Whole Body Exposure to Low-dose Gamma Radiation Promotes Kidney Antioxidant Status in Balb/c Mice

Chander Mohan PATHAK*, Pramod Kumar AVTI, Surender KUMAR, Krishan Lal KHANDUJA and Suresh Chander SHARMA*

Antioxidant status/Kidney/Low-dose γ-irradiation/Radiation hormesis.

We examined the effect of whole body low-dose γ-irradiation on the status of the antioxidant defense system in the rodent kidneys at different time intervals. Young male Balb/c mice were exposed to whole body radiation from a 60Co source at doses of 10, 25 and 50 cGy (48.78 cGy/min). Antioxidant status and lipid peroxidation were estimated in the kidneys at 4, 12 and 24 h after irradiation. Lipid peroxidation increased between 33% and 49% and reduced glutathione between 12% and 47% at 12 h at different radiation doses. Reduced glutathione level remained significantly (p < 0.05) elevated even at 24 h after irradiation to 25 cGy. Superoxide dismutase activity also increased by 37% at 12 h on exposure of animals to all the doses up to 50 cGy. Catalase activity increased significantly at 12 h on exposure to 10 cGy and 50 cGy. Interestingly, glutathione peroxidase activity increased by 31% at 4 h and subsequently returned to control levels at 24 h after exposure to 50 cGy. Glutathione reductase activity increased by 10–12% at 12 h after exposure to 25 cGy and 50 cGy. The results suggest that the whole body exposure of animals to gamma radiation stimulates the antioxidant defense system in the kidneys within 4 to 24 h after irradiation, at doses of 25 cGy and 50 cGy.

INTRODUCTION

Living organisms are constantly exposed to a shower of ionizing radiations from the natural sources such as cosmic rays, radio nuclides present in the earth’s crust (telluric), artificial/man made medical and industrial radiation sources, nuclear exposures, industrial accidents etc. Ionizing radiations are thus integral part of our life. According to the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) report in 1986,1) acute doses above 2.0 Gy, between 2 and 0.2 Gy, and below 0.2 Gy are regarded as high, intermediate and low-doses respectively. The deleterious effects due to low radiation dose are theoretically extrapolated from the high-dose by the “Linear No Threshold” (LNT) model. The confidence in LNT model is based on the biophysical concept that the passage of a single charged particle could cause damage to the DNA that could result in cancer. However, based on the current understanding of the basic molecular mechanisms involved in the biological system, the much relied upon LNT hypothesis does not have convincing experimental evidences regarding the deleterious effects at very low-doses and low-dose rates.2)

Over the past two decades, our understanding of radiation biology has undergone a fundamental shift in paradigms away from deterministic “hit-effect” relationships and towards complex ongoing “cellular responses”. However, living organisms do not respond to ionizing radiations in a linear manner in the low-dose range 0.01–0.50 Gy (1 to 50 rad) and rather restore the homeostasis both in vitro and in vivo by the normal repair processes such as, normal cellular and DNA repair processes, immune reactions and antioxidant defense,3–5) adaptive responses,6) activation of immune functions,7–9) stimulation of growth,10) enhancement of resistance to high-dose radiation,11) prevention of brain disorders,12) and an increase in the life span of mice.13) The LNT model thus ignores these fundamental processes. This phenomenon of beneficial biological effects of low-dose radiation has generally been termed as ‘radiation hormesis’, and yet little is known about its mechanism(s). Recent reports have shown differential gene expression pattern both in vitro and in vivo after exposure to low-doses of radiation which regulate the cell cycle and cell proliferation.14,15) Thus, the reported phenomenon of ‘radiation hormesis’ and ‘radio-adaptive response’ cannot be rejected outright. These observations challenge the LNT hypothesis and require further

*Corresponding author: Phone: +0091-172-2755248,
Fax: +0091-172-2744401,
E-mail: chander_pathak@rediffmail.com
Departments of Biophysics and Radiotherapy*, Postgraduate Institute of Medical Education and Research, Chandigarh - 160012, India.
doi:10.1269/jrr.06063
experimental evidence. Furthermore, the data from the epidemiological studies are insufficient to define their implications for human health, risk assessment and therapeutic measures.16,17

Recently, the effects of low-dose irradiation on glutathione and antioxidant defense system in different organs of rodents have been reported. From these reports, it can be postulated that the hormetic/adaptive response results from an improvement in the levels of reduced glutathione (GSH) and antioxidant enzyme activities in the brain,16,17 spleen,18,19 liver,20–21 lungs,22 bone marrow and thymus,23 macrophages,24 and natural killer cells.24,25 However, the changes observed were at different radiation doses, dose rates and time intervals using a variety of ionizing radiations in different animal models. Moreover, the information regarding the effective dose range and the time duration during which these hormetic changes persist in kidneys is still lacking. Hence, there is need to evaluate the effect of low-dose whole body radiation on the antioxidant defense system of the kidneys, a major excretory organ. In this study, we have attempted to find: i) the low level of critical radiation dose and the post irradiation period during which the antioxidant defense system in the kidneys remains altered; and ii) to evaluate the degree to which these defense mechanisms remain affected in the kidneys after exposure to low-dose radiation. The study was performed in mice at a dose range from 10 to 50 Gy and at post irradiation intervals ranging from 4 to 24 h.

MATERIALS AND METHODS

Materials

Glutathione reductase, thiobarbituric acid (TBA) and tert-Butyl hydroperoxide (BHP) were purchased from Sigma Chemicals, New Delhi, India. Dithionitrobenzoic acid (Ellman’s reagent) (DTNB), nicotinamide adenine dinucleotide phosphate reduced (NADPH), nitroblue tetrazolium (NBT) were purchased from M/s Hi-Media Chemicals, Mumbai, India. Ethylene diamine tetra acetic acid (EDTA), Tris-buffer, sodium dodecyl sulfate (SDS), ferrous sulfate, hydroxylamine hydrochloride, sodium azide, reduced glutathione (GSH), potassium chloride, sodium carbonate and hydrogen peroxide were purchased from M/s Sisco Research Laboratory Pvt, Ltd, Mumbai, India. Ethanol and acetic acid were purchased from M/s Ranbaxy Fine Chemicals Ltd, New Delhi, India. The pellet diet duly approved by the Institute’s Animal Ethics Committee for animals was obtained from M/s Ashirwad Industries, Punjab, India.

Animals and γ-ray irradiation

The experiments were performed on pathogen free inbred male Balb/c mice of 5–6 weeks age group after the clearance of the study by the Institute’s Animal Ethics Committee. The animals were obtained from the Central Animal House of Postgraduate Institute of Medical Education and Research, Chandigarh, India. Animals were allowed free access to water and normal pellet diet. They were housed in polypropylene cages bedded with sterilized rice husk under 12 h cycles of light and dark. The animals were exposed to whole body radiation with gamma-rays from 60Co source (Theratron 780 from Atomic Energy Canada Limited, Canada) at doses ranging from 10–50 cGy (dose rate 48.78 cGy/min) at 80 cm source skin distance (SSD). Ionization chamber (Thimble) dosimeter (Physikalisch Technische Werkstatten Unidose, Freiburg, Germany) having sensitivity 100 μGy and accuracy ± 0.5% was used for measurement of radiation dose. Control animals were sham irradiated. Five animals were used in each group.

Tissue processing

Animals, after whole body radiation exposure to 10, 25 and 50 Gy, were sacrificed at various time intervals (4, 12, 24 h). Animals were anaesthetized with sodium pentathiol (60 mg/kg b.wt). Kidneys were immediately perfused with ice-cold solution (0.15 M KCl, 2mM EDTA, pH 7.4) in situ, removed and quickly frozen in liquid nitrogen prior to homogenization and preparation of post mitochondrial supernatant (PMS) as described by Litterst \textit{et al.}25 Briefly, the tissue was excised, weighed, diced into small pieces and then homogenized in 50mM Tris-HCl, pH 7.4, containing 150mM KCl and 250mM sucrose by using motor-driven glass-Teflon homogenizer at a ratio of 1g wet weight of tissue/3ml of buffer. The homogenate was centrifuged at 10,000xg for 20 min at 4°C. The pellet was discarded and the supernatant was used for further biochemical assays.

Estimation of lipid peroxidation (LPx)

Lipid peroxidation was estimated by the method of Ohkawa \textit{et al.}26 Briefly, the reaction mixture contained Tris-HCl buffer (50mM, pH 7.4), BHP (500 mM in ethanol) and 1mM FeSO\textsubscript{4}. After incubating the tissue sample with reaction mixture at 37°C for 90 min, the reaction was stopped by adding 2 ml of 8% SDS followed by 1.5 ml of 20% acetic acid (pH 3.5). The amount of malondialdehyde (MDA) formed during incubation was estimated by adding 1.5 ml of 0.8% thiobarbituric acid (TBA) and heating the mixture at 95°C for 45 min. After cooling, samples were centrifuged and the TBA-reactive substances (TBARS) were measured in supernatants by spectrophotometer (Spectronic genesys 2, Rochester, New York, USA) at 532 nm using the extinction coefficient value of 1.53 × 105 M–1cm–1. Lipid peroxidation was expressed in terms of nanomoles of TBARS/mg protein/90min.

Antioxidant defense system

Reduced glutathione: Reduced glutathione (GSH) in the tissue homogenate was measured by the method of Moron \textit{et al.}27 Required amounts of the homogenate were taken and 0.6mM DTNB was added. After 10 min the optical density
of the yellow colored complex formed by the reaction of GSH with DTNB was measured at 405 nm. GSH was expressed in terms of μg/mg protein.

Superoxide dismutase activity: Superoxide dismutase (SOD) determinations were performed according to the method of Kono. The rate of nitroblue tetrazolium (NBT) dye reduction by O$_2^-$ anion generated from photoactivation of hydroxylamine hydrochloride was recorded at 560 nm in the absence of PMS (post mitochondrial supernatant). In brief, small aliquots of PMS were added to the reaction mixture and the inhibition in the rate of NBT reduction by SOD present in the enzyme source was recorded. One unit of enzyme activity was defined by the 50% inhibition of NBT and expressed in terms of U/mg protein.

Catalase activity: Catalase (CAT) activity was measured in the PMS by the method of Luck. The final reaction volume of 3 ml included 0.05 M Tris-buffer, pH-7 and 10mM H$_2$O$_2$ (in 0.1 M KH$_2$PO$_4$ buffer, pH 7.0). Fifty microlitres or 100 μl aliquots of the cellular supernatant was added to the mixture. The rate of change per min in absorbance at 240 nm was recorded. Catalase activity was calculated using the molar extinction coefficient of 43.6 M$^{-1}$ cm$^{-1}$ for H$_2$O$_2$ and expressed in terms of μmoles H$_2$O$_2$ consumed/mg protein/min.

Glutathione peroxidase activity: Glutathione peroxidase (GPx) activity was measured by the method of Lawrence and Burk. The reaction mixture contained 50mM potassium phosphate buffer at pH 7.0, 1mM EDTA, 1mM sodium azide, 0.2mM NADPH, 1 enzyme unit of glutathione reductase and 1mM glutathione. The aliquot of the sample was added and allowed to equilibrate for 5min at 25°C. The reaction was initiated by adding 0.1 ml of 2.5mM H$_2$O$_2$. Absorbance at 340 nm was recorded for 5min. The data was expressed as nanomoles of NADPH oxidized to NADP by using the extinction coefficient of 6.26 × 103 M$^{-1}$ cm$^{-1}$ and expressed in terms of nanomoles NADPH consumed/mg protein/min.

Glutathione reductase activity: Glutathione reductase (GR) was estimated by the method of Carlberg and Mannervik. Briefly, the reaction mixture contained 0.067M sodium phosphate buffer (pH 6.6), NADPH in 1% sodium carbonate and 7mM oxidized glutathione. The contents were incubated at 37°C for 5min and the reaction was initiated by adding PMS. The decrease in absorbance per min was recorded at 340 nm. GR activity was calculated by using an extinction coefficient of 6.22 × 103 M$^{-1}$ cm$^{-1}$ and expressed in terms of nanomoles of NADPH consumed/mg protein/min.

Protein estimation

Protein content in the samples was measured by the method of Lowry et al.

Statistical analysis

The statistical significance of differences between various groups was determined by two way analysis of variance (ANOVA) for multiple comparison using Students-Newmann-Keul’s (SNK) procedure and Dunnet’s procedure was used for data analysis with respect to control. P values less than 0.05 were considered significant.

RESULTS

The animals were exposed to whole body radiation at different doses of γ-rays (10, 25, 50 cGy). After each radiation exposure the animals were sacrificed at 4, 12 and 24 h for the analysis of lipid peroxidation and antioxidant defense status in kidneys.

Lipid peroxidation

Lipid peroxidation levels in the kidneys were enhanced by 60%, 41% and 32.8% respectively at 4, 12 and 24 h after whole body irradiation of animals with 10 cGy (Fig. 1). The

![Fig. 1. Effect of whole body γ-irradiation of Balb/c mice with 60Co at 0 (control), 10, 25 and 50 cGy on lipid peroxidation in the kidneys. The animals were sacrificed at 4, 12 and 24 h after radiation exposure. Values are Mean ± SEM, n = 5, *p < 0.05 w.r.t. control.](http://jrr.jstage.jst.go.jp)
LPx levels increased by 33% and 49% at 12 h on exposure of animals to 25 cGy and 50 cGy doses respectively. However, these enhanced LPx levels returned to the normal by 24 h.

Reduced glutathione

The whole body irradiation of animals to 10 cGy and 50 cGy significantly increased the kidneys GSH levels by 21% at 12 h and returned to the control levels by 24 h (Fig. 2). Exposure to 25 cGy increased the kidney GSH level from 12% at 4 h to 50% at 24 h post irradiation. At 50 cGy dose, the elevated GSH level at 12 h decreased by 17% as compared to 25 cGy at the same post irradiation period.

Antioxidant defense enzymes

The superoxide dismutase activity in kidneys increased by 37% at 12 h after whole body exposure at all the doses up to 50 cGy, and returned to control values at 24 h except at a dose of 10 cGy (Fig. 3). However, when animals were exposed to 10 cGy, the elevated SOD levels decreased by 10% at 24 h as compared to 12 h which were still significantly (p < 0.05) more than the control values.

No significant change in the CAT activity was observed at 4 h after irradiation of animals up to 50 cGy (Fig. 4). However, the CAT activity increased by 18.5% and 12.2% at 12 and 24 h post exposure to a dose of 10 cGy. Interestingly, the CAT activity was elevated significantly (p < 0.05) by 10% and 11.6% at 24 h and 12 h post exposure to 25 cGy and 50 cGy respectively as compared to their respective controls.

Whole body radiation doses of 10 cGy and 25 cGy did not alter the GPx activity significantly in the kidneys (Fig. 5).

Fig. 2. Effect of whole body γ-irradiation of Balb/c mice with 60Co at 0 (control), 10, 25 and 50 cGy on reduced glutathione levels in the kidneys. The animals were sacrificed at 4, 12 and 24 h after radiation exposure. Values are Mean ± SEM, n = 5, *p < 0.05 w.r.t control, #p < 0.05 w.r.t 10 cGy, @p < 0.05 w.r.t 25 cGy.

Fig. 3. Effect of whole body γ-irradiation of Balb/c mice with 60Co at 0 (control), 10, 25 and 50 cGy on superoxide dismutase activity in the kidneys. The animals were sacrificed at 4, 12 and 24 h after radiation exposure. Values are Mean ± SEM, n = 5, *p < 0.05 w.r.t control.
Low-dose Radiation Affects Antioxidant Status

Fig. 4. Effect of whole body γ-irradiation of Balb/c mice with 60Co at 0 (control), 10, 25 and 50 cGy on catalase activity in the kidneys. The animals were sacrificed at 4, 12 and 24 h after radiation exposure. Values are Mean ± SEM, n = 5, *p < 0.05 w.r.t control, #p < 0.05 w.r.t 10 cGy, @p < 0.05 w.r.t 25 cGy.

Fig. 5. Effect of whole body γ-irradiation of Balb/c mice with 60Co at 0 (control), 10, 25 and 50 cGy on glutathione peroxidase activity in the kidneys. The animals were sacrificed at 4, 12 and 24 h after radiation exposure. Values are Mean ± SEM, n = 5, *p < 0.05 w.r.t control.

Fig. 6. Effect of whole body γ-irradiation of Balb/c mice with 60Co at 0 (control), 10, 25 and 50 cGy on glutathione reductase activity in the kidneys. The animals were sacrificed at 4, 12 and 24 h after radiation exposure. Values are Mean ± SEM, n = 5, *p < 0.05 w.r.t control.

J. Radiat. Res., Vol. 48, No. 2 (2007); http://jrr.jstage.jst.go.jp
However, after exposure of animals to a dose of 50 cGy the GPx activity increased by 30% at 4 h which subsequently decreased to 14% at 12 h and finally returned to control level at 24 h.

Whole body exposure of animals did not alter the GR activity at a dose of 10 cGy (Fig. 6). However, the activity of this enzyme increased significantly (p < 0.05) by 10.2% and 12.2% at 12 h after exposure to 25 cGy and 50 cGy which subsequently returned to their respective control values at 24 h post irradiation.

DISCUSSION

In the biological system, apart from the normal metabolism, one of the active sources of oxygen radicals is the ionizing radiation. Cells can be injured, and even killed under the most serious conditions of radiation exposure, when the content of reactive oxygen species (ROS) gets uncontrolled by the cellular antioxidants. It is believed that the extent of cellular damage by low-radiation dose is proportional to the generation of lipid peroxides at 12 h after exposure to whole body low-doses of γ-radiation. The antioxidant enzymes activity in the lungs of mice were found on irradiation to low-doses. This indicates that SOD and CAT plays more active role in kidneys for detoxification of ROS as compared to liver and lungs after the whole body exposure of animals to γ-radiations at low-doses. Glutathione directly reacts with ROS; whereas GPx catalyzes the dismutation of O$_2^-$ to H$_2$O$_2$, and CAT converts the product into H$_2$O. We have found that the kidney SOD activity peaked at 12 h after whole body exposure to 25 cGy and 50 cGy, which returned to control level by 24 h. However, CAT activity reached to maximum at 12 h on exposure of animals to 10 cGy and 50 cGy. Interestingly, like GSH no change in GPx activity reached to maximum at 12 h at a dose of 50 cGy. This data reflects that a dose of 25 cGy is the most critical in inducing the GSH levels to counteract the elevated levels of radiation-induced free radicals responsible for the process of lipid peroxidation. These changes are almost similar to what we reported earlier in case of mouse liver. On the other hand, significant changes in lipid peroxide levels in lungs have been observed only at 12 h on exposure to 25 cGy. This might be due to the fact that the lungs remain exposed directly to outer environment and have enhanced antioxidant defense system which is sufficient to overcome the oxidative stress conditions mediated by the low-doses of γ-radiations. The increased lipid peroxidation in the kidneys at 12 h after whole body low-dose irradiation returned to the control levels with in 24 h with subsequent increase in the redox agent GSH. It is likely that the increase in GSH contents might be due to an increase in the expression of mRNA for γ-glutamylcysteine synthase, a rate limiting enzyme in GSH synthesis. Immediate enhancement of GSH content in kidneys after whole body radiation of animal at low-dose reflects that GSH acts as the first line of defense to protect the cells against the increased oxidative stress induced by the ionizing radiation.

The major enzymatic antioxidants in kidneys are SOD, CAT, GPx and GR. Superoxide dismutase catalyzes the dismutation of O$_2^-$ to H$_2$O$_2$, and CAT converts the product into H$_2$O. We have found that the kidney SOD activity peaked at 12 h after whole body exposure to 25 cGy and 50 cGy, which returned to control level by 24 h. However, CAT activity reached to maximum at 12 h on exposure of animals to 10 cGy and 50 cGy. Interestingly, like GSH no change in the antioxidant enzymes activity in the lungs of mice were found on irradiation to low-doses. This indicates that SOD and CAT plays more active role in kidneys for detoxification of ROS as compared to liver and lungs after the whole body exposure of animals to γ-radiations at low-doses. Glutathione directly reacts with ROS; whereas GPx catalyzes the destruction of hydrogen peroxide and hydroperoxide by utilizing GSH and NADPH. An increase in the GPx activity was observed only at a dose of 50 cGy. It is likely that the...
increased GPx and GR provide second line of cellular defense in the kidneys from the radiation-induced oxidative stress at relatively high dose i.e. at 50 cGy. The increase in the lipid peroxidation in the kidneys after whole body exposure to low-dose radiation might cause an increase in the antioxidant defense status to regulate the cellular homeostasis. The differential responses of antioxidant defense system in various organs of mice after whole body irradiation to low-dose (< 50 cGy) γ-rays might be due to variable sensitivities in the activation of related genes in different organs.\(^{37,38}\)

As low-dose ionizing radiations have been reported to regulate the cellular redox status mainly through phosphorylation of various serine/threonine Mitogen Activated Protein Kinases,\(^ {37}\) and the cell cycle signaling pathways.\(^ {38}\) The signal transduction pathways are believed to get activated differentially in various organs in response to different doses of ionizing radiations.\(^ {37}\)

In conclusion, the whole body exposure of mice with γ-radiation in a dose range of 25 cGy and 50 cGy stimulates the enzymatic and non-enzymatic antioxidant defense system within 24 h in the mice kidneys. The enhancement of endogenous antioxidant machinery might be helpful in protecting the organ damage from the other causes of oxidative stress.

ACKNOWLEDGEMENTS

The authors thank the Director Postgraduate Institute of Medical Education and Research Chandigarh, India for providing funds to carry out the research project. The authors also thank Mr R. C. Goel, the Bio-Statistician at the Institute for helping us in the analysis of the data.

REFERENCES

1. United Nations Scientific Committee on the Effects of Atomic Radiation, Genetic and Somatic Effects of Ionizing Radiation, 1986 report to the General Assembly, with annexes. New York, United Nations, 1986.

2. Feinendegen, L. E. (2005) Evidence for beneficial low level radiation effects and radiation hormesis. Brit. J. Radiol. 78: 3–7.

3. Calabrese, E. J. and Baldwin, L.A. (2002) Radiation hormesis and cancer. Human and Ecological Risk Assessment 8: 327–353.

4. Polycove, M. (2004) Radiobiological basis of low-dose irradiation in prevention and therapy of cancer. 14th Pacific Basin Nuclear Conference; 2004 March 21–25; Honolulu, HI, pp. 647–653.

5. Avti, P. K., Pathak, C. M., Kumar, S., Kaushik, G., Kaushik, T., Parooque, A., Khunduja, K. L., Sharma, S. C. (2005) Low-dose gamma-irradiation differentially modulates antioxidant defense in liver and lungs of Balb/c mice. Int. J. Radiat. Biol. 81: 901–910.

6. Wang, B., Ohyama, H., Shang, Y., Tanaka, K., Aizawa, S., Yukawa, O. and Hayata, I. (2004) Adaptive response in embryogenesis: V. Existence of two efficient dose-rate ranges for 0. 3 Gy of priming irradiation to adapt mouse fetuses. Radiat. Res. 161: 264–272.

7. Ina, Y. and Sakai, K. (2004) Prolongation of life span associated with immunological modification by chronic low-dose-rate irradiation in MRL-lpr/lpr mice. Radiat. Res. 161: 168–173.

8. Kojima, S., Nakayama, K. and Ishida, H. (2004) Low-dose gamma-rays activate immune functions via induction of glutathione and delay tumor growth. J. Radiat. Res. (Tokyo). 45: 33–39.

9. Ina, Y., Tanooka, H., Yamoda, T. and Sakai, K. (2005) Suppression of thymic lymphoma induction by life-long low-dose-rate irradiation accompanied by immune activation in C57BL/6 mice. Radiat. Res. 163: 153–158.

10. Luckey, T. D. (1982) Physiological benefits from low levels of ionizing radiation. Health Phys. 43: 771–789.

11. Yonezawa, M., Misonoh, J. and Hosokawa, Y. (1996) Two types of X-ray-induced radioresistance in mice: presence of 4 dose ranges with distinct biological effects. Mutat. Res. 358: 237–243.

12. Ibuki, Y. and Goto, R. (1994) Adaptive response to low-doses of gamma-ray in Chinese hamster cells: determined by cell survival and DNA synthesis. Biol. Pharm. Bull. 17: 1111–1113.

13. Tiku, A. B. and Kale, R. K. (2004) Adaptive response and split-dose effect of radiation on the survival of mice. J. Biosci. 29: 111–117.

14. Amundson, S. A., Lee, R. A., Koch-Paiz, C. A., Bittner, M. L., Meltzer, P., Trent, J. M. and Fornace Jr, A. J. (2003) Differential responses of stress genes to low-dose-rate γ-irradiation. Mol. Can. Res. 1: 445–452.

15. Lee WJ, Majumder ZR, Jeoung DI, Lee HJ, Kim SH, Bae S, Lee YS. (2006) Organ-specific gene expressions in C57BL/6 mice after exposure to low-dose radiation. Radiat. Res. 165: 562–569.

16. Wolff S. (1998) The adaptive response in radiobiology: evolving insights and implications. Environ. Health Perspect. 106: 277–283.

17. Dasu, A. and Denekamp, J. (2000) Inducible repair and intrinsinc radiosensitivity: a complex but predictable relationship? Radiat. Res. 153(3): 279–288.

18. Kojima, S., Matsuki, O., Nomura, T., Shimura, N., Kubodera, A., Yamaoka, K., Tanooka, H., Wakaugi, H., Honda, Y., Honda, S. and Sasaki, T. (1998[a]) Localization of glutathione and induction of glutathione synthesis-related proteins in mouse brain by low-doses of gamma-rays. Brain Res. 808: 262–269.

19. Kojima, S., Matsumori, S., Ishida, H. and Yamaoka, K. (2000) Possible role of elevation of glutathione in the acquisition of enhanced proliferation of mouse splenocytes exposed to small-dose gamma rays. Int. J. Radiat. Biol. 76: 1641–1647.

20. Kojima, S., Matsuki, O., Kinoshita, I., Gonzalez, T. V., Shimura, N. and Kubodera, A. (1997) Does small dose gamma-ray radiation induce endogenous antioxidant status in vivo? Biol. Pharm. Bull. 20: 601–604.

21. Kojima, S., Matsuki, O., Nomura, T., Kubodera, A., Honda, Y., Honda, S., Tanooka, H., Wakaugi, H. and Yamaoka, K. (1998[b]) Induction of mRNAs for glutathione synthesis-
related proteins in mouse liver by low-doses of gamma-rays. Biochim. Biophys. Acta 1381: 312–318.

22. Yamaoka, K., Edamatsu, R. and Mori, A. (1991) Increased SOD activities and decreased lipid peroxide levels induced by low-dose X-irradiation in rat organs. Free Radiol. Biol. Med. 11: 296–309.

23. Kawakita, Y., Ikekita, M., Kurozumi, R. and Kojima, S. (2003) Increase of intracellular glutathione by low-dose gamma-ray irradiation is mediated by transcription factor AP-1 in RAW 264.7 cells. Biol. Pharm. Bull. 26: 19–23.

24. Kojima, S., Ishida, H., Takahashi, M. and Yamaoka, K. (2002) Elevation of glutathione induced by low-dose gamma rays and its involvement in increased natural killer activity. Rad. Res. 157: 275–280.

25. Litterst, C. L, Mimnaugh, E. G., Reagan, R. L., Gram, T. E. (1975) Comparison of in vitro drug metabolism by lung, liver, and kidney of several common laboratory species. Drug Metab. Dispos. 3(4):259–265.

26. Ohkawa, H., Ohishi, N. and Yagi, K. (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analys. Biochem. 95: 351–358.

27. Moron, M. S., Dipierre, J. W. and Mannervik, B. (1979) Levels of glutathione, glutathione reductase and glutathione-s-transferase activities in rat lungs and liver, Biochem. Biophys. Act. 582: 67–78.

28. Kono, Y. (1978) Generation of superoxide radical during autooxidation of hydroxylamine and an assay for superoxide dismutase. Arch. Biochem. Biophys. 186: 189–195.

29. Luck, H. (1963) Catalase. In Methods of enzymatic analysis, edited by Bergmeyer HW. New York, Academic Press, Section 3, pp. 885–894.

30. Lawrence, R. A. and Burk, R. F. (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem. Biophys. Res. Commun. 71: 952–958.

31. Carlberg, I. and Mannervik, B. (1975) Purifications and characterization of the flavoenzyme glutathione reductase from rat liver. J. Biol. Chem. 250: 5475–5480.

32. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) Protein measurement with folin-phenol reagent. J. Biol. Chem. 193: 265–275.

33. Djordjevic, V. B. (2004) Free radicals in cell biology. Int. Rev. Cytol. 237: 57–89.

34. Jain, A., Martensson, J., Stole, E., Auld, P. A. and Meister, A. (1991) Glutathione deficiency leads to mitochondrial damage in the brain. Proc. Natl. Acad. Sci. (USA) 88: 1913–1917.

35. Yamaoka, K., Komoto, Y., Suzuka, I., Edamatsu, R. and Mori, A. (1993) Effects of radon inhalation on biological function—lipid peroxide level, superoxide dismutase activity, and membrane fluidity. Arch. Biochem. Biophys. 302: 37–41.

36. ICRP (1991). 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60, Annals of the ICRP 21(1–3), Pergamon Press, Oxford.

37. Suzuki, K., Kodama, S., Watanabe, M. (2001) Extremely low-dose ionizing radiation causes activation of mitogen-activated protein kinase pathway and enhances proliferation of normal human diploid cells. Cancer Res. 61: 5396–5401.

38. Yang, F., Stenoien, D. L., Strittmatter, E. F., Wang, J., Ding, L., Lipton, M. S., Monroe, M. E., Nicora, C. D., Gristenko, M. A., Tang, K., Fang, R., Adkins, J. N., Camp, D. G. II, Chen, D. J., Smith, R. D. (2006) Phosphoproteome profiling of human skin fibroblast cells in response to low-and high-dose irradiation. J. Proteome. Res. 5: 1252–1260.