About some problems regarding IKP-DKP of a 9R planar parallel mechanism

F Buium¹, D Leohchi¹ and S Alaci²
¹Mechanical Engineering, Mechatronics and Robotics Department, “Gheorghe Asachi”
Technical University of Iasi, Iasi, Romania
²Mechanics and Technologies Department, “Stefan cel Mare” University of Suceava, Romania

E-mail: fbuium@gmail.com

Abstract. The paper presents some problems which might occur at different stages of the 9R(3RRR) planar mechanisms study (workspace characterizing, forward and direct kinematics, singularities analysis). At each of this stage, it has been identified certain problem which can occur and that need more attention and effort to be solved. In the paper classical methods, and formulas, known from technical literature, have been used, but occurred situations was depicted detailed and illustrated by graphical representations.

1. Introduction
This paper continues previous authors researches regarding 9R (3RRR) planar parallel mechanisms analysis, [1-6]. During these works, we dealt with workspace characterization depending on different constructive parameters, inverse and direct kinematic problems for certain trajectories and in each case, the singularities analysis has been done. It was chosen this kind of mechanism because of its incontestable advantages (higher speeds, better accuracy and strength reported to serial ones). These make this type of mechanism to be widely used in manipulator in technical purposes and well treated in technical literature also [7-35]. The major problem encountered to this mechanism is represented by singularity points located inside its workspace. In this paper, all presented numerical results have been obtained using classical, well-known methods and procedures. The main goal of the paper is to emphasise some problems or difficulties occurring to each of enumerated behind stages, in study of this type of mechanisms.

2. Theoretical preliminaries
In order to perform behind mentioned stages (workspace study, forward and direct analysis and singularities emphasizing) we done a set of interconnected programs (figure 1), which allows data to be taken from each another. In Figure 2 a kinematic scheme of the 9R (3RRR) planar parallel mechanism was shown [10]. In Figure 1, certain notations were made, with following meanings:

\(O_{i} = 1 \rightarrow 3 \) - fixed pairs depicting the fixed platform,

\(O_{xy} \) - referential system related to fixed platform,

\(B_{i} = 1 \rightarrow 3 \) - pairs of the mobile platform,

\(A_{i} = 1 \rightarrow 3 \) - pairs between proximal links \(O.A_{i} \) and the distal links \(A.B_{i} = 1 \rightarrow 3 \).

\(M_{x}, y_{m} \) - referential system related to mobile platform, \(M \) - point where end-effector is placed,
\(B_iB_j = b; i, j = 1,3, i \neq j \) - sizes of \(B_1B_2B_3 \) equilateral triangle,
\(O_iA_j = l_i; i, j = 1,3, i \neq j \) - lengths of proximal links,
\(AB_j = l_j; i, j = 1,3, i \neq j \) - lengths of distal links,
\(q = [x, y, \varphi] \) - input parameters (coordinates of point \(M \) reported to fixed system and angle between absciss axes of fixed and mobile system).
\(\Theta = [\theta_1, \theta_2, \theta_3] \) - output parameters representing position angles of driven (proximal) links,
\(\vec{s}_i = \vec{B}_iM, \ i = 1,3 \) - vectors establishing position of point \(M \) on mobile platform,
\(\vec{o}_i = \vec{O}_iO, \ \vec{r}_j = \vec{O}_jB_j, \ \vec{v}_j = \vec{OM}, \ \vec{s}_j = \vec{MB}_j \) - vectors defined using Figure 2.

Based on Figure 1, the following relationship can be written:
\[\vec{r}_i = \vec{v} + R \cdot \vec{s}_i - \vec{o}_i, \] \hspace{1cm} (1)
where \(R = \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix} \) is matrix of revolution by centre \(M \) and radius \(s_i \).

Squaring equation (1), the modulus of vector \(\vec{r}_i = \vec{O}_jB_j \) can be expressed:
\[||\vec{r}_i|| = \left[\left(x + \cos \varphi \cdot \sin \varphi \right) - x_{\alpha i} \right]^2 + \left[y + \sin \varphi \cdot \cos \varphi \right] - y_{\alpha i} \]^2 \] \hspace{1cm} (2)
where \(x_{\alpha i}^M, y_{\alpha i}^M \) are the points \(B_i \) coordinates in mobile system and \(x_{\alpha i}, y_{\alpha i} \) - the fixed points \(O_i \) coordinates reported to fixed system.

When the proximal and distal links are in extension or superposes, \(||\vec{r}_i|| = |l_i \mp l_j| \), after performing some calculations, relationship (2) become,
\[\left(x - \left(-x_{\alpha i}^M \cos \varphi + x_{\alpha i}^M \sin \varphi + x_{\alpha i} \right) \right)^2 + \left(y - \left(-y_{\alpha i}^M \sin \varphi - x_{\alpha i}^M \cos \varphi + y_{\alpha i} \right) \right)^2 = (l_i \mp l_j)^2. \] \hspace{1cm} (3)
This new relation represents equation of a circle with radius \(|l_1 \mp l_2| \) and centre of coordinates,
\[
 a_i = -x_{B_i}^M \cos \varphi + y_{B_i}^M \sin \varphi + x_{O_i}, \quad b_i = -y_{B_i}^M \sin \varphi - x_{B_i}^M \cos \varphi + x_{O_i}.
\]
Consequently, the mechanism workspace can be thought as an intersection of three circular annuli, with exterior radius of \(l_1 + l_2 \) and interior ones of \(|l_1 - l_2| \).

Based on figure 1, the following relation can be write,
\[
 \overline{A_iB_i} = \overline{OM} + R \cdot \vec{s} - \overline{O_iA_i} - \overline{OO_i}.
\]
Accomplishing calculations in relation (5) it obtains,
\[
 \theta_i = 2 \cdot \tan^{-1} \left(\frac{y - b_i + d_i \sqrt{\Delta_i}}{x + K_i - a_i} \right),
\]
where, \(d_i = \pm 1, \quad K_i = \frac{1}{2l_i} \left[(x - a_i)^2 + (y - b_i)^2 + l_i^2 - l_i^2 \right], \) and \(\Delta_i = (x - a_i)^2 + (y - b_i)^2 - K_i. \)

The angles \(\Theta = [\theta_1, \theta_2, \theta_3] \) represent the output data in the forward kinematic problem (IKP). All calculations performed until now refers to the first modulus in Figure 1.

In order to solve direct kinematics, the proximal links angles \(\Theta = [\theta_1, \theta_2, \theta_3] \) are supposed to be known (input data), and output data \(q = [x, y, \varphi] \), referring to mobile platform position, must be determined. To accomplish this demand, it has been used a method, detailed in a previous paper [\text{[\ldots]}]. Here we will use this method but we remember it in very succinct manner. For accomplish DKP problem it been used Figure 3.

![Figure 3. The four bar contour \(A_1A_2B_1B_2 \) used in DKP.](image)

The \(A_2A_1B_1B_2 \) linkage has variable basis \((A_2, A_1) \) and actuated joint \(A_1 \), the input parameter is angle \(\varphi_2 \) and output parameters – angles \(\varphi_b, \varphi_3 \) (not figured), \(\varphi \). The idea of this method is to determinate all data referring to point \(M \) and the mobile platform as a point belonging to connecting rod in four bar \(A_2A_1B_1B_2 \) mechanism with position of pairs \(A_2, A_1 \) known from IKP even if variable. The study of this four bar mechanism is done using technical literature [\text{\textsuperscript{[7-10]}}]

In order to perform singularities study it has been used the following function, expressing the constant lengths of distal links.
\[
 F_i(x, y) = \left(x + x_{B_i}^M \cos \varphi - y_{B_i}^M \sin \varphi - x_{O_i} - l_i \cos \theta_i \right)^2 - \left(y + y_{B_i}^M \sin \varphi + y_{B_i}^M \cos \varphi - y_{O_i} - l_i \sin \theta_i \right)^2 - l_i^2.
\]
As it is easy to notice this is a vector function \(F_i, i = 1, 3 \) with three variable \(q = [x, y, \varphi] \), the angle \(\varphi \) of the mobile platform being constant. The implicit function (7) can be concisely written \(F(\Theta, q) = 0 \). Differentiating this expression with respect the time, a relationship between input and output velocities is achieve \(J_q \cdot \dot{q} + J_\Theta \cdot \dot{\Theta} = 0 \). Writing \(\Delta J_q = 0 \), the singularities of 2\(^{nd}\) type can be studied [10]. It is obviously, with singularities problem deals the third category of programs (in Figure 1).

3. Illustrative examples

In this paragraph it has been presented exemplification of certain problems occurred in each of the three stages of study, according to stages from Figure 1. Let begin with first problem, referring to IKP, i.e. running the programs which deserve forward kinematics. There, the greatest occurred problem results from using trigonometric inverse of tangent function \(\tan^{-1} \). As is well-known, this function is defined as \(\arctan(x) : \mathbb{R} \rightarrow \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \). But real revolute motion of mechanisms elements do not take place into this interval only. Let see some diagrams:

Linear trajectory

![Figure 4](image)

Figure 4. L=240; l1=100; l2=110; b=50; \(\phi_i=\pi/6 \); d1=1; d2=1; d3=1; a) workspace and end-effector linear trajectory, b) IKP – results, c) DKP – results.
Triangular trajectory

![Triangular Trajectory Image]

Figure 5. L=240; l1=100; l2=110; b=50; fi=π/6; d1=1; d2=1; d3=1; a) workspace and end-effector triangular trajectory, b) IKP – results, c) DKP – results.

Quadrilateral trajectory

![Quadrilateral Trajectory Image]
Figure 6. L = 240; l1 = 100; l2 = 110; b = 50; \(\phi = \pi/6; \) d1 = 1; d2 = 1; d3 = 1; a) workspace and point \(M \) quadrilateral trajectory, b) IKP – results, c) DKP – results with \(\Delta \phi_2 = 1° \), d) DKP – results with \(\Delta \phi_2 = 1.9° \).

Circular trajectory
Figure 7. L=240; l1=100; l2=110; b=50; fi=π/6; d1=1; d2=1; d3=1; a) workspace and end-effector circular trajectory, b) IKP – results, c) DKP – results with Δϕ₂ = 1°, d) deviation of angle ϕ.

Elliptical trajectory

Figure 8. L=240; l1=100; l2=110; b=50; fi=π/6; d1=1; d2=1; d3=1; a) workspace and point M quadrilateral trajectory, b) IKP – results, c) DKP – with Δϕ₂ = 1°, d) DKP – with Δϕ₂ = 0.1°.
Butterfly trajectory

Figure 9. L=2.3; l1=1.1; l2=1.2; b=0.5; fi=1*pi/4; d1=1; d2=1; d3=1; a) workspace and point M quadrilateral trajectory, b) IKP – results, c) DKP – results with $\Delta \phi_2 = 1^\circ$, d) DKP – results with $\Delta \phi_2 = 0.01^\circ$.

Figure 10. Singularities emphasizing L=2.4; l1=1; l2=1.1; b=0.5; $\phi = \pi / 5$; d1=1; d2=1; d3=1; a) ΔJ_q – as a surface b) as level curves.
Figure 11. Singularities emphasizing $L=2.4; l_1=1; l_2=1.1; b=0.5; \varphi=0; d_1=1; d_2=1; d_3=1$; a) ΔJ_q - as a surface b) as level curves.

Figure 12. Singularities emphasizing $L=2.4; l_1=1; l_2=1.1; b=1.5; \varphi=\pi/6; d_1=1; d_2=1; d_3=1$; a) ΔJ_q - as a surface b) as level curves.

Figure 13. Singularities emphasizing $L=2.4; l_1=1; l_2=1.1; b=0.5; \varphi=\pi/6; d_1=-1; d_2=-1; d_3=1$; a) ΔJ_q - as a surface b) as level curves.
The second group of difficulties which can occur refers to the direct kinematics. Despite the method is quite simply and easy programmable, the results obtained after programs running sometimes are wrong (Figures 6, 7, 8, 9).

To the third level of programs (Figure1), the main difficulties that can occur refers to surfaces manipulation and its planar representations and also to the correlations between these data and those achieved in the previous level (DKP modulus).

4. Conclusions
The paper represent a continuation of authors researches begun some time ago. Thus we used a programme package, written during our researches and which has been under continuous improvement. Presented results were achieved using a classical mathematical apparatus, well-known in literature but programs packages were entirely made by us. On the whole, the work has a practical and didactical character, suitable for student training and practice. The main difficulties which can occur at 9R (3RRR) parallel mechanisms study were intentionally emphasized in this paper. These difficulties can occur to each stage of the study (forward and direct kinematics and singularities approaching). The results can and will be improved during the researches advances, especially by programs fitting and mathematical models improvement.

5. References:
[1] Duca C and Buium Fl, Questions about Self-Blocking of Mechanisms, Buletinul Institutului Politehnic din Iaşi, Universitatea Tehnică „Gh. Asachi”Iaşi, Tomul LVI (LX), Fasc. 4, 2010, Secţia Construcţii de Maşini, ISSN: 1011-2855, pp. 249 – 254.
[2] Buium F, Oprişan C, Duca C and Doroftei I, About Workspace Shape of an 3-RRR Planar Parallel Mechanism, Buletinul Institutului Politehnic din Iaşi, Universitatea Tehnică „Gh. Asachi”Iaşi, Tomul LXI (LIX), Fasc. 4, 2010, Secţia Construcţii de Maşini, ISSN: 1011-2855, pp. 233 – 242.
[3] Duca C and Buium F, Singularities classification for structural groups of dyad type, Applied Mechanics and Materials, vol 658 (2014), Trans Tech Publications, Switzerland doi 10.4028/ www.scientific.net/AMM.658.47, pp.47-54.
[4] Duca C and Buium F, Transmision indices adoption for 6R structural group, Applied Mechanics and Materials, vol 658(2014), Trans Tech Publications, Switzerland doi 10.4028/ www.scientific.net/AMM.658.47, pp.55-58.
[5] Buium Fl, Leohchi D. And Doroftei I, A workspace characterization of the 3 RRR planar mechanism, Applied Mechanics and Materials, vol 658(2014), Trans Tech Publications, Switzerland doi 10.4028/ www.scientific.net/AMM.658.563, pp. 563-568.
[6] Buium F, Duca C, Leohchi D, Problems regarding singularities analysis of a 3 RRR parallel mechanism, Applied Mechanics and Materials, vol 658(2014), Trans Tech Publications, Switzerland doi 10.4028/ www.scientific.net/AMM.658.569, pp. 569-547.
[7] Merlet, J-P, Le robots paralleles, 2e edition revue et augumentee, Editions Hermes, Paris, 1997.
[8] Doroftei I, Singularity analysis of a 3RR planar parallel robot I -Theoretical aspects, Buletinul Institutului Politehnic din Iaşi, Tom LIV(LVIII), Fas. 1, 2008, Secţia Construcţii de Maşini, Iaşi, pp.465-472.
[9] Doroftei I, Singularity analysis of a 3RRR planar parallel robot II - Physical significance, Buletinul Institutului Politehnic din Iaşi, Tom LIV(LVIII), Fas. 1, 2008, Secţia Construcţii de Maşini, Iaşi, pp.473-480.
[10] Arsenault M and Boudreau R, The synthesis of three-degree-of-freedom planar mechanism with revolute joints (3-RRR) for an optimal singularity-free workspace, Journal of Robotic Systems 21(5), 259-274 (2004).
[11] Bonev I, Geometric analysis of planar mechanisms, PhD thesis, Departament de Genie Mecanique, Faculte des Sciences et de Genie, Universite Laval, Quebec (2002).
[12] Zlatanov D, Generalized singularity analysis of mechanisms, PhD thesis, Departament of
[11] Mechanical and Industrial Engineering, University of Toronto (1988).

[13] Merlet J-P, Parallel manipulators: state of the art and perspectives, http://wwwsop.inria.fr/saga/personnel/merlet/merlet.html, Inst. Nat. de Rech. en Inf. et en Auto, France, (1999).

[14] Merlet J-P, Parallel Robots, Kluwer Academic Publishers, (2000).

[15] Merlet J-P, Gosselin C M and Mouly N, Workspaces of planar manipulators, Mechanism and Machine Theory, 33(1-2), (1998), pp. 7-20.

[16] Kumar V, Characterization of workspaces of parallel manipulators, ASME, Journal of Mechanical Design 114(3), (1992), pp. 368-375.

[17] Gosselin C M and Angeles J, The optimum kinematic design of a planar three degree of freedom parallel manipulator, ASME J. Mech Transm Autom Des 110:(1), (1988), pp.35-41.

[18] Merlet J-P, Designing a parallel manipulator for a specific workspace, Int J Robot Res 16:(4), (1977), pp. 545-556.

[19] Gosselin C M and Wang J, Singularity loci of planar parallel manipulators with revolute joints, Robot Auton Sist 21:(4) (1997), pp. 377-398.

[20] Boudreau R and Gosselin C M, La synthese d’un plat-forme Gough-Stewart pour un espace atteignable prescript, Mech Mach Theory 36:(3) (2001), pp. 327-342.

[21] Bonev I A and Gosselin C M, Singularity loci of planar manipulators with revolute joint, 2nd Workshop on Computational Kinematics, Seoul, South Korea, (2001), pp. 1964-1969.

[22] Gosselin C M and Angeles J, Singularity analysis of close-loop kinematic chains, IEEE Trans Robot Automon 6(3) (1990), pp. 281-290.

[23] Gosselin C M and Angeles J, A global performance index for the kinematic optimization of robotic manipulators, ASME J Mech Des 113:(13) (1991), pp. 220-226.

[24] Gosselin C M, The optimum design of robotic manipulators using dexterity indices, Robot Auton Syst 9(4) (1992), pp. 213-226.

[25] Sefroui J and Gosselin C M, On the quadratic nature of the singularity curves of planar three degree of freedom parallel manipulators, Mech Mach Theory, 30:(4) (1995), pp. 533-551.

[26] Hunt K H, Kinematic geometry of mechanisms, Oxford University press, (1978) pp. 199-201.

[27] Merlet J-P, Direct kinematic of planar parallel manipulators, Proc. IEEE Int. Conf. on Robotics, Minneapolis, MN, April 1996, pp. 3744-3749.

[28] Daniali H R M, Zsombor-Murray P J and Angeles, J. Singularities analysis of planar parallel manipulators, Mech. Mach. Theory 30 (5), pp. 665-678.

[29] Bonev I A, Geometric analysis of parallel mechanisms, Ph.D Thesis, Laval University, Quebec, QC, Canada, October 2002.

[30] Bonev I A, Zlatanov D and Gosselin C M, Singularity analysis of 3 dof planar mechanisms via scew theory, ASME J. of Mech Des 125(3) (2003), pp. 573-581.

[31] Angeles, J., The robust design of parallel manipulators, 1st Int Colloquium, Collaborative Research Centre 562, Braunschweig, May 2002, pp.29-30.

[32] Angeles J, The qualitative synthesis of planar manipulators, ASME J. of Mech Des, 126(4): (2004) pp. 617-624.

[33] Zlatanov D, Fenton R G and Benhabib B, A unifying framework for classification and interpretation of mechanism singularities, ASME J. of Mech Des 117(4) (1995) pp. 566-572.

[34] Zlatanov D, Bonev I A, Gosselin C M, Constraint singularities as configuration space singularities, (2001), http://www.parallelmech.org/Reviews/Review008.html.

[35] Zlatanov D, Bonev I A and Gosselin C M, Constraint singularities as configuration space singularities, In ARK, Caldes de Malavalla, 2002.