Meyerovitch, Tom; Yadin, Ariel
Harmonic functions of linear growth on solvable groups. (English) Zbl 1362.43006
Isr. J. Math. 216, No. 1, 149-180 (2016).

The authors prove the following conjecture (the converse direction of Klein’s theorem) for solvable groups:
Let G be a finitely generated group, and let μ be a symmetric probability measure on G, with finite support that generates G. Let $HF_k(G, \mu)$ denote the space of μ-harmonic functions on G whose growth is bounded by a degree k polynomial. Then the following are equivalent: (1) G is virtually nilpotent. (2) G has polynomial growth. (3) $\dim HF_k(G, \mu) < \infty$ for all k. (4) There exists $k \geq 1$ such that $\dim HF_k(G, \mu) < \infty$. The investigation is motivated by Kleiner’s proof for Gromov’s theorem on groups of polynomial growth.

Reviewer: Bolis Basit (Clayton)

MSC:
43A70 Analysis on specific locally compact and other abelian groups
60B15 Probability measures on groups or semigroups, Fourier transforms, factorization

Full Text: DOI arXiv

References:
[1] Alexopoulos, G. K., Random walks on discrete groups of polynomial volume growth, Annals of Probability, 30, 723-801, (2002) · Zbl 1023.60007 · doi:10.1214/aop/1023481007
[2] Babillot, M.; Bougerol, P.; Elie, L., On the strong Liouville property for co-compact Riemannian covers, Milan Journal of Mathematics, 64, 77-84, (1994) · Zbl 0848.31009
[3] Bass, H., The degree of polynomial growth of finitely generated nilpotent groups, Proceedings of the London Mathematical Society, 25, 603-614, (1972) · Zbl 0259.20045 · doi:10.1112/plms/s3-25.4.603
[4] Benjamini, I.; Duminil-Copin, H.; Kozma, G.; Yadin, A., Disorder, entropy and harmonic functions, Annals of Probability, 43, 2332-2373, (2015) · Zbl 1337.60248 · doi:10.1214/14-AOP934
[5] I. Benjamini, H. Duminil-Copin, G. Kozma and A. Yadin, Minimal growth harmonic functions on lamplighter groups, arXiv:1607.00753. · Zbl 1374.60146
[6] Bougerol, P.; Elie, L., Existence of positive harmonic functions on groups and on covering manifolds, Annales de l’Institut Henri Poincaré. Probabilités et Statistique, 31, 59-86, (1995) · Zbl 0853.22006
[7] Breuillard, E.; Gélander, T., A topological Tits alternative, Annals of Mathematics, 166, 427-474, (2007) · Zbl 1149.20039 · doi:10.4007/annals.2007.166.427
[8] Breuillard, E., On uniform exponential growth for solvable groups, Pure and Applied Mathematics Quarterly, 3, 949-967, (2007) · Zbl 1147.20027 · doi:10.4310/PAMQ.2007.v3.n4.a4
[9] Colling, T. H.; Minicozzi, W. P., Harmonic functions on manifolds, Annals of Mathematics, 146, 725-747, (1997) · Zbl 0928.53030 · doi:10.2307/2952459
[10] P. de la Harpe, Topics in Geometric Group Theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000. · Zbl 0965.20025
[11] R. Durrett, Probability: Theory and Examples, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge university press, 2010. · Zbl 1202.60001 · doi:10.1017/CBO9780511779398
[12] Erschler, A., Poisson-furstenberg boundaries, large-scale geometry and growth of groups, 681-704, (2010) · Zbl 1258.60009
[13] Furman, A., Random walks on groups and random transformations, 931-1014, (2002) · Zbl 1053.60045
[14] Gromov, M., Groups of polynomial growth and expanding maps, Institut des Hautes études Scientifiques. Publications Mathématiques, 53, 53-78, (1981) · Zbl 0474.20018 · doi:10.1007/BF02698877
[15] Groves, J. R. J., Soluble groups with every proper quotient polycyclic, Illinois Journal of Mathematics, 22, 90-95, (1978) · Zbl 0396.20017
[16] Guivarc’h, Y., Groupes de Lie à croissance polynomiale, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences. Séries A et B, 271, a237-a239, (1970) · Zbl 0203.33004
[17] Hartman, Y.; Lima, Y.; Tamuz, O., An abramov formula for stationary spaces of discrete groups, Ergodic Theory and Dynamical Systems, 34, 837-853, (2014) · Zbl 1304.37009 · doi:10.1017/etds.2012.167
[18] Hebisch, W.; Saloff-Coste, L., Gaussian estimates for Markov chains and random walks on groups, The Annals of Probability, 21, 673-709, (1993) · Zbl 0776.60086 · doi:10.1214/aop/1176989263

[19] Kaimanovich, V. A.; Vershik, A. M., Random walks on discrete groups: boundary and entropy, Annals of Probability, 11, 457-490, (1983) · Zbl 0641.60009 · doi:10.1214/aop/1176993497

[20] Kleiner, B., A new proof of Gronov’s theorem on groups of polynomial growth, Journal of the American Mathematical Society, 23, 815-829, (2010) · Zbl 1246.20038 · doi:10.1090/S0894-0347-09-00658-4

[21] D. A. Levin, Y. Peres and E. L. Wilmer, Markov Chains and Mixing Times, American Mathematical Society, Providence, RI, 2009. · Zbl 1160.60001

[22] T. Meyerovitch, I. Perl, M. Tointon and A. Yadin, Polynomials and harmonic functions on discrete groups, Transactions of the American Mathematical Society, to appear, arXiv:1505.01175. · Zbl 1401.43001

[23] J.-P. Pier, Amenable Locally Compact Groups, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. · Zbl 0597.43001

[24] Rosenblatt, J., Ergodic and mixing random walks on locally compact groups, Mathematische Annalen, 257, 31-42, (1981) · Zbl 0451.60011 · doi:10.1007/BF01450653

[25] Sawyer, S. A., Martin boundaries and random walks, Contemporary Mathematics, 206, 17-44, (1997) · Zbl 0891.60073 · doi:10.1090/conm/206/02685

[26] Shalom, Y.; Tao, T., A finitary version of Gronov’s polynomial growth theorem, Geometric and Functional Analysis, 20, 1502-1547, (2010) · Zbl 1262.20044 · doi:10.1007/s00039-010-0096-1

[27] Tits, J., Free subgroups in linear groups, Journal of Algebra, 20, 250-270, (1972) · Zbl 0236.20032 · doi:10.1016/0021-8693(72)90058-0

[28] M. Tointon, Characterisations of algebraic properties of groups in terms of harmonic functions, Groups, Geometry, and Dynamics, to appear. · Zbl 1392.20036

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.