Covering random graphs by monochromatic trees and Helly-type results in hypergraphs

Matija Bucić
joint work with Daniel Korándi and Benny Sudakov

ETH Zürich
Definition

$\text{tc}_r(G)$ is the smallest m s.t. in any r-edge colouring of a graph G we can find m monochromatic trees which cover all vertices of G.

Conjecture (Lovasz '75, Ryser '70)

$\text{tc}_r(K_n) \leq r - 1$

For specific trees: Gyárfás; Gerencsér and Gyárfás; Pokrovskiy; Gyárfás, Ruszinkó, Sárközy and Szemerédi; Erdős, Gyárfás and Pyber.
Definition

t_{cr}(G) is the smallest m s.t. in any r-edge colouring of a graph G we can find m monochromatic trees which cover all vertices of G.
Definition

tc_r(G) is the smallest m s.t.
in any r-edge colouring of a graph G we can find m monochromatic trees which cover all vertices of G.
Definition

$t_{cr}(G)$ is the smallest m s.t. in any r-edge colouring of a graph G we can find m monochromatic trees which cover all vertices of G.

Conjecture (Lovasz '75, Ryser '70)

$t_{cr}(K_n) \leq r - 1$

For specific trees: Gyárfás; Gerencsér and Gyárfás; Pokrovskiy; Gyárfás, Ruszinkó, Sarkozy and Szemerédi; Erdős, Gyárfás and Pyber.
Definition

$tcr(G)$ is the smallest m s.t. in any r-edge colouring of a graph G we can find m monochromatic trees which cover all vertices of G.
Definiton

$\text{tc}_r(G)$ is the smallest m s.t. in any r-edge colouring of a graph G we can find m monochromatic trees which cover all vertices of G.

$\text{tc}_r(K_n) \leq r$
Definition

\(t_{cr}(G) \) is the smallest \(m \) s.t. in any \(r \)-edge colouring of a graph \(G \) we can find \(m \) monochromatic trees which cover all vertices of \(G \).

\[t_{cr}(K_n) \leq r \]
Covering by trees

Definition

tc_r(G) is the smallest m s.t. in any r-edge colouring of a graph G we can find m monochromatic trees which cover all vertices of G.

\[\text{tc}_r(K_n) \leq r \]

Conjecture (Lovasz ’75, Ryser ’70)

\[\text{tc}_r(K_n) = r - 1 \]
Covering by trees

Definition

tc_r(G) is the smallest m s.t. in any r-edge colouring of a graph G we can find m monochromatic trees which cover all vertices of G.

\[tc_r(K_n) \leq r \]

Conjecture (Lovasz '75, Ryser '70)

\[tc_r(K_n) = r - 1 \]

For specific trees: Gyárfás; Gerencsér and Gyárfás; Pokrovskiy; Gyárfás, Ruszinkó, Sárközy and Szemerédi; Erdős, Gyárfás and Pyber.
Claim

There are graphs missing only a few edges with arbitrarily large t_{c_r}.
Claim

There are graphs missing only a few edges with arbitrarily large tc_r.

An independent set of size t\hspace{1cm} K_{n-t}

$\forall v \in B$ sends exactly $r-1$ edges to A.

Colour all edges in B in colour r.

$\forall v \in B$ colour its $r-1$ edges to A rainbowly using first $r-1$ colours.

Any monochromatic tree in first $r-1$ colours is a star with a centre in A.

Proposition

If G contains an independent set of size t with no r vertices having a common neighbour then $tc_r(G) \geq t$.

Matija Bucić

Covering random graphs by monochromatic trees and Helly-type results

Mittagseminar, May 2019
Claim

There are graphs missing only a few edges with arbitrarily large tc_r.

An independent set of size t

\[A \]

\[B \]

\[K_{n-t} \]

\[\forall v \in B \text{ sends exactly } r - 1 \text{ edges to } A. \]
Claim

There are graphs missing only a few edges with arbitrarily large \(tc_r \).

An independent set of size \(t \)

\[\forall v \in B \text{ sends exactly } r - 1 \text{ edges to } A. \]
Claim

There are graphs missing only a few edges with arbitrarily large tc_r.

An independent set of size t

$\forall v \in B$ sends exactly $r - 1$ edges to A.
Claim

There are graphs missing only a few edges with arbitrarily large tc_r.

An independent set of size t with no r vertices having a common neighbour in \mathcal{G}.

$\forall v \in B$ sends exactly $r - 1$ edges to A.
Claim

There are graphs missing only a few edges with arbitrarily large tc_r.

- $\forall v \in B$ sends exactly $r - 1$ edges to A.
- Colour all edges in B in colour r.

An independent set of size t:

\[\{ A, B \} \]

\[K_{n-t} \]
Claim

There are graphs missing only a few edges with arbitrarily large tc_r.

An independent set of size t

\[
\begin{align*}
\forall v \in B & \text{ sends exactly } r - 1 \text{ edges to } A. \\
\text{Colour all edges in } B & \text{ in colour } r.
\end{align*}
\]
Claim

There are graphs missing only a few edges with arbitrarily large $t\,c_r$.

An independent set of size t \[\{A, B\} \]

- $\forall v \in B$ sends exactly $r - 1$ edges to A.
- Colour all edges in B in colour r.
- $\forall v \in B$ colour its $r - 1$ edges to A rainbowly using first $r - 1$ colours.
Claim

There are graphs missing only a few edges with arbitrarily large tc_r.

An independent set of size t sends exactly $r - 1$ edges to A.

- Colour all edges in B in colour r.
- $\forall v \in B$ colour its $r - 1$ edges to A rainbowly using first $r - 1$ colours.
There are graphs missing only a few edges with arbitrarily large tc_r.

An independent set of size t in K_{n-t}

- $\forall v \in B$ sends exactly $r - 1$ edges to A.
- Colour all edges in B in colour r.
- $\forall v \in B$ colour its $r - 1$ edges to A rainbowly using first $r - 1$ colours.
Claim

There are graphs missing only a few edges with arbitrarily large tc_r.

An independent set of size t\(\{\begin{array}{c}
A \\
B
\end{array}\right\}K_{n-t}\)

- $\forall v \in B$ sends exactly $r - 1$ edges to A.
- Colour all edges in B in colour r.
- $\forall v \in B$ colour its $r - 1$ edges to A rainbowly using first $r - 1$ colours.
Claim

There are graphs missing only a few edges with arbitrarily large tc_r.

\begin{itemize}
 \item $\forall v \in B$ sends exactly $r - 1$ edges to A.
 \item Colour all edges in B in colour r.
 \item $\forall v \in B$ colour its $r - 1$ edges to A rainbowly using first $r - 1$ colours.
 \item Any monochromatic tree in first $r - 1$ colours is a star with a centre in A.
\end{itemize}
Claim

There are graphs missing only a few edges with arbitrarily large $t c_r$.

- $\forall v \in B$ sends exactly $r - 1$ edges to A.
- Colour all edges in B in colour r.
- $\forall v \in B$ colour its $r - 1$ edges to A rainbowly using first $r - 1$ colours.
- Any monochromatic tree in first $r - 1$ colours is a star with a centre in A.

Proposition

If G contains an independent set of size t with no r vertices having a common neighbour then $t c_r(G) \geq t$.
Bal and DeBiasio '15: What is $t_{c,r}(G(n,p))$?
Bal and DeBiasio ’15: What is $t_{c_r}(G(n,p))$?

Theorem (Bal and DeBiasio ’15)

a) If $p \ll \left(\frac{\log n}{n}\right)^{1/r}$ then w.h.p. $t_{c_r}(G(n,p)) \to \infty$

$b)$ If $p \gg \left(\frac{\log n}{n}\right)^{1/(r+1)}$ then w.h.p. $t_{c_r}(G(n,p)) \leq r^2$.

If $\alpha(G) \geq r$ then $t_{c_r}(G) \geq r$.

Conjecture (Bal and DeBiasio ’15)

If $p \gg \left(\frac{\log n}{n}\right)^{1/r}$ then w.h.p. $t_{c_r}(G(n,p)) \leq r^2$.

Matija Bucić
Covering random graphs by monochromatic trees and Helly-type results
Mittagseminar, May 2019 4/12
Bal and DeBiasio ’15: What is $\text{tc}_r(G(n, p))$?

Theorem (Bal and DeBiasio ’15)

- If $p \ll \left(\frac{\log n}{n}\right)^{1/r}$ then w.h.p. $\text{tc}_r(G(n, p)) \to \infty$

- np^r is roughly expected number of common neighbours of fixed r vertices
Bal and DeBiasio ’15: What is $tc_r(G(n, p))$?

Theorem (Bal and DeBiasio ’15)

a) If $p \ll \left(\frac{\log n}{n}\right)^{1/r}$ then w.h.p. $tc_r(G(n, p)) \to \infty$ and

b) If $p \gg \left(\frac{\log n}{n}\right)^{1/(r+1)}$ then w.h.p. $tc_r(G(n, p)) \leq r^2$.

- np^r is roughly expected number of common neighbours of fixed r vertices
Bal and DeBiasio '15: What is $\text{tc}_r(G(n, p))$?

Theorem (Bal and DeBiasio '15)

a) If $p \ll \left(\frac{\log n}{n} \right)^{1/r}$ then w.h.p. $\text{tc}_r(G(n, p)) \to \infty$ and

b) If $p \gg \left(\frac{\log n}{n} \right)^{1/(r+1)}$ then w.h.p. $\text{tc}_r(G(n, p)) \leq r^2$.

- np^r is roughly expected number of common neighbours of fixed r vertices
- If $\alpha(G) \geq r$ then $\text{tc}_r(G) \geq r$.

Matija Bucić

Covering random graphs by monochromatic trees and Helly-type results

Mittagseminar, May 2019 4/12
Bal and DeBiasio ’15: What is $\text{tc}_r(G(n, p))$?

Theorem (Bal and DeBiasio ’15)

a) If $p \ll \left(\frac{\log n}{n} \right)^{1/r}$ then w.h.p. $\text{tc}_r(G(n, p)) \to \infty$ and

b) If $p \gg \left(\frac{\log n}{n} \right)^{1/(r+1)}$ then w.h.p. $\text{tc}_r(G(n, p)) \leq r^2$.

- np^r is roughly expected number of common neighbours of fixed r vertices
- If $\alpha(G) \geq r$ then $\text{tc}_r(G) \geq r$.

Conjecture (Bal and DeBiasio ’15)

If $p \gg \left(\frac{\log n}{n} \right)^{1/r}$ then w.h.p. $\text{tc}_r(G(n, p)) \leq r$
Conjecture (Bal and DeBiasio '15)

If \(p \gg \left(\frac{\log n}{n} \right)^{1/r} \) then w.h.p. \(tc_r(G(n, p)) \leq r \).
Conjecture (Bal and DeBiasio '15)

If \(p \gg \left(\frac{\log n}{n} \right)^{1/r} \) then w.h.p. \(\text{tc}_r(G(n, p)) \leq r \).

- Proved for \(r = 2 \) by Kohayakawa, Mota and Schacht.
Conjecture (Bal and DeBiasio ’15)

If $p \gg \left(\frac{\log n}{n}\right)^{1/r}$ then w.h.p. $tc_r(G(n, p)) \leq r$.

- Proved for $r = 2$ by Kohayakawa, Mota and Schacht.
- For $r \geq 3$ disproved by Ebsen, Mota and Schnitzer:
Conjecture (Bal and DeBiasio ’15)

If \(p \gg \left(\frac{\log n}{n} \right)^{1/r} \) then w.h.p. \(\text{tc}_r(G(n, p)) \leq r \).

- Proved for \(r = 2 \) by Kohayakawa, Mota and Schacht.
- For \(r \geq 3 \) disproved by Ebsen, Mota and Schnitzer:

Example (Ebsen, Mota and Schnitzer)

For \(r \geq 3 \) if \(p \ll \left(\frac{\log n}{n} \right)^{1/(r+1)} \) then w.h.p. \(\text{tc}_r(G(n, p)) \geq r + 1 \).
Conjecture (Bal and DeBiasio ’15)

If \(p \gg \left(\frac{\log n}{n} \right)^{1/r} \) then w.h.p. \(tc_r(G(n, p)) \leq r \).

- Proved for \(r = 2 \) by Kohayakawa, Mota and Schacht.
- For \(r \geq 3 \) disproved by Ebsen, Mota and Schnitzer:

Example (Ebsen, Mota and Schnitzer)

For \(r \geq 3 \) if \(p \ll \left(\frac{\log n}{n} \right)^{1/(r+1)} \) then w.h.p. \(tc_r(G(n, p)) \geq r + 1 \).

Theorem (B., Korándi, Sudakov)

a) If \(p \ll \left(\frac{\log n}{n} \right)^{\sqrt{r}/2^{r-2}} \) then w.h.p. \(tc_r(G(n, p)) > r \).
Conjecture (Bal and DeBiasio ’15)

If \(p \gg \left(\frac{\log n}{n} \right)^{1/r} \) then w.h.p. \(\text{tc}_r(G(n, p)) \leq r \).

- Proved for \(r = 2 \) by Kohayakawa, Mota and Schacht.
- For \(r \geq 3 \) disproved by Ebsen, Mota and Schnitzer:

Example (Ebsen, Mota and Schnitzer)

For \(r \geq 3 \) if \(p \ll \left(\frac{\log n}{n} \right)^{1/(r+1)} \) then w.h.p. \(\text{tc}_r(G(n, p)) \geq r + 1 \).

Theorem (B., Korándi, Sudakov)

a) If \(p \ll \left(\frac{\log n}{n} \right)^{\sqrt{r}/2^{r-2}} \) then w.h.p. \(\text{tc}_r(G(n, p)) > r \) and

b) If \(p \gg \left(\frac{\log n}{n} \right)^{1/2^r} \) then w.h.p. \(\text{tc}_r(G(n, p)) \leq r \).
Theorem (B., Korándi, Sudakov)

Let $d > 1$, $\left(\frac{\log n}{n}\right)^{\frac{1}{r}} \ll p \ll \left(\frac{\log n}{n}\right)^{\frac{1}{d(r+1)}}$ then w.h.p. $tc_r(G(n, p)) = \Theta(r^2)$.

Established in weaker form by Korándi, Mousset, Nenadov, Škorić and Sudakov.

Answers a question of Lang and Lo.
Theorem (Bal and DeBiasio ’15)

a) If \(p \ll \left(\frac{\log n}{n} \right)^{1/r} \) then w.h.p. \(\text{tc}_r(G(n, p)) \rightarrow \infty \) and

b) If \(p \gg \left(\frac{\log n}{n} \right)^{1/(r+1)} \) then w.h.p. \(\text{tc}_r(G(n, p)) \leq r^2 \).

Theorem (B., Korándi, Sudakov)

Let \(d > 1, \left(\frac{\log n}{n} \right)^{1/r} \ll p \ll \left(\frac{\log n}{n} \right)^{\frac{1}{d(r+1)}} \) then w.h.p. \(\text{tc}_r(G(n, p)) = \Theta(r^2) \).
Theorem (Bal and DeBiasio ’15)

a) If $p \ll \left(\frac{\log n}{n}\right)^{1/r}$ then w.h.p. $\text{tc}_r(G(n, p)) \to \infty$ and

b) If $p \gg \left(\frac{\log n}{n}\right)^{1/(r+1)}$ then w.h.p. $\text{tc}_r(G(n, p)) \leq r^2$.

Theorem (B., Korándi, Sudakov)

Let $d > 1$, $\left(\frac{\log n}{n}\right)^{1/r} \ll p \ll \left(\frac{\log n}{n}\right)^{\frac{1}{d(r+1)}}$ then w.h.p. $\text{tc}_r(G(n, p)) = \Theta(r^2)$.

- This establishes threshold for when $\text{tc}_r(G(n, p)) \to \infty$.

Theorem (Bal and DeBiasio ’15)

a) If $p \ll \left(\frac{\log n}{n}\right)^{1/r}$ then w.h.p. $tc_r(G(n, p)) \to \infty$ and

b) If $p \gg \left(\frac{\log n}{n}\right)^{1/(r+1)}$ then w.h.p. $tc_r(G(n, p)) \leq r^2$.

Theorem (B., Korándi, Sudakov)

Let $d > 1$, $\left(\frac{\log n}{n}\right)^{\frac{1}{r}} \ll p \ll \left(\frac{\log n}{n}\right)^{\frac{1}{d(r+1)}}$ then w.h.p. $tc_r(G(n, p)) = \Theta(r^2)$.

This establishes threshold for when $tc_r(G(n, p)) \to \infty$. Established in weaker form by Korándi, Mousset, Nenadov, Škorić and Sudakov.
Theorem (Bal and DeBiasio ’15)

a) If $p \ll \left(\frac{\log n}{n}\right)^{1/r}$ then w.h.p. $\text{tc}_r(G(n,p)) \to \infty$ and

b) If $p \gg \left(\frac{\log n}{n}\right)^{1/(r+1)}$ then w.h.p. $\text{tc}_r(G(n,p)) \leq r^2$.

Theorem (B., Korándi, Sudakov)

Let $d > 1$, $\left(\frac{\log n}{n}\right)^{\frac{1}{r}} \ll p \ll \left(\frac{\log n}{n}\right)^{\frac{1}{d(r+1)}}$ then w.h.p. $\text{tc}_r(G(n,p)) = \Theta(r^2)$.

- This establishes threshold for when $\text{tc}_r(G(n,p)) \to \infty$. Established in weaker form by Korándi, Mousset, Nenadov, Škorić and Sudakov.
- Answers a question of Lang and Lo.
Theorem (Bal and DeBiasio ’15)

a) If \(p \ll \left(\frac{\log n}{n} \right)^{1/r} \) then w.h.p. \(\text{tc}_r(G(n, p)) \to \infty \) and

b) If \(p \gg \left(\frac{\log n}{n} \right)^{1/(r+1)} \) then w.h.p. \(\text{tc}_r(G(n, p)) \leq r^2 \).

Theorem (B., Korándi, Sudakov)

Let \(d > 1, \left(\frac{\log n}{n} \right)^{1/r} \ll p \ll \left(\frac{\log n}{n} \right)^{1/(d(r+1))} \) then w.h.p. \(\text{tc}_r(G(n, p)) = \Theta(r^2) \).

- This establishes threshold for when \(\text{tc}_r(G(n, p)) \to \infty \). Established in weaker form by Korándi, Mousset, Nenadov, Škorić and Sudakov.
- Answers a question of Lang and Lo.

Theorem (B., Korándi, Sudakov)

If \(\left(\frac{\log n}{n} \right)^{1/k} \ll p \ll \left(\frac{\log n}{n} \right)^{1/(k+1)} \) then w.h.p. \(\frac{r^2}{20 \log k} \leq \text{tc}_r(G(n, p)) \leq \frac{16r^2 \log r}{\log k} \).
Question (Erdős, Hajnal and Tuza ’90)

Given an r-uniform hypergraph H in which any k edges have a cover of size at most ℓ, how big can a cover of H be?
Question (Erdős, Hajnal and Tuza ’90)

Given an r-uniform hypergraph H in which any k edges have a cover of size at most ℓ, how big can a cover of H be?

- Studied by, Erdős, Fon-Der-Flaass, Kostochka and Tuza (1991); Fon-Der-Flaass, Kostochka and Woodall (1999); Kostochka (2001).
Question (Erdős, Hajnal and Tuza '90)

Given an \(r \)-uniform hypergraph \(H \) in which any \(k \) edges have a cover of size at most \(\ell \), how big can a cover of \(H \) be?

- Studied by, Erdős, Fon-Der-Flaass, Kostochka and Tuza (1991); Fon-Der-Flaass, Kostochka and Woodall (1999); Kostochka (2001).
- A transversal cover in an \(r \)-partite \(r \)-uniform hypergraph \(H \) is a cover of \(H \) which has at most one vertex in each part of the \(r \)-partition.
Covering in hypergraphs

Question (Erdős, Hajnal and Tuza ’90)

Given an r-uniform hypergraph H in which any k edges have a cover of size at most ℓ, how big can a cover of H be?

- Studied by, Erdős, Fon-Der-Flaass, Kostochka and Tuza (1991); Fon-Der-Flaass, Kostochka and Woodall (1999); Kostochka (2001).
- A *transversal cover* in an r-partite r-uniform hypergraph H is a cover of H which has at most one vertex in each part of the r-partition.

Definition

Let $h_{pr}(k)$ be the maximum possible size of a cover of an r-partite, r-uniform H in which any k edges have a transversal cover.
The connection

Theorem (B., Korándi, Sudakov)

a) Let $k > r \geq 2$, $np^k \gg \log n$ then w.h.p. $\text{tc}_r(G(n, p)) \leq hp_r(k)$.

b) Let $k > r \geq 2$, $np^{k+1} \ll \log n$ then w.h.p. $\text{tc}_{r+1}(G(n, p)) > hp_r(k)$.
The connection

Theorem (B., Korándi, Sudakov)

a) Let $k > r \geq 2$, $np^k \gg \log n$ then w.h.p. $\text{tc}_r(G(n, p)) \leq hp_r(k)$.

b) Let $k > r \geq 2$, $np^{k+1} \ll \log n$ then w.h.p. $\text{tc}_{r+1}(G(n, p)) > hp_r(k)$.

- If $\left(\frac{\log n}{n}\right)^{\frac{1}{k}} \ll p \ll \left(\frac{\log n}{n}\right)^{\frac{1}{k+1}}$ then w.h.p. $\text{tc}_r(G(n, p)) \approx hp_r(k)$.

Best possible in terms of $\delta(G)$. Proved for $r \leq 3$ by Girão, Letzter and Sahasrabudhe.
The connection

Theorem (B., Korándi, Sudakov)

a) Let $k > r \geq 2$, $np^k \gg \log n$ then w.h.p. $tc_r(G(n, p)) \leq hp_r(k)$.

b) Let $k > r \geq 2$, $np^{k+1} \ll \log n$ then w.h.p. $tc_{r+1}(G(n, p)) > hp_r(k)$.

- If $\left(\frac{\log n}{n} \right)^\frac{1}{k} \ll p \ll \left(\frac{\log n}{n} \right)^\frac{1}{k+1}$ then w.h.p. $tc_r(G(n, p)) \approx hp_r(k)$.

Conjecture (Bal and DeBiasio)

Let G be an r-coloured graph on n vertices with $\delta(G) \geq (1 - \frac{1}{2r})n$. Then vertices of G can be covered by monochromatic trees of distinct colours.
The connection

Theorem (B., Korándi, Sudakov)

a) Let $k > r \geq 2$, $np^k \gg \log n$ then w.h.p. $tc_r(G(n, p)) \leq hp_r(k)$.

b) Let $k > r \geq 2$, $np^{k+1} \ll \log n$ then w.h.p. $tc_{r+1}(G(n, p)) > hp_r(k)$.

- If $\left(\frac{\log n}{n}\right)^{\frac{1}{k}} \ll p \ll \left(\frac{\log n}{n}\right)^{\frac{1}{k+1}}$ then w.h.p. $tc_r(G(n, p)) \approx hp_r(k)$.

Conjecture (Bal and DeBiasio)

Let G be an r-coloured graph on n vertices with $\delta(G) \geq (1 - \frac{1}{2^r})n$. Then vertices of G can be covered by monochromatic trees of distinct colours.

- Best possible in terms of $\delta(G)$.
The connection

Theorem (B., Korándi, Sudakov)

a) Let \(k > r \geq 2, np^k \gg \log n \) then w.h.p. \(\text{tc}_r(G(n, p)) \leq hp_r(k) \).

b) Let \(k > r \geq 2, np^{k+1} \ll \log n \) then w.h.p. \(\text{tc}_{r+1}(G(n, p)) > hp_r(k) \).

If \(\left(\frac{\log n}{n} \right)^\frac{1}{k} \ll p \ll \left(\frac{\log n}{n} \right)^\frac{1}{k+1} \) then w.h.p. \(\text{tc}_r(G(n, p)) \approx hp_r(k) \).

Conjecture (Bal and DeBiasio)

Let \(G \) be an \(r \)-coloured graph on \(n \) vertices with \(\delta(G) \geq (1 - \frac{1}{2r})n \). Then vertices of \(G \) can be covered by monochromatic trees of distinct colours.

- Best possible in terms of \(\delta(G) \).
- Proved for \(r \leq 3 \) by Girão, Letzter and Sahasrabudhe.
The connection

Theorem (B., Korándi, Sudakov)

a) Let $k > r \geq 2$, $np^k \gg \log n$ then w.h.p. $tc_r(G(n, p)) \leq hp_r(k)$.

b) Let $k > r \geq 2$, $np^{k+1} \ll \log n$ then w.h.p. $tc_{r+1}(G(n, p)) > hp_r(k)$.

- If $\left(\frac{\log n}{n}\right)^{\frac{k}{k+1}} \ll p \ll \left(\frac{\log n}{n}\right)^{\frac{1}{k+1}}$ then w.h.p. $tc_r(G(n, p)) \approx hp_r(k)$.

Theorem (B., Korándi, Sudakov)

Let G be an r-coloured graph on n vertices with $\delta(G) \geq (1 - \frac{1}{2r})n$. Then vertices of G can be covered by monochromatic trees of distinct colours.

- Best possible in terms of $\delta(G)$.
- Proved for $r \leq 3$ by Girão, Letzter and Sahasrabudhe.
If any k vertices in G have a common neighbour then $tc_r(G) \leq hp_r(k)$.
Theorem (B., Korándi, Sudakov)

If any k vertices in G have a common neighbour then $\text{tc}_r(G) \leq h_p r(k)$.

Proof.

Given r-colouring of G we build r-partite r-uniform hypergraph H:

Vertices of H are monochromatic components of G.

Let e_v be the set of monochromatic components of G containing v.

$E(H) := \{e_v \mid v \in V(G)\}$.

Parts correspond to monochromatic components of the same colour.

Given k edges e_{v_1}, \ldots, e_{v_k}, let w be a common neighbour of v_1, \ldots, v_k.

$e_w \cap e_{v_i} \neq \emptyset$ so e_w is a transversal cover of e_{v_1}, \ldots, e_{v_k} so $\tau(H) \leq h_p r(k)$.

If monochromatic components C_1, \ldots, C_t cover H then $C_1 \cup \cdots \cup C_t = V(G)$.

For any $v \in V(G)$ there exists i such that $C_i \in e_v = \Rightarrow v \in C_i$.
Theorem (B., Korándi, Sudakov)

If any k vertices in G have a common neighbour then $tc_r(G) \leq hp_r(k)$.

Proof.

Given r-colouring of G we build r-partite r-uniform hypergraph H:
Theorem (B., Korándi, Sudakov)

If any \(k \) vertices in \(G \) have a common neighbour then \(tc_r(G) \leq hp_r(k) \).

Proof.

- Given \(r \)-colouring of \(G \) we build \(r \)-partite \(r \)-uniform hypergraph \(H \):
 - Vertices of \(H \) are monochromatic components of \(G \).
Theorem (B., Korándi, Sudakov)

If any \(k \) vertices in \(G \) have a common neighbour then \(t_{cr}(G) \leq h_{pr}(k) \).

Proof.

- Given \(r \)-colouring of \(G \) we build \(r \)-partite \(r \)-uniform hypergraph \(H \):
 - Vertices of \(H \) are monochromatic components of \(G \).
 - Let \(e_v \) be the set of monochromatic components of \(G \) containing \(v \).
Theorem (B., Korándi, Sudakov)

If any k vertices in G have a common neighbour then $t_{cr}(G) \leq h_{pr}(k)$.

Proof.

Given r-colouring of G we build r-partite r-uniform hypergraph H:
- Vertices of H are monochromatic components of G.
- Let e_v be the set of monochromatic components of G containing v.
- $E(H) := \{e_v \mid v \in V(G)\}$.
Theorem (B., Korándi, Sudakov)

If any k vertices in G have a common neighbour then $\text{tc}_r(G) \leq \text{hp}_r(k)$.

Proof.

- Given r-colouring of G we build r-partite r-uniform hypergraph H:
 - Vertices of H are monochromatic components of G.
 - Let e_v be the set of monochromatic components of G containing v.
 - $E(H) := \{e_v \mid v \in V(G)\}$.

$$G$$

![Graph Diagram]

For any $v \in V(G)$, $\exists i : C_i \in e_v \Rightarrow v \in C_i$.
Theorem (B., Korándi, Sudakov)

If any k vertices in G have a common neighbour then $tc_r(G) \leq hp_r(k)$.

Proof.

Given r-colouring of G we build r-partite r-uniform hypergraph H:

- Vertices of H are monochromatic components of G.
- Let e_v be the set of monochromatic components of G containing v.
- $E(H) := \{e_v \mid v \in V(G)\}$.

Given k edges e_{v_1}, \ldots, e_{v_k}, let w be a common neighbour of v_1, \ldots, v_k. $e_w \cap e_{v_i} \neq \emptyset$ so e_w is a transversal cover of e_{v_1}, \ldots, e_{v_k} so $\tau(H) \leq hp_r(k)$.

If monochromatic components C_1, \ldots, C_t cover H then $C_1 \cup \cdots \cup C_t = V(G)$.

For any $v \in V(G)$ there exists i such that $C_i \in e_v$ so $v \in C_i$.
Theorem (B., Korándi, Sudakov)

If any k vertices in G have a common neighbour then $tcr(G) \leq hp_r(k)$.

Proof.

Given r-colouring of G we build r-partite r-uniform hypergraph H:
- Vertices of H are monochromatic components of G.
- Let e_v be the set of monochromatic components of G containing v.
- $E(H) := \{e_v \mid v \in V(G)\}$.
Theorem (B., Korándi, Sudakov)

If any k vertices in G have a common neighbour then $\text{tc}_r(G) \leq h_{\text{p}_r}(k)$.

Proof.

- Given r-colouring of G we build r-partite r-uniform hypergraph H:
 - Vertices of H are monochromatic components of G.
 - Let e_v be the set of monochromatic components of G containing v.
 - $E(H) := \{e_v \mid v \in V(G)\}$.

![Diagram of hypergraph H with r-partite structure and monochromatic components associated with each part.](image)
Theorem (B., Korándi, Sudakov)

If any k vertices in G have a common neighbour then $\tau_{c_r}(G) \leq h_{p_r}(k)$.

Proof.

Given r-colouring of G we build r-partite r-uniform hypergraph H:
- Vertices of H are monochromatic components of G.
- Let e_v be the set of monochromatic components of G containing v.
- $E(H) := \{e_v \mid v \in V(G)\}$.

For any $v \in V(G)$ exists i such that $C_i \in e_v \Rightarrow v \in C_i$.

![Diagram](image.png)
Theorem (B., Korándi, Sudakov)

If any k *vertices in* G *have a common neighbour then* $\text{tc}_r(G) \leq h_p r(k)$.

Proof.

- Given r-colouring of G we build r-partite r-uniform hypergraph H:
 - Vertices of H are monochromatic components of G.
 - Let e_v be the set of monochromatic components of G containing v.
 - $E(H) := \{e_v \mid v \in V(G)\}$.

For any $v \in V(G)$ there exists i such that $C_i \in e_v \Rightarrow v \in C_i$.
Theorem (B., Korándi, Sudakov)

If any k vertices in G have a common neighbour then $t_{c_r}(G) \leq h_{p_r}(k)$.

Proof.

- Given r-colouring of G we build r-partite r-uniform hypergraph H:
 - Vertices of H are monochromatic components of G.
 - Let e_v be the set of monochromatic components of G containing v.
 - $E(H) := \{e_v \mid v \in V(G)\}$.

![Diagram of the hypergraph H with vertices and edges labeled appropriately.]
Theorem (B., Korándi, Sudakov)

If any k vertices in G have a common neighbour then $t_{cr}(G) \leq h_{p_r}(k)$.

Proof.

Given r-colouring of G we build r-partite r-uniform hypergraph H:
- Vertices of H are monochromatic components of G.
- Let e_v be the set of monochromatic components of G containing v.
- $E(H) := \{e_v \mid v \in V(G)\}$.

G and H with monochromatic components and parts correspond to monochromatic components of the same colour.
Theorem (B., Korándi, Sudakov)

If any k vertices in G have a common neighbour then $tc_r(G) \leq hp_r(k)$.

Proof.

Given r-colouring of G we build r-partite r-uniform hypergraph H:

- Vertices of H are monochromatic components of G.
- Let e_v be the set of monochromatic components of G containing v.
- $E(H) := \{e_v \mid v \in V(G)\}$.

For any $v \in V(G)$ there exists i such that $C_i \in e_v \Rightarrow v \in C_i$.

```
G   R1,B3   R1,B1   R3,B1
    R1,B2   R1,B1   R2,B1
H   B1      B2      B3
    R1      R2      R3
```
Theorem (B., Korándi, Sudakov)

If any k vertices in G have a common neighbour then $tc_r(G) \leq hp_r(k)$.

Proof.

- Given r-colouring of G we build r-partite r-uniform hypergraph H:
 - Vertices of H are monochromatic components of G.
 - Let e_v be the set of monochromatic components of G containing v.
 - $E(H) := \{e_v \mid v \in V(G)\}$.
Theorem (B., Korándi, Sudakov)

If any k vertices in G have a common neighbour then $t_{cr}(G) \leq h_{pr}(k)$.

Proof.

- Given r-colouring of G we build r-partite r-uniform hypergraph H:
 - Vertices of H are monochromatic components of G.
 - Let e_v be the set of monochromatic components of G containing v.
 - $E(H) := \{e_v \mid v \in V(G)\}$.
Theorem (B., Korándi, Sudakov)

If any k vertices in G have a common neighbour then $\text{tc}_r(G) \leq h p_r(k)$.

Proof.

- Given r-colouring of G we build r-partite r-uniform hypergraph H:
 - Vertices of H are monochromatic components of G.
 - Let e_v be the set of monochromatic components of G containing v.
 - $E(H) := \{ e_v \mid v \in V(G) \}$.

![Diagram of G and H](image)

For any $v \in V(G)$ there exists i such that $C_i \in e_v$ implies $v \in C_i$.

Matija Bucić
Covering random graphs by monochromatic trees and Helly-type results
Mittagseminar, May 2019 9/12
Theorem (B., Korándi, Sudakov)

If any k vertices in G have a common neighbour then $t_{cr}(G) \leq h_{pr}(k)$.

Proof.

Given r-colouring of G we build r-partite r-uniform hypergraph H:
- Vertices of H are monochromatic components of G.
- Let e_v be the set of monochromatic components of G containing v.
- $E(H) := \{e_v \mid v \in V(G)\}$.

For any $v \in V(G)$, $\exists i$: $C_i \in e_v \Rightarrow v \in C_i$.

![Diagram](image-url)
Theorem (B., Korándi, Sudakov)

If any \(k \) vertices in \(G \) have a common neighbour then \(\text{tc}_r(G) \leq \text{hp}_r(k) \).

Proof.

- Given \(r \)-colouring of \(G \) we build \(r \)-partite \(r \)-uniform hypergraph \(H \):
 - Vertices of \(H \) are monochromatic components of \(G \).
 - Let \(e_v \) be the set of monochromatic components of \(G \) containing \(v \).
 - \(E(H) := \{ e_v \mid v \in V(G) \} \).

\[
\begin{align*}
\text{G} & \quad R_1, B_3 & R_1, B_1 & R_3, B_1 \\
& \quad R_1, B_2 & R_1, B_1 & R_2, B_1 \\
\text{H} & \quad B_1 & B_2 & B_3 \\
& \quad R_1 & R_2 & R_3
\end{align*}
\]
Theorem (B., Korándi, Sudakov)

If any k vertices in G have a common neighbour then $\text{tc}_r(G) \leq h_p r(k)$.

Proof.

- Given r-colouring of G we build r-partite r-uniform hypergraph H:
 - Vertices of H are monochromatic components of G.
 - Let e_v be the set of monochromatic components of G containing v.
 - $E(H) := \{e_v \mid v \in V(G)\}$.

- Parts correspond to monochromatic components of the same colour.
Theorem (B., Korándi, Sudakov)

If any k vertices in G have a common neighbour then $\text{tc}_r(G) \leq h_p r(k)$.

Proof.

- Given r-colouring of G we build r-partite r-uniform hypergraph H:
 - Vertices of H are monochromatric components of G.
 - Let e_v be the set of monochromatic components of G containing v.
 - $E(H) := \{e_v \mid v \in V(G)\}$.

G	R_1, B_3	R_1, B_1	R_3, B_1
R_1, B_2	R_1, B_1	R_2, B_1	

H
B_1
B_2
B_3

- Parts correspond to monochromatic components of the same colour.
- Given k edges e_{v_1}, \ldots, e_{v_k}, let w be a common neighbour of v_1, \ldots, v_k.
Theorem (B., Korándi, Sudakov)

If any k vertices in G have a common neighbour then $tc_r(G) \leq hp_r(k)$.

Proof.

- Given r-colouring of G we build r-partite r-uniform hypergraph H:
 - Vertices of H are monochromatic components of G.
 - Let e_v be the set of monochromatic components of G containing v.
 - $E(H) := \{e_v \mid v \in V(G)\}$.

- Parts correspond to monochromatic components of the same colour.
- Given k edges e_{v_1}, \ldots, e_{v_k}, let w be a common neighbour of v_1, \ldots, v_k.
 - $e_w \cap e_{v_i} \neq \emptyset$ so e_w is a transversal cover of e_{v_1}, \ldots, e_{v_k} so $\tau(H) \leq hp_r(k)$.
Theorem (B., Korándi, Sudakov)

If any \(k \) vertices in \(G \) have a common neighbour then \(\text{tc}_r(G) \leq h\pi_r(k) \).

Proof.

- Given \(r \)-colouring of \(G \) we build \(r \)-partite \(r \)-uniform hypergraph \(H \):
 - Vertices of \(H \) are monochromatic components of \(G \).
 - Let \(e_v \) be the set of monochromatic components of \(G \) containing \(v \).
 - \(E(H) := \{ e_v \mid v \in V(G) \} \).

\[
\begin{align*}
G & \quad R_1, B_3 & \quad R_1, B_1 & \quad R_3, B_1 \\
R_1, B_2 & \quad R_1, B_1 & \quad R_2, B_1 \\
\end{align*}
\]

Parts correspond to monochromatic components of the same colour.

- Given \(k \) edges \(e_{v_1}, \ldots, e_{v_k} \), let \(w \) be a common neighbour of \(v_1, \ldots, v_k \).
- \(e_w \cap e_{v_i} \neq \emptyset \) so \(e_w \) is a transversal cover of \(e_{v_1}, \ldots, e_{v_k} \) so \(\tau(H) \leq h\pi_r(k) \).
- If monochromatic components \(C_1, \ldots, C_t \) cover \(H \) then \(C_1 \cup \cdots \cup C_t = V(G) \).
Theorem (B., Korándi, Sudakov)

If any \(k \) vertices in \(G \) have a common neighbour then \(\text{tc}_r(G) \leq \text{hp}_r(k) \).

Proof.

- Given \(r \)-colouring of \(G \) we build \(r \)-partite \(r \)-uniform hypergraph \(H \):
 - Vertices of \(H \) are monochromatic components of \(G \).
 - Let \(e_v \) be the set of monochromatic components of \(G \) containing \(v \).
 - \(E(H) := \{ e_v \mid v \in V(G) \} \).

- Parts correspond to monochromatic components of the same colour.

- Given \(k \) edges \(e_{v_1}, \ldots, e_{v_k} \), let \(w \) be a common neighbour of \(v_1, \ldots, v_k \).
 - \(e_w \cap e_{v_i} \neq \emptyset \) so \(e_w \) is a transversal cover of \(e_{v_1}, \ldots, e_{v_k} \) so \(\tau(H) \leq \text{hp}_r(k) \).

- If monochromatic components \(C_1, \ldots, C_t \) cover \(H \) then \(C_1 \cup \cdots \cup C_t = V(G) \)

- For any \(v \in V(G) \) \(\exists i : C_i \in e_v \)
Theorem (B., Korándi, Sudakov)

If any k vertices in G have a common neighbour then $\text{tc}_r(G) \leq \text{hp}_r(k)$.

Proof.

- Given r-colouring of G we build r-partite r-uniform hypergraph H:
 - Vertices of H are monochromatic components of G.
 - Let e_v be the set of monochromatic components of G containing v.
 - $E(H) := \{e_v | v \in V(G)\}$.

- Parts correspond to monochromatic components of the same colour.
- Given k edges e_{v_1}, \ldots, e_{v_k}, let w be a common neighbour of v_1, \ldots, v_k.
 - $e_w \cap e_{v_i} \neq \emptyset$ so e_w is a transversal cover of e_{v_1}, \ldots, e_{v_k} so $\tau(H) \leq \text{hp}_r(k)$.
- If monochromatic components C_1, \ldots, C_t cover H then $C_1 \cup \cdots \cup C_t = V(G)$.
- For any $v \in V(G)$ $\exists i : C_i \in e_v \implies v \in C_i$.

Matija Bucić Covering random graphs by monochromatic trees and Helly-type results Mittagseminar, May 2019 9/12
Theorem (B., Korándi, Sudakov)

\[\text{hp}_r(2^r) = r. \]
Theorem (B., Korándi, Sudakov)

\[h_p(r^{2r}) = r. \]

Proof.

AFSOC there is an \(r \)-uniform, \(r \)-partite hypergraph without a transversal cover but with any \(2r \) of its edges having a transversal cover. Let \(H \) be minimal satisfying above conditions. Let \(V_1, \ldots, V_r \) be parts and \(A_1, \ldots, A_k \) edges of \(H \). Let \(B_i \) be a transversal cover of \(H - A_i \). Then:

\[|A_i \cap V_j| = |B_i \cap V_j| = 1, \forall i, j. \]

\[A_i \cap B_j \neq \emptyset, \forall i \neq j \text{ since } B_j \text{ is a cover of } H - A_j. \]

\[A_i \cap B_i = \emptyset, \forall i \text{ since otherwise } B_i \text{ is a transversal cover of } H, \text{ a contradiction.} \]

This implies \(|E(H)| = k \leq \prod_{i=1}^{r} (1 + \frac{1}{1}) = 2r \), So \(H \) has a transversal cover, a contradiction.
Theorem (B., Korándi, Sudakov)

\[\text{hp}_r(2^r) = r. \]

Proof.

- AFSOC there is an \(r \)-uniform, \(r \)-partite hypergraph without a transversal cover but with any \(2^r \) of its edges having a transversal cover.
Theorem (B., Korándi, Sudakov)

\[h^r_p(2^r) = r. \]

Proof.

- AFSOC there is an \(r \)-uniform, \(r \)-partite hypergraph without a transversal cover but with any \(2^r \) of its edges having a transversal cover.
- Let \(H \) be minimal satisfying above conditions.
Theorem (B., Korándi, Sudakov)

\[hp_r(2^r) = r. \]

Proof.

- AFSOC there is an \(r \)-uniform, \(r \)-partite hypergraph without a transversal cover but with any \(2^r \) of its edges having a transversal cover.
- Let \(H \) be minimal satisfying above conditions.
- Let \(V_1, \ldots, V_r \) be parts and \(A_1, \ldots, A_k \) edges of \(H \).
Theorem (B., Korándi, Sudakov)

$$hp_r(2^r) = r.$$

Proof.

- AFSOC there is an $$r$$-uniform, $$r$$-partite hypergraph without a transversal cover but with any $$2^r$$ of its edges having a transversal cover.
- Let $$H$$ be minimal satisfying above conditions.
- Let $$V_1, \ldots, V_r$$ be parts and $$A_1, \ldots, A_k$$ edges of $$H$$.
- Let $$B_i$$ be a transversal cover of $$H - A_i$$. Then:
Theorem (B., Korándi, Sudakov)
\[h_p(2^r) = r. \]

Proof.
- AFSOC there is an \(r \)-uniform, \(r \)-partite hypergraph without a transversal cover but with any \(2^r \) of its edges having a transversal cover.
- Let \(H \) be minimal satisfying above conditions.
- Let \(V_1, \ldots, V_r \) be parts and \(A_1, \ldots, A_k \) edges of \(H \).
- Let \(B_i \) be a transversal cover of \(H - A_i \). Then:
 - \(|A_i \cap V_j| = |B_i \cap V_j| = 1, \forall i,j. \)
Theorem (B., Korándi, Sudakov)

\[h_{r}(2^r) = r. \]

Proof.

- AFSOC there is an \(r \)-uniform, \(r \)-partite hypergraph without a transversal cover but with any \(2^r \) of its edges having a transversal cover.

- Let \(H \) be minimal satisfying above conditions.

- Let \(V_1, \ldots, V_r \) be parts and \(A_1, \ldots, A_k \) edges of \(H \).

- Let \(B_i \) be a transversal cover of \(H - A_i \). Then:
 - \(|A_i \cap V_j| = |B_i \cap V_j| = 1, \forall i, j. \)
 - \(A_i \cap B_j \neq \emptyset, \forall i \neq j \)

So \(H \) has a transversal cover, a contradiction.
Theorem (B., Korándi, Sudakov)

\[h_{p_r}(2^r) = r. \]

Proof.
- AFSOC there is an \(r \)-uniform, \(r \)-partite hypergraph without a transversal cover but with any \(2^r \) of its edges having a transversal cover.
- Let \(H \) be minimal satisfying above conditions.
- Let \(V_1, \ldots, V_r \) be parts and \(A_1, \ldots, A_k \) edges of \(H \).
- Let \(B_i \) be a transversal cover of \(H - A_i \). Then:
 - \(|A_i \cap V_j| = |B_i \cap V_j| = 1, \forall i, j. \)
 - \(A_i \cap B_j \neq \emptyset, \forall i \neq j \) since \(B_j \) is a cover of \(H - A_j \).
Theorem (B., Korándi, Sudakov)
\[h_{p_r}(2^r) = r. \]

Proof.
- AFSOC there is an \(r \)-uniform, \(r \)-partite hypergraph without a transversal cover but with any \(2^r \) of its edges having a transversal cover.
- Let \(H \) be minimal satisfying above conditions.
- Let \(V_1, \ldots, V_r \) be parts and \(A_1, \ldots, A_k \) edges of \(H \).
- Let \(B_i \) be a transversal cover of \(H - A_i \). Then:
 - \(|A_i \cap V_j| = |B_i \cap V_j| = 1, \forall i, j. \)
 - \(A_i \cap B_j \neq \emptyset, \forall i \neq j \) since \(B_j \) is a cover of \(H - A_j \).
 - \(A_i \cap B_i = \emptyset, \forall i \)
Theorem (B., Korándi, Sudakov)

$$h_{p_r}(2^r) = r.$$

Proof.

- AFSOC there is an r-uniform, r-partite hypergraph without a transversal cover but with any 2^r of its edges having a transversal cover.
- Let H be minimal satisfying above conditions.
- Let V_1, \ldots, V_r be parts and A_1, \ldots, A_k edges of H.
- Let B_i be a transversal cover of $H - A_i$. Then:
 - $|A_i \cap V_j| = |B_i \cap V_j| = 1, \forall i, j.$
 - $A_i \cap B_j \neq \emptyset, \forall i \neq j$ since B_j is a cover of $H - A_j$.
 - $A_i \cap B_i = \emptyset, \forall i$ since otherwise B_i is a transversal cover of H, a contradiction.
Theorem (B., Korándi, Sudakov)
\[h_p(r)(2^r) = r. \]

Proof.
- AFSOC there is an \(r \)-uniform, \(r \)-partite hypergraph without a transversal cover but with any \(2^r \) of its edges having a transversal cover.
- Let \(H \) be minimal satisfying above conditions.
- Let \(V_1, \ldots, V_r \) be parts and \(A_1, \ldots, A_k \) edges of \(H \).
- Let \(B_i \) be a transversal cover of \(H - A_i \). Then:
 - \(|A_i \cap V_j| = |B_i \cap V_j| = 1, \forall i, j. \)
 - \(A_i \cap B_j \neq \emptyset, \forall i \neq j \) since \(B_j \) is a cover of \(H - A_j \).
 - \(A_i \cap B_i = \emptyset, \forall i \) since otherwise \(B_i \) is a transversal cover of \(H \), a contradiction.
- This implies \(|E(H)| = k \leq \prod_{i=1}^{r} \left(\frac{1+1}{1} \right) = 2^r, \)
Theorem (B., Korándi, Sudakov)

$$hp_r(2^r) = r.$$

Proof.

- AFSOC there is an r-uniform, r-partite hypergraph without a transversal cover but with any 2^r of its edges having a transversal cover.
- Let H be minimal satisfying above conditions.
- Let V_1, \ldots, V_r be parts and A_1, \ldots, A_k edges of H.
- Let B_i be a transversal cover of $H - A_i$. Then:
 - $|A_i \cap V_j| = |B_i \cap V_j| = 1, \forall i, j.
 - $A_i \cap B_j \neq \emptyset, \forall i \neq j$ since B_j is a cover of $H - A_j$.
 - $A_i \cap B_i = \emptyset, \forall i$ since otherwise B_i is a transversal cover of H, a contradiction.
- This implies $|E(H)| = k \leq \prod_{i=1}^{r} \left(\frac{1+1}{1} \right) = 2^r$.
- So H has a transversal cover, a contradiction.\blacksquare
Concluding remarks and open problems

Theorem (B., Korándi, Sudakov)

\[h_p(r(2^r)) = r \text{ and } h_p(r(2^r/\sqrt{r})) > r. \]
Theorem (B., Korándi, Sudakov)

\[h_{p_r}(2^r) = r \text{ and } h_{p_r}(2^r / \sqrt{r}) > r. \]

Question

Is the \(\sqrt{r} \) necessary?
Concluding remarks and open problems

Theorem (B., Korándi, Sudakov)

\[h_p(r, 2^r) = r \text{ and } h_p(r, 2^r / \sqrt{r}) > r. \]

Question

Is the \(\sqrt{r} \) necessary?

Theorem (B., Korándi, Sudakov)

\[\frac{r^2}{12 \log k} \leq h_p(k) \leq \frac{16 r^2 \log r}{\log k}. \]
Concluding remarks and open problems

Theorem (B., Korándi, Sudakov)

\[h_p(r) = r \text{ and } h_p(r) (2r/\sqrt{r}) > r. \]

Question

Is the \(\sqrt{r} \) necessary?

Theorem (B., Korándi, Sudakov)

\[\frac{r^2}{12 \log k} \leq h_p(k) \leq \frac{16r^2 \log r}{\log k}. \]

Question

Is the \(\log r \) necessary?
Concluding remarks and open problems

Theorem (B., Korándi, Sudakov)

\[h_{p_r}(2^r) = r \text{ and } h_{p_r}(2^r / \sqrt{r}) > r. \]

Question

Is the \(\sqrt{r} \) necessary?

Theorem (B., Korándi, Sudakov)

\[\frac{r^2}{12 \log k} \leq h_{p_r}(k) \leq \frac{16r^2 \log r}{\log k}. \]

Question

Is the \(\log r \) necessary? Same question without \(r \)-partiteness condition.
