Extensive Quantum Chemistry Study of Neutral and Charged C₄N Chains. An Attempt to Aid Astronomical Observations

Ioan Băldea∗,†,‡

†Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
‡Institute of Space Sciences, National Institute of Lasers, Plasma and Radiation Physics, RO 077125, Bucharest-Măgurele, Romania

E-mail: ioan.baldea@pci.uni-heidelberg.de

Abstract

Many molecular species can presumably still be observed in space if they are adequately characterized chemically. In this paper, we suggest that this could be the case of the neutral (C₄N⁰) and anion (C₄N⁻) cyanopropynylidene chains, which were not yet identified in space although both the neutral (C₃N⁰ and C₅N⁰) and anion (C₃N⁻ and C₅N⁻) neighboring members of the homologous series were observed. Extensive data obtained from quantum chemical calculations using density functional theory (DFT), coupled cluster (CC), and quadratic configuration interaction (QCI) methods for all charge and spin states of interest for space science (doublet and quartet neutrals, triplet and singlet anions, and singlet and triplet cations) are reported: e.g., bond metric and natural bond order data, enthalpies of formation, dissociation and reaction energies, spin gaps, rotational constants, vibrational properties, dipole and quadrupole momenta, electron attachment energies (EA) and ionization potentials (IP). The fact
that (not only for C\textsubscript{4}N but also for C\textsubscript{2}N and C\textsubscript{6}N) the quantum chemical methods utilized here are able to excellently reproduce the experimental \(EA\) value — which is often a challenge for theory — is particularly encouraging, since this indicates that theoretical estimates of chemical reactivity indices (which are key input parameters for modeling astrochemical evolution) can be trusted. The presently calculated enthalpies of formation and dissociation energies do not substantiate any reason to assume that C\textsubscript{4}N is absent in space. To further support this idea, we analyze potential chemical pathways of formation of both C\textsubscript{4}N0 and C\textsubscript{4}N−, which include association and exchange reactions. In view of the substantially larger dipole moment (\(D_{\text{anion}} \gg D_{\text{neutral}}\)), we suggest that astronomical detection should first focus on C\textsubscript{4}N− chains rather than on neutral C\textsubscript{4}N0 chains.

Keywords: astrochemistry; interstellar medium; carbon chains; cyanopropynylidenes C\textsubscript{4}N; ab initio calculations; singlet-triplet interplay; ionization and electron attachment energies; reaction and dissociation enthalpies; chemical reactivity indices; chemical pathways of C\textsubscript{4}N formation

Introduction

Carbon chains or obtained by adding heteroatoms at their ends represent a continuing important topic in space sciences1-10. Thanks to intensive and extensive efforts numerous carbon-based chains could be detected in the last decades. Given the fact that many of these molecular species have a rather minor importance for terrestrial applications, information on many molecular species of this kind needed to properly interpret data acquired (or to be acquired) in astronomical observations is often very scarce. This state of affair may at least partially explain the puzzling fact that, across a given homologous series, certain members could not yet be observed although longer molecules were already detected.

The cyanopropynylidene (C\textsubscript{4}N) chains investigated theoretically in the present paper, which are expected to be relevant for interstellar chemistry3,11 belong to this category.
Although the presence in space of neutral C$_3$N$_0$ and C$_5$N$_0$ chains4,12 was reported, C$_4$N$_0$ chains could not be detected so far. The situation of the corresponding anions is similar. C$_3$N$^-$ and C$_5$N$^-$ chains were astronomically observed7,10 but C$_4$N$^-$ could not yet be reported.

Cyanopropynylidenes made the object of several publications. The neutral C$_4$N$_0$ radical has been previously investigated experimentally by microwave spectroscopy13 and theoretically at Hartree-Fock (HF) level14 and within density functional theory (DFT)15,16. Previous theoretically studies to C$_4$N$^-$ anion reported results of second order Møller-Plesset (MP2)17 and DFT$^{18-20}$ calculations. C$_4$N$^-$ anions produced by laser ablation18,21 or sputtering22 were studied experimentally via mass spectroscopy. The experimental study using slow photo-electron velocity-map imaging spectroscopy (SEVI)20 is of particular interest in the context of the present paper. To anticipate, the very accurate experimental electron affinity (EA) reported there is very well reproduced by our theoretical calculations.

By reporting extensive data on doublet (spin $S = 1/2$) and quartet ($S = 3/2$) neutral (C$_4$N$_0$) chains, as well as on singlet ($S = 0$) and triplet ($S = 1$) anions (C$_4$N$^-$) and cations (C$_4$N$^+$) obtained within standard quantum chemical approaches the present paper aims at filling a gap in the literature and at assisting ongoing efforts in astronomical observation.

Methods

The results reported below were obtained by performing quantum chemical calculations on the bwHPC platform23 using the GAUSSIAN24,25 and CFOUR26 packages. They are based both on the density functional theory (DFT) and on ab initio methods. The latter comprise coupled-cluster (CC)$^{27-30}$ and quadratic configuration interaction (QCI)28,31,32 approaches including single and double excitations (CCSD, QCISD) also augmented with perturbative corrections due to triple excitations (CCSD(T), QCISD(T)).

All molecular geometries were optimized at the DFT level of theory using the B3LYP hybrid exchange-correlation functional$^{33-35}$ and the largest Pople 6-311++G(3df, 3pd) ba-
sis sets. For comparison purposes, the hybrid parameter free PBE0, M06-2X, and double-hybrid B2GP-PLYP functionals were also used for DFT geometry optimization. In all cases, we checked that all vibrational frequencies were real.

Similar to the spin gaps of all charge species ($\Delta^q; q = 0, \pm$) the lowest electronic attachment energies (EA) and ionization potentials (IP) can be and have been computed by using "Δ" methods, i.e., by taking differences between the total energies $E_X(R)$ of the corresponding molecular species (neutral doublet (D^0) and quartet (Q^0), anion singlet (S^-) and triplet (T^-), and cation singlet (S^+) and triplet (T^+) at the appropriate geometries ($R = R_{S\pm}, R_{T\pm}, R_{D^0}, R_{Q^0}$) optimized as described above.

While not appearing to affect unrestricted DFT calculations, spin contamination becomes important and raises serious doubt on results obtained within ab initio approaches like CCSD/CCSD(T) applied on top of unrestricted Hartree-Fock (UHF) wave functions. For completeness and for comparison with previous studies employing unrestricted methods along with estimates obtained within more reliable restricted open shell (ROCCSD/ROCCD(T)) calculations, we also present properties obtained from unrestricted coupled-cluster (UCCSD/UCCSD(T)) calculations. The inspection of the various tables indicates that, without an adequate elimination of spin contamination (a task beyond the scope of the present paper), UCCSD/UCCSD(T)-based values cannot be trusted.

The quantities EA and IP were also computed by CC-based equation-of-motion (EOM) methods (EA-EOM-ROCCSD and IP-EOM-ROCCSD). To check whether long-range corrections improve the DFT-based estimates, EA and IP values were also computed by using the long-range corrected exchange-correlations LC-BLYP and LC-ωPBE functionals.

Due to some numerical issues with the 6-311++G(3df, 3pd) basis sets, aug-cc-pVTZ basis sets were used in the EOM-ROCCSD calculations with CFOUR and the natural bond orbital (NBO) analysis carried out on top of RCCSD(T) and ROCCSD(T) calculations with GAUSSIAN 09.

Thermochemistry data presented in the main text were obtained in the standard way.
using the CBS-QB3 protocol as implemented in GAUSSIAN 16. Additional results based on the CBS-APNO and CBS-4M protocols are included in the SI.

To end this section, we note that at the small molecular size considered, geometry optimization and numerical frequency calculations at the more computationally demanding (RO)CCSD(T) level can and have also been done (cf. Table S8). However, we do not show single-point results for those geometries because the ROCCSD(T)-based values of the rotational constant of the neutral doublet species with cc-PVTZ and aug-cc-pVTZ basis sets ($B = 2.39187$ GHz and $B = 2.39093$ GHz, respectively) have larger deviation from experiment than the DFT-based values (cf. Table 5 and S15).

Results and Discussion

Electronic Structure and Chemical Bonding

In this section we present detailed results on properties of interest for all charge species and relevant spin states: neutral doublet ($\tilde{X}^2\Pi$) and quartet ($\tilde{a}^4\Sigma^-$), anion linear and bent ($1^1A'$) singlet, and anion triplet ($3^3\Sigma^-$) as well as cation singlet ($1^1\Sigma^+$) and triplet ($3^3\Sigma^-$).

Except for the anion singlet — whose most stable conformation ($1^1A'$) turned out to be bent (cf. Figure 1) —, geometry optimization (conducted without imposing symmetry constraints) yielded (within numerical accuracy) linear chains. To emphasize this aspect, in

![Figure 1](image-url)

Figure 1: Geometries of singlet ($1^1A'$) and triplet ($3^3\Sigma^-$) C_4N^- anions (left and right panels, respectively) investigated in the present paper. Similar to the triplet C_4N^- chain shown here, doublet and quartet C_4N^0 neutral chains as well as singlet and triplet cation C_4N^+ chains are also linear.
Table 1 we also included values of angles between adjacent atoms; within numerical noise inherent in optimization without symmetry constraints, they cannot be distinguished from the ideal value (180°) characterizing strictly linear chains.

Table 1: Bond lengths l between atoms XY (in angstrom), angles α between atoms \widehat{XYZ} (in degrees) and Wiberg bond order indices N. Results of B3LYP/6-311++G(3df, 3pd) geometry optimization without imposing symmetry constraints.

Species	Property	C_1C_2	$C_1C_2C_3$	C_2C_3	$C_2C_3C_4$	C_3C_4	C_3C_4N	C_4N
metastable linear anion	l, α	1.2892	179.97	1.2926	179.96	1.3178	179.98	1.1884
singlet $1\Sigma^+$	N	2.0579	1.7873	1.4279				
stable bent anion	l, α	1.2780	174.3	1.3295	125.7	1.3846	171.4	1.1702
singlet $1\Lambda'$	N	2.1785	1.6978	1.2309				
linear anion	l, α	1.2912	179.8	1.2917	178.7	1.3193	180.0	1.1874
triplet $3\Sigma^-$	N	1.8987	1.8251	1.3182				
neutral	l, α	1.3165	179.8	1.2536	178.8	1.3371	180.0	1.1670
doublet 2Π	N	1.4710	2.2142	1.2069				
neutral	l, α	1.2585	179.9	1.2776	178.8	1.3257	179.9	1.1742
quartet $4\Sigma^-$	N	1.4896	2.2643	1.2001				
cation	l, α	1.3343	178.8	1.2383	179.7	1.3413	179.6	1.1648
singlet $1\Sigma^+$	N	1.3932	2.3383	1.2060				
cation	l, α	1.2531	179.8	1.2747	178.9	1.3204	179.7	1.1751
triplet $3\Sigma^-$	N	1.7742	1.9414	1.3077				

For the pertaining optimized geometries, we present detailed molecular properties: Cartesian coordinates (adjusted to linearity where appropriate), atomic NBO valencies and charges (Tables S1 to S7), Results for bond lengths and Wiberg bond indices are collected in Table (Figures 2 and 6. Changes of these quantities with reference to the (most stable) neutral doublet are depicted in Figures S7 and S8.

In principle, chemical bonds of linear carbon species can be of cumulene type or of polyyn type. Our NBO calculations (see, e.g., Figures 2b and 6b) indicate that none of these structures (which are incompatible with standard rules of valence) is present in the C_4N species investigated here. They do not support claims that neutral clusters favor a
cumulenic bonding while anionic species prefer polyyne-like bonding.18,21,55,56 The results presented in Figure S20 also reveal that — contrary to straightforward chemical intuition — there is no simple relationship between bond order indices and bond lengths.

Spatial distributions of the frontier molecular orbitals (highest occupied HOMO and lowest unoccupied LUMO) are depicted in Figures S17, S18, S16, S19. Because Kohn-Sham orbitals utilized in the DFT are mathematical rather than physical objects41,57 and ubiquitously utilized HF molecular orbitals rely on a very crude description, the MO spatial distributions depicted in the aforementioned figures have been obtained from the natural orbital expansion of the reduced density matrices at the EOM-CCSD level.41 For open-shell cases these results were obtained via restricted open-shell (ROHF-based) approaches. The inspection of the MOs is useful also because it provides insight into issues under debate in the past (see Section "Negatively Charged C\textsubscript{4}N− Chains").

Neutral C\textsubscript{4}N0 Chains

Within an MO-based picture, having an unpaired \(\pi\) electron, the neutral ground state is a spin doublet with the electronic configuration

\[
\tilde{X}^2\Pi = [\text{core}] 6\sigma^2 7\sigma^2 8\sigma^2 9\sigma^2 1\pi^4 10\sigma^2 2\pi^4 11\sigma^2 3\pi^1
\]

(1)

The lowest excited state of the neutral chain, obtained by promoting a \(\sigma\) electron into a \(\pi\) orbital, is a spin quartet possessing the following electronic configuration

\[
\tilde{a}^4\Sigma^- = [\text{core}] 6\sigma^2 7\sigma^2 8\sigma^2 9\sigma^2 1\pi^4 10\sigma^2 2\pi^4 11\sigma^1 3\pi^2
\]

(2)

In agreement with these intuitive considerations, our calculations found that the quartet state lies higher in energy than the doublet state. By inspecting the values of the doublet-quartet splitting collected in Table2 a significant difference between the estimates obtained within the various quantum chemical methods utilized can be concluded. This behavior
confirms the fact noted recently42,58 that electron correlations (implying by definition that departures from the above MO-based picture are substantial) in carbon-based chains are strong, which represents a challenge for theory. Still, the large values ($\sim 1 \text{ eV}$) clearly demonstrate that the neutral quartet lies considerably higher in energy than the doublet.

The inspection of Table 1 and Figures 6 and S8 reveals that the strongest impact of the spin state on the neutral chain is on the moiety opposite to the N atoms. The C_1C_2 bond of the quartet is longer than that of the doublet, while C_2C_3 bond of the quartet is shorter than that of the doublet (cf. Table 1 and Figures 6). Electronic charge from the C_3 atom in the middle of the chain moves toward the end opposite to the N atom (cf. Tables S1 and S2, and Figure S7). This renders the dipole moment of the quartet substantially larger than that of the doublet (cf. Table 6 and S16).

Table 2: Vertical $\Delta^0_{DQ}(\mathbf{R}^0_D) \equiv \mathcal{E}^0_Q(\mathbf{R}^0_D,\mathbf{Q}) - \mathcal{E}^0_D(\mathbf{R}^0_D,\mathbf{Q})$ and adiabatic $\Delta^{0,ad}_{DQ} \equiv \mathcal{E}^0_Q(\mathbf{R}^0_Q) - \mathcal{E}^0_D(\mathbf{R}^0_D)$ of the doublet-quartet splitting computed by using the total energies \mathcal{E}^0 of the neutral (C_4N^0) chains taken at B3LYP/6-311++G(3df, 3pd) optimized geometries $\mathbf{R}^0_{D,Q}$ of the neutral doublet (label D) and quartet (label Q) without and with corrections due to zero point motion.

	B3LYP	UCCSD	UCCSD(T)	ROCCSD	ROCCSD(T)	
$\Delta^0_{DQ}(\mathbf{R}^0_D)$	uncorrected	1.167	0.891	1.071	0.740	0.826
	corrected	1.182	0.906	1.085	0.755	0.840
$\Delta^0_{DQ}(\mathbf{R}^0_Q)$	uncorrected	1.062	0.714	0.898	0.557	0.679
	corrected	1.076	0.729	0.914	0.571	0.693
$\Delta^{0,ad}_{DQ}$	uncorrected	1.167	0.891	1.071	0.740	0.826
	corrected	1.182	0.906	1.085	0.755	0.840

Negatively Charged C$_4$N$^-$ Chains

Whether the ground state of the C$_4$H$^-$ chain is a spin singlet or triplet was an issue of debate in the past. Based on earlier time-of-flight mass spectroscopy measurements, it was18 concluded that the anion possesses a linear triplet ground state. This conclusion was challenged by subsequent MP2-based calculations17 which suggested a bent singlet conformer. In con-
trast to them, DFT/B3LYP geometry optimization using aug-cc-pVTZ and 6-311G* basis sets19 yielded a linear triplet structure, a result supported by slow photoelectron velocity-map imaging spectroscopy (SEVI) data.20

In view of the aforementioned, we paid particular attention to this aspect and conducted geometry optimization using several exchange-correlation functionals — B3LYP, PBE0 and M06-2X — which are among the most successful in correctly predicting the lowest energy conformers of a variety of molecules. In addition, we performed single-point calculations using CCSD, CCSD(T), QCISD and QCISD(T). Confirming the conclusion of ref. 19, all these results, which are collected in Table 3 and S12, indicate that the most stable conformer is a linear triplet with the electronic configuration

$$^3\Sigma^− = [\text{core}] 6\sigma^2 7\sigma^2 8\sigma^2 9\pi^4 10\sigma^2 2\pi^4 11\sigma^2 3\pi^2$$

At the linear triplet optimum geometry (cf. Figure 1b) of $R_{−T}$, the C$_4$N$^-$ anion singlet lies substantially higher than the triplet; the energy difference amounts to $\Delta_{−ST}(R_{−T}) \sim 0.7$ eV (cf. Table 3).

Our DFT calculations (not only with the B3LYP exchange-correlation functional but also with the PBE0 and M06-2X functionals) yielded an energy minimum (all vibrational frequencies were real) of an anion singlet chain possessing a linear (at least within numerical accuracy) geometry $R_{−S} \approx R_{−T}$ very similar to that of the C$_4$N$^-$ triplet; compare the bond lengths (Table 1 and Figure 2) and the values of the corresponding reorganization energies (Table S26).

However, rather than a linear conformer, the most stable form of the anion singlet turned out to be a chain which is bent at the C$_3$ position by an angle of $\sim 54^\circ$ (Figure 1a). This stable bent singlet isomer lies significantly above the metastable linear singlet isomer; depending on the method utilized the energy separation amounts to $\Delta_{−S,bS} \sim 0.3 - 0.5$ eV (cf. Table 3).

To reiterate, the stable C$_4$N$^-$ triplet is a linear chain (Figure 1b). The bonds C$_1$C$_2$ and
Figure 2: (a) Bond lengths (in angstrom), (b) Wiberg bond indices, (c) Wiberg valencies and (d) atomic charges of C₄N chains considered in this paper.
Table 3: Values of the adiabatic (label ad) and vertical singlet-triplet splitting $\Delta_{bS,T}^{-} (\mathbf{R}_T^{-}) \equiv \mathcal{E}_{T}^{-} (\mathbf{R}_T^{-}) - \mathcal{E}_{bS}^{-} (\mathbf{R}_T^{-})$, $\Delta_{bS,T}^{-} (\mathbf{R}_{bS}^{-}) \equiv \mathcal{E}_{T}^{-} (\mathbf{R}_{bS}^{-}) - \mathcal{E}_{bS}^{-} (\mathbf{R}_{bS}^{-})$, $\Delta_{iS,T}^{-} (\mathbf{R}_i^{-}) \equiv \mathcal{E}_{T}^{-} (\mathbf{R}_i^{-}) - \mathcal{E}_{iS}^{-} (\mathbf{R}_i^{-})$ without or with corrections due to zero point motion. The geometries \mathbf{R}_x^{-} of the triplet, bent singlet and linear singlet ($x = T, bS, lS$ were optimized at the B3LYP/6-311++G(3df, 3pd) level of theory.

	B3LYP	UCCSD	UCCSD(T)	ROCCSD	ROCCSD(T)	
$-\Delta_{bS,T}^{-} (\mathbf{R}_T^{-})$	0.785	0.815	0.646	0.743	0.711	
	corrected	0.791	0.821	0.652	0.749	0.717
$-\Delta_{bS}^{-} (\mathbf{R}_{bS}^{-})$	0.103	0.080	-0.046	0.016	-0.002	
	corrected	0.109	0.086	-0.040	0.022	0.005
$-\Delta_{bS,T}^{-,\text{ad}} (\mathbf{R}_T^{-})$	0.527	0.361	0.228	0.289	0.292	
	corrected	0.533	0.367	0.234	0.295	0.299
$-\Delta_{iS}^{-} (\mathbf{R}_i^{-})$	0.785	0.816	0.647	0.744	0.712	
	corrected	0.791	0.822	0.653	0.750	0.718
$-\Delta_{iS,bS}^{-,\text{ad}}$	0.258	0.457	0.421			
	corrected	0.264	0.463	0.427		

C$_3$C$_4$ of the C$_4$N$^-$ anion triplet are shorter than in the neutral doublet while the bonds C$_2$C$_3$ and C$_4$N are longer (Table I and Figures 2a and S7a). As expected, bond order indices exhibit opposite changes: shorter bonds have larger bond indices and vice versa (Figures 2b and S7b). The calculated values of the atomic charges (Tables S1 and S5 and Figures 2d and S7d) reveal that the excess electron of the C$_4$N$^-$ anion triplet is democratically ($\approx 1/3$) shared by the C$_1$, C$_3$ and N atoms. Positively charged in the neutral chain, C$_1$ and C$_3$ atoms become negatively charged in the C$_4$N$^-$ anion triplet. By contrast, electron attachment has little impact on the charge of the atoms C$_2$ and C$_4$. Interestingly, changes in the valence state of the atoms do not follow changes in the atomic charges in a simple intuitive way. To exemplify, although both C$_1$ and C$_3$ atoms acquire negative charge, the (fractional) valence of the former increases while that of the latter decreases (Figures 2c and S7c).

Spin singlet appears to enhance delocalization of the excess electron. Even at the triplet geometry, the singlet state favors delocalization of the excess electronic charge, which also
involves the C$_2$ atom. The (most stable) bent singlet geometry (Figure 1a and Table 1) further enhances this delocalization; from their excess electronic charge in the triplet state, atoms C$_1$ and C$_3$ pour electrons into the C$_2$ atom, which becomes more negatively charged in the stable bent singlet state.

Returning to the controversial aspect noted in the beginning of this section — whether the most stable C$_4$N$^-$ anion is a singlet (as claimed in ref. 17) or a triplet (as emerged from subsequent work19,20 and solidified by our results) —, it is worth emphasizing the overall strong delocalization revealed by our NBO results for structures investigated. This contrasts with the picture of ref. 17 claiming that the highest occupied molecular orbital of the C$_4$N$^-$ anion is mostly localized at the chain ends. The inspection of the HOMO spatial distributions of all anion species (Figures 1, S17 and S18) reveals that this is in reality not the case. This incorrect claim may be one reason why ref. 17 incorrectly ascribed the most stable anion conformer to be a bent spin singlet.

![Figure 3: HOMO and LUMO (left and right panel, respectively) of the C$_4$N0 doublet ($\tilde{X}^2\Pi$).](image)

Positively Charged C$_4$N$^+$ Chains

Less surprising that in the case of anion, calculations indicate that the most stable cation C$_4$N$^+$ chain is a spin singlet possessing the following electronic configuration

$$^1\Sigma^+ = [\text{core}] 6\sigma^2 7\sigma^2 8\sigma^2 9\sigma^2 1\pi^4 10\sigma^2 2\pi^4 11\sigma^2 3\pi^0$$ \hspace{1cm} (4)
Figure 4: Degenerate HOMO and HOMO-1 (upper left and right panel, respectively) and LUMO (lower panel) of the C\textsubscript{4}N- triplet (3\Sigma−).

Figure 5: Degenerate HOMO and HOMO-1 (upper left and right panel, respectively) and nearly degenerate LUMO and LUMO+1 (lower left and right panel, respectively) of the C\textsubscript{4}N+ singlet (1\Sigma+).
The lowest triplet state of the cation obtained by promoting a σ electron into a π orbital

$$^3\Sigma^- = [\text{core}] 6\sigma^2 7\sigma^2 8\sigma^2 9\sigma^2 1\pi^4 10\sigma^2 2\pi^4 11\sigma^1 3\pi^1$$ \hspace{1cm} (5)

lies above the cation singlet.

The cationic triplet state possesses a considerably higher energy (Table 4); the ROCCSD(T) approach predicts a value $\Delta_{ST}^{+}\text{ad} \approx 1.5$ eV for the adiabatic singlet-triplet splitting.

Whether in a triplet or a singlet state of the cation C_4N^+ chain, electron removal mainly affects (in decreasing order) the atomic charges of C_1 (~ 0.6 e both for singlet and triplet), C_3 (~ 0.5 e for singlet and ~ 0.3 e for triplet) and N (~ 0.3 e both for singlet and triplet); see Table S6, S7, and S1, and Figures 6d and S8d. Substantial electron removal at the C_1 site has a strong impact on the C_1C_2 bond, which becomes longer (Figures 6a and S8a). Noteworthily, the impact on the bond order index is different: the C_1C_2 bond order becomes significantly weaker in the cation triplet while remaining almost unaffected in the cation singlet (Figures 6b and S8b).

Charge redistribution upon ionization renders in both cases the C_4 atom more negative (electronic charge excess ~ 0.15 e for singlet and ~ 0.12 e for triplet). Interestingly, the charge of the C_2 atom remains unaffected in the cation triplet; this behavior is similar to that encountered above in the case of the anion triplet.

Rotational Constants

For the linear neutral doublet, the theoretical estimates of the rotational constant B significantly differ from the experimental value $B_{\text{exp}} = 2.4226963 \text{GHz}$. Based on these values for the neutral doublet, a scaling factor of 0.991937 can be deduced to make more reliable B3LYP/6-311++G(3df, 3pd)-based estimates for the C_4N species not investigated so far.

Table 5 collects values of the rotational constants B computed at the B3LYP/6-311++G(3df, 3pd) level of theory along with the values scaled as indicated above.
Figure 6: (a) Bond lengths (in angstrom), (b) Wiberg bond indices, (c) Wiberg valencies and (d) atomic charges of C₄N chains considered in this paper.

Table 4: Values of the vertical $\Delta_{ST}^{+} \left(R_{S,T}^{\pm} \right)$ ≡ $\mathcal{E}_{T}^{+} \left(R_{S,T}^{\pm} \right) - \mathcal{E}_{S}^{+} \left(R_{S,T}^{\pm} \right)$ and adiabatic $\Delta_{ST}^{+}\text{ad} \equiv \mathcal{E}_{T}^{+} \left(R_{T}^{\pm} \right) - \mathcal{E}_{S}^{+} \left(R_{S}^{\pm} \right)$ singlet-triplet cation splitting computed without and with corrections due to zero point motion using the cation singlet (triplet) geometries $R_{S}^{\pm} \left(R_{T}^{\pm} \right)$ optimized at the B3LYP/6-311++G(3df, 3pd) level of theory.

	B3LYP	UCCSD	UCCSD(T)	ROCCSD	ROCCSD(T)	
$\Delta_{ST}^{+} \left(R_{S}^{\pm} \right)$ uncorrected	1.517	1.489	1.774	1.527	1.678	
	corrected	1.489	1.461	1.746	1.499	1.650
$\Delta_{ST}^{+} \left(R_{T}^{\pm} \right)$ uncorrected	1.046	1.013	1.334	1.061	1.245	
	corrected	1.018	0.985	1.306	1.033	1.217
$\Delta_{ST}^{+}\text{ad}$ uncorrected	1.311	1.350	1.626	1.398	1.538	
	corrected	1.283	1.322	1.598	1.370	1.510
Excepting the non-linear anion singlet, the linear conformation is responsible for the fact that the rotational constants B of all the other species have values close to each other. As Table 5: Rotational constants of the C_4N chains investigated in this paper computed at the B3LYP/6-311++G(3df, 3pd) level of theory and scaled as described in the main text. The value given for the bent anion represents the average of the unscaled values $B = 2.82435$ GHz and $C = 2.69945$ GHz.

Species	B (GHz)
neutral doublet	2.44239
scaled	2.42270
neutral quartet	2.46635
scaled	2.44646
anion triplet	2.42267
scaled	2.40313
bent anion singlet	2.73467
scaled	2.80158
linear anion singlet	2.42362
scaled	2.40408
cation singlet	2.44330
scaled	2.42360
cation triplet	2.47931
scaled	2.45932

known from studies on many other molecular species, differences in B-values computed using different theoretical approaches visible in Table S15 exceed the typical experimental accuracy (~ 10 kHz). Nevertheless, the differences (> 20 MHz) between the various C_4N chains are in all cases sufficiently larger than the measurement accuracy to not impede unambiguous assignment of a certain species from data (to be) acquired in experiment.

Vibrational Properties

The infrared and Raman spectra of the neutral and anionic species of C_4N can be compared with each other by inspecting Figure 7. The comparison between the neutral and cationic species of C_4N can be made based on Figure 8.

Let us start our discussion with the highest vibrational frequency ν_{CN}, which corresponds
Figure 7: (a) Infrared and (b) Raman spectra of C₄N neutral (\(\tilde{X}^2\Pi \)) and anion (\(^3\Sigma^- \) and \(^1A' \)) chains investigated in the present paper.

Figure 8: (a) Infrared and (b) Raman spectra of C₄N neutral (\(\tilde{X}^2\Pi \) and (\(\tilde{a}^4\Sigma^- \)) and cation (\(^3\Sigma^+ \) and \(^1\Sigma^+ \)) chains investigated in the present paper.
to the nitrile radical C≡N stretching, a mode known to be significantly influenced by the adjacent atoms.42

For the various species investigated, the ν_{CN}-values vary within a range $\Delta\nu_{CN} < 312\,\text{cm}^{-1}$ ($2013\,\text{cm}^{-1} < \nu_{CN} < 2325\,\text{cm}^{-1}$, cf. Table S18). For a more quantitative comparison with experiment, the aforementioned values should be corrected by means of appropriate scaling factors.59,60 We do not discuss these details at length here but still mention that the corresponding values are comparable to those estimated recently for HC$_n$N chains.42 Based on various experimental data,61-65 a scaling factor of 0.945 appears appropriate for the C≡N stretching mode.

Moving to lower frequencies, the vibration ($\nu_{C_1C_2}$) can be approximately described as a stretching mode of the C$_1$C$_2$ bond. Within the various C$_4$N species considered, this vibrational frequency lies within a range $\Delta\nu_{C_1C_2} < 445\,\text{cm}^{-1}$ ($1753\,\text{cm}^{-1} < \nu_{C_1C_2} < 2198\,\text{cm}^{-1}$) broader than that for ν_{CN}.

The next mode can be approximately described as an out-of-phase combination of C$_1$C$_2$ and C$_4$N stretchings whose frequency varies within a more narrow range ($\Delta\nu < 258\,\text{cm}^{-1}$, $1321\,\text{cm}^{-1} < \nu < 1579\,\text{cm}^{-1}$). The next lower frequency corresponds to a symmetric stretching (“breathing”) mode ($\Delta\nu_{breath} < 75\,\text{cm}^{-1}$, $753\,\text{cm}^{-1} < \nu_{breath} < 827\,\text{cm}^{-1}$). The lowest frequency is associated to a C$_1$-C$_3$-N bending mode corresponding to oscillations of the angle whose vertex is the C$_3$ atom, its arms being determined by C$_1$C$_2$C$_3$ and C$_3$C$_4$N: $\Delta\nu_{bent} < 52\,\text{cm}^{-1}$, $107\,\text{cm}^{-1} < \nu_{bent} < 159\,\text{cm}^{-1}$.

Modes lying between the aforementioned bending mode and the breathing mode are C$_3$C$_4$N ($369\,\text{cm}^{-1} < \nu_{C_3C_4N} < 636\,\text{cm}^{-1}$) and C$_1C_2C_3$ bending modes ($171\,\text{cm}^{-1} < \nu_{C_1C_2C_3} < 417\,\text{cm}^{-1}$) Due to the bent shape, C$_3$C$_4$N and C$_1$C$_2$C$_3$ bending modes in the stable C$_4$N$^-$ singlet yield in-phase and out-of-phase normal mode combinations. Their frequencies are $\nu_{in-phase} \approx 591\,\text{cm}^{-1}$ $\nu_{out-of-phase} \approx 457\,\text{cm}^{-1}$, respectively.

Notwithstanding the differences in charge and spin of the various species investigated, the ν_{CN}-values are reasonably well correlated with the length of the C≡N bond (Figure 9a).
in spite of the fact that the bond lengths and the bond indices are not so good correlated with each other (Figure S20a).

In contrast to this, the $\nu_{C_1C_2}$-values can be simply correlated neither with the length $l_{C_1C_2}$ nor with the index $N_{C_1C_2}$ of this bond (Figure S20b). In fact, even establishing a correlation between lengths l_{XY} and bond order indices N_{XY} across molecular species with different charge and/or spin appears to be problematic. This is visualized in Figure S20, where possible N-l correlations are depicted by green lines.

Dipole and Quadrupole Moments

Values of electric dipole momentum \mathbf{D} are collected in Tables 6 and S16. Quadrupole moments \mathbf{Q} are also presented (Table S17). Attention should be paid in such calculations to the fact that, for charged species, these quantities depend on the coordinate system employed. By default, GAUSSIAN rotates/translates the molecule to the so-called “Standard Orientation”, which puts the center of nuclear charge (for the most abundant isotopes $^{12}_6C$ and $^{14}_7N$ this coincides with the center of mass) at the origin of the Cartesian axes. Reported values refer to this “Standard Orientation”. For dipole calculations, the GAUSSIAN keyword “NoSymm” (used for geometry optimizations in order to unbiasedly search for absolute minima, cf. Section ”Electronic Structure and Chemical Bonding”) should not be given in the section route; otherwise the geometry utilized is that of the input file, wherein the center of charge is not necessarily at the origin of the Cartesian axes.

From computational perspective, the inspection of Table 6 and S16 reveals that spin contamination is an important challenge for unrestricted calculations to open-shell chains; the UHF-based values substantially differ from the ROHF-based values. Noteworthily, the UHF-based estimates are not uniformly affected. For the neutral C$_4$N doublet, values computed within UHF — like those reported earlier14 (cf. Table S16) — or on top of UHF are drastically underestimated with respect to the DFT-based values, which are not notably affected by spin contamination. Albeit less pronounced, this is also the case of the cation.
Table 6: Values of the dipole momentum \mathbf{D} (field independent basis, debye) of the C$_4$N chains investigated in this paper at various levels of theory using B3LYP/6-311++G(3df, 3pd) optimized geometries.

Species	Method	D_X	D_Y	D_Z	D_{total}
neutral doublet	B3LYP/6-311++G(3df, 3pd)	0.0000	0.0000	0.3347	0.3347
	UCCSD(T)/6-311++G(3df, 3pd)	0.0000	0.0000	0.0907	0.0907
	ROCCSD(T)/6-311++G(3df, 3pd)	0.0000	0.0000	0.4512	0.4512
neutral quartet	B3LYP/6-311++G(3df, 3pd)	0.0000	0.0000	3.4628	3.4628
	UCCSD(T)/6-311++G(3df, 3pd)	0.0000	0.0000	3.2558	3.2558
	ROCCSD(T)/6-311++G(3df, 3pd)	0.0000	0.0000	4.5003	4.5003
anion triplet	B3LYP/6-311++G(3df, 3pd)	0.0000	0.0000	2.9398	2.9398
	UCCSD(T)/6-311++G(3df, 3pd)	0.0000	0.0000	4.4930	4.4930
	ROCCSD(T)/6-311++G(3df, 3pd)	0.0000	0.0000	2.2379	2.2379
bent anion singlet	B3LYP/6-311++G(3df, 3pd)	0.0000	0.5970	-2.6678	2.7338
	RCCSD(T)/6-311++G(3df, 3pd)	0.0000	0.4227	-2.5695	2.6040
linear anion singlet	B3LYP/6-311++G(3df, 3pd)	0.0000	0.0000	2.5344	2.5344
	RCCSD(T)/6-311++G(3df, 3pd)	0.0000	0.0000	2.4302	2.4302
cation singlet	B3LYP/6-311++G(3df, 3pd)	0.0000	0.0000	2.1890	2.1890
	RCCSD(T)/6-311++G(3df, 3pd)	0.0000	0.0000	2.1898	2.1898
cation triplet	B3LYP/6-311++G(3df, 3pd)	0.0000	0.0000	4.8254	4.8254
	UCCSD(T)/6-311++G(3df, 3pd)	0.0000	0.0000	4.1447	4.1447
	ROCCSD(T)/6-311++G(3df, 3pd)	0.0000	0.0000	6.0065	6.0065
C$_4$N$^+$ triplet. By contrast, UHF-based estimates of D for the neutral quartet and anion triplet are smaller than those based on ROHF, although on the other side they are closer to the DFT-based values.

The fact that all C$_4$N species possess a non-vanishing dipole momentum D is particularly appealing for astronomical detection because the intensities of rotational lines scales as D^2. According to Table 6, the most stable anion C$_4$H$^-$ triplet chain possesses a dipole momentum roughly ten times larger than the most stable natural C$_4$H doublet. For this reason, at comparable abundances, spectral lines of C$_4$H$^-$ anion chains should be about hundred times stronger than those of their neutral counterparts. Moreover, in view of the fact that anions have an enthalpy of formation lower than neutral chains (cf. Table 13) the aforementioned factor (~ 100) is likely underestimated. By and large, based on these arguments we expect that the astronomical detection of anion C$_4$N$^-$ chains will be easier than that of neutral C$_4$N0 chains.

Chemical Reactivity Indices

Anionic 66,67 and cationic 68,69 species are important constituents of extraterrestrial environment. Therefore, the lowest electron attachment energies EA (Tables 7, S19, S20, and S21) and ionization potentials IP (Tables 8, S22, S23, and S24) examined in this section are quantities of central interest in astrochemistry.

Table 7 and 8 include values pertaining both to vertical and to adiabatic processes. Vertical quantities correspond to electron addition (or removal) at a given geometry, e.g. $EA_{vert}^{T_D}$ (R_D^0) $\equiv \mathcal{E}_D^0 (R_D^0) - \mathcal{E}_T^- (R_D^0)$ at the energy minimum (R_D^0) of the (most stable) neutral doublet. Adiabatic values correspond to molecular energy differences of anionic (or cationic) and neutral species computed at their own optimum geometries, e.g. $EA_{adi}^{T_D} \equiv \mathcal{E}_D^0 (R_D^0) - \mathcal{E}_T^- (R_T^-)$. The inspection of Table 7 and 8 reveals that differences between the vertical and adiabatic EA and IP values are very small. Accordingly, most reorganization energies λ are small (cf. Tables S26 and S27). This is the consequence of the fact that most molecular isomers are
linear. The only notable exception is the (most stable) bent (non-linear) anion singlet (bS) (Figure 1).

Importantly, our CC-based estimate for the adiabatic electron affinity $E_{\text{A}}^{\text{ad}} \simeq 3.1 \text{ eV}$ (Table 7) excellently agrees with the experimental value $E_{\text{A}}^{\text{ad}}_{\text{exp}} = 3.1113 \pm 0.0010 \text{ eV}$ deduced by means of high-resolution SEVI spectroscopy. One could note in this context that inaccuracies of up to $\sim 50 \text{ meV}$ of CC-based E_{A}-estimates are unavoidable for present state-of-the-art of theory.

Such inaccuracies result because various single-point ab initio calculations (Δ-UCCSD, Δ-UCCSD(T), Δ-ROCCSD, Δ-ROCCSD(T), Δ-QCISD, Δ-QCISD(T) and E_{A}-EOM-CCSD) at a certain (optimum) geometry yield values slightly differ from each other (cf. Table 7). Another source of inaccuracy is the geometry utilized in single-point calculations, which is also slightly affected by the optimization procedure (B3LYP/6-311++G(3df, 3pd), PBE0/6-311++G(3df, 3pd), or M06-2X/6-311++G(3df, 3pd), cf. Tables S19, S20, and S21).

Confirming previous report, the DFT/B3LYP-based estimate (Table 7) departs from the experimental value by about 0.2 eV. This DFT-based inaccuracy — which is comparable to that found for other molecular species — may not be sufficient to derive accurate chemical reactivity indices (see below) needed for reliable astrochemical modeling.

In addition to electron affinities, ionization energies I_{P} are also needed for modeling extraterrestrial environments. I_{P}-values of vertical and adiabatic ionization energies with and without corrections due to zero-point motion were also computed by means of the same methods utilized for E_{A}’s. They are reported in Tables 8, S22, S23, and S24.

Once the I_{P} and E_{A} values are known, other basic chemical reactivity indices can be estimated, which are important because they serve as input information for modeling astrochemical evolution of a given environment. As an example, results for the chemical hardness $\eta \equiv I_{\text{P}} - E_{\text{A}}$ are reported in Table 9 and 10. These tables include values of both “global” (η_{vert}) and “combined” hardness (η_{ad}); the former are computed using the vertical I_{Pvert} and E_{Avert} values, the latter are obtained from the adiabatic I_{Pad} and E_{Aad} values.
We chose to show this quantity (η) also because it reveals that, along with the recently examined HC$_{10}$N chain, C$_4$N is another carbon-based chain of astrochemical interest agreeing with Pearson’s conjecture. Being more stable than the neutral quartet (cf. Table 13 and Figure 10), the neutral doublet is chemically harder (η$_D$ > η$_Q$, cf. Table 9 and 10).

Table 7: Values of the vertical and adiabatic doublet-triplet electron attachment (EA^{vert}_{TD} (R) ≡ \mathcal{E}_D^0 (R)− \mathcal{E}_T^- (R) and EA^{ad}_{TD} ≡ \mathcal{E}_D^0 (R$_D^0$)− \mathcal{E}_T^- (R$_T^-$), respectively) computed using the neutral doublet R$_D^0$ and anion triplet R$_T^-$ B3LYP/6-311++G(3df, 3pd) optimum geometries without or with corrections due to zero point motion. The present B3LYP/6-311++G(3df, 3pd)-based adiabatic value (EA^{ad}_{TD} = 3.274 eV) agrees with the B3LYP/aug-cc-pVTZ estimate (3.29 eV20). The vertical uncorrected value EA^{vert}_{TD} (R$_T^-$) = 1.91 eV deduced via Koopmans theorem at RHF/3-21G level18 is drastically underestimated.

	B3LYP	UCCSD	UCCSD(T)	ROCCSD	ROCCSD(T)	EOM-ROCCSD
EA^{vert}_{TD} (R$_D^0$)						
uncorrected	3.217	3.077	3.038	3.003	2.983	3.027
corrected	3.207	3.066	3.029	2.993	2.973	3.017
EA^{vert}_{TD} (R$_T^-$)						
uncorrected	3.360	3.262	3.218	3.182	3.135	3.199
corrected	3.350	3.252	3.208	3.172	3.124	3.189
EA^{ad}_{TD}						
uncorrected	3.285	3.121	3.100	3.034	3.059	3.109
corrected	3.274	3.111	3.090	3.024	3.048	3.099

Table 8: Values of the vertical and adiabatic doublet-singlet ionization energy (IP^{vert}_{SD} (R) ≡ \mathcal{E}_S^+ (R)− \mathcal{E}_D^0 (R) and IP^{ad}_{SD} ≡ \mathcal{E}_S^+ (R$_S^+$)− \mathcal{E}_D^0 (R$_D^0$), respectively) computed using the neutral doublet R$_D^0$ and cation singlet R$_S^+$ B3LYP/6-311++G(3df, 3pd) optimum geometries without and with corrections due to zero point motion.

	B3LYP	UCCSD	UCCSD(T)	ROCCSD	ROCCSD(T)	EOM-ROCCSD
IP^{vert}_{SD} (R$_D^0$)						
uncorrected	9.812	9.666	9.408	9.681	9.514	9.802
corrected	9.852	9.705	9.448	9.721	9.554	9.842
IP^{vert}_{SD} (R$_S^+$)						
uncorrected	9.780	9.639	9.396	9.663	9.493	9.797
corrected	9.819	9.678	9.436	9.703	9.533	9.836
IP^{ad}_{SD}						
uncorrected	9.794	9.631	9.392	9.646	9.497	9.783
corrected	9.833	9.670	9.431	9.686	9.537	9.823

We do not want to end this section without making two technical remarks.

First, to improve the agreement with experiment, DFT approaches to estimate EA and IP often use long-range corrected functionals. To check whether this is the case of C$_4$N
Table 9: Values of the “global” (vertical) η_D^{vert} and “combined” (adiabatic) η_D^{ad} chemical hardness of the neutral doublet without and with corrections due to zero point motion. All geometries were optimized at the B3LYP/6-311++G(3df, 3pd) level of theory.

	B3LYP	UCCSD	UCCSD(T)	ROCCSD	ROCCSD(T)	EOM-ROCCSD	
η_D^{vert} uncorrected	6.595	6.589	6.370	6.678	6.531	6.775	
	corrected	6.645	6.639	6.420	6.728	6.581	6.825
η_D^{ad} uncorrected	6.509	6.509	6.292	6.612	6.438	6.675	
	corrected	6.559	6.559	6.342	6.662	6.489	6.724

Table 10: Values of the “global” (vertical) η_Q^{vert} and “combined” (adiabatic) η_Q^{ad} chemical hardness of the neutral quartet without and with corrections due to zero point motion. All geometries were optimized at the B3LYP/6-311++G(3df, 3pd) level of theory.

	B3LYP	UCCSD	UCCSD(T)	ROCCSD	ROCCSD(T)	
η_Q^{vert} uncorrected	4.467	5.093	4.491	4.952	4.558	
	corrected	4.488	5.113	4.512	4.973	4.579
η_Q^{ad} uncorrected	4.175	4.725	4.148	4.590	4.208	
	corrected	4.195	4.746	4.169	4.611	4.229

chains, we also conducted DFT calculations using two such functionals (LC-BLYP and LC-ωPBE) embodying long-range corrections. The results presented in Tables S19 and S22 do not substantiate this expectation. The long-range corrected (lrc) LC-BLYP and LC-ωPBE functionals estimates ($EA_{lrc}^{\text{ad}} \sim 3.5$ eV) for EA yield larger deviations from the experimental value ($EA_{\text{exp}}^{\text{ad}} \sim 3.1113 \pm 0.001$ eV)20 than the values ($EA_{\text{wo-lrc}}^{\text{ad}} \sim 3.3$ eV) based on the non-corrected B3LYP and PBE0 functionals. Double-hybrid functionals do not perform better; with zero-point energy corrections DSD-PBEP86/6-311++G(3df, 3pd) gives $EA^{\text{ad}} = 3.423$ eV.

Second, we noted above that spin-splitting (Δ_{DQ}^0, Δ_{ST}^\pm) values estimated within unrestricted CC-based approaches substantially differ from those based on restricted open shell approaches. By contrast, similar to other cases,41,71 spin contamination does not appear to be an issue for IP and EA; UCC-based values do not notably differ from those obtained within ROCC approaches.
C₄N⁻ versus HC₄N⁰

The C₄N⁻ and HC₄N chains are isoelectronic. For this reason, it may be not surprising that they both have spin triplet ground states. Likewise, their most stable singlet state is a bent conformer (Figures 1 and S9).

Surprisingly, notwithstanding these qualitative similarities, quantitative differences between their properties are significant. This holds for all properties: structural (Table 11), electronic (Tables S25, S9, and S10) and vibrational (Figures S14 and S15).

Let us refer to a few specific aspects. As visible in Figures S10a, S11a, S12a, and S13a, bond lengths differences can amount up to 0.05 Å, as the case of the C₁C₂ bond at the molecular end opposite to the N atom. This is associated with a substantial change in the (fractional) valence state of the C₁ atom (Figures S10c, S11c, S12c, and S13c). Noteworthily, the other molecular end is also affected; see, for example, the charge of the N atom both in singlet (Figures S10d and S12d) and triplet (Figures S11d and S13d) states. Again, in spite of their isoelectronicity, both infrared and Raman spectra of HC₄N⁰ are significantly different from those of C₄N⁻; compare Figures S14a and S14b and Figures S15a and S15b, respectively.

Table 11: Results for the isoelectronic molecular pair (C₄N⁻, HC₄N) geometries optimized at the B3LYP/6-311++G(3df, 3pd) level of theory without imposing symmetry constraints. Bond lengths \(l \) between atoms XY (in angstrom), angles \(\alpha \) between atoms \(\overline{XYZ} \) (in degrees) and Wiberg bond order indices \(\mathcal{N} \).

Species	Property	C₁C₂	C₁C₂C₃	C₂C₃	C₂C₃C₄	C₃C₄	C₃C₄N	C₄N
stable bent C₄N⁻ singlet	\(l, \alpha \)	1.2780	174.3	1.3295	125.7	1.3846	171.4	1.1702
	\(\mathcal{N} \)	2.1785	1.6978	1.2309				2.6995
HC₄N singlet	\(l, \alpha \)	1.2267	172.5	1.3353	127.5	1.3645	173.2	1.1682
	\(\mathcal{N} \)	2.4495	1.4297	1.2551				2.6754
linear C₄N⁻ triplet	\(l, \alpha \)	1.2912	179.8	1.2917	178.7	1.3193	180.0	1.1874
	\(\mathcal{N} \)	1.8987	1.8251	1.3182				2.5775
HC₄N triplet	\(l, \alpha \)	1.2406	179.8	1.2920	178.8	1.3181	179.9	1.1790
	\(\mathcal{N} \)	2.4537	1.4572	1.2929				2.6509

25
Table 12: Values of the dipole momentum \mathbf{D} (field independent basis, debye) of the isoelectronic C_4N^- and HC_4N chains at various levels of theory.

Species	Method	D_X	D_Y	D_Z	D_{total}
C_4N^- triplet	B3LYP/6-311++G(3df, 3pd)	0.0000	0.0000	2.9398	2.9398
	B3LYP/aug-cc-pVTZ	0.0000	0.0000	2.9400	2.9400
	UCCSD(T)/6-311++G(3df, 3pd)	0.0000	0.0000	4.5215	4.5215
	UCCSD(T)/aug-cc-pVTZ	0.0000	0.0000	4.5002	4.5002
	ROCCSD(T)/6-311++G(3df, 3pd)	0.0000	0.0000	2.2379	2.2379
	ROCCSD(T)/aug-cc-pVTZ	0.0000	0.0000	2.2447	2.2447
HC_4N triplet	B3LYP/6-311++G(3df, 3pd)	0.0000	0.0000	4.3495	4.3495
	B3LYP/aug-cc-pVTZ	0.0000	0.0000	4.3460	4.3460
	UCCSD(T)/6-311++G(3df, 3pd)	0.0000	0.0000	4.0705	4.0705
	UCCSD(T)/aug-cc-pVTZ	0.0000	0.0000	4.0656	4.0656
	ROCCSD(T)/6-311++G(3df, 3pd)	0.0000	0.0000	4.6327	6.6327
	ROCCSD(T)/aug-cc-pVTZ	0.0000	0.0000	4.6267	4.6267
bent C_4N^- singlet	B3LYP/6-311++G(3df, 3pd)	0.0000	0.5970	-2.6678	2.7338
	B3LYP/aug-cc-pVTZ	0.0000	0.5970	-2.6678	2.7338
	RCCSD(T)/6-311++G(3df, 3pd)	0.0000	0.4227	-2.5695	2.6040
	RCCSD(T)/aug-cc-pVTZ	0.0000	0.4233	-2.5714	2.6061
HC_4N singlet	B3LYP/6-311++G(3df, 3pd)	0.0000	-1.0005	4.1944	4.3121
	B3LYP/aug-cc-pVTZ	0.0000	-1.0020	4.1968	4.3148
	RCCSD(T)/6-311++G(3df, 3pd)	0.0000	-1.1285	4.4508	4.5916
	RCCSD(T)/aug-cc-pVTZ	0.0000	-1.1300	4.4518	4.5929

Figure 9: Correlation between the vibrational frequency of the nitrile group CN stretching mode and the CN and C_1C_2 bond lengths (panels a and b, respectively).
Chemical Stability and Potential Chemical Pathways of Formation

To address the problem of chemical stability, we first calculated relevant enthalpies of formation $\Delta_f^0 H_x$'s. Values at zero ($x = 0$) and at room ($x = RT$) temperature are presented in Table 13 and Figure 10. According to Figure 10a, the enthalpies of formation for spin doublets — which are the most stable states of the neutral chains — linearly increase with the chain size (n).

Table 13: Enthalpies of Formation of Carbon Chains Discussed in This Paper at zero (Subscript 0) and Room Temperature (Subscript RT) Computed by Using CBS-QB3 Protocol. All values in kcal/mol. Values at RT for Anions Computed Using the ion convention (see, e.g., https://webbook.nist.gov/chemistry/ion/#A.) Notice that the values in this table are those corrected in ref. 72 which are somewhat different from those of ref. 73.

Species	$\Delta_f^0 H^0$	$\Delta_f^0 H^{RT}$
C_3N^0 doublet	175.502	178.540
C_4N^0 doublet	206.071	209.938
C_5N^0 doublet	231.981	235.726
C_3N^- singlet	72.856	75.820
C_4N^- triplet	133.775	137.288
C_5N^- singlet	123.892	127.992

Figure 10: Enthalpies of formation of neutral C_nN^0 and anion C_nN^- chains (panel a and b, respectively).

A similar conclusion emerges from the inspection of the lower part of Table 13 where the values for the most stable anionic species are presented. Because the values for the C_4N^- (triplet) chains are smaller than those for the longer (singlet) C_5N^- chains — which were
already reported in space10 — one can still hope that they are observable. The results for enthalpies of formation (Table 13 and Figure 10b) indicate again that C\textsubscript{4}N− triplet chains are more stable than C\textsubscript{4}N− singlet chains, in contrast to C\textsubscript{3}N− and C\textsubscript{5}N−, for which singlets are more stable than triplets, in agreement with the odd-even singlet-triplet alternation reported earlier for the C\textsubscript{n}N− homologous series10 as well as for its HC\textsubscript{n}N isoelectronic counterpart.42,58

So, the above results suggest that neutral C\textsubscript{4}N0 chains can still be observed in space; the values for C\textsubscript{4}N chains are smaller than for the longer C\textsubscript{5}N chains already astronomically detected.4 This result is supported by the fact that in laboratory molecular beam C\textsubscript{4}N was indeed produced more abundantly than C\textsubscript{5}N.42 We next checked that neutral C\textsubscript{4}N chains are stable against dissociation. Our calculations indicated that all possible dissociation processes (reactions 1 to 4 in Tables 14 and S28) are endoenergetic. The same holds true for anion’s dissociation; reactions 5 to 8 in the same Tables 14 and S28 are also endoenergetic. In particular, this rules out a (n a priori conceivable) fragmentation of the not yet detected C\textsubscript{4}N0 and C\textsubscript{4}N− into already astronomically observed C\textsubscript{3}N0 and C\textsubscript{3}N− or C\textsubscript{2}N0.
Table 14: Dissociation of neutral and anion C$_4$N chains. Enthalpies of reaction at zero (subscript 0) and room temperature (subscript RT) computed by using CBS-QB3 protocol. All values (in kcal/mol) refer to the electronic ground states.

No.	Species	Reaction	$\Delta_r H^0_0$	$\Delta_r H^0_{RT}$
1	C$_4$N	C$_4$N \rightarrow C + C$_3$N	139.4	140.1
2	C$_4$N	C$_4$N \rightarrow C$_2$ + C$_2$N	152.0	152.8
3	C$_4$N	C$_4$N \rightarrow C$_3$ + CN	95.3	96.4
4	C$_4$N	C$_4$N \rightarrow C$_4$ + N	159.6	160.5
5a	C$_4$N$^-$	C$_4$N$^-$ \rightarrow C + C$_3$N$^-$	109.1	109.4
5b	C$_4$N$^-$	C$_4$N$^-$ \rightarrow C$^-$ + C$_3$N	184.4	185.4
6a	C$_4$N$^-$	C$_4$N$^-$ \rightarrow C$_2$ + C$_2$N$^-$	160.6	161.6
6b	C$_4$N$^-$	C$_4$N$^-$ \rightarrow C$_2$ + C$_2$N$^-$	151.0	152.1
7a	C$_4$N$^-$	C$_4$N$^-$ \rightarrow C$_3$ + CN$^-$	77.6	79.0
7b	C$_4$N$^-$	C$_4$N$^-$ \rightarrow C$_3$ + CN$^-$	122.0	123.3
8a	C$_4$N$^-$	C$_4$N$^-$ \rightarrow C$_4$ + N$^-$	238.1	239.4
8b	C$_4$N$^-$	C$_4$N$^-$ \rightarrow C$_4$ + N$^-$	141.8	142.8

Furthermore, our values for bond dissociation enthalpies do not support claims that C$_4$N is less stable than the already detected C$_2$N, C$_3$N and C$_5$N. For illustration, let us consider the bond breaking at molecular ends. The values presented in Tables 14, S28, 15, and S29 reveal that breaking the end C≡N bond in C$_4$N requires a significantly larger energy than in all (C$_2$N, C$_3$N and C$_5$N) already astronomically detected members of the homologous series C$_n$N.4,12,74 Switching to the opposite molecular end, removing the terminal C atom of C$_4$N0 requires an energy larger than for C$_2$N0 and comparable to that for C$_5$N0 (cf. reactions 9a and 12a in Tables 15 and S29), respectively. The same conclusion emerges from the direct comparison of the structural and chemical properties of C$_3$N, C$_4$N, and C$_5$N presented in detail in Figures S1, S2, S3, and S4.

To sum up, the foregoing analysis indicates that C$_4$N nonobservability in space cannot be due to molecule’s fragmentation; none of the above processes involves an unusually low dissociation energy.

Putting differently, the stability against dissociation says that all converse (association) reactions depicted in Tables 14 and S28 are exoenergetic. That is, they represent poten-
Table 15: Dissociation of neutral C$_2$N, C$_3$N, and C$_5$N chains already detected in space. Enthalpies of reaction at zero (subscript 0) and room temperature (subscript RT) computed by using CBS-QB3 protocol. All values (in kcal/mol) refer to the electronic ground states.

No.	Species	Reaction	$\Delta_r H_0^0$	$\Delta_r H_0^{RT}$
9a	C$_2$N	C$_2$N \rightarrow C + CN	113.4	114.4
9b	C$_2$N	\rightarrow C$_2$ + N	145.8	146.8
10a	C$_3$N	C$_3$N \rightarrow C + C$_2$N	156.8	157.9
10b	C$_3$N	\rightarrow C$_2$ + CN	126.0	127.1
10c	C$_3$N	\rightarrow C$_3$ + N	132.6	134.0
12a	C$_5$N	C$_5$N \rightarrow C + C$_4$N	144.1	145.7
12b	C$_5$N	\rightarrow C$_2$ + C$_3$N	139.2	140.6
12c	C$_5$N	\rightarrow C$_3$ + C$_2$N	126.0	127.8
12d	C$_5$N	\rightarrow C$_4$ + CN	126.9	128.6
12e	C$_5$N	\rightarrow C$_5$ + N	135.8	137.3

Tentative chemical pathways of C$_4$N0/C$_4$N$^-$ formation from precursors already reported in space (CN, C$_2$N, C$_3$N, C$_2$H, C$_3$H, C$_4$H, and C$_4$H$^-$ were also astronomically observed) presented in Tables 16, S30, S31, and S32 are chemical pathways of production that come into question. Along with exoenergetic exchange reactions (which may also be problematic without third party energy removal), we also included there several endoenergetic processes (e.g., reactions 13, 14a, 15e, 17d, and 17e) corresponding to small or moderate (positive) reaction energies; they are significant for reactants in electronic excited states.

Technical Remark on the Complete Basis Set (CBS) Approaches

To compute enthalpies of formation and reaction energies (cf. Section “Chemical Stability and Potential Chemical Pathways of Formation”), GAUSSIAN 16 allows choosing between several complete basis set protocols: CBS-4M, CBS-APNO, and CBS-QB3. The first is recommended for new studies. In some cases, the second attains a root mean square deviation $RMSD_{CBS-APNO} = 1.16$ kcal/mol, which is better than $RMSD_{CBS-QB3} = 2.27$ kcal/mol. One may therefore wonder why we have presented in the main text numer-
Table 16: Relevant exchange reactions. Enthalpies of reaction at zero (subscript 0) and room temperature (subscript RT) computed by using CBS-QB3 protocol. All values (in kcal/mol) refer to the electronic ground states.

No.	Reaction	$\Delta_r H_0$	$\Delta_r H_{RT}$
13	$C_5 + N \rightarrow C + C_{4N}$	8.3	8.4
14a	$N + C_{4H}^- \rightarrow C_{4N} + H^-$	23.9	24.3
14b	$N^- + C_{4H} \rightarrow C_{4N}^- + H$	-36.0	-35.9
14c	$N^- + C_{4H} \rightarrow C_{4N}^- + H$	-125.0	-124.8
14d	$N^- + C_{4H} \rightarrow C_{4N} + H^-$	-65.1	-64.6
15a	$CN + C_3H \rightarrow H + C_{4N}$	-20.5	-20.4
15b	$CN^- + C_3H \rightarrow H + C_{4N}^-$	-2.8	-3.0
15c	$CN^- + C_3H \rightarrow H^- + C_{4N}$	57.1	57.2
15d	$CN + C_3H^- \rightarrow H + C_{4N}^-$	-50.9	-50.8
15e	$CN + C_3H^- \rightarrow H^- + C_{4N}$	9.0	9.4
16a	$CH + C_3N \rightarrow H + C_{4N}$	-59.4	-59.2
16b	$CH^- + C_3N \rightarrow H^- + C_{4N}^-$	-105.6	-105.8
16c	$CH^- + C_3N \rightarrow H^+ + C_{4N}$	-45.8	-45.5
16d	$CH + C_3N^- \rightarrow H + C_{4N}^-$	-29.1	-29.1
17a	$CH + C_3N^- \rightarrow H^- + C_{4N}$	30.8	31.1
17b	$C_2H + C_2N \rightarrow H + C_{4N}$	-40.5	-40.3
17c	$C_2H^- + C_2N \rightarrow H + C_{4N}^-$	-44.6	-44.5
17d	$C_2H^- + C_2N \rightarrow H^- + C_{4N}$	15.3	15.7
17e	$C_2H + C_2N^- \rightarrow H^- + C_{4N}$	10.8	11.2
17f	$C_2H + C_2N^- \rightarrow H + C_{4N}^-$	-49.1	-49.0
18	$NC_2N + C_2 \rightarrow N + C_{4N}$	48.6	49.0
19	$NC_2N + C_2N \rightarrow N_2 + C_{4N}$	-29.8	-29.3
20	$NC_2N + C_2H \rightarrow NH + C_{4N}$	82.3	82.7
ical values obtained via the “less” performant CBS-QB3 protocol, and put CBS-4M- and CBS-APNO-based estimates in the SI.

To justify this preference, CBS-based values of the adiabatic electron affinity $E_{A_{CBS}}$ for all even-members (C_2N, C_4N, and C_6N) of astrophysical interest are shown in Table 17. In these calculations, $E_{A_{CBS}}$ was estimated as an energy of reaction ($C_n N^− \xrightarrow{E_A = \Delta_e H_0^0} C_n N^0 + e^−$). For completeness, adiabatic ionization potentials $I_{P_{CBS}}$ estimated in a similar manner ($C_n N^0 \xrightarrow{I_P = \Delta_e H_0^0} C_n N^+ + e^−$) are also shown (cf. Table S33).

We focused on the adiabatic electron affinity because it is the only quantity that can be compared with high accuracy SEVI experimental data. The comparison reveals that for this quantity — which is notoriously problematic even for small normal (nonradical) carbon-based chains — the CBS-QB3 protocol attains the best agreement with experiment.

One should still aid that values of the energy of reactions computed by means of CBS-APNO and CBS-4M (cf. Tables S28, S29, S30, S31, and S32) do not notably differ from those based on CBS-QB3. Most importantly, they do by no means change the above conclusions on C_4N’s stability and formation pathways.

Table 17: Adiabatic electron affinities of C_2N, C_4N and C_6N radicals measured in high-resolution SEVI experiments and computed using several CBS protocols. All values are in eV. Notice that the CBS-QB3 estimates are the closest to experiment. The root mean square deviations are $\text{RMSD}_{CBS-QB3} = 0.862$ kcal/mol, $\text{RMSD}_{CBS-APNO} = 1.841$ kcal/mol, and $\text{RMSD}_{CBS-4M} = 4.538$ kcal/mol.

Method	C_2N	C_4N	C_6N
Experiment	E_A (eV)	E_A (eV)	E_A (eV)
CBS-QB3	2.7489 ± 0.0010	3.1113 ± 0.0010	3.3715 ± 0.0010
CBS-APNO	2.7615	3.1351	3.4804
PBS-4M	2.921	0.549	2.511
CBS-APNO	2.7728	3.2506	3.5648
CBS-4M	0.551	3.212	4.458
CBS-APNO	3.0115	3.4596	3.7693
CBS-4M	6.056	8.032	9.173
Conclusions

In closing, our results for electronic structure, chemical bonding, and chemical stability do not substantiate claims (made explicitly or implicitly in previous literature on similar molecular species) that even C_nN chains are less stable than odd members to justify why the former were not detected in space; Figure 10 shows that the point for the neutral C_4N chain lies exactly on the line joining the points for neutral C_3N and neutral C_5N chains which were already astronomically observed.

The present investigation demonstrates that whether neutral or charged, all C_4N chains possess strongly delocalized structures. In particular, in spite of the significantly different atomic ionization energies ($IP_C = 11.26\,eV$ versus $IP_N = 14.53\,eV$) electron removal also affects the charge of the nitrogen atom (Figures 2d and S7d). Furthermore, the excess electron attached to a neutral chain does not preponderantly go to the N atom (Figures 3d and S8d), although this element is more electronegative than the C atoms ($\chi_{Pauling}^N = 3.04$ versus $\chi_{Pauling}^C = 2.55$). Interestingly, it is the same group of atoms (C_1, C_3, and N) that shares more or less democratically both the hole created by ionization and the excess electron attached to the neutral chain.

The fact that, for all even-members (C_2N, C_4N, C_6N) of astrophysical interest, the present theoretical estimate for electron affinity EA excellently agrees with experiment is another significant report. EA-data for molecular species of astrochemical interest are very scarce; even values for small “normal” (i.e., nonradical) cyanopolyynes continue to be missing. Even for small(er) carbon chains, accurate EA-estimates are very challenging for theory.

Last but not least, our results suggest that astronomical detection should first focus on anion C_4N^- chains rather than on neutral C_4N^0 chains. Letting alone their substantially lower enthalpy of formation (cf. Table 13 and Figure 10), at comparable abundances, C_4N^- anions should be much easier detectable than neutrals via rotational transition spectroscopy. More quantitatively, in view of the different dipole momenta presently estimated (Table 6), C_4N^- anions transition intensities should be about hundred times stronger than for neutral
chains. Distinguishing between neutral and anion C₄N chains also appears to be feasible; the difference between the estimated rotational constants (Table 5) exceeds by far the experimental resolution currently achieved. More specific astrophysical details are presented separately.⁸⁷

Acknowledgments

Financial support for this research provided by the Deutsche Forschungsgemeinschaft (DFG grant BA 1799/3-2), and computational support from the State of Baden-Württemberg through bwHPC/DFG through grant INST 40/467-1 FUGG are gratefully acknowledged.

References

1. Cernicharo, J.; Guélin, M. Discovery of the C₈H Radical. *Astron. Astrophys.* **1996**, *309*, L27–L30.

2. Cernicharo, J.; Heras, A. M.; Tielens, A. G. G. M.; Pardo, J. R.; Herpin, F.; Guélin, M.; Waters, L. B. F. M. Infrared Space Observatory’s Discovery of C₄H₂, C₆H₂, and Benzene in CRL 618. *Astrophys. J. Lett.* **2001**, *546*, L123–L126.

3. Hasegawa, T. I.; Herbst, E. Three-Phase Chemical Models of Dense Interstellar Clouds: Gas, Dust Particle Mantles and Dust Particle Surfaces. *Mon. Not. R. Astron. Soc.* **1993**, *263*, 589–606.

4. Guélin, M.; Neininger, N.; Cernicharo, J. Astronomical Detection of the Cyanobutadiynyl Radical C₅N. *A&A* **1998**, *335*, L1–L4.

5. McCarthy, M. C.; Apponi, A. J.; Gordon, V. D.; Gottlieb, C. A.; Thaddeus, P.; Daniel Crawford, T.; Stanton, J. F. Rotational Spectrum and Theoretical Structure of the Carbene HC₄N. *J. Chem. Phys.* **1999**, *111*, 6750–6754.
6. Maier, J. P.; Lakin, N. M.; Walker, G. A. H.; Bohlender, D. A. Detection of C\textsubscript{3} in Diffuse Interstellar Clouds. *Astrophys. J.* 2001, 553, 267–273.

7. Thaddeus, P.; Gottlieb, C. A.; Gupta, H.; Brünken, S.; McCarthy, M. C.; Agúndez, M.; Guélin, M.; Cernicharo, J. Laboratory and Astronomical Detection of the Negative Molecular Ion C\textsubscript{3}N−. *Astrophys. J.* 2008, 677, 1132–1139.

8. Cernicharo, J.; Guélin, M.; Agúndez, M.; McCarthy, M. C.; Thaddeus, P. Detection of C\textsubscript{5}N− and Vibrationally Excited C\textsubscript{6}H in IRC +10216. *Astrophys. J. Lett.* 2008, 688, L83–L86.

9. Vázquez, J.; Harding, M. E.; Gauss, J.; Stanton, J. F. High-Accuracy Extrapolated ab Initio Thermochemistry of the Propargyl Radical and the Singlet C\textsubscript{3}H\textsubscript{2} Carbenes. *J. Phys. Chem. A* 2009, 113, 12447–12453, PMID: 19583197.

10. Agúndez, M.; Cernicharo, J.; Guélin, M.; Kahane, C.; Roueff, E.; Klos, J.; Aoiz, F. J.; Lique, F.; Marcelino, N.; Goicoechea, J. R.; González García, M.; Gottlieb, C. A.; McCarthy, M. C.; Thaddeus, P., Astronomical Identification of CN−, the Smallest Observed Molecular Anion. *Astron. Astrophys.* 2010, 517, L2.

11. Doty, S. D.; Leung, C. M. Detailed Chemical Modeling of the Circumstellar Envelopes of Carbon Stars: Application to IRC+10216. *Astrophys. J.* 1998, 502, 898–908.

12. Friberg, P.; Hjalmarson, A.; Guélin, M.; Irvine, W. M. Interstellar C\textsubscript{3}N — Detection in Taurus Dark Clouds. *Astrophys. J. Lett.* 1980, 241, L99–L103.

13. McCarthy, M. C.; Fuchs, G. W.; Kucera, J.; Winnemisser, G.; Thaddeus, P. Rotational Spectra of C\textsubscript{4}N, C\textsubscript{6}N, and the Isotopic Species of C\textsubscript{3}N. *J. Chem. Phys.* 2003, 118, 3549–3557.

14. Pauzat, F.; Ellinger, Y.; McLean, A. D. Is Interstellar Detection of Higher Members of the Linear Radicals C\textsubscript{n}CH and C\textsubscript{n}N Feasible? *Astrophys. J. Lett.* 1991, 369, L13–L16.
15. Ding, Y.-h.; Liu, J.-l.; Huang, X.-r.; Li, Z.-s.; Sun, C.-c. C₄N: The First CₙN Radical with Stable Cyclic Isomers. *J. Chem. Phys.* **2001**, *114*, 5170–5179.

16. Belbruno, J. J.; Tang, Z.-C.; Smith, R.; Hobday, S. The Structure and Energetics of Carbon-Nitrogen Clusters. *Mol. Phys.* **2001**, *99*, 957–967.

17. Zhan, C.-G.; Iwata, S. Ab Initio Studies on the Structures, Vertical Electron Detachment Energies, and Fragmentation Energies of CₙN- Clusters. *J. Chem. Phys.* **1996**, *104*, 9058–9064.

18. Wang, C.-R.; Huang, R.-B.; Liu, Z.-Y.; Zheng, L.-S. Laser Generation and ab Initio Studies of CₙN⁻ Clusters. *Chem. Phys. Lett.* **1995**, *237*, 463 – 467.

19. Pascoli, G.; Lavendy, H. Are CₙN⁻ Clusters Really Bent? *Chem. Phys. Lett.* **1999**, *312*, 333 – 340.

20. Garand, E.; Yacovitch, T. I.; Neumark, D. M. Slow Photoelectron Velocity-Map Imaging Spectroscopy of C₂N⁻, C₄N⁻, and C₆N⁻. *J. Chem. Phys.* **2009**, *130*, 064304.

21. Huang, R. B.; Wang, C. R.; Liu, Z. Y.; Zheng, L. S.; Qi, F.; Sheng, L. S.; Yu, S. Q.; Zhang, Y. W. Studies of Cluster Anions CₙX⁻ (X=N, P, As, Bi) Produced by Laser Ablation. *Z. Phys D: At. Mol. Clusters* **1995**, *33*, 49–52.

22. K. Gupta, A.; Ayyub, P. Formation of Nitrogen-Substituted Carbon Cluster Anions by Gas-Feed Cs-Sputtering from Different Forms of Carbon. *Eur. Phys. J D - At., Mol., Opt. Plasma Phys.* **2001**, *17*, 221–229.

23. bwHPC, bwHPC program supported by the State of Baden-Württemberg and the German Research Foundation (DFG) through grant no INST 40/467-1 FUGG. 2013; https://www.bwhpc.de/bwhpc-c5.html

24. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.;
Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Men-
nucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-
Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Hender-
son, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.;
Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.;
Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; J. A. Montgomery, J.; Per-
alta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.;
Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Ren-
dell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi., Millam, M.; Klene,;
Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.;
Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, Gaussian 16, Revision B.01.
2016; www.gaussian.com

25. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheese-
man, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.;
Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Men-
nucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-
Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Hender-
son, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.;
Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.;
Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; J. A. Montgomery, J.; Per-
alta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.;
Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Ren-
dell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi., Millam, M.; Klene,;
Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.;
Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, Gaussian 09, Revision B.01.
2010; www.gaussian.com
26. Stanton, J.; Gauss, J.; Harding, M.; Szalay, P. CFOUR (v2.00beta), Coupled-Cluster Techniques for Computational Chemistry, a Quantum-Chemical Program Package. 2018; http://www.cfour.de. With contributions from A.A. Auer, R.J. Bartlett, U. Benedikt, C. Berger, D.E. Bernholdt, Y.J. Bomble, L. Cheng, O. Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W.J. Lauderdale, D.A. Matthews, T. Metzroth, L.A. Mück, D.P. O’Neill, D.R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, C. Simmons, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J.D. Watts and the integral packages MOLECULE (J. Almlöf and P.R. Taylor), PROPS (P.R. Taylor), ABACUS (T. Helgaker, H.J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wüllen. For the current version, see http://www.cfour.de.

27. Bartlett, R. J.; Purvis, G. D. Many-Body Perturbation Theory, Coupled-Pair Many-Electron Theory, and the Importance of Quadruple Excitations for the Correlation Problem. Int. J. Quantum Chem. 1978, 14, 561–581.

28. Purvis, G. D.; Bartlett, R. J. A Full Coupled-Cluster Singles and Doubles Model: The Inclusion of Disconnected Triples. J. Chem. Phys. 1982, 76, 1910–1918.

29. Cizek, J. On the Use of the Cluster Expansion and the Technique of Diagrams in Calculations of Correlation Effects in Atoms and Molecules. 2007, 35–89.

30. Schirmer, J.; Mertins, F. Review of Biorthogonal Coupled Cluster Representations for Electronic Excitation. Theor. Chem. Acc. 2010, 125, 145–172.

31. Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. A Fifth-Order Perturbation Comparison of Electron Correlation Theories. Chem. Phys. Lett. 1989, 157, 479 – 483.

32. Head-Gordon, M.; Rico, R. J.; Oumi, M.; Lee, T. J. A Doubles Correction to Elec-
33. Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. *Phys. Rev. A* **1988**, *38*, 3098–3100.

34. Becke, A. D. A New Mixing of Hartree-Fock and Local Density-Functional Theories. *J. Chem. Phys.* **1993**, *98*, 1372–1377.

35. Stephens, P. J.; Devlin, J. F.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. *J. Phys. Chem.* **1994**, *98*, 11623–11627.

36. Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J. A Complete Basis Set Model Chemistry. I. The Total Energies of Closed-Shell Atoms and Hydrides of the First-Row Elements. *J. Chem. Phys.* **1988**, *89*, 2193–2218.

37. Petersson, G. A.; Al-Laham, M. A. A Complete Basis Set Model Chemistry. II. Open-Shell Systems and the Total Energies of the First-Row Atoms. *J. Chem. Phys.* **1991**, *94*, 6081–6090.

38. Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. *J. Chem. Phys.* **1999**, *110*, 6158–6170.

39. Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. *Theor. Chem. Acc.* **2008**, *120*, 215–241.

40. Jones, R. O.; Gunnarsson, O. The Density Functional Formalism, Its Applications and Prospects. *Rev. Mod. Phys.* **1989**, *61*, 689–746.
41. Bâldea, I. A Quantum Chemical Study from a Molecular Transport Perspective: Ionization and Electron Attachment Energies for Species Often Used to Fabricate Single-Molecule Junctions. Faraday Discuss. 2014, 174, 37–56.

42. Bâldea, I. Long Carbon-Based Chains of Interstellar Medium Can Have a Triplet Ground State. Why Is This Important for Astrochemistry? ACS Earth Space Chem. 2019, 3, 863–872.

43. Nooijen, M.; Bartlett, R. J. Equation of Motion Coupled Cluster Method for Electron Attachment. J. Chem. Phys. 1995, 102, 3629–3647.

44. Stanton, J. F.; Bartlett, R. J. The Equation of Motion Coupled-Cluster Method. A Systematic Biorthogonal Approach to Molecular Excitation Energies, Transition Probabilities, and Excited State Properties. J. Chem. Phys. 1993, 98, 7029–7039.

45. Stanton, J. F.; Gauss, J. Analytic Energy Derivatives for Ionized States Described by the Equation-of-Motion Coupled Cluster Method. J. Chem. Phys. 1994, 101, 8938–8944.

46. Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. A Long-Range Correction Scheme for Generalized-Gradient-Approximation Exchange Functionals. J. Chem. Phys. 2001, 115, 3540–3544.

47. Vydrov, O. A.; Scuseria, G. E. Assessment of a Long-Range Corrected Hybrid Functional. J. Chem. Phys. 2006, 125, 234109.

48. Dunning, T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007–1023.

49. Woon, D. E.; Dunning, T. H. J. Gaussian Basis Sets for Use in Correlated Molecular Calculations. III. The Atoms Aluminum through Argon. J. Chem. Phys. 1993, 98, 1358–1371.
50. Glendening, E.; Badenhoop, J.; Reed, A.; Carpenter, J.; Bohmann, J.; Morales, C.; Weinhold, F. NBO Code Version 5.9. 2012; http://nbo6.chem.wisc.edu/

51. Ochterski, J. W. Thermochemistry in Gaussian. 2000; https://gaussian.com/wp-content/uploads/dl/thermo.pdf. Pittsburg, PA: Gaussian Inc., url: http://gaussian.com/wp-content/uploads/dl/thermo.pdf.

52. Ochterski, J. W.; Petersson, G. A.; Montgomery, J. A. A Complete Basis Set Model Chemistry. V. Extensions to Six or More Heavy Atoms. *J. Chem. Phys.* **1996**, *104*, 2598–2619.

53. Montgomery, J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. A Complete Basis Set Model Chemistry. VII. Use of the Minimum Population Localization Method. *J. Chem. Phys.* **2000**, *112*, 6532–6542.

54. Wiberg, K. B. Application of the Pople-Santry-Segal CNDO Method to the Cyclopropylcarbinyl and Cyclobutyl Cation and to Bicyclobutane. *Tetrahedron* **1968**, *24*, 1083–1096.

55. Watts, J. D.; Bartlett, R. J. A Theoretical Study of Linear Carbon Cluster Monoanions, C_n^-, and Dianions, C_n^{2-} (n=2-10). *J. Chem. Phys.* **1992**, *97*, 3445–3457.

56. Hutter, J.; Luethi, H. P.; Diederich, F. Structures and Vibrational Frequencies of the Carbon Molecules C_2-C_{18} Calculated by Density Functional Theory. *J. Am. Chem. Soc.* **1994**, *116*, 750–756.

57. Parr, R. G.; Yang, W. *Density-Functional Theory of Atoms and Molecules*; Oxford University Press: Clarendon, Oxford, 1989; See p. 149.

58. Băldea, I. Alternation of Singlet and Triplet States in Carbon-Based Chain Molecules and Its Astrochemical Implications: Results of an Extensive Theoretical Study. *Adv. Theor. Simul.* **2019**, *2*, 1900084.
59. Scott, A. P.; Radom, L. Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Møller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. *J. Phys. Chem.* **1996**, *100*, 16502–16513.

60. Bâldea, I.; Köppel, H.; Wenzel, W. (4,4′)-Bipyridine in Vacuo and in Solvents: A Quantum Chemical Study of a Prototypical Floppy Molecule From a Molecular Transport Perspective. *Phys. Chem. Chem. Phys.* **2013**, *15*, 1918–1928.

61. Shimanouchi, T. *Tables of Molecular Vibrational Frequencies Consolidated Volume I*; National Bureau of Standards, 1972; pp 1–160.

62. Stephany, R. W.; de Bie, M. J. A.; Drenth, W. A 13C-NMR and IR Study of Isocyanides and Some of Their Complexes. *Org. Mag. Res.* **1974**, *6*, 45–47.

63. Ball, C. D.; McCarthy, M. C.; Thaddeus, P. Cavity Ringdown Spectroscopy of the Linear Carbon Chains HC₇H, HC₉H, HC₁₁H, and HC₁₃H. *J. Chem. Phys.* **2000**, *112*, 10149–10155.

64. Maki, A.; Mellau, G. High-Temperature Infrared Emission Measurements on HNC. *J. Mol. Spectr.* **2001**, *206*, 47 – 52.

65. Smith, C. E.; Xie, Z.; Bâldea, I.; Frisbie, C. D. Work Function and Temperature Dependence of Electron Tunneling through an N-Type Perylene Diimide Molecular Junction with Isocyanide Surface Linkers. *Nanoscale* **2018**, *10*, 964–975.

66. Millar, T. J.; Walsh, C.; Field, T. A. Negative Ions in Space. *Chem. Rev.* **2017**, *117*, 1765–1795, PMID: 28112897.

67. Vuitton, V.; Lavvas, P.; Yelle, R.; Galand, M.; Wellbrock, A.; Lewis, G.; Coates, A.; Wahlund, J.-E. Negative Ion Chemistry in Titan’s Upper Atmosphere. *Planetary and Space Science* **2009**, *57*, 1558 – 1572, Surfaces and Atmospheres of the Outer Planets, Their Satellites and Ring Systems: Part V.
68. Herbst, E. What Are the Products of Polyatomic Ion-Electron Dissociative Recombination Reactions. *Astrophys. J.* **1978**, *222*, 508–516.

69. Weilmünster, P.; Keller, A.; Homann, K.-H. Large Molecules, Radicals, Ions, and Small Soot Particles in Fuel-Rich Hydrocarbon Flames: Part I: Positive Ions of Polycyclic Aromatic Hydrocarbons (PAH) in Low-Pressure Premixed Flames of Acetylene and Oxygen. *Combustion and Flame* **1999**, *116*, 62 – 83.

70. Pearson, R. G. Recent Advances in the Concept of Hard and Soft Acids and Bases. *J. Chem. Educ.* **1987**, *64*, 561.

71. Bâldea, I. Evidence that Molecules in Molecular Junctions May not Be Subject to the Entire External Perturbation Applied to Electrodes. *Langmuir* **2020**, *36*, 1329–1337.

72. Bâldea, I. Correction to Extensive Quantum Chemistry Study of Neutral and Charged C₄N Chains: An Attempt To Aid Astronomical Observations. *ACS Earth Space Chem.* **2021**, *5*, 3523–3523.

73. Bâldea, I. Extensive Quantum Chemistry Study of Neutral and Charged C₄N Chains: An Attempt to Aid Astronomical Observations. *ACS Earth Space Chem.* **2020**, *4*, 434–448.

74. Anderson, J. K.; Ziurys, L. M. Detection of CCN (X^2Π_v) in IRC+10216: Constraining Carbon-Chain Chemistry. *Astrophys. J.* **2014**, *795*, L1.

75. Jefferts, K. B.; Penzias, A. A.; Wilson, R. W. Observation of the CN Radical in the Orion Nebula and W51. *Astrophys. J. Lett.* **1970**, *161*, L87.

76. Souza, S. P.; Lutz, B. L. Detection of C₂ in the Interstellar Spectrum of Cygnus OB2 Number 12/VI Cygni Number 12/. *Astrophys. J. Lett.* **1977**, *216*, L49–L51.

77. Hinkle, K. W.; Keady, J. J.; Bernath, P. F. Detection of C₃ in the Circumstellar Shell of IRC+10216. *Science* **1988**, *241*, 1319–1322.
78. Cernicharo, J.; Goicoechea, J. R.; Caux, E. Far-Infrared Detection of C\textsubscript{3} in Sagittarius B2 and IRC +10216. *Astrophys. J. Lett.* **2000**, *534*, L199.

79. Swings, P.; Rosenfeld, L. Considerations Regarding Interstellar Molecules. *Astrophys. J.* **1937**, *86*, 483–486.

80. Tucker, K. D.; Kutner, M. L.; Thaddeus, P. The Ethynyl Radical C\textsubscript{2}H — A New Interstellar Molecule. *Astrophys. J. Lett.* **1974**, *193*, L115.

81. Thaddeus, P.; Gottlieb, C. A.; Hjalmarson, A.; Johansson, L. E. B.; Irvine, W. M.; Friberg, P.; Linke, R. A. Astronomical Identification of the C\textsubscript{3}H Radical. *Astrophys. J. Lett.* **1985**, *294*, L49–L53.

82. Guelin, M.; Green, S.; Thaddeus, P. Detection of the C\textsubscript{4}H Radical Toward IRC +10216. *Astrophys. J. Lett.* **1978**, *224*, L27–L30.

83. Cernicharo, J.;; Guélin, M.;; Agúndez, M.;; Kawaguchi, K.;; McCarthy, M.;; Thaddeus, P.;, Astronomical Detection of C\textsubscript{4}H−, the Second Interstellar Anion. *Astron. Astrophys.* **2007**, *467*, L37–L40.

84. Montgomery, J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. A Complete Basis Set Model Chemistry. VI. Use of Density Functional Geometries and Frequencies. *J. Chem. Phys.* **1999**, *110*, 2822–2827.

85. Karton, A.; Tarnopolsky, A.; Martin, J. M. Atomization Energies of the Carbon Clusters C\textsubscript{n} (n = 2 – 10) Revisited by Means of W4 Theory as Well as Density Functional, Gn, and CBS Methods. *Mol. Phys.* **2009**, *107*, 977–990.

86. Sommerfeld, T.; Knecht, S. Electronic Interaction Between Valence and Dipole-Bound States of the Cyanoacetylene Anion. *Eur. Phys. J. D* **2005**, *35*, 207–216.

87. Báldea, I. Profiling C\textsubscript{4}N Radicals of Astrophysical Interest. *Mon. Not. R. Astron. Soc.* **2020**, *493*, 2506–2510.
Appendix

This appendix presents additional theoretical and computational details, additional tables and figures.

Figure S1: Bond lengths (in angstrom) of neutral C\textsubscript{4}N, C\textsubscript{4}N, and C\textsubscript{5}N chains in their electronic ground state.

Figure S2: Wiberg bond indices of neutral C\textsubscript{4}N, C\textsubscript{4}N, and C\textsubscript{5}N chains in their electronic ground state.

Table S1: Cartesian coordinates (in angstrom), natural charges and Wiberg valencies of the atoms of the (most stable) C\textsubscript{4}N0 neutral doublet (\(\tilde{X}^2\Pi \)).

Atom	X	Y	Z	charge	valence
C\textsubscript{1}	0.000000	0.000000	2.65410363	0.27537	1.6424
C\textsubscript{2}	0.000000	0.000000	1.33769693	-0.34620	3.8239
C\textsubscript{3}	0.000000	0.000000	0.08416284	0.09058	3.6263
C\textsubscript{4}	0.000000	0.000000	-1.25284849	0.17730	3.9745
N	0.000000	0.000000	-2.41981278	-0.19705	2.9459
Figure S3: Wiberg valencies of neutral C\textsubscript{4}N, C\textsubscript{4}N, and C\textsubscript{5}N chains in their electronic ground state.

Figure S4: Atomic charges of neutral C\textsubscript{4}N, C\textsubscript{4}N, and C\textsubscript{5}N chains in their electronic ground state.

Figure S5: HOMO of neutral doublet C\textsubscript{3}N0, C\textsubscript{4}N0, and C\textsubscript{5}N0 chains.

Figure S6: LUMO of neutral doublet C\textsubscript{3}N0, C\textsubscript{4}N0, and C\textsubscript{5}N0 chains.
Figure S7: Changes with respect to the neutral doublet C$_4$N0 of several molecular properties: (a) bond lengths (in angstrom), (b) Wiberg bond order indices, (c) Wiberg valencies and (d) atomic charges.

Table S2: Cartesian coordinates (in angstrom), natural charges and Wiberg valencies of the atoms of the (metastable) C$_4$N0 neutral quartet ($\tilde{\alpha}^4\Sigma^-$).

Atom	X	Y	Z	charge	valence
C$_1$	0.000000	0.000000	-2.61882889	0.38999	1.5361
C$_2$	0.000000	0.000000	-1.36043777	-0.25338	3.9155
C$_3$	0.000000	0.000000	-0.08294868	-0.08296	3.3536
C$_4$	0.000000	0.000000	1.24266035	0.21504	3.9845
N	0.000000	0.000000	2.41676142	-0.26869	2.9311

Table S3: Cartesian coordinates (in angstrom), natural charges and Wiberg valencies of the atoms of the (most stable) bent C$_4$N$^-$ singlet ($^1A'$).

Atom	X	Y	Z	charge	valence
C$_1$	2.452143	-0.396162	0.0000000	-0.12258	2.4933
C$_2$	1.261801	0.069056	0.0000000	-0.46722	3.9608
C$_3$	0.078147	0.674522	0.0000000	-0.20040	3.3211
C$_4$	-1.153197	0.041285	0.0000000	0.26342	3.9784
N	-2.261910	-0.333173	0.0000000	-0.47322	2.9340
Figure S8: Changes with respect to the neutral doublet C_4N^0 of several molecular properties: (a) bond lengths (in angstrom), (b) Wiberg bond order indices, (c) Wiberg valencies and (d) atomic charges.

Table S4: Cartesian coordinates (in angstrom), natural charges and Wiberg valencies of the atoms of the (metastable, nearly) linear $C_4N^-\text{singlet (}^1\Sigma^-\text{)}$.

Atom	X	Y	Z	charge	valence
C_1	5.057640	0.060822	0.000000	-0.16047	2.4257
C_2	3.768464	0.050142	0.000000	-0.39695	3.9445
C_3	2.475903	0.039685	0.000000	-0.15945	3.6447
C_4	1.158166	0.029423	0.000000	0.20914	3.9811
N	-0.030173	0.019929	0.000000	-0.49227	2.8156

Table S5: Cartesian coordinates (in angstrom), natural charges and Wiberg valencies of the atoms of the most stable linear $C_4N^-\text{triplet (}^3\Sigma^-\text{)}$.

Atom	X	Y	Z	charge	valence
C_1	0.000000	0.000000	-2.65415168	-0.17449	1.9735
C_2	0.000000	0.000000	-1.36306952	-0.32969	3.8275
C_3	0.000000	0.000000	-0.07146272	-0.24430	3.2586
C_4	0.000000	0.000000	1.24775715	0.27001	3.9430
N	0.000000	0.000000	2.43504970	-0.52154	2.7338
Table S6: Cartesian coordinates (in angstrom), natural charges and Wiberg valencies of the atoms of the linear singlet C\(_{4}N^+\) cation \((^1\Sigma^+)\).

Atom	X	Y	Z	charge	valence
C\(_1\)	0.000000	0.000000	2.66019710	0.85764	1.6873
C\(_2\)	0.000000	0.000000	1.32621289	-0.58628	3.8834
C\(_3\)	0.000000	0.000000	0.08794830	0.57113	3.8399
C\(_4\)	0.000000	0.000000	-1.25330642	0.03453	3.9900
N	0.000000	0.000000	-2.41804446	0.12297	3.0149

Table S7: Cartesian coordinates (in angstrom), natural charges and Wiberg valencies of the atoms of the (metastable) linear triplet C\(_{4}N^+\) cation \((^3\Sigma^+)\).

Atom	X	Y	Z	charge	valence
C\(_1\)	0.000000	0.000000	2.61065996	0.81831	1.9491
C\(_2\)	0.000000	0.000000	1.35771105	-0.37213	3.8271
C\(_3\)	0.000000	0.000000	0.08308407	0.39549	3.4954
C\(_4\)	0.000000	0.000000	-1.23722188	0.06271	3.9643
N	0.000000	0.000000	-2.41219988	0.09561	2.8723

Table S8: Bond metric data for C\(_{4}N\) chains at geometries optimized using several exchange-correlation functionals and basis sets. Bond lengths \(l\) between atoms XY (in angstrom), angles \(\alpha\) between atoms \(\hat{X}YZ\) (in degrees). Whenever angles between adjacent bonds are indicated, the geometries were optimized without imposing symmetry constraints.

Species	Method	Property	\(C_1C_2\)	\(C_2C_3\)	\(C_3C_4\)	\(C_4N^0\)	\(C_4N^+\)		
bent C\(_4N^0\) singlet	RB3LYP/6-311++G(3df, 3pd)	\(l, \alpha\)	1.2780	174.3	1.3295	125.7	1.3846	171.4	1.1702
C\(_4N^0\) triplet	RB3LYP/6-311++G(3df, 3pd)	\(l, \alpha\)	1.2792	174.3	1.3287	125.0	1.3847	171.6	1.1688
C\(_4N^0\) doublet	UB3LYP/6-311++G(3df, 3pd)	\(l, \alpha\)	1.2924	178.8	1.3262	127.8	1.3393	172.0	1.1929
C\(_4N^0\) quartet	UB3LYP/6-311++G(3df, 3pd)	\(l, \alpha\)	1.3165	179.8	1.2536	178.8	1.3371	180.0	1.1670
C\(_4N^0\) singlet	UB3LYP/6-311++G(3df, 3pd)	\(l, \alpha\)	1.3169	179.8	1.2537	178.8	1.3377	180.0	1.1671
C\(_4N^+\) cation	UB3LYP/6-311++G(3df, 3pd)	\(l, \alpha\)	1.3193	179.8	1.2522	178.8	1.3386	180.0	1.1653
C\(_4N^+\) triplet	UB3LYP/6-311++G(3df, 3pd)	\(l, \alpha\)	1.3258	179.8	1.2530	178.8	1.3394	180.0	1.1539
C\(_4N^+\) singlet	UB3LYP/6-311++G(3df, 3pd)	\(l, \alpha\)	1.3343	178.8	1.2383	179.7	1.3413	179.6	1.1648
C\(_4N^+\) triplet	UB3LYP/6-311++G(3df, 3pd)	\(l, \alpha\)	1.3345	179.8	1.2741	179.6	1.3421	179.7	1.1638

S6
Figure S9: Geometries of singlet and triplet HC$_4$N chains (left and right panels, respectively) investigated in the present paper.

Table S9: Natural charges and Wiberg valencies of the atoms of the bent stable HC$_4$N (second and third columns) and C$_4$N$^-$ (fourth and fifth columns) singlets.

Atom	charge	valence	charge	valence
H	0.23992	0.9448	—	—
C$_1$	-0.02018	3.6818	-0.12258	2.4933
C$_2$	-0.19260	3.9373	-0.46722	3.9608
C$_3$	0.06473	3.0972	-0.20040	3.3211
C$_4$	0.15035	3.9731	0.26342	3.9784
N	-0.24222	2.9193	-0.47322	2.9340

Table S10: Natural charges and Wiberg valencies of the atoms of the stable HC$_4$N (second and third columns) and C$_4$N$^-$ (fourth and fifth columns) triplets.

Atom	charge	valence	charge	valence
H	0.24010	0.9448	—	—
C$_1$	-0.06097	3.4399	-0.17449	1.9735
C$_2$	-0.21113	3.9731	-0.32969	3.8275
C$_3$	0.16184	2.8127	-0.24430	3.2586
C$_4$	0.14022	3.9897	0.27001	3.9430
N	-0.27006	2.7173	-0.52154	2.7338
Figure S10: (a) Bond lengths (in angstrom), (b) Wiberg bond indices, (c) Wiberg valencies and (d) atomic charges of the isoelectronic HC\textsubscript{4}N and C\textsubscript{4}N− singlet bent chains considered in this paper.

Table S11: Values of the vertical and adiabatic doublet-quartet splitting ($\Delta_{DQ}^0 (R_{D,Q}) = \mathcal{E}_Q^0 (R_{D,Q}^0) - \mathcal{E}_{DQ}^0 (R_{D,Q}^0)$) and $\Delta_{DQ}^{0,ad} \equiv \mathcal{E}_Q^0 (R_{Q}^0) - \mathcal{E}_D^0 (R_{D}^0)$, respectively) computed without and with corrections due to zero point motion at geometries ($R_{x}^0, x = D, Q$) optimized using the largest Pople basis sets 6-311++G(3df, 3pd) and several exchange-correlation functionals.

	B3LYP	PBE0	M06-2X
$\Delta_{DQ}^0 (R_D^0)$			
uncorrected	1.167	0.921	0.979
corrected	1.182	0.946	0.971
$\Delta_{DQ}^0 (R_Q^0)$			
uncorrected	1.062	0.742	0.777
corrected	1.076	0.766	0.770
$\Delta_{DQ}^{0,ad}$			
uncorrected	1.167	0.839	0.889
corrected	1.182	0.864	0.881
Figure S11: (a) Bond lengths (in angstrom), (b) Wiberg bond indices, (c) Wiberg valencies and (d) atomic charges of HC$_4$N and C$_4$N$^-$ triplet chains considered in this paper.

Table S12: Values of the vertical ($\Delta_{bS,T}^{-} (R_T)$) $\equiv \mathcal{E}_T^{-} (R_T) - \mathcal{E}_{bS}^{-} (R_{bS})$ $\Delta_{bS,T}^{-} (R_{bS}) \equiv \mathcal{E}_T^{-} (R_{bS}) - \mathcal{E}_{bS}^{-} (R_{bS})$ $\Delta_{ls,T}^{-} (R_{ls}) \equiv \mathcal{E}_T^{-} (R_{ls}) - \mathcal{E}_{ls}^{-} (R_{ls})$ and adiabatic singlet-triplet splitting computed without and with corrections due to zero point motion using geometries (R_x, $x = T, bS, ls$) optimized using the largest Pople basis sets 6-311++G(3df, 3pd) and several exchange-correlation functionals.

	B3LYP	PBE0	M06-2X	
$-\Delta_{bS,T}^{-} (R_T)$ uncorrected	0.785	0.917	0.615	
	corrected	0.791	0.923	0.615
$-\Delta_{bS,T}^{-} (R_{bS})$ uncorrected	0.103	0.224	-0.013	
	corrected	0.109	0.230	-0.013
$-\Delta_{ls,T}^{-,ad} (R_{ls})$ uncorrected	0.527	0.661	0.503	
	corrected	0.533	0.667	0.503
Figure S12: Differences between several molecular properties of the isoelectronic HC\(_4\)N and C\(_4\)N\(^-\) singlet bent chains considered in this paper: (a) bond lengths (in angstrom), (b) Wiberg bond indices, (c) Wiberg valencies and (d) atomic charges.

Table S13: Values of adiabatic anion singlet-triplet splittings obtained within unrestricted ab initio methods with zero-point motion corrections. Values in italics are deduced from Pascoli and Lavendy19.

Method	Basis set	\(\Delta_{T,BS}^{-,ad}\)	\(\Delta_{T,1S}^{-,ad}\)
B3LYP	6-311G\(^*\)	0.57	0.81
B3LYP	aug-cc-pVTZ	0.53	0.78
B3LYP	6-311++G(3df, 3pd)	0.533	0.791
QCISD	6-311G\(^*\)	0.40	0.87
QCISD	6-311++G(3df, 3pd)	0.374	0.824
QCISD(T)	6-311G\(^*\)	0.27	0.72
QCISD(T)	6-311++G(3df, 3pd)	0.243	0.671
CCSD	6-311G\(^*\)	0.39	0.87
CCSD	6-311++G(3df, 3pd)	0.367	0.822
CCSD(T)	6-311G\(^*\)	0.25	0.71
CCSD(T)	6-311++G(3df, 3pd)	0.234	0.653
Figure S13: Differences between several molecular properties of the isoelectronic HC$_4$N and C$_4$N$^-$ linear triplet chains considered in this paper: (a) bond lengths (in angstrom), (b) Wiberg bond indices, (c) Wiberg valencies and (d) atomic charges.

Figure S14: (a) Infrared and (b) Raman spectra of HC$_4$N and C$_4$N$^-$ bent singlet chains considered in this paper.
Figure S15: (a) Infrared and (b) Raman spectra of HC₄N and C₄N⁻ triplet chains considered in this paper.

Figure S16: Degenerate HOMO and HOMO-1 (upper left and right panel, respectively) and LUMO (lower panel) of the neutral C₄N⁰ quartet (a⁴Σ⁻).
Figure S17: HOMO and LUMO (upper and lower panel, respectively) of the bent C$_4$N$^-$ singlet (1$^A'$).

Figure S18: HOMO (upper panel) and nearly degenerate LUMO and LUMO+1 (lower left and right panel, respectively) of the linear C$_4$N$^-$ singlet (1$^\Sigma^-$).
Figure S19: HOMO and LUMO (left and right panel, respectively) of the C₄N⁺ triplet (²Σ⁺).

Table S14: Values of vertical and adiabatic cation singlet-triplet splitting (Δ⁺₁ ST (R⁺ S,T) ≡ E⁺₁ (R⁺ S,T) – E⁺₁ (R⁺ S,T)) and Δ⁺₁ ad ST (R⁺ T) ≡ E⁺₁ (R⁺ T) – E⁺₁ (R⁺ T), respectively) computed without and with corrections due to zero point motion with geometries R⁺ S,T optimized using several exchange-correlation functionals and 6-311++G(3df, 3pd) basis sets.

	B3LYP	PBE0	M06-2X
Δ⁺₁ ST (R⁺ S)			
uncorrected	1.517	1.250	1.451
corrected	1.489	1.251	1.441
Δ⁺₁ ST (R⁺ T)			
uncorrected	1.046	0.796	0.965
corrected	1.018	0.797	0.955
Δ⁺₁ ad ST			
uncorrected	1.311	1.052	1.247
corrected	1.283	1.054	1.236
Table S15: Longitudinal (nonvanishing A only for bent anion singlet) and perpendicular ($B = C$ except for the bent anion singlet) rotational constants of the C$_4$N chains investigated in this paper computed by using methods indicated in the second column.

Species	Method	A (GHz)	B (GHz)	C (GHz)
neutral doublet	UB3LYP/6-311++G(3df, 3pd)	2.44239		
	UPBE0/6-311++G(3df, 3pd)	2.44128		
	UM06-2X/6-311++G(3df, 3pd)	2.43646		
	UB2GP-PLYP/6-311++G(3df, 3pd)	2.44310		
	UHF/3-21G14	2.4075		
	UHF/svp14	2.3963		
neutral quartet	UB3LYP/6-311++G(3df, 3pd)	2.46635		
	UPBE0/6-311++G(3df, 3pd)	2.46586		
	UM06-2X/6-311++G(3df, 3pd)	2.46171		
anion triplet	UB3LYP/6-311++G(3df, 3pd)	2.42267		
	UPBE0/6-311++G(3df, 3pd)	2.42220		
	UM06-2X/6-311++G(3df, 3pd)	2.42084		
	UB2GP-PLYP/6-311++G(3df, 3pd)	2.42361		
bent anion singlet	RB3LYP/6-311++G(3df, 3pd)	56.30860	2.82435	2.68945
	RPBE0/6-311++G(3df, 3pd)	54.50451	2.84356	2.70256
	RM06-2X/6-311++G(3df, 3pd)	46.19743	2.92536	2.75115
cation singlet	RB3LYP/6-311++G(3df, 3pd)	2.44330		
	RPBE0/6-311++G(3df, 3pd)	2.44262		
	RM06-2X/6-311++G(3df, 3pd)	2.44031		
	RB2GP-PLYP/6-311++G(3df, 3pd)	2.42933		
cation triplet	UB3LYP/6-311++G	2.47931		
	UPBE0/6-311++G	2.47907		
	UM06-2X/6-311++G(3df, 3pd)	2.47802		
Table S16: Values of the dipole momentum D (field independent basis, debye) at various levels of theory indicated in the second column. Notice that the value in italics obtained by Pauzat et al.14 within the UHF/svp approach is somewhat different from that of our calculations at the same level of theory.

Species	Method	D_X	D_Y	D_Z	D_{total}
neutral doublet	B3LYP/6-311++G(3df, 3pd)	0.0000	0.0000	0.3347	0.3347
	B3LYP/aug-cc-pVTZ	0.0000	0.0000	0.3393	0.3393
	UCCSD(T)/6-311++G(3df, 3pd)	0.0000	0.0000	0.0907	0.0907
	UCCSD(T)/aug-cc-pvtz	0.0000	0.0000	0.0990	0.0990
	ROCCSD(T)/6-311++G(3df, 3pd)	0.0000	0.0000	0.4512	0.4512
	ROCCSD(T)/aug-cc-pVTZ	0.0000	0.0000	0.4436	0.4436
	UHF/3-21g	0.0000	0.0000	0.0544	0.0544
	UHF/svp	0.0000	0.0000	0.1119	0.1119
	UHF/svp14	0.0000	0.0000	0.14	0.14
	UHF/6-311++G(3df, 3pd)	0.0000	0.0000	0.0587	0.0587
	UHF/aug-cc-pvtz	0.0000	0.0000	0.0654	0.0654
	ROHF/3-21g	0.0000	0.0000	0.5486	0.5486
	ROHF/svp	0.0000	0.0000	0.6216	0.6216
	ROHF/6-311++G(3df, 3pd)	0.0000	0.0000	0.7821	0.7821
	ROHF/aug-cc-pVTZ	0.0000	0.0000	0.7781	0.7781
neutral quartet	B3LYP/6-311++G(3df, 3pd)	0.0000	0.0000	3.4628	3.4628
	B3LYP/aug-cc-pVTZ	0.0000	0.0000	3.4586	3.4586
	UCCSD(T)/6-311++G(3df, 3pd)	0.0000	0.0000	3.2558	3.2558
	ROCCSD(T)/6-311++G(3df, 3pd)	0.0000	0.0000	4.5003	4.5003
	ROCCSD(T)/aug-cc-pVTZ	0.0000	0.0000	4.4940	4.4940
	UHF/3-21G	0.0000	0.0000	2.9749	2.9749
	UHF/svp	0.0000	0.0000	3.1581	3.1581
	UHF/aug-cc-pVTZ	0.0000	0.0000	3.2558	3.2558
	ROHF/3-21G	0.0000	0.0000	4.2865	4.2865
	ROHF/svp	0.0000	0.0000	4.5003	4.5003
	ROHF/aug-cc-pVTZ	0.0000	0.0000	4.4940	4.4940
anion triplet	B3LYP/6-311++G(3df, 3pd)	0.0000	0.0000	2.9398	2.9398
	B3LYP/aug-cc-pVTZ	0.0000	0.0000	2.9340	2.9400
	UCCSD(T)/6-311++G(3df, 3pd)	0.0000	0.0000	3.2479	3.2479
	ROCCSD(T)/6-311++G(3df, 3pd)	0.0000	0.0000	3.2479	3.2479
	ROCCSD(T)/aug-cc-pVTZ	0.0000	0.0000	3.8729	3.8729
	UHF/3-21G	0.0000	0.0000	4.5640	4.5640
	UHF/svp	0.0000	0.0000	4.8990	4.8990
	UHF/aug-cc-pVTZ	0.0000	0.0000	4.8682	4.8682
	ROHF/3-21G	0.0000	0.0000	5.9571	5.9571
	ROHF/svp	0.0000	0.0000	6.0789	6.0789
	ROHF/aug-cc-pVTZ	0.0000	0.0000	6.0065	6.0065

14 Notice that the value in italics obtained by Pauzat et al. within the UHF/svp approach is somewhat different from that of our calculations at the same level of theory.
Table S17: Values of the quadrupole momentum Q (field independent basis, debye-angstrom) of the C$_4$N chains investigated in this paper obtained using geometries optimized as indicated in the second column.

Species	Method	Q_{xx}	Q_{yy}	Q_{zz}	Q_{xy}	Q_{xz}	Q_{yz}
neutral doublet	B3LYP/6-311++G(3df, 3pd)	-26.3541	-27.9983	-42.2421	0.0000	0.0000	0.0000
	B3LYP/aug-cc-pVTZ	-26.3443	-27.9421	-42.2635	0.0000	0.0000	0.0000
	UCCSD(T)/6-311++G(3df, 3pd)	-26.4146	-28.2057	-42.2981	0.0000	0.0000	0.0000
	UCCSD(T)/aug-cc-pvtz	-26.3955	-28.1379	-42.3180	0.0000	0.0000	0.0000
	ROCCSD(T)/6-311++G(3df, 3pd)	-28.4353	-26.8169	-41.6984	0.0000	0.0000	0.0000
	ROCCSD(T)/aug-cc-pVTZ	-26.8005	-28.3699	-41.7230	0.0000	0.0000	0.0000
	UHF/3-21g	-28.2685	-26.4478	-41.7598	0.0000	0.0000	0.0000
	UHF/svp	-26.5232	-28.3367	-42.6564	0.0000	0.0000	0.0000
	UHF/6-311++G(3df, 3pd)	-26.4489	-28.2494	-42.2687	0.0000	0.0000	0.0000
	UHF/aug-cc-pvtz	-28.1845	-26.4327	-42.2852	0.0000	0.0000	0.0000
neutral quartet	B3LYP/6-311++G(3df, 3pd)	-27.5520	-27.5520	-30.7287	0.0000	0.0000	0.0000
	B3LYP/aug-cc-pVTZ	-27.5250	-27.5250	-30.7352	0.0000	0.0000	0.0000
	UCCSD(T)/6-311++G(3df, 3pd)	-27.6065	-27.6065	-30.5244	0.0000	0.0000	0.0000
	ROCCSD(T)/6-311++G(3df, 3pd)	-28.0387	-28.0387	-29.5375	0.0000	0.0000	0.0000
	ROCCSD(T)/aug-cc-pVTZ	-27.9995	-27.9995	-29.5470	0.0000	0.0000	0.0000
anion triplet	B3LYP/6-311++G(3df, 3pd)	-31.7023	-31.7023	-71.4631	0.0000	0.0000	0.0000
	B3LYP/aug-cc-pVTZ	-31.6879	-31.6879	-71.5144	0.0000	0.0000	0.0000
	UCCSD(T)/6-311++G(3df, 3pd)	-31.8018	-31.8018	-71.7508	0.0000	0.0000	0.0000
	ROCCSD(T)/6-311++G(3df, 3pd)	-32.1142	-32.1142	-70.2281	0.0000	0.0000	0.0000
	ROCCSD(T)/aug-cc-pVTZ	-32.0834	-32.0834	-70.2791	0.0000	0.0000	0.0000
bent anion singlet	B3LYP/6-311++G(3df, 3pd)	-63.8640	-36.8339	-30.3058	1.4754	0.0000	0.0000
	B3LYP/aug-cc-pVTZ	-63.8640	-36.8339	-30.3058	1.4754	0.0000	0.0000
	RCCSD(T)/6-311++G(3df, 3pd)	-62.9911	-37.1863	-30.6481	1.1594	0.0000	0.0000
	RCCSD(T)/aug-cc-pVTZ	-63.0000	-37.1600	-30.6336	1.1690	0.0000	0.0000
linear anion singlet	B3LYP/6-311++G(3df, 3pd)	-29.8650	-33.8601	-71.3765	0.0000	0.0000	0.0000
	B3LYP/aug-cc-pVTZ	-29.9174	-33.8018	-71.4570	0.0000	0.0000	0.0000
	RCCSD(T)/6-311++G(3df, 3pd)	-30.2092	-34.2094	-70.3492	0.0000	0.0000	0.0000
	RCCSD(T)/aug-cc-pVTZ	-34.1124	-30.2533	-70.4022	0.0000	0.0000	0.0000
cation singlet	B3LYP/6-311++G(3df, 3pd)	-23.7770	-23.7770	-15.6956	0.0000	0.0000	0.0000
	B3LYP/aug-cc-pVTZ	-23.7770	-23.7770	-15.6957	0.0000	0.0000	0.0000
	RCCSD(T)/6-311++G(3df, 3pd)	-23.7366	-23.7366	-15.7048	0.0000	0.0000	0.0000
	RCCSD(T)/aug-cc-pVTZ	-24.3542	-24.3542	-14.1423	0.0000	0.0000	0.0000
cation triplet	B3LYP/6-311++G(3df, 3pd)	-23.4092	-24.8186	-6.0974	0.0000	0.0000	0.0000
	B3LYP/aug-cc-pVTZ	-24.7575	-23.3930	-6.1030	0.0000	0.0000	0.0000
	UCCSD(T)/6-311++G(3df, 3pd)	-25.0731	-23.7379	-7.4195	0.0000	0.0000	0.0000
	ROCCSD(T)/6-311++G(3df, 3pd)	-24.0058	-25.3116	-5.2179	0.0000	0.0000	0.0000
	ROCCSD(T)/aug-cc-pVTZ	-25.2346	-23.9786	-5.2274	0.0000	0.0000	0.0000
Table S18: Values of the higher vibrational frequencies (in cm$^{-1}$) of the presently investigated molecular species obtained via B3LYP/6-311++G(3df, 3pd) calculations.

Description	C$_4$N doublet	C$_4$N quartet	bent C$_4$N	singlet C$_4$N	triplet C$_4$N$^+$	singlet C$_4$N$^+$ triplet	HC$_4$N singlet	HC$_4$N triplet
symmetric stretch (breath.)	752.62	765.66	827.08	753.17	756.09	775.07	847.97	754.26
out-of-phase C$_1$C$_2$—C$_4$N stretch	1421.85	1559.49	1320.77	1475.77	1418.37	1906.48	1997.43	1762.66
in-phase C$_1$C$_2$—C$_4$N stretch	1989.43	1753.86	1835.45	1906.48	1997.43	1579.14	1577.41	
CN stretch	2181.87	2071.92	2149.62	2156.55	2029.44	2138.33	2156.55	2029.44
CH stretch	—	—	—	—	—	3449.65	—	—

Table S19: Values of the vertical and adiabatic doublet-triplet electron attachment energies ($E_{AD}^{vert}(R) \equiv E_{D}^{0}(R) - E_{T}^{0}(R)$ and $E_{AD}^{ad}(R) \equiv E_{D}^{0}(R_{D}) - E_{T}^{0}(R_{T})$, respectively) computed without and with corrections due to zero point motion using the neutral doublet ($R = R_{D}$) and anion triplet ($R = R_{T}$) B3LYP/6-311++G(3df, 3pd) optimum geometries.

Method	EOM-ROCCSD	B3LYP	LC-BLYP	LC-ωPBE
$E_{AD}^{vert}(R_{D})$	3.027	3.217	3.479	3.514
$E_{AD}^{vert}(R_{T})$	3.199	3.360	3.670	3.690
$E_{AD}^{ad}(R)$	3.109	3.285	3.497	3.545

Table S20: Values of the vertical and adiabatic doublet-triplet electron attachment energies ($E_{AD}^{vert}(R) \equiv E_{D}^{0}(R) - E_{T}^{0}(R)$ and $E_{AD}^{ad}(R) \equiv E_{D}^{0}(R_{D}) - E_{T}^{0}(R_{T})$, respectively) computed without and with corrections due to zero point motion using the neutral doublet R_{D} and anion triplet R_{T} geometries optimized within B3LYP/6-311++G(3df, 3pd) and PBE0/6-311++G(3df, 3pd).

Method	B3LYP	PBE0	EOM-ROCCSD@B3LYP	EOM-ROCCSD@PBE0
$E_{AD}^{vert}(R_{D})$	3.217	3.288	3.027	3.006
$E_{AD}^{vert}(R_{T})$	3.360	3.431	3.199	3.175
$E_{AD}^{ad}(R)$	3.285	3.355	3.109	3.086

S18
Table S21: Values of the vertical and adiabatic doublet-triplet electron attachment E_A computed without and with corrections due to zero point motion using the neutral doublet \mathbf{R}_D^0 and anion triplet \mathbf{R}_T^- geometries optimized by means of several functionals and 6-311++G(3df, 3pd) basis sets.

	B3LYP	PBE0	M06-2X
$E_A^{vert} (\mathbf{R}_D^0)$			
uncorrected	3.217	3.288	3.304
corrected	3.207	3.275	3.317
$E_A^{vert} (\mathbf{R}_T^-)$			
uncorrected	3.360	3.431	3.273
corrected	3.350	3.418	3.285
E_A^{ad}			
uncorrected	3.285	3.355	3.386
corrected	3.274	3.342	3.398

Table S22: Values of the vertical and adiabatic doublet-singlet ionization energy ($I_P^{vert} (\mathbf{R}) = \mathcal{E}_S^+ (\mathbf{R}) - \mathcal{E}_D^0 (\mathbf{R})$ and $I_P^{ad} = \mathcal{E}_S^+ (\mathbf{R}_S^+) - \mathcal{E}_D^0 (\mathbf{R}_D^0)$, respectively) computed without and with corrections due to zero point motion using the neutral doublet ($\mathbf{R} = \mathbf{R}_D^0$) and cation singlet ($\mathbf{R} = \mathbf{R}_S^+$) B3LYP/6-311++G(3df, 3pd) optimum geometries.

	EOM-ROCCSD	B3LYP	LC-BLYP	LC-ω-PBE
$I_P^{vert} (\mathbf{R}_D^0)$				
uncorrected	9.802	9.812	10.258	10.226
corrected	9.842	9.852	10.297	10.265
$I_P^{vert} (\mathbf{R}_S^+)$				
uncorrected	9.797	9.780	10.225	10.194
corrected	9.836	9.819	10.265	10.233
I_P^{ad}				
uncorrected	9.783	9.794	10.215	10.187
corrected	9.823	9.833	10.254	10.227
Table S23: Values of the vertical and adiabatic doublet-singlet ionization energy $(IP_{SD}^{\text{vert}}(\mathbf{R}) \equiv \mathcal{E}_S^+(\mathbf{R}) - \mathcal{E}_D^0(\mathbf{R})$ and $IP_{SD}^{\text{ad}} \equiv \mathcal{E}_S^+(\mathbf{R}_S^+) - \mathcal{E}_D^0(\mathbf{R}_D^0)$, respectively) computed without and with corrections due to zero point motion using 6-311++G(3df, 3pd) basis sets and the neutral doublet ($\mathbf{R} = \mathbf{R}_D^0$) and cation singlet ($\mathbf{R} = \mathbf{R}_S^+$) geometries optimized within B3LYP/6-311++G(3df, 3pd) and PBE0/6-311++G(3df, 3pd).

	B3LYP	PBE0	EOM-ROCCSD@B3LYP	EOM-ROCCSD@PBE0
$IP_{SD}^{\text{vert}}(\mathbf{R}_D^0)$				
uncorrected	9.812	9.874	9.802	9.805
corrected	9.852	9.915	9.842	9.845
$IP_{SD}^{\text{vert}}(\mathbf{R}_S^+)$				
uncorrected	9.780	9.844	9.797	9.801
corrected	9.819	9.884	9.836	9.841
IP_{SD}^{ad}				
uncorrected	9.794	9.857	9.783	9.800
corrected	9.833	9.897	9.823	9.840

Table S24: Values of the vertical and adiabatic doublet-singlet ionization energy IP computed without and with corrections due to zero point motion using the neutral doublet \mathbf{R}_D^0 and cation singlet \mathbf{R}_S^+ geometries optimized by means of several functionals and 6-311++G(3df, 3pd) basis sets.

	B3LYP	PBE0	M06-2X
$IP_{SD}^{\text{vert}}(\mathbf{R}_D^0)$			
uncorrected	9.812	9.874	9.835
corrected	9.852	9.915	9.946
$IP_{SD}^{\text{vert}}(\mathbf{R}_S^+)$			
uncorrected	9.780	9.844	9.812
corrected	9.819	9.884	9.822
IP_{SD}^{ad}			
uncorrected	9.794	9.857	9.822
corrected	9.833	9.897	9.832
Table S25: Quadrupole moment Q (field independent basis, debye-angstrom) of the isoelectronic C_4N^- and HC_4N chains computed as indicated in the second column.

Species	Method	Q_{xx}	Q_{yy}	Q_{zz}	Q_{xy}	Q_{xz}	Q_{yz}
C_4N^- triplet	B3LYP/6-311++G(3df, 3pd)	-34.2070	-68.9571	-31.7034	-9.6536	0.0000	0.0000
	B3LYP/aug-cc-pVTZ	-34.1971	-69.0040	-31.6890	-9.6702	0.0000	0.0000
	UCCSD(T)/6-311++G(3df, 3pd)	-34.3255	-69.2273	-31.8029	-9.7128	0.0000	0.0000
	ROCCSD(T)/6-311++G(3df, 3pd)	-34.5067	-67.8437	-32.1155	-9.2375	0.0000	0.0000
	ROCCSD(T)/aug-cc-pVTZ	-34.4814	-67.8801	-32.0848	-9.2581	0.0000	0.0000
HC_4N triplet	B3LYP/6-311++G(3df, 3pd)	-28.4399	-27.7588	-28.4371	-0.1693	0.0000	0.0000
	B3LYP/aug-cc-pVTZ	-28.4196	-27.7593	-28.4116	-0.1574	0.0000	0.0000
	UCCSD(T)/6-311++G(3df, 3pd)	-28.4547	-27.4563	-28.5638	-0.3883	0.0000	0.0000
	ROCCSD(T)/6-311++G(3df, 3pd)	-29.0226	-28.2790	-29.0194	-0.1844	0.0000	0.0000
	ROCCSD(T)/aug-cc-pVTZ	-28.9932	-28.2743	-28.9830	-0.1694	0.0000	0.0000
bent C_4N^- singlet	B3LYP/6-311++G(3df, 3pd)	-63.8640	-30.8339	-30.3058	1.4754	0.0001	0.0001
	B3LYP/aug-cc-pVTZ	-63.8640	-30.8339	-30.3058	1.4754	0.0001	0.0001
	RCCSD(T)/6-311++G(3df, 3pd)	-62.9911	-37.1863	-30.6481	1.1594	0.0000	0.0001
	RCCSD(T)/aug-cc-pVTZ	-63.0000	-37.1600	-30.6336	1.1690	0.0001	0.0001
HC_4N singlet	B3LYP/6-311++G(3df, 3pd)	-27.3591	-30.3776	-27.1872	-4.3257	0.0000	0.0000
	B3LYP/aug-cc-pVTZ	-27.3407	-30.3437	-27.1738	-4.3184	0.0000	0.0000
	RCCSD(T)/6-311++G(3df, 3pd)	-27.1081	-30.8650	-27.7089	-4.6705	0.0000	0.0000
	RCCSD(T)/aug-cc-pVTZ	-27.0845	-30.8217	-27.6860	-4.6599	0.0000	0.0000
Figure S20: Bond order indices versus bond lengths of the C₄N chains investigated in the present paper. The linear fitting line suggests possible correlations.

Table S26: Reorganization energies $\lambda_a^b \equiv \mathcal{E}_a (R_b) - \mathcal{E}_a (R_a)$ of the C₄N anions — triplet (T^-), bent singlet (bS^-) and (metastable) linear singlet (lS^-) — with respect to the neutral doublet (D).

Functional	λ_D^D	λ_T^D	λ_{bS}^D	λ_{lS}^D	λ_D^{T-}	λ_T^{T-}	λ_{bS}^{T-}	λ_{lS}^{T-}	λ_D^{bS-}	λ_T^{bS-}	λ_{bS}^{bS-}	λ_{lS}^{bS-}	λ_D^{lS-}	λ_T^{lS-}	λ_{bS}^{lS-}	λ_{lS}^{lS-}
B3LYP	0.067	0.076	0.338	0.488	0.082	0.082	0.338	0.488	0.082	0.082	0.338	0.488	0.082	0.082	0.338	0.488
PBE0	0.067	0.076	0.342	0.509	0.087	0.087	0.342	0.509	0.087	0.087	0.342	0.509	0.087	0.087	0.342	0.509
M06-2X	0.081	-0.113	0.446	0.600	0.111	0.111	0.446	0.600	0.111	0.111	0.446	0.600	0.111	0.111	0.446	0.600
Table S27: Reorganization energies $\lambda_b^a \equiv \mathcal{E}_a (R_b) - \mathcal{E}_a (R_a)$ of the C$_4$N singlet (S^+) and triplet (T^+) cations with respect to the neutral doublet (D).

Functional	$\lambda_{S^+}^D$	$\lambda_{D^+}^S$	$\lambda_{T^+}^D$	$\lambda_{D^+}^T$
B3LYP	0.019	0.014	0.124	0.124
PBE0	0.018	0.013	0.121	0.121
M06-2X	0.014	0.010	0.138	0.138
Table S28: Dissociation of neutral and anion C₄N chains. Enthalpies of reaction at zero (subscript 0) and room temperature (subscript RT) computed by several CBS protocols. All values (in kcal/mol) refer to the electronic ground states.

No.	Species	Method	Reaction	$\Delta_r H^0_{0}$	$\Delta_r H^0_{RT}$
1	C₄N	CBS-QB3	C₄N → C + C₃N	139.4	140.1
		CBS-APNO	C₄N → C + C₃N	137.3	138.0
		CBS-4M	C₄N → C + C₃N	138.6	139.6
2	C₄N	CBS-QB3	C₂ + C₃N	152.0	152.8
		CBS-APNO	C₂ + C₃N	152.0	155.9
		CBS-4M	C₂ + C₃N	155.2	156.3
3	C₄N	CBS-QB3	C₃ + CN	95.3	96.4
		CBS-APNO	C₃ + CN	94.2	95.3
		CBS-4M	C₃ + CN	103.0	104.3
4	C₄N	CBS-QB3	C₄ + N	159.6	160.5
		CBS-APNO	C₄ + N	157.8	158.5
		CBS-4M	C₄ + N	156.6	157.7
5a	C₄N⁻	CBS-QB3	C₄N⁻ → C + C₃N⁻	109.1	109.4
		CBS-APNO	C₄N⁻ → C + C₃N⁻	110.8	111.6
		CBS-4M	C₄N⁻ → C + C₃N⁻	116.6	117.5
5b	C₄N⁻	CBS-QB3	C⁻ + C₃N⁻	184.4	185.4
		CBS-APNO	C⁻ + C₃N⁻	183.9	184.8
		CBS-4M	C⁻ + C₃N⁻	190.9	191.8
6a	C₄N⁻	CBS-QB3	C₂ + C₂N⁻	160.6	161.6
		CBS-APNO	C₂ + C₂N⁻	166.2	170.0
		CBS-4M	C₂ + C₂N⁻	165.5	166.6
6b	C₄N⁻	CBS-QB3	C₂⁻ + C₂N⁻	151.0	152.1
		CBS-APNO	C₂⁻ + C₂N⁻	152.6	153.5
		CBS-4M	C₂⁻ + C₂N⁻	156.9	158.0
7a	C₄N⁻	CBS-QB3	C₃ + CN⁻	77.6	79.0
		CBS-APNO	C₃ + CN⁻	79.7	81.0
		CBS-4M	C₃ + CN⁻	88.4	89.7
7b	C₄N⁻	CBS-QB3	C₃⁻ + CN	122.0	123.3
		CBS-APNO	C₃⁻ + CN	122.4	123.4
		CBS-4M	C₃⁻ + CN	130.2	131.5
8a	C₄N⁻	CBS-QB3	C₄ + N⁻	238.1	239.4
		CBS-APNO	C₄ + N⁻	241.8	243.0
		CBS-4M	C₄ + N⁻	241.8	243.0
8b	C₄N⁻	CBS-QB3	C₄⁻ + N	141.8	142.8
		CBS-APNO	C₄⁻ + N	142.5	143.3
		CBS-4M	C₄⁻ + N	144.6	145.8
Table S29: Dissociation of neutral C$_2$N, C$_3$N, and C$_5$N chains already detected in space. Enthalpies of reaction at zero (subscript 0) and room temperature (subscript RT) computed by several CBS protocols. All values (in kcal/mol) refer to the electronic ground states.

No.	Species	Reaction	Method	$\Delta_r H^0_0$	$\Delta_r H^0_{RT}$
9a	C$_2$N	C$_2$N \rightarrow C + CN	CBS-QB3	113.4	114.4
			CBS-APNO	113.1	114.1
			CBS-4M	116.6	117.7
9b		C$_2$N \rightarrow C$_2$ + N	CBS-QB3	145.8	146.8
			CBS-APNO	149.3	148.7
			CBS-4M	147.5	148.7
10a	C$_3$N	C$_3$N \rightarrow C + C$_2$N	CBS-QB3	156.8	157.9
			CBS-APNO	158.8	159.7
			CBS-4M	158.0	159.0
10b		C$_3$N \rightarrow C$_2$ + CN	CBS-QB3	126.0	127.1
			CBS-APNO	131.0	132.0
			CBS-4M	133.2	134.4
10c		C$_3$N \rightarrow C$_3$ + N	CBS-QB3	132.6	134.0
			CBS-APNO	133.9	135.2
			CBS-4M	136.7	138.0
12a	C$_5$N	C$_5$N \rightarrow C + C$_4$N	CBS-QB3	144.1	145.7
			CBS-APNO	147.2	148.1
			CBS-4M	147.3	148.2
12b		C$_5$N \rightarrow C$_2$ + C$_3$N	CBS-QB3	139.2	140.6
			CBS-APNO	143.7	144.3
			CBS-4M	144.6	145.5
12c		C$_5$N \rightarrow C$_3$ + C$_2$N	CBS-QB3	126.0	127.8
			CBS-APNO	128.3	129.3
			CBS-4M	133.7	134.8
12d		C$_5$N \rightarrow C$_4$ + CN	CBS-QB3	126.9	128.6
			CBS-APNO	128.0	128.7
			CBS-4M	131.6	132.7
12e		C$_5$N \rightarrow C$_5$ + N	CBS-QB3	135.8	137.3
			CBS-APNO	136.0	136.8
			CBS-4M	142.9	143.8
Table S30: Relevant exchange reactions. Enthalpies of reaction at zero (subscript 0) and room temperature (subscript RT) computed by several CBS protocols. All values (in kcal/mol) refer to the electronic ground states.

No.	Reaction	Method	$\Delta_r H^0_0$	$\Delta_r H^0_{RT}$
13	$C_5 + N \rightarrow C + C_4N$	CBS-QB3	8.3	8.4
	$C_5 + N \rightarrow C + C_4N$	CBS-APNO	11.2	11.3
	$C_5 + N \rightarrow C + C_4N$	CBS-4M	4.5	4.3
14a	$N + C_4H^- \rightarrow C_4N + H^-$	CBS-QB3	23.9	24.3
	$N + C_4H^- \rightarrow C_4N + H^-$	CBS-APNO	32.2	32.9
	$N + C_4H^- \rightarrow C_4N + H^-$	CBS-4M	24.3	24.6
14b	$N + C_4H^- \rightarrow C_4N^- + H$	CBS-QB3	-36.0	-35.9
	$N + C_4H^- \rightarrow C_4N^- + H$	CBS-APNO	-36.6	-36.1
	$N + C_4H^- \rightarrow C_4N^- + H$	CBS-4M	-41.6	-41.3
14c	$N^- + C_4H \rightarrow C_4N^- + H$	CBS-QB3	-125.0	-124.8
	$N^- + C_4H \rightarrow C_4N^- + H$	CBS-APNO	-137.1	-136.9
	$N^- + C_4H \rightarrow C_4N^- + H$	CBS-4M	-129.2	-129.2
14d	$N^- + C_4H \rightarrow C_4N + H^-$	CBS-QB3	-65.1	-64.6
	$N^- + C_4H \rightarrow C_4N + H^-$	CBS-APNO	-68.3	-67.9
	$N^- + C_4H \rightarrow C_4N + H^-$	CBS-4M	-63.3	-63.3
15a	$CN + C_3H \rightarrow H + C_4N$	CBS-QB3	-20.5	-20.4
	$CN + C_3H \rightarrow H + C_4N$	CBS-APNO	-18.9	-18.9
	$CN + C_3H \rightarrow H + C_4N$	CBS-4M	-24.8	-24.8
15b	$CN^- + C_3H \rightarrow H + C_4N^-$	CBS-QB3	-2.8	-3.0
	$CN^- + C_3H \rightarrow H + C_4N^-$	CBS-APNO	-4.5	-4.6
	$CN^- + C_3H \rightarrow H + C_4N^-$	CBS-4M	-10.2	-10.2
15c	$CN^- + C_3H \rightarrow H^- + C_4N$	CBS-QB3	57.1	57.2
	$CN^- + C_3H \rightarrow H^- + C_4N$	CBS-APNO	64.4	64.4
	$CN^- + C_3H \rightarrow H^- + C_4N$	CBS-4M	55.7	55.8
15d	$CN + C_3H^- \rightarrow H + C_4N^-$	CBS-QB3	-50.9	-50.8
	$CN + C_3H^- \rightarrow H + C_4N^-$	CBS-APNO	-51.9	-51.6
	$CN + C_3H^- \rightarrow H + C_4N^-$	CBS-4M	-56.7	-56.8
15e	$CN + C_3H^- \rightarrow H^- + C_4N$	CBS-QB3	9.0	9.4
	$CN + C_3H^- \rightarrow H^- + C_4N$	CBS-APNO	16.9	17.4
	$CN + C_3H^- \rightarrow H^- + C_4N$	CBS-4M	9.2	9.2
Table S31: Relevant exchange reactions. Enthalpies of reaction at zero (subscript 0) and room temperature (subscript RT) computed by several CBS protocols. All values (in kcal/mol) refer to the electronic ground states.

No.	Reaction	Method	$\Delta_r H^0_0$	$\Delta_r H^0_{RT}$
16a	CH + C$_3$N \rightarrow H + C$_4$N	CBS-QB3	-59.4	-59.2
	CH + C$_3$N \rightarrow H + C$_4$N	CBS-APNO	-57.4	-57.2
	CH + C$_3$N \rightarrow H + C$_4$N	CBS-4M	-58.9	-58.9
16b	CH$^-$ + C$_3$N \rightarrow H$^-$ + C$_4$N$^-$	CBS-QB3	-105.6	-105.8
	CH$^-$ + C$_3$N \rightarrow H$^-$ + C$_4$N$^-$	CBS-APNO	-105.0	-105.0
	CH$^-$ + C$_3$N \rightarrow H$^-$ + C$_4$N$^-$	CBS-4M	-111.0	-111.1
16c	CH$^-$ + C$_3$N \rightarrow H$^-$ + C$_4$N	CBS-QB3	-45.8	-45.5
	CH$^-$ + C$_3$N \rightarrow H$^-$ + C$_4$N	CBS-APNO	-36.2	-36.0
	CH$^-$ + C$_3$N \rightarrow H$^-$ + C$_4$N	CBS-4M	-45.1	-45.2
16d	CH + C$_3$N$^-$ \rightarrow H + C$_4$N$^-$	CBS-QB3	-29.1	-29.1
	CH + C$_3$N$^-$ \rightarrow H + C$_4$N$^-$	CBS-APNO	-31.0	-30.8
	CH + C$_3$N$^-$ \rightarrow H + C$_4$N$^-$	CBS-4M	-36.8	-36.9
17a	CH + C$_3$N$^-$ \rightarrow H$^-$ + C$_4$N	CBS-QB3	30.8	31.1
	CH + C$_3$N$^-$ \rightarrow H$^-$ + C$_4$N	CBS-APNO	37.9	38.2
	CH + C$_3$N$^-$ \rightarrow H$^-$ + C$_4$N	CBS-4M	29.1	29.1
17b	C$_2$H + C$_2$N \rightarrow H + C$_4$N	CBS-QB3	-40.4	-40.3
	C$_2$H + C$_2$N \rightarrow H + C$_4$N	CBS-APNO	-41.0	-40.5
	C$_2$H + C$_2$N \rightarrow H + C$_4$N	CBS-4M	-40.4	-40.3
17c	C$_2$H$^-$ + C$_2$N \rightarrow H$^-$ + C$_4$N$^-$	CBS-QB3	-44.6	-44.5
	C$_2$H$^-$ + C$_2$N \rightarrow H$^-$ + C$_4$N$^-$	CBS-APNO	-46.6	-46.2
	C$_2$H$^-$ + C$_2$N \rightarrow H$^-$ + C$_4$N$^-$	CBS-4M	-51.7	-51.5
17d	C$_2$H$^-$ + C$_2$N \rightarrow H$^-$ + C$_4$N	CBS-QB3	15.3	15.7
	C$_2$H$^-$ + C$_2$N \rightarrow H$^-$ + C$_4$N	CBS-APNO	22.2	22.8
	C$_2$H$^-$ + C$_2$N \rightarrow H$^-$ + C$_4$N	CBS-4M	14.2	14.5
17e	C$_2$H + C$_2$N$^-$ \rightarrow H$^-$ + C$_4$N	CBS-QB3	10.8	11.2
	C$_2$H + C$_2$N$^-$ \rightarrow H$^-$ + C$_4$N	CBS-APNO	16.8	17.5
	C$_2$H + C$_2$N$^-$ \rightarrow H$^-$ + C$_4$N	CBS-4M	15.1	15.3
17f	C$_2$H + C$_2$N$^-$ \rightarrow H + C$_4$N$^-$	CBS-QB3	-49.1	-49.0
	C$_2$H + C$_2$N$^-$ \rightarrow H + C$_4$N$^-$	CBS-APNO	-52.0	-51.5
	C$_2$H + C$_2$N$^-$ \rightarrow H + C$_4$N$^-$	CBS-4M	-50.8	-50.6
Table S32: Relevant exchange reactions. Enthalpies of reaction at zero (subscript 0) and room temperature (subscript RT) computed by several CBS protocols. All values (in kcal/mol) refer to the electronic ground states.

No.	Reaction	Method	$\Delta_r H^0_0$	$\Delta_r H^0_{RT}$
18	NC$_2$N + C$_2$ \rightarrow N + C$_4$N	CBS-QB3	48.6	49.0
	NC$_2$N + C$_2$ \rightarrow N + C$_4$N	CBS-APNO	45.2	45.6
	NC$_2$N + C$_2$ \rightarrow N + C$_4$N	CBS-4M	41.4	41.5
19	NC$_2$N + C$_2$N \rightarrow N$_2$ + C$_4$N	CBS-QB3	-29.8	-29.3
	NC$_2$N + C$_2$N \rightarrow N$_2$ + C$_4$N	CBS-APNO	-29.4	-28.9
	NC$_2$N + C$_2$N \rightarrow N$_2$ + C$_4$N	CBS-4M	-31.7	-31.4
20	NC$_2$N + C$_2$H \rightarrow NH + C$_4$N	CBS-QB3	82.3	82.7
	NC$_2$N + C$_2$H \rightarrow NH + C$_4$N	CBS-APNO	81.4	82.2
	NC$_2$N + C$_2$H \rightarrow NH + C$_4$N	CBS-4M	78.0	78.4

Table S33: Adiabatic electron affinities and ionization potentials (in eV) of C$_4$N and C$_6$N computed with various CBS protocols. Notice that, out of these protocols, the CBS-QB3 EA-estimates are the closest to the experimental values $EA_{C_2N} = 2.74890 \pm 0.00010$ eV, $EA_{C_4N} = 3.1113 \pm 0.00010$ eV and $EA_{C_6N} = 3.3715 \pm 0.00010$ eV.

Method	EA_{C_2N}	IP_{C_2N}	EA_{C_4N}	IP_{C_4N}	EA_{C_6N}	IP_{C_6N}
CBS-QB3	2.7615	10.8166	3.1351	9.6913	3.4804	8.9994
CBS-APNO	2.7728	10.8178	3.2506	9.6332	3.5648	8.9491
CBS-4M	3.0115	11.1315	3.4596	10.0462	3.7693	9.5614
Atomic charges

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Neutral doublet
Anion singlet

Atoms of C₃N chains

C₂ C₃
astronomically observed may yet be observable