COUNTABLE APPROXIMATION OF TOPOLOGICAL G-MANIFOLDS, II: LINEAR LIE GROUPS G

QAYUM KHAN

Abstract. Let G be a matrix group. Topological G-manifolds with Palais-proper action have the G-homotopy type of countable G-CW complexes (3.2). This generalizes E Elfving’s dissertation theorem for locally linear G-manifolds (1996). Also we improve the Bredon–Floyd theorem from compact groups G.

1. Equivariant cohomology manifolds

We observe a generalization of the Bredon–Floyd theorem [Bor60, VII:2.2] to noncompact groups, by adapting the circle of ideas within Floyd’s initial argument.

Theorem 1.1. Let G be a Lie group. Let M be a cohomology manifold over \mathbb{Z} with Cartan-proper G-action. Any compact set in M has only finitely many orbit types.

The definition of a \mathbb{Z}-cohomology manifold is given in [Bor60, I:3.3]. In particular, M is locally compact and Hausdorff, without assuming separable or metrizable. Proper in the sense of Cartan is in [tD87, I:3.17] and of Palais is in [Pal61, 1.2.2].

Proof. Assume not. Then there exists an infinite sequence $\{x_i\}_{i=0}^{\infty}$ in some compact subset K of M such that no two of the isotropy groups G_{x_i} are conjugate in G. Since the action is Cartan, $C := \{g \in G \mid gK \cap K \neq \emptyset\}$ is compact [tD87, I:3.21]. In particular, since each G_{x_i} is a closed subset of C, each G_{x_i} is compact. Recall that the set $\text{Cpt}(G)$ of nonempty compact subsets of a metric space (G, d) admits the Hausdorff–Pompeiu metric d_{HP}, which is compact if the ambient metric space is compact [Mun00, 45.7]. Then the infinite sequence $\{G_{x_i}\}_{i=0}^{\infty}$ in the compact metric space $(\text{Cpt}(C), d_{HP})$ has a convergent subsequence, which we may reindex to be the original. By continuity of multiplication and inversion in G, the compact subset $H := \text{lim}_{i \to \infty} G_{x_i}$ is a subgroup of G. Thus H is a Lie group [Lee13, 20.10].

Let U be a compact neighborhood of the neutral element in G. On the one hand, since H is a compact Lie group acting on the \mathbb{Z}-cohomology manifold M, by the Bredon–Floyd theorem [Bor60, VII:2.2], the compact set $UK \subset M$ supports only finitely many H-orbit types. On the other hand, by the Montgomery–Zippin neighboring-subgroups theorem [Pal61, 4.2], there is a neighborhood N of H in G so any subgroup of G contained in N is U-conjugate to a subgroup of H. Since H is a limit, there exists i_0 such that $G_{x_i} \subset N$ for all $i \geq i_0$. Re-index so that $i_0 = 0$. Then there exists $u_i \in U$ such that $G_{u_ix_i} = u_iG_{x_i}u_i^{-1} \subset H$ for each i. Note $\{u_i x_i\}_{i=0}^{\infty}$ is an infinite sequence in UK such that no two $G_{u_ix_i}$ are G-conjugate hence not H-conjugate, contradicting that UK has only finitely many H-orbit types.

Date: August 24, 2018.
2. Equivariant absolute neighborhood retracts

Recall that X is a G-ANR for the class \mathcal{C} (\mathcal{C}-absolute G-neighborhood retract) if X belongs to \mathcal{C} and, for any closed G-embedding of X into a member of \mathcal{C}, there is a G-neighborhood of X with G-retraction to X. More generally, X is a G-ANE for the class \mathcal{C} (\mathcal{C}-absolute G-neighborhood extensor) if, for any member B of \mathcal{C} and closed subset A of B and any G-map $A \rightarrow X$, there exists a G-extension $U \rightarrow X$ from some G-neighborhood U of A in B. Notice a G-ANE need not belong to \mathcal{C}.

Not long ago, S Antonyan [Ant05, 5.7] made equivariant O Hanner’s open-union theorem (see [Hu65, III:8.3]), providing a local-to-global principle for G-extensors.

Theorem 2.1 (Antonyan). Let G be a locally compact Hausdorff group. Let \mathcal{C} be a subclass of the class G-\mathcal{P} of paracompact Palais G-spaces with paracompact orbit space. Any union of open G-subsets that are G-ANEs for \mathcal{C} is also a G-ANE for \mathcal{C}.

Equivariant CW structures were found over very general groups, using the nerves of locally finite coverings of neighborhoods in certain G-Banach spaces [AE09, 1.1].

Theorem 2.2 (Antonyan–Elving). Let G be a locally compact Hausdorff group. Suppose that X is a G-ANR for the class G-\mathcal{M} of G-metrizable Palais G-spaces. Then X has the equivariant homotopy type of a G-CW complex with Palais action.

Remark 2.3. Observe that the class G-\mathcal{M} is a subclass of G-\mathcal{P}, as follows. Let X be a member of G-\mathcal{M}. Since X is G-metrizable, the orbit space X/G has an induced metric given by an infimum. Then, since both X and X/G are metrizable, by the Rudin–Stone theorem [Mun00, 41.4], both X and X/G are paracompact.

As classes, observe $\mathcal{C} \cap G$-ANE(\mathcal{C}) \subseteq G-ANE(\mathcal{C}); a converse is [AAMP14, 6.3].

Theorem 2.4 (Antonyan–Antonyan–Martín-Peinador). Let G be a locally compact Hausdorff group. Then G-ANE(G-\mathcal{M}) $=$ G-\mathcal{M} \cap G-ANE(G-\mathcal{M}).

The following technical notion over compact groups was introduced in [Jaw81]. We restate from [AAMRVB17, 2.2] the generalization over noncompact groups.

Definition 2.5 (Jaworowski). Let G be a Lie group. A Palais G-space X has finite structure if it has only finitely many orbit types and, for each orbit type (H), the quotient map $X_{(H)} \rightarrow X_{(H)}/G$ is a G/H-bundle with only finitely many local trivializations. Here (H) is the conjugacy class of H in G. $X_{(H)} := \{x \in X \mid (G_x) = (H)\}$ is the (H)-stratum, $G_x := \{g \in G \mid gx = x\}$ is an isotropy group.

In the following recent theorem [AAMRVB17, 6.1], Jaworowski–Lashof’s criterion for G-ANRs [Jaw81] is generalized from compact Lie groups G to linear ones.

Theorem 2.6 (Antonyan–Antonyan–Mata-Romero–Vargas-Betancourt). Let G be a linear Lie group. Let X be a G-metrizable Palais G-space with finite structure. Then X is a G-ANR for the class of G-metrizable Palais G-spaces, if and only if X^H is an ANR for the class of metrizable spaces for each closed subgroup H of G.

Here $X^H := \{x \in X \mid \forall g \in H : gx = x\}$ denotes the H-fixed subspace of X.

Remark 2.7. Any compact Lie group is linear: it has a homomorphic embedding into $GL_n(\mathbb{R})$ for some n. This is a special case of the following consequence of the Peter–Weyl theorem: any compact topological group G embeds into a product of unitary groups; if G has no small subgroups this product is finite; see [Kha18, 4.1].
3. Equivariant topological manifolds

Theorem 3.1. Let G be a linear Lie group. Let M be a cohomology manifold over \mathbb{Z} that is both separable and metrizable. Suppose M has Palais G-action and the fixed set M^H is an ANR for the class of metrizable spaces for each closed subgroup H of G. Then M is G-homotopy equivalent to a countable proper G-CW complex.

Proof. Let M be a \mathbb{Z}-cohomology manifold. Since M is separable and locally compact, there exists an increasing infinite sequence $\{M_i\}_{i=0}^{\infty}$ of open sets in M whose union is M and whose closures \overline{M}_i in M are compact. By Theorem 1.1, the compact set \overline{M}_i, hence M_i, has only finitely many conjugacy classes of isotropy group. The G-saturation $GM_i = \bigcup_{g \in G} gM_i$ is also open [tD87, I:3.1(i)] and has only finitely many G-orbit types. Since $(GM_i)^H = GM_i \cap M^H$ is open in the ANR M^H, we have that $(GM_i)^H$ is also an ANR by Hanner's global-to-local principle [Hu65, III:7.9].

Since G is a Lie group and GM_i is a Palais G-space, by Palais' slice theorem [Pal61, 2.3.1, 2.1.2], GM_i has a covering \mathcal{T}_i by G-tubes of varying orbit types. Furthermore, since $(GM_i)/G = \overline{M}_i/G$ is compact, \mathcal{T}_i can be assumed finite. The stratum $(GM_i)_i$ of $GM_i \subset GM_i$ has a single orbit type, so restriction of \mathcal{T}_i to it gives a finite covering by local trivializations of a G/H-fiber bundle with structure group G. So the Palais G-space GM_i has finite structure. By Palais' metrization theorem [Pal61, 4.3.4], the separable metrizable M, hence GM_i, is G-metrizable. Since G is linear, GM_i is a G-ANR for $G\setminus M$ (2.6), hence is a G-ANE for $G\setminus M$ (2.4).

Thus, by Remark 2.3 and Theorem 2.1, $M = \bigcup_{i \in I} GM_i$ is a G-ANE for $G\setminus M$. Then, since M is also member of $G\setminus M$, M is a G-ANE for $G\setminus M$. Therefore, by Theorem 2.2, we conclude M has the G-homotopy type of a proper G-CW complex.

We now make some remarks on how to guarantee only countably many G-cells. The proof of Theorem 2.2 starts in [AARM09, 5.2], with a closed G-embedding of X into a G-normed linear space L with Palais action on some G-neighborhood. Specifically, those authors take $L = E \times N$ [AARM09, 3.10], which is valid for any G-metrizable Palais G-space X. Since our $X = M$ is locally compact, alternatively use the simpler and more classical G-Banach space $L = C_0(X)$, where

$$C_0(X) := \{ f \in C(X) \mid \forall \varepsilon > 0, \exists \text{ compact } K \subset X, \forall x \in X - K : |f(x)| < \varepsilon \}$$

$$\|f\| := \sup\{|f(x)| : x \in X\},$$

which is well-defined.

Indeed, E Elfvings in [Elf01, Propositions 2.3] showed the existence of a Kurotowski-like G-embedding of X into $C_0(X) - \{0\}$ on which the continuous G-action is Palais.

Since X is separable, there exists a countable dense subset $\Delta \subset X$. Since X is locally compact, the Alexandroff one-point compactification X^* exists. Since X is second-countable, so is X^*, hence X^* admits a metric d by the Urysohn metrization theorem [Mun00, 34.1]. Consider the countable collection $\Delta_d \subset C(X^*)$ defined by

$$\Delta_d := \{1\} \cup \{ d(-, p) \in C(X^*) : p \in \Delta \}.$$

Since Δ_d contains a nonzero constant function and separates points because Δ is dense in X^*, by the Stone–Weierstrass theorem [Sto48, Corollary 3, p174], the countable subring $\mathbb{Q} \langle \Delta_d \rangle$ is dense in $C(X^*)$. Hence $C_0(X) \subset C(X^*)$ is separable.

Then the G-neighborhood U of X in $C_0(X) - \{0\}$, on which the G-retraction $U \rightarrow X$ is defined, is Lindelöf, as it is separable and metrizable. So in the proof of [AE09, Proposition 5.2], the rich G-normal cover \mathcal{U} with index set $G \times M$ can be assumed to have M a countable set. The geometric G-nerve $K(\mathcal{U})$ is indexed [AE09, p166] by certain finite subsets of M. Thus the semisimplicial G-space $K(\mathcal{U})$
has only countably many G-cells, according to the proof of [AE09, Theorem 5.3], which relies on S Illman [Ill00] and this in turn involves only countably many G-cells for a smooth G-manifold. Finally, since [AE09, Proposition 5.2] states that $K(1)$ dominates X, by a G-version of Mather’s trick (see second paragraph of [Kha18, Proof 2.5]), the G-CW complex for $X = M$ has only countably many G-cells. □

Finally, we generalize [Kha18, 2.5] from G being compact. Note that the manifold must be noncompact if G is noncompact in order for the action to be Cartan-proper.

Corollary 3.2. Let G be a linear Lie group. Any topological G-manifold with Palais action has the equivariant homotopy type of a countable proper G-CW complex.

Here, by topological G-manifold [Kha18, 2.2], we mean the H-fixed subspace is a topological (C^0) manifold for each closed subgroup H of a topological group G. Herein, a topological manifold shall be separable, metrizable, and locally euclidean.

Proof. Let M be a topological G-manifold with Palais action. By Hanner’s local-to-global principle [Hu65, III:8.3], each manifold M^H is an ANR for the class of metrizable spaces. Also M is separable, metrizable, and a Z-cohomology manifold. Therefore we are done by Theorem 3.1. □

Thus more tractible are its Davis–Lück G-spectral homology groups [DL98, 3.7, 4.3], since we conclude countability of the G-CW complex that left-approximates.

Corollary 3.3. Let G be a linear Lie group. Let $f : M \longrightarrow N$ be a G-map between topological G-manifolds with Palais actions. Then f is a G-homotopy equivalence if and only if $f^H : M^H \longrightarrow N^H$ is a homotopy equivalence for each closed H of G.

Proof. This is immediate from Corollary 3.2 and the corresponding theorem for G-CW complexes [tD87, II:2.7], which is proven using G-obstruction theory. □

In particular, we generalize the main result of Elfving’s thesis [Elf96, 4.20]. The definition of locally linear, along with some discussion, is found in [Kha18, 3.6, 3.7]. Note any smoothable action is locally linear, but not vice versa; see [Bre72, VI:9.6].

Corollary 3.4 (Elfving). Let G be a linear Lie group. Let M be a locally linear G-manifold with Palais action. If M has only finitely many orbit types, then M has the equivariant homotopy type of a G-CW complex.

Proof. This special case now follows immediately from Corollary 3.2. □

4. **Examples that are not locally linear**

We continue the three families of uncountable examples of [Kha18, 3.1, 3.2, 3.3]. The purpose here is to show there do exist topological G-manifolds that are not locally linear when G is a noncompact linear Lie group with torsion. (All principal bundles are trivial if G is connected torsionfree, such as $G = R$ for complete flows.)

Their common trick is that the diagonal action will become Palais [Pal61, 1.3.3], even though it is not on the first factor, using a homogenous space G/H with H compact for the second factor. These G/H are exactly those with transitive Palais G-action. The transitivity on the second factor guarantees the same quotient space as the first’s. Any C^1 Palais action by a Lie group is C^ω [Ill95, Ill03]; ours are C^0.

Indeed there is no contradiction to Palais’ slice theorem [Pal61, 2.3.1, 2.1.2]. There does exist a G_e-slice for each point x of the Palais G-manifolds, but not all the slices are euclidean, and this is why in particular these slices are not G_e-linear.
Example 4.1 (Bing). Consider the double $D := E \cup_A E$ of the non-simply connected side E in S^3 of the Alexander horned sphere $A \approx S^2$, whose embedding is not locally flat. This double has obvious involution r_B that interchanges the two pieces and leaves the horned sphere fixed pointwise. Bing showed D is homeomorphic to S^3 [Bin52]. Thus r_B minus a fixed point (so on \mathbb{R}^3) negatively answers a question of Montgomery [Eil49, 39b], asking if the action is conjugate to an isometric one.

Consider the Lie group $G = \text{Isom}(\mathbb{R}) = \mathbb{R} \times_{-1} O_1$, a closed subgroup of $GL_2(\mathbb{R})$

$$\left\langle \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \mid t \in \mathbb{R} \right\rangle.$$

Define a non-Cartan action of G on S^3 by epimorphism to $O_1 \cong \langle r_B \rangle \leq \text{Homeo}(S^3)$. As noted above, the diagonal action of G on the product of S^3 and the homogenous space $\mathbb{R} = G/O_1$ is Palais. Then Corollary 3.2 applies to the topological G-manifold $S^3 \times \mathbb{R}$. In the orbit space $(S^3 \times \mathbb{R})/G = S^3/r_B = E$, the stratum A is not locally cofibrant, so the C^0 action of G on the 4-manifold $S^3 \times \mathbb{R}$ cannot be locally linear.

For each $n \geq 3$, Lininger [Lin70, 9, 10] applies [Bin64] to produce uncountably many inequivalent involutions on S^n with fixed set an $(n+1)$-sphere and quotient not a manifold-with-boundary, so none is equivalent to a locally linear action. They arise from uncountably many Cantor’s space 2^k; in the form of multiparameter Antoine necklaces, the $n = 4$ case is due to Sher [She68].

Example 4.2 (Montgomery–Zippin). Adaptation of Bing’s 1952 idea produces an involution r_{MZ} of S^3 whose fixed set is an embedded circle K that is not locally flat [MZ54, §2]. In Example 4.1, replacing r_B and A with r_{MZ} and K works verbatim. Note r_{MZ} preserves orientation and was first to negatively answer the C^0 version of a question of Paul A Smith [Eil49, 36], asking if the fixed circle is unknotted.

Alford gave uncountably many involutions fixing a wild circle [Alf66].

Higher codimension-two examples are provided by Lininger. He uses rotation of the Alexander horned sphere A in 4-space to obtain a semifree U_1-action on S^4 with fixed set a 2-sphere [Lin70, 7]. More generally, using Bing’s later techniques [Bin64], he obtains uncountably many semifree U_1-actions on S^n whose fixed set is an $(n-2)$-sphere and quotient not a manifold-with-boundary [Lin70, 8, 10].

Example 4.3 (Lininger). For each $k \geq 3$, there are uncountably many inequivalent free U_1-actions on S^{2k-1} whose quotients are not C^0 manifolds [Lin69, Remark 2]. At the root of Lininger’s work are Andrews–Curtis decomposition spaces [AC62]: non-euclidean quotients Q by a wild arc, any of whose product with \mathbb{R} is euclidean.

Consider the Lie group $G = \text{Isom}^+(\mathbb{C}) = \mathbb{C} \times U_1$, a closed subgroup of $GL_2(\mathbb{C})$

$$\left\langle \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} u & 0 \\ 0 & 1 \end{pmatrix} \mid c \in \mathbb{C}, u \in U_1 \right\rangle.$$

Define a non-Cartan action of G on S^{2k-1} by epimorphism to U_1 then use Lininger. The diagonal action of G on the product of S^{2k-1} and homogeneous space $\mathbb{C} = G/U_1$ is Palais, as well as free. The orbit space $(S^{2k-1} \times \mathbb{C})/G = S^{2k-1}/U_1$ is not a topological manifold, though the projection from $S^{2k-1} \times \mathbb{C}$ is a principal G-bundle. In particular, none in this uncountable family of free G-actions can be locally linear.

The same holds for $G = U_1 \times G'$ with G' a linear Lie group and $M = S^{2k-1} \times G'$.

We end with a family of examples whose linear Lie group G is arbitrarily large.
Example 4.4 (Lininger). For each $n > k + 1 \geq 3$, there are uncountably many inequivalent semifree SO_k-actions on S^{n} whose fixed set is a wild $(n-k-1)$-sphere [Lin70, 11]. Again, the construction arises from the quotient by any wild arc [AC62].

The Lie group $G = \text{Isom}^+(\mathbb{R}^k) = \mathbb{R}^k \rtimes SO_k$ is a closed subgroup of $GL_{2k}(\mathbb{R})$:

$$\left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} : \begin{pmatrix} r \\ 0 \\ 1 \end{pmatrix} \right\} \cap \mathbb{R}^k, \ r \in SO_k.$$

Define a non-Cartan action of G on S^n by epimorphism to SO_k then use Lininger. The diagonal action of G on the product of S^n and homogeneous space $\mathbb{R}^k = G/SO_k$ is Palais. The orbit space $(S^n \times \mathbb{R}^k)/G = S^n/SO_k$ is not a manifold-with-boundary. In particular, none in this uncountable family of semifree G-actions is locally linear.

Acknowledgements. I thank Christopher Connell for various basic discussions.

REFERENCES

[AAMP14] Natella Antonyan, Sergey Antonyan, and Elena Martín-Peinador. Equivariant embeddings of metrizable proper G-spaces. Topology Appl., 163:11–24, 2014.

[AAMRVB17] Natella Antonyan, Sergey Antonyan, Armando Mata-Romero, and Enrique Vargas-Betancourt. A characterization of G-ANR and G-AR spaces for proper actions of Lie groups. Topology Appl., 231:292–305, 2017.

[AARM09] Natella Antonyan, Sergey Antonyan, and Leonardo Rodríguez-Medina. Linearization of proper group actions. Topology Appl., 156(11):1946–1956, 2009.

[AC62] J J Andrews and M L Curtis. n-space modulo an arc. Ann. of Math. (2), 75:1–7, 1962.

[AE09] Sergey A Antonyan and Erik Elfving. The equivariant homotopy type of G-ANR’s for proper actions of locally compact groups. In Algebraic topology—old and new, volume 85 of Banach Center Publ., pages 155–178. Polish Acad. Sci. Inst. Math., Warsaw, 2009.

[Alf66] William R Alford. Uncountably many different involutions of S^3. Proc. Amer. Math. Soc., 17:186–196, 1966.

[Ant05] Sergey Antonyan. Orbit spaces and unions of equivariant absolute neighborhood extensors. Topology Appl., 146(147):289–315, 2005.

[Bin52] R H Bing. A homeomorphism between the 3-sphere and the sum of two solid horned spheres. Ann. of Math. (2), 56:354–362, 1952.

[Bin64] R H Bing. Inequivalent families of periodic homeomorphisms of E^3. Ann. of Math. (2), 80:78–93, 1964.

[Bor60] Armand Borel. Seminar on transformation groups. With contributions by G Bredon, E E Floyd, D Montgomery, R Palais. Annals of Mathematics Studies, No. 46. Princeton University Press, Princeton, N.J., 1960.

[Bre72] Glen E Bredon. Introduction to compact transformation groups. Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 46.

[DL08] James F Davis and Wolfgang Lück. Spaces over a category and assembly maps in isomorphism conjectures in K- and L-theory. K-Theory, 15(3):201–252, 1998.

[Eil49] Samuel Eilenberg. On the problems of topology. Ann. of Math. (2), 50:247–260, 1949.

[Eil96] Erik Elfving. The G-homotopy type of proper locally linear G-manifolds. Ann. Acad. Sci. Fenn. Math. Diss., (108):50, 1996.

[Eil01] Erik Elfving. The G-homotopy type of proper locally linear G-manifolds, II. Manuscripta Math., 105(2):235–251, 2001.

[Hu65] Sze-tsen Hu. Theory of retracts. Wayne State University Press, Detroit, 1965.

[Ill95] Sören Illman. Every proper smooth action of a Lie group is equivalent to a real analytic action: a contribution to Hilbert’s fifth problem. In Prospects in topology (Princeton, NJ, 1994), volume 138 of Ann. of Math. Stud., pages 189–220. Princeton Univ. Press, Princeton, NJ, 1995.
[Ill00] Sören Illman. Existence and uniqueness of equivariant triangulations of smooth proper G-manifolds with some applications to equivariant Whitehead torsion. J. Reine Angew. Math., 524:129–183, 2000.

[Ill03] Sören Illman. The very-strong C^∞ topology on $C^\infty(M, N)$ and K-equivariant maps. Osaka J. Math., 40(2):409–428, 2003.

[Jaw81] Jan Jaworowski. An equivariant extension theorem and G-retracts with a finite structure. Manuscripta Math., 35(3):323–329, 1981.

[Kha18] Qayum Khan. Countable approximation of topological G-manifolds: compact Lie groups G. Topology Appl., 235:14–21, 2018.

[Lee13] John M Lee. *Introduction to smooth manifolds*, volume 218 of Graduate Texts in Mathematics. Springer, New York, second edition, 2013.

[Lin69] Lloyd Lininger. On topological transformation groups. Proc. Amer. Math. Soc., 20:191–192, 1969.

[Lin70] Lloyd L Lininger. Actions on S^n. Topology, 9:301–308, 1970.

[Mun00] James R Munkres. *Topology*. Prentice Hall, Inc., Upper Saddle River, NJ, 2000. Second edition of [MR0464128].

[MZ54] Deane Montgomery and Leo Zippin. Examples of transformation groups. Proc. Amer. Math. Soc., 5:460–465, 1954.

[Pal61] Richard S Palais. On the existence of slices for actions of non-compact Lie groups. Ann. of Math. (2), 73:295–323, 1961.

[She68] Richard B Sher. Concerning wild Cantor sets in E^3. Proc. Amer. Math. Soc., 19:1195–1200, 1968.

[Sto48] Marshall H Stone. The generalized Weierstrass approximation theorem. Math. Mag., 21:167–184, 237–254, 1948.

[tD87] Tammo tom Dieck. *Transformation groups*, volume 8 of De Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, 1987.

Department of Mathematics Saint Louis University St Louis MO 63103 USA

E-mail address: khanq@slu.edu