ESTIMATION OF HETEROSIS AND INBREEDING DEPRESSION IN QUANTITATIVE TRAITS OF RICE

(Oryza sativa L.)

Onyia¹, V.N., Obi,¹ I.U and Anyanwu² C. P
¹Department of Crop Science, University of Nigeria Nsukka
²Department of Crop Science and Technology, F.U.T.O

ABSTRACT
It is important to know the degree and direction of heterosis for its commercial exploitation. Heterosis and in-breeding depression were estimated in 8x8 half diallel crosses of rice. The planted materials consisted of eight parental inbred lines, their F₁ hybrids and F₂ populations using randomized complete block design with three replications. Data were collected on number of days to 50% flowering, plant height, number of tillers/plant, number of panicles/hill, panicle length, number of spikelets/panicle, number of fertile spikelets/panicle, number of days to maturity, 1000-seed weight and grain yield. Significant genetic differences were observed among the parents, their F₁ hybrids and F₂ populations for all the characters under study. Panicle length and number of spikelets/panicle showed highly significant heterosis in F₁ hybrids ranging from -6.1748 to 41.847% and -8.6957 to 41.847%, respectively while in breeding depression in the F₂ population ranged from -3.93 to 13.2231% and 3.6364 to 25.85% respectively. F₁ hybrids showed low level of heterosis in number of days to flowering (-11.25 to 11.95%), The parent WAB 450-1-B-163-41 proved itself to be a good general combiner by making higher contribution towards heterosis both in F₁ hybrids and in F₂ population.

Keywords: Genetic basis, Oryza sativa, hybrid vigor, quantitative traits, inbreeding depression

INTRODUCTION
Rice (Oryza sativa L.) is a well known cereal crop grown in almost every part of the world. Although, the plant is naturally self pollinated, strong heterosis is observed in their F₁ hybrids. The term heterosis was coined by Shull (1908) for quantitative measure of superiority of F₁ over its parents. The phenomenon of heterosis has been a powerful force in the evolution of plants and has been exploited extensively in crop production (Birchler et al., 2003). Heterosis in rice can often be poorly expressed as reported by some scientists (Mohammed and Mohanty 1992; Ram 1992, Virekananden and Giridheram 1995).

The phenomenon of heterosis has been observed in many self-pollinated crop species including several of the grain legumes. It is commonly found that the level of heterosis exhibited by a hybrid is a function of the genetic divergence between parents. Heterosis may be positive or negative. Depending on breeding objectives both positive and negative heterosis can be useful for crop improvement. Heterosis is a highly cross specific phenomenon. To successfully use heterosis in grain yield improvement, parental genotypes need to have a high yield potential. The exploration of hybrid vigor is widely recognized as the only readily available means to raise the genetic yield ceiling in areas where yields have already approached their potential. In this approach, developing highly heterotic rice hybrids with superior yield performance and evaluating them across environments are important. (Sitaramaiah et al., 1998). The project was initiated with the objectives to determine the heterotic effects in F₁ hybrids and the inbreeding of the plant behavior in both hybrid and selfed conditions.

MATERIALS AND METHODS
The research was conducted at the experimental field of the National Cereals Research Institute (NCRI), Amakanma sub-

DOI : http://dx.doi.org/10.4314/as.v11i1.8
Estimation of Heterosis and Inbreeding Depression in Rice

RESULTS AND DISCUSSION

The analysis of variance table presented in Table 1 show significant effect (P = 0.05) for the parameters studied except for number of tillers/plant, number of tillers/m² and number of panicle/hill which were non significant. In Table 2 is presented the mean performance of the twelve agronomic attributes of the eight size breeding lines used for the study. The results of the different morphological characters of the eight rice breeding lines, their twenty-eight hybrids and F2 populations are presented in Table 3.

In the present study, different cross combinations were tested in order to develop high yielding hybrid rice varieties and some were found to be promising. The stability of hybrids was checked through their performance in the F2 generation, and variable inbreeding depression was also observed for the studied traits in the different crosses.

Development of high yielding early maturing varieties is a highly desirable quality in most rice breeding programs. Among the twenty eight crosses, highly negative heterosis was observed in some crosses. While some of the crosses such as WAB 56-144-FX X WAB 56-100 and IRAT 317 x WAB 56-100 showed positive heterosis, others such as WAB 450-1-B-163-41 X WAB 35-2-FX and WAB 35-2-FX X IRAT 239 showed negative heterosis for both days to 50% flowering and number of days to maturity which suggests the possibility of developing early maturity lines from these combination. Negative heterosis for earliness was also reported by Khaleque et al., (1977) and Nuruzzaman et al., (2002) in rice.

The number of panicles is one of the components used in determining grain yield. There were increase in panicle number in these hybrids WAB 450-1-B-163-41 x IRAT 317, IRAT 317 x WAB 56-144-FX, WAB 35-1-FX x WAB 56-144-FX, IR 47-701-6-3-1 x WAB 35-2-FX, RAT 317 x IR 47-701-6-3-1, IRAT 317 x IRAT 239 and IR 47-701-6-3-1 x IRAT-239 which had 8 panicles/hill each and WAB 56-1-FX x WAB 35-2-FX that had 9 panicles/hill over their respective parents. Increase in panicle number was earlier observed by Singh et al. (1980), Anandakumah and Sree Rangasamy (1986). The results show that two crosses IRAT 317 x IRAT 239 and IR 47-701-6-3-1 x IRAT 239 showed highly significant positive heterosis values of 45% in panicle number per hill, respectively.
Table 1: Form of Analysis of variance showing sources of Variation, Degrees of Freedom and Mean Square Estimates of Eight Rice breeding lines for twelve (12) Plant Attributes.

SV	DF	50%	Plant ht	Tiller/plant	Tillers/M²	Panicles/hill	Panicles/M²	Panicle length	Spikelets/panicles	FS/P	DTM	GW	GY
Block	3	2.083	2.57	5.583	6.948	10.417	54.88	6.38	631.2	347.7	2.088	1.616	0.254
Genotypes	7	214.2**	936**	8.500ns	5620ns	4.286ns	3346*	27.86*	14171**	7673*	214.2**	153.3**	5.096
Error	21	2.179	17.99	4.345	0.970	3.464	1001	10.79	364.70	368.0	2.179	1.209	0.0823
Total	31												

*psignificant at 5%, ** highly significant at 1%

Table 2. Mean Performance of the ten agronomic attributes of the eight rice breeding lines evaluated at the NCRI Umudike, Abia State.

Genotypes Parents	Days to 50% Flowering	Plant height	No of Tillers/Plant	No of Tillers/M²	No of Panicles/Hill	No of Panicles/M²	Panicle length	No of Spikelets/Panicle	No of Fertile Spikelets/Panicle	No of Days to Maturity	1000 Grain Weight	Grain Yield
Grand mean	78.87	92.25	10.88	275.4	6.25	164.50	24.58	128.40	106.60	108.87	30.58	3.681
WAB 450-1-B-163-41	71	103.22	11	283	6	145	24.53	272	211	101	34.43	5.87
IRAT 317	90	86.70	12	302	7	195	21.98	96	88	120	23.10	2.810
WAB35-1-FX	84	66	12	310	7	165	23.52	116	91	114	39.33	3.850
IR 47-701-6-3-1	85	93.6	11	282	7	178	20.57	80	71	115	22.87	2.310
WAB35-2-FX	75	77.44	13	322	7	205	24.00	126	82	105	35.63	4.55
WAB56-144-FX	76	114.22	10	255	6	148	27.75	111	102	106	33.26	3.570
IRAT 239	81	101.5	9	227	4	115	26.32	123	108	111	25.23	2.850
WAB 56-100	69	95.33	9	222	6	165	27.98	111	100	99	30.82	3.640
F-LSD (P=0.05)	2.170	6.237	3.065	80.14	2.737	46.52	4.830	28.08	28.21	2.170	1.67	0.4217
Table 3. Mean values of the agronomic characters of the parents, F₁’s, F₂’s, mid parent heterosis (% Het) for F₁ hybrids and Inbreeding depression (% ID for F₂ populations) in the rice breeding lines.

Cro	s	Number of Days to 50 % flowering	Plant Height (cm)	Number of Tillers/plant	F₁	F₁ %Het	%ID	F₂	F₂ %Het	%ID
WAB 450-1-B-163-41	X	68	68	68.849	0	92.55	87.32	2.457	1.974	12
WAB 450-1-B-163-41	X	71	72	-3.4014	-1.4085	115.2	109.4	5.960	5.034	12
WAB 450-1-B-163-41	X	WAB 56-100	70	71	-1.4085	101	98.48	0.950	5.651	10
WAB 450-1-B-163-41	X	WAB 56-144-FX	74	74	-1.9868	81.75	77.44	-14.6	5.272	13
WAB 450-1-B-163-41	X	WAB 56-100	73	73	1.3889	81.03	87.80	-6.204	-1.835	12
WAB 450-1-B-163-41	X	WAB 56-144-FX	75	73	3.4483	110.7	102.7	5.678	7.206	12
WAB 450-1-B-163-41	X	IRAT 317	81	81	0.6211	98.70	96.50	3.938	2.290	12
WAB 450-1-B-163-41	X	WAB 35-1-FX	74	75	-4.516	88.67	78.07	4.7985	11.954	14
WAB 450-1-B-163-41	X	IR 47-701-6-3-1	78	78	0	99.80	97.50	1.4125	11.954	13
WAB 450-1-B-163-41	X	IRAT 239	78	77	2.6316	108.93	97.25	6.4185	2.3046	11
WAB 35-1-FX	X	IRAT 239	71	73	-8.874	79.90	96.90	-10.696	10.722	12
WAB 450-1-B-163-41	X	IR 47-701-6-3-1	85	83	3.0303	80.15	81.40	-2.339	-1.559	11
WAB 450-1-B-163-41	X	IR 47-701-6-3-1	86	84	3.6145	93.80	98.75	-6.829	-5.277	12
WAB 35-1-FX	X	IR 47-701-6-3-1	89	84	11.9500	90.25	90.38	-0.846	-0.144	12
WAB 35-1-FX	X	IR 47-701-6-3-1	81	80	1.8868	69.71	69.40	-4.196	-1.004	15
WAB 35-1-FX	X	IR 47-701-6-3-1	71	73	-11.25	82.40	78.10	-8.556	5.2184	10
WAB 35-1-FX	X	WAB 56-100	75	78	-1.9068	73.44	71.40	-8.962	2.7778	12
IR 47-701-6-3-1	X	WAB 35-2-FX	80	80	0	80.55	82.80	-5.811	-2.793	14
IR 47-701-6-3-1	X	WAB 56-144-FX	82	81	1.8634	105.60	103.95	1.6266	1.5625	12
IR 47-701-6-3-1	X	IR 47-701-6-3-1	80	78	3.8961	94.00	94.00	-0.486	0	13
IR 47-701-6-3-1	X	WAB 56-100	80	77	6.6667	96.50	97.31	-0.944	-0.839	11
IR 47-701-6-3-1	X	WAB 56-144-FX	90	83	3.4483	75.00	75.00	2.2495	-1.0484	15
IR 47-701-6-3-1	X	IR 47-701-6-3-1	90	89	2.8571	89.66	89.66	0.5435	2.667	12
IR 47-701-6-3-1	X	IR 47-701-6-3-1	88	86	2.9240	94.00	94.00	-10.106	1.1702	11
WAB 35-1-FX	X	IR 47-701-6-3-1	80	82	-5.3254	70.43	70.43	-117.419	-0.8093	13
WAB 35-1-FX	X	IR 47-701-6-3-1	85	83	3.0303	69.00	69.00	17.6119	-2.7536	12
IR 47-701-6-3-1	X	IR 47-701-6-3-1	84	83	1.2048	95.41	95.41	-2.1957	-4.0771	11

F-LSD (p=0.05) 2.182 3.23 - - 4.371 5.3721 - - 2.359 2.011 - -
Table 3 (cont). Mean values of the agronomic characters of the parents, F₁’s, F₂’s, mid parent heterosis (% het) for F₁ hybrids and Inbreeding depression (% ID for F₁ populations) in the rice breeding lines.

Cro	s	Nes	F₁	F₂	%Het	%ID	F₁	F₂	%Het	%ID	%Het	%ID	
WAB 450-1-B-163-41	X WAB35-2-FX	296	281	2.857	9.3069	6	6	5.6860	16.667	180	160	2.8571	-1.290
WAB 450-1-B-163-41	X WAB56-144-FX	272	260	-0.3413	4.4118	6	6	-1.6073	0	146	136	-0.341	6.6849
WAB 450-1-B-163-41	X WAB 56-100	276	262	-7.2727	5.0676	7	6	16.666	25	153	147	-7.272	11.111
WAB35-2-FX	X WAB56-144-FX	326	320	12.9983	1.8405	7	7	16.666	0	189	176	10.588	1.1418
WAB35-2-FX	X WAB 56-100	315	311	5.8088	1.2698	6	5	0	1.2698	194	190	13.661	4.4776
WAB56-144-FX	X WAB 56-100	251	240	5.2411	4.3824	6	5	0	4.384	151	145	3.7344	3.2895
WAB 450-1-B-163-41	X IRAT 317	285	280	-2.5641	1.7544	8	6	5.6860	16.667	162	158	-4.705	2.469
WAB 450-1-B-163-41	X WAB35-1-FX	280	270	-5.5649	3.5714	6	6	-1.6073	0	155	151	2.581	
WAB 450-1-B-163-41	X IR 47-701-6-3-1	278	265	-5.929	4.6763	7	7	16.666	25	158	148	-2.310	6.329
WAB 450-1-B-163-41	X IRAT 239	282	272	10.588	3.5461	7	7	16.660	0	141	139	8.461	1.418
WAB35-2-FX	X IRAT 239	312	299	13.6612	4.1667	6	5	0	1.2698	201	192	25.62	4.478
WAB56-144-FX	X IRAT 239	250	243	3.7344	2.800	6	5	0	4.384	152	147	15.58	3.290
IRAT 317	X WAB35-2-FX	310	300	-0.6410	3.2258	7	7	-6.667	0	199	190	-0.5	4.5226
IRAT 317	X WAB56-144-FX	296	290	6.2837	2.0270	8	6	23.6769	25	181	175	5.5394	3.3149
IRAT 317	X WAB 56-100	287	280	7.6923	2.4390	7	7	7.6923	0	180	179	0	0.5556
WAB35-1-FX	X WAB35-2-FX	315	296	20	6.0317	9	8	20	11.1111	187	182	1.0811	2.6738
WAB35-1-FX	X WAB56-144-FX	296	290	4.7788	2.0270	8	7	23.0769	12.50	160	158	2.2364	1.250
WAB 450-1-FX	X WAB 56-100	300	295	12.7820	1.6667	7	5	7.6923	28.5714	172	166	4.2424	3.4884
IR 47-701-6-3-1	X WAB 56-100	298	291	-1.3245	2.3490	8	7	1.6667	12.50	194	192	1.3055	1.0309
IR 47-701-6-3-1	X WAB56-144-FX	280	275	4.2831	1.7857	6	7	1.3575	0.8929	180	176	-9.0683	7.3315
IR 47-701-6-3-1	X IRAT 239	271	261	7.5397	3.6900	7	7	13.4021	1.8182	167	180	-4.3657	5.2541
IRAT 239	X WAB 56-100	235	234	4.6771	0.4274	6	6	4.7619	2.7273	143	141	-0.7735	11.2828
IRAT 317	X WAB35-1-FX	300	295	-1.9608	2.3333	7	6	0	12.50	185	186	2.7778	-0.5405
IRAT 317	X IR 47-701-6-3-1	296	291	1.3700	1.6892	8	7	14.2857	14.2857	198	187	6.1662	5.5556
IRAT 317	X IRAT 239	284	279	7.372	1.7506	8	6	45.4545	25	181	178	16.774	1.6757
WAB35-1-FX	X IR 47-701-6-3-1	304	296	2.7027	2.6318	7	6	-6.6667	14.285	177	172	3.8123	2.8249
WAB35-1-FX	X IRAT 239	308	301	14.7114	2.2727	6	6	0	0	142	138	2.1583	2.8169
IR 47-701-6-3-1	X IRAT 239	271	262	6.4833	3.3210	8	6	45.4545	25	183	152	24.915	16.9399

F-LSD (p=0.05) 45.21 38.0 - - 2.021 2.122 - - 34.66 35.33 - -
Table 3 (cont). Mean values of the agronomic characters of the parents, F₁, F₂, and mid parent heterosis (% het) for F₁ hybrids and Inbreeding depression (% ID for F₂ populations) in the rice breeding lines.

Cro	s	Sex	F₁	F₂	%Het	%ID	F₁	F₂	%Het	%ID
WAB 450-1-B-163-41	X	WAB35-2-FX	25.65	24.62	-5.868	12.14	213	205	7.0352	25.848
WAB 450-1-B-163-41	X	WAB56-144-FX	25.71	24.00	-1.607	6.651	218	210	13.838	3.6697
WAB 450-1-B-163-41	X	WAB56-100	29.45	23.82	5.253	4.015	241	221	-11.39	3.7559
WAB35-2-FX	X	WAB56-144-FX	24.51	22.75	-5.99	6.417	120	113	1.2685	5.8333
WAB35-2-FX	X	WAB56-100	24.87	24.80	-4.30	0.281	118	112	-0.4219	5.0847
WAB56-144-FX	X	WAB56-100	26.80	24.35	-3.77	9.141	110	106	-0.900	3.6364
WAB 450-1-B-163-41	X	IRAT 317	23.51	22.51	41.847	4.253	261	187	41.847	4.2126
WAB 450-1-B-163-41	X	WAB35-1-FX	23.52	24.21	35.051	-3.93	262	163	35.051	4.1984
WAB 450-1-B-163-41	X	IR 47-701-6-3-1	23.67	23.21	27.840	-3.93	225	172	27.840	4.1984
WAB 450-1-B-163-41	X	IRAT 239	25.01	24.21	20.607	1.943	254	192	20.607	11.111
WAB56-144-FX	X	IRAT 239	24.82	23.40	2.008	3.198	127	88	2.008	7.0866
WAB56-144-FX	X	IRAT 317	27.11	26.22	4.2735	5.721	122	100	4.2735	13.385
WAB56-144-FX	X	IRAT 317	22.66	20.62	-1.430	9.0026	120	113	8.128	5.8333
IRAT 317	X	WAB56-235-FX	23.84	21.13	-6.0444	11.0319	113	96	9.1787	15.0442
IRAT 317	X	WAB 56-100	24.45	23.41	-2.1217	4.2530	108	104	4.3478	4.6296
WAB56-1-FX	X	WAB35-2-FX	21.66	19.49	-8.838	10.0185	118	102	-2.4793	13.5933
WAB56-1-FX	X	WAB56-144-FX	24.21	22.20	5.035	8.3024	116	101	2.2026	14.736
WAB56-1-FX	X	WAB 56-100	34.16	23.01	-6.1748	4.7599	114	100	0.4405	12.2807
IR 47-701-6-3-1	X	WAB35-2-FX	21.27	20.11	-4.5760	5.4537	110	101	6.791	8.1818
IR 47-701-6-3-1	X	WAB56-144-FX	21.96	20.35	-2.6178	6.4516	93	88	-8.6957	10.7143
IR 47-701-6-3-1	X	IRAT 239	23.22	22.00	-1.5707	9.5745	98	85	-7.6923	4.7619
IR 47-701-6-3-1	X	WAB 56-100	26.94	23.90	3.4188	13.2231	121	105	1.9231	10.3774
IR 47-701-6-3-1	X	IRAT 317	22.02	20.63	12.2855	12.2855	108	98	1.8868	17.3469
IR 47-701-6-3-1	X	IRAT 317	22.14	19.42	6.3124	6.3124	98	81	0.1136	9.2593
IR 47-701-6-3-1	X	IRAT 317	22.04	20.0	9.0209	9.0209	108	101	-1.3699	6.4815
IR 47-701-6-3-1	X	IRAT 317	30.14	28.32	6.0385	6.0385	114	100	10.6796	12.2807
IR 47-701-6-3-1	X	IRAT 239	23.87	22.63	5.1948	5.1948	117	102	-6.0241	12.8205
F-LSD (p=0.05)			2.909	2.55	-7.50	17.55	18.233	-13.043	15.335	

Estimation of Heterosis and Inbreeding Depression in Rice
Table 3 (cont). Mean values of the agronomic characters of the parents, F₁'s, F₂'s, mid parent heterosis (% het) for F₁ hybrids and Inbreeding depression (%ID for F₂ populations) in the rice breeding lines.

Cro	s	Ses	F₁	F₂	%Het	%ID	F₁	F₂	%Het	%ID
WAB 450-1-B-163-41	X	WAB35-2-FX	98	98	-4.854	0	34.92	32.15	-0.14	6.405
WAB 450-1-B-163-41	X	WAB56-144-FX	101	102	-2.415	-0.901	34.02	33.00	0.502	2.998
WAB 450-1-B-163-41	X	WAB 56-100	100	100	-0.990	0	34.72	30.35	0.842	7.932
WAB35-2-FX	X	WAB56-144-FX	104	104	-1.421	0	35.01	35.02	1.625	-0.02
WAB35-2-FX	X	WAB 56-100	103	102	0.9709	0.9709	34.71	32.92	4.453	5.157
WAB 450-1-B-163-41	X	IR AT 317	112	111	1.3575	0.8929	35.33	30.21	22.80	14.49
WAB 450-1-B-163-41	X	WAB35-1-FX	104	105	-3.255	-0.901	3.01	35.26	-2.35	2.082
WAB 450-1-B-163-41	X	IR 47-701-6-3-1	108	108	0	-0.901	32.31	29.66	12.77	2.082
WAB 450-1-B-163-41	X	IR 47-701-6-3-1	108	107	1.8868	0	35.21	34.16	18.03	8.201
WAB35-2-FX	X	IR 47-701-6-3-1	116	114	2.6594	1.7241	28.01	26.73	-0.603	4.5698
IR 317	X	WAB35-2-FX	119	114	-0.9925	4.2017	27.10	26.23	0.4820	3.2103
IR 317	X	WAB56-100	111	110	1.3699	-0.9009	38.60	36.32	2.9883	5.9067
IR 317	X	WAB 56-100	110	109	6.1033	3.5398	40	39.69	14.606	0.775
IR 47-701-6-3-1	X	WAB 56-100	110	110	0	24.10	23.10	-17.60	4.1493	3.30
IR 47-701-6-3-1	X	WAB 56-100	112	111	-4.7619	17.1429	27.11	26.28	-7.692	-16.666
IR 47-701-6-3-1	X	IR 47-701-6-3-1	110	108	1.3423	0.6623	26.61	25.62	7.6923	0
IR 317	X	WAB 56-100	110	107	4.5383	-5.3625	25.81	25.21	20	0
IR 317	X	WAB35-1-FX	108	98	2.5641	1.6667	28.10	26.20	-0.9936	7.5630
IR 317	X	IR 47-701-6-3-1	98	81	2.128	1.6667	23.80	22.00	3.5233	6.7616
IR 317	X	IR 47-701-6-3-1	108	101	2.164	1.6949	24.01	22.45	-0.6620	6.4973
WAB 35-1-FX	X	IR 47-701-6-3-1	114	100	-3.9301	-1.8182	39.41	38.00	26.7202	3.5778
WAB 35-1-FX	X	IR 47-701-6-3-1	117	102	2.2222	1.7391	38.01	35.67	17.7309	29.2135
IR 47-701-6-3-1	X	IR 47-701-6-3-1	110	100	0.8850	0.8772	23.91	21.92	-0.5821	12.5052
F- LSD (p<0.05)			0.685	0.79	-	-	1.8604	1.4566	-	-

Number of days to maturity | 1000-grain weight (g) | Grain yield (tons/ha)

- Depression (%ID for F₂)
This indicates that these crosses could be good materials for developing high yielding hybrids because panicle number, total dry mater and spikelet number/grain number per panicle reportedly contributes greatly to high grain yield production (Dwivedi, et al., 1998). Earlier, negative heterosis for panicle number had been reported by Virmani et al. (1981, 1982) and Jennings (1967). The use of the number of panicles alone is not enough in determining yield in Oryza spp. Gravais and McNew (1993) have earlier suggested that the selection for increased yield via selection for either panicle weight or panicle number alone would be ineffective. Therefore, selection for both increased panicle weight and panicle number to increase yield was estimated to be 91% as effective as selecting for yield directly (Surek and Beser, 2005).

Hybrid vigor for panicle length was observed in some of the crosses such as WAB 35-1-FX X WAB 56-100 and WAB 35-1-FX x IR 47-701-6-3-1. The result also show that some of the crosses that had high tillering ability also have an appreciable increase in terms of grain yield. The hybrids WAB 35-1-FX X WAB 35-2-FX and IRAT 317 X WAB 35-1-FX had the highest number of tillers/plant of 15 each in the F₁ progeny. The hybrid IRAT 317 X WAB35-1-FX also had the highest number of tillers/plant of 14 in the F₂. The result presented in Table 3 show that the hybrids WAB 144-FX X WAB 56-100 and WAB 56-144-FX X IRAT 239 had the highest heterotic values of 26.31% each. This is in line with the report of Basavavaja et al., (1998) that productive tillers/plant can have a high positive effect contribution towards grain yield per plant. The result also agrees with the findings of Ibrahim et al. (1990) that productive tillers was one of the most reliable character in selecting genotypes of rice.

The results obtained, suggests that heterosis in yield were due to yield components like tiller number, panicle length, spikelet number and 1000-grain weight. Grafius (1959) had earlier suggested that there is no separate gene system for yield per second and that the grain yield is an end product of the multiplication interaction between the yield components. This was, confirmed by the present research where more showed hybrid vigor for yield alone. Hybrid vigor for yield is the result of interaction of simultaneous increase in the expression of yield components.

Inbreeding depression was not found to be significant in most of the studied characters. Positive (ID) in F₂ generation was observed in the characters of tiller number per plant, panicle length, spikelet fertility, 1000 grain weight and grain yield resulting is it hybrid vigour hybrid. However, some of the hybrids such as WAB 35-1-2FX x WAB 56-144-FX and R 47-701-6-3-1-x IRAT 239 exhibited a low level of inbreeding depression for yield characters such as panicle number and 1000 grain weight showing their high level of stability as F₁ variety. Moreover, hybrid break down in self pollinated plant species such as rice has been observed by many researchers (Li et al., 1997a ; b and 1997b).

CONCLUSION

The results of the investigation showed that F₁ rice hybrids are useful not only for their high grain yield per cropping season but also the possibility of obtaining more heterotic hybrids in specific cross combinations with them. The findings that most of the F₁ hybrids were superior to their F₂ populations and F₂ populations showed considerable inbreeding depression in majority of the cases, thus, the possibility of getting F₁ seed with a performance of anyway near, F₁ seed is not feasible.

It can be concluded from this study that with appropriate choice of parental lines, it is possible to develop F₁ rice hybrid possessing distinct yield superiority over the best-inbred lines.

REFERENCES

Ahmad, M.I. (1996) Hybrid rice production technology DRR, Hyderabad.

Anandakumar, C.R. and Sree Rangasamy, S.R. (1986). Heterosis and Inbreeding depression in rice. *Oryza* 23: 96-101.

Basavaraja, P., Rudraradlya, M and Kulkarni, R.S. (1998) Genetic variability, correlation and path analysis of yield components in two F₄ population of fine grain rice. Mysore Journal of Agricultural Sciences (1997). 31(1) 1-6.

Birchler, J.A., Donald, L.A. and Riddle, N. (2003). In search of Molecular basis of heterosis. Plant Cell 15: 2236-2239

Dwivedi, D.K., Pandey, M.P., Pandey, S.K. and Rongbai, .I. (1998). Heterosis over environment in crosses involving indica and tropical Japonica rice cultures. IRRI Notes. Vol 23 number 2p

Falconer, D.S. and F.C. Mackey (1996) Introduction to quantitative genetics. Fourth edition. Longman. New York.

Gravais, K.A. and McNew. R.M. (1993). Genetic relationships and selection for rice yield and yield components. *Crop Sci.* 33: 259-262.

Ibrahim, S.M. Ramalingam, A and Subramanian, A. (1990) Path analysis
of rice grain yield under rained lowland conditions IRRI 15(1): PP11

Jennings, P.R. (1967). Rice Heterosis at different growth stages in a tropical environment. Int. Rice. Comm. Newsl. 16(2): 24-26.

Jones, J.W. (1926) Hybrid vigour in rice. Journal of the American Society of Agronomy 18: 423-428.

Khaleque, M.A., O.I., Jorller and A.M., Eunus. (1977). Heterosis and Combining ability in diallel cross of rice (Oryza saliva L.) Bangla, J. Agric. Acc. 4: 137-145.

Li, Z.K., Pinson, S.R.M., Paterson, A.H., Paric, N.D. and Starsel, J.W. (1997a) Epistassi For three grain yield component in rice (Oryza sativa L.) Genetics, 145: 453-465.

Li, Z.K., Pinson, S.R.M., Paterson, A.H., Paric, N.D. and Starsel, J.W. (1997b) Genetics of hybrid sterility and hybrid breakdown in an inter-sub specific rice (Oryza sativa L.) Population Genetics, 145: 1139-1148.

Mohammad, K.C. and Mohanty, M.K. (1992). Inheritance of some qualitative characters including heterosis in rice by combining ability analysis inheritance of quantitative traits in rice genetic. IRRI Notes Vol 11: p 14.

Nuruzzaman, M. Alam, M.F., Ahwo., M.G. Shohael, M.A., Biswas, M.K., Amin, M.R. and Hossain, M.M. (2002). Studies on parental variability and heterosis in rice (Oryza sativa L.) Pak. J. Biol. Sci. (10): 1006-1009.

Obi, I.U. (2003). Statistical Methods of detecting differences between treatment means SNAP Press Ltd Enugu. Nigeria PP 45.

Shull, G.H. (1908). The combination of a field of maize. Res. of American Breed Assoc. 4: 296-301.

Singh, S.P., Singh, R.R., Singh R.P. and Singh R.V. (1980) Heterosis in rice. Oryza 17 109-113.

Sitaramakah, C.H., Rani, V.D. and Roodi, N.S. (1998) Standard heterosis of rice hybrid for yield and yield components IRRI notes Vol 23 p 15.

Steel, C.D. and Torres, J.K. (1980). Principles and procedures of statistics. A biometrical Approach, second edition Mc Graw. Hill books Co. Inc. New York. 48/pp.

Surek H and Beser N. (2005). Selection for grain yield and its component in early generation in rice. (Oryza sativa L.) Trakya Univ. J. Sci 6(1) 51-58.

Virmani, S.S., Aquino R.C. and Khush G.S. (1982). Heterosis breeding in rice. Oryza sativa L. Theo. Appl. Genet. 63: 373-380.

Virmani, S.S., Chaamphony, R.C. and Khush, G.S. (1981) Current outlook on hybrid rice. Oryza 18: 67-84.

Vive Kananden R and Giridheram, S. (1995) Heterosis for Kernel Characters in rice IRRI Notes 20. P1

Wynne, J.C., Emery, D.A and Rice, P.N. (1979). Combining ability estimates in Arachis hypogaea L. II field performance of F1 hybrids. Crop Science 10: 713-715.