An Update of B(E2) Evaluation for $0^+_1 \rightarrow 2^+_1$ Transitions in Even-Even Nuclei near $N \sim Z \sim 28$

B. Pritychenkoa*, J. Choquetteb, M. Horoic, B. Karamyb, B. Singhb

aNational Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
bDepartment of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
cDepartment of Physics, Central Michigan University, Mount Pleasant, MI 48859, USA

Abstract

An update of the B(E2)$^\uparrow$ evaluation for even-even Cr, Fe, Ni and Zn nuclei has been presented. The current update is a continuation of S. Raman \textit{et al.}'s work on B(E2)$^\uparrow$ values and was motivated by a large number of new measurements. It extends the previous evaluation from 20 to 38 nuclei and includes a comprehensive shell-model analysis. Evaluation policies for analysis of experimental data have been discussed. Future plans for a complete B(E2)$^\uparrow$ evaluation of even-even nuclei are outlined.

*Corresponding author.

\textit{Email address:} pritychenko@bnl.gov (B. Pritychenko)
1. Introduction

Quadrupole collectivities (reduced electric quadrupole transition rates), or $B(E2)$ values, play an important role in nuclear physics and are in high demand for nuclear model calculations. Originally, these values were compiled by S. Raman et al. at the Oak Ridge Nuclear Data Project [1, 2]. Presently, this work continues within the U.S. Nuclear Data Program (USNDP). In 2005, the Brookhaven $B(E2)$ project website ($http://www.nndc.bnl.gov/be2$) was successfully launched [3]; this website currently contains up-to-date compilation of $B(E2;\tau \rightarrow \tau')$ experimental results and evaluated values from Raman et al. [2] that are widely used by scientists.

With an advent of rare isotope facilities [4] the whole nuclear landscape has been changing dramatically. These facilities have been producing rare nuclei far from the valley of stability at an increasing rate and providing researchers
with unprecedented opportunities to study their properties. In many cases, B(E2)↑ values and energies of the low-lying states have been studied for the first time. Large amounts of new data, especially for the A≤100 region, require a new evaluation of quadrupole collectivities for proper interpretation and analysis of the newly-obtained values. A renewed interest in N∼Z∼28 B(E2) values was expressed by participants of the International Nuclear Physics Conference (INPC 2010) in Vancouver (http://inpc2010.triumf.ca) [5].

To answer the need for a new B(E2)↑ evaluation and seek comments from the research community, new evaluations of Cr, Fe, Ni and Zn isotopes have been completed. The complete evaluation of B(E2)↑ for all even-even nuclei would follow thereafter based on our experience and the feedback from the users.

2. B(E2)↑ Evaluation Policies

The current evaluation represents an update of B(E2)↑ in e²b², lifetimes (τ) in ps and deformation parameter (β₂) values for Cr, Fe, Ni and Zn nuclei. These values are mutually related:

\[\tau = 40.81 \times 10^{13} E^{-5}_\gamma [B(E2) ↑ / e^2 b^2]^{-1} (1 + \alpha_T)^{-1} \]

(1)

\[\beta_2 = (4\pi/3R_0^2) [B(E2) ↑ / e^2]^{1/2} \]

(2)

where \(E_\gamma \) and \(\alpha_T \) are the γ-ray energy in keV and the total conversion coefficient, respectively, and \(R_0^2 = (1.2 \times 10^{-13} \text{A}^{1/3} \text{cm})^2 \).

To introduce an additional measure of collectivity for nuclear excitations, Weisskopf units (W.u.) are added. Transition quadrupole moment values \(Q_0 \) in b were not included in the current evaluation:

\[Q_0 = [16\pi B(E2) ↑ / 5e^2]^{1/2} \]

(3)

All measured values can be grouped using three classes of experimental techniques:

- Model-independent or traditional types of measurements [2]: transmission Doppler-shift attenuation lifetime (TDSA), recoil distance (RDM), delayed coincidences (TCS), low-energy and intermediate-energy Coulomb excitation (CE) and nuclear resonance fluorescence (\(\gamma, \gamma' \)).
- Low model-dependent: electron scattering (E,E′), hyperfine splitting.
- Model-dependent: inelastic scattering of light and heavy ions (IN-EL).

2.1. Nuclear Databases

Nuclear Science References (NSR) [6], Evaluated Nuclear Structure Data File (ENSDF) [7, 8] and Experimental Unevaluated Nuclear Data List (XUNDL) [9] databases played a crucial role in this project. A short description of the databases is presented below.

The NSR database [6] is the most comprehensive source of low- and intermediate-energy nuclear physics bibliographical information, containing more than 200,000 articles since the beginning of nuclear science. It consists of primary (journals) and secondary (proceedings, lab reports, theses, private communications) references. The main goal of the NSR is to provide bookmarks for experimental and theoretical articles in nuclear science using keywords. NSR keywords are assigned to articles that contain results on atomic nuclei and masses, nuclear decays, nuclear reactions and other
properties. Keywords are also used to build author and subject indexes, which allow users to search for articles by subject (Coulomb excitation, σ, B(E2), $T_{1/2}$, ...) or author. This database is updated on a weekly basis and serves as a source of bibliographical information for the ENSDF database.

The ENSDF database [7, 8] contains evaluated nuclear structure and decay data in a standard format. An international network of evaluators [10] contributes to the database. For each nuclide, all known experimental data used to deduce nuclear structure information are included. Each type of experiment is presented as a separate dataset. In addition, there is a dataset of “adopted” level and γ-ray transition properties, which represent the evaluator’s determination of the best values for these properties, based on all available experimental data. Information in the database is regularly updated and published in Elsevier Nuclear Data Sheets journal. Due to the large scope of the database, evaluation updates are often conducted on a 6-12 year basis.

The XUNDL database [9] contains compiled experimental nuclear structure data in the “ENSDF” format. In general, the information in a given XUNDL dataset comes from a single journal article, or from a set of closely-related articles by one group of authors and later used in the ENSDF evaluations.

We primarily used NSR and XUNDL databases for the experimental data search. These searches were verified using the ENSDF database, previous evaluation of S. Raman et al. [2] and references from the original experimental papers.

2.2. B(E2)$^\uparrow$ Evaluation Procedure

This evaluation is based on the analysis of results from 114 primary and 13 secondary references published prior to April 2011. The evaluation procedure for the derivation of adopted (recommended) B(E2)$^\uparrow$ values is presented below:

- Compile a list of experimental B(E2)$^\uparrow$, \downarrow or W.u., τ and β^2 values as reported in the original papers without any changes or modifications. Reported values depend on the measured quantities and are deduced from experimental data in the offline analysis.

- Convert experimental values into B(E2)$^\uparrow$ in e^2b^2.

- Analyze B(E2)$^\uparrow$ values. In a few of the older results, where uncertainties were not quoted by the authors, we have taken the values as adopted by Raman et al. [2]. The minimum uncertainty assigned to a datum in the averaging procedure was 5%. The experimental values listed in Table 3, however, show the uncertainties as quoted by the authors.

- Round uncertainties to two significant digits.

- Follow the procedure by Raman et al. [2] for asymmetric uncertainties: consider the upper and lower bounds, extract the mean of the two values and assign an uncertainty so that the value overlaps the two bounds.

- Deduce B(E2)$^\uparrow$ recommended values using model-independent or traditional, combined (model-independent and low model-dependent) and model-dependent data sets with AveTools software package [11] using the selected data sets.
3. Adopted B(E2)↑ values

The recommended values from the current project for Cr, Fe and Ni isotopes are shown in Table 1. Compared to the previous evaluation of S. Raman et al. [2], it includes 18 new recommended values for 46,56,58,60,62Cr, 50,52,62,64,66Fe, 54,70,74Ni and 72,74,76,78,80Zn. A complementary analysis of the two evaluations is presented below.

In the current evaluation, we used the latest AveTools averaging procedures [11], Band-Raman calculation of Internal conversion coefficients (αT) [14] and presently available data. The program AveTools [11] combines limitation of relative statistical weight (LWM), normalized residual (NRM) and Rajeval technique (RT) statistical methods [12, 13] to calculate averages of experimental data with uncertainties. In the present work, we start with the weighted mean values followed by LWM, NRM and RT by accepting reduced χ²<2 as a reasonable fit for available data sets. Previously, S. Raman et al. [2] used an averaging procedure based on the inverse of the quoted uncertainties, while current evaluation uses statistical methods based on the inverse squared value of the quoted uncertainties.

The Band-Raman method [14] was used in this work, while the previous evaluation [2] employed the internal conversion coefficients code (ICCDF) [15]. This code incorporates the Dirac-Fock atomic model with the exchange interaction between atomic electrons and the free electron receding to infinity during the conversion process. In the Cr, Fe, Ni and Zn-region with low Z-values and relatively high 2↑ – 0↑ transition energies, the total E2 conversion coefficients are relatively small (αT < 0.002) to substantially affect the adopted values. A complementary comparison between the present model-independent and the previous evaluation adopted values for 54Cr and 54Fe, where no new data were added, shows good agreement. Consequently, the differences between the current work and S. Raman et al. [2] evaluation are mainly due to the addition of new experimental results.

We recommend using model-independent or traditional B(E2)↑ adopted values as the most reliable. If a model-independent value is not available, a combined value should be used. Finally, a model-dependent value can be used if no other values are available. This is consistent with the previous evaluation of Raman et al. [2], who treated data as follows: “However, our adopted B(E2)↑ values are based only on the traditional types of measurements because these are more direct and involve essentially model-independent analyses.” The new recommended values are interpreted within the scope of large-scale shell-model calculations which are presented in the following sections.

4. Shell Model Calculations

The 2+ excitation energies and B(E2) for 0↑ → 2↑ transitions have been calculated in the pf-shell valence space using the GXPF1A effective interaction [16]. GXPF1A is a refinement of the original GXPF1A Hamiltonian [17], which was obtained starting with the G-matrix for the Bonn-C two-body potential and by further fine-tuning its matrix elements to describe the energies of about 700 selected states of pf-shell nuclei. The GXPF1 Hamiltonian does not describe very well the 2+ state in 54Ti (N=34); as a result, five of its matrix elements were changed to fix this discrepancy, leading to the GXPF1A Hamiltonian [16]. GXPF1A predicts the 2+ state in 58Cr (N=36) at higher energy than that seen in the experimental data, but one would not expect to get reliable energies when the number of neutrons is close to the limits of the pf-shell (N=40). Results for Cr, Fe, Ni and Zn nuclei using the “canonical” effective charges, 0.5e for neutrons and 1.5e for protons, are shown in Table 2 and Fig. 1-4.
The missing values for 66 Fe, 68,70,74 Ni, 72,74,76,78,80 Zn are due to the limitations of the valence space and of the GXPF1A effective interaction. In the pf-shell one cannot have more than 20 valence protons and 20 valence neutrons on top of the 40 Ca core. Even when N is too close to the limit (N=40) the results are not reliable, due to the increasing importance of the intruder states ($g_{9/2}$), which create an “island of inversion” [18]. Therefore, for the heavy isotopes of Ni and Zn we performed shell-model calculations in the $f_{5/2}, p_{3/2}, p_{1/2}, g_{9/2}$ valence space using the JUN45 effective interaction [19]. Results obtained using the effective charges recommended in Ref. [19] for this model space, $e_p=1.5e$ and $e_n=1.1e$, are shown in Table 2.

![Cr, Z=24](image)

Fig. 1: Shell model calculated and evaluated $E(2^+_1)$ and $B(E2)^\uparrow$ values for Cr nuclei.

5. Experimental $B(E2)^\uparrow$ values

Experimental values of $B(E2)^\uparrow$, τ and β_2 are shown in Table 3. To create a more comprehensive picture for each experiment we extended the scope of the previous work of S. Raman *et al.* [2] and included target, beam, beam energy and a flag for the Coulomb barrier height into compilation. A short review of the most recent experimental results used for the new evaluation is presented below.

5.1. 46 Cr, 50 Fe, 54 Ni:

To complete systematics in the $N = Z = 28$ region, $B(E2)^\uparrow$ values of 0.093(20), 0.140(30) and 0.059(17) e²b² have been reported in intermediate-energy Coulomb excitation of 46 Cr, 50 Fe, 54 Ni [2005Ya26], respectively.
Fig. 2: Shell model calculated and evaluated \(E(2^+_1)\) and \(B(E2)\) values for Fe nuclei.

Fig. 3: Shell model calculated and evaluated \(E(2^+_1)\) and \(B(E2)\) values for Ni nuclei.
Fig. 4: Shell model calculated and evaluated $E(2^+_1)$ and $B(E2)^\uparrow$ values for Zn nuclei.

5.2. $^{56,58}\text{Cr}$:

Relativistic Coulomb excitation $B(E2)^\downarrow$ values of $^{56,58}\text{Cr}$ are 8.7(3.0) and 14.8(4.2) W.u., respectively, have been measured by the RISING collaboration [2005Bu29]. These results agree with the shell-model calculation based on GXPF1A and GXPF1 effective interactions [16, 17].

5.3. $^{60,62}\text{Cr}$:

Deformation length and quadrupole deformation parameter have been measured in inelastic scattering of Chromium on Hydrogen [2009Ao01] and provide evidence for enhanced collectivity in chromium nuclei.

5.4. ^{52}Fe:

Intermediate-energy Coulomb excitation measurements at Michigan State University (MSU) [2004Yu07] have produced a $B(E2)^\uparrow$ value of 0.082(10) e2b2. The increase in E2 strength with respect to the even-mass neighbor ^{54}Fe agrees with shell-model calculations as the magic number $N=28$ is approached.

5.5. $^{62,64,66}\text{Fe}$:

The $^{62,64,66}\text{Fe}$ lifetimes of 7.4(9) and 7.4(26) ps [2010Lj01] were reported by the GANIL group using the recoil-distance Doppler shift method after multinucleon transfer reactions in inverse kinematics. These results corroborate recent MSU measurements of 8.0(10), 10.3(10), 39.0(40) ps for $^{62,64,66}\text{Fe}$ [2011Ro02], respectively. The deduced E2 strengths demonstrate the enhanced collectivity of the neutron-rich Fe isotopes up to $N=40$. Note that both use a plunger method.
5.6. ^{70}Ni:

The reduced transition probability $B(E2)\uparrow$ of $0.086(14)\ e^2b^2$ [2006Pe13] for the neutron-rich ^{70}Ni nucleus has been measured by Coulomb excitation in a ^{208}Pb target at intermediate energy. The current $B(E2)\uparrow$ value for ^{70}Ni is unexpectedly large, which may indicate that neutrons added above $N = 40$ strongly polarize the $Z = 28$ proton core.

5.7. ^{74}Ni:

The deformation length and quadrupole deformation parameter have been measured in inelastic scattering of ^{74}Ni on Hydrogen [2010Ao01]. Results of this experiment indicate that the magic character of $Z = 28$ or $N = 50$ is weakened in ^{74}Ni.

5.8. ^{72}Zn:

The reduced transition probabilities $B(E2)\uparrow$ of $0.174(21)\ e^2b^2$ [2002Le17] for ^{72}Zn nucleus has been measured by Coulomb excitation at intermediate energy. This result is consistent with the expectations derived from the neighboring nucleus ^{73}Zn and indicates that the behavior of E2 strengths around the $N = 40$ sub-shell closure in Zn is very different from the Ni isotopic chains.

5.9. ^{74}Zn:

A lifetime of $27.6(43)\ ps$ was recently reported in the recoil distance Doppler-shift measurement at GANIL [2011Ni03]. This result agrees well with the previous $B(E2)\uparrow$ values of $0.201(16)\ e^2b^2$ and $0.204(15)\ e^2b^2$ measured at REX-ISOLDE and GANIL [2007Va20, 2006Pe13], respectively.

5.10. $^{76,78,80}\text{Zn}$:

The reduced transition probabilities $B(E2)\uparrow$ of $0.145(18), 0.077(19)$ and $0.073(9)\ e^2b^2$ for $^{76,78,80}\text{Zn}$ have been reported by the REX-ISOLDE group [2007Va20, 2009Va01] using a low-energy Coulomb excitation. The present data indicate a need for large-scale shell-model calculations.

6. Conclusion & Outlook

An updated $B(E2)\uparrow$ evaluation of even-even Cr, Fe, Ni and Zn isotopes has been performed under the auspices of the USNDP with an intention to update $B(E2)\uparrow$ values and collect nuclear data user feedback. It is a continuation of S. Raman work on transition probabilities from the ground to the first-excited 2^+ state of even-even nuclides [1, 2]. The update is based on all published data prior to April 2011 and includes new experimental $B(E2)\uparrow$ values for 33 out of 38 nuclei. It extends evaluated data in the $N\sim Z\sim 28$ region from 20 to 38 nuclei. These results are compared with large-scale shell-model calculations. Evaluations of quadrupole collectivities for all nuclides, grouped by Z region, will follow, accommodating user feedback based on this paper.
7. Acknowledgments

The authors are grateful to Prof. J. Cameron (McMaster University) and V. Unferth (Viterbo University) for productive discussions and careful reading of the manuscript and useful suggestions, respectively. This work was funded by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy, under Contract No. DE-AC02-98CH10886 with Brookhaven Science Associates, LLC. Work at McMaster University was also supported by DOE and NSERC of Canada. MH acknowledges support from DOE grant DE-FC02-09ER41584 (UNEDF SciDAC Collaboration).

References

[1] S. Raman, C.H. Malarkey, W.T. Milner, C.W. Nestor, Jr., P.H. Stelson, Atomic Data and Nuclear Data Tables 36, 1 (1987).
[2] S. Raman, C.W. Nestor and P. Tikkanen, Atomic Data and Nuclear Data Tables 78, 1 (2001).
[3] B. Pritychenko, “B(E2) and Double-beta Decay Nuclear Data Projects,” Nuclear Structure 2008 Conference CD, June 3-6 (2008), East Lansing, MI.
[4] “Isotope Science Facility at Michigan State University. Upgrade of the NSCL Rare Isotope Capabilities,” MSU Cyclotron Laboratory Report MSU-CL-1435 (2006).
[5] INPC 2010 - International Nuclear Physics Conference, July 4-9 (2010), Vancouver, Canada; Available from ⟨http://inpc2010.triumf.ca/⟩.
[6] B. Pritychenko, E. Béták, M.A. Kellett, B. Singh, J. Totans, Nucl. Instr. and Meth. A 640, 213 (2011); Available from ⟨http://www.nndc.bnl.gov/nsr⟩.
[7] T.W. Burrows, Nucl. Instr. and Meth. A286, 595 (1990).
[8] J.K. Tuli, Nucl. Instr. and Meth. A369, 506 (1996); Available from ⟨http://www.nndc.bnl.gov/ensdf⟩.
[9] Experimental Unevaluated Nuclear Data List (XUNDL); Available from ⟨http://www.nndc.bnl.gov/xundl⟩.
[10] Network of Nuclear Structure and Decay Data Evaluators (NSDD), Available from ⟨http://www-nds.iaea.org/nsdd⟩.
[11] T. Kibédi, T.W. Burrows, “ENSDF evaluation tool to calculate averages (AveTools)”; Available from ⟨http://www.nndc.bnl.gov/ndcsr/ensdf/pgm/utility⟩.
[12] M.U. Rajput and T.D. MacMahon, Nucl. Instr. and Meth. in Phys. Res. A312, 289 (1992).
[13] E. Browne, Limitation of Relative Statistical Weight Method, INDC (NDS) 363, IAEA, Vienna (1998).
[14] T. Kibédi, T.W. Burrows, M.B. Trzhaskovskaya, P.M. Davidson, C.W. Nestor, Jr., Nucl. Instr. and Meth. A 589, 202 (2008); “BrIcc v2.2b, Conversion Coefficient Calculator”, available from ⟨http://physics.anu.edu.au/nuclear/bricc⟩.
[15] I.M. Band and M.B. Trzhaskovskaya, Atomic Data and Nuclear Data Tables 55, 43 (1993).
[16] M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, Eur. Phys. J. A 25, Suppl. 1, 499 (2005).
[17] M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, Phys. Rev. C 69, 034335 (2004).
[18] E.K. Warburton, J.A. Becker, B.A. Brown, Phys. Rev. C 41, 1147 (1990).

[19] M. Honma, T. Otsuka, T. Mizusaki, and M. Hjorth-Jensen, Phys. Rev. C 80, 064323 (2009).

[20] V. Zagrebaev, A. Kozhin, Nuclear Reactions Video (knowledge base on low energy nuclear physics), JINR Report No. E10-99-151, Dubna, (1999); Available from ⟨http://nrn.jinr.ru/nrv⟩.
Explanation of Tables

Table 1. Adopted (recommended) B(E2)\(\uparrow\), \(\tau\)- and \(\beta_2\)-values for Cr, Fe, Ni and Zn isotopes.

Throughout this table, bracketed numbers refer to the uncertainties in the last digits of the quoted values; no star character, * and ** correspond to model-independent, combined and model-dependent values, respectively.

Nuclide	The even \(Z\), even \(N\) nuclide studied
\(E(\text{level})\)	Energy of the first excited \(2^+\) state in keV either from an ENSDF evaluation or from current literature
\(B(E2)\uparrow\)	Reduced electric quadrupole transition rate for the ground state to \(2^+\) state transition in units of \(e^2b^2\)
\(\tau\)	Mean lifetime of the state in ps. The relation between \(\tau\) and \(B(E2)\uparrow\) is given as \(\tau = 40.81 \times 10^{13} E_\gamma^{-5} [B(E2)\uparrow / e^2b^2]^{-1} (1 + \alpha_T)^{-1}\), where \(E_\gamma\) is the \(\gamma\)-ray energy and \(\alpha_T\) is the total conversion coefficient
\(\beta_2\)	Quadrupole deformation parameter deduced from \(B(E2)\uparrow\)
\(B(E2)\uparrow\) [2]	Previous value of reduced electric quadrupole transition rate for the ground state to \(2^+\) state transition in units of \(e^2b^2\)

Table 2. Calculated \(E(2^+_1)\)-, \(B(E2\uparrow)\)-values for Cr, Fe, Ni and Zn isotopes.

Nuclide	The even \(Z\), even \(N\) nuclide studied
GXPF1A effective interaction [16]	From chapter 4 shell-model calculations
\(E(\text{level})\)	GXPF1A energy value of the first excited \(2^+\) state in MeV
\(B(E2)\uparrow\)	GXPF1A reduced electric quadrupole transition rate value for the ground state to \(2^+\) state transition in units of \(e^2b^2\)
JUN45 effective interaction [19]	From chapter 4 shell-model calculations
\(E(\text{level})\)	JUN45 energy value of the first excited \(2^+\) state in MeV
\(B(E2)\uparrow\)	JUN45 reduced electric quadrupole transition rate value for the ground state to \(2^+\) state transition in units of \(e^2b^2\)
Table 3. Experimental B(E2↑)-, τ- and β2-values in Cr, Fe, Ni and Zn isotopes.

Throughout this table, bracketed numbers refer to the uncertainties in the last digits of the quoted values. *d or * - Superseded, duplicate or above the Coulomb barrier [20] experiments. Beam energy units are in MeV or (A)-MeV/nucleon. NSR keynumbers [6] are shown in the reference column.

Nuclide	The even Z, even N nuclide studied
B(E2)↑	Reduced electric quadrupole transition rate for the ground state to 2+ state transition in units of e²h²
τ	Mean lifetime of the state in ps
β2	Quadrupole deformation parameter
Target	Target nuclide
Beam	Incident beam
Energy	Incident beam energy
Method	CE: Coulomb excitation
	CE*: Coulomb excitation with beam energy above the Coulomb barrier
	CE?: Coulomb excitation, incomplete information
	TDSA: Transmission Doppler shift attenuation lifetime
	TDSA+: Rejected as an outlier
	RDM: Measurement as a function of distance of the relative fraction of recoil nuclei which decay in a movable plunger
	TCS: Observation, with fast electronics, of the delay between transitions in a cascade
	γ,γ*: Measurement of the nuclear resonance fluorescence cross section
	E,E*: Inelastic electron scattering
	IN-EL: Inelastic scattering of light and heavy ions
Reference	NSR database [6] keynumber
Table 1
Adopted (recommended) B(E2)↑, τ- and β2-values for Cr, Fe, Ni and Zn isotopes.

Nuclide	E_{2+} (keV)	B(E2)↑ (e^2b^2)	τ (ps)	β2	B(E2)↑ [2] (e^2b^2)	
46Cr	892.16(10)	0.093(20)	19.0(41)	16.7(36)	0.288(31)	
48Cr	752.19(11)	0.137(15)	26.4(29)	12.4(14)	0.340(19)	0.136(21)
50Cr	783.30(9)	0.106(32)	19.43(58)	13.02(39)	0.2912(32)	0.108(6)
52Cr	1434.094(14)	0.0627(27)	10.88(47)	1.076(46)	0.2179(47)	0.0660(30)
54Cr	834.855(3)	0.0879(55)	14.50(91)	11.45(72)	0.2509(75)	0.0870(40)
56Cr	1006.61(20)	0.055(19)	8.7(30)	7.1(25)	0.195(34)	
58Cr	880.7(2)	0.099(28)	14.8(42)	7.8(22)	0.254(37)	
60Cr	646(1)	0.085(18)**	12.3(27)**	43(11)**	0.23(3)**	
62Cr	447(4)	0.122(28)**	16.7(38)**	187(45)**	0.27(3)**	
64Cr	420(7)					
48Fe	969.5(5)					
50Fe	765.0(10)	0.140(30)*	25.6(55)*	11.1(24)*	0.308(33)*	
52Fe	849.45(10)	0.082(10)*	14.2(18)*	11.3(14)*	0.230(14)*	
54Fe	1408.19(19)	0.0608 (31)	10.0(5)	1.21(6)	0.193(5)	0.062(5)
56Fe	846.776(5)	0.0975(27)	15.32(42)	9.61(27)	0.239(3)	0.0980(40)
58Fe	810.7662(20)	0.123(4)	18.4(6)	9.55(31)	0.261(5)	0.1200(40)
60Fe	823.63(15)	0.0938(88)	13.4(13)	11.5(11)	0.224(10)	0.096(18)
Nuclide	E_{γ} (keV)	$B(E2)$↑ (e^2b^2)	$B(E2)$↑ [W.u.]	τ (ps)	β_2	$B(E2)$↑ [2] (e^2b^2)
---------	-----------------	-----------------	-----------------	--------	--------	-----------------
62Fe	876.8(3)	0.1028(90)	14.1(12)	7.67(67)	0.229(10)	
64Fe	746.40(10)	0.178(17)	23.4(22)	9.93(97)	0.295(15)	
66Fe	574.4(10)	0.166(17)	21.0(21)	39.4(40)	0.280(15)	
68Fe	517(6)?					
54Ni	1392.3(4)	0.061(12)	10.0(20)	1.28(25)	0.179(18)	
56Ni	2700.6(7)	0.0453(86)	7.1(13)	0.062(13)	0.151(14)	0.060(12)
58Ni	1454.21(9)	0.0673(17)	10.09(25)	0.933(24)	0.1799(23)	0.0695(20)
60Ni	1332.518(5)	0.0914(17)	13.17(24)	1.057(20)	0.2055(19)	0.0933(15)
62Ni	1172.91(9)	0.0893(21)	12.25(29)	2.094(43)	0.1982(23)	0.0890(25)
64Ni	1345.75(5)	0.0629(32)	8.27(42)	1.47(7)	0.1628(41)	0.076(8)
66Ni	1424.8(10)	0.0611(67)	7.71(85)	1.14(12)	0.157(9)	0.062(9)
68Ni	2034.07(17)	0.0260 (40)	3.15(49)	0.451(69)	0.101(8)	0.026(6)
70Ni	1259.6(2)	0.086(14)	10.0(16)	1.50(24)	0.179(15)	
72Ni	1096.0(20)					
74Ni	1024(1)	0.127(38)**	13.8(41)**	2.86(85)**	0.21(3)**	
76Ni	992(2)					
60Zn	1003.9(2)					
Nuclide	E_{2+}^{1} (keV)	B(E2)1 (e²b²)	τ (ps)	β_2	B(E2)1 [2] (e²b²)	
---------	------------------	------------------	-------	--------	------------------	
62Zn	954.0(4)	0.1224(59)	16.79(81)*	4.22(20) *	0.2166(52)	0.124(9)
64Zn	991.56(5)	0.1484(52)	19.52(68)*	2.87(10) *	0.2335(41)	0.160(15)
66Zn	1039.2279(21)	0.1371(29)	17.31(37)*	2.456(52) *	0.2198(24)	0.135(10)
68Zn	1077.37(4)	0.1203(25)	14.59(30)*	2.337(49) *	0.2019(21)	0.124(15)
70Zn	884.46(8)	0.1525(75)	17.80(88)*	4.93(24) *	0.2229(55)	0.160(14)
72Zn	652.70(5)	0.174(21)	19.6(24)*	19.8(24) *	0.234(14)	
74Zn	605.9(8)	0.200(10)	21.7(11)*	25.0(12) *	0.2460(62)	
76Zn	598.68(10)	0.145(18)	15.2(19)*	36.6(45) *	0.206(12)	
78Zn	730.2(4)	0.077(19)	7.8(19)*	25.5(63) *	0.147(18)	
80Zn	1492(1)	0.073(9)	7.1(9)*	0.76(9)	0.141(9)	
Table 2
Calculated $E(2^+)$, $B(E2)\uparrow$-values for Cr, Fe, Ni and Zn isotopes.

Nuclide	GXPFI A effective interaction [16]	JUN45 effective interaction [19]		
	$E(2^+)$ (MeV)	$B(E2)\uparrow$ (e^2b^2)	$E(2^+)\uparrow$ (MeV)	$B(E2)\uparrow$ (e^2b^2)
^{46}Cr	1.0054	0.0955		
^{48}Cr	0.7887	0.1273		
^{50}Cr	0.7872	0.1107		
^{52}Cr	1.5101	0.0849		
^{54}Cr	0.8949	0.1138		
^{56}Cr	1.0715	0.1109		
^{58}Cr	0.9062	0.1143		
^{60}Cr	0.9580	0.0972		
^{62}Cr	0.8400	0.0793		
^{50}Fe	0.7870	0.1151		
^{52}Fe	0.8883	0.1124		
^{54}Fe	1.4483	0.0761		
^{56}Fe	0.8903	0.1228		
^{58}Fe	0.8478	0.1468		
^{60}Fe	0.8173	0.1345		
^{62}Fe	0.8114	0.1101		
^{64}Fe	0.9008	0.0784		
^{66}Fe	0.9170	0.0701		

^{54}Ni	1.4480	0.0375	
^{56}Ni	2.5990	0.0823	
^{58}Ni	1.4780	0.0599	
^{60}Ni	1.4740	0.0946	
^{62}Ni	1.1490	0.1195	
^{64}Ni	1.2680	0.0706	
^{66}Ni	1.2650	0.0365	
^{68}Ni	1.9630	0.0376	
^{70}Ni	1.5990	0.0427	
^{72}Ni	1.5050	0.0483	
^{74}Ni	1.4420	0.0440	
^{76}Ni	1.3740	0.0296	
^{62}Zn	1.0130	0.1479	
^{64}Zn	0.9730	0.1492	
^{66}Zn	0.9500	0.1200	
^{68}Zn	0.8790	0.0799	
^{70}Zn	1.1040	0.1493	
^{72}Zn	1.1090	0.1581	
^{74}Zn	1.0070	0.1773	
^{76}Zn	0.9660	0.1763	
^{78}Zn	0.9760	0.1521	
^{80}Zn	1.0450	0.1097	
Nuclide	B(E2) (e²b²)	τ (ps)	β₂	Target	Beam	Energy (MeV)	Method	Reference
46Cr	0.093(20)							
48Cr	10.6(11)							
48Cr	16.7(22)							
48Cr	9.7(26)							
50Cr	13.2(4)							
50Cr	0.093(5)							
50Cr	0.102(5)							
50Cr	12.6(21)							
50Cr	12.1(12)							
50Cr	10(2)							
50Cr	0.115(10)							
50Cr	0.092(10)							
50Cr	0.115(8)							
50Cr	0.15(3)							
52Cr	0.0632(40)							
52Cr	0.0687(13)							
52Cr	0.080(8)							
52Cr	0.0634(39)							
52Cr	0.0600(30)							
52Cr	0.0768(13)							
52Cr	0.071(9)							
52Cr	0.072(8)							
52Cr	0.043(9)							
52Cr	0.048(2)							
52Cr	0.0520(40)							
52Cr	0.073(7)							
52Cr	0.060(15)							
52Cr	0.062(12)	0.8(2)						
54Cr	0.095(5)							
54Cr	0.0850(30)							
54Cr	0.096(9)							
54Cr	0.106(7)							
54Cr	0.057(11)							
54Cr	0.079(20)							
56Cr	0.055(19)							
56Cr	0.099(28)							
60Cr	0.23(3)							
62Cr	0.27(3)							
50Fe	0.140(30)							
50Fe	0.082(10)							
50Fe	0.0967(38)							
50Fe	0.060(6)							
54Fe	1.10±4.35	0.09(14)						
54Fe	0.0532(33)							
54Fe	0.0595(60)							
54Fe	0.061(14)							
54Fe	0.051(12)							
54Fe	0.0533(24)							
56Fe	0.1202(55)	7.9(12)						
56Fe	0.111(6)							
56Fe	0.097(20)							
56Fe	0.0678(48)							
56Fe	0.0945(45)							
56Fe	0.118(12)							
56Fe	0.125(27)							
56Fe	10.3(20)							
56Fe	11.3(20)							
56Fe	8.5(29)							
58Fe	0.097(10)							
Nuclide	B(E2)↑ (e^2b^2)	τ (ps)	β2	Target	Beam	Energy (MeV)	Method	Reference
---------	-----------------	-------	-----	--------	------	-------------	--------	-----------
56Fe	9.6(18)			56Fe	γ	0.845-3.2	GG	[1963Be29]
56Fe	0.0720(35)			56Fe	e-	150	EE'	[1962Be18]
56Fe	10.6(17)			56Fe	γ	GG	GG	[1961Me11]
56Fe	8.6(29)			56Fe	16O	27	CE	[1960Ce08]
56Fe	0.100(20)			56Fe	14N	16.3, 36	CE*	[1980As07]
56Fe	0.061(12)			56Fe	16O	39	CE*	[1960Ad01]
56Fe	0.100(25)			56Fe	N	15.9-35	CE*	[1959A015]
56Fe	0.070(18)			56Fe	4He	6	CE	[1956Tv26]
56Fe	0.1234(36)			56Fe	12C/152Cr	22, 110-120	CE*	[1981L002]
56Fe	3.4-10			56Fe	4He	10	TDSA	[1978Bo35]
56Fe	0.086(5)			56Fe	46Ca	76	CE*	[1974To71]
56Fe	0.094(8)			56Fe	14N	16.3	CE	[1960An07]
Ni	0.110(22)			56Fe	N	15.9-35	CE*	[1959A015]
Ni	0.20(5)			56Fe	N	15.9-35	CE*	[1959A015]
Ni	0.059(17)			64Ni	238U	6.5 A	RDM	[2010L01]
Ni	0.063(17)			64Ni	238U	6.5 A	RDM	[2010L01]
Ni	0.049(12)			64Ni	238U	6.5 A	RDM	[2010L01]
Ni	0.059(17)			64Ni	238U	6.5 A	RDM	[2010L01]
Ni	0.060(12)			64Ni	238U	6.5 A	RDM	[2010L01]
Ni	0.0726(50)			64Ni	238U	6.5 A	RDM	[2010L01]
Ni	0.0707(145)			64Ni	238U	6.5 A	RDM	[2010L01]
Ni	0.0588(40)			64Ni	238U	6.5 A	RDM	[2010L01]
Ni	0.090(11)			64Ni	238U	6.5 A	RDM	[2010L01]
Ni	0.092(17)			64Ni	238U	6.5 A	RDM	[2010L01]
Ni	0.0660(40)			64Ni	238U	6.5 A	RDM	[2010L01]
Ni	0.0608(20)			64Ni	238U	6.5 A	RDM	[2010L01]
Ni	0.0657(11)			64Ni	238U	6.5 A	RDM	[2010L01]
Ni	0.0731(17)			64Ni	238U	6.5 A	RDM	[2010L01]
Ni	0.0554(30)			64Ni	238U	6.5 A	RDM	[2010L01]
Ni	0.0657(11)			64Ni	238U	6.5 A	RDM	[2010L01]
Ni	0.0727(7)			64Ni	238U	6.5 A	RDM	[2010L01]
Ni	0.098(13)			64Ni	238U	6.5 A	RDM	[2010L01]
Ni	0.063(13)			64Ni	238U	6.5 A	RDM	[2010L01]
Ni	0.080(16)			64Ni	238U	6.5 A	RDM	[2010L01]
Ni	0.071(14)			64Ni	238U	6.5 A	RDM	[2010L01]
Ni	0.100(25)*			64Ni	238U	6.5 A	RDM	[2010L01]
Ni	1.30+30			60Ni	n	1.6,1.8	TDSA	[2008OJ02]
Ni	1.31(3)			56Ni	155, 160	TEDSA	[2001K002]	
Ni	1.30(36)			56Ni	N/A	N/A	TCS	[1976KL04]
Ni	0.1020(40)			56Ni	e-	30-60	EE'	[1974Ye01]
Ni	0.087(7)			56Ni	e-	45-65	EE'	[1974Ye01]
Ni	0.082(6)			56Ni	e-	45-65	EE'	[1974Ye01]
Ni	0.0910(30)			56Ni	e-	45-65	EE'	[1974Ye01]
Ni	0.092(12)			56Ni	e-	45-65	EE'	[1974Ye01]
Ni	0.0938(20)			56Ni	e-	45-65	EE'	[1974Ye01]
Ni	0.0914(20)			56Ni	e-	45-65	EE'	[1974Ye01]
Ni	0.0603(28)			56Ni	e-	45-65	EE'	[1974Ye01]
Ni	0.077(8)			56Ni	e-	45-65	EE'	[1974Ye01]
Ni	0.108(21)			56Ni	e-	45-65	EE'	[1974Ye01]
Ni	0.0845(9)			56Ni	e-	45-65	EE'	[1974Ye01]
Ni	0.091(5)			56Ni	e-	45-65	EE'	[1974Ye01]

Table 3 Experimental B(E2↑)-, τ- and β2-values in Cr, Fe, Ni and Zn isotopes (continued).
Nuclide	B(E2↑) (e²b²)	τ (ps)	β₂	Target	Beam	Energy (MeV)	Method	Reference
⁶⁰Ni	0.123(15)							[1961C01]
⁶⁰Ni	0.11(1)							[1960Am07]
⁶⁰Ni	0.120(24)							[1960Go08]
⁶⁰Ni	0.106(40)	1.0(3)						[1959Bu12]
⁶⁰Ni	1.1(2)	1.79 ± 0.18	1.75(5)					[1959Am09]
⁶⁰Ni	2.10(7)							[1951Ke01]
⁶²Ni	2.15(42)							[1981Ca10]
⁶²Ni	1.55(25)	1.55(25)						[1978Ke11]
⁶²Ni	2.15(6)	2.15(5)						[1973KiZB]
⁶²Ni	0.102(10)							[1977ChXZ]
⁶²Ni	0.0618(42)							[1972Li28]
⁶²Ni	0.0880(30)							[1971ChZF]
⁶²Ni	0.0899(28)							[1970Le17]
⁶²Ni	0.084(5)							[1960Ha31]
⁶²Ni	0.0877(11)							[1967Da07]
⁶²Ni	2.28(18)							[1965Es01]
⁶²Ni	0.083(8)							[1962St02]
⁶²Ni	0.085(17)							[1960Am07]
⁶²Ni	0.140(35)							[1960Am07]
⁶⁴Ni	1.57(5)	0.055(12)						[1986Sc00]
⁶⁴Ni	0.0744(20)	0.40(15)						[1975DeXW]
⁶⁴Ni	0.0950(40)							[1971ChZF]
⁶⁴Ni	0.0650(34)							[1969Ba01]
⁶⁴Ni	0.087(17)							[1960Am07]
⁶⁴Ni	0.077(15)							[1960Am07]
⁶⁴Ni	0.090(18)							[1959Ar05]
⁶⁶Ni	0.06(1)							[1988Be10]
⁶⁶Ni	0.09(1)							[1974V01]
⁶⁸Ni	0.028(11)							[1980Br10]
⁶⁸Ni	0.0255(60)							[1976Ch11]
⁷⁰Ni	0.029(7)							[1976Wa09]
⁷⁰Ni	0.086(14)							[1980Am07]
⁷⁴Ni	0.21(3)							[2000LeZZ]
⁶⁵Zn	4.2(7)							[2001Ke08]
⁶⁵Zn	4.3(3)							[1977ChYD]
⁶⁵Zn	4.20(30)	2.51 ± 0.30	2.88(9)					[2005Le12]
⁶⁷Zn	4.20(30)							[2005Le12]
⁶⁷Zn	2.80(9)							[1977ChYD]
⁶⁷Zn	2.70(8)							[2005Le12]
⁶⁹Zn	0.112(6)							[1998Si25]
⁶⁹Zn	0.168(4)							[1988Sa32]
⁶⁹Zn	2.97(25)	3.00(30)	4.0(10)					[1981Ca10]
⁶⁹Zn	0.162(9)							[1977Ca14]
⁶⁹Zn	0.155(9)							[1977Ca14]
⁶⁹Zn	0.161(12)							[1978Me09]
⁶⁹Zn	0.176(21)							[1979Fi15]
⁶⁹Zn	0.155(11)							[1967Ca1ZD]
⁶⁹Zn	0.170(16)							[1970Am04]
⁶⁹Zn	0.108(5)							[1977Tn13]
⁶⁹Zn	0.162(10)							[1980Es02]
⁶⁹Zn	0.110(22)							[1960Am07]
⁶⁹Zn	0.110(22)							[1960Am07]
⁶⁶Zn	2.5(1)							[2000Le24]
⁶⁶Zn	2.43(5)							[2006Ke51]
⁶⁶Zn	2.71(23)							[1989Si25]
⁶⁶Zn	2.0(10)							[1981Ca10]

Refer to Table 3 for further details.
Nuclide	$B(E2)\uparrow$ ($e^2\beta^2$)	τ (ps)	β_2	Target	Beam	Energy (MeV)	Method	Reference
^{66}Zn	2.70(20)a	γ	^{66}Zn	1.65	GG	[1977Ca14]		
^{66}Zn	0.141(8)	e$^-$	^{66}Zn	100-275	EE$'$	[1977Ni05]		
^{66}Zn	2.5$^+$$^{-2}$	^4He	^{64}Ni	27, 30	TDSA	[1977Mo20]		
^{66}Zn	0.137(10)	e$^-$	^{66}Zn	40-112	EE$'$	[1976Ne06]		
^{66}Zn	0.154(13)	^4He	^{66}Zn	3-5.0	CE	[1975Th01]		
^{66}Zn	0.180(15)	e$^-$	^{66}Zn	225	EE$'$	[1973Li12]		
^{66}Zn	0.155(15)	^{35}Cl	^{66}Zn	56-68	CE	[1973Fi15]		
^{66}Zn	2.2(9)	^4He	^{66}Zn	25	TDSA	[1972Yo01]		
^{68}Zn	0.13(21)	γ	^{66}Zn	1.037	GG	[1972Ku22]		
^{68}Zn	0.138(16)	γ	^{66}Zn	1.65	GG	[1972ArZD]		
^{68}Zn	0.145(15)	e$^-$	^{66}Zn	150, 225	EE$'$	[1970Jo04]		
^{68}Zn	0.145(13)	^4He	^{66}Zn	1-2.0	GG	[1967Be03]		
^{68}Zn	0.11(22)	^{14}N	^{66}Zn	4-8.0	CE	[1962St02]		
^{68}Zn	0.105(8)	e$^-$	^{66}Zn	36	CE*	[1960An07]		
^{68}Zn	0.087(17)	^4He	^{66}Zn	6-7.0	CE	[1956Te26]		
^{68}Zn	0.129(8)	^{68}Zn	Pb	276	CE*	[2004Ko03]		
^{68}Zn	0.105(7)	^{68}Zn	Fe, C	160	TDSA	[2002Ko02]		
^{70}Zn	2.71(23)a	γ	^{68}Zn	2.5-4.5	CE*	[1998Si25]		
^{70}Zn	0.125(11)	e$^-$	^{68}Zn	160-275	EE$'$	[1977Ni05]		
^{70}Zn	0.105(8)	γ	^{68}Zn	160	EE$'$	[1977Ca14]		
^{70}Zn	0.111(8)	e$^-$	^{68}Zn	120-412	EE$'$	[1976Ne06]		
^{70}Zn	1.3(3)	^4He	^{68}Zn	13	TDSA	[1974Iv01]		
^{72}Zn	0.126(13)	γ	^{68}Zn	256-68	CE	[1973ArZD]		
^{72}Zn	0.108(14)	e$^-$	^{68}Zn	256	CE*	[1973Li12]		
^{72}Zn	0.140(16)	γ	^{68}Zn	160	EE$'$	[1972ArZD]		
^{72}Zn	0.125(11)	e$^-$	^{68}Zn	4-8.0	CE	[1962St02]		
^{72}Zn	0.110(22)	^{14}N	^{68}Zn	36	CE*	[1960An07]		
^{74}Zn	5.3(3)	γ	^{68}Zn	65.9 A	CE*	[2002Ko02]		
^{74}Zn	0.235(25)	p	^{70}Zn	2.4-5.5	CE*	[1998Si25]		
^{74}Zn	0.205(19)	e$^-$	^{70}Zn	160	CE*	[2002Ko02]		
^{74}Zn	0.160(14)	^4He	^{70}Zn	256	CE*	[1972ArZD]		
^{74}Zn	0.174(21)	γ	^{70}Zn	256	CE*	[1972ArZD]		
^{76}Zn	27.6(43)	γ	^{74}Zn	108^{120}Sn	2.87 A	CE*	[2007Va02]	
^{74}Zn	0.201(16)	γ	^{74}Zn	208^{120}Pb	0.28 c	CE*	[2006Pe13]	
^{76}Zn	0.145(18)	γ	^{74}Zn	108^{120}Sn	2.83 A	CE*	[2007Va20]	
^{78}Zn	0.077(19)	γ	^{74}Zn	108^{120}Sn	2.87 A	CE*	[2007Va20]	
^{80}Zn	0.073(9)	γ	^{74}Zn	108^{120}Sn	2.79 A	CE*	[2009Va01, 2007Va20]	
References used in the Tables

[2011Ch05] A. Chakraborty, J.N. Orce, S.F. Ashley et al., Phys.Rev. C 83, 034316 (2011).
[2011Ni03] M. Niikura, B. Moguniot, F. Azaiez et al., Acta Phys. Pol. B 42, 537 (2011).
[2011Ro02] W. Rother, A. Dewald, H. Iwasaki et al., Phys. Rev. Lett 106, 022502 (2011).
[2010Li01] J. Ljungwall, A. Gorgen, A. Obertelli et al., Phys.Rev. C 81, 061301 (2010).
[2010Kr01] Krishichayan, X. Chen, Y.-W. Lui, Y. Tokimoto et al., Phys. Rev. C 81, 014603 (2010).
[2010Ao01] N. Aoi, S. Kanno, S. Takeuchi et al., Phys. Lett. B 692, 302 (2010).
[2009Ao01] N. Aoi, E. Takeshita, H. Suzuki et al., Phys.Rev.Lett. 102, 012502 (2009).
[2009Va01] J. Van de Walle, F. Aksouh, T. Behrens et al., Phys.Rev. C 79, 014309 (2009).
[2008Or02] J.N. Orce, B. Crider, S. Mukhopadhyay et al., Phys. Rev. C 77, 064301 (2008).
[2008Br18] N. Bree, I. Stefanescu, P.A. Butler et al., Phys. Rev. C 78, 047301 (2008).
[2007St16] K. Starosta, A. Dewald, A. Dunomes et al., Phys.Rev.Lett. 99, 042503 (2007).
[2007Va20] J. Van de Walle, F. Aksouh, F. Ames et al., Phys.Rev.Lett. 99, 142501 (2007).
[2006Pe13] O. Perru, O. Sorlin, S. Franchoo et al., Phys. Rev. Lett. 96, 232501 (2006).
[2006Le24] J. Leske, K.-H. Speidel, S. Schielke et al., Phys.Rev. C 73, 064305 (2006).
[2005Ya26] K. Yamada, T. Motobayashi, N. Aoi et al., Eur.Phys.J. A 25, Supplement 1, 409 (2005).
[2005Bu29] A. Burger, T.R. Saito, H. Grawe et al., Phys.Lett. B 622, 29 (2005).
[2005Le12] J. Leske, K.-H. Speidel, S. Schielke et al., Phys.Rev. C 71, 034303 (2005).
[2004Yu07] K.L. Yurkewicz, D. Bazin, B.A. Brown et al., Phys.Rev. C 70, 034301 (2004).
[2004Yu10] K.L. Yurkewicz, D. Bazin, B.A. Brown et al., Phys. Rev. C 70, 054319 (2004).
[2004Ko03] M. Koizumi, A. Seki, Y. Toh et al., Nucl.Phys. A730, 46 (2004).
[2003Ko51] M.Koizumi, A.Seki, Y.Toh et al., Eur.Phys.J. A 18, 87 (2003).
[2002So03] O. Sorlin, S. Leenhardt, C. Donzaud et al., Phys.Rev. Lett. 88, 092502 (2002).
[2002Ke02] O. Kenn, K.-H. Speidel, R. Ernst et al., Phys.Rev. C65, 034308 (2002).
[2002Le17] S. Leenhardt, O. Sorlin, M.G. Porquet et al., Eur.Phys.J. A 14, 1 (2002).
[2001Ke04] O. Kenn, K.-H. Speidel, R. Ernst et al., Phys. Rev. C 63, 021302 (2001).
[2001Ke08] O. Kenn, K.-H. Speidel, R. Ernst et al., Phys. Rev. C 63, 064306 (2001).
[2000Er01] R. Ernst, K.-H. Speidel, O. Kenn et al., Phys.Rev.Lett. 84, 416 (2000).
[2000Le2Z] S. Leenhardt, C. Donzaud, F. Amarini, et al., Univ.Paris, Inst.Phys.Nucl., 1998-1999 Ann.Rept., p.29 (2000).
[1998Ya2R] Y. Yanagisawa, T. Motobayashi, S. Shimoura et al., Proc. Conf on Exotic Nuclei and Atomic Masses, Bellaire, Michigan, June 23-27, 1998, p.610 (1998); AIP Conf. Proc. 455 (1998).
[1998Si25] K.P. Singh, D.C. Tayal, H.S. Hans, Phys.Rev. C58, 1980 (1998).
[1996Ch03] L.C. Chamon, D. Pereira, E.S. Rossi et al., Nucl. Phys. A 597, 253 (1996).
[1995Kr17] G. Kraus, P. Egelhof, C. Fischer et al., Phys. Scr. T 56, 114 (1995).
[1989Va02] P.J. van Hall, S.D. Wassenaar, S.S. Klein et al., J. Phys. (London) G 15, 199 (1989).
[1989Ge09] M.K. Georgieva, D.V. Elenkov, D.P. Lefterov, G. H. Toumbev, Fiz.Elem.Chastits At.Yadra 20, 930 (1989); Sov.J.Part.Nucl. 20, 393 (1989).
[1988Br10] M.R. Braunstein, J.J. Kraushaar, R.P. Michel et al., Phys. Rev. C 37, 1870 (1988).
[1988Sa32] S.Salem-Vasconcelos, M.J. Bechara, J.H. Hirata, O. Dietzsch, Phys.Rev. C38, 2439 (1988).
[1983Li02] J.W. Lightbody, Jr., J.W. Lightbody, J.B. Bellard, E.S. Rossi et al., Phys.Rev. C27, 113 (1983).
[1983Ki09] R. Klein, P. Grabmayr, Y. Kawazoe et al., Nuovo Cim. 76 A, 369 (1983).
[1981Ah02] J. Ahlert, M. Schumacher, Z.Phys. A301, 75 (1981).
[1981Le02] M.J. LeVine, E.K. Warburton, D. Schwalm, Phys.Rev. C23, 244 (1981).
[1981Ca10] Y. Cauchois, H. Ben Abdelaziz, R. Kherouf, C. Schloesing-Moller, J. Phys.(London) G 7, 1539 (1981).
[1981Wa09] N.J. Ward, L.P. Ekstrom, G.D. Jones et al., J.Phys.(London) G7, 815 (1981).
[1981Zi07] U. Yu. Zhovliev, M.F. Kudoyarov, I.Kh. Lemberg, A.A. Pasternak, Izv.Akad.Nauk SSSR, Ser.Fiz. 45, 1879 (1981).
[1979Ek03] L.P. Ekstrom, G.D. Jones, F. Kearns et al., J.Phys.(London) G5, 803 (1979).
[1978Po04] V.N. Polishchuk, N.G. Shevchenko, N.G. Afanasev et al., Yad.Fiz. 27, 1145 (1978); Sov.J.Nucl.Phys. 27, 607 (1978).
[1978Bo35] H.H. Bolotin, A.E. Stuchbery, K. Amos, I. Morrison, Nucl.Phys. A311, 75 (1978).
[1978Ke11] D.L. Kennedy, H.H. Bolotin, I. Morrison, K. Amos, Nucl. Phys. A 308, 14 (1978).
[1978KiZR] D.L. Kennedy, H.H. Bolotin, I. Morrison, K. Amos, UM-P-88, p.9 (1978).
