Inhibition of EZH2 by chidamide exerts antileukemia activity and increases chemosensitivity through Smo/Gli-1 pathway in acute myeloid leukemia

Xuejie Jiang (✉ jxj3331233@163.com)
Southern Medical University Nanfang Hospital https://orcid.org/0000-0002-0178-691X

Ling Jiang
Southern Medical University Nanfang Hospital

Jiaying Cheng
Southern Medical University Nanfang Hospital

Fang Chen
Southern Medical University Nanfang Hospital

Jinle Ni
Southern Medical University Nanfang Hospital

Changxin Yin
Southern Medical University Nanfang Hospital

Qiang Wang
Southern Medical University Nanfang Hospital

Zhixiang Wang
Southern Medical University Nanfang Hospital

Dan Fang
Southern Medical University Nanfang Hospital

Zhengshan Yi
Southern Medical University Nanfang Hospital

Guopan Yu
Southern Medical University Nanfang Hospital

Qingxiu Zhong
Kanghua Hospital

Bing Z Carter
The University of Texas MD Anderson Cancer Center

Fanyi Meng
Southern Medical University Nanfang Hospital
Abstract

Background: Dysregulation of epigenetics plays important roles in leukemogenesis and progression of acute myeloid leukemia (AML). Histone acetyltransferases (HATs) and histone deacetylases (HDACs) reciprocally regulate acetylation and deacetylation of nuclear histone, aberrant activation of HDAC results in uncontrolled proliferation and differentiated blockage, HDAC inhibitors have been investigated as therapeutic drugs for treatment of AML.

Methods: Cell growth was assessed by CCK-8 assay, apoptosis was determined by flow cytometry in AML cell lines, CD45+ and CD34+CD38- cells from patient’s samples after stained with Annexin V-fluorescein isothiocyanate (FITC)/Propidium Iodide (PI). EZH2 expression was silenced by short hairpin RNA (shRNA). The pathway changes were detected by western blot. The effect of chidamide or EZH2 shRNA in combination with adriamycin was studied in vivo in nude mice model bearing leukemia.

Results: In this study, we investigated the antileukemia activities of HDAC inhibitor chidamide and its combinatorial effect with cytotoxic agent in AML. We demonstrated in vitro and in vivo that chidamide suppressed expression of EZH2, exerted potential antileukemia activity and increased the sensitivity AML cells and AML stem/progenitor cells to chemotherapeutic drug through Smo/Gli-1 pathway. In addition to decrease the expression of H3K27me3 and DNMT3A, inhibition of EZH2 either pharmacologically by chidamide or genetically by shEZH2 decreased the activity of Smo/Gli-1 pathway, and increased chemotherapeutic sensitivity in AML cells.

Conclusions: Inhibition of EZH2 by chidamide has antileukemia activity and increases chemosensitivity, it provides a potential strategy to improve chemotherapeutic effect in AML.

1. Background

Acute myeloid leukemia (AML) is the most common adult hematologic malignancies with poor prognosis. Nearly 80% of patients achieve initial remission after induction chemotherapy, but most of them relapse and become insensitivity to chemotherapy[1]. The treatment failure is associated with simultaneous resistance to multidrug and survival of leukemia stem cell (LSC) after chemotherapy[2]. Recent studies showed that constitutive activation of multiple pathways contributes to chemoresistance in AML[3–5]. Epigenetic modification regulates various biological functions, such as histone acetylation and deacetylation, DNA methylation and demethylation[6, 7]. Dysregulation of epigenetics plays important roles in leukemic pathogenesis and progression, hence represents a potential therapeutic target in AML[8, 9].

Histone acetyltransferases (HATs) and histone deacetylases (HDACs) reciprocally regulate acetylation and deacetylation of nuclear histone[10]. Histone modification directly affects nucleosome structure, activities of oncogenes and transcription factors[11, 12]. Aberrant activation of HDAC deregulates the expression of multiple genes and activity of signaling pathways, resulting in uncontrolled proliferation and differentiated blockage related to leukemogenesis. HDAC inhibitors have been investigated as
therapeutic drugs for treatment of AML[13–15]. Inhibition of HDAC exerts proliferative inhibition and apoptotic induction, and has synergistic antileukemia effects in combination with cytotoxic agents in AML[16, 17]. Chidamide, a novel benzamide-type HDAC inhibitor, was demonstrated to induce cell differentiation and apoptosis by specifically inhibiting HDAC1, 2, 3 and 10[18]. It was initially developed to treat T/B cell lymphoma/leukemia, breast cancer and lung cancer[19–22]. Recent studies show that chidamide significantly inhibits growth and induces apoptosis in AML cells and LSCs, and increases the sensitivity to cytotoxic agents through disrupting multiple pathways, activating reactive oxygen species (ROS) and accumulating DNA damage[23–27]. Thus, HDAC inhibition provides a promising strategy to improve the efficacy of chemotherapy in AML patients. However, the chidamide's mechanisms of action are not fully understood.

It is reported that inhibition of enhancer of zeste homolog 2 (EZH2) contributes to the antitumor effect of HDAC inhibitor in neuroblastoma cells and lung cancer cells[28, 29]. EZH2 is the functional core subunit of the polycomb repressive complex 2 (PRC2), and plays a pivotal role in catalyzing the methylation of the lysine 27 of histone H3 (H3K27) [30–33]. Overexpression of EZH2 is associated with poor prognosis in lymphoma, melanoma, and breast cancer, and EZH2 is an potential therapeutic target[34, 35]. EZH2 was reported to support leukemogenesis by blocking cellular differentiation, and of EZH2 inhibitors suppressed the growth of AML cells and survival of LSCs[36, 37]. Moreover, EZH2 inhibition also suppressed the activity of Hedgehog pathway, which plays a critical role in tumorigenesis and metastasis[38–40]. Smo/Gli-1 is the key component of the signal transduction in Hedgehog pathway, its aberrant activation supports survival of LSC and induces chemoresistance in AML[41–44]. Targeted inhibition of Smo/Gli-1 pathway is demonstrated to improve chemotherapeutic effect in AML, and Smo inhibitor has been approved by the Food and Drug Administration (FDA) to treat AML patients in combination with chemotherapy[45–47]. Recent studies show that disruption of EZH2 increases the sensitivity to cytotoxic agents through Smo/Gli-1 pathway in colorectal cancer cells[48]. Thus, the strategies to improve effect by combination with HDAC inhibitor and chemotherapy are needed for treatment of AML.

Our previous study showed that EZH2 overexpression and activation of Smo/Gli-1 pathway related to poor prognosis in AML patients, and Smo inhibitor effectively decreased leukemia growth and increased chemosensitivity[49–51]. Chidamide has a promising antileukemia activity in AML. However, its mechanism of action is not clear. We here demonstrate that chidamide exerted potential activity against AML cells and AML stem/progenitor cells, and increased sensitivity to chemotherapeutic drug in vitro and in vivo by inhibition of EZH2 through Smo/Gli-1 pathway.

2. Materials And Methods

2.1 Cells

Kasumi-1 cells and HL-60/ADM cells (Institutes for Biological Sciences Cell Resource Center, Chinese Academy of Sciences, Shanghai, China) were cultured in RPMI-1640 medium (Hyclone, USA),
supplemented with 10% heat-inactivated fetal bovine serum (GIBCO, USA) in a humidified atmosphere of 5% CO2 at 37℃. Bone marrow samples were obtained from AML patients except M3 and healthy donors for stem cell transplantation after informed consent following the institutional ethics committee's approval of Nanfang Hospital in accordance with Declaration of Helsinki. Mononuclear cells were purified by Ficoll-Hypaque (Sigma-Aldrich, USA) density-gradient centrifugation and cultured in α-MEM supplemented with 10% fetal bovine serum. Table 1 summarizes clinical characteristics of patients.

2.2 Cell growth assay

Kasumi-1 cells and HL-60/ADM cells (2 × 10^5 cells/ml) were plated in 96-well plates and treated with chidamide (Chipscreen Bioscineces, China), Adriamycin (MedChem Express, USA), or their combination. Cell growth was assessed by CCK-8 assay kit (Dojindo, Janpan). After cells were incubated with 10 µL of CCK-8 solution for 2 hours at 37 °C, each well was measured at 450 nm using a spectrophotometer (Thermo Fisher Scientic, USA). Cell viability was determined in each treated group and compared with that of the untreated cells. Drug concentration resulting in 50% inhibition of cell growth (IC50) was calculated to evaluate the sensitivity to adriamycin or cytarabine in Kasumi-1 cells.

2.3 Flow cytometry analysis

Kasumi-1 cells, HL-60/ADM cells (2 × 10^5 cells/ml) and primary samples (5 × 10^5 cells/ml) were treated with chidamide, adriamycin, or their combination. Cell apoptosis was estimated by flow cytometry (BD Biosciences, USA) after cells were stained with Annexin V-fluorescein isothiocyanate (FITC)/Propidium Iodide (PI) (NanJing KeyGen Biotechnology, China). Apoptosis in primary cells was assessed in CD45+ and CD34+CD38- cells after samples were incubated with CD45-APC, CD34-PC5.5 and CD38-PE Cy7 antibodies (BD Biosciences, USA) and stained with Annexin V-FITC (NanJing KeyGen Biotechnology, China).

2.4 EZH2 silencing by shRNA

Lentivirus-mediated short hairpin RNA (shRNA) was constructed by Genechem (Shanghai, China). The targeting sequences for EZH2 shRNA (shEZH2) were the following: shRNA-1, 5' AACAGCTGCCTAGCTTCA-3'; shRNA-2, 5'-AACAGCTCTAGACAACAAA-3'; shRNA-3, 5' GGATAGAGAATGTGGGTTT-3'. The negative control was a non-target scrambled sequence: 5'-TTCTCCGAACGTGTCACGT-3'. Kasumi-1 cells and HL-60/ADM cells were transduced by lentivirus with enhanced GreenFluorescent Protein (EGFP) and sorted by flow cytometry as described in our previous study[49]. The effect of EZH2 silencing was confirmed by real-time polymerase chain reaction (RT-PCR) and western blot. The Kasumi-1 cells and HL-60/ADM cells with the best EZH2 silencing effect were used in the subsequent experiments.

2.5 Western blot analysis

Kasumi-1 cells and HL-60/ADM cells were treated with chidamide, and cells were lysed in RIPA buffer (Sigma-Aldrich, USA). Protein levels were determined by western blot as previously described[1, 52]. Briefly, whole cell lysates were separated by SDS-PAGE gel and transferred onto polyvinylidene difluoride
(PVDF) membranes (Millipore, USA). Targeted protein was probed with primary antibody, then incubated with the secondary antibody. The immunoblots were visualized using chemiluminescence horseradish peroxidase substrate (Millipore, USA), and analyzed by the Odyssey Infrared Imaging System (LI-COR Biosciences, USA). Antibodies against Acetyl-Histone H3 (#8173), DNMT3A (#3598), H3K27me3 (#9733), EZH2 (#5246), Smo (#4940), Gli-1 (#2643), AKT (#4685), p-AKT (#9614) and GAPDH (#5174) were purchased from Cell Signaling Technology (Beverly, MA, USA). Horseradish peroxidase-conjugated goat anti-mouse IgG and goat anti-rabbit IgG were obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA). GAPDH was used as a loading control.

2.6 In vivo studies

Animal experiments were performed in accordance with the Nanfang Hospital Animal Care and Use Committee approved protocols. Kasumi-1 cells or shEZH2 Kasumi-1 cells (1 × 10^7) were injected subcutaneously into the right posterior flank of BALB/c nude mice. When the tumor size was about 150–200 mm^3, the Kasumi-1 bearing mice were randomized to the following treatment groups (n = 10/group): vehicle control, adriamycin (3 mg/kg.d) by intraperitoneal injection, chidamide (12.5 mg/kg.d) by oral gavage or adriamycin plus chidamide for 7 days. Mice with shEZH2 Kasumi-1 neoplasms were randomized to the following treatment groups (n = 10/group): vehicle control, adriamycin (3 mg/kg.d) by intraperitoneal injection for 7 days. Calculation of tumor volume is V = 0.5 × longest × shortest^2. Three mice in each group were sacrificed after 7 days post treatment, tumors were weighted and fixed in 10% neutralized formalin overnight. Histopathological and immunohistochemical examination were performed to determine the protein expression of EZH2, Smo, Gli-1, p-AKT in the tumor tissues.

2.7 Statistical analysis

Cell experiments were conducted in triplicates, results were expressed as means ± SEM. Statistical analyses were performed using a two-tailed student’s t-test or one-way analysis of variance (ANOVA) for comparisons of multiple groups. *P*< 0.05 was defined as statistical significance.

3. Result

3.1 Chidamide, a novel HDAC inhibitor suppresses growth and induces apoptosis in AML cells and AML stem/progenitor cells

Kasumi-1 cells, HL-60/ADM cells and primary AML cells were treated with HDAC inhibitor chidamide. Cell viability was determined by CCK-8 assay, and apoptosis was determined by flow cytometry after Annexin-FITC/PI staining. Chidamide inhibited cell growth in Kasumi-1 cells and HL-60/ADM cells after treatment for 24, 48 and 72 hours (Fig. 1A). Chidamide also markedly induced apoptosis in Kasumi-1 cells and HL-60/ADM cells (Fig. 1B), as well as CD45 + and CD34 + CD38- stem/progenitor cells from AML patients after treatment for 48 hours (Fig. 1C). But chidamide had limited cytotoxicity in normal CD45 + and CD34 + cells from healthy donors (Supplementary Fig. S1).
3.2 Chidamide sensitizes AML cells and AML stem/progenitor cells to cytotoxic agent

Kasumi-1 cells and HL-60/ADM cells were treated with chidamide, adriamycin and their combination for 24 hours. At 1.00 µmol/L, chidamide did not inhibit proliferation, but significantly increased the growth inhibition of adriamycin in AML cells (Fig. 2A), and which IC50 value was decreased from 1.39 ± 0.24 to 0.15 ± 0.05 µmol/L for Kasumi-1 cells, and 1.79 ± 0.13 to 0.25 ± 0.02 µmol/L for HL-60/ADM cells, indicating that chidamide increased the sensitivity of AML cells to chemotherapeutic drug. We then treated Kasumi-1 cells, HL-60/ADM cells and primary AML blasts with chidamide (1.00 µmol/L) in combination with adriamycin (0.13 µmol/L) for 48 hours. Chidamide alone did not have obvious cytotoxic activity, but it significantly increased apoptosis induced by adriamycin in Kasumi-1 cells and HL-60/ADM cells (Fig. 2B), as well as in CD45+ cells and CD34+CD38- stem/progenitor cells from AML patients (Fig. 2C). But chidamide did not increased apoptosis induced by adriamycin in normal CD45+ and CD34+ cells from healthy donors (Supplementary Fig. S2).

3.3 Inhibition of EZH2 by chidamide exerts antileukemia activity and increases chemotherapeutic sensitivity through Smo/Gli-1 pathway

To understand the mechanisms of action, we treated Kasumi-1 cells and HL-60/ADM cells with chidamide and determined protein levels at 48 and 72 hours by western blot. Chidamide treatment, as expected resulted in accumulation of acetylated histone 3 and decreasing expression of H3K27 trimethylation (H3K27me3) and DNMT3A (Fig. 3A). We discovered that chidamide also inhibited the expression of EZH2, activities of Smo/Gli-1 pathway and downstream signaling target p-AKT after treatment with chidamide for 48 hours, the targeted inhibition was more effective after treatment for 72 hours (Fig. 3A). It indicated that chidamide inhibited the expression of EZH2 and downstream targeted trimethylation of H3K27 and DNMT3A. Interestingly, chidamide decreased activity of Smo/Gli-1 pathway, coinciding with potential inhibition of EZH2 expression in AML cells. This would suggest that chidamide may inhibit Smo/Gli-1 pathway through disruption of EZH2 expression in AML.

To test this, we silenced EZH2 expression by shRNA in Kasumi-1 cells and HL-60/ADM cells. We found that genetic inhibition of EZH2 suppressed Smo/Gli-1 pathway and downstream signaling p-AKT, in addition to decreasing expression of H3K27me3 and DNMT3A (Fig. 3B). Smo inhibitor LED225 suppressed Smo/Gli-1 pathway, but had no effect on EZH2 expression (Fig. 3C). We also observed that shEZH2 or LED225 increased the chemotherapeutic sensitivity to adriamycin, although apoptosis was also slightly induced after EZH2 silencing in Kasumi-1 cells and HL-60/ADM cells (Fig. 3D and 3E). These data indicated that inhibition of EZH2 either pharmacologically by chidamide or genetically by shEZH2 decreased activity of Smo/Gli-1 pathway, and increased the sensitivity to chemotherapeutic drug in AML cells.
3.4 Chidamide suppresses EZH2 and Smo/Gli-1 signaling and enhances the antileukemia activity of adriamycin in an AML xenograft mouse model

We used a leukemia-bearing mouse model to test the *in vivo* antileukemia and chemosensitization activities of chidamide in AML. In our study, Kasumi-1 cells were subcutaneously implanted in BALB/c nude mice to establish the AML xenograft mouse model. Treatment with adriamycin or chidamide inhibited leukemia growth as measured by tumor volume and weight in the mice models, and the combination was the most effective strategy in this regard (Fig. 4A and 4C). The results support that chidamide increased the antileukemia activity of adriamycin in leukemia-bearing mice. To further demonstrate that the effect of chidamide on chemosensitivity *in vivo* was mediated at least in part through EZH2 inhibition, Kasumi-1 cells transfected with shEZH2 were subcutaneously implanted to establish the leukemia-bearing mouse model. We observed that depletion of EZH2 also increased antileukemia activity of adriamycin in the mouse model (Fig. 4B and 4C). Histopathological and immunohistochemical examinations showed that chidamide decreased the expression of EZH2, and inhibited Smo/Gli-1 pathway and its downstream signaling p-AKT. Genetic inhibition of EZH2 also suppressed Smo/Gli-1 signaling pathway in leukemic tumor tissues (Fig. 4D). These *in vivo* data suggested that EZH2 inhibition by chidamide or shEZH2 decreased leukemia growth and increased antileukemia effect of cytotoxic agent through suppression of Smo/Gli-1 pathway in the leukemia-bearing mouse model.

4. Discussion

In this study, we investigated the antileukemia activity of HDAC inhibitor chidemide and its combination with chemotherapeutic drug in AML cells *in vitro* and *in vivo*. We discovered that chidemide suppressed growth, induced apoptosis, and increased the sensitivity of AML cells and AML stem/progenitor cells to cytotoxic agent by inhibition of EZH2. We further demonstrated that in addition to decrease the expression of H3K27me3 and DNMT3A, pharmacological or genetic inhibition of EZH2 decreased the activity of Smo/Gli-1 pathway and increased chemotherapeutic sensitivity in AML.

HDAC plays an essential role in leukemic development and progression, and its inhibition increased the sensitivity to cytotoxic agents in AML cells[1]. Combination of HDAC inhibitor with chemotherapeutic drug is a potentially effective approach to improve antileukemia effect and eradicate LSC in AML through disruption of multiple signaling pathways and accumulation of DNA damage[53–56]. We showed previously that combined inhibition of HDAC and proteasome degradation had a synergistic antileukemia activity in chemoresistant AML cells[1]. In this study, we demonstrated that HDAC inhibitor chidemide induced cell apoptosis, and increased chemotherapeutic sensitivity *in vitro* in AML cells and AML stem/progenitor cells and *in vivo* in a mouse model.

In an effort to understand the mechanism of action, we found that inhibition of EZH2 by chidemide or shEZH2 decreased expression of H3K27me3 and DNMT3A, and increased cytotoxic sensitivity in AML cells and stem/progenitor cells. EZH2 is a histone methyltransferase associated with transcriptional
repression through dimethylation and trimethylation of H3K27 (H3K27me2/3), and EZH2 mediated H3K27 methylation contributes to pathological process and poor prognosis in hematological malignancies[57, 58]. Depletion of EZH2 suppresses the expression of H3K27me3, and inhibits survival of LSC in mixed lineage leukemia[59]. Our previous study also showed that EZH2 was overexpressed in AML patients with high relapse probability, and EZH2 silencing inhibited proliferation and induced apoptosis in AML cells[49]. EZH2 controls CpG methylation through directly contacting with DNA methyltransferase (DNMT) in PRC2/3, and associates with activities of DNMT1, DNMT3A, and DNMT3B[32, 57, 60]. Knockdown of EZH2 inhibits the expression of H3K27me3 and DNMT1, and epigenetic silence mediated by EZH2 and DNMT1 results in aberrant gene expression contributing to pathogenesis in gastric cancer and glioblastoma[61]. Combined inhibition of EZH2 and DNA methylation produces a remarkable synergistic activation of tumor suppressor genes and growth inhibition in leukemia cells[62]. HDAC inhibitor is also demonstrated to deplete EZH2 and DNMT1, and synergistically enhances decitabine mediated apoptosis in AML[63–65]. So targeted inhibition of EZH2 indicates a potential therapeutic strategy for treatment of AML.

In this study, we found that EZH2 inhibition by chidemide disrupted Smo/Gli-1 pathway and downstream signaling molecule p-AKT, and increased the sensitivity to cytotoxic agent in AML cells and stem/progenitor cells. Mechanistic studies showed that depletion of EZH2 by shRNA decreased expression of H3K27me3 and DNMT3A, and inhibited activity of Smo/Gli-1 pathway, while disruption of Smo/Gli-1 pathway didn't affect EZH2 expression. Moreover, targeted inhibition of EZH2 or Smo increased the susceptibility to chemotherapeutic drug in AML cells. Smo/Gli-1 pathway play a critical role in embryogenesis and developmental processes including proliferation and differentiation[66], its activation induces resistance to cytotoxic agents in AML cells and LSCs[41, 67]. Our previous study demonstrated that inhibiting Smo/Gli-1 pathway increased the sensitivity to cytotoxic agents in chemoresistant AML cells[50, 51]. It is reported that Smo inhibitor in combination with chemotherapy applies to treat relapsed/refractory AML with good tolerability and efficacy[45, 68]. Both EZH2 and HDAC inhibitors as epigenetic modulators exhibit multiple-targeted approach in modulating Smo/Gli-1 pathway, their therapeutic potentialities are further investigated for treatment of cancers[38]. Our study indicated that inhibition of EZH2 decreased the activity of Smo/Gli-1 pathway, and contributed to the increasing chemosensitivity in AML.

Conclusions

We demonstrated that disruption of EZH2 by chidemide exerted antileukemia activity and increased sensitivity to cytotoxic agent in AML cells and stem/progenitor cells through Smo/Gli-1 pathway, it indicated that targeted inhibition of HDAC is a promising therapeutic strategy for treatment of AML. These findings provide a mechanistic basis for clinic development of HDAC inhibitor to overcome drug resistance and improve chemotherapeutic effect in AML patients.

Abbreviations
AML
Acute myeloid leukemia
LSC
Leukemia stem cell
HAT
Histone acetyltransferase
HDAC
Histone deacetylase
EZH2
Enhancer of zeste homolog 2
FDA
Food and Drug Administration
RT-PCR
Real-time polymerase chain reaction

Declarations

Ethics approval and consent to participate

This study was conducted in accordance with the Declaration of Helsinki, and the protocols approved by the ethics committee at Nanfang Hospital, Guangzhou China. Written consent for use of the samples for research was obtained from patients.

Consent for publication

Not applicable.

Availability of data and materials

The dataset supporting the conclusions of this article is included within the article.

Competing interests

No potential conflicts of interest were disclosed by authors.

Funding

This work was supported by Natural Science Foundation of Guangdong Province (2019A1515012055); National Natural Science Foundation of China (81570152); Clinical Research Startup Program of Southern Medical University by High-level University Construction Funding of Guangdong Provincial Department of Education (LC2016YM005).

Author’s contributions
Conception and design: Xuejie Jiang, Fanyi Meng
Development of methodology: Xuejie Jiang, Ling Jiang, Jiaying Cheng, Fang Chen, Changxin Yin, Guopan Yu, Zhengshan Yi, Yufeng Zhu, Fang Dan, Qingxiu Zhong
Acquisition of data: Xuejie Jiang, Fang Chen
Analysis and interpretation of data: Xuejie Jiang, Fang Chen, Jiaying Cheng, Ling Jiang, Qiang Wang, Zhixiang Wang, Changxin Yin, Fang Dan, Guopan Yu, Fanyi Meng
Writing, review, and/or revision of the manuscript: Xuejie Jiang, Bing Z. Carter, Fanyi Meng
Administrative, technical, or material support: Xuejie Jiang, Qiang Wang, Zhixiang Wang, Zhengshan Yi, Guopan Yu, Fanyi Meng
Study supervision: Xuejie Jiang, Fanyi Meng
Xuejie Jiang, Ling Jiang, Jiaying Cheng and Fang Chen contributed equally to this work.

Acknowledgements

The authors thank Chipscreen biosciences (Shenzhen, China) for providing chidamide.

References

1. Jiang XJ, Huang KK, Yang M, Qiao L, Wang Q, Ye JY, Zhou HS, Yi ZS, Wu FQ, Wang ZX, Zhao QX, Meng FY. Synergistic effect of panobinostat and bortezomib on chemoresistant acute myelogenous leukemia cells via AKT and NF-κB pathways. Cancer Lett. 2012;326(2):135–42. https://doi.org/10.1016/j.canlet.2012.07.030.

2. Tallman MS, Gilliland DG, Rowe JM. Drug therapy for acute myeloid leukemia. Blood. 2015;106(4):1154–63. https://doi.org/10.1182/blood-2005-01-0178.

3. McCubrey JA, Steelman LS, Franklin RA, Abrams SL, Chappell WH, Wong EW, Lehmann BD, Terrian DM, Basecke J, Stivala F, Libra M, Evangelisti C, Martelli AM. Targeting the RAF/MEK/ERK, PI3K/AKT and p53 pathways in hematopoietic drug resistance. Adv Enzyme Regul. 2007;47:64–103. https://doi.org/10.1016/j.advenzreg.2006.12.013.

4. Panwalkar A, Verstovsek S, Giles F. Nuclear factor-KappaB modulation as a therapeutic approach in hematologic malignancies. Cancer. 2004;100(8):1578–89. https://doi.org/10.1002/cncr.20182.

5. Perl AE, Kasner MT, Tsai DE, Vogl DT, Loren AW, Schuster SJ, Porter DL, Stadtmauer EA, Goldstein SC, Frey NV, Nasta SD, Hexner EO, Dierov JK, Swider CR, Bagg A, Gewirtz AM, Carroll M, Luger SM. A phase I study of the mammalian target of rapamycin inhibitor sirolimus and MEC chemotherapy in relapsed and refractory acute myelogenous leukemia. Clin Cancer Res. 2009;15(21):6732–9. https://doi.org/10.1158/1078-0432.CCR-09-0842.

6. Cai SF, Levine RL. Genetic and epigenetic determinants of AML pathogenesis. Semin Hematol. 2019;56(2):84–9. https://doi.org/10.1053/j.seminhematol.2018.08.001.

7. Jiang X, Wang Z, Ding B, Yin C, Zhong Q, Carter BZ, Yu G, Jiang L, Ye J, Dai M, Zhang Y, Liang S, Zhao Q, Liu Q, Meng F. The hypomethylating agent decitabine prior to chemotherapy improves the therapy efficacy in refractory/relapsed acute myeloid leukemia patients. Oncotarget. 2015;6(32):33612–22. https://doi.org/10.18632/oncotarget.5600.

8. Vishwakarma BA, Nguyen N, Makishima H, Hosono N, Gudmundsson KO, Negi V, Oakley K, Han Y, Przychodzen B, Maciejewski JP, Du Y. Runx1 repression by histone deacetylation is critical for...
9. Wouters BJ, Delwel R. Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia. Blood. 2016;127(1):42–52. https://doi. 10.1182/blood-2015-07-604512.

10. Catley L, Weisberg E, Kiziltepe T, Tai YT, Hideshima T, Neri P, Tassone P, Atadja P, Chauhan D, Munshi NC, Anderson KC. Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood. 2006;108(10):3441–9. https://doi. 10.1182/blood-2006-04-016055.

11. Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. J Mol Biol 2004; 338(1): 17–31. https://doi: 10.1016/j.jmb.2004.02.006.

12. West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. J Clin Invest. 2014;124(1):30–9. https://doi. 10.1172/JCI69738.

13. Eckschlager T, Plch J, Stiborova M, Hrabeta J. Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci 2017; 18(7): pii:E1414. https://doi: 10.3390/ijms 18071414.

14. Martin-Perez D, Piris MA, Sanchez-Beato M. Polycomb proteins in hematological malignancies. Blood. 2010;116(25):5465–75. https://doi. 10.1182/blood-2010-05-267096.

15. Ungerstedt JS. Epigenetic modifiers in myeloid malignancies: The Role of histone deacetylase inhibitors. Int J Mol Sci 2018; 19(10): pii:E3091. https://doi: 10.3390/ ijms19103091.

16. San José-Enériz E, Gimenez-Camino N, Agirre X, Prosper F. HDAC inhibitors in acute myeloid leukemia. Cancers (Basel). 2019; 11(11): pii:E1794. https://doi: 10.3390/cancers11111794.

17. Momparler RL, Côté S, Momparler LF, Idaghdour Y. Idaghdour. Epigenetic therapy of acute myeloid leukemia using 5-aza-2’-deoxycytidine (decitabine) in combination with inhibitors of histone methylation and deacetylation. Clin Epigenetics. 2014;6(1):19. https://doi. 10.1186/1868-7083-6-19.

18. Gong K, Xie J, Yi H, Li W. CS055 (Chidamide/HBI-8000), a novel histone deacetylase inhibitor, induces G1 arrest, ROS-dependent apoptosis and differentiation in human leukaemia cells. Biochem J. 2012;443(3):735–46. https://doi. 10.1042/BJ20111685.

19. Shi Y, Jia B, Xu W, Li W, Liu T, Liu P, Zhao W, Zhang H, Sun X, Yang H, Zhang X, Jin J, Jin Z, Li Z, Qiu L, Dong M, Huang X, Luo Y, Wang X, Wang X, Wu J, Xu J, Yi P, Zhou J, He H, Liu L, Shen J, Tang X, Wang J, Yang J, Zeng Q, Zhang Z, Cai Z, Chen X, Ding K, Hou M, Huang H, Li X, Liang R, Liu Q, Song Y, Su H, Gao Y, Liu L, Luo J, Su L, Sun Z, Tan H, Wang H, Wang J, Wang S, Zhang H, Zhang X, Zhou D, Bai Q, Wu G, Zhang L, Zhang Y. Chidamide in relapsed or refractory peripheral T cell lymphoma: a multicenter real-world study in China. J Hematol Oncol. 2017; 10(1): 69. https://doi: 10.1186/s13045-017-0439-6.

20. Guan W, Jing Y, Dou L, Wang M, Xiao Y, Yu L. Chidamide in combination with chemotherapy in refractory and relapsed T lymphoblastic lymphoma/leukemia. Leuk Lymphoma. 2020;61(4):855–61. https://doi. 10.1080/10428194.2019.1691195.
21. Guan XW, Wang HQ, Ban WW, Chang Z, Chen HZ, Jia L, Liu FT. Novel HDAC inhibitor chidamide synergizes with rituximab to inhibit diffuse large B-cell lymphoma tumour growth by upregulating CD20. Cell Death Dis. 2020; 11(1): 20. https://doi: 10.1038/s41419-019-2210-0.

22. Hu X, Wang L, Lin L, Han X, Dou G, Meng Z, Shi Y. A phase I trial of an oral subtype-selective histone deacetylase inhibitor, chidamide, in combination with paclitaxel and carboplatin in patients with advanced non-small cell lung cancer. Chin J Cancer Res. 2016;28(4):444–51. https://doi. 10.21147/j.issn.1000-9604.

23. Zhao S, Guo J, Zhao Y, Fei C, Zheng Q, Li X, Chang C. Chidamide, a novel histone deacetylase inhibitor, inhibits the viability of MDS and AML cells by suppressing JAK2/STAT3 signaling. Am J Transl Res. 2016;8(7):3169–78.

24. Li Y, Chen K, Zhou Y, Xiao Y, Deng M, Jiang Z, Ye W, Wang X, Wei X, Li J, Liang J, Zheng Z, Yao Y, Wang W, Li P, Xu B. A new strategy to target acute myeloid leukemia stem and progenitor cells using chidamide, a histone deacetylase inhibitor. Curr Cancer Drug Targets. 2015;15(6):493–503. https://doi. 10.2174/ 156800961506150805153230.

25. Li X, Yan X, Guo W, Huang X, Huang J, Yu M, Ma Z, Xu Y, Huang S, Li C, Zhou Y, Jin J. Chidamide in FLT3-ITD positive acute myeloid leukemia and the synergistic effect in combination with cytarabine. Biomed Pharmacother. 2017;90:699–704. https://doi. 10.1016/j.biopha.2017.04.037.

26. Li Y, Wang Y, Zhou Y, Li J, Chen K, Zhang L, Deng M, Deng S, Li P, Xu B. Cooperative effect of chidamide and chemotherapeutic drugs induce apoptosis by DNA damage accumulation and repair defects in acute myeloid leukemia stem and progenitor cells. Clin Epigenetics. 2017;9:83. https://doi. 10.1186/s13148-017-0377-8.

27. Huang H, Wenbing Y, Dong A, He Z, Yao R, Guo W. Chidamide enhances the cytotoxicity of cytarabine and sorafenib in acute myeloid leukemia cells by modulating H3K9me3 and autophagy levels. Front Oncol. 2019;9:1276. https://doi. 10.3389/ fonc.2019.01276.

28. Dedoni S, Marras L, Olianas MC, Ingianni A, Onali P. Downregulation of TrkB expression and signaling by valproic acid and other histone deacetylase inhibitors. J Pharmacol Exp Ther. 2019;370(3):490–503. https://doi. 10.1124/jpet.119.258129.

29. Shi B, Behrens C, Vaghani V, Riquelme EM, Rodriguez-Canales J, Kadara H, Lin H, Lee J, Liu H, Wistuba I, Simon G. Oncogenic enhancer of zeste homolog 2 is an actionable target in patients with non-small cell lung cancer. Cancer Med. 2019;8(14):6383–92. https://doi. 10.1002/cam4.1855.

30. Stasik S, Middeke JM, Kramer M, Röllig C, Krämer A, Scholl S, Hochhaus A, Crysandt M, Brümmendorf TH, Naumann R, Steffen B, Kunzmann V, Einsele H, Schaich M, Burchert A, Neubauer A, Schäfer-Eckart K, Schliemann C, Krause S, Herbst R, Hänel M, Frickhofen N, Noppeney R, Kaiser U, Baldus CD, Kaufmann M, Ráczil Z, Platzbecker U, Berdel WE, Mayer J, Serve H, Müller-Tidow C, Ehninger G, Bornhäuser M, Schetelig J, Thiede C. EZH2 mutations and impact on clinical outcome - an analysis in 1604 patients with newly diagnosed acute myeloid leukemia. Haematologica. 2020; 105(5): e228–31. https://doi: 10.3324/haematol.2019.222323.
31. Bracken AP, Helin K. Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat Rev Cancer. 2009;9(11):773–84. https://doi.10.1038/nrc2736.

32. Sauvageau M, Sauvageau G. Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell. 2010;7(3):299–313. https://doi.10.1016/j.stem.2010.08.002.

33. Huang X, Yan J, Zhang M, Wang Y, Chen Y, Fu X, Wei R, Zheng XL, Liu Z, Zhang X, Yang H, Hao B, Shen YY, Su Y, Cong X, Huang M, Tan M, Ding J, Geng M. Targeting epigenetic crosstalk as a therapeutic strategy for EZH2-aberrant solid tumors. Cell. 2018;175(1):186–99. https://doi.10.1016/j.cell.2018.08.058.

34. Sasaki D, Imaizumi Y, Hasegawa H, Osaka A, Tsukasaki K, Choi YL, Mano H, Marquez VE, Hayashi T, Yanagihara K, Moriwaki Y, Miyazaki Y, Kamihira S, Yamada Y. Overexpression of enhancer of zeste homolog 2 with trimethylation of lysine 27 on histone H3 in adult T-cell leukemia/lymphoma as a target for epigenetic therapy. Haematologica. 2011;96(5):712–9. https://doi.10.3324/haematol.2010.028605.

35. Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA, Salvesen HB, Otte AP, Akslen LA. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol. 2006;24(2):268–73. https://doi.10.1200/JCO.2005.01.5180.

36. Tanaka S, Miyagi S, Sashida G, Chiba T, Yuan J, Mochizuki-Kashio M, Suzuki Y, Sugano S, Nakaseko C, Yokote K, Koseki H, Iwama A. Ezh2 augments leukemogenicity by reinforcing differentiation blockage in acute myeloid leukemia. Blood. 2012;120(5):1107–17. https://doi.10.1182/blood-2011-11-394932.

37. Fujita S, Honma D, Araki K, Takamatsu E, Katsumoto T, Yamagata K, Akashi K, Aoyama K, Iwama A, Kitabayashi I. Dual inhibition of EZH1/2 breaks the quiescence of leukemia stem cells in acute myeloid leukemia. Leukemia. 2018;32(4):855–64. https://doi.10.1038/leu.2017.300.

38. Singh AN, Sharma N. Epigenetic modulators as potential multi-targeted drugs against Hedgehog pathway for treatment of cancer. Protein J. 2019; 38(5): 537–50. https://doi:10.1007/s10930-019-09832-9.

39. McMahon AP, Ingham PW, Tabin CJ. Developmental roles and clinical significance of Hedgehog signaling. Curr Top Dev Biol. 2003; 53: 1–114. https://doi:10.1016/s0070-2153(03)53002-2.

40. Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15(3):3059–87. https://doi.10.1101/gad.938601.

41. Terao T, Minami Y. Targeting Hedgehog (Hh) pathway for the acute myeloid leukemia treatment. Cells. 2009; 8(4): pii: E312. https://doi:10.3390/cells8040312.

42. Irvine DA, Copland M. Targeting Hedgehog in hematologic malignancy. Blood. 2012;119(10):2196–204. https://doi.10.1182/blood-2011-10-383752.

43. Fukushima N, Minami Y, Kakiuchi S, Kuwatsuka Y, Hayakawa F, Jamieson C, Kiyoi H, Naoe T. Small-molecule hedgehog inhibitor attenuates the leukemia-initiation potential of acute myeloid leukemia cells. Cancer Sci. 2016;107(10):1422–9. https://doi.10.1111/cas.13019.
44. Wellbrock J, Latuske E, Köhler J, Wagner K, Stamm H, Vettorazzi E, Vohwinkel G, Klokow M, Uibeileisen R, Ehm P, Riecken K, Loges S, Thol F, Schubert C, Amling M, Jücker M, Bokemeyer C, Heuser M, Krauter J, Fiedler W. Expression of Hedgehog pathway mediator GLI represents a negative prognostic marker in human acute myeloid leukemia and its inhibition exerts antileukemic effects. Clin Cancer Res. 2015;21(10):2388–98. https://doi.10.1158/1078-0432.CCR-14-1059.

45. Thomas X, Heiblig M. An evaluation of glasdegib for the treatment of acute myelogenous leukemia. Expert opin pharmacother. 2020; 21(5): 523–530. https://doi: 10.1080/14656566. 2020.1713094.

46. Wolska-Washer A, Robak T. Glasdegib in the treatment of acute myeloid leukemia. Future Oncol. 2019;15(28):3219–32. https://doi. 10.2217/fon-2019-0171.

47. Savona MR, Pollyea DA, Stock W, Oehler VG, Schroeder MA, Lancet J, McCloskey J, Kantarjian HM, Ma WW, Shaik MN, Laird AD, Zeremski M, O'Connell A, Chan G, Cortes JE. Phase Ib study of glasdegib, a Hedgehog pathway inhibitor, in combination with standard chemotherapy in patients with AML or high-risk MDS. Clin Cancer Res. 2018;24(10):2294–303. https://doi. 10.1158/1078-0432.CCR-17-2824.

48. Lima-Fernandes E, Murison A, da Silva Medina T, Wang Y, Ma A, Leung C, Luciani GM, Haynes J, Pollett A, Zeller C, Duan S, Kreso A, Barsyte-Lovejoy D, Wouters BG, Jin J, Carvalho DD, Lupien M, Arrowsmith CH, O'Brien CA. Targeting bivalency de-represses Indian Hedgehog and inhibits self-renewal of colorectal cancer-initiating cells. Nat Commun 2019; 10(1): 1436. https://doi: 10.1038/s41467-019-09309-4.

49. Zhu Q, Zhang L, Li X, Chen F, Jiang L, Yu G, Wang Z, Yin C, Jiang X, Zhong Q, Zhou H, Ding B, Wang C, Meng F. Higher EZH2 expression is associated with extramedullary infiltration in acute myeloid leukemia. Tumour Biol 2016; 37(8): 11409–20. https://doi: 10.1007/s13277-016-4983-4.

50. Huang K, Sun Z, Ding B, Jiang X, Wang Z, Zhu Y, Meng F. Suppressing Hedgehog signaling reverses drug resistance of refractory acute myeloid leukemia. Onco Targets Ther. 2019;12:7477–88. https://doi. 10.2147/OTT.S216628.

51. Li X, Chen F, Zhu Q, Ding B, Zhong Q, Huang K, Jiang X, Wang Z, Yin C, Zhu Y, Li Z, Meng F. Gli-1/PI3K/AKT/NF-kB pathway mediates resistance to radiation and is a target for reversion of responses in refractory acute myeloid leukemia cells. Oncotarget. 2016;7(22):33004–15. https://doi. 10.18632/oncotarget.8844.

52. Jiang X, Mak PY, Mu H, Tao W, Mak D, Komblau S, Zhang Q, Ruvolo P, Burks JK, Zhang W, McQueen T, Pan R, Zhou H, Konopleva M, Cortes JE, Liu Q, Andreeff M, Carter BZ. Carter BZ. Disruption of Wnt/β-catenin exerts antileukemia activity and synergizes with FLT3 inhibition in FLT3-mutant acute myeloid leukemia. Clin Cancer Res. 2018;24(10):2417–29. https://doi. 10.1158/1078-0432.CCR-17-1556.

53. Jin J, Mao S, Li F, Li X, Huang X, Yu M, Guo W, Jin J. A novel alkylating deacetylase inhibitor molecule EDO-S101 in combination with cytarabine synergistically enhances apoptosis of acute myeloid leukemia cells. Med Oncol. 2019; 36(9): 77. https://doi: 0.1007/s12032-019-1302-0.
54. Tu HJ, Lin YJ, Chao MW, Sung TY, Wu YW, Chen YY, Lin MH, Liou JP, Pan SL, Yang CR. The anticancer effects of MPT0G211, a novel HDAC6 inhibitor, combined with chemotherapeutic agents in human acute leukemia cells. Clin Epigenetics. 2018;10(1):162. https://doi.org/10.1186/s13148-018-0595-8.

55. Lee TB, Moon YS, Choi CH. Histone H4 deacetylation down-regulates catalase gene expression in doxorubicin-resistant AML subline. Cell Biol Toxicol. 2012; 28(1): 11–8. https://doi.org/10.1007/s10565-011-9201-y.

56. Yan B, Chen Q, Shimada K, Tang M, Li H, Gurumurthy A, Khoury JD, Xu B, Huang S, Qiu Y. Histone deacetylase inhibitor targets CD123/CD47-positive cells and reverse chemoresistance phenotype in acute myeloid leukemia. Leukemia. 2019;33(4):931–44. https://doi.org/10.1038/s41375-018-0279-6.

57. Viré E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006;439(7078):871–4. https://doi.org/10.1038/nature04431.

58. Romanchikova N, Trapencieris P. Wedelolactone Targets EZH2-mediated histone H3K27 methylation in mantle cell lymphoma. Anticancer Res. 2019;39(8):4179–84. https://doi.org/10.21873/anticanres.13577.

59. Ueda K, Yoshimi A, Kagoya Y, Nishikawa S, Marquez VE, Nakagawa M, Kurokawa M. Inhibition of histone methyltransferase EZH2 depletes leukemia stem cell of mixed lineage leukemia fusion leukemia through upregulation of p16. Cancer Sci. 2014;105(5):512–9. https://doi.org/10.1111/cas.12386.

60. Ma L, Zhang X, Wang Z, Huang L, Meng F, Hu L, Chen Y, Wei J. Anti-cancer effects of curcumin on myelodysplastic syndrome through the inhibition of enhancer of zeste homolog-2 (EZH2). Curr Cancer Drug Targets. 2019;19(9):729–41. https://doi.org/10.2174/1568009619666190212121735.

61. Ning X, Shi Z, Liu X, Zhang A, Han L, Jiang K, Kang C, Zhang Q. DNMT1 and EZH2 mediated methylation silences the microRNA-200b/a/429 gene and promotes tumor progression. Cancer Lett. 2015;359(2):198–205. https://doi.org/10.1016/j.canlet.2015.01.005.

62. Momparler RL, Idaghdour Y, Marquez VE, Momparler LF. Synergistic antileukemic action of a combination of inhibitors of DNA methylation and histone methylation. Leuk Res. 2012;36(8):1049–54. https://doi.org/10.1016/j.leukres.2012.03.001.

63. Xu F, Guo H, Shi M, Liu S, Wei M, Sun K, Chen Y. A combination of low-dose decitabine and chidamide resulted in synergistic effects on the proliferation and apoptosis of human myeloid leukemia cell lines. Am J Transl Res. 2019;11(12):7644–55.

64. Mao J, Li S, Zhao H, Zhu Y, Hong M, Zhu H, Qian S, Li J. Effects of chidamide and its combination with decitabine on proliferation and apoptosis of leukemia cell lines. Am J Transl Res. 2018;10(8):2567–78.

65. Fiskus W, Buckley K, Rao R, Mandawat A, Yang Y, Joshi R, Wang Y, Balusu R, Chen J, Koul S, Joshi A, Upadhyay S, Atadja P, Bhalla KN. Panobinostat treatment depletes EZH2 and DNMT1 levels and
enhances decitabine mediated de-repression of JunB and loss of survival of human acute leukemia cells. Cancer Biol Ther. 2009;8(10):939–50. https://doi.org/10.4161/cbt.8.10.8213.

66. Briscoe J, Théondon PP. The mechanisms of Hedgehog signalling and its roles in development and disease. Rev Mol Cell Biol. 2013;14(7):416–29. https://doi.org/10.1038/nrm3598.

67. Cortes JE, Gutzmer R, Kieran MW, Solomon JA. Hedgehog signaling inhibitors in solid and hematological cancers. Cancer Treat Rev. 2019;76:41–50. https://doi.org/10.1016/j.ctrv.2019.04.005.

68. Bixby D, Noppeney R, Lin TL, Cortes J, Krauter J, Yee K, Medeiros BC, Krämer A, Assouline S, Fiedler W, Dimier N, Simmons BP, Riehl T, Colburn D. Safety and efficacy of vismodegib in relapsed/refractory acute myeloid leukaemia: results of a phase Ib trial. Br J Haematol. 2019;185(3):595–8. https://doi.org/10.1111/bjh.15571.

Tables

Table 1. Characteristics of AML patients and experiments

Pt No	Source	% Blasts	Disease status	Molecular mutation	Cytogenetic	Experiments
1	BM	86	New diagnosis	IDH1+TET2	46,XX	Chi
2	BM	71	New diagnosis	Negative	46,XY	Chi
3	BM	92	Relapse/refractory	FLT3-ITD	Complex	Chi
4	BM	65	New diagnosis	Negative	t(8;21)	Chi
5	BM	46	New diagnosis	Kit D816	t(8;21)	Chi
6	BM	77	Relapse	Negative	Complex	Chi+ADM
7	BM	63	New diagnosis	NPM1+DNMT3a	46,XY	Chi+ADM
8	BM	90	New diagnosis	FLT3-ITD+NPM1	Complex	Chi+ADM
9	BM	74	New diagnosis	Negative	Inv(16)	Chi+ADM
10	BM	59	Relapse/refractory	FLT3-ITD+DNMT3a	46,XY	Chi+ADM
11	BM	81	Relapse	Negative	47,XX,+8	Chi+ADM

Abbreviation: Pt No, Patient number; BM, Bone marrow; Chi, Chidamide; ADM, Adriamycin.