We present some properties of the groups with the infinite non-quasicentral periodic nodal subgroup. Our main results are formulated in Theorem 1, 2 and Theorem 3, 4. 2000 Mathematics Subject Classification: 20F22, 20F25

Keywords: A group, a subgroup, a commutator of a group, a locally graded group, p-quasicyclic group, a direct and semi-direct product of groups, an extension of a group.

The description of groups defined by the systems of their subgroups was first described in the papers of Chernikov and Kurosh (RN – groups, [1]). Chernikov dealt with an extension of the direct product of the finite number of the quasicyclic groups by the finite abelian group (ч – groups, [2]). Tomanek. L. studied the IAN and the IANA groups, Definition 1, (IAN groups, [4]). This definition was given to the author by Chernikov. In this paper we describe IAN and IANA groups with the infinite non-quasicentral periodic nodal subgroup.

We use standard designations of terminology where: \(M \times N \) is the direct product of the groups \(M, N \), \(\sum_{i} x_i \) is the sum of the additive groups \(X_i \) for all \(i \in I, M, N \) is the semi-direct product of the groups \(M, N, M \sqcup N = \{mn | m \in M, n \in N \} \) is the product of the groups \(M, N, G/A \) is the factor group of \(G \) by \(A, |G:N| \) is the index of the subgroup \(N \) in a group \(G \), \(\langle a \rangle \) is the cyclic group generated by the element \(a \), \(< a, b, c> \) is the group generated by the elements \(a, b, c \), \(H \sqsupseteq G \) is the subgroup of \(G, H \triangleleft G \), \(H \) is normal in \(G \), \([a,b] = a^{-1} b^{-1} ab \) is the commutator of the elements \(a, b \in G \), \(G = \langle G, G \rangle \) generated by all commutators of the elements \(a, b \in G \), \(\langle x^\sigma = 1, n = 1, 2, 3, \ldots \rangle \) is the \(p \)-quasicyclic group; \(C_{(A)} \) is the centralizer of the subgroup \(A \) in \(G \); \(C(G) \) is the centre of the group \(G \); \(G \triangleleft H \) where the groups \(G, H \) are isomorphic. The group \(G \) is the \(p \)-group if each of its elements has an order with a power of some fixed prime \(p \) [6].

Definition 1.

An infinite non-abelian \(G \) is said to be the IAN group if there exists a subgroup \(A \) of \(G \) so that every infinite subgroup of \(A \) and every infinite subgroup of \(G \) containing \(A \) is a normal subgroup of \(G \). The group \(G \) is the INH group if \(A \) is the abelian subgroup. The subgroup \(A \) is called the nodal subgroup.

Definition 2.

An infinite non-abelian \(G \) is the INH group if an arbitrary infinite subgroup of \(G \) is the normal subgroup of \(G \).

Definition 3.

The group \(G \) is the Dedekind group if an arbitrary subgroup of \(G \) is the normal subgroup of \(G \). Non-abelian Dedekind group \(G \) is called the Hamiltonian group.

Proposition 1. [2], T. 6.10

The infinite Hamiltonian groups and the non-abelian non-Hamiltonian groups that are the finite extensions of the quasicyclic...
subgroups by the finite abelian and the finite Hamiltonian groups form the class of the solvable INH groups.

Proposition 2. ([7], T.12.5.4)

The group G is the Hamiltonian group if and only if the group $G=Q_i \times M \times N$ where Q_i is the quaternion group, M is an elementary abelian 2-group, N is a periodic abelian group with no elements of the order 2.

Lemma 1.

Let G be the IAN group with a nodal subgroup A. If a nodal subgroup A contains the element of the infinite order, then A is the abelian quasicentral subgroup of group G.

Proof. If the group A contains the element x of the infinite order, then according to Definition 2, the group A is the INH group. According to Proposition 1 A is the abelian group. Let B be an arbitrary subgroup of the group A. We shall show that $B \leq G$. If B is an infinite subgroup of G, B is admittedly a normal subgroup of G.

Let B be a finite subgroup of G. If A is the abelian group containing the element x of the infinite order, then $B \leq B \leq B \leq G$. Pursuant to Definition 1 $(B \leq G)$ which implies $B \leq G$. Thus A is the abelian quasicentral subgroup of the group G. \blacksquare

Lemma 2.

If G is the locally graded IAN group with the nodal subgroup A, there exists a subgroup of A that is not a normal subgroup of G. Then A is a finite group or A is the extension of the quasicyclic subgroup by the finite Dedekind group.

Proof. Let G be the IAN group with a nodal subgroup A and let $A \leq \varphi$ where A is not a normal subgroup of G. Admittedly, $A = \varphi$ is a finite subgroup of G. In agreement with Lemma 1 A is a periodic group. If A is a finite group, then this lemma is valid. Let A be an infinite periodic subgroup of G. We consider two possible cases: A is not a group, or A is a group.

Case 1. Let A not be a group. Then choose the subgroup A_1 of A, where $A_1 = \varphi \cdot A_1 \cdot A_1 \cdot A_1 = \varphi$, and where $A_1 \cdot A_1$ are the infinite cyclic groups of G. By Definition 1, $A \leq G$, $A \leq A \leq G$, $A \leq G$. Evidently $(A \leq A) \leq (A \leq A)$, and furthermore $A \leq G$, so it is a contradiction.

Case 2. Let A be a group. Then put $A=\{R, B\}$ where R is the direct product of the finite number of the quasicyclic groups, R is at the same time a divisible group, and B is a finite group where $B \leq \varphi$. Therefore, A is not a normal subgroup of G; there exists a cyclic subgroup φ of A that is not normal in G and where $R \leq \varphi$. Since R is a divisible group, there exists a quasicyclic subgroup R_1 of R and furthermore R_1 contains the subgroup φ. Let $R_1 = \varphi$, where R_1 is an infinite subgroup of A or $R_1 \leq \varphi$. If R_1 is an infinite subgroup of A, then by Definition 1 $R_1 \leq G$, furthermore $(R_1 \leq \varphi) \leq G$, $(R_1 \leq \varphi) \leq G$. Evidently $(R_1 \leq \varphi) \leq (R_1 \leq \varphi)$ and $\leq \varphi \leq G$. This is a contradiction.

Let $R_1 = \varphi$, then $R_1 = R_1$, is a quasicyclic group and moreover $A/R_1 = B$ where B is a finite Dedekind group. Thus A is the extension of the quasicyclic subgroup by the finite Dedekind group. \blacksquare

Theorem 1.

If G is a locally graded IAN group with a nodal subgroup A, then subgroup A belongs to one of the types:

1. A is a finite subgroup of G;
2. A is an extension of the quasicyclic subgroup by a finite Dedekind group where G is an infinite group;
3. A is an infinite quasicentral periodic subgroup of G;
4. A is a quasicentral non-periodic abelian subgroup of G.

Proof. If A is not a quasicentral subgroup of G, then, based on Lemma 2, the subgroup A belongs to one of types 1 or 2 of this theorem. If A is a quasicentral subgroup of G, then by Lemma 1 the subgroup A belongs to one of the types 3 or 4 of this theorem. \blacksquare

By Theorem 1 and according to the definition of IANA groups the next corollary follows.

Corollary 1.

If G is a locally graded IAN group with a nodal subgroup A, then subgroup A belongs to one of the types:

1. A is a finite abelian subgroup of G;
2. $A = \mathbb{Z}(p\infty)$, where B is a finite group;
3. A is an infinite quasicentral periodic abelian subgroup of G;
4. A is a quasicentral non-periodic abelian subgroup of G.

Lemma 3.

If G is the locally graded group with the infinite periodic nodal subgroup A, then the subgroup A satisfies one of the following conditions:

1. A is the infinite periodic Dedekind quasicentral subgroup of the group G where G/A is the abelian group;
2. A is the infinite periodic Dedekind quasicentral subgroup of the group G where G/A is the Hamiltonian group and G is a locally finite group;
3. A is not the quasicentral subgroup of G, A is an almost quasicyclic subgroup of G where G/A is the Dedekind group.

Proof. If G is the locally graded group with an infinite periodic nodal subgroup A, then, according to Theorem 1 A is the extension of the quasicyclic subgroup by the finite Dedekind group, or A is the quasicentral subgroup of the group G.

Let A be the extension of the quasicyclic subgroup B by the finite Dedekind group. If B is an infinite subgroup of G, containing A, then $B \leq G$ and furthermore every quotient subgroup
Since G/A is the Dedekind group, A then satisfies the 3rd condition of this lemma.

If A is a quasicyclic subgroup of group G, then, analogous to the paragraph above, we can prove that G/A is the Dedekind group. Admittedly, G/A is the abelian or the Hamiltonian group.

Let G/A be the Hamiltonian group. By Proposition 2 G/A is a locally finite group. Thus an extension of a locally finite group by a locally finite group is a locally finite group, which implies that G is a locally finite group and hence A satisfies the 2nd condition of this lemma.

Let G/A be the Hamiltonian group. By Proposition 2 G/A is an almost quasicyclic group which contains the finite non-quasicentral subgroup A of G if and only if it satisfies one of the following conditions:

1. A is a finite non-quasicentral subgroup of G if and only if A is the abelian group.
2. A is an almost quasicyclic group.

Proof. Let G be the locally graded IAN group with the infinite nodal subgroup A non-quasicentral of G, then A is the extension of a quasicyclic group by the Dedekind group.

Lemma 4.

If G is the locally graded IAN group with the infinite nodal subgroup A non-quasicentral of G, then A is the extension of a quasicyclic group by the Dedekind group.

Proof. Let G be the locally graded IAN group with the infinite nodal subgroup A non-quasicentral of G. According to Theorem 1 A is a periodic group, by Lemma 3 A is the extension of a quasicyclic group by the Dedekind group.

Lemma 5.

If G is the group with a finite nodal subgroup A, then G/A is the abelian group, or the group.

Proof. If G/A is the abelian group, then this lemma is valid. Let G/A be a non-abelian group and B/A be an arbitrary infinite subgroup of G. There evidently exists $B\leq G$ and furthermore $B/A\leq G/A$. Thus G/A is the INH group.

Theorem 2.

Let G be the locally graded IAN group with a nodal subgroup A. The nodal subgroup A of G is a non-quasicentral of G if and only if it satisfies one of the following conditions:

1. A is a finite non-quasicentral subgroup of G, the quotient group G/A is the INH group with the abelian commutator or G/A is the abelian group.
2. A is an almost quasicyclic group which contains the finite subgroups that are not normal in G, $|A:A\cap G|<\infty$, and G/A is the Dedekind group.

Proof. Let G be the locally graded IAN group with the infinite nodal subgroup A. According to Lemma 5, G/A is the abelian group or G/A is a solvable INH group. According to Proposition 1 the commutator of a solvable INH group is the abelian group. Thus the subgroup A satisfies the 1st condition of this theorem.

Let G/A be a solvable INH group. By the condition 3 of Lemma 3 G/A is the Dedekind group. Based on this fact A is an almost quasicyclic group and by Definition 1 A is a non-quasicentral of G. Suppose there exists a finite subgroup and A is normal in G. Therefore G/A is the Dedekind group. A is an almost quasicyclic group, thus G' is a subgroup of that almost quasicyclic subgroup A, G'. Let G' be a finite group and put $A=G'$. Hence A satisfies either condition 1 or condition 2 of this theorem.

If G' is an infinite group, then $|A.G':A|<\infty, |A.A.G':A|<\infty$, too. Admittedly, A satisfies the 2nd condition of this theorem.

Conversely. Suppose the nodal subgroup A satisfies either condition 1 or condition 2 of this theorem, then G is the IAN group with the non-quasicentral nodal subgroup A.

By Theorem 2 and the definition of IANA groups the next corollary follows.

Corollary 2.

Let G be a locally graded $IANA$ group with a nodal subgroup A. The nodal subgroup A of G is a non-quasicentral of G if and only if it satisfies one of the following conditions:

1. A is the finite abelian non-quasicentral subgroup of G if and only if A is the Dedekind group.
2. A is the finite abelian non-quasicentral subgroup of G.

Proof. Let G be the locally graded $IANA$ group with the infinite non-quasicentral Dedekind nodal subgroup A. Then $A=Z(p^{\infty})\times D$ where D is the finite abelian subgroup of G. A contains finite subgroups that are not normal in G, and G/A is the Dedekind group.

Lemma 6.

Let G be the IAN group with the infinite non-quasicentral Dedekind nodal subgroup A. Then $A=Z(p^{\infty})\times D$ where D is a finite Dedekind group, $p\mid |D|$, and there exists the element $a\in A$ so that the subgroup $\langle a \rangle$ is not normal p-subgroup of G. For $p=2$ is $D'=\langle e \rangle$.

Proof. Let G be the IAN group with the infinite non-quasicentral Dedekind nodal subgroup A. By Lemma 1 A is an almost quasicyclic group. Pursuant to Proposition 2 $A=Z(p^{\infty})\times D$ where D is a finite Dedekind group, $p\mid |D|$, and $D'=\langle e \rangle$. We shall prove that A does not contain a normal p-group $\langle a \rangle$ of G.

Obviously, if every cyclic subgroup of A is a normal subgroup of G, then A is a quasicentral subgroup of G. Thus there exists a cyclic subgroup $\langle x \rangle$ of A that is not normal in G, which implies that the $\langle x \rangle$ Sylow q-subgroup of the group $\langle x \rangle$ is not normal in G. This verifies that $q=p$.

Let $q=p$ and $Z(p^{\infty})\langle a \rangle=\langle e \rangle$. Then $Z(p^{\infty})\langle a \rangle=Z(p^{\infty})\langle a \rangle$ where $Z(p^{\infty})\langle a \rangle$ is the normal subgroup of G. Evidently, $\langle a \rangle$ is the Sylow q-subgroup normal in $Z(p^{\infty})\langle a \rangle$ and $\langle a \rangle$ is normal in G. This is a contradiction, thus $q=p$.

If $A=Z(p^{\infty})\times D$ then $Z(p^{\infty})\langle a \rangle=Z(p^{\infty})\langle b \rangle$, $\langle a \rangle=\langle e \rangle$, $\langle b \rangle$ is a normal p-subgroup of G. Because the subgroup $\langle a \rangle$ is the p-subgroup...
normal in G and furthermore $Z(p^\infty) \cap \langle a \rangle < \langle a \rangle \cdot |b| > 1$, it is a p-group, therefore $p \mid |D|$.

According to Lemma 6 and the Definition of IANA groups, the next corollary follows.

Corollary 3.

Let G be the IANA group with the infinite non-quasicentral nodal subgroup A. Then $A = Z(p^\infty) \cdot D$, where D is a finite group, $p \mid |D|$, the subgroup D contains an element a so that the $\langle a \rangle \cdot p$-subgroup is not normal in G.

Theorem 3.

The group G is the locally graded IAN group with the infinite non-quasicentral nodal subgroup A of G if and only if a quotient group G/A is the Dedekind group, $|A : A \cap G| < a$ and the non-quasicentral nodal subgroup A is anA group. Then $A = Z(p^\infty) \cdot D$, where D is a finite group, the next corollary follows.

1. $A = Z(p^\infty) \cdot D$, where D is the finite Dedekind group, $p \equiv 2$, $D = \langle a \rangle$. The subgroup A contains an element a such that the $\langle a \rangle \cdot p$-subgroup is not normal in G, and the quotient group $A/Z(p^\infty)$ is the quasicentral in $G/Z(p^\infty)$.
2. $A = Z(p^\infty) \cdot D$, where D is the finite Dedekind subgroup, the group A does not contain the normal subgroup of G, and $A/Z(p^\infty)$ is the quasicentral in $G/Z(p^\infty)$.
3. $A = Z(p^\infty) \cdot D$, where $Z(p^\infty) \cdot B$ is the non-abelian Sylow p-subgroup of G, D is the infinite Dedekind group, $p \equiv 2$, $D = \langle a \rangle$. The finite group D has a normal series: $Z(p^\infty) \cap B = \langle B' \rangle$, for all $i \geq 1$, $|b_i| = 2$, $|B_i| = 2$ and $A/Z(p^\infty)$ is the quasicentral in $G/Z(p^\infty)$.
4. $A = Z(p^\infty) \cdot B \cdot Q \cdot D$, where $Z(p^\infty) \cdot B \cdot Q$ is the Sylow 2-subgroup of G, D is the finite Dedekind group, $Z(p^\infty) \subseteq C(G)$, the finite group D has a normal series: $Z(p^\infty) \cap B = \langle B' \rangle$, for all $i \geq 1$, $|B_i| = 2$, $|B_i| = 2$ and $A/Z(p^\infty)$ is the quasicentral in $G/Z(p^\infty)$.
5. $A = (Z(p^\infty) \cdot B \cdot Q \cdot D$, where $Z(p^\infty) \cdot B \cdot Q$ is the Sylow 2-subgroup of G, D is the finite Dedekind group, $Z(p^\infty) \subseteq C(Z(p^\infty) \cdot B)$, for each $c \in Z(p^\infty)$, $d \cdot c \cdot d^{-1}$, the finite group D has a normal series: $Z(p^\infty) \cap B = \langle B' \rangle$, $B = \langle B' \rangle$, $B = \langle B' \rangle$, for all $i \geq 1$, $|b_i| = 2$, $|B_i| = 2$ and $A/Z(p^\infty)$ is the quasicentral in $G/Z(p^\infty)$.
6. $A = ((Z(p^\infty) \cdot B \cdot Q \cdot D \cdot A)$, where $Z(p^\infty) \cdot B \cdot Q \cdot D$ is the Sylow 2-subgroup of G, D is the finite Dedekind group, $Z(p^\infty) \subseteq C(Z(p^\infty) \cdot B)$, for each $c \in Z(p^\infty)$, $d \cdot c \cdot d^{-1}$, the finite group D has a normal series: $Z(p^\infty) \cap B = \langle B' \rangle$, $B = \langle B' \rangle$, $B = \langle B' \rangle$, for all $i \geq 1$, $|b_i| = 2$, $|B_i| = 2$ and $A/Z(p^\infty)$ is the quasicentral in $G/Z(p^\infty)$.
7. $A = ((Z(p^\infty) \cdot B \cdot Q \cdot D \cdot A)$, where $Z(p^\infty) \cdot B \cdot Q \cdot D$ is the Sylow 2-subgroup of G, D is the finite Dedekind group, $Z(p^\infty) \subseteq C(Z(p^\infty) \cdot B)$, $Z(p^\infty) \cdot Q \cdot A$ is the quasicentral in $G/Z(p^\infty)$.

Proof. Let G be the locally graded IAN group with the infinite non-quasicentral nodal subgroup A of G. By Theorem 1 A is an almost quasicyclic group containing the finite subgroups that are not normal in G, $A : A'G \leq \langle a \rangle$, and G/A is the Dedekind group. The above mentioned implies that A contains a subgroup $Z(p^\infty)$ which is normal in G, $A/Z(p^\infty)$ is the finite Dedekind group and furthermore $Z(p^\infty) \subseteq B \cdot A$ is the infinite subgroup of B. Admittedly, B is normal in G and the factor group $A/Z(p^\infty)$ is the quasicentral subgroup of $G/Z(p^\infty)$. According to Theorem 3.1 [8] the subgroup A satisfies the conditions of this theorem. Evidently, A is the group of one of types 1 to 8 of this theorem.

If A is a group of the type 1 of Theorem 3.1 [8], then A is the Dedekind group, $A = Z(p^\infty) \cdot D$ where D is the finite Dedekind group, $p \equiv 2$, and $D = \langle a \rangle$. By Lemma 6 $p \mid |D|$, the subgroup A contains element a so that a subgroup $\langle a \rangle$ is normal in G. Thus A is of the type 1 of this theorem.

If A is a group of one of the types 2 - 8 of Theorem 3.1 [8], then A is a subgroup of one of the types 2 - 8 of this theorem. Conversely, if G is a group with the normal subgroup A of one of the types 1 - 8 of this theorem, then G/A is the Dedekind group. G is evidently the locally graded group. Because G/A is the Dedekind group and $A/Z(p^\infty)$ is the quasicentral subgroup of $G/Z(p^\infty)$, then any infinite subgroup contained in A and any subgroup which contains a subgroup A is normal in G. Thus G is the IAN group.

Let A be an infinite subgroup of G. If the subgroup A is of the type 1 of this theorem, then the subgroup A contains a subgroup $\langle a \rangle$ that is normal in G. Thus the subgroup A is non-quasicentral subgroup of G

Thus the quasicentral subgroups of the group G are the Dedekind groups, which implies A is a group of one of the types 2 - 8 of this theorem. Thus A is the non-Dedekind group, which implies that the subgroup A of one of the types 2 - 8 is a non-quasicentral subgroup of G. ■
Theorem 4.

The group G is the IANA group with an infinite non-quasicentral nodal subgroup A, if and only if $A=Z(p^{\infty})\times D$, where D is a finite group, $p \mid |D|$, the subgroup A contains an element a so that $<a>$ p-subgroup is not normal in G, and $A/Z(p^{\infty})$ is the quasicentral in $G/Z(p^{\infty})$.

Proof. Let G be the locally graded IAN group with the infinite non-quasicentral nodal subgroup A of G, and $A'=<e>$. Because G/A is the Dedekind group, $A=Z(p^{\infty})\times D$, where D is the finite abelian group, A contains the finite subgroups that are not normal in G, and G/A is the Dedekind group. The group G is evidently the locally graded IAN group with the nodal subgroup A of the type 1 of Theorem 2, $p \mid |D|$, the subgroup A contains an element a so that $<a>$ p-subgroup is not normal in G, and $A/Z(p^{\infty})$ is the quasicentral in $G/Z(p^{\infty})$.

Conversely. Suppose that $A \trianglelefteq G$ where A is an almost quasicyclic group. Since $A/Z(p^{\infty})$ is a quasicentral in $G/Z(p^{\infty})$, then $B/Z(p^{\infty}) \trianglelefteq G/Z(p^{\infty})$ for all $B/Z(p^{\infty}) < A/Z(p^{\infty})$. Hence $B \trianglelefteq G$, A is the abelian subgroup, every infinite subgroup of A and every infinite subgroup of G containing A is a normal subgroup of G. By Definition 1 the group G is the IAN group. Hence the subgroup A contains the subgroup that is not normal in G, then A is the non-quasicentral in G. □

References

[1] KUROSH, A. G.: The Theory of Groups (2 vols.), New York : Chelsea Publishing Comp., 1969.
[2] CHERNIKOV, S. N.: The Groups with the Given Properties of the System of their Subgroups (in Russian), Moskva : Nauka, 1980.
[3] SUBOTTIN, I. J.: The Infinite Groups Generated by the Finite Set in which Every Commutator Subgroup is Invariant (in Russian), Ukr. Mat. zur., vol. 27, No. 3, 1975.
[4] TOMANEK, L., TOMANKOVA, A.: On One Class of the Infinite Non-abelian Groups, Communications - Scientific Letters of the University of Zilina, vol. 12, No. 3, 2010, 44-47, ISSN 1335-4205.
[5] TOMANEK, L.: Groups, Rings and Vector Spaces (in Slovak), EDIS : University of Zilina, 2013, ISBN 978-80-554-0782-1.
[6] HUNGERFORD, T. W.: Algebra, Springer Science + Business Media, LLC, 1974.
[7] HALL, M.: The Theory of Groups. New York : The Macmillan Campany,1959.
[8] KUZENNYJ, N. F., SUBOTTIN, I. J., TOMANEK, L.: About Some Extensions of the Quasicyclic Groups (in Russian), Zbornik Ped. fak. v Presove, UPJS Kosice, vol. XXIV, No. 1, 1990.