Vector space bases associated to vanishing ideals of points

Samuel Lundqvist

Abstract

In this paper we discuss four different constructions of vector space bases associated to vanishing ideals of points. We show how to compute normal forms with respect to these bases and give new complexity bounds. As an application, we drastically improve the computational algebra approach to the reverse engineering of gene regulatory networks.

1 Introduction

Let \(k[x_1, \ldots, x_n] \) be the polynomial ring in \(n \) variables over a field \(k \). The vanishing ideal with respect to a set of points \(\{ p_1, \ldots, p_m \} \) in \(k^n \) is defined as the set of elements in \(k[x_1, \ldots, x_n] \) that are zero on all of the \(p_i \)'s.

The main tool that is used to compute vanishing ideals of points is the Buchberger-Möller algorithm, described in [2]. The Buchberger-Möller algorithm returns a Gröbner basis for the ideal vanishing on the set \(\{ p_1, \ldots, p_m \} \).

A complementary result of the algorithm is a vector space basis for the quotient ring \(k[x_1, \ldots, x_n]/I \). However, in many applications it turns out that it is the vector space basis, rather than the Gröbner basis of the ideal, which is of interest. For instance, it may be preferable to compute normal forms using vector space methods instead of Gröbner basis techniques.

A new bound for the arithmetic complexity of the Buchberger-Möller algorithm is given in [11], and is equal to \(O(nm^2 + \min(m, n)m^3) \). We will discuss four constructions of vector space bases, all of which perform better than the Buchberger-Möller algorithm. An application of the constructions will be that we can improve the method of the reverse engineering of gene regulatory networks given in [10].

A key result for the effectiveness of our methods is a fast combinatorial algorithm which gives useful structure information about the relation between the points. The algorithm uses less than \(nm + m^2 \) arithmetic comparisons over \(k \).

As a direct consequence of the combinatorial algorithm, we obtain with the same complexity a family of separators, that is, a family \(\{ f_1, \ldots, f_m \} \) of polynomials such that \(f_i(p_i) = 1 \) and \(f_i(p_j) = 0 \) if \(i \neq j \). It is easy to see that the separators form a \(k \)-basis for the quotient ring \(k[x_1, \ldots, x_n]/I \). This will be the first construction of vector space bases.

The second construction is a \(k \)-basis formed by the residues of \(1, f, \ldots, f^{m-1} \), where \(f \) is a linear form. If \(k \) is equipped with a total order, this construction uses \(O(nm + \min(m, n)m^2\log(m)) \) arithmetic operations Also, we obtain an algebra isomorphism \(S/I \cong k[x]/J \), where \(J \) is a principal ideal.
The two remaining constructions give monomial k-bases. The third construction we discuss is a method that was introduced in [3] and improved in [6]. It produces the set of monomials outside the initial ideal of I with respect to the lexicographical ordering, using only combinatorial methods. We reanalyze the number of arithmetic operations needed in the method presented in [6] and we show that it uses only $O(nm + m \min(m, nr))$ arithmetic comparisons (the variable r is less than m and will be defined later).

The fourth construction gives a k-basis which is the complement of the initial ideal with respect to a class of admissible monomial orders in a total of $O(nm)$ arithmetic comparisons and additionally $O(\min(m, n)m^3)$ arithmetic operations.

In Section 6 we end up by giving the biological implications of our constructions.

2 Notation and preliminaries

Throughout the paper, let $S = \mathbb{k}[x_1, \ldots, x_n]$ denote the polynomial ring in n variables over a field \mathbb{k} and let I denote an ideal in S. Whenever $f \in S$, $[f]$ will denote the degree of f and $[f]$ will denote the equivalence class in S/I containing f.

Let B be any subset of S such that $[B] = \{[b], b \in B\}$ is a vector space basis for S/I. If s is an element in S, its residue can be uniquely expressed as a linear combination of the elements in $[B]$, say $[s] = \sum c_i[b_i]$. The S-element $\sum c_i b_i$ is then called the normal form of s with respect to B which we write as $\text{NF}(s, B) = \sum c_i b_i$. By abuse of notation we say that B (rather than $[B]$) is a basis for S/I.

Let p be a point in \mathbb{k}^n and f an element of S. We denote by $f(p)$ the evaluation of f at p. When $P = \{p_1, \ldots, p_m\}$ is a set of points, we write $f(P) = (f(p_1), \ldots, f(p_m))$. If $F = \{f_1, \ldots, f_s\}$ is a set of elements in S, then $F(P)$ is defined to be the $(s \times m)$-matrix whose i’th row is $f_i(P)$.

The vanishing ideal $I(P)$ is the ideal consisting of all elements in S which vanish on all of the points in P. Given two elements f_1 and f_2 in S such that $[f_1] = [f_2]$ in $S/I(P)$, we have $f_1(p) = f_2(p)$ for all $p \in P$. An important property of a set $[B]$ of m elements being a k-basis for $S/I(P)$ is that $B(P)$ has rank m.

A family of separators for a set of distinct points is a set $\{f_1, \ldots, f_m\}$ of polynomials such that $f_i(p_i) = 1$ and $f_i(p_j) = 0$ whenever $i \neq j$. The residues of a family of separators will always form a k-basis for S/I. Such a k-basis will have a nice property for computing normal forms and we have the formula $\text{NF}(f, Sep) = f(p_1) \cdot f_1 + \cdots + f(p_m) \cdot f_m$.

An admissible monomial order is a total order on the monomials in S which also is a well ordering. Let \prec be an admissible monomial order. The initial ideal of I, denoted by $\text{in}(I)$, is the monomial ideal consisting of all leading monomials of I with respect to \prec. One of the characterizations of a set G being a Gröbner basis of an ideal I with respect to an admissible monomial order \prec is that $G \subseteq I$ and that the leading terms of G generate $\text{in}(I)$. An old theorem by Macaulay states that the residues of the monomials outside $\text{in}(I)$ form a k-basis for the quotient ring S/I. The set of monomials outside $\text{in}(I)$ will be called the standard monomials (with respect to \prec) throughout the paper.
We will measure the performance of the algorithms presented by means of the number of arithmetic comparisons and the number of arithmetic operations (addition and multiplication). We will assume that the cost of an arithmetic comparison is bounded by the cost of an arithmetic operation.

Some of the algorithms we present use comparisons and increm entations on the set \{1, \ldots, m\}. We call these operations \textit{elementary integer operations}. The elementary integer operations will in general be neglectable and we will, except for some cases, omit them in the complexity analysis.

In the sequel, the word "operations" will mean arithmetic operations and the word "comparisons" will mean arithmetic comparisons, if not stated otherwise. By "bound" we will always mean an upper bound.

We do not deal with the growth of coefficients in the operations, but refer the reader to [7]. In [1], the techniques in the case when \(k = \mathbb{Q}\) are discussed, using the Chinese remainder theorem.

3 Normal form computations for zero dimensional ideals

The most frequent method for computing normal forms with respect to an ideal \(I\) uses the Noetherian property of the reduction process with respect to a Gröbner basis of the ideal \(I\). However, if \(I\) is a vanishing ideal, linear algebra techniques are to prefer. Indeed, the reduction process with respect to a Gröbner basis can have exponential runtime, while the linear algebra techniques have low polynomial runtime. On the other hand, the linear algebra techniques do not seem to be widely spread and we will describe them here.

\textbf{Lemma 3.1.} Let \(B = \{e_1, \ldots, e_m\}\) and suppose that \([B]\) is a basis for \(S/I(P)\). Let
\[
(f_1, \ldots, f_m)^t = B(P)^{-1}(e_1, \ldots, e_m)^t.
\]
Then \(\{f_1, \ldots, f_m\}\) is a family of separators.

\textbf{Proof.}
\[
B(P)^{-1}(e_1, \ldots, e_m)^t(p_i) = B(P)^{-1}(e_1(p_i), \ldots, e_m(p_i))^t
\]
\[
= B(P)^{-1}B(P)(0, \ldots, 0, 1, 0, \ldots, 0)^t = (0, \ldots, 0, 1, 0, \ldots, 0)^t.
\]
\(\square\)

\textbf{Lemma 3.2.} Suppose that \([B]\) is a basis for \(S/I(P)\). Then
\[
NF(f, B) = ([e_1], \ldots, [e_m])(B(P)^{-1})^t(f(p_1), \ldots, f(p_m))^t.
\]

\textbf{Proof.} We have \(NF(f, \text{Sep}) = (f_1, \ldots, f_m)(f(p_1), \ldots, f(p_m))^t\) and by Lemma 3.1 \((f_1, \ldots, f_m) = (e_1, \ldots, e_m)(B^{-1})^t\).

\(\square\)

Since evaluation of a monomial of degree \(d\) at a point \(p\) is done using \(d\) multiplications, the complexity of evaluating \(f\) at the \(m\) points uses \(O(|f|sm)\) operations, where \(s\) is the number of monomials in \(f\). Multiplication by \(B(P)\) requires an additional number of \(O(m^2)\) operations, so we have proven the following proposition.
Proposition 3.3. Let $B = \{e_1, \ldots, e_m\}$ and suppose that $|B|$ is a basis for S/I, where I is the vanishing ideal with respect to the points p_1, \ldots, p_m. Suppose that $B(P)$ and the inverse of $B(P)$ have been computed. Then we have a normal form algorithm with respect to the separators which runs in $O(|f| sm)$ operations, where f is a polynomial with s monomials. To compute the normal form with respect to the basis B, we need to perform $O(|f| sm + m^2)$ operations.

We can also use the theory of multiplication matrices, described in [4] for instance, to compute normal forms of vanishing ideals of points with the same complexity as above. The theory of multiplication matrices also allows to extend normal form algorithms to general rings S/I, where dim$_k(S/I) < \infty$, see for instance the Mathphik algorithm in [7].

4 Combinatorial preprocessing of the points

All of the constructions in Section 5 rely on a combinatorial preprocessing of the points that we will described here. We will give the notations and the results here, but refer the reader to the Appendix for the algorithmic study.

Let Ω be a set equipped with an equivalence relation, denoted by \equiv. The equivalence relation on Ω is extended to n-tuples of elements in Ω by $a = (a_1, \ldots, a_n) = (b_1, \ldots, b_n) = b$ if $a_i = b_i$, for all i. The witness of two different n-tuples a and b is the least i such that $a_i \neq b_i$. When $a = b$, the witness is zero.

Let π_i be the projection map from Ω^n to Ω^i given by $(a_1, \ldots, a_n) \mapsto (a_1, \ldots, a_i)$. Let v_1, \ldots, v_m be n-tuples of elements in Ω and let Σ_i be the set of equivalence classes of $\pi_i(v_1), \ldots, \pi_i(v_m)$ for $i = 1, \ldots, n$. To simplify the notation, we will represent an equivalence class of tuples as an index set, that is, as a subset of $\{1, \ldots, m\}$ instead of as a subset of $\{v_1, \ldots, v_m\}$. Using this notation, we define $\Sigma_0 = \{\{1, \ldots, m\}\}$.

Let \overline{m} be the number of distinct elements in the set $\{v_1, \ldots, v_m\}$. Notice that $\overline{m} = |\Sigma_n|$. Let W be the witness list - the set of all i, $i \in \{1, \ldots, n\}$, such that $\Sigma_{i-1} \neq \Sigma_i$. Notice that W is the set of witnesses. Finally, let C be the witness matrix - an upper triangular matrix with elements in $W \cup \{0\}$ such that, for $i < j$, the number c_{ij} is the witness of v_i and v_j.

Example 4.1. In $\Omega = \mathbb{Z}$, let $v_1 = (1, 2, 0, 1, 1, 0, 3, 5)$, $v_2 = (1, 0, 1, 1, 1, 2, 0, 3, 5)$, $v_3 = (1, 2, 0, 0, 3, 1, 2, 0)$, $v_4 = (0, 0, 2, 0, 4, 0, 2, 0)$, $v_5 = (0, 0, 2, 1, 5, 0, 2, 0)$ and $v_6 = (2, 1, 3, 1, 6, 0, 2, 0)$. We will write the vectors as columns in the left hand side of the table below. In the right hand side we write the equivalence classes.

\[
\begin{pmatrix}
1 & 1 & 1 & 0 & 0 & 2 \\
2 & 0 & 2 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 & 2 & 3 \\
1 & 1 & 3 & 0 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & 1 & 0 & 0 & 0 \\
3 & 3 & 2 & 2 & 2 & 2 \\
5 & 5 & 0 & 0 & 0 & 0
\end{pmatrix}
\begin{align*}
\Sigma_1 &= \{\{1, 2, 3\}, \{4, 5\}, \{6\}\} \\
\Sigma_2 &= \{\{1, 3\}, \{2\}, \{4, 5\}, \{6\}\} \\
\Sigma_3 &= \{\{1, 3\}, \{2\}, \{4, 5\}, \{6\}\} \\
\Sigma_4 &= \{\{1\}, \{3\}, \{2\}, \{4, 5\}, \{6\}\} \\
\Sigma_5 &= \{\{1\}, \{3\}, \{2\}, \{4, 5\}, \{6\}\} \\
\Sigma_6 &= \{\{1\}, \{3\}, \{2\}, \{4, 5\}, \{6\}\} \\
\Sigma_7 &= \{\{1\}, \{3\}, \{2\}, \{4, 5\}, \{6\}\} \\
\Sigma_8 &= \{\{1\}, \{3\}, \{2\}, \{4, 5\}, \{6\}\}
\end{align*}
\]

For instance, $\{1, 3\} \in \Sigma_2$ shows that p_1 and p_3 agree on the first two coordinates.
We have $\overline{m} = 6$, $W = \{1, 2, 4\}$ and
\[
C = \begin{pmatrix}
0 & 2 & 4 & 1 & 1 & 1 \\
0 & 0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 4 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}.
\]

From the Σ_i’s, we can obtain a tree representation of the vectors. The vertices are labelled by the elements in the Σ_i’s and there is an edge from a vertex labelled by $\Sigma_{ik} \in \Sigma_i$ to a vertex labelled by $\Sigma_{i+1,h} \in \Sigma_{i+1}$ exactly when $\Sigma_{i+1,h} \subseteq \Sigma_{ik}$. Such an edge is labelled by $v_{i+1,j}$, for some $j \in \Sigma_{i+1,h}$ (recall that $v_{i+1,j} = v_{i+1,j'}$ for all $j, j' \in \Sigma_{i+1,h}$). In this way, all vectors and paths from the root to the leaves are in a natural one-to-one correspondence. The maximal number of edges from a vertex in the tree is denoted by r. In Example 4.1, $r = 3$ since Σ_0 has three children.

![Figure 1: The point trie of the first four coordinates of Example 4.1](image)

Figure 1 shows how the tree representation of the first four coordinates of the points from Example 4.1 look like. The authors in [6] call such a tree representation a trie. The associated trie to a set of points is a key construction in [6, 8]. Since we will deal with two different types of tries in this paper, we call the trie that is associated to a set of points the point trie.

Theorem 4.2. The Σ_i’s and/or the associated point trie can be computed using at most $nm + m \min(m, rn)$ comparisons.

Proof. We refer the reader to the Appendix.
5 Vector space constructions

In this section we present the four different constructions.

5.1 Construction 1 - A separator basis

Let \(I \) be the vanishing ideal of \(m \) distinct points \(p_1, \ldots, p_m \) and let \(C \) be the witness matrix with respect to \(p_1, \ldots, p_m \). Let

\[
Q_i = \prod_{j \neq i} \frac{x_{c_j} - p_{j_{c_j}}}{p_{i_{c_j}} - p_{j_{c_j}}}. \tag{1}
\]

It is easily checked that \(Q_i(p_i) = 1 \) and \(Q_i(p_j) = 0 \) if \(i \neq j \). In this way we get closed expressions of a \(k \)-basis for \(S/I \) as a direct consequence of Theorem 4.2. We remark that (1) is a standard construction of separators. For instance, it is used in [10], but there, the matrix \(C \) is computed in a naive way which uses \(O(nm^2) \) comparisons.

Theorem 5.1. Let \(I \) be the vanishing ideal with respect to \(m \) distinct points. We can compute a set of separators and hence a \(k \)-basis for \(S/I \) in \(O(nm) \) comparisons and \(O(m^2) \) operations over \(k \). We have also a normal form algorithm with respect to this basis. To compute the normal form of an element \(f \) with \(s \) monomials, this algorithm runs in \(O(s|f|m) \) operations over \(k \).

Proof. By definition, \(Q_1, \ldots, Q_m \) is a set of separators for the points and hence a \(k \)-basis for \(S/I \). To get the \(Q_i \)'s we need to evaluate the denominators, for which we need \(O(m^2) \) operations.

To compute the witness matrix is \(O(nm + \min(m, rn)) \) comparisons by Theorem 4.2. Since we assume that a comparison is cheaper than an operation, we conclude that we need \(O(nm) \) comparisons and \(O(m^2) \) operations to compute the \(Q_i \)'s.

The existence and effectiveness of the normal form algorithm follows from Proposition 3.3. \(\square \)

Example 5.2 (Example 4.1 continued). Consider the points \(p_1, \ldots, p_6 \) as elements in \(\mathbb{Z}_{13} \). Using (1), we determine the separator \(Q_1 \) of \(p_1, \ldots, p_6 \) as

\[
Q_1 = \frac{x_2}{2 - 0} \cdot \frac{x_1 - 2}{1 - 2} \cdot \frac{x_1 - 0}{1 - 0} \cdot \frac{x_1 - 0}{1 - 0} \cdot \frac{x_1 - 2}{1 - 2} = 22x_1^2(x_1 - 2)x_2(x_4 - 2)
\]

and similarly

\[
Q_2 = 32x_1^2(x_1 - 2)(x_2 - 2)^2, Q_3 = 32x_1^2(x_1 - 2)x_2(x_4 - 1),
\]

\[
Q_4 = 22(x_1 - 1)^3(x_1 - 2)(x_4 - 1), Q_5 = 22(x_1 - 1)^3(x_1 - 2)x_4,
\]

\[
Q_6 = 11(x_1 - 1)^3x_1^2.
\]

Thus, \(\left[\{Q_1, \ldots, Q_6\}\right] \) is a vector space basis for \(\mathbb{Z}_{13}[x_1, \ldots, x_8]/I(P) \). Let \(f = x_1x_2x_4 + x_4x_5x_6x_7 \). To compute the normal form of \(f \), we evaluate the expression on the six points to get \(f(P) = (2, 0, 24, 0, 0, 2) \). Thus \(\text{NF}(f, \{Q_1, \ldots, Q_6\}) = 2Q_1 + 24Q_3 + 2Q_6 \).

Remark 5.3. If \(Q_i = f_1^{a_1} \cdots f_n^{a_n} \) is a separator, let \(\overline{Q_i} = f_1 \cdots f_n \). Then \(Q_i(p_j) \neq 0 \) only when \(i = j \), so \(\overline{Q_i}/Q_i(p_i) \) is also a separator. This observation could be used to compute separators of low degrees.
5.2 Construction 2 - An isomorphism

Lemma 5.4. Let Ω be a set and let v_1, \ldots, v_m be n-tuples with elements in Ω. Let \overline{m} denote the number of distinct tuples and, without loss of generality, suppose that $v_1, \ldots, v_{\overline{m}}$ are distinct. Let $W = \{i_1, \ldots, i_{\overline{m}}\}$, be the witness list with respect to v_1, \ldots, v_m. Let π be the projection from Ω^n to $\Omega^\overline{m}$, defined by $\pi((a_1, \ldots, a_n)) = (a_{i_1}, \ldots, a_{i_{\overline{m}}})$. Let $w_i = \pi(v_i)$. Then $w_1, \ldots, w_{\overline{m}}$ are distinct.

Proof. Suppose that $j \neq k$ and $j, k \leq \overline{m}$. Since v_j and v_k are distinct, there is a witness $i_h \in W$ such that $v_{j_{i_h}} \neq v_{k_{i_h}}$. By definition, this means that w_j and w_k differ at position h. \qed

Lemma 5.5. Let $\{p_1, \ldots, p_m\}$ be a set of distinct points in \mathbb{k}^n. Let I be the vanishing ideal with respect to these points. Let \overline{m} be any positive integer and let π be an algebraic map from \mathbb{k}^n to $\mathbb{k}^\overline{m}$ such that $\pi(p_1), \ldots, \pi(p_m)$ are distinct. Let $T = \mathbb{k}[y_1, \ldots, y_{\overline{m}}]$ and let J be the vanishing ideal with respect to $\pi(p_1), \ldots, \pi(p_m)$. Then $S/I \cong T/J$ are isomorphic as algebras.

Proof. Let π^* be the corresponding monomorphism from T to S defined by $\pi^*(f)(p) = f(\pi(p))$ for $f \in T$. Notice that $f \in J$ if and only if $f(\pi(p_i)) = 0$ for all i, which is equivalent to $\pi^*(f)(p_i) = 0$ for all i, which in turn holds if and only if $\pi^*(f) \in I$. This allows us to extend π^* to a monomorphism from T/J to S/I. Since $\pi(p_1), \ldots, \pi(p_m)$ are all distinct, we have $\dim_k(T/J) = \dim_k(S/I)$ and, thus, the extension of π^* is an isomorphism of algebras. \qed

It follows easily that if B is any set such that $[B]$ is a basis for T/J, then $[\pi^*(B)]$ is a basis for S/I. Let $\{p_1, \ldots, p_m\}$ be a set of distinct points and suppose that we write the points with respect to the coordinates (x_1, x_2, \ldots, x_n), where $\pi_1 = g_1 x_1 + \cdots + g_n x_n$ and the g_i's are generic. Define $\pi : (a_1, \ldots, a_n) \mapsto a_1$ with respect to these coordinates. Then the points $\pi(p_1), \ldots, \pi(p_m)$ will be distinct. In fact, we can replace the generic coefficients with elements in \mathbb{k}, provided that \mathbb{k} is large enough. We give two constructions based on this observation.

Proposition 5.6. Let $\{p_1, \ldots, p_m\}$ be a set of distinct points in \mathbb{k}^n and suppose that \mathbb{k} contains at least m elements. Let I be the vanishing ideal with respect to these points. Then there is an algebraic map π from \mathbb{k}^n to \mathbb{k} such that $\pi(p_1), \ldots, \pi(p_m)$ are distinct and $S/I \cong \mathbb{k}^m/J$, where J vanishes on $\pi(p_1), \ldots, \pi(p_m)$.

Proof. Let c_1, \ldots, c_m be distinct elements in \mathbb{k}. Let $\{Q_1, \ldots, Q_m\}$ be a family of separators for the points and let further

$$\pi = \sum_i c_i Q_i.$$

Then $\pi(p_i) = c_i$. Hence, $S/I \cong \mathbb{k}[x]/J$ by Lemma 5.5. Now $[1], \ldots, [x^{m-1}]$ forms a \mathbb{k}-basis for $\mathbb{k}[x]/J$ and $\pi^*(x) = \sum_i c_i Q_i$. It follows that

$$[1], [\sum_i c_i Q_i], \ldots, [\sum_i c_i Q_i]^{m-1}$$

becomes a \mathbb{k}-basis for S/I. \qed
If we assume that k contains at least $\binom{m}{2} + 1$ elements, then the map π from k^n to k can be chosen to be a projection, and the k-basis will be of the form $[1], [x], \ldots, [x^{m-1}]$ with x linear.

To settle this, we need to introduce some notation. Consider the point set $\{p_1, \ldots, p_m\}$ in k^n. Recall that $p_{ik} = p_{jk}$ for all $k \leq h$ if and only if there is a set σ in Σ_h such that $i, j \in \sigma$. We say that a vector v_h in k^n realizes Σ_h if $v_{hi} = v_{hj}$ if and only if there exists a set σ in Σ_h such that $i, j \in \sigma$. For instance, if $m = 6$ and $\Sigma_h = \{\{1, 5\}, \{2\}, \{3, 6\}, \{4\}\}$, then $(1, 2, 0, 3, 1, 0)$ realizes Σ_h. When v_h realizes Σ_h we say that the type of v_h is Σ_h. Notice that if all points are distinct, then $\Sigma_h = \{\{1\}, \ldots, \{m\}\}$.

Lemma 5.7. Let $P = \{p_1, \ldots, p_m\}$ be a set of distinct points in k^n. Suppose that k contains at least $\binom{m}{2} + 1$ elements. Then there exists $c_1, \ldots, c_{\pi} \in k$ such that all elements in the m-vector $c_1(p_{i_{i_1}}, \ldots, p_{i_{i_{\pi}}}) + \cdots + c_{\pi}(p_{i_{i_{\pi}}, \ldots, p_{i_{i_{\pi}}}})$ are distinct, where $\pi \leq \min(m, n)$ and $1 = i_1 < i_2 < \cdots < i_{\pi} \leq n$. The c_i’s can be computed using $O(nm)$ comparisons and $O(\min(m, n)m^4 \log(m))$ operations provided a total order on k. If k is not ordered, then we need $O(nm)$ comparisons and $O(\min(m, n)m^4)$ operations.

Proof. Let (i_1, \ldots, i_{π}) be the witness list with respect to p_1, \ldots, p_m. We will iterate through this list. The idea is to start with a realization $v^{(h-1)} \in \mathbb{Z}^m$ of Σ_{ih-1} and show that $v^{(h)} = v^{(h-1)} + c_h(p_{i_{ih}}, \ldots, p_{i_{ih}})$ realizes Σ_{ih} for some $c_h \in k$. The rest of the proof consists of an algorithm which we call the Distinct element algorithm.

Distinct element algorithm

At stage 1, let $v^{(1)} = (p_{11}, \ldots, p_{m1})$ and let $c_1 = 1$.

At stage h, where $1 < h \leq \pi$, suppose that $v^{(h-1)}$ is a realization of Σ_{ih-1}. Let Π be the set of pairs (j, k) such that j and k are in different subsets of both Σ_{ih-1} and the type of $(p_{i_{ih}}, \ldots, p_{i_{ih}})$. Since $h - 1 < \pi$, the number of pairs (j, k) such that j and k are in different subsets of Σ_{ih-1} is bounded by $\binom{m}{2} - 1$. Thus $\Pi = \{(a_1, b_1), \ldots, (a_s, b_s)\}$ for some $s \leq \binom{m}{2} - 1$. Let

$$\tau_j = \frac{v^{(h-1)}_{a_j} - v^{(h-1)}_{b_j}}{p_{b_{j}i_{ih}} - p_{a_{j}i_{ih}}} \text{ for } j = 1, \ldots, s.$$

Let c_h be any non-zero element in $k \setminus \{\tau_1, \ldots, \tau_s\}$ and let

$$v^{(h)} = v^{(h-1)} + c_h(p_{i_{ih}}, \ldots, p_{i_{ih}}).$$

At stage $\pi + 1$, we stop the algorithm and return (c_1, \ldots, c_{π}).

The correctness of the algorithm

We only need to show that $v^{(h)}$ realizes Σ_{ih}. For $h = 1$ this is clear. Pick a_j and b_j in the same subset of Σ_{ih}. Then a_j and b_j also belong to the same element in Σ_{ih-1}. Hence, $v^{(h-1)}_{a_j} = v^{(h-1)}_{b_j}$ and $p_{a_{j}i_{ih}} = p_{b_{j}i_{ih}}$, from which it follows that $v^{(h)}_{a_j} = v^{(h)}_{b_j}$.

Suppose that a_j and b_j are in different subsets of Σ_{ih}. Suppose further that a_j and b_j are in the same subset of Σ_{ih-1}. Then $v^{(h-1)}_{a_j} = v^{(h-1)}_{b_j}$ and $p_{a_{j}i_{ih}} \neq p_{b_{j}i_{ih}}$ so that $v^{(h)}_{a_j} - v^{(h)}_{b_j} = c_h p_{a_{j}i_{ih}} - c_h p_{b_{j}i_{ih}} \neq 0$.

8
Thus, it remains to check the case when \(a_j \) and \(b_j \) belong to different sets in \(\Sigma_{ih-1} \). In this case, we have \(v^{(h)}_{a_j} - v^{(h)}_{b_j} = v^{(h-1)}_{a_j} - v^{(h-1)}_{b_j} + c_h p_{a_{ji}h} - c_h p_{b_{ji}h} \).

If \(p_{a_{ji}h} = p_{b_{ji}h} \), then \(v^{(h)}_{a_j} - v^{(h)}_{b_j} = v^{(h)}_{a_{ji}} - v^{(h)}_{b_{ji}} \neq 0 \). If \(p_{a_{ji}h} \neq p_{b_{ji}h} \), then

\[
\frac{v^{(h-1)}_{a_{ji}} - v^{(h-1)}_{b_{ji}}}{p_{b_{ji}h} - p_{a_{ji}h}}.
\]

However, this can never occur as \(p_{a_{ji}h} \neq p_{b_{ji}h} \) implies \((a_j, b_j) \in \Pi \) and \(c_h \) was chosen to differ from \(t_j \).

The complexity of the algorithm

Fix a stage \(h > 1 \). We construct \(\Pi \) as follows. Let \(L_1 \) be a list containing all pairs \((j, k)\) where \(j \) and \(k \) are in different subsets of \(\Sigma_{ih-1} \). Let \(L_2 \) be a list containing all pairs \((j, k)\) where \(j \) and \(k \) are of different subsets of the type of \((p_{1i}, \ldots, p_{m_i})\). Merge these lists into a new list \(L \). The elements in \(\Pi \) are exactly the elements which occur twice in \(L \). After sorting \(L \), we can easily obtain \(\Pi \). Note that we use \(O(m^2 \log(m^2)) = O(m^2 \log(m)) \) elementary integer operations for this construction.

Constructing the list \((\tau_1, \ldots, \tau_s)\) from \(\Pi \) requires \(O(m^2) \) operations. If \(k \) is ordered, we sort the list using \(O(m^2 \log(m)) \) comparisons. To find \(c_h \), consider a list of \(\binom{m}{2} \) nonzero elements in \(k \). Take the first element in this list and check whether it is in \((\tau_1, \ldots, \tau_s)\). If it is not, we are done. Otherwise, continue with the next element. Finally, after at most \(\binom{m}{2} \) checks, we will find an element which is not in \((\tau_1, \ldots, \tau_s)\). Since \(k \) is ordered, each check requires \(O(\log(m)) \) comparisons.

If \(k \) is not ordered, then we can not sort the list, so each check requires \(O(m^2) \) comparisons.

Thus, we use mostly \(O(m^2 \log(m)) \) comparisons if \(k \) is ordered and \(O(m^4) \) comparisons otherwise. Since we repeat the procedure \(\pi \) times, we are done with the complexity analysis.

Theorem 5.8. Let \(P = \{p_1, \ldots, p_m\} \) be a set of distinct points in \(k^n \). Suppose that \(k \) contains at least \(\binom{m}{2}+1 \) elements. We give an explicit isomorphism \(S/I \cong k[x]/J \) and a \(k \)-basis for \(S/I \) of the form \(\{1, [f], \ldots, [f^{m-1}]\} \), where \(f \) is a linear form. The construction uses \(O(nm) \) comparisons and \(O(\min(m, n)m^2 \log(m)) \) operations given a total order on \(k \). If \(k \) is not ordered we need \(O(nm) \) comparisons and \(O(\min(m, n)m^4) \) operations.

Proof. By Lemma 5.7, there exists \((c_1, \ldots, c_m)\) such that all elements in the \(m \)-vector \(c_1(p_{1i}, \ldots, p_{m_i}) + \cdots + c_m(p_{1i}, \ldots, p_{m_i}) \) are distinct. If we let \(x = c_1 x_{i_1} + \cdots + c_m x_{i_m} \), it follows that \(x(p_1), \ldots, x(p_m) \) are distinct. Let \(J \) be the ideal in \(k[x] \) vanishing on \(x(p_1), \ldots, x(p_m) \). The principal ideal \(J \) is generated by \((x - x(p_1)) \cdots (x - x(p_m)) \) and a \(k \)-basis for \(k[x]/J \) is the residues of \(1, x, \ldots, x^{m-1} \). By Lemma 5.6, \(k[x]/J \cong S/I \) and a \(k \)-basis for \(S/I \) can be chosen as the residues of \((c_1 x_{i_1} + \cdots + c_m x_{i_m}), (c_1 x_{i_1} + \cdots + c_m x_{i_m}) - 1, \ldots, (c_1 x_{i_1} + \cdots + c_m x_{i_m})^{m-1} \).

The cost of the construction is dominated by the computation of the \(c_i \)'s, so the complexity result follows from Lemma 5.7. \[\square\]
Example 5.9. Consider the points $p_1, p_2, p_3, p_4, p_5, p_6$ from Example 4.1 as elements in \mathbb{Z}_{43}. The witness list equals $\{1, 2, 4\}$, so we get $i_1 = 1, i_2 = 2$ and $i_3 = 4$. The matrix describing the splittings is

$$
\begin{pmatrix}
1 & 1 & 1 & 0 & 0 & 2 \\
2 & 0 & 2 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 & 2 & 3 \\
1 & 1 & 3 & 0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
\Sigma_1 = \{\{1, 2, 3\}, \{4, 5\}, \{6\}\} \\
\Sigma_2 = \{\{1, 3\}, \{2, 4, 5\}, \{6\}\} \\
\Sigma_3 = \{\{1, 3\}, \{2\}, \{4, 5\}, \{6\}\} \\
\Sigma_4 = \{\{1\}, \{3\}, \{2\}, \{4\}, \{5\}, \{6\}\}
\end{pmatrix},
$$

where we omit the last two rows of the matrix. The Distinct element algorithm is as follows. At stage 1: $v_1 = (1, 1, 1, 0, 0, 2)$. At stage 2, we see that the type of the second row is \mathbb{Z}_{43}. The set of pairs built from Σ_{i_1} equals

$$\{(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6), (4, 6), (5, 6)\}$$

and the set of pairs built from $\{(1, 3), \{2, 4, 5\}, \{6\}\}$ equals

$$\{(1, 2), (1, 4), (1, 5), (1, 6), (2, 3), (3, 4), (3, 5), (3, 6), (2, 6), (4, 6), (5, 6)\}.$$ The intersection is equal to

$$\{(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6), (4, 6), (5, 6)\}.$$ We compute τ_1, which corresponds to the pair $(1, 4)$ and equals $\tau_1 = (v_1^{(1)} - v_1^{(1)})/(p_{i_1} - p_{i_2}) = (1 - 0)/(0 - 2) = -1/2 = 21$ and similarly for the other pairs to obtain

$$\{\tau_1, \ldots, \tau_6\} = \{21, 21, 1, 42, 21, 42, 41, 41\}.$$ We choose $c_2 = 2$ to get $v_2^{(2)} = v_1^{(1)} + 2(p_{i_2}, \ldots, p_{i_6}) = (5, 1, 5, 0, 0, 4)$, which is of type Σ_{i_2} as desired. At stage 3, the intersection equals

$$\{(1, 4), (2, 3), (2, 4), (3, 5), (3, 6), (4, 6)\}$$

and it turns out that we can use $c_3 = 1$ so that $v_3^{(3)} = v_2^{(2)} + (p_{i_3}, \ldots, p_{i_6}) = (6, 2, 7, 0, 1, 5)$ which is of type $\Sigma_{i_3} = \{\{1\}, \ldots, \{6\}\}$. The isomorphism

$$\mathbb{Z}_{43}[x]/(x(x - 1)(x - 2)(x - 5)(x - 6)(x - 7)) \cong \mathbb{Z}_{43}[x_1, \ldots, x_6]/I$$

of algebras is induced by

$$x \mapsto c_1 x_1 + c_2 x_2 + c_3 x_3 = x_1 + 2x_2 + x_4.$$ Thus, a vector space basis for $\mathbb{Z}_{43}[x_1, \ldots, x_6]/I$ can be chosen as

$$[1], [(x_1 + 2x_2 + x_4)], \ldots, [(x_1 + 2x_2 + x_4)^6].$$

Notice that $B(P)$ becomes a Vandermonde matrix and we have

$$B = \begin{pmatrix}
1^0 & 1^0 & 1^0 & 1^0 & 5^0 \\
1 & 2 & 1 & 7 & 1 \\
6^2 & 2^2 & 7^2 & 0^2 & 1^2 \\
6^3 & 2^3 & 7^3 & 0^3 & 1^3 \\
6^4 & 2^4 & 7^4 & 0^4 & 1^4 \\
6^5 & 2^5 & 7^5 & 0^5 & 1^5
\end{pmatrix}, \quad \text{and } B^{-1} = \begin{pmatrix}
0 & 3 & 0 & 32 & 27 & 24 \\
0 & 9 & 33 & 17 & 24 \\
0 & 37 & 37 & 15 & 10 & 30 \\
1 & 7 & 25 & 12 & 28 & 13 \\
0 & 25 & 28 & 8 & 7 & 19 \\
0 & 5 & 36 & 29 & 10 & 19
\end{pmatrix}.$$
Let \(f = x_1x_2x_4 + x_4x_5x_6x_7 \). To compute the normal form of \(f \), we compute \(f(P) = (2, 0, 24, 0, 0, 2) \). By Lemma 3.2 we have

\[
N_f(f, B) = \left([c_1], \ldots, [c_m] \right)(B(P)^{-1})^t(f(p_1), \ldots, f(p_m))^t.
\]

Since \((B(P)^{-1})^t(2, 0, 4, 0, 0, 2)^t = (0, 35, 5, 10, 2, 34)^t \) we conclude that

\[
N_f(f, B) = 35(x_1 + 2x_2 + x_4) + 5(x_1 + 2x_2 + x_4)^2 + 10(x_1 + 2x_2 + x_4)^3 + 2(x_1 + 2x_2 + x_4)^4 + 34(x_1 + 2x_2 + x_4)^5.
\]

Recall that there are closed expressions for the inverse of a Vandermonde matrix, so Gaussian elimination is not needed to compute \(B^{-1} \). For reference, see for instance [9].

Remark 5.10. In practice, the best way to obtain a realization vector \(v \) corresponding to \(\Sigma_n \) is by nondeterministic methods — check if

\[
c_1(p_{11}, \ldots, p_{m1}) + \cdots + c_n(p_{1n}, \ldots, p_{mn})
\]

realizes \(\Sigma_n \), for some pseudo-random elements \(c_i \). This will be the case with probability close to one. If not, we try with some other coefficients.

5.3 Construction 3 - Standard monomials with respect to the lexicographical order

It was shown in [3] that it is possible to compute the set of standard monomials with respect to the lexicographical order by purely combinatorial methods. The authors in [3] presented an algorithm but did not make a complexity analysis of it. In [6], it was indicated that the number of comparisons in a straightforward implementation of the algorithm is proportional to \(n^2m^2 \). One of the aims of the paper [6] was to improve the algorithm. This improved algorithm consists of three steps:

1. Construct the point trie \(T_1 \) with respect to \(x_n, \ldots, x_1 \).

2. Construct the lex trie \(T_2 \) from \(T_1 \) (see the Lex trie algorithm below).

3. Return the set of standard monomials \(\{x^{\alpha_1}, \ldots, x^{\alpha_m}\} \) with respect to the lexicographical ordering with \(x_1 \succ \cdots \succ x_n \), where \(\{\alpha_1, \ldots, \alpha_m\} \) is the set of paths from the root to the leaves in \(T_2 \).

Note that the associated point trie is built backwards, i.e. we read the coordinates of the points from right to left. In the complexity analysis in [6], it was shown that the first step requires \(O(nmr) \) comparisons, where we recall that \(r \) denotes the maximal number of edges from a vertex in the trie. The second step requires \(O(nm) \) integer summations, and the third step requires \(O(nm) \) readings of integers bounded by \(m \). In total, the construction is dominated by \(O(nmr) \) comparisons. We now improve this.

Theorem 5.11. We can compute the set of standard monomials with respect to the lexicographical order using \(O(nm + m \min(m, nr)) \) comparisons.
Proof. By Theorem 4.2 it is possible to construct the associated point trie using $O(nm + m \min(m, nr))$ comparisons. Hence the result follows by using the construction of the standard monomials from the associated point trie as given in [6].

For completeness, we will state the algorithm that construct the standard monomials from the point trie. For a proof, we refer the reader to [6]. We remark that our formulation is in terms of the Σ_i’s.

Lex trie algorithm ([6])

Fix some stage $h > 0$. Let v_0, \ldots, v_j be the set of vertices on level h of the trie (at the root level 1, $v_0 = \{1, \ldots, m\}$). For an arbitrary equivalence class \(\{i_1, \ldots, i_k\} \) in Σ_{n-h}, we let $v_{a,b} = v_a \cup \{i_k\}$ if $i_k \in v_a$ and exactly b elements in $\{i_1, \ldots, i_{k-1}\}$ also belong to v_a. (Initially $v_{a,b}$ is empty.) The vertex set at the $(h+1)$-th level of the trie consists of all nonempty $v_{a,b}$. If $v_{a,b}$ is nonempty, there is an edge between v_a and $v_{a,b}$ which is labelled by b.

Since the paper [6] does not contain a full example illustrating this algorithm, we give such an example here.

Example 5.12. Let $p_1 = (1, 0, 2, 1), p_2 = (1, 1, 0, 1), p_3 = (3, 0, 2, 1), p_4 = (0, 2, 0, 0), p_5 = (1, 2, 0, 0)$ and $p_6 = (1, 3, 1, 2)$. Suppose that we want to compute the standard monomials of $I(P)$ with respect to the lexicographical order with $x_1 \succ \cdots \succ x_n$. First we have to construct the point trie with respect to the points read from right to left. The example is constructed to give the first four rows from Example 4.1, that is

\[
\begin{align*}
\Sigma_1 &= \{\{1, 2, 3\}, \{4, 5\}, \{6\}\} \\
\Sigma_2 &= \{\{1, 3\}, \{2\}, \{4, 5\}, \{6\}\} \\
\Sigma_3 &= \{\{1, 3\}, \{2\}, \{4, 5\}, \{6\}\} \\
\Sigma_4 &= \{\{1\}, \{3\}, \{2\}, \{4\}, \{5\}, \{6\}\}
\end{align*}
\]

Figure 2 shows the lex trie. The paths from the root to the leaves equals $(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 0, 2), (0, 0, 1, 0), (1, 0, 0, 0)$ and $(1, 0, 0, 1)$. It follows that the set of standard monomials is equal to $\{1, x_4, x_4^2, x_3, x_1, x_1 x_4\}$.

12
We will now describe the creation of the lex trie stage by stage.

Stage 1 There is only one vertex on the root level; \(v_0 = \{1, 2, 3, 4, 5, 6\} \). We iterate over the equivalence classes of \(\Sigma_{4-1} = \Sigma_3 = \{\{1, 3\}, \{2\}, \{4, 5\}, \{6\}\} \). We start with \(\{1, 3\} \) and get \(v_{00} = \{1\} \) and \(v_{01} = \{3\} \). For \(\{2\} \) we get \(v_{00} = \{1, 2\} \). For \(\{4, 5\} \) we get \(v_{00} = \{1, 2, 4\} \) and \(v_{01} = \{3, 5\} \). Finally, for \(\{6\} \) we get \(v_{00} = \{1, 2, 4, 6\} \).

Stage 2 We rename the two vertices from the previous stage to \(v_0 = \{1, 2, 4, 6\} \) and \(v_1 = \{3, 5\} \). We start by iterating on the equivalence classes of \(\Sigma_{4-2} = \Sigma_2 = \{\{1, 3\}, \{2\}, \{4, 5\}, \{6\}\} \). For \(\{1, 3\} \) we get \(v_{00} = \{1\} \) and \(v_{10} = \{3\} \), since \(1 \in v_0 \) and \(3 \in v_1 \). For \(\{2\} \) we get \(v_{00} = \{1, 2\} \), since \(2 \in v_0 \). For \(\{4, 5\} \), we get \(v_{00} = \{1, 2, 4\} \) and \(v_{10} = \{3, 5\} \), and for \(\{6\} \) we get \(v_{00} = \{1, 2, 4, 6\} \).

Stage 3 We rename the two vertices from the previous stage to \(v_0 = \{1, 2, 4, 6\} \) and \(v_1 = \{3, 5\} \). On \(\Sigma_{4-3} = \Sigma_1 \), we begin with \(\{1, 2, 3\} \). Since \(1 \in v_0 \), we let \(v_{00} = \{1\} \). Since also \(2 \in v_0 \), we put \(2 \) in \(v_{01} \). We have then \(3 \in v_1 \), thus \(v_{10} = \{3\} \). We continue with \(\{4, 5\} \). Since \(4 \in v_0 \), we let \(v_{00} = \{1, 4\} \) and since \(5 \in v_1 \), we let \(v_{10} = \{3, 5\} \). Finally, for \(\{6\} \) we get \(v_{00} = \{1, 4, 6\} \).

Stage 4 We rename the vertices from the previous stage to \(v_0 = \{1, 4, 6\} \), \(v_1 = \{2\} \) and \(v_3 = \{3, 5\} \). In \(\Sigma_{4-4} = \Sigma_0 \) there is only one equivalence class: \(\{1, 2, 4, 5, 6\} \). We have: \(1 \in v_0 \Rightarrow v_{00} = \{1\}, 2 \in v_1 \Rightarrow v_{10} = \{2\}, 3 \in v_2 \Rightarrow v_{20} = \{3\}, 4 \in v_0 \Rightarrow v_{01} = \{4\}, 5 \in v_3 \Rightarrow v_{21} = \{5\} \) and \(6 \in v_0 \Rightarrow v_{02} = \{6\} \).

5.4 Construction 4 - Standard monomials for some elimination orders

In this section, we will study a method that can be used to create standard monomials with respect to some elimination orders. An elimination order \(\prec \) with respect to the variables \(x_1, \ldots, x_{i-1} \) is an admissible monomial order on \(S \) satisfying the condition

\[
\text{in}(f) \in k[x_i, x_{i+1}, \ldots, x_n] \Rightarrow f \in k[x_i, x_{i+1}, \ldots, x_n].
\]

We will show that using \(O(mn) \) comparisons and \(O(\min(m, n)m^3) \) operations we can compute the set of standard monomials with respect to some elimination orders and, thus, for these orders, our method has better asymptotic behavior than the Buchberger-Möller algorithm when \(m < n \).

A classic example of an elimination order is the lexicographical order with respect to \(x_1 \succ \cdots \succ x_n \) (However, for the lexicographical order, we already have a fast method to compute the standard monomials.)

We will construct an elimination order from two partial orders as follows. Let \(\prec_1 \) be any admissible monomial order on \(\{x_1, x_2, \ldots, x_{i-1}\} \) and let \(\prec_2 \) be any admissible monomial order on \(\{x_i, x_{i+1}, \ldots, x_n\} \). Now define \(\prec \) by \(x^\alpha \prec x^\beta \) if \(x_1^{\alpha_1} \cdots x_{i-1}^{\alpha_{i-1}} \prec_2 x_1^{\beta_1} \cdots x_{i-1}^{\beta_{i-1}} \) or \(x_i^{\alpha_i} \cdots x_n^{\alpha_n} = x_i^{\beta_i} \cdots x_n^{\beta_n} \) and \(x_1^{\alpha_1} \cdots x_{i-1}^{\alpha_{i-1}} \prec_1 x_1^{\beta_1} \cdots x_{i-1}^{\beta_{i-1}} \). The order \(\prec \) then becomes an elimination order with respect to \(\{x_1, x_2, \ldots, x_{i-1}\} \).

Let \(\{p_1, \ldots, p_m\} \) be a set of distinct points in \(k^n \). Let \(\tau \) be a permutation of \(\{1, \ldots, n\} \). Define \(\tau(p_i) = (p_{\tau(1)}, \ldots, p_{\tau(n)}) \). Simplified, this means that \(\tau(p_i) \)
Let Σ be the witness list derived from the Σ-algorithm with respect to $\tau(p_1), \ldots, \tau(p_n)$. By Lemma 5.3, the points q_1, \ldots, q_m are distinct, where $q_i = \pi(\tau(p_i))$ and $\pi((a_1, \ldots, a_m)) = (a_i, \ldots, a_{m-1})$. Let $W_\tau = \{j_1, \ldots, j_m\}$ be the complementary set to W_τ. Let \prec_1 be any admissible monomial order on x_{j_1}, \ldots, x_{j_m}. Let \prec_2 be any admissible monomial order on x_{i_1}, \ldots, x_{i_m}. Let B be the set of standard monomials with respect to \prec_2. If \prec is the elimination order constructed from \prec_1 and \prec_2, then it is clear that B is the set of standard monomials with respect to \prec as well. We determine B by the combinatorial algorithm in the case when \prec_2 is the lexicographical order. When \prec_2 is another order, we use the Buchberger-Möller algorithm. Except for complexity issues, we have proved the following theorem.

Theorem 5.13. Using the notation above, for any permutation τ and for any elimination order \prec with respect to x_{j_1}, \ldots, x_{j_m}, we can determine the set B of standard monomials with respect to \prec using at most $O(nm)$ comparisons and $O(nm \log(m))^3$ operations. If \prec is the lexicographical order on x_{i_1}, \ldots, x_{i_m}, then we determine B using at most $O(nm + m \log(m))^3$ operations.

In both cases, there is a normal form method which can be initiated using $O(m^3)$ operations. The normal form method uses at most $O(|f| m^2 + m^3)$ operations for a polynomial f with s monomials.

Proof. By Theorem 4.2, it takes $O(nm + m \log(m))^3$ comparisons to preprocess the points. The call to the Buchberger-Möller algorithm uses $O(m^2 + m \log(m))^3$ operations by Theorem 2 in [11]. Since $\log(m) \leq \log(m, n)$, the call requires at most $O(m \log(m))^3$ operations. On the other hand, if we use the combinatorial method in the case when \prec_2 is the lexicographical order, we would get $O(nm + m \log(m))^3$ comparisons as bound.

Hence, to compute B, we use at most $O(m^4)$ operations and $O(nm)$ comparisons when \prec is not the lexicographical order. When \prec is the lexicographical order, we use $O(nm + m \log(m))^3$ comparisons. The statement about the normal form method follows from Proposition 3.3.

Example 5.14. Let p_1, \ldots, p_6 be the points in Example 4.1. Let τ be the permutation

$$
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
8 & 2 & 3 & 4 & 6 & 5 & 7 & 1
\end{pmatrix}
$$

To simplify notation, let $y_{i_1} = x_{\tau(i_1)}$. We compute the Σ_i’s with respect to y_8, y_7, \ldots, y_1. Since Σ_3 equals $\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}$, we only display the first three rows.

$$
\begin{array}{c|c}
1 & 1 & 1 & 0 & 0 & 2 \\
3 & 3 & 2 & 2 & 2 \\
1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\Sigma_1 & \{\{1,2,3\}, \{4,5\}, \{6\}\} \\
\Sigma_2 & \{\{1,2\}, \{3\}, \{4,5\}, \{6\}\} \\
\Sigma_3 & \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}\}
\end{array}
$$

Thus, $W_1 = \{1,2,3\}$ and S/I is isomorphic to $k[y_6, y_7, y_8]/I(Q)$, where $Q = \{(1,3,1), (1,3,2), \ldots, (2,2,6)\}$. Let \prec_2 be the degree reverse lexicographical order with $y_6 \succ y_7 \succ y_8$. A call to the Buchberger-Möller algorithm gives $B_{\prec_2} = \{1, y_6, y_7, y_8, y_6y_8\}$. Let \prec_1 be the lexicographical order on
\(k[y_1, \ldots, y_5] \) with \(y_1 \succ_1 \cdots \succ_1 y_5 \) and construct \(\prec \) from \(\prec_1 \) and \(\prec_2 \) above. Then \(B_\prec = \{1, y_8, y_7, y_6, y_5^2, y_6 y_8\} \).

Suppose that we want to compute the normal form of \(f = y_8 y_2 y_4 + y_4 y_6 y_5 y_7 \). We determine \(B(\tau(P))^{-1} \) and \((\tau(f(p_1)), \ldots, \tau(f(p_6))) = (2, 0, 24, 0, 0, 2) \). Notice that \(\tau(f(p_1)) = g(p_1) \) where \(g = x_1 x_2 x_4 + x_4 x_5 x_6 x_7 \). The normal form will be

\[
(1, y_8, y_7, y_6, y_5^2, y_6 y_8)(B(\tau(P))^{-1})'(\tau(f(p_1)), \ldots, \tau(f(p_6)))' = 12 + 18 y_8 + 37 y_7 + 35 y_5^2 + 41 y_6 y_8.
\]

In terms of the \(x_i \)’s, the order \(\prec \) is the degree reverse lexicographical order on \(k[x_5, x_7, x_1] \) with \(x_5 \succ x_7 \succ x_1 \) and it is the lexicographical order on \(k[x_8, x_2, x_3, x_4, x_6] \) with \(x_8 \succ x_2 \succ x_3 \succ x_4 \succ x_6 \). The normal form of \(x_1 x_2 x_4 + x_4 x_5 x_6 x_7 \) is 12 + 18 x_1 + 37 x_7 + 35 x_4^2 + 41 x_1 x_5.

6 Biological implications

In the algebra approach to reverse engineering, we have some experimental data \(S = \{s_1, \ldots, s_m+1\} \), where each \(s_i \) is a realvalued vector of size \(n \) and \(m \ll n \). Each \(s_{ij} \) is then discretized into a prime number \(p \) of states so that the \(s_i \)’s can be viewed as elements in \(\mathbb{Z}_p^n \). For the discretized data, we want to find transition functions \(h_1, \ldots, h_n \) such that \(h_i(s_j) = s_{j+1,i} \) for \(j = 1, \ldots, m \). Finally, we wish to find the normal form of the \(h_i \)’s with respect to a set \(B_\prec \) of standard monomials for \(I(S) \), for some admissible monomial order \(\prec \) on \(\mathbb{Z}_p[x_1, \ldots, x_n] \).

It is easily seen that

\[
h_i = s_{2,i} f_1 + \cdots + s_{m+1,i} f_m,
\]

where \(f_1, \ldots, f_m \) is a set of separators with respect to \(s_1, \ldots, s_m \).

An example illustrating the method in [10] is given in the same paper: After discretizing over \(\mathbb{Z}_3 \), one has

\[
s_1 = (2, 2, 2), s_2 = (1, 0, 2), s_3 = (1, 0, 0), s_4 = (0, 1, 1), s_5 = (0, 1, 1).
\]

For computing the \(h_i \)’s, the authors use an \(O(n^2 m^2) \) algorithm to get \(h_1 = x_1^2 x_3 + 2x_1^2 + x_1 x_3 + x_1, h_2 = 2x_2^2 x_3 + x_2^2 + 2x_1 x_3 + 2x_1 + 1, h_3 = 2x_2^2 x_3 + 2x_2^2 + 2x_1 x_3 + x_1 + 1. \)

Then, the lexicographical order with respect to \(x_1 \succ x_2 \succ x_3 \) is used to determine a Gröbner basis for \(I\{s_1, s_2, s_3, s_4\} \) by means of the Buchberger-Möller algorithm. This Gröbner basis is being equal to \(\{x_1 + x_2 + 2, x_2 x_3 + x_2 + 2x_2^3 + 2x_3, x_2^2 + x_2 + 2x_3^2 + 2x_3\} \). Finally, the \(h_i \)’s are reduced using the Gröbner basis and we get

\[
\text{Nf}(h_1, B) = -x_3^2 + x_3, \text{Nf}(h_2, B) = x_2^2 - x_3 + 1, \text{Nf}(h_3, B) = -x_2^2 + x_2 + 1,
\]

where \(B \) denotes the complement to the initial ideal with respect to the chosen order. Since the normal form is computed by means of the reduction with respect to the Gröbner basis, and not by means of Lemma 3.2, the worse time complexity for this part for general \(m \) and \(n \) is reported by the authors to be \(O(n(m - 1)2^{m+3}) \), using the bound in [3].

Our approach is the following. Firstly, we determine the set of standard monomials of \(I(S) \) using the Lex trie algorithm to get \(B = \{1, x_3, x_3^2, x_2\} \). The
equality \(s_4 = s_5 \) is detected during the \(\Sigma \)-algorithm and we need to use only \(P = \{ s_1, \ldots, s_4 \} \). We get
\[
B(P) = \begin{pmatrix}
1 & 1 & 1 & 1 \\
2 & 2 & 0 & 1 \\
1 & 1 & 0 & 1 \\
2 & 0 & 0 & 1 \\
\end{pmatrix}
\) and \(B(P)^{-1} = \begin{pmatrix}
0 & 2 & 2 & 2 \\
0 & 2 & 0 & 1 \\
1 & 0 & 2 & 0 \\
0 & 2 & 2 & 0 \\
\end{pmatrix}. \)

By Lemma 3.1,
\[(f_1, f_2, f_3, f_4)^t = B(P)^{-1}(1, x_3, x_3^2, x_2)^t = (2x_3 + 2x_3^2 + 2x^2, 2x_3 + x_2, 1 + 2x_3^2, 2x_3 + 2x_3^2)^t.\]

Finally, we determine the normal forms of the \(h_i \)'s in terms of the elements in \(B \) by using (2):
\[
Nf(h_1, B) = 1f_1 + 1f_2 + 0f_3 + 0f_4 = x_3 + 2x_3^2
\]
and similarly
\[
Nf(h_2, B) = 1 + 2x_3 + x_3^2 \quad \text{and} \quad Nf(h_3, B) = 1 + 2x_3^2 + x^2.
\]

We will show below that for determining the \(h_i \)'s, it is in general enough to use \(O(m^3) \) operations. In total, our approach uses \(O(nm) \) comparisons and \(O(m^3) \) operations, which is drastically better than the exponential algorithm involving reduction with respect to the Gröbner basis. Notice that we do not use the construction of the separators from Section 5.1. That is due to our wish to write them as linear combinations of elements in \(B \).

We are aware of the fact that lexicographical order is not always the best choice for a monomial order in these applications. Since \(m \ll n \), almost any admissible monomial order will be an elimination order and we believe that the method in Section 5.4 can be used in a lot of cases to find a feasible order.

To complete the section, we state the following general theorem, where the complexity results are written assuming that \(m < n \).

Theorem 6.1. The number of arithmetic operations in our approach to the reverse engineering method presented in [12] is \(O(nm) \) comparisons and \(O(m^3) \) operations when \(\prec \) is the lexicographical order. For the elimination orders in Section 5.4, a bound for the number of comparisons is \(O(nm) \) and a bound for the number of operations is \(O(\min(m,n)m^3) \). For an arbitrary order, the number of operations is bounded by \(O(nm^3 + \min(m,n)m^3) \).

Proof. Except for determining the standard basis \(B \) and inverting \(B(S)^{-1} \), the only necessary computation is determination of the \(h_i \)'s. By (2) and Lemma 3.1, we have
\[
h_i = (s_{2,i}, \ldots, s_{m+1,i})B^{-1}(e_1, \ldots, e_m)^t.
\]
Thus, computation of each \(h_i \) requires \(O(m^2) \) operations and to compute all \(h_i \)'s requires \(O(m^3) \) arithmetic operations.

The theorem for the lexicographical case follows from Theorem 5.11. In the elimination case the result follows from Theorem 6.13 and in the general case it follows from Theorem 2 in [14], where it is shown that the Buchberger-Möller algorithm uses at most \(O(nm^2 + \min(m,n)m^3) \) operations. \(\square \)
7 Acknowledgment

The author would like to thank Clas Lőfwall for valuable comments on the paper and Jörgen Backelin for presenting useful ideas in the proof of Proposition A.1.

A Appendix

We will describe two combinatorial algorithms to perform preprocessing of the points. While the first algorithm iterates over the coordinates, the second one, given in [6], iterates over the points. However, the two algorithms turn out to perform exactly the same comparisons and we prove that the number of comparisons that are needed is bounded by $nm + m \min(m, nr)$.

A.1 Preprocessing by iterating over the coordinates

Here we present an algorithm which computes the Σ_i’s, the witness list and the witness matrix by iterating over the coordinates. The number of operations of this algorithm is bounded by $O(nm + m^2)$. We will sharpen the number of operations in Section A.3.

Proposition A.1. Let Ω be a set equipped with an equivalence relation. Let v_1, \ldots, v_m be n-tuples of elements in Ω. The Σ-algorithm below computes the equivalence classes $\Sigma_1, \ldots, \Sigma_n$ using at most $nm + m^2$ Ω-comparisons.

Proof. The proof consists of three parts.

Formulation of the Σ-algorithm

At stage 0, let $W_0 = \{\}$ and let C consist of zero entries only. At stage h, let W_h be the witness list with respect to $\pi_h(v_1), \ldots, \pi_h(v_m)$, let C be the witness matrix with respect to $\pi_h(v_1), \ldots, \pi_h(v_m)$ and let $\Sigma_h = \{\Sigma_{h,1}, \ldots, \Sigma_{h,k}\}$.

At stage $h + 1$, let Undone be the set of elements in Σ_h which contains at least two elements. Let Done be the set of elements in Σ_h which contains only one element. Proceed as follows.

Pick a set T from Undone and let Undone = Undone $\setminus \{T\}$. Let i be the first element in T and let T_1 be the set of indices j in T for which $v_{i,h+1} \neq v_{j,h+1}$. Let $T_2 = T \setminus T_1$ and Done = Done $\cup \{T_2\}$. If T_1 contains exactly one element, let Done = Done $\cup \{T_1\}$. If T_1 contains more than one element, let Undone = Undone $\setminus \{T_1\}$. Also set $c_{\min(i,j),\max(i,j)} = h + 1$, for all $i \in T_2$ and all $j \in T_1$.

Repeat until Undone is empty and finally let $\Sigma_{h+1} = $ Done. If at least one T_1 was non-empty during the process, let $W_{h+1} = W_h \cup \{h+1\}$. Otherwise, let $W_{h+1} = W_h$. Undone will eventually get empty since we remove a set T from Undone in each step described above, and in the cases when we insert an element, this element will have lower cardinality compared to the set that we removed. We stop the algorithm either when Σ_{h+1} contains no elements with more than one element or after performing the nth step. If we stop at stage $h + 1$, we set $W = W_{h+1}$ and $\Sigma_i = \Sigma_{h+1}$ for $i = h + 1, \ldots, n$.

The correctness of the algorithm

Clearly $\Sigma_0 = \{\{1,2,\ldots,m\}\}$ and $W_0 = \{\}$ agree with the assumptions made at stage $h = 0$. After stage $h + 1$, we also see that Σ_{h+1} contains disjoint
subsets. Suppose that we pick two elements \(i \) and \(j \) from different subsets of \(\Sigma_{h+1} \) and suppose that \(v_{ik} = v_{jk} \) for \(k \leq h \). Then \(i \) and \(j \) are in the same equivalence class of \(\Sigma_h \), and are splitted in stage \(h+1 \). Thus \(v_{i,h+1} \neq v_{j,h+1} \) and \(c_{ij} = h+1 \). Suppose that we pick two elements \(i \) and \(j \) from the same subset. Then \(v_{i,h+1} = v_{j,h+1} \) and by assumption, \(v_{ik} = v_{jk} \) for \(k \leq h \), so we conclude that \(v_{ik} = v_{jk} \) for all \(k \leq h+1 \) and, hence, \(c_{ij} = 0 \). Thus the assumptions made at stage \(h \) hold also for stage \(h+1 \). Besides from the complexity, the correctness of the proposition now follows by performing the algorithm to stage \(n \).

The complexity of the algorithm

We will split a set \(T \) into two sets \(T_1 \) and \(T_2 \), were \(T_1 \) is non-empty, at most \(m-1 \) times. Every time we split, we will perform at most \(m \) comparisons, resulting in a bound of \(m^2 \) comparisons. At each stage there are at most \(m \) comparisons resulting in a non-splitting. At most \(n \) times we will not perform a splitting of \(T \). Still, we need to perform \(m \) comparisons in order to make sure we do not need to split, resulting in a bound of \(nm \) comparisons. Thus, the overall upper bound is \(nm + m^2 \) comparisons.

Remark A.2. It is clear that the number of elementary integer operations for the construction of for \(W \) and \(C \) is \(O(m) \) and \(O(m^2) \) respectively.

Suppose that \(\Omega \) is equipped with a total order and suppose that \(v_1, \ldots, v_m \) are sorted lexicographically with respect to this order. Then, if \(v_{h,j} \neq v_{h,j+1} \), we know that \(v_{h,j} \neq v_{h,j+2} \), \(v_{h,j} \neq v_{h,j+3} \) and so on. For every stage \(h \), we need to perform at most \(m \) comparisons, thus we can compute the \(\Sigma_i \)'s using only \(O(nm) \) comparisons. Since the complexity of sorting \(v_1, \ldots, v_m \) is \(O(nm \log(m)) \), we have the following proposition.

Proposition A.3. Suppose that \(\Omega \) is equipped with a total order. The \(\Sigma_i \)'s can be computed using \(O(nm) \) comparisons if the \(v_i \)'s are sorted and \(O(nm \log(m)) \) comparisons otherwise.

Remark A.4. In the case when \(\Omega = \mathbb{Z}_p \) and \(p \) is less than \(\log(m) \), it may be useful to sort the vectors using bucket sort instead of the classical merge sort. The complexity for the sorting step then becomes \(O(nmp) \).

A.2 Preprocessing by iterating over the vectors

The second algorithm was first formulated in terms of the point trie [6]. The algorithm iterates over the vectors, assuming that a partial trie exists and inserts a vector into it. The number of comparisons that are needed was reported to be bounded by \(nm r \), where we recall that \(r \) denotes the maximal number of edges from a vertex in the tree. In Section A.3 we will sharpen this bound. We formulate the Point trie algorithm in terms of the \(\Sigma_i \)'s to simplify the comparison of the algorithm with the \(\Sigma \)-algorithm. We omit the bookkeeping of the witness list and the witness matrix since this was not part of the original Point trie algorithm.

The Point trie algorithm

Let \(\Omega \) be a set equipped with an equivalence relation and let \(v_1, \ldots, v_m \) be elements in \(\Omega^n \).
At stage \(h \), suppose that \(T^{(h)} \) is a trie with respect to \(v_1, \ldots, v_n \). Let \(\Sigma_1^{(h)}, \ldots, \Sigma_n^{(h)} \) be the equivalence classes defining \(T^{(h)} \). To construct the trie \(T^{(h+1)} \), check if \(v_{h+1} = v_{i,1} \) for some \(i \leq h \) by iterating over the equivalence classes in \(\Sigma_1^{(h)} \).

- If it did not, let \(\Sigma_i^{(h+1)} = \Sigma_i^{(h)} \cup \{h + 1\} \) for \(i = 1, \ldots, n \) and stop.
- If it did, then \(i \in \Sigma_1^{(h)} \) for some \(j \). Let \(\Sigma_1^{(h+1)} = \Sigma_1^{(h)} \) for \(k \neq j \) and let \(\Sigma_i^{(h+1)} = \Sigma_i^{(h)} \cup \{h + 1\} \). Continue to check if \(v_{h+1,2} = v_{i,2} \) for some \(i \in \Sigma_1^{(h)} \), by iterating over the children of \(\Sigma_2^{(h)} \).
 - If it did not, let \(\Sigma_i^{(h+1)} = \Sigma_i^{(h)} \cup \{h + 1\} \) for \(i = 2, \ldots, n \) and stop.
 - If it did, then \(i \in \Sigma_2^{(h)} \) for some \(j \). Let \(\Sigma_2^{(h+1)} = \Sigma_2^{(h)} \) for \(k \neq j \) and let \(\Sigma_i^{(h+1)} = \Sigma_i^{(h)} \cup \{h + 1\} \). Continue in the same fashion.

\[\square \]

Remark A.5. It was indicated in \([B]\) that the assumption of \(\Omega \) being equipped with a total order makes it possible to create the point trie by iterating over the points using \(O(nm \log(m)) \) comparisons. We do not agree with the argument given in \([B]\). It would prove that insertion sort has complexity \(O(m \log(m)) \) (the algorithm is insertion sort when \(n = 1 \)), which is a contradiction. It is not hard to prove that the correct bound should read \(O(m^2 + nm \log(m)) \) for this method. However, if we assume that the points are sorted from the beginning, then we can manage in \(O(nm) \) operations.

A.3 Comparing the preprocessing algorithms

We developed the \(\Sigma \)-algorithm, described in \([A.1]\) as an effective way to build the witness matrix and the witness list and we had the constructions from Section \([5.1]\) and Section \([5.4]\) in mind. Later we realized that the \(\Sigma \)'s could be used in Section \([5.2]\). When reading the paper \([B]\), we understood that the \(\Sigma \)-algorithm could also be used to improve the combinatorial computations of standard monomials with respect to the lexicographical order. It turned out that it was not obvious that our method was to prefer. Indeed, when \(nr \ll m \), the Point trie algorithm seemed to have better asymptotic behavior. This lead us to make an extensive comparison of the algorithms, and it turned out that the two algorithms perform the same comparisons! A corollary to this is that both algorithms share the upper bound \(O(nm + m \min(m, nr)) \).

Proposition A.6. The \(\Sigma \)-algorithm and the Point trie algorithm perform the same comparisons.

Proof. Consider first the \(\Sigma \)-algorithm. Fix an element \(v_{ij} \), with \(i \in \Sigma_j^{(h-1)} \). Then \(v_{ij} \) is compared only with elements \(v_{hj} \), with \(h \in \Sigma_j^{(h-1)} \). More precise, if \(h < i \), then \(v_{ij} \) is compared with \(v_{hj} \) if \(v_{h'/j} \neq v_{h'j} \) for all \(h' < h \). If \(h > i \), then \(v_{ij} \) is compared with \(v_{hj} \) if \(v_{h'/j} \neq v_{h'j} \) for all \(h' < i \).

Now consider the Point trie algorithm. Upon insertion of the vector \(v_i \) into the partial trie \(T^{(i-1)} \), the element \(v_{ij} \) is compared with elements \(v_{hj} \), with \(h \in \Sigma_j^{(i-1)} \). But \(v_{ij} \) is also compared with elements \(v_{hj} \) for \(h > i \), when \(v_h \) is
to be inserted into $T^{(h-1)}$. Consider the first group. We compare v_{ij} with v_{hj} when $v_{h'j} \neq v_{hj}$ for all h' less than h. In the second group, v_{ij} is compared with v_{hj} when $h > i$ and if $v_{hj} \neq v_{h'j}$ for all $h' < i$.

Hence, the two algorithms perform the same comparisons.

We can now prove Theorem 4.2.

Proof of Theorem 4.2. By Proposition A.1, the Σ-algorithm uses at most $nm + m^2$ operations. By [6], the Point trie algorithm uses at most nrm comparisons. The result now follows from Proposition A.6.

Since it is not possible to know the value r a priori, it is not clear whether we should use the method from Proposition A.3 or the Σ-algorithm in the case when Ω is ordered and $n \log(m) < m^2$. It actually depends on the configuration of the points.

References

[1] J. Abbott, A. Bigatti, M. Kreuzer and L. Robbiano, Computing ideals of points, J. Symb. Comput. 30, no. 4, 2000, 341–356.

[2] B. Buchberger and M. Möller, The construction of multivariate polynomials with preassigned zeroes, Computer Algebra: EUROCAM ’82 (J. Calmet, ed.), Lecture Notes in Computer Science 144, 1982, 24–31.

[3] L. Cerlienco and M. Mureddu, From algebraic sets to monomial linear bases by means of combinatorial algorithms. Discrete Math. 139, 1995, 73–87.

[4] R.M. Corless, Editor’s Corner: Gröbner bases and Matrix Eigenproblems. SIGSAM Bull. 30, no. 4, 1996, 26–32.

[5] T. Dubé, B. Mishra and Chee-Keng Yap, Admissible Orderings and Bounds for Gröbner Basis Normal Form Algorithms, Courant Institute of Mathematical Sciences, Technical report no. 88, 1986.

[6] B. Felszeghy, L. Ronyai and B. Rath, The lex game and some applications J. Symb. Comput. 41, no. 6, 2006, 663–681.

[7] J.C. Faugère, P. Gianni, D. Lazard and T. Mora, Efficient Computation of Zero-Dimensional Gröbner Basis by Change of Ordering. J. Symb. Comput. 16, no. 4, 1993, 329–344.

[8] S. Gao, M. Rodrigues and J. Stroomer, Gröbner basis structure of finite sets of points, preprint, available at http://www.math.clemson.edu/faculty/Gao/papers/GBstr.ps, 2003.

[9] A. Klinger, The American Mathematical Monthly, 74, no. 5, 1967, 571–574.

[10] R. Laubenbacher and B. Stigler, A computational algebra approach to the reverse-engineering of gene regulatory networks. J. Theor. Biol. 229, 2004, 523–537.
[11] S. Lundqvist, Complexity of comparing monomials and two improvements of the Buchberger-Möller algorithm, J. Calmet, W. Geiselmann, J. Muller-Quade (Eds.): Beth Festschrift, Lecture Notes in Computer Science 5393, 2008, 105–125.