Probing R-parity Violating Interactions from Top Quark Polarization at LHC

Peiying Li¹, Gongru Lu¹, Jin Min Yang²,³, Huanjun Zhang¹,³

¹ Department of Physics, Henan Normal University, Xinxiang 453007, China
² CCAST (World Laboratory), P.O.Box 8730, Beijing 100080, China
³ Institute of Theoretical Physics, Academia Sinica, Beijing 100080, China

(Dated: February 2, 2008)

In minimal supersymmetric standard model the R-parity violating interactions can induce anomalous top pair productions at the LHC through the t-channel process $d_Rd_R \rightarrow t_L\bar{t}_L$ by exchanging a slepton or u-channel process $d_Rd_R \rightarrow t_L\bar{t}_R$ by exchanging a squark. Such top pair productions with certain chirality cause top quark polarization in the top pair events. We found that at the LHC, due to the large statistics, the statistical significance of the polarization observable and thus the probing ability for the corresponding R-parity violating couplings are much higher than at the Tevatron upgrade.

PACS numbers: 14.65.Ha, 14.80.Ly

I. INTRODUCTION

It has long been speculated that as the heaviest fermion in the Standard Model (SM), the top quark may have a close connection to new physics [1]. So far there remain plenty of room for new physics in top quark sector due to the small statistics of the events discovering the top quark at the Fermilab Tevatron collider. Since the LHC will produce top quarks copiously and allow a precision test of top quark nature, it will either uncover or stringently constrain the new physics related to the top quark [2].

As a popular candidate for new physics, the TeV-scale supersymmetry can sizably alter some of the top quark properties. For example, the minimal supersymmetric standard model (MSSM) can significantly enhance the top quark flavor-changing neutral-current (FCNC) interactions [3] and thus make the top quark FCNC processes possible.

For the study of top quark physics, in this work we extend the analysis of [8] to the LHC.

II. CALCULATIONS

The R-violating interactions in the superpotential of the MSSM are given by

$$\mathcal{W}_R = \frac{1}{2} \lambda_{ijk} L_i L_j E_k^c + \lambda'_{ijk} \delta^{i\alpha} L_i Q_j \alpha D_k^c \beta + \frac{1}{2} \lambda''_{ijk} \epsilon^{i\alpha\beta\gamma} U_i^c D_j^\alpha D_k^\beta + \mu_i L_i H_2,$$

where $H_{1,2}$ are the Higgs chiral superfields, and L_i (Q_i) and E_i (U_i, D_i) are the left-handed lepton (quark) doublet and singlet chiral superfields. The indices i, j, k denote generations and α, β and γ are the color indices. For top pair productions at hadron colliders, the lepton number violating couplings λ'_{31i} can induce the t-channel process $d_Rd_R \rightarrow t_L\bar{t}_L$ by exchanging a slepton while the baryon number violating couplings λ''_{31ij} can induce the u-channel.
process $d_R \bar{d}_R \rightarrow t_R \bar{t}_R$ by exchanging a squark, as shown in Fig. 1. The forms of these amplitudes are discussed in some detail in the appendix of [8]. It is clear that due to the chiral nature of these couplings, the processes they

induced in Fig. 1 will cause top quark polarization in the $t \bar{t}$ events, i.e., an asymmetry between N_+ (the number of $t \bar{t}$ events with positive helicity of t) and N_- (the number of $t \bar{t}$ events with negative helicity of t). The observables we will examine are three polarizations: P_t for all $t \bar{t}$ events and P_t^F (P_t^B) for the $t \bar{t}$ events with t in the forward (backward) hemisphere in the $t \bar{t}$ c.m. frame, defined by [8]

$$P_t = \frac{N_+ - N_-}{N_+ + N_-} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} ,$$

$$P_t^F = \frac{N_+ - N_-}{N_+ + N_-} |_{\cos \theta^* > 0} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} |_{\cos \theta^* > 0} ,$$

$$P_t^B = \frac{N_+ - N_-}{N_+ + N_-} |_{\cos \theta^* < 0} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} |_{\cos \theta^* < 0} .$$

Here θ^* is the top scattering angle in the $t \bar{t}$ c.m. frame, and σ_+ (σ_-) is $t \bar{t}$ hadronic cross section with positive (negative) helicity of t, which is obtained by convoluting the parton cross section $\hat{\sigma}_+$ ($\hat{\sigma}_-$) with the parton distribution functions [10] (in our calculations we assume both the renormalization and factorization scales to be $\mu = m_t$).

Note that it may seem naive to define the polarization asymmetry as simply $(N_+ - N_-)/(N_+ + N_-)$ since it would be sizable even when N_+ and N_- are very small (say below unity). However, since N_+ (N_-) is the total number of $t \bar{t}$ events with positive (negative) helicity and not the number contributed by new physics alone (the R-violating contribution will become very small for small R-violating couplings and heavy squarks involved), N_+ and N_- are very large numbers at the LHC due to the large QCD $t \bar{t}$ production cross section and high luminosity of the LHC. Of course, as will be discussed when we consider the statistical sensitivity in next section, N_+ and N_- will be suppressed by the detection efficiency. But even so, N_+ and N_- are very large since the LHC can produce $t \bar{t}$ copiously and can serve as a top-quark factory. Also, as will be discussed at the end of this section, although N_+ and N_- are very large numbers, the asymmetry $(N_+ - N_-)/(N_+ + N_-)$ is very small in the SM because the SM $t \bar{t}$ production is dominated by QCD processes which predict $N_+ = N_-$. For this reason, this asymmetry will be a sensitive probe for any new physics which can predict a sizable difference between N_+ and N_-.

The parton cross section $\hat{\sigma}$ contains the SM contribution $\hat{\sigma}_{SM}$ and the R-violating contribution $\hat{\sigma}_{new}$

$$\hat{\sigma} = \hat{\sigma}_{SM} + \hat{\sigma}_{new} .$$

FIG. 1: Feynman diagrams for top pair productions induced by λ'_{31} and λ''_{313}, respectively.

FIG. 2: Feynman diagrams for top pair productions in the Standard Model.
For σ^{SM} the dominant contributions are from the QCD processes shown in Fig. 2. It is well known that at the LHC (Tevatron) the gluon-gluon fusion process $q\bar{q} \to t\bar{t}$ and quark-antiquark annihilation process $q\bar{q} \to t\bar{t}$ contribute about 90% (10%) and 10% (90%), respectively. We assume that the QCD correction factors (K-factor) to $\hat{\sigma}^{new}$ and $\hat{\sigma}^{old}$ take the same value and thus the QCD correction effects cancel in the polarizations defined above. Note that due to the separate C- and P-invariance of QCD, the QCD cross section $\hat{\sigma}^{old}$ equals to $\hat{\sigma}^{old}$, which are given by

\[
\frac{d\hat{\sigma}^{old}}{d\cos\theta^*} = \frac{d\hat{\sigma}^{old}}{d\cos\theta^*} = \frac{\pi\alpha_s^2\beta}{18s} (1 + \cos^2\theta^*) + \frac{2\pi\alpha_s^2\beta m_t^2}{9s^2} \sin^2\theta^* \tag{6}
\]

for $q\bar{q} \to t\bar{t}$, and

\[
\frac{d\hat{\sigma}^{new}}{d\cos\theta^*} = \frac{d\hat{\sigma}^{new}}{d\cos\theta^*} = \frac{\pi\alpha_s^2\beta}{32s} \left[12 \frac{(\hat{t} - m_t^2)(\hat{u} - m_t^2)}{s^2} - 2 \frac{m_t^2(s - 4m_t^2)}{3 (\hat{t} - m_t^2)(\hat{u} - m_t^2)} \right. \\
+ \frac{8 (\hat{t} - m_t^2)(\hat{u} - m_t^2) - 2m_t^2(\hat{t} + m_t^2)}{3} + \frac{8 (\hat{t} - m_t^2)(\hat{u} - m_t^2) - 2m_t^2(\hat{u} + m_t^2)}{3}, \tag{7}
\]

for $q\bar{q} \to t\bar{t}$. Here $\beta = \sqrt{1 - 4m_t^2/s}$, $\hat{t} = m_t^2 - s(1 - \beta \cos\theta^*)/2$ and $\hat{u} = m_t^2 - s(1 + \beta \cos\theta^*)/2$.

The R-violating contribution $\hat{\sigma}^{new}$ comes from the interference of the diagrams in Fig.1 with the corresponding quark-antiquark annihilation QCD diagram in Fig. 2. Due to the chiral nature of these R-violating couplings, the cross section with positive helicity of top quark ($\hat{\sigma}^{new}$) is not equal to that with negative helicity ($\hat{\sigma}^{new}$). The detailed expressions for $d\hat{\sigma}^{new}/d\cos\theta^*$ and $d\hat{\sigma}^{new}/d\cos\theta^*$ can be found in [8].

Finally, we stress the reasons to consider the polarization asymmetry in Eq. (2) rather than the total $t\bar{t}$ cross section in probing the R-violating couplings:

(i) This polarization asymmetry will be a sensitive probe for new physics due to the fact that the SM contribution to this polarization asymmetry is very small (below 1%) [2]. The $t\bar{t}$ productions at the LHC are dominated by the QCD processes shown in Fig. 2. Of course, if we only consider the QCD interactions in the $t\bar{t}$ production, the polarization asymmetry in Eq. (2) is zero due to the separate C- and P-invariance of QCD. The SM electroweak process $qq \to ZZ \to t\bar{t}$ can cause a non-zero polarization asymmetry. But the polarization caused by this process is very small [3] since it does not interfere with the QCD amplitude because of the orthogonal color structure. Furthermore, the polarization caused by the SM electroweak loop corrections to the QCD $t\bar{t}$ production processes is also very small [9]. Therefore, the observation of a sizable polarization asymmetry (say $P_t > 1\%$) will serve as a robust evidence for new physics.

(ii) The R-conserving supersymmetric contribution to this polarization asymmetry is also very small [3]. So, if supersymmetry, the only R-violating couplings can cause a sizable value for the polarization asymmetry, which makes it a unique probe for R-violating couplings.

(iii) Although the R-violating couplings can contribute to the total $t\bar{t}$ cross section by a few percent [7], such correction effects of a few percent are hard to be disentangled from the measurement of the $t\bar{t}$ cross section because of the uncertainties in the SM predictions of the $t\bar{t}$ production cross section and the possible loop contributions from the R-conserving MSSM interactions [11].

III. RESULTS AND DISCUSSIONS

In our numerical calculations the top quark mass $m_t = 175$ GeV, and the center-of-mass energy for the LHC (Tevatron) $\sqrt{s} = 14$ TeV (2 TeV). We assume that only one of the involved R-violating couplings dominates. For the L-violating couplings λ_{t31}', we consider the existence of λ_{t31}', in which case the stau is exchanged in the process, since λ_{t31}' and λ_{231}' are already strongly constrained by atomic parity violation and ν_μ deep-inelastic scattering [12]. For the B-violating interactions λ_{t31}'', none of them have been well constrained by other processes. So we may interpret our result as that on any one of λ_{t31}', in which case the squark \tilde{d} is exchanged in the process.

In Fig. 3 we show the polarizations P_t, P_t^F and P_t^B normalized to $|\lambda_{t31}'|^2$ versus the stau mass. This figure can be also read as $-P_t$, $-P_t^F$ and $-P_t^B$ normalized to $|\lambda_{t31}''|^2$ versus the mass of the squark \tilde{d} with P_t^F and P_t^B interchanged. The total polarization is smaller than hemisphere polarizations because of the cancellation between the two hemispheres. For the coupling $\lambda_{t31}' (\lambda_{t31}'')$, the backward (forward) polarization has the largest magnitude.
FIG. 3: Top quark polarizations P_t, P_t^F and P_t^B normalized to $|\lambda_{331}|^2$ at the LHC ($\sqrt{s} = 14$ TeV) and the Tevatron upgrade ($\sqrt{s} = 2$ TeV) versus the exchanged stau mass. The figure can be also read as $-P_t$, $-P_t^F$ and $-P_t^B$ normalized to $|\lambda_{111}|^2$ versus the exchanged squark mass with P_t^F and P_t^B interchanged.

of the three. Comparing the LHC results with the Tevatron results, we see that the polarizations at the LHC are smaller. This can be understood as follows: Compared with the Tevatron, at the LHC both the difference $\sigma_+ - \sigma_- (= \sigma_{\text{new}}^+ - \sigma_{\text{new}}^-)$ and the total cross section $\sigma_+ + \sigma_-$ increase, but the total cross section increase more significantly since it is dominated by gluon-gluon fusion process.

Now we estimate the statistical sensitivity. The statistical error for the top polarization asymmetry defined in Eq. (2) is given by

$$\delta P_t = \frac{\sqrt{2(N_+^2 + N_-^2)}}{(N_+ + N_-)^{3/2}} \simeq \frac{1}{\sqrt{N_+ + N_-}} = \frac{1}{\sqrt{N}}$$

(8)

while δP_t^F (δP_t^B) is obtained by replacing the above events numbers with those in forward (backward) hemisphere. For the $t\bar{t}$ event number in estimating the statistical error we take the assumption

$$N = \epsilon \left[N_{\text{SM}} + N_{\text{new}} \right] \simeq \epsilon N_{\text{SM}} = \epsilon \mathcal{L} \sigma_{t\bar{t}}^{\text{SM}}$$

(9)

with $\sigma_{t\bar{t}}^{\text{SM}} = 873$ pb (6.77 pb) for the LHC (Tevatron upgrade) [17], \mathcal{L} being the intergrated luminosity and ϵ being the efficiency factor in events counting. The efficiency factor ϵ can be written as

$$\epsilon = \epsilon_1 \epsilon_2 \epsilon_3$$

(10)

with $\epsilon_{1,2,3}$ coming respectively from three aspects:

(1) Firstly, as discussed in many previous works [13, 14, 15], the helicity states of the top quark may have to be determined from the kinematic distribution of its decay particles $t \rightarrow W^+b \rightarrow \ell^+\nu \ell b$ ($\ell = e$ or μ) after reconstructing the top and anti-top quarks in the signal events. This will immediately lead to a suppression factor $\epsilon_1 = 2/9$.

(2) Secondly, as is well known, considering both the detector acceptance and the suppression of the QCD background, some kinematic cuts on the top and anti-top decay particles as well as b-tagging are necessary. Depending on the detailed kinematic cuts and the b-tagging efficiency, the events number is further suppressed by an efficiency factor ϵ_2.
For example, if we impose the kinematic selection cuts as $p_T^ℓ, p_T^{jet} \geq 20 \text{ GeV}, \eta_ℓ, \eta_j \leq 3.0, p_T^{miss} \geq 30 \text{ GeV}$ and $\Delta R_{jj}, \Delta R_{jℓ} \geq 0.4$, where p_T denotes the transverse momentum, η is the pseudo-rapidity, and ΔR is the separation in the azimuthal angle-pseudo rapidity plane ($\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$) between a jet and a lepton or between two jets, then the efficiency from such kinematic cuts is about 30% [19]. Combined with the b-tagging efficiency of about 50%, the efficiency factor $\epsilon_2 \simeq 15\%$. (Currently at Tevatron CDF, the efficiency for tagging at least one b-jet in a $t\bar{t}$ event is $(53 \pm 4)\%$ [20]. At the LHC we expect an efficiency better than 50% for tagging at least one b-jet in a $t\bar{t}$ event.)

Note that in theoretical analyses we usually impose $\Delta R_{jj}, \Delta R_{jℓ} \geq 0.4$ [19]. But for the separation of jets at the LHC, $\Delta R_{jj} \geq 0.4$ may be over-optimistic and the realistic cut may be $\Delta R_{jj} \geq 0.7$. As a result of such a stronger cut, the efficiency factor ϵ_2 may drop below 10%.

Further, in theoretical analyses we usually imposed $\eta \leq 3$ [19] and did not consider the difference of detector efficiency in the different regions of $\eta \leq 3$. In practice, the detector efficiency will certainly be quite different in the barrel $\eta < 1$ and endcap $1 < \eta < 3$ regions. Therefore, the realistic value of ϵ_2 can only be obtained from detector-dependent full Monte Carlo simulation.

(3) Thirdly, from analysing the distribution of the leptonic decays of a top quark, we in practice can only know its helicity with some probability ϵ_3. A recent analysis [14] gives $\epsilon_3 \simeq 75\%$. But this figure may be over-optimistic since the analysis [14] is a theoretical work making rather optimistic assumptions. As pointed in [15], the principal difficulty in measuring top quark polarization comes from the ambiguities in reconstructing its momentum from the decay products, when both top and anti-top decay semileptonically. The realistic value of ϵ_3 may also have to be obtained from detector-dependent full Monte Carlo simulation. For the ATLAS detector an analysis was given in [16] based on leading-order Monte Carlo generators and on a fast simulation of the detector.

Since $\epsilon_{2,3}$ are detector-dependent and their realistic values can only be obtained from detector-dependent full Monte Carlo simulations, in our numerical calculations for statistical significance and statistical limits we only incorporate the suppression factor ϵ_1 while leave $\epsilon_{2,3}$ as variables. Of course, it is straightforward to reinterpret our results once $\epsilon_{2,3}$ are determined. We will explicitly point out how to reinterpret our results once $\epsilon_{2,3}$ are known.

![Figure 4](https://example.com/figure4.png)

FIG. 4: Statistical significance at the LHC ($\sqrt{s} = 14 \text{ TeV}$) and the Tevatron upgrade ($\sqrt{s} = 2 \text{ TeV}$), normalized to $|\lambda'_{331}|^2$ (or to $|\lambda'_{31j}|^2/\epsilon_2\epsilon_3$ if we consider the efficiency factors $\epsilon_{2,3}$). The figure can be also read as the statistical significance normalized to $|\lambda'_{331}|^2$ versus the exchanged squark mass with P_t^F and P_t^B interchanged.

The statistical significances $P_t/\delta P_t, P_t^F/\delta P_t^F$ and $P_t^B/\delta P_t^B$ normalized to $|\lambda'_{331}|^2$ versus stau mass are shown in
Fig. 4. The figure can be also read as the statistical significances normalized to $|\lambda''_{31j}|^2$ versus the exchanged squark mass with P_F^t and P_B^t interchanged. We see that in case of λ''_{331} (λ''_{31j}) the sensitivity of the backward (forward) polarization is the best. Comparing Fig. 3 with Fig. 4, we see that although the polarizations at the LHC are smaller than at the Tevatron upgrade, the LHC gives much larger statistical significances due to its much larger $t\bar{t}$ sample.

The statistical limits for λ'_{331} (λ'_{31j}) versus stau (squark) mass are shown in Fig. 5. Here for the LHC we show the limits at 5σ (discovery), 3σ (evidence) and 2σ (exclusion). The current 2σ exclusion limits from Z decay at LEP Ref. are also shown for comparison. We see that the LHC may be quite powerful in probing these R-violating couplings.

![Graph showing statistical limits for λ'_{331} versus stau mass.](image)

FIG. 5: The statistical limits for λ'_{331} (or for $\lambda'_{31j}(\epsilon_2\epsilon_3)^{1/4}$ if we consider the efficiency factors $\epsilon_{2,3}$) versus stau mass. The figure can be also read as the statistical limits for λ_{31j} versus squark mass.

Finally, we stress that our above analyses are almost solely theoretical. We only demonstrated the statistical sensitivity and statistical limits. As is well known, in experiments some systematic errors are inevitable. Such systematic errors are detector-dependent and will certainly worsen the probing limits for the R-violating couplings. For example, as an artifact of the measurement problems, an apparent polarization asymmetry may arise. The analysis for the ATLAS detector showed Ref. that the systematic uncertainties will dominate over the statistical errors after one LHC year at low luminosity (10 fb$^{-1}$). The analysis in Ref. gives a quite encouraging result, which shows that a percent-level precision on the measurement of the polarization asymmetry between like-spin versus unlike-spin $t\bar{t}$ events is possible even with 10 fb$^{-1}$. Of course, a higher luminosity (say 100 fb$^{-1}$) will further enhance the measurement precision. Although the analysis in Ref. did not show the possible measurement precision on our polarization asymmetry $(N_+ - N_-)/(N_+ + N_-)$, we can expect a similar or even better precision because here we sum over the helicities of the t and consider an integrated asymmetry in the numbers of t_+ and t_- produced.

IV. CONCLUSIONS

In summary, the R-parity violating interactions of the top quark, which have not been well constrained by current experiments, can induce anomalous top pair productions at hadron colliders. Although such induced processes only contribute to the total $t\bar{t}$ cross section at the percent level, they can cause top quark polarization in the top pair.
events due to the chiral nature of these interactions. The polarization can be a useful observable for probing these interactions at the LHC and the upgraded Fermilab Tevatron collider because the polarization is expected to be very small in the Standard Model. We found that at the LHC, due to the large statistics, the statistical significance of the polarization observable and thus the probing ability for the corresponding R-parity violating couplings are much higher than at the Tevatron upgrade. Finally, we stress that for the purpose of probing these R-violating couplings, there may exist other processes which are complementary to our analyses. For example, λ''_{ij} couplings can induce s-channel top-squark productions at the LHC and Tevatron and, as studied in [21], such productions can be used to probe the parameter space of λ''_{ij} versus top-squark mass.

[1] For some reviews on top quark physics, see, e.g., D. Chakraborty, J. Konigsberg, D. Rainwater, Ann. Rev. Nucl. Part. Sci. 53, 301 (2003); E. H. Simmons, hep-ph/0211335 C.-P. Yuan, hep-ph/0203088; S. Willenbrock, hep-ph/0211067 M. Beneke et al., hep-ph/0003033
[2] For model-independent studies of new physics in top quark physics, see, e.g., C. T. Hill and S. J. Parke, Phys. Rev. D 49, 4454 (1994); K. Whisnant, et al., Phys. Rev. D 56, 467 (1997); K. Hikasa, et al., Phys. Rev. D 58, 114003 (1998).
[3] C. S. Li, R. J. Oakes and J. M. Yang, Phys. Rev. D 49, 293 (1994); G. Couture, C. Hamzaoui and H. Konig, Phys. Rev. D 52, 1713 (1995); J. L. Lopez, D. V. Nanopoulos and R. Rangarajan, Phys. Rev. D 56, 3100 (1997); G. M. de Divitiis, R. Petronzio and L. Silvestrini, Nucl. Phys. B 504, 45 (1997). J. M. Yang, B.-L. Young and X. Zhang, Phys. Rev. D 58, 055001 (1998); J. M. Yang and C. S. Li, Phys. Rev. D 49, 3412 (1994); J. Guasch, and J. Sola, Nucl. Phys. B 562, 3 (1999); G. Eilam, et al., Phys. Lett. B 510, 227 (2001); J. Cao, et al., Nucl. Phys. B 651, 87 (2003); J. J. Liu, C. S. Li, L. L. Yang, L. G. Jin, Phys. Lett. B 599, 92 (2004); J. Cao, et al., Phys. Rev. D 74, 031701 (2006); G. Eilam, M. Frank, I. Turan, hep-ph/0601253.
[4] For some reviews, see R. Barbier, et al., Phys. Rept. 420, 1 (2005); H. Dreiner, hep-ph/9707435 G. Bhattacharyya, hep-ph/9709395 P. Roy, hep-ph/9712520
[5] A. Datta, et al., Phys. Rev. D 56, 3107 (1997); R. J. Oakes, et al., Phys. Rev. D 57, 534 (1998); P. Chiappetta, et al., Phys. Rev. D 61, 115008 (2000).
[6] K. J. Abraham, et al., Phys. Rev. D 63, 034011 (2001); Phys. Lett. B 514, 72 (2001).
[7] D. K. Ghosh, S. Raychaudhuri and K. Sridhar, Phys. Lett. B 396, 177 (1997).
[8] K. Hikasa, J. M. Yang and B.-L. Young, Phys. Rev. D 60, 114041 (1999).
[9] C. Kao, G. A. Ladinsky and C.-P. Yuan, FSU-HEP-930508, 1993 (unpublished); C. Kao, Phys. Rev. D 52, 155 (1995); C. S. Li, et. al., Phys. Lett. B 398, 298 (1997); C. S. Li, C.-P. Yuan and H.-Y. Zhou, Phys. Lett. B 424, 76 (1998).
[10] J. Pumplin, et. al., JHEP 0207, 012 (2002); D. Stump, et. al., JHEP 0310, 046 (2003).
[11] C. S. Li, et. al., Phys. Rev. D 52, 5014 (1995); J. Kim, J. L. Lopez, D. V. Nanopoulos and R. Rangarajan, Phys. Rev. D 54, 4364 (1996); J. M. Yang and C. S. Li, Phys. Rev. D 52, 1541 (1995); 54, 4380 (1996); C. S. Li, et. al., Phys. Lett. B 379, 135 (1996); S. Alam, K. Hagiwara and S. Matsumoto, Phys. Rev. D 55, 1307 (1997); Z. Sullivan, Phys. Rev. D 56, 451 (1997); W. Hollik, W. M. Mosle and D. Wackeroth, Nucl. Phys. B 516, 29 (1998).
[12] V. Barger, G. F. Giudice and T. Han, Phys. Rev. D 40, 2978 (1989).
[13] G. L. Kane, G. A. Ladinsky and C.-P. Yuan, Phys. Rev. D 45, 124 (1992); M. Jezabek and J. H. Kühn, Phys. Lett. B 329, 317 (1994); S. Parke and Y. Shadmi, Phys. Lett. B 387, 199 (1996).
[14] Y. Sumino and S. Tsumo, Phys. Lett. B 633, 715 (2006).
[15] R. M. Godbole, S. D. Rindani, R. K. Singh, JHEP0612, 021 (2006).
[16] F. Hubaut, E. Monnier, P. Pralavorio, V. Simak, K. Smolek, hep-ex/0508061
[17] See, e.g., N. Kidonakis and R. Vogt, Phys. Rev. D 68, 114014 (2003); Eur. Phys. Jour. C 33, s466 (2004).
[18] J. M. Yang, Eur. Phys. Jour. C 20, 553 (2001); G. Bhattacharyya, J. Ellis and K. Sridhar, Mod. Phys. Lett. A 10, 1583 (1995); G. Bhattacharyya, D. Choudhury and K. Sridhar, Phys. Lett. B 355, 193 (1995).
[19] See, e.g., J. M. Yang, B.-L. Young, Phys. Rev. D 62, 115002 (2000); M. Hosch, et al., Phys. Rev. D 58, 034002 (1998); R. J. Oakes, et al., Phys. Rev. D 57, 534 (1998).
[20] See, e.g., H. Bachacou, hep-ex/0501007
[21] E. L. Berger, B. W. Harris, Z. Sullivan, Phys. Rev. Lett. 83, 4472 (1999); Phys. Rev. D 63, 115001 (2001).