Heterogeneous adsorption potential of 3He in silica aerogel and its influence on magnetic relaxation of 3He

E.M. Alakshin, R.R. Gazizulin, A.V. Klochkov, V.V. Kuzmin, M.S. Tagirov, D.A. Tayurskii

Institute of Physics, Kazan (Volga region) Federal University, Kazan, Russia

Significant influence of aerogel surface heterogeneity on the processes of 3He nuclear magnetic relaxation at temperatures 1.5 – 4.2 K is discovered. This influence appears, for instance, in differences of 3He T_1 relaxation times for small portion of 3He, adsorbed at different temperatures. Binding energy data of 3He on the surface of powder silica aerogel obtained experimentally and binding energy lies in the wide range. Adsorbed 3He molecules with binding energies 60-250 K play supreme role in processes of nuclear magnetic relaxation of gaseous and liquid 3He in aerogel.

submitted to arXiv 11th of December 2010

Supreme role of adsorbed 3He layer on an aerogel surface in processes of nuclear magnetic relaxation was studied earlier [1,2]. The spin kinetics of 3He in the silica aerogel was studied above the Fermi temperature of liquid 3He. The magnetic relaxation times T_1 and T_2 for adsorbed, gaseous, and liquid 3He in the 95% porosity aerogel at a temperature of 1.5 K were obtained by means of pulse nuclear magnetic resonance techniques. It was found that T_1 in all three cases is proportional to the frequency, whereas T_2 is frequency independent. It was shown that the longitudinal relaxation proceeds due to the exchange motion in the solid adsorbed 3He film. The intrinsic relaxation mechanisms in the liquid and gas phases are much weaker than the relaxation through the adsorbed surface layer. A theoretical model of relaxation in the adsorbed 3He layer, taking into account the filamentary structure of the aerogel, has been proposed.

At present work we report experimental data on heterogeneous adsorption potential of 3He in silica aerogel and its influence on magnetic relaxation of 3He.

The powder aerogel sample (EMP-SAP (silica aerogel fine powders) EM-POWER CO. LTD (Korea)) was used and sealed leak tight in the glass tube (pyrex) to the gas handling system. The temperature of NMR cell has been controlled by 4He vapor pumping and by Allen-Bradley thermometer. The pressure was measured at room temperature part of the gas handling system, using pressure gauge ILMVAC PIZA 111.

The longitudinal magnetization relaxation time T_1 of 3He was measured by the saturation recovery method using FID signal. The spin-spin relaxation time T_2 was measured by Hahn method. The hand made pulse NMR spectrometer has been used (frequency range 3 – 50 MHz). The pulse NMR spectrometer is equipped by resistive electrical magnet with a magnetic field strength up to 1T. Transmission Electron Microscopy images of the sample presented in fig 1. The particles size is about 1-10 mkm.
Adsorption isotherms of ^{3}He and ^{4}He in an aerogel are presented in fig.2. At the temperature $T = 4.2$ K small portion of gaseous ^{3}He was introduced into the cell, which was further thermalized during 30 min and equilibrium pressure was measured. After each step a new portion of gaseous ^{3}He was introduced. The adsorption capacity of complete layer was measured and was equal to 12 cm3 STP for ^{3}He and 14 cm3 STP for ^{4}He.

In previous works [1,2] the spin kinetics of ^{3}He in the silica aerogel was studied above the Fermi temperature of liquid ^{3}He for complete adsorbed layer. In the fig.3, experimental data of ^{3}He nuclear longitudinal relaxation time T_1 for incomplete adsorbed layer ($V_{ads}=2$ cm3 STP) are presented as a function of the temperature.
Fig. 3. The temperature dependences of 3He nuclear longitudinal relaxation time T_1 for incomplete adsorbed layer ($V_{\text{ads}}=2 \text{ cm}^3 \text{ STP}$). The adsorbed layer was prepared at two different temperatures (1.5 K and 4.2 K).

The adsorbed layer was prepared at two different temperatures (1.5 K and 4.2 K) and as can be seen from fig.3 the behavior is completely different. It can be explained by taking into account heterogeneity of adsorption potential of 3He on an aerogel surface. The adsorption of 3He at different temperatures in this case will fill the surface different manner.

The existence of strong temperature dependence of T_1 for 3He adsorbed on aerogel surface shows that in case of incomplete adsorbed 3He layer fast thermal motion and redistribution of 3He molecules on the aerogel surface play significant role in nuclear magnetic relaxation of 3He.

For obtaining 3He adsorption data and calculation binding energies of 3He on the aerogel surface following method was used. At room temperature whole gas handling system together with NMR cell was filled by gaseous 3He in amount of $V(\text{He}) = 12 \text{ cm}^3 \text{ STP}$ (first experiment) and $V(\text{He}) = 24 \text{ cm}^3 \text{ STP}$ (second experiment). The whole gas handling system consists of “cold part” (capillary in cryostat and NMR cell) and “hot part” (external capillary, calibrating volume and a pressure gauge). The amount of 3He was chosen, taking into account fig.2. After equilibrium pressure in whole system was achieved the cryostat begun cool down slowly (1 K / min at temperatures above 10 K and 0.05 K / min at low temperatures), using helium flow system.

The cooling process leads to pressure decreasing in the system because of two processes: gas cooling in a “cold part” and adsorption on the aerogel surface. The experimental data are presented in fig.4.
Fig. 4. The temperature dependence of 3He pressure in the system in two cases: (1) – V (3He) = 12 cm3 STP and (2) – V (3He) = 24 cm3 STP.

Taking into account that in the temperature range 70 – 300 K decreasing of the pressure was caused only by cooling down of the 3He gas in “cold part” (the adsorption of 3He a priori is negligible in this temperature range) the dependence in fig.4 in that range was fitted by $p = aT/(1 + bT)$. This function corresponds to 3He gas redistribution between “hot part” and “cold part” during cooling process.

The amount of adsorbed 3He was calculated using:

$$M_{ads} = M_0 - M_{hot} - M_{cold},$$

where M_0 – amount of 3He in the whole system, M_{hot} – amount of gaseous 3He in the “hot part” of the system, M_{cold} – amount of gaseous 3He in the “cold part” of the system.

M_{hot} and M_{cold} can be estimated using:

$$M_{hot} = M_0p(b/a),$$

$$M_{cold} = M_0p/(b\cdot T),$$

where a, b – fitting parameters, found earlier, p - pressure, T – temperature.

In fig.5 the results (from eq.1) of described above procedure is presented as a function of 3He adsorbed amount versus temperature.
E.M. Alakhshin, R.R. Gazizulin, A.V. Klochkov, V.V. Kuzmin, M.S. Tagirov, D.A. Tayurskii
Heterogeneous adsorption potential of 3He in silica aerogel and its influence on magnetic relaxation of 3He

Fig.5. Temperature dependences of 3He amount adsorbed in aerogel in two cases: (1) - $V(3^\text{He}) = 12 \text{ cm}^3 \text{ STP}$ and (2) - $V(3^\text{He}) = 24 \text{ cm}^3 \text{ STP}$. Dots – experimental data, dash lines – Langmuir model (see text)

The binding energies at $V(3^\text{He}) = 12 \text{ cm}^3 \text{ STP}$ can be estimated from Langmuir model [3] by eq.:

$$\Theta = p/(p^* + p), \quad (4)$$

where Θ – degree of layer filling

$$p^* = \alpha T^{5/2}/\langle \exp[-H^S/kT]\rangle, \quad (5)$$

where α – constant, T – temperature, H^S – Hamiltonian of 3He interaction with an aerogel surface. In the case of low temperatures it can be rewritten as:

$$\langle \exp[-H^S/kT]\rangle \approx \exp[-\epsilon_m/kT], \quad (6)$$

where ϵ_m – 3He binding energy on aerogel surface.

The pressure dependences via temperature for calculation of theoretical curves were taken from data in fig.4.

On the fig.5 results of calculations according to (4) are presented for binding energy 60 K, 133 K, 250 K. It is clear, that experimental data could not be described by single binding energy parameter, which proves the existence of heterogeneous adsorption potential. The average binding energy of 3He on the surface of powder aerogel EMP-SAP is about 130 K, and the distribution of binding energies lies in the range 60 – 250 K.
On the inset in fig.5 results of 3He adsorption in case of $V(3$He$) = 24 cm3 STP are presented. It can be seen that adsorption continues at lower temperatures, less than 4 K.

The measurements of 3He longitudinal relaxation time T_1 during adsorption procedure (fig.4. and fig.5.) in the temperature range 1.5 – 4.2 K are presented in fig.6.

![Fig.6. The temperature dependences of 3He longitudinal relaxation time T_1 in aerogel: ○ – $V(^3$He$) = 12 cm^3$ STP, ■ – $V(^3$He$) = 24cm^3$](image)

From fig.6 it is clear, that additional amount of 3He in the cell (case of $V(^3$He$) = 24 cm3) plays role of the load for relaxation process and does not have significant intrinsic relaxation mechanisms. The experimental data can be described, using HR model [4]:

$$T_1 = T_{1s} N_2 / N_1,$$ \hspace{1cm} (7)

where $T_{1s} = ^3$He longitudinal relaxation time in adsorbed (surface) layer, which is almost temperature undependable (fig.6). N_2 – amount of 3He molecules in the NMR cell, which depends on temperature. N_1 – amount of 3He molecules in adsorbed layer ($V(^3$He$) = 12 cm^3$ STP). The solid line in fig.6 represents calculations, taking into account equation (7) and redistribution of gaseous 3He between “cold part” and “hot part”.

Considering all presented experimental data, significant influence of aerogel surface heterogeneity on the processes of 3He nuclear magnetic relaxation at temperatures 1.5 – 4.2 K was described. For instance, this influence appears in differences of 3He T_1 nuclear relaxation times for small portion of 3He, adsorbed at different temperatures. Binding energy data of 3He on the surface of powder silica aerogel obtained experimentally and binding energy lays in the range 60 – 250 K. Adsorbed 3He molecules with binding
energies in this range play main role in processes of nuclear magnetic relaxation of gaseous and liquid 3He in aerogel.

Authors are grateful to Takashi Hattori for TEM measurements of powder aerogel samples.

This work is partially supported by Russian Fund for Basic Research (grant N 09-02-01253).

1. A. V. Klochkov, V. V. Kuzmin , K. R. Safiullin et al., JETP Letters, 88, 823 (2008)
2. A. Klochkov, V. Kuzmin, K. Safiullin et al., Journal of Physics: CS, 150, 032043 (2009)
3. W.A. Steele, JLTP, 3, 257 (1970)
4. P.C. Hammel, R.C. Richardson, Phys. Rev. Lett., 51, 1441 (1984)