Peripheral Blood Mononuclear Cell Proteome Changes in Patients with Myelodysplastic Syndrome

Klara Pecankova, Pavel Majek, Jaroslav Cermak, and Jan E. Dyr
Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
Correspondence should be addressed to Klara Pecankova; klara.pecankova@uhkt.cz
Received 23 September 2014; Accepted 31 March 2015
Academic Editor: Shivani Soni

Our aim was to search for proteome changes in peripheral blood mononuclear cells (PBMCs) of MDS patients with refractory cytopenia with multilineage dysplasia. PBMCs were isolated from a total of 12 blood samples using a Histopaque-1077 solution. The proteins were fractioned, separated by 2D SDS-PAGE (pI 4–7), and double-stained. The proteomes were compared and statistically processed with Progenesis SameSpots; then proteins were identified by nano-LC-MS/MS. Protein functional association and expression profiles were analyzed using the EnrichNet application and Progenesis SameSpots hierarchical clustering software, respectively. By comparing the cytosolic, membrane, and nuclear fractions of the two groups, 178 significantly ($P < 0.05$, ANOVA) differing spots were found, corresponding to 139 unique proteins. Data mining of the Reactome and KEGG databases using EnrichNet highlighted the possible involvement of the identified protein alterations in apoptosis, proteasome protein degradation, heat shock protein action, and signal transduction. Western blot analysis revealed underexpression of vinculin and advanced fragmentation of fermitin-3 in MDS patients. To the best of our knowledge, this is the first time that proteome changes have been identified in the mononuclear cells of MDS patients. Vinculin and fermitin-3, the proteins involved in cell adhesion and integrin signaling, have been shown to be dysregulated in MDS.

1. Introduction

MDS encompasses a diverse range of oncohematological diseases affecting hematopoietic stem cells and their hematopoietic microenvironment [1]. MDS is characterized by dysplastic ineffective hematopoiesis with the apoptosis of hematopoietic cells in the bone marrow and by subsequent cytopenias in the blood. It occurs in particularly elder people with incidence of 20–50 patients in 100,000 inhabitants [2]. There are several groups of MDS patients according to the WHO classification based on bone marrow and peripheral blood findings, cytogenetics, and other factors [3]. Prognostically MDS subgroups can be also stratified into low-risk and high-risk subgroups; high-risk subgroups are characterized by poor survival outcome and higher rate of progression toward acute myeloid leukemia. Refractory cytopenia with multilineage dysplasia (RCMD) is a subgroup of myelodysplastic syndrome (MDS). According to the revised WHO (World Health Organization) classification of MDS, RCMD is defined by the presence of cytopenias in peripheral blood and dysplastic changes present in 10% or more of the cells in two or more myeloid lineages in the bone marrow (with approximately 15% ringed sideroblasts) [3].

In recent years, fundamental knowledge in MDS pathophysiology based on DNA alterations has been and is still being complemented by other “omics” disciplines, in particular by proteomics, with the proteomes of plasma (of different MDS subgroups such as refractory anemia and refractory anemia with ringed sideroblasts (RA and RARS) [4], RCMD [5], refractory anemia with excess of blasts subtype 1 (RAEB-1) [6], and refractory anemia with excess of blasts subtype 2 (RAEB-2) [7]), serum [8, 9], platelets [10], and neutrophils [11] of MDS patients having been investigated. Despite research efforts the pathogenesis and exact mechanisms of MDS development still remain unclear, as there are many factors involved. For example, factors involved in the development of MDS (cytogenetic abnormalities [12], gene mutations [13–15], epigenetic alterations
Table 1: Patient characteristics.

Patient	1	2	3	4	5	6
Sex	F	F	F	F	M	F
Age	70	33	69	59	73	65
Hb [g/L]	119	83	91	92	117	104
RBC [10^{12}/L]	3.15	2.47	2.33	2.67	4.29	2.87
WBC [10^{9}/L]	2.20	2.81	5.50	4.15	5.10	2.89
PLT [10^{9}/L]	184	291	262	211	50	284
NS	1.1	1.91	3.08	2.41	2.3	0.72
Blasts in PB [%]	0	0	0	0	0	0
Blasts in BM [%]	0.4	0.9	3.2	4.8	0.8	3.4
Karyotype	46, XX, inv(9)	46, XX, del(5)(q13.2q34)	46, XX, del(5)(q31.q31)	46, XY	46, XX, 1qh+, 46, XX, 1qh+, del(5)(q31)	
IPSS	0.5	0	0	0	0	0.5
IPSS-R	Low	Low	Low	Low	Very low	low
WPSS	Low	Low	Low	Intermediate	intermediate	
Transfusion [avg./month]	0.50	4.50	3.42	3.25	1.47	2.19

Hb: hemoglobin, RBC: red blood cells, PLT: platelets, NS: neutrophil segments, PB: peripheral blood, BM: bone marrow, IPSS (-R): International Prognostic Scoring System (-Revised), and WPSS: WHO Classification-Based Prognostic Scoring System.

Protein fractionation was performed using a ProteoExtract Subcellular Proteome Extraction Kit (Merck Millipore, Darmstadt, Germany) according to manufacturer instructions to enrich the proteins according to their subcellular localization; four different subproteomes were obtained (cytosolic, membrane and membrane organelle, nuclear, and cytoskeletal). Enriched proteins were precipitated with the addition of four volumes of acetone, incubated for 60 min at −20°C, and then centrifuged at 15,000 × g for 10 min. Protein concentration in all samples was determined using a Micro-BCA Protein Assay Kit (Thermo Fischer Scientific, Waltham, MA, USA). Protein sample concentrations of each subproteome were adjusted to the same level.

Isoelectric focusing was performed (IPG strips pI 4–7, 77 cm) followed by SDS-PAGE (8 × 10 cm, 10% resolving gel, 3.75% stacking gel, and 30 mA/gel), as described in detail in previous publications [4–6, 22]. Briefly, 40 μg of cytosolic, 50 μg of membrane and membrane organelle, and 40 μg of nuclear proteins were used for an IPG strip. The proteins of the cytoskeletal subproteome were not analyzed due to insufficient protein yield.

The gels were double-stained according to the improved fast-staining protocol [23], combining imidazole-zinc reverse and Coomassie dye-based staining. Imidazole-zinc reverse staining was used to detect as many spots as possible, followed by Coomassie dye-based staining to enable maximal spot detection and quantification. After each staining step, the gels were digitized and processed with Progenesis SameSpots software (Nonlinear Dynamics, Newcastle upon Tyne, UK) that computed the fold and P values of all spots using one-way ANOVA analysis. Protein spots that differed significantly (P < 0.05) were submitted for protein
identification by tandem mass spectrometry (HCT ultra ion-trap mass spectrometer with nanoelectrospray ionization; Bruker Daltonics, Bremen, Germany) coupled to a nanoLC system (UltiMate 3000; Dionex, Sunnyvale, CA, USA); this procedure has been described in detail previously [4–6, 22]. Mascot (Matrix Science, London, UK) was used for database searching (Swiss-Prot). Two unique peptides (with higher Mascot scores than the minimum for identification, $P < 0.05$) were necessary to successfully identify a protein. Exceptions were given to proteins with a molecular weight of 15 kDa or less and to proteins with more than 3 additional unique peptides identified by error tolerant search.

To analyze the functional associations between identified proteins and cellular pathways, the protein list was processed with the on-line EnrichNet application [24] using KEGG [25, 26] and Reactome [27, 28] databases. The significance of overlap between protein sets was evaluated using a combination of one-side Fisher’s exact test ($q < 0.05$) and network similarity scores (XD-scores). The threshold values were estimated via EnrichNet with a regression fit equivalent to a Fisher q value of 0.05 and an upper boundary of 95% confidence for linear fitting.

Dendrogram analysis was performed using Progenesis SameSpots software to reveal closely related proteins. The dendrogram is a visual representation of spot correlation data (with correlation analysis performed on log-normalized spot expression levels). Spots were clustered according to their closest correlation.

Western blot analysis was performed for vinculin and fermitin-3 proteins. Equal protein amounts of all (patient or donor) samples of appropriate protein fractions were pooled and 1 μg or 0.75 μg of total protein amounts were used for 1D western blot analyses for vinculin or fermitin-3, respectively. Briefly, following SDS-PAGE (10% resolving gel) proteins were transferred to a PVDF membrane (10 V constant voltage for 60 min) using an Owl HEP-1 Semi Dry Electroblotting System (Thermo Scientific, Waltham, MA, USA). Membranes were then incubated with a blocking buffer (3% BSA in PBS) at 30 $^\circ$C for 60 min and incubated with primary antibodies, anti-vinculin antibody (V9131; Sigma-Aldrich, Prague, Czech Republic) (1:200 dilution) or anti-keratin-3 antibody (SAB4200013; Sigma-Aldrich, Prague, Czech Republic) (1:340 dilution). Then the membranes were incubated with secondary antibodies, rabbit anti-mouse IgG antibody conjugated with peroxidase (for vinculin detection, 1:80,000 dilution) (A9044; Sigma-Aldrich, Prague, Czech Republic) or goat anti-rabbit IgG antibody conjugated with peroxidase (for keratin-3 detection, 1:120,000 dilution) (A0545; Sigma-Aldrich, Prague, Czech Republic). Visualization was performed using a chemiluminescent substrate (SuperSignal West Pico; Thermo Scientific, Waltham, MA, USA) and CL-XPosure Film (Thermo Scientific, Waltham, MA, USA).

3. Results and Discussion

Comparing the PBMC subproteomes of RCMD patients ($n = 6$) with healthy volunteer control group subproteomes ($n = 6$), we found 178 spots that differed significantly in their normalized volumes ($P < 0.05$). Figures 1–3 indicate the positions of significantly differing spots of the cytosolic, membrane and membrane organelle, and nuclear subproteomes, respectively. The spots are marked considering the gel staining.

Proteins of the spots detected were submitted to protein identification by mass spectrometry, and 139 unique proteins were identified. The list of all spots, including ANOVA P values, their multiplication (fold value), protein identification with the number of identified peptides (unique peptides...
PBMCs can secrete proteins into the plasma [29, 30]; cell pathways (Tables 3 and 4). XD-scores were considered to reveal implications of the identified proteins in several cell-pathogenesis, we processed the proteindataset in EnrichNet. Identified proteins in the PBMC cellular and metabolic processes are related to these fragments; similar results were observed for complement proteins. However, it should be taken into account that PBMCs are not the only source of these plasma proteins.

In order to estimate the possible involvement of the identified proteins in the PBMC cellular and metabolic pathways and thus reveal the processes influenced by RCMD pathogenesis, we processed the protein dataset in EnrichNet. Enrichment analysis using KEGG and Reactome databases revealed implications of the identified proteins in several cellular pathways (Tables 3 and 4). XD-scores were considered to be more than 0.78 and 1.0 threshold values, as estimated by the application for the KEGG and Reactome databases, respectively.

Dendrogram analysis was performed using Progenesis SameSpots, which grouped spots by their expression profiles using an automatic correlation analysis and hierarchical clustering. We chose the top ten spot expression profile groups (with distance parameters less than 0.5) with almost identical expression profiles. Thus, each group contained spots with similar expression profiles, suggesting that these spots may be coregulated, colocalized, or by another way coaffected. The list of the expression profile groups (denoted as A, B, etc.), including the spot number, protein identification, and its accession number, is presented in Tables 5–7. Proteins in the F1 groups (cytosolic subproteome) were associated with the cytoskeleton, microtubule metabolism, cellular homeostasis maintained by heat shock proteins (HSPs), and proteosome. Proteins in the F2 groups (membrane and membrane organelle subproteome) were associated with the mitochondria and apoptosis. The protein identified in most cases in the F3 groups (nuclear subproteome) was Filamin-A, which is released from the apoptotic nucleus [31]. Other proteins in these groups were mainly actin and actin-binding proteins. Thus, the actual associations corresponded to the subproteomes as anticipated. Due to thematic similarity of the protein groups obtained via EnrichNet and dendrogram analysis, we discuss the results in parallel. Further in relation to MDS or other hematological malignancies, we summarize the most interesting protein groups that could be affected in connection with pathophysiological processes.

PBMCs are metabolically active cells (carbohydrate metabolism, cellular respiration) and as cells of the immune system are involved in antigen processing and presentation. Our KEGG results analysis (Table 3) highlighted the relationships of the identified proteins to infectious agents (E. coli). This observation is not surprising, as it is known that the immune system in MDS is dysregulated and MDS patients tend to be especially vulnerable to infections [17, 32]. Therefore, this observation is most likely related to the manifestation of secondary complications, rather than MDS itself.

T-complex protein 1 (TCP-1) subunits (four of eight identified, Table 2) with a degree of functional autonomy [33] are a part of the TRiC cytosolic chaperone (TCP-1 ring complex), which acts in tubulin biosynthesis (Table 4). This chaperone was originally thought to fold only cytoskeletal proteins but now is known to have a more general role in protein folding in eukaryotic cytosol [34]. TRiC also assists in the formation of BBSome, a part of the primary cilium, nonmotile microtubule-based sensory organelle transporting signals within the cell [35]. Primary cilium has not been under closer analysis until in the last decade, and many questions surrounding it are still unanswered. For example, it is not entirely known, whether the primary cilium is present in PBMCs [36–39]. There is evidence that components which contribute to the assembly of the primary cilium are expressed by PBMCs [36]. Therefore, there is a possibility that TCP subunits are part of the machinery of primary cilium formation or function, as a chaperone not only of cytoskeletal proteins (see Table 5, Groups F1A, F1B). Changes in TCP subunits could cause changes or even errors in BBSome formation [40], thus an effect on signaling within the cell. In last decade, the function of primary cilium in several cancers has been described, but its role in hematological malignancies...
Table 2: List of spots that differed significantly when RCMD patients were compared with a control group of healthy volunteers.

Spot	Protein	Uniprot AC	Peptides	P	Fold
1	Vinculin	P18206	5	0.0017	2.7
2	Tubulin alpha-1C chain; tubulin alpha-1B chain	Q9BQE3; P68363	4	0.00478	2.6
		P08133	2		
3	Alpha-enolase	P06733	8	0.026	-2.5
4	Alpha-enolase	P06733	6	0.0345	-2.4
5	Cytosolic nonspecific dipeptidase	Q96KP4	14	0.00179	-2.3
	Tubulin beta chain	P07437	5		
6	Annexin A1	P04083	10	0.00387	-2.4
7	Leukotriene A-4 hydrolase	P09960	12	0.000041	-2.1
8	T-complex protein 1 subunit theta	P50990	6	0.00287	-1.7
9	Actin, cytoplasmic 1; actin, cytoplasmic 2	P60709; P63261	3	0.0133	2.1
10	Plastin-2	P13796	17	0.006047	-3.3
11	Protein S100-A9	P06702	1	0.0279	-2.0
12	Neutral alpha-glucosidase AB	Q14697	3	0.012	-2.0
13	Leukocyte elastase inhibitor	P30740	8	0.0114	-2.0
14	Alpha-enolase	P06733	4		
	Adenylosuccinate synthetase isozyme 2	P30520	5	0.000782	-2.0
	Rab GDP dissociation inhibitor beta	P50395	3		
	C-terminal-binding protein 1	Q13363	2		
15	Annexin A7	P20073	3	0.00019	-2.0
	Adenosylhomocysteinase	P23526	3	0.00019	-2.0
	Proliferation-associated protein 2G4	Q9UQ80	1		
16	Actin, cytoplasmic 1; actin, cytoplasmic 2	P60709; P63261	3	0.0247	1.9
	T-complex protein 1 subunit beta	P78371	2		
17	Vinculin	P18206	5	0.000267	1.9
18	Triosephosphate isomerase	P60174	5	0.000113	-1.7
19	Eukaryotic initiation factor 4A-1	P60842	6	0.000113	-1.7
	Heterogeneous nuclear ribonucleoprotein F	P52597	4	0.000589	-1.9
	Heterogeneous nuclear ribonucleoprotein Q	O60506	4	0.000589	-1.9
	T-complex protein 1 subunit theta	P50990	3		
20	Plastin-2	P13796	14	0.00156	-1.9
21	Alpha-enolase	P06733	7	0.00129	-1.9
22	Plastin-2	P13796	16	0.00363	-1.9
23	Proteosome subunit alpha type-6	P60900	4	0.000319	-1.8
	UPF0568 protein C1orf166	Q9Y224	4	0.000319	-1.8
	Hypoxanthine-guanine phosphoribosyltransferase	P00492	2		
24	Alpha-enolase	P06733	6	0.0172	1.8
25	Ubiquitin carboxyl-terminal hydrolase 5	P45974	5	0.00228	-1.7
26	Proteosome activator complex subunit 1	Q63232	2	0.000034	-1.8
	Coagulation factor XIII A chain	Q00488	2	0.000034	-1.8
27	Heat shock cognate 71 kDa protein	P1142	4	0.0017	1.7
	Rho-related GTP-binding protein RhoC.	P08134	2	0.0017	1.7
28	40S ribosomal protein SA	P08865	7	0.00126	-1.8
29	Triosephosphate isomerase	P60174	7	0.0217	-1.8
30	T-complex protein 1 subunit zeta	P40227	4	0.00972	-1.8
31	WD repeat-containing protein 1	O75083	9	0.0183	-1.8
Spot	Protein	Uniprot AC	Peptides	P	Fold
------	---	--------------	----------	---------	------
32	Actin, cytoplasmic 1; actin, cytoplasmic 2	P60709; P63261	2	0.00152	1.7
	Heterogeneous nuclear ribonucleoprotein K	P61978	2	−0.00181	−1.6
	ADP-sugar pyrophosphatase	Q9UKK9	2	−0.000127	−1.6
33	Coronin-1A	P31146	2	0.00433	−1.7
34	26S proteasome non-ATPase regulatory subunit 14	O00487	2	0.000458	−1.7
35	m7GpppX diphosphatase	Q96C86	4	0.00316	−1.5
	Transaldolase	P37837	3	−0.0000838	−1.5
36	Proliferation-associated protein 2G4	Q9UQ80	3	0.000667	−1.7
	Annexin A1	P40483	2	−0.0000838	−1.5
37	Macrophage-capping protein	P40121	3	0.0279	−1.7
38	Talin-1	Q9Y490	5	0.0497	1.7
39	Heat shock 70 kDa protein 4	P34932	5	0.0282	−1.7
40	Plastin-2	P13796	17	0.0131	−1.6
41	Glutathione S-transferase P	P09211	6	0.00628	−1.8
42	Protein S100-A7	P31151	2	0.00218	−1.6
43	Talin-1	Q9Y490	4	0.0804	1.6
44	Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A	P30153	7	0.0245	−1.6
	alpha isoform	P13489	3	0.0247	−1.6
45	Ribonuclease inhibitor	P08133	20	0.000508	−2.6
46	Actin, cytoplasmic 1; actin, cytoplasmic 2	P60709; P63261	3	0.00181	1.6
47	Tubulin beta-1 chain	Q9H4B7	2	0.0144	1.6
48	Vinculin	P18206	3	0.0104	1.6
49	Annexin A5	P08758	12	0.00129	−1.8
50	Proteasome activator complex subunit 2	Q9UL46	3	0.000338	−1.6
51	Annexin A6	P08133	20	0.0336	−1.5
	Heat shock 70 kDa protein 1A/IB	P08107	3	0.000508	−2.6
	Heat shock 70 kDa protein 1-like	P08107	3	0.000508	−2.6
	Heat shock protein HSP 90-alpha	P34931	2	0.0282	−1.7
	Heat shock protein HSP 90-alpha	P07900	2	0.0282	−1.7
52	Actin, cytoplasmic 1; actin, cytoplamic 2	P60709; P63261	2	0.000127	−1.6
	Glutathione S-transferase P	P09211	3	0.000127	−1.6
53	Actin, cytoplasmic 1; actin, cytoplamic 2	P60709; P63261	2	0.0352	1.5
54	Triosephosphate isomerase	P60174	2	0.00181	−1.5
55	Ras GTPase-activating-like protein IQGAP1	P46940	13	0.0219	−1.7
56	Actin, cytoplasmic 1; Actin, cytoplamic 2	P60709; P63261	2	0.019	1.5
57	Rab GDP dissociation inhibitor beta	P50395	3	0.0336	−1.5
	26S proteasome non-ATPase regulatory subunit II	O00231	2	−0.0000838	−1.5
58	Rab GDP dissociation inhibitor beta	P50395	13	0.000838	−1.5
	Alpha-enolase	P06733	6	0.000838	−1.5
	Adenylosuccinate synthetase isozyme 2	P30520	5	−0.0000838	−1.5
	Beta-centractin	P42025	3	−0.0000838	−1.5
59	Tubulin alpha-1C chain	Q9BQE3	5	0.0393	1.5
	Tubulin alpha-1A chain	Q71U36	5	0.0393	1.5
	Tubulin alpha-4A chain	P68366	4	0.0393	1.5
60	Alpha-enolase	P06733	7	0.0459	1.5
	Phosphoglycerate kinase 1	P00558	8	0.0459	1.5
61	Lymphocyte-specific protein 1	P33241	2	0.00972	−1.5
	Secernin-1	Q12765	3	0.00972	−1.5
Spot	Protein	Uniprot AC	Peptides	P	Fold
------	---	------------	----------	-------	------
62	Eukaryotic translation initiation factor 3 subunit H	O15372	3	0.00335	−1.5
	T-complex protein 1 subunit eta	Q99832	4		
63	L-Lactate dehydrogenase B chain	P07195	8	0.00156	−1.5
	Pyruvate kinase isozymes M1/M2	P14618	5		
64	6-Phosphogluconolactonase	O95336	5	0.0029	−1.5
	Endoplasmic reticulum resident protein 29	P30040	4		
65	Pyruvate kinase isozymes M1/M2	P14618	8	0.000801	−1.7
	Sorting nexin-6	Q9UNH7	2		
66	Proteasome subunit beta type-3	P49720	3	0.00454	−1.5
	Triosephosphate isomerase	P60174	5		
67	Pyruvate kinase isozymes M1/M2	P14618	16	0.0219	−1.5
68	14-3-3 protein zeta/delta	P63104	6	0.0053	−1.6
69	4-trimethylaminobutyraldehyde dehydrogenase Caspase-1	P49189	2	0.0183	−1.4
		P29466	2		
70	Proteasome subunit beta type-4	P28070	2	0.000337	−1.4
71	Chloride intracellular channel protein 1	O00299	6	0.00012	−1.7
	Tumor protein D5	O43399	2		
72	Major vault protein	Q14764	8	0.0122	−1.7
	Ubiquitin-like modifier-activating enzyme 1	P22314	8		
73	Transitional endoplasmic reticulum ATPase	P55072	13	0.0132	−1.8
	Ras GTPase-activating-like protein IQGAPI	P46940	3		
74	Serum albumin	P02768	10	0.00454	−1.7
75	Heat shock protein beta-1	P04792	2	0.00187	1.5
76	Vinculin	P18206	6	0.00886	−1.5
77	Gelsolin	P06396	7	0.0459	−2.1
78	Actin, cytoplasmic 1; actin, cytoplasmic 2	P60709; P63261	5	0.0221	1.9
	Annexin A1	P40483	3		
79	Tryptophan-tRNA ligase, cytoplasmic	P23381	7	0.00185	−1.6
80	Vinculin	P18206	7	0.0369	−1.7
81	Proteasome activator complex subunit 1	Q06323	7	0.0328	−1.5
82	Cofilin-1	P23528	3	0.000356	−1.7
83	Endoplasmic reticulum ATPase	P14625	5	0.00491	−2.6
84	Actin, cytoplasmic 1; actin, cytoplasmic 2	P60733	4	0.000166	2.4
	Alpha-actinin-1	Q99685	1		
85	Alpha-actinin-1	P12814	2	0.00777	2.4
86	Heterogeneous nuclear ribonucleoprotein H2	P55795	4	0.000792	−2.3
	Heterogeneous nuclear ribonucleoprotein H	P31943	3		
87	Actin, cytoplasmic 1; actin, cytoplasmic 2	P60709; P63261	3	0.00752	2.3
	Alpha-actinin-1	P12814	2		
88	Actin, cytoplasmic 1; actin, cytoplasmic 2	P60709; P63261	3	0.00752	2.3
	Alpha-actinin-1	P12814	2		
89	Delta(3,5)-delta(2,4)-dienoyl-CoA isomerase, mitochondrial	Q13011	3	0.000218	−2.2
	Estradiol 17-beta-dehydrogenase	Q92506	2		
90	Heterogeneous nuclear ribonucleoproteins A2/B1	P22626	3	0.000986	−2.2
91	Transitional endoplasmic reticulum ATPase	P55072	5	0.00163	−2.1
92	Endoplasmin	Q99798	7	0.000362	−2.1
		P14625	2		
93	Endoplasmin	P14625	7	0.000319	−2.0
Spot	Protein	Uniprot AC	Peptides	P	Fold
------	---	------------	----------	---------	-------
93	Heat shock 70 kDa protein 1A/1B	P08107	4		
	Dihydrolipoyllysine-residue acetyltransferase component of pyruvate	P10515	6	0.00155	−2.0
	dehydrogenase complex, mitochondrial				
	Stress-70 protein, mitochondrial	P38646	3		
	Annexin A6	P08133	3		
94	Heat shock protein 75 kDa, mitochondrial	Q12931	3	0.00144	−2.0
95	78 kDa glucose-regulated protein	P11021	17		
	Protein disulfide-isomerase A4	P13667	4	0.0018	−2.5
	Endoplasmic reticulum resident protein 29	P14625	2		
96	Endoplasmic reticulum resident protein 29	P30040	6	0.00318	−1.9
	ATP synthase subunit gamma, mitochondrial	P36542	2		
97	Endoplasmic reticulum resident protein 29	P14625	7	0.0109	−1.9
98	Tropomyosin alpha-4 chain	P67936	4	0.00755	2.1
99	78 kDa glucose-regulated protein	P11021	7	0.00377	−1.8
100	Endoplasmic reticulum resident protein 29	P14625	5	0.0108	−1.8
101	40S ribosomal protein SA	P08865	3		
	Vimentin	P08670	4	0.00000707	−1.8
102	F-actin-capping protein subunit beta	P47756	2	0.000949	−1.8
103	78 kDa glucose-regulated protein	P11021	15	0.00946	−2.1
104	Superoxide dismutase [Cu-Zn]	P00441	1	0.0139	1.7
	ATP synthase subunit alpha, mitochondrial	P25705	1		
105	Actin, cytoplasmic 1; actin, cytoplasmic 2	P60709; P63261	4	0.00138	1.7
106	F-actin-capping protein subunit alpha-1	P52907	2	0.00247	1.7
107	Purine nucleoside phosphorylase	P00491	2	0.00353	−1.7
	Dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit 1	P04843	2		
108	Stress-70 protein, mitochondrial	P38646	10	0.00224	−1.6
	Heat shock cognate 71 kDa protein	P11142	4		
109	Stress-70 protein, mitochondrial	P38646	2	0.0137	1.7
110	Actin, cytoplasmic 1; actin, cytoplasmic 2	P60709; P63261	2	0.00201	1.7
111	Delta(3,5)-(3,2,4)-dienoyl-CoA isomerase, mitochondrial	Q13011	3	0.00338	−1.7
112	60 kDa heat shock protein, mitochondrial	P10809	6	0.00385	1.7
	Integrin beta-3	P05106	4		
	ATP synthase subunit beta, mitochondrial	P06576	2		
113	Aldehyde dehydrogenase, mitochondrial	P05091	9	0.000949	−1.7
114	Heat shock cognate 71 kDa protein	P11142	8		
	Stress-70 protein, mitochondrial	P38646	4	0.0122	−1.7
	Endoplasmic reticulum resident protein 29	P14625	4		
115	T-complex protein 1 subunit beta	P78371	5	0.0215	−1.7
116	Moesin	P26038	4	0.000902	−1.6
	T-complex protein 1 subunit zeta	P78371	2		
117	Macrophage-capping protein	P40121	2	0.0114	−1.6
118	Stress-70 protein, mitochondrial	P38646	13	0.0106	−1.7
	Annexin A6	P08133	3		
119	60 kDa heat shock protein, mitochondrial	P10809	11	0.000211	−1.6
	Heterogeneous nuclear ribonucleoprotein K	P61978	2		
120	Elongation factor Tu, mitochondrial	P49411	4	0.00392	−1.5
	Isocitrate dehydrogenase [NADP] cytoplasmic	O73874	2		
Table 2: Continued.

Spot	Protein	Uniprot AC	Peptides	P	Fold
121	Pre-mRNA-processing factor 19	Q9UMS4	2	0.00523	−1.6
122	Prohibitin	P35232	9	0.0121	−1.6
	Annexin A2	P07355	6		
123	78 kDa glucose-regulated protein	P11021	6		
	ATP synthase subunit beta, mitochondrial	P06576	4	0.0216	−1.6
	Integrin alpha-IIb	P08514	2		
124	DnaJ homolog subfamily B member 11	Q9URS4	2	0.00315	−1.6
	Moesin	P26038	2		
125	Protein disulfide-isomerase	P07237	7	0.0422	−1.6
126	Gelsolin	P06396	3	0.0294	1.5
127	14-3-3 protein zeta/delta	P63104	5	0.0337	1.5
	14-3-3 protein eta	Q04917	2		
128	60 kDa heat shock protein, mitochondrial	P10809	18	0.00252	−1.5
129	Endoplasmnin	P14625	4	0.0251	−1.6
130	Synaptosomal-associated protein 23	O00161	3	0.0254	1.5
131	Stress-induced-phosphoprotein 1	P31948	1	0.0329	−1.5
132	Calreticulin	P27797	2	0.00435	−1.5
133	UPF0568 protein C1orf166	Q9Y224	4	0.0208	−1.5
134	60 kDa heat shock protein, mitochondrial	P10809	7		
	ATP synthase subunit beta, mitochondrial	P06576	2	0.000412	1.5
	Integrin beta-3	P05106	2		
135	Alpha- enolase	P06733	4	0.0357	−1.5
136	Myosin-9	P35579	5	0.0106	1.5
137	Myosin regulatory light polypeptide 9	P24844	3	0.0325	1.7
	Protein disulfide-isomerase A6	Q15084	2		
138	Endoplasmnic reticulum resident protein 29	P30040	6	0.0104	−1.5
139	Peroxiredoxin-4	Q13162	2	0.0362	−1.5
140	Tyrosine-protein phosphatase nonreceptor type 6	P29350	3	0.0319	−1.5
	Protein disulfide-isomerase A3	P30101	2		
141	Protein disulfide-isomerase A3	P30101	2	0.0125	−1.5
142	PDZ and LIM domain protein 1	O00151	2	0.00306	1.5
143	ATP synthase subunit beta, mitochondrial	P06576	18		
	Protein disulfide-isomerase A6	Q15084	6		
	78 kDa glucose-regulated protein	P11021	4	0.00266	−1.4
	Protein disulfide-isomerase	P07237	2		
	Vimentin	P08670	2		
144	Plastin-2	P13796	15	0.000372	−1.6
145	Actin, cytoplasmic 1; actin, cytoplasmic 2	P60709; P63261	3	0.00905	1.5
146	Actin, cytoplasmic 1; actin, cytoplasmic 2	P60709; P63261	4	0.0156	1.8
147	60 kDa heat shock protein, mitochondrial	P10809	9	0.018	1.5
148	Filamin-A	P21333	4	0.000123	2.6
149	Filamin-A	P21333	3	0.0016	2.6
150	Alpha-actinin-1	P12814	7	0.00104	2.4
151	Ficolin-1	O00602	2	0.000967	−2.4
152	Ezrin	P15311	3	0.0136	−2.4
153	Coronin-1A	P31146	1	0.00915	−2.2
Table 2: Continued.

Spot	Protein	Uniprot AC	Peptides	P	Fold
154	Alpha-actinin-1	P12814	4	0.00109	2.2
155	Fermitin family homolog 3	Q86UX7	2	0.000261	2.1
156	Filamin-A	P21333	2	0.000568	2.1
157	Alpha-actinin-1	P12814	5	0.0017	2.0
158	Filamin-A	P21333	2	0.0123	1.9
159	Ficolin-1	O00602	2	0.0221	−1.8
160	Alpha-actinin-1	P12814	5	0.000516	1.6
	Filamin-A	P21333	2		
161	I4-3-3 protein zeta/delta	P63104	3	0.022	1.8
162	Prohibitin	P35232	3	0.0414	−1.8
163	Actin, cytoplasmic 1; actin, cytoplasmic 2	P60709; P63261	2	0.0133	1.7
164	Nucleoprotein TPR	P12270	1	0.00952	1.7
165	Actin, cytoplasmic 1; actin, cytoplasmic 2	P60709; P63261	5		
	Filamin-A	P21333	3	0.037	1.7
	Beta-parvin	Q9HBI1	2		
166	Alpha-actinin-1	P12814	3	0.00969	1.7
167	Filamin-A	P21333	2	0.0109	1.7
168	Actin, cytoplasmic 1; actin, cytoplasmic 2	P60709; P63261	2	0.00529	2.8
169	Ezrin	P15311	2	0.0174	−1.7
170	Beta-actin-like protein 2	Q562R1	2	0.0226	1.6
171	Filamin-A	P21333	2	0.00975	1.6
172	Filamin-A	P21333	3	0.039	1.6
173	Actin, cytoplasmic 1; actin, cytoplasmic 2	P60709; P63261	2	0.0202	1.6
174	Actin, cytoplasmic 1; actin, cytoplasmic 2	P60709; P63261	3	0.0207	1.6
175	Myosin-9	P35579	2	0.0225	1.6
176	Actin, cytoplasmic 1; actin, cytoplasmic 2	P60709; P63261	4	0.000991	2.2
177	Filamin-A	P21333	3	0.0131	1.5
178	Filamin-A	P21333	5	0.031	2.1
	Actin, cytoplasmic 1; actin, cytoplasmic 2	P60709; P63261	3		

Table 3: Functional association of the identified protein dataset with KEGG cellular pathways.

Annotation (pathway/process)	XD-score	Fisher-test, q value
Pathogenic *Escherichia coli* infection	1.3719	3.10E − 05
Proteasome	1.2793	4.20E − 04
Glycolysis/gluconeogenesis	0.9755	4.20E − 04
Pyruvate metabolism	0.9392	1.50E − 02
Antigen processing and presentation	0.9051	5.40E − 04

has not yet been unraveled. There is also the possibility that a change in TCP subunits could affect the proper folding of proteins involved in hematopoiesis and its regulation and therefore may contribute to MDS pathogenesis.

Apoptosis, an important phenomenon in MDS, in a highly regulated manner removes the excess or potentially dangerous cells from the organism. The apoptotic process relies heavily on the cleavage of proteins/proteolysis. Any proteolytic pathway involved in cell death regulation must be precise; therefore, a highly regulated proteasome pathway is a good candidate for the regulation of protein composition during apoptosis [41]. Evidence of cross talk between the apoptotic pathways, HSPs, and proteasome system exists [42]; the relation of these processes is also suggested in our dendrogram analysis results (see Table 5, Group F1C). It is difficult to define a clear role or the involvement of the proteasome system in apoptosis, because in some systems proteasome activity induces apoptosis while in others it does not [42].
Table 4: Functional association of the identified protein dataset with Reactome cellular pathways.

Annotation (pathway/process)	XD-score	Fisher-test, q value
Formation of tubulin folding intermediates by CCT Tric	3.7875	2.40E − 08
Further platelet releaseate	3.1660	5.00E − 07
Prefoldin mediated transfer of substrate to CCT Tric	2.8529	2.00E − 07
Activation of chaperones by IRE1 alpha	2.4375	1.40E − 02
Postchaperonin tubulin folding pathway	2.3845	9.60E − 04
Chaperonin mediated protein folding	1.6524	2.20E − 06
Formation of ATP by chemiosmotic coupling	1.5375	3.80E − 02
Smooth muscle contraction	1.4518	1.30E − 02
Cell-extracellular matrix interactions	1.4250	4.50E − 02
Glycolysis	1.3738	1.40E − 02
p53 independent DNA damage response	1.2026	9.60E − 04
Stabilization of p53	1.1070	1.30E − 03
Regulation of ornithine decarboxylase	1.0779	1.30E − 03
VIF mediated degradation of APOBEC3G	1.0779	1.30E − 03
Platelet degranulation	1.0545	5.20E − 06
SCF beta TRCP mediated degradation of EMI1	1.0500	1.40E − 03
Association of Tric CCT with target proteins during biosynthesis	1.0232	3.00E − 02

It is possible that increased proteasome activity causes the suppression of apoptosis, and this could be one of the reasons for the transformation from MDS to AML [43]. In relation to programmed cell death, researchers have identified changes in the regulatory subunits of the 19S cap complex [44, 45]. We observed changes in several proteasomal proteins and in the non-ATPase regulatory subunits of the 26S complex (Table 5, Group F1C), a part of which is the 19S cap complex [46]. We also observed changes in several HSPs, including HSP90α (identified in spot 51), whose overexpression has already been linked to apoptosis and MDS [47]. HSPs assist in proper protein folding, as molecular chaperones. They are fundamental for cell life and death decisions, and their abnormal expression is linked to oncogenesis [48]. When a protein is misfolded, HSPs are induced and associate with the misfolded protein, trying to refold it. When this process fails, the protein is ubiquitinated and determined to be processed by the proteasome. In case there are not enough HSPs or the proteasome function is impaired, proteins tend to aggregate with HSPs, ubiquitin, and proteasome to an insoluble compartment and trigger apoptosis [42, 49, 50]. HSPs can act in apoptosis at three levels: (i) in upstream mitochondria by regulating signaling molecules [51] (see Table 5, Group F1C); (ii) at the mitochondrial level by controlling mitochondrial membrane permeabilization and thus the release of cytochrome c [52] (see Table 6); and (iii) downstream of the mitochondria by affecting apoptosome formation [53] (see Table 5, Group F1C). Their role in apoptosis is also controversial; HSP function in apoptosis may be impacted by posttranslational modifications and the interaction with cochaperones (e.g., the DnaJ-family proteins identified in spot 124) [54]. The overexpression of HSPs has been shown to block apoptosis; and on the other hand, the depletion of HSPs increases sensitivity to apoptotic stimuli [55]. We observed both a decrease and an increase in normalized volumes in the spots containing HSPs (Table 2). However, from 2D SDS-PAGE data it is not possible to claim whether a change is caused by protein expression alteration or by protein post-translational modification. Therefore, there is the possibility that the HSPs identified are posttranslationally modified, differently expressed, or a combination of both. Changes in proteasomal proteins and HSPs could be involved in cells’ decisions regarding the triggering of apoptosis. Because of the inconsistency in the roles of both the proteasome and HSPs in apoptosis, we can only speculate whether the changes are the cause of the apoptosis in MDS.

In order to provide further insight into the possible PMBCs alterations in MDS patients additional to those suggested by the 2D electrophoresis data, western blot analysis was performed for the two of identified proteins: fermitin-3 and vinculin. Both the proteins were uniquely identified in the corresponding spots (without co-identified proteins) and they are both involved in particular in cell adhesion and integrin signaling [56, 57]. While vinculin was identified in five different spots with both increasing and decreasing spot normalized volumes (which strongly indicates the presence of posttranslational modifications and the alterations of individual proteoforms), fermitin-3 was observed in one spot only. The results of western blot analysis are shown in Figure 4.

It is apparent that vinculin is underexpressed in PBMCs of MDS patients when compared to the healthy donor group. Therefore, while the prevalent vinculin form is decreased in MDS there is also a minority of posttranslationally modified forms altered as estimated from 2D electrophoresis and LC-MS/MS data. Vinculin is an actin-binding protein that is involved especially in cell adhesion dynamics and cell migration [56, 58]. Downregulation of vinculin expression could
Table 5: List of the expression profile groups (A, B, and C) found in the cytosolic subproteome (F1).

Spot	Protein	Uniprot AC
1	Vinculin	P18206
17	Vinculin	P18206
43	Talin-1	Q9Y490
48	Vinculin	P18206
59	Tubulin alpha-1C chain	Q9BQE3
59	Tubulin alpha-1A chain	Q71U36
59	Tubulin alpha-4A chain	P68366
26	Proteasome activator complex subunit 1	Q06323
26	Coagulation factor XIII A chain	P00488
47	Tubulin beta-1 chain	Q9H4B7
56	Actin, cytoplasmic 1; actin, cytoplasmic 2	P60709; P63261
46	Actin, cytoplasmic 1; actin, cytoplasmic 2	P60709; P63261
2	Tubulin alpha-1C chain; tubulin alpha-1B chain	Q9BQE3; P68363
2	Annexin A6	P08133
9	Actin, cytoplasmic 1; actin, cytoplasmic 2	P60709; P63261
16	Actin, cytoplasmic 1; actin, cytoplasmic 2	P60709; P63261
38	Talin-1	Q9Y490
51	Annexin A6	P08133
51	Heat shock 70 kDa protein 1A/1B	P08107
7	Heat shock 70 kDa protein 1-like	P34931
7	Heat shock protein HSP 90-alpha	P07900
58	Annexin A7	P09960
58	Heat shock 70kDa protein 1-liked	P20073
36	Adenosylhomocysteinase	P23526
36	Proliferation-associated protein 2G4	Q9UQ80
36	Rab GDP dissociation inhibitor beta	P50395
36	Alpha-enolase	P06733
36	Adenylosuccinate synthetase isozyme 2	P30520
36	Beta-centractin	P42025
36	Proliferation-associated protein 2G4	Q9UQ80
36	Annexin A1	P04083
15	Adenylosuccinate synthetase isozyme 2	P06733
15	Alpha-enolase	P06733
15	Beta-centractin	P06733
14	Rab GDP dissociation inhibitor beta	P50395
14	C-terminal-binding protein 1	P30520
21	Alpha-enolase	P06733
3	Alpha-enolase	P06733
35	m7GpppX diphosphatase	Q96C86
35	Transaldolase	P37837
34	26S proteasome non-ATPase regulatory subunit 14	O00487
34	Proteasome subunit alpha type-6	P60900
23	UPF0568 protein C14orf166	Q9Y224
23	Hypoxanthine-guanine phosphoribosyltransferase	P00492
18	Triosephosphate isomerase	P60174
Table 5: Continued.

66	Proteasome subunit beta type-3	P49720	
54	Triosephosphate isomerase	P60174	
70	Triosephosphate isomerase	P60174	
27	Proteasome subunit beta type-4	P28070	
50	Heat shock cognate 71 kDa protein	P11142	
50	Rho-related GTP-binding protein RhoC	P08134	
50	Proteasome activator complex subunit 2	Q9UL46	

Table 5: Continued.

![Vinculin and Fermitin-3 Proteins.png](attachment:Vinculin_and_Fermitin-3_Proteins.png)

Figure 4: Western blot analysis of vinculin and fermitin-3 proteins; 1, molecular weight marker (kDa); 2 and 4, pooled control samples; 3 and 5, pooled MDS patient samples.

be possibly related to the immune system dysregulation in MDS as vinculin underexpression was described in the study by Kim et al. [56] investigating proteome changes in PBMCs of patients with atopic dermatitis, a chronic inflammatory skin disease. The presence of vinculin posttranslational modifications (as indicated in this work) was also observed in the proteomic study of PBMCs collected from amyotrophic lateral sclerosis (ALS) patients; significantly higher level of vinculin nitration was observed for sporadic ALS patients compared to healthy donors [59].

Western blot analysis of fermitin-3 showed the presence of several protein forms; in addition to the uncleaved protein, various fragments of fermitin-3 were observed. The uncleaved fermitin-3 band was observed with a lower intensity in MDS patients compared to the healthy controls; this observation may suggest fermitin-3 underexpression in MDS patients. However, the total intensity of the unaltered fermitin-3 together with its fragments estimated with ImageJ software [60] showed that there is no difference between MDS patients and the healthy controls. Therefore, while fermitin-3 expression did not seem to differ between the studied groups, it was shown that there was advanced fermitin-3 fragmentation in MDS patients. Fermitin-3 is a member of the family of focal adhesion proteins exclusively expressed in hematopoietic cells [61]. Its role in adhesion is essential for the function of blood cells including leukocytes [57, 62, 63]. Thus, higher rate of fermitin-3 fragmentation observed in this work could substantially influence PMBCs function in MDS. Moreover, fermitin-3 and vinculin are known to be colocalized to hematopoietic cell adhesion structure called podosome [64]. Therefore, since vinculin and fermitin-3 are both involved in cell adhesion and integrin signaling (and thus could play an important role in clinical applications) their changes observed in this work could initiate future research efforts.

4. Conclusion

In conclusion, we have compared the peripheral blood mononuclear cell proteome of myelodysplastic syndrome patients with refractory cytopenia with multilineage dysplasia against the proteome of healthy donors using two-dimensional electrophoresis combined with mass spectrometry. Through data mining of the Reactome and KEGG databases using EnrichNet, we highlighted the possible involvement of the identified protein alterations in apoptosis, protein degradation by proteasome, heat shock protein action, and signal transduction. Western blot analysis showed substantial changes in vinculin and fermitin-3, proteins involved in cell adhesion and integrin signaling. Vinculin was found to be underexpressed in MDS patients; advanced fragmentation of fermitin-3 was shown to take place in PMBCs of MDS patients.

To the best of our knowledge, our pilot study represents the first report on the proteome changes of peripheral blood mononuclear cells in myelodysplastic syndrome.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This study was supported by the Czech Science Foundation P205/12/G118 and by the state project (Ministry of Health, Czech Republic) for the conceptual development of the
Table 6: List of the expression profile groups (A, B, C, D, and E) found in the membrane and membrane organelle subproteome (F2).

Spot	Protein	Uniprot AC
85	Alpha-actinin-1	P12814
	60 kDa heat shock protein, mitochondrial	P10809
112	Integrin beta-3	P05106
	ATP synthase subunit beta, mitochondrial	P06576
130	Synaptosomal-associated protein 23	O00161
	Purine nucleoside phosphorylase	P00491
107	Dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit 1	P04843
142	PDZ and LIM domain protein 1	O00151
136	Myosin-9	P35579

Spot	Protein	Uniprot AC
91	Aconitate hydratase, mitochondrial	Q99798
	Endoplasmic reticulum resident protein 29	P07355
94	Heat shock protein 75 kDa, mitochondrial	Q12931
	Moesin	P26038
116	T-complex protein 1 subunit zeta	P78371
132	Calreticulin	P27797
86	Heterogeneous nuclear ribonucleoprotein H2	P55795
83	Heterogeneous nuclear ribonucleoprotein H	P31943
101	40S ribosomal protein SA	P08670
124	DnaJ homolog subfamily B member II	Q9UB54
113	Moesin	P61978
119	60 kDa heat shock protein, mitochondrial	P10809

Spot	Protein	Uniprot AC
99	78 kDa glucose-regulated protein	P11021
103	78 kDa glucose-regulated protein	P11021
95	Protein disulfide-isomerase A4	P13667
	Endoplasmic reticulum resident protein 29	P13667
143	ATP synthase subunit beta, mitochondrial	P06576
	Protein disulfide-isomerase A6	Q15084
144	Plastin-2	P13796
128	60 kDa heat shock protein, mitochondrial	P10809
Group F2E

Spot	Protein	Uniprot AC
97	Endoplasmín	P14625
92	Endoplasmín	P14625
90	Transitional endoplasmic reticulum ATPase	P55072
115	T-complex protein 1 subunit beta	P78371
117	Macrophage-capping protein	P40121
102	F-actin-capping protein subunit beta	P47756

Table 7: List of the expression profile groups (A, B) found in the nuclear subproteome (F3).

Spot	Protein	Uniprot AC
167	Filamin-A	P21333
156	Filamin-A	P21333
176	Actin, cytoplasmic 1; actin, cytoplasmic 2	P60709;
		P63261
172	Filamin-A	P21333
155	Fermitin family homolog 3	Q86UX7

Group F3A

Spot	Protein	Uniprot AC
161	14-3-3 protein zeta/delta	P63104
148	Filamin-A	P21333
154	Alpha-actinin-1	P12814
157	Alpha-actinin-1	P12814
150	Alpha-actinin-1	P12814

Group F3B

Spot	Protein	Uniprot AC
167	Filamin-A	P21333
156	Filamin-A	P21333
176	Actin, cytoplasmic 1; actin, cytoplasmic 2	P60709;
		P63261
172	Filamin-A	P21333
155	Fermitin family homolog 3	Q86UX7

Research organization (Institute of Hematology and Blood Transfusion).

References

[1] J. Schecter, N. Galili, and A. Raza, “MDS: refining existing therapy through improved biologic insights,” Blood Reviews, vol. 26, no. 2, pp. 73–80, 2012.

[2] R. Neuwirtová, “Myelodysplastic syndrom: onkohematologické onemocnění vyššího věku,” Česká Geriatriická Revue, vol. 3, no. 2, pp. 21–28, 2005.

[3] J. W. Vardiman, J. Thiele, D. A. Arber et al., “The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes,” Blood, vol. 114, no. 5, pp. 937–951, 2009.

[4] P. Májek, Z. Riedelová-Reichelová, J. Sutttnar, K. Pečánková, J. Čermák, and J. E. Dyr, "Plasma proteome changes associated with refractory anemia and refractory anemia with ringed sideroblasts in patients with myelodysplastic syndrome," Proteome Science, vol. II, no. 1, article 14, 2013.

[5] P. Májek, Z. Reichelová, J. Sutttnar, J. Čermák, and J. E. Dyr, “Plasma proteome changes associated with refractory cytopenia with multilineage dysplasia,” Proteome Science, vol. 9, article 64, 2011.

[6] P. Májek, Z. Reichelová, J. Sutttnar, J. Čermák, and J. E. Dyr, “Plasma protein alterations in the refractory anemia with excess blasts subtype 1 subgroup of myelodysplastic syndrome,” Proteome Science, vol. 10, no. 1, article 31, 2012.

[7] P. Májek, Z. Riedelová-Reichelová, J. Sutttnar, K. Pecankova, J. Čermák, and J. E. Dyr, “Proteome changes in the plasma of myelodysplastic syndrome patients with refractory anemia with excess blasts subtype 2,” Disease Markers, vol. 2014, Article ID 178709, 8 pages, 2014.

[8] M. Aivado, D. Spentzos, U. Gerning et al., “Serum proteome profiling detects myelodysplastic syndromes and identifies CXC chemokine ligands 4 and 7 as markers for advanced disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 4, pp. 1307–1312, 2007.

[9] C. Chen, D. T. Bowen, A. A. N. Giagounidis, B. Schlegelberger, S. Haase, and E. G. Wright, “Identification of disease- and therapy-associated proteome changes in the sera of patients with myelodysplastic syndromes and del(5q),” Leukemia, vol. 24, no. 11, pp. 1875–1884, 2010.

[10] J. Fröbel, R.-P. Cadeddu, S. Hartwig et al., “Platelet proteome analysis reveals integrin-dependent aggregation defects in patients with myelodysplastic syndromes,” Molecular & Cellular Proteomics, vol. 12, no. 5, pp. 1272–1280, 2013.

[11] H. Kazama, M. Teramura, S. Kurihara, K. Yoshinaga, T. Kato, and T. Motoji, "Peroxiredoxin 2 expression is increased in neutrophils of patients with refractory cytopenia with multilineage dysplasia," British Journal of Haematology, vol. 166, no. 5, pp. 720–728, 2014.
[12] P. L. Greenberg, Ed., Myelodysplastic Syndromes: Clinical and Biological Advances, Cambridge University Press, Cambridge, UK, 2006.

[13] M. J. Walter, D. Shen, J. Shao et al., “Clonal diversity of recently mutated genes in myelodysplastic syndromes,” Leukemia, vol. 27, no. 6, pp. 1275–1282, 2013.

[14] A. Bains, R. Luthra, L. J. Medeiros, and Z. Zuo, “FLT3 and NPM1 mutations in myelodysplastic syndromes: frequency and potential value for predicting progression to acute myeloid leukemia,” The American Journal of Clinical Pathology, vol. 135, no. 1, pp. 62–69, 2011.

[15] C.-Y. Chen, L.-I. Lin, J.-L. Tang et al., “RUNX1 gene mutation detected early at diagnosis or acquired during disease progression and is associated with poor outcome,” British Journal of Haematology, vol. 139, no. 3, pp. 405–414, 2007.

[16] J.-P. Issa, “Epigenetic changes in the myelodysplastic syndrome,” Hematology/Oncology Clinics of North America, vol. 24, no. 2, pp. 317–330, 2010.

[17] C. Sugimori, A. F. List, and P. K. Epling-Burnette, “Immunedysregulation in myelodysplastic syndrome,” Hematology Reports, vol. 2, no. 1, article e1, 2010.

[18] D. Vergara, F. Chiriacò, R. Aciero, and M. Maffia, “Proteomic map of peripheral blood mononuclear cells,” Proteomics, vol. 8, no. 10, pp. 2045–2051, 2008.

[19] G. Maccarrone, C. Rewerts, M. Lebar, C. W. Turck, and D. Martins-de-Souza, “Proteome profiling of peripheral mononuclear cells from human blood,” Proteomics, vol. 13, no. 5, pp. 893–897, 2013.

[20] E. Maes, B. Landuyt, I. Mertens, and L. Schoofs, “Interindividual variation in the proteome of human peripheral blood mononuclear cells,” PLoS ONE, vol. 8, no. 4, Article ID e61933, 2013.

[21] J. W. Vardiman, N. L. Harris, and R. D. Brunning, “The World Health Organization (WHO) classification of the myeloid neoplasms,” Blood, vol. 100, no. 7, pp. 2292–2302, 2002.

[22] P. Májek, Z. Reichtelová, J. Štíkarová, J. Suttnar, A. Sobotková, and J. E. Dyr, “Proteome changes in platelets activated by arachidonic acid, collagen, and thrombin,” Proteome Science, vol. 8, article 56, 2010.

[23] P. Májek, Z. Riedelová-Reichtelová, K. Pecánková, and J. E. Dyr, “Improved coomassie blue dye-based fast staining protocol for proteins separated by SDS-PAGE,” PLoS ONE, vol. 8, no. 11, Article ID e81696, 2013.

[24] E. Glaab, A. Baudot, N. Krasnogor, R. Schneider, and A. Valencia, “EnrichNet: network-based gene set enrichment analysis,” Bioinformatika, vol. 28, no. 18, pp. 1451–1457, 2012.

[25] M. Kancheva, S. Goto, Y. Sato, M. Kawashima, M. Furumichi, and M. Tanabe, “Data, information, knowledge and principle: back to metabolism in KEGG,” Nucleic Acids Research, vol. 42, no. 1, pp. D199–D205, 2014.

[26] M. Kancheva and S. Goto, “KEGG: kyoto encyclopedia of genes and genomes,” Nucleic Acids Research, vol. 28, no. 1, pp. 27–30, 2000.

[27] D. Croft, A. F. Mundo, R. Haw et al., “The reactome pathway knowledgebase,” Nucleic Acids Research, vol. 42, no. 1, pp. D472–D477, 2014.

[28] M. M. Milacic, R. Haw, K. Rothfels et al., “Annotating cancer variants and anti-cancer therapeutics in reactome,” Cancers, vol. 4, no. 4, pp. 1180–1211, 2012.

[29] K. E. Sullivan, J. Cutilli, L. M. Piliero et al., “Measurement of cytokine secretion, intracellular protein expression, and mRNA in resting and stimulated peripheral blood mononuclear cells,” Clinical and Diagnostic Laboratory Immunology, vol. 7, no. 6, pp. 920–924, 2000.

[30] D. G. Haider, N. Leuchten, G. Schaller et al., “C-reactive protein is expressed and secreted by peripheral blood mononuclear cells,” Clinical and Experimental Immunology, vol. 146, no. 3, pp. 533–539, 2006.

[31] K. A. Browne, R. W. Johnstone, D. A. Jans, and J. A. Trapani, “Filamin (280-kDa actin-binding protein) is a caspase substrate and is also cleaved directly by the cytotoxic T lymphocyte protease granzyme B during apoptosis,” The Journal of Biological Chemistry, vol. 275, no. 50, pp. 39262–39266, 2000.

[32] J. Bennett, Understanding Myelodysplastic Syndromes: A Patient Handbook, The Myelodysplastic Syndromes Foundation, Cross- wicks, NJ, USA, 6th edition, 2008.

[33] C. Coghlin, B. Carpenter, S. R. Dundas, L. C. Lawrie, C. Telfer, and G. I. Murray, “Characterization and over-expression of chaperonin t-complex proteins in colorectal cancer,” The Journal of Pathology, vol. 210, no. 3, pp. 351–357, 2006.

[34] M. B. Yaffe, G. W. Farr, D. Miklos, A. L. Horwich, M. L. Sternlicht, and H. Sternlicht, “TCP1 complex is a molecular chaperone in tubulin biogenesis,” Nature, vol. 358, no. 6383, pp. 245–248, 1992.

[35] S. C. Goetz and K. V. Anderson, “The primary cilium: a signalling centre during vertebrate development,” Nature Reviews Genetics, vol. 11, no. 5, pp. 331–344, 2010.

[36] F. Finetti, S. R. Pacciani, M. G. Riparbelli et al., “Intraflagellar transport is required for polarized recycling of the TCR/ CD3 complex to the immune synapse,” Nature Cell Biology, vol. 11, no. 11, pp. 1332–1339, 2009.

[37] I. B. Alieva and I. A. Vorobiev, “Vertebrate primary cilia: a sensory part of centrosomal complex in tissue cells, but a ‘sleeping beauty’ in cultured cells?” Cell Biology International, vol. 28, no. 2, pp. 139–150, 2004.

[38] O. V. Plotnikova, E. A. Golemis, and E. N. Pugacheva, “Cell cycle-dependent ciliogenesis and cancer,” Cancer Research, vol. 68, no. 7, pp. 2058–2061, 2008.

[39] E. S. Seeley and M. V. Nachury, “The perennial organelle: assembly and disassembly of the primary cilium,” Journal of Cell Science, vol. 123, no. 4, pp. 511–518, 2010.

[40] S. I. R. Baye, N. P. Schulz et al., “BBS6, BBS10, and BBS12 form a complex with CCT/TRiC family chaperonins and mediate BBSome assembly,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 4, pp. 1488–1493, 2010.

[41] L. M. Grimm and B. A. Osborne, “The role of the proteasome in apoptosis,” in Proteasomes: The World of Regulatory Proteolysis, W. Hilt and D. M. Wolf, Eds., pp. 315–331, Landes Bioscience, Georgetown, Tex, USA, 2000.

[42] C. Wójcik, “Regulation of apoptosis by the ubiquitin and proteasome pathway,” Journal of Cellular and Molecular Medicine, vol. 6, no. 1, pp. 25–48, 2002.

[43] T. Braun, G. Carvalho, A. Coquelle et al., “NF-kB constitutes a potential therapeutic target in high-risk myelodysplastic syndrome,” Blood, vol. 107, no. 3, pp. 1156–1165, 2006.

[44] S. P. Dawson, J. E. Arnold, N. J. Mayer et al., “Developmental changes of the 26 S proteasome in abdominal intersegmental muscles of Manduca sexta during programmed cell death,” The Journal of Biological Chemistry, vol. 270, no. 4, pp. 1850–1858, 1995.
