ON A THEOREM OF ARVANITAKIS

VESKO VALOV

Abstract. Arvanitakis [2] established recently a theorem which is a common generalization of Michael’s convex selection theorem [11] and Dugundji’s extension theorem [7]. In this note we provide a short proof of a more general version of Arvanitakis’ result.

1. Introduction

Arvanitakis [2] established recently the following result extending both Michael’s convex selection theorem [11] and Dugundji’s simultaneous extension theorem [7]:

Theorem 1.1. [2] Let X be a space with property c, Y a complete metric space and $\Phi: X \to 2^Y$ a lower semi-continuous set-valued map with non-empty values. Then for every locally convex complete linear space E there exists a linear operator $S: C(Y, E) \to C(X, E)$ such that

\begin{equation}
S(f)(x) \in \overline{\text{conv}} f(\Phi(x)) \quad \text{for all } x \in X \text{ and } f \in C(Y, E).
\end{equation}

Furthermore, S is continuous when both $C(Y, E)$ and $C(X, E)$ are equipped with the uniform topology or the topology of uniform convergence on compact sets.

Here, $C(X, E)$ is the set of all continuous maps from X into E (if E is the real line, we write $C(X)$). We also denote by $C_b(X, E)$ the bounded functions from $C(X, E)$. Recall that a set-valued map $\Phi: X \to 2^Y$ is lower semi-continuous if the set $\{x \in X : \Phi(x) \cap U \neq \emptyset\}$ is open in X for any open $U \subset Y$. A space X is said to have property c [2] if X is paracompact and, for any space Y and a map $\phi: X \to Y$, ϕ is continuous if and only if it is continuous on every compact subspace of X. It is easily seen that the last condition is equivalent to X being a k-space (i.e., the topology of X is determined by its compact subsets, see [8]).

1991 Mathematics Subject Classification. Primary 54C60, 46E40; Secondary 28B20.

Key words and phrases. averaging operators, function spaces, continuous selections, locally convex spaces, probability measures.

Research supported in part by NSERC Grant 261914-08.
We provide a short proof of Theorem 1.1. Here is our slightly more general version of Theorem 1.1.

Theorem 1.2. Let \(X \) be a paracompact space, \(Y \) a complete metric space and \(\Phi: X \to 2^Y \) a lower semi-continuous set-valued map with non-empty values. Then:

(i) For every locally convex complete linear space \(E \) there exists a linear operator \(S_b: C_b(Y, E) \to C_b(X, E) \) satisfying condition (1) such that \(S_b \) is continuous with respect to the uniform topology and the topology of uniform convergence on compact sets;

(ii) If \(X \) is a \(k \)-space or \(E \) is a Banach space, \(S_b \) can be continuously extended (with respect to both types of topologies) to a linear operator \(S: C(Y, E) \to C(X, E) \) satisfying (1).

Our proof of Theorem 1.2 is based on the idea from a result of Repovš, P.Semenov and E.Shchepin [15] that Michael’s zero-dimensional selection theorem yields the convex-valued selection theorem.

The author would like to express his gratitude to M. Choban for several valuable suggestions.

2. Proof of Theorem 1.2

Let \(E \) be a locally convex linear space. We denote by \(E^* \) the set of all continuous linear functionals on \(E \) with the topology of uniform convergence on the weakly bounded subsets of \(E \). The second dual \(E^{**} \) is the space of continuous functionals on \(E^* \) with the topology of uniform convergence on the equicontinuous subsets of \(E^* \). It is well known that the canonical map \(E \to E^{**} \) is an embedding, see [16].

We need Banakh’s technique [4] concerning barycenters of some probability measures. First of all, for every compact space \(X \) let \(P(X) \) be the space of all regular probability measures on \(X \) endowed with the \(w^* \)-topology. Each \(\mu \in P(X) \) can also be considered as a continuous linear positive functional on \(C(X) \) (the continuous real-valued functions on \(X \) with the uniform convergence topology) with \(\mu(1_X) = 1 \), where \(1_X \) is the constant function on \(X \) having a value one. Recall that for any \(\mu \in P(X) \) there exists a closed nonempty set \(\text{supp}(\mu) \subset X \) such that \(\mu(g) = \mu(f) \) for any \(f, g \in C(X) \) with \(f|_{\text{supp}(\mu)} = g|_{\text{supp}(\mu)} \), and \(\text{supp}(\mu) \) is the smallest closed subset of \(X \) with this property. If \(X \) is a Tychonoff space, we consider the following subsets of \(P(\beta X) \), where \(\beta X \) is the Čech-Stone compactification of \(X \):

\[
P_\beta(X) = \{\mu \in P(\beta X) : \text{supp}(\mu) \subset X\}
\]

and

\[
\hat{P}(X) = \{\mu \in P(\beta X) : \mu_*(X) = 1\}.
\]
Here $\mu_*(X) = \sup\{\mu(B) : B \subset X\}$ is a Borel subset of βX. Every map $h: M \to E$ generates a map $P_\beta(h): P_\beta(M) \to P_\beta(E)$ defined by $P_\beta(h)(\mu) = \mu(\phi \circ h)$, where $\mu \in P_\beta(M)$ and $\phi \in C_b(E)$. In particular, if $i_M: M \hookrightarrow E$ is the inclusion of M into E, then $P_\beta(i_M)$ is one-to-one and $P_\beta(\delta_x) = \delta_x$ for all $x \in M$ (δ_x is the Dirac measure at the point x). The functors \hat{P} and P_β were introduced in [13] and [6], respectively.

Banakh [4] defined barycenters of measures from $\hat{P}(M)$, where M is a weakly bounded subset of some locally convex linear space E. For any such $M \subset E$ there exists an affine map (called a barycenter map) $b_M: \hat{P}(M) \to E^{**}$ which is continuous only when M is bounded in E, see [4, Theorem 3.2]. A convex subset $M \subset E$ is called barycentric if $b_M(\hat{P}(M)) \subset M$. It was established in [4, Proposition 3.10] that any complete bounded convex subset of E is barycentric. Since for any M we have $P_\beta(M) \subset \hat{P}(M)$, we can apply the Banakh arguments with $\hat{P}(M)$ replaced by $P_\beta(M)$, and this is done in the following proposition.

Proposition 2.1. Let E be a complete locally convex linear space. Then there exists a not necessarily continuous affine map $b_E: P_\beta(E) \to E$ such that $b_E(\mu) \in \overline{\text{conv}}(\text{supp}(\mu))$ for every $\mu \in P_\beta(E)$. Moreover, if $M \subset E$ is a bounded set then the map $b_E \circ P_\beta(i_M): P_\beta(M) \to E$ is continuous.

Proof. We follow the arguments from [4]. For every $\mu \in P_\beta(E)$ we consider the functional $b_E(\mu): E^* \to \mathbb{R}$, defined by $b_E(\mu)(l) = \mu(l|\text{supp}(\mu))$, $l \in E^*$.

Claim. $b_E(\mu)$ is continuous for all $\mu \in P_\beta(E)$.

Indeed, suppose $\{l_\alpha\} \subset E^*$ is a net in E^* converging to some $l_0 \in E^*$. This means that $\{l_\alpha\}$ is uniformly convergent to l_0 on every weakly bounded subset of E. In particular, $\{l_\alpha\}$ is uniformly convergent to l_0 on $\text{supp}(\mu)$. Consequently, $\{\mu(l_\alpha)\}$ converges to $\mu(l_0)$.

Therefore, $b_E(\mu) \in E^{**}$ for any $\mu \in P_\beta(E)$. On the other hand, since $\text{supp}(\mu) \subset E$ is compact and E is complete, $C(\mu) = \overline{\text{conv}}(\text{supp}(\mu))$ is a compact convex subset of E. Then, according to [4, Proposition 3.10], $C(\mu)$ is barycentric and contains $b_E(\mu)$. So, b_E maps $P_\beta(E)$ into E. The second half of Proposition 2.1 follows from the fact that E is embedded in E^{**} and Theorem 3.2 from [4], which (in our situation) states that the map $b_E \circ P_\beta(i_M): P_\beta(M) \to E^{**}$ is continuous provided M is bounded in E.

The theory of maps between compact spaces admitting averaging operators was developed by Pelczyński [13]. For noncompact spaces we use the following definition [17]: a surjective continuous map $f: X \to Y$...
admits an averaging operator with compact supports if there exists an embedding \(g: Y \to P_{\beta}(X) \) such that \(\text{supp}(g(y)) \subset f^{-1}(y) \) for all \(y \in Y \). Then the regular linear operator \(u: C_b(X) \to C_b(Y) \), defined by
\[
(2) \quad u(h)(y) = g(y)(h), \ h \in C_b(X), \ y \in Y
\]
satisfies \(u(\phi \circ f) = \phi \) for any \(\phi \in C_b(Y) \). Such an operator \(u \) is called averaging for \(f \).

Proposition 2.2. Let \(f: X \to Y \) be a perfect map admitting an averaging operator with compact supports and \(E \) a complete locally convex linear space. Then there exists a linear operator \(T_b: C_b(X, E) \to C_b(Y, E) \) such that:

(i) \(T_b(h)(y) \in \overline{\text{conv}}(h(f^{-1}(y))) \) for all \(y \in Y \) and \(h \in C_b(X, E) \);

(ii) \(T_b(\phi \circ f) = \phi \) for any \(\phi \in C_b(Y, E) \);

(iii) \(T_b \) is continuous when both \(C_b(X, E) \) and \(C_b(Y, E) \) are equipped with the uniform topology or the topology of uniform convergence on compact sets.

Moreover, if \(Y \) is a \(k \)-space or \(E \) is a Banach space, \(T_b \) can be extended to a linear operator \(T: C(X, E) \to C(Y, E) \) satisfying conditions (i) – (iii) with \(C_b(X, E) \) and \(C_b(Y, E) \) replaced, respectively, by \(C(X, E) \) and \(C(Y, E) \).

Proof. A similar statement to the first part was proved in [17] Proposition 3.1. We fix an embedding \(g: Y \to P_{\beta}(X) \) with \(\text{supp}(g(y)) \subset f^{-1}(y), y \in Y \). For every \(h \in C_b(X, E) \) consider the map
\[
(3) \quad T_b(h): Y \to E, \ T_b(h)(y) = b_E(P_{\beta}(i_{h(X)})(\nu_y)),
\]
where \(i_{h(X)}: h(X) \hookrightarrow E \) is the inclusion and \(\nu_y \in P_{\beta}(h(X)) \) is the measure \(P_{\beta}(h)(g(y)) \). According to Proposition 2.1, \(T_b(h) \) is continuous (recall that \(h(X) \subset E \) is bounded). It also follows from the definition of the map \(b_E \) that \(T_b \) is linear. Since \(\text{supp}(g(y)) \subset f^{-1}(y) \) and \(\text{supp}(P_{\beta}(i_{h(X)})(\nu_y)) \subset h(f^{-1}(y)), y \in Y \), we have \(b_E(P_{\beta}(i_{h(X)})(\nu_y)) \subset \overline{\text{conv}}(h(f^{-1}(y))) \) (see Proposition 2.1). So, \(T_b \) satisfies condition (i).

Moreover, \(T_b(h) \) belongs to \(C_b(Y, E) \) because \(T_b(h)(y) \subset \overline{\text{conv}}(h(X)) \) for all \(y \in Y \). It follows directly from (2) and (3) that \(T_b \) satisfies condition (ii). To prove (iii), assume \(K \subset Y \) is compact and let \(W_1 = \{ \phi \in C_b(Y, E) : \phi(K) \subset V_1 \} \), where \(V_1 \) is a convex neighborhood of 0 in \(E \). Obviously, \(W_1 \) is a neighborhood of the zero function in \(C_b(Y, E) \). Take a convex neighborhood \(V_2 \) of 0 in \(E \) with \(\overline{V}_2 \subset V_1 \) and let \(W_2 = \{ h \in C_b(X, E) : h(H) \subset V_2 \}, H = f^{-1}(K) \). Since \(H \) is compact (recall that \(f \) is a perfect map), \(W_2 \) is a neighborhood of 0 in \(C_b(X, E) \). Moreover, for all \(y \in Y \) and \(h \in W_2 \) we have \(T_b(h)(y) \subset \overline{\text{conv}}(h(H)) \subset \overline{V}_2 \subset V_1 \). So, \(T_b(W_2) \subset W_1 \). This provides
continuity of T_b with respect to the topology of uniform convergence on compact sets. Similarly, one can show that T_b is also continuous with respect to the uniform topology.

Assume that Y is a k-space and $h \in C(X, E)$. Then formula (3) provides a map $T(h) : Y \rightarrow E$ satisfying conditions (i) and (ii). We need to show that $T(h)$ is continuous on every compact set $L \subset Y$. And this follows from Proposition 2.1 because the set $h(f^{-1}(L)) \subset E$ is compact. So, $T(h)$ is continuous and, obviously, $T(h) = T_b(h)$ for all $h \in C_b(X, E)$. Continuity of T follows from the same arguments we used to prove continuity of T_b.

If E is a Banach space, then every $T(h), h \in C(Y, E)$, is continuous without the requirement Y to be a k-space. Indeed, we fix $y_0 \in Y$ and $h \in C(X, E)$. Let V be a bounded closed neighborhood of $h(f^{-1}(y_0))$ in E. Then $h^{-1}(V)$ is a neighborhood of $f^{-1}(y_0)$ and, since f is a perfect map, there exists a closed neighborhood U of y_0 in Y with $W = f^{-1}(U) \subset h^{-1}(V)$. Then, according to Proposition 2.1, the map $b_E \circ P_{\beta}(iv) : P_{\beta}(V) \rightarrow E$ is continuous. On the other hand $P_{\beta}(h)$ maps continuously $P_{\beta}(W)$ into $P_{\beta}(V)$ and $g(U) \subset P_{\beta}(W)$ is homeomorphic to U (recall that g is an embedding of Y into $P_{\beta}(X)$). Hence, $T(h)$ is continuous on U. Because U is a neighborhood of y_0 in Y, this implies continuity of $T(h)$ at y_0.

Proof of Theorem 1.2. Suppose X, Y, Φ and E satisfy the hypotheses of Theorem 1.2. By [15] (see also [14]), there exists a zero-dimensional paracompact space X_0 and a perfect surjection $f : X_0 \rightarrow X$ admitting a regular averaging operator. By Proposition 2.2, there exists a linear operator $T_b : C_b(X_0, E) \rightarrow C_b(X, E)$ satisfying conditions (i) – (iii). The map $\Phi(x) : 2^X \rightarrow X$, $\Phi(x) = \Phi(f(x))$, is lower semi-continuous with closed non-empty values in Y. So, according to the Michael's 0-dimensional selection theorem [12], Φ has a continuous selection $\theta : X_0 \rightarrow Y$. Now, we define the linear operator $S_b : C_b(Y, E) \rightarrow C_b(X, E)$ by $S_b(h) = T_b(h \circ \theta), h \in C_b(Y, E)$. Obviously, $\theta(f^{-1}(x)) \subset \Phi(x)$ for every $x \in X$. Then, according to (i), for all $h \in C_b(Y, E)$ and $x \in X$ we obtain

$$S_b(h)(x) = T_b(h \circ \theta)(x) \subset \text{conv}((h \circ \theta)(f^{-1}(x))) \subset \text{conv}(h(\Phi(x))).$$

Continuity of S_b follows from continuity of T_b and the map θ.

If X is a k-space or E is a Banach space, the operator T_b can be extended to a linear operator $T : C(X_0, E) \rightarrow C(X, E)$ satisfying conditions (i) – (iii) from Proposition 2.2. Then $S : C(Y, E) \rightarrow C(X, E)$, $S(h) = T(h \circ \theta)$, is the required linear operator extending S_b.

Arvanitakis' theorem

5
3. Remarks

Let us show first that Theorem 1.2 implies Michael’s selection theorem. Assume X is paracompact, Y is a Banach space and $\Phi: X \to 2^Y$ a lower semi-continuous map with closed convex values. Then, by Theorem 1.2 there exists a linear operator $S: C(Y,Y) \to C(X,Y)$ satisfying condition (1). Since the values of Φ are convex and closed, condition (1) yields that $S(id_Y)(x) \in \Phi(x)$ for all $x \in X$, where id_Y is the identity on Y. Hence, $S(id_Y)$ is a continuous selection for Φ.

The original Dugundji theorem [7] states that if X is a metric space, $A \subset X$ its closed subset and E a locally convex linear space, then there exists a linear operator $S: C(A,E) \to C(X,E)$ such that $S(f)$ extends f for any $f \in C(A,E)$. When both E and A are complete, Dugundji theorem can be derived from Theorem 1.2. Indeed, let A be a completely metrizable closed subset of a paracompact k-space X and E a complete locally convex linear space. Consider the set-valued map $\Phi: X \to 2^A$, $\Phi(x) = \{x\}$ if $x \in A$ and $\Phi(x) = A$ if $x \notin A$. Let $S: C(A,E) \to C(X,E)$ be a linear operator satisfying (1). Then $S(f)(x) = f(x)$ for all $f \in C(A,E)$ and $x \in A$. So, S is an extension operator. If X is not necessarily a k-space, there exists an extension linear operator $S_b: C_b(A,E) \to C_b(X,E)$.

Heath and Lutzer [10, Example 3.3] provided an example of a paracompact X and a closed set $A \subset X$ homeomorphic to the rational numbers such that there is no extension operator from $C(A)$ to $C(X)$. This space is the Michael’s line, i.e., the real line with topology consisting of all sets of the form $U \cup V$, where U is an open subset of the rational numbers and V is a subset of the irrational numbers. It is easily seen that this a k-space. So, the assumption in the above result A to be completely metrizable is essential.

The original Dugundji theorem with E complete can be derived from Proposition 2.2 and the well known fact that every closed subset of a zero-dimensional metric space X is a retract of X, see for example [9, Problem 4.1.G]. Indeed, assume X is a metric space and $A \subset X$ its closed subset. By [6], there exists a zero-dimensional metric space X_0 and a perfect surjection $f: X_0 \to X$ admitting an averaging operator. Let $A_0 = f^{-1}(A)$ and $r: X_0 \to A_0$ be a retraction. Define the linear operator $S: C(A,E) \to C(X,E)$ by $S(h) = T(h \circ f \circ r)$, where E is a complete locally convex linear space, $h \in C(A,E)$ and $T: C(X_0,E) \to C(X,E)$ is the operator from Proposition 2.2. It follows from Proposition 2.2(i) that S is an extension operator.

The proof of Theorem 1.2 is based on two main facts: the 0-dimensional Michael’s selection theorem and the Repovš-Semenov-Shchepin result.
that each paracompactum is a continuous image of under a perfect map admitting an averaging operator. So, the 0-dimensional Michael’s selection theorem implies not only the convex-valued section theorem, but it also implies the Dugundji extension theorem. Actually we have the following corollary from Proposition 2.2 (Sel(Φ) denotes all continuous selections for Φ).

Corollary 3.1. Let \(f : X \to Y \) be a perfect map admitting an averaging operator with compact supports and \(E \) a Banach space. Suppose \(\Phi : Y \to 2^E \) is a lower semi-continuous set-valued map with closed convex non-empty values. Then there exists an affine map from \(\text{Sel}(\Phi \circ f) \) to \(\text{Sel}(\Phi) \) which is continuous when both \(\text{Sel}(\Phi \circ f) \) and \(\text{Sel}(\Phi) \) are equipped with the uniform topology or the topology of uniform convergence on compact sets.

References

[1] S. Argyros and A. Arvanitakis, *A characterization of regular averaging operators and its consequences*, Studia Math. **151**, 3 (2002), 207–226.

[2] A. Arvanitakis, *A simultaneous selection theorem*, preprint.

[3] T. Banakh, *Topology of spaces of probability measures I: The functors \(P_T \) and \(\hat{P} \)*, Mat. Studii **5** (1995), 65-87 (in Russian).

[4] T. Banakh, *Topology of spaces of probability measures II: Barycenters of probability Radon measures and metrization of the functors \(P_T \) and \(\hat{P} \)*, Mat. Studii **5** (1995), 88-106 (in Russian).

[5] A. Chigogidze, *Extension of normal functors*, Vestnik Mosk. Univ. Ser. I Mat. Mekh. **6** (1984), 23–26 (in Russian).

[6] M. Choban, *Topological structures of subsets of topological groups and their quotient spaces*, Mat. Issl. **44** (1977), 117–163 (in Russian).

[7] J. Dugundji, *An extension of Tietze’s theorem*, Pacific J. Math. **1** (1951), 353–367.

[8] R. Engelking, *General topology*, Polish Scientific Publishers, Warszawa (1977).

[9] R. Engelking, *Theory of Dimensions: Finite and Infinitite*, Heldermann, Lemgo, 1995.

[10] R. Heath and D. Lutzer, *Dugundji extension theorems for linearly ordered spaces*, Pacif. J. Math. **55**, 2 (1974), 419–425.

[11] E. Michael, *Continuous selections I*, Ann. of Math. **63** (1956), 361–382.

[12] E. Michael, *Continuous selections II*, Ann. of Math. **64** (1956), 362–380.

[13] A. Pelczyński, *Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions*, Dissert. Math. **58** (1968), 1–89.

[14] D. Repovš and P. Semenov, *Continuous selections of multivalued mappings*, Mathematics and its Applications, 455. Kluwer Academic Publishers, Dordrecht, 1998.

[15] D. Repovš, P. Semenov and E. Shchepin, *On zero-dimensional Millutin maps and Michael selection theorems*, Topology Appl. **54** (1993), 77–83.
[16] H. Schaefer, *Topological vector spaces*, Graduate Texts in Mathematics, Vol. 3. Springer-Verlag, New York-Berlin, 1971.
[17] V. Valov, *Linear operators with compact supports, probability measures and Milyutin maps*, J. Math. Anal. Appl. **370** (2010), 132–145.

Department of Computer Science and Mathematics, Nipissing University, 100 College Drive, P.O. Box 5002, North Bay, ON, P1B 8L7, Canada

E-mail address: veskov@nipissingu.ca