Immune mechanisms of SARS-CoV-2 and potential drugs in the prevention and treatment of COVID-19

Mikhail P. Kostinov1,2, Elena V. Markelova3, Oksana A. Svitich1, Valentina B. Polishchuk1,3

1 I.I.Mechanikov Research Institute of Vaccines and Sera: Maly Kazenny per. 5a, Moscow, 105064, Russia
2 I.M. Sechenov First Moscow State Medical University (Sechenov University), Healthcare Ministry of Russia: ul. Trubetskaya 8, build. 2, Moscow, 119991, Russia
3 Pacific State Medical University, Healthcare Ministry of Russia: Ostryakova pr. 2, Vladivostok, 690002, Russia

Abstract

The lack of specific vaccines against SARS-CoV-2, as well as chemotherapy, significantly affected the spread of infection and the number of adverse outcomes of COVID-19. With the discovery of the pathogenesis of coronavirus infection, especially immune mechanisms, the important role of the innate immune system in interacting with the virus is obvious. The presence of comorbid conditions, as well as the aging of the body, lead to disturbances in the immune response mechanism, low interferon induction, depletion of CD8+-lymphocytes and natural killers and suppression of the effectiveness of both innate and adaptive immunity. The review discusses various mechanisms of antiviral activity associated with the induction of interferon (IFN) production, the use of direct IFN therapy, the use of antiviral drugs, and immunotropic therapy (synthetic immunomodulators), as promising in the prevention and treatment of COVID-19.

Key words: SARS-CoV-2, pathogenesis, COVID-19, innate immunity, adaptive immunity, interferon therapy.

Conflict of interests. The authors declare the absence of conflict of interests.

For citation: Kostinov M.P., Markelova E.V., Svitich O.A., Polishchuk V.B. Immune mechanisms of SARS-CoV-2 and potential drugs in the prevention and treatment of COVID-19. Pul'monologiya. 2020; 30 (5): 700–708 (in Russian). DOI: 10.18093/0869-0189-2020-30-5-700-708
не только из прямого вирусного влияния, но и из осо-
бенностей ответа организма человека, что обусловле-
вает ее разнообразие в популяции — от бессимп-
тных форм или бессимптомного носительства до тяжелого течения с высокой вероятностью леталь-
ного исхода.

Целью настоящей работы явился анализ совре-
менных взглядов на патогенез новой коронавирус-
ной инфекции COVID-19 для оценки перспектив
включения иммунотропной терапии для неспе-
цифической профилактики и лечения пациентов
с COVID-19.

Подобно другим респираторным коронавирусам,
преимущественный путь передачи COVID-19 —
воздушно-капельный, но не исключается и фекаль-
но-оральный путь. Для проникновения в клетку
вирус взаимодействует с рецептором ангиотензинпре-
вращающего фермента II (АПФ II) и мембраносвя-
занной сериновой протеазой-2 (TMPRSS2), необ-
ходимой для проникновения в клетку. После связывания
протеина S с АПФ II происходит прямое слияние
мембраны вируса и клетки, после чего белок подвер-
гается частичному расщеплению и становится ак-
тивным. Вирусная РНК попадает в цитоплазму, где
после транслайции начинается активная репликация
вирусного генома. Его взаимодействие с аппаратом
Гольджи позволяет вирусным частицам высвобо-
диться в плазму, что продолжает цикл распростране-
ния вируса по организму [1].

Учитывая снижение экспрессии АПФ II на фоне
COVID-19, можно предполагать последующее нару-
шение в работе ренин-ангиотензиновой системы, что
способно нарушить регуляцию артериального давле-
ния, водно-электролитный баланс. В то же время
нельзя исключать, что это изменение экспрессии ре-
цепторов АПФ II играет важную роль и в патогенезе
самой COVID-19 [2]. При анализе статистики случа-
ев COVID-19 у лиц, проживающих в высокогорной
местности, отмечено более легкое течение заболе-
вания в сравнении с жителями равнинных территорий.
По мнению авторов [3], это может быть связано как
с уменьшением периода жизни вируса в условиях по-
ниженного атмосферного давления, так и с индуци-
рованным спадом уровня АПФ II на фоне гипоксии.

Исследователи демонстрируют отсутствие еди-
ногого мнения о роли АПФ II рецепторов в патогенезе
заболевания. На основании экспериментальных дан-
ных у мышей, мутантных по АПФ II, выявлена сни-
жение вирусной нагрузки и репликации [2]. С другой
стороны, исходя из схожести поражения легких при
COVID-19 и вирусе «птичьего гриппа» H5N1, мож-
но предполагать протективный эффект экзогенного
введения АПФ II на развитие острого респираторно-
го дистресс-синдрома (ОРДС).

С АПФ II связаны и половой диморфизм
смертности при COVID-19 (более низкая смерт-
ность отмечена у женщин). Это, предположитель-
но, обусловлено или генетическим диморфизмом,
т. к. ген АПФ II расположен на Х-хромосоме, или различным иммунорегуляторным действием эстро-
генов и тестостерона [4].

На этапе проникновения вируса в клетку про-
исходит презентация вирусного антигена антиген-
презентирующими клетками и распознавание вирус-
ных рецепторами врожденного иммунитета. В случае
ПНК-содержащих вирусов, к которым относится
SARS-CoV-2, патоген-ассоциированные мо-
ллерные паттерны (PAMP) распознаются эндо-
сомальными ПНК-рецепторами, Toll-подобными
рецепторами (TLR3 и TLR7), а также цитоплазмати-
ческими рецепторами из семейства RIG-1 (Retinoic-
Acid-Inducible Gene I) и цитоплазматической хелка-
зой MDA-5 (Melanoma-Differentiation-Associated Pro-
tein-5) — белок-5, связанный с дифференцировкой
меланомы) [5]. Активация рецепторов должна вестися
к каскадной реакции через фактор транскрипции
NF-κB и IRF3 (регуляторный фактор транскрипции
IFN) с последующей экспрессией IFN I типа и иных
провоспалительных цитокинов. Кроме PAMP боль-
шую роль играют и ассоциированные с повреждени-
ем молекулярные паттерны (DAMP), реагирующие
на фрагменты поврежденных клеток. Они образу-
ются вследствие выраженного пиригипоза, характер-
ного для манифестации COVID-19. С ролью DAMP
также связывают различные реакцию клеток легоч-
ного эндотелия на повреждение [2]. В эксперимен-
те на мышах продемонстрирован различный ответ
на белок из группы ядерных нестихоновых белков
HMGB1 (high-mobility group protein B1). Он являет-
ся маркером повреждения, способным активиро-
вать рецептор RAGE (receptor for advanced glycation
endproducts), активно экспрессируемый в легочной
tкани. Зафиксировано развитие некроза в лабора-
торных условиях у клеток, полученных от мужской
осообы, и апоптоза — от женской. В настоящее вре-
мя представлены экспериментальные работы об эф-
фективности антагонистов HMGB1 / RAGE и TLR4
(функционального рецептора для HMGB1) в тера-
пии заболеваний, связанных с сильным повреждени-
ем легких [6].

Успешная активация каскада интерферон-проду-
цирующих реакций должна привести к контролю ре-
пликации вируса и супрессии диссеминации SARS-
CoV-2 в период дебюта заболевания [7]. Однако,
учитывая ингибирующее влияние вирусных белков
NSP1 (nonstructural RNA-binding protein) и гриб (ribosom-
al protein S6), можно предполагать низкую эффектив-
ность интерфероновиндуции, особенно на стадии
активной репликации вируса, в то время как пряма
IFN-терапия должна продемонстрировать адекват-
ный терапевтический эффект [8]. В работе [9] пред-
ставлена гипотеза об активации IFN-продукции, ас-
социированной с уровнем внутриклеточного АТФ
(аденозинтрифосфат), снижению которого, по мне-
нию авторов, принадлежит одна из ключевых ролей
в патогенезе COVID-19.

Одной из наиболее вероятных причин недоста-
tочной и несовременной работы врожденного им-
мунитета при заболевании, вызванном COVID-19,
может быть особенность иммунной эвазии (усколь-
зания), характерной для данного вируса. Репликация
вируса, происходящая внутри клеточных органелл,
предотвращает распознавание вируса цитоплазматическими рецепторами. Также существуют данные о длительном «лаг-периоде» (направленная фаза роста микроорганизмов), что ведет к активации IFN-κаскада в длинном поздний период для предотвращения вирусной диссеминации. В то же время позднее повышение уровня IFN I типа способно потенцировать развитие «цитокинового шторма», что актуализирует рассмотрение роли других IFN, обладающих противовирусной активностью, — IFN-λ. Об их роли существуют различные мнения. С одной стороны, опубликованы данные [3], что мутация гена IFNL4 (TT-тип), приводящая к отсутствию данного субтипа, ведет к более быстрому и полному устранению вирусной нагрузки. Этот факт авторами связывается с деактивацией механизма десенситизации, снижающего активность IFN-α. С другой стороны, IFN-λ в силу органоспецифичности своих эффектов не вызывают столь выраженного провоспалительного ответа, как IFN I типа, и их присутствие на ранних этапах способно подавить репликацию вируса без развития «лаг-синдрома» в отношении IFN-α и без провокации «цитокинового шторма» [10]. Если механизмы врожденного иммунитета оказываются неэффективными, в защиту включаются элементы адаптивной иммунной системы с формированием антител и специфического клеточного иммунного ответа.

Важным элементом в патогенезе инфекции является гиперактивация врожденного иммунного ответа без сопутствующего перехода к адаптивному иммунному ответу. Известно, что у пациентов с тяжелым течением заболевания наблюдается превалирование нейтрофилов, в отличие от ожидаемого повышения уровня лимфоцитов. Вероятно, это может быть связано с тем, что вирус способен повышать экспрессию мембранного рецептора HK-клеток 2-го типа (NKG2A), что приводит к функциональному истощению CX3C-лимфоцитов и естественных киллеров и подавлению эффективности как врожденного, так и адаптивного иммунитета [1]. Возраст-ассоциированный характер диморфизма симптомов может быть связан с изменением в функциональной активности иммунитета. Связанная со старением T-клеточная лимфопения, снижение активности нейтрофилов, макрофагов, смещение цитокинового баланса в сторону провоспалительного ответа — все эти факторы усугубляют течение коронавирусной инфекции. Кроме этого, существование феномена антителогенического усиления инфекции (ADE) предполагает, что в случае пролонгированного периода нарастания титра антител (характерно для пожилых людей) вирус способен произвести генетический шифт и изменить структуру антигена, что приводит к накоплению непротективных антител, способствующих проникновению вируса в клетки. Эти данные говорят в пользу того, что вирус, приводя к снижению числа АПФ II рецепторов, продолжает свое распространение через иные механизмы и пути, не зависящие от основного входного рецептора [11].

При адекватном T-клеточном ответе рекрутированные к очаг инфекции T-клетки оказывают протективное влияние и ограничивают рост и распространение вируса. Однако в случае иммунной эвазии данное накопление T-лимфоцитов в ткани ведет к гиперактивной реакции, преимущественно по 1-mu типу, с последующим повреждением тканей органа и возможным развитием «цитокинового шторма» [4]. Он характеризуется избыточной продукцией провоспалительных цитокинов, таких как TNF-α, IL-6, IL-1β. С повышенной вирусной нагрузкой и потерей функции легких связывают появление повышенного уровня хемокинов CXCL10, CCL7, антагониста рецептора к IL-1 [12]. С учетом того что «цитокиновый шторм», вероятно, является одной из основных причин повреждения организма и летального исхода, рассматривается ряд терапевтических стратегий, связанных с ингибированием данного процесса. Первьоочередными агентами, вероятно, являются моноклональные антитела, однако такой фактор, как адекватный уровень витамина D, также может быть немаловажным в контроле данной инфекции [6].

Существенное значение в патогенезе COVID-19 имеют расстройства гемодинамики, ассоциированные с системным воспалительным ответом, так и с гипоксией. На фоне снижения уровня функционирующих АПФ II, ответственных за вазодилатацию, в легких развивается вазоконстрикция и, как следствие, гипоксия. Она, в свою очередь, влечет на эндоциты и провоцирует провоспалительную реакцию. На фоне данных процессов запускается гиперкоагуляция, связанная с освобождением фактора Виллебранда и высокой экспрессией тканевого фактора (TF). В итоге совместно с активацией нетоза (формирование внеклеточных нейтрофильных ловушек — мощная функция нейтрофилов, которая, как предполагается, может способствовать развитию полиорганной недостаточности и приводить к летальному исходу) происходит активация коаагуляции, активация пути TF VIIa. Последующий микротромбоз в легких, развивающийся на фоне гиперкоагуляции, повреждения эндотелия и замедления кровотока, становится патофизиологическим субстратом для развития ОРДС [13]. Данными в подтверждение расстройства коагуляции также служат результаты вскрытий пациентов, погибших от COVID-19: более чем у 70 % был выявлен синдром диссеминированного внутрисосудистого свертывания [6].

Следовательно, в патогенезе COVID-19 активация механизмов врожденного иммунитета, каскада интерферон-продуцирующих реакций может привести к контролю репликации вируса и супрессиции диссеминации SARS-CoV-2 период дебюта заболевания и способствовать вовлечению адаптивной иммунной системы с формированием антител. По ряду терапевтических стратегий существуют различные мнения, однако в качестве профилактики и лечения COVID-19 иммунотропная стратегия рассматривается как перспективная.
Синтетические иммуномодуляторы

На ранних этапах развития COVID-19 одним из потенциальных препаратов может являться синтетический иммуномодулятор азоксимера бромид благодаря комплексному механизму действия — иммуномодулирующему, детоксицирующему и противовоспалительному. На основании клинических исследований можно выделить 3 его основные роли в иммунопатогенезе воспалительных заболеваний:

• повышение эффективности врожденного иммунитета;
• в качестве адъюванта в развитии гуморального иммунного ответа;
• способность оказывать выраженный патогенетическому и клинический эффект у пациентов с тяжелыми воспалительными заболеваниями.

По результатам исследований [14–17] показано, что инкубация клеток при воздействии азоксимера бромида вызывает повышение экспрессии рецепторов врожденного иммунитета, в т. ч. MDA-5. Высокая экспрессия MDA-5 обеспечивает распознавание вируса на ранней стадии инфицирования — это стратегия профилактики, на более поздней стадии реализуется стратегия активации специфического иммунного ответа. Известно, что распространению вируса в организме, в частности вирусемии, значительно препятствуют циркулирующие плазматоидные дендритные клетки (пДК), которые при активации продуцируют IFN 1-го типа, блокируя репликацию вируса. Установлено, что вакцина, содержащая азоксимера бромид, значительно превосходила безъядерные вакцины по повышению численности пДК в плазме крови [18]. Кроме того, препарат повышал активность НК-клеток и CTL, основных клеток, обеспечивающих "киллинг" зараженных вирусом клеток. Азоксимера бромид индуцирует созревание ДК с позиции активации "киллинг" зараженных вирусом клеток.

В медицинской практике широко используется азоксимера бромид в качестве компонента терапии COVID-19. Включение препаратов в комплексную терапию у больных с тяжелой формой COVID-19, повышение содержания Т-лимфоцитов, усилению активности фагоцитоза [21–25]. Снижение тяжести течения заболевания в описанных исследованиях может быть обусловлено также способностью азоксимера бромида подавлять нейтрализующий эффект печеночного эндотелия сосудов, со стороны миокарда и других поверхностных молекул, увеличивает выживаемость больных с COVID-19 [26]. Пациенты преклонного возраста относятся к группе высокого риска по инфицированию с неблагоприятным исходом COVID-19. Процесс физиологического старения касается, а также функционирования иммунной системы. При старении замедляется оперативность своевременного реагирования неспецифических защитных механизмов распознавания и удаления чужеродных агентов. Исследования, проведенные у людей пожилого и старческого возраста, показали, что включение азоксимера бромида у таких пациентов приводит к увеличению относительного и абсолютного содержания Т-лимфоцитов с фенотипом CD3+, CD4+, повышению соотношения CD4+- / CD8+-лимфоцитов, увеличению содержания сывороточных уровней иммуноглобулинов A и G, нормализации показателей лейкоцитов крови [27–30], т. е. препарат может снизить клинические проявления вторичной иммунной недостаточности посредством модуляции иммунных механизмов, которые крайне важны во избежание лихорадки, подавления продукции специфических защитных механизмов распознавания антигенов.

Интерфероны. В настоящее время у человека выделяют 9 видов IFN, а по способности взаимодействовать с 3 типами рецепторов их объединяют в 3 семейства:

• I — IFN-α, -β, -ε, -κ, -ω;
• II — IFN-γ;
• III — IFN-λ1, -λ2, -λ3.

В медицинской практике широко используется IFN-α благодаря его выраженному противовирусному, иммуномодулирующему и опосредованному антибактериальному действию. IFN-α, будучи регуляторным белком, усиливает выработку молекул главного комплекса гистосовместимости антиген-презентирующих клеток, обеспечивая нормальный процесс презентации антиген иммунокомпетентным клеткам. Интерферон обеспечивает экспрессию CD4+ / CD8+-мOLEКУЛ у T-клетки, что дает возможность распознать антител и включиться в иммунный ответ. IFN-α как фактор, усиливающий экспрессию не только молекул МHC, но и других поверхностных молекул, увеличивает количество Fc-рецепторов на поверхности иммунокомпетентных клеток, делая возможным нормальное течение процесса фагоцитоза [31–33]. В России...
на практике применяется достаточно много препаратов IFN-α [34–40]. Также в настоящее время рассматривается возможность применения инъекционных форм IFN-β в сочетании с противовирусными препаратами, однако результаты данных исследований еще не опубликованы [41]. Кроме IFN-α рассматривается возможность применения IFN-λ, которые обладают независимым от IFN I типа противовирусным эффектом. В отличие от IFN I типа, IFN-λ оказывают более органоспецифичное действие, участвуя в поддержании защитной функции эпителиальных клеток, в частности респираторного тракта [42]. Учитывая небольшое число побочных эффектов от применения данной терапии в сравнении с IFN типа I и II, возможна ее использования выглядит потенциально приемлемой при профилактике COVID-19.

Индукторы интерферонов — это вещества природного или синтетического происхождения, способные индуцировать в организм продукцию IFN типа I и II, характеризующиеся иммуномодулирующей, противовирусной и противовоспалительной активностью [43, 44]. Основными продуктами IFN в ответ на введение индукторов IFN являются клетки эпителия кишечника, гепатоциты, макрофаги, нейтрофилы и гранулоциты. Механизм противовирусного действия связан с индукцией выработки IFN и, как следствие, ингибированием трансляции вирус-специфических белков в инфицированных клетках, в результате чего подавляется репродукция вирусов. Природные и синтетические индукторы IFN способны индуцировать продукцию других цитокинов — TNF-α, IL-1, -6, -8, -10, колониестимулирующих факторов. Показано их назначение при различных инфекционных заболеваниях, в первую очередь вирусных [45, 46].

Потенциальным профилактическим эффектом при COVID-19 могут обладать иммуномодулирующие препараты (например, содержащие в своем составе полисахаридный комплекс из очищенного экстракта побегов *Solanum tuberosum*). В экспериментальной работе на животных показано, что подобные препараты способны индуцировать репродукцию и повышают жизнеспособность пораженных клеток [47–49]. Очень ждем доказательств в клинических исследованиях.

Противовирусные препараты. Имидазолилэтанамид пентандиовой кислоты (ИПК) — оригинальный противовирусный препарат, применяемый в России в качестве лечебного и профилактического средства при гриппе и других острых респираторных вирусных заболеваниях. Установлено, что ИПК, не являясь интерфероногеном, повышает синтез IFN-рецепторов (IFNAR) и способствует увеличению чувствительности клеток к сигналам IFN, которые подавляются фактором патогенности вируса гриппа — неструктурным белком NS1. Препарат способен стимулировать выработку противовирусных эффекторных белков PKR и Mxa в зараженных клетках, противодействуя су- прессорному действию вируса гриппа в отношении системы IFN. Теоретическое обоснование клинической эффективности ИПК может быть подтверждено полученными данными о влиянии на систему врожденного иммунитета в условиях вирусной инфекции [50, 51]. Для оценки ее эффективности при новой коронавирусной инфекции необходимо проведение клинических испытаний. В данном случае теоретических обоснований недостаточно.

Многочисленные исследования, проведенные в Российской Федерации, как и в ряде зарубежных лабораторий, показали, что препарат Умifenовир действует на ранних стадиях вирусной репродукции и ингибирует транскрипцию вирусной липидной оболочки с внутриклеточными мембранами, предотвращая проникновение вируса внутрь клетки, но не влияет на вирусную транскрипцию и трансляцию, а также на активность нейраминидазы (NA) и ассоцировано вируса [52–54]. Умifenовир по механизму вирус-специфического действия отличается от применяемых противогриппозных препаратов — блокаторов ионных каналов Амантадина и Ремантадина и ингибиторов NA Занамири и Осельтамивира. Противовирусная активность его подтверждена в многочисленных исследованиях *in vitro* и *in vivo*, выполненных в ведущих научных центрах России, независимых лабораториях США, Великобритании, Австралии, Франции, Китая и других стран [55, 56]. В начале февраля 2020 года китайские специалисты сообщили о возможной эффективности препарата в борьбе с коронавирусом, однако все это еще не подтверждено в клинических исследованиях.

Следующее противовирусное и иммуномодулирующее средство — натриевая соль сополимера (1→4)-6-0-карбоксиметил-β-D-глюкозы, (1→4)-β-D-глюкозы и (21→24)-2,3,14,15,21,24,29,32-октагидроксиксилитетил-4,13-ди(2-пропил)-19,22,26,30,31-пентаоксигексадека-21-оксид — оригинальный противовирусный препарат, имеющий репродукционную активность нейраминидазы (NA) и ассоцировано вируса [52–54]. Умifenовир по механизму вирус-специфического действия отличается от применяемых противогриппозных препаратов — блокаторов ионных каналов Амантадина и Ремантадина и ингибиторов NA Занамири и Осельтамивира. Противовирусная активность его подтверждена в многочисленных исследованиях *in vitro* и *in vivo*, выполненных в ведущих научных центрах России, независимых лабораториях США, Великобритании, Австралии, Франции, Китая и других стран [55, 56]. В начале февраля 2020 года китайские специалисты сообщили о возможной эффективности препарата в борьбе с коронавирусом, однако все это еще не подтверждено в клинических исследованиях.
препаратами со схожим действием: GC-376, ингибиторами кальцина II и XII. Однако вопрос клинического применения данных средств в настоящее время остается дискуссионным [59].

Спорным является применение ингибиторов янус-киназы (JAKi). В ряде рандомизированных исследований была подтверждена эффективность данных препаратов для лечения пациентов с COVID-19 с тяжёлым течением, однако, учитывая возможную усугубление расстройств коагуляции, характерных для данных пациентов, назначение это должно проводиться с осторожностью, основываясь на оценке рисков нежелательных последствий терапии [60, 61].

Однако блокировать проникновение вируса способны не только JAKi, но и ингибиторы рецептора CD147, которые наравне с ними являются «входными воротами» для COVID-19. На данный механизм направлено в т. ч. и действие азитромицина, противовирусный эффект которого был ранее описан в ряде работ. В то же время возможно применение циклофилина А [62, 63].

Заключение

Пандемия, вызванная SARS-CoV-2, явилась причиной для поиска в короткие сроки медикаментозных средств для терапии и неспецифической профилактики с целью снижения частоты случаев неблагоприятных исходов заболевания. Накопленные знания об иммунопатогенезе инфекции, вызванной SARS-CoV-2, и проводимые отечественными учеными исследования по разработке эффективных иммунотропных лекарственных средств и изучению их действия могут служить теоретической базой для экспериментальных и клинических исследований с последующей разработкой программ терапии пациентов с COVID-19.

Литература / References

1. Yaqinuddin A., Kashir J. Innate immunity in COVID-19 patients mediated by NKG2A receptors, and potential treatment using Monalizumab, Cholorquine, and antiviral agents. Med. Hypotheses. 2020; 140: 109777. DOI: 10.1016/j.mehy.2020.109777.
2. Kai H., Kai M. Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors—lessons from available evidence and insights into COVID-19. Hypertens. Res. 2020; 43 (7): 648–654. DOI: 10.1083/s41440-020-0455-8.
3. Arias-Reyes C., Zubieta-DeUrioste N., Poma-Machicao L. et al. Does the pathogenesis of SARS-CoV-2 virus decrease at high-altitude? Respir. Physiol. Neurobiol. 2020; 277: 103443. DOI: 10.1016/j.resp.2020.103443.
4. Tay M.Z., Poh C.M., Rénia L. et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 2020; 20 (6): 363–374. DOI: 10.1038/s41577-020-0311-8.
5. Kato H., Takeuchi O., Sato S. et al. Differential roles of MDA5 and RIG-1 helicases in the recognition of RNA viruses. Nature. 2006; 441 (7089): 101–105. DOI: 10.1038/nature04734.
6. Cao W., Li T. COVID-19: towards understanding of pathogenesis. Cell Res. 2020; 30 (5): 367–369. DOI: 10.1038/s41442-020-0327-4.
7. de Lucena T.M.C., da Silva Santos A.F., de Lima B.R. et al. Mechanism of inflammatory response in associated comorbidities in COVID-19. Diabetes Metab. Syndr. 2020; 14 (4): 597–600. DOI: 10.1016/j.dsx.2020.05.025.
8. Mihm S. COVID-19: Possible impact of the genetic background in IFNL genes on disease outcomes. J. Innate Immun. 2020; 12 (3): 273–274. DOI: 10.1159/000508076.
9. Taghizadeh-Hesary F., Akbari H. The powerful immune system against powerful COVID-19: A hypothesis. Med. Hypotheses. 2020; 140: 109762. DOI: 10.1016/j.mehy.2020.109762.
10. Andrearakos E., Tsiodras S. COVID-19: lambda interferon against viral load and hyperinflammation. EMBO Mol. Med. 2020; 12 (6): e12465. DOI: 10.15252/emmm.202012465.
11. Jin Y., Yang H., Ji W. et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses. 2020; 12 (4): 372. DOI: 10.3390/v12040372.
12. Vaninov N. In the eye of the COVID-19 cytokine storm. Nat. Rev. Immunol. 2020; 20 (5): 277. DOI: 10.1038/s41577-020-0305-6.
13. Joly B.S., Siguret V., Veyerad A. Understanding pathophysiology of hemostasis disorders in critically ill patients with COVID-19. Intensive Care Med. 2020; 46 (8): 1603–1606. DOI: 10.1007/s00134-020-06088-1.
14. Sokolova T.M., Poloskov V.V., Shuvalov A.N. Вакцины «Гриппол», «Ваксигрип» и «Инфлювак» – активаторы экспрессии генов системы врожденного иммунитета в клетках острой моноцитарной лейкемии TНР-1. Евразийский союз ученых. 2016; 5 (26): 61–63. Доступно на: https://cyberleninka.ru/article/n/vaktsiny-grippol-i-vaksigrip-aktivatory-ekspressii-genov-sistemy-vrozhdennego-immunite­ta-v-kletkah-ostroy-monotsitarnoy-leukemii-trn1/viewer / Sokolova T.M., Poloskov V.V., Shuvalov A.N. [Grippol and Vaxigrip vaccines – activators of gene expression of the innate immunity system in acute monocyte leukemia cells TNP-1]. Eurasiasky soyu uchenyhkh. 2016; 5 (26): 61–63. Available at: https://cyberleninka.ru/article/n/vaktsiny-grippol-i-vaksigrip-aktivatory-ekspressii-genov-sistemy-vrozh­dennego-immuniteta-v-kletkah-ostroy-monotsitarnoy-lekyemei-trn1/viewer (in Russian).
15. Sokolova T.M., Shuvalov A.N., Poloskov V.V. and dr. Вакцины «Гриппол», «Ваксигрип» и «Инфлювак» – индукторы генов факторов врожденного и адаптивного иммунитета в клетках крови человека. Журнал микробиологии, эпидемиологии и иммунобиологии. 2014; (5): 37–43. / Sokolova T.M., Shuvalov A.N., Poloskov V.V. et al. [Grippol, Vaxigrip and Influvac vaccines – inducers of innate and adaptive immunity factor genes in human blood cells]. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2014; (5): 37–43 (in Russian).
16. Sokolova T.M., Shuvalov A.N., Poloskov V.V. and dr. Стимуляция экспрессии генов сигнальных рецепторов и индукция синтеза цитокинов в клетках крови человека при действии препарата рибонуклеат натрия и его
комбинацией с гриппозными вакцинами in vitro. Молекулярная медицина. 2015; (1): 12–17. / Sokolova T.M., Shuvalov A.N., Poloskov V.V. et al. [Simulation of signaling receptors gene expression and induction of synthesis of cytokines in human blood cells by drug Ribonucleotid sodium and its combination with inactivated influenza vaccines]. Molekulyarnaya meditsina. 2015; (1): 12–17 (in Russian).

17. Kostinov M.P., Akhmatova N.K., Khromova E.A. et al. The impact of adjuvanted and nonadjuvanted influenza vaccines on the innate and adaptive immunity effectors. In: Saxena S.K., ed. Influenza – therapeutics and challenges. Chapter 5. London: IntechOpen; 2018: 83–109. DOI: 10.5772/intechopen.77006.

18. Хромова Е.А., Ахматова Э.А., Сходова С.А. и др. Влияние противогриппозных вакцин на субпопуляции дендритных клеток крови. Журнал микробиологии, эпидемиологии и иммунобиологии. 2016; (5): 23–28. DOI: 10.36233/03729311-2016-5-23-28. / Khromova E.A., Akhmatova E.A., Skhodova S.A. et al. [Effect of influenza vaccines on subpopulations of blood dendritic cells]. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2016; (5): 23–28. DOI: 10.36233/03729311-2016-5-23-28 (in Russian).

19. Alexia C., Creen M., Louis-Plence P. et al. Polyoxidonium® activates cytotoxic lymphocyte responses through dendritic cell maturation: Clinical effects in breast cancer. Front. Immunol. 2019; 10: 2693. DOI: 10.3389/fimmu.2019.02693.

20. Талаев В.Ю., Матвеичев А.В., Заиченко И.Е. и др. Вакцинный адъювант Полиоксидоний® усиливает иммунный ответ на низкую дозу антигена гриппа. В кн.: Научное обеспечение противоэпидемической защиты населения: актуальные проблемы и решения: сборник научных трудов. Н. Новгород: Ремедиум Приволжье; 2019: 363–365. / Talaev V.Yu., Matveichev A.V., Zaichenko I.E. et al. [Polyoxidonium® vaccine adjuvant cell maturation: Clinical effects in breast cancer]. Available at: https://korona.gov.sk/wp-content/uploads/2020/04/COVID-19-hospitalizovan%C3%A9-pacientov-nad-65-rokov-lic%C4%8Dbena-oddeleni-verzia-2.0.pdf (in Slovak). / Zaichenko I.E. [Effect of Polyoxidonium on the level of inactivated influenza vaccines in combination with secondary immune deficiency]. Medicinski sovet. 2013; (11): 78–81 (in Russian).

21. Мастернак Ю.А., Лусс Л.В. Влияние Полиоксидония на показатели иммунного статуса лиц пожилого возраста. Иммунология. 2006; (2): 343–346. / Masternak Yu.A., Luss L.V. [The effect of Polyoxidonium on the parameters of the immune status of elderly people]. Immunologiya. 2006; (2): 343–346 (in Russian).

22. Ильяк Я.Ю., Галанина А.В., Заиценко Г.А. Эффективность Полиоксидония при тяжелом течении пневмонии у детей раннего возраста. Терапевтический журнал. 2005; (3): 12–14. / Ilyak Yu.Yu., Galanina A.V., Zaiztseva G.A. [The effectiveness of polyoxidonium in severe pneumonia in young children]. Tera Medica Nova. 2005; (3): 12–14 (in Russian).

23. Аверкиев В.Л., Тарасенко В.С., Латышева Т.В., Аверкиева Л.В. Коррекция иммунологических нарушений у больных панкреонекрозом. Иммунология. 2002; 23 (6): 359–363. / Averkiev V.L., Tarasenko V.S., Latysheva T.V., Averkieva L.V. [Correction of immunological disorders in patients with pancreatic necrosis]. Immunologiya. 2002; 23 (6): 359–363 (in Russian).

24. Гаврилюк В.П., Конопля А.И. Влияние иммуномодулирующих препаратов на течение аппендикулярного перитонита у детей. Летняя хирургия. 2012; (4): 36–38. / Gavrilyuk V.P., Konoplya A.I. [Effect of immunomodulators on the clinical course of appendicular peritonitis in children]. Detskaya khirurgiya. 2012; (4): 36–38 (in Russian).

25. Гордиюк Н.А., Пылаева С.И., Сидоркин В.Г., Аминев В.А. Влияние Полиоксидония на уровень интоксикации у ожоговых больных. Иммунология. 2002; (6): 363–365. / Gordinskaya N.A., Pylaeva S.I., Sidorkin V.G., Aminiev V.A. [Effect of Polyoxidonium on the level of intoxication in burn patients]. Immunologiya. 2002; (6): 363–365 (in Russian).

26. [Vysetrovací algoritmus a medikamentózna liečba pacientov nad 65 rokov, pacientov so záväznym priebehom a pomierených pacientov počas hospitalizácie v infekčnom oddelení]. Available at: https://korona.gov.sk/wp-content/uploads/2020/04/COVID-19-hospitalizovan%C3%A9-pacientov-nad-65-rokov-lic%C4%8Dbena-oddeleni-verzia-2.0.pdf (in Slovak). / [Examination algorithm and drug treatment of patients over 65 years of age, patients with severe course and polymorboid patients during hospitalization in the infection department]. Available at: https://korona.gov.sk/wp-content/uploads/2020/04/COVID-19-hospitalizovan%C3%A9-pacientov-nad-65-rokov-lic%C4%8Dbena-oddeleni-verzia-2.0.pdf (in Slovak).

27. Лусс Л.В., Мартынов-Радушинский А.А. Роль и место иммуномодулирующей терапии в лечении инфекционно-воспалительных заболеваний, протекающих на фоне вторичной иммунной недостаточности. Медицинский совет. 2011; (11): 78–81. / Luss L.V., Martynov-Radushinskii A.A. [Role and place of immunomodulation therapy in the treatment of infectious inflammatory diseases in combination with secondary immune deficiency]. Medicinski sovet. 2013; (11): 78–81 (in Russian).

28. Сербин А.С., Фомичев Е.В., Афанасьева О.Ю., Александров К.А. Иммунный статус больных пожилого возраста с ожоговой флегмоной челюстно-лицевой области на фоне ожоговой эпидемии. Иммунология. 2002; (6): 89–90. / Serbin A.S., Fomichev E.V., Afanas'eva O.Yu., Alek- sansrov K.A. [Immune status of elderly patients with odonto-gene reactions during hospitalization]. Immunologiya. 2002; (6): 89–90 (in Russian).

29. Гординская Н.А., Пылаева С.И., Сидоркин В.Г., Аминев В.А. Влияние иммуномодулирующей терапии на течение ожоговой эпидемии. Иммунология. 2002; (6): 343–346. / Gordinskaya N.A., Pylaeva S.I., Sidorkin V.G., Aminiev V.A. [Effect of Polyoxidonium on the level of inactivated influenza vaccines in combination with secondary immune deficiency]. Medicinski sovet. 2013; (11): 78–81 (in Russian).

30. Сербин А.С., Фомичев Е.В., Афанасьева О.Ю., Александров К.А. Иммунный статус больных пожилого возраста с ожоговой флегмоной челюстно-лицевой области на фоне ожоговой эпидемии. Иммунология. 2002; (6): 89–90. / Serbin A.S., Fomichev E.V., Afanas'eva O.Yu., Alesha- nosov K.A. [Immune status of elderly patients with odonto-genic phlegmon of maxillofacial region along with taking immuno-modulatory therapy]. Medicinskiy aliferit. 2016; 2 (9 (272)): 65–67 (in Russian).

31. Нестерова И.В. Препараты интерферона альфа в клинической практике: когда и как. Лечащий врач. 2017; 2 (9 (272)): 65–67. / Serbin A.S., Fomichev E.V., Afanas'eva O.Yu., Aleh- nosov K.A. [Clinical and immunological characteristics of immune deficiency and its correction in the elderly patients]. Sovremennye naukomekhanicheskie tehnologii. 2008; (7): 89–90. / Serbin A.S., Fomichev E.V., Afanas'eva O.Yu., Aleh- nosov K.A. [Clinical and immunological characteristics of immune deficiency and its correction in the elderly patients]. Sovremennye naukomekhanicheskie tehnologii. 2008; (7): 89–90 (in Russian).

32. Нестерова И.В. Препараты интерферона альфа в клинической практике: когда и как. Лечащий врач. 2017; 2 (9 (272)): 65–67. / Serbin A.S., Fomichev E.V., Afanas'eva O.Yu., Aleh- nosov K.A. [Clinical and immunological characteristics of immune deficiency and its correction in the elderly patients]. Sovremennye naukomekhanicheskie tehnologii. 2008; (7): 89–90 (in Russian).
corrective therapy]. Detskii infektsii. 2017; 2 (16): 50–53. DOI: 10.22627/2017-8107-2017-16-2-50-53 (in Russian).

33. Al-Herz W, Boushiha A, Casanova J.L. et al. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front. Immunol. 2014; 5: 162. DOI: 10.3389/fimmu.2014.00116.

34. Чучалин А.Г., Александровский Ю.А., Аметова А.С. и др. Федеральное руководство по использованию лекарственных средств (формулярная система). М.: Эхо; 2015. Вып. XVI. / Chuchalin A.G., Aleksandrovskiy Ju.A., Ametova A.S. et al., eds. [Federal guidelines for the use of drugs (formulary system). Moscow: Eko; 2015. Is. XVI. (in Russian).

35. Костинов М.П., ред. Иммунокоррекция в педиатрии: Практическое руководство для врачей. М.: Медицина для всех; 1997. / Kostinov M.P., ed. [Immunocorrection in Pediatrics: A Practical Guide for Physicians. Moscow: Meditsina dlya vshekh; 1997 (in Russian).

36. Мешчёркова А.К., Костинов М.П., Магарашк О.О. и др. Показатели местного иммунитета у беременных с острой респираторной инфекцией на фоне интерферонотерапии. Вопросы гинекологии, акушерства и перинатологии. 2014; 13 (2): 44–48. / Meshcheryakova A.K., Kostinov M.P., Magarashok O.O. et al. [Local immunity levels in pregnant women with acute respiratory infection against the background of interferon therapy. Voprosy ginekologii, akusherstva i perinatologii. 2014; 13 (2): 44–48 (in Russian).

37. Мешчёркова А.К., Костинов М.П., Магарашк О.О. и др. Влияние препарата рекомбинантного интерферона α-2b в форме геля на течение ОРИ и состояние мукозального иммунитета у женщин в периоде гестации от 14 недель. Вестник отторожноларингологии. 2014; (6): 50–53. DOI: 10.17116/orotonino2014650-53. / Meshcheryakova A.K., Kostinov M.P., Magarashok O.O. et al. [The influence of gel-like recombinant interferon α-2b on the clinical course of acute respiratory infection and the state of mucosal immunity in the pregnant women]. Vestnik otorino­laringologii. 2014; (6): 50–53. DOI: 10.17116/orotonino2014650-53 (in Russian).

38. Костинов М.П., Лукачев И.В., Мешчёркова А.К. и др. Индукция эффекторов врожденного и адаптивного иммунитета в процессе лечения токсичной формой рекомбинантного интерферона-α2b при респираторных инфекциях у беременных. Журнал микробиологии, эпидемиологии и иммунобиологии. 2017; (2): 38–45. DOI: 10.36233/0372-9311-2017-2-38-45 / Kostinov M.P., Lukachev I.V., Meshcheryakova A.K. et al. [Induction of effectors of innate and adaptive immunity in the process of therapy of topic form of recombinant interferon-α2b during respiratory infections in pregnant]. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2017; (2): 38–45. DOI: 10.36233/0372-9311-2017-2-38-45 (in Russian).

39. Костинов М.П., Лукачев И.В., Мешчёркова А.К. и др. Профилактика осложнений у беременных с легкой и средней тяжестью течения острых респираторных инфекций. Эпидемиология и вакцинопрофилактика. 2018; 17 (1): 62–73. / Kostinov M.P., Lukachev I.V., Meshcheryakova A.K. et al. [Preventing complications in pregnant women with mild and moderate severity of acute respiratory infections]. Epidemiologiya i vakcinopropoliskata. 2018; 17 (1): 62–73 (in Russian).

40. Краснов В.В. Грипп и ОРВИ: использование рекомбинантного интерфона для лечения и профилактики ки у детей. Практика педиатра. 2019; (1): 24–29. / Krasnov V.V. [Influenza and acute respiratory infections: the use of recombinant interferon for treatment and prevention in children]. Praktika pediatra. 2019; (1): 24–29 (in Russian).

41. Sallard E., Lescure F-X., Yazdanpanah Y. et al. Type 1 interferons as a potential treatment against COVID-19. Antiviral Res. 2020; 178: 104791. DOI: 10.1016/j.antiviral.2020.104791.

42. Prokunina-Olsson L., Alphonse N., Dickinson R.E. et al. COVID-19 and emerging viral infections: The case for interferon lambda. J. Exp. Med. 2020; 217 (5): e20200653. DOI: 10.1084/jem.20200653.

43. Соколова Т.М., Урьева Л.В., Тазуланова Э.Б. и др. Индивидуальные изменения экспрессии генов системы интерферона в клетках крови человека под влиянием амиксина и циклоферона. Вопросы вирусологии. 2005; 50 (2): 32–36. / Sokolova T.M., Uryeva L.V., Tazulanova Je.B. et al. [Individual changes of gene expression in the interferon system in human blood cells due to amixin and cycloferon]. Voprosy virusologii. 2005; 50 (2): 32–36 (in Russian).

44. Бажанова Е.Д. Циклоферон: механизм действия, функции и применение в клинике: обзор литературы. Эпидемиологическая и клиническая фармакология. 2012; 75 (7): 40–44. / Bazhanova E.D. [Cycloferon: mechanism of action, functions and application]. Ekspериментальная и клиническая фармакология. 2012; 75 (7): 40–44 (in Russian).

45. Шульяков А.А., Липина Е.П., Соболева Л.А. и др. Использование индукторов интерферонов в клинике инфекционных болезней. Антибиотики и химиотерапия. 2018; 63 (3–4): 28–36. / Shul’dyakov A.A., Lyapina E.P., Soboleva L.A. et al. [The use of interferon inducers in an infectious disease clinic]. Antibiotiki i khimioterapiya. 2018; 63 (3–4): 28–36 (in Russian).

46. Терешин В.А., Сощак Я.А., Круглова О.В. Эффективность циклоферона при лечении и профилактике гриппа и ОРВИ у детей и подростков. Российский вестник перинатологии и педиатрии. 2014; 59 (2): 103–108. / Tereshin V.A., Sotskaya Ya.A., Kroglova O.V. [Efficacy of cycloferon in the treatment and prevention of influenza and acute respiratory infections in children and teenagers]. Rossiyskiy vestnik perinatologii i pediatrii. 2014; 59 (2): 103–108 (in Russian).

47. Yin M., Zhang Y., Li H. Advances in research on immunomodulation of macrophages by plant polysaccharides. Front. Immunol. 2019; 10: 145. DOI: 10.3389/fimmu.2019.00145.

48. Shim E.H., Choug S.Y. Inhibitory effects of Solanum tuberosum L. var. vitelotte extract on 2,4-dinitrochlorobenzene-induced atopic dermatitis in mice. J. Pharm. Pharmacol. 2014; 66 (9): 1306–1316. DOI: 10.1111/jphp.12254.

49. Kang M.A., Choug S.Y. Solanum tuberosum L. cv Hongyoung extract inhibits 2,4-dinitrochlorobenzene-induced atopic dermatitis in NC/Nga mice. Mol. Med. Rep. 2016; 14 (4): 3093–3103. DOI: 10.3892/mmr.2016.5595.

50. Ашкеров Т., Крохин А., Кузнецова И. и др. Влияние препарата Ингавирин® (имидазолилэтамидана пентандиевой кислоты) на интерфероновый статус клеток в условиях вирусной инфекции. Эпидемиология и инфекционные болезни. 2016; 21 (4): 196–205. DOI: 10.18821/1560-9529-201621-4-196-205. / Ashakher T., Krokhin A., Kuznetsova I. et al. [Effect of the preparation Ingavirin® (imidazoylethamidine pentandioic acid) on the interferon status of cells under conditions of viral infection]. Epidemiologiya i infektsionnye bolezni. 2016; 21 (4): 196–205. DOI: 10.18821/1560-9529-201621-4-196-205 (in Russian).
51. Фарбер И.М., Геппе Н.А., Рейхарт Д.В. и др. Терапия гриппа и прочих ОРВИ у детей младшего и среднего школьного возраста: влияние препарата Ингавирин® на интоксикационный, лихорадочный и катаральный синдромы. Российский вестник патологоанатомии и патоанатомии. 2016; 61 (2): 115–120. / Farber I.M., Gepp N.A., Reykhart D.V. et al. [Therapy for influenza and acute respiratory viral infection in young and middle-aged schoolchildren: Effect of Ingavirin® on intoxication, fever, and catarrhal syndromes]. Rossiskiy vestnik patologii i patoanatomi. 2016; 61 (2): 115–120 (in Russian).

52. Leneva L.A., Russell R.J., Borisik Y.S., Hay J.A. Characteristics of Arbidol-resistant mutants of influenza virus: Implications for the mechanism of anti-influenza action of Arbidol. Antiviral Res. 2009; 81 (2): 132–140. DOI: 10.1016/j.antiviral.2008.10.009.

53. Borisik Y., Leneva I., Pecheur E., Poyvak J.S. Arbidol: a broad-spectrum antiviral compound that blocks viral fusion. Curr. Med. Chem. 2008; 15 (10): 997–1005. DOI: 10.2174/092986708784094658.

54. Delogu I., Pastorino B., Baronti C. et al. In vitro antiviral activity of Arbidol against Chikungunya virus and characteristics of a selected resistant mutant. Antiviral Res. 2011; 90 (3): 99–107. DOI: 10.1016/j.antiviral.2011.03.182.

55. Brooks M.J., Burstea E.V., Ellery P.J. et al. Antiviral activity of Arbidol, a broad-spectrum drug for use against respiratory viruses, varies according to test conditions. J. Med. Virol. 2012; 84 (1): 170–181. DOI: 10.1002/jmv.22234.

56. Бурцева Е.И., Шевченко Е.С., Белякова Н.В. и др. Мониторинг чувствительности выделенных в России эпидемических штаммов вирусов гриппа к этиотропным химиопрепаратам. Вопросы вирусологии. 2009; (2): 24–28. / Burstea E.I., Shevchenko E.S., Belyakova N.V. et al. [Monitoring of the sensitivity of epidemic influenza virus strains isolated in Russia to etiotropic chemical agents]. Voprosy virusologii. 2009; (2): 24–28 (in Russian).

57. Вартанян Р.В., Чешик С.Г., Колобухина Л.В., Малышев Н.А. Лечение острых респираторных вирусных инфекций и гриппа у детей дошкольного возраста препаратом Кагоцел®. Медицинские новости. 2015; 12 (255): 29–31. / Vartanyan R.V., Cheshik S.G., Kolobukhina L.V., Malyshnev N.A. [Treatment of acute respiratory viral infections and influenza in preschool children by Kagocele®]. Meditsinskie novosti. 2015; 12 (255): 29–31 (in Russian).

58. Зуйкова Н.Н., Шульченко А.Е., Щебелко Р.В. Индуктор интерферона Кагоцел® в комплексной терапии герпесвирусных заболеваний. Фармакета. 2014; 3 (276): 23–29. / Zuykova I.N., Shul’chenko A.E., Shchubelko R.V. [Interferon inducer Kagocel® in the complex treatment of herpes virus diseases]. Farmaketa. 2014; 3 (276): 23–29 (in Russian).

59. Ma C., Sacco M.D., Hurst B. et al. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res. 2020; 30 (8): 678–692. DOI: 10.1038/s41422-020-0356-z.

60. Scott I.C., Hider S.L., Scott D.L. Thromboembolism with Janus Kinase (JAK) inhibitors in rheumatoid arthritis: How real is the risk? Drug Saf. 2018; 41 (7): 645–653. DOI: 10.1007/s40264-018-0151-6.

61. Mehta P., Curiot C., Scully M. et al. JAK inhibitors in COVID-19: the need for vigilance regarding increased inherent thrombotic risk. Eur. Respir. J. 2020; 56 (3): 2001919. DOI: 10.1183/13993003.01919-2020.

62. Ulrich H., Pillat M.M. CD147 as a target for COVID-19 treatment: Suggested effects of Azithromycin and stem cell engagement. Stem Cell Res. Rep. 2020; 16 (3): 434–440. DOI: 10.1016/j.sclcr.201205-020-09976-7.

63. Liu C., Zhu D. Cyclophilin A and CD147: novel therapeutic targets for the treatment of COVID-19. Med. Drug Discov. 2020; 7: 100056. DOI: 10.1016/j.medidd.2020.100056.

Поступила 16.06.20
Received: June 16, 2020