The design of cold chain risk management system of frozen tuna product in Aceh using fuzzy logic

H Y Sastra1 P D Sentia2*, D Asmadi1 and M Afifah1

1Industrial Engineering, Universitas Syiah Kuala, Jl. Tgk Abdur Rauf No.7, Banda Aceh 23111, Indonesia
2Laboratory of Industrial Computation and Optimization, Industrial Engineering, Universitas Syiah Kuala, Jl. Tgk Abdur Rauf No.7, Banda Aceh 23111, Indonesia

*E-mail: primadennysentia@unsyiah.ac.id

Abstract. Frozen tuna is a perishable product that sensitive to temperature changing, therefore a good cold chain system is needed. As a part of the supply chain, cold chain system aims to maintain the temperature of the product in order to keep its quality from upstream to downstream. There are various problems encounter the cold chain process that effected to the streamline. In consequence, it is important to build a continuous improvement to reduce the risk in the cold chain. The aims of this research are to discover the risk that can be found on the cold chain process, what is the causes, and the connection between both risks and its causes. This matter to develop risk management system on frozen tuna products in Aceh. This research using House of Risk (HOR) method to capture the most critical risk and risk management system is carried out Fuzzy Inference System (FIS) by Mamdani approach. The results of risk evaluation using HOR phase 1 show that there are 2 risks from 20 existing agents and 33 risk events that must be managed with the risk management, namely human errors and temperature during initial handling that is not according to standard.

1. Introduction
Supply chain activities very hard to be managed, because it involves both internal and external sides of a company. The structure of supply chain is complex, in addition to involving with various parties, uncertainty also often occurs suddenly, this is a challenge for that their supply chain management. This might cause vulnerable to risk so as to give any negative impact on of business process [1].

Risk is an unexpected effect emerging from a purpose to be achieved, in terms of internal and external. Risk management is required to avoid the risk that will emerge. Risk management on supply chain is an approach to managing risks arising in the supply chain like scheduling, technology, and unexpected cost [2]. The purpose of risk management on supply chain is to reduce the possibility of risks and to enhance resistance, the ability to avoid disruption [3].

Supply chain management in the processing and refrigerated production industry that applies a cold chain is to always maintain the quality of its products. A cold chain is a temperature-controlled supply chain of a product uninterrupted during the distribution process with a certain value. In cold chain temperature is an important factor that must be considered. Cold chain distribution processes are carried out on products that are easily damaged at high temperatures [4, 5]. There are several previous studies that applied cold chains to their products, including frozen shellfish [2], drugs [6], vaccines [7], frozen shrimp [8], meat [9], agricultural products [10] and fishery products [11].
One of the potentials of Aceh's marine resources which have a very high selling value is tuna. Cold chain system applied in the process of making frozen tuna products in Aceh, there are several problems that occur, the availability of unstable raw materials because tuna processing companies are very dependent on catches from fishermen raw materials that are easily damaged so that it requires handling as soon as received, the quality of raw materials that cannot be fulfilled by suppliers, unstable cold storage which results in several activities that are not in accordance with predetermined standards, as well as a lack of understanding of the cold chain itself among workers who make mistakes at the very beginning.

The purpose of this study is to identify risks and causes of risk, determine the causes of risk that must be prioritized and carry out risk management for the causes of risk that occur in cold chain activities of frozen tuna in Aceh. House of Risk (HOR) is a development method of FMEA (Failure Modes and Effect of Analysis) and House of Quality (HOQ) which is used to prioritize which sources of risk will be chosen first for action to reduce risk from the most risk effective source [3, 8, 12].

Meanwhile the Fuzzy logic method is used to identify the causes of problems or failures that occur through consideration of failure criteria. Fuzzy logic method can help decision making in mitigating risk and mapping problems as prevention and mitigation of risks that occur [13, 14]. So that this research is expected to be an alternative design of a risk management system used to overcome the risk of cold chains of frozen tuna in Aceh.

2. Methodology
Based on the literature study and the results of interviews with tuna production businesses in Aceh, 33 risk events and 20 causes of risk agent risk were obtained. The data is then developed into several questions and the questionnaires are distributed to respondents who have been determined to see the value of risk on the severity, assurance and correlation. Risk assessment is based on scale values from 0 to 10; where the value of 0 reflects the lowest scale and value 10 indicates the highest scale at each risk that occurs.

The next phase is to do mapping of cold chain activities that occur by using the supply chain operations reference (SCOR) model. The activities that occur are divided into four steps: plan, source, make, and deliver. Based on the SCOR activity mapping model that has been made, the next step is to carry out the process of identifying risk events that occur, and identify the causes of risk (risk agents) using the House of Risk (HOR) method.

Then, severity value is calculated from risk phase in order to find out how big of an impact of that risk affects the cold chain system. After that the calculation the occurrence value from the risk causes to see the probability of that risk from happening. Finally, correlation calculation is conducted to see the relationship between risk event and risk agent.

After severity, occurrence and correlation values are obtained, and then Aggregate Risk Potential (ARP) values are calculated. ARP values are calculated by accumulating each value which is then ranked based on the high ARP risk value to the lower risk value. Then with the help of pareto diagram, risk evaluation process can be done in order to decide which risk because that can be managed. Based on the pareto diagram it can be decided the agent risk that is included in the 20% of risk cause.

After the priority risk measures prevention have been obtained, then a risk management risk is designed using Fuzzy Inference System (FIS) to help in decision making. FIS that is used in the Mamdani Fuzzy logic, where there are four stages that must be done, they are: formation of fuzzy sets, implication function application, rule composition and defuzzification.

The final step in this research is to create risk management design. Risk management is used to anticipate or to reduce the risk causes that happened. Recommendation for repairing the said risk cause will cause a bad effect on the cold chain system. There is management risk system that is shaped into a tree diagram.
3. Results and Discussion
Identification is conducted based on literature study, which is then is made suitable with interview process with the company related; in order to find out the risks and risks causes that may potentially have happened in the company. After the risks are identified then they will be classified according to the activities, they are: plan, source, make and deliver. The risks are then coded based on SCOR model. Table 1 shows that there are 33 risk events where there are 6 risks in the plan activity, 6 risks in the source activity, 18 risks on the make activity and 3 risks on deliver activity.

Activity	Code	Risk Event
Plan	E1	Uncertain weather conditions
	E2	Uncertain tuna stocks for production process
	E3	Uncertain raw materials
	E4	Increase in delivery prices
	E5	Fluctuating demands from customers
	E6	Raw materials do not arrive according to schedule
	E7	Instability of tuna prices in the market
	E8	The quality of tuna that is not according to the demand
	E9	Tuna deficiency in the market
Source	E10	Power blackout
	E11	Unsuitable packaging (reject)
	E12	Unavailability of raw materials
	E13	Damaged production process equipment
	E14	Tuna contaminated with other substances
	E15	Presence of bacteria in tuna
	E16	Uncertain production capacity
	E17	Delay in production process
	E18	Overheating of water pumps
	E19	Bad handling of raw materials
	E20	Limited number of weighing equipment where the raw materials must wait for the production process
	E21	Damaged products during production process
Make	E22	Accumulated products that are being kept
	E23	Inefficient water filtering
	E24	Production process came to a halt
	E25	Production targets are not achieved
	E26	Incorrect sizes during sorting of fish according to size
	E27	Incorrect checking when raw materials arrived
	E28	Inadequate process of fish preparation therefore there are many fish organs being thrown away
	E29	Decrease in fish quality
	E30	Employees are not careful during fish preparation process
	E31	Failure in delivery process
Deliver	E32	Changes in delivery times that depends on the availability of fish
	E33	Vehicles shortage for product distribution process
Table 2 shows that there are 20 risk agents identifies, where one of the risk cause can start one or more risk events. These risks are then given ratings to see how far they can affect the risk activities of frozen tuna cold chain system. The identified risks are then given risk ratings to mark severity, occurrence and correlation. The result of each criterion is then cumulated with the ARP values calculation. Table 3 shows the recapitulation of ARP values from all risks that have happened.

The next step is to do a depiction using pareto diagram to see what risks that must be mitigated based on the pareto diagram principles. The principles of the pareto diagram is that 20/80, where 80% of the risk condition came from the 20% of the main cause of the risk condition. The pareto diagram for ARP values can be seen in Figure 1. Based on figure 1, it can be suggested that the risk because chosen was A9 (human error) and A20 (temperature during initial handling that is not up to standards). A9 and A20 became the first and second highest risk causes because of having the higher ARP value. After sorted from highest to lowest, there were high percentages, they are: 12,263% and 8,152%, so that when it was done cumulatively it reached 20,415%.

Table 2. Risk Agent Identification

No	Code	Risk Agent
1	A1	Simultaneous fish catch/yield
2	A2	Prediction errors in the need of raw materials
3	A3	Disturbance in electricity supplies
4	A4	Changes in sales plans
5	A5	Uncertain fishermen catch
6	A6	Employees not working according to SOP
7	A7	Lack of product stock
8	A8	Machines that are very old
9	A9	Human error
10	A10	Unexpected product demands from customer
11	A11	Blockage in water filter
12	A12	Demands increase significantly
13	A13	Supplier cannot keep up with the demands of raw materials
14	A14	Nature factor
15	A15	Employees are doing double duties
16	A16	Instability of freezer temperatures, so then fish do not freeze according to schedule
17	A17	Thermoking experienced technical problems, so the frozen fish has problems during distribution process
18	A18	Fish shipped in by suppliers are not using standard company vehicles
19	A19	Inadequate sanitation during handling conducted by supplier
20	A20	Temperature during initial handling that is not according to standard

Table 3. ARP Values Recapitulation

Rank	Code	ARP	Percentage	Cumulative Percentage
1	A9	2.085	12,263	12,263
2	A20	1.386	8,152	20,415
3	A18	1.302	7,658	28,073
4	A13	1.280	7,529	35,602
5	A7	1.244	7,317	42,918
6	A19	1.188	6,987	49,906
7	A6	1.144	6,729	56,635
8	A1	1.017	5,982	62,616
9	A5	1.017	5,982	68,598
10	A14	0.888	5,223	73,821
Rank	Code	ARP	Percentage	Cumulative Percentage
------	------	-----	------------	----------------------
11	A16	831	4.888	78,708
12	A3	816	4.799	83,508
13	A20	556	3.270	86,778
14	A17	448	2.635	89,413
15	A15	441	2.594	92,007
16	A8	423	2.488	94,495
17	A4	417	2.453	96,947
18	A11	351	2.064	99,012
19	A12	108	0.635	99,647
20	A10	60	0.353	100,000

Pareto Diagram for ARP Values

![Pareto Diagram](image)

Figure 1. Pareto Diagram for ARP Values

The scenario preparation is conducted to see if the risks that happen are either easy to handle or hard to handle. Table 4 shows the fuzzy sets used in the Mamdani fuzzy logic.

Table 4. Fuzzy Sets

No	Function	Variable	Fuzzy Sets	Range	Parameters
1	Input	A9	Very Easy to Handle	0-417	
			Easy to Handle	417-834	
			Can be Handled	834-1251	
			Hard to Handle	1.251-1.668	
		A20	Very Hard to Handle	1.668-2.085	
			Very Easy to Handle	0-277	
			Easy to Handle	277-554	
			Can be Handled	554-832	
			Hard to Handle	832-1.109	
2	Output	Risk Status	Easy to Handle	1.386-2.085	
			Hard to Handle	1.386-1.736	
Based on the results processing using Mamdani fuzzy logic, A9 Variable is on the Fuzzy 1043 set that can be handled, because the membership function that is placed in parameters 834-1.251. For A20 Variable it in the Fuzzy 639 set which can be handled, because its membership function is placed on parameters 554-832. Meanwhile the risk status is on 1.536 that is placed in parameters 1.386-1.736, therefore the mitigation status is easy to handle.

Human error (A9) can cause many other risks, they are: broken production processing equipment, tuna can be contaminated with other substances, presence of bacteria in tuna, incorrect tuna preparation process that causes a lot of the fish’s organs to be thrown away, the decrease of tuna quality and errors of tuna preparation. There are 5 risk managements that can be practiced to prevent the human error risk cause (A9) on level 1, that are: giving work trainings based on standard operational procedure (SOP) that have been made, the company must practice the Standard Operational Procedure principles in a simple way, conducting employees’ evaluation regularly, evaluating the root cause of a problem and improving work discipline.

On level 2 A9 risk management there are 9 mitigations that can be practiced they are: giving work trainings, placing SOP banners in each room, conducting kaizen project, conducting performance ratings for employees, conduct regular meetings, routine supervision, creating a conductive working environment, give rewards or punishment and create a workplace that is in accordance to 5S principles. Figure 2 shows A9 risk management.

Temperature risk during initial handling that is not according to standard (A20) can cause other risks, they are: tuna that are not up to standards, contaminated tuna, presence of bacteria in tuna and the decrease of tuna quality. There are 2 risk managements that can be practiced to prevent the temperature-caused risk during initial handling that is not according to standard (A20), they are: choosing suppliers.
based on the good quality of raw materials and the supplier must use vehicles that are in accordance to fish shipping standards.

In the Level 2 risk management there was 4 mitigations that were performed, they are: analyzing the strengths and weaknesses of the supplier, make absolute work cooperation contract, using pick up cars that are included with ice, and using motorcycle or becak that is equipped with insulation. Figure 3 shows A20 risk management.

4. Conclusion
There are 33 risk events and 20 risk events that were identified on the cold chain system of tuna freezing process in Aceh. A9 variable (human error) and A20 (the temperature during initial handling that is not according to standards) were 2 risk causes with the highest ARP values which are prioritized to create a risk management design. The processing result with Fuzzy Mamdani method was a status that gives the risk cause for both variables, therefore it was easier to handle. The risk managements level 1 was carried out for A2 were to give work training, the practice of SOP principles, conducting employees’ evaluations, evaluating root cause and improving work discipline. Meanwhile A20 is around choosing suppliers and suppliers must use vehicles that are appropriate with the shipping fish standards.

Acknowledgments
This research is supported by Universitas Syiah Kuala, Ministry of Research, Technology, and Education of Indonesia, in accordance with the Letter of Appointment Agreement of Research Assistant Professor (Lektor) of Fiscal Year 2019 Number: 157/UN11.2/PP/PNBP/SP3/2019 Date February 8, 2019. Thanks and high appreciation to Rector and Head of LPPM Universitas Syiah Kuala.

References
[1] Sentia P D, Mukhtar M and Shukor S A 2013 Procedia Technol. 11 403–410
[2] Huanhuan F, Jing C, Wei Z, Rungsardthong V and Xiaoshuan Z 2018 Food Control 98 348-358
[3] Pujawan I N and Geraldin L H 2009 Bus. Process Manag. 15 953–67
[4] Oliva F and Revetria R 2008 WSEAS Int. Conf. Syst. 361-365.
[5] Aung M M and Chang Y S 2014 Food Control 40 198–207
[6] Bishara R H 2006 Am. Pharm. Rev. 1–4
[7] Matthias D M, Robertson J, Garrison M M, Newland S and Nelson C 2007 Vaccine 25 3980–3986
[8] Anggrahini D, Dana P and Sulistiyono M 2015 Procedia Manuf. 4 252–60

Figure 3. A20 Risk Management Variables
[9] Nastasijević I, B L and Z P 2017 *Int. Meat Ind. Conf.* **85** 012022
[10] Zhang H 2017 *Ind. Manag. Data Syst.* **117** 1800–1816
[11] Nguyen T L T, Tran T T, Huynh T P, Ho T K D, Le A T and Do T K H 2018 *Int. Conf. Ind. Syst. Eng.* **337** 012030.
[12] Achmadi R E 2018 *Proc. Int. Conf. Ind. Eng. Oper. Manag.* 1763–72
[13] Upadhyya M S 2013 *Comput. Appl.* **6** 89–93
[14] Ma H, Wong W C, Ma H and Wong W C 2018 *Ind. Manag. Data Syst.* **118** 1463-1476.