Abstract

The KAI1/CD82 gene inhibits the metastasis of most tumors and is remarkably correlated with tumor invasion and prognosis. Cell metabolism dysregulation is an important cause of tumor occurrence, development, and metastasis. As one of the important characteristics of tumors, cell metabolism dysregulation is attracting increasing research attention. Phospholipids are an indispensable substance in the metabolism in various tumor cells. Phospholipid metabolites have become important cell signaling molecules. The pathological role of lysophosphatidic acid (LPA) in tumors was identified in the early 1990s. Currently, LPA inhibitors have entered clinical trials but are not yet used in clinical treatment. Autotaxin (ATX) has lysophospholipase D (lysoPLD) activity and can regulate LPA levels in vivo. The LPA receptor family and ATX/lysoPLD are abnormally expressed in various gastrointestinal tumors. According to our recent pre-experimental results, KAI1/CD82 might inhibit the migration and metastasis of cancer cells by regulating the ATX-LPA axis. However, no relevant research has been reported. Clarifying the mechanism of ATX-LPA in the inhibition of cancer metastasis by KAI1/CD82 will provide an important theoretical basis for targeted cancer therapy. In this paper, the molecular compositions of the KAI1/CD82 gene and the ATX-LPA axis, their physiological functions in tumors, and their roles in gastrointestinal cancers and target therapy are reviewed.

Key Words: KAI1/CD82; Autotaxin; Lysophosphatidic acid; Pancreatic cancer; Liver cancer
Core Tip: The KAI1/CD82 gene inhibits the metastasis of most tumors and is significantly correlated with their invasion and prognosis. According to our recent pre-experimental results, we speculated that KAI1/CD82 might inhibit the migration and metastasis of cancer cells by regulating autotaxin (ATX)-lysophosphatidic acid (LPA) axis. However, no relevant research has been reported. To clarify the mechanism of ATX-LPA in KAI1/CD82 inhibition of cancer metastasis will provide an important theoretical basis for targeted cancer therapy, and further research is necessary. In this paper, the molecular composition of the KAI1/CD82 gene and ATX-LPA axis, their physiological functions in tumors, and their roles in gastrointestinal cancers and target therapy are reviewed.

INTRODUCTION

The KAI1/CD82 gene is an important tumor suppressor gene. As a metastasis-related suppressor gene of prostate cancer discovered by Dong et al[1] in 1995, KAI1/CD82 is located on human chromosome 11p11.2 and consists of 10 exons and 9 introns with a length of about 80 kb. The protein encoded by this gene is composed of 267 amino acids residues and has a relative molecular weight of 29600 Da. KAI1/CD82 is a member of the transmembrane 4 superfamily (TM4SF). TM4SF proteins promote the interactions between cells and the extracellular matrix, enhance the cohesion between tumor cells, reduce phagocytosis and invasion, and inhibit tumor cell metastasis. Cell dysmetabolism is an important cause of tumor occurrence, development, and metastasis. As one of the hallmarks of cancer, cell dysmetabolism has increasingly attracted the attention of researchers in recent years. Phospholipid is an indispensable substance in cell metabolism and participates in the metabolism of various tumor cells. Phospholipid metabolites have become important cell signaling molecules. Lysophosphatidic acid (LPA) is secreted by platelets, fibroblasts, cancer cells, and fat cells and is a multifunctional “phospholipid messenger”. In tumor tissues, LPA induces intracellular signal transduction by binding G protein-coupled LPA receptors (LPARs) on the cell surface and regulates tumor cell proliferation, adhesion, migration, and invasion. Autotaxin (ATX) is a key enzyme catalyzing LPA synthesis. Clarifying the role and molecular mechanism of ATX-LPA and LPARs in cancer invasion and metastasis is necessary. According to our previous experimental results and recent pre-experimental results, as well as current reports on ATX-LPA, KAI1/CD82 might inhibit the cancer cell migration and metastasis by regulating the ATX-LPA axis. The abnormal metabolism of the ATX-LPA axis may be associated with the high metastasis characteristics of cancer. The ATX-LPA axis and their receptors may serve as molecular markers for cancer metastasis and prognosis. Clarifying the mechanism of the ATX-LPA axis in the inhibition of cancer metastasis by KAI1/CD82 will provide an important theoretical basis for targeted cancer therapy and further research.

MOLECULAR COMPOSITION OF THE KAI1/CD82 GENE AND THE ATX-LPA AXIS

Molecular composition of KAI1/CD82

KAI1 (named after Anticancer Kang Ai) is a tumor-suppressor gene first discovered by Dong et al[1] in 1995 on chromosome 11 of rabbit AT6.1 metastatic prostate cancer cells. Later, researchers confirmed that KAI1 has the same structure as the CD82 gene; therefore, it was named KAI1/CD82. The 5’-end promoter region of the KAI1/CD82 gene is 735 bp long and rich in CpG island with nine transcription factor-specific protein SPI binding sites, five AP2 binding sites, and c-IF-1, Myb, and MEF.1 binding sites, which suggests that the gene is regulated by multiple mechanisms[2,3]. KAI1/CD82 is located on the cell membrane and is a member of TM4SF, which comprises four conservative hydrophobic transmembrane domains (TM1-TM4) and one extracellular glycosyl-based binding site. This structure indicates that KAI1/CD82, like other TM4SF members, can affect plasma membrane molecular rearrangement, cell aggregation, adhesion, and migration, and other physiological and pathological activities through various mechanisms, as well as inhibit the migration and metastasis of various malignant tumors[4].

Molecular composition of the ATX-LPA axis

ATX is a secretory glycoprotein called autocrine motility factor. ATX was first identified in A2058 melanoma cells and induces cell migration through the pertussis toxin G protein[5]. ATX has phosphod-
iesterase activity[6], and LPA is catalyzed by lysophosphatidylcholine (LPC)[7]. LPA is a multifunctional “phospholipid messenger” secreted by platelets, fibroblasts, adipocytes, and cancer cells. Although LPA is the simplest phospholipid, it is not a simple biomolecule. LPA has six G-protein-coupled receptors that mediate several physiological and pathological processes, including embryogenesis, wound healing, chronic inflammation, cancer progression, and treatment tolerance[8]. In tumor tissues, LPA binds to LPARs on the cell surface to induce intracellular signal transduction, which in turn regulates tumor cell proliferation, adhesion, migration, and invasion[7]. At present, ATX-LPA target inhibitors are not yet used as a therapeutic measure clinically, and the therapeutic effects of LPA monoclonal antibodies, LPAR antagonists, and ATX inhibitors are still being explored.

ATX is also called extracellular pyrophosphatase/phosphodiesterase (ENPP) because of its 47%-55% homology with pc-1/NPP1 and B-10/NPP3 amino acid sequences in the ENPP family. ATX is a multidomain protein[9], and lysophospholipase D (lysoPLD) catalyzes LPA formation[10]. ATX has a slightly U-shaped hydrophobic pocket in the catalytic region, which tends to contain unsaturated substrates, such as unsaturated fatty acids[11], and all five selective splicing isomers have catalytic activity[12,13]. Therefore, its affinity with LPC is strong. Although LPA can be produced by other processes, such as phospholipase A2, Ca2+-independent phospholipase A2, and phosphatidylinositol[14-16], ATX is still the main pathway of extracellular LPA generation.

Serum contains 2-20 μm LPA, and its metabolites extensively affect biological activities inside and outside cells[17]. LPA is one of the smallest glycerophosphatides and comprises three domains: Phosphate head, linker, and lipophilic terminal. The function of the phosphoric head is to activate the receptor; the lipophilic terminal sequence determines its biological activity; and the head and tail are linked by acyl, alkyl, or alkenyl group[18]. Its free hydroxyl and phosphate groups make LPA more soluble in water than long-chain phospholipids, which likely contributes to its biological activities.

The family of lipid phosphate phosphohydrolases (LPPs) dephosphorylates LPA[19,20]. LPARs are divided into two subfamilies: LPAR1, receptors belonging to the endothelial cell differentiation gene (Edg) family, and LPAR4, receptors belonging to the purine (P2Y) receptor family[9,21]. LPS (Edg,) has 50%-60% amino acid homology with LPA, (Edg4) and LPA, (Edg7), LPA, and LPA, need to pass through the Gq/11, G12/13, and Gq/11 signaling pathways, whereas LPA, passes only through the Gq/11 and G12 signaling pathways[22]. The function of Gq/11 is to stimulate mitotic division through the Ras-Raf-MAPK signaling pathway and promote tumor cell survival through the PI3K-Akt signaling pathway[23,24]. LPA, (P2Y9/GPR23), LPA, (GPR92), and LPA, (P2Y5) have 35%-55% amino acid homology. LPA, acts through the Gq, Gq/11, and Gq/11 signaling pathways and is the only LPAR that activates adenosine cyclase and leads to cyclic adenosine monophosphate elevation. LPA, plays a role through the Gq/11 and G12/13 signaling pathways, whereas LPA, plays a role through the G12/13activation of the Rho signaling pathways[22]. The effect of LPARs on tumors depends on the G protein signaling pathway that it activates[25].

PHYSIOLOGICAL FUNCTIONS OF THE KAI1/CD82 GENE AND THE ATX-LPA-LPP AXIS IN CANCERS

Inhibition of the KAI1/CD82 gene in cancers

Low KAI1 expression accelerates tumor invasion and metastasis[26]. In 2017, a meta-analysis involving 31 studies showed that high KAI1 expression is significantly associated with overall survival (OS) [hazard ratio (HR) = 0.56, 95% confidence interval (CI): 0.47-0.67] and disease-free/relapse-free/progression-free survival (PFS) (HR = 0.42, 95%CI: 0.30-0.59) in patients with cancer. In addition, they performed a subgroup analysis showing that KAI1/CD82 is associated with a good prognosis in patients with cancer. KAI1/CD82 may be a promising biomarker for predicting the prognosis of patients with malignant tumors, and its biological function has important research value for this topic[27]. The Human Protein Atlas is an outstanding initiative associated to the Human Proteome Project, which has made available valuable information about the functional and pathological aspects of about 17000 proteins. In particular, they are able to propose scores that suggest the prognostic value of proteins in diseases based on the expression levels of these proteins in healthy and diseased tissues. Considering that only 31 studies were included in the meta-analysis, more studies may be needed in the future to verify whether KAI1 can be used as a prognostic factor. KAI1/CD82 may inhibit cell metastasis and migration through two pathways. The first is that KAI1/CD82 inhibits cell migration as an initiating signal. However, the possibility of this pathway is low because of the simple structure of KAI1/CD82 and the lack of corresponding enzymes in the cytoplasm. However, evidence also indicates that KAI1/CD82 may be an initiating signal[28,29]. KAI1/CD82 is crosslinked with monoclonal antibody to induce morphological changes and signal transduction[30]. Integrins are also essential for cell adhesion and migration, and KAI1/CD82 is associated with several integrins, including α5β1, α4β1, α5β1, α6β1, and αLβ2[31-35], which may also be one of the pathways through which KAI1/CD82 inhibits tumor. Epidermal growth factor receptor (EGFR) is a member of the ErbB family. In tumor tissues, the receptors and ligand of the ErbB pathway are overproduced and overactivated. Odintsova et al[36] found that KAI1/CD82 is correlated with EGFR, ErbB2, and ErbB3 and inhibits the endocytosis of the
EGF signaling pathway and EGFR. KAI1/CD82 redistributes molecules on the cell membrane surface; KAI1/CD82 overexpression results in the redistribution and aggregation of urokinase-type plasminogen activator receptor (uPAR) into a stable α5β1 complex. Moreover, KAI1/CD82 overexpression also results in the redistribution of EGFR and gangliosides in the plasma membrane. However, whether the redistribution of these substances is related to KAI1/CD82 tumor inhibition remains unknown[37].

Physiological function of the ATX-LPA-LPP axis in cancers

LPA signals can be roughly divided into three parts, namely, ATX, LPARs, and LPP of extracellular LPA [38,39]. ATX has lysoPLD activity and promotes LPA generation in blood[40,41]. Many tumor cells secrete ATX[42], LPAR expression is higher on tumor cell surfaces than on normal cells, and LPP expression is lower in tumor cells than in normal cells. Understanding the metabolic pathway of the ATX-LPA-LPP axis in the tumor microenvironment (TME) is important to study its target therapy (Figure 1).

The TME is produced by tumor cells, such as neuroblastoma[43], glioblastoma[44], liver cancer[45], B-cell lymphoma[46], melanoma[47], kidney cancer[48], thyroid cancer[49], breast cancer, and non-small cell lung cancer[50], as well as stromal cells such as fibroblasts and adipocytes[51-53]. How to regulate ATX expression remains unclear. ENPP overexpression may be one of the reasons for ATX upregulation in cancer tissues[54]. The Cancer Genome Atlas shows that ENPP overexpression is present in serous ovarian cystadenocarcinoma (about 53%) and invasive breast carcinoma (about 20%). ENPP gene is overexpressed in hepatocellular carcinoma (HCC; about 20%), lung adenocarcinoma (about 11%), bladder transitional cell carcinoma (about 10%), and head and neck squamous cell carcinoma (about 30%)[13]. Moreover, ATX is involved in the physiological wound-healing response, and ATX levels are increased in some inflammatory diseases[55]. Park et al[56] found that the levels of interleukin (IL)-4, IL-5, and ATX increase in patients with asthma who received bronchoalveolar lavage fluid when stimulated by allergens. ATX induces pro-inflammatory cytokines, such as COX-2, IL, and TNF-α, and ATX increase in patients with asthma who received bronchoalveolar lavage fluid when stimulated by allergens. ATX induces the gene instability caused by reactive oxygen species and stimulates the production of inflammatory factors, such as COX-2, IL, and TNF-α[68,69]. LPA activates at least three signaling pathways: (1) Promotes phosphoinositide hydrolysis and therefore activates protein kinase C (PKC) and Ca++ mobilization; (2) Promotes the release of guanosine triphosphate (GTP); and (3) Inhibits adenylate cyclase activity. In recent years, the activation of the downstream signaling Ras pathway may promote LPA fibrogenesis[70]. Moreover, MAK-related kinase, as an effector of RhoC, regulates LPA-induced cell invasion through myosin, extracellular signal-regulated kinase (ERK), and FZD7[71], whereas LPA induces the G12/13-Rho-ROCK signaling pathway to mediate focal adhesion kinase autophosphorylation and promote tumor cell migration[72]. Furthermore, Lee et al[73] found that LPA interacts with T lymphocytes, B lymphocytes, acidic granulocytes, neutrophils, macrophages, mast cells, dendritic cells, and natural killer cells in the immune system and blood. Currently, no clinical treatment for LPA target is available, and the study of TME’s molecular mechanism is helpful to guide clinical treatment.

LPA is hydrolyzed and inactivated by LPPs. Studies have found that LPP1 and LPP3 are reduced in various tumor tissues[74]. LPPs activate ERK signaling by thrombin; induce LPP1 and LPP2 overexpression; and attenuate cell migration, cell differentiation, and angiogenesis[75]. Pilquil et al[76] found that increased LPA, expression weakens PLD activation, which is an intermediate substance necessary for LPA to stimulate cell migration. LPP, also weakens fibroblast migration. Tanyi et al[77] found that LPP, reduces cell apoptosis, decreases the migration ability of transfected LPP, cells, and slows down tumor growth in vivo and in vitro.

Comparative analysis of LPAR-mediated signals in tumors

LPA; LPA is the most widely expressed Edg LPAR in tissues[69]. LPA signaling through LPA, regulates a variety of malignant properties in cancer cells[78]. Murph et al[79] found that LPA, downregulates the tumor suppressor gene p53 and weakens its inhibitory effect. Marshall et al[80] found that the tumor-suppressor gene Nm23 could inhibit LPA, expression. Additionally, Stadler et al[81] found that LPA, is a signaling receptor downstream of fibroblast growth factor receptor 4 (FGFR4) that promotes cell transformation of cells into fibroblasts, which are one of the main components of TME matrix. LPA, preferentially binds to Gα Q proteins in tumors to activate PKC. PKC is involved in many cellular processes, including proliferation and metastasis. Valdés-Rives et al[82] found that when the LPA/PKC α signaling pathway is blocked, the number of cells is reduced; this finding suggests a correlation
Figure 1 Autotaxin-lysophosphatidic acid axis plays a key role in the pathophysiology of tumor cells. A: The anabolism and catabolism of tumor extracellular lysophosphatidic acid (LPA). Autotaxin/lysophospholipase D catalyzes the generation of LPA from lysophosphatidylcholine (LPC), and lipid phosphate phosphohydrolases promotes LPC hydrolysis; B: LPA activates multiple pathological processes in tumor cells by binding GPRs (lysophosphatidic acid receptors) to promote tumor occurrence and development. LPC: Lysophosphatidylcholine; LPA: Lysophosphatidic acid; ATX: Autotaxin; Edg: Endothelial cell differentiation gene; LPPs: Lipid phosphate phosphohydrolases; LysoPLD: Lysophospholipase D.

between LPA1 and PKCa in glioblastoma multiforme growth. Stadler et al[81] found that patients with high expression of the LPA, receptor for R388 FGFR4 phenotype are more likely to develop cancer. Lin et al[83] found that LPA1 signaling mediates tumor lymphangiogenesis by promoting calreticulin expression in prostate cancer. Elevated LPA1 receptors also contribute to cancer development.

LPA2: LPA2 is elevated in tumor tissue[84]. Studies showed that LPA2 is associated with many human tumors, and the binding of LPA2 with its ligand, LPA, can activate the LPA signaling pathway and promote cell proliferation and malignant transformation. For example, the high expression level of the LPA2 receptor in breast cancer suggests a poor prognosis[85]. The high expression of LPA2 mRNA in HCC is related to the low differentiation of cancer cells[86], and the high expression of LPA2 receptor in colon cancer cells promotes the acquisition of drug resistance and the failure of anticancer drugs[87]. LPA2-mediated signaling plays an important role in the enhancement of the chemoresistance of A375 cells treated with anticancer drugs[78]. Ren et al[88] transfected SGC-7901 gastric cancer (GC) cells with LPA2 expression vector and found that the expression of E-cadherin gradually decreases and the expression of vimentin gradually increases with the increase in LPA2 level. These findings suggest that LPA2 is involved in the epithelial-mesenchymal transition (EMT) process of GC cells. GC cells with increased LPA2 level are likely to metastasize. Dong et al[89] believed that an effective drug that can inhibit LPA2 gene expression, inhibit GC cell proliferation, and promote apoptosis might be a potential
new target for GC treatment. Xu et al[90] found that thyroid receptor interacting protein 6 activates LPA₃ and its downstream signal and therefore promotes cell adhesion and migration. The carcinogenic mechanism of LPA₃ is still unknown, and most studies have focused on the LPA stimulation of the expression of cytokines, such as IL-6, VEGF, hypoxia-inducible factor 1α, C-Myc, cyclin D1, Kruppel-like factor 5, and COX-2. Moreover, Na⁺/H⁺ regulatory factor 2 (NHERF-2) may enhance LPA₃ gene expression and other LPA-induced cellular processes[91].

LPA₃: Research found that LPA₃ promotes cancer cell proliferation and metastasis. Zhao et al[92] found that the high expression of the LPA₃ protein is considerably correlated with the occurrence and recurrence of epithelial ovarian cancer. Hayashi et al[93] and Kitayoshi et al[94] found that LPA₃ inhibits tumor cell migration. Sun et al[95] found that LPA₃ overexpression is associated with lymph node metastasis and the loss of the expression of estrogen receptor, progesterone receptor, and human EGF-R2. Studies found that LPA₃ may be related to the activation of the YAP protein in breast cancer and that LPA₃ overexpression may promote the activation of YAP protein and the proliferation and metastasis of breast cancer cells. Fang et al[96] found that LPA₃ affects B cell lymphoma (Bcl)-2 and Bax expression; therefore, it affects the Bcl-2/Bax ratio, inhibits the apoptosis of ovarian cancer cells, and promotes the development of ovarian cancer. The vasodilator-stimulated phospho-protein phosphorylation induced by LPA₃ receptor is a key mediator of migration initiation. LPA₃ plays a role in cellular motility and may contribute to cell invasion and metastasis[97].

LPA₄: LPA₄ may be involved in the invasion and metastasis of breast cancer cells, and the migration and invasion ability may involve the regulation of MMP2 and MMP9 protein expression. Takara et al[98] found that LPA₄ is involved in the formation of vascular networks. LPA₄ activation induces the subcellular binding of circumferential actin and enhances the linear adhesion of vascular-endothelial cadherin in endothelial cells. Studies found that LPA₄ knockout cells show high motor activity. The gelatinase spectrum shows that LPA₄ inhibits the activation of MMP2. LPA₄ also inhibits the cellular motility of endothelial cells, which is correlated to the expression level of the VEGF gene[99]. However, Tsujino et al[100] found no mutation in the LPA₄ gene in colon cancer cells DLD1, SW480, HCT1116, CACO-2, SW48, and LoVo. LPA₄-mediated tube formation, which reflects the stabilization of barrier integrity, was confirmed by in vitro angiogenesis assay. By contrast, LPA₄-mediated protective actions are associated with the activation of Src and Rap1 and attenuated by the abrogation of their activities[101]. A considerable correlation between LPA₆ and PIM-3 expression levels is also observed in patients with HCC. Furthermore, the biological roles of LPA₄ remain unknown[102,103].

THE KAI1/CD82 GENE AND ATX–LPA AXIS IN GASTROINTESTINAL CANCERS

KAI1/CD82 in pancreatic cancer

Pancreatic cancer (PC) is the seventh most common cancer worldwide and causes more than 300000 deaths a year[104]. The 5-year survival rate of PC is only 3%-5%. In the early stages of PC, it directly invades peripancreatic tissues or metastasizes to organs near and far via lymphatic and/or blood vessels. More than 80% of patients with PC are initially diagnosed at advanced stages, lose the chance of surgical treatment, and have poor radiotherapy and chemotherapy effects. In 1996, Guo et al[105] found that the expression of KAI1/CD82 mRNA in early pancreatic tumors (I and II) is significantly higher than that in advanced tumors (III and IV) with lymph node metastasis or distant metastasis (P < 0.01), and the KAI1 mRNA level in poorly differentiated tumors is significantly higher than that in moderately differentiated or well-differentiated tumors (P < 0.05). Friess et al[106] and Xu et al[107] also found similar results. Subsequent studies have shown that low KAI1/CD82 level is associated with the inhibition of PC cell invasion and metastasis, and the KAI1/CD82 gene may control PC cell metastasis by inhibiting cancer cell invasion and motor function[108-111].

KAI1/CD82 protein, a member of TM4SF, has been accepted for its inhibitory effect on tumor metastasis; the mechanism of this effect has not yet been clearly explained, but it may be related to its localization on the cell membrane, extensive glycosylation, and cell-cell and cell-extracellular matrix interactions. Mashimo et al[112] found that the loss of p53 leads to the downregulation of the KAI1/CD82 gene and promotes cancer metastasis. KAI1 may inhibit the metastasis of the PC cells Panc-1 and Miapaca-2, caused by hepatocyte growth factor (HGF) by downregulating sphingosine kinase (SphK) expression. After they were infected with the KAI1 gene, the Panc-1 and Miapaca-2 cells induced by HGF had decreased invasive ability in the Boyden chamber assay. KAI1 overexpression in cells leads to the deactivation of SphK and a decreased level of intracellular sphingosine-1-phosphate[108]. Liu et al[108] found that KAI1/CD82 induces the downregulation of VEGF-C expression through the Src/STAT3 signaling pathway, which may also inhibit the lymph node metastasis of PC. Wu et al[111] found that KAI1 induces the expression of the autophagy proteins LC3 and Beclin1, and further confirmed that KAI1 could induce autophagy in the human PC cell line MiAPACA-2 and therefore promote cell apoptosis and inhibit proliferation. EMT plays an important role in the pathogenesis of PC. KAI1 reverses the expression of EMT-related factors, such as Snail, Vimentin, MMP2, and MMP9 (P <
0.05), and inhibits PC cell metastasis and invasion. In conclusion, KAI1 may be a new potential therapeutic target for PC in the future.

KAI1/CD82 in HCC

HCC is a common malignant tumor with the second highest mortality rate in China. Rapid intrahepatic and extrahepatic metastases lead to poor prognosis[113]. Zhang et al[114] found that the combined detection of KAI1 and VEGF can greatly improve the diagnostic efficiency for HCC. Mu et al[115] found that KAI1/CD82 suppresses the HGF-induced migration of hepatoma cells via SphK1 downregulation. HGF induces hepatoma cell migration through cellular SphK1 activation. The adenovirus-mediated gene transfer of KAI1 downregulates SphK1 expression and suppresses the HGF-induced migration of SMMC-7721 human HCC cells. Guo et al[116] found that the wT53 fusion gene and JunB inhibit tumor cell invasiveness and promote tumor cell apoptosis by regulating KAI1/CD82 expression. Si et al[117] and Yang et al[118] found that changing KAI1 expression could alter the migration and invasion ability of MHCC97-H in HCC cells. Xu et al[119] found that KAI1 is negatively correlated with tumor grade, venous invasion, lymph node metastasis, intrahepatic metastasis, and TNM stage and positively correlated with patients’ OS. KAI1/CD82 may also play an important role in HCC metastasis and prognosis.

KAI1/CD82 in GC

GC is one of the most common malignant tumors. Although GC-related morbidity has shown a downward trend in recent years, the mortality rate remains high[120,121]. KAI1 has been studied to identify novel therapeutic targets[122-126]. Ilhan et al[122] and Knoener et al[123] found that KAI1/CD82 is negative in all tissues with distant metastasis or tissues in stage IV GC with statistical significance (P < 0.05). KAI1 inhibits tumor growth and metastasis and is a prognostic factor for patients with GC. Hinoda et al[124] found that the positive rate of KAI1/CD82 in patients with stages I-IIa GC is 16.6% (8/48), and all patients with stages IIIa-IVb GC are negative for KAI1/CD82 (0%, 0/25; P = 0.05). KAI1/CD82 is highly expressed in normal gastric epithelial cells. In GC, KAI1/CD82 expression decreases with increased tumor differentiation, tumor invasion depth, and lymph node metastasis[127, 128]. Guan et al[129] found that reduced KAI1/CD82 expression promotes lymph node metastasis and liver metastasis in patients with GC. The detection of KAI1/CD82 mRNA expression level can be used as a prognostic index for patients with GC.

KAI1/CD82 in colorectal cancer

Colorectal cancer (CRC) is a common malignant tumor, and metastasis is the main cause of its poor prognosis. KAI1 may affect cellular connectivity and may be related to its metastasis. KAI1 may be a new therapeutic target for CRC[130,131], KAI1 mRNA and protein are increased in early CRC tumors, decreased in late CRC tumors, and no longer expressed in distant metastasis[132]. Integrin-α3 and TAp73 regulate CRC invasion and metastasis by regulating KAI1 transcription[133,134].

ATX-LPA in PC

The expression of ATX in PC remains unclear, and its molecular biological mechanism has not yet been reported. Ryder et al[135] and Nakai et al[136] found that ATX expression is increased in PC tissues, but it is more increased in chronic pancreatitis or pancreatic cysts than in PC. Quan et al[137] found that TNF-α, NF-κB, Wnt/β-catenin pathway, V-Jun, EGF, and B-FGF are all activated or abnormally expressed in PC tissues, which may provide a direction for future research on mechanisms. LPA activates downstream signaling pathways, such as PI3K/AKT, RAS/ERK, Rho, and Hippo, and promotes PC cell proliferation, migration, and invasion[138,139]. Additionally, LPA is remarkably increased in the serum and ascites[140,141], which suggests that ATX activity is elevated in patients with PC.

ATX catalyzes LPA synthesis from LPC and exerts biological effects through the receptors LPA₁ and LPA₃. Fukushima et al[142] found that the invasion ability of PANC-R9 cells is 15 times that of PANC-1 cells, LPA₁ expression in PANC-R9 cells is remarkably higher than that in PANC-1 cells, and LPA₃ is decreased. Kato et al[143] also found that LPA₁ and LPA₃ play opposite roles in PC cell migration. Tsujuchi et al[144], Komachi et al[145], and Yamada et al[146] found that LPA₁ induces PC cell migration. Liao et al[147] and Yoshikawa et al[144] found that LPA₂ may induce PC cell migration by enhancing the proto-oncogene K-RAS pathway. However, Komachi et al[145] found that LPA₃ may inhibit PC cell migration through the conjugated G12/13/Rho signaling pathway. Ishii et al[148] conducted a cell activity assay after LPA₃R were knocked out from PANC-1 cells (PANC-SH4, PANC-SH5, and PANC-SH6 cells). They found that PANC-SH4 and PANC-SH5 enhance cell migration ability, whereas PANC-SH6 inhibits cell migration. Currently, few studies have been conducted on the molecular biology of LPAR and PC, and further research is needed.

ATX-LPA axis in HCC

The main risk factors for HCC are hepatitis virus infection; alcohol consumption; and metabolic disorders, such as obesity, diabetes, and non-alcoholic fatty liver disease[149]. The abnormal expression
highly effective ATX inhibitor, and the oral administration of 30 mg/kg ONO-8430506 effectively that PF-8380 reduces lPA-induced inflammation and delays tumor growth for more than 20 d in a bioavailability owing to their low hydrophobicity and slow degradation

ATX inhibitors decrease serum LPA levels by more than 95% [124].

Specifically detect mouse KAI1/CD82 protein. KAI1/CD82 is a novel tumor therapeutic target, and antibody produced by rabbits is expressed similarly in normal tissues of mice and humans and could about KAI1/CD82 antibody reagents is still lacking. Custer et al [124] found that KAI1/CD82 inhibits tumor metastasis and migration, but knowledge KAI1/CD82 target therapy

KAI1/CD82 AND ATX-LPA AXIS TARGET THERAPY

KAI1/CD82 target therapy

Most studies have shown that KAI1/CD82 inhibits tumor metastasis and migration, but knowledge about KAI1/CD82 antibody reagents is still lacking. Custer et al [124] found that the KAI1 polyclonal antibody produced by rabbits is expressed similarly in normal tissues of mice and humans and could specifically detect mouse KAI1/CD82 protein. KAI1/CD82 is a novel tumor therapeutic target, and more KAI1/CD82 antibodies are expected to be developed in the future [178,179].

ATX inhibitors

ATX inhibitors decrease LPA levels by more than 95% [180]. Oral ATX inhibitors have better bioavailability owing to their low hydrophobicity and slow degradation in vivo [181]. PF-8380 is the first ATX inhibitor to permanently reduce LPA levels in vivo [182] and Schleicher et al [183] found that PF-8380 reduces IPA-induced inflammation and delays tumor growth for more than 20 d in a mouse model of glioblastoma multiforme. Tang et al [184] found that the inhibition of GLPG1690 on ATX enhances the efficacy of chemoradiotherapy in mouse breast cancer models. ONO-8430506 is also a highly effective ATX inhibitor, and the oral administration of 30 mg/kg ONO-8430506 effectively reduces serum ATX and LPA levels in rats [185]. ONO-8430506 in combination with adriamycin delays
the growth time of orthotopic 4T1 breast tumors in 60% Balb/C mice by about 10 d and reduces the growth time of 70% tumors by about 17 d[186,187]. Cholera toxin treatment increases the expression of the anti-inflammatory cytokines IL-4 and IL-10 and inhibits ATX mRNA[188], and the knockdown of ATX mRNA inhibits the growth of Hep3B and Huh7 hepatoma cells[189]. Gupte et al[190] found that ATX inhibitors, such as 4-pentadecylbenzylphosphonic acid, reduce plasma LPA levels by 50%. Plasma LPA in ATX-KO mice lacking dominant heterozygosity is reduced by 50%. ATX inhibitors have not shown remarkable side effects to date.

LPA monoclonal antibody and LPA receptor antagonist

Antibody interventional therapy is superior to traditional therapy, and its antibody bioavailability and receptor binding are longer than other therapies[191]. Goldshmidt et al[192] found that monoclonal antibody B3 can reduce inflammation and glial cell death and improve neuronal function. Monoclonal antibody B3, also known as lpathomab, reduces IL-6 expression and the lesion area and has improved function in a mouse model of traumatic brain injury[193].

Many LPA receptor antagonists have been found, but few work *in vivo*. LPA receptor antagonists are divided into lipid and small-molecule inhibitors, which are derived from fibrosis model studies[194]. BrP-LPA, a pan-LPAR antagonist, was used to treat breast MDA-MB-231 cancer cells[195]. Through LPAR2, BrP-LPA may also sensitize vascular endothelial cells in mouse GL-261 glioma cells to improve malignant glioma response to radiation therapy[183]. LPA accelerates pulmonary fibrosis through LPA1, and the LPA1 antagonist AM966 can inhibit bleomycin-induced idiopathic pulmonary fibrosis. Zhao et al[196] found that K116425 (LPA1 and LPA antagonist) and ono7300243 (LPA antagonist) completely block LPA-induced actions. Recently, lysophospholipid GPCR genes have been used to develop receptor subtype-selective agonists and antagonists. The discovery of FTY720, a novel immune modulator, along with other chemical tools, has provided a means of elucidating the functions of each lysophospholipid GPCR on an organ and the whole body level[197]. In some cancers, targeting LPAR1 is considered a good option against cancer development[87,198]. LPAR1, antagonist TCLPA5 attenuates the proliferation and migration of thyroid carcinoma cells[199]. In addition, the loss of LPA5 in mouse B16-F10 melanoma results in fewer lung metastases[200], which suggests that the drug inhibition of LPA5 can also control melanoma-mediated metastasis. MP-LPA analogs exhibit an unanticipated pattern of partial agonist/antagonist activity for the LPA G protein-coupled receptor family and the intracellular LPA receptor peroxisome proliferator-activated receptors-γ[201]. Currently, all are based on LPA1, LPA3, or LPA1,3 dual antagonists[194]. However, the development of PAN-LPA receptor antagonists may be a more effective approach owing to the complexity of LPAR signals[202].

CONCLUSION

This paper systematically reviews the physiological functions of the KAI1/CD82 gene and the ATX-LPA axis in tumors, as well as their roles in digestive system tumors and targeted therapies. The results demonstrate that KAI1/CD82 is indeed an important inhibitor of tumor metastasis. Further elucidation of the molecular mechanism and regulatory network of KAI1/CD82 and the inhibition of tumor metastasis is needed to discover the molecular markers of pancreatic tumor metastasis, adopt effective strategies to treat PC and prevent PC metastasis, and provide a new approach for the diagnosis and treatment of patients with refractory PC. Although the ATX-LPA axis is considered an important target of cancer, its clinical application is still faced with obstacles. LPA is degraded quickly in the body, and many other factors, such as diet, smoking, and alcohol consumption, can affect the detection results. Other lipids may also generate LPA during extraction, storage, and detection. Therefore, many technical problems need to be overcome in LPA detection. In recent years, clinical trials on the ATX-LPA axis have begun. LPA monoclonal antibodies, LPA receptor antagonists, and ATX inhibitors may become feasible treatment measures. Moreover, ATX-LPA axis-targeted therapy may affect the efficacy of existing chemical drugs. Therefore, an in-depth exploration of specific biomarkers related to LPA activity should be conducted to track disease progression during LPA treatment and ensure the rational application of drugs.

FOOTNOTES

Author contributions: Wang S wrote the original draft; Chen J and Guo XZ contributed to the review and manuscript editing.

Supported by the National Natural Science Foundation of China, No. 81672465; and the Science and Technology Program of Liaoning Province, No. 2019JH8/10300080.

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Shuo Wang 0000-0003-0848-433X; Jiang Chen 0000-0002-5836-6342; Xiao-Zhong Guo 0000-0001-5434-9273

Corresponding Author’s Membership in Professional Societies: Director, chief physician, Department of Gastroenterology, General Hospital of Northern Theater Command; Director of bilipancreatic and Endoscopic Diagnosis and Treatment Center of PLA and Key Laboratory of Liaoning Province; Director of Liaoning Institute of Digestive Diseases; Vice chairman of Pancreatic Disease Branch, Chinese Medical Doctor Association; Standing member of Gastroenterology Society, Chinese General Hospital of Northern Theater Command; Director of biliopancreatic and Endoscopic Diagnosis and Treatment Center of Liaoning Province; Director of Liaoning Institute of Digestive Diseases; Vice chairman of Pancreatic Disease Branch, Chinese Medical Doctor Association; Standing member of Gastroenterology Society, Chinese Medical Doctor Association; Standing member of Gastroenterologist Branch, Chinese Medical Doctor Association; Leader of pancreatology Group, Gastroenterology Branch, Chinese Medical Association.

S-Editor: Wang JJ
L-Editor: Wang TQ
P-Editor: Wang JJ

REFERENCES

1. Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT, Barrett JC. KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 1995; 268: 884-886 [PMID: 7754374 DOI: 10.1126/science.7754374]
2. Malik FA, Sanders AJ, Jiang WG. KAI-1/CD82, the molecule and clinical implication in cancer and cancer metastasis. Histol Histopathol 2009; 24: 519-530 [PMID: 19224455 DOI: 10.14670/HH-24.519]
3. Dong JT, Isaacs WB, Barrett JC, Isaacs JT. Genomic organization of the human KAI1 metastasis-suppressor gene. Genomics 1997; 41: 25-32 [PMID: 9126478 DOI: 10.1006/geno.1997.4618]
4. Zhang XA, He B, Zhou B, Liu L. Requirement of the p130CAS-Crk coupling for metastasis suppressor KAI1/CD82-mediated inhibition of cell migration. J Biol Chem 2003; 278: 27319-27328 [PMID: 12738793 DOI: 10.1074/jbc.M303039200]
5. Tang X, Benesch MGK, Brindley DN. Role of the autotaxin-lyosphosphatidate axis in the development of resistance to cancer therapy. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865: 158716 [PMID: 32305571 DOI: 10.1016/j.bbalip.2020.158716]
6. Lee HY, Bae GU, Jung ID, Lee JS, Kim YK, Noh SH, Strucke ML, Park CG, Lee HW, Han JW. Autotaxin promotes motility via G protein-coupled phosphoinositide 3-kinase gamma in human melanoma cells. FEBS Lett 2002; 515: 137-140 [PMID: 11943209 DOI: 10.1016/s0014-5793(02)02457-2]
7. Leblanc R, Peyruchaud O. New insights into the autotaxin/LPA axis in cancer development and metastasis. Exp Cell Res 2015; 333: 183-189 [PMID: 25460336 DOI: 10.1016/j.yexcr.2014.11.010]
8. Benesch MG, Tang X, Venkatraman G, Bekele RT, Brindley DN. Recent advances in targeting the autotaxin-lyosphosphatidate-lipid phosphate phosphatase axis in vivo. J Biomed Res 2016; 30: 272-284 [PMID: 27533936 DOI: 10.10755/jbr.30.20150058]
9. Houben AJ, Moollaar WH. Autotaxin and LPA receptor signaling in cancer. Cancer Metastasis Rev 2011; 30: 557-565 [PMID: 22002750 DOI: 10.1007/s10555-011-9319-7]
10. Stefan C, Jansen S, Bollen M. NPP-type ectophosphodiesterases: unity in diversity. Trends Biochem Sci 2005; 30: 542-550 [PMID: 16125936 DOI: 10.1016/j.tibs.2005.08.005]
11. Nishimatsu H, Okudaira S, Hama K, Mihara E, Dohmae N, Iroue A, Ishitani R, Takagi J, Aoki J, Nureki O. Crystal structure of autotaxin and insight into GPCR activation by lipid mediators. Nat Struct Mol Biol 2011; 18: 205-212 [PMID: 21240269 DOI: 10.1038/nsmb.1998]
12. Buitin JA, Ferry G. Autotaxin. Cell Mol Life Sci 2009; 66: 3009-3021 [PMID: 19506801 DOI: 10.1007/s00018-009-0056-9]
13. Hashimoto T, Okudaira S, Igarashi K, Hama K, Yamoto Y, Aoki J. Identification and biochemical characterization of a novel autotaxin isoform, ATXα, with a four-amino acid deletion. J Biochem 2012; 151: 89-97 [PMID: 21994952 DOI: 10.1093/jb/mvs126]
14. Li H, Zhao Z, Wei G, Yan L, Wang D, Zhang H, Sandusky GE, Turk J, Xu Y. Group VIA phospholipase A2 in both host and tumor cells is involved in ovarian cancer development. FASEB J 2010; 24: 4103-4116 [PMID: 20530749 DOI: 10.1096/fj.10-161356]
15. Zhao X, Wang D, Zhao Z, Xiao Y, Sengupta S, Zhang R, Lauber K, Wesselseborg S, Feng L, Rose TM, Shen Y, Zhang J, Prestwich G, Xu Y. Caspase-dependent activation of calcium-independent phospholipase A2 enhances cell migration in non-apoptotic ovarian cancer cells. J Biol Chem 2006; 281: 29357-29368 [PMID: 16882668 DOI: 10.1074/jbc.M513052000]
16. Fourcade O, Simon MF, Viodé C, Rugani N, Leballe F, Ragab A, Fournié B, Sarda L, Chap H. Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell
expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets.

Kawagoe H, Umezu-Goto M, Tokumura A. Lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase.

Aoki J, Inoue A, Okudaira S. Two pathways for lysophosphatidic acid production. Biochim Biophys Acta 2008; 1781: 513-518.

Yung YC, Stoddard NC, Chun J. LPA receptor signaling: pharmacology, physiology, and pathophysiology. J Lipid Res 2014; 55: 1192-1214.

Zhang G, Cheng Y, Zhang Q, Li X, Zhou J, Wang J, Wei L. ATX/LPA axis facilitates estrogen-induced endometrial cancer cell proliferation via MAPK/ERK signaling pathway. Mol Med Rep 2018; 17: 4245-4252.

Riaz A, Huang Y, Johansson S. G-Protein-Coupled Lysophosphatidic Acid Receptors and Their Regulation of AKT Signaling. Int J Mol Sci 2016; 17: 215.

Valdés-Rivas SA, González-Arenas A. Autotaxin-Lysophosphatidic Acid: From Inflammation to Cancer Development. Mediators Inflamm 2017; 2017: 9173090.

Jackson P, Marreiros A, Russell PJ. KAI1 tetraspanin and metastasis suppressor. Int J Biochem Cell Biol 2005; 37: 530-534.

Zhu J, Miao C, Liu S, Tian Y, Zhang C, Liang C, Xu A, Cao Q, Wang Z. Prognostic role of CD82/KAI1 in multiple human malignant neoplasms: a meta-analysis of 31 studies. Onco Targets Ther 2017; 10: 5805-5816.

Waterhouse R, Ha C, Dveksler GS. Murine CD9 is the receptor for pregnancy-specific glycoprotein 17. J Exp Med 2002; 195: 277-282.

Crotta S, Stillia A, Wack A, D'Andrea A, Nuti S, D'Ooro U, Mosca M, Filippioni F, Brunetto RM, Bonino F, Abgrani S, Valiante NM. Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein. J Exp Med 2002; 195: 35-41.

Nogimura Y, Hirose T, Tachibana K, Tanaka T, Shi L, Doshen J, Freeman GJ, Schlossman SF, Morimoto C. The 4F9 antigen is a member of the tetra spans transmembrane protein family and functions as an accessory molecule in T cell activation and adhesion. Cell Immunol 1993; 152: 249-260.

Ono M, Hanada K, Withers DA, Hakomori S. Motility inhibition and apoptosis are induced by metastasis-suppressing gene product CD82 and its analogue CD9, with concurrent glycosylation. J Immunol 1996; 157: 2039-2047.

Iwata S, Kobayashi H, Miyake-Nishijima R, Sasaki T, Souta-Kuribara A, Nori M, Hosono O, Kawasaki H, Tanaka H, Morimoto C. Distinctive signaling pathways through CD82 and beta1 integrins in human T cells. J Immunol 2002; 169: 1328-1337.

Mannion BA, Berditchevski F, Kraeft SK, Chen LB, Hemler ME. Transmembrane-4 superfamily proteins CD81 (TAPA-1), CD82, CD63, and CD53 specifically associated with integrin alpha 4 beta 1 (CD49d/CD29). J Immunol 1996; 157: 875325.

Sugiru T, Berditchevski F. Function of alpha3beta1-tetraspanin protein complexes in tumor cell invasion. Evidence for the role of the complexes in production of matrix metalloproteinase 2 (MMP-2). J Cell Biol 1999; 146: 1375-1389.

Odintsova E, Sugiru T, Berditchevski F. Attenuation of EGFR receptor signaling by a metastasis suppressor, the tetraspanin CD82/KAI1. J Biol Chem 2001; 276: 10909-10912.

Liu WM, Zhang XA. KAI1/CD82, a tumor metastasis suppressor. Cancer Lett 2006; 240: 183-194.

Bekker R, David S. Role of autotaxin and lysophosphatidate in cancer progression and resistance to chemotherapy and radiotherapy. Clin Lipidol 2012; 7: 313-328 [DOI: 10.2217/cpl.12.30].

Tokumura A, Majima E, Kariya Y, Tominaga K, Kogure K, Yasuda K, Fukuzawa K. Identification of human plasma lysophospholipase D1, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. J Biol Chem 2002; 277: 39436-39442.

Umezou-Goto M, Kishi Y, Taira A, Hama K, Dohmae N, Takio K, Yamori T, Mills GB, Inoue K, Aoki J, Arai H. ATX/LPA axis facilitates estrogen-induced endometrial carcinoma in vitro proliferation, invasion, and matrix metalloproteinase activity. J Exp Med 2005; 203: 249-260.

Sugiru T, Berditchevski F. Function of alpha3beta1-tetraspanin protein complexes in tumor cell invasion. Evidence for the role of the complexes in production of matrix metalloproteinase 2 (MMP-2). J Cell Biol 1999; 146: 1375-1389.

Odintsova E, Sugiru T, Berditchevski F. Attenuation of EGFR receptor signaling by a metastasis suppressor, the tetraspanin CD82/KAI1. J Biol Chem 2001; 276: 10909-10912.

Liu WM, Zhang XA. KAI1/CD82, a tumor metastasis suppressor. Cancer Lett 2006; 240: 183-194.

Brindle DN, Lin FT, Tiggia GJ. Role of the autotaxin-lysophosphatidate axis in cancer resistance to chemotherapy and radiotherapy. Biochim Biophys Acta 2013; 1831: 74-85.

Bekele R, David S. Role of autotaxin and lysophosphatidate in cancer progression and resistance to chemotherapy and radiotherapy. Clin Lipidol 2012; 7: 313-328 [DOI: 10.2217/cpl.12.30].

Takazawa H, Stracke ML, Nakamura H, Sano K. Expression and transcriptional regulation of the PD-1alpha/autotaxin gene in neuroblastoma. Cancer Res 1997; 57: 2516-2521.

Hoelzinger DB, Mariani L, Weiss J, Woyke T, Berens TJ, McDonough WS, Sloan A, Coons SW, Berens ME. Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. Neoplasia 2005; 7: 7-
Wang S et al. KAI-ATX-LPA axis in gastrointestinal cancers

16 [PMID: 15720813 DOI: 10.1593/neo.04535]
45 Kostadinova I, Shive CL, Anthony DD. Elevated Autotaxin and LPA Levels During Chronic Viral Hepatitis and Hepatocellular Carcinoma Associate with Systemic Immune Activation. *Cancers (Basel)* 2019; 11 [PMID: 31769428 DOI: 10.3390/cancers11121867]
46 Masuda A, Nakamura K, Izuuki K, Igarashi K, Ohkawa R, Jona M, Higashi K, Yokota H, Okudaira S, Kishimoto T, Watanabe T, Koike Y, Ikeda H, Koziy Y, Kurokawa M, Aoki J, Yatomi Y. Serum autotaxin measurement in haematological malignancies: a promising marker for follicular lymphoma. *Br J Haematol* 2008; 143: 60-70 [PMID: 18710366 DOI: 10.1111/j.1365-2458.2008.07325.x]
47 Stracke ML, Krutzsch HC, Unsworth EJ, Arestad A, Cioece V, Schiffmann E, Liotta LA. Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. *J Biol Chem* 1992; 267: 2524-2529 [PMID: 1733949]
48 Stassar MJ, Devitt G, Brosius M, Rinnab L, Prang J, Schradin T, Simon J, Petersen S, Kopp-Schneider A, Zöller M. Identification of human renal cell carcinoma associated genes by suppression subtractive hybridization. *Br J Cancer* 2001; 85: 1372-1377 [PMID: 11724077 DOI: 10.1054/bjoc.2001.2074]
49 Kehlen A, Englert N, Seifert A, Klonisch T, Dralle H, Langner J, Hoang-Vu C. Expression, regulation and function of autotaxin in thyroid carcinomas. *Int J Cancer* 2004; 109: 833-838 [PMID: 15027116 DOI: 10.1002/ijc.20022]
50 Yang Y, Mou Lj, Liu H, Tsaq MS. Autotaxin expression in non-small-cell lung cancer. *Am J Respir Cell Mol Biol* 1999; 21: 216-222 [PMID: 10423404 DOI: 10.1165/ajrccm.21.2.3667]
51 Su SC, Hu X, Kenney PA, Merrill MM, Babaian KN, Zhang XY, Maity T, Yang SF, Lin X, Wood CG. Autolysophospholipidic acid signaling axis mediates tumorgenesis and development of acquired resistance to sunitinib in renal cell carcinoma. *Clin Cancer Res* 2013; 19: 6461-6472 [PMID: 24122794 DOI: 10.1158/1078-0432.CCR-13-1284]
52 Federico L, Ren H, Mueller PA, Wu T, Liu S, Popovic J, Blalock EM, Sunkara M, Ovaa H, Albers HM, Mills GB, Morris AJ, Smyth SS. Autotaxin and its product lysosphatidic acid suppress brown adipose differentiation and promote diet-induced obesity in mice. *Mol Endocrinol* 2012; 26: 786-797 [PMID: 22474126 DOI: 10.1210/ene.2011-1229]
53 Benesch MG, Tang X, Dewald J, Dong WF, Mackey JR, Hemmings DG, McMullen TP, Brandley DN. Tumor-induced inflammation in mammary adipose tissue stimulates a vicious cycle of autotaxin expression and breast cancer progression. *FASEB J* 2015; 29: 3990-4000 [PMID: 26071407 DOI: 10.1096/fj.2014015739]
54 Benesch MGK, Maclntyre ITK, McMullen TPW, Brandley DN. Coming of Age for Autotaxin and Lysophosphatidate Signaling: Clinical Applications for Preventing, Detecting and Targeting Tumor-Promoting Inflammation. *Cancers (Basel)* 2018; 10 [PMID: 29543710 DOI: 11390/cancers10030073]
55 Benesch MG, Ko YM, McMullen TP, Brandley DN. Autotaxin in the crosshairs: targeting cancer and other inflammatory conditions. *FEBS Lett* 2014; 588: 2712-2727 [PMID: 24560789 DOI: 10.1016/j.febslet.2014.02.009]
56 Park GY, Lee YG, Berdyshev E, Nynheuis S, Du J, Fu P, Gorshkova IA, Li Y, Chung S, Kapoorup M, Deng J, Ranjan R, Xiao L, Jaffe HA, Corbridge SJ, Kelly EA, Jarjour NN, Chun J, Prestwood GD, Kaffe F, Ninou I, Aidinis V, Morris AJ, Smyth SS, Ackerman SJ, Natarajan V, Christman JW. Autotaxin production of lysophosphatidic acid mediates allergic asthmatic inflammation. *Am J Respir Crit Care Med* 2013; 188: 928-940 [PMID: 24050723 DOI: 10.1164/rccm.201306-1040OC]
57 Benesch MG, Zhao YY, Curtis JM, McMullen TP, Brandley DN. Regulation of autotaxin expression and secretion by lysosphatidate and sphingosine 1-phosphate. *J Lipid Res* 2015; 56: 1134-1144 [PMID: 25896349 DOI: 10.1194/jlr.M057661]
58 Balogh A, Shimizu Y, Lee SC, Norman DD, Gangwar R, Bavaria M, Moon C, Shukla P, Rao R, Ray R, Naren AP, Banerjee S, Miller DD, Balaiz L, Pelus LD, Tigny G. The autotaxin-LPA2 GPCR axis is modulated by γ-irradiation and facilitates DNA damage repair. *Cell Signal* 2015; 27: 1571-1576 [PMID: 26027517 DOI: 10.1016/j.cellsig.2015.05.015]
59 Meng G, Tang X, Yang Z, Benesch MGK, Marshall A, Murray D, Hemmings DG, Wuest F, McMullen TPW, Brandley DN. Implications for breast cancer treatment from increased autotaxin production in adipose tissue after radiotherapy. *FASEB J* 2017; 31: 4064-4077 [PMID: 28539367 DOI: 10.1096/fj.201700159R]
60 van Corven EJ, Groenink A, Jalink K, Eichholz T, Mooilenaar WH. Lysophosphatidate-induced cell proliferation: identification and dissection of signaling pathways mediated by G-proteins. *Cell* 1989; 59: 45-54 [PMID: 2551506 DOI: 10.1016/0009-2874(89)90086-4]
61 Merchant TE, Kasimos JN, de Graaf PW, Minsky BD, Gierke LW, Glonek T. Phospholipid profiles of human colon cancer using 31P magnetic resonance spectroscopy. *Int J Colorectal Dis* 1991; 6: 121-126 [PMID: 1875121 DOI: 10.1007/BF00300208]
62 Xu Y, Gaudette DC, Boynton JD, Frankel A, Fang XJ, Sharma A, Hurteau J, Casey G, Goodbody A, Mellors A. Characterization of an ovarian cancer activating factor in ascites from ovarian cancer patients. *Clin Cancer Res* 1995; 1: 1223-1232 [PMID: 9815916]
63 Deng W, Wang DA, Cosmanova E, Johnson LR, Tigny G. LPA protects intestinal epithelial cells from apoptosis by inhibiting the mitochondrial pathway. *Am J Physiol Gastrointest Liver Physiol* 2003; 284: G821-G829 [PMID: 12684213 DOI: 10.1152/ajpgi.00406.2002]
64 Sui Y, Yang W, Wang J, Li Y, Ma H, Cai H, Liu X, Zhang Y, Wang S, Li Z, Zhang X, Liu R, Yan Y, Xue C, Shi X, Tan L, Ren J. Lysophosphatidic Acid Inhibits Apoptosis Induced by Cisplatin in Cervical Cancer Cells. *Biomed Res Int* 2015; 2015: 598386 [PMID: 26366416 DOI: 10.1155/2015/598386]
65 Sutphen R, Xu Y, Wilbanks GD, Fiorica J, Grendys EC Jr, LaPolla JP, Arango H, Hoffman MS, Martino M, Wakeley K, Griffin D, Blanco RW, Cantor AB, Xiao Y, Krischer JP. Lysophospholipids are potential biomarkers of ovarian cancer. *Cancer Epidemiol Biomarkers Prev* 2004; 13: 1185-1191 [PMID: 15247120]
66 Kim KS, Sengupta S, Berk M, Kwak YG, Escobar PF, Belinson J, Mok SC, Xu Y. Hypoxia enhances lysosphosphatic acid responsiveness in ovarian cancer cells and lysosphosphatic acid induces ovarian tumor metastasis in vivo. *Cancer Res* 2006; 66: 7983-7990 [PMID: 16912173 DOI: 10.1186/0008-5472-CAN-05-4381]
67 Ren J, Xiao YJ, Singh LS, Zhao X, Zhao Z, Feng L, Rose TM, Prestwich GD, Xu Y. Lysosphosphatic acid is constitutively produced by human peritoneal mesothelial cells and enhances adhesion, migration, and invasion of ovarian cancer cells. *J Biol Chem* 2015; 290: 20130-20141 [PMID: 25910770 DOI: 10.1074/jbc.M115.634600]
Wang S et al. KAI1-ATX-LPA axis in gastrointestinal cancers.

Volume 14, Issue 8, Page 82

DOI: 10.1016/j.pepl.2006.03.004

Spangelo BL, Jarvis WD. Lysophosphatidyicholine stimulates interleukin-6 release from rat anterior pituitary cells in vitro. Endocrinology 1996; 137: 4419-4426 [PMID: 8828503 DOI: 10.1210/endo.137.11.8828503]

Seufferlein T, Rozenhart E. Lysophosphatic acid stimulates tyrosine phosphorylation of focal adhesion kinase, paxillin, and p130. Signaling pathways and cross-talk with platelet-derived growth factor. J Biol Chem 1994; 269: 9345-9351 [PMID: 7510788]

Korkina O, Dong Z, Marullo A, Warshaw G, Symons M, Ruggieri R. The MLK-related kinase (MRK) is a novel RhoC effector that mediates lysophosphatic acid (LPA)-stimulated tumor cell invasion. J Biol Chem 2013; 288: 5364-5373 [PMID: 23319595 DOI: 10.1074/jbc.M112.414460]

Bian D, Mahanivong C, Yu J, Frisch SM, Pan ZK, Ye RD, Huang S. The G12/13-RhoA signaling pathway contributes to efficient lysophosphatic acid-stimulated cell migration. Oncogene; 2005; 22: 2223-2244 [PMID: 16301993 DOI: 10.1038/sj.onc.1209261]

Lee SC, Dacheux MA, Norman DD, Balazs L, Torres RM, Augelli-Szaran CE, Tigli GJ. Regulation of Tumor Immunity by Lysophosphatidic Acid. Cancers (Basel) 2020; 12 [PMID: 32397679 DOI: 10.3390/cancers12051202]

Chatterjee I, Hultsjo JO, Kohler EE, Sorio C, Warf KY. Lipid phosphate phosphatase-3 regulates tumor growth via β-catenin and CYCLIN-D1 signaling. Mol Cancer 2011; 10: 51 [PMID: 21569306 DOI: 10.1186/1476-4598-10-51]

Samadi N, Bekele R, Capatos D, Venkatraman G, Natarajan V, Brindley DN. Regulation of lysophosphatidate signaling by autotaxin and lipid phosphate phosphatases with respect to tumor progression, angiogenesis, metastasis and chemo-resistance. Biochimie 2011; 93: 61-70 [PMID: 20709140 DOI: 10.1016/j.bioch.2010.08.002]

Pilquil C, Deswal D, Cherney A, Gorshkova I, Tigli G, English D, Natarajan V, Brindley DN. Lipid phosphate phosphatase-1 regulates lysophosphatidate-induced fibroblast migration by controlling phospholipase D2-dependent phosphatidylinositol 4-phosphate generation. J Biol Chem 2006; 281: 38418-38429 [PMID: 17057224 DOI: 10.1074/jbc.M601702200]

Tanyi JL, Hasagawa Y, Lapushin R, Morris AJ, Wolf JK, Berchuck A, Lu K, Smith DI, Kalli K, Hartmann LC, McCune K, Fishman D, Broadrus R, Cheng KW, Atkinson EN, Yamal JM, Bast RC, Felix EA, Newman RA, Mills GB. Role of decreased levels of lipid phosphate phosphatase-1 in accumulation of lysophosphatic acid in ovarian cancer. Clin Cancer Res 2003; 9: 3534-3545 [PMID: 14506139]

Minami K, Ueda N, Ishimoto K, Tsujiuchi T. Lysophosphatic acid receptor-2 (LPA2)-mediated signaling enhances chemoresistance in melanoma cells treated with anticancer drugs. Mol Cell Biochem 2020; 469: 89-95 [PMID: 32301060 DOI: 10.1007/s11010-020-03730-w]

Murph MM, Hurst-Kennedy J, Newton V, Brindley DN, Radhakrishna H. Lysophosphatic acid decreases the nuclear localization and cellular abundance of the p53 tumor suppressor in A549 lung carcinoma cells. Mol Cancer Res 2007; 5: 1201-1211 [PMID: 18025263 DOI: 10.1186/1556-776X-MCR-06-00338]

Marshall JC, Collins J, Mariano N, Steeg P. The Nm23-H1 metastasis suppressor as a translational target. Eur J Cancer 2010; 46: 1278-1282 [PMID: 20304626 DOI: 10.1016/j.ejca.2010.02.042]

Stadler CR, Knyazev P, Bange J, Ullrich A. FGFR4/GLY386 isotype suppresses motility of MDA-MB-231 breast cancer cells by EDG-2 gene repression. Cell Signal 2006; 18: 73-84 [PMID: 16109476 DOI: 10.1016/j.cellsig.2005.07.002]

Valdés-Ríos SA, de la Fuente-Granada M, Velasco-Velázquez MA, González-Flores O, González-Arenas A. LPA3 receptor activation induces PKCα nuclear translocation in glioblastoma cells. Int J Biochem Cell Biol 2019; 110: 91-102 [PMID: 30849222 DOI: 10.1016/j.biocel.2019.03.003]

Lin YC, Chen CC, Chen WM, Lu KY, Shen TL, Jou YC, Shen CH, Ohbayashi N, Kanaho Y, Huang YL, Lee H. LPA1/3 signaling mediates tumor lymphangiogenesis through promoting CRT expression in prostate cancer. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863: 1305-1315 [PMID: 29176858 DOI: 10.1016/j.bbamcl.2018.07.005]

Kitayama J, Shida D, Sako A, Ishikawa M, Hama K, Aoki J, Ariai H, Nagawa H. Over-expression of lysophosphatic acid receptor-2 in human invasive ductal carcinoma. Breast Cancer Res 2004; 6: R640-R646 [PMID: 15535846 DOI: 10.1186/bcr935]

Li M, Xiao D, Zhang J, Hu Q, Yang Y, Yan Y, Liu X, Wang J, Liu L, Duan X. Expression of LPA2 is associated with poor prognosis in human breast cancer and regulates HIF-1α expression and breast cancer cell growth. Oncol Rep 2016; 36: 3479-3487 [PMID: 27805252 DOI: 10.3892/or.2016.5206]

Enooku K, Uranibleg B, Ikeda H, Kurano M, Sato M, Kudo H, Maki H, Koike K, Hasagawa K, Kokudo N, Yatomi Y. Higher LPA2 and LPA6 mRNA Levels in Hepatocellular Carcinoma Are Associated with Poorer Differentiation, Microvascular Invasion and Earlier Recurrence with Higher Autotaxin Levels. PLoS One 2016; 11: e0161825 [PMID: 27583415 DOI: 10.1371/journal.pone.0161825]

Ishimoto K, Minami A, Minami K, Ueda N, Tsujiuchi T. Different effects of lysophosphatic acid receptor-2 (LPA2) and LPA5 on the regulation of chemoresistance in colon cancer cells. J Recept Signal Transduct Res 2021; 41: 93-98 [PMID: 32672083 DOI: 10.1080/10799893.2021.1794002]

Ren Z, Zhang C, Ma L, Zhang X, Shi S, Tang D, Xu J, Hu Y, Wang B, Zhang F, Zheng H. Lysophosphatic acid induces the migration and invasion of SGC-7901 gastric cancer cells through the LPA2 and Notch signaling pathways. Int J Mol Med 2019; 44: 67-78 [PMID: 31115486 DOI: 10.3892/ijmm.2019.4186]

Dong S, Li GX, Fang JH, Chen X, Sun YT. Advances in understanding of relationship between Hifip and Lpar2 gene expression and gastric cancer. Shijie Huaren Xiaohua Zazhi 2021; 29: 1049-1054 [DOI: 10.11506/wcjg.v19.11.1049]

Xu J, Dai YJ, Lin WC, Lin FT. TRP6 enhances lysophosphatic acid-induced cell migration by interacting with the lysophosphatic acid 2 receptor. J Biol Chem 2004; 279: 10459-10468 [PMID: 14688265 DOI: 10.1074/jbc.M311981200]

Lin FT, Dai YJ. Regulation of the LPA2 receptor signaling through the carboxyl-terminal tail-mediated protein-protein interactions. Biochim Biophys Acta 2008; 1781: 558-562 [PMID: 18501721 DOI: 10.1016/j.bbalip.2008.04.013]

Zhao P, Yuan Q, Li R, Yan Y, Wang Y, Sun H, Damirin A. LPA3 is a precise therapeutic target and potential biomarker in gastrointestinal cancers. Cancer Res 2006; 66: 3006-3014 [PMID: 16540649 DOI: 10.1115/0008-5472.CAN-05-1292]

Barekzi E, Roman J, Hise K, Georas S, Steinke JW. Lysophosphatic acid stimulates inflammatory cascade in airway epithelial cells. Prostaglandins Leukot Essent Fatty Acids 2006; 74: 357-363 [PMID: 16725318 DOI: 10.1016/j.plfa.2006.03.004]
for ovarian cancer. Med Oncol 2022; 39: 17 [PMID: 34982278 DOI: 10.1007/s12032-021-01616-5]

93 Hayashi M, Okabe K, Yamawaki Y, Teramishi M, Honoki K, Mori T, Fukushima N, Tsujiuchi T. Loss of lysophosphatidic acid receptor-3 enhances cell migration in rat lung tumor cells. Biochem Biophys Res Commun 2011; 405: 450-454 [PMID: 21255556 DOI: 10.1016/j.bbrc.2011.01.051]

94 Kitayoshi M, Fukui R, Tanabe E, Kato K, Yoshikawa K, Fukushima N, Tsujiuchi T. Different effects on cell proliferation and migration abilities of endothelial cells by LPA- and LPA4 in mammary tumor FMA5 cells. J Receptor Signal Transduct Res 2012; 32: 209-213 [PMID: 22666188 DOI: 10.3109/10979893.2012.692121]

95 Sun K, Cui H, Duan X, Yang Y, Li M, Qu J, Zhang X, Wang J. Aberrant expression and potential therapeutic target of lysophosphatidic acid receptor 3 in triple-negative breast cancers. Clin Exp Med 2015; 15: 371-380 [PMID: 25209561 DOI: 10.1007/s10238-014-0306-5]

96 Fang X, Yu S, Bast RC, Liu S, Xu HJ, Hu SX, LaPuschin R, Clarret FX, Aggarwal BB, Lu Y, Mills GB. Mechanisms for lysophosphatidic acid-induced cytokine production in ovarian cancer cells. J Biol Chem 2004; 279: 9653-9661 [PMID: 14670967 DOI: 10.1074/jbc.M306622000]

97 Hasegawa Y, Murph M, Yu S, Tiggig G, Mills GB. Lysophosphatidic acid (LPA)-induced vasodilator-stimulated phosphoprotein mediates lamellipodia formation to initiate motility in PC-3 prostate cancer cells. Mol Oncol 2008; 2: 54-69 [PMID: 19081821 DOI: 10.1016/j.molonc.2008.03.009]

98 Takara K, Eino D, Ando K, Yasuda D, Naito H, Tsukada Y, Iba T, Wakabayashi T, Muramatsu F, Kidoya H, Fukuhara S, Mochizuki N, Ishii S, Kimisha H, Takakura N. Lysophosphatidic Acid Receptor 4 Activation Augments Drug Delivery in Tumors by Tightening Endothelial Cell-Cell Contact. Cell Rep 2017; 20: 2072-2086 [PMID: 28854359 DOI: 10.1016/j.celrep.2017.07.080]

99 Araki M, Kitayoshi M, Dong Y, Hirane M, Ozaki S, Mori S, Fukushima N, Honoki K, Tsujiuchi T. Inhibitory effects of lysophosphatidic acid-receptor-5 on cell functions of sarcoma cells. Growth Factors 2014; 32: 117-122 [PMID: 24795396 DOI: 10.3109/09576451.2014.911294]

100 Tsujino M, Fujii M, Okabe K, Mori T, Fukushima N, Tsujiuchi T. Differential expressions and DNA methylation patterns of lysophosphatidic acid receptor genes in human colon cancer cells. Virchows Arch 2010, 457: 669-676 [PMID: 20807565 DOI: 10.1007/s00428-010-0960-2]

101 Kimura T, Mogi C, Sato K, Tomura H, Ohta H, Im DS, Kuwabara A, Kurose H, Murakami M, Okajima F. p2y5/LPA(6) attenuates LPA₁-mediated VE-cadherin translocation and cell-cell dissociation through G(12/13) protein-Src-Rap1. Cardiovasc Res 2011; 92: 149-158 [PMID: 21632882 DOI: 10.1093/cvr/cvs087]

102 Mukherjee A, Wu J, Barbour S, Fang X. Lysophosphatidic acid activates lipogenic pathways and de novo lipid synthesis in ovarian cancer cells. J Biol Chem 2012; 287: 24990-25000 [PMID: 22665482 DOI: 10.1074/jbc.M112.340883]

103 Fukushima N, Ishii S, Tsujiuchi T, Kagawa N, Katoh K. Comparative analyses of lysophosphatidic acid receptor-mediated signaling. Cell Mol Life Sci 2015; 72: 2377-2394 [PMID: 25732591 DOI: 10.1007/s00018-015-1872-8]

104 Wu DH, Liu L, Chen LH, Ding YQ. Expression of KAI1/CD82 in human colorectal tumor. Di Yi Jun Da Xue Xue Bao 2003; 23: 714-715, 719 [PMID: 12865229]

105 Guo X, Friess H, Graber HU, Kashiwagi M, Zimmermann A, Korc M, Büchner MW. KAI1 expression is up-regulated in early pancreatic cancer and decreased in the presence of metastases. Cancer Res 1996; 56: 4876-4880 [PMID: 8895737]

106 Friess H, Guo XZ, Berberat P, Graber HU, Zimmermann A, Korc M, Büchner MW. Reduced KAI1 expression in pancreatic cancer is associated with lymph node and distant metastases. Int J Cancer 1998; 79: 349-355 [PMID: 9699525 DOI: 10.1002/(sici)1097-0215(19980217)79:4<349::aid-ijc7>3.0.co;2-v]

107 Xu JH, Guo XZ, Ren LN, Shao LC, Liu MP. KAI1 is a potential target for anti-metastasis in pancreatic cancer cells. World J Gastroenterol 2008; 14: 1126-1132 [PMID: 18286695 DOI: 10.3748/wjg.14.1126]

108 Liu X, Guo XZ, Zhang WW, Lu ZZ, Zhang QW, Duan HF, Wang LS. KAI1 inhibits HGF-induced invasion of pancreatic cancer by sphingosine kinase activity. Hepatobiliary Pancreat Dis Int 2011; 10: 201-208 [PMID: 21459729 DOI: 10.1007/s12872(11)0032-5]

109 Li H, Li J, Liu X, Chen J, Wu C, Guo X. Effect of PTEN and KAI1 gene overexpression on the proliferation, metastasis and radiosensitivity of ASPC1 pancreatic cancer cells under hypoxic conditions. Mol Med Rep 2014; 10: 1973-1977 [PMID: 25051346 DOI: 10.3892/mmr.2014.2404]

110 Liu X, Guo XZ, Li HY, Chen J, Ren LN, Wu CY. KAI1 inhibits lymphangiogenesis and lymphatic metastasis of pancreatic cancer in vivo. Hepatobiliary Pancreat Dis Int 2014; 13: 87-92 [PMID: 24463085 DOI: 10.1016/j.hbp.2014.06.018]

111 Wu CY, Guo XZ, Li HY. Hypoxia and Serum deprivation protected MiaPaCa-2 cells from KAI1-induced proliferation inhibition through autophagy pathway activation in solid tumors. Clin Transl Oncol 2015; 17: 201-208 [PMID: 25199507 DOI: 10.1007/s12094-014-1211-9]

112 Mashino T, Watabe M, Hirota S, Hosobe S, Miura K, Tegtmeyer PJ, Rinker-Shaefller CW, Watabe K. The expression of the KAI1 gene, a tumor metastasis suppressor, is directly activated by p53. Proc Natl Acad Sci USA 1998; 95: 11307-11311 [PMID: 9736752 DOI: 10.1073/pnas.95.19.11307]

113 Tang ZY. Hepatocellular carcinoma surgery-review of the past and prospects for the 21st century. J Surg Oncol 2005; 91: 95-96 [PMID: 16028278 DOI: 10.1002/jso.20291]

114 Zhang W, Zhao CG, Sun HY, Zheng WE, Chen H. Expression characteristics of KAI1 and vascular endothelial growth factor and their diagnostic value for hepatocellular carcinoma. Gut Liver 2014; 8: 536-542 [PMID: 25071074 DOI: 10.5009/gnl13331]

115 Mu Z, Wang H, Zhang J, Li Q, Wang L, Guo X. KAI1/CD82 suppresses hepatocyte growth factor-induced migration of hepatoma cells via upregulation of Sprouty2. Sci China C Life Sci 2008; 51: 648-654 [PMID: 18622748 DOI: 10.1007/s11427-008-0086-1]

116 Guo C, Liu Q, Zhang L, Yang X, Song T, Yao Y. Double lethal effects of fusion gene of wild-type p53 and JunB on hepatocellular carcinoma cells. J Huazhong Univ Sci Technolog Med Sci 2012; 32: 663-668 [PMID: 23259178 DOI: 10.1007/s11596-012-1014-6]

117 Si SH, Yang JM, Peng ZH, Luo YH, Zhou P. Effects of KAI1 gene on growth and invasion of human hepatocellular
carcinoma MHHCC97-H cells. *World J Gastroenterol* 2004; **10**:4358-4363 [PMID: 15237426 DOI: 10.3748/wjg.v10.i14.2019]

118 **Yang JM**, Peng ZH, Si SH, Liu WW, Luo YH, Ye ZY. KAI1 gene suppresses invasion and metastasis of hepatocellular carcinoma MHHCC97-H cells in vitro and in animal models. *Liver Int* 2008; 28: 132-139 [PMID: 18028322 DOI: 10.1111/j.1478-3231.2007.01620.x]

119 **Xu J**, Zhang Y, Wang Y, Tao X, Cheng L, Wu S, Tao Y. Correlation of KAI1, CD133 and vasculogenic mimicry with the prediction of metastasis and prognosis in hepatocellular carcinoma. *Int J Clin Exp Pathol* 2018; **11**:3638-3646 [PMID: 31494744]

120 **Lai JF**, Xu WN, Noh SH, Lu WQ. Effects of World Health Organization (WHO) Histological Classification on Predicting Lymph Node Metastasis and Recurrence in Early Gastric Cancer. *Med Sci Monit* 2016; **22**:3147-3153 [PMID: 27595490 DOI: 10.12659/msm.897311]

121 **Ang TL**, Fock KM. Clinical epidemiology of gastric cancer. *Singapore Med J* 2014; **55**:621-628 [PMID: 25630323 DOI: 10.11162/smedj.2014174]

122 **Ihn O**, Celik SY, Han U, Onal B. Use of KAI-1 as a prognostic factor in gastric cancer. *Eur J Gastroenterol Hepatol* 2009; 21: 1369-1372 [PMID: 19506480 DOI: 10.1097/MEG.0b013e32823ac9a9]

123 **Kneuer M**, Kreeh T, Puls F, Lehmann U, Kreipe H, Christgen M. Limited value of KAI1/CD82 protein expression as a prognostic marker in human gastric cancer. *Dis Markers* 2012; **33**:337-342 [PMID: 22684230 DOI: 10.3233/DMA-2012-0896]

124 **Hinojeda Y**, Adachi Y, Takazaka A, Mitsuuchi H, Satoh Y, Itoh F, Kondoh Y, Inai K. Decreased expression of the metastasis suppressor gene KAI1 in gastric cancer. *Cancer Lett* 1998; **129**:229-234 [PMID: 9719466 DOI: 10.1016/s0304-3835(98)00112-8]

125 **Chen M**, Towers LN, O’Connor KL. LPA2 (EDG4) mediates Rho-dependent chemotaxis with lower efficacy than LPA1 (EDG2) in breast cancer cells. *Am J Physiol Cell Physiol* 2007; **292**:C1927-C1933 [PMID: 17496233 DOI: 10.1152/ajpcell.00400.2006]

126 **Xu L**, Hou Y, Tu G, Chen Y, Du YE, Zhang H, Wen S, Tang X, Yin J, Lang L, Sun K, Yang G, Liu M. Nuclear Drosha enhances cell invasion via an EGFR-ERK1/2-MMP7 signaling pathway induced by dysregulated miRNA-622/197 and their target LAMC2 and CD82 in gastric cancer. *Cell Death Dis* 2017; 8: e2642 [PMID: 28252644 DOI: 10.1038/cddis.2017.5]

127 **Tutsusumi S**, Shimura T, Morinaga N, Mochiki E, Asato T, Kuwano H. Loss of KAI1 expression is an unfavorable prognostic factor in pancreatic cancer. *Hepatogastroenterology* 2005; **52**:281-284 [PMID: 15783050]

128 **Zheng HC**, Wang MC, Li JY, Yang XF, Sun JM, Xin Y. Expression of maspin and kai in their clinicopathological significance in carcinogenesis and progression of gastric cancer. *Chin Med J* 2004; 19:193-198 [PMID: 15506646]

129 **Guan-Zhen Y**, Yang C, Can-Rong N, Guo-Dong W, Jian-Xin Q, Jie-Jun W. Reduced protein expression of metastasis-related genes (nm23, KISS1, KAI1 and p53) in lymphogen node and liver metastases of gastric cancer. *Int J Exp Pathol* 2007; **88**:175-183 [PMID: 17544447 DOI: 10.1111/j.1365-2613.2006.00510.x]

130 **Zhu B**, Zhou L, Yu L, Wu S, Song W, Gong X, Wang D. Evaluation of the correlation of vasculogenic mimicry, ALDH1, KAI1 and microvessel density in the prediction of metastasis and prognosis in colorectal cancer. *BMC Surg* 2017; **17**:47 [PMID: 28431527 DOI: 10.1186/s12893-017-0246-6]

131 **Lu G**, Zhou L, Zhang X, Zhu B, Wu S, Song W, Gong X, Wang D, Tao Y. The expression of metastasis-associated in colon carcinoma-1 and KAI1 in gastric adenocarcinoma and their clinical significance. *World J Surg Oncol* 2016; **14**:276 [PMID: 27793616 DOI: 10.1186/s12957-016-1033-z]

132 **Yang JJ**, Jackson P, Yu Y, Russell PJ, Markovic B, Crowe PJ. Expression of the KAI1 metastasis suppressor gene in non-metastatic versus metastatic human colorectal cancer. *Anticancer Res* 2002; **22**:3337-3342 [PMID: 12530084]

133 **Bae WK**, Hong CS, Park MR, Sun EG, Lee JH, Kang K, Ryu KH, Shim HJ, Hwang JE, Cho SH, Chung JI. Tp73 inhibits cell invasion and migration by directly activating KAI1 expression in colorectal cancer. *Cancer Lett* 2018; 415:106-116 [PMID: 29222041 DOI: 10.1016/j.canlet.2017.12.002]

134 **Hashida H**, Takabayashi A, Tokuhara T, Taki T, Kondo K, Kohno N, Yamaoka Y, Miyake M. Integrin alpha3 expression as a prognostic factor in colon cancer: association with MRP-1/CD9 and KAI1/CD82. *Int J Cancer* 2002; **97**:518-525 [PMID:11802216 DOI: 10.1002/ijc.1625]

135 **Ryder NM**, Guha S, Hines OJ, Reber HA, Rozengurt E. G protein-coupled receptor signaling in human ductal pancreatic cancer cells: neurotensin responsiveness and mitogenic stimulation. *J Cell Physiol* 2001; **186**:53-64 [PMID: 11478148 DOI: 10.1002/1077-4652(2001)186:1<53::AID-JC1>3.0.CO;2-Q]

136 **Nakahara M**, Itoya H, Nakamama K, Kume Y, Fujishiro M, Sasahira N, Hirano K, Iyama H, Tada M, Kawabe T, Kume Y. Specific increase in serum autotaxin activity in patients with pancreatic cancer. *Clin Biochem* 2011; **44**:576-581 [PMID: 21349952 DOI: 10.1016/j.clinbiochem.2011.03.128]

137 **Quan M**, Cui JJ, Feng X, Huang Q. The critical role and potential target of the autotaxin/lysophosphatidic acid axis in pancreatic cancer. *Tumour Biol* 2017; **39**:1004128317694454 [PMID: 28347252 DOI: 10.1177/1010795416694454]

138 **Yang S**, Zhang L, Purohit V, Shukla SK, Chen X, Yu F, Fu K, Chen Y, Solheim J, Singh PK, Song W, Dong J. Active YAP promotes pancreatic cancer cell motility, invasion and tumorigenesis in a mitotic phosphorylation-dependent manner through LPAR3. *Oncotarget* 2015; **6**:36019-36031 [PMID: 26460309 DOI: 10.18632/oncotarget.5935]

139 **Tveteras HA**, Asaam R, Brusevodt IJ, Odegård J, Christoffersen T, Sandnes D. Lysophosphatidic acid induces both EGFR-dependent and EGFR-independent effects on DNA synthesis and migration in pancreatic and colorectal cancer cells. *Tumour Biol* 2016; **37**:2519-2526 [PMID: 26386720 DOI: 10.1007/s13277-015-4010-1]

140 **Gardner JA**, Ha HJ, Jayaraman M, Dhanasekaran DN. The gpe proto-oncogene Gt13 mediates lysophosphatidic acid-induced migration of pancreatic cancer cells. *Pancreas* 2013; **42**:819-828 [PMID: 23508014 DOI: 10.1097/MPA.0b013e3182795c77]

141 **Liao Y**, Mu G, Zhang L, Zhou W, Zhang J, Yu H. Lysophosphatidic acid stimulates activation of focal adhesion kinase and paxillin and promotes cell motility, via LPA1-3, in human pancreatic cancer. *Dig Dis Sci* 2013; **58**:3524-3533 [PMID: 24061591 DOI: 10.1007/s10620-013-2878-4]
gastric cancer cell proliferation

Ramachandran S

Cancer Res

Giannelli G, Sabbà C. Lysophosphatidic acid receptor LPAR6 supports the tumorigenicity of hepatocellular carcinoma.

Mazzocca A

2020;

Gnocchi D

signature induced by lysophosphatidic acid receptor 6 (LPAR6) expression in hepatocellular carcinoma cells.

Lippolis R

Biol Chem

management, lysophosphatidic acid receptor 6 (LPAR6), is transcriptionally up-regulated by the NCOA3 coactivator.

Okabe K

2967 [PMID: 19129242 DOI: 10.1007/carcin/bgp011]

Yamada T, Sato K, Kornachi M, Malchinkhuu E, Togo M, Kimura T, Kuwabara A, Yanaigui Y, Ikeya T, Tanahashi Y, Ogawa T, Ohwada S, Morisita Y, Ohita H, Im DS, Tamoto K, Tomura H, Okajima F. Lysophosphatidic acid (LPA) in malignant ascites stimulates motility of human liver cancer cells through LPA1. J Biol Chem 2004; 279: 6595-6605 [PMID: 14660630 DOI: 10.1074/jbc.M308132200]

Yoshikawa K, Tanabe E, Shibata A, Inoue S, Kitayoshi M, Okimoto S, Fukushima S, Tsujiuchi N. Tsukahara T. Involvement of oncogenic K-Ras on cell migration stimulated by lysophosphatidic acid receptor-2 in pancreatic cancer cells. Exp Cell Res 2013; 319: 105-112 [PMID: 23042618 DOI: 10.1016/j.yexcr.2012.09.014]

Ishii S, Hirane M, Fukushima K, Tomimatsu A, Fukushima N, Tsujiuchi T. Diverse effects of LPA4, LPA5 and LPA6 on the activation of tumor progression in pancreatic cancer cells. Biochem Biophys Res Commun 2015; 461: 59-64 [PMID: 25840992 DOI: 10.1016/j.bbrc.2015.03.169]

Memeti I, Tsalikidou E, Tstaroucha AK, Lambropoulos M, Chatzaki E, Tryptiansis G, Schizas D, Pitiakoudis M, Simopoulos C. Lysophosphatidic Acid Receptors (LPA1, LPA3, LPA4, LPA5 and LPA6) Expression in Hepatocellular Carcinoma. J Invest Surg 2018; 31: 359-365 [PMID: 28598712 DOI: 10.1080/08941939.2017.1332180]

Ertle J, Dechêne A, Sowa JP, Penndorf V, Herzer K, Kaiser G, Schlaak JF, Gerken G, Syn WK, Canbay A. Non-alcoholic fatty liver disease progresses to hepatocellular carcinoma in the absence of apparent cirrhosis. Int J Cancer 2011; 128: 2436-2443 [PMID: 21128245 DOI: 10.1002/ijc.25797]

Alexander J, Torbenson M, Wu TT, Yeh MM. Non-alcoholic fatty liver disease contributes to hepatocarcinogenesis in non-cirrhotic liver: a clinical and pathological study. Gastroenterology 2013; 148: 848-854 [PMID: 23302015 DOI: 10.10111/gjh.12116]

Lopane C, Agosti P, Gigante I, Sabbà C, Mazzaocca A. Implications of the lysophosphatidic acid signaling axis in liver cancer. Biochim Biophys Acta Rev Cancer 2017; 1868: 277-282 [PMID: 28591560 DOI: 10.1016/j.bchcan.2017.06.002]

Watanabe N, Ikeda H, Nakamura K, Ohkawa R, Kume Y, Tominia T, Tejima K, Nishikawa K, Arai M, Yanase M, Aski J, Arai H, Omata M, Fujisawa K, Yatomi Y. Plasma lysophosphatidic acid level and serum autotaxin activity are increased in liver injury in rats in relation to its severity. Life Sci 2007; 81: 1009-1015 [PMID: 17850827 DOI: 10.1016/j.lfs.2007.08.013]

Wu JM, Xu Y, Skill NJ, Sheng H, Zhao Z, Yu M, Saxena R, Maluccio MA. Autotaxin expression and its connection with the TNF-alpha-NF-kappaB axis in human hepatocellular carcinoma. Mol Cancer 2010; 9: 71 [PMID: 20356387 DOI: 10.1186/1476-4598-9-71]

Park SV, Jeong KJ, Panapinithu N, Yu S, Lee J, Han JW, Kim JM, Lee JS, Kang J, Park CG, Mills GB, Lee HY. Lysophosphatidic acid augments human hepatocellular carcinoma cell invasion through LPA1 receptor and MMP-9 expression. Oncogene 2011; 30: 1351-1359 [PMID: 21125017 DOI: 10.1038/onc.2010.517]

Zuckerman V, Sokolov E, Swet JH, Ahrens WA, Showalter V, Iannitti DA, Mckillop IH. Expression and function of lysophosphatidic acid receptors (LPARs) 1 and 3 in human hepatic cancer progenitor cells. Oncotarget 2016; 7: 2951-2967 [PMID: 26701886 DOI: 10.18632/oncotarget.6696]

Okabe K, Hayashi M, Yamawaki Y, Teranishi M, Honoki M, Torei T, Fukushima N, Tsujiuchi T. Possible involvement of lysophosphatidic acid receptor-5 gene in the acquisition of growth advantage of rat tumor cells. Mol Carcinog 2011; 50: 635-642 [PMID: 21374735 DOI: 10.1002/mc.20750]

Zheng X, Jia Y, Qiu L, Zeng X, Xu L, Wei M, Huang C, Liu C, Chen L, Han J. A potential target for liver cancer management, lysophosphatidic acid receptor 6 (LPA6), is transcriptionally up-regulated by the NCOA3 coactivator. J Biol Chem 2020; 295: 1474-1488 [PMID: 31914406 DOI: 10.1074/jbc.RA119.009899]

Lippolis R, Gnocichi D, Santeacroce L, Siciliano RA, Mazzeo MF, Scarco S, Sabbà C, Mazzaocca A. A distinctive protein signature induced by lysophosphatidic acid receptor 6 (LPA6) expression in hepatocellular carcinoma cells. Biochim Biophys Acta Rev Cancer 2020; 526: 1150-1156 [PMID: 32321639 DOI: 10.1016/j.bbrc.2020.04.036]

Gnocchi D, Kapoor S, Nitti P, Cavaluzzi MM, Lentinii G, Denora N, Sabbà C, Mazzaocca A. Novel lysophosphatidic acid receptor 6 antagonists inhibit hepatocellular carcinoma growth through affecting mitochondrial function. J Mol Med (Berl) 2020; 98: 179-191 [PMID: 31363151 DOI: 10.1007/s00109-019-1862-1]

Mazzaocca A, Dritari F, De Santis F, Filannino A, Lopane C, Betz RC, Li YY, Mukaida N, Winter P, Tortorella C, Giannelli G, Sabbà C. Lysophosphatidic Acid Receptor LPAR6 supports the tumorigenicity of hepatocellular carcinoma. Cancer Res 2015; 75: 532-543 [PMID: 25589345 DOI: 10.1158/0008-5472.CAN-14-1607]

Zeng R, Li B, Huang J, Zhong M, Li L, Duan C, Zeng S, Liu W, Lu J, Tang Y, Zhou L, Liu Y, Li J, He Z, Wang Q, Dai Y. Lysophosphatidic Acid is a Biomarker for Peritoneal Carcinomatosis of Gastric Cancer and Correlates with Poor Prognosis. Genet Test Mol Biomarkers 2017; 21: 641-648 [PMID: 28910191 DOI: 10.1089/gtm.2017.0060]

Ramachandran S, Shida D, Nagahashi M, Fang X, Milstien S, Takabe K, Spiegel S. Lysophosphatidic acid stimulates gastric cancer cell proliferation via ERK1-dependent upregulation of sphingosine kinase 1 transcription. FEBS Lett 2010; 584: 4077-4082 [PMID: 20804754 DOI: 10.1016/j.febslet.2010.08.035]

Shida D, Fang X, Cordula T, Takabe K, Lépine S, Alvarez SE, Milstien S, Spiegel S. Cross-talk between LPA1 and...
epidermal growth factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer cell motility and invasion. Cancer Res 2008; 68: 6569-6577 [PMID: 18701480 DOI: 10.1158/0008-5472.CAN-08-0411]

Kim MH, Park JS, Chang HJ, Baek MK, Kim HR, Shin BA, Ahn BW, Jung YD. Lysophosphatic acid promotes cell invasion by up-regulating the urokinase-type plasminogen activator receptor in human gastric cancer cells. J Cell Biochem 2008; 104: 1102-1112 [PMID: 18247343 DOI: 10.1002/jcb.21696]

Arnold M, Sierra MS, Lavransen M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017; 66: 683-691 [PMID: 26818169 DOI: 10.1136/gutjnl-2015-310912]

Kazama S, Kitayama J, Aoki J, Mori K, Nagawa H. Immunohistochemical detection of autotaxin (ATX)/lyosphopholipase D (lysoPLD) in submucosal invasive colorectal cancer. J Gastrointest Cancer 2011; 42: 204-211 [PMID: 20623382 DOI: 10.1007/s10209-010-9186-4]

Yang M, Zhong WW, Srivastava N, Slavin A, Yang J, Hoey T, An S. G protein-coupled lysophosphatic acid receptors stimulate proliferation of colon cancer cells through the [beta]-catenin pathway. Proc Natl Acad Sci U S A 2005; 102: 6027-6032 [PMID: 15837931 DOI: 10.1073/pnas.0501535102]

Shida D, Kitayama J, Yamaguchi H, Okaji Y, Tsuno NH, Watanabe T, Takawa Y, Nagawa H. Lysophosphatic acid (LPA) enhances the metastatic potential of human colon carcinoma DLD1 cells through LPA1. Cancer Res 2003; 63: 1760-1771 [PMID: 12670925]

Takahashi K, Fukushima K, Otagaki S, Ishimoto K, Minami K, Fukushima N, Honoki K, Tsujiuchi T. Effects of LPA3 and LPA4 on the regulation of colony formation activity in colon cancer cells treated with anticancer drugs. J Recept Signal Transduct Res 2018; 38: 71-75 [PMID: 29369010 DOI: 10.1007/s10930-018-1426-608]

Lee SJ, Ritter SL, Zhang H, Shim H, Hall RA, Yun CC. MAGI-3 competes with NHERF-2 to negatively regulate LPA2 receptor signaling in colon cancer cells. Gastroenterology 2011; 140: 924-934 [PMID: 21134377 DOI: 10.1053/j.gastro.2010.11.054]

Yun CC, Sun H, Wang D, Rusovici R, Castleberry A, Hall RA, Shim H. LPA2 receptor mediates mitogenic signals in human colon cancer cells. Am J Physiol Cell Physiol 2005; 289: C2-11 [PMID: 15728708 DOI: 10.1152/ajpcell.00610.2004]

Lin S, Wang D, Iyer S, Ghaleh AM, Shim H, Yang VW, Chun J, Yun CC. The absence of LPA2 attenuates tumor formation in an experimental model of colitis-associated cancer. Gastroenterology 2009; 136: 1711-1720 [PMID: 19328876 DOI: 10.1053/j.gastro.2009.01.002]

Shida D, Watanabe T, Aoki J, Hamu K, Kitayama J, Sonoda H, Kishi Y, Yamaguchi H, Sasaki S, Sako A, Konishi T, Arai H, Nagawa H. Abrupt expression of lysophosphatic acid (LPA) receptors in human colorectal cancer. Lab Invest 2004; 84: 1352-1362 [PMID: 15220934 DOI: 10.1038/lab.2004.446]

Fukui R, Tanabe E, Kitayoshi M, Yoshikawa K, Fukushima N, Tsujiuchi T. Negative regulation of cell motile and invasive activities by lysophosphatic acid receptor-3 in colon cancer HCT116 cells. Tumour Biol 2012; 33: 1899-1905 [PMID: 22763559 DOI: 10.1007/s13277-012-0450-z]

Takahashi K, Fukushima K, Onishi Y, Inui K, Node Y, Fukushima N, Fukuda K, Tsujiuchi T. Lysophosphatic acid (LPA) signaling via LPA4 and LPA6 negatively regulates cell motile activities of colon cancer cells. Biochem Biophys Res Commun 2017; 483: 652-657 [PMID: 27993681 DOI: 10.1016/j.bbrc.2016.12.088]

Custer MC, Risinger JI, Hoover S, Simpson RM, Patterson T, Barrett JC. Characterization of an antibody that can detect the Kall/CDS2 murine metastasis suppressor. Prostate 2006; 66: 567-577 [PMID: 16732335 DOI: 10.1002/pron.20386]

Iizumii M, Bandyopadhyay S, Watabe K. Interaction of Duffy antigen receptor for chemokines and KAI1: a critical step in metastasis suppression. Cancer Res 2007; 67: 1411-1414 [PMID: 17308076 DOI: 10.1158/0008-5472.CAN-06-3801]

Tonoli H, Barrett JC. CDS2 metastasis suppressor gene: a potential target for new therapeutics? Trends Mol Med 2005; 11: 563-570 [PMID: 16271511 DOI: 10.1016/j.molmed.2005.10.002]

Giese J, Thorarensen A, Beltkey K, Bradshaw-Pierce E, Cortes-Burgos L, Hall T, Johnston A, Murphy M, Nemirovsky O, Ogawa S, Pepp L, Pele M, Prinsen M, Schnute M, Wendling J, Watanabe S, Heinberg R, Wittwer A, Zweifel B, Masferrer J. A novel autotaxin inhibitor reduces lysophospholipid acid levels in plasma and the site of inflammation. J Pharmacol Exp Ther 2010; 334: 310-317 [PMID: 20932816 DOI: 10.1124/jpet.110.165845]

North EJ, Howard AL, Wanjalna IW, Pham TC, Baker DL, Parrill AL. Pharmacophore development and application toward the identification of novel, small-molecule autotaxin inhibitors. J Med Chem 2010; 53: 3095-3105 [PMID: 20349977 DOI: 10.1021/jm1001718]

Bhave SR, Dadey DY, Karwas RM, Ferraro DJ, Kotipatruni RP, Jaboin JJ, Hallahan AN, Dewees TA, Linkous AG, Guest AK, Hallahan DE. Autotaxin Inhibition with PF-8380 Enhances the Radiosensitivity of Human and Murine Glioblastoma Cell Lines. Front Oncol 2013; 3: 236 [PMID: 24062988 DOI: 10.3389/fonc.2013.00236]

Schlesier SM, Thotlala DK, Linkous AG, Hu R, Leahy KM, Yazyovitskaya EM, Hallahan DE. Autotaxin and LPA receptors represent potent molecular targets for the radiosensitization of murine glioma through effects on tumor vasculature. PLoS One 2011; 6: e22182 [PMID: 21799791 DOI: 10.1371/journal.pone.0022182]

Tang X, Wuest M, Benesch MGK, Dufour J, Zhao Y, Curtis JM, Monjardet A, Heckmann B, Murray D, Wuest F, Bradley DN. Inhibition of Autotaxin with GLPG1690 Increases the Efficacy of Radiotherapy and Chemotherapy in a Mouse Model of Breast Cancer. Mol Cancer Ther 2020; 19: 63-74 [PMID: 31548293 DOI: 10.1158/1535-7163.MCT-19-0368]

Sage H, Ohhata A, Hayashi A, Katoh M, Maeda T, Mizuno H, Takada Y, Komichi Y, Ota H, Matsumura N, Shibaya M, Sugiyama T, Nakade S, Kishikawa K. A novel highly potent autotaxin/ENPP2 inhibitor produces prolonged decreases in plasma lysophosphatic acid formation in vivo and regulates urogenital tension. PLoS One 2014; 9: e93230 [PMID: 24747415 DOI: 10.1371/journal.pone.0093230]

Venkatraman G, Benesch MG, Tang X, Dewald J, McMullan TP, Bradley DN. Lysophosphatidate signaling stabilizes NFκB and increases the expression of genes involved in drug resistance and oxidative stress responses: implications for cancer treatment. FASEB J 2015; 29: 772-785 [PMID: 25398768 DOI: 10.1096/fj.14-262659]

Benesch MG, Tang X, Maeda T, Ohhata A, Zhao YY, Kok BP, Dewald J, Hitt M, Curtis JM, McMullan TP, Bradley DN. Inhibition of autotaxin delays breast tumor growth and lung metastasis in mice. FASEB J 2014; 28: 2655-2666
Hutchinson JH, Seiders TJ, Parr TA, Prasit P, Evans JF, Lorrain DS. A novel, orally active LPA(1) receptor antagonist inhibits lung fibrosis in the mouse bleomycin model. "WJGO" 2012; 594 [PMID: 22819724] DOI: 10.1016/j.apath.2012.06.007

Swaney JS. acid: agonists promote healing, antagonists and autotaxin inhibitors treat cancer. "Br J Pharmacol" 2015; 160: 1699-1713 [PMID: 20649573] DOI: 10.1111/j.1476-5381.2010.00828.x
