Draft Genome Sequence of the Emerging Bivalve Pathogen Vibrio tubiashii subsp. europaeus

Edward J. Spinard
Javier Dubert

See next page for additional authors

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.

Follow this and additional works at: http://digitalcommons.uri.edu/cmb_facpubs

Citation/Publisher Attribution

Spinard, E. J., Dubert, J., Nelson, D. R., Gomez-Chiarri, M., and Barja, J. L. (2016). Draft genome sequence of the emerging bivalve pathogen Vibrio tubiashii subsp. europaeus. Genome Announcements, 4 (4): e00625-16. doi: 10.1128/genomeA.00625-16

This Article is brought to you for free and open access by the Cell and Molecular Biology at DigitalCommons@URI. It has been accepted for inclusion in Cell and Molecular Biology Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
Draft Genome Sequence of the Emerging Bivalve Pathogen *Vibrio tubiashii* subsp. *europaeus*

Edward J. Spinard, Javier Dubert, David R. Nelson, Marta Gomez-Chiarri, Juan L. Barja

Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA; Departamento de Microbiología y Parasitología, CIBUS, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain; Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, Kingston, Rhode Island, USA

Vibrio tubiashii subsp. *europaeus* is a bivalve pathogen isolated during episodes of mortality affecting larval cultures in different shellfish hatcheries. Here, we announce the draft genome sequence of the type strain PP-638 and describe potential virulence factors, which may provide insight into the mechanism of pathogenicity.

Vibrio tubiashii subsp. *europaeus* is an emerging bivalve pathogen identified recently as the etiological agent responsible for larval and spat mortalities in clam, oyster, and abalone cultures detected in Spanish and French hatcheries (1, 2). This pathogen is a causative agent of vibriosis, inducing mass mortalities and important economic losses, representing the main bottleneck for the production process in shellfish aquaculture (1, 2).

V. tubiashii subsp. *europaeus* PP-638T (= CECT 8136T = DSM 27349T) was originally isolated from a culture tank of flat oyster (*Ostrea edulis*) during an episode of larval mortality in a shellfish hatchery (Galicia, Northwest Spain) (1). DNA was isolated from *V. tubiashii* subsp. *europaeus* PP-638T grown overnight in YP30 using the Wizard genomic DNA purification kit (Promega), according to the manufacturer’s instructions, except DNA was resuspended in 2 mM Tris-HCl buffer (Bio Basic). Genomic DNA was sequenced using an Illumina MiSeq at the Genomics and Sequencing Center at the University of Rhode Island, Kingston, RI. Reads were trimmed using CLC Genomics Workbench (version 8.5.1) for quality, ambiguous nucleotides, and adapters. A total of 5,157 open reading frames (5–7).

The genome encodes two secretion systems (type III secretion system [T3SS] and T6SS) that are used to deliver effector molecules directly into the host. The T3SS-secreted virulence factor has a domain similar to the GTPase-activating domain found on YopE from *Yersinia pestis* (12–16). While the T6SS structural components are encoded on the p251-like megaplasmid, the protein responsible for forming the puncturing tip of the T6SS secretion system, VgrG, appears to be encoded by two genes. One VgrG-encoding gene is on chromosome 1, and the second is on chromosome 2.

Nucleotide sequence accession numbers. This whole-genome shotgun project has been deposited in DDBJ/EMBL/GenBank under the accession no. LUAX0000000. The version described in this paper is the first version LUAX01000000.

ACKNOWLEDGMENTS

This material is based upon work conducted at a Rhode Island NSF EPS-CoR research facility, the Genomics and Sequencing Center, supported in part by the National Science Foundation EPSCoR Cooperative Agreement no. EPS-1004057 and by grant AGL2014–59655 from the Ministry of Economy and Competitiveness of Spain.

FUNDING INFORMATION

This work, including the efforts of Juan L. Barja, was funded by Ministry of Economy and Competitiveness of Spain (AGL2014–59655). The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
REFERENCES

1. Prado S, Dubert J, Barja JL. 2015. Characterization of pathogenic vibrios isolated from bivalve hatcheries in Galicia, NW Atlantic coast of Spain. Description of Vibri* tubiashii subsp. europaensis subsp. nov. Syst Appl Microbiol 38:26–29. http://dx.doi.org/10.1016/j.syapm.2014.11.005.

2. Travers MA, Mersni Achour R, Haffner P, Tourbiez D, Cassone AL, Morga B, Doghri I, Garcia C, Renault T, Fruttiert-Arnaudin I, Saulnier D. 2014. First description of French V. tubiashii strains pathogenic to mollusks. I. Characterization of isolates and detection during mortality events. J Invertebr Pathol 123:38–48. http://dx.doi.org/10.1016/j.jip.2014.04.009.

3. Prado S, Dubert J, Barja JL, Nunez-Carpio J, Viseras P, Saulnier D. 2013. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol 20:714–737. http://dx.doi.org/10.1089/cmb.2013.0084.

4. Richards GP, Needleman DS, Watson MA, Bono JL. 2014. Complete genome sequence of the larval shellfish pathogen Vibrio tubiashii type strain ATCC 19109. Genome Announc 2(6):e01252-14. http://dx.doi.org/10.1128/genomeA.01252-14.

5. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsmaj K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GI, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Ponzian T, Parrello B, Pushc GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST server: Rapid Annotations using Subsystems Technology. BMC Genomics 9:75. http://dx.doi.org/10.1186/1471-2164-9-75.

6. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GI, Olson R, Overbeek R, Parrello B, Pushc GD, Shukla M, Thomason JA, III, Stevens R, Vonstein V, Wattman AR, Xia F. 2015. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365. http://dx.doi.org/10.1038/srep08365.

7. Overbeek R, Olson R, Pushc GD, Olsen GI, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R. 2014. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214. http://dx.doi.org/10.1093/nar/gkt1226.

8. Hasegawa H, Lind EJ, Boin MA, Häse CC. 2008. The extracellular metalloprotease of Vibrio tubiashii is a major virulence factor for pacific oyster (Crassostrea gigas) larvae. Appl Environ Microbiol 74:4101–4110. http://dx.doi.org/10.1128/AEM.00061-08.

9. Varina M, Denkin SM, Starosiek AM, Nelson DR. 2008. Identification and characterization of Epp, the secreted protease for the Vibrio anguillarum EmA metalloprotease. J Bacteriol 190:6589–6597. http://dx.doi.org/10.1128/JB.00535-08.

10. Li L, Mou X, Nelson DR. 2013. Characterization of Flp, a phosphatidyglycholine-specific phospholipase and hemolysin of Vibrio anguillarum. BMC Microbiol 13:271. http://dx.doi.org/10.1186/1471-2180-13-271.

11. Rock JL, Nelson DR. 2006. Identification and characterization of a hemolysin gene cluster in Vibrio anguillarum. Infect Immun 74:2777–2786. http://dx.doi.org/10.1128/IAI.74.5.2777-2786.2006.

12. Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwads M, He S, Hurwitz DJ, Jackson JD, Ke Z, Lancerckyi CJ, Liebert CA, Liu G, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tanseem A, Thanl K, Yamashita RA, Zhang D, Zhang N, Bryant SH. 2009. CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37:D205–D210. http://dx.doi.org/10.1093/nar/gkq845.

13. Marchler-Bauer A, Bryant SH. 2004. CD-search: protein domain annotations on the fly. Nucleic Acids Res 32:W327–W331. http://dx.doi.org/10.1093/nar/gkh454.

14. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwads M, Hurwitz DJ, Lancerckyi CJ, Lu F, Marchler GH, Song JS, Thanl K, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH. 2015. CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226. http://dx.doi.org/10.1093/nar/gku1221.

15. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwads M, Hurwitz DJ, Jackson JD, Ke Z, Lancerckyi CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanl K, Yamashita RA, Zhang D, Zheng C, Bryant SH. 2011. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229. http://dx.doi.org/10.1093/nar/gkt1189.

16. Evdokimov AG, Tropea JE, Routzahn KM, Waugh DS. 2002. Crystal structure of the Yersinia pestis GTase activator YapE. Protein Sci 11:401–408. http://dx.doi.org/10.1110/ps.34102.