Multiple myeloma risk variant at 7p15.3 creates an IRF4-binding site and interferes with CDCA7L expression

Ni Li1,2, David C. Johnson2, Niels Weinhold3,4, James B. Studd1, Giulia Orlando1, Fabio Mirabella2, Jonathan S. Mitchell1, Tobias Meissner5, Martin Kaiser2, Hartmut Goldschmidt4,6, Kari Hemminki7,8, Gareth J. Morgan3 & Richard S. Houlston1,2

Genome-wide association studies have identified several risk loci for multiple myeloma (MM); however, the mechanisms by which they influence MM are unknown. Here by using genetic association data and functional characterization, we demonstrate that rs4487645 G>T, the most highly associated variant (P = 5.30 x 10^-25), resides in an enhancer element 47 kb upstream of the transcription start site of c-Myc-interacting CDCA7L. The G-risk allele, associated with increased CDCA7L expression (P = 1.95 x 10^-36), increases IRF4 binding and the enhancer interacts with the CDCA7L promoter. We show that suppression of CDCA7L limits MM proliferation through apoptosis, and increased CDCA7L expression is associated with adverse patient survival. These findings implicate IRF4-mediated CDCA7L expression in MM biology and indicate how germline variation might confer susceptibility to MM.
Genome-wide association studies (GWAS) have frequently identified statistically significant associations within noncoding regions of the genome; however, the causal DNA sequence and their functional effects have only been determined in a few instances1. GWAS have so far identified 17 risk loci for multiple myeloma (MM), with the association signal at 7p15.3 containing CDCA7L (cell division cycle-associated seven-like protein) being shown to be highly robust and not confined to a particular MM subtype2-5. CDCA7L represents an attractive candidate for the functional basis of the 7p15.3 association because of its role as a MYC-interacting protein, acting as a binding partner of LEDGF/p75 (lens epithelium-derived growth factor) and potentiating MYC-mediated transformation events6-9. Given that deregulation of MYC typifies plasma cell neoplasms, CDCA7L therefore represents an attractive functional basis of the 7p15.3 association.

Here we report the identification of the rs4487645 variant as the potential functional basis of the 7p15.3 association for MM. We demonstrate that through differential IRF4 binding rs4487645 influences expression of c-Myc-interacting CDCA7L. Increased CDCA7L expression was associated with increased cell proliferation and poorer patient survival. These findings provide insight into the mechanistic basis of germline susceptibility to MM.

Results

Fine mapping and epigenomic profiling of the risk locus. We have analysed a large meta-analysis of six MM GWAS conducted in European populations totalling 9,866 cases and 239,188 controls5. Imputation of these GWAS including use of 1000 Genomes project and UK10k data as reference3 confirmed the previously identified single-nucleotide polymorphism (SNP) rs4487645 as providing the strongest association signal at the 7p15.3 risk locus2 (P = 5.30 × 10^-25, odds ratio = 1.24; logistic regression followed by fixed-effects meta-analysis, risk allele frequency = 0.65; Fig. 1). In addition, we have excluded the existence of multiple independent statistical signals at the 7p15.3 risk locus by performing association testing conditional on rs4487645 genotypes, observing no additional significant variants. Previously, we demonstrated an expression quantitative trait locus (eQTL) signal between rs4487645 and CDCA7L (ref. 10), with the risk allele associated with increased expression of CDCA7L. To further substantiate this eQTL, we analysed mRNA expression data on CD138-purified plasma cells from 1,449 MM cases from three independent series. Besides confirming that the association of rs4487645 with CDCA7L was the strongest 7p15.3 eQTL (P = 1.95 × 10^-36; linear regression followed by fixed-effects meta-analysis; Supplementary Table 1 and Supplementary Fig. 1), conditional analysis provided no evidence for additional independent signals10.

To further prioritize candidate MM risk variants, we examined the regulatory potential of SNPs in linkage disequilibrium (r² ≥ 0.8) with rs4487645. We prioritized credible candidate risk variants by their regulatory potential inferred from B-cell-specific DNase I hypersensitivity (HS), formaldehyde-assisted isolation of regulatory elements (FAIRE), promoter/-enhancer-associated histone marks and chromatin immunoprecipitation sequencing (ChIP-seq; Fig. 1 and Supplementary Table 2)11. SNP rs4487645 resides within a 1 kb active promoter region as predicted by ChromHMM, supported by open chromatin analysis (DNase HS and FAIRE), as well as H3K4Me1, H3K4Me3 and H3K27Ac peaks. ENCODE ChIP-seq data confirmed that rs4487645 localizes within an IRF4/P4PuL1-binding motif ETS/ISRE (ETS/interferon-stimulated-response-element composite DNA motif)-consensus element (EICE; 5’-G[G/T]AANNNGAAA-3’).

No other candidate MM risk variant at the 7p15.3 locus showed the unique combination of highly significant GWAS and eQTL signal, open chromatin, active enhancer localization and transcription factor binding. By analysing the germline exomes of 463 MM cases, we only identified one CDCA7L mutation (S197Y) in one sequenced individual12, thus excluding the possibility that the 7p15.3 association signal is a consequence of linkage disequilibrium with a rare disease-causing coding variant. Collectively, these data suggest that rs4487645 is the single best causal SNP candidate for the 7p15.3 association.

SNP rs4487645 modulates IRF4-binding affinity. Using Find Individual Motif Occurrences, we assessed the genomic sequence overlapping rs4487645 with the DNA-binding position weight matrices of multiple human transcription factors13. In this analysis, the IRF4 position weight matrix was the strongest match for the sequence overlapping rs4487645, with a preference for the risk-associated G-allele (G-allele Q value = 9.39 × 10^-5; T-allele Q value = 0.017; Fig. 2a). To examine for differential IRF4 binding between the G and T alleles of rs4487645 and its binding motif, we performed ChIP-qPCR (quantitative PCR) in the GM11992 lymphoblastoid cell line, which is heterozygous for rs4487645. The G-allele of rs4487645 showed significant preferential binding to IRF4 (two-tailed t-test, P = 0.0014; Fig. 2b), supporting a role for rs4487645 in modulating IRF4-binding affinity on the site of overlap.

SNP rs4487645 is localized within an enhancer element. We next performed luciferase reporter assays to determine the effect of rs4487645 on enhancer activity in the MM cell line KMS11. Transfection of constructs containing the risk G-allele showed significant enhancement of normalized luminescence compared with the T-allele (two-tailed t-test, P = 0.031; Fig. 2c,d), consistent with a model in which the causal risk variant is associated with increased CDCA7L expression.

rs4487645 shows long-range interaction with CDCA7L promoter. Physical interactions between regulatory elements and promoters have a major role in regulating gene expression14,15. Following on from our observation that rs4487645 is within an IRF4-bound enhancer element, and that rs4487645 and the CDCA7L promoter retain active regulatory chromatin marks (Fig. 2e)16, we interrogated using 3C-qPCR whether rs4487645 physically interacts with the CDCA7L promoter in GM11992 and KMS11. The genomic region to which rs4487645 maps was demonstrated to form a chromatin-looping interaction with the CDCA7L promoter in both cell lines (Fig. 3a,b), suggesting a mechanism by which IRF4-bound rs4487645 regulates CDCA7L expression.

IRF4 promotes CDCA7L expression. CDCA7L expression is significantly correlated with IRF4 expression in CD138-purified MM cells (Mann–Whitney–Wilcoxon test, P = 0.0012; Supplementary Table 2). To establish a direct relationship between IRF4 and CDCA7L expression, we performed small interfering RNA (siRNA) experiments in KMS11. Knockdown of IRF4 was accompanied by a significant reduction in CDCA7L mRNA (two-tailed t-test, P = 0.0038; Fig. 3c and Supplementary Fig. 3). Collectively, these data are consistent with CDCA7L being a downstream target of IRF4 in MM, with increased binding of IRF4 at the G-risk allele of rs4487645 leading to increased CDCA7L expression.

CDCA7L affects myeloma proliferation and patient survival. SNP rs4487645 and the CDCA7L promoter localize to H3K27Ac...
and H3K4Me3 chromatin marks and are enriched for MYC and RNA polymerase II binding in MM1.S cells (Fig. 2e). Since high levels of MYC were associated with high levels of CDCA7L in MM (Mann–Whitney–Wilcoxon test, \(P = 1.32 \times 10^{-4}\); Supplementary Fig. 4), this implies a potential network involving MYC, IRF4 and CDCA7L at the 7p15.3 association region. A significant correlation between CDCA7L expression and cellular proliferation was shown as evidenced by the GPI in German (\(n = 658\)) and US (\(n = 608\)) MM data sets (Pearson’s product–moment correlation, \(P < 0.01\); Supplementary Fig. 5).

To directly investigate the effect of CDCA7L expression on malignant phenotype, we knocked down CDCA7L levels in KMS11 using short hairpin RNA (shRNA; Supplementary Fig. 6). Reduction of CDCA7L expression was associated with reduced cell proliferation (two-tailed \(t\)-test, \(P < 0.05\); Fig. 4a,b) and increased apoptosis (two-tailed \(t\)-test, \(P < 0.05\); Fig. 4c,d). We observed a 39% and 71% increase of apoptotic cells in the shRNA-CDCA7L-1 and shRNA-CDCA7L-2 knockdown cell lines, respectively, relative to control. In contrast, there was no difference between the proportions of cells at different stages of the cell cycle between CDCA7L knockdown and control cell lines (Supplementary Fig. 7). Following on from this we examined the impact of CDCA7L expression on MM patient outcome in five independent series totalling 1,573 cases. High levels of CDCA7L

Figure 1 | Genetic mapping and epigenetic landscape at the 7p15.3 locus. Manhattan plot of 7p15.3 is shown with genotyped (triangles) and imputed (circles) SNPs. \(-\log_{10} P\) values (y axis) of the SNPs are shown according to their chromosomal positions (x axis; NCBI build 37 of the human genome). The top genotyped SNP (rs4487645) is labelled with a large triangle. The colour intensity of each symbol in the Manhattan plot reflects the extent of linkage disequilibrium with rs4487645, from white (\(r^2 = 0\)) to dark red (\(r^2 = 1.0\)). Genetic recombination rates are estimated using HapMap Utah residents of Western and Northern European ancestry (CEU) samples, and shown with a light blue line. The relative positions of DNAH11 and CDCA7L transcripts mapping to 7p15.3 are shown. The chromatin state of the DNAH11–CDCA7L gene locus in GM12878 is detailed with H3K4Me1, H3K4Me3, H3K27Ac, FAIRE, DNasel HS studies and chromatin state segmentation track (ChromHMM), with called peaks on two replicates of IRF4 ChIP-seq in GM12878 shown below accessed from the UCSC Genome Browser. Position of rs4487645 is highlighted with grey line.
Figure 2 | SNP rs4487645 shows allele-specific binding of IRF4 and confers enhancer regulatory activity in multiple myeloma cells. (a) rs4487645 is located in an IRF4 DNA-binding motif predicted by Find Individual Motif Occurrences (FIMO). Shown below is the IRF4 position weight matrix generated by HOCOMOCO. G-risk allele is highlighted in red. (b) ChIP-qPCR using either the anti-IRF4 or isotype control antibody was performed on GM11992 heterozygous for rs4487645. The ChIP-qPCR signal is based on the abundance of allele-specific amplicons for rs4487645 in the immunoprecipitated DNA, relative to input DNA. Also shown is the relative abundance of intergenic control region. ChIP data show differential binding of IRF4 for the risk G-allele relative to the T-allele. Data shown are mean ± s.e.m. from three biological replicates and assessed by two-tailed t-test. Each qPCR reaction was performed with three technical replicates. (c) A 1 kb putative regulatory sequence flanking rs4487645 (G/T) was cloned upstream of the SV40 promoter in the pGL3-promoter vector for testing luciferase reporter gene activity. (d) The resultant reporter constructs were transiently transfected into KMS11, and the relative luciferase activity was measured for each reporter gene construct. The luminescence ratio of the experimental vector to the Renilla internal control, pRL-SV40, was normalized to the backbone pGL3-SV40 promoter vector. Data shown are mean ± s.e.m. from four biological replicates and assessed by two-tailed t-test. (e) The chromatin state of the DNAH11–CDCA7L gene locus is detailed with RNA polymerase II (RNAPII), MYC, H3K4Me3 and H3K27Ac ChIP-seq data from MM cell line MM1.S (GSE36354). ChIP-seq data in four MM patients (labelled 1–4) show MM-unique H3K4Me3-occupied regions compared with normal bone marrow plasma cells (GSE53215).
expression were associated with poorer overall survival in MM patients (Cox regression, $P = 3.55 \times 10^{-4}$, hazard ratio $= 1.52$, 95% confidence interval: 1.21–1.90; Supplementary Fig. 8).

Discussion

Collectively, our data demonstrate that the underlying molecular mechanism for the 7p15.3 MM risk locus is mediated through rs4487645, which resides within a transcriptional enhancer and disrupts an IRF4 transcription factor-binding site. Our data are compatible with the rs4487645 G-allele, conferring an increased MM risk through increased IRF4-mediated expression of CDCA7L. Furthermore, epigenetic and 3C data are consistent with rs4487645 localizing within a chromatin contact domain and forming a ‘loop domain’, which is expected to bring the region into physical contact with the promoter of CDCA7L. Mechanistically, our data also provide linkage between the G-risk allele, which is associated with higher expression of CDCA7L in MM, with effects on cell proliferation and response to apoptosis. In patients the increased tumour proliferation is reflected in a clinical phenotype characterized by adverse survival.

Importantly, our study highlights a previously unknown functional interaction between CDCA7L and IRF4 in MM. IRF4 is a key transcriptional regulator in B-cell development with critical functions in plasma cells. Moreover, IRF4 is an essential MM gene directing a broad expression programme; knockdown of IRF4 induces rapid non-apoptotic cell death. IRF4 and MYC also form a positive regulatory loop in MM, reinforcing expression of each other. We demonstrate a correlation between MYC and CDCA7L expression in MM patients, and
Figure 4 | CDCA7L knockdown induces cell apoptosis and suppresses cellular proliferation. (a) Data shown are the mean cell counts of viable Trypan-blue-negative cells ± s.e.m. for three biological replicates at 24, 48 and 72 h after addition of doxycycline (final concentration 1 μg ml⁻¹). Data were normalized to initial seeding number at 0 h when doxycycline was added to cells. (b) P values assessing the differences in normalized cell counts between CDCA7L and control knockdowns at 72 h were determined using two-tailed t-test. (c) Cell viability at 72 h after addition of doxycycline was assessed with FACS using Annexin V-APC and 4,6-diamidino-2-phenylindole. Representative fluorescence-activated cell sorting data show four subgroups of cells: the lower left quadrant (Q3; unstained) represents the viable cell population; the lower right (Q4; Annexin V-APC + DAPI −) contains early apoptotic cells; the upper right quadrant (Q2; Annexin V-APC + DAPI +) represents late apoptotic cells; the upper left (Q1; Annexin V-APC − DAPI +) represents necrotic cells. (d) The percentages of apoptotic cells of shRNA-CDCA7L-1, shRNA-CDCA7L-2 and shRNA-NSC are shown at 72 h after addition of doxycycline. Data shown are mean ± s.e.m. for three biological replicates. P values were determined with two-tailed t-test.
show that MYC binds to the CDCA7L promoter. CDCA7L has been shown to be oncogenic in several cancers, in which MYC physically interacts and induces expression of CDCA7L (refs 8,9). Moreover, CDCA7L potentiates MYC-transforming activity, and can thus contribute to a transformation-defective MYC mutant16.

In conclusion, we provide compelling evidence of the causal molecular mechanism for the 7p15.3 association for MM, implicating a more extensive pathway linking molecular mechanism for the 7p15.3 association for MM, and MYC in the development of this malignancy. The importance of enhancer-mediated CDCA7L expression in MM demonstrates the potential of translating basic mechanistic insights of tumour initiation towards development of therapeutic strategies. Indeed, downregulation of IRF4 in MM has been shown to be central in potent antitumour activities by immunomodulatory drugs18,19. Similarly, bromodomain inhibition of the transcriptional co-activators CBP/EF300 is seen as a therapeutic strategy to target the IRF4 network in MM20. Conclusively, the molecular interactions behind the 7p15.3 association potentially represent new targetable components of the MM oncogenesis pathway.

Methods

Ethics. Collection of patient samples and associated clinico-pathological information was performed in accordance with written informed consent and relevant ethical board approval at respective study centres in accordance with the tenets of the Declaration of Helsinki. Specifically, the MRC Leukaemia Data Monitoring and Ethics committee (MREC 02/89, ISRCTN6845111, MREC 17/09/09, ISRCTN49407852), University of Heidelberg Ethical Commission (229/2003, S 337/2009, AFWs-119/2010) and the University of Arkansas for Medical Sciences Institutional Review Board (IRB 202077).

ENCODE and chromatin state dynamics. To explore the epigenetic profile of association signals, we used DNAse HS, FAIRE, transcription factor ChIP-seq data, histone modifications (H3K4Me1, H3K4Me3 and H3K27Ac) and chromatin state segmentation (ChromHMM) from the ENCODE project in GM12878 (ref 11). We used HaploReg17 and RegulomeDB23 to examine whether any of the SNPs or their proxies were captured in the 1000 Genomes EUR reference panel to annotate putative transcription factor binding or enhancer elements. We assessed sequence conservation using GERB19 and PhastCons21. We accessed RNA polymerase II, MYC, H3K27Ac and H3K4Me5 ChIP-seq data performed on MM1.S from GSE36354 data set, and MM-unique H3K4Me3 ChIP-seq data in four MM patients compared with normal bone marrow plasma cells from GSE53215 data set.

Expression quantitative trait loci analysis. eQTL analyses were performed for genes within 1 MB of rs4487645 for CD138-purified plasma cells from 183 MRC Myeloma patients (GSE21349 (n = 236) and GSE21449 (n = 686) Heidelberg patients (E-MTAB-2489) and 608 US patients (GSE2658, GSE31161) using Affymetrix Human Genome U133 2.0 Plus Array18 (Supplementary Table 3). Briefly, German, UK and US data were pre-processed separately, followed by analysis using a Bayesian approach to probabilistic estimation of expression residuals to infer broad variance components, accounting for hidden determinants influencing global expression (for example, copy number, translocation status and batch effects). The association between genotype of the sentinel SNP and gene expression of genes within 500 kb either side of rs4487645 was evaluated based on the significance of linear regression coefficients. We pooled data from each of the three studies under a fixed-effects model, controlling for false discovery rate (FDR) and calling significant associations with FDR ≤0.05. Conditional analysis was performed as described previously10.

GPI. To investigate the relationship between CDCA7L expression and proliferation of MM plasma cells, we calculated GPI as recently described23 using GC-RMA (GeneChip Robust Multiarray Averaging)-normalized German (n = 658) and US (n = 608) expression data.

Relationship between gene expression. We assessed the relationship between IRF4 and CDCA7L gene expression (log2-transformed) in five independent MM data sets GSE49782 (n = 263), GSE2658 (n = 559), GSE19784 (n = 320), E-MTAB-373 (n = 346) and GSE13149 (n = 183). The CDCA7L expression in patients with upper and lower quartiles of IRF4 expression was compared using Mann–Whitney–Wilcoxon test for each data set. To assess the relationship between MYC and CDCA7L, CDCA7L expression in patients from the top and bottom quartiles of MYC expression in the five independent data sets was analysed by Mann–Whitney–Wilcoxon test. P values from the five patient data sets were combined by Fisher’s Method. Statistical tests were conducted using the R software version 3.1.3.

Cell lines. Human MM cell line KMS11 was obtained from the American Type Culture Collection (ATCC) and grown in Advanced RPMI 1640 Medium (RPMI) supplemented with 10% heat-inactivated FBS (Gibco, USA). Human lymphoblastoid cell lines GM11992 and GM12878 were obtained from Coriell Institute and grown in RPMI 1640 culture medium supplemented with 15% FBS, HEK293-T7 were obtained from ATCC and grown in DMEM supplemented with 10% heat-inactivated FBS. Cell culture media were obtained from Life Technologies (Carlsbad, CA, USA) and FBS from PAA, (A, La) and FBS from Invitrogen (Carlsbad, CA, USA). Cells were cultured at 37 °C, 100% relative humidity and 5% CO2. Cell lines were used for microplasmola-free (PC) Microplasoma Test Kit (IC, PromoCell, Heidelberg, Germany). Genotype of rs4847645 in KMS11, GM11992 and GM12878 was confirmed by Sanger sequencing using sequencing primers detailed in Supplementary Table 4.

ChIP-qPCR assay. Chromatin from GM11992 was immunoprecipitated with the ChIP-IT Express Enzymatic Kit (Active Motif, Carlsbad, CA, USA), using 3 μg anti-IRF4 (sc-6059X, Santa Cruz Biotechnology, TX, USA) and 3 μg normal goat IgG antibodies (sc-2038; Santa Cruz Biotechnology) per immunoprecipitation (IP) reaction. Immunoprecipitated chromatin was subjected to real-time qPCR using SYBR Green PCR Master Mix (Life Technologies). qPCR was conducted as follows: 50 °C 2 min, 95 °C 10 min, 40 cycles of 95 °C 15 s, 60 °C 15 s and 95 °C 15 s. Each IP was analysed with primers for rs4847645 (G/T) and intergenic control detailed in Supplementary Table 4. Primer efficiencies were calculated with a standard curve from dilutions of GM11992 genome DNA. Data from IRF4 IP and control IP were presented as enrichment relative to input DNA. Each qPCR reaction was performed in three technical replicates, and the statistical significance was calculated over three biological replicates using two-tailed t-test.

Plasmid construction and luciferase assays. An ~1 kb regulatory region with the non-risk allele of rs4487645 was amplified from human genomic DNA using primers detailed in Supplementary Table 4. Gel-purified PCR products (Qiagen, Hilden, Germany) were A-tailed using 2 U Thermoprobe DNA polymerase (ThermoFisher Scientific, Waltham, USA) and 200 μM dATP for 30 min at 70 °C. The product was cloned into the PCR8/GW/TOPO vector and transformed into Escherichia coli. Single bacterial colonies containing the vector were cultured and purified (Qiagen Mini-Prep Kit). The risk allele of rs4487645 was generated with site-directed mutagenesis using Quick Change XL (Agilent, Santa Clara, USA). Regulator motifs with both non-risk and risk alleles were cloned into pGL3 luc2 promoter vector using Gateway LR Clonase II (ThermoFisher Scientific). pGL3 luc2 constructs were amplified in E. coli followed by purification of plasmid DNA using the QIAfilter Plasmid Midi Kit (Qiagen). Inserts and site-directed mutagenesis changes were Sanger-sequenced using primers detailed in Supplementary Table 4. The reporter constructs were introduced into KMS11 using nucleofection. In all, 5 × 105 cells were resuspended in 100 μl Cell Line Nucleofector Solution V with 3 μg reporter constructs and 60 ng of internal control plasmid (pRL-SV40). Nucleofections were performed using Amaxa Nucleofector I (X-01 programme; Lonza, Basel, Switzerland). Transiently transected cells were cultured for 24 h, following which the luciferase assay was performed using the Dual-Luciferase Reporter Assay System (Promega, Madison, USA) as per the manufacturer's recommendations. Firstly, Renilla luciferase luminescence were measured sequentially on a Fluoroskan Ascent FL plate reader (ThermoFisher Scientific). The ratio of luminescence from the experimental reporter to the luminescence from the control reporter was calculated for each sample, defined as the relative luciferase activity. Statistical significance was calculated using two-tailed t-test over three biological replicates.

In situ chromosome conformation capture. 3C library preparation was performed as described in ref. 14 but with the following modifications. In all, 25 × 10⁶ crosslinked GM11992 were resuspended in 1 ml of the Hi-C buffer for 45 min, followed by dounce grinding with a 2 ml dounce homogenizer. Altogether, 25 × 10⁶ crosslinked KMS11 cells were resuspended in 13 ml of the 4C lysis buffer and incubated for 30 min on ice. DNA was digested overnight with restriction enzyme with 2,000 U Csp6 restriction enzyme (ThermoFisher Scientific). Restriction fragment overhangs were not filled or marked with biotin as described in ref. 14. Digestion reaction was aliquoted into 1.2 ml ligation reactions by combining 250 μl digestion mix with 350 μl ligation master mix in each. Each ligation reaction contained 6,000 U T4 DNA ligase (New England Biolabs, Ipswich, USA) for GM11992 or 10,000 U T4 DNA ligase for KMS11. Ligation was performed at 16 °C overnight at 900 r.p.m. After reverse crosslinking, DNA was extracted with phenolchloroformisoamyl alcohol (25:24:1) and precipitated in ethanol. RNAse (Roche, Basel, Switzerland) treatment was performed successively. Library quality was assessed with the Qubit dsDNA BR Assay Kit (Life Technologies). Control library was made from RP11-163E10 BAC clone (Source Bioscience, Cambridge, UK). E. coli containing the BAC clone was re-streaked, picked and cultured. Following Maxiprep (Qiagen) purification, the BAC clone was further purified with phenolchloroformisoamyl alcohol (25:24:1) and ethanol precipitation. BAC DNA was digested cleanly with 250 μl restriction reaction, followed by ethanol precipitation. Digested DNA (20 μg) was randomly ligated with 7,600 U T4 DNA ligase (16 °C at 900 r.p.m. overnight), with
additional ligase and ATP next day (16°C at 900 r.p.m.) as per the protocol with modifications.37 Finally, the ligated BAC library was purified with phenol:chloroform:isoamyl alcohol. Chromatin-looping was interrupted between fragments mapping to rs4487645 and the CDA7L promoter generated from Cspel digestion using SYBR Green PCR Master Mix (Life Technologies). Forward primers were designed over the ligation junction of a ligation product, with a constant reverse primer from the fragment mapping to rs4487645. Primer sequences are given in Supplementary Table 4. qPCR was conducted as follows: 95°C 10 min, 40 cycles of 95°C 15 s, 68°C 30 s, and 72°C 1 min, and at 72°C 15 min. Primer normalization was done using the randomly ligated BAC control template. Primers were designed for a region between two Cspel cut sites (interstice control) to control for loading of each 3C experimental library. Each qPCR reaction was performed with three technical replicates, and the data presented were the average of three biological replicates for each cell line.

siRNA knockout. siRNA targeting IRF4 and control siRNA (NC siRNA) were obtained from Eurofins Genomics (Wolverhampton, UK) and detailed in Supplementary Table 4. KMS11 cells were transfected with either 200 nM siRNA or no siRNA (Mock transfections) using nucleofection as described in luciferase reporter assay. Briefly, western blotting was performed with anti-IRF4 (1:500 in 5% milk; sc-6059; ThermoFisher Scientific) according to the manufacturer's recommendations. Antibodies against CDA7L and β-actin for western blots were described above. Transcript levels of IRF4 and CDA7L expression were quantified using SYBR Green PCR Master Mix (Life Technologies) and normalized to GAPDH. A standard curve of relative quantitation of KMS11 CDCA7L was used to normalize for primer efficiencies. qPCR was conducted with 2 technical replicates, 40 cycles of 95°C 10 min, 40 cycles of 95°C 15 s, 60°C 1 min, and at 72°C 15 min. None of the qPCR reactions was performed with three technical replicates. Statistical significance was calculated using two-tailed t-test over three biological replicates. Primer sequences are detailed in Supplementary Table 4.

Lentiviral transduction of shRNAs. Lentiviruses were produced by transient transfection of HEK293-T17 cells as described previously.28,29 Briefly, HEK293-T17 were co-transfected with the pTRIPZ-based siRNA vectors, pCMV8.R8.47 and pMD2.G by calcium phosphate precipitation. pTRIPZ-based doxycycline-inducible lentivector, VTHS.26535 (sRNA-CDA7L-1 in Fig. 4) and V2THS.26535 (sRNA-CDA7L-2) for CDA7L knockdown, and non-silencing negative control (sRNA-NSC) were obtained from GE Healthcare (Little Chalfont, UK). The lentivirus particles were harvested, concentrated with Lenti-X Concentrator (Clonetech, Mountain View, USA) and used to infect KMS11. Transduced KMS11 were selected with 1 µg ml⁻¹ puromycin. The siRNA was induced from a tetracycline-inducible promoter system with 1 µg ml⁻¹ doxycycline (Sigma, St Louis, USA). Expression of CDA7L was assessed using qPCR and western blotting every 24 h post induction with doxycycline, with the optimal knockdown efficiency observed at 72 h. Expression was assessed using qPCR and western blotting using the standard protocols. Antibodies against CDCA7L were obtained from Eurofins Genomics (Wolverhampton, UK) and detailed in Supplementary Table 4. KMS11 cells were transfected with either 200 nM siRNA or no siRNA (Mock transfections) using nucleofection as described in luciferase reporter assay. Expression data from this study are deposited in GEO with accession codes GSE13149, GSE6588, GSE31161, GSE9792, GSE19784, and in EMBL-EBI with accession code E-MTAB-2299, E-MTAB-372. CIMP-seq data that support the findings of this study are deposited in GeGA with accession code: EGAS00001001147. The remaining data are available within the Article and Supplementary Information files or available from the authors upon request.

References

1. Edwards, S. L., Beesley, J., French, J. D. & Dunning, A. M. Beyond GWASs: illuminating the dark road from association to function. Am. J. Hum. Genet. 93, 779–797 (2013).
2. Broderick, P. et al. Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk. Nat. Genet. 44, 58–61 (2012).
3. Chubb, D. et al. Common variation at 17q21.2 is strongly associated with expression levels of CDCA7L, a candidate myeloma susceptibility gene. Blood 128, 1293–1298 (2016).
4. Swaminathan, B. et al. Variants in ELL2 influencing immunoglobulin levels associate with multiple myeloma. Nat. Commun. 7, 7213 (2015).
5. Mitchell, J. S. et al. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma. Nat. Commun. 7, 12050 (2016).
6. Huang, A. et al. Identification of a novel c-Myc protein interactor, IPO2, with transforming activity in medulloblastoma cells. Cancer Res. 65, 5067–5071 (2005).
7. Zhou, L. et al. Silencing of thrombomodulin-1 is critical for myc-induced metastatic phenotypes in medulloblastoma. Cancer Res. 70, 8199–8210 (2010).
8. Maertens, G. N., Cherepanov, P. & Engelmann, A. Transcriptional co-activator p75 binds and tethers the Myc-interacting protein IPO2 to chromatin. J. Cell Sci. 119, 2563–2571 (2006).
9. Ou, X. M., Chen, K. & Shih, J. C. Monoamine oxidase A and repressor R1 are involved in apoptotic signaling pathway. Proc. Natl Acad. Sc. USA. 109, 10923–10928 (2012).
10. Weinhold, N. et al. The 7p15.3 (rs4487645) association for multiple myeloma shows strong allele-specific regulation of the MYC-interacting gene CDA7L in malignant plasma cells. Haematologica 100, e110–e113 (2015).
11. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
12. Walker, B. A. et al. APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nat. Commun. 6, 6997 (2015).
13. Kulakowski, I. V. et al. HOCOMOCO: expansion and enhancement of the collection of transcription factor binding sites models. Nucleic Acids Res. 44, D116–D125 (2016).
14. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).
15. Misfeld, B. et al. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet. 47, 598–606 (2015).
16. Liao, Y. et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151, 56–62 (2016).
17. Shaffer, A. L. et al. IRF4 addiction in multiple myeloma. Nature 454, 226–231 (2008).
18. Lopez-Girona, A. et al. Lenalidomide downregulates the cell survival factor, interferon regulatory factor-4, providing a potential mechanistic link for proteasome-targeting. Br. J. Haematol. 154, 325–336 (2011).
19. Fionda, C. et al. The IMiDs targets IKZF1/3 and IRF4 as novel negative regulators of NK cell-activating ligands expression in multiple myeloma. Oncotarget 6, 23609–23630 (2015).
20. Conery, A. R. et al. Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma. eLife 5, e19432 (2016).
21. Ward, L. D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40, D930–D934 (2012).
22. Boyle, A. P. et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22, 1790–1797 (2012).
23. Cooper, G. M. et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 15, 901–913 (2005).
24. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005).
25. Meissner, T. et al. Gene expression profiling in multiple myeloma--reporting of entities, risk, and targets in clinical routine. Clin. Cancer Res. 17, 7240–7247 (2011).
26. van de Werken, H. J. et al. 4C technology: protocols and data analysis. Methods Enzymol. 513, 89–112 (2012).
27. Schoenfelder, S. et al. The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements. Genome Res. 25, 582–597 (2015).
28. Zafferey, R., Nagy, D., Mandel, R. J., Naldini, L. & Trono, D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15, 871–875 (1997).
29. Wiznerowicz, M. & Trono, D. Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J. Virol. 77, 8957–8961 (2003).

Acknowledgements
Myeloma UK provided principal funding. Additional funding was provided by Bloodwise, Cancer Research UK (C1298/A8362 supported by the Bobby Moore Fund), The Rosetrees Trust, Dietmar Hopp Foundation and the German Ministry of Education and Science (BMBF: CLIOMMICS-01ZX1309).

Author contributions
N.L., D.C.J. and R.S.H. drafted the manuscript; N.L., D.C.J. and R.S.H. designed the study; R.S.H. and G.J.M. obtained funding; N.L., J.B.S., G.O. and F.M. performed laboratory work; H.G., G.J.M., K.H. and M.K. performed sample ascertainment and provided data; N.L., D.C.J., J.S.M., T.M. and N.W. performed bioinformatics and statistical analyses. All authors contributed to the final manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Li, N. et al. Multiple myeloma risk variant at 7p15.3 creates an IRF4-binding site and interferes with CDCA7L expression. Nat. Commun. 7, 13656 doi: 10.1038/ncomms13656 (2016).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.