Dicyclohexylaminium 4-nitroanthranilate

The crystal structure of dicyclohexylaminium 4-nitroanthranilate, $\text{C}_{12}\text{H}_{24}\text{N}^+\cdot\text{C}_7\text{H}_5\text{N}_2\text{O}_4^-\cdot\cdot\cdot$, shows a three-dimensional hydrogen-bonded network polymer in which the protonated amine groups of both the independent molecules of dicyclohexylamine give similar hydrogen-bonding interactions with oxygen acceptors of four separate anthranilate carboxylate groups \([\text{N} \cdot \cdot \cdot \text{O} = 2.730 (3)-2.782 (2) \text{ Å}]\). Secondary centrosymmetric peripheral hydrogen-bonding linkages involve the amine groups of the anthranilate anions with nitro and carboxylate O-atom acceptors, while these groups are also involved in intramolecular N–H–O(carboxylate) associations [2.663 (3) and 2.679 (3) Å].

Comment

Nitro-substituted benzoic acids such as 3,5-dinitrosalicylic acid (DNSA) ($p_{K_a} = 2.2$) readily protonate the nitrogen functional groups of most Lewis bases, giving compounds which have moderately to extensively hydrogen-bonded structures (Smith, Wermuth et al., 2002; Smith et al., 2003). 4-Nitroanthranilic acid (4-NAA; $p_{K_a} = 3.9$) is slightly weaker than DNSA but similar protonation of Lewis bases might be expected. However, structures of proton-transfer compounds with 4-NAA are not common. We have previously prepared and reported the structure of only one such compound, that of ethylenediaminium 4-nitroanthranilate dihydrate [(EN)$_2^+$-2(4-NAA)-2H$_2$O] (Smith et al., 2002), in which both amine functional groups of the EN molecule ($p_{K_{a1}} = 6.9$ and $p_{K_{a2}} = 9.9$) are protonated and are involved in an extensive hydrogen-bonded array, giving a three-dimensional network polymer structure. We report here the crystal structure of the proton-transfer compound of 4-NAA with the secondary amine dicyclohexylamine (DCHA; $p_{K_a} = 11.4$), (I).

![Structure of Dicyclohexylaminium 4-nitroanthranilate](image-url)
The protonated amine group in each DCHA molecule gives two direct hydrogen-bonding associations with carboxylate O atoms \(\text{N2} - \text{H}21\cdot\cdot\cdot\text{O71A} = 3.166 (3) \text{ Å} \). This results in a three-dimensional network polymer (Fig. 2).

Experimental

The synthesis of the title compound, (I), was carried out by heating under reflux for 10 min 1 mmol quantities of 2-amino-4-nitrobenzoic acid (4-nitroanthranilic acid, 4-NAA) and \(N \)-cyclohexylcyclohexanamine (dicyclohexylamine, DCHA) in 50 ml of 80% ethanol–water. After concentration to ca 30 ml, partial room-temperature evaporation of the hot-filtered solution gave orange crystal masses (m.p. 394.2–395.1 K).

Crystal data

\(\text{C}_{12}\text{H}_{23}\text{N}^+\cdot\text{C}_{6}\text{H}_{4}\text{N}_{2}\text{O}_{4}^- \)

\[Z = 4 \]

\[D_r = 1.244 \text{ Mg m}^{-3} \]

Mo Kα radiation

Cell parameters from 25 reflections

\[\alpha = 12.6–16.9^\circ \]

\[\mu = 0.09 \text{ mm}^{-1} \]

\[T = 295 (2) \text{ K} \]

Block, orange

Data collection

Rigaku AFC-7R diffractometer

\(\omega \cdot 20 \) scans

Absorption correction: none

7699 measured reflections

6830 independent reflections

4384 reflections with \(I > 2 \sigma(I) \)

\[R_{	ext{int}} = 0.016 \]

H atoms treated by a mixture of independent and constrained refinement

Refinement

Refinement on \(F^2 \)

\[R(F^2) = 0.151 \]

\[wR(F^2) = 0.042 \]

\[S = 0.89 \]

6830 reflections

502 parameters

H atoms treated by a mixture of independent and constrained refinement

Table 1

Hydrogen-bonding geometry (Å, °)
\(\text{D} - \text{H} \cdot \cdot \cdot \text{A} \)

N2A⋅H21A⋅O72A
N2B⋅H21B⋅O72B
N1C⋅H11C⋅O72B
N1D⋅H11D⋅O71A
N1D⋅H11D⋅O71A
N1D⋅H11D⋅O71A
N2B⋅H22B⋅O42B
C6A⋅H6A⋅O71A
C8B⋅H8B⋅O71B

Symmetry codes: (i) \(1 - x, 1 - y, 1 - z \); (ii) \(x, 1 + y, z \); (iii) \(2 - x, 1 - y, - z \); (iv) \(1 - x, 1 - y, - z \).

H atoms involved in hydrogen-bonding interactions \(\text{H21} \) and \(\text{H22} \) (anions \(\text{A} \) and \(\text{B} \)), and \(\text{H11} \) and \(\text{H12} \) (cations \(\text{C} \) and \(\text{D} \)) were located by difference methods and their positional and isotropic displacement parameters were refined. Others were included in the refinement at calculated positions as riding models (\(\text{C} - \text{H} = 0.95 \text{ Å} \)), with \(U_{	ext{iso}} = 1.2U_{	ext{eq}} \) of the parent atom. For refined H atoms, the N–H range is 0.83 (3)–0.96 (3) Å.

Figure 1

The molecular configuration and atom-naming scheme for one of the independent associated 4-NAA anion (B) and DCHA cation (C) pairs in (I). Atoms are shown as 30% probability ellipsoids.

Figure 2

Packing in the unit cell, viewed down \(\alpha \), showing hydrogen-bonding associations as broken lines.
Data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1999); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *TEXSAN for Windows* (Molecular Structure Corporation, 1999); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON for Windows* (Spek, 1999); software used to prepare material for publication: *PLATON for Windows*.

The authors acknowledge financial support from the School of Physical and Chemical Sciences (Queensland University of Technology) and Griffith University.

References

Molecular Structure Corporation (1999). *MSC/AFC Diffractometer Control Software* and *TEXSAN for Windows* (Version 1.06). MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.

Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. University of Göttingen, Germany.

Smith, G., Wermuth, U. D., Bott, R. C., Healy, P. C. & White, J. M. (2002). Aust. J. Chem. 55, 349-356.

Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2003). Aust. J. Chem. 56, 707-713.

Smith, G., Wermuth, U. D. & Healy, P. C. (2002). Acta Cryst. E58, o1088-o1090.

Spek, A. L. (1999). *PLATON for Windows*. September 1999 Version. University of Utrecht, The Netherlands.