Evaluation of Laboratory Management Based on a Combination of TOPSIS and RSR Methods

Chihong ZHAO
Jilin University

Bo LIU
Chinese Center for Disease Control and Prevention

Jing LI
Chinese Center for Disease Control and Prevention

Sisi LI
Chinese Center for Disease Control and Prevention

Ping XIAO
Shanghai Municipal Center for Disease Control and Prevention

Changwen KE
Guangdong Provincial Center for Disease Control and Prevention

Shuangfeng ZHANG
Zhejiang Provincial Center for Disease Control and Prevention

Hong ZHANG
Hunan Provincial Center for Disease Control and Prevention

Xiaoqing FU
Yunnan Provincial Center for Disease Control and Prevention

Kun CHEN
Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention

Hua GUO
Guizhou Provincial Center for Disease Control and Prevention

Yan LIU
Chinese Center for Disease Control and Prevention

Yuanyuan GUO
Chinese Center for Disease Control and Prevention

Xiumin ZHANG (✉ xiu_min@jlu.edu.cn)
Jilin University

Research Article

Keywords: laboratory management, evaluation, TOPSIS, RSR

Posted Date: January 19th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1211108/v1

License: ☇ ① This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

In this study, a comprehensive evaluation of management for pathogenic microbiology laboratories is performed based on a combination of Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and Rank Sum Ratio (RSR) methods; in addition, the basis for improving laboratory management is provided.

Methods

Using the laboratory evaluation tool developed by World Health Organization and a combination of TOPSIS and RSR methods, a system of evaluation indicators for the management of Chinese pathogenic microbiology laboratories is established for comprehensively evaluating the pathogenic microbiology laboratories of seven provincial Centers for Disease Control and Prevention.

Results

The evaluation system includes 12 primary indicators and 37 secondary indicators. In terms of laboratory management, the seven laboratories were ranked as D, G, E, C, F, B, and A in descending order. None of these laboratories were evaluated as “good” or “poor.” One of the laboratories was marked as “relatively poor” (A), two as “medium” (B and F), and four as “relatively good” (C, E, G, and D).

Conclusion

In this study, a method for evaluating laboratory management using the TOPSIS and RSR methods is proposed, and a basis for comprehensively evaluating laboratory management for pathogenic microbiology laboratories is provided to reflect management practices.

1. Introduction

Emerging and re-emerging infectious diseases remain a major threat to human health. Since the beginning of the 21st century, the world has experienced major crises caused by infectious diseases, including the emergence of severe acute respiratory syndrome in 2003, H5N1 influenza in 1997 and its re-emergence in 2003, H1N1 in 2009, Middle East respiratory syndrome in 2012, Ebola virus disease in West Africa in 2014, and Coronavirus disease in 2019.

Laboratories play an important role in detecting outbreaks of highly infectious diseases, risk assessment, early warning, early response and notification, and monitoring and surveillance. Laboratory management determines a laboratory’s detection capacity, which directly affects the effectiveness of the prevention and control of infectious diseases. Laboratory capacity has been a part of comprehensive planning of national and international public health response plans and has been a critical component of International Health Regulations (2005).

Laboratory management has been widely studied, and many international organizations and countries have issued guidelines from different perspectives. World Health Organization (WHO) published the first edition of Laboratory Biosafety Manual in 1983; its fourth edition was published in 2020. The latest version of ISO/IEC 17025 General requirements for the competence of testing and calibration laboratories was published in 2017, which can be used by laboratory customers, regulatory authorities, accreditation bodies, and others for confirming or recognizing the competence of laboratories. The sixth edition of the Biosafety in Microbiology and Biomedical Laboratories in USA, second edition of the Canadian Biosafety Standard, and others are good guides for laboratory management. In China, the national standard, General Requirements for Laboratory Biosafety (GB19489), stipulates the general requirements for the facilities, equipment, and safety management in laboratories.
with different biosafety levels.[17] In addition, the national standard, General Requirements for the Competence of Testing and Calibration Laboratories (GB/T27025), specifies the general requirements pertaining to competence, fair practice, and consistent operation of laboratories.[18]

Laboratory management includes a wide range of aspects, such as system construction, management system, data, personnel, equipment, testing capacity, and consumables management. A laboratory must improve the management level in an all-round fashion to achieve the desired capacity and role. Shortcomings in any aspect of laboratory management can directly affect the efficiency of the laboratory.

Standardized assessment is key to the development of comprehensive and integrated laboratory management. Inadequacies in laboratory management can be determined through evaluation; targeted capacity enhancement can be performed. WHO developed a laboratory assessment tool (LAT) in 2012.[19] The LAT describes a general process for the assessment of laboratories and provides questionnaires to help in the assessment of the national laboratory system and individual laboratories. Fourteen regional medical science centers have been evaluated using the LAT to enhance the public health laboratory capacity in Thailand.[20]

Based on WHO's LAT, a comprehensive evaluation index system suitable for China's actual situation is proposed in the present study. Appropriate dimensions are determined, and indicators are prioritized to evaluate the performance of laboratory management in an appropriate model while considering local conditions. The combination of Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and Rank Sum Ratio (RSR) methods have been used to rank the laboratory management. These methods have been employed in different evaluation research.[21–27] However, in the present study, a model is proposed for evaluating the performance of laboratory management and the performance of seven provincial Centers for Disease Control and Prevention (CDCs) laboratory management in China is analyzed using TOPSIS and RSR methods.

2. Materials And Methods

2.1 Subjects

In this study, seven provincial CDCs—Guangxi, Guizhou, Yunnan, Hunan, Zhejiang, Guangdong, and Shanghai—represented by A, B, C, D, E, F, and G, respectively, were investigated.

2.2 Evaluation indicators

The evaluation indicators adopted herein are based on the LAT developed by WHO.[19] The final system of comprehensive evaluation indicators for the management of pathogenic microbiology laboratory was devised through literature reviews, research and brainstorming, and experts’ opinions and suggestions that reflect China's practices. This system includes 12 primary indicators, namely, organizational operation and management, documentation, sample collection, processing and transportation, data and information, consumables and reagents, equipment, analysis and testing capacities, quality control, facilities, human resources, biological risks and public health functions, as well as 37 secondary indicators of external and internal communication (Table 1).
Primary indicators	Secondary indicators
Organizational operation and management (χ1)	External communication (χ1.1)
	Internal communication (χ1.2)
	Funding guarantee (χ1.3)
	Laboratory qualification (χ1.4)
Documents (χ2)	Document management system (χ2.1)
	Quality management document (χ2.2)
	Biosafety management document (χ2.3)
Sample collection, processing, and transportation (χ3)	Sample collection (χ3.1)
	Sample processing (χ3.2)
	Sample transportation (χ3.3)
Data and information (χ4)	Testing results and reports (χ4.1)
	Data analysis and statistics (χ4.2)
	Data security/confidentiality (χ4.3)
	Laboratory information management system (χ4.4)
Consumables and reagents (χ5)	Purchasing (χ5.1)
	Storage (χ5.2)
	Use (χ5.3)
	Management of expired reagent (χ5.4)
Equipment(χ6)	File management of equipment(χ6.1)
	Maintenance, calibration, and monitoring (χ6.2)
	Use and maintenance of key equipment (χ6.3)
Analysis and testing capacity (χ7)	Quantitative determination of bacteria (χ7.1)
	Quantitative determination of virus(χ7.2)
	Quantitative determination of parasites (χ7.3)
Quality control(χ8)	Internal quality control (IQC) (χ8.1)
	External quality control(EQA) (χ8.2)
	Review and evaluation (χ8.3)
Facilities (χ9)	Guarantee of working conditions (χ9.1)
Human resources (χ10)	Staff size that meets working requirements (χ10.1)
	Personnel qualifications and capabilities (χ10.2)
	Continuing Education (χ10.3)
Biological risks (χ11)	Documents of biological risk management (χ11.1)
	Biological risk assessment and control (χ11.2)
	Implementation and operation (χ11.3)
Primary indicators	Secondary indicators
---	---
Public health functions \((χ_{12})\)	Infectious disease monitoring and response \((χ_{12.1})\)
Sample exchange \((χ_{12.2})\)	Test reports \((χ_{12.3})\)

2.3 Data Collection and Quality Control

The questionnaires were filled by the CDCs as they sought information on a wide range of items and management of multiple departments. On-site reviews of the filled contents were performed by investigators. To ensure consistency in understanding and review, the team of investigators organized training courses for people who filled the questionnaires. During on-site reviews, investigators conducted quality control of questionnaires through discussions and exchanges, document reviews, and laboratory inspections.

2.4 Statistical Analysis

2.4.1 Weight determination method

Weight determination methods can be divided into two categories. (1) Subjective weighting, wherein the original data is primarily generated through experts’ empirical judgments. It includes the direct evaluation method, Delphi method, analytic hierarchy process, and gray correlation method. (2) Objective weighting, wherein the actual data of each indicator in the evaluation process constitutes the original data. It comprises the coefficient of variation, principal component analysis, entropy method, and critic method. The two types of weighting methods have their own advantages and disadvantages. In subjective weighting methods, experts can reasonably determine the order of weight coefficients of various indicators to resolve actual problems, but with high subjectivity. In contrast, objective weighting methods are based on objective data but introduce an inevitable defect that the determined weights might contradict the actual importance of the indicators.[28, 29]

Herein, the gray correlation method and the coefficient of variation method were employed as the subjective and objective weighting methods, respectively. The combined weight of the indicators was obtained by calculating the subjective and objective weights on certain coefficients.

2.4.2 Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS)

The TOPSIS method is a technique for order preference according to similarity to the ideal solution. Based on the normalized raw data matrix, this method forms a space for both positive and negative ideal solutions of priority solutions. The solutions to be evaluated are regarded as points in space. The distance between a point and the positive and ideal solutions is obtained. This distance helps identify the relative closeness between the solution to be evaluated and the positive ideal solution and provides a basis for evaluating the advantages and disadvantages of this solution.[30, 31]

2.4.3 Rank Sum Ratio (RSR)

The RSR method is a comprehensive evaluation and analysis method proposed by the Chinese statistician, Professor Fengtiao Tian, in 1988. The RSR method involves a matrix of \(n\) rows and \(m\) columns. The dimensionless statistic, RSR, is obtained through rank transformation. Statistical parameter analysis is used for studying the distribution of RSR. The RSR value is used to directly rank evaluation objects, rank evaluation objects by level, or compare the confidence intervals of the RSR for each group.

2.4.4 Combination of TOPSIS and RSR methods

The TOPSIS method can be applied to the relative closeness value \(C_{i}\), which ranges from 0 to 1, and the RSR value distributed in the same rank and ratio method can be analyzed using the RSR method.

Here are the basic steps involved:
(1) Determination of RSR distribution for C_i

The RSR distribution of C_i refers to the specific downward cumulative frequency of C_i expressed in the Probit. Specific steps include compiling the frequency distribution table of the C_i values; listing the frequency f of different groups and calculating the cumulative frequency $\sum f$ of each group; determining the rank R, average rank \bar{R}, and R/n values for each group of C_i values; converting the percentage to the Probit; and obtaining the corresponding Probit value Y.

(2) Calculation of the regression equation

Using Y as the independent variable and C_i value as the dependent variable, the regression equation becomes $C_i = a + b \times \text{Probit}$

(3) Hypothesis testing of the regression equation

Determine whether the C_i value is normally distributed and whether the regression equation is relevant.

(4) Rank by level

The evaluation objects are ranked by level based on the reasonable RSR rank method and the corresponding estimated values obtained using the regression equation.

Percentile P_x and the corresponding Probit values at different levels are presented in Appendix A. This study set 5 levels: poor, relatively poor, medium, relatively good, and good.

3. Results

3.1. Scores for evaluation indicators

Mean scores were calculated for the primary and secondary indicators. Results showed that χ_{11} (biological risks), χ_8 (quality control), and χ_{12} (public health functions) scored the highest, with scores of 95.19, 94.05, and 91.27, respectively, while χ_7 (analysis and testing capacity), χ_4 (data and information), and χ_1 (organizational operation and management) scored the lowest, with scores of 76.92, 83.39, and 85.63, respectively (Table 2).
Primary indicators	Secondary indicators	A	B	C	D	E	F	G	Mean (Secondary indicators)	Mean (Primary indicators)
χ_1	$\chi_{1.1}$	78.13	83.33	96.88	100.00	100.00	100.00	100.00	94.05	85.63
	$\chi_{1.2}$	64.29	100.00	100.00	92.86	78.57	78.57	100.00	87.76	
	$\chi_{1.3}$	50.00	50.00	100.00	87.50	100.00	62.50	100.00	78.57	
	$\chi_{1.4}$	75.00	75.00	100.00	100.00	75.00	75.00	75.00	82.14	
χ_2	$\chi_{2.1}$	75.00	83.33	83.33	83.33	83.33	83.33	83.33	82.14	90.14
	$\chi_{2.2}$	100.00	100.00	100.00	100.00	100.00	84.62	100.00	97.80	
	$\chi_{2.3}$	83.33	100.00	100.00	100.00	100.00	100.00	66.67	83.33	90.48
χ_3	$\chi_{3.1}$	83.33	99.48	100.00	97.30	97.40	81.25	100.00	94.11	87.22
	$\chi_{3.2}$	50.00	93.00	98.00	89.67	84.33	77.78	96.67	84.21	
	$\chi_{3.3}$	50.00	83.33	100.00	75.00	91.67	100.00	83.33	83.33	
χ_4	$\chi_{4.1}$	72.38	100.00	100.00	97.96	84.62	96.70	100.00	93.09	83.39
	$\chi_{4.2}$	50.00	100.00	100.00	100.00	50.00	50.00	100.00	78.57	
	$\chi_{4.3}$	60.00	100.00	100.00	100.00	90.00	100.00	100.00	92.86	
	$\chi_{4.4}$	0.00	0.00	100.00	100.00	100.00	100.00	83.33	69.05	
χ_5	$\chi_{5.1}$	62.50	87.50	87.50	87.50	87.50	87.50	100.00	85.71	87.19
	$\chi_{5.2}$	90.00	97.50	100.00	100.00	78.75	85.00	100.00	93.04	
	$\chi_{5.3}$	70.00	100.00	100.00	80.00	70.00	60.00	60.00	77.14	
	$\chi_{5.4}$	83.33	100.00	100.00	100.00	83.33	83.33	100.00	92.86	
χ_6	$\chi_{6.1}$	83.33	100.00	100.00	100.00	98.33	96.67	83.33	94.52	85.76
	$\chi_{6.2}$	73.53	97.06	100.00	88.24	79.41	94.12	100.00	90.34	
	$\chi_{6.3}$	74.00	74.00	60.00	74.00	74.00	77.00	74.00	72.43	
χ_7	$\chi_{7.1}$	83.33	94.44	94.44	94.44	94.44	83.33	83.33	89.68	76.92
	$\chi_{7.2}$	62.50	54.17	83.33	70.83	83.33	79.17	79.17	73.21	
	$\chi_{7.3}$	90.00	65.00	40.00	60.00	65.00	65.00	90.00	67.86	
χ_8	$\chi_{8.1}$	90.00	91.67	100.00	100.00	91.67	75.00	100.00	92.62	94.05
	$\chi_{8.2}$	80.00	100.00	100.00	100.00	100.00	80.00	100.00	94.29	
	$\chi_{8.3}$	83.33	83.33	100.00	100.00	100.00	100.00	100.00	95.24	
χ_9	$\chi_{9.1}$	45.00	95.00	85.00	95.00	95.00	94.44	100.00	87.06	87.06
χ_{10}	$\chi_{10.1}$	50.00	48.98	100.00	90.82	91.84	48.98	100.00	75.80	87.06
	$\chi_{10.2}$	82.14	100.00	100.00	98.81	100.00	66.67	100.00	92.52	
	$\chi_{10.3}$	83.33	100.00	100.00	100.00	100.00	66.67	100.00	92.86	
χ_{11}	$\chi_{11.1}$	100.00	100.00	100.00	100.00	100.00	66.67	100.00	95.24	95.19
3.2 Weighting of evaluation indicators

The subjective weight, objective weight, and combination weight for a comprehensive indicator evaluation for pathogenic microbial laboratory management were obtained based on subjective weighting (grey relational analysis) and objective weighting (coefficient of variation). Results are summarized in Table 3. Three primary indicators had the highest weights: χ_7 (analysis and testing capacity) (0.1067), χ_1 (organizational operation and management) (0.1026), and χ_{12} (public health functions) (0.1024).
Primary indicators	Subjective weight	Objective weight	Weight combination	Secondary indicators	Subjective weight	Objective weight	Weight combination
χ^1	0.0441	0.0585	0.1026	$\chi_{1.1}$	0.0109	0.0092	0.0201
				$\chi_{1.2}$	0.0111	0.0114	0.0224
				$\chi_{1.3}$	0.0112	0.0094	0.0206
				$\chi_{1.4}$	0.0109	0.0286	0.0395
χ^2	0.0423	0.0308	0.0731	$\chi_{2.1}$	0.0146	0.0126	0.0272
				$\chi_{2.2}$	0.0139	0.0090	0.0229
				$\chi_{2.3}$	0.0138	0.0092	0.0230
χ^3	0.0431	0.0346	0.0777	$\chi_{3.1}$	0.0144	0.0033	0.0177
				$\chi_{3.2}$	0.0147	0.0083	0.0230
				$\chi_{3.3}$	0.0141	0.0229	0.0370
χ^4	0.0407	0.0538	0.0945	$\chi_{4.1}$	0.0109	0.0049	0.0158
				$\chi_{4.2}$	0.0096	0.0138	0.0234
				$\chi_{4.3}$	0.0102	0.0096	0.0198
				$\chi_{4.4}$	0.0100	0.0254	0.0354
χ^5	0.0385	0.0321	0.0706	$\chi_{5.1}$	0.0095	0.0059	0.0154
				$\chi_{5.2}$	0.0095	0.0096	0.0192
				$\chi_{5.3}$	0.0098	0.0109	0.0206
				$\chi_{5.4}$	0.0097	0.0056	0.0153
χ^6	0.0397	0.0294	0.0691	$\chi_{6.1}$	0.0126	0.0028	0.0154
				$\chi_{6.2}$	0.0132	0.0055	0.0187
				$\chi_{6.3}$	0.0139	0.0211	0.0350
χ^7	0.0411	0.0656	0.1067	$\chi_{7.1}$	0.0138	0.0187	0.0326
				$\chi_{7.2}$	0.0138	0.0214	0.0352
				$\chi_{7.3}$	0.0134	0.0256	0.0389
χ^8	0.0414	0.0462	0.0876	$\chi_{8.1}$	0.0146	0.0115	0.0260
				$\chi_{8.2}$	0.0131	0.0160	0.0291
				$\chi_{8.3}$	0.0138	0.0187	0.0325
χ^9	0.0403	0.0106	0.0509	$\chi_{9.1}$	0.0403	0.0106	0.0509
χ^{10}	0.0440	0.0350	0.0790	$\chi_{10.1}$	0.0141	0.0211	0.0352
				$\chi_{10.2}$	0.0157	0.0031	0.0187
				$\chi_{10.3}$	0.0143	0.0109	0.0251
χ^{11}	0.0453	0.0405	0.0857	$\chi_{11.1}$	0.0142	0.0161	0.0303
				$\chi_{11.2}$	0.0153	0.0170	0.0324
3.3 Rank by item

The seven provincial CDCs studied herein have their own strengths in terms of 12 aspects. The sub-item ranking of the primary indicators is summarized in Table 4.

Primary indicators	Subjective weight	Objective weight	Weight combination	Secondary indicators	Subjective weight	Objective weight	Weight combination
	χ11.3				0.0157	0.0073	0.0231
χ12	0.0395	0.0629	0.1024	χ12.1	0.0131	0.0241	0.0372
	χ12.2				0.0131	0.0208	0.0339
	χ12.3				0.0134	0.0179	0.0314
Table 4
Sub-item ranking of the primary indicators for laboratory management

Indicator	A	B	C	D	E	F	G	
χ1	D+	0.0071	0.0062	0.0008	0.0008	0.0050	0.0057	0.0046
	D-	0.0009	0.0035	0.0070	0.0062	0.0045	0.0023	0.0055
	Ci	0.1084	0.3647	0.8966	0.8851	0.4732	0.2835	0.5452
Ranking	7	5	1	2	4	6	3	
χ2	D+	0.0019	0.0000	0.0000	0.0000	0.0000	0.0035	0.0016
	D-	0.0021	0.0036	0.0036	0.0036	0.0036	0.0010	0.0023
	Ci	0.5239	1.0000	1.0000	1.0000	1.0000	0.2319	0.5954
Ranking	6	1	1	1	7	5		
χ3	D+	0.0096	0.0028	0.0000	0.0042	0.0020	0.0024	0.0028
	D-	0.0001	0.0071	0.0097	0.0059	0.0078	0.0087	0.0074
	Ci	0.0151	0.7187	1.0000	0.5825	0.7988	0.7807	0.7284
Ranking	7	5	1	1	6	2	3	4
χ4	D+	0.0176	0.0163	0.0000	0.0001	0.0055	0.0054	0.0027
	D-	0.0000	0.0065	0.0176	0.0176	0.0165	0.0167	0.151
	Ci	0.0000	0.2842	1.0000	0.9926	0.7498	0.7568	0.8471
Ranking	7	6	1	2	5	4	3	
χ5	D+	0.0041	0.0009	0.0008	0.0022	0.0036	0.0043	0.0040
	D-	0.0013	0.0047	0.0047	0.0032	0.0020	0.0018	0.0032
	Ci	0.2432	0.8434	0.8485	0.6017	0.3488	0.2881	0.4466
Ranking	7	2	1	3	5	6	4	
χ6	D+	0.0024	0.0006	0.0031	0.0011	0.0017	0.0005	0.0012
	D-	0.0026	0.0033	0.0023	0.0030	0.0028	0.0036	0.0033
	Ci	0.5190	0.8479	0.4261	0.7363	0.6186	0.8772	0.7386
Ranking	6	2	7	4	5	1	3	
χ7	D+	0.0040	0.0074	0.0105	0.0067	0.0053	0.0055	0.0017
	D-	0.0106	0.0055	0.0055	0.0054	0.0076	0.0069	0.0115
	Ci	0.7246	0.4245	0.3415	0.4456	0.5903	0.5558	0.8709
Ranking	2	6	7	5	3	4	1	
χ8	D+	0.0033	0.0023	0.0000	0.0000	0.0009	0.0035	0.0000
	D-	0.0016	0.0029	0.0041	0.0041	0.0036	0.0021	0.0041
	Ci	0.3224	0.5571	1.0000	1.0000	0.8042	0.3786	1.0000
Ranking	7	5	1	1	4	6	1	
χ9	D+	0.0119	0.0011	0.0032	0.0011	0.0011	0.0012	0.0000
3.4 Overall ranking

Next, the 12 aspects were analyzed as a whole, and the seven provincial CDCs were ranked as D, G, E, C, F, B, and A (Table 5).

Table 5

Overall ranking of laboratory management

Indicator	A	B	C	D	E	F	G
D+	0.0276	0.0217	0.0123	0.0085	0.0116	0.0180	0.0093
D-	0.0133	0.0202	0.0281	0.0274	0.0266	0.0235	0.0281
Ci	0.3246	0.4830	0.6951	0.7625	0.6968	0.5657	0.7503
Ranking	7	6	4	1	3	5	2

3.5 Comprehensive evaluation of RSR distribution for different \(C_i \) values

\(C_i \) values were ranked in ascending order, and the downward cumulative frequency was calculated. The corresponding Probit \(Y \) values are summarized in Table 6.
Table 6
Comprehensive evaluation of RSR distribution for different C_i values

CDC center	$n/\%$	Y
A	0.3246 1 1 1	14.29% 3.93
B	0.4830 1 2 2	28.57% 4.43
F	0.5657 1 3 3	42.86% 4.82
C	0.6951 1 4 4	57.14% 5.18
E	0.6968 1 5 5	71.43% 5.57
G	0.7503 1 6 6	85.71% 6.07
D	0.7625 1 7 7	96.43% 6.80

Note: * was calculated as $1 - 1/4n$

Using the Probit value corresponding to the cumulative frequency as the independent variable and C_i as the dependent variable, the regression equation was obtained as $C_i = -0.1831 + 0.1511 \times Y$. At regression coefficient test statistic $t = 5.0945$, $P < 0.05$, indicating that the regression equation was relevant; at $F = 25.954$ and $P < 0.05$, the independent variable had a linear regression relationship with the dependent variable.

3.6 Rank by performance level

The management of pathogenic microbiology laboratories in seven institutions was divided into five levels: poor, relatively poor, medium, relatively good, and good. None of the laboratories were marked as "poor" or "good"; one was marked as "relatively poor" (A); two were marked as "medium" (B and F); four were marked as "relatively good" (C, E, G, and D). See Table 7.

Table 7
Ranking of laboratory management evaluation in terms of performance

Probit	Ci	Number of units	Composition %	Organization	
Poor	<3.2	0.3003	0	0.00%	
Relatively poor	3.2~	0.3003	1	14.29%	A
Medium	4.4~	0.4816	2	28.57%	B,F
Relatively good	5.6~	0.6629	4	57.14%	C,E,G,D
Good	6.8~	0.8441	0	0.00%	

4. Discussion

Based on 12 primary indicators and 39 secondary indicators listed in the WHO’s LAT, China’s practices, literature reviews, and brainstorming, a comprehensive indicator evaluation system, including 12 primary indicators and 37 secondary indicators of management for pathogenic microbiology laboratories, was established herein. These indicators comprised organizational operation and management, documentation, sample collection, processing and transportation, data and information, consumables and reagents, equipment, analysis and testing capabilities, quality control, facilities, human resources, biological risks, and public health functions. Compared with the original LAT, the revised indicator system removed “gap analysis” from primary indicators and included “quality control.” Secondary indicators were adjusted under the framework of the new primary indicators. Although there were differences between the new evaluation system and LAT, the new one better reflects China’s actual
practices and meets the standard requirements. It also conforms to the WHO's concept of formulating LAT that encourages users to modify the LAT as per their own conditions. For example, a Thai study adopted 15 modules with quantitative output [20].

Management of laboratory biosafety risk has always been an important and difficult aspect of laboratory management. In this evaluation, \(\chi_{11} \) (biological risks) had the highest score (95.19), which is largely explained by the continuous training provided by the Chinese disease control system. Training in biological risk management is critical, and should be ongoing conducted at all safety levels laboratories. However, \(\chi_{7} \) (analysis and testing capacity) scored the lowest (76.92). Analysis revealed that the laboratories are efficient at detecting viruses and bacteria but are insufficient in parasite detection, which was responsible for overall low scores. With rapid economic development, greatly improved sanitary conditions, and a reduction in the need for parasite detection, laboratories have emphasized the development of bacterial and virus detection to ensure detection ability.

LAT does not give weight to each indicator, but the authors of this study believe that the role and impact of each indicator on laboratory management are different. We conclude that giving different weights to different indicators enables investigators to understand better the status and role of important indicators in the evaluation of the laboratory management process. However, as experts remain divided on the importance of each indicator, the weights assigned to various indicators vary from one expert to another. As such, in this study, both subjective and objective methods are employed for assigning weights to minimize the impact of subjective evaluation. The two types of weighting methods have their own advantages and disadvantages. The subjective weighting method entails experts to reasonably determine the rank of the weight coefficients of various indicators to resolve problems, resulting in a large extent of subjectivity. In contrast, the objective weighting method is based on objective data; however, the determined weights are, at times, contradictory to the actual importance of the indicators.[28, 29] In the present study, the three primary indicators given the highest weights were \(\chi_{7} \) (analysis and testing capacity), \(\chi_{1} \) (organization operation and management), and \(\chi_{12} \) (public health functions), whereas the three with the lowest weights were \(\chi_{9} \) (facilities), \(\chi_{6} \) (equipment), and \(\chi_{5} \) (consumables and reagents). These results indicate that more attention should be paid to “analysis and testing capacity”, “organizational operation and management” and “public health functions” for the daily management of the laboratories.

Provincial CDCs play a crucial role in disease monitoring, prevention, and control, as well as public health decision-making. The level of laboratory management matters when it comes to the evaluation of CDC capacity building. In this study, we compared the differences in laboratory management of the provincial CDCs and identified areas in which the laboratories should strengthen the capacity building. Analyses revealed that laboratory A performed the poorest, with only \(\chi_{7} \) (analysis and testing capacity) ranking top. B was number one in \(\chi_{2} \) (documents), and \(\chi_{12} \) (public health functions) but had low scores in \(\chi_{4} \) (data and information) and \(\chi_{7} \) (analysis and testing capacity), ranking sixth. C did well in 8 indicator, including \(\chi_{1} \) (organizational operation and management), \(\chi_{2} \) (documents) and so on, but lagged behind in \(\chi_{6} \) (equipment) and \(\chi_{7} \) (analysis and testing capacity). D had top scores in \(\chi_{2} \) (documents), \(\chi_{8} \) (quality control), and \(\chi_{12} \) (public health functions), but ranked sixth in \(\chi_{3} \) (sample collection, processing, and transportation). E ranked first in \(\chi_{2} \) (documents) and \(\chi_{11} \) (biological risks), with no indicators that were in the last place. F ranked first in \(\chi_{6} \) (equipment) and last in \(\chi_{2} \) (documents), \(\chi_{10} \) (human resources), \(\chi_{11} \) (biological risks), and \(\chi_{12} \) (public health functions). G had the highest scores in \(\chi_{7} \)–\(\chi_{11} \), with no last-ranked indicators. Therefore, this study will help CDC focus on the areas that need to be improved in comparison with other CDC and provides a reference for further efforts.

5. Conclusions

Based on the LAT by WHO, an evaluation system for pathogenic microbiology laboratory was established in this study to comprehensively evaluate pathogenic microbiology laboratories in seven provincial CDCs by adopting a combination of TOPSIS and RSR methods. In the future, the evaluation system will be further optimized and promoted to devise a more objective evaluation for increased applicability to achieve scientific and accurate evaluation results, thus providing a basis for guiding laboratory capacity building and improving laboratory management.

Abbreviations

CDC
Centers for Disease Control and Prevention
LAT
laboratory assessment tool
RSR
Rank Sum Ratio
TOPSIS
Technique for Order Preference by Similarity to an Ideal Solution
WHO
World Health Organization.

Declarations

Acknowledgements

We would like to thank the participants in the study, and the chief manager Hong Chen and Kai Kang from the China-U.S. Collaborative Program on Emerging and Re-emerging Infectious Disease for their strong support.

Ethics approval and consent to participate

This study was approved by China CDC. The survey would involve no experiments on humans and/or the use of human tissue samples. Consents from local laboratories were obtained before the field surveys.

All methods were carried out in accordance with relevant guidelines and regulations.

Consent for publication

Not applicable

Availability of data and materials

The data that support the findings of this study are available from China CDC but restrictions apply to the availability of these data, which were used under license for the current study and so are not publicly available. Data are, however, available from the authors upon reasonable request and subject to permission from China CDC.

Competing interests

The authors declare that they have no competing interests

Funding

This research was funded by Public Health Emergency Response Mechanism Project of China CDC, grant number 21780404.

Authors' contributions

Conceptualization, Chihong Zhao, Bo Liu and Xiumin Zhang; Data curation, Chihong Zhao and Bo Liu; Formal analysis, Chihong Zhao; Investigation, Jing Li, Sisi Li, Ping Xiao, Changwen Ke, Shuangfeng Zhang, Hong Zhang, Xiaoring Fu, Kun Chen, Hua Guo, Yan Liu and Yuanyuan Guo; Methodology, Chihong Zhao and Xiumin Zhang; Writing – original draft, Chihong Zhao and Xiumin Zhang; Writing – review & editing, Chihong Zhao, Bo Liu, Ping Xiao, Changwen Ke, Shuangfeng Zhang, Hong Zhang, Xiaoring Fu, Kun Chen, Hua Guo and Xiumin Zhang. All authors read and approved the final manuscript.

References

1. Gao GF: For a better world: Biosafety strategies to protect global health. Biosafety and Health 2019, 1(1):1–3.
2. Feng Y, Gao GF: Towards our understanding of SARS-CoV, an emerging and devastating but quickly conquered virus. Comparative Immunology, Microbiology and Infectious Diseases 2007, 30(5-6):309–327.
3. Peiris JS, Yu WC, Leung CW, Cheung CY, Ng WF, Nicholls JM, Ng TK, Chan KH, Lai ST, Lim WL et al: Re-emergence of fatal human influenza A subtype H5N1 disease. LANCET 2004, 363(9409):617–619.

4. Liu J, Xiao H, Lei F, Zhu Q, Qin K, Zhang XW, Zhang XL, Zhao D, Wang G, Feng Y et al: Highly Pathogenic H5N1 Influenza Virus Infection in Migratory Birds. SCIENCE 2005, 309(5738):1206.

5. Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, Sessions WM, Xu X, Skepner E, Deyde V et al: Antigenic and Genetic Characteristics of Swine-Origin 2009 A(H1N1) Influenza Viruses Circulating in Humans. SCIENCE 2009, 325(5937):197.

6. de Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L, Fouchier RAM, Galiano M, Gorbalenya AE, Memish ZA et al: Commentary: Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group. J VIROL 2013, 87(14):7790.

7. Chan M: Ebola Virus Disease in West Africa — No Early End to the Outbreak. NEW ENGL J MED 2014, 371(13):1183–1185.

8. Gulland A: Health ministers in west Africa hold crisis talks on Ebola virus. BMJ: British Medical Journal 2014, 349:g4478.

9. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY et al: Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. NEW ENGL J MED 2020, 382(13):1199–1207.

10. Oluwawemimo A, Saheed D, Adebankemo O, Olubunmi FG, Oludayo Fasina F: Capacities and Functionalities Assessment of Veterinary Laboratories in South-west Nigeria Using the FAO Laboratory Mapping Tool. BIOMED ENVIRON SCI 2020, 33(6):458–463.

11. STRENGTHENING VETERINARY DIAGNOSTIC CAPACITIES: THE FAO LABORATORY MAPPING TOOL. |.*2021*2021.; 2016.

12. International Health Regulations (2005) Third Edition. |.*2021*2021.:Publicaciones de la Organización Mundial de la Salud.

13. WHO: LABORATORY BIOSAFETY MANUAL FOURTH EDITION: World Health Organization; 2020.

14. IEC, ISO: General requirements for the competence of testing and calibration laboratories. In 17025:2017.*2021*2021. Edited by IEC, ISO; 2017:30.

15. CDC, NIH: Biosafety in Microbiological and Biomedical Laboratories 6th Edition.*2021*2021: Centers for Disease Control and Prevention;National Institutes of Health; 2020.

16. Canadian Biosafety Standard. Second Edition edition. Ottawa: Public Health Agency of Canada; 2015.

17. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Laboratories - General requirements for biosafety. Edited by Standardization Administration of the People’s Republic of China; 2008.

18. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: General requirements for the competence of testing and calibration laboratories GBT27025-2019. Edited by Standardization Administration of the People’s Republic of China; 2019.

19. WHO: Laboratory assessment tool. |.*2021*2021.; 2012.

20. Peruski AH, Birmingham M, Tantinimitkul C, Chungsamanukool L, Chungsamanukool P, Guntapong R, Pulsirom C, Saengklai L, Supawat K, Thattiyaphong A et al: Strengthening public health laboratory capacity in Thailand for International Health Regulations (IHR) (2005). WHO South-East Asia Journal of Public Health 2014, 3(3):171–178.

21. Shafii M, Hosseini SM, Arab M, Asgharizadeh E, Farzianpour F: Performance Analysis of Hospital Managers Using Fuzzy AHP and Fuzzy TOPSIS: Iranian Experience. Global journal of health science 2015, 8(2):137–155.

22. Chen F, Wang J, Deng Y: Road safety risk evaluation by means of improved entropy TOPSIS–RSR. SAFETY SCI 2015, 79:39–54.

23. Wang Z, Dang S, Xing Y, Li Q, Yan H: Applying Rank Sum Ratio (RSR) to the Evaluation of Feeding Practices Behaviors, and Its Associations with Infant Health Risk in Rural Lhasa, Tibet. INT J ENV RES PUB HE 2015, 12(12):15173–15181.

24. El Allaki F, Christensen J, Vallières A: A modified TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) applied to choosing appropriate selection methods in ongoing surveillance for Avian influenza in Canada. PREV VET MED 2019, 165:36–43.

25. Song L.; Zhao Y: Evaluation of the quality of child health care based on TOPSIS method, RSR method, fuzzy combination of TOPSIS method and RSR method. Maternal and Child Health Care of China 2019, 34(17):3875–3879.
26. Wang Z; Qin T; Qin B.; Cong W.; Zhang Q.; Zheng Y.; Chen Y: **Weighted TOPSIS method combined with RSR method to evaluate the operation effect of the new rural cooperative medical care system in all cities and prefectures of Gansu Province in 2016.** *China Health Statistics* 2018, 35(4):563–565.

27. Wang S: **Using TOPSIS Method and Rank and Ratio Method to Evaluate Hospital Bed Utilization Efficiency.** *China Medical Record* 2019, 20(3):39–42.

28. Zhang L: **Research on Performance evaluation and analysis of occupational disease prevention and control.** Shandong University; 2014.

29. Du D.; Pang Q.; Wu Y: *Modern comprehensive evaluation methods and case selection. 2nd Ed.* Beijing: Tsinghua University Press; 2008.

30. Sun Z.; Wang L: *Comprehensive evaluation methods and their medical applications.* 1st Ed. Beijing: People's Medical Publishing House; 2014.

31. Zhang P: **Research on Evaluation of Rural Health Service Capability – A Case Study of J Province.** Jilin University; 2014.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- [AppendixA.docx](#)