Data Resource Profile

Data Resource Profile: The National Cancer Institute’s Health Information National Trends Survey (HINTS)

Lila J Finney Rutten,1 Kelly D Blake,2* Victoria G Skolnick,1 Terisa Davis,3 Richard P Moser2 and Bradford W Hesse2

1Division of Health Care Policy and Research, Mayo Clinic, Rochester, MN, USA, 2Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, USA and 3Division of Public Health and Epidemiology Practice, Westat, Rockville, MD, USA

*Corresponding author. Division of Cancer Control and Population Sciences, National Cancer Institute, 9609 Medical Center Drive, MSC 9671, Bethesda, MD 20892-9671, USA. E-mail: Kelly.blake@nih.gov

Editorial decision 26 March 2019; Accepted 5 April 2019

Data resource basics

The National Cancer Institute’s (NCI) Health Information National Trends Survey (HINTS) was conceived in 1997 during a multidisciplinary conference focused on risk communication with attenders representing the fields of psychology, health behaviour and education, public health, clinical medicine and health journalism. The key recommendation born of this conference encouraged NCI to develop a communication-specific population survey to track trends in US adults’ access to, need for and use of health and cancer information. Heeding the call for development of a national communication survey, NCI developed a nationally representative survey to assess trends in cancer-related communication, health information-seeking and cancer-related knowledge, attitudes and behaviour.

HINTS is a cross-sectional, nationally representative survey of the US non-institutionalized adult population (aged 18 years and older) which collects data on health-related information and health-related knowledge, attitudes and behaviour.1,2 HINTS was first fielded in 2002–032 and the general population survey has been administered five times over a 15-year period, with HINTS 4 and 5 including multiple annual cross-sectional data collection cycles. The resulting data (n = 37 365) can be tracked for trends over time or, if there are no trends anticipated a priori, can be aggregated into a larger sample for further analysis. Table 1 summarizes survey design and implementation details for each completed survey administration, including survey field period, survey mode, total sample size, response rate, and number of cancer patients and survivors.

Data collected

HINTS 1 was administered in 2002–03 as a random digit dial (RDD) computer-assisted telephone interview to a representative sample of US households drawn from all telephone exchanges in the US. One adult aged 18 years or older within each household was selected for the extended interview during a household screening. Interviews were conducted in English or Spanish, depending on respondent preference. Further details about the sample and sampling design are published elsewhere.2

HINTS 2 was administered in 2005 as an RDD computer-assisted telephone interview to a representative sample of U.S. households drawn from all telephone exchanges in the U.S. One adult aged 18 years or older within each household was selected for interview, which was conducted in English or Spanish according to respondent preference. Further details about sampling design are published elsewhere.3

HINTS 3 was fielded in 2008 using a mixed-mode, dual-frame design. One sample frame was a list-assisted
RDD computer-assisted telephone interview, wherein one adult from each household was selected for an interview. Interviews were conducted in English or Spanish, depending on respondent preference. The second sample frame was a comprehensive national listing of addresses available from the United States Postal Service. These households were administered a mailed survey. In the mail sample, all adults in the household at each sampled address were asked to complete a questionnaire. Thus, the mail sample was a stratified cluster sample, in which the household was the cluster. Further details on the HINTS 3 survey design and operations are published elsewhere.4

The HINTS 4 administration included four cross-sectional mail-mode data collection cycles over 4 years starting in 2011 and concluding in 2014 (Table 1). HINTS 4 Cycles 1–4 were administered as mailed questionnaires using a sampling frame of addresses provided by Marketing Systems Group (MSG). The protocol for mailing the questionnaires involved an initial mailing of the questionnaire, followed by a reminder postcard, and up to two additional mailings of the questionnaire as needed for non-responding households. Most households received one survey per mailing (in English), whereas households that were potentially Spanish-speaking received two surveys per mailing (one in English and one in Spanish). In the second stage of sampling, one adult from each sampled household was selected for participation. Further details on the survey design and operations for the HINTS 4 data collection cycles have been previously described.5–8

HINTS 5 includes four cross-sectional data collection cycles over 4 years, starting in 2017 and scheduled to end in 2020. The first of the HINTS 5 data collection cycles (HINTS 5, Cycle 1) was conducted in 2017. HINTS 5, Cycle 1 was administered as a single-mode mailed survey using a sampling frame of addresses provided by MSG, following the same protocol as HINTS 4. Further details on the HINTS 5, Cycle 1 data collection have been previously published.9

Three additional topic-specific HINTS modules, not described in this data resource profile, were fielded in 2009 (HINTS Puerto Rico), 2015 (HINTS-FDA Cycle 1) and 2017 (HINTS-FDA Cycle 2).

Data quality

To ensure data quality before data collection, each HINTS administration has included cognitive testing for each HINTS instrument, with testing particularly focused on new questions. The goal of cognitive testing is to provide valid measures of the constructs of interest with a minimum of response error.10–12 Testing was conducted on both paper and RDD surveys.

After data collection, data quality efforts for the RDD surveys include direct data entry. The computer-assisted telephone interview (CATI) program ensures that proper skip patterns are followed and constrains data entry to valid values for each survey item. The CATI program also allows for range and edit checks on the entry of numerical responses to questions such as age, length of time since last search for health information, servings of fruits or vegetables consumed daily, height and weight and other numerical response questions.

For mailed surveys, post-data collection quality control checks are conducted on the scanned data and electronic images of the survey. Quality assurance staff compare the hard-copy questionnaire with the data captured in the database item-for-item and the images stored in the repository page-for-page, to ensure that all items are correctly captured. Scanned data are validated according to HINTS specifications. Violations of validation rules (such as marking more than one choice box in a mark-only-one question) are flagged and reviewed. Additionally, quality assurance staff closely review frequencies and cross tabulations of the HINTS raw data to identify outliers and to verify open-ended items.

Survey constructs and measures

Each HINTS administration includes a core set of items. Table 2 summarizes the key constructs represented in the survey core of HINTS and describes the nature of the associated survey items. Core constructs include health information-seeking, cancer prevention and screening, cancer-related knowledge and behaviour; cancer risk perceptions;

Table 1. Health Information National Trends Survey (HINTS) survey design and implementation characteristics (2003–17)

	HINTS 1	HINTS 2	HINTS 3	HINTS 4	HINTS 5
	Cycle 1	Cycle 2	Cycle 3	Cycle 4	Cycle 1
Field period initiated	2002	2005	2008	2011	2017
Mode	RDD	RDD	Mail & RDD	Mail	Mail
Total no. of respondents	6369	5586	Mail: 3582 RDD: 4092	3999	3630
	3185	3285	3185	3677	3285
Response rate	33.0%	24.0%	Mail: 40.0% RDD: 24.2%	36.7%	40.0%
	35.2%	34.4%	34.4%	32.4%	32.4%
No. cancer patients/survivors	763	873	1001	563	542
	464	459	542	304	304
health care use and access; and technology utilization and access. Additional constructs or items have been included in specific HINTS administrations to capture timely or emerging phenomena or to glean greater detail on core constructs. Table 3 summarizes the sociodemographic characteristics of the total sample and weighted estimates for each of the survey administrations. Estimates are weighted to correct for non-response bias and to be representative of the US population; population distributions therefore reflect those of the US population with regard to age, sex, race and ethnicity.

Regulatory and ethical considerations
Each HINTS administration has been approved through expedited review by the Westat Institutional Review Board, and subsequently deemed exempt by the U.S. National Institutes of Health Office of Human Subjects Research Protections.

Data resource use
HINTS data are used by researchers to explore use of different communication channels to obtain health information among the US adult population; these data are also used to assess public knowledge and attitudes about health-relevant topics. HINTS data are used by programme planners to identify health information and communication facilitators and barriers within and across populations, and to inform the development of effective health communication strategies. Social scientists use HINTS data to test and refine their theories of health communication in the information age and to guide recommendations for theory-driven interventions aimed at improving population health.

HINTS data have been used to pursue a wide variety of research questions. To date, there have been more than 400 peer-reviewed articles, published in more than 160 journals, which have used HINTS data, and an edited dedicated book comprising the HINTS knowledge base.13 As an illustrative example, two special issues of the Journal of Health Communication have featured HINTS articles, following from HINTS research presented at the national HINTS Data Users Conferences. The first special issue, The Health Information National Trends Survey (HINTS): Research from the Baseline, was published in 2006, featuring data from the inaugural HINTS data collection.1 Studies published in this special issue covered a range of topics including cancer knowledge,14,15 cancer cognition and risk perceptions,16–20 and cancer information-seeking and communication.21–25 The second special issue, Partners in Progress: Informing the Practice of Health Communication through National Surveillance, was published in 2010.26 This special issue featured analysis of data from the first three administrations of HINTS and included studies on the following topics: health communication surveillance methodology,27,28 health communication and information-related disparities,29–37 patient-provider communication,38–40 and use of the internet and health communication technology.33,41–43

Highly cited articles from these special issues offer examples of the specific research topics pursued through use of HINTS data. Viswanath and colleagues examined the relationship between publicity and knowledge gaps using two cancer topics with varied levels of publicity: knowledge about tobacco and sun exposure.14 Results indicated that education and income were associated with awareness of the smoking and cancer link despite heavy media attention, and having at least a high school

Table 2. Core constructs measured in the Health Information National Trends Survey (HINTS)

Construct	Measures								
Sociodemographics	Age, sex, race, ethnicity, income, home ownership status, financial strain, health insurance coverage, education, marital status, employment status, country of origin (US vs other), health status, cancer history								
Health information-seeking	Ever sought health information, health information sources, trust in health information sources, confidence in health information-seeking, information-seeking experiences, internet use for health information								
Cancer prevention and screening knowledge and behaviour	Colorectal, breast, and cervical cancer screening, HPV vaccination								
Cancer-related behaviour	Tobacco use, sun safety, physical activity, diet								
Cancer risk perceptions	Confusion, fatalism, health beliefs, perceived risk of developing cancer								
Health care use and access	Usual source of care, cost barrier to care, patient-provider communication								
Technology use and access	Internet access through dial-up, broadband, cellular network, wireless network; use of internet for health-related reasons; ownership of tablet computers, smartphones, basic cellphones; use of health-related apps; use of social media for health-related reasons								
	HINTS 1	HINTS 2	HINTS 3	HINTS 4	HINTS 5	Combined			
--------	---------	---------	---------	---------	---------	----------			
	2003 N	2005 N	2008 N	Cycle 1 (2011) N	Cycle 2 (2012) N	Cycle 3 (2013) N	Cycle 4 (2014) N	Cycle 1 (2017) N	Total N
Total	6369	5586	7674	3959	3630	3185	3677	3285	37365
Sex									
Female	3848	3657	4696	2304	2172	1906	2184	1914	22681
Male	2521	1929	2969	1552	1390	1197	1424	1303	14285
Age									
18-34	1656	1037	1113	582	529	426	467	367	6177
35-49	1961	1494	1831	932	845	712	743	655	9173
50-64	1492	1522	2451	1399	1168	1070	1220	1063	11325
65-74	694	812	1189	583	555	514	637	676	5660
>=75	548	707	1010	455	414	360	428	385	4307
Race/ethnicity									
Hispanic	764	496	683	461	511	511	540	427	4332
NH White	4276	4103	5445	2431	2043	1584	1960	1868	23710
NH Black	716	438	687	576	496	421	534	409	4277
NH Other	312	299	424	271	208	209	239	249	2211
Education									
Less than high school	747	687	683	391	329	297	308	217	3659
High school graduate	1828	1447	1804	785	775	699	670	616	8624
Some college	1637	1545	2192	1167	1057	933	1090	942	10563
College graduate	1927	1696	2637	1331	1380	1167	1438	1406	13202
Income									
<$20,000	1111	899	1142	829	740	680	774	559	6734
$20,000 to <$35,000	1295	868	1056	584	501	418	489	423	5634
$35,000 to <$50,000	958	652	873	520	459	394	482	386	4724
$50,000 to <$75,000	955	924	1203	594	524	446	530	530	5726
$75,000+	1214	1150	2041	1031	926	801	979	1064	9206
Metro/non-metro county									
Metro	5174	4352	6192	3231	3087	3079	3157	2812	30804
Non-metro	1195	1234	1482	638	543	476	520	473	6561
education was associated with knowledge of the sun exposure and cancer link. Dillard and colleagues assessed whether perceived risk of developing lung cancer was associated with acceptance of smoking-related myths and beliefs. Those whose perceived risk was less than their objective risk (unrealistic optimists) were more likely to report that there is no risk of developing lung cancer among those who smoke only a few years; and that developing lung cancer is determined by genetic factors. Unrealistic optimists were less likely to report an intention to quit smoking. Koch-Weser and colleagues examined patients reporting at least 2 years since diagnosis. These data from U.S. national collection of the Health Information National Trends Survey (HINTS); and (ii) the study focused on cancer survivors/patients or compared cancer survivors or patients with other populations. Studies that used HINTS items or a HINTS instrument to collect data in a special (non-national) population were excluded, and studies that used cancer history as a control variable (i.e. not a variable of specific interest) were also excluded. A total of 35 articles met the inclusion criteria and were reviewed. The following themes emerged in the focus of the articles reviewed: information seeking trends, experiences and sources; patient-centred communication and clinical care; use of internet and mobile technology in health; health-related behaviour; cancer cognition; and health status and health outcomes.

Table 4 summarizes the sociodemographic, cancer diagnosis and treatment status characteristics of the cross-sectional cohorts of cancer patients and survivors for each relevant HINTS administration. The table summarizes the total number of cancer patients per each survey administration, describes the sociodemographic characteristics thereof and indicates counts and percentages for specific cancer types. Across the survey years, the most frequent cancer types were breast, colon, cervical, skin, prostate, melanoma and endometrial cancer. In each survey year, most cancer patients reported receiving treatment for their cancer (range: 81.5–91.8%), with the majority of respondents reporting at least 2 years since diagnosis. These data offer a rich resource for examination of cancer patients’ and survivors’ cancer-related knowledge, attitudes and behaviours, as well as their information-seeking experiences and needs.

Cancer patients and survivors

HINTS data have been extensively used to characterize the experiences of cancer patients and survivors. We conducted a review of the literature to identify published studies using HINTS data focused on cancer patients and survivors. We searched MEDLINE and EMBASE from 1 January 2003 to 15 May 15 2018, using the following search terms: health information national trend* or HINTS as text phrases, AND survivor* or cancer* OR explode neoplasms [MeSH]. This search returned 229 abstracts. All abstracts were reviewed to identify those meeting the following conditions: (i) the study used data

Strengths and weaknesses

HINTS is unique among national data resources in its focus on health communication and health information. The HINTS programme offers a resource for investigators from diverse disciplines and gives access to data that speak to population use of information and communication resources during a time of unprecedented change in the information and communication landscape. As described above and in Table 4, HINTS also provides a rich cohort of cancer patient and survivor data for secondary analysis.

Since its inception, the HINTS programme has invested heavily in efforts to ensure that the data are readily and easily accessible and usable for data users and results users. The HINTS website is rich with tools to enable data access and to support data use (see Data resource access section). A variety of materials have also been developed for results users, including an online data display tool, and HINTS Briefs, which summarize key results from HINTS.
Table 4. Sample size and weighted estimates for HINTS respondents with a personal history of cancer by sociodemographic characteristics and cancer-related characteristics

Have you ever been diagnosed as having cancer?	HINTS 1	HINTS 2	HINTS 3	HINTS 4	HINTS 5	Combined								
N	**%**													
Yes														
763	10.77	873	11.31	1,001	7.25	563	8.19	459	8.08	542	8.52	504	8.64	
Sex														
Female	532	64.57	596	56.09	590	56.65	317	57.83	258	54.77	280	59.96	139	59.08
Male	231	35.43	277	43.91	411	43.35	229	42.17	200	45.23	168	40.04	165	40.92
Age														
18-34	57	8.78	29	5.09	18	2.54	14	3.08	15	5.80	12	4.66	9	3.78
35-49	139	19.71	117	17.55	101	14.89	46	10.08	45	11.78	40	15.37	48	15.07
50-64	229	30.44	246	32.18	323	40.10	202	35.00	138	31.95	137	29.64	164	34.82
65-74	164	21.29	233	22.78	278	22.36	144	24.98	126	24.59	141	25.85	146	22.30
>75	173	19.78	246	22.40	270	26.12	145	26.86	135	25.87	120	24.49	146	24.03
Race/ethnicity														
Hispanic	38	4.69	33	5.12	40	5.28	27	4.72	42	8.92	37	5.77	51	11.24
NH White	613	82.70	730	84.58	844	84.37	411	82.61	320	80.42	285	84.43	337	80.38
NH Black	51	7.51	37	5.03	54	6.18	51	6.36	39	6.32	36	7.08	50	6.23
NH Other	31	5.09	38	5.27	35	2.50	32	6.30	18	4.13	16	2.72	22	2.15
Education														
Less than high school	86	17.07	105	14.19	100	15.97	56	13.81	42	16.11	46	11.54	48	15.70
High school graduate	246	37.02	233	31.48	242	26.70	140	26.38	106	19.02	106	25.12	94	16.00
Some college	185	22.85	266	30.73	268	28.77	161	26.90	151	29.75	132	30.24	164	31.95
College graduate	228	23.06	239	23.60	384	28.55	193	32.91	160	25.12	162	33.10	209	36.36
Income														
<$20,000	150	22.12	172	22.02	160	21.11	128	24.53	84	18.84	96	17.55	114	18.52
$20,000 to <$35,000	177	25.63	143	20.58	161	21.86	68	19.91	64	15.50	46	11.82	79	13.95
$35,000 to <$50,000	106	16.87	95	14.29	134	17.31	81	18.00	59	15.67	61	14.22	70	14.98
$50,000 to <$75,000	100	14.39	127	19.89	146	16.61	74	14.69	64	18.46	73	20.79	73	13.68
$75,000+	117	19.07	141	23.22	241	26.21	131	25.87	111	31.54	109	36.37	137	38.88
Metro/non-metro county														
Metro	613	79.54	676	78.30	798	79.33	459	82.23	376	74.03	389	83.75	461	80.16
Non-metro	150	20.46	197	21.70	203	20.67	104	25.97	70	16.25	81	19.84	78	18.01
Derived variable to categorize responses on cancer type														
Bladder cancer only	10	1.38	13	1.78	17	1.54	4	0.74	8	1.46	6	1.52	11	1.30
Bone cancer only	1	0.23	2	0.19	5	0.79	1	0.09	0	0.00	0	0.00	2	0.12
Breast cancer only	108	13.11	164	14.25	139	13.02	77	10.93	65	12.54	72	15.13	87	14.72

(Continued)
Table 4. Continued

Cancer Type	HINTS 1	HINTS 2	HINTS 3	HINTS 4	HINTS 5	Combined												
	2003	2005	2008	Cycle 1 (2011)	Cycle 2 (2012)	Cycle 3 (2013)	Cycle 4 (2014)	Cycle 1 (2017)	Total									
N	%	N	%	N	%	N	%	N	%									
Cervical cancer only	90	11.32	60	7.74	66	8.98	37	7.46	33	8.39	30	5.46	30	7.10	29	8.67	375	8.18
Colon cancer only	41	5.54	37	4.44	50	5.02	30	5.10	15	2.61	17	3.42	20	3.31	23	5.08	233	4.35
Endometrial cancer only	36	4.88	35	2.79	31	2.64	13	3.26	10	2.87	11	1.92	15	4.11	10	1.58	161	3.04
Head/neck cancer only	8	0.81	5	0.77	5	0.75	7	1.35	3	0.72	4	0.92	10	1.85	6	1.47	48	1.08
Hodgkin's only	6	1.03	4	0.34	8	0.57	8	4.17	2	0.42	7	1.13	4	3.16	35	1.36		
Renal cancer only	11	1.69	12	1.29	10	0.71	5	0.78	5	1.21	10	2.03	9	2.13	4	0.51	66	1.30
Leukaemia only	4	0.51	3	0.49	13	1.36	8	1.23	3	0.59	5	0.72	7	2.49	7	1.44	50	1.08
Liver cancer only	2	0.22	1	0.30	2	0.08	0	0.	3	0.78	1	0.49	9	0.23				
Lung cancer only	13	1.92	9	1.77	16	1.85	6	1.15	10	2.66	6	1.74	8	1.10	8	2.07	76	1.78
Melanoma only	52	7.66	68	8.78	67	7.75	26	5.21	19	4.39	20	5.97	27	4.99	23	4.58	302	6.22
Non-Hodgkin only	9	1.42	8	1.07	6	1.22	7	1.30	6	1.95	4	0.35	9	2.08	49	1.17		
Oral cancer only	6	0.88	2	0.25	3	0.20	3	0.70	4	0.95	1	0.13	1	0.17	1	0.12	19	0.42
Ovarian cancer only	21	2.69	21	3.46	16	1.46	13	2.64	6	0.63	4	0.60	4	0.52	2	0.05	87	1.59
Pancreatic cancer only	2	0.23	1	0.07	3	0.24	0	0.	1	0.04	3	0.17	0	0.	2	0.35	12	0.14
Pharyngeal cancer only	5	0.60	6	1.60	6	1.35	1	0.05	1	0.09	1	0.11	2	0.67	0	0.	22	0.57
Prostate cancer only	61	9.62	71	9.72	87	8.48	53	9.97	51	10.76	54	9.47	59	8.33	42	6.20	478	9.08
Rectal cancer only	2	0.13	2	0.09	2	0.15	3	0.18	0	0.	0	0.	2	0.21	4	0.78	15	0.20
Skin cancer only	138	16.30	162	17.88	239	22.44	116	23.08	92	20.05	107	25.40	117	25.02	124	24.95	1095	21.67
Stomach cancer only	5	1.45	9	1.65	3	0.35	0	0.	3	0.50	2	0.17	1	0.01	2	0.71	25	0.66
More than one cancer checked	60	7.54	115	10.95	140	11.32	107	18.44	82	18.21	66	14.17	65	13.93	70	13.63	705	13.72
Other cancer only	62	8.71	57	7.01	50	4.99	32	5.76	26	5.86	24	6.57	28	5.01	34	6.72	313	6.42
Lymphoma only (HINTS 1)	19	2.81																

Did you ever receive any treatment for your cancer?

Did you ever receive any treatment for your cancer?	HINTS 1	HINTS 2	HINTS 3	HINTS 4	HINTS 5	Combined						
Yes	721	81.45	862	86.92	417	91.01	477	89.13	457	91.76	2934	87.83
No	151	18.55	120	13.08	44	8.99	55	10.87	40	8.24	410	12.17

How long ago were you diagnosed with cancer? (derived)

How long ago were you diagnosed with cancer?	HINTS 1	HINTS 2	HINTS 3	HINTS 4	HINTS 5	Combined												
Less than 1 year since diagnosis	115	16.62	119	15.95	99	10.90	58	9.88	56	10.00	58	14.49	57	12.43	61	15.22	623	13.43
2-5 years	171	20.32	231	31.11	241	26.61	127	23.42	111	28.42	117	31.10	113	19.92	96	17.66	1207	24.82
6-10 years	164	23.43	160	16.06	184	17.95	101	20.24	84	20.31	88	17.73	94	21.14	95	20.73	970	19.71
11+ years	305	39.64	351	36.88	442	44.54	247	46.46	190	41.27	170	36.69	221	46.51	212	46.39	2138	42.04

aHINTS 1 had different response options that did not have liver, Hodgkin and non-Hodgkin cancers. Hodgkin and non-Hodgkin cancers were probably combined under lymphoma.
estimates, and supplemental funding has been granted. The HINTS programme have been employed to calculate regional geographical level, innovative geographical information system strategies have been employed to reduce potential for bias through sampling and weighting procedures. Additionally, methodological research suggests that the negative impact of declining response rates on data quality may not be as dramatic as previously assumed. The HINTS programme team recently conducted a rigorous non-response bias analysis of data from HINTS 4 (Cycles 1 and 3) to characterize the potential impact of non-response. Findings from this study revealed that many of the demographic influences on non-response (e.g. age, socioeconomic status) can be compensated for through application of standard weighting procedures. More specific results of this non-response analysis involving comparison of response rates among population subgroups, comparison with national benchmarks, and level-of-effort analysis have been previously published.

National surveys are usually constrained to measuring constructs with only one or two survey items, to reduce respondent burden. Therefore, the number of items available for measuring complex attitudinal and behavioural constructs is often limited. Although use of single items for measurement of social and behavioural constructs is not ideal, this approach is common in large-scale and national survey research. When compared with validated multi-item scales, single-item measures can have similar test–retest reliability and construct validity; however, single items are less reliable than scales and may attenuate observed associations. Constraints on survey length may also lead to changes in the survey content over time, thereby limiting the temporal trends and comparisons that may be tracked over time.

While the relatively small sample size for HINTS does not support the calculation of reliable estimates at the state level, innovative geographical information system strategies have been employed to calculate regional geographical estimates, and supplemental funding has been granted to certain NCI-designated comprehensive cancer centres to support collection of HINTS data at the local level.

Data resource access

The HINTS programme has striven from the beginning to enable users to use the HINTS data as easily as possible. HINTS data are in the public domain, and public use datasets are available for download as SAS, STATA and SPSS files from https://hints.cancer.gov. Each dataset is bundled with supporting documents including analytics recommendations (including example statistical software code), history document, codebook, methodology report (including details about sampling and the creation of survey weights) and annotated survey instruments. Codebooks for each dataset are also available online, and all of the instruments included in the data download bundle are annotated with variable names and allowable codes. Additionally, several resources been published describing how to use HINTS data: https://hints.cancer.gov/meetings-trainings/how-to-hints-webinar.aspx. Where possible, HINTS adheres to the F.A.I.R. (Findable, Accessible, Interoperable, and Reusable) principles.

Profile in a nutshell

- **HINTS** is as a cross-sectional national survey of non-institutionalized adults, developed to track trends in cancer-related communication, health information-seeking and cancer-related knowledge, attitudes and behaviour in the US population. It is the only national population-based survey that collects information on the US public’s need for, access to and experience with cancer-related information.
- **HINTS** was first fielded in 2002–03, and has been administered five times over approximately a 15-year period, with HINTS 4 and 5 including multiple data collection cycles ($n = 37,365$).
- **HINTS** was initially administered as a random digit dial (RDD) computer-assisted telephone interview to a representative sample of households drawn from all telephone exchanges in the US. In 2008, HINTS was fielded using a mixed-mode (RDD telephone interview and mailed questionnaire), dual-frame (all telephone exchanges in the US and a comprehensive national listing of United States Postal Service addresses) format. Each HINTS administration since 2008 has been conducted as a mailed survey using an address-based sampling frame.
- **Each HINTS** instrument includes a core set of items to assess: communication technology access and use, health and cancer information-seeking, cancer-related knowledge and behaviour, cancer risk perceptions and health care access.
- **HINTS** public use datasets are available for download: https://hints.cancer.gov.
Funding

This work was supported by the National Cancer Institute via HHSN261201800002B.

Conflict of interest: None declared.

References

1. Hesse BW, Moser RP, Rutten LJF, Kreps GL. The Health Information National Trends Survey: research from the baseline. *J Health Commun* 2006;11:vii–xvi.
2. Nelson DE, Kreps GL, Hesse BW et al. Health Information National Trends Survey (HINTS): development, design, and dissemination. *J Health Commun* 2004;9:443–60; discussion 81–4.
3. Cantor D, Covell J, Davis K, Park I, Rizzo L. Health Information National Trends Survey 2005 (HINTS 2005) Final Report. Rockville, MD: Westat, 2005.
4. Cantor D, Coa K, Crystal-Mansour S, Davis T, Dipko S, Sigman R. Health Information National Trends Survey (HINTS) 2007 Final Report. Rockville, MD: Westat, December 15, 2014.
5. Health Information National Trends Survey 4 (HINTS 4) Cycle 1. *Methodology Report*. Rockville, MD: Westat, 2012.
6. Health Information National Trends Survey 4 (HINTS 4) Cycle 2. *Methodology Report*. Rockville, MD: Westat, 2013.
7. Health Information National Trends Survey 4 (HINTS 4) Cycle 3. *Methodology Report*. Rockville, MD: Westat, 2014.
8. Health Information National Trends Survey 4 (HINTS 4) Cycle 4. *Methodology Report*. Rockville, MD: Westat, 2015.
9. Health Information National Trends Survey 5 (HINTS 5) Cycle 1. *Methodology Report*. Rockville, MD: Westat, 2017.
10. Sirken MG, Herrmann DJ, Schechter S, Schwarz N, Tanur J, Tourangeau R. *Cognition and Survey Research*. New York, NY: Wiley, 1999.
11. Groves RM, Fowler FJ, Couper MP, Lepkowski JM, Singer E, Tourangeau R. *Survey Methodology*. New York, NY: Wiley, 2004.
12. Willis G. *Cognitive Interviewing: A Tool for Improving Questionnaire Design*. Thousand Oaks, CA: Sage, 2005.
13. Finney Rutten LJ, Hesse BW, Moser RP, Kreps GL. *Building the Evidence Base in Cancer Communication*. Cresskill, NJ: Hampton Press, 2010.
14. Viswanath K, Breen N, Meissner H et al. Cancer knowledge and disparities in the information age. *J Health Commun* 2006;11:1–17.
15. Ford JS, Coupes EJ, Hay JL. Knowledge of colon cancer screening in a national probability sample in the United States. *J Health Commun* 2006;11:19–35.
16. Zajac LE, Klein WMP, McCaul KD. Absolute and comparative risk perceptions as predictors of cancer worry: moderating effects of gender and psychological distress. *J Health Commun* 2006;11:37–49.
17. Han PKJ, Moser RP, Klein W. Perceived ambiguity about cancer prevention recommendations: relationship to perceptions of cancer preventability, risk, and worry. *J Health Commun* 2006;11:51–69.
18. Hay J, Coupes E, Ford J. Predictors of perceived risk for colon cancer in a national probability sample in the United States. *J Health Commun* 2006;11:71–92.
19. Dillard AJ, McCaul KD, Klein W. Unrealistic optimism in smokers: implications for smoking myth endorsement and self-protective motivation. *J Health Commun* 2006;11:93–102.
20. Cerully JL, Klein WMP, McCaul KD. Lack of acknowledgment of fruit and vegetable recommendations among nonadherent individuals: associations with information processing and cancer cognitions. *J Health Commun* 2006;11:103–15.
21. Squiers L, Bright MA, Finney Rutten LJ et al. Awareness of the National Cancer Institute’s Cancer Information Service: results from the Health Information National Trends Survey (HINTS). *J Health Commun* 2006;11:117–33.
22. Finney Rutten LJ, Augustson E, Wanke K. Factors associated with patients’ perceptions of Health Care Providers’ communication behavior. *J Health Commun* 2006;11:135–46.
23. Shim M, Kelly B, Hornik R. Cancer information scanning and seeking behavior is associated with knowledge, lifestyle choices, and screening. *J Health Commun* 2006;11:137–72.
24. Nguyen GT, Bellamy SL. Cancer information seeking preferences and experiences: disparities between Asian Americans and Whites in the Health Information National Trends Survey (HINTS). *J Health Commun* 2006;11:173–80.
25. Ling BS, Klein WM, Dang Q. Relationship of communication and information measures to colorectal cancer screening utilization: results from HINTS. *J Health Commun* 2006;11:181–90.
26. Finney Rutten LJ, Blake K, Moser RP, Hesse BW. Partners in progress: informing the science and practice of health communication through national surveillance. *J Health Commun* 2010;15:3–4.
27. Peytchev A, Ridenhour J, Krotki K. Differences between RDD telephone and ABS mail survey design: coverage, unit nonresponse, and measurement error. *J Health Commun* 2010;15:117–34.
28. McBride B, Cantor D. Factors in errors of omission on a self-administered paper questionnaire. *J Health Commun* 2010;15:102–16.
29. Zhao X. Cancer information disparities between U.S.- and foreign-born populations. *J Health Commun* 2010;15:5–21.
30. Vanderpool RC, Huang B. Cancer risk perceptions, beliefs, and physician avoidance in Appalachia: results from the 2008 HINTS survey. *J Health Commun* 2010;15:78–91.
31. Oh A, Shaikh A, Waters E, Atienza A, Moser RP, Perna F. Health disparities in awareness of physical activity and cancer prevention: findings from the National Cancer Institute’s 2007 Health Information National Trends Survey (HINTS). *J Health Commun* 2010;15:60–77.
32. Langford A, Resnicow K, An L. Clinical trial awareness among racial/ethnic minorities in HINTS 2007: sociodemographic, attitudinal, and knowledge correlates. *J Health Commun* 2010;15:92–101.
33. Kontos EZ, Emmons KM, Pulko E, Viswanath K. Communication inequalities and public health implications of adult social networking site use in the United States. *J Health Commun* 2010;15:216–35.
34. Kobetz E, Kornfeld J, Vanderpool RC et al. Knowledge of HPV among United States Hispanic women: opportunities and challenges for cancer prevention. *J Health Commun* 2010;15:22–29.
35. Geiger BF, O’Neal MR, Firsing SL et al. HealthyME HealthyU©2010UCPGB: a collaborative project to enhance access to health information and services for individuals with disabilities. *J Health Commun* 2010;15:46–59.
49. Mayer DK, Terrin NC, Kreps GL. Providing health messages to Hispanics/Latinos: understanding the importance of language, trust in health information sources, and media use. *J Health Commun* 2010;15:252–63.

50. Ramanadhan S, Viswanath K. Health and the information non-seeker: evidence from the Health Information National Trends Survey. *J Health Commun* 2010;15:264–78.

51. Smith SG, Wolf MS, Wagner C. Socioeconomic status, statistical confidence, and patient-provider communication: an analysis of the Health Information National Trends Survey (HINTS 2007). *J Health Commun* 2010;15:169–85.

52. Marks R, Ok H, Joung H, Allegante JP. Perceptions about collaborative decisions: perceived provider effectiveness among 2003 and 2007 Health Information National Trends Survey (HINTS) respondents. *J Health Commun* 2010;15:135–46.

53. Hou J, Shim M. The role of provider–patient communication and trust in online sources in internet use for health-related activities. *J Health Commun* 2010;15:186–99.

54. Tortolero-Luna G, Finney Rutten LJ, Hesse BW et al. Health and cancer information seeking practices and preferences in Puerto Rico: creating an evidence base for cancer communication efforts. *J Health Commun* 2010;15:30–45.

55. Koch-Weser S, Bradshaw YS, Gualtieri L, Gallagher SS. The Internet as a health information source: findings from the 2007 Health Information National Trends Survey and implications for health communication. *J Health Commun* 2010;15:279–93.

56. Kealey E, Berkman CS. The relationship between health information sources and mental models of cancer: findings from the 2005 Health Information National Trends Survey. *J Health Commun* 2010;15:236–51.

57. Barnes LLB, Khojasteh JJ, Wheeler D. Cancer information seeking and scanning: Sources and patterns. *Health Educ J* 2017;76:853–68.

58. Finney Rutten LJ, Agunwamba AA, Wilson P et al. Cancer-related information seeking among cancer survivors: trends over a decade (2003-2013). *J Cancer Educ* 2016;1:348–57.

59. Hartoosian N, Ormseth SR, Hanson ER, Bantum EO, Owen JE. Information-seeking in cancer survivors: application of the Comprehensive Model of Information Seeking to HINTS 2007 data. *J Health Commun* 2014;19:1308–25.

60. Hesse BW, Arora NK, Beckjord EB, Finney Rutten LJ. Information support for cancer survivors. *Cancer* 2008;112:2529–40.

61. Kim K, Kwon N. Profile of e-patients: Analysis of their cancer information-seeking from a national survey. *J Health Commun* 2010;15:712–33.

62. Mayer DK, Terrin NC, Kreps GL et al. Cancer survivors information seeking behaviors: a comparison of survivors who do and do not seek information about cancer. *Patient Educ Couns* 2007;1:342–50.

63. Ramanadhan S, Viswanath K. Health and the information non-seeker: a profile. *Health Commun* 2006;20:131–39.

64. Roach AR, Lykins EL, Gochett CG, Brechtling EH, Graue LO, Andrykowski MA. Differences in cancer information-seeking behavior, preferences, and awareness between cancer survivors and healthy controls: a national, population-based survey. *J Cancer Educ* 2009;24:73–79.
70. Ottenbacher A, Yu M, Moser RP, Phillips SM, Alfano C, Perna FM. Population estimates of meeting strength training and aerobic guidelines, by gender and cancer survivorship status: findings from the Health Information National Trends Survey (HINTS). J Phys Act Health 2015;12:675–79.

71. Wild SR, Grover S, Johnston F. Screening practices and factors impacting screening uptake in breast and prostate cancer survivors. Int J Radiat Oncol Biol Phys 2013;1;S575–76.

72. Kowalkowski MA, Hart SL, Du XL, Baraniuk S, Latini DM. Cancer perceptions: implications from the 2007 Health Information National Trends Survey. J Cancer Surviv 2012;1:287–95.

73. Lykins EL, Graue LO, Brechting EH, Roach AR, Gochett CG, et al. Racial disparities in emotional distress among cancer survivors. Health Expect 2007;10:321–36.

74. Malo T, Pal T, Bonner D, Kim J, Vadaparampil S. Black breast cancer survivors’ health information preferences. Psychooncology 2014;1:81–82.

75. Apenteng BA, Hansen AR, Opoku ST, Mase WA. Racial disparities in emotional distress among cancer survivors: insights from the Health Information National Trends Survey (HINTS). J Cancer Educ 2017;1:556–65.

76. Moten A, Jeffers K, Larbi D et al. Obesity and weight loss attempts among subjects with a personal history of cancer. Sultan Qaboos Univ Med J 2014;1:e330–36.

77. Taber JM, Klein WM, Ferrer RA, Kent EE, Harris PR. Optimism and spontaneous self-affirmation are associated with lower likelihood of cognitive impairment and greater positive affect among cancer survivors. Ann Behav Med 2016;1:198–209.

78. Fahimi M, Link M, Mokdad A, Schwartz DA, Levy P. Tracking chronic disease and risk behavior prevalence as survey participation declines: statistics from the behavioral risk factor surveillance system and other national surveys. Prev Chronic Dis 2008; 5:A80.

79. Blumberg SJ, Luke JV, Cynamon ML. Telephone coverage and health survey estimates: evaluating the need for concern about wireless substitution. Am J Public Health 2006;96:26–31.

80. Nelson DE, Powell-Griner E, Town M, Kovar MG. A comparison of national estimates from the National Health Interview Survey and the Behavioral Risk Factor Surveillance system. Am J Public Health 2003;93:1335–41.

81. Gentry EM, Kalsbeek WD, Hogelin GC et al. The behavioral risk factor surveys: II. Design, methods, and estimates from combined state data. Am J Prev Med 1985;1:9–14.

82. Mainland A, Lin A, Cantor D et al. A nonresponse bias analysis of the Health Information National Trends Survey (HINTS). J Health Commun 2017;22:545–53.

83. Han PK, Moser RP, Klein WM. Perceived ambiguity about cancer prevention recommendations: associations with cancer-related perceptions and behaviors in a US population survey. Health Expect 2007;10:321–36.

84. Ferrer RA, Portnoy DB, Klein WM. Worry and risk perceptions as independent and interacting predictors of health protective behaviors. J Health Commun 2013;18:397–409.

85. Ferrer RA, Hall KL, Portnoy DB, Ling BS, Han PKJ, Klein W. Relationships among health perceptions vary depending on stage of readiness for colorectal cancer screening. Health Psychol 2011;30:525–35.

86. Ferrer RA, Klein WMP, Avishai A, Jones K, Villegas M, Sheeran P. When does risk perception predict protection motivation for health threats? A person-by-situation analysis. PLoS One 2018; 13:e01911994.

87. Bergkvist L, Rossiter JR. The predictive validity of multiple-item versus single-item measures of the same constructs. J Exp Soc Psychol 2007;44:175–84.

88. Luttrell A, Petty RE, Xu M. Replicating and fixing failed replications: the case of need for cognition and argument quality. J Exp Soc Psychol 2017;69:178–83.

89. Ferrer RA, Portnoy DB, Klein WM. Worry and risk perceptions as independent and interacting predictors of health protective behaviors. J Health Commun 2013;18:397–409.

90. Bergkvist L, Rossiter JR. The predictive validity of multiple-item versus single-item measures of the same constructs. J Exp Soc Psychol 2017;69:178–83.

91. Finney Rutten LJ, Augustson EM, Moser RP, Beckjord EB, Hesse BW. Smoking knowledge and behavior in the United States: sociodemographic, smoking status, and geographic patterns. Nicotine Tob Res 2008;10:1539–70.

92. National Cancer Institute. State Cancer Profiles, Cancer Knowledge Maps. 2016. https://statecancerprofiles.cancer.gov/data-topics/cancer-knowledge.html (1 June 2018, date last accessed).

93. Rao JNK, Molina I. Small Area Estimation. Hoboken, NJ: Wiley, 2015.