Beta receptor blocker therapy for the elderly in the COVID-19 era

Elpidio Santillo, Monica Migale

Abstract

When the coronavirus disease 2019 (COVID-19) pandemic spread globally from the Hubei region of China in December 2019, the impact on elderly people was particularly unfavorable. The mortality associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was highest in older individuals, in whom frailty and comorbidities increased susceptibility to severe forms of COVID-19. Unfortunately, in older patients, the course of COVID-19 was often characterized by significant cardiovascular complications, such as heart failure decompensation, arrhythmias, pericarditis, and myopericarditis. Ensuring that the elderly have adequate therapeutic coverage against known cardiovascular diseases and risk factors is particularly important in the COVID-19 era. Beta blockers are widely used for the treatment and prevention of cardiovascular disease. The clinical benefits of beta blockers have been confirmed in elderly patients, and in addition to their negative chronotropic effect, sympathetic inhibition and anti-inflammatory activity are theoretically of great benefit for the treatment of COVID-19 infection. Beta blockers have not been clearly shown to prevent SARS-CoV-2 infection, but there is evidence from published studies including elderly patients that beta blockers are associated with a more favorable clinical course of COVID-19 and reduced mortality. In this minireview, we summarize the most important evidence available in the literature on the usefulness of beta blocker therapy for older patients in the context of the COVID-19 pandemic.

Key Words: Adrenergic beta-antagonist; COVID-19; Aged; SARS-CoV-2; Cardiovascular diseases

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
PHARMACOLOGIC PROPERTIES OF BETA BLOCKERS

Beta blockers are widely used in cardiology and have other indications, such as headaches (migraine), glaucoma, or essential tremor[15]. As the prevalence of hypertension, heart failure, and arrhythmias is particularly high in geriatric age groups, beta blockers are often prescribed to elderly patients[16,17]. Depending on the selectivity of binding to various beta-adrenergic receptors (i.e., beta-1, beta-2, or beta-3 receptor), beta blockers are classified as nonselective or beta-1-selective. Most bind to beta-1 receptors, causing their inhibition and resulting in negative chronotropic and inotropic effects that reduce cardiac work and oxygen consumption[18]. Beta blockers also protect the heart from the negative effects of excess of catecholamines secondary to sympathetic overstimulation, receptor downregulation, and desensitization, as occurs in heart failure[19,20]. Beta blockers decrease the activity of the renin-angiotensin-aldosterone system by inhibiting renal beta-1 receptors[21]. Inhibition of beta-2 receptors causes some of the adverse effects of beta blockers, such as bronchoconstriction and peripheral vasocstriction, and inhibition of beta-3 receptors decreases lipolysis in peripheral adipose tissue[22]. Some beta blockers increase the expression and/or activity of beta-3 receptors in the heart, which improves myocardial metabolism in the failing myocardium[23]. Nonselective beta blockers, such as carvedilol, inhibit alpha-adrenergic receptors, causing vasodilation and reduced blood pressure[24]. The binding of beta blockers to adrenergic receptors starts a complex cascade of proteins involved in the genesis of cardiac remodeling, such as mitogen-activated protein kinases, Gs-adenyl cyclase-cyclic AMP and phosphoinositide 3-kinase signaling[25]. It has been reported that beta-receptor desensitization reduces the therapeutic activity of beta blockers in the elderly and in heart failure patients[26,27]. Studies conducted in aged heart failure patients have clearly confirmed the benefits of beta blockers on relevant clinical endpoints, such as hospitalization and symptoms[28,29].
BETA RECEPTOR BLOCKERS FOR ELDERLY IN THE CONTEXT OF COVID-19

Pharmacologic basis of beta blocker benefits

There are several pharmacologic reasons why treatment with beta blockers may be of benefit for patients with SARS-CoV-2 infection. First, the entry of SARS-CoV-2 into cells involves the binding of viral spike proteins to angiotensin-converting enzyme 2 (ACE2) [30]. ACE2 is expressed in various cells, such as cardiomyocytes, endothelial cells, alveolar macrophages, and type II pneumocytes [31]. SARS-CoV-2 entry downregulates ACE2 receptors, which is followed by dysregulation of the ACE2-mediated pathway that protects against inflammation, and the adverse ACE-mediated axis [32]. Beta blockers downregulate ACE2, thereby reducing the virus’ ability to attack cells [33]. However, as beta blockers reduce renin production, they may protect against SARS-CoV-2 infection by preventing the pro-inflammatory action promoted by angiotensin 2 [34]. Cardiovascular complications are among the most frequent and feared COVID-19 complications, and beta blocker therapy might help prevent them or result in a milder clinical course. Beta blockers have been used to treat heart failure and arrhythmias secondary to COVID-19 infection [35,36], and treatment of myocarditis associated with COVID-19 may also benefit from the administration of beta blockers [37]. Some beta blockers, such as nebivolol, improve endothelial function by promoting nitric oxide bioavailability [38], which may be protective in diseases like COVID-19 in which endothelial dysfunction is involved [39].

Beta blockers have favorable anti-inflammatory activity that is potentially useful in preventing the cytokine storm of COVID-19 [40]. In particular, beta blockers reduce interleukin-6 and decrease the activation of NOD-, LRR- and pyrin domain-containing protein 3 inflammasomes [41]. Hypoxia that occurs in the course of severe SARS-CoV-2 bronchopneumonia results in overactivation of the sympathetic nervous system, whose deleterious effects may be counteracted by beta blocker treatment [42]. Finally, beta blockers appear to limit the undesirable effects of some drugs used to treat COVID-19, such as azithromycin or hydroxychloroquine, which may promote QT prolongation and predispose to lethal arrhythmias [43].

Clinical evidence of beta blocker usefulness in the elderly

With the outbreak of the COVID-19 pandemic, a concern of physicians and researchers was that certain chronically taken medications could promote SARS-CoV-2 infection or induce an unfavorable course, especially in geriatric patients [44]. However, the safety of beta blockers regarding the eventual predisposition or worse clinical course of COVID-19 was already evident from the results of early studies in the elderly. A large retrospective study in Spain of 34,936 hypertensive patients of 70.9 ± 11.3 years of age verified that beta blockers are not associated with an increased risk of a subsequent diagnosis with COVID-19 [45]. Other studies have ruled out the existence of any association between inpatient mortality from COVID-19 and beta blocker use, including patients in their 90s [46,47]. A meta-analysis of 53 studies of the association of antihypertensive medications with COVID-19 incidence and mortality found a neutral effect of the beta blocker class [48]. There was no association between use of beta blockers and COVID-19 incidence (odds ratio [OR]: 1.03; 95% confidence interval [CI]: 0.78–1.35) or severity (OR: 1.29; 95% CI: 0.74–2.04). However, only 3 of the 10 studies on beta blockers in the meta-analysis included patients older than 65 years of age, making it difficult to generalize the results to geriatric populations. On the other hand, there is evidence that beta blocker therapy causes clinical improvement and improved survival in patients with COVID-19, including those in older age groups [49-52]. Consistently, the benefits of beta blockers in COVID-19 infection are confirmed by the observation that discontinuation of beta blocker therapy outside the guidelines results in increased inhospital mortality in COVID-19 patients [53].

Some studies have not found decreased COVID-19 severity in elderly people taking beta blockers. It cannot be excluded that this finding may have resulted from a lack of statistical power [48,54], but a retrospective study excluded the preventive efficacy of beta blockers against COVID-19 infectious risk [55]. Existence of the clinical benefits of beta blockers has been investigated in critically ill COVID-19 patients. A case-control study including 20 patients with acute respiratory distress syndrome and requiring mechanical ventilation found that infusion of the beta blocker metoprolol (15 mg daily for 3 d) improved both oxygenation and the degree of lung inflammation. The investigators argued that metoprolol acted by stunning neutrophils and abrogating exacerbated inflammation [56].

Another mechanism by which metoprolol in infusion could have ameliorated the oxygenation of critical patients with COVID 19 is hemodynamic. In fact, it has been hypothesized that metoprolol, through a reduction in cardiac output, may have consequently reduced the intrapulmonary shunts, therefore improving the ventilation-perfusion ratio [57]. Overall, the available study results exclude that beta blocker therapy may favor worsening of the course of COVID-19 and SARS-CoV-2 infection (Table 1). Conversely, some studies found that elderly patients taking beta blocker therapy had a more favorable clinical COVID-19 course. Nevertheless, the results of the available studies must be interpreted with caution because of possible bias related to small sample size and to the diverse pharmacological properties possessed by the various beta blockers.
Concerns for beta blockers use

The safety and benefits of beta blocker therapy for treating COVID-19 in elderly patients have been confirmed by various studies, but others have generated important warnings about the use of beta blockers. A recent retrospective observational study including 298 patients of 58.3 ± 15.52 years of age and with 93 who were ≥ 65 years of age reported that beta blocker therapy was paradoxically associated with increased mortality[58]. However, the authors of the study hypothesized that the concurrent use of other drugs may have confounded the results. In addition, it is also unclear whether previous beta blocker therapy may adversely affect the convalescence of elderly people with COVID-19. A study of 115 patients over 68 years of age with severe COVID-19 found that those with prior beta blocker use had worse lung diffusion of carbon monoxide (commonly known as DLCO) during convalescence (OR: 3.93; 95%CI: 1.05–14.76; \(P = 0.042 \))[59]. Those taking renin-angiotensin-aldosterone inhibitors tended to have better DLCO levels.

In some clinical settings in geriatric medicine, such as the management of patients with comorbidities or low life expectancy, the use of beta blockers should be carefully evaluated on a case-by-case basis. A recent systematic review demonstrated that beta blockers were a class of drugs, that if inappropriately used, could adversely affect the prognosis of COVID-19[60]. The review considered drugs with potential negative impact on respiratory diseases, such as asthma, chronic obstructive pulmonary disease and respiratory failure, and therefore expressed a preference for the use of selective beta blockers in the COVID-19 scenario. Finally, it is worth noting that expert opinion recommends the decision to introduce a new drug in elderly subjects, including drugs with antihypertensive effects such as beta blockers, should be based on the expected risk-benefit ratio, especially in patients with comorbidities and reduced life expectancy[61].

Table 1: Studies on beta blocker therapy and coronavirus disease 2019 in elderly patients

Ref.	Study type	Study aim	Subjects	Study findings
Yan F et al[49], 2020	Multicenter retrospective	Examine association between clinical outcomes with the use of antihypertensive drugs	665 hypertensive COVID-19 patients (mean age: 64.6 ± 11.8 yr)	Reduced dyspnea in BB users; improved clinical indices
Rey JR et al [53], 2020	Prospective	Study cardiovascular outcomes in patients with COVID-19 and a prior diagnosis of heart failure	3080 hospitalized COVID-19 patients (mean age: 62.3 ± 20.3 yr)	↓ in-hospital mortality associated to withdrawal of BB (HR: 4.15; 95%CI: 1.61–10.71)
Liu Y et al[54], 2020	Retrospective	Association between antihypertensive use and disease severity of COVID-19 patients	46 elderly hypertensive COVID-19 patients (> 65 yr in age)	BB use not associated to less disease severity (OR: 0.49; 95%CI: 0.2–1.98)
Saiﬁ Said E et al [51], 2021	Retrospective	Examine factors associated with survival in older people with COVID-19	34 inpatients with COVID-19 (> 65 yr in age)	Better survival in patients treated with BB vs non-treated (\(P = 0.008 \) by Kaplan-Meier analysis)
Couchana L et al[52], 2021	Retrospective multicenter cohort study	Investigate association between antihypertensive agent use and in-hospital mortality	8078 patients hospitalized for COVID-19 (median age: 75.4 yr)	↓ Risk of mortality in BB users (aOR: 0.80; 95%CI: 0.67–0.95)
Clemente-Moragón A et al[56], 2021	Pilot randomized controlled trial	Evaluate the effects of invenous metoprolol on lung inflammation and oxygenation	20 COVID-19 patients with ARDS (median age: 60 yr)	Intravenous metoprolol reduced lung inflammation, improved oxygenation, and was safe
Blanc F et al [55], 2021	Retrospective case-control	Find a pharmacological preventive treatment of COVID-19 in elderly patients	89 COVID-19 patients (mean age: 84.4 yr) compared with 90 non-COVID-19 patients (mean age: 83.8 ± 40.78%) on BB therapy	taking BB does not reduce risk of COVID-19 infection (OR: 1.28; 95%CI: 0.71–2.31, \(P = 0.7909 \))
Vila-Corcoles A et al[45], 2020	Population-based retrospective cohort	Investigate relationships between antihypertensive drug use and COVID-19 infection	34,936 ambulatory hypertensive adults (> 50 yr of age; mean age: 70.9 ± 11.3 yr)	Receiving BB did not significantly alter the risk of PCR-confirmed COVID-19 (HR: 0.97; 95%CI: 0.68-1.37, \(P = 0.844 \))
Polverino F et al[46], 2020	Nationwide observational retrospective	Whether hypertension medications may increase the risk of death	3179 COVID-19 inpatients (58% of patients ≥ 65 yr of age)	Hypertension medication does not significantly increase COVID-19-related deaths in an older population (OR: 0.85; 95%CI: 0.65-1.12, \(P = 0.244 \))

aOR: Adjusted odds ratio; ARDS: Acute respiratory distress syndrome; BB: Beta blocker; CI: Confidence interval; COVID: Coronavirus 2019 disease; HR: Hazard ratio; OR: Odds ratio.
Actual strategies and future perspectives for beta blocker use

Some strategies for beta blocker use in relation to COVID-19-induced pathologies have already been codified and described in specific guidelines. It is the case of myocarditis that complicates COVID-19 infection. In fact, for COVID-19 myocarditis, beta blockers are recommended in hemodynamically stable subjects with slight reduction of left ventricular function and in stable patients who have had supraventricular arrhythmias. In addition, intravenous administration of a beta blocker (in particular the ultrashort acting Esmolol) has been included in flow charts for the treatment of ventricular tachyarrhythmias triggered by COVID 19 infection.

Certainly, promising prospects for the use of beta blockers include the areas of hypertensive urgencies and emergencies in the course of COVID-19 and the treatment of post-COVID autonomic dysfunction. On the other hand, strategies for the preventive use of beta blockers, such as the pre-treatment of frail elderly people, are not currently applicable. Indeed, evidence from specific, large clinical trials is lacking. Unfortunately, the design and conduction of these studies appear very problematic for the difficulties of having control groups during pandemic waves, and discriminating the effect of beta blocker from those of other drugs.

CONCLUSION

The available evidence confirms a relevant role for beta blockers for the elderly in the COVID-19 era. There is strong evidence that their discontinuation for fear that they may facilitate the onset of SARS-CoV-2 virus infection is unjustified and COVID-19 should not be a contraindication. By contrast, many studies conducted in geriatric patients found that those with COVID-19 who took beta blockers had less severe infections and better survival. That finding can be interpreted in the light of the pharmacology of the drugs. As discussed, in addition to their primary anti-arrhythmic and anti-ischemic activities, beta blockers also have anti-inflammatory activity and counteract sympathetic hyperactivity that counteract COVID-19 pathogenesis. Some beta blockers (i.e., nebivolol) may produce additional benefits against COVID-19 by increasing nitric oxide bioavailability. Further research is also desirable to investigate the prophylactic use of beta blockers in individuals at risk of contracting severe disease, such as the frail elderly. Finally, future studies should also clarify whether the use of beta blockers in patients already infected with SARS-CoV-2 can reduce post-acute COVID-19 symptomatology and long-term COVID symptoms.
REFERENCES

1. Kaye AD, Okeagu CN, Pham AD, Silva RA, Harley JJ, Arron BL, Sarfraz N, Lee HN, Ghali GE, Gamble JW, Liu H, Urman RD, Cornett EM. Economic impact of COVID-19 pandemic on healthcare facilities and systems: International perspectives. *Best Pract Res Clin Anaesthesiol* 2021; 35: 293-306 [PMID: 34551220 DOI: 10.1016/j.bpa.2020.11.009]

2. Kralinsky A, Kobak D. Tracking excess mortality across countries during the COVID-19 pandemic with the World Mortality Dataset. *Elife* 2021; 10 [PMID: 34190045 DOI: 10.7554/eLife.69336]

3. Contreras S, Priesemann V. Risking further COVID-19 waves despite vaccination. *Lancet Infect Dis* 2021; 21: 745-746 [PMID: 33949641 DOI: 10.1016/s1473-3099(21)00167-5]

4. Yang Y, Luo K, Jiang Y, Yu Q, Huang X, Wang J, Liu N, Huang P. The Impact of Frailty on COVID-19 Outcomes: A Systematic Review and Meta-analysis of 16 Cohort Studies. *J Nutr Health Aging* 2021; 25: 702-709 [PMID: 33949641 DOI: 10.1007/s12603-021-01161-9]

5. D’asciano M, Innammorato M, Pasquariello L, Pizzirrusso D, Guerrieri G, Marcolongo A, Mancini R, Ricci A, Sciacchitano S. Age is not the only risk factor in COVID-19: the role of comorbidities and of long staying in residential care homes. *BMC Geriatr* 2021; 21: 63 [PMID: 33451296 DOI: 10.1186/s12877-021-02013-3]

6. Muddy A, Apewokin S, Wells AA, Morrow AL. Factors Associated with Hospitalization and Disease Severity in a Racially and Ethnically Diverse Population of COVID-19 Patients. *medRxiv* 2020 [PMID: 32607513 DOI: 10.1101/2020.06.25.20137323]

7. Beezerra-Mudón VM, Náñez-Gil JJ, Eid CM, Garcia Aguado M, Romero R, Huang J, Mulet A, Ugo F, Rametta F, Liebrau C, Aparisi A, Fernández-Rozas I, Viana-Llamas MC, Feltes G, Pepe M, Moreno-Rondón LA, Cerrato E, Rospeiras-Roubín S, Alfonso E, Carrero-Fernández A, Buzón-Martin L, Abumayyaleh M, Gonzalez A, Fernández Ortiz A, Macaya C, Estrada V, Fernández-Pérez C, Gómez-Doblas JJ. Clinical profile and predictors of in-hospital mortality among older patients hospitalised for COVID-19. *Age Ageing* 2021; 50: 326-334 [PMID: 33201181 DOI: 10.1093/ageing/afaa258]

8. Siddiqi HK, Libby P, Ridker PM. COVID-19 - A vascular disease. *Trends Cardiovasc Med* 2021; 31: 1-5 [PMID: 33068723 DOI: 10.1016/j.tcm.2020.10.005]

9. Hessami A, Shamsheerian A, Heydari K, Pourali F, Alizadeh-Navaei R, Moosazadeh M, Abrotan S, Shojaie L, Sedighi S, Shamshirian D, Rezaei N. Cardiovascular diseases burden in COVID-19: Systematic review and meta-analysis. *Am J Emerg Med* 2021; 46: 382-391 [PMID: 33608238 DOI: 10.1016/j.ajem.2020.10.022]

10. ATTACC Investigators, ACTIV-4a Investigators, REMAP-CAP Investigators, Lawler PR, Goligher EC, Berger JS, Neal MD, McVerry BJ, Nicolaus JC, Gong MN, Carrier M, Rosenson RS, Reynolds HR, Turgeon AF, Escobedo J, Huang DT, Bradbury CA, Houston BL, Kornbluth LZ, Kumar A, Kohn SR, Cusmano M, McQuilten Z, Slutsky AS, Kim KS, Gordon AC, Kirwan BA, Aday AW, Al-Beidh F, Annane D, Alizadeh-Navaei R, Moosazadeh M, Abrotan S, Shojaie L, Sedighi S, Shamshirian D, Rezaei N. Cardiovascular diseases burden in COVID-19: Systematic review and meta-analysis. *Am J Emerg Med* 2021; 46: 382-391 [PMID: 33608238 DOI: 10.1016/j.ajem.2020.10.022]
Santillo E et al. Beta blockers for the elderly

JC, Parnia S, Paul JD, Pérez González YS, Pompilio M, Prekker ME, Quigley JG, Rost NS, Rowan K, Santos FO, Santos M, Olombrada Santos M, Satterwhite L, Saunders CT, Schutgens REG, Seymour CW, Siegal DM, Silva DG Jr, Shankar-Hari M, Sheehan JP, Singhal AB, Solsvason D, Stansworth TJ, Tirtschler T, Turner AM, van Bentum-Puijik W, van de Veenbonk FL, van Diepen S, Vazquez-Grande G, Wahid L, Wareham W, Wells BJ, Widmer RJ, Wilson JD, Yuirditski E, Zampieri FG, Angus DC, McArthur CJ, Webb SA, Farkouh ME, Hochman JS, Zarychanski R. Therapeutic Anticoagulation with Heparin in Noncerebrally Ill Patients with COVID-19. *N Engl J Med* 2021; 385: 790-802 [PMID: 34351721 DOI: 10.1056/NEJMoa2105911]

11 Senemeto L, Botton J, Drouin J, Barcault B, Vabre C, Cuenot F, Penso L, Herlemont P, Shibian E, Weill A, Dray-Spira R, Zureik M. Anti hypertensive Drugs and COVID-19 Risk: A Cohort Study of 2 Million Hypertensive Patients. *Hypertension* 2021; 77: 833-842 [PMID: 33423528 DOI: 10.1161/HYPERTENSIONAHA.120.163141]

12 Oliver E, Mayor F Jr, D’Ocon P. Beta-blockers: Historical Perspective and Mechanisms of Action. *Rev Esp Cardiol (Engl Ed)* 2019; 72: 853-862 [PMID: 31178382 DOI: 10.1016/j.rec.2019.04.006]

13 Stoflo D, Uijl A, Benson L, Schrage B, Fudim M, Asselbergs FW, Koudstaal S, Sinagra G, Dahlström U, Rosano G, Savarese G. Association between beta-blocker use and mortality/morbidity in older patients with heart failure with reduced ejection fraction. A propensity score-matched analysis from the Swedish Heart Failure Registry. *Eur J Heart Fail* 2020; 22: 103-112 [PMID: 31478583 DOI: 10.1002/ejhf.1615]

14 Mulder BA, van Veldhuisen DJ, Crijns HJ, Böhm M, Cohen-Solal A, Babalis D, Roughton M, Flather MD, Coats AJ, Van Gelder IC. Effect of nevirapin on platelet function and heart rate and atrial fibrillation: insights from SENIORS. *Eur J Heart Fail* 2012; 14: 1171-1178 [PMID: 22764183 DOI: 10.1093/eurjhf/hfs100]

15 Farzam K, Jan A. Beta Blockers. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2022 [PMID: 30422501]

16 Li Y, Lu X, Zhou W, Yang L, You R. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. *Front Physiol* 2014; 6: 323 [PMID: 24256707 DOI: 10.3389/fphys.2013.00232]

17 Ahmed A. Myocardial β-1 adrenocceptor down-regulation in aging and heart failure: implications for beta-blocker use in older adults with heart failure. *Eur J Heart Fail* 2003; 5: 709-715 [PMID: 14675815 DOI: 10.1016/s1388-9842(03)00058-8]

18 Fung JW, Yu CM, Yip G, Chan S, Yandle TG, Richards AM, Nicholls MG, Sanderson JE. Effect of beta blockade (carvedilol or metoprolol) on activation of the renin-angiotensin-aldosterone system and natriuretic peptides in chronic heart failure. *Am J Cardiol* 2003; 92: 406-410 [PMID: 12914870 DOI: 10.1016/s0002-9149(03)00658-1]

19 Bordichia M, Pocognoli A, D’Anzio M, Siquini W, Minardi D, Muzzonigro G, Dessi-Fulgherri P, Sarzani R. Nevirapin induces, via β3 adrenergic receptor, lipolysis, uncoupling protein 1, and reduction of lipid droplet size in human adipocytes. *J Hypertens* 2014; 32: 389-396 [PMID: 24256707 DOI: 10.1097/01.jht.0000481024]

20 Cannavo A, Koch WJ. Targeting β3-Adrenergic Receptors in the Heart: Selective Agonism and β-Blockade. *J Cardiovasc Pharmacol* 2017; 69: 71-78 [PMID: 28170359 DOI: 10.1097/FCP.0000000000000444]

21 Carreira RS, Monteiro P, Gon Alves LM, Providência LA. Carvedilol: just another β-blocker or a powerful cardioprotector? *Cardiovasc Hematol Disord Drug Targets* 2006; 6: 257-266 [PMID: 17378771 DOI: 10.2174/187152906779010746]

22 Yang J, Liu Y, Fan X, Li Z, Cheng Y. A pathway and network review on beta-adrenoceptor signaling and beta blockers in cardiac remodeling. *Heart Fail Rev* 2014; 19: 799-814 [PMID: 24366330 DOI: 10.1007/s10741-013-9417-4]

23 Ferrara N, Komici K, Corbi G, Pagano G, Furgi G, Rengo C, Femminella GD, Leosco D, Bonaduce D. β-adrenergic receptor responsiveness in aging heart and clinical implications. *Front Physiol* 2014; 4: 396 [PMID: 24409150 DOI: 10.3389/fphys.2013.00396]

24 Lamba S, Abraham WT. Alterations in adrenergic receptor signaling in heart failure. *Heart Fail Rev* 2000; 5: 7-16 [PMID: 16228912 DOI: 10.1023/A:1009858822076]

25 Dulin BR, Haas SJ, Abraham WT, Krum H. Do elderly systolic heart failure patients benefit from beta blockers to the same extent as the non-elderly? *Am J Cardiol* 2005; 95: 896-898 [PMID: 15781028 DOI: 10.1016/j.amjcard.2004.11.052]

26 Sin DD, McAlister FA. The effects of beta-blockers on morbidity and mortality in a population-based cohort of 11,942 elderly patients with heart failure. *Am J Med* 2002; 113: 650-656 [PMID: 12095115 DOI: 10.1016/s0002-9343(02)01346-3]

27 Li Y, Zhou W, Yang L, You R, Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. *Pharmacol Res* 2020; 157: 104833 [DOI: 10.1016/j.phrs.2020.104833]

28 de Vries AAF. Renin-angiotensin system inhibition in COVID-19 patients. *Neth Heart J* 2020; 28: 396-405 [PMID: 32514935 DOI: 10.1017/n41271-020-01439-5]

29 Verdecchia P, Cavallini C, Spaneous A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. *Eur J Intern Med* 2020; 76: 14-20 [PMID: 32336612 DOI: 10.1016/j.ejim.2020.04.037]

30 Vasanthakumar N. Can beta-adrenergic blockers be used in the treatment of COVID-19? *Med Hypotheses* 2020; 142: 109809 [PMID: 32388480 DOI: 10.1016/j.mehy.2020.109809]

31 Absagay MY, Mulia EPB. Hypertension and COVID-19: Potential use of beta-blockers and a call for randomized evidence. *Indian Heart J* 2021; 73: 757-759 [PMID: 34717930 DOI: 10.1016/j.ihj.2021.01.011]

32 Lin KC, Wang CC, Huang WC, Hwang JJ. Considerations When Managing Heart Failure During the COVID-19 Pandemic-Consensus from the Taiwan Society of Cardiology. *Acta Cardiol Sin* 2021; 37: 125-129 [PMID: 33716453 DOI: 10.6515/ACS.202103_37(2).20200916A]

33 Russo V, Rago A, Carbone A, Bottino R, Ammendola E, Della Cioppa N, Galante D, Golino P, Nigro G. Atrial Fibrillation in COVID-19: From Epidemiologic Association to Pharmacological Implications. *J Cardiovasc Pharmacol* 2020; 76: - [DOI: 10.1097/FJC.0000000000001216]
ARB or beta-blockers therapy increase the risk of mortality in COVID-19 patients? Toprak İD

Inflammation or Hemodynamic?

de Roquetaillade C

10.1016/j.jacc.2021.07.003

Castillo C, Ioan AM, López-Álvarez M, Gómez-Talavera S, Galán-Arriola C, Fuster V, Pérez-Calvo C, Ibáñez B. Clemente-Moragón A

[PMID: 33317101 DOI: 10.3390/medicina56120678]

Vasanthakumar N. Beta-Adrenergic Blockers as a Potential Treatment for COVID-19 Patients. Bioessays 2020; 42: e2006094 DOI: 10.1002/bies.202006094-

Barbieri A, Robinson N, Palma G, Maurea N, Desiderio V, Botti G. Can Beta-2-Adrenergic Pathway Be a New Target to Combat SARS-CoV-2 Hyperinflammatory Syndrome? Front Immunol 2020; 11: 588724 [PMID: 33181745 DOI: 10.3389/fimmu.2020.588724]

Kjeldsen SE, Narkiewicz K, Burnier M, Oparil S. Potential protective effects of antihypertensive treatments during the Covid-19 pandemic: from inhibitors of the renin-angiotensin system to beta-adrenergic receptor blockers. Blood Press 2021; 30: 1-3 [PMID: 33349063 DOI: 10.1080/08037051.2021.1862483]

Heriansyah T, Nur Chomy I, Febrianda L, Farahyia Hadi T, Andri Wihastuti T. The Potential Benefit of Beta-Blockers for the Management of COVID-19 Protocol Therapy-Induced QT Prolongation: A Literature Review. Scientia Pharmaceutica 2020; 88: 55 [DOI: 10.3390/scipharm8800045]

Vura NYRK, Sandoora R, Firoz A. To do or not to do: Angiotensin converting enzyme inhibitors/angiotensin receptor blocker in COVID-19 elderly patients. ExCLI J 2021; 20: 1145-1151 [PMID: 34345233 DOI: 10.17119/excli2021-3821]

Vila-Corcoles A, Satue-Gracia E, Ochoa-Gondar O, Torrente-Fraga C, Gomez-Bertomeu F, Vila-Rovira A, Hospital-Guardiola I, de Diego-Cabanes C, Bejarano-Romero F, Rovira-Veciana D, Basora-Gallisa J. Use of distinct antihypertensive drugs and risk for COVID-19 among hypertensive people: A population-based cohort study in Southern Catalonia, Spain. J Clin Hypertens (Greenwich) 2020; 22: 1379–1388 [PMID: 32710674 DOI: 10.1002/jch.213498]

Polverino F, Stern DA, Rusco G, Balestro E, Bassetti M, Candelli M, Cirillo B, Conti M, Corsico A, D’Amico F, D’Elia E, Falco G, Gasparini S, Guerra S, Harari S, Kraft M, Mennella L, Papa A, Parrella R, Pelosi P, Poletti V, Polverino M, Tana C, Terribile R, Woods JC, Di Marco F, Martinez FD; ItaSCO study group. Comorbidities, Cardiovascular Therapies, and COVID-19 Mortality: A Nationwide, Italian Observational Study (ItaSCO). Front Cardiovasc Med 2020; 7: 585866 [PMID: 33195473 DOI: 10.3389/fcvm.2020.585866]

Vrillon A, Hourregue C, Azar J, Grossel B, Boutelier A, Tan S, Roger M, Mourman V, Mouldy S, Sáde F, Francois V, Dumurgier J, Paquet C; for LRG COVID Group. COVID-19 Group in Older Adults: A Series of 76 Patients Aged 85 Years and Older with COVID-19. J Am Geriatr Soc 2020; 68: 2735-2743 [PMID: 33045106 DOI: 10.1111/jgs.16894]

Ren L, Yu S, Xu W, Overton JL, Chiamvimonvat N, Thai PN. Lack of association of antihypertensive drugs with the risk and severity of COVID-19: a meta-analysis. J Cardiol 2021; 77: 482-491 [PMID: 33168337 DOI: 10.1016/j.jcc.2020.10.015]

Yan F, Huang F, Xu J, Yang P, Qin Y, Lv J, Zhang S, Ye L, Gong M, Liu Z, Wei J, Xie T, Xu KF, Gao GF, Wang FS, Cai L, Jiang J. Antihypertensive drugs are associated with reduced fatal outcomes and improved clinical characteristics in elderly COVID-19 patients. Cell Discov 2020; 6: 77 [PMID: 33298897 DOI: 10.1038/s41414-020-00221-6]

Pinto-Sietsma SJ, Flossdorf M, Buchholz VR, Offerhaus J, Bleijendaal H, Beudel M, Volders PGA, Ter Bekke RMA, Dormans T, Zwetsloot PP, de Jager P, Massberg S, Rämer P, Wendtner C, Hoffmann E, Rothe K, Feihl S, Kessler T, Pinto YM, Schunkert H. Antihypertensive drugs in COVID-19 infection. Eur Heart J Cardiovasc Pharmacother 2020; 6: 415-416 [PMID: 33290147 DOI: 10.1093/ehjcvp/paz588]

Saïfi ES, Giorgi-Pierfranceschi M, Salvetti M, Maninetti L, Cavalli I, Muesan ML. Factors associated with survival in older patients affected by COVID-19: A retrospective cohort study. Arch Gerontol Geriatr 2021; 94: 104349 [PMID: 33508512 DOI: 10.1016/j.archger.2021.104349]

Chouchana L, Beeker N, Garcelon N, Rance B, Paris N, Salamanca E, Polard E, Paris N, Salamanca E, Polard E, Burgun A, Treluyer JM, Neuraz A; AP-HP Gerontology and Geriatric Research Team. Beta blockers for the elderly. MedRxiv 2020 [DOI: 10.1101/2020.03.20.20039586]

Blanc F, Waecker C, Vogel T, Schorr B, Demuyck C, Hunyadi CM, Meyer M, Mutelica D, Bougaa N, Fafi-Kremer S, Gourlet J, El Mehadbi M, Poulat N, Székely-Balint S, Alahnit S, Almutun ES. Do age, hypertension, coronary artery disease, ace-I, ARB or beta-blockers therapy increase the risk of mortality in COVID 19 patients? Acta Medica Mediterranea 2021; 37:
547 [DOI: 10.19193/0393-6384_2021_1_85]

59 Gori M, Ghirardi A, D’Elia E, Imeri G, Di Marco F, Gavazzi A, Balestrieri G, Giannarresi A, Trevisan R, Amoroso M, Raimondi F, Novelli L, Magro B, Mangia G, Lorini FL, Fagiuoli S, Barbuti T, Rizzi M, Cosentini R, Sironi S, Senni M; of HPG23 Covid-19 Study Group. Association between inhibitors of the renin-angiotensin system and lung function in elderly patients recovered from severe COVID-19. *Eur J Prev Cardiol* 2022; 29: e196-e199 [PMID: 34535993 DOI: 10.1093/eurjpc/zwa143]

60 Forgerini M, Schiavo G, Lucchetta RC, Carvalho Mastroianni P. Drug interactions for elderly with respiratory disorders and times of covid-19: A systematic scoping review. *Vitae* 2020; 27: 1-14 [DOI: 10.17553/vitae.n27n3a02]

61 Aronow WS. Managing the elderly patient with hypertension: current strategies, challenges, and considerations. *Expert Rev Cardiovasc Ther* 2020; 18: 117-125 [DOI: 10.1080/14779072.2020.1732206]

62 Writing Committee, Gluckman TJ, Bhave NM, Allen LA, Chung EH, Spatz ES, Ammirati E, Baggish AL, Bozkurt B, Cornwell WK 3rd, Harmon KG, Kim JH, Lala A, Levine BD, Martinez MW, Onuma O, Phelan D, Puntnmann VO, Rajpal S, Taub PR, Verma AK. 2022 ACC Expert Consensus Decision Pathway on Cardiovascular Sequelae of COVID-19 in Adults: Myocarditis and Other Myocardial Involvement, Post-Acute Sequelae of SARS-CoV-2 Infection, and Return to Play: A Report of the American College of Cardiology Solution Set Oversight Committee. *J Am Coll Cardiol* 2022; 79: 1717-1756 [PMID: 35307156 DOI: 10.1016/j.jacc.2022.02.003]

63 Task Force for the management of COVID-19 of the European Society of Cardiology. ESC guidance for the diagnosis and management of cardiovascular disease during the COVID-19 pandemic: part 2-care pathways, treatment, and follow-up. *Eur Heart J* 2022; 43: 1059-1103 [PMID: 34791154 DOI: 10.1093/eurheartj/ehab697]

64 Angeli F, Verdecchia P, Reboldi G. Pharmacotherapy for hypertensive urgency and emergency in COVID-19 patients. *Expert Opin Pharmacother* 2022; 23: 235-242 [PMID: 34634987 DOI: 10.1080/14656566.2021.1990264]

65 Desai AD, Bourque BC, Moore CJ, Gopinathanmurr R, Waase MP, Rubin GA, Wan EY. Autonomic dysfunction post-acute COVID-19 infection. *HeartRhythm Case Rep* 2022; 8: 143-146 [PMID: 34868880 DOI: 10.1016/j.hrcr.2021.11.019]

66 Brüssow H. COVID-19: From pathogenesis models to the first drug trials. *Microb Biotechnol* 2020; 13: 1289-1299 [PMID: 32573950 DOI: 10.1111/1751-7915.13611]
