"علاقة إفراز هرمون الفازوبرسين بالمستوى الرقمي للاعبات 400م عدو"
أ.د./ياسر حسن حامد

"أ.م.د./إيناس أبو العلا محمد زكي

***أ/ نورهان محمد أحمد سيد

مقدمة ومشكلة البحث:
تعتبر الدراسات والبحوث في المجال الرياضي من ضمن أحد الجوانب الهامة التي تساعد على تحقيق الإنجازات الرياضية العالمية. هذه الإنجازات لا تتحقق إلا من خلال تطبيق نتائج هذه الدراسات وتعرض الدراسات الفسيولوجية من أهم الدعامات التي تساعد على تحقيق الإنجاز الرياضي معتمدة في ذلك على الحقائق والنظرية العلمية. وقد إهتمت دول العالم في الآونة الأخيرة بتطوير مختلف الألعاب الرياضية وعلى جميع المستويات، وظهر ذلك واضحاً من خلال ما نراه في الدورات الأولمبية والبطولات العالمية من الارتقاء بالأداء الفني والمستوى الرقمي إذ شهد العالم تطوراً سريعاً في ألعاب القوى بعد أن وضعت دول العالم المتقدمة إمكانيات كبيرة لرفع المستوى الرياضي بطرق علمية متقدمة يمكن بواسطةها استثمار الإمكانات الفنية والبدنية للرياضيين. ومسابقات الميدان والمضمار من الرياضات العريقة فهي عصب الرياضات الأولمبية القديمة وعرض الألعاب الأولمبية الحديثة وأم الرياضات الأخرى وميزة عصرية الشعوب فضلاً عن أنها تخلق في الفرد التكامل البشري والمهاري والإبداعي، لذلك فهي تعتبر الرياضة الأساسية الأولى في العالم كما أن مسابقة 400 م عدو من مسابقات المشوار وهذه المسابقة أطلق عليها إسم قاهرة الرجال لأنها من أصعب المسابقات. (3: 43)

كما أن سباق 400 م عدو يحتاج إلى القدرات البدنية الخاصة والتي تميزها عن غيره من سباقات المشوار وهي تحمل السرعة والقوة المميزة بالسرعة والقدرة اللاهوائية والتحمل العضلي والمرونة والرغبة ويوفر كل هذه القدرات المركبة برنامج تدريبي شاق ومبني على أسس علمية حديثة إلى جانب ذلك يحتاج العداء إلى ميزات جسمية خاصة ونمط جسمي خاص لصعوبة

أ/ نورهان محمد أحمد سيد

* أستاذ بقسم التدريب الرياضي وعلوم الرياضة - كلية التربية الرياضية - جامعة أسيوط

** أستاذ مساعد بقسم مسابقات الميدان والمضمار - كلية التربية الرياضية للبنات بالجزيرة - جامعة حلوان

*** الباحثة- كلية التربية الرياضية - جامعة الوادي الجديد
سباق 400م عدو والمسافات القصيرة مثل 400م تعتمد على عناصر اللياقة البدنية الأساسية
مع بعضها لتحقيق المتطلبات الخاصة بـ 400م لتحقيق مستوى الأداء. (6 : 13) (٢ : ١٠)

وقد توصل العلماء إلى دور فعال في الهرمونات للإرتقاء باللاعبين إلى أعلى مستوى في
المجال الرياضي . وعرف الهرمونات بأنها " مادة كيميائية تفرز من الغدد الصماء داخل الجسم
الحي وكميات قليلة تنقل بعد إفرازها إلى سوائل الجسم ومن ثم إلى الدم حيث توجد الأعضاء
المستهدفة لعرض تنسيق ووظائفها والتي تحدث إستجابة فسيولوجية نموذجية في خلايا أخرى ". (٢ : ٣) (١)

ومن أهم الهرمونات هرمون الفازوبرسين هو مايسمى بالهرمون المضاد لإدرار البول يفرز
من الغدة الصنوبرية في صورة ما قبل الهرمون وهي سلسلة من الأحماض الأمينية وتم عبروها
عن طريق قناة مخصصة في الغدة النخامية حيث يتحول لما قبل الهرمون Pre عند الحاجة يتم
تكسير هذه السلسلة من الأحماض الأمينية وهو عبارة عن جزيئي بروتين يتكون من ٨ أحماض
أمينية ويصل الحمض الأميني الأول بالخليط للكлетة ثم يكون طرف من ٣ أحماض أمينية
وعمر النصف له حوالي ٢/٥ ساعة للمحافظة على ثبات وإتزان السوائل في الجسم وجعله في معدله
المائي في الجسم . (١ : ١٣) (١)

كما أن له مستقبلات الأربعة للهرمون الكلى والكبد والأوعية الدموية والدماغ وظيفته عند زيادة هذا
الهرمون يقل تركيز البول عند النقصان يزداد تركيز البول . ومن أهم أعراض نقص هذا الهرمون
في الدم كثرة التبول وحدوث الجفاف المائي وهذا يحدث في حالة وجود خلل وظيفي بأحد أجهزة
الجسم الحيوية . (١ : ٣٢٣)

كما أنه يؤثر على عدد من الوظائف وأجهزة الجسم مثل الكلى والجهاز الدوائي قد يزيد
الضغط داخل الشعيرات الدموية نتيجة إرتفاع تركيز هرمون الفازوبرسين وقد يؤدي إرتفاع هذا
الهرمون في حالة المرض إلى التسبب بمتلازمة الهرمون المضاد غير المناسب لإدرار البول في
حالة الإصابة كانت حادة فإنها تترافق مع بعض الأعراض مثل الصداع والغثيان وغيرها . (١)

ولكي يتم تطوير المستوى الرقمي للاعبين لأن اللاعبين يستمرون سنين من العمل والجهد
المتواصل لكسر أعشار من الثانية يسعى الباحثون في العلم للكشف عن أسابيع تساعد على
الإرتفاع بالنسبى الرقمي وتحافظ على صحة اللاعبين ومن خلال الإطلاع على المراجع العلمية
والبحث السابقية في مجال ألعاب القوى وكذلك تواجد الراحة بمضمار ألعاب القوى لتلقى بعض
التدريبات لاحظت الراحة في حدود علمها شعور بعض لاعبات ٤٠٠م بعد الإنتهاء من أداء
مجلة الوادي الجديد لعلوم الرياضة

0004م: المراجع العلمية والأبحاث السابقة في مجال فسيولوجيا التدريب الرياضي حيث يرى كلاً من WELL,LIM,MMYOUNG (11) وYOUNG (13) L J, WILT SHIRE, MAIXNER (12) وPITKOW CALD (14) أن هناك هرمون يسمى الفازوبرسين هو المسؤول عن إتزان السوائل في الجسم وهو عبارة عن تسع أحماض أمينية يتم إفرازه في مجرى الدم وأيضاً مضاد لإدرار البول الذي يبرز بشكل طبيعي من الغدة النخامية الخلفية ويساعد على منع فقدان الماء من الجسم عن طريق قيد إنتاج البول ويساعد الكلى على إعادة إمتصاص الماء من الجسم كما أنه يساعد أيضاً على إنتاج الأوعية الدموية لمدى علاقة هذه النسبة للمستوى الرقمي للعصابات وذلك التعرف على إفراز زيادة أو إنخفاض مستوى هرمون الفازوبرسين بالناء وتأثيره على مستوى أداء الرياضيات وماهو المؤشر الخارجي الذي يعكس هذا التأثير وذلك للياقة على حل هذه المشكلة ومحاولة تقليلها وتحسين مستوى الأداء حيث أن إتزان سوائل الجسم يلعب دوراً هاماً لللاعبات. 0004م: المراجع العلمية والأبحاث السابقة في مجال فسيولوجيا التدريب الرياضي حيث يرى كلاً من WELL,LIM,MMYOUNG (11) وYOUNG (13) L J, WILT SHIRE, MAIXNER (12) وPITKOW CALD (14) أن هناك هرمون يسمى الفازوبرسين هو المسؤول عن إتزان السوائل في الجسم وهو عبارة عن تسع أحماض أمينية يتم إفرازه في مجرى الدم وأيضاً مضاد لإدرار البول الذي يبرز بشكل طبيعي من الغدة النخامية الخلفية ويساعد على منع فقدان الماء من الجسم عن طريق قيد إنتاج البول ويساعد الكلى على إعادة إمتصاص الماء من الجسم كما أنه يساعد أيضاً على إنتاج الأوعية الدموية لمدى علاقة هذه النسبة للمستوى الرقمي للعصابات وذلك التعرف على إفراز زيادة أو إنخفاض مستوى هرمون الفازوبرسين بالناء وتأثيره على مستوى أداء الرياضيات وماهو المؤشر الخارجي الذي يعكس هذا التأثير وذلك للياقة على حل هذه المشكلة ومحاولة تقليلها وتحسين مستوى الأداء حيث أن إتزان سوائل الجسم يلعب دوراً هاماً لللاعبات. 0004م: المراجع العلمية والأبحاث السابقة في مجال فسيولوجيا التدريب الرياضي حيث يرى كلاً من WELL,LIM,MMYOUNG (11) وYOUNG (13) L J, WILT SHIRE, MAIXNER (12) وPITKOW CALD (14) أن هناك هرمون يسمى الفازوبرسين هو المسؤول عن إتزان السوائل في الجسم وهو عبارة عن تسع أحماض أمينية يتم إفرازه في مجرى الدم وأيضاً مضاد لإدرار البول الذي يبرز بشكل طبيعي من الغدة النخامية الخلفية ويساعد على منع فقدان الماء من الجسم عن طريق قيد إنتاج البول ويساعد الكلى على إعادة إمتصاص الماء من الجسم كما أنه يساعد أيضاً على إنتاج الأوعية الدموية لمدى علاقة هذه النسبة للمستوى الرقمي للعصابات وذلك التعرف على إفراز زيادة أو إنخفاض مستوى هرمون الفازوبرسين بالناء وتأثيره على مستوى أداء الرياضيات وماهو المؤشر الخارجي الذي يعكس هذا التأثير وذلك للياقة على حل هذه المشكلة ومحاولة تقليلها وتحسين مستوى الأداء حيث أن إتزان سوائل الجسم يلعب دوراً هاماً لللاعبات. 0004م: المراجع العلمية والأبحاث السابقة في مجال فسيولوجيا التدريب الرياضي حيث يرى كلاً من WELL,LIM,MMYOUNG (11) وYOUNG (13) L J, WILT SHIRE, MAIXNER (12) وPITKOW CALD (14) أن هناك هرمون يسمى الفازوبرسين هو المسؤول عن إتزان السوائل في الجسم وهو عبارة عن تسع أحماض أمينية يتم إفرازه في مجرى الدم وأيضاً مضاد لإدرار البول الذي يبرز بشكل طبيعي من الغدة النخامية الخلفية ويساعد على منع فقدان الماء من الجسم عن طريق قيد إنتاج البول ويساعد الكلى على إعادة إمتصاص الماء من الجسم كما أنه يساعد أيضاً على إنتاج الأوعية الدموية لمدى علاقة هذه النسبة للمستوى الرقمي للعصابات وذلك التعرف على إفراز زيادة أو إنخفاض مستوى هرمون الفازوبرسين بالناء وتأثيره على مستوى أداء الرياضيات وماهو المؤشر الخارجي الذي يعكس هذا التأثير وذلك للياقة على حل هذه المشكلة ومحاولة تقليلها وتحسين مستوى الأداء حيث أن إتزان سوائل الجسم يلعب دوراً هاماً لللاعبات. 0004م: المراجع العلمية والأبحاث السابقة في مجال فسيولوجيا التدريب الرياضي حيث يرى كلاً من WELL,LIM,MMYOUNG (11) وYOUNG (13) L J, WILT SHIRE, MAIXNER (12) وPITKOW CALD (14) أن هناك هرمون يسمى الفازوبرسين هو المسؤول عن إتزان السوائل في الجسم وهو عبارة عن تسع أحماض أمينية يتم إفرازه في مجرى الدم وأيضاً مضاد لإدرار البول الذي يبرز بشكل طبيعي من الغدة النخامية الخلفية ويساعد على منع فقدان الماء من الجسم عن طريق قيد إنتاج البول ويساعد الكلى على إعادة إمتصاص الماء من الجسم كما أنه يساعد أيضاً على إنتاج الأوعية الدموية لمدى علاقة هذه النسبة للمستوى الرقمي للعصابات وذلك التعرف على إفراز زيادة أو إنخفاض مستوى هرمون الفازوبرسين بالناء وتأثيره على مستوى أداء الرياضيات وماهو المؤشر الخارجي الذي يعكس هذا التأثير وذلك للياقة على حل هذه المشكلة ومحاولة تقليلها وتحسين مستوى الأداء حيث أن إتزان سوائل الجسم يلعب دوراً هاماً لللاعبات. 0004م: المراجع العلمية والأبحاث السابقة في مجال فسيولوجيا التدريب الرياضي حيث يرى كلاً من WELL,LIM,MMYOUNG (11) وYOUNG (13) L J, WILT SHIRE, MAIXNER (12) وPITKOW CALD (14) أن هناك هرمون يسمى الفازوبرسين هو المسؤول عن إتزان السوائل في الجسم وهو عبارة عن تسع أحماض أمينية يتم إفرازه في مجرى الدم وأيضاً مضاد لإدرار البول الذي يبرز بشكل طبيعي من الغدة النخامية الخلفية ويساعد على منع فقدان الماء من الجسم عن طريق قيد إنتاج البول ويساعد الكلى على إعادة إمتصاص الماء من الجسم كما أنه يساعد أيضاً على إنتاج الأوعية الدموية لمدى علاقة هذه النسبة للمستوى الرقمي للعصابات وذلك التعرف على إفراز زيادة أو إنخفاض مستوى هرمون الفازوبرسين بالناء وتأثيره على مستوى أداء الرياضيات وماهو المؤشر الخارجي الذي يعكس هذا التأثير وذلك للياقة على حل هذه المشكلة ومحاولة تقليلها وتحسين مستوى الأداء حيث أن إتزان سوائل الجسم يلعب دوراً هاماً لللاعبات.
والاستفادة من نتائجه على المستوى القومي خلال مراحل الإعداد الرياضي العام والخاص وفترة المنافسات.

هدف البحث:

يهدف البحث إلى التعرف على علاقة هرمون ADH وتركيزه بالمستوى الرقمي للاعبات 400م معدو.

فرض البحث:

توجد علاقة دالة إحصائية بين إفراز هرمون الفازوبرسين ADH والمستوى الرقمي. وتوجد فروق ذات دلالة إحصائية بين متوسطات القياسات البدنية في نسبة إفراز هرمون الفازوبرسين وفقا للأحمال المختلفة.

المصطلحات الواردة في البحث:

1- الهرمونات (Hormones).

هي مادة كيميائية تفرز من الغدد الصماء داخل الجسم الحي وبكميات قليلة تتقل بعد إفرازها إلى سوائل الجسم ومن ثم إلى الدم حيث توجد الأعضاء المستهدفة لنفسManipulating وظائفها والتي تحدث إستجابة فسيولوجية نموذجية في خلايا أخرى.

2- هرمون الفازوبرسين (ADH): هو مايسمى بالهرمون المضاد لإدرار البول يفرز من الغدة الصنوبية وهو عبارة عن جزيئي بروتيتين يتكون من 8 أحماض أمينية ويتصل الحمض الأميني الأول بالخامس ليكون حلقة ثم يكون طرف من 3 أحماض أمينية وعمر النصف له حوالي ٠.٥ ساعة للحفاظ على ثبات وإتزان السوائل في الجسم المائي في الجسم.

إجراءات البحث:

منهج البحث:

يستخدم الباحثون المنهج الوصفى وذلك لملائمته لطبيعة البحث.

مجتمع عينة البحث:

يشمل مجتمع البحث النادي الأهلي البالغ عددهم (٨) لاعبات والمسجلين بالإتحاد المصري لألعاب القوى 2020-2021م وقامت البحثة باختيار العينة بالطريقة العمدية من ناشئات ألعاب القوى 2004م عدو وكان عددهم (٥) لاعبات من مجتمع البحث.
جدول 1 التوصيف الإحصائي لعينة البحث

النوع العينة	العدد
مجتمع البحث الكلي	8
العينة الأساسية	5

إعدادية توزيع عينة البحث:

قامت الباحثة بالتأكد من مدى إعدادية توزيع أفراد عينة البحث في ضوء متغيرات السن والوزن والطول والعمر التدريبي والجدول 2 يوضح ذلك:

جدول 2 المتوسط الحسابي والوسيط والإنحراف المعياري ومعامل الإلتواء ومعامل التفلطح للاعبات (قيد البحث)

المتغيرات	الوحدة القياسية	المتوسط	الإنحراف المعياري	الوسيط	معدل القياس	Pairs Correlation Coefficient
الوزن	كجم	54.00	4.18	51	1.00	-0.61
الطول	سم	167.00	7.38	130	1.00	-0.62
السن	سنة	18.02	0.18	18	0.00	1.00
العمر التدريبي	سنة	4.00	1.00	3.67	0.00	0.82
انونيب الخصيلة بالهرمون الفازوبرسين	ADH					
جهاز الطرد المركزى	Centrifuge					
كحول وقطن						

1- أدوات جمع البيانات:

الأدوات والأجهزة المستخدمة في سحب العينات:

- سرنجات 3م لسحب العينة قبل وبعد وتستخدم لمرة واحدة.
- أنابيب إختبار معقمة لحفظ العينة.
- أنابيب الخاصة بالهرمون الفازوبرسين ADH.
- جهاز الطرد المركزى Centrifuge.
- كحول وقطن.
- مادة مانعة للتحلط EDTA للإحتفاظ بمكونات الدم سائلة.
- ميزان طبي لقياس الوزن.
- جهاز الرساتمتر لقياس الطول.
- جهاز TLQ لقياس معدل النبض.
- جهاز الضغط لقياس ضغط الدم.

المجلة الدينية لعلوم الرياضة
خطوات تنفيذ البحث:
أولا: الدراسة الإستطلاعية: تم تنفيذ تطبيق البحث (سحب العينات) وذلك يوم الاثنين ٢٩ /٣ /٢٠٢١ وحتى يوم السبت ١٧ /٤ /٢٠٢١ وذلك على عينة قوامها (٥) لاعبات من المجتمع الأصلي وذلك بعد إتخاذ الإجراءات اللازمة بملعب ألعاب القوى بالنادي الأهلي وكان الهدف العام منها إستطلاع ومعرفة الأمور المادية والفنية والبشرية والتأكد من إعداد المكان.

جدول (٣) المستوى الرقمي ٤٠٠ م

المتغير	المتوسط	الانحراف المعياري
المستوى الرقمي ٤٠٠ م منخفض	٦٣.٧٤	٣.٤٣
المستوى الرقمي ٤٠٠ م متوسط	٦٥.٤٠	٥.٢٧
المستوى الرقمي ٤٠٠ م عالي	٦٦.٢٠	٥.٨١

جدول (٤) التباين لدالة إحصائية للمستوى الرقمي

الدالة	P	Mتوسط المربعات	Pدرجة الحرية	Mمجموعات المربعات	Pالدالة التباين	M المتغير
غير دالة	٢٧٠٣	٦٧٣	٢	١٥٨٤٥	١ٰ.١	٣٣٤
داخل mجموعات	٢٤٤٢٩	١٢	٢٩٣١٥٢	١ٰ.١	٣٠٨٨٩٧	٣٣٤
المجموع	١٤					٣٣٤
جدول (5) تحليل التباين لدلالة إحصائية لمستوى الهرمون ADH

الدالة	p	متوسط المربعات	درجة الحرية	مجموع المربعات	دلالة التباين
غير دالة	0.938	0.064	2	0.097	بين المجموعاتADH قبلية
		0.755	12	9.060	داخل المجموعاتADH قبلية
		2	14	9.157	المجموعADH قبلية
دالة	0.066	8.075	2	12.801	بين المجموعاتADH بعدي
		6.401	12	9.512	داخل المجموعاتADH بعدي
		0.793	14	22.313	المجموعADH بعدي

جدول (6) المجهد المنخفض (n=5)

المتغيرات	المتوسط	الانحراف المعياري
النبض قبلي	70.40	1.67
النبض بعدي	101.20	1.30
الضغط الانقباضي قبلي منخفض	109.80	12.85
الضغط الانقباضي بعدي منخفض	68.40	8.85
الضغط الانبساطي بعدي منخفض	123.40	6.88
الضغط النقباضي بعدي منخفض	81.40	6.43
جدول (7) المجهود المتوسط (ن=5)

المتغيرات	المتوسط	الانحراف المعياري
النبض قبلى متوسط	70.40	4.72
النبض بعدى متوسط	102.60	2.07
الضغط الانبساطي قبلى متوسط	117.60	1.14
الضغط الانقباضي قبلى متوسط	66.20	1.64
الضغط الانبساطي بعدى متوسط	126.20	2.86
الضغط النقباضي بعدى متوسط	85.00	3.94

جدول (8) المجهود المرتفع (ن=5)

المتغيرات	المتوسط	الانحراف المعياري
النبض قبلى مرتفع	70.40	4.72
النبض بعدى مرتفع	102.60	2.07
الضغط الانبساطي قبلى مرتفع	117.60	1.14
الضغط الانقباضي قبلى مرتفع	66.20	1.64
الضغط الانبساطي بعدى مرتفع	126.20	2.86
الضغط النقباضي بعدى مرتفع	85.00	3.94
شكل (1) يوضح معدلات النبض في الأحمال المختلفة

![نمط النبض في الأحمال المختلفة](image1)

![نمط الضغط في الأحمال المختلفة](image2)

![نمط الهرمون في الأحمال المختلفة](image3)
مناقشة وتفسير النتائج:

من خلال هدف البحث وفرض البحث ومن خلال ما تم أتخاذه من تفاصلات وفي حدود عينة البحث توصلت الباحثة إلى النتائج التالية:

1- أظهرت النتائج وجود زيادة في معدلات الفازوبرسين بعد المجهود في جميع أنواع التدريبات وإن لم تصل إلى درجة الدلالة الإحصائية بعد المجهود المرتفع الشدة رغم من كونها دالة إحصائيا بعد المجهود المنخفض والمرتفع الشدة ويمكن تفسير ذلك بأن المجهود يزيد من فقدان المياه من داخل الجسم إما عن طريق الزفير أو العرق وذلك يؤدي إلى حدوث خلل في إتزان سوائل الجسم.

من ناحية أخرى، فقد أظهرت النتائج وجود تناقص في المستوى الرقمي مقارنة بشدة المجهود حيث أنها تناسب عكسيا مع المجهود أى أن كان أفضل مستوى رملي كان بعد المجهود المنخفض ثم تناقص أقل لدرجة بعد المجهود المتوسط وكان أقل مستوى رملي بعد المجهود المرتفع الشدة أعلى مدة ثانية وإن كانت لم تصل إلى درجة الدلالة الإحصائية ولكن لابد وأن ننوه على ان الفرق في كسر الثانية يفرق كثيرا جدا في نتائج المسابقات لدى لاعبات 400 م وقد يكون مثلا الفرق بين الأول والأخير لا يتفوق منهما 0.007 وهذا يوضح مدى أهمية الفرق في المستوى الرقمي بصرف النظر عن الدلالة الإحصائية وهذا يتفق مع كل من.

المستنتاجات:

في ضوء هدف البحث وفرضه وعينة البحث والمنهج المستخدم وعلى أساس المعالجات الإحصائية التي إستخدمت في معالجة البيانات وبعد عرض النتائج ومناقشتها توصلت الباحثة إلى الاستنتاجات التالية:

1- يمكن الإعتماد على هرمون الفازوبرسين ADH كهرمون رئيسي في إرتفاع الضغط والنبض وذلك لأن المجهود الرياضي بصرف النظر عن شدهه المختلفة يزيد من إستهلاك العضلات للأوكسجين والذي يؤدى بدوره إرتفاع ضغط الدم.

2- يوضح أن هناك زيادة في معدلات هرمون الفازوبرسين ADH بعد المجهود في جميع أنواع التدريبات ويمكن تفسير ذلك بأن المجهود يزيد من فقدان المياه في داخل الجسم إما عن طريق الزفير أو العرق مما يؤدي إلى خلل في إتزان سوائل الجسم مما ينشط إفراز هرمون ADH.
من حيث المستوى الرقمي يتضح وجود تناقص في المستوى الرقمي مقارنة بشدة المجهود حيث أنه يتسبب عكسياً بمجهود حيث أنه تزداد مدة بزيادة شدة التمرين أي أنه يؤثر بالسلب على المستوى الرقمي وإن لم ترقى مستوى الدلالة الإحصائية مما يوضح مدى تأثير شدة التمرين على المستوى الرقمي حيث أن الجزء من الثانية يؤثر بنتائج المسايقة ومستوى اللاعب.

- يتكون هرمون الفازوبرسين ADH موجود في الجسم بنسبة قليلة قبل المجهود ولكنه يزيد بعد المجهود لاحتياج الجسم إلى كمية الماء التي فقدت أثناء المجهود مع العلم أن هرمون الفازوبرسين يفرز في سلسلة هرمونات لا إرادياً (حرجة) مابين 169 حمض أميني ثم يقسم ويكنز في الغدة النخامية ويفسر داخل الجسم حسب الحاجة.

- هناك علاقة طردية بين الهرمون والجهد أي أن كلما زاد الجهد زاد معدلات ADH في حالتي الشدة (منخفضة أو متوسطة) أما في الشدة العالية فتكون الهرمون قد وصل إلى أعلى تركيز له وأصبح في مرحلة الثبات.

- يمكن الإعتماد على هرمون الفازوبرسين ADH على أنه الهرمون الرئيسي المسئول عن تنظيم حالة الديناميكية للدم أثناء المجهود.

- يتضح أن هرمون الفازوبرسين ADH لا يكون هو الوحيد المؤثر على المستوى الرقمي في التدريب المرتفع الشدة ربما تكون هرمونات التحمل (الأدنريالين - الثيروكسين - الكورتيزون).

التوصيات:

بناءً على البيانات الواردة في البحث والاستنتاجات المستمدة من النتائج وفي حدود مجتمع البحث توصى الباحثة مايلى:

1. على مدربى سباق 400م عدم قياس نسبة السوائل في الجسم للاعبات بعد التمرين لأنه أفضل نسبة قياس للهرمون بعد التمرين.

2. ضرورة إهتمام المدرب بإجراء التحاليل الدورية للاعبات لمعرفة مدى تأثير الهرمون على مستوى الأداء.

3. مراعاة فترات الراحة وشرب الماء لتعويض كمية الماء التي فقدت من الجسم أثناء التدريب.
المراجع العلمية:
1- أبو العلا أحمد ريان خربيط: التدريب الرياضي هدار الوفاء، القاهرة، 2016م.
2- أحمد المجذوب القمطي: الغدد الصماء وهرموناتها،قسم الإنتاج الحيواني،كلية الزراعة، جامعة الفاتح، 2005م.
3- أحمد نبيل محمد عبد المنعم: فعالية التدريب المكثف على بعض المتغيرات الفسيولوجية والمتوسط الرقمي لدى ناس المسافات القصيرة،رسالة ماجستير،كلية التربية الرياضية، جامعة المنها.
4- الحامود، محمد حسن وأخرون: علم الغدد الصماء الهايوبوثامس والغدة النخامية والهرمونات المنظمة،للعناصر،الاهلية للنشر والتوزيع، عمان، 2002م.
5- الإتحاد الدولي لألعاب القوى: قانون ألعاب القوى،موناكو، فرنسا، 2009م.
6- إيهاب محمد عادل الدين: القياسات العملية الحديثة،دار الوفاء،لكيين، القاهرة، 2016م.
7- سميرة خليل محمد أمين: مبادئ فسيولوجيا الرياضة،كلية التربية الرياضية، جامعة بغداد، 1438هـ -2008م.
8- Bankir L, Bichet DG, Morgenthaler NG (2017) Vasopressin: physiology, assessment and osmosensation. J Intern Med 282: 284–297
9- Coffman KE, Cheuvront SN, Kenefick RW (2019) Biological variation of resting measures of ventilation and gas exchange in a large healthy cohort. Eur J Appl Physiol.
10- Endurance Performance after Exercise on Fluid Balance and PriscillaWeiping Fan 1 , Stephen F. Burns 2 and Jason Kai Wei Lee. Nutrients 2020, 12, 3826 – 3841
11- Hew–Butler T (2010) Arginine vasopressin, fluid balance and exercise: is exercise–associated hyponatraemia a disorder of arginine vasopressin secretion? Sports Med 40: 459–479.
Masahiro Horiuchi,1 Arisa Ni-i-nou,2 Mitsuhiro Miyazaki,2 Daisuke Ando,3 and Katsuhiro Koyama3: Impact of Resistance Exercise under Hypoxia on Postexercise Hemodynamics in Healthy Young Males. International Journal of Hypertension (2020) Volume 2018, Article ID 1456972, 10 pages

Perrier E et al (2013) Hydration biomarkers in free-living adults with different levels of habitual fluid consumption. Br J Nutr 109:1678–1687.

www.sport.ta4a.us.com