Hilbert Polynomials of Kähler Differential Modules for Fat Point Schemes

Martin Kreuzer · Tran N.K. Linh · Le Ngoc Long

the date of receipt and acceptance should be inserted later

Mathematics Subject Classification (2010) 13D40, 13N05, 14C99

Keywords Fat point scheme, Kähler differential module, Hilbert function, regularity index

Abstract Given a fat point scheme $W = m_1P_1 + \cdots + m_sP_s$ in the projective n-space \mathbb{P}^n over a field K of characteristic zero, the modules of Kähler differential k-forms of its homogeneous coordinate ring contain useful information about algebraic and geometric properties of W when $k \in \{1, \ldots, n+1\}$. In this paper we determine the value of its Hilbert polynomial explicitly for the case $k = n+1$, confirming an earlier conjecture. More precisely this value is given by the multiplicity of the fat point scheme $Y = (m_1-1)P_1 + \cdots + (m_s-1)P_s$. For $n = 2$, this allows us to determine the Hilbert polynomials of the modules of Kähler differential k-forms for $k = 1, 2, 3$, and to produce a sharp bound for the regularity index for $k = 2$.

1 Introduction

Let $X = \{P_1, \ldots, P_s\}$ be a set of points in projective n-space \mathbb{P}^n over a field K of characteristic zero, and let I_X be the homogeneous vanishing ideal of X in $S = K[X_0, \ldots, X_n]$. One important reason why the Hilbert function of I_X has been studied extensively is that the elements of $(I_X)_d$ control the non-uniqueness of the solution of the homogeneous polynomial interpolation problem in degree d. When

Martin Kreuzer
Fakultät f黵 Informatik und Mathematik, Universität Passau, D-94030 Passau, Germany,
E-mail: martin.kreuzer@uni-passau.de

Tran N.K. Linh
Department of Mathematics, University of Education, Hue University, 34 Le Loi, Hue, Viet-
nam, E-mail: tnkhanhlinh@hueuni.edu.vn

Le Ngoc Long
Fakultät f黵 Informatik und Mathematik Universität Passau, D-94030 Passau, Germany and
Department of Mathematics, University of Education, Hue University, 34 Le Loi, Hue, Viet-
nam, E-mail: lelong@hueuni.edu.vn
we switch to the Hermite interpolation problem, this non-uniqueness is controlled by the set of all polynomials having the property that not only their values, but also their derivatives up to some order \(m \), vanish at the point \(P_i \) for \(i = 1, \ldots, s \).

In the language of algebraic geometry, this means that we are interested in the Hilbert function of the homogeneous vanishing ideal \(I_\mathcal{W} = I_{P_1} \cap \cdots \cap I_{P_s} \) of the fat point scheme \(\mathcal{W} = m_1 P_1 + \cdots + m_s P_s \) in \(\mathbb{P}^n \). Such schemes have arisen in several contexts, for instance in the study of projective varieties which are obtained from blowing up sets of points in \(\mathbb{P}^n \) (see \[1\]).

The Hilbert function of the ideals \(I_\mathcal{W} \), or equivalently, of the homogeneous coordinate rings \(R_\mathcal{W} = S/I_\mathcal{W} \) have undergone intense scrutiny in the past. A major breakthrough was the paper \[1\] in which Alexander and Hirshowitz determined the Hilbert function of fat point schemes consisting of double points (i.e., with \(m_1 = \cdots = m_s = 2 \)) for the case of a generic support \(\mathcal{X} \). For this, they used a local differential method which they called \textit{La methode d’Horace}. It is therefore a natural approach to study also global differentials for fat point schemes. They are given by the module of Kähler differentials \(\Omega^k_{R_\mathcal{W}/K} \) and its exterior powers, the modules of Kähler differential \(k \)-forms \(\Omega^k_{R_\mathcal{W}/K} \) for \(k \geq 1 \). In \[3\], De Dominics and the first author initiated a careful examination of the structure and the Hilbert function of \(\Omega^1_{R_\mathcal{W}/K} \) for a set of points \(\mathcal{X} \) (i.e., for the case \(m_1 = \cdots = m_s = 1 \)). Then, in \[8\], the present authors started the study of the modules of Kähler differential \(k \)-forms for fat point schemes, and in \[9\] this work was continued.

A major open question in \[9\] is a formula for the Hilbert polynomial of \(\Omega^{n+1}_{R_\mathcal{W}/K} \), i.e., for the value of the Hilbert function in large degrees, which is given as a conjecture there. Our main result here is to prove this formula. More precisely, in Theorem 3.7 we show that, for a fat point scheme \(\mathcal{W} = m_1 P_1 + \cdots + m_s P_s \), the Hilbert polynomial of \(\Omega^{n+1}_{R_\mathcal{W}/K} \) is equal to the multiplicity of the slimming \(\mathcal{Y} = (m_1 - 1)P_1 + \cdots + (m_s - 1)P_s \) of \(\mathcal{X} \), and is therefore given by \(\sum_{i=1}^s \binom{m_i + n - 2}{n} \).

To achieve this goal, we proceed as follows. After recalling the definition and some basic results for fat point schemes in Section 2, we compare the Hilbert functions of a fat point scheme \(\mathcal{W} = m_1 P_1 + \cdots + m_s P_s \), its support \(\mathcal{X} = P_1 + \cdots + P_s \), and its slimming \(\mathcal{Y} = (m_1 - 1)P_1 + \cdots + (m_s - 1)P_s \). More precisely, we show in Proposition 2.6 that the Hilbert functions of \(I_\mathcal{W} \) and of \(I_\mathcal{Y} \) agree in sufficiently large degrees. In the last part of this section we recall the definition of the module of Kähler differential \(k \)-forms of \(R_\mathcal{W}/K \) and recall some of its basic properties.

Section 3 contains the main results of this paper. First we show that, for a set of points \(\mathcal{X} \) in \(\mathbb{P}^n \) and a subset \(Y \) of \(\mathcal{X} \), the vanishing ideals satisfy \(\binom{I_k^2 \cdot I_k^2}{i} \subseteq (\partial (I_k^{i+1} \cdot I_k^1)) \) for all \(k, \ell \geq 0 \) in sufficiently large degrees \(i \gg 0 \) (see Lemma 3.3). Then we use a substitute induction argument to prove that, for a sequence of point sets \(\mathcal{Y}_1 \supseteq Y_2 \supseteq \cdots \supseteq Y_t \) in \(\mathbb{P}^n \) and for \(n_1, \ldots, n_t > 0 \), we have \(\binom{I_{n_1} \cdots I_{n_t}}{i} \subseteq (\partial (I_{n_{i+1}} \cdot I_{n_{i+1}} \cdots I_{n_{i+1}})) \) in sufficiently large degrees \(i \gg 0 \) (see Proposition 3.5). Using the presentation \(\Omega^{n+1}_{R_\mathcal{W}/K} \equiv (S/\partial I_\mathcal{W})/(n-1) \) and starting from the equimultiple case \(m_1 = \cdots = m_s \), we then prove inductively Theorem 3.7 which says that the Hilbert function of the module of Kähler \((n+1) \)-forms of a fat point scheme \(\mathcal{W} = m_1 P_1 + \cdots + m_s P_s \) is given in large degrees by the Hilbert function of its slimming \(\mathcal{Y} \). On other words, we have \(\text{HP}(\Omega^{n+1}_{R_\mathcal{W}/K}) = \sum_{i=1}^s \binom{m_i + n - 2}{n} \).

The final section is devoted to applying this theorem in the case of fat point schemes in the plane \(\mathbb{P}^2 \). In this case we determine the Hilbert polynomials of \(\Omega^k_{R_\mathcal{W}/K} \) for all three relevant cases \(k = 1, 2, 3 \) (see Proposition 4.1) and provide a
Hilbert Polynomials of Kähler Differential Modules for Fat Point Schemes

bound from where on the canonical exact sequence

\[0 \rightarrow (I_W^{(1)}/I_W^{(2)})_i \xrightarrow{\alpha} (I_W^1/K/I_W^{(1)})_i \xrightarrow{\beta} (I_W^2/K/I_W^{(2)})_i \xrightarrow{\gamma} (\Omega^2_{R_W}/K)_i \rightarrow 0. \]

is exact in degree \(i \) (see Proposition 4.3). Here \(W^{(1)} \) and \(W^{(2)} \) are the first and second fattening

\[W^{(j)} = (m_1 + j)P_1 + \cdots + (m_s + j)P_s \]

of \(W \). Using an explicit example, we certify that this result yields a sharp bound for the regularity index

\[\text{Reg}_W \]

of \(\Omega^2_{R_W}/K \).

The research underlying this paper and the calculation of the examples were greatly aided by an implementation of the relevant objects and functions in the computer algebra system ApCoCoA (see [2]). Unless explicitly stated otherwise, we adhere to the definitions and notation introduced in the books [10] and [11], as well as in our previous papers [8] and [9].

2 Kähler Differentials for Fat Point Schemes

Throughout this paper we work over a field \(K \) of characteristic zero, and we let \(S = K[X_0, \ldots, X_n] \) be a standard graded polynomial ring over \(K \). By \(\mathfrak{M} \) we denote the homogeneous maximal ideal \(\langle X_0, \ldots, X_n \rangle \) of \(S \). The ring \(S \) is the homogeneous coordinate ring of the projective \(n \)-space \(\mathbb{P}^n \) over \(K \).

Let \(P_1, \ldots, P_s \) be distinct \(K \)-rational points in \(\mathbb{P}^n \). The prime ideals in \(S \) corresponding to the points \(P_1, \ldots, P_s \) will be denoted by \(I_{P_1}, \ldots, I_{P_s} \), respectively.

Definition 2.1 Let \(m_1, \ldots, m_s \) be positive integers.

(a) A zero-dimensional scheme \(W \) in \(\mathbb{P}^n \) is called a fat point scheme if it is defined by a saturated ideal of the form \(I_W = I_{P_1}^{m_1} \cap \cdots \cap I_{P_s}^{m_s} \). In this case, we also write

\[W = m_1 P_1 + \cdots + m_s P_s. \]

(b) The number \(m_j \) is called the multiplicity of the point \(P_j \) for \(j = 1, \ldots, s \).

(c) If \(m_1 = \cdots = m_s = m \), we refer to \(W \) as an equimultiple fat point scheme and denote it also by \(mX \).

(d) The set of points \(\text{Supp}(W) := \{ P_1, \ldots, P_s \} \) is called the support of \(W \). Subsequently, we also write \(\text{Supp}(W) = P_1 + \cdots + P_s \).

It is well known that the homogeneous coordinate ring \(R_W := S/I_W \) of \(W \) is a one-dimensional, Cohen-Macaulay, standard graded \(K \)-algebra. The Hilbert function \(\text{HF}_{R_W}(i) := \dim_K(R_W)_i \) of \(R_W \) will be denoted by \(\text{HF}_W \). Note that \(\text{HF}_W \) is strictly increasing until it reaches the degree \(\deg(W) = \sum_{i=1}^s (m_i + n - 1) \) of \(W \) at which it stabilizes. The least integer \(i \) for which \(\text{HF}_W(i) = \deg(W) \) is called the regularity index of \(\text{HF}_W \) and is denoted by \(r_W \). In this setting, the Hilbert polynomial of \(\text{HF}_W \) is the constant polynomial given by \(\text{HP}_W(z) = \deg(W) \).
Definition 2.2 Let $\mathcal{W} = m_1P_1 + \cdots + m_sP_s$ be a fat point scheme in \mathbb{P}^n, let $j \in \{1, \ldots, s\}$, and let $\mathcal{W}_j \subseteq \mathcal{W}$ be the fat point scheme

\[
\mathcal{W}_j = m_1P_1 + \cdots + m_{j-1}P_{j-1} + (m_j - 1)P_j + m_{j+1}P_{j+1} + \cdots + m_sP_s
\]

obtained by reducing the multiplicity of P_j by one. If $m_j = 1$, then P_j does not appear in the support of \mathcal{W}_j. Further, let $\nu_j = \deg(\mathcal{W}) - \deg(\mathcal{W}_j)$.

(a) An element $F \in I_{\mathcal{W}_j} \setminus I_{\mathcal{W}}$ is called a separator of \mathcal{W}_j in \mathcal{W}.

(b) A set of homogeneous polynomials $\{F_1, \ldots, F_t\}$ is called a minimal set of separators of \mathcal{W}_j in \mathcal{W} if $t = \nu_j$ and $I_{\mathcal{W}_j} = I_{\mathcal{W}} + \langle F_1, \ldots, F_t \rangle$.

According to [3, Theorem 3.3], a minimal set of separators of \mathcal{W}_j in \mathcal{W} always exists. Some basic properties of separators are described by the following lemma which follows from [6, Lemma 5.1].

Lemma 2.3 In the setting of Definition 2.2, let $\{F_1, \ldots, F_t\}$ be a minimal set of separators of \mathcal{W}_j in \mathcal{W}, and suppose that $\deg(F_1) \leq \cdots \leq \deg(F_t)$.

(a) For $k = 1, \ldots, t$, we have $(I_{\mathcal{W}} + \langle F_1, \ldots, F_{k-1} \rangle) : \langle F_k \rangle = I_{F_k}$.

(b) For $k = 1, \ldots, t$, the ideal $I_{\mathcal{W}} + \langle F_1, \ldots, F_k \rangle$ is a saturated ideal.

By using separators, we want to figure out a connection between the homogeneous vanishing ideals of \mathcal{W}, of the support $X := \text{Supp}(\mathcal{W})$, and of the fat point scheme $Y := (m_1 - 1)P_1 + \cdots + (m_s - 1)P_s$ which we call the slimming of \mathcal{W}. First we have the following relation between the intersection and the product of two homogeneous ideals in S.

Lemma 2.4 Let I, J be two homogeneous ideals of S. Then the following statements hold true.

(a) The graded module $M = (I \cap J)/(I \cdot J)$ is annihilated by $I + J$.

(b) If the Hilbert polynomial of $S/(I + J)$ satisfies $\text{HP}_{S/(I + J)}(z) = 0$, then we have the equality $\text{HP}_{S/(I \cap J)}(z) = \text{HP}_{S/I}(z)$.

In particular, we have $(I \cap J)_i = (I \cdot J)_i$ for $i \gg 0$.

Proof Claim (a) follows from the fact that for $f \in I$, $g \in J$ and $h \in I \cap J$ we have $(f + g)h = fh + gh \in I \cdot J$.

Now we prove (b). Since we have $\text{HP}_{S/(I + J)}(z) = 0$, there exists $i_0 \in \mathbb{N}$ such that $(I + J)^i \subseteq \mathfrak{M}_i$, for all $i \geq i_0$. It follows from (a) that $I + J \subseteq \text{Ann}_S(M)$, and hence $(\text{Ann}_S(M))_i = \mathfrak{M}_i$ for all $i \geq i_0$. This implies $\dim(S/\text{Ann}_S(M)) = 0$. Using [11, Theorem 5.4.10], we then get $\dim(M) = \dim(S/\text{Ann}(M)) = 0$. Consequently, by [11, Theorem 5.15], the Hilbert polynomial of M is $\text{HP}_M(z) = 0$. Thus (b) follows from the homogeneous exact sequence

\[
0 \rightarrow M \rightarrow S/(I \cdot J) \rightarrow S/(I \cap J) \rightarrow 0 \square
\]

Remark 2.5 Let $\mathcal{W} = m_1P_1 + \cdots + m_sP_s$ and $\mathcal{V} = m'_1P'_1 + \cdots + m'_sP'_s$ be fat point schemes in \mathbb{P}^n such that $\text{Supp}(\mathcal{W}) \cap \text{Supp}(\mathcal{V}) = \emptyset$. According to [11, Proposition 5.4.16], we have

\[
\text{HP}_{S/(I_{\mathcal{W}} \cap I_{\mathcal{V}})}(z) = \text{HP}_{S/I_{\mathcal{W}}}(z) + \text{HP}_{S/I_{\mathcal{V}}}(z) - \text{HP}_{S/(I_{\mathcal{W}} + I_{\mathcal{V}})}(z).
\]

The assumption yields that $\text{HP}_{S/(I_{\mathcal{W}} \cap I_{\mathcal{V}})}(z) = \text{HP}_{S/I_{\mathcal{W}}}(z) + \text{HP}_{S/I_{\mathcal{V}}}(z)$, and so we get $\text{HP}_{S/(I_{\mathcal{W}} + I_{\mathcal{V}})}(z) = 0$. In this case the lemma implies $\text{HP}_{S/(I_{\mathcal{W}} + I_{\mathcal{V}})}(z) = \text{HP}_{S/(I_{\mathcal{W}} + I_{\mathcal{V}})}(z)$.

\[
\text{HP}_{S/(I_{\mathcal{W}} \cap I_{\mathcal{V}})}(z) = \text{HP}_{S/I_{\mathcal{W}}}(z) + \text{HP}_{S/I_{\mathcal{V}}}(z) - \text{HP}_{S/(I_{\mathcal{W}} + I_{\mathcal{V}})}(z).
\]
Proposition 2.6 Let $\mathcal{W} = m_1 P_1 + \cdots + m_s P_s$ be a fat point scheme supported at X in \mathbb{P}^n, and let \mathcal{Y} be the slimming $\mathcal{Y} = (m_1 - 1) P_1 + \cdots + (m_s - 1) P_s$ of \mathcal{W}.

(a) We have $I_{\mathcal{W}} : S I_{\mathcal{Y}} = I_X$.
(b) There exists $i_0 \in \mathbb{N}$ such that for all $i \geq i_0$ we have $(I_{\mathcal{W}})_i = (I_X \cdot I_{\mathcal{Y}})_i$.

Proof (a) Clearly, we have $I_X \cdot I_{\mathcal{Y}} \subseteq I_{\mathcal{W}}$, and so $I_X \subseteq I_{\mathcal{W}} : S I_{\mathcal{Y}}$. For the other inclusion, let $\nu_j = \binom{m_j + n - 2}{n-1}$ and let $\{F_j, \ldots, F_{\nu_j}\}$ be a minimal set of separators of \mathcal{W} in \mathcal{Y} such that $\deg(F_{j1}) \leq \cdots \leq \deg(F_{\nu_j})$, where $\mathcal{W}_j = m_1 P_1 + \cdots + m_{j-1} P_{j-1} + (m_j - 1) P_j + m_{j+1} P_{j+1} + \cdots + m_s P_s$. Then, by Lemma 2.3, we have

$$I_{\mathcal{Y}} = I_{\mathcal{W}} + \langle F_{11}, \ldots, F_{1\nu_1}, \ldots, F_{s1}, \ldots, F_{s\nu_s} \rangle.$$

Suppose for a contradiction that there exists a homogeneous element $F \in (I_{\mathcal{W}} : S I_{\mathcal{Y}}) \setminus I_X$. Since $F \notin I_X$, there exists $j \in \{1, \ldots, s\}$ such that $F \notin I_{P_j}$. On the other hand, we have $F \cdot F_j \in I_{\mathcal{W}}$ for all $j = 1, \ldots, s$ and $k = 1, \ldots, \nu_j$. In particular, we get $F \in I_{\mathcal{W}} : S (F_j)$. Also, by Lemma 2.3, the separator F_j satisfies $I_{\mathcal{W}} : S (F_j) \subseteq I_{P_j}$. Hence we obtain $F \in I_{P_j}$, a contradiction.

(b) Note that $(I_X \cdot I_{\mathcal{Y}})_i \subseteq (I_{\mathcal{W}})_i$ for all $i \in \mathbb{N}$. Set $V := m_1 P_1 + \cdots + m_{s-1} P_{s-1}$. It follows from Remark 2.4 that

$$\text{HP}_{S/(I_{\mathcal{W}}+I_{m_1 P_1})}(z) = 0.$$

An application of Lemma 2.3 yields that there exists $t \in \mathbb{N}$ such that for all $i \geq t$ we have $(I_{\mathcal{W}})_i = (I_X \cdot I_{m_1 P_1})_i$. By induction on s we find $i_0 \in \mathbb{N}$ such that

$$(I_{\mathcal{W}})_i = (I_X \cdot I_{m_1 P_1})_i = (I_{m_1 P_1} \cdots I_{m_{s-1} P_{s-1}} \cdot I_{m_s P_s})_i$$

$$= (I_{m_1 P_1} \cdots I_{m_s P_s})_i$$

for all $i \geq i_0$, where the equality (*) follows from the fact that I_{P_j} is a complete intersection ideal for $j = 1, \ldots, s$. Moreover, observe that $I_{P_1} \cdots I_{P_s} \subseteq I_X$ and $I_{P_1}^{m_1-1} \cdots I_{P_s}^{m_s-1} \subseteq I_X$. This implies $(I_{\mathcal{W}})_i \subseteq (I_X \cdot I_{\mathcal{Y}})_i$, and therefore we get the equality $(I_{\mathcal{W}})_i = (I_X \cdot I_{\mathcal{Y}})_i$.

Notice that if \mathcal{W} is an equimultiple fat point scheme in \mathbb{P}^n such that its support X is a complete intersection, then claim (b) of Proposition 2.6 holds true for $i_0 = 0$. However, when \mathcal{W} is not an equimultiple fat point scheme and X is a complete intersection, the following example shows that the number i_0 in Proposition 2.6 should be chosen large enough.

Example 2.7 Let $X \subseteq \mathbb{P}^2$ be the scheme $X = P_1 + P_2 + \cdots + P_8$ consisting of eight points given by $P_1 = (1 : 0 : 0)$, $P_2 = (1 : 0 : 1)$, $P_3 = (1 : 1 : 0)$, $P_4 = (1 : 1 : 1)$, $P_5 = (1 : 2 : 0)$, $P_6 = (1 : 2 : 1)$, $P_7 = (1 : 3 : 0)$ and $P_8 = (1 : 3 : 1)$. The homogeneous vanishing ideal of X is given by

$$I_X = \langle X_0 X_2 - X_2^2, 6X_0^3 X_1 - 11X_0^2 X_1^2 + 6X_0 X_1^3 - X_1^4 \rangle \subseteq S = K[X_0, X_1, X_2],$$

and so X is a complete intersection of type $(2, 4)$.
Now we consider the fat point scheme $\mathcal{W} = P_3 + 2P_2 + P_3 + 2P_4 + 2P_5 + P_6 + 5P_7 + P_8$ supported at X. Let the subscheme \mathcal{Y} of \mathcal{W} be given by $\mathcal{Y} = P_2 + P_3 + P_5 + 4P_7$.

A calculation using ApCoCoA (see [2]) yields the Hilbert functions

$$HF_X : 1 \ 3 \ 5 \ 7 \ 8 \ 8 \ \cdots,$$
$$HF_Y : 1 \ 3 \ 6 \ 10 \ 13 \ 13 \ \cdots,$$
$$HF_{\mathcal{W}} : 1 \ 3 \ 6 \ 10 \ 15 \ 21 \ 26 \ 27 \ 28 \ 28 \ \cdots.$$

This implies that $HF_{\mathcal{W}}(7) = 27 < 28 = HF_{S/(I_X I_Y)}(7)$. Hence we get $I_{\mathcal{W}} \neq I_X \cdot I_Y$.

But we may check that $(I_{\mathcal{W}})_i = (I_X \cdot I_Y)_i$ for all $i \geq 8$.

The next example shows that, if the support of an equimultiple fat point scheme \mathcal{W} is not a complete intersection, then Proposition 2.7(b) does not always hold for all $i \in \mathbb{N}$.

Example 2.8 Let us consider the set $X' = X \setminus \{P_4\} \subseteq \mathbb{P}^2$ where X is the complete intersection given in Example 2.7. Then X' is an almost complete intersection with

$$I_{X'} = I_X + \langle X_3^2 X_2 - 5 X_1^2 X_2^2 + 6 X_1 X_2^3 \rangle \subseteq S = K[X_0, X_1, X_2].$$

The double point scheme $\mathcal{W}' = 2P_1 + 2P_2 + 2P_3 + 2P_5 + 3P_6 + 3P_7 + 3P_8 \subseteq \mathbb{P}^2$ supported at X' has the Hilbert function $HF_{\mathcal{W}'} : 1 \ 3 \ 6 \ 10 \ 14 \ 18 \ 20 \ 21 \ \cdots$. In this case the Hilbert function of $S/I_{X'}^2$ is given by $HF_{S/I_{X'}^2} : 1 \ 3 \ 6 \ 10 \ 14 \ 18 \ 20 \ 21 \ \cdots$. Therefore we obtain $HF_{\mathcal{W}'}(7) = 21 < 22 = HF_{S/I_{X'}^2}(7)$, and hence $I_{\mathcal{W}'} \neq I_{X'} \cdot I_{X'}$.

Now we introduce the algebraic object associated to \mathcal{W} which we are most interested in. The enveloping algebra of $R_{\mathcal{W}}$ is the graded algebra $R_{\mathcal{W}} \otimes_K R_{\mathcal{W}} = \bigoplus_{j \geq 0} (\bigoplus_{k \geq 0} (R_{\mathcal{W}})_j \otimes (R_{\mathcal{W}})_k)$. Let $\mu : R_{\mathcal{W}} \otimes_K R_{\mathcal{W}} \to R_{\mathcal{W}}$ be the canonical multiplication map given by $\mu(f \otimes g) = fg$ for all $f, g \in R_{\mathcal{W}}$. This map is homogeneous of degree zero and its kernel $\mathcal{J} := \text{Ker}(\mu)$ is a homogeneous ideal of $R_{\mathcal{W}} \otimes_K R_{\mathcal{W}}$.

Definition 2.9 Let k be a positive integer.

(a) The graded $R_{\mathcal{W}}$-module $\Omega^1_{R_{\mathcal{W}}/K} : = \mathcal{J}/\mathcal{J}^2$ is called the module of Kähler differentials of $R_{\mathcal{W}}/K$. The homogeneous K-linear map $d : R_{\mathcal{W}} \to \Omega^1_{R_{\mathcal{W}}/K}$ given by $f \mapsto f \otimes 1 - 1 \otimes f + \mathcal{J}^2$ is called the universal derivation of $R_{\mathcal{W}}/K$.

(b) The exterior power $\Omega^k_{R_{\mathcal{W}}/K} := \bigwedge^k_{R_{\mathcal{W}}} \Omega^1_{R_{\mathcal{W}}/K}$ is called the module of Kähler differential k-forms of $R_{\mathcal{W}}/K$.

For $i = 0, \ldots, n$, we denote the image of X_i in $R_{\mathcal{W}}$ by x_i. Then we have $\deg(dx_i) = \deg(x_i) = 1$ and $\Omega^k_{R_{\mathcal{W}}/K} = R_{\mathcal{W}} dx_0 + \cdots + R_{\mathcal{W}} dx_n$. Hence we see that $\Omega^k_{R_{\mathcal{W}}/K} = 0$ for all $k \geq n + 2$, and $\Omega^k_{R_{\mathcal{W}}/K}$ is a finitely generated R-module for all $k \geq 1$. Moreover, from [20] Proposition 4.12 or [29] Proposition 3.2.11 we get the following presentation for $\Omega^k_{R_{\mathcal{W}}/K}$.

Proposition 2.10 Let $1 \leq k \leq n + 1$ and let $dI_{\mathcal{W}} = \langle dF \mid F \in I_{\mathcal{W}} \rangle$. Then the graded $R_{\mathcal{W}}$-module $\Omega^k_{R_{\mathcal{W}}/K}$ has a presentation

$$\Omega^k_{R_{\mathcal{W}}/K} \cong \Omega^k_{S/K}/(I_{\mathcal{W}} \Omega^k_{S/K} + dI_{\mathcal{W}} \Omega^{k-1}_{S/K}).$$
Given a non-zero homogeneous ideal I of S, we denote the homogeneous ideal $(\frac{\partial I}{\partial X^i})_{0 \leq i \leq n} \subseteq S$ by ∂I. The ideal ∂I is also known as the n-th Jacobian ideal (or the n-th Kähler different) of the K-algebra S/I (see [12, Section 10]). If \{F_1, \ldots, F_s\} is a set of generators of I, then ∂I is generated by all 1-minors of the Jacobian matrix $(\frac{\partial F_i}{\partial X^j})_{0 \leq j \leq n, 1 \leq k \leq n}$, i.e., $\partial I = (\frac{\partial F_i}{\partial X^j} | 0 \leq j \leq n, 1 \leq k \leq r)$. Furthermore, by Euler’s relation [12, Section 1], we always have $I \subseteq \partial I$.

Lemma 2.11 Let I and J be two proper homogeneous ideal of S such that $I_i = J_i$ for $i \gg 0$. Then we have $(\partial I)_i = (\partial J)_i$ for $i \gg 0$.

Proof It suffices to prove the inclusion $(\partial I)_i \subseteq (\partial J)_i$ for $i \gg 0$, since I and J may be interchanged. Let $i_0 \in \mathbb{N}$ be a number such that $I_i = J_i$ for all $i \geq i_0$. For $i \geq i_0$ let $F \in (\partial I)_i$. There are homogeneous polynomials $G_{jk} \in S$ and $H_{jk} \in I$ such that $F = \sum_{j=0}^n \sum_{k=1}^n G_{jk} \frac{\partial H_{jk}}{\partial X^j}$, Then, for $j \in \{0, \ldots, n\}$ and $k \in \{1, \ldots, m\}$, we have $G_{jk} \frac{\partial H_{jk}}{\partial X^j} = G_{jk} \frac{\partial G_{jk}}{\partial X^j} = H_{jk} \frac{\partial G_{jk}}{\partial X^j}$. Clearly, $G_{jk} H_{jk} \in I_i+1 = J_i+1$, and hence $\frac{\partial G_{jk}}{\partial X^j} \in (\partial J)_i$. Also, we have $J \subseteq \partial J$ and $H_{jk} \frac{\partial G_{jk}}{\partial X^j} \in J_i$. Thus $G_{jk} \frac{\partial H_{jk}}{\partial X^j} \in (\partial J)_i$. Consequently, we get $F \in (\partial J)_i$, as we wanted to show.

As a consequence of Proposition 2.10 we obtain the following explicit description for the module of Kähler differential $(n+1)$-forms of S/K (see also [9, Corollary 2.3]).

Corollary 2.12 There is an isomorphism of graded $R_{\mathbb{W}}$-modules

$$\Omega^{n+1}_{R_{\mathbb{W}}/K} \cong (S/\partial I_{\mathbb{W}})(-n-1)$$

In particular, we have $HF_{R_{\mathbb{W}}/K}^{n+1}(i) = HF_{S/\partial I_{\mathbb{W}}}(i-n-1)$ for all $i \in \mathbb{Z}$.

3 Hilbert Polynomials of Kähler Differential Modules

In this section we look at the Hilbert function of the module of Kähler differential k-forms of a fat point scheme $\mathbb{W} = m_1 P_1 + \cdots + m_n P_n$ in \mathbb{P}^n, where $1 \leq k \leq n+1$. Especially, for the case $k = n+1$, we determine a formula for the Hilbert polynomial of the module of Kähler differential k-forms of \mathbb{W}.

Clearly, the ring $R_{\mathbb{W}}$ is Noetherian and the module of Kähler differential k-forms $\Omega^k_{R_{\mathbb{W}}/K}$ is a finitely generated graded $R_{\mathbb{W}}$-module. Thus the Hilbert polynomial $HP_{\Omega^k_{R_{\mathbb{W}}/K}}(z) \in \mathbb{Q}[z]$ of $\Omega^k_{R_{\mathbb{W}}/K}$ exists (see e.g. [3, Theorem 4.1.3]). The (Hilbert) regularity index of $\Omega^k_{R_{\mathbb{W}}/K}$ is defined by $ri(\Omega^k_{R_{\mathbb{W}}/K}) := \min\{i \in \mathbb{Z} | AH_{\Omega^k_{R_{\mathbb{W}}/K}}(j) = HP_{\Omega^k_{R_{\mathbb{W}}/K}}(j) \text{ for all } j \geq i\}$.

The Hilbert polynomial of $\Omega^k_{R_{\mathbb{W}}/K}$ is easily shown to be a constant polynomial. However, except the case $n = 1$ (see e.g. [14]), to determine the Hilbert polynomial of $\Omega^k_{R_{\mathbb{W}}/K}$ is an interesting non-trivial task. In [9, Sections 4 and 5], the authors gave the following bounds for the Hilbert polynomial $HP_{\Omega^k_{R_{\mathbb{W}}/K}}(z)$ and its regularity index.
Using Corollary 3.2, we find also be generated by homogeneous polynomials of degrees $\leq r - j$ for all i and r. The claim is equivalent to proving the inclusion

$$\min\{\max\{r_{\mathbf{w}} + k, r_{\mathbf{v}} + k - 1\}, \max\{r_{\mathbf{w}} + n, r_{\mathbf{v}} + n - 1\}\}.$$

In particular, for $\nu \geq 1$, we have $\mathrm{HP}_{\nu}^{(r_{\mathbf{w}} + 1)\mathbf{v}, \mathbf{w}}(z) = 0$ and

$$\mathrm{HP}_{\nu}^{(r_{\mathbf{w}} + 1)\mathbf{v}, \mathbf{w}}(z) = \mathrm{HP}_{\nu \mathbf{x}}(z) = s^{\nu + n - 1}.$$

Also, the above lower bound for $\mathrm{HP}_{\nu}^{(r_{\mathbf{w}} + 1)\mathbf{v}, \mathbf{w}}(z)$ is attained for a fat point scheme whose support is contained in a hyperplane (see [9, Proposition 5.1]) and the upper bound for the regularity index of $\Omega_{R_{\mathbf{w}}/K}$ is sharp as well (see [9, Example 4.3]). Based on the isomorphism of graded $R_{\mathbf{w}}$-modules $\Omega_{R_{\mathbf{w}}/K}^{\nu + 1} \cong (S/\partial I_{\mathbf{w}})(-n - 1)$, we obtain from Propositions 2.6 and 3.1 the following consequence.

Corollary 3.2 Let $X = P_1 + \cdots + P_s$ be a set of s distinct points in \mathbb{P}^n, and let $\nu \geq 1$. There exists $i_0 \in \mathbb{N}$ such that for all $i \geq i_0$ we have $(\partial I_X)_{i} = \mathfrak{M}_i$ and

$$(\partial I_X^\nu + 1)_{i} = (\partial I_{(\nu + 1)\mathbf{v}}\mathbf{x})_{i} = (I_{\mathbf{x}}^\nu)_{i}.$$

For a set of distinct points X and a subset Y of X, the vanishing ideals I_X and I_Y satisfy the following relation.

Lemma 3.3 Let $X = P_1 + \cdots + P_s$ be a set of $s \geq 2$ distinct points in \mathbb{P}^n, let Y be a non-empty subset of X, and let $k, \ell \geq 0$. Then, for $i \gg 0$, we have

$$(I_X^k \cdot I_Y^\ell)_{i} \subseteq (\partial(I_X^{k + 1} \cdot I_Y^\ell))_{i}.$$

Proof Let $\nu := k + \ell$. The claim is equivalent to proving the inclusion

$$(I_X^{\nu - j} \cdot I_Y^\ell)_{i} \subseteq (\partial(I_X^{\nu - j + 1} \cdot I_Y^\ell))_{i}$$

for $i \gg 0$ and $j \in \{0, 1, \ldots, \nu\}$. We proceed by induction on j. By Corollary 3.2 we have the equalities

$$(I_X^\nu)_{i} = (I_{\mathbf{x}})_{i} = (\partial I_X^{\nu + 1})_{i}$$

for $i \gg 0$, and hence (1) holds true for $j = 0$. Suppose that (1) holds true for $j - 1 \geq 0$, i.e., there exists $i_0 \in \mathbb{N}$ such that for all $i \geq i_0$ we have

$$(I_X^{\nu - j + 1} \cdot I_Y^\ell)_{i} \subseteq (\partial(I_X^{\nu - j + 2} \cdot I_Y^\ell - 1))_{i}.$$

Using Corollary 3.2 we find $i_1 \in \mathbb{N}$ such that

$$(I_X^{\nu - j})_{i} = (I_{(\nu - j)\mathbf{x}})_{i} = (\partial I_X^{\nu - j + 1})_{i} \quad \text{and} \quad (I_Y^\ell)_{i} = (I_{\mathbf{y}})_{i},$$

for all $i \geq i_1$. Further, let $r_{\mathbf{w}}$ be the regularity index of $HF_{\mathbf{w}}$. Then the homogeneous ideal I_Y can be generated by homogeneous polynomials of degrees $\leq r_{\mathbf{w}} + 1$ by [7] Proposition 1.1. Set $r := \max\{i_0, i_1, r_{\mathbf{w}} + 1\}$. The ideal I_Y^ℓ can also be generated by homogeneous polynomials of degrees $\leq r$. Let $i \geq 2r$, and
Thus the formula of the lemma does not hold in general, when
Y_k for
Since $HF_{S/I}$ to hold, as the following example shows.
Hence, from (2) and (3) we get
Clearly, we have
Moreover, from the inclusion $I_X \subseteq I_Y$ yields
Hence, from (2) and (3) we get
for all $p, q.$ This implies $F \cdot G \in (\partial(I_X^{\nu-j} \cdot I_Y))$. Since $(I_X^{\nu-j} \cdot I_Y)_i$ is a K-vector space generated by elements of the form $F \cdot G$, we obtain the desired inclusion
Notice that the assumption that Y is a subset of X is essential for this lemma to hold, as the following example shows.

Example 3.4 Let $K = \mathbb{Q}$ and let X, Y be two complete intersections in \mathbb{P}^2 given by $X = P_1 + P_2 + P_3 + P_4$ and $Y = P_1 + P_2 + P_3 + P_4$, where $P_1 = (1 : 0 : 0)$, $P_2 = (1 : 0 : 1)$, $P_3 = (1 : 1 : 0)$, $P_4 = (1 : 1 : 1)$, $P_5 = (1 : 2 : 0)$ and $P_6 = (1 : 2 : 1)$. Then, in $S = K[X_0, X_1, X_2]$, we have
\[
I_X = \langle X_0X_1 - X_2^2, X_0X_2 - X_2^2 \rangle \quad \text{and} \quad I_Y = \langle 2X_0X_1 - X_1^2, X_0X_2 - X_2^2 \rangle.
\]
For $k = \ell = 1$, we see that
\[
HF_{S/(I_X, I_Y)} : 1 \ 3 \ 6 \ 10 \ 11 \ 10 \ 10 \cdots \quad \text{and} \quad HF_{S/\partial(I_X^{i+1} - I_Y)} : 1 \ 3 \ 6 \ 10 \ 15 \ 8 \ 8 \cdots.
\]
Since $HF_{S/(I_X, I_Y)}(4) = 11 < 15 = HF_{S/\partial(I_X^{i+1} - I_Y)}(4)$, we see that $I_X \cdot I_Y \nsubseteq \partial(I_X^{i+1} - I_Y)$. Thus the formula of the lemma does not hold in general, when Y is not a subset of X.

let $F \cdot G \in (I_X^{\nu-j} \cdot I_Y)$, with homogeneous polynomials $F \in I_X^{\nu-j}$ and $G \in I_Y$. Without loss of generality, we may assume that $F \in (I_X^{\nu-j})_{i-r}$ and $G \in (I_Y)_r$. Since $i - r \geq 2r - r = r \geq i_1$, this implies $F \in (\partial(I_X^{\nu-j+1})_{i-r}$. We may write
\[
F = \sum_{p=0}^{n} \sum_{q=0}^{u} H_{pq} \frac{\partial F_{pq}}{\partial X_p}
\]
where $F_{pq} \in (I_X^{\nu-j+1})_{\deg(F_{pq})}$ and $H_{pq} \in S_{i-r-\deg(F_{pq})+1}$ for all $0 \leq p \leq n$ and $1 \leq q \leq u$. Hence we have
\[
F \cdot G = \sum_{p=0}^{n} \sum_{q=0}^{u} H_{pq} G \frac{\partial F_{pq}}{\partial X_p} = \sum_{p=0}^{n} \sum_{q=0}^{u} H_{pq} (\partial(F_{pq}G) - F_{pq} \frac{\partial G}{\partial X_p})
\]
\[
= \sum_{p=0}^{n} \sum_{q=0}^{u} H_{pq} \frac{\partial(F_{pq}G)}{\partial X_p} - \sum_{p=0}^{n} \sum_{q=0}^{u} H_{pq} F_{pq} \frac{\partial G}{\partial X_p}.
\]
Clearly, we have $\frac{\partial(F_{pq}G)}{\partial X_p} \in (I_X^{\nu-j+1} \cdot I_Y)$ and thus $H_{pq} \frac{\partial(F_{pq}G)}{\partial X_p} \in (\partial(I_X^{\nu-j+1} \cdot I_Y))$. Moreover, from the inclusion $I_X \subseteq I_Y$ we deduce $F_{pq} \frac{\partial G}{\partial X_p} \in I_X^{\nu-j+1} \cdot I_Y$. Also, the inclusion $I_X \subseteq I_Y$ yields
\[
I_X^{\nu-j+2} \cdot I_Y^{-1} \subseteq I_X^{\nu-j+1} \cdot I_Y.
\]
Hence, from (2) and (3) we get
\[
H_{pq} F_{pq} \frac{\partial G}{\partial X_p} \in (I_X^{\nu-j+1} \cdot I_Y^{-1}) \subseteq (\partial(I_X^{\nu-j+2} \cdot I_Y^{-1})) \subseteq (\partial(I_X^{\nu-j+1} \cdot I_Y)),
\]
for all p, q. This implies $F \cdot G \in (\partial(I_X^{\nu-j+1} \cdot I_Y))$. Since $(I_X^{\nu-j} \cdot I_Y)_i$ is a K-vector space generated by elements of the form $F \cdot G$, we obtain the desired inclusion
\[
(I_X^{\nu-j} \cdot I_Y)_i \subseteq (\partial(I_X^{\nu-j+1} \cdot I_Y))_i.
\]
The preceding lemma can be generalized as follows.

Proposition 3.5 Let \(t \geq 2 \), let \(\nu_1, \ldots, \nu_t \geq 1 \), and let \(Y_1 \supseteq Y_2 \supseteq \cdots \supseteq Y_t \) be a descending chain of finite sets of distinct points in \(\mathbb{P}^n \). Then, for \(i \gg 0 \) we have

\[
(I_{Y_1}^{\nu_1} \cdot I_{Y_2}^{\nu_2} \cdots I_{Y_t}^{\nu_t})_i \subseteq (\partial(I_{Y_1}^{\nu_1+1} \cdot I_{Y_2}^{\nu_2} \cdots I_{Y_t}^{\nu_t}))_i.
\]

In the proof of this proposition we use the following lemma.

Lemma 3.6 Let \(t \geq 2 \), let \(\nu_1, \ldots, \nu_t \geq 1 \), and let \(Y_1 \supseteq Y_2 \supseteq \cdots \supseteq Y_t \) be a descending chain of finite sets of distinct points in \(\mathbb{P}^n \). If

\[
(I_{Y_1}^{\nu_1+1} \cdot I_{Y_2}^{\nu_2} \cdots I_{Y_t}^{\nu_t})_i \subseteq (\partial(I_{Y_1}^{\nu_1+2} \cdot I_{Y_2}^{\nu_2} \cdots I_{Y_t}^{\nu_t}))_i
\]

and

\[
(I_{Y_1}^{\nu_1} \cdot I_{Y_2}^{\nu_2} \cdots I_{Y_t}^{\nu_t})_i \subseteq (\partial(I_{Y_1}^{\nu_1+1} \cdot I_{Y_2}^{\nu_2} \cdots I_{Y_t}^{\nu_t}))_i
\]

for \(i \gg 0 \), then

\[
(I_{Y_1}^{\nu_1} \cdot I_{Y_2}^{\nu_2} \cdots I_{Y_t}^{\nu_t+1})_i \subseteq (\partial(I_{Y_1}^{\nu_1+1} \cdot I_{Y_2}^{\nu_2} \cdots I_{Y_t}^{\nu_t+1}))_i
\]

for \(i \gg 0 \).

Proof Note that the ideal \(I_{Y_i} \) can be generated by homogeneous polynomials of degree \(\leq \nu_i + 1 \), where \(\nu_i \) is the regularity index of \(H(I_{Y_i}) \). Set \(J := I_{Y_1}^{\nu_1} \cdot I_{Y_2}^{\nu_2} \cdots I_{Y_t}^{\nu_t} \).

By assumption, there exists an integer \(i_0 \geq \nu_i + 1 \) such that

\[
(I_{Y_1} \cdot J)_i \subseteq (\partial(I_{Y_1}^2 \cdot J))_i \quad \text{and} \quad J_i \subseteq (\partial(I_{Y_1} \cdot J))_i
\]

for every \(i \geq i_0 \). Now we let \(i \geq 2i_0 \) and consider \(F \in (J \cdot I_{Y_1})_i \) of the form

\[
F = G \cdot H \text{ with homogeneous polynomials } G \in J \text{ and } H \in I_{Y_1}. \]

By the choice of \(i_0 \), we may assume \(H \in (I_{Y_1})_{i_0} \) and \(G \in J_{i-i_0} \). Since \(i - i_0 \geq i_0 \), we get \(G \in J_{i-i_0} \subseteq (\partial(I_{Y_1} \cdot J))_{i-i_0} \). There are homogeneous polynomials \(G_{01}, G_{02}, \ldots, G_{nm} \in I_{Y_1} \cdot J \)

and \(H_{01}, H_{02}, \ldots, H_{nm} \in S \) such that

\[
G = \sum_{k=0}^{n} \sum_{\ell=1}^{m} H_{k\ell} \frac{\partial G_{k\ell}}{\partial X_k}
\]

For any \(k, \ell \geq 0 \), we observe that \(\frac{\partial(HG_{k\ell})}{\partial X_k} \in \partial(I_{Y_1} \cdot J \cdot I_{Y_1}) \). Moreover, we have

\[
H_{k\ell}G_{k\ell} \frac{\partial H}{\partial X_k} \in (I_{Y_1} \cdot J)_i \subseteq (\partial(I_{Y_1}^2 \cdot J))_i \subseteq (\partial(I_{Y_1} \cdot J \cdot I_{Y_1}))_i.
\]

Here the last inclusion follows from the fact that \(I_{Y_1} \subseteq I_{Y_1} \). So, we obtain

\[
F = \sum_{k=0}^{n} \sum_{\ell=1}^{m} H_{k\ell} \frac{\partial G_{k\ell}}{\partial X_k} = \sum_{k=0}^{n} \sum_{\ell=1}^{m} H_{k\ell}(\frac{\partial(HG_{k\ell})}{\partial X_k} - G_{k\ell} \frac{\partial H}{\partial X_k}) \in (\partial(I_{Y_1} \cdot J \cdot I_{Y_1}))_i.
\]

Since \((J \cdot I_{Y_1})_i \) is a \(K \)-vector space generated by such elements \(F \), the inclusion \((J \cdot I_{Y_1})_i \supseteq (\partial(I_{Y_1} \cdot J \cdot I_{Y_1}))_i \) is completely proved.
Proof (of Proposition 3.5) Let us prove the claim by induction on t. For $t = 2$, the claim follows from Lemma 3.3. Now we consider the case $t > 2$ and assume that the claim holds true for $t - 1$. We let $\nu_1, \ldots, \nu_t \geq 0$ and set $J := I^2_{\nu_2} \cdots I^{t-1}_{\nu_{t-1}}$. By the induction hypothesis, $(I^2_{\nu_2} \cdot J)_i \subseteq (\partial(I^3_{\nu_1} \cdot J))_i$ holds true for $i \gg 0$ and for all $k \geq 0$. Thus Lemma 3.6 yields that $(I^3_{\nu_1} \cdot J \cdot I_{\nu_k})_i \subseteq (\partial(I^4_{\nu_1} \cdot J \cdot I_{\nu_k}))_i$ holds true for $i \gg 0$ and for all $k \geq 0$. By applying Lemma 3.6 again, and by induction on the power of the ideal I_{ν_k}, we obtain the inclusion $(I^\nu_{\nu_1} \cdot J \cdot I_{\nu_k})_i \subseteq (\partial(I^\nu_{\nu_1} \cdot J \cdot I_{\nu_k}))_i$ for $i \gg 0$, and the claim follows. \hfill \Box

Now we are ready to state and prove a formula for the Hilbert polynomial of the module of Kähler differential $(n + 1)$-forms for an arbitrary fat point scheme \mathbb{W} in \mathbb{P}^n. This gives an affirmative answer to the conjecture made in [4, Conjecture 5.7].

Theorem 3.7 Let $\mathbb{W} = m_1 \mathbb{P}_1 + \cdots + m_s \mathbb{P}_s$ be a fat point scheme in \mathbb{P}^n, and let \mathbb{Y} be the subscheme $\mathbb{Y} = (m_1 - 1) \mathbb{P}_1 + \cdots + (m_s - 1) \mathbb{P}_s$ of \mathbb{W}. Then the Hilbert polynomial of $\mathcal{O}_{\mathbb{W}/\mathbb{K}}^{n+1}$ is given by

$$\text{HP}_{\mathcal{O}_{\mathbb{W}/\mathbb{K}}^{n+1}}(z) = \text{HP}_{\mathbb{Y}}(z) = \sum_{j=1}^{s} \binom{m_j + n - 2}{n}.$$

Proof Note that if \mathbb{W} is an equimultiple fat point scheme in \mathbb{P}^n, i.e., if $m_1 = \cdots = m_s = \nu$ for some $\nu \geq 1$, the claim was proved in [4, Corollary 5.3]. Now we prove the claim for the general case. By reordering the indices of the points, we may write \mathbb{W} as

$$\mathbb{W} = \nu_1 \mathbb{X}_1 + \nu_2 \mathbb{X}_2 + \cdots + \nu_t \mathbb{X}_t,$$

where $\mathbb{X}_1, \ldots, \mathbb{X}_t$ are disjoint subsets of points in \mathbb{X} with $\mathbb{X} = \mathbb{X}_1 + \cdots + \mathbb{X}_t$, and where $1 \leq \nu_1 < \nu_2 < \cdots < \nu_t$ for some $t \geq 2$. For $k = 1, \ldots, t$, we set $\mathbb{Y}_k = \mathbb{X}_{k+1} + \cdots + \mathbb{X}_t$. Then we get a descending chain $\mathbb{X} = \mathbb{Y}_1 \supseteq \mathbb{Y}_2 \supseteq \cdots \supseteq \mathbb{Y}_t$ of finite sets of distinct points in \mathbb{P}^n such that

$$\mathbb{W} = \nu_1 \mathbb{Y}_1 + \sum_{k=2}^{t} (\nu_k - \nu_{k-1}) \mathbb{Y}_k.$$

Also, it is obviously true that $\mathbb{Y} = (\nu_1 - 1) \mathbb{Y}_1 + \sum_{k=2}^{t} (\nu_k - \nu_{k-1}) \mathbb{Y}_k$. An application of Proposition 2.3 shows that, for $i \gg 0$, we have the equalities

$$(I_{\nu_1})_i = (I^\nu_{\nu_1} \cdot I^2_{\nu_2} \cdots I^{t-1}_{\nu_{t-1}})_i \quad \text{and} \quad (I_{\nu_1})_i = (I^\nu_{\nu_1} \cdot I^2_{\nu_2} \cdots I^{t-1}_{\nu_{t-1}})_i \quad (4)$$

It follows from Lemma 2.11 that

$$(\partial I_{\mathbb{W}})_i = (\partial(I^\nu_{\nu_1} \cdot I^2_{\nu_2} \cdots I^{t-1}_{\nu_{t-1}}))_i \quad (5)$$

for $i \gg 0$. Furthermore, Proposition 3.6 implies the inclusion

$$(I^\nu_{\nu_1} \cdot I^2_{\nu_2} \cdots I^{t-1}_{\nu_{t-1}})_i \subseteq (\partial(I^\nu_{\nu_1} \cdot I^2_{\nu_2} \cdots I^{t-1}_{\nu_{t-1}}))_i \quad (6)$$

for $i \gg 0$. From (4), (5) and (6) we get

$$(I_{\mathbb{Y}})_i = (I^\nu_{\nu_1} \cdot I^2_{\nu_2} \cdots I^{t-1}_{\nu_{t-1}})_i \subseteq (\partial I_{\mathbb{W}})_i$$
for $i \gg 0$. Since $\Omega_{R_W/K}^{n+1} \cong (S/\partial I_W)(-n - 1)$, the Hilbert polynomial of $\Omega_{R_W/K}^{n+1}$ satisfies

$$HP_{\Omega_{R_W/K}^{n+1}}(z) = HP_{S/\partial I_W}(z) \leq HP_{S/I_Y}(z) = HP_{Y}(z).$$

Moreover, Proposition 3.1 yields that

$$HP_{\Omega_{R_W/K}^{n+1}}(z) \geq \sum_{j=1}^{s} \left(\frac{m_j + n - 2}{n} \right) = HP_{Y}(z).$$

Therefore the desired equality for $HP_{\Omega_{R_W/K}^{n+1}}(z)$ follows.

4 Kähler Differential Modules of Fat Point Schemes in \mathbb{P}^2

In this section we apply the previous results to examine the case of fat point schemes in the projective plane \mathbb{P}^2. When a fat point scheme W of \mathbb{P}^2 is equimultiple and is supported on a non-singular conic, the Hilbert function of the module of Kähler differential k-forms of W was computed in [9, Section 6]). However, in the general case no such detailed information is available. In this section we use our preceding results to supplement our knowledge about $\Omega_{R_W/K}^n$ with some new information.

Proposition 4.1 Let $W = m_1 P_1 + \cdots + m_s P_s$ be a fat point scheme in \mathbb{P}^2. The Hilbert polynomials of the modules of Kähler differentials of W are given by

$$HP_{\Omega_{R_W/K}^1}(z) = \sum_{j=1}^{s} \frac{1}{2} (3m_j - 2)(m_j + 1),$$

$$HP_{\Omega_{R_W/K}^2}(z) = \sum_{j=1}^{s} \frac{1}{2} (3m_j + 2)(m_j - 1),$$

$$HP_{\Omega_{R_W/K}^3}(z) = \sum_{j=1}^{s} \frac{1}{2} m_j(m_j - 1).$$

Proof Recall that, the first fattening of $W = m_1 P_1 + \cdots + m_s P_s$ is the fat point scheme $W^{(1)} := (m_1 + 1)P_1 + \cdots + (m_s + 1)P_s$. By [3] Theorem 1.7, there is a short exact sequence of graded R_W-modules

$$0 \longrightarrow I_W/I_W^{(1)} \longrightarrow R_W^3(-1) \longrightarrow \Omega_{R_W/K}^1 \longrightarrow 0,$$

and hence we get

$$HP_{\Omega_{R_W/K}^1}(z) = 4 \cdot \sum_{j=1}^{s} \binom{m_j + 1}{2} - \sum_{j=1}^{s} \binom{m_j + 2}{2}$$

$$= \sum_{j=1}^{s} \frac{1}{2} (4m_j(m_j + 1) - (m_j + 1)(m_j + 2))$$

$$= \sum_{j=1}^{s} \frac{1}{2} (3m_j - 2)(m_j + 1).$$
Also, Theorem 3.7 yields $\text{HP} \Omega^2_{R_w/K}(z) = \sum_{j=1}^s z \cdot m_j(m_j - 1)$. On the other hand, by [9, Proposition 2.4], we have an exact sequence of graded R_w-modules

$$0 \rightarrow \Omega^1_{R_w/K} \rightarrow \Omega^2_{R_w/K} \rightarrow \Omega^1_{R_w/K} \rightarrow 0$$

where m_w is the homogeneous maximal ideal of R_w. Thus it follows that

$$\text{HP} \Omega^2_{R_w/K}(z) = \text{HP} \Omega^2_{R_w/K}(z) + \text{HP} \Omega^1_{R_w/K}(z) - \text{HP} m_w(z)$$

$$= \sum_{j=1}^s \frac{1}{2} m_j(m_j - 1) + \sum_{j=1}^s \frac{1}{2} (3m_j - 2)(m_j + 1) - \sum_{j=1}^s \frac{1}{2} m_j(m_j + 1)$$

$$= \sum_{j=1}^s \frac{1}{2} (3m_j + 2)(m_j - 1).$$

The next remark recalls some information about the degree from where on we now know the Hilbert function of Ω_w.

Remark 4.2 Set $t := \max\{r_W + 1, r_{W^{(1)}}\}$. The regularity indices of the modules of Kähler differentials of $\mathbb{W} \subseteq \mathbb{P}^2$ are bounded by

$$\text{ri}(\Omega^1_{R_w/K}) \leq t \quad \text{and} \quad \text{ri}(\Omega^2_{R_w/K}) \leq t + 1 \quad \text{and} \quad \text{ri}(\Omega^3_{R_w/K}) \leq t + 1.$$

Moreover, if the support of \mathbb{W} lies on a non-singular conic, we have $\text{ri}(\Omega^1_{R_w/K}) = t = r_W$ (see [9, Theorem 6.2]), and the bounds for $\text{ri}(\Omega^2_{R_w/K})$ and $\text{ri}(\Omega^3_{R_w/K})$ are sharp. For instance, the scheme $\mathbb{W} = P_1 + P_2 + P_3$ consisting of three non-collinear points in \mathbb{P}^2 satisfies $\text{ri}(\Omega^1_{R_w/K}) = t = 3$ and $\text{ri}(\Omega^2_{R_w/K}) = \text{ri}(\Omega^3_{R_w/K}) = t + 1 = 4$.

Next, let us look more closely at the module of Kähler differential 2-forms of fat point schemes $\mathbb{W} \subseteq \mathbb{P}^2$. In general, for a fat point scheme $\mathbb{W} = m_1 P_1 + \cdots + m_s P_s$ in \mathbb{P}^n with the i-th fattening $\mathbb{W}^{(i)} = (m_1 + i)P_1 + \cdots + (m_s + i)P_s$ for $i \geq 1$, [9, Proposition 5.4] implies that the sequence of graded R_w-modules

$$0 \rightarrow I_{\mathbb{W}^{(1)}}/I_{\mathbb{W}^{(2)}} \rightarrow I_{\mathbb{W}^{(1)}}\Omega^1_{S/K} / I_{\mathbb{W}^{(2)}}\Omega^1_{S/K} \rightarrow I_{\mathbb{W}^{(1)}}\Omega^2_{S/K} / I_{\mathbb{W}^{(2)}}\Omega^2_{S/K} \rightarrow I_{\mathbb{W}^{(1)}}\Omega^3_{S/K} / I_{\mathbb{W}^{(2)}}\Omega^3_{S/K} \rightarrow 0 \quad (\text{7})$$

is a complex. Here the map α is given by $\alpha(F + I_{\mathbb{W}^{(2)}}) = dF + I_{\mathbb{W}^{(1)}}\Omega^1_{S/K}$, the map β is given by $\beta(GdX_i + I_{\mathbb{W}^{(1)}}\Omega^1_{S/K}) = d(GdX_i) + I_{\mathbb{W}^{(1)}}\Omega^2_{S/K}$, and the map γ is given by $\gamma(H + I_{\mathbb{W}^{(1)}}\Omega^2_{S/K}) = H + I_{\mathbb{W}^{(1)}}\Omega^3_{S/K}$. In addition, we have $\text{Im}(\beta) = \text{Ker}(\gamma)$. For a fat point scheme \mathbb{W} in \mathbb{P}^2, the complex (7) satisfies the following exactness property which generalizes the case of an equimultiple fat point scheme studied in [9, Proposition 5.5].

Proposition 4.3 Let $\mathbb{W} = m_1 P_1 + \cdots + m_s P_s$ be a fat point scheme in \mathbb{P}^2, let $t := \max\{r_{W^{(2)}}, r_{W^{(1)}} + 1, r_W + 2\}$, and let α, β and γ be the maps defined above. Then, for all $i \geq t$, we have the exact sequence of K-vector spaces

$$0 \rightarrow (I_{\mathbb{W}^{(1)}}/I_{\mathbb{W}^{(2)}})_i \xrightarrow{\alpha} (I_{\mathbb{W}^{(1)}}\Omega^1_{S/K} / I_{\mathbb{W}^{(2)}}\Omega^1_{S/K})_i \xrightarrow{\beta} (I_{\mathbb{W}^{(1)}}\Omega^2_{S/K} / I_{\mathbb{W}^{(2)}}\Omega^2_{S/K})_i \xrightarrow{\gamma} (I_{\mathbb{W}^{(1)}}\Omega^3_{S/K} / I_{\mathbb{W}^{(2)}}\Omega^3_{S/K})_i \rightarrow 0.$$
Proof It suffices to show that \(\text{Im}(\alpha) = \text{Ker}(\beta) \). Equivalently, it suffices to prove the equality of Hilbert functions
\[
\text{HF}_{\Omega^2_{R/W}/K}(i) + \text{HF}_{I_{w(1)}/I_{w(2)}}(i) + \text{HF}_{\Omega^2_{R/W}/K}(i) = \text{HF}_{I_{w(1)}/I_{w(2)}}(i)
\]
for all \(i \geq t \). Since \(\Omega^1_{S/K} \) is a free \(S \)-module with basis \(\{dX_0, dX_1, dX_2\} \) and \(\Omega^2_{S/K} \) is a free \(S \)-module with basis \(\{dX_0dX_1, dX_0dX_2, dX_1dX_2\} \), for \(i \in \mathbb{Z} \) we have
\[
\text{HF}_{I_{w(1)}/I_{w(2)}}(i) = 3 \text{HF}_{W}(i-1) - 3 \text{HF}_{W}(i-1)
\]
and
\[
\text{HF}_{\Omega^2_{R/W}/K}(i) = 3 \text{HF}_{W}(i-2).
\]
So, the equality (8) can be written as
\[
\text{HF}_{\Omega^2_{R/W}/K}(i) + 3 \text{HF}_{W}(i-1) - 3 \text{HF}_{W}(i-1) = \text{HF}_{W}(i-2).
\]
By Proposition 4.1 and Remark 4.2, \(\text{HF}_{\Omega^2_{R/W}/K}(i) = \sum_{j=1}^{s} \left(\frac{1}{2} (3m_j + 2)(m_j - 1) + 4(m_j + 1)^2 - 6(m_j + 1) - (m_j + 3) \right) \)
for all \(i \geq t \). Therefore the claim follows.

Notice that the exactness of the sequence in this proposition allows us to compute values of the Hilbert function of \(\Omega^2_{R/W}/K \) in the corresponding degrees. Unfortunately, our final example indicates that this exactness property does not hold for all \(i \in \mathbb{Z} \), even when the support of \(W \) is a complete intersection in \(\mathbb{P}^2 \).

Example 4.4 Let \(W \) be the fat point scheme given in Example 2.7. A calculation using ApCoCoA yields
\[
\text{HF}_{I_{w(1)}/I_{w(2)}} : 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 2 \ 9 \ 15 \ 19 \ 23 \ 26 \ 29 \ 30 \ 31 \ 31 \ldots,
\]
\[
\text{HF}_{I_{w(1)}/I_{w(2)}} : 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 2 \ 9 \ 15 \ 18 \ 21 \ 22 \ 23 \ 23 \ 23 \ldots,
\]
\[
\text{HF}_{I_{w(1)}/I_{w(2)}} : 0 \ 0 \ 1 \ 3 \ 6 \ 10 \ 15 \ 21 \ 26 \ 27 \ 28 \ 28 \ 28 \ 28 \ 28 \ldots,
\]
\[
\text{HF}_{I_{w(1)}/I_{w(2)}} : 0 \ 0 \ 3 \ 9 \ 18 \ 30 \ 45 \ 57 \ 53 \ 51 \ 48 \ 47 \ 46 \ 46 \ 46 \ldots.
\]
Thus the proposition holds true for \(i = 0 \), for \(i = 1 \), and for \(i \geq 15 \). However, the sequence is not exact for \(2 \leq i \leq 14 \).
Acknowledgements

The authors were supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.04-2019.07. The second author would like to thank the University of Passau for its hospitality and support during part of the preparation of this paper.

References

1. Alexander, J., Hirschowitz, A.: Polynomial interpolation in several variables. J. Alg. Geom. 4, 201-222 (1995)
2. The ApCoCoA Team, ApCoCoA: Applied Computations in Computer Algebra, available at http://apcocoa.uni-passau.de.
3. Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Univ. Press, Cambridge (1993).
4. Cooper, S., Harbourne, B.: Regina lectures on fat points. In: Cooper, S., Sather-Wagstaff, S. (eds.) Connections Between Algebra, Combinatorics, and Geometry, pp. 147-187. Springer-Verlag, New York (2013)
5. De Dominicis, G., Kreuzer, M.: Kähler differentials for points in \mathbb{P}^n. J. Pure Appl. Alg. 141, 153–173 (1999)
6. Guardo, E., Marino, L., Van Tuyl, A.: Separators of fat points in \mathbb{P}^n. J. Algebra 324, 1492–1512 (2010)
7. Geramita, A.V., Maroscia, P.: The ideal of forms vanishing at a finite set of points in \mathbb{P}^n. J. Algebra 90, 528–555 (1984)
8. Kreuzer, M., Linh, T.N.K., Long, L.N.: Kähler differentials and Kähler differentials for fat point schemes. J. Pure Appl. Algebra 219, 4479–4509 (2015)
9. Kreuzer, M., Linh, T.N.K., Long, L.N.: Kähler differential algebras for 0-dimensional schemes. J. Algebra 501, 255-284 (2019)
10. Kreuzer, M., Robbiano, L.: Computational Commutative Algebra 1. Springer-Verlag, Heidelberg (2000)
11. Kreuzer, M., Robbiano, L.: Computational Commutative Algebra 2. Springer-Verlag, Heidelberg (2005)
12. Kunz, E.: Kähler Differentials. Adv. Lectures Math. , Vieweg Verlag, Braunschweig (1986)
13. Linh, T.N.K.: Kähler differential modules for 0-dimensional schemes and applications. Ph.D. Thesis, University of Passau (2015)
14. Roberts, L.G.: Kähler differentials and $H_{C_1}^1$ of certain graded K-algebras. In: Jardine, J.F., Snaith, V.P. (eds.) Algebraic K-Theory: Connections with Geometry and Topology, pp. 389–424. NATO-ASI Ser. C, vol. 279, Kluwer Acad. Publ., Dordrecht (1989)