THE SUBGROUP DETERMINED BY A CERTAIN IDEAL IN A FREE GROUP RING

ROMAN MIKHAILOV AND INDER BIR S. PASSI

Abstract. For normal subgroups R and S of a free group F, an identification of the subgroup $F \cap (1 + rfs)$ is derived, and it is shown that the quotient $\frac{F \cap (1 + rfs)}{R \cap S}$ is, in general, non-trivial.

Key words and phrases: Group ring, augmentation ideal, free group, derived functors of non-additive functors,

MSC2010: 18E25, 20C05, 20C07, 20E05.

1. Introduction

Every two-sided ideal a in the integral group ring $\mathbb{Z}[F]$ of a free group F determines a normal subgroup $F \cap (1 + a)$ of F. Identification of such subgroups is a fundamental problem in the theory of group rings ([5], [9]). Let R and S be normal subgroups of F. In this paper we examine the subgroup $F \cap (1 + rfs)$, where, for a normal subgroup G of F, g denotes the two-sided ideal of $\mathbb{Z}[F]$ generated by $G - 1$. This subgroup has been studied by C. K. Gupta [4] (see also [7]). It is easy to check that $[R' \cap S', R \cap S][R' \cap S, R' \cap S][R \cap S', R \cap S'] \subseteq F \cap (1 + rfs)$, where R' (resp. S') is the derived subgroup of R (resp. S). Whereas the identification given in [4], namely that the preceding inclusion is an equality, holds up to torsion, our investigation shows that, $\frac{F \cap (1 + rfs)}{R \cap S} \approx L_1 SP^2 \left(\frac{R \cap S}{(R \cap S')(R \cap S')} \right)$, and is, in general, non-identity; here $L_1 SP^2$ is the first derived functor of the second symmetric power functor.

2. The subgroup $F \cap (1 + rfs)$

Let F be a free group and R, S its normal subgroups with bases, as free groups, $\{r_i\}_{i \in I}$ and $\{s_j\}_{j \in J}$ respectively. Then the ideal r is a free right $\mathbb{Z}[F]$-module with basis $\{r_i - 1 | i \in I\}$ and the ideal s is a free left $\mathbb{Z}[F]$-module with basis $\{s_j - 1 | j \in J\}$ ([3], Theorem 1, p. 32). Further, recall that $R/R' \approx \frac{r}{r'f}$ (resp. $rR' \mapsto r - 1 + fr$).
From these observations it immediately follows that we can make the following identification
\[R/R' \otimes S/S' \cong \frac{r}{r'} \otimes \frac{s}{s'} = \frac{r}{r'} \otimes_{\mathbb{Z}[F]} \frac{s}{s'} = \frac{rs}{r'} \frac{r}{s}. \quad (2.1) \]

Here \(\otimes \) is tensor product over \(\mathbb{Z} \) which we can replace by \(\otimes_{\mathbb{Z}[F]} \) since the action of \(\mathbb{Z}[F] \) on components of the tensor product is trivial.

Theorem 2.1. If \(R \) and \(S \) are normal subgroups of a free group \(F \), then there is a natural isomorphism
\[F \cap (1 + rs) \cong L_1 \text{SP}^2 \left(\frac{R \cap S}{(R' \cap S)(R \cap S')} \right). \]

Proof. Let us set
\[Q := \frac{R \cap S}{R' \cap S'}, \quad U := \frac{R' \cap S}{R' \cap S'}, \quad V := \frac{R \cap S'}{R' \cap S'}. \quad (2.2) \]

The group \(Q \) is free abelian because it injects into \(R/R' \oplus S/S' \), and so are \(U, V \) both being subgroups of \(Q \). Observe that \(Q/U \) is also free abelian, since it is isomorphic to the subgroup \(\frac{R \cap S}{R' \cap S'} \) of \(R/R' \).

For an abelian group \(A \), we denote by \(\text{SP}^2(A) \) its symmetric square, defined as the quotient \(\text{SP}^2(A) := A \otimes A / \langle a \otimes b - b \otimes a, \ | a, b \in A \rangle \) and by \(\Lambda^2(A) \) its exterior square \(\Lambda^2(A) := A \otimes A / \langle a \otimes a \ | a \in A \rangle \). Recall (see [8]) that, for any free resolution
\[0 \to C \to B \to A \to 0 \]
of \(A \), the so-called Koszul complex
\[0 \to \Lambda^2(C) \to C \otimes B \to \text{SP}^2(B) \]
represents the object \(L\text{SP}^2(A) \) of the derived category of abelian groups; in particular, its zeroth (resp. first) homology is equal to the zeroth (resp. first) derived functor of \(\text{SP}^2 \) applied to \(A \).

Consider the natural commutative diagram with exact rows and columns which contains maps between quadratic Koszul complexes:
\[
\Lambda^2(U) \longrightarrow U \otimes Q \longrightarrow \text{SP}^2(Q) \\
\Lambda^2(Q) \longrightarrow Q \otimes Q \longrightarrow \text{SP}^2(Q) \\
\Lambda^2(Q) \longrightarrow Q/U \otimes Q \\
\Lambda^2(U) \longrightarrow U \otimes Q \longrightarrow \text{SP}^2(Q) \\
\Lambda^2(Q) \longrightarrow Q \otimes Q \longrightarrow \text{SP}^2(Q) \\
\Lambda^2(Q) \longrightarrow Q/U \otimes Q \\
\Lambda^2(U) \longrightarrow U \otimes Q \longrightarrow \text{SP}^2(Q) \\
\Lambda^2(Q) \longrightarrow Q \otimes Q \longrightarrow \text{SP}^2(Q) \\
\Lambda^2(Q) \longrightarrow Q/U \otimes Q
Since the middle horizontal complex is acyclic, the homology of the lower complex are the same as of the upper complex shifted by one. That is, there exists a short exact sequence

\[0 \rightarrow \frac{\Lambda^2(Q)}{\Lambda^2(U)} \rightarrow Q/U \otimes Q \rightarrow SP^2(Q/U) \rightarrow 0 \]

which can be naturally extended to the following diagram:

\[
\begin{array}{c}
K \\
\downarrow \\
Q/U \otimes V \\
\downarrow \\
\frac{\Lambda^2(Q)}{\Lambda^2(U)} \\
\downarrow \\
Q/U \otimes Q \\
\downarrow \\
SP^2(Q/U) \\
\downarrow \\
Q/U \otimes Q/V
\end{array}
\]

Here \(K \) is, by definition, the kernel of the lower horizontal map. By Snake Lemma, \(K \) is isomorphic to the kernel of the right hand vertical map \(Q/U \otimes V \rightarrow SP^2(Q/U) \) in the diagram. Observe that this map is part of the Koszul complex

\[0 \rightarrow \Lambda^2(VU/U) \rightarrow Q/U \otimes V \rightarrow SP^2(Q/U) \]

which represents the object \(LSP^2(Q/UV) \) of the derived category of abelian groups. Here we have used the fact that \(V = VU/U = V/(V \cap U) \), since \(V \cap U \) is the zero subgroup of \(Q \). The homology groups of the above Koszul complex are the derived functor evaluations \(L_iSP^2(Q/UV) \), \(i = 1, 2 \) (see [8]). Therefore, we get the following short exact sequence:

\[0 \rightarrow \Lambda^2(V) \rightarrow K \rightarrow L_1SP^2(Q/UV) \rightarrow 0. \]

Consequently the lower sequence of the diagram (2.3), yields the following exact sequence:

\[0 \rightarrow L_1SP^2(Q/UV) \rightarrow \frac{\Lambda^2(Q)}{\Lambda^2(U) + \Lambda^2(V)} \rightarrow Q/U \otimes Q/V \]

(2.4)

We next observe that there are natural isomorphisms

\[
\Lambda^2(Q) \cong \frac{\gamma_2(R \cap S)}{[R' \cap S', R \cap S]}
\]

\[
\frac{\Lambda^2(Q)}{\Lambda^2(U) + \Lambda^2(V)} \cong \frac{\gamma_2(R \cap S)}{[R' \cap S', R \cap S][R' \cap S, R' \cap S][R \cap S', R \cap S']}
\]

and natural monomorphisms \(Q/U \rightarrow R/R', Q/V \rightarrow S/S' \). The exact sequence (2.4) thus implies that there is an exact sequence

\[0 \rightarrow L_1SP^2(Q/UV) \rightarrow \frac{\gamma_2(R \cap S)}{[R' \cap S', R \cap S][R' \cap S, R' \cap S][R \cap S', R \cap S']} \rightarrow R/R' \otimes S/S'. \]

(2.5)
The statement of the theorem follows from the fact (see [2]) that

\[F \cap (1 + rs) = \gamma_2(R \cap S) \]

and the identification (2.1). \(\square\)

For an abelian group \(A\), a description of the group \(L_1SP^2(A)\) is available in many papers on polynomial functors; for example, see [1] or ([6], Theorem 2.2.5). Recall the main properties of \(L_1SP^2(A)\). For any abelian group \(A\), \(L_1SP^2(A)\) is a natural quotient of the group \(\text{Tor}(A, A)\) by diagonal elements. We have

\[L_1SP^2(\mathbb{Z}/m\mathbb{Z}) = L_1SP^2(\mathbb{Z}) = 0, \]

for all natural numbers \(m\), and, for all abelian groups \(A, B\), there is a (bi)natural isomorphism

\[\text{Tor}(A, B) = \text{Ker}\{L_1SP^2(A \oplus B) \rightarrow L_1SP^2(A) \oplus L_1SP^2(B)\}. \]

For a free abelian group \(A\) and a natural number \(m \geq 1\), there is a natural isomorphism

\[L_1SP^2(A \otimes \mathbb{Z}/m\mathbb{Z}) \simeq \Lambda^2(A \otimes \mathbb{Z}/m\mathbb{Z}). \]

Observe also that, the functor \(L_1SP^2\) is related to the homology of the Eilenberg-MacLane spaces \(K(-, 2)\). Namely, for any abelian group \(A\), there is a natural short exact sequence

\[0 \rightarrow L_1SP^2(A) \rightarrow H_5K(A, 2) \rightarrow \text{Tor}(A, \mathbb{Z}/2\mathbb{Z}) \rightarrow 0. \]

Invoking this description for \(L_1SP^2(Q/UV)\), we have the following identification of the subgroup \(F \cap (1 + rs)\):

Theorem 2.2.

\[F \cap (1 + rs) = [R' \cap S', R \cap S][R' \cap S, R' \cap S][R \cap S, R \cap S']W, \]

where \(W\) is the subgroup of \(F\) generated by elements\(^1\)

\[[x_1, y][x, y_2]^{-1}, \]

such that

\[x, y \in R \cap S, \ m \geq 2, \]

\[x^m = x_1x_2, \ y^m = y_1y_2, \]

\[x_1, y_1 \in R' \cap S, \]

\[x_2, y_2 \in R \cap S'. \]

\(^1\)For an elements \(g, h\) of a group, we use the standard commutator notation \([g, h] := g^{-1}h^{-1}gh\).
Proof. Consider the generating elements from W, as in the Theorem. Modulo rfs, we have

$$[x_1, y][x_2, y_2]^{-1} - 1 \equiv [x^m, y][x_2, y_2]^{-1}[x, y_2]^{-1} - 1$$

$$(x^m - 1)(y - 1) - (y^m - 1)(x - 1)$$

$$- (x_2 - 1)(y - 1) + (y - 1)(x_2 - 1)$$

$$- (x - 1)(y_2 - 1) + (y_2 - 1)(x - 1)$$

$$\equiv (x_1 - 1)(y - 1) - (y_1 - 1)(x - 1) +$$

$$(y - 1)(x_2 - 1) - (x - 1)(y_2 - 1).$$

All four products $(x_1 - 1)(y - 1), (y_1 - 1)(x - 1), (y - 1)(x_2 - 1), (x - 1)(y_2 - 1)$ lie in rfs. The subgroup W is chosen as a subgroup of representatives of $L_1\text{SP}^2\left(\frac{R \otimes S}{(R \cap S)(R \cap S')}\right)$ in $F \cap (1 + rfs)$.

Consider generators of $L_1\text{SP}^2\left(\frac{R \otimes S}{(R \cap S)(R \cap S')}\right)$ viewed as a natural quotient of the group $\text{Tor}\left(\frac{R \otimes S}{(R \cap S)(R \cap S')}, \frac{R \otimes S}{(R \cap S)(R \cap S')}\right)$. The generators are given as pairs of elements $(x, y), x, y \in R \cap S$, with the property that, there exists $m \geq 2$, such that $x^m, y^m \in (R' \cap S)(R \cap S')$. Consider now the diagram (2.3) and find the image of the pair (x, y) in the quotient $Q/U \otimes Q/\Lambda^2(V)$ (here we use the notation (2.2)) and choose its representative in $Q/U \otimes V$. It is given as

$$(x.U) \otimes y_2.(R' \cap S') - (y.U) \otimes x_2.(R' \cap S'),$$

where x_2, y_2 are defined in the formulation of the Theorem. Going further in the diagram (2.3), we find a representative of the element (2.6) in $\Lambda^2(Q)/\Lambda^2(V)$, given as

$$(x \wedge y_2) + (x_2 \wedge y) - (x^m \wedge y) + \Lambda^2(V).$$

Indeed, the natural map $\Lambda^2(Q) \to Q/U \otimes Q$ sends (we omit the notation $-(R' \cap S')$ for the elements from Q for the sake of simplification of notations)

$$x \wedge y_2 + (x_2 \wedge y) - (x^m \wedge y)$$

In the free group F, this element is represented as a product of commutators

$$[x, y_2][x_2, y][x^m, y]^{-1}.$$

Since modulo rfs,

$$[x_1, y][x_2, y_2]^{-1} - 1 \equiv [x^m, y][x_2, y_2]^{-1}[x, y_2]^{-1} - 1 \equiv ([x, y_2][x_2, y][x^m, y]^{-1})^{-1} - 1$$

we get the asserted description of the set W. □
Remark. Since the groups $F/\gamma_3(R \cap S), R/R', S/S'$ are always torsion-free, the sequence (2.5) implies that there is the following identification

$$L_1\text{SP}^2 \left(\frac{R \cap S}{(R' \cap S)(R \cap S')} \right) \cong \text{torsion of} \quad \frac{F}{[R' \cap S', R \cap S][R' \cap S, R \cap S'][R \cap S', R \cap S']}.$$

3. Example

Finally, let us give an example of subgroups R, S in a free group F, such that $L_1\text{SP}^2 \left(\frac{R \cap S}{(R' \cap S)(R \cap S')} \right) \neq 0$.

Let $F = F(a_1, \ldots, a_n, b)$, $n \geq 2$,

$$R = \langle a_1, \ldots, a_n, [F, F]^F \rangle,$$

$$S = \langle a_1^2, \ldots, a_n^2, b, [F, F]^F \rangle.$$

Since $[F, F] \subset R, [F, F] \subset S$,

$$(R' \cap S)(R \cap S') = R'S'.$$

For every $i = 1, \ldots, n$, the element $[a_i, b]$ lies in $R \cap S$. Observe that,

$$[a_i^2, b] = [a_i, b][[a_i, b], a_i][a_i, b]$$

Therefore,

$$[a_i, b]^2 \in R'S'.$$

Since $R'S' = \langle [a_i, a_j], [a_i, b]^2, \gamma_3(F) \rangle$, the elements $[a_i, b], i = 1, \ldots, n$ form an abelian subgroup of $\frac{R'S'}{(R \cap S)(R \cap S')}$ isomorphic to $(\mathbb{Z}/2)^{3n}$. For $n \geq 2$, the first derived functor of SP^2 of such group is non-zero.

Acknowledgement

The research of the first author is supported by the Russian Science Foundation, grant N 14-21-00035. The authors thank S. O. Ivanov for discussions related to the subject of the paper.

References

[1] H.-J. Baues and T. Pirashvili: A universal coefficient theorem for quadratic functors, J. Pure Appl. Alg. 148 (2000), 1–15.

[2] M. Bergman and W. Dicks: On universal derivations, J. Algebra 36 (1975), 193–211.

[3] K. W. Gruenberg: Cohomological Topics in Group Theory, Lecture Notes in Mathematics, Vol. 143, Springer-Verlag, 1970.

[4] C. K. Gupta: Subgroups of free groups induced by certain products of augmentation ideals, Comm. Alg. 6 (1978), 1231–1238.

[5] Narain Gupta: Free Group Rings, Contemporary Mathematics, Vol. 66, American Mathematical Society, 1987.

[6] F. Jean: Foncteurs dérivés de l’algèbre symétrique: Application au calcul de certains groupes d’homologie fonctorielle des espaces $K(B, n)$, Doctoral thesis, University of Paris 13, 2002, available at: [http://www.maths.abdn.ac.uk/~bensondj/html/archive/jean.html]
[7] Ram Karan and Deepak Kumar: Some intersections and identifications in integral group rings, Proc. Proc. Indian Acad. Sci. - Mathematical Sciences, 2002, Volume 112, Issue 2, pp 289-297.

[8] B. Kock: Computing the homology of Koszul complexes, Trans. Amer. Math. Soc., 353 (2001), 3115 - 3147.

[9] Roman Mikhailov and Inder Bir Singh Passi: Lower Central and Dimension Series of Groups, LNM Vol. 1952, Springer 2009.

Roman Mikhailov
St Petersburg Department of Steklov Mathematical Institute
and
Chebyshev Laboratory
St Petersburg State University
14th Line, 29b
Saint Petersburg
199178 Russia
email: romanvm@mi.ras.ru

Inder Bir S. Passi
Centre for Advanced Study in Mathematics
Panjab University
Sector 14
Chandigarh 160014 India
and
Indian Institute of Science Education and Research
Mohali (Punjab)140306 India
email: ibspassi@yahoo.co.in