Original Research Article

Prevalence and antibiotic susceptibility pattern of Klebsiella species isolated from various clinical samples in a tertiary care hospital Coimbatore

Vijayashree V.*, Saikeerthana D., Prabha P.

Department of Microbiology, Government Medical College and ESI Hospital, Coimbatore, Tamil Nadu, India

Received: 15 August 2021
Accepted: 15 September 2021

*Correspondence:
Dr. Vijayashree V.,
E-mail: maildrviji@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: The genus Klebsiella of Enterobacteriaceae family is ubiquitous in nature. They cause many nosocomial infections like pneumonia, urinary tract infections, wound infections, bacteremia and septicemia. Multidrug resistance is seen in Klebsiella which serves as the most common cause of increased morbidity and mortality. This study reveals the prevalence and antibiotic sensitivity pattern of Klebsiella species from various clinical samples. The primary objectives are as follows: To isolate and characterize Klebsiella species from various clinical samples. To study the antibiotic susceptibility pattern of Klebsiella isolates.

Methods: This prospective study was conducted in our tertiary care hospital during the period from August 2019 to October 2019. A total of 3521 samples were tested during this period. The samples include blood, sputum, urine, and pus.

Results: Out of the total samples tested, 1106 samples were showing the growth of the organisms. Among this, 351 were identified as Klebsiella species and the highest rate of isolation of Klebsiella species is from the sputum sample and also the same was reported high in medical wards. The study also shows that the isolation of Klebsiella species shows male preponderance when compared to females. The antibiotic sensitivity pattern was done by Kirby-Bauer's disc diffusion method and the sensitivity was noted to be higher to amikacin and ciprofloxacin.

Conclusions: Thus, this study shows the prevalence rate of Klebsiella species and sensitivity pattern of Klebsiella, which may help select appropriate antibiotics and prevent overuse and misuse of antibiotics.

Keywords: Klebsiella, Prevalence, Antibiotic sensitivity pattern

INTRODUCTION

The genus Klebsiella belongs to the ethnic group Klebsiellae, a family member of the Enterobacteriaceae. After Edwin Klebs, Friedlander, a 19th century Microbiologist, named the organism as Klebsiella in 1882. It was identified as a pathogen which causes life threatening disease called pneumonia. Klebsiella is a nonmotile, rod-shaped, gram-negative bacteria with a prominent polysaccharide capsule. They are omnipresent in nature. In humans, they are the colonizer of the skin, pharynx, and gastrointestinal tract. They may be regarded as normal flora in many parts of the colon, intestinal tract and biliary tract. Klebsiella species cause various infections like pneumonia, urinary tract infections, meningitis, wound infections, osteomyelitis, bacteremia, septicemia, and gastroenteritis. It is estimated that Klebsiella species cause 8% of all nosocomial infections. In that, it accounts for 6% to 17% of nosocomial urinary tract infections. Klebsiella species that are isolated from paediatric wards
are often involved in neonatal sepsis, in early as well as late manifestation of infections.4

Eight species of Klebsiella are identified. In that, K. pneumoniae, K. oxytoca, and K. granulomatis are associated with human illness. K. ozaenae and K. rhinoscleromatis are related to specific diseases.5 K. planticola, K. terrigena, and K. ornitholytica are also associated with human infections and are now transferred to a new genus called Raoultella.

The antibiotic sensitivity is done in Mueller-Hinton agar by the modified Kirby-Bauer disc diffusion method. All Klebsiella species shows inherent resistant to ampicillin and multi drug resistant strains are also emerging.6 They tend to harbor antibiotic-resistant plasmids, which serves as the most important cause for multiple infections. Klebsiella pneumoniae was the first and foremost extended variety of beta-lactamase strain discovered in Germany during 1980. Both morbidity and mortality are increased when these drug-resistant organisms cause the infection. The updated knowledge of the drug resistance pattern in a particular region is necessary for clinical practice. The current study is undertaken to know the prevalence of Klebsiella associated with infections and the antibiogram pattern of the isolates.

METHODS

In the present study, 1322 urine samples, 179 sputum samples, 957 pus swabs, 340 miscellaneous samples (body fluids and tracheal aspirate), and 723 blood cultures were collected from inpatients and outpatients of various departments in the tertiary care hospital during the period from August 2014 to October 2014.

Sample collection and bacterial identification

Urine, sputum, pus swab, and miscellaneous samples collected were inoculated on blood agar and MacConkey agar and incubated overnight at 37°C. For blood culture, an appropriate volume of blood of about 10 ml to 20 ml was collected in blood broth, and incubated at 37°C for 48 hours, and then inoculated on blood agar and MacConkey agar. Colonies were read after overnight incubation.

Klebsiella species were large dome-shaped colonies on blood agar and lactose fermenting mucoid colonies on MacConkey agar. In gram staining, gram-negative, short, plump, straight rods were seen. The biochemical reactions identified were indole negative (K. pneumoniae), indole positive (Klebsiella oxytoca), positive citrate utilization test, positive urease test, triple sugar iron (TSI) media shows fermentation of all three sugars leading to acid/acid, and abundant gas production from glucose, lactose, sucrose, maltose, and mannitol sugar fermentation tests.7

Antimicrobial susceptibility testing was performed for all isolated organisms on Mueller-Hinton agar by the modified Kirby-Bauer disc diffusion method. The antibiotic discs with appropriate content were used and interrupted according to clinical and laboratory standards institute guidelines.8

RESULTS

Table 1 represents the isolated positive cultures. Among the total 3521 samples tested, 1322 were urine samples, 723 were blood cultures, 179 were sputum samples, 957 were pus samples, and 340 were miscellaneous samples like body fluids.

Table 1: Culture positivity among various clinical samples.

Sample	Total number	Number of culture positivity
Urine	1322	326
Blood	723	90
Sputum	179	57
Pus	957	623
Miscellaneous	340	10
Total	3521	1106

Table 2: Prevalence of Klebsiella isolates among various clinical samples.

Sample	No. of culture positives	No. of Klebsiella pneumoniae	No. of Klebsiella oxytoca
Urine	326	89	-
Blood	90	32	2
Sputum	57	42	-
Pus	623	180	7
Miscellaneous	10	9	-
Total	1106	352	9

Table 3: Isolation of Klebsiella from various departments.

Department	No. of Klebsiella species	Percentage
Medicine	97	26.9
Paediatrics	55	15.2
Surgery	130	36
Obstetrics and Gynaecology	38	10.5
Orthopaedics	32	8.9
Outpatient	9	2.5
Total	361	100

In the 3521 samples received, 1106 (31.4%) were the total positive isolates identified. Among the 1106 positive cultures, 623 were isolated from the pus samples, making the maximum count. Next are the urine samples in which 326 positive cultures, 90 were from blood cultures, 57 were sputum samples, and ten were from other body fluids samples.
Table 4: Antibiogram of Klebsiella isolates.

Antibiotics	Pus (n=187)	Sputum (n=42)	Blood (n=34)	Urine (n=89)	Miscellaneous (n=9)							
	S	R	S	R	S	R	S	R	S	R		
Amikacin	154	33	34	8	32	2	78	11	8	1		
Gentamycin	78	109	34	8	13	21	63	26	8	1		
Ciprofloxacin	154	33	38	4	32	2	74	15	8	1		
Ofloxacin	116	71	35	7	30	4	-	-	5	4		
Cephalaxin	37	150	19	23	1	33	-	-	-	-		
Ceftriozone	41	146	26	16	5	29	45	44	2	7		
Cotrimoxazole	47	140	27	15	6	28	39	50	2	7		
Norfloxacin	-	-	-	-	-	-	52	37	58.4	41.6	-	-
Nitrofurantoin	-	-	-	-	-	-	76	13	85.5	14.6	-	-
Amoxycillin	6	181	6	36	-	-	7	82	7.9	92.1	-	-

Figure 1: Prevalence of Klebsiella pneumoniae from various samples.

Figure 2: Sex prevalence of Klebsiella pneumoniae from various samples.

Table 2 shows the prevalence of Klebsiella species among 1106 positive culture samples. It is identified that 361 (32.6%) isolates were Klebsiella species. Among the 361 Klebsiella spp identified, K. pneumoniae was 352, and 9 were K. oxytoca species. In that, 352 Klebsiella pneumoniae were identified, 180 were from 623 pus samples, 89 were from 326 urine samples. Interestingly, in sputum samples though the positive cultures identified were less than 60 in number, about 42 were isolated as Klebsiella pneumoniae. Likewise, in 90 blood cultures, 32 were identified as Klebsiella pneumoniae.

Figure 1 shows the chart representation of K. pneumoniae species from various samples. In this study, there were the highest isolation rates observed from sputum samples. On the other hand, out of nine K. oxytoca species, there were only two from 90 blood samples and seven from 623 pus samples. It was observed that there were nil K. oxytoca species in other culture-positive samples. Further, among the Klebsiella positive samples, 198 (54.8%) were from males, and 163 (45.2%) were from females showing male preponderance. Figure 2 illustrates the sex prevalence chart of Klebsiella isolates.
Table 3 represents the isolation rate of *Klebsiella* species from various departments. The highest isolation of species, about 26.9%, was in the department of Medicine, followed by Paediatrics, about 15.2%. The isolation rate of the surgery department was observed to be about 36%. There were about 10.5% in the department of Obstetrics and Gynaecology, followed by 8.9% species from the Orthopaedics department and 2.5% from the outpatient department.

Antibiotic sensitivity pattern of the *Klebsiella* isolated from various samples were depicted in Table 4. S represents sensitive and R represents resistance to various anti microbial drugs. Among pus samples, 82.3% were sensitive to amikacin and ciprofloxacin. 62% were sensitive to ofloxacin, 41.7% were sensitive to gentamycin, 25.1% were sensitive to cotrimoxazole and 22% were sensitive to ceftriaxone.

Among the sputum samples, 90.5% were sensitive to ciprofloxacin, 83.3% were sensitive to ofloxacin, 81% were sensitive to amikacin and gentamycin, 64.3% were sensitive to cotrimoxazole, 61.9% were sensitive to ceftriaxone and 45.2% were sensitive to cefalexin.

Among urine samples, 87.7% were sensitive to amikacin, 85.4% were sensitive to nitrofurantoin, 83.1% were sensitive to ciprofloxacin, 70.8% were sensitive to gentamycin, 58.4% were sensitive to norfloxacin, 50.6% were sensitive to ceftriaxone, 43.8% were sensitive to cotrimoxazole.

Among blood samples, 94.1% were sensitive to amikacin and ciprofloxacin, 88.2% were sensitive to ofloxacin, 38.2% were sensitive to gentamycin, 17.6% were sensitive to cotrimoxazole, 14.7% were sensitive to ceftriaxone and 3% to cefalexin.

Among body fluids, 88.9% were sensitive to amikacin, gentamycin and ciprofloxacin, 55.6% were sensitive to ofloxacin and 22.2% were sensitive to ceftriaxone and cotrimoxazole. Figure 3 illustrates the chart of antibiotic sensitivity pattern of *Klebsiella* isolates with various drugs.

DISCUSSION

Klebsiella species are responsible for a broad spectrum of clinical infections in immuno-competent or immuno-compromised people. An extensive use of broad spectrum antibiotics in hospitalized patients has led to the increased prevalence as well as development of multidrug resistant strains of *Klebsiella*. This study reveals the prevalence and antibiotic sensitivity pattern of *Klebsiella* isolates.

The total number of *Klebsiella* isolates from various clinical samples in this study is 361 (32%). It is similar to the isolation rate seen in the study by Ravichitra. Among *Klebsiella oxytoca* isolated in this study is 2.5% which is lower compared to the study by Alves (15%).

In this study, *Klebsiella* species were isolated more from males compared to females. This study is similar to the work conducted by Akter (males 57% and females 42%).

The isolation of *Klebsiella* is maximum from sputum samples. This study is in accordance with the study by Ravichitra (30.9%). In another study by Thosar, there is no significant difference in isolation of *Klebsiella* from various samples.

The antibiotic susceptibility pattern of *Klebsiella* isolates from various samples showed higher sensitivity to amikacin and ciprofloxacin in similarity with the studies done by Sarathbabu, Sikarwar and Akter. A study by Pavani showed that Klebsiella was more susceptible to amikacin but only moderate susceptibility to ciprofloxacin.
Urine samples showed higher sensitivity towards amikacin, nitrofurantoin, ciprofloxacin and the minor sensitivity towards ceftriaxone and cotrimoxazole. The study done by Kumar showed a similar sensitivity pattern.

In this study, samples from blood showed higher sensitivity towards amikacin, ciprofloxacin, ofloxacin and increased resistance towards ceftriaxone and cephalaxin. A study conducted by Rajeevan showed similar results.

CONCLUSION

Thus this study shows the prevalence rate of Klebsiella species and sensitivity pattern of Klebsiella, which may help select appropriate antibiotics and prevent overuse and misuse of antibiotics.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. Winn W, Allen S, Janda W, Koneman E, Procop G, Schreckenberger P et al. The Enterobacteriaceae. Koneman’s Color Atlas and Textbook of Diagnostic Microbiology. Lippincott Williams and Wilkins. 6th Edition. New York, 2006.
2. Forbes BA, Sahim DF, Weissfeld AS. Bailey & Scott’s Diagnostic Microbiology. St. Louis, Mo M. 12th Edition. Elsevier Mosby, 2007.
3. Ndiba PM. Phenotypic detection and susceptibility pattern for the detection of extended spectrum beta lactamases producing Klebsiella pneumonia isolates in Nairobi, Kenya. Open journal of Medical Microbiology. 2013;3:91-4.
4. Podschen R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods and pathogenicity factors. Clinical microbiology reviews; 1998;11:589-603.
5. Bennett JE, Dolin R, Blaser MJ. Mandell, Douglas, and Bennett's principles and practice of infectious diseases. 6th Edition. Elsevier Inc. 2014. 2578-79.
6. Murray PR, Holmes B, Aucken HM. In: Topley & Wilson’s Microbiology and microbial infections. 10th edition. Salisbury UK, Edward Arnold Ltd. 2005.
7. Mackie RT, McCartney. Practical Medical Microbiology. JG Collee, JP Duguid, AG Fraser, BP Marmion (Eds.). Churchill Livingston. 14th edition. Chichester. 1989;369.
8. CLSI Performance Standards for antimicrobial disk susceptibility tests, 10th edition, CLSI standard M 02, Wayne PA. 2006.
9. Ravichitra KN, Prakash PH, Subbarayudu S, Rao US. Isolation and antibiotic sensitivity of Klebsiella pneumoniae from pus, sputum and urine samples. Int J Curr Microbiol App Sci. 2014;3:115-19.
10. Alves MS, da Silva Dias RC, de Castro AC, Riley LW, Moreira BM. Identification of clinical isolates of indole-positive and indole-negative Klebsiella spp. Journa of clinical microbiology 2006;44:3640–46.
11. Akter J, Chowdhury AM, Al Forkan M. Study on prevalence and antibiotic resistance pattern of Klebsiella isolated from clinical samples in South East Region of Bangladesh. American Journal of Drug Discovery and Development. 2014;4:73-9.
12. Thosar MG, Kamble VA. Occurrence of ESBL producing Klebsiella species in clinical samples. Indian Journal of applied research. 2014;4:408-10.
13. Sarathbabu R, Ramani TV, Rao KB, Panda S. Antibiotic susceptibility pattern of Klebsiella pneumoniae isolated from sputum, urine and pus samples. IOSR J Pharm Biol Sci. 2012;1:04-09.
14. Sikarwar AS, Batra HV. Prevalence of antimicrobial drug resistance of Klebsiella pneumoniae in India. International Journal of Bioscience, Biochemistry and Bioinformatics. 2011;1:211-5.
15. Pavan G. Drug susceptibility pattern of Klebsiella and Citrobacter infections in India. J Microbiol Biotech Res. 2012;2:619-20.
16. Kumar AR, Kalpana S. Prevalance and antimicrobial susceptibility pattern of Klebsiella pneumonia causing UTI and issues related to the rational selection of antimicrobials. Scholars Journal of Applied Medical sciences. 2013;1:395-99.
17. Rajeevan S, Ahmad SM, Jasmin PT. Study of prevalence and antimicrobial susceptibility pattern in blood isolates from a tertiary care hospital in North Kerala, India. Int J Curr Microbiol Appl Sci. 2014;3:655-62.

Cite this article as: Vijayashree V, Saikeerthana D, Prabha P. Prevalence and antibiotic susceptibility pattern of Klebsiella species isolated from various clinical samples in a tertiary care hospital Coimbatore. Int J Community Med Public Health 2021;8:4886-90.