Fractal characteristics of shale pore structure and its influence on seepage flow

Shengwei Wang, Xijian Li, Haiteng Xue, Zhonghui Shen and Liuyu Chen

Article citation details
R. Soc. open sci. 8: 202271.
http://dx.doi.org/10.1098/rsos.202271

Review timeline
Original submission: 17 December 2020
Revised submission: 17 April 2021
Final acceptance: 23 April 2021

Note: Reports are unedited and appear as submitted by the referee. The review history appears in chronological order.
Comments to the Author(s)
This is well written and interesting paper.

See comments below that will improve the readability and consistency of the paper.

domestic and foreign experts -> international research groups

Experimental -> Materials and Methods

was
buried at a depth of approximately 2,500 m, that from Well Tianma
1 was buried at approximately 1,500 m, and that from Well Dafang
1 was buried at approximately 1,000 m. A map of the study area
location is shown in Figure 1.

Comment: we dont say "was buried at a depth" -> at a depth of ...

Table 1 X-ray diffraction analysis result of black shale /%.
-> what does /% mean. Please remove.
Also change result to results

Table 2 Porosity nuclear magnetic resonance (NMR) test results -> remove (NMR) from table2
caption

pore size distr
ition was mainly concentrated -> sentence is broken in pdf

BET specific surface area /$ (m^2/g) Average pore size /d (nm) Total pore volume per unit mass
(cm^3/)

remove /$ (i am guessing this is the symbol for specific area. If you want to define it, define it in
the text in ()
Remove /d .. same as above (cm^3/) -> (cm^3)

Table 4 Calculation results of pore fractal... -> Calculated pore fractal dimension for each sample.

where k is Boltzmann's constant, 1.38 × 10^-23 J/K; d0 is the gas molecule diameter, methane is
0.38 nm; T is the absolute temperature, K; and p is the gas pressure (MPa). -> please report the
units in (). Also K should not be in italics

Please check equation 8, 9 etc for units to be reported in () instead of ,

In equation 10, units for C or DAeff are not given

in eqn 13, nm should be in ()

Previous studies divides the gas diffusion modes into: Kn > 10 indicates Knudsen diffusion; 0.1 <
Kn < 10 indicates transition diffusion; 0.01 < Kn < 0.1 indicates Fick diffusion; 0.001 < Kn < 0.01
indicates slip flow; and Kn < 0.001 indicates Darcy flow.

please change as
Previous studies divide the gas diffusion modes into different ranges based on the value of kN:
(a) Kn > 10 which indicates Knudsen diffusion; (b) 0.1 < Kn < 10 which indicates transition diffusion; (c) 0.01 < Kn < 0.1 which indicates Fick diffusion; (d) 0.001 < Kn < 0.01 which indicates slip flow; and (e) Kn < 0.001 which indicates Darcy flow.

Fig 1: of-study area -> of study area
Fig 2: diameter/nm -> diameter (nm)
Fig 3. Relative pressure/ -> Relative pressure Adsorption capacity/ -> Adsorption capacity
Fig 4. Make sure all x-axis captions look the same
Fig 5 TOC/ % -> TOC (%)
Fig 6. d/nm -> d (nm)
Fig 7. put units in () and delete "/"
Fig 8, 9: put units of Ke in () and delete "/"
Fig 10: put units of b in () and delete "/"

Decision letter (RSOS-202271.R0)

We hope you are keeping well at this difficult and unusual time. We continue to value your support of the journal in these challenging circumstances. If Royal Society Open Science can assist you at all, please don’t hesitate to let us know at the email address below.

Dear Dr Wang

On behalf of the Editors, we are pleased to inform you that your Manuscript RSOS-202271 "Fractal characteristics of shale pore structure and its influence on seepage flow" has been accepted for publication in Royal Society Open Science subject to minor revision in accordance with the referees’ reports. Please find the referees’ reports along with any feedback from the Editors below my signature. [There was only one referee for this paper, but their comments are sufficiently clear and positive that I believe it is fair to make a decision without seeking a second report.]

We invite you to respond to the comments and revise your manuscript. Below the referees’ and Editors’ comments (where applicable) we provide additional requirements. Final acceptance of your manuscript is dependent on these requirements being met. We provide guidance below to help you prepare your revision.

Please submit your revised manuscript and required files (see below) no later than 7 days from today’s (ie 15-Apr-2021) date. Note: the ScholarOne system will ‘lock’ if submission of the revision is attempted 7 or more days after the deadline. If you do not think you will be able to meet this deadline please contact the editorial office immediately.
Please note article processing charges apply to papers accepted for publication in Royal Society Open Science (https://royalsocietypublishing.org/rsos/charges). Charges will also apply to papers transferred to the journal from other Royal Society Publishing journals, as well as papers submitted as part of our collaboration with the Royal Society of Chemistry (https://royalsocietypublishing.org/rsos/chemistry). Fee waivers are available but must be requested when you submit your revision (https://royalsocietypublishing.org/rsos/waivers).

Thank you for submitting your manuscript to Royal Society Open Science and we look forward to receiving your revision. If you have any questions at all, please do not hesitate to get in touch.

Kind regards,
Royal Society Open Science Editorial Office
Royal Society Open Science
openscience@royalsociety.org

on behalf of Dr Philip Benson (Associate Editor) and Peter Haynes (Subject Editor)
openscience@royalsociety.org

Reviewer comments to Author:
Reviewer: 1

Comments to the Author(s)
This is well written and interesting paper.

See comments below that will improve the readability and consistency of the paper.

domestic and foreign experts -> international research groups

Experimental -> Materials and Methods

Was buried at a depth of approximately 2,500 m, that from Well Tianma 1 was buried at approximately 1,500 m, and that from Well Dafang 1 was buried at approximately 1,000 m. A map of the study area location is shown in Figure 1.

Comment: we dont say "was buried at a depth" -> at a depth of ...

Table 1 X-ray diffraction analysis result of black shale/%. -> what does /% mean. Please remove. Also change result to results

Table 2 Porosity nuclear magnetic resonance (NMR) test results -> remove (NMR) from table2 caption

pore size distr
ibution was mainly concentrated -> sentence is broken in pdf

BET specific surface area /S (m2/g) Average pore size /d (nm) Total pore volume per unit mass (cm3/)

remove /S (i am guessing this is the symbol for specific area. If you want to define it, define it in the text in ()
Remove /d .. same as above
(cm3/) -> (cm3)
Table 4 Calculation results of pore fractal... - > Calculated pore fractal dimension for each sample.

where k is Boltzmann's constant, 1.38 × 10-23 J/K; d0 is the gas molecule diameter, methane is 0.38 nm; T is the absolute temperature, K; and p is the gas pressure (MPa). - > please report the units in (). Also K should not be in italics

Please check equation 8, 9 etc for units to be reported in () instead of ,

In equation 10, units for C or DAeff are not given

in eqn 13, nm should be in ()

Previous studies divides the gas diffusion modes into: Kn > 10 indicates Knudsen diffusion; 0.1 < Kn < 10 indicates transition diffusion; 0.01 < Kn < 0.1 indicates Fick diffusion; 0.001 < Kn < 0.01 indicates slip flow; and Kn < 0.001 indicates Darcy flow.

please change as

Previous studies divide the gas diffusion modes into different ranges based on the value of kN: (a) Kn > 10 which indicates Knudsen diffusion; (b) 0.1 < Kn < 10 which indicates transition diffusion; (c) 0.01 < Kn < 0.1 which indicates Fick diffusion; (d) 0.001 < Kn < 0.01 which indicates slip flow; and (e) Kn < 0.001 which indicates Darcy flow.

Fig 1: of study area - > of study area

Fig 2: diameter/nm - > diameter (nm)

Fig 3. Relative pressure/ - > Relative pressure Adsorption capacity/ - > Adsorption capacity

Fig 4. Make sure all x-axis captions look the same

Fig 5 TOC/% - > TOC (%)

Fig 6. d/nm - > d (nm)

Fig 7. put units in () and delete "/"

Fig 8, 9: put units of Ke in () and delete "/"

Fig 10: put units of b in () and delete "/"

===PREPARING YOUR MANUSCRIPT===

Your revised paper should include the changes requested by the referees and Editors of your manuscript. You should provide two versions of this manuscript and both versions must be provided in an editable format:
one version identifying all the changes that have been made (for instance, in coloured highlight, in bold text, or tracked changes);
a 'clean' version of the new manuscript that incorporates the changes made, but does not highlight them. This version will be used for typesetting.
Please ensure that any equations included in the paper are editable text and not embedded images.
Please ensure that you include an acknowledgements' section before your reference list/bibliography. This should acknowledge anyone who assisted with your work, but does not qualify as an author per the guidelines at https://royalsociety.org/journals/ethics-policies/openness/.

While not essential, it will speed up the preparation of your manuscript proof if you format your references/bibliography in Vancouver style (please see https://royalsociety.org/journals/authors/author-guidelines/#formatting). You should include DOIs for as many of the references as possible.

If you have been asked to revise the written English in your submission as a condition of publication, you must do so, and you are expected to provide evidence that you have received language editing support. The journal would prefer that you use a professional language editing service and provide a certificate of editing, but a signed letter from a colleague who is a native speaker of English is acceptable. Note the journal has arranged a number of discounts for authors using professional language editing services (https://royalsociety.org/journals/authors/benefits/language-editing/).

---PREPARING YOUR REVISION IN SCHOLARONE---

To revise your manuscript, log into https://mc.manuscriptcentral.com/rsos and enter your Author Centre - this may be accessed by clicking on "Author" in the dark toolbar at the top of the page (just below the journal name). You will find your manuscript listed under "Manuscripts with Decisions". Under "Actions", click on "Create a Revision".

Attach your point-by-point response to referees and Editors at Step 1 'View and respond to decision letter'. This document should be uploaded in an editable file type (.doc or .docx are preferred). This is essential.

Please ensure that you include a summary of your paper at Step 2 'Type, Title, & Abstract'. This should be no more than 100 words to explain to a non-scientific audience the key findings of your research. This will be included in a weekly highlights email circulated by the Royal Society press office to national UK, international, and scientific news outlets to promote your work.

At Step 3 'File upload' you should include the following files:
-- Your revised manuscript in editable file format (.doc, .docx, or .tex preferred). You should upload two versions:
 1) One version identifying all the changes that have been made (for instance, in coloured highlight, in bold text, or tracked changes);
 2) A 'clean' version of the new manuscript that incorporates the changes made, but does not highlight them.
-- An individual file of each figure (EPS or print-quality PDF preferred [either format should be produced directly from original creation package], or original software format).
-- An editable file of each table (.doc, .docx, .xls, .xlsx, or .csv).
-- An editable file of all figure and table captions.
Note: you may upload the figure, table, and caption files in a single Zip folder.
-- Any electronic supplementary material (ESM).
-- If you are requesting a discretionary waiver for the article processing charge, the waiver form must be included at this step.
-- If you are providing image files for potential cover images, please upload these at this step, and inform the editorial office you have done so. You must hold the copyright to any image provided.
A copy of your point-by-point response to referees and Editors. This will expedite the preparation of your proof.

At Step 6 'Details & comments', you should review and respond to the queries on the electronic submission form. In particular, we would ask that you do the following:

-- Ensure that your data access statement meets the requirements at https://royalsociety.org/journals/authors/author-guidelines/#data. You should ensure that you cite the dataset in your reference list. If you have deposited data etc in the Dryad repository, please only include the 'For publication' link at this stage. You should remove the 'For review' link.

-- If you are requesting an article processing charge waiver, you must select the relevant waiver option (if requesting a discretionary waiver, the form should have been uploaded at Step 3 'File upload' above).

-- If you have uploaded ESM files, please ensure you follow the guidance at https://royalsociety.org/journals/authors/author-guidelines/#supplementary-material to include a suitable title and informative caption. An example of appropriate titling and captioning may be found at https://figshare.com/articles/Table_S2_from_Is_there_a_trade-off_between_peak_performance_and_performance_breadth_across_temperatures_for_aerobic_scope_in_teleost_fishes_/3843624.

At Step 7 'Review & submit', you must view the PDF proof of the manuscript before you will be able to submit the revision. Note: if any parts of the electronic submission form have not been completed, these will be noted by red message boxes.

Author's Response to Decision Letter for (RSOS-202271.R0)

See Appendix A.

Decision letter (RSOS-202271.R1)

We hope you are keeping well at this difficult and unusual time. We continue to value your support of the journal in these challenging circumstances. If Royal Society Open Science can assist you at all, please don't hesitate to let us know at the email address below.

Dear Sir wang,

It is a pleasure to accept your manuscript entitled "Fractal characteristics of shale pore structure and its influence on seepage flow" in its current form for publication in Royal Society Open Science.

You can expect to receive a proof of your article in the near future. Please contact the editorial office (openscience@royalsociety.org) and the production office (openscience_proofs@royalsociety.org) to let us know if you are likely to be away from e-mail contact -- if you are going to be away, please nominate a co-author (if available) to manage the proofing process, and ensure they are copied into your email to the journal.

Due to rapid publication and an extremely tight schedule, if comments are not received, your paper may experience a delay in publication.
Please see the Royal Society Publishing guidance on how you may share your accepted author manuscript at https://royalsociety.org/journals/ethics-policies/media-embargo/. After publication, some additional ways to effectively promote your article can also be found here https://royalsociety.org/blog/2020/07/promoting-your-latest-paper-and-tracking-your-results/.

Thank you for your fine contribution. On behalf of the Editors of Royal Society Open Science, we look forward to your continued contributions to the Journal.

Best regards,
Lianne Parkhouse
Editorial Coordinator
Royal Society Open Science
openscience@royalsociety.org

on behalf of Dr Philip Benson (Associate Editor) and Peter Haynes (Subject Editor)
openscience@royalsociety.org

Follow Royal Society Publishing on Twitter: @RSocPublishing
Follow Royal Society Publishing on Facebook:
https://www.facebook.com/RoyalSocietyPublishing.FanPage/
Read Royal Society Publishing's blog:
https://royalsociety.org/blog/blogsearchpage/?category=Publishing
Dear editor:

We have substantially revised our manuscript after reading the comments provided by the reviewers. We would like to thank the reviewers and the editor for the positive and constructive comments and suggestions. We employed an English-language editing service, Editage, to polish our wording. Certification is attached.

Answer to reviewers:

Comment 1: domestic and foreign experts -> international research groups
Response 1: We have fixed. See revised manuscript.

Comment 2: Experimental -> Materials and Methods:
Response 2: We have fixed. See revised manuscript.

Comment 3: was buried at a depth of approximately 2,500 m, that from Well Tianma 1 was buried at approximately 1,500 m, and that from Well Dafang 1 was buried at approximately 1,000 m. A map of the study area location is shown in Figure 1. Comment: we dont say "was buried at a depth" -> at a depth of ...
Response 3: We have fixed. See revised manuscript.

Comment 4: Table 1 X-ray diffraction analysis result of black shale/%. -> what does /% mean. Please remove. Also change result to results.
Response 4: We have fixed. See revised manuscript.

Comment 5: Table 2 Porosity nuclear magnetic resonance (NMR) test results -> remove (NMR) from table2 caption.
Response 5: We have Removed (NMR). See revised manuscript.

Comment 6: pore size distribution was mainly concentrated -> sentence is broken in pdf.
Response 6: We have fixed. See revised manuscript.

Comment 7: BET specific surface area /S (m2/g)
Average pore size /d (nm)
Total pore volume per unit mass (cm3/)
remove /S (i am guessing this is the symbol for specific area. If you want to define it, define it in the text in ()
Remove /d .. same as above
(cm3/) -> (cm3)
Response 7: We have fixed. See revised manuscript.

Comment 8: Table 4 Calculation results of pore fractal... -> Calculated pore fractal dimension for each sample.
Response 8: We have fixed. See revised manuscript.

Appendix A

Manuscript revision instructions
Comment 9: where k is Boltzmann's constant, 1.38 × 10^{-23} J/K; d0 is the gas molecule diameter, methane is 0.38 nm; T is the absolute temperature, K; and p is the gas pressure (MPa). -> please report the units in (). Also K should not be in italics
 Please check equation 8, 9 etc for units to be reported in () instead of ,
 In equation 10, units for C or DAeff are not given
 in eqn 13, nm should be in ()
 Response 9: We have fixed. See revised manuscript.

Comment 10: Previous studies divides the gas diffusion modes into: Kn > 10 indicates Knudsen diffusion; 0.1 < Kn < 10 indicates transition diffusion; 0.01 < Kn < 0.1 indicates Fick diffusion; 0.001 < Kn < 0.01 indicates slip flow; and Kn < 0.001 indicates Darcy flow.
 Please change as Previous studies divide the gas diffusion modes into different ranges based on the value of kN: (a) Kn > 10 which indicates Knudsen diffusion; (b) 0.1 < Kn < 10 which indicates transition diffusion; (c) 0.01 < Kn < 0.1 which indicates Fick diffusion; (d) 0.001 < Kn < 0.01 which indicates slip flow; and (e) Kn < 0.001 which indicates Darcy flow.
 Response 10: We have fixed. See revised manuscript.

Comment 11: Fig 1: of study area -> of study area
 Fig 2: diameter/nm -> diameter (nm)
 Fig 3. Relative pressure/ -> Relative pressure Adsorption capacity/ -> Adsorption capacity
 Fig 4. Make sure all x-axis captions look the same
 Fig 5 TOC/% -> TOC (%)
 Fig 6. d/nm -> d (nm)
 Fig 7. put units in () and delete "/
 Fig 8, 9: put units of Ke in () and delete "/
 Fig 10: put units of b in () and delete "/
 Response 11: We have fixed. See revised manuscript.