Calcitonin receptor-like (CALCRL) is a marker of stemness and an independent predictor of outcome in pediatric AML

Linus Angenendt1, Marius Wöste2, Jan-Henrik Mikesch1, Maria Francisca Arteaga1, Adrian Angenendt3, Sarah Sandmann2, Wolfgang E. Berdel1, Georg Lenz1, Martin Dugas2, Soheil Meshinchi4, Christoph Schliemann1*, Claudia Rössig5*

1Department of Medicine A, University Hospital Münster, Münster, Germany;
2Institute of Medical Informatics, University of Münster, Münster, Germany;
3Department of Biophysics, Faculty of Medicine, Centre for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany;
4Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA;
5Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, Münster, Germany.
*contributed equally

Corresponding author: Linus Angenendt, M.D., Department of Medicine A, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany; Phone: +49 251 83 44846; Fax: +49 251 83 47588; Email: linus.angenendt@ukmuenster.de.
Supplementary Table 1. List of the 200 differentially expressed genes with the lowest adjusted p values ordered by log fold change in \textit{CALCRL}^{high} compared to \textit{CALCRL}^{low} expressers.

Gene name	Probe set	Log2 fold change	P value
TNRFSF18	ENSG00000186891	2.075	1.61E-17
MSR1	ENSG0000038945	2.026	9.13E-08
CDCP1	ENSG00000163814	1.940	1.01E-12
MACC1	ENSG00000183742	1.741	3.55E-09
CXCL2	ENSG0000081041	1.737	1.22E-09
STAT4	ENSG0000138378	1.551	1.35E-10
SH3TC2	ENSG0000169247	1.548	4.00E-08
TMEZ204	ENSG0000136134	1.475	1.73E-08
ADAM28	ENSG0000042980	1.276	2.56E-11
CLIP4	ENSG00000115295	1.142	3.97E-08
ATP13A3	ENSG00000133657	0.980	6.20E-08
LPIN1	ENSG00000134324	0.720	2.66E-09
TADA3	ENSG00000171148	-0.686	9.64E-09
GTF3C5	ENSG00000148308	-0.695	3.79E-09
TESMIN	ENSG00000012749	-0.732	3.26E-08
STXB2	ENSG0000076944	-0.780	1.56E-09
CRAADD	ENSG00000169372	-0.794	6.89E-08
SLC25A1	ENSG00000100075	-0.923	3.41E-10
ACO095506.1	ENSG00000224152	-0.961	1.02E-07
SFMBT1	ENSG00000163935	-0.990	6.89E-08
HYAL3	ENSG00000186792	-1.039	3.04E-09
BARAM2	ENSG00000189019	-1.243	5.40E-10
AC112484.3	ENSG00000261159	-1.310	1.22E-09
EFEMP2	ENSG00000172638	-1.310	7.98E-09
LINC02610	ENSG000000186235	-1.330	3.71E-08
AC1316455.1	ENSG00000256546	-1.335	3.13E-08
AL162231.2	ENSG00000230074	-1.359	5.28E-09
SPINT1	ENSG00000166145	-1.413	4.37E-08
PRR74	ENSG000000224940	-1.448	5.98E-08
LINC02447	ENSG00000245468	-1.475	3.00E-08
PLD3	ENSG00000105223	-1.513	1.56E-09
KAZN	ENSG00000189337	-1.531	1.46E-08
LRP3	ENSG00000130881	-1.545	8.38E-09
PIN1YP	ENSG00000234465	-1.563	1.45E-09
RPP25	ENSG00000178718	-1.600	3.96E-08
CDK20	ENSG00000156345	-1.627	9.49E-09
BGNMT4	ENSG00000156966	-1.640	1.46E-08
AC1312106.1	ENSG00000255836	-1.646	6.95E-09
TERT	ENSG00000164362	-1.693	9.64E-09
PODXL2	ENSG00000114631	-1.694	2.99E-12
MTIF	ENSG00000198417	-1.699	5.94E-09
MACROD2	ENSG00000172264	-1.748	9.64E-09
ADC9	ENSG00000162104	-1.772	1.56E-09
SERINC2	ENSG00000168528	-1.773	1.06E-09
COL14A1	ENSG00000187955	-1.809	4.49E-08
CD70	ENSG00000125726	-1.853	6.98E-09
ITGB4	ENSG00000132470	-1.870	2.19E-10
GNA14	ENSG00000156049	-1.874	7.07E-08
BCL2L10	ENSG00000137875	-1.879	6.87E-08
C1orf98	ENSG00000262874	-1.922	1.40E-09
GTF2IP7	ENSG00000227038	-1.972	7.80E-09
AGRP	ENSG00000159723	-1.993	1.01E-10
CLEC4G	ENSG00000182566	-1.998	3.29E-08
GPBRN1	ENSG00000162958	-2.004	8.19E-10
RCOO2	ENSG00000167771	-2.009	2.62E-10
KCNK12	ENSG00000184261	-2.036	7.82E-13
ALPK3	ENSG00000136383	-2.043	1.01E-10
CALCRL in childhood AML

Gene	ENSG00000109472	-2.098	2.35E-09
DNAJC5B	ENSG00000147570	-2.107	3.82E-08
GATM	ENSG00000171766	-2.111	7.13E-14
TEAD2	ENSG00000074219	-2.122	1.42E-08
PDCD6IPP2	ENSG00000261377	-2.125	5.28E-09
NFE4	ENSG00000230257	-2.160	4.61E-11
RSPO1	ENSG00000169218	-2.177	6.48E-09
TUBB4A	ENSG00000104833	-2.183	1.56E-09
ASS1	ENSG00000137070	-2.197	1.03E-08
RAB11FIP5	ENSG00000135631	-2.252	1.93E-11
CD163L1	ENSG00000177765	-2.271	1.30E-13
GUICY1B2	ENSG00000123201	-2.286	5.94E-09
AL031710.1	ENSG00000261399	-2.308	5.55E-09
CACNA2D2	ENSG00000007402	-2.352	2.56E-13
ROB2	ENSG00000169071	-2.372	1.92E-10
KLGP2	ENSG00000188883	-2.383	1.01E-10
PTH1R	ENSG00000160801	-2.399	1.27E-08
TKT1	ENSG00000007350	-2.410	4.60E-11
CPT1C	ENSG00000169169	-2.414	6.30E-10
NEO1	ENSG00000067141	-2.416	5.88E-11
GREB1	ENSG00000196208	-2.440	1.81E-08
SHE	ENSG00000169291	-2.442	1.57E-10
FEZ1	ENSG00000149557	-2.455	1.13E-11
ANKRD65	ENSG00000235098	-2.461	1.05E-08
GP4M6B	ENSG00000046653	-2.468	1.82E-11
CYB5R2	ENSG00000166394	-2.483	7.72E-09
TRH	ENSG00000170893	-2.503	5.94E-09
GAS1	ENSG00000180447	-2.505	5.28E-09
AL713998.1	ENSG00000227706	-2.516	8.37E-08
CRABP1	ENSG00000166426	-2.523	1.34E-08
USP2	ENSG00000036672	-2.535	9.41E-16
AC021683.2	ENSG00000267506	-2.602	6.42E-09
DPY19L2P1	ENSG00000189212	-2.602	1.06E-09
PXDN	ENSG00000130508	-2.603	9.97E-09
PLP1	ENSG00000160539	-2.622	3.34E-12
FBLN1	ENSG00000077942	-2.626	1.56E-09
GALNTL6	ENSG00000174473	-2.633	1.18E-09
GRIN2D	ENSG00000105464	-2.651	4.09E-19
SLCTA10	ENSG00000130876	-2.656	2.12E-11
FBLN5	ENSG00000140092	-2.658	4.44E-13
INPP5J	ENSG00000185133	-2.680	4.75E-12
STXBP6	ENSG00000168952	-2.699	2.92E-08
SLC29A4	ENSG00000164638	-2.706	5.00E-21
IL5RA	ENSG00000091181	-2.720	4.13E-15
NCAM1	ENSG00000149294	-2.728	7.43E-10
COL6A6	ENSG00000206384	-2.731	1.45E-09
MYO6	ENSG00000196586	-2.739	6.91E-12
APOC4-APOC2	ENSG00000224916	-2.749	1.13E-15
APOC2	ENSG00000234906	-2.752	1.10E-15
GABRB1	ENSG00000146276	-2.789	3.55E-08
C2orf66	ENSG00000187944	-2.835	1.20E-08
SPAG6	ENSG00000077327	-2.836	7.55E-15
EVC2	ENSG00000173040	-2.846	1.27E-08
PKP2	ENSG00000057294	-2.848	1.22E-08
TFF3	ENSG00000160180	-2.861	2.50E-10
LAMC3	ENSG00000050555	-2.904	2.36E-18
MEIOB	ENSG00000162039	-2.932	1.66E-09
AC106865.1	ENSG00000250771	-2.935	1.46E-09
DLK1	ENSG00000185559	-2.952	5.86E-08
LIN00689	ENSG00000231419	-2.954	8.61E-08
LIN01257	ENSG00000204603	-2.989	1.13E-11
SOBP	ENSG00000112320	-2.996	1.05E-17
CPE	ENSG00000109472	-2.996	2.86E-09
CALCR in childhood AML

Gene	ENSG ID	Log2 Fold Change	p-value
ZNF503-AS1	ENSG00000226051	-3.024	1.83E-09
SULT4A1	ENSG00000130540	-3.032	7.76E-08
ADGRL2	ENSG00000117114	-3.044	7.96E-08
C3orf14	ENSG00000114405	-3.044	3.43E-09
AC024475.2	ENSG00000255314	-3.055	5.18E-08
GLIS3	ENSG00000107249	-3.085	1.52E-14
DDI4L	ENSG00000145358	-3.106	1.34E-08
TGM5	ENSG00000112276	-3.115	6.03E-16
BVES	ENSG000001122276	-3.122	3.73E-08
POU4F1	ENSG00000152192	-3.123	1.32E-08
MTCO3P12	ENSG00000198744	-3.124	2.42E-22
PARD3B	ENSG00000116117	-3.146	3.04E-09
PRL	ENSG00000172179	-3.157	4.33E-08
LINC01529	ENSG00000225872	-3.172	9.41E-11
FIBCD1	ENSG00000130720	-3.185	2.15E-13
TDRD10	ENSG00000163239	-3.241	3.01E-15
DNAH2	ENSG00000183914	-3.265	1.37E-12
DNAH8	ENSG00000124721	-3.272	1.57E-10
LINC01731	ENSG00000234283	-3.285	5.11E-09
GPC3	ENSG00000147257	-3.309	4.41E-10
CLEC2L	ENSG00000236279	-3.340	7.28E-09
FRAS1	ENSG00000138759	-3.353	1.33E-08
WIPF3	ENSG00000122574	-3.433	7.49E-16
CTNN43	ENSG00000183230	-3.459	3.57E-09
EVC	ENSG00000072840	-3.464	2.59E-15
RGS22	ENSG00000132554	-3.497	9.83E-10
AC025569.1	ENSG00000258168	-3.586	1.16E-10
CLSTN2	ENSG00000158258	-3.602	5.30E-13
IL22RA2	ENSG00000164485	-3.615	7.91E-08
LINC00477	ENSG00000197503	-3.625	9.70E-08
PPP1R27	ENSG00000182676	-3.642	1.67E-22
AC065829.2	ENSG00000262539	-3.657	3.55E-11
HSPB6	ENSG0000004777	-3.697	1.42E-27
AC050577.4	ENSG00000230882	-3.702	1.92E-17
ALA50311.1	ENSG00000236154	-3.749	8.18E-15
VAT1L	ENSG00000171724	-3.772	9.01E-13
AC046168.2	ENSG00000259420	-3.827	1.93E-08
MYO18B	ENSG00000133454	-3.858	2.94E-15
PCLO	ENSG00000186472	-3.886	3.57E-09
FOXL1	ENSG00000176678	-4.014	8.32E-13
HSSST4	ENSG00000182601	-4.019	8.08E-10
PRAME	ENSG00000185686	-4.074	1.67E-22
NEUROG3	ENSG00000122859	-4.136	6.99E-12
AP000439.2	ENSG00000255980	-4.153	6.51E-08
DYNC11I	ENSG00000158560	-4.227	1.31E-11
ROBO1	ENSG00000169855	-4.228	2.68E-19
DLL3	ENSG00000090932	-4.248	2.52E-30
ADAM23	ENSG00000114948	-4.310	3.53E-18
FAM3B	ENSG00000183844	-4.312	1.83E-11
LINC02506	ENSG00000251129	-4.346	1.37E-08
PCDH10	ENSG00000138650	-4.416	3.10E-11
KLK13	ENSG00000167759	-4.436	2.10E-08
CADM1	ENSG00000182985	-4.450	1.23E-24
SIX1	ENSG00000138083	-4.464	6.13E-13
MTND1P23	ENSG00000225972	-4.516	1.23E-36
MSX2	ENSG00000120149	-4.521	1.18E-09
MAB2I14	ENSG00000172478	-4.538	4.76E-08
LAMP5	ENSG00000125869	-4.608	1.21E-16
WSCD1	ENSG00000179314	-4.613	9.74E-15
CCD1C14NL	ENSG00000205212	-4.641	3.37E-09
C3orf58	ENSG00000186493	-4.734	9.91E-08
LINC02600	ENSG00000230986	-4.973	5.54E-15
CLEC2A	ENSG00000188393	-4.999	1.53E-11
CALCRL in childhood AML

Gene	Ensembl	-Log10 P	E-Value
KCNN2	ENSG00000080709	-5.015	2.68E-12
TRPM4	ENSG00000130529	-5.132	1.39E-17
KIAA1210	ENSG00000250423	-5.185	2.72E-09
UNCS5C	ENSG00000182168	-5.238	3.33E-16
KCNE5	ENSG00000176076	-5.255	3.36E-18
HMX3	ENSG00000188620	-5.261	2.42E-18
XAGIE1B	ENSG00000204382	-5.360	8.34E-08
ABHD17AP6	ENSG00000226981	-5.371	7.46E-25
LINCO1833	ENSG00000259439	-5.556	1.13E-11
IGSF1	ENSG00000147255	-5.680	5.49E-15
IRX6	ENSG00000159387	-5.698	2.10E-08
HRC	ENSG00000130528	-5.703	4.09E-19
PLAAT1	ENSG00000127252	-5.940	5.03E-11
PENK	ENSG00000181195	-6.384	3.95E-19
CNTN4	ENSG00000144619	-6.546	1.72E-32
SOX11	ENSG00000176887	-6.579	3.41E-10
AF181450.1	ENSG00000253576	-9.264	1.01E-11
Supplementary Table 2. Gene expression signatures significantly enriched for genes of the CALCRL high expression profile in gene set enrichment analysis.

Signature name	ES	NES	NOM P
HOEBEKE_LYMPHOID_STEM_CELL_UP	0.730	1.913	<0.001
EPPERT_HSC_R	0.758	1.855	<0.001
BARRIER_CANCER_RELAPSE_NORMAL_SAMPLE_UP	0.737	1.817	0.001
EPPERT_LSC_R	0.743	1.806	0.002
VALK_AML_CLUSTER_2	0.947	1.755	<0.001
EPPERT_CE_HSC_LSC	0.854	1.749	<0.001
GRAHAM_CML_DIVIDING_VS_NORMAL_QUIESCENT_DN	0.748	1.710	<0.001
ZHENG_FOXP3_TARGETS_IN_THYMUS_UP	0.669	1.709	0.006
GEISS_RESPONSE_TO_INDEXRNA_UP	0.707	1.702	0.003
MARCINIAK_ER_STRESS_RESPONSE_VIA_CHOP	0.643	1.700	0.002
PID_FAS_PATHWAY	0.622	1.695	0.005
GRAHAM_NORMAL_QUIESCENT_VS_NORMAL_DIVIDING_UP	0.783	1.692	0.001
GARGALOVIC_RESPONSE_TO_OXIDIZED_PHOSPHOLIPIDS_TURQUOISE_UP	0.701	1.689	0.003
LEE_INTRATHYMIC_T_PROGENITOR	0.809	1.683	0.001
TAKEDA_TARGETS_OF_NUP98_HOX9_FUSION_3D_UP	0.720	1.675	0.001
CHANDRAN_METASTASIS_TOP50_UP	0.523	1.670	0.010
PARK_HSC_MARKERS	0.566	1.669	0.004
PID_IL1_PATHWAY	0.692	1.660	0.008
MULLIGHAN_NPM1_MUTATED_SIGNATURE_1_UP	0.612	1.658	0.003
CHEN_PDGF_TARGETS	0.727	1.653	0.006
VALK_AML_CLUSTER_3	0.818	1.650	<0.001
TIEN_INTESTINE_PROBIOTICS_2HR_DN	0.591	1.647	0.008
WATANABE_ULCERATIVE_COLITIS_WITH_CANCER_DN	0.850	1.645	0.002
REACTOME_CTLA4_INHIBITORY_SIGNALING	0.727	1.644	0.008
WORSCHECH_TUMOR_REJECTION_UP	0.724	1.638	0.004
FIGUEROA_AML_METHYLATION_CLUSTER_4_DN	0.788	1.637	0.004
MULLIGHAN_NPM1_SIGNATURE_3_UP	0.584	1.633	0.007
ZHENG_BOUND_BY_FOXP3	0.594	1.633	0.007
VALK_AML_WITHFLT3_ITD	0.867	1.632	<0.001
SCHAEFFER_PROSTATE_DEVELOPMENT_AND_CANCER_BOX4_DN	0.624	1.626	0.015
KYNG_RESPONSE_TO_H2O2_VIA_ERCC6_UP	0.584	1.625	0.007
REACTOME_BETA_DEFENSINS	0.614	1.621	0.042
GENTLES_LEUKEMIC_STEM_CELL_UP	0.791	1.621	0.005
GRAHAM_CML_QUIESCENT_VS_NORMAL_QUIESCENT_DN	0.781	1.618	0.006
SESTO_RESPONSE_TO_UV_C2	0.636	1.612	0.009
WP_ENDOTHELIN_PATHWAYS	0.659	1.612	0.005
GARGALOVIC_RESPONSE_TO_OXIDIZED_PHOSPHOLIPIDS_BLK_UP	0.686	1.610	0.009
PARK_HSC_VS_Multipotent_PROGENITORS_UP	0.601	1.609	0.018
PID_EPHNRN_REV_PATHWAY	0.714	1.609	0.006
WP_HEMATOPOIETIC_STEM_CELL_GENE_REGULATION_BY_GABP_ALPHABETA_	0.620	1.608	0.021
WANG_RESPONSE_TO_ANDROGEN_UP	0.606	1.607	0.013
BROWNE_HCMV_INFECTION_6HR_DN	0.558	1.604	0.003
TAKEDA_TARGETS_OF_NUP98_HOX9_FUSION_8D_UP	0.697	1.592	0.003
DING_LUNG_CANCER_EXPRESSION_BY_COPY_NUMBER	0.583	1.588	0.032
SENSEE_HDAC2_TARGETS_UP	0.604	1.586	0.013
BIOCARTA_TNFR2_PATHWAY	0.713	1.586	0.024
GALE_APL_WITHFLT3_MUTATED_UP	0.553	1.585	0.024
REACTOME_GRB2_SOS_PROVIDES_LINKAGE_TO_MAPK_SIGNALING_FOR_INTEGRINS	0.787	1.580	0.010
TAKEDA_TARGETS_OF_NUP98_HOX9_FUSION_6HR_UP	0.702	1.580	0.004
BIOCARTA_NTH1_PATHWAY	0.707	1.579	0.021
DEURIG_T_CELL_PROLYMPHOCYTIC_LEUKEMIA_DN	0.616	1.578	0.021
REACTOME_NOD1_2_SIGNALING_PATHWAY	0.567	1.575	0.024
ZHENG_FOXP3_TARGETS_UP	0.764	1.573	0.013
WANG_IMMORTALIZED_BY_HOX9_AND_MEIS1_DN	0.727	1.572	0.008
REACTOME_PI3K_CASCADE_FGFR2	0.670	1.572	0.013
DAZARD_RESPONSE_TO_UV_NHEK_DN	0.582	1.571	0.021
DE_Y11_TARGETS_DN	0.643	1.571	0.024
IKEDA_MIR1_TARGETS_UP	0.641	1.568	0.024
BYSTROEM_CORRELATED_WITH_IL5_DN	0.568	1.565	0.037
CALCR in childhood AML

Pathway Description	Beta	Log2 Fold Change	P-Value
Reactome Regulation of Runx1 Expression and Activity	0.639	1.563	0.033
Mcbryan Pubertal Breast 6_7WK_Up	0.528	1.562	0.011
Beier Glioma Stem Cell Up	0.628	1.561	0.005
Pid NFAT Tpathway	0.715	1.561	0.020
Takeda Targets of Nup98_Hoxa9_Fusion 6HR_Dn	0.712	1.560	0.013
Brownie Hcmv Infection 12HR_Up	0.558	1.560	0.010
Sotirioou Breast Cancer Grade 1 VS 3_Dn	0.578	1.558	0.011
Theilgaard Neutrophil At Skin Wound Up	0.673	1.558	0.031
Pid Nfkappaab Atypical Pathway	0.670	1.557	0.029
Bosco Interferon Induced Antiviral Module	0.687	1.557	0.021
Marson Foxp1 Targets_Dn	0.614	1.556	0.023
Reactome PI 3K Cascade FGFR4	0.686	1.556	0.015
Blanco Meilo Beta Interferon_Treated Bronchial Epithelial Cells_Up	0.595	1.556	0.013
Reactome Rhov Gtpase Cycle	0.614	1.555	0.027
Valk_Aml Cluster_10	0.768	1.554	0.011
Sana Tnf Signaling Up	0.690	1.554	0.023
Foster Tolerant Macrophage_Dn	0.575	1.554	0.009
Kim All Disorders Oligodendrocyte Number Corr_Dn	0.673	1.554	0.008
Hahtola Mycosis Fungoides Cd4_Dn	0.490	1.553	0.042
WP Development and Heterogeneity of The ILC Family	0.699	1.551	0.010
Osmann Bladder Cancer Up	0.520	1.550	0.034
Mili Pseudopodia_Chemotaxis_Up	0.500	1.550	0.008
Bild Src Oncogenic Signature	0.553	1.548	0.007
Wang Response to Bexarotene_Dn	0.615	1.547	0.014
Traynor Rett Syndrome_Up	0.676	1.545	0.013
Pid Avb3_Opn Pathway	0.633	1.544	0.028
Gargalovic Response to Oxidized Phospholipids_Brown_Up	0.665	1.543	0.016
Lee Differentiating T Lymphocyte	0.546	1.542	0.036
Ono Foxp3 Targets_Dn	0.666	1.542	0.027
Biocarta TALL1 Pathway	0.708	1.541	0.023
Douglas Bmi1 Targets_Dn	0.468	1.541	0.010
Zhang Response to Ikk Inhibitor_and_Tnf_Up	0.658	1.540	0.023
Liang Hematopoiesis Stem Cell Number Large_Vs_Tiny_Dn	0.561	1.538	0.013
Brownie Hcmv Infection 14HR_Up	0.499	1.538	0.017
Mcbryan Pubertal Breast 5_6Wk_Dn	0.489	1.538	0.012
Shipp Dlbcl Vs Follicular Lymphoma_Dn	0.634	1.536	0.010
Kegg Rbg 1 Like Receptor Signaling Pathway	0.517	1.535	0.037
Reactome Apoptotic Cleavage of Cellular Proteins	0.576	1.534	0.015
Debiiasi Apoptosis By Reovirus Infection Up	0.571	1.532	0.033
Zhan Multiple Myeloma Pr_Dn	0.609	1.531	0.020
Howlin Cited1 Targets_1_Dn	0.618	1.531	0.020
Reactome Regulation Of Kit Signaling	0.761	1.530	0.027
Kenny_Ctnnb1 Targets_Dn	0.591	1.529	0.025
Pid Nfkappaab Canonical Pathway	0.667	1.528	0.036
Blanco Meilo Human Parainfluenza Virus 3 Infection_A594_Cells_Up	0.622	1.528	0.029
Graham Cml Quiescent Vs Cml Dividing Up	0.808	1.528	0.021
Reactome Tie2 Signaling	0.626	1.527	0.020
Baldwin Prkci Targets_Dn	0.591	1.525	0.016
Chiang Liver Cancer Subclass Unannotated_Up	0.553	1.525	0.009
Martinez Response to Trabectedin_Dn	0.504	1.524	0.040
Scheideretz_Ikk Interacting Proteins	0.550	1.523	0.033
Reactome Negative Regulation Of Fgfr2_Signaling	0.547	1.523	0.025
Shi Sparc Targets_Up	0.647	1.523	0.018
Gargalovic Response to Oxidized Phospholipids Red_Dn	0.607	1.522	0.028
Dazard Response to Uv_Scc_Dn	0.550	1.521	0.028
Mahajan Response to Ii1a_Up	0.653	1.521	0.020
Gargalovic Response to Oxidized Phospholipids Yellow_Up	0.650	1.517	0.032
Wp Interactions Between Immune Cells And Micr Onas In Tumor Micr	0.722	1.517	0.033
Nagashima Nrg1_Signaling_Dn	0.576	1.516	0.016
Valk_Aml Cluster_15	0.778	1.516	0.024
Wu_Hbx Targets_2_Dn	0.683	1.514	0.033
Chiaretti T All Refractory To Therapy	0.660	1.513	0.015
Jaatinen Hematopoietic Stem Cell Therapy	0.613	1.513	0.019
CALCR in childhood AML

Pathway Description	Score	P Value	Fold Change
DURCHDEWALD_SKIN_CARCINOGENESIS_DN	0.522	1.513	0.015
PID_CD8_TCR_DOWNSTREAM_PATHWAY	0.629	1.509	0.049
PID_P38_ALPHA_BETA_PATHWAY	0.606	1.508	0.029
REACTOME_RETROGRADE_TRANSPORT_AT_THE_TRANS_GOLGI_NETWORK	0.470	1.507	0.027
SENESE_HDAC1_TARGETS_UP	0.534	1.507	0.030
PID_ARF6_PATHWAY	0.609	1.504	0.016
REACTOME_REGULATION_OF_SIGNALING_BY_CBL	0.572	1.503	0.043
HU_GENOTOXIN_ACTION DIRECT VS INDIRECT 4HR	0.554	1.502	0.012
SU_THYMUS	0.763	1.501	0.034
DORSAM_HOX9_TARGETS_UP	0.551	1.501	0.037
FRASOR_RESPONSE_TO_SERM_OR_FULVESTRASTR_1J_UP	0.646	1.500	0.032
SASSON_RESPONSE_TO_GONADOTROPHINS_DN	0.544	1.500	0.016
ENK_UV_RESPONSE_KERATINOCYTE_DN	0.467	1.499	0.033
SESTO_RESPONSE_TO_UVC5	0.618	1.499	0.044
TERAMOTO_OPN_TARGETS_CLUSTER_7	0.620	1.497	0.016
SPIRA_SMOKERS_LUNG_CANCER_UP	0.660	1.496	0.043
BLANCO_MELO_COVID19_SARS_COV_2_INFECTION_CALU3 CELLS_UP	0.602	1.495	0.022
ZHANG_RESPONSE_TO_CANTHARIDIN_DN	0.739	1.495	0.049
KEGG_NODLIKE_RECEPTOR_SIGNALING_PATHWAY	0.610	1.494	0.042
GAVIN_FOXP3_TARGETS_CLUSTER_T4	0.550	1.494	0.025
GAVIN_FOXP3_TARGETS_CLUSTER_P4	0.575	1.493	0.013
WP_THYMIC_STROMAL_LYMPHOPOIETIN_TSLP_SIGNALING_PATHWAY	0.599	1.493	0.043
MONNIER_POSTRADIATION_TUMOR_ESCAPE_UP	0.424	1.490	0.008
OSMAN_BLADDER_CANCER_DN	0.404	1.490	0.022
ZWANG_EGF_PERSISTENTLY_UP	0.561	1.490	0.022
GAVIN_IL2_RESPONSIVE_FOXP3_TARGETS_UP	0.645	1.489	0.029
REACTOME_NEGATIVE_REGULATION_OF_THE_PI3K_AKT_NETWORK	0.537	1.489	0.012
TAKEDA_TARGETS_OF_NUP98_HOX9_FUSION_10D_UP	0.613	1.489	0.007
RIZ_ERYTHROID_DIFFERENTIATION_6HR	0.643	1.488	0.028
GHANDHI_BYSTANDER_IRRADIATION_UP	0.684	1.488	0.031
REACTOME_NEGATIVE_REGULATION_OF_FGFR4_SIGNALING	0.538	1.486	0.037
WANG_RESPONSE_TO_FORSKOLIN_UP	0.584	1.485	0.036
BLANCO_MELO_RESPIRATORY_SYNCYTIAL_VIRUS_INFECTION_A594.Cells_UP	0.613	1.484	0.029
LEE_RECENT_THYMIC_EMMIGRANT	0.501	1.482	0.022
REACTOME_SIGNALING_BY_TYPE_1_INSULINLIKE_GROWTH_FACTOR_1	0.557	1.482	0.022
CHIARETTI_ACUTE_LYMPHOBLASTIC_LEUKEMIA_ZAP70	0.526	1.482	0.025
BERENJENO_TRANSFORMED_BY_RHOA_FOREVER_DN	0.712	1.482	0.029
FERRARI_RESPONSE_TO_FENRETINIDE_UP	0.762	1.481	0.035
RODRIGUES_THYROID_CARCINOMA_DN	0.597	1.480	0.024
OKUMURA_INFLAMMATORY_RESPONSE_LPS	0.532	1.480	0.014
KAMIKUBO_MYELOID_MN1_NETWORK	0.702	1.480	0.041
BILD_CTNBN1_ONCOGENIC_NAME	0.570	1.478	0.040
TENEDINI_MEGAKARYOCYTE_MARKERS	0.616	1.478	0.034
VALK_AML_WITH_EVII	0.746	1.478	0.027
ZHAN_MULTIPLE_MYELOMA_HP_UP	0.529	1.477	0.025
REACTOME_Digestion_and_absorption	0.588	1.477	0.036
BIOCARTA_EDG1_PATHWAY	0.623	1.476	0.031
PID_PK5_NTR_PATHWAY	0.483	1.476	0.018
REACTOME_PI30CAS_LINKAGE_TO_MAPK_SIGNALING_FOR_INTEGRINS	0.754	1.475	0.037
WP_PREGNANE_X_RECEPTOR_PATHWAY	0.572	1.475	0.031
ONO_AML1_TARGETS_DN	0.630	1.474	0.042
MULLIGHAN_NPM1_MUTATED_SIGNATURE_2_UP	0.559	1.474	0.041
REACTOME_CD28_CO_STIMULATION	0.590	1.474	0.040
ALCALAY_AML_BY_NPM1_LOCALIZATION_UP	0.706	1.474	0.041
ZWANG_CLASS_3_TRANSIENTLY_INDUCED_BY_EGF	0.607	1.472	0.040
YAGI_AML_WITH_INV16_TRANSLOCATION	0.460	1.472	0.015
REACTOME_PI3K Cascades FGF83	0.672	1.471	0.046
WP_NCRNAS_INVOLVED_INSTAT3_SIGNALING_INHEPATOCELLULARCARCINOMA	0.669	1.470	0.045
BASAKI_YBX1_TARGETS_DN	0.500	1.468	0.021
TONKS_TARGETS_OF_RUNX1_RUNXIT1_MONOCYTE_DN	0.643	1.468	0.041
WP_SARS_C02_INNATE_IMMUNITY EVASION AND CELLSPECIFIC_IMMUNE_RESPON	0.627	1.467	0.041
PID_INTEGRIN_A4B1_PATHWAY	0.624	1.467	0.045
GINESTIER_BREAST_CANCER_20Q13_AMPLIFICATION_UP	0.470	1.466	0.020
Pathway Description	Z-Score	P-value	Adjusted P-value
---------------------	---------	---------	-----------------
CALCRL in childhood AML			
PID ANGIOPOETIN RECEPTOR_PATHWAY	0.545	1.466	0.035
STEARMAN LUNG CANCER_EARLY VS_LATE_UP	0.465	1.466	0.039
BROWNE HCMV INFECTION 4HR_UP	0.657	1.465	0.043
SASSON_RESPONSE_TO_FORSKOLIN_DN	0.522	1.464	0.023
HIRSCH CELLULARTRANSFORMATION_SIGNATURE_DN	0.505	1.464	0.020
GENTILE UV_RESPONSE_CLUSTER_D5	0.552	1.464	0.041
REACTOME CONSTITUTIVE_SIGNALING_BY_ABERRANT_PI3K_IN_CANCER	0.571	1.463	0.013
WP GLYCEROPHOSPHOLIPID_BIOSYNTHETIC_PATHWAY	0.492	1.463	0.031
MARSON FOXP1_TARGETS_STIMULATED_UP	0.685	1.463	0.048
ONDER CDH1_TARGETS_1_DN	0.520	1.462	0.024
WP NUCLEAR_RECEPTORS_IN_LIPID_METABOLISM_AND_TOXICITY	0.599	1.462	0.026
WANG METASTASIS_OF_BREAST_CANCER	0.652	1.461	0.031
THUM SYSTOLIC_HEART_FAILURE_DN	0.473	1.460	0.015
STAMBOLSKY_RESPONSE_TO_VITAMIN_D3_UP	0.557	1.458	0.018
FULCHER INFLAMMATORY_RESPONSE_LECTIN_VS_LPS_DN	0.545	1.458	0.041
GRABARCZYK BCL11B_TARGETS_UP	0.516	1.458	0.024
REACTOME EICOSANOID_LIGAND_BINDING_RECEPTORS	0.741	1.456	0.036
BOSCO TH1_CYTOTOXIC_MODULE	0.626	1.456	0.027
CHANDRAN METASTASIS_UP	0.444	1.455	0.024
GHANDHI DIRECT_IRRADIATION_UP	0.631	1.454	0.037
TING SILENCED_BY_DICER	0.638	1.450	0.027
OUILLETTE_CL1_13Q14_DELETION_UP	0.482	1.450	0.034
BOYLAN_MULTIPLE_MYELOMA_C_CLUSTER_DN	0.634	1.449	0.036
LIU SOX4_TARGETS_UP	0.493	1.448	0.031
SAHAI CHRONIC_HEPATITIS_VS_LIVER_CANCER_DN	0.554	1.448	0.043
GENTILE UV_RESPONSE_CLUSTER_D8	0.578	1.448	0.046
KIM MYC_AMPLIFICATION_TARGETS_DN	0.558	1.446	0.025
COULOUARN TEMPORAL_TGFB1_SIGNATURE_UP	0.546	1.445	0.042
HUTTMANN_B_CLL_POOR_SURVIVAL_DN	0.619	1.445	0.040
LU IL4_SIGNALING	0.555	1.443	0.040
MALTA CURATED_STEMNESS_MARKERS	0.613	1.442	0.032
SANA TNF_SIGNALING_DN	0.594	1.441	0.033
FINETTI BREAST_CANCERS_KINOME_GRAY	0.799	1.441	0.048
WP SMALL_LIGAND_GPCRS	0.708	1.441	0.045
ABBUD LIF SIGNALING_1_DN	0.536	1.438	0.031
REACTOME SUMOYLATION_OF_INTRACELLULAR_RECEPTORS	0.546	1.437	0.038
REACTOME IRS MEDIATED_SIGNALLING	0.538	1.436	0.033
AKL HTLV1_INFECTION_DN	0.565	1.431	0.037
NIKOLSKY BREAST_CANCER_19Q13.1_AMPLICON	0.828	1.427	0.048
SENESE HDAC3_TARGETS_UP	0.508	1.427	0.043
TCGA Glioblastoma_COPY_NUMBER_UP	0.501	1.427	0.038
TSAI RESPONSE_TO_IONIZING_RADIATION	0.501	1.426	0.041
VERNELL RETINOBLASTOMA_PATHWAY_DN	0.631	1.425	0.048
WP DRUG_INDUCTION_OF_BILE_ACID_PATHWAY	0.675	1.424	0.038
OSWALD HEMATOPOIETIC_STEM_CELL_IN_COLLAGEN_GEL_DN	0.465	1.423	0.023
PID ARF6 TRAFFICKING_PATHWAY	0.534	1.423	0.030
PID ER NONGENOMIC_PATHWAY	0.549	1.422	0.043
LIU CDX2_TARGETS_UP	0.628	1.418	0.036
WP G13 SIGNALING_PATHWAY	0.471	1.418	0.048
REACTOME INSULIN_RECEPTOR_SIGNALLING CASCADE	0.518	1.417	0.042
REACTOME SIGNAL_AMPLIFICATION	0.549	1.417	0.038
WARTERS RESPONSE_TO_IR_SKIN	0.480	1.415	0.015
GARGALOVIC RESPONSE_TO_OXIDIZED_PHOSPHOLIPIDS_PINK_DN	0.635	1.413	0.045
PID FGFR3 PATHWAY	0.537	1.412	0.035
HOLLERN MICROACINAR_BREAST_TUMOR_UP	0.521	1.408	0.026
RODRIGUES DCC_TARGETS_DN	0.474	1.408	0.031
REACTOME PI3K_AKT_SIGNALING_IN_CANCER	0.514	1.408	0.028
WARTERS IR RESPONSE_5G	0.537	1.407	0.039
CHARAFE BREAST_CANCER_LUMINAL_VS BASAL_DN	0.518	1.406	0.038
PHONG TNF RESPONSE_VIA_PI38_COMPLETE	0.471	1.390	0.045
WP 3Q29_COPY_NUMBER_VARIATION_SYNDROME	0.425	1.387	0.020
HOFFMANN LARGE_TO_SMALL_PRE_BII_LYMPHOCYTE_DN	0.505	1.380	0.037
WAMUNYOKOLI OVARIAN_CANCER_GRADES_1_2_UP	0.468	1.378	0.041
CALCRL in childhood AML

Enrichment Set	ES	NES	NOM P
TAKEDA_Targets of NUP98 HOXA9 Fusion 16D Up	0.578	1.370	0.039
Reactome Adora2B Mediated Anti-Inflammatory Cytokines Production	0.469	1.367	0.034
Corre Multiple Myeloma Up	0.544	1.367	0.049
Bredemeyer Rag Signaling Not Via ATM Up	0.473	1.365	0.043
Iwanaga Carcinogenesis By Kras Pten Dn	0.441	1.359	0.030
Hoffmann Pre B1 To Large Pre BII Lymphocyte Dn	0.498	1.357	0.042
Wang LMO4 Targets Up	0.372	1.332	0.031

ES, enrichment score; NES, normalized enrichment score; NOM P, nominal p value.
Supplementary Table 3. Multivariable regression analyses including the LSC17 score.

Variables in the model	OR/HR	95% CI	P value
Complete remission			
LSC17 score: high vs low	0.44	0.20-0.97	0.043
CALCRL expression: high vs low	0.60	0.28-1.28	0.18
Overall survival			
LSC17 score: high vs low	1.77	1.23-2.56	0.0022
CALCRL expression: high vs low	1.49	1.03-2.15	0.035
Event-free survival			
LSC17 score: high vs low	1.63	1.22-2.20	0.0010
CALCRL expression: high vs low	1.74	1.29-2.36	0.0003
Cumulative incidence of relapse			
LSC17 score: high vs low	1.41	1.03-1.94	0.031
CALCRL expression: high vs low	2.06	1.49-2.86	<0.0001

Odds ratios (OR) greater or less than 1.0 indicate higher or lower CR rates, respectively, for the first category listed. Hazard ratios (HR) greater or less than 1.0 indicate an increased or decreased risk, respectively, of an event for the first category listed.

Abbreviations: WBC, white blood cell count; CALCRL, calcitonin-receptor like.

§The LSC17 score was calculated and dichotomized as described.1
Supplementary Figures

Supplementary Fig. 1. Optimal cut-point for \textit{CALCRL} gene in pediatric patients with AML. The maximally selected log-rank statistics was performed on the continuous \textit{CALCRL} expression to identify a potential cut-point that separates two groups with different event-free survival distributions. The dashed line represents the optimal cut-point of 0.3282 and the M statistic of 4.24. The adjusted P value was P<0.0001.
Supplementary Fig. 2. Forest plot of the association of \textit{CALCRL} expression on overall survival in selected subgroups of the pediatric TARGET cohort. Hazard ratios (HRs) for high versus low \textit{CALCRL} expression in selected subgroups are shown. The position of the squares represents the unadjusted HRs and the horizontal lines represent the 95% confidence intervals (CI). The size of the squares is proportional to the precision of the estimate. The position diamond and the dotted vertical line represent the overall HR from the entire cohort. The lateral points of the diamond represents the 95% CI. The P values are for interaction of unadjusted hazard ratios by subgroups and represent heterogeneity. Abbreviations: WBC, white blood cell count; HSCT, allogeneic hematopoietic stem cell transplantation; CBF, core-binding factor; NK, normal karyotype; MLL, mixed-lineage leukemia; CK, complex karyotype; FLT3-ITD, internal tandem duplication of the \textit{FLT3} gene; NPM1, nucleophosmin-1.
CALCRL in childhood AML

Supplementary Fig. 3. Forest plot of the association of **CALCRL** expression on the risk of relapse in selected subgroups of the pediatric TARGET cohort. Hazard ratios (HRs) for high versus low **CALCRL** expression in selected subgroups are shown. The position of the squares represents the unadjusted HRs and the horizontal lines represent the 95% confidence intervals (CI). The size of the squares is proportional to the precision of the estimate. The position diamond and the dotted vertical line represent the overall HR from the entire cohort. The lateral points of the diamond represents the 95% CI. The P values are for interaction of unadjusted hazard ratios by subgroups and represent heterogeneity. Abbreviations: WBC, white blood cell count; HSCT, allogeneic hematopoietic stem cell transplantation; CBF, core-binding factor; NK, normal karyotype; MLL, mixed-lineage leukemia; CK, complex karyotype; FLT3-ITD, internal tandem duplication of the **FLT3** gene; **NPM1**, nucleophosmin-1.

Subgroup	low no. of relapses / no. of patients (%)	high no. of relapses / no. of patients (%)	HR (95% CI)	P Value
Age	infant 23/47 (33.2) / 10/13 (76.9)		2.04 (0.97–4.30)	0.34
	child 51/114 (44.7) / 36/50 (72.0)		2.60 (1.88–4.42)	
	adolescent 19/45 (42.2) / 13/18 (71.1)		1.34 (0.64–2.81)	
Sex	male 42/102 (41.2) / 32/69 (46.4)		2.30 (1.45–3.66)	0.78
	female 53/101 (52.3) / 28/52 (53.8)		2.11 (1.20–3.72)	
WBC	<50 x 10⁹ 59/114 (46.5) / 32/40 (80.0)		2.71 (1.77–4.02)	0.15
	≥50 x 10⁹ 42/89 (47.2) / 25/41 (61.0)		1.84 (1.00–3.07)	
Trial	AAML, 01P 17/74 (28.6) / 10/63 (62.5)		1.68 (0.77–3.68)	0.56
	AAML, 05P 63/132 (48.2) / 37/51 (72.5)		2.54 (1.56–4.07)	
	CCG-2961 17/27 (63.0) / 10/14 (71.4)		1.87 (0.85–4.09)	0.069
	yes 5/22 (22.7) / 10/13 (76.9)		4.59 (1.54–13.62)	0.040
	no 90/159 (56.6) / 47/94 (80.7)		1.96 (0.97–3.98)	
Risk group	low 32/89 (36.0) / 20/27 (74.1)		2.54 (1.45–4.46)	0.57
	standard 52/86 (60.5) / 24/34 (70.6)		1.36 (0.83–2.21)	
	high 6/16 (37.5) / 8/13 (61.5)		4.55 (1.50–13.79)	
CBF	yes 8/18 (43.3) / 18/22 (81.8)		2.38 (1.30–4.34)	0.77
	no 63/128 (49.2) / 34/52 (65.4)		1.99 (1.31–3.04)	
NK	yes 18/47 (38.3) / 13/23 (55.6)		2.00 (0.98–4.10)	
	no 73/156 (50.0) / 39/51 (76.5)		2.24 (1.51–3.33)	
MLL	yes 24/35 (68.6) / 3/4 (75.0)		1.88 (0.56–6.26)	0.79
	no 67/158 (42.4) / 49/70 (70.0)		2.38 (1.64–4.36)	
CK	yes 11/15 (73.3) / 3/4 (75.0)		1.02 (0.28–4.73)	0.14
	no 80/178 (44.9) / 49/70 (70.0)		2.29 (1.60–3.38)	0.066
FLT3-ITD	neg 87/181 (48.3) / 40/56 (71.4)		1.79 (1.23–2.61)	
	pos 8/22 (36.4) / 17/25 (68.0)		4.44 (1.85–10.65)	
NPM1	wt 90/185 (48.6) / 50/70 (71.4)		1.20 (1.35–3.13)	0.076
	mut 2/12 (16.7) / 4/7 (57.1)		3.51 (0.64–19.34)	

All patients 95/203 (46.8) / 57/81 (70.4)
Supplementary Fig. 4. LSC17 score and survival in the pediatric TARGET cohort. Event-free survival (A), overall survival (B) and cumulative incidence of relapse (C) according to the dichotomized LSC17 score.
References

1. Ng SW, Mitchell A, Kennedy JA, et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature. 2016;540(7633):433-437.