Background. Numerous microbiota-based therapies are being evaluated for prevention of C. difficile infection (rCDI), a public health threat with high recurrence rates among patients with current standard of care. RBX2660, a standardized microbiota-based drug, was efficacious for preventing rCDI in a double-blinded Phase 2b clinical study (PUNCH CD 2). Herein we report the durability of RBX2660 beyond the initial primary clinical end-point of a subsequent Phase 2 open-label study, demonstrating rCDI prevention at 6 months post-treatment.

Methods. This prospective, multi-center, open-label Phase 2 study enrolled subjects who had experienced either ≥2 recurrences of CDI following standard-of-care antibiotic therapy or ≥2 episodes of severe CDI requiring hospitalization. Participants received up to two doses of RBX2660 delivered via enema with doses 7 days apart. The primary endpoint of the open-label clinical study was defined as efficacy as absence of CDI at 8 weeks from the last dose. Safety follow-ups and durability assessments occurred via telephone at 3, 6, 12, and 24 months. The study is ongoing, and not all subjects have completed their assessments.

Results. This study included 149 RBX2660-treated subjects and 110 historical control subjects from 31 and 4 centers, respectively, in the United States and Canada. At 8-weeks post-treatment, RBX2660’s efficacy in preventing rCDI (79.9%; 119/149) was higher than CDI-free rates in the historical control group (51.8%. 57/110; P < 0.001). Of the 119 subjects who were determined to be treatment success at 8 weeks, 117 have data through 6 months, of which 8 were exited for non-CDI reasons. Of those 109 subjects through the 6-month follow-up, (2.8%) had a new CDI beyond 8 weeks after enema. The 6-month long-term CDI-free rate was 97.2% (106/109) (median follow-up: 82 days; mean: 177 days).

Conclusion. RBX2660, a microbiota-based drug, was efficacious for the prevention of recurrent CDI with long-term durability at 6 months post-treatment; a result consistent with 6-month rCDI prevention reported for the Phase 2b PUNCH CD2 trial. Long-term follow-up of RBX2660 and 24 months is ongoing.

This analysis was funded by Rebiotix Inc., Roseville, MN.

Disclosures. S. Mische, Rebiotix Inc., Employee. R. Orenstein, Rebiotix Inc., Scientific Advisor, Consulting fee. E. R. Dubberke, Rebiotix Inc., Scientific Advisor, Consulting fee. G. Hecht, Rebiotix Inc., Scientific Advisor, Consulting fee. H. DuPont, Rebiotix Inc., Investigator, Research support. C. Lee, Rebiotix Inc., Scientific Advisor, Consulting fee. K. Blount, Rebiotix Inc., Employee, Salary.

References:

1. Baquero F, Monge R, Grace C. Treatment of Clostridium difficile infection with metronidazole and vancomycin: resistance to selective pressure? Rev Infect Dis 1990; 12(Suppl 6): S1002-8.

2. Reintjes M, Kost C, van den Steen P, van de Sande K, van de Wijgert J. The impact of metronidazole on duration of diarrhea in patients with Clostridium difficile infection: a randomized, double-blind, placebo-controlled trial. Antimicrob Agents Chemother 2004; 48: 2451-5.

3. Tauxe RV, Swaminathan B, Loeb M, Musher DM. Effect of enemas on recurrence of Clostridium difficile infection among trained volunteers. Infect Control Hosp Epidemiol 2002; 23: 135-8.

4. De Vries J, De Wit S, van den Steen P, Van Gulik T, van de Wijgert J. A randomized, placebo-controlled trial comparing enemas and oral vancomycin for the prevention of Clostridium difficile recurrence in patients who have recovered from Clostridium difficile infection. J Infect Dis 2010; 202: 130-5.

5. De Vries J, van den Steen P, Van Gulik T, van de Wijgert J. A randomized, placebo-controlled trial comparing enemas and oral vancomycin for the prevention of Clostridium difficile recurrence in patients who have recovered from Clostridium difficile infection. J Infect Dis 2010; 202: 130-5.

6. De Vries J, van den Steen P, Van Gulik T, van de Wijgert J. A randomized, placebo-controlled trial comparing enemas and oral vancomycin for the prevention of Clostridium difficile recurrence in patients who have recovered from Clostridium difficile infection. J Infect Dis 2010; 202: 130-5.

7. De Vries J, van den Steen P, Van Gulik T, van de Wijgert J. A randomized, placebo-controlled trial comparing enemas and oral vancomycin for the prevention of Clostridium difficile recurrence in patients who have recovered from Clostridium difficile infection. J Infect Dis 2010; 202: 130-5.

8. De Vries J, van den Steen P, Van Gulik T, van de Wijgert J. A randomized, placebo-controlled trial comparing enemas and oral vancomycin for the prevention of Clostridium difficile recurrence in patients who have recovered from Clostridium difficile infection. J Infect Dis 2010; 202: 130-5.

9. De Vries J, van den Steen P, Van Gulik T, van de Wijgert J. A randomized, placebo-controlled trial comparing enemas and oral vancomycin for the prevention of Clostridium difficile recurrence in patients who have recovered from Clostridium difficile infection. J Infect Dis 2010; 202: 130-5.

10. De Vries J, van den Steen P, Van Gulik T, van de Wijgert J. A randomized, placebo-controlled trial comparing enemas and oral vancomycin for the prevention of Clostridium difficile recurrence in patients who have recovered from Clostridium difficile infection. J Infect Dis 2010; 202: 130-5.

11. De Vries J, van den Steen P, Van Gulik T, van de Wijgert J. A randomized, placebo-controlled trial comparing enemas and oral vancomycin for the prevention of Clostridium difficile recurrence in patients who have recovered from Clostridium difficile infection. J Infect Dis 2010; 202: 130-5.

12. De Vries J, van den Steen P, Van Gulik T, van de Wijgert J. A randomized, placebo-controlled trial comparing enemas and oral vancomycin for the prevention of Clostridium difficile recurrence in patients who have recovered from Clostridium difficile infection. J Infect Dis 2010; 202: 130-5.

13. De Vries J, van den Steen P, Van Gulik T, van de Wijgert J. A randomized, placebo-controlled trial comparing enemas and oral vancomycin for the prevention of Clostridium difficile recurrence in patients who have recovered from Clostridium difficile infection. J Infect Dis 2010; 202: 130-5.

14. De Vries J, van den Steen P, Van Gulik T, van de Wijgert J. A randomized, placebo-controlled trial comparing enemas and oral vancomycin for the prevention of Clostridium difficile recurrence in patients who have recovered from Clostridium difficile infection. J Infect Dis 2010; 202: 130-5.

15. De Vries J, van den Steen P, Van Gulik T, van de Wijgert J. A randomized, placebo-controlled trial comparing enemas and oral vancomycin for the prevention of Clostridium difficile recurrence in patients who have recovered from Clostridium difficile infection. J Infect Dis 2010; 202: 130-5.

16. De Vries J, van den Steen P, Van Gulik T, van de Wijgert J. A randomized, placebo-controlled trial comparing enemas and oral vancomycin for the prevention of Clostridium difficile recurrence in patients who have recovered from Clostridium difficile infection. J Infect Dis 2010; 202: 130-5.

17. De Vries J, van den Steen P, Van Gulik T, van de Wijgert J. A randomized, placebo-controlled trial comparing enemas and oral vancomycin for the prevention of Clostridium difficile recurrence in patients who have recovered from Clostridium difficile infection. J Infect Dis 2010; 202: 130-5.

18. De Vries J, van den Steen P, Van Gulik T, van de Wijgert J. A randomized, placebo-controlled trial comparing enemas and oral vancomycin for the prevention of Clostridium difficile recurrence in patients who have recovered from Clostridium difficile infection. J Infect Dis 2010; 202: 130-5.

19. De Vries J, van den Steen P, Van Gulik T, van de Wijgert J. A randomized, placebo-controlled trial comparing enemas and oral vancomycin for the prevention of Clostridium difficile recurrence in patients who have recovered from Clostridium difficile infection. J Infect Dis 2010; 202: 130-5.

20. De Vries J, van den Steen P, Van Gulik T, van de Wijgert J. A randomized, placebo-controlled trial comparing enemas and oral vancomycin for the prevention of Clostridium difficile recurrence in patients who have recovered from Clostridium difficile infection. J Infect Dis 2010; 202: 130-5.

Table. Protocol-specified nephropathy and renal AEs

AEs	Protocol-specified nephropathy	Renal AEs		
n/m	% (95% CI)	n/m	% (95% CI)	
Stage 1	3/29	10.3 (9.3%–11.4%)	7/16	43.8 (35.7%–52.1%)
Stage 2	1/29	3.4 (0.6%–10.3%)	7/16	43.8 (35.7%–52.1%)
Stage 3	0/29	0	5/16	31.3 (21.5%–41.5%)
Injury	1/29	3.4	2/16	12.5 (2.8%–22.2%)

Conclusion. IMI/REL demonstrates a more favorable renal safety profile compared with CST-based therapy, as demonstrated by a lower incidence of treatment-emergent nephropathy and AKI with IMI/REL across several different analyses.
same-strain relapse and new-strain reinfection of CDI. We used WGS of paired C. difficile samples from patients with CDI recurrence in the EXTEND study to assess EPFX and SV in relation to relapse and reinfection.

Methods. Patients aged 260 years with CDI were randomized (1:1) to receive either EPFX (fidaxomycin 200 mg tablets, twice daily on Days 1–5 and once daily on alternate days on Days 7–25) or SV (125 mg capsules, four times daily on Days 1–10). Paired stool samples were collected from all patients at screening and from patients with recurrence after test-of-cure (TOC). Recurrence was defined as diarrhoea occurring to a greater extent than the frequency recorded at TOC, and confirmed positive for C. difficile toxin A/B and requiring further CDI therapy. C. difficile isolates from paired samples underwent WGS and single nucleotide variant (SNV) difference analysis. Paired samples with ≤2 SNV differences were considered relapses, paired samples with >10 SNV differences were considered reinfection, and those with >2 but ≤10 SNV differences without evidence of a new strain were considered indeterminate.

Results. At Day 90, 11/177 (6%) patients in the EPFX arm and 34/179 (19%) patients in the SV arm had CDI recurrence. Of these, samples from 7/111 EPFX- and 19/54 SV-treated patients were available for paired WGS analysis. SNV analysis showed that most CDI recurrences were new-strain reinfections (table).

Conclusion. Most recurrences were reinfections, but small sample sizes limited definitive conclusions.

Reference.

1. Guerry et al. (2017). Lancet Inf Dis 18:296–307.

Table. SNV analysis

Treatment arm	EPFX	SV	Total
Patients with CDI recurrence (n/N)	11/177	34/179	45/356
Test-positive (n/N%)	7 (13.6)	19 (22.5)	26 (57.8)
Relapse (≤2 SNV)	1 (2.2)	3 (6.7)	4 (8.9)
Reinfection (>10 SNV)	5 (11.1)	15 (33.3)	20 (44.4)
Indeterminate (>2 but ≤10 SNV)	1 (2.2)	2 (2.2)	2 (4.4)
No available SNV results	15 (33.3)	19 (42.2)	

Calculated over total number of patients with CDI recurrence in both treatment arms

Disclosures. M. Wilcox, Astellas Pharma: Consultant and Grant Investigator, Consulting fee, Research grant, Speaker honorarium and This study was initiated and sponsored by Astellas. Medical writing support was provided by Cello Health MedErgy and funded by Astellas. O. A. Cornely, Astellas Pharma: Grant Investigator, Lecture speaker and Scientific Advisor, Research grant, Speaker honorarium and This study was initiated and sponsored by Astellas. Medical writing support was provided by Cello Health MedErgy and funded by Astellas.

B. Guerry, Astellas Pharma: Consultant, Consulting fee and This study was initiated and sponsored by Astellas. Medical writing support was provided by Cello Health MedErgy and funded by Cello Health MedErgy and funded by Astellas.

G. Kazeem, Astellas Pharma: Consultant and Grant Investigator, Consulting fee, Grant recipient and This study was initiated and sponsored by Astellas. Medical writing support was provided by Cello Health MedErgy and funded by Astellas.

1953. Comparative Effectiveness of High- vs. Standard-Dose Influenza Vaccine on Hospitalization for Acute Myocardial Infarction in Nursing-Home Residents: A Post-hoc Analysis From a Large Cluster-Randomized Trial

Elie Saade, MD, MPH1,2,3; Nina Joyce, PhD; Jessica Ogarek, MS; H. Edward Davidson, PharmD, MPH; Lisa Han, MPH; David Canaday, MD2,3, Abul Yasin, MD, Thericia Shinan, PhD, Vincent Mor, PhD2,3 and Stefani Gravenstein, MD, MPH1,2,3,1, University of Texas at Austin, Austin, Texas, 1Texas Heart Institute, Houston, Texas, 2University of Michigan, Ann Arbor, Michigan, 3Milken Institute School of Public Health, George Washington University, Washington, DC, 4University of Texas Southwestern Medical School, Dallas, Texas, 5Case Western Reserve University, Cleveland, Ohio, 6University of California, San Diego, California, 7Eckerd College, St. Petersburg, Florida, 8University of Wisconsin, Madison, Wisconsin, 9University of California, Los Angeles, California, 10University of California, San Francisco, California, 11University of Utah, Salt Lake City, Utah, 12Stanford University, Stanford, California, 13Harvard Medical School, Boston, Massachusetts, 14Johns Hopkins University, Baltimore, Maryland, 15Brigham and Women’s Hospital, Boston, Massachusetts, 16Massachusetts General Hospital, Boston, Massachusetts, 17Harvard School of Public Health, Boston, Massachusetts, 18Tufts University, Boston, Massachusetts, 19University of California, San Diego, California, 20University of California, San Francisco, California, 21University of California, Los Angeles, California, 22University of Texas Southwestern Medical School, Dallas, Texas, 23University of Texas at Austin, Austin, Texas, 24University of Texas Health Science Center at Houston, Houston, Texas, 25University of California, San Francisco, California, 26University of California, Los Angeles, California, 27University of Texas Southwestern Medical School, Dallas, Texas, 28University of Texas at Austin, Austin, Texas.

Registration: NCT01815268.

Funding: sanofi pasteur.

Disclosures. E. Saade, sanofi pasteur: Collaborator, Research support. Sequence: Collaborator, Research support. N. Joyce, sanofi pasteur: Collaborator, Research support. J. Ogarek, sanofi pasteur: Collaborator, Research support. H. E. Davidson, sanofi pasteur: Collaborator, Research support. D. Canaday, sanofi pasteur: Collaborator, Research support. A. Yasin, sanofi pasteur: Collaborator, Research support. T. Shireman, Sanofi Pasteur: Grant Investigator, Consulting fee, Grant recipient and This study was initiated and sponsored by Astellas. Medical writing support was provided by Cello Health MedErgy and funded by Astellas.

Conclusion. High-dose flu vaccine reduces the risk of hospitalization for ACE in long-term care residents by 8% relative to standard-dose vaccine.

1954. A Randomized Study to Evaluate the Shedding and Immunogenicity of H1N1 Strains in Trivalent and Quadrivalent Formulations of FluMist in Children 2-17 Years of Age

Ruben Mallory, MD3; Andrew C. Nyborg, PhD2; Rubana Kalyani, n/a2; Lan-Feng Tsai, n/a4; Stan L. Block, MD5 and Filip Dubovský, MD1, 1Clinical Development, MedImmune, Gaithersburg, Maryland, 2Translational Sciences, MedImmune, Gaithersburg, Maryland, 3Clinical Development, MedImmune, Gaithersburg, Maryland, 4Innogen, Gaithersburg, Maryland, 5Kentucky Pediatric and Adult Research, Bardstown, Kentucky

Registration: NCT010815268.

Funding: sanofi pasteur.

Disclosures. E. Saade, sanofi pasteur: Collaborator, Research support. Sequence: Collaborator, Research support. N. Joyce, sanofi pasteur: Collaborator, Research support. J. Ogarek, sanofi pasteur: Collaborator, Research support. H. E. Davidson, sanofi pasteur: Collaborator, Research support. D. Canaday, sanofi pasteur: Collaborator, Research support. A. Yasin, sanofi pasteur: Collaborator, Research support. T. Shireman, Sanofi Pasteur: Grant Investigator, Consulting fee, Grant recipient and This study was initiated and sponsored by Astellas. Medical writing support was provided by Cello Health MedErgy and funded by Astellas.

Conclusion. High-dose flu vaccine reduces the risk of hospitalization for ACE in long-term care residents by 8% relative to standard-dose vaccine.

Registration: NCT01815268.

Funding: sanofi pasteur.

Disclosures. E. Saade, sanofi pasteur: Collaborator, Research support. Sequence: Collaborator, Research support. N. Joyce, sanofi pasteur: Collaborator, Research support. J. Ogarek, sanofi pasteur: Collaborator, Research support. H. E. Davidson, sanofi pasteur: Collaborator, Research support. D. Canaday, sanofi pasteur: Collaborator, Research support. A. Yasin, sanofi pasteur: Collaborator, Research support. T. Shireman, Sanofi Pasteur: Grant Investigator, Consulting fee, Grant recipient and This study was initiated and sponsored by Astellas. Medical writing support was provided by Cello Health MedErgy and funded by Astellas.

Conclusion. High-dose flu vaccine reduces the risk of hospitalization for ACE in long-term care residents by 8% relative to standard-dose vaccine.