Plasticity characterization of certain Nigeria clay minerals for their application in ceramic water filters

Gina Odochi Ihekweme¹,², Ifenyinwa Ijeoma Obiano¹, Kingsley Ikechukwu Orisekeh¹, Godwin Mong Kalu-Uka¹, Iheoma C Nwuzor³ and Azikiwe Peter Onwualu¹

¹Department of Material Science and Engineering, African University of Science and Technology, Federal Capital Territory, Abuja, Nigeria
²Department of Engineering Infrastructure, National Agency for Science and Engineering Infrastructure, Abuja, Federal Capital Territory, Nigeria
³Department of Polymer and Textile Engineering, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria

Abstract
Plasticity is an essential property of clay that determines its suitability for water filtration. There are no published works on the plastic behavior of clays from the study locations. The plastic behavior of seven Nigerian clays was examined using plasticity indices and compressive stress parameters in relation to chemical compositions and moisture content. The objective is to determine plastic behavior of some Nigerian clays and their suitability in production of Expanded Clay Aggregates (ECA) for water filters. Compressive stresses and deformation parameters were determined experimentally and compared theoretically. Atterberg limits (D 4318) were used to determine the plasticity indices. Chemical compositions of the samples were examined with XRF and correlated with plasticity and mineral contents of the clays. The clays are aluminosilicates with SiO₂/Al₂O₃ ratio of 1.61 to 3.03 and plastic indices of 8 to 49. Low plastic indices (8–11) and low compressive stresses parameters were observed for kaolinite clays (0.002 MPa) due to their low affinity for water while zeolite rich clays showed high plastic indices (46 and 49) for Obowo and Minna and sharp difference in their compressive stresses parameters (0.15 and 0.03 MPa) at optimum moisture contents of 57% and 53%, respectively. Despite varying moisture content, chemical and mineral compositions, all curves showed similar trends apart from

Corresponding author:
Gina Odochi Ihekweme, Department of Material Science and Engineering, African University of Science and Technology (AUST), Km 10 Airport Road Galadimawa Roundabout, Abuja, Federal Capital Territory 900001, Nigeria.
Email: cgina@aust.edu.ng

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
kaolinites at 40% moisture content. Relationships exist among microstructural properties, chemical composition, moisture content, compressive strength, and plasticity indices of the clays. The plastic behaviors show they are suitable for development of ECA for water filters.

Keywords
Nigerian clay, Atterberg limits, compression test, plasticity, water purification, filtration media

Introduction

Plasticity is an essential property of clay that makes it workable or moldable when tempered with water.\(^1,2\) Clay can be transformed into shapes without any tendency to return to its elastic state after moderate applied pressure is withdrawn.\(^2-4\) The study of plasticity of clay and other porous materials is of great value to engineering practices and industrial applications.\(^5\) Artisans and potters rely on long aged experience and expertise during determination of clay plasticity. This is usually done by making a coil with clay and rolling it around one’s finger. Plastic clay will not break while non-plastic clay will break easily.\(^6\) The behaviors of clay, feel at touch or the potter’s wheel are unreliable and do not give dependable plasticity values. Although work experience is valuable, however relying much on experience based learning is arbitrary and not in tune with pace and age of information technology. It is pertinent that systematic approaches which depend on practical measurements based on quantitative expressions be adopted to test the plasticity of clay and categorize different grades of clay samples with different values. Such information becomes an asset to the user who relies on the specifications before purchasing for use or trial purpose.

Different clay plasticity measurements have been modeled or studied and reported by researchers though with discrepancies in concepts. Perhaps that is why there is no one acceptable technique that can be crystallized into a definition.\(^7\) The Atterberg method uses the plasticity index which is determined by varying physical behavior of clay with different moisture content. This method has recorded fair success in comparison with other methods that have been reported although with much judgment to the person conducting the test.\(^4,6-9\) Clay plasticity is influenced by lots of factors such as the nature of clay (primary or secondary formation), aging, weathering, mineral compositions and their crystal structures, moisture content, and particle size distribution.\(^2,10-12\) Different constituents, structures, and wide range of application make it difficult to have a generic reference on clay science.\(^6\) Plasticity measurements and behavior of extruded clay together with plastic behavior of porous material in any given situation is best analyzed by yield criterion (stress at which plastic deformation is initiated or onset of plastic flow) and constitutive relations.\(^5\) Khlystov et al.\(^13\) described the uniaxial tension and compression of metals, alloys, and ceramics to determine their Young’s Modulus, Yield Stress, Ultimate Tensile Strength, and Elastic Strain which are used to determine the elasto-plastic behaviors of materials. Measuring and modeling the plasticity of clays subjected to compression loads have been examined and insights on extrusion up-scales/important guidelines and properties were obtained.\(^2,7,14-16\)
Geotechnical properties of some of Nigerian lateritic soils and clay minerals have been reported although with major applications in building and construction, recharge sites for regional aquifer, bacterial removal from water, and adsorption studies of heavy metals.17–25 Good results were obtained when the materials are modified with additives.

This paper understudies the constitutive plastic behaviors of clay samples in Nigeria under compression loads and the plasticity indices in relation to their moisture content, chemical compositions, and mineral contents. Although some of the samples from the same study areas have been characterized by physio-chemical means, there are no published works on the plasticity of the samples of study. The presented results are extension of multiple characterization results which have already been published by Ihekweme et al.26 The insights and possible adjustment in the development of Expanded Clay Aggregates for water purification purposes was also presented.

Materials and methods

Theoretical considerations

The clay is considered an isotropic and porous material. The loading condition is an axial symmetry under compression. Every small element deforms homogenously to the same degree at the same instant. De Andrade et al.'s2 theoretical parts equations (equations (1) and (2)) were adopted for these measurements to evaluate related properties such as force, instantaneous radius, and other variables which affect the plasticity of given ceramic bodies.

\[
\sigma_z = \gamma \exp \left(\frac{2\mu}{h} \left(\frac{r_f - r_0}{2} \right) \right)
\]

\[
F = \int_0^{r_f} 2\pi \sigma_z \partial_r
\]

Where \(\sigma_z\) is the axial stress component; \(F\), axial force; \(\mu\), coefficient of friction; \(\gamma\), effective compressive stress; \(r_f\), radius after compression; \(r_0\), radius before compression; \(h\), height of sample; and \(r\), radial direction.

Experimental methods

Raw clay samples were collected from seven locations within the south-east, south-south, and north-central of Nigeria. Samples were named after their locations, that is Afuze, Ihitte, Kutugi, Minna, Nsu, Oboro, and Obowo for ease of identification. Initial preparations were done as stated by Ihekweme et al.26 X-ray result used in discussion was adapted from the earlier publication on the same samples characterization. The chemical compositions were determined by X-ray fluorescence spectroscopy (XRF), (model: XRFEDX3600B).
For the plasticity experimental procedure, 40 g of each sample was mixed with varying milliliter of water according to its moisture content26 and 40% moisture content for comparative analysis. The mixtures were stored in zip lock poly bags for 24 h for moisture homogeneity. A polyvinyl chloride (PVC) mold of dimensions 20.42 mm diameter and 30.06 mm height was constructed and used to produce the ceramic bodies. Measurements were taken using a vernier caliper (Model: Mitutoyo series 530). The ceramic bodies were loaded non-eccentrically and subjected to compressive forces at the rate of 3 mm/min with Instron model 3345 and a 5 kN load cell. Digital photographs were taken at intervals with Nikon D3400 digital camera and the concurrent diameter measurements were determined using image analysis tool (Image Tool). The instantaneous radius and applied forces were determined using equations (1) and (2). Experimental data was plotted and fitted non-linearly to produce the theoretical curves. The coefficient of friction is assumed to be constant because of the difficulty in its determination and it poses no significant threat in the analysis.2 The pictorial setup and deformation step is shown in Figure 1. Standard test methods D 431827 were used to determine the Atterberg limits.

Results and discussion

Chemical and mineral compositions

The samples are predominantly aluminosilicates as shown in Table 1. Ihitte and Minna have very high content of iron while the SiO\textsubscript{2}/Al\textsubscript{2}O\textsubscript{3} ratio for all the samples ranged from 1.61 to 3.03. Kaolin is the most prevalent clay mineral for Afuze and Kutigi and also present in reasonable quantities in Ihitte and Nsu (Table 2). Quartz is the non-clay mineral in Nsu and Oboro and also high in Afuze. Chlorite clay mineral is prevalent in Ihitte. Illite and zeolite minerals were discerned for Minna. The loss on ignition is highest in Obowo and lowest in Kutigi. This may be attributed to their organic matter and impurities contents which may be traced to their formation and weathering. The ratio of silica to sesquioxides (Fe, Mn, Al, Ti) are

![Figure 1. Compressive deformation on Minna clay sample at 53% moisture content: (a) point of load, (b) intermediate load, and (c) high load.](image-url)
1.91, 1.36, 1.50, 0.99, 2.50, 1.69, and 1.31 for Afuze, Ihitte, Kutigi, Minna, Nsu, Oboro, and Obowo, respectively. According to Baver, the adsorptive capacity of water molecules on colloidal surfaces decreases with decrease in silica/sesquioxide ratios, however this was not observed in all cases for samples of study. Other factors like the mineral compositions, high content of organic matters, structure, formation, and weathering might have contributed in the differences.

The alkali metal oxide, K₂O (flux material) is highest for Minna with 3.93 value followed by Oboro at 1.11 and lowest in Afuze at 0.55. The alkaline earth metal oxide, CaO (auxiliary flux material) during firing and cooling are low in all the samples. This may require an addition of fluxes when producing the expanded clay to bind the clay particles together to avoid disintegration. Transition metal oxides (TiO₂ and ZnO) are present in small quantities too. The predominant Kaolin samples (Afuze and Kutigi) recorded the highest values for TiO₂ which are necessary for photo catalytic processes during water treatment, however they do not contain MnO which aid the scavenging of heavy metals within an aqueous system especially in contaminated water.

Oxides	Afuze	Ihitte	Kutigi	Minna	Nsu	Oboro	Obowo
SiO₂	60.52	51.84	57.31	41.94	67.07	54.91	48.93
Al₂O₃	24.80	27.07	34.74	24.51	22.16	28.38	30.48
Fe₂O₃	5.19	10.13	2.36	17.14	3.91	3.17	5.85
K₂O	0.55	0.60	0.67	3.93	0.56	1.11	0.80
P₂O₅	0.35	0.22	0.24	0.19	0.29	0.30	0.24
CaO	0.13	0.12	0.13	0.40	0.09	0.13	0.12
TiO₂	1.72	1.02	1.19	0.54	0.80	0.98	0.89
MnO	–	0.02	–	0.10	0.01	0.01	0.02
ZnO	0.13	0.14	0.15	0.13	0.14	0.15	0.14
LOI*	6.60	8.83	3.20	11.12	4.95	10.86	12.20
Si/Al	2.4	1.92	1.65	1.71	3.03	1.93	1.61

*LOI: loss on ignition @ 1000°C.

Table 2. Mass % phase distribution of clays obtained by XRD.

Name	Afuze	Ihitte	Kutigi	Minna	Nsu	Oboro	Obowo
Kaolin	62.56	18.42	77.37	–	19.86	–	–
Illite/Mica	–	–	–	30.15	–	–	–
Quartz	37.44	–	–	–	80.14	49.72	–
Chlorite	–	45.93	–	–	–	–	–
Zeolite	–	–	65.85	–	–	92.08	–
Others	–	36.65	22.63	–	–	50.28	7.92

Adapted from Ihekweme et al. with permission from Elsevier.
Compressive stress distributions and plastic behavior

The plasticity results (Table 3) indicate that the liquid and plastic limits range from 29% and 21% for Afuze to 98% and 52% for Obowo, respectively. Minna has the highest plastic index of 49% while Afuze possessed the lowest plastic index of 8%. From the fore-going, Afuze and Kutigi can be classified as low plastic clays because their liquid limits (LL) are 30% and below.7,33,35–36 This result is not far-fetched as they are predominantly kaolin (Table 2) which has low affinity for water, low shrinkage, and swelling behavior. Similar findings have been reported.21,37 LL for Nsu is 50% which classifies it as having intermediate plasticity or plastic kaolin.35 Ihitte falls within the range of 50%–70% with classification as high plasticity. This is due to high content of chlorite and its high affinity for water.36 Oboro possessed very high plasticity for falling in between 70% and 90% while Minna and Obowo are classified as extreme high plastic clay for possessing LL above 90%. The Plasticity indices for all samples are between 8% for Afuze and 49% for Minna and increases in the order of; illite > chlorite > Kaolinite.

The values of compressive stresses parameters from the compression test at different moisture content are presented in Table 4. Obowo has the highest compressive stress of 0.15 MPa at 57% moisture while Afuze and Kutigi showed the lowest compressive stress of 0.02 MPa. However, at 40% moisture content, Minna exhibited the highest compressive stress of 0.06 MPa. Despite moisture content, chemical and mineral compositions, all curves showed similar trends apart from kaolinites at 40% moisture content. Such results were comparable to those reported in literature.2,38,39 The values presented showed that moisture content, chemical and mineral compositions exert much influence on clay plasticity (compressive stress parameter). Equipped with such correlations, possible adjustment can be made to obtain desired results.

The different forces with radial variations during compression test of the samples are presented in Figures 2 and 3. The dots are the experimental points which fitted into theoretical curves of plasticity.

During compression, internal stress distribution affects the physical structure of the samples with a frictional force between the two opposing plates and the clay sample (Figure 1(a)). Water molecules which are bi-polar are attracted to the tiny particles of clay which are negatively charged and keeps them together by means

Table 3. Atterberg plastic parameters.

Sample	Liquid limits (%)	Plastic limits (%)	Plastic index
Afuze	29	21	8
Ihitte	63	41	22
Kutigi	30	19	11
Minna	91	42	49
Nsu	50	36	14
Oboro	82	44	38
Obowo	98	52	46
of capillary forces. These forces are overpowered upon exertion of more stress causing the water molecules to recede and allow the inflow of air into the pores of the ceramic body (Figure 1(b)). Deformation occurred gradually until crack was initiated (Figure 1(c)) on the side walls of the samples which propagated as the load increased (barreling). This was possible because the samples were not confined.

Table 4. Compressive stresses at different moisture contents.

Clay	Moisture (%)	Compressive stress (MPa)	Coefficient of friction
Afuze	27	0.02	0.15
	40		
Ihitte	45	0.05	0.15
	40	0.04	0.15
Kutigi	27	0.02	0.15
	40		
Minna	53	0.03	0.15
	40	0.06	0.15
Nsu	44	0.04	0.15
	40	0.03	0.15
Oboro	52	0.11	0.15
	40	0.03	0.15
Obowo	57	0.15	0.15
	40	0.03	0.15

The moisture contents of 27, 45, 27, 53, 44, 52, and 57 for Afuze, Ihitte, Kutigi, Minna, Nsu, Oboro, and Obowo were adapted from Ihekweme et al. with permission from Elsevier.

Figure 2. Curves of applied force versus radial changes; Rf-R0 are radius after and before compression respectively, the lines represent theoretical fitted curves while the points are experimental data (a) varying moisture content; Obowo has the highest plasticity while kutigi possessed the lowest plasticity (b) 40% moisture content; Minna possessed the highest plasticity curve, Ihitte was more plastic than the others while Obowo has the lowest plasticity outside Kutigi and Afuze that are non-plastic at 40% moisture content.
Figure 3. Comparative presentation of the clay minerals with varying and 40% moisture content of individual same clay mineral. Rf-R0 represents the radius after and before compression respectively; the lines are theoretical fitted curves while the dots are experimental data. Afuze and Kutigi (a and c) showed reasonable plasticity at 27% moisture content, (b) Ihitte exhibited more plasticity at 46% moisture content with lesser force than at 40% moisture content, (d) Minna showed more strength at 40% but lower plasticity, it exhibited high plasticity at 53% moisture content, (e) Nsu was more plastic at 44% than at 40%, (f) Oboro was more plastic at 52% than at 40%, and (g) Obowo was more plastic at 57% moisture content however it utilized higher force to achieve that.
in a die. Although soil exhibit both elastic and plastic behavior, elastic strain was excluded due to insignificant elastic limit which is of no interest in the study.

The behavior exhibited (Figures 2 and 3) were in agreement with stress-strain curve for elasto-plastic deformation of porous ceramic materials. Straight line part of the graph showed elastic deformation while the curve portion showed plastic deformation. Early cracking was observed for Kutigi and Afuze samples at 27% moisture content which indicated their low-plastic nature. They are non-sedimentary kaolin and lack organic substances which improve the plasticity of clay. Kaolinite clay requires more time for water to penetrate some of the basal plane surfaces to a fix position, an act that aids the development of plasticity and bonding strength.41 However, time factor was not included in the analysis. More so, at moisture content above 27%, they exceeded their plastic limits and became difficult to mold corroborating the earlier report by Baran et al.42 and Barnes.43 Such was observed at 40% moisture (Figure 2(b)) content where they exhibited extreme humidity and do not possess enough green strength for the compression test. Obviously, their optimum water content had been exceeded causing aggregates saturation and pores to be partly filled by free water, hence are represented by the straight line. Minna and Ihitte showed high plastic strength which may be attributed to their high content of iron and swelling potentials due to dry density.44 Fe atoms are known to affect the hardening and shrinkage of clay minerals because they act as an internal source of heat and had effect on reaction kinetics. They also possessed high content of zeolites with special properties45 and chlorite respectively which has high affinity for water.

Different moisture content induce significant changes in plastic behavior of cylindrical clay bodies (Figure 2(a)) due to the rearrangement of clusters of adjacent grains guiding the laminar properties in a flow direction and the separation of attractive and repulsive forces between the clay particles. Obowo showed the highest plasticity, that is, highest curve while Kutigi showed the lowest plasticity with the lowest curve.14 This also conforms to the Atterberg and moisture content results.

Producing Expanded Clay Aggregates with the low plastic clay will require the addition of processing binders like sodium salt, Zusoplast C28 or any compatible plasticizers to extend the plastic region.2,39 This can however be overcome by having a blend of high plastic clay mineral with non-plastic clay mineral since it has been reported that, the adsorption of heavy metals depends on the plasticity of fine-grained soil.20

Conclusion

Direct measurement of clay plasticity by moisture content evaluation and the relationship between the applied force and the resultant deformation has been presented. Compressive test has proven to be suitable to characterize the plastic behavior of extruded clay. Good correlation between the experimental points and theoretical curves were obtained. Optimum water content of 27%, 46%, 27%,
53%, 44%, 52%, and 57% are recommended for Afuze, Ihitte, Kutigi, Minna, Nsu, Oboro, and Obowo, respectively based on the obtained result. Compressive stresses and plastic indices are parameters to predict plasticity in relation with chemical and mineral compositions and moisture content. Thus the clay material properties can be optimized using this veritable tool for wide industrial applications. Low plastic clay will require addition of plasticizers to bind the particles or working with optimum moisture content to extend their plastic regions. Good plasticity occurs when the material do not present early crack or extreme humidity. From the perspective of water filter application and in order to eliminate the use of chemicals in treatment plants, it is recommended that the low plastic clay (Kutigi) be mixed with high plastic clay (Minna) to obtain balanced plasticity that will withstand the frothing pressure during backwashing in treatment plants or water bottles when using Expanded Clay Aggregates. These two samples were also favored in the multiple characterizations previously reported by same authors. Future work will use the selected clay and associated minerals to produce Expanded Clay Aggregates for ceramic water filters. This will be tested on contaminants removal of microbes, organic contaminants, and adsorption studies of heavy metals.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors acknowledge the funds provided by African Development Bank (AfDB) (NMI- AIST 2100155032824) and the Pan African Materials Institute under the World Bank African Centers of Excellence (ACE) program (PAMI/2015/5415-NG). Both Organizations are hosted by the African University of Science and Technology (AUST), Abuja, Nigeria.

ORCID iDs
Gina Odochi Ihekweme https://orcid.org/0000-0003-3091-8560
Godwin Mong Kalu-Uka https://orcid.org/0000-0001-5487-1563

Data availability
The data that support the findings of this study is available from the corresponding author, Ihekweme GO, upon request.

References
1. Brownell WE. Structural clay products. Vol. 9. Applied Mineralogy. Berlin: Springer, 1976.
2. De Andrade FA, Al-qureshi HA and Hotza D. Measuring and modeling the plasticity of clays. Mater Res 2010; 13(3): 395–399.
3. Perkins WW. Ceramic glossary. Westerville, OH: The American Ceramic Society, 1995.
4. William B. Clay mineralogy and chemistry. In: William B (ed.) Soil and environmental chemistry. 2nd ed. Massachusetts, USA: Academic Press, 2017, pp.87–146.
5. Corapcioglu Y and Uz T. Constitutive equations for plastic deformation of porous materials. Powder Technol 1978; 21(2): 269–274.
6. Bergaya F and Lagaly G. General introduction: clays, clay minerals, and clay science. In: Bergaya F, Theng BKG and Largaly G (eds) Developments in clay science. Vol. 1., Oxford, UK: Elsevier, 2006, pp.1–18.
7. Hall FP. Methods of measuring the plasticity of clays. Technologic Papers of the Bureau of Standards, Washington Government Printing Office, 1923, pp.345–366.
8. White WA. Atterberg plastic limits of clay minerals. Report, University of Illinois, 1942; 265: 263–265.
9. Annan E, Kan-dapaah K, Azeko ST, et al. Clay mixtures and the mechanical properties of microporous and nanoporous ceramic water filters. J Mater Civil Eng 2014; 7: 1–11.
10. Bergaya F and Lagaly G. Introduction to clay science: techniques and applications. Vol. 5. 2nd ed. Handbook of Clay Science. Elsevier: Elsevier Ltd., 2013, pp.1–7.
11. Mulqueen J. Plasticity characteristics of some carboniferous clay soils in north central Ireland and their significance. J Agric Res 1976; 15(1): 129–136.
12. Charkley FN, Zhang K and Mei G. Shear strength of compacted clays as affected by mineral content and wet-dry cycles. Adv Civ Eng 2019; 2019 (8): 1–8.
13. Khlystov N, Lizardo D, Matsushita K, et al. Uniaxial tension and compression testing of materials. Lab Report, 2013.
14. Flores OJU, Andrade FA, Hotza D, et al. Modeling of plasticity of clays submitted to compression test. Int J Mater Metall Eng 2010; 4(1): 31–36.
15. Andrade FA, Al-qureshi HA and Hotza D. Applied clay science measuring the plasticity of clays: a review. Appl Clay Sci 2011; 51(1–2): 1–7.
16. Ojuri OO. Predictive shear strength models for tropical lateritic soils. J Eng 2013; 2013: 1–8.
17. Onunkwo AA, Uzoije AP and Onyekuru SO. Engineering properties and uses of soil derive from Maastrichtian Ajali formation in a part of SE Nigeria. Br J Environ Sci 2014; 2(4): 11–28.
18. Owolabi TA and Aderinola OS. Geotechnical evaluation of some lateritic soils in Akure South, South-Western Nigeria. Electron J Geotech Eng 2014; 19: 6675–6687.
19. Adeagbo MO, Ola SA and Ojuri OO. Mineralogy and geotechnical characteristics of some pottery clay. Leonardo Electron J Pract Technol 2016; 15(29): 61–78.
20. Ojuri OO, Akinwumi II and Oluwatuyi OE. Nigerian lateritic clay soils as hydraulic barriers to adsorb metals: geotechnical characterization and chemical compatibility. Environ Prot Eng 2017; 43(4): 209–222.
21. Oluwatuyi OE, Adeola BO, Alhassan EA, et al. Case studies in construction materials ameliorating effect of milled eggshell on cement stabilized lateritic soil for highway construction. Case Stud Constr Mater 2018; 9: e00191.
22. Didei IS and Oborie E. Classification and evaluation of soil compaction at shallow depth in Ogbiriri and its environs, Bayelsa State, South-South Nigeria. Int J Agric Earth Sci 2018; 4(1): 22–33.
23. Onakunle O, Omofo DO and Ogbie AS. Stabilization of lateritic soil from Agbara Nigeria with ceramic waste dust. Cogent Eng 2019; 6(1): 1710087.
24. Ajibade FO, Akosile SI, Oluwatuyi OE, et al. Bacteria removal efficiency data and properties of Nigerian clay used as a household ceramic water filter. *Results Eng* 2019; 2(April): 100011.

25. Ogbuagu FU and Okeke CAU. Geotechnical properties of lateritic soil from Nimo and Nteje areas of Anambra State, Southeastern Nigeria. *IOP Conf Ser Mater Sci Eng* 2019; 640(1): 012078.

26. Ihekweme GO, Shondo JN, Orisekeh kingsley I, et al. Characterization of certain Nigerian clay minerals for water purification and other industrial applications. *Heliyon* 2020; 6(December): e03783.

27. ASTM D 4318. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. *ASTM Int* 2000; 4: 1–14.

28. Baver L. The Atterberg consistency constants: factors affecting their values, and a new concept of their significance. *J Am Soc Agron* 1930; 22: 935–948.

29. Willis EA. Discussion on: a study of lateritic soils by B. *Fruehaufl Proc Highw Res Board* 1946; 26: 589–590.

30. Baver L. *Soil physics*. New York, NY: Wiley, 1948, pp.1–389.

31. Hough BK. Basic soils engineering. New York, NY: Ronald, 1957, pp.1–513.

32. Piaskowski A. The physico-chemical and chemical properties of fine-grained soils. Warsaw: Arkada, 1963, pp.1–100.

33. Bell F. *Engineering geology*. Vol. 53. 2nd ed. 2007. Elsevier, Oxford UK

34. Wen J, Li X, Liu W, et al. Photocatalysis fundamentals and surface modification of TiO$_2$ nanomaterials. *Chin J Catal* 2015; 36(12): 2049–2070.

35. Bain JA. A plasticity chart as an aid to the identification and assessment of industrial clays. *Clay Miner* 1971; 9(1): 1–17.

36. Whitlow R and Koch M. Basic soil mechanics. *Pure Appl Geophys* 1995; 144(2): 366–367.

37. Osinubi KJ, Eberemu AO, Gadzama EW, et al. Plasticity characteristics of lateritic soil treated with Sporosarcina pasteurii in microbial-induced calcite precipitation application. *SN Appl Sci* 2019; 1(8): 1–12.

38. Ribeiro MJ, Ferreira JM and Labrincha JA. Plastic behaviour of different ceramic pastes processed by extrusion. *Ceram Int* 2005; 31(4): 515–519.

39. Vitorino N, Freitas C, Ribeiro MJ, et al. Extrusion of ceramic emulsions: plastic behavior. *Appl Clay Sci* 2014; 101: 315–319.

40. Gidigasu MD. Plasticity characteristics of laterite soils. *Dev Geotech Eng* 1976; 9: 227–258.

41. Grim RE and Culhbert FL. Some clay water properties of certain clay minerals. *J Am Ceram Soc* 1945; 28(3): 90–95.

42. Baran B, Ertüürk T, Sarıkaya Y, et al. Workability test method for metals applied to examine a workability measure (plastic limit) for clays. *Appl Clay Sci* 2001; 20(1–2): 53–63.

43. Barnes GE. Workability of clay mixtures. *Appl Clay Sci* 2018; 153: 107–112.

44. Ferber V, Auriol J, Cui Y, et al. On the swelling potential of compacted high plasticity clays. *Eng Geol* 2009; 104(3–4): 200–210.

45. Rhodes CJ. Properties and applications of zeolites. *Sci Prog* 2010; 93: 223–284.
Author biographies

Dr. Gina Odochi Ihekweme is a Production Engineer at the National Agency for Science and Engineering Infrastructure. Her area of research is Materials Science and Engineering with specialty in water purification and materials for solar cell production.

Dr. Ifenyinwa Ijeoma Obianyo is a Post Doctoral Researcher with interest in clay science and its application in sustainable building materials.

Kingsley Ikechukwu Orisekeh is a PhD Candidate at the African University of Science and Technology, Abuja with expertise in energy materials for solar cells production and batteries.

Godwin Mong Kalu-Uka is a Lecturer at Alex Ekwueme University Ndufu-Alkike as well as a PhD candidate with interest in multi-functional materials for bio-fuels application.

Iheoma C Nwuzor is a senior lecturer at Nnamdi Azikiwe University Awka. Her area of specialty is on polymer science and engineering, polymer blends and clay science for sustainable development applications.

Prof. Azikiwe Peter Onwualu is the Head of Materials Science, African University of Science and Technology, Abuja with interest in water purification and biomass processing Engineering.