A checklist of fish and shellfishes of the Poonthura estuary, southwestern coast of India

Kiranya Bella¹,², Pramila Sahadevan², Giri Bhavan Sreekanth³ & Rajeev Raghavan⁴

¹,²,⁴Department of Fisheries Resource Management, Kerala University of Fisheries and Ocean Studies (KUFOS), Panangad P.O., Kochi, Kerala 682506, India.
³ICAR-Central Coastal Agricultural Research Institute (CCARI), Old Goa, Goa 403402, India.
¹kiranya.kikry@gmail.com (corresponding author), ²spramila@hotmail.com, ³gbsree@gmail.com, ⁴rajeevraq@hotmail.com

Abstract: A systematic checklist of fish and shellfishes of the Poonthura estuary, Kerala, India is provided including notes on their conservation status. This checklist includes 66 finfish and five shellfish, belonging to 17 orders, 35 families, and 60 genera. Carangiformes is the richest order (11 species, eight genera, and three families), representing 15.4% of the total fish diversity. Carangidae, is the most diverse family with nine representatives, contributing to 12.6% of the total fish diversity. Following the IUCN Red List Categories, of the total 69 species (excluding both exotic and transplanted fish species), 59 belong to the ‘Least Concern’, while one species Pampus argenteus is listed as ‘Vulnerable’, four are ‘Data Deficient’ (Megalops cyprinoides, Arius maculatus, Cynoglossus semifasciatus, and Epinephelus tauvina) and five are ‘Not Evaluated’ (Nuchequulia blochii, Channa pseudomarulius, Penaeus indicus, P monodon, and Scylla serrato). Around 94% of the recorded fish fauna have commercial value and contribute to subsistence fisheries throughout the year. Taxonomy and diversity of fish fauna of least studied or isolated estuarine ecosystems should be updated with proper documentation of their conservation status, in order to design and implement pragmatic management and conservation programs.

Keywords: Brackish water, fish diversity, Ichthyofauna, Kerala estuaries.
INTRODUCTION

Estuaries are transitional zones between sea and freshwater that are inhabited by both inland and marine species, including their juvenile stages (McLusky & Elliott 2006; Elliott et al. 2007; Franco et al. 2008; Potter et al. 2010; Sreekanth et al. 2018). Compared to marine or freshwater systems, estuaries are variable, complicated, and stressful habitats (Selleslagh & Amara 2008; Human et al. 2016; Kiranya et al. 2022). Many commercially important fish species benefit from the highly productive nature of estuaries as their nursery area (Harrison & Kelly 2013). Therefore, much emphasis is required to protect estuarine environments so as to ensure the growth and survival of commercially important fish and shellfish species (Elliott et al. 2007).

The estuaries, backwaters, coastal creeks and large brackishwater systems contribute to a significant part of fish production in India (Nair et al. 1983; Tudu et al. 2018). The peculiarity of Indian estuaries is that they are characterized by high species diversity with low numerical abundance (Sreekanth et al. 2019). Poonthura Estuary situated in the Thiruvananthapuram district of Kerala is comparatively small and shallow, and is formed due to the formation of a sand bar near the estuarine mouth (Kiranya et al. 2018). Previous authors who worked on this estuary have reported its ecological degradation mainly due to indiscriminate fishing and pollution from point and non-point sources (Kiranya et al. 2018).

In Kerala, considerable number of studies have dealt with taxonomic entities within estuarine systems, i.e., species composition, species distribution, and abundance, and spatial and temporal variations in fish diversity (Bijukumar & Sushama 2000; Harikrishnan et al. 2011; Regi & Bijukumar 2012; Kiranya et al. 2018; Roshni et al. 2021; Kiranya et al. 2022), with many such studies concentrated on a single estuary, the Vembanad Lake (Kurup & Samuel 1987; Menon et al. 2000; Harikrishnan et al. 2011; Roshni et al. 2021). There is considerable knowledge gap on the fish diversity and distribution patterns in many estuaries of Kerala, notably in the case of smaller systems such as Poonthura estuary, because of their isolated nature (Kiranya et al. 2018, 2022). Considering this lacuna, the present study focuses on presenting a comprehensive checklist of fish and shellfish species of Poonthura estuary, along with their systematic position, and conservation status (according to the IUCN Red List). The increasing availability of data on estuarine fish and shellfish fauna will facilitate their use in greater detail to design and implement pragmatic strategies and programs for estuarine fisheries management and conservation.

MATERIALS AND METHODS

Study area

The Poonthura Estuary (0.9 km² long and 0.1 km wide) is one of the most ecologically significant, and at the same time a polluted estuary in Thiruvananthapuram, Kerala (Kiranya et al. 2022). The estuary is micro-tidal and partially mixed, with an average tidal range of 1.5 m, and separated from the Lakshadweep Sea by a sand bar at Poonthura. The sand bar opens during the monsoon due to heavy discharge of water from the River Karamana. During heavy river discharge and land drainage during the monsoon, the sand bar between sea and estuary is either naturally, or manually opened. Artificial breaching of the estuary is also a frequent practice in this area to avoid flooding into nearby human settlements (Kiranya et al. 2018). The Poonthura estuary has also been undergoing severe ecological degradation with its bottom being muddy with a pungent smell, due to the unmanaged disposal of municipal sewage, land drainage, and industrial effluents (Kiranya et al. 2018). Full-time, part time and migrant fishers of 200 families of the adjoining areas belonging to the traditional sector depend on this estuary both directly and indirectly for subsistence, almost throughout the year (Kiranya et al. 2018).

Sampling and analysis

The present study was carried out in multiple phases from June 2016 to October 2020. Three sampling stations were fixed based on the fishing activity, tidal influx, and drainage from rivers/land. Monthly samples of fish and shellfish were collected from the selected stations (Image 1). Sampling was performed during early morning using 110 m surface and bottom set gillnets (mesh size 30 mm) and 4.5 m cast net (mesh size 8 mm) (one sampling each using both bottom set gillnets, surface gill net and cast net at a sampling station) operated from a small plank-built canoe (3 m LOA). Identification of fish and shellfishes were done at the species level by using published keys (Jayaram 1981; Fischer & Bianchi 1984). Identification of Channa pseudomarulius followed Britz et al. (2017). Taxonomic status and systematic position of fishes follow the Catalog of Fishes (Fricke et al. 2021) and World Register of Marine Species database (WoRMS 2021). Vernacular and local names of fish and shellfish species were collected from the traditional fishers.
through questionnaires. The conservation status of fish species is based on the IUCN Red List of Threatened Species (IUCN 2021). Voucher specimens and photo vouchers (of those species whose specimens were not collected) are deposited in the Department of Fisheries Resource Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India.

RESULTS AND DISCUSSION

Total of 71 species (66 finfish and five shellfishes) within 17 orders and 35 families and 60 genera were recorded from Poonthura estuary (Table 1) (Image 2a–g). The dominant fish orders recorded were Carangiformes (15.4%) with 11 species followed by orders Clupeiformes (14%), Perciformes (11.2%), Mugiliformes (7.04%), Cypriniformes (7.04%), and members of the crustacean order Decapoda (7.04%) (Figure 2). Comparable results were recorded by Regi & Bijukumar (2012), who observed that Perciformes, Siluriformes, Clupeiformes, and Mugiliformes, were the most common taxonomic orders in the Veli-Akkulam backwaters which is the adjacent backwater system (13 km away from Poonthura estuary) and shares similar characteristics with Poonthura estuary such as small size, isolated, and temporarily closed nature.

The dominant finfish families recorded in Poonthura estuary (Figure 3) were Carangidae with nine species (12.6%), Clupeidae with six species, Mugilidae and Cyprinidae with five species each (7.04%), and Leiognathidae and Ambassidae with four species (5.6%). The major species within family Carangidae were *Atule mate*, *Caranx ignobilis*, *Alepes djedaba*, and *Trachinotus blochii*.

Species such as *Etroplus suratensis*, *Oreochromis mossambicus*, *Gerres filamentosus*, *Chelon parsia*, *Mugil cephalus*, *Arius arius*, and *Caranx ignobilis* represented the most common species of the estuarine system, with *Etroplus suratensis* and *Oreochromis mossambicus* being recorded throughout the year during the study period. The present study also revealed the occurrence of two fish species having ornamental value, the filament barb, *Dawkinsia filamentosa* and the silver moony,
Monodactylus argenteus.

Of the four species of shrimps/prawns recorded from the estuary, *Penaeus indicus* was the dominant species followed by *P. monodon* and *Macrobrachium rosenbergii*. The mud crab *Scylla serrata* was the only representative of crabs that was observed in the local catches.

Based on the IUCN Red List of Threatened Species, of the 69 species recorded (excluding exotic and translocated species) from Poonthura Estuary, 85.7% (59 species) were under the ‘Least Concern’ category, one species was under the ‘Vulnerable’ category (*Pampus argenteus*), four species under the ‘Data Deficient’ (Megalops cyprinoides, *Arius maculatus*, Cynoglossus semifasciatus, and *Epinephelus tauvina*) and five under the ‘Not Evaluated’ (*Nuchequula blochii*, *Channa pseudomarulius*, *Penaeus indicus*, *P. monodon*, and *Scylla serrata*) categories (Figure 3).

Several authors have studied estuarine fish diversity of west flowing river systems in Kerala, most of them pointing at the predominance of finfish species. Bijukumar & Sushama (2000) presented an overview of the ichthyofauna of the Ponnani estuary representing 112 finfish species belonging to 14 orders, 53 families, and 80 genera. Kurup & Samuel (1987) recorded 150 species of fishes from Vembanad lake, while a recent study by Roshni et al. (2021) reported 90 species of fish belonging to 17 orders and 40 families suggesting a 40% reduction in fish fauna since 1980s. Raj et al. (2014) reported 68 species of finfishes, five species of crabs, nine species of prawns from the Ashtamudi estuary, and stated that pearlspot and mullets supported good local fisheries. From Chettuva estuary, Johny et al. (2016) recorded 68 species of fish belonging to 45 genera while the diversity of nearby Azhikode backwaters (Satheesan et al. 2014). Fifty species under 40 genera of finfishes were recorded from the Akathumuri backwaters (Harikrishnan et al. 2011). Fifty species under 40 genera of finfish were recorded from the Veli-Akkulam lake. According to the above authors, *O. mossambicus* has dominated the native fish species in many Indian water bodies due to its prolific breeding, voracious feeding habits, and hardy nature.
Table 1. Checklist of fish and shellfish recorded from Poonthura estuary, their taxonomic position, common and vernacular names, IUCN Red List status and voucher numbers.

Order/Family/Species	Common name	Vernacular name	IUCN status	Voucher number
ORDER ELOPIFORMES				
Elapidae (Ten pounders/Lady fishes)				
Elops machnata (Forsskål, 1775)	Ladyfish/ten pounder	Olivi meen	LC	Photo voucher
MEGALOPIDAE (Tarpons)				
Megalops cyprinoides Broussonet, 1782	Indo-pacific tarpon	Kannamalavu	DD	KUFOS.FV.2019.1041
ORDER CLupeiformes				
Anodontostoma chacunda (Hamilton, 1822)	Shortnose gizzard shad	Noona	LC	KUFOS.FV.2019.1042
Amblygaster sirm (Walbaum, 1792)	Spotted sardine	Keeri chaala	LC	KUFOS.FV.2019.1045
Dayella malabarica (Day, 1873)	Day’s round herring	Kaly netholi	LC	KUFOS.FV.2016.1007
Nematalosa nasus (Bloch, 1795)	Bloch’s gizzard shad	Kuthavu	LC	Photo voucher
Sardiniella albella (Bleeker, 1849)	White sardine	Chappa chaala	LC	KUFOS.FV.2019.1044
Sardiniella gibbosa (Bleeker, 1849)	Goldstripe sardiniella	Mullan chaala	LC	KUFOS.FV.2019.1043
ENGRAULIDAE (Anchovies)				
Encrasicholina devisi (Whitley, 1940)	Devi’s anchovy	Netholi	LC	KUFOS.FV.2019.1046
Steinophorus indicus (Van Hasselt, 1823)	Indian anchovy	Vella Netholi	LC	KUFOS.FV.2019.1047
Thryssa mystax (Bloch & Schneider, 1801)	Moustached anchovy	Mullan manangu	LC	Photo voucher
CHIROCENTRIDAE (Wolf herring)				
Chirocentrus dorab (Forskål, 1775)	Dorab wolf-herring	Mulluvaala	LC	KUFOS.FV.2017.1009
ORDER CYPRINIFORMES				
Amblypharyngodon microlepis (Bleeker, 1853)	Indian carplet	Vayambu	LC	KUFOS.FV.2020.1002
Dawkinsia filamentosa (Valenciennes, 1844)	Filament barb	Kaly Paral	LC	KUFOS.FV.2020.1001
Labeo caltus (Hamilton, 1822)	Catla	Katla	TR	KUFOS.FV.2019.1049
Puntius parrah Day, 1865	Parrah barb	Parrah barb	LC	KUFOS.FV.2019.1050
Systomus sarana (Hamilton, 1822)	Olive barb	Kuruvu	LC	KUFOS.FV.2019.1048
ORDER SILURIFORMES				
Mystus armatus (Day, 1865)	Kerala mystus	Chilan thedu	LC	KUFOS.FV.2019.1051
ARIIDAE (Sea catfishes)				
Arius arius (Hamilton, 1822)	Threadfin sea catfish	Theedu	LC	KUFOS.FV.2020.1003
Arius maculatus (Thunberg, 1792)	Spotted catfish	Kadal thedu	DD	Photo voucher
HETEROPNEUSTIDAE (Stinging catfish)				
Heteropeucestus fossilis (Bloch, 1794)	Stinging catfish	Karuppan thedu	LC	KUFOS.FV.2020.1004
ORDER BELONIFORMES				
Xenentodon cancila (Hamilton, 1822)	Freshwater garfish	Chundu mural	LC	KUFOS.FV.2019.1052
HEMIRAMPHIDAE (Half beaks)				
Hyporhamphus xantheropus (Valenciennes, 1847)	Valenciennes halfbeak	Kolaachi	LC	KUFOS.FV.2016.1001
GOBIIDAE (Gobies)				
Glossogobius giuris (Hamilton, 1822)	Tank goby	Poonthi	LC	KUFOS.FV.2017.1001
Order/Family/Species	Common name	Vernacular name	IUCN status	Voucher number
------------------------------	------------------------------	-----------------	-------------	----------------
VII ORDER Incertae sedis under Ovalenteria				
13 AMBASSIDAE (Asiatic glassfishes)				
Ambassis gymnocephalus (Lacepède, 1802)	Naked-head glassy perchlet	Mullu nandhan	LC	KUFOS.FV.2020.1007
Parambassis dayi (Bleeker, 1874)	Day’s glassy perchlet	Nandhan	LC	KUFOS.FV.2020.1020
Parambassis thomasi (Day, 1870)	Westernghat glassy perchlet	Nandhan	LC	KUFOS.FV.2020.1006
VIII MUGILIFORMES				
14 MUGILIDAE (Mullets)				
Chelon parsia (Hamilton, 1822)	Gold spot mullet	Kadam maalvu	LC	KUFOS.FV.2020.1008
Crenimugil seheli (Fabricius, 1775)	Blue spot mullet	Parichal	LC	KUFOS.FV.2020.1002
Mugil cephalus (Linnaeus, 1758)	Grey mullet	Maalavu	LC	KUFOS.FV.2019.1055
Osteomugil perusi (Valenciennes, 1836)	Long finned mullet	Kadalapala	LC	KUFOS.FV.2019.1053
Planiliza subviridis (Valenciennes, 1836)	Green black mullet	Kelayan	LC	KUFOS.FV.2019.1054
IX CICHLIFORMES				
15 CICHLIDAE (Cichlids)				
Etroplus suratensis (Bloch, 1790)	Banded pearl spot	Karimeen	LC	KUFOS.FV.2016.1003
Oreochromis mossambicus (Peters, 1852)	Mozambique tilapia	Piloppi	EX	KUFOS.FV.2016.1002
Pseudetroplus maculatus Bloch, 1795	Orange chromide	Pallathi	LC	KUFOS.FV.2020.1009
X ORDER CARANGIFORMES				
16 CARANGIDAE (Jacks and Pompanos)				
Alepes djedaba (Forsskál, 1775)	Shrimp scad	Thovi paara	LC	KUFOS.FV.2017.1011
Alepes vari (Cuvier, 1833)	Herring scad	Thali paara	LC	KUFOS.FV.2020.1022
Atule mate (Cuvier, 1833)	Yellowtail scad	Manjaval paara	LC	KUFOS.FV.2016.1008
Caranx heberi (Bennett, 1830)	Blacktip trevally	Karuppuvaval paara	LC	KUFOS.FV.2020.1023
Caranx hippos (Linnaeus, 1766)	Common jack	Neelan paara	LC	KUFOS.FV.2016.1007
Caranx ignobilis (Forsskál, 1775)	Yellowfin trevally	Velaa paara	LC	KUFOS.FV.2016.1009
Decapterus russell (Rüppell,1830)	Indian scad	Kannan kozhiyala	LC	KUFOS.FV.2017.1012
Megalaspis cordyla (Linnaeus, 1758)	Torpedo scad	Vankada	LC	KUFOS.FV.2020.1024
Selar crumenophthalmus (Bloch,1793)	Big eye scad	Kaata paara	LC	KUFOS.FV.2017.1010
17 SPHYRAENIDAE (Barracudas)				
Sphyraena barracuda (Edwards, 1771)	Great barracuda	Cheelavu	LC	KUFOS.FV.2019.1058
18 LATIDAE (Lates perches)				
Lates calcarifer (Bloch, 1790)	Asian seabass	Kalaanji	LC	KUFOS.FV.2020.1012
XI ORDER ANABANTIFORMES				
19 ANABANTIDAE (Climbing gouramies)				
Anabas testudineus (Bloch, 1792)	Climbing perch	Karippidi	LC	KUFOS.FV.2017.1002
20 CHANNIDAE (Snakeheads)				
Channa pseudomarulius (Günther, 1861)	Great snake head	Chaerumeen	NE	KUFOS.FV.2020.1010
Channa striata (Bloch, 1793)	Striped snakehead	Varal	LC	KUFOS.FV.2017.1003
XII PLUERONECTIFORMES				
21 CYNOGLOSSIDAE (Tongue fishes)				
Cynoglossus semifasciatus Day, 1877	Bengal tonguesole	Nangu	DD	KUFOS.FV.2017.1004
22 SOLEIDAE (Soles)				
Brachirus orientalis (Bloch & Schneider, 1801)	Oriental sole	Kuruwan nangu	LC	KUFOS.FV.2020.1011
XIII ORDER SCOMBRIFORMES				
23 STROMATEIDAE (Butter fishes)				
Checklist of Fish and Shellfishes of the Poonthura Estuary, India

Bella et al.
Journal of Threatened Taxa | www.threatenedtaxa.org | 26 July 2022 | 14(7): 21409–21420

Order/Family/Species	Common name	Vernacular name	IUCN status	Voucher number
Pampus argenteus (Euphrasen, 1788)	Silver pomfret	Vella avoli	VU	KUFOS.FV.2019.1059

XIV ORDER PERCIFORMES

| 24 GERREIDAE (Mojarras) | Gerres filamentosus (Cuvier, 1829) | Whipfin silverbiddy | Pulli prachi | LC | KUFOS.FV.2020.1013 |
| Gerres setifer (Hamilton, 1822) | Black tipped silverbiddy | Prachi | LC | KUFOS.FV.2020.1014 |

| 25 SILLAGINIDAE (Sillagos or Whitings) | Sillago sihama (Forskål, 1790) | Silver whiting | Kalimeen | LC | KUFOS.FV.2020.1017 |

26 SERRANIDAE (Groupers)

| Epinephelus tautila (Forskål, 1775) | Greasy grouper | Kalava | DD | Photo voucher |

27 MONODACTYLIDAE (Moon fishes)

| Monodactylus argenteus (Linnaeus, 1758) | Silver moony fish | Kannadimeen | LC | KUFOS.FV.2016.1004 |

| 28 LUTJANIDAE (Snappers) | Lutjanus argentimaculatus (Forskål, 1775) | Mangrove red snapper | Velameen | LC | KUFOS.FV.2020.1016 |
| Lutjanus fulviflamma (Forskål, 1775) | Dory snapper | Pulli chemballi | LC | Photo voucher |

29 HAEMULIDAE (Sweet lips)

| Plectorhinchus gibbosus (Lacepède, 1802) | Brown sweetlips | Kaili | LC | KUFOS.FV.2020.1019 |

30 TERAPONTIDAE (Grunters or Tigerfishes)

| Terapon jarbua (Forskål, 1775) | Crescent perch | Konankora | LC | KUFOS.FV.2020.1015 |

31 LEIOGNATHIDAE (Pony fishes or Slip mouths)

Eupleekeria splendens (Cuvier, 1829)	Splendid ponyfish	Mullukaara	LC	KUFOS.FV.2019.1061
Gagga minuta (Bloch, 1795)	Toothed ponyfish	Chadhakaara	LC	KUFOS.FV.2019.1060
Leiognathus equulus (Forskål, 1775)	Common ponyfish	Kaara poochi	LC	KUFOS.FV.2016.1005
Nuchequula blochii (Valenciennes, 1835)	Twoblotch ponyfish	Paalkaara	NE	KUFOS.FV.2019.1062

32 SCATOPHAGIDAE (Scats)

| Scatophagus argus (Linnaeus, 1766) | Spotted butterfish | Pooa | LC | KUFOS.FV.2016.1006 |

33 PALAEMONIDAE (Palaemonid shrimps)

| Macrobrachium idella (Hilgendorf, 1898) | Slender river prawn | Koon konju | LC | KUFOS.CV.2020.1018 |
| Macrobrachium rosenbergii (De Man, 1879) | Giant river prawn | Kaalan konju | LC | KUFOS.CV.2017.1005 |

34 PENAEIDAE (Penaeid shrimps)

| Penaeus indicus (H. Milne-Edwards, 1837) | Indian white prawn | Naaran konju | NE | KUFOS.CV.2019.1063 |
| Penaeus monodon (Fabricus, 1798) | Giant tiger prawn | Kara konju | NE | KUFOS.CV.2017.1006 |

35 PORTUNIDAE

| Scylla serrata (Forskål, 1775) | Green mud crab | Kaval Njandu | NE | KUFOS.CV.2017.1007 |

LC—Least Concern | DD—Data Deficient | NE—Not Evaluated | VU—Vulnerable | TR—Transplanted | EX—Exotic | B—Brackishwater | F—Freshwater | M—Marine

The conservation and management of Poonthura estuary necessitates a holistic approach that takes into account the ecosystem balance and function as well as the restoration of the natural fish diversity of the estuary, thus ensuring fishing activities that are economically viable in the long-term.

REFERENCES

Ansari, A., A. Chatterji & B.S. Ingole (1995). Community structure and seasonal variation of an inshore demersal fish community at Goa, West Coast of India. *Estuarine, Coastal and Shelf Science* 41: 593–610.

Asha, C.V., P.S. Suson, C.I. Retina & S.B. Nandan (2014). Decline...
Image 2a. Fish species recorded from the Poonthura estuary. © Kiranya B.

Image 2b. Fish species recorded from the Poonthura estuary. © Kiranya B.
Image 2c. Fish species recorded from the Poonthura estuary. © Kiranya B.

Image 2d. Fish species recorded from the Poonthura estuary. © Kiranya B.
Image 2e. Fish species recorded from the Poonthura estuary. © Kiranya B.

Image 2f. Fish species recorded from the Poonthura estuary. © Kiranya B.
in Diversity and Production of Exploited Fishery Resources in Vembanad Wetland System: Strategies for Better Management and Conservation. Open Journal of Marine Science 04(04): 344–357. https://doi.org/10.4236/ojms.2014.44031

Bijukumar, A. & S. Sushama (2000). Ichthyofauna of Ponnani estuary, Kerala. Journal of Marine Biological Association of India 42: 182–189.

Bijukumar, A., R. Smrithy & K. Sathasivam (2012). Dolphin-assisted cast net fishery in the Ashtamudi Estuary, south-west coast of India. Indian Journal of Fisheries 59(3): 143–148.

Britz, R., E. Adamson, R. Raghavan, A. Ali & N. Dahanukar (2017). Channa pseudomarulius, a valid species of snakehead from the Western Ghats region of peninsular India (Teleostei: Channidae), with comments on Ophicephalus grandinosus, O. theophrasti and O. leucopunctatus. Zootaxa 4299(4): 529–545. https://doi.org/10.11646/zootaxa.4299.4.4

Cardoso, I., M.P. Pais, S. Henriques, L.C. da Fonseca & H.N. Cabral (2011). Ecological quality assessment of small estuaries from the Portuguese coast based on fish assemblages indices. Marine Pollution Bulletin 62(5): 992–1001. https://doi.org/10.1016/j.marpolbul.2011.02.037

Elliott, M., A.K. Whitfield, I.C. Potter, S.J.M. Blaber, D.P. Cyrus, F.G. Nordlie & T.D. Harrison (2007). The guild approach to categorizing estuarine fish. Fish and Fisheries 8: 241–268. https://doi.org/10.1136/adc.2002.016303

Fricke, R., W.N. Eschmeyer & R. Van der Laan (eds.) (2021). Eschmeyer's catalog of fishes: genera, species, references. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. Accessed 11 August 2021.

Fischer, W. & G. Bianchi (eds.) (1984). FAO species identification sheets for fishery purposes. Western Indian Ocean (Fishing Area 51). Prepared and printed with the support of the Danish International Development Agency (DANIDA). FAO, Rome, 6 pp.

Harakrishnan, M., P.M. Vijin & B.M. Kurup (2011). Status of Exploited Fishery Resources of Azhikode Estuary, Kerala, India. Fishery Technology 48(1): 19–24.

Harrison, T.D. & F.L. Kelly (2013). Development of an estuarine multimetric fish index and its application to Irish transitional waters. Ecological Indicators 34(2013): 494–506. https://doi.org/10.1016/j.ecolind.2013.06.018

Human, L.R.D., G.C. Snow & J.B. Adams (2016). Responses in a temporarily open/closed estuary to natural and artificial mouth breaching. South African Journal of Botany 107: 39–48. https://doi.org/10.1016/j.sajb.2015.12.002

IUCN (2021). IUCN Red List of Threatened Species, Version 2021.1. Accessed on 6 September 2021

Jayaram, K.C. (1981). The Freshwater Fishes of India, Pakistan, Bangladesh, Burma, and Sri Lanka - A Handbook. Zoological Survey of India, Calcutta, xxii+475 pp.

Kiranya, B., S. Pramila & S. Mullasseri (2018). The diversity of finfish population in Poonthura estuary, south-west coast of India, Kerala. Environmental Monitoring and Assessment 190: 743. https://doi.org/10.1007/s10661-018-7094-4

Kiranya, B., P. Sahadevan, S.G. Bhavan, A.B. Kumar & R. Raghavan (2022). Characterization of fish community structure and an estuarine fish community index for temporarily closed estuaries (TCEs) from India’s south-western coast. Environmental Science and Pollution Research 29: 37969–37988. https://doi.org/10.1007/
Menon, N.N., A.N. Balchand & N.R. Menon (2000). Hydrobiology of the Cochin backwater system - a review. Hydrobiologia 430: 149–183.

Nair, N.B., K.K. Kumar & J.R. Nair (1983). A preliminary survey of the Ecology Indian Estuary Fishery Resources of the Ashtamudi Estuarine System. *Fishery Technology* 20(2): 75–83.

Nelson, J.S., T.C. Grande & M.V.H. Wilson (2016). Fishes of the World. John Wiley & Sons, xiii+707 pp. https://doi.org/10.1002/97811191174844

Raj, V., Raju, B. Soumya, W. Shibu, A. Lekshmi, S. Vardhanan & T. Radhakrishnan (2014). Aquatic Bioresources of Ashtamudi Lake, Ramsar Site, Kerala. *Journal of Aquatic Biology & Fisheries* 2(1): 297–303.

Regi, S. & A. Bijikumar (2012). Diversity of Fish Fauna From Veli Akkulam Lake Kerala India. *Environment & Ecology* 30(4): 1381–1383.

Roshni, K., C.R. Renjithkumar, R. Raghavan & K. Ranjeet (2021). Fish distribution and assemblage structure in a hydrologically fragmented tropical estuary on the south-west coast of India. *Regional Studies in Marine Science* 43. https://doi.org/10.1016/j.rsma.2021.101693

Satheesan, D., R. Kumari, G.C. Rajan & J. Sandhya (2014). Fishery Resources of Akathumuri Backwaters, South West Coast of India: A Preliminary Study. *Journal of Aquatic Biology & Fisheries* 2(1): 92–96.

Selleslagh, J. & R. Amara (2008). Environmental factors structuring fish composition and assemblages in a small macrotidal estuary (eastern English Channel). *Estuarine, Coastal and Shelf Science* 79(3): 507–517. https://doi.org/10.1016/j.ecss.2008.05.006

Sreekantan, G.B., A.K. Jaiswar, P.U. Zacharia, D.G. Pazhayamadom & S.K. Chakraborty (2019). Effect of environment on Spatio-temporal structuring of fish assemblages in a monsoon-influenced tropical estuary. *Environmental Monitoring and Assessment* 191(5): 305. https://doi.org/10.1007/s10661-019-7436-x

Talwar, P.K. & A.G. Jingran (1991). Inland Fishes of India and Adjacent countries, Vol. 2. Oxford and IBH Publishing Company, New Delhi, 1158 pp.

Tudu, P.C., P. Yennawar, N. Ghorai, B. Tripathy & A. Mohapatra (2018). An updated checklist of marine and estuarine mollusc of Odisha coast. *Indian Journal of Geo-Marine Sciences* 47(8): 1537–1560.

Whitfield, A.K. (1999). Ichthyofaunal assemblages in estuaries: a South African case study. *Reviews in Fish Biology and Fisheries* 9: 151–186.

WoRMS (2021). World Register of Marine Species. Available from https://www.marinespecies.org. at VLIZ. Accessed 20 December 2021. https://doi.org/10.14284/170
Reptiles
Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pratpal S. Soorae, Environment Agency, Abu Dhabi, UAE
Prof. Dr. Wayne J. Fuller, Stanford Libraries, Virtual Library of Biology, Zoological Records.

NAAAS rating (India) 5.64

Fishes
Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India
Dr. Topiltzin Contras Macbeath, Universidade Autônoma do Estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert’s College, Kochi, Kerala, India
Dr. Robert D. Silka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshini Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Mammals

| Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia |
| Mr. H. Byju, Coimbatore, Tamil Nadu, India |
| Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK |
| Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India |
| Dr. J.W. Duckworth, IUCN SSC, Bath, UK |
| Dr. Rajah Jayapal, SACC0, Coimbatore, Tamil Nadu, India |
| Dr. Raji S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India |
| Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India |
| Dr. C. Sriwassu, Osmington, Hyderbad, India |
| Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA |
| Dr. Gombazabara Sundar, Professor of Ornithology, Ulanbaatar, Mongolia |
| Prof. Reuven Yosef, International Birding & Research Centre, Eliat, Israel |
| Dr. Taej Munduk, Wetlands International, Wageningen, The Netherlands |
| Dr. Carol Inskip, Bishop Auckland Co., Durham, UK |
| Dr. Tim Inskip, Bishop Auckland Co., Durham, UK |
| Dr. V. Gokul, National Institute of Technology, Tiruchirapalli, Tamil Nadu, India |
| Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia |
| Dr. Simon Dowell, Science Director, Chester Zoo, UK |
| Dr. Mário Gabriel Santacruz dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal |
| Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA |
| Dr. M. Zafar-ul Islam, Prince Saud Al Faisal Wildlife Research Center, Taif, Saudi Arabia |

Amphibians

| Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India |
| Dr. Annamie Oehler, Museum national d’Histoire naturelle, Paris, France |

Reptiles

| Dr. Gornet Vogel, Heidelberg, Germany |
| Dr. Raju Vyas, Vadodara, Gujarat, India |
| Dr. Pratpal S. Soorae, Environment Agency, Abu Dhabi, UAE |
| Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey |
| Prof. Dr. Chadrashaher u. R. Irivonker, Goa University, Talegaon Plateau, Goa, India |
| Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India |
| Dr. Himanshu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE |

Fishes

| Dr. Neelish Dahanukar, IISER, Pune, Maharashtra, India |
| Dr. Topiltzin Contras Macbeath, Universidade Autônoma do Estado de Morelos, México |
| Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore |
| Dr. Rajeev Raghavan, St. Albert’s College, Kochi, Kerala, India |
| Dr. Robert D. Silka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK |
| Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India |
| Dr. Priyadarshini Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India |

Mammals

| Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia |
| Mr. H. Byju, Coimbatore, Tamil Nadu, India |
| Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK |
| Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India |
| Dr. J.W. Duckworth, IUCN SSC, Bath, UK |
| Dr. Rajah Jayapal, SACC0, Coimbatore, Tamil Nadu, India |
| Dr. Raji S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India |
| Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India |
| Dr. C. Sriwassu, Osmington, Hyderbad, India |
| Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA |
| Dr. Gombazabara Sundar, Professor of Ornithology, Ulanbaatar, Mongolia |
| Prof. Reuven Yosef, International Birding & Research Centre, Eliat, Israel |
| Dr. Taej Munduk, Wetlands International, Wageningen, The Netherlands |
| Dr. Carol Inskip, Bishop Auckland Co., Durham, UK |
| Dr. Tim Inskip, Bishop Auckland Co., Durham, UK |
| Dr. V. Gokul, National Institute of Technology, Tiruchirapalli, Tamil Nadu, India |
| Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia |
| Dr. Simon Dowell, Science Director, Chester Zoo, UK |
| Dr. Mário Gabriel Santacruz dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal |
| Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA |
| Dr. M. Zafar-ul Islam, Prince Saud Al Faisal Wildlife Research Center, Taif, Saudi Arabia |

Amphibians

| Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India |
| Dr. Annamie Oehler, Museum national d’Histoire naturelle, Paris, France |

Reptiles

| Dr. Gornet Vogel, Heidelberg, Germany |
| Dr. Raju Vyas, Vadodara, Gujarat, India |
| Dr. Pratpal S. Soorae, Environment Agency, Abu Dhabi, UAE |
| Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey |
| Prof. Dr. Chadrashaher u. R. Irivonker, Goa University, Talegaon Plateau, Goa, India |
| Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India |
| Dr. Himanshu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE |

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa. Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.
Articles

The Javan Leopard Panthera pardus melas (Cuvier, 1809) (Mammalia: Carnivora: Felidae) in West Java, Indonesia: estimating population density and occupancy
– Anton Ario, Senjaya Garcia, Marco Sandoval, Vivian R. González-Castillo, Gerber D. Guzmán-Flores & Cristel M. Pineda, Pp. 21388–21395

Breeding phenology and population dynamics of the endangered Forest Spiny Reed Frog Afrixalus sylvaticus Schistz, 1974 in Shimba Hills, Kenya
– Alfayo Koskei, George Eshiamwata, Bernard Kirui & Phylus K. Cheruiyot, Pp. 21395–21396

Ichthyofaunal diversity of Senkhi stream, Itanagar, Arunachal Pradesh: a comparative status between 2004–05 and 2018–19
– Koj Taro, Lakpa Tamang & D.N. Das, Pp. 21356–21367

First record of Proceratum Roger, 1863, Zasphinctus Wheeler, 1918, and Vollenhovia Mayr, 1865 (Hymenoptera: Formicidae) from the Western Ghats of peninsular India, description of three new species, and implications for Indian biogeography
– Kalesh Sadasivan & Manoj Kripakaran, Pp. 21368–21387

Communications

New queen? Evidence of a long-living Jaguar Panthera onca (Mammalia: Carnivora: Felidae) in Tikal National Park, Guatemala
– Carlos A. Gaitán, Manolo J. García, M. André Sandoval-Lemus, Vivian R. González-Castillo, Gerber D. Guzmán-Flores & Cristel M. Pineda, Pp. 21388–21395

First camera trap record of Striped Hyena Hyaena hyaena (Linnaeus, 1758) (Mammalia: Carnivora: Hyaenidae) in Parsa National Park, Nepal
– Pramod Raj Regmi, Chhewang P. Sigdel, Dipendra Adhikari, Naresh Subedi & Babu Ram Lamichhane, Pp. 21402–21408

Range extension and new ecoregion records of the Crocodile Monitor Varanus salvator (Peters & Doria, 1878) (Reptilia: Varanidae) in Papua New Guinea
– Borja Reh & Jim Thomas, Pp. 21402–21408

A checklist of fish and shellfishes of the Poonthura estuary, southwestern coast of India
– Kiranya Bella, Pramila Sahadevan, Giri Bhavan Sreekantan & Rajeev Raghavan, Pp. 21409–21420

A new species of Protosticta Selys, 1885 (Odonata: Zygoptera: Platystictidae) from Western Ghats, India
– Kalesh Sadasivan, Vinayan P. Nair & K. Abraham Samuel, Pp. 21421–21431

A case study on utilization and conservation of threatened plants in Sechu Tuan Nalla Wildlife Sanctuary, western Himalaya, India
– Puneet Kumar, Harminder Singh & Sushil Kumar Singh, Pp. 21432–21441

A survey of ethno-medicinally important tree species in Nauradehi Wildlife Sanctuary, central India
– Tinku Kumar, Akash Kumar, Amit Jugnu Bishwas & Pramod Kumar Khare, Pp. 21442–21448

Short Communications

Effects of a Bengal Slow Loris Nycticebus bengalensis (Primates: Lorisidae) bite: a case study from Murlen National Park, Mizoram, India
– Amrit Kumar Bal, Anthony J. Giordano & Sushanto Gouda, Pp. 21449–21452

First record of Garra birostris Nebeshwar & Vishwanath, 2013 (Cypriniformes: Cyprinidae) from Doyang and Dikhu rivers of Brahmaputra drainage, Nagaland, India
– Sophiya Ezung, Metevinu Kechu & Pranay Punj Pankaj, Pp. 21453–21457

Two new records of Lilac Silverline Apharitis lilacinus (Lepidoptera: Lycaenidae) from northeastern India
– Monsoon Jyoti Gogoi, Ngulkholal Khongsai, Biswajit Chakdar & Girish Jathar, Pp. 21458–21461

Illustrated description of the mantis Mesopteryx platyccephala (Mantodea: Mantidae) collected from West Bengal, India
– Gauri Sathaye, Sachin Ranade & Hemant Ghate, Pp. 21462–21466

Illustrated description of the mantis Catrelia isidiata (Asahina) W.L. Culb. & C.F. Culb. (Pamphiliaceae) – an addition to the Indian lichen biota
– Gaurav K. Mishra, Pooja Maurya & Dalip K. Upadhyay, Pp. 21467–21469

Notes

A new southern distribution record for Pacific Marten Martes caurina
– Maximilian L. Allen, Brianne Kenny, Benjamin Crawford & Morgan J. Farmer, Pp. 21470–21472

First Asian record of Light-mantled Albatross Phoebetria palpebrata (Foster, 1785) from Rameswaram Island, Tamil Nadu, India
– H. Byju & N. Raveendran, Pp. 21473–21475

Salvia misella Kunth (Lamiaceae) - a new record for Eastern Ghats of India
– Prabhat Kumar Das, Pradeep Kumar Kamila & Pratap Chandra Panda, Pp. 21576–21579

Salsola oppositifolia Desf. In Great Rann of Kachchh, Gujarat – a new record for India
– Rakesh Gujar, Vinesh Gamit, Ketan Tatu & R.K. Sugoor, Pp. 21580–21583

Extended distribution of Impatiens scapiflora (Balsaminaceae) to the flora of Eastern Ghats, India
– T.S. Saravanan, S. Kaliamaorthy, M.Y. Kamble & M.U. Sharief, Pp. 21484–21486