Greatest lower bounds on Ricci curvature for toric Fano manifolds

Chi Li

ABSTRACT: In this short note, based on the work of Wang-Zhu [7], we determine the greatest lower bounds on Ricci curvature for all toric Fano manifolds.

1 Introduction

On Fano manifolds \(X\), i.e. \(K^{-1}_X\) is ample, the Kähler-Einstein equation

\[
Ric(\omega) = \omega
\]

is equivalent to the complex Monge-Ampère equation:

\[
(\omega + \partial \bar{\partial} \phi)^n = e^{h_\omega - \phi} \omega^n
\]

where \(\omega\) is a fixed Kähler metric in \(c_1(X)\), and \(h_\omega\) is the normalized Ricci potential:

\[
Ric(\omega) - \omega = \partial \bar{\partial} h_\omega, \quad \int_X e^{h_\omega} \omega^n = \int_X \omega^n
\]

In order to solve this equation, the continuity method is used. So we consider a family of equations with parameter \(t\):

\[
(\omega + \partial \bar{\partial} \phi_t)^n = e^{h_\omega - t \phi} \omega^n
\]

Define \(S_t = \{t : (\ast)_t \text{ is solvable}\}\). It was known that the set \(S_t\) is open. To solve (\ast), the crucial thing is to obtain the closedness of this set. So we need some a priori estimates. By Yau’s \(C^2\) and Calabi’s higher order estimates (See [8], [4]), we only need uniform \(C^0\)-estimates for solutions \(\phi_t\) of (\ast)_t. In general one can not solve (\ast), and so can not get the \(C^0\)-estimates, due to the well known obstruction of Futaki invariant. So when \(t \to R(X)\), some blow-up happens.

It was first showed by Tian [5] that we may not be able to solve (\ast)_t on certain Fano manifold for \(t\) sufficiently close to 1. Equivalently, for such a Fano manifold, there is some \(t_0 < 1\), such that there is no Kähler metric \(\omega\) in \(c_1(X)\) which can have \(Ric(\omega) \geq t_0 \omega\). It is now made more precise.

Define

\[
R(X) = \sup\{t : (\ast)_t \text{ is solvable}\}
\]

It can be shown that \(R(X)\) is independent of \(\omega \in c_1(X)\). In fact, Székelyhidi [3] observed

Fact: \(R(X) = \sup\{t : Ric(\omega) > t \omega, \forall \text{ Kähler metric } \omega \in c_1(X)\}\)

He also showed \(R(Bl_p \mathbb{P}^2) = \frac{5}{6}\) and \(\frac{1}{2} \leq R(Bl_p,q \mathbb{P}^2) \leq \frac{11}{12}\).

Let \(\Lambda \cong \mathbb{Z}^n\) be a lattice in \(\mathbb{R}^n = \Lambda \otimes \mathbb{R}\). A toric Fano manifold \(X_\Delta\) is determined by a reflexive lattice polytope \(\Delta\) (For details on toric manifolds, see [2]). For example, the toric manifold \(Bl_p \mathbb{P}^2\) is determined by the following polytope.

1
In this short note, we determine $R(X_\Delta)$ for every toric Fano manifold X_Δ in terms of the geometry of polytope Δ.

Any such polytope Δ contains the origin $O \in \mathbb{R}^n$. We denote the barycenter of Δ by P_c. If $P_c \neq O$, the ray $P_c + \mathbb{R}_{\geq 0} \cdot \bar{P}_c O$ intersects the boundary $\partial \Delta$ at point Q. Our main result is

Theorem 1. If $P_c \neq O$,

$$R(X_\Delta) = \frac{|OQ|}{|P_c Q|}.$$

Here $|OQ|, |P_c Q|$ are lengths of line segments OQ and $P_c Q$. If $P_c = O$, then there is Kähler-Einstein metric on X_Δ and $R(X_\Delta) = 1$.

Remark 1. Note for the toric Fano manifold, P_c is just Futaki invariant. So the second statement follows from Wang-Zhu [7]. We will repeat the proof in next section.

Our method is based on Wang-Zhu’s [7] theory for proving the existence of Kähler-Ricci solitons on toric Fano manifolds. In view of the analysis in [7], if $R(X_\Delta) < 1$, then as $t \to R(X_\Delta)$, the blow-up happens exactly because the minimal points of a family of proper convex functions go to infinity, or, equivalently, the images of minimal points under the momentum map of a fixed metric tend to the boundary of the toric polytope. The key identity relation in [Section 2,(11)] and some uniform a priori estimates enable us to read out $R(X_\Delta)$ in terms of geometry of Δ.

This note is partly inspired by the Székelyhidi’s paper [3] and Donaldson’s survey [1]. The author thanks Professor Gang Tian for constant encouragement.

2 Consequence of Wang-Zhu’s theory

First we recall the set up of Wang-Zhu [7]. For a reflexive lattice polytope Δ in $\mathbb{R}^n = \Lambda \otimes_\mathbb{Z} \mathbb{R}$, we have a Fano toric manifold $(\mathbb{C}^*)^n \subset X_\Delta$ with a $(\mathbb{C}^*)^n$ action. Let $\{z_i\}$ be the standard coordinates of the dense orbit $(\mathbb{C}^*)^n$, and $z_i = \log |z_i|^2$. Let $\{p_\alpha\}_{\alpha = 1, \ldots, N}$ be the lattice points contained in Δ.

We take the fixed Kähler metric ω to be given by the potential (on $(\mathbb{C}^*)^n$)

$$\tilde{u}_0 = \log \left(\sum_{\alpha = 1}^N e^{\langle p_\alpha, x \rangle} \right) + C$$ \hfill (2)

C is some constant determined by normalization condition:

$$\int_{\mathbb{R}^n} e^{-\tilde{u}_0} dx = Vol(\Delta) = \frac{1}{n!} \int_{X_\Delta} \omega^n = \frac{c_1(X_\Delta)^n}{n!}$$ \hfill (3)

By standard toric geometry, each lattice point p_α contained in Δ determines, up to a constant, a $(\mathbb{C}^*)^n$-equivariant section s_α in $H^0(X, K_X^{-1})$. We can embed X_Δ into $P(H^0(X, K_X^{-1})^*)$ using these sections. Let s_0 be the section corresponding to the origin $0 \in \Delta$, then its Fubini-Study norm is

$$|s_0|^2_{FS} = \sum_{\alpha = 1}^N |s_\alpha|^2 = \left(\sum_{\alpha = 1}^N \prod_{i=1}^n |z_i|^{2p_{\alpha,i}} \right)^{-1} = \left(\sum_{\alpha = 1}^N e^{\langle p_\alpha, x \rangle} \right)^{-1} = e^C e^{-\tilde{u}_0}$$
So the Kähler metric $\omega = \frac{\alpha}{2\pi} \partial \bar{\partial} u_0$ is the Fubini-Study metric.

On the other hand, $Ric(\omega)$ is the curvature of Hermitian line bundle K_M^{-1} with Hermitian metric determined by the volume form ω^n. Note that on the open dense orbit $(C^*)^n$, we can take $s_0 = z_1 \frac{\partial}{\partial z_1} \wedge \cdots \wedge z_n \frac{\partial}{\partial z_n}$. Since $\frac{\partial}{\partial \log z_i} = \frac{1}{2} \left(\frac{\partial}{\partial \log |z_i|} - \sqrt{-1} \frac{\partial}{\partial \phi} \right)$, when acting on any $(S^1)^n$ invariant function on $(C^*)^n$, we have

$$|s_0|^2_{\omega^n} = \left| z_1 \frac{\partial}{\partial z_1} \wedge \cdots \wedge z_n \frac{\partial}{\partial z_n} \right|^2_{\omega^n} = \det \left(\frac{\partial^2 \tilde{u}_0}{\partial \log z_i \partial \log z_j} \right) = \det(\tilde{u}_{0,ij})$$

It’s easy to see from definition of h_ω (1) and normalization condition (3) that

$$e^{h_\omega} = e^{-C \frac{|s_0|^2_{\omega^n}}{|s_0|^2_{\bar{\omega}^n}}} = e^{-\tilde{u}_0 \det(\tilde{u}_{0,ij})}^{-1}$$

Then using the torus symmetry, $(*)_t$ can be translated into real Monge-Ampère equation [7] on \mathbb{R}^n.

$$\det(u_{ij}) = e^{-(1-t)\tilde{u}_0 - tu} = e^{-w_t} \quad (**)_t$$

The solution u_t of $(**)_t$ is related to Kähler potential ϕ_t in $(*)_t$ by the identity:

$$u = \tilde{u}_0 + \phi_t \quad (4)$$

where ϕ_t is viewed as a function of $x_i = \log |z_i|^2$ by torus symmetry.

Every strictly convex function f appearing in $(**)_t$ ($f = \tilde{u}_0, u, w_t = (1-t)\tilde{u}_0 + tu$) must satisfy $Df(\mathbb{R}^n) = \Delta^0$ (Δ^0 means the interior of Δ). Since 0 is (the unique lattice point) contained in $\Delta^0 = Df(\mathbb{R}^n)$, the strictly convex function f is properly.

Wang-Zhu’s [7] method for solving $(**)_t$ consists of two steps. The **first step** is to show some uniform a priori estimates for w_t. For $t < R(X_\Delta)$, the proper convex function w_t obtains its minimum value at a unique point $x_t \in \mathbb{R}^n$. Let

$$m_t = \inf\{w_t(x) : x \in \mathbb{R}^n\} = w_t(x_t)$$

Proposition 1 ([7], See also [1]).

1. There exists a constant C, independent of $t < R(X_\Delta)$, such that

$$|m_t| < C$$

2. There exists $\kappa > 0$ and a constant C, both independent of $t < R(X_\Delta)$, such that

$$w_t \geq \kappa |x - x_t| - C \quad (5)$$

For the reader’s convenience, we record the proof here.

Proof. Let $A = \{x \in \mathbb{R}^n : m_t \leq w(x) \leq m_t + 1\}$. A is a convex set. By a well known lemma due to Fritz John, there is a unique ellipsoid E of minimum volume among all the ellipsoids containing A, and a constant α_n depending only on dimension, such that

$$\alpha_n E \subset A \subset E$$

$\alpha_n E$ means the α_n-dilation of E with respect to its center. Let T be an affine transformation with $\det(T) = 1$, which leaves $x' =$ the center of E invariant, such that $T(E) = B(x', R)$, where $B(x', R)$ is the Euclidean ball of radius R. Then

$$B(x', \alpha_n R) \subset T(A) \subset B(x', R)$$
We first need to bound \(R \) in terms of \(m_t \). Since \(D^2w = tD^2u + (1-t)D^2\tilde{u}_0 \geq tD^2u \), by \((**)_t\), we see that
\[
\det(w_{ij}) \geq t^n e^{-w}
\]
Restrict to the subset \(A \), it’s easy to get
\[
\det(w_{ij}) \geq C_1 e^{-m_t}
\]
Let \(\tilde{w}(x) = w(T^{-1}x) \), since \(\det(T) = 1 \), \(\tilde{w} \) satisfies the same inequality
\[
\det(\tilde{w}_{ij}) \geq C_1 e^{-m_t}
\]
in \(T(A) \).

Construct an auxiliary function
\[
v(x) = C_1^+ e^{-\frac{m_t}{2}} \left(|x - x'|^2 - (\alpha_n R)^2 \right) + m_t + 1
\]
Then in \(B(x', \alpha_n R) \),
\[
\det(v_{ij}) = C_1 e^{-m_t} \leq \det(\tilde{w}_{ij})
\]
On the boundary \(\partial B(x', \alpha_n R) \), \(v(x) = m_t + 1 \geq \tilde{w} \). By the Bedford-Taylor comparison principle for Monge-Ampère operator, we have
\[
\tilde{w}(x) \leq v(x) \text{ in } B(x', \alpha_n R)
\]
In particular
\[
m_t \leq \tilde{w}(x') \leq v(x') = C_1^+ e^{-\frac{m_t}{2}} \left(\frac{R^2}{n^2} \right) + m_t + 1
\]
So we get the bound for \(R \):
\[
R \leq C_2 e^{\frac{m_t}{m}}
\]
So we get the upper bound for the volume of \(A \):
\[
Vol(A) = Vol(T(A)) \leq CR^n \leq Ce^{\frac{m_t}{m}}
\]
By the convexity of \(w \), it’s easy to see that \(\{x; w(x) \leq m_t + s\} \subset s \cdot \{x; w(x) \leq m_t + 1\} = s \cdot A \), where \(s \cdot A \) is the \(s \)-dilation of \(A \) with respect to point \(x_t \). So
\[
Vol(\{x; w(x) \leq m_t + s\}) \leq s^n Vol(A) \leq Cs^n e^{\frac{m_t}{m}}
\]
The lower bound for volume of sublevel sets is easier to get. Indeed, since \(|Dw(x)| \leq L \), where \(L = \max_{y \in \triangle} |y| \), we have \(B(x_t, s \cdot L^{-1}) \subset \{x; w(x) \leq m_t + s\} \). So
\[
Vol(\{x; w(x) \leq m_t + s\}) \geq Cs^n
\]
Now we can derive the estimate for \(m_t \). First note the identity:
\[
\int_{\mathbb{R}^n} e^{-w} dx = \int_{\mathbb{R}^n} \det(u_{ij}) dx = \int_{\triangle} d\sigma = Vol(\triangle)
\]
Second, we use the coarea formula
\[
\int_{\mathbb{R}^n} e^{-w} dx = \int_{\mathbb{R}^n} \int_{-\infty}^{+\infty} e^{-s} ds dx = \int_{-\infty}^{+\infty} e^{-s} ds \int_{\mathbb{R}^n} 1_{\{w \leq s\}} dx = \int_{m_t}^{+\infty} e^{-s} Vol(\{w \leq s\}) ds
\]
\[
= e^{-m_t} \int_0^{+\infty} e^{-s} Vol(\{w \leq m_t + s\}) ds
\]
Using the bound for the volume of sublevel sets \((6)\) and \((7)\) in \((9)\), and compare with \((8)\), it’s easy to get the bound for \(|m_\ell|\).

Now we prove the estimate \((5)\) following the argument of \([1]\). We have seen \(B(x_\ell, L^{-1}) \subset \{w \leq m_\ell + 1\}\) and \(\text{Vol}(\{w \leq m_\ell + 1\}) \leq C\) by \((6)\) and uniform bound for \(m_\ell\). Then we must have \(\{w \leq m_\ell + 1\} \subset B(x_\ell, R(C, L))\) for some uniformly bounded radius \(R(C, L)\). Otherwise, the convex set \(\{w \leq m_\ell + 1\}\) would contain a convex subset of arbitrarily large volume. By the convexity of \(w\), we have \(w(x) \geq \frac{1}{R(C, L)}|x - x_\ell| + m_\ell - 1\). Since \(m_\ell\) is uniformly bounded, the estimate \((5)\) follows.

The second step is trying to bound \(|x_\ell|\). In Wang-Zhu’s \([7]\) paper, they proved the existence of Kähler-Ricci soliton on toric Fano manifold by solving the real Monge-Ampère equation corresponding to Kähler-Ricci soliton equation. But now we only consider the Kähler-Einstein equation, which in general can’t be solved because there is the obstruction of Futaki invariant.

Proposition 2 ([7]). The uniform bound of \(|x_\ell|\) for any \(0 \leq t \leq t_0\), is equivalent to that we can solve \((**)_t\), or equivalently solve \((*)_t\), for \(t\) up to \(t_0\). More precisely, (by the discussion in introduction,) this condition is equivalent to the uniform \(C^0\)-estimates for the solution \(\phi_t\) in \((*)_t\) for \(t \in [0, t_0]\).

Again we sketch the proof here.

Proof. If we can solve \((**)_t\) (or equivalently \((*)_t\)) for \(0 \leq t \leq t_0\). Then \(\{w(t) = (1 - t)\bar{u}_0 + tu; 0 \leq t \leq t_0\}\) is a smooth family of proper convex functions on \(\mathbb{R}^n\). So their minimal points are uniformly bounded in a compact set.

Conversely, assume \(|x_\ell|\) is bounded. First note that \(\phi_t = u - \bar{u}_0 = \frac{1}{t}(w_t(x) - \bar{u}_0)\).

As in Wang-Zhu [7], we consider the enveloping function:

\[
v(x) = \max_{p_\in \Lambda \cap \Delta} \langle p_\alpha, x \rangle
\]

Then \(0 \leq \bar{u}_0(x) - v(x) \leq C\), and \(Dw(\xi) \cdot x \leq v(x)\) for all \(\xi, x \in \mathbb{R}^n\). We can assume \(t \geq \delta > 0\). Then using uniform boundedness of \(|x_\ell|\)

\[
\phi_t(x) = \frac{1}{t}(w_t(x) - \bar{u}_0) = \frac{1}{t}[(w_t(x) - w_t(x_\ell)) - v(x) + (v(x) - \bar{u}_0(x)) - w_t(x_\ell)]
\]

\[\leq \delta^{-1}(Dw_t(\xi) \cdot x - v(x) - Dw_t(\xi) \cdot x_\ell) - C \leq C'
\]

Thus we get the estimate for \(\sup \phi_t\). Then one can get the bound for \(\inf \phi_t\) using the Harnack inequality in the theory of Monge-Ampère equations. For details see ([7], Lemma 3.5) (see also [6]).

By the above proposition, we have

Lemma 1. If \(R(X_\Delta) < 1\), then there exists a subsequence \(\{x_{\ell_i}\}\) of \(\{x_{\ell}\}\), such that

\[
\lim_{\ell_i - R(X_\Delta)} |x_{\ell_i}| = +\infty
\]

The observation now is that

Lemma 2. If \(R(X_\Delta) < 1\), then there exists a subsequence of \(\{x_{\ell_i}\}\) which we still denote by \(\{x_{\ell_i}\}\), and \(y_\infty \in \partial \Delta\), such that

\[
\lim_{\ell_i - R(X_\Delta)} D\bar{u}_0(x_{\ell_i}) = y_\infty
\]

This follows easily from the properness of \(\bar{u}_0\) and compactness of \(\Delta\).

We now use the key relation (See [7], Lemma 3.3, and also [1] page 29)

\[
0 = \int_{\mathbb{R}^n} Dw(x)e^{-w}dx = \int_{\mathbb{R}^n} ((1 - t)D\bar{u}_0 + tDu)e^{-w}dx
\]
Since
\[\int_{\mathbb{R}^n} Du e^{-w} dx = \int_{\mathbb{R}^n} Du \det(u_{ij}) dx = \int_{\triangle} yd\sigma = \text{Vol}(\triangle) P_c \]
where \(P_c \) is the barycenter of \(\triangle \), so
\[\frac{1}{\text{Vol}(\triangle)} \int_{\mathbb{R}^n} D\tilde{u}_0 e^{-w} dx = -\frac{t}{1-t} P_c \] (11)
We will show this vector tend to a point on \(\partial \triangle \) when \(t \) goes to \(R(X_\triangle) \). To prove this we use the defining function of \(\triangle \). Similar argument was given in the survey \([1]\), page 30.

3 Proof of Theorem 1

We now assume the reflexive polytope \(\triangle \) is defined by inequalities:
\[\lambda_r(y) \geq -1, \ r = 1, \ldots, K \] (12)
\[\lambda_r(y) = \langle v_r, y \rangle \] are fixed linear functions. We also identify the minimal face of \(\triangle \) where \(y_\infty \) lies:
\[\lambda_r(y_\infty) = -1, \ r = 1, \ldots, K_0 \]
\[\lambda_r(y_\infty) > -1, \ r = K_0 + 1, \ldots, K \] (13)
Clearly, Theorem 1 follows from

Proposition 3. If \(P_c \neq O \),
\[-\frac{R(X_\triangle)}{1-R(X_\triangle)} P_c \in \partial \triangle \]

Precisely,
\[\lambda_r \left(-\frac{R(X_\triangle)}{1-R(X_\triangle)} P_c \right) \geq -1 \] (14)
Equality holds if and only if \(r = 1, \ldots, K_0 \). So \(-\frac{R(X_\triangle)}{1-R(X_\triangle)} P_c \) and \(y_\infty \) lie on the same faces (13).

Proof. By (11) and defining function of \(\triangle \), we have
\[\lambda_r \left(-\frac{t}{1-t} P_c \right) + 1 = \frac{1}{\text{Vol}(\triangle)} \int_{\mathbb{R}^n} \lambda_r(D\tilde{u}_0) e^{-w} dx + 1 = \frac{1}{\text{Vol}(\triangle)} \int_{\mathbb{R}^n} (\lambda_r(D\tilde{u}_0) + 1) e^{-w} dx \] (15)
The inequality (14) follows from (15) by letting \(t \to R(X_\triangle) \). To prove the second statement, by (15) we need to show
\[\lim_{t \to R(X_\triangle)} \frac{1}{\text{Vol}(\triangle)} \int_{\mathbb{R}^n} \lambda_r(D\tilde{u}_0) e^{-w_{r_1}} dx + 1 \]
\[\begin{cases} = 0 & \text{for } r = 1, \ldots, K_0 \\ > 0 & \text{for } r = K_0 + 1, \ldots, N \end{cases} \] (16)
By the uniform estimate (5) and fixed volume (8), and since \(D\tilde{u}_0(\mathbb{R}^n) = \triangle^\circ \) is a bounded set, there exists \(R_\epsilon \), independent of \(t \in [0, R(X_\triangle)] \), such that
\[\frac{1}{\text{Vol}(\triangle)} \int_{\mathbb{R}^n \setminus B_{R_\epsilon}(x_i)} \lambda_r(D\tilde{u}_0) e^{-w_{r_1}} dx < \epsilon \]
and
\[\frac{1}{\text{Vol}(\triangle)} \int_{B_{R_\epsilon}(x_i)} e^{-w_{r_1}} dx < \epsilon \] (17)
Now (16) follows from the following claim.

Claim 1. Let \(R > 0 \), there exists a constant \(C > 0 \), which only depends on the polytope \(\triangle \), such that for all \(\delta x \in B_R(0) \subset \mathbb{R}^n \),
\[e^{-CR}(\lambda_r(D\tilde{u}_0(x_\ell)) + 1) \leq \lambda_r(D\tilde{u}_0(x_\ell + \delta x)) + 1 \leq e^{CR}(\lambda_r(D\tilde{u}_0(x_\ell)) + 1) \] (18)
Assuming the claim, we can prove two cases of (16). First by (10) and (13), we have
\[
\lim_{t_i \to R(X_{\triangle})} \lambda_r(D\tilde{u}_0(x_{t_i})) + 1 = \lambda_r(y_{\infty}) + 1 = \begin{cases}
0 & : r = 1, \ldots, K_0 \\
\alpha_r > 0 & : r = K_0 + 1, \ldots, N
\end{cases}
\]
(19)

1. \(r = 1, \ldots, K_0 \). \(\forall \epsilon > 0 \), first choose \(R_\epsilon \) as in (17). By (18) and (19), there exists \(\rho_\epsilon > 0 \), such that if \(|t_i - R(X_{\triangle})| < \rho_\epsilon \), then for all \(\delta x \in B_{R_\epsilon}(0) \subset \mathbb{R}^n \),
\[
0 \leq \lambda_r(D\tilde{u}_0(x_{t_i} + \delta x)) + 1 < e^{CR_\epsilon} (\lambda_r(D\tilde{u}_0)(x_{t_i})) + 1 < \epsilon
\]
in other words, \(\lambda_r(D\tilde{u}_0(x_{t_i} + \delta x)) + 1 \to 0 \) uniformly for \(\delta x \in B_{R_\epsilon}(0) \), as \(t_i \to R(X_{\triangle}) \). So when \(|t_i - R(X_{\triangle})| < \rho_\epsilon \),
\[
\frac{1}{\text{Vol}(\triangle)} \int_{\mathbb{R}^n} \lambda_r(D\tilde{u}_0)e^{-w} \, dx + 1 = \frac{1}{\text{Vol}(\triangle)} \int_{\mathbb{R}^n \setminus B_{R_\epsilon}(x_{t_i})} \lambda_r(D\tilde{u}_0)e^{-w} \, dx + \frac{1}{\text{Vol}(\triangle)} \int_{\mathbb{R}^n \setminus B_{R_\epsilon}(x_{t_i})} e^{-w} \, dx
\leq 2\epsilon + \epsilon \frac{1}{\text{Vol}(\triangle)} \int_{B_{R_\epsilon}(x_{t_i})} e^{-w} \, dx \leq 3\epsilon
\]
The first case in (16) follows by letting \(\epsilon \to 0 \).

2. \(r = K_0 + 1, \ldots, N \). We fix \(\epsilon = \frac{\epsilon}{2} \) and \(R_\epsilon \) in (17). By (18) and (19), there exists \(\rho > 0 \), such that if \(|t_i - R(X_{\triangle})| < \rho \), then for all \(\delta x \in B_{R_\epsilon}(0) \subset \mathbb{R}^n \),
\[
\lambda_r(D\tilde{u}_0(x_{t_i} + \delta x)) + 1 > e^{-CR_\epsilon} (\lambda_r(D\tilde{u}_0)(x_{t_i})) + 1 > e^{-CR_\epsilon} \frac{a_r}{2} > 0
\]
\[
\frac{1}{\text{Vol}(\triangle)} \int_{\mathbb{R}^n} \lambda_r(D\tilde{u}_0)e^{-w} \, dx + 1 \geq \frac{1}{\text{Vol}(\triangle)} \int_{B_{R_\epsilon}(x_{t_i})} (\lambda_r(D\tilde{u}_0) + 1)e^{-w} \, dx
\geq e^{-CR_\epsilon} \frac{a_r}{2} \frac{1}{\text{Vol}(\triangle)} \int_{B_{R_\epsilon}(x_{t_i})} e^{-w} \, dx
\geq e^{-CR_\epsilon} \frac{a_r}{2} \frac{1}{2} > 0
\]

Now we prove the claim. We can rewrite (18) using the special form of \(\tilde{u}_0 \) (2).
\[
D\tilde{u}_0(x) = \sum_{\alpha} \sum_{\beta} e^{<p_{\alpha}, x>} e^{<p_{\beta}, x>} p_{\alpha} = \sum_{\alpha} c_{\alpha}(x)p_{\alpha}
\]
Here the coefficients
\[
0 \leq c_{\alpha}(x) = \sum_{\beta} e^{<p_{\alpha}, x>} e^{<p_{\beta}, x>} \sum_{\beta} e^{<p_{\beta}, x>} \, \sum_{\alpha} c_{\alpha}(x) = 1
\]
So
\[
\lambda_r(D\tilde{u}_0(x)) + 1 = \sum_{\alpha} c_{\alpha}(x)(\lambda_r(p_{\alpha}) + 1) = \sum_{\{\alpha : \lambda_r(p_{\alpha}) + 1 > 0\}} c_{\alpha}(x)(\lambda_r(p_{\alpha}) + 1)
\]
Since \(\lambda_r(p_{\alpha}) + 1 \geq 0 \) is a fixed value, to prove the claim, we only need to show the same estimate for \(c_{\alpha}(x) \). But now
\[
c_{\alpha}(x_{t_i} + \delta x) = \frac{e^{<p_{\alpha}, x_{t_i} + \delta x>} e^{<p_{\alpha}, \delta x>}}{\sum_{\beta} e^{<p_{\alpha}, x_{t_i} + \delta x>} e^{<p_{\beta}, \delta x>}} \leq e^{<p_{\alpha}, \delta x>} e^{\max_{\beta} |p_{\beta}| |R|} \frac{e^{<p_{\alpha}, x_{t_i} + \delta x>}}{\sum_{\beta} e^{<p_{\beta}, x_{t_i} + \delta x>}} \leq e^{CR_\epsilon} e^{<p_{\alpha}, x_{t_i>}} = e^{CR_\epsilon} c_{\alpha}(x_{t_i})
\]
7
And similarly
\[c_\alpha(x, t_i + \delta x) \geq e^{-CR} c_\alpha(x, t_i) \]
So the claim holds and the proof is completed. \qed

4 Example

Example 1. \(X_\Delta = Bl_{p\mathbb{P}^2} \). See the figure in Introduction. \(P_c = \frac{1}{4}(\frac{1}{2}, -\frac{2}{3}), -6P_c \in \partial \Delta \), so \(R(X_\Delta) = \frac{4}{7} \).

Example 2. \(X_\Delta = Bl_{p,q \mathbb{P}^2} \), \(P_c = \frac{2}{9}(-\frac{1}{3}, -\frac{1}{3}), -\frac{21}{4}P_c \in \partial \Delta \), so \(R(X_\Delta) = \frac{21}{25} \).

\[\begin{array}{c}
\text{P}_c \\
-\frac{21}{4} \cdot P_c
\end{array} \]

References

[1] Donaldson, S.K.: Kähler geometry on toric manifolds, and some other manifolds with large symmetry, arXiv:0803.0985

[2] Oda, T.: Convex bodies and algebraic geometry-an introduction to the theory of toric varieties, Springer-Vergla, 1988

[3] Székelyhidi, G.: Greatest lower bounds on the Ricci curvature of Fano manifolds, arXiv:0903.5504

[4] Tian, G.: Canonical Metrics on Kähler Manifolds, Birkhauser, 1999

[5] Tian, G.: On stability of tangent bundles of Fano varieties. Internat. J. Math. 3, 3(1992), 401-413

[6] Tian, G.: On Kähler-Einstein metrics on certain Kähler manifolds with \(c_1(M) > 0 \), Invent. Math., 89 (1987) 225-246

[7] Wang, X.J. and Zhu, X.H.: Kähler-Ricci solitons on toric manifolds with positive first Chern class. Advances in Math. 188 (2004) 87-103

[8] Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math. 31 (1978) 339-441.

Department of Mathematics, Princeton University, Princeton, NJ 08544, USA
E-mail address: chil@math.princeton.edu