TOPOLOGIZATION OF SETS ENDOowered WITH AN ACTION OF A MONOID

T. BANAKH, I. PROTASOV, O. SIPACHEVA

ABSTRACT. Given a set X and a family G of functions from X to X we pose and explore the question of the existence of a non-discrete Hausdorff topology on X such that all functions $f \in G$ are continuous. A topology on X with the latter property is called a G-topology. The answer will be given in terms of the Zariski G-topology ζ_G on X. This is the topology generated by the subbase consisting of the sets $\{x \in X : f(x) \neq g(x)\}$ and $\{x \in X : f(x) \neq c\}$ where $f, g \in G$, $c \in X$. We prove that for a countable submonoid $G \subseteq X^X$ the G-act X admits a non-discrete Hausdorff G-topology if and only if the Zariski G-topology ζ_G is not discrete if and only if X admits 2^c normal G-topologies.

1. Principal Problems

In this paper we consider the following general problem:

Problem 1.1. Given a set X and a family G of functions from X to X detect if X admits a non-discrete Hausdorff (or normal) topology such that all functions $g \in G$ are continuous.

Since the composition of continuous functions is continuous, we lose no generality assuming that the family G is a subsemigroup of the semigroup X^X of all functions $X \to X$, endowed with the operation of composition. Also we can assume that G contains the identity function id_X of X and hence G is a submonoid of X^X. Thus it is natural to consider Problem 1.1 in the context of G-acts, i.e. sets endowed with an action of a monoid G. The two-sided unit of the monoid G will be denoted by 1_G. An action of a monoid G on a set X is a function $\alpha : G \times X \to X$, $\alpha : (g, x) \mapsto g(x)$ that has two properties:
- $1_G(x) = x$ for all $x \in X$ and
- $f(g(x)) = (fg)(x)$ for all $f, g \in G$ and $x \in X$.

A topology τ on a G-act X is called a G-topology if for every $g \in G$ the shift $g : X \to X$, $g : x \mapsto g(x)$, is continuous. A G-act X is called (normally) G-topologizable if X admits a (normal) Hausdorff G-topology. A topology τ on a set X is called normal if the topological space (X, τ) is normal in the sense that X is a T_1-space such that any two disjoint closed subsets in X have disjoint open neighborhoods.

In this terminology Problem 1.1 can be rewritten as follows.

Problem 1.2. Find necessary and sufficient conditions of (normal) G-topologizability of a given G-act X.

For G-acts endowed with an action of a group G this problem has been considered in [1]. For countable monoids G, Problem 1.2 will be answered in Theorem 5.1 proved in Section 5. The answer will be given in terms of the Zariski G-topology on X, defined and studied in Section 2. In Section 5 we investigate largest G-topologies, generated by (special) filters.

2. The Zariski G-topology on a G-act

In this section we define the Zariski G-topology on a G-act X and study this topology on some concrete examples of G-acts.

Definition 2.1. For a monoid G and a G-act X the Zariski G-topology ζ_G on X is the topology generated by the subbase ζ_G consisting of the sets $\{x \in X : f(x) \neq g(x)\}$ and $\{x \in X : f(x) \neq c\}$ where $f, g \in G$ and $c \in X$.

The following easy fact follows immediately from the definition.

Proposition 2.2. For any G-act X the Zariski G-topology ζ_G satisfies the separation axiom T_1 and lies in any Hausdorff G-topology on X.
Now let us introduce a cardinal characteristic \(\psi(x, \zeta_G) \) of the subbase \(\tilde{\zeta}_G \) of the Zariski \(G \)-topology \(\zeta_G \) called the pseudocharacter of \(\tilde{\zeta}_G \) at a point \(x \in X \). In fact, the pseudocharacter \(\psi(x, F) \) can be defined for any family \(F \) of subsets of \(X \). Given a point \(x \in X \) let
\[
F(x) = \{ X \} \cup \{ F \in F : x \in F \}
\]
and define the pseudocharacter of \(F \) at \(x \) as
\[
\psi(x, F) = \min \{ |U| : U \subset F(x) \text{ and } \cap U = \cap F(x) \}.
\]
It \(\tau \) is the topology on \(X \) generated by the subbase \(F \), then \(\tau(x) \) is the family of all open neighborhoods of \(x \) and \(\psi(x, \tau) \) is the usual pseudocharacter of the point \(x \) in the topological space \((X, \tau) \). It is easy to see that \(\psi(x, \tau) = \psi(x, F) \) for any non-isolated point \(x \) in \((X, \tau) \). If \(x \) is isolated in \((X, \tau) \), then \(\psi(x, \tau) = 1 \) while \(1 \leq \psi(x, F) < \aleph_0 \), so the pseudocharacter \(\psi(x, \tilde{\zeta}_G) \) carries more information than \(\psi(x, \zeta_G) \) in case of an isolated point \(x \) in \((X, \zeta_G) \). If \(x \) is non-isolated, then \(\psi(x, \tilde{\zeta}_G) = \psi(x, \zeta_G) \).

In the algebraic language the pseudocharacter \(\psi(x, \tilde{\zeta}_G) \) equals the smallest number of inequalities of the form
\[
f(x) \neq g(x) \text{ or } f(x) \neq c \text{ where } f, g \in G, c \in X
\]
in a system of inequalities whose unique solution is \(x \).

Now let us consider the Zariski \(G \)-topology on some concrete examples of \(G \)-acts.

Example 2.3. Let \(X \) be an infinite set endowed with the natural action of the group \(G \) of all bijective functions \(f : X \to X \) that have finite support
\[
\text{supp}(f) = \{ x \in X : f(x) \neq x \}.
\]
It is easy to see that \(\psi(x, \zeta_G) = 1 \) and \(\psi(x, \tilde{\zeta}_G) = 2 \) for any point \(x \in X \). Consequently, the Zariski \(G \)-topology \(\zeta_G \) on \(X \) is discrete and the \(G \)-act \(X \) is not \(G \)-topologizable.

Each group \(G \) can be considered as an \(S \)-act for many natural actions of various submonoids \(S \) of the monoid \(G^G \). We define 6 such natural submonoids of \(G^G \):

- \(G_l \) is the subgroup of \(G^G \) that contains all left shifts \(l_a : x \mapsto ax \) of \(G \) for \(a \in G \);
- \(G_r \) is the subgroup of \(G^G \) that contains all right shifts \(r_a : x \mapsto xa \) of \(G \) for \(a \in G \);
- \(G_s \) is the subgroup of \(G^G \) that contains all two-sided shifts \(s_{a,b} : x \mapsto axb \) of \(G \) for \(a, b \in G \);
- \(G_q \) is the subgroup of \(G^G \) that contains all bijections of the form \(f : x \mapsto ax^r b \) where \(a, b \in G \) and \(r, s \in \{ 1, -1 \} \);
- \(G_m \) is the smallest submonoid of \(G^G \) that contains all functions of the form \(f : x \mapsto ax^m b \) where \(a, b \in G \) and \(m \in \mathbb{Z} \);
- \(G_p \) is the smallest submonoid that contains the subgroup \(G_q \) and together with any two functions \(f, g \in G_p \) contains their product \(f \cdot g : x \mapsto f(x) \cdot g(x) \).

Functions from the families \(G_m \) and \(G_p \) will be called monomials and polynomials on the group \(G \), respectively.

It is clear that
\[
G_l \cup G_r \subset G_s \subset G_q \subset G_m \subset G_p
\]
and hence
\[
\zeta_{G_l} \cup \zeta_{G_r} \subset \zeta_{G_s} \subset \zeta_{G_q} \subset \zeta_{G_m} \subset \zeta_{G_p}.
\]

A group \(G \) endowed with a \(G_l \)-topology (resp. \(G_r \)-topology, \(G_s \)-topology, \(G_q \)-topology) is called left-topological (resp. right-topological, semi-topological, quasi-topological).

Now for each monoid \(S \in \{ G_l, G_r, G_s, G_q, G_m, G_p \} \) we shall analyse the structure of the Zariski \(S \)-topology on the group \(G \). By the cofinite topology on a set \(X \) we understand the topology
\[
\tau_1 = \{ \emptyset \} \cup \{ X \setminus F : F \text{ is a finite subset of } X \}.
\]

The following remark can be easily derived from the definitions.

Remark 2.4. For any group \(G \) the Zariski topologies \(\zeta_{G_l} \) and \(\zeta_{G_r} \) on \(G \) coincide with the cofinite topology on \(G \). If \(G \) is infinite, then the topologies \(\zeta_{G_l} \) and \(\zeta_{G_r} \) are not Hausdorff.

Remark 2.5. For any infinite group \(G \) the Zariski topologies \(\zeta_{G_s} \) and \(\zeta_{G_q} \) are not discrete. This follows from a deep result of Y.Zelenyuk [14, 15] who proved that each infinite group \(G \) admits a non-discrete Hausdorff topology with continuous two-sided shifts and continuous inversion.
Remark 2.6. There is a countable infinite group G whose Zariski G_m-topology ζ_{G_m} is discrete, see [12, p.70].

Remark 2.7. For a group G endowed with the natural action of the monoid G_p of all polynomial functions on G, the Zariski G_p-topology ζ_{G_p} coincides with the usual Zariski topology on the group G, studied in [2], [13], [3]. By the classical Markov’s result [9], a countable group G is topologizable (which means that G admits a non-discrete Hausdorff topology that turns G into a topological group) if and only if the Zariski topology ζ_{G_p} is not discrete. Countable non-topologizable groups were constructed in [10] and [8]. For such groups G the Zariski G_p-topology ζ_{G_p} is discrete.

Remark 2.8. The Markov’s topologizability criterion is not valid for uncountable groups: in [3] Hesse constructed an example of an uncountable non-topologizable group G whose Zariski topology ζ_{G_p} is discrete.

Therefore, for an infinite group G, the Zariski G_q-topology ζ_{G_q} is always not discrete while the topology ζ_{G_m} can be discrete (for some countable non-topologizable groups).

If a group G is abelian, then the Zariski topology ζ_{G_q} on G coincides with the topologies ζ_{G_l} and ζ_{G_r} and hence is cofinite. However, for non-abelian groups G the topology ζ_{G_q} can have rather unexpected properties.

Example 2.9 (Dicranjan-Toller). Let H be a finite discrete topological group with trivial center (for example, let $H = \Sigma_3$ be the group of bijections of a 3-element set). For any cardinal κ the Zariski topologies ζ_{G_κ}, ζ_{G_q} and ζ_{G_p} on the group $G = H^\kappa$ coincide with the Tychonoff product topology τ on $G = H^\kappa$ and hence are compact, Hausdorff, and have pseudocomponent $\psi(x, \tau) = \kappa < 2^\kappa = |G_a| = |G_r| = |G_p| = |G|$ at each point $x \in G$.

Proof. Observe that the Tychonoff product topology τ on $G = H^\kappa$ turns the group G into a compact topological group. Then each polynomial map on G is continuous and each set $U \in \zeta_{G_q}$ is open in X. Consequently, $\zeta_{G_q} \subset \zeta_{G_\kappa} \subset \zeta_{G_p} \subset \tau$. The Tychonoff product topology τ is generated by the subbasic sets

$$U_{\alpha,h} = \{x \in X : \text{pr}_{\alpha}(x) = h\}$$

where $\alpha \in \kappa$, $h \in H$ and $\text{pr}_\alpha : H^\kappa \rightarrow H$ denotes the αth coordinate projection. To prove that $\zeta_{G_\kappa} = \zeta_{G_q} = \zeta_{G_p} = \tau$ it suffices to check that each set $U_{\alpha,h}$ belongs to the topology ζ_{G_q}.

Consider the embedding $i_\alpha : H \rightarrow H^\kappa$ that assigns to each element $x \in H$ the point $i_\alpha(x) \in H^\kappa$ such that $\text{pr}_\alpha \circ i_\alpha(x) = x$ and $\text{pr}_\beta \circ i_\alpha(x) = 1_H$ for all $\beta \neq \alpha$.

Given a point $h \in H$, consider the finite set $A_h = \{(a, b) \in H \times H : ah \neq hb, (a,b) \in A_h\}$ and observe that $\{h\} = \bigcap_{(a, b) \in A_h} \{x \in H : x^{-1}ax = b\}$. Indeed, by the triviality of the center of H, for any $x \in H \setminus \{h\}$ there is an element $a \in H$ such that $(xh^{-1})a \neq a(xh^{-1})$ and hence $h^{-1}ah \neq x^{-1}ax$. Put $b = x^{-1}ax$ and observe that $h^{-1}ah \neq b$ and hence $(a, b) \in A_h$.

For each pair $(a, b) \in A_h$ consider the left and right shifts $l_a : x \mapsto i_\alpha(a) \cdot x$ and $r_b : x \mapsto x \cdot i_\alpha(b)$ of the group $G = H^\kappa$. These shifts generate the subbasic set

$$U_{a,b} = \{x \in X : \text{pr}_{\alpha}(a) = x \neq x \cdot i_\alpha(b)\} = \{x \in X : l_a(x) \neq r_b(x)\} \in \zeta_{G_\kappa}.$$

It remains to observe that

$$\text{pr}_{\alpha}^{-1}(h) = \bigcap_{(a, b) \in A_h} U_{a,b} \in \zeta_{G_\kappa},$$

witnessing that $\tau = \zeta_{G_p} = \zeta_{G_q} = \zeta_{G_\kappa}$.

Remark 2.10. In fact, the Zariski topologies $\zeta_{G_l}, \zeta_{G_r}, \zeta_{G_q}$ can be defined on each semigroup G. If G is commutative, then these Zariski topologies coincide. For the monoid $G = (\mathbb{N}, \max)$ the Zariski topology ζ_{G_q} is discrete. Indeed, for each $n \in \mathbb{N}$, the singleton $\{n\}$ belongs to the topology ζ_{G_q} as

$$\{n\} = \{x \in \mathbb{N} : \max\{x, n\} \neq n\} \cap \bigcap_{k < n} \{x \in \mathbb{N} : x \neq k\}.$$

This implies that the monoid $G = (\mathbb{N}, \max)$ is not G_q-topologizable.

3. G-topologies on G-acts, generated by special filters

In this section we describe and study G-topologies on G-acts, generated by filters.

A filter on a set X is a family \mathcal{F} of subsets of X such that

- $\emptyset \notin \mathcal{F};$
- $A \cap B \in \mathcal{F}$ for any sets $A, B \in \mathcal{F};$
- $A \cup B \in \mathcal{F}$ for any sets $A \in \mathcal{F}$ and $B \subset X.$
By the pseudocharacter $\psi(\varphi)$ of a filter φ we understand the smallest cardinality $|F|$ of a subfamily $F \subseteq \varphi$ such that $\bigcap F = \cap \varphi$. The character $\chi(\varphi)$ of a filter φ equals the smallest cardinality of a subfamily $F \subseteq \varphi$ such that each set $F \subseteq \varphi$ contains some set $F \in F$. Observe that the character $\chi(x, \tau)$ of a topological space (X, τ) at a point x can be defined as the character $\chi(x, \tau)$ of the neighborhood filter $\tau_x = \{U \in \tau : x \in U\}$.

For a filter φ on X consider the family

$$\varphi^+ = \{E \subseteq X : \forall F \in \varphi, F \cap E \neq \emptyset\}$$

equal to the union of all filters on X that contain φ. It is easy to check that for each $A \subseteq X$ with $A \notin \varphi$, we get $X \setminus A \in \varphi^+$.

We shall say that a filter φ on a topological space X converges to a point x_0 if each neighborhood $U \subseteq X$ of x_0 belongs to the filter φ.

Now assume that G is a monoid, X is a G-act and φ is a filter on X such that $\bigcap \varphi = \{x_0\}$ for some point x_0. Then we can consider the largest G-topology τ_φ on X for which the filter φ converges to x_0. This topology admits the following simple description:

Proposition 3.1. The topology τ_φ consists of all sets $U \subseteq X$ such that for any $g \in G$ with $x_0 \in g^{-1}(U)$ the preimage $g^{-1}(U)$ belongs to the filter φ.

Now our strategy is to detect filters φ on X generating “nice” G-topology τ_φ on X.

Definition 3.2. Let κ be a cardinal. An injective transfinite sequence $(x_\alpha)_{\alpha < \kappa}$ of points of a G-act X is called special if there is an enumeration $G = \{g_\alpha\}_{\alpha < \kappa}$ of the monoid G such that for all ordinals $\alpha < \kappa$ and $\beta, \gamma, \delta < \alpha$ we get

1. if $g_\beta(x_\alpha) \neq g_\gamma(x_\alpha)$, then $g_\beta(x_\alpha) \neq g_\gamma(x_\alpha)$;
2. if $g_\beta(x_\alpha) \neq g_\gamma(x_\beta)$, then $g_\beta(x_\alpha) \neq g_\gamma(x_\beta)$.

Definition 3.3. A filter φ on a G-act X is called special if for some cardinal κ there is a special sequence $(x_\alpha)_{\alpha < \kappa}$ in X such that $\bigcap \varphi = \{x_0\}$ and $\{x_0\} \cup \{x_\beta : \beta > \alpha\} \in \varphi$ for all ordinals $\alpha < \kappa$. In this case the set $X_0 = \{x_\alpha\}_{\alpha < \kappa}$ is called the special support of φ.

For a special filter φ on X the G-topology τ_φ has many nice properties.

Theorem 3.4. For any special filter φ on a G-act X with special support X_0 and the intersection $\bigcap \varphi = \{x_0\}$, the G-topology τ_φ has the following properties:

1. the topological space (X, τ_φ) is normal;
2. for any set $F \subseteq \varphi$ the set $G(F) = \{g(x) : g \in G, x \in F\}$ is closed-and-open in (X, τ_φ) and $X \setminus G(F)$ is discrete in (X, τ_φ);
3. $\{F \subseteq X_0 : F \subseteq \varphi\} = \{U \subseteq X_0 : x_0 \in U \subseteq \tau_\varphi\}$;
4. $\psi(x_0, \tau_\varphi) = \psi(\varphi)$ and $\chi(x_0, \tau_\varphi) \geq \chi(\varphi)$.

Proof. By definition, the special support X_0 of φ admits an enumeration $X_0 = \{x_\alpha\}_{\alpha < \kappa}$ that has the properties (1), (2) from Definition 3.2 for some enumeration $G = \{g_\alpha\}_{\alpha < \kappa}$ of the monoid G. For every ordinal $\alpha < \kappa$ consider the set $X_{>\alpha} = \{x_\beta : \alpha < \beta < \kappa\}$ and observe that $\{x_0\} \cup X_{>\alpha} \in \varphi$ according to Definition 3.3. Now we shall prove the required properties of the G-topology τ_φ.

Claim 3.5. The topology τ_φ satisfies the separation axiom T_1.

Proof. Given any point $x \in X$, we need to show that $X \setminus \{x\} \in \tau_\varphi$. Since the special filter φ contains the sets $\{x_0\} \cup X_{>\alpha}$, $\alpha < \kappa$, it suffices for every map $g \in G$ with $g(x_0) \in X \setminus \{x\}$ to find $\alpha < \kappa$ such that $g(X_{>\alpha}) \subset X \setminus \{x\}$. If $x \notin G(X_0)$, then $g(X_{>\alpha}) \subset G(X_0) \subset X \setminus \{x\}$ and we are done.

So, assume that $x \in G(X_0)$ and find ordinals $\gamma, \delta < \kappa$ such that $x = g_\gamma(x_\delta)$. Also find an ordinal $\beta < \kappa$ such that $g_\beta = g$. Since $g_\beta(x_\delta) = g(x_\delta) \neq x = g_\gamma(x_\delta)$, the condition (2) of Definition 3.2 guarantees that $g(x_\alpha) = g_\beta(x_\alpha) \neq g_\gamma(x_\delta) = x$ for all $\alpha > \max\{\beta, \gamma, \delta\}$. Consequently, for the ordinal $\alpha = \max\{\beta, \gamma, \delta\}$ we get the required inclusion $g(X_{>\alpha}) \subset X \setminus \{x\}$.

Claim 3.6. The topology τ_φ is normal.

Proof. Let A_0, B_0 be two disjoint closed subsets in the topological space (X, τ_φ). Consider the sequences of sets $(A_n)_{n \in \omega}$ and $(B_n)_{n \in \omega}$ defined by the recursive formulas:

$$A_{n+1} = A_n \cup \{g_\alpha(x_\gamma) : \alpha < \gamma < \kappa, g_\alpha(x_\gamma) \in A_n, g_\alpha(x_\gamma) \notin B_n\}$$

and

$$B_{n+1} = B_n \cup \{g_\alpha(x_\gamma) : \alpha < \gamma < \kappa, g_\alpha(x_\gamma) \in B_n, g_\alpha(x_\gamma) \notin A_n\}$$

for each $n \in \omega$. Clearly, $A_0 \subseteq A_n$ and $B_0 \subseteq B_n$ for all $n \in \omega$ and $A_0 \cup B_0 \subseteq A_{n+1}$ and $A_0 \cup B_0 \subseteq B_{n+1}$.

Then $x_\alpha \in \tau_\varphi$ for some $\alpha < \kappa$. Since $x_\alpha \notin A_0$, it follows that $x_\alpha \notin A_n$ for all $n \in \omega$. Since $x_\alpha \notin B_0$, it follows that $x_\alpha \notin B_n$ for all $n \in \omega$. Hence x_α is not in any $g(\varphi)$, which is a contradiction. Therefore, τ_φ is normal.

References:

4. T. Banakh, I. Protasov, O. Sipachev, "A..."
and

\[B_{n+1} = B_n \cup \{ g_\beta(x_\delta) : \beta < \delta < \kappa, \ g_\beta(x_\delta) \in B_n, \ g_\beta(x_\delta) \notin A_n \}. \]

We claim that the sets \(A_x = \bigcup_{n \in \omega} A_n \) and \(B_x = \bigcup_{n \in \omega} B_n \) are open disjoint neighborhoods of the sets \(A_0 \) and \(B_0 \) in \((X, \tau_x)\). First we check that these sets are disjoint. Assuming the opposite, we can find numbers \(n, m \in \omega \) such that \(A_{n+1} \cap B_{m+1} = \emptyset \) but \(A_n \cap B_m = \emptyset = A_{n+1} \cap B_m \). Choose any point \(c \in A_{n+1} \cap B_{m+1} \). By the definitions of the sets \(A_{n+1} \) and \(B_{m+1} \), the point \(c \) is of the form \(g_\beta(x_\delta) = c = g_\beta(x_\delta) \) for some ordinals \(\alpha < \gamma < \kappa \) and \(\beta < \delta < \kappa \) such that \(g_\beta(x_\delta) \in A_n, \ g_\beta(x_\delta) \in B_m \). It follows from \(A_n \cap B_m = \emptyset \) that \(g_\beta(x_\delta) \neq g_\beta(x_\delta) \). The property (1) of Definition 3.2 guarantees that \(\gamma \neq \delta \). Without loss of generality, \(\delta > \gamma \).

Since \(g_\beta(x_\delta) \neq g_\beta(x_\delta) \), the property (2) of Definition 3.2 guarantees that \(g_\beta(x_\delta) \neq g_\beta(x_\delta) \) and this is the desired contradiction showing that \(A_x \cap B_x = \emptyset \).

Now let us show that the set \(A_x \) is open in \((X, \tau_x)\). Given an ordinal \(\alpha < \kappa \) with \(g_\alpha(x_\delta) \in A_x \), we should find a set \(F \in \varphi \) with \(g_\alpha(F) \in A_x \). Let \(n \in \omega \) be the smallest number such that \(g_\alpha(x_\delta) \in A_n \). We claim that the set \(F = \{ x_0 \} \cup \{ x \in X_{>\alpha} : g_\alpha(x) \notin B_n \} \) belongs to the filter \(\varphi \). Assuming that \(F \notin \varphi \), we conclude that the set \(X_{>\alpha} \setminus F \) belongs to the family \(\varphi^+ \). Then for \(k = n \) the set \(E_k = \{ x \in X_{>\alpha} : g_\alpha(x) \notin B_k \} \) belongs to the family \(\varphi^+ \). Let \(k \leq n \) be the smallest number such that \(E_k \in \varphi^+ \).

We claim that \(k > 0 \). Indeed, since \(B_0 \) is a closed subset in \((X, \tau_x)\), its complement \(X \setminus B_0 \) is an open neighborhood of the point \(g_\alpha(x_\delta) \in A_n \). Then the definition of the topology \(\tau_x \) yields a set \(F \in \varphi \) such that \(g_\alpha(F) \subset X \setminus B_0 \). Since \(F_0 \) intersects \(E_k \) and is disjoint with \(E_0 \), we conclude that \(k > 0 \).

Since \(\varphi^+ \notin E_{k-1} \subset E_k \in \varphi^+ \), the set \(E_k \setminus E_{k-1} \) is not empty and hence contains some point \(x_\gamma \), with \(\gamma > \alpha \). Then \(g_\alpha(x_\gamma) \notin B_k \setminus B_{k-1} \) and hence \(g_\alpha(x_\gamma) = g_\beta(x_\delta) \) for some ordinals \(\beta < \delta < \kappa \) with \(g_\beta(x_\delta) \in B_{k-1} \).

By the condition (1) of Definition 3.2 \(\delta \neq \gamma \) (as \(g_\alpha(x_\gamma) = g_\beta(x_\delta) \) and \(g_\alpha(x_\delta) \neq g_\beta(x_\delta) \)). If \(\delta > \gamma \), then the equality \(g_\alpha(x_\gamma) = g_\beta(x_\delta) \) is forbidden by the condition (2) of Definition 3.2 as \(B_{k-1} \neq g_\alpha(F) \neq g_\beta(x_\delta) \). If \(\gamma > \delta \), then the equality \(g_\alpha(x_\gamma) = g_\beta(x_\delta) \) also is forbidden by (2) because \(\alpha \neq g_\alpha(x_\delta) \neq g_\beta(x_\delta) \) belongs. The obtained contradiction shows that \(F \in \varphi \) and \(g_\alpha(F) \subset A_{<k} \subset A_x \), witnessing that the set \(A_x \) is open.

By analogy we may prove that the set \(B_x \) is open in \((X, \tau_x)\). Since \(A_x \) and \(B_x \) are disjoint open neighborhoods of the closed sets \(A_0, B_0 \), the topological \(T_1 \)-space \((X, \tau_x)\) is normal.

The definition of the topology \(\tau_x \) implies that for every set \(F \in \varphi \) the set \(G(F) = \{ g(x) : g \in G, x \in F \} \) is closed and-open in \((X, \tau_x)\) and \(X \setminus G(F) \) is discrete in \((X, \tau_x)\).

Claim 3.7. \(F \cap X_0 : F \in \varphi = \{ U \cap X_0 : x_0 \in U \in \tau_x \} \) and hence \(\chi(\varphi) \leq \chi(x_0, \tau_x) \).

Proof. The definition of the topology \(\tau_x \) guarantees that \(\{ U \in \tau_x : x_0 \in U \in \tau_x \} \subset \{ F \cap X_0 : F \in \varphi = \{ F \in \varphi : F \subset X_0 \} \} \). To prove the reverse inclusion, fix any subset \(F \in \varphi \) with \(F \subset X_0 \) and consider the set \(U = F \cup (X \setminus X_0) \). We claim that \(U \in \tau_x \). Given any ordinal \(\alpha < \kappa \) with \(g_\alpha(x_0) \in U \), we need to find a set \(E \in \varphi \) with \(g_\alpha(E) \subset U \). Find \(\beta < \kappa \) such that \(g_\beta = \text{id}_X \) and consider the set

\[E = \{ x_0 \} \cup \{ x \in F : \text{max}\{\alpha, \beta\} < \gamma < \kappa \in \varphi \}. \]

We claim that \(g_\alpha(E) \subset U \). Assuming the converse, we could find an ordinal \(\gamma > \text{max}\{\alpha, \beta\} \) such that \(x_\gamma \in F \) and \(g_\alpha(x_\gamma) \in X_0 \setminus F \). Then \(g_\alpha(x_\gamma) = x_\delta = g_\beta(x_\delta) \) for some ordinal \(\delta < \kappa \). Since \(x_\gamma \in F \) and \(x_\delta \notin F \), the ordinals \(\gamma \) and \(\delta \) are distinct.

If \(\gamma < \delta \), then the inequality \(g_\beta(x_\delta) = x_\delta = g_\alpha(x_\gamma) \) and the condition (2) of Definition 3.2 guarantee that \(g_\beta(x_\delta) \neq g_\alpha(x_\gamma) \), which is a contradiction.

If \(\gamma > \delta \), then the inequality \(g_\alpha(x_\gamma) = x_\delta = g_\beta(x_\delta) \) and the condition (2) of Definition 3.2 imply that \(g_\alpha(x_\gamma) \neq g_\beta(x_\delta) = x_\delta \), which again leads to a contradiction.

Claim 3.8. The topology \(\tau_x \) has pseudocharacter \(\psi(x_0, \tau_x) = \psi(\varphi) \) at the point \(x_0 \).

Proof. The inequality \(\psi(\varphi) \leq \psi(x_0, \tau_x) \) follows from Claim 3.7. To show that \(\psi(x_0, \tau_x) \leq \psi(\varphi) \), fix a subfamily \(F \subset \varphi \) such that \(|F| = \psi(\varphi) \) and \(\cap F = \{ x_0 \} \). For every \(F \in F \) define an open neighborhood \(U^F \in \tau_x \) of \(x_0 \) as the union \(U^F = \bigcup_{n \in \omega} U^F_n \) of the sequence of sets \(\{ U^F_n \}_{n \in \omega} \) defined by the recursive formula: \(U^F_0 = \{ x_0 \} \) and

\[U^F_{n+1} = U^F_n \cup \{ g_\alpha(x_\beta) : \alpha < \beta < \kappa, \ x_\beta \notin F, \ g_\alpha(x_\beta) \in U^F_n \} \]

for every \(n \in \omega \).

The definition of the topology \(\tau_x \) implies that \(U^F = \bigcup_{n \in \omega} U^F_n \) is an open neighborhood of the point \(x_0 \) in \(X \).

Let us show that \(\bigcap_{F \in \varphi} U^F = \{ x_0 \} \). Assume conversely that this intersection contains a point \(x \), distinct from \(x_0 \). For every \(F \in \varphi \) find the smallest number \(n_F \in \omega \) such that \(x \in U^F_{n_F} \). Since \(U^F_0 = \{ x_0 \} \neq \{ x \} \), we
conclude that \(n_F > 0 \) and hence \(x \notin U^F_{n_F - 1} \). By the definition of the set \(U_n^F \), there are ordinals \(\alpha_F < \beta_F < \kappa \) such that \(x_{\beta_F} \in F, x = g_{\alpha_F}(x_{\beta_F}) \neq g_{\alpha_F}(x_0) \in U^F_{n_F - 1} \).

Fix any set \(F \in \mathcal{F} \). Since \(x_{\beta_F} \in F \) and \(x_{\beta_F} \notin \{x_0\} = \cap \mathcal{F} \), there is a set \(E \in \mathcal{F} \) such that \(x_{\beta_E} \notin E \). Then \(\beta_F \neq \beta_E \). Without loss of generality, \(\beta_F < \beta_E \). Since \(\beta_E > \max\{\alpha_E, \beta_F, \alpha_F\} \) and \(g_{\alpha_E}(x_0) \neq x = g_{\alpha_F}(x_{\beta_F}) \), the condition (2) of Definition 3.2 guarantees that \(x = g_{\alpha_E}(x_{\beta_F}) \neq g_{\alpha_F}(x_{\beta_F}) = x \), which is a desired contradiction that proves the equality \(\bigcap_{F \in \mathcal{F}} U^F = \{x_0\} \) and the upper bound \(\psi(x_0, \tau_\varphi) \leq \psi(\varphi) \). \(\square \)

4. ZARISKI G-TOPOLOGY AND THE EXISTENCE OF SPECIAL FILTERS

In light of Theorem 3.4 it is important to detect G-acts X that possess special sequences and special filters.

Proposition 4.1. Let \(G \) be a monoid, \(X \) be a G-act, \(x_0 \in X \) be a point, and \(\lambda \) be an infinite cardinal.

(1) If \(|G| \leq \kappa \leq \psi(x_0, \zeta_G) \), then the G-act \(X \) contains a special sequence \((x_\alpha)_{\alpha<\kappa}\).

(2) If the G-act \(X \) contains a special sequence \((x_\alpha)_{\alpha<\kappa}\), then \(|G| \leq \kappa \) and \(\text{cf}(\kappa) \leq \psi(x_0, \zeta_G) \).

Proof. 1. Assume that \(|G| \leq \kappa \leq \psi(x_0, \zeta_G) \) and let \(G = \{g_\alpha : \alpha < \kappa \} \) be an enumeration of the monoid \(G \) such that \(g_0 = 1_G \). By induction we shall construct an injective transfinite sequence \((x_\alpha)_{\alpha<\kappa}\) of points of the set \(X \) such that for any \(\alpha < \kappa \) and \(\beta, \gamma, \delta < \alpha \):

(3) if \(g_\beta(x_0) \neq g_\gamma(x_0) \), then \(g_\beta(x_0) \neq g_\gamma(x_\alpha) \);

(4) if \(g_\beta(x_0) \neq g_\gamma(x_\alpha) \), then \(g_\beta(x_\alpha) \neq g_\gamma(x_\alpha) \).

Assume that for some ordinal \(\alpha < \kappa \) the points \(x_\beta, \beta < \alpha \), have been constructed. For any ordinals \(\beta, \gamma, \delta < \alpha \) consider the open neighborhoods

\[U_{\beta,\gamma} = \{x \in X : g_\beta(x_0) \neq g_\gamma(x_0) \Rightarrow g_\beta(x) \neq g_\gamma(x)\} \]

and

\[V_{\beta,\gamma,\delta} = \{x \in X : g_\beta(x_0) \neq g_\gamma(x_\alpha) \Rightarrow g_\beta(x) \neq g_\gamma(x_\delta)\} \]

of \(x_0 \) in the Zariski G-topology \(\zeta_G \). Since \(\psi(x_0, \zeta_G) \geq \kappa \), the intersection \(\bigcap_{\beta,\gamma,\delta<\alpha} U_{\beta,\gamma,\delta} \) has cardinality \(\geq \kappa \) and hence contains some point \(x_\alpha \in X \setminus \{x_\beta : \beta < \alpha\} \). It is clear that this point \(x_\alpha \) satisfies the conditions (3), (4).

2. Now assume that the G-act \(X \) contains a special sequence \(X_0 = \{x_\alpha\}_{\alpha<\kappa} \) for some infinite cardinal \(\kappa \). Let \(G = \{g_\alpha\}_{\alpha<\kappa} \) be an enumeration of the monoid \(G \) such that the conditions (1), (2) of Definition 3.2 are satisfied. Then \(|G| \leq \kappa \). We claim that \(\psi(x_0, \zeta_G) \geq \text{cf}(\kappa) \). Assuming the opposite, we can find a subfamily \(U \subset \zeta_G \) such that \(\cap U = \{x_0\} \) and \(|U| < \text{cf}(\kappa) \). For each set \(U \subset \zeta_G \) we can choose ordinals \(\alpha_U, \beta_U < \kappa \) and a point \(c_U \in X \) such that \(U = \{x \in X : g_{\alpha_U}(x) \neq g_{\beta_U}(x)\} \) or \(\{x \in X : g_{\alpha_U}(x) = c_U\} \). If \(c_U \in G(X_0) \), then we can find ordinals \(\gamma_U, \delta_U < \kappa \) such that \(c_U = g_{\gamma_U}(x_{\delta_U}) \). In the opposite case, put \(\gamma_U = \delta_U = 0 \).

Since the set \(A_U = \{\alpha_U, \beta_U, \gamma_U, \delta_U : U \in U\} \) has cardinality < \(\text{cf}(\kappa) \), there is an ordinal \(\alpha < \kappa \) such that \(\alpha > \sup A_U \). We claim that \(x_\alpha \in \cap U \). To prove this inclusion, take any set \(U \in \mathcal{U} \). If \(U = \{x \in X : g_{\alpha_U}(x) \neq g_{\beta_U}(x)\} \), then the inclusion \(x_0 \in U \) and the condition (1) of Definition 3.2 guarantee that \(x_\alpha \in U \). If \(U = \{x \in X : g_{\alpha_U}(x) = c_U\} \) and \(c_U \in G(X_0) \), then the equality \(c_U = g_{\gamma_U}(x_{\delta_U}) \), the inclusion \(x_0 \in U \) and the condition (2) of Definition 3.2 imply that \(x_\alpha \in U \). If \(c_U \notin G(X_0) \), then \(g_{\alpha_U}(x_\alpha) \neq c_U \) and hence \(x_\alpha \notin U \)

Therefore \(x_\alpha \cap \mathcal{U} = \{x_0\} \), which is a desired contradiction. \(\square \)

5. G-TOPOLOGIZABILITY OF G-ACTS

In this section we apply the results of the preceding sections and prove our main result:

Theorem 5.1. Let \(G \) be a monoid and \(X \) be a G-act. If \(|G| \leq \kappa \leq \psi(x_0, \zeta_G) \) for some point \(x_0 \in X \) and some infinite cardinal \(\kappa \), then for any infinite cardinal \(\lambda \leq \text{cf}(\kappa) \) the G-act \(X \) admits \(2^{2^\kappa} \) normal G-topologies with pseudocharacter \(\lambda \) at the point \(x_0 \).

Proof. By Proposition 4.1 the space \(X \) contains a special sequence \(X_0 = \{x_\alpha\}_{\alpha<\kappa} \). Let \(\varphi_0 \) be the filter on \(X \) generated by the sets \(\{x_\alpha : \beta > \alpha\}, \alpha < \kappa \). Denote by \(\uparrow \varphi_0 \) the set of all filters \(\varphi \) on \(X \) that contain the filter \(\varphi_0 \) and have \(\cap \varphi = \{x_0\} \).

Claim 5.2. For any infinite cardinal \(\lambda \leq \text{cf}(\kappa) \) the set \(\mathcal{F}_\lambda = \{\varphi \in \uparrow \varphi_0 : \psi(\varphi) = \lambda\} \) has cardinality \(|\mathcal{F}| = 2^{2^\kappa} \).
Proof. First observe that the family of all filters on the set X_0 has cardinality $\leq 2^{2^\kappa}$. So, $|\mathcal{F}_\lambda| \leq 2^{2^\kappa}$. To prove the reverse inequality, we consider two cases.

1. $\lambda = \text{cf}(\kappa)$. Write the set X_0 as the disjoint union $X_0 = X_0' \cup X_0''$ of two sets of cardinality $|X_0'| = |X_0''| = \kappa$ such that $x_0 \in X_0'$. On the set X_0' consider the filter $\varphi_0|X_0' = \{F \cap X_0' : F \in \varphi_0\}$. The Pospíšil Theorem [11] (see also [9]) implies that the family \mathcal{U}_0 of all ultrafilters on X_0'' that contain the filter $\varphi_0|X_0'' = \{F \cap X_0'' : F \in \varphi_0\}$ has cardinality 2^{2^κ}. For any ultrafilter $u \in \mathcal{U}_0$ consider the filter $\varphi_u = \{A \subset X : A \cap X_0'' \in u, A \cap X_0' \in \varphi_0|X_0'\}$ and observe that $\psi(\varphi_u) = \psi(\varphi_0|X_0') = \text{cf}(\kappa)$. Since for distinct ultrafilters $u, v \in \mathcal{U}_0$ the filters φ_u, φ_v are distinct, we conclude that $|\mathcal{F}_{\text{cf}(\kappa)}| \geq 2^{2^\kappa}$.

2. $\lambda < \text{cf}(\kappa)$. In this case the ordinal κ can be identified with the product $\kappa \times \lambda$ endowed with the lexicographic order: $(\alpha, \beta) < (\alpha', \beta')$ iff $\alpha < \alpha'$ or $(\alpha = \alpha'$ and $\beta < \beta')$. Let $\xi : \kappa \times \lambda \to \kappa$ be the order isomorphism. On the cardinal λ consider the filter φ_λ of cofinite subsets. This filter has pseudocharacter $\psi(\varphi_\lambda) = \lambda$. By the preceding case, the family $\mathcal{F}_{\text{cf}(\kappa)}$ has cardinality 2^{2^κ}. For any filter $u \in \mathcal{F}_{\text{cf}(\kappa)}$ consider the filter φ_u on X generated by the sets

$$\Phi_{U,L} = \{x_0\} \cup \{x_\xi(\alpha, \beta) : x_\alpha \in U, \beta \in L\}$$

where $U \in u$, $L \in \varphi_\lambda$. It can be shown that $\psi(\varphi_u) = \psi(\varphi_\lambda) = \lambda$ and for distinct filters $u, v \in \mathcal{F}_{\text{cf}(\kappa)}$ the filters φ_u and φ_v are distinct. Consequently, $|\mathcal{F}_\lambda| \geq |\mathcal{F}_{\text{cf}(\kappa)}| \geq 2^{2^\kappa}$.

For any filter $\varphi \in \mathcal{F}_\lambda$ the G-topology τ_φ on X is normal and has pseudocharacter $\psi(x_0, \tau_\varphi) = \psi(\varphi) = \lambda$ at x_0 according to Theorem 5.4. Theorem 5.4(3) implies that for distinct filters $u, v \in \mathcal{F}_\lambda$ the topologies τ_u and τ_v are distinct. Consequently, X admits at least $|\mathcal{F}_\lambda| = 2^{2^\kappa}$ normal G-topologies with pseudocharacter λ at x_0.

Remark 5.3. Example 2.9 shows that Theorem 5.1 cannot be reversed: the group $G = H^\kappa$ is normally G_κ-topologizable but $\psi(x_0, \zeta_G) = \kappa < 2^\kappa = |G_\kappa|$ for any point x_0.

For countable monoids G, Theorem 5.4 implies the following characterization of G-topologizability that answers Problem 1.2.

Theorem 5.4. For countable monoid G and a G-act X the following conditions are equivalent:

1. X admits a non-discrete Hausdorff G-topology;
2. the Zariski G-topology ζ_G on X is not discrete;
3. X admits 2^κ non-discrete normal G-topologies.

We do not know if this theorem holds for arbitrary G-acts.

Problem 5.5. Let G be an uncountable monoid (group). Is a G-act X G-topologizable if its Zariski G-topology ζ_G is not discrete?

It may happen that the results of [5] can help to give an answer to this problem.

References

[1] T. Banakh, I. Protasov, Topologization of G-spaces, preprint.
[2] R. Bryant, The verbal topology of a group, J. Algebra 48:2 (1977), 340–346.
[3] D. Dikranjan, D. Shakhmatov, The Markov-Zariski topology of an abelian group, J. Algebra 324 (2010), no. 6, 1125–1158.
[4] G. Hesse, Zur Topologisierbarkeit von Gruppen, Dissertation (Univ. Hannover, Hannover, 1979).
[5] N. Hindman, I. Protasov, D. Strauss, Topologies on S determined by idempotents in βS, Topology Proc. 23 (1998), 155–190 (2000).
[6] T. Jech, Set Theory, Springer-Verlag, Berlin, 2003.
[7] M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories: with Applications to Wreath Products and Graphs, Expositions in Mathematics 29, Walter de Gruyter, Berlin, 2000.
[8] A.A. Klyachko, A.V. Trofimov, The number of non-solutions of an equation in a group, J. Group Theory 8:6 (2005), 747–754.
[9] A.A. Markov, On unconditionally closed sets, Mat. Sb. 18.1 (1946), 3–28.
[10] A.Yu. Ol’shanskii, A remark on a countable non-topologized group, Vestnik Moscow Univ. Ser. I. Mat. Mekh, no.3 (1980), p.103.
[11] D. Pospíšil, Remark on bicomplete spaces, Ann. of Math. (2) 38:4 (1937), 845–846.
[12] I. Protasov, E. Zelenyuk, Topologies on Groups Determined by Sequences, VNTL, L’viv, 1999.
[13] O. Sipacheva, Unconditionally τ-closed and τ-algebraic sets in groups, Topology Appl. 155:4 (2008), 335–341.
[14] E. Zelenyuk, On topologies on groups with continuous shifts and inversion, Visn. Kyiv. Univ. Ser. Fiz.-Mat. Nauki, no. 2 (2000), 252–256.
[15] Y. Zelenyuk, On topologizing groups, J. Group Theory 10:2 (2007), 235–244.
