Interface-induced Polarization in SrTiO$_3$-LaCrO$_3$ Superlattices

Ryan B. Comes,1,* Steven R. Spurgeon,1 Steve M. Heald,2 Despoina M. Kepaptsoglou,3 Lewys Jones,4 Phuong Vu Ong,1 Mark E. Bowden,5 Quentin M. Ramasse,3 Peter V. Sushko,1 and Scott A. Chambers1,*

Drs. R.B. Comes, S.R. Spurgeon, P.V. Ong, P.V. Sushko, S.A. Chambers
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory
Richland, WA 99352, USA
E-mail: ryan.comes@pnnl.gov; sa.chambers@pnnl.gov

Dr. S.M. Heald
Advanced Photon Source, Argonne National Laboratory,
Argonne, Illinois 60439, USA

Drs. D.M. Kepaptsoglou, Q.M. Ramasse
SuperSTEM, SciTech Daresbury Campus,
Daresbury, WA44AD, United Kingdom

Dr. L. Jones
Department of Materials, University of Oxford,
Oxford OX13PH, UK

Dr. M.E. Bowden
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory
Richland, WA 99352, USA

Keywords: Complex oxide superlattices, x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, scanning transmission electron microscopy, density functional theory

Epitaxial interfaces and superlattices comprised of polar and non-polar perovskite oxides have generated considerable interest because they possess a range of desirable properties for functional devices. In this work, emergent polarization in superlattices of SrTiO$_3$ (STO) and LaCrO$_3$ (LCO) is demonstrated. By controlling the interfaces between polar LCO and non-polar STO, polarization is induced throughout the STO layers of the superlattice. Using x-ray absorption near-edge spectroscopy and aberration-corrected scanning transmission electron microscopy displacements of the Ti cations off-center within TiO$_6$ octahedra along the superlattice growth direction are measured. This distortion gives rise to built-in potential
gradients within the STO and LCO layers, as measured by \textit{in situ} x-ray photoelectron spectroscopy. Density functional theory models explain the mechanisms underlying this behavior, revealing the existence of both an intrinsic polar distortion and a built-in electric field, which are due to alternately positively and negatively charged interfaces in the superlattice. This study paves the way for controllable polarization for carrier separation in multilayer materials and highlights the crucial role that interface structure plays in governing such behavior.

1. Introduction
Complex oxide superlattices comprised of dissimilar materials exhibit a wide range of novel structural, electronic and magnetic properties due to the high density of interfaces present in such thin films. The large number of interfaces in epitaxial superlattices can give rise to emergent properties within the interior of the multilayer that may not be present or measureable at a single interface. These include distortions of the oxygen octahedral sub-lattice due to different octahedral tilts between the two materials,\cite{1-3} and charge transfer due to band alignment across the interface of isovalent complex oxides.\cite{4,5} In particular, superlattices combining both ferroelectric and a non-ferroelectric oxides have generated a great deal of interest due to induced ferroelectric polarization in the non-ferroelectric layer of the superlattice.\cite{6} These systems include PbTiO$_3$-SrTiO$_3$\cite{7,8} and BaTiO$_3$-SrTiO$_3$\cite{9,10} where a polarization was induced in the SrTiO$_3$ (STO) layer. Others have explored PbTiO$_3$-SrRuO$_3$ superlattices and shown that metallic SrRuO$_3$ behaves as an insulator along the superlattice direction due to the PbTiO$_3$ polarization.\cite{11} However, to date there has been no work exploring polarization induced at interfaces between two non-ferroelectric oxides. In particular, there is a rather poor understanding of local ordering in such systems and of how surface termination and band alignment affect the overall superlattice behavior.
In contrast to isovalent superlattices, limited work has been carried out on superlattices comprised of aliovalent A- and B-site cations. Such a lattice consists of consecutive layers of a non-polar perovskite with chemical formula A$^{2+}$B$^{4+}$O$_3$ and a polar perovskite with the formula A$^{3+}$B$^{3+}$O$_3$. STO-LaMnO$_3$ superlattices have been studied to examine charge leakage across the interface,$^{[12]}$ as well as the novel optical states that emerge at the interface.$^{[13]}$ Recent work examining LaCoO$_3$-STO superlattices focused on variation of octahedral tilt angles across the superlattice, but did not indicate any polarization in STO.$^{[3]}$ LaAlO$_3$ (LAO) and STO superlattice quantum wells have shown unique optical properties due to quantum confinement.$^{[14]}$ LAO-STO superlattices have also been explored using x-ray scattering to examine the role of interfacial oxygen vacancies on the electronic structure of STO at the interface.$^{[15]}$ A switchable polarization at a single LAO-STO interface grown on (La,Sr)(Al,Ta)O$_6$ (LSAT) has also been observed using piezoresponse force microscopy and attributed to oxygen vacancy migration.$^{[16,17]}$ STO-LaCrO$_3$ (LCO) superlattices with a periodicity of 1 unit cell (u.c.) of STO and 1 u.c. of LCO along the (001) direction are predicted to exhibit unique optical properties that would occur with a high density of Ti-O-Cr bonds along the growth direction.$^{[18]}$ Additionally, the previously observed potential gradient within LCO films grown on STO$^{[19]}$ offers exciting possibilities in LCO-STO superlattices as it may be possible to achieve a potential gradient within the confined STO layer in a superlattice as well. In contrast, the absence of a measureable potential gradient at the LAO-STO interface has been the subject of much controversy in understanding phenomena that occur in that system.$^{[20,21]}$

Here, we present a combined experimental and theoretical investigation of the properties of STO-LCO superlattices. We demonstrate that it is possible to induce a ferroelectric distortion throughout the STO layer by engineering the growth process to produce alternating positively and negatively charged interfaces. This configuration is shown schematically and in a high-
Figure 1(a) along with an out-of-plane x-ray diffraction scan for a 6 unit cell (u.c.) STO-3 u.c. LCO (STO₆-LCO₃) superlattice with a 3 u.c. STO capping layer grown on LSAT (001) in Figure 1(b). The x-ray diffraction pattern shows clear superlattice peaks, indicating a uniformly repeating structure throughout the film. Superlattices with 8 u.c. of STO-4 u.c. of LCO and 4 u.c. of STO-2 u.c. of LCO were also investigated, but the majority of our discussion and characterization will focus on the STO₆-LCO₃ superlattice. By engineering the interfaces, we show that it is possible to produce a built-in electric field within the STO layer, resulting in a polarization that we observe both experimentally and via simulations. Our results provide exciting new insights into the local mechanisms governing such behavior and open the door to the engineering of emergent polarization in heterostructures, which may be useful for charge separation in photochemical and photovoltaic applications.
2.1. Ab Initio Modeling

A density functional theory (DFT) model (described in the Experimental Section) of the idealized STO₆-LCO₃ superlattice was constructed to examine the electronic and structural behavior in the STO and LCO layers of the superlattice. The structural model of the STO₆-LCO₃ superlattice, density of states projected on the atomic orbitals of the BO₂ layers (B = Ti and Cr), metal-oxygen bond lengths, and electrostatic potential are shown in Figure 1. The potential (Figure 1(c)) is averaged over each LCO unit cell in the superlattice, but shows slight artificial oscillations within the STO layer due to the differences in out-of-plane lattice parameter between STO and LCO. The apical (triangles) and in-plane (squares) bond lengths for each BO₂ layer of the superlattice are also shown in Figure 1(c). The relaxed structure is seen in Figure 1(d) and is aligned to the modeling results in the graphs above and below.

Within the periodic boundary conditions we used, the right-most SrO layer (unit cell 9) is equivalent to the left-most (unit cell 0) layer. Throughout this work we will refer to the interfaces at unit cell 9 between the CrO₂ layer and the SrO layer as being negatively charged due to the net -e charge on the Cr³⁺(O²⁻)₂ layer and the neutral Sr²⁺O²⁻ layer. Likewise, we will refer to the La³⁺O²⁻-Ti⁴⁺(O²⁻)₂ interface as being positively charged due to the net +e charge at this interface. Figure 1(e) shows the projected density of states that matches the behavior of the potential. The model indicates built-in electric fields of opposite signs across both the STO and LCO. The built-in potential gradient in the LCO layer is consistent with what has previously been observed experimentally and predicted theoretically in LCO films grown on STO substrates.^[19] Due to the confined nature of the superlattice, the STO layer is perturbed out of its equilibrium non-polar state and also exhibits a built-in electric field. This produces a shift in the O 2p bands between unit cells in the STO, with the unit cell at the positively charged LaO-TiO₂ interface at the most negative potential relative to the Fermi level. The Cr 3d and O 2p bands in LCO also shift as the distance from the LaO-TiO₂ interface increases,
with the bands moving towards the Fermi level. This type of behavior could in principle produce a strong enough electric field that would induce charge transfer and create a 2-DEG.\cite{22} However, three unit cells of LCO appears to be below the critical thickness to produce this charge transfer, given that the Cr 3d valence band lies below the conduction band at the LaO-TiO$_2$ interface.

Our calculations show that the oxygen octahedra in both the STO and LCO layers distort significantly, which can be attributed to the repeating positively and negatively charged interfaces in the superlattices. In the case of STO, the Ti ions are displaced away from the positively charged interface (LaO-TiO$_2$ interface), with asymmetric Ti-O apical bond lengths in the first five STO unit cells. The predicted difference between the long and short apical bond lengths is ~0.11 Å for these five TiO$_2$ layers. The interfacial STO unit cell does not exhibit this polar distortion but instead undergoes more pronounced octahedral tilting. This correlates with the flat band potential seen near unit cell 5 in Figure 1(e). Within the LCO layer, the Cr ions also distort in response to the built-in electric field. Given that the electric field points in the opposite direction in the LCO layer, the Cr-O bonds are distorted in the opposite direction. Again, the apical bonds closer to the positively charged interface are longer than those on the opposite side of the unit cell. Collectively, the built-in potentials across the superlattice should be detectable via x-ray photoelectron spectroscopy. Likewise, the predicted distortions to the octahedra should be observable using x-ray absorption spectroscopy and cation displacements should be seen in electron microscopy.

2.2. X-ray Spectroscopy

In agreement with ab initio modeling, core-level and valence band photoemission spectra measured in situ provide evidence for built-in potentials, as seen in Figure 2(a-e). Reference spectra from a single crystal STO substrate and a thick LCO film, each of which is in a nearly flat-band state, are also shown to illustrate the intrinsic peak widths of the core peaks. To
mitigate the effects of photoelectron induced charging, an electron flood gun was used to neutralize the surface during measurement. This makes the binding energy scale inaccurate in an absolute sense, but we are able to correct for these effects by aligning all core level peaks such that the O 1s peak is at 530.3 eV, which is the measured value in doped n-type STO.[23]

![Figure 2](image-url)

Figure 2. (a–e) In situ XPS spectra for a STO6-LCO3 superlattice and relevant SrTiO3 and LaCrO3 reference spectra. (f–g) XANES data for superlattices. f) Ti K edge spectra for a STO6-LCO3 superlattice and a reference STO film on LSAT; g) Magnitude of the Fourier transforms for the EXAFS obtained for the STO6-LCO3 sample with fits to the Ti-O contribution. Each superlattice core peak shows significant broadening relative to the associated reference spectrum, a result attributable to variations in binding energy with depth relative to the Fermi level.[19,20] To estimate the potential drop across the layers of the superlattice, we model the peak broadening using the flat-band reference spectra for each layer.[19] This approach has been applied previously to examine the interfacial two-dimensional electron gas (2-DEG) between LAO and STO to determine if built-in potentials are present at the interface.[20,21,24] A notched band is expected on the STO side of the interface to confine electrons within the 2-DEG and a built-in potential should be present throughout the LAO layers if an electronic
reconstruction occurs. However, neither of these has been observed. In contrast, a built-in potential gradient has been measured in LCO films at LCO-STO (001) interfaces.[19] These results are shown in Figure S2 and are discussed further in the supplemental information. We estimate a potential drop of roughly 0.9(2) V across both the STO and LCO layers of the superlattice near the film surface. Such a potential drop is in reasonable agreement with the theoretical prediction of 1.5 eV in Figure 1(c). The vacuum termination of the film surface may make the surface potential slightly different from that within the bulk of the superlattice, but using a laboratory source we are relatively insensitive to the potential gradient within buried layers. Further experiments using synchrotron hard x-ray photoelectron spectroscopy are planned to measure this effect deeper within the superlattice rather than at the surface and will be the subject of a future work.

Although the Cr 2p and Ti 2p superlattice peaks are broader than those from the reference specimens, they show no evidence of a change in oxidation states from the expected Cr3+ and Ti4+. Ti3+ would produce a 2p\textsubscript{3/2} peak at a binding energy between 456 and 457 eV, as has been reported for La-doped SrTiO\textsubscript{3} with a sensitivity to ~2% Ti3+ concentrations.[25] Likewise, the Cr 2p peak does not show any clear shift in binding energy away from Cr3+ that would be consistent with large concentrations (greater than ~10%) of Cr4+.[26] These measurements suggest that there is no significant charge transfer occurring within the superlattice, but we are likely insensitive to small concentrations of oxygen vacancies that could occur at the interfaces. The presence of vacancies has been attributed to electronic Ti 3d orbital polarization in STO-LAO superlattices, but the polarization effects are localized to the interface in that case.[15]

The valence band spectrum shows features that are consistent with the theoretical predictions (Figure 1(e)), with a Cr 3d \textit{t}\textsubscript{2g} derived band near the Fermi level and the O 2p derived band from both the STO and LCO layers at higher binding energies. There is no apparent density of
states at 0 eV, which is the nominal Fermi level after aligning the O 1s peak to 530.3 eV. This does not preclude the presence of small concentrations of free carriers in the film, but suggests that there is no large scale charge transfer to produce an interfacial 2DEG as has been seen in other XPS valence band measurements.\cite{27} Based on the potential drops modeled from the core-level spectra, we constructed a simulation of the heterojunction valence band using reference STO and LCO spectra. The model (Figure S3) shows excellent agreement with the experimental results, accurately predicting the valence band broadening relative to the reference spectra. Taken in aggregate, the XPS analysis provides strong evidence for the presence of built-in electric fields within both layers in the superlattice.

To examine the local bonding environment of specific elements, polarization-dependent x-ray absorption measurements of the transition metal K edges were performed on the three superlattices, a reference STO film grown on LSAT, and a polycrystalline LCO film grown on SiO$_2$. The key results for the x-ray absorption near-edge spectroscopy (XANES) and extended x-ray absorption fine structure (EXAFS) are shown in Figure 2(f-g) for the STO$_6$-LCO$_3$ sample (see Figure S4(a) for other samples). The Cr K edges for STO$_6$-LCO$_3$ are presented in Figure S4(b) and show no deviation from the Cr$^{3+}$ oxidation state in LCO. A strong enhancement of the pre-edge intensity is seen in the Ti K edge spectra at ~4970 eV for the superlattice samples in the perpendicular polarization for all three samples relative to the STO film grown on LSAT under the same epitaxial strain. In contrast, the pre-edge peak is unchanged in each of the samples for the in-plane polarization, with the superlattice samples showing features very similar to those of the STO reference film. The superlattice samples also show different features at ~4975 eV in perpendicular polarization not seen in either the parallel polarization or in the STO control.

The enhanced Ti K shell pre-edge peak at ~4970 eV for the superlattices with perpendicular polarization indicates cation displacement normal to the interface.\cite{28} Based on classic
molecular orbital theory, pre-edge features for perfect octahedral coordination at the K edge are forbidden due to dipole selection rules, because the transition from a $1s$ orbital to a $3d$ orbital has a change in total angular momentum, ΔJ, of $+2$.\[^{29}\] However, pre-edge features are still observed in ideal TiO$_6$ octahedra in a variety of compounds due to quadrupole transitions and p-d hybridization.\[^{30,31}\] The intensity of the pre-edge peaks in both polarizations for the STO reference sample grown on LSAT is consistent with what is seen for CaTiO$_3$ in ideal octahedral symmetry.\[^{30}\] However, the enhancement of the pre-edge peak seen for the perpendicular polarization in the superlattices is commonly found in cases where inversion symmetry in the octahedron is broken, such as in ferroelectric BaTiO$_3$ and PbTiO$_3$.\[^{32}\] A similar response has been observed in epitaxial STO films grown on Si, where a polarization has also been observed.\[^{28}\] Jiang \textit{et al.}\[^{31}\] showed that asymmetric Ti-O bond lengths increase the amount of p-d hybridization and enhance the pre-edge peak. This suggests that the Ti octahedra within the STO layers of the superlattices are distorted in a manner consistent with the theoretical predictions from the DFT model. The EXAFS provides quantitative information about the Ti distortions. Fourier transforms (FT) of the data, $\chi(R)$ show a strong polarization dependence Figure 2(g). The first peak in $\chi(R)$ is due to nearest-neighbor Ti-O bonding. If the Ti is shifted normal to the film plane due to a polar distortion, then there will be two Ti-O distances contributing to this peak in perpendicular polarization whereas the data for in-plane polarization will reveal a single bond length. The interference between photoelectrons backscattered from O ligands at the two bond lengths in the perpendicular data results in a dramatic reduction of the first-shell peak intensity in the FT. A model for this was constructed using the FEFF code,\[^{33}\] and first shell fits were made using with a single Ti-O distance for the parallel data and two Ti-O distances for the perpendicular data to determine the bond lengths. A simple two-distance model yields a good fit to the polarization dependence, as shown in the figure. For the perpendicular data,
the best fit for the Ti-O bonds gave a splitting of 0.20(3) Å. Similar values were observed for
the STO$_8$-LCO$_4$ superlattice and with a reduced value of 0.13(8) in the STO$_4$-LCO$_2$
superlattice (Table S1 of the supplemental information). The reduction in the STO$_4$-LCO$_2$
superlattice may be due to the greater impact of interfacial intermixing in such a thin LCO
layer. Additionally, based on the DFT model, the difference in apical Ti-O bond lengths at the
positively charged interface is reduced, so with a greater interfacial density the mean
difference in bond length may be reduced. Given the large depth sensitivity of the Ti K edge
measurement in fluorescence mode, the values represent a measure of the polarization
throughout the superlattice, rather than at a single interface, indicating that the polarization
persists throughout the sample.

2.3. Electron Microscopy

We use STEM-HAADF to directly visualize the ionic displacements with high spatial
resolution to corroborate our x-ray spectroscopy evidence for a polarization. Figure 3(a)
shows a representative aberration-corrected STEM-HAADF cross-section of the sample,
marked with the position of the A- and B-site columns in the STO buffer layer. Displacements
were measured by averaging the HAADF profiles from 10-20 A- and B-site column positions;
similar results are found in several parts of the film, as shown in the supplemental information.
We and others have shown that, using this approach, it is possible to measure ferroelectric
polarization in PbZr$_{1-x}$Ti$_x$O$_3$ (PZT) with picometer precision that is unmatched by other
techniques.$^{34-36}$ Similar examinations of the LAO-STO interface using STEM have shown
that the TiO$_6$ octahedra near the interface are distorted to produce an off-center Ti cation
displacement.37,38 This is a sign of local polarization, but the polarization decays over a few
unit cells within the STO lattice in the case of the LAO-STO interface.39 Figure 3(b) shows
the average A- and B-site intensity profiles from the columns marked in Figure 3(a). The
arrows indicate the long (δ_{IL}) and short (δ_{IS}) displacements of the B-site cations relative to the
edges of each unit cell. For a centrosymmetric cell we expect that $\delta_{IL} \approx \delta_{IS}$, but this is clearly not the case, as shown in Figure 3(c). We define the Ti cation displacement from the center of each unit cell as $\delta_{Ti} = (\delta_{IL} - \delta_{IS})/2$, and find that it is non-zero throughout the STO layer.

Figure 3. Measurement of local polarization. a) Drift-corrected representative STEM-HAADF micrograph of the STO buffer layer cross-section (45º scan direction); the arrows mark the A- and B-site cation columns; Inset) Geometry used to calculate the displacement vectors in b. b) Average intensity profiles of the A- and B-site columns in a. c) Measurement of the short and long displacement vectors for each unit cell. d) Estimate of local polarization for each unit cell. Error bars are calculated from the standard error of the Gaussian fits to each column position.

We consider these results in light of our electronic structure calculations and are able to directly relate the observed Ti displacements to the simulated ones. Doing so allows us to calculate the polarization from Born effective charge and atomic displacements within each layer of the crystal. We estimate the relationship between the effective out-of-plane polarization and Ti displacement as $P_{S} \approx \gamma \delta_{Ti}$, where $\gamma = 5663 \ \mu \text{C cm}^{-2}\text{nm}^{-1}$, as determined from DFT calculations (see supplemental for more details). This allows us to calculate the polarization across each unit cell, as shown in Figure 3(d). Our results reveal that the polarization is largest near the STO / LSAT interface, a value of $73(5) \ \mu \text{C cm}^{-2}$. However, moving away from the interface toward the middle of the STO, the polarization drops to $46(5) \ \mu \text{C cm}^{-2}$, finally reaching a minimum of $27(6) \ \mu \text{C cm}^{-2}$ at the LCO / STO
Manuscript accepted for publication in *Advance Materials Interfaces*, WILEY-VCH Verlag GmbH & Co. The final version is available at http://dx.doi.org/10.1002/admi.201500779 PDF copies of the published version are available upon request by contacting: ryan.comes@pnnl.gov

This result is in agreement with our DFT calculations, which predict an average polarization of 32.5 \(\mu \) C cm\(^{-2}\), and is greater than the room temperature polarization of BaTiO\(_3\) (26 \(\mu \) C cm\(^{-2}\)).\(^{[40]}\) Measurements in other regions of the superlattice show similar polarizations. Our results plainly show that the built-in potential can give rise to a polarization in these materials.

3. Discussion

The observed polarization throughout a superlattice consisting of non-ferroelectric perovskites is unusual and has not been previously observed. Such a polarization is not expected except in the case of alternating charged interfaces, as these produce electric fields in each STO and LCO layer of the superlattice. Polar distortions in STO have been observed near the interface in LAO-STO heterostructures, but they did not persist throughout the sample as they do here.\(^{[15,37,38]}\) In the work of Park *et al*.\(^{[15]}\), orbital polarization in STO was estimated to be screened over 1-2 unit cells away from the interface and was attributed to oxygen vacancies. Meanwhile, in a single LAO-STO heterojunction studied by STEM, the polarization in STO near the interface decayed to zero over roughly 2-3 unit cells in the works of Cantoni *et al*.\(^{[37]}\) and Jia *et al*.\(^{[38]}\) The behavior in the LAO-STO system has been attributed in part to the role that interfacial oxygen vacancies play in mediating the polarization, though questions remain as to the physical mechanisms involved.\(^{[15,16]}\) XPS depth profile analysis of our samples indicated that the stoichiometry of the STO layer throughout the sample was accurate to \(\sim 1-2\% \), suggesting that the polarization is not attributable to polar cation vacancies, as has been seen in other works.\(^{[41]}\) A detailed study of the role of other interfacial defects on the potential gradient and induced polarization will be the subject of a future work.

A key difference between our STO-LCO superlattices and analogous STO-LAO samples is the nature of the band alignment between the two materials. In the case of STO-LAO, both
materials are band insulators with the top of the valence band defined by O 2p electronic states and small valence band offsets of a few tenths of an eV have been measured.\cite{20,21} In the case of STO-LCO, however, LCO is a Mott insulator with a valence band offset 2.0-2.5 V relative to STO depending on LCO film thickness.\cite{19} This may help to promote long range polarization and a built-in potential gradient within STO that is not observed in LAO/STO. The induced polarization in STO-LCO superlattices may be of particular interest for charge separation in these materials, as interfacial Cr-O-Ti bonds have been predicted to exhibit visible light optical transitions in superlattices.\cite{18} Alloys of STO and LCO have demonstrated such behavior in both powder and thin film form,\cite{42,43} supporting the theoretical predictions on the Cr-O-Ti bonds. The built-in electric field in these superlattices would be an excellent means of charge separation for photovoltaic or photocatalytic applications. Future studies exploring photoconductivity enhancement in these materials when compared to bulk alloys would help to elucidate these possibilities.

4. Conclusion

To summarize, our theoretical and experimental results reveal that alternating positively (LaO-TiO) and negatively (SrO-CrO) charged interfaces in LCO-STO superlattices induce a large polar distortion in the STO layer when the films are synthesized with asymmetric heterojunctions. In situ x-ray photoelectron spectroscopy measurements show core-level peak broadening consistent with a built-in potential difference of approximately 0.9 V across both the STO and LCO layers of the superlattice. These electric fields could be used to separate electron-hole pairs generated at interfacial Cr-O-Ti bonds, which exhibit visible light absorption.\cite{18,42} Polarized x-ray absorption near edge spectroscopy at the Ti K edge are consistent with the displacement of Ti cations and the strong pre-edge feature is consistent with a polar distortion in the TiO₆ octahedra of STO. Aberration-corrected STEM-HAADF imaging confirms this polarization in the STO layers of the superlattice. By measuring the Ti
cation displacements in the STO layer, we estimate that the polarization ranges from 27-73 μC cm⁻². Our results demonstrate that layering polar and non-polar materials can give rise to a strong polarization in the LCO / STO system comparable to that of ferroelectric BaTiO₃, and illustrate the extent to which the intrinsic properties of perovskites can be controlled and manipulated by artificial structuring.

5. Experimental Section

Film Growth: Superlattices were deposited by means of oxygen-assisted molecular beam epitaxy on (LaAlO₃)₀.₃(Sr₂AlTaO₆)₀.₇ (LSAT) substrates using metallic sources in differentially pumped effusion cells via a sequential shuttering technique. The shuttered growth approach allows us to control the termination of each layer so that both TiO₂⁻LaO⁺ and CrO₂⁻SrO₀ interfaces are present. The base pressure of the chamber was better than 5×10⁻⁹ Torr and the films were grown in a molecular oxygen background pressure of 3×10⁻⁶ Torr at 700 °C on LSAT substrates. The details of the flux calibration process are described in the Supplemental Information. A STO buffer layer a few unit cells in thickness was deposited on the LSAT to produce a TiO₂ termination for the film prior to the beginning of the superlattice growth.

X-ray Photoelectron Spectroscopy: After growth, the samples were transferred under ultra-high vacuum to an appended XPS analysis chamber. The system is equipped with a monochromatic Al Kα x-ray source and VG/Scienta R3000 analyzer. Because of the insulating nature of the LSAT substrates, the superlattices were isolated from ground and an electron flood gun was required to neutralize the positive charge resulting from photoelectron ejection, thus making the absolute determination of binding energies impossible. To better estimate the true binding energies, all spectra were shifted by a constant value required to
align the O 1s peak to 530.3 eV, the value we measure for clean Nb-doped STO(001) in a flat band condition.

X-ray Absorption Spectroscopy: Measurements were performed on the Cr and Ti K edges at the Advanced Photon Source on beamlines 20-BM and 20-ID, both using a Si (111) monochromator with energy resolution of about 0.8 eV. Energy calibration was done by setting a Cr metal standard edge to 5989.0 eV. Scans for both the in-plane (parallel) and out-of-plane (perpendicular) polarizations were taken. For both polarizations the samples were set at a small angle (5−7°) to the focused beam and spun around the sample normal to avoid interference from sample Bragg reflections. An STO film on LSAT was also measured using the same conditions to determine the effect of epitaxial strain on the pre-edge features. The data was analyzed using the Demeter XAS software suite.\[46\]

Electron Microscopy: The STEM-HAADF image in Figure 3(a) is the average of a relatively high-speed time series of 39 acquisitions acquired at ~0.1s intervals (0.4 μs per pixel) to improve the signal-to-noise ratio. The individual frames were processed using both rigid and non-rigid correction routines to correct both sample drift and scan noise.\[47\] STEM-HAADF images were collected on a C₅-corrected Nion UltraSTEM 100 operated at 100 keV, with a convergence angle of 30 mrad. The HAADF inner and outer collection angles were 82 and 190 mrad, respectively. The data set was first rigid registered to eliminate any sample or stage drift.\[47\] High-frequency scan-noise was then compensated using the Jitterbug software (HREM Research).\[48\] Importantly, the scan-noise was compensated in each individual frame of the series before averaging across the series. The data were not smoothed or filtered in any way. The STEM-HAADF images were processed as follows: stage drift offset vectors were determined by windowing each image in real-space followed by cross-correlation. These offset vectors were used to align un-windowed data before further robust row-locked non-rigid registration. Both tasks were performed using the Smart Align software.\[47\] In addition,
we have conducted measurements with the scan direction both parallel to the interface and at 45° to account for possible scanning artifacts (see Figure S5 for additional scan, which shows similar results).

Density Functional Theory: The structure and properties of the ideal [SrTiO$_3$]$_6$[LaCrO$_3$]$_3$ hetero-structures were examined using computational modeling and density functional theory (DFT). We employed the exchange-correlation functional by Perdew–Burke–Ernzerhof\cite{49} and modified for solids (PBEsol)\cite{50}, plane wave basis set with the energy cutoff of 500 eV and the projected augmented waves method\cite{51} implemented in the Vienna Ab initio Simulation Program (VASP).\cite{52,53} The heterostructures were represented using the periodic model and the $\sqrt{2}a_0\times\sqrt{2}a_0$ lateral cell, where a_0 corresponds to the lattice constant of a cubic perovskite. The lateral lattice parameters were constrained to 5.4702 Å, which corresponds to the film being coherently strained to the LSAT substrate with the lattice constant of 3.868 Å. The out-of-plane parameter c was varied so as to minimize the total energy of the idealized hetero-structure. The fractional coordinates were re-optimized at every value of c. These calculations were conducted for the $U = 3.0$ eV for 3d states of both Cr and Ti and resulted in c = 35.6 Å, which is within 0.8% of the experimental value, and consistent with the normal overestimation of lattice parameters in DFT. The 4×4×1 Monkhorst-Pack k-grid centered at the Γ point was used in all calculations. First, the total energy of the idealized hetero-structure was minimized with respect to the lattice parameters and the fractional coordinates. The PBEsol+U approach\cite{50,54} was adopted unless stated otherwise; $U_{Ti} = 8.0$ eV and $U_{Cr} = 3.0$ eV, which reproduce the one electron band gaps in STO and LCO, respectively, were used.

Supporting Information
Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements
RBC was supported by the Linus Pauling Distinguished Post-doctoral Fellowship at Pacific Northwest National Laboratory (PNNL LDRD PN13100/2581). SRS, MEB and SAC were supported by the U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Division of Materials Sciences and Engineering under Award #10122. PVS. and P-VO were supported by the LDRD Program at PNNL. PNNL work was performed in the Environmental Molecular Sciences Laboratory, a national science user facility sponsored by the DOE Office of Biological and Environmental Research. Sector 20 facilities at the Advanced Photon Source (APS), and research at these facilities, are supported by the US DOE BES, the Canadian Light Source and its funding partners, the University of Washington, and the APS. Use of the APS, an Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory, was supported by the DOE under Contract No. DE-AC02-06CH11357.

Electron microscopy was carried out in parts at the SuperSTEM Laboratory, the U.K. National Facility for Aberration-Corrected STEM, which is supported by the Engineering and Physical Sciences Research Council (EPSRC). The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 - ESTEEM2 (Integrated Infrastructure Initiative–I3).

Received: ((will be filled in by the editorial staff))
Revised: ((will be filled in by the editorial staff))
Published online: ((will be filled in by the editorial staff))

[1] E. J. Moon, R. Colby, Q. Wang, E. Karapetrova, C. M. Schlepütz, M. R. Fitzsimmons, S. J. May, Nat. Commun. 2014, 5.
[2] S. J. May, C. R. Smith, J.-W. Kim, E. Karapetrova, A. Bhattacharya, P. J. Ryan, Phys. Rev. B 2011, 83, 153411.
[3] L. Qiao, J. H. Jang, D. J. Singh, Z. Gai, H. Xiao, A. Mehta, R. K. Vasudevan, A. Tselev, Z. Feng, H. Zhou, S. Li, W. Prellier, X. Zu, Z. Liu, A. Borisevich, A. P. Baddorf, M. D. Biegalski, Nano Lett. 2015, 15, 4677.
[4] A. S. Disa, D. P. Kumah, A. Malashevich, H. Chen, D. A. Arena, E. D. Specht, S. Ismail-Beigi, F. J. Walker, C. H. Ahn, Phys. Rev. Lett. 2015, 114, 026801.
[5] J. Hoffman, I. C. Tung, B. B. Nelson-Cheeseman, M. Liu, J. W. Freeland, A. Bhattacharya, Phys. Rev. B 2013, 88, 144411.
[6] D. G. Schlom, L.-Q. Chen, C.-B. Eom, K. M. Rabe, S. K. Streiffer, J.-M. Triscone, Annu. Rev. Mater. Res. 2007, 37, 589.
[7] M. Dawber, C. Lichtensteiger, M. Cantoni, M. Veithen, P. Ghosez, K. Johnston, K. M. Rabe, J.-M. Triscone, Phys. Rev. Lett. 2005, 95, 177601.
[8] P. Zubko, N. Stucki, C. Lichtensteiger, J.-M. Triscone, Phys. Rev. Lett. 2010, 104, 187601.
[9] W. Tian, J. C. Jiang, X. Q. Pan, J. H. Haeni, Y. L. Li, L. Q. Chen, D. G. Schlom, J. B. Neaton, K. M. Rabe, Q. X. Jia, Appl. Phys. Lett. 2006, 89, 092905.
[10] J. B. Neaton, K. M. Rabe, Appl. Phys. Lett. 2003, 82, 1586.
[11] S. J. Callori, J. Gabel, D. Su, J. Sinsheimer, M. V. Fernandez-Serra, M. Dawber, Phys. Rev. Lett. 2012, 109, 067601.
[12] A. B. Shah, Q. M. Ramasse, X. Zhai, J. G. Wen, S. J. May, I. Petrov, A. Bhattacharya, P. Abbamonte, J. N. Eckstein, J.-M. Zuo, Adv. Mater. 2010, 22, 1156.
[13] X. Zhai, C. S. Mohapatra, A. B. Shah, J.-M. Zuo, J. N. Eckstein, Adv. Mater. 2010, 22, 1136.
[14] M. Choi, C. Lin, M. Butcher, C. Rodriguez, Q. He, A. B. Posadas, A. Y. Borisevich, S. Zollner, A. A. Demkov, Appl. Phys. Lett. 2015, 106, 192902.
[15] J. Park, B.-G. Cho, K. D. Kim, J. Koo, H. Jang, K.-T. Ko, J.-H. Park, K.-B. Lee, J.-Y. Kim, D. R. Lee, C. A. Burns, S. S. A. Seo, H. N. Lee, Phys. Rev. Lett. 2013, 110, 017401.
[16] C. W. Bark, P. Sharma, Y. Wang, S. H. Baek, S. Lee, S. Ryu, C. M. Folkman, T. R. Paudel, A. Kumar, S. V. Kalinin, A. Sokolov, E. Y. Tsymbal, M. S. Rzchowski, A. Gruverman, C. B. Eom, Nano Lett. 2012, 12, 1765.

[17] C. W. Bark, D. A. Felker, Y. Wang, Y. Zhang, H. W. Jang, C. M. Folkman, J. W. Park, S. H. Baek, H. Zhou, D. D. Fong, X. Q. Pan, E. Y. Tsymbal, M. S. Rzchowski, C. B. Eom, Proc. Natl. Acad. Sci. 2011, 108, 4720.

[18] H. Chen, N. Umezawa, Phys. Rev. B 2014, 90, 045119.

[19] S. A. Chambers, L. Qiao, T. C. Droubary, T. C. Kaspar, B. W. Arey, P. V. Sushko, Phys. Rev. Lett. 2011, 107, 206802.

[20] Y. Segal, J. H. Ngai, J. W. Reiner, F. J. Walker, C. H. Ahn, Phys. Rev. B 2009, 80, 241107.

[21] S. A. Chambers, M. H. Engelhard, V. Shuhtanandan, Z. Zhu, T. C. Droubay, L. Qiao, P. V. Sushko, T. Feng, H. D. Lee, T. Gustafsson, E. Garfunkel, A. B. Shah, J.-M. Zuo, Q. M. Ramasse, Surf. Sci. Rep. 2010, 65, 317.

[22] A. Ohtomo, H. Y. Hwang, Nature 2004, 427, 423.

[23] S. A. Chambers, T. C. Droubary, C. Capan, G. Y. Sun, Surf. Sci. 2012, 606, 554.

[24] M. Takizawa, S. Tsuba, T. Susaki, H. Y. Hwang, A. Fujimori, Phys. Rev. B 2011, 84, 245124.

[25] M. S. J. Marshall, D. T. Newell, D. J. Payne, R. G. Egdell, M. R. Castell, Phys. Rev. B 2011, 83, 035410.

[26] K. H. L. Zhang, Y. Du, P. V. Sushko, M. E. Bowden, V. Shuhtanandan, S. Sallis, L. F. J. Piper, S. A. Chambers, Phys. Rev. B 2015, 91, 155129.

[27] G. Berner, A. Müller, P. Pfaff, J. Walde, C. Richter, J. Mannhart, S. Thiess, A. Gloskovskii, W. Drube, M. Sing, R. Claessen, Phys. Rev. B 2013, 88, 115111.

[28] J. C. Woicick, E. L. Shirley, C. S. Hellberg, K. E. Andersen, S. Sambasivan, D. A. Fischer, B. D. Chapman, E. A. Stern, P. Ryan, D. L. Ederer, H. Li, Phys. Rev. B 2007, 75, 140103.

[29] L. A. Grunes, Phys. Rev. B 1983, 27, 2111.

[30] F. Farges, G. E. Brown, J. J. Rehr, Phys. Rev. B 1997, 56, 1809.

[31] N. Jiang, D. Su, J. C. H. Spence, Phys. Rev. B 2007, 76, 214117.

[32] B. Ravel, E. A. Stern, Phys. B Condens. Matter 1995, 208–209, 316.

[33] M. Newville, J. Synchrotron Radiat. 2001, 8, 96.

[34] S. R. Spurgeon, P. V. Balachandran, D. M. Kepaptsoflou, A. R. Damodaran, J. Kahrkhi, S. Nejati, L. Jones, H. Ambaye, V. Lauter, Q. M. Ramasse, K. K. S. Lau, L. W. Martin, J. M. Rondiellini, M. L. Taheri, Nat. Commun. 2015, 6.

[35] S. R. Spurgeon, J. D. Sloppy, D. M. (Demie) Kepaptsoflou, P. V. Balachandran, S. Nejati, J. Kahrkhi, A. R. Damodaran, C. L. Johnson, H. Ambaye, R. Goyette, V. Lauter, Q. M. Ramasse, J. C. Idrobo, K. K. S. Lau, S. E. Lofland, J. M. Rondiellini, L. W. Martin, M. L. Taheri, ACS Nano 2014, 8, 894.

[36] M. Saito, K. Kimoto, T. Nagai, S. Fukushima, D. Akahoshi, H. Kuwahara, Y. Matsu, K. Ishizuka, J. Electron Microsc. (Tokyo) 2009, 58, 131.

[37] C. Cantoni, J. Gazquez, F. Miletto Granazio, M. P. Oxley, M. Varela, A. R. Lupini, S. J. Pennycook, C. Aruta, U. S. di Uccio, P. Perna, D. Maccariello, Adv. Mater. 2012, 24, 3952.

[38] C. L. Jia, S. B. Mi, M. Faley, U. Poppe, J. Schubert, K. Urban, Phys. Rev. B 2009, 79, 081405.

[39] R. Pentcheva, W. E. Pickett, Phys. Rev. B 2008, 78, 205106.

[40] K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, C. B. Eom, Science 2004, 306, 1005.

[41] D. Lee, H. Lu, Y. Gu, S.-Y. Choi, S.-D. Li, S. Ryu, T. R. Paudel, K. Song, E. Mikheev, S. Lee, S. Stemmer, D. A. Tenne, S. H. Oh, E. Y. Tsymbal, X. Wu, L.-Q. Chen, A. Gruverman, C. B. Eom, Science 2015, 349, 1314.

[42] R. B. Comes, S. Y. Smolin, T. C. Kaspar, R. Gao, B. A. Apgar, L. W. Martin, M. E. Bowden, J. B. Baxter, S. A. Chambers, Appl. Phys. Lett. 2015, 106, 092901.
Through the tailored growth of alternating positively and negatively charged interfaces, emergent polarization is observed in SrTiO$_3$-LaCrO$_3$ superlattices. A built-in electric field is predicted via density functional theory and measured experimentally via x-ray photoelectron spectroscopy. Measurements of Ti cation displacements within oxygen octahedra via x-ray absorption spectroscopy and electron microscopy demonstrate a polarization comparable to that of ferroelectric BaTiO$_3$.

Keyword: Complex oxide superlattices, x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, scanning transmission electron microscopy, density functional theory

R. B. Comes,1 S. R. Spurgeon,1 S. M. Heald,2 D. M. Kepaptsoglou,3 L. Jones,4 P. -V. Ong,1 M. E. Bowden,5 Q. M. Ramasse,3 P. V. Sushko,1 and Scott A. Chambers1*

Interface-induced Polarization in SrTiO$_3$-LaCrO$_3$ Superlattices

ToC figure
