Probing hadronization with flavor correlation of leading particles in jets

Yang-Ting Chien

DIS2022, Santiago de Compostela, Spain
May 3rd, 2022

Phys. Rev. D 105 (2022) 5, L051502
In collaboration with Abhay Deshpande, Mriganka Mouli Mondal, George Sterman
Outline

- Hadronization: mapping partons to hadrons
 - affects flavor and energy flows of the whole event
- Leading and next-to-leading hadrons within a jet
- Charge correlation r_c and its evolution
- Monte Carlo studies with PYTHIA and Herwig
- Conclusions

See next talk by Mriganka for H1 measurement!
Challenges in hadronization studies

- Hadronization is nonperturbative and requires phenomenological modelings
- High energy collisions involve complicated partons and hadrons distributions
- Initial state radiation, underlying events and target fragmentation in hadron collisions include even larger phase space
- How can we identify microscopic details of hadronization?

Field and Feynman (1978), Andersson et al (1983), Amati and Veneziano (1979), Webber (1984), Winter, Krause and Soff (2004)
Leading and next-to-leading hadrons

- Focus exclusively on
 - collinear regions around dominant energy flows: jets
 - energetic hadrons since soft hadrons are abundant and hard to disentangle their origins

Jet

H_1: leading hadron
H_2: next-to-leading hadron

$\mathbf{p} = p_{H_1} + p_{H_2}$
$z = p_{H_2}/\mathbf{p}$

Two-particle correlation

Hadronization of most energetic partons
Electron Ion Collider

- A collider covering low and intermediate energy regions is ideal: “how jets emerge”
- We want some perturbative emissions but not too many, or observables not directly affected by these emissions
- We need excellent particle identification for leading particles
- A control over spin and polarization d.o.f. will allow a complete tagging of partonic quantum numbers
- Target hadronization in DIS

Belle II data is also a great opportunity
Charge correlation

\(r_c(X) = \frac{d\sigma_{h_1 h_2}/dX \cdot d\sigma_{h_1 \bar{h}_2}/dX}{d\sigma_{h_1 h_2}/dX + d\sigma_{h_1 \bar{h}_2}/dX} \)

Convention: \(h_1 h_2 \) same sign

\(-1 \leq \gamma_c \leq 1\)

\(\gamma_c \to -1 \) when \(d\sigma_{h_1 \bar{h}_2} \gg d\sigma_{h_1 h_2} \)

\(\gamma_c \to 0 \) when \(H_2 \) not correlated with \(H_1 \)

- Leading dihadron correlation: conditional probability of observing \(H_2 \) in the presence of \(H_1 \)
- Comparing the cross sections of \(h_1 h_2 \) and \(h_1 \bar{h}_2 \) to quantify the flavor constraints
- Evolution of \(r_c \) w.r.t. kinematic phase space \(X \)

We focus on two novelties:

1. Leading dihadrons exclusively
2. Dependence on \(X \): \(z, k_T, T_{\text{form}}, \ldots \)

TASSO (1985), CERN ISR (1979), LEP (1984), NA22 (1989), Bass, Danielewicz and Pratt (2000)
Monte Carlo samples

- 18 GeV electron beam + 275 GeV proton beam
- PYTHIA 6.428 and Herwig 7.1.5
- Impose $Q^2 > 50$ GeV2 so that we have higher p_T jets
- 10 million events
- Jets: $p_T^{\text{particle}} > 0.2$ GeV, $-1.5 < \eta < 3.5$, anti-$k_t R = 1.0$, $p_T^{\text{jet}} > 5$ GeV

Mostly these jets are from struck quarks dominated by valence u and d quarks
Leading dihadron kinematics

- z maximizes at $z = 0.5$, not from perturbative splitting
- Characteristic low k_\perp and cross section falling exponentially

\begin{align*}
\frac{1}{N_{\text{jet}}} \frac{dN_{\text{H}1 \text{H}2}}{dk_{\perp}^2 / d \ln z} &= \text{ep@18} \times 275 \\
Q^2 > 50 \text{ GeV}^2 \\
\text{anti-kT R=1.0} \\
\rho_{T_{\text{jet}}} > 5 \text{ GeV}
\end{align*}
Leading dihadron formation time

![Graphs showing dihadron event count vs. formation time](image)

- Formation time peaks around 1 to 10 fm
- $|r_c|$ maximizes at large formation time
- Significant difference between PYTHIA and Herwig

$t_{\text{form}} = z(1 - z)p/k_{\perp}^{2}$

$\rightarrow \left(\frac{1}{k_{\perp}}\right)^x \left(\frac{p}{k_{\perp}}\right)^y$ Lorentz boost

\Rightarrow proper time

"more "local"
Leading dihadron relative k_\perp

- $|r_c|$ maximizes at small k_\perp and decreases as k_\perp increases on the scale of 1-2 GeV
- Suggesting strong nonperturbative correlation at play
Flavor tagging and πK correlation

\[r_c \]

\[\langle \text{jet} \rangle T \]

\[\langle \text{jet} \rangle \]

\[\text{EIC smear} \]

\[\sigma_{\pi^- K^-} - \sigma_{\pi^- K^+} \]

\[\sigma_{\pi^- K^-} + \sigma_{\pi^- K^+} \]

\[r_c \]

\[\langle \text{jet} \rangle \]

\[\text{EIC smear} \]

\[\sigma_{\pi^+ K^+} - \sigma_{\pi^+ K^-} \]

\[\sigma_{\pi^+ K^+} + \sigma_{\pi^+ K^-} \]

\[H_1 = \pi^- \quad \text{Red:} \quad r_c = \frac{\sigma_{\pi^- K^-} - \sigma_{\pi^- K^+}}{\sigma_{\pi^- K^-} + \sigma_{\pi^- K^+}} \]

\[H_1 = \pi^+ \quad \text{Black:} \quad r_c = \frac{\sigma_{\pi^+ K^+} - \sigma_{\pi^+ K^-}}{\sigma_{\pi^+ K^+} + \sigma_{\pi^+ K^-}} \]

\[\bullet \text{Excellent agreement between EIC smear and true distributions} \]

\[\bullet \text{measurable at EIC} \]
Flavor constraints

\[\pi^+ \bar{d} K^+ \]
\[\pi^+ \bar{d} \bar{u} s \]
\[\pi^- \bar{d} u s \]
\[\bar{u} \bar{u} s \]

No simple string configuration

Simple string breaking allowed

Therefore, \(\pi^- K^+ \) is preferred in string hadronization compared to \(\pi^- K^+ \), resulting in large \(|V_{cb}| \). Cluster hadronization shows different flavor constraints.
Correlating leading dihadrons and subjets

* H_1, H_2 typically surrounded by perturbative emissions
* Charge correlation maximizes when H_1, H_2 appear to be isolated, i.e. resolved at 1st split.
Conclusions

• Leading dihadron correlation is nonperturbative and can illuminate intrinsic features of hadronization
• Besides energy tagging, flavor tagging can be a powerful tool for studying hadronization
• Excellent particle identification and abundant statistics are essential
• Evolution of leading dihadron correlation w.r.t. kinematic variables, as well as hadron-subjet correlation can be used to study perturbative and nonperturbative transition

Opportunities for precision QCD physics in hadronization at Belle II -- a snowmass whitepaper

A. Accardi, Y. T. Chien, D. d'Enterria, A. Deshpande, C. Dilks, P. A. Gutierrez Garcia, W. W. Jacobs, F. Krauss, S. Leal Gomez, M. Mouli Mondal, K. Parham, F. Ringer, P. Sanchez–Puertas, S. Schneider, G. Schnell, I. Scimemi, R. Seidl, A. Signori, T. Sjöstrand, G. Sterman, A. Vossen