Exact-\(m\)-majority terms

PAOLO LIPPARINI

Abstract. We say that an idempotent term \(t\) is an **exact-\(m\)**-majority term if \(t\) evaluates to \(a\), whenever the element \(a\) occurs exactly \(m\) times in the arguments of \(t\), and all the other arguments are equal.

If \(m < n\) and some variety \(V\) has an \(n\)-ary exact-\(m\)-majority term, then \(V\) is congruence modular. For certain values of \(n\) and \(m\), for example, \(n = 5\) and \(m = 3\), the existence of an \(n\)-ary exact-\(m\)-majority term neither implies congruence distributivity, nor congruence permutability.

Near-unanimity terms have been around in universal algebra starting from the 70’s in the past century \cite{1,10} and recently have played an important role in tractability problems \cite{8,9}. Recent results about near-unanimity terms include \cite{2,8,9}. Further references can be found in the quoted works.

A ternary near-unanimity term is a majority term. Curiously enough, the opposite notion of a minority term has proved quite interesting \cite{7}. In the final section of \cite{8} we generalized the notion of a minority term to a “lone-dissent” term. A lone-dissent term \(u\) returns an element appearing just once among its arguments, provided all the other arguments are equal. In contrast, in the same situation, a near-unanimity term returns the element appearing all but one time. In both cases, we are in the situation in which the arguments of \(u\) are always chosen from a pair of elements. If \(u\) returns the element appearing \(n - 1\) times, where \(u\) is \(n\)-ary, then \(u\) is near-unanimity term. If \(u\) returns the element appearing once, then \(u\) is a lone-dissent term. Thus the two notions have the following common generalization.

Definition 1. Suppose that \(0 < m \leq n\). An \(n\)-ary term \(u\) is an **exact-\(m\)**-majority term (in some algebra or some variety) if the equations

\[
u(x_1, x_2, \ldots, x_n) = x
\]

hold, whenever only the variables \(x\) and \(y\) occur in \(\{x_1, x_2, \ldots, x_n\}\) and the set \(\{i \leq n \mid x_i = x\}\) has exactly \(m\) elements.

We shall see that the two situations \(m < \frac{n}{2}\) and \(m > \frac{n}{2}\) are rather different. In both cases congruence modularity follows (if \(m < n\)). On the other hand,
the existence of an exact-m-majority term implies congruence permutability for $m < \frac{n}{2}$, while it never implies congruence permutability, for $m > \frac{n}{2}$.

Remark 2. (a) Notice that if (Eq. 1) holds in some variety, we can take $x = y$ in (Eq. 1), hence every exact-m-majority term is idempotent. An n-ary term u is idempotent if and only if it is an exact-n-majority term, in the present terminology.

(b) It follows immediately from the above remark that if $m < n$, then having an exact-m-majority term is a nontrivial idempotent Maltsev condition (compare [11] and [4, Lemma 9.4(3)]). As mentioned, we shall prove the stronger result that the existence of an exact-m-majority term implies congruence modularity.

(c) If u is an n-ary term, then u is a near-unanimity term if and only if u is an exact-$(n-1)$-majority term. A term u is a lone-dissent term [8] if and only if u is an exact-1-majority term. In this terminology, a minority term [7] is a 3-ary lone-dissent term.

(d) If n is even, then a variety V has an exact-$\frac{n}{2}$-majority term if and only if V is trivial.

(e) Intuitively, the notion of a (non exact) m-majority term could appear more natural; however we shall soon see that this “non exact” notion provides nothing essentially new, since it turns out to be equivalent to the existence of a majority term—possibly, of distinct arity. If $\frac{n}{2} < m \leq n$ we say that an n-ary term u is an m-majority term if $u(x_1, x_2, \ldots, x_n) = x$ holds, whenever $|\{ i \leq n \mid x_i = x \}| \geq m$.

If $m < n$ and u is an m-majority term, then $v(x_1, x_2, \ldots, x_{m+1}) = u(x_1, x_2, \ldots, x_m, x_{m+1}, x_{m+1}, \ldots, x_{m+1})$ is an $m+1$-ary near-unanimity term, hence the notion of a (non exact) m-majority term seems to have little interests. Let us point out, however, that the notion has been used, letting m vary, in order to construct the main counterexample in [8]. See [8, Section 2].

Let (m, n) denote the greatest common divisor of m and n.

Proposition 3. Suppose that $n \geq 3$ and $0 < m < n$.

1. If $m < \frac{n}{2}$ and some variety V has an n-ary exact-m-majority term, then V is congruence permutable.
2. If $m > \frac{n}{2}$, then there is some variety V with an n-ary exact-m-majority term and which is not congruence permutable.
3. If $k|(m, n)$ and some variety V has an n-ary exact-m-majority term, then V has an $\frac{n}{k}$-ary exact-$\frac{m}{k}$-majority term.
4. If $n - m$ divides n and some variety V has an n-ary exact-m-majority term, then V has an $\frac{n}{n-m}$-ary near-unanimity term, in particular, V is congruence distributive.
5. If $hm \equiv 1 \pmod{q}$ and $n = m+kq$, for some $h, q, k \in \mathbb{N}$, then the term $u(x_1, x_2, \ldots, x_n) = hx_1 + hx_2 + \cdots + hx_n$ is an n-ary exact-m-majority term in an abelian group of exponent dividing q (in additive notation).
In particular, for such values of m and n, if $q > 1$ the existence of an n-ary exact-m-majority term does not imply congruence distributivity.

Proof. (1) If $m < \frac{n}{2}$ and u is an n-ary exact-m-majority term, consider the term $t(x, y, z) = u(x, \ldots, x, y, \ldots, y, z, \ldots, z)$, where both x and z appear m times and y appears $n - 2m$ times. Notice that $n - 2m > 0$, since $m < \frac{n}{2}$. Then t is a Maltsev term witnessing congruence permutability.

(2) If $m > \frac{n}{2}$, then in lattices the term $u_{m,n}(x_1, \ldots, x_n) = \prod_{|J| = m} \sum_{i \in J} x_i$ (J varying on subsets of $\{1, \ldots, n\}$) is an exact-m-majority term, actually, an m-majority term. However, lattices are not congruence permutative.

(3) If u witnesses the assumptions and $\ell = \frac{n}{k}$, let $t(x_1, x_2, \ldots, x_\ell) = u(x_1, x_1, \ldots, x_2, x_2, \ldots, x_\ell, x_\ell, \ldots)$, where each variable appears k times on the right-hand side.

(4) Take $k = n - m$ in (3), then notice that $\frac{m}{k} + 1 = \frac{n}{k}$.

(5) If x appears m times in the arguments of the term, the sum of the corresponding summands gives hm, that is, x, since $hm \equiv 1 \pmod{q}$ and the group is abelian of exponent dividing q. If the only other variable is y, it occurs kq times, hence the outcome is 0, again since the group is abelian and its exponent divides q. □

Examples 4. (a) The existence of a 5-ary exact-3-majority term does not imply congruence permutability, by Proposition 3(2). It does not imply congruence distributivity, either, by Proposition 3(5), taking $h = k = 1$ and $q = 2$.

Henceforth, if $V_{3,5}$ is the variety with a 5-ary operation satisfying the equations for a 5-ary exact-3-majority term, then $V_{3,5}$ is neither congruence permutable nor congruence distributive. On the other hand, we shall show that every variety with an exact-m-majority term is congruence modular. Hence $V_{3,5}$ seems to be an interesting example of a congruence modular variety which is neither congruence permutable nor congruence distributive.

(b) If $m \neq \frac{n}{2}$, then there is a nontrivial algebra (hence a nontrivial variety) with an n-ary exact-m-majority term. Actually, every set admits an n-ary exact-m-majority operation.

Let A be any nonempty set and fix some $a \in A$. Define

$$u(a_1, \ldots, a_n) = \begin{cases} b & \text{if } |\{ i \leq n \mid a_i = b \}| = m \text{ and } |\{ a_i \mid i \leq n \}| = 2, \\ b & \text{if } a_1 = a_2 = \cdots = a_n = b, \\ a & \text{otherwise.} \end{cases}$$

Since $m \neq \frac{n}{2}$, the first clause provides a good definition.

(c) There is no nontrivial group G with a 6-ary exact-2-majority term. To prove this, let us use multiplicative notation. A group term is a product of variables raised to some power; if some term is evaluated for just one element g and for the identity, the outcome of the term is g raised to the sum of the
powers of the occurrences of the corresponding variables. If t is a 6-ary exact-2-majority term, then $t(g, g, e, e, e, e) = g$ and $t(e, e, g, g, e, e) = g$, for every element $g \in G$. By the preceding comment, if h is the sum of the exponents of all the occurrences of the first two variables, then $g^h = g$ in G. Similarly $g^k = g$, where k is the sum of the exponents of all the occurrences of the third and fourth variables. Hence $t(g, g, g, g, e, e)$ evaluates to $g^{h+k} = g^h g^k = g^2$ in G. But also $t(g, g, g, g, e, e) = e$, by the majority assumption, thus G has exponent 2, since the above argument applies to every $g \in G$. Since every group of exponent 2 is abelian, every term of G can be represented as a product of variables. Since G is nontrivial of exponent 2 and $t(g, g, g, g, e, e) = g$, for every $g \in G$, then either t does not depend on the first variable, or t does not depend on the second variable. Similarly, since $t(e, e, g, g, e, e) = g$, then either t does not depend on the third variable, or t does not depend on the fourth variable. Say, t does not depend on the first and on the third variables. Since G is non-trivial, then there is $g \in G$ with $g \neq e$, but then we have $t(g, e, g, e, e, e) = e \neq g$, a contradiction.

Notice that we have used only 4 instances of the majority rule (among 15 total instances).

(d) By Proposition 3(3), every variety with a 6-ary exact-2-majority term has a 3-ary exact-1-majority term, i.e., a minority term. In a group of exponent 2 the term xyz is a minority term. On the other hand, by the previous item, no nontrivial group has a 6-ary exact-2-majority term. Thus there is a variety with a 3-ary exact-1-majority term but without a 6-ary exact-2-majority term.

Theorem 5. Suppose that $n \geq 3$ and $0 < m < n$. Then every variety with an n-ary exact-m-majority term is congruence modular.

Proof. If $m < \frac{n}{2}$, then V is congruence permutative, by Proposition 3(1), hence V is congruence modular. If $m = \frac{n}{2}$, then V is a trivial variety, by Remark 2(d).

It remains to deal with the case $m > \frac{n}{2}$, so let u be an n-ary exact-m-majority term in this case. Let $k = n - m$ and h be the remainder of the division of n by k (the proof below works also in case $h = 0$; anyway, the case $h = 0$ is already covered by Proposition 3(4)). Let x^k be an abbreviation for the expression “x, x, \ldots, x”, with k occurrences of x. Consider the terms

\[
d_1(x, y, z) = u(x^h, x^k, x^l, \ldots, x^k, x^k, x^k, y^k, z^k)
\]
\[
d_2(x, y, z) = u(x^h, x^k, x^k, x^l, \ldots, x^k, x^k, y^k, z^k, z^k)
\]
\[
d_3(x, y, z) = u(x^h, x^k, x^k, x^k, \ldots, x^k, y^k, z^k, z^k, z^k)
\]
\[
\ldots
\]
\[
d_{\ell-2}(x, y, z) = u(x^h, x^k, y^k, z^k, \ldots, z^k, z^k, z^k, z^k, z^k)
\]
\[
d_{\ell-1}(x, y, z) = u(x^h, y^k, z^k, \ldots, z^k, z^k, z^k, z^k, z^k)
\]
\[
q(x, y, z) = u(x^h, y^k-z^{k-h}, z^k, z^k, \ldots, z^k, z^k, z^k, z^k, z^k)
\]
were ℓ is the integer quotient of the division of n by k. Notice that $\ell > 1$, since $m > \frac{n}{2}$. The above terms satisfy $d_i(x, z, z) = d_{i+1}(x, x, z)$, for $1 \leq i < \ell - 1$. If $\ell = 2$, the terms to be considered are

\[
d_1(x, y, z) = u(x^h, y^k, z^k) \\
q(x, y, z) = u(x^h, y^{k-h}, z^h, z^k)
\]

All the above terms satisfy $d_{\ell-1}(x, z, z) = q(x, z, z)$. Due to the exact m ($= n - k$) majority rule, the above terms also satisfy $d_i(x, y, x) = x$, for $1 \leq i \leq \ell - 1$, $x = d_1(x, x, z)$ and $q(x, x, z) = z$. In the terminology from [6] p. 205, the terms $d_1, \ldots, d_{\ell-1}, q$ are directed Gumm terms, and the existence of such a sequence of terms implies congruence modularity, by the easy part of [6] Theorem 1.1, Clause 3).

Remark 6. If $m < n$, an n-ary exact-m-majority term is a Δ-special cube term, in the terminology of [3] Definition 2.7, for some appropriate Δ. Indeed, if we write down all the equations defining an n-ary exact-m-majority term, we get a matrix with $k = \binom{n}{m}$ rows, and only the last column is constantly x. Hence a variety with an n-ary exact-m-majority term has a k-edge term, by [3] Theorem 2.12. In particular, [3] Theorem 4.2 furnishes another proof of congruence modularity.

REFERENCES

[1] K. A. Baker, A. F. Pixley, Polynomial interpolation and the Chinese remainder theorem for algebraic systems, Math. Z. 143, 165–174 (1975)

[2] L. Barto, Finitely related algebras in congruence distributive varieties have near unanimity terms, Canad. J. Math. 65, 3–21 (2013)

[3] J. Berman, P. Idziak, P. Marković, R. McKenzie, M. Valeriote, R. Willard, Varieties with few subalgebras of powers, Trans. Amer. Math. Soc. 362, 1445–1473 (2010)

[4] D. Hobby, R. McKenzie, The structure of finite algebras, Contemp. Math. 76 (1988)

[5] P. Idziak, P. Marković, R. McKenzie, M. Valeriote, R. Willard, Tractability and learnability arising from algebras with few subpowers, SIAM J. Comput. 39, 3023–3037 (2010)

[6] A. Kazda, M. Kozik, R. McKenzie, M. Moore, Absorption and directed Jónsson terms, in: J. Czelakowski (ed.), Don Pigozzi on Abstract Algebraic Logic, Universal Algebra, and Computer Science, Outstanding Contributions to Logic 16, Springer, Cham, 203–220 (2018)

[7] A. Kazda, J. Opršal, M. Valeriote, D. Zhuk, Deciding the existence of minority terms, Canad. Math. Bull. 63, 577–591 (2020)

[8] P. Lipparini, Mitschke’s Theorem is sharp, Algebra Universalis 83, 7 (2022) 1–20

[9] M. Maróti, L. Zádori, Reflexive digraphs with near unanimity polymorphisms, Discrete Math. 312, 2316–2328 (2012)

[10] A. Mitschke, Near unanimity identities and congruence distributivity in equational classes, Algebra Universalis 8, 29–32 (1978)

[11] W. Taylor, Varieties obeying homotopy laws, Canadian J. Math. 29 (1977), 498-527

Paolo Lipparini
Dipartimento di Matematica, Viale della Ricerca Esatta, Università di Roma “Tor Vergata”, I-00133 ROME ITALY