ERRATUM TO
“ON THE CUSPIDAL COHOMOLOGY OF S-ARITHMETIC
SUBGROUPS OF REDUCTIVE GROUPS OVER NUMBER FIELDS”
BY A. BOREL, J.-P. LABESSE, J. SCHWERMER
COMPOSITIO MATHEMATICA, 102 (1996), 1-40.
JEAN-PIERRE LABESSE AND JOACHIM SCHWERMER

Let G be a reductive algebraic group defined over a number field k. A k-automorphism of G is said to be of Cartan-type if, at each non-archimedean places, it differs from a Cartan involution by an inner automorphism. In [1] the following result regarding the existence of non-trivial cuspidal cohomology classes for S-arithmetic subgroups of G is proved:

Theorem 1. Let G be an absolutely almost simple algebraic group defined over k that admits a Cartan-type automorphism. When the coefficient system is trivial, the cuspidal cohomology of G over S does not vanish, that is, every S-arithmetic subgroup of G has a subgroup of finite index with non-zero cuspidal cohomology with respect to the trivial coefficient system.

This is Theorem 10.6 in [1]. The following assertion appears as Corollary 10.7:

Assume that G is k-split and k totally real or $G = \text{Res}_{k'/k} G'$ where k' is a CM-field. Then the cuspidal cohomology of G over S with respect to the trivial coefficient system does not vanish.

It was observed by J. Rohlfs and L. Clozel independently that, in the second case where $G = \text{Res}_{k'/k} G'$ with k' a CM-field, the assertion must be corrected since, to make sense, the argument implicitly uses strong extra assumptions. In fact G' has to be defined over k so that the complex conjugation c' induced by the non-trivial element σ in $\text{Gal}(k'/k)$ acts as a k-rational automorphism, and a further assumption is necessary to make sense of the argument. Therefore we have to replace Corollary 10.7 in [1] by the following statement:

Corollary 2. Let k be a totally real number field and G be an absolutely almost simple algebraic group defined over k. Assume that G is k-split or $G = \text{Res}_{k'/k} G'$ where k' is a CM-field with G' defined over k and that the complex conjugation c' is of Cartan-type. Then the cuspidal cohomology of G over S with respect to the trivial coefficient system does not vanish.

Proof. When G is k-split, the proof is given in [1]. The second case is a particular case of Theorem 1. \[\square\]

1Strictly speaking, since G' is defined over k, one has to extend the scalars to k' before applying the restriction functor. For any k-algebra R the group $\text{Res}_{k'/k} G'(R)$ of points of $\text{Res}_{k'/k} G'$ with value in R is given by $G'(R \otimes_k k')$.

We thank Laurent Clozel and Raphaël Beuzart-Plessis for useful discussions and remarks. The second named author gratefully acknowledges the support of the Max-Planck-Institute for Mathematics, Bonn, in 2019.
We now give equivalent forms of the condition used in the second case. To simplify the notation we forget for a while about k and k' since in the next proposition we are only interested in archimedean places.

Consider a complex almost quasi-simple group $G = G'({\mathbb C})$ where G' is defined over $\mathbb R$. Let $H = G'({\mathbb R})$ be the the real Lie group of fixed points under the complex conjugation c'. The group G' has a quasi-split inner form G''. Denote by c^* the action of σ on G^*. Consider the root system for the maximal torus T in a Borel pair (B, T) defined over $\mathbb R$ in G^*. Let w be the element of maximal length in the Weyl group for T. Parts of the following proposition are well known (see in particular Corollary 2.9 of [7] and Lemma 3.1 of [6]) but not knowing of a complete reference for it we sketch the argument for the convenience of the reader.

Proposition 3. The following assertions are equivalent:

(i) The complex conjugation c' is of Cartan-type.

(ii) The group G' has an inner form G'' such that $U = G''({\mathbb R})$ is a compact Lie group.

(iii) The real Lie group H has a compact Cartan subgroup.

(iv) The real Lie group H admits discrete series.

(v) The product $w \circ c^*$ acts by -1 on the root system of T.

Proof. The group U of fixed points of a Cartan involution θ of $G = G'({\mathbb C})$ is a maximal compact subgroup and $U = G''({\mathbb R})$ where G'' is a form of G', not necessarily inner. The complex conjugation c' is of Cartan-type iff $c'(g) = x\theta(g)x^{-1}$ for some $x \in G$ i.e. iff G'' is an inner form of G' or equivalently of G^*. This proves the equivalence of (i) and (ii). Now consider an inner form G'' of G'. Up to isomorphism, we may assume that the complex conjugation c'' for G'' is of the form $c'' = Ad(x') \circ c'$ with x' belonging to the normalizer of T' a maximal torus in G' defined over $\mathbb R$. In particular x' is semi-simple and its centralizer $L = Z_{G'}(x')$ is a reductive group of maximal rank. Now, $(c'')^2 = 1$ implies that $\text{Ad}(x'c'(x')) = 1$ and hence the group L is stable under c'. Let M be the group of fixed points in L under c'. Such points are also fixed by c''. A Cartan subgroup $C \subset M = H \cap U$ is compact if $U = G''({\mathbb R})$ is compact and hence (ii) implies (iii). Observe one may now choose T' such that $C = T'({\mathbb R})$. On a compact Cartan subgroup $C \subset H$ the complex conjugation c' acts by -1 on the root system of T' and hence there is $x^* \in G$ which belongs to the normalizer of $T \subset G^*$ such that $\text{Ad}(x^*) \circ c^*$ acts as -1 on the root system of T. In particular, $w = \text{Ad}(x^*)|_T$ is the element of maximal length in the Weyl group. This shows that (iii) implies (v). The equivalence of (iii) and (iv) is a well known theorem due to Harish-Chandra ([3], Theorem 13). Finally Lemma 4 below shows that (v) implies (ii). □

Lemma 4. Assume $w \circ c^*$ acts by -1 on the root system. Then, G^* has an inner form G'' such that $G''({\mathbb R})$ is compact.

Proof. Consider the complex Lie algebra $\mathfrak g = \text{Lie}(G)$. Choose a Borel pair (B, T) defined over $\mathbb R$ in G^*. Let Σ be the set of roots, Σ^+ the set of positive roots and Δ the set of simple roots. Denote by $\mathfrak g_\alpha$ the vector space attached to $\alpha \in \Sigma$. Following Weyl [9], Chevalley [2] and Tits [8] one may choose elements $X_{\alpha} \in \mathfrak g_\alpha$ and $H_{\alpha} \in \mathfrak h = \text{Lie}(T)$ for $\alpha \in \Sigma$, such that $\alpha(H_{\alpha}) = 2$, $[X_{\alpha}, X_{-\alpha}] = H_{\alpha}$ and $[X_{\alpha}, X_{\beta}] = N_{\alpha, \beta}X_{\alpha + \beta}$ if $\alpha + \beta \in \Sigma$ with $N_{\alpha, \beta} = -N_{-\alpha, -\beta} \in \mathbb Z$. One may moreover assume that the splitting $(B, T, \{X_\alpha\}_{\alpha \in \Delta})$ is preserved by c^* i.e. $c^*(X_\alpha) = X_{c^*(\alpha)}$. Let w be the element of maximal length in the Weyl group for T. There is an $x'' \in G$, uniquely defined modulo the center of G, such that the inner automorphism $\phi = \text{Ad}(x'')$ acts as w on T and such that $\phi(X_{\alpha}) = -X_{w^\alpha}$ for
α ∈ Σ. It is of order 2 and commutes with c∗. Now assume w ◦ c∗ acts by −1 on Σ and let:

\[Y_\alpha = X_\alpha - X_{-\alpha} \quad Z_\alpha = i(X_\alpha + X_{-\alpha}) \quad U_\alpha = iH_\alpha. \]

The elements \(Y_\alpha\) and \(Z_\alpha\) for \(\alpha \in \Sigma^+\) together with the \(U_\alpha\) for \(\alpha \in \Delta\) build a basis for a real Lie algebra \(u\) and \(g = u + iu\). As in the proof of Theorem 6.3 in Chapter III of [4], we see that the Killing form is negative definite on \(u\). The involution \(\theta = \phi \circ c^*\) induces a Cartan involution on \(G\): its fixed point set is a compact group \(U = G''(\mathbb{R})\) with Lie algebra \(u\) and \(G''\) is the inner form of \(G^*\) defined by the cocycle \(a_1 = 1\) and \(a_\sigma = \text{Ad}(x'')\).

We observe that condition (v) in Proposition 3 may not hold when the Dynkin diagram has a non trivial automorphism of order 2. Assume that the Dynkin diagram of \(G^*\) is irreducible. Then (v) does not hold when \(G^*\) is split of type \(A_n\) with \(n \geq 2\), or \(D_n\) with \(n \geq 3\) odd, or \(E_6\) or when \(G^*\) is quasi-split but non split of type \(D_n\) with \(n \geq 4\) even. It holds in all other cases. This follows from the classification of irreducible root systems.

Nevertheless the conclusion of Corollary 2 may hold true even when condition (v) is not satisfied. In fact we have the

Theorem 5. Consider \(G = \text{Res}_{k'/k} G'\) where \(k'\) is a CM-field with \(G'\) absolutely almost simple. Assume that either condition (v) of Proposition 3 holds or that \(G'\) is split over \(k\) and simply connected. Then the cuspidal cohomology of \(G\) over \(S\) with respect to the trivial coefficient system does not vanish.

Proof. When \(G'\) is split over \(k\) and simply connected the assertion is a particular case of Theorem 4.7.1 of [5], which in turn relies on Theorem 10.6 in [11]. Now, when condition (v) in Proposition 3 holds the result follows from this Proposition and Corollary 2. \(\square\)

References

[1] Borel A., Labesse J.-P., and Schwermer, J. On the cuspidal cohomology of \(S\)-arithmetic subgroups of reductive groups over number fields, Compositio Math., 102 (1996), 1-40.

[2] Chevalley, C. Sur certains groupes simples. Tohoku Math. J. (2) 7 (1955), 14-66.

[3] Harish-Chandra Discrete series for semisimple Lie groups. II. Explicit determination of the characters. Acta Math. 116 (1966), 1-111.

[4] Helgason, S. Differential geometry and symmetric spaces. Pure and Applied Mathematics, Vol. XII. Academic Press, New York-London 1962

[5] Labesse J.-P., Cohomologie, stabilisation et changement de base, Asterisque 257 (1999)

[6] Langlands, R. P. On the classification of irreducible representations of real algebraic groups. Representation theory and harmonic analysis on semisimple Lie groups, 101-170, Math. Surveys Monogr., 31, Amer. Math. Soc., Providence, RI, 1989.

[7] Shelstad D. Characters and inner forms of a quasi-split group over \(\mathbb{R}\), Compositio Math., 39 (1979), 11-45.

[8] Tits, J. Sur les constantes de structure et le théorème d’existence des algèbres de Lie semi-simples. Inst. Hautes Études Sci. Publ. Math. No. 31 (1966), 21-58.

[9] Weyl, H. Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch lineare Transformationen. II. Math. Zeitschrift, 24 (1926), no. 1, 328-376.

INSTITUT DE MATHÉMATIQUE DE MARSEILLE, UMR 7373, AIX-MARSEILLE UNIVERSITÉ, FRANCE

E-mail address: Jean-Pierre.Labesse@univ-amu.fr

FACULTY OF MATHEMATICS, UNIVERSITY VIENNA, OSKAR-MORGENSTERN-PLATZ 1, A-1090 VIENNA, AUSTRIA RESP. MAX-PLANCK-INSTITUTE FOR MATHEMATICS, VIVATSGASSE 7, D-53111 BONN, GERMANY.

E-mail address: Joachim.Schwermer@univie.ac.at