Effect of Combined Application of Cattle Manure, Mineral Nitrogen and Phosphorus Fertilizer on Soil Physico-Chemical Characteristics and Tuber Yield of Potato (Solanum Tuberosum L.) In Masha District, South-Western Ethiopia

Isreal Zewide*, Tamado Tana, Lemma Wogi and Ali Mohammed

1Mizan-Tepi University Department of Horticulture, Ethiopia
2Haramaya University, School of Plant Sciences, Ethiopia
3Haramaya University, School of Natural Resources Management and Environmental Sciences, Ethiopia
4Jimma University, Department of Post-harvest Management, Ethiopia

Submission: August 24, 2018; Published: September 28, 2018

*Corresponding author: Isreal Zewide, Mizan-Tepi University Department of Horticulture, P.O.Box260, Mizan Teferi, Ethiopia, Email: zewidesreal@gmail.com

Abstract

Soil fertility depletion due to soil erosion and nutrient leaching caused by heavy and continuous rainfall is one of the major causes for declining of soil productivity and crop yields in Masha district of south-western Ethiopia. Soil Hence, a field experiment was conducted in Belg and Meher seasons at Abelo area, Masha district, south-western Ethiopia, to determine the effect of combined application of cattle manure (CM) with inorganic nitrogen (N) and phosphorus (P) on potato tuber yield, and selected soil physico-chemical characteristics. The treatments comprised of combinations of three rates (2.5, 5, 7.5 t ha\(^{-1}\)) of CM with 25%, 50% and 75% of recommended rates of mineral NP, respectively. In addition, 100% recommended rate of mineral NP (165 kg N ha\(^{-1}\) and 137 kg P\(_2\)O\(_5\) ha\(^{-1}\)) and zero rates were used for comparison. The experiment was laid out in a randomized complete block design with three replications. The results revealed that applying 7.5 t ha\(^{-1}\) CM combined with 75% mineral NP gave significantly highest potato total tuber yield of (40 and 34 t ha\(^{-1}\)), the same rate increased tuber yield by 55.9% and 43.45% in Belg and by 51.19%, and 36.64% in Meher over the control and the application of 100% recommended rate of NP fertilizers, respectively. Soil pH (5.15 and 4.94), Organic carbon (21.1 and 12.7 g kg\(^{-1}\)), total N (1.71 and 1.51 g kg\(^{-1}\)), available P (7.55 and 6.27 mg kg\(^{-1}\)), CEC (22.04 and 23.96 cmol (+) kg\(^{-1}\)), exchangeable Ca\(^{2+}\) (8.36 and 8.28 cmol (+) kg\(^{-1}\)), exchangeable Mg\(^{2+}\) (3.14 and 2.06 cmol (+) kg\(^{-1}\)) and exchangeable aluminum (1.46 and 1.41 cmol (+) kg\(^{-1}\)) increased more over the treatment decreases exchangeable acidity (2.32 and 2.08 cmol (+) kg\(^{-1}\)) and exchangeable aluminum (1.46 and 1.41 cmol (+) kg\(^{-1}\)) in Belg and Meher seasons, respectively. Therefore, it can be concluded that the use of combined application of 7.5 t ha\(^{-1}\) CM together with 75% of recommended rates of inorganic N (123.75 kg N ha\(^{-1}\)) and P (103.05 kg P\(_2\)O\(_5\) ha\(^{-1}\)) can significantly increase potato tuber yield and improve the soil properties and reduces soil acidity.

Keywords: Cattle Manure; Physico-Chemical Properties; Nitrogen; Phosphorus; Tuber Yield

Introduction

Land degradation is a serious and widespread problem for agricultural development and food security in developing countries Adejumbo [1] Dell’Angelo [2] The wearing a way of soil in Ethiopian high land is quite pronounced with the average annual soil erosion rate nationwide was estimated at 12 tons ha\(^{-1}\), giving total annual soil loss of 1493 million tons EPA [3]. As a result, most of the Ethiopian soils, particularly within the highlands, are low in nutrient content due to erosion, leaching and absence of nutrient utilization Zeleke [4]. The major causes of land degradation in Ethiopia high-land area are natural and anthropogenic factors such as rapid population growth, deforestation, overgrazing, low vegetative cover and unbalanced crop and livestock production. limited recycling of dung and crop residues to the soil, limited application of external sources of plant nutrients, resulting in low nutrient content Temesgen [5]. Potato (Solanumtuberosum L.) is one of the most important tuber crops in the world. It’s tuber consists of mainly carbohydrates, proteins, and lipids. The tuber is used locally alone or together with meat, vegetable and a substituent with a pulse in stew preparation in Sheka Zone, south-western Ethiopia Isreal [6]. It is a preferable crop in the study area due to that it can be produced more than twice per year. In
Masha District, south-western Ethiopia, the potato is one of the major and widely cultivated tuber crops covering an area of 15% of arable land (3255ha) with the total production of 24447 t and productivity of 7.52 t ha⁻¹ in 2014/15 cropping season SZARDO [7], which is far below the average national yield of 13.5tha⁻¹ CSA [8].

It is one of the heavy feeders of root and tuber crop requiring relatively large quantities of fertilizers. However, leaching of nutrients due to heavy and continuous rainfall, soil acidity, low nutrient reserve in arable soils and poor crop residue management by potato growers, are the major factors contributing to low soil fertility and low yield of potato in the study area. In addition to the high cost, continuous use of mineral fertilizer is leading to declining soil chemical physical and, biological properties and thus, negatively affecting overall soil health Mahajan [9]; Compaore [10]; Bayu and Gebeyehu [11], nutrients supplied exclusively through chemical sources, lead to unsustainable productivity over the years Mahajan [9], Fekadu [12]. Thus, the undesirable impacts of chemical fertilizers, coupled with their high cost, have prompted the interest in the use of organic fertilizers as a source of nutrients. The combined application of organic together with inorganic fertilizers has been reported to improve crop growth by supplying plant nutrients including micro-nutrients as well as improving soil physical, chemical, and biological properties thereby provide a better environment for root growth by improving the soil structure Dejene and Lemlem [13]: Kang [14]. Major inputs of soil nutrients like the addition of mineral fertilizers, organic sources, and, biological nitrogen fixation are less than major outputs such as harvested products, crop residue removal, leaching, gaseous losses, and soil erosion. This shows a net loss of soil fertility or imbalance between the inputs and the outputs as reported by Lesschen [15] this is also true In Masha district, south-western Ethiopia and encourages the application of organic sources and mineral nitrogen and phosphorus to correct balances of nutrient inputs and outputs.

The combined application of organic and inorganic fertilizers can improve soil health and nutrients supply for plant growth and subsequently would be resulted in economic profitability. Many research findings showed that neither inorganic fertilizers nor organic sources alone can result in the sustainable productivity Yadav [16]: Fekadu [12]. Furthermore, the price of inorganic fertilizers is increasing and becoming unaffordable for resource-poor smallholder farmers. The best remedy for soil fertility management is, therefore, a combination of both inorganic and organic fertilizers, where the inorganic fertilizer provides readily available nutrients and the organic fertilizer mainly increases soil organic matter and improves soil structure and buffering capacity Yadav [17]. The combined application of inorganic and organic fertilizers, usually termed as integrated nutrient management, is widely recognized as a way of increasing crop yields through sustainable soil health and productivity Mahajan [9]; Kang [14]. Several researchers e.g. Mahajan [9], Getachew [18]; Gafar [19] Agegnehu and Amede [20] verified the beneficial effect of integrated nutrient management in moderating the deficiency of a number of macro- and micro-nutrients.

In view of this fact, identifying the optimum dose of integrated organic and inorganic fertilizers is crucial and is required to supply sufficient amount of nutrients for increased crop yields. Daniel and Nigusse [21] reported high tuber yield of potato (29.59 t ha⁻¹) when cattle manure at the rate of 10tha⁻¹ was combined with inorganic nitrogen at 111kg N ha⁻¹ and phosphorus at 90 kg P₂O₅ ha⁻¹ on Nitosols. Similarly, Shiferaw [22] reported the highest mean potato tuber yield (41.88 t ha⁻¹) with combined application of 1st ha ‘cattle manure with the application of 100% recommended rate of NP (100kg ha⁻¹), which increased tuber yield by 393.9%, over control. Likewise, Biruk [23] obtained the highest potato tuber yield (38.6 t ha⁻¹) by application of 30 t ha⁻¹ of cattle manure along with nitrogen at 120kg N ha⁻¹ and phosphorus at 92 kg P₂O₅ ha⁻¹. Thus, the integrated nutrient management involving judicious use of combined organic and inorganic fertilizer sources is a feasible and productive approach to overcome soil fertility constraints Ethhimiadou [24].

However, research on integrated nutrient management for potato production has not yet been conducted at Abelo area, Masha district of Sheka Zone, south-western Ethiopia where soil fertility depletion is very severe. In order to address the key issue of soil fertility depletion attributed and reduction of potato yields the study area, different rates of cattle manure and mineral NP was conducted in Belg and Meher seasons. The objective of the study was to determine effects of combined application of CM with inorganic NP fertilizers on selected soil physico-chemical properties and potato tuber yield and subsequently to improve soil fertility and crop productivity of the study area.

Materials and Methods

Description of the Study Site

The experimental site lies between 7°44’17.6”- 7°44’ 20.1” N latitude, 35°29’18’- 35°29’41.9’ E longitude and located at an elevation of 2205 m asl. The total area of the sites 5603m² (0.56 ha), which is found in Abel area, Masha District of Sheka Zone in South-west Ethiopia (Figure 1). Abel area is a well-known area of high potential for root and tuber crops production including potato in Masha District (Figure 1). The rainfall pattern of the site is characterized by monomodal distribution with the relatively small rainy season in Belg (February -May) and main rainy season’s Meher (June -October). The total rainfall was 633 and 1153mm in 2016 Belg and Meher cropping seasons, respectively. The maximum temperature of 2016 Belg season varied from 24.98 °C (February) to 24.62 (May) and 24.74 (June) to 26.19 °C (October) and mean maximum temperature of 25.05 and 25.56 °C in Belg and Meher seasons, respectively. The minimum temperature varied between 16.01°C (February) to 13.9°C (May) in Belg and 12.64 (June) to 13.48°C (October) in the Meher season. Mean minimum temperature was 14.5 and 13.15°C in Belg and Meher seasons, respectively as indicated in Figure 2.
How to cite this article: Isreal Z, Tamado T, Lemma W, Ali Mohammed. Effect of Combined Application of Cattle Manure, Mineral Nitrogen and Phosphorus Fertilizer on Soil Physico-Chemical Characteristics and Tuber Yield of Potato (Solanum Tuberosum L.) In Masha District, South-Western Ethiopia. Int J Environ Sci Nat Res. 2018; 14(5): 555900. DOI: 10.19080/IJESNR.2018.14.555900.

Experimental Materials

Potato variety ‘Belete’ from Holeta Agricultural Research Center was used for this experiment. The variety was released in 2009 and has been accepted by farmers due to its high yielding ability, consumers’ preference, wider adaptation, better cooking ability and relative resistance to late blight compared to local and other improved potato varieties. As a result, this variety is being cultivated widely in the study area. It is well performing at an altitude of 1600-2800 m.a.s.l and requires rainfall of 750-1000 mm per season. It reaches maturity within 90-120 days. The productivity of this variety ranges from 29.13 t ha⁻¹ under farmers’ field and 44.8 t ha⁻¹ at research stations MOARD [25]. Urea (46% N) and TSP (46% P₂O₅) were used as inorganic N and P sources whereas CM was used as an organic fertilizer. CM was obtained from sustainable land management (SLM) project in Masha district; where Urea and TSP were obtained from Teppi Soil Testing Research Center.

The pH and electrical conductivity (EC) of the cattle manure were determined in extracts of 1:10(w/v) cattle manure to distilled water ratio as described by Ndegwa and Thompson [26]. Total N was measured by the Kjeldahl method. Organic carbon (C) was determined by the Walkley and Black method Walkley and Black [27]. Total P, Ca, Mg and K were extracted following the wet digestion method Okalebo [28]. The concentration of P was determined by the molybdenum blue coloration method. Total cations (Ca and Mg) were determined from the wet digested samples by atomic absorption spectrophotometer, while total K and Na were estimated by flame photometer Okalebo [28]. The results of all analyzed parameters for cattle manure are depicted in Table 3.

Treatments and Experimental Design

Treatments consisted of three rates of cattle manure (2.5, 5, 7.5 t ha⁻¹) and three rates of recommended inorganic NP fertilizers (0, 25%, 50%, and 75%) and 100% recommended rate of inorganic
NP fertilizer (165 kg N ha⁻¹ and 60 kg P₂O₅ ha⁻¹) and zero rates were used. The field experiment was laid out in the Randomized Complete Block Design (RCBD) with three replications. Gross and net plot sizes were (4.5m row width * 3.6m raw length) 16.2 m² and (3m raw length*3m raw width) 9m², respectively. Treatments were assigned to each plot randomly. Each plot was comprised of six rows with 12 plants/hills. The total number of plants per plot was 72. Spacing was 30cm between plants/hills within rows and 75cm between rows, which gave a planting density of 4.4 plants/ hills m⁻². The spacing between plots and replications were 1 and 1.5m, respectively.

Experimental Procedure

The experimental land was well prepared prior to planting. In the first season, it was plowed three times with oxen and the plots were leveled manually. The soil was pulverized, leveled using human labor; each individually. The plot was prepared and addition ridging and then a division of the experimental units was done manually. Cattle manure was applied to the respective plots thoroughly and then incorporated into the soil layer (0-20cm) a month prior to planting at the rate of 2.5, 5 and 7.5 t ha⁻¹ on dry weight bases. Phosphorus was applied in the form of triple superphosphate (46% P₂O₅) by drilling along the furrows and per hill and mixed well with the soil. Pre-sprouted potato tuber seeds were planted on 2nd February 2016 during Belg and on 2nd June 2016 during Meher seasons. Nitrogen was side-dressed in three split application methods (i.e., 1/4 at plant emergence; 2/4 at mid-stage; at 40 days after planting; and 1/4 at the initiation of tubers) because of its mobility and possible injury to the crop. Conventional agronomic practices such as hoeing, weeding, and earthing-up were carried out uniformly to all plots. Dehaluming were done to thicken tuber periderm when the plants reached physiological maturity and senesced. This was done two weeks before harvesting to toughen the periderm in order to reduce bruising and skinning during harvesting and post-harvest handling. Tubers were harvested on May 15, 2016, in Belg and on October 8, 2016, in Meher seasons, when 70% of haulms were physiologically mature and senesced. This was done two weeks before harvesting to toughen the periderm in order to reduce bruising and skinning during harvesting and post-harvest handling. Tubers were harvested on May 15, 2016, in Belg and on October 8, 2016, in Meher seasons, when 70% of haulms were dried from plants grown in the four middle rows. Harvesting was done manually using hand hoe with great care and only parts of plants grown in the central parts of the plots were used for data collection to reduce border effect. Thus, 40 plants in the net plot were used to collect potato yield and finally converted into tha⁻¹.

Soil Sampling and Analysis

Prior to planting, soil samples (0 - 20cm), from ten spots across the experimental fields were collected in a zig-zag pattern, in 2016 during Belg and Meher cropping seasons. One composite sample was made. The soil sample was prepared for physicochemical analyses. Soil and were air dried ground and passed through 2mm sieve for the analysis of physicochemical properties except for total nitrogen and organic carbon which were passed through 0.5mm sieve. Soil Particle size distribution was analyzed by the hydrometer method Day [29] after destroying OM using hydrogen peroxide (H₂O₂) and dispersing the soils with sodium hexametaphosphate Na (PO₅)₆. Soil bulk density was determined by the undisturbed core sampling method Blake [30] after drying the soil samples in an oven at 105 °C to constant weights, while particle density was estimated by the pycnometer method Baruaah and Barthakulh [31] Percent total pore space was computed from the values of bulk density (BD) and particle density (PD) as described by Hillel [32].

\[TP(\%) = \frac{1 - \frac{BD}{PD}}{} \times 100 \]

Soil pH-H₂O was measured using a pH meter in a suspension of 1:2.5 soils: water ratio. The soil OC content was determined following the wet oxidation method as outlined by Walkley and Black [27]. Total N content in the soil samples was determined titrimetrically following the Kjeldahl method as described by Jackson [33]. Available P was determined using Bray II method Bray and Kurtz [34]. Cation exchange capacity (CEC) and exchangeable bases (Ca, Mg, K and Na) were determined after extracting the soil samples by ammonium acetate (1N NH₄OAc) at pH 7.0. Exchangeable Ca and Mg in the extracts was analyzed using atomic absorption spectrophotometer while Na and K were analyzed by a flame photometer Rowell, 1994). Cation exchange capacity was thereafter estimated titrimetrically by distillation of ammonium that was displaced by sodium after leaching with NaCl solution Chapman [35]. Percentage base saturation (PBS) was calculated as the ratio of the sum of the charge equivalents of the base-forming cations (Ca, Mg, Na and K) to the CEC of the soil.

Exchangeable acidity was determined by saturating the soil samples with 1M KCl solution and titterated with 0.02 M NaOH as described by Rowell (1994). From the same extract, exchangeable Al in the soil samples was titrated with a standard solution of 0.02M HCl. Finally, exchangeable H was obtained by subtracting exchangeable Al from exchangeable acidity (Al + H) (Rowell, 1994). Available micronutrients (Fe, Mn, Zn and Cu) were extracted from the soil samples with Dietylene Triamine Pentaacetic Acid (DTPA) as described by Lindsay and Norvell [36] and all were measured by atomic absorption spectrophotometer at their respective wavelengths. Just after harvesting of the crop, composite surface (0 - 20cm) soil samples were collected from three spots for each plot from every replication. These samples were composited to yield one representative sample per replication from each plot for determination of CEC, pH, total N, available P, available K and organic carbon contents using procedures indicated for pre-sowing soil analysis. The extract of K was analyzed using flame photometer Black [30]. The bulk density (BD) of the soil was measured from the undisturbed soil samples collected from each plot using core sampler, which was weighed at field moisture, and after drying the pre-weighed core sample to a steady weight in an oven at 105 °C according to the procedure described by Okalebo [28], while particle density (PD) was measured using pycnometer Baruaah and Barthakulh [31].

\[TP(\%) = \frac{1 - \frac{BD}{PD}}{} \times 100 \]

where, BD = bulk density; PD= particle density (Hillel, 2004).
Statistical Data Analysis

The post-harvest soil and tuber yield data were subjected to analysis of variance (GLM procedure) using SAS software program version 9.2 SAS Institute [37]. Homogeneity of variances was calculated using the F-test as described by Gomez and Gomez (1984) and since the F-test has shown heterogeneity of the variances of the two seasons for all of the agronomic parameters, a separate analysis was used for the two seasons. The Fisher’s protected least significant difference (LSD) test at 0.05 probability level was employed to separate treatment means where significant treatment differences occurred.

Results and Discussion

Soil physical and chemical properties before planting

The bulk density value of the soil was 1.37g cm-3 in Belg and 1.38 g cm-3 in Meher season where particle density was 2.58g cm-3 of soil in Belg and 2.6 g cm-3 in Meher and total porosity was 46.80% in Belg and 46.92% in Meher. According to Barauah and Barthakulh [31], soil bulk density and particle density rating of this soil has moderate compaction. The moderate compaction of the soil could be due to continuous cultivation which causes disintegration of the soil structure and exposure of surface soil to the direct raindrops. The total porosity of this soil was 46.96% which was classified as high according to the rating of Hillel [32]. Therefore, the soil is good for optimum movement of air and water through the soil and there is no problem on tuber growth and expansion in the soil. Soil particle size analysis results showed that texture of the soil is sandy clay loam in both seasons with particle size distribution of 57% sand, 18% slit,25% clay in Belg and 56% sand, 16% silt and 28% clay in Meher seasons (Table 1). This soil is, therefore, expected to have poor in structure, unstable because of low content of clay and organic matter, slightly weak in strength when relatively dry, which creates no problem for emerging seedlings and susceptible to leaching leading to loss of available plant nutrients especially basic cations that cause deficient in macronutrients like N, P, K, Ca, Mg and S. These results of the initial soil test analysis showed that the soil at the site was strongly acidic, with pH of (5.01) in Belg and Very Strongly acidic (4.8) in Meher season Low status of total N of 1 and 0.8g kg⁻¹ content could possibly be due to either low initial organic matter content of the soil, which contributes about 90-95% of soil nitrogen or leaching of nitrate by torrential rainfall prevalent in the experimental areas (Aziz et al., 2010; Ahmad and Arshad, 2015). Low status of organic carbon, (12g kg⁻¹) in Belg and (10.2 g kg⁻¹) in Meher seasons, Low status of available phosphorus of the soils 5.5ppm in Belg and 5ppm in Meher season This could be attributed to the poor management of crop residue, poor land management practices, slash-and-burn agricultural systems, low soil organic matter, high soil erosion. low inherent fertility of soil, fixation of phosphorus in acidic soil resulting in nutrient reduction and the decline in soil fertility Thus, the response to added organic and mineral fertilizer at different season is expected to show responses on the crop and the soil. The soils analysis also revealed that in both study seasons have medium CEC of 20cmol (+) kg⁻¹ in Belg season and 19.3cmol (+) kg⁻¹ in Meher season, high in micronutrient cations Fe, Mn, Cu, and Zn both in Belg and Meher season due to increased availability at low pH, cations being less strongly bound to the soil and readily exchangeable and trace in exchangeable sodium according to the rating of Tekalign [38] (Table 2). The soil had also relatively high content of exchangeable acidity (3.83cmolc (+) kg⁻¹) and aluminum (3.82cmolc (+) kg⁻¹) in Belg and exchangeable aluminum (2.01cmolc (+) kg⁻¹) in Belg and (2.46cmolc (+) kg⁻¹) in Meher season.

Table1: Initial soil physical characteristics of the experimental site. During Belg and Meher seasons.

Soil Parameters	Belg Season	Meher Season	References
% Sand	57	56	
% Silt	18	16	
% clay	25	28	
%porosity	46.80	46.92	
Textural class	Sandy clay loam	Sandy clay loam	
Bd (g cm⁻³)	1.37	Medium	Barauah and Barthakulh [31]
PD (g cm⁻³)	2.58	Medium	Barauah and Barthakulh [31]
%porosity	46.80	46.92	Barauah and Barthakulh [31]

Bd=bulk density PD=particle density.

Table 2: Initial soil chemical characteristics of the experimental site. During Belg and Meher seasons.

Soil Parameters	Belg Season	Meher Season	References
pH (1:2.5 H₂O)	5.01	Strongly acidic	Tekalign [38]
O.C(g kg⁻¹)	12	Low	Tekalign [38]
DTPA = Diethylene Triamine Pentaacetic Acid, Pbs=percent base saturation.

Table 3: Nutrient content of cattle manure used in the experiment in Belg and Meher season.

Parameters	Belg	Meher
pH (1:2.5 H₂O)	6.8	7.1
Electrical conductivity (uS cm⁻¹)	182	148
Carbon (g kg⁻¹)	250	220
Total N (g kg⁻¹)	192	160
C: N	13:1	14:1
Total phosphorus (g kg⁻¹)	1.374	1.19
Total Ca (g kg⁻¹)	78.54	67.48
Total Mg (g kg⁻¹)	13.3	9.9
Total K (g kg⁻¹)	46.74	52.2
Total Na (g kg⁻¹)	0.7	0.9
Moisture content (%)	78	1

Table 4: Analysis of variance for potato tuber yield and soil physico-chemical properties after crop harvest.

Soil parameter and tuber yield	Season	Source of variation with a degree of freedom			
		Replication (2)	Treatment (10)	Error(20)	CV (%)
Potato Tuber Yield	Belg	16.43**	70.09**	4.92	6.74
Bulk density (g cm⁻³)	Meher	5.75**	33.28**	1.77	4.62
	Belg	0.02**	0.011**	0.00096	2.7
	Meher	0.017**	0.00587**	0.0008	2.02
Particle density (g cm⁻³)	Belg	0.00117**	0.0034**	0.00095	1.16
	Meher	0.032**	0.11**	3.22	1.04
Porosity (%)	Belg	0.68**	2.73**	0.581	1.54
	Meher	3.670**	5.23**	0.45	1.37
Analysis of the composition of soil and cattle manure revealed better nutrient composition in Belg than in Meher season because in Belg season there is optimum soil temperature, moisture and pH that might create suitable condition for microorganism multiplication both in number and species causes fast decomposition of materials this results in narrow carbon to nitrogen ratio and release of more nutrients Therefore, the microbial-based indicators can be used as early indicators of soil degradation or improvement (Tables 1 & 2). The analysis of cattle manure presented in Table 3 indicated that it contains relatively higher content of carbon, N, P, pH, total N, Ca, Mg, K, Na, CEC, EC and moisture content in Belg season as compared to Meher season possibly Because of its fast decomposition elevated contents of salts it can be utilized to raise the pH of acid soils Therefore, cattle manure can be used as an alternative to lime either by itself or as a mixture of mineral NP (Table 3). Mean square value due to cattle manure can be used as an alternative to lime either by itself or as a mixture of mineral NP fertilizers above 7.5 t ha⁻¹ increased the total tuber yield from 25.78 to 40.20 t ha⁻¹ and 22.63- 34.22 t ha⁻¹ (Table 5). The highest yield was obtained at 7.5 t ha⁻¹ CM+75% NP ha⁻¹, but the lowest yield was obtained at zero dosage of cattle manure and inorganic NP application. Increasing the application rates of cattle manure and inorganic NP from zero to 7.5 t CM+75% NP ha⁻¹ increased total tuber yield by 55.9%, 42.90% and 51.19%, 36.64% in both Belg and Meher season as compared to zero and 100% inorganic NP application. This result is partly in line with the finding of and Najm [39] reported that combined application of cattle manure and inorganic fertilizers above 7.5 t ha⁻¹ CM+75% of recommended NP ha⁻¹. This result is partly in line with the finding of and Najm [39] reported that combined application of cattle manure and inorganic fertilizers increased the total tuber yield. In his study highest tuber yield (36.8 tha⁻¹) was obtained by application of 20 tons⁻¹ Cattle manure+150 kg N ha⁻¹, on clay loam soils of Islamic Azad University, Roudehen Branch, Tehran,

Total Tuber Yield of Potato

Total tuber yield of potato was highly significantly (P<0.01) affected by the application of cattle manure and inorganic NP (Table 4). Increasing the application rates of cattle manure and inorganic NP from 0 to 7.5 t ha⁻¹ increased the total tuber yield from 25.78 to 40.20 t ha⁻¹ and 22.63- 34.22 t ha⁻¹ (Table 5). The highest yield was obtained at 7.5 t ha⁻¹ CM+75% NP ha⁻¹, but the lowest yield was obtained at zero dosage of cattle manure and inorganic NP application. Increasing the application rates of cattle manure and inorganic NP from zero to 7.5 t CM+75% NP ha⁻¹ increased total tuber yield by 55.9%, 42.90% and 51.19%, 36.64% in both Belg and Meher season as compared to zero and 100% inorganic NP application of fertilizers, respectively. This show there is an opportunity for additional gain in tuber yield through the further application of more rates of combined cattle manure with inorganic NP fertilizers above 7.5 t ha⁻¹ CM+75% NP ha⁻¹.

Table 1:

Property	Belg	Meher
pH (1:2.5 H₂O)	0.10**	0.01**
Cation exchange capacity	0.018**	0.007**
Exchangeable acidity	0.0075	0.0049
Percent base saturation	0.45	0.45

Table 2:

Substrate	Belg	Meher
Exchangeable Aluminum	0.099**	0.099**
Sodium (cmol(+)+) kg⁻¹	0.315**	0.315**
Magnesium (cmol(+)+) kg⁻¹	0.098	0.098
Calcium (cmol(+)+) kg⁻¹	0.11	0.11
Cation exchange capacity	0.157**	0.157**

Table 3:

Property	Belg	Meher
Exchangeable acidity	0.01	0.01
Percent base saturation	0.9	0.9
Exchangeable Aluminum	0.013	0.013
Sodium (cmol(+)+) kg⁻¹	3.579	3.579
Magnesium (cmol(+)+) kg⁻¹	3.63	3.63
Calcium (cmol(+)+) kg⁻¹	4.86	4.86

Table 4:

Substrate	Belg	Meher
Exchangeable acidity	0.01	0.01
Percent base saturation	0.02	0.02
Exchangeable Aluminum	0.013	0.013
Sodium (cmol(+)+) kg⁻¹	2.013**	2.013**
Magnesium (cmol(+)+) kg⁻¹	2.96**	2.96**
Calcium (cmol(+)+) kg⁻¹	4.00	4.00

Table 5:

Substrate	Belg	Meher
Exchangeable acidity	0.0185**	0.0185**
Percent base saturation	0.09	0.02
Exchangeable Aluminum	0.044**	0.044**
Sodium (cmol(+)+) kg⁻¹	3.4	3.4

Ns non-significant more than 5% level of significance (P>0.05), Significant at 5% level of significance (P < 0.05) and ** highly Significant at 1% level of significance. (P < 0.01) as established by LSD test; *
Iran, similarly Alemi [40] reported the maximum tuber yield (53.4 and 67 t ha\(^{-1}\)) and (51 and 63.1 t ha\(^{-1}\)) in 2003 and 2004 cropping season in Nitosol and Vertisol, soils of in addition maximum tuber dry weight (632.38 g-m-2) was obtained by integrated use of One third of Crop residue + one third of CM + Bio-fertilizer +150% RDF. In 2012 2013 cropping season the gangetic alluvium belt of West Bengal Shubhadip [41] and also Kabira [42] integrated the use of cattle manure at rate 2.47 t ha\(^{-1}\) with mineral NPK (23:23:0) at 77 kg ha\(^{-1}\)and Desiree and Kenya Mavuno potato varieties in the second season April 2014 to August 2014 at kalro Tigoni. station Nairobi Kenya provide better yield (26.24 t ha\(^{-1}\)).

Results have shown that all the treatments increased total tuber yield in both Belg and Meher season as compared to control, but the increment in total tuber yield is higher in belg season. This may be due to rainfall and temperature variability in each season causes soil fertility dynamics by facilitating more soil organic matter and manure decomposition this may favor higher nutrient availability in Belg season as compared to Meher season. in addition, compatibility of essential nutrient availability with growing phases that is maximum demand at tuber bulking phase and low in early and maturity phase (Table 5).

Table 5: Tuber yield (t ha\(^{-1}\)) and percent yield change (%) as influenced by the combined application of organic fertilizer and mineral NP in Belg and Meher seasons, in Masha district, south-western Ethiopia.

Treatment	Belg	Meher		
	Total tuber yield (t ha\(^{-1}\))	% change over 100% NP	Total tuber yield (t ha\(^{-1}\))	% change over 100% NP
2.5 t ha\(^{-1}\) CM+25% NP	29.34\(\text{e}\)	4.13	26.54\(\text{d}\)	5.31
2.5 t ha\(^{-1}\) CM+50% NP	29.9\(\text{a}\)	6.26	27.98\(\text{c}\)	10.43
2.5 t ha\(^{-1}\) CM+75% NP	30.29\(\text{a}\)	7.65	28.25\(\text{c}\)	11.39
5 t ha\(^{-1}\) CM+25% NP	30.98\(\text{a}\)	10.10	28.31\(\text{c}\)	11.60
5 t ha\(^{-1}\) CM+50% NP	35.06\(\text{b}\)	24.60	28.73\(\text{ab}\)	13.10
5 t ha\(^{-1}\) CM+75% NP	35.99\(\text{b}\)	27.90	30.88\(\text{c}\)	20.74
7.5 t ha\(^{-1}\) CM+25% NP	36.77\(\text{ab}\)	30.68	31.13\(\text{c}\)	21.63
7.5 t ha\(^{-1}\) CM+50% NP	39.6\(\text{a}\)	40.73	32.46\(\text{a}\)	26.35
7.5 t ha\(^{-1}\) CM+75% NP	40.2\(\text{a}\)	42.87	34.22\(\text{a}\)	32.61
100% NP	28.14\(\text{a}\)	0	25.04\(\text{a}\)	0
Control	25.78	-8.37	22.63\(\text{a}\)	-8.57
LSD (5 %)	3.78	2.26		
Significance	**	**		
CV (%)	8.77	4.62		

Means followed by the same letter within a column are non-significantly different to each other at * Significant at 5% level of significance (P < 0.05) and ** highly Significant at 1% level of significance. (P < 0.01) as established by LSD test; * CM = Cattle manure in t ha\(^{-1}\).

Soil Physical Characteristics

Table 6: Bulk density (g cm\(^{-3}\)), particle density (g cm\(^{-3}\)), and total porosity (%) of soil after crop harvest as influenced by the combined application of cattle manure and mineral NP in Belg and Meher seasons, in Masha district, South-western Ethiopia.
Effect of Combined Application of Cattle Manure, Mineral Nitrogen and Phosphorus Fertilizer on Soil Physico-Chemical Characteristics and Tuber Yield of Potato (Solanum Tuberosum L.) In Masha District, South-Western Ethiopia. Int J Environ Sci Nat Res. 2018; 14(5): 555900. DOI: 10.19080/IJESNR.2018.14.555900.

The combined application of cattle manure and inorganic N and P fertilizers had highly significant (P<0.01) effect on the bulk density and porosity of the soil both in Belg and Meher season (Table 6). The lowest bulk density (1.28g cm$^{-3}$) was obtained from the application rate of 7.5 t ha$^{-1}$ CM in combination with 75% inorganic N and P in Belg season which is stastically the same as application 7.5 t ha$^{-1}$ CM with 50% inorganic N and P, 7.5 t ha$^{-1}$ CM with 25% inorganic N and PandSt5 ha$^{-1}$ CM in combination with 75% inorganic N and P and 5 t ha$^{-1}$ CM in combination with 50% inorganic N and P in Belg season. Similarly, the lowest bulk density (1.30g cm$^{-3}$) in Meher was obtained from the application rate of 7.5 t ha$^{-1}$ CM in combination with 75% inorganic N and P while highest bulk densities (1.25g cm$^{-3}$) in Belg and (1.38g cm$^{-3}$) in Meher seasons were from the control, application of 100% NP and 2.5 t ha$^{-1}$ CM with 25% NP in both Belg and Meher season respectively (Table 4). The lowest bulk density of 7.5 t ha$^{-1}$ CM applied plots was due to the availability of organic matter to the soil at the proper time and in the proper proportions and this improves soil physical and chemical properties due to increased soil organic matter. These results corroborate with the findings of Paul [43] reported that cattle manure at 10 t ha$^{-1}$ with 100% RDF (N150P75K75) has advantages in improving the soil organic matter and water holding capacity, with an associated decrease in bulk density and increasing infiltration rate of water. Similarly, Fekadu [12]; and Saha [44] reported that the use of cattle manure with mineral fertilizer significantly increased soil organic carbon (SOC) and decreased bulk density over time (Table 6). Several studies have reported that CM plus mineral nutrient application resulted in reduced bulk density, higher soil organic carbon and hydraulic conductivity and improved soil structure and microbial communities Andargachew, 2014; Shiferaw [22], Yadav [17]; Kumar [45].

Bulk density normally decreases, as mineral soils become finer in texture. Therefore, the combined application of mineral N and P and cattle manure decreased bulk density with increase in total pore space present in the soil and gives a good estimate of the porosity of the soil. Bulk density is of greater importance than particle density in understanding the physical behavior of the soil. Generally, soils with low bulk densities have favorable physical conditions. Similarly, Song [46] reported that the decrease in bulk density obtained with manure treated soil was directly related to the increased organic matter, which played a significant role in reducing compaction of soil. The organic amendments promote the activity of soil fauna and play a major role in the buildup and stabilization of soil structure. In view of this, bulk density values of the soils in the study areas were not too compact after crop harvest to limit root penetration and restrict movement of water and air.

Accordingly, the highest total porosity (51.78%) in Belg and (51.10%) in Meher was obtained from the application of 7.5 t ha$^{-1}$ CM in combination with 75% inorganic N and P and 50% inorganic N and P in which is statistically the same as application of 7.5 t ha$^{-1}$ CM in combination with 50% inorganic N and P in both Belg and Meher season. This increased porosity with the application of CM might be due to low soil compaction increase in organic matter leading to increased rapid multiplication of soil microorganisms, fastens the mineralization of plant nutrients in the soil. Similarly, Poeplau [47] reported that soil with good organic matter content have higher porosity, and plays a critical role in establishing and maintaining soil fertility. On the other hand, the lowest total porosity of 48.04% in Belg and 48.43% in Meher season were obtained from the control (Table 6).

Soil Chemical Characteristics after Crop Harvest

A comparison of soil fertility status prior to planting and after harvesting of potato shown that incorporation of cattle manure and mineral NP highly significantly (P<0.01) affects organic carbon content, total N, available P, soil pH, CEC, exchangeable acidity, exchangeable aluminum, exchangeable calcium, exchangeable magnesium, exchangeable potassium percent bases saturation, however, there was non-significant (P>0.05) effect on exchangeable sodium both in Belg and Meher seasons. Table 4 indicating that there was an improvement of the fertility status of the soil due to an integrated nutrient management.

Soil pH

Soil pH in pre-sowing soil was 5.01 in Belg and 4.8 in Meher season (Table 2). Soil pH value after crop harvest ranged from a minimum of 4.95 to a maximum of 5.15 in Belg and a minimum of 4.79 to a maximum of 4.94 in Meher season. The highest soil pH of 5.15 in Belg and 4.94 in Meher season after harvest was recorded at application 7.5 t ha$^{-1}$ CM, with 75% inorganic N and P, which is stastically at par with application of 7.5 t ha$^{-1}$ CM, with 50% inorganic N and P and 7.5 t ha$^{-1}$ CM, with 25% inorganic N and P which might be due to lime like materials such as calcium and magnesium present in manure increases soil pH. In line with this result, Suh et al [48] showed an increase in soil pH in plots applied with cattle manure following potato production.
Similarly, Ahmed [49] also found that using of animal manure such as cattle manure has positively beneficial effects on changes the soil pH where increases or decreases in the pH, depending on the type of soil and properties of organic fertilizer while the lowest soil pH (4.95) in Belg and (4.79) in Meher season was obtained at zero application of nutrients which is the same as application of 100% NP, 2.5 t ha⁻¹ CM 25% NP, 2.5 t ha⁻¹ CM +50% NP in Belg season and 100% NP, 2.5 t ha⁻¹ CM+25% NP in Meher season. non-amendment of cattle manure and mineral NP removal of organic amendments can increase reduced pH, of soil this is because organic amendments can increase Al availability to plants by increasing the H⁺ release of soils. The observed reduced following non-application of treatments with organic amendments (e.g. cattle manure) and inorganic is understood to reduce decomposition (less negative charge of adsorption sites) and complexation of soluble Al and Fe by organic molecules. Therefore, the lesser the organic and inorganic amendments the greater the decrease in Al adsorption capacity of soil this increase the release of more H⁺ and decline in soil pH. similar results were also reported by Haynes and Mokolobate [50] reduction in the decomposition of organic residues causes a reduction in soil pH (Table 7).

Table 7: pH of soil after harvest of potato as influenced by the application of cattle manure and inorganic NP in Belg and Meher season at Masha district, south-western Ethiopia.

Treatment	Belg	Meher
2.5 t ha⁻¹ CM+25% NP	4.98*	4.82*
2.5 t ha⁻¹ CM+50% NP	4.99*	4.83**
2.5 t ha⁻¹ CM+75% NP	5.00* &	4.94*
5 t ha⁻¹ CM+25% NP	5.02* &	4.86*
5 t ha⁻¹ CM+50% NP	5.03* &	4.87* &
5 t ha⁻¹ CM+75% NP	5.04* &	4.89* &
7.5 t ha⁻¹ CM+25% NP	5.06* &	4.90* &
7.5 t ha⁻¹ CM+50% NP	5.07* &	4.90* &
7.5 t ha⁻¹ CM+75% NP	5.15* &	4.94* &
100% NP	4.96*	4.80*
Control	4.95*	4.79*
LSD (5 %)	0.54	0.037
Significance	**	**
CV (%)	0.046	0.453

Means followed by the same letter within a column are non-significantly different to each other at * Significant at 5% level of significance (P < 0.05) and ** highly Significant at 1% level of significance. (P < 0.01) as established by LSD test; * CM = Cattle manure in t ha⁻¹.

Organic Carbon

Total organic carbon before planting was 1.2% in Belg and 1.02% in Meher (Table 2). After harvesting, it ranged from a minimum of 18.8 to a maximum of 21.1g kg⁻¹ in Belg season and from a minimum of 10.36 to a maximum of 12.72 g kg⁻¹ in Meher season (Table 8). The highest values at 7.5 t ha⁻¹ CM +75% RDF in both Belg and Meher season followed by 7.5 t ha⁻¹ CM +50% RDF. After harvesting, application of 7.5 t ha⁻¹ CM with75% RDF improved the soil organic carbon by 12.23% and 22.78% as compared to zero application of treatments in Belg and Meher seasons respectively, indicating that these amendments positively affected the organic matter.

Increasing levels of cattle manure are linked to greater increased in soil organic matter due to enhanced soil microbial action increase soil moisture, soil structure, nutrient retention, aeration, water holding capacity of amended soil This indicated that the integrated application of 7.5 t ha⁻¹ CM with 75% recommended rates of inorganic NP had the capacity of improving the soil carbon content, both in Belg and Meher seasons.

Kumar [45] reported that the combined application of CM from 12.5 to 25 t ha⁻¹ with (75% and 100%) recommended doses of NPK (150:60:100) fertilizers in potato has increased the soil carbon content from (5.4-5.8 g kg⁻¹) and (5.3 to 5.7 g kg⁻¹) after potato harvest. In addition, Kumar [51] described that application of 50 % recommended dose of NPK (60:60:30) through inorganic fertilizers and remaining 50% recommended dose of N (60 kg N ha⁻¹) from cattle manure manures gave higher organic carbon pool (12.61 g kg⁻¹) as compared to 100% recommended dose of NPK through fertilizers after three years of potato cultivation. Similarly, Wang [52] reported that combined use mineral fertilizers and organic amendments had greater soil organic carbon content than those receiving only mineral fertilizers in paddy soil. In addition (Table 8).

Total Nitrogen

Total nitrogen in pre-sowing soil was 0.1% in Belg and 0.08% in Meher season (Table 2). soil total nitrogen after harvest ranged from a minimum of 1.24 to a maximum of 1.71g kg⁻¹ in Belg and a minimum 0.92 to a maximum of 1.51 g kg⁻¹ in Meher season from zero application of nutrients to the application of 7.5 t ha⁻¹ CM with 75% recommended rate of mineral NP which resulted in improvement of soil nitrogen after harvest by 37.45% and 63.85% over zero application of nutrients (Table 8). This shows cattle manure prevents loss of mineral nitrogen into the environment, by gradually releases essential nutrients over a period through regulating the rate of conversion of cattle manure to total nitrogen in addition, to release of nutrients into the soil after decomposition. This result was in concomitant with the finding of Lemanowicz [15] reported that increasing the application CM from zero to 20, 40, and 80 t ha⁻¹ and mineral nitrogen from 0, 40, 80 and 120 kg ha⁻¹ increased the total nitrogen content of soil as compared to the soil sampled from the treatments fertilized with the zero CM and mineral NP rate. In addition, Gimma et al. (2017) reported that application of 14 t ha⁻¹ CM combines with 55kg ha⁻¹ and 20 t ha⁻¹ mineral NP fertilizers improve soil total nitrogen supply by 48%. Similarly, Birk [23] reported that the treatment receiving CM at 30 t ha⁻¹ + N at 120kg ha⁻¹ + 92 P0.5 ha⁻¹. Improves total N by 67% in the soil after harvest of potato as compared to zero application of mineral and cattle manure. In
lined with this Kumar [53] also stated that the total soil nitrogen content after harvest of potato increased in response to the application of CM and mineral fertilizer than 100% inorganic fertilization. From the present result, the increasing levels of cattle manure and mineral NP application increase the total nitrogen content of soil after harvest.

Table 8: Organic carbon (g kg⁻¹), total nitrogen (g kg⁻¹) and available phosphorus (mg kg⁻¹) content of soil after potato harvest as influenced by the application of cattle manure and mineral NP in Belg and Meher seasons in Masha district, south-western Ethiopia.

Treatment**	Belg	Meher				
	Organic carbon (g kg⁻¹)	Total nitrogen (g kg⁻¹)	Available phosphorus (mg kg⁻¹)	Organic carbon (g kg⁻¹)	Total nitrogen (g kg⁻¹)	Available phosphorus (mg kg⁻¹)
2.5t ha⁻¹ CM+25% NP	18.9*	13.7**	6.24**	10.4*	0.90*	5.55**
2.5t ha⁻¹ CM+50% NP	19.1*	13.7**	6.24**	10.7*	1.06*	5.57**
2.5t ha⁻¹ CM+75% NP	19.2*	13.7**	6.24**	10.7*	1.12**	5.64**
5t ha⁻¹ CM+25% NP	19.3*	13.7**	6.24**	10.94**	1.15**	5.71**
5t ha⁻¹ CM+50% NP	19.3c	14.8**	6.77**	10.96**	1.16**	5.77**
5t ha⁻¹ CM+75% NP	19.4*	15.1**	6.95**	11.00**	1.24**	5.78**
7.5t ha⁻¹ CM+25% NP	20c	15.4a	7.12a	11.13b	1.38b	5.82c
7.5t ha⁻¹ CM+50% NP	20.8ab	15.8ab	7.30ac	12.33bc	1.46bc	5.94ab
7.5t ha⁻¹ CM+75% NP	21.1abc	17.1b	7.5a	12.72bc	1.5c	6.2a
100% NP	18.83bc	13.1d	5.88bc	10.42bc	0.96bc	5.37bc
Control	18.78d	12.4d	5.5d	10.36bc	0.9g	5.00e
LSD (5 %)	0.144	2.14	0.96	0.98	0.09	0.38
Significance	**	**	**	**	**	**
CV (%)	4.33	8.67	8.61	5.21	4.92	3.92

Available P

Available P in pre-sowing soil was 5.5 mg kg⁻¹ in Belg and 5 mg kg⁻¹ in Meher season (Table 2) while soil available P after harvest ranged from minimum of 5.53 mg kg⁻¹ to maximum of 7.55 mg kg⁻¹ in Belg and minimum of 5 to maximum of 6.27 mg kg⁻¹ in Meher seasons compared to the initial soil content of available P and the control (Table 8). The highest available P in Belg (7.55 mg kg⁻¹) and in Meher (6.27 mg kg⁻¹) season were obtained from the application of 7.5 t ha⁻¹ CM in combination with 50 and 75% mineral NP fertilizers, respectively. The increase in available P with increased level of CM and mineral NP application was probably related to the addition of various organic sources improve the soil physico-chemical properties that created the favorable condition in rhizosphere, also the secretion of certain enzymes and auxins and other growth-promoting substances and manure also helps in producing intermediate compounds that interact with phosphorus-fixing cations such as aluminum, iron, etc. Thereby reducing P adsorption capacity.

This result was in agreement with the investigation of Balemi [40] where they reported the increase in available P in the application of cattle manure which might have helped in releasing a higher amount of P from the soil. Similarly, Keswarani [54] reported that application of 5t ha⁻¹ CM with 120:60:40 NPK kg ha⁻¹ enhanced P availability, increased overall treatments than sole use of mineral fertilizer as well. In addition, Shethet [55] showed that integrated use of 15 t ha⁻¹ cattle manure combined with 100% recommended dose of inorganic fertilizers (75: 50: 75 NPK kg ha⁻¹) is efficient than application of inorganic fertilizers alone in improving growth and yield in sweet potato cultivation. The present result was also in agreement with the findings of Singh [56] reported that the increased available P content of soil with the application of cattle manure might be due to release of organic acids during decomposition which in turn helped in releasing phosphorus. Generally, the available P status of the soils in the control at both study seasons was very low, even below the critical level (10ppm) Israel [6] which indicates that the low soil P was among the factors highly limiting the productivity of the soils in the study area. This result was in agreement with the investigation of Song [57] where they reported that continuous use of organic manure and chemical fertilizer on soil improves the available phosphorus status of the soil (Table 9). On the other hand, the lowest exchangeable acidity of 2.32 cmol (+) kg⁻¹ soil in Belg and 2.08 cmol (+) kg⁻¹ soil in Meher season was recorded at application of 7.5 t ha⁻¹ cattle manure with 75% inorganic N and P which is statistically at par with application of 7.5 t ha⁻¹ cattle manure with 50% inorganic N and P which might be that the addition of cattle manures, can increase perception of exchangeable Al which might have decrease exchangeable acidity and aluminum Similarly Narambude and Haynes [58] reported that an increase in soil pH leads to reduction of soluble exchangeable Al which, in turn, decreases exchangeable acidity.

How to cite this article: Isreal Z, Tamado T, Lemma W, Ali Mohammed. Effect of Combined Application of Cattle Manure, Mineral Nitrogen and Phosphorus Fertilizer on Soil Physico-Chemical Characteristics and Tuber Yield of Potato (Solanum Tuberosum L.) In Masha District, South-Western Ethiopia. Int J Environ Sci Nat Res. 2018; 14(5): 555900. DOI: 10.19080/IJESNR.2018.14.555900.
Table 9: The combined effect of cattle manure and inorganic NP fertilizer on exchangeable acidity (cmol(+) kg⁻¹soil) and exchangeable aluminum (cmol(+) kg⁻¹soil) in Masha district in Belg and Meher seasons, south-western Ethiopia.

Treatment	Exchangeable acidity	Exchangeable aluminum
	Belg	Meher
2.5 t ha⁻¹ CM+25% NP	3.12c	2.19cd
2.5 t ha⁻¹ CM+50% NP	2.87d	2.16d
2.5 t ha⁻¹ CM+75% NP	2.79d	2.15d
5 t ha⁻¹ CM+25% NP	2.78d	2.10d
5 t ha⁻¹ CM+50% NP	2.60e	1.99e
5 t ha⁻¹ CM+75% NP	2.48d	1.81f
7.5 t ha⁻¹ CM+25% NP	2.36f	1.54f
7.5 t ha⁻¹ CM+50% NP	2.34f	1.52f
7.5 t ha⁻¹ CM+75% NP	2.32f	1.44f
100% NP	3.41a	2.21a
Control	3.70a	2.29a
LSD (5 %)	0.173	0.0196
Significance	**	**
CV (%)	3.63	5.93

Means followed by the same letter within a column are non-significantly different to each other at * Significant at 5% level of significance (P < 0.05) and ** highly Significant at 1% level of significance. (P < 0.01) as established by LSD test; * CM = Cattle manure in t ha⁻¹.

Exchangeable Aluminum

The exchangeable aluminum pre-sowing soil was 2.01 cmol (+) kg⁻¹ soil in Belg. 2.46 cmol (+) kg⁻¹ soil in Meher season (Table 2) while, soil total nitrogen after harvest ranged from 2.26 to 1.46 cmol (+) kg⁻¹ in Belg and to 2.10 to 1.41 cmol (+) kg⁻¹ in Meher season (Table 9). The highest exchangeable aluminum in Belg (2.26 cmol (+) kg⁻¹ soil) and Meher (2.10 cmol (+) kg⁻¹ soil) was recorded at control which might be due to a low organic matter content in the plots than the other treatments.

Effects of Treatments on Cation Exchange Capacity and Exchangeable Bases

Cation exchange capacity (CEC): Cation exchange capacity in pre-sowing soil was 20 cmol (+) kg⁻¹ in Belg and 19.3 cmol (+) kg⁻¹ in Meher. While (Table 2), Cation exchange capacity after harvest ranged from 16.35 cmol (+) kg⁻¹ 22.04 cmol (+) kg⁻¹ in Belg and from 19.09 cmol (+) kg⁻¹ to 23.96 cmol (+) kg⁻¹ in Meher season (Table 9). Accordingly, the highest CEC of 22.04 cmol (+) kg⁻¹ in Belg and 23.96 cmol (+) kg⁻¹ in Meher season were obtained from the combined application of 7.5 t ha⁻¹ CM with 75% inorganic N and P and 7.5 t ha⁻¹ CM with 50% inorganic N and P fertilizers in Belg and 7.5 t ha⁻¹ CM with 75% inorganic N and P, 7.5 t ha⁻¹ CM with 50% inorganic N and P and 7.5 t ha⁻¹ CM with 25% inorganic N and P fertilizers in Meher season (Table 9). On the other hand, the lowest CEC observed in the control plots which could be attributed to the leaching of bases from the soil due to the high rainfall of the study areas, which were not replenished since there was no fertilizer provided to these plots thus decrease in organic matter content reduces site for carbon storage and sequestration, lowered microbial biomass in the soil and reduced nutrient reserves. The application of 7.5 t ha⁻¹ CM in combination with 75% minrnl NP both in Belg and Meher could be due to the contribution of organic matter from CM to the high organic matter content in the plots than the other treatments.

In line with this result, Tolanur [62] reported that cation exchange capacity significantly increased with in crease in organic manure in conjunction with inorganic fertilizer the mineral fertilizers which are readily taken up by the crop is subsisted by the use of organic amendments such as cattle manure has been...
recognized generally as an effective means for improving soil aggregation, structure and fertility causes increasing microbial diversity and populations, results in increasing surface charges, thus in turn leads to improvement in cation exchange capacity of soil. Similarly, Dorneles reported the highest CEC from the non-tillage system because of high organic matter as compared to another tillage system. Cation exchange capacity (CEC) of the soil is one of the most important components of soil fertility evaluation to supply nutrient cations to the soil solution and possible response to fertilizer application Sonon This indicates basic cations existing in a given soil and the natural and/or anthropogenic activities, acting upon these cations, thereby influencing the CEC of the soil. Xavier [63] (Table 10).

Table 10: Effect of application of inorganic NP and cattle manure on CEC (cmol (+) kg⁻¹ soil, Ca²⁺(cmol (+) kg⁻¹ soil, Mg²⁺ (cmol (+) kg⁻¹soil) of soil after crop harvest in Belg and Meher season in Masha district, south-western Ethiopia.

Treatment*	Belg	Meher				
	CEC	Ca²⁺	Mg²⁺	CEC	Ca²⁺	Mg²⁺
2.5 t ha⁻¹ CM+75% NP	5.95	1.47	5.95	1.47	5.95	1.47
2.5 t ha⁻¹ CM+50% NP	5.65	1.47	5.65	1.47	5.65	1.47
2.5 t ha⁻¹ CM+25% NP	5.35	1.47	5.35	1.47	5.35	1.47
5 t ha⁻¹ CM+25% NP	5.45	1.47	5.45	1.47	5.45	1.47
5 t ha⁻¹ CM+50% NP	5.55	1.47	5.55	1.47	5.55	1.47
7.5 t ha⁻¹ CM+75% NP	5.65	1.47	5.65	1.47	5.65	1.47
100% NP	5.75	1.47	5.75	1.47	5.75	1.47
Control	5.85	1.47	5.85	1.47	5.85	1.47
LSD (5 %)	5.95	1.47	5.95	1.47	5.95	1.47
Significance	**	**	**	**	**	**
CV (%)	6.05	1.47	6.05	1.47	6.05	1.47

Means followed by the same letter within a column are non-significantly different to each other at * Significant at 5% level of significance (P < 0.05) and ** highly Significant at 1% level of significance. (P < 0.01) as established by LSD test; * CM = Cattle manure in t ha⁻¹.

Exchangeable Calcium

Exchangeable calcium in pre-sowing soil was 6.5cmol (+) kg⁻¹ soil in Belg 6.3cmol (+) kg⁻¹ soil in Meher season (Table 2) while, soil exchangeable calcium after harvest ranged from 5.95to 8.36cmol (+) kg⁻¹ soil and from 6.22 to 8.28cmol (+) kg⁻¹ soil in Meher season (Table 10). The highest exchangeable Ca²⁺ (8.36cmol (+) kg⁻¹ soil) in Belg and (8.28cmol (+) kg⁻¹ soil) in Meher season was recorded in the combined application, of a high dose of cattle manure(7.5 t ha⁻¹) with 75% inorganic N and P fertilizers that showed an increase of 40.36% and 33% in Belg and Meher season, respectively, as compared to zero application of nutrients. The elevated calcium levels were associated with decreasing exchangeable aluminum in this soil, with a dramatic increase in pH causes improvement in Exchangeable Calciumium conformity with this result, Shivan and Tolanur [62] reported that application of cattle manure in combination with inorganic fertilizers improved significantly exchangeable calcium when organic materials combine together with inorganic materials. On the other hand the lowest Exchangeable calcium (5.95cmol (+) kg⁻¹ soil) in Belg and (6.22cmol (+) kg⁻¹ soil) in Meher was obtained at zero application of nutrients which is statistically the same as application of 100% NP 2.5 t ha⁻¹ CM + 25% NP 2.5 t ha⁻¹ CM + 50% NP in Belg season and 100% NP 2.5 t ha⁻¹ CM + 25% NP 2.5 t ha⁻¹ CM + 50% NP and 2.5 t ha⁻¹ CM + 75% NP in Meher season .

Exchangeable Magnesium

Exchangeable magnesium in pre-sowing soil was 2.1cmol (+) kg⁻¹ in Belg 1.4cmol (+) kg⁻¹ in Meher season while soil Exchangeable magnesium after harvest ranged from 2.44 to 3.14 in Belg and 1.27 to 2.07 in Meher season (Table 2). The highest exchangeable magnesium content of soil after harvest (3.14cmol (+) kg⁻¹ soil) in Belg and (2.07cmol (+) kg⁻¹ soil) in Meher were recorded at combined application of cattle manure with 75% inorganic N and P (Table 9) This may be due to amending soil with cattle manure raises soil organic matter which increases the soil pH leads to greater activities of soil bacteria, which in turn improves availability of soil nutrients and the application of magnesium from any external sources improves the soil exchangeable magnesium. This result is partly in line with work of Daniel and Nigussie [21] reported that amending the soil with cow dung improves the soil exchangeable magnesium content of soil after harvest. In contrast, the lowest exchangeable magnesium content of the soil after harvest (2.44cmol (+) kg⁻¹ soil) in Belg and (1.275 gcmol (+) kg⁻¹ soil) in Meher were obtained at zero application of nutrients (Table 11).
Table 11: Exchangeable K+, Na+ and Pb-s of soil after crop harvest as influenced by the combined application of cattle manure and inorganic NP in Belg and Meher seasons, in Masha district, south-western Ethiopia.

Treatment	Belg	Meher				
	Exchangeable K+ cmol (+) kg-1 soil	Exchangeable Na+ cmol (+) kg-1 soil	Percent base saturation (%)	Exchangeable K+ cmol (+) kg-1 soil	Exchangeable Na+ cmol (+) kg-1 soil	Percent base saturation (%)
2.5 t ha-1 CM+25% NP	0.36ac	0.02	46.73bc	0.28cd	0.20	48.73bc
2.5 t ha-1 CM+50% NP	0.36ac	0.02	47.03bc	0.29cd	0.21	49.85ac
2.5 t ha-1 CM+75% NP	0.37cd	0.03	47.40bc	0.29cd	0.21	49.85ac
5 t ha-1 CM+25% NP	0.38cd	0.03	47.65bc	0.31bcde	0.22	49.34bc
5 t ha-1 CM+50% NP	0.38cd	0.04	47.95bc	0.30bc	0.23	49.60bc
5 t ha-1 CM+75% NP	0.39cd	0.04	48.20cd	0.32bc	0.23	49.65ab
7.5 t ha-1 CM+25% NP	0.40bc	0.05	48.57cd	0.33ab	0.23	49.84bc
7.5 t ha-1 CM+50% NP	0.42ab	0.06	49.01ab	0.33ab	0.24	49.99ab
7.5 t ha-1 CM+75% NP	0.43a	0.07	49.54a	0.34a	0.24	50.03a
100% NP	0.35ac	0.01	46.48bc	0.28ac	0.20	48.33bc
Control	0.3e	0.01	46.20i	0.26i	0.19	47.6d
LSD (5%)	0.04	0.01	0.73	0.035	1.13	
Significance	**	**	**	**	**	*
CV (%)	6.17	23.12	0.90	6.78	7.04	1.35

Means followed by the same letter within a column are non-significantly different to each other at * Significant at 5% level of significance (P < 0.05) and ** highly Significant at 1% level of significance. (P < 0.01) as established by LSD test; * CM = Cattle manure in t ha⁻¹.

Exchangeable Potassium

Exchangeable potassium in pre-sowing soil was 0.42 cmol (+) kg⁻¹ soil in Belg and 0.36 cmol (+) kg⁻¹ soil in Meher (Table 2), while soil Exchangeable potassium after harvest ranged from 0.31 cmol (+) kg⁻¹ soil to 0.43 cmol (+) kg⁻¹ soil in Belg and to 0.26 to 0.34 cmol (+) kg⁻¹ soil in Meher season. The highest exchangeable potassium of 0.43 cmol (+) kg⁻¹ soil in Belg and 0.34 cmol (+) kg⁻¹ soil in Meher was obtained at the combined application of 7.5 t ha⁻¹ CM, with 75% inorganic N (165 kg N ha⁻¹) and P (137 kg P₂O₅ ha⁻¹) (Table 11). Which is statistically the same as 7.5 t ha⁻¹ CM with 50% recommended rate of N (103.05 kg N ha⁻¹) and P (137 kg P₂O₅ ha⁻¹) while the lowest exchangeable potassium in both seasons was recorded at zero rates of either organic or inorganic fertilizer which is statistically the same as application of 100% NP and 2.5 t ha⁻¹ CM×25% NP, 2.5 t ha⁻¹ CM×50% While the lowest percent bases saturation in both seasons was recorded at zero rates of either organic or inorganic fertilizer was found to be appropriate in both seasons. Among the treatments, the combined application of 7.5 t ha⁻¹ CM with 75% inorganic NP fertilizer was superior. Hence, the use of CM (7.5 t ha⁻¹) with 75% recommended rate of N (123.75 kg N ha⁻¹) and P (103.05 kg P₂O₅ ha⁻¹) was found to be appropriate to improve the physico-chemical properties of the soil and to increase plant growth by reducing leaching, enhancing growth in density and length of root hairs Similarly Wasihun [64] reported that treatments with high organic matter have high PBS.

Conclusion

The soil test results after potato harvest revealed significant increase in soil, pH, EC, TN, available P, CEC, exchangeable calcium, exchangeable magnesium, exchangeable potassium, porosity and tuber yield of potato, on the other hand, significant in reducing soil bulk and particle density, exchangeable acidity and Al when CM was applied in combination with inorganic NP than the use of either zero application of NP or 100% recommended rate of NP at both seasons. Among the treatments, the combined application of 7.5 t ha⁻¹ CM with 75% inorganic NP fertilizer was superior. Hence, the use of CM (7.5 t ha⁻¹) with 75% recommended rate of N (123.75 kg N ha⁻¹) and P (103.05 kg P₂O₅ ha⁻¹) was found to be appropriate to improve the physico-chemical properties of the soil and to increase plant growth by reducing leaching, enhancing growth in density and length of root hairs Similarly Wasihun [64] reported that treatments with high organic matter have high PBS.
increase the productivity of potato in the study areas as compared to the 100% recommended rate of NP (165 kg N ha⁻¹ and 137 kg P₂O₅ ha⁻¹) alone [65-75].

Acknowledgment

We thank Ministry of Education (MoE) of Ethiopia, for the financial support. Teppi and Hawassa Soil Research Center for timely analyzing the soil and cattle manure samples and material support the sustainable land management (SLM) project. In Masha, District Sheka zone is highly acknowledged for providing Cattle manure and sponsoring the laboratory cost incurred for this work.

References

1. Adejumo SA, Togun AO, Adedinn JA, MB Ogundiran (2010) Effects of compost application on remediation and the growth of maize planted on lead-contaminated soil. Department of Crop Protection and Environmental Biology, University of Ibadan, Ibadan, Nigeria.
2. Dell Angelo J, D Odorico P, Rulli MC (2017) Threats to sustainable development posed by land and water grabbing. Current Opinion in Environmental Sustainability 26-27: 120-128.
3. EPA (Environmental Protection Authority) (2012) National Report of Ethiopia, the United Nations Conference on Sustainable Development (Rio+20). Federal Democratic Republic of Ethiopia, Addis Ababa.
4. Zeleke G, Agegnehu G, Abera D, Rashid S (2010) Fertilizer and soil fertility potential in Ethiopia: Constraints and opportunities for enhancing the system. IFPRI, Addis Ababa, Ethiopia p. 63.
5. Temesgen Gasash, Amare Bantider, Hagos G/Slassie (2014) Land Degradation in Ethiopia: Causes, Impacts and Rehabilitation Techniques. Journal of Environment and Earth Science 4(9): 98-105.
6. Israel Zewide, Ali Mohammed, Solomon Tulu Tadesse (2012) Effect of Different Rates of Nitrogen and Phosphorus on Yield and Yield Components of Potato (Solanum tuberosum L.) at Masha District, South-western Ethiopia. International Journal of Soil Science 7(4): 146-156.
7. SZARDO (2015) (Sheka Zone Agricultural and Rural Development Office). annual report
8. CSA (Central Statistical Authority) (2016) Agricultural sample survey 2015/16. Volume I Report on area and production of major crops (private peasant holdings, main season). Statistical bulletin, Ethiopia.
9. Mahajan A, Bhagat RM, Gupta RD (2008) Integrated nutrient management in sustainable rice-wheat cropping system for food security in India. Journal of Agriculture 6(2): 149-163.
10. Compore E, Cattan P, Taonda JB (2011) Effect of Continuous Mineral and Organic Fertilizer Inputs and Plowing on Groundnut Yield and Soil Fertility in a Groundnut-Sorghum Rotation in Central Burkina Faso. In: Batio A, Waswa B, Okeyo J, Maina E, Kihara J (Eds) Innovations as Key to the Green Revolution in Africa.
11. Bayu W, Gebekeyu S (2013) Effect of Cattle Manure and Inorganic Fertilizers on the Growth, Yield and Moisture Stress Tolerance of Rainfed Lowland Rice. American Journal of Research Communication 1(4): 275-301.
12. Rebakud Asfaw (2016) Effect of Integrated Soil Amendment Practices on Growth and Seed Tuber Yield of Potato (Solanum tuberosum L.) at Jimma Arjo, Western Ethiopia. Journal of Natural Sciences Research 6(15): 1-26.
13. Dejene M, Lemlem M (2012) Integrated agronomic crop management to improve tef productivity under terminal drought. In: Md M Rahman, H Hasegawa (Eds.) Water Stress, In Technology Open Science pp. 235-254.
14. KangY, Hao Y, Sheng M, Zhao Q, Li Q, et al. (2016) Impacts of supplementing chemical fertilizers with organic fertilizers manufactured using pig manure as a substrate on the spread of tetracycline resistance genes in soil. Ecotoxicology and Environmental Safety 130: 279-288.
15. Lesschen JP, Stoovroegel J J, Smaling EMA, Heuvelink GBM, Veldkamp A (2007) A spatially explicit methodology to quantify soil nutrient balances and their uncertainties at the national level. Nutrient Cycling in Agro-Ecosystems 78: 111-131.
16. Yadav SK, Babu S, Yadav MK, Singh K, Yadav GS, et al. (2013) A Review of Organic Farming for Sustainable Agriculture in Northern India. International Journal of Agronomy 1: 1-8.
17. Yadav RK, Purakayastha TJ, Khan MA, Kaushik SC (2017) The science of the Total Environment Long-term impact of manuring and fertilization on enrichment, stability, and quality of organic carbon in Inceptisol under two potato-based cropping systems. The science of the Total Environment 609: 1535-1543.
18. Getachew Angachew (2009) Ameliorating effects of organic and mineral fertilizers on crop productivity and soil properties on reddish-brown soils. In: Proceeding of the tenth Conference of the Ethiopian Society of Soil Science at Addis Ababa, Ethiopia pp. 127-150.
19. Gafar AF, Yassin M, Ibrahim D, Yagoob SO (2012) Effect of different (bio-organic and mineral) fertilizers on some yield components of rice. Universal Journal of Agricultural Research 2(6): 67-70.
20. Agegnehu Getachew, Amede Tilahun (2017) Integrated Soil Fertility and Plant Nutrient Management in Tropical Agro-Ecosystems: A Review. Pedosphere 27(4): 662-680.
21. Daniel Mekonnen, Nguissie Dechassa (2006) Effects of integrated nutrient management on the agronomic performance of potato (Solanum tuberosum L.) and fertility of Nitosol at Bako. Haramaya University, Haramaya, Ethiopia.
22. Shiferaw Boke (2014) Effect of organic and inorganic fertilizer application and seedbed preparation on potato yield and soil properties on Alisols of Chericha. International Journal of Natural Sciences Research, 2(8): 123-132.
23. Biruk Masrie, Nguissie Dechassa, Tamado Tana, Yibekal Alemayehu, Bekele Abebi (2015) Effect of Application of Cattle Manure and Mineral NP Fertilizers on Yield, and Nutrient Uptake of Potato in North-Eastern Ethiopia. Journal of Science and Sustainable Development 3(1): 1-23.
24. Ethimiaidou A, Bilalis D, Karkanis, Froud B (2010) Combined organic and inorganic fertilization enhances soil quality and increased yield, photosynthesis, and sustainability of sweet maize crop. Australian Journal of Crop Science 41(9): 722-729.
25. MoARD (Ministry of Agriculture and Rural Development) (2012) Crops development department of crop variety register. Issue No. 10. Addis Ababa, Ethiopia.
26. Ndewga PM, Thompson SA (2001) Integrating composting and vermicomposting in the treatment and biocconversion of solids. Bioresource Technol 76(2): 107-112.
27. WaBley AJ, Black IA (1934) Estimation of soil organic carbon by the chromic acid titration method. Soil Science 37: 29-38.
28. Okalebo JR, Guthua KW, Woomer PJ (2002) Laboratory methods of soil and plant analysis a working manual. Tsfb-ciat and sacred Africa, Nairobi.
29. Day PR (1965) Hydrometer method of particle size analysis. In: CA Black (edn.). Methods of soil analysis. Agronomy Part, No 9. American Society of Agronomy. Madison, Wisconsin, USA pp. 562-563.
30. Black CA (1965) Methods of soil analysis. American Society of Agronomy 1: 1570-1572.
31. Baraah TC, Barthakul HP (1997) A textbook of soil analysis. New Delhi, India p.334.
32. Hillel D (2004) Introduction to Environmental Soil Physics. Elsevier Academic Press.
33. Jackson ML (1958) Soil Chemical Analysis. Prentice-Hall, Inc., Engle Wood Cliffs. New Jersey pp. 185-204.
34. Bray RH, Kurtz (1945) Determination of total, organic and available forms of phosphorus in soils. Soil Science 59(1): 39-46.
35. Chapman HD (1965) Cation exchange capacity. In: CA Black, LE Ensminger, FE Clark (Eds). Methods of soil analysis. Agronomy. Am Soc Agro Inc. Madison, Wisconsin 9: 891-901.
36. Lindsay WL, Norvell WA (1978) Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Science Society of American Journal 42(3): 421-428.
37. SAS (Statistical Analysis System) (2003) SAS Version 9.1.2. 2002-2003. SAS Institute, Inc., Cary, North Carolina, USA.
38. Tekaln Tadesse, Haque L, Aduyi EA (1991) Soil, Plant, Water, Fertilizer, Animal Manure and Compost Analysis Manual. Plant Science Division Working Document No. 13. International Livestock Center for Africa. Addis Ababa, Ethiopia.
39. Najm AA, Hadi MRHS, Razeli F, Darzi MT, Rahi A (2012) Effect of integrated management of nitrogen fertilizer and cattle manure on the leaf chlorophyll, yield, and tuber glycoalkaloids of afria potato. Communications in Soil Science and Plant Analysis 43(6): 912-923.
40. Balemi T (2012) Effect of integrated use of manure and inorganic fertilizers on tuber yield of potato in Ethiopia. Journal of Soil Science and Plant Nutrition 12(2): 257-265.
41. Subhadip D, Arindam S, Chaitanya KA, Aritra S, Arup D, et al. (2017) The response of potato crop to integrated nutrient management in the indo-gangetic alluvial soils of West Bengal, India. Journal of Experimental Agriculture International 16(3): 1-10.
42. Kabira JN (2017) Effect of inorganic fertilizer and cattle manure on growth and yield of two Kenyan potato varieties. International Journal of Agronomy and Agricultural Research 10(1): 65-72.
43. Paul J, Choudhary AK, Sharma S, Savita S, Mamtta B, et al. (2016) Potato production through bio-resources: Long-term effects on tuber productivity, quality, carbon sequestration and soil health in the temperate Himalayas. Scientia Horticuluta 213: 152-163.
44. Sonon LS, Kissel DE, Saha U (2014) Cation Exchange Capacity and Base Saturation. UGA Extension Circular 1040: 1-4.
45. Kumar P, Kumar A, Kumar N, Ahamad A, Verma MK (2017) Effect of integrated nutrient management on productivity and market availability of potato. International Journal of Current Microbiology and Applied Sciences 6(3): 1429-1436.
46. Song K, Yang J, Xue Y, Lv W, Zheng X, et al. (2016) Influence of tillage practices and straw incorporation on soil aggregates, organic carbon, and crop yields in a rice-wheat rotation system. Scientific Reports 6: 1-12.
47. Poepau C, Vos C, Don A (2017) Soil organic carbon stocks are systematically underestimated by misuse of the parameters of bulk density and rock fragment content. Soil 3(1): 61-66.
48. Suh C, Meka SS, Ngome AF, Neba DA, Kemkwa IT, et al. (2015) Effects of organic and inorganic fertilizers on growth and yield of potato Solanum tuberosum L. in the western highlands of Cameroon. International Journal of Development Research 5: 3584-3588.
49. Ahmed AA, Zaki MF, Shaqek MR, Helmy YI, Elbakery MMHA (2015) Integrated Use of Cattle Manure and Mineral Nitrogen Fertilizer on Growth, Yield, and Quality of Potato [Solanum tuberosum L].
How to cite this article: Isreal Z, Tamado T, Lemma W, Ali Mohammed. Effect of Combined Application of Cattle Manure, Mineral Nitrogen and Phosphorus Fertilizer on Soil Physico-Chemical Characteristics and Tuber Yield of Potato (Solanum Tuberosum L.) In Masha District, South-Western Ethiopia. Int J Environ Sci Nat Res. 2018; 14(5): 555900. DOI: 10.19080/IJESNR.2018.14.555900.

66. EthioSIS (Ethiopia Soil Information System) (2014) Soil fertility status and fertilizer recommendation atlas for Tigray regional state, Ethiopia.
67. FAO (Food and Agriculture Organization) (2006) Plant nutrition for food security: A guide for integrated nutrient management. FAO, fertilizer and plant nutrition bulletin 16, Rome, Italy.
68. Hazleton P, Murphy B (2007) Interpreting Soil Test Results: What do all the numbers Mean 2nd (eds.). CSIRO Publishing p. 152.
69. Jones JB (2003) Agronomic Handbook: Management of Crops, Soils, and their fertility. CRC Press LLC; Boca Raton, FL, USA p. 482.
70. Nukkep Balai, M Jajoria, R Verma, P Deewan, SK Bairwa (2016) Nutrient content, uptake, quality of chickpea and fertility status of soil as influenced by fertilization of Phosphorus and Zinc. Journal of Pharmacognosy and Phytochemistry 6(1): 392-398.
71. Landon JR (1991) Booker tropical soil manual: A handbook for soil survey and agricultural land evaluation in the tropics and subtropics. Longman Scientific and Technical, Essex, New York p.474.
72. Opala PA, Okalebo JR, Othieno CO (2012) Effects of organic and mineral materials on soil acidity and phosphorus availability in a soil incubation study. International Scholarly Research Network Agronomy 1: 1-10.
73. Page AL (1982) Methods of soil analysis Part II. Chemical and microbiological properties. Madison, USA.
74. Saviozzi A, Gardelli R (2012) Organic matter characteristics, biochemical activity and antioxidant capacity of soil amended with different organic materials. Archives of Agronomy and Soil Science 60(1):119-131.

Your next submission with Juniper Publishers will reach you the below assets
- Quality Editorial service
- Swift Peer Review
- Reprints availability
- E-prints Service
- Manuscript Podcast for convenient understanding
- Global attainment for your research
- Manuscript accessibility in different formats (Pdf, E-pub, Full Text, Audio)
- Unceasing customer service

Track the below URL for one-step submission
https://juniperpublishers.com/online-submission.php