Analyses of adult transcriptomes from four different populations of the spongy moth, *Lymantria dispar* L., from China and the USA

Yi-Ming Wang¹, Michael E. Sparks², Robert L. Harrison² & Juan Shi¹∗

The spongy moth *Lymantria dispar*, formerly known as the gypsy moth, is a forest pest that occurs as two different biotypes: the European spongy moth (ESM), *Lymantria dispar dispar*, which is distributed in Europe and North America; and the Asian spongy moth (ASM), which consists of subspecies *Lymantria dispar asiatica* and *Lymantria dispar japonica* and is distributed in China, Russia, Korea, and Japan. The Asian biotype is classified as a quarantine pest by the U.S. Department of Agriculture because of the superior flight ability of adult females compared to females of the European biotype. To identify genes that potentially account for differences in female flight capability between the two biotypes, we assembled and compared transcriptional profiles of two North American populations of ESM and two Chinese populations of ASM, including samples of unmated female adults and females after mating and oviposition. Of 129,286 unigenes identified, 306 were up-regulated in ASM samples relative to ESM, including genes involved in egg production. In contrast, 2309 unigenes were down-regulated in ASM samples, including genes involved in energy production. Although a previous study found that ASM female flight was reduced after oviposition, a comparison of gene expression before and after mating and oviposition did not reveal any genes which were consistently up- or down-regulated in the two ASM populations.

The spongy moth *Lymantria dispar* L., formerly known as the gypsy moth, is native to Europe and Asia. It is considered to be one of the most destructive forest defoliators over much of its range. The spongy moth was accidentally introduced into North America in Medford, Massachusetts in the 1860s. Since then, the spongy moth has spread throughout much of the northeastern seaboard of the United States and adjacent parts of Canada. Spongy moth larvae feed on more than 300 species of trees, causing defoliation in coniferous and deciduous forests as well as residential areas.

The spongy moth has been further classified by Pogue and Schaefer into three subspecies: the European subspecies *L. dispar dispar* L., the Asian subspecies *L. dispar asiatica* Vnukovskij, and the Japanese subspecies *L. dispar japonica* Motschulsky. For regulatory purposes, moths of the latter two subspecies are grouped into a biotype that had been formerly referred to as the Asian gypsy moth, along with *Lymantria umbrosa* and *Lymantria postalba*. This biotype is defined by the capacity of females to fly, in contrast to females of the European/North American spongy moth which are characterized by females that are largely flightless. This delineation of the spongy moth into subspecies and biotypes has been supported by comparative analyses of the mitochondrial genomes of different spongy moth populations and by a genotyping-by-sequencing analysis involving 2327 single-nucleotide polymorphisms, although these studies have also revealed differences among populations of a subspecies. Subspecies of the Asian spongy moth biotype (hereafter abbreviated as ASM) are mainly distributed from the Ural Mountains east to China, South Korea, Japan, and the Russian Far East. The European spongy moth biotype (ESM) is distributed in Europe, east North America, west and central Asia, north Africa, north India, Pakistan and Afghanistan. Compared with ESM, some populations of ASM may also require a shorter time to break the diapause of its eggs and may be able to better adapt to some North American plants than the established ESM. These properties suggest that ASM may cause more damage and loss than ESM if it becomes established in North America.

¹Sino-France Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University, Beijing 100083, China. ²Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, Beltsville, MD 20705, USA. ³email: BJshijuan@bjfu.edu.cn
Female adult flight capability is the only criterion for classification of spongy moth populations as ASM. While ESM females in North American populations are generally not capable of any kind of flight, variability in female flight capability and activity has been observed among other strains of ESM from Europe and among populations of ASM. Correlations between variations in female spongy moth flight capacity and variations in wing size and dimensions, flying muscle tissue, and wing load (mass/wing area) have been reported.

Analysis of crosses between ASM and ESM moths indicate that flight capability has a significant genetic basis. However, while broad geographic groups of L. dispar can be distinguished with mitochondrial and nuclear genetic markers, alleles of these markers often were not completely fixed in regions where they occur and thus could not serve as unambiguous indicators of female flight capability. In addition to biotype- and strain-dependent physiological factors influencing flight, mated ASM adult females were found to have significantly reduced flight capability after oviposition, but not before. Spongy moth adults are capital breeders that rely on resources accumulated as larvae to carry out flight and reproduction. The effect of oviposition on ASM flight may represent the need for resorption of oocytes to supply fuel for prolonged flight activity, a resource that is lost upon oviposition.

A previous analysis and comparison of genomic sequence data derived from ESM and ASM samples detected genetic divergence between the two biotypes in a selection of genes enriched in gene ontology (GO) categories presumed to be involved in flight, such as “skeleton muscle adaptation” (GO:0043501) and “ionotropic glutamate receptors” (GO:0035235). Some of the divergent genes encoded homologs of genes that control wing size in Drosophila melanogaster. Results of this analysis also indicated that a greater degree of sequence divergence may exist in the regulatory regions of ESM and ASM genomes, suggesting that differences in gene expression may also contribute to differences in flight capacity. A comparative analysis of ESM and ASM female antennal and larval head capsule transcriptomes has been published which identified differences in olfaction-related gene expression among three representative strains of the two biotypes, which is consistent with the concept that differences in gene expression may account for differences in flight capacity.

In this study, our goals were to test this concept and (1) identify key genes expressed in adult moths that potentially affect the flight ability and wing development of female spongy moth, (2) explore their expression characteristics and differences in distinct geographical populations, and (3) provide a basis for further research on the molecular mechanism of flight ability. We used transcriptome sequencing to analyze the female adults of two different populations each from the United States and China in order to identify differences in gene expression between ESM and ASM that are consistently observed. Eight libraries prepared from RNA harvested from adult females of these four strains before mating and after mating and oviposition were constructed and sequenced, and differentially expressed genes that might affect their flight activities were analyzed and assessed.

Results

Qualitative description for assembly and annotation of transcriptomes. We assembled and compared genome-wide transcription profiles of ESM and ASM virgin adult females after mating and oviposition. Eight independent RNA-Seq analyses were performed with different populations. A total of 205.96 Gb of processed reads were obtained by sequencing (> 6.98 Gb/replicate). The percentage of Q30-filtered bases was more than 91.85%. Assembly of the sequence data from all libraries resulted in identification of 129,286 unigenes (Table 1).

The length distribution of the unigenes is shown in Fig. 1. The percentage of unigenes with a length not greater than 500 bp was over 70%, with a further 17% ranging between 501 and 1000 bp. Relatively few unigenes were found in the 4001–4500 bp category.

All female adult transcriptome unigenes were annotated from the NR, Swiss-Prot, Pfam, COG, GO and KEGG databases. The number of unigene annotations was 39,584, accounting for 30.62% of the total. Among them, queries of the NR database yielded the most annotations, accounting for 26.28% of the total. The COG database yielded the least annotations, 6,221 (4.81%) (Table 2).

NR annotation. BLASTX comparison with NR database sequences was performed to identify the similarity between the transcription sequences of spongy moth and similar species and the functional information of homologous sequences. A total of 33,971 unigenes were successfully matched with known genes (E < 10^-5),

Type	Result
Total transcripts (filtered)	176,654
Total unigenes	129,286
Total sequence, bases	120,861,580
Unigene/transcript average length	684.17
E90N50	2400
GC percent	39.13
Mean mapped reads	3737.848531
TransRate score	0.15799
BUSCO score C:	96.8%
	S: 86.2%; D: 10.6%

Table 1. Transcriptome assembly results for all samples.
with 4716 (14.03%) sequences showing high sequence similarity with *Spodoptera littoralis*, followed by *Helicoverpa armigera*. There were 4467 (13.29%) and 3666 (10.91%) unigenes with top BLAST matches with *Heliothis virescens* sequences. Matches with other species returned by BLAST showed low sequence similarity with spongy moth sequences. However, 11,927 unigenes (35.49%) were unique transcripts of spongy moth (Fig. 2).

COG/NOG annotations. COG (Clusters of Orthologous Groups) is a database of protein lineages for general function prediction, while NOG (Non-Supervised Orthologous Groups) is optimized on the basis of COG to expand genomic information and provide more detailed OG analysis. After comparison, COG function classification of genes/transcripts can be obtained. The most prevalent COG functions annotated in the transcriptomes of adult spongy moth are translation, ribosomal structure and biogenesis, while the Function unknown class was the most prevalent annotation in NOG (Fig. 3).

GO annotation. A total of 22,408 Unigene sequences were annotated with 94,399 GO entries, including 48 subclasses in 3 categories: 20 biological_processes subclasses, 14 cell_components subclasses, and 14 molecular_functions subclasses. The largest number of annotations were for biological_process (37,112; 39.3%), and the least was molecular_function (26,424; 28%) (Fig. 4).

KEGG pathway. Biological functions of transcripts in the spongy moth transcriptomes were identified with the assistance of KEGG (Kyoto Encyclopedia of Genes and Genomes), a large knowledge base for analyzing gene functions and linking genomic information with functional information. We found that there was a total of 21,260 unigenes that mapped to six pathways, including Metabolism, Genetic Information Processing, Environmental Information Processing, Cellular Processes, Organismal Systems, and Human Diseases.

Table 2. Unigenes annotation profiles of all spongy moth samples. Total annotated = number of unigenes annotated in one or more databases.

Database	Unigene number (proportion)
NR	33,971 (0.2628)
Swiss-Prot	27,450 (0.2123)
Pfam	24,831 (0.1921)
COG	6221 (0.0481)
GO	22,408 (0.1733)
KEGG	21,260 (0.1644)
Total annotated	39,584 (0.3062)
Total	129,286 (1)
most unigenes (3118) mapped to the Signal Transduction subgroup under Environmental Information Processing 27–29(Fig. 5).

Strain-specific differences in gene expression. A total of 6692 unigenes were found to be differentially expressed in pairwise comparisons of ASM and ESM transcriptomes, including 5371 up-regulated and 1321 down-regulated DEGs in ASM relative to ESM (Supplementary Table 1). Approximately two orders of magnitude more differentially-expressed genes (DEGs) were observed in pairwise comparisons of ASM and ESM transcriptomes (JGS vs. CT, JGS vs. NJ, ZY vs. CT, ZY vs. NJ) relative to the number of DEGs found with pairwise comparisons of transcriptomes from the same biotype (JGS vs. ZY, CT vs. NJ). The number of the DEGs are shown in Table 3.

In four pairwise comparisons of ASM transcriptomes with ESM transcriptomes (e.g., JGS vs CT, JGS vs NJ, ZY vs CT, and ZY vs NJ), 306 DEGs consistently exhibited up-regulation and 2,309 DEGs consistently exhibited down-regulation in ASM transcriptomes relative to ESM transcriptomes (Supplementary Table 2). Table 4 lists the 40 DEGs with the greatest degree of up- or down-regulation in ASM-ESM pairwise comparisons. The 20 DEGs up-regulated to the greatest extent in ASM transcriptomes were pancreatic triacylglycerol lipase-like, alkaline C trypsin, calphotin-like, serine protease 1-like, non-specific lipid-transfer protein, L-serine dehydratase/L-threonine deaminase, trypsin precursor AiT6, actin cytoskeleton-regulatory
Figure 4. GO functional annotation of adult female spongy moth transcriptomes.

Figure 5. Mapping of KEGG pathway functions of transcripts in adult female spongy moth transcriptomes.
production. These DEGs included the following: rat ratios in flightless lineages. If there is also a lack of purifying selection pressure on the COX and CytB alleles of relaxed selection in flightless as compared with flying lineages, as demonstrated by significantly higher dN/dS in ASM compared to ESM appears counterintuitive. However, mitochondrial COX genes showed evidence of the finding that cytochrome b (CytB) and COX subunit I, II, and III DEGs were significantly down-regulated tial and COX activity can also be observed within the same flying insect species. Given these observations, reductions in insect flying muscle suggests that they play a role in biological oxidation and energy transmission, which is consistent with the large energy demand that flight activity places on this special tissue. In mosquitoes, reductions in flight metabolism and dispersal potential are tightly linked to cytochrome oxidase (COX) function. For example, long-distance migratory butterfly species have higher COX content and oxidase 1 precursor, and chitin deacetylase 1 & 8.

Within-population differences in gene expression before mating and after mating and oviposition. Because adult female spongy moth flight was found to be significantly reduced after oviposition, we also prepared transcriptomes from RNA of virgin adult females before mating and adult females after mating and oviposition and examined differences in gene expression. Table 3 shows the number of DEGs up-regulated and down-regulated in moths before mating relative to after mating and oviposition for all four strains. Noticeably more DEGs were identified for the ESM strains compared to the ASM strains.

No DEGs were identified that were consistently up-regulated or down-regulated in comparisons of the before-mating and after-mating and oviposition of both ASM strains. In contrast, 58 DEGs were found to be consistently up-regulated or down-regulated in these comparisons for the two ESM strains (Supplementary Table 2). All but one of these were up-regulated in the before-mating transcriptomes. Table 6 lists the single DEG which was down-regulated in ESM before-mating transcriptomes and the ten DEGs up-regulated in before-mating transcriptomes with the greatest degree of difference. The up-regulated DEGs included lysocardiolipin acyltransferase 1-like and actin muscle-type A2. One of the up-regulated DEGs in ESM comparisons was also found to be up-regulated in NJ before-mating transcriptomes (Table 5, TRINITY_DN53843_c6_g1).

Discussion

The L. dispar genome, at approximately 1.0 Gb, dwarfs the majority of sequenced Lepidoptera genomes that, on average, range from 250 to 500 Mb in size. Genetic analysis has shown that ASM populations are more genetically diverse than ESM populations. These features pose challenges to the identification of genes whose expression may account for the distinctive flightworthiness of ASM females. In an attempt to overcome these challenges, we carried out a comparative analysis among transcriptomes developed from adult females of two different ASM populations as well as two different North American ESM populations, and also included a comparative analysis of transcriptomes from virgin females and mated females after oviposition. Comparisons of differentially expressed genes identified genes which were consistently up- or down-regulated in adult ASM RNA samples. Some of the DEGs with the greatest differences in expression level between ASM and ESM populations appeared to bear some relevance to aspects of flight activity, such as flight muscle function and energy production. These DEGs included the following:

Cytochrome oxidase (COX) subunits I, II, and III, and cytochrome b (CytB) (TRINITY_DN55289_c1_g2, TRINITY_DN45473_c0_g2, TRINITY_DN38334_c0_g1, and TRINITY_DN38260_c0_g1, respectively; Table 4). Cytochromes were independently discovered in insect systems by Charles Mac-Munn and David Keilin. Keilin observed that “among all organisms examined, the highest concentration of cytochrome is found in the thoracic muscles of flying insects.” Indeed, the high amount of cytochromes in insect flying muscle suggests that they play a role in biological oxidation and energy transmission, which is consistent with the large energy demand that flight activity places on this special tissue. This is part of the “flight-oogenesis syndrome,” a physiological process in which some migratory insects switch between two energy-intensive states: migration and reproduction. Evidence shows that flight metabolism and dispersal potential are tightly linked to cytochrome oxidase (COX) function. For example, long-distance migratory butterfly species have higher COX content and activity than short-distance fliers, and recently established populations of *Melitaea cinxia* butterflies have higher COX activity and dispersal potential than old ones. This means that the relationship between dispersal potential and COX activity can also be observed within the same flying insect species. Given these observations, the finding that cytochrome b (CytB) and COX subunit I, II, and III DEGs were significantly down-regulated in ASM compared to ESM appears counterintuitive. However, mitochondrial COX genes showed evidence of relaxed selection in flightless as compared with flying lineages, as demonstrated by significantly higher dN/dS ratios in flightless lineages. If there is also a lack of purifying selection pressure on the COX and CytB alleles of ESM, then the relevance of up-regulation of these genes for spongy moth female flight is unclear.

Groups	Up-regulated	Down-regulated
JGS_ZY	108	53
CT_NJ	19	11
JGS_CT	3434	757
JGS_NJ	3027	592
ZY_CT	3201	888
ZY_NJ	2995	708

Table 3. The number of up-regulated and down-regulated DEGs between four geographic spongy moth strains. JGS Jingeshan, ZY Zunyi, CT Connecticut, NJ New Jersey. Numbers refer to the quantity of up- or down-regulated DEGs in the first strain listed in each pairwise comparison relative to the second strain.
Gene ID	Comparison	log2FoldChange	Adj-P¹⁰	Gene expression level (GEL)	NR hits
TRINITY_DN36697_c1.g2	ZY_NJ -34.83374762, 2.86E–56, 67.14	None			
	ZY_CT -34.35069449	1.55E–54, 70.09			
	JGS_NJ -24.73745878	4.62E–27, 70.09			
	JGS_CT -24.25440666	5.39E–26, 70.09			
TRINITY_DN13504_c1.g1	ZY_NJ -34.35069449	None			
	ZY_CT -34.26177146	5.12E–50, 79			
	JGS_NJ -24.95631434	1.83E–24, 79			
	JGS_CT -24.58111481	1.14E–24, 79			
TRINITY_DN58366_c8.g2	ZY_NJ -33.80514904	None			
	ZY_CT -34.17627032	9.52E–50, 0.37			
	JGS_NJ -16.36806188	0.005321, 0.37			
	JGS_CT -22.7219545	8.32E–06, 21.88			
TRINITY_DN33204_c1.g1	ZY_NJ -29.99664328	None			
	ZY_CT -29.75543552	1.27E–08, 57.34			
	JGS_NJ -18.12384237	0.001125, 57.34			
	JGS_CT -20.26456013	0.000121, 57.34			
TRINITY_DN72186_c1.g1	ZY_NJ -25.36989352	None			
	ZY_CT -31.15021151	1.26E–15, 2.65			
	JGS_NJ -16.27524222	0.003811, 2.65			
	JGS_CT -22.05706685	8.35E–08, 9.86			
TRINITY_DN83020_c1.g1	ZY_NJ -25.36839952	None			
	ZY_CT -21.67189109	3.4E–06, 5.9			
	JGS_NJ -21.36257589	4.6E–06, 5.9			
	JGS_CT -21.000423	2.6E–05, 9.86			
TRINITY_DN61670_c1.g1	ZY_NJ -26.98231855	None			
	ZY_CT -27.25754436	8.35E–10, 5.9			
	JGS_NJ -21.67189109	3.4E–06, 5.9			
	JGS_CT -21.36257589	4.6E–06, 5.9			
TRINITY_DN23060_c1.g1	ZY_NJ -26.9938465	None			
	ZY_CT -26.15656379	3.43E–10, 2.52			
	JGS_NJ -21.551178	1.83E–06, 2.52			
	JGS_CT -21.02481311	3.5E–06, 2.52			
TRINITY_DN38260_c1.g1	ZY_NJ -8.727985703	None			
	ZY_CT -9.16728883	2.34E–15, 18.88			
	JGS_NJ -9.427663179	2.68E–16, 18.88			
	JGS_CT -8.98360052	4.94E–07, 18.88			
TRINITY_DN42442_c1.g1	ZY_NJ -9.26958661	None			
	ZY_CT -8.750104651	4.76E–14, 7.15			
	JGS_NJ -9.4873308	9.01E–17, 7.15			
	JGS_CT -9.004797076	5.73E–15, 7.15			
TRINITY_DN55529_c1.g2	ZY_NJ -9.30064044	None			
	ZY_CT -8.762913375	9.38E–14, 2.64			
	JGS_NJ -9.561014708	6.9E–17, 2.64			
	JGS_CT -9.023287641	7.15E–15, 2.64			
TRINITY_DN45473_c1.g2	ZY_NJ -9.26557293	None			
	ZY_CT -8.815963642	1.53E–14, 2.64			
	JGS_NJ -9.52947428	3.29E–17, 2.64			
	JGS_CT -9.07638152	7.15E–15, 2.64			
TRINITY_DN58407_c1.g2	ZY_NJ -9.11566982	None			
	ZY_CT -10.1449048	9.24E–06, 0.37			
	JGS_NJ -9.371971541	0.00082, 0.37			
	JGS_CT -10.4044194	4.44E–06, 0.37			
TRINITY_DN57574_c1.g1	ZY_NJ -9.372862201	None			
	ZY_CT -9.26557293	1.31E–16, 15.37			
	JGS_NJ -9.633236329	3.34E–17, 15.37			
	JGS_CT -9.151356809	2.23E–15, 15.37			

Continued
Gene ID	Comparison	log2FoldChange	Adj-P	Gene expression level (GEL)	NR hits	Description
TRINITY_DN81391_c0.g1	ZY_NJ	-9.51567545	5.48E-17	- 0 - 7.7	NP_001300997.1 myelin protein P0 isoform L-MPZ precursor	
	ZY_CT	-8.805274946	2.58E-14	0 4.96 -	None	
	JGS_NJ	-9.775941742	5.36E-18	0 - 7.7		
	JGS_CT	-9.065649142	3.05E-15	0 - 4.96 -		
TRINITY_DN56710_c1.g2	ZY_NJ	-9.40724996	3.66E-15	- 0 - 23.56		
	ZY_CT	-9.165370434	2.58E-14	0 22.13 -		
	JGS_NJ	-9.667161994	4.24E-16	0 - 23.56		
	JGS_CT	-9.425743532	3.88E-15	0 - 22.13 -		
TRINITY_DN38334_c0.g1	ZY_NJ	-10.16900024	2.33E-19	- 0 - 41.75		
	ZY_CT	-9.685661244	2.08E-17	0 31.08 -		
	JGS_NJ	-10.42937307	1.82E-20	0.17 - 41.75		
	JGS_CT	-9.945938954	1.98E-18	0.17 - 31.08 -		
TRINITY_DN43889_c0.g1	ZY_NJ	-10.26592127	3.66E-20	- 0 - 11.26		
	ZY_CT	-9.89609599	4.23E-19	0.14 - 27.24 -		
	JGS_NJ	-10.5041005	2.29E-21	0.17 -		
	JGS_CT	-10.24363704	3.43E-20	0.17 -		
TRINITY_DN58997_c0.g1	ZY_NJ	-10.26592127	3.66E-20	- 0 - 11.26		
	ZY_CT	-9.89609599	4.23E-19	0.14 - 27.24 -		
	JGS_NJ	-10.5041005	2.29E-21	0.17 -		
	JGS_CT	-10.24363704	3.43E-20	0.17 -		
TRINITY_DN24402_c1.g1	ZY_NJ	-10.2625912	3.66E-20	- 0 - 11.26		
	ZY_CT	-9.89609599	4.23E-19	0.14 - 27.24 -		
	JGS_NJ	-10.5041005	2.29E-21	0.17 -		
	JGS_CT	-10.24363704	3.43E-20	0.17 -		
TRINITY_DN58997_c0.g1	ZY_NJ	-10.26592127	3.66E-20	- 0 - 11.26		
	ZY_CT	-9.89609599	4.23E-19	0.14 - 27.24 -		
	JGS_NJ	-10.5041005	2.29E-21	0.17 -		
	JGS_CT	-10.24363704	3.43E-20	0.17 -		
TRINITY_DN59309_c0.g1	ZY_NJ	-10.26592127	3.66E-20	- 0 - 11.26		
	ZY_CT	-9.89609599	4.23E-19	0.14 - 27.24 -		
	JGS_NJ	-10.5041005	2.29E-21	0.17 -		
	JGS_CT	-10.24363704	3.43E-20	0.17 -		
TRINITY_DN36137_c0.g1	ZY_NJ	-10.26592127	3.66E-20	- 0 - 11.26		
	ZY_CT	-9.89609599	4.23E-19	0.14 - 27.24 -		
	JGS_NJ	-10.5041005	2.29E-21	0.17 -		
	JGS_CT	-10.24363704	3.43E-20	0.17 -		
TRINITY_DN43889_c0.g1	ZY_NJ	-10.26592127	3.66E-20	- 0 - 11.26		
	ZY_CT	-9.89609599	4.23E-19	0.14 - 27.24 -		
	JGS_NJ	-10.5041005	2.29E-21	0.17 -		
	JGS_CT	-10.24363704	3.43E-20	0.17 -		
TRINITY_DN55003_c0.g1	ZY_NJ	-10.26592127	3.66E-20	- 0 - 11.26		
	ZY_CT	-9.89609599	4.23E-19	0.14 - 27.24 -		
	JGS_NJ	-10.5041005	2.29E-21	0.17 -		
	JGS_CT	-10.24363704	3.43E-20	0.17 -		
TRINITY_DN52890_c0.g1	ZY_NJ	-10.26592127	3.66E-20	- 0 - 11.26		
	ZY_CT	-9.89609599	4.23E-19	0.14 - 27.24 -		
	JGS_NJ	-10.5041005	2.29E-21	0.17 -		
	JGS_CT	-10.24363704	3.43E-20	0.17 -		
TRINITY_DN55622_c0.g1	ZY_NJ	-10.26592127	3.66E-20	- 0 - 11.26		
	ZY_CT	-9.89609599	4.23E-19	0.14 - 27.24 -		
	JGS_NJ	-10.5041005	2.29E-21	0.17 -		
	JGS_CT	-10.24363704	3.43E-20	0.17 -		
TRINITY_DN42377_c0.g1	ZY_NJ	-10.26592127	3.66E-20	- 0 - 11.26		
	ZY_CT	-9.89609599	4.23E-19	0.14 - 27.24 -		
	JGS_NJ	-10.5041005	2.29E-21	0.17 -		
	JGS_CT	-10.24363704	3.43E-20	0.17 -		

Continued
Vitellogenin 7 precursor (TRINITY_DN59741_c2_g1), vitellogenin 2 isoform 1 precursor (TRINITY_DN59741_c3_g2), vitellogenin-like (TRINITY_DN47254_c0_g1). In many oviparous species, vitellogenin (Vg) is a crucial precursor protein of egg yolk vitellin (Vn)⁴³, which acts as an energy store. Vg is involved in oocyte maturation and development, making it a crucial protein involved in insect reproduction. A study of Harmonia axyridis reveals that Vg expression leads to increased egg production⁴⁴. Three of the most up-regulated DEGs in ASM relative to ESM matched with Vg genes. While vitellogenin synthesis occurs pri-
NADH dehydrogenase subunit 1 (TRINITY_DN57574_c0_g1, TRINITY_DN50963_c0_g2),
NADH dehydrogenase subunit 4 (TRINITY_DN42442_c0_g1). NADH dehydrogenase is involved
in aerobic respiration and ATP synthesis. Solitary locusts have higher initial flight speeds and shorter flight
distances than gregarious locusts, and exhibited higher mitochondrial energetic storage (Acetyl-CoA and NADH),
energy metabolic gene-expression levels, and metabolic enzyme activities in their flight muscles than their gre-
garious counterparts. While NADH dehydrogenase subunit DEGs (for subunits 1 and 4) were
down-regulated in ASM, one DEG with matches to different NADH dehydrogenase subunit 1 sequences were
up-regulated in ASM, suggesting either sequence divergence at this locus or two alleles with biotype-specific
differences in their regulation.

Table 5. The number of DEGs up-regulated and down-regulated before mating (BM) relative to after mating
and oviposition (AM). *Numbers refer to the quantity of up- or down-regulated DEGs in the before-mating
(BM) sample relative to the after-mating/oviposition (AM) sample of each pairwise comparison.

Comparisons	Up-regulated*	Down-regulated*
JGS_BM-AM	18	7
ZY_BM-AM	3	4
CT_BM-AM	128	23
NI_BM-AM	592	21

Table 6. Genes that were consistently differentially expressed (DEGs) in all comparisons of ASM and ESM
transcriptomes developed from moths before mating (BM) and after mating and oviposition (AM). DEGs are
sorted in descending order with respect to log2-fold change, with DEGs down-regulated in before-mating ESM
transcriptomes listed first, followed by DEGs up-regulated in ESM before-mating transcriptomes.

Gene ID	Comparison	log2FoldChange	Adjp	GEL	BM	AM	NR hits
TRINITY_DN55444_c2_g1	NJ_BM-AM	-41.9624	2.31E−50	0	6.16	None	
JGS_BM-AM	-14.4299	0.005106	0.5	0			
TRINITY_DN1848_c0_g1	NJ_BM-AM	24.30176	5.84E−05	5.64	0		KAF9410092.1 hypothetical protein HW555_010723, partial
CT_BM-AM	19.79454	0.01	0.19	0			
TRINITY_DN43723_c1_g1	NJ_BM-AM	9.462686	0.001434	17.64	0		XP_026734001.1 lysocardiolipin acyltransferase 1-like
CT_BM-AM	17.25244	1.29E−09	0.11	0			
TRINITY_DN52100_c0_g1	NJ_BM-AM	10.5207	1.74E−05	7.02	0.03	CAB3235558.1 unnamed protein product	
CT_BM-AM	10.58316	2.39E−08	47.69	0.095			
TRINITY_DN59230_c4_g1	NJ_BM-AM	10.79498	0.000204	31.28	0.13		
JGS_BM-AM	9.604437	0.00516	69.35	0.27			
TRINITY_DN46116_c0_g1	NJ_BM-AM	10.90386	6.46E−06	25.56	0.1	CAB3226619.1 unnamed protein product	
CT_BM-AM	7.569039	0.000876	24.06	0.44			
TRINITY_DN47299_c0_g1	NJ_BM-AM	10.29331	4.99E−08	119.68	0.3	CAB3226695.1 actin, muscle-type A2	
CT_BM-AM	7.629028	0.00988	136.95	2.28			
TRINITY_DN24521_c0_g1	NJ_BM-AM	7.680281	0.001124	25.85	0.41	CAB3226695.1 actin, muscle-type A2	
CT_BM-AM	9.814032	0.000842	9.21	0			
TRINITY_DN59230_c7_g1	NJ_BM-AM	7.093234	0.036808	123.95	0	AER26312.1 actin	
CT_BM-AM	9.75179	0.001983	82.18	0			
TRINITY_DN40225_c0_g1	NJ_BM-AM	7.894189	0.001201	6.04	0.17	CAB3239390.1 unnamed protein product	
CT_BM-AM	7.019374	0.005982	10.56	0.24			
TRINITY_DN53843_c6_g1	NJ_BM-AM	4.759893	1.46E−05	1512.87	126.8	CAB3208006.1 unnamed protein product	
CT_BM-AM	4.407292	0.000516	780.49	72.87			
JGS_BM-AM	4.014438	0.02672	715.44	41.71			
Myosin (TRINITY_DN58997_c0_g1, TRINITY_DN100147_c0_g1, TRINITY_DN22477_c0_g1, etc.), Actin (TRINITY_DN6120_c0_g1, TRINITY_DN59230_c5_g1, TRINITY_DN47814_c0_g1, etc.). Actin, a filamentous protein (42 kD) involved in muscle contraction in both smooth and striated muscle, also serves as an important structural molecule for the cytoskeleton of many eukaryotic cells. It is the main constituent of the thin filaments of muscle fibers. Actin participates in many important cellular processes, including muscle contraction, cell motility, cell division and cytokinesis, vesicle and organelle movement, cell signaling, and the establishment and maintenance of cell junctions and cell shape. Actin filaments, usually in association with myosin, are responsible for many types of cell movements. Myosin is a type of molecular motor and converts chemical energy released from ATP into mechanical energy. This mechanical energy is then used to pull the actin filaments along, causing muscle fibers to contract and, thus, generating movement. Actin and myosin are found in every type of muscle tissue. Thick myosin filaments and thin actin filaments work together to generate muscle contractions and movement. We found multiple myosin and actin genes down-regulated in ASM relative to ESM (Supplementary Table 2). Given that ASM female adults have strong flight ability, while ESM has no flight ability, the relevance of higher expression of these genes in ESM for spongy moth female flight is unclear. In DEGs compared within ESM populations, some actin genes were also found to be significantly higher before than after mating, which may reflect reduced muscle activity after mating.

Comparison of gene expression before mating and after oviposition. Since ASM females are the ones in this study that are flightworthy, it was anticipated that meaningful differences in expression of genes before mating and after mating and oviposition would be observed in the transcriptomes of the JGS and ZY ASM strains and not in the flightless CT and NJ strains. However, few DEGs were identified in comparisons of ASM transcriptomes before mating and after oviposition, and no DEGs were found to be consistently up- or down-regulated in comparisons of these ASM transcriptomes. Thus, the results suggest that gene expression differences might not be the principal basis for the reported reduction in flight capacity of ASM females after oviposition. It is interesting that comparisons of ESM transcriptomes before mating and after oviposition disclosed many more DEGs than the corresponding ASM comparisons, though the significance of this is unclear.

In conclusion, the results in this paper represent the first transcriptomic examination of gene expression in adult spongy moths. While DEGs with functions relevant to moth flight activity were identified in adult ASM and ESM transcriptomes, the trends in the differences in expression of these genes did not appear to be consistent with the differences in flight capabilities of ASM and ESM. DEGs expected to be up-regulated in flight-worthy *L. dispar* strains (such as cytochrome oxidase subunits, NADH dehydrogenase subunits, myosins and actins) were often found to be down-regulated instead. These results may reflect the possibility that the differences in gene expression relevant to female flight were subtle and hard to detect under the conditions the adults were sampled. Alternatively, differences in gene expression in ASM and ESM adults may affect flight capability by an unknown mechanism. It may also be the case that differences in gene expression of direct relevance for flight capability do not occur in adults of ASM and ESM. In addition, an examination of DEGs in adult females before mating and after mating and oviposition yielded no clues for why ASM female flight is reduced after mating and oviposition, but did reveal significant differences in gene expression before mating and after oviposition among ESM adults of two populations.

In a previous study, adult female wing size and wing load (body mass/wing area) were found to differ significantly among geographic strains of different biotypes as well as the same biotype, with larger wing sizes and lower wing loads observed in strains with greater flight capability. This observation suggests that differences in the expression of genes controlling wing and body morphogenesis during development may account for strain-specific flight capability. A comparison of pupal transcriptomes may reveal differences in transcription during wing and muscle development in the pupal stage that may help to unlock the mystery of differential flight ability among the two spongy moth biotypes.

Materials and methods

Insect materials and RNA extraction. We analyzed four strains of *Lymantria dispar* from colonies derived from different geographic populations. Specimens of two ASM strains (*L. dispar asiatica*) from China were obtained from the Plant Quarantine Laboratory of Beijing Forestry University in 2019, the egg masses of JGS and ZY are collected in the wild from host trees, usually larches. After being brought back to the lab, then reared on artificial diet until pupation. Specimens of two ESM strains (*L. dispar dispar*) were obtained from the U.S. Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine program. Samples were processed at the Beijing Forestry University Plant Quarantine Laboratory in 2021 (Table 7). Eggs of all strains were hatched and the larvae reared on an artificial diet in a greenhouse under controlled conditions (temperature: 28 ± 0.5 °C). For pre-mating RNA samples, male and female pupae were separated prior to eclosion, and virgin females were harvested 24 h after hatching, because flight activity peaked when females were one day old and decreased thereafter. For post-oviposition RNA samples, females were mated with males and harvested within one hr after oviposition to avoid post-spawning mortality. All the samples were frozen in liquid nitrogen and immediately stored at -80°C.

RNA-Seq. RNA-seq data were generated from three biological replicates (five specimens/replicate) for each *L. dispar* strain, pre-mating and post-oviposition. Moths of each replicate were homogenized separately in two 2.0 mL tubes containing Lysing Matrix A (MP Biomedicals, Solon, OH, USA) and Lysis/Binding Solution from the mirVana™ miRNA Isolation Kit (ThermoFisher Scientific, Waltham, MA, USA) using a FastPrep-24™ Tissue and Cell Homogenizer (MP Biomedicals, Solon, OH, USA) set at 4.0 m/s and run for 40 s. Insoluble material was pelleted by centrifugation, and total RNA was recovered from the supernatants with the mirVana™ miRNA...
Isolation Kit. The RNA obtained was treated with DNase I (Invitrogen), and magnetic beads with oligo (dT) were used to isolate poly(A) + messenger RNA (mRNA), which was sheared into short fragments using a fragmentation buffer. Under the action of reverse transcriptase, six-base random primers (random hexamers) were added to synthesize one-stranded cDNA using mRNA as a template, followed by two-stranded synthesis to form a stable double-stranded structure. Termini of the double-stranded cDNA structure were blunted, and a terminal adenosine was added to the 3’ end to facilitate library construction. The samples were submitted to the Majorbio Technologies company (Beijing, China) for quality assessment, construction of a non-stranded library using random hexamer priming, and 2 × 150 bp paired-end sequencing on an Illumina Novaseq 6000 instrument. RNA-seq data are available at National Center for Biotechnology Information (NCBI) Sequence Read Archives (SRA) under Bioproject accession numbers PRJNA789495 and PRJNA788963.

Assembly and annotation of the transcriptome.

Trinity (v2.13.2) was used for initial de novo assembly of Illumina sequence reads. The results of assembly with Trinity were then optimized for filtering and re-evaluated using TransRate (v1.0.3), CD-HIT (v4.8.1), and BUSCO (v5.2.2, using the arthropoda_odb10 database). The TGI Clustering Tool (v2.1) was employed to assemble the transcripts into unigenes. The unigene assembly set is publicly available at the Open Science Framework (OSF) repository at (https://doi.org/10.17605/OSF.IO/PME7K). All unigenes obtained were compared with six databases (NR, Swiss-PROT, Pfam, COG, GO and KEGG databases) to provide annotation for the sequences in each database, and the annotation of each database was statistically analyzed. All unigenes were searched against these databases using BLAST ([ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.2.29/) (e-value < 10^-5). Protein function was predicted according to the most similar proteins annotated in these databases. Principle Components Analysis (PCA) was performed using the built-in pcomp function of R, which uses singular value decomposition, generally providing better numerical accuracy.

Differential gene expression analysis.

Differentially expressed genes (DEGs) were identified using DESeq2 (v1.18.1) together with salmon (v0.11.3), a read abundance quantification tool, operating in its quasi-alignment mode. The R package, tximport (v1.20.0), was used to prepare counts at the gene-level as a function of transcript-level counts. Differential analysis was performed on these inputs using DESeq2’s DESeq function. Genes determined by salmon to have non-zero expression levels were flagged as differentially expressed by DESeq if they exhibited at least a two-fold difference in expression levels between the statistical factors being compared; furthermore, these were required to exhibit an adjusted p-value of 0.05 or less (alpha = 0.05, lfcThreshold = log2(2), altHypothesis = “greaterAbs”). Expression was also estimated at both the transcript and gene levels with RSEM (v1.2.24) using results from the bowtie2 short read aligner (v2.3.4.1) as input. RSEM-DESeq2 (v1.18.1) together with salmon (v0.11.3), a read abundance quantification tool, operating in its quasi-best-scoring hits were encountered, a representative match was arbitrarily selected.

Data availability

All data has been deposited at NCBI as indicated in the Methods. The datasets generated during and/or analyzed during the current study are available from the corresponding author on request.

Received: 5 May 2022; **Accepted:** 10 August 2022

Published online: 29 October 2022

References

1. Bradshaw, C. J. A. *et al.* Massive yet grossly underestimated global costs of invasive insects. *Nat. Commun.* 7, 12986 (2016).
2. Leroy, B. M. L. *et al.* Relative impacts of gypsy moth outbreaks and insecticide treatments on forest resources and ecosystems: An experimental approach. *Ecol. Solut. Evid.* 2, e12045 (2021).
3. Liebhold, A., Mastro, V. & Schaefer, P. W. Learning from the legacy of Léopold Trouvelot. *Bull. Esa.* 35(2), 20–22 (1989).
4. Biggely, K. M., Ambrose, M. J., Tobin, P. C. & Sills, E. O. The cost of gypsy moth sex in the city. *Urban For. Urban Green.* 13, 459–468 (2014).
5. Elkinton, J. S., & Liebhold, A. M. Population dynamics of gypsy moth in North America. *Annu. Rev. Entomol.* 35, 571–596 (1990).
6. Johnson, D. M., Liebhold, A. M., Bjrnstad, O. N. & Mcmanus, M. L. Circumpolar variation in periodicity and synchrony among gypsy moth populations. *J. Anim. Ecol.* 74(5), 882–892 (2005).
7. Haynes, K. J., Liebhold, A. M. & Johnson, D. M. Spatial analysis of harmonic oscillation of gypsy moth outbreak intensity. *Oecologia* 159(2), 249–256 (2009).

Population code	Sampling Location	Latitude	Longitude
IGS	Jingeshan, Hebei, China	41°00′N	115°52′E
ZY	Zunyi, Guizhou, China	25°42′N	106°56′E
CT	Connecticut, USA	41°35′N	72°41′W
NJ	New Jersey, USA (New Jersey Standard Strain)	39°41′N	75.45′W

Table 7. Location information for the four sampling sites of the spongy moth, *Lymantria dispar*.

Note: The table provides location information for the four sampling sites of the spongy moth, *Lymantria dispar*. It includes the population code, sampling location, latitude, and longitude for each site. The data is useful for researchers studying the distribution and population dynamics of the spongy moth across different regions.
8. Pogue, M. G. & Schaefer, P. W. Review of selected species of Lymantria Hübner (1819) (Lepidoptera: Noctuidae: Lymantriinae) from subtropical and temperate regions of Asia, including the descriptions of three new species, some potentially invasive to North America (U.S. Dept. of Agriculture, Forest Health Technology Enterprise Team, Washington, DC, 2007).
9. Djoumad, A. et al. Reassessment of the status of Lymantria albecens and Lymantra postbala (Lepidoptera: Erebidae: Lymantriinae) as distinct Asian gypsy moth species, using both mitochondrial and nuclear sequence data. Syst. Entomol. 45, 493–504 (2020).
10. Djoumad, A. et al. Comparative analysis of mitochondrial genomes of geographic variants of the gypsy moth, Lymantria dispar, reveals a cryptic undescribed genotypic entity. Sci. Rep. 7, 14245 (2017).
11. Piqć, S. et al. Assessing the potential of genotyping-by-sequencing-derived single nucleotide polymorphisms to identify the geographic origins of intercepted gypsy moth (Lymantria dispar) specimens: A proof-of-concept study. Evol. Appl. 11, 325–339 (2018).
12. Keena, M. A., Côté, M.-J., Grinberg, P. S. & Wallner, W. E. World distribution of female flight and genetic variation in Lymantria dispar (Lepidoptera: Erebidae). Environ. Entomol. 45(1), 1–10 (2016).
13. Keena, M. A. & Richards, J. Y. Comparison of survival and development of gypsy moth Lymantria dispar L. (Lepidoptera: Erebidae) populations from different geographic areas on North American conifers. Insects 11(4), 260 (2020).
14. Keena, M. A., Wallner, W. E., Grinberg, P. S. & Cardé, R. T. Female flight propensity and capability in Lymantria dispar (Lepidoptera: Lymantriidae) from Russia, North America, and their reciprocal F1 hybrids. Environ. Entomol. 30, 380–387 (2001).
15. Keena, M. A., Grinberg, P. S. & Wallner, W. E. Inheritance of female flight in Lymantria dispar (Lepidoptera: Lymantriidae). Environ. Entomol. 2, 484–494 (2007).
16. Keena, M. A., Côté, M.-J., Grinberg, P. S. & Wallner, W. E. World distribution of female flight and genetic variation in Lymantria dispar (Lepidoptera: Erebidae). Environ. Entomol. 37(3), 636–649 (2008).
17. Yang, F., Luo, Y. & Shi, J. The influence of geographic population, age, and mating status on the flight activity of the Asian gypsy moth Lymantria dispar (Lepidoptera: Erebidae) in China. Appl. Entomol. Zool. 52, 265–270 (2017).
18. Baranchikov, Y. N. Ecological basis of the evolution of host relationships in Eurasian gypsy moth populations. In (Wallner, W. E., Yang, F., Luo, Y. & Shi, J. The influence of geographic population, age, and mating status on the flight activity of the Asian gypsy moth Lymantria dispar (Lepidoptera: Erebidae) in China. Appl. Entomol. Zool. 52, 265–270 (2017).
19. Shi, J., Chen, F. & Keena, M. A. Differences in wing morphometrics of Lymantria dispar (Lepidoptera: Erebidae) between populations that vary in female flight capability. Ann. Entomol. Soc. Am. 108, 528–535 (2015).
20. de Wardt, J. R. et al. Towards a global barcode library for Lymantria (Lepidoptera: Lymantriinae) tussock moths of biosecurity concern. PLoS ONE 12(11), e14280 (2010).
21. Chen, F. et al. DNA barcoding of gypsy moth from China (Lepidoptera: Erebidae) reveals new haplotypes and divergence patterns within gypsy moth subspecies. J. Econ. Entomol. 109, 366–374 (2016).
22. Yang, F. et al. A preliminary study on flight ability among Chinese population of Asian gypsy moth, Lymantria dispar. Chin. Agric. Sci. Bull. 28, 53–57 (2012) (in Chinese with English summary).
23. Tammaru, T. & Haukioja, E. Capital breeders and income breeders among Lepidoptera—Consequences to population dynamics. Oikos 77(3), 561–564 (1996).
24. Zhang, J. et al. Gypsy moth genome provides insights into flight capability and virus–host interactions. Proc. Nat. Acad. Sci. U.S.A. 116(5), 1669–1678 (2019).
25. McCormick, A. C. et al. Comparing the expression of olfaction-related genes in gypsy moth (Lymantria dispar) adult females and larvae from one flightless and two flight-capable populations. Front. Ecol. Evol. 5, 115 (2017).
26. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
27. Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951 (2019).
28. Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res. 49, D545–D551 (2021).
29. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
30. Hebert, P. O. et al. Expansion of LINEs and species-specific DNA repeats drives genome expansion in Asian Gypsy Moths. Sci. Rep. 9, 16413 (2019).
31. Sparks, M. E. et al. Sequencing, assembly and annotation of the whole-insect genome of Lymantria dispar, the European gypsy moth. G3 Genomes Genet. 11(8), kbb130 (2021).
32. Zuo, Y. et al. Microsatellite and morphological analyses reveal unexpected diversity in Lymantria dispar in China. Forests 10, 1100 (2019).
33. Mac Munn, C. A. Researches on myo haematin and the histo haematin. Philos. Trans. R. Soc. Lond. 177, 267–298 (1886).
34. Keilin, D. On cytochrome, a respiratory pigment, common to animals, yeast, and higher plants. Proc. R. Soc. Lond. B. 98, 312–339 (1925).
35. Watanabe, M. I. & Williams, C. M. Mitochondria in the flight muscles of insects. I. Chemical composition and enzymatic content. J. Gen. Physiol. 34, 675–689 (1951).
36. Levenbook, L. & Williams, C. M. Mitochondria in the flight muscles of insects III. Mitochondrial cytochrome c in relation to the aging and wing beat frequency of flies. J. Gen. Physiol. 39, 497–512 (1956).
37. Oliveira, P. L. & Oliveira, M. F. Vampires, Pasteur and reactive oxygen species. Is the switch from aerobic to anaerobic metabolism a preventive antioxidant defence in blood-feeding parasites? FEBS Lett. 525, 3–6 (2002).
38. Ferreira, C. G. D., Oliveira, M. P., Paes, M. C. & Oliveira, M. E. Modulation of mitochondrial metabolism as a biochemical trait in blood feeding organisms: The redox vampire hypothesis redux. Cell Biol. Int. 42, 683–700 (2018).
39. Johnson, C. G. Migration and dispersal of insects by flight (Methuen & Co. Ltd, London, 1969).
40. Rauhamäki, V., Wolfram, J., Jokiela, E., Hanksi, I. & Dahlhoff, E. P. Differences in the aerobic capacity of flight muscles between butterfly populations and species with dissimilar flight abilities. PLoS ONE 9, e78069 (2014).
41. Mitterboeck, T. F. et al. Positive and relaxed selection associated with flight evolution and loss in insect transcriptomes. GigaScience 6(10), 1–14 (2017).
42. Tiu, S. H. K. et al. Cloning and expression study of the lobster (Homarus americanus) vitellogenin: Conservation in gene structure among decapods. Gen. Comp. Endocrinol. 160, 36–46 (2009).
43. Zhang, T. et al. Molecular cloning of the vitellogenin gene and the effects of vitellogenin protein expression on the physiology of Harmonia axyridis (Coleoptera: Coccinellidae). Sci. Rep. 7, 13926 (2017).
44. Adamczyk Jr, J. J. et al. Sex-specific and hormone-controlled expression of a vitellogenin-encoding gene in the gypsy moth. Arch. Insect Biochem. Physiol. 31, 237–256 (1996).
45. Ge, S. et al. Potential trade-offs between reproduction and migratory flight in Spodoptera frugiperda. J. Insect Physiol. 132, 104248 (2021).
46. Taaman, J. W. The mitochondrial genome: Structure, transcription, translation and replication. Biochem. Biophys. Acta. 1410(2), 103–123 (1999).
47. Harrison, J. F. Gregarious locusts down-regulate muscular catabolic capacities yet fly far. PNAS 119(5), e2122086119 (2022).
48. Biologicallysidney.net. Actin and Myosin. https://biologicallysidney.net/actin-and-mysoin/. Accessed 7 Feb 2021 (2021).
50. USDA/APHIS/PPQ. Asian Gypsy Moth Survey and Response Guidelines. (USDA, 2014).
51. Cao, L. J., Yang, F., Tang, S. Y. & Chen, M. Development of an artificial diet for three Lepidopteran insects. *Chin. J. Appl. Entomol.* 51, 1376–1386 (2014).
52. Grabherr, M. G. *et al.* Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nat. Biotechnol.* 29, 644–652 (2011).
53. Smith-Unna, R. *et al.* TransRate: reference-free quality assessment of de novo transcriptome assemblies. *Genome Res.* 26, 1134–1144 (2016).
54. Li, W. & Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. *Bioinformatics* 22(13), 1658–1659 (2006).
55. Simão, F. A. *et al.* BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics* 31(19), 3210–3212 (2015).
56. Pertea, G. *et al.* TIGR gene indices clustering tools (TGICL): A software system for fast clustering of large EST datasets. *Bioinformatics* 19, 651–652 (2003).
57. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol.* 15(12), 550 (2014).
58. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. *Nat. Methods* 14(4), 417–419 (2017).
59. Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: Transcript-level estimates improve gene-level inferences. *F1000Research* 4, 1521 (2015).
60. Li, B. & Dewey, C. N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. *BMC Bioinform.* 12, 323 (2011).
61. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat. Methods* 9, 357–359 (2012).
62. Li, B., Ruotti, V., Stewart, R. M., Thomson, J. A. & Dewey, C. N. RNA-Seq gene expression estimation with read mapping uncertainty. *Bioinformatics* 26, 493–500 (2010).
63. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. *Nat. Methods* 12, 59–60 (2015).

Acknowledgements

We are grateful to the USDA Animal and Plant Health Inspection Service for providing European spongy moth eggs.

Author contributions

YW and JS conceived and designed the experiments; YW performed the experiments; YW and M.E.S. analyzed the data; YW, M.E.S. and R.L.H. wrote the paper. All authors reviewed the manuscript.

Funding

This research was funded in part by the National Natural Science Foundation of China (32171794).

Competing interests

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. The USDA is an equal opportunity provider and employer.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-18377-4.

Correspondence and requests for materials should be addressed to J.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022