Title
Hyperfine structure of Yb-173(+): Toward resolving the Yb-173 nuclear-octupole-moment puzzle

Permalink
https://escholarship.org/uc/item/6zn0g21x

Journal
PHYSICAL REVIEW A, 102(2)

ISSN
2469-9926

Authors
Xiao, Di
Li, Jiguang
Campbell, Wesley C
et al.

Publication Date
2020-08-14

DOI
10.1103/PhysRevA.102.022810

Peer reviewed
I. INTRODUCTION

While the size of an atomic nucleus is far too small to image its features directly with a microscope, the interaction of an atomic nucleus with electrons bound to it will leave signatures of the size and shape of the nucleus on the resulting atom in the form of hyperfine structure (HFS). In particular, P and T symmetries dictate that the distribution of protons leads to even-rank ($k=0, 2, 4, \ldots$) electric $2k$-pole moments (e.g., monopole, quadrupole, and hexadecapole) and the distribution of currents and magnetic moments leads to odd-rank ($k=1, 3, 5, \ldots$) magnetic moments (e.g., dipole, octupole, and 32-pole) that interact with the electrons to shift their energies. In this sense, when combined with accurate atomic structure calculations, a measurement of the HFS of an atom constitutes an electron scattering experiment on the nucleus that allows us to "see" the distribution of its nucleons by observing how these well-characterized electrons scatter from it.

In general, the dominant contributions to HFS come from (nuclear) magnetic dipole and electric quadrupole interactions. Presently, the nuclear magnetic dipole (μ) and electric quadrupole (Q) moments of most nuclei are well established (see e.g., compilation [1]). This is largely because the HFS signatures of higher-order moments only appear on electronic states with sufficiently high multiplicity ($2J \geq k$) and the magnitude of the energy shift tends to decrease with increasing rank k. The measurement of HFS signatures of high rank ($k \geq 3$) multipoles, therefore, requires a well-controlled atom in a high angular momentum state for precision and state of the art atomic structure theory for accuracy.

Here, we focus on the potential for measuring the rarely observed nuclear octupole ($\Omega, k=3$) and hexadecapole ($\Pi, k=4$) moments. These moments have been deduced for only a handful of nuclei and, in most cases, are in tension with nuclear theory (see Table II). For example, in 133Cs, the extracted Ω nuclear octupole moment is 40 times larger than the nuclear theory value. This paper is motivated by the even more substantial disagreement for 173Yb. Recently, Singh et al. [3] reported a measurement of the nuclear octupole moment from their measurements of HFS in the 3P_2 state of neutral 173Yb. However, this value $\Omega = -34.4 \pm 2.2$ b_{NN} is 10^5 times larger than the nuclear theory prediction, $\Omega = 0.003 b_{\text{NN}}$ [4]. This striking four orders of magnitude disagreement calls for an independent measurement and analysis. Here, we investigate the prospects for extracting Ω and higher rank nuclear multipoles moments of ytterbium-173 by a combined theoretical and experimental investigation of the hyperfine level splittings in the first excited state ($4f^{13}(^{2}F^o)6s^2$, $J = 7/2$) of 173Yb$^+$. We present results of atomic structure calculations in support of the proposed measurements.
and $\Omega(^{177}\text{Hf})/\Omega(^{179}\text{Hf})$.

Beyond octupole order, the hexadecapole moment Π has been spectroscopically determined for only one species: ^{165}Ho [11]. Access to the hexadecapole moments requires $J \geq 2$ and $I \geq 2$. For example, although ^{113}Cs nucleus has $I = 7/2$ and thereby possesses hexadecapole moment, this moment cannot be determined from the measured HFS of the $6P_{3/2}$ state [6]. This argument prohibits the extraction of nuclear hexadecapole moments from the structure of the states used to measure magnetic octupole moments for all but two exceptions in Table I ^{165}Ho and ^{173}Yb. The value for Π that was extracted from spectroscopic measurements in ^{165}Ho was found to be larger than the nuclear theory value by an order of magnitude [11]. In principle, one could extract Π from the measurements made by Singh et al. in neutral ^{173}Yb [3], but its contribution was neglected in that work. Here, in order to leverage the considerable experimental toolbox built around Yb^+ for quantum information applications, we evaluate the necessary electronic structure factors for $^{173}\text{Yb}^+$ needed to enable extraction of the hexadecapole moment of this isotope from future spectroscopic measurements.

The Yb^+ ground state hyperfine structure is among the most precisely measured and easiest to control of all the HFS in atomic physics owing to its neutron half-lives of 4.4×10^{14} and 4×10^{15} years, respectively [3]. Values of Ω have also been reported for about 20 additional nuclei from nuclear scattering experiments [3].

Isotope	I^+	Valence nucleon	Atomic state	Ω^{emp}	Ω^{th}
^{87}Rb	$7/2^-$	$p_{3/2}$, proton	$^2P_{3/2}$	-0.58	0.30
^{113}In	8^+	$g_{9/2}$, proton	$^2P_{3/2}$	0.574	0.99
^{115}In	8^+	$g_{9/2}$, proton	$^2P_{3/2}$	0.565	1.00
^{113}Cs	2^+	$g_{7/2}$, proton	$^2P_{3/2}$	0.82	0.022
^{137}Ba	9^+	$d_{5/2}$, neutron	$^2D_{3/2}$	-0.0629	0.039
^{155}Gd	10^+	$p_{3/2}$, neutron	$^2D_{5/2}$	-1.66	-0.29
^{165}Ho	11^+	$f_{7/2}$, proton	$^4I_{15/2}$	0.75	1.0
^{173}Yb	3^+	$f_{5/2}$, neutron	$^3P_{2}$	-34.4	0.15

$^2F_{7/2}$ electronic state of $^{171}\text{Yb}^+$ lives for years, and the E3 transition on $^2S_{1/2} \leftrightarrow ^2F_{7/2}$ is used as an optical frequency standard [21], where hyperfine structure within these states allows control of systematics. Some of the current best limits on the time variation of fundamental constants are based on precision measurements between specific hyperfine components of this E3 transition [22, 23].

As the experimental progress with this species continues to achieve higher accuracy and precision [21, 24], theoretical work is needed in parallel with these improvements to understand contributions to systematics. The values of hyperfine constants A and B for $^{171}\text{Yb}^+$ and $^{173}\text{Yb}^+$ in the $^2F_{7/2}$ state are also given in Ref. [26], and are used as a comparison to our values.

The paper is organized as follows. In Sec. II we review the theory of hyperfine structure. Based on this general theory, we derive the first- and second-order corrections to the HFS of $^{173}\text{Yb}^+$ in the first excited state. In Sec. IV we compute $^{173}\text{Yb}^+$ electronic-structure factors required for extracting nuclear moments. We discuss the importance of correlation effects in Sec. IV B. Finally, we estimate theoretical accuracy and consider its implications on the extraction of octupole and hexadecapole moments in Sec. VII. Unless specified otherwise, atomic units are used throughout.

II. REVIEW OF THE THEORY OF HYPERFINE STRUCTURE

The hyperfine interaction can be decomposed into the magnetic dipole (M1), electric quadrupole (E2), magnetic octupole (M3), electric hexadecapole (E4), and higher rank contributions. We start by expressing the hyperfine Hamiltonian in irreducible tensor form [5, 27]

$$H_{\text{HFI}} = \sum_{k,\mu} (-1)^{l} T_{k,\mu}^{e} T_{k,-\mu}^{n},$$

(1)

where rank-k tensors $T_{k,\mu}^{e}$ act in the electron space, and $T_{k,-\mu}^{n}$ — in the nuclear space. The many-electron operators are $T_{k,\mu}^{e} = \sum_{i} T_{k,\mu}^{e}(i)$, where the summation is over all the atomic electrons. The single-electron operators $t_{k,\mu}^{e}(i)$ can be divided into two groups [27]

$$t_{k,\mu}^{e}(i) = \begin{cases} \frac{-1}{r^{k+1}} C_{k,\mu}(\hat{r}), & \text{electric (even k)}, \\ \frac{1}{r^{k+1}} \sqrt{k+1} \alpha \cdot C_{k,\mu}^{(0)}(\hat{r}), & \text{magnetic (odd k)}. \end{cases}$$

(2)

Here, α is the Dirac matrix, r is the radial coordinate, $C_{k,\mu}$ are normalized spherical harmonics, and $C_{k,\mu}^{(0)}$ are normalized vector spherical harmonics.
The first-order energy correction due to hyperfine interaction, Eq. (1), in the basis of coupled nuclear and atomic states is

$$W^{(1)}_F = \langle \gamma I J FM_F | H_{HFI} | \gamma I J FM_F \rangle = (-1)^{I + J + F} \times \sum_k \left\{ \begin{array}{ccc} F & J & I \end{array} \right\} \langle \gamma J || T_k^\gamma || \gamma J \rangle \langle I || T_k^I || I \rangle ,$$

where I is the nuclear spin, J is the total electronic angular momentum, F is the grand total angular momentum $F = J + I$, and γ stands for remaining quantum numbers.

The first-order energy corrections are conventionally expressed as linear combinations of HFS constants $A, B, C, D, \ldots (k=1,2,3,4,\ldots)$. The first four constants are defined as

$$A = \frac{1}{173} \langle T_1^\gamma || J || T_1^\gamma \rangle J ,$$

$$B = 4 \langle T_2^\gamma || J || T_2^\gamma \rangle J = 2Q \langle T_2^\gamma \rangle J ,$$

$$C = \langle T_3^\gamma || J || T_3^\gamma \rangle = -\Omega \langle T_3^\gamma \rangle J ,$$

$$D = \langle T_4^\gamma || J || T_4^\gamma \rangle = \Pi (T_4^\gamma) J .$$

Here, the stretched matrix element $\langle T_k^\gamma || J || T_k^\gamma \rangle$ is defined as

$$\langle T_k^\gamma || J || T_k^\gamma || J \rangle = \left(\begin{array}{cc} J & k \\ -J & 0 \end{array} \right) \langle \gamma J || T_k^\gamma || \gamma J \rangle .$$

Nuclear stretched matrix elements are proportional to the nuclear moments: $\langle T_1^\gamma || J || T_2^\gamma \rangle = Q/2$, $\langle T_3^\gamma || J || T_3^\gamma \rangle = -\Omega$, and $\langle T_4^\gamma || J || T_4^\gamma \rangle = \Pi$.

The second-order energy correction due to hyperfine interaction reads

$$W^{(2)}_F = \sum_{\gamma', J'} \frac{\langle \gamma I J FM_F | H_{HFI} | \gamma' I J' FM_F \rangle \langle \gamma I J FM_F | H_{HFI} | \gamma I J FM_F \rangle}{E_{\gamma J} - E_{\gamma' J'}} .$$

This equation reduces to

$$W^{(2)}_F = \sum_{\gamma', J'} \frac{1}{E_{\gamma J} - E_{\gamma' J'}} \sum_{k_1,k_2} \left\{ \begin{array}{ccc} I & J & F \\ J' & I & k_1 \end{array} \right\} \left\{ \begin{array}{ccc} I & J & F \\ J' & I & k_2 \end{array} \right\} \times \langle I || T_k^\gamma || I \rangle \langle I || T_k^\gamma || I \rangle \langle \gamma J || T_k^\gamma || \gamma J' \rangle \langle \gamma J || T_k^\gamma || \gamma J' \rangle ,$$

where primed quantities refer to intermediate states; $E_{\gamma J}$ and $E_{\gamma' J'}$ are the HFI-unperturbed energy levels.

Based on the general theory, in the next section we investigate the hyperfine structure of 173Yb$^+$ in the first excited state.

III. HYPERFINE STRUCTURE OF Yb$^+$ IN THE FIRST EXCITED STATE

The first excited state of Yb$^+$ has the electronic configuration $4f^{13}(2p^6)6s^2$ with electronic angular momentum J equal to 7/2. Since 173Yb has nuclear spin of 5/2, the grand total angular momentum F is an integer in the interval $[1,6]$. The 173Yb isotope possesses five distinct nuclear electromagnetic moments. The nucleus has an unpaired valence neutron in the $f_{5/2}$ state. The observed 1 nuclear magnetic dipole μ and electric quadrupole moments Q are equal to $-0.680 \mu_N$ and 2.80 b2, respectively. The nuclear single-particle shell model is not adequate for this isotope as it predicts zero value for the quadrupole moment (the valence nucleon is a neutron for this isotope, whereas the electric moments arise from the distribution of protons in the core). This discrepancy points to a strong nuclear deformation of 173Yb. Following the theoretical proposal [28], the value for the octupole moment was deduced from the

HFS in neutral 173Yb atom in the metastable $6s6p^3P_2$ state. However, the deduced value, $\Omega = -34.4 b \times \mu_N$, is ~ 200 times larger and of opposite sign compared to the prediction of the single-particle nuclear shell model [29].

A more sophisticated nuclear structure calculation [4] (axially-symmetric collective model in strong coupling) yields $\Omega = 0.003 b \times \mu_N$, bringing the discrepancy with the spectroscopic determination in neutral Yb to four orders of magnitude. As to the electric hexadecapole moment Π, the single-particle nuclear shell model again predicts zero (similar to Q) because the valence nucleon is electrically neutral. We are not aware of any nuclear structure calculations for Π of 173Yb. We estimate $\Pi \approx Q^2 \approx 9 b^2$ as both Q and Π arise due to nuclear deformation; we will take this value as fiducial in further computations.

From Eqs. (4) and (5), we obtain the following first-order energy corrections,

$$W_6^{(1)} = \frac{35}{4} A + \frac{1}{4} B + C + D ,$$

$$W_5^{(1)} = \frac{11}{4} A - \frac{37}{140} B - \frac{109}{35} C - \frac{41}{7} D ,$$

$$W_4^{(1)} = -\frac{9}{4} A - \frac{3}{10} B + \frac{46}{35} C + 12 D ,$$

$$W_3^{(1)} = -\frac{25}{4} A - \frac{1}{14} B + \frac{22}{7} C - \frac{44}{7} D ,$$

$$W_2^{(1)} = -\frac{37}{4} A + \frac{1}{4} B + \frac{11}{35} C - 11 D ,$$

$$W_1^{(1)} = -\frac{45}{4} A + \frac{15}{28} B - \frac{33}{7} C + \frac{99}{7} D .$$

The second-order corrections are computed from Eqs. (6) and (7), where we keep magnetic dipole and electric quadrupole contributions. To streamline the nota-
tion, we introduce dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole constants. These are defined for individual intermediate states $|\gamma'J'\rangle$.

$$
\eta_{\mu\nu}[\gamma'J'] = \frac{(I+1)(2I+1)\mu^2(J|T_I^\mu||\gamma'J')^2}{I^2 E_{\gamma J} - E_{\gamma'J'}},
$$

$$
\eta_{\mu Q}[\gamma'J'] = \frac{(I+1)(2I+1)}{I^2} \sqrt{\frac{2I+3}{2I-1}} \times \frac{\mu Q(J|T_I^\mu||\gamma'J')(J|T_I^\mu||\gamma'J')}{E_{\gamma J} - E_{\gamma'J'}},
$$

$$
\eta_{QQ}[\gamma'J'] = \frac{(2I+1)(I+1)(2I+3)}{4I(2I-1)} Q^2(J|T_I^\mu||\gamma'J')^2}{E_{\gamma J} - E_{\gamma'J'}},
$$

Eq. (6) shows that we need to sum over all possible intermediate states obeying both the parity and the angular selection rules - that is, the parity of the $|\gamma J\rangle$ and $|\gamma'J'\rangle$ states has to be the same and $|J + J'| \geq k \geq |J - J'|$. Thus, for dipole-dipole and dipole-quadrupole terms, there are three possible J' values, while for quadrupole-quadrupole term, there are five possible J' values. Among the $|\gamma'J'\rangle$ intermediate states, the dominant contribution comes from the configuration $4f^{13}(2F^\omega)6s^2$ with $J = 5/2$. The electronic matrix elements of other possible intermediate states are small enough to be neglected, or the energy denominators are large. With the single intermediate state fixed, we rewrite Eq. (6) as

$$
W_F^{(2)} \approx C_{\mu\nu}[J',F] \times \eta_{\mu\nu}[\gamma'J'] + C_{\mu Q}[J',F] \times \eta_{\mu Q}[\gamma'J'] + C_{QQ}[J',F] \times \eta_{QQ}[\gamma'J'],
$$

where the angular factors are

$$
C_{\mu\nu}[J',F] = \left\{ \begin{array}{c} J \ J \ I \\ J' \ I \ 1 \end{array} \right\}^2,
$$

$$
C_{\mu Q}[J',F] = \left\{ \begin{array}{c} J \ J \ I \\ J' \ I \ 1 \end{array} \right\} \left\{ \begin{array}{c} I \ J \ F \\ J' \ I \ 2 \end{array} \right\},
$$

$$
C_{QQ}[J',F] = \left\{ \begin{array}{c} J \ J \ I \\ J' \ I \ 2 \end{array} \right\}^2.
$$

Adding the first-order, Eq. (7) and second-order, Eq (9), corrections for individual hyperfine levels, we arrive at

$$
W_6^{(1+2)} = W_6^{(1)} + 0 \times \eta_{\mu\nu} + 0 \times \eta_{\mu Q} + 0 \times \eta_{QQ},
$$

$$
W_5^{(1+2)} = W_5^{(1)} + \frac{1}{98} \eta_{\mu\nu} + \frac{\sqrt{3}}{98} \eta_{\mu Q} + \frac{5}{588} \eta_{QQ},
$$

$$
W_4^{(1+2)} = W_4^{(1)} + \frac{11}{882} \eta_{\mu\nu} + 0 \times \eta_{\mu Q} + 0 \times \eta_{QQ},
$$

$$
W_3^{(1+2)} = W_3^{(1)} + \frac{1}{98} \eta_{\mu\nu} - \frac{\sqrt{3}}{49} \eta_{\mu Q} + \frac{4}{735} \eta_{QQ},
$$

$$
W_2^{(1+2)} = W_2^{(1)} + \frac{3}{490} \eta_{\mu\nu} - \frac{3}{70} \eta_{\mu Q} + \frac{1}{100} \eta_{QQ},
$$

$$
W_1^{(1+2)} = W_1^{(1)} + \frac{1}{441} \eta_{\mu\nu} - \frac{1}{49} \eta_{\mu Q} + \frac{3}{490} \eta_{QQ}.
$$

Experimentally relevant quantities are the HFS energy intervals $\Delta W_F = W_{F+1} - W_F$. Explicitly,

$$
\Delta W_5^{(1+2)} = 6A + \frac{18}{35} B + \frac{144}{35} C + \frac{48}{7} D - \frac{1}{98} \eta_{\mu\nu} - \frac{1}{98} \sqrt{\frac{5}{6}} \eta_{\mu Q} - \frac{5}{588} \eta_{QQ},
$$

$$
\Delta W_4^{(1+2)} = 5A + \frac{1}{28} B - \frac{31}{7} C - \frac{125}{7} D - \frac{1}{98} \eta_{\mu\nu} - \frac{1}{98} \sqrt{\frac{5}{6}} \eta_{\mu Q} + \frac{5}{588} \eta_{QQ},
$$

$$
\Delta W_3^{(1+2)} = 4A - \frac{8}{35} B - \frac{64}{35} C + \frac{128}{7} D + \frac{1}{49} \eta_{\mu\nu} + \frac{1}{49} \sqrt{\frac{2}{15}} \eta_{\mu Q} - \frac{4}{735} \eta_{QQ},
$$

$$
\Delta W_2^{(1+2)} = 3A - \frac{9}{28} B + \frac{99}{35} C + \frac{33}{7} D + \frac{1}{245} \eta_{\mu\nu} + \left(\frac{1}{70} \sqrt{\frac{3}{10}} - \frac{1}{49} \sqrt{\frac{2}{15}} \right) \eta_{\mu Q} - \frac{67}{14700} \eta_{QQ},
$$

$$
\Delta W_1^{(1+2)} = 2A - \frac{2}{7} B + \frac{176}{35} C - \frac{176}{7} D + \frac{17}{4410} \eta_{\mu\nu} + \left(\frac{1}{49} \sqrt{\frac{3}{10}} - \frac{1}{70} \right) \eta_{\mu Q} + \frac{19}{4900} \eta_{QQ}.
$$

To determine the HFS constants $A, B, C,$ and D from experimental measurements of ΔW_F, in Sec. IV we com-
pute the second-order corrections. Further, to find the values of nuclear octupole and hexadecapole moments from C and D we need electronic form-factors; these are also computed in Sec. IV. We neglect contributions of one remaining HFS constant E arising from the 2^s-pole nuclear magnetic moment. This contribution is expected to be strongly suppressed compared to the contribution of the octupole moment (see Sec. IV).

IV. CALCULATIONS OF ELECTRONIC STRUCTURE FACTORS

A. Dirac-Hartree-Fock calculations

Yb$^+$ ion in the first excited state contains thirteen $4f$ electrons and two $6s$ electrons. In this section, we start our calculation of the electronic wave functions by employing the frozen core Dirac-Hartree-Fock (DHF) approximation. In this approximation, we compute the DHF orbitals of the Yb$^{III} \left(\left[Xe\right]4f^{13}\right)$ core. Then the valence (outside the $\left[Xe\right]4f^{14}$ core) orbitals are computed using the DHF potential of the core. The many-body wave function $\psi_{J,M}$ can be approximated as

$$\langle \psi_{J,M} | \frac{1}{2}(-1)^{7/2-M} \times \sum_m (-1)^{m-1/2} a_{6s_{1/2}}^a a_{6s_{1/2},-m}^b a_{4f_{7/2},-M}^e | 0_e \rangle,$$

(13)

where $a_{6s_{1/2}}^a$ are creation operators with magnetic quantum number m equal to either $-1/2$ or $1/2$, $a_{4f_{7/2},M}^e$ is an annihilation operator for the $4f_{7/2}$ orbital, and $|0_e\rangle$ represents the $\left[Xe\right]4f^{14}$ core. The phase factor $(-1)^{7/2-M}$ is generated after moving the hole operator from the core state $|0_e\rangle$. The two $6s_{1/2}$ orbitals are coupled so that the $6s^2$ valence shell has zero value of angular momentum. Using Wick’s theorem, we write the matrix element (2) in the multi-electron state as an expectation value in the hole orbital (see Appendix A for derivation)

$$\langle \psi_{J,M} | T_{k,\mu}^c | \psi_{J,M} \rangle = -\langle \phi_{J,-M} | T_{k,\mu}^c | \phi_{J,-M} \rangle,$$

(14)

where $|\phi_{J,-M}\rangle$ represents the $4f_{7/2}$ hole orbital with J and $-M$ being the electron’s angular momentum and magnetic quantum number. The electronic tensors $T_{k,\mu}^c$ are given by Eq. (11). In Appendix A we show that the reduced matrix elements are related as

$$\langle \psi_J | T_{k,\mu}^c | \psi_J \rangle = (-1)^{k+1} \langle \phi_J | T_{k,\mu}^c | \phi_J \rangle,$$

(15)

with reduced matrix elements specified in Appendix B.

The transition from a multi-electron state to the single-electron hole orbital greatly simplifies our calculation since it only requires the one-electron $4f_{7/2}$ orbital, which can be easily obtained self-consistently with the DHF method. Our computed values of the first- and second-order hyperfine constants are listed in the first row of Table II.

B. Electron correlation effects

We employ the multi-configuration Dirac-Hartree-Fock (MCDHF) method [31, 32] to capture the main electron correlations in the Yb$^+$ ion. In this approach, an atomic state wave-function (ASF) is represented as a linear combination of configuration state functions (CSFs) with the same parity, total angular momentum, and its component along the quantization axis. The CSFs are generated by single (S) and double (D) substitutions of orbitals occupied in the reference configurations with virtual orbitals. The reference configurations constitute the dominant CSFs of the ASF concerned. The MCDHF calculation starts from the optimization on occupied orbitals in the reference configurations. By contrast to Sec IV A, all of these orbitals are generated in the self-consistent field procedure. Virtual orbitals are augmented layer by layer in order to monitor the convergence of level energies and other atomic properties. Each layer includes orbitals with different angular symmetries. In addition, only the virtual orbitals in the latest added layer are variable. The details of computational strategies can be found in Ref. [33, 34].

In our calculations, we adopt the extended optimal level (EOL) scheme to optimize the two states of the $\left[Xe\right]4f^{13}6s^2$ configuration simultaneously. The electron correlations in the $4f$ and $6s$ valence subshells and the correlations between electrons in the valence and $n = 3, 4$ core subshells were accounted for by CSFs generated by the SD replacement of the $n \geq 3$ occupied orbitals in the reference configuration with the virtual orbitals. The double replacements were restricted to only a single electron of the core subshells being promoted into the virtual orbitals at a time. The final set of virtual orbitals is composed of five orbitals per each of the s, p, d, f, g, h, i angular momenta. The magnetic octupole and electric hexadecapole hyperfine interaction constants were calculated by an extended version [35] of the HFS92 code [36] based on the GRASP package [37]. Our results, labelled as MCDHF, are presented in Table II.

C. Evaluation of theoretical uncertainties

We start with a comparison of our computed values for A and B HFS constants with the previously published results and then assess our theoretical accuracy. Comparing our computed values (see Table I) with theoretical values by Dzuba and Flambaum [24], we observe that our A values match, while there is a roughly 10% discrepancy in values of B. Itano (cited in Ref. [30]) has previously computed the A and B constants for the $4f^{13}6s^2\ (J = 7/2)$ state in $^{171}\text{Yb}^+$ and $^{173}\text{Yb}^+$. Itano has also used the MCDHF method, but his results are markedly different from ours. Since there are no details of calculations given in Ref. [30], it is difficult to assess the reasons for this difference. We, however, point out that our MCDHF results are in a
better agreement with experimental values. For example, the deviation is about 20% between his result and the experimental value $A^{(171\text{Yb})} = 905$ MHz \[38\]. Multiplying our A constant for ^{173}Yb by the ratio $\mu^{(171\text{Yb})}/I^{(173\text{Yb})}/\mu^{(173\text{Yb})}/I^{(171\text{Yb})}$, we obtained $A = 882$ MHz for ^{171}Yb, which differs from the measurement \[38\] by only 3%.

Based on these comparisons we conservatively estimate the uncertainty of our MCDHF calculations to be $\sim 10\%$ for the magnetic dipole and electric quadrupole hyperfine interaction constants. This estimate is also consistent with that of Ref. \[26\], where they claimed a similar 10% theoretical uncertainty for these two constants using a different computational method. We assign a 10% theoretical uncertainty to the D constant due to its stable convergence trend with the increasing size of the virtual orbital set. However, it is difficult to evaluate the theoretical uncertainty for the C/Ω constant since it strongly depends on the computational model, as discussed below. We are, however, confident in the sign and order of magnitude of this octupole constant.

The magnetic octupole HFS constant has proven to be sensitive to the electron correlations, as they flip the sign of the DHF result. We systematically investigated the dependence of the calculated C/Ω values on the size of computational model space, see Table \[III\]. For example, in this table, the results in the “no opened subshells” row demonstrate the effect of correlation between electrons in the valence subshells. Because the octupole coupling operator has high multiplicity (tensor of rank 3) and we are interested in the properties of the $l = 3$ f-state hole, we include up to $l = 6$ virtual orbitals in each layer. The results including the valence-valence correlation show a good convergence pattern (first row of Table \[III\]). However, the convergence pattern worsens when we start including core-valence correlations by opening core subshells (columns of Table \[III\]). While the results show some degree of convergence, results from an even larger model space would have been more conclusive. Unfortunately, the largest computation model that we employed already pushes the limits of computational power at our disposal. Considering the convergence trends of Table \[III\] we believe that the sign and the order of magnitude of the computed C/Ω constant would not change with increasing model space. We carried out additional convergence tests that support this conclusion. For example, trends in Table \[III\] indicate that opening the $3p$ and $4p$ subshells substantially modify the result; so it is plausible that opening the subshell of the same angular momentum, $2p$ subshell, might modify the result further. To test this hypothesis, we opened the $2p$ subshell for a small model space and found this effect to be negligible. We take the result obtained with the largest model space as our final value, $C/\Omega = -6 \times 10^{-4}$ MHz/(b $\times \mu_N$).

As to the second-order corrections η_i, these are proportional to various products of electronic matrix elements of magnetic-dipole and electric-quadrupole hyperfine interactions. Based on our accuracy estimates for A and B, we conservatively assign $\sim 10\%$ theoretical uncertainty to each matrix element. Thereby, we expect $a \sim 10\%$ theoretical uncertainty in the second-order HFS constants. In addition, the second-corrections contain summation over intermediate states; in our calculations we truncated the entire sum to a single contribution from the lowest-energy $F_3/2$ state. We examined contributions from other 12 lowest-energy intermediate states and found that $\eta_{\mu\mu}$, $\eta_{\mu Q}$, $\eta_{Q Q}$ are modified by less than 4%, 8%, and 20%, respectively. Thus the overall theoretical uncertainty in second-order corrections is in the order of 10%.

V. PROJECTED EXPERIMENTAL ACCURACY

A. Experimental Procedure

The measurement of the hyperfine intervals ΔW_i of $^{173}\text{Yb}^+ (2F_{7/2})$ can be accomplished via microwave Ramseysory spectroscopy on a single trapped ion. A pure state can be prepared by beginning with optical pumping on the narrow-band (E2) $2D_{5/2} \leftrightarrow 2S_{1/2}$ transition at 411 nm, which will spontaneously decay mainly to $2F_{7/2}$ via the allowed E1 transition at $\lambda = 3.4$ μm. By restricting the E2 transition to drive only $2D_{5/2}(F = 0) \leftrightarrow 2S_{1/2}(F = 2)$, the $F = 1$ hyperfine level in $2F_{7/2}$ will be populated. Following this optical pumping step, resonant microwaves can be used to drive 2 \leftrightarrow 1 at ≈ 1 GHz, followed by de-shelving of the remaining $F = 1$ population in $2F_{7/2}$.
back to $^2S_{1/2}$ via the E2 transition $^3(3/2)_3^{\circ} \leftrightarrow ^2F_{7/2}$ at $\lambda = 760$ nm. An ion in the ground state can be distinguished from a $^2F_{7/2}$ ion via the appearance or lack of laser-induced fluorescence on $^2P_{1/2} \leftrightarrow ^2S_{1/2}$. By observing how the microwave resonance frequency depends upon the magnetic field in the trap, the $M_F = 0 \leftrightarrow 0$ transition can be isolated, permitting preparation of the $^2F_{7/2}(F = 2, M_F = 0)$ single quantum state. From there, stepwise microwave excitation through the hyperfine structure can be used to complete the spectroscopy. In all cases, read-out is accomplished by observing whether the 760 nm transition de-shelved the ion back to the ground state manifold.

Table III. Values of C/Ω (in units of kHz/(h $\times \mu_B$)) as a function of the MCDHF computational model space. The columns present the trend with opening successively deeper core subshells: the first row has no core subshells opened, while the last row lists results with the $3s^3p^6d^4s^4$ core subshells opened. The rows compile values obtained by increasing numbers of virtual orbitals. N^{th} layer includes N virtual orbitals for each of the s, p, d, f, g, h, i angular symmetries. For example, the 1st layer includes one virtual orbital for each $l \in [0, 6]$, i.e. 7 orbitals in total. The value marked in bold was obtained with the largest model space.

no opened subshells	1st layer	2nd layer	3rd layer	4th layer	5th layer
$5s$	0.578	0.630	0.649	0.652	0.652
$+5p$	1.692	2.857	3.265	2.708	2.646
$+4d$	2.453	3.633	3.360	3.439	3.366
$+4p$	1.986	3.072	2.778	2.522	2.749
$+4s$	2.014	2.823	2.148	1.904	1.685
$+3d$	2.239	3.126	2.380	2.058	1.792
$+3p$	2.131	2.956	2.173	1.822	1.541
$+3s$	2.007	2.208	0.941	0.276	−0.198
0	1.932	2.037	0.688	−0.040	−0.558

C. Accuracy

The potential systematic effects that are expected for this system can be divided into those that will be common to measurements of ground state splittings, and those that are unique to the $^2F_{7/2}$ state. The former group includes the nonlinear Zeeman shifts from static magnetic fields, differential Stark shifts from the trap fields, blackbody and time-dilation shifts, off-resonant shifts of the levels being measured due to the microwave probe field, and hyperfine-induced third-order corrections [28]. Since ground-state splittings have been measured below the target precision of 1 Hz for many years [14, 41], the techniques to avoid effects such as these have already been demonstrated and are expected to be sufficient for reaching the comparatively modest target accuracy of 1 Hz. In particular, taking the expected zero-field splittings from the coefficients in Table II suggests that the largest second- and fourth-order Zeeman shifts will be on the $F = 4 \leftrightarrow 3$ transition, which will contribute a systematic shift of less than 1 Hz at $B_0 = 5$ mG.

For systematics that are unique to the $^2F_{7/2}$ state, the largest is anticipated to be the energy shifts from the electronic electric quadrupole interacting with static electric field gradients in the trap. The diagonal contributions to the shifts are given by

$$E_{F,M_F}^{(c, q)} = -e \sum_{\mu} T_{2, \mu} (\nabla \mathbf{E}) \langle \gamma I J F | T_{2, -\mu}(\Theta) | \gamma I J F \rangle$$

$$= -e T_{2,0} (\nabla \mathbf{E}) \frac{2(3M_F^2 - F(F + 1))}{\sqrt{(2F + 3)(2F + 2)(2F + 1)2F(2F - 1)}} \times (-1)^{I} \left\{ \begin{array}{ccc} J & F & I \\ F & J & 2 \end{array} \right\} \Theta(J, J),$$

where the quadrupole moment has been measured to be $\Theta(2F_{7/2}) = -0.041(5) a_0^2$ [41]. These contribute sub-Hz
shifts for an electric field gradient of 1 kV/cm², which is significantly larger than the gradient in our current trap. There are also potentially, off-resonant shifts due to the Paul trap’s radiofrequency drive if pairs of states happen to be split by a frequency near the rf drive, in which case the rf drive frequency may need to be changed. We are therefore not aware of any barriers to achieving a precision of 1 Hz for this measurement.

VI. DISCUSSION

Equations (12) provide the relationship between the 5 quantities that will be measured experimentally (the \(\Delta W_F^{(1+2)} \) and the 7 parameters to be determined, \(A-D \) and the \(\eta_{mn} \)). However, since all of the terms included in our model are tensors of rank \(k \leq 4 \), there is a degeneracy in Eqs. (12) and a proper linear combination of any four of the measurements can be used to predict the fifth. While this reduces the number of experimentally determined quantities to \(k_{\text{max}} = 4 \), it will provide a test of the model presented above and way to detect and reject systematic effects in the experiment.

Within the 3 second order terms (\(\eta_{mn} \)), since the energy difference between the \(^2F_{7/2} \) and \(^2F_{5/2} \) states is known, if we assume that these are the only terms that contribute, they contain only 2 unknowns: \(\mu(\gamma J||T_o||\gamma J') \) and \(Q(\gamma J||T_2^o||\gamma J') \). Further, the coefficient \(A \) can be determined from existing experimental data [14, 58, 40].

\[
A_{2^{F_7/2}} = \frac{A_{2^{F_7/2}}}{S_1/2} = \frac{A_{2^{F_5/2}}}{S_1/2} = -250 \text{ MHz.} \tag{17}
\]

Here, we have extracted \(A_{2^{F_7/2}} \) from the measured energy splitting \(\Delta W_3^{(173)} = 3.620 \text{ GHz} \) via

\[
A_{2^{F_7/2}} = \frac{\Delta W_3^{(173)}}{4} + \frac{1}{144} \left(\frac{\mu^{(171)}}{\mu^{(173)}} \right) ^2 \eta_{\mu \mu} \approx \frac{\Delta W_3^{(171)}}{4} \tag{18}
\]

and therefore neglected the contribution (tens of Hz) of the second order correction to the hyperfine splitting of \(^{171}\text{Yb}^+ \) (\(^2F_{7/2} \)) since it is not expected to contribute at the current level of experimental precision. This term should of course be included in a full treatment when experimental precision reaches the 100 Hz level, and adding it does not increase the number of unknowns in the system of equations (12). The two ground state \(A \) coefficients in (17) are known to sub-Hz precision [14, 40], and the limiting measurement is \(\Delta W_i^{(171)} \), the \(^2F_{7/2} \) HFS splitting in \(^{171}\text{Yb}^+ \) [58]. Using essentially the same procedure as described below, this splitting in \(^{171}\text{Yb}^+ \) can be measured to the same precision (if not better) than the \(\Delta W_i \) in \(^{173}\text{Yb}^+ \). This leaves Eqs. (12) with 5 unknowns (\(B, C, D, \mu(\gamma J||T^o_1||\gamma J') \), and \(Q(\gamma J||T_2^o||\gamma J') \)).

Because the experimental uncertainty can reach \(\sim 1 \text{ Hz} \), we expect that the dominant error in extracting first-order HFS constants is due to theoretical uncertainty in the second-order corrections \(\eta_X \) (see Sec. IV.C; one of the possibilities is to determine the second-order corrections directly from the experimental data, but the system of effectively 4 equations and 5 unknowns here will not allow unambiguous extraction of all 5 unknown parameters.

Instead, we solve Eqs. (12) for the first four HFS splittings \(\Delta W_F \) for the HFS constants, \(A, B, C, \) and \(D \). Each of the resulting equations contains a contribution from the second-order corrections. In particular, the induced variation in \(D \) is \(\delta D \approx 3.4 \times 10^{-3} \delta \eta_{QQ} \). As discussed in Sec. III, the fiducial value of the hexadecapole moment \(\Pi \sim 9 \text{ m}^2 \), leading, in combination with results in Table III to the expected value of \(\delta D \approx 2 \text{ kHz} \). Since \(\delta \eta_{QQ} \approx -200 \text{ kHz} \), even a 100% error in \(\eta_{QQ} \) would lead to only 3% error in the estimated value of \(D \).

The induced uncertainty in \(C \) is more involved: \(\delta C = -1.6 \times 10^{-3} \delta \eta_{QQ} + 8.9 \times 10^{-4} \delta \eta_{QQ} \). If we assume a 10% error in both \(\eta_{QQ} \) and \(\eta_{QQ} \) per Sec. IV.C, then the induced uncertainty in \(C \) is 30 Hz. Meanwhile, the expected values of \(C \) depends substantially on the assumed value of the octupole moment \(\Omega \). If we take \(\Omega \) from the spectroscopic determination [3] in neutral Yb, the resulting value of \(C \approx 21 \text{ kHz} \); the nuclear shell model value of \(\Omega \) (see Table I) yields \(C \approx 90 \text{ kHz} \), and the more sophisticated nuclear model [4] reduces \(C \) to 2 Hz. It is clear that for the latter case the uncertainties in the second order correction would mask the contribution of \(C \) to the hyperfine splittings and only an upper limit on \(\Omega \) can be placed. In such a scenario, one could still determine \(D \) and extract the hexadecapole moment, as the value of \(D \) is several orders of magnitude larger than \(C \).

Given that the well-controlled electronic structure of the \(^2F_{7/2} \) state of \(\text{Yb}^+ \) should allow for the extraction of measurable, high-order spectroscopic multipole moments, it is possible that even finer detail may be possible. While nuclear theory suggests that the magnetic multipole moments may be difficult to discern, the electric moments from deformed cores appear straightforward to measure. In particular, the radioactive \(^{169}\text{Yb} \) nuclide has spin \(I = 7/2 \) and a half-life of \(\approx 32 \text{ days} \), suggesting that precision spectroscopy of the \(^2F_{7/2} \) state of \(^{169}\text{Yb}^+ \) may reveal signatures of its electric 64-pole moment. The calculation of more 2nd-order correction terms as well as 3rd-order corrections would be required to extract this moment from the data, but we see no fundamental barriers to future studies along these lines.

ACKNOWLEDGMENTS

We would like to thank V. Dzuba for discussions. This work was supported in part by the U.S. National Science Foundation (Award Numbers 1912555 and 1912465). JGL is grateful to the University of Nevada, Reno for

\[\begin{align*}
\text{R} & \text{A} \text{U} \text{N} \\
\text{A} \text{S} & \text{T} \text{E} \text{N} \\
\text{S} & \text{S} \text{O} \text{K} \end{align*}\]
Appendix A: Relation between multi-electron and single-electron matrix elements

In this Appendix, we prove Eqs. (14) [15].

The operator \(T_{k,\mu}^e \) in the second quantized form reads [42]

\[
T_{k,\mu}^e = \sum_{i,j} a_{\mu}^i a_j : (i| \epsilon_{k,\mu}^e |j) ,
\]

(A1)

where \(i \) and \(j \) represent either core or virtual orbitals, \(\langle i| \epsilon_{k,\mu}^e |j \rangle \) is the matrix element, and \(: a_{\mu}^i a_j : \) are products of creation and annihilation operators in the normal form. We would like to evaluate the expectation value of the operator in Eq. (A1) in the many-body state \(|\psi_{j,M}\rangle \), Eq. (13). The intermediate result for the expectation value can be obtained using the Wick’s theorem [42],

\[
\langle 0| a_{\mu}^i a_{\nu}^j a_{w}^v a_{w'}^v' : a_{\mu}^i a_j a_{\nu}^j a_{w}^v a_{w'}^v |0 \rangle = \\
-\delta_{ik}\delta_{h'h'}(\delta_{v'v}\delta_{w'w'} - \delta_{v'v}\delta_{w'w}) \\
+\delta_{jw}\delta_{h'h'}(\delta_{v'v}\delta_{w'w'} - \delta_{v'v}\delta_{w'w'}) \\
-\delta_{jv'}\delta_{h'h'}(\delta_{v'v}\delta_{w'w} - \delta_{v'v}\delta_{w'w'}) ,
\]

(A2)

where \(h(h') \) stands for the 4f hole orbital and \(v(v') \) and \(w(w') \) represent the 6s orbitals.

Then we immediately obtain

\[
\langle \psi_{j,M} | T_{k,\mu}^e | \psi_{j,M} \rangle = -\langle h| \epsilon_{k,\mu}^e |h \rangle ,
\]

(A3)

where \(|\psi_{j,M}\rangle \) is the multi-electron state of \(^{173}\text{Yb}^+ \), Eq. (13). The reason that the 6s orbitals do not contribute to Eq. (A3) is that the operator is non-scalar and the 6s\(^2\) shell has zero total angular momentum by construction of the multi-electron state [15].

In general, Eq. (A3) works for any non-scalar one-body operator. If we replace \(T_{k,\mu}^e \) and \(t_{k,\mu}^e \) with the \(z \) components of the angular momentum operators \(J_z \) and \(j_z \) respectively in Eq. (A3), we obtain the magnetic quantum number of the hole state, \(m_h \) equal to \(-M \).

Then, we rewrite Eq. (A3) as follows,

\[
\langle \psi_{j,M} | T_{k,\mu}^e | \psi_{j,M} \rangle = -\langle \phi_{j,-M} | \epsilon_{k,\mu}^e | \phi_{j,-M} \rangle ,
\]

(A4)

where \(\phi_{j,-M} \) is the orbital of the hole-state electron. This proves Eq. (14) of the main text.

Applying the Wigner-Eckart theorem and setting \(\mu = 0 \) on each side of Eq. (A4), we obtain,

\[
\langle \psi_{j,M} | T_{k,0}^e | \psi_{j,M} \rangle = \\
(-1)^{j-M} \left(\begin{array}{cc} J & k \\ -M & 0 \end{array} \right) \langle \psi_j | |T_k^e||\psi_j \rangle ,
\]

(A5)

\[
-\langle \phi_{j,-M} | T_{k,0}^e | \phi_{j,-M} \rangle = \\
-(-1)^{j-M} \left(\begin{array}{cc} J & k \\ -M & 0 \end{array} \right) \langle \phi_j | |T_k^e||\phi_j \rangle .
\]

(A6)

Since \(\left(\begin{array}{cc} J & k \\ -M & 0 \end{array} \right) = (-1)^{j+k} \left(\begin{array}{cc} J & k \\ M & 0 \end{array} \right) \), the reduced matrix elements satisfy the following identity,

\[
\langle \psi_j | |T_k^e||\psi_j \rangle = (-1)^{k+1} \langle \phi_j | |T_k^e||\phi_j \rangle .
\]

(A7)

Eq. (A7) suggests that when evaluating the reduced matrix elements of even-\(k \) operators with multi-electron states, one needs to add an extra negative sign to the single-electron reduced matrix elements. The sign of odd-\(k \) reduced matrix elements is unaffected. This proves Eq. (15) of the main text.

Now we generalize these identities to the off-diagonal reduced matrix elements entering the second-order corrections. As discussed in Sec. [13] the dominant intermediate state is the \(4f^{13}5s^22F_{5/2} \) state denoted as \(|\psi_{j,M}\rangle \). The many-body state \(|\psi_{j,M}\rangle \) has a similar form as Eq. (13) but differs in the phase factor, \((-1)^{j/2-M'} \) and the annihilation operator \(a_{4f_{5/2}-M'} \). It can be shown that the relation in Eq. (A7) still holds for the reduced matrix element,

\[
\langle \psi_j | |T_k^e||\psi_j \rangle = (-1)^{k+1} \langle \phi_j | |T_k^e||\phi_j \rangle .
\]

(A8)

Appendix B: Reduced matrix elements of hyperfine interaction

Formally, the one-electron wave function is represented by Dirac bi-spinor

\[
|n_j\kappa m\rangle = \left(\begin{array}{c} iP_{\kappa}(r)\Omega_{\kappa,m}(\vec{r}) \\ Q_{\kappa}(r)\Omega_{\kappa,-m}(\vec{r}) \end{array} \right) ,
\]

(B1)

where \(P \) and \(Q \) are the large and small components of one-electron wave function and \(\kappa \) is the relativistic quantum number \((\kappa = \mp j + \frac{1}{2} \) for \(j = l \pm \frac{1}{2} \)). The reduced matrix elements of the electronic part of hyperfine interaction are explicitly [24]

\[
\langle \kappa' | t_k^e | \kappa \rangle = \left\{ \begin{array}{ll} \\
-\langle \kappa'| |C_k| |\kappa\rangle \int_0^{\infty} \frac{dr}{r^{1+k}}(P_{n'\kappa'}P_{n,\kappa} + Q_{n'\kappa'}Q_{n,\kappa}), & \text{odd } k, \\
\langle \kappa'| |C_k| - \kappa \rangle \int_0^{\infty} \frac{dr}{r^{k+1}}(P_{n'\kappa'}Q_{n,\kappa} + Q_{n'\kappa'}P_{n,\kappa}), & \text{even } k,
\end{array} \right.
\]

(B2)

\(k \) sub-cases correspond to electric and magnetic interac-
[1] NJ Stone, “Table of nuclear magnetic dipole and electric quadrupole moments,” At. Data Nucl. Data Tables 90, 75–176 (2005).

[2] V Gerginov, Andrei Derevianko, and Carol E Tanner, “Observation of the nuclear magnetic octupole moment of 133Cs,” Phys. Rev. Lett. 91, 72501 (2003).

[3] Alok K. Singh, D. Angom, and Vasant Natarajan, “Observation of the nuclear magnetic octupole moment of 173Yb from precise measurements of the hyperfine structure in the 3P2 state,” Phys. Rev. A 87, 012512 (2013).

[4] S. A. Williams, “Magnetic octupole moments of axially symmetric deformed nuclei,” Physical Review 125, 340–346 (1962).

[5] Charles Schwartz, “Theory of Hyperfine Structure,” Physical Review 97, 380–395 (1955).

[6] Gladys H. Fuller, “Nuclear Spins and Moments,” (1976).

[7] Vladislav Gerginov, Carol E. Tanner, and W. R. Johnson, “Observation of the nuclear magnetic octupole moment of 87Rb from spectroscopic measurements of hyperfine intervals,” Canadian Journal of Physics 87, 101–104 (2009).

[8] T’G Eck and P Kusch, “Hfs of the 22P1/2, State of In115 and In113; Octupole Interactions in the Stable Isotopes of Indium,” Phys. Rev. 106, 958–964 (1957).

[9] Nicholas C. Lewty, Boon Leng Chuah, Radu Cazan, B. K. Sahoo, and M. D. Barrett, “Spectroscopy on a single trapped 137Ba ion for nuclear magnetic octupole moment determination: erratum,” Optics Express 21, 7131 (2013).

[10] P. J. Unsworth, “Nuclear dipole, quadrupole and octupole moments of 155Gd by atomic beam magnetic resonance,” Journal of Physics B: Atomic and Molecular Physics 2, 122–125 (1970).

[11] W Dankwort, J Ficher, and H Gebauer, “Hexadecapole interaction in the atomic ground state of 166Ho,” Z. Physik 267, 229 (1974).

[12] S. Olimschenk, K. C. Young, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Physical Review A - Atomic, Molecular, and Optical Physics 76, 1–10 (2007), arXiv:0708.0657.

[13] C. Figgatt, A. Ostrander, N. M. Linke, K. A. Landsman, D. Zhu, D. Maslov, and C. Monroe, “Parallel entangling operations on a universal ion-trap quantum computer,” Nature 572, 368 (2019).

[14] W. Zhang, J. M. Robinson, L. Sonderhouse, E. Oelker, C. Benko, J. L. Hall, T. Legero, D. G. Matei, F. Riehle, U. Sterr, and J. Ye, “Ultrastable Silicon Cavity in a Continuously Operating Closed-Cycle Cryostat at 4 K,” Physical Review Letters 119, 243601 (2017), arXiv:1708.05161.

[15] K. A. Landsman, C. Figgatt, T. Schuster, N. M. Linke, B. Yoshida, N. Y. Yao, and C. Monroe, “Verified quantum information scrambling,” Nature 567, 61 (2019).

[16] K. Wright, K. M. Beck, S. Debnath, J. M. Amini, and Colin Coles, “Accurate measurement of the 12.6 GHz magnetic octupole moment of 87Rb from the 2P3/2 → 2S1/2 transition,” Physical Review Letters 113, 210801 (2014).

[17] N. Huntemann, B. Lipphardt, Chr. Tamm, and E. Peik, “Improved limit on a temporal variation of the hyperfine splitting of Yb+,” Phys. Rev. Lett. 113, 210802 (2014).

[18] Christian Sanner, Nils Huntemann, Richard Lange, Christian Tamm, and Ekkehard Peik, “Autobalanced ramsey spectroscopy,” Phys. Rev. Lett. 120, 053602 (2018).

[19] K. Beloy and A. Derevianko, “Second-order effects on the hyperfine structure of P states of alkali-metal atoms,” Physical Review A - Atomic, Molecular, and Optical Physics 78, 1–15 (2008).

[20] V. A. Dzuba and V. V. Flambaum, “Hyperfine-induced electric dipole contributions to the electric octupole and magnetic quadrupole atomic clock transitions,” Physical Review A 93 (2016), 10.1103/PhysRevA.93.052517, arXiv:1602.08189.

[21] Walter R Johnson, Lectures on Atomic Physics (Springer-Verlag, 2007) p. 140.

[22] K. Beloy, A. Derevianko, and W. R Johnson, “Hyperfine structure of the metastable 3P2 state of alkaline-earth-metal atoms as an accurate probe of nuclear magnetic octupole moments,” Phys. Rev. A 77, 12512 (2008).

[23] C. Schwartz, “Theory of Hyperfine Structure,” Phys. Rev. 105, 173–183 (1955).

[24] M. J. Petrasinas, E. W. Streed, T. J. Wein-
hold, B. G. Norton, and D. Kielpinski, “Optogalvanic spectroscopy of metastable states in Yb+,” [Applied Physics B 107, 1053–1059 (2012)]. arXiv:1107.1021

[31] I. P. Grant, Relativistic Quantum Theory of Atoms and Molecules (Springer New York, 2007).

[32] Charlotte Froese Fischer, Michel Godefroid, Tomas Brage, Per Jönsson, and Gediminas Gaigalas, “Advanced multiconfiguration methods for complex atoms: I. Energies and wave functions,” Journal of Physics B: Atomic, Molecular and Optical Physics 49, 182004 (2016).

[33] Jacek Bieroń, Charlotte Froese Fischer, Paul Indelicato, Per Jönsson, and Pekka Pyykkö, “Complete-active-space multiconfiguration Dirac-Hartree-Fock calculations of hyperfine-structure constants of the gold atom,” Physical Review A - Atomic, Molecular, and Optical Physics 79, 052502 (2009).

[34] J. G. Li, P. Jönsson, M. Godefroid, C. Z. Dong, and G. Gaigalas, “Effects of the electron correlation and Breit and hyperfine interactions on the lifetime of the 2p73s states in neutral neon,” Physical Review A 86, 052523 (2012).

[35] J.G. Li, J. Ekman, G. Gediminas, J. Bieroń, P. Jönsson, M. Godefroid, and C. Froese Fischer, “New version of RHFS code,” Computer Physics Communications (in preparation).

[36] P. Jönsson, F.A. Parpia, and C. Froese Fischer, “HFS92: A program for relativistic atomic hyperfine structure calculations,” Computer Physics Communications 96, 301–310 (1996).

[37] C. Froese Fischer, G. Gaigalas, P. Jönsson, and J. Bieroń, “GRASP2018 - a Fortran 95 version of the General Relativistic Atomic Structure Package,” Computer Physics Communications 237, 184–187 (2019).

[38] P. Taylor, M. Roberts, and G. Macfarlane, “Measurement of the infrared 2 F 7/2-2 D 5/2 transition in a single 171 Yb+ ion,” Physical Review A 83, 013406 (1999).

[39] M. S. Safronova, Dansha Jiang, and U. I. Safronova, “Blackbody radiation shift in the 87Rb frequency standard,” Phys. Rev. A 82, 022510 (2010).

[40] I. Lindgren and J. Morrison, Atomic many-body theory, Springer series on atoms + plasmas (Springer, 1986).