Susceptibilities and the Phase Structure of an Effective Chiral Model with Polyakov Loops

Chihiro Sasaki, Bengt Friman
GSI, D-64291 Darmstadt, Germany
c.sasaki@gsi.de, b.friman@gsi.de

Krzysztof Redlich
Institute of Theoretical Physics, University of Wroclaw, PL-50204 Wroclaw, Poland
redlich@ifj.uni.wroc.pl

Received (received date) Revised (revised date)

In the Nambu–Jona-Lasinio model with Polyakov loops, we explore the relation between the deconfinement and chiral phase transitions within the mean-field approximation. We focus on the phase structure of the model and study the susceptibilities associated with corresponding order parameters.

1. Introduction

Quantum Chromodynamics (QCD) exhibits dynamical chiral symmetry breaking and confinement. Both features are related with global symmetries of the QCD Lagrangian. While the chiral symmetry is exact in the limit of massless quarks the $Z(3)$ center symmetry, which governs confinement, is exact in the opposite limit, i.e., for infinitely heavy quarks. The susceptibilities of the corresponding order parameters were calculated in lattice gauge theory (LGT) with finite quark masses\cite{1} and hence both symmetries are explicitly broken. Nevertheless, the susceptibilities show a peak structure. Thus, the global symmetries of the Lagrangian are still relevant even for finite quark masses. Based on this consideration one can construct an effective Lagrangian in terms of the order parameters, the Ginzburg-Landau effective theory.

Recently, gluon degrees of freedom were introduced in the Nambu–Jona-Lasinio (NJL) Lagrangian\cite{2,3} through an effective gluon potential expressed in terms of Polyakov loops (PNJL model)\cite{4,5}. The model has a non-vanishing coupling of the constituent quarks to the Polyakov loop and mimics confinement in the sense that only three-quark states contribute to the thermodynamics in the low-temperature phase. Hence, the PNJL model yields a better description of QCD thermodynamics near the phase transition than the NJL model. Furthermore, due to the symmetries of the Lagrangian, the model belongs to the same universality class as that expected...
for QCD. Thus, the PNJL model can be considered as a testing ground for the critical phenomena related to the breaking of the global $Z(3)$ and chiral symmetries. It has been shown that the PNJL model, formulated at finite temperature and finite quark chemical potential, well reproduces some of the thermodynamical observables calculated within LGT. The properties of the equation of state, the in-medium modification of meson masses as well as the validity and applicability of the Taylor expansion in quark chemical potential used in LGT were recently addressed within the PNJL model. In Ref. the model was extended to a system with finite isospin chemical potential and pion condensation was studied.

Enhanced fluctuations are characteristic for phase transitions. Thus, the exploration of fluctuations is a promising tool for probing the phase structure of a system. The phase boundaries can be identified by the response of the fluctuations to changes in the thermodynamic parameters. In this article we describe the susceptibilities of the order parameters and their properties in the PNJL model.

2. Nambu–Jona-Lasinio model with Polyakov loops

An extension of the NJL Lagrangian by coupling the quarks to a uniform temporal background gauge field, which manifests itself entirely in the Polyakov loop, has been proposed to account for interactions with the color gauge field in effective chiral models. The PNJL Lagrangian is given by

$$\mathcal{L} = \mathcal{L}_{NJL}(\psi, \bar{\psi}, \Phi[A], \bar{\Phi}[A]; T, \mu) - \mathcal{U}(\Phi[A], \bar{\Phi}[A]; T).$$

(1)

The interaction between the effective gluon field and the quarks in the PNJL Lagrangian is implemented by means of a covariant derivative in \mathcal{L}_{NJL}. The effective potential \mathcal{U} of the gluon field in (1) is expressed in terms of the traced Polyakov loop Φ and its conjugate $\bar{\Phi}$

$$\Phi = \frac{1}{N_c} \text{Tr}_c L, \quad \bar{\Phi} = \frac{1}{N_c} \text{Tr}_c L^\dagger,$$

(2)

where L is a matrix in color space related to the gauge field by

$$L(\vec{x}) = \mathcal{P} \exp \left[i \int_0^\beta d\tau A_4(\vec{x}, \tau) \right],$$

(3)

with \mathcal{P} being the path (Euclidean time) ordering, and $\beta = 1/T$ with $A_4 = iA_0$. In the heavy quark mass limit, QCD has the $Z(3)$ center symmetry which is spontaneously broken in the high-temperature phase. The thermal expectation value of the Polyakov loop $\langle \Phi \rangle$ acts as an order parameter of the $Z(3)$ symmetry. Consequently, $\langle \Phi \rangle = 0$ at low temperatures in the confined phase and $\langle \Phi \rangle \neq 0$ at high temperatures corresponding to the deconfined phase.

The effective potential $\mathcal{U}(\Phi, \bar{\Phi})$ of the gluon field is expressed in terms of the Polyakov loops so as to preserve the $Z(3)$ symmetry of the pure gauge theory.

We adopt an effective potential of the following form:

$$\frac{\mathcal{U}(\Phi, \bar{\Phi}; T)}{T^4} = -\frac{b_2(T)}{2} \Phi \bar{\Phi} - \frac{b_3}{6} (\Phi^3 + \bar{\Phi}^3) + \frac{b_4}{4} (\Phi \bar{\Phi})^2,$$

(4)
3. Susceptibilities and the phase structure

In the PNJL model the constituent quarks and the Polyakov loops are effective fields related with the order parameters for the chiral and \(Z(3)\) symmetry breaking. In LGT the susceptibilities associated with these fields show clear signals of the phase transitions. In Fig. 1 we show the chiral \(\chi_{mm}\) and Polyakov loop \(\chi_{ll}\) susceptibilities computed at \(\mu = 0\) in the PNJL model in the chiral limit within the mean field approximation. The chiral susceptibility exhibits a very narrow divergent peak at the chiral critical temperature \(T_{ch}\), while the peak of \(\chi_{ll}\) is much broader and the susceptibility remains finite at all temperatures. This is due to the explicit breaking of the \(Z(3)\) symmetry by the presence of quark fields in the PNJL Lagrangian. Nevertheless, \(\chi_{ll}\) still exhibits a peak structure that can be considered as a remnant for the deconfinement transition in this model. One finds interference of \(\chi_{ll}\) and \(\chi_{mm}\), as shown in Fig. 1. At the chiral transition, \(T = T_{ch}\), there is a narrow structure in \(\chi_{ll}\). We stress that this feature is not necessarily related with deconfinement transition, but rather expresses the coupling of quarks to the Polyakov loops. Thus, for the parameters used in the model, the deconfinement transition, signaled by the broad peak in \(\chi_{ll}\), sets in earlier than the chiral transition at vanishing net quark density.

The peak positions of the \(\chi_{mm}\) and \(\chi_{ll}\) susceptibilities can be used to determine the phase boundaries in the \((T, \mu)\)–plane. At finite chemical potential, there is a
shift of the chiral phase transition to lower temperatures. In Fig. 2 we show the resulting phase diagram for the PNJL model. The boundary lines of deconfinement and chiral symmetry restoration do not coincide. There is only one common point in the phase diagram where the two transitions appear simultaneously. Recent LGT results for two flavor both at vanishing and at finite quark chemical potential show that deconfinement and chiral symmetry restoration appear in QCD along the same critical line. In general it is possible to choose the PNJL model parameters such that the both critical temperatures coincide at $\mu = 0$.

From Fig. 2 one finds that the slope of T_{dec} as a function of μ is almost flat, indicating that at low temperature the chiral phase transition should appear much earlier than deconfinement. However, there are general arguments, that the deconfinement transition should precede restoration of chiral symmetry (see e.g. [13,14]). In view of this, it seems unlikely that at $T \simeq 0$ the chiral symmetry sets in at the lower baryon density than deconfinement. In the PNJL model, the parameters of the effective gluon potential were fixed by fitting quenched LGT calculations. Consequently, the parameters are taken as independent on μ. However, it is conceivable that the effect of dynamical quarks can modify the coefficients of this potential, thus resulting in μ-dependence of the parameters. The slope of T_{dec} as a function of μ could be steeper. Consequently, the effective Polyakov loop potential (4) with μ-independent coefficients should be considered as a good approximation only for $\mu/T < 1$.

While the susceptibilities χ_{mm} and χ_{ll} exhibit expected behaviors associated with the phase transitions, the diagonal Polyakov loop susceptibilities,

$$\chi_{ll} = \langle \Phi^2 \rangle - \langle \Phi \rangle^2,$$

$$\chi_{ll} = \langle \bar{\Phi}^2 \rangle - \langle \bar{\Phi} \rangle^2,$$

(6)

Such a modification was explored in Ref. [15] where explicit μ- and N_f- dependence of T_0 is extracted from the running coupling constant α_s, using arguments based on the renormalization group.
are negative in a broad temperature range above T_{ch} \cite{10}. This is in disagreement with recent lattice results, where in the presence of dynamical quarks χ_{ll} is found to be always positive \cite{11}. A possible cause for this behavior could be traced to the form of the effective Polyakov loop potential used in the Eq. (4).

Recently an improved effective potential with temperature-dependent coefficients has been suggested \cite{9}

$$U(\Phi, \bar{\Phi}; T) = \frac{T^4}{a(T)} = \frac{T_0}{T} + \frac{T_0^2}{T^2} + \frac{T_0^3}{T^3}, \quad b(T) = \frac{T_0^3}{T}. \quad (8)$$

The polynomial in Φ and $\bar{\Phi}$, used in (4), is replaced by a logarithmic term, which accounts for the Haar measure in the group integral. The parameters in (7) were fixed to reproduce the lattice results for the thermodynamics of pure gauge theory and for the T-dependence of the Polyakov loop. The improved potential indeed yields positive values for all the Polyakov loop susceptibilities. We note that the phase diagram calculated with the improved potential is similar to that obtained with the previous choice of the Polyakov loop interactions, shown in Fig. 2.

4. Summary and discussions

We introduced susceptibilities related with the three different order parameters in the PNJL model, and analyzed their properties and their behavior near the phase transitions. In particular, for the quark-antiquark and chiral density-density correlations we have discussed the interplay between the restoration of chiral symmetry and deconfinement. We observed that a coincidence of the deconfinement and chiral symmetry restoration is accidental in this model.

We found that, within the mean field approximation and with the polynomial form of an effective gluon potential the correlations of the Polyakov loops in the quark–quark channel exhibit an unphysical behavior, being negative in a broad parameter range. This behavior was traced back to the parameterization of the Polyakov loop potential. We argue that the $Z(N)$-invariance of this potential and the fit to lattice thermodynamics in the pure gluon sector is not sufficient to provide a correct description of the Polyakov loop fluctuations. Actually it was pointed out \cite{9} that the polynomial form used in this work does not possess the complete group structure of color SU(3) symmetry. The improved potential of Ref. \cite{9} yields a positive, i.e. physical, χ_{ll} susceptibility, in qualitative agreement with LGT results.

Acknowledgments

The work of B.F. and C.S. was supported in part by the Virtual Institute of the Helmholtz Association under the grant No. VH-VI-041. K.R. acknowledges partial
support of the Gesellschaft für Schwerionenforschung (GSI) and the Polish Ministry of National Education (MEN).

References
1. F. Karsch and E. Laermann, Phys. Rev. D 50, 6954 (1994); C. R. Allton et al., Phys. Rev. D 66, 074507 (2002).
2. Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961); Phys. Rev. 124, 246 (1961).
3. For reviews and applications of the NJL model to hadron physics, see e.g., U. Vogl and W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991); S. P. Klevansky, Rev. Mod. Phys. 64 (1992) 649; T. Hatsuda and T. Kunihiro, Phys. Rept. 247, 221 (1994); M. Buballa, Phys. Rept. 407, 205 (2005).
4. P. N. Meisinger and M. C. Ogilvie, Phys. Lett. B 379, 163 (1996); K. Fukushima, Phys. Lett. B 591, 277 (2004).
5. C. Ratti, M. A. Thaler and W. Weise, Phys. Rev. D 73, 014019 (2006).
6. H. Hansen, W. M. Alberico, A. Beraudo, A. Molinari, M. Nardi and C. Ratti, arXiv:hep-ph/0609116.
7. S. K. Ghosh, T. K. Mukherjee, M. G. Mustafa and R. Ray, Phys. Rev. D 73, 114007 (2006).
8. S. Mukherjee, M. G. Mustafa and R. Ray, arXiv:hep-ph/0609249.
9. S. Roessner, C. Ratti and W. Weise, arXiv:hep-ph/0609281.
10. C. Ratti, S. Roessner and W. Weise, arXiv:hep-ph/0701091.
11. Z. Zhang and Y. X. Liu, arXiv:hep-ph/0610221.
12. R. D. Pisarski, Phys. Rev. D 62, 111501 (2000); A. Dumitru and R. D. Pisarski, Phys. Lett. B 504, 202 (2001); Phys. Lett. B 525, 95 (2002).
13. E. V. Shuryak, Phys. Lett. B 107, 103 (1981).
14. R. D. Pisarski, Phys. Lett. B 110, 155 (1982).
15. J. Pawlowski, B.-J. Schaefer and J. Wambach, to be published.
16. C. Sasaki, B. Friman and K. Redlich, arXiv:hep-ph/0611147.