Search for anomalous quartic WWγ couplings in dielectron and missing energy final states in p¯p collisions at √s = 1.96 TeV

V.M. Abazov,31 B. Abbott,66 B.S. Acharya,25 M. Adams,45 T. Adams,43 J.P. Agnew,40 G.D. Alexeev,31 G. Alkhazov,35 A. Alton,55 A. Askew,43 S. Atkins,53 K. Augsten,7 C. Avila,5 F. Badaud,10 L. Bagby,44 B. Baldin,44 D.V. Bandurin,43 S. Banerjee,25 E. Barberis,54 P. Baringer,52 J.F. Bartlett,44 U. Bassler,15 V. Bazzetta,45 A. Bean,52 M. Begalli,7 L. Bellantoni,44 S.B. Beri,23 G. Bernardi,14 R. Bernhard,19 I. Bertram,38 M. Besançon,15 R. Beuselinck,39 P.C. Bhat,43 S. Bhattacharjee,57 V. Bhatnagar,23 G. Blazy,46 S. Blessing,43 K. Bloom,58 A. Bochenek,44 D. Boline,63 E.E. Boos,33 G. Borissov,38 A. Brandt,59 O. Brandt,20 R. Brock 56 A. Bross,44 D. Brown,14 X.B. Bu,44 M. Buehler,44 V. Buescher,21 V. Bunichev,33 S. Burdin,8, 38 C.P. Buszello,37 E. Camacho-Pérez,28 B.C.K. Casey,44 H. Castillo-Valdez,28 S. Caughron,56 S. Chakrabarti,63 K.M. Chan,50 A. Chandra,71 E. Chapon,15 G. Chen,52 S.W. Cho,27 S. Choi,27 B. Choudhary,24 S. Cibangir,44 D. Claes,58 J. Clutter,52 M. Cooke,44 W.E. Cooper,44 M. Corcoran,71 F. Coudere,15 M.-C. Cousinou,12 D. Cutts,68 A. Das,41 G. Davies,39 S.J. De Jong,39 E. De La Cruz-Burelo,28 F. Deliot,15 R. Demina,62 D. Demisov,44 S.P. Denisov,34 S. Desai,44 C. Detaring,20 K. DeVaanagh,58 H.T. Diehl,44 M. Diesburg,44 P.F. Ding,40 A. Domínguez,58 A. Dubey,24 L.V. Dudko,33 A. Duperrin,12 S. Dutta,23 M. Eads,46 D. Edmunds,56 J. Ellison,42 V.D. Elvira,44 Y. Enari,44 H. Evans,18 V.N. Evdokimov,13 F. Feng,46 T. Ferbel,62 F. Fiedler,21 F. Filthaut,29, 30 W. Fisher,56 H.E. Fisk,44 M. Fortner,46 H. Fox,38 S. Fuss,44 A. García-Bellido,62 J.A. García-González,28 V. Gavrilo,32 W. Geng,12, 56 C.E. Gerber,45 Y. Gershtein,59 G. Ginther,44 D. Golovanov,31 P.D. Grimmis,63 S. Greder,16 H. Greenlee,44 G. Grenier,17 Ph. Gris,10 J.-F. Grivaz,13 A. Grohsjean,15 S. Grünendahl,44 M.W. Grünewald,26 T. Guillen,13 G. Gutierrez,44 P. Gutierrez,66 J. Haley,54 L. Han,4 K. Harder,40 A. Harel,62 J.M. Hauptman,51 J. Haynes,39 T. Head,40 T. Hebbeker,18 D. Hedlin,46 H. Hegab,67 A.P. Heinson,42 U. Heintz,68 C. Hensel,20 I. Heredia-De La Cruz,28 K. Herner,44 G. Hesketh,40 M.D. Hildreth,50 R. Hirosky,72 T. Hoang,43 J.D. Hobbs,63 B. Hoejes,9 J. Hogan,71 M. Hohlfeld,21 I. Howley,69 Z. Huacek,7, 15 V. Hynek,7 I. Iashvili,61 Y. Ichenko,70 R. Illingworth,44 A.S. Ito,44 S. Jabeen,68 J. Jaffré,13 A. Jayasinghe,66 J. Holzbauer,57 M.S. Jeong,27 R. Jeske,39 P. Jiang,4 K. Johns,41 E. Johnson,56 M. Johnson,44 A. Jonckheere,44 P. Jonsson,39 J. Joshi,42 A.W. Jung,44 A. Juste,36 E. Kajfasz,12 D. Karmanov,33 I. Katsanos,58 R. Keheoe,70 S. Kerniche,12 N. Khlatyana,44 A. Khano,67 A. Kharchilava,61 Y.N. Khazheev,31 I. Kiselevich,32 J.M. Kohli,23 A.V. Kozelov,34 J. Kraus,57 A. Kumar,61 A. Kupco,8 T. Kurča,17 V.A. Kuzmin,33 S. Lammers,48 P. Lebrun,17 H.S. Lee,27 S.W. Lee,51 W.M. Lee,43 X. Lei,41 J. Lellouch,14 D. Li,14 H. Li,72 P. Li,42 Q.Z. Li,44 J.K. Lim,27 D. Lincoln,44 J. Linnemann,56 V.V. Liptsev,44 R. Lipton,44 H. Liu,70 Y. Liu,4 A. Lobodenko,35 M. Lokajíček,8 R. Lopes de Sa,63 R. Luna-García,9, 28 A.L. Lyon,44 A.K.A. Maciè,14 R. Madar,19 R. Magaña-Villaíba,28 S. Malik,58 V.L. Malyshev,33 J. Mansour,20 L. Martinez-Ortega,28 R. McCarthy,33 C.L. McKee,40 M.M. Meijer,29, 30 A. Melnitchouk,44 D. Menezes,46 P.G. Mercadante,3 M. Merkin,33 A. Meyer,18 J. Meyeri,29 F. Miconi,16 N.K. Mondal,25 M. Mulhearn,72 E. Nagy,12 M. Narain,68 R. Nayar,41 H.A. Neal,5 P. Negret,5 P. Neustroev,35 H.T. Nguyen,72 T. Nunnenkamp,22 J. Orduna,71 N. Osman,12 J. Osta,50 A. Pal,59 N. Parashar,49 V. Pariahs,68 S.K. Park,27 R. Partridge,68 N. Parua,48 A. Patwa,64 B. Penning,44 M. Perfilov,33 Y. Peters,20 K. Petridis,40 G. Petrillo,62 P. Pétroff,13 M.-A. Pfeier,64 V.M. Podstavkov,44 A.V. Popov,34 M. Premett,71 D. Price,48 N. Prokopenko,34 J. Qian,55 A. Quad,80 B. Quinn,57 P.N. Ratoff,38 I. Razumov,34 I. Ripp-Baudot,16 F. Rizatdinova,67 M. Rominsky,44 A. Ross,38 C. Royon,15 P. Rubinov,44 G. Ruchti,50 G. Sajó,11 A. Sánchez-Hernández,28 M.P. Sanders,22 A.S. Santos,3 G. Savage,44 L. Sawyer,53 T. Scanlon,39 R.D. Schamberger,63 Y. Scheglov,35 H. Schellman,47 C. Schwaneberger,40 R. Schiwonenberger,56 J. Sekaric,52 H. Severini,66 E. Shabalina,29 V. Shary,15 S. Shaw,56 A.A. Shchukin,34 V. Simak,7 P. Skubic,66 P. Slattery,62 D. Smirnov,50 G.R. Snow,58 J. Snow,65 S. Snyder,64 S. Söllner-Rembold,40 L. Sonnenschein,18 K. Soustruznik,6 J. Stark,11 D.A. Stoyanova,34 M. Strauss,66 L. Suter,40 P. Swoisky,56 M. Titov,15 V.V. Tokmenin,31 Y.-T. Tsai,62 D. Tsybychev,63 B. Tuchming,15 C. Tully,60 L. Uvarov,35 S. Uvarov,35 S. Uzunyan,46 R. Van Kooten,48 W.M. van Leeuwen,29 N. Varelas,45 E.W. Varnes,41 I.A. Vasilyev,44 A.Y. Verhekie,31 L.S. Vertogradov,31 M. Verzocchi,44 M. Vesterinen,40 D. Vilanova,15 P. Volck,7 H.D. Wahl,43 M.H.L. Wang,44 J. Wardel,50 G. Watts,73 M. Wayne,50 J. Weichert,21 L. Welty-Rieger,57 M.R.J. Williams,48 G.W. Wilson,52 M. Wobisch,53 D.R. Wood,54 T.R. Wyatt,40 Y. Xie,44 R. Yamada,44 S. Yang,4 T. Yasuda,44 Y.A. Yatsumenko,31 W. Ye,63 Z. Ye,44 H. Yin,44 K. Yip,64 S.W. Youn,44 J.M. Yu,55 J. Zennamo,61 T.G. Zhao,40 B. Zhou,55 J. Zhu,55 M. Zielinski,62 D. Zieminska,48 and L. Zivkovic14

FERMILAB-PUB-13-133-E
We present a search for anomalous components of the quartic gauge boson coupling $WW\gamma\gamma$ in events with an electron, a positron and missing transverse energy. The analyzed data correspond to 9.7 fb$^{-1}$ of integrated luminosity collected by the D0 detector in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. The presence of anomalous quartic gauge couplings would manifest itself as an excess of boosted WW events. No such excess is found in the data, and we set the most stringent limits to date on the anomalous coupling parameters a_W^0 and a_W^2. When a form factor with $\Lambda_{\text{cutoff}} = 0.5$ TeV is used, the observed upper limits at 95\% C.L. are $|a_W^0/\Lambda^2| < 0.0025$ GeV$^{-2}$ and $|a_W^2/\Lambda^2| < 0.0092$ GeV$^{-2}$.

PACS numbers: 14.70.Fm,12.60.Cn,13.85.Qk

I. INTRODUCTION

In the standard model (SM) of particle physics, the couplings of fermions and gauge bosons are constrained by the gauge symmetries of the Lagrangian. The non-abelian gauge nature of the SM predicts the existence of trilinear (VVV) and quartic ($VVV\gamma$) gauge couplings ($V = \gamma, W, Z$). These include quartic couplings $WW\gamma\gamma$ between W bosons and photons that can be probed directly at hadron colliders [8], but that are too small to be observed at the Tevatron, as will be shown later. Quartic couplings provide a window on electroweak symmetry breaking [4,5] and can be probed by the measurement of W boson pair production via two photon exchange.

Quartic couplings also allow for probing new physics that couples to electroweak bosons. As an example, the contribution of virtual heavy particles beyond the SM might manifest itself as a modification of the quartic couplings between W bosons and photons [6-8]. Observing the resulting anomalous couplings from such processes could be the first evidence of new physics in the electroweak sector of the SM.

In this paper, we will focus on the search for $WW\gamma\gamma$ anomalous quartic gauge couplings (AQGCs) using data collected at the D0 experiment at the Fermilab $p\bar{p}$ Tevatron Collider, in events with an electron, a positron and missing transverse energy. The main production diagrams are shown in Fig.1. Pairs of W bosons are produced via photon exchange, where the photons are directly radiated from the colliding proton and antiproton. Triple gauge couplings $WW\gamma$ are assumed to be at their SM values (deviations from these values have been constrained by the D0 Collaboration [4] and others [10,13]).

The parameterization of the AQGCs is based on Ref. [14], and only the lowest dimension operators that have the correct Lorentz invariant structure and fulfill $SU(2)_C$ custodial symmetry [15] are considered. Such operators involving two W bosons and two photons are of dimension six:

$$L_6^0 = \frac{-e^2}{8} \frac{a_0^W}{\Lambda^2} F_{\mu\nu}F^{\mu\nu}W^{+\alpha}W_{-\alpha},$$

$$L_6^C = \frac{-e^2}{16} \frac{a_C^W}{\Lambda^2} F_{\mu\alpha}F^{\mu\beta}(W^{+\alpha}W_{-\beta} + W^{-\alpha}W_{+\beta}),$$

where $F^{\mu\nu}$ is the electromagnetic field strength tensor and W_{\pm} is the W^{\pm} boson field. a_0^W and a_C^W are the usual notation for the parametrized quartic couplings constants, where a non-zero a_0^W could be due to an exchange of a heavy neutral scalar, while heavy charged fermions would contribute to both a_0^W and a_C^W. The new scale Λ is introduced so that the Lagrangian density has the correct dimension of four and is interpreted as the typical mass scale of new physics. The current best 95\% C.L. limits on these anomalous parameters come from the OPAL Collaboration from measurement of $WW\gamma$, $q\bar{q}\gamma\gamma$ and $\nu\bar{\nu}\gamma\gamma$ production at the CERN LEP Collider.

*with visitors from *Augustana College, Sioux Falls, SD, USA
*New York University, New York, New York 14260, USA
*University of Rochester, Rochester, New York 14627, USA
*Brookhaven National Laboratory, Upton, New York 11973, USA
*Department of Energy, Washington, D.C. 20585, USA
*University of Oklahoma, Norman, Oklahoma 73019, USA
*Oklahoma State University, Stillwater, Oklahoma 74078, USA
*University of Texas, Arlington, Texas 76019, USA
*Southern Methodist University, Dallas, Texas 75275, USA
*Rice University, Houston, Texas 77005, USA
*University of Virginia, Charlottesville, Virginia 22904, USA
*University of Washington, Seattle, Washington 98195, USA

(Dated: May 6, 2013)
In the SM, the coupling parameters are non-zero, and manifests itself in $W W \gamma$ via photon exchange, with (a) triple tor \cite{6}:

\[
-0.020 \text{GeV}^{-2} < \frac{a_0^W}{\Lambda^2} < 0.020 \text{GeV}^{-2}
-0.052 \text{GeV}^{-2} < \frac{a_0^W}{\Lambda^2} < 0.037 \text{GeV}^{-2}.
\]

The $p\bar{p} \to p\bar{p} W^+W^-$ cross section via photon exchange rises quickly at high energies when the anomalous coupling parameters are non-zero, and manifests itself in particular with the production of boosted W boson pairs. In the SM, the $\gamma\gamma \to WW$ cross section is constant in the high-energy limit due to the cancellation between the relevant diagrams. When the new quartic terms are added, the cancellation does not hold and the cross section will grow to violate unitarity at high energies. This increase of the cross section can be regularized with a form factor that reduces the values of a_0^W and a_0^W at high energy while not modifying them at lower energies. Following a standard approach, we introduce the following form factor \cite{6}:

\[
a_0^W \to \frac{a_0^W}{(1 + M_{\gamma\gamma}^2/\Lambda_{\text{cut-off}}^2)^2},
\]

where $M_{\gamma\gamma}$ is the invariant mass of the two photons, and $\Lambda_{\text{cut-off}}$ is chosen to be either 0.5 or 1 TeV, following the prescription of, e.g., Ref. \cite{6}. In the following, we provide limits on anomalous couplings with and without form factors.

\[\]

II. DATA AND MONTE CARLO SAMPLES

The full Run II set of data recorded by the D0 detector is considered in this analysis, representing 9.7 fb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV delivered by the Tevatron between 2002 and 2011, after the relevant data quality requirements are invoked. The D0 detector used for Run II is described in detail in Ref. \cite{17}. The innermost part of the detector is composed of a central tracking system with a silicon microstrip tracker (SMT) and a central fiber tracker embedded within a 2 T solenoidal magnet. The tracking system is surrounded by a central preshower detector and a liquid-argon/uranium calorimeter with electromagnetic, fine, and coarse hadronic sections. The central calorimeter (CC) covers pseudorapidity $|\eta| < 1.1$. Two end calorimeters (EC) extend the coverage to $1.4 < |\eta| < 4.2$. Energy sampling in the region between the ECs and CC is improved by the addition of scintillation tiles. A muon spectrometer, with pseudorapidity coverage of $|\eta| < 2$, resides outside the calorimetry and is comprised of drift tubes, scintillation counters, and toroidal magnets. Trigger decisions are based on information from the tracking detectors, calorimeters, and muon spectrometer. Details on the reconstruction and identification criteria for electrons, jets, and missing transverse energy, E_T, can be found elsewhere \cite{19}. In this paper we call both electrons and positrons “electrons,” with the charge of the particle determined from the curvature of the associated tracks in the central tracking system.

The background where, like the signal, the proton and the antiproton are intact in the final state, originates from photon exchange and double pomeron exchange (DPE) processes \cite{20}. Both these backgrounds and the AQGC signals are modeled using the FPMC \cite{21} generator, followed by a detailed GEANT3-based \cite{22} simulation of the D0 detector. Data from random beam crossings are overlaid on the MC events to account for detector noise and additional $p\bar{p}$ interactions. The predictions of the FPMC generator, which are made assuming that the proton and antiproton are left intact after the interaction, are consistent with those of the LPAIR \cite{23} generator, which in turn are consistent with the measurement of the cross section for exclusive e^+e^- production by the CDF Collaboration \cite{24}.

Diffractive and photon exchange backgrounds to this search are exclusive e^+e^- and $\tau^+\tau^-$ production through t-channel photon exchange (Drell-Yan) and inclusive W^+W^-, e^+e^-, and $\tau^+\tau^-$ production through DPE. Since the outgoing intact proton and antiproton are not detected in this measurement, we also need to consider non-diffractive backgrounds. These backgrounds are $Z/\gamma^* + \text{jets}$, $t\bar{t}$ and diboson (W^+W^-, $W^\pm Z$ and ZZ) production, and processes in which jets are misidentified as electrons: $W + \text{jets}$ and multijet production. The simulated samples used to model them are identical to those described in Ref. \cite{19}. All of these backgrounds, except multijet production, are modeled using the PYTHIA \cite{25} or ALPGEN \cite{26} generator, with PYTHIA providing showering and hadronization in the latter case, using the CTEQ6L1 \cite{27} parton distribution functions (PDFs). The multijet background is determined from the data by inverting some electron selection criteria, as described in Ref. \cite{19}.

Single diffractive (SD) processes, for which either the incoming proton or antiproton is intact after the interaction while the other is destroyed, have similar features to non-diffractive (ND) processes in the direction of the broken proton or antiproton, contrary to DPE processes where both the proton and antiproton are intact. Since
the cross section ratio of SD to ND processes is about (2–3)%, which is below the uncertainty on cross sections of ND processes cross sections, the contribution of SD processes is neglected in this analysis.

The selection of data events is similar but more strict than the search for the Higgs boson in the $H \rightarrow W^+W^-$ channel that is described in detail elsewhere [19], which includes the same trigger approach with no explicit requirement. A preselection is applied to the data by requiring two high-transverse momentum (high-p_T) electrons with opposite charge. The leading- and trailing-p_T electrons are required to satisfy $p_T^1 > 15$ GeV and $p_T^2 > 10$ GeV, and their invariant mass is required to be $M_{ee} > 15$ GeV. In addition, these electrons are required to be within the acceptance of the calorimeter ($|\eta_1| < 1.1$ and $|\eta_2| < 2.5$ [18]), with at least one electron required to be in the central part of the calorimeter ($|\eta_d| < 1.1$). The only difference from the event selection in the Higgs boson search is that we veto events with at least one jet with $p_T > 20$ GeV, $|\eta_d| < 2.4$, and matched to at least two tracks associated with the $p\bar{p}$ interaction vertex. The inclusive cross section for exclusive W boson pair production through photon exchange in the SM at $\sqrt{s} = 2$ TeV is $\sigma(pp \rightarrow p\bar{p}WW) = 3$ fb, but after the preselection only 0.1 event is expected from this process, unless it is enhanced by AQGCs.

To correct for any possible mismodeling of the lepton reconstruction and trigger efficiencies, and to reduce the impact of the luminosity uncertainty, scale factors are applied to the Monte Carlo (MC) samples at the preselection stage to match the data. The Z boson mass peak region in the data and MC samples after the preselection is chosen such that the contributions of the $Z/\gamma^*+\text{jets}$ background, that is dominant after the preselection, is below the uncertainty on cross sections of processes induced by pomeron exchange; the uncer-

Sources of systematic uncertainty that affect only the normalization of both the normalizations and the shape of the final discriminant. The systematic uncertainties are estimated for the signal and for each background process. They can affect only the normalizations or both the normalizations and the shape of the final discriminant.

The data are found to be in good agreement with the background-only prediction, and upper limits are set on the anomalous parameters a_0^W and a_C^W, which feature identical kinematic characteristics. This BDT relies on the input variables of the selection BDT, complemented with additional variables characterizing the electron reconstruction quality to discriminate against the instrumental backgrounds (multijet and $W+jets$ production).

The distribution of the final BDT output is shown in Fig. 2(b) and demonstrates the good agreement between the data and the background expectation.

III. SYSTEMATIC UNCERTAINTIES

Systematic uncertainties are estimated for the signal and for each background process. They can affect only the normalizations or both the normalizations and the shape of the final discriminant.

Sources of systematic uncertainty that affect only the normalization arise from the uncertainties on the theoretical cross sections of $Z+jets$ (6%), $W+jets$ (16%), diboson (6%), and $t\bar{t}$ (7%) processes; the multijet normalization (30%); and the modeling of the E_T for the $Z+jets$ background (5%). The diffractive backgrounds have been assigned a 100% uncertainty on their cross sections due to the large uncertainties on the gluon density (for processes induced by pomeron exchange; the uncertainty on the gluon density inside the pomeron can reach 40%, translating into an uncertainty of a factor up to 2 on the cross section) and on the proton dissociation (for processes induced by photon exchange). For the latter process, a 20% uncertainty has been assigned to the signal theoretical cross section.

The sources of systematic uncertainty that also affect the shape of the final discriminant distribution are quoted here as average fractional uncertainty across bins of the final discriminant distribution for all backgrounds: jet energy scale (4%), jet resolution (0.5%), E_T modeling (4%), jet identification (2%), jet association to the hard-scatter primary $p\bar{p}$ interaction vertex (2%), and $W+jets$ modeling (10%). The systematic uncertainties due to the modeling of the $p_T(WW)$ and the $\Delta\phi$ between the leptons, and the p_T of the vector boson from the $W+jets$ and $Z+jets$ production (see Ref. [19]) are less than 1% and taken into account.

IV. RESULTS

The data are found to be in good agreement with the background-only prediction, and upper limits are set on the anomalous parameters a_0^W and a_C^W. The modified frequentist CL$_s$ method [51] is employed to set limits on the
AQGCs, where the test statistic is a log-likelihood ratio (LLR) for the background-only and signal+background hypotheses. The LLR is obtained by summing the LLR values of the bins of the final BDT output. In the LLR calculation, the signal and background rates are functions of the systematic uncertainties that are taken into account as nuisance parameters with Gaussian priors. Their degrading effect is reduced by fitting the profile likelihood function for the background-only and signal+background hypotheses. The LLR is obtained by summing the LLR functions of the systematic uncertainties that are taken into account as nuisance parameters with Gaussian priors.

\[
\text{LLR} = \sum_{i=1}^{n} \log \left(\frac{P_i}{Q_i} \right)
\]

where \(P_i\) and \(Q_i\) are the fit likelihoods for the signal and background hypotheses, respectively. The two-parameter limits are obtained from the LLR calculation, the signal and background rates are into account as nuisance parameters with Gaussian priors. Their degrading effect is reduced by fitting the profile likelihood function for the background-only and signal+background hypotheses. The LLR is obtained by summing the LLR functions of the systematic uncertainties that are taken into account as nuisance parameters with Gaussian priors.

V. CONCLUSION

We have searched for anomalous WWγγ quartic gauge boson couplings by analyzing 9.7 fb\(^{-1}\) of integrated luminosity in the W\(^+\)W\(^-\) → e\(^+\)νe\(^-\)ν final state using the DØ detector. No excess above the background expectation has been found. When a form factor with \(Λ_{cutoff} = 0.5\) TeV is used, the observed upper limits at 95% C.L. are \(|a_W^W/Λ^2| < 0.0025\) GeV\(^{-2}\) and \(|a_C^W/Λ^2| < 0.0092\) GeV\(^{-2}\). These are a factor 4 to 8 more stringent constraints on \(a_W^W\) and \(a_C^W\) than the previous limits [16], and the only published limits to date from a hadron collider.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); MON, NRC KI and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China).
TABLE II: Expected and observed 95% C.L upper limits on $|a_W^W/\Lambda^2|$, assuming a_W^W is zero and for different assumptions about the form factor.

Cutoff	Expected upper limit [GeV$^{-2}$]	Observed upper limit [GeV$^{-2}$]
No form factor	0.00043	0.00043
$\Lambda_{\text{cutoff}} = 1$ TeV	0.00092	0.00089
$\Lambda_{\text{cutoff}} = 0.5$ TeV	0.0025	0.0025

TABLE III: Expected and observed 95% C.L upper limits on $|a_C^W/\Lambda^2|$, assuming a_0^W is zero and for different assumptions about the form factor.

Cutoff	Expected upper limit [GeV$^{-2}$]	Observed upper limit [GeV$^{-2}$]
No form factor	0.0016	0.0015
$\Lambda_{\text{cutoff}} = 1$ TeV	0.0033	0.0033
$\Lambda_{\text{cutoff}} = 0.5$ TeV	0.0090	0.0092

FIG. 3: [color online] Two-parameter 68% and 95% C.L limits with different assumptions about the signal: (a) no form factor, or a form factor with (b) $\Lambda_{\text{cutoff}} = 1$ or (c) 0.5 TeV.

[1] E. Chapon, O. Kepka, and C. Royon, Phys. Rev. D 81, 074003 (2010).
[2] O. Kepka, and C. Royon, Phys. Rev. D 78, 073005 (2008).
[3] J. de Favereau de Jeneret et al., arXiv:0908.2020 [hep-ph].
[4] P. J. Dervan, A. Signer, W. J. Stirling, and A. Werthenbach, J. Phys. G 26, 607 (2000).
[5] W. J. Stirling, A. Werthenbach, Eur. Phys. J. C 14, 103 (2000).
[6] O. J. P. Eboli, M. C. Gonzales-Garcia, S. M. Lietti, and S. F. Novaes, Phys. Rev. D 63, 075008 (2001).
[7] G. Cvetic and B. Kogerler, Nucl. Phys. B363, 401 (1991).
[8] A. Hill, J.J. van der Bij, Phys. Rev. D 36, 3463 (1987).
[9] V. M. Abazov et al. [D0 Collaboration], Phys. Lett. B 718, 451 (2012).
[10] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 104, 201801 (2010).
[11] S. Schael et al. [ALEPH Collaboration], Phys. Lett. B 614, 7 (2005); G. Abbiendi et al. [OPAL Collaboration], Eur. Phys. J. C 33, 463 (2004); P. Achard et al. [L3 Collaboration], Phys. Lett. B 586, 151 (2004); J. Abdallah et al. [DELPHI Collaboration], Eur. Phys. J. C 66, 35 (2010).
[12] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 717, 49 (2012); G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 712, 289 (2012); G. Aad et al. [ATLAS Collaboration], arXiv:1210.2979 [hep-ex]; G. Aad et al. [ATLAS Collaboration], arXiv:1302.1283 [hep-ex].
[13] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 699, 25 (2011); S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 701, 535 (2011); S. Chatrchyan et al. [CMS Collaboration], Eur. Phys. J. C 73, 2283 (2013).
[14] G. Belanger and F. Boujdema, Phys. Lett. B 288, 210 (1992). In the present study, the a_0^W and a_C^W parameters are assumed to be zero.
[15] R. A. Diaz and R. Martinez, Rev. Mex. Fis. 47, 489 (2001).
16] G. Abbiendi et al. [OPAL Collaboration], Phys. Rev. D 70, 032005 (2004).
[17] V. M. Abazov et al. [D0 Collaboration], Nucl. Instrum. Meth. Phys. Res. A 565, 463 (2006); M. Abolins et al., Nucl. Instrum. Meth. Phys. Res. A 584, 75 (2008); R. Angstadt et al., Nucl. Instrum. Meth. Phys. Res. A 622, 298 (2010).

The pseudorapidity is defined as $\eta = -\ln (\tan \theta/2)$, where θ is the polar angle relative to the proton beam direction. η_d is the detector pseudorapidity, calculated using the position of the calorimeter cluster with respect to the center of the detector.

[18] V. M. Abazov et al. [D0 Collaboration], to be published in Phys. Rev. D, arXiv:1301.1243 [hep-ex] (2013).
[19] M. Boonekamp, F. Chevallier, C. Royon, and L. Schoeffel, Acta Phys. Polon. B 40, 2239 (2009).
[20] Forward Physics Monte Carlo (fpmc): M. Boonekamp, V. Juránek, O. Kepka, and C. Royon, in Proceedings of the Workshop of the Implications of HERA for LHC Physics, Hamburg-Geneva, 2006-2008, p. 758; M. Boonekamp et al., arXiv:1102.2531v1 [hep-ph], http://cern.ch/fpmc

[21] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 108, 081801 (2012).
[22] M. L. Mangano et al., J. High Energy Phys. 07, 001 (2003); we use version 2.11.
[23] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05, 026 (2006); we use versions 6.319 and 6.413.
[24] J. Vermaseren, Nucl. Phys. B229, 347 (1983).
[25] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 108, 081801 (2012).
[26] K. Melnikov and F. Petriello, Phys. Rev. D 74, 114017 (2006).
[27] T. Junk, Nucl. Instrum. Meth. Phys. Res. A 434, 435 (1999); A. Read, J. Phys. G 28, 2693 (2002).
[28] W. Fisher, FERMILAB-TM-2386-E (2006).