The Antimicrobial Peptide MAF-1A Acts on the Transcriptional Response of Candida parapsilosis

CURRENT STATUS: POSTED

Rong Cheng
Medical college, Guizhou University

Wei Li
Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University

Klarke M. Sample
Guizhou Provincial People's Hospital

Qiang Xu
Guizhou Provincial People's Hospital

Lin Liu
Guizhou Provincial People's Hospital

Fuxun Yu
Guizhou Provincial People's Hospital

Yingjie Nie
Guizhou Provincial People's Hospital

Xiangyan Zhang
Guizhou Provincial People's Hospital

Zhenhua Luo luo8300@sina.com
Guizhou Provincial Peoples Hospital

Corresponding Author

DOI: 10.21203/rs.2.14824/v1

SUBJECT AREAS
General Microbiology

KEYWORDS
antimicrobial peptide; MAF-1A; Candida parapsilosis; transcriptional response; RNA-Seq
Abstract

Background Candida parapsilosis is a major fungal pathogen that can cause sepsis in man. Novel antifungal agents are urgently required due to the threat of resistance to current therapeutic strategies. MAF-1A is a novel cationic antimicrobial peptide isolated from Musca domestica and is effective against a variety of Candida species. However, its antifungal mechanism is still unclear. Here, RNA-seq was used to identify differentially expressed genes (DEGs) in Candida parapsilosis after MAF-1A exposure. And then, we want to understand how the antimicrobial peptide MAF-1A work as an antifungal agent.

Results The early (6 hour) response included 1122 genes with increased expression and 1065 genes with decreased expression. The late (18 hour) response was associated with the increased expression of 101 genes and decreased expression of 151 genes. When treated with MAF-1A from six to 18 hours, 42 genes were no longer expressed at elevated levels, and 25 genes that had a decreased expression pattern were reversed and demonstrated an increased expression pattern. KEGG enrichment showed that the DEGs caused by MAF-1A mainly involved amino acid synthesis and metabolism, oxidative phosphorylation, sterol synthesis and apoptosis. Conclusion These results indicate that MAF-1A may have multiple downstream effects in Candida parapsilosis. MAF-1A may exert antifungal activity by interfering with Candida parapsilosis cell membrane integrity and the function of certain organelles.

Background

Patients with a suppressed immune system are at a high risk for hospital-acquired fungal infections. The Candida genus accounts for the majority of fungal infections in the hospital setting. Although Candida albicans (C. albicans) is the most common pathogen of Candida infection, its dominance has decreased as the numbers of invasive infections by non-
albicans Candida (NAC) species have risen[1]. During the last two decades, epidemiological studies of fungal infections around the world have found that NAC infection has surpassed *C. albicans* as the most prevalent causes of invasive Candida infection[2]. It is therefore necessary to derive effective treatment programs to prevent NAC infection.

Among NAC infections, Candida *parapsilosis* (*C. parapsilosis*) is particularly problematic because it can form biofilms on central venous catheters and other medically implanted devices[1, 3]. Additionally, patients in intensive care units who have undergone total parenteral nutrition administered can be highly susceptible to *C. parapsilosis* infection, this includes undernourished children and neonates with low-birth-weights. Recent epidemiological studies (in various geographical regions worldwide) have shown that *C. parapsilosis* has become the second or third most prevalent following *C. albicans*[4]. If patients with a suppressed immune response are exposed to *C. parapsilosis*, the rate of infection is high and its biological characteristics such as toxicity, immune regulation, and drug resistance are quite different from *C. albicans*[4]. These interspecies specificities may affect host identification and clearance, as well as antifungal drug efficacy.

Common Candida pathogens have varying degrees of developed resistance and some represent a serious threat to human health[5], which requires the development of novel antifungal drugs. Antimicrobial peptides (AMPs) are an important part of the innate immune response for a variety of organisms[6]. AMPs are relatively small, and most exhibit strong cationic and amphiphilic properties. AMPs are widely available and are diverse with respect to length (20-100 amino acids), sequence and structure. It is currently uncommon for microbial infections to be resistant to this particular mode of action and therefore AMPs are expected to become an emerging source for novel antifungal drugs[7-9]. The *Musca domestica* antifungal peptide-1 (MAF-1) is a novel
cationic AMP isolated from the instar larvae of the housefly and has an excellent antimicrobial effect[10]. We have previously cloned the full-length MAF-1 gene and derived the 26 amino acid MAF-1A peptide from the MAF-1 structural domain. Despite the established antifungal effect of MAF-1A, the antifungal mechanism is still unclear[11]. As alluded to earlier, AMPs are amphiphilic and their cationic domains are susceptible to electrostatic interactions on the surface of cells, while the hydrophobic domains interact with the lipids that comprise the membranes, causing the cell membrane disintegration and cell death[12]. Whilst the aforementioned membrane damage mechanism is the canonical mechanism through which AMPs act, other mechanisms have been shown to exist. AMPs can have specific subcellular targets, such as inhibition of DNA, RNA, protein and cell wall synthesis [13, 14].

In recent years, the development of high throughput sequencing technologies has facilitated research on both the mechanisms by which antibacterial drugs function and microbes are resistant to drugs. For example, Iracane et al [15] found that HAC1 (CPAR2_103720) was a key gene involved in endoplasmic reticulum stress in C. parapsilosis using RNA-seq technology. In our previous study, Wang et al.[16] found that MAF-1A may inhibit C. albicans by affecting the cell wall, plasma membrane, protein synthesis and energy metabolism. However, the key action by which C. albicans responds to MAF-1A was not fully defined. In this study, we aim to expand upon how MAF-1A acts on fungal species and whether there are differences between the responses of C. albicans and C. parapsilosis. RNA sequencing (RNA-Seq) was used to elucidate the mechanism of the antifungal molecule ‘MAF-1A’ and the changes in gene expression it promotes in early (6 hour) and late (18 hour) stage (these time points were chosen according to the results of time-kill curves) C. parapsilosis growth.

Results
2.1. Minimum Inhibitory Concentration (MIC) Assay and Time-kill Curve

The MIC of MAF-1A against *C. parapsilosis* was determined to be 0.6 mg/mL. The Time-kill Curve of MAF-1A at MIC demonstrated a gradual antifungal effect during the first eight hours of *C. parapsilosis* culture (Figure 1). The number of cells gradually decreased and formed a downward trend for the first eight hours of culture. However, after eight hours the curve steep end and increased at a trajectory similar to the control group ending with approximately 3×10^8 fewer colonies.

2.2. Transcriptional Stress Response of *C. parapsilosis* to MAF-1A

The RNA-seq results from *C. parapsilosis* with MAF-1A after six hours and 18 hours showed that there were a total of 5747 expressed genes. A total of 2439 significantly differentially expressed genes were detected at the 6 hour and 18 hour time points for MAF-1A treated *C. parapsilosis* compared to the control (Figure 2) Among these genes, 2187 genes were found at six hours, which represented 38.05% of the total detectable genes. Whereas, 252 genes were found to be differentially expressed after 18 hours and accounted for 4.38% of the detectable genes. After six hours and 18 hours of MAF-1A treatment, we found that 67 genes that were significantly differentially expressed with opposite trends between the two MAF-1A treated time points compared with the control group (reversed genes 1, RG1 and reversed genes 2, RG2).

2.3. Verification of Differentially Expressed Genes

20 genes were selected, including 10 genes with increased expression and 10 genes with decreased expression, which were evenly drawn from the six hour and 18 hour time points to validate the RNA-Seq results by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) (Figure 3).

5
2.4. The protein-protein interaction (PPI) Network Analysis
The DEGs in C. parapsilosis that were treated for six hours with MAF-1A were used to construct a PPI network based on the STRING database. The PPI network contains a total of 624 nodes and 6264 edges, with a degree filter of ≥10 (Figure 4). The connectivity degree (dg) of multiple gene nodes in the PPI network was higher for genes including: UBI1 (dg = 146), glt1 (dg = 82), CDC28 (dg = 54), CYS4 (dg = 50), CYT1 (dg = 45), RPC40 (dg = 42), ARX1 (dg = 42), DIM1 (dg = 41), YTM1 (dg = 41), RIP1 (dg = 41). Subsequently, enrichment analyses were performed for these genes (Supplementary Figure 1).

2.5. Enrichment Analysis of DEGs Altered by MAF-1A
To obtain insights into the molecular mechanism of the antifungal mechanism of MAF-1A on C. parapsilosis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed for both the differentially expressed genes at the 6 hour time point and the RG1 and RG2 gene groups.

2.5.1 DEGs enrichment analysis at six hours
Among the DEGs at the 6 hour time point, 1122 genes with increased expression were enriched in 85 KEGG pathways, 20 of which were significant with a q-value of <0.05. The most significantly pathways with increased expression in C. parapsilosis after MAF-1A treatment were: Oxidative phosphorylation, Peroxisome, Citrate cycle (TCA cycle), Carbon metabolism, Cell cycle-yellow, MAPK signaling pathway - yeast, Meiosis - yeast, Fatty acid degradation and Autophagy - other (Table 1).

The genes with decreased expression were significantly enriched in Steroid biosynthesis, Biosynthesis of amino acids, Cysteine and methionine metabolism, Biosynthesis of antibiotics, Ribosome, RNA polymerase, Biosynthesis of secondary metabolites, RNA transport, Ribosome biogenesis in eukaryotes, Lysine biosynthesis, 2-Oxocarboxylic acid
metabolism, Pyrimidine metabolism, Glycine, serine and threonine metabolism, Purine metabolism (Table 2).

2.5.2. RG1 and RG2 gene enrichment analysis

The 42 genes in RG1 were enriched in 17 KEGG pathways, of which Oxidative phosphorylation was significant. Additionally, The 25 genes in RG2 were enriched in 13 KEGG pathways, of which Arginine biosynthesis, Biosynthesis of antibiotics, Biosynthesis of amino acids and Biosynthesis of secondary metabolites were significantly enriched (Table 3).

Moreover, the genes in RG1 and RG2 were enriched in 290 GO terms, 8 of which were significant (Table 4). The genes in RG1 are mainly involved with energy production and redox processes, whereas the genes in RG2 are associated with the anabolic process of various organic acids in cells.

Discussion

In recent years, C. parapsilosis infection has risen to the second or third commonly detected species of the Candida genus. In addition to its high infection rate, its etiology differs markedly from that of C. albicans [17]. C. parapsilosis is resistant to the conventional antifungal drugs echinocandins, azoles, and amphotericin B [18-20].

Moreover, few new drugs against C. parapsilosis infection have been reported in the scientific literature, which is an area this study aims to enrich. Antimicrobial peptides are considered to a potential source of novel antimicrobial drugs because of the identification of peptides with excellent antimicrobial properties, such as those described by Patocka et al [9]. Studies have shown that antimicrobial peptides mainly cause cell lysis and death by destroying the cell membrane and causing the leakage of cell contents [21-24]. However, mechanistic studies of antimicrobial peptides have determined that membrane interactions are a part of the complex mechanism of action, but not all. Park et al. [25]
found that buforin II can prevent the microorganisms from entering host cells through the cell membrane and exerts its antibacterial effect interference with DNA and RNA functions. Lee et al. [26] found that antifungal β-peptides cause cell death by entering the cell and disrupting the nucleus and vacuole function. Studies by Chileveru et al. [27] showed that human alpha-defensin 5 enters the cytoplasm of E. coli and interferes with cell division to exert an antibacterial effect. In our previous study, Wang et al [16] found MAF-1A inhibited the C. albicans by affecting multiple targets including the cell wall, membrane and ribosome. In this study, we show that MAF-1A affects multiple targets in C. parapsilosis, with the predominant changes involving the cell membrane, intracellular mitochondria, ribosome, and nucleic acid synthesis. It is believed that antimicrobial peptides may have multiple modes of action, but the exact mechanism of action has not been determined for MAF-1A. Our study suggests that intracellular targets may be a key site of action for MAF-1A and the enrichment analysis of DEGs suggest that MAF-1A may exert an antibacterial activity through a variety of aspects.

Membrane Destruction

The genes with decreased expression after six hours were significantly enriched in the Steroid biosynthesis pathway (Figure 5) and a total of 14 genes were enriched (ERG1, ERG3, ERG6, ERG7, ERG9, ERG11, ERG25, ERG26, ERG27, ERG2, ERG4, ERG5, ERG24, SPBC16A3.12c. Azole antifungal agents exert an antifungal action by inhibiting the synthesis of Ergosterol, which is a major component of fungal cell membranes [28]. It has been found that overexpression of ERG11 (encoding lanosterol 14-demethylase) is one of the main causes of azole antifungal drug resistance. Members of the ERG gene family primarily encode proteins involved in the ergosterol biosynthesis pathway, of which lanosterol 14-demethylase is a key enzyme. In this study, MAF-1A affected the decreased expression of
14 genes related to sterol synthesis including the ERG11 gene, which suggests that MAF-1A interferes with the synthesis of ergosterol. We hypothesize that MAF-1A could also exert an antifungal effect by disrupting the normal function of the cell membrane. Additionally, 10 genes that had increased expression after six hours were significantly enriched in the fatty acid degradation pathway (Figure 6). This indicates that the composition of the cell membrane could also be affected by MAF-1A.

Protein synthesis

After six hours, there was a significant enrichment of genes that had lower expression in a number of pathways involved with amino acid biosynthesis, such as the biosynthesis of amino acids, Cysteine and methionine metabolism, and Ribosomes. The genes ARG3, ARG5, and ARG1 in RG2 are enriched in multiple protein synthesis related pathways. It is suggested that MAF-1A may interfere with the normal synthesis of proteins and affect the normal growth of *C. parapsilosis*. This prospect is also supported by Florin et al. [29], who found that the antibacterial peptide Api137 interferes with bacterial growth by trapping release factors on the ribosome, thus inhibiting translation. Moreover, Gagnon et al. [30] reported that the antimicrobial peptide Bac71-35 binds to the 70S ribosome of *Thermus thermophilus* and interferes with translation initiation. In the present study, the presence of MAF-1A resulted in the decreased expression of multiple genes involved with ribosomes and translational processes. Therefore, it is possible that MAF-1A may exert antifungal activity by interfering with the translation process, which would affect the normal growth of *C. parapsilosis*.

Affect Mitochondrial Function

The 42 genes with increased expression at the six hour time point were enriched in the oxidative phosphorylation pathway. These genes are mainly involved in the respiratory chain electron transport process on the mitochondrial inner membrane, such as the
process of NHD release of H+, ATP synthase (Figure 7). A total of six genes in RG1 genes were also enriched in this pathway (COX15, nuo-21, QCR2, QCR8, QCR7 and COR1). Glerum et al. [31] found that COX15 encodes an indispensable mitochondrial protein for *Saccharomyces cerevisiae* cytochrome oxidase. Cytochrome oxidase as a terminal enzyme in the respiratory electron transport chain, which essential for the synthesis of ATP. Reactive oxygen species (ROS) is mainly caused by oxidative phosphorylation of ATP to disorganize electron transport in mitochondria [32]. ROS such as hydrogen peroxide and hydroxyl radicals can cause serious damage to proteins, lipids, and nucleic acids, leading to irreversible damage or even the death of cells. Eukaryotes mainly prevent cell damage by inducing oxidative stress detoxification and repairing protein-related gene expression to prevent ROS accumulation. In our study, GO enrichment analysis of the RG1 gene group showed that a total of seven genes with increased expression were involved in the redox process (POX9, COX15, nuo-21, AAE001134, QCR7, RGI1 and namA). This process helps the cells remove accumulated ROS. Due to the increased expression of these genes under the action of MAF-1A, it is possible that MAF-1A could cause oxidative phosphorylation, which would disrupt electron transfer in mitochondria to produce ROS and cause damage to the cells.

C. parapsilosis has an unusual mitochondrial genome molecular architecture, which consists of linear DNA molecules of 30.9-Kbp long and terminating with specific telomeric structures on both sides (738-Kbp long). This differs from telomeres at the ends of eukaryotic nuclear chromosomes, especially humans [33]. MAF-1A appears to interfere with the expression of multiple genes related to the function and mitochondrial composition of *C. parapsilosis*, therefore it is possible that MAF-1A may interfere with the normal function of *C. parapsilosis* mitochondria.

Induction of Apoptosis
The genes with increased expression after six hours were enriched in the Cell cycle-yeast, MAPK signaling pathway-yellow, Meiosis-yeast, Autophagy-other (and others) pathways. This suggests that MAF- 1 may induce the up-regulation of apoptosis-related genes in C. parapsilosis cells, triggering the initiation of apoptosis and thereby exerting an antifungal effect. There is precedent for this mechanism, Lee et al. [34] found that resveratrol induced fungal apoptosis through a caspase-dependent mitochondrial pathway. Moreover, Lopes et al. proposed that peptide sequences from Osmotin-like proteins and thaumatin-like proteins (derived from plant defense systems) did not damage the yeast cell membrane and cell wall integrity, but rather induced ROS production and apoptosis [35].

Conclusions

In summation, it is possible that MAF-1A has multiple targets in C. parapsilosis (akin to, but possibly distinct from C. albicans). Most of the DEGs identified through the RNAseq analysis were related to intracellular structures, which as the mitochondria and ribosomes in C. parapsilosis. The RNAseq data has provided potential future directions for the study of the antifungal molecular mechanisms of MAF-1A and has highlighted potential pathways that could contribute to resistance to its actions.

Methods

5.1. Strains and growth conditions

In this study, transcriptional profiling was performed on the C. parapsilosis reference strain ATCC22019. The strain was preserved in goat blood and stored at -80°C. Subsequently C. parapsilosis was streaked on Sabouraud Dextrose Agar (SDA) plates (Sangon, Shanghai, China) at 35°C as described by Lis et al [36]. Experiments involving treatment with the MAF-1A were conducted using Sabouraud Dextrose Broth (SDB) (Sangon, Shanghai, China).
5.2. Peptide Synthesis

MAF-1A was synthesized by Sangon Biotech (Shanghai, China) as a linear peptide consisting of a 26 amino acid sequences as follows: KKFKETADKLIESAKQQLESLAKEMK. Analytical high-performance liquid chromatography (HPLC) was used to confirm that the purity was higher than 95%. The peptide was dissolved in sterile ultrapure water at 5 mg/mL and stored at -20°C.

5.3. MIC Determinations and Time-kill Curve

Antifungal assays were performed as per the directives of the Clinical and Laboratory Standards Institute (CLSI) M27-A3. Briefly, cultures were grown for 24 hours at 35°C and resuspended in SDB. The cellular concentration was adjusted to approximately 0.5x10^3-2.5x10^3 CFU/mL and 100 μl of the suspension was added to each well of a 96-well polypropylene microplate (NEST, Wuxi, China). MAF1A was added to a final concentration of 0.1 mg/mL to 1.2 mg/mL in triplicate. After incubation at 35°C for 24 hours, the A492nm value was measured by a Microplate Reader (BioTek Synergy H1, Vermont, USA). The MIC was defined as the lowest drug concentration showing 80% growth inhibition compared to the drug-free control. The following formulas were used:

and

The methodology for producing time kill curves was adapted from Li et al and Sun et al [37, 38]. The C. parapsilosis suspensions were mixed with MAF-1A (at the MIC concentration) in triplicate and cultured at 35°C. 100μl aliquots were removed from each test solution at predetermined time points (0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24 hours). After 100-fold dilutions, a 10 μl aliquot from each dilution was streaked in triplicate onto SDA plates for colony count determination after incubation at 35°C for 24 hours. Sterile ultrapure water was used as a control.
5.4. Total RNA Extraction

C. parapsilosis was inoculated into SDB medium (Sangon, Shanghai, China) and cultured at 35°C for 24 hours. *C. parapsilosis* was treated with MAF-1A at MIC for six hours (CPAS) and 18h (CPBS), before being harvested for RNA extraction. The untreated cultures were used as the control (six hours, CPAC; 18 hours, CPBC). Total RNA was extracted with RNAiso Plus (Takara, Dalian, China) according to the manufacturer’s instructions. The concentration and quality of the RNA samples was determined using a NanoDrop 2000 (Thermo Fisher Scientific, Wilmington, DE, USA) and an Agilent 2100 bioanalyzer (Agilent Technologies, CA, USA). Library preparation was conducted using NEBNext® UltraTM RNA Library Prep Kit (NEB, USA) as per the manufacturer’s instructions. The purified library was quantified using an Agilent 2100 bioanalyzer, and qRT-PCR was used to accurately quantify the effective concentration of the library. The library was prepared and subsequently sequenced using a Novoseq sequencer (Illumina, USA) by Novogene Corporation (Beijing, China), which produced 150 bp paired-end reads.

5.5. Differential expression analysis

The raw reads were filtered to obtain high-quality clean reads for subsequent analysis and mapped to the reference genome *C. parapsilosis* (assembly ASM18276v2) from the National Center for Biotechnology Information (NCBI), US. using HISAT2 [39] v2.0.5. Differential expression analysis between the two conditions was performed using the Bioconductor software package DESeq2 [40] in R (1.16.1), the estimated gene expression levels were reported using FPKM (Fragments Per Kilobase of transcript sequence per Millions of base pairs sequenced) [41] and compared to each other using log2 FC. The P value was adjusted to generate the false discovery rate (q value) using the method described by Benjamini-Yekutieli [42], which assigns the significance threshold for differentially expressed genes as q= < 0.05.
5.6. Network analysis of differentially expressed genes

To further understand the functions of the DEGs, we implemented Gene Ontology (GO) enrichment through the Bioconductor software clusterProfiler [43] (3.4.4) in R, which uses the KEGG database to identify enriched pathways. PPI analysis of differentially expressed genes was based on the STRING database [43], which provided comprehensive information about interactions between proteins and the network was constructed using Cytoscape [44] (3.6.1).

5.7. Validation of RNA-Seq by quantitative RT-PCR

To confirm the RNA-Seq results, 20 DEGs (10 with increased expression and 10 with decreased expression) were selected for qRT-PCR validation. The reaction was performed using a SYBR Premix Ex TaqTM Kit (Takara) according to the manufacturer’s protocol. The reaction procedure of 40 cycles of 95°C for 30 seconds and 95°C for 5 seconds and 60°C for 30 seconds was conducted using a BIO-RAD CFX-Connect Real-Time System. The gene expression level was determined using the $2^{-\Delta\Delta Ct}$ method [45] using the house-keeping gene 18S rRNA to normalized the candidate gene abundance. The primers used in this study are listed in Supplementary Table 1.

5.8. Statistical Analysis

Data in this study are shown as mean±standard deviation. Statistical calculations were using IBM SPSS Statistics 23.0. A p value and q Value less than 0.05 were significant.

Declarations

Ethics approval and consent to participate: Not applicable.

Consent for publication: Not applicable.

Availability of data and materials: The datasets used and analyzed during this study are available from the corresponding author on request.
Competing interests: The authors declare that they have no competing interests.

Funding: This research was funded by Foundation of the Science and Technology Department of Gui Zhou Province (2019)2827, (2015)4015, (2018)5706; Doctoral Foundation of Guizhou Provincial People's Hospital (GZSYBS(2015)12).

Author Contributions: Zhen-hua Luo and Xiangyan Zhang conceived of the study; Zhen-hua Luo and Rong Cheng designed the experiments; Rong Cheng, Wei Li, Klarke M. Sample, Qiang Xu, Lin Liu, Fuxun Yu, Nie Y analyzed the data; Rong Cheng, Zhen-hua Luo and Klarke M. Sample performed the experiments; Rong Cheng, Zhen-hua Luo, Klarke M. Sample wrote the manuscript. All authors reviewed the results and approved the final version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

DEGs: Differentially expressed genes
C. albicans: Candida albicans
C. parapsilosis: Candida parapsilosis
NAC: Non- albicans Candida
AMPs: Antimicrobial peptides
MAF-1: Musca domestica antifungal peptide-1
MIC: Minimum Inhibitory Concentration
RG1: Reversed genes 1
RG2: Reversed genes 2
qRT-PCR: Quantitative reverse transcription-polymerase chain reaction
PPI: Protein-protein Interaction
GO: Gene Ontology
KEGG: Kyoto Encyclopedia of Genes and Genomes
SDA: Sabouraud Dextrose Agar
SDB: Sabouraud Dextrose Broth
HPLC: High-performance liquid chromatography
CLSI: Clinical and Laboratory Standards Institute
FPKM: Fragments Per Kilobase of transcript sequence per Millions of base pairs sequenced

References

1. Vieira de Melo AP, Zuza-Alves DL, da Silva-Rocha WP, Ferreira Canario de Souza LB, Francisco EC, Salles de Azevedo Melo A, Maranhao Chaves G: Virulence factors of Candida spp. obtained from blood cultures of patients with candidemia attended at tertiary hospitals in Northeast Brazil. J Mycol Med 2019.

2. Sular FL, Szekely E, Cristea VC, Dobreanu M: Invasive Fungal Infection in Romania: Changing Incidence and Epidemiology During Six Years of Surveillance in a Tertiary
3. Fais R, Di Luca M, Rizzato C, Morici P, Bottai D, Tavanti A, Lupetti A: The N-Terminus of Human Lactoferrin Displays Anti-biofilm Activity on Candida parapsilosis in Lumen Catheters. *Frontiers in microbiology* 2017, 8:2218.

4. Toth R, Nosek J, Mora-Montes HM, Gabaldon T, Bliss JM, Nosanchuk JD, Turner SA, Butler G, Vagvolgyi C, Gacser A: Candida parapsilosis: from Genes to the Bedside. *Clin Microbiol Rev* 2019, 32(2).

5. Robbins N, Caplan T, Cowen LE: Molecular Evolution of Antifungal Drug Resistance. *Annual review of microbiology* 2017, 71:753-775.

6. Moravej H, Moravej Z, Yazdanparast M, Heiat M, Mirhosseini A, Moosazadeh Moghaddam M, Mirnejad R: Antimicrobial Peptides: Features, Action, and Their Resistance Mechanisms in Bacteria. *Microb Drug Resist* 2018, 24(6):747-767.

7. Nuti R, Goud NS, Saraswati AP, Alvala R, Alvala M: Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance. *Current medicinal chemistry* 2017, 24(38):4303-4314.

8. Ghosh C, Sarkar P, Issa R, Haldar J: Alternatives to Conventional Antibiotics in the Era of Antimicrobial Resistance. *Trends in microbiology* 2019, 27(4):323-338.

9. Patocka J, Nepovimova E, Klimova B, Wu Q, Kuca K: Antimicrobial Peptides: Amphibian Host Defense Peptides. *Current medicinal chemistry* 2018.

10. Fu P, Wu J, Guo G: Purification and molecular identification of an antifungal peptide from the hemolymph of Musca domestica (housefly). *Cellular & molecular immunology* 2009, 6(4):245-251.

11. Zhou J, Kong L, Fang N, Mao B, Ai H: Synthesis and Functional Characterization of MAF-1A Peptide Derived From the Larvae of Housefly, Musca domestica (Diptera: Muscidae). *Journal of medical entomology* 2016, 53(6):1467-1472.
12. Kobbi S, Nedjar N, Chihib N, Balti R, Chevalier M, Silvain A, Chaabouni S, Dhulster P, Bougatet A: Synthesis and antibacterial activity of new peptides from Alfalfa RuBisCO protein hydrolysates and mode of action via a membrane damage mechanism against Listeria innocua. *Microb Pathog* 2018, 115:41-49.

13. Guilhelmelli F, Vilela N, Albuquerque P, Derengowski Lda S, Silva-Pereira I, Kyaw CM: Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. *Frontiers in microbiology* 2013, 4:353.

14. Li L, Song F, Sun J, Tian X, Xia S, Le G: Membrane damage as first and DNA as the secondary target for anti-candidal activity of antimicrobial peptide P7 derived from cell-penetrating peptide ppTG20 against Candida albicans. *Journal of peptide science : an official publication of the European Peptide Society* 2016, 22(6):427-433.

15. Iracane E, Donovan PD, Ola M, Butler G, Holland LM: Identification of an Exceptionally Long Intron in the HAC1 Gene of Candida parapsilosis. *mSphere* 2018, 3(6).

16. Wang T, Xiu J, Zhang Y, Wu J, Ma X, Wang Y, Guo G, Shang X: Transcriptional Responses of Candida albicans to Antimicrobial Peptide MAF-1A. *Frontiers in microbiology* 2017, 8:894.

17. Holland LM, Schroder MS, Turner SA, Taff H, Andes D, Grozer Z, Gacser A, Ames L, Haynes K, Higgins DG et al: Comparative phenotypic analysis of the major fungal pathogens Candida parapsilosis and Candida albicans. *PLoS pathogens* 2014, 10(9):e1004365.

18. Lotfali E, Kordbacheh P, Mirhendi H, Zaini F, Ghajari A, Mohammadi R, Noorbakhsh F, Moazeni M, Fallahi A, Rezaie S: Antifungal Susceptibility Analysis of Clinical Isolates of Candida parapsilosis in Iran. *Iranian journal of public health* 2016, 45(3):322-328.

19. Maria S, Barnwal G, Kumar A, Mohan K, Vinod V, Varghese A, Biswas R: Species distribution and antifungal susceptibility among clinical isolates of Candida parapsilosis
complex from India. Rev Iberoam Micol 2018, 35(3):147-150.

20. Thomaz DY, de Almeida JN, Jr., Lima GME, Nunes MO, Camargo CH, Grenfell RC, Benard G, Del Negro GMB: An Azole-Resistant Candida parapsilosis Outbreak: Clonal Persistence in the Intensive Care Unit of a Brazilian Teaching Hospital. Frontiers in microbiology 2018, 9:2997.

21. Shai Y: Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochimica et biophysica acta 1999, 1462(1-2):55-70.

22. Papo N, Shai Y: Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides. Biochemistry 2003, 42(2):458-466.

23. Paterson DJ, Tassieri M, Reboud J, Wilson R, Cooper JM: Lipid topology and electrostatic interactions underpin lytic activity of linear cationic antimicrobial peptides in membranes. Proceedings of the National Academy of Sciences of the United States of America 2017, 114(40):E8324-e8332.

24. Utesch T, de Miguel Catalina A, Schattenberg C, Paege N, Schmieder P, Krause E, Miao Y, McCammon JA, Meyer V, Jung S et al: A Computational Modeling Approach Predicts Interaction of the Antifungal Protein AFP from Aspergillus giganteus with Fungal Membranes via Its gamma-Core Motif. mSphere 2018, 3(5).

25. Park CB, Kim HS, Kim SC: Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochemical and biophysical research communications 1998, 244(1):253-257.

26. Lee MR, Raman N, Ortiz-Bermudez P, Lynn DM, Palecek SP: 14-Helical beta-Peptides Elicit Toxicity against C. albicans by Forming Pores in the Cell Membrane and Subsequently Disrupting Intracellular Organelles. Cell chemical biology 2019, 26(2):289-
299.e284.

27. Chileveru HR, Lim SA, Chairatana P, Wommack AJ, Chiang IL, Nolan EM: Visualizing attack of Escherichia coli by the antimicrobial peptide human defensin 5. *Biochemistry* 2015, 54(9):1767-1777.

28. Ermakova E, Zuev Y: Effect of ergosterol on the fungal membrane properties. All-atom and coarse-grained molecular dynamics study. *Chemistry and physics of lipids* 2017, 209:45-53.

29. Florin T, Maracci C, Graf M, Karki P, Klepacki D, Berninghausen O, Beckmann R, Vazquez-Laslop N, Wilson DN, Rodnina MV et al: An antimicrobial peptide that inhibits translation by trapping release factors on the ribosome. *Nature structural & molecular biology* 2017, 24(9):752-757.

30. Gagnon MG, Roy RN, Lomakin IB, Florin T, Mankin AS, Steitz TA: Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition. *Nucleic acids research* 2016, 44(5):2439-2450.

31. Glerum DM, Muroff I, Jin C, Tzagoloff A: COX15 codes for a mitochondrial protein essential for the assembly of yeast cytochrome oxidase. *The Journal of biological chemistry* 1997, 272(30):19088-19094.

32. Piippo N, Korhonen E, Hytti M, Kinnunen K, Kaarniranta K, Kauppinen A: Oxidative Stress is the Principal Contributor to Inflammasome Activation in Retinal Pigment Epithelium Cells with Defunct Proteasomes and Autophagy. *Cell Physiol Biochem* 2018, 49(1):359-367.

33. Kovac L, Lazowska J, Slonimski PP: A yeast with linear molecules of mitochondrial DNA. *Molecular & general genetics : MGG* 1984, 197(3):420-424.

34. Lee J, Lee DG: Novel antifungal mechanism of resveratrol: apoptosis inducer in Candida albicans. *Current microbiology* 2015, 70(3):383-389.
35. Lopes FES, da Costa HPS, Souza PFN, Oliveira JPB, Ramos MV, Freire JEC, Juca TL, Freitas CDT: Peptide from thaumatin plant protein exhibits selective anticandidal activity by inducing apoptosis via membrane receptor. Phytochemistry 2019, 159:46-55.

36. Lis M, Liu TT, Barker KS, Rogers PD, Bobek LA: Antimicrobial peptide MUC7 12-mer activates the calcium/calcineurin pathway in Candida albicans. FEMS yeast research 2010, 10(5):579-586.

37. Li Y, Sun S, Guo Q, Ma L, Shi C, Su L, Li H: In vitro interaction between azoles and cyclosporin A against clinical isolates of Candida albicans determined by the chequerboard method and time-kill curves. J Antimicrob Chemother 2008, 61(3):577-585.

38. Sun S, Li Y, Guo Q, Shi C, Yu J, Ma L: In vitro interactions between tacrolimus and azoles against Candida albicans determined by different methods. Antimicrob Agents Chemother 2008, 52(2):409-417.

39. Kim D, Langmead B, Salzberg SL: HISAT: a fast spliced aligner with low memory requirements. Nature methods 2015, 12(4):357-360.

40. Love MI, Huber W, Anders S: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology 2014, 15(12):550.

41. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature methods 2008, 5(7):621-628.

42. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I: Controlling the false discovery rate in behavior genetics research. Behavioural brain research 2001, 125(1-2):279-284.

43. Yu G, Wang LG, Han Y, He QY: clusterProfiler: an R package for comparing biological themes among gene clusters. Omics : a journal of integrative biology 2012, 16(5):284-287.

44. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research 2003, 13(11):2498-2504.
45. Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods (San Diego, Calif)* 2001, 25(4):402-408.

Tables

Table 1. Significantly enriched KEGG pathways for the genes with increased expression after six hours. A q value of <0.05 was set as the significance threshold.

KEGGID	Description	p Value	q Value
cd00100	Steroid biosynthesis	1.64×10⁻⁸	1.40×10⁻⁴
cd01230	Biosynthesis of amino acids	5.95×10⁻⁷	2.53×10⁻⁴
cd00270	Cysteine and methionine metabolism	4.80×10⁻⁶	1.36×10⁻⁴
cd01130	Biosynthesis of antibiotics	1.07×10⁻⁵	2.27×10⁻⁴
cd03010	Ribosome	3.01×10⁻⁵	5.12×10⁻⁴
cd03020	RNA polymerase	2.14×10⁻⁴	3.03×10⁻¹
cd01110	Biosynthesis of secondary metabolites	3.68×10⁻⁴	4.47×10⁻¹
cd03013	RNA transport	9.34×10⁻⁴	8.83×10⁻¹
cd03008	Ribosome biogenesis in eukaryotes	9.35×10⁻⁴	8.83×10⁻¹
cd00300	Lysine biosynthesis	2.31×10⁻³	1.96×10⁻¹
cd01210	2-Oxocarboxylic acid metabolism	2.66×10⁻³	2.05×10⁻¹
cd00240	Pyrimidine metabolism	3.54×10⁻³	2.40×10⁻¹
cd00260	Glycine, serine and threonine metabolism	3.67×10⁻³	2.40×10⁻¹
cd00230	Purine metabolism	5.08×10⁻³	3.09×10⁻¹

Table 2. Significantly enriched KEGG pathways for the genes with decreased expression after six hours. A q value of <0.05 was set as the significance threshold.
KEGG ID	Description	p Value	q Value
cdu00190	Oxidative phosphorylation	3.34×10^{-12}	2.84×10^{-10}
cdu04146	Peroxisome	2.02×10^{-8}	8.56×10^{-7}
cdu00200	Citrate cycle (TCA cycle)	2.21×10^{-5}	6.27×10^{-4}
cdu01200	Carbon metabolism	3.50×10^{-5}	7.44×10^{-4}
cdu04111	Cell cycle - yeast	9.20×10^{-5}	1.56×10^{-3}
cdu04011	MAPK signaling pathway - yeast	8.17×10^{-4}	1.16×10^{-2}
cdu04113	Meiosis - yeast	2.35×10^{-3}	2.80×10^{-2}
cdu0071	Fatty acid degradation	2.63×10^{-3}	2.80×10^{-2}
cdu04136	Autophagy - other	4.03×10^{-3}	3.80×10^{-2}

Table 3. Significantly enriched KEGG pathways for the genes in RG1 and RG2. A q value of <0.05 was set as the significance threshold.

sort	KEGG ID	Description	p Value	q Value
RG1	cdu00190	Oxidative phosphorylation	1.34×10^{-5}	2.27×10^{-4}
	cdu00220	Arginine biosynthesis	1.97×10^{-5}	2.56×10^{-4}
	cdu01130	Biosynthesis of antibiotics	4.09×10^{-3}	2.39×10^{-2}
	cdu01230	Biosynthesis of amino acids	5.52×10^{-3}	2.39×10^{-2}
	cdu01110	Biosynthesis of secondary metabolites	1.21×10^{-2}	3.92×10^{-2}
RG2	cdu00190	Oxidative phosphorylation	1.34×10^{-5}	2.27×10^{-4}
	cdu00220	Arginine biosynthesis	1.97×10^{-5}	2.56×10^{-4}
	cdu01130	Biosynthesis of antibiotics	4.09×10^{-3}	2.39×10^{-2}
	cdu01230	Biosynthesis of amino acids	5.52×10^{-3}	2.39×10^{-2}
	cdu01110	Biosynthesis of secondary metabolites	1.21×10^{-2}	3.92×10^{-2}

Table 4. The significant enriched GO terms of RG1 and RG2. A q value of <0.05 was set as the significance threshold for enrichment.

sort	Category	GO ID	Description	p Value
RG1	BP	GO:0006091	generation of precursor metabolites and energy	8.71×10^{-5}
	BP	GO:0055114	oxidation-reduction process	8.49×10^{-4}
	BP	GO:0016053	organic acid biosynthetic process	5.27×10^{-4}
	BP	GO:0046394	carboxylic acid biosynthetic process	5.27×10^{-4}
	BP	GO:0044283	small molecule biosynthetic process	1.56×10^{-3}
	BP	GO:0006082	organic acid metabolic process	2.34×10^{-3}
	BP	GO:0019752	carboxylic acid metabolic process	2.34×10^{-3}
	BP	GO:0043436	oxoacid metabolic process	2.34×10^{-3}
RG2	BP	GO:0006091	generation of precursor metabolites and energy	8.71×10^{-5}
	BP	GO:0055114	oxidation-reduction process	8.49×10^{-4}
	BP	GO:0016053	organic acid biosynthetic process	5.27×10^{-4}
	BP	GO:0046394	carboxylic acid biosynthetic process	5.27×10^{-4}
	BP	GO:0044283	small molecule biosynthetic process	1.56×10^{-3}
	BP	GO:0006082	organic acid metabolic process	2.34×10^{-3}
	BP	GO:0019752	carboxylic acid metabolic process	2.34×10^{-3}
	BP	GO:0043436	oxoacid metabolic process	2.34×10^{-3}
Time-kill curves of MAF-1A under MIC concentration for C. parapsilosis. The mean growth of three C. parapsilosis cultures was recorded using the number of colony-forming units per milliliter to the logarithmic base of 10 (Log10 CFU/ml) every two hours for 24 hours.
Figure 2

Gene expression changes in C. parapsilosis following MAF-1A treatment. The volcano plots of the differentially expressed genes. (a) The volcano plot depicts the log2 FC (fold change) expression after six hours of treatment with MAF-1A, C. parapsilosis was treated with MAF-1A at MIC for six hours (CPAS) and 18h (CPBS), before being harvested for RNA extraction. The untreated cultures were used as the control (six hours, CPAC; 18 hours, CPBC). The expression of 1122 genes was significantly increased compared with 1065 genes that were significantly
decreased (q=<0.05). (b) The volcano plot depicts the log2 FC in expression after 18 hours of treatment with MAF-1A, the expression of 101 genes was significantly increased compared with 151 genes that were significantly decreased (q=<0.05).

(c) The gene expression Venn diagram revealed two gene groups which have opposite trends and were labeled RG1 and RG2; CPAS vs. CPAC_up: genes with increased expression after six hours; CPAS vs. CPAC_down: genes with decreased expression after six hours; CPBS vs. CPBC_up: genes with increased expression after 18 hours; CPBS vs. CPBC_down: genes with decreased expression after 18 hours.
Comparison of the expression levels of 20 genes between RNA-Seq and qRT-PCR.
(a) 6 hour time point. (b) 18 hour time point. RNAseq n=3 and qRT-PCR n=3. Error bars represented as the standard error of the mean (SEM).

PPI network of the DEGs resulting from MAF-1A treatment of C. parapsilosis for six hours. Node sizes are correlated with node importance; red nodes denote genes with increased expression and green nodes denote those genes with decreased expression.
Figure 5

Significantly enriched KEGG pathways in Steroid biosynthesis. The DEGs with decreased expression are marked in green. Permission for publication granted by the Kyoto Encyclopedia of Genes and Genomes, Kyoto University, Japan.
Figure 6

Significantly enriched KEGG pathways in Fatty acid degradation. The DEGs with increased expression are marked with a red outline. Permission for publication granted by the Kyoto Encyclopedia of Genes and Genomes, Kyoto University, Japan.
Figure 7

Significantly enriched KEGG pathways in Oxidative phosphorylation. The DEGs with increased expression are marked with a red outline. Permission for publication granted by the Kyoto Encyclopedia of Genes and Genomes, Kyoto University, Japan.