Neutron-mirror neutron oscillations in stars

Wanpeng Tan

Department of Physics, Institute for Structure and Nuclear Astrophysics (ISNAP), and Joint Institute for Nuclear Astrophysics - Center for the Evolution of Elements (JINA-CEE), University of Notre Dame, Notre Dame, Indiana 46556, USA

(Dated: May 31, 2019)

Abstract

Based on a newly proposed mirror-matter model of neutron-mirror neutron ($n-n'$) oscillations, evolution and nucleosynthesis in single stars under a new theory is presented. The new theory with the new $n-n'$ model can demonstrate the evolution in a much more convincing way than the conventional belief. In particular, many observations in stars show strong support for the new theory and the new $n-n'$ model. For example, progenitor mass limits and structures for white dwarfs and neutron stars, two different types of core collapse supernovae (Type II-P and Type II-L), synthesis of heavy elements, pulsating phenomena in stars, etc, can all be easily and naturally explained under the new theory.
Neutron dark decays or some type of $n\rightarrow n'$ oscillations [1][5] have become a focus of many research efforts recently, at least partly owing to the 1% neutron lifetime discrepancy between two different experimental techniques [6, 7]. Unfortunately, most of the ideas were dismissed shortly by other experimental work [8–12]. People are referred to Ref. [1] for more detailed discussions on this aspect. In particular, an interesting study of $n\rightarrow n'$ oscillations in neutron stars [13] combined with a detailed analysis of pulsar timings and detection of gravitational waves [12] seems to set a very tight constraint on the effect of $n\rightarrow n'$ oscillations which will be addressed in this work.

Most proposals of the $n\rightarrow n'$ type of oscillations tried to introduce some sort of very weak interaction between normal sector and mirror (dark) sector related to a high energy cutoff. Such interaction then makes a small mass difference of $n\rightarrow n'$ and hence the oscillations. The issue is that it also inevitably makes the oscillations entangled with magnetic fields in an undesirable way due to the nonzero magnetic moment of neutrons. More and more experiments keep pushing its limit to the extreme and effectively disprove such ideas.

A newly proposed model of $n\rightarrow n'$ oscillations [1], contrarily, looks at least more viable. It is based on the mirror matter theory [14][21], that is, two sectors of particles have identical interactions within their own sector but share the same gravitational force. Such a mirror matter theory has appealing theoretical features. For example, it can be embedded in the $E_8 \otimes E_8'$ superstring theory [17][22][23] and it can also be a natural extension of recently developed twin Higgs models [24][25] that protect the Higgs mass from quadratic divergences and hence solve the hierarchy or fine-tuning problem. The mirror symmetry or twin Higgs mechanism is particularly intriguing as the Large Hadron Collider has found no evidence of supersymmetry so far and we may not need supersymmetry, at least not below energies of 10 TeV. Such a mirror matter theory can explain various observations in the universe including the neutron lifetime puzzle and dark-to-baryon matter ratio [1], puzzling phenomena related to ultrahigh-energy cosmic rays [26], and a requirement of strongly self-interacting dark matter to address numerous discrepancies on the galactic scale [27].

In this new mirror matter model [1], no cross-sector interaction is introduced, unlike other $n\rightarrow n'$ type models. The critical assumption of this model is that the mirror symmetry is spontaneously broken by the uneven Higgs vacuum in the two sectors, i.e., $<\phi> \neq <\phi'>$, although very slightly (on the order of 10^{-15}) [1]. When fermion particles obtain their mass from the Yukawa coupling, it automatically leads to the mirror mixing for neutral particles,
i.e., the basis of mass eigenstates is not the same as that of mirror eigenstates, similar to
the case of ordinary neutrino oscillations due to the family or generation mixing. Further
details of the model can be found in Ref. [1].

The time evolution of \(n-n' \) oscillations in the mirror representation obeys the Schrödinger
equation,

\[
\frac{i}{\partial t} \begin{pmatrix} \phi_n \\ \phi_{n'} \end{pmatrix} = H \begin{pmatrix} \phi_n \\ \phi_{n'} \end{pmatrix}
\]

(1)

where natural units (\(\hbar = c = 1 \)) are used for simplicity, the Hamiltonian \(H \) for oscillations
in vacuum can be similarly defined as in the case of normal neutrino flavor oscillations [28],

\[
H = H_0 = \frac{\Delta_{nn'}}{2} \begin{pmatrix} -\cos 2\theta & \sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{pmatrix}
\]

(2)

and hence the probability of \(n-n' \) oscillations in vacuum is [1],

\[
P_{nn'}(t) = \sin^2(2\theta) \sin^2\left(\frac{1}{2} \Delta_{nn'} t\right).
\]

(3)

Here \(\theta \) is the \(n-n' \) mixing angle and \(\sin^2(2\theta) \) denotes the mixing strength of about \(2 \times 10^{-5} \),
\(t \) is the propagation time, and \(\Delta_{nn'} = m_{n2} - m_{n1} \) is the small mass difference of the two
mass eigenstates of about \(2 \times 10^{-6} \) [1]. Note that the equation is valid even for relativistic
neutrons and in this case \(t \) is the proper time in the particle’s rest frame.

If neutrons travel in medium, the Mikheyev-Smirnov-Wolfenstein (MSW) matter effect
[29, 30] may be important, i.e., coherent forward scattering with other nuclei can affect the
oscillations by introducing an effective interaction term in Hamiltonian,

\[
H_I = \begin{pmatrix} V_{\text{eff}} & 0 \\ 0 & 0 \end{pmatrix}
\]

(4)

and the effective potential due to coherent forward scattering can be obtained as

\[
V_{\text{eff}} = \frac{2\pi}{m_n} \sum_i b_i n_i
\]

(5)

where \(m_n \) is the neutron mass, \(n_i \) is the number density of nuclei of \(i \)-th species in the
medium, and \(b_i \) is the corresponding bound coherent scattering length as tabulated in Ref.
[31]. Therefore, the modified Hamiltonian in medium can be written as,

\[
H = H_M = \frac{\Delta_{nn'}}{2} \begin{pmatrix} -\cos 2\theta + V_{\text{eff}}/\Delta_{nn'} & \sin 2\theta \\ \sin 2\theta & \cos 2\theta - V_{\text{eff}}/\Delta_{nn'} \end{pmatrix}
\]

(6)
and the corresponding transition probability is

\[P_M(t) = \sin^2(2\theta_M) \sin^2\left(\frac{1}{2}\Delta_M t\right) \]

(7)

where \(\Delta_M = C\Delta_{nn'} \), \(\sin 2\theta_M = \sin 2\theta/C \), and the matter effect factor is defined as,

\[C = \sqrt{(\cos 2\theta - V_{eff}/\Delta_{nn'})^2 + \sin^2(2\theta)}. \]

(8)

Other incoherent collisions or interactions in the medium can reset the neutron’s oscillating wave function or collapse it into a mirror eigenstate, in other words, during mean free flight time \(\tau_f \) the \(n - n' \) transition probability is \(P_M(\tau_f) \). The number of such collisions will be \(1/\tau_f \) in a unit time. Therefore, the transition rate of \(n - n' \) for in-medium neutrons is,

\[\lambda_M = \frac{1}{\tau_f} \sin^2(2\theta_M) \sin^2\left(\frac{1}{2}\Delta_M \tau_f\right). \]

(9)

Note that the matter effect factor \(C \) cancels in Eqs. 7-9 i.e., the MSW effect is negligible if the matter density is low enough or the propagation time or reset time is short enough (e.g., when other interactions dominate). Another important feature of the matter effect is that the \(n - n' \) oscillations can become resonant as in the case of normal neutrino flavor oscillations [30]. The resonance condition is \(\cos 2\theta = V_{eff}/\Delta_{nn'} \), that is, the effective potential \(V_{eff} \) is almost equal to the \(n - n' \) mass difference since \(\cos 2\theta \sim 1 \) for \(n - n' \) oscillations. The condition obviously depends on the unknown sign of the mass difference as well. When it resonates, the effective mixing strength is nearly one compared to the vacuum value of \(2 \times 10^{-5} \).

Now we can apply this model to the evolution and nucleosynthesis of stars. In particular, single stars are discussed for simplicity and assumed to be composed of pure ordinary matter in the beginning as it is typical during the formation of inhomogeneities in the early universe and segregation of ordinary and mirror matter on the scale of galaxies or stars [15–18]. We will discuss two cases. One is low mass stars (\(< 8M_\odot \)) which will eventually die as a white dwarf. The other is more massive stars (between \(8 - 20M_\odot \)) that will undergo supernova (SN) explosion where a rapid neutron capture process (r-process) could occur for making half of all heavy elements [32] and leave a neutron star in the end.

For both cases the star burns hydrogen first via the so-called pp-chains and CNO cycles [33, 34]. This is the longest burning process and can take up to billions of years depending on its initial mass. Then the ashes of the hydrogen burning, \(^4\text{He} \) nuclei, start forming \(^{12}\text{C} \)
 TABLE I. Reaction rates $N_A < \sigma v >$ in unit of cm3/mol/s as function of stellar temperature and reaction Q-values are listed for neutron source reactions and the data are taken from JINA REACLIB database [36]. The neutron production efficiency factor f_n is defined as the ratio of the neutron mass to the total mass that goes in the reaction.

T [10^8 K]	13C(α, n)	17O(α, n)	18O(α, n)	22Ne(α, n)	12C(12C, n)	12C(16O, n)
1	4.2x10^{-14}	9.1x10^{-20}	1.3x10^{-34}	1.3x10^{-29}	7.8x10^{-135}	4.0x10^{-78}
2	3.3x10^{-8}	2.9x10^{-12}	5.8x10^{-17}	1.3x10^{-16}	1.1x10^{-68}	1.6x10^{-51}
5	7.7x10^{-2}	2.7x10^{-4}	2.4x10^{-5}	1.0x10^{-6}	3.6x10^{-28}	3.8x10^{-29}
10	2.5x10^{2}	2.0	1.3	6.3x10^{-2}	9.4x10^{-14}	1.4x10^{-17}

Q-value [MeV]	f_n	f_n	f_n	f_n	f_n	f_n
2.216	$\frac{1}{17}$	$\frac{1}{21}$	$\frac{1}{22}$	$\frac{1}{26}$	$< \frac{1}{24} \times 10\%$	$\frac{1}{28} \times 10\%$

via the triple-α process [35] at $T = 10^8$ K (9 keV in energy). However, that is where the proposed new nucleosynthesis theory starts to part ways with the conventional wisdom.

All the above processes do not produce neutrons. So we first review all the possible nuclear reactions for neutron production in stars. The reaction has to be of (X, n)-type where X may be one of existing nuclei like proton, α, or 12C at this moment. It has to be energy-releasing, i.e., with a positive Q-value. Some reactions with a slightly negative Q-value (e.g., > -1 MeV) may contribute as well, especially at higher temperatures. Reaction rates of such reactions are taken from JINA REACLIB database [36] and listed in Table I where two reactions with positive Q-values immediately stand out,

$$^{13}C + \alpha \rightarrow ^{16}O + n$$ \hspace{1cm} (10)

$$^{17}O + \alpha \rightarrow ^{20}Ne + n$$ \hspace{1cm} (11)

where the first one is fairly well studied [37] while the second reaction is not, especially at low temperatures [38, 39]. As shown in Table I, the neutron production efficiency factor f_n defined as the ratio of the neutron mass to the total mass involved in the reaction will be used extensively in the following discussion.

Conventional understanding for massive stars believes that the density and temperature are high enough at the end of the 3α process so that it can start the 12C + 12C fusion reaction, subsequently fusing the resulting heavier nuclei like oxygen, silicon, etc, and eventually
making the most bound iron material in the core \[40\]. In this scenario, although refuted by the proposed new theory, both \(^{12}\text{C}(^{12}\text{C},n)\) and \(^{12}\text{C}(^{16}\text{O},n)\) could play a role in neutron production in stars. Unfortunately, only up to 10\% of their total cross sections (with the other more than 90\% going to the emission of protons and alphas) \[41, 42\] produce neutrons making the efficiency factor \(f_n\) (shown in Table I) too small to contribute. Also listed in Table I, \(^{22}\text{Ne}(\alpha,n)\) has been considered as the neutron source reaction for the weak s-process in massive stars \[43\].

Now let us first see how the \(n - n'\) oscillation mechanism works in the conventional picture of nucleosynthesis in low mass stars like our sun. According to the conventional understanding, the star may continue to burn some of \(^{12}\text{C}\) to \(^{16}\text{O}\) by alpha capture reaction but it can not start carbon + carbon fusion due to insufficient density and temperature \[40\]. The star now has an envelope and burning shells of H and He mixed with CNO elements and a C/O core and eventually at a stage called asymptotic giant branch (AGB) where the slow neutron capture process (s-process) occurs for making heavy elements \[44\]. The neutron source reaction \(^{13}\text{C}(\alpha,n)\) operates at the outer layer of the star and \(^{13}\text{C}\) can be created from \(^{12}\text{C}\) via \(^{12}\text{C}(p,\gamma)^{13}\text{N}(\beta^+)^{13}\text{C}\).

The s-process environment is typically regarded as follows: density \(\rho \sim 10^3 \text{ g/cm}^3\); temperature \(T \sim 10^8 \text{ K}\); neutron number density \(n_n \sim 10^8 \text{ /cm}^3\) \[45\]. For simplicity, we assume the star has a little iron with a solar abundance that will serve as seed at the start of the s-process.

The mean free flight time \(\tau_f\) of neutrons in the stellar medium is determined by the scattering cross sections of nuclei. It can be defined by the scattering rate \(\lambda_f\) as follows,

\[
\frac{1}{\tau_f} \equiv \lambda_f = \sum_{\text{all nuclei}} \rho N_A < \sigma_{nN} v > Y_N \tag{12}
\]

where \(N_A\) is the Avogadro constant, \(< \sigma_{nN} v >\) is the thermal average of neutron-nucleus scattering cross section times neutron velocity, and \(Y_N\) is the mole fraction of the nucleus (i.e., its mass fraction divided by the mass number of the nucleus) \[40\]. The typical neutron-nucleus scattering cross section is about one barn and fairly energy-independent \[46\]. And the neutron velocity under the s-process temperature (10\(^8\) K) is about \(1.3 \times 10^6 \text{ m/s}\).

In the outer layer of the AGB where \(^{13}\text{C}(\alpha,n)\) operates, the sum of \(Y_N \sim 0.1\) corresponds to the helium and CNO elements. Therefore, we can easily get \(\tau_f \sim 10^{-9} \text{ s}\) from Eq. \[12\] for neutrons in the s-process environment and the propagation factor of Eq. \[9\] is averaged to
1/2 if we omit the matter effect for now.

On the other hand, we also need to calculate the neutron loss rate due to the capture reactions on heavy nuclei which was the main motivation in the study of the s-process. Similar to Eq. [12] we can write the neutron loss rate from capture reactions as follows,

\[\lambda_{\text{cap}} = \rho N_A <\sigma_{\text{cap}}v > Y_N \]

(13)

where the neutron capture reaction rate \(N_A <\sigma_{\text{cap}}v > \) is about \(10^3 \) cm\(^3\)/mol/s for \(^{12}\)C and about \(10^6 \) cm\(^3\)/mol/s for \(^{56}\)Fe at s-process temperature [36]. For capture reaction on \(^{56}\)Fe which represents the seed for s-process with \(Y_{56\text{Fe}} \sim 10^{-5} \) inferred from the solar abundance, the rate \(\lambda_{\text{cap}}(^{56}\text{Fe}) \) is about \(10^4 \) s\(^{-1}\). The rate is similar for capture reactions on light C/O nuclei. However, this capture process does not contribute to the loss rate of neutrons since the resulting \(^{13}\)C will release the neutron via \((\alpha, n)\) reaction later. Therefore, the neutron loss rate due to capture reactions or s-process is \(\lambda_{\text{cap}} \sim 10^4 \) s\(^{-1}\).

From Eqs. 9 - 13 we can obtain the branching ratio of the neutrons that oscillate into mirror neutrons to those that are captured into nuclei on the condition of omitting the matter effect,

\[Br(\frac{nn'}{\text{cap}}) = \frac{\lambda_f}{\lambda_{\text{cap}}} \sin^2(2\theta) \sim 1 \]

(14)

which indicates that similar amounts of neutrons lost to either \(nn' \) oscillations or s-process in the beginning. Note that this branching ratio does not depend on the density because the individual rates depend on the density in the same way and get canceled for the ratio. Also note that the condition is for the very beginning of s-process. The s-process is a very slow process as it has to wait for many long-lived nuclei to decay along the path before it can capture neutrons again [40]. So on average, s-process may only use a small fraction of all available neutrons and most of the neutrons may go via the \(n-n' \) oscillation process. Additionally, current model simulations [47] typically use very small amounts of \(^{13}\)C \((10^{-6} - 10^{-5} M_{\odot})\) to reproduce the s-process. This shows evidence that \(n-n' \) oscillations may take away most of produced neutrons.

Now we can re-visit the oscillation rate considering the matter effect for the following conditions: density of \(10^3 \) g/cm\(^3\) with compositions of 10% hydrogen and 90% carbon in mass, scattering lengths \(b(^1\text{H}) = -3.74 \) fm and \(b(^{12}\text{C}) = 6.65 \) fm [31]. Then the effective potential can be calculated as \(V_{\text{eff}} \sim 2 \times 10^{-5} \) eV that is close to the \(n-n' \) mass difference.
In fact, in slightly outer regions with lower density of about 10^2 g/cm^3, \(V_{eff} \) and \(\Delta_{nn'} \) are almost identical, i.e., leading to maximal resonant oscillations.

Then where do the mirror neutrons go? Taking the similar step as suggested in Ref. [13], the mirror neutrons coming out of the oscillations will travel to the core of the star due to gravity. The \(n - n' \) oscillations are forbidden in bound nuclei due to energy conservation, but they do occur in stars when neutrons are produced free. However, the neutrons emitted from \(^{13}\text{C}(\alpha, n)\) can have energy up to 2.2 MeV and potentially escape from the star if it oscillates immediately into a mirror neutron. Fortunately, the very short mean free flight time discussed above makes the neutron thermalized first before oscillating into a mirror neutron. Its thermal energy is about 8.6 keV at \(T = 10^8 \) K. During the thermalization process, the light neutrons (compared to heavy nuclei) will diffuse into outer regions and could probably meet the resonant condition and then maximally oscillate into mirror neutrons as discussed above. Assuming that the inner part of the star is white-dwarf-like (e.g., \(1M_\odot \) and Earth-size), it can provide a gravitational binding energy of \(\sim 0.2 \) MeV in addition to the energy the outer layer can supply should the mirror neutron escape. Therefore, most of the mirror neutrons will go to the core.

Remember that mirror neutrons interact with ordinary matter only via gravity, so they become uniformly mixed with ordinary matter in the core with equal density. The details on the core will be discussed with the new theory later.

One observation on the factor \(f_n \) in Table I seems to be particularly interesting. \(^{13}\text{C}(\alpha, n)\) converts about 1/17 of the total mass into neutrons. Suppose that all the neutrons oscillate to mirror neutrons ending up in the core, it means that almost 6% of the star mass will go into the core in this way. If other similar reactions contribute as well, this may provide a link to connect the Chandrasekhar limit [48] to the mass limit on the progenitor [49].

If this indeed is the scenario, our understanding of star nucleosynthesis has to be changed. The CNO elements may have additional functions other than serving as catalyst for making helium. In particular, the CNO elements \(^{13}\text{C} \) and \(^{17}\text{O} \) can go via \((\alpha, n)\) reaction (positive reaction Q-values) and to a certain extent \(^{18}\text{O}(\alpha, n)\) and \(^{18}\text{O}(\alpha, \gamma)^{22}\text{Ne}(\alpha, n)\) (a little negative reaction Q-values) too at higher temperatures.

As shown below in the proposed new theory, the neutron production process plays a critical role in the evolution and nucleosynthesis of a star. The \(n - n' \) oscillations dictate how the degenerate core is formed, how the mass of the progenitor is related to the Chandrasekhar
FIG. 1. The schematic diagram is shown for the structure of a red giant star at the first neutron-production $^{13}\text{C}(\alpha, n)$ phase. N and N’ in the core stand for very neutron-rich matter and mirror matter, respectively.

limit and the neutron star mass limit, and why or when the star may explode - a difficult task for current simulations to do.

Imagine in an ideal burning, starting with $^{13}\text{C}(\alpha, n)$, ^{16}O will be accumulated as ashes from the burning of all carbon nuclei. Then in the second step, hydrogen fuel is added and $^{16}\text{O}(p, \gamma)^{17}\text{F}(\beta^+)^{17}\text{O}$ will convert ^{16}O into ^{17}O. The second neutron source reaction $^{17}\text{O}(\alpha, n)$ starts to take effect and converts all oxygen nuclei to neon nuclei. From both reactions, it effectively converts star matter into mirror neutrons by $(1/17 + 1/21) = 10\%$ according to the f_n factors shown in Table I. At the same time, both neutron source reactions could provide a small fraction of neutrons for the s-process. To meet the Chandrasekhar limit of about $1.4M_\odot$ for a white dwarf, mirror neutrons cannot exceed $0.7M_\odot$ in mass or no more than $7M_\odot$ star matter can be burned. There is another $0.7M_\odot$ of ordinary matter in the core that do not participate in the burning. That brings up the lower limit of $7.7M_\odot$ for any core-collapse supernova to be possible, which is in excellent agreement with the observation limit of $8 \pm 1M_\odot$ [49].

As a matter of fact, the above picture is not unlikely; instead it is more natural. Taken into account the rates from Table I at $T = 10^8$ K when the triple-α process starts, one can see how this could occur. At this moment the star as a red giant has a helium core and hydrogen envelope and a small amount of hydrogen is mixed in the helium core. The first step considered here is dictated by the slowest triple-α reaction. Since this burning process starts from the center of the star and gradually expanding outwards, the red giant becomes brighter as it evolves. The typical structure of the star at this phase is shown in Fig. I.
When three helium nuclei fuse into a ^{12}C nucleus, it quickly captures a mixed-in proton to become unstable ^{13}N which has a 10-minute β^+-decay half-life. A possible alternative path via $^{12}\text{C}(\alpha, \gamma)$ (as commonly believed) does not play a role as its reaction rate is 15 orders of magnitude lower than that of $^{12}\text{C}(p, \gamma)$ due to a higher Coulomb barrier. Neither does $^{13}\text{C}(\alpha, \gamma)$. The only requirement is the existence of a small amount of hydrogen. Several scenarios indeed make it plausible. First, for a low metallicity star, i.e., no significant amount of CNO elements present in the beginning, only pp-chain burns the initial hydrogen. At this point of the star’s life, it is probably no more than or close to two times the p-p reaction lifetimes. Therefore, we could have more than 10% hydrogen left in the core. Even if significant CNO elements exist and exhaust hydrogen in the core, their highly temperature sensitive reaction rates result in plenty of hydrogen left at lower temperature regions outside the core. The core is not degenerate for stars with $M > 2M_\odot$, and the burning can cause convection which could bring in fresh hydrogen from outside. If none of the above works, when the triple-α burning front grows out of the small original core $^{12}\text{C}(p, \gamma)$ and subsequently $^{13}\text{C}(\alpha, n)$ can then proceed.

The two reasons why ^{13}N waits for its decay instead of capturing another proton: most of the nearby hydrogen has been used up first by ^{12}C; the $^{12}\text{C}(p, \gamma)$ rate (10^{-5} cm3/mol/s) is much higher than that of $^{13}\text{N}(p, \gamma)$ (10^{-6} cm3/mol/s)\(^{36}\). In the end, ^{13}N will decay into ^{13}C. If hydrogen is overabundant in the burning region, the CNO cycles will quickly fuse the excess into ^4He that are then burned into ^{12}C and eventually ^{13}C. Because the $^{13}\text{C}(\alpha, n)$ rate is ten orders of magnitude higher than the triple-α rate\(^{36}\), ^{13}C is quickly converted into ^{16}O after the ^{13}N decay on a 10-minute time scale behind the triple-α burning front. Note that the $n - n'$ oscillations effectively make $^{13}\text{C}(\alpha, n)$ a cooling reaction by losing the kinetic energy of the mirror neutron, which may help stabilize the burning front.

As discussed earlier, the generated neutrons then oscillate into mirror neutrons that will go in the core mixing evenly with ^{16}O. In addition, some of the mirror neutrons actually oscillate back to ordinary neutrons according to Eqs.\(^{7,9}\). To calculate the oscillation probability, we assume, at a later stage, the core has a similar density as a white dwarf (10^6 g/cm3), where mirror neutrons can be regarded as a gas of free moving particles governed solely by gravity. Applying the virial theorem on the n' system, one can estimate the mean velocity of mirror neutrons $v' = 2.5 \times 10^{-3}(M'/[g])^{1/3}$ cm/s which grows as the mirror matter mass M' increases. At some stage, e.g., $M' = 0.1M_\odot$, one can obtain $v' = 1.5 \times 10^8$ cm/s
and hence $\tau'_f \sim 10^{-14}$ s and $\lambda_{n'n} \sim 0.1$ s$^{-1}$. At earlier stages, this reverse oscillation rate can be several orders of magnitude faster. What it does is it provides free neutrons to make the ordinary core material more neutron-rich.

In the beginning, 16O in the core can be enriched up to its dripline nucleus 24O via $n' \rightarrow n$. Note that these highly neutron-rich nuclei can not undergo the usual beta decays owing to electron degeneracy in the core. As found out recently, light neutron-rich nuclei have much higher fusion cross sections than normal ones 52. So these enriched oxygen nuclei likely fuse further into very neutron rich sulfur / chromium nuclei and may further capture the leftover helium near the bottom of the ocean as shown in Fig. 1 at the same time releasing a large amount of energy. Eventually the core may develop into an onion-like structure starting from the outside layer of O, then Ne, Si, S, Cr, up to Fe in the center with all of them super neutron-rich near their dripline or maybe form a very neutron-rich Fe-only core when the mass is close to the Chandrasekhar limit.

Alternatively, mirror neutrons can undergo mirror β-decay $n' \rightarrow p' + e^- + \bar{\nu}'$ with the same lifetime of about 888 sec 1. When the ordinary core matter is fully enriched, i.e., no more neutrons can be taken, mirror neutrons have to decay to mirror protons. A mirror proton will fuse immediately with a mirror neutron to make a mirror deuteron. Subsequently, the mirror core matter will conduct mirror nucleosynthesis in a similar way as the ordinary one, e.g., three mirror alphas fuse into one mirror 12C. At the same time, the fusion process on the ordinary side will produce free neutrons that can oscillate into mirror neutrons to enrich the mirror matter. Through this mutual oscillation process, both ordinary and mirror matter will develop into similar super neutron-rich structures that are evenly mixed.

The degenerate core’s stability is maintained by the electron degenerate pressure and the energy release of fusion reactions and neutron enrichment process from both mirror and ordinary matter, ultimately from the 13C(α,n) reaction. The Chandrasekhar limit for mixed ordinary and mirror matter is smaller than the usual value by a factor of $\sqrt{2}$, which is consistent with the observed lower mass limit of $\sim 1M_\odot$ for neutron stars 53. But large amounts of energy release could make the limit significantly higher. Therefore the average limit could still be similar, i.e., close to the observed average neutron star mass of $1.4M_\odot$.

Once all the helium are exhausted or its density is lowered enough to not sustain the triple-α process, therefore no more 13C(α,n) running, the core stops growing. Without the heat from the burning and the neutron-enrichment process in the core, the core begins
FIG. 2. The schematic diagram is shown for the structure of an AGB star at the second neutron-production $^{17}\text{O}(\alpha, n)$ phase. \(N\) and \(N'\) in the core stand for very neutron-rich matter and mirror matter, respectively.

contraction and cools down, pushing away the red giant’s hydrogen envelope.

When the core settles and starts pulling back the hydrogen envelope, it may go into the observed AGB phase, i.e., the second burning step that will be discussed below.

At the second phase, the outer envelope of hydrogen starts falling in and becoming compressed on the surface, it can react with the ^{16}O on the surface that was newly formed in the previous step and still mixed with some helium. The $^{16}\text{O}(p, \gamma)^{17}\text{F}$ reaction makes ^{17}F nuclei very quickly, which will sink down in the ocean and decay into ^{17}O with a 64.5-second β^+-decay half-life. Then the second neutron source reaction of $^{17}\text{O}(\alpha, n)$ starts, although at a slower rate than the $^{13}\text{C}(\alpha, n)$ rate in the first step. The rate of the only possible competing reaction $^{17}\text{O}(\alpha, \gamma)$ is 16 orders of magnitude lower at $T = 10^8$ K as shown by Best’s work [38]. The typical structure of the star at the second or AGB phase is shown in Fig. 2.

Note that the difference here is that the second phase burning starts from just outside and without the helium atmosphere. This probably explains why the AGB stars appear very bright. There may be convection in the ocean to move heavy ash nuclei ^{20}Ne down and bring ^{16}O back up. However, it is not required since the heavy ^{20}Ne sinks into the core, exposing the ^{16}O to the envelope again as if the envelope ”eating” away the ocean layer by layer. Eventually the ocean material outside the core will be all processed in this way. Once no more neutrons are produced, the heat from the neutron-enrichment process of $n' - n$ oscillations in the core stops. The star begins contraction again and becomes a white dwarf composed of evenly mixed and fully neutron-enriched ordinary-mirror matter in the end.
If the produced mirror neutron matter exceeds $0.7M_\odot$ during the above two steps, in other words, the core weighs beyond the Chandrasekhar limit of about $1.4M_\odot$, the red giant will undergo supernova explosion. As discussed above, the star will need at least $7.7M_\odot$ as a progenitor to explode. Before the explosion, the 13C(α, n) and 17O(α, n) reactions in the two phases naturally provide the neutron sources for the main (slower but longer) and weak (faster but shorter) s-processes, respectively. After the explosion, the neutron-rich inner layer material could be ejected and provide large amounts of neutrons for r-process, which could explain the abundances of r-process nuclei in early generation of stars and diverse sources for r-process \[32\] as discussed below.

Now we can consider the fate of more massive stars with $M > 8M_\odot$. In this case, there are actually double core collapses for ordinary and mirror matter, respectively. The ordinary and mirror matter will become a mix of mirror and ordinary neutrons forming the $n - n'$ star. As shown above, the core of the star can exceed the Chandrasekhar limit during any of the two phases. So we should see two types of core-collapse supernovae that can actually be identified with the observed ones. The core formed in both steps is essentially the same while the outer layers are much different and can help distinguish the two types.

First, Type II-Plateau supernovae (SNe II-P) have been reported with the following properties \[49, 54\]: most common (60%); less peak brightness but with a plateau in light curve; progenitor of $8 - 15M_\odot$; strong hydrogen lines with no helium. This matches exactly the type of supernovae collapsed in the second phase. Considering $f_n = 1/17$ for the first step reaction 13C(α, n) as shown in Table I, the star needs to burn at most $12M_\odot$ to go through the first step without reaching the Chandrasekhar limit. Adding $1M_\odot$ in the unburned ordinary core and $2M_\odot$ for the outer layers, one gets the upper mass limit of $15M_\odot$. Combined with the lower mass limit from the white dwarf analysis above, this type indeed matches the same mass range for the least massive supernovae. During the second step, the burning starts from outside making the ocean layer very thick. When the core collapses, it has to blow off the thick O/Ne ocean layer which will lower its peak luminosity. On the other hand, during the explosion, the thick O/Ne layer may continue to generate energy by nucleosynthesis and therefore present itself as the plateau in light curve. The helium atmosphere is gone after the first step, and the hydrogen envelope is participating directly in burning during the second step, explaining why hydrogen spectrum lines are strong but no evidence of helium. This type of SNe may be the "high-frequency" events for heavy r-process nuclei \[32\].
Second, Type II-Linear supernovae’s (SNe II-L) features are as follows [54]: relatively rare (a few percent); more peak brightness but linear decline in light curve; progenitor more massive (> 15\(M_\odot\)); evidence of helium; hydrogen lines appearing later and weaker. This matches exactly the type exploded in the first phase. The very slow triple-\(\alpha\) reaction starts the burning from the core. The subsequent neutron production reaction is much faster, growing the core accordingly. Therefore, the ocean layer is very thin. When the star explodes, it just needs to blast away the light helium atmosphere. The result is more luminosity in the peak and also a quick decline in light curve. Explosions in the first phase need more mass as discussed above. During the triple-\(\alpha\) burning, the hydrogen envelope was pushed away and hence producing weaker hydrogen lines at a later time. This type of SNe may be the ”low-frequency” events for light r-process nuclei [32]. This type of SNe may also dominate in the early universe as they evolve faster and large amounts of neutrons ejected during the explosion can quickly burn the helium layer into carbon via \(^4\text{He} + ^4\text{He} + n \rightarrow ^9\text{Be}\) and \(^9\text{Be}(\alpha, n)^{12}\text{C}\) reactions that are much faster than the triple-\(\alpha\) process [55]. This may enhance the carbon abundance in the early generation of stars leading to the so-called Carbon-Enhanced Metal-Poor (CEMP) stars [56].

People rarely observe neutron star progenitors with mass beyond 20\(M_\odot\) [49]. Under this theory, we may be able to get an upper mass limit for neutron stars from this observation. The first phase of neutron production in red giants converts about 1/17 of its mass to mirror neutrons at maximum. For a 20\(M_\odot\) star, therefore, it could end up with a core of 2.22\(M_\odot\). If 2.22\(M_\odot\) is indeed the limit, then stars need at least 20\(M_\odot\) to collapse into black holes in the first phase. On the other hand, a star with 15 – 20\(M_\odot\) can build a core up to 3 – 4\(M_\odot\) at the end of the second phase and then quietly turns into a black hole in the end. This may explains why the above-mentioned SNe II-L are so rare.

Now the interesting test mentioned in the beginning can be easily answered. By the time the neutron star (more properly \(n – n'\) star) forms, it is already evenly mixed between mirror and ordinary matter. So there is no mass loss or orbital period changing as suggested by Ref. [13]. Therefore, the new theory is consistent with the test of pulsar timings and gravitational wave observations [12].

Another interesting result that can be obtained under this theory is that oscillating movement from the mirror matter in the star is unavoidable as gravity serves as the restoring
force for the oscillations. The oscillating period of the mirror matter can then be written as

\[
\text{Period} = \sqrt{\frac{3\pi}{G\rho}}
\]

where \(G \) is the gravitational constant and \(\rho \) is the matter density where the mirror particles are located. Due to the gravitational coupling, the ordinary matter has to do the counter movement and therefore presents some kind of pulsating behavior, in particular, periodic changes in luminosity. As a matter of fact, such behaviors are very common in stars, especially in red giants like the Cepheid variables that can be used to determine distances and the compact remnants like neutron stars \(^5\) and even white dwarfs \(^6\). Such phenomena may help reveal the distribution and movement of mirror matter inside an astrophysical object or understand the laws for the mirror matter. For example, neutron stars have density of about \(10^{14} \text{ g/cm}^3\) and an oscillation period of \(\sim 10^{-3} \text{ s}\) that can be estimated from Eq. 15 has indeed been observed in neutron stars \(^5\). The 5-min oscillations from the Sun \(^6\) could also be explained by a small amount of oscillating mirror matter in the center at a density of \(\sim 10^3 \text{ g/cm}^3\). The typical period of a red giant variable is between hours and days that can be understood with oscillating mirror matter in its photosphere with a density of \(1 - 10^{-3} \text{ g/cm}^3\) since, as discussed above, the variable star is constantly producing mirror neutrons that can migrate to the photosphere.

To conclude, the new theory for single star evolution coupled with the \(n-n'\) oscillation model is strongly supported by astrophysical observations. The mirror matter just like ordinary matter may indeed exist in our universe, especially in stars. This theory could also be applied to the studies for binary or multiple star systems. In particular, Type Ia supernovae, galaxy collisions \(^6\), and recently observed neutron star mergers \(^6\) could be ideal for further test of this theory.

I would like to thank Ani Aprahamian and Michael Wiescher for supporting me in a great research environment at Notre Dame. I also thank Grant Mathews for pointing out the possibility of mirror neutrons escaping from the star. This work is supported in part by the National Science Foundation under grant No. PHY-1713857 and the Joint Institute for Nuclear Astrophysics (JINA-CEE, www.jinaweb.org), NSF-PFC under grant No. PHY-1430152.
[1] W. Tan, ArXiv190201837 Astro-Ph Physicshetp-Ph Physicnucl-Th (2019), arXiv:1902.01837 [astro-ph, physics:hep-ph, physics:nucl-th]

[2] Z. Berezhiani and L. Bento, Phys. Rev. Lett. 96, 081801 (2006).

[3] B. Fornal and B. Grinstein, Phys. Rev. Lett. 120, 191801 (2018).

[4] G. K. Karananas and A. Kassiteridis, J. Cosmol. Astropart. Phys. 2018, 036 (2018, arXiv:1805.03656

[5] T. Bringmann, J. M. Cline, and J. M. Cornell, Phys. Rev. D 99, 035024 (2019).

[6] A. T. Yue, M. S. Dewey, D. M. Gilliam, G. L. Greene, A. B. Laptev, J. S. Nico, W. M. Snow, and F. E. Wietfeldt, Phys. Rev. Lett. 111, 222501 (2013).

[7] R. W. Pattie, N. B. Callahan, C. Cude-Woods, E. R. Adamek, L. J. Broussard, S. M. Clayton, S. A. Currie, E. B. Dees, X. Ding, E. M. Engel, D. E. Fellers, W. Fox, P. Geltenbort, K. P. Hickerson, M. A. Hoffbauer, A. T. Holley, A. Komives, C.-Y. Liu, S. W. T. MacDonald, M. Makela, C. L. Morris, J. D. Ortiz, J. Ramsey, D. J. Salvat, A. Saunders, S. J. Seestrom, E. I. Sharapov, S. K. Sjue, Z. Tang, J. Vanderwerp, B. Vogelaar, P. L. Walstrom, Z. Wang, W. Wei, H. L. Weaver, J. W. Wexler, T. L. Womack, A. R. Young, and B. A. Zeck, Science 360, 627 (2018).

[8] M. Baldo-Ceolin, P. Benetti, T. Bitter, F. Bobisut, E. Calligarich, R. Dolfini, D. Dubbers, P. El-Muzeini, M. Genoni, D. Gibin, A. Gigli Berzolari, K. Gobrecht, A. Guglielmi, J. Last, M. Laveder, W. Lippert, F. Mattioli, F. Mauri, M. Mezzetto, C. Montanari, A. Piazzoli, G. Puglierin, A. Rappoldi, G. L. Raselli, D. Scannicchio, A. Sconza, M. Vascon, and L. Visentin, Z. Phys. C - Particles and Fields 63, 409 (1994).

[9] Z. Tang, M. Blatnik, L. J. Broussard, J. H. Choi, S. M. Clayton, C. Cude-Woods, S. Currie, D. E. Fellers, E. M. Fries, P. Geltenbort, F. Gonzalez, K. P. Hickerson, T. M. Ito, C.-Y. Liu, S. W. T. MacDonald, M. Makela, C. L. Morris, C. M. O'Shaughnessy, R. W. Pattie, B. Plaster, D. J. Salvat, A. Saunders, Z. Wang, A. R. Young, and B. A. Zeck, Phys. Rev. Lett. 121, 022505 (2018).

[10] UCNA Collaboration, X. Sun, E. Adamek, B. Allgeier, M. Blatnik, T. J. Bowles, L. J. Broussard, M. A.-P. Brown, R. Carr, S. Clayton, C. Cude-Woods, S. Currie, E. B. Dees, X. Ding,
B. W. Filippone, A. García, P. Geltenbort, S. Hasan, K. P. Hickerson, J. Hoagland, R. Hong, G. E. Hogan, A. T. Holley, T. M. Ito, A. Knecht, C.-Y. Liu, J. Liu, M. Makela, R. Mammei, J. W. Martin, D. Melconian, M. P. Mendenhall, S. D. Moore, C. L. Morris, S. Nepal, N. Nouri, R. W. Pattie, A. Pérez Galván, D. G. Phillips, R. Picker, M. L. Pitt, B. Plaster, J. C. Ramsey, R. Rios, D. J. Salvat, A. Saunders, W. Sondheim, S. Sjue, S. Slutsky, C. Swank, G. Swift, E. Tatar, R. B. Vogelaar, B. VornDick, Z. Wang, W. Wei, J. Wexler, T. Womack, C. Wrede, A. R. Young, and B. A. Zeck, Phys. Rev. C 97, 052501 (2018).

[11] A. P. Serebrov, E. B. Aleksandrov, N. A. Dovator, S. P. Dmitriev, A. K. Fomin, P. Geltenbort, A. G. Kharitonov, I. A. Krasnoschekova, M. S. Lasakov, A. N. Murashkin, G. E. Shmelev, V. E. Varlamov, A. V. Vassiljev, O. M. Zherebtsov, and O. Zimmer, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Particle Physics with Slow Neutrons, 611, 137 (2009).

[12] I. Goldman, R. N. Mohapatra, and S. Nussinov, ArXiv190107077 Hep-Ph (2019), arXiv:1901.07077 [hep-ph].

[13] M. Mannarelli, Z. Berezhiani, R. Biondi, and F. Tonnelli, “The nn’ Conversion and Neutron Stars,” (2018).

[14] I. Y. Kobzarev, L. B. Okun, and I. Y. Pomeranchuk, Sov. J. Nucl. Phys. 3, 837 (1966).

[15] S. Blinnikov and M. Khlopov, Sov. J. Nucl. Phys. 36, 472 (1982).

[16] S. I. Blinnikov and M. Y. Khlopov, Soviet Astronomy 27, 371 (1983).

[17] E. W. Kolb, D. Seckel, and M. S. Turner, Nature 314, 415 (1985).

[18] M. Y. Khlopov, G. M. Beskin, N. G. Bochkarev, L. A. Pustilnik, and S. A. Pustilnik, Soviet Astronomy 35, 21 (1991).

[19] R. Foot, Int. J. Mod. Phys. D 13, 2161 (2004).

[20] Z. Berezhiani, Int. J. Mod. Phys. A 19, 3775 (2004).

[21] L. B. Okun, Phys.-Usp. 50, 380 (2007).

[22] M. B. Green and J. H. Schwarz, Physics Letters B 149, 117 (1984).

[23] D. J. Gross, J. A. Harvey, E. Martinec, and R. Rohm, Phys. Rev. Lett. 54, 502 (1985).

[24] Z. Chacko, H.-S. Goh, and R. Harnik, Phys. Rev. Lett. 96, 231802 (2006).

[25] R. Barbieri, T. Gregoire, and L. J. Hall, ArXiv hep-Ph/0509242 (2005), arXiv:hep-ph/0509242.

[26] W. Tan, ArXiv190307474 Astro-Ph Physicshp-Ph (2019), arXiv:1903.07474 [astro-ph, physics:hep-ph].
[27] D. N. Spergel and P. J. Steinhardt, *Phys. Rev. Lett.* **84**, 3760 (2000).

[28] C. Giunti and C. W. Kim, *Fundamentals of Neutrino Physics and Astrophysics* (Oxford University Press, 2007).

[29] L. Wolfenstein, *Phys. Rev. D* **17**, 2369 (1978).

[30] S. P. Mikheev and A. Y. Smirnov, *Sov. J. Nucl. Phys.* **42**, 913 (1985).

[31] V. F. Sears, *Neutron News* **3**, 26 (1992).

[32] Y. Z. Qian, *Prog. Part. Nucl. Phys.* **50**, 153 (2003).

[33] H. A. Bethe and C. L. Critchfield, *Phys. Rev.* **54**, 248 (1938).

[34] H. A. Bethe, *Phys. Rev.* **55**, 103 (1939).

[35] C. W. Cook, W. A. Fowler, C. C. Lauritsen, and T. Lauritsen, *Phys. Rev.* **107**, 508 (1957).

[36] R. H. Cyburt, A. M. Amthor, R. Ferguson, Z. Meisel, K. Smith, S. Warren, A. Heger, R. D. Hoffman, T. Rauscher, A. Sakharuk, H. Schatz, F. K. Thielemann, and M. Wiescher, *ApJS* **189**, 240 (2010).

[37] M. Heil, R. Detwiler, R. E. Azuma, A. Couture, J. Daly, J. Görres, F. Käppeler, R. Reifarth, P. Tischhauser, C. Ugalde, and M. Wiescher, *Phys. Rev. C* **78**, 025803 (2008).

[38] A. Best, M. Beard, J. Görres, M. Couder, R. deBoer, S. Falahat, R. T. Güray, A. Kontos, K.-L. Kratz, P. J. LeBlanc, Q. Li, S. O’Brien, N. Özkan, M. Pignatari, K. Sonnabend, R. Talwar, W. Tan, E. Uberseder, and M. Wiescher, *Phys. Rev. C* **87**, 045805 (2013).

[39] P. Mohr, *Phys. Rev. C* **96**, 045808 (2017).

[40] C. E. Rolfs and W. S. Rodney, *Cauldrons in the Cosmos: Nuclear Astrophysics* (University of Chicago Press, 1988).

[41] B. Bucher, X. D. Tang, X. Fang, A. Heger, S. Almaraz-Calderon, A. Alongi, A. D. Ayangeakaa, M. Beard, A. Best, J. Browne, C. Cahillane, M. Couder, R. J. deBoer, A. Kontos, L. Lamm, Y. J. Li, A. Long, W. Lu, S. Lyons, M. Notani, D. Patel, N. Paul, M. Pignatari, A. Roberts, D. Robertson, K. Smith, E. Stech, R. Talwar, W. P. Tan, M. Wiescher, and S. E. Woosley, *Phys. Rev. Lett.* **114**, 251102 (2015).

[42] X. Fang, *Phys. Rev. C* **96**, 045804 (2017).

[43] F. Käppeler, R. Gallino, S. Bisterzo, and W. Aoki, *Rev. Mod. Phys.* **83**, 157 (2011).

[44] E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, *Rev. Mod. Phys.* **29**, 547 (1957).

[45] B. S. Meyer, *Annu. Rev. Astron. Astrophys.* **32**, 153 (1994).
[46] S. V. Suryanarayana, H. Naik, S. Ganesan, S. Kailas, R. K. Choudhury, and G. Kim, *J. Korean Phys. Soc.* **59**, 971 (2011).

[47] M. Lugaro and F. Herwig, *Nuclear Physics A Nuclei in the Cosmos, 688*, 201 (2001).

[48] S. Chandrasekhar, *Lond. Edinb. Dublin Philos. Mag. J. Sci.* **11**, 592 (1931).

[49] S. J. Smartt, *Annu. Rev. Astron. Astrophys.* **47**, 63 (2009).

[50] B. E. J. Pagel, *Nucleosynthesis and Chemical Evolution of Galaxies* (1997).

[51] O. Tarasov, R. Allatt, J. C. Angélique, R. Anne, C. Borcea, Z. Drouhy, C. Donzaud, S. Grévy, D. Guillemaud-Mueller, M. Lewitowicz, S. Lukyanov, A. C. Mueller, F. Nowacki, Y. Oganes-sian, N. A. Orr, A. N. Ostrowski, R. D. Page, Y. Penionzhkevich, F. Pougeon, A. Reed, M. G. Saint-Laurent, W. Schwab, E. Sokol, O. Sorlin, W. Trinder, and J. S. Winfield, *Physics Letters B* **409**, 64 (1997).

[52] R. deSouza, J. Vadas, V. Singh, B. Wiggins, T. Steinbach, Z. Lin, C. Horowitz, L. Baby, S. Kuvin, V. Tripathi, I. Wiedenhover, and S. Umar, *EPJ Web Conf.* **163**, 00013 (2017).

[53] B. Kiziltan, A. Kottas, M. D. Yoreo, and S. E. Thorsett, *ApJ* **778**, 66 (2013).

[54] T. Faran, D. Poznanski, A. V. Filippenko, R. Chornock, R. J. Foley, M. Ganeshalingam, D. C. Leonard, W. Li, M. Modjaz, F. J. D. Serduke, and J. M. Silverman, *Mon Not R Astron Soc* **445**, 554 (2014).

[55] M. D. Delano and A. G. W. Cameron, *Astrophysics and Space Science* **10**, 203 (1971).

[56] D. Carollo, K. Freeman, T. C. Beers, V. M. Placco, J. Tumlinson, and S. L. Martell, *ApJ* **788**, 180 (2014).

[57] M. van der Klis, *Advances in Space Research Spectra and Timing of Compact X-Ray Binaries, 38*, 2675 (2006).

[58] T. Nagel and K. Werner, *A&A* **426**, L45 (2004).

[59] R. B. Leighton, R. W. Noyes, and G. W. Simon, *The Astrophysical Journal* **135**, 474 (1962).

[60] R. K. Ulrich, *The Astrophysical Journal* **162**, 993 (1970).

[61] M. Markevitch, A. H. Gonzalez, D. Clowe, A. Vikhlinin, W. Forman, C. Jones, S. Murray, and W. Tucker, *The Astrophysical Journal* **606**, 819 (2004).

[62] D. Clowe, A. Gonzalez, and M. Markevitch, *ApJ* **604**, 596 (2004).

[63] LIGO Scientific Collaboration and Virgo Collaboration and B. P. Abbott et al., *Phys. Rev. Lett.* **119**, 161101 (2017)