Electronic properties of a graphene antidot in magnetic fields

P S Park¹, S C Kim¹ and S-R Eric Yang¹,²,³

¹ Physics Department, Korea University, Seoul 136-713, Korea
² Korea Institute for Advanced Study, Seoul, Korea
E-mail: eyang812@gmail.com

Received 1 July 2010
Published 31 August 2010
Online at stacks.iop.org/JPhysCM/22/375302

Abstract
We report on several unusual properties of a graphene antidot created by a piecewise constant potential in a magnetic field. We find that the total probability of finding the electron in the barrier can be nearly one while it is almost zero outside the barrier. In addition, for each electron state of a graphene antidot there is a dot state with exactly the same wavefunction but with a different energy. This symmetry is a consequence of Klein tunneling of Dirac electrons. Moreover, in zigzag nanoribbons we find strong coupling between some antidot states and zigzag edge states. Experimental tests of these effects are proposed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction
Bulk Landau energy levels of graphene, \(E_n = \pm E_c \sqrt{2|\pi n|} \), have different magnetic field \(B \) and quantum number \(n \) dependence than those of ordinary two-dimensional Landau levels, \(E_n = \hbar \omega_c (n + 1/2) \) (here the cyclotron energy \(\hbar \omega_c \propto B \) where \(B \) is the magnetic field. The characteristic energy of Dirac electrons \(E_c \propto \sqrt{B} \)). The wavefunctions of these two systems have, respectively, two-component and one-component structures [1]. In the presence of a dot or antidot potential these states of the two systems will be perturbed rather differently.

Electron wavefunctions of a graphene quantum dot have been investigated actively both with and without a magnetic field [2–12]: in the absence of a magnetic field an electron cannot be localized due to Klein tunneling and only quasibound states are allowed. However, a perpendicular magnetic field enhances the localization of the wavefunctions and both bound states and quasibound states occur.

Recently properties of antidot lattices [13–19] have been explored actively. But the properties of a single antidot in a magnetic field have not been studied thoroughly yet. We believe that an antidot created by cutting a hole out of the graphene sheet [16, 13] and an antidot induced by an electrostatic gate can have different properties. In an antidot created by holes skipping orbits that encircle an integer number of elementary quantum flux defined by the antidot are allowed [20]: \(BA \sim m\phi_0 \), where \(A \) is the enclosing area of the antidot, \(m \) is the orbital quantum number and \(\phi_0 \) is the magnetic flux quantum. However, some graphene states of a gate induced antidot potential may not obey this quantization rule since Klein tunneling allows significant penetration into the barrier. Hence, graphene antidots may not always support skipping orbits at the edge of an antidot. Also we expect an antidot defined by a piecewise constant potential may have several interesting properties in the presence of a magnetic field. This is because of the following feature of the Dirac equation: eigenstate wavefunctions of the Dirac equation are also eigenstates of a Schrödinger-like equation, where constant potentials \(V \) and eigenvalue \(E \) appear together in the effective energy as \(E_{\text{eff}}^2 = (E - V)^2 \). This is an interesting feature of Dirac electrons but its consequences have not been fully explored in a magnetic field. The nature of antidot states of a nanoribbon with zigzag edges may also be interesting. A nanoribbon has surface edges with various localization lengths [21–23]. It is unclear whether these chiral zigzag edge states may be coupled to confined non-chiral antidot states.

In this paper we report on our investigation of these issues. We consider cylindrically symmetric and piecewise constant antidot potentials. We find that for each electron state of a graphene antidot there is a dot state with exactly the same wavefunction but with a different energy, see figures 1(a)–(f).
This symmetry is a consequence of the appearance of E_{eff}^2 in the Schrödinger-like equation. We find that the eigenstates may be divided into three classes: those that are localized inside the antidot (figure 1(a)), those that have significant weights at the boundary (figure 1(c)), and those that are localized outside (figure 1(e)). Interestingly we find that the probability of finding the electron in the classically forbidden region of the barrier can be almost one, as shown in figures 1(a) and (f). It is a counter example to the usual expectation that the probability wavefunction is larger in a potential well than in a barrier. This is a consequence of an interplay between strong Klein tunneling and localization of Landau level wavefunctions. In zigzag nanoribbons we find strong coupling between some antidot states and zigzag edge states, see figure 1(g). This effect is unique to antidots of zigzag nanoribbons. Experimental tests of these effects are proposed.

2. Symmetry between antidot and dot states

We consider a cylindrically symmetric and piecewise constant potential of an antidot or dot, where the radius of the antidot and dot is R: $V(r) = V_1$ for $r < R$ and $V(r) = V_0$ for $r > R$. Around the K point of the Brillouin zone the Dirac equation of an antidot or dot has the form

$$ H = v_F \vec{\sigma} \cdot \left(\vec{p} + \frac{e}{c} \vec{A} \right) + V(r) $$

(1)

with the elementary charge $e > 0$, the Fermi velocity v_F, the Pauli spin matrices $\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$, and magnetic vector potential $\vec{A} = \frac{e}{c} \vec{B}(-y, x, 0)$. The magnetic field \vec{B} is along the z-axis and is perpendicular to the graphene layer. Since the Hamiltonian commutes with the angular momentum operator $J_z = -i \frac{\partial}{\partial \varphi} + \frac{\sigma_z}{2}$ the eigenstates can be written in polar coordinates as

$$ \Psi_{jm}(r, \varphi) = e^{i(j-1/2)\varphi} \left(\frac{\chi_A(r)}{\chi_B(r)e^{i\varphi}} \right). $$

(2)

For each angular momentum number $j = \pm 1/2, \pm 3/2, \pm 5/2, \ldots$ there are numerous excited eigenvalues $E_{j,m}$, labeled, in increasing order, by $m = \ldots, -2, -1, 0, 1, 2, \ldots$ ($E_{j,m} \geq 0$ for $m \geq 0$ and $E_{j,m} < 0$ for $m < 0$).
Figure 3. Plot of the probability wavefunctions of state $j = 5/2$ at two different value of B. Inset: its energy level decreases as B increases.

It follows from equation (1) that the A and B components of the wavefunction $\psi_{\sigma,\alpha}$ with energy E_a satisfy

$$v_F^2 \left(\frac{\vec{p} + e\vec{A}}{c} \right)^2 \psi_{\sigma,\alpha} = ((E_a - V_\alpha)^2 \mp E_c^2) \psi_{\sigma,\alpha} \quad (3)$$

where the subscript $\alpha = I, II$ stands for $r < R$ or $r > R$ and the index $\sigma = -(+) \text{ denotes the A (B) component.}$ The constants $E_c = \frac{\hbar v_F}{\ell}$ and $\ell = \sqrt{\frac{\hbar c}{|B|}}$ stand for the characteristic energy scale of Dirac electrons in magnetic fields and the magnetic length. If the potential is not piecewise constant another term containing $\frac{dV}{dr}$ will be present in this equation. The equation has the same mathematical structure as the Schrödinger equation of the two-dimensional Landau levels, but there is an important difference: the eigenenergy E_a and the constant potential V_α appear together as $E_{\text{eff}}^2 = (E_a - V_\alpha)^2$. For $V(r) = 0$ we obtain the usual result of two-dimensional Dirac electrons in a magnetic field, $E^2 = 2E_c^2 n$. Now consider a cylindrical antidot and dot with piecewise constant potentials $V_a(r)$ and $V_d(r)$ such that the sum of them is a constant $V_\text{d}(r) + V_a(r) = V$. Then, it can be shown from equation (3) that, when the antidot potential $V_a(r)$ has an eigenenergy E_a, the dot potential $V_d(r)$ will have an eigenenergy $E_d = V - E_a$ with the same eigenstate. A continuous potential $V(r)$ can be approximated by a sum of piecewise constant potentials, and in each piecewise constant potential the same argument as above can be applied. This implies that the symmetry between dot and antidot also exists even for continuous $V(r)$. Several examples for different pairs of dot and antidot are shown in figure 1.

3. Antidot eigenvalues and eigenstates

The properties of probability wavefunctions and eigenenergies of a graphene antidot are rather different from those of

Figure 4. Probability wavefunctions of an antidot with radius R at $B = 10.28$ T ($\ell = 80 \text{ Å}$). The A and B components are represented by solid and dashed lines.
the ordinary antidot [24]. This is because skipping orbits are not well defined in the graphene antidot due to strong Klein tunneling in the presence of a magnetic field. The eigenstates and eigenvalues of the antidot may be found by matching solutions inside and outside of the antidot at the boundary $r = R$: the exact eigenstate wavefunctions of equation (1) for a cylindrical potential can be described by confluent hypergeometric functions [4, 5] instead of Laguerre polynomials of bulk Landau levels. The energy spectrum is displayed in figure 2 for $V_I = 0.26$ eV, $V_{II} = 0$, and $R = 200 \, \text{Å}$. In the strong magnetic field limit $R/\ell \rightarrow \infty$ we have tested numerically that the bulk graphene Landau level energies are recovered.

Many positive (negative) energy levels in figure 2 increase (decrease) as \sqrt{B}. Their wavefunctions are localized outside the antidot and are nearly unaffected by the antidot potential. An example is shown in figure 1(e). Other energy levels display different dependence on B. Their wavefunctions are affected by the antidot potential and have significant weights on the boundary $r = R$. An example is given in figure 3. As one can expect from the usual Landau level physics, the effective energy $E_{\text{eff}} = E - V$ of this level increases as B increases, and its wavefunction becomes more confined in the antidot region. However, this implies that the eigenenergy E decreases with increasing B, as shown in the inset of figure 3.

We have investigated the eigenfunctions for different values of E and j. The first three lowest positive energy states for several values of j are shown in figures 4 and 5. Note that the slopes of $\Psi(r)$ at $r = R$ are discontinuous. In contrast to ordinary tunneling physics, we observe a significant

Figure 5. Same as figure 4 but for $j = \pm 3/2$.

Figure 6. Occupation probabilities on A and B carbon atoms of a state near the Dirac point with $E = -0.01$ eV. Small black dots indicate lattice sites and red (blue) dots indicate values of the probability wavefunction on A (B) carbon atoms. In black and white, red (blue) dots correspond to grey (black) dots. The circle represents the antidot. The unit of the x and y axes is $\alpha = 2.46 \, \text{Å}$.
penetration into the antidot region: note that for $j = -1/2$ and $-3/2$ the probability wavefunctions of the A component are smaller than the probability wavefunctions of the B component in the antidot region. For $j = 1/2$ and $3/2$ the opposite is true. The probability wavefunctions of the lowest energy states with $j = 1/2$ are plotted in figure 4(d): in the limit $r \rightarrow 0$ the wavefunction $\chi_A(r)$ is proportional to e^{-r^2/ℓ^2} while $\chi_B(r)$ is proportional to $r e^{-r^2/\ell^2}$. However, for $j = -1/2$ the opposite is true, as shown in figure 4(a): $\chi_A(r)$ is proportional to $r e^{-r^2/\ell^2}$ and $\chi_B(r)$ is proportional to e^{-r^2/ℓ^2}. We find that as $|j|$ increases the mean radii of the wavefunctions Ψ_{jm} increase. When the mean radius $\sqrt{\langle r^2 \rangle_{jm}}$ is greater than R the probability wavefunctions will be peaked in the barrier. For example, in a quantum well the wavefunction for a large $|j|$, for example $-51/2$, is thus strongly localized in the barrier, as shown schematically in figure 1(f). This unusual effect is possible because the constant potential of the barrier appears only in $(E - V)^2$ (see equation (3)). The same effect can explain why, as E increases, the number of nodes in the B components of $\Psi(r)$ decreases in the antidot.

Figure 7. Parts (a) and (b) display probability wavefunction of a state with $E = 0.18$ eV and its pseudospin picture. Parts (c) and (d) show the probability wavefunction of a state with $E = -0.04$ eV and its pseudospin picture.

4. Antidot states of zigzag nanoribbons

We adopt the following model for a nanoribbon with an antidot. The zigzag edges are horizontal along the x-axis and a periodic boundary condition is imposed on the left and right edges. The horizontal and vertical lengths of the nanoribbon are $L_x = 130.35$ Å and $L_y = 130.64$ Å. A magnetic field of $B = 20$ T is applied perpendicular to the graphene sheet. The radius of the antidot is 19.68 Å and its the potential height is $V = 1$ eV. We solve for eigenstates and eigenvalues of the usual tight-binding Hamiltonian. Figure 6 displays the occupation probabilities on A and B carbon atoms of a eigenstate close to the Dirac point with nearly zero energy (its probability wavefunction is shown in figure 1(g)). This state is a mixture of zigzag edges and antidot states. Opposite chiralities are found on the opposite sides of the zigzag edges. Since occupation is chiral along the zigzag edges no current flows along the edges. This mixed state is thus not a magnetic edge state. In the absence of an antidot some states near the Dirac point can have long localization lengths while states away from the Dirac point do not [21–23]. Some of these states with localization lengths comparable to the width of the nanoribbon couple with the antidot, and a significant probability wavefunction can be present both at the edges and near the antidot.

On the other hand, probability wavefunctions of eigenstates away from the Dirac point are not peaked along the edges. Their properties are displayed in figure 7. Figures 7(a) and (b) show an antidot state with the probability wavefunctions that are peaked at the origin of the antidot. Note that a similar feature is observed with Dirac electrons, as shown in figures 4(a) and (d). In contrast, figures 7(c) and (d) display a state with the probability wavefunction that is zero at the origin, consistent with the corresponding result of Dirac electrons, see figures 5(a) and (d). Tight-binding and Dirac electron models thus yield qualitatively similar results.
Figure 8. Parts (a) and (b) display probability wavefunctions of a degenerate pair of K and K′ with $E = 0.188$ eV. The A component is shown by the dashed line and the B component by the solid line. These probability wavefunctions are obtained by solving Dirac equations.

Figure 9. The solid line shows the total probability wavefunction at lattice sites with $E = 0.188$ eV obtained by solving a Dirac equation and the dashed line displays the total probability wavefunction with $E = 0.175$ eV obtained by solving the tight-binding Hamiltonian.

Figure 10. Occupation probabilities on A and B carbon atoms of a state near the Dirac point with $E = 0.181$ eV (a), and $E = 0.175$ eV (b). The circle represents the antidot. The unit of the x and y axes is $a = 2.46 \, \text{Å}$.

5. Discussions and conclusions

In our treatment of Dirac equations we ignored the coupling of states of K and K′ points due to the presence of a sharp boundary in the antidot potential. In the absence of the sharp boundary states of K and K′ points are degenerate with wavefunctions of A and B components exchanged, as shown in figure 8 (the radius of the antidot is 19.68 Å and its potential height is $V = 1$ eV with the magnetic field $B = 20$ T). The coupling between K and K′ points can be included in a tight-binding model [23], and our calculation shows that this degeneracy of Dirac equations is broken slightly: for example, $E = 0.188$ eV splits into $E = 0.175$ eV and 0.181 eV, moreover, the wavefunctions of the tight-binding and Dirac equations are rather close to each other, see figure 9. Furthermore, inside the antidot the A and B components of nearly degenerate tight-binding wavefunctions are approximately similar to those of degenerate solutions of Dirac equations, see figures 8 and 10: A components are dominant in figures 8(a) and 10(a) while B components are dominant in figures 8(b) and 10(b). These tight-binding results demonstrate that the neglect of the coupling between the K and K′ points in the approach of Dirac equations is a reasonable approximation.

In this paper we have discussed several unusual properties of tunneling physics of step-like graphene potential barriers.
in magnetic fields. A scanning tunneling microscope [25] may be used to test strong Klein tunneling effects in antidots since the electron density in the antidot should be non-zero in contrast to an ordinary antidot. Infrared optical transitions [26] may be used to test the symmetry between antidot and dot wavefunctions discussed in this paper: consider an occupied level \(E_{a,1} \) and an unoccupied level \(E_{a,2} \) in an antidot. Then, according to the proposed symmetry, the absorption transition \(E_{a,1} \rightarrow E_{a,2} \) of the antidot will have the same transition probability as the absorption transition \(E_{d,2} = V - E_{a,2} \rightarrow E_{d,1} = V - E_{a,1} \) of the corresponding dot system. We have also found a significant penetration of wavefunctions deep into the barrier region, as shown in figure 1(f). This effect is absent in the usual quantum Hall physics in Hall bar geometry, and it may be worthwhile to explore how it may affect quantum Hall edges of graphene.

Acknowledgments

This work was supported by a Korea Research Foundation Grant funded by the Korean Government (KRF-2009-0074470). In addition this work was supported by the Second Brain Korea 21 Project.

References

[1] Zheng Y and Ando T 2002 Phys. Rev. B 65 245420
[2] Matulis A and Peeters F M 2008 Phys. Rev. B 77 115423
[3] Hewageegana P and Apalkov V 2008 Phys. Rev. B 77 245426
[4] Schnez S, Ensslin K, Sigrist M and Ihn T 2008 Phys. Rev. B 78 195427
[5] Recher P, Nilsson J, Burkard G and Trauzettel B 2009 Phys. Rev. B 79 085407
[6] Ando T, Nakanishi T and Saito R 1998 J. Phys. Soc. Japan 67 2857
[7] Cheianov V V and Fal’ko V I 2006 Phys. Rev. B 74 041403(R)
[8] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[9] Stander N, Huard B and Goldhaber-Gordon D 2009 Phys. Rev. Lett. 102 026807
[10] Silvestrov P G and Efetov K B 2007 Phys. Rev. Lett. 98 016802
[11] Chen H Y, Apalkov V and Chakraborty T 2007 Phys. Rev. Lett. 98 186803
[12] Giavara G, Maksym P A and Roy M 2009 J. Phys.: Condens. Matter 21 102201
[13] Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Juaho A P and Pedersen K 2008 Phys. Rev. Lett. 100 136804
[14] Vanenić M, Stojanovic V M and Kindermann M 2009 Phys. Rev. B 80 045410
[15] Shen T, Wu Y Q, Capano M A, Rokhinson L P, Engel L W and Ye P D 2008 Appl. Phys. Lett. 93 122102
[16] Eroms J and Weiss D 2009 New. J. Phys. 11 095021
[17] Rosales L, Pacheco M, BarticicvEZ, León A, Latgé A and Orellana P A 2009 Phys. Rev. B 80 073402
[18] Zheng X H, Zhang G R, Zeng Z, García-Suárez V M and Lambert C J 2009 Phys. Rev. B 80 075413
[19] Petersen R and Pedersen T G 2009 Phys. Rev. B 80 113404
[20] Yoshioka D 1998 The Quantum Hall Effect (Berlin: Springer)
[21] Fujita M, Wakabayashi K, Nakaoka K and Kusakabe K 1996 J. Phys. Soc. Japan 65 1920
[22] Castro Neto A H, Guinea F and Peres N M R 2006 Phys. Rev. B 73 205408
[23] Kim S C, Park P S and Eric Yang S-R 2010 Phys. Rev. B 81 085432
[24] Hwang N Y, Eric Yang S-R, Sim H-S and Yi H 2004 Phys. Rev. B 70 085322
[25] Niimi Y, Kambara H, Matsui T, Yoshioka D and Fukuyama H 2006 Phys. Rev. Lett. 97 236804
[26] Jiang Z, Henriksen E A, Tung L C, Wang Y-J, Schwartz M E, Han M Y, Kim P and Stormer H L 2007 Phys. Rev. Lett. 98 197403