Effects of penehyclidine hydrochloride in small intestinal damage caused by limb ischemia-reperfusion

Yan Zhang, Yu-Fang Leng, Xing Xue, Yue Zhang, Tao Wang, Yu-Qing Kang

Abstract

AIM: To investigate the protective effect of penehyclidine hydrochloride post-conditioning in the damage to the barrier function of the small intestinal mucosa caused by limb ischemia-reperfusion (LIR) injury.

METHODS: Male Wistar rats were randomly divided into three groups (36 rats each): the sham-operation group (group S), lower limb ischemia-reperfusion group (group LIR), and penehyclidine hydrochloride post-conditioning group (group PHC). Each group was divided into subgroups \((n=6\) in each group) according to ischemic-reperfusion time, i.e. immediately 0 h (T_1), 1 h (T_2), 3 h (T_3), 6 h (T_4), 12 h (T_5), and 24 h (T_6). Bilateral hind-limb ischemia was induced by rubber band application proximal to the level of the greater trochanter for 3 h. In group PHC, 0.15 mg/kg of penehyclidine hydrochloride was injected into the tail vein immediately after 3 h of bilateral hind-limb ischemia. The designated rats were sacrificed at different time-points of reperfusion; diamine oxidase (DAO), superoxide dismutase (SOD) activity, myeloperoxidase (MPO) of small intestinal tissue, plasma endotoxin, DAO, tumor necrosis factor-\(\alpha\) (TNF-\(\alpha\)), and interleukin (IL)-10 in serum were detected in the rats.

RESULTS: The pathological changes in the small intestine were observed under light microscope. The levels of MPO, endotoxin, serum DAO, and IL-10 at T_1-T_6, and TNF-\(\alpha\) level at T_1-T_4 increased in groups LIR and PHC \((P < 0.05)\) compared with those in group S, but tissue DAO and SOD activity at T_1-T_6 decreased \((P < 0.05)\). In group PHC, the tissue DAO and SOD activity at T_2-T_6, and IL-10 at T_2-T_5 increased to higher levels than those in group LIR \((P < 0.05)\); however, the levels of MPO, endotoxin, and DAO in the blood at T_2-T_6, and TNF-\(\alpha\) at T_2 and T_4 decreased \((P < 0.05)\).

CONCLUSION: Penehyclidine hydrochloride post-conditioning may reduce the permeability of the small intestines after LIR. Its protection mechanisms may be related to inhibiting oxygen free radicals and inflammatory cytokines for organ damage.

INTRODUCTION

Limb ischemia-reperfusion (LIR) injury has been observed...
in atherosclerosis, thrombosis or injury to the great vessels in the extremities, severe crushing injury and surgery. It can lead to limb edema, skeletal muscle dysfunction, and necrosis, and may further result in the dysfunction and structural damage to other organs such as the heart, lungs, brain, small intestines, and so on. Therefore, protection against ischemia-reperfusion injury has become an important focus of research in clinical work.

In recent years, many narcotics have been used to reduce the damage caused by ischemia-reperfusion. The new anti-cholinergic drug penehyclidine hydrochloride (PHC), reported to have protective effects against organ injury, was developed by the Institute of Pharmacology and Toxicology in China (Academy of Military Medical Sciences) to minimise side effects harmful to the cardiovascular system. To date, no reports on the protective effects of PHC against LIR in the small intestines have been published. In this study, the serum and small intestinal tissue diamine oxidase (DAO), plasma endotoxin (reflecting the barrier function of the small intestinal mucosa), superoxide dismutase (SOD), and myeloperoxidase (MPO) activity of the small intestinal tissue, as well as serum tumor necrosis factor-α (TNF-α) and interleukin (IL)-10 levels (reflecting damage to the small intestine) were examined in rats.

MATERIALS AND METHODS

Experimental animals
One hundred and eight healthy 6-mo-old male Wistar rats weighing 220-250 g were provided by the Medical Experimental Animal Center of the Gansu College of Traditional Chinese Medicine, China. The rats were randomly divided into 3 groups: the sham-operation group (group S), limb ischemia-reperfusion group (group LIR), and penehyclidine hydrochloride post-conditioning group (group PHC). Each group was divided into subgroups (n = 6 in each group) according to ischemic-reperfusion time, i.e. immediately (T1), 1 h (T2), 3 h (T3), 6 h (T4), 12 h (T5), and 24 h (T6).

Animal model
The LIR model was established as follows: the rats were fasted 12 h preoperatively with unlimited drinking water, and exposed to 2% isoflurane until the loss of righting reflex, and fixed onto a sit-board on the operating table. The posterior limbs of the rats were ligated with elastic rubber bands; 3 h of ischemia was conducted for 1, 3, 6, 12, and 24 h. In group PHC, the rubber band was released after 3 h of ischemia, and then 0.15 mg/kg PHC was injected into the tail veins, followed by reperfusion for 1, 3, 6, 12, and 24 h. After the reperfusion at pre-set time points (T1-T6), the rats were sacrificed under deep isoflurane anaesthesia. All experiments were conducted according to the protocols approved by the Lanzhou University Animal Care and Use Committee.

About 5 mL of blood was drawn from the inferior vena cava of the rats. The blood was centrifuged at 3000 r/min for 15 min to separate the serum, which was stored at -20°C for further target detection. The small intestines of the rats were quickly removed up to 5 cm from the ileocecal valve and washed three times with normal saline. Then, 0.5 g of the small intestines were ground into tissue homogenate in a glass homogeniser; after centrifugation at 3500 r/min for 20 min, the resultant supernatant was diluted into a 10% solution with normal saline and stored at -20°C for further target detection. The remaining small intestines were fixed in 10% formalin, embedded in paraffin, stained with haematoxylin and eosin, sectioned, and observed for pathological changes under optical microscope.

Evaluation of changes in the barrier function of the small intestinal mucosa
The rat small intestinal tissue and serum DAO were detected using a spectrophotometer with an automatic biochemical analyser (OLYMPUS-AU5400; kit provided by the Nanjing Jiancheng Bioengineering Institute, China). Plasma endotoxin was measured using a quantitative chromogenic substrate assay (Xiamen TAL Experimental Plant Co., Ltd.).

Evaluation of damage mechanism in the small intestine
SOD and MPO activities in the rat small intestinal tissue were measured by colorimetry (Nanjing Jiancheng Bioengineering Institute). Serum TNF-α and IL-10 were measured by enzyme-linked immunosorbent assay (Wuhan Boster Biological Technology, Ltd., China).

Statistical analysis
All data were reported as mean ± SD. Statistical significance was determined by one-way analysis of variance using SPSS version 17.0 for Windows (SPSS Inc., Chicago, IL, USA).

RESULTS

Rat small intestinal pathological changes
The small intestinal microstructure of the group S rats was normal: the villi were lined with normal epithelial cells, the interstitium was congestion-free, and gland morphology was normal. The small intestinal tissue of the group LIR rats had obvious pathological changes: the villi were malpositioned, atrophied, and shorter and thicker; loose interstitial edema with lymphocytic infiltration was observed, and lymph node follicles and submucosal lymphatic vessels were filled with lymphocytes. The small intestinal microstructure of the group PHC had certain pathologic changes that were less pronounced than in the group LIR.

Changes in the barrier function of the small intestinal mucosa
DAO is an enzyme synthesised primarily in gastrointestinal mucosal cells. The intestinal tissue and serum levels of DAO have been used as an indicator of the integrity and functional mass of the intestinal mucosa. When intest-
The tissue and serum DAO activity and plasma endotoxin concentration reached its peak \(P < 0.05 \) (Figure 1) compared with other preset time-points of reperfusion at \(T_r \) in the groups LIR and PHC.

Changes of certain factors in damage mechanism in the small intestine

In the groups LIR and PHC, the MPO activity of the small intestinal tissue and serum IL-10 at \(T_r-T_s \) and serum TNF-\(\alpha \) at \(T_r-T_s \) were higher than those in the group S \(P < 0.05 \), whereas the tissue SOD activity at \(T_r-T_s \) was lower \(P < 0.05 \). In group PHC, the tissue SOD activity at \(T_r-T_s \) and serum IL-10 at \(T_r-T_s \) were significantly higher than those in group LIR \(P < 0.05 \); however, the tissue MPO activity at \(T_r-T_s \) and serum TNF-\(\alpha \) at \(T_r \) and \(T_s \) decreased \(P < 0.05 \). In the groups LIR and PHC, the tissue SOD and MPO activities reached their peak at \(T_r \) \(P < 0.05 \) while TNF-\(\alpha \) reached its peak at \(T_s \) \(P < 0.05 \). Thereafter, TNF-\(\alpha \) gradually decreased, and even decreased at \(T_s \) and \(T_r \) in group S \(P \geq 0.05 \); IL-10 at \(T_s \) exhibited the highest concentration \(P < 0.05 \) even at \(T_r-T_s \), and the serum IL-10 also maintained a relatively high concentration (Figure 2).

DISCUSSION

The gastrointestinal tract in ischemia-reperfusion injury is of interest, not only because its functions are damaged, but also it is a potential factor of multiple organ dysfunction syndrome (MODS) associated with reperfusion injury \([18,19]\). When the intestinal barrier is injured, the gut endotoxins may enter into the extraintestinal tissues and produce free radicals and cytokines that potentiate the development of MODS \([20-22]\). In the group LIR, at different reperfusion time points, the small intestinal mucosa had varying degrees of injury, including neutrophil and lymphocyte infiltration, as well as small intestinal epithelial cell degeneration, necrosis, or even sloughing off. This result shows that LIR injury induces injury to the small intestinal mucosa. Meanwhile, the small intestinal tissue DAO activity in the group LIR was lower than in the group S; however, the activity of serum DAO and the plasma endotoxin were significantly higher than in the group S, indicating that the mucosal barrier of the rat small intestines was destroyed and gut permeability changed, leading to the absorption of gut cavity endotoxin and small intestinal tissue DAO into the blood stream.

LIR injury leading to permeability changes in intestinal mucosal reperfusion injury may be closely related to the production of excessive oxygen free radicals and inflammatory cytokines \([19,20,22,24]\). Oxygenated free radicals appear to play a prominent role in mediating the damage associated with gastrointestinal diseases. The production of reactive oxygen metabolites in ischemia-reperfusion involves oxidases found in resident phagocytic cells, as well as microvascular and mucosal epithelial cells \([25]\). SOD is a key enzyme that eliminates free radicals by converting superoxide anions into hydrogen peroxide, which is...
then removed by glutathione peroxidase and catalase. A high amount of oxygen free radicals is generated during ischemia followed by reperfusion, which leads to excessive consumption of SOD. MPO, on the other hand, is released upon activation to catalyse the formation of oxidants, which can lead to tissue damage during chronic inflammation, and serves as a major enzymatic catalyst of lipid peroxidation at inflammation sites. In this paper, the small intestinal tissue SOD activity of the group LIR during reperfusion was lower than that of the group S, but higher than that of MPO. This shows that an increase in oxygen free radicals and lipid peroxidation occurs, resulting in changes in the pathophysiology of the small intestinal mucosa, causing mucosal epithelial damage, edema, and activation of inflammatory immune cells.

Ischemia and reperfusion injury are associated with the coordinated activation of a series of cytokines and adhesion molecules. When the intestinal damage releases a large amount of inflammatory cytokines, including rapidly produced TNF-α, inflammatory cells accumulate and intestinal inflammatory damage occurs. IL-10 modulates pro-inflammatory cytokine production and tissue injury following ischemia-reperfusion injury. A study showed that the exogenous administration of IL-10 reduced the systemic inflammatory response in a rodent model of intestinal reperfusion injury, an effect associated with the inhibition of cytokine production and neutrophil accumulation. Being anti-inflammatory, the release of IL-10 can modulate pro-inflammatory cytokine production and reperfusion-associated tissue injuries. This experiment also suggested that IL-10 may inhibit the role of TNF-α.

PHC mainly blocks muscarinic acetylcholine receptors, which shows a wide range of biological activities, including antioxidation, cytoprotective activity, and so on. PHC can inhibit lung vascular leak, inflammation and p38MAPK activation, signalling a potential role in lipopolysaccharide and alleviation of lung injuries by inhibiting apoptosis in lung tissue cells. Wang et al. found that PHC attenuated the acute lung injury induced by endotoxin involving the nuclear factor-κB (NF-κB) pathway. The inhibition of NF-κB activation in intestinal epithelial cells prevented the increase in systemic TNF-α concentrations after intestinal ischemia and reperfusion. In this study, PHC post-conditioning significantly reduced the pathological damage to the small intestine with lower limb ischemia-reperfusion injury. Although this damage was inevitable, the small intestinal injury in the group PHC was less severe than that in the group LIR. PHC post-conditioning increased SOD activity and reduced MPO activity, thereby reducing oxygen free radicals to diminish tissue damage. PHC post-conditioning can effectively lower the blood levels of DAO, endotoxin and TNF-α, which disrupt the effects of the organisation. PHC post-conditioning can also promote the production of anti-inflammatory factor IL-10, which inhibits TNF-α and reduces inflammatory cell accumulation in the local organization.

Figure 2 Changes of intestinal tissue superoxide dismutase, intestinal tissue myeloperoxidase, serum tumor necrosis factor-α and interleukin-10 in rats. S group: Sham-operation group; LIR group: Lower limb ischemia-reperfusion group; PHC group: Penehyclidine hydrochloride post-conditioning group. SOD: Superoxide dismutase; MPO: Myeloperoxidase; TNF-α: Tumor necrosis factor-α; IL-10: Interleukin-10.
In conclusion, PHC post-conditioning can improve small intestinal mucosal injury induced by lower limb ischaemia-reperfusion. It increases SOD activity to scavenge oxygen free radicals, reduces the production of inflammatory cytokine TNF-α, and increases the production of anti-inflammatory factor IL-10. The protective action of PHC post-conditioning on ischemia-reperfusion injury may be controlled by various mechanisms, which should be explored by further investigations.

ACKNOWLEDGMENTS

We would like to thank Dr. Gen Chen from Lanzhou University for providing the laboratory facilities.

REFERENCES

Christ F, Moser CM, Niklas M, Gartside IB, Gamble J, Refior HJ, Peter K, Messmer K. Prevalence of cyclic changes in limb volume (volumotion) of male patients with knee injury and the effects of ischemia/reperfusion due to tourniquet. Int J Microcirc Clin Exp 1995; 15: 14-20

Mathru M, Dries DJ, Barnes L, Tomino P, Sukhani R, Rooney MW. Tourniquet-induced exsanguination in patients requiring lower limb surgery. An ischemia-reperfusion model of oxidant and antioxidant metabolism. Anesthesiology 1996; 84: 14-22

Soong CV, Blair PH, Halliday MI, McCAIGE MD, Hood JM, Rowlands BJ, Barros DSA. Bowel ischaemia and organ impairment in elective abdominal aortic aneurysm repair. Br J Surg 1994; 81: 965-968

Soong CV, Young IS, Lightbody JH, Hood JM, Rowlands BJ, Trimble ER, Barros DSA AA. Reduction of free radical generation minimises lower limb swelling following femoropopliteal bypass surgery. Eur J Vasc Surg 1994; 8: 435-440

Wehrens XH, Rouwet EV, oude Egbrink MG, Slaf DW, Ramsay G. Effects of experimental lower-limb ischaemia-reperfusion injury on the mesenteric microcirculation. Br J Surg 2002; 89: 185-191

Annette C, Kubitz JC, Kahr S, Hilberath JM, Langer K, Kemming GL, Rehm M, Bittmann I, Conzen PF. Effects of sevoflurane and propofol on ischaemia-reperfusion injury after thoracic-aortic occlusion in pigs. Br J Anaesth 2007; 98: 581-590

Cámara CR, Guzmán FJ, Barrera EA, Cabello AJ, Garcia A, Fernández NE, Caballero E, Ancer J. Ketamine anesthesia reduces intestinal ischemia/reperfusion injury in rats. World J Gastroentero 2008; 14: 5192-5196

Chen Q, Zeng Y. Anisodamine protects against neuronal death following cerebral ischemia in gerbilis. Clin Med J (Engl) 2000; 113: 636-639

Shen W, Gan J, Xu S, Jiang G, Wu H. Penehyclidine hydrochloride attenuates LPS-induced acute lung injury involvement of NF-kappaB pathway. Pharmacol Res 2009; 60: 296-302

Wang LL, Zhan LY, Wu XJ, Xia ZY. Effects of penehyclidine hydrochloride on apoptosis of lung tissues in rats with traumatic acute lung injury. Chin J Traumatol 2010; 13: 15-19

Cai DS, Jin BB, Pei L, Jin Z. Protective effects of penehyclidine hydrochloride on liver injury in a rat cardiopulmonary bypass model. Eur J Anaesthesiol 2010; 27: 824-828

Niu WZ, Zhao DL, Liu CG. The effects of a new cholinolytic-8018—and its optical isomers on the central muscarinic and nicotinic receptors. Arch Int Pharmacodyn Ther 1990; 304: 64-74

Han XY, Liu H, Liu CH, Wu B, Chen LF, Zhong BH, Liu KL. Synthesis of the optical isomers of a new anticholinergic drug, penehyclidine hydrochloride (8018). Biomed Med Chem Lett 2005; 15: 1979-1982

Wolvekamp MC, de Bruin RW. Diamine oxidase: an overview of histological, biochemical and functional aspects. Dig Dis 1994; 12: 2-14

Kazmierczak SC, Robertson AF. Evaluation of a spectrophotometric method for measurement of activity of diamine oxidase in newborn infants. Ann Clin Lab Sci 1992; 22: 155-161

Stechmiller JK, Trelbar D, Allen N. Gut dysfunction in critically ill patients: a review of the literature. Am J Crit Care 1997; 6: 204-209

Demirkan A, Savas B, Melli M. Endotoxin level in ischemia-reperfusion injury in rats: effect of glutamine pretreatment on endotoxin levels and gut morphology. Nutrition 2010; 26: 106-111

Defraigne JO, Pincemail J. Local and systemic consequences of severe ischemia and reperfusion of the skeletal muscle. Physiopathology and prevention. Acta Chir Belg 1998; 98: 176-186

Yassin MM, Barros D’Sa AA, Parks TG, McCAIGE MD, Leggett P, Halliday MI, Rowlands BJ. Lower limb ischaemia-reperfusion injury alters gastrointestinal structure and function. Br J Surg 1997; 84: 1425-1429

Edrees WK, Lau LL, Young IS, Snye MG, Gardiner KR, Lee B, Hannon RJ, Soong CV. The effect of lower limb ischaemia-reperfusion on intestinal permeability and the systemic inflam-
matory response. Eur J Vasc Endovasc Surg 2003; 25: 330-335
21 Yassin MM, Barros D'Sa AA, Parks TG, Soong CV, Halliday MI, McCaig MD, Erwin Pj, Rowlands BJ. Lower limb isch-
aemia-reperfusion injury causes endotoxaemia and endog-
enous antienendotoxin antibody consumption but not bacterial translocation. Br J Surg 1998; 85: 785-789
22 Corson RJ, Paterson IS, O'Dwyer ST, Rowland P, Kirkman E, Little RA, McCollum CN. Lower limb ischaemia and reperfu-
sion alters gut permeability. Eur J Vasc Surg 1992; 6: 158-163
23 Mullane KM, Kraemer R, Smith B. Myeloperoxidase activity as a quantitative assessment of neutrophil infiltration into ischemic myocardium. J Pharmacol Methods 1985; 14: 157-167
24 Deitch EA, Taylor M, Grisham M, Ma L, Bridges W, Berg R. Endotoxin induces bacterial translocation and increases xan-
thine oxidase activity. J Trauma 1989; 29: 1679-1683
25 Droy-Lefaix MT, Drouet Y, Geraud G, Hosford D, Braquet P. Superoxide dismutase (SOD) and the PAF-antagonist (BN 52021) reduce small intestinal damage induced by ischemia-
reperfusion. Free Radic Res Commun 1991; 12-13 Pt 2: 725-735
26 Röth E, Hejjel L, Jaberansari M, Jancso G. The role of free radicals in endogenous adaptation and intracellular signals. Exp Clin Cardiol 2004; 9: 13-16
27 Zhang R, Brennan ML, Shen Z, MacPherson JC, Schmitt D, Molenda CE, Hazen SL. Myeloperoxidase functions as a ma-
jor enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation. J Biol Chem 2002; 277: 46116-46122
28 Xue RL, He JX, Wang N, Yao FZ, Lv JR, Wu G. Relationship between transmembrane signal transduction pathway and DNA repair and the mechanism after global cerebral isch-
emia-reperfusion in rats. Neurosci Bull 2009; 25: 115-121
29 Souza DG, Soares AC, Pinho V, Torloni H, Reis LF, Teixeira MM, Dias AA. Increased mortality and inflammation in tumor necrosis factor-stimulated gene-14 transgenic mice after isch-
emia and reperfusion injury. Am J Pathol 2002; 160: 1755-1765
30 Lane JS, Todd KE, Lewis MP, Gloor B, Ashley SW, Reber HA, McFadden DW, Chandler CF. Interleukin-10 reduces the systemic inflammatory response in a murine model of intestinal ischemia/reperfusion. Surgery 1997; 122: 288-294
31 Souza DG, Guabiraba R, Pinho V, Bristow A, Poole S, Teixe-
reira MM. IL-1-driven endogenous IL-10 production protects against the systemic and local acute inflammatory response following intestinal reperfusion injury. J Immunol 2003; 170:
4759-4766
32 Souza DG, Teixeira MM. The balance between the produc-
tion of tumor necrosis factor-alpha and interleukin-10 deter-
mines tissue injury and lethality during intestinal ischemia and reperfusion. Mem Inst Oswaldo Cruz 2005; 100 Suppl 1: 59-66
33 Chen LW, Egan L, Li ZW, Greten FR, Kagnoff MF, Karin M. The two faces of IKK and NF-kappaB inhibition: prevention of systemic inflammation but increased local injury follow-
ing intestinal ischemia-reperfusion. Nat Med 2003; 9: 575-581