First-principles study of structural, magnetic and electronic properties of small FeRh alloy clusters

Junais Habeeb Mokkath and G. M. Pastor

Institut für Theoretische Physik, Universität Kassel, Heinrich Plett Straße 40, 34132 Kassel, Germany

(Dated: December 21, 2013)

Abstract

The structural, electronic and magnetic properties of small Fe$_m$Rh$_n$ clusters having $N = m + n \leq 8$ atoms are studied in the framework of a generalized-gradient approximation to density-functional theory. For $N = m + n \leq 6$ a thorough sampling of all cluster topologies has been performed, while for $N = 7$ and 8 only a few representative topologies are considered. In all cases the entire concentration range is systematically investigated. All the clusters show ferromagnetic-like order in the optimized structures. As a result, the average magnetic moment per atom $\bar{\mu}_N$ increases monotonously, which is almost linear over a wide range of concentration with Fe content. A remarkable enhancement of the local Fe moments beyond $3 \mu_B$ is observed as result of Rh doping. The composition dependence of the binding energy, average magnetic moment and electronic structure are discussed.

PACS numbers: 75.75.+a, 36.40.Cg, 75.50.Bb, 73.22.-f
I. INTRODUCTION

Alloying elements with complementary qualities in order to tailor their physical behavior for specific technological purposes has been a major route in material development since the antiquity. Cluster research is no exception to this trend. After decades of systematic studies of the size and structural dependence of the most wide variety of properties of monoelement particles, the interest has actually been moving progressively over the past years towards investigations on finite-size binary alloys. The magnetism of transition-metal (TM) clusters opens numerous possibilities and challenges in this context. For example, one would like to understand how to modify the magnetic characteristics of clusters, in particular the saturation magnetization and the magnetic anisotropy energy (MAE), as it has been done in solids. This would indeed allow one to design new nanostructured materials from a microscopic perspective. Nevertheless, it also true that controlling composition, system size, and magnetic behavior sets serious difficulties for both experiment and theory.

Pure TM clusters such as $\text{Fe}_N$, $\text{Co}_N$ and $\text{Ni}_N$ show spin moments, orbital moments, and MAEs that are enhanced with respect to the corresponding periodic solids. Still, the possibilities of optimizing the cluster magnetic behavior by simply tuning the system size have been rather disappointing, particularly concerning the MAE, which remains relatively small—despite being orders of magnitude larger than in solids—due to the rather weak spin-orbit (SO) coupling in the $3d$ atoms. This is one of the motivations for alloying $3d$ TMs with $4d$ and $5d$ elements which, being heavier, are subject to stronger SO interactions. In this context it is useful to recall that large nanoparticles and three dimensional solids of these elements are non-magnetic. However, at very small sizes the $4d$ and $5d$ clusters often develop a finite spontaneous low-temperature magnetization, due to the reduction of local coordination and the resulting $d$-band narrowing. The first experimental observation of this important finite-size effect has been made by Cox et al. by performing Stern-Gerlach-deflection measurements on $\text{Rh}_N$ clusters. In this work the average magnetic moments per atom $\bar{\mu}_N = 0.15\text{–}0.80\mu_B$ have been experimentally determined for $N \leq 30\text{–}50$ atoms. In view of these contrasting features one expects that $3d\text{-}4d$ and $3d\text{-}5d$ alloy clusters should show very interesting structural, electronic and magnetic behaviors.

The purpose of this paper is to investigate the ground-state properties of the small FeRh clusters in the framework of Hohenberg-Kohn-Sham’s density functional theory. Besides
the general interest of the problem from the perspective of 3d-4d nanomagnetism, these clusters are particularly appealing because of the remarkable phase diagram of FeRh bulk alloys. In the case of Fe$_{50}$Rh$_{50}$, the magnetic order at normal pressure and low temperatures is antiferromagnetic (AF). As the temperature increases this $\alpha''$ phase undergoes a first order transition to a ferromagnetic (FM) state, the $\alpha'$ phase, which is accompanied by a change in lattice parameter. The corresponding transition temperature $T_{c}^{\alpha'\alpha''}$ increases rapidly with increasing external pressure $P$, eventually displacing the FM $\alpha'$ phase completely for $P \geq 7 \text{ GPa}$ ($T_{c}^{\alpha'\alpha''} \simeq 290K$ for Fe$_{50}$Rh$_{50}$ at normal pressure). Moreover, $T_{c}^{\alpha'\alpha''}$ decreases very rapidly with decreasing Rh content. At low pressures the FM $\alpha'$ phase undergoes a FM to paramagnetic (PM) transition at ($T_{C} \simeq 670K$). In addition, the properties of $\alpha$-FeRh bulk alloys have been the subject of first principles and model theoretical investigations. In particular these show that the relative stability of the FM and AF solutions depends strongly on the interatomic distances. Such remarkable condensed-matter effects enhance the appeal of small FeRh particles as specific example of 3d-4d nanoscale alloy. Investigations of their magnetic properties as a function of size, composition, and structure are therefore of fundamental importance.

The remainder of the paper is organized as follows. In Sec. II the main details of the theoretical background and computational procedure are presented. This includes in particular a description of the strategy used for exploring the cluster energy landscape as a function of geometrical conformation and chemical order. The results of our calculations for FeRh clusters having $N \leq 8$ atoms are reported in Sec. III by analyzing the concentration dependence of the cohesive energy, the local and average magnetic moments, and the spin-polarized electronic structure. Finally, we conclude in Sec. IV with a summary of the main trends and an outlook to future extensions.

II. COMPUTATIONAL ASPECTS

The calculations reported in this work are based on density functional theory as implemented in the Vienna ab initio simulation package (VASP). The exchange and correlation energy is described by using both the spin-polarized local density approximation (LDA) and Perdew and Wang’s generalized-gradient approximation (GGA). The VASP solves the spin-polarized Kohn-Sham equations in an augmented plane-wave basis set, taking into
account the core electrons within the projector augmented wave (PAW) method. This is an efficient frozen-core all-electron approach which allows to incorporate the proper nodes of the Kohn-Sham orbitals in the core region and the resulting effects on the electronic structure, total energy and interatomic forces. The $4s$ and $3d$ orbitals of Fe, and the $5s$ and $4d$ orbitals of Rh are treated as valence states. The wave functions are expanded in a plane wave basis set with the kinetic energy cut-off $E_{\text{max}} = 268$ eV. In order to improve the convergence of the solution of the selfconsistent KS equations the discrete energy levels are broadened by using a Gaussian smearing $\sigma = 0.02$ eV. The validity of the present choice of computational parameters has been verified. The PAW sphere radii for Fe and Rh are $1.302\ \text{Å}$ and $1.402\ \text{Å}$, respectively. A simple cubic supercell is considered with the usual periodic boundary conditions. The linear size of the cell is $a = 10–22\ \text{Å}$, so that any pair of images of the clusters are well separated and the interaction between them is negligible. Since we are interested in finite systems, the reciprocal space summations are restricted to the $\Gamma$ point.

Although the potential advantages of alloying magnetic $3d$ elements with highly-polarizable $4d$ or $5d$ elements are easy to understand, the problem involves a number of serious practical challenges. Different growth or synthesis conditions can lead to different chemical orders, which can be governed not just by energetic reasons but by kinetic processes as well. For instance, one may have to deal with segregated clusters having either a $4d$ core and a $3d$ outer shell or vice versa. Post-synthesis manipulations can induce different degrees of intermixing, including for example surface diffusion or disordered alloys. Moreover, the interatomic distances are also expected to depend strongly on size and composition. Typical TM-cluster bond-lengths are in fact $10–20\%$ smaller than in the corresponding bulk crystals. Taking into account that itinerant $3d$-electron magnetism is most sensitive to the local and chemical environments of the atoms, it is clear that controlling the distribution of the elements within the cluster is crucial for understanding magnetic nanoalloys.

Systematic theoretical studies of binary-metal clusters are hindered by the diversity of geometrical conformations, ordered and disorder arrangements, as well as segregation tendencies that have to be taken into account. This poses a serious challenge to both first-principles and model approaches. In order to determine the interplay between cluster structure, chemical order and magnetism in FeRh clusters we have performed a comprehensive set of electronic calculations for clusters having $N \leq 8$ atoms. In the present paper we focus
on the most stable cluster structure and magnetic configuration, which are determined by
exploring the ground-state energy landscape. This is a formidable task, since one needs
to consider a large, most possibly complete and unbiased set of initial structures. Such a
thorough geometry optimization must include not only the representative cluster geometries
or topologies, but also all relevant chemical orders. This requires taking into account all
distributions of the Fe and Rh atoms for any given size and composition. These two aspects
of the problem of determining the structure of nanoalloys are discussed in more detail in the
following.

The different cluster topologies are sampled by generating all possible graphs for $N \leq 6$
atoms as described in Ref. 38 (see also Ref. 41). For each graph or adjacency matrix it is
important to verify that it can be represented by a true structure in $D \leq 3$ dimensions.
A graph is acceptable as a cluster structure, only if a set of atomic coordinates $\vec{R}_i$ with
$i = 1, \ldots, N$ exists, such that the interatomic distances $R_{ij}$ satisfy the conditions $R_{ij} = R_0$
if the sites $i$ and $j$ are connected in the graph (i.e., if the adjacency matrix element $A_{ij} = 1$)
and $R_{ij} > R_0$ otherwise (i.e., if $A_{ij} = 0$). Here $R_0$ refers to the nearest neighbor (NN)
distance, which at this stage can be regarded as the unit of length, assuming for simplicity
that it is the same for all clusters. Notice that for $N \leq 4$ all graphs are possible cluster
structures. For example, for $N = 4$, the different structures are the tetrahedron, rhombus,
square, star, triangular racket and linear chain. However, for $N \geq 5$ there are graphs,
i.e., topologies, which cannot be realized in practice. For instance, it is not possible to
have five atoms being NNs from each other in a three dimensional space. Consequently, for
$N \geq 5$ there are less real structures than mathematical graphs. The total number of graphs
(structures) is 21 (20), 112 (104), and 853 (647) for $N = 5, 6$, and 7, respectively.

For clusters having $N \leq 6$ atoms all these topologies have indeed been taken as starting
points of our structural relaxations. Out of this large number of different initial configura-
tions the unconstrained relaxations using VASP lead to only a few geometries, which can
be regarded as stable or metastable isomers. For larger clusters ($N = 7$ and 8) we do not
aim at performing a full global optimization. Our purpose here is to explore the interplay
between magnetism and chemical order as a function of composition for a few topologies that
are representative of open and close-packed structures. Taking into account our results for
smaller sizes, and the available information on the structure of pure Fe$_N$ and Rh$_N$ clusters,
we have restricted the set of starting topologies for the unconstrained relaxation of FeRh
heptamers and octamers to the following: bicapped trigonal bipyramid, capped octahedra, and pentagonal bipyramid for $N = 7$, and tricapped trigonal bipyramid, bicapped octahedra, capped pentagonal bipyramid and cube for $N = 8$. Although, the choice of topologies for $N = 7$ and 8 is quite restricted, it includes compact as well as more open structures. Therefore, it is expected to shed light on the dependence of the magnetic properties on the chemical order and composition.

The dependence on concentration is investigated systematically for each topology of Fe$_m$Rh$_n$ by varying $m$ and for each size $N = m + n \leq 8$, including the pure Fe$_N$ and Rh$_N$ limits. Moreover, we take into account all possible non-equivalent distributions of the $m$ Fe and $n$ Rh atoms within the cluster. In this way, any a priori assumption on the chemical order is avoided. Obviously, such an exhaustive combinatorial search increasingly complicates the computational task as we increase the cluster size, and as we move away from pure clusters towards alloys with equal concentrations. Finally, in order to perform the actual density-functional calculations we set for simplicity all NN distances in the starting cluster geometry equal to the Fe bulk value $R_0 = 2.48$ Å. Subsequently, a fully unconstrained geometry optimization is performed from first principles by using the VASP. The atomic positions are fully relaxed by means of conjugate gradient or quasi-Newtonian methods, without imposing any symmetry constraints, until all the force components are smaller than the threshold 5 meV/Å. The convergence criteria are set to $10^{-5}$ eV/Å for the energy gradient, and $5 \times 10^{-4}$ Å for the atomic displacements. The same procedure applies to all considered clusters regardless of composition, chemical order, or total magnetic moment. Notice that the diversity of geometrical structures and atomic arrangements often yields many local minima on the ground-state energy surface, which complicates significantly the location of the lowest-energy configuration.

Lattice structure and magnetic behavior are intimately related in TMs, particularly in weak ferromagnets such as Fe and its alloys. On the one side, the optimum structure and chemical order depend on the actual magnetic state of the cluster as given by the average magnetic moment per atom $\overline{\mu}_N$ and the magnetic order. On the other side, the magnetic behavior is known to be different for different structures and concentrations. Therefore, in order to rigorously determine the ground-state magnetic properties of FeRh clusters, we have varied systematically the value of the total spin polarization of the cluster $S_z$ by performing fixed spin-moment (FSM) calculations in the whole physically relevant range. Let us recall
that \( S_z = (\nu_\uparrow - \nu_\downarrow)/2 \) where \( \nu_\uparrow(\nu_\downarrow) \) represents the number of electrons in the majority (minority) states. In practice we start from the non-magnetic state \( (S_z^{min} = 0) \) and increase \( S_z \) until the local spin moments are fully saturated, i.e., until the Fe moments in the PAW sphere reach \( \mu_{Fe} \approx 4\mu_B \) and the Rh moments \( \mu_{Rh} \approx 2.5\mu_B \) (typically, \( S_z^{max} \gtrsim 3N/2 \)). The above described global geometry optimizations are performed independently for each value of \( S_z \). These FSM study provides a wealth of information on the isomerization energies, the spin-excitation energies, and their interplay. These are particularly interesting for a subtle magnetic alloy such as FeRh, and would therefore deserve to be analyzed in some more detail.

In the present paper we shall focus on the ground-state properties by determining for each considered \( \text{Fe}_m\text{Rh}_n \) the most stable structural and magnetic configuration corresponding to energy minimum as a function of \( S_z \) and of the atomic positions.\(^{40} \)

Once the optimization with respect to structural and magnetic degrees of freedom is achieved, we derive the binding energy per atom \( E_B = [mE(\text{Fe}) + nE(\text{Rh}) - E(\text{Fe}_m\text{Rh}_n)]/N \) in the usual way by referring the total energy \( E \) to the corresponding energy of \( m \) Fe and \( n \) Rh isolated atoms. Moreover, for each stationary point of the total energy surface (i.e., for each relaxed structure having a nearly vanishing \( \|\nabla E\| \)) we determine the vibrational frequencies from the diagonalization of the dynamical matrix. The latter is calculated from finite differences of the analytic gradients of the total energy. In this way we can rule out saddle points to which the local optimization procedure happens to converge on some occasions. Only configurations which correspond to true minima are discussed in the following.

Finally, a number of electronic and magnetic properties —for example, the binding energy, the local magnetic moments \( \mu_i \) integrated within the Wigner-Seitz (WS) or Bader atomic cells of atom \( i \)\(^{45,46} \) and the spin polarized density of electronic states (DOS) \( \rho_\sigma(\varepsilon) \)— are derived from the self-consistent spin-polarized density and Kohn-Sham spectrum.

III. RESULTS AND DISCUSSION

In the following we present and discuss results for the binding energy, average and local spin moments, and electronic densities of states for \( N = m + n \leq 8 \).
FIG. 1. (Color online) Binding energy per atom $E_B$ of $Fe_m Rh_n$ clusters as a function of the number of Fe atoms. The lines connecting the points for each $N = m + n$ are a guide to the eye.

A. Binding energy and magnetic moments

In Fig. 1 the binding energy per atom $E_B$ is given as a function of the number of Fe atoms $m$. Besides the expected monotonic increase of $E_B$ with increasing $N$, an interesting concentration dependence is observed. For very small sizes ($N \leq 4$) $E_B$ is maximal for $m = 1$ or 2, despite the fact that $E_B$ is always larger for pure Rh than pure Fe clusters. This indicates that in these cases the bonding resulting from FeRh pairs is stronger than RhRh bonds. Only for $m \geq N - 1$, when the number of weaker FeFe bonds dominates, one observes that $E_B$ decreases with increasing $m$. For larger sizes ($N \geq 5$) the strength of RhRh and FeRh bonds becomes very similar, so that the maximum in $E_B$ is replaced by a range of Fe concentrations $x = m/N \lesssim 0.5$ where $E_B$ depends very weakly on $m$.

In Fig. 2 the average magnetic moments $\overline{\mu}_N$ of $Fe_m Rh_n$ are shown as a function of $m$ for $N \leq 8$. First of all, one observes that $\overline{\mu}_N$ increases monotonously, with the number of Fe atoms. This is an expected consequence of the larger Fe local moments and the underlying FM-like magnetic order. The average slope of the curves tends to increase with decreasing $N$, since the change in concentration per Fe substitution is more important the smaller the size is. The typical increase in $\overline{\mu}_N$ per Fe substitution is about $(1/N)\mu_B$ per Fe substitution. Notice, moreover, the enhancement of the magnetic moments of the pure clusters in particular for $Fe_N$ ($m = N$), which go well beyond $3\mu_B$, the value corresponding to a saturated $d$-band in the $d^7s^1$ configuration. In contrast, the moments of pure $Rh_N$ are far from saturated except for $N = 2$ and 7 (see Fig. 2 for $m = 0$). In this context it is
FIG. 2. (Color online) Total magnetic moment per atom $\mu_N$ of $\text{Fe}_m\text{Rh}_n$ clusters as a function of number of Fe atoms. The symbols corresponding to each size are the same as in Fig. 1. The lines connecting the points for each $N = m + n$ are a guide to the eye.

FIG. 3. (Color online) Local magnetic moment $\mu_\alpha$ at the Fe and Rh atoms as a function of the number Fe atoms $m$.

important to recall that a thorough global optimization, for example, by considering a large number of initial topologies, could affect the quantitative values of the magnetic moments for $N = 7$ and 8.

The local magnetic moments in the PAW sphere of the Fe and Rh atoms provide further insight on the interplay between 3$d$ and 4$d$ magnetism in $\text{Fe}_m\text{Rh}_n$. In Fig. 3 $\mu_{\text{Fe}}$ and $\mu_{\text{Rh}}$ are shown as a function of $m$ for $N = 6$–8. The Fe moments are essentially given by the saturated $d$-orbital contribution. For pure Fe clusters the actual values of $\mu_{\text{Fe}}$ within the PAW sphere are somewhat lower than $3\mu_B$ due to a partial spill-off of the spin-polarized density. Notice that the Fe moments increase as we replace Fe by Rh atoms showing some weak oscillations as a function of $m$. The increase is rather weak for a single Rh impurity
in Fe$_{N-1}$Rh but becomes stronger reaching a more or less constant value as soon as the cluster contains 2 or more Rh ($m \leq N-2$, see Fig. 3). This effect can be traced back to a $d$ electron charge transfer from Fe to Rh which, together with the extremely low coordination number, yields a full polarization of the larger number of Fe $d$ holes. On the other side the Rh moments are not saturated and therefore are more sensitive to size, structure and composition. The values of $\mu_{\text{Rh}}$ are in the range of $1-1.5\mu_B$ showing some oscillations as a function of $m$. No systematic enhancement of $\mu_{\text{Rh}}$ with increasing Fe content is observed. This behavior could be related to charge transfers effects leading to changes in the number of Rh $d$ electrons as a function of $m$.

Finally, it is interesting to analyze the role played by magnetism in defining the cluster structure by comparing magnetic and non-magnetic calculations. For the smallest FeRh clusters ($N = 3$ and 4) the magnetic energy $\Delta E_m = E(S_z = 0) - E(S_Z)$ gained upon magnetization is higher in the first excited isomer than in the most stable structure. This implies that the contribution of magnetism to the structural stability is not crucial, since the non-magnetic calculations yield the same ordering, at least concerning the two best structures. This suggests that for the smallest sizes the kinetic or bonding energy dominates the structural stability, which also explains that the two most stable isomers have different topologies. The situation changes for large clusters. For $N \geq 5$ one finds a number of FeRh clusters for which the optimal structure is actually stabilized by magnetism. For example, in Fe$_4$Rh, Fe$_3$Rh$_2$, and FeRh$_4$ the energy ordering of the two most stable isomers would be reversed if magnetism were neglected. It should be noted that in these cases the structures differ only in the chemical order, not in the topology which is a TBP. In the FeRh hexamers the energy differences between the low-lying isomers are more important and only in one case, Fe$_4$Rh$_2$, magnetism appears to be crucial for stabilizing the actual optimal structure. A similar strong interplay between structure, chemical order and magnetism is expected for larger FeRh clusters.

B. Electronic structure

It is very interesting to analyze, at least for some representative examples, how the electronic structure depends on the composition of magnetic nanoalloys. To this aim we report in Fig. 4 the spin-polarized $d$-electron density of states (DOS) of representative FeRh
FIG. 4. (Color online) Electronic density of states (DOS) of FeRh octamers. Results are given for the total (solid), the Fe-projected (dotted), and the Rh-projected (dashed) $d$-electron DOS. Positive (negative) values correspond to majority (minority) spin. A Lorentzian width $\lambda = 0.02$ eV has been used to broaden the discrete energy levels.

octamers having the most stable relaxed configuration among the considered topologies (see Sec. II). Results for pure Fe$_8$ and Rh$_8$ are also shown for the sake of comparison. In all the clusters, the dominant peaks in the relevant energy range near $\varepsilon_F$ correspond either to the Fe-3$d$ or to the Rh-4$d$ states. The valence spectrum is largely dominated by these $d$-electron contributions. In fact the total DOS and the $d$-projected DOS are difficult to tell apart.

First of all, let us consider the DOS of the pure clusters. Our results for Rh$_8$ with a cube structure are similar to those of previous studies. They show the dominant $d$-electron contribution near $\varepsilon_F$, with the characteristic ferromagnetic exchange splitting between the
minority and majority spin states. In Fig. 4 we also included the DOS for Rh with a BCO structure, since it allows us to illustrate the differences in the electronic structure of compact and open geometries. Moreover, the DOS of pure Rh with BCO structure is very useful in order to demonstrate the dependence of DOS on Fe content, since the structures of Fe$_m$Rh$_{8-m}$ with $m \geq 1$ are similar to the BCO. Both Fe and Rh show relatively narrow $d$-bands which dominate the single-particle energy spectrum in the range $-5eV \leq \varepsilon - \varepsilon_F \leq 3eV$. The spin polarization of the DOS clearly reflects the ferromagnetic order in the cluster. Putting aside the exchange splitting, the peak structure in the up and down DOS $\rho_\sigma(\varepsilon)$ are comparable. There are even qualitative similarities between the two elements. However, looking in more detail, one observes that the effective $d$-band width in Fe (about 4 eV) is somewhat smaller than in Rh (about 5 eV). Moreover, in Rh the DOS at $\varepsilon_F$ is non-vanishing for both spin directions and the finite-size gaps are very small (see Fig. 4). In contrast, the majority $d$-DOS is fully occupied in Fe, with the highest majority state lying about 0.5 eV below $\varepsilon_F$. In addition there is an appreciable gap (about 0.1 eV) in the corresponding minority spectrum. These qualitative differences are of course consistent with the fact that Fe is a strong ferromagnet with saturated moments, while Rh should be regarded as a weak unsaturated ferromagnet.

The trends as a function of concentration reflect the crossover between the previous contrasting behaviors. For low Fe concentration (e.g., Fe$_2$Rh$_6$) we still find states with both spin directions close to $\varepsilon_F$. The magnetic moments are not saturated, although the Fermi energy tends to approach the top of the majority band. Moreover, the majority-spin states close to $\varepsilon_F$ have dominantly Rh character. Small Fe doping does not reduce the $d$-band width significantly. Notice the rather important change in the shape of the DOS in Fe$_2$Rh$_6$ as compared to the DOS in Rh$_8$. This is a consequence of the change in topology from cubic to bicapped octahedron (BCO).

For equal concentrations (Fe$_4$Rh$_4$) the first signs of $d$-band narrowing and enhanced exchange splitting start to become apparent. The spin-up states (majority band) which in Fe$_2$Rh$_6$ contribute to the DOS at $\varepsilon_F$ now move to lower energies (0.3 eV below $\varepsilon_F$) so that the majority band is saturated. Only spin-down (minority) states are found around $\varepsilon_F$, although there is a significant gap in $\rho_\downarrow(\varepsilon)$ (see Fig. 4). In the majority band Rh dominates over Fe at the higher energies (closer to $\varepsilon_F$), while Fe dominates in the bottom of the band. In the minority band the participation of Rh (Fe) is stronger (weaker) below $\varepsilon_F$ and weaker
(stronger) above $\varepsilon_F$. This is consistent with the fact that the Rh local moments are smaller than the Fe moments.

Finally, in the Fe rich limit (e.g., Fe$_6$Rh$_2$), the majority-band width becomes as narrow as in Fe$_8$, while the minority band is still comparable to Rh$_8$. The exchange splitting is large, the majority band saturated and only minority states are found close to $\varepsilon_F$. As in Fe$_8$, $\rho_\downarrow(\varepsilon)$ shows a clear gap at $\varepsilon_F$ (see Fig. 4). However, the Rh contribution to the minority states below $\varepsilon_F$ remains above average despite the relative small Rh content. The Fe contribution largely dominates the unoccupied minority-spin DOS, in agreement with the larger local Fe moments.

IV. SUMMARY AND OUTLOOK

The structural, electronic and magnetic properties of small Fe$_m$Rh$_n$ clusters having $N = m + n \leq 8$ atoms have been investigated systematically in the framework of a generalized gradient approximation to density-functional theory. For very small sizes ($N \leq 4$ atoms) the binding energy $E_B$ shows a non-monotonous dependence on concentration, which implies that the FeRh bonds are stronger than the homogeneous ones. However, for larger sizes the FeRh and RhRh bond strengths become comparable, so that $E_B$ depends weakly on concentration for high Rh content.

The magnetic order of the clusters having the most stable structures is found to be FM-like. Moreover, the average magnetic moment per atom $\overline{\mu}_N$ increases monotonously, which is almost linear over a wide range of concentration with Fe content. Consequently, the energy gain $\Delta E_m$ associated to magnetism also increases with the number of Fe atoms. The largest part of the spin polarization (about 90%) can be traced back to the local $d$ magnetic moments within the PAW sphere of the atoms. The $s$ and $p$ spin polarizations are almost negligible in general. A remarkable enhancement of the local Fe moments is observed as result of Rh doping. This is a consequence of the increase in the number of Fe $d$ holes, due to charge transfer from Fe to Rh, combined with the extremely reduced local coordination. The Rh local moments are important already in the pure clusters ($N \leq 8$). Therefore, they are not significantly enhanced by Fe doping. However, the overall stability of magnetism, as measured by the total energy gained by the onset of spin polarization, is found to increase with increasing Fe content.
FeRh clusters are expected to develop a variety of further interesting behaviors, which still remain to be explored. For instance, larger cluster should show a more complex dependence of the magnetic order as a function of concentration. In particular for large Rh content one should observe a transition from FM-like to AF-like order with increasing cluster size, in agreement with the AF phase found in solids for more than 50% Rh concentration. Moreover, the metamagnetic transition observed in bulk FeRh alloys also puts forward the possibility of similar interesting phenomena in nanoalloys as a function of temperature. Finally, the contributions of orbital magnetism and magnetic anisotropy deserve to be explored in detail as a function of composition and chemical order, even for the smallest sizes, particularly because of their implications for potential applications.

ACKNOWLEDGMENTS

It is pleasure to thank Dr. J. L. Ricardo-Chávez and Dr. L. Díaz-Sánchez for helpful discussions and useful comments. Computer resources provided by ITS (Kassel) and CSC (Frankfurt) are gratefully acknowledged.

1 See, for instance, Faraday Discuss. 138 (2008).
2 D. Zitoun, M. Respaud, M. C. Fromen, M. J. Casanove, P. Lecante, C. Amiens, and B. Chaudret, Phys. Rev. Lett. 89, 037203 (2002).
3 S. Dennler, J. L. Ricardo-Chávez, J. Morillo, and G. M. Pastor, Eur. Phys. J. D 24, 237 (2003).
4 I. Efremenko, and M. Sheintuch, Chem. Phy. Lett. 401, 232-240 (2005).
5 S. Ganguly, M. Kabir, S. Datta, B. Sanyal, and A. Mookerjee, Phys. Rev. B. 78, 014402 (2008).
6 P. Entel, and M. E. Gruner, J. Phys. Condens. Matter 21, 064228 (2009).
7 A. N. Andriotis, G. Mpourmpakis, G. E. Froudakis, and M. Menon, J. Chem. Phys. 120, 11901 (2004).
8 G. Rollmann, S. Sahoo, A. Hucht, and P. Entel, Phys. Rev. B 78, 134404 (2008).
9 J. Bansmann, S. Baker, C. Binns, J. Blackman, J.-P. Buecher, J. Dorantes-Dávila, V. Dupuis, L. Favre, D. Kechrakos, A. Kleibert, K.-H. Meiwas-Broer, G. M. Pastor, A. Perez, O. Toulemonde, K.N. Trohidou, J. Tuaillon, and Y. Xie, Surf. Sci. Rep. 56, 189 (2005).
10 C. Antoniak, J. Lindner, M. Spasova, D. Sudfeld, M. Acet, M. Farle, K. Fauth, U. Wiedwald, H.-G. Boyen, P. Ziemann, F. Wilhelm, A. Rogalev, and S. Sun, Phys. Rev. Lett. 97, 117201 (2006).

11 S. Yin, R. Moro, X. Xu, and W. A. de Heer, Phys. Rev. Lett. 98, 113401 (2007).

12 M. B. Knickelbein, Phys. Rev. B 75, 014401 (2007).

13 R. M. Wang, O. Dmitrieva, M. Farle, G. Dumpich, H. Q. Ye, H. Poppa, R. Kilaas, and C. Kisielowski, Phys. Rev. Lett. 100, 017205 (2008).

14 M. E. Gruner, G. Rollmann, P. Entel, and M. Farle Phys. Rev. Lett. 100, 087203 (2008).

15 Yan Sun, Min Zhang, and René Fournier, Phys. Rev. B 77, 075435 (2008).

16 Yan Sun, René Fournier, and Min Zhang, Phys. Rev. A 79, 043202 (2009).

17 F. Tournus, A. Tamion, N. Blanc, A. Hannour, L. Bardotti, B. Prével, P. Ohresser, E. Bonet, T. Epicier, and V. Dupuis, Phys. Rev. B 77, 144411 (2008).

18 G. M. Pastor, J. Dorantes-Dávila, and K. H. Bennemann, Physica B 149, 22 (1988); Phys. Rev. B 40, 7642 (1989).

19 J. P. Bucher, D. C. Douglass, and L. A. Bloomfield Phys. Rev. Lett. 66, 3052 (1991); D. C. Douglass, J. P. Bucher, and L. A. Bloomfield, Phys. Rev. B 45, 6341 (1992); D. C. Douglass, A. J. Cox, J. P. Bucher, and L. A. Bloomfield, ibid. 47, 12874 (1993).

20 I. M. L. Billas, J. A. Becker, A. Chatelain, and W. A. de Heer, Phys. Rev. Lett. 71, 4067 (1993);
   I. M. L. Billas, A. Châtelain, and W. A. de Heer, Science 265, 1682 (1994).

21 G. M. Pastor, J. Dorantes-Dávila, S. Pick, and H. Dreyssé, Phys. Rev. Lett. 75, 326 (1995).

22 S. E. Apsel, J. W. Emmert, J. Deng, and L. A. Bloomfield, Phys. Rev. Lett. 76, 1441 (1996).

23 M. B. Knickelbein, Phys. Rev. Lett. 86, 5255 (2001).

24 G. Nicolas, J. Dorantes-Dávila, and G.M. Pastor, Phys. Rev. B 74, 014415 (2006).

25 R. Galicia, Rev. Mex. Fis. 32, 51 (1985).

26 J. Dorantes-Dávila, H. Dreyssé, and G. M. Pastor, Phys. Rev. B 46, 10432 (1992).

27 A. J. Cox, J. G. Louderback, and L. A. Bloomfield, Phys. Rev. Lett. 71, 923 (1993); A. J. Cox, J. G. Louderback, S. E. Apsel, and L. A. Bloomfield, Phys. Rev. B 49, 12295 (1994).

28 B. V. Reddy, S. N. Khanna, and B. I. Dunlap, Phys. Rev. Lett. 70, 3323 (1993).

29 P. Villaseñor-González, J. Dorantes-Dávila, H. Dreyssé, and G. M. Pastor, Phys. Rev. B 55, 15084 (1997).

30 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964); W. Kohn and L. J. Sham, Phys.
A number of tests have been performed in order to assess the numerical accuracy of the calculations. Increasing the cut-off energy $E_{\text{max}} = 268$ eV and supercell size $a = 12$ Å to $E_{\text{max}} = 500$ eV and $a = 22$ Å in Rh$_4$ increases the computation time by a factor 4–7. This yields a total energy differences of 1.75 meV and 0.25 meV, respectively. In the above calculations the changes in average bond length (bond angle) amounts to $10^{-3}$ Å ($10^{-4}$ degrees). These difference are not significant for our physical conclusions. In fact, typical isomerization energies in these clusters are an order of magnitude larger, of the order of 10–30 meV. We also found that the total energy is nearly independent of the choice of the smearing parameter $\sigma$, provided it is not too large ($\sigma \leq 0.05$ eV). Values from $\sigma = 0.01$ to 0.1 eV have been checked. Therefore, we judge that our set of standard parameters ($E_{\text{max}} = 268$ eV, supercell size $a$ from 10 to 22 Å, and $\sigma = 0.02$ eV) offers a sufficiently good accuracy at a reasonable computational costs.
For a discussion of the interplay between electron correlations, structure and magnetism of small clusters see, for example, Refs. 18 and 38.

R.F.W. Bader, *Atoms in Molecules, A Quantum Theory* (Oxford University Press, Oxford, 1990).

J.L. Ricardo-Chávez, PhD Thesis, Université Paul Sabatier, Toulouse, France, (2007).

Y.-C. Bae, V. Kumar, H. Osanai, and Y. Kawazoe, Phys. Rev. B 72, 125427 (2005).

M. Muñoz-Navia, J. Dorantes-Dávila, D. Zitoun, C. Amiens, N. Jaouen, A. Rogalev, M. Respaud, and G. M. Pastor, Appl. Phys. Lett. 95, 233107 (2009).