similar between groups. Patients with HS developed their first SCC at a younger age than did controls (58.9 years vs. 62.2 years, \(P = 0.026 \)) but developed their first BCC at a similar age to controls (58.8 years vs. 55.9 years, \(P = 0.052 \)). Risk of BCC and SCC stratified by sex did not differ between cases and controls.

Similar to our findings, studies suggest that SCCs arising at HS sites predominantly occur in men and in the buttocks or perineum.\(^3,5\) For KCs located at any site, a study on hospitalized Swedish patients found increased SCC risk associated with HS; BCC risk was not examined.\(^2\) However, the study did not account for SCC risk factors or surveillance bias, and it only reported a SCC incidence rate of 24 out of 100 000 person-years among 2119 patients with HS in contrast to our study’s reported a SCC incidence rate of 24 out of 100 000 person-years among 4604 patients with HS, which is more consistent with published SCC disease estimates,\(^7\) suggesting potential incomplete ascertainment of SCCs.\(^3\)

Strengths of our study include adjusting for some known KC risk factors and dermatologist surveillance, examining a large and racially diverse patient sample, and quantifying both BCC and SCC risk. Study limitations include inability to account for certain risk factors (e.g. sun exposure) and use of a single institutional data source. Our results suggest that patients with HS have reduced risk of BCC, but similar risk of SCC, compared with those with acne. However, patients with HS develop SCCs at a younger age than those with acne. Our findings may reflect different mechanistic pathways involved in disease pathogenesis, differential exposure to sunlight and other environmental factors that affect skin cancer risk, or distinct treatment paradigms as patients with HS are often exposed to immunosuppressive regimens.\(^8\) Chronic inflammation may also contribute to the younger age of SCC development among patients with HS.\(^4\) Further studies are needed to replicate our findings in other populations. Our findings have implications for clinicians caring for patients with HS, who may benefit from increased awareness of their risk of SCC arising at a younger age, when performing skin examinations.

S. Ashrafizadeh \(^1,2\), Y. Kim \(^1,2\), G.A. Peters \(^1\), H. Lee \(^3\) and M.M. Asgari \(^1,2\)

\(^1\)Department of Dermatology; Massachusetts General Hospital, Boston, MA, USA; \(^2\)Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Healthcare Institute, Boston, MA, USA; and \(^3\)Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA

Correspondence: Maryam M. Asgari.

Email: masgari@partners.org

References

1 Pink A, Anzengruber F, Navarini AA. Acne and hidradenitis suppurativa. Br J Dermatol 2018; \textbf{178}: 619–31.
2 Lapins J, Ye W, Nyõén O, Ementam L. Incidence of cancer among patients with hidradenitis suppurativa. Arch Dermatol 2001; \textbf{137}: 730–4.
3 Jourabchi N, Fishcr AH, Cimino-Mathews A et al. Squamous cell carcinoma complicating a chronic lesion of hidradenitis suppurativa: a case report and review of the literature. Int Wound J 2017; \textbf{14}: 435–8.
4 Chapman S, Delgadoillo D III, Barber C, Khademoune A. Cutaneous squamous cell carcinoma complicating hidradenitis suppurativa: a review of the prevalence, pathogenesis, and treatment of this dreaded complication. ACTA Dermatovenerol Alp Pannonica Adriat 2018; \textbf{27}: 25–8.
5 Lavogiez C, Delaporte E, Darras-Vercambre S et al. Clinicopathological study of 13 cases of squamous cell carcinoma complicating hidradenitis suppurativa. Dermatol 2010; \textbf{220}: 147–53.
6 Xu MJ, Lazar AA, Garsa AA et al. Major prognostic factors for recurrence and survival independent of the American Joint Committee on Cancer eighth edition staging system in patients with cutaneous squamous cell carcinoma treated with multimodality therapy. Head Neck 2018; \textbf{40}: 1406–14.
7 Elliott BM, Douglass BR, McConnell D et al. Incidence, demographics and surgical outcomes of cutaneous squamous cell carcinoma diagnosed in Northland, New Zealand. N Z Med J 2018; \textbf{131}: 61–8.
8 Frew JW, Vekic DA, Woods J, Cains GD. A systematic review and critical evaluation of reported pathogenic sequence variants in hidradenitis suppurativa. Br J Dermatol 2017; \textbf{177}: 987–98.

Funding sources: This work was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (K24 AR069760 to M.A.) and the National Cancer Institute (R01 CA231264 and R01 CA241623 to M.M.A.).

Conflicts of interest: The authors declare they have no conflicts of interest.

Does mitochondrial dysfunction of hair follicle epithelial stem cells play a role in the pathobiology of lichen planopilaris?

DOI: 10.1111/bjd.19259

Dear Editor, Lichen planopilaris (LPP) is a difficult-to-treat condition leading to permanent hair loss and scarring.\(^1\) Pathobiologically, LPP shows T-cell-mediated interferon-\(\gamma\)-driven loss of keratin 15-positive hair follicle (HF) epithelial stem cells (eHFSCs) due to immune privilege (IP) collapse and pathological epithelial-to-mesenchymal transition (EMT).\(^1,2\) This exhausts the eHFSC pool, impacting the HF’s capacity to regenerate and cycle, ultimately resulting in HF destruction, fibrosis and scarring.\(^1\)

Defective or insufficient peroxisome proliferator-activated receptor (PPAR)-\(\gamma\) signalling in eHFSCs has been implicated in LPP pathogenesis,\(^3\) which can be partly rescued by PPAR-\(\gamma\) agonists.\(^2\) However, currently available systemic PPAR-\(\gamma\) agonists also stimulate PPAR-\(\alpha\) and therefore have potential for considerable adverse effects, highlighting a need to identify more effective treatment strategies that target central elements of LPP pathobiology.

In the current pilot study we explored the possibility that mitochondrial dysfunction in eHFSCs may represent one such
target in LPP pathobiology. Apart from the increasing appreciation of keratinocyte mitochondrial function in HF biology, this hypothesis was encouraged by our recent finding that PPAR-γ stimulation profoundly upregulates mitochondrial activity in organ-cultured human scalp HFs. Therefore, we investigated whether eHFSCs in lesional human LPP HFs show indications of mitochondrial dysfunction.

To investigate mitochondrial function in LPP we first searched for ultrastructural mitochondrial abnormalities in outer-root-sheath keratinocytes below the level of the sebaceous gland, including the bulge region, by transmission electron microscopy. Compared with healthy HFs, which had small cylindrical mitochondria, both nonlesional and lesional LPP HFs (five patients) showed mitochondria that had undergone swelling, being rounded and enlarged or swollen (Figure 1a). Notably, in nonlesional HFs, most mitochondria retained their inner-membrane cristae, suggesting they are still at least partially functional. However, the cristae were found to be completely degenerated in lesional HFs, which is a characteristic ultrastructural sign of severe mitochondrial damage and/or mitochondrial leakage.

Mitochondrial transcription factor A (TFAM) is critical for mitochondrial DNA transcription and genome replication and is upregulated by PPAR-γ in human HFs. Therefore, we next investigated TFAM protein expression by quantitative and standardized immunohistomorphometry of keratin 15-positive cells in lesional and nonlesional LPP, and healthy HFs. TFAM immunoreactivity was significantly lower in lesional HFs than in healthy or nonlesional HFs in the bulge (P = 0.003), with nonlesional HFs showing a slight but nonsignificant decrease compared with controls (Figure 1b). As TFAM is essential for mitochondrial genome replication, transcription and packaging, defective or insufficient TFAM, even in nonlesional HFs, suggests that these HFs have a constitutive problem in TFAM expression, which might contribute to the ultrastructural...
mitochondrial abnormalities observed (Figure 1a). Preliminary evidence suggests that HFs may attempt to compensate by upregulating MT-CO1 and VDAC1, but this requires further investigation (unpublished work by R.P.).

Next, to probe how the controlled induction of EMT and IP collapse affected bulge mitochondrial function, we utilized a ‘cocktail’ to promote EMT and IP collapse in the bulge of healthy human scalp HFs, thereby imitating LPP pathogenesis ex vivo.1,2 Vimentin and E-cadherin expression was used to verify EMT induction in treated HFs (not shown).

A significant decrease in the expression of TFAM in the bulge of healthy anagen scalp HFs was observed following 3 days of cocktail treatment (Figure 1c). Moreover, the respiratory rate of cocktail-treated HFs was drastically reduced compared with vehicle-treated control HFs, as assessed by O2 consumption assay (Figure 1d). These data suggest that a proinflammatory signalling milieu sufficient to induce bulge IP collapse and EMT also promotes mitochondrial dysfunction in human eHSCs.

Together, our gene and protein expression, ultrastructural and energy metabolism data highlight a functionally important role of eHSC mitochondrial dysfunction in LPP development. This not only introduces an important new principle into LPP pathobiology, but further encourages systematic exploration of novel mitochondrial stimulatory agents that target eHSCs in LPP management.2

Going forward, future research following up this pilot study firstly needs to elucidate whether mitochondrial defects are secondary to LPP-associated HF inflammation or represent a constitutive abnormality that predisposes to eHSC damage and LPP development; this could in part be investigated by ultrastructural analysis of mitochondria after EMT induction. Secondly it should be examined how bulge mitochondrial dysfunction is acquired, how it progresses and whether it is reversible therapeutically. On this basis, it would be interesting to investigate PPAR-γ coactivator α, whose expression is increased upon mitochondrial dysfunction.3 Thirdly, it would be useful to investigate whether and how mitochondrial dysfunction contributes to bulge IP collapse and/or pathological EMT. Finally, we need to understand whether this dysfunction is linked to LPP-associated abnormalities in PPAR-γ-mediated signalling and whether PPAR-γ-specific agonists may be therapeutic in stimulating HF epithelial mitochondrial function, given the recognized impact of the latter on mitochondrial HF physiology.5,8

Acknowledgments: we thank Derek Pye for technical assistance, and Dr Pratima Karnik for first pioneering the concept.

J.A. Hardman-Smart (1), T.S. Purba (2,3), S. Panicker (4), B. Farjo (5), N. Farjo (5), M.J. Harries (2,3,6) and R. Paus (2,3,7,8)

1St John’s Institute of Dermatology, Guy’s Hospital, London, SE1 9RT, UK; 2Centre for Dermatology Research, University of Manchester, Manchester, UK; 3NIHR Biomedical Research Centre, Manchester, UK; 4Department of Zoology, University of Kerala, Kerala, India; 5Farjo Hair Institute, Manchester, UK; 6The Dermatology Centre, Salford Royal NHS Foundation Trust, Salford, Greater Manchester, UK; 7Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; and 8Monasterium Laboratory, Münster, Germany

Correspondence: Ralf Paus.
Email: RXP803@Med.Miami.edu

References

1 Harries MJ, Jimenez F, Izaeta A et al. Lichen planopilaris and frontal fibrosing alopecia as model epithelial stem cell diseases. Trends Mol Med 2018; 24:435–48.
2 Imanishi H, Ansell DM, Chéret J et al. Epithelial-to-mesenchymal stem cell transition in a human organ: lessons from lichen planopilaris. J Invest Dermatol 2018; 138:511–19.
3 Karnik P, Tekeste Z, McCormick TS et al. Hair follicle stem cell-specific PPAR-γ deletion causes scarring alopecia. J Invest Dermatol 2009; 129:1243–57.
4 Vidali S, Knuever J, Lerchner J, et al. Hypothalamic-pituitary-thyroid Axis hormones stimulate mitochondrial function and biogenesis in human hair follicles. J Invest Dermatol 2014; 133:33–42.
5 Ramot Y, Alam M, Olah A et al. Peroxisome proliferator-activated receptor-γ-mediated signalling regulates mitochondrial energy metabolism in human hair follicle epithelium. J Invest Dermatol 2018; 138:1656–9.
6 Kloepper JE, Baris OR, Reutter K, et al. Mitochondrial function in murine skin epithelium is crucial for hair follicle morphogenesis and epithelial-mesenchymal interactions. J Invest Dermatol 2015; 135:679–89.
7 Ho BS-Y, Vaz C, Ramasamy S et al. Progressive expression of PPARGC1α is associated with hair miniaturization in androgenetic alopecia. Sci Rep 2019; 9:8771.
8 Ramot Y, Bertolini M, Boboljova M et al. PPAR-γ signalling as a key mediator of human hair follicle physiology and pathology. Exp Dermatol 2020; 29:312–21.

Funding sources: T.S.P., M.J.H. and R.P. are supported by the NIHR Manchester Biomedical Research Centre Inflammatory Hair Disease Programme (BRC-1215-20007).

Conflicts of interest: The authors declare they have no conflicts of interest.

Outcome domains in lichen sclerosus

DOI: 10.1111/bjd.19253

Dear Editor, Lichen sclerosus (LS) is a chronic inflammatory dermatosis predominantly affecting the genitals. It can affect men, women and children. LS affecting female genitalia typically presents with itchy patches that impact on physical and psychosocial-sexual functioning.1,2 Symptoms in men include difficulty urinating due to urethral narrowing, difficulty in foreskin retraction due to scarring, and dyspareunia. Complications include loss of anatomy and malignant transformation.

© 2020 British Association of Dermatologists