ICT’s System for AutoSimTrans 2021: Robust Char-Level Simultaneous Translation

Shaolei Zhang¹,², Yang Feng¹,²*
¹Key Laboratory of Intelligent Information Processing
Institute of Computing Technology, Chinese Academy of Sciences (ICT/CAS)
²University of Chinese Academy of Sciences, Beijing, China
{zhangshaolei20z, fengyang}@ict.ac.cn
Contents

Motivation

Method

Experiments

Conclusion
Motivation

- **Pipeline of simultaneous interpretation**
 - Automatic Speech Recognition (ASR) → simultaneous translation (ST) → Text-to-Speech Synthesis (TTS)

- **Input of simultaneous translation:**
 - Inaccurate, unsegmented.
 - Spoken language domain.

- **Robustness and Domain adaptability**

Streaming Transcript	Translation
大家好	Hello everyone!
欢迎	Welcome
欢迎大家来	everyone come
欢迎大家来到	everyone come here.
欢迎大家来到这里	
Motivation

- **For robustness**
 - ASR result (streaming transcription): *incremental, unsegmented.*
 - Subword-level segmentation result of the streaming transcription is unstable.
 - Existing method: remove the last to prevent it from being incomplete.

Streaming Transcription	Tokenization of Streaming Transcription Input	Standard Wait-2 Remove Last Token	Char-Level Wait-2 (Ours)
他是研究生物的	他/是/	他/是/	他/是/
他是研究生物的	他/是/研/	他/是/	他/是/研/
他是研究生物的	他/是/研究/	他/是/	他/是/研/研究/
他是研究生物的	他/是/研究生/	他/是/	他/是/研/研究生/
他是研究生物的	他/是/研究/生物/	他/是/	他/是/研/研究/生物/
他是研究生物的	他/是/研究/生物/的/	他/是/研究/	他/是/研/研究/生物/的/

- **Unstable input**
- **No input**
For domain adaptability
- General domain the spoken language domain are quite different:
 - Word order
 - Punctuation
 - Modal particles
 - ...

Our system
- Robust:
 - Propose the Char-Level Wait-k Policy
- Domain adaptation:
 - Apply data augmentation on spoken language domain.
 - Combine two training methods to enhance the predictive ability.
Contents

- Motivation
- Method
- Experiments
- Conclusion
Method

Char-Level Wait-k Policy
- **Source**: character sequence after char-level tokenization.
- **Target**: subword sequence after subword-level segmentation and BPE.
- **Read / Write policy**: waiting for \(k \) source characters first, and then reading and writing alternately.

Input Sentence Output Sentence	欢迎来到UNIT系统的第12期高级课程。 welcome to the 12th advanced course on UNIT system.
S. subword-level MT	欢迎/来到/UN@@/IT/系统/的/第/12@@/期/高级/课程/。欢迎/来到/UNIT/系/统/的/第/12/期/高/级/课/程/。
T. character-level MT	欢迎 / 来到 / UN@@ / IT / 系统 / 的 / 第 / 12@@ / 期 / 高级 / 课程 / 。欢迎 / 来到 / UNIT / 系 / 统 / 的 / 第 / 12 / 期 / 高 / 级 / 课 / 程 / 。
S. char-level tokenization	欢迎 / 来到 / UN@@ / IT / 系统 / 的 / 第 / 12@@ / 期 / 高级 / 课程 / 。欢迎 / 来到 / UNIT / 系 / 统 / 的 / 第 / 12 / 期 / 高 / 级 / 课 / 程 / 。
T. subword-level MT	welcome / to / the / 12@@ / th / advanced / course / on / UNIT / system / 。
Method

Why char-level simultaneous translation?

- More robust
 - avoid unstable prefixes caused by subword segmentation.

- More fine-grained latency
 - if one character is enough to express the meaning of a entire word, the ST system does not have to wait for the complete word.

- Translation quality will not be affected too much
 - only performs char-level tokenization on the source, and the target retains subword-level tokenization.
Domain Adaptation

- **Depunctuation**
 - **Source**: delete the ending punctuation.
 - **Target**: unchanged.

Data Augmentation

- **For spoken language domain corpus.**
 - **Source**: we perform 5 data augmentation operations.
 - **Target**: unchanged.

Example Table

Original	1957年我到北京上大学
1957年我到北京上大学	1957年，我到北京上大学
1957年我到北京上大学	1957年我到北京上大学
Training Methods

- **Pre-training**: general domain MT corpus
 - Multi-path training \(\text{(Elbayad et al., 2020)} \)
 - Future-guided training \(\text{(Zhang et al., 2020b)} \)

- **Fine-tuning**: spoken language domain corpus
 - Original training: fix \(k \) and use the original prefix-to-prefix framework for training, and train different models for different \(k \).

Maha Elbayad, Laurent Besacier, and Jakob Verbeek. 2020. Efficient wait-k models for simultaneous machine translation.
Shaolei Zhang, Yang Feng, and Liangyou Li. 2020b. Future-guided incremental transformer for simultaneous translation.
Contents

Motivation

Method

Experiments

Conclusion
Datasets

- **CWMT19 Chinese → English**: for pre-training.
- **Transcription**: for fine-tuning.
- **Dev. Set**: for evaluation.

Datasets	Domain	#Sentence Pairs
CWMT19 Transcription	General	9,023,708
Transcription	Spoken	37,901
Dev. Set	Spoken	956

System setting

- **Offline**: full-sentence MT based on Transformer.
- **Standard Wait-k**: standard subword-level waitk policy.
- **Standard Wait-k + rm Last Token**: In the inference time, the last token after the word segmentation is remove to prevent it from being incomplete.
- **Char-Level Wait-k**: our proposed method.
Main Result

- Char-Level Wait-k improves about 6 BLEU at low latency (AL=1.10).
- More stable and robust.
Ablation Study

- **Data processing**: ‘Depunctuation’ and ‘Data Augmentation’
- **Training methods**: ‘Future-guided’ and ‘Multi-path’
The proposed char-level wait-k policy is more robust.

Data processing and two training methods improve the spoken language domain adaptability.

For some language pairs with a large length ratio between the source (char) and the target (bpe), we can read multiple characters at each step to deal with the long char-level source. We put this into our future work.
Thanks!

Contact me with:

✉️ zhangshaolei20z@ict.ac.cn