The Use of Municipal Solid Waste as Secondary Energy Resources on the example of the Housing Complex Novopatrushevo, Tyumen

K V Afonin¹, T S Zhilina¹, A A Zagorskaya², M N Pavlova¹, A N Shchekin²

¹ Department of Heat and Gas Supply and Ventilation, Tyumen Industrial University, Lunacharskogo st., 2, Tyumen, 625001, Russia
² Department of Industrial Safety, Tyumen Industrial University, Lunacharskogo st., 2, Tyumen, 625001, Russia

E-mail: pavmashanic@gmail.com

Abstract. The article considers the feasibility of using biomethane, obtained on the basis of municipal solid waste (MSW) for the production of thermal energy. Research suggests the possibility of using biogas directly at the place of generation. The article also proposes a solution for the processing of numerous sludge of household waste water, which allows to improve the operating conditions of domestic sewage networks. The authors carry out detailed calculations for a residential complex under construction in the city of Tyumen. This paper determines the energy efficiency of a selected waste management scheme.

1. Introduction

Since the last century, the volume of production has grown significantly, which has stimulated the introduction of new technologies in all spheres of human life. This was facilitated by engineering, chemical and biological sciences. On their basis, technologies were developed and put into operation from the production of durable materials to the processing of raw materials. Modern technological progress, thanks to the synthesis of engineering and ecology, allows the use of waste as a useful raw material, transforming them into thermal or electrical energy.

According to statistics, about one ton of waste accounts for every person on the planet Earth every year. If we add up, we get 7.7 billion tons per year. The content of the Tyumen region in the total amount of waste is about 2.5 million tons, of which only 73.5% have been neutralized [2, 4]. The main method of disposal of industrial and municipal waste on the territory of the Tyumen region are landfills, of which only 74% meet sanitary and environmental standards. The rest of the waste is located in unauthorized places.

To date, municipal solid waste (MSW) is a serious problem for Tyumen, due to their significant volumes (up to 56% of the total waste) [1, 11]. The development of the waste management system is stagnated by the inertia of the entire HLI system, as well as by the low culture of the population in the field of waste management. Therefore, MSWs are decomposed outdoors at landfills within the city or in the suburbs.
As a way out of the current environmental problem, it is proposed to process waste that is part of MSW into biogas obtained by methane fermentation of biomass. Biomass digestion occurs under the influence of 3 types of bacteria. In the food chain, subsequent bacteria feed on the waste products of the previous ones. The first type is hydrolytic bacteria, the second is acid-forming, the third is methane-forming. The composition of biogas: 55% - 75% methane, 25% - 45% CO2, minor impurities H2 and H2S. After purification of biogas from CO2, biomethane is obtained, its properties close to natural gas [3,19].

This method is universal because it allows you to dispose of almost all types of waste. As a result of waste processing under anaerobic conditions, another currently relevant problem is solved - the application of organic fertilizers to agricultural land. Namely, the reacted substrate after biogas production can be applied to the fields without any preliminary tests [17,19].

Biogas is used as a fuel for the production of: electricity, heat or steam, or as an automobile fuel. Now biogas plants are used mainly in sewage treatment plants, farms, poultry farms, distilleries, sugar factories, meat processing plants. The use of methanogenesis for the digestion of MSW is the next stage in the development of the production of secondary energy resources [3, 16].

The use of a biogas plant allows reducing the size of sanitary protection zones many times, as well as reducing CO2 emissions to the atmosphere [12, 20]. In addition, the combustion of biogas can produce both electricity and heat, which leads to savings in resources. This aspect can be taken into account in the construction of autonomous energy sources in remote regions of Siberia and the Arctic. Biogas plants can be placed in any regions of our country, they do not require the construction of expensive gas pipelines of complex configuration.

2. Materials and methods
In our case, the biogas plant is used as equipment for generating thermal energy. This facility will be able to provide with heating an entire building or a small area. The residential complex “Novo-Patrushevo” was chosen as the object for calculation and research.

The raw material for biogas production was a mixture of sorted MSW and waste collected from domestic sewage water. The latter are a serious problem for operating organizations, annually causing blockages and serious accidents in sewer networks.

Thus, the extraction and co-processing of household sewage sludge at the exit from buildings can also lead to an increase in the reliability of the sewerage system as a whole.

In the first stage, the recyclable components (plastic, glass, metal, etc.) were recovered from the waste. Sewage sludge underwent decantation, after which the waste mixture was ground. The location of the biogas plant and the boiler house in accordance with the requirements of [8-10, 12, 15, 18] is shown in Figure 1.

Figure 1. Placement of a biogas plant in the Novo-Patrushevo residential complex
3. Results
Table 1 shows the total cost of thermal energy to ensure the selected complex. The total number was 22896.3 KW (22.89 MW or 19.7 Gcal / h) [5-7,13,14].

Table 2 presents the mass of generated MSW, as well as the volumes of biogas and the approximate amount of thermal energy from its utilization. The total amount of energy produced on the basis of biomethane is 1171.849 kW (1.17 MW or 1.008 Gcal /h).

Object name	Total area of building	Average amount of heat loss per m²	Total amount heat	Integrated indicator kWh / m²	
st. Fedyuninsky 62 h.1 (GP 31.2)	24995,52	70	58	1449740,16	1971,716
st. Pavla Sharova, 9 h.1 (GP 39.3)	18194,4	70	58	1055275,2	2218,181
st. Pavla Sharova, 9 (GP 39.2)	36262,8	70	58	2103242,4	2218,181
st. A. Mitinsky, 7 (GP 40.1)	87376,32	70	58	5067826,56	1971,716
st. A. Mitinsko, 5 (GP 40.4)	25484,76	70	58	1478116,08	2218,181
st. A. Mitinsky, 3/1 (GP 40.2)	21871,08	70	58	1268522,64	2218,181
st. A. Mitinsko, 3 (GP 40.3)	60918,9	70	58	3533296,2	2218,181
st. Fedyuninsky, 60 (GP 32.1)	41772,96	70	58	2422831,68	1971,716
st. Fedyuninsky, 60 h.1 (GP 32.2)	21871,08	70	58	1268522,64	2218,181
st. Fedyuninsky, 60 h.2 (GP 32.3)	56016	70	58	3248928	1971,716

Table 1 - Calculation of the consumed heat energy

Object name	Number of inhabitants	Amount of MSW tons per day	Amounts of scums tons per day	Methane amount tons per day	Produced thermal energy, MJ	
st. Fedyuninsky 62 h.1 (GP 31.2)	448	0,577	0,023	0,724	0,188	249,9944
st. Pavla Sharova, 9 h.1 (GP 39.3)	392	0,505	0,020	0,633	0,165	218,7451
st. Pavla Sharova, 9 (GP 39.2)	882	1,136	0,045	1,425	0,371	492,1764
st. A. Mitinsky, 7 (GP 40.1)	1344	1,731	0,069	2,171	0,565	749,9831
Compensation of heat losses of each building in the complex due to the use of biogas is shown in Fig. 2.

Figure 2. Comparison of the required and produced secondary heat energy, Gcal per day

4. Conclusion
The evaluation of the results of the calculation of heat energy consumption and its production on the basis of biomethane allow us to draw the following conclusions:

- The use of biogas makes it possible to compensate for an average of 5.56% of the thermal costs of supplying a residential complex during the period of stable methane generation (Fig. 2).
- Placement of facilities for methanogenesis in residential areas is possible and meets technical, sanitary and environmental requirements.
- The proposed method allows you to dispose of up to 95% of municipal solid waste and solve the problem of placement and operation of landfills in cities.

Reference
[1] Report "On the environmental situation in the Tyumen region in 2017" 2018 (Department of subsoil use and ecology of the Tyumen region)
[2] Afonin K V, Zhilina T S, Zagorskaya A A 2017 Reduction of environmental impact of solid domestic landfills of residential area due to their recycling. MATEC Web of Conferences. "International Science Conference SPBWOSCE-2016 "SMART City"" (In Russ) p 3

[3] Shchukina T V 2012 Biogas – prospects and manufacture possibilities. News of universities. Applied chemistry and biotechnology (In Russ)

[4] Afonin K V, Zhilina T S, Zagorskaya A A 2014 Calculations of emissions solid waste landfills. Basic Research (In Russ) p 987-988

[5] Livchak V I 2005 Justification of the calculation of specific indicators of heat consumption for heating of multi-storey residential buildings ABOK 2 (In Russ)

[6] SP 124.3330.2012. Heating network (Moskow: Ministry of Regional Development) (In Russ)

[7] SP 60.3330.2012. Heating, ventilation and air conditioning (Moskow: Ministry of Regional Development) (In Russ)

[8] SP 89.13330.2016. Boiler installations (Moskow: Ministry of Regional Development) (in Russian)

[9] SP 42.13330.2016. Town planning. Planning and development of urban and rural settlements (Moskow: Ministry of Regional Development) (In Russ)

[10] SP 41-104-2000. Designing of autonomous sources of heat supply (Moskow: Ministry of Regional Development) (In Russ)

[11] Resolution of the Tyumen Regional Duma No. 775 of December 20, 2012 (On the information of the government of the Tyumen region on the implementation in the Tyumen region of the federal law "On production waste and consumption"). (In Russ)

[12] GOST 53790-2010 Unconventional technology. Energy biowaste. General technical requirements for biogas plants (Moskow) (In Russ)

[13] Guidelines for calculating the quantitative characteristics of emissions of pollutants into the atmosphere from landfills for solid household and industrial waste 2004 (Moskow) (In Russ)

[14] Guidelines for the study of the properties of solid household and industrial waste 1995 (Moskow)

[15] SP 2.1.7.1038-01. Hygienic requirements for the design and maintenance of landfills for household waste. (Moskow: Ministry of Regional Development) (In Russ)

[16] Eder B, Schulz H 1996 Biogas plants. Practical guide (Switzerland: Zorg Biogas)

[17] Latysheva N I 2009 Scientific substantiation of the ecological and hygienic scheme for assessing the functioning of landfills MSW. Public health and habitat. (In Russ)

[18] SP 131.13330.2012. Building climatology (Moskow: Ministry of Regional Development) (In Russ)

[19] Afonin K V, Zhilina T S, Zagorskaya A A 2017 Recycling of residential areas in order to obtain secondary energy and material resources Bulletin of FEFU Engineering School (In Russ)

[20] Renewables 2016. Global status report. URL: http://www.ren21.net/ – 08.08.2017