Shadows and convexity of surfaces

By Mohammad Ghomi

Abstract

We study the geometry and topology of immersed surfaces in Euclidean 3-space whose Gauss map satisfies a certain two-piece-property, and solve the “shadow problem” formulated by H. Wente.

1. Introduction

Let M be a closed oriented 2-dimensional manifold, $f: M \to \mathbb{R}^3$ be a smooth immersion into Euclidean 3-space, and $n: M \to \mathbb{S}^2$ be a unit normal vectorfield, or the Gauss map, induced by f. Then for every unit vector $u \in \mathbb{S}^2$ (corresponding to the direction of light) the shadow, S_u, is defined by

$$S_u := \{ p \in M : \langle n(p), u \rangle > 0 \},$$

where $\langle \cdot, \cdot \rangle$ is the standard innerproduct. If f is a convex embedding, i.e., f maps M homeomorphically to the boundary of a convex body, then it is intuitively clear that S_u is a connected subset of M for each u. In 1978, motivated by problems concerning the stability of constant mean curvature surfaces, H. Wente [17] appears to have been the first person to study the converse of this phenomenon, which has since become known as the “shadow problem” [13]: Does connectedness of the shadows S_u imply that f is a convex embedding? In this paper we prove:

Theorem 1.1. f is a convex embedding if and only if, for every $u \in \mathbb{S}^2$, S_u is simply connected.

Furthermore we show that the additional condition implied by the word “simply” in the above theorem is necessary:

Key words and phrases. Shadow, skew loop, tantrix, constant mean curvature, two-piece-property, tight immersion.
Theorem 1.2. There exists a smooth embedding of the torus, \(f: \mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{R}^3 \), such that for all \(u \in \mathbb{S}^2 \), \(S_u \) is connected.

Thus, connectedness of the shadows in general is not strong enough to ensure convexity or even determine the topology; however, we can show:

Theorem 1.3. If \(M \) is topologically a sphere, and, for every \(u \in \mathbb{S}^2 \), \(S_u \) is connected, then \(f \) must be a convex embedding.

In short, the answer to the above question is yes, provided that either the shadows are simply connected, or \(M \) is a sphere; otherwise, the answer is no. This settles Wente’s shadow problem in 3-space. See [7] and [5] for motivations behind this problem and relations to constant mean curvature surfaces.

Note 1.4. The immersion \(f: M \to \mathbb{S}^2 \) has connected shadows if and only if for every great circle \(C \subset \mathbb{S}^2 \), \(n^{-1}(\mathbb{S}^2 - C) \) has exactly two components. That is, the Gauss map satisfies a two-piece-property [3] similar to that formulated by T. Banchoff [2], and further developed by N. Kuiper [12].

Note 1.5. For a great circle \(C \subset \mathbb{S}^2 \), the number of components of \(n^{-1}(\mathbb{S}^2 - C) \) has been called the vision number with respect to a direction perpendicular to \(C \). This terminology is due to J. Choe, who conjectured [5, p. 210] that there always exists a direction with respect to which the vision number of \(f: M \to \mathbb{R}^3 \) is greater than or equal to \(4 - \chi(M) \) where \(\chi \) is the Euler characteristic. Theorem 1.2 gives a counterexample to this conjecture.

2. Regularity of horizons and shadow boundaries

First we need to establish some basic regularity results regarding the generic behavior of shadows. For each \(u \in \mathbb{S}^2 \), define the shadow function \(\sigma_u: M \to \mathbb{R} \) by

\[
\sigma_u(p) := \langle n(p), u \rangle.
\]

\(H_u := \sigma_u^{-1}(0) \) is called the horizon [5] in the direction \(u \). It is easy to see that in general \(\partial S_u \neq H_u \neq \partial S_{-u} \), where \(\partial \) denotes the boundary; however, using Sard’s theorem, we can show

Proposition 2.1. For almost all \(u \in \mathbb{S}^2 \) (in the sense of Lebesgue measure) \(H_u \) is a regular curve. Thus for these \(u \), both \(\partial S_u \) and \(\partial S_{-u} \) are regular curves as well. Further, if \(H_u \) is connected, then \(\partial S_u = H_u = \partial S_{-u} \).

We say that \(\Gamma \subset M \) is a regular curve if for each \(p \in \Gamma \) there is an open neighborhood \(U \) of \(p \) in \(M \) and a homeomorphism \(\varphi: U \to \mathbb{R}^2 \) such that \(\varphi(U \cap \Gamma) = \mathbb{R} \). In particular, unless stated otherwise, a regular curve needs not be differentiable.
Proof. Let T_pM be the tangent plane of M at p which we identify with a subspace of \mathbb{R}^3 (by identifying T_pM with $f_*(T_pM)$, and parallel translating the elements of $f_*(T_pM)$ to the origin in \mathbb{R}^3; f_* denotes the differential of f). Let $UTM := \{(p,v) : p \in M, v \in T_pM, \|v\| = 1\}$ denote the unit tangent bundle of M, and τ be the mapping given by

$$UTM \ni (p,v) \mapsto \tau(p,v) = (p, \langle v, u \rangle) \in \mathbb{S}^2.$$

By Sard’s theorem almost every $u \in \mathbb{S}^2$ is a regular value of τ; consequently, for such u, $\tau^{-1}(u)$ is a regular curve in UTM.

Now let π be the mapping defined by

$$UTM \ni (p,v) \mapsto \pi(p,v) = \frac{\pi(p)}{\|\pi(p)\|} \in \mathbb{S}^2,$$

and let u be a regular value of τ. Note that π is injective on $\tau^{-1}(u)$. As $\tau^{-1}(u)$ is compact, this implies that $\pi: \tau^{-1}(u) \to M$ is an embedding. Further note that

$$\pi(\tau^{-1}(u)) = \{p \in M : u \in T_pM\} = \{p \in M : \langle n(p), u \rangle = 0\} = H_u.$$

Thus H_u is a regular curve. But then, it follows that ∂S_u and ∂S_{-u} are each open in H_u, which yields that ∂S_u and ∂S_{-u} are both regular curves as well. Finally, since these shadow boundaries are also closed in H_u, it follows that whenever H_u is connected we have $\partial S_u = H_u = \partial S_{-u}$. \hfill \square

Note 2.2. Suppose that there is an open set $U \subset \mathbb{S}^2$, such that, for all $u \in U$, both S_u and S_{-u} are simply connected. Then M is homeomorphic to \mathbb{S}^2; because, by the above proposition, there exists a $u_0 \in U$ such that H_{u_0} is a regular curve. Consequently the closures \overline{S}_u and \overline{S}_{-u} are homeomorphic to disks. Further, since by assumption $M - H_{u_0}$ is made up of a pair of simply connected components, H_{u_0} is connected. Thus by the above proposition $\partial S_{-u_0} = \partial S_{u_0}$. So M is homeomorphic to a pair of disks glued together along their boundaries.

By smooth we mean differentiable of class C^∞, and for convenience we always assume that the immersion $f: M \to \mathbb{R}^3$ is smooth, though in this paper it is enough that f be C^3.

Note 2.3. The embedding $\pi: \tau^{-1}(u) \to M$ in the above proposition is smooth, when u is a regular value of τ. In particular, H_u is smooth for almost all $u \in \mathbb{S}^2$. To see this let $(p,v) \in \tau^{-1}(u)$. Then $u \in T_pM$. Let $v \in T_pM$ with $\langle u, v \rangle = 0$. Then $c(t) := (p, \cos(t)u + \sin(t)v)$ parametrizes the fiber UTM of the unit tangent bundle. Note that

$$\tau_{(p,v)}(c'(0)) = \frac{d}{dt}\bigg|_{t=0} c(t) = (p, \cos(t)u + \sin(t)v) \bigg|_{t=0} = v \neq 0.$$
On the other hand,
\[T_{(p,u)}(\tau^{-1}(u)) = \{ X \in T_{(p,u)}(UTM) : \tau_{(p,u)}(X) = 0 \}. \]

Thus \(c'(0) \notin T_{(p,u)}(\tau^{-1}(u)) \), which implies that \(\tau^{-1}(u) \) is never tangent to any of the fibers \(UT_pM \) of the unit tangent bundle. So \(\pi|_{\tau^{-1}(u)} \) is a smooth immersion.

Next we need a local regularity result for the horizons and shadow boundaries. The Gaussian curvature \(K : M \to \mathbb{R} \) is defined by \(K(p) := \det(n_*(p)) \).

Proposition 2.4. If \(K(p) \neq 0 \) for some \(p \in M \), then there exists a neighborhood \(U \) of \(p \) such that for all \(u \in T_pM, H_u \cap U \) is a smooth regular curve and \(\partial S_u \cap U = H_u \cap U = \partial S_{-u} \cap U \).

Proof. Since \(\det(n_*) = S(p) \neq 0 \), then, by the inverse function theorem, \(n \) is a diffeomorphism between small neighborhoods \(U \) of \(p \) in \(M \) and \(V \) of \(n(p) \) in \(\mathbb{S}^2 \). Let \(S_u := \{ x \in \mathbb{S}^2 : \langle x, u \rangle > 0 \} \). Then \(\partial S_u = \partial S_{-u} \) is a regular curve. Thus, since \(S_u = n^{-1}(S_u) \) and \(S_{-u} = n^{-1}(S_{-u}) \), the proof follows. \(\square \)

Note 2.5. If \(K(p) = 0 \), then \(H_u \) may not be regular for all \(u \in T_pM \); however, typically \(H_u \) will be regular for most \(u \in T_pM \); because, for \(u \in T_pM \), the differential of \(\sigma_u \) at \(p \) is given by
\[(d\sigma_u)_p(\cdot) = (\cdot, n_*(u)). \]

So if \(n_*(u) \neq 0 \), e.g., \(u \) is not an asymptotic direction, then \(d\sigma_u \) is nonzero at \(p \). Consequently, by the implicit function theorem, \(\sigma_u^{-1}(\sigma_u(p)) = \sigma_u^{-1}(0) = H_u \) is a smooth regular curve near \(p \).

3. Critical points of height functions

The next set of preliminary results we need involves some basic applications of Morse theory [14]. For every \(u \in \mathbb{S}^2 \), let the height function \(h_u : M \to \mathbb{R} \), associated to the immersion \(f : M \to \mathbb{R}^3 \), be defined by
\[h_u(p) := \langle f(p), u \rangle. \]

Recall that \(p \) is a critical point of \(h_u \) if the differential map \((dh_u)_p : T_pM \to \mathbb{R} \) is zero. Since \((dh_u)_p(\cdot) = \langle \cdot, u \rangle \), it follows that \(p \) is a critical point of \(h_u \) if and only if \(u = \pm n(p) \). If all of its critical points are nondegenerate, \(h_u \) is a Morse function.

Lemma 3.1. (i) \(h_u \) is a Morse function if and only if \(K \neq 0 \) at all critical points of \(h_u \). (ii) \(h_u \) is a Morse function for almost all \(u \in \mathbb{S}^2 \). (iii) The set \(U \subset \mathbb{S}^2 \) such that for all \(u \in U \) \(h_u \) is a Morse function is open.
Though the above is fairly well-known (e.g., see [3, pp. 11–12]), we include a brief proof for completeness.

Proof. If \(p \) is a critical point of \(h_u \), then, as a standard computation shows, the Hessian of \(h_u \) is given by

\[
\text{Hess} h_u(\cdot, \cdot) = \pm \langle \cdot, n_p(\cdot) \rangle.
\]

Thus \(h_u \) is a Morse function if and only if at each critical point \(p \), \(K(p) = \det(n_p) \neq 0 \). This is equivalent to requiring that both \(u \) and \(-u \) be regular values of \(n \), because \(p \) is a critical point of \(h_u \) if and only if \(u = \pm n(p) \). Let \(U \subset S^2 \) be the set of all such values. Then, by Sard’s theorem, \(S^2 - U \) has measure zero. Further, since \(M \) is compact, and the set of critical points of \(n \) is closed, it follows that the set of critical values of \(n \) is closed as well, so \(U \) is open.

The following is implicit in a paper of Chern and Lashof [4].

Lemma 3.2. If \(f \) is not a convex embedding, then there exists a Morse height function \(h_u \) with at least three critical points.

Proof. Let \(\#C(h_u) \) denote the number of critical points of \(h_u \). Since \(p \) is a critical point of \(h_u \) if and only if \(n(p) = \pm u \), we have:

\[
\int_{S^2} \#C(h_u) \, du = \int_{S^2} \#n^{-1}(\pm u) \, du = 2 \int_M |\det(n_*)| \, dV = 2 \int_M |K| \, dV.
\]

The second equality above is just an application of the area formula [6, Thm. 3.2.3], where \(dV \) denotes the volume element on \(M \). Suppose that \(f \) is not a convex embedding. Then, by a well-known theorem of Chern and Lashof [4],

\[
\int_M |K| \, dV > 4\pi.
\]

Combining the above expressions yields a lower bound for the average number of critical points:

\[
\frac{1}{4\pi} \int_{S^2} \#C(h_u) \, du > 2.
\]

So since, by Lemma 3.1, \(h_u \) is a Morse function for almost every \(u \in S^2 \), it follows that there exists a Morse function such that \(\#C(h_u) > 2 \).

4. Triplets on the boundaries of simply connected domains

Here we develop some elementary topological methods whose motivation will become more clear in the next section.
Definition 4.1. By a domain we mean a connected open subset $\Omega \subset M$. We say Ω is adjacent to a triplet of points $\{p_1, p_2, p_3\} \subset M$ if $p_i \in \partial \Omega$. Ω is regular near p_i if there are open neighborhoods U_i of p_i and homeomorphisms $\varphi_i: U_i \to \mathbb{R}^2$ which map $U_i \cap \Omega$ into the upper half-plane. A simple closed curve $T \subset \overline{\Omega}$ is a triangle of Ω (with vertices at $\{p_1, p_2, p_3\}$) if $p_i \in T$, and $T - \{p_1, p_2, p_3\} \subset \Omega$.

The following lemma, though quite elementary, is more subtle than it might at first appear (see Note 4.3).

Lemma 4.2. Every domain Ω adjacent to $\{p_1, p_2, p_3\}$ admits a triangle. Further if Ω is simply connected and regular near p_i, then any pair of such triangles may be homotoped to each other through a family of triangles of Ω.

Proof. Since Ω is open and connected, there exists a regular arc $A_{12} \subset \Omega$ whose end points are p_1 and p_2. Since A_{12} is regular, there exists a component $(\Omega - A_{12})^+$ of $\Omega - A_{12}$ which contains p_3 in its closure. Let $A_{23} \subset (\Omega - A_{12})^+$ be a regular arc with end points on p_2 and p_3. Then, similarly, there exists a component $((\Omega - A_{12})^+ - A_{23})^+$ of $(\Omega - A_{12})^+ - A_{23}$ which contains p_1 in its closure. Finally, let $A_{31} \subset ((\Omega - A_{12})^+ - A_{23})^+$ be a regular arc with end points at p_3 and p_1. The union of these three arcs, and their endpoints, gives the desired triangle.

Now suppose that Ω is simply connected and regular near p_i. Let T and T' be a pair of triangles of Ω, and let A_{12} and A'_{12} be arcs of T and T' respectively which connect p_1 and p_2. Since Ω is regular near p_i, we may homotope A_{12} (while keeping its end points fixed) by a small perturbation near p_1 so that A_{12} and A'_{12} coincide along a segment near p_1. Similarly, we may assume that they coincide near p_2 as well. Then it remains to homotope proper subarcs of A_{12} and A'_{12} which coincide at a pair of end points in Ω. Since Ω is simply connected, these subarcs may be homotoped to each other while keeping the end points fixed. Thus A_{12} and A'_{12} are homotopic through a family of arcs of Ω with end points at p_1 and p_2. Other arcs of T may be similarly homotoped to their counterparts in T', which completes the proof.

Note 4.3. Without the regularity assumption near p_i, the second claim in the above lemma is not true in general: Suppose for instance that $\Omega \subset \mathbb{R}^2$ is an open disk of radius 1 centered at the origin, and with segment $[0, 1)$ removed. Set $p_1 = (0, 0)$, $p_2 = (1/2, 0)$, and $p_3 = (1, 0)$. Then a triangle of Ω which lies above the x-axis may not be homotoped to one lying below the x-axis.
Proposition 4.4. For a fixed orientation of M, every simply connected domain Ω which is adjacent to and regular near a triple of (distinct) points $\{p_1, p_2, p_3\} \subset M$ uniquely determines a permutation α_Ω of $\{p_1, p_2, p_3\}$ such that (i) if Ω and Ω' have a triangle in common, then $\alpha_\Omega = \alpha_{\Omega'}$; and (ii) if $\partial \Omega = \partial \Omega'$ is a regular curve, and Ω and Ω' are distinct, then $\alpha_\Omega \neq \alpha_{\Omega'}$.

Proof. By Lemma 4.2 there exists a triangle T of Ω. T bounds a simply connected subdomain U of Ω. Since M is oriented, U inherits a preferred sense of orientation, which in turn induces an orientation, or a sense of direction, on T. This direction induces a permutation of $\{p_1, p_2, p_3\}$ in the obvious way: If as we move along T and pass p_1 we reach p_2 before reaching p_3, then we set the induced permutation α_Ω to be the cycle (p_1, p_2, p_3); otherwise, the induced permutation is the cycle (p_1, p_3, p_2). It is clear that these permutations depend continuously on T. Thus, since by Lemma 4.2, all triangles of Ω are homotopic, it follows that α_Ω does not depend on the choice of T and is therefore well defined; and furthermore, if Ω and Ω' have a triangle in common then $\alpha_\Omega = \alpha_{\Omega'}$.

Now suppose that $\partial \Omega = \partial \Omega'$ is a regular curve, and Ω and Ω' are distinct. Then Ω and Ω' induce opposite orientations on $\partial \Omega$ which in turn gives rise to distinct permutations of $\{p_1, p_2, p_3\}$ (since Ω is simply connected, $\partial \Omega$ is connected). But by small perturbations, $\partial \Omega$ may be homotoped to a triangle of Ω, just as well as it may be homotoped to a triangle of Ω'. Thus the orientations which Ω and Ω' induce on $\partial \Omega$ are consistent with the orientations which Ω and Ω' induce on their own triangles respectively. So $\alpha_\Omega \neq \alpha_{\Omega'}$. □

5. Proof of Theorem 1.1

First we show that if f is a convex embedding, then S_u is simply connected for all $u \in S^2$. To see this let Π be a plane perpendicular to u and let $\pi: \mathbb{R}^3 \to \Pi$ be the orthogonal projection. Then $D := \pi(f(M))$ is a convex subset of Π with interior points. In particular, $\text{int}(D)$ is homeomorphic to an open disk. Since $f(M)$ is convex and by definition $\langle n(p), u \rangle > 0$ for all $p \in S_u$, it is not hard to verify that $f(S_u)$ is a graph over $\text{int}(D)$. Thus $\pi \circ f: S_u \to \text{int}(D)$ is a homeomorphism.

Now we prove the other direction: Assume that for every $u \in S^2$, S_u is simply connected; we have to show that f is a convex embedding. The proof is by contradiction:

Lemma 5.1. If f is not a convex embedding, then there exists a pair of orthogonal vectors $u_0, v_0 \in S^2$ such that (i) h_{u_0} is a Morse function with at least three critical points, and (ii) $\partial S_{v_0} = H_{v_0} = \partial S_{-v_0}$ is a regular curve.
Proof. By Lemma 3.2, there exists a unit vector $u \in S^2$ such that the corresponding height function h_u is a Morse function and has at least three critical points. Further, it follows from Lemma 3.1, that this u may be chosen from an open set $U \subset S^2$.

Let $u^\perp := \{v \in S^2 : \langle u, v \rangle = 0\}$. Then $U^\perp := \cup_{u \in U} u^\perp$ is open. Consequently, by Proposition 2.1, there exits a $v_0 \in U^\perp \subset U^\perp$ such that H_{v_0} is a regular curve. Further, since the complement of H_{v_0} consists of a pair of simply connected domains, H_{v_0} is connected. Thus, again by Proposition 2.1, $\partial S_{v_0} = H_{v_0} = \partial S_{-v_0}$ is a regular curve.

Let $\tilde{v}_0 \in S^2$ be a vector orthogonal to both u_0 and v_0, and set

$$(1) \quad v(\theta) := \cos(\theta) v_0 + \sin(\theta) \tilde{v}_0.$$

Let p_i, $i = 1, 2, 3$, be a fixed triple of (distinct) critical points of h_{u_0}.

Lemma 5.2. For all $\theta \in \mathbb{R}$, $S_{v(\theta)}$ is a domain adjacent to and regular near p_i.

Proof. If p_i is a critical point of h_{u_0}, then $n(p_i) = \pm u_0$. So $\sigma_{v(\theta)}(p_i) = \langle v(\theta), \pm u_0 \rangle = 0$, which yields that $p_i \in H_{v(\theta)}$. Since h_{u_0} is a Morse function, then, by Lemma 3.1, $K(p_i) \neq 0$. So by Proposition 2.4, there exists a neighborhood U_i of p_i such that $\partial S_{v(\theta)} \cap U_i = H_{v(\theta)} \cap U_i = \partial S_{-v(\theta)} \cap U_i$, which completes the proof.

It now follows from Proposition 4.4 that each $S_{v(\theta)}$ induces a permutation of $\{p_1, p_2, p_3\}$ which we denote by $\alpha_{\theta} := \alpha_{(S_{v(\theta)})}$. Further, by the same proposition and since $\partial S_{v_0} = \partial S_{-v_0}$ is a regular curve, it follows that $\alpha_0 \neq \alpha_\pi$. On the other hand, letting Sym denote the symmetric group, we claim that the mapping

$$\mathbb{R} \ni \theta \mapsto \alpha_{\theta} \in \text{Sym}\{\{p_1, p_2, p_3\}\}$$

is locally constant, which, since $[0, \pi]$ is connected, would imply that $\alpha_0 = \alpha_\pi$. This contradiction, which would complete the proof, follows from Proposition 4.4 and the following:

Lemma 5.3. For each $\theta_0 \in \mathbb{R}$ there exists an $\varepsilon > 0$ such that if $|\theta - \theta_0| < \varepsilon$ then $S_{v(\theta)}$ and $S_{v(\theta_0)}$ have a common triangle (with vertices at $\{p_1, p_2, p_3\}$).

Proof. Recall that, since h_{u_0} is a Morse function, then, by Lemma 3.1, $K(p_i) \neq 0$ which yields that n is a local diffeomorphism at p_i. Therefore, by Proposition 2.4, in a neighborhood W of $\{p_1, p_2, p_3\}$, $\partial S_{v(\theta)} = H_{v(\theta)} = n^{-1}(v^\perp(\theta))$ where $v^\perp(\theta)$ denotes the great circle in S^2 orthogonal to $v(\theta)$. So, since $v^\perp(\theta)$ depends continuously on θ, it follows that, in W, $\partial S_{v(\theta)}$ depends continuously on θ as well.
Let T be a triangle of $S_{v(\theta_0)}$. Since $S_{v(\theta_0)}$ is open, after a perturbation of T we may assume that the arcs of T are smooth and meet $\partial S_{v(\theta_0)}$ transversely (recall that, by Proposition 2.4, $\partial S_{v(\theta_0)}$ is smooth near p_i). Thus, by the above paragraph, it follows that if $|\theta - \theta_0| < \varepsilon_1$, for some sufficiently small $\varepsilon_1 > 0$, then T meets $\partial S_{v(\theta)}$ transversely as well. Then it follows that for some neighborhood W of $\{p_1, p_2, p_3\}$, $(T - \{p_1, p_2, p_3\}) \cap W \subset S_{v(\theta)}$ for all θ such that $|\theta - \theta_0| < \varepsilon_1$.

Next note that $T - W$ is compact, and the mapping $\theta \mapsto \sigma_{v(\theta)}$ is continuous; therefore, since by assumption $\sigma_{v(\theta_0)} > 0$ on $T - W$, it follows that there exists an $\varepsilon_2 > 0$ such that $\sigma_{v(\theta)} > 0$ on $T - W$ for all θ such that $|\theta - \theta_0| < \varepsilon_2$. This yields that $T - W \subset S_{v(\theta)}$ for all θ such that $|\theta - \theta_0| < \varepsilon_2$.

From the previous two paragraphs it follows that, setting $\varepsilon := \min\{\varepsilon_1, \varepsilon_2\}$, we have $(T - \{p_1, p_2, p_3\}) \subset S_{v(\theta)}$ for all θ such that $|\theta - \theta_0| < \varepsilon$, which completes the proof.

Note 5.4. Theorem 1.1 does not remain valid if the shadows are defined as the sets where $\langle n(p), u \rangle \geq 0$. For instance, the standard torus of revolution would be a counterexample.

Note 5.5. Theorem 1.1 does not remain valid without the compactness assumption; the hyperbolic paraboloid given by the graph of $z = xy$ would be a counterexample. This follows because here the unit normal vectorfield n is a homeomorphism into a hemisphere. Thus the preimage of any open hemisphere under n is simply connected.

6. Proof of Theorem 1.2

Definition 6.1. We say an immersion $\gamma: S^1 \simeq \mathbb{R}/2\pi \to \mathbb{R}^3$ is a skew loop if it has no pair of distinct parallel tangent lines; i.e,

$$\gamma'(t) \times \gamma'(s) \neq 0$$

for all $t, s \in [0, 2\pi)$, $t \neq s$.

A specific example of a skew loop, formulated by Ralph Howard [11], is as follows:

Example 6.2. Let $\gamma(t) := (x(t), y(t), z(t))$, where

$$x(t) := -\cos(t) - \frac{1}{20} \cos(4t) + \frac{1}{10} \cos(2t),$$

$$y(t) := +\sin(t) + \frac{1}{10} \sin(2t) + \frac{1}{20} \sin(4t),$$

$$z(t) := \frac{46}{75} \sin(3t) - \frac{2}{15} \cos(3t) \sin(3t),$$
and \(t \in [0, 2\pi] \). A computation of the tangential indicatrix \(T(t) := \frac{\gamma'(t)}{\|\gamma'(t)\|} \) shows that \(T(t) \neq \pm T(s) \) for all \(t, s \in [0, 2\pi], \ t \neq s \). Thus \(\gamma \) is a skew loop.

Figure 1 shows the pictures of a tube built around \(\gamma(S^1) \).

If \(\gamma: S^1 \to \mathbb{R}^3 \) is an immersion, then the unit normal bundle of \(\gamma \) consists of all pairs \((p, \nu) \in S^1 \times S^2\) such that \(\langle \gamma'(p), \nu \rangle = 0 \). Since this bundle is homeomorphic to a torus, the following proposition yields Theorem 1.2.

Proposition 6.3. Let \(\gamma: S^1 \to \mathbb{R}^3 \) be a skew loop and \(M \) be the unit normal bundle of \(\gamma \). For \(\varepsilon > 0 \), define \(f_\varepsilon: M \to \mathbb{R}^3 \) by

\[
 f_\varepsilon(p, \nu) := \gamma(p) + \varepsilon \nu.
\]

Then, for \(\varepsilon \) sufficiently small, \(f_\varepsilon \) is a smooth immersion, and for all \(u \in S^2 \), \(S_u \) is connected. If \(\gamma \) is an embedding, then \(f_\varepsilon \) is an embedding as well.

Proof. That \(f_\varepsilon \) is a smooth immersion and is an embedding when \(\gamma \) is embedded follows from the tubular neighborhood theorem. Let \(n: M \to S^2 \) be the unit normal vector field given by \(n(p, \nu) = \nu \), and \(\pi: M \to S^1 \) be given by \(\pi(p, \nu) = p \). For every \(p \in S^1 \), let \(F_p := \pi^{-1}(p) \) be the corresponding fiber. Note that \(n \) embeds \(F_p \) into the great circle in \(S^2 \) which lies in the plane perpendicular to \(T(p) \). Further recall that \(S_u = n^{-1}(S^2_u) \) where \(S^2_u \) is the open hemisphere determined by \(u \). Thus there are only two possibilities for each \(p \in S^1 \): either \(F_p \) intersects \(S_u \) in an open half-circle, or \(F_p \) is disjoint from \(S_u \). The latter occurs if and only if \(T(p) \) is parallel to \(u \), which, since \(\gamma \) is skew, can occur at most once. Hence, it follows that \(S_u \) is either homeomorphic to a disk or an annulus. In particular, \(S_u \) is connected for every \(u \in S^2 \). \(\Box \)

Question 6.4. Let \(M \) be a closed oriented 2-dimensional manifold with topological genus \(g(M) \geq 2 \). Does there exist an embedding, or an immersion, \(f: M \to \mathbb{R}^3 \) such that \(S_u \) is connected for all \(u \in S^2 \)?
Note 6.5. Skew loops were first discovered by B. Segre [16] to disprove a conjecture of H. Steinhaus (see also [15]). More recently, it has been shown that there exists a skew loop in each knot class [18], and every pair of knots may be realized with the same tangential indicatrix [1].

Note 6.6. A general procedure for constructing skew loops is as follows. Let $T \subset S^2$ be a smooth simple closed curve such that (i) the origin is contained in the interior of the convex hull of T, $(0, 0, 0) \in \text{int conv } T$, and (ii) T does not contain any pair of antipodal points, $T \cap -T = \emptyset$. Figure 2 shows an example.

![Figure 2](image)

Let $T(s), s \in \mathbb{R}$, denote a periodic parametrization of T by arclength. So, assuming T has total length L, we have $T(s + L) = T(s)$. Since $(0, 0, 0) \in \text{int conv } T$, there exists a function $\rho(s)$ with period L such that $\int_0^L \rho(s) T(s) \, ds = 0$ [10, p. 168]. Set

$$
\gamma(t) := \int_0^t \rho(s) T(s) \, ds.
$$

Then $\gamma(t + L) = \gamma(t)$. Further, $\gamma'(t)/\|\gamma'(t)\| = T(t)$. Thus γ is a closed curve whose tangential spherical image coincides with T. Hence γ is a skew loop.

Note 6.7. With the sole exception of ellipsoids, every closed surface immersed in \mathbb{R}^3 admits a skew loop [8].

7. Proof of Theorem 1.3

We follow a modified outline of the proof of Theorem 1.1, which again proceeds by contradiction. Suppose that M is homeomorphic to S^2 and S_u is connected for all $u \in S^2$. If f is not a convex embedding, let u_0 and v_0 be as in Lemma 5.1, and $v(\theta)$ be as defined by (1).

Definition 7.1. The augmented shadow $\tilde{S}_{v(\theta)}$ is the union of $S_{v(\theta)}$ with all components X of $H_{v(\theta)}$ such that $U - X \subset S_{v(\theta)}$ for an open neighborhood U of X.
Then $\tilde{S}_v(\theta)$ satisfies the conditions of the following lemma:

Lemma 7.2. If $U \subset \mathbb{S}^2$ is a connected open set, and $\mathbb{S}^2 - U$ is also connected and has an interior point, then U is simply connected.

Proof. Let p be an interior point of $\mathbb{S}^2 - U$. Then the stereographic projection maps U into a connected open set with connected complement. Thus, by [9, Thm. 11.4.1], U is simply connected. □

So $\tilde{S}_v(\theta)$ is simply connected. Further:

Lemma 7.3. For all $\theta \in \mathbb{R}$, $\tilde{S}_v(\theta)$ is a domain adjacent to and regular near p_i.

Proof. This follows just as in the proof of Lemma 5.2, once we observe that whenever $\partial S_v(\theta) = H_v(\theta) = \partial S_{-v}(\theta)$ is regular in some open neighborhood, then $\partial \tilde{S}_v(\theta)$, and $\partial S_v(\theta)$ coincide within that neighborhood. □

Thus each θ induces a permutation $\tilde{\alpha}_\theta := \alpha \sim_{(S_v(\theta))} \{p_1, p_2, p_3\}$ which satisfies the enumerated properties in Proposition 4.4. In particular $\tilde{\alpha}_0 \neq \tilde{\alpha}_\pi$, because since $\partial S_v(0) = \partial S_{-v}(0)$ is by Lemma 5.1 a regular curve, it follows that $\partial \tilde{S}_v(0) = \partial \tilde{S}_{-v}(0)$ is a regular curve as well. So it remains to verify the following lemma which shows that $\theta \mapsto \tilde{\alpha}_\theta$ is locally constant. This would yield that $\tilde{\alpha}_0 = \tilde{\alpha}_\pi$ which is the desired contradiction.

Lemma 7.4. For each $\theta_0 \in \mathbb{R}$ there exists an $\varepsilon > 0$ such that if $|\theta - \theta_0| < \varepsilon$ then $\tilde{S}_v(\theta)$ and $\tilde{S}_v(\theta_0)$ have a common triangle (with vertices at $\{p_1, p_2, p_3\}$).

Proof. This is an immediate consequence of Lemma 5.3 where it was proved that $S_v(\theta)$ and $S_v(\theta_0)$ have a triangle in common (the proof of Lemma 5.3 makes no use of the simply connectedness assumption on $S_v(\theta)$). □

Acknowledgements. The author is grateful to Ralph Howard, whose notes [11] provided a helpful basis for the exposition of this paper. Also I thank John McCuan for bringing the shadow problem to my attention, and Henry Wente for his encouragement. Finally, I would like to acknowledge the hospitality of the Mathematics Department at the University of California at Santa Cruz, where parts of this work were completed.

University of South Carolina Columbia, SC
E-mail address: ghomi@math.sc.edu
URL: www.math.sc.edu/~ghomi
References

[1] C. Adams, C. Lefever, J. Othmer, S. Paik, A. Stier, and J. Tripp, An introduction to the supercrossing index of knots and the crossing map, preprint.

[2] T. F. Banchoff, The two-piece property and tight n-manifolds-with-boundary in E^n, Trans. Amer. Math. Soc. 161 (1971), 259–267.

[3] T. E. Cecil and P. J. Ryan, Tight and Taut Immersions of Manifolds, Pitman (Advanced Publishing Program), Boston, Mass., 1985.

[4] S.-s. Chern and R. K. Lashof, On the total curvature of immersed manifolds, Amer. J. Math. 79 (1957), 306–318.

[5] J. Choe, Index, vision number and stability of complete minimal surfaces, Arch. Rational Mech. Anal. 109 (1990), 195–212.

[6] H. Federer, Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften 153, Springer-Verlag, New York, 1969.

[7] M. Ghomi, Solution to the shadow problem in 3-space, in Minimal Surfaces, Geometric Analysis and Symplectic Geometry, 2000, Adv. Stud. Pure Math. (To appear); preprint available at www.math.sc.edu/~ghomi.

[8] M. Ghomi and B. Solomon, Skew loops and quadric surfaces, preprint available at www.math.sc.edu/~ghomi.

[9] R. E. Greene and S. G. Krantz, Function Theory of One Complex Variable, John Wiley & Sons Inc., New York, 1997.

[10] M. Gromov, Partial Differential Relations, Springer-Verlag, New York, 1986.

[11] R. Howard, Mohammad Ghomi’s solution to the shadow problem, Lecture notes, available at www.sc.edu/~howard.

[12] N. H. Kuiper, Geometry in curvature theory, in Tight and Taut Submanifolds (Berkeley, CA, 1994), pp. 1–50, Cambridge Univ. Press, Cambridge, 1997.

[13] J. McCuan, Personal e-mail, June 23, 1998.

[14] J. Milnor, Morse Theory, Based on lecture notes by M. Spivak and R. Wells, Ann. of Math. Studies 51, Princeton Univ. Press, Princeton, NJ, 1963.

[15] J. R. Porter, A note on regular closed curves in E^3, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 (1970), 209–212.

[16] B. Segre, Global differential properties of closed twisted curves, Rend. Sem. Mat. Fis. Milano 38 (1968), 256–263.

[17] H. C. Wente, Personal e-mail, January 9, 1999.

[18] Y.-Q. Wu, Knots and links without parallel tangents. Bull. London Math. Soc., to appear.

(Received January 29, 2001)