan CJ, Staff NP, Kamath J, Oh J, Shinde S et al (2019) Biological predictors of chemotherapy-induced peripheral neuropathy (CIPN): MASCC neurological complications working group overview. Supportive Care Cancer 27(10):3729–3737

18. Wang M, Cheng HL, Lopez V, Sundar R, Yorke J, Molassiotis A (2019) Redefining chemotherapy-induced peripheral neuropathy through symptom cluster analysis and patient-reported outcome data over time. BMC Cancer 19(1):1151

19. Hertz DL, Kidwell KM, Vangipuram K, Li F, Pai MP, Burness M, Griggs JJ, Schott AF, Van Poznak C, Hayes DF et al (2018) Paclitaxel plasma concentration after the first infusion predicts treatment-limiting peripheral neuropathy. Clin Cancer Res 24(15):3602–3610

20. Chua KC, Xiong C, Ho C, Mushiroda T, Jiang C, Multey F, Lai D, Schneider BP, Rashkin SR, Witte JS et al (2020) Genomewide meta-analysis validates a role for S1PR1 in microtubule targeting-agent-induced sensory peripheral neuropathy. Clin Pharmacol Ther 108(3):625–634

21. Komatsu M, Wheeler HE, Chung S, Low SK, Wing C, Delaney SM, Gorsic LK, Takahashi A, Kudo M, Kroetz DL et al (2015) Pharmacoeconomy in paclitaxel-induced sensory peripheral neuropathy. Clinical Cancer Res 21(19):4337–4346

22. Abraham FE, Guo Q, Dorling L, Tyrer J, Ingle S, Hare R, Valierr A-L, Hiller L, Burns R, Jones L et al (2014) Replication of genetic polymorphisms reported to be associated with Taxane-related sensory neuropathy in patients with early breast cancer treated with paclitaxel. Clin Cancer Res 20(9):2466–2475

23. Wheeler HE, Gamaonkar ER, Wing C, NJaiju UO, NJoku C, Baldwin RM, Owzar K, Jiang C, Watson D, Shreve I et al (2013) Integration of cell line and clinical trial genome-wide analyses supports a polygenic architecture of Paclitaxel-induced sensory peripheral neuropathy. Clinical Cancer Res 19(2):491–499

24. Leandro-Garcia LJ, Inglada-Perez L, Pita G, Hjerpe E, Leskela S, Jara C, Mielgo X, Gonzalez-Neira A, Robledo M, Avalliera A1 et al (2013) A genome-wide association study identifies novel loci for peripheral sensory neuropathy. J Med Genet 50(9):599–605

25. Carlson K, Ocean AJ (2011) Peripheral neuropathy with microtubule-targeting agents: occurrence and management approach. Clin Breast Cancer 11(2):73–81

26. Smith EM, Arezzo JC (2008) Neuropathy associated with microtubule inhibitors: diagnosis, incidence, and management. Clin Adv Hematol Oncol 6(6):455–467

27. Argyriou AA, Koltzenburg M, Polychronopoulos P, Papapetrou S, Kalofonos HP (2008) Peripheral nerve damage associated with administration of taxanes in patients with cancer. Crit Rev Oncol Hematol 66(3):218–228

28. De Iuliis F, Taglieri L, Salerno G, Lanza R, Scarpa S (2015) Taxane induced neuropathy in patients affected by breast cancer: literature review. Crit Rev Oncol Hematol 96(1):34–45

29. Moskvina V, Hikino H, Kawashima M, Yamada T, Ozaki N (2006) Motor and sensory neuropathy due to paclitaxel: study of neurophysiological findings. J Neurooncol 86(1):403–413

30. Scaioli V (2008) Peripheral neuropathy due to paclitaxel: study of the temporal relationships between the therapeutic schedule and the clinical quantitative score (QST) and comparison with neurophysiological findings. J Neurooncol 86(1):89–99

31. Scaioli V (2008) Peripheral neuropathy due to paclitaxel: study of the temporal relationships between the therapeutic schedule and the clinical quantitative score (QST) and comparison with neurophysiological findings. J Neurooncol 86(1):89–99

32. Argyriou AA, Koltzenburg M, Polychronopoulos P, Papapetrou S, Kalofonos HP (2008) Peripheral nerve damage associated with administration of taxanes in patients with cancer. Crit Rev Oncol Hematol 66(3):218–228

33. Sereny T, Currie GL, Sena ES, Rammarine S, Grant R, MacLeod MR, Colvin LA, Fallon M (2014) Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain 155(12):2461–2470

34. Chan A, Hertz DL, Morales M, Adams EJ, Gordon S, Tan CJ, Staff NP, Kamath J, Oh J, Shinde S et al (2019) Biological predictors of chemotherapy-induced peripheral neuropathy (CIPN): MASCC neurological complications working group overview. Supportive Care Cancer 27(10):3729–3737

35. Chen EI, Crew KD, Trivedi M, Awad D, Maurer M, Kalinsky K, Koller A, Patel P, Kim Kim J, Hershman DL (2015) Identification of cell line and clinical trial genome-wide analyses supports a polygenic architecture of Paclitaxel-induced sensory peripheral neuropathy. Clinical Cancer Res 21(19):4337–4346

36. Baldwin RM, Owzar K, Zembutsu H, Chhibber A, Kubo M, MacLeod MR, Colvin LA, Fallon M (2014) Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain 155(12):2461–2470

37. De Iuliis F, Taglieri L, Salerno G, Lanza R, Scarpa S (2015) Taxane induced neuropathy in patients affected by breast cancer: literature review. Crit Rev Oncol Hematol 96(1):34–45

38. Moskvina V, Hikino H, Kawashima M, Yamada T, Ozaki N (2006) Motor and sensory neuropathy due to paclitaxel: study of neurophysiological findings. J Neurooncol 86(1):403–413

39. Scaioli V (2008) Peripheral neuropathy due to paclitaxel: study of the temporal relationships between the therapeutic schedule and the clinical quantitative score (QST) and comparison with neurophysiological findings. J Neurooncol 86(1):89–99

40. Argyriou AA, Koltzenburg M, Polychronopoulos P, Papapetrou S, Kalofonos HP (2008) Peripheral nerve damage associated with administration of taxanes in patients with cancer. Crit Rev Oncol Hematol 66(3):218–228

41. Sereny T, Currie GL, Sena ES, Rammarine S, Grant R, MacLeod MR, Colvin LA, Fallon M (2014) Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain 155(12):2461–2470

42. De Iuliis F, Taglieri L, Salerno G, Lanza R, Scarpa S (2015) Taxane induced neuropathy in patients affected by breast cancer: literature review. Crit Rev Oncol Hematol 96(1):34–45

43. Sereny T, Currie GL, Sena ES, Rammarine S, Grant R, MacLeod MR, Colvin LA, Fallon M (2014) Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain 155(12):2461–2470

44. De Iuliis F, Taglieri L, Salerno G, Lanza R, Scarpa S (2015) Taxane induced neuropathy in patients affected by breast cancer: literature review. Crit Rev Oncol Hematol 96(1):34–45

45. Sereny T, Currie GL, Sena ES, Rammarine S, Grant R, MacLeod MR, Colvin LA, Fallon M (2014) Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain 155(12):2461–2470

46. De Iuliis F, Taglieri L, Salerno G, Lanza R, Scarpa S (2015) Taxane induced neuropathy in patients affected by breast cancer: literature review. Crit Rev Oncol Hematol 96(1):34–45
44. Lavoie Smith EM, Barton DL, Qin R, Steen PD, Aaronson NK, Loprinzi CL (2013) Assessing patient-reported peripheral neuropathy: the reliability and validity of the European Organization for Research and Treatment of Cancer QLQ-CIPN20 questionnaire. Qual Life Res 22(10):2787–2799
45. Ekholm E, Rantanen V, Antila K, Salminen E (1997) Paclitaxel changes sympathetic control of blood pressure. Eur J Cancer 33(9):1419–1424
46. Hertz DL (2019) Concerns regarding use of patient-reported outcomes in biomarker studies of chemotherapy-induced peripheral neuropathy. Pharmacogenomics J 19(5):411–416
47. Nyrop KA, Deal AM, Reeder-Hayes KE, Shachar SS, Reeve BB, Basch E, Choi SK, Lee JT, Wood WA, Anders CK et al (2019) Patient-reported and clinician-reported chemotherapy-induced peripheral neuropathy in patients with early breast cancer: current clinical practice. Cancer 125(17):2945–2954
48. Di Maio M, Basch E, Bryce J, Perrone F (2016) Patient-reported outcomes in the evaluation of toxicity of anticancer treatments. Nat Rev Clin Oncol 13(5):319–325
49. Kuroi K, Shimozuma K, Ohashi Y, Hisamatsu K, Masuda N, Takeuchi A, Aranishi T, Morita S, Ohsumi S, Housheer FH (2009) Prospective assessment of chemotherapy-induced peripheral neuropathy due to weekly paclitaxel in patients with advanced or metastatic breast cancer (CSP-HOR 02 study). Supportive Care Cancer 17(8):1071–1080
50. Chen C-S, Kim J, Garg N, Guntupalli H, Jagsi R, Griggs JJ, Sabel M, Dorsch MP, Callaghan BC, Hertz DL (2021) Chemotherapy-induced peripheral neuropathy detection via a smartphone app: cross-sectional pilot study. JOMR Mhealth Uhealth 9(7):e27502
51. Budd GT, Barlow WE, Moore HC, Hobday TJ, Stewart JA, Isaacs C, Salim M, Cho JK, Rinn KJ, Albain KS et al (2015) SWOG S0221: a phase III trial comparing chemotherapy schedules in high-risk early-stage breast cancer. J Clin Oncol 33(1):58–64

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.