Asymmetric transfer hydrogenation of unsaturated ketones; factors influencing 1,4- vs 1,2- regio- and enantioselectivity, and alkene vs alkyne directing effects

Thomas H. Hall, Hannah Adams, Vijyesh K. Vyas, K.L. Michael Chu, Martin Wills*

Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK

A detailed study has been completed on the asymmetric transfer hydrogenation (ATH) of a series of enones using Ru(II) catalysts. Electron-rich rings adjacent to the C=N group reduce the level of C=N reduction compared to C=C. The ATH reaction can readily discriminate between double and triple bonds adjacent to ketones, reducing the double bond but leaving a triple bond intact in the major product.

Keywords: Asymmetric Catalysis Ruthenium Reduction Enone Alkyne Enantioselective Regioselective

1. Introduction

Asymmetric transfer hydrogenation (ATH) of ketones using Ru(II)/arene/TsDPEN complexes such as 1-7 (Fig. 1) is a well-established process that generates alcohols in high enantioselectivities [1-6]. The catalysts are well-suited to the reductions of acetophenone derivatives and alkynyl(acetylenic) ketones, which are reduced in high ee through relatively well-understood transition states [Fig. 2] [2]. Complex 1 was first reported by Noyori et al. in 1995 [3] and in 2005, we reported tethered complexes of type 2 [4], which have subsequently seen widespread application [5].

Related complexes, 3 [4], 4 [5], 5 [5], 6 [4] and 7 [4] have been reported and widely studied in ATH applications [6].

ATH, using the Ru(II) catalysts 1-5, of α,β-unsaturated ketones reveals a rather more complex pattern of selectivities. Deng et al. [7] described the reductions of ketones with catalyst 1 to the corresponding allylic alcohols, using a combination of formic acid and trimethylamine (FA/TEA) as solvent and reducing agent, in high yield; enantioselectivities depended on the substitution pattern on the alkene (Fig. 3a). Using chalcone as the substrate for TH with the achiral ligand N-tosylethyenediamine (TsEN), the reduction product was a ca. 3:1 mixture of saturated ketone and saturated alcohol [7].

Increasing the steric bulk of the alkyl substituent on benzylideneacetones has a complicated effect on the reduction selectivity using catalyst 1 (Fig. 3b) [8]. The ethyl substituent increased the 1,2
selectivity whilst the larger isopropyl group gave equal proportions of 1,2- and 1,4-reduction products in lower conversion. The tert-butyl substituent strongly disfavoured all ketone reduction. Noyori catalyst 1 was applied to the ATH of β-alkyl β-trifluoromethyl α,β-unsaturated ketones to yield 1,2-reduction products selectively [9].

Aryl-ketone substrates were reduced in high ee as expected, while a methyl ketone gave a product in poor enantioselectivity (Fig. 3c). The (non-asymmetric) TH of C=C bonds in enones, using TsEN as a ligand in the Ru(II) complex, can be promoted by incorporating an electron withdrawing groups into the substrate [7], including nitro, ester, nitrile and carboxylic acids. Some asymmetric examples of C=C reduction have been reported [7]. A series of α-substituted cyclic α,β-unsaturated ketones were reduced selectively with the Noyori-Ikariya complex 1 to the corresponding cycloalkenols 8–10, although the carbamate substrate also yielded a small amount of the 1,4-reduction product 11 (Fig. 4) [10]. The acyclic analogue of 10 in contrast was reduced with complete 1,4-alkene selectivity, yielding a mixture of 33% saturated ketone and 67% saturated alcohol.

In some cases an enone can be formed in situ and directly reduced. Adolsson’s α-amino acid hydroxyamide ligand 12 has been applied to ATH of allylic alcohols by oxidation to the corresponding enone, followed by complete reduction of alkene and carbonyl functionalities (Fig. 5) [11]. Use of the stronger base potassium tert-butoxide was important for the success of this reduction.

Kosmalski applied the Noyori catalyst 1 to the reduction of β-dimethylamino-acetophenone and found that the main product was the partially reduced elimination product [12]. Therefore there is still scope for increased understanding of the subtle effects of substrate structure on the regioselectivity of enone ATH. In this paper, we report our results from our investigation into this area.

2. Results and discussion

We first examined the ATH of β-chloropropiophenone 13 [13]. Reduction using catalyst (S,S)-2 in FA/TEA at 60 °C gave complete conversion to 1-phenylpropan-1-ol 14, in high enantioselectivity (Fig. 6).

Subjecting 15 to the same ATH conditions gave 14, in identical ee as obtained previously, as did the reduction of 16, indicating that both were likely to be common intermediates in the formation of 14. Vinyl alcohol 17 was inert under the same conditions in contrast to the result in Fig. 5 [11] and no 17 was observed in the reduction of 15 or 16. Initial 1,4-reduction of 15 is expected to be favourable due to the high reactivity of the unhindered mono-substituted vinyl group. trans-Benzylideneacetophenone 18 (chalcone) was reduced using both catalyst (S,S)-2 and the methoxy analogue 3 under a variety of conditions (Table 1).

With both catalysts, 1,4-reduction was favoured. The substrate was fully consumed but some saturated ketone 20 was observed. Alcohol 19 was produced with consistently good ee of ca. 95–98% in FA/TEA for both catalysts. Compound 21 was formed with a lower ee (73–85%), which is consistent with the presence of two π systems that could compete as directing groups for reduction (Fig. 2). Catalyst (R,R)-3 delivered products in slightly higher ee than (S,S)-2 under the same conditions. Racemic standards were prepared using sodium borohydride; alcohol 21 was prepared by Luche reduction [12], while a sample of 20 was produced by a one pot reduction in the presence of palladium on carbon, acetic acid, isopropanol, and sodium borohydride [13]. The products ees were measured by

![Fig. 1. Ru(II)/arene/TsDPEN complexes reported for the ATH of ketones and imines.](image1)

![Fig. 2. Control of asymmetric reduction of various types of ketones using complex 2 (representative of 1–7).](image2)
chiral HPLC, and the product ratio was determined by NMR spectroscopy to ensure that the measurement was quantitative.

Cerium trichloride \[12\] was tested as an additive (Table 1, entry 5), but it had only a marginal effect. However, the additional methanol co-solvent was advantageous, as substrate \(18\) was poorly soluble in FA/TEA. Further reactions using equal quantities of FA/TEA and MeOH at lower concentration (0.5 M instead of 2 M) gave full conversion to product (Table 1, entries 3 and 4). Using H\(_2\)O/MeOH as the solvent system and sodium formate as hydrogen donor (Table 1, entry 6) [14], with \((R,R)\)-3 as the catalyst, the reduction was slower, with incomplete conversion after 45 h at 60 °C and the ee of alcohol \(19\) reduced to 86%. Increasing the FA/TEA/MeOH reaction temperature to 60 °C or decreasing it to 25 °C had a marginal effect on the selectivities (entries 7 and 8).

Screening of alternative co-solvents in the reduction of \(18\) was undertaken (Supporting Information). Aprotic solvents performed similarly, giving similar or slightly improved 1,4-selectivity and ee compared to reactions with MeOH. Water was also tested as a co-solvent with FA/TEA, however the solubility of \(18\) in the aqueous FA/TEA mixture was poor, and the enantioselectivity of both products lower than for the other solvents tested.

It was expected that the configurations of both \(19\) and \(21\) were the same and this was confirmed by hydrogenating the product mixture from Table 1 entry 4 using Pt\(_2\)O as a catalyst. Given the ratio of alcohols \(19\) and \(21\), the predicted ee of \(19\) after alkene hydrogenation is 97% if the configuration of both alcohols is the same, and 91% if it is different (Supporting Information). The experimental measurement of ee after hydrogenation was 97%, confirming that \(19\) and \(21\) must have the same configuration. The electronic nature of the aromatic ring adjacent to the ketone could influence the 1,4- vs 1,2-selectivity of reduction [15]. To test this, chalcone...
derivatives containing p-Cl, p-OMe and p-NMe₂ were reduced with catalyst (R,R)-3 to products 22-24 (Fig. 7). Electron donating substituents slow down the rate of reduction, and increase the 1,4-selectivity. The proportion of 1,2-product was so low for the p-methoxy and p-dimethylamino products 23 and 24 respectively, that the ee of the unsaturated product could not be determined.

In order to establish the importance of each aromatic ring in the chalcone derivatives, the corresponding cyclohexyl substituted substrates were reduced by ATH (Fig. 7). The ketone with a cyclohexyl adjacent to the alkene reacted with similar selectivity to chalcone, to give 25 with a slight increase in 1,4-selectivity (97% ee). Reduction of the ketone with the cyclohexyl adjacent to the ketone, in contrast, gave different products 26 depending on which catalyst was used. In general it gave a much higher proportion of 1,2-reduction product, although 1,4-selectivity was highest under aqueous conditions using sodium formate as the hydrogen source (Fig. 7). The ee of reduction was also poor. This demonstrates the importance of the aromatic ring adjacent to the ketone for the control of enantioselectivity, but that the aromatic ring on the alkene is of secondary importance. ATH of a substrate with a β,β-disubstitution gave a product in high 1,4-selectivity, with predominant formation of the saturated alcohol 27 over the equivalent allylic alcohol although in only 55% ee.

It is known in the literature that alkynes are generally inert under ATH conditions, and are capable of acting as directing groups (Fig. 2)[3d,4,6]. It was therefore of interest to establish the outcome of the ATH of substrates containing both an alkyne and an alkene flanking the central ketone (Fig. 8).

The precursor ketones were prepared by reaction of the required lithiated acetylene with the Weinreb amide of cinnamic acid. Racemic standards were obtained for all the products and HPLC was used to directly assess the regio- and stereoselectivity of the reactions. Product ratios were also determined by 1H NMR data. In the ATH of the diphenyl substrate, using (R,R)-3, the saturated and unsaturated products 28 and 29 respectively were formed in an 83:17 ratio (Fig. 8). The ee of 28 was highest, presumably because

Entry	Catalyst	t/h	Conv/%	1,4: 19: 21	19 ee/%	21 ee/%	R/S
1 a	(S,S)-2	1.5	98	91: 7: 96	73	S	
2 a	(R,R)-3	4	98	96: 2: 98	84	R	
3 a	(S,S)-2	20	100	89: 11: 95	79	S	
4 a	(R,R)-3	22	100	96: 4: 98	85	R	
5 a	(S,S)-2	5.5	98	88: 10: 95	78	S	
6 a	(R,R)-3	45	94	94: 0: 86	–	R	
7 a,b	(R,R)-3	25	96	91: 9: 98	83	R	

Conditions:
- a) 2 M in FA/TEA, 100:1 S/C, 40 °C.
- b) 0.5 M in 5:2 FA/TEA: MeOH (1:1), 100:1 S/C, 40 °C.
- c) as b) with CeCl₃ additive (0.5 eq).
- d) 0.5 M in 1:1H₂O/MeOH, NaHCO₃, 100:1 S/C, 60 °C.
- e) at 25 °C.
- f) at 60 °C.

Fig. 7. Products of ATH of chalcone derivatives. Conditions: 22-24: [S] = 0.5 M in 5:2 FA/TEA, MeOH (1:1), 24 h, 40 °C, 100:1 S/C, (R,R)-3. Assumed R product is formed by analogy with chalcone. 25: as for 22-24, catalyst (S,S)-2. 26: run 1 and 2: as for 22-24, catalyst (S,S)-2. run 3: [S] = 0.5 M in 1:1H₂O/MeOH, NaHCO₃, 100:1 S/C, (R,R)-2. 27: as for 22-24.
the alkene is reduced first and the resulting propargylic ketone is selectively reduced following existing precedent [1,3d,4c]. The 1,2-reduction product 29 was formed in lower ee likely due to competing electron-rich unsaturated bonds in the CH/π of the reduction transition state (Fig. 2). The absolute configuration of the products was not unambiguously determined. However it is likely that the R-configuration products will be formed using the (R,R)-configuration catalyst, based on the precedent for this class of reductions.

A reaction/time study was completed to investigate the ATH using HPLC (Supporting Information). From an early stage in the reaction, the formation of the intermediate saturated ketone was essentially instantaneous, and a small amount of unsaturated product was also observed. As time increases, starting material and intermediate ketone disappear and the two alcohol products are formed. The effect of solvent on the reaction was also investigated and a time study for each solvent was undertaken to explore the relative rate of formation of each of the intermediate and product species over time (Supporting Information). DFT studies have indicated that using MeOH engages in hydrogen bonding interactions to the ketone during the reduction [2a,2e] and in some cases different solvents have been demonstrated to reverse the enantioselectivity [16]. However the results, whilst similar to those in Fig. 8, were inferior with respect to product selectivity, enantioselectivity and conversion. Four further ATH catalysts, 1, 3, ‘4C-tethered’ 6 and the ‘benzyl-bridged’ 7 were also used (Fig. 8). Time studies were also conducted to track the formation of products and intermediates in each case (Supporting Information). Catalyst 6 produced similar ratios of alcohols and ee values as seen with 2, however, it gave lower conversion. Catalyst 3 gave a similar result to that of 6. ATH with 3 at the lower temperature of 25 °C gave a more selective product ratio (79:21 28:29) with high ee’s of 98% and 87% for the saturated OH and unsaturated OH respectively. However the conversion was slightly lower at 85%. Catalyst 7 gave approximately a 1:1 ratio between the saturated and unsaturated products which could be due to the hindered nature of the catalyst.

The ATH (1 mol% catalyst (R,R)-2, MeOH co-solvent at 40 °C) was tested with other substrates and in all cases, standards of the reduction products were prepared for HPLC analysis. Attempts were made at ATH of the TMS-substituted alkyne but decomposition was observed. However the ATH of the TIPS-enynone was successful. Products 30 and 31 were isolated as a mixture, in a ratio

Fig. 8. Products of ATH of alkene/alkyne substrates. The illustrated configuration is that for the assumption that the alkyne dominates the selectivity as in Fig. 2. Conditions: FA:TEA 5:2 (0.5 mL), solvent (0.5 mL), 1 mol% catalyst and 40 °C unless otherwise stated.
of 69:31 and in a conversion of just 81%. The ATH was less selective for the 1,4-reduction pathway and hence, produced more of unsaturated alcohol 31. The enantioselectivity was high for both alcoholic products however. The products of ATH of the p-methoxyphenyl derivative were obtained as an 86:14 mixture of 32 and 33. Hence the electron-donating group does not appear to significantly affect the reaction mechanism or product distribution. The p-chlorobenzene (PCB) derivative gave a product as a mixture of 34 and 35, with slightly lower enantioselectivity. An impurity was found in the 1H NMR spectrum and it was hypothesised that this was the alkyne reduction production 36, based on the observation of a further ABX system in the 1H NMR spectrum (see the Supporting Information).

3. Conclusions

Investigation of the ATH of a range of enones showed that predominant 1,4-reactivity is favoured and the majority of aromatic-ketone substrates were reduced to their saturated alcohols with high ee. Electron-donating para substituents on the ketone favoured 1,4-reduction further. The ATH of alkene/alkyne substrates were reduced to their saturated alcohols however. The products of ATH of the methoxyphenyl derivative were obtained as an 86:14 mixture of 32 and 33. Hence the electron-donating group does not appear to significantly affect the reaction mechanism or product distribution. The p-chlorobenzene (PCB) derivative gave a product as a mixture of 34 and 35, with slightly lower enantioselectivity. An impurity was found in the 1H NMR spectrum and it was hypothesised that this was the alkyne reduction production 36, based on the observation of a further ABX system in the 1H NMR spectrum (see the Supporting Information).

4. Experimental section

4.1. General experimental

All reagents and solvents were used as purchased and without further purification, with the exception of cyclohexane carboxaldehyde which was redistilled for storage.

All reactions were carried out under a nitrogen atmosphere unless otherwise specified. Reactions at elevated temperature were maintained by thermostatically controlled oil-baths or aluminium heating blocks. A temperature of 0°C refers to an ice slush bath. –78°C to a dry ice acetone bath.

NMR spectra were recorded on a Bruker AV (250 MHz), Bruker DPX (300 or 400 MHz), Bruker DRX (500 MHz) or Bruker AV-II. (700 MHz). All chemical shifts are rounded to the nearest 0.01 ppm for 1H spectra and the nearest 0.1 ppm for 13C spectra, and are referenced to the solvent chemical shift. Coupling constants are rounded to the nearest 0.1 Hz. Mass spectra were recorded on an Esquire 2000 and high resolution mass spectra were recorded on a Bruker Micro ToF or MaXis. IR spectra were recorded on a PerkinElmer spectrum 100 and peaks are reported in wavenumbers. Optical rotations were measured on an Optical Activity Ltd. AA-1000 Polarimeter and are reported in deg dm$^{-1}$ cm$^{-1}$ g$^{-1}$.

The chiral GC measurements were performed using a PerkinElmer 8500 or Hewlett-Packard 1050 instrument linked to a PC running DataApex Clarity software. HPLC measurements were performed out using a Hewlett Packard 1050 Series with a quaternary pump, autosampler and variable wavelength detector linked to a PC running DataApex Clarity software.

Melting points were determined on a Stuart scientific melting point apparatus and are uncorrected. Flash column chromatography was performed using silica gel of mesh size 230–400. Thin layer chromatography was carried out on aluminium backed silica gel 60(F254) plates, visualised using 254 nm UV light, potassium permanganate, iodine stains or cerium ammonium molybdate (CAM) as appropriate. Column chromatography was performed either by gradient elution (reported as a range, eg ETOAc/Petroleum ether (2–12%), or by isocratic elution.

4.1.1. rac-1-Phenylprop-1-ol 14

This compound is known [17]. To a solution of propiophenone 16 (66 mg, 0.49 mmol, 1 eq) in methanol (0.9 mL) and water (0.1 mL) was added sodium borohydride (41 mg, 1.08 mmol, 2 eq) as a solid in one portion. The reaction was monitored by TLC. After stirring for 6 h, the reaction mixture was concentrated under vacuum, the residue suspended in water (1 mL) and extracted with Et$_2$O (3 mL total). The organic layer was dried (Na$_2$SO$_4$) and concentrated to give the product 35 as a clear oil (35 mg, 0.26 mmol, 52%). The spectroscopic data were consistent with those observed for the asymmetric product below.

4.1.2. (S)-1-Phenylprop-1-ol 14

This compound is known [17]. From 3-chloropropiophenone 13: A degassed solution of 3-chloropropiophenone (170 mg, 1.01 mmol, 1.0 eq) and (S,S)-2 (3.1 mg, 0.005 mmol, 0.5%) in FA/TEA (5:2, 0.5 mL) was stirred at 60°C for 1.5 h. The mixture was diluted with ethyl acetate (5 mL) and quenched with NaHCO$_3$ (sat., 5 mL), the aqueous layer was extracted further with ethyl acetate (2 x 5 mL) and the organic extracts dried over Na$_2$SO$_4$ and concentrated to give a brown oil. The crude was dissolved in diethyl ether and passed through a silica plug to yield the product 14 as a red oil (123 mg, 0.97 mmol, 96%) in 100% conv. and 95% ee as measured by GC. [α]2D = -43.5 (c 0.35 in CHCl$_3$); lit [17] [α]2D = -43.6 (S) (c 1.0 in CHCl$_3$). 1H NMR (300 MHz, CDCl$_3$) 7.29–7.15 (5H, m, Ph), 4.49 (1H, dt, J = 3.2, 6.6 Hz, CHOH), 1.85 (1H, br. s., OH), 1.78–1.57 (2H, m, CH$_3$), 0.82 (3H, t, J = 7.4 Hz, CH$_3$); 1C NMR (75 MHz, CDCl$_3$) 143.9, 127.8, 126.9, 125.4, 75.4, 31.3, 95; Chiral GC. (CP-Chiral-Dex-CF), 25 m x 0.25 mm x 0.25 µm column, oven: hold 12 min at 125°C, then ramp 1°C/min, final temp 145°C, inj: split 220°C, det.: FID 250°C, 18 PSI He), retention times: 11.2 (R) and 11.4 (S) minutes.

From phenyl vinyl ketone 15: Compound 14 could also be prepared with 100% conversion and 95% ee with the same method, starting from 15 (prepared by elimination of HCl from 3-chloropropiophenone [18], 126 mg, 0.95 mmol, 1 eq), (S,S)-2 catalyst (3.5 mg, 0.006 mmol, 0.5%) and FA/TEA (5:2, 0.5 mL). The product was isolated as a clear oil (103 mg, 0.76 mmol, 79%).

Attempted reduction of 1-phenylprop-2-en-1-ol 17. Application of the same method to commercially available α-vinylbenzyl alcohol 17 (134 mg) and (S,S)-2 catalyst (3.3 mg, 5 µmol, 0.5%) in FA/TEA (5:2, 0.5 mL) gave no reaction in 1.5 h at 60°C.

4.1.3. rac-1,3-Diphenylprop-1-ol 19

This compound is known [19]. To a suspension of chalcone 18 (212 mg, 1.02 mmol, 1 eq) and Pd/C (5% w/w, 52 mg, 0.25% Pd) in isopropanol (5 mL) was added acetic acid (124 mg, 2.06 mmol, 2 eq) followed by sodium borohydride (160 mg, 4.23 mmol, 4 eq), with vigorous effervescence. The reaction mixture was stirred at rt for 2 h and quenched slowly with HCl (0.2 M, 2.5 mL). The resulting suspension was neutralised with NaOH (2 M, ~1.5 mL) and filtered through Celite with isopropanol to remove Pd/C. The mixture was concentrated to remove excess isopropanol and then the aqueous layer was extracted with diethyl ether (3 x 20 mL) dried over Na$_2$SO$_4$ and concentrated to give the saturated alcohol 19 as a clear oil that solidifies on standing. (183 mg, 0.86 mmol, 85%). 1H NMR (400 MHz, CDCl$_3$) 7.34 (4H, br. s., Ph), 7.30–7.23 (3H, m, Ph), 7.22–7.14 (3H, m, Ph), 4.67 (1H, br. s., CHOH), 2.82–2.55 (2H, m, PhCH$_2$), 2.20–1.96 (2H, m, CH$_2$CH$_2$), 1.92 (1H, br. s., OH); 1C NMR (100 MHz, CDCl$_3$) 144.6, 141.8, 128.6, 128.5, 128.4, 127.7, 126.0, 125.9, 73.9, 30.6, 32.1; Chiral HPLC (CHIRALPAK IB column: (0.46 x 25 cm), 1 mL/min, 7% IPA: 93% Hexane; 256 nm UV, 30°C): retention times: 9.4 (S) and 10.4 (R) minutes.

4.1.4. rac-(E)-1,3-Diphenylprop-2-en-1-ol 21

This compound is known [20,21]. To a suspension of chalcone 18...
was obtained as a mixture of saturated and unsaturated alcohols in (0.5 mL), to give the product (102 mg, 0.48 mmol, 96%). The product chalcone (104 mg, 0.5 mmol), FA/TEA (0.5 mL) and methanol unsaturated minutes.

\[\delta_1 (400 \text{ MHz, CDCl}_3) 7.14–7.49 (10 \text{H, m, Ph}) \]

17.9 (4-chlorophenyl)-3-phenylprop-2-en-1-ol

4.1.7. rac-1-(4-Chlorophenyl)-3-phenylprop-2-en-1-ol 22

This compound is known \[20,24,25\]. To a suspension of (E)-1-(4-chlorophenyl)-3-phenylprop-2-en-1-one (242 mg, 1.0 mmol, 1 eq) and cerium trichloride heptahydrate (392 mg, 1.1 mmol, 1 eq) in methanol (2 mL) was added sodium borohydride (43 mg, 1.1 mmol, 1 eq) at 0 °C. The reaction was stirred for 1 h and quenched with NH₄Cl (sat., 10 mL) and extracted with diethyl ether (3 mL) and dry loaded onto silica (~200 mg). Filtration from water gave a sticky white solid that was dried under vacuum to yield pure compound as a grey solid. (174 mg, 0.71 mmol, 71%).

\[\delta_1 (400 \text{ MHz, CDCl}_3) 7.59–7.06 (9 \text{H, m, ArH}) \]

16.9 (4-chlorophenyl)-3-phenylprop-2-en-1-one (242 mg, 1.0 mmol, 1 eq) was dissolved in a solution of sodium methoxide (203 mg, 0.96 mmol, 96%). The product was obtained as a mixture of saturated and unsaturated alcohols in 98% conversion, ratio 91:7 by 1H NMR, major product 96% ee, minor product 73% ee. The opposite enantiomer was obtained using (R,E)-1-(4-chlorophenyl)-3-phenylprop-2-en-1-ol.

\[\delta_1 (400 \text{ MHz, CDCl}_3) 7.59–7.06 (9 \text{H, m, ArH}) \]

4.1.8. rac-(E)-1-(4-Chlorophenyl)-3-phenylprop-2-ene-1-ol

This compound is known \[20,24,25\]. A degassed suspension of (E)-1-(4-chlorophenyl)-3-phenylprop-2-en-1-one (242 mg, 1.0 mmol, 1 eq) and cerium trichloride heptahydrate (392 mg, 1.1 mmol, 1 eq) in methanol (2 mL) was added sodium borohydride (43 mg, 1.1 mmol, 1 eq) at 0 °C. The reaction was stirred for 1 h and quenched with sat. NH₄Cl (5 mL) and extracted with diethyl ether (3 mL) and then the organic extracts dried over Na₂SO₄ and passed through a silica plug to yield pure compound as a grey solid. (174 mg, 0.71 mmol, 71%).

\[\delta_1 (400 \text{ MHz, CDCl}_3) 7.59–7.06 (9 \text{H, m, ArH}) \]

16.9 (4-chlorophenyl)-3-phenylprop-2-en-1-one (242 mg, 1.0 mmol, 1 eq) was dissolved in a solution of sodium methoxide (203 mg, 0.96 mmol, 96%). The product was obtained as a mixture of saturated and unsaturated alcohols in 98% conversion, ratio 91:7 by 1H NMR, major product 96% ee, minor product 73% ee. Spectroscopic data for the asymmetric product is consistent with the prepared standards. Mp 52 °C; [α]D²⁹ +29.4, R 98% ee (c 0.425 in CHCl₃); lit \[19\] [α]D²⁹ +29.3, R 93% ee (c 0.51 in CHCl₃); Chiral HPLC (CHIRALPAK IB column: (0.46 × 25 cm), 1 mL/min, 7% IPA: 93% Hexane; 256 nm UV, 30 °C) retention times: 10.0 (S)-saturated, 11.0 (R)-saturated, 13.4 (S)-unsaturated and 16.8 (R)-unsaturated minutes.

4.1.9. (R)-1-(4-Chlorophenyl)-3-phenylprop-2-en-1-ol

The major compound is known in racemic form \[23\]. The asymmetric form has not been reported. The minor compound is known \[20,24,25\]. A degassed suspension of (E)-1-(4-chlorophenyl)-3-phenylprop-2-en-1-one (120 mg, 0.49 mmol, 1 eq) and (R,R)-3-catalyst (3.3 mmol, 0.005 mmol, 1%) in FA/TEA (5.2, 0.5 mL) and methanol (0.5 mL) was stirred at 40 °C for 2 h. The mixture was quenched with NaHCO₃ (sat., 2 mL), extracted into diethyl ether (2 mL) and dry loaded onto silica onto silica. The crude product was purified by column chromatography (5 g silica, 25% EtOAc in petroleum ether) to yield pure compound as a pale yellow oil. Purification by column chromatography (5 g silica, 30% EtO₂O/Petroleum ether gave the pure product as a white solid (192 mg, 0.78 mmol, 78%).

\[\delta_1 (400 \text{ MHz, CDCl}_3) 7.35–7.24 (6 \text{H, m, Ph}) \]

7.23–7.14 (3H, m, Ph), 4.74–4.57 (1H, m, CH₂), 2.81–2.54 (2H, m, PhCH₂), 1.25–1.93 (2H, m, CH₂CH₂), 1.91–1.84 (1H, m, OH); [α]D (100 MHz, CDCl₃) 143.0 (C), 141.5 (C), 133.2 (C), 128.6 (CH), 128.4 (CH), 128.3 (CH), 127.3 (CH), 125.9 (CH), 73.1 (CH), 40.5 (CH₂), 31.9 (CH₂); Chiral HPLC (CHIRALPAK IB column: (0.46 × 25 cm), 1 mL/min, 7% IPA: 93% Hexane; 210 nm UV, 30 °C) retention times: 9.3 (S) and 10.6 (R) minutes.

4.1.10. (E)-1-(4-Methoxyphenyl)-3-phenylprop-2-en-1-one

This compound is known \[22\] 4'-Methoxycetophenone (1.51 g, 10.1 mmol, 1 eq) was dissolved in a solution of sodium methoxide (25 wt% in MeOH, 0.43 g, 2.0 mmol, 0.2 eq) and MeOH (20 mL) and cooled to 0 °C. Benzaldehyde (1.50 g, 14.1 mmol, 1.4 eq) in MeOH (5 mL) was added and the suspension was warmed to 40 °C. The resulting solution was stirred for 48 h, then quenched by dropwise addition of HCl (0.25 M, 20 mL). The resulting white crystalline solid was isolated by filtration (2.20 g, 9.2 mmol, 92%).

\[\delta_1 (500 \text{ MHz, CDCl}_3) 8.09–8.02 (2 \text{H, m, ArH}) \]

7.81 (1H, d, J = 15.7 Hz, =CH), 7.65
(2H, dd, J = 7.2, 2.1 Hz, ArH), 7.55 (1H, d, J = 15.7 Hz, =CH), 7.45–7.36 (3H, m, ArH), 7.02–6.96 (2H, m, ArH), 3.89 (3H, s, OCH3); δC (126 MHz, CDCl3) 188.7, 163.5, 144.0, 135.1, 131.1, 130.8, 130.4, 129.0, 128.4, 121.9, 119.3, 55.5.

4.1.11. rac-1-(4-Methoxyphenyl)-3-phenylpropan-1-ol 23

This compound is known [26] To a suspension of (E)-1-(4-Methoxyphenyl)-3-phenylprop-2-en-1-one (240 mg, 1.0 mmol, 1 eq) and Pd/C (5% w/w, 54 mg, 25 μmol, 2.5% Pd) in isopropanol (5 mL) was added acetic acid (120 mg, 2.0 mmol, 2 eq) followed by sodium borohydride (152 mg, 4.0 mmol, 4 eq), with vigorous effervescence. The reaction mixture was stirred at rt for 2.5 h, then additional sodium borohydride was added (76 mg, 2.0 mmol, 2 eq). The suspension was stirred for another hour, then filtered through Celite with isopropanol (40 mL) and water (10 mL). The filtrate was partially concentrated under vacuum but continued to evolve gas, so was quenched with NH4Cl (sat. soln, 10 mL) and concentrated to 50 °C. The concentrated residue was partitioned between diethyl ether (10 mL) and NaOH (2 M soln, 5 mL). The aqueous layer was extracted with further portions of ether (2 × 5 mL), and the combined organic layers were dried (Na2SO4) and concentrated under vacuum to give the crude product as a clear oil that solidified into a stick. The solid was re-dissolved in Et2O (218 mg). This material was dissolved in a minimum quantity of methanol and water was added until a white emulsion formed. Concentrating the emulsion gave a the pure product as a white crystalline solid (206 mg, 0.84 mmol, 84%). Mp 52–53 °C; δH (400 MHz, CDCl3) 7.32–7.23 (4H, m, Ph), 2.72–7.13 (3H, m, Ph); δH (8 (d, J = 8.3 Hz, o-PH), 4.78–4.53 (1H, m, CH=OH); 3.80 (3H, s, OCH3), 2.79–2.58 (2H, m, PhCH2), 2.20–1.94 (2H, m, CH2Ar), 1.83 (1H, br. s., OH); δC (101 MHz, CDCl3) 159.1, 141.9, 136.7, 128.5, 128.4, 127.3, 125.9, 113.9, 73.5, 55.3, 40.4, 32.1; Chiral HPLC (CHIRALPAK IB column: (0.46 × 25 cm), 1 mL/min, 7% IPA: 93% Hexane; 210 nm UV, 30 °C) retention times: 11.9 (S) and 13.1 (R) minutes.

4.1.12. (R)-1-(4-Methoxyphenyl)-3-phenylpropan-1-ol 23

This compound is known [27]. A degassed suspension of (E)-1-(4-Methoxyphenyl)-3-phenylprop-2-en-1-one (121 mg, 0.51 mmol, 1 eq) and catalyst (R,R)-3 (3.3 mg, 0.005 mmol, 1%) in FA/TEA (5:2, 0.5 mL) and methanol (0.5 mL) was stirred at 40 °C for 22 h. The mixture was quenched with NaHCO3 (sat. 2 mL), extracted into diethyl ether (2 mL) and dry loaded onto silica (~200 mg). Filtration with 20% Et2O/Hex (10 mL) through a silica plug (~0.2 g) gave the pure product in 91% conversion, with the remainder being the unsaturated product.

4.1.15. rac-1-(4-(Dimethylamino)phenyl)-3-phenylpropan-1-ol 24

The asymmetric form of this compound has not been reported. A degassed suspension of (E)-1-(4-(Dimethylamino)phenyl)-3-phenylprop-2-en-1-one. (129 mg, 0.51 mmol, 1 eq) and catalyst (R,R)-3 (3.3 mg, 0.005 mmol, 1%) in FA/TEA (5:2, 0.5 mL) and methanol (0.5 mL) was stirred at 40 °C for 24 h. The mixture was quenched with NaHCO3 (sat., 2 mL), extracted into diethyl ether (2 mL) and dry loaded onto silica (~200 mg). Filtration with 20% Et2O/petroleum ether (10 mL) through a silica plug (~0.75 g) gave the crude product in 91% conversion, with the remainder being the saturated ketone. (121 mg). Puriﬁcation by column chromatography (20% Et2O in petroleum ether) gave the pure product 24 as a white solid (98 mg, 0.38 mmol, 75%), in 97% ee as determined by HPLC. Spectral data matched those of the racemic compound. TLC: 30% Et2O in petroleum ether, silica, RF = 0.22 (SM 0.28): [z]24D = +18.8 (c 0.295 in CHCl3); Chiral HPLC (CHIRALPAK IB column: (0.46 × 25 cm), 1 mL/min, 10% IPA: 90% Hexane; 210 nm UV, 30 °C) retention times: 10.6 (S) and 11.2 (R) minutes.

4.1.16. (E)-3-Cyclohexyl-1-phenylprop-2-en-1-one

This compound is known [31]. To a suspension of sodium borohydride (60 wt% dispersion in mineral oil, 0.20 g, 5.0 mmol, 1.0 eq) in THF (5 mL) at 0 °C was added dropwise a solution of the diethyl (2-oxo-2-phenyl)ethyl)phosphonate [30] (1.25 g, 4.9 mmol, 1.0 eq) in THF (5 mL) and the resulting clear solution was stirred for 30 min at room temperature. Cyclohexanecarboxaldehyde (0.57 g, 5.1 mmol, 1.0 eq) was added neat and the reaction mixture stirred at room temperature overnight. The reaction was quenched with NH4Cl (sat. 30 mL) and extracted with ethyl acetate (3 × 15 mL), the organic extracts were combined, washed with brine (25 mL), dried over Na2SO4 and concentrated to give the crude product as a clear oil (1.13 g). The crude was taken up in methanol (50 mL) and cooled to −72 °C. The resulting white precipitate was filtered and dried to give the pure product as a white solid (492 mg, 2.30 mmol, 45%). Mp 46–48 °C; δH (400 MHz, CDCl3) 7.92 (2H, d, J = 7.5 Hz, o-PH), 7.57–7.51 (1H, m, p-PH), 7.49–7.42 (2H, m, m-PH), 7.01 (1H, dd, J = 6.8, 15.6 Hz, =CH), 6.83 (1H, d, J = 3 × 5.6 Hz, CH; TOCSY = 2.32–2.18 (1H, m, Cy), 1.88–1.74 (4H, m, Cy), 1.70 (1H, d, J = 12.0 Hz, Cy), 1.34–1.15 (6H, m, Cy); δC (101 MHz, CDCl3) 191.4, 154.9, 138.2, 132.6, 128.5, 128.5, 123.4, 41.1, 31.8, 25.9, 25.8.
4.1.17. \textit{rac-3-Cyclohexyl-1-phenylpropan-1-ol 25}

This compound is known \cite{32}. To a suspension of \textit{(E)-3-cyclohexyl-1-phenylprop-2-en-1-one} (107 mg, 0.5 mmol, 1 eq) and catalyst (\textit{S,S})-\textit{3-Cyclohexyl-1-phenylpropan-1-ol} \textit{carboxaldehyde} (128 mg, 1.14 mmol, 1 eq) in THF (1 mL) was added water (1 mL). The suspension was extracted with Et2O (2 x 2.5 mL), the organic layers dried over MgSO4 and concentrated to give the crude product as a white solid (214 mg, 98 mmol, 98%).\(\delta_{1H}(300 \text{ MHz, CDCl}_3) 7.39-7.31 (4 \text{H, m, ArH}), 7.31-7.26 (1 \text{H, m, ArH}), 4.68-4.58 (1 \text{H, m, CHOH}), 1.88-1.57 (8 \text{H, m, alkylH}), 1.39-1.06 (6 \text{H, m, alkylH}), 0.93-0.79 (2 \text{H, m, AlkylH}); \delta_{C}(75 \text{ MHz, CDCl}_3) 162.3, 142.4, 128.4, 127.5, 127.5, 75.07, 73.77, 36.5, 33.5, 33.6, 26.7, 26.3; Chiral HPLC (CHIRALPAK IB column: (0.46 x 25 cm), 1 mL/min, 4% IPA: 96% Hexane; 210 nm UV, 30°C): retention times: 7.4 (S) and 7.9 (R) minutes.

4.1.18. \textit{rac-(S)-3-Cyclohexyl-1-phenylpropan-1-ol 25}

The asymmetric form of this compound has not been reported. A degassed suspension of \textit{(E)-3-cyclohexyl-1-phenylprop-2-en-1-one} (107 mg, 0.5 mmol, 1 eq) and catalyst \textit{(S,S) - 2 (5 mmol, \textit{100:1 S/C}) in FA/TEA (5:2, 0.5 mL) and methanol (0.5 mL}) was stirred at 40°C for 3 h. On completion the reaction mixture was homogenous. The mixture was diluted with diethyl ether (2 mL) and quenched with NaHCO3 (sat., 2 mL), the aqueous layer was extracted further with ether (2 x 2 mL) and the organic extracts were suspended in water (1 mL) and methanol (0.5 mL) and heated to 40°C for 2.5 h. On completion the reaction mixture was homogenous. The mixture was diluted with diethyl ether (2 mL) and quenched with NaHCO3 (sat., 2 mL), the aqueous layer was extracted further with ether (2 x 2 mL) and the organic extracts were stirred at rt for 2.5 h, then additional sodium borohydride was added (75 mg, 2 mmol, 2 eq). The reaction was stirred for an additional 2 h and then quenched slowly with HCl (0.2 M, 2.5 mL). The resulting suspension was neutralised with NaOH (2 M, -15 mL) and filtered through Celite with isopropanol to remove Pd/C. The mixture was concentrated to remove excess isopropanol and then the aqueous layer was extracted with diethyl ether (3 x 10 mL), dried over Na2SO4 and concentrated to give the product 25 as a white solid (214 mg, 98 mmol, 98%).\(\delta_{1H}(300 \text{ MHz, CDCl}_3) 7.39-7.31 (4 \text{H, m, ArH}), 7.31-7.26 (1 \text{H, m, ArH}), 4.68-4.58 (1 \text{H, m, CHOH}), 1.88-1.57 (8 \text{H, m, alkylH}), 1.39-1.06 (6 \text{H, m, alkylH}), 0.93-0.79 (2 \text{H, m, AlkylH}); \delta_{C}(75 \text{ MHz, CDCl}_3) 162.3, 142.4, 128.4, 127.5, 127.5, 75.07, 73.77, 36.5, 33.5, 33.6, 26.7, 26.3; Chiral HPLC (CHIRALPAK IB column: (0.46 x 25 cm), 1 mL/min, 4% IPA: 96% Hexane; 210 nm UV, 30°C): retention times: 7.4 (S) and 7.9 (R) minutes.

4.1.19. \textit{(E)-1-Cyclohexyl-3-phenylprop-2-en-1-one 26}

This compound is known \cite{33}. To a suspension of \textit{(E)-1-cyclohexyl-3-phenylprop-2-en-1-one} (97 mg, 0.45 mmol, 1 eq) and cerium trichloride heptahydrate (372 mg, 1.0 mmol, 1 eq) in methanol (2 mL) was added sodium borohydride (43 mg, 1.1 mmol, 1 eq) at 0°C. The reaction was stirred for 1.5 h, quenched with NaHCl (sat., 5 mL), diluted with water (3 mL) and extracted with diethyl ether (3 x 5 mL). The organic layers were dried over Na2SO4 and concentrated to give the unsaturated alcohol as a white solid (168 mg, 0.78 mmol, 78%), \(\delta_{1H}(400 \text{ MHz, CDCl}_3) 7.40-7.22 (5 \text{H, m, ArH}), 6.55 (1 \text{H, d, } J = 15.9 \text{ Hz, } =CHPh), 6.23 (1 \text{H, dd, } J = 7.2, 15.9 \text{ Hz, } =CHCH}), 4.02 (1 \text{H, br, s, CHOH}), 1.92 (1 \text{H, d, } J = 12.0 \text{ Hz, OCH}), 1.83-1.61 (4 \text{H, m, Cy}), 1.60-1.42 (2 \text{H, m, Cy}), 1.35-0.90 (5 \text{H, m, Cy})); \delta_{C}(100 \text{ MHz, CDCl}_3) 136.8, 131.2, 131.1, 128.6, 127.5, 126.7, 77.8, 44.0, 28.9, 28.7, 26.5, 26.2, 26.1); Chiral HPLC (CHIRALPAK IB column: (0.46 x 25 cm), 1 mL/min, 4% IPA: 96% Hexane; 210 nm UV, 30°C): retention times: 9.9 and 14.4 min.

4.1.20. \textit{rac-1-Cyclohexyl-3-phenylprop-2-en-1-ol 26}

This compound is known \cite{32}. To a solution of cyclohexene carbboxaldehyde (128 mg, 1.14 mmol, 1 eq) in THF (1 mL) was added phenethyl magnesium chloride (1 M in THF, 1 mL, 10 mmol, 1 eq) at -78°C. The reaction was stirred for 2.75 h while gradually warming to -0°C, then quenched with NH4Cl (sat. soln, 2 mL) and cooled to rt and diluted with diethyl ether (2 mL).
4.1.23. 2-(1-Hydroxycyclohexyl)-1-phenylethan-1-one

This compound is known [35]. TiCl4 (1 M in DCM, 12 mL, 12 mmol, 1.2 eq) was added dropwise at 0 °C to a solution of cyclohexanone (1.23 g, 12.5 mmol, 1.25 eq) in DCM (20 mL) and stirred for 25 min. To the resulting yellow suspension was added dropwise 1-phenyl-1-(trimethylsiloxy)ethylene (1.94 g, 10 mmol, 1.0 eq). The resulting orange suspension was allowed to warm to rt and stirred for 24 h before being quenched with water (35 mL). The mixture was extracted with DCM (2 × 20 mL), washed with brine (10 mL) and filtered through a plug of silica gel (~4 g) with DCM to give the crude product as a thick yellow oil that crystallises on standing (2.69 g). The crude was dissolved in hot methanol, concentrated to a thick oil and then crystallised by addition of hexane (~10 mL) to give the pure product as a white crystalline solid (0.95 g, 4.3 mmol, 43%). A second crop was isolated by concentration of the mother liquors and addition of hexane to give white plates (0.20 g, 0.91 mmol, 9%). Combined yield (1.15 g, 5.2 mmol, 52%). TLC: 20% EtOAc in petroleum ether, silica, Rf = 0.2, UV; Mp 78–79 °C; δ1 (400 MHz, CDCl3) 8.00–7.91 (2H, m, Ph), 7.63–7.56 (1H, m, Ph), 7.52–7.45 (2H, m, Ph), 3.97 (1H, s, OH), 3.12 (2H, s, COCH2), 1.83–1.65 (5H, m, Cy), 1.58 (1H, dd, J = 2.5, 6.2 Hz, Cy), 1.52–1.38 (4H, m, Cy), 1.36–1.23 (1H, m, Cy); δc (101 MHz, CDCl3) 202.0, 137.5, 133.6, 128.7, 128.11, 71.0, 47.7, 37.8, 25.8, 22.0.

4.1.24. 2-Cyclohexylidene-1-phenylethan-1-one

This compound is known [36]. 2-(1-Hydroxycyclohexyl)-1-phenylethan-1-one (868 mg, 3.9 mmol, 1 eq) and p-toluene-sulfonic acid monohydrate (613 mg, 3.2 mmol, 0.8 eq) were suspended in toluene (8 mL) and stirred at 40 °C for 4.5 h, as monitored by TLC. Na2SO4 (~0.5 g) and petroleum ether (5 mL) were added, and the resulting suspension filtered through a silica plug (~1 g) with 10% EtOAc in petroleum ether to give the crude product as a yellow oil. The crude product was purified by column chromatography (6% Et2O in pentane) to give the pure product as a pale yellow oil (616 mg, 2.93 mmol, 77%). TLC: 10% EtOAc/Pet ether, silica, Rf = 0.38, UV; δt (300 MHz, CDCl3) 8.00–7.89 (2H, m, Ph), 7.57–7.48 (1H, m, Ph), 7.48–7.40 (2H, m, Ph), 6.60 (1H, s, =CH), 2.81–2.72 (2H, m, Cy), 2.35–2.28 (2H, m, Cy), 1.77–1.61 (6H, m, Cy); δc (75 MHz, CDCl3) 192.4, 162.8, 132.3, 128.5, 128.4, 128.4, 118.8, 38.4, 30.7, 28.9, 28.0, 26.3.

4.1.25. rac-2-Cyclohexyl-1-phenylethan-1-ol 27

This compound is known [37]. To a suspension of 2-cyclohexylidene-1-phenylethan-1-one (215 mg, 1.08 mmol, 1 eq) and Pd/C (5% w/w, 55 mg, 2.5% Pd) in isopropanol (5 mL), the solution was stirred for 78 h at rt. The reaction mixture was left to stir and then quenched with HCl (0.2 M, 2.5 mL). The resulting suspension was neutralised with Pd/C (5% w/w, 55 mg, 2.5% Pd) and sodium borohydride was added (75 mg, 2.0 mmol, 2 eq). The reaction mixture was stirred at rt for 2.5 h, then additional sodium borohydride was added (75 mg, 2.0 mmol, 2 eq). The reaction was stirred for an additional 2 h and then quenched slowly with HCl (0.2 M, 2.5 mL). The resulting suspension was neutralised with NaOH (2 M, ~1.5 mL) and filtered through Celite with isopropanol to remove Pd/C. The mixture was concentrated to remove excess isopropanol and then the aqueous layer was extracted with diethyl ether (3 × 2 mL). The organic extracts were dried over Na2SO4 and concentrated to give the product as a clear oil (103 mg, 0.50 mmol, 100%). The crude product was purified by column chromatography on silica gel (2.6 g) with 10% diethyl ether in petroleum ether as eluent, to yield the pure product as a clear oil (65 mg, 0.32 mmol, 64%). The pure product decomposes at room temperature within a few days. HRMS: found (ESI): [M + H]+, 225.1251. C6H14NaO requires 225.1250; δmax: 3374 (OH), 2928 (CH2), 2854 (CH), 1447 (CO), cm−1; δt (400 MHz, CDCl3) 7.42–7.29 (4H, m, Ph); 7.27–7.19 (1H, m, Ph); 5.45–5.45 (1H, m, CH3O); 5.13 (1H, d, J = 8.8 Hz, =CH2); 2.41–2.21 (2H, m, Cy); 2.14–2.04 (2H, m, Cy); 1.95 (1H, br. s, OH), 1.63–1.50 (6H, m, Cy); δc (101 MHz, CDCl3) 144.5, 143.1, 128.5, 127.2, 125.8, 124.5, 69.8, 37.1, 29.4, 28.4, 27.9, 26.7; m/z (ESI): 225.1 ([M + Na]+), 185.1 (30%, [M + OH]+). Chiral HPLC/ GC not obtained, suitable conditions for separation were not found before the compound decomposed.

4.1.27. (S)-2-Cyclohexyl-1-phenylethan-1-ol 27 and (S)-2-cyclohexylidene-1-phenylethan-1-ol

A suspension of 2-cyclohexylidene-1-phenylethan-1-one (95 mg, 0.47 mmol, 1 eq) and catalyst (SS)-2 (3 mg, 0.005 mmol, 1% in FA/TEA (5:2; 0.5 mL) and MeOH (0.5 mL) was stirred at 40 °C for 22.5 h. The mixture was diluted with diethyl ether (2 mL) and quenched with NaHCO3 (sat, 2 mL), the aqueous layer was extracted further with ether (2 × 2 mL) and the organic extracts dried over Na2SO4 and passed through a silica plug to yield the crude product as an off white solid (86 mg, 0.42 mmol, 89%). The product was obtained in full conversion as a mixture of saturated and unsaturated alcohols, ratio 94:6 by 1H NMR. Major product 55% ee as calculated by HPLC. Purification by chromatography on silica (6% EtO/Petroleum ether) separated the unsaturated alcohol and gave the purified product as a white solid (60 mg, 0.29 mmol, 62%). Spectroscopic data for asymmetric product is consistent with the prepared standards. Mp 52 °C; [α]D25 + 50.4°, R (c 0.245 in CHCl3); Chiral HPLC: Chiralpak IA column with 97% Hexane, 3% IPA, 0.5 mL/min, 22.8 and 26.9 min.

4.1.28. Section on ATH alkene/alkynes.

The results on the reduction of the TMS-containing substrates are in the supporting information.

4.1.28.1. General procedure for asymmetric transfer hydrogenation (procedure 1).

To a degassed solution of substrate and catalyst was added 5:2 FA:TEA. The concentration of the reaction was set at 1.0 M. The reaction mixture was heated to 40 °C for 26 h. The reaction was monitored by TLC and/or HPLC. Once completed, the mixture was quenched with NaHCO3 (sat. soln.) and extracted with EtOAc. The organic layers were combined, dried with MgSO4 and concentrated in vacuo to give the crude product. Where appropriate further purification was undertaken.

4.1.28.2. General n-BuLi procedure for racemic alcohol synthesis (procedure 2).

A degassed solution of acetylene in THF (anhyd.) was cooled to ~78 °C. Once cooled, n-butylithium was added dropwise, the reaction mixture was left to stir at ~78 °C for 30 min. Aldehyde was added dropwise and the reaction mixture was left to stir...
at –78 °C. After 1 h, the reaction mixture was warmed to room temp. The reaction was monitored by TLC until the starting material had disappeared. The reaction mixture was quenched with NH4Cl (sat. soln) and extracted with EtOAc. The organic layers were combined, dried with MgSO4 and concentrated in vacuo to give the desired product.

4.1.28.3. General procedure for MnO2 oxidation for ketone synthesis (procedure 3). Alcohol and activated MnO2 were dissolved in DCM (anhyd., 5 mL) and stirred at r.t. The reaction was monitored using TLC until starting material had disappeared. The reaction mixture was quenched with NH4Cl (sat. soln) and extracted with EtOAc. The organic layers were combined, dried with MgSO4 and concentrated in vacuo to give the desired product.

4.1.29. (E)-1,5-Diphenylpent-1-en-4-yn-3-one

N-Methoxy-N-methylcinnamamide (2.092 g, 10.9 mmol, 1.00 eq.) in THF (anhyd., 8 mL) was added dropwise. After 30 min, 3-phenylpropanal (0.500 g, 3.73 mmol, 1.00 eq.) was added. The reaction mixture was stirred for 25 min at 40 °C. The crude product was purified by column chromatography (SiO2; Rf: 0.60; (4.1) hexanes/EtOAc) to give the desired product as a yellow solid (2.125 g, 9.12 mmol, 84%).

4.1.30. rac-1,5-Diphenylpent-1-en-4-yn-3-one 28

This compound is known and has been fully characterised [41]. Compound 28 was prepared using General Procedure 2. Phenylacetylene (0.2247 g, 2.63 mmol, 1.20 equiv.) was dissolved in THF (anhyd., 5 mL) and n-butyl lithium (1.6 M in hexanes, 1.71 mL, 2.75 mmol, 1.25 equiv.) was added dropwise. After 30 min, E-cinnamaldehyde (0.290 g, 2.20 mmol, 1.00 equiv.) was added. The crude was further purified using column chromatography to give the desired product.

4.1.31. rac-(E)-1,5-Diphenylpent-1-en-4-yn-3-one 29

This compound is known and has been fully characterised [42]. Compound 29 was prepared using General Procedure 2. Phenylacetylene (0.2247 g, 2.63 mmol, 1.20 equiv.) was dissolved in THF (anhyd., 5 mL) and n-butyl lithium (1.6 M in hexanes, 1.71 mL, 2.75 mmol, 1.25 equiv.) was added dropwise. After 30 min, E-cinnamaldehyde (0.290 g, 2.20 mmol, 1.00 equiv.) was added. The crude was further purified using column chromatography (SiO2; Rf: 0.30; (9.1) petroleum/EtOAc) to give the desired product 29 as a yellow oil (0.426 g, 1.83 mmol, 83%). δH (400 MHz, CDCl3) 7.43–7.34 (4H, ArH), 7.30–7.16 (6H, m, ArH), 6.84 (1H, d, J = 15.9 Hz, CH2(C6H4)), 6.39 (1H, dd, J = 15.8, 6.0 Hz, CH=CCH2OH), 5.28 (1H, d, J = 6.0 Hz, CHOH), 2.15 (1H, s, OH); δC (101 MHz, CDCl3) 136.1, 133.0, 132.1, 131.8, 129.1, 128.7, 128.4, 128.2, 128.1, 126.9, 122.4, 87.9, 86.5; LCMS (ESI) m/z: [M+N]+ 255.10, 257.10; IR (ν): 3400, 3073, 3023, 2122, 1596, 1489, 1254, 1091, 1016, 966, 753, 687 cm−1; Chiral HPLC (CHIRALPAK IB column: (0.46 × 25 cm), 6.00 ml/min, IPA:Hexane (20:80); 250 nm UV, 30 °C): retention times: 6.31 (R)-unsaturated and 12.81 (S)-unsaturated mins. Data matched that reported.
This compound is known and fully characterised [46]. This compound was prepared using General Procedure 3 from compound 31 (0.182 g, 0.57 mmol, 1.00 eq.) and MnO₂ (0.353 g, 4.06 mmol, 7.00 eq.) to yield the desired product as a yellow oil (0.169 g, 0.52 mmol, 92%). δH (300 MHz, CDCl₃) 7.33–7.14 (5H, m, ArH), 6.77 (1H, dd, J = 15.8, 1.5 Hz, CH₃CH(=CHCH(OH))), 6.22 (1H, dd, J = 15.8, 5.6 Hz, CH₃CH(=CHCH(OH))), 5.04–4.91 (1H, m, CHO), 1.85 (1H, d, J = 6.7 Hz, OH), 1.01–0.98 (21H, m, Si(Pr)₃); δC (75 MHz, CDCl₃) 162.3, 132.1, 128.6, 128.1, 121.1, 126.8, 106.1, 87.9, 63.4, 18.6, 11.2. HRMS (ESI) m/z: [M+N⁺]⁺ calcld for C₂₀H₂₃NaO⁺ 433.1552; found 433.1573. IR (ν): 3030, 3062, 3027, 2864, 2164, 2045, 1669, 1462, 1244, 965, 882, 673, 459 cm⁻¹. Chiral HPLC ([CHIRALPAK ODH column: (0.46 × 25 cm), 0.5 mL/min, IPA:Hexane (5:95)]; 254 nm UV, 30 °C): retention times: 14.7 (S)-unsaturated and 22.1 (R)-unsaturated mins. Data matched that reported.

This compound is known and fully characterised [46]. This compound was prepared using General Procedure 3 from compound 31 (0.182 g, 0.57 mmol, 1.00 eq.) and MnO₂ (0.353 g, 4.06 mmol, 7.00 eq.) to yield the desired product as a yellow oil (0.169 g, 0.52 mmol, 92%). δH (300 MHz, CDCl₃) 7.33–7.26 (5H, m, ArH), 7.24–7.17 (3H, m, ArH), 3.05–2.87 (4H, m, CH₂CH₂Ph), 1.11–1.08 (21H, m, Si(Pr)₃); HRMS (ESI) m/z: [M+Na⁺]⁺ calcld for C₂₀H₂₄NaO⁺ 451.1613; found 451.1605. IR (ν): 3028, 2943, 2865, 2171, 1675, 1632 (s); CH₃ (3000–2800 cm⁻¹), 1781 (1600–1400 cm⁻¹), 1073, 987, 975, 897, 804, 749, 665, 585 cm⁻¹. Chiral HPLC ([CHIRALPAK ODH column: (0.46 × 25 cm), 0.5 mL/min, IPA:Hexane (5:95)]; 254 nm UV, 30 °C): retention times: 6.99 (ketone) mins. Data matched that reported.

This compound is known and fully characterised [46]. This compound was prepared using General Procedure 3 from compound 31 (0.182 g, 0.57 mmol, 1.00 eq.) and MnO₂ (0.353 g, 4.06 mmol, 7.00 eq.) to yield the desired product as a yellow oil (0.169 g, 0.52 mmol, 92%). δH (300 MHz, CDCl₃) 7.33–7.26 (2H, m, ArH), 7.24–7.17 (3H, m, ArH), 3.05–2.87 (4H, m, CH₂CH₂Ph), 1.11–1.08 (21H, m, Si(Pr)₃); HRMS (ESI) m/z: [M+Na⁺]⁺ calcld for C₂₀H₂₄NaO⁺ 451.1613; found 451.1605. IR (ν): 3028, 2943, 2865, 2171, 1675, 1632 (s); CH₃ (3000–2800 cm⁻¹), 1781 (1600–1400 cm⁻¹), 1073, 987, 975, 897, 804, 749, 665, 585 cm⁻¹. Chiral HPLC ([CHIRALPAK ODH column: (0.46 × 25 cm), 0.5 mL/min, IPA:Hexane (5:95)]; 254 nm UV, 30 °C): retention times: 6.99 (ketone) mins. Data matched that reported.

This compound is known and fully characterised [46]. This compound was prepared using General Procedure 3 from compound 31 (0.182 g, 0.57 mmol, 1.00 eq.) and MnO₂ (0.353 g, 4.06 mmol, 7.00 eq.) to yield the desired product as a yellow oil (0.169 g, 0.52 mmol, 92%). δH (300 MHz, CDCl₃) 7.33–7.26 (5H, m, ArH), 7.24–7.17 (3H, m, ArH), 3.05–2.87 (4H, m, CH₂CH₂Ph), 1.11–1.08 (21H, m, Si(Pr)₃); HRMS (ESI) m/z: [M+Na⁺]⁺ calcld for C₂₀H₂₄NaO⁺ 451.1613; found 451.1605. IR (ν): 3028, 2943, 2865, 2171, 1675, 1632 (s); CH₃ (3000–2800 cm⁻¹), 1781 (1600–1400 cm⁻¹), 1073, 987, 975, 897, 804, 749, 665, 585 cm⁻¹. Chiral HPLC ([CHIRALPAK ODH column: (0.46 × 25 cm), 0.5 mL/min, IPA:Hexane (5:95)]; 254 nm UV, 30 °C): retention times: 6.99 (ketone) mins. Data matched that reported.
4.1.44. (E)-5-(4-Chlorophenyl)-1-phenylpent-1-en-4-yn-3-one

This compound is known and has been partially characterised [51]. Compound 33 was prepared using General Procedure 2. 1-Ethynyl-4-methoxybenzene (0.5497 g, 4.16 mmol, 1.10 eq.) was dissolved in THF (anhyd. 7.0 mL) and n-butyllithium (1.6 M in hexanes, 2.60 mL, 4.16 mmol, 1.0 eq.) was added dropwise. After 30 min E-cinnamaldehyde (0.500 g, 3.78 mmol, 1.00 eq.) was added. The crude was purified using column chromatography (SiO2; RF: 0.50 (4:1 petroleum/EtOAc) to give the desired product 33 as a yellow oil (0.7203 g, 2.72 mmol, 72%). δH (400 MHz, CDCl3) 7.46–7.31 (4H, m, ArH), 7.31–7.26 (3H, m, ArH), 6.83–6.77 (3H, m, ArH and CH=CHPh), 6.38 (1H, dd, J = 15.8, 6.0 Hz, CH=CHPh), 5.27–5.16 (1H, d, J = 5.2 Hz, CH2OH), 3.74–3.71 (3H, s, OMe), 2.88 (1H, s, OH); δC (101 MHz, CDCl3) 159.9, 138.1, 136.2, 133.3, 131.9, 128.6, 128.3, 128.1, 130.0, 122.4, 121.9, 120.7, 119.7, 118.5, 116.9, 114.0, 86.8, 86.5, 63.6, 55.3; HRMS (ESI) m/z: [M+Na]⁺ calcd for C18H18NaO2 289.1196 found 289.1199; IR (v, NaCl): 3435, 2958, 2229, 1902, 1801, 1719, 1648, 1487, 1453, 1395, 1087, 1012, 826, 756, 699, 522 cm⁻¹; Mp: 145.9 °C; Chiral HPLC (CHIRALPAK ADH column: (0.46 × 25 cm), 0.7 mL/min, IPA:Hexane (10:90); 250 nm UV, 30 °C): retention time: 15.48 (ketone) min. Data matched that reported.

4.1.45. rac-(E)-5-(4-Chlorophenyl)-5-phenylpent-1-en-3-yn-3-ol

This compound is novel. Compound 34 was prepared using General Procedure 2. 1-Chloro-4-ethynylbenzene (0.407 g, 2.98 mmol, 1.00 eq.) was dissolved in THF (anhyd. 5.00 mL) and n-butyllithium (2.5 M in hexanes, 1.19 mL, 2.98 mmol, 1.00 eq.) was added dropwise. 3-phenylpropanal (0.400 g, 2.98 mmol, 1.00 eq.) was added after 30 min. The crude was purified using column chromatography (SiO2; RF: 0.3 (9:1 petroleum/EtOAc) to give the desired product 34 as an orange solid (0.386 g, 1.43 mmol, 48%). δH (400 MHz, CDCl3) 7.37–7.19 (9H, m, ArH), 4.50 (1H, d, J = 6.1 Hz, CH2OH), 2.86 (2H, t, J = 7.8 Hz, CH2CH2Ph), 2.18–2.07 (2H, m, CH2CH2Ph), 1.87 (1H, d, J = 5.4 Hz, OH); δC (101 MHz, CDCl3) 141.2, 138.6, 136.4, 134.6, 129.7, 128.7, 128.5, 128.1, 126.1, 121.0, 90.8, 84.2, 62.2, 39.2, 31.5; HRMS (ESI) m/z: [M+Na]⁺ calcd for C18H18NaO2 287.1040, found 287.1044; IR (v, NaCl): 3358, 2938, 1719, 1649, 1487, 1453, 1395, 1087, 1012, 826, 756, 699, 522 cm⁻¹; Mp: 48.5–50.7 °C; Chiral HPLC (CHIRALPAK ADH column: (0.46 × 25 cm), 0.7 mL/min, IPA:Hexane (10:90); 250 nm UV, 30 °C): retention time: 14.52 (R)-saturated and 15.54 (S)-saturated min.

4.1.46. rac-(E)-5-(4-Chlorophenyl)-5-phenylpent-1-en-4-yn-3-ol

This compound is novel. Compound 35 was prepared using General Procedure 2. 1-Chloro-4-ethynylbenzene (0.73 g, 5.67 mmol, 1.00 eq.) was dissolved in THF (anhyd. 8 mL) and n-butyllithium (2.5 M in hexanes, 2.27 mL, 5.67 mmol, 1.00 eq.) was added dropwise. After 30 min, E-cinnamaldehyde (0.75 g, 5.67 mmol, 1 eq.) was added. The crude product was purified using column chromatography (SiO2; RF: 15:1 (9:1 petroleum/EtOAc) to give the desired product 35 as a yellow oil (0.2327 g, 0.85 mmol, 15%). δH (400 MHz, CDCl3) 7.40–7.19 (9H, m, ArH), 6.75 (1H, dd, J = 15.8, 1.4 Hz, CH=CHPh), 6.30 (1H, dd, J = 15.8, 6.1 Hz, CH=CHPh), 5.20 (1H, d, J = 5.9 Hz, CH2OH), 2.07 (1H, s, OH); δC (101 MHz, CDCl3) 136.0, 134.7, 133.0, 132.2, 128.7, 128.7, 128.8, 127.8, 126.9, 120.9, 88.9, 85.3, 63.5; HRMS (ESI) m/z: [M+Na]⁺ calcd for C18H18NaO2 291.0547, found 291.0546; IR (v, NaCl): 3298, 3028, 2852, 2661, 2228, 1648, 1475, 1447, 1398, 1248, 1202, 1090, 1060, 967, 828, 760 cm⁻¹; Chiral HPLC (CHIRALPAK ADH column: (0.46 × 25 cm), 0.7 mL/min, IPA:Hexane (10:90); 250 nm UV, 30 °C): retention times: 23.68 (R)-unsaturated and 27.11 (S)-unsaturated min.

4.1.47. 1-(4-Chlorophenyl)-5-phenylpent-1-en-3-one

This compound is novel. This compound was prepared using General Procedure 3 from compound 34 (0.285 g, 1.42 mmol, 1 eq.) and MnO2 (0.8355 g, 9.95 mmol, 7 eq.) to yield the desired product as a yellow solid (0.246 g, 0.91 mmol, 64%). δH (300 MHz, CDCl3) 7.52–7.49 (2H, m, ArH), 7.38–7.21 (7H, m, ArH), 3.09–2.96 (4H, m, CH2CH2Ph); δC (75 MHz, CDCl3) 162.3, 161.6, 140.5, 134.6, 129.1, 128.6, 128.4, 126.4, 116.9, 89.6, 88.5, 46.9, 29.9; HRMS (ESI) m/z: [M+Na]⁺ calcd for C17H15NaO 291.0547, found 291.0552; IR (v, NaCl): 3246, 2934, 2858, 1719, 1648, 1475, 1447, 1398, 1248, 1202, 1090, 1060, 967, 828, 760 cm⁻¹; Chiral HPLC (CHIRALPAK ADH column: (0.46 × 25 cm), 0.7 mL/min, IPA:Hexane (10:90); 250 nm UV, 30 °C): retention time: 14.52 (R)-saturated and 15.54 (S)-saturated min.
Both compounds 34 and 35 are novel. The ATD was conducted using General Procedure 1. (E)-5-(4-Chlorophenyl)-1-phenyl-1-yn-3-one 34 and (R,E)-5-(4-chlorophenyl)-1-phenyl-1-yn-3-ol 35.

Data sharing statement

The research data (and/or materials) supporting this publication can be accessed at https://doi.org/10.1016/j.tet.2020.131771.

Declaration of competing interest

The authors declare no competing interests.

Acknowledgements

We thank The Royal Society (UK) and the Science and Engineering Research Board (SERB, India) for funding VKV through an SERB-Newton International Fellowship (Grant no. NIF/R1/180142). The EPSRC are thanked for supporting THH through a DTP PhD studentship (Grant no EP/L505110/1).

Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.tet.2020.131771.

References

[1] a) R. Noyori, T. Okhuma, Asymmetric catalysis by architectural and functional molecular engineering: practical chemo- and stereoselective hydrogenation of ketones, Angew. Chem. Int. Ed. 40 (2001) 40–73; b) R. Noyori, S. Hashiguchi, Asymmetric transfer hydrogenation catalyzed by chiral ruthenium complexes, Acc. Chem. Res. 30 (1997) 97–102; c) D. Wang, D. Astruc, The golden age of transfer hydrogenation, Chem. Rev. 115 (2015) 6621–6686.

[2] a) P.A. Dub, T. Ikiyara, Quantum chemical calculations with the inclusion of nonspecific and specific solvent: asymmetric transfer hydrogenation with bifunctional ruthenium catalysts, J. Am. Chem. Soc. 135 (2013) 2604–2619; b) P.A. Dub, J.C. Gordon, The mechanism of enantioselective ketone reduction with Noyori and Noyori–Ikiyara bifunctional catalysts, Dalton Trans. 45 (2016) 6756–6781; c) P.A. Dub, J.C. Gordon, Metal–ligand bifunctional catalysis: the “accepted” mechanism, the issue of concertedness, and the function of the ligand in catalytic cycles involving hydrogen atoms, ACS Catal. 7 (2017) 6603–6655; d) S. W. Ji, L. Liu, D. G. Tomasso, J. Bacsa, J. Xiao, A multilaminar mechanistic study into asymmetric transfer hydrogenation in water, Chem. Eur. J. 14 (2008) 7699–7715; e) J.W. Handgraaf, E.J. Meijer, Realistic modeling of ruthenium-catalyzed transfer hydrogenation, J. Am. Chem. Soc. 129 (2007) 3009–3103.

[3] a) S. Hashiguchi, A. Fujii, T. Takehara, T. Ikiyara, R. Noyori, Asymmetric transfer hydrogenation of aromatic ketones catalyzed by chiral ruthenium (II) complexes, J. Am. Chem. Soc. 117 (1995) 7562–7563; b) T. Takehara, S. Hashiguchi, A. Fujii, S. Inoue, T. Ikiyara, R. Noyori, Amino alcohol effects on the ruthenium (II)-catalysed asymmetric transfer hydrogenation of ketones in propan-2-ol, Chem. Commun. (1996) 233–234; c) A. Fujii, S. Hashiguchi, N. Uematsu, T. Ikiyara, R. Noyori, Ruthenium (II)-catalyzed asymmetric transfer hydrogenation of ketones using a formic acid–triethylamine mixture, J. Am. Chem. Soc. 118 (1996) 2521–2522; d) K. Matsumura, S. Hashiguchi, T. Ikiyara, R. Noyori, Asymmetric transfer hydrogenation of α,β-acyclic ketones, J. Am. Chem. Soc. 119 (1997) 8378–8379.

[4] a) D.J. Morris, G.J. Clarkson, M. Williams, A class of ruthenium (II) catalyst for asymmetric transfer hydrogenations of ketones, J. Am. Chem. Soc. 127 (2005) 7319–7321; b) F.K. Cheung, C. Lin, F. Minissi, A.L. Crivillé, M.A. Graham, D.J. Fox, M. Williams, An investigation into the tether length and substitution pattern of arene-based catalyst complexes for asymmetric hydrogenation of ketones, Org. Lett. 9 (2007) 4659–4662.

[5] a) T. Touge, T. Hakamata, H. Nara, T. Kobayashi, N. Sayo, N. Saito, T. Kayaki, T. Ikiyara, Oxo-tethered ruthenium(II) complex as a bifunctional catalyst for asymmetric transfer hydrogenation and H2 hydrogenation, J. Am. Chem. Soc. 133 (2011) 14960–14963; b) V. Parshk, J.A. Ramsden, M. Williams, Ether-tethered Ru(II)Tf2PENN complexes: synthesis and applications to asymmetric transfer hydrogenation, Catal. Sci. Technol. 2 (2012) 406–414; c) A. Kisić, M. Stepan, B. Mohar, ansa-Ruthenium(II) complexes of R,N2N2DPEN(CH2)n(Ary) conjugate ligands for asymmetric transfer hydrogenation of ary1 ketones, Adv. Synth. Catal. 357 (2015) 2540–2546.

[6] a) L. Milner, G. Talavera, H. Norden, Transfer hydrogenation catalysis of ketones and imines, Chem. Rev. 115 (2015) 37–119; b) F. Feobello, C. Najera, M. Yux, Catalytic asymmetric transfer hydrogenation of ketones: recent advances, Tetrahedron: Asymmetry 26 (2015) 769–790; c) P.G. Echeverria, T. Ayad, P. Phansavath, V. Ratovelomanana-Vidal, Recent developments in asymmetric hydrogenation and transfer hydrogenation of ketones and imines through dynamic kinetic resolution, Synthesis (2018) 2523–2539; d) C.E. Puerto Galvis, V.V. Kouznetsov, Biomimetic total synthesis of dysoxylalumoids, J. Org. Chem. 84 (2019) 15294–15308; e) R. Hrdličková, Z. Jápal, B.V. Vilhová, M. Bugáňová, K. Tůrhaliová, M. Kuzma, L. Cervený, Competitive asymmetric transfer hydrogenation of 3,4-dihydroisocoumarins employing Noyori-Ikiyara catalytic complexes, React. Kinet. Mech. Catal. 124 (2018) 701–710; f) M. Perez, Z. Wu, M. Scalone, T. Ayad, V. Ratovelomanana-Vidal, Enantioselective synthesis of 1-aryl-substituted tetrahydroisocoumarins through Ruthenium catalyzed asymmetric transfer hydrogenation, Eur. J. Org. Chem. (2015) 6503–6514; g) L. Monneradeau, D. Cartigny, M. Scalone, T. Ayad, V. Ratovelomanana-Vidal, Efficient synthesis of differentiated syn-1,2-diol derivatives by asymmetric transfer hydrogenation—dynamic kinetic resolution of α-alkoxy-substituted β-ketocetones, Chem. Eur. J. 21 (2015) 11778–1180; h) T. Touge, M. Kuwana, Y. Komatsuki, S. Tanaka, H. Nara, K. Matsumura, N. Sayo, Y. Kashibuchi, T. Saito, Development of asymmetric transfer hydrogenation with a bifunctional oxo-tethered ruthenium catalyst in flow for the synthesis of a α-d-erythro-[NDS]CER, Org. Proc. Res. Dev. 23 (2019) 452–461.

[7] a) K.S. Raju, G. Sabitha, Tetrahedron Lett. 59 (2018) 4213–2115; b) D. Xue, Y.-C. Chen, X. Cui, Q.-W. Wang, J. Zhu, J.-G. Deng, Transfer hydrogenation of activated C–C bonds catalyzed by ruthenium complexes: reaction scope limitation, and enantioselectivity, J. Org. Chem. 70 (2005) 3584–3591; c) P. Peach, D.J. Cross, J.A. Kenny, I. Mann, I. Houson, T. Wallsgrove, M. Williams, Asymmetric transfer hydrogenation of α,β-unsaturated α-tosylxoyl...
and z-substituted ketones, Tetrahedron 62 (2006) 1864–1876.

[9] V. Bozet, X. PanneconQuic, J.-L. Renaud, D. Cahard, Ruthenium-Catalyzed redox isomerization of sodium borohydride in the presence of lanthanoid chlorides: mechanistic evidence for an enantiospecific pathway, Angew. Chem. Int. Ed. 51 (2012) 6467–6470.

[10] J. Hannedouche, J.A. Kenny, M. Wills, Asymmetric reduction of cyclic enones, Synt. Lett. 2002 (2002) 263–266.

[11] T. Miura, G. Oestmann, R. Adamiec, Ruthenium-Catalyzed tandem-isomerization/asymmetric transfer hydrogenation of aliphatic alcohols, Chem. Eur. J. 20 (2014) 16102–16106.

[12] A.L. Gemal, J.L. Luche, Lanthanoids in organic synthesis. 6. Reduction of cyclic enones by sodium borohydride, Tetrahedron 47 (1991) 5445–5454.

[13] A.T. Tran, V.A. Hoyh, M.F. Schmidt, D.B. Cordes, A general method for the rapid reduction of alkenes and alkynes using sodium borohydride and acetic acid, and palladium, Tetrahedron Lett. 50 (2009) 1817–1819.

[14] H.Y. Rhoyo, H.-J. Park, Y.K. Chung, The first Ru(ii)-catalysed asymmetric hydrogen transfer reduction of aromatic ketones in aqueous media, Chem. Commun. (2001) 2064–2065.

[15] X. Wu, L. Xi, W. Hems, F. King, J. Xiao, Accelerated asymmetric transfer hydrogenation of aromatic ketones in water, Org. Biomol. Chem. 2 (2004) 1818–1821.

[16] J. Caminera, G. Süss-Fink, Water-soluble arene ruthenium catalysts containing sulfonated diamine ligands for asymmetric transfer hydrogenation of α-aryl ketones and imines in aqueous solution, Green Chem. 9 (2007) 391–397.

[17] D.-F. Zhou, Q.-H. Fan, Y.-Y. Huang, L. Wu, Y.-M. He, W.-J. Tang, L.-Q. Gu, A.S.C. Chan, Mixture of poly(ethylene glycol) and water as environmentally friendly media for efficient enantioselective transfer hydrogenation and catalytic recyclization, Catal. A: Curr. 275 (2007) 47–53.

[18] E. Li, J. Li, F. Wang, L. Jiao, H. Zhang, C. Lian, J. Zhu, J. Deng, Asymmetric transfer hydrogenation of ketones and imines with novel water-soluble chiral diamine as ligand in neat water, Green Chem. 9 (2007) 23–27.

[19] C. Bubert, J. Blacker, S.M. Brown, J. Crosby, S. Fitzjohn, J.P. Muxworthy, T. Thorpe, M.J. Williams, Synthesis of water-soluble aminosulfonyamide ligands and their application in enantioselective transfer hydrogenation, Tetrahedron Lett. 42 (2001) 4037–4039.

[20] K. Afshord, J. Lind, L. Maler, H. Adolfsson, Rhodium-catalysed asymmetric transfer hydrogenation of alkyl and aryl ketones in aqueous media, Green Chem. 10 (2008) 832–835.

[21] R. Soni, T.H. Hall, B.V. Mitchell, M.R. Owen, M. Wills, Asymmetric reduction of electrophilic ketones with tethered Ru(i)/TIPEN catalysts using formic acid, triethylamine or aqueous sodium formate, J. Org. Chem. 80 (2015) 6784–6793.

[22] D.R. Clay, M.C. Mcdotesh, Anomalous in the asymmetric transfer hydrogenation of several polyolc meso compounds, Tetrahedron Lett. 53 (2012) 1691–1694.

[23] V.S. Shende, S.K. Shingote, S.H. Deshpande, N. Kuriakose, K. Vanka, Peptide-catalysed asymmetric alkynylation of aldehydes under water based conditions, Tetrahedron 65 (2009) 9583–9591.

[24] S. Chaudhary, A. Tlahuext-Aca, R.A. Garza-Sanchez, F. Glorius, Multicomponent oxidative allylation of styrenes enabled by hydrogen-bond-assisted photoinduced electron transfer, Angew. Chem. Int. Ed. 57 (2018) 3708–3711.

[25] R. Kim, H.G. Lee, S.B. Kang, K.J. Jung, G.H. Sung, J.J. Kim, S.G. Lee, Y.J. Yoon, Synthesis of β-ketolactones, α, β-alkylones and bis(boronates) from esters using tert-butoxycarbonyl-α- (i.e., α, β-C coupling under ambient conditions, Tetrahedron 69 (2013) 10331–10336.

[26] C.W. Downey, B.D. Mahoney, V.R. Lipari, Trimethylsilyl trifluoromethanesulfonate-accelerated addition of catalytically generated zinc acetoxydes to aldehydes, J. Org. Chem. 74 (2009) 2904–2906.

[27] T. Miura, O. Kose, S. Kai, S. Saito, Palladium-Catalyzed asymmetric transfer hydrogenation of ketones and imines with novel water-soluble chiral diamine as ligand in neat water, Green Chem. 9 (2007) 23–27.

[28] E.T. Newcomb, E.M. Ferreira, Highly enantiospecific platinum-catalyzed cyclocarbonylations: the synthesis of enantioenriched oxabicyclopentene derivatives, Org. Lett. 15 (2013) 1772–1775.

[29] R. Boobalan, C. Chen, G.H. Lee, Camphor-based Schiff base ligand 3SAIB: an enantioselective catalyst for addition of phenylacetylene to aldehydes, Org. Biomol. Chem. 10 (2012) 1625–1638.

[30] Y.K. Jang, M. Magre, M. Rueping, Chemoselective luche-type reduction of β-unsaturated ketones using magnetocalysis, J. Am. Chem. Soc. 135 (2013) 14871–14878.

[31] S. Mukherjee, R.A. Garza-Sanchez, A. Tlahuext-Aca, F. Glorius, Allylation of C(O)–H bonds enabled by photoredox-mediated hydrogen-atom transfer, Angew. Chem. Int. Ed. 56 (2017) 14723–14726.

[32] E.T. Newcomb, E.M. Ferreira, Highly enantiospecific platinum-catalyzed cyclocarbonylations: the synthesis of enantioenriched oxabicyclopentene derivatives, Org. Lett. 15 (2013) 1772–1775.