Z(N) dependence of the pure Yang-Mills gluon propagator in the Landau gauge near Tc

Orlando Oliveira, Paulo Silva

Centro de Física Computacional, Universidade de Coimbra, Portugal

June 25, 2014
Outline

1. Introduction and Motivation
2. Results
3. Conclusions and Outlook

QCD Phase Diagram

- study of the phase diagram of QCD relevant e.g. for heavy ion experiments
- QCD has phase transition where quarks and gluons become deconfined for sufficiently high T
- Polyakov loop
 - order parameter for the confinement-deconfinement phase transition
 - $L = \langle L(\vec{x}) \rangle \propto e^{-F_q/T}$
 - Definition on the lattice:

$$L(\vec{x}) = \text{Tr} \prod_{t=0}^{N_t-1} U_4(\vec{x}, t)$$

- $T < T_c : L = 0$ (center symmetry)
- $T > T_c : L \neq 0$ (spontaneous breaking of center symmetry)

Lattice 2014
Center symmetry

- Wilson gauge action is invariant under a center transformation
- temporal links on a hyperplane $x_4 = \text{const}$ multiplied by
 \[z \in \mathbb{Z}_3 = \{ e^{-i2\pi/3}, 1, e^{i2\pi/3} \} \]
- Polyakov loop $L(\vec{x}) \rightarrow zL(\vec{x})$
- $T < T_c$
 - local P_L phase equally distributed among the three sectors
 \[L = \langle L(\vec{x}) \rangle \approx 0 \]
- $T > T_c$
 - \mathbb{Z}_3 sectors not equally populated: $L \neq 0$

G. Endrödi, C. Gattringer, H.-P. Schadler, arXiv:1401.7228
C. Gattringer, A. Schmidt, JHEP 01, 051 (2011)
C. Gattringer, Phys. Lett. B 690, 179 (2010)
F. M. Stokes, W. Kamleh, D. B. Leinweber, arXiv:1312.0991
Landau gauge gluon propagator

- At finite T: two independent form factors

\[D_{ab}^{\mu\nu}(\hat{q}) = \delta^{ab} \left(P_{\mu\nu}^T D_T(q^2_4, \vec{q}) + P_{\mu\nu}^L D_L(q^2_4, \vec{q}) \right) \]
D_L and D_T show quite different behaviours with T

Usually, the propagator is computed such that $\text{arg}(P_L) < \pi/3$ (Z_3 sector 0)

what happens in the other sectors?
Lattice setup

- spatial physical volume $\sim (6.5\text{fm})^3$
- 100 configs per ensemble

Coarse lattices $a \sim 0.12\text{fm}$

Temp. (MeV)	$L_s^3 \times L_t$	β	a (fm)	$L_s a$ (fm)
265.9	$54^3 \times 6$	5.890	0.1237	6.68
266.4	$54^3 \times 6$	5.891	0.1235	6.67
266.9	$54^3 \times 6$	5.892	0.1232	6.65
267.4	$54^3 \times 6$	5.893	0.1230	6.64
268.0	$54^3 \times 6$	5.8941	0.1227	6.63
268.5	$54^3 \times 6$	5.895	0.1225	6.62
269.0	$54^3 \times 6$	5.896	0.1223	6.60
269.5	$54^3 \times 6$	5.897	0.1220	6.59
270.0	$54^3 \times 6$	5.898	0.1218	6.58
271.0	$54^3 \times 6$	5.900	0.1213	6.55
272.1	$54^3 \times 6$	5.902	0.1209	6.53
273.1	$54^3 \times 6$	5.904	0.1204	6.50

Fine lattices $a \sim 0.09\text{fm}$

Temp. (MeV)	$L_s^3 \times L_t$	β	a (fm)	$L_s a$ (fm)
269.2	$72^3 \times 8$	6.056	0.09163	6.60
270.1	$72^3 \times 8$	6.058	0.09132	6.58
271.0	$72^3 \times 8$	6.060	0.09101	6.55
271.5	$72^3 \times 8$	6.061	0.09086	6.54
271.9	$72^3 \times 8$	6.062	0.09071	6.53
272.4	$72^3 \times 8$	6.063	0.09055	6.52
272.9	$72^3 \times 8$	6.064	0.09040	6.51
273.3	$72^3 \times 8$	6.065	0.09025	6.50
273.8	$72^3 \times 8$	6.066	0.09010	6.49
How-to

- for each configuration, 3 gauge fixings after a Z_3 transformation

$$\mathcal{U}_4' (\vec{x}, t = 0) = z \mathcal{U}_4 (\vec{x}, t = 0)$$

- configurations classified according to $\langle L \rangle = |L| e^{i\theta}$

\[
\theta = \begin{cases}
-\pi < \theta \leq -\pi/3, & \text{Sector -1,} \\
-\pi/3 < \theta \leq \pi/3, & \text{Sector 0,} \\
\pi/3 < \theta \leq \pi, & \text{Sector 1}
\end{cases}
\]
Conical cut for momenta above 1GeV; all data below 1GeV

Renormalization:

\[D_{L,T}(\mu^2) = Z_R D_{L,T}^{\text{Lat}}(\mu^2) = 1/\mu^2 \]

Renormalization scale: \(\mu = 4 \) GeV

\(D_L \) and \(D_T \) renormalized independently

- within each \(Z(3) \) sector, \(Z_R^{(L)} \) and \(Z_R^{(T)} \) agree within errors
- each \(Z_3 \) sector is renormalized independently
 - \(Z_R \) do not differ between the different \(Z(3) \) sectors
Coarse lattices, below T_c

Longitudinal component

Transverse component
Introduction and Motivation

Results

Conclusions and Outlook

Fine lattices, below T_c

Longitudinal component

Transverse component

$\beta = 6.056$

$Lattice 2014$
Coarse lattices, above T_c

Longitudinal component

![Graph showing $D_\perp(p^2)$ vs. p for three sectors.]

Transverse component

![Graph showing $D_T(p^2)$ vs. p for three sectors.]

L_{2014}
Fine lattices, above T_c

Longitudinal component

Transverse component

$\beta = 6.064$

$D_v(p^2)$ vs p (GeV) for different sectors.

$D_T(p^2)$ vs p (GeV) for different sectors.

Lattice 2014
Polyakov loop history

Modulus

$D_L(0)$ versus Polyakov loop

$54^3 \times 6, \beta = 5.8941$

Phase

$D_L(0)$ versus Polyakov loop

$54^3 \times 6, \beta = 5.8941$
Polyakov loop history

Modulus

Phase

Lattice 2014
Removing configurations in wrong phase

Fine lattices

![Graph showing temperature (T) vs. D_L(0) for different sectors with and without cleaning.](Lattice2014)
Correlation between L and the separation of D between the different sectors

- This can be used to identify the phase transition
- Possible existence of different phases near and above T_c
- The dynamics differs in each sector

Outlook:

- understand physics of different sectors (e.g. mass scales)
- how quarks change the above picture?
- look at the distribution of eigenvalues of the Dirac operator

Gattringer, Rakow, Schafer, Soldner, PRD66(2002)054502

This work is funded by FEDER, through the Programa Operacional Factores de Competitividade – COMPETE and by National funds through FCT – Fundação para a Ciência e Tecnologia in the frame of project CERN/FP/123620/2011.

PJS supported by FCT grant SFRH/BPD/40998/2007.