Graph Backdoor

Zhaohan Xi1, Ren Pang1, Shouling Ji2, Ting Wang1

1Pennsylvania State University, College of Information Science and Technology
2Zhejiang University, College of Computer Science and Technology
Motivation

- **Backdoor attacks against DNNs**
 - A trojan model responds to trigger-embedded inputs in a specific manner
 - While the trojan model functioning normally for untouched inputs

- **Graph data and GNNs**
 - Graph data format is widely use as a flexible representation
 - GNNs are learning-based models to capture graph/node properties
 - The vulnerabilities in graphs and GNNs are largely unexplored

- **Graph-domain challenges**
 - **Trigger definition**: has both topological structure and descriptive features
 - **Input-tailored**: a trigger is tailored to the characteristics of an individual graph
 - **Adaptive location**: a trigger should be embedded into a suitable locality
GTA: Graph Trojaning Attack

- **Upstream: adaptive learning**
 - The adversary forges a trojan GNN f_θ (pre-trained model) via perturbing its parameters
 - To realize attack, the adversary leverages bi-level optimization between f_θ and trigger g_t

- **Downstream: model-agonistic**
 - The adversary has no access to downstream model h, but z_G can lead to a falsified result
GTA: Trigger Generation

Graph encoding
- Use attention nets to encode G and get Z
- The encodings are assured to capture both topological information and original features

Trigger generation
- Node connectivity: $\tilde{A}_{ij} = \mathbb{I}_{\text{sim}(\phi_\omega(z_i), \phi_\omega(z_j))} \geq 0.5$
- Backdoor features: $\tilde{X}_i = \sigma(Wz_i + b)$, $W, b \in \phi_\omega$
- Combine \tilde{A} and \tilde{X} as g_t, where $i, j \in g_t$
GTA: Backdoor Poisoning

Trigger Injection
- Rely on mixing function $m(G; g_t)$
 - Find to-be-replaced subgraph $g \in G$
 - Substitute g with g_t

Backdoor Poisoning
- Inject trigger to not-target-label graphs $\mathcal{D}_{[\text{notarget}]}$
- Train GNNs θ with poisoned set \mathcal{D}
GTA: Bi-level Optimization

- **Upper level – optimize trigger**
 - \(g_t^* = \arg \min_{g_t} l_{atk}(\theta^*(g_t), g_t) \)
 - \(l_{atk} \): difference between \(g_t \)-embedded graphs and \(G \in \mathcal{D}_{y_{tar}} \) through GNNs

- **Lower level – optimize GNNs**
 - \(\theta^*(g_t) = \arg \min_{\theta} l_{ret}(\theta, g_t) \)
 - \(l_{ret} \): loss of GNNs
Evaluation Settings

- **Multi-domain dataset**
 - Security-sensitive domains
 - Biology and chemistry
 - Social and transaction networks

- **Manifold learning settings**
 - Inductive (graph-level) & transductive (node-level) classification
 - Self-transfer & mutual-transfer learning
 - Graph-space (default) & input-space attacks

Dataset	Domain	Setting	# Samples
Fingerprint	Cybersecurity	Inductive, self-transfer	1.6k graphs
WinMal	Cybersecurity	Inductive, self-transfer	1.3k graphs
AIDS	Biochemistry	Inductive, mutual-transfer	2.0k graphs
Toxicant	Biochemistry	Inductive, mutual-transfer	10.3k graphs
AndroZoo	Cybersecurity	Inductive, input-space	0.2k graphs
Bitcoin	Transaction net	Transductive	5.6k nodes
Facebook	Social net	Transductive	12.5k nodes
Evaluation Settings (cont.)

- **Representative GNNs**
 - GCN (Kipf & Welling, 2017)
 - GAT (Velickovic et al. 2018)
 - GraphSAGE (Hamilton et al. 2017)

- **Self-variant baselines**
 - BL^I: a universal trigger with fully connected topo. + adaptive features
 - BL^{II}: a universal trigger with adaptive topo. + adaptive features

- **Comprehensive metrics**
 - Effectiveness: attack success rate (ASR), etc.
 - Evasiveness: clean accuracy drop (CAD), etc.

Dataset	GNN	Benign Acc.
Fingerprint \mathcal{U}	GAT	82.9%
WinMal \mathcal{U}	GraphSAGE	86.5%
Toxicant \rightarrow AIDS	GCN	93.9%
AIDS \rightarrow Toxicant	GCN	95.4%
ChEMBL \rightarrow AIDS	GCN	90.4%
ChEMBL \rightarrow Toxicant	GCN	94.1%
AndroZoo (A.)	GCN	95.3%
AndroZoo (A.+F.)	GCN	98.1%
Bitcoin	GAT	96.3%
Facebook	GraphSAGE	83.8%

- Abbreviation: A. – only use topology; A.+F. – use both topology and raw features
Evaluations

Inductive settings

Settings	\mathbf{BL}^I	\mathbf{BL}^{II}	GTA
	ASR, CAD	ASR, CAD	ASR, CAD
Fingerprint \mathcal{F}	84.4%, 1.9%	87.2%, 1.6%	100%, 0.9%
WinMal \mathcal{F}	87.2%, 1.8%	94.4%, 1.2%	100%, 0.0%
Toxicant \rightarrow AIDS	89.4%, 1.7%	95.5%, 1.3%	98.0%, 1.4%
AIDS \rightarrow Toxicant	80.2%, 0.6%	85.5%, 0.0%	99.8%, 0.4%

Use the off-the-shelf GNNs

Settings	\mathbf{BL}^I	\mathbf{BL}^{II}	GTA
	ASR, CAD	ASR, CAD	ASR, CAD
ChEMBL \rightarrow AIDS	92.0%, 1.1%	97.5%, 1.0%	99.0%, 1.2%
ChEMBL \rightarrow Toxicant	83.5%, 0.6%	86.0%, 0.0%	96.4%, 0.1%
Evaluations (cont.)

- **Transductive settings (node-level classification)**

Settings	BL I	BL II	GTA
ASR, CAD	ASR, CAD	ASR, CAD	
Bitcoin	52.1%, 0.9%	68.6%, 1.2%	89.7%, 0.9%
Facebook	42.6%, 4.0%	59.6%, 2.9%	69.1%, 2.4%

- **Downstream model agnostic (different classifiers)**

Classifiers	BL I	BL II	GTA
ASR, CAD	ASR, CAD	ASR, CAD	ASR, CAD
Naïve Bayes	87.7%, 1.5%	92.4%, 0.9%	99.5%, 0.7%
Random Forest	85.8%, 0.9%	88.0%, 0.9%	90.1%, 0.6%
Gradient Boosting	82.5%, 0.6%	89.3%, 0.6%	94.0%, 0.6%
Input-space Case Study

- **Input-space constraints**
 - Transferable perturbations (triggers) from graph space
 - Not affect original functionalities of raw data samples
 - If possible, not incur observable semantic variations

- **GTA against Android Malware Detector (GNN-based)**

Settings	Input-space GTA	Graph-space GTA		
	ASR	CAD	ASR	CAD
Topology Only	94.3%	0.9%	97.2%	0.0%
Topology + Feature	96.2%	1.9%	100%	0.9%

Android Call Graph

(a) Original graph locality

(b) Trigger-embedded graph
Potential Countermeasures

- **Data inspection: Randomized Smoothing (Zhang et al. 2020)**
 - Subsample a (possibly trigger-embedded) graph G and generate G_1, G_2, \ldots, G_n
 - Take a majority voting among G_1, G_2, \ldots, G_n as G’s final classification results
 - Adjust subsample ratio β on both of node set and feature dimensions

- **Model inspection: Neural Cleanse (Wang et al. 2019)**
 - For each label, learn a reversed trigger from a backdoored GNN
 - Get the perturbation scale (L_1-norm) between the original graphs and the trigger-embedded
 - Use statistical approaches to measure which label has minimum perturbation scale
 - Consider different adaptiveness of reversed trigger (same as BL^I and BL^{II})
Summarizations

- **Graph-oriented**
 - GTA defines a trigger as a subgraph, including topo. structure and descriptive features

- **Input-tailored**
 - GTA generates triggers tailored to the characteristics of individual graphs

- **Downstream-model-agnostic**
 - GTA has no assumption of downstream model (used classifiers), leads to resistive trojaining attack

- **Attack-extensible**
 - GTA represents an attack framework on both inductive and transductive learning settings
Thank You!

For questions, feel free to contact

zxx5113@psu.edu