Supplemental Online Content

Chun JY, Jeong H, Kim Y. Age-varying susceptibility to the Delta variant (B.1.617.2) of SARS-CoV-2. JAMA Netw Open. 2022;5(3):e223064. doi:10.1001/jamanetworkopen.2022.3064

eMethods. Bayesian Inference Method to Estimate Age-Varying Susceptibility to SARS-CoV-2

eTable 1. School Attendance Ratio During Fourth Wave

eTable 2. Vaccine Coverage Data First Half of 2021

eTable 3. Vaccine Coverage Data Second Half of 2021

eFigure 1. Result of Sensitivity Analysis: Baseline

eFigure 2. Result of Sensitivity Analysis: 4% Asymptomatic Infections

eFigure 3. Result of Sensitivity Analysis: 40% Asymptomatic Infections

eFigure 4. Result of Sensitivity Analysis: Age-Varying Asymptomatic Proportions

eFigure 5. Result of Sensitivity Analysis: Age-Varying Ascertainment Ratio

eFigure 6. Result of Sensitivity Analysis: 25% Relative Infectiousness of Asymptomatic Infections

eFigure 7. Result of Sensitivity Analysis: 75% Relative Infectiousness of Asymptomatic Infections

eFigure 8. Result of Sensitivity Analysis: Vaccine Efficacy at Lower Bound of 95% CI

eFigure 9. Result of Sensitivity Analysis: Vaccine Efficacy at Upper Bound of 95% CI

This supplemental material has been provided by the authors to give readers additional information about their work.
eMethods. Bayesian Inference Method to Estimate Age-Varying Susceptibility to SARS-CoV-2

Bayesian Inference

A. Overview

In a Susceptible-Exposed-Infectious-Recovered (SEIR) model, the force of infection \(\lambda \), the rate at which susceptible individuals are infected (i.e., exposed), is a crucial factor. The age-specific force of infection \(\lambda_i \) in age group \(i \) at discrete time \(t \) could be written as:

\[
\lambda_i = \mu(t|q_i) = \frac{q_i \sum_{j=1}^A \phi_{ij}(t) \left(I_{\text{presym}}^j(t-1) + I_{\text{sym}}^j(t-1) + 0.5I_{\text{asym}}^j(t-1) \right)}{n_i}
\]

where \(q_i \) is the probability that a contact between a susceptible in age group \(i \) and infectious person leads to infection, \(\phi(t) = \phi_{ij}(t) \) means contact matrix at discrete time \(t \) (\(\phi_{ij}(t) \) is the number of contacts an individual of age group \(j \) makes with those of age group \(i \) per unit time at discrete time \(t \)), \(n_i \) is the number of individuals in age group \(i \). \(I_{\text{presym}}^j \) is the number of individuals who become infectious before the symptom onset; \(I_{\text{sym}} \) is the number of individuals who are both symptomatic and infectious; \(I_{\text{asym}} \) is the number of individuals who are infectious but never developed any symptoms. We suppose that the relative infectiousness of the \(I_{\text{asym}} \) is half of \(I_{\text{presym}} \) or \(I_{\text{sym}} \). Here \(i \) is in age group \(A = \{1, 2, \cdots, A\} \).

We try to estimate \(q_i \) during the third and fourth waves in South Korea and denote it as \(\theta_i \) hereafter. If we could observe the number of exposed individuals at time \(t \) for age group \(i \) and the number of total infectious individuals, the likelihood of the parameters could be easily derived. However what we could observe is only the number of diagnosed (i.e, quarantined) individuals for age group \(i \in A \) at time \(t \). In addition, asymptomatic infection which is the notable feature of COVID-19 should also be reflected in the model. To resolve these difficulties, we use a Bayesian approach. In particular, we develop an efficient MCMC (Markov Chain Monte Carlo) algorithm in which the exposed date, symptom onset date and transmission onset date for all quarantined individuals are imputed with an assumption that there are 16% asymptomatic individuals. We explain the details of our Bayesian method in the following three subsections.

B. Data, Model and Posterior

The data we used in the analysis is daily numbers of quarantined individuals for each age group from 15 October to 22 December 2020 (3rd wave) and from 27 June to 21 August 2021 (4th wave).

To estimate \(\theta_i \), we are going to impute the exposed dates, symptom onset dates and transmission onset dates of all quarantined individuals conditional on given quarantined dates. For this purpose, we need a probability model which relates the exposed dates, symptom onset dates and transmission onset dates to the quarantined dates.

Symptomatic cases	Asymptomatic cases		
Symbol	**Definition**	**Symbol**	**Definition**
\(E \)	Exposed date of an individual	\(E \)	Exposed date of an individual
\(Y \)	Incubation period	\(L \)	Latent period
\(I \)	Transmission onset time relative to the symptom onset	\(C \)	Infectious period suspended by quarantine
\(D \)	Diagnostic delay (i.e, Quarantined) from the symptom onset	\(R \)	Infectious period

© 2022 Chun JY et al. JAMA Network Open.
For each symptomatic individual, the quarantined date is sum of the exposed date (E), the incubation period (Y) and the period for symptom onset to diagnostic delay (D). In addition, these individuals start infecting other susceptibles from the transmission onset date (E + Y + I)

For each asymptomatic individual, the quarantined date is sum of exposed date (E), latent period (L) and period for transmission onset to quarantined date (C). We assume that the latent period distribution of asymptomatic individuals is same as that of symptomatic individuals. Also the quarantined time distribution of C(f_c) of asymptomatic individuals is set to be the exponential distribution with mean 1/1.7, which satisfies P(C > R) = 0.01 where E + L + R is defined as the recovered date.

Finally, the quarantined date T is defined as

$$T = (E + Y + D)I(\Delta = 0) + (E + L + C)I(\Delta = 1)$$ (S2)

where \(\Delta\) is equal to 0 when the individual is symptomatic and 1 when asymptomatic. We set \(P(\Delta = 1) = 0.16\).

For individual k, let \(W_k = (E_k, Y_k, I_k, L_k, C_k, D_k)\) and \(V_k = (Y_k, I_k, L_k, C_k, D_k)\). Let \(\mathcal{D}\) be the observed data which consist of the daily numbers of quarantined individuals. Our strategy to estimate \(\theta_i\) is to generate \(W_k\) and \(\theta\) iteratively from their conditional posterior distributions \(P(\theta_i|W, \mathcal{D})\) and \(P(W_k|W(-k), \theta, \mathcal{D})\) respectively, where \(W = \{W_k\}\) and \(W(-k)\) denotes \(W\) except \(W_k\).

We could describe as,

$$P(W_k|W(-k), \theta_{i_k}, D) = P(W_k|W(-k), \theta_{i_k}, D)I(\Delta_k = 0) + P(W_k|W(-k), \theta_{i_k}, D)I(\Delta_k = 1)$$ (S3)

$$= P(E_k|V(1:N), \theta_{i_k}, D)(f_Y(Y_k)f_I(I_k)f_D(D_k)I(\Delta_k = 0) + f_L(L_k)f_C(C_k)I(\Delta_k = 1))$$ (S4)

C. Generating \(\theta\) and \(W\) from their conditional posterior distributions

C.1. Generating \(\theta\)

For the prior distribution of \(\theta_i\), we use a diffuse gamma distribution \(\text{Gamma}(0.001, 0.001)\) for all \(i\). Then

$$p(\theta_i|W^{(i)}_k \mathcal{D}) \propto p(\theta_i)p(W^{(i)}_k \mathcal{D} | \theta_i), \quad i \in \mathcal{A}$$ (S5)

when \(W^{(i)}_k = \{W_k |\text{The age group of } k \text{ is } i\}\), \(n_i\) is the population for age group \(i\).

In turn, \(P(W^{(i)}_1, \ldots, W^{(i)}_{n_i} \mathcal{D} | \theta_i)\) can be expressed as

$$P(W^{(i)}_1, \ldots, W^{(i)}_{n_i} \mathcal{D} | \theta_i) = P(E^{(i)}_1, \ldots, E^{(i)}_{n^{(i)}_i} | V(1:N), \theta_i)P(V(1:N)) = \prod_{k=1}^{n_i} P(E^{(i)}_k | V(1:N), \theta_i)P(V(1:N))$$ (S6)

$$P(E^{(i)}_k | V(1:N), \theta_i) = P(E^{(i)}_k | I_{total}(t), t < E^{(i)}_k, \theta_i) = P(E^{(i)}_k | \theta_{i_k})\prod_{t=1}^{E^{(i)}_k - 1}(1 - p(t | \theta_{i_k}))$$ (S7)

Since \(p(E^{(i)}_k | V(1:N), \theta_i)\) is the probability of an individual \(k\) to be infected at discrete time \(E^{(i)}_k\) (implying the individual \(k\) has not been infected before).

$$P(V(1:N)) = \prod_{\Delta_k = 0}^{\Delta_k} 0.84 f_Y(Y_k)f_I(I_k)f_D(D_k) \prod_{\Delta_k = 1}^{\Delta_k} 0.16 f_L(L_k)f_C(C_k)$$ (S8)

where \(N = \sum_i n_i\) (Total population size), \(V_k = (Y_k, I_k, L_k, C_k, D_k)\) and \(i_k\) is the age group of individual \(k\). By applying the following approximation,

$$P(E^{(i)}_k | V(1:N), \theta_{i_k}) = P(E^{(i)}_k | I_{total}(t), t < E^{(i)}_k, \theta_{i_k}) = p(E^{(i)}_k | \theta_{i_k})\prod_{t=1}^{E^{(i)}_k - 1}(1 - p(t | \theta_{i_k}))$$

$$\approx p(E^{(i)}_k | \theta_{i_k})e^{-\sum_{t=1}^{E^{(i)}_k - 1} p(t | \theta_{i_k})}$$ (S9)

© 2022 Chun JY et al. JAMA Network Open.
we have

\[\theta_i | W, D \sim \text{Gamma} \left(0.001 + |E_i|, 0.001 + \sum_{k \in E_i} \phi_j(t) I_{total}(t - 1) \frac{n_i}{n_i} + \sum_{k \in S \cup E_j \cup E_0} \phi_j(t) I_{total}(t - 1) \right) \quad (S10) \]

where \(E_i \) is set of individuals in the age group \(i \) exposed during the 3rd wave \([t_1, t_2]\) (or 4th wave).

C.2 Generating \(W \)

We generate \(W \) by generating \(W_k \) from \(P(W_k | W_{(-k)}, \theta, D) \) iteratively, and generate \(W_k \) through the Metropolis-Hasting (MH) algorithm. To sample from the posterior \(P(W_k | W_{(-k)}, \theta, D) \) by the MH algorithm, we use the following proposal distribution:

\[
Q(E_k, V_k) = Q(E_k | V_k)Q(V_k) \\
Q(V_k) = p(V_k | D) \\
Q(E_k | V_k) = \delta(T_k - Y_k - D_k)I(\Delta_k = 0) + \delta(T_k - L_k - C_k)I(\Delta_k = 1) \quad (S13)
\]

Putting the above together, the sampling procedure of \(W_k \) is summarized in Algorithm S1.

Algorithm S1. Bayesian Inference

Input : \(W_k^{(0)} \) for \(k = 1, 2, \ldots, N \)

1. Sample \(\theta^{(0)} = (\theta_i^{(0)}) \) from prior.

2. for \(m = 1: M \) (number of iteration) do

 → **Gibbs sampling**

3. for \(k = 1: N \) do

 → **MCMC**

4. Sample \(W_k^{(m)} \) from \(Q(E_k, V_k) \)

5. \[\alpha \leftarrow \frac{P(E_k^{(m)}, V_k^{(m-1)} | \theta^{(m-1)}, D)Q(V_k^{(m-1)})}{P(E_k^{(m)}, V_k^{(m-1)} | \theta^{(m-1)}, D)Q(V_k^{(m-1)})} \]

 → **Acceptance ratio**

6. \[
W_k^{(m)} \leftarrow \begin{cases}
W_k^{(m)} & \text{if } \alpha \geq 1 \\
W_k^{(m-1)} & \text{else}
\end{cases}
\]

7. Sample \(\theta_i^{(m)} \) for \(i = 1, 2, \ldots, A \) from \(p(\theta_i | W^{(m)}) \)

The acceptance ratio \(\alpha \) can be obtained as follows, where \(W_k^{(m)} \) and \(W_k^{(m-1)} \) are denoted by \(W_k^{(\text{new})} \) and \(W_k^{(\text{old})} \), respectively.

For \(I_{sym} \), let \(m_k^{(lm)} = (T_k - D_k^{(\text{new})} + I_k^{(\text{new})}) \land \left(T_k - D_k^{(\text{old})} + I_k^{(\text{old})} \right) \), \(M_k^{(lm)} = (T_k - D_k^{(\text{new})} + I_k^{(\text{new})}) \lor (T_k - D_k^{(\text{old})} + I_k^{(\text{old})}) \).

For \(I_{asym} \), let \(m_k^{(lm)} = (T_k - C_k^{(\text{new})}) \land \left(T_k - C_k^{(\text{old})} \right) \), \(M_k^{(lm)} = (T_k - C_k^{(\text{new})}) \lor (T_k - C_k^{(\text{old})}) \). Here \(T - D + I \) and \(T - C \) are transmission onset date and \(a \land b = \min(a, b), a \lor b = \max(a, b) \).
\[
\beta(t) = \begin{cases}
 p_i(t) & \text{if } t \notin \left[m_k^l, M_k^l \right] \cdots (s) \\
 \phi_{i,t}(t_{\text{total}}(t) - 1) + \sum_{t \in k} \phi_{i,t}(t_{\text{total}}(t) - 1) - p_i(t) & \text{if not (s), } T_k - p_i^{(\text{new})} + p_i^{(\text{old})} < T_k - p_i^{(\text{old})} + p_i^{(\text{old})} \\
 \phi_{i,t}(t_{\text{total}}(t) - 1) + \sum_{t \in k} \phi_{i,t}(t_{\text{total}}(t) - 1) - p_i(t) & \text{if not (s), } T_k - p_i^{(\text{new})} + p_i^{(\text{old})} > T_k - p_i^{(\text{old})} + p_i^{(\text{old})}
\end{cases}
\]

\[
\alpha = \begin{cases}
 \frac{p_i^{(\text{old})}}{p_i^{(\text{new})}} e^{-\sum_{k \in A} p_i^{(\text{old})}} \left(\prod_{k \in A} \frac{p_i^{(\text{old})}}{p_i^{(\text{new})}} \left(e^{x_{k,\text{total}} - p_i^{(\text{old})}} \right) \right) \prod_{k \in A} \left(e^{x_{k,\text{total}} - p_i^{(\text{old})}} \right) & E_k^{(\text{new})} > E_k^{(\text{old})} \\
 \frac{p_i^{(\text{old})}}{p_i^{(\text{new})}} e^{-\sum_{k \in A} p_i^{(\text{old})}} \left(\prod_{k \in A} \frac{p_i^{(\text{old})}}{p_i^{(\text{new})}} \left(e^{x_{k,\text{total}} - p_i^{(\text{old})}} \right) \right) \prod_{k \in A} \left(e^{x_{k,\text{total}} - p_i^{(\text{old})}} \right) & E_k^{(\text{new})} = E_k^{(\text{old})} \\
 \frac{p_i^{(\text{old})}}{p_i^{(\text{new})}} e^{-\sum_{k \in A} p_i^{(\text{old})}} \left(\prod_{k \in A} \frac{p_i^{(\text{old})}}{p_i^{(\text{new})}} \left(e^{x_{k,\text{total}} - p_i^{(\text{old})}} \right) \right) \prod_{k \in A} \left(e^{x_{k,\text{total}} - p_i^{(\text{old})}} \right) & E_k^{(\text{new})} < E_k^{(\text{old})}
\end{cases}
\]

D. Reproducibility

Code and data to reproduce the analyses are available at https://github.com/Hwichang/Age-varying-susceptibility-to-the-Delta-variant-of-SARS-CoV-2.
eTable 1. School Attendance Ratio During Fourth Wave

Attendance ratio (%)	2021-09-29	2021-09-28	2021-09-23	2021-09-15	2021-09-13	2021-09-09	2021-09-06	2021-09-01	2021-08-31
Kindergarten	91.6	90.9	89.8	93.2	91.3	92.3	90.3	88.9	82.3
Primary school	79.7	78.7	75.6	79.3	77.9	77.7	76.4	55.7	48.6
Middle school	80.5	80.3	76.5	75.6	79.7	76.9	74	45	56.2
High school	81.4	81.7	72.9	81	80.9	80.9	81	73.5	74.2

Attendance ratio (%)	2021-08-26	2021-08-24	2021-08-19	2021-08-13	2021-08-11	2021-08-09	2021-08-04	2021-08-02	2021-07-28
Kindergarten	74.4	66.5	55.7	27.5	20.4	15.2	1.9	1.6	11.7
Primary school	36.7	20.6	4.1	0.4	0.2	0.1	0	0	0.7
Middle school	55.7	50.7	27.7	2.1	0.9	0.6	0.2	0.1	0
High school	73.1	70.1	55.9	6.5	5.2	4.2	1.1	0.9	0.4

Attendance ratio (%)	2021-07-26	2021-07-21	2021-07-16	2021-07-14	2021-07-12	2021-07-07	2021-06-30	2021-06-23	2021-06-16
Kindergarten	20.2	42.8	45.8	56.7	78	94.3	94.3	95.2	94.4
Primary school	3.2	24.5	31.5	46.9	58.6	80.2	79.9	80.2	79.3
Middle school	0.4	4.2	10.3	45.3	50.5	77.6	76.6	76.3	76
High school	0.8	3.4	10	47.3	57.6	79.4	85.6	76.2	75.7
Table 2. Vaccine Coverage Data First Half of 2021

Age	Type	2021-05-29	2021-06-05	2021-06-12	2021-06-19	
18~29	AZ	1st	135,692	135,784	135,839	135,901
		2nd	85,495	109,495	119,623	126,856
	P	1st	27,641	29,436	178,863	416,390
		2nd	25,208	25,475	25,895	27,395
	JJ	1st				7

30~49	AZ	1st	847,219	1,025,861	1,246,444	1,408,453
		2nd	189,256	231,801	250,360	263,501
	P	1st	48,627	49,791	51,888	54,848
		2nd	45,135	45,627	46,420	48,307
	JJ	1st			528,740	993,216

50~74	AZ	1st	2,085,973	3,585,248	6,383,358	8,608,663
		2nd	224,463	258,346	297,104	335,204
	P	1st	61,363	63,194	65,844	67,835
		2nd	55,806	56,547	57,570	61,124
	JJ	1st			38,053	121,808

≥75	AZ	1st	199,117	201,748	208,756	219,906
		2nd	4,926	10,446	44,541	99,090
	P	1st	1,993,383	2,504,010	2,964,448	2,985,116
		2nd	1,513,004	1,541,859	1,583,769	1,969,791
	JJ	1st			54	312

AZ; ChAdOx1 nCoV-19 (AZD1222, Oxford–AstraZeneca), P; BNT162b2 (tozinameran, Pfizer–BioNTech), JJ; Ad26.COV2.S (Johnson & Johnson), M; mRNA-1273 (elasomeran, Moderna)

Reference: https://ncv.kdca.go.kr/
eTable 3. Vaccine Coverage Data Second Half of 2021

| Age | Type | 2021-06-28 | 2021-07-05 | 2021-07-12 | 2021-07-19 | 2021-07-26 | 2021-08-02 | 2021-08-09 | 2021-08-16 | 2021-08-23 | 2021-08-30 | 2021-09-06 | 2021-09-13 | 2021-09-20 |
|-----|------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| AZ | 1st | 135,946 | 135,960 | 135,967 | 136,081 | 136,388 | 137,332 | 137,784 | 138,118 | 138,312 | 138,441 | 138,525 | 138,561 | 138,561 |
| | 2nd | 131,100 | 131,693 | 131,701 | 131,729 | 131,758 | 131,766 | 131,864 | 132,141 | 133,002 | 133,431 | 133,800 | 134,001 | 134,215 |
| | 2nd P* | 70 | 433 | 828 | 1,102 | 1,251 | 1,430 | 1,628 | 1,811 | 1,942 | 2,031 | 2,315 | | |
| P | 1st | 623,290 | 626,570 | 695,296 | 759,478 | 1,208,724 | 1,502,771 | 1,715,833 | 1,964,306 | 2,185,802 | 2,697,092 | 3,142,071 | 4,003,302 | 4,618,031 |
| | 2nd | 29,047 | 178,201 | 405,053 | 608,844 | 622,353 | 688,277 | 750,851 | 1,190,221 | 1,255,330 | 1,274,463 | 1,382,183 | 1,655,660 | 1,938,605 |
| JJ | 1st | 10 | 17 | 18 | 18 | 18 | 18 | 18 | 22 | 43 | 66 | 3,141 | | |
| | 2nd | 238 | 13,408 | 33,018 | 54,038 | 55,041 | 55,149 | 56,043 | 65,832 | 119,032 | 141,432 | | | |
| AZ | 1st | 533,056 | 533,620 | 533,673 | 533,904 | 534,502 | 535,751 | 536,330 | 537,524 | 555,572 | 579,203 | 589,942 | 592,690 | 592,690 |
| | 2nd | 128,494 | 136,891 | 136,891 | 136,918 | 137,087 | 137,177 | 137,416 | 137,954 | 139,285 | 140,822 | 142,421 | 142,892 | 143,403 |
| | 2nd P* | 21,590 | 108,118 | 170,524 | 187,106 | 190,264 | 217,370 | 259,206 | 317,043 | 382,761 | 387,079 | 388,308 | | |
| P | 1st | 28,184 | 29,578 | 37,728 | 37,829 | 221,883 | 454,070 | 639,936 | 768,405 | 941,218 | 1,240,986 | 1,518,671 | 2,214,956 | 2,687,480 |
| | 2nd | 24,546 | 25,257 | 26,102 | 27,000 | 27,851 | 35,236 | 126,569 | 212,461 | 222,234 | 234,213 | 375,123 | 550,202 | 750,133 |
| JJ | 1st | 802,334 | 802,874 | 802,951 | 802,956 | 802,983 | 802,983 | 802,987 | 802,987 | 824,599 | 860,571 | 887,563 | 910,527 | |
| | 2nd | 1,270 | 3,156 | 4,887 | 5,030 | 5,058 | 43,053 | 46,592 | 51,287 | 99,452 | 104,850 | 121,918 | 217,364 | 593,717 |
| M | 1st | | | | | | | | | | | | | |
| | 2nd | 1,379 | 2,978 | 4,807 | 4,992 | 5,045 | 5,327 | 10,502 | 43,163 | 56,991 | | | | |
| AZ | 1st | 880,407 | 881,151 | 881,269 | 881,650 | 882,513 | 883,871 | 884,663 | 887,289 | 927,882 | 985,751 | 1,009,579 | 1,014,709 | 1,014,709 |
| | 2nd | 144,437 | 155,994 | 155,994 | 156,074 | 156,270 | 156,390 | 156,777 | 157,651 | 159,449 | 162,330 | 164,165 | 164,805 | 165,532 |
| | 2nd P* | 43,974 | 180,789 | 252,570 | 270,534 | 277,512 | 347,791 | 482,002 | 627,500 | 710,976 | 715,286 | 717,390 | | |
| P | 1st | 29,595 | 31,515 | 40,017 | 218,287 | 335,390 | 682,788 | 936,781 | 1,103,408 | 1,353,604 | 1,752,595 | 2,121,406 | 3,218,448 | 3,898,027 |

© 2022 Chun JY et al. JAMA Network Open.
Age Group	1st	2nd
50~59	39,484	34,364
AZ	944,250	5,855,390
P	196,587	196,521
JJ	1,084,344	1,084,096
M	337,429	337,429
60~69	21,875	20,699
AZ	5,855,390	139,603
P	5,857,335	60,138
JJ	1,891,830	1,857,309
M	178,316	178,316
70~79	21,583	21,583
AZ	47,791	47,791
P	48,076	48,076
JJ	1,861,424	1,861,424
M	60,393	60,393

© 2022 Chun JY et al. JAMA Network Open.
	2nd P*	1st																										
P		14,585	24,000	29,143	29,320	29,336	29,403	29,637	30,040	30,430	30,555	30,627																
1st	1,424,636	1,432,143	1,453,719	1,469,104	1,473,470	1,487,688	1,502,379	1,511,870	1,518,376	1,524,082	1,528,847	1,532,960	1,536,611															
2nd	1,115,520	1,392,073	1,405,112	1,414,527	1,422,426	1,443,725	1,458,942	1,463,773	1,464,458	1,465,530	1,468,857	1,482,547	1,500,325															
JJ		8,216	8,270	8,272	8,274	8,277	8,276	8,277	8,278	8,461	9,060	9,616	10,483															
M		2	9	17	17	17	9,347	9,863	10,224	12,931	13,357	14,235	15,405															
2nd		2	2	17	17	19	57	548	9,123	9,930																		
≥80																												
AZ																												
P																												
1st	185,863	187,493	188,398	188,827	189,188	189,447	191,547	198,708	204,109	208,934	211,177	212,076	212,355															
2nd	114,222	130,211	140,851	146,420	148,891	150,096	152,194	157,234	161,096	166,697	172,254	174,991	176,234															
2nd P*		70	188	295	301	301	301	301	301	303	304	305																
JJ																												
M																												
1st	273	320	320	320	320	321	321	321	321	357	1,134	1,486	2,159															
2nd		1	1	1	1	1	1	1	1	4	125	169																

* Since mid-July 2021, a mixed combination of ChAdOx1 nCoV-19 (AZD1222, Oxford–AstraZeneca) first and BNT162b2 (tozinameran, Pfizer–BioNTech) second was used.
eFigure 1. Result of Sensitivity Analysis: Baseline

A. Age-varying susceptibility to the SARS-CoV-2

![Graph showing age-varying susceptibility to SARS-CoV-2](chart)

B. Fold-rise in susceptibility to the Delta/pre-Delta

![Graph showing fold-rise in susceptibility to Delta/pre-Delta](chart)

Age group	3rd wave (Pre-Delta)	4th wave (Delta)	Fold-rise
	2.50% 50% 97.50%	2.50% 50% 97.50%	2.50% 50% 97.50%
[0,5)	0.02829 0.030807 0.033569	0.043465 0.045887 0.048048	1.536416 1.489504 1.431315
[5,10)	0.023685 0.025646 0.027586	0.043276 0.045437 0.047555	1.82717 1.771664 1.723862
[10,15)	0.027847 0.02998 0.032231	0.055012 0.057505 0.059875	1.975501 1.918102 1.857688
[15,20)	0.023795 0.02538 0.027121	0.039571 0.041149 0.042844	1.66301 1.621304 1.579741
[20,25)	0.046352 0.048611 0.051073	0.077432 0.079681 0.082327	1.670517 1.639143 1.611961
[25,30)	0.04139 0.043289 0.045337	0.07181 0.073878 0.076013	1.734952 1.706649 1.676628

© 2022 Chun JY et al. *JAMA Network Open.*
Interval	Lower	Upper								
[30,35)	0.037224	0.039097	0.040973	0.051992	0.05386	0.055663	1.396753	1.377602	1.358515	
[35,40)	0.040271	0.04238	0.044537	0.057469	0.05928	0.061105	1.427043	1.398781	1.372018	
[40,45)	0.036144	0.037729	0.039539	0.04292	0.04438	0.045879	1.187476	1.176285	1.160361	
[45,50)	0.043949	0.045958	0.047976	0.053215	0.055067	0.05688	1.21083	1.198201	1.185606	
[50,55)	0.04641	0.048158	0.050051	0.046457	0.048016	0.049475	1.001017	0.997043	0.9885	
[55,60)	0.047279	0.049315	0.051147	0.049173	0.050767	0.052315	1.040061	1.029443	1.022836	
[60,65)	0.049461	0.051628	0.053608	0.052036	0.054286	0.056405	1.052075	1.051481	1.052176	
[65,70)	0.050556	0.053013	0.055442	0.052981	0.055411	0.058047	1.047972	1.045232	1.046975	
[70,75)	0.043144	0.045885	0.048753	0.02862	0.030949	0.033265	0.663372	0.674497	0.682317	
[75,+)	0.140352	0.145997	0.151866	0.155416	0.164431	0.17482	1.107328	1.126262	1.151142	
Figure 2. Result of Sensitivity Analysis: 4% Asymptomatic Infections

A. Age-varying susceptibility to the SARS-CoV-2

Age group	3rd wave (Pre-Delta)	4th wave (Delta)	Fold-rise						
	2.50%	50%	97.50%	2.50%	50%	97.50%	2.50%	50%	97.50%
[0,5)	0.025865	0.028017	0.030438	0.038677	0.040748	0.042897	1.495301	1.454397	1.409292
[5,10)	0.021731	0.023424	0.025279	0.038392	0.040384	0.042498	1.766694	1.724016	1.681141
[10,15)	0.02539	0.027179	0.02937	0.049117	0.051339	0.053558	1.934465	1.888909	1.823548
[15,20)	0.02161	0.023147	0.024622	0.035323	0.036825	0.038282	1.634593	1.590928	1.554769
[20,25)	0.042101	0.044197	0.04613	0.068304	0.070392	0.072277	1.622399	1.592698	1.566813
[25,30)	0.037596	0.039434	0.041197	0.063482	0.065195	0.06693	1.688559	1.653254	1.624614

© 2022 Chun JY et al. *JAMA Network Open.*
Age Group	Percentage	Standard Deviation	Mean	Standard Error	95% CI Low	95% CI High			
[30,35)	0.034108	0.035655	0.037418	0.046105	0.047775	0.049403	1.351759	1.339918	1.320308
[35,40)	0.037044	0.038699	0.040471	0.051488	0.052922	0.054541	1.389914	1.367557	1.347647
[40,45)	0.032887	0.034472	0.03609	0.038329	0.039628	0.04086	1.165477	1.149573	1.132147
[45,50)	0.040258	0.041917	0.043616	0.047524	0.048936	0.050434	1.180501	1.167439	1.156317
[50,55)	0.042134	0.043743	0.045571	0.041578	0.04286	0.044193	0.986791	0.979801	0.969764
[55,60)	0.04309	0.044721	0.046526	0.043962	0.045336	0.046846	1.020235	1.013743	1.006878
[60,65)	0.044889	0.046779	0.048583	0.046622	0.048595	0.050571	1.038604	1.038817	1.040915
[65,70)	0.045654	0.047994	0.050251	0.047142	0.049538	0.05194	1.032579	1.032169	1.033613
[70,75)	0.039149	0.041289	0.04376	0.02599	0.027916	0.029953	0.663877	0.676113	0.684477
[75+]	0.126492	0.13185	0.136889	0.140551	0.148336	0.15708	1.11114	1.125044	1.147502

© 2022 Chun JY et al. *JAMA Network Open.*
eFigure 3. Result of Sensitivity Analysis: 40% Asymptomatic Infections

A. Age-varying susceptibility to the SARS-CoV-2

Age group	3rd wave (Pre-Delta)	4th wave (Delta)	Fold-rise
[0,5)	2.50% 0.034055	50% 0.037556	97.50%
	97.50% 0.040725	50% 0.055123	97.50%
[5,10)	2.50% 0.028982	50% 0.031427	97.50%
	97.50% 0.034079	50% 0.054844	97.50%
[10,15)	2.50% 0.034077	50% 0.036518	97.50%
	97.50% 0.039336	50% 0.069659	97.50%
[15,20)	2.50% 0.028991	50% 0.031139	97.50%
	97.50% 0.033173	50% 0.049922	97.50%
[20,25)	2.50% 0.056732	50% 0.059505	97.50%
	97.50% 0.062333	50% 0.09836	97.50%

B. Fold-rise in susceptibility to the Delta/pre-Delta
Age Group	Mean	95% CI	Median	95% CI	Minimum	95% CI	Maximum	95% CI	
[25,30)	0.050627	0.05319	0.055891	0.090664	0.093327	0.095974	1.790827	1.754605	1.717169
[30,35)	0.045527	0.047774	0.050278	0.065976	0.068175	0.070729	1.449169	1.427031	1.406752
[35,40)	0.049432	0.051736	0.05418	0.072658	0.074838	0.077252	1.469865	1.446546	1.425849
[40,45)	0.043944	0.046094	0.048272	0.054637	0.056456	0.058322	1.243351	1.22481	1.208191
[45,50)	0.05373	0.055979	0.058476	0.067795	0.070014	0.072315	1.261771	1.250725	1.236643
[50,55)	0.05656	0.058938	0.061415	0.059183	0.061022	0.063009	1.046363	1.035359	1.025942
[55,60)	0.058006	0.060313	0.062604	0.06214	0.064275	0.066431	1.071269	1.06569	1.061132
[60,65)	0.060278	0.062956	0.065515	0.065896	0.068645	0.071397	1.093203	1.090351	1.089767
[65,70)	0.061658	0.064603	0.067678	0.066379	0.069972	0.073606	1.076568	1.08311	1.087595
[70,75)	0.053366	0.056472	0.05983	0.036458	0.039311	0.042402	0.683174	0.696119	0.708713
[75+]	0.172041	0.17943	0.186494	0.196831	0.209439	0.222033	1.144092	1.167244	1.190564
eFigure 4. Result of Sensitivity Analysis: Age-Varying Asymptomatic Proportions

52%, 50%, 45%, and 12% among individuals aged 0–4 years, 5–11 years, 12–17 years, and 18 years or older, respectively.

Age group	3rd wave (Pre-Delta)	4th wave (Delta)	Fold-rise						
[0,5)	0.028675 0.031236 0.034147	0.046062 0.048522 0.051124	1.606377 1.553394 1.497158						
[5,10)	0.024929 0.027085 0.02924	0.048033 0.050374 0.052918	1.926812 1.859873 1.809756						
[10,15)	0.030225 0.032527 0.035035	0.063673 0.066354 0.069409	2.106616 2.039944 1.9811						
[15,20)	0.024597 0.026322 0.028241	0.043749 0.045612 0.047407	1.778615 1.732831 1.678682						
[20,25)	0.045476 0.047701 0.049893	0.078916 0.08111 0.083646	1.735338 1.700378 1.676491						
Age Group	Mean Age	Mean BMI	Mean SBP	Mean DBP	Mean Glucose	Mean HbA1c			
-----------	---------	---------	---------	---------	-------------	------------			
[25,30)	0.040659	0.042504	0.044425	0.072461	0.074412	0.076394	1.782155	1.750735	1.71961
[30,35)	0.036702	0.03864	0.040541	0.053069	0.054924	0.056863	1.445929	1.421442	1.402599
[35,40)	0.040364	0.042229	0.044234	0.059069	0.060969	0.062992	1.463404	1.443775	1.424069
[40,45)	0.03561	0.037418	0.039101	0.044228	0.045647	0.047333	1.241996	1.219929	1.210533
[45,50)	0.043488	0.045388	0.047337	0.054772	0.056564	0.058474	1.259462	1.246234	1.235264
[50,55)	0.045404	0.047335	0.049215	0.047592	0.049037	0.050564	1.048204	1.035964	1.027417
[55,60)	0.0467	0.048647	0.050525	0.050252	0.051929	0.053586	1.076046	1.067476	1.060567
[60,65)	0.049185	0.051086	0.053098	0.053996	0.056111	0.058203	1.097813	1.098358	1.096151
[65,70)	0.050295	0.052801	0.055437	0.05528	0.058034	0.060712	1.099109	1.09911	1.09515
[70,75)	0.043293	0.045813	0.048555	0.030568	0.032808	0.03522	0.706058	0.71612	0.725355
[75+)	0.140277	0.146151	0.152142	0.166294	0.175837	0.186653	1.185464	1.203116	1.226837
eFigure 5. Result of Sensitivity Analysis: Age-Varying Ascertainment Ratio

1.2 times more cases than reported among those aged < 20 years

Age group	3rd wave (Pre-Delta)	4th wave (Delta)	Fold-rise
[0,5)	0.032687	0.035518	0.038205
[5,10)	0.026812	0.028739	0.030869
[10,15)	0.030212	0.032356	0.034665
[15,20)	0.025982	0.027553	0.029247
[20,25)	0.04537	0.047496	0.049729

© 2022 Chun JY et al. *JAMA Network Open.*
Age Group	Mean 25th	Mean 50th	Mean 75th	Median 25th	Median 50th	Median 75th			
[25,30)	0.041124	0.043114	0.045105	0.070931	0.072849	0.074815	1.724805	1.689702	1.658671
[30,35)	0.0369	0.038797	0.040823	0.05115	0.052882	0.054547	1.386189	1.363025	1.336186
[35,40)	0.040016	0.04178	0.043692	0.055866	0.0577	0.059538	1.396104	1.381051	1.362693
[40,45)	0.035528	0.037248	0.038774	0.041749	0.043099	0.044956	1.175115	1.157078	1.151718
[45,50)	0.043224	0.045076	0.047013	0.052023	0.053554	0.055167	1.203584	1.18808	1.173448
[50,55)	0.04551	0.047388	0.049275	0.045532	0.046975	0.048462	1.000494	0.991285	0.983507
[55,60)	0.046831	0.048549	0.050566	0.048173	0.049679	0.051223	1.028655	1.023283	1.013
[60,65)	0.04882	0.05092	0.052965	0.0506	0.052817	0.055149	1.036474	1.037249	1.041235
[65,70)	0.049538	0.051932	0.054468	0.05116	0.053685	0.056191	1.032756	1.033754	1.031622
[70,75)	0.042217	0.04471	0.04735	0.0275	0.029682	0.031877	0.651389	0.663883	0.673226
[75+]	0.135969	0.141575	0.147052	0.148358	0.157357	0.167277	1.091117	1.111471	1.137537
eFigure 6. Result of Sensitivity Analysis: 25% Relative Infectiousness of Asymptomatic Infections									
Age Group	Median 30%	Median 50%	Median 95%	Mean 30%	Mean 50%	Mean 95%			
-----------	------------	------------	------------	----------	----------	----------			
[30,35)	0.035677	0.053432	0.057217	1.497655	1.474604	1.450124			
[35,40)	0.038673	0.059027	0.062797	1.526304	1.506096	1.484609			
[40,45)	0.034369	0.044081	0.047142	1.282586	1.26617	1.257626			
[45,50)	0.041781	0.054659	0.058439	1.308251	1.296741	1.284913			
[50,55)	0.044086	0.047721	0.050825	1.082466	1.074755	1.065669			
[55,60)	0.045281	0.050505	0.053749	1.115371	1.109077	1.099277			
[60,65)	0.047255	0.053417	0.057919	1.130397	1.131802	1.130756			
[65,70)	0.047923	0.054386	0.059626	1.134864	1.131146	1.132421			
[70,75)	0.041021	0.029371	0.034138	0.716015	0.731784	0.742637			
[75+]	0.131881	0.159522	0.179414	1.209595	1.22891	1.25716			
eFigure 7. Result of Sensitivity Analysis: 75% Relative Infectiousness of Asymptomatic Infections

Age group	3rd wave (Pre-Delta)	4th wave (Delta)	Fold-rise
[0,5)	0.033943 0.03685 0.039607	0.042358 0.044708 0.046822	1.247914 1.213264 1.182169
[5,10)	0.027768 0.029841 0.032123	0.042186 0.044286 0.046344	1.51926 1.484061 1.442694
[10,15)	0.031355 0.033613 0.035893	0.053688 0.056145 0.058397	1.712256 1.670328 1.62697
[15,20)	0.02704 0.028668 0.030446	0.038613 0.040154 0.041802	1.428026 1.400642 1.373003
[20,25)	0.047153 0.049349 0.051717	0.075459 0.077653 0.080205	1.600281 1.573546 1.55085
[25,30)	0.042717 0.044706 0.046839	0.069965 0.071956 0.07403	1.637871 1.609528 1.580525

© 2022 Chun JY et al. JAMA Network Open.
Age Group	Mean 1	Mean 2	Mean 3	Mean 4	Mean 5	Mean 6
[30,35)	0.038287	0.040287	0.042332	0.05065	0.052459	0.054214
[35,40)	0.041554	0.043426	0.045446	0.055986	0.057748	0.059534
[40,45)	0.036977	0.038701	0.040315	0.041815	0.043246	0.044698
[45,50)	0.044915	0.046807	0.048784	0.051849	0.053657	0.055428
[50,55)	0.047258	0.049217	0.051192	0.045287	0.046786	0.048225
[55,60)	0.048446	0.050282	0.052327	0.047945	0.049476	0.050964
[60,65)	0.050478	0.052637	0.054713	0.050753	0.052908	0.054973
[65,70)	0.051162	0.053621	0.056201	0.051658	0.054016	0.056598
[70,75)	0.043436	0.045993	0.048739	0.027921	0.030186	0.032433
[75+)	0.139854	0.145725	0.151337	0.151564	0.16041	0.170559
eFigure 8. Result of Sensitivity Analysis: Vaccine Efficacy at Lower Bound of 95% CI

A. Age-varying susceptibility to the SARS-CoV-2

Age group	3rd wave (Pre-Delta)	4th wave (Delta)	Fold-rise
[0,5)	0.02829 0.030807 0.033569	0.04305 0.045447 0.047569	1.521747 1.475223 1.417061
[5,10)	0.023685 0.025646 0.027586	0.042912 0.045041 0.047124	1.811787 1.756235 1.708248
[10,15)	0.027847 0.02998 0.032231	0.05455 0.057028 0.059332	1.9589 1.902171 1.840861
[15,20)	0.023795 0.02538 0.027121	0.039022 0.040582 0.042266	1.639939 1.598983 1.558444
[20,25)	0.046352 0.048611 0.051073	0.075683 0.077911 0.080492	1.632785 1.602738 1.576042
[25,30)	0.04139 0.043289 0.045337	0.070158 0.072175 0.074224	1.695051 1.667291 1.637171

© 2022 Chun JY et al. *JAMA Network Open.*
Age Group	Median BP (mmHg)		
[30,35)	0.037224 0.039097 0.040973	0.050789 0.052562 0.054296	1.364424 1.344406 1.325173
[35,40)	0.040271 0.04238 0.044537	0.056114 0.057846 0.059658	1.393392 1.364952 1.339525
[40,45)	0.036144 0.037729 0.039539	0.041805 0.043217 0.044662	1.156616 1.145471 1.129577
[45,50)	0.043949 0.045958 0.047976	0.051843 0.053621 0.055395	1.179614 1.166747 1.154652
[50,55)	0.04641 0.048158 0.050051	0.044658 0.046113 0.047532	0.962257 0.95753 0.949682
[55,60)	0.047279 0.049315 0.051147	0.047246 0.04877 0.050242	0.99931 0.988937 0.982299
[60,65)	0.049461 0.051628 0.053608	0.042538 0.044387 0.04612	0.860038 0.859746 0.860319
[65,70)	0.050556 0.053013 0.055442	0.043347 0.0453 0.047449	0.857407 0.854512 0.855822
[70,75)	0.043144 0.045885 0.048753	0.023427 0.025309 0.027174	0.543006 0.551571 0.557375
[75+]	0.140352 0.145997 0.151866	0.13443 0.142278 0.151246	0.957808 0.974527 0.995918
eFigure 9. Result of Sensitivity Analysis: Vaccine Efficacy at Upper Bound of 95% CI

A. Age-varying susceptibility to the SARS-CoV-2

Age group	3rd wave (Pre-Delta)	4th wave (Delta)	Fold-rise						
[0,5)	0.02829	0.030807	0.033569	0.043874	0.046316	0.048479	1.550885	1.503437	1.444158
[5,10)	0.023685	0.025646	0.027586	0.043672	0.045865	0.047947	1.843859	1.788349	1.738085
[10,15)	0.027847	0.02998	0.032231	0.055443	0.058013	0.060346	1.990975	1.935038	1.8723
[15,20)	0.023795	0.02538	0.027121	0.040133	0.0471	0.043431	1.68664	1.64365	1.601381
[20,25)	0.046352	0.048611	0.051073	0.079176	0.081483	0.084143	1.708148	1.676218	1.647519
[25,30)	0.04139	0.043289	0.045337	0.073459	0.075573	0.077757	1.77479	1.7458	1.715109

B. Fold-rise in susceptibility to the Delta/pre-Delta

© 2022 Chun YJ et al. *JAMA Network Open.*
[30,35)	0.037224 0.039097 0.040973	0.053203 0.055076 0.056962	1.429278 1.408711 1.390225
[35,40)	0.040271 0.042380 0.044537	0.058771 0.060590 0.062526	1.459369 1.429697 1.403918
[40,45)	0.036144 0.037729 0.039539	0.043967 0.045451 0.047015	1.216428 1.204667 1.189095
[45,50)	0.043949 0.045958 0.047976	0.054495 0.056396 0.058266	1.239962 1.227123 1.214449
[50,55)	0.046410 0.048158 0.050051	0.048101 0.049720 0.051260	1.036442 1.032429 1.024154
[55,60)	0.047279 0.049315 0.051147	0.050928 0.052564 0.054145	1.077189 1.065872 1.058608
[60,65)	0.049461 0.051628 0.053608	0.063546 0.066306 0.068849	1.284776 1.284310 1.284310
[65,70)	0.050556 0.053013 0.055442	0.064663 0.067643 0.070902	1.279042 1.275959 1.278847
[70,75)	0.043144 0.045885 0.048753	0.034943 0.037807 0.040606	0.809932 0.823943 0.832892
[75+)	0.140352 0.145997 0.151866	0.182573 0.193139 0.205337	1.300821 1.322901 1.352092