Lesão do manguito rotador e obesidade: Uma avaliação demográfica e metabólica*

Rotator Cuff Lesion and Obesity: A Demographic and Metabolic Evaluation

Saulo Teixeira Pansiere¹,², Arlane Carvalho de Oliveira¹, Alberto de Castro Pochini¹, Benno Ejnisman², Paulo Santoro Belangero², Carlos Vicente Andreoli²

¹Instituto de Pesquisa e Ensino do Hospital Ortopédico e Medicina Especializada (IPE-HOME), Brasília, DF, Brasil
²Centro de Traumatologia e Ortopedia do Esporte (Cete), Universidade Federal de São Paulo (Unifesp), São Paulo, Brasil

Trabalho desenvolvido no Centro de Traumatologia e Ortopedia do Esporte (Cete), Universidade Federal de São Paulo (Unifesp), São Paulo, Brasil.

Resumo

Objetivo Analisar a relação da presença da gravidade da lesão do manguito rotador (MR) com a obesidade e o tempo de exposição à obesidade. De forma secundária, avaliar a relação e a prevalência de fatores demográficos e metabólicos em indivíduos obesos com lesão do MR.

Métodos Trata-se de um estudo transversal, com 235 pacientes obesos (índice de massa corporal [IMC] ≥ 30 kg/m²). Dados demográficos (idade e gênero), metabólicos (hipertensão, diabetes mellitus, perfil lipídico, e tempo de exposição à obesidade), exame físico (peso, estatura, circunferência abdominal, e testes clínicos), e exame ultrassonográfico musculoesquelético foram utilizados para a análise dos resultados.

Resultados Não foi evidenciada associação da lesão do MR com IMC (p = 0,82), tempo de exposição à obesidade (p = 0,29), ou circunferência abdominal (p = 0,52). No subgrupo com lesão, a idade (p < 0,001), a presença de diabetes melito (p = 0,013), a hipertensão (p < 0,001), o nível de lipoproteína de alta densidade (high-density lipoprotein, HDL, em inglês) (p = 0,026), e o tempo de exposição à obesidade (p < 0,001) foram significativamente maiores em comparação ao subgrupo sem lesão do MR. Na busca por outros parâmetros associados de forma independente para lesão do MR, foram observadas associações com idade (p = 0,0003) e hipertensão (p = 0,004).

Palavras-chave
- manguito rotador
- obesidade
- índice de massa corporal
- diabetes
- hipertensão arterial
- ultrassonografia
Lesão do manguito rotador e obesidade Pansiere et al. 283

Introdução

A obesidade, definida pela Organização Mundial de Saúde (OMS) como o acúmulo anormal ou excessivo de gordura corporal, é considerada um problema de saúde pública devida à alta prevalência e às consequências associadas a ela.¹–³ A incidência dessa condição aumentou exponencialmente nos últimos anos, e atinge mais de 10% da população mundial.⁴ No Brasil, entre 2006 e 2018, houve um aumento do número de indivíduos obesos superior a 67%.⁵ Pesquisas vêm demonstrando que a elevação no índice de massa corporal (IMC) é um fator relacionado a doenças metabólicas crônicas (diabetes melito tipo 2 [DM2], hipertensão arterial sistêmica [HAS] e dislipidemia).⁶–⁸ e a certos transtornos do sistema musculoesquelético.⁹–¹¹ O excesso de peso corporal está associado a um aumento do risco de desenvolver doenças cardiovasculares e o início precoce da morbidade cardíaca.¹¹–¹³ Variáveis de análise da obesidade, como o IMC e a circunferência abdominal, são consideradas fatores independentes e modificáveis associados a HAS, DM2 e dislipidemia.¹²,¹²,¹²

Além de tais correlações já difundidas cientificamente, a obesidade parece contribuir para lesões tendineas, como as do manguito rotador (MR), predispondo o tendão a degenerações e rupturas.⁹–¹¹,¹³ A plausibilidade biológica para tal associação pode estar ligada à liberação de adipocinas pró-inflamatórias, o que leva a um estresse oxidativo e um estado de inflamação sistêmica crônica.⁹,¹⁴ Considera-se que outros fatores metabólicos (DM e HAS) e demográficos (idade e gênero) podem estar associados à causalidade ou ao agravamento de tendinopatias, e, portanto, são foco de estudos recentes.¹⁵,¹⁶ O tendão de indivíduos diabéticos é caracterizado por aumento da espessura e do volume, com desorganização das fibras de colágeno.¹⁷,¹⁸ Tais anormalidades parecem ser resultado da diminuição do fluxo sanguíneo periférico e da angiogênese sistêmica crônica.¹⁹,¹¹ Além disso, os danos ligados à HAS, como a lesão de microvasos, podem agravar as deficiências vasculares do zona crítica do MR, levando à hipóxia e à produção de espécies reativas de oxigênio, culminando em apoptose celular e degeneração tecidual.¹⁹,¹¹

Ainda que existam estudos que relacionem valores altos de IMC (> 30 kg/m²), circunferência abdominal, e tempo de exposição à obesidade às lesões dos tendões do MR em populações brasileiras. Ademais, a controversia científica persiste, uma vez que outros estudos²¹,²² não relataram tal associação (entre obesidade e lesões do MR). Da mesma forma, as relações das lesões...
do MR em indivíduos obesos com fatores metabólicos e demográficos ainda não foram completamente estabelecidas.

Diante disso, hipotetizamos que a ocorrência e a gravidade da lesão do MR estão associadas à obesidade (avalida pelo IMC e pela circunferência abdominal) e ao tempo de exposição à obesidade. De forma secundária, acreditamos que fatores demográficos e metabólicos estão relacionados com a lesão do MR, além de existir maior prevalência de disfunções metabólicas nos indivíduos com lesão em comparação com aqueles sem lesão. Para testar essas hipóteses, realizamos um estudo transversal em pacientes adultos obesos.

Metodologia

Desenho do estudo e participantes
A população-alvo deste estudo transversal foi composta por homens e mulheres pacientes do ambulatório de endocrinologia e obesidade de nossa instituição entre 2018 e 2019.

Foram incluídos pacientes que apresentaram IMC > 30 kg/m² e idade entre 18 e 65 anos. Foram excluídos do estudo voluntários que apresentaram fatores de risco diretos para lesão do MR, como trauma prévio, tabagismo, cirurgia de ombro, instabilidade gleno-uréteral, uso crônico de corticoides, infilações, artrite reumatoide, artrose gleno-emálica, tendinopatia cálcica, qualquer outro diagnóstico de calcificação, e que não concordaram em assinar o termo de consentimento livre e esclarecido (TCLE) ou não completaram todas as etapas do estudo.

O tamanho da amostra (n) necessário para este estudo foi calculado usando-se o intervalo de confiança de 95% (IC95%) e significância de 5%, considerando a maior variância (25%). Foi relevante o o número de pacientes (mil) atendidos na instituição no período de 12 meses, que consistiu a população-alvo. O cálculo do tamanho da amostra foi efetuado com base na estimativa de proporções. Diante disso, para que houvesse relevância, deveriam ser pesquisados 235 indivíduos.

A amostra original da pesquisa foi constituída por 329 indivíduos. Desses, 94 (28,6%) foram excluídos por não completarem todas as etapas do estudo, e restaram 235 (71,4%) indivíduos qualificados (Figura 1).

Aprovações éticas
Esta pesquisa foi aprovada pelo Comitê de Ética em Pesquisa sob o número de parecer 3.733.973. Todos os participantes eram voluntários e assinaram o TCLE, dando ciência de que conheciam os procedimentos a serem realizados e concordavam com os objetivos da pesquisa.

Viés
Cuidado foi tomado para evitar mal-entendidos nas respostas dos participantes. Os investigadores se abstiveram de apresentar quaisquer comentários que pudessem induzir a respostas contrárias à verdade passada pelos pacientes.

Dados coletados e avaliações
Os participantes do estudo foram entrevistados inicialmente para coleta de fatores demográficos (idade e gênero) e metabólicos (prevalência de HAS, DM, perfil lipídico, e tempo de exposição à obesidade).

O exame físico envolveu a avaliação dos dados antropométricos de peso e estatura, realizados com os pacientes sem sapatos e vestindo roupas leves (à partir desses dados, o IMC individual foi calculado), circunferência abdominal, e testes clínicos norteadores de diagnóstico da lesão do MR (testes de Jobe, de Patte, e de Gerber), realizados conforme suas descrições.

Para fechar o diagnóstico de lesão completa ou parcial do MR, o exame ultrassonográfico musculoesquelético foi realizado bilateralmente, em todos os pacientes, utilizando o protocolo estabelecido por Selvaraj et al. A ultrassonografia é um método confiável, que apresenta elevada acurácia no diagnóstico das lesões do MR.

Os exames físicos dos voluntários foram realizados por médico com residência em ortopedia e traumatologia, especialista em cirurgia de ombro/cotovelo, no ambulatório de endocrinologia e obesidade. Os exames de imagem foram

Fig. 1Diagrama de fluxo dos pacientes do estudo.
desempenhados por médico especialista em Ultrassonografia Musculoesquelética, com título expedido pela Associação Médica Brasileira na área de radiologia e diagnóstico por imagem. Ambos eram avaliadores independentes, sem vínculos empregatícios com as instituições envolvidas, e desconheciam qualquer informação relacionada aos objetivos da pesquisa.

Definições

O IMC foi calculado com base no peso em quilogramas dividido pela altura em metros quadrados. A definição de obesidade se deu com um IMC > 30 kg/m². A análise da circunferência abdominal foi realizada com a mensuração de 0,5 cm, a 1,0 cm acima do umbigo com os sujeitos respirando naturalmente. O tempo de exposição à obesidade foi calculado levando-se em consideração a primeira vez que o participante atingiu o IMC > 30 kg/m² (avaliado por meio de análise da história pregressa, relatada pelo próprio paciente).

O DM foi definido como um nível glicose plasmática em jejum de 7,0 mmol/L, ou por um diagnóstico prévio realizado por profissional médico. A HAS foi definida de acordo com os seguintes critérios: pressão arterial sistólica de 140 mmHg, e pressão arterial diastólica de 90 mmHg e/ou hipertensão autorreferida. O perfil lipídico foi analisado com base no colesterol total, na lipoproteína de baixa densidade (low-density lipoprotein, LDL, em inglês), e na lipoproteína de alta densidade (high-density lipoprotein, HDL, em inglês) por lipidograma completo feito até seis meses antes do estudo.

Estatística

As características demográficas, metabólicas e físicas da amostra foram calculadas usando estatística descritiva, incluindo frequências, médias e desvios padrão (DSs). A fim de comparar as variáveis demográficas, metabólicas e físicas dos pacientes com e sem lesão do MR, dois grupos foram criados (com lesão do MR e sem lesão do MR) e analisados por meio do teste t de Student e pelo teste do qui quadrado. Uma análise multivariada que identificou as variáveis demográficas, metabólicas e físicas associadas à lesão do MR foi realizada pela regressão logística binária com

Tabela 1 Características demográficas, metabólicas e físicas da amostra em estudo

Fatores demográficos	n	Média	(± Desvio padrão)
Gênero feminino	157		
Gênero masculino	78		
Idade (anos)	40,5	11,1	

Fatores metabólicos	n	Média	(± Desvio padrão)
LDL (mg/dL)	101	35	
HDL (mg/dL)	49,4	11,9	
Colesterol total (mg/dL)	183	38	
Razão de hipertensão arterial sistêmica (sim/não)	85/150		
Razão de diabetes melito (sim/não)	42/193		
Tempo de exposição à obesidade (anos)	11,7	8,1	

Fatores físicos	n	Média	(± Desvio padrão)
Peso (kg)	102	22	
Altura (cm)	166	10	
Índice de massa corporal (kg/m²)	36,8	5,7	
Circunferência abdominal (cm)	114	15	

Abreviaturas: LDL, low-density lipoprotein (lipoproteína de baixa densidade); HDL, high-density lipoprotein (lipoproteína de alta densidade).

Tabela 2 Perfil das lesões do manguito rotador da amostra em estudo

Presença de lesão	n	%
Sim	55	23,4%
Não	180	76,6%

Membro da lesão	n	%
Direito	32	58,2%
Esquerdo	7	12,7%
Ambos	16	29,1%

Tipo de lesão	n	%
Ruptura parcial	49	89,1%
Ruptura total	6	10,9%

Local da lesão geral	n	%
Supraespinhal	47	85,5%
Infraespinhal	6	10,9%
Subespinhal	2	3,6%

o método de seleção das variáveis do tipo stepwise (passo a passo). Por fim, a curva característica de operação do receptor (COR) foi utilizada, a fim de identificar o melhor ponto de corte da variável idade para presença de lesão do MR. Os dados foram analisados utilizando o programa estatístico Statistical Package for the Social Sciences (SPSS, IBM Corp., Armonk, NY, EUA), versão 26. O nível de significância estatística foi estabelecido em \(p < 0,05 \).

Resultados

As características demográficas, metabólicas e físicas, e o perfil das lesões do MR da amostra estão detalhados nas Tabelas 1 e 2, respectivamente.

Comparação de fatores demográficos, metabólicos e físicos em indivíduos obesos com e sem lesão do manguito rotador

Os dados demonstraram que, no grupo com lesão, idade \((p < 0,001)\), presença de DM \((p = 0,013)\), HAS \((p < 0,001)\), nível de HDL \((p = 0,026)\), e tempo de exposição à obesidade \((p < 0,001)\) apresentaram resultados significativamente maiores em comparação ao grupo sem lesão (Tabela 3).

Indivíduos com lesão do MR apresentaram em média 7,4 anos a mais de idade, uma prevalência maior de HAS e DM, de 31,3% e 15%, respectivamente, além de cerca de 4,3 anos a mais de exposição à obesidade.

Associação entre lesão de manguito rotador e obesidade

Nâo foi evidenciada associação da lesão do MR com o IMC \((p = 0,82)\), o tempo de exposição à obesidade \((p = 0,29)\), ou a circunferência abdominal \((p = 0,52)\) na amostra estudada, avaliada por regressão logística binária (Tabela 4). Além disso, não existiu correlação significativa entre o IMC \((rs = -0,029; p = 0,83)\) e o tempo de exposição à obesidade \((rs = 0,061; p = 0,66)\) e a gravidade da lesão do MR.

Tabela 3 Comparação dos fatores demográficos, metabólicos e físicos em relação à ocorrência de lesão do manguito rotador

	Lesão do manguito rotador \((n = 55) \)	Sem lesão do manguito rotador \((n = 180) \)	Valor de \(p \)		
	n	Média \((± \text{ Desvio padrão}) \)	n	Média \((± \text{ Desvio padrão}) \)	
Fatores demográficos					
Gênero feminino	36	121			
Gênero masculino	19	59			
Idade (anos)	46	11,2	38,6	10,4	< 0,001
Fatores metabólicos					
LDL (mg/dL)	100	35	101	35	0,90
HDL (mg/dL)	53,4	16	48,2	10	0,026
Colesterol total (mg/dL)	186	40	182	37	0,54
Razão de hipertensão arterial sistêmica \((\text{sim}/\text{não})\)	33/55	52/180		< 0,001	
Razão de diabete melito \((\text{sim}/\text{não})\)	16/55	26/180		0,013	
Tempo de exposição à obesidade (anos)	15	9,1	10,7	7,5	< 0,001
Fatores físicos					
Peso (kg)	102	21	102	22	0,94
Altura (cm)	165	10	167	11	0,38
Índice de massa corporal (kg/m²)	37,2	5,5	36,6	5,7	0,54
Circunferência abdominal (cm)	114	15	115	15	0,88

Abreviaturas: LDL, low-density lipoprotein (lipoproteína de baixa densidade); HDL, high-density lipoprotein (lipoproteína de alta densidade).

Nota: Os valores em negrito indicam diferença estatisticamente significativa.

Tabela 4 Parâmetros associados para lesão do manguito rotador avaliados por regressão logística binária

	Coeficiente	Razão de chances	Intervalo de confiança de 95%	Valor de \(p \)
Fatores demográficos				
Idade (anos)	0,057	1,06	1,03–1,09	0,0003
Fatores metabólicos				
Hipertensão arterial sistêmica	0,984	2,68	1,38–5,20	0,004

Notas: Os valores em negrito indicam diferença estatisticamente significativa. O método de seleção de variáveis foi avançar passo a passo, no nível 5%.
Lesão do manguito rotador e obesidade

Pansiere et al.

287

Abdominalmente uma explicação fisiológica, ligada ao aumento da produção de adipocinas (fator de necrose tumoral alfa, leptina, adiponectina, angiotensinogênio, e interleucinas 6, 8, 10 e 18), que leva a estresse oxidativo, inflamação, disfunção endotelial e apoptose celular.\(^9,11,14\) O primeiro estudo de caso controle a estabelecer tal associação clínica entre a ocorrência e gravidade de lesões do MR com a obesidade foi conduzido por Gumina et al.\(^9\) Os autores avaliaram 381 pacientes, e demonstraram que indivíduos com IMC médio de 30 kg/m\(^2\) apresentavam mais do que o dobro de lesões do que indivíduos não obesos. Além disso, quanto maior o IMC, maior o grau das lesões do MR evidenciadas. No entanto, Titchener et al.\(^22\) em pesquisa com volumosa amostra (5 mil pacientes), concluíram que somente o sobrepeso (IMC de 25,1 kg/m\(^2\) a 30 kg/m\(^2\)) estava significativamente associado à lesão do MR. Os pacientes com IMC > 30 kg/m\(^2\) não demonstraram correlação estatística. No presente estudo, concentrado apenas em indivíduos com IMC > 30 kg/m\(^2\), constatamos que a obesidade não se apresentou como fator associado à prevalência ou à gravidade da lesão do MR. Porém, o tempo de exposição à obesidade foi maior nos pacientes com lesão. Além disso, evidenciamos uma antecipação na média (46 anos) e no ponto de corte (43 anos) da idade para o aparecimento de rupturas dos tendões de 12 a 15 anos, quando comparada a estudos anteriores.\(^29\) Yamaguchi et al.\(^29\) demonstram que a idade média para a ocorrência de algum nível de ruptura é de 58 anos, e de 68 anos para ruptura total. O fato de nossa amostra conter apenas indivíduos obesos pode ser uma possível explicação para a diferença observada e sugerir que a obesidade antecipe o aparecimento das rupturas tendíneas.

De forma semelhante, os níveis elevados de açúcar no sangue têm influência sobre a saúde dos tendões.\(^17\) Rupturas graves são seis vezes mais comuns na presença de mais de um fator de risco cardiovascular, como DM e HAS.\(^20\) Nossos resultados demonsram uma prevalência maior de disfunções metabólicas (DM, HAS) em pacientes com lesão do MR, e uma importante associação entre HAS e a lesão tendínnea. As diminuições da angiogênese, da proliferação de fibroblastos, da síntese de colágeno, e da liberação de fatores de crescimento são resultados deletérios observados em tendões de diabéticos, que reduzem a capacidade biomecânica tecidual e aumentam a predisposição ao desenvolvimento ou agravamento de tendinopatias.\(^17,18\) Em estudo envolvendo análise do MR por ultrassonografia em pacientes com diabetes, Abate et al.\(^30\) demonstraram que até mesmo os indivíduos assintomáticos apresentam padrões de degeneração mais avançada, principalmente no tendão supraespinhal, do que indivíduos sem diagnóstico de diabetes. Gumina et al.\(^19\) em pesquisa envolvendo 400 pacientes, concluíram que indivíduos hipertensos tinham de 2 a 4 vezes mais chances de sofrem rupturas grandes (envolvendo um tendão inteiro) e massivas (mais de 2 tendões) do MR em comparação com indivíduos normotensos. As principais explicações para essa importante evidência recaem sobre o estado de hipóxia tendínnea gerada pelo mecanismo hipertensivo, mesmo em indivíduos em tratamento farmacológico, uma vez que grande parte dos fármacos hipertensivos parece ter maior ação nos grandes vasos, mantendo a hipóxia no tecido tendínneo e favorecendo, assim, a degeneração tecidual.\(^19\)

Associação entre fatores demográficos e metabólicos com a lesão do manguito rotador

Na busca por demais parâmetros associados (demográficos e metabólicos) de forma independente à lesão do MR, foi observada associação com idade (p = 0,0003) e HAS (p =0,004) (Tabela 4), o que demonstra que, quanto maior a idade e a presença de HAS, maior a probabilidade de lesão do MR. Utilizando a metodologia COR, com sensibilidade de 65,5% e especificidade de 66,7%, determinamos que uma idade ≥ 43 anos anosa um ponto de corte para presença de lesão do MR (Figura 2).

Discussão

A relação da obesidade com lesões do sistema musculoesquelético, como as tendinopatias, são o foco de estudos e controvérsias científicas.\(^9,11,13,21\) Pesquisas recentes\(^11\) sugerem uma associação importante entre lesões tendíneas e demais distúrbios metabólicos (HAS e DM).

Diante disso, analisamos a relação entre a presença e a gravidade da lesão do MR e a obesidade e o tempo de exposição à obesidade. De forma secundária, avaliamos a relação e a prevalência de fatores demográficos e demais fatores metabólicos em indivíduos obesos com lesão do MR. Neste estudo epidemiológico transversal, não foi demonstrada associação entre a ocorrência e a gravidade da lesão do MR e o IMC, a circunferência abdominal, ou o tempo de exposição à obesidade. No entanto, indivíduos com lesão demonstraram uma exposição a anos de obesidade e prevalência de doenças metabólicas (HAS e DM) maiores do que pacientes sem lesão. Por fim, a HAS e a idade avançada foram fatores relacionados com a presença de lesão do MR.

A maior suscetibilidade a rupturas e degenerações tendíneas em indivíduos com valores altos de IMC e circunferência abdominal tem uma explicação fisiológica, ligada ao aumento da produção de adipocinas (fator de necrose tumoral alfa, leptina, adiponectina, angiotensinogênio, e interleucinas 6, 8, 10 e 18), que leva a estresse oxidativo, inflamação, disfunção endotelial e apoptose celular.\(^9,11,14\) O primeiro estudo de caso controle a estabelecer tal associação clínica entre a ocorrência e gravidade de lesões do MR com a obesidade foi conduzido por Gumina et al.\(^9\) Os autores avaliaram 381 pacientes, e demonstraram que indivíduos com IMC médio de 30 kg/m\(^2\) apresentavam mais do que o dobro de lesões do que indivíduos não obesos. Além disso, quanto maior o IMC, maior o grau das lesões do MR evidenciadas. No entanto, Titchener et al.\(^22\) em pesquisa com volumosa amostra (5 mil pacientes), concluíram que somente o sobrepeso (IMC de 25,1 kg/m\(^2\) a 30 kg/m\(^2\)) estava significativamente associado à lesão do MR. Os pacientes com IMC > 30 kg/m\(^2\) não demonstraram correlação estatística. No presente estudo, concentrado apenas em indivíduos com IMC > 30 kg/m\(^2\), constatamos que a obesidade não se apresentou como fator associado à prevalência ou à gravidade da lesão do MR. Porém, o tempo de exposição à obesidade foi maior nos pacientes com lesão. Além disso, evidenciamos uma antecipação na média (46 anos) e no ponto de corte (43 anos) da idade para o aparecimento de rupturas dos tendões de 12 a 15 anos, quando comparada a estudos anteriores.\(^29\) Yamaguchi et al.\(^29\) demonstram que a idade média para a ocorrência de algum nível de ruptura é de 58 anos, e de 68 anos para ruptura total. O fato de nossa amostra conter apenas indivíduos obesos pode ser uma possível explicação para a diferença observada e sugerir que a obesidade antecipe o aparecimento das rupturas tendíneas.

De forma semelhante, os níveis elevados de açúcar no sangue têm influência sobre a saúde dos tendões.\(^17\) Rupturas graves são seis vezes mais comuns na presença de mais de um fator de risco cardiovascular, como DM e HAS.\(^20\) Nossos resultados demonsram uma prevalência maior de disfunções metabólicas (DM, HAS) em pacientes com lesão do MR, e uma importante associação entre HAS e a lesão tendínnea. As diminuições da angiogênese, da proliferação de fibroblastos, da síntese de colágeno, e da liberação de fatores de crescimento são resultados deletérios observados em tendões de diabéticos, que reduzem a capacidade biomecânica tecidual e aumentam a predisposição ao desenvolvimento ou agravamento de tendinopatias.\(^17,18\) Em estudo envolvendo análise do MR por ultrassonografia em pacientes com diabetes, Abate et al.\(^30\) demonstraram que até mesmo os indivíduos assintomáticos apresentam padrões de degeneração mais avançada, principalmente no tendão supraespinhal, do que indivíduos sem diagnóstico de diabetes. Gumina et al.,\(^19\) em pesquisa envolvendo 400 pacientes, concluíram que indivíduos hipertensos tinham de 2 a 4 vezes mais chances de sofrem rupturas grandes (envolvendo um tendão inteiro) e massivas (mais de 2 tendões) do MR em comparação com indivíduos normotensos. As principais explicações para essa importante evidência recaem sobre o estado de hipóxia tendínnea gerada pelo mecanismo hipertensivo, mesmo em indivíduos em tratamento farmacológico, uma vez que grande parte dos fármacos hipertensivos parece ter maior ação nos grandes vasos, mantendo a hipóxia no tecido tendínneo e favorecendo, assim, a degeneração tecidual.\(^19\)
Os achados do presente estudo devem ser tratados com cautela devido às limitações metodológicas. São necessários estudos de caso-controle e coorte bem controlados em larga escala para obter uma estimativa precisa da prevalência/inciência e das associações de fatores demográficos, metabólicos e físicos com o risco de desenvolvimento de lesão do MR. Além disso, esses resultados devem ser extra-pulados para a população em geral com cuidado, uma vez que a amostra do estudo se limitou aos pacientes de um ambulatório específico. Defendemos a necessidade de futuros trabalhos maximizarem a análise não somente da obesidade, como também do efeito crônico desta comorbidade (tempo de exposição), como fator determinante na geração de disfunções musculosqueléticas.

Conclusão

Não evidenciamos associação entre a obesidade e o tempo de exposição à obesidade e a ocorrência e a gravidade da lesão do MR. Porém, os indivíduos com lesão apresentaram maior tempo de exposição à obesidade e prevalência de disfunções metabólicas (DM e HAS) do que indivíduos sem lesão do MR. Além disso, nossos achados sugerem uma importante associação entre HAS e idade avançada e lesão do MR nesta população de indivíduos obesos.

Suporte Financeiro

Não houve suporte financeiro de fontes públicas, comerciais, ou sem fins lucrativos.

Conflito de Interesses

Os autores declaram não haver conflito de interesses.

Referências

1. Aronow WS. Association of obesity with hypertension. Ann Transl Med 2017;5(17):350
2. Al-Goblan AS, Al-Alfi MA, Khan MZ. Mechanism linking diabetes mellitus and obesity. Diabetes Metab Syndr Obes 2014; 7:587–591
3. Loures FB, de Araújo Góes RF, Labronici PJ, Barretto JM, Olej B. Evaluation of body mass index as a prognostic factor in osteoarthritis of the knee. Rev Bras Ortop 2016;51(04):400–404
4. Afshin A, Forouzanfar MH, Reitsma MB, et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med 2017;377(01):13–27
5. Brasil. Ministério da Saúde. Vigilância A Brasileira 2018: surveillance of risk and protective factors for chronic diseases by telephone survey: estimates of frequency and sociodemographic distribution of risk and protective factors for chronic diseases in the capitals of the 26 Brazilian states and the Federal District in 2018. Brasília: Editora MS; 2018
6. Melin EO, Thulesius HO, Hillman M, Landin-Olsson M, Thunander M. Abdominal obesity in type 1 diabetes associated with gender, cardiovascular risk factors and complications, and difficulties achieving treatment targets: a cross sectional study at a secondary care diabetes clinic. BMC Obes 2018;15(05)
7. Patel SA, Ali MK, Alam D, et al. Obesity and its Relation With Diabetes and Hypertension: A Cross-Sectional Study Across 4 Geographical Regions. Glob Heart 2016;11(01):71–79.e4
8. Engin A. The Definition and Prevalence of Obesity and Metabolic Syndrome. Adv Exp Med Biol 2017;960:1–17
9. Guminia S, Candela V, Passaretti D, et al. The association between body fat and rotator cuff tear: the influence on rotator cuff tear sizes. J Shoulder Elbow Surg 2014;23(11):1669–1674
10. Walsh TP, Arnold JB, Evans AM, Yaxley A, Damarell RA, Shanahan EM. The association between body fat and musculoskeletal pain: a systematic review and meta-analysis. BMC Musculoskelet Disord 2018;23(19)
11. Franceschi F, Papalika R, Paciotti M, et al. Obesity as a risk factor for tendinopathy: a systematic review. Int J Endocrinol 2014;2014:1–10
12. Corbin LJ, Richmond RC, Wade KH, et al. Body mass index as a modifiable risk factor for type 2 diabetes: Refining and understanding causal estimates using Mendelian randomisation. Diabetes 2016;65(10):3002–3007
13. Özkuk K, Ateş Z The effect of obesity on pain and disability in chronic shoulder pain patients. J Back Musculoskeletal Rehabil 2020;33(01):73–79
14. Scott A, Zwerver J, Grewal N, et al. Lipids, adiposity and tendinopathy: is there a mechanistic link? Critical review. Br J Sports Med 2015;49(15):984–988
15. Burne G, Mansfield M, Gaida JE, Lewis JS. Is there an association between metabolic syndrome and rotator cuff-related shoulder pain? A systematic review. BMJ Open Sport Exerc Med 2019;5(01):e000544
16. Sayyampanathan AA, Andrew THC. Systematic review on risk factors of rotator cuff tears. J Orthop Surg (Hong Kong) 2017;25(01)
17. Ahmed AS. Does Diabetes Mellitus Affect Tendon Healing? Adv Exp Med Biol 2016;920:179–184
18. Lui PYY. Tendinopathy in diabetes mellitus patients-Epidemiology, pathogenesis, and management. Scand J Med Sci Sports 2017;27(08):776–787
19. Guminia S, Arceri V, Carbene S, et al. The association between arterial hypertension and rotator cuff tear: the influence on rotator cuff tear sizes. J Shoulder Elbow Surg 2013;22(02):229–232
20. Djerbi I, Chammas M, Mirous MP, Lazerces C, Coulet BF. Tendonopathy: a systematic review. Int J Endocrinol 2014–2015;4(01):e000544
21. Titchener AG, White JJ, Hinchliffe SR, Tambe AA, Hubbard RB, Cochrane WG. Sampling Techniques. 3rd ed. New Jersey: Wiley; 1935
22. Holtby R, Razmjou H. Validity of the supraspinatus test as a single factor of rotator cuff tear sizes. J Shoulder Elbow Surg 2013;22(02):194–200
23. Jobe FW, Jobe CM. Painful athletic injuries of the shoulder. Clin Orthop Relat Res 1983;(173):1–17
24. Vinson JL, Sisson SS, Way RJ, et al. Normal ultrasonography of the rotator cuff. PM R 2013;5(01):45–56
25. Lui PPY. Tendinopathy in diabetes mellitus patients-Epidemiology, pathogenesis, and management. Scand J Med Sci Sports 2017;5(17):350
26. Afshin A, Forouzanfar MH, Reitsma MB, et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med 2017;377(01):13–27
27. Brasil. Ministério da Saúde. Vigilância A Brasileira 2018: surveillance of risk and protective factors for chronic diseases by telephone survey: estimates of frequency and sociodemographic distribution of risk and protective factors for chronic diseases in the capitals of the 26 Brazilian states and the Federal District in 2018. Brasília: Editora MS; 2018
28. Melin EO, Thulesius HO, Hillman M, Landin-Olsson M, Thunander M. Abdominal obesity in type 1 diabetes associated with gender, cardiovascular risk factors and complications, and difficulties achieving treatment targets: a cross sectional study at a secondary care diabetes clinic. BMC Obes 2018;15(05)
29. Patel SA, Ali MK, Alam D, et al. Obesity and its Relation With Diabetes and Hypertension: A Cross-Sectional Study Across 4 Geographical Regions. Glob Heart 2016;11(01):71–79.e4
30. Engin A. The Definition and Prevalence of Obesity and Metabolic Syndrome. Adv Exp Med Biol 2017;960:1–17