CHARACTERIZATIONS OF (m,n)-JORDAN DERIVATIONS ON SOME ALGEBRAS

GUANGYU AN, JUN HE

Abstract. Let \mathcal{R} be a ring, \mathcal{M} be a \mathcal{R}-bimodule and m,n be two fixed nonnegative integers with $m+n\neq 0$. An additive mapping δ from \mathcal{R} into \mathcal{M} is called an (m,n)-Jordan derivation if $(m+n)\delta(A^2) = 2mA\delta(A) + 2n\delta(A)A$ for every A in \mathcal{R}. In this paper, we prove that every (m,n)-Jordan derivation from a C^*-algebra into its Banach bimodule is zero. An additive mapping δ from \mathcal{R} into \mathcal{M} is called a (m,n)-Jordan derivable mapping at W in \mathcal{R} if $(m+n)\delta(AB+BA) = 2mA\delta(A)B + 2m\delta(B)A + 2nA\delta(B) + 2nB\delta(A)$ for each A and B in \mathcal{R} with $AB = BA = W$. We prove that if \mathcal{M} is a unital \mathcal{A}-bimodule with a left (right) separating set generated algebraically by all idempotents in \mathcal{A}, then every (m,n)-Jordan derivable mapping at zero from \mathcal{A} into \mathcal{M} is identical with zero. We also show that if \mathcal{A} and \mathcal{B} are two unital algebras, \mathcal{M} is a faithful unital $(\mathcal{A},\mathcal{B})$-bimodule and $U = \left[\begin{array}{cc} \mathcal{A} & \mathcal{M} \\ \mathcal{N} & \mathcal{B} \end{array} \right]$ is a generalized matrix algebra, then every (m,n)-Jordan derivable mapping at zero from U into itself is equal to zero.

1. Introduction

Let \mathcal{R} be an associative ring. For an integer $n \geq 2$, \mathcal{R} is said to be n-torsion-free if $nA = 0$ implies that $A = 0$ for every A in \mathcal{R}. Recall that a ring \mathcal{R} is prime if $ARB = (0)$ implies that either $A = 0$ or $B = 0$ for each A, B in \mathcal{R}; and is semiprime if $ARA = (0)$ implies that $A = 0$ for every A in \mathcal{R}.

Suppose that \mathcal{M} is a \mathcal{R}-bimodule. An additive mapping δ from \mathcal{R} into \mathcal{M} is called a derivation if $\delta(AB) = \delta(A)B + A\delta(B)$ for each A, B in \mathcal{R}; and δ is called a Jordan derivation if $\delta(A^2) = \delta(A)A + A\delta(A)$ for every A in \mathcal{R}. Obviously, every derivation is a Jordan derivation, the converse is, in general, not true. A classical result of Herstein [8] proves that every Jordan derivation on a 2-torsion-free prime ring is a derivation; Cusack [6] generalizes [8, Theorem 3.1] to 2-torsion-free semiprime rings.

In [4], Brešar and Vukman introduce the concepts of left derivations and Jordan left derivations. Suppose that \mathcal{M} is a left \mathcal{R}-module. An additive mapping δ from \mathcal{R} into \mathcal{M} is called a left derivation if $\delta(AB) = A\delta(B) + B\delta(A)$ for each A, B in \mathcal{R}; and δ is called a Jordan left derivation if $\delta(A^2) = 2A\delta(A)$ for every A in \mathcal{R}. Brešar and Vukman [4] prove that if \mathcal{R} is a prime ring and \mathcal{M} is a 6-torsion free
left \mathcal{R}-module, then the existence of nonzero Jordan left derivations from \mathcal{R} into \mathcal{M} implies that \mathcal{R} is a commutative ring. Deng [7] shows that [4, Theorem 2.1] is still true when \mathcal{M} is only 2-torsion free.

In [12], Vukman introduces the concept of (m, n)-Jordan derivations. Suppose that \mathcal{M} is a \mathcal{R}-bimodule and m, n are two fixed nonnegative integers with $m + n \neq 0$. An additive mapping δ from \mathcal{R} into \mathcal{M} is called an (m, n)-Jordan derivation if

$$(m+n)\delta(A^2) = 2mA\delta(A) + 2n\delta(A)A$$

for every A in \mathcal{R}. It is easy to show that the concept of (m, n)-Jordan derivations covers the concept of Jordan derivations as well as the concept of Jordan left derivations. By Vukman [11, Theorem 4] and Kosi-Ulbl [9, Theorem 8], we know that if m, n are two nonnegative integers with $m \neq n$, then every (m, n)-Jordan derivation from a complex semisimple Banach algebra into itself is identically equal to zero.

In Section 2, we prove that if m, n are two positive integers with $m \neq n$, then every (m, n)-Jordan derivation from a C^*-algebra into its Banach bimodule is identically equal to zero.

Suppose that \mathcal{M} is a \mathcal{R}-bimodule and m, n are two fixed nonnegative integers with $m + n \neq 0$. An additive mapping δ from \mathcal{R} into \mathcal{M} is called an (m, n)-Jordan derivable mapping at an element W in \mathcal{R} if

$$(m+n)\delta(AB + BA) = 2m\delta(A)B + 2m\delta(B)A + 2nA\delta(B) + 2nB\delta(A)$$

for each A, B in \mathcal{A} with $AB = BA = W$.

Let \mathcal{J} be an ideal in \mathcal{R}. \mathcal{J} is said to be a left separating set of \mathcal{M} if for every N in \mathcal{M}, $N\mathcal{J} = \{0\}$ implies $N = 0$; and \mathcal{J} is said to be a right separating set of \mathcal{M} if for every M in \mathcal{M}, $\mathcal{JM} = \{0\}$ implies $M = 0$. When \mathcal{J} is a left separating set and a right separating set of \mathcal{M}, we call \mathcal{J} a separating set of \mathcal{M}. Denote by $\mathfrak{J}(\mathcal{R})$ the subring of \mathcal{R} generated algebraically by all idempotents in \mathcal{R}.

In Section 3, we assume that \mathcal{A} is a unital algebra, \mathcal{M} is a unital \mathcal{A}-bimodule with a left (right) separating $\mathcal{J} \subseteq \mathfrak{J}(\mathcal{A})$, and δ is an (m, n)-Jordan derivable mapping at zero from \mathcal{A} into \mathcal{M} such that $\delta(I) = 0$, we show that if m, n are two positive integers with $m \neq n$, then δ is identically equal to zero. As applications, we study the (m, n)-Jordan derivable mappings at zero on some non self-adjoint operator algebras.

A Morita context is a set $(\mathcal{A}, \mathcal{B}, \mathcal{M}, \mathcal{N})$ and two mappings ϕ and φ, where \mathcal{A} and \mathcal{B} are two algebras, \mathcal{M} is an $(\mathcal{A}, \mathcal{B})$-bimodule and \mathcal{N} is a $(\mathcal{B}, \mathcal{A})$-bimodule, $\phi : \mathcal{M} \otimes_\mathcal{B} \mathcal{N} \to \mathcal{A}$ and $\varphi : \mathcal{N} \otimes_\mathcal{A} \mathcal{M} \to \mathcal{B}$ are two homomorphisms satisfying the following commutative diagrams:

\[
\begin{array}{ccc}
\mathcal{M} \otimes_\mathcal{B} \mathcal{N} \otimes_\mathcal{A} \mathcal{M} & \xrightarrow{\phi \otimes I_M} & \mathcal{A} \otimes_\mathcal{A} \mathcal{M} \\
I_M \otimes \varphi & \Downarrow & \cong \\
\mathcal{M} \otimes_\mathcal{B} \mathcal{B} & \cong & \mathcal{M}
\end{array}
\]
and

\[
\begin{array}{c}
\mathcal{N} \otimes_A \mathcal{M} \otimes_B \mathcal{N} \\
\xrightarrow{\varphi \otimes I_B} \\
\xrightarrow{I_N \otimes \phi} \\
\mathcal{N} \otimes_A \mathcal{A} \\
\xrightarrow{\cong} \\
\mathcal{N}.
\end{array}
\]

These conditions insure that the set

\[
\left[\begin{array}{c}
A \\
N \\
B
\end{array} \right] = \left\{ \left[\begin{array}{c}
A \\
N \\
B
\end{array} \right] : A \in \mathcal{A}, B \in \mathcal{B}, M \in \mathcal{M}, N \in \mathcal{N} \right\}
\]

forms an algebra under the usual matrix addition and the matrix multiplication. We call it a \textit{generalized matrix algebra}.

Let \(\mathcal{A}, \mathcal{B}\) be two algebras and \(\mathcal{M}\) be an \((\mathcal{A}, \mathcal{B})\)-bimodule, the set

\[
\left[\begin{array}{c}
A \\
0 \\
B
\end{array} \right] = \left\{ \left[\begin{array}{c}
A \\
0 \\
B
\end{array} \right] : A \in \mathcal{A}, B \in \mathcal{B}, M \in \mathcal{M} \right\}
\]

under the usual matrix addition and matrix multiplication is called a \textit{triangular algebra}.

\(\mathcal{M}\) is called a \textit{left faithful unital} \(\mathcal{A}\)-module if for every \(A\) in \(\mathcal{A}\), \(AM = \{0\}\) implies \(A = 0\); \(\mathcal{M}\) is called a \textit{right faithful unital} \(\mathcal{B}\)-module if for every \(B\) in \(\mathcal{B}\), \(MB = \{0\}\) implies \(B = 0\). When \(\mathcal{M}\) is a left faithful unital \(\mathcal{A}\)-module and a right faithful unital \(\mathcal{B}\)-module, we call \(\mathcal{M}\) a faithful unital \((\mathcal{A}, \mathcal{B})\)-bimodule.

In Section 4, we suppose that \(\mathcal{A}, \mathcal{B}\) are two unital algebras, \(\mathcal{M}\) is a faithful unital \((\mathcal{A}, \mathcal{B})\)-bimodule, and we prove that if \(m, n\) are two positive integers with \(m \neq n\), then every \((m, n)\)-Jordan derivable mapping at zero from a generalized matrix algebra \(\mathcal{U} = \left[\begin{array}{c}
\mathcal{A} \\
\mathcal{N} \\
\mathcal{B}
\end{array} \right] \) into itself is identically equal to zero.

Throughout this paper, \(\mathcal{A}\) denotes an algebra over the complex field \(\mathbb{C}\), and \(\mathcal{M}\) denotes an \(\mathcal{A}\)-bimodule.

\section*{2. \((m, n)\)-Jordan Derivations on \(C^*\)-Algebras}

In [1], we prove that if \(n = 0\) and \(m \neq n\), then every \((m, n)\)-Jordan derivation from a \(C^*\)-algebra into its Banach bimodule is zero. In this section, we assume that \(m, n\) are two positive integers with \(m \neq n\) and study the \((m, n)\)-Jordan derivations on \(C^*\)-algebras.

The following lemma will be used repeatedly in this section.

\begin{lemma}
[12, Proposition 1] Let \(\mathcal{A}\) be an algebra, \(\mathcal{M}\) be an \(\mathcal{A}\)-bimodule and \(m, n\) be two nonnegative integers with \(m \neq n\). If \(\delta\) is an \((m, n)\)-Jordan derivation from \(\mathcal{A}\) into \(\mathcal{M}\), then for each \(A, B\) in \(\mathcal{A}\), we have that

\[
(m+n)\delta(AB+BA) = 2m\delta(A)B + 2m\delta(B)A + 2nA\delta(B) + 2nB\delta(A).
\]
\end{lemma}

\begin{proposition}
Let \(\mathcal{A}\) be a commutative \(C^*\)-algebra, \(\mathcal{M}\) be a Banach \(\mathcal{A}\)-bimodule and \(m, n\) be two positive integers with \(m \neq n\). If \(\delta\) is an \((m, n)\)-Jordan derivation from \(\mathcal{A}\) into \(\mathcal{M}\), then \(\delta\) is automatically continuous.
\end{proposition}
Proof. Let \(\mathcal{J} = \{ J \in \mathcal{A} : D_J(T) = \delta(JT) \text{ is continuous for every } T \text{ in } \mathcal{A} \} \). Since \(\mathcal{A} \) is a commutative algebra and by Lemma 2.1, we have that
\[
nJ\delta(T) + m\delta(T)J = (m + n)\delta(JT) - m\delta(J)T - nT\delta(J)
\]
for every \(T \) in \(\mathcal{A} \) and every \(J \) in \(\mathcal{J} \). Then
\[
\mathcal{J} = \{ J \in \mathcal{A} : S_J(T) = nJ\delta(T) + m\delta(T)J \text{ is continuous every } T \text{ in } \mathcal{A} \}.
\]

In the following we divide the proof into four steps.

First, we show that \(\mathcal{J} \) is a closed two-sided ideal in \(\mathcal{A} \). Clearly \(\mathcal{J} \) is a right ideal in \(\mathcal{A} \). Moreover, for each \(A, T \) in \(\mathcal{A} \) and every \(J \) in \(\mathcal{J} \), we have that
\[
(m + n)\delta(AJT) = m\delta(A)JT + m\delta(JT)A + nA\delta(JT) + nJT\delta(A).
\]
Thus \(D_{AJ}(T) \) is continuous for every \(T \) in \(\mathcal{A} \) and \(\mathcal{J} \) is also a left ideal in \(\mathcal{A} \).

Suppose that \(\{ J_k \}_{k \geq 1} \subseteq \mathcal{J} \) and \(J \in \mathcal{A} \) such that \(\lim_{k \to \infty} J_k = J \). Then every \(S_{J_k} \) is a continuous linear operator; hence we obtain that
\[
S_J(T) = nJ\delta(T) + m\delta(T)J = \lim_{k \to \infty} nJ_k\delta(T) + m\delta(T)J_k = \lim_{k \to \infty} S_{J_k}(T)
\]
for every \(T \) in \(\mathcal{A} \). By the principle of uniform boundedness, we have that \(S_J \) is norm continuous and \(J \in \mathcal{A} \). Thus, \(\mathcal{J} \) is a closed two-sided ideal in \(\mathcal{A} \).

Next, we show that the restriction \(\delta_{|\mathcal{J}} \) is norm continuous. Suppose the contrary. We can choose \(\{ J_k \}_{k \geq 1} \subseteq \mathcal{J} \) such that
\[
\sum_{k=1}^{\infty} \| J_k \|^2 \leq 1 \text{ and } \| \delta(J_k) \| \to \infty, \text{ when } k \to \infty.
\]
Let \(B = (\sum_{k=1}^{\infty} J_kJ^*_k)^{1/4} \). Then \(B \) is a positive element in \(\mathcal{J} \) with \(\| B \| \leq 1 \). By [10, Lemma 1] we know that \(J_k = BC_k \) for some \(\{ C_k \} \subseteq \mathcal{J} \) with \(\| C_k \| \leq 1 \), and
\[
\| D_B(C_k) \| = \| \delta(BC_k) \| = \| \delta(J_k) \| \to \infty, \text{ when } k \to \infty.
\]
This leads to a contradiction. Hence \(\delta_{|\mathcal{J}} \) is norm continuous.

In the following, we show that the \(C^* \)-algebra \(\mathcal{A}/\mathcal{J} \) is finite-dimensional. Otherwise, by [13] we know that \(\mathcal{A}/\mathcal{J} \) has an infinite-dimensional abelian \(C^* \)-subalgebra \(\hat{\mathcal{A}} \). Since the carrier space \(\mathcal{X} \) of \(\hat{\mathcal{A}} \) is infinite, it follows easily from the isomorphism between \(\hat{\mathcal{A}} \) and \(C_0(\mathcal{X}) \) that there is a positive element \(H \) in \(\hat{\mathcal{A}} \) whose spectrum is infinite. Hence we can choose some nonnegative continuous mappings \(f_1, f_2, \ldots \), defined on the positive real axis such that
\[
f_jf_k = 0 \text{ if } j \neq k \text{ and } f_j(H) \neq 0 \text{ (} j = 1, 2, \ldots \).
\]
Let \(\varphi \) be a natural mapping from \(\mathcal{A} \) into \(\mathcal{A}/\mathcal{J} \). Then there exists a positive element \(K \) in \(\mathcal{A} \) such that \(\varphi(K) = H \). Denote \(A_j = f_j(K) \) for every \(j \). Then we have that \(A_j \in \mathcal{A} \) and
\[
\varphi(A^2_j) = \varphi(f_j(K))^2 = [f_j(\varphi(K))]^2 = f_j(H)^2 \neq 0.
\]
It follows that \(A^2_j \notin \mathcal{J} \) and \(A_jA_k = 0 \) if \(j \neq k \). If we replace \(A_j \) by an appropriate scalar multiple, we may suppose that \(\| A_j \| \leq 1 \). By \(A^2_j \notin \mathcal{J} \), we have that \(D_{A^2_j} \) is unbounded. Thus, we can choose \(T_j \in \mathcal{A} \) such that
\[
\| T_j \| \leq 2^{-j} \text{ and } (m + n)\| \delta(A^2_jT_j) \| \geq (m + n)K\| \delta(A_j) \| + j,
\]
where $K = \max\{M, N\}$, M is the bound of the linear mapping
$$(T, M) \rightarrow MT : \mathcal{A} \times \mathcal{M} \rightarrow \mathcal{A}$$
and N is the bound of the linear mapping
$$(T, M) \rightarrow TM : \mathcal{A} \times \mathcal{M} \rightarrow \mathcal{A}.$$ Let $C = \sum_{j \geq 1} A_jT_j$. Then we have that $\|C\| \leq 1$ and $A_jC = A_j^2T_j$, and so
$$\|nA_j\delta(C) + m\delta(C)A_j\| = \|(m + n)\delta(A_jC) - m\delta(A_j)C - nC\delta(A_j)\|$$
$$\geq \|(m + n)\delta(A_j^2T_j)\| - mM\|\delta(A_j)\|\|C\| - nN\|\delta(A_j)\|\|C\|$$
$$\geq (m + n)K\|\delta(A_j)\| + j - (m + n)K\|\delta(A_j)\| = j.$$ However, this is impossible because, in fact, $\|A_j\| \leq 1$ and the linear mapping
$$T \rightarrow nT\delta(C) + m\delta(C)T : \mathcal{A} \rightarrow \mathcal{M}$$
is bounded. Thus we prove that \mathcal{A}/\mathcal{J} is finite-dimensional.

Finally we show that δ is a continuous linear mapping from \mathcal{A} into \mathcal{M}. Since \mathcal{A}/\mathcal{J} is finite-dimensional, we can choose some elements A_1, A_2, \cdots, A_r in \mathcal{A} such that $\varphi(A_1), \varphi(A_2), \cdots, \varphi(A_r)$ is a basis for the Banach space \mathcal{A}/\mathcal{J}, and let $\tau_1, \tau_2, \cdots, \tau_r$ be continuous linear functional on \mathcal{A}/\mathcal{J} such that
$$\tau_j(\varphi(A_k)) = 1 \text{ when } j = k \text{ and } \tau_j(\varphi(A_k)) = 0 \text{ when } j \neq k.$$ For every A in \mathcal{A}, we have that
$$\varphi(A) = \sum_{k=1}^{r} c_k\varphi(A_k),$$
and the scalars c_1, c_2, \cdots, c_r are determined by $c_j = \tau_j(\varphi(A)) = \rho_j(A)$, where ρ_j is continuous linear functional $\tau_j \circ \varphi$ on \mathcal{A}. Since
$$\varphi(A) = \sum_{j=1}^{r} \rho_j(A)\varphi(A_j),$$
we can obtain that $\varphi(A - \sum_{j=1}^{r} \rho_j(A)A_j) = 0$. It follows that $A \rightarrow A - \sum_{j=1}^{r} \rho_j(A)A_j$ is a continuous mapping from \mathcal{A} into \mathcal{J}. Since $\delta|\mathcal{J}$ is continuous and $\rho_1, \rho_2, \cdots, \rho_r$ are continuous, it implies that
$$A \rightarrow [\delta(A) - \sum_{j=1}^{r} \rho_j(A)\delta(A_j)] + \sum_{j=1}^{r} \rho_j(A)\delta(A_j) = \delta(A)$$
is continuous from \mathcal{A} into \mathcal{M}. \hfill \Box

Given an element A of the algebra $B(\mathcal{H})$ of all bounded linear operators on a Hilbert space \mathcal{H}, we denote by $\mathcal{G}(A)$ the C^*-algebra generated by A. For any self-adjoint subalgebra \mathcal{A} of $B(\mathcal{H})$, if $\mathcal{G}(B) \subseteq \mathcal{A}$ for every self-adjoint element $B \in \mathcal{A}$, then we call \mathcal{A} locally closed. Obviously, every C^*-algebra is locally closed and we have the following result.
Lemma 2.3. [5, Corollary 1.2] Let A be a locally closed subalgebra of $B(H)$, Y be a locally convex linear space and ψ be a linear mapping from A into Y. If ψ is continuous from every commutative self-adjoint subalgebra of A into Y, then ψ is continuous.

By Proposition 2.2 and Lemma 2.3, we can obtain the following corollary.

Corollary 2.4. Let A be a C^*-algebra, M be a Banach A-bimodule and m, n be two positive integers with $m \neq n$. If δ is an (m, n)-Jordan derivation from A into M, then δ is automatically continuous.

Proof. By Lemma 2.3, it is sufficient to prove that δ is continuous from every commutative self-adjoint subalgebra B of A into M. It is clear that the norm closure \bar{B} of B is a commutative C^*-algebra. Thus, we only need to show that the restriction $\delta|_{\bar{B}}$ is continuous.

By Proposition 2.2 we know that $\delta|_{\bar{B}}$ is automatically continuous. Hence δ is continuous on B. □

By Corollary 2.4 and [2, Theorem 2.3], we have the following theorem immediately.

Theorem 2.5. Let A be a C^*-algebra, M be a Banach A-bimodule and m, n be two positive integers with $m \neq n$. If δ is an (m, n)-Jordan derivation from A into M, then δ is identically equal to zero.

3. (m, n)-Jordan derivable mappings at zero on some algebras

In [3], we give a characterization of (m, n)-Jordan derivable mappings at zero on some algebras when $n = 0$ and $m \neq 0$. In this section, we assume that m, n are two positive numbers and study the propositions of (m, n)-Jordan derivable mappings at zero.

Let A be an algebra. $\mathfrak{z}(A)$ denotes the subalgebra of A generated algebraically by all idempotents in A.

Lemma 3.1. [3, Lemma 2.2] Let A be a unital algebra and X be a vector space. If ϕ is a bilinear mapping from $A \times A$ into X such that for each A, B in A,

$$AB = BA = 0 \Rightarrow \phi(A, B) = 0,$$

then we have that

$$\phi(A, J) + \phi(J, A) = \phi(AJ, I) + \phi(I, JA)$$

for every A in A and every J in $\mathfrak{z}(A)$.

By Lemma 3.1, we have the following result.

Proposition 3.2. Let A be a unital algebra, M be a unital A-bimodule and m, n be two positive integers with $m \neq n$. If δ is a (m, n)-Jordan derivable mapping at zero from A into M such that $\delta(I) = 0$, then for every A in A and every idempotent P in A, we have the following two statements:

1. $\delta(P) = 0$;
2. $\delta(PA) = \delta(AP) = \delta(A)P = P\delta(A)$.

(m, n)-JORDAN DERIVATIONS

Proof. Let P be an idempotent in \mathcal{A}, since $P(I - P) = (I - P)P = 0$, we have that $m\delta(P)(I - P) + m\delta(I - P)P + nP\delta(I - P) + n(I - P)\delta(P) = 0$. By $\delta(I) = 0$, we can easily show that

$$(m + n)\delta(P) - 2m\delta(P)P - 2nP\delta(P) = 0. \tag{3.1}$$

Multiply P from the both sides of (3.1) and by $m + n \neq 0$, we have that $P\delta(P)P = 0$. Then multiply P from the left side of (3.1) and by $m \neq n$, we can obtain that $P\delta(P) = 0$. Similarly, we can prove that $\delta(P)P = 0$. By (3.1) and $m + n \neq 0$, it is easy to show that $\delta(P) = 0$.

For each A, B in \mathcal{A}, define a bilinear mapping ϕ from $\mathcal{A} \times \mathcal{A}$ into \mathcal{M} by

$$\phi(A, B) = m\delta(A)B + m\delta(B)A + nA\delta(B) + nB\delta(A).$$

It is clear that

$$AB = BA = 0 \Rightarrow \phi(A, B) = 0,$$

by Lemma 3.1, we have that

$$\phi(A, P) + \phi(P, A) = \phi(AP, I) + \phi(I, PA)$$

for every A in \mathcal{A} and every idempotent P in \mathcal{A}. By the definition of ϕ and $\delta(I) = 0$, it follows that

$$(m + n)\delta(AP + PA) = 2m\delta(A)P + 2nP\delta(A). \tag{3.2}$$

Replace A by AP in (3.2), we have that

$$(m + n)\delta(AP) + (m + n)\delta(PAP) = 2m\delta(AP)P + 2nP\delta(AP). \tag{3.3}$$

Multiply P from the both sides of (3.3) and by $m + n \neq 0$, it implies that

$$P\delta(AP)P = P\delta(PAP)P.$$

Similarly, we have that

$$P\delta(PA)P = P\delta(PAP)P.$$

Multiply P from the both sides of (3.2), we can obtain that

$$P\delta(A)P = P\delta(AP)P = P\delta(PA)P = P(PAP)P. \tag{3.4}$$

Next we prove that $P\delta(A) = P\delta(AP)$, $\delta(A)P = \delta(AP)P$ and $\delta(PA) = \delta(PAP)$. Replace A by $A - AP$ in (3.2), we have that

$$(m + n)\delta(PA - PAP) = 2m\delta(A - AP)P + 2nP\delta(A - AP), \tag{3.5}$$

multiply P from the left side of (3.5) and by (3.4), we can obtain that

$$(m + n)P\delta(PA - PAP) = 2nP\delta(A) - 2nP\delta(AP), \tag{3.6}$$

replace A by PA in (3.6), we have that

$$(m + n)P\delta(PA - PAP) = 2nP\delta(PA) - 2nP\delta(PAP)$$

$$= 2nP\delta(PA - PAP), \tag{3.7}$$

by $m \neq n$ and (3.7), it implies that

$$P\delta(PA) = P\delta(PAP), \tag{3.8}$$
by (3.6) and (3.8), we can obtain that
\[P\delta(A) = P\delta(AP). \] (3.9)

Multiply \(P \) from the right side of (3.5) and by (3.4), it follows that
\[(m + n)\delta(PA - PAP)P = 2m\delta(A)P - 2m\delta(AP)P, \] (3.10)

replace \(A \) by \(PA \) in (3.10), we have that
\[(m + n)\delta(PA - PAP)P = 2m\delta(PA)P - 2m\delta(PAP)P \]
\[= 2m\delta(PA - PAP)P, \] (3.11)

by \(n \neq m \) and (3.11), we can obtain that
\[\delta(PA)P = \delta(PAP)P, \] (3.12)

by (3.10) and (3.12), we have that
\[\delta(A)P = \delta(AP)P. \] (3.13)

By (3.5), (3.9) and (3.13), it follows that
\[\delta(PA) = \delta(PAP). \] (3.14)

Similarly, it is easy to obtain three identities as follows:
\[P\delta(A) = P\delta(AP), \; \delta(A)P = \delta(PA)P \; \text{and} \; \delta(AP) = \delta(PAP). \] (3.15)

Multiply \(P \) from the left side of (3.2), we have that
\[(m + n)P\delta(PA + AP) = 2mP\delta(A)P + 2nP\delta(A), \] (3.16)

by (3.9), (3.15) and (3.16), we can obtain that
\[P\delta(PA) = P\delta(AP) = P\delta(A)P. \] (3.17)

Multiply \(P \) from the right side of (3.2), we have that
\[(m + n)\delta(PA + AP)P = 2m\delta(A)P + 2nP\delta(A)P, \] (3.18)

by (3.13), (3.15) and (3.18), it follows that
\[\delta(PA)P = \delta(AP)P = P\delta(A)P. \] (3.19)

By (3.15), (3.17) and (3.19), we have that
\[P\delta(A) = \delta(A)P. \] (3.20)

Finally, by (3.2), (3.15) and (3.20), it implies that \(\delta(PA) = \delta(AP) = \delta(A)P = P\delta(A) \).

By the definition of \(\mathfrak{J}(\mathcal{A}) \) and by Proposition 3.2, it is easy to show the following result.

Corollary 3.3. Let \(\mathcal{A} \) be a unital algebra, \(\mathcal{M} \) be a unital \(\mathcal{A} \)-bimodule and \(m, n \) be two positive integers with \(m \neq n \). If \(\delta \) is an \((m,n)\)-Jordan derivable mapping at zero from \(\mathcal{A} \) into \(\mathcal{M} \) such that \(\delta(I) = 0 \), then for every \(S \) in \(\mathfrak{J}(\mathcal{A}) \) and every \(A \) in \(\mathcal{A} \), we have that
\[\delta(SA) = \delta(AS) = \delta(A)S = S\delta(A). \]
Recall the definition of separating set. For an ideal \mathcal{J} of an algebra \mathcal{A}, we say that \mathcal{J} is a right separating set of \mathcal{A}-bimodule \mathcal{M} if for every M in \mathcal{M}, $\mathcal{J}M = \{0\}$ implies $M = 0$; and we say that \mathcal{J} is a left separating set of \mathcal{M} if for every N in \mathcal{M}, $N\mathcal{J} = \{0\}$ implies $N = 0$.

Theorem 3.4. Let \mathcal{A} be a unital algebra, \mathcal{M} be a unital \mathcal{A}-bimodule with a right or a left separating set $\mathcal{J} \subseteq \mathfrak{J}(\mathcal{A})$ and m, n be two positive integers with $m \neq n$. If δ is an (m, n)-Jordan derivable mapping at zero from \mathcal{A} into \mathcal{M} such that $\delta(I) = 0$, then δ is identically equal to zero.

Proof. Let A, B be in \mathcal{A} and every S be in \mathcal{J}. By Corollary 3.3, we have that

$$\delta(SAB) = S\delta(AB)$$

and

$$\delta(SAB) = \delta((SA)B) = SA\delta(B).$$

It follows that $S(\delta(AB) - A\delta(B)) = 0$. If \mathcal{J} is a right separating set of \mathcal{M}, we can obtain that $\delta(AB) = A\delta(B)$. Take $B = I$ and by $\delta(I) = 0$, we have that $\delta(A) = A\delta(I) = 0$.

Similarly, if \mathcal{J} is a left separating set of \mathcal{M}, then we also can show that $\delta(A) = \delta(I)A = 0$. \square

By Theorem 3.4, it is easy to show the following result.

Corollary 3.5. Let \mathcal{A} be a unital algebra with $\mathcal{A} = \mathfrak{J}(\mathcal{A})$, \mathcal{M} be a unital \mathcal{A}-bimodule and m, n be two positive integers with $m \neq n$. If δ is an (m, n)-Jordan derivable mapping at zero from \mathcal{A} into \mathcal{M} such that $\delta(I) = 0$, then δ is identically equal to zero.

Let X be a complex Banach space and $B(X)$ be the set of all bounded linear operators on X. In this paper, every subspace of X is a closed linear manifold. By a **subspace lattice** on X, we mean a collection \mathcal{L} of subspaces of X with (0) and X in \mathcal{L} such that, for every family $\{M_r\}$ of elements of \mathcal{L}, both $\cap M_r$ and $\cup M_r$ belong to \mathcal{L}, where $\cup M_r$ denotes the closed linear span of $\{M_r\}$.

For every subspace lattice \mathcal{L} on X, we use $\text{Alg}\mathcal{L}$ to denote the algebra of all operators in $B(X)$ that leave members of \mathcal{L} invariant.

For a subspace lattice \mathcal{L} on X and for every E in \mathcal{L}, we denote by

$$E_- = \lor\{F \in \mathcal{L} : F \not\supset E\}, \quad (0)_- = (0);$$

and

$$E_+ = \land\{F \in \mathcal{L} : F \not\subset E\}, \quad X_+ = X.$$

A totally ordered subspace lattice \mathcal{N} is called a **nest**, \mathcal{N} is called a **discrete nest** if $L_- \neq L$ for every nontrivial subspace L in \mathcal{N}, and \mathcal{N} is called a **continuous nest** if $L_- = L$ for every subspace L in \mathcal{N}.

By [16] and Theorem 3.4, we have the following two corollaries.

Corollary 3.6. Let \mathcal{L} be a subspace lattice in a von Neumann algebra \mathcal{B} on a Hilbert space \mathcal{H} such that $\mathcal{H}_- \neq \mathcal{H}$ or $(0)_+ \neq (0)$, and m, n be two positive integers with $m \neq n$. If δ is an (m, n)-Jordan derivable mapping at zero from $\mathcal{B} \cap \text{Alg}\mathcal{L}$ into \mathcal{B} such that $\delta(I) = 0$, then δ is identically equal to zero.
Corollary 3.7. Let \mathcal{N} be a nest in a von Neumann algebra \mathcal{B} and m, n be two positive integers with $m \neq n$. If δ is an (m, n)-Jordan derivable mapping at zero from $\mathcal{B} \cap \operatorname{Alg}\mathcal{N}$ into \mathcal{B} such that $\delta(I) = 0$, then δ is identically equal to zero.

Let \mathcal{L} be a subspace lattice on X. Denote by $\mathcal{J}_{\mathcal{L}} = \{L \in \mathcal{L} : L \neq (0), L_+ \neq X\}$ and $\mathcal{P}_{\mathcal{L}} = \{L \in \mathcal{L} : L_- \nsubseteq L\}$. \mathcal{L} is called a \mathcal{J}-subspace lattice on X if it satisfies $E \vee E_- = X$ and $E \cap E_- = (0)$ for every E in $\mathcal{J}_{\mathcal{L}}$; $\bigvee \{E : E \in \mathcal{J}_{\mathcal{L}}\} = X$ and $\bigcap \{E_- : E \in \mathcal{J}_{\mathcal{L}}\} = (0)$. \mathcal{L} is called a \mathcal{P}-subspace lattice on X if it satisfies $\bigvee \{E : E \in \mathcal{P}_{\mathcal{L}}\} = X$ or $\bigcap \{E_- : E \in \mathcal{P}_{\mathcal{L}}\} = (0)$.

The class of \mathcal{P}-subspace lattice algebras is very large, it includes the following:
(1) \mathcal{J}-subspace lattice algebras;
(2) discrete nest algebras;
(3) reflexive algebras $\operatorname{Alg}\mathcal{L}$ such that $(0)_+ \neq (0)$ or $X_- \neq X$.

In Y. Chen and J. Li [14], if \mathcal{L} satisfies $\bigvee \{L : L \in \mathcal{P}_{\mathcal{L}}\} = X$ or $\bigcap \{L_- : L \in \mathcal{P}_{\mathcal{L}}\} = (0)$, then the ideal $\mathcal{T} = \text{span}\{x \otimes f : x \in E, f \in E_+, E \in \mathcal{P}_{\mathcal{L}}\}$ in $\operatorname{Alg}\mathcal{L}$ is generated by the idempotents in $\operatorname{Alg}\mathcal{L}$ and \mathcal{T} is right separating set of $B(X)$. It follows the following result.

Corollary 3.8. Let \mathcal{L} be a \mathcal{P}-subspace lattice on a Banach space X and m, n be two positive integers with $m \neq n$. If δ is an (m, n)-Jordan derivable mapping at zero from $\operatorname{Alg}\mathcal{L}$ into $B(X)$ such that $\delta(I) = 0$, then δ is identically equal to zero.

Let \mathcal{L} be a subspace lattice on X. \mathcal{L} is said to be completely distributive if its subspaces satisfy the identity
$$\bigwedge_{a \in I} \bigvee_{b \in J} L_{a,b} = \bigvee_{f \in J'} \bigwedge_{a \in I} L_{a,f(a)},$$
where J' denotes the set of all $f : I \to J$.

Suppose that \mathcal{L} is a completely distributive subspace lattice on X and $\mathcal{A} = \operatorname{Alg}\mathcal{L}$. By D. Hadwin [15], we know that $\mathcal{T} = \text{span}\{T : T \in \mathcal{A}, \text{rank } T = 1\}$ is an ideal of \mathcal{A} and by C. Laurie [17], we have that \mathcal{T} is a separating set of \mathcal{M}.

Corollary 3.9. Let \mathcal{L} be a completely distributive subspace lattice on a Hilbert space \mathcal{H}, \mathcal{M} be a dual normal Banach $\operatorname{Alg}\mathcal{L}$-bimodule and m, n be two positive integers with $m \neq n$. If δ is an (m, n)-Jordan derivable mapping at zero from $\operatorname{Alg}\mathcal{L}$ into \mathcal{M} such that $\delta(I) = 0$, then δ is identically equal to zero.

Corollary 3.10. Let \mathcal{A} be a unital subalgebra of $B(X)$ such that \mathcal{A} contains $\{x_0 \otimes f : f \in X^*\}$, where $0 \neq x_0 \in X$, and m, n be two positive integers with $m \neq n$. If δ is an (m, n)-Jordan derivable mapping at zero from \mathcal{A} into $B(X)$ such that $\delta(I) = 0$, then δ is identically equal to zero.

Similar to the corollary 3.10, we have the following result.

Corollary 3.11. Let \mathcal{A} be a unital subalgebra of $B(X)$ such that \mathcal{A} contains $\{x \otimes f_0 : x \in X\}$, where $0 \neq f_0 \in X^*$, and m, n be two positive integers with $m \neq n$. If δ is an (m, n)-Jordan derivable mapping at zero from \mathcal{A} into $B(X)$ such that $\delta(I) = 0$, then δ is identically equal to zero.
4. \((m, n)\)-JORDAN DERIVABLE MAPPINGS AT ZERO ON GENERALIZED MATRIX ALGEBRAS

In this section, we give a characterization of \((m, n)\)-Jordan derivable mappings at zero on generalized matrix algebras.

Theorem 4.1. Suppose that \(A, B\) are two unital algebras, \(m, n\) be two positive integers with \(m \neq n\), and \(U = \begin{bmatrix} A & M \\ N & B \end{bmatrix}\) is a generalized matrix ring. If one of the following four statements holds:

(1) \(M\) is a faithful unital \((A, B)\)-bimodule;
(2) \(N\) is a faithful unital \((B, A)\)-bimodule;
(3) \(M\) is a faithful unital left \(A\)-module, \(N\) is a faithful unital left \(B\)-module;
(4) \(N\) is a faithful unital right \(A\)-module, \(M\) is a faithful unital right \(B\)-module,

then every \((m, n)\)-Jordan derivable mapping from generalized matrix algebra \(U\) into itself satisfies \(\delta \left(\begin{bmatrix} I_A & 0 \\ 0 & I_B \end{bmatrix} \right) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\) is identically equal to zero.

Proof. Since \(\delta\) is a linear mapping, for each \(A \in A, B \in B, M \in M\) and \(N \in N\), we have that

\[
\delta \left(\begin{bmatrix} A & M \\ N & B \end{bmatrix} \right) = \begin{bmatrix} a_{11}(A) + b_{11}(M) + c_{11}(N) + d_{11}(B) & a_{12}(A) + b_{12}(M) + c_{12}(N) + d_{12}(B) \\ a_{21}(A) + b_{21}(M) + c_{21}(N) + d_{21}(B) & a_{22}(A) + b_{22}(M) + c_{22}(N) + d_{22}(B) \end{bmatrix},
\]

where \(a_{ij}, b_{ij}, c_{ij}\) and \(d_{ij}\) are linear mappings, \(i, j \in \{1, 2\}\).

Let \(I_A\) be a unit element in \(A\) and \(I_B\) be a unit element in \(B\). For every \(M\) in \(M\), suppose that \(T = \begin{bmatrix} 0 & M \\ 0 & 0 \end{bmatrix}\) and \(S = \begin{bmatrix} I_A & 0 \\ 0 & 0 \end{bmatrix}\). By Proposition 3.2, we have that \(\delta(TS) = \delta(ST)\), that is

\[
\delta \left(\begin{bmatrix} 0 & M \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I_A & 0 \\ 0 & 0 \end{bmatrix} \right) = \delta \left(\begin{bmatrix} I_A & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & M \\ 0 & 0 \end{bmatrix} \right),
\]

it follows that

\[
0 = \delta \left(\begin{bmatrix} 0 & M \\ 0 & 0 \end{bmatrix} \right) = \begin{bmatrix} b_{11}(M) & b_{12}(M) \\ b_{21}(M) & b_{22}(M) \end{bmatrix}.
\]

Thus, for every \(M\) in \(M\), we can obtain that

\[
b_{11}(M) = b_{12}(M) = b_{21}(M) = b_{22}(M) = 0. \tag{4.1}
\]

Similarly, for every \(N\) in \(N\), we can show that

\[
c_{11}(N) = c_{12}(N) = c_{21}(N) = c_{22}(N) = 0. \tag{4.2}
\]

For every \(A\) in \(A\), suppose that \(T = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix}\) and \(S = \begin{bmatrix} I_A & 0 \\ 0 & 0 \end{bmatrix}\). By Proposition 3.2, we have that \(\delta(TS) = S\delta(T) = \delta(T)S\), that is

\[
\delta \left(\begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I_A & 0 \\ 0 & 0 \end{bmatrix} \right) = \begin{bmatrix} I_A & 0 \\ 0 & 0 \end{bmatrix} \delta \left(\begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \right) = \begin{bmatrix} I_A & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix},
\]
it follows that
\[
\begin{bmatrix}
a_{11}(A) & a_{12}(A) \\
a_{21}(A) & a_{22}(A)
\end{bmatrix}
= \begin{bmatrix}
I_A & 0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
a_{11}(A) & a_{12}(A) \\
a_{21}(A) & a_{22}(A)
\end{bmatrix}
= \begin{bmatrix}
a_{11}(A) & a_{12}(A) \\
a_{21}(A) & a_{22}(A)
\end{bmatrix}
\begin{bmatrix}
I_A & 0 \\
0 & 0
\end{bmatrix},
\]
it implies that
\[
\begin{bmatrix}
a_{11}(A) & a_{12}(A) \\
a_{21}(A) & a_{22}(A)
\end{bmatrix}
= \begin{bmatrix}
a_{11}(A) & a_{12}(A) \\
0 & 0
\end{bmatrix}
= \begin{bmatrix}
a_{11}(A) & a_{12}(A) \\
a_{21}(A) & a_{22}(A)
\end{bmatrix}.
\]
Thus, for every \(A\) in \(A\), we can obtain that
\[
a_{12}(A) = a_{21}(A) = a_{22}(A) = 0. \tag{4.3}
\]
Similarly for every \(B\) in \(B\), we can show that
\[
d_{12}(B) = d_{21}(B) = d_{11}(B) = 0. \tag{4.4}
\]
In the following, we prove that \(a_{11}(A) = d_{22}(B) = 0\).

Suppose that \(M\) is a faithful unital \((A, B)\)-bimodule. For every \(A\) in \(A\), suppose that \(T = \begin{bmatrix} A & -AM \\
0 & 0 \end{bmatrix}\) and \(S = \begin{bmatrix} 0 & M \\
0 & I_B \end{bmatrix}\). It is clear that \(TS = ST = 0\). By the definition of \(\delta\), we have that
\[
m\delta(T)S + m\delta(S)T + nT\delta(S) + nS\delta(T) = 0.
\]
By (4.1) and (4.3), we can obtain that
\[
m \begin{bmatrix} a_{11}(A) & 0 \\
0 & 0 \end{bmatrix} \begin{bmatrix} 0 & M \\
0 & I_B \end{bmatrix} + n \begin{bmatrix} 0 & M \\
0 & I_B \end{bmatrix} \begin{bmatrix} a_{11}(A) & 0 \\
0 & 0 \end{bmatrix} = 0.
\]
It follows that \(m \begin{bmatrix} 0 & a_{11}(A)M \\
0 & 0 \end{bmatrix} = 0\), it means that \(ma_{11}(A)M\) for every \(M\) in \(M\), since \(m > 0\) and \(M\) is a left faithful unital \(A\)-module, we can obtain that \(a_{11}(A) = 0\). Similarly, since \(n > 0\) and \(M\) is a right faithful unital \(B\)-module, we can obtain that \(d_{22}(B) = 0\).

Suppose that \(N\) is a faithful unital \((B, A)\)-bimodule. Similar to the above method, we also can prove that \(a_{11}(A) = d_{22}(B) = 0\).

Suppose that \(M\) is a faithful unital left \(A\)-module and \(N\) is a faithful unital left \(B\)-module. For every \(A\) in \(A\), we have prove that \(a_{11}(A) = 0\). For every \(B\) in \(B\), suppose that \(T = \begin{bmatrix} 0 & 0 \\
-NB & B \end{bmatrix}\) and \(S = \begin{bmatrix} I_A & 0 \\
N & 0 \end{bmatrix}\), it is clear that \(TS = ST = 0\). By the definition of \(\delta\), we have that
\[
m\delta(T)S + m\delta(S)T + nT\delta(S) + nS\delta(T) = 0.
\]
By (4.1) and (4.3), we can obtain that
\[
m \begin{bmatrix} 0 & 0 \\
0 & d_{22}(B) \end{bmatrix} \begin{bmatrix} I_A & 0 \\
N & 0 \end{bmatrix} + n \begin{bmatrix} I_A & 0 \\
N & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\
0 & d_{22}(B) \end{bmatrix} = 0.
\]
It follows that \(m \begin{bmatrix} 0 & 0 \\
0 & d_{22}(B) \end{bmatrix} = 0\), it means that \(md_{22}(B)N\) for every \(N\) in \(N\), since \(m > 0\) and \(N\) is a left faithful unital \(N\)-module, we can obtain that \(d_{22}(B) = 0\). \(\square\)

References

1. G. An, Y. Ding, J. Li, Characterizations of Jordan left derivations on some algebras, Banach J. Math. Anal., 10 (2016): 466-481.
2. G. An, J. Li, Characterizations of \((m,n)\)-Jordan left derivations on some algebras, Acta Math. Sin., Chin. Series, 1 (2017): 173-184.
3. G. An, J. Li, Characterizations of linear mappings through zero products or zero Jordan products, Electronic Journal of Linear Algebra, 31 (2016): 408-424.
4. M. Brešar, J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc., 11 (1990): 7-16.
5. J. Cuntz, On the continuity of Semi-Norms on operator algebras, Math. Ann., 220 (1976): 171-183.
6. J. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc., 53 (1975): 321-324.
7. Q. Deng, On Jordan left derivations, Math. J. Okayama Univ., 34 (1992): 145-147.
8. I. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8 (1957): 1104-1110.
9. I. Kosi-Ulbl, J. Vukman, A note on \((m,n)\)-Jordan derivations on semiprime rings and semisimple Banach algebras, Bull. Aust. Math. Soc., 93 (2016): 231-237.
10. J. Ringrose, Automatically continuous of derivations of operator algebras, J. London Math. Soc., 5 (1972): 432-438.
11. J. Vukman, On left Jordan derivations of rings and Banach algebras, Aequations Math., 75 (2008): 260-266.
12. J. Vukman, On \((m,n)\)-Jordan derivations and commutativity of prime rings, Demonstr. Math., 41 (2008): 773-778.
13. T. Ogasawara, Finite dimensionality of certain Banach algebras, J. Sci. Hiroshima Univ. Ser. A, 17 (1954): 359-364.
14. Y. Chen, J. Li, Mappings on some reflexive algebras characterized by action of zero products or Jordan zero products, Studia Math., 206 (2011): 121-134.
15. D. Hadwin, J. Li, Local derivations and local automorphisms, J. Math. Anal. Appl., 290 (2003): 702-714.
16. D. Hadwin, J. Li, Local derivations and local automorphisms on some algebras, J. Operator Theory, 60 (2008): 29-48.
17. C. Laurie, W. Longstaff, A note on rank one operators in reflexive algebras, Proc. Amer. Math. Soc., 89 (1983): 293-297.

Department of Mathematics, Shaanxi University of Science and Technology, Xi’an 710021, China.

E-mail address: anguangyu310@163.com

Department of Mathematics and Physics, Anhui Polytechnic University, Wuhu 241000, China.

E-mail address: 15121034934@163.com