Modeling And Simulation Of Applied Load On Lenin Fiber Composite Materials Using COMSOL

Pankaj Kumar1*, Cherala Sairam3, V Dender3 and Adla Rajesh4

1Center for Materials and Manufacturing, Department of Mechanical Engineering SR Engineering College, Warangal, India
2Department of Mechanical Engineering SR University, Warangal, India
3SRiX, Warangal, India
4Sumathi Reddy Institute of Technology for Women, Warangal, India.

Corresponding author email: pikupankaj82@gmail.com

Abstract. Nowadays, composite materials become important and very useful due to eco-friendly and have no adverse impact. In this study, fabrication of the natural fiber composite performed using Lenin fiber as reinforcement and epoxy as resin materials. Four samples of laminates if fabricated using different proportions of the fiber and resin. This research article also presents the simulation performed to investigate the effects of the different loads on the different forms of the von Mises stresses developed during the application of the loads. The various forms of the von Mises stress include von Mises stress (Principal stress), layered material von Mises stress, through-thickness von Mises stress, and line graph von Mises stress developed in the laminates. In addition, the influence of different loads on the stress-induced is also investigated and observed that on increasing applied load, von Mises stress also increases.

Keywords: Composite, Simulation, von Mises Stress, Lenin Fiber, Laminates.

1. Introduction
Recently, the demand for the plant fiber composites increased very significantly due to lightweight, biodegradable, no adverse effects on health, abundantly available, less costly. Plant fiber composites can be an alternative to synthetic fiber-based composites due to their less environmental impact [1-3]. In the automobile industry, the demands for lightweight parts are increasing day by day in the manufacturing of various parts such as door, ceiling, bumper, windshield, etc. In addition, the manufacturing of the plant fiber composites is required relatively less effort as compared to the synthetic fiber composites [4]. Many researchers are trying to increase the mechanical properties of the plant fiber by proper selection and addition of the filler and reinforcement materials [5,6]. [7] Investigated to evaluate tensile properties of hybrid natural fiber composite using rules of hybrid mixture method and experimentally. The author has reported that the rules of the hybrid mixture method give higher values of the tensile properties as compared to the experimental method. Whereas [8] reported the fabrication of hybrid composite using areca sheath–jute–glass. The investigation shows the fabricated hybrid composite possesses excellent tensile, flexural, and shear properties due to the addition of high strength jute fiber. Besides, a good fiber bonding and less pull out in the fabricated composites as seen from the SEM images. However, [9-13] carried out investigation on design, fabrication and characterization of different types of composite materials by choosing suitable
reinforcement and the binders. They also studied the properties of various types of reinforcement that includes WC, titanium diboride, silicon carbide, tin etc. and reported that these materials increase the strength of the fabricated composites. Whereas [14-18] conducted investigation to find different mechanical properties of the various types of the composite materials. However, [19] studied the thermomechanical characteristics of jute fiber-reinforced epoxy composites filled with powder of calotropis gigantea stem. The author has reported that the superior improvement of both mechanical and thermal properties due to high filler contents. They also investigated the average fiber full out, distribution nature of filler, voids, and fractured interface. However, [20] investigated to study the performance of jute fiber epoxy composites filled with wood dust filler in terms of biodegradability, water absorption capacity, thermal and mechanical properties. It is reported that the mechanical properties of the fabricated composites are enhanced very significantly due to fine distribution and excellent bonding. Besides this, the thermal properties of the composite also improved due to the presence of coarse redwood dust particles. In this investigation, Lenin fiber composite is fabricated with different proportions of Lenin fiber and epoxy resin. To study the effects of different loading conditions on the strength of the fabricated laminates, simulation has been performed using COMSOL Multiphysics software. This study presents different stresses such as von Mises stress (Principal stress), layered material von Mises stress, through-thickness von Mises stress, and line graph von Mises stress in the laminates for different samples.

2. Materials and Methods

The composite materials in the form of laminates are prepared using hand layup techniques. The required size of the Lenin fiber is cut from the fiber bundle. Fiber mat and resin along with hardener were also weighted in equal proportions. The chosen epoxy and hardener were mixed in the equal weight. In addition, during preparation of resin hardener solution, specific amount of catalyst and accelerator are also added for better joint strength. The prepared solution is kept for 2 to 3 hours. First, one layer of wax is applied on the glass plate for easy removal of the laminates and kept for 10 min. A thin layer of the prepared solution is applied with the brush and is kept for few minutes to dry. Next, one layer of Lenin fiber mat was placed and followed by application of another layer of the epoxy hardener solution. In this way, total three layers of epoxy hardener solution and fiber mat were placed. On the top of the last layer, again waxing is done which serves to ensure a good surface finish. Finally, a releasing sheet was placed on the top and a light rolling was performed. Then the mold is heated to 80°C for 24 hrs. to allow sufficient time for curing and subsequent hardening. The entire experimental procedure as shown in figures 1. When the prepared specimen is cooled it is de-molded and then the specimen is cut to the required dimensions for further testing and characterization.
3. Modeling and simulation of composite materials with COMSOL

3.1. Geometric model

In this study, the layerwise theory is used for the modeling i.e. layered shell interface. This theory has a degree of freedom which is distributed in the thickness direction. It predicts correct inter-laminar stresses and is suitable for delamination and detailed damage analysis. It supports the non-linear material model and does not require a shear correction factor. The composite laminate considered has 3 layers with 0/90/0 sequence. To investigate the effects of the different loading conditions on the mechanical properties, simulation has been performed for the bending of the fabricated composites. The geometrical modeling for the bending is developed in software package COMSOL 6.1 and various dimensions of the specimen are shown in figure 2.

3.2. Boundary conditions and applied load

The boundary conditions in this bending test simulation are given one end fixed and another end free. The free end is applied with different loads in the downward direction as mentioned in the table.

3.3. Material parameters

The material properties such as density, bulk modulus, shear modulus, young’s modulus, and Poisson’s ratio of the laminates considered for the simulation are listed in table 1.

Property	Symbol	Value	Unit
Density	rho	1.63	kg/m³
Bulk modulus	K	10	N/m²
Shear modulus	{Gvector1, Gvector2, Gvector3}	4.6e9, 4.6e9, 4.6e9	N/m²
Young's modulus	E	13e9, 9e9, 9e9	Pa
Poisson's ratio	nu	0.32, 0.32, 0.32	1

4. Results and Discussion
Table 2 presents the amount of load applied during the simulation, the evolution of von Mises stress (Principal stress), layered material von Mises stress, through-thickness von Mises stress, and line graph von Mises stress in the laminates for different samples.

4.1. Prediction von Mises Stress

Recently, many researchers have used von Mises methods for investigation of virtual stresses developed during the application of the loads. In this investigation, the von mises stresses are predicted along with the interface of the laminates as shown in the figure for different samples. It can be observed from this figure that the maximum value of von mises stress is 5KN/mm\(^2\) and the minimum 2KN/mm\(^2\) corresponding to variation in the applied load as mentioned in the table. The maximum stress is observed at the fixed end which is indicated in the figure in red color. Different forms of the von mises stresses that are developed during the loading in the simulation are presented in figure 3.

Sample No	Load (N)	von Mises stress (KN/mm\(^2\))
I	10	2
II	15	3
III	20	4
IV	25	5

Fig. 3. Different colours showing the stress distribution area. von Mises stress includes (a) Principal stress appeared near the fixed end, (b) in through thickness, (c) on sliced layer, and (d) line graph
4.2. *Effects of loading load on the von Mises stresses*

On the variation of the applied load during the simulation, it is observed that the variation in the von Mises stresses with the load is linear which is represented in figure 4. The maximum value of the applied load is 25N and the minimum of 10N during the simulation. It is also observed that the extent of the damage is very little which can be seen at the fixed end of the laminates. The region where the highest von Mises stresses is observed is known as the highest load-bearing region.

![Fig. 4. Effects of different loads on the von Mises stress](image)

5. *Conclusions*

In this investigation, Lenin fiber composite is fabricated with different proportions of Lenin fiber and epoxy resin. To study the effects of different loading conditions on the strength of the fabricated laminates, simulation has been performed using COMSOL Multiphysics software. This study presents different stresses such as von Mises stress (Principal stress), layered material von Mises stress, through-thickness von Mises stress, and line graph von Mises stress in the laminates for different samples. The following conclusions are:

- The maximum values of the surface von Mises stress is observed near the fixed end of the laminates.
- On increasing the loads in different simulation test, the values of the von mises stress increases linearly.
- In through-thickness, the von Mises stress was minimum in the middle of the laminates.

6. *References*

[1] Wang X, Wang L, Lian W, Zhou A, Cao X, and Hu Q 2018 The influence of carbon spheres on the thermal and mechanical properties of epoxy composites. *Journal of Polymer Research*, 25(10), 223.

[2] Oladele I O, Akinwekomi A D, Agbabiaka O G, and Oladejo M O 2019 Influence of biodegradation on the tensile and wear resistance properties of bio-derived CaCO3/epoxy composites. *Journal of Polymer Research*, 26(1), 16.

[3] Tavassoli F, Razzaghi-Kashiani M, and Mohebby B 2018 Hydrothermally treated wood as reinforcing filler for natural rubber bio-composites. *Journal of Polymer Research*, 25(1), 3.

[4] Nassar M M, Arunachalam R, and Alzebdeh K I 2017 Machinability of natural fiber reinforced composites: a review. *The International Journal of Advanced Manufacturing Technology*, 88(9-12), 2985-3004.
[5] Kumar S, Mer K K S, Gangil B, and Patel V K 2019 Synergy of rice-husk filler on physico-mechanical and tribological properties of hybrid Bauhinia-vahlii/sisal fiber reinforced epoxy composites. Journal of Materials Research and Technology, 8(2), 2070-2082.

[6] Swain P T R, and Biswas S 2017 Influence of fiber surface treatments on physico-mechanical behaviour of jute/epoxy composites impregnated with aluminium oxide filler. Journal of Composite Materials, 51(28), 3909-3922.

[7] Venkateshwaran N, Elayaperumal A, and Sathiya GK 2012 Prediction of tensile properties of hybrid-natural fiber composites. Composites Part B: Engineering, 43(2), 793-796.

[8] Jothibasu S, Mohanamurugan S, Vijay R, Lenin Singaravelu D, Vinod A, and Sanjay M R 2020 Investigation on the mechanical behavior of areca sheath fibers/jute fibers/glass fabrics reinforced hybrid composite for light weight applications. Journal of Industrial Textiles, 49(8), 1036-1060.

[9] Eng C C, Ibrahim N A, Zainuddin N, Ariffin H, Yunus W M, and Wan Z 2014 Impact strength and flexural properties enhancement of methacrylate silane treated oil palm mesocarp fiber reinforced biodegradable hybrid composites. The Scientific World Journal, 2014.

[10] Rao D S, Reddy P R, and Venkatesh S 2017 Determination of mode-I fracture toughness of epoxy-glass fibre composite laminate. Procedia engineering, 173, 1678-1683.

[11] Chinta N D, Selvaraj N, and Mahesh V 2018 Mechanical characterization of aluminium–red mud metal matrix composites. Materials Today: Proceedings, 5(13), 26911-26917.

[12] Chinta N D, Selvaraj N, and Mahesh V 2016 Dry Sliding Wear behaviour of Aluminium-Red mud-Tungsten Carbide Hybrid metal matrix composites. In IOP Conference Series: Materials Science and Engineering (Vol. 149, No. 1, p. 012094). IOP Publishing.

[13] Purushotham E, Devender K, Rao P, and Satyavani S 2018 A study on the synthesis of polypyrrole nanocomposites for their morphological studies. Indian Journal of Public Health Research & Development, 9(11), 702-705.

[14] Kishan V, and Devaraju A 2017 Preparation of nano surface layer composite (TiB2) p on 6061-T6 Aluminum Alloy via Friction Stir Processing. Materials Today: Proceedings, 4(2), 4065-4069.

[15] Kishan V, Devaraju A, and Lakshmi K P 2018 Tribological Properties of Nano TiB2 particle Reinforced 6061-T6 Aluminum Alloy Surface Composites via Friction stir processing. Materials Today: Proceedings, 5(1), 1615-1619.

[16] Kishan V, Devaraju A, and Lakshmi K P 2017 Influence of volume percentage of NanoTiB2 particles on tribological & mechanical behaviour of 6061-T6 Al alloy nano-surface composite layer prepared via friction stir process. Defence Technology, 13(1), 16-21.

[17] Kundu S, Hussain M, Kumar V, Kumar S, and Das A K 2018 Direct metal laser sintering of TiN reinforced Ti6Al4V alloy based metal matrix composite: Fabrication and characterization. The International Journal of Advanced Manufacturing Technology, 97(5-8), 2635-2646.

[18] Misra S, Hussain M, Gupta A, Kumar V, Kumar S, and Das A K 2019 Fabrication and characteristic evaluation of direct metal laser sintered SiC particulate reinforced Ti6Al4V metal matrix composites. Journal of Laser Applications, 31(1), 012005.

[19] Vinod A, Vijay R, and Singaravelu D L 2018 Thermomechanical characterization of calotropis gigantea stem powder-filled jute fiber-reinforced epoxy composites. Journal of Natural Fibers, 15(5), 648-657.

[20] Dinesh S, Kumaran P, Mohanamurugan S, Vijay R, Singaravelu D L, Vinod A, and Bhat K 2020 Influence of wood dust fillers on the mechanical, thermal, water absorption and biodegradation characteristics of jute fiber epoxy composites. Journal of Polymer Research, 27(1), 9.