SUPPORTS OF WEIGHTED EQUILIBRIUM MEASURES:
COMPLETE CHARACTERIZATION

MUHAMMED ALİ ALAN AND NİHAT GÖKHAN GÖĞÜŞ

Abstract. In this paper, we prove that a compact set \(K \subset \mathbb{C}^n \) is the support of a weighted equilibrium measure if and only it is not pluripolar at each of its points extending a result of Saff and Totik to higher dimensions. Thus, we characterize the supports weighted equilibrium measures completely. Our proof is a new proof even in one dimension.

1. Introduction and Background

The supports of weighted extremal measures \(S_w \), are important in pluripotential theory, approximation theory, complex geometry, and they are loosely related to parabolic manifolds [AS11].

Once we know the support of the weighted extremal measure, the weighted extremal function, \(V_{K,Q} \), can be determined by solving the homogenous complex Monge-Ampère equation in the bounded components of the complement with boundary value \(Q \). Furthermore, \(V_{K,Q} = Q \) on the support \(S_w \) quasi everywhere.

Another advantage of determining the supports of weighted extremal measures is as follows: The weighted extremal function of \(K \) with respect to \(Q \) and the weighted extremal function of the support \(S_w \) with respect to the weight \(Q|_{S_w} \) are equal. Thus, determining the support of weighted extremal measures makes approximating the weighted capacities very efficient (see [RRR10].)

Some applications in weighted approximation are as follows. By Theorem 2.12 of Appendix B of [ST97], a weighted polynomial attains its essential supremum on the support \(S_w \). In order to make a weighted approximation of a continuous function \(f \) on \(K \), \(f \) must vanish outside of \(K \). Namely, if \(f \) is continuous on \(K \) and there is a sequence of weighted polynomials \(w^dP_d \) converging uniformally to \(f \) on \(K \), then \(f \equiv 0 \) on \(S_w \) (see [ST97, Cal07].)

Since the weighted extremal function \(V^*_{K,Q} \) is locally bounded, the weighted extremal measure \((dd^c V^*_{K,Q})^n \) does not put mass on pluripolar sets, i.e., \(\text{supp}(dd^c V^*_{K,Q})^n \) is not pluripolar at each of its points; i.e., for all \(z \in K \)
and all $r > 0$, $B(z, r) \cap K$ is not pluripolar. It is natural to ask the converse. Namely, if K is a compact set which is not pluripolar at each of its points, then does there exist an admissible weight Q on K such that $\text{supp}(dd^cV_{K,Q})^n = K$?

The following theorem gives the converse in \mathbb{C}, which characterizes the supports of weighted extremal measures in \mathbb{C}.

Theorem 1.1. [ST97, Theorem IV.1.1] If K is a compact subset of \mathbb{C} which is not pluripolar at each of its points, then there exists an admissible weight on K such that $\text{supp}(\Delta V_{K,Q}) = K$.

Unfortunately, the proof of the theorem uses logarithmic potentials which is not available in \mathbb{C}^n. Branker and the first author investigated the supports of weighted extremal measures (see [Bra04, Ala]). In this paper, we obtain the same theorem [1.1] in \mathbb{C}^n as our main result.

First we recall few facts from weighted and unweighted (pluri-)potential theory. Standard references are [Ran95] for unweighted potential theory, [Kli91] for unweighted pluripotential theory, [ST97] for weighted potential theory, and Appendix B in the same book by Thomas Bloom for weighted pluripotential theory.

Let K be a closed subset of \mathbb{C}^n. An admissible weight function on K is a lower semicontinuous function $Q : K \to (-\infty, \infty]$ such that

i) $\{ z \in K \mid Q(z) < \infty \}$ is not pluripolar.

ii) If K is unbounded, then $Q(z) - \log |z| \to \infty$ as $|z| \to \infty$, $z \in K$.

The function $w = e^{-Q}$ is also used equivalently in the terminology. Especially, the notation w is used more often in weighted approximation (see [Blo09, BL03, ST97]).

The **weighted Siciak-Zahariuta extremal function** of K with respect to Q is defined as

$$V_{K,Q}(z) := \sup \{ u(z) \mid u \in L, u \leq Q \text{ on } K \}.$$ \hfill (1.1)

Recall that L is the Lelong class:

$$L := \{ u \mid u \text{ is plurisubharmonic on } \mathbb{C}^n, u(z) \leq \log^+ |z| + C_u \}. $$ \hfill (1.2)

If $Q = 0$, then $V_{K,0}$ is called the **(unweighted) Siciak-Zahariuta extremal function** of K and V_K denotes it.

A compact set K is called **regular** if V_K is continuous. If $K \cap \overline{B(z, r)}$ is regular for all $z \in K$ and $r > 0$, the set K is called **locally regular**. Here we use the notation $B(z_0, r)$ for the open ball of radius r and center z_0.
It is well known that the upper semicontinuous regularization of \(V_{K,Q} \) is plurisubharmonic and in \(L^+ \) where
\[
L^+ := \{ u \in L | \log^+ |z| + C_u \leq u(z) \}.
\]
Recall that the upper semicontinuous regularization of a function \(v \) is defined by
\[
v^*(z) := \limsup_{w \to z} v(w).
\]

A subset \(P \subset \mathbb{C}^n \) is called pluripolar if \(E \subset \{ z \in \mathbb{C}^n | u(z) = -\infty \} \) for some plurisubharmonic function \(u \). If a property holds everywhere except on a pluripolar set we will say that the property holds quasi everywhere. It is a well-known fact that \(V_{K,Q} = V_{K,Q}^* \) quasi everywhere. See [Kli91].

Let \(S_w \) denotes the support of the \((dd^c V_{K,Q})^n\), where \((dd^c u)^n\) is the Monge-Ampère measure of \(u \). The following lemma is very useful to determine the supports of Monge-Ampère measures.

Lemma 1.2. [ST97, Appendix B, Theorem 1.3] Let \(S^*_w := \{ z \in \mathbb{C}^n | V_{K,Q}^*(z) \geq Q(z) \} \). Then we have \(S_w \subset S^*_w \).

Theorem 1.3. [Dem92, Proposition 11.9] Let \(u, v \) be locally bounded plurisubharmonic functions on \(\Omega \). Then we have the following inequality
\[
(dd^c \max\{u, v\})^n \geq \chi_{\{u \geq v\}}(dd^c u)^n + \chi_{\{u < v\}}(dd^c v)^n.
\]
Here \(\chi_A \) is the characteristic function of \(A \). The inequality \((1.3)\) will be called the Demailly inequality.

Proposition 1.4. [Sic81, Proposition 2.13] If \(K \) is locally regular and \(Q \) is continuous, then \(V_{K,Q} \) is continuous.

2. Characterization of the Supports

Proposition 2.1. Let \(K \) be a non-pluripolar compact set in \(\mathbb{C}^n \) and let \(u \) be a continuous plurisubharmonic function in Lelong class. If \(Q \) is the weight on \(K \) defined by \(Q := u|_K \), then we have \(V_{K,Q} = u |_K \).

Proof. Because \(u \) itself is a competitor in the envelope defining \(V_{K,Q} \), we have \(u \leq V_{K,Q} \) on \(\mathbb{C}^n \); and \(V_{K,Q} \leq Q = u \) on \(K \). Thus \(V_{K,Q} = u \) on \(K \). \(\square \)

Note that \(u = V_{K,Q}^* \) quasi everywhere on \(K \); i.e., we have \(u = V_{K,Q}^* \) on \(K \setminus P \) where \(P \) is a pluripolar set. The following theorem is our main result which gives the complete characterization of supports of weighted extremal measures.

Theorem 2.2. Let \(K \) be a compact set in \(\mathbb{C}^n \) which is not pluripolar at each of its points; i.e., for all \(z \in K \) and all \(r > 0 \), \(B(z, r) \cap K \) is not pluripolar. There exists a continuous weight \(Q \) on \(K \) so that \(K = \text{supp}(dd^c V_{K,Q}^*)^n \).
Proof. Since \(K \) is compact, \(K \subset K_r \) for some \(r > 0 \), where \(K_r := B(z, r) \). Let \(Q_r \) be the weight on \(K_r \) defined by \(Q_r := \frac{1}{\sqrt{2\pi r}} |z|^2 \). By Example 3.7 of [Ala], we have \(\text{supp}(dd^c V_{K_r, Q_r})^n = K_r \).

We define \(Q|_K := u = V_{K_r, Q_r} \). By proposition 2.1 we have \(V_{K_r, Q_r} = u \) quasi everywhere on \(K \). By Demailly’s inequality we have

\[
(dd^c V_{K_r, Q_r})^n \geq \chi \{ V_{K_r, Q_r} \geq V_{K_r, Q_r} \}(dd^c V_{K_r, Q_r})^n + \chi \{ V_{K_r, Q_r} > V_{K_r, Q_r} \}(dd^c V_{K_r, Q_r})^n.
\]

Due to the facts that the set \(\{ V_{K_r, Q_r} > V_{K_r, Q_r} \} \cap K \) is pluripolar, and that \(V_{K_r, Q_r} \) is locally bounded, we have \((dd^c V_{K_r, Q_r})^n \) vanishes on \(\{ V_{K_r, Q_r} > V_{K_r, Q_r} \} \cap K \). Therefore, we have \((dd^c V_{K_r, Q_r})^n \geq (dd^c V_{K_r, Q_r})^n \) quasi everywhere on \(K \). Namely, for any non-pluripolar (Borel) subset \(E \) of \(K \), we have

\[(dd^c V_{K_r, Q_r})^n(E) \geq (dd^c V_{K_r, Q_r})^n(E) > 0. \]

For any \(z \in K \) for every \(r > 0 \), we have \((dd^c V_{K_r, Q_r})^n(K \cap B(z, r)) > 0 \). Therefore \(z \in \text{supp}(dd^c V_{K_r, Q_r})^n \). □

Corollary 2.3. Let \(K \) be a locally regular compact subset of \(\mathbb{C}^n \). Then there exists a continuous weight \(Q \) on \(K \) such that \(K = \text{supp}(dd^c V_{K_r, Q_r})^n \) and \(Q = V_{K_r, Q} \) on \(K \).

Proof. We define \(K_r \) and \(Q_r \) as in the proof of above theorem. By above theorem we have \(K = \text{supp}(dd^c V_{K_r, Q_r})^n \). By Proposition 2.4 we have \(V_{K_r, Q} \) is continuous, thus \(V_{K_r, Q} \leq Q \) on \(K \). By combining these with Lemma 2.2 we have \(Q = V_{K_r, Q} \) on \(K \). □

As a corollary, we obtain the following unexpected result.

Corollary 2.4. There exists a continuous plurisubharmonic function \(u \in L^+ \), such that \(\text{supp}(dd^c u)^n = \partial \Delta^n \), where \(\Delta^n \) is the polydisc in \(\mathbb{C}^n \).

Open Problem 2.5. A compact set \(K \subset \mathbb{C}^n \) is locally regular if and only if it is the support of the Monge-Ampère measure of a continuous function in \(L^+ \).

Remark 2.6. Note that the above open problem might be a step to understand the measures which are Monge-Ampère measures of continuous plurisubharmonic function.

References

[Ala] Muhammed Alan, Supports of weighted equilibrium measures and examples, Potential Analysis, 1–14, 10.1007/s11118-012-9281-1.

[AS11] A. Aytuna and A. Sadullaev, \(S^*\)-parabolic manifolds, TWMS J. Pure Appl. Math. 2 (2011), no. 1, 6–9. MR 2828853 (2012g:32038)
[BL03] Thomas Bloom and Norman Levenberg, *Weighted pluripotential theory in \mathbb{C}^N*, Amer. J. Math. 125 (2003), no. 1, 57–103.

[Blo09] Thomas Bloom, *Weighted polynomials and weighted pluripotential theory*, Trans. Amer. Math. Soc. 361 (2009), no. 4, 2163–2179.

[Bra04] Maritza Maria Branker, *Weighted approximation in \mathbb{R}^n*, ProQuest LLC, Ann Arbor, MI, 2004, Thesis (Ph.D.)–University of Toronto (Canada). MR 2706566

[Cal07] Joe Callaghan, *A Green’s function for θ-incomplete polynomials*, Ann. Polon. Math. 90 (2007), no. 1, 21–35.

[Dem92] Jean-Pierre Demailly, *Potential theory in several complex variables*, Available at http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/trento2.pdf, 1992.

[Kli91] Maciej Klimek, *Pluripotential theory*, London Mathematical Society Monographs. New Series, vol. 6, The Clarendon Press Oxford University Press, New York, 1991, Oxford Science Publications.

[Ran95] Thomas Ransford, *Potential theory in the complex plane*, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995.

[RRR10] Quentin Rajon, Thomas Ransford, and Jérémie Rostand, *Computation of weighted capacity*, J. Approx. Theory 162 (2010), no. 6, 1187–1203. MR 2643724 (2011d:65145)

[Sic81] Józef Siciak, *Extremal plurisubharmonic functions in \mathbb{C}^n*, Ann. Polon. Math. 39 (1981), 175–211.

[ST97] Edward B. Saff and Vilmos Totik, *Logarithmic potentials with external fields*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 316, Springer-Verlag, Berlin, 1997, Appendix B by Thomas Bloom.

(Muhammed Ali Alan) **Syracuse University, Syracuse, NY, 13244 USA**

E-mail address: malan@syr.edu

(Nihat Gökhan Göğüş) **Sabancı University, Orhanlı, Tuzla 34956, Istanbul, TURKEY. E-mail: nggogus@sabanciuniv.edu**