Risk Factors and Incidence for Peripheral Arterial Disease in Patients with Typical Lumbar Spinal Stenosis

Min-Hee Han¹, Dong-Hyun Lee¹, Ki-Su Park¹, Young-Seok Lee², Kyoung-Tae Kim¹,
Joo-Kyung Sung¹, Hyung-Kee Kim³, Dae-Chul Cho¹

¹Department of Neurosurgery, Kyungpook National University School of Medicine, Daegu,
²Department of Neurosurgery, Chung-Ang University School of Medicine, Seoul,
³Division of Transplantation and Vascular Surgery, Department of Surgery, Kyungpook National University School of Medicine, Daegu, Korea

Objective: Intermittent claudication (IC) is a typical symptom of peripheral arterial disease (PAD) and lumbar spinal stenosis (LSS). In order to prevent misdiagnosis of vascular disease, it is important to know the incidence of and risk factors for PAD in patients with LSS. Therefore, the aim of our study was to evaluate the incidence of and risk factors for PAD in patients with typical and severe LSS who underwent spinal surgical treatment.

Methods: The occurrence of PAD was examined retrospectively in 171 consecutive patients with LSS and severe IC who underwent surgical treatment at our hospital from June 2012 to June 2013. Data were collected on background characteristics (sex, age) and known risk factors for PAD, such as hypertension, diabetes mellitus, smoking, hyperlipidemia, stroke, and ischemic heart disease.

Results: Of the 171 patients enrolled, 7 had an abnormal ankle-brachial index (ABI). Computed tomography angiography (CTA) was performed in these patients, and a final diagnosis of PAD was established for all 7 patients. The incidence of PAD in all patients with LSS was 4.1% (7 of 171). Stroke and ischemic heart disease were significantly more common in the LSSPAD group compared with the LSS group. Multiple logistic regression analyses with a forced-entry method revealed that age and stroke (p<0.05) were independent risk factors for PAD.

Conclusion: To prevent misdiagnosis of fatal PAD, we recommend ABI be assessed in patients with LSS and history of stroke.

Key Words: Peripheral arterial disease • Ankle brachial pressure index • Lumbar spinal stenosis

INTRODUCTION

Lumbar spinal stenosis (LSS) presents with intermittent claudication (IC) in the lower extremities as a typical symptom¹⁶,²⁰. Peripheral arterial disease (PAD) also presents with similar symptoms as vascular IC¹⁷,²¹. Vascular IC is aggravated by ambulation and relieved by resting. Neurogenic IC, on the other hand, caused by narrowing of the neural foramen and spinal canal, is aggravated by standing and relieved by sitting. However, it can be difficult to differentiate vascular and neurogenic IC due to atypical signs and variable symptoms. Therefore, when patients report claudication, it is important to correctly identify the accompanying pathology.

PAD includes many pathologies, such as arteriosclerosis obliterans, Buerger’s disease, and acute arterial obstruction. Untreated PAD is progressive and increases the risk of severe vascular events and even death⁸,¹³,²⁴. Therefore, early diagnosis and treatment of PAD is important to reduce fatal or nonfatal vascular events¹⁷,²¹. In order to diagnose LSS accompanied by PAD, spine surgeons tend to examine arterial pulse in the lower extremities. However, the argument arises as to whether PAD can be ruled out only by arterial pulse examination. To establish a screening test for PAD, ankle-brachial index (ABI) is commonly used. In previous reports, ABI has been found to be highly sensitive and specific for PAD screening¹⁰,¹⁸,²⁰,²³,²⁴.

Several authors have reported PAD in patients with LSS⁹,¹⁸.
Those reports presented the incidence of and risk factors for PAD in patients with LSS with atypical symptoms. However, there has been no study of patients with typical and severe LSS. If a patient has atypical symptoms, and diagnostic imaging shows no significant spinal canal stenosis, spine surgeons are always concerned about accompanying PAD. However, spine surgeons tend to overlook the possibility of accompanying PAD in patients with LSS diagnosed by typical symptoms and diagnostic imaging, such as magnetic resonance imaging (MRI).

In order to prevent misdiagnosis of vascular disease, it is important to know the incidence of and risk factors for PAD in patients with LSS. Therefore, the aim of our study was to evaluate the incidence of and risk factors for PAD in patients with typical and severe LSS who underwent spinal surgical treatment.

MATERIALS AND METHODS

The occurrence of PAD was examined retrospectively in 171 consecutive patients with LSS and severe IC who underwent surgical treatment at our hospital from June 2012 to June 2013. Patients were diagnosed with LSS by 3 neurosurgeons using neurologic examination and MRI. Three diseases were included in this study: spinal stenosis (ST), degenerative spondylolisthesis (DS) and isthmic spondylolisthesis (IS).

ABI was measured in all patients using previously reported methods. ABI is the ratio of arm systolic blood pressure at the brachial artery to ankle systolic blood pressure at the posterior tibial or dorsalis pedis artery. ABI <0.9 was considered abnormal according to TransAtlantic Inter-Society Consensus (TASC) guidelines (Fig. 1). All patients with abnormal ABI underwent computed tomography angiography (CTA) and consultation with a vascular surgeon (Fig. 2). Data were collected on background characteristics (sex, age) and known risk factors for PAD, such as hypertension, diabetes mellitus, smoking, hyperlipidemia, stroke, and ischemic heart disease. Quality of life (QOL) was evaluated using a visual analog scale (VAS) and the Oswestry Disability Index (ODI).

Patients with coexisting PAD and LSS were designated the LSSPAD group, while those with LSS but no PAD were denoted the LSS group. Using the LSS group as a control, analyses were conducted to identify the characteristics of the LSSPAD group.

To evaluate clinical characteristics at the time of enrollment, univariate analysis was performed using the Student’s t test. The Mann-Whitney U-test was used to compare group means of continuous data. Multivariate logistic regression analysis was used to evaluate independent risk factors for coexisting PAD. Any variable with a p value of <0.05 on univariate analysis was included in multiple logistic regression models. Statistical significance was defined as p<0.05. SPSS version 16.0 for Windows (SPSS Inc., Chicago, IL, USA) was used for statistical analyses. Data were presented as proportions and means±SDs.

RESULTS

The study population comprised 79 men and 92 women with a mean age of 64.6±8.6 years. Of the 171 patients enrolled, 7 had an abnormal ABI. CTA was performed in these patients with coexisting PAD and LSS.
patients, and a final diagnosis of PAD was established for all 7 patients. The incidence of PAD in all patients with LSS was 4.1% (7 of 171). Six of the 7 patients diagnosed with PAD were treated with an endovascular stent, while the remaining 1 patient was recommended observation and regular follow-up. The results of univariate analysis of risk factors for PAD, type of disease, and other clinical parameters are shown in Table 1. The LSSPAD group was significantly older than the LSS group (72.3±5.5 years vs 64.2±8.6 years, p<0.01). Stroke and ischemic heart disease were significantly more common in the LSSPAD group compared with the LSS group. The other known risk factors for PAD (diabetes mellitus, hypertension, smoking history, hyperlipidemia) showed no significant differences between groups. Furthermore, there were no significant differences between groups regarding VAS and ODI scores.

Of the 171 patients with LSS, 37 (21.6%) smoked. Among the 164 patients in the LSS group, 100 (61%) had ST, 53 (32.3%) had DS, and 11 (6.7%) had IS. Among the 7 patients in the LSSPAD group, 6 (85.7%) had ST and 1 (14.3%) had DS. There were no significant differences between groups. In multivariate analysis, the entered variables were age, diabetes mellitus, preoperative VAS score, stroke and ischemic heart disease (p<0.2) (Table 2). Multiple logistic regression analyses with a forced-entry method revealed that the stroke (p<0.05) was independent risk factor for PAD. No differences in age and history of ischemic heart disease were observed between groups.

DISCUSSION

PAD is an atherosclerotic syndrome with a high prevalence of approximately 5.8% to 12% in older adults. High incidence of fatal or nonfatal cardiovascular events associated with PAD increases mortality. According to TASC guidelines for PAD, the mortality rate of patients with IC associated with PAD is 2 times that of patients with IC only. Besides the risk of death, the 10-year incidence of myocardial infarction and cerebral stroke in patients with PAD are increased by about 4 and 3 times, respectively, compared with that in patients without PAD. However, PAD is often misdiagnosed in older patients with LSS because it is difficult to distinguish vascular IC from neurogenic IC. Therefore, spine surgeons often overlook the possibility of PAD in patients with severe LSS. In a previous study, the coincidence of PAD with LSS was similar to the prevalence of PAD in older individuals (6.7%). Therefore, it is very important to understand the
risk factors and to evaluate PAD in patients with LSS.

Arteriography is considered the gold standard for diagnosis
of PAD. However, the use of arteriography has some limitations,
including complications arising from ionizing radiation,
its invasive nature, and nephrotoxic contrast media. Among
substitutable tests, ABI is the simplest and most inexpensive.25
ABI also has high sensitivity (79-95%) and specificity (96-100%) for
screening PAD17). Thus, we evaluated the coincidence of
ABI also has high sensitivity (79-95%) and specificity (96-100%) for
screening PAD17). Thus, we evaluated the coincidence of
PAD with LSS using ABI. Jeon et al. studied
42 patients with atypical claudication19). Their study showed
of PAD in patients with LSS using ABI. Jeon et al. studied
patients with LSS and risk factors for PAD using ABI.

There have been several studies to evaluate the incidence
of PAD in patients with LSS using ABI. Jeon et al. studied
42 patients with atypical claudication19). Their study showed
that ABI had high sensitivity and specificity for screening PAD
in cases with atypical claudication. Twenty-two of 42 patients
in their study were diagnosed with LSS and PAD, showing
a high coincidence (54.8%) between diseases. However, their
study did not analyze the risk factors for PAD and was limited
in that only mild cases of LSS, determined by MRI, were included.
Most spine surgeons easily can doubt a hidden disease,
such as PAD, in these cases. Therefore, in our study, we enrol-
led patients with typical symptoms, severe LSS, confirmed by
MRI, who underwent decompressive surgery.

Kazuhide et al. studied 570 patients with LSS diagnosed
by MRI27). They reported that 6.7% of patients had PAD con-
firmed by ABI. They also showed that comorbidity of diabetes
mellitus, history of stroke, and history of ischemic heart dis-
ease were characteristics of patients with LSS and PAD. This
was the first nationwide multicenter survey of the prevalence
of PAD in patients with LSS in Japan. However, the mean
VAS score of patients with LSS and PAD was 53.6±27.0,
while that of patients with LSS was 60.1±28.4 (VAS 0-100
mm), indicating that patients with mild IC were included in
this study as well as patients with severe IC who required sur-
gical treatment. Spine surgeons occasionally make a mistake
in performing surgery in patients who have radiographi-
cally asymptomatic LSS. However, this study is limited
by its retrospective nature, relatively small patient population,
and short-term duration of follow-up. To further verify the
incidence of and risk factors for PAD, we are currently analyz-
ing more patients and collecting longer-term results. In addi-
tion, this study did not reveal the sensitivity and specificity of
ABI because CTA was not performed in all patients. There-
fore, further study is required to confirm the efficacy of ABI.

CONCLUSION

Misdiagnosis of PAD may increases the risk of severe vas-
cular events and even death. To prevent misdiagnosis of fatal
PAD and to avoid unnecessary surgery, we propose further
evaluation should be assessed in old patients with history of
stroke for diagnosis of PAD.

REFERENCES

1. Allison MA, Ho E, Denenberg JO, Langer RD, Newman AB,
Fabsitz RR, et al: Ethnic-specific prevalence of peripheral arte-
rtery disease and its associated risk factors in Spain: The ESTIME
ARTPER): prevalence and risk factors in the general population.
BMC Public Health 10:38, 2010
2. Alzamora MT, Forés R, Baena-Diez JM, Pera G, Toran P, Sorri-
bes M, et al: The Peripheral Arterial disease study (PERART/
ARTPER): prevalence and risk factors in the general population.
BMC Public Health 10:38, 2010
3. Blanes JI, Cairós MA, Marrugat J: Prevalence of peripheral arte-
ry disease and its associated risk factors in Spain: The ESTIME
Study. Int Angiol 28:20-25, 2009
4. Boden SD, Davis D, Dina T, Patronas N, Wiesel S: Abnormal
magnetic-resonance scans of the lumbar spine in asymptomatic
subjects. A prospective investigation. J Bone Joint Surg Am 72:
14. Hiatt WR: Medical treatment of peripheral arterial disease and
12. Haig AJ, Tong HC, Yamakawa KS, Quint DJ, Hoff JT, Chiodo
11. Greenland P, Abrams J, Aurigemma GP, Bond MG, Clark LT,
13. Heald C, Fowkes FG, Murray G, Price J: Risk of mortality and
10. Doobay AV, Anand SS: Sensitivity and specificity of the ankle-
8. Diehm N, Dick F, Cazprin C, Lawall H, Baumgartner I, Diehm
7. Diehm C, Lange S, Darius H, Pittrow D, von Stritzky B, Tepohl
6. de Graaff JC, Ubbink DT, Legemate DA, de Haan RJ, Jacobs
5. Criqui MH, Langer RD, Froenk A, Feigelson HS, Klauber MR,
4. Dheim N, Dick F, Cazprin C, Lawall H, Baumgartner I, Diehm
3. Hirsch AT, Criqui MH, Treat-Jacobson D, Regensteiner JG,
2. Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA,
1. Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA,
0. Doobay AV, Anand SS: Sensitivity and specificity of the ankle-
18. Imagama S, Matsuyama Y, Sakai Y, Ito Z, Wakao N, Deguchi
17. Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA,
16. Takahashi K, Miyazaki T, Takino T, Matsui T, Tomita K: Epi-
15. Hirsch AT, Criqui MH, Treat-Jacobson D, Regensteiner JG,
14. Hiatt WR: Medical treatment of peripheral arterial disease and
13. Heald C, Fowkes FG, Murray G, Price J: Risk of mortality and
12. Haig AJ, Tong HC, Yamakawa KS, Quint DJ, Hoff JT, Chiodo
11. Greenland P, Abrams J, Aurigemma GP, Bond MG, Clark LT,
10. Doobay AV, Anand SS: Sensitivity and specificity of the ankle-
8. Diehm N, Dick F, Cazprin C, Lawall H, Baumgartner I, Diehm
7. Diehm C, Lange S, Darius H, Pittrow D, von Stritzky B, Tepohl
6. de Graaff JC, Ubbink DT, Legemate DA, de Haan RJ, Jacobs
5. Criqui MH, Langer RD, Froenk A, Feigelson HS, Klauber MR,
4. Dheim N, Dick F, Cazprin C, Lawall H, Baumgartner I, Diehm
3. Hirsch AT, Criqui MH, Treat-Jacobson D, Regensteiner JG,
2. Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA,
1. Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA,
0. Doobay AV, Anand SS: Sensitivity and specificity of the ankle-