Higher-dimensional Higgs representations in SGUT models

To cite this article: Alfredo Aranda et al 2011 J. Phys.: Conf. Ser. 315 012001

View the article online for updates and enhancements.
Higher-dimensional Higgs representations in SGUT models

Alfredo Aranda1,3, J L Díaz-Cruz2,3 and Alma D Rojas3,
1 Facultad de Ciencias, CUICBAS, Universidad de Colima, Bernal Díaz del Castillo 340, Colima, Colima, México
2 C.A. de Partículas, Campos y Relatividad, FCFM-BUAP, Puebla, Pue. México
3 Dual C-P Institute of High Energy Physics
E-mail: fefo@ucol.mx, ldiaz@sirio.ifuap.buap.mx, alma.drp@gmail.com

Abstract.
Supersymmetric Grand Unified Theories (SGUTs) have achieved some degree of succes, already present in the minimal models (with SU(5) or SO(10)). However, there are open problems that suggest the need to incorporate more elaborate constructions, specifically the use of higher-dimensional representations in the Higgs sector. For example, a \textbf{45} representation of SU(5) is often included to obtain correct mass relations for the first and second families of d-type quarks and leptons. When one adds these higher-dimensional Higgs representations one must verify the cancellation of anomalies associated to their fermionic partners. One possible choice, free of anomalies, include both representations to cancel anomalies. We review the necessary conditions for the cancellation of anomalies and discuss the different possibilities for supersymmetric SU(5) models. Alternative anomaly-free combinations of Higgs representations, beyond the usual vectorlike choice, are identified, and it is shown that their corresponding \(\beta\) functions are not equivalent. Although the unification of gauge couplings is not affected, the introduction of multidimensional representations leads to different scenarios for the perturbative validity of the theory up to the Planck scale. We study the effect on the evolution of the gauge coupling up to the Planck scale due to the different sets of fields and representations that can render an anomaly-free model.

1. INTRODUCTION

Anomalies in gauge theories. The need to require anomaly cancellation in any gauge theory stems from the fact that their presence destroys the quantum consistency of the theory. It turns out that all one needs to calculate or identify the anomaly is the triangle diagrams. For a given representation of a gauge group \(G\), the anomaly can be written as
\[
A(D)d^{abc} \equiv \text{Tr} \left[\left\{ T^a_{D_1}, T^b_{D_1} \right\} T^c_{D_1} \right],
\]
where \(T^a_{D_1}\) are the generators of the gauge group \(G\) in the representation \(D_1\), and \(d^{abc}\) denotes the anomaly associated to the fundamental representation [1].

For a representation \(R\) that is the direct sum or tensor product of two representations the anomaly coefficient satisfy
\[
\begin{align*}
A_R &= A(R) = A(R_1 \oplus R_2) = A(R_1) + A(R_2), \\
A_R &= A(R) = A(R_1 \otimes R_2) = D(R_1) A(R_2) + D(R_2) A(R_1),
\end{align*}
\]

Published under licence by IOP Publishing Ltd
respectively, with \(D(R_i) \) denoting the dimensions of representation \(R_i \).

Anomaly coefficients. The anomaly coefficients \(A(D) \) for most common representations are known in the literature [1]. We have extended these results to include higher-dimensional representation, with some of them shown in Table 1.

Table 1. Dimension and anomaly coefficients for higher-dimensional representation of SU(N).

Irrep	dim(r)	\(A(r) \)
\((N-1)(N-2)(N-3)\)	\(-4(N-3)(N-4)\)	\(1\)

Table 2. Dimension and anomaly coefficients for different representations of SU(5).

Repr.	Multiplet \(r \)	dim(r)	\(A(r) \)	\(2T(r) \)
[5]	\(0,0,0,0\)	1	0	0
[1]	\(1,0,0,0\)	5	1	1
[2]	\(0,1,0,0\)	10	1	3
[1,1]	\(2,0,0,0\)	15	9	7
Ad		24	0	10
[4,1]	\(1,0,0,1\)	24	0	10
[1,1,1]	\(3,0,0,0\)	35	44	28
[2,1]	\(1,1,0,0\)	40	16	22
[3,1]	\(1,0,1,0\)	45	6	24
[2,2]	\(0,2,0,0\)	50	15	35

2. **Anomaly cancellation.**

There are several ways to construct an anomaly free theory:

- The gauge group itself is always free of anomalies. This happens, for instance, for SO(10) but not for SU(5).
• The gauge group is a subgroup of an anomaly free group, and the representations form a complete representation of the anomaly free group. For instance, this happens in the SU(5) case for the $5 + \overline{10}$ representations, which together are anomaly free.

• The representations appear in conjugate pairs, i.e., they are vectorlike. This is the most common choice when the Higgs sector of SGUT is extended.

Anomaly cancellation with SU(5) representations. Let us consider an SU(5) SGUT model. There are three copies of $\overline{5} + 10$ representations to accommodate the three families of quarks and leptons. Breaking of the GUT group to the SM is achieved by including a (chiral) Higgs supermultiplet in the adjoint representation (24). The minimal Higgs sector needed to break the SM gauge group can be accommodated with a pair of 5 and $\overline{5}$ representations. Within this minimal model one obtains the mass relations $m_d = m_e$, which are predicted by the Higgs sector. One way to solve this problem is to add a 45 representation, which couples to the d-type quarks, but not to the u-type, then one obtains the Georgi-Jarlskog factor \([3]\) needed for the correct mass relation. Most models that obtain these relations within an extended Higgs sector, include the 45 conjugate representation to cancel anomalies \([4]\). This is however not the only possibility.

Consider the representations of SU(5) in Table 2. Then, for the 45, we can write down the following anomaly-free combinations:

\[
A(45) + A(\bar{45}) = 0,
A(45) + nA(5) + n'A(\overline{10}) = 0,
A(45) + A(\overline{15}) + 3A(5) = 0,
\]

with n and n' integers ≥ 0 and $n + n' = 6$. These are clearly non-equivalent models, with different physical consequences.

3. Gauge coupling unification.

The 1-loop β functions for a general SUSY theory with gauge group G and matter field appearing in chiral supermultiplets are given by $\beta = \sum_R T_R - 3C_A$, where T_R denotes the index for the representation R, and C_A the quadratic Casimir invariant for the adjoint representation. From MSSM-functions, the 1-loop RGEs for the gauge couplings are

\[
\frac{d\alpha_i}{dt} = \beta_i \alpha_i^2, \quad \beta_i = \begin{pmatrix} 33/5 \\ 1 \\ -3 \end{pmatrix} + \beta^X.
\]

where $\beta^X = \sum_\Phi T(\Phi)$ are the contributions of the extensions of the MSSM \([5]\) and the sum is over all SU(5) additional multiplets Φ.

We are interested in evaluating the effect of the different representations in the running from $M_{GUT} \sim 2 \times 10^{16} GeV$ up to the Planck scale, and also in finding which representations are perturbatively valid up to the Planck scale. The unified gauge coupling obeys the 1-loop RGE

\[
\mu \frac{d\alpha_5}{d\mu} = -\frac{\beta}{2\pi} = \frac{3 - \beta^X}{2\pi}.
\]

The one loop β functions for some interesting anomaly-free combinations are found to be:

\[
\beta^X(45 + 45) = 24, \\
\beta^X(45 + 6(5)) = 15, \\
\beta^X(45 + 6(10)) = 21, \\
\beta^X(45 + 15 + 2(10) + 5) = 19, \\
\beta^X(50 + 40 + 5) = 29.
\]

\[\text{VI International Workshop on the Dark side of the Universe (DSU 2010) IOP Publishing}

Journal of Physics: Conference Series 315 (2011) 012001 doi:10.1088/1742-6596/315/1/012001\]
As it is shown in the figure, the model with $\beta_X = 29$ induces a running of the gauge coupling that blows at the scale $M = 6.61 \times 10^{18}$ GeV, while for $\beta_X = 24$ this happens at $M = 2.63 \times 10^{19}$ GeV. Models with $\beta_X = 15, 19, 21$ are found to evolve safely even up to the Planck scale.

4. Yukawa and gauge couplings.

It is also interesting to consider the RGE effect associated with the Yukawa couplings that involve the Higgs representations. In order to do this we shall consider the 2-loop β functions for the gauge coupling, but will keep only the 1-loop RGE for the Yukawa couplings. Thus, we shall consider the following superpotential for the SU(5) SGUT model [2]. This superpotential involves the Higgs representations $H(5), H(5)$ and $\Sigma(24)$, and the matter multiplets $\psi(10), \phi(5)$.

$$W = \frac{1}{6} T r \Sigma^3 + \frac{1}{2} f V T r \Sigma^2 + \lambda H_\alpha (\Sigma_\beta^\alpha + 3 V \delta_\beta^\alpha) H^\beta$$

$$+ \frac{1}{2} \varepsilon_{\alpha\beta\gamma\delta} \psi_i^{\alpha\beta} \psi_j^{\gamma\delta} H^i + \sqrt{2} f^{ij} \psi_i^{\alpha\beta} \phi_{j3} H^i, \quad (6)$$

Using the RGEs expressions for a general supersymmetric model [6] we obtain the 1-loop RGE for the Yukawa parameters [2]

$$\mu \frac{d \lambda}{d \mu} = \frac{1}{(4\pi)^2} \left(- \frac{96}{5} g_5^2 + \frac{53}{10} \lambda^2 + \frac{21}{10} f^2 + 3 (h')^2 \right) \lambda,$$

$$\mu \frac{df}{d\mu} = \frac{1}{(4\pi)^2} \left(-30 g_5^2 + \frac{3}{2} \lambda^2 + \frac{63}{40} f^2 \right) f, \quad (7)$$

$$\mu \frac{dg_5}{d\mu} = \frac{1}{(4\pi)^2} \left(- \frac{96}{5} g_5^2 + \frac{12}{5} \lambda^2 + 6 (h')^2 \right) g_5,$$

while the 2-loop RGE for gauge coupling that we obtain is:

$$\mu \frac{d g_5}{d \mu} = \frac{1}{(4\pi)^2} \left(-3 g_5^3 \right) + \frac{1}{(4\pi)^4} \left(794 \frac{9}{5} g_5^5 - \frac{1}{(4\pi)^4} \left(\frac{49}{5} \lambda^2 + \frac{21}{4} f^2 + 12 (h')^2 \right) g_5^3 \right). \quad (8)$$
To solve the RGEs we used values of the coefficients λ, h^t and f that are themselves safe at the Planck scale. The parameters used are $M_{GUT} = 1.28 \times 10^{16}\text{GeV}$, $\alpha(M_{GUT}) = 0.040$, $h^t(M_{GUT}) = 0.6572$, $\lambda(M_{GUT}) = 0.6024$, and $f(M_{GUT}) = 1.7210$.

![Graph showing evolution of the unified gauge coupling](image)

Figure 2. Evolution of the unified gauge coupling for three different cases: i) the 1-loop result, ii) the 2-loop result without including Yukawas, and iii) the 2-loop result including the (1-loop) running of the Yukawas.

5. Conclusions
We have studied the problem of anomalies in SUSY gauge theories, in order to search for alternatives to the usual vectorlike representations used in extended Higgs sector.

The known results have been extended to include higher-dimensional Higgs representations, which in turn have been applied to discuss anomaly cancellation within the context of realistic GUT models of SU(5) type.

We have succeed in identifying ways to replace the $\bar{45} + 45$ models within SU(5) SGUTs. Then, we have studied the β functions for all the alternatives, and we find that they are not equivalent in terms of their values. These results have important implications for the perturbative validity of the GUT models at scales higher than the unification scale.

We have also considered the RGE effect associated with the Yukawa coupling that involve the additional Higgs representations. We found that there are appreciable differences for the evolution of the gauge coupling when going from the 1 to the 2-loops RGE, but this difference is reduced when one includes the 1-loop Yukawa couplings at the 2-loop level [7, 8].

Acknowledgments
ADRP thanks the Organizing Committee of the Dark Side of the Universe for the fellowship granted to attend this school.

References
[1] J Terning 2006 *Modern Supersymmetry, Dinamics and Duality* (Oxford: Clarendon Press)
U Sarkar 2007 *Int. J. Mod. Phys. A* **22**, 931
[2] J Hisano H. Murayama and T Yanagida 1993 Nucleon decay in the minimal supersymmetric SU(5) grand unification *Nucl. Phys. B* 402 46 (Preprint hep-ph/9207279)

[3] H Georgi and C Jarlskog 1979 *Phys. Lett.* B 86 297

[4] P Fileviez Perez Unification with and without supersymmetry:adjoint SU(5) *Preprint* arXiv:0710.1321

P Fileviez Perez 2007 *Phys. Rev.* D 76 071701

[5] R Hempfling 1995 Coupling constant unification on extended SUSY models *Phys. Lett.* B 351 206 (Preprint arXiv:hep-ph/9502201)

[6] S P Martin and M T Vaughn 1994 Two-loop renormalization group equations for soft supersymmetry-breaking couplings *Phys. Rev.* D 50 2282 (Preprint arXiv:hep-ph/9311340) [Erratum-ibid. D 78, 039903 (2008)]

[7] A Aranda, J L Diaz-Cruz and A D Rojas 2009 Anomalies, beta functions, and GUT’s AIP Conf.Proc.1116:454-457

[8] A Aranda, J L Diaz-Cruz and Alma D Rojas 2009 Anomalies, beta functions, and supersymmetric unification with multidimensional Higgs representations *Phys. Rev.* D 80 085027