On the trapping reaction with mobile traps

Vishal Melra and Peter Grassberger

John-von-Neumann Institute for Computing, Forschungszentrum Jülich, D-52425 Jülich, Germany

(Dated: March 22, 2022)

We present Monte Carlo results for the two-species trapping reaction \(A + B \to B \) with diffusing \(A \) and \(B \) on lattices in one, two and three dimension. We use a novel algorithm which permits to simulate survival probabilities of \(A \) particles down to \(< 10^{-30} \) with high accuracy. The results for the survival probability agree much better with the exact asymptotic predictions of Bramson and Lebowitz (Phys. Rev. Lett. 61, 2397 (1988)) than with the heuristics of Kang and Redner (J. Phys. A 17, L451 (1984)). But there are very large deviations from either which show that even these simulations are far from asymptotia. This is supported by the rms. displacement of \(A \) particles which clearly show that the asymptotic regime has not been reached, at least for \(d = 2 \) and \(d = 3 \).

Even the simplest reaction diffusion systems with only two-body reactions and without particle production show very rich and not yet fully understood phenomena. One prototype is the absorption of diffusing particles on randomly located static sinks. This model, studied first by Smoluchowski nearly hundred years ago \(^1\), shows an exponential decrease of the particle density in mean field theory, but the exact asymptotic behaviour found by Donsker and Varadhan \(^2\) is a stretched exponential in any finite dimension \(d \). Another classic example, the recombination \(A + A \to A \), was studied by Feller \(^3\). It leads to \(n_A \sim t^{-1/2} \) in \(d = 1 \), as compared to the mean field solution \(n_A \sim t^{-1} \) which holds for \(d > 2 \).

Particle annihilation with two mobile species \(A \) and \(B \), either of the type \(A + B \to B \) or \(A + B \to 0 \), were studied by Ovchinnikov and Zeldovich \(^4\) and Toussaint and Wilczek \(^5\). The motivation of \(^5\) stemmed from the fate of magnetic monopoles in the early universe, but applications to condensed matter physics and chemical kinetics are of course many more.

If one starts out with equal densities for \(A \) and \(B \), \(n_A(0) = n_B(0) \), then the reaction \(A + B \to 0 \) leads to \(n \sim t^{-1/4} \). \(^6\) This is different from the cases \(n_A(0) < n_B(0) \) and \(A + B \to B \). In both these cases \(n_A \ll n_B \) for late times, and one expects identical asymptotics. This was indeed proven rigorously by Bramson and Lebowitz \(^6\) who obtained

\[
\begin{align*}
n_A(t) &\sim \begin{cases}
\exp(-\lambda_1 \sqrt{t}) & d = 1 \\
\exp(-\lambda_2 t / \ln t) & d = 2 \\
\exp(-\lambda_3 t) & d \geq 3
\end{cases}
\end{align*}
\tag{1}
\]

with unknown constants \(\lambda_d \). In contrast to this, different asymptotics had been predicted for \(A + B \to B \) and for \(A + B \to 0 \) with \(n_A(0) < n_B(0) \) by Kang and Redner \(^6\) by heuristic arguments.

Verifying Eq.\(^1\) numerically has turned out to be as difficult as verifying the Donsker-Varadhan stretched exponential. The first simulations by Kang and Redner \(^6\) agreed with their own (supposedly wrong) heuristic asymptotics. Subsequent simulations \(^7, \, 8\) were judged even by the authors as inconclusive. The main problem seems to be that there are large finite time corrections to the asymptotic behavior. Thus one would like to simulate up to very long times. But with the straightforward approaches used so far it is practically impossible to estimate survival probabilities smaller than \(\approx 10^{-8} \), even with the most powerful present day computers.

It is the purpose of this work to present simulations for the reaction \(A + B \to B \) which go far beyond this. We shall not give any results for \(A + B \to 0 \) since our special numerical methods cannot be applied to that case. More specifically we consider regular lattices on which the \(B \) particles perform independent random walks. \(A \) particles also perform random walks until they hit upon a \(B \) particle in which case they are instantaneously absorbed. Initial conditions are such that all \(B \)s are uncorrelated with homogeneous concentration \(c \). Since \(A \) particles do not interact with each other, their concentration is irrelevant. In the actual simulations we shall use either one or two \(A \)s in the initial configuration. Notice that in this model the \(B \) particles act as catalysts, and their distribution is Poissonian at any time, if they start out independently at \(t = 0 \).

Our algorithm is related to an algorithm used recently \(^7\) for the trapping (Donsker-Varadhan) problem. There we were able to clarify the cross-over from the mean field type to the stretched exponential behaviour. In the present case we shall see that – despite going to much longer times than in earlier simulations – we still do not yet fully understand the cross-over to the Bramson-Lebowitz asymptotics.

The algorithm has several essential ingredients. The first is that we use cloning (“enrichment”) of configurations with surviving \(A \) particles and a bias for the diffusion of \(A \) such that less of them are absorbed. This bias is compensated by suitably chosen weights, i.e. we always deal with nontrivially weighted ensembles. On the other hand, the simulation is stopped as soon as one of the \(A \)s is absorbed, or if the weight of the configuration is too small. Thus all our results are based on conditional probability distributions, conditioned on the survival of all \(A \)s. These features are implemented by PERM \(^8\) which is a general growth method (using ‘sequential importance sampling with resampling’ in the sense of \(^9\)) and has been very successful in a large number of problems \(^10, \, 11\).
Assume that we have a single A (the case for kA particles with $k > 1$ is straightforward) which has arrived at site i at time t. The fact that we condition on those events where A is not absorbed means that there cannot be a B at this site. Thus the homogeneity of the unconditioned distribution is broken, and an effective hole in the B distribution is introduced. For times $> t$ this hole makes a random walk. If it meets a hole produced at a time $\neq t$, the two recombine.

In principle one could simulate these holes explicitly, i.e. one could simulate the As in a background of B where a B particle (sic!) is removed each time it hits an A. We indeed did perform such simulations. They agreed with straightforward simulations not using PERM or any conditioning and were more accurate, but the accuracy of both type of simulations was rather poor in comparison with our final algorithm.

Our final ingredient is that we do an exact summation over the B paths. This depends crucially on the fact that the B distribution is Poissonian. The latter is still true for the conditioned distribution (it would not be true in the reaction $A + B \rightarrow 0$, therefore our method cannot be used for it). A Poisson distribution is uniquely characterized by its mean. The evolution of this mean is described by a modified diffusion equation. More precisely, we describe the B density by a homogeneous background c minus a density $\rho(i,t)$ of holes. The latter is at every time step set equal to c at the actual A position, but otherwise evolves according to the simple diffusion equation $\rho(i,t+1) = (2d)^{-1} \sum_{j \neq i} \rho(j,t)$. Its initial condition is $\rho(i,0) = 0$. At each time step the A (which is assumed to be at site i) has a chance $\exp(\rho(i,t) - c)$ to be absorbed, i.e. the weight of the event in the conditioned ensemble decreases by a factor $\exp(c - \rho(i,t))$. The algorithm used in [11] for the trapping problem is just a simplification where we omit the diffusion of the holes.

All our simulations were done on workstations, with a total of a few hundred hours of CPU time. All results were carefully checked for small t against straightforward brute force simulations with the most simple algorithm. In addition we also made simulations with algorithms of intermediate complexity and efficiency.

We first discuss results for $d = 1$. Here we can use lattices so large that none of the holes ever reaches the boundary, thus we have no finite size effects at all. In Fig.1a we show the survival chances $P_A(t)$ of a single A particle and of a pair of particles which started at the same site. Although they become as small as 10^{-38}, the statistical errors are much smaller than the thickness of the lines. The fact that P_A for a pair is larger that the square of P_A for a single particle is easily understood: If already one A particle has survived in some region, there are less than average B particles in this region, and the second A particle has a bigger survival chance. Theoretically we expect $P_A(t) \sim \exp(-const \sqrt{t})$, at least for a single particle. In Fig.1b we thus show $\sqrt{t}\ln P_A(t)$ on a semi-logarithmic scale. Error bars are here < 0.001. Thus the decline for $t > 1000$ is statistically highly significant for both curves. Unless we accept that there is an error in [11], we have to conclude that at least this decline of $-\sqrt{t}\ln P_A(t)$ for a single A particle is a finite t effect, and that the true asymptotic behaviour sets in at $t \gg 10^4$. We also compared our data with the prediction $-\ln P_A(t) \sim t^{-1/4}$ of [12], with even worse agreement. Although that latter prediction was for $A + B \rightarrow B$, $n_A(0) < n_B(0)$, we pointed out already that both models should show the same asymptotics. We thus conclude that the data are in rough agreement with [11], but the very big deviations are surprising (in particular since they are not monotonic!) and not understood.

The mean squared displacement $\langle R_A^2 \rangle$ of the A particle is shown in Fig.2. In this figure we also show the squared distance between two A particles which started off simultaneously at the same site. We see that ΔR increases less fast than R, indicating an effective attraction mediated by the B particles: If already one A particle has survived in some region, there are less than average B particles in this region, and the second A particle will not only survive longer, but it will also survive preferentially in a region close to the first one. But this appears...
to be a weak effect. The most economic conclusion from Fig.2 is that both curves converge to the same scaling behaviour. $R^2 \sim (\Delta R)^2 \sim t^\nu$ with $\nu = 0.5$ to 0.6. But any determination of a critical index should be taken with very big caution in view of Fig.1: we should not take any determination of a critical index should be taken with much shorter times, if we want to avoid excessive CPU times or large finite size corrections. For $d = 2$, results for $t^{-1} \ln P_A(t)$ with $c = 0.5$ are shown in Fig.3, together with $-t^{-1} \ln t \ln P_A(t)$. For large values of t the data agree much better with Eq.(1) than with the alternative prediction $- \ln P_A(t) \sim at^{-1/2}$ of [8]. The factor $1/\ln t$ in Eq.(1) seems to be correct asymptotically, although it makes agreement worse for small t. Anyhow, deviations from Eq.(1) are substantial, and even for the largest t where the curve appears to be horizontal in the figure (and where, by the way, $P_A(t) \approx 10^{-98}$) it still shows a definite curvature.

The fact that asymptotia cannot have been reached by these 2-d data is most clearly seen from $\langle R^2_A \rangle$. It is shown in Fig.4, together with the analogous data from $d = 1$ and $d = 3$. To make the point particularly clear we show there $\langle R^2_A \rangle / \sqrt{t}$ against t. If $d = 2$ is the upper critical dimension for $A+B \to B$ as suggested by Eq.(1), then we should expect $\langle R^2_A \rangle \sim t$ up to logarithmic corrections in $d = 2$. We also should expect that the data for $d = 2$ should fall between those for $d = 3$ (where we expect $\langle R^2_A \rangle \sim t^{\nu}$), and $d = 1$ (where $\langle R^2_A \rangle \sim t^{\nu}$ with $\nu < 1$). Figure 4 shows a completely different behaviour. On the one hand, $\langle R^2_A \rangle$ is very far from being $\sim t$, on the other hand the data are not monotonic with d.

One might expect that asymptotic behaviour is observed earlier for higher values of the concentration c. We performed therefore also 2-d simulations with $c = 0.7$ and $c = 1.0$. As expected, P_A and $\langle R^2_A \rangle$ both decreased with c, but the strange time dependence of $\langle R^2_A \rangle$ persisted.

Finally, we show in Fig.5 the survival probability in $d = 3$, again for $c = 0.5$. More precisely, we show

FIG. 2: Full line: mean squared displacement of the A particle in $d = 1$, for $c = 0.5$. Broken line: mean squared distance between two A particles, when conditioned on survival of both.

FIG. 3: Full line: $-t^{-1} \ln P_A(t)$ for $d = 2$ and $c = 0.5$; Broken line: $-t^{-1} \ln t \ln P_A(t)$ from the same data. The horizontal scale is logarithmic, the vertical is linear.

FIG. 4: Log-log plot of mean squared displacements in 1, 2 and 3 dimensions, divided by \sqrt{t}.

FIG. 5: Log-linear plot of $-t^{-1} P_A(t)$ for $d = 3$, $c = 0.5$.

\[\ln P_A(t)/t. \] It depends quite strongly on \(t \), but its curvature is consistent with convergence to Eq. (1) without further surprises.

In conclusion, we have performed simulations of a trapping model in which both traps and trapped particles are mobile with equal mobilities. The simulations, undertaken in the hope of understanding the precise cross-over to the exactly known asymptotic behaviour, are much more extensive than previous simulations of this model, in the sense of reaching much longer times and much lower survival probabilities. This was possible due to a novel algorithm. In spite of the vastly improved numerics we have not been able to understand all details of the model. Some of our results are indeed quite puzzling. On the other hand, our methods can be possibly applied also to other models where absorbers are free particles undisturbed by the particles which they absorb. One class of such models are e.g. gated reaction-diffusion systems of the type \(A + B \to 0 \) with stochastically changing reaction rates \([15]\).

Acknowledgement: We thank Walter Nadler for discussions and a careful reading of the manuscript.

[1] M.V. Smoluchowski, Phys. Z. 17, 557, 585 (1916).
[2] M. Donsker and S.R.S. Varadhan, Commun. Pure Appl. Math. 28, 525 (1975); 32, 721 (1979).
[3] W. Feller, An Introduction to Probability Theory and its Applications, v. 1, 3rd ed., Wiley, New York (1968).
[4] A.A. Ovchinnikov and Ya.B. Zeldovich, Chem. Phys. 28, 214 (1978).
[5] D. Toussaint and F. Wilczek, J. Chem. Phys. 78, 2642 (1983).
[6] M. Bramson and J.L. Lebowitz, Phys. Rev. Lett. 61, 2397 (1988); J. Stat. Phys. 62, 297 (1991).
[7] K. Kang and S. Redner, Phys. Rev. Lett. 52, 955 (1984).
[8] S. Redner and K. Kang, J. Phys. A 17, L451 (1984).
[9] H. Schnörer, I.M. Sokolov, and A. Blumen, Phys. Rev. A 42, 7075 (1990).
[10] I.M. Sokolov, H. Schnörer, and A. Blumen, Phys. Rev. A 44, 2388 (1991).
[11] V. Mehra and P. Grassberger, cond-mat/0107528 (2001).
[12] P. Grassberger, Phys. Rev. E 56, 3682 (1997).
[13] J.S. Liu, Monte Carlo Strategies in Scientific Computing, Springer Series in Statistics (Springer, New York 2001).
[14] P. Grassberger and W. Nadler, cond-mat/0010265 (2000).
[15] O. Benichou, M. Moreau and G. Oshanin, Phys. Rev. E 61, 3388 (2000).