Corrections to recent changes in the taxonomy of the Sordariales

Yasmina Marin-Felix1,2,Andrew N. Miller3

Received: 11 March 2022 / Revised: 10 June 2022 / Accepted: 17 June 2022 / Published online: 23 July 2022
© The Author(s) 2022

Abstract
The classification of taxa belonging to the Sordariales has been problematic over the years. With the beginning of the DNA era, ascospore morphology, which was the main criterion for the delimitation of taxa in the Sordariales, was demonstrated to not be useful for inferring taxonomic relationships especially at the genus level. In the past decades, the combination of both morphological and molecular data allowed the reclassification of these taxa. Recently, a study of some often overlooked Diaporthomycetidae and Sordariomycetidae included a new taxonomic classification for members of the Sordariales, many of which were based on nomenclatural errors or which lacked sufficient data to support their hypotheses. The authors did not contribute any new DNA sequences, but instead relied on datasets generated by previous authors in their published phylogenetic studies. Surprisingly, different results were obtained contradicting these previous studies and, in an act of taxonomic vandalism, five new families were introduced without performing further molecular analyses to verify the incongruencies with these previous studies. Three of these new families, which we consider doubtful, are Bombardiaceae, Lasiosphaeridaceae and Zygospermellaceae. The family Strattoniaceae is here considered superfluous since it was introduced to accommodate only a single genus and delimited based on a species that is not the type species of Strattonia. The Neoschizotheciaceae was erected based on the new genus Neoschizothecium, which was introduced to accommodate members of Schizothecium since Huang et al. (2021) considered Schizothecium as a synonym of Podospora after misinterpreting their type species as the same. However, Schizothecium and Podospora have been two independent genera based on two different type species for half a century, making Neoschizothecium and Neoschizotheciaceae superfluous. Moreover, they proposed 32 new combinations, 16 of which are now superfluous or doubtful. Most of these taxonomic errors could have been avoided if a proper literature review had been performed. Two examples are the new superfluous combinations of Triangularia tarvisina and Cladorrhinum olerum, because the former is considered conspecific with Triangularia setosa, and the latter conspecific with Cladorrhinum foerundissimum, the anamorph of Arnium olerum. The focus of the current review is to provide a scientifically responsible alternative to the erroneous novelties proposed at the family, genus and species level in the recent classification of Sordariales.

Keywords Fungal classification · Integrative taxonomy · Podospora · Schizothecium · Sordariales · Sordariomycetes

Introduction
The order Sordariales is one of the most diverse groups in the Sordariomycetes and the classification of their members based solely on morphology has been problematic (Hawksworth and Eriksson 1986; Miller and Huhndorf 2004a, 2005; Huhndorf et al. 2004; Kruys et al. 2015). The taxonomic classification of taxa belonging to this order was traditionally based on ascospore morphology; however, Miller and Huhndorf (2005) demonstrated that this character is extremely homoplastic and not useful for inferring taxonomic relationships. Instead, the ascomatal wall morphology appears to be more phylogenetically informative, even though it has its limitation since not all taxa exhibit distinctive features in their ascomatal walls, and/or similar ascomatal wall characteristics are found in different monophyletic lineages.

For nearly two decades, extensive molecular studies have been combined with morphological data to delimit sordarialean taxa at the family, genus and species level (Miller and Huhndorf 2004a; Cai et al. 2005; Kruys et al. 2015; Wang...
et al. 2019a; Marin-Felix et al. 2020). Historically, the Sordariales has contained 7 to 14 families, depending on the authors’ concepts (Hawksworth and Eriksson 1986; Eriksson et al. 2001). Huhndorf et al. (2004) restricted the order to 3 families, i.e. Chaetomiaceae, Lasiosphaeriaceae and Sordariaceae, the first two of which were considered polyphyletic based on molecular data. The Chaetomiaceae has been extensively studied in recent years based on a polyphasic approach combining morphological and molecular data, resulting in its delimitation as a monophyletic lineage (Wang et al. 2019a, b). However, the polyphly of Lasiosphaeriaceae, which was the largest family of the order, remained problematic until it was recently partly resolved (Marin-Felix et al. 2020). Kruys et al. (2015) demonstrated the separation of the family into four different clades. Subsequently, Wang et al. (2019a) introduced the new family Podosporaceae to accommodate taxa belonging to clade IV in Kruys et al. (2015). Marin-Felix et al. (2020) delimited Lasiosphaeriaceae to clade III, which contained the type genus Lasiosphaeria. Moreover, the new families Diplogelasinosporaceae, Naviculisporaceae and Schizotheciaceae were introduced to accommodate three monophyletic lineages containing taxa resembling those in the Lasiosphaeriaceae. Once again, the morphological characters used to delimit these families turned out to be homoplastic and appeared independently in multiple lineages. Other lasiosphaeriaceous taxa were nested in an unsupported lineage (Lasiosphaeriaceae s. lat. I, Fig. 1), and therefore a new family was not introduced for this clade. Finally, another monophyletic lineage with two genera was shown as an unsupported sister group to Schizotheciaceae (Lasiosphaeriaceae s. lat. II, Fig. 1). However, a new family was not introduced until further studies including additional taxa and molecular data could be performed. Figure 1 shows the phylogenetic tree obtained from the study performed by Marin-Felix et al. (2020).

The genera belonging to this order have also been taxonomically challenging to delineate over the years. For example, the genera Gelasinospora and Neurospora, both in the Sordariaceae, were established based on different patterns of ascospore ornamentation. Garcia et al. (2004) demonstrated that this character was not phylogenetically informative and synonymized Gelasinospora under Neurospora. This observation agreed with Miller and Huhndorf (2005), who found that ascospore morphology was a homoplastic character throughout the order. The largest genera in the Chaetomiaceae have also been recently refined, i.e. Chaetomium, Humicola and Thielavia, resulting in the introduction of 17 new genera and more than 70 new combinations to accommodate taxa not included in the molecular-based monophyletic lineages of these recircumscribed genera (Wang et al. 2016a, 2019a, b). Genera traditionally placed in Lasiosphaeriaceae are currently being studied. For example, Wang et al. (2019a) delimited Cladorrhinum, Podospora and Triangularia, whereas Marin-Felix et al. (2020) established 5 new genera, i.e. Areotheca, Lundqvistomyces, Pseudoechria, Pseudoschizothecium and Rhypophila. These taxonomic changes were done to accommodate taxa previously placed in Cercophora, Podospora and Triangularia based on morphology, but that no longer occurred in the more narrowly defined, DNA-based monophyletic lineages representing these genera.

Recently, Huang et al. (2021) performed a phylogenetic study based on ITS, LSU, RPB2 and TUB2 sequences already available in GenBank, without generating a single new sequence. As a result, they introduced 5 new families, 1 new genus and 32 new combinations in the order Sordariales. However, most of these taxonomic novelties are based on errors of interpretation or lack sufficient data for their creation (Table 1). In order to compare the contradictory results between the phylogenetic study of Huang et al. (2021) and previous studies (Kruys et al. 2015; Marin-Felix et al. 2020), we tried to reanalyze the original molecular alignments generated by Huang et al. (2021). However, these alignments are not available in TreeBase even though they stated in their publication that final alignments and trees were deposited in TreeBase. Therefore, we had to download all sequences from GenBank to perform a phylogenetic analysis that included all sequences previously used in Marin-Felix et al. (2020) and Huang et al. (2021).

Fig. 1 Schematic RAxML phylogram based on ITS, LSU, RPB2 and TUB2 sequences obtained in the phylogenetic study performed by Marin-Felix et al. (2020) (adapted from Charria-Girón et al. 2022)
No sequences in *Chaetomiaceae* were included since no novelties were proposed in this family (Table 2). The maximum likelihood (ML) and Bayesian inference (BI) analyses including the four loci were performed as described by Harms et al. (2021). The lengths of the individual alignments used in the combined dataset were 556 bp (ITS), 916 bp (LSU), 978 bp (*RPB2*) and 618 bp (*TUB2*), and the final combined alignment was 3068 bp. A poorly aligned ambiguous region was manually deleted from the ITS1 region. Figure 2 shows the most likely tree obtained from the RAxML analysis of the combined dataset generated in our study. It is identical in the topology of the 95% majority-rule consensus tree generated by the Bayesian analysis. It is unfortunate that Huang et al. (2021) did not indicate the GenBank accession numbers of the sequences they used to produce their trees, making it very difficult for...
the scientific community to reproduce their results. It should have been mandatory to indicate which sequences were incorporated in their phylogenetic study, as well as to cite the underlying papers giving proper attribution to the authors that generated those data, as recommended in Aime et al. (2020), a recent ICTF-sponsored paper on best practices in taxonomy. Surprisingly, the second author of Huang et al. (2021) is also a co-author of the Aime et al. (2020) paper, yet he does not follow his own recommendation.

New families superfluously introduced or without sufficient evidence

The family Schizotheciaceae was recently introduced by Marin-Felix et al. (2020) to accommodate lasiosphaeraceous taxa occurring in a well-supported monophyletic lineage phylogenetically distant from both the Podosporaceae and the clade containing the type genus Lasiosphaeria. However, Huang et al. (2021) erroneously changed its name to Neoschizotheciaceae based on taxonomic errors by Wang et al. (2019a). Both papers incorrectly assumed that the genera Schizothecium and Podospora shared the same type species, and thus, should be synonymized. Therefore, the new genus Neoschizothecium was introduced with N. curvisporum as its type species to accommodate species of Schizothecium outside the Podosporaceae. Huang et al. (2021) designated Neoschizothecium as type genus of their new family Neoschizotheciaceae.

The complex nomenclatural histories surrounding the type species of Podospora and Schizothecium have been discussed in detail (Lundqvist 1972; Ament-Velásquez et al. 2020; Vogan et al. 2021). Briefly, two distinct type specimens representing two distinct type species exist for each genus: the conserved non-originale type specimen of Podospora fimiseda (Ces. & De Not.) Niessl. (in Hedwigia 22: 156. Oct 1883) and the lectotype illustration of Schizothecium fimicola Corda (in Icon. Fung. 2: 29, tab. 13, fig. 105, Jul 1838). This segregation, which was based on morphological data and discussed by Lundqvist (1972), was later supported by molecular data (Cai et al. 2005). Wang et al. (2019a) overlooked the conserved type of Podospora (i.e. Sordaria fimicola Ces. & De Not.) and incorrectly cited S. fimicola Corda as type species. To further complicate matters, Wang et al. (2019a) designated an epitype specimen (CBS H-24048) for S. fimicola that was induced to produce fertile ascomata in culture (CBS 482.64), but this epitype represents P. fimiseda, not S. fimicola! We have examined the ex-epitype culture (CBS 482.64) and could not reproduce the fruiting of ascomata in culture. The epitype specimen was also examined, but no ascomata were found to study their morphology in detail, despite images of mature ascomata fruiting in culture provided in Wang et al. (2019a).

According to the pictures of the epitype shown by Wang et al. (2019a), this specimen produces hyphal-like ascomatal hairs surrounding the entire ascoma, which match P. fimiseda (Miller 2003). Schizothecium fimicola has swollen agglutinatet ascomatal hairs only in the upper part of the ascomata. Thus, the type species of Schizothecium should be conserved as S. fimicola (typ. cons. pending). The ascomal wall of CBS 482.64 needs to be studied to verify that it is pseudo-bombardioid and matches the description of P. fimiseda (Miller 2003) and, therefore, it is a suitable epitype for this later species. If the conservation proposal to change the type species of Podospora from P. fimiseda to P. anserina (Vogan et al. 2021) is accepted, this would also bring additional resolution to the complicated and often confused nomenclatural history of these two genera. Since Podospora and Schizothecium are clearly not synonyms as Wang et al. (2019a) and Huang et al. (2021) believed, there was no reason to create a new family (i.e. Neoschizotheciaceae) for Schizotheciaceae. Thus, Neoschizotheciaceae is nomenclaturally illegitimate (Art. 14.3, Shenzhen Code) and a superfluous synonym of Schizotheciaceae.

It is worthwhile to mention that one should always attempt to make decisions that lead to as few taxonomic name changes and reduce the possibility of publishing taxonomically superfluous names, as recommended in the recent guidelines for publishing new fungal species or names, version 3.0 (Aime et al. 2020). This is especially important in this group of fungi, in which many names are not represented by DNA sequences of type material and many new combinations are possible. Therefore, the proposal to introduce a new genus with numerous subsequent new combinations for an established lineage should have never been accepted and was easily avoidable if a review of the literature was performed.

The new family Strattoniaceae was erected to accommodate the genus Strattonia. Surprisingly, the genus was redefined without the study of any material of the type species (St. tetraspora), but based only on the already available sequences of the type strain of another species, St. oblecythiformis. The redefinition was made only on morphological characters even though it has already been clearly demonstrated that taxonomists must be careful proposing any taxonomic reclassification of members of the Sordariales and that a polyphasic approach based on both morphological and molecular data is required (Miller and Huhndorf 2004a; Kruys et al. 2015; Marin-Felix et al. 2020). It is of note that no cultures of St. tetraspora are available in any recognized culture collection. Therefore, it is of utmost importance to recollect this species and include it in phylogenetic analyses to confirm the monophyly of Strattonia. Huang et al. (2021) argued that the characteristics of Strattonia should be reduced to those species producing ascospores with an upper cell surrounded by a gelatinous sheath. On the other hand, taxa that have no sheath have been demonstrated to belong to different genera, i.e. Jugulospora.
Taxa	Strain	GenBank accession #	References			
Amesia atrobrunnea	CBS 379.66^T	MH870470 MH858833 KX976798	Wang et al. (2016a), Vu et al. (2019)			
Anopodium amphilacum	MIR 40/07	KF557662 - - KF557701	Kruys et al. (2015)			
Apiosordaria microcarpa	CBS 692.82^T	MK926841 MK926841 MK876803	Wang et al. (2019a)			
Apodospora gutlandica	E00204952	KF557664 - - KF557703	Kruys et al. (2015)			
Apodospora peruviana	CBS 118394	KF557665 EU573703 - -	Kruys et al. (2015), Debuchy et al. (unpubl. data)			
Apodospora simulans	Kruys 701	KF557666 - - KF557704	Kruys et al. (2015)			
Apodus deciduus	CBS 506.70^T	AY681165 AY681199	Cai et al. (2006)			
Apodus oryzae	CBS 376.74	AY681166 - - -	Cai et al. (2006)			
Areotheca areolata	UAMH 7495	AY587936 AY587911 AY600275 AY600252	Miller and Huhndorf (2004b)			
Arnium caballinum	Lundqvist 7098-e	KF557672 - - -	- Kruys et al. (2015)			
Arnium cirriferum	CBS 120041	KF557673 - - KF557709	Kruys et al. (2015)			
Arnium japonense	SANK 10273	KF557680 - - KF557713	Kruys et al. (2015)			
Arnium mendax	Lundqvist 20874-c E00122117	KF557688 - - KF557717	Kruys et al. (2015)			
Bellojisia rhynchostoma	CBS 118484	EU999217 - - -	Réblová (2008)			
Bombardia bombarda	AR1903 CBS 3391	AY780052 - - AY780152	Miller and Huhndorf (2005)			
Boothiella tetraspora	CBS 334.67^T	AY780057 - - AY780167	Wang et al. (2019), Wang et al. (2019a)			
Camarops amorpha	SMH 4821	AY780053 - - AY780156	Miller and Huhndorf (2005), Miller and Huhndorf (2005)			
Cercophora appalachianensis	HKUCC 3711	AF132328 AF177155 - -	Ranghoo et al. (unpubl. data)			
Cercophora aquatica	JF 06314^T	JN673036 KX179147 - -	Raja et al. (2011)			
Cercophora mirabilis	CBS 120402	KP981429 TP784128 KP981611 KP981556	Marin-Felix et al. (2020)			
Cercophora newfieldiana	SMH 3303	AY780062 - - AY780167	Miller and Huhndorf (2005)			
Cercophora scortea	JF 00229	AY87936 - - AY87912	Vu et al. (2019), Wang et al. (2019a)			
Cercophora sulphurella	SMH 2531	AY87938 AY87913 AY600276 AY600254	Miller and Huhndorf (2004b)			
Chaeotium globosum	CBS 160.62^T	MH869713 KT214565 KT214666	Vu et al. (2019), Wang et al. (2016b)			
Cladorrhinum brunnescens	CBS 643.75A^T	FR692346 FM955446 - -	Madrid et al. (2010, 2011)			
Cladorrhinum coprophilum	SMH 3794	AY780058 - - AY870162	Miller and Huhndorf (2005)			
Cladorrhinum foecundissimum	CBS 180.66^T	MK926856 MK926856 MK876818	Wang et al. (2019a)			
Cladorrhinum olerum	CBS 120012	KF557689 - - KF557718	Kruys et al. (2015)			
Cladorrhinum globosporum	CBS 120013	MT731524 GQ925544 MT731556 MT173156	Geydan et al. (2012), Ament-Velásquez et al. (2020)			
Cladorrhinum hyalocarpum	SMH 322.70^T	MK926857 MK926857 MK876819	Wang et al. (2019a)			
Cladorrhinum hyalocarpum	FMR 13412	KP981428 MT784129 KP981610 KP981555	Marin-Felix et al. (2020)			
Cladorrhinum intermedium	CBS 433.96^T	MK926859 MK926859 MK876821	Wang et al. (2019a)			
Cladorrhinum leucotrichum	CBS 463.61	MH869684 MH858107 - -	Vu et al. (2019)			
Cladorrhinum terricolum	ATCC 200395	AY780067 - - AY870170	Miller and Huhndorf (2005)			
Cladorrhinum tomentosum	Francoise Candoussau KF557691	- - KF557720	Kruys et al. (2015)			
Corynascus sepedonium	CBS 111.69^T	MH871003 MH859271 FJ666394	Vu et al. (2019), Greif et al. (2009)			
Dichomopilus fucicola	CBS 159.52^T	MH868497 MH856976 KX976856	Wang et al. (2016a), Vu et al. (2019)			
Diplogelasinospora grovesii	CBS 340.73^T	MH872401 MH860693 - -	Vu et al. (2019)			
Diplogelasinospora inaequalis	CBS 436.74^T	AY681167 AY681201 - -	Cai et al. (2006)			
Taxa	Strain	GenBank accession #	References			
-----------------------------	-----------------------	----------------------------	---			
Diplogelasinospora moalensis**	CBS 136018T	KP981430 HG514152	Crous et al. (2014), Marin-Felix et al. (2020)			
Diplogelasinospora princeps	FMR 154414	KP981431 MT784131	Marin-Felix et al. (2020)			
Echria gigantospora	F77-1	KP557574	Kruys et al. (2015)			
Echria macrothec	Lundqvist 2311	KP557664	Kruys et al. (2015)			
Episternus onthophagi	KRAM 585223T	KP903375 KP903374	Görz and Boroń (2018)			
Fimetariella rubra	Lundqvist 20410-e	KP557694	Kruys et al. (2015)			
Immersiella caudata	SMH 3298	AY436407 - AY780161	Miller and Huhndorf (2004a, 2005)			
Immersiella hirta	E00204950	KP557675 - KF557711	Kruys et al. (2015)			
Immersiella hirta	E00204847	KP557676 - KF557712	Kruys et al. (2015)			
Jugulospora antarctica	CBS 380.86 (type of	MH873659 MH861966	Vu et al. (2019)			
Jugulospora vestita	CBS 135.91T	MT785872 MT784135 MT783824 MT783825	Marin-Felix et al. (2020)			
Lasioglossa glabrata	TL 4529	AY436410 AY587914 AY600277 AY600255	Miller and Huhndorf (2004a, 2004b)			
Lasioglossa lanuginosa	SMH 3819	AY436412 AY587921 AY600283 AY600262	Miller and Huhndorf (2004a, 2004b)			
Lasioglossa miniovina	SMH 2392T	MH700179	Crous et al. (2018)			
Lasioglossa ovina	SMH 1538	AY436414 AY587926 AY600287 AF66046	Fernández et al. (1999, 2006), Miller and Huhndorf (2004b)			
Lasiosphaeria rugulosa	CBS 126299	MH875422 MH863967	Vu et al. (2019)			
Lasiosphaeria similisor	SMH 1518	AY436414 AY587933 AY600294 AY600272	Miller and Huhndorf (2004a, 2004b)			
Lasiosphaeria sorb	CBS 885.85	AY436416 AY587935 AY600296 AY600274	Miller and Huhndorf (2004a, 2004b)			
Lasiosphaeria arenicola	ANM 1080	JN673037 JN673037	Raja et al. (2011)			
Lasiosphaeria hispida	SMH 1543	AY436417 - AY780179	Miller and Huhndorf (2004a, 2004, 2005)			
Lasiosphaeria hispida	JS 0218	AY436418 - AY780180	Miller and Huhndorf (2004a, 2004, 2005)			
Lasiosphaeria hispida	CBS 955.72	MH872327 AY681203	Cai et al. (2006), Vu et al. (2019)			
Lundqvistomyces karachiensis	CBS 657.74	KP918447 MK266850 KP918360 KP918147	Wang et al. (2019a), Marin-Felix et al. (2020)			
Lundqvistomyces tanzaniensis	TRTC 51981	KP780081 MH682260 AY780197 AY780143	Miller and Huhndorf (2005), Vu et al. (2019)			
Mammaria echinochory	CBS 277.63	MH869889 MH858283	Vu et al. (2019)			
Mammaria echinochory	CBS 458.65	MH870308 MH856868	Vu et al. (2019)			
Mischaria vermicul	ANM 734	KX171943 KX171948	Miller (unpubl. data)			
Morinagamyces vermicul	CBS 303.81T	KP981427 MT904879 KP981609 KP981554	Harms et al. (2021)			
Naviculopsis terrestr	CBS 137295T	KP981439 MT784136 KP981622 KP981567	Marin-Felix et al. (2020)			
Neurospora crassa	ICMP 6360	AY681158 AY681193	Cai et al. (2006)			
Neurospora hispaniola	FGSC 8817T	FR774257	Ngren et al. (2011)			
Neurospora metzenbergii	FGSC 8847	FR774263	Ngren et al. (2011)			
Neurospora pannoica	TRTC 51327	AY780070 - AY780185	Miller and Huhndorf (2005)			
Neurospora sitophila	CBS 112.19	MH866192 MH854676	Vu et al. (2019)			
Neurospora tetrasperma	CBS 225.38	MH867446 MH855950	Vu et al. (2019)			
Podospora appendiculata	CBS 212.97	AY780071 MH862644 AY780186 AY780129	Miller and Huhndorf (2005), Vu et al. (2019)			
Podospora bulbillosa	CBS 304.90T	MK266861 MK266861 MK876823	Wang et al. (2019a)			
Podospora bulu	CBS 115576T	MK874548 DJ66960	Bell et al. (2016), Vu et al. (2019)			
Podospora communis	CBS 118393T	MH874584 MH863031	Vu et al. (2019)			
Podospora costaricensis	SMH 4021	AY780059 - AY780163	Miller and Huhndorf (2005)			
Podospora cupiformis	CBS 246.71T	AY999102 AY999125	Cai et al. (2005)			
Taxa	Strain	LSU accession #	ITS accession #	RPB2 accession #	TUB2 accession #	References
-----------------------------	----------------	-----------------------	-----------------------	------------------------	------------------------	--
Podospora dacyroidinea	INTA-AR 70^T	KT312976	KT321062	-	-	Carmarán et al. (2015)
Podospora didyma	CBS 232.78	AY999100	AY999127	-	-	Cai et al. (2005)
Podospora excentrica	CBS 118392	MH874583	MH863030	-	-	Vu et al. (2019)
Podospora fabiformis	CBS 112043^T	MK926843	MK926843	MK876805	-	Wang et al. (2019a)
Podospora fibrinocaudata	CBS 315.91^T	MK926844	MK926844	MK876806	-	Wang et al. (2019a)
Podospora fimiseda	TRTC 48343	AY780074	AY780188	AY780131	-	Miller and Huhndorf (2005)
Podospora fimicola	CBS 482.64^ET	KP981440	MK926862	KP981623	KP981568	Wang et al. (2019a), Marin-Felix et al. (2020)
Podospora flexuosa	FMR 10415^T	FN662477	FN662474	-	-	Madrid et al. (2011)
Podospora hamata	CGMCC 3.15230^T	KP878304	KP878306	-	-	Vu et al. (2016)
Podospora inflata	CBS 413.82	MH873254	MH861508	-	-	Vu et al. (2019)
Podospora intestinacea	CBS 113106	AY999104	AY999121	-	-	Cai et al. (2005)
Podospora jamaicensis	CBS 672.70^T	MT731527	MH859895	MT731556	MT731534	Vu et al. (2019), Ament-Velásquez et al. (2020)
Podospora leporina	CBS 365.69	MH871063	MH859324	-	-	Vu et al. (2019)
Podospora macrospora	CBS 286.86^T	MT731528	MH861958	MT731558	MT731532	Vu et al. (2019), Ament-Velásquez et al. (2020)
Podospora minicauca	CBS 227.87	MH873757	MH862068	-	-	Vu et al. (2019)
Podospora petrogale	CBS 109409^T	MH874419	AY071831	-	-	Bell (1999), Vu et al. (2019)
Podospora prethopodalis	CBS 121128	MH874659	MH863103	-	-	Vu et al. (2019)
Podospora sacchari	CBS 713.70^T	KP981425	MK899105	KP981607	KP981552	Vu et al. (2019), Marin-Felix et al. (2020)
Podospora serotina	CBS 252.71	MH871878	MH860102	-	-	Vu et al. (2019)
Podospora spinosa	CBS 265.71^T	MH877809	-	-	-	Vu et al. (2019)
Podospora striatiptora	CBS 154.77^T	KP981426	MT784137	KP981608	KP981553	Marin-Felix et al. (2020)
Pseudoechria curvicolla	IFO 8548	AY999099	AY999122	-	-	Cai et al. (2005)
Pseudoechria decidua	CBS 259.69	MH871036	MH859302	-	-	Vu et al. (2019)
Pseudoechria longicollis	CBS 365.68^T	MK926847	MK926847	MK876809	-	Wang et al. (2019a)
Pseudoechria prolifica	CBS 250.71^T	MK926848	MK926848	MK876810	-	Wang et al. (2019a)
Pseudoneurospora amorphoporcorata	CBS 626.80	FR774287	-	-	FR774294	Nygren et al. (2011)
Pseudoneurospora canariensis	FMR 12156^T	MH877580	-	-	HG423208	Crous et al. (2014), Vu et al. (2019)
Pseudorhypophila mangenotii	CBS 419.67T	MK926851	MK926851	MK876813	-	Wang et al. (2019a)
Pseudorhypophila marina	CBS 155.77^T	MK926851	MK926853	MK876815	-	Wang et al. (2019a)
Pseudorhypophila pilifera	CBS 413.73^T	MK926852	MK926852	MK876814	-	Wang et al. (2019a)
Pseudoschizothecium atropurpureum	SMH 2961	AY999097	AY999123	-	-	Cai et al. (2005)
Ramophialophora globispora	SMH 3073	AY780057	AY780160	AY780100	-	Miller and Huhndorf (2005)
Ramophialophora humicola	CGMCC 3.17940	KU746745	KU746699	KY883252	-	Zhang et al. (2017, 2018)
Ramophialophora petraea	FMR 9523^T	FR692337	FM955449	-	-	Madrid et al. (2010, 2011)
Ramophialophora vesiculosa	CBS 110629^T	KU746747	KU746701	KY883254	-	Zhang et al. (2017, 2018)
Rinaldiella pentagonospora	CBS 132344^T	MK926452	MK926866	-	-	Vu et al. (2019)
Rhypophila cochleariformis	CBS 249.71	AY999098	AY999123	-	-	Cai et al. (2005)
Rhypophila decipiens	CBS 258.69	AY780073	KX171946	AY780187	AY780130	Miller and Huhndorf (2005), Miller (unpubl. data)
Rhypophila myriaspora	TNM F17211	-	EF197083	-	-	Chang et al. (2010)
Rhypophila pleiospora	TNM F16889	-	EF197084	-	-	Chang et al. (2010)
Schizothecium aloides	CBS 879.72	AY999097	AY999120	-	-	Cai et al. (2005)
Schizothecium carpinicola	CBS 228.87^T	AY999095	AY999118	-	-	Cai et al. (2005)
Schizothecium conicum	CBS 434.50	MH868218	MH856702	-	-	Vu et al. (2019)
Table 2 (continued)

Taxa	Strain	GenBank accession #	References				
		LSU	ITS	RPB2	TUB2		
Schizothecium curvipesorum (Neoschizothecium curvipesorum)	CBS 507.50	AY999096	AY999119	-	-	Cai et al. (2005)	
	ATCC 36709	AY346300	-	AY780192	AY780136	Huhndorf et al. (2004), Miller and Huhndorf (2005)	
Schizothecium fimbuti (Neoschizothecium fimbuti)	CBS 144.54	AY780075	AY999115	AY780189	AY780132	Cai et al. (2005), Miller and Huhndorf (2005)	
Schizothecium glutinans (Neoschizothecium glutinans)	CBS 134.83	AY999093	AY999116	-	-	Cai et al. (2005)	
Schizothecium inaequale (Neoschizothecium inaequale)	CBS 356.49^T	MK926846	MK926846	MK876808	-	Wang et al. (2019a)	
Schizothecium selenosporum (Neoschizothecium selenosporum)	CBS 109403^T	MK926849	MK926849	MK876811	-	Wang et al. (2019a)	
Schizothecium tetrasporum (Neoschizothecium tetrasporum)	CBS 394.87	MH873776	MH862087	-	-	Vu et al. (2019)	
Sordaria fimicola	SMH 4106	AY780079	-	AY780194	AY780138	Miller and Huhndorf (2005)	
Sordaria islandica	CBS 512.77^T	MH872859	MH861097	-	-	Vu et al. (2019)	
Sordaria nodulisfera	NBRC 32551^T	LC146761	LC146761	-	-	Ban et al. (unpubl. data)	
Sordaria tamaensis	NBRC 32552^T	LC146762	LC146762	-	-	Ban et al. (unpubl. data)	
Strattonia obliechiformis[*]	CBS 110305^T	MH874449	MH862861	-	-	Vu et al. (2019)	
Triangularia allahabadensis	CBS 724.68^T	MK926865	MK926865	MK876827	-	Wang et al. (2019a)	
Triangularia anserina	CBS 433.50	MK926864	MK926864	MK876826	-	Wang et al. (2019a)	
Triangularia arizonensis	Saintsess 18211-c	KF557668	-	-	-	Kruys et al. (2015)	
	Krusys 724	KF557669	-	-	-	Kruys et al. (2015)	
	E00204509	KF557670	-	-	-	Kruys et al. (2015)	
	CBS 120289	KU955584	-	-	-	Debuchy et al. (unpubl. Data)	
Triangularia backusii	CBS 539.89^{sp}	MK926866	MK926866	MK876828	-	Wang et al. (2019a)	
Triangularia backusii	FMR 12439	KP981423	MT784138	KP981605	KP981550	Marin-Felix et al. (2020)	
Triangularia backusii	FMR 13591	KP981424	MT784139	KP981606	KP981551	Marin-Felix et al. (2020)	
Triangularia bambusae	CBS 352.33^T	MK926868	MK926868	MK876830	-	Wang et al. (2019a)	
Triangularia battistae	CBS 381.68^T	KP981443	MT784140	KP981626	KP981577	Soil, Brazil	
Triangularia longicaudata	CBS 252.57^T	MK926871	MK926871	MK876833	-	Wang et al. (2019a)	
	FMR 12365	KP981448	MT784141	KP981631	KP981474	Marin-Felix et al. (2020)	
Triangularia microsclerotigena	CBS 290.75^T	FN662476	FN662475	-	-	Madrid et al. (2011)	
Triangularia nanopodalidis[*]	CBS 113680	MH874504	MH862937	-	-	Vu et al. (2019)	
Triangularia ovina	CBS 671.82^T	MT731512	MH861539	MT731574	MT731553	Vu et al. (2019), Ament-Velásquez et al. (2020)	
Triangularia pauciseta	CBS 451.62	MK926870	MK926870	MK876832	-	Wang et al. (2019a)	
Triangularia phialophoroides	CBS 301.90^T	MK926871	MK926871	MK876833	-	Wang et al. (2019a)	
Triangularia samala	CBS 307.81^T	MH873104	MH861345	-	-	Vu et al. (2019)	
Triangularia setosa	FMR 12782	KP981449	MT784142	KP981632	KP981475	Marin-Felix et al. (2020)	
	CBS 265.70	MT731516	MH859600	MT731573	MT731552	Vu et al. (2019), Ament-Velásquez et al. (2020)	
(Triangularia tarvisina)	CBS 251.71^T	MH871877	MH860101	-	-	Vu et al. (2019)	
	(Triangularia praecox)	SMH 3431	-	AY780065	AY780169	AY780108	Miller and Huhndorf (2005)
	SMH 4036	KX348038	AY780066	-	-	Miller and Huhndorf (2005), Miller (unpubl. data)	
Triangularia tetraspera	CBS 245.71	MH860097	MH871873	-	-	Vu et al. (2019)	
Triangularia unicaudata	CBS 313.58^T	MT731513	MH857799	MT731575	MT731554	Vu et al. (2019), Ament-Velásquez et al. (2020)	
Triangularia verruculosa	CBS 148.77	MK926874	MK926874	MK876836	-	Wang et al. (2019a)	
Triangularia yaeyamensis	NBRC 31170^T	LC146720	LC146720	-	-	Ban et al. (unpubl. data)	
Zopfiella attenuata[*]	CBS 266.77^T	KP981445	MH861060	KP981628	KP981572	Vu et al. (2019), Marin-Felix et al. (2020)	
Zopfiella erosetra[*]	CBS 255.71	AY999110	AY999133	-	-	Cai et al. (2005)	
Zopfiella latipes[*]	IFO 9826	AY999107	AY999129	-	-	Cai et al. (2005)	
Table 2 (continued)

Taxa	Strain	GenBank accession #	References			
		LSU	ITS	RPB2	TUB2	
Schizotheciaceae						
Zygopleurage zygospora*	CBS 518.70T	K981450	MT784145	K981633	K981476	Marin-Felix et al. (2020)
Zopfiella tabulata	CBS 230.78	MK926854	MK926854	MK876816	-	Wang et al. (2019a)
Zopfiella tardicicans*	CBS 670.82T	MK926855	MK926855	MK876817	-	Wang et al. (2019a)
Zygospermellaceae						
Zygospermella insignis	Lundqvist 2444	KF557698	-	-	KF557722	Kruis et al. (2015)
Zygospermella insignis	E00204312	KF557699	-	-	KF557723	Kruis et al. (2015)

ATCC, American Type Culture Collection, VA, USA; CBS, Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; FMR, Facultad de Medicina, Reus, Spain; FGSC, Fungal Genetics Stock Center, University of Kansas Medical Center, Kansas City, USA; HKUCC, University of Hong Kong Culture Collection, Department of Ecology and Biodiversity, Hong Kong, China; IFO, Biological Resource Center, Chiba, Japan; IML, International Mycological Institute, CABI-Bioscience, Egham, UK; KRAM, National Biodiversity Collection – Herbarium KRAM, Kraków, Poland; SANK, Research laboratories of the Daichi Sanko Pharmaceutical Co., Ltd., Tokyo, Japan; TNRM, Herbarium of National Museum of Natural Science, Taiwan; TRTC, Royal Ontario Museum, Toronto, Canada; UAMH, UAMH Center for Global Microfungal Biodiversity, University of Toronto, Canada; AR, Francoise Candoussau, GJS, JF, HHH, Kruys, Lundqvist, MRR, Santensoon, SMH, TL: personal collections of Amy Rossman, Francoise Candoussau, Gary J. Samuels, Jacques Fournier, Harold H. Bursdal, Åsa Kruys, Nils Lundqvist, Michael J. Richardson, Sweden R. Santesson, Sabine M. Huhndorf, Thomas Lessoe, respectively; n/a: not available. ET, IsoT and T indicate ex-epitype, ex-isotype and ex-type strains, respectively. *Taxa with generic names applied in the broad sense (sensu lato), not necessarily reflecting molecular phylogenetic relationships

and Lundqvistomyces (Marin-Felix et al. 2020). Therefore, the presence or absence of an ascospore sheath is polyphyletic and one cannot assume that all species with ascospores surrounded by a sheath are going to belong to the same monophyletic lineage. In fact, other species characterized by ascospores surrounded by a gelatinous sheath are placed in different genera, such as Echria (Schizotheciaceae), Fimetariella (Lasiosphaeraceae s. lato) and Sordaria (Sordariaceae). This family is erected based on a clade containing only two species, S. oblecythiformis and the new combination S. petrogale, but both species only contain sequences from the internal transcribed spacer region (ITS) and the nuclear rDNA large subunit (LSU) from the study of Vu et al. (2019). For these reasons, we reject the family Strattoniaceae until additional taxa, including the type species, and additional genes (i.e. RPB2 and TUB2) have been studied.

The families Lasiosphaeridaceae and Zygospermellaceae, erected for only one and two genera, respectively, are also points of contention since they were proposed based on limited taxon sampling and poor taxonomic practices. In the recent phylogenetic studies from Kruys et al. (2015) and Marin-Felix et al. (2020), both clades now considered independent families by Huang et al. (2021) were clustering together in a well-supported clade. Huang et al. (2021) prematurely introduced both families since they formed two independent lineages in their phylogenetic study. However, both families are included in the Schizotheciaceae clade in our Bayesian phylogenetic study (0.97 pp) (Fig. 2). More taxa and sequences should be incorporated in further phylogenetic analyses to verify if the Lasiosphaeridaceae and Zygospermellaceae are two independent lineages or belong to the Schizotheciaceae. For these reasons, we reject these families until more data can be analysed and we refer to both lineages as Lasiosphaeridaceae s. lato.

In our phylogenetic study, the only family not supported is Lasiosphaeridaceae s. str. However, the conflicts may be caused by the high number of taxa in which only the ITS and LSU sequences are available, which most likely influences the backbone relationships and support for these phylogenetic relationships resulting in misleading higher-level classifications. Although most strains included in Huang et al. (2021) are available in the CBS collection, and therefore additional loci could have been sequenced, they chose not to generate these critical sequence data for their phylogenetic analyses.

Finally, the family Bombardiaceae was introduced by Huang et al. (2021), even though the ML bootstrap support was only 76% and there was no Bayesian inference support for this clade. Huang et al. (2021) explained that Marin-Felix et al. (2020) discussed the low support of this lineage, and for that reason no family was introduced to accommodate it. Nonetheless, they considered this lineage to be well-supported in their phylogenetic study, and therefore the new family Bombardiaceae was introduced to represent it. In our phylogenetic study (Fig. 2), which included the same sequences that Huang et al. (2021) used, the clade representing this family is not supported (42% bs/0.89 pp), so we do not accept the Bombardiaceae as a justifiable family.
Fig. 2 RAxML phylogram obtained from the combined ITS, LSU, RPB2 and TUB2 sequences belonging to the families Chaetomiaceae, Diplogelasinosporaceae, Lasiosphaeriaceae, Naviculisporaceae, Podosporaceae, Schizotheciaceae, and Sordariaceae. Camarops amorpha SMH 1450 was used as an outgroup. Bootstrap support values ≥70/Bayesian posterior probability scores ≥0.95 are indicated along branches. Branch lengths are proportional to distance. Ex-epitype, ex-isotype and ex-type strains of the different species are indicated with ET, IsoT and T, respectively. Type species of the different genera are shown in bold. Alignment available in Supplementary Information.
We take this opportunity to clarify that most of the outgroups used in Huang et al. (2021) do not belong to the family Microascales as they erroneously indicated, but rather to the Coronophorales (syn. Melanosporales) as in the case of all the Microthecium spp. included, as well as Thielavia basicola.

New genera superfluously introduced or redefined based on poor taxonomic practice

As mentioned above, *Neoschizothecium* is a superfluous genus based on misinterpretation of the type species of *Podospora* and *Schizothecium* so it is nomenclaturally illegitimate (Art. 14.3, Shenzhen Code) and thus, a superfluous synonym under *Schizothecium*. The delimitation of *Strattonia* based on a single species is a poor taxonomic decision since the type species of the genus was not included in the study of Huang et al. (2021). Finally, the delimitation of *Cercophora* is also based on poor taxonomic practice since Huang et al. (2021) chose a dubious candidate to represent the type species of *C. mirabilis* in their analyses but thankfully, they did not designate an epitype. It is impossible to confirm the morphological identification of this strain (CBS 120402) because it does not sporulate in culture as mentioned by Marin-Felix et al. (2020). Therefore, it is not a suitable representative of the type species of *Cercophora* and a suitable epitype must be studied and designated before this genus can be properly delimited. The placement of *Cercophora* spp. in different lineages and families support the necessity of a detailed study of this genus and the careful designation of...
an epitype for the type species in order to determine the proper taxonomic placement of *Cercaphora* within the order.

New combinations superfluously introduced or failing to follow good taxonomic practice

The new combination of *Cladorrhinum olerum* proposed to accommodate *Arnium olerum* is superfluous because Marin-Felix et al. (2020) already synonymized this latter name under *Cl. foecundissimum*. The nucleotide similarity between both species is 99.81% for ITS, 100% for LSU, 98.60% for *RPB2* and 100% for *TUB2*, suggesting that these represent the asexual and sexual morphs of the same taxon.

The new combination *T. tarvisina* is superfluous since this species shows morphological and molecular similarity greater than 99.5% of the four loci (ITS, LSU, *RPB2* and *TUB2*) between both species according to a BLAST comparison. Therefore, this new combination was made in error due to the failure of a proper literature review by Huang et al. (2021). Likewise, the new combination *T. praecox* is also superfluous since this species shows morphological and molecular similarity also with *T. setosa*, and therefore *P. praecox* is here considered a synonym to this later species. The description of *T. setosa* is here emended to incorporate the sizes observed in *P. praecox* when it was introduced, which are similar to *T. setosa* except for the ascus dimensions (up to 190 μm wide in *P. praecox* vs. up to 60 μm in *T. setosa*) (Cailleux 1969; Lundqvist 1972; Wang et al. 2019a).

Triangularia setosa (G. Winter) X. Wei Wang & Houbraken, Stud. Mycol. 93: 243. 2019. emend. Y. Marin & A.N. Mill. MB829894

Basionym: Sordaria setosa G. Winter, Abh. Naturf. Ges. Halle 13: 97. 1873.

Synonyms: Philocopia setosa (G. Winter) Sacc., Syll. Fung. 1: 249. 1882.

Podospora setosa (G. Winter) Niessl, Hedwigia 22: 156. 1883.

Pleuroge setosa (G. Winter) Kuntze, Revis. Gen. Pl. 3: 505. 1898.

Cladochaete setosa (G. Winter) Sacc., Ann. Mycol. 10: 318. 1912.

Philocopia setosa subsp. *tarvisina* Sacc., Syll. Fung. (Abellini) 1: 250. 1882.

Philocopia setosa var. *tarvisina* (Sacc.) Traverso, Fl. Ital. Crypt. (Florence) 1: 437. 1907.

Philocopia tarvisina (Sacc.) J.H. Mirza & Cain, Can. J. Bot. 47: 2041. 1970.

Podospora tarvisina (Sacc.) J.H. Mirza & Cain, Can. J. Bot. 47: 2041. 1970.

The new combination *T. tarvisina* is superfluous since *T. setosa* is here considered a synonym to this later species. The description of *T. setosa* is here emended to incorporate the sizes observed in *P. praecox* when it was introduced, which are similar to *T. setosa* except for the ascus dimensions (up to 190 μm wide in *P. praecox* vs. up to 60 μm in *T. setosa*) (Cailleux 1969; Lundqvist 1972; Wang et al. 2019a).

Triangularia tarvisina (Sacc.) S.K. Huang & K.D. Hyde, Fungal Divers. 111: 515. 2021.

Podospora praecox Cailleux, Cahiers de La Maboké 7: 102. 1969.

Triangularia praecox (Cailleux) S.K. Huang & K.D. Hyde, Fungal Divers. 111: 515. 2021.

Ascomata superficial, mouse grey in reflected light, solitary, ovoid to ampulliform with a short, black beak, ostiolate, 230–900 μm high, 185–800 μm diam; ascomatal wall brown, opaque, of *textura intricata* or *epidermoidea* in surface view; ascomatal hairs arising mainly around the lower half, hyphal-like, erect or flexuous, brown, 1.5–3 μm diam near base. Asci fasciculate, fusiform or elongated fusiform, 170–430 × 25–60(–190) μm, without a conspicuous apical ring, stipitate, stipe 21.5–62 μm long, containing numerous irregularly- and densely-arranged ascospores, evanescent. Ascospores at first one-celled, hyaline, becoming transversely septate and two-celled; upper cell olivaceous brown to brown, ellipsoidal to broadly fusiform, equilateral, with an apical germ pore, (15–)17–21.5(–22) × (9–)10.5–13 μm; lower cell hyaline, elevate to cylindrical, 8–12 × 2–3 μm; apical and basal mucilaginous appendages mostly present, up to 120 μm long. Asexual morph not observed (adapted from Lundqvist 1972 and Wang et al. 2019a).

Huang et al. (2021) proposed the new combination *Jugulospora minor* to accommodate *Strattonia minor*. Even though we consider the transference of this species to *Jugulospora* necessary, Huang et al. (2021) did not demonstrate whether it is an independent species or if it should be synonymized with *J. rotula* as happened with *Apiosordaria globosa*, *A. hispanica* and *Rhexosporium terrestrum* (Marin-Felix et al. 2020). *Strattonia minor* is similar to *J. rotula*, differing only by the size of the upper cell of the ascospores and the width of the asci (Lundqvist 1972; Marin-Felix et al. 2020). In our phylogenetic study (Fig. 2), the type strain of this species occurred in the moderately well-supported clade (82% bs/0.98 pp) representing *J. rotula*. Therefore, *J. minor* is here considered a synonym of *J. rotula*, whose description is here emended to incorporate the new sizes of ascus and ascospores.

Jugulospora rotula (Cooke) N. Lundq. emend. Y. Marin & A.N. Mill. MB315972

Basionym: Sphaeria rotula Cooke, Handb. British Fungi 2: no. 2598. 1871.

Synonyms: Strattonia minor N. Lundq., Symb. Bot. Upsal. 20: 271. 1972.

Jugulospora minor (N. Lundq.) S.K. Huang & K.D. Hyde, Fungal Divers. 111: 95. 2021.

Rhexosporium terrestrum Udagawa & Furuya, Trans. Mycol. Soc. Japan 18: 303. 1977.
Apiosordaria globosa Dania García, Stchigel & Guarro, Mycologia 95: 137. 2003.
Apiosordaria hispanica Dania García, Stchigel & Guarro, Mycologia 95: 134. 2003.

Ascomata ostiolate, superficial or immersed, scattered to aggregated, pale brown to brown, pyriform, 350–770 × 200–540 μm, covered with pale brown, septicale phyphal-like hairs, 1–5 μm diam; neck brown to dark brown, cylindrical to conical, papillate, 80–280 μm long, 90–250 μm wide; ascomatal wall membranaceous, semi-transparent, brownish-orange to brown, 3–9-layered, 15–45 μm thick; outer layers textura angularis and textura intricata; inner layers textura epidermoidea. Paraphyses and periphyses filiform, up to 2 μm in diam. Asci unitunicate, eight-spored, cylindrical, 145–250 × 8–28 μm, stipitate, with a thin apical ring, evanescent. Ascospores at first one-celled, hyaline, clavate, becoming transversely septate and two-celled; upper cell dark brown, obvoid to globose, truncate at the base, ornamented with warts arranged uniformly or forming longitudinal ridges or large spots, (12–)13–18(–29) × 6–27 μm, with an apical to lateral germ pore 0.5–3 μm in diam.; lower cell hyaline, conical, smooth-walled to slightly warted, 1–6 μm long, collapsing; gelatinous caudae absent. Asexual morph present. Conidia hyaline to pale-colored, almost smooth-walled, ovate to elongate, 2–6 × 1.5–2.5 μm, produced laterally or terminally on undifferentiated hyphae, solitary (adapted from Marin-Felix et al. 2020).

As mentioned above, the genus Strattonia is delimited based on the non-type species S. oblecythiformis, which should not be accepted due to the difficulty of delimiting genera in the Sordariales based on only morphological data (for further details, see section “New families superfluously introduced or without sufficient evidence”). For this reason, the new combination S. petrogale should not be taken up until further studies that include the type species confirm the correct taxonomic placement of the lineage representing Strattonia.

The nine new combinations in the newly erected genus Neoschizothecium proposed for accommodating the species previously belonging to Schizothecium are also here considered superfluous for the same reasons the family Neoschizotheciaceae is invalid. Moreover, N. minicauda was introduced to accommodate P. minicauda. However, the strain included in the phylogenetic study does not represent type material and its morphology was not studied. Therefore, the transfer of this species to Schizothecium should await further studies.

Cladorrhinum brunnescens is transferred to Podospora as P. brunnescens. However, in our phylogenetic study, this species is not placed in the well-supported clade (99% bs/1 pp) representing Podospora. Only ITS and LSU sequence data of the type strain are available. Therefore, the other two loci should be sequenced and additional analyses conducted before this combination is accepted.

Finally, two additional new combinations that followed poor taxonomic practices are Cl. leucotrichum and T. nannopodalis, which were proposed based on strains that do not represent type material and whose morphology was not studied.

Limitation in the morphological study

Huang et al. (2021) performed morphological studies of type material for several taxa belonging to the Sordariales, although they mostly repeated what can already be found in the literature without providing any new information while at the same time destroying irreplaceable type material. Examination of type material is important, but generating sequence data from types or designating epitypes with molecular data is a higher priority. No molecular data were generated in Huang et al. (2021). Due to the difficulty of delimiting species and genera of this order based only on morphology, it is much more important to generate sequences from these types of materials to incorporate in phylogenetic analyses instead of re-examining material that has previously been studied and well documented. This is the case of Triangularia horridula, a new combination proposed after a morphological and molecular study of the holotype from the fungarium of Saccardo (Forin et al. 2021). Using next-generation sequencing techniques, the generation of molecular data from type material is possible and essential to improve taxonomic classifications.

Conclusions and final remarks

In conclusion, it is clear that the authors of Huang et al. (2021) were not able to fully appreciate or understand the problems surrounding the reclassification of the order Sordariales, which has been studied using a combination of meticulous morphological and molecular analyses by various workers for more than a decade. Even in the last few years, chemotaxonomic data have been combined with morphological and molecular data to verify some taxonomic relationships. For example, Shao et al. (2020) demonstrated that different specimens and strains of Jugulospora produced the same xanthoquinodins compounds, corroborating the redefinition of the genus performed by Marin-Felix et al. (2020). Moreover, the new genus Pseudorhypophila was introduced based on the production of the same class of compounds, i.e. zopfinol and derivatives, by members of the same monophyletic lineage (Harms et al. 2021). In this later work, they observed that producers of sordarins, which are a class of natural antifungal agents, were all located in the Naviculisporaceae, supporting the introduction of this family based on molecular data by Marin-Felix et al. (2020). The taxonomy of the Sordariales should not be rearranged.
following the results of a single phylogenetic study and numerous new family names should not be introduced without careful consideration. The study of Huang et al. (2021) is reminiscent of those of Raymond Hoser (Kaiser et al. 2013; Rhodin et al. 2015; Wüster et al. 2021) or Alexander Doweld (2001), who frequently practice taxonomic vandalism by formally naming clades based on the work of previous workers. The introduction of unnecessary families, genera and species for unstable and unsupported clades that will eventually change justifies the criticisms of other mycological disciplines. These claim fungal taxonomists only want to constantly change names and make systematic mycology a more difficult field. New scientific names will remain in databases forever even if they are proven to be invalid or superfluous and have the potential to be used by future careless workers and further populated in the literature making them appear as valid and accepted names. Therefore, the introduction of new taxa should be done responsibly by following the best taxonomic practices available, such as a thorough review of past literature, conducting polyphasic studies to corroborate initial hypotheses and collaborating with experts in the group of fungi under study (Aime et al. 2020; Lücking et al. 2020).

Furthermore, it is possible that DNA-based phylogenies can be misleading in the recognition of species just like morphological studies alone. Polymorphisms can interfere in species identification based only on morphology, but also the lack of loci or the use of loci inappropriate for the fungal taxa under study can also lead to the wrong conclusions (Lücking et al. 2020). This is the case for some of the new combinations proposed by Huang et al. (2021) based only on ITS and LSU sequences. Therefore, both phenotypic and molecular approaches should be combined for a more robust taxonomic classification.

It is worthy to mention that according to the recent guidelines for publishing a new fungal species or name provided by Aime et al. (2020), it is strongly recommended to examine the types of the basionyms before making changes and include notes on how to differentiate the new recombined species from other similar species in that genus. Even though one of the co-authors of this guideline was also one of the authors of all new combinations proposed, none of these recommendations were followed in any of the new combinations performed by Huang et al. (2021).

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11557-022-01814-z.

Acknowledgements The authors wish to thank Prof. Dr. Pedro Crous for examining the epitype of *Podospora fimiseda*.

Author contribution Conceptualization, Y. M.-F. and A. N. M.; writing-original draft preparation, Y. M.-F. and A. N. M.; writing-review and editing, Y. M.-F. and A. N. M.; all authors have read and agreed to the published version of the manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL. This research was funded by Deutsche Forschungsgemeinschaft (DFG) – Project-ID 490821847.

Data availability All data generated or analysed during this study are included in this published article (and its supplementary information files).

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aime MC, Miller AN, Aoki T et al (2020) How to publish a new fungal species, or name, version 3.0. IMA Fungus 12:11

Ament-Velásquez SL, Johannesson H, Giraud T et al (2020) The taxonomy of the model filamentous fungus *Podospora anserina*. MycoKeys 75:51–69

Bell A (1999) *Podospora petrogale* (Fungi, Sordariales: Lasiosphaeriaceae), a new species from Australia. Muelleria 12: 235–240

Bell A, Mahoney DP, Debuchy R (2016) *Podospora bullata*, a new homothallic ascomycete from kangaroo dung in Australia. Ascomyces.org 8:111–118

Cai L, Jeewon R, Hyde KD (2005) Phylogenetic evaluation and taxonomic revision of *Schizothecium* based on ribosomal DNA and protein coding genes. Fungal Divers 19:1–21

Cai L, Jeewon R, Hyde KD (2006) Phylogenetic investigations of *Sordariaeae* based on multiple gene sequences and morphology. Mycol Res 110:137–150

Cailleux R (1969) Champignons stercoraux de République Centrafricaine, 1. *Podospora nouveaux*. Cahiers de la Maboké 7: 87–102

Camarán CC, Berretta M, Martínez S et al (2015) Species diversity of *Cladorrhinum* in Argentina and description of a new species, *Cladorrhinum australis*. Mycol Prog 14:94

Chang JH, Kao HW, Wang YZ (2010) Molecular phylogeny of *Cercophora, Podospora*, and *Schizothecium* (Lasiosphaeriaceae, Pyrenomycetes). Taiwania 55:110–116

Charria-Girón E, Surup F, Marin-Felix Y (2022) Diversity of biologically active secondary metabolites in the ascomycete order *Sordariales*. Mycol Progress 21:43

Corda ACJ (1838) Icones fungorum hucusque cognitorum. Annals and magazine of natural history 2:1–43

Crous PW, Shivas RG, Quaedvlieg W et al (2014) Fungal Planet description sheets: 214–280. Persoonia 32:184–306

Crous PW, Wingfield MJ, Burgess TI et al (2017) Fungal Planet description sheets: 625–715. Persoonia 39:270–467
