A Study on the Prevalence of Vancomycin-resistant *Enterococci* and Their Antibiotic Resistance Pattern in Recreational Waters in Guilan Province, Iran

Hadis Kalantari¹, Abbas Hajizade²*, Khosro Issazadeh¹*, Mohammad Faezi Ghasemi¹

1. Department of Microbiology, Faculty of Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
2. Biology Research Center, Faculty of Basic Sciences, Imam Hassein University, Tehran, Iran

ABSTRACT

Background and Aim: *Enterococcus faecalis* is a major opportunistic pathogen that causes nosocomial infections in humans, especially in immunocompromised and elderly people. This bacterium can survive and grow in harsh conditions and low-nutrient environments, so it is usually found in water and can easily be transmitted via the fecal-oral route. Due to the high usage of antibiotics, many antibiotic-resistant strains of *E. faecalis* have been evolved, especially vancomycin-resistant ones (VRE). Water-borne VRE is an environmental and health problem. Since the monitoring of recreational waters is so important in human health, the aim of the present study was to investigate the prevalence of VRE isolates and their antibiotic patterns in the environmental samples from recreational waters in Guilan Province, Iran.

Materials and Methods: The environmental samples were obtained from recreational waters in six cities in Guilan Province, North of Iran, 4 stations in Anzali wetland, and 5 main rivers entering Anzali wetland from January to September 2019. *E. faecalis* samples were identified by microscopic analysis, biochemical tests, and molecular identification. Antibiotic resistance patterns of the isolates were determined by an antibiogram test. The molecular identification of the isolates was performed using polymerase chain reaction (PCR) with specific primers for the *ddE* gene.

Results: Overall, in 268 samples, *Enterococci* were detected in 154 samples (57.46%), of which 35 isolates (29.68%) were VRE. From VRE isolates 32 isolates (91.42%) belonged to *E. faecalis*; 2 isolates (5.71%) belonged to *E. faecium*; and one isolate (2.86%) belonged to other *Enterococcus* species.

Conclusion: This study shows the high prevalence and antibiotic resistance rate of VRE strains of *E. faecalis* in water resources in Guilan province, which can be alarming and needs to be considered.

Keywords: Antibacterial drug resistance, *Enterococcus faecalis*; Vancomycin-resistant *Enterococci*; Water pollution

Received: 2021/11/13; Accepted: 2022/01/30; Published Online: 2022/03/20

Corresponding Information: Abbas Hajizade, Biology Research Center, Faculty of Basic Sciences, Imam Hassein University, Tehran, Iran
Email: abbashajizade@gmail.com
And Khosro Issazadeh, Department of Microbiology, Faculty of Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
Email: issa_kaam@yahoo.com

Use your device to scan and read the article online

Download citation: BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to: Mendeley | Zotero | RefWorks

1 Introduction

Enterococci are widely distributed in the environment. These bacteria are adequately tolerant to harsh conditions. They can survive and grow in a low-nutrient environment, so they are present almost everywhere, from water to soil, sewage, air, etc. (1). Their primary source is humans' and warm-blooded animals' intestines (2); however, they can resist outside the intestine for long periods (3). Since they are resistant to different conditions such as low pH, freezing, moderate heat treatment, etc., they have been considered a contamination indicator for some types of food products as well as water (4, 5). These bacteria are not highly pathogenic and cause nosocomial infections, such as urinary tract infections, intra-abdominal infections, endocarditis, and bacteremia (6). *Enterococcus faecalis* (*E. faecalis*) and En-
Enterococcus faecium (E. faecium) are the most isolated Enterococcus species in clinical samples (7, 8).

The opportunistic pathogen Enterococcus faecalis (E. faecalis) causes nosocomial infections in humans, especially in immunocompromised and elderly people (9). Due to its ability to survive and grow in limited nutrients and various environmental conditions, the bacterium is usually found in water and can easily be transmitted via the fecal-oral route.

High consumption of antibiotics is an important driver for the increasing antibiotic resistance, which is one of the greatest threats to public health globally (10-12). First reports on vancomycin-resistant Enterococci (VRE) emerged in the 1980s (13). Since then, VRE strains have been isolated from patients as well as environmental samples.

Since vancomycin is the first-line drug for treating multi-drug resistant Enterococci, the epidemiology of VRE in the environment is of great importance. Indeed, the determination of the antibiotic resistance pattern of the VRE isolates is essential to tackle the spread of the strains. In this regard, in the present study, we investigated the prevalence of vancomycin-resistant isolates and their antibiotic-resistant patterns in the environmental samples from recreational waters in Guilan Province, Iran.

2. Materials and Methods

Sample Collection

In this cross-sectional study, sampling was performed from January to December 2019 in Guilan province, Iran. Samples were obtained from 20 natural swimming places, 4 stations in 4 main areas of Anzali wetland, and 5 main rivers entering the wetland, whose details are presented in Table 1. In each season, 40 samples were collected from 20 swimming places (160 in total in one year), 12 samples were collected from 4 main areas of Anzali wetland (3 samples from each region and a total of 48 samples in one year), and 15 samples were obtained from 5 rivers entering Anzali wetland (3 samples were collected at specified intervals and a total of 60 samples in one year) (Table 2). Collectively, 268 samples were obtained and entered the study.

Table 1. Sampling sites’ names and locations.

Sampling sites	City/Town	Site’s name	Location (UTM*)
Swimming Places	Astara	Sadaf beach resort	39S E0314219N4246168
	Astara	Safir e omid beach resort	39S E0315016 N4254644
	Chobar(Talesh)	Beach park	39S E0316030 N4229067
	Goruq (Talesh)	Goruq beach resort	39S E0321687 N4189920
	Gisum (Talesh)	Gisum beach	39S E0328401 N4171642
	Anzali	Matin beach	39S E0355253 N4151996
	Anzali	Pasdaran peach park	39S E0358072 N4150927
	Anzali	Sahel e ghoo beach resort	39S E0367956 N4148400
	Anzali	Taleb abad beach	39S E0372116 N4147603
	Anzali	Jafrud beach	39S E0383284 N4146271
	Rasht	Morvarid-e-khazar beach resort	39S E0389521 N4145553
	Rasht	Haji bekandeh beach	39S E0393849 N4145223
	Rasht	Amin abad beach	39S E0395187 N4145153
	Kiashahr	Kiashahr beach	39S E0409042 N4136461
	Astane-e-ashrafieh	Asgarabad beach	39S E0417999 N4140070
	Lahijan	Saharkhiz beach resort	39S E0431430 N4131561
	Langarud	Chamkhaleh	39S E0434659 N4120964
	Rudsar	Taraneh e darya beach resort	39S E0437608 N4112988
	Kelachay	Negin e shomal beach resort	39S E0448873 N4102317
	Chaboksar	Gole e sorkh beach resort	39S E0458530 N4094627
Table 2. The number of samples collected from different sites in different seasons.

Season Site	Spring	Summer	Fall	Winter	Total
Swimming Places	40	40	40	40	160
Stations in Anzali wetland	12	12	12	12	48
Rivers entering Anzali wetland	15	15	15	15	60
Total	67	67	67	67	268

Bacterial Isolation and Detection

Following the sampling, the most probable number (MPN) method was used to estimate the concentration of viable *Enterococcus* in water samples utilizing replicate growth in Azide Dextrose Broth (Merck, Germany) (14). The grown bacteria were transferred to Pfizer Selective Enterococcus (PSE) Agar for confirmatory testing. After 24 hours of incubation at 35°C, the formation of blackish-brown colonies was considered *E. faecalis*. Then, biochemical tests, including esculin hydrolysis test, growth in Trypticase Soy Broth (TSB) medium containing 6.5% salt (NaCl), bile tolerance test, heat resistance test, growth at temperatures of 10°C and 45°C, growth at pH=9.6, tellurite reduction, motility test, H2S production, and sugar fermentation tests.

Antimicrobial Susceptibility Testing

For antibiotic susceptibility determination of the isolates, the Kirby-Bauer disk diffusion method on Mueller-Hinton agar was performed based on the guidelines of the Clinical and Laboratory Standards Institute (CLSI) (15, 16). Standard antimicrobial drugs (Mast, UK), including vancomycin (30 µg), kanamycin (30 µg), streptomycin (30 µg), erythromycin (15 µg), amikacin (30 µg), ampicillin (10 µg), gentamicin (120 µg), ciprofloxacin (5 µg), and chloramphenicol (30 µg) were used for this aim. *E. faecalis* (ATCC 10541) was used as a control to standardize antibiotic susceptibility testing.

Molecular Confirmation of VREs

Using ExiPrep Plus Bacteria Genomic DNA Kit, genomic DNA was extracted according to the manufacturers' instructions. Then, the quality of the extracted DNA was determined using agarose gel electrophoresis. For molecular identification of the *E. faecalis* isolates, a 475-bp fragment corresponding to the *ddle* gene was amplified using specific primers. The forward and reverse primers sequence was: 5'-CACCTGAAGAAACAGGC-3', and 5'-ATGGCTACTTCAATTTCAGG-3', respectively (17). *E. faecalis* JH2-2 reference strain was used as the control. The PCR reactions were set up according to the manufacturer's recommendations. Each reaction contained 1X PCR buffer, 1.5 mM of MgCl2, 1 µL of the isolated bacterial DNA, 0.2 mM of each dNTPs, and 0.25 µM of each primer. The cycling conditions were set to 95°C for 2 min, followed by 45 cycles at 95°C for 5 s, 50°C for 30 s, and 72°C for 1 min.

Results

Sample Collection

Based on morphological, microscopic, and biochemical traits, from 268 samples, 154 were identified as *Enterococcus* spp. Isolated *Enterococcus* formed blackish-brown colonies on PSE Agar and Bile Esculin Agar media (Figure 1A). Gram staining and micro-
scopic observation of the isolates showed single or short chains of Gram-positive cocci (Figure 1B). The total number of Enterococci counted in this study is illustrated in Table 3.

Table 3. The number of Enterococci bacteria isolated from samples collected from each site in each season.

Season Site	Spring	Summer	Fall	Winter	Total
Swimming Places	39	42	107	95	283
Stations in Anzali wetland	457	299	389	538	1683
Rivers entering Anzali wetland	290	222	249	222	983
Total	786	563	745	855	2949

Antibiotics Susceptibility Tests

The antibiotic susceptibility pattern of isolated Enterococcus species showed that 100% of isolates from swimming pools were resistant to streptomycin. The prevalence of the resistant isolates to the evaluated antibiotics was as follows: ciprofloxacin 22.2%, gentamicin 56.5%, erythromycin 21.2%, kanamycin 77.7%, chloramphenicol 18.1%, ampicillin 14.1%, and vancomycin 35.3%.

Isolated Enterococcus species from rivers leading to Anzali wetland had the antibiotic-resistance pattern as follows:

streptomycin 96.1%, ciprofloxacin 19.2%, gentamicin 57.6%, erythromycin 23%, kanamycin 73%, chloramphenicol 15.3%, ampicillin 19.2%, and vancomycin 46.1%.

Antibiotic susceptibility pattern of isolated Enterococcus species from Anzali wetland showed that 96.6% of isolated Enterococci were resistant to streptomycin, 34.4% were resistant to ciprofloxacin, 55.1% were resistant to gentamicin, 31% were resistant to erythromycin, 58.6% were resistant to kanamycin, 24.1% were resistant to chloramphenicol, 20.6% were resistant to ampicillin, and 41.3% were resistant to vancomycin (Table 4).

Table 4. Antibiotic susceptibility among E. faecalis isolates.

Antibiotics	Site	S (No; %)	CIP (No; %)	GEN (No; %)	ERY (No; %)	KAN (No; %)	C (No; %)	AMP (No; %)	VAN (No; %)
Swimming Places	100	22.2	56.5	21.2	77.7	18.1	14.1	35.3	
Stations in Anzali wetland	96.6	34.4	55.1	31	58.6	24.1	20.6	41.3	
Rivers entering Anzali wetland	96.1	19.2	57.6	23	73	15.3	19.2	46.1	

Abbreviations: S: Streptomycin; C: Chloramphenicol; CIP: Ciprofloxacin; GEN: Gentamicin; ERY: Erythromycin; KAN: kanamycin; AMP: ampicillin; VAN: vancomycin

Molecular Identification of the Isolates:

As mentioned previously, the ddlE gene was amplified to identify vancomycin-resistant E. faecalis isolates molecularly. Figure 1A represents the DNA extraction from the isolates, and Figure 1B shows the results of the ddlE gene amplification. As shown in Figure 1, the ddlE gene has been amplified in VRE isolates but not in the control strain. As the positive control for PCR reaction, we used primers that could amplify a 500 bp segment of the fliC gene of Salmonella typhi (S. typhi).
Enterococci are common pathogens that cause severe nosocomial infections (18-20). In the present study, Enterococci isolates were obtained from environmental samples from recreational waters, mainly swimming places in Guilan Province, Iran. We chose to investigate these places because many people, both travelers, and natives, go there for swimming, and therefore, monitoring the microbial load of these places is very important.

We observed a relatively high resistance level to different antibiotics, including vancomycin, kanamycin, streptomycin, erythromycin, amikacin, ampicillin, gentamicin, ciprofloxacin, and chloramphenicol, among these isolates. Of the isolates, 46.1% were resistant to vancomycin, which is relatively high. Almost all strains (98%) were resistant to streptomycin. Among the studied antibiotics, ampicillin and chloramphenicol had the highest antibacterial effect on the isolates; 18%, and 19%, respectively.

The prevalence of the VREs and their antibiotic-resistant patterns among clinical as well as environmental samples is variable in different regions (21-24). Same as the present study, Alipour et al. examined the presence of Enterococcus spp. as well as their antibiotic resistance patterns in samples from a river and coastal waters in Mazandaran Province, Iran. Of 70 isolated Enterococci, 68.6% and 20% belonged to E. faecalis and E. faecium, respectively. They reported a high resistance rate to chloramphenicol, ciprofloxacin, and tetracycline (25). In 2019, Mazaheri et al. investigated the prevalence of VREs among dried vegetable samples in Tehran, Iran, which they found that 48% of the isolates were VREs (26). In a study by Roberts et al. on the prevalence of VREs in crows and their environment, 24.5% and 55% of the crows and environmental samples, respectively, were VRE positive (27).

Rezvani et al. studied the prevalence of Enterococcus spp. and their antibiotic-resistant patterns in gastroenteritis patients. They found Enterococcus spp. in 37% of samples; most of them belonged to E. faecalis (91%), and 9% belonged to E. faecium. The prevalence of VREs among Enterococci isolates was relatively low (6%), all of which belonged to E. faecalis (28). Zavaryani et al. assessed the susceptibility of the clinical Enterococcus isolates to five antibiotics, including vancomycin, gentamicin, teicoplanin, fosfomycin, tetracycline, and quinupristin/dalfopristin among 400 Enterococcus species. In their study, teicoplanin and vancomycin were the most effective antibiotics, while Quinupristin/dalfopristin was the least effective against the clinical samples (29).

Khanmohammadi et al. investigated the prevalence of VREs among two different sets of samples, fecal and clinical samples. The rate of VREs among fecal samples (52%) was higher than in clinical isolates (32%) (30). As can be seen, different results are being reported from different samples. This variation can be related to the types of samples (clinical or environmental), geographical location of sample collection, the treatment strategies exploited in each region (high rate of antibiotics consumption), sewage disposal, etc. However, due to the high spread rate of antibiotic-resistant bacteria and the horizontal transfer of antibiotic-resistant genes, it is a real public health concern.

In the present study, the E. faecalis-specific ddl gene (ddlE. faecalis) was used as the specific gene to identify E. faecalis strains (31). ddl encodes D-alanine:D-alanine ligases and related glycopeptide resistance proteins (32). D-alanine–D-alanine ligase is an essential enzyme for the peptidoglycan biosynthesis. This enzyme dimerizes D-Ala before its incorporation in peptidoglycan precursors (33). Mutation in this gene results in the deficiency of bacterial growth. This gene is widely used for the identification of different bacterial species, including various species of Enterococci as well as other species (34-40).

5. Conclusion

A relatively high prevalence of VREs in the studied places poses a serious epidemiological threat and a
risk to public health. The possibility of horizontal gene transfer among the bacteria may transmit resistant genes from VREs to other bacteria; therefore, it is necessary to think about the necessary measures to determine the source of the pollution and at the same time prevent swimming in places with a high level of bacterial pollution until the problem is addressed.

Acknowledgment

The authors acknowledge the staff and students of I.A. University. Indeed, we appreciate the warm help of the staff of the B.R.C.

Reference

1. Byappanahalli MN, Nevers MB, Korajkic A, Staley ZR, Harwood VJ. Enterococci in the environment. Microbiol Mol Biol Rev. 2012;76(4):685-706. [DOI:10.1128/MMBR.00023-12] [PMID] [PMCID]

2. Dubin K, Pamer EG. Enterococci and Their Interactions with the Intestinal Microbiome. Microbiol Spectr. 2014;5(6). [DOI:10.1128/microbiolspec.BAD-0014-2016] [PMID] [PMCID]

3. Garcia-Solache M, Rice LB. The Enterococcus: a Model of Adaptability to Its Environment. Clin Microbiol Rev. 2019;32(2). [DOI:10.1128/CMR.00058-18] [PMID] [PMCID]

4. Farneleitner AH, Ryzinska-Paier G, Reischer GH, Burtscher MM, Knetsch S, Kirschner AK, et al. Escherichia coli and enterococci are sensitive and reliable indicators for human, livestock and wildlife faecal pollution in alpine mountainous water resources. J Appl Microbiol. 2010;109(5):1599-608. [DOI:10.1111/j.1365-2672.2010.04788.x] [PMID] [PMCID]

5. Banwart George J. Indicator Organisms. Food Microbiol. 1989:371. [DOI:10.1007/978-1-4684-6453-5_7]

6. Prakash VP, Rao SR, Parija SC. Emergence of unusual species of enterococci causing infections, South India. BMC Infect Dis. 2005;5:14. [DOI:10.1186/1471-2334-5-14] [PMID] [PMCID]

7. Castillo-Rojas G, Mazari-Hiriart M, Ponce de Leon S, Amieva-Fernandez RJ, Agis-Juarez RA, Huebner J, et al. Comparison of Enterococcus faecium and Enterococcus faecalis Strains isolated from water and clinical samples: antimicrobial susceptibility and genetic relationships. PLoS One. 2013;8(4):e59491. [DOI:10.1371/journal.pone.0059491] [PMID] [PMCID]

8. Strateva T, Atanasova D, Savov E, Petrova G, Mitov I. Incidence of virulence determinants in clinical Enterococcus faecalis and Enterococcus faecium isolates collected in Bulgaria. Braz J Infect Dis. 2016;20(2):127-33. [DOI:10.1016/j.bjid.2015.11.011] [PMID]

9. Ayobami O, Willrich N, Reuss A, Eckmanns T, Markwart R. The ongoing challenge of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis in Europe: an epidemiological analysis of bloodstream infections. Emerg Microbes Infect. 2020;9(1):1180-93. [DOI:10.1080/22221751.2020.1769500] [PMID] [PMCID]

10. Ahmadishoar S, Pour NK, Sadeghi J, Nahei MR, Kheirkhah B. Genotypic and phenotypic characterisation of clinical isolates of methicillin-resistant Staphylococcus aureus in two different geographical locations of Iran. Indian J Med Microbiol. 2020;38(2):162-8. [DOI:10.4103/ijmm.IJMM_20_153] [PMID]

11. Frieri M, Kumar K, Boutin A. Antibiotic resistance. J Infect Public Health. 2017;10(4):369-78. [DOI:10.1016/j.jiph.2016.08.007] [PMID]

12. Avakh Majalan P, Hajizade A, Nazarian S, Pourmand MR, Amiri Siyavoshani K. Investigating the Prevalence of Shigella Species and Their Antibiotic Resistance Pattern in Children With Acute Diarrhea Referred to Selected Hospitals in Tehran, Iran. Appl Biotechnol Rep. 2018;5(2):70-4. [DOI:10.29252/JABR.05.02.06]

13. Rice LB. Emergence of vancomycin-resistant enterococci. Emerg Infect Dis. 2001;7(2):183-7. [DOI:10.3201/eid0702.010205] [PMID] [PMCID]

14. Sutton S. The most probable number method and its uses in enumeration, qualification, and validation. J Valid Technol. 2010;16(3):35-8.
15. Hsueh P-R, Ko W-C, Wu J-J, Lu J-J, Wang F-D, Wu H-Y, et al. Consensus Statement on the Adherence to Clinical and Laboratory Standards Institute (CLSI) Antimicrobial Susceptibility Testing Guidelines (CLSI-2010 and CLSI-2010-update) for Enterobacteriaceae in Clinical Microbiology Laboratories in Taiwan. J Microbiol Immunol Infect. 2010;43(5):452-5. [DOI:10.1016/S1684-1182(10)60070-9]

16. Humphries R, Bobenchik AM, Hindler JA, Schuetz AN. Overview of Changes to the Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing, M100, 31st Edition. J Clin Microbiol. 2021;59(12): e0021382. [DOI:10.1128/JCM.00213-21] [PMID] [PMCID]

17. Erbas G, Parin U, Turkyilmaz S, Ucan N, Ozturk M, Kaya O. Distribution of Antibiotic Resistance Genes in spp. Isolated from Mastitis Bovine Milk. Acta Veterinaria. 2016;66(3):336-46. [DOI:10.1515/acve-2016-0029]

18. Khan HA, Ahmad A, Mehboob R. Nosocomial infections and their control strategies. Asian Pac J Trop Biomed. 2015;5(7):509-14. [DOI:10.1016/j.apjtb.2015.05.001]

19. Linden P, Miller C. Vancomycin-resistant Enterococci: the clinical effect of a common nosocomial pathogen. Diagn Microbiol Infect Dis. 1999;33(2):113-20. [DOI:10.1016/S0732-8893(98)00148-5]

20. Sood S, Malhotra M, Das BK, Kapil A. Enterococcal infections & antimicrobial resistance. Indian J Med Res. 2008;128(2):111-21.

21. Friedman M. Antibiotic-resistant bacteria: prevalence in food and inactivation by food-compatible compounds and plant extracts. J Agric Food Chem. 2015;63(15):3805-22. [DOI:10.1021/acs.jafc.5b00778] [PMID]

22. Markwart R, Willrich N, Haller S, Noll I, Koppe U, Werner G, et al. The rise in vancomycin-resistant Enterococcus faecium in Germany: data from the German Antimicrobial Resistance Surveillance (ARS). Antimicrob Resist Infect Control. 2019;8:147. [DOI:10.1186/s13756-019-0594-3] [PMID] [PMCID]

23. Purohit MR, Chandran S, Shah H, Diwan V, Tamhankar AJ, Stalsby Lundborg C. Antibiotic Resistance in an Indian Rural Community: A 'One-Health' Observational Study on Commensal Coliform from Humans, Animals, and Water. Int J Environ Res Public Health. 2017;14(4). [DOI:10.3390/ijerph14040386] [PMID] [PMCID]

24. Wada Y, Harun AB, Yean CY, Zaidah AR. Vancomycin-Resistant Enterococci (VRE) in Nigeria: The First Systematic Review and Meta-Analysis. Antibiotics (Basel). 2020;9(9). [DOI:10.3390/antibiotics9090565] [PMID] [PMCID]

25. Alipour M, Hajiesmaili R, Talebjannat M, Yahyapour Y. Identification and antimicrobial resistance of Enterococcus spp. isolated from the river and coastal waters in northern Iran. Sci World J. 2014;2014:287458. [DOI:10.1155/2014/287458] [PMID] [PMCID]

26. Mazaheri Nezhad Fard R, Soltan Dallal MM, Abbaspour M, Rajabi Z. Study of VanA, B, C, D, E Genes in Vancomycin Resistant Enterococci Isolated from Retailed Dried Vegetables in Tehran, Iran. Int J Enteric Pathog. 2019;7(1):9-14. [DOI:10.15171/ijep.2019.03]

27. Roberts MC, No DB, Marzluff JM, Delap JH, Turner R. Vancomycin resistant Enterococcus spp. from crows and their environment in metropolitan Washington State, USA: Is there a correlation between VRE positive crows and the environment? Vet Microbiol. 2016;194:48-54. [DOI:10.1016/j.vetmic.2016.01.022] [PMID]

28. Rezvani J, Nasr R, F Ts, Akbari Egdahgah MR. Frequency of VanA, VanB and VanH variants amongst vancomycin-resistant enterococci isolated from patients in central region of Iran. Gastroenterol Hepatol Bed Bench. 2016;9(4):308-15.

29. Masoumi Zavaryani S, Mirnejad R, Piranfar V, Moosazadeh Moghaddam M, Sajjadi N, Saeedi S. Assessment of Susceptibility to Five Common Antibiotics and Their Resistance Pattern in Clinical Enterococcus Isolates. Iran J Pathol. 2020;15(2):96-105. [PMID] [PMCID] [DOI:10.30699/ijp.2020.114009.2236]

30. Khanmohammadi S, Nahaei MR, Rezaee MA, Sadeghi J. Frequency of vancomycin resistance and vanA gene in enterococci isolated from Tabriz Children’s teaching and treatment center. Med J Tabriz Univ Med. 2018;40(4):16-23.

31. Kurushima J, Iye K, Tomita H. Partial Diversity Generates Effector Immunity Specificity of the Bac41-Like Bacteriocins of Enterococcus faecalis Clinical Strains. J Bacteriol. 2016;198(17):2379-90. [DOI:10.1128/JB.00348-16] [PMID] [PMCID]

32. Gholizadeh Y, Prevost M, Van Bambekte F, Casdewall B, Tulkens PM, Courvalin P. Sequencing of the ddl gene and modeling of the mutated D-alanine:D-alanine ligase in glycopeptide-dependent strains of Enterococcus faecium. Protein Sci. 2001;10(4):836-44. [DOI:10.1101/pas.39101] [PMID] [PMCID]
33. Monticelli LS, Decembrini F, Bergamasco A, Caruso G. Water quality assessment of transitional and coastal marine Sicilian waters (Italy): Ecological and epidemiological significance of multiple antimicrobial resistant Enterococcus spp. Estuar Coast Shelf Sci. 2019;217:173-84. [DOI:10.1016/j.ecss.2018.11.021]

34. Zalipour M, Esfahani BN, Havaei SA. Phenotypic and genotypic characterization of glycopeptide, aminoglycoside and macrolide resistance among clinical isolates of Enterococcus faecalis: a multicenter based study. BMC Res Notes. 2019;12(1):292. [DOI:10.1186/s13104-019-4339-4] [PMID] [PMCID]

35. Sharifi Y, Hasani A, Ghotaslou R, Varshochi M, Hasani A, Aghazadeh M, et al. Survey of Virulence Determinants among Vancomycin Resistant Enterococcus faecalis and Enterococcus faecium Isolated from Clinical Specimens of Hospitalized Patients of North west of Iran. Open Microbiol J. 2012;6:34-9. [PMID] [PMCID] [DOI:10.2174/1874285801206010034]

36. Heidari H, Hasanpour S, Ebrahim-Saraie HS, Motamedifar M. High Incidence of Virulence Factors Among Clinical Enterococcus faecalis Isolates in Southwestern Iran. Infect Chemother. 2017;49(1):51-6. [DOI:10.3947/ic.2017.49.1.51] [PMID] [PMCID]

37. Ghapanchi J, Emami A, Rezazadeh F, Shakibasefat H, Pirbonyeh N. Isolation of Enterococcus faecalis in the saliva samples of patient candidates for liver transplantation. Dent Res J (Isfahan). 2019;16(5):333-7. [DOI:10.4103/1735-3327.266091]

38. Angeletti S, Lorino G, Gherardi G, Battistoni F, De Cesaris M, Dicuonzo G. Routine molecular identification of enterococci by gene-specific PCR and 16S ribosomal DNA sequencing. J Clin Microbiol. 2001;39(2):794-7. [PMID] [PMCID] [DOI:10.1128/JCM.39.2.794-797.2001]

39. Knijff E, Dellaglio F, Lombardi A, Andrighetto C, Torriani S. Rapid identification of Enterococcus durans and Enterococcus hirae by PCR with primers targeted to the ddl genes. J Microbiol Methods. 2001;47(1):35-40. [DOI:10.1016/S0167-7012(01)00297-4]

40. Kafil HS, Asgharzadeh M. Vancomycin-resistant enterococcus faecium and enterococcus faecalis isolated from education hospital of iran. Maedica (Bucur). 2014;9(4):323-7.