Raised Late Pregnancy Glucose Concentrations in Mice carrying Pups with Targeted Disruption of H19⁴¹³

Running title: H19⁴¹³ +/- pups & Maternal Glucose Levels

Clive J. Petry¹, Mark L. Evans^{2,3}, Dianne L. Wingate¹, Ken K. Ong^{1,4}, Wolf Reik^{5,6}, Miguel Constância^{3,5,6,7}, David B. Dunger^{1,3}

¹Department of Paediatrics, University of Cambridge, Cambridge, U.K.; 2Department of Medicine, University of Cambridge, Cambridge, U.K.; 3Institute of Metabolic Science, University of Cambridge, Cambridge, U.K.; 4M.R.C. Epidemiology Unit, Addenbrooke’s Hospital, Cambridge, U.K.; 5Babraham Institute, Babraham, U.K.; 6Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; 7Department of Obstetrics & Gynaecology, University of Cambridge, Cambridge, U.K.

Correspondence address:
Dr. Clive Petry PhD
E-mail: cjp1002@cam.ac.uk

Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org

Submitted 20 May 2009 and accepted 4 September 2009.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association, publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes in print and online at http://diabetes.diabetesjournals.org.
Objective: We have hypothesised that variation in imprinted growth promoting fetal genes may affect maternal glucose concentrations in pregnancy. In order to test this hypothesis we evaluated the effects of fetal disruption of murine $H19^{\Delta13}$ on maternal glucose concentrations in pregnancy.

Research Design and Methods: Experimental mice were pregnant females, who had inherited the disrupted $H19^{\Delta13}$ from their fathers so were phenotypically wild type due to imprinting, where approximately half of their litter were null for $H19^{\Delta13}$ through maternal inheritance of the disrupted gene. In control mice approximately half the litter paternally-inherited the disrupted $H19^{\Delta13}$, so the pups were either genetically wild type or phenotypically wild type due to imprinting. Blood glucose concentrations were assessed by intra-peritoneal glucose tolerance tests on days 1, 16 and 18 of pregnancy.

Results: There were no differences in the glucose concentrations of control and experimental pregnant mice at day 1 (e1). However at e16 mothers carrying $H19^{\Delta13}$-null pups had a significantly higher area under the glucose tolerance test curves than controls (1845 ± 378 v. 1386 ± 107 mmol.min/L (p=0.01)) in association with increasing pregnancy-related insulin resistance. Although this difference lessened towards term, overall mothers of maternally-inherited $H19^{\Delta13}$ mutants had significantly higher glucose concentrations during the last trimester (1602 ± 321 (n=17) v. 1359 ± 147 (n=18) mmol.min/L (p=0.009)).

Conclusions: This study provides evidence that maternal glucose concentrations in pregnant mice can be affected by targeted disruption of fetal $H19^{\Delta13}$. This implies that variable fetal IGFR expression could affect risk for gestational diabetes.
Gestational diabetes (GDM) has traditionally been considered a condition originating through combined effects of maternal genetics (1, 2) and her environment, including effects associated with maternal obesity. The current increasing incidence of GDM (3) is thought to result from the increasing prevalence of obesity, with effects of the associated insulin resistance combining with those of the physiological insulin resistance of pregnancy to impair glucose tolerance. Following Haig’s suggestion (4) that maternal metabolism during pregnancy could be influenced by variation in the fetal genome, we recently proposed that risk of GDM could also be modified by variation in the fetal genome, particularly in fetal growth genes (5). This might occur as part of the genetic conflict of pregnancy where maternal genes limit fetal growth and paternally-inherited fetal genes enhance it by increasing the amount of metabolic fuel supplied by the mother to the fetus (6). Candidates include imprinted genes, where expression of transmitted alleles depends on their parent-of-origin (7, 8). Preliminary evidence for this phenomenon comes from our studies of contemporary birth cohorts which have shown that both third trimester maternal glucose tolerance and offspring birthweights are associated with common polymorphic variation in the $H19$ gene (9), which is reciprocally imprinted with respect to $IGF2$ and regulates its imprinting and expression. The following study was therefore performed to test the hypothesis that changes in maternal glucose concentrations during pregnancy could be mediated by genetic variation in the murine fetal $H19$ region (5), which is usually only expressed from the maternally-inherited fetal allele, using mice with targeted disruption of $H19^{13\Delta}$ which are born 30% heavier than controls (10, 11).

MATERIALS AND METHODS

Animals. All experiments were performed under the Animals (Scientific Procedures) Act 1986 following Cambridge University Animal Ethics Committee approval. The mice were kept under controlled conditions with a 12 h. light/dark cycle and had free access to food and water throughout (except for the glucose tolerance test (GTT) starvation period when only water was available). $H19^{13\Delta+}$ mice, where originally insertion of a neomycin resistance cassette replaced the entire 3 kb coding region of the gene and the 10 kb 5’ flanking region including the $Igf2$ control region (10, 12), were bred on C57BL/6 backgrounds and their offspring genotyped by PCR reactions of ear biopsy DNA (extracted using DNeasy kits; Qiagen, Crawley, U.K.). The 20µL reaction mix contained 2 units of BIO-X-ACT polymerase (Bioline Ltd., London, U.K.), 10µL Buffer A (Bioline), 8pmol of forward (5’-TGCCACAGAGGAAGAAACCAG-3’) and reverse (5’-AGTCATAGCCGAATAGCC-3’) oligonucleotide primers and 25ng DNA. The reaction mix was incubated at 94°C for 7 min. and then 20 cycles of 94°C (30 sec.), 49°C (30 sec.) dropping 0.5°C each cycle, and 72°C (1 min.). After this the mix underwent 30 cycles of 94°C (30 sec.), 39°C (30 sec.) and 72°C (1 min.) and a final incubation at 72°C (10 min.). Knockout mice produced a 895bp band when separated electrophoretically on a 1% (w/v) agarose gel. Presence of the wild type $H19$ gene was tested using similar reaction conditions but a different reverse primer (5’-TTCAGTCACTTCCCTCAGCCTC-3’) and increasing the annealing temperatures by 10°C throughout to produce a 494bp band. The aim of our breeding programme was to produce experimental dams where approximately half of their litter was $H19^{13\Delta}$-null due to inheriting the disrupted gene from their mothers, and control dams where around half of their genetically-matched litter inherited the disrupted $H19^{13\Delta}$ from their fathers so were phenotypically wild type due
H19∆13+/− pups & Maternal Glucose Levels

To imprinting. To achieve this, experimental females were genotypically heterozygous knockout mice (H19∆13+/−) that were phenotypically wild type due to paternal inheritance of the disrupted gene, who were mated to wild type C57Bl/6 male mice (from Charles River Ltd., Margate, U.K.) (Fig. 1). Controls were wild type C57Bl/6 females mated to genotypically heterozygous H19∆13+/− males. Due to imprinting, the genotype but not the gene expression distribution amongst the pups was therefore the same for both groups. Pregnancy was assumed at the expulsion of a vaginal plug (day 0), although for the studies on days 16 and 18 of pregnancy only those animals who gained weight suggestive of them being pregnant were assessed.

Glucose Tolerance Tests. 8-10 different experimental and control mice for each day had their glucose concentrations assessed on day 1, 16 or 18 of pregnancy (day 1 being used as baseline and the other days because in previous experiments using an alternative mouse model where placental Igf2 expression was manipulated there were differences in effects on placental nutrient transport between these days (13)). The animals were starved for 15 h. and were then tail bled to produce samples for the measurement of blood glucose and other analytes. The mice were then injected intra-peritoneally with 1 g/kg body weight glucose (administered as a 10% (w/v) solution). Further blood glucose measurements were then taken 15, 30, 60, 120 and 180 min. later.

Blood Glucose, Serum Insulin and Igf-ii Concentrations. Blood glucose was measured using a 201+ glucose meter (Hemocue Ltd., Sheffield, U.K.). Fasting serum igf-ii (following standard acid-ethanol extraction and neutralisation; RayBiotech Mouse Igf-ii ELISA, Innovate Biotechnology, London, U.K.) and insulin (Linco Rat & Mouse Insulin ELISA, Millipore, London, U.K.) concentrations were measured by ELISA according to the manufacturer’s instructions. Fasting insulin sensitivity was assessed indirectly by HOMA (http://www.dtu.ox.ac.uk/index.php?maindoc=/homa/index.php). Whilst its underlying principles are invalid in rodents (14), the values produced by this model do correlate with hyperinsulinaemic, euglycaemic clamp measures of insulin sensitivity in mice (15) without the need for prior surgery or general anaesthesia.

Statistical Analysis. Glucose concentrations were assessed as areas under the (0-180 min.) glucose curves (AUC), calculated using the trapezoid rule. When comparing normally distributed data from two groups on a particular day of pregnancy Student’s t-test were used (having performed Levine’s test for equality of variances); otherwise comparison was by Mann Whitney U test. Where overall comparisons were made using all 3 days of pregnancy in the same model, two-way ANOVA was used with the experimental group and day of pregnancy as fixed variables and glucose AUCs as the dependent variable. All statistical analysis was performed using SPSS, version 14.0 (SPSS Inc., Chicago, U.S.A.). Data are presented as mean ± standard deviation for the GTT data and median (interquartile range) for everything else. P<0.05 was considered statistically significant.

RESULTS

On day 1 of pregnancy there was no detectable difference in glucose AUCs during the GTT between experimental and control groups: 1478 ± 197 (n=10) v. 1708 ± 318 (n=10) mmol.min/L (p=0.07). There were also no detectable differences in fasting serum insulin or Igf-ii concentrations or in insulin sensitivity (Table 1). On day 16 of pregnancy, when H19∆13+/− pups weighed on average 118% that of wild type pups (Table SD1 in the online appendix, which is available at
all mice were more insulin resistant than on day 1 (insulin sensitivity dropping as the day of pregnancy increased (p=0.002)). Experimental dams had significantly higher glucose AUCs than controls (p=0.01, Fig. 2) despite having no detectable differences in fasting insulin or Igf-ii concentrations or insulin sensitivity (Table 1).

At day 18, when $H19^{\Delta 13-/+}$ pups weighed on average 123% that of wild type pups (Table SD1), mice carrying litters containing $H19^{\Delta 13-/+}$ mice still had higher mean glucose AUCs, but the difference was not statistically significant (p=0.2, Fig. 3). There was no difference in either day 18 fasting insulin or Igf-ii concentrations or in insulin sensitivity (Table 1). Combining data from across the third trimester, the experimental mice still had significantly higher glucose AUCs than the controls: 1602 ± 321 (n=17) v. 1359 ± 147 (n=18) mmol.min/L (p=0.009).

There were no differences in the number of pups carried by experimental and control mice (data not shown). Neither was the number of pups carried correlated with any measure of glucose concentrations in either of the groups. When pup numbers were adjusted for no difference was made to the results of analysing the area under the GTT curves (data not shown). When comparing glucose AUCs on all the different days in the same statistical model there were significant effects of both the day of pregnancy (p=0.02) and the interaction between the day of pregnancy and the group (p=0.001). Also a lowering of glucose AUCs between days 16 and 18 of pregnancy was observed that was independent of group (p=0.014; Table SD2 in the online appendix).

DISCUSSION

This study provides direct evidence that changes in murine maternal glucose concentrations during pregnancy can be mediated by alteration in a fetal growth gene, in this case $H19^{\Delta 13}$. Previously there has only been indirect evidence from humans to support this proposal (5), partially due to the difficulty in differentiating effects of fetal genes on maternal metabolism from effects of maternal genes. Evidence implicating variation in fetal $IGF2$ expression comes from the observed trend for a raised risk of developing GDM in mothers carrying offspring with Beckwith Wiedemann syndrome (16). Additional indirect evidence for the fetal genome modifying the risk for maternal GDM comes from studies showing an increased risk in women carrying males rather than smaller females (17), and in multiple pregnancies (18).

Our studies provide further support for this hypothesis. On day 1 of pregnancy there was no change in glucose concentrations in mice carrying $H19^{\Delta 13-/+}$ pups. However by day 16 significant increases in maternal glucose concentrations were observed in dams carrying $H19^{\Delta 13-/+}$ pups despite overall similar decreases in HOMA-derived insulin sensitivity in both groups. These raised glucose concentrations could have resulted from reduced first phase insulin secretion and/or insulin-stimulated glucose uptakes, neither of which would have influenced HOMA measurements.

Our mice also displayed a generalised lowering of glucose concentrations between days 16 and 18, as has recently been observed in another mouse model (19). This may have limited our power to detect continuing differences between groups, as there was no effect of fetal $H19^{\Delta 13-/+}$ on maternal glucose concentrations evident on day 18 of pregnancy. Whilst in humans it is known that glucose tolerance generally deteriorates as pregnancy progresses (20), data relating to the very last weeks of pregnancy corresponding to day 18 in the mouse are less certain. Women with pre-existing type 1 diabetes have a fall in insulin requirements in the last two weeks of pregnancy (21) suggesting a
possible improvement in insulin sensitivity. If effects on maternal glucose metabolism in our mice were mediated by placental hormones (5) the generalised fall in maternal glucose concentrations at the end of pregnancy may therefore have resulted from a prepartum decrease in placental metabolic activity similar to that which has been observed in other model systems (22).

\(H19^{413-}\) disruption affects \(Igf2\) imprinting and expression, and fetal growth in mice (10, 11). We hypothesise that our results therefore relate to increased placental and fetal \(Igf2\) expression. However we can not rule out a role for the disruption of \(H19\) per se or changes in 91H (antisense \(H19\)) RNA expression (23). We propose that the increased placental \(Igf2\) expression, rather than causing changes in maternal Igf-ii concentrations which were not detectably raised in our mice, affects the expression and release of metabolically active placental hormones into the maternal circulation which worsens their glucose tolerance (5). Indirect support for this comes from the enhanced lowering of glucose concentrations we observed in \(H19^{413-/+}\) mice between days 16 and 18 of pregnancy, as at equivalent stages in human pregnancies at least, placental protein concentrations in the maternal circulation fall (24). One candidate hormone for this process is mouse placental lactogen II as its placental expression has been linked to that of \(Igf2\) (25), it regulates pancreatic \(\beta\)-cell expansion in pregnancy (26) and pregnant mice without functional prolactin receptors, for which it is a ligand, become glucose intolerant (19).

These animal experimental data may be important in the understanding of the pathogenesis of human GDM. Previously we found that in humans a common \(H19\) polymorphism is associated with variation in birthweight, maternal glucose concentrations and cord blood IGF-II concentrations (9). In humans there is a linear relationship between maternal glucose tolerance during pregnancy and birthweights, even in the absence of GDM (27). Our study would suggest that this may not be solely explained by maternal genetic and environmental factors determining glucose concentrations crossing the placenta and stimulating fetal insulin secretion with ensuing fetal weight gain. These relationships could be affected by the fetal genome influencing maternal glucose concentrations by factors secreted by the placenta into the maternal circulation. In conclusion this study provides the first direct evidence that a variation in a fetal gene affecting growth rates (10, 11) may also alter maternal glucose concentrations during pregnancy, in association with increasing pregnancy-related insulin resistance, raising the possibility that this process could contribute to the aetiology of human GDM.

ACKNOWLEDGEMENTS

The authors would like to thank Alex Dittrich, Nicola Shelley, Stan Barkhuysen, Samudra Ranawaka and Helen Steenson for excellent technical assistance. In addition they would like to thank the Medical Research Council (grant reference G0500733) for funding the study.
REFERENCES

1. Watanabe RM, Black MH, Xiang AH, Allayee H, Lawrence JM, Buchanan TA: Genetics of gestational diabetes mellitus and type 2 diabetes. *Diabetes Care* 30 Suppl 2:S134-S140, 2007

2. Shaat N, Groop L: Genetics of gestational diabetes mellitus. *Curr Med Chem* 14:569-583, 2007

3. Getahun D, Nath C, Ananth CV, Chavez MR, Smulian JC: Gestational diabetes in the United States: temporal trends 1989 through 2004. *Am J Obstet Gynecol* 198:525.e1-5, 2008

4. Haig D: Placental hormones, genomic imprinting, and maternal-fetal communication. *J Evol Biol* 9:357-380, 1996

5. Petry CJ, Ong KK, Dunger DB: Does the fetal genotype affect maternal physiology during pregnancy? *Trends Mol Med* 13:414-421, 2007

6. Haig D: Genetic conflicts in human pregnancy. *Q Rev Biol* 68:495-532, 1993

7. Haig D, Westoby M: Parent-specific gene expression and the triploid endosperm. *Am Nat* 134:147-155, 1989

8. Reik W, Constância M, Fowden A, Anderson N, Dean W, Ferguson-Smith A, Tycko B, Sibley C: Regulation of supply and demand for maternal nutrients in mammals by imprinted genes. *J Physiol* 547:35-44, 2003

9. Petry CJ, Ong KK, Barratt BJ, Wingate D, Cordell HJ, Ring SM, Pemrey ME, Reik W, Todd JA, Dunger DB; ALSPAC Study Team: Common polymorphism in H19 associated with birth weight and cord blood IGF-II levels in humans. *BMC Genetics* 6:22, 2005

10. Leighton PA, Ingram RS, Eggenschwiler J, Efratstidiatis A, Tilghman SM: Disruption of imprinting caused by deletion of the H19 gene region in mice. *Nature* 375:34-39, 1995

11. Chiao E, Fisher P, Crisponi L, Deiana M, Dragatsis I, Schlessinger D, Pilia G, Efratstidiatis A: Overgrowth of a mouse model of the Simpson-Golabi-Behmel syndrome is independent of IGF signaling. *Dev Biol* 243:185-206, 2002

12. Lopes S, Lewis A, Hajkova P, Dean W, Oswald J, Forné T, Murrell A, Constância M, Bartolomei M, Walter J, Reik W: Epigenetic modifications in an imprinting cluster are controlled by a hierarchy of DMRs suggesting long-range chromatin interactions. *Hum Mol Genet* 12:295-305, 2003

13. Constância M, Angiolini E, Sandovici I, Smith P, Smith R, Kelsey G, Dean W, Ferguson-Smith A, Sibley CP, Reik W, Fowden A: Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the Igf2 gene and placental transporter systems. *Proc Natl Acad Sci U S A* 102:19219-19224, 2005

14. Wallace TM, Levy JC, Matthews DR: Use and abuse of HOMA modeling. *Diabetes Care* 27:1487-1495, 2004

15. Lee S, Muniyappa R, Yan X, Chen H, Yue LQ, Hong EG, Kim JK, Quon MJ: Comparison between surrogate indexes of insulin sensitivity and resistance and hyperinsulinemic euglycemic clamp estimates in mice. *Am J Physiol Endocrinol Metab* 294:E261-E270, 2008

16. Wangler MF, Chang AS, Moley KH, Feinberg AP, Debaun MR: Factors associated with preterm delivery in mothers of children with Beckwith-Wiedemann syndrome: a case cohort study from the BWS registry. *Am J Med Genet A* 134:187-191, 2005

17. Sheiner E, Levy A, Katz M, Hershkovitz R, Leron E, Mazor M: Gender does matter in perinatal medicine. *Fetal Diagn Ther* 19:366-369, 2004

18. Norwitz ER, Edusa V, Park JS: Maternal physiology and complications of multiple pregnancy. *Semin Perinatol* 29:338-348, 2005
19. Huang C, Snider F, Cross JC: Prolactin receptor is required for normal glucose homeostasis and modulation of beta-cell mass during pregnancy. *Endocrinology* 150:1618-1626, 2009
20. Catalano PM, Tyzbir ED, Wolfe RR, Calles J, Roman NM, Amini SB, Sims EA: Carbohydrate metabolism during pregnancy in control subjects and women with gestational diabetes. *Am J Physiol* 264:E60-E67, 1993
21. Jovanovic L, Nakai Y: Successful pregnancy in women with type 1 diabetes: from preconception through postpartum care. *Endocrinol Metab Clin North Am* 35:79-97, 2006
22. Basch CV, Talamantes F: In vitro kinetics of synthesis and release of mouse placental lactogen. *Endocrinology* 119:1939-1947, 1986
23. Berteaux N, Aptel N, Cathala G, Genton C, Coll J, Daccache A, Spruyt N, Hondermarck H, Dugimont T, Curgy JJ, Forné T, Adriaenssens E: A novel H19 antisense RNA overexpressed in breast cancer contributes to paternal IGF2 expression. *Mol Cell Biol* 28:6731-6345, 2008
24. Furuhashi N, Tachibana Y, Kono H, Shinkawa O, Takahashi T, Suzuki M: Changes in placental lactogen, beta 1-chorionic gonadotropin, and unconjugated and total estriol levels in the late course of normal human pregnancy. *Tohoku J Exp Med* 143:47-51, 1984
25. Ishida M, Ohashi S, Kizaki Y, Naito J, Horiguchi K, Harigaya T: Expression profiling of mouse placental lactogen II and its correlative genes using a cDNA microarray analysis in the developmental mouse placenta. *J Reprod Dev* 53:69-76, 2007
26. Brelje TC, Scharp DW, Lacy PE, Ogren L, Talamantes F, Robertson M, Friesen HG, Sorenson RL: Effect of homologous placental lactogens, prolactins, and growth hormones on islet B-cell division and insulin secretion in rat, mouse, and human islets: implication for placental lactogen regulation of islet function during pregnancy. *Endocrinology* 132:879-887, 1993
27. HAPO Study Cooperative Research Group, Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, Coustan DR, Hadden DR, McCance DR, Hod M, McIntyre HD, Oats JJ, Persson B, Rogers MS, Sacks DA: Hyperglycemia and adverse pregnancy outcomes. *New Engl J Med* 358:1991-2002, 2008
Figure Legends

Figure 1 Schematic of the matings in the $H19^{\Delta 13}$ knockout study. Male mice are represented by squares and female mice by circles. Wild type mice are represented by solid black shapes and heterozygote knockout mice by half solid black shapes and half striped shapes (the stripes being on the left hand side if the disrupted allele was inherited from the father and on the right hand side if it was inherited from the mother). Penetrance of the disrupted allele is estimated to be 50% in each case and half of the offspring are assumed to be males. All the experimental mothers, whilst they were heterozygous $H19^{\Delta 13}$ knockouts, were phenotypically wild type due to having inherited the disrupted allele from their fathers and imprinting.

Figure 2 Intra-peritoneal glucose tolerance test curves of pregnant mice carrying litters containing $H19^{\Delta 13}$-/+ knockout pups on day 16 of pregnancy and total area under the glucose curve bar charts. Each time point in the glucose tolerance test is presented as a mean and SEM and the total area under the glucose curves as mean and 95% confidence interval.

Figure 3 Intra-peritoneal glucose tolerance test curves of pregnant mice carrying litters containing $H19^{\Delta 13}$-/+ knockout pups on day 18 of pregnancy and total area under the glucose curve bar charts. Each time point in the glucose tolerance test is presented as a mean and SEM and the total area under the glucose curves as mean and 95% confidence interval.

Table 1 Fasting plasma insulin and Igf-ii concentrations, and fasting insulin sensitivities on days 1, 16 and 18 of pregnancy in mice carrying litters containing $H19^{\Delta 13}$-/+ knockout pups. Data are presented as median (interquartile range).

	Experimental Mice	Controls	p
Day 1	(n=10)	(n=10)	
Insulin (pmol/L)	46 (35~74)	35 (35~61)	0.4
Igf-ii (ng/mL)	all < 6	all < 6	1.0
Insulin Sensitivity (HOMA %S)	113.9 (64.3~147.8)	140.0 (78.6~145.1)	0.8
Day 16	(n=8)	(n=9)	
Insulin (pmol/L)	137 (92~237)	112 (52~154)	0.3
Igf-ii (ng/mL)	all < 6	all < 6	1.0
Insulin Sensitivity (HOMA %S)	40 (23~61)	50 (40~119)	0.2
Day 18	(n=9)	(n=9)	
Insulin (pmol/L)	111 (63~279)	141 (83~1472)	0.7
Igf-ii (ng/mL)	all < 6	all < 6	1.0
Insulin Sensitivity (HOMA %S)	52 (21~102)	40 (6~65)	0.8
Figure 1

H19^{413+/-} pups & Maternal Glucose Levels

- Maternal Females & Grandparents
- Pups

Experimental Group

Control Group
Figure 2

H19 13+/− pups & Maternal Glucose Levels
Figure 3

H19^{413+/−} pups & Maternal Glucose Levels