Using a rank-based design in estimating prevalence of breast cancer

M. Mahdizadeh · Ehsan Zamanzade

Accepted: 22 December 2021 / Published online: 10 February 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

It is highly important for governments and health organizations to monitor the prevalence of breast cancer as a leading source of cancer-related death among women. However, the accurate diagnosis of this disease is expensive, especially in developing countries. This article concerns a cost-efficient method for estimating prevalence of breast cancer, when diagnosis is based on a comprehensive biopsy procedure. Multistage ranked set sampling (MSRSS) is utilized to develop a proportion estimator. This design employs imprecise rankings based on some visually assessed cytological covariates, so as to provide the experimenter with a more informative sample. Theoretical properties of the proposed estimator are explored. Evidence from numerical studies is reported. The developed procedure can be substantially more efficient than its competitor in simple random sampling (SRS). In some situations, the proportion estimation in MSRSS needs around 76% fewer observations than that in SRS, given a precision level. Thus, using MSRSS may lead to a considerable reduction in cost with respect to SRS. In many medical studies, e.g., diagnosing breast cancer based on a full biopsy procedure, exact quantification is difficult (costly and/or time-consuming), but the potential sample units can be ranked fairly accurately without actual measurements. In this setup, multistage ranked set sampling is an appropriate design for developing cost-efficient statistical methods.

Keywords Breast cancer · Cost-efficient design · Imprecise ranking · Proportion estimation

1 Introduction

Breast cancer is the most commonly occurring female cancer and a leading source of cancer-related deaths among women worldwide. It is thought to be a disease of the developed world, while it is prevalent in developing countries as well. Breast cancer survival rate in developed countries is higher than that in middle-/low-income countries, where the lack of early detection programs with good coverage is pronounced. In developing countries, the situation is deteriorated by the lack of adequate diagnosis and treatment facilities. Many studies have been conducted about different aspects of breast cancer (Wahde and Szallasi 2006; Coelho et al. 2011; Ogiela and Krzyworzeka 2016).

Although the causes of breast cancer are not fully understood, researchers concur that certain factors raise a person’s risk of developing this disease. These factors include age, family and personal health history, genetics, and hormonal factor, among others. Adopting proper prevention measures, at different levels, may reduce incidence rate of the disease in the long term.

Unfortunately, there is no definitive method of preventing breast cancer. The early detection, however, is a crucial step for the successful management of the disease. It allows for different treatment options, thereby increasing survival chance and improving quality of life. In addition, this may cut the treatment costs which are high for both the involved person and society as a whole.

Some standard tests which can be utilized to diagnose breast cancer include breast examination, mammogram, breast ultrasound, and biopsy. The last one is the only definite way to diagnose breast cancer. In this method, tissues or cells are removed from the body in order to be tested in a laboratory. Then, a pathologist verifies whether the sample contains cancer cells. A comprehensive biopsy procedure is...
costly, and processing the results takes time. Fine needle aspiration (FNA) biopsy is the least expensive technique of tissue sampling, which provides reliable results. This belongs to a group of less invasive methods for sampling a breast lesion to determine if it is cancerous or benign. The FNA biopsy has been successfully applied in early detection of breast cancer. Owing to this diagnostic tool, many unjustified major surgical (open) biopsies are avoided.

Suppose we are interested in estimating the prevalence of breast cancer in a given population, using a full biopsy procedure. Taking cost considerations into account, it is interesting to employ a sampling design that enables us to draw inference about the population proportion based on a possibly small sample. Toward this end, rank-based sampling methods can be efficiently adopted. They are applicable in settings where exact quantification is difficult (costly and/or time-consuming), while imprecise ranking of the potential sample units can be done fairly accurately and easily. The rankings are performed by judgment or through use of an easily available covariate, and they need not be totally free of errors. For example, in the context breast cancer, the FNA biopsy is a quick and a relatively cheap test which yields some visually assessed cytological characteristics (covariates). These covariates can be used to rank the patients according to the probability of having cancerous tumors in a rank-based sampling method. The imprecise ranking process assists the experimenter to focus attention toward the actual measurement of more representative units in the population, thereby enhancing precision of the estimation.

Ranked set sampling (RSS) is a ranked-based design, due to McIntyre (1952) which is a cost-efficient alternative to simple random sampling (SRS). It has been recently applied in a variety of disciplines, including environmental studies (Mahdizadeh and Strzalkowska-Kominiak 2017), auditing (Gemayel et al. 2012), and medicine (Mahdizadeh and Zamanzade 2020a, 2021), among others. In this article, we deal with estimating the prevalence of breast cancer using a generalization of RSS, i.e., multistage ranked set sampling (MSRSS).

In Sect. 2, proportion estimator under MSRSS is presented, and its properties are studied. Sections 3 contains results of a simulation study performed to investigate finite sample performance of the proposed estimator. Some illustrations using real data are included in Sect. 4. Discussion and direction for future research are provided in Sect. 5. Proofs are collected in Appendix A. Computer code for drawing a multistage ranked set sample is given in Appendix B.

2 The proportion estimation in MSRSS

According to RSS scheme, a sample of size \(N = nm \), using set size \(m \), is obtained as follows:

1. First, \(m^2 \) units are identified from the population.
2. Next, the \(m^2 \) units are randomly divided into \(m \) sets of size \(m \).
3. The elements of the \(i \)th \((i = 1, \ldots, m)\) set are ordered, and the unit with judgment rank \(i \) is identified.
4. The \(m \) units identified in step 3 are actually measured.
5. Finally, steps 1–4 are repeated for \(n \) cycles.

The ranking mechanism in step 3 does not involve actual quantifications of the attribute of interest. This can be based on expert opinion, or covariates’ information. The final sample may be denoted as \{ \(X_{i[j]} : i = 1, \ldots, m ; j = 1, \ldots, n \) \}, where \(X_{i[j]} \) is the \(i \)th judgment order statistic in the \(j \)th cycle. This sample is more informative than a sample of size \(N \) collected by SRS, and thus it often improves statistical inference. The better the ranking quality, the higher the amount of improvement. Perfect ranking is the situation that ranking errors are absent. The ranking scheme is said to be consistent if the same ranking mechanism is applied to all sets of size \(m \).

In order to clarify RSS, we describe drawing a ranked set sample using \(m = 3 \) and \(n = 1 \). First, 9 sample units are identified from the population and randomly divided into 3 sets of size 3. The three sets are denoted by

\[
\begin{align*}
\{U_1^1, U_1^2, U_1^3\}, & \quad \{U_2^1, U_2^2, U_2^3\}, & \quad \{U_3^1, U_3^2, U_3^3\}, \\
\{U_1^1, U_2^2, U_3^3\}, & \quad \{U_1^2, U_2^3, U_3^1\}, & \quad \{U_1^3, U_2^1, U_3^2\}, \\
\{U_1^1, U_2^2, U_3^3\}, & \quad \{U_1^2, U_2^3, U_3^1\}, & \quad \{U_1^3, U_2^1, U_3^2\},
\end{align*}
\]

where \(U_i^j (i, j = 1, 2, 3) \) is the \(i \)th units in the \(j \)th set. In each set, the units are ordered with respect to the variable of interest. This step results in

\[
\begin{align*}
\{U_{[1]}^1, U_{[2]}^1, U_{[3]}^1\}, & \quad \{U_{[1]}^2, U_{[2]}^2, U_{[3]}^2\}, & \quad \{U_{[1]}^3, U_{[2]}^3, U_{[3]}^3\}, \\
\{U_{[1]}^1, U_{[2]}^2, U_{[3]}^3\}, & \quad \{U_{[1]}^2, U_{[2]}^3, U_{[3]}^1\}, & \quad \{U_{[1]}^3, U_{[2]}^1, U_{[3]}^2\},
\end{align*}
\]

where \(U_{[j]}^i (i, j = 1, 2, 3) \) shows the unit with judgment rank \(i \) in the \(j \)th set. Finally, the ranked set sample is obtained by quantifying the variable of interest for elements of the set \(\{U_{[1]}^1, U_{[2]}^2, U_{[3]}^3\} \).

Many RSS-based procedures have been developed for discrete and continuous data; see Wolfe (2012) for a recent review. In the following, we focus on binary data. Terpstra and Liudahl (2004) and Chen et al. (2005) addressed point estimation for the population proportion \(p \), while Terpstra and Miller (2006) and Terpstra and Wang (2008) dealt with interval estimation problem. Zamanzade and Mahdizadeh (2017) proposed a proportion estimator that efficiently uses the ranking information. Zamanzade and Mahdizadeh (2018) studied estimating the population proportion in pair ranked set sampling. Frey and Zhang (2021) developed robust confidence intervals for a proportion.
Let \(X_{[i]} \) be either 0 or 1 representing a failure or success, respectively. Then, the proportion estimator in RSS is given by
\[
\hat{p}_{RSS} = \frac{1}{nm} \sum_{i=1}^{m} \sum_{j=1}^{n} X_{[i]j}.
\]

Suppose the proportion estimator based on a simple random sample of size \(N \) is denoted by \(\hat{p}_{RS} \). The next result states important properties of \(\hat{p}_{RSS} \), which holds regardless of the ranking quality. It can be found in the literature, but the proof has not been detailed, as far as we know.

Proposition 1 Let \(\{X_{[i]} : i = 1, \ldots, m ; j = 1, \ldots, n\} \) be a ranked set sample, drawn based on a consistent ranking scheme, from a population with proportion \(p \). If \(\hat{p}_{RSS} \) is defined as above and \(p_{[i]} = E (X_{[i]}) \), then

(a) \(E (\hat{p}_{RSS}) = p \) and \(\text{Var} (\hat{p}_{RSS}) = \sum_{i=1}^{m} p_{[i]} (1 - p_{[i]}) / (nm^2) \).

(b) \(\text{Var} (\hat{p}_{RSS}) \leq \text{Var} (\hat{p}_{RS}) \).

(c) As \(n \) tends to infinity,
\[
\sqrt{N} (\hat{p}_{RSS} - p) \xrightarrow{d} \mathcal{N} \left(0, \frac{1}{m} \sum_{i=1}^{m} p_{[i]} (1 - p_{[i]}) \right),
\]
where \(\xrightarrow{d} \) denotes convergence in distribution.

The original RSS scheme has been tailored to propose more efficient designs in specific situations. MSRSS scheme, due to Al-Saleh and Al-Omari (2002), is an interesting generalization that allows attaining higher efficiency, given a fixed set size. An \(r \)th stage ranked set sample of size \(N = mn \), using set size \(m \), is obtained as follows:

1. First, \(m^{r+1} \) units are identified from the population.
2. Next, the \(m^{r+1} \) units are randomly divided into \(m^{r-1} \) sets of size \(m \).
3. Steps 1 and 2 of RSS algorithm are done on each set in step 2 to have a (judgment) ranked set of size \(m \). This yields \(m^{r-1} \) (judgment) ranked sets of size \(m \).
4. Step 3 is done on the \(m^{r-1} \) ranked sets to have \(m^{r-2} \) second stage (judgment) ranked sets of size \(m \).
5. Step 3 is repeated until ending in an \(r \)th stage (judgment) ranked set of size \(m \).
6. The \(m \) units identified in step 5 are actually measured.
7. Finally, steps 1–6 are repeated for \(n \) cycles.

The resulting multistage ranked set sample is denoted by \(\{X^{(r)}_{[i]j} : i = 1, \ldots, m ; j = 1, \ldots, n\} \), where \(X^{(r)}_{[i]j} \) is the \(i \)th judgment order statistic in the \(j \)th cycle. Apparently, MSRSS with \(r = 1 \) is simply the basic RSS.

We now illustrate drawing a multistage ranked set sample using \(r = 2, m = 3, \) and \(n = 1 \). First, 27 sample units are identified from the population and randomly divided into three sets of size 9. The three sets are denoted by
\[
\begin{pmatrix}
V^1_{[1]} & V^1_{[2]} & V^1_{[3]} \\
V^2_{[1]} & V^2_{[2]} & V^2_{[3]} \\
V^3_{[1]} & V^3_{[2]} & V^3_{[3]}
\end{pmatrix}, \quad \begin{pmatrix}
V^2_{[1]} & V^2_{[2]} & V^2_{[3]} \\
V^3_{[1]} & V^3_{[2]} & V^3_{[3]} \\
V^3_{[1]} & V^3_{[2]} & V^3_{[3]}
\end{pmatrix}, \quad \begin{pmatrix}
V^3_{[1]} & V^3_{[2]} & V^3_{[3]} \\
V^3_{[1]} & V^3_{[2]} & V^3_{[3]}
\end{pmatrix},
\]
where \(V^k_{ij} (i, j, k = 1, 2, 3) \) is the unit in the \(i \)th row and \(j \)th column of the \(k \)th set. In each set, the units of each row are ordered with respect to the variable of interest. This step yields
\[
\begin{pmatrix}
V^1_{[1]} & V^1_{[2]} & V^1_{[3]} \\
V^2_{[1]} & V^2_{[2]} & V^2_{[3]} \\
V^3_{[1]} & V^3_{[2]} & V^3_{[3]}
\end{pmatrix}, \quad \begin{pmatrix}
V^2_{[1]} & V^2_{[2]} & V^2_{[3]} \\
V^3_{[1]} & V^3_{[2]} & V^3_{[3]}
\end{pmatrix}, \quad \begin{pmatrix}
V^3_{[1]} & V^3_{[2]} & V^3_{[3]}
\end{pmatrix},
\]
where \(V^k_{ij} (i, j, k = 1, 2, 3) \) shows the unit with judgment rank \(j \) in the \(i \)th row of the \(k \)th set. Next, the units in the sets
\[
S_1 = \{V^1_{[1]}, V^2_{[2]}, V^1_{[3]}\}, \quad S_2 = \{V^2_{[1]}, V^2_{[2]}, V^2_{[3]}\},
\]
are ordered. Finally, the second-stage ranked set sample is obtained by quantifying the variable of interest for elements of the set \(\{V^1_{[i]}, V^2_{[j]}, V^3_{[k]}\} \), where \(V^i_{[k]} (i = 1, 2, 3) \) is the unit with judgment rank \(i \) in \(S_i \).

MSRSS has been applied in estimating the population mean by Al-Saleh and Al-Omari (2002). Frey and Feeman (2018) and Mahdizadeh and Zamanzadeh (2017, 2019a) are examples of recent works based on this design. To the best of our knowledge, proportion estimation in MSRSS has not been investigated in the literature. In particular, this is a frequently used procedure in medical studies.

We propose proportion estimator in MSRSS as
\[
\hat{p}_{MSRSS} = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} X^{(r)}_{[i]j}.
\]

Properties of this estimator are derived in analogy with the sample mean in MSRSS. The main results are summarized in the next proposition.
Proposition 2 Let \(\{X_{i[j]}^{(r)} : i = 1, \ldots, m ; j = 1, \ldots, n\} \) be a multistage ranked set sample, drawn based on a consistent ranking scheme, from a population with proportion \(p \). If \(\hat{p}_{\text{MSRSS}}^{(r)} \) is defined as above and \(\hat{p}_{i[j]}^{(r)} = E \left(X_{i[j]}^{(r)} \right) \), then

(a) \(E \left(\hat{p}_{\text{MSRSS}}^{(r)} \right) = p \) and
\[
\text{Var} \left(\hat{p}_{\text{MSRSS}}^{(r)} \right) = \sum_{i=1}^{m} p_{i[j]}^{(r)} \left(1 - p_{i[j]}^{(r)} \right) / (nm^2).
\]
(b) \(\text{Var} \left(\hat{p}_{\text{MSRSS}}^{(r)} \right) \leq \text{Var} \left(\hat{p}_{\text{SRS}} \right) \).
(c) The variance of \(\hat{p}_{\text{MSRSS}}^{(r)} \) is decreasing in \(r \), if the perfect ranking is assumed.
(d) As \(n \) tends to infinity,
\[
\sqrt{N} \left(\hat{p}_{\text{MSRSS}}^{(r)} - p \right) \overset{d}{\rightarrow} \mathcal{N} \left(0, \frac{1}{m} \sum_{i=1}^{m} p_{i[j]}^{(r)} \left(1 - p_{i[j]}^{(r)} \right) \right),
\]
where \(\overset{d}{\rightarrow} \) denotes convergence in distribution.

3 Simulation study

To investigate finite-sample properties of the proposed estimator, we conducted a Monte Carlo simulation. Since the proportion estimators in SRS and RSS are both unbiased, relative efficiency (RE) of \(\hat{p}_{\text{MSRSS}}^{(r)} \) with respect to \(\hat{p}_{\text{SRS}} \) can be defined as
\[
\text{RE} = \frac{\text{Var} \left(\hat{p}_{\text{SRS}} \right)}{\text{Var} \left(\hat{p}_{\text{MSRSS}}^{(r)} \right)}.
\]
Comparing the variance of \(\hat{p}_{\text{MSRSS}}^{(r)} \) in Proposition 2 (a) with that of \(\hat{p}_{\text{SRS}} \), it is easily seen that the above RE does not depend on the number of cycles. In our comparisons, we thus assumed that \(n = 1 \). Also, \(m \in \{3, 4, 5\} \), \(r \in \{1, 2, 3, 4\} \), and \(p \in [0, 1] \) were selected.

The numerator of the RE has a simple formula, i.e.,
\[
\text{Var} \left(\hat{p}_{\text{SRS}} \right) = p(1 - p) / N.
\]
In order to determine the RE, the variance of \(\hat{p}_{\text{MSRSS}}^{(r)} \) should be approximated, as it is not available in explicit form. To this end, 100,000 samples are drawn in MSRSS, and the proportion estimator is computed from each sample. Finally, sample variance of the resulting values provides an approximation for the variance of \(\hat{p}_{\text{MSRSS}}^{(r)} \).

In generating multistage ranked set samples, we need a model that allows to consider possibility of the judgment ranking errors. In RSS literature, such models are known as imperfect ranking models; see Frey (2007), for example. In the following, we describe an extension of the imperfect ranking model developed by Dell and Clutter (1972).

Suppose the variable of interest \(X \), with mean \(\mu_X \) and standard deviation \(\sigma_X \), is ranked by means of a covariate \(Y \). In this model, the two variables are related as
\[
Y = \lambda \left(\frac{X - \mu_X}{\sigma_X} \right) + \sqrt{1 - \lambda^2} Z,
\]
where \(Z \) is a standard normal random variable independent of \(X \). Here, the ranking quality is determined by parameter \(\lambda \), which is the correlation coefficient between \(X \) and \(Y \). The random ranking and the perfect ranking correspond to \(\lambda = 0 \) and \(\lambda = 1 \), respectively. In our problem, \(X \) is a Bernoulli random variable with the success probability \(p \), so we have \(\mu_X = p \) and \(\sigma_X = \sqrt{p(1 - p)} \).

For each combination of \(m, r, \) and \(p \), efficiency of \(\hat{p}_{\text{MSRSS}}^{(r)} \) relative to \(\hat{p}_{\text{SRS}} \) was estimated, using the procedure described earlier. In doing so, the judgment ranking process was based on the above model with \(\lambda \in \{1, 0.85, 0.7\} \).

Figures 1, 2, and 3 display the results for different set sizes. The proportion estimator in SRS is always outperformed by its MSRSS analog. Additionally, for fixed \(m \) and \(r \), the RE takes the highest value at \(p = 0.5 \), while it declines symmetrically toward \(p = 0 \) and \(p = 1 \). For any combination of \(m \) and \(p \), increasing \(r \) gives rise to improvement in the RE, and this is more evident as \(p \) deviates from zero/unity. Finally, efficiency gain is naturally increasing in \(\lambda \), given that the other factors are fixed. This is the case with most of the statistical methods developed for RSS-based schemes. It is interesting to note that for a small sample of size 5, \(\hat{p}_{\text{MSRSS}}^{(r)} \) could be four times more efficient than \(\hat{p}_{\text{SRS}} \) if \(p \) is close to 0.5, and the perfect ranking is assumed (see the top panel in Fig. 3).

As shown in Proposition 2 (b), the proportion estimator in MSRSS is more efficient than its SRS version based on the same number of measurements. Therefore, the proposed estimator has a good potential to be used whenever cost consideration is of high importance, which is the case in many medical studies. For example, if a predetermined error bound in estimating the true proportion is desired, then it can be achieved with a smaller sample in MSRSS as compared with SRS, thereby reducing the involved cost. Formally, percentage of sample size reduction (PSSR) can be measured via
\[
PSSR = \left[1 - \frac{\text{Var} \left(\hat{p}_{\text{MSRSS}}^{(r)} \right)}{\text{Var} \left(\hat{p}_{\text{SRS}} \right)} \right] \times 100.
\]
Table 1 contains estimated values of this criterion for \(m \in \{3, 4, 5\} \), \(r \in \{1, 2, 3, 4\} \), and \(p \in \{0.1, 0.25, 0.5, 0.75, 0.9\} \) in the perfect ranking setup. The estimation is done similar to that of the RE. It is observed that trends of the RE in Figures 1, 2, 3 are reflected here. For fixed \(m \) and \(r \), the PSSR reaches its maximum at \(p = 0.5 \), while it falls symmetrically toward \(p = 0.1 \) and \(p = 0.9 \). If the other factors are fixed, then the PSSR is increasing \(r \). Interestingly, the proportion estimation in MSRSS needs 76.90% fewer observations than
that in SRS when $m = 5$, $r = 4$, and $p = 0.5$. This could be an appealing feature for medical researchers whose works require expensive measurements.

4 Illustration using real data

In this section, the proposed procedure is illustrated using Wisconsin Breast Cancer Data (WBCD), which was originally compiled by Street et al. (1993). It is one of the first data sets where feature extraction was conducted in an attempt to apply a machine learning algorithm for improving malignancy prediction of a medical condition. Employing image recognition and machine learning techniques on this data set, Street et al. (1993) achieved a major advance in the accuracy of malignant tumor prediction.

The WBCD includes 699 observations on ten variables, which is accessible via “mlbench” Package\(^1\) developed for R statistical software. The dichotomous variable of interest (X) indicates whether a tumor is malignant (success) or benign (failure). Here, malignancy was diagnosed through a comprehensive biopsy procedure. Additionally, there are nine visually assessed cytological covariates which are pertinent to determination of breast cancer: clump thickness (Y_1), uniformity of cell size (Y_2), uniformity of cell shape (Y_3), marginal adhesion (Y_4), single epithelial cell size (Y_5), bare nuclei (Y_6), bland chromatin (Y_7), normal nucleoli (Y_8), and mitoses (Y_{10}). These covariates are easily obtained from the FNA biopsy, and their values range from 1 (normal) through 10 (most abnormal).

In the following, the WBCD is considered as a hypothetical population. Then, drawing a multistage ranked set sample is exemplified, and the efficiency of SRS and MSRSS in estimating the population proportion is compared.

4.1 An example of sampling in MSRSS

Here, we describe MSRSS using $r = 2$, $m = 3$, and $n = 1$. It is assumed that the judgment ranking is based on the covariate Y_2. First, 27 sample units are drawn with replacement from the population and are randomly divided into three sets of

\(^1\) https://cran.r-project.org/web/packages/mlbench/index.html.
Fig. 3 The estimated RE for $m = 5$ and $\lambda \in \{1, 0.85, 0.7\}$, where black/solid, blue/dashed, red/dotted, and orange/curves relate to $r = 1$, $r = 2$, $r = 3$, and $r = 4$, respectively.

Table 1 The estimated PSSR for $m \in \{3, 4, 5\}$, $r \in \{1, 2, 3, 4\}$, and $p \in \{0.1, 0.25, 0.5, 0.75, 0.9\}$ in the perfect ranking setup

m	r	0.1	0.25	0.5	0.75	0.9
3	1	16.16	30.88	37.37	30.78	16.61
	2	20.52	43.87	53.20	43.25	20.47
	3	21.53	50.73	59.78	50.90	21.71
	4	22.04	55.17	63.19	55.41	22.04
4	1	22.73	38.53	45.70	38.55	22.38
	2	28.89	53.59	61.21	53.33	29.22
	3	31.57	61.80	69.34	61.49	31.40
	4	32.71	67.24	73.96	67.34	32.52
5	1	27.94	44.51	50.72	44.26	27.80
	2	36.84	60.38	66.99	60.16	37.03
	3	40.61	67.24	73.68	67.47	40.96
	4	42.53	71.32	76.90	71.51	42.73

size 9. The three sets are given by

\[
\begin{pmatrix}
V_{11}^1(8) & V_{12}^1(1) & V_{13}^1(1) \\
V_{21}^1(4) & V_{22}^1(2) & V_{23}^1(1) \\
V_{31}^1(1) & V_{32}^1(6) & V_{33}^1(8)
\end{pmatrix}, \quad
\begin{pmatrix}
V_{11}^2(10) & V_{12}^2(6) & V_{13}^2(1) \\
V_{21}^2(1) & V_{22}^2(7) & V_{23}^2(1) \\
V_{31}^2(2) & V_{32}^2(1) & V_{33}^2(3)
\end{pmatrix}, \quad
\begin{pmatrix}
V_{11}^3(1) & V_{12}^3(8) & V_{13}^3(1) \\
V_{21}^3(3) & V_{22}^3(6) & V_{23}^3(1) \\
V_{31}^3(1) & V_{32}^3(6) & V_{33}^3(3)
\end{pmatrix},
\]

where we utilized the same notation introduced in Sect. 2 for illustration of MSRSS. Also, value of the covariate for any unit appears in parentheses. In each set, the units of each row are ordered using the covariate’s information. In the case that ties occur during this process, they are broken at random. Proceeding in this way, we arrive at

\[
\begin{pmatrix}
V_{11}^1(1) & V_{12}^1(1) & V_{13}^1(8) \\
V_{21}^1(1) & V_{22}^1(2) & V_{23}^1(4) \\
V_{31}^1(1) & V_{32}^1(6) & V_{33}^1(8)
\end{pmatrix}, \quad
\begin{pmatrix}
V_{11}^2(1) & V_{12}^2(6) & V_{13}^2(10) \\
V_{21}^2(1) & V_{22}^2(7) & V_{23}^2(1) \\
V_{31}^2(1) & V_{32}^2(6) & V_{33}^2(2)
\end{pmatrix}, \quad
\begin{pmatrix}
V_{11}^3(1) & V_{12}^3(8) & V_{13}^3(10) \\
V_{21}^3(1) & V_{22}^3(3) & V_{23}^3(6) \\
V_{31}^3(1) & V_{32}^3(3) & V_{33}^3(6)
\end{pmatrix},
\]

Now, the units in the sets

\[
S_1 = \left\{ V_{11}^1(1), V_{12}^1(2), V_{13}^1(8) \right\},
\]

\[
S_2 = \left\{ V_{11}^2(1), V_{12}^2(1), V_{13}^2(2) \right\},
\]

\[
S_3 = \left\{ V_{11}^3(1), V_{12}^3(3), V_{13}^3(6) \right\},
\]

are ordered, and the unit with judgment rank i ($i = 1, 2, 3$) in S_j is selected for actual measurement. This is to say that the second-stage ranked set sample is obtained by quantifying X for $V_{11}^1(1)$, $V_{22}^1(1)$, and $V_{33}^1(8)$. The resulting sample is given by

\[
\begin{pmatrix}
X_{[1]}^{(2)} = 0, X_{[2]}^{(2)} = 0, X_{[3]}^{(2)} = 1
\end{pmatrix},
\]

where 0 (1) shows that a tumor is benign (malignant). According to MSRSS procedure in Sect. 2, $X_{[i]}^{(r)}$ is the ith judgment order statistic in the jth cycle. Appendix B presents an R code for drawing a
multistage ranked set sample when the judgment ranking is based on a covariate.

4.2 Efficiency comparison

In this subsection, we investigate performances of SRS and MSRSS designs in estimating the proportion of malignant breast tumors. In this population, 241 out of 699 patients have malignant breast tumors, so the true population proportion is \(p = 0.34 \). The efficiency comparison is based on the RE defined in Sect. 3. This quantity is again determined through Monte Carlo simulation with 100,000 replications.

In generating multistage ranked set samples, sampling from the WBCD is performed with replacement to guarantee that the quantified units are independent of each other. Also, the judgment ranking can be based on any of the nine covariates described earlier. In particular, we utilized \(Y_2 \), \(Y_5 \), and \(Y_9 \).

Spearman correlation coefficient for pairs \((X, Y_2)\), \((X, Y_5)\), and \((X, Y_9)\) is 0.86, 0.76, and 0.53, respectively. Therefore, these choices of the covariate allow us to evaluate effect of the ranking quality on the performance of \(\hat{p}^{(r)} \).

Figure 4 shows the estimated RE for \(m \in \{3, 4, 5\} \) and \(r \in \{1, 2, 3, 4\} \), under the above three judgment ranking scenarios. We used \(n = 1 \) because the RE is independent of \(n \), as mentioned before. It is seen that values of the RE exceed unity in all of the situations considered. Accordingly, the proportion estimator in MSRSS is more efficient than its competitor in SRS based on the same number of measurements. Moreover, for a fixed \(m \), the RE is increasing in \(r \). As expected, using \(Y_2 \) leads to larger values of the RE. It is worth noting that among the nine covariates, \(Y_2 \) has the highest correlation coefficient with the variable of interest \(X \).

It is interesting to examine the PSSR in estimating the proportion from the WBCD. Table 2 reports the estimated values of the PSSR for \(m \in \{3, 4, 5\} \) and \(r \in \{1, 2, 3, 4\} \). The estimation is based on 100,000 samples, and \(Y_2 \) is used in the judgment ranking process. Given a set size, the PSSR improves as the stage number becomes larger. This property was also observed for each \(p \) in Table 1. Finally, the estimated values of the PSSR fall in the range 25–49%, which seems fairly good.

5 Discussion and conclusion

In some medical studies, it is of interest to make inference about a population’s characteristic, when measurement is expensive and/or time-consuming. Utilizing cost-efficient statistical methods for data analysis is critical at this juncture. This article puts forward an efficient method for estimating prevalence of breast cancer. It builds on MSRSS that incorporates auxiliary information in order to guide the experimenter toward drawing a more representative sample, as compared with SRS. Theoretical properties of the proposed estimator are investigated, and some numerical studies are performed.

The procedure we have developed is quite general and can be applied to estimate a proportion in other problems. For example, suppose we want to study prevalence of obesity in a population, based on body fat. Dual-energy X-ray absorptiometry is one of the body fat testing methods that has been validated and thus is considered as the “gold standard”, but it is too costly to implement. The abdomen circumference is an obesity measure which is obtained readily. Thus, it can be employed as a covariate for using our proportion estimator in studying obesity.

![Fig. 4 The estimated RE from the WBCD for \(m \in \{3, 4, 5\} \) and \(r \in \{1, 2, 3, 4\} \), where black/solid, blue/dashed, and red/dotted curves relate to covariates \(Y_2 \), \(Y_5 \), and \(Y_9 \), respectively.

\(m \)	\(r \)	\(1 \)	\(2 \)	\(3 \)	\(4 \)
3	\(25.33 \)	\(34.06 \)	\(38.59 \)	\(40.40 \)	
4	\(30.11 \)	\(39.29 \)	\(44.34 \)	\(46.52 \)	
5	\(33.90 \)	\(43.27 \)	\(47.07 \)	\(48.89 \)	
A deficiency associated with MSRSS design is that drawing a sample of size \(m \), in a single cycle, requires identifying \(m^r+1 \) units from the population. The number of units may be big if \(m \) and \(r \) are large. This might hinder the use of this design in practice. To overcome this problem, we plan to use multistage pair ranked set sampling in estimating the proportion in a subsequent work. It is a modification of MSRSS, due to Mahdizadeh and Zamanzade (2019b), that allows cutting down the number of units needed for preparatory rankings by almost half.

Acknowledgements The authors are grateful to the Area Editor and the reviewer for careful reading of an earlier version of this manuscript and providing many constructive comments. Ehsan Zamanzade’s research was carried out in IPM Isfahan branch and was in part supported by a grant from IPM, Iran (No. 1400620422).

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Human and animal rights This article does not contain any studies with human participants or animals performed by any of the authors.

Appendix A

Proof of Proposition 1. (a) Let \(F_{[i]}(x) \ (i = 1, \ldots, m) \) be the common distribution function of judgment order statistics with rank \(i \), i.e., \(X_{[i]1}, \ldots, X_{[i]n} \). If the ranking scheme is consistent, then we have

\[
F(x) = \frac{1}{m} \sum_{i=1}^{m} F_{[i]}(x),
\]

where \(F(x) \) is the population distribution function (see Lemma 1 in Presnell and Bohn (1999) for details). The unbiasedness of \(\hat{p}_{RSS} \) is immediate from this identity. Also, the variance expression is obtained by noting that elements of \(\{X_{[i]j} : i = 1, \ldots, m ; j = 1, \ldots, n\} \) are independent, and each \(X_{[i]j} \) is a Bernoulli random variable with the success probability \(p_{[i]} \).

(b) From the first part, one can write

\[
Var(\hat{p}_{RSS}) = \frac{1}{nm^2} \sum_{i=1}^{m} p_{[i]}(1 - p_{[i]}) \]

\[
= \frac{1}{nm^2} \left[\sum_{i=1}^{m} p_{[i]} - \frac{m}{m} \sum_{i=1}^{m} P_{[i]}^2 \right] \]

\[
= \frac{1}{nm^2} \left[mp - \sum_{i=1}^{m} (p_{[i]} - p + p)^2 \right]
\]

The above application is now illustrated using a data set collected by Penrose et al. (1985). It includes fifteen measured variables on 252 men. Let the set of 252 men be a hypothetical population in which we focus on the body fat percentage and abdomen circumference. Body fat percentage is total body fat expressed as a percentage of total body weight. There is no generally accepted definition of obesity based on total body fat. Most researchers have used > 25% in men and > 30% in women, as cut-points to define obesity. Following this rule, the dichotomous variable of interest \((X)\) is created, where 1 or 0 indicates that a man is obese or not. The proportion of obese men in this population is \(p = 0.26 \). Similar to subsection 4.2, the RE and PSSR are estimated based on 100,000 samples for the same choices of \(m \) and \(r \). Here, the judgment ranking is performed based on the abdomen circumference \((Y)\). Spearman correlation coefficient between \(X \) and \(Y \) is 0.62. The results are presented in Fig. 5 and Table 3. As expected, the general trends parallel those in Fig. 4 and Table 2.

2 It is accessible at http://lib.stat.cmu.edu/datasets/bodyfat.
Using a rank-based design in estimating prevalence of breast cancer... 3169

It can be shown that the covariance terms in (3) are positive. (c) It can be seen that

\[
\hat{p}_{RS} = n \left(\frac{1}{m} \sum_{i=1}^{m} X_{[i]1} + \cdots + \frac{1}{m} \sum_{i=1}^{m} X_{[i]n} \right).
\]

To put it another way, \(\hat{p}_{RS} \) is the sample mean of \(n \) independent and identically distributed random variables with mean \(p \) and variance \(\frac{1}{m} \sum_{i=1}^{m} p_i (1 - p_i) / m^2 \). The asymptotic normality is then concluded from the central limit theorem.

Proof of Proposition 2. (a) An identity similar to (1) holds in MSRSS (see Proposition 3 in Mahdizadeh and Zamanzade (2020b)). It establishes that

\[
F(x) = \frac{1}{m} \sum_{i=1}^{m} F_{[i]}^{(r)}(x),
\]

where \(F_{[i]}^{(r)}(x) \) \((i = 1, \ldots, m) \) is the common distribution function of \(X_{[i]1}, \ldots, X_{[i]n} \). An application of identity (2) shows the unbiasedness of \(\hat{p}_{MSRSS} \). The corresponding variance is derived similar to that of \(\hat{p}_{RSS} \).

(b) This is proved in line with part (b) of Proposition 1.

(c) Suppose \(\chi_{(i-1)}^{(r-1)} \) \((i = 1, \ldots, m) \) is the \(i \)th order statistic of \(X_{[1]1}, \ldots, X_{[m]1} \). Then, we have

\[
Var(\hat{p}_{MSRSS}^{(r-1)}) = \frac{1}{nm^2} \left[\sum_{i=1}^{m} Var(\chi_{(i-1)}^{(r-1)}) \right]
\]

\[
= \frac{1}{nm^2} \left[\sum_{i=1}^{m} Var(\chi_{(i)}^{(r)}) \right]
\]

\[
= \frac{1}{nm^2} \left[\sum_{i=1}^{m} Var(\chi_{(i)}^{(r)}) + \sum_{i \neq j=1}^{m} Cov(\chi_{(i)}^{(r)}, \chi_{(j)}^{(r-1)}) \right].
\]

Putting (3) and (4) together, it follows that

\[
Var(\hat{p}_{MSRSS}^{(r-1)}) \geq \frac{1}{nm^2} \sum_{i=1}^{m} Var(\chi_{(i)}^{(r-1)})
\]

\[
= \frac{1}{nm^2} \sum_{i=1}^{m} Var(\chi_{(i)}^{(r)})
\]

\[
= Var(\hat{p}_{FS}^{(r)})
\]

where the first equality results from the fact that \(\chi_{(i)}^{(r-1)} \) and \(\chi_{(i)}^{(r)} \) are identically distributed according to MSRSS procedure.

(d) Proof of asymptotic normality of \(\hat{p}_{MSRSS}^{(r)} \) parallels that of \(\hat{p}_{RSS} \), and it is omitted.

Appendix B

Suppose that \(m^{r+1} \) units are randomly identified from the population and are assigned labels \(1, \ldots, m^{r+1} \). Also, the corresponding measured values for the covariate are stored in \(z \) vector. Then, we may use the following function to draw a single cycle of an \(r \)th stage ranked set sample using set size \(m \). It returns a vector of length \(m \), consisting of labels \(\ell_i \) \((i = 1, \ldots, m) \). The final sample is given by \(y_1^{(r)}, \ldots, y_{m(r)}^{(r)} \), where \(y_i^{(r)} \) is measurement of the variable of interest for the unit with label \(\ell_i \).

\[
msrss=function(m,r,zcon)
\]

\[
z=1:m^{(r+1)}
while(r>0){
\]

\[
y=ycon=numeric(m*r)
for(a in 1:m{(r-1)})
\]

\[
v=matrix(z[((a-1)*m^2+1):(a*m^2)],nrow=m,ncol=m,byrow=TRUE)
\]

\[
vcon=matrix(zcon[((a-1)*m^2+1):(a*m^2)],nrow=m,ncol=m,byrow=TRUE)
\]

\[
for(b in 1:m){
\]

\[
ycon=((a-1)*m+b)=sort(vcon[b,])
\]

\[
y[(a-1)*m+b]=y[b,][order(vcon[b,])]
\]

\[
}
\]

\[
z=zcon=numeric(m*r)
z=y; zcon=ycon
r=r-1
\}

return(z)
References

Al-Saleh MF, Al-Omari AI (2002) Multistage ranked set sampling. J Stat Plan Inference 102:273–286
Chen H, Stasny EA, Wolfe DA (2005) Ranked set sampling for efficient estimation of a population proportion. Stat Med 24:3319–3329
Coelho F, Braga AP, Natowicz R et al (2011) Semi-supervised model applied to the prediction of the response to preoperative chemotherapy for breast cancer. Soft Comput 15:1137–1144
Dell TR, Clutter JL (1972) Ranked set sampling theory with order statistics background. Biometrics 28:545–555
Frey J (2007) New imperfect rankings models for ranked set sampling. J Stat Plan Inference 137:1433–1445
Frey J, Feeman TJ (2018) Finding the maximum efficiency for multistage ranked-set sampling. Commun Stat Theory Methods 47:4131–4141
Frey J, Zhang Y (2021) Robust confidence intervals for a proportion using ranked-set sampling. J Korean Stat Soc. https://doi.org/10.1007/s42952-020-00103-3
Gemayel NM, Stasny EA, Tackett JA, Wolfe DA (2012) Ranked set sampling: an auditing application. Rev Quant Financ Acc 39:413–422
Mahdizadeh M, Strzalkowska-Kominiak E (2017) Resampling based inference for a distribution function using censored ranked set samples. Comput Stat 32:1285–1308
Mahdizadeh M, Zamanzade E (2017) Reliability estimation in multistage ranked set sampling. REVSTAT 15:565–581
Mahdizadeh M, Zamanzade E (2019a) Dynamic reliability estimation in a rank-based design. Probab Math Stat 39:1–18
Mahdizadeh M, Zamanzade E (2019b) Efficient body fat estimation using multistage pair ranked set sampling. Stat Methods Med Res 28:223–234
Mahdizadeh M, Zamanzade E (2020a) Estimating asymptotic variance of M-estimators in ranked set sampling. Comput Stat 35:1785–1803
Mahdizadeh M, Zamanzade E (2020b) Estimation of a symmetric distribution function in multistage ranked set sampling. Stat Papers 61:851–867
Mahdizadeh M, Zamanzade E (2021) Smooth estimation of the area under the ROC curve in multistage ranked set sampling. Stat Pap 62:1753–1776
McIntyre GA (1952) A method of unbiased selective sampling using ranked sets. Aust J Agric Res 3:385–390
Ogiela MR, Krzyworzeka N (2016) Heuristic approach for computer-aided lesion detection in mammograms. Soft Comput 20:4193–4202
Penrose KW, Nelson AG, Fisher AG (1985) Generalized body composition prediction equation for men using simple measurement techniques. Med Sci Sports Exerc 17:189
Presnell B, Bohn LL (1999) U-Statistics and imperfect ranking in ranked set sampling. J Nonparamet Stat 10:111–126
Street WN, Wolberg WH, Mangasarian OL (1993) Nuclear feature extraction for breast tumor diagnosis. Proc SPIE Int Soc Opt Eng 1905:861–870
Terpstra JT, Liudahl LA (2004) Concomitant-based rank set sampling proportion estimates. Stat Med 23:2061–2070
Terpstra JT, Miller ZA (2006) Exact inference for a population proportion based on a ranked set sample. Commun Stat Simul Comput 35:19–27
Terpstra JT, Wang P (2008) Confidence intervals for a population proportion based on a ranked set sample. J Stat Comput Simul 78:351–366
Wahde M, Szallasi Z (2006) Improving the prediction of the clinical outcome of breast cancer using evolutionary algorithms. Soft Comput 10:338–345
Wolfe DA (2012) Ranked set sampling: its relevance and impact on statistical inference. ISRN Probab Stat 2012:568385
Zamanzade E, Mahdizadeh M (2017) A more efficient proportion estimator in ranked set sampling. Stat Probab Lett 129:28–33
Zamanzade E, Mahdizadeh M (2018) Estimating the population proportion in pair ranked set sampling with application to air quality monitoring. J Appl Stat 45:426–437

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.