Efficiently Scaling Transformer Inference

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, Jeff Dean
Google
MLSys 2023 (Outstanding Paper Award)

Presented by Vignesh Suresh
Feb 27, 2024
Goal of the work

Inference
- How to reduce latency for prefill and decode?

Transformer
- How to partition compute and memory?

Scaling
- How to scale to large batch sizes and sequences?

** Efficiently**
- How to ensure low chip cost and high utilization?
Overview

Preliminaries
Expected trade-offs
Partitioning feedforward layer
Partitioning attention
Results from PaLM
Comparison with FasterTransformer
Discussion
Preliminaries

Key metrics for transfer inference
- Latency
- Throughput
- Model FLOPs utilization

System setup

1 Jouppi, Norm, et al. "TPU v4: An optically reconfigurable supercomputer for machine learning with hardware support for embeddings." ISCA 2023.
Run single parallel forwards pass for:
\(B \text{ sequences} \ast L_{\text{input tokens}}\)

Run sequential (autoregressive) forwards pass for:
\(L_{\text{gen tokens}}\)

Question: are there use-cases where prefill is more critical to optimize and vice-versa?

Source: https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization/
Models get larger → Need to partition across chips

How does that impact compute and memory costs for inference?

- Compute time: not much change — time to perform matrix multiply
- Memory time:
 - Need to load weights and KV cache
 - Small batches: Weights dominate
 - Large batches: KV cache dominates
Overview

Preliminaries

Expected trade-offs
Partitioning feedforward layer
Partitioning attention
Results from PaLM
Comparison with FasterTransformer
Discussion
Expected trade-offs

Trade-offs change with different use cases:

Offline inference: Small and large batches require different partitioning strategies
Overview

Preliminaries
Expected trade-offs
Partitioning feedforward layer
Partitioning attention
Results from PaLM
Comparison with FasterTransformer
Discussion
Partitioning Feedforward Layer

1D weight-stationary layout

- $E \times F$ weight matrix stationary sharded along E or F axis.
- $B \times L \times E$ activation matrix also partitioned across all chips.
Partitioning Feedforward Layer

1D weight-stationary layout

- $B \times L \times E$ activation matrix aggregated using all-gather.
- First matrix multiply performed.
Partitioning Feedforward Layer

1D weight-stationary layout

- Output $B \times L \times F_{xyz}$ matrix input to GELU activation.
- Second $E \times F$ weight matrix sharded along second axis.

Output and input axis flip “trick” to reduce communication
Partitioning Feedforward Layer

1D weight-stationary layout

- Second matrix multiply performed.
- Partial sum is reduce-scatter-ed to all chips
Partitioning Feedforward Layer

1D weight-stationary layout

- As the chips increase:
 - Compute and memory time decrease
 - Communication time constant (eventually bottleneck)
- Communication cost (all-gather + reduce-scatter):

\[T_{\text{comm}} = \frac{2BL E}{\text{network bandwidth}} \]
Partitioning Feedforward Layer

Extending to 2D weight-stationary layout:

- Partition weight across both E and F axes.
- Communication is more efficient:
 - Alternate axis to perform aggregation
 - Adds two more collective operations
 - Scales as $O\left(\frac{1}{\sqrt{n_{chips}}}\right)$ – more chips reduces latency!
- Communication cost:

$$T_{\text{comm}} = \frac{8BLE}{\sqrt{n_{chips}} \times \text{network bandwidth}}$$
Partitioning Feedforward Layer

Extending to weight-gathered layout:

- As batch size increase
 - Keep activations stationary
 - Transfer weights between chips
- You could also have a hybrid approach:
 - Both are transferred across different axes
 - They propose XY-weight gathered used in prefill
 - Weight across X and Y; activations across Z
- Communication cost:
 \[T_{\text{comm}} = 4E \frac{\sqrt{BFL}}{\sqrt{n_{\text{chips}}} \times \text{network bandwidth}} \]
Partitioning Feedforward Layer

Trade-offs between the approaches:
• How do they scale with batch size?
• Question: why linear?
Overview

Preliminaries
Expected trade-offs
Partitioning feedforward layer

Partitioning attention

Results from PaLM
Comparison with FasterTransformer
Discussion
Partitioning Attention Layer

Changes to model architecture:

• **Multi-query attention** vs. multi-head attention
 • n_{heads} for the query, but one head for the key and value

• **Parallel formulation** vs. serialized formulation of transformer
 • Question: Megatron-style model parallel and multi-query?
Partitioning Attention Layer

Multi-head attention, sharded over heads

Multi-query attention, sharded over heads

Multi-query attention, sharded over batch

Multi-head attention can be sharded across heads without replication

Multi-query attention requires full replication of the single head for K, increasing memory access cost.

Instead by sharding over batch, only a slice of K is needed for einsum, reducing memory access cost.
Overview

Preliminaries
Expected trade-offs
Partitioning feedforward layer
Partitioning attention

Results from PaLM
Comparison with FasterTransformer
Discussion
Case study – PaLM models

Large transformer model from Google:
• Predecessor to the new Gemini model
• Incorporates multi-query attention and parallel transformer.
• Thought: case of model-system co-design

See Chowdhery, et al. "Palm: Scaling language modeling with pathways."
Impact of partitioning feedforward layer

Performance of decoding
Latency Scaling with Chip Count

Performance of prefill
Utilization Scaling with Batch size

![Graph 1: Performance of decoding](image1)

- **Weight Stationary: 2D vs. 1D**
- **Latency per Step (milliseconds)**
- **Chip count**: 64, 128, 256
- Line charts comparing 2D and 1D Weight Stationary

![Graph 2: Performance of prefill](image2)

- **2D Weight Stationary vs. Gathered**
- **Model FLOPs Utilization**
- **Tokens per Batch**: 125000, 250000, 500000, 1000000
- Line charts comparing Weight Stationary and Gathered
Impact of partitioning attention layer

Performance of decoding
Latency Scaling with Sequence Length

Multiquery vs. Multihead Attention (8 layers)

Question: what about prefill?
End-to-End results
Overview

Preliminaries
Expected trade-offs
Partitioning feedforward layer
Partitioning attention
Results from PaLM

Comparison with FasterTransformer

Discussion
Comparison with FasterTransformer
Summary

Inference
• Prefill and decoding have different trade-offs

Transformer
• PaLM model with multi-query attention and parallel formulation

Scaling
• Partitioning strategies for feedforward and attention

Efficiently
• Different strategies are efficient for different use cases:
 • chip count/batch size/sequence length
Overview

Preliminaries
Expected trade-offs
Partitioning feedforward layer
Partitioning attention
Results from PaLM
Comparison with FasterTransformer

Discussion
Discussion

• Initial thoughts?
• What is a more generalized strategy for any transformer architecture?
• GPU vs TPU
 • This paper does not make a case to use TPU over GPU (they could have)
 • So, what is the case for TPU?
• How can we further improve decoding utilization? (~40% for PaLM)