International consensus statement: methods for recording and reporting of epidemiological data on injuries and illnesses in golf

Andrew Murray, Astrid Junge, Patrick Gordon Robinson, Mario Bizzini, Andre Bossert, Benjamin Clarsen, Daniel Coughlan, Corey Cunningham, Tomas Drobny, Francois Gazzano, Lance Gill, Roger Hawkes, Tom Hospel, Robert Neal, Jonathan Lavelle, Antony Scanlon, Patrick Schamash, Bruce Thomas, Mike Voight, Mark Wotherspoon, Jiri Dvorak

ABSTRACT

Epidemiological studies of injury in elite and recreational golfers have lacked consistency in methods and definitions employed and this limits comparison of results across studies. In their sports-generic statement, the Consensus Group recruited by the IOC (2020) called for sport-specific consensus statements. On invitation by International Golf Federation, a group of international experts in sport and exercise medicine, golf research and sports injury/illness epidemiology was selected to prepare a golf-specific consensus statement. Methodological stages included literature review and initial drafting, online feedback from the consensus group, revision and second draft, virtual consensus meetings and completion of final version. This consensus statement provides golf-specific recommendations for data collection and research reporting including: (i) injury and illness definitions, and characteristics with golf-specific examples, (ii) definitions of golf-specific exposure measurements and recommendations for the calculation of prevalence and incidence, (iii) injury, illness and exposure report forms for medical staff and for golfers, and (iv) a baseline questionnaire. Implementation of the consensus methodology will enable comparison among golf studies and with other sports. It facilitates analysis of causative factors for injuries and illness in golf, and can also be used to evaluate the effects of prevention programmes to support the health of golfers.

INTRODUCTION

Golf is a sport played by more than 60 million people of all ages and abilities. It is played in over two-thirds of the world’s countries and in six continents. The best available evidence suggests golf is associated with overall improved health, and has well-being benefits. Golf can provide moderate-intensity aerobic physical activity, can help decrease non-sedentary time, and may have muscle strengthening and balance benefits.

However, injuries and illnesses can occur. Systematic reviews describe golf as a moderate-risk activity for injury compared with other sports. Prospective longitudinal studies report low injury rates compared with other sports, at 0.28 to 0.60 injuries per 1000 hours in amateurs. Musculoskeletal injuries are the largest group of injuries according to our scoping review of the associations between golf and health. Very few studies report on epidemiology of illness in golfers. A recent systematic review of professional golf injuries showed 60% of included studies failed to give a definition of injury and 80% did not report the mechanism of the injury.

While epidemiological studies on golfers vary considerably in methods and quality, consensus statements on recording and reporting of injury/illness have been published for other sports and for multisport events since 2006. In 2020, the IOC published a consensus statement: Methods for recording and reporting of epidemiological data on injury and illness in sports 2020 (referred from now on as the ‘2020 IOC Consensus Statement’) and called for “… sport-specific statements with more detailed recommendations relevant for the sports and/or setting(s).”

In 2019, the International Golf Federation (IGF) invited a working group to develop golf-specific guidelines based on the 2020 IOC Consensus Statement. This consensus aims to guide and provide tools for researchers on how to collect data, and report injury and illness in golf. This will, in turn, help golfers, coaches, medical practitioners and policy makers to understand the typical pattern, severity and burden of health problems. It will provide a strong foundation for injury prevention programmes for golfers.

The objective of this consensus is to encourage consistency in recording and reporting epidemiological data on injury and illness in golf and to provide tools to assist in data collection and research. We reviewed the 2020 IOC Consensus Statement and aimed to obtain consensus among IGF medical commission members and invited experts on: (a) how that IOC Consensus needed to be modified for golf, (b) golf-specific exposure measurements and calculation of prevalence, incidence and burden, (c) adapting the 2020 IOC Consensus Statement medical report forms for golf and develop exposure report forms, (d) developing an athlete’s weekly health complaints and exposure report form for recreational and elite golfers, and (e) developing a baseline questionnaire for recreational and elite golfers.
METHODS

Our methods drew on those reported in the 2020 IOC Consensus Statement on injury and illness surveillance,27 our process had six stages:

Selection of chair, working group and consensus group members

The IGF Medical Commission appointed AM to chair the consensus group. He worked with JD and commission members to purposively select a consensus group of 21 individuals that would span a variety of expert disciplines (online supplementary appendix 1). These included three authors (BC, JD and AJ) from the recent 2020 IOC Consensus Statement27 with considerable experience regarding sports injury/illness epidemiology and prevention, nine further members (LG, CC, DC, TD, TH, AM, PR and MV) working primarily as researchers and practitioners within golf. In addition to the working group members, each IGF medical commission member was invited to the overall consensus group (RAH, TH, JL, AM, AS, PS, BT and MW). AB is a professional golfer, MB an experienced sports researcher, and FG and RN are technology and data management experts. This purposive method ensured the consensus group members included expertise with diverse research and practical experience. Group members had experience working with golfers from diverse geographical settings and of varying performance level, age group, gender and disability. Four members of the consensus group (AM, AJ, PR and JD) were selected as the working group.

Literature review, discussion and initial draft by the working group

The working group reviewed the 2020 IOC Consensus Statement,27 all sport and setting-specific consensus statements,16–26 and other relevant literature. Key themes and needs were identified by this working group. The consensus statement was divided into subsections and each author from the working group was assigned one or more areas. They were then tasked with a further, more detailed literature review of the particular subject and construction of definitions and recommendations for the first draft. The working group collated the subsections, producing a complete initial draft of the text and report forms.

Review and feedback by consensus group members

The first draft of the consensus document and the related forms was shared with all consensus group members, who were asked to provide comments and potential modifications to the working group online and by conference call.

Revision and second draft by working group

The working group revised the text and related report forms based on the input and recommendations of the consensus group and produced a second draft.

Online consensus meetings and third draft

These meetings focused on achieving consensus, and discussion regarding collaboration and practical implementation.

Final revision by the working group and approval by the consensus group

Following the online consensus meetings, the working group incorporated the feedback and remarks, and the consensus was assessed for overall consistency among each topic. The third draft was created and circulated. Everyone in the consensus group agreed to accept the finalised consensus.

Table 1A The mode of onset in golf injury

Mode of onset	Examples
Acute	A golfer hits a tree stump with immediate pain in the ulnar side of the wrist at impact (extensor carpi ulnaris subsheath tear)
Repetitive	A golfer has acute wrist pain while playing a normal shot. MRI scan shows stress fracture of the hamate bone
Gradual	A golfer experiences gradual lead shoulder pain. X-ray shows acromioclavicular joint arthritis

Table 1B The mode of onset of golf illnesses

Mode of onset	Examples
Sudden	A golfer suffers from diarrhoea and vomiting secondary to salmonella following poor food preparation
Gradual	A golfer suffers from excessive fatigue secondary to consecutive weeks of long-haul flights and poor sleep quality

Table 2 Mechanism of injuries in golf

Type of contact	Examples
No identifiable single event	Pain in the left shoulder when swinging, worsening over 4 weeks
Non-contact trauma	G olfer sustains a strain in the intercostal muscles while making a swing
Direct contact with an object	Golfer’s hand hits a tree on backswing/downswing
Direct contact with the ground	Golfer stumbles and falls, inverting ankle.
Indirect contact with an object	Golfer hits a tree root with club and has acute wrist pain
Indirect contact with the ground	Golfer takes an intended divot and has acute wrist pain
The recently updated diagnostic coding systems for injury and illness in a sporting context can be used for the reporting and recording if medical staff are involved in the data collection and recording.29

Mode of onset
The 2020 IOC Consensus Statement27 suggests that the transfer of energy causing an injury be described as either acute or repetitive. Repetitive impacts can result in sudden, gradual or mixed onset of injury. The onset of illnesses can also be classified as sudden, gradual or mixed. Table 1A and B demonstrate golf-specific examples.

Mechanism of injury
Golf-specific modifications of the 2020 IOC Consensus Statement27 were necessary for mechanism of injury. Golf is a non-contact sport, and contact with another athlete is very unlikely and was therefore not listed in the report forms. However, we distinguish between contact with an object and contact with the ground. Contact can be further subdivided in direct and indirect contact. Golf-specific examples are provided in table 2.

New and subsequent injuries and illnesses
New and subsequent injuries/illnesses are defined in the 2020 IOC Consensus Statement.27 In golf, subsequent injuries are likely to be a common scenario. They can be divided into exacerbations or recurrent injuries. For definitions and golf-specific example see table 3.

Severity of injury and illness
The common method of recording/reporting “time loss from training/competition” can be effective in the description of acute injuries; however, it may under-represent overuse injuries, chronic illnesses and in the context of a golfer being forced to retire.30 Furthermore, it does not account for injuries that have an impact on a golfer’s performance but do not stop him/her from practicing or competing; for example, 37% of professional golfers with wrist problems have continued to play while injured.30

Therefore, we recommend recording (a) the number of days the player is unable to play and train as well as (b) the number of days from the onset of the injury or illness until full recovery. Following the 2020 Consensus Statement27 the number of days should be counted from the day after the onset as day one through to the day before the athlete is fully available for training and competition. If one injury event results in multiple injuries, the duration of the most severe injury should be recorded. The following categories can be used: 0 days, 1 to 7 days, 8 to 28 days and >28 days.

Athlete’s answers to the four questions of the Oslo Sports Trauma Research Center (OSTRC) questionnaire on health problems30 can be used as an additional tool to record severity of the health problem based on a score from 0 to 100. This can then be tracked over time to give a cumulative severity score. This questionnaire has been shown to be sensitive to overuse injuries.31

Recording of golf-specific exposure
Golf exposure can be divided into three categories: Competition, Golf practice and Training (table 4). Competition is defined as organised competitive rounds of golf. These include internal club competitions, interclub matches, collegiate/university matches, regional, national or international amateur events as well as any professional competitions on any tour. Golf practice includes playing golf on the course (excluding competitions), practising on the driving range and putting/short game. Training includes all aspects of strength and conditioning/physical preparation for golf, for example, resistance training, cardiovascular training, stretching or mobility.

Calculation of prevalence, incidence and burden of the injury/illness in golf
Prevalence is the proportion of injured or ill golfers at one point in time or in a defined period of time (eg, a golf season or a golf tournament) of all golfers in the study population, and can be expressed as percentage or as number of injured/ill golfers per 1000 golfers. Prevalence can be also calculated for specific groups, for example, male and female golfers, or golfers with a specific handicap or a certain injury.

Incidence describes the number of new injuries/illnesses within a specified period of time (eg, a season), and can be expressed as the number of new injuries/illnesses per golf exposure (eg, per holes played) or 1000 hours of playing golf. In principle, all injuries can be rated to the total number of golfers in the study population or the total time spent competing, playing, practising and training golf (all injuries per 1000 hours or per season). Furthermore, injuries during specific activities can be related to the related exposure (table 4), for example, injuries while hitting the ball on the driving range per 1000 balls hit. Incidences can also be calculated for specific types of injury, for example, shoulder injuries or time-loss injuries, or a combination, such as number of injuries/illnesses during a tournament, to

T

| Table 3 Definitions and golf-specific examples of new and subsequent injuries and illnesses |
|---|---|--|
Definition	**Injury example**	**Illness example**
New first recorded injury/illness index injury/illness	Golfer reports new right wrist pain after 4 days of competition and is diagnosed with dorsal rim impaction syndrome	Golfer develops a viral illness (influenza)
Subsequent any injury/illness occurring after the index injury/illness	Golfer develops lumbar back pain following swing changes secondary to right hip pain, which is due to femoroacetabular impingement syndrome	Golfer develops depression following a long absence from competition due to lead wrist pain
Recurrent injury to the same site and of the same type as the index injury or illness involving the same system and type as the index injury after full recovery and return-to-sport	Golfer recovers fully from rotator cuff tendinopathy and returns to play. However, later in the season has a repeat onset of the same symptoms	Golfer recovers from 2 days of migraine headaches; however, during the next competition, develops further migraines
Exacerbation worsening of a not fully recovered index injury/illness	Golfer returns to play or practice before finishing rotator cuff tear rehabilitation and causes an extension of the tear while hitting a shot	Golfer with generalised anxiety suffers with a worsening of the condition

1. Murray A, et al. Br J Sports Med 2020;54:1136–1141. doi:10.1136/bjsports-2020-102380

2. Consensus statement

3. Definitions and golf-specific examples are provided in table 1A and B demonstrate golf-specific examples.
specific incidence such as number of new wrist injuries incurred while practising on a driving range and resulting in time loss per 1000 balls hit on a driving range. The preferred method for reporting of results depends on the research question and the available data. We recommend to relate competition injuries in golf to the number of holes played, and injuries during practice and training to hours or the specific exposure measures stated in table 4. For comparison with other sport, golf injuries during competition should be reported per 1000 rounds (starts)25 or athlete competition days, and injuries in golf practise and training per total exposure hours of these activities. Illnesses can be best expressed in relation to athletes days, for example, of the competition or the season. Burden of injuries/illnesses combines frequency and severity.32 33 We suggest using a visual aid such as a risk matrix to help communicate injury burden as described in the 2020 IOC Consensus Statement.27

Study population characteristics
In addition to the basic population characteristics (age, sex, level of competition and disability) listed in the 2020 IOC Consensus Statement,27 handicap (if applicable) and handedness are essential variables to be collected in golf. The authors recognise the need for classifications and nomenclature of disability in golf. It is beyond the scope of this consensus to provide these; however, their future introduction would enable accurate and relevant reporting of injury and illness in the disabled golfer. Competition levels in golf can be described as ‘elite’, ‘sub-elite’ and ‘recreational’ based on the individual golf handicap and participation in different levels of competition (table 5). Based on the design and objectives of the study, player characteristics should include current and previous injuries/illnesses, any co-morbidities, surgeries, psychosocial variables, and if a touring professional, total travel time per year and the tour membership.

Table 4 Athlete exposure in golf

Type of exposure	Definition	Exposure data
Competition	Any on-course tournament play (excludes practice rounds)	Number, days and level of competitions, and holes played
Golf practice	On course practice, such as playing 9 or 18 holes	Holes played and hours (per practice session and total)
	Player hitting full swings on the range	Balls hit and hours (per practice session and total)
	Player practicing on the putting green or short game area	Hours (per practice session and total)
Driving range	Any warm-up prior to practice or playing, and/or cool-down	Hours (per session and total)
Putting/short game	Lifting weights or performing aerobic exercise (eg, on stationary bike)	Hours (per session and total)
Training	Stretching/mobility/proprioception exercises	Hours (per session and total)
Fitness training	Any warm-up prior to practice or playing, and/or cool-down	Hours (per session and total)
Other training activities	Lifting weights or performing aerobic exercise (eg, on stationary bike)	Hours (per session and total)
Warm-up and cool-down	Lifting weights or performing aerobic exercise (eg, on stationary bike)	Hours (per session and total)

Forms and data collection methods
Guidelines for data collection methods proposed by the 2020 IOC Consensus Statement27 are generally appropriate for golf. Thus, the two Medical Report of Injuries and Illnesses Forms published with the 2020 IOC Consensus Statement27 were modified for golf (online supplementary appendices 2 and 3) and a related exposure report form (online supplementary appendix 4) was developed. However, the report forms published with the 2020 IOC Consensus Statement27 are for medical staff only and injuries/illnesses that do not receive medical attention might be under-reported. Therefore, a weekly report of health complaints and exposure form for recreational and elite golfers, and a baseline questionnaire were developed in addition (online supplementary appendices 5 and 6).

Daily medical report of injuries and illnesses during a golf tournament
The golf-specific modification of the IOC championships form27 to be completed by medical staff is presented in online supplementary appendix 2. It is designed to facilitate standardised recording of the frequency and characteristics of golf-related injuries and illnesses during golf tournaments. It can be used for elite and recreational events, and enables comparison of data with other sport tournaments. Multiple players can be recorded on the one form which should aid in reduction of paperwork. The user should use the relevant codes on page 2 of the form and fill in the appropriate boxes on page 1.

In-season medical report for golf injuries and illnesses
The golf-specific modification of the IOC form for injuries and illnesses during the course of a season27 is presented in online supplementary appendix 3. This form is ideally used as a data collection tool within prospective epidemiological studies following up a group of research participants, where medical staff are available to complete a weekly or otherwise regular medical report on the golfers they look after. This may, for example, be a college/university/national/elite squad.

Weekly registration of exposure to golf competition, practice and training
The 2020 IOC Consensus Statement27 does not present an exposure report form, most probably because meaningful exposure measurements vary substantially between sports. Thus, a golf-specific exposure record form is presented in online supplementary appendix 4. This form is designed to measure the exposure.
of a golfer to all activities related to golf and which are deemed to be relevant to load management. Ideally, the information in this form can then be used to correlate load to injury and/or illness.

Weekly self-report of health complaints and exposure to golf
For some elite golfers and the vast majority of sub-elite and recreational golfers, having researchers/medical staff available to conduct weekly monitoring is not practical. Furthermore, most injuries in golf are overuse in nature, and these usually fluctuate in severity of symptoms and impact on practice load and performance. Thus, we developed a report form to be filled in by the athlete regarding health complaints that affect the athlete but might not receive medical attention (online supplementary appendix 5). It includes the four questions of the OSTRC questionnaire on health problems to help record and categorise severity of overuse injuries in golf. We recommend using an electronic questionnaire with logic as described in the online supplementary appendix 5.

Baseline questionnaire for golfers
We developed a comprehensive self-report baseline questionnaire to be used in epidemiological studies regarding injury and illness for golf players of all ages, gender and abilities (online supplementary appendix 6). It covers four main domains including: (1) athlete’s characteristics, (2) golf participation and training characteristics, (3) medical history, and (4) current health status. The questionnaire can be used to correlate these variables with injuries and illness, and shortened or extended depending on the specific objectives of a research project. It is designed for self-report, obviating the need for a medical researcher to be present.

Data capture and electronic monitoring tools
The forms can be either used as paper version or internet-based electronic system. While hard copies of forms have been historically popular, electronic data capture can help avoid duplication of data entry, and has been shown to facilitate high levels of compliance in athletes. For individual golf event reports, having both paper-based and electronic solutions available is advantageous; however, researchers should work with what is available to them. For weekly monitoring, electronic data capture, where possible, is recommended.

CONCLUSION
The international golf consensus should aid the development of prospective, epidemiological studies on injury and illness of male and female golf players of different ages and levels of skills worldwide. It enables consistent reporting and comparison between studies and facilitates the analysis of causative factors for injuries and illness in golf, and thus, supports the development of injury/illness prevention programmes. Finally, the presented methods can also be used to evaluate the effects of prevention programmes to support the health of golfers.

Author affiliations
1Medical Commission, International Golf Federation, Lausanne, Switzerland
2Medical, European Tour Golf, Virginia Water, UK
3Prevention, Health Promotion and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
4Swiss Concussion Centre, Schulthess Klinik, Zurich, Switzerland
5Trauma & Orthopaedics, Royal Infirmary of Edinburgh, Edinburgh, UK
6European Tour Performance Institute, European Tour Golf, Virginia Water, UK
7Research, Schulthess Clinic Human Performance Lab, Zurich, ZH, Switzerland
8Swiss Sport Physiotherapy Association, Leukerbad, VS, Switzerland
9South Africa/Switzerland, Professional Golfer, Touring, South Africa
10Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo Sports Trauma Research Center, Oslo, Norway
11Norwegian Institute of Public Health, Department of Health Promotion and Development, Bergen, Norway
12School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
13Medical, New South Wales Institute of Sport, Sydney, New South Wales, Australia
14Medical, Professional Golf Association Tour of Australasia, Sydney, Melbourne, Australia
15Swiss Golf Medical Center, Zurich, ZH, Switzerland
16Department of Lower Extremity Orthopaedics, Schulthess Clinic, Zurich, Switzerland
17FITSTATS Technologies, Inc, Moncton, New Brunswick, Canada
18Lg Performance, Oceanside, New Jersey, USA
19Tuttle Institute, Oceanside, California, USA
20Sports Medicine, European Disabled Golf Association, Lichfield, UK
21Medical, Professional Golf Association Tour, Ponta Vedra Beach, Florida, USA
22Medical, United States Golf Association, Far Hills, New Jersey, USA
23Golf Biodynamics, Brisbane, Queensland, Australia
24Medical, The R&A, St Andrews, UK
25Orthopaedics, Fortius Clinic, London, UK
26International Golf Federation, Lausanne, Switzerland
27Medical Trauma and Rehabilitation Centre, Meribel, France
28Medical, International Golf Federation, Lausanne, Switzerland
29Medical, Ladies Professional Golf Association, Daytona Beach, Florida, USA
30School of Physical Therapy, Belmont University, Nashville, Tennessee, USA
31Sports Medicine and Science, Ladies European Tour, London, UK
32Sports and Exercise Medicine, North Hampshire Hospitals NHS Trust, Basingstoke, UK
33Spine Unit, Schulthess Clinic, Zurich, Switzerland

Twitter Andrew Murray @docandrewmurray, Benjamin Clarsen @benclarsen, Roger Hawkes @DocHawkes and Jiří Dvorak @ProfJiriDvorak

Acknowledgements We acknowledge the support of the International Golf Federation in helping to plan and to deliver this consensus statement. We also acknowledge Babette Pluim for her guidance in the structure and content of the consensus, and Kevin Barker, Director of Development at The R&A, for input regarding technical golf definitions within the consensus.

Contributors This work was commissioned by the International Golf Federation. AM, AJ, PGR and JD formed a working group and reviewed the literature. Further groups involving all authors were formed to look at aspects of the consensus. The working group produced a first draft. All authors reviewed and gave feedback upon each iteration of the consensus, and reviewed the final manuscript and appendices.

Funding This study was funded by International Golf Federation.
Competing interests Author affiliations are provided in Appendix 1. Francois Gazzano is Chief Executive Officer (CEO) and founder of FITSTATS. Robert Neal is the CEO and founder of Golf BioDynamics.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer-reviewed.

Data availability statement Data are available upon request.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs

Fuller CWhttp://orcid.org/0000-0003-3713-8938

Jiri Dvorak http://orcid.org/0000-0002-2178-2326

REFERENCES

1 Sports Marketing Surveys. Global golf numbers report produced for The R&A: Sports Marketing Surveys 2017.

2 The R&A. Golf Around the World. 1: The R&A online 2015.

3 Murray AD, Daines L, Archibald D, et al. The relationships between golf and health: a scoping review. Br J Sports Med 2017;51:12–19.

4 Murray AD, Archibald D, Murray JR, et al. 2018 international consensus statement on golf and health to guide action by people, policymakers and the golf industry. Br J Sports Med 2018;52:1426–36.

5 Luscombe J, Murray AD, Jenkins E, et al. A rapid review to identify physical activity accrued while playing golf. BMU Open 2017;1:e18993.

6 Tsang WWN, Hui-Chan CW, Static and dynamic balance control in older golfers. J Aging Phys Act 2010;18:1–13.

7 Calbi J, Sousa JP, Kots M, et al. Golf-related injuries: a systematic review. Eur J Sport Sci 2009;9:353–66.

8 Robinson PG, Murray IR, Duckworth AD, et al. Systematic review of musculoskeletal injuries in professional golfers. Br J Sports Med 2019;53:13–18.

9 Parkkari J, Natri A, Kannus P, et al. A controlled trial of the health benefits of regular walking on a golf course. Am J Med 2000;109:102–8.

10 McHardy A, Pollard H, Luo K. One-Year follow-up study on golf injuries in Australian amateur golfers. Am J Sports Med 2007;35:1354–60.

11 Parkkari J, Kannus P, Natri A, et al. Active living and injury risk. Int J Sports Med 2004;25:209–16.

12 Steffen K, Soligard T, Mountjoy M, et al. How do the new Olympic sports compare with the traditional Olympic sports? Injury and illness at the 2016 youth Olympic summer games in Buenos Aires, Argentina. Br J Sports Med 2020;54:168–75.

13 Soligard T, Steffen K, Palmer D, et al. Sports injury and illness incidence in the Rio de Janeiro 2016 Olympic summer games: a prospective study of 11274 athletes from 207 countries. Br J Sports Med 2017;51:1265–71.

14 Finch CF, Bouloux S. The descriptive epidemiology of sports/leisure-related heat illness hospitalisations in New South Wales, Australia. J Sci Med Sport 2008;11:48–51.

15 Driscoll TR, Cripps R, Brotherhood JR. Heat-related injuries resulting in hospitalisation in Australian sport. J Sci Med Sport 2008;11:40–7.

16 Pluim BM, Fuller CW, Batts ME, et al. Consensus statement on epidemiological studies of medical conditions in tennis, April 2009. British journal of sports medicine 2009;43:893–7.

17 Fuller CW, Ekstrand J, Junge A, et al. Consensus statement on injury definitions and data collection procedures in studies of football (soccer) injuries. Br J Sports Med 2006;40:193–201.

18 Fuller CW, Molloy MG, Bagate C, et al. Consensus statement on injury definitions and data collection procedures for studies of injuries in rugby Union. Br J Sports Med 2007;41:328–31.

19 Brown JC, Cross M, England M, et al. Guidelines for community-based injury surveillance in rugby Union. J Sci Med Sport 2019;22:1314–8.

20 King DA, Gabbett TJ, Gissane C, et al. Epidemiological studies of injuries in rugby League: suggestions for definitions, data collection and reporting methods. J Sci Med Sport 2009;12:12–19.

21 Mountjoy M, Junge A, Alonso JM, et al. Consensus statement on the methodology of injury and illness surveillance in FINA (aquatic sports). Br J Sports Med 2016;50:590–6.

22 Orchard JW, Ranson C, Olivier B, et al. International consensus statement on injury surveillance in cricket: a 2016 update. Br J Sports Med 2016;50:1245–51.

23 Timpka T, Alonso J-M, Jacobsson J, et al. Injury and illness definitions and data collection procedures for use in epidemiological studies in athletics (track and field): consensus statement. Br J Sports Med 2014;48:483–90.

24 Turner M, Fuller CW, Egan D, et al. European consensus on epidemiological studies of injuries in the thoroughbred horse racing industry. Br J Sports Med 2012;46:704–8.

25 Junge A, Engebretsen L, Alonso JM, et al. Injury surveillance in multi-sport events: the International Olympic Committee approach. Br J Sports Med 2008;42:413–21.

26 Schwellnus M, Kipp S, Roberts WO, et al. Medical encounters (including injury and illness) at mass community-based endurance sports events: an international consensus statement on definitions and methods of data recording and reporting. Br J Sports Med 2019;53:1048–55.

27 Bahr R, Clansen B, Derman W, et al. International Olympic Committee consensus statement: methods for recording and reporting of epidemiological data on injury and illness in sport 2020 (including STROBE extension for sport injury and illness surveillance (STROBE-SIIS)). Br J Sports Med 2020;54:372–89.

28 Hawkes R, O’Connor P, Campbell D. The prevalence, variety and impact of wrist problems in elite professional golfers on the European tour. Br J Sports Med 2013;47:1075–9.

29 Orchard JW, Meeuwisse W, Derman W, et al. Sport medicine diagnostic coding system (SMDCS) and the orchard sports injury and illness classification system (OSIICS): revised 2020 consensus versions. Br J Sports Med 2020;54:397–401.

30 Clansen B, Ransen Q, Myklebust G, et al. The Oslo sports trauma research center questionnaire on health problems: a new approach to prospective monitoring of illness and injury in elite athletes. Br J Sports Med 2014;48:754–60.

31 Clansen B, Myklebust G, Bahr R. Development and validation of a new method for the registration of overuse injuries in sports injury epidemiology: the Oslo sports trauma research centre (OSTRÇ) overuse injury questionnaire. Br J Sports Med 2015;47:495–502.

32 Fuller CW, Risk I. Injury risk burden, risk matrices and risk contours in team sports: a review of principles, practices and problems. Sports Med 2018;48:1597–606.

33 Bahr R, Clansen B, Ekstrand J. Why we should focus on the burden of injuries and illnesses, not just their incidence. Br J Sports Med 2018;52:1018–21.

34 Fradkin AJ, Cameron PA, Gabbe BJ. Golf injuries—common and potentially avoidable. J Sci Med Sport 2005;8:163–70.

35 Fradkin AJ, Windley TC, Myers JR, et al. Describing the epidemiology and associated age, gender and handicap comparisons of golfing injuries. Int J Inf Confr Saf Promot 2007;14:264–6.

36 Thelault G, Lachance P. Golf injuries. An overview. Sports Med 1998;26:43–57.

37 Thelault G, Lacoste E, Gadoua M, et al. Golf injury characteristics: a survey from 528 golfers. 289. Medicine & Science in Sports & Exercise. 1996;28:85.

38 Finch C, Valeri G, Ozenne-Smith J. Injury surveillance during medical coverage of sporting events—development and testing of a standardised data collection form. J Sci Med Sport 1999;2:42–56.

39 Malik I, Burnett S, Webster-Smith M, et al. Benefits and challenges of electronic data capture (EDC) systems versus paper case report forms. Trials 2015;16:F37.

40 Maller M, Wedderkopp N, Myklebust G, et al. The SMS, phone, and medical examination sports injury surveillance system is a feasible and valid approach to measuring handball exposure, injury occurrence, and consequences in elite youth sport. Scand J Med Sci Sports 2018;28:1244–34.

41 Nilsson A, Bahr R, Andersen TE. Text messaging as a new method for injury registration in sports: a methodological study in elite female football. Scand J Med Sci Sports 2014;24:243–9.