QTL Mapping for Adult Plant Resistance to Stripe Rust in Wheat line "Guixie 3"

Bin CHENG
Guizhou Provincial Academy of Agricultural Sciences

Xu GAO
Guizhou Provincial Academy of Agricultural Sciences

Ning CAO
Guizhou Provincial Academy of Agricultural Sciences

Yanqing DING
Guizhou Provincial Academy of Agricultural Sciences

Tianqing CHEN
Guizhou Provincial Academy of Agricultural Sciences

Qiang ZHOU
Chengdu Institute of Biology

Yu GAO
Guizhou University

Zhihai XIN
Guizhou University

Liyi Zhang (lyzhang1997@hotmail.com)
Guizhou Provincial Academy of Agricultural Sciences https://orcid.org/0000-0002-5300-9725

Research Article

Keywords: common wheat, stripe rust, adult plant resistance, SNP array, quantitative trait loci (QTL)

DOI: https://doi.org/10.21203/rs.3.rs-207823/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Development of cultivars with multiple resistances has proven to be an effective way to prevent diseases in wheat breeding. The Guixie 3 variety (GX3) has shown excellent performance in resistance to stripe rust in field for many years. The purpose of this study was to detect quantitative trait loci (QTL) associated with resistance to stripe rust in the adult plant stage and determine closely linked molecular markers. A population of recombinant inbred lines (n=228) was derived from a cross between the susceptible landrace Mian 96-5 (M96-5) and GX3 variety and evaluated in multiple field studies to elucidate genetic resistance by identifying QTL specifically for stripe rust resistance. A total of 19 QTL located on 12 chromosomes showed resistance to wheat stripe rust when studying phenotypic data from multiple field tests over the course of six years. These chromosomes included 1B (2), 1D (2), 2A (2), 2B (2), 2D (1), 4B (2), 4D (1), 5A (3), 5B (1), 6A (1), 6B (1), and 7B (1). Two stable QTL on chromosomes 2AS (Qyr.gaas.2AS) and 6AS (Qyr.gaas.6AS) were detected in six and five different environments, respectively; both QTL were derived from the GX3 variety. Qyr.gaas.2AS was found to be crucial for increasing adult plant resistance, which may explain the large phenotypic variation of 45.52%. Our results provide theoretical and molecular insight for wheat breeding and suggest the cloning of genes associated with the GX3 variety may be beneficial in future studies.

Introduction

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most damaging diseases associated with global wheat production (Wellings 2011). Since 1949, there have been four epidemics of wheat stripe rust in China (1950, 1964, 1990, and 2002), resulting in a loss of more than one million tons of wheat per year (Kang et al. 2015). The effective use of disease-resistant varieties is crucial for the control of wheat stripe rust. There are two main types of genetic wheat resistance to stripe rust. One is a resistance that presents itself at the seedling stage (or all-stage resistance [ASR]); this form of resistance is generally effective during the whole growth period. The second is adult plant resistance (APR), which usually provides partial resistance to all races at post-seedling stages.

Epidemics are caused by a loss of effective resistance genes against stripe rust in wheat production (Han et al. 2015). Currently, wheat varieties carrying the stripe rust resistance gene Yr24/Yr26 that were once widely used in China (Hu et al. 2014), such as Chuanmai 42 (Liu et al. 2010) and Guinong 22 (He et al. 2011), have lost their resistance due to the emergence of a pathogenic group (V26). At the National Wheat Rust and Powdery Mildew Research Collaborative Group Meeting, which took place in China in 2016, the pathogenic group (V26) of Guinong 22 was officially named Chinese Yellow Rust 34 (CYR34). At present, among the 83 (Yr1–Yr78) officially designated resistance genes and 47 proposed resistance genes (Maccaferri et al. 2015; McIntosh et al. 2017), only a few seedling disease resistance (ASR) genes (Yr5, Yr15, Yr53, Yr61, Yr64, Yr65, and Yr69) and adult plant disease resistance genes (APR) (Yr18, Yr30, Yr32, Yr36, Yr39, Yr52, Yr54, Yr59, and Yr62) still maintain effective resistance to wheat stripe rust (Hou et al. 2016; Lu et al. 2014; Zeng et al. 2015; Zhou et al. 2015). Therefore, to ensure the sustainable management of wheat stripe rust in southwest China, it is imperative to discover new stripe rust resistance genes, identify resistance-associated molecular markers, and to ultimately breed new disease resistant wheat varieties.

In recent years, with the development of high-throughput genotyping technology, single nucleotide polymorphism (SNP) arrays have been widely used in wheat. An example includes the construction of a high-density genetic map with stripe rust resistance gene/quantitative trait locus (QTL) mapping (Chen et al. 2016a; Gao et al. 2016; Jighly et al. 2015; Liu et al. 2015; Winfield et al. 2015; Wu et al. 2018a; Wu et al. 2018b) and genome wide association analysis (Kertho et al. 2015; Liu et al. 2017; Naruoka et al. 2015; Zegeye et al. 2014). The wheat 55K SNP array is an economical medium-density SNP chip developed from the wheat 660K SNP array (Jia and Zhao 2016) and has been used in many different studies. The 660K SNP array has been used to provide a genetic map of the P genome of Agropyron (Zhou et al. 2018),...
to identify the gene for grain weight using an integrated genetic map with >100,000 SNPs (Cui et al. 2017), and to map QTL for stripe rust resistance in adult stage of wheat (Wu et al. 2017).

Wheat wild relatives can be used as a resource bank of disease resistance genes. Some genes have been officially classified for stripe rust resistance (Maccarelli et al. 2015). Wild emmer wheat (*T. dicoccoides*), a wild tetraploid ancestor of common wheat, has good resistance for wheat stripe rust and importantly shows great potential for wheat breeding. A number of resistant genes have been previously identified in wild emmer wheat, such as *YrH52, Yr15, Yr35,* and *Yr36* (Li et al. 2008; Peng et al. 1999; Uauy et al. 2005; Wang et al. 2018). Oat belongs to the *Gramineae Aveneae Dumort Avena L.* variety and has good resistance to biotic (wheat rust and scab) and abiotic (drought, cold, and barren) stress (Han et al. 2008; Sharma and Gill 1983; Zhang 1999). GX3 was obtained by distant hybridisation of wild emmer wheat (*T. dicoccoides*) with wild oat (*Avena fatua L. var. glabrata pat*) and then backcrossed with common wheat (Guinong 22). It has shown resistance to the current wheat stripe rust epidemic for many years. In this study, we use a wheat 55K SNP array to map QTL for APR to stripe rust in a GX3 with a recombinant inbred line (RIL) population of "M96-5/GX3", to identify tightly linked molecular markers for their use in future marker-assisted breeding.

Materials And Methods

Plant materials

The susceptible winter landrace line M96-5, and the resistant line GX3 were used as the parental lines for this study. The mapping population comprised of 228 F$_6$ RILs from crossing M96-5×GX3. The GX3 line is a semi-winter, late maturity, long spikelet variety of common wheat and its entire growth period is an estimated 210 days. The susceptible line M96-5 has large spikelet with excellent agronomic traits and its growth period is an estimated 190 days. The RIL population was established by Dr. Zhou Qiang from the Chengdu Institute of Biology, Chinese Academy of Sciences (Chengdu, Sichuan Province). Avocet S (AVS) and SY95-71 were used as susceptible controls throughout the study.

Phenotyping

In this field trials, two parents and RIL populations were used to test resistance in mixed races of stripe rust within a natural setting. These were planted in October 2016 in Mianyang, Sichuan Province (31°23′N, 104°49′E); in October 2017, 2018, and 2019 in Guiyang, Guizhou Province (26°29′N, 106°39′E), and in November 2019 in Anshun, Guizhou Province (26°24′N, 105°96′E) and Shuangliu, Sichuan Province (30°57′N, 103°92′E). There were two rows per line, 10 lines per block, and the susceptible line AVS (or SY95-71) was planted every five lines as the control line. The first severe degree was recorded when the disease severity of AVS (or SY95-71) in the control group and the susceptible parent M96-5 reached 50% or more (i.e., the area of rust fungus accounted for more than half of the entire leaf). In accordance with the percentage of the total leaf area occupied by rust fungus, the severity of stripe rust was also recorded visually for each wheat family. Recordings were taken every other week until the susceptible control reached 100%, known as the maximum disease severity (MDS). The modified Cobb scale was referred to for the phenotypic data required for QTL analysis (i.e., 1, 5, 10, 20, 30, 50, 60, 80, and 100%) (Li and Zeng 2002).

Statistical analysis

To estimate the genetic and environmental effects in each line, we compared the environments and line×environment interactions using the AOV function in IciMapping 4.1 software (Zeng et al. 2019) and significance was measured by analysis of variance (ANOVA). The correlation between multiple field conditions was analysed by the Pearson method in SPSS v20 software.

Genotyping
Genomic DNA was extracted using the cetyl trimethyl ammonium bromide (CTAB) method (Saghai-Maroof et al. 1984). Two parents and RIL populations were genotyped using the 55K SNP array by China Golden Marker (Beijing) Co., Ltd. (http://www.cgmb.com.cn/). Basic quality control (QC) tests were performed on samples by measuring markers based on genotype data detection rate, minimum allele frequency (MAF), and heterozygosity. The criteria used for sample quality control were as follows: DQC > 0.82, detection rate ≥ 85% and heterozygosity rate ≤ 10%; the criteria for marking quality control were as follows: detection rate greater than or equal to 95%, and MAF of 5% or more, heterozygosity rate of 50% or less, and the number of alleles was 2.

Based on the preliminary results of QTL mapping, 22 pairs of simple sequence repeat (SSR) markers located on the 2AS chromosome were selected for genetic map construction (see Table S1). These markers were identified from GrainGenes (https://wheat.pw.usda.gov/GG3/) (Somers et al. 2004) and PCR reactions and polyacrylamide electrophoresis were performed as previously reported (Wu et al. 2018a). To distinguish the difference between Yr17 and major QTL on chromosome 2AS identified in this study, the specific CAPS marker URIC/LN2 for Yr17 was used to scan wheat lines with GX3 pedigree and the carrier line of Yr17 gene (VPMI) and followed by digesting of restriction enzyme DpnII. Detecting procedure for URIC/LN2 was processed according to previously report (Helguera et al. 2003).

Map construction and QTL analysis

The BIN function in QTL IciMapping v4.1 software (http://www.isbreeding.net/) (Meng et al. 2015) was used for redundant marker screening. In the mapping software, Joinmap v4.0, the LOD (Likelihood of Odd) value was set to 3.0 for linkage analysis and genetic map distance was calculated using the Kosambi function. QTL analysis was performed using QTL IciMapping v4.1 software and the LOD threshold was set to 2.5. Mapchart (https://www.wur.nl/en/show/Mapchart.htm) was used to draw images (Voorrips 2002). The R package R/qtl was used to draw the genetic map (Broman et al. 2003).

Prediction of candidate genes

According to the derivation region of the QTL on the target chromosome, the physical position of the SNP in Chinese Spring was used to search in International Wheat Genome Sequencing Consortium (IWGSC) (https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations) and the corresponding gene annotation and sequence was obtained.

Results

Evaluation of resistance

In the six different field trials, phenotypic data indicated significant genetic variation in APR. M96-5 and GX3 obtained mean MDS scores of 100% and 0%, respectively. MDS of the mapping populations ranged from 0 to 100% in each field study and the phenotypic data were continuously distributed (Figure 1). Pearson's correlation among the six field trials ranged from 0.38 to 0.79 (P < 0.001) (Table 2). ANOVA analysis including replicates for each experiment showed that there was significant variation in MDS when comparing different locations and wheat lines. Wheat lines combined with environment interactions also differed significantly and the heritability between different locations was also found to be significantly high (0.91). These results indicated that the QTL in APR had a dramatic effect in decreasing disease severity (Table 1).

Construction of genetic linkage map

Whole genome analysis of the two parental lines and 228 RILs was performed using the wheat 55K SNP array. Within the 55,000 SNPs, 7570 were identified as polymorphic markers to distinguish between M96-5 and GX3. A total of 589
were excluded because they had missing data (> 10%) or showed segregation distortion. The remaining 6981 SNPs fell into 1543 bins and 5438 SNPs were excluded.

Preliminary localisation was performed using IciMapping 4.1 software. These results showed that an important QTL was located at the end of chromosome 2AS with an estimated LOD value of 40. We therefore selected 22 pairs of SSR primers at the distal region of chromosome 2AS and performed PCR amplification on the parental lines (GX3 and M96-5), a disease resistant pool (B_R), and a susceptible pool (B_S). Four markers (cfd36, wmc382, barc124, and wmc296) showed successful amplification of consistent polymorphic bands between the resistant parents and the resistant pools. The four SSR markers were then used in combination with the 1543 SNPs obtained from genotyping data to analyse the QTL for resistance to wheat stripe rust at the adult plant stage. The final genetic map included 21 linkage groups corresponding to the 21 chromosomes (Figure 2 and Table 3). The total length of the genetic map was 3371.20 cM, with a mean marker/bin interval of 0.46 cM. Chromosome 7D was the longest (255.73 cM, 0.23 markers /cM) and chromosome 6A was the shortest (49.45 cM, 0.47 markers /cM). Chromosome 2A had 91 markers with a genetic map of 125.43 cM (0.73 markers /cM).

In the wheat genome, the B genome was found to have the highest number of markers (583, 37.69%), whereas the D genome had the fewest (382, 24.69%). Among the seven homologous groups of wheat, the fifth homology group had the highest number of SNPs (318, 20.56%), while the sixth homology group had the fewest (112, 7.24%); for the 21 chromosomes in wheat, there was an average of 75 markers for each chromosome. Chromosome 5A harboured the highest number of markers (124, 8.02%), while chromosome 6A had the fewest (23, 1.49%) (Table 4).

Mapping the QTL

A total of 19 QTL for resistance to wheat stripe rust were located on 12 chromosomes, including 1B (2), 1D (2), 2A (2), 2B (2), 2D (1), 4B (2), 4D (1), 5A (3), 5B (1), 6A (1), 6B (1), and 7B (1), of which two stable QTL on chromosome 2AS (Qyr.gaas.2AS) and 6AS (Qyr.gaas.6AS) were detected in six and five different environments, respectively (Table 5, Figure 3). An important QTL (Qyr.gaas.2AS) was located at the position of 5cM on chromosome 2AS. The six-year LOD values ranged from 8.01 to 44.61 with confidence intervals of cfd36~AX-110576889 (3.5–5.5cM), which explains the high phenotypic variation of 45.52%. Qyr.gaas.6AS was located at 4 cM of the end of chromosome 6AS with a confidence interval of AX-109558600~AX-109542604 (3.5–4.5cM), accounting for a phenotypic variation of 3.27–21.73%. In addition, a QTL (Qyr.gaas.6BL) was identified in three different environments (Mianyang in 2017, and Guiyang in 2018 and 2019), with a confidence interval of AX-109408478~AX-110409180 (54.5–60.5cM) and a phenotypic variation of 2.01–6.66%. The additive effect of the above three QTL was negative, indicating that their disease resistance originated from GX3. Moreover, another QTL (Qyr.gaas.2D) was identified in three environments (Mianyang in 2017, Guiyang in 2018, and Anshun in 2020), with a phenotypic variation of 2.56–3.55%. The additive effects were positive, indicating that its disease resistance originated from the other parental line, M96-5.

Candidate gene prediction

According to the physical locations of Qyr.gaas.2A (cfd36~AX-110576889, 15.22Mb) and Qyr.gaas.6A (AX-109558600~AX-109542604, 5.12Mb), the sequences located within the interval of two QTL were searched in IWGSC to identify the wheat gene ID, annotation, and corresponding sequence. The results identified 620 and 61 segments at the confidence intervals of Qyr.gaas.2A and Qyr.gaas.6A, respectively (Table S2 and Table S3). The two intervals contained potentially functional genes such as nucleotide binding site-leucine rich repeat (NBS-LRR), a disease resistance protein, F-box protein, or part of the gene structure directly or indirectly involved in plant disease resistance (Table 6). Of note, 13 fragments related to disease resistance (10 NBS-LRR and 3 WRKY transcription factors) were clustered on a region of the 2AS chromosome spanning from 17,411,781bp to 17,601,016bp.
Discussion

Wheat stripe rust and phenotypic data

Until 2016, China had officially classified 34 stripe rust races (CYR1–CYR34) and more than 40 pathogenic types (Chen et al. 2014). Since the discovery of a new pathogenic type, V26 in 2009, this pathogenic group has been continuously mutating and expanding. Its toxicity profile has expanded from an initial infection of 12 to 18 Chinese identified hosts and a survey showed that the frequency of the three pathogenic groups of CYR32, CYR33, and V26 has since exceeded 70% (Zhang et al. 2015). In 2016, the pathogenic group (V26) of Guinong 22 was officially named CYR34 and this has led to an increase in its investigation within the field of wheat research in China.

The Sichuan Basin is a common source of new races of wheat stripe rust in China. Since the pathogenic group (V26) of Guinong 22 was first identified in Sichuan in 2009, it has gradually increased to become the dominant pathogenic group (Xu et al. 2016). At present, there are three main pathogenic groups of stripe rust in Guizhou; namely, the hybrid pathogenic group, the water source 11 pathogenic group, and the Guinong 22 pathogenic group. Among them, the frequencies of CYR32, CYR33, and CRY34 are 57.14%, 5.71%, and 4.29%, respectively (Chen et al. 2016b). When analysing the different field phenotypes of RILs between 2017 and 2020, significantly more susceptible varieties were found to originate in Sichuan compared to Guizhou. This difference is mainly due to the different epidemic races of stripe rust found in these two regions. Specifically, CYR32 and CYR33 are found mainly in Guizhou while CRY34 is predominantly found in Sichuan (Cheng et al. 2020).

In addition, different varieties carry multiple resistance genes and therefore show different degrees of resistance although none are completely immune. For each physiological race, selection pressure is greatly reduced, as the host and the pathogen are in a coexisting state and it is therefore unlikely that new mutations will develop in the pathogen. Due to this phenomenon, the resistance of slow-rust varieties is low and the resistance in specialised varieties is stronger (Yuan et al. 1995).

QTL mapping

In general, QTL that exert a larger effect on phenotype tend to be more stably expressed and are more easily detected within different environments. QTL that exert a smaller effect tend to be more influenced by genetic background and the external environment. These can therefore be more difficult to detect under certain environmental conditions (Li et al. 2010). In this study, two stable QTL were identified on the chromosomes 2AS and 6AS.

At the end of chromosome 2AS, a significant stable QTL (Qyr.gaas.2AS) was detected at the interval of cfd36~AX-110576889 (3.5–5.5cM) in all six environments assessed in this study. Five genes for the resistance of stripe rust were identified on chromosome 2AS (Yr17 [0–20cM], Yr56 [2.0–6.3cM], YrR61 [1.9–16.8cM], Yr69 [13.9–17cM], and YrZM175 [47.8–52.1cM]). Through pedigree analysis, we found that YrR61 was derived from the American soft red wheat Pioneer 26R61 (Hao et al. 2011), and Yr56 from the durum wheat, Wollaro (Bansal et al. 2014). Both of the identified genes are known to promote adult resistance. Yr69 (Hou et al. 2016) and YrZM175 are known to be genes that promote seedling resistance in the artificial wheat introgression line, CH7086, and common wheat variety, Zhongmai 175 (Lu et al. 2016), respectively. Yr17, derived from Ae. Ventricosa, is also a seedling-resistant gene (Bariana and McIntosh 1993). The above genes have lost disease resistance to CYR34 race according to previous report (Zeng et al. 2015). However, our field investigations showed that VPMI (the carrier line of Yr17 gene) present resistant to the pathogenic group of Guinong 22 in Guiyang. Moreover, Yr17 had the closest position to Qyr.gaas.2AS, the specific CAPS marker URIC/LN2 of Yr17 (Helguera et al. 2003) was used to further determine the differences between them. Our results showed that target bands could not be amplified in the GX3 line (Figure 4). Future experiments are required for the hybridisation of GX3 and the carrier line of Yr17, VPMI. Furthermore, 13 QTL have been previously reported on chromosome 2AS (Bulli et al. 2016),
of which eight are adjacent to or overlapping with \textit{Qyr.gaas.2AS}. GX3 is different from the parental lines of these disease-resistant QTL, so we therefore speculate that \textit{Qyr.gaas.2AS} in GX3 is inconsistent with the above QTL.

On the 6AS chromosome, \textit{Qyr.gaas.6AS (AX-109558600–AX-109542604)} is located in the interval spanning 3.5–4.5cM. According to the integration map drawn by Bulli et al. (2016), there are three adjacent or overlapping QTL. \textit{QYr.uga-6AS_26R61 (0–7.1cM)} is derived from the American soft red grain wheat Pioneer 26R61 (Hao et al. 2011). \textit{QYr.wgp-6AS_Express (3.8–7.1cM)} is derived from the disease resistant cultivar "Express" with a high effect value (30.8–42.7%) (Lin and Chen 2007). \textit{QYr.cim-6A_Avocet (7.6–17.8cM)} (Rosewarne et al. 2012) is derived from the CIMMYT wheat variety "Pastor" and may be associated with \textit{Sr26} translocation genes. Due to the different sources of the identified parental QTL, \textit{Qyr.gaas.6AS} is likely to be inconsistent with the aforementioned QTL.

\textbf{Candidate gene prediction}

Response to biological stress in plants can often be dependent on a variety of cell receptor proteins. Intracellular receptor proteins are encoded by NBS-LRR disease resistance genes, which have the ability to directly or indirectly recognise effector molecules (Effector) released by the pathogen into the cell and trigger a disease resistance response. This response is referred to as effector triggered immunity (Noutoshi et al. 2005) and requires mediation of the transcription factor WRKY. The NBS domain binds to ATP or GTP to play a key role in plant disease resistance. Currently, multiple wheat NBS-LRR genes have been identified and linked to disease resistance, such as \textit{Lr1} (Qiu et al. 2007), \textit{Lr10} (Bozkurt et al. 2007), \textit{Lr21} and \textit{Lr40} (Spelmeyer et al. 2000), \textit{Sr35} (Saintenac et al. 2013), \textit{Sr33} (Periyannan et al. 2013), \textit{Sr60} (Chen et al. 2018), and \textit{Yr10} (Bozkurt et al. 2007). In the present study, we identify \textit{Qyr.gaas.2AS (cfd36–AX-110576889)} and found a structural region (chr2A: 17411781_17601016) containing multiple NBS-LRRs and the WRKY transcription factor located near the \textit{cfd36} marker. We therefore speculate that the structural region in combination with a relatively complete NBS-LRR may represent a novel candidate gene and these 13 identified segments should be further investigated.

GX3 was derived from wild crossing between wild emmer wheat (\textit{T. dicoccoides}) and wild oat (\textit{Avena fatua} \textit{L. var. glabrata pat}) varieties and was subsequently obtained by backcrossing with the common wheat Guinong 22 variety. Field observations spanning many years have shown that wild emmer wheat and Guinong 22 are susceptible to CRY34, while the wild oat is immune. Therefore, we speculate that the major QTL on chromosome 2AS originated from \textit{Avena fatua L. var. glabrata}. However, \textit{in situ} hybridisation analysis showed no signal detection in the wild oat variety samples (unpublished data). These findings may be due to the fact that the introgression fragment is too small. These experiments therefore require further validation.

\textbf{Conclusions}

In summary, GX3 carried two stable QTL for stripe rust resistance, of which \textit{Qyr.gaas.2AS} is a major QTL. A resistance gene on the 2AS chromosome has not been previously reported and is therefore a novel candidate for genetic resistance in wheat. GX3 could be used in future breeding of disease resistant wheat. Future investigations should focus on increasing the density of genetic maps around \textit{Qyr.gaas.2AS} to clone the underlying gene.

\textbf{Declarations}

\textbf{Author contribution statement} BC analyzed data and wrote the manuscript. QZ, YG and XG performed resistance evaluation. NC, YD and TC scanned molecular marker. LZ and ZX conceived, designed the experiments, and revised the manuscript. All authors read and approved the final manuscript.
Acknowledgments The authors are greatly appreciate Dr. Jianhui WU, and Dr. Dejun HAN, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, for their help in the analysis of data. We are very grateful to Professor Qiuzhen JIA, Institute of Plant Protection, Gansu Academy of Agricultural Sciences, for her help in the identification of wheat stripe rust inoculation at seedling stage. This work was funded by grants from National Natural Science Foundation of China (31660393), Natural Science Foundation of Guizhou province (QKHJC[2019]450), Natural Science Foundation of Guizhou province (QKHJC[2019]1305), and Youth Science Foundation of Guizhou Academy of Agricultural Sciences ([2018]02).

Compliance with ethical standards

Conflict of interest the authors declare no competing interests.

Ethical standard I declare on behalf of my co-authors that the work described is original, previously unpublished research, and not under consideration for publication elsewhere. The experiments in this study comply with the current laws of China.

References

Bansal UK, Kazi AG, Singh B, Hare RA, Bariana HS (2014) Mapping of durable stripe rust resistance in a durum wheat cultivar Wollaroi. Molecular Breeding 33:51-59.

Bariana HS, McIntosh RA (1993) Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome 36:476-482.

Bozkurt O, Hakki EE, Akkaya MS (2007) Isolation and sequence analysis of wheat NBS-LRR type disease resistance gene analogs using degenerate PCR primers. Biochem Genet 45:469-486.

Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889-890.

Bulli P, Zhang JL, Chao SM, Chen XM, Pumphrey M (2016) Genetic Architecture of Resistance to Stripe Rust in a Global Winter Wheat Germplasm Collection. G3-Genes Genomes Genetics 6:2237-2253.

Chen C, He Z, Lu J, Li J, Ren Y, Ma C, Xia X (2016a) Molecular mapping of stripe rust resistance gene YrJ22 in Chinese wheat cultivar Jimai 22. Molecular Breeding 36:1-8.

Chen S, Guo Y, Briggs J, Dubach F, Chao S, Zhang W, Rouse MN, Dubcovsky J (2018) Mapping and characterization of wheat stem rust resistance genes SrTm5 and Sr60 from Triticum monococcum. Theoretical and applied genetics 131:625-635.

Chen W, Wellings C, Chen X, Kang Z, Liu T (2014) Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Molecular Plant Pathology 15:433-446.

Chen W, Wu SP, Zhan GG, Wang W, He QC (2016b) Identification and analysis of physiological races of wheat stripe rust in Guizhou. Jiangsu Agricultural Science 44:155-157 (in Chinese with English abstract).

Cheng B, Gao X, Cao N, Ding Y, Gao Y, Chen T, Xin Z, Zhang L (2020) Genome-wide association analysis of stripe rust resistance loci in wheat accessions from southwestern China. Journal of Applied Genetics 61:37-50. doi: 10.1007/s13353-019-00533-8
Cui F, Zhang N, Fan XL, Zhang W, Zhao CH, Yang LJ, Pan RQ, Chen M, Han J, Zhao XQ, Ji J, Tong YP, Zhang HX, Jia JZ, Zhao PY, Li JM (2017) Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Scientific Reports 7:3788.

Gao F, Liu J, Yang L, Wu X, Xiao Y, Xia X, He Z (2016) Genome-wide linkage mapping of QTL for physiological traits in a Chinese wheat population using the 90K SNP array. Euphytica 209:789-804.

Han DJ, Wang QL, Chen XM, Zeng QD, Wu JH, Xue WB, Zhan GM, Huang LL, Kang ZS (2015) Emerging Yr26-Virulent races of Puccinia striiformis f. tritici are threatening wheat production in the Sichuan Basin, China. Plant Disease 99:754-760.

Han DJ, Zhang XJ, Wei GR, Li FQ, Zhang QQ, Kang ZS (2008) Identification and selection of stripe rust resistance lines from derivatives of cross between Triticum monococcum and wild oat. Journal of Triticeae Crops 28:345-348 (in Chinese with English abstract).

Hao Y, Chen Z, Wang Y, Bland D, Buck J, Brown-Guedira G, Johnson J (2011) Characterization of a major QTL for adult plant resistance to stripe rust in US soft red winter wheat. Theoretical and Applied Genetics 123:1401-1411.

He ZH, Xia XC, Chen XM, Zhuang QS (2011) Progress of wheat breeding in China and the future perspective. Acta Agronomica Sinica 37:202-215 (in Chinese with English abstract).

Hou L, Jia J, Xiaojun Z, Li X, Yang Z, Ma J, Guo H, Zhan H, Qiao L, Chang Z (2016) Molecular Mapping of the Stripe Rust Resistance Gene Yr69 on Wheat Chromosome 2AS. Plant Disease 100:1717-1724.

Hu XP, Wang BT, Kang ZS (2014) Research progress on virulence variation of Puccinia striiformis f. sp. tritici in China. Journal of Triticeae Crops 34:709-716 (in Chinese with English abstract).

Jia J, Zhao G (2016) Wheat660 SNP array developed by CAAS. http://wheat.pw.usda.gov/ggpages/topics/Wheat660_SNP_array_developed_by_CAAS.pdf. Accessed 19 Feb 2018.

Jighly A, Oyiga BC, Makdis F, Nazari K, Youssef O, Tadesse W, Abdalla O, Ogbonnaya FC (2015) Genome-wide DArT and SNP scan for QTL associated with resistance to stripe rust (Puccinia striiformis f. sp. tritici) in elite ICARDA wheat (Triticum aestivum L.) germplasm. Theoretical and Applied Genetics 128:1277-1295.

Kang ZS, Wang XJ, Zhao J, Tang CL, Huang LL (2015) Advances in research of pathogenicity and virulence variation of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Sci Agric Sin 48:3439-3453 (in Chinese with English abstract).

Kertho A, Mamidi S, Bonman JM, McClean PE, Acevedo M (2015) Genome-wide association mapping for resistance to leaf and stripe rust in winter-habit hexaploid wheat landraces. PloS one 10:e0129580.

Li HH, Zhang LY, Wang JK (2010) Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agronomica Sinica 36:918-931.

Li X, Wang A, Xiao Y, Yan Y, He Z, Appels R, Ma W, Hsam SLK, Zeller FJ (2008) Cloning and characterization of a novel low molecular weight glutenin subunit gene at the Glu-A3 locus from wild emmer wheat (Triticum turgidum L. var. dicoccoides). Euphytica 159:181-190.

Li Z Q, Zeng S M: Wheat rust in China (in Chinese) [M]. Beijing: China Agriculture Press. 2002.
Lin F, Chen XM (2007) Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high-temperature adult plant resistance to stripe rust in spring wheat cultivar Alpowa. Theoretical and Applied Genetics 114:1277-1287.

Liu J, He Z, Wu L, Bai B, Wen W, Xie C, Xia X (2015) Genome-Wide Linkage Mapping of QTL for Adult plant Resistance to Stripe Rust in a Chinese Wheat Population Linmai 2 × Zhong 892. PloS one 10:e0145462.

Liu TG, PengYL, Chen WQ, Zhang ZY (2010) First Detection of Virulence in Puccinia striiformis f. sp. tritici in China to Resistance Genes Yr24 (=Yr26) Present in Wheat Cultivar Chuanmai 42. Plant Disease 94:1163.

Liu W, Maccaferri M, Rynearson S, Letta T, Zegeye H, Tuberosa R, Chen X, Pumphrey M (2017) Novel Sources of Stripe Rust Resistance Identified by Genome-Wide Association Mapping in Ethiopian Durum Wheat (Triticum turgidum ssp. durum). Frontiers in Plant Science 8:774.

Lu JL, Chen C, Liu P, He ZH, Xia XC (2016) Identification of a new stripe rust resistance gene in Chinese winter wheat Zhongmai175. Journal of Integrative Agriculture 15:2461-2468.

Lu Y, Wang M, Chen X, See D, Chao S, Jing J (2014) Mapping of Yr62 and a small-effect QTL for high-temperature adult plant resistance to stripe rust in spring wheat PI 192252. Theoretical and Applied Genetics 127:1449-1459.

Maccaferri M, Zhang J, Bulli P, Abate Z, Chao S, Cantu D, Bossolini E, Chen X, Pumphrey M, Dubcovsky J (2015) A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3 (Bethesda) 5:449-465.

McIntosh RA, Dubcovsky J, Rogers W J, Morris C, and Xia X C. 2017. Catalogue of gene symbols for wheat: 2017 Supplement. http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf.

Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal 3:269-283.

Naruoka Y, Garland-Campbell KA, Carter AH (2015) Genome-wide association mapping for stripe rust (Puccinia striiformis f. sp. tritici) in US Pacific Northwest winter wheat (Triticum aestivum L.). Theoretical and Applied Genetics 128:1083-1101.

Noutsishi Y, Ito T, Seki M, Nakashita H, Yoshida S, Marco Y, Shirasu K, Shinozaki K (2005) A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death. Plant Journal 43:873-888.

Peng JH, Fahima T, Röder MS, Li YC, Dahan A, Grama A, Ronin YI, Korol AB, Nevo E (1999) Microsatellite tagging of the stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B. Theoretical and Applied Genetics 98:862-872.

Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, Deal K, Luo M, Kong X, Bariana H, Mago R, McIntosh R, Dodds P Dvorak J, Lagudah E (2013) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341:786-788.

Qiu JW, Schürch AC, Yahiaoui N, Dong LL, Fan HJ, Zhang ZJ, Keller B, Ling HQ (2007) Physical mapping and identification of a candidate for the leaf rust resistance gene Lr1 of wheat. Theoretical and Applied Genetics 115:159-168.
Rosewarne GM, Singh RP, Huerta-Espino J, Herrera-Foessel SA, Forrest KL, Hayden MJ, Rebetzke GJ (2012) Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. Theoretical and Applied Genetics 124:1283-1294

Saghai-Maroo M, Soliman K, Jorgensen RA, Allard R (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A 81:8014-8018.

Saintenac C, Zhang W, Salcedo A, Rouse MN, Trick HN, Akhunov E, Dubcovsky J (2013) Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341:783-786.

Sharma HC, Gill BS (1983) Current status of wide hybridization in wheat. Euphytica 32:17-31.

Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics 109:1105-1114.

Spielmeyer W, Huang L, Bariana H, Laroche A, Gill BS, Lagudah ES (2000) NBS-LRR sequence family is associated with leaf and stripe rust resistance on the end of homologous chromosome group 1S of wheat. Theoretical and Applied Genetics 101:1139-1144.

Uauy C, Brevis JC, Chen X, Khan I, Jackson L, Chicaiza O, Distelfeld A, Fahnima T, Dubcovsky J (2005) High-temperature adult plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theoretical and Applied Genetics 112:97-105.

Voorrips RE (2002) MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. Journal of Heredity 93:77-78.

Wang ZZ, Xie JZ, Guo L, Zhang DY, Li GQ, Fang TL. Chen XY, Li J, Wu QH, Lu P, Wang Y, Li MM, Wu HB, Zhang Y, Yang WY, Luo MC, Fahima T, Liu ZY (2018) Molecular mapping of YrTZ2, a stripe rust resistance gene in wild emmer accession TZ-2 and its comparative analyses with Aegilops tauschii. Journal of Integrative Agriculture 17:60345-60347.

Wellsing CR (2011) Global status of stripe rust: a review of historical and current threats. Euphytica 179:129-141.

Winfield M, Allen A, Burridge A, Barker G, Benbow H, Wilkinson P, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A, Webster T, Brew F, Bloor C, King J, West C, Griffiths S, King I, Bentley A, Edwards K (2015) High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnology Journal 14:1195-1206.

Wu JH, Wang QL, Liu SJ, Huang S, Mu JM, Zeng QD, Huang LL, Han DJ, Kang ZS (2017) Saturation mapping of a major effect QTL for stripe rust resistance on wheat chromosome 2B in cultivar Napo 63 using SNP genotyping arrays. Frontiers in Plant Science 8:653-653.

Wu JH, Liu SJ, Wang QL, Zeng QD, Mu JM, Huang S, Yu SZ, Han DJ, Kang ZS (2018a) Rapid identification of an adult plant stripe rust resistance gene in hexaploid wheat by high-throughput SNP array genotyping of pooled extremes. Theoretical and Applied Genetics 131:43-58.

Wu JH, Wang QL, Xu LS, Chen XM, Li B, Mu JM, Zeng QD, Huang LL, Han DJ, Kang ZS (2018b) Combining single nucleotide polymorphism genotyping array with bulked segregant analysis to map a gene controlling adult plant resistance to stripe rust in wheat line 03031-1-5 H62. Phytopathology 108:103-113.

Xu Z, Wang S, Ji HL, Ni JY, Yin Y, Shen L, Peng YL (2016) Resistance breakdown of wheat varieties in Sichuan caused by epidemic of Gui-22 virulence group of Puccinia striiformis f. sp. tritici. Southwest China Journal of Agricultural Sciences
Yuan WH, Zhang ZJ, Feng F, Zeng SM (1995) Identification of wheat cultivars with slow-rusting resistance to yellow rust pathogen. Scientia Agricultura Sinica 28:35-40 (in Chinese with English abstract).

Zegeye H, Rasheed A, Makdis F, Badebo A, Ogbonnaya FC (2014) Genome-wide association mapping for seedling and adult plant resistance to stripe rust in synthetic hexaploid wheat. PloS one 9:e105593.

Zeng QD, Shen C, Yuan FP, Wang QL, Wu JH, Xue WB, Zhan GM, Yao S, Chen W, Huang LL, Han DJ, Kang ZS (2015) The resistance evaluation of the Yr genes to the main prevalent pathotypes of *Puccinia striiformis* f. sp. *tritici* in China. Acta Phytopathologica Sinica 45:641-650 (in Chinese with English abstract).

Zeng QD, Wu JH, Liu SJ, Huang S, Wang QL, Mu JM, Yu SZ, Han DJ, Kang ZS (2019) A major QTL co-localized on chromosome 6BL and its epistatic interaction for enhanced wheat stripe rust resistance. Theoretical and Applied Genetics 132:1409-1424.

Zhang B, Jia QZ, Huang J, Cao SQ, Sun ZY, Luo HS, Wang XM, Jin SL (2015) Trends and toxicity analysis of new strains G22-9 and G22-14 in *Puccinia striiformis* f. sp. *tritici*. Acta Agriculturae Boreali-Occidentalis Sinica 24:125-130 (in Chinese with English abstract).

Zhang QQ (1999) The methodology of multi resistance to diseases in wheat distant breeding. Southwest China Journal of Agricultural Sciences 12:32-38 (in Chinese with English abstract).

Zhou S, Zhang J, Che Y, Liu W, Lu Y, Yang X, Li X, Jia J, Liu X, Li L (2018) Construction of Agropyron Gaertn. Genetic linkage maps using a wheat 660K SNP array reveals a homologous relationship with the wheat genome. Plant Biotechnology Journal 16:818-827.

Zhou XL, Zhan GM, Huang LL, Han DJ, Kang ZS (2015) Evaluation of resistance to stripe rust in eighty abroad spring wheat germplasms. Scientia Agricultura Sinica 48:1518-1526 (in Chinese with English abstract).

Tables

Table 1 Variance components of disease severity (DS) scores for the 228 RIL population derived from M96-5×GX3 across six environments

Source of variation	Df	Mean square	F value
RILs	227	8911.40	272.59**
Replicates/environment	6	23823.53	728.74**
Environments	5	56632.48	1732.34**
Lines × environment	1121	872.79	26.70**
Error	1348	32.69	

** Significance at $P<0.01$
Table 2 Correlation analysis (r) of disease severity (DS) of the M96-5×GX3 RIL population across six environments

Environment	MY17	GY18	GY19	GY20	AS20	SL20
MY17	1					
GY18	0.75***	1				
GY19	0.58***	0.69***	1			
GY20	0.65***	0.77***	0.60***	1		
AS20	0.66***	0.67***	0.60***	0.79***	1	
SL20	0.60***	0.50***	0.38***	0.43***	0.48***	1

*** Significance at $P < 0.001$. MY17: 2017 Mianyang, GY18: 2018 Guiyang, GY19: 2019 Guiyang, GY20: 2020 Guiyang, AS20: 2020 Anshun, SL20: 2020 Shuangliu.

Table 3 SNPs statistics of the distribution and density on 21 chromosomes

Chromosome	Length (cM)	No. of Markers	Marker density (cM/locus)
1A	97.55	61	0.63
1B	117.13	103	0.88
1D	229.57	41	0.18
2A	125.43	91	0.73
2B	147.97	112	0.76
2D	180.82	47	0.26
3A	214.86	112	0.52
3B	149.02	77	0.52
3D	195.30	26	0.13
4A	123.25	60	0.49
4B	105.15	89	0.85
4D	110.91	61	0.55
5A	220.64	124	0.56
5B	189.42	99	0.52
5D	222.58	95	0.43
6A	49.45	23	0.47
6B	78.26	35	0.45
6D	168.03	54	0.32
7A	208.26	111	0.53
7B	181.87	68	0.37
7D	255.73	58	0.23
Total	3371.20	1547	0.46
Table 4 Distribution of polymorphic SNPs on the whole genome

	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Total
A genome	61	91	112	60	124	23	111	582
B genome	103	112	77	89	99	35	68	583
D genome	41	47	26	61	95	54	58	382
Total	205	250	215	210	318	112	237	1547

Table 5 Summary of stripe rust resistance QTL detected in the M96-5×GX3 RIL population across six environments by ICIM
Environments	QTLs	Marker interval	Position/cM	Confidence interval/cM	Genetic interval/cM	Physical interval/Mb	LOD	PVE (%)	Add
2017 MY	Qyr.gaas.1B	AX-111572690~AX-94847267	1	0~1.5	0.69	3.58	3.04	1.89	-4.91
	Qyr.gaas.2A	cfd36~AX-110576889	5	3.5~5.5	0.46	15.22	44.61	45.52	-24.48
	Qyr.gaas.2B	AX-109528193~AX-110426897	136	132.5~141.5	7.76	6.89	2.7	1.99	-5.01
	Qyr.gaas.2D	AX-110519154~AX-111418246	32	31.5~34.5	1.39	4.91	4.66	2.97	6.09
	Qyr.gaas.4B	AX-111556599~AX-110016820	6	4.5~8.5	3.95	2.6	4.12	2.79	-5.91
	Qyr.gaas.6A	AX-109558600~AX-109542604	4	3.5~4.5	0.46	0.78	5.12	3.27	-6.4
	Qyr.gaas.6B	AX-109408478~AX-110409180	56	54.5~60.5	10.02	69.9	3.25	2.01	-5.02
2018 GY	Qyr.gaas.1D	AX-110147378~AX-110183884	54	53.5~54.5	0.69	0.43	2.94	1.69	-5.01
	Qyr.gaas.2A	cfd36~AX-110576889	5	3.5~5.5	0.46	15.22	41.93	38.17	-24.23
	Qyr.gaas.2B.1	AX-108837623~AX-110339903	46	44.5~46.5	0.93	7.46	3.22	1.9	-5.28
	Qyr.gaas.2D	AX-111418246~AX-110833961	33	31.5~34.5	1.85	5.09	4.34	2.59	6.18
	Qyr.gaas.4B.1	AX-109410422~AX-110036160	0	0~2.5	2.16	7.4	4.45	2.57	-6.16
	Qyr.gaas.5A	AX-109471543~AX-110616305	135	134.5~136.5	0.22	0.24	3.29	1.88	5.25
	Qyr.gaas.6A	AX-109558600~AX-109542604	4	3.5~4.5	0.46	0.78	26.27	19.11	-16.8
	Qyr.gaas.6B	AX-109408478~AX-110409180	56	54.5~60.5	10.02	69.9	4.67	2.7	-6.31
2019 GY	Qyr.gaas.1D.1	AX-944444445~AX-95126907	62	59.5~63.5	5.67	1.09	8.55	9.49	-11.03
	Qyr.gaas.2A	cfd36~AX-110576889	5	3.5~5.5	0.46	15.22	8.01	8.08	-10.3
	Qyr.gaas.2A.1	AX-110538140~AX-110153509	48	43.5~54.5	12.23	54.06	4.3	4.35	-7.44
	Qyr.gaas.4D	AX-111688098~AX-110768844	0	0~0.5	0.23	0.13	4.64	4.49	7.56
	Qyr.gaas.6A	AX-109558600~AX-109542604	4	3.5~4.5	0.46	0.78	19.16	21.73	-16.73
	Qyr.gaas.6B	AX-56	56	54.5~60.5	10.02	69.9	6.72	6.66	-9.21
Year	SNP	Chromosome Position	LOD	PVE	Add	Add	Add		
------	----------------	---------------------	--------	-------	-------	-------	-------		
2020 GY	Qyr.gaas.2A	cfd36~AX-110576889	5	3.5~5.5	0.46	15.22	16.53	22.36	-15.54
	Qyr.gaas.5A.1	AX-109019768~AX-108888620	209	204.5~209.5	0.71	1.30	2.68	3.13	-5.71
	Qyr.gaas.6A	AX-109558600~AX-109542604	4	3.5~4.5	0.46	0.78	21.69	31.30	-18.06
2020 AS	Qyr.gaas.1B.1	AX-108745931~AX-110017315	83	81.5~84.5	2.15	0.22	3.86	3.70	-7.18
	Qyr.gaas.2A	cfd36~AX-110576889	5	3.5~5.5	0.46	15.22	17.88	20.68	-16.66
	Qyr.gaas.2D	AX-109229475~AX-110519154	31	29.5~32.5	1.88	7.52	3.91	3.55	7.01
	Qyr.gaas.6A	AX-109558600~AX-109542604	4	3.5~4.5	0.46	0.78	22.84	25.87	-18.98
	Qyr.gaas.7B	AX-109352027~AX-109988869	13	8.5~16	8.55	16.20	2.59	2.64	6.08
2020 SL	Qyr.gaas.1B.1	AX-110017315~AX-108726041	85	84.5~88.5	0.7	0.38	4.29	5.08	-8.73
	Qyr.gaas.2A	cfd36~AX-110576889	5	3.5~5.5	0.46	15.22	15.50	20.68	-17.96
	Qyr.gaas.5A.2	AX-110169414~AX-111590180	73	70.5~73.5	1.42	2.20	3.58	4.25	7.97
	Qyr.gaas.5B	AX-110689592~AX-109479306	73	69.5~99.5	4.31	5.83	4.98	6.22	-9.66

LOD: logarithm of odds score, **PVE**: percentage of phenotypic variance explained by individual QTL, **Add**: additive effect of the resistance allele.

Table 6 The significant SNPs variations on chromosome 2AS and 6AS
Chrom	Annotation of SNP	Number of SNPs
2AS	Disease resistance protein (NBS-LRR disease resistance protein)	35
	Retrotransposon protein	28
	Retrovirus-related Pol polyprotein from transposon TNT 1-94	19
	F-box protein	15
	Cysteine protease	14
	Proline-rich protein	13
	RNA-directed DNA polymerase	13
	Glycosyltransferase	11
	Receptor-kinase	11
	Protein kinase	10
	Transposon protein	10
	Protein FAR1-RELATED SEQUENCE 5	9
	Cytochrome P450	8
	Dirigent protein	8
	Leucine-rich repeat receptor-like protein kinase family protein	7
	Phosphoglycerate mutase-like protein	7
	2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein	6
	Serine/threonine-protein kinase	6
	Zinc finger protein	6
	FAD-binding Berberine family protein	5
6AS	Leucine-rich repeat receptor-like protein kinase family protein	10
	Receptor kinase	5
	F-box protein	4
	Retrotransposon protein	4
	Disease resistance protein (NBS-LRR disease resistance protein)	4