HIGH PERFORMANCE SR LATCH IN VLSI CIRCUITS USING FINFET 18NM TECHNOLOGY

SUDHAKAR ALLURI

Department of Electronics and Communications Engineering, CMR Institute of Technology, JNTU Hyderabad, Telangana State, India.

Email: sudhakaralluri709@gmail.com

https://doi.org/10.26782/jmcms.2019.12.00023

Abstract

In present days, low power Very Large Scale Integration (VLSI) circuit assumes a significant job in structuring effective vitality sparing electronic frameworks for rapid execution. In this, low power utilization one of the most significant criteria in different gadgets like cell phones, workstations, High-speed work stations, and so on. FinFETs area unit multi-door transistors that supply higher entry direct management is very little component advancements. They show higher and lower spillage contrasted with the Complementary metal oxide semiconductor planar. As appeared in Figure one, the door is created of a slim balance that associates the availability of the channel on to form the avenue. The avenue is middle between 2 facet entryways on 2 inverse sides. the weather of the door area unit calculable through the entry length, chemical compound thickness, balance dimension, and balance tallness. The activity of the FinFET semiconductor unit is basically similar because of the CMOS planate. In this paper, an SR Latch utilizing eight transistors has been proposed. The proposed SR Latch is planned to utilize the CADENCE EDA apparatus and re-enacted utilizing the Specter Virtuoso at FinFET 18 nm innovation. The proposed outcomes as far as power, area, and delay from table3, table4, table5, and table6.

Keywords : Low power, delay, area, FinFET SR Latch, FinFET NAND gate, DSP,VLSI.

I. Introduction

Throughout the foremost recent decade, the first most popular position of innovation scaling was believed to be its capability to create semiconductor unit thickness. the opposite customary additions, for instance, increasing the exchanging pace and transfer down the stock voltage to boost management utilization, are not any longer property[1]-[IV]. On the far side thirty-two nm, the standard planar CMOS transistors likewise old high inconstancy and execution.
Throughout the approach toward endeavoring to boost semiconductor unit execution, the twofold gated semiconductor units indicated nice potential towards up the exchanging quality and consequently the presentation of the transistor [VI]–[XI]. Although this increase, the new design conferred varied styles of spatial changeableness. Hence, method selection unbroken on being one in every one of the first difficulties for structure unwavering quality. At the framework level, method selection brings a couple of Hilter order speed dissemination among centers within the gift manycore and multicore processors, five accustomed the current integrated circuits width, lots of transistors area unit factory-made on the same chip to form a large variety of handling and memory centers. Functioning such integrated circuits is simply conceivable either facility utilization be without the budget at first, a framework level management sweetening recreation condition is employed to interrupt down varied streamlining procedures utilizing evaluated power and execution esteems as figures of legitimacy [XII]. In this examination is viewed because of the underlying perform within the arranging procedure. Such a recreation may be acknowledged unambiguously with a made deferral create [XIII], XV].

So, a basic & moderately precise framework matched defer representative that might continue utilized now a very multi provide voltage arrange advancement is needed. This defer model may be utilized to assess the middle execution below varied replica conditions within the die, the selection comes as a result of the complementary metal oxide semiconductor fabricating method. Its impact on the transistors highlights, that appear as organized & irregular impacts, is mostly displayed utilizing measurable ways [XVI]. Seventeen Such brunt influences the transistors limit voltage, its avenue width. Modify within documented transistors specifications sway the transistor's exchanging withhold. during this approach, these modify within the postponement should be evaluated whereas mulling over such fluctuation. later on, a defer condition that exactly measures the exhibition of middle in a very multicenter processor, whereas pondering the impact of such varieties, is needed.

II. Literature Review

Framework level re-enactment could be a typical apply in VLSI style, eighteen nineteen the first check is that framework level copy will be impressive. The examination should be completed from the applying purpose of read whereas considering the framework, circuit, and widget level problems, twenty one for instance, a run of the mill application running on a many-center stage is relied upon to include an outsized variety of undertakings with a correspondence load between subordinate assignments. Such a stage contains a heterogeneous arrangement of centers that area unit deliberately settled therefore on reduce traffic and provides space to the assets required by a accustomed utilization. Actualizing an occasional
processor with a multi-\(V_{dd} \)/multi-recurrence setup to boot needs legitimate dissemination of provide voltages and frequencies that depend upon the remaining burden to hit least power consumption\[XVII]-[XIX]. Furthermore, procedure voltage and temperature (PVT) varieties will add on degree of multifarious nature to planned issue. Procedure selection is critical, notably once a stage contains a sizable amount of centers, that should be acknowledged at littler procedure advancements. A recreation domain that includes these parts is employed to configuration lose power and selection, microprocessor. Displaying & assessing deferral in this hit and miss copy condition is basic. The defer model need to be precise enough to deliver sensible numbers and easy enough to stay copy time sanely quick [XX]–[XXII]. The alpha-control delay model is one in all the foremost notable defer conditions owing to its straightforwardness and relative exactitude. it's utilised at the framework level to determine the postponement below varied stockpile voltage or edge voltage conditions. nineteen twenty seven twenty eight The model is employed within the writing for assessing the defer whereas assessing numerous system on chip methods or guiding algorithms, thirteen eighteen twenty one multicore and manycore low power optimizations,14 twenty nine thirty or loss of memory structures other framework matched, nineteen what is more, middlest boot accustomed assess deferrals in shut edge operations, it's likewise accustomed assess the result of procedure minor departure from the framework level delay [XXIII]. Sometimes, the essential means deferral of a middle square is displayed as associate electrical converter group. Thesis often a typical apply basically amount of the construction cycle.20. At this time, the structure procedure is targeted around a selected objective utilizing distinctive improvement techniques. Later, the alpha-control model is adequate have confidence varied improvement alternatives. During this work, we tend to endeavour to abuse the straightforwardness of the alpha-control model whereas up its exactitude. Such an everyday delay model in all probability will not be acceptable in its basic structure for such hit and miss framework level reenactment condition. As associate exhibition of the problem, have confidence the limit voltage (\(V_{th} \)), that could be a important parameter to exactly gauge the postponement. For the foremost half, the sting voltage is believed to be an even variety created utilizing factual methods that catch procedure selection sway. yet, the limit voltage is continually influenced by different electronic transistor parameters[XXIV]-[XXV].

III Design Methodology

III.i. Fin FET Structure & Activity

FinFETs area unit multi-door transistors that supply higher entry direct management in very little component advancements. They show higher and lower spillage contrasted with the Complementary metal oxide semiconductor planar . As appeared in Figure one, the door is created of a slim balance that associates the
availability the channel on to form the avenue. The avenue is middle between 2 facet entryways on 2 inverse sides. the weather of the door area unit calculable through the entry length, chemical compound thickness, balance dimension, and balance tallness. The activity of the FinFET semiconductor unit is basically a similar because the CMOS planate, i.e.

\[W_{eff} = 2 * H_{fin} + W_{fin} \]

III.ii. SR NAND Latch

When utilizing static entryways as building hinders, the most principal hook is the straightforward SR lock, where S and R represent set and reset. It very well may be developed from a couple of cross-coupled NOR or NAND rationale doors. The put-away piece is available on the yield stamped Q.

The circuit that appeared beneath is an essential NAND gate. The sources of info are for the most part assigned S bar and R bar for Set and Reset individually. Since the NAND inputs should typically be rationale 1 to abstain from influencing the locking activity, the sources of info are viewed as upset in this circuit (or dynamic low).

The circuit utilizes criticism to "recall" and hold its legitimate state significantly after the controlling info signals have changed. At the point when the S and R inputs are both high, criticism keeps up the Q yields to the past state.
IV. Results and Analysis

In this simulation result, an SR Latch utilizing eight transistors has been proposed. The proposed SR Latch is planned to utilize the CADENCE EDA apparatus and reenacted utilizing the Specter VIRTUOSO at FinFET 18 nm innovation. The proposed outcomes as far as power, region and postponement from table3, table4, table5, and table6.
Figure 3. schematic diagram of FinFET SR Latch using two inputs nand gate

Figure 3 gives the four transistors nand gate logic with the two inputs of S, R & output Q. For two inputs combinations frequency of 100MHz signal is applied and verified. when verification of logic, delay, power and area is measured.

Figure 4. symbol of FinFET SR Latch using two inputs nand gate

Figure 4 gives the four transistors n and gate symbol with the two inputs of S, R and output of Q
The circuit that appeared beneath is an essential NAND gate. The sources of info are for the most part assigned S bar and R bar for Set and Reset individually. Since the NAND inputs should typically be rationale 1 to abstain from influencing the locking activity, the sources of info are viewed as upset in this circuit (or dynamic low). The circuit utilizes criticism to "recall" and hold its legitimate state significantly after the controlling info signals have changed. At the point when the S and R inputs are both high, criticism keeps up the Q yields to the past state. The Simulations of SR Latch using two inputs nand gate using Cadence Virtuoso EDA tool at FinFET 18nm technology. These simulation is obtained using the specifications shown in table 3, table 4, table 5, table 6.
Shown in figure 6. Transient response 100ns of SR Latch using two inputs nand gate at frequency 100MHz.

The \(R = S = 0 \) blends are known as a limited mix or a prohibited state on the grounds that, as both NAND entryways at that point yield 1s, it breaks the consistent condition \(Q = \text{not } Q \). The blend is additionally unseemly in circuits where the two sources of info may go high at the same time (for example a change from confined to keep). The yield would bolt at either 1 or 0 relying upon the spread time relations between the entryways (a race condition). In specific executions, it could likewise prompt longer ringing (damped motions) before the yield settles, and in this manner bring about unsure qualities.
Figure 8. Layout design of FinFET SR Latch using two inputs nand gate

Shown in figure 8 area response 26.01nm² of Layout design of SR Latch using two inputs nand gate.

Table 2: Specification of SR Latch

Specification	N-Channel FinFET	P-Channel FinFET
Library name	phvt18	phvt18
Length	48 nm	48 nm
Rise time	100pS	
Fall time		100pS
Frequency response | 10MHz
---|---
Input Node R | Period 20n/pulse width 10n
Input Node S | Period 40n/pulse width 20n
Load Capacitance | 10 fF
Voltage scaling | 0.7V, 0.8V, 0.9V, 1V, 2V
Threshold Voltage | 0.7V

Table 3: Dynamic power, voltage and area scaling of SR Latch

Voltage	Dynamic power(nw)	Area (nm²)
0.7	320.9	
0.8	425.8	
0.9	548.8	
1	691.0	26.01
2	3597.0	

From Table 3, here red color indicates dynamic power like 320.9nw,425.8nw,548.8nw,691.0nw and 3597.0nw, blue color indicates voltage scaling like 0.7V,0.8V,0.9V,1V and 2V and green color indicates area 26.01nm².

![Comparison of Voltage, dynamic power and area](image)

Figure 8. Comparison of Voltage, dynamic power and area
Shown in figure 8 Comparison of Voltage, dynamic power and area. From figure 8, here red color indicates dynamic power like 320.9nw, 425.8nw, 548.8nw, 691.0nw and 3597.0nw, blue color indicates voltage scaling like 0.7V, 0.8V, 0.9V, 1V and 2V and green color indicates area 26.01nm².

Table 4: Leakage power, voltage and area scaling of SR Latch

Voltage	Leakage power(nw)	Area (nm²)
0.7	4.85	
0.8	7.606	
0.9	11.57	26.01
1	17.14	
2	338.3	

From Table 4, here red color indicates dynamic power like 320.9nw, 425.8nw, 548.8nw, 691.0nw and 3597.0nw, blue color indicates voltage scaling like 0.7V, 0.8V, 0.9V, 1V and 2V and green color indicates area 26.01nm².

Figure 9. Comparison of Voltage, Leakage power and area
Shown in figure 9 Comparison of Voltage, dynamic power and area. From figure 9, here red color indicates Leakage power like 4.85nw, 7.606nw, 11.57nw, 17.14nw & 338.3nw, blue color indicates voltage scaling like 0.7V, 0.8V, 0.9V, 1V and 2V and green color indicates area 26.01nm².

Table 5: Leakage power, voltage and area scaling of SR Latch

Voltage	Static power(µw)	Area (nm²)
0.7	20.91	26.01
0.8	32.15	
0.9	45.91	
1	62.12	
2	370.9	

From Table 5, here red color indicates Leakage power like 4.85nw, 7.606nw, 11.57nw, 17.14nw & 338.3nw, blue color indicates voltage scaling like 0.7V, 0.8V, 0.9V, 1V and 2V and green color indicates area 26.01nm².

Figure 8. Comparison of Voltage, Static power and area

Shown in figure 8 Comparison of Voltage, dynamic power and area. Here red color indicates Static power like 20.91nw, 32.15nw, 45.91nw, 62.12nw and 370.9nw, blue color indicates voltage scaling area like 0.7V, 0.8V, 0.9V, 1V and 2V and green color indicates area 26.01nm².

Copyright reserved © J. Mech. Cont. & Math. Sci.
SUDHAKAR ALLURI

340
Table 6: SR Latch of Delay response and voltage scaling

SNo	Voltage	Delay (ps)
1	0.7	99.22
2	0.8	99.23
3	0.9	99.2
4	1	128.1
5	2	20330

Shown in table 6 comparison of Voltage, dynamic power and area. Here red color indicates delay like 99.22ps, 99.23ps, 99.2ps, 128.1ps and 20330ps, blue color indicates voltage scaling area like 0.7V, 0.8V, 0.9V, 1V and 2V.

Figure 8. Comparison of Voltage scale delay response

Shown in figure 8 Comparison of Voltage, dynamic power and area. Here red color indicates delay like 99.22ps, 99.23ps, 99.2ps, 128.1ps and 20330ps, blue color indicates voltage scaling area like 0.7V, 0.8V, 0.9V, 1V and 2V.

V Conclusion

In present days, low power Very Large Scale Integration (VLSI) circuit assumes a significant job in structuring effective vitality sparing electronic frameworks for rapid execution. In this, low power utilization one of the most significant criteria in different gadgets like cell phones, workstations, High-speed
work stations, and so on. FinFETs are unit multi-door transistors that supply higher entry direct management is very little component advancements. They show higher and lower spillage contrasted with the Complementary metal oxide semiconductor planar. As appeared in Figure one, the door is created of a slim balance that associates the availability of the channel on to form the avenue. The avenue is middle between 2 facet entryways on 2 inverse sides. the weather of the door area unit calculable through the entry length, chemical compound thickness, balance dimension, and balance tallness. The activity of the FinFET semiconductor unit is basically similar because of the CMOS planate. In this paper, an SR Latch utilizing eight transistors has been proposed. The proposed SR Latch is planned to utilize the CADENCE EDA apparatus and reenacted utilizing the Specter Virtuoso at FinFET 18 nm innovation. The proposed outcomes as far as power, area, and delay from table3, table4, table5, and table6.

References

I. Alshraiedeh and A. Kodi An adaptive routing algorithm to improve lifetime reliability in NoCs architecture, IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT) (2016), pp. 127–130.

II. Amulya Boyina, K. Praveen Kumar “Active Coplanar Wave guide Fed Switchable Multimode Antenna Design and Analysis” Journal Of Mechanics Of Continua And Mathematical Sciences (JMCMS), Vol.-14, No.-4, July-August (2019) pp 188-196.

III. Azizi, M. M. Khellah, V. K. De & F. N. Najm, Variations aware low-power design and block clustering with voltage scaling. IEEE Trans. Very Large Scale Integr. Syst. 15, 746 (2007).

IV. Bahadori, M. Kamal, A. Afzali-Kusha & M. Pedram, A comparative study on performance and reliability of 32-bit binary adders. Integr. VLSI J. 53, 54 (2016).

V. C. Catanzaro, K. Asanovic, D. A. Patterson, and K. A. Yelick, The landscape of parallel computing research: A view from berkeley. EECS Dep. Univ. Calif. Berkeley Tech. Rep. UCBEECS2006183 18, 19 (2006).
VI. Chen, A. Shafaei, Y. Wang, S. Chen, and M. Pedram, Maximizing the performance of NoC-based MPSoCs under total power and power density constraints, 17th International Symposium on Quality Electronic Design (ISQED) (2016), pp. 49–56.

VII. Dousti, Q. Xie, X. Lin, Y. Wang, A. Shafaei, M. Ghasemi-Gol, and M. Pedram, 5 nm FinFET standard cell library optimization and circuit synthesis in near-and super-threshold voltage regimes, 2014 IEEE Computer Society Annual Symposium on VLSI (2014), pp. 424–429.

VIII. G. Friedman, K. Xu, R. Patel and P. Raghavan, Exploratory design of on-chip power delivery for 14, 10, and 7 nm and beyond FinFET ICs. Integration 61, 11 (2018).

IX. Hwang, Y. Li, S. Member, and T. Li, Process-variation effect, metal-gate work-function fluctuation, and random-dopant fluctuation in emerging CMOS technologies. IEEE Trans. Electron Devices 57, 437 (2010).

X. J. R. Ferreira, Analysis of many-core CPUs simulators. Tech. Rep., Instituto Superior Tecnico, Universidade de Lisboa, pp. 1–10.

XI. K Satish Reddy a, K Praveen Kumar, Habibulla Khan, Harswaroop Vaish “Measuring the surface properties of a Novel 3-D Artificial Magnetic Material” 2nd International Conference on Nanomaterials and Technologies (CNT 2014), Elsevier Procedia material Science.

XII. K.Praveen Kumar, "Design of 3D EBG for L band Applications" IEEE International conference on communication technology ICCT-April-2015. Noor Ul Islam University Tamilnadu.

XIII. K.Praveen Kumar, "Effect of 2DEBG structure on Monopole Antenna Radiation and Analysis of It's characteristics" IEEE International conference on communication technology ICCT-April-2015. Noor Ul Islam University Tamilnadu.

XIV. K.Praveen Kumar, "Mutual Coupling Reduction between antenna elements using 3DEBG" IEEE International conference on communication technology ICCT-April-2015. Noor Ul Islam University Tamilnadu.

XV. K.Praveen Kumar, "The surface properties of TMMD-HIS material; A measurement" IEEE International conference on communication technology ICCT-April-2015. Noor Ul Islam University Tamilnadu.

XVI. K.Praveen Kumar, “Active Switchable Band-Notched UWB Patch Antenna”, International Journal of Innovative Technology and Exploring Engineering (IJITEE), Volume-8 Issue-8 June, 2019.

XVII. K.Praveen Kumar, “Circularly Polarization of Edge-Fed Square Patch Antenna using Truncated Technique for WLAN Applications”, International Journal of Innovative Technology and Exploring Engineering (IJITEE), Volume-8 Issue-8 June, 2019.
XVIII. K. Praveen Kumar, “Triple Band Edge Feed Patch Antenna; Design and Analysis”, International Journal of Innovative Technology and Exploring Engineering (IJITEE), Volume-8 Issue-8 June, 2019.

XIX. K. Praveen Kumar, Dr Habibulla Khan "Surface wave suppression band, In phase reflection band and High Impedance region of 3DEBG Characterization" International journal of applied engineering research (IJAEER), Vol 10, No 11, 2015.

XX. K. Praveen Kumar, Dr Habibulla Khan "The surface properties of TMMD-HIS material; a measurement" IEEE International conference on electrical, electronics, signals, communication & optimization EESCO - January 2015.

XXI. K. Praveen Kumar, Dr. Habibulla Khan "Active progressive stacked electromagnetic band gap structure (APSEBG) structure design for low profile steerable antenna applications" International Conference on Contemporary engineering and technology 2018 (ICCET-2018) March 10 - 11, 2018. Prince Shri Venkateshwara Padmavathy Engineering College, Chennai.

XXII. K. Praveen Kumar, Dr. Habibulla Khan "Active PSEBG structure design for low profile steerable antenna applications" Journal of advanced research in dynamical and control systems, Vol-10, Special issue-03, 2018.

XXIII. K. Praveen Kumar, Dr. Habibulla Khan "Optimization of EBG structure for mutual coupling reduction in antenna arrays; a comparative study" International Journal of engineering and technology, Vol-7, No-3.6, Special issue-06, 2018.

XXIV. K. Praveen Kumar, Dr. Habibulla Khan "Optimization of EBG structures for Mutual coupling reduction in antenna arrays; A comparative study" International Conference on Contemporary engineering and technology 2018 (ICCET-2018) March 10 - 11, 2018. Prince Shri Venkateshwara Padmavathy Engineering College, Chennai.

XXV. K. Praveen Kumar, Dr. Habibulla Khan, "Design and characterization of Optimized stacked electromagnetic band gap ground plane for low profile patch antennas" International journal of pure and applied mathematics, Vol 118, No. 20, 2018, 4765-4776.

XXVI. K. Praveen Kumar, Kumaraswamy Gajula “Fractal Array antenna Design for C-Band Applications”, International Journal of Innovative Technology and Exploring Engineering (IJITEE), Volume-8 Issue-8 June, 2019.

XXVII. Kumaraswami Gajula, Amulya Boyina, K. Praveen Kumar “Active Quad band Antenna Design for Wireless Medical and Satellite Communication Applications” Journal Of Mechanics Of Continua And Mathematical Sciences (JMCMS), Vol.-14, No.-4, July-August (2019) pp 239-252.
XXVIII. Lim, H. Kim, H. Oh, and S. Kang, Dynamic voltage frequency scaling-aware refresh management for 3D DRAM over processor architecture. Electron. Lett. 53, 910 (2017).

XXIX. Liu, R. Kim, P. Wettin, R. Marculescu, D. Marculescu, and P. P. Pande, Energy-efficient VFI-partitioned multicore design using wireless NoC architectures, Proceedings of the 2014 International Conference on Compilers, Architecture and Synthesis for Embedded Systems-CASES ’14 (2014), pp. 1–9.

XXX. M. E. Salehi and H. Nejatollahi Voltage scaling & dark silicon in symmetric multicore processors. J. Supercomput. 71, 3958 (2015).

XXXI. N. S. Kim, S. K. Khatamifard, M. Resch & U. R. Karpuzcu, VARIUS-TC: A modular architecture-level model of parametric variation for thin-channel switches. Proc. 34th IEEE Int. Conf. Comput. Des. ICCD 2016 (2016), pp.654–661.

XXXII. Navi, A. Arasteh, M. Hossein Moaiyeri, M. Taheri, and N. Bagherzadeh, An energy and area efficient 4:2 compressor based on FinFETs. Integr. VLSI J. 60, 224 (2018).

XXXIII. Nejatollahi, M. Ersali, and S. Nasab, Reliability-aware voltage scaling of multicore processors in dark silicon era. Big Data and HPC: Advances in Parallel Computing Ecosystem and Convergence (2018), Vol. 33, pp.242–262.

XXXIV. S. S. Majzoub, R. A. Saleh, S. J. E. Wilton & R. K. Ward, Energy optimization for many-core platforms: Communication and PVT aware voltage-island formation and voltage selection algorithm. IEEE Trans. Comput. Des. Integr. Circuits Syst. 29, 816 (2010).

XXXV. Singh, B. S. Reniwal, V. Vijayvargiya, V. Sharma & S. K. Vishvakarma, Ultra low power-high stability, positive feedback controlled (PFC) 10T SRAM cell for look up table (LUT) design. Integration 62, 1 (2018).

XXXVI. Stamelakos, S. Xydis, G. Palermo, and C. Silvano, Workload- and process-variation aware voltage/frequency tuning for energy efficient performance sustainability of NTC manycores. Integration (2018), In Press.

XXXVII. Stillmaker and B. Baas, Scaling equations for the accurate prediction of CMOS device performance from 180 nm to 7 nm. Integration 58, 74 (2017).

XXXVIII. T. Cui, J. Li, Y. Wang, S. Nazarian & M. Pedram, "An exploration of applying gate-length-biasing techniques to deeply-scaled FinFETs operating in multiple voltage regimes", IEEE Transi. Emer. Top. Compu. six, 172 (2018).

XXXIX. Uddin, R. Poss, and C. Jesshope, Cache-based high-level simulation of microthreaded many-core architectures. J. Syst. Archit. 60, 529 (2014).
XL. Venkateswar Rao, Praveen Kumar Kancherla, Sunita Panda “Multiband slotted Elliptical printed Antenna Design and Analysis” Journal Of Mechanics Of Continua And Mathematical Sciences (JMCMS), Vol.-14, No.-4, July-August (2019) pp 378-386.

XLI. W. Jose, A. R. Silva, H. Neto, & M. Vestias, Modeling and simulation of a many-core architecture using systemC. Conf. Electron. Telecommun. Comput. 17, 146 (2014).

XLII. X. Lin, Y. Wang, & M. Pedram, Joint sizing and adaptive independent gate control for FinFET circuits operating in multiple voltage regimes using the logical effort method, 2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), (2013), pp. 444–449.

XLIII. Z. Hao, S. X.-D. Tan, and G. Shi, Statistical full-chip total power estimation considering spatially correlated process variations. Integr. VLSI J. 46, 80 (2013).