Translaminar Pressure Difference and Ocular Perfusion Pressure in Glaucomatous Eyes with Different Optic Disc Sizes

Natasha F. S. Cruz, MD; Katia S. Santos, MD; Mateus L. Matuoka, MD; Niro Kasahara, MD

Purpose: Intracranial pressure (ICP) and ocular perfusion pressure (OPP) are both involved with the pathogenesis of glaucoma. The orbital ICP determines a retrolaminar counter pressure that is antagonistic to the intraocular pressure (IOP). The purpose of this study is to evaluate whether the translaminar pressure difference (TLPD) and the OPP varies in glaucoma patients with different optic disc sizes.

Methods: In this university hospital-based, observational, cross-sectional clinical study, all patients underwent an ophthalmic evaluation. Blood pressure, height, weight, and the results of retinal nerve fiber layer examination with optical coherence tomography examination were recorded. TLPD and OPP were calculated for each patient using proxy algorithms to attain indirect surrogate parameter values. Patients’ eyes were stratified into three quantiles according to optic disc sizes and the differences compared. Data from both eyes were used after using the appropriate correction for inter-eye dependency.

Results: The sample consisted of 140 eyes of 73 patients with primary open-angle glaucoma and suspects. Patients with large disc size presented with higher TLPD as compared to those with average and small-sized discs (2.4 ± 4.5, 2.8 ± 3.8, and 3.7 ± 4.7 mmHg for first, second, and third tertile, respectively (P < 0.000). OPP did not vary according to the optic disc size.

Conclusion: Glaucoma patients with larger optic discs have higher TLPD. The pathological significance of this finding warrants further investigation.

Keywords: Cerebrospinal Fluid Pressure; Glaucoma; Ocular Perfusion Pressure; Optic Disc; Translaminar Pressure

J Ophthalmic Vis Res 2021; 16 (2): 171–177

INTRODUCTION

Primary open-angle glaucoma (POAG) is a highly prevalent, sight-threatening, multifactorial disease. Its pathogenesis is associated with both mechanical and vascular factors. Mechanical factors including increased intraocular pressure (IOP) with posterior bulging of the cribriform blade, compression of the nerve fibers, and reduction of the retrograde and anterograde flow and...
vascular factors including decrease of perfusion pressure in the optic nerve head and deficiency in autoregulation leading to apoptosis of retinal ganglion cells and visual function loss may be involved.\(^3\)

Recently, the intracranial pressure (ICP) was thought to be involved in the pathogenesis of POAG. Some clinical and population studies reported that glaucoma patients have a lower ICP compared to that of normal subjects.\(^2,3\) From an anatomical perspective, the ICP at the orbit level and the optic nerve tissue pressure determine the retrolaminar counter pressure which is antagonistic to the IOP. Thus, it may be part of the critical translaminar gradient or simply a translaminar pressure difference (TLPD). Presuming that there is a higher difference in the cribrosa translaminal pressure, a marked translaminar pressure gradient may damage the optic nerve, and therefore a low orbital ICP may be associated with the pathogenesis of glaucoma. There has been a debate as to whether this is an epiphenomenon or that there is an actual causal relationship between ICP and glaucoma.\(^4\)

Several population-based and clinical studies support a strong association between ocular blood flow and the risk of POAG prevalence and progression.\(^5,6\) The underlying pathologic mechanism is related to the reduction in blood perfusion caused by impaired vascular autoregulation. The ocular perfusion pressure (OPP) is a physiologic function that delivers arterial blood to capillary bed for the eye tissues.\(^7\)

Clinical variables such as TLPD and the OPP are potential players in the glaucoma optic neuropathy. Moreover, the optic disc size can vary substantially in the population.\(^8,9\) There is evidence suggesting that large optic discs may be more susceptible to glaucoma than small discs.\(^10\) Uncertainties regarding whether the TLPD and OPP differ according to the optic disc size and its influence in the glaucoma optic neuropathy exist. This cross-sectional, observational study aimed to assess whether TLPD and OPP vary in glaucoma patients and suspects according to the size of the optic discs.

METHODS

This cross-sectional, observational clinical study was approved by the Committee on Human Research of the institution. The participants were patients from the Glaucoma Service, Santa Casa de Misericordia of Sao Paulo Hospital. The study adhered to the tenets of the Declaration of Helsinki and its late amendments and the Resolution 466/12, National Council of Health, Brazilian Ministry of Health. After explaining the study procedures, all participants signed the informed consent.

Study Population and Inclusion Criteria

The sample included patients who were diagnosed with POAG and met the following inclusion criteria: age > 40 years, any sex and ethnicity; no previous ocular lasers or incisional surgeries, except for cataract which occurred more than a year ago; optic disc with the presence of concentric increase or localized defect (notching) of the neural rim, disc hemorrhage, or a retinal nerve fiber layer (RNFL) defect; visual field defect characterized by at least three adjacent points on the pattern deviation map with \(P < 5\)% and one of the points with \(P < 1\)% and/or pattern standard deviation (PSD) decreased with \(P < 5\)% and/or glaucoma hemifield test (GHT) outside normal limits on a reliable exam. Perimetric examination with up to 20% of fixation loss and <15% of false positives and false negatives were considered reliable. Subjects with optic disc features of POAG and normal visual fields were included as suspects.

Procedures

After a brief medical interview, patients participated in the study procedures. Demographic data including age, gender, ethnicity, and medical history (comorbidities and previous surgeries) were collected prior to the evaluations. Height (cm) was measured with the patient’s back against the wall, without shoes, and feet together using a standard stadiometer. The body weight (kg) was measured on a calibrated manual platform scale with the patient wearing light clothing. The body mass index (BMI) of each participant was determined as the body mass divided by the square of the body height (kg/m\(^2\)). Brachial arterial blood pressure was measured with the aneroid sphygmomanometer (Gurin Products, LLC, Tustin, CA, USA) using the right arm with the patient in a sitting position.

The participants received a complete ophthalmic examination which included measurement of visual
acuity in the Snellen table with optical correction, anterior segment biomicroscopy with a slit lamp, tonometry with the Goldmann applanation tonometer (Haag-Streit AG, Switzerland) after taking a drop of fluorescein and proparacaine, gonioscopy with Goldmann goniolens (Ocular Instruments, Bellevue, Washington, USA), and optical disc evaluation with the 78D Volk lens (Volk Optical Inc., Mentor, OH, USA) after pharmacological mydriasis with tropicamide eye drops 0.5% and visual field examination. Computerized perimetry was performed with the HFV 750 (Carl-Zeiss Humphrey, Dublin, CA, USA), SITA standard program 24-2, with appropriate optical correction by a technician.

Optical coherence tomography (OCT) was performed with the OCT Angiography RTVue® Avanti XR (Version 2015.1.0.90; Optovue Inc., Fremont, CA, USA). The OCT images were obtained at a rate of 26,000 A-scan/s and with a frame rate between 256 and 4096 A-scan/frame. This provided a high tissue resolution (depth resolution of 5.0 μm and transverse resolution of 15 μm). The acquisition of images in all patients followed the same procedure and was carried out by one technician. The retinal ganglion cells in the macular region were assessed using the Nerve Fiber Scan Protocol after pharmacologic dilation of the pupils. Images were excluded if the signal strength index (SSI) < 40; with overt decentration of the measurement circle location; or with overt misalignment of the surface detection algorithm on at least 10% of consecutive A-scans or 15% of cumulative A-scans, and a new image was taken again. The RNFL, cup-to-disc (C/D) ratio, and disc area were retrieved from the OCT results.

Statistical Analysis

The OPP was determined according to the following formula:

\[
\text{OPP} = \left[\frac{2}{3} \times \text{mean AP} \right] - \text{IOP}; \text{ where, the mean AP (arterial pressure) is} \left[\frac{1}{3} \times \text{SAP} - \text{DAP} \right] + \text{DAP. SAP is the systolic arterial pressure and DAP is the diastolic arterial pressure.}
\]

The predictive ICP was calculated according to the equation of Xie et al.\(^{[11, 12]}\)

\[
\text{ICP} = (0.44 \times \text{BMI}) + (0.16 \times \text{DBP}) - (0.18 \times \text{age}) - 1.91; \text{ where, ICP is intracranial pressure (mmHg), BMI is body mass index (kg/m}^2\text{), DBP is diastolic blood pressure (mmHg), and age input is in years.}
\]

The TLPD was calculated as the arithmetic difference between the IOP and ICP (TLPD = IOP − ICP).\(^{[13]}\)

The sample was stratified into three quantiles according to the optic disc size, that is, the disc area (mm\(^2\)) as measured by the OCT. Participants’ eyes with the same optic disc area were clustered together in the same quantile. The difference between the three groups was compared using the ANOVA test. Data from both eyes were used after applying the suitable correction for inter-eye dependency. Statistical significance was set at \(P < 0.05\). All analyses were performed by MedCalc software, version 9.3.7.0 (MedCalc Software bvba, Belgium).

RESULTS

The sample consisted of 73 patients who were either diagnosed with POAG or suspected of having POAG. The demographic features of all participants stratified by the optic disc area tertiles are displayed in Table 1. Most patients were White and female. The three groups did not differ in age, gender, or ethnic distribution. After applying the appropriate correction for inter-eye dependency, 140 eyes were included in the final analysis. The clinical features for each eye according to disc area tertile are depicted in Table 2. The groups did not differ in either structural (RNFL thickness and C/D) or functional (MD and PSD) variables. The OPP was lower in patients with smaller disc sizes and higher in patients with average discs. However, the difference did not reach statistical significance (\(P = 0.136\)). Nevertheless, patients with larger optic disc area presented a higher TLPD as compared to patients with small or average discs (2.4 ± 4.5, 2.8 ± 3.8, and 3.7 ± 4.7 mmHg in the first, second, third tertile, respectively \(P < 0.001\)).

DISCUSSION

In this observational study, glaucoma patients with larger optic discs presented higher TLPD as compared to patients with smaller optic discs. To the best of our knowledge, this was the first study to evaluate the TLPD according to the optic disc size. Differences in the size of the optic discs are associated with specific anatomical tissues variation of the RNFL and the optic nerve. These disc size-dependent variations may affect the risk
Table 1. Demographic features of the study population according to optic disc size

Variable	First tertile (n = 25)	Second tertile (n = 23)	Third tertile (n = 25)	P-value
Age (yr)	69.2 ± 8.7	64.8 ± 9.8	67.4 ± 9.3	0.563
Gender (M:F)	11:14	9:14	10:16	0.982
Ethnicity				0.968
White	15	14	17	
Non-white	10	9	9	

M, male; F, female

Table 2. Clinical characteristics of 140 eyes stratified by optic disc size.

Variable	1st tertile (n = 46 eyes)	2nd tertile (n = 46 eyes)	3rd tertile (n = 48 eyes)	P-value
Disc area (mm²)	1.8 ± 0.2	2.2 ± 0.1	2.8 ± 0.3	<.001
RNFL (μm)	74.5 ± 16.9	75.6 ± 15.8	79.4 ± 17.4	0.330
Vertical C/D	0.78	0.84	0.85	0.08
MD (dB)	-12.0 ± 8.7	-13.3 ± 9.4	-11.1 ± 7.5	0.961
PSD (dB)	6.9 ± 3.6	6.4 ± 3.3	7.1 ± 4.1	0.590
OPP (mmHg)	50.9 ± 7.2	55.2 ± 13.6	51.6 ± 10.0	0.136
TLPD (mmHg)	2.8 ± 3.8	2.4 ± 4.5	3.7 ± 4.7	<.001

RNFL, average retinal nerve fiber layer thickness; C/D, median cup to disc ratio; MD, mean deviation; PSD, pattern standard deviation; OPP, ocular perfusion pressure; TLPD, translaminar pressure difference

and susceptibility to glaucoma.⁹⁰ Some of the structural features observed in large optic discs include a proportionally larger number of nerve fibers, a larger neural rim area, a higher cup-to-disk ratio, and a larger and more numerous pores in the lamina cribrosa.¹⁴⁻²⁰

The optic nerve head is located in an area between the high-pressure intraocular space and low-pressure subarachnoid space. Hence, the pressure imbalance between these two spaces can cause damage to the retinal ganglion cell axons that pass through the lamina cribrosa pores.²¹⁻²³ The pressure difference across the lamina cribrosa (IOP minus ICP) is the translaminar pressure gradient.²⁴ On physiological grounds, the mean IOP is meagerly higher than the mean ICP, which results in a small posteriorly directed translaminar pressure gradient difference of approximately 4 mmHg.²⁵ An IOP within statistically normal limits in conjunction with a low ICP produce the same pressure gradient across the lamina cribrosa (LC) as a high IOP in conjunction with a normal ICP.²⁶ Changes in the TLPD may cause pathological dysfunction and optic nerve damage attributable to alterations in axonal transportation, LC deformation, changes in blood flow or even all of them in combination.²,³,²¹⁻²³,²⁷,²⁸ A higher IOP, lower ICP, and larger TLPD correlates with enlargement in the C/D ratio and reduction in RNFL thickness.²,²⁹ In our study, patients with a larger optic disc area presented with a higher TLPD. For these patients the ganglion cell axons could be more exposed to this pressure gradient. Thus, patients with larger optic discs may be more vulnerable to IOP insults, without simultaneous influence of OPP which did not differ among the three groups. As such, patients with larger discs would be more likely to have glaucoma than patients with smaller optic discs. Interestingly, in cases of progressive optic neuropathies, the optic nerve fiber counts and the anatomic reserve capability are higher in eyes with large optic heads than those with smaller optic discs.¹⁴ Moreover, discs >4.4 mm² have an augmented number of cilioretinal arteries, which relates to the size of the optic disc area.³⁰ These characteristics may thwart against the TLPD insult and can work as a compensatory effect.

Recently, Baneke et al have defined the strain in the LC as the function of TLPD times the
square of its diameter divided by the square of its
thickness \([LC \text{ stress} = (IOP – ICP) \cdot LC \text{ radius}^2/\text{LC thickness}^2]\).[33] In this model, the TLPD and disc
size (radius) were considered as two independent
variables of LC stress. If that is the case, larger
discs would be vulnerable not only by its anatomic
enlarged area but also to a larger TLPD.

A possible association between glaucoma and
decreased OPP was demonstrated in several
previous studies.[32–37] In contrast, the Beijing Eye
Study did not find a clear association between the
OPP and the prevalence of glaucoma.[38] In this
study, the OPP did not vary according to the optic
disc size. Thus, the vascular insult should be the
same for all discs, regardless of the disc size, and
the higher TLPD could be an isolated aggravating
factor and independent of the OPP.

This study has one important limitation. The
measurement of ICP was not performed by the
traditional method using lumbar puncture which
is an invasive examination, with the risks of
spinal cord injury. For ethical reasons, it was
not performed for the study purposes without
specific medical indications. The estimated ICP
was calculated using a mathematical formula
based on the BMI and BP values developed in a
population study of Chinese individuals.[11] It is not
certain how different the calculated ICP is from
the actual one measured by lumbar puncture.
ICP is not only influenced by circadian rhythm,
but also by changes in posture, position, and
pressure fluctuations in other compartments as in
respiratory effort and blood pressure pulsations.[39]
Moreover, the production and resorption of
cerebrospinal fluid rate are not linear, particularly
at different ICP levels.[39] Hence, a linear prediction
model for ICP based on Xie’s formula may be
inaccurate, especially for pathologic conditions.
In POAG cases, hemodynamic disturbances are
known comorbidities and ICP regulation has been
suggested to be abnormal. Moreover, the Cushing
reflex or vasopressor response may be affected
in these patients and the ICP estimation on BP
variation may be too simplistic. Using such a
surrogate measure could be misleading. This is a
fundamental drawback to the study methodology
which limits the generalizability of the finding.
However, this same formula has been used in
other large population studies.[12, 40] Furthermore,
the equation was validated in a cohort of 39
Brazilian patients and showed that the estimated
ICP was very close to the measured ICP (95% limits
of agreement of −5 to +8 between LP measured
and equation-estimated ICP).[41] Moreover, the
measurement of ICP by lumbar puncture may be
different from the retrobulbar ICP. In general, it
is assumed that the lumbar ICP represents the
CSF pressure in the optic nerve. However, given
the extended length between the lumbar spine and
the subarachnoid space of the optic nerve, it is
debatable whether this statement is true,
particularly in patients with optic nerve sheath
diseases and compartmentalization.[42]

In summary, this study revealed that the TLPD
varies according to the optic disc size and that
larger discs tend to have a higher TLPD. Although
additional studies are still needed to elucidate the
possible role of ICP and OPP in the pathogenesis
of glaucoma optic neuropathy, we believe that this
study contributes to the acumen on how the optic
disc size may be important in the pathogenesis of
this disease.

Financial Support and Sponsorship
Nil.

Conflicts of Interest
The authors declare that they have no conflict of
interest.

REFERENCES
1. Weinreb RN, Leung CK, Crowston JG, Medeiros FA,
Friedman DS, Wiggs JL, et al. Primary open-angle
glaucoma. Nat Rev Dis Primers 2016;2:16067.
2. Berdahl JP, Allingham RR, Johnson DH. Cerebrospinal fluid
pressure is decreased in primary open-angle glaucoma.
Ophthalmol 2008;115:763–768.
3. Berdahl JP, Fautsch MP, Stinnett SS, Allingham RR.
Intracranial pressure in primary open angle glaucoma,
normal tension glaucoma, and ocular hypertension: a case-control study. Invest Ophthalmol Vis Sci 2008;49:5412–5418.
4. Wang N, Yang D, Jonas JB. Low cerebrospinal fluid pressure in the pathogenesis of primary open-angle glaucoma: epiphenomenon or causal relationship? The Beijing Intracranial and Intraocular Pressure (iCOP) Study. J Glaucoma 2013;22:S11–S12.
5. Bonomi L, Marchini G, Marraffa M, Bernardi P, Morbio R, Varotto, A. Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmol 2000;107:1287–1293.
6. Sehi M, Flanagan JG, Zeng L, Cook RJ, Trope GE. Relative change in diurnal mean ocular perfusion pressure: a risk factor for the diagnosis of primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2005;46:561–567.
Translaminar Gradient and Optic Disc Size; Cruz et al

7. Choi J, Kim KW, Jeong J, Cho HS, Lee CH, Kook MS. Circadian fluctuation of mean ocular perfusion pressure is a consistent risk factor for normal-tension glaucoma. Invest Ophthalmol Vis Sci 2007;48:104–111.

8. Mansour AM. Racial variation of optic disc size. Ophthalmic Res 1991;23:67–72.

9. Varma R, Tielsch JM, Quigley HA, Hilton SC, Katz J, Spaeth GL, et al. Race-, age-, gender-, and refractive error related differences in normal optic disc. Arch Ophthalmol 1994;112:1068–1076.

10. Hofmann EM, Zangwill LM, Crowston JG, Weinreb RN. Optic disk size and glaucoma. Surv Ophthalmol 2007;52:32–49.

11. Xie X, Zhang X, Fu J, Wang H, Jonas JB, Peng X, et al. Noninvasive intracranial pressure estimation by orbital subarachnoid space measurement: the Beijing intracranial and intraocular pressure (iCOP) study. Crit Care 2013;17:R162.

12. Jonas JB, Wang N, Wang YX, You QS, Xie X, Yang D, et al. Body height, estimated cerebrospinal fluid pressure and open-angle glaucoma. The Beijing Eye Study 2011. PLoS ONE 2014;9:e86878.

13. Marek B, Harris A, Kanakamedala P, Lee E, Amireskandari A, Carichino L, et al. Cerebrospinal fluid pressure and glaucoma: regulation of trans-lamina cribrosa pressure. Br J Ophthalmol 2014;98:721–725.

14. Jonas JB, Schmidt AM, Muller-Bergh JA, Schlötzer-Schrehardt U, Naumann GO. Human optic nerve fiber count and optic disc size. Invest Ophthalmol Vis Sci 1992;33:2012–2018.

15. Quigley HA, Coleman AL, Dorman-Pease ME. Larger optic nerve heads have more nerve fibers in normal monkey eyes. Arch Ophthalmol 1991;109:1441–1443.

16. Jonas JB, Mardin CY, Schlötzer-Schrehardt U, Naumann GO. Morphometry of the human lamina cribrosa surface. Invest Ophthalmol Vis Sci 1991;32:401–405.

17. Caprioli J, Miller JM. Optic disc rim area is related to disc size in normal subjects. Arch Ophthalmol 1987;105:1683–1685.

18. Jonas JB, Budde WM, Lang P. Neuroretinal rim width ratios in morphological glaucoma diagnosis. Br J Ophthalmol 1998;82:1366–1371.

19. Garway-Heath DF, Ruben ST, Viswanathan A, Hitchings RA. Vertical cup/disc ratio in relation to optic disc size: its value in the assessment of the glaucoma suspect. Br J Ophthalmol 1998;82:1118–1224.

20. Crowston JG, Hopley CR, Healey PR, Lee A, Mitchell P. The effect of optic disc diameter on vertical cup to disc ratio percentiles in a population based cohort: the Blue Mountains Eye Study. Br J Ophthalmol 2004;88:766–770.

21. Volkov VV. Essential element of the glaucomatous process neglected in clinical practice. Ophthalmol Zh 1976;31:500–504.

22. Morgan WH, Chauhan BC, Yu DY, Cringle SJ, Alder VA, House PH. Optic disc movement with variations in intraocular and cerebrospinal fluid pressure. Invest Ophthalmol Vis Sci 2002;43:3236–3242.

23. Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 2005;24:39–73.

24. Morgan WH, Yu DY, Alder VA, Cringle SJ, Cooper RL, House PH, Constable IJ. The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure. Invest Ophthalmol Vis Sci 1998;39:1419–1428.

25. Gilland O. Normal cerebrospinal-fluid. N Engl J Med 1969;280:904–905.

26. Greenfield DS, Wanichwecharunguang B, Liebmann JM, Ritch R. Pseudotumor cerebi appearing with unilateral papilledema after trabeculectomy. Arch Ophthalmol 1997;115:423–426.

27. Yang D, Fu J, Hou R, Liu K, Jonas JB, Wang H, et al. Optic neuropathy induced by experimentally reduced cerebrospinal fluid pressure in monkeys. Invest Ophthalmol Vis Sci 2014;55:3067–3073.

28. Ren R, Jonas JB, Tian G, Zhen Y, Ma K, Li S, et al. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmol 2010;117:259–266.

29. Siaudvyttyte L, Januleviciene I, Ragauskas A, Bartusis M, Meiliuniene I, Siesky B, et al. The difference in translaminar pressure gradient and neuroretinal rim area in glaucoma and healthy subjects. J Ophthalmol 2014;2014:937360.

30. Jonas JB, Gusek G, Naumann GO. Macrodisks with physiologic macropus (pseudo-glaucoma disks), Papillometric characteristics in 17 eyes. Klin Monbl Augenheilkd 1987;191:452–457.

31. Baneke AJ, Aubry J, Viswanathan AC, Plant GT. The role of intracranial pressure in glaucoma and therapeutic implications. Eye 2020;34:178–191.

32. Huisman CA, Vingerling JR, Hofman A, Wittenman JC, de Jong PT. Blood pressure, arterial stiffness, and open-angle glaucoma: the Rotterdam Study. Arch Ophthalmol 2007;125:805–812.

33. Leske MC, Wu SY, Hennis A, Honkanen R, Nemessure B, BESS Study Group. Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmol 2008;115:85–93.

34. Topouzis F, Wilson MR, Harris A, Founti P, Yu F, Anastasopoulos E, et al. Association of open-angle glaucoma with perfusion pressure status in the Thessaloniki Eye Study. Am J Ophthalmol 2013;155:843–851.

35. Cherecheanu AP, Garhofer G, Schmidl D, Werkmeister R, Schmetterer L. Ocular perfusion pressure and ocular blood flow in glaucoma. Curr Opin Pharmacol 2013;13:36–42.

36. Harris A, Werne A, Cantor LB. Vascular abnormalities in glaucoma: from population-based studies to the clinic? Am J Ophthalmol 2008;145:595–597.

37. Werne A, Harris A, Moore D, BenZion I, Siesky B. The circadian variations in systemic blood pressure, ocular perfusion pressure, and ocular blood flow: risk factors for glaucoma? Surv Ophthalmol 2008;53:559–567.

38. Xu L, Wang YX, Jonas JB. Ocular perfusion pressure and glaucoma. Eye 2009;23:734–736.

39. Lyons MK, Meyer FB. Cerebrospinal fluid physiology and the management of increased intracranial pressure. Mayo Clin Proc 1990;65:684–707.

40. Jonas JB, Wang N, Nangia V. Ocular perfusion pressure vs estimated trans-lamina cribrosa pressure difference in glaucoma: The Central India Eye and Medical Study (An...
41. Kasahara N, Matuoka ML, Santos KS, Cruz NFS, Martins AR, Nigro S. Validation of an equation model to predict intracranial pressure in clinical studies. Innov Clin Neurosci 2018;15:27–29.

42. Killer HE. Compartment syndromes of the optic nerve and open-angle glaucoma. J Glaucoma 2013;22:S19–S20.