Foucart, Simon

Full recovery from point values: an optimal algorithm for Chebyshev approximability prior.

Zbl 07726215

Adv. Comput. Math. 49, No. 4, Paper No. 57, 14 p. (2023)

The author succeeds in making the claim in the title of the paper come true: the construction of an optimal algorithm for full recovery from point values. Of course (“there is no such thing as a free lunch”), some restrictions on generality have to be posed.

The mathematical setting is here:

– $C(X)$ is a space of continuous functions on a compact set X,
– the norm used is the uniform norm on $C(X)$
 $$\|f\|_{C(X)} = \max\{|f(x)|, x \in X\}.$$
– the unknown function $f \in C(X)$ is observed using point values in $x^{(i)} \in X$
 $$y_i = f(x^{(i)}), \ i \in \{1, \ldots, m\},$$
– f is to be restricted to a nodal set K,
– the recovery procedure is a map Δ from \mathbb{R}^m into $C(X)$, viewed through its worst-case error over K
 $$\text{wce}_K(\Delta) = \sup_{f \in K} \|f - \Delta([f(x^{(i)}); \ldots; f(x^{(m)})])\|_{C(X)}.$$

The problem to construct an optimal recovery procedure that minimizes $\text{wce}_K(\Delta)$, is of course, too general: one has to use a restriction. The author chooses, given a subset V of $C(X)$ and a parameter $\varepsilon \geq 0$, the approximation model

$$K_{V,\varepsilon} = \{ f \in C(K) : \text{dist}_{C(K)}(f, V) \leq \varepsilon \}.$$

The result is then given in Algorithm 1 in §2, written in standard programming terms (using for...end for statements). It is, however, not possible to reproduce the algorithm in full within the space of an ordinary review, but this reviewer urges those who are working in the area to pursue the paper in detail; it is worth it!

The layout of the paper is as follows:
§1. Problem setting (1 page)
§2. Description of an optimal algorithm (1 page)
§3. Reminders of Chebyshev spaces (1 page)
§4. Reminders on optimal recovery (3 pages)
§5. Validation of the proposed algorithm (3 pages)
§6. Concluding remarks (3 pages)

Puts the results found in perspective.

References (16 items)

Reviewer: Marcel G. de Bruin (Heemstede)
MSC:
41A05 Interpolation in approximation theory
41A10 Approximation by polynomials
41A50 Best approximation, Chebyshev systems
90C05 Linear programming

Keywords:
optimal recovery; Chebyshev spaces; ℓ_1-minimization; simplex algorithm

Full Text: DOI arXiv

References:
[1] Adcock, B.; Platte, RB; Shadrin, A., Optimal sampling rates for approximating analytic functions from pointwise samples, IMA J. Numer. Anal., 39.3, 1360-1390 (2019) · Zbl 1462.65024 · doi:10.1093/imanum/dry024
[2] de Boor, C.; Pinkus, A., Proof of the conjectures of Bernstein and Erdős concerning the optimal nodes for polynomial interpolation, Journal of Approximation Theory, 24, 289-303 (1978) · Zbl 0412.41002 · doi:10.1016/0021-9045(78)90014-X
[3] Coppel, W.A.: Disconjugacy. Springer-Verlag (1971)
[4] Coppersmith, D.; Rivlin, TJ, The growth of polynomials bounded at equally spaced points, SIAM J. Math. Anal., 23.4, 970-983 (1992) · Zbl 0769.26003 · doi:10.1137/0523054
[5] Dolbeault, M.; Krieg, D.; Ulrich, M., A sharp upper bound for sampling numbers in $\ell_\infty(2^n)$, Appl. Comput. Harmon. Anal., 63, 113-134 (2023) · Zbl 1433.41001 · doi:10.1016/j.acha.2022.12.001
[6] DeVore, R.; Foucart, S.; Petrova, G.; Wojtaszczyk, P., Computing a quantity of interest from observational data, Constr. Approx., 49.3, 461-508 (2019) · Zbl 1414.41019 · doi:10.1007/s00365-018-9433-7
[7] Driscoll, TA; Hale, N.; Trefethen, LN, Chebfun Guide (2014), Oxford: Pafnuty Publications, Oxford
[8] Foucart, S., Instances of computational optimal recovery: refined approximability models, J. Complex., 62 (2021) · Zbl 1460.65068 · doi:10.1016/j.jco.2020.101503
[9] Foucart, S.: Mathematical pictures at a data science exhibition. Cambridge University Press (2022) · Zbl 1485.68002
[10] Foucart, S.: Small-normed projections onto polynomial and spline spaces. PhD thesis, University of Cambridge (2006)
[11] Foucart, S.; Powers, V., Basc: constrained approximation by semidefinite programming, IMA J. Numer. Anal., 37.2, 1066-1085 (2017) · Zbl 1433.41001
[12] Kilgore, TA, A characterization of the Lagrange interpolating projection with minimal Tchebycheff norm, Journal of Approximation Theory, 24, 273-288 (1978) · Zbl 0428.41023 · doi:10.1016/0021-9045(78)90013-8
[13] Mallat, S.: A wavelet tour of signal processing: the sparse way, 3rd edn. Academic Press (2008) · Zbl 1170.94003
[14] Packel, EW, Do linear problems have linear optimal algorithms?, SIAM Rev., 30.3, 388-403 (1988) · Zbl 0732.41035 · doi:10.1137/1030091
[15] Rakhmanov, E.A.: Bounds for polynomials with a unit discrete norm. Ann. Math. 55-88 (2007) · Zbl 1124.41014
[16] Trefethen, LN, Exactness of quadrature formulas, SIAM Rev., 64.1, 132-150 (2022) · Zbl 1515.65067 · doi:10.1137/20M1389522

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.