Chloroquine and COVID-19: role as a bitter taste receptor agonist?

B. Bouazza1, I. Ramdani1 and R. Chahed2
1) Biochemistry and Microbiology Department, Mouloud Mammeri University of Tizi-Ouzou and 2) Cabinet Médical Privé, Spécialité de Pneumologie, Tizi-Ouzou, Algeria

Abstract

COVID-19 is a world public health emergency caused by the new coronavirus, SARS-CoV-2. Many drugs were repurposed as a treatment for COVID-19 patients including Chloroquine (CQ). CQ is a bitter taste receptor agonist reported to relax the airways suggesting a role in preventing disease severity of COVID-19 patients with asthma.

Keywords: Airway relaxation, asthma, bitter taste receptor agonist, bronchodilation, Chloroquine, COVID-19, SARS-CoV-2, TAS2R

To the Editor,

The world is facing a global health crisis with coronavirus disease 2019 (COVID-19) caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection was first identified in China in December 2019 [1] but quickly spread all over the world, affecting over 73 million persons and causing more than 1.6 million deaths [2]. Individuals with COVID-19 may experience different symptoms ranging from mild to severe illness including fever, cough, congestion, fatigue, loss of taste or smell, chest pain and difficulty breathing [3]. The disease severity depends on age, sex and co-morbidities including chronic respiratory diseases [4]. Although the literature remains divided about the impact of asthma [5], chronic obstructive pulmonary disease is one of the most reported co-morbidities in individuals with COVID-19, and is related to disease severity, intensive care unit admission and mortality [6–8].

Chronic respiratory diseases are characterized by chronic airway inflammation and bronchial hyperresponsiveness that may lead to exacerbation following viral infections (VIs). VIs are known to affect dramatically both asthma and COPD [9,10], resulting in airway smooth muscle (ASM) contraction and airway obstruction. Indeed, VIs, including the common coronavirus, are responsible for up to 80% of asthma exacerbations [11]. Similarly, like other coronaviruses, SARS-CoV-2 may exacerbate asthma, although the underlying molecular mechanisms through which this may occur are still unknown [12]. SARS-CoV-2, infects bronchial epithelium causing tissue damage and mucus accumulation [13], so decreasing lung function [14]. In addition, asthma exacerbation has been reported to be associated with COVID-19 pneumonia [15,16] and mortality [17].

Even though vaccine campaigns started in the UK and USA for the most vulnerable individuals [18,19], a vaccine will not be available soon to all countries around the world. Specific treatments are lacking, but many drugs were repurposed to treat COVID-19, including antivirals (lopinavir, ritonavir, remdesivir), antibiotics (azithromycin, teicoplanin), chloroquine/hydroxychloroquine, glucocorticoids and bronchodilators [20]. In fact, the use of both reliever and controller treatments were increased in asthmatic children with COVID-19 compared with those without COVID-19 [21]. Moreover, physicians recommended and used bronchodilators to relax the airways of individuals with COVID-19 who have chronic respiratory diseases [22] to help them improve their health condition and reduce ventilator needs [16]. Chloroquine (CQ) is used for the treatment of different diseases, such as malaria, rheumatoid arthritis and systemic lupus [23] and it successfully inhibits the SARS-CoV-2 replication in vitro [24]. Although scientists remain divided on its efficacy against COVID-19, no harmful effect was demonstrated [25]. However, some studies concluded that CQ was effective in viral clearance and in improving COVID-19 patients’ prognosis [26–28].

The beneficial effect of CQ is related to its role in immunomodulation and inhibition of viral replication [29]. On the other hand, CQ is a bitter taste receptor (TAS2R) agonist activating four receptor subtypes [30], expressed in extra-oral tissues including ASM and epithelium [31]. Moreover, their activation leads to relaxation of pre-contracted human ASM, similar to that induced by β2

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
https://doi.org/10.1016/j.nmni.2021.100843
agonists [32], and prevention of airway hyper-responsiveness and mucus accumulation in a murine model of asthma [33]. Interestingly, the relaxation induced by TAS2R agonists is unaffected by β-agonist tachyphylaxis [34]. Of importance, many bitter compounds were suggested to be used to treat COVID-19 [35], and CQ efficacy was shown to decrease in obese individuals with COVID-19, where TAS2Rs are down-regulated [36]. No association between chronic respiratory diseases and severity of SARS-CoV-2 infection was observed when individuals with COVID-19 were treated with CQ [26,27,37].

These observations suggest that the TAS2R agonist, CQ, may have a role in airway relaxation, bronchodilation and in preventing disease severity of individuals with COVID-19.

Authors’ contributions

BB conceptualized the study; BB and IR prepared the original draft and BB and RC reviewed and edited it. All authors read and approved the final version of the manuscript.

Acknowledgements

We would like to thank Dr Karen A. Pescatore (Rowan University, Glassboro, NJ, USA) for critically reading the manuscript.

Conflict of interests

The authors have no conflicts of interest to declare.

Funding

The authors received no specific funding for this work.

References

[1] WHO. WHO | Pneumonia of unknown cause — China [Internet]. WHO [cited 2020 dec 15]; Available from: http://www.who.int/csr/don/05-january-2020-pneumonia-of-unknown-cause-china/en/.
[2] JHU. COVID-19 Map [Internet]. Johns Hopkins Coronavirus Resource Center [cited 2020 dec 16]; Available from: https://coronavirus.jhu.edu/map.html.
[3] Leap J, Villgran V, Cheema T. COVID-19: epidemiology, pathophysiology, transmission, symptoms. Crit Care Nurs Q 2020;43:338–42.
[4] Punjani N, Ha A, Caputo J, Wang V, Wiechmann L, Chiasson MA, et al. Outcome disparities among men and women with COVID-19: an analysis of the New York City population cohort. J Drugs Dermatol 2020;19:960–7.
[5] Bouazza B, Hadj-Said D, Pescatore KA, Chahed R. Are patients with asthma and chronic obstructive pulmonary disease preferred targets of COVID-19? Tuberc Respir Dis 2021;84:22–34.
[6] Song J, Zeng M, Wang H, Qin C, Hou H-Y, Sun Z-Y, et al. Distinct effects of asthma and COPD comorbidity on disease expression and outcome in patients with COVID-19. Allergy 2020.
[7] Lippi G, Henry BM. Chronic obstructive pulmonary disease is associated with severe coronavirus disease 2019 (COVID-19). Respir Med 2020;167:105941.
[8] Attaway AA, Zein J, Hatipoğlu US. SARS-CoV-2 infection in the COPD population is associated with increased healthcare utilization: An analysis of Cleveland clinic’s COVID-19 registry. EClinicalMedicine 2020;26:100515.
[9] Novak N, Cabanillas B. Viruses and asthma: the role of common respiratory viruses in asthma and its potential meaning for SARS-CoV-2. Immunology 2020.
[10] Busse WW, Lemanske RF, Gern JE. Role of viral respiratory infections in asthma and asthma exacerbations. Lancet 2010;376:826–34.
[11] Sata I, Adastia A, Yaqoob S, Greene JM, O’Byrne PM, Killian KJ, et al. Emergency department visits and hospitalisations for asthma, COPD and respiratory tract infections: what is the role of the respiratory viruses, and return to school in September, January and March? ERJ Open Res 2020;6.
[12] Kumar K, Hinks TSC, Singanayagam A. Treatment of COVID-19-exacerbated asthma: should systemic corticosteroids be used? Am J Physiol Lung Cell Mol Physiol 2020;318:L1244–7.
[13] Carotti M, Salaffi F, Sarzi-Puttini P, Agostini A, Borgheresi A, Minorati D, et al. Chest CT features of coronavirus disease 2019 (COVID-19) pneumonia: key points for radiologists. Radiol Med 2020;125:636–46.
[14] Lv D, Chen X, Wang X, Mao L, Sun J, Wu G, et al. Pulmonary function of patients with 2019 novel coronavirus induced-pneumonia: a retrospective cohort study. Ann Palliat Med 2020;9:3447–52.
[15] Ono Y, Obayashi S, Horio Y, Niimi K, Hayama N, Ito Y, et al. Asthma exacerbation associated with COVID-19 pneumonia. Allergol Int 2020.
[16] Codispoti CD, Bandi S, Patel P, Mahdavinia M. Clinical course of asthma in 4 cases of coronavirus disease 2019 infection. Ann Allergy Asthma Immunol 2020;125:208–10.
[17] Lee SC, Son KJ, Han CH, Jung JF, Park SC. Impact of comorbid asthma on severity of coronavirus disease (COVID-19). Sci Rep 2020;10:21805.
[18] GOV. Conditions of Authorisation for Pfizer/BioNTech COVID-19 vaccine [Internet]. GOV.UK [cited 2020 déc 15]; Available from: https://www.gov.uk/government/publications/regulatory-approval-of-pfizer-biontech-vaccine-for-covid-19/conditions-of-authorisation-for-pfizer-biontech-covid-19-vaccine.
[19] CDC. Vaccine Testing and Approval Process | CDC [Internet]. 2020 [cited 2020 déc 15]; Available from: https://www.cdc.gov/vaccines/basics/test-approve.html.
[20] Parasher A. COVID-19: Current understanding of its pathophysiology, clinical presentation and treatment. Postgrad Med J 2020.
[21] Ruano FJ, Somoza Álvarez ML, Haroun-Díaz E, Vázquez de la Torre M, López González P, Prieto-Moreno A, et al. Impact of the COVID-19 pandemic in children with allergic asthma. J Allergy Clin Immunol Pract 2020;8(3S):S21805.
[22] The top 2 meds prescribed for COVID-19 patients [Internet]. [cited 2020 juill 11]; Available from: https://www.beckershospitalreview.com/patient-safety-outcomes/the-top-2-meds-prescribed-for-covid-19-patients.html.
[23] Plantone D, Koudriavtseva T. Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and
neurological diseases: a mini-review. Clin Drug Investig 2018;38:653–71.

[24] Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 2020;6:16.

[25] RECOVERY Collaborative Group, Horby P, Mahtam M, Linsell L, Bell JL, Staplin N, et al. Effect of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med 2020;383:2030–40.

[26] Catteau L, Dauby N, Montourcy M, Bottieau E, Hautekiet J, Goetgebeur E, et al. Low-dose hydroxychloroquine therapy and mortality in hospitalised patients with COVID-19: a nationwide observational study of 8075 participants. Int J Antimicrob Agents 2020;56:106144.

[27] Lagier J-C, Million M, Gautret P, Colson P, Cortaredona S, Giraudeau A, et al. Outcomes of 3,737 COVID-19 patients treated with hydroxychloroquine/azithromycin and other regimens in Marseille, France: A retrospective analysis. Travel Med Infect Dis 2020;101791.

[28] Arshad S, Kilgore P, Chaudhry ZS, Jacobsen G, Wang DD, Huitsing K, et al. Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19. Int J Infect Dis 2020;97:396–403.

[29] Sinha N, Balayla G. Hydroxychloroquine and covid-19. Postgrad Med J 2020. postgradmedj-2020-137785.

[30] Meyerhof W, Batram C, Kuhn C, Brockhoff A, Chudoba E, Bufe B, et al. The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses 2010;35:157–70.

[31] Jagupalli A, Singh N, Upadhysya J, Sikarwar AS, Arakawa M, Dakshinamurti S, et al. Analysis of the expression of human bitter taste receptors in extraoral tissues. Mol Cell Biochem 2017;426:137–47.

[32] Deshpande DA, Wang WCH, McIlmoyle EL, Robinett KS, Schillinger RM, An SS, et al. Bitter taste receptors on airway smooth muscle bronchiodilate by localized calcium signaling and reverse obstruction. Nat Med 2010;16:1299–304.

[33] Sharma P, Yi R, Nayak AP, Wang N, Tang F, Knight MJ, et al. Bitter taste receptor agonists mitigate features of allergic asthma in mice. Sci Rep 2017;7:46166.

[34] An SS, Wang WCH, Koziol-White CJ, Ahn K, Lee DY, Kurren RC, et al. TAS2R activation promotes airway smooth muscle relaxation despite β(2)-adrenergic receptor tachyphylaxis. Am J Physiol Lung Cell Mol Physiol 2012;303:L304–11.

[35] Li X, Zhang C, Liu L, Gu M. Existing bitter medicines for fighting 2019-nCoV-associated infectious diseases. FASEB J 2020.

[36] Watanabe LM, Pires IF, Noronha NY, Pinhel MA de S, Nonino CB. The influence of bitter-taste receptor (TAS2R) expression in pharmacological response to Chloroquine in obese patients with COVID-19. Clinics (Sao Paulo) 2020;75:e2181.

[37] Rosenberg ES, Dufort EM, Udo T, Wilberschied LA, Kumar J, Tesoriere J, et al. Association of treatment with hydroxychloroquine or azithromycin with in-Hospital mortality in patients with COVID-19 in New York State. JAMA 2020.