Analysis on dynamic precision degradation mechanism of high-speed precision press

Hao Chen*, Yongqi Zhang and Wei Zhang

School of Mechanical and Electrical, Changzhou Vocational Institute of Textile and Garment, Changzhou, Jiangsu, 213164, China

*Corresponding author’s e-mail: hchen@cztgi.edu.cn

Abstract: With the increase of service time, the dynamic precision of high-speed precision press is getting lower and lower. In order to study the precision degradation mechanism, a dynamic model of main transmission system of high-speed precision press was established based on ADAMS, and the influence of different bearing clearance on the dynamic precision was studied. The simulation results show that the dynamic precision of bottom dead center (BDC) decreases with the increase of joint clearance. And the increase of the joint clearance between main linkage and main slider has the greatest impact on the dynamic accuracy of BDC, the impact of the joint clearance between crankshaft and major linkage is smaller, and the impact of the joint clearance between crank shaft and bearing is the smallest. Finally, the field test was carried out. The analysis of the test data shows that the wear of the bearings in the main drive system leads to the increase of the clearance, which leads to the degradation of the dynamic precision.

1. Introduction

As an efficient forging and pressing equipment, the high-speed punch machine is widely applied in many important industrial fields, such as aerospace, automobile manufacturing, transportation, metallurgy and chemical industry[1]. With the acceleration in the space of the market globalization, the competition is becoming more intense, and higher requirement for the dynamic precision of the forging equipment has been put forward. The precision of high-speed punch has always been a hot issue, which has been widely concerned by scholars[2-3]. Based on ADAMS, Hu et al.[4] built the dynamic modeling of multi-rod mechanical press to investigate how the joints clearance for multi-rod mechanical press influence the repeat accuracy of BDC. Hu et al. [5] built a dynamic model for the multi-rod high-speed press and analyzed the influence of elastic deformation and elastic waves on dynamic accuracy of the BDC. Xiao et al.[6] analyzed the influence of machining error, elastic deformation and joint clearance on the reliable precision reliability of high-speed precision press. Considering the actual features such as clearance, flexibility and friction, Chen et al.[7] developed a rigid-flexible model to analysis the dynamic precision of a high-speed heavy load press. Thus it can be seen that the dynamic precision of the BDC is mostly determined by machining error, elastic deformation and joint clearance[8].

The second part of this paper uses the J76-80 press as an example to establish a dynamic model with joint clearances based on ADAMS. The third section analyzes the influence of each joint clearance for dynamic precision of BDC. A field test was carried out to determine dynamic precision degradation mechanism in the fourth section. Finally, a concluding summary was presented by comparing simulation results with test results.
2. Dynamic model of transmission system

2.1. Driving mechanism of high-speed press with joints clearance

The diagram of driving mechanism of J76-80 press with joint clearance is shown in Figure 1. The joint clearance between crank shaft and bearing seat is e_1. The joint clearance between crankshaft and major linkage is e_2. The joint clearance between main linkage and main slider is e_3.

![Figure 1. J76-80 press driving mechanism with joint clearance.](image1)

2.2. Kinematic pair model with clearance

2.2.1. Rotating joint model with clearances

Rotating joint model with clearances is shown in Figure 2. Assume that the radius of shaft is r, the radius of bearing is R. The clearance of rotating joint is

$$e = R - r$$ \hspace{1cm} (1)

Assume that the center of bearing is O_1, the center of shaft is O_2. The distance between O_1 and O_2 is

$$l_1 = \sqrt{x_{O2}^2 + y_{O2}^2}$$ \hspace{1cm} (2)

where x_{O2} and y_{O2} are the coordinates of O_2.

Normal penetration depth of shaft and bearing is

$$\delta_1 = l_1 - e = \sqrt{x_{O2}^2 + y_{O2}^2} - (R - r)$$ \hspace{1cm} (3)

where $\delta_1 \geq 0$ indicates that the bearing collides with the shaft, $\delta_1 < 0$ indicates that the bearing is separated from the shaft.

![Figure 2. Rotating joint clearance](image2)

2.2.2. Spherical joint model with clearance

Spherical joint model with clearances is shown in Figure 3. Assume that the radius of ball head is sr, the radius of ball bearing is SR. The clearance of spherical joint is

$$E = SR - sr$$ \hspace{1cm} (4)
Assume that the center of ball bearing is SO1, the center of ball head is SO2. The distance between SO1 and SO2 is

$$l_2 = \sqrt{x_{SO2}^2 + y_{SO2}^2 + z_{SO2}^2}$$ \hspace{1cm} (5)

where x_{SO2}, y_{SO2} and z_{SO2} are the coordinates of SO2.

Normal penetration depth of ball head and ball bearing is:

$$\delta_2 = l_2 - E = \sqrt{x_{SO2}^2 + y_{SO2}^2 + z_{SO2}^2} - (SR - sr)$$ \hspace{1cm} (6)

where $\delta_2 \geq 0$ indicates that the ball bearing collides with the ball head, $\delta_2 < 0$ indicates that the ball bearing is separated from the ball head.

![Figure 3. Spherical joint model with clearance](image)

2.3. Contact force model

According to the nonlinear continuous impact contact force model, the contact force F is

$$F = \begin{cases} 0 & \text{if} \quad \delta < 0 \\ F_N + F_T & \text{if} \quad \delta \geq 0 \end{cases}$$ \hspace{1cm} (7)

where F_N is normal contact force, F_T is tangential contact force, δ is normal penetration depth.

Normal contact force F_N can be calculated according to Eq. (8).

$$\begin{cases} F_N = K\delta'' + C(\delta)\delta & \delta > 0 \\ 0 & \delta \leq 0 \end{cases}$$ \hspace{1cm} (8)

where $C(\delta)$ is transient damping coefficient, K is the contact stiffness coefficient. It can be calculated according to Eq. (9).

$$K = \frac{4}{3\pi(h_i + h_j)} \left(\frac{D_iD_j}{D_i + D_j} \right)^{\frac{1}{2}}$$

$$h_k = \frac{1 - \nu_k^2}{\pi E_k} \quad k = i, j$$

$$D = \frac{D_iD_j}{D_i + D_j}$$ \hspace{1cm} (9)

where D_i is the radius of the bearing, D_j is the radius of the bearing and shaft, h_k is the material properties of bearing and shaft, ν_k is the poisson’s ratio of bearing and shaft, E_k is the elastic modulus of bearing and shaft.

Transient damping coefficient $C(\delta)$ can be calculated according to Eq. (10).

$$C(\delta) = \begin{cases} 0 & \delta \leq 0 \\ C_{max} \left(\frac{\delta}{\delta_{max}} \right)^2 \left(3 - 2 \frac{\delta}{\delta_{max}} \right) & 0 < \delta < \delta_{max} \\ C_{max} & \delta \geq \delta_{max} \end{cases}$$ \hspace{1cm} (10)

where δ_{max} is maximum contact depth, C_{max} is maximum damping coefficient.

In this paper, the modified Coulomb friction model is used to describe the tangential contact force F_T. It can more truly reflect the actual movement and improve the accuracy of simulation[4].
2.4. Dynamic model of transmission system

According to Figure 1, we know that the transmission system is a crank slider mechanism, as shown in Figure 4. Combining Figure 1 and Figure 5, the simulation model of transmission system is built based on ADAMS. The parameters are as follows: the radii of crank l_1 and l_1' are 15mm and 25mm respectively, the mass of crank m_1 is 437kg, the length of main linkage l_1 is 350mm, the mass of crank m_2 is 206kg, the mass of main slider m_3 is 1470kg, the length of auxiliary linkage l_2' is 520mm, the mass of auxiliary linkage m_2' is 77kg, the mass of auxiliary slider m_3' is 1287kg.

3. Analysis of the influence of clearances on dynamic precision

3.1. Influence of joint clearance e_1 on dynamic precision

In order to study the influence of joint clearance e_1 on dynamic precision, the joints clearance e_2 and e_3 are set to 0. By measuring, we determine that the joint clearance e_1 of the new press is about 0.04mm and it is about 0.12mm after three years. Therefore, joint clearance e_1 is set as 0.04mm, 0.06mm, 0.08mm, 0.10mm, 0.12mm and 0.14mm respectively in simulation model. The simulation results are shown in Figure 6. Figure 6 shows, with the increase of joint clearance e_1, the mean value of dynamic precision of BDC increases gradually. When e_1 increases from 0.04mm to 0.14mm, the average dynamic accuracy of BDC increases from 0.45μm to 0.86μm, and the increment is 0.41μm.

3.2. Influence of joint clearance e_2 on dynamic precision

Similarly, the joint clearance e_1 and e_3 are set to 0. By measuring, we determine that the joint clearance e_2 of the new machine tool is about 0.07mm and it is about 0.11mm after three years. Therefore, joint clearance e_2 is set as 0.06mm, 0.07mm, 0.08mm, 0.09mm, 0.10mm and 0.11mm respectively in simulation model. The simulation results are shown in Figure 7. Figure 7 shows, with the increase of e_2, the mean value of dynamic precision increases gradually. When e_2 increases from 0.06mm to 0.14mm, the average dynamic accuracy of BDC increases from 0.45μm to 0.86μm, and the increment is 0.41μm.
0.11mm, the average value of dynamic precision increases from 2.96μm to 6.54μm, and the increment is 3.58μm. Compared with e_1, the increase of e_2 has a greater impact on the dynamic precision.

3.3. Influence of joint clearance e_3 on dynamic precision

Similarly, joint clearance e_3 is set as 0.050mm, 0.055mm, 0.060mm, 0.065mm, 0.070mm and 0.075mm respectively in simulation model. The simulation results are shown in Figure 8. Figure 8 shows, with the increase of joint clearance e_3, the mean value of dynamic precision of BDC increases gradually. When e_3 increases from 0.050mm to 0.075mm, the average value of dynamic precision increases from 8.10μm to 25.10μm, and the increment is 17μm. Compared with e_1 and e_2, the increase of e_3 has the greatest impact on the dynamic precision.

Figure 8. Average value of dynamic precision at different joint clearance e_3

4. Experimental study

In reality, it is impossible to set joint clearance to 0. It is impossible to carry out the experiment according to the simulation. So we select the high-speed press with different service time to measure the total joint clearance e ($e=e_1+e_2+e_3$) and dynamic precision. The press and the measuring system for the test is shown in Figure 9.

The test results are shown in the Figure 10 and 11. Figure 10 shows, with the increase of service time, dynamic precision of BDC is declining and the deceleration increases continuously. And, it can be found from Figure 11 that total joint clearance has the same change rule.
By synthesizing Figure 10 and Figure 11, the curve of dynamic precision at different total joint clearances is obtained, as shown in Figure 12. Figure 12 shows, with the increase of the total clearance, dynamic precision of BDC is declining. To sum up, the joint clearances of bearings become larger due to wear during service, which leads to the degradation of the dynamic precision of BDC.

5. Conclusions
By establishing the dynamic model of transmission system, the influence of different joint clearances to dynamic precision is analyzed. And on this basis, the experimental research is carried out. The conclusions are as follows:

1) With the increase of the joint clearances, dynamic precision of BDC decreases continuously. The increase of e_3 (the clearance of the ball bearing) has the greatest impact on the dynamic accuracy, e_2 (the joint clearance between crankshaft and major linkage) takes the second place, and e_1 (the joint clearance between crank shaft and bearing seat) has the least impact.

2) The degradation mechanism is that with the increase of service time the clearances of the bearings is also increasing, which leads to the degradation of BDC.

Acknowledgments
The research is funded partially by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 19KJD460001) and Academic Research Fund Project of Changzhou Vocational Institute of Textile and Garment of China (No. CFK2018102).

References
[1] Chen, H., Sun, Y. (2017) Development and application of reliability test platform for high-speed punch machine clutch brake system. J. Mech. Sci. Technol., 31(1): 53-61.
[2] Zheng, E.L., Zhou, X. (2014) Modelling and simulation of flexible slider-crank mechanism with clearance for a closed high speed press system. Mech. Mach. Theory, 74(6): 10–30.
[3] Zheng, E.L., Jia, F., Zhu, S.H. (2014) Thermal modelling and characteristics analysis of high speed press system. Int. J. Mach. Tools Manuf., 85(7): 87-99.

[4] Hu, F.F., Wang, S.B., Su, Y., et al. (2014) Effect of the Joints clearance on the precision of bottom dead center for multi-rod mechanical press. Mech. Sci. Technol. Aerosp. Eng., 33(09):1304-1308.

[5] Hu, F.F., Su, Y., Peng, B.B. (2016) Dynamic precision analysis and experimental verification of high-speed precision punch press. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 230(20): 3655-3662.

[6] Xiao, M.H., Geng, G.S., Li, G.H., et al. (2017) Analysis on dynamic precision reliability of high-speed precision press based on Monte Carlo method. Nonlinear Dyn., 90:2979–2988.

[7] Chen, Y., Sun, Y., Chen, C.(2016) Dynamic analysis of a planar slider-crank mechanism with clearance for a high-speed and heavy load press system. Mech. Mach. Theory, 98, 81–100.

[8] He, C.K. (2014) Influencing factors analysis of dynamic accuracy for high-speed precision press. China Met. Form. Equip. Manuf. Technol. 49(6), 13-16.