Isolation and characterization of two O-methyltransferases involved in benzylisoquinoline alkaloid biosynthesis in sacred lotus (Nelumbo nucifera)

Received for publication, October 21, 2019, and in revised form, December 28, 2019
Published, Papers in Press, December 30, 2019, DOI 10.1074/jbc.RA119.011547

Ivette M. Menéndez-Perdomo and Peter J. Facchini

From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada

Edited by Joseph M. Jez

Benzylisoquinoline alkaloids (BIAs) are a major class of plant metabolites with many pharmacological benefits. Sacred lotus (Nelumbo nucifera) is an ancient aquatic plant of medicinal value because of antiviral and immunomodulatory activities linked to its constituent BIAs. Although more than 30 BIAs belonging to the 1-benzylisoquinoline, aporphine, and bisbenzylisoquinoline structural subclasses and displaying a predominant R-enantiomeric conformation have been isolated from N. nucifera, its BIA biosynthetic genes and enzymes remain unknown. Herein, we report the isolation and biochemical characterization of two O-methyltransferases (OMTs) involved in BIA biosynthesis in sacred lotus. Five homologous genes, designated NnOMT1–5 and encoding polypeptides sharing >40% amino acid sequence identity, were expressed in Escherichia coli. Functional characterization of the purified recombinant proteins revealed that NnOMT1 is a regiospecific 1-benzylisoquinoline 6-O-methyltransferase (6OMT) accepting both R- and S-substrates, whereas NnOMT5 is mainly a 7-O-methyltransferase (7OMT), with relatively minor 6OMT activity and a strong stereospecific preference for S-enantiomers. Available aporphines were not accepted as substrates by either enzyme, suggesting that O-methylation precedes BIA formation from 1-benzylisoquinoline intermediates. KM values for NnOMT1 and NnOMT5 were 20 and 13 μM for (R,S)-norcoclaurine and (S)-N-methylcoclaurine, respectively, similar to those for OMTs from other BIA-producing plants. Organ-based correlations of alkaloid content, OMT activity in crude extracts, and OMT gene expression supported physiological roles for NnOMT1 and NnOMT5 in BIA metabolism, occurring primarily in young leaves and embryos of sacred lotus. In summary, our work identifies two OMTs involved in BIA metabolism in the medicinal plant N. nucifera.

This work was supported by a Natural Sciences and Engineering Research Council of Canada Discovery grant (to P. J. F.) and an Alberta Innovates Technology Futures Scholarship (to I. M. P.). The authors declare that they have no conflicts of interest with the contents of this article.

CYP, cytochrome P450 monoxygenase; ESI, electrospray ionization; N7OMT, norreticuline 7-O-methyltransferase; NCS, norcoclaurine synthase; NMT, N-methyltransferase; OD, optical density; OMT, O-methyltransferase; SOMT, scoulerine 9-O-methyltransferase.

© 2020 Menéndez-Perdomo and Facchini. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.
Based on the reported alkaloid profile in sacred lotus and well-characterized pathways in opium poppy, BIA metabolism is predicted to begin with the formation of norcoclaurine and proceed via a limited number of enzyme types including one or more \(O \)-methyltransferases (OMTs), \(N \)-methyltransferases, and cytochrome P450 monooxygenases potentially belonging to CYP80 and CYP719 subfamilies (13). Specifically, the formation of known 1-benzylisoquinoline alkaloids in sacred lotus would involve only \(O \)-methylations and \(N \)-methylations of norcoclaurine (Fig. 1). Because \(O \)-methylation contributes substantially to the diversity of BIAs in sacred lotus, we targeted the isolation and functional characterization of OMTs.

Methylation plays a central role in the functionalization of specialized metabolites (14). In particular, OMTs involved in BIA metabolism catalyze methyl transfer to the hydroxyl group of an alkaloid substrate, using S-adenosyl-L-methionine (SAM) as the methyl donor group and proceeding via an \(S_{\beta}\)-2-like nucleophilic attack yielding a methylated alkaloid product and S-adenosyl-L-homocysteine (SAH) (15). OMTs are typically homodimeric or, as recently discovered, heterodimeric enzymes (16, 17). Within each monomer, the C-terminal domain adopts a canonical Rossman-fold (i.e. a \(\beta \)-strand sandwiched by two \(\alpha \)-helices) and plays a fundamental role in substrate binding and catalysis, whereas the N-terminal domain is of central importance in dimerization (15, 18–20).

In opium poppy, the methylation of (S)-norcoclaurine to (S)-coclaurine by \((R,S)\)-norcoclaurine 6-\(O \)-methyltransferase (Ps6OMT) represents the first tailoring reaction in BIA metabolism (21, 22). Recent crystallographic studies on 6OMT from meadow rue (Thalictrum flavum, Tf6OMT) have revealed key determinants for substrate recognition and turnover (18). In opium poppy, at least six other OMTs involved in BIA biosynthesis have been functionally characterized, including \((R,S)\)-3'-hydroxy-N-methylcoclaurine 4'-\(O \)-methyltransferase 2 (Ps4'OMT2), \((R,S)\)-reticuline 7-\(O \)-methyltransferase (Ps7OMT) and norreticuline 7-\(O \)-methyltransferase (PsN7OMT), all involved in the functionalization of specialized metabolites.

![Figure 1. Schematic representation of the proposed 1-benzylisoquinoline alkaloid biosynthetic pathway in sacred lotus (N. nucifera).](https://example.com/figure1.png)
O-Methyltransferases from sacred lotus

in 1-benzylisoquinoline biosynthesis (i.e. reticuline, laudanine and norlaudanine), as well as 4’-O-demethyl-3-O-acetyl-papaveroxine 4’-O-methyltransferase (PsOMT2:PsOMT3 and PsOMT2:Ps6OMT heterodimers) and scoulerine 9-O-methyltransferase (PsOMT1), which function in phthalideisoquinoline (e.g. noscapine) metabolism (16, 17, 19, 21–26). Although the isolation of a specific 3’-OMT has been elusive, low 3’-O-methyltransferase activity has been detected for PsOMT1, as well as for SOMTs from related species such as yellow horned poppy (Glaucium flavum, GiOMT6) and California poppy (Eschscholzia californica, EcSOMT) (26–28). Finally, a columbamine O-methyltransferase has been isolated from Japanese goldthread (Coptis japonica; CjCoOMT) (29). Although several functionally related OMTs have been investigated, these enzymes have been isolated from fewer than 10 species all from the Ranunculaceae (20).

Sacred lotus accumulates 1-benzylisoquinolines, and derived aporphines (via C8-C2’ intramolecular coupling) and bisbenzylisoquinolines (via C8-C3’/5’ and C7-O-C3’/5’ intermolecular coupling) (5), most of which are O-methylated at C6, C7, and/or C4’ (13). The availability of a sacred lotus draft genome (30, 31) greatly facilitates gene mining for candidate OMTs based on amino acid sequence similarity with respect to characterized O-methyltransferases (32–34). However, OMT candidates have so far been investigated only in terms of gene expression, with no functional characterization of the encoded proteins. In addition, enzyme stereospecificity is an intriguing feature of BIA metabolism in sacred lotus, because norcoclaurine has been isolated from the plant as both R- and S-enantiomers, and other BIAs, including coclaurine, norarmepavine, and N-methylcoclaurine have been exclusively reported as the R-conformer (13), in contrast with the predominantly S-stereochemistry of most BIAs in opium poppy and related plants (3). Herein we report the identification and characterization of O-methyltransferases involved in BIA metabolism in sacred lotus.

Results

Sacred lotus BIA profile

Alkaloids corresponding to the leaf (folded and unfolded developmental stages), rhizome, root, and embryo (lotus plume) of two *N. nucifera* cultivars, referred as Pink and White because of their distinct floral coloration, were extracted and analyzed by mass spectrometry (MS) (Fig. 2, b and c, Table S1). Fifteen alkaloids (i.e. six 1-benzylisoquinolines, four aporphines, one pro-aporphine, and four bisbenzylisoquinolines) were identified based on their retention times and collision-induced dissociation (CID) spectra compared with available authentic standards or previously published data. 1-Benzylisoquinolone and aporphine alkaloids were prevalent in the leaves, whereas bisbenzylisoquinolines were most abundant in the embryos. In general, the rhizome and roots contained only low BIA levels, although no bisbenzylisoquinolines were detected. Notably, the structural isomers *N*-methylisococlaurine and norarmepavine were exclusively detected in the Pink and White varieties, respectively. The bisbenzylisoquinolines liensinine and neferine were found only in the White variety, whereas nelumboferine and isoliensinine were the only bisbenzylisoquinolines identified in Pink and accumulated at 20-fold (in folded leaves) and 4-fold (in embryos) higher levels compared with the White variety. In addition, alkaloids were detected in the leaves (norarmepavine, nelumboferine, and isoliensinine), rhizome (norcoclaurine, coclaurine, N-methylcoclaurine, norarmepavine, N-methylisococlaurine, anonaine, roemerine, N-nornuciferine, O-nornuciferine, nuciferine and punciferine), roots (coclaurine, N-methylcoclaurine, norarmepavine, N-methylisococlaurine, arnepavine, anonaine, roemerine, N-nornuciferine, and O-nornuciferine), and embryo (norarmepavine and O-nornuciferine) that had not been previously reported (5, 13). Overall, the alkaloid profile found for both varieties supports the occurrence of 6-O-, 7-O-, and 4’-O-methyltransferases in sacred lotus.

NnOMT identification and phylogeny

Sacred lotus transcripts encoding five putative OMTs (NnOMT1–NnOMT5) were identified based on amino acid sequence identity with opium poppy OMTs (Table S2). The predicted NnOMT1–NnOMT5 translation products displayed predicted molecular masses of 38.4, 38.7, 38.8, 39.2, and 38.1 kDa and expected isoelectric points of 6.5, 7.8, 6.1, 5.7, and 5.6, respectively. Four sacred lotus OMTs shared ~80% amino acid sequence identity, whereas NnOMT5 exhibited <50% identity with respect to the others. NnOMT1 showed ~70% amino acid sequence identity compared with functionally characterized 6OMTs, whereas all candidates shared 40–60% sequence identity with previously reported 7OMTs and 4’OMTs (Table S3). Phylogenetic relationships among NnOMTs and functionally characterized BIA O-methyltransferases were placed between NnOMT1–NnOMT4 in a single clade related to several characterized 6OMTs, whereas all candidates shared 40–60% sequence identity with previously reported 7OMTs and 4’OMTs (Table S3). Phylogenetic relationships among NnOMTs and functionally characterized BIA O-methyltransferases were placed between NnOMT1–NnOMT4 in a single clade related to several characterized 6OMTs, whereas NnOMT5 emerged on a distal clade that also contained CjCoOMT (Fig. 3).

Amino acid sequence alignment of the functionally characterized Tf6OMT and sacred lotus OMT candidates showed a high conservation of key amino acid residues, including the catalytic determinants His256, Asp257, and Glu315 (18), except for NnOMT4, in which case Asp257 was substituted with a Tyr residue (Fig. 4). Amino acids implicated in BIA substrate binding (Gly163, Asp169, Cys253, and Asp306) were also conserved among sacred lotus OMT candidates except for G165V and C253W substitutions in NnOMT2, G165A in NnOMT3, G165S in NnOMT4, and G165A, D169H, and C253S in NnOMT5. The main residues involved in SAM binding including Thr170, Gly195 (motif I), Asp218 (motif II), Asp238 (motif III), and Lys252 (motif IV) were conserved across sacred lotus OMT candidates, excluding Asp218 (substituted by Gly in NnOMT4) and Asp238 (substituted by Asn in NnOMT3). Two methionine residues, Met166 and Met307, assisting in the isoquinoline placement through sulfur-aromatic interactions were also conserved in lotus OMT candidates. The aromatic residues Trp149 and Phe162, which interact with both SAM and BIA substrates, were mutated, Trp149 to Cys, Ser, and Ile in NnOMT3, NnOMT4, and NnOMT5, respectively, and Phe162 to Leu in NnOMT5. The conserved GXGXGX sequence in motif I, a hallmark of SAM-dependent methyltransferases (14), was fully maintained.
in all the candidates except NnOMT5, in which the middle Gly residue was mutated to Cys.

NnOMT purification and characterization

Sacred lotus recombinant His$_6$-tagged OMTs produced in *Escherichia coli* were purified using cobalt-affinity chromatography and detected on an immunoblot using an anti-His$_6$ antibody (Fig. S1). The molecular weights of the purified proteins and the predicted translation products were similar. Recombinant proteins were initially screened for enzymatic activity using 15 potential BIA substrates representing the 1-benzylisoquinoline, aporphine, protoberberine, and morphinan structural subclasses. The potential 1-benzylisoquinoline substrates differentially contained free hydroxyl groups at C6, C7, C3, and/or C4, and both R- and S-enantiomers were in some cases available (Table S4). Reaction products showed an increase of 14 Da with respect to the corresponding substrate and were detected in reactions containing NnOMT1 or NnOMT5 incubated with various 1-benzylisoquinoline substrates (Fig. 5, Fig. S2). (R,S)-Norcoclaurine and (S)-norlaudanosoline were O-methylated by both NnOMT1 and NnOMT5, whereas (R)-norlaudanosoline was only accepted by NnOMT1. In addition, NnOMT5 catalyzed the O-methylation of (S)-coclaeurine, (S)-N-methylcoclaurine, and (S)-reticuline with similar efficiences, but (R)-reticuline was not accepted. Single peaks were detected for all the reactions, indicating the formation of only one product.

Reaction products corresponding to the 6-O-methylation of norcoclaurine and norlaudanosine (coclaeurine (m/z 286) and 6-O-methylnorlaudanosine (m/z 302), respectively) and the 7-O-methylation of N-methylcoclaurine (armepavine (m/z 314)), were unambiguously identified by comparison with available authentic standards. Enzyme assays with coclaeurine and reticuline were subjected to positive-mode electrospray ionization (ESI(+)) high performance LC (HPLC)-tandem mass spectrometry (MS/MS) for the accurate characterization of reaction products by CID fragmentation analysis to determine whether O-methylation was associated with the isoquinoline (C7) or benzyl moiety of coclaeurine (C4) and reticuline (C3) (Fig. S3). ESI(+)-CID of 1-benzylisoquinolines at low ionization energy yielded isoquinoline and/or benzyl moieties as major ion fragments; thus, the addition of 14 Da to either fragment with respect to the parent ion revealed the regiospecificity of the reaction. In this regard, coclaeurine showed two main fragments at m/z 178 and 107, corresponding to the isoquinoline and benzyl moieties, respectively. After incubation with NnOMT5, the m/z 107 fragment was retained in the reaction product, indicating that the methyl group was added to the isoquinoline moiety (i.e. 7-O-methylation) resulting in the formation of norarmepavine, an alkaloid found in sacred lotus (the other possible reaction product, 4'-O-methylcoclaurine, has not been reported in this plant). Similarly, the reaction product of NnOMT5 incubated with (S)-reticuline showed a mass increase of the isoquinoline moiety from m/z 192 to 206, corresponding to the 7-O-methylated product laudanine, whereas the mass of the benzyl moiety (m/z 137) remained unchanged. It is notable that neither reticuline nor laudanine have been

Figure 2. (a) Diagram of sacred lotus. (b) Heat map showing the organ-specific profile of BIAs in two varieties of sacred lotus (Pink and White). Relative abundance corresponds to the mean value of three independent replicates. Values were normalized to the sample with the highest level for each compound. (c) Structures corresponding to detected aporphine, pro-aporphine, and bisbenzylisoquinoline alkaloids isolated from sacred lotus (for 1-benzylisoquinoline alkaloid structures refer to Fig. 1). FL, folded leaf; UL, unfolded leaf; Rh, rhizome; Ra, roots; E, embryos.
O-Methyltransferases from sacred lotus

Fig. S5 Table S5 Table S7 Table

as substrates and maximum catalytic activity at 30 and 37 °C, the NnOMT5 showed a strict stereospecificity for the substrates in ary methylations (an increase of 28 Da). Contrary to NnOMT1,ylation activity of NnOMT5 was not accompanied by second-

Figure 3. Phylogenetic relationships among sacred lotus O-methyltransf- erase (NnOMT) candidates and functionally characterized OMTs from BIA-accumulating plants in the Ranunculales. The evolutionary history was inferred using the Maximum Likelihood and the JTT matrix-based model. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) is shown next to the branches. The tree with the highest log likelihood is drawn to scale, with branch lengths measured in the number of substitutions per site. Evolutionary analyses were conducted in MEGAX. Cc, C. chinensis; Cj, C. japonica; Ct, C. tetera; Ec, E. califor-

reported in sacred lotus. 4’OMT activity was not detected with any combination of tested substrates and OMT candidates.

NnOMT1 displayed strict regiospecificity with respect to the C6 hydroxyl and showed similar turnover using racemic norco-
claurine and individual enantiomers of norlaudanosoline, the 3’-hydroxylated derivative of norcoclaurine (Fig. 5). NnOMT5 nonpreferentially methylated the C7 hydroxyl of N-methylated (N-methylcoclaurine and reticuline) or N-demethylated (coclaurine) substrates, and also acted on the C6 hydroxyl of (R,S)-norlaudanosoline and (S)-norlaudanosoline. The 6-O-methyl-

NnOMT and BIA correlations in the plant

Alkaloid content, O-methyltransferase activity, and OMT gene expression were measured in leaves, rhizome, roots, and embryos for two sacred lotus varieties. Alkaloid content was determined for norcoclaurine, coclaurine, N-methylcoclaurine, and arnepavine, for all of which authentic standards were available (Fig. S6). In both the Pink and White varieties, 1-benzyl-

Discussion

We have shown that two cDNAs from sacred lotus efficiently catalyze the regiospecific 6-O-methylation of norcoclaurine to coclaurine (NnOMT1) and 7-O-methylation of coclaurine and N-methylcoclaurine to norarmepavine and arnepavine, respectively (NnOMT5). NnOMT1 was not stereospecific, whereas NnOMT5 accepted only S-enantiomers. Correlation between transcript levels, enzyme activity, and alkaloid content supported a physiological role for NnOMT1 and NnOMT5 in BIA metabolism.

Despite sharing an apparently common biosynthetic pathway to N-methylcoclaurine (Fig. 1), sacred lotus and opium poppy exhibit substantial differences in their alkaloid profiles. In this regard, whereas reticuline constitutes a key branch point intermediate in the biosynthesis of most BIAs in opium poppy (3), sacred lotus does not accumulate reticuline and other 1-benzylisoquinolines containing a C3’ functional group, or reticuline-derived alkaloids including phthalidesoisquolinines, benzo[c]phenanthridines, protoberberines, and morphinans, which occur in members of the Ranunculales (13). In contrast, aporphines and bisbenzylisoquinolines are the major BIAs in sacred lotus, although alkaloid profiles vary among nearly 600 known varieties, and across different plant organs and develop-
mental stages (32–37). In addition, sacred lotus aporphine alka-
loids do not display substitutions in the benzyl moiety (13), in
contrast with the reticuline-derived aporphines (e.g. magnoflo-
mine, corytuberine and glaucine) found in members of the
Ranunculales (27, 38, 39).

The sacred lotus BIA profile showed a preferential accumu-
lation of 1-benzylisoquinolines and aporphines in leaves, and
bisbenzylisoquinolines in embryos (Fig. 2b), in agreement with
previous investigations (36, 37, 40). Alkaloids containing 6-O-,
7-O-, and/or 4′-O-methylations were detected in Pink and
White varieties, supporting the search for specific O-methyl-
transferase activities in the plant. OMT gene candidates have
been predicted in sacred lotus based on sequence similarity to
functionally characterized OMTs from BIA-accumulating species
(32–34), but the purported catalytic activities have not been
assessed. We show that two of these candidates, NnOMT1 and
NnOMT5, catalyze the O-methylation of 1-benzylisoquinolines.

Fifteen BIA substrates possessing diverse structural back-
bones were screened, including 1-benzylisoquinolines with a
free hydroxyl at C6, C7, and C4′. As described for several
OMTs from the Ranunculales (41, 42), NnOMT1 displayed
strict C6 regiospecificity and accepted both (R)- and (S)-1-ben-
zylisoquinoline conformers (Fig. 5). NnOMT1 contains all con-
served catalytic and substrate-binding residues occurring in
Tf6OMT (Fig. 4). In Tf6OMT, the O-methyltransfer reaction
occurs via His256 base-assisted deprotonation of the substrate
C6 hydroxyl, followed by a nucleophilic attack on the SAM
methyl group. Interactions of His256 and Asp257 with the C6
hydroxyl group provide proper orientation and Glu315 contrib-
utes to the strong basicity in the His256 NE2 required for catal-

Figure 4. Multiple sequence alignment among NnOMT candidates and T. flavum 6OMT (Tf6OMT). Residues shared by Tf6OMT and sacred lotus OMTs are shaded in gray, and fully conserved residues are shaded in black. Asterisks indicate catalytic (His256, Asp257, and Glu315) and other key residues implicated in BIA (Gly165, Asp169, Cys253, and Asp306) and SAM (Thr170, Gly195, Asp218, Asp238, and Lys252) binding, as reported for Tf6OMT. Conserved motives I–IV are underlined.
ysis (18). Because NnOMT1 and Tf6OMT possess equivalent key catalytic residues (His²⁵⁶, Asp²⁵⁷, and Glu³¹⁵) and share ~70% amino acid sequence identity, a similar catalytic mechanism is expected for NnOMT1.

NnOMT5, the most phylogenetically unique sacred lotus OMT, catalyzed the methyltransfer to the C6 hydroxyl of (R,S)-norcoclaurine and (S)-norlaudanosoline, but more efficiently to the C7 hydroxyl of (S)-coclaurine, (S)-N-methylcoclaurine, and (S)-reticuline (Table 1). Despite the closest phylogenetic relationship between NnOMT5 and CjCoOMT, their substrate ranges are different. NnOMT5 did not accept the tested protoberberines (Table S4), whereas CjCoOMT preferred columbamine and other protoberberines, but did not accept the 1-benzylisoquinolines norlaudanosoline, coclaurine, and reticuline (29). NnOMT5 also showed a close relationship with a sister clade containing PsOMT2, which together with PsOMT3 or Ps6OMT forms the heterodimeric enzyme capable of O-methylate a seco-berbine intermediate in noscapine biosynthesis (16, 17). Notably, this sister clade also included <i>Coptis chinensis</i> 6OMT1 (Cc6OMT1), which was reported to catalyze either 6-O- or 7-O-methylation of (S)-norcoclaurine (43). Dual 6-O- and 7-O-methyltransferase activity has also been reported for Cc6OMT2, along with enzymes from <i>Coptis teeta</i> (Ct7OMT), <i>P. somniferum</i> (Ps6OMT and Ps7OMT), and <i>G. flavum</i> (GfOMT1) (22, 27, 43).

Regardless of a nomenclature suggestive of regiospecific functions, OMTs involved in BIA metabolism are generally promiscuous and exhibit apparent redundancy in most plants (22, 26–28, 43, 44). In Tf6OMT co-crystalized with (S)-norlaudanosoline the C7 hydroxyl group of the BIA substrate was found in close proximity to the catalytic His²⁵⁶, suggesting that minor adjustments in substrate positioning could lead to productive 7-O-methyltransfer (18) and the observed dual 6-O- and 7-O-methyltransferase activity of some OMTs. Based on the available crystal structure for Tf6OMT (Protein Data Bank 5ICE), we constructed a homology model for NnOMT5 (Fig. S7). In the resulting structure, the key catalytic histidine (His²⁵¹ in NnOMT5) involved in hydrogen bonding with the target C6-OH (3.0 Å), is also near the C7-OH (3.1 Å). Analysis of residues likely involved in BIA substrate binding showed that G165A and C253S mutations did not have a significant impact (i.e. the main chain carbonyl involved in hydrogen bond formation with the BIA substrate C3’ and C6 hydroxyl groups, respectively, remained in a similar position) in agreement with the observed variability of these residues in other 7OMTs (i.e. G165A in Ps7OMT, PsN7OMT and Ct7OMT, C253W in Ps7OMT and Ct7OMT, C253N in PsN7OMT, and C253G in

Table 1

Enzyme	Substrate	K_m (μM)	V_{max} (nmol min⁻¹)	k_{cat} (s⁻¹)	k_{cat}/K_m (M⁻¹s⁻¹)
NnOMT1 (R,S)-Norcoclaurine	20 ± 2	52 ± 2	0.0336	1686	
NnOMT5 (R,S)-Norcoclaurine	152 ± 36	9 ± 1	0.0058	38	
(S)-N-Methylcoclaurine	13 ± 3	30 ± 2	0.0191	1465	

Figure 5. Substrate range for recombinant NnOMT1 and NnOMT5. Values represent the mean ± S.D. of three independent replicates. The structure of the corresponding substrates is shown; nd, not detected.
Ec7OMT). Conversely, the D169H mutation disrupted a hydrogen bond with the C4′-OH (2.6 Å), which stabilizes the substrate in the active site. Interestingly, whereas Asp169 is a conserved residue across all 6OMTs, or is replaced by Glu in 4′OMTs, no consensus was found in functionally characterized 7OMTs (i.e. Asp in PsN7OMT, Ser in Ps7OMT and Ec7OMT, and Thr in Ct7OMT); thus, this residue might not play a significant role in 7OMT regiospecificity.

When both C6 and C7 hydroxyl groups were available, NnOMT5 exclusively catalyzed 6-O-methylation (Fig. S2). Similar results were reported for E. californica and Coptis japonica 4′OMTs, which catalyze norcoclaurine 6-O-methylation, although with lower efficiency than 4′-O-methylation on already 6-O-methylated substrates (45), in support of the importance of 6-O-methylation as a purported rate-limiting step in BIA metabolism (21). However, because NnOMT5 catalyzed 7-O-methylation of (S)-N-methylcoclaurine 50-fold more efficiently than 6-O-methylation of (R,S)-norcoclaurine, the physiological relevance of the latter activity is questionable compared with NnOMT1 (Table 1). Although coaularine and N-methylcoclaurine are almost certainly physiological substrates of NnOMT5 (Fig. 1), the occurrence of 1-benzylisoquinolines such as N-methylococlarine and lotusine, which contain 7-O-methyl and C6 hydroxyl moieties, does not correlate with the inability of NnOMT5 to 7-O-methylate norcoclaurine in vitro. In this regard, it is feasible that norcoclaurine N-methylation should occur first for NnOMT5 to catalyze 7-O-

rather than 6-O-methylation, however, the required substrate to test this possibility was not available.

NnOMT5 also preferred norcoclaurine over norlaudanosoline (Fig. 5), whereas NnOMT1 showed no substrate preference. Nonetheless, the main catalytic activity detected for NnOMT5 was the 7-O-methylation of several N-methylated and N-demethylated substrates (Fig. 5). Although our understanding of 7OMT substrate recognition and catalysis is limited, it has been suggested that the conserved residue Asp306 in PsN7OMT is able to hydrogen bond with the nitrogen of its only substrate norreticuline, whereas Ps7OMT and Ec7OMT contain smaller uncharged residues at equivalent positions presumably to ease steric hindrance with (R,S)-reticuline and other N-methylated substrates (22, 23, 44), and Ct7OMT, with a Asp306 to Ser substitution, is able to 7-O-methylate (S)-norcoclaurine (43). Notably, NnOMT5 contains a corresponding Asp306 residue (Figs. S7 and S8), but catalyzes similarly efficient 7-O-methylation of N-methylated and N-demethylated substrates (Fig. 5).

The catalytic activity of recombinants NnOMT1 and NnOMT5 with (R,S)-norcoclaurine and (S)-N-methylcoclaurine, respectively, exhibited similar reaction efficiency (k_{cat}/K_m), whereas NnOMT5 showed a 50-fold more efficient 7-O-compared with 6-O-methylation (Table 1). The K_m of NnOMT1 with (R,S)-norcoclaurine (20 μM) is similar to that reported for Ps6OMT (10 μM) and Tf6OMT (52 μM) (22, 41), whereas the K_m of NnOMT5 (152 μM) is substantially higher, suggesting that NnOMT1 is the main 6OMT in sacred lotus.

Figure 6. Organ-specific correlational analysis of 1-benzylisoquinoline alkaloids metabolism in two varieties (Pink and White) of sacred lotus. (a) Content of selected 1-benzylisoquinoline alkaloids. (b) 6OMT, 7OMT, and 4′OMT specific activity of plant crude extracts when incubated with (R,S)-norcoclaurine, (S)-N-methylcoclaurine, and (R)-armepavine, respectively. (c) Relative abundance of NnOMT1-NnOMT5 transcripts. Values represent the mean ± S.D. of three independent measurements. FL, folded leaf; UL, unfolded leaf; Rh, rhizome; Ro, roots; E, embryos.

1605
O-Methyltransferases from sacred lotus

On the other hand, the K_m of NnOMT5 with (S)-N-methylcoclaunine (13 μM) is substantially lower compared with that for (R,S)-norcoclaurine (152 μM), but similar to that reported for Ps7OMT with (S)-reticuline (16 μM) (22) and PsN7OMT with (S)-norreticuline (44 μM) (23), suggesting that NnOMT5 acts primarily as a 7OMT in the plant.

The apparent lack of recombinant NnOMT (Fig. 5, Fig. S2) or plant crude extract activity (Fig. 6b, Table S6) on substrates 3’- or 4’-hydroxyl groups partially agrees with the sacred lotus BIA profile, which lacks C3’-substituted alkaloids (13). In contrast, 4’-O-methylated BIAs were detected (Fig. 2b), including iso-liensine and neferine (Fig. 2c). Low 4’OMT activity has been reported for enzymes with primarily 6- or 7-O-methyltransferase activity, such as GfOMT2 and Ps7OMT (22, 27). However, NnOMT1 and NnOMT5 did not show 4’-O-methyltransferase activity on any substrate, including (R)-armepavine, although the actual substrate(s) might not have been available. The phylogenetic relationships between NnOMT5 and PsOMT2, and between NnOMT1 and PsOMT3 and Ps6OMT, suggest that 4’OMT activity in sacred lotus could also involve a homodimeric enzyme. It is notable that in the Ranunculales, a *Berberis koetinearana* 4’OMT (Bk4’OMT), Cj4’OMT, Ec4’OMT, and Ps4’OMT2 act only on 3’-hydroxylated substrates (22, 25, 27, 42, 45, 46), suggesting that sacred lotus 4’-O-methyltransferase activity could involve a unique enzyme.

Assayed aporphine, protoberberine, and morphinan alkaloids were not accepted as substrates (Table S4). OMTs shown to O-methylate 1-benzylisoquinolines and protoberberines occur in species accumulating both alkaloid types (26–28), although specificity for 1-benzylisoquinolines (e.g. Cj6OMT and PsN7OMT) has also been reported (23, 42). Albeit sacred lotus does not accumulate morphinans or protoberberines (13), aporphines are major alkaloids in the leaves (34, 35). The lack of NnOMT activity on aporphines suggests that the C8–C2’ coupling yielding the aporphine scaffold occurs after the O-methylation of 1-benzylisoquinoline intermediates. However, *Dactyliscaenos* *scandens* 7OMT was recently reported to O-methylate corytuberine, demonstrating the plausibility of aporphines as OMT substrates (47). It is notable that the aporphines and bisbenzylisoquinolines of sacred lotus were not available; thus, it remains possible that certain intermediates within these BIA structural types are NnOMT substrates.

The occurrence of most BIAs as R-conformers is another unique feature in sacred lotus compared with members of the Ranunculales (13). The importance of the stereochemistry of 1-benzylisoquinoline substrates is evident in opium poppy, in which reticuline conformation determines the formation of major end point alkaloids, with morphine derived from (R)-reticuline, and other alkaloids such as noscapine and sanguinarine produced from (S)-reticuline. BIA stereochemistry is initially established by the stereoselectivity of NCS. Although all characterized NCS isoforms from the Ranunculales yield exclusively (S)-norcoclaurine (48–50), norcoclaurine in sacred lotus has been detected as both S- and R-enantiomers (6, 51, 52) and consequently, the presence of both enantiomeric forms of norcoclaurine-derived alkaloids depends on the stereospecificity of downstream enzymes. We show that NnOMT1 catalyzed the 6-O-methylation of (R)- and (S)-norlaudanosoline with similar turnover efficiency, whereas NnOMT5 accepted only (S)-norlaudanosoline and (S)-reticuline (Fig. 5, Table S4). Previously characterized OMTs have either shown a lack of stereospecificity (e.g. Cj6OMT, Ps6OMT, and Ps7OMT) or strict S-stereospecificity (Bk4’OMT) (22, 42, 53). Our results support the formation of (R)-coclaurine and (S)-armepavine as previously reported in lotus (6, 54). However, despite the fact that NnOMT5 showed strict stereospecificity toward S-enantiomers, neither norlaudanosoline nor reticuline are physiologically relevant substrates and it is possible that the enzyme catalyzes the turnover of (R)-coclaurine and (R)-N-methylcoclaurine in the formation of the reported compounds (R)-norarmepavine and (R)-armepavine, respectively (55). Unfortunately, none of the relevant R-enantiomers were available as potential substrates.

Previous work on the BIA profile in sacred lotus focused on the quantification of aporphines and bisbenzylisoquinolines in leaves and embryos, respectively, but limited information has been provided for 1-benzylisoquinoline intermediates (34, 36). We quantified key alkaloids produced in the early steps of the pathway (i.e. norcoclaurine, coclaurine, N-methylcoclaurine, and armepavine) in different sacred lotus organs (Fig. 6a). Although 1-benzylisoquinolines were predominant in leaves, the detected compounds were likely intermediates leading to aporphine and bisbenzylisoquinoline end products. The low levels of 1-benzylisoquinolines in embryos could also reflect their transformation to predominant bisbenzylisoquinolines (36, 37, 40, 56).

Assays containing crude plant extracts incubated with (R,S)-norcoclaurine, (S)-N-methylcoclaurine, and (R)-armepavine showed 6-O- and 7-O-methyltransferase activity in all organs (Fig. 6b), but mostly in leaves and embryos. OMT transcripts were also expressed in all organs, although *NnOMT1* and *NnOMT5* showed higher expression levels, mainly in leaves (Fig. 6c). These results are consistent with a recent report on *NnOMT* expression at different leaf developmental stages, whereby *NnOMT1* and *NnOMT5* transcript levels were up to 10-fold higher compared with *NnOMT2–NnOMT4* (34). A lag between *NnOMT* expression and aporphine alkaloid accumulation was also noted in this study, which is potentially associated with the involvement of OMTs early in BIA metabolism and a requirement for the expression of additional genes to complete aporphine and bisbenzylisoquinoline biosynthesis. It is notable that because this earlier study did not perform a functional characterization of candidate genes, *NnOMT5* was reported as a 4’OMT (34). In agreement with the suggested order of O-methyllations in other plants (21, 45), *NnOMT1* appears to act earlier than *NnOMT5* in the leaves because 6OMT activity decreased in unfolded leaves, whereas 7OMT activity increased (Fig. 6b). Similarly, *NnOMT1* transcript levels were higher in folded leaves than unfolded leaves, whereas *NnOMT5* transcript levels remained constant (Fig. 6c), consistent with a previous report (34).

Although *NnOMT1* and *NnOMT5* transcript levels were 5- to 15-fold lower in embryos compared with folded leaves, specific 6- and 7-O-methyltransferase activities were similar in both organs, likely because of the prevalence of photosynthetic leaf proteins. Interestingly, the levels of transcripts encoding
CYP80G, purportedly involved in aporphine biosynthesis, in leaves were 5 times higher than levels of transcripts encoding CYP80A, potentially involved in bisbenzylisoquinoline biosynthesis, in embryos (33), suggesting that lower biosynthetic gene transcript levels in embryos might be sufficient in this organ. However, neither CYP80G nor CYP80A orthologs in sacred lotus were functionally characterized, so it is not certain that these transcripts are relevant to BIA metabolism. Bisbenzylisoquinoline biosynthesis has been proposed to occur in leaves, with alkaloids subsequently transported to embryos (36). NCS activity (4) and purported NnNCS transcripts (57) were detected in leaves, suggesting that BIA biosynthesis occurs in this organ. The detection of O-methyltransferase activity indicates that embryos are also involved in alkaloid biosynthesis.

From an evolutionary perspective, it is not known whether OMT recruitment occurred repeatedly or if an ancestrally promiscuous OMT gave rise to functionally distinct enzymes (20). The 6-O-methyltransferase activity of NnOMT1 was correctly predicted based on similarity to Tf6OMT and other 6OMTs. However, the 7-O-methyltransferase activity of NnOMT5 was unexpected because of its relatively low similarity to characterized 7OMTs from the Ranunculales (Fig. 3, Table S3), suggesting a possible independent recruitment in sacred lotus. The characterization of other enzymes (e.g. norcoclaurine synthase, coclaurine N-methyltransferase, and aporphine and bisbenzylisoquinoline synthases) will provide additional key insights into the evolutionary history of BIA biosynthesis in sacred lotus.

Experimental procedures

Plant material

Seeds for two sacred lotus (*N. nucifera*) varieties, named Pink and White because of their distinct flower colors, were germinated in water according to the instructions of the vendor (Rar-exotics seeds). After the emergence of embryogenic leaves, the seedlings were planted in pots containing heavy loam soil and submerged in an artificial pond. Plants were grown at 30 °C and under high-intensity lighting with a 16-h photoperiod. Alternatively, seeds were carefully opened with a bench press and the embryos were isolated. All harvested plant samples were immediately frozen in liquid nitrogen and stored at −80 °C until used.

Chemicals and reagents

(R,S)-Norcoclaurine, (R)-norlaudanosoline, (S)-norlaudanosoline, (S)-coclaurine, and (13S,14R)-1,13-dihydroxy-N-methylcanadine were purchased from Toronto Research Chemicals (ON, Canada); (R)-reticuline was purchased from MuseChem (NJ); (S)-scoulerine was purchased from ChromaDex (CA); (+)-bulbocapnine and (+)-isocorydine were purchased from Sequoia Research Products (Pangbourne, UK); and boldine and SAM were purchased from Sigma-Aldrich or Bioshop Canada (ON, Canada).

NnOMT identification and phylogeny

A previously reported *N. nucifera* draft genome (30, 31) was searched to identify sequences encoding potential O-methyltransferase involved in BIA biosynthesis using the tblASTn algorithm and functionally characterized OMTs from *P. somniferum* as queries (Ps6OMT, Ps7OMT, PsN7OMT, and Ps4’OMT2). Five candidates (NnOMT1–NnOMT5) sharing >40% amino acid sequence identity with query sequences were isolated. The GenBank™ accession codes were as follows: XM_010245752, XM_010249599, XM_010249600, XM_010273389, and XM_010277761 (Table S2). Protein molecular weight and pI predictions were made using the...
O-Methyltransferases from sacred lotus

Geneious software package (Biomatters, NJ). Amino acid sequence alignments were performed using the default parameters of the MUSCLE algorithm (60) implemented in MEGA X (61). Evolutionary history was inferred using the Maximum Likelihood method established on the JTT matrix-based model (62). The tree with the highest log likelihood was drawn, with branch lengths proportional to the number of substitutions per site, and nodes labeled according to the percentage of trees in which the associated taxa clustered together in the bootstrap test based on 1000 replicates. The amino acid percent identity matrix among N. nucifera (Nn) and other OMTs was performed using Clustal Omega (63). The GenBank™ accession codes were as follows: Cc6OMT1 (MH165875); Cc6OMT2 (MH165876); Cj4OMT (D29812); Cj6OMT (D29811); CcCoOMT (AB073908); CjSOMT (D29809); Ct7OMT (MH165877); CcSOMT (MH165874); Ec4OMT (AB745041); Ec7OMT (AB232153); EcSOMT (LC171865); GfOMT1 (KP176693); GfOMT2 (KP176694); GfOMT6 (KP176698); GfOMT7 (KP176699); Ps4OMT2 (AY217334); Ps6OMT (AY217335); Cs7OMT (AY268893); PsN7OMT (FJ156103); Ps6OMT1 (JN185323); PsSOMT1 (JN185323); PsSOMT2 (MH029292); PsSOMT3 (MH029294); Tt6OMT1 (AF064693); Tt6OMT2 (AF064694). Abbreviations were as follows: Cc, Coptis chinensis; Cj, Coptis japonica; Gf, Glaucoma flavum; Nn, Nelumbo nucifera; Ps, Papaver somniferum; Tf, Thalictrum flavum; Tt, Thalictrum tuberosum; 4’OMT, 3’-hydroxy-N-methylcoclaurine 4’-O-methyltransferase; 6OMT, norcoclaurine 6-O-methyltransferase; 7OMT, reticuline 7-O-methyltransferase; CoOMT, cumbamine O-methyltransferase; N7OMT, norreticuline 7-O-methyltransferase; SOMT, scoulerine 9-O-methyltransferase. The amino acid sequences of functionally characterized OMTs involved in BIA biosynthesis used in the present work are provided in Table S9.

NnOMT cDNA isolation and expression

Plant tissues were ground with a mortar and pestle to a fine powder under liquid nitrogen. Total RNA was extracted using the cetyltrimethylammonium bromide method, as previously reported for N. nucifera tissues (64). RNA quality was confirmed by A260/280 and A260/230 absorbance measurements using a NanoDrop ND-1000 (Thermo Fisher Scientific) spectrophotometer, and visualization by agarose gel electrophoresis. After genomic DNA removal (AccuRT Genomics DNA Removal kit, Applied Biological Materials, BC, Canada), first-strand cDNA synthesis was performed on 1 μg of RNA using 5× All-in-One RT MasterMix kit, according to the instructions of the manufacturer (Applied Biological Materials, BC, Canada). NnOMT open reading frames were amplified from cDNA using Q5 High Fidelity DNA polymerase (New England Biolabs, MA) and sequence-specific primers (Table S8a) under the following conditions: 98 °C for 30 s; 35 cycles of 98 °C for 10 s, 52–65 °C (optimized for each NnOMT) for 30 s, and 72 °C for 30 s; 72 °C for 2 min. Amplicons were cloned in a pMiniT 2.0 vector, according to the instructions of the manufacturer (New England Biolabs, MA) and used to transform the E. coli TOP 10 strain for colony PCR screening. Plasmids from positive colonies were purified (GeneJet Plasmid Miniprep kit, Thermo-Fisher Scientific) and sequenced. PCR products were purified (GeneJet Gel Extraction Kit, Thermo-Fisher Scientific) and ligated into pKSET-A (Invitrogen) to construct the expression vectors using one-step sequence- and ligation-independent cloning (65). Full-length NnOMT coding regions were cloned in-frame with sequences encoding an N-terminal His6 tag using specific primers (Table S8a).

Recombinant protein purification

The pKSET-A-NnOMT expression plasmids were used to transform the E. coli Rosetta (DE3) pLysS (EMD Millipore, MA) strain and single colonies were used to inoculate 50 ml of LB medium supplemented with 100 μg/ml of ampicillin and 35 μg/ml of chloramphenicol. Cultures were grown at 30 °C with orbital shaking at 200 rpm for 16 h and used to inoculate 1 liter of LB media (100 μg/ml of ampicillin and 35 μg/ml of chloramphenicol) to a starting OD600 of 0.1. Cultures were grown at 30 °C until OD600 ~0.6, cooled to 16 °C and the production of recombinant proteins was induced by the addition of isopropyl β-D-thiogalactoside to a final concentration of 0.1 mM. Cultures were kept at 16 °C with shaking at 200 rpm for 16 h and cells were harvested by centrifugation at 5,000 × g for 20 min at 4 °C. Cell pellets were resuspended in 40 ml of protein extraction buffer (100 mM Tris-HCl, pH 7.5, 300 mM NaCl, 10% (v/v) glycerol) supplemented with 1 mg/ml of lysozyme and sonicated on ice for 3 min (10-s on, 30-s off). The crude lysate was centrifuged at 16,000 × g for 20 min at 4 °C to remove cellular debris. The cleared supernatant was loaded onto 1 ml of equilibrated Talon cobalt affinity resin (Clontech) and incubated at 4 °C for 30 min with gentle shaking. The resin was washed with 20 ml of protein extraction buffer, followed by 5 ml of protein extraction buffer containing 20 mM imidazole. Purified protein was eluted using 5 ml of protein extraction buffer containing 200 mM imidazole, and subsequently concentrated and desalted by repeated ultrafiltration on an Amicon Ultra 30K column (EMD Millipore, MA) in storage buffer (100 mM Tris-HCl, pH 7.5, 10% (v/v) glycerol, 1 mM β-mercaptoethanol). Purified His6-tagged protein concentration was determined using the Bradford reagent, according to the instructions of the manufacturer (Thermo Fisher) and using BSA as the standard. Protein purity was assessed by SDS-PAGE using a 10% (w/v) gel, which was subsequently transferred to a nitrocellulose membrane. Protein blots were blocked overnight with 5% (w/v) skim milk and incubated for 1 h with a 1:1,000 dilution of His6 antibody. After washing with TBST buffer (200 mM Tris-HCl, pH 7.6, 1.5 M NaCl, 0.1% (v/v) Tween 20), the blots were incubated for 1 h with a 1:10,000 dilution of goat anti-mouse IgG antibodies conjugated with horseradish peroxidase (Bio-Rad). Immunoblots were washed and developed using SuperSignal West Pico chemiluminescent substrate, according to the instructions of the manufacturer (Thermo Scientific) and the bands were visualized using an Amersham Biosciences Imager 600 (GE Healthcare).

Plant protein extraction

Plant tissues were ground to a fine powder under liquid nitrogen using a mortar and pestle. Total proteins were extracted by adding 5 ml of ice-cold extraction buffer A containing 100 mM Tris-HCl, pH 7.5, 10% (v/v) glycerol, 1%...
O-Methyltransferases from sacred lotus

(w/v) polyvinylpyrrolidone 40, 5 mM dithiothreitol and 1 mM phenylmethylsulfonyl fluoride to ~1 g of plant material, and sonicated in an ultrasonic bath for 5 min at 4 °C. Plant debris was eliminated by centrifugation at 14,000 × g for 10 min, and the supernatant was desalted in a PD-10 column (GE Healthcare) and eluted in extraction buffer without dithiothreitol and phenylmethylsulfonyl fluoride. The solution was concentrated by repeated ultrafiltration using an Amicon Ultra 30K column (EMD Millipore) in storage buffer (100 mM Tris-HCl, pH 7.5, 10% glycerol, 1 mM β-mercaptoethanol). Crude plant protein concentration was determined using the Bradford reagent according to the instructions of the manufacturer (Thermo Fisher) and using BSA as the standard.

Enzyme assays

Substrate-acceptance assays were performed in 100 mM Tris-HCl, pH 7.5, using 100 μM alkaloid, 200 μM SAM, and 5 μg of purified recombinant protein in a reaction volume of 50 μl. Negative control assays were performed using purified recombinant protein denatured in boiling water for 10 min. Assays were incubated at 30 °C and quenched after 4 h with 100 μl of acetonitrile, centrifuged at 17,000 × g for 40 min to precipitate proteins, and the supernatant analyzed by LC-MS/MS. Product formation, determined as an increase of 14 Da with respect to the substrate, was confirmed by comparison of retention times and CID spectra with respect to authentic standards.

HPLC-MS/MS

HPLC-MS/MS was performed using a 1200 HPLC instrument coupled to a 6410 triple quadrupole MS (Agilent, CA). Samples (5 μl) were injected onto a Poroshell 120 SB-C18 HPLC column, 2.1 × 50 mm, 2.7-μm particle size (Agilent). Analytes were eluted using a mobile phase gradient of solvent A (10 mM ammonium acetate, pH 5.5, 5% (v/v) acetonitrile) and solvent B (100% acetonitrile) at a flow rate of 600 μl/min. The gradient started at 100% (v/v) solvent A, ramped linearly to 60% (v/v) solvent B by 8 min, further increased linearly to 99% (v/v) solvent B over 2 min, remained isocratic at 99% (v/v) solvent B from 10 to 11 min, and returned to 100% (v/v) solvent A at 11.1 min for a 3-min re-equilibration period. Analytes were applied to the mass analyzer using an electrospray ionization probe operating in positive mode with the following conditions: capillary voltage 4 000 V, fragmentor voltage 110 V, source temperature 350 °C, nebulizer pressure 50 p.s.i., gas flow 10 liters/min. For full-scan analysis, quadrupole 1 and 2 were set to radio frequency only, whereas the third quadrupole scanned from m/z 200 to 700. ESI(+) and CID spectra were analyzed, the precursor m/z was selected in quadrupole 1 and collision energy of 25 eV and an argon collision gas pressure of 1.8 × 10−3 torr were applied in quadrupole 2. The resulting MS2 fragments were resolved by quadrupole 3 scanning from 30 to 5 m/z greater than the precursor ion m/z. Compounds were identified based on retention times and ESI(+) CID spectra compared with authentic standards or published spectral data.

Quantitative real-time PCR

RNA extraction and cDNA synthesis were performed as described above. Quantitative RT-PCR analysis was performed using PowerUp SYBR Green Master Mix and a QuantStudio-3 Real-Time PCR System (Applied Biosystems). Reactions (10 μl) contained diluted cDNA (~8 ng), 5 μl of SYBR Green Master Mix (2 times) (Applied Biosystems), and 500 nM of each primer (Table S8b). Thermal conditions were 50 °C for 2 min, 95 °C for 2 min, 40 cycles of 95 °C for 1 s, and 60 °C for 30 s. Amplification specificity was confirmed by melt-curve analysis, generated at a ramp rate of 1.6 °C/s to 95 °C maintained for 15 s, 1.6 °C/s to 60 °C maintained for 1 min, and 0.15 °C/s to 95 °C, which was maintained for 15 s. Primer efficiency was verified using LinRegPCR software (66) and samples with values between 1.8 and 2 were selected for analysis. Relative transcript abundance was calculated by the 2−ΔΔCt method (67), using β-actin as the endogenous reference gene (68). Transcript levels were normalized with respect to the gene showing the lowest expression level.

Homology modeling

The previously reported crystal structure from T. flavum norcoclaurine 6-O-methyltransferase (ThfOMT) in complex
O-Methyltransferases from sacred lotus

with (S)-norlaudanosoline and S-adenosyl-1-homocysteine (PDB 5ICE) (18) was used as template to generate a NnOMT5 homology model using SWISS-MODEL (69). The resulting NnOMT5 model and T6fOMT crystal structure were visualized, and figures were generated, using the PyMOL Molecular Graphic System (version 2.3.1, Schrödinger, LLC).

Author contributions—I. M. M.-P. and P. J. F. conceptualization; I. M. M.-P. data curation; I. M. M.-P. formal analysis; I. M. M.-P. investigation; I. M. M.-P. visualization; I. M. M.-P. methodology; I. M. M.-P. writing-original draft; I. M. M.-P. and P. J. F. writing-review and editing; P. J. F. supervision; P. J. F. funding acquisition; P. J. F. project administration.

Acknowledgments—We thank Dr. Jillian Hagel for assistance with LTQ-Orbitrap data analysis and for creating original artwork, and Dr. Jeremy Morris and Dr. Xue Chen for guidance on the experimental work and critical comments.

References
1. Dastmalchi, M., Park, M. R., Morris, J. S., and Facchinii, P. J. (2018) Family portraits: the enzymes behind benzylisoquinoline alkaloid diversity. Phytochem. Rev. 17, 249–277 CrossRef
2. Hagel, J. M., and Facchinii, P. J. (2013) Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world. Plant Cell Physiol. 54, 647–672 CrossRef Medline
3. Singh, A., Menéndez-Perdomo, I. M., and Facchinii, P. J. (2019) Benzylisoquinoline alkaloid biosynthesis in opium poppy: and update. Phytochem. Rev. 18, 1457–1482 CrossRef
4. Liscombe, D. K., MacLeod, B. P., Loukanina, N., Nandi, O. I., and Facchinii, P. J. (2005) Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry 66, 2501–2520 Medline
5. Chen, G., Zhu, M., and Guo, M. (2019) Research advances in traditional and modern use of Nelumbo nucifera—phytotherapies, health promoting activities and beyond. Crit. Rev. Food Sci. Nutr. 59, 189–209 Medline
6. Kashiwada, Y., Aoshima, A., Ikeshiro, Y., Chen, Y. P., Furukawa, H., Itoigawa, M., Fujioka, T., Mihashi, K., Cosentino, L. M., Morris-Natschke, S. L., and Lee, K. H. (2006) Inhibition of (S)-armepavine from Nelumbo nucifera on autoimmune disease of MRL/MpJ-lpr/lpr mice. Eur. J. Pharmacol. 531, 270–279 CrossRef
7. Liu, W., Yi, D. D., Gao, J. L., Xiang, Z. X., Deng, L. F., and He, L. (2015) Nuciferine, extracted from Nelumbo nucifera Gaertn., inhibits tumor-promoting effect of nicotine involving Wnt/β-catenin signaling in non-small cell lung cancer. J. Ethnopharmacol. 165, 83–93 CrossRef Medline
8. Fang, J., Lee, S. K., Park, K. K., Son, S. H., Kim, K. R., and Chung, W. Y. (2017) Lignansine and nuciferine, bioactive components of Nelumbo nucifera, inhibit the growth of breast cancer cells and breast cancer-associated bone loss. Evid. Based Complement Alternat. Med. 2017, 1583185 Medline
9. Poornima, P., Weng, C. F., and Padma, V. V. (2014) Neferine, an alkaloid from lotus seed embryo, inhibits human lung cancer cell growth by MAPK activation and cell cycle arrest. Biofactors 40, 121–131 CrossRef Medline
10. Yoon, J. S., Kim, H. M., Yadunandam, A. K., Kim, N. H., Jung, H. A., Choi, J. S., Kim, C. Y., and Kim, G. D. (2013) Neferine isolated from Nelumbo nucifera enhances anti-cancer activities in Hep3B cells: molecular mechanisms of cell cycle arrest, ER stress induced apoptosis and anti-angiogenic response. Phytomedicine 20, 1013–1022 CrossRef Medline
11. Xu, L., Zhang, X., Li, Y. L., Lu, S., Lu, S., Li, J., Wang, Y., Tian, X., Wei, J. J., Shao, C., and Liu, Z. (2016) Neferine induces autophagy of human ovarian cancer cells via p38 MAPK/IKK activation. Tumour Biol. 37, 8721–8729 CrossRef Medline
12. Menéndez-Perdomo, I. M., and Facchinii, P. J. (2018) Benzylisoquinoline alkaloids biosynthesis in sacred lotus. Molecules 23, e2899 Medline
13. Liscombe, D. K., Louie, G. V., and Noel, J. P. (2012) Architectures, mechanisms and molecular evolution of natural product methyltransferases. Nat. Prod. Rep. 29, 1238–1250 CrossRef Medline
14. Lam, K. C., Ibrahim, R. K., Behdad, B., and Dayanandan, S. (2007) Structure, function, and evolution of plant O-methyltransferases. Genome 50, 1001–1013 CrossRef Medline
15. Park, M. R., Chen, X., Lang, D. E., Ng, K. K. S., and Facchinii, P. J. (2018) Heterodimeric O-methyltransferases involved in the biosynthesis of noscapine in opium poppy. Plant J. 95, 252–267 CrossRef Medline
16. Li, Y., and Smolke, C. D. (2016) Engineering biosynthesis of the anticancer alkaloid noscapine in yeast. Nat. Commun. 7, 12137 CrossRef Medline
17. Rolbin, A. Y., Giustini, C., Grindoige, M., Matringe, M., and Dumas, R. (2016) Crystal structure of norcoclaurine-6-O-methyltransferase, a key rate-limiting step in the synthesis of benzylisoquinoline alkaloids. Plant J. 87, 641–653 CrossRef Medline
18. Cabry, M., Offen, W. A., Saleh, P., Li, Y., Winzer, T., Graham, I. A., and Davies, G. J. (2019) Structure of Papaver somniferum O-Methyltransferase 1 reveals initiation of noscapine biosynthesis with implications for plant natural product methylation. ACS Catal. 9, 3840–3848 CrossRef
19. Desgagné-Penix, I., and Facchinii, P. J. (2012) Systematic silencing of benzylisoquinoline alkaloid biosynthetic genes reveals the major route to papaferine in opium poppy. Plant J. 72, 331–344 CrossRef Medline
20. Omanaro, A., Decker, G., Schmidt, J., Lottspeich, F., and Kutchan, T. M. (2003) (R,S)-Reticuline 7-O-methyltransferase and (R,S)-norcoclaurine 6-O-methyltransferase of Papaver somniferum: cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy. Plant J. 36, 808–819 CrossRef Medline
21. Pienkny, S., Brandt, W., Schmidt, J., Kramell, R., and Ziegler, J. (2009) Functional characterization of a novel benzylisoquinoline O-methyltransferase suggests its involvement in papaverine biosynthesis in opium poppy (Papaver somniferum L.). Plant J. 60, 56–67 CrossRef Medline
22. Facchinii, P. J., and Park, S. U. (2003) Developmental and inducible accumulation of gene transcripts involved in alkaloid biosynthesis in opium poppy. Phytochemistry 64, 177–186 CrossRef Medline
23. Ziegler, J., Díaz-Chávez, M. L., Kramell, R., Ammer, C., and Kutchan, T. M. (2005) Comparative macroarray analysis of morphine containing Papaver somniferum and eight morphine free Papaver species identifies an O-methyltransferase involved in benzylisoquinoline biosynthesis. Planta 222, 458–471 CrossRef Medline
24. Dang, T. T., and Facchinii, P. J. (2012) Characterization of three O-methyltransferases involved in noscapine biosynthesis in opium poppy. Plant Physiol. 159, 618–631 CrossRef Medline
25. Chang, L., Hagel, J. M., and Facchinii, P. J. (2015) Isolation and characterization of O-methyltransferases involved in the biosynthesis of glaucine in Glaucium flavum. Plant Physiol. 169, 1127–1140 Medline
26. Purwantoro, R., Hori, K., Yamada, Y., and Sato, F. (2017) Unraveling additional O-methylation steps in benzylisoquinoline alkaloid biosynthesis in California poppy (Eschscholzia californica). Plant Cell Physiol. 58, 1528–1540 CrossRef Medline
27. Morishige, T., Dubouzet, E., Choi, K. B., Yazaki, K., and Sato, F. (2002) Molecular cloning of clomubamine O-methyltransferase from cultured Coptis japonica cells. Eur. J. Biochem. 269, 5659–5667 CrossRef Medline
28. Morris, J. S. and Facchinii, P. J. (2019) Molecular origins of functional diversity in benzylisoquinoline alkaloid methyltransferases. Front Plant Sci. 10, 1058 CrossRef Medline
29. Gui, S., Peng, J., Wang, X., Wu, Z., Cao, R., Salse, J., Zhang, H., Zhu, Z., Xie, Q., Quan, Z., Shu, L., Ke, W., and Ding, Y. (2018) Improving Nelumbo nucifera genome assemblies using high-resolution genetic maps and BioNano genome mapping reveals ancient chromosome rearrangements. Plant J. 94, 721–734 CrossRef Medline
30. Ming, R., VanBuren, R., Liu, Y., Yang, M., Han, Y., Li, L. T., Zhang, Q., Kim, M. J., Schatz, M. C., Campbell, M., Li, J., Bowers, J. E., Tang, H., Lyons, E.,
47. Inui, T., Tamura, K., Fujii, N., Morishige, T., and Sato, F. (2007) Overexpression of Coptis japonica norcoclaurine 6-O-methyltransferase overcomes the rate-limiting step in benzylisoquinoline alkaloid biosynthesis in cultured Eschscholzia californica. Plant Cell Physiol. 48, 252–262 CrossRef

48. Frenzel, T., and Zenk, M. H. (1990) S-Adenosyl-l-methionine3'-hydroxy-N-methyl-(S)-coaquarane-4'-O-methyltransferase, a regio- and stereoselective enzyme of the (S)-reticulane pathway. Phytochemistry 29, 3505–3511 CrossRef

49. He, S. M., Song, W. L., Cong, K., Wang, X., Dong, Y., Cai, J., Zhang, J. J., Zhang, G. H., Yang, J. L., Yang, S. C., and Fan, W. (2017) Identification of candidate genes involved in isoquinoline alkaloids biosynthesis in Dactylis glomerata by transcriptome analysis. Sci. Rep. 7, 9119 CrossRef

50. Lee, E. J., and Facchini, P. (2010) Norcoclaurine synthase is a member of the pathogenesis-related 10/Bet v1 protein family. Plant Cell 22, 3489–3503 CrossRef

51. Li, J., Lee, E. J., Chang, L., and Facchini, P. J. (2016) Genes encoding norcoclaurine synthase occur as tandem fusions in the Papaveraceae. Sci. Rep. 6, 39256 CrossRef

52. Sheng, X., and Himo, F. (2019) Enzymatic Pictet-Spengler reaction: computational study of the mechanism and enantioselectivity of norcoclaurine synthase. J. Am. Chem. Soc. 141, 11230–11238 CrossRef

53. Hong, H., Lee, Y. J., and Jin, D. (2010) Determination of R- (+)-higenamine enantiomer in Nelumbo nucifera by high-performance liquid chromatography with a fluorescent chiral tagging reagent. Microchem. J. 96, 374–379 CrossRef

54. Kato, E., Iwata, R., and Kawabata, J. (2017) Synthesis and detailed examination of spectral properties of (S)- and (R)-higenamine 4'-O-β-D-glucoside and HPLC analytical conditions to distinguish the diastereomers. Molecules 22, e1450 CrossRef

55. Sato, F., Tsujita, T., Katagiri, Y., Yoshida, S., and Yamada, Y. (1994) Purification and characterization of S-adenosyl-l-methionine: norcoclaurine 6-O-methyltransferase from cultured Coptis japonica cells. Eur. J. Biochem. 225, 125–131 CrossRef

56. Ka, S. M., Kuo, Y. C., Ho, P. J., Tsai, P. Y., Hsu, Y. J., Tsai, W. J., Lin, Y. L., Shen, C. C., and Chen, A. (2010) (S)-Armpaevine from Chinese medicine improves experimental autoimmune crescentic glomerulonephritis. Rheumatology (Oxford) 49, 1840–1851 CrossRef

57. Itoh, A., Saitoh, T., Tani, K., Uchigaki, M., Sagimoto, Y., Yamada, J., Nakajima, H., Ohishi, H., Sun, S., and Tanahashi, T. (2011) Biosynthesis of benzylisoquinoline alkaloids from Nelumbo nucifera. Chem. Pharm. Bull. (Tokyo) 59, 947–951 CrossRef

58. Vimolmangkang, S., Deng, X., Owiti, A., Meelaph, T., Ogutu, C., and Liu, Y. (2014) Ultra-performance LC separation and quadrupole time-of-flight MS identification of major lotus leaf alkaloids by solid phase extraction combined with high-performance liquid chromatography using ultraviolet and mass spectrometry. J. Chromatogr. A 174–180 CrossRef

59. Meelaph, T., Kobtrakul, K., Chansilpa, N. N., Han, Y., Rani, D., De-Eknamkul, W., and Vimolmangkang, S. (2018) Coregulation of biosynthetic genes and transcription factors for aporphine-type alkaloid production in wounded lotus provides insight into the biosynthetic pathway of nucifera. ACS Omega 3, 8794–8802 CrossRef

60. Deng, X., Zhao, L., Fang, T., Xiong, Y., Ogutu, C., Yang, D., Vimolmangkang, S., Liu, Y., and Han, Y. (2018) Investigation of benzylisoquinoline alkaloid biosynthetic pathway and its transcriptional regulation in lotus. Hortic. Res. 5, 29 CrossRef

61. Edgar, R. C. (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. J. Comput. Biol. 11, 81–104 CrossRef

62. Jones, D. T., Taylor, W. R., and Thornton, J. M. (1992) The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8, 275–282 CrossRef

63. Sievers, F., and Higgins, D. G. (2018) Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27, 135–145 CrossRef

64. Sievers, F., and Higgins, D. G. (2018) Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27, 135–145 CrossRef
O-Methyltransferases from sacred lotus

65. Zhang, Y. J., Hao, X. Y., Liang, Z. S., Ke, W. D., and Guo, H. B. (2013) Efficient isolation of high-quality RNA from lotus *Nelumbo nucifera* ssp nucifera tissues. *Genet. Mol. Res.* **12**, 223–229 CrossRef Medline

66. Jeong, J. Y., Yim, H. S., Ryu, J. Y., Lee, H. S., Lee, J. H., Seen, D. S., and Kang, S. G. (2012) One-step sequence- and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies. *Appl. Environ. Microbiol.* **78**, 5440–5443 CrossRef Medline

67. Ruijter, J. M., Pfaffl, M. W., Zhao, S., Spiess, A. N., Boggy, G., Blom, J., Rutledge, R. G., Sisti, D., Lievens, A., De Preter, K., Derveaux, S., Hellmans, J., and Vandesompele, J. (2013) Evaluation of qPCR curve analysis methods for reliable biomarker discovery: bias, resolution, precision, and implications. *Methods* **59**, 32–46 CrossRef Medline

68. Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2^−ΔΔCt method. *Methods* **25**, 402–408 CrossRef Medline

69. Dong, C., Li, G., Li, Z., Zhu, H., Zhou, M., and Hu, Z. (2009) Molecular cloning and expression analysis of an Mn-SOD gene from *Nelumbo nucifera*. *Appl. Biochem. Biotechnol.* **158**, 605–614 CrossRef