INTRODUCTION

Complementary metal-oxide semiconductor (CMOS) is the most widespread technology for the design and production of electronic circuits. Since the beginning of the 1970s, this technology has been employed for both digital and analogue design and has been the driving force of the digital revolution\(^1,2\). CMOS technology uses complementary n-type and p-type field-effect transistors (FETs) and presents several advantages with respect to the unipolar counterpart, i.e., the low power dissipation, the full output logic swing, and the large noise immunity\(^3\).

Within the new scenario of ubiquitous, flexible, and wearable electronics, CMOS still represents the technology at choice for the development of the Internet of Things\(^4\) as well as smart electronics, CMOS still represents the technology at choice for the integration of complementary metal-oxide semiconductor (CMOS) technology on flexible substrates, finds in low-dimensional materials (either 1D or 2D) extraordinary candidates. Here, we show that the main building blocks for digital electronics can be obtained by exploiting 2D materials like molybdenum disulfide, hexagonal boron nitride and 1D materials such as carbon nanotubes through the inkjet-printing technique. In particular, we show that the proposed approach enables the fabrication of logic gates and a basic sequential network on a flexible substrate such as paper, with a performance already comparable with mainstream organic technology.
types of FETs work with low supply voltage (≤3 V), and are therefore suitable to be integrated into low-voltage circuits. This is a fundamental requirement for portable electronic systems, where the supply voltage can be provided using solar cells, near-field radio-frequency coupling, or thin-film batteries, and can enable the design of low power circuits. To demonstrate the potential of the proposed approach, we have designed, fabricated, and characterized CMOS circuits on paper, such as inverters, NOR gates, and a D-Latch, which are some of the main building blocks needed to develop complex, low-power integrated electronics on paper.

RESULTS AND DISCUSSION

Fabrication and characterization of CNTs and MoS2 FETs

The transistors are fabricated in a top-gate/top-contact configuration, as shown in Fig. 1a, where a CMOS inverter with a n-type MoS2-based FET and p-type CNTs-based FET are illustrated.

The p-type FET is inkjet-printed on paper exploiting a CNTs ink purchased from NanoIntegris (see “Methods” and Supplementary Notes 3); then, the source and drain electrodes are printed on top, using a nanoparticle-based silver ink (purchased from Sigma Aldrich, see “Methods”). A hexagonal boron nitride (hBN) film is then inkjet-printed on the channel as the gate insulator. The ink synthesis and characterization, previously developed in15, have been reported in Supplementary Notes 1. Finally, the top-gate is printed on top of the dielectric, employing the same silver ink used for the source and drain electrodes. Two different channel lengths L_p have been considered, i.e., $L_p = 40 \mu m$ and $L_p = 350 \mu m$, with a fixed channel width of $W_p = 500 \mu m$. It should be noted that, for all the fabricated FETs, L_p is larger than the length of an individual CNT (which is in the range 0.3–5 µm). Therefore, transport in the channel occurs through a percolative CNTs network and can be influenced by the CNT-CNT interface. The channel has been printed with a single layer, which is found to be enough to ensure percolation of the CNTs network. This allows to minimize the density of the printed CNTs, and, thus, to increase the I_{ON}/I_{OFF} current ratio, as demonstrated in previous papers in 16,37.

The top-gate/top-contacts n-type FETs are obtained by printing the source and drain silver electrodes over a CVD-grown MoS2 stripe transferred on paper (see Supplementary Notes 2). After that, the same water-based hBN ink employed for the p-type FETs is printed as the dielectric; finally, a silver gate is printed on top of the channel/dielectric stack. The detailed fabrication method and the complete electrical characterization of the n-type FETs are reported in 29. The channel length (L_n) and width (W_n) of the n-type transistor are 40 and 500 µm, respectively.

Mirror symmetric electrical characteristics with respect to the reference voltage (i.e., ground) for the two types of devices is a key requirement for a high-performance complementary technology. Indeed, in a complementary-based logic circuit, the p-type FETs must act as a pull-up network (which provides the high logic level), while the n-type FETs as a pull-down network (which provides the low logic level); in this context, large current mismatch between the two types of FETs lead to asymmetrical behavior, which can be due to the mismatch of several
parameters. The channel current for a FET in saturation regime can be generalized using the following formula\(^40\):

\[
|I_{DS}| = \frac{1}{2} \mu_x C_G \frac{W}{L_x} (V_{GSx} - V_{THx})^2
\]

which is valid for both p-type \((x = p)\) and n-type \((x = n)\) FETs. \(I_{DSx}\), \(\mu_x\), \(C_G\), \(V_{GSx}\), and \(V_{THx}\) are the channel current, the field-effect mobility, the gate dielectric capacitance per unit area, the gate voltage, and the threshold voltage, respectively. Since in both cases the hBN dielectric is printed using the same process, it can be assumed that \(C_G\) is the same for both the n- and p-type FETs. Therefore, from Eq. 1, the \(I_{DS}\) mismatches can arise from three parameters: \(\mu_x\), \(V_{THx}\), and \(W/L_x\). Exploiting the flexibility of the inkjet-printing technique, which allows the individual control of the lateral device’s dimensions down to \(-20 \mu m\)\(^{41}\), we have used the channel length \((L_p\) and \(L_n\)) as a design degree of freedom to obtain better-matched CMOS characteristics, while keeping the channel width constant \((W_p = W_n = 500 \mu m)\). In the inset of Fig. 1a, we show the optical micrograph of a representative p-type (blue box) and n-type (red box) FET with \(L_p = 350\) and \(L_n = 40 \mu m\) respectively. The output characteristics, i.e., \(I_{DS}\) as a function of the drain voltage \(V_{DS}\), of the p-type FET are obtained decreasing \(V_{GS}\) from \(+3\) to \(-3\) V, while the output characteristic of the n-type FET is obtained increasing \(V_{GS}\) from \(-3\) to \(+3\) V (Fig. 1b). The two devices exhibit similar characteristics, with comparable saturation currents for sufficiently high \(V_{GSx}\). In addition, the curves have a linear behavior for low \(V_{DS}\), indicating good ohmic contacts between the inkjet-printed silver and both the CNTs and the MoS\(_2\) channels.

Figure 1c, d shows the transfer characteristics (in linear and semi-logarithmic scale) of both devices measured for \(V_{GS} = -2.0\) V and \(V_{DS} = 2.0\) V. The threshold voltages \((V_{TH})\) are similar for both devices \((|V_{TH}| \approx 0)\). Considering the same \(|V_{TH}|\) from Eq. 1, it can be observed that the \(L_p/L_n\) ratio allows to compensate the mismatch between \(\mu_p\) and \(\mu_n\).

The \(\mu\) has been calculated for both transistors using the formula in the saturation regime\(^40\):

\[
\mu = \frac{1}{2} \frac{L_x}{W} \left(\frac{\partial I_{DS}}{\partial V_{GS}} \right)^2
\]

We extracted an average \(\mu_p = 25\) cm\(^2\) V\(^{-1}\) s\(^{-1}\) for the CNTs FET and \(\mu_n = 3\) cm\(^2\) V\(^{-1}\) s\(^{-1}\) for the MoS\(_2\) FET. The achieved \(\mu\) is in line with\(^42,43\) or even better\(^44,45\) as compared to the previously reported mobility for CNTs FETs on flexible substrates.

The versatility of the exploited fabrication technology allows us to integrate several FETs in a flexible, cost-effective way, onto the same paper substrate. In the following, we propose some digital circuits to demonstrate the potential of the technology. All circuits are designed to work with a voltage supply \(V_{DD} \leq 3\) V.

Flexible complementary inverter on paper

Inverters represent the fundamental building blocks of digital electronics. Figure 2a shows the schematic and the optical image of a complementary inverter printed on paper, while integrating both a CNTs and a MoS\(_2\) FET. In Fig. 2a, \(V_{IN}\) is the input voltage, \(V_{OUT}\) is the output voltage, \(V_{DD}\) is the supply voltage \((V_{DD} = 2)\), and \(GND\) is the ground of the circuit. The voltage transfer characteristic (VTC), i.e., \(V_{OUT}\) as a function of \(V_{IN}\), is shown in Fig. 2b (black line). The VTC shows almost an ideal behavior for the output logic levels: a high logic level (high \(V_{OUT}\), obtained for low \(V_{IN}\) values) equal to \(V_{DD}\), and a low logic level (low \(V_{OUT}\), obtained for high \(V_{IN}\) values) almost 0 V. These characteristics allow to achieve low static power consumption. Overall, the inverter demonstrates a good rail-to-rail output voltage swing of 98.25% \(V_{DD}\) and a logic threshold voltage \((V_{TH})\), i.e., \(V_{IN}\) value at which the switching occurs \(V_{IN} = V_{OUT}\) of 0.9, close to the ideal value \(V_{DD}/2\). The voltage gain, defined as \(G = \Delta V_{OUT}/\Delta V_{IN}\), is reported in the inset of Fig. 2b, and it is calculated to be \(-8\). The obtained \(G\) behavior is of primary significance to practical applications.
importance for an inverter, since it guarantees the regeneration of logic levels: all signals $V_{IN} < V_M$ ($V_{IN} > V_M$), can be properly regenerated through a chain of inverters in order to obtain a good logic value $'1'$ ($'0'$).

These performances open up the possibility to design circuits with multiple stages, in which each stage is able to drive the subsequent ones \(^3^8\) (as we will show later on, in the case of the D-LATCH).

Two of the most important parameters to enable a robust design of large-scale integrated circuits are the low and high Noise Margins (NM_{low} and NM_{high}, respectively), which quantifies the immunity of the logic circuit against noise. The overall Noise Margin of the circuit (NM) is equal to the minimum between NM_{low} and NM_{high}, which are defined as \(^4^6\):

$$NM_{low} = V_{IL_{max}} - V_{OL_{max}} \tag{3}$$

where $V_{IL_{max}}$ is the maximum input voltage that can be considered as logic $'0'$ and $V_{OL_{max}}$ is the maximum output voltage that can be considered as logic $'0'$, and

$$NM_{high} = V_{OL_{min}} - V_{IH_{min}} \tag{4}$$

where $V_{OL_{min}}$ is the minimum output voltage that can be considered as $'1'$ logic and $V_{IH_{min}}$ is the minimum input voltage that can be considered as $'1'$ logic.

Ideally, the two noise margins should both be equal to $V_{DD}/2$. In our case, NM_{low} is 47% $V_{DD}/2$, while NM_{high} is 85% $V_{DD}/2$, as shown in Fig. 2b. Therefore, the flexible printed inverter fabricated on paper is immune to noise level up to ~0.47 V. The obtained NM value ensures a good tolerance of the circuit against noise, and is in line \(^1^0,^4^7\) or even better \(^2^2,^2^7\) as compared to those previously reported for inverters fabricated on a flexible substrate.

Figure 2c shows the power consumption of the inverter, calculated as $P_S = V_{DD} I_S$, (where I_S is the current that flows between the supply rails), as a function of V_{IN}. As expected, the maximum power is dissipated during the switching, while it is minimum at the steady state. The figure of merit that takes into account the average static power consumption (P_{Sa}) is defined as:

$$P_{Sa} = \frac{(I_{SCH} + I_{SCL})}{2} \cdot V_{DD} \tag{5}$$

where I_{SCH} and I_{SCL} are the currents flowing between the supply rails, when the output voltage is high and low, respectively. The inverter in Fig. 2 is characterized by a P_{Sa} of 29 nW, which is comparable with those previously reported for low-power consumption circuits \(^2^0,^4^7,^4^8\), or even lower \(^2^1,^2^2\). As can be seen from Fig. 2c, P_{Sa} is increased by the power dissipated at the high logic state ($P_{sal} = I_{SCL} \cdot V_{DD}/2$), while the one dissipated at the high logic state ($P_{sat} = I_{SCH} \cdot V_{DD}/2$) is about one order of magnitude lower. This may be due to slight asymmetry in transistor behavior,
and in particular to the higher t_{OFF} of the p-type FET, probably a consequence of residual metallic CNTs.$^{49-51}$

A comparison between the properties of the proposed inverter on paper and the state of art of the complementary inverters based on low-dimensional and organic materials is reported in Supplementary Table 1.

Characteristics of other inverters fabricated on paper using the same approach are reported in Supplementary Fig. 4.

Flexible complementary NOR on paper

To further demonstrate the potential of the proposed complementary technology, we developed a NOR gate on paper. This is a universal logic gate, that allows the design of any Boolean function without the need for other logic gates.52

Figure 3a, b shows the digital symbol and the schematic of a NOR, respectively. The steady output voltage, V_{OUT}, is reported in Fig. 3c as a function of the combination of the input signals, IN_1 and IN_2, which can only assume the logic value ‘1’ (corresponding to 3 V), or the logic value ‘0’ (corresponding to 0 V). The measured output voltage follows the expected Boolean function, with logic levels close to the ideal ones. Indeed, the output voltage swing is, in the worst case (i.e., considering the worst ‘0’, for $\text{IN}_1 = 1$, $\text{IN}_2 = 0$), 2.8 V. This value approaches the ideal rail-to-rail voltage swing (3 V). The dynamic response of the NOR gate is reported in Supplementary Figs. 5 and 6.

Flexible hybrid complementary-PTL D-Latch on paper

An interesting technological solution is represented by the hybrid CMOS and Pass Transistor Logic (PTL), which allows the reduction of circuit complexity.33,54 In PTL, the input signal is allowed or inhibited depending on the level of a control signal, which drives the transistor gate.

We exploit this hybrid approach to develop a D latch, which is an important building block of sequential logic units, since it can be used as a memory element in the finite state machines. A latch, characterized by two stable states, is a circuit able to store or retain a bit of information depending on the control signal. As a proof of concept, a printed hybrid complementary-PTL D-Latch on paper has been designed and fabricated. Figure 4a shows the digital symbol of a D-Latch and its truth table, while Fig. 4b depicts its electrical schematic. Two CNTs FETs were chosen as pass transistors because they present better performance with respect to the n-type FETs (see Supplementary Fig. 7). The implemented circuit uses only six transistors, a smaller number with respect to those required to obtain the same function with a static conventional CMOS circuit.18 Fig. 4c shows the time evolution of the output signal, Q, and the inverse output signal, \bar{Q}, as a function of the input signal voltage, D, and the clock CLK, which controls the switching ON/OFF of the pass transistors. It should be noticed that the output Q follows the input D only when CLK is in the logic state ‘0’, whilst the output \bar{Q} keeps the value of the input D when CLK is in the logic state ‘1’. As evident from the figure, sources of non-idealities as intrinsic defects (most likely in the printed dielectric), are limiting the switching performance of the system, which deserves further investigation, though out of the scope of the current work. A complete characterization of the circuit, including the time evolution of Q as a function of the other combinations of D and CLK, is reported in Supplementary Fig. 8.

In summary, we have demonstrated an inkjet-printed, complementary technology on paper based on p-type CNTs and n-type MoS$_2$ FETs. We have designed, fabricated, and characterized CMOS inverters with a gain of up to 8, noise margin of about 50%, a full rail-to-rail output swing, and a static power consumption of about 30 nW. Starting from this fundamental building block, we have developed more complex circuits such as CMOS NOR gates and a PTL CMOS D-Latch. The obtained results demonstrate that this technology could lead to the implementation of a new generation of low-cost, complementary electronics on paper.

METHODS

Materials

PEL P60 (purchased from Printed Electronics Limited) is used as paper a substrate. A commercial nanoparticle silver ink (purchased from Sigma-Aldrich) is used to print the metallic contacts. The single-walled CNTs ink is diluted from IsoSol-S100 commercial ink (99.9%, purchased from NanoIntegris) using toluene (final concentration ~0.053 mg mL$^{-1}$). More details are available in Supplementary Table 2, Supplementary Fig. 3, and Supplementary Notes 3. Bulk boron nitride (purchased from Sigma-Aldrich, >1 μm, 98% grade) powders were used to prepare the hBN ink. A complete description of the preparation and characterization of the employed custom-made hBN ink is available in Supplementary Notes 1 and Supplementary Fig. 1. CVD MoS$_2$ was grown on sapphire, patterned in stripes, and transferred on paper. Details on growth, pattern and transfer are provided in Supplementary Notes 2 and Supplementary Fig. 2.

Devices fabrication

The n-type transistor is fabricated in a top-gate/top-contact configuration using the MoS$_2$ stripes as active channels. A Fujifilm Dimatix Materials Printer 2850 is used to define the contacts and the insulator layers under ambient conditions. No annealing or post-treatment process is performed after any printing step. The silver ink is deposited with a single printing pass using one nozzle, a drop spacing of 20 μm, and keeping the printer platen at room temperature. A cartridge with a typical droplet volume of 1 pl is used for the definition of the contacts (source, drain, and gate). A 2 mg mL$^{-1}$ hBN ink is printed on top using a drop spacing of 20 μm and 100 printing passes. A cartridge with a droplet volume of 10 pl is used for the definition of the insulating layer.29

The p-type transistor is fabricated in a top-gate/top-contact configuration using the semiconductor single-walled CNTs ink. The same printer used for the fabrication of the n-type transistor is employed to define the contacts, the channel, and the insulator layers under ambient conditions. Also in this case, no annealing or post-treatment process is performed after any printing step. The CNTs is deposited with a single printing pass using one nozzle, a drop spacing of 20 μm, and keeping the printer platen at room temperature. Contacts and insulating layers are printed using the same parameter employed for the fabrication of the n-type transistor.

DATA AVAILABILITY

The data that support the findings of this work are available from the corresponding author upon reasonable request.

Received: 16 September 2021; Accepted: 20 October 2021; Published online: 16 November 2021

REFERENCES

1. Hussain, A. M. & Hussain, M. M. CMOS-technology-enabled flexible and stretchable electronics for internet of everything applications. Adv. Mater. 28, 4219–4249 (2016).
2. Hung, C. & Lee, T. Towards flexible CMOS circuits. Nat. Nanotechnol. 11, 15–12 (2020).
3. Huang, S., Liu, Y., Zhao, Y., Ren, Z. & Guo, C. F. Flexible electronics: stretchable electrodes and their future. Adv. Funct. Mater. 29, 1805924 (2019).
4. Gupta, S., Navaraj, W. T., Lorenzelli, L. & Dahya, R. Ultra-thin chips for high-performance flexible electronics. npj Flex. Electron. 2, 8 (2018).
5. Park, H. et al. Investigation of electrical characteristics of flexible CMOS devices fabricated with thickness-controlled spalling process. Solid. State Electron. 173, 107901 (2020).
6. Lin, Z., Huang, Y. & Duan, X. van der Waals thin-film electronics. Nat. Electron. 2, 378–388 (2019).
7. Klauck, H., Zschieschang, U., Pflaum, J. & Halik, M. Ultrathin-source CMOS circuits. Nature 445, 745–748 (2007).
8. Kraft, U. et al. Flexible low-voltage organic complementary circuits: Finding the optimum combination of semiconductors and monolayer gate dielectrics. Adv. Mater. 27, 207–214 (2015).
9. Cho, K. C. et al. Sub-2 V, transfer-stamped organic/inorganic complementary inverters based on electrolyte-gated transistors. ACS Appl. Mater. Interfaces 10, 40672–40680 (2018).
10. Casula, G. et al. Printed, low-voltage, all-organic transistors and complementary circuits on paper substrate. Adv. Electron. Mater. 6, 1901027 (2020).
