О.В. Осадчук, В.С. Осадчук, Я.О. Осадчук, Д.Р. Ільчук, Г.О. Пастушенко
Твердотільний радіовимірювальний оптико-частотний перетворювач витрат газу

Вінницький національний технічний університет, м. Вінниця, Україна, osadchuk.av69@gmail.com

В роботі представлено дослідження твердотільного радіовимірювального оптико-частотного перетворювача витрат газу на основі транзисторної структури з від’ємним диференційним опором. Розроблено математичну модель твердотільного радіовимірювального оптико-частотного витратоміра, яка дозволила отримати функцію перетворення та рівняння чутливості. Твердотільний радіовимірювальний оптико-частотний витратомір газу створено на основі транзисторної структури з від’ємним диференційним опором, що складається з НЕМТ польового транзистора і біполярного транзистора з пасивним індуктивним елементом. При заміні пасивної індуктивності на активний індуктивний елемент перетворювач повністю можна виконати в інтегральному вигляді. В основі роботи твердотільного радіовимірювального оптико-частотного витратоміру газу лежить інтерферометричний спосіб рефрактометрії оптично прозорих рідин і газів. Від’ємний опір, утворений паралельним включенням повного опору з ємнісною складовою на електродах колектор-стік транзисторної структури та індуктивності, приводить до виникнення електричних коливань в контурі твердотільного автогенератора. Встановлено, що на витраті газу від 0 л/год до 4 л/год частота коливань змінюється від 812,65 МГц до 811,62 МГц. Отримано теоретичні та експериментальні дослідження показали, що зростання витрат газу від 0 л/год до 4 л/год знижує частоту генерації від 813,00 МГц до 811,80 МГц. Показано, що вибрані режими живлення з постійною напругою, можна отримати практично лінійну залежність частоти генерації від витрат газу і вибирати канали для передачі вимірюваної інформації. Чутливість розробленого пристрою складає 262 кГц/л/год. Отримані теоретичні та експериментальні дослідження на сьогодні є актуальним.

УДК 621.382

Вступ

На сучасному етапі розвитку твердотільної електроніки і науково-технічного прогресу, основними напрямами розвитку мікро- та наноелектроніки є удосконалення і сучасність в системах автоматизації і контролю для промисловості, транспорту, військової техніки, медицини, побутових цілей, тощо [1, 4-8]. Перший напрямок забезпечує розвиток та удосконалення мікроелектронічних технологій виробництва, інтенсивне зростання продуктивності праці, забезпечення дотримання норм санітарно-гігієнічних умов праці персоналу, та високої якості готової промислової продукції. Саме тому дослідження і розробки методик і вимірювальних засобів величезно важливі як електричної, так і неелектричної природи на сьогодні є актуальним.
науковим напрямком [1, 2, 4–8].

Серед перетворювачів неелектричних величин важливе місце посідають перетворювачі витрат газу та рідин, які в останній час мають широкий спектр застосування. Вони необхідні для проведення наукових досліджень, для керування технологічними процесами, для контролю роботи енергетичних установ, для керування іграшками і космічними кораблями. Окрім цього, прецізійні перетворювачі витрат газу необхідні в медичній техніці [9].

Тому важливим завданням сучасного мікроелектронного приладобудування та вимірювальної техніки є вибір надійних методів вимірювання витрат газу та рідин стосовно різних виробницт, створення твердотільних радіовимірювальних приладів необхідної точності, стабільності та швидкодії, а також дослідження впливу на результат вимірювань всієї сукупності факторів, які супроводжують вимірювальний процес [10].

Одним з нових наукових напрямків в побудові твердотільних радіовимірювальних перетворювачів витрат газу є дослідження в сфері частотних витратомірів на основі транзисторних структур з від’ємним диференційним опором. Твердотільні радіовимірювальні перетворювачі витрат газу з частотним вихідом посідають як простоту, так і універсальність, які властиві аналоговим пристроям, а також високу чутливість, точність і завадостійкість, які характерні для вимірювальних перетворювачів з кодовим вихідним сигналом [10-13].

Дослідження цього наукового напрямку показали, що реактивні властивості та від’ємний диференційний опір нерозривно пов’язані між собою, а багатофункціональність і простота радіовимірювальних приладів на основі транзисторних структур з від’ємним диференційним опором є перспективним напрямком при їх побудові та практичному використанні. Також, застосування принципу перетворення «витрати газу—частота» на основі транзисторних структур з від’ємним диференційним опором є перспективним напрямком при їх побудові та практичному використанні.

Для створення твердотільного радіовимірювального оптико-частотного перетворювача витрат газу використаємо інтерферометричний спосіб рефрактометрування оптично прозорих рідин і газів, а в якості фоточутливого пристрою обрано частотний перетворювач на основі транзисторної структури з від’ємним диференційним опором.

Розглянемо принцип роботи оптичної частини витратоміра газу. Для забезпечення високої чутливості і точності вимірювання витрат газу у конструкцію введене додаткове дзеркало, яке розміщене на одній оптичній осі з напівпровідниковими пластинами та джерелом випромінювання, причому обидва дзеркала розташовані між емністю вимірювальної камери з газом, так що в досліджуваному середовищі відсутні об’єкти.

Оптико-частотний витратомір газу містить джерело випромінювання, ємність з досліджуваним середовищем, напівпровідник пластини і два дзеркала, які знаходяться на оптичних осіх по ходу оптичних променів, а також узор вимірювання оптичної різниці ходу променів (частотний оптичний перетворювач). Як ємність з досліджуваним середовищем використовується трубопровід з газом, виконаний із двома симетрично розташованими відносно осі трубопроводу і за напрямом потоку парами отворів, що закриті оптичними скляними пластинами, крім того додатково міститься ще одне дзеркало. Дзеркала розташовані за межами трубопроводу, причому додаткове дзеркало та напівпровідник пластини розміщені на одній оптичній осі з джерелом випромінювання.

II. Результати та обговорення

На рис. 1 зображено схему твердотільного радіовимірювального оптико-частотного перетворювача витрат газу. Радіовимірювальний перетворювач витрат газу містить джерело світлового випромінювання 1, яким є світловідбиваючий AsGa діод типу CQY36N (довжина хвилі 950 нм), напівпровідник пластину 2 на оптичній осі, ємність з досліджуваним середовищем, напівпровідник пластини і два дзеркала, які знаходяться на оптичних осіх по ходу оптичних променів, а також узор вимірювання оптичної різниці ходу променів (частотний оптичний перетворювач). Як ємність з досліджуваним середовищем використовується трубопровід з газом, виконаний із двома симетрично розташованими відносно осі трубопроводу і за напрямом потоку парами отворів, що закриті оптичними скляними пластинами, крім того додатково міститься ще одне дзеркало. Дзеркала розташовані за межами трубопроводу, причому додаткове дзеркало та напівпровідник пластини розміщені на одній оптичній осі з джерелом випромінювання.
О.В. Осадчук, В.С. Осадчук, Я.О. Осадчук, Д.Р. Ільчук, Г.О. Пастушенко

226

світлового випромінювання 1. В оптико-частотному витратомірі газу як чутливі до оптичного випромінювання елементи використано фоточутливі біполярний та польовий транзистори.

Оптичні довжини шляху, який прохідять перший і другий промені через об’єм газу, різні при проходженні газу по трубопроводу. Витрати газу зв’язані з різницею тисків у двох перетинах трубопроводу рівнянням [18]:

\[P_1 - P_2 = \pi R^4 \],

де \(P_1 - P_2 \) – різниця тисків у двох перетинах вимірювальної камери оптико-частотного витратоміру газу; \(Q \) – витрати газу; \(R \) – діаметр вимірювальної камери.

При використанні інтерферометра максимальні інтенсивності інтерферуючих хвиль у вимірювальній камері перетворюються в еквівалентні наступні умови [18]:

\[(n_i - n_o)2R = \lambda_o k \],

де \(n_o \) – довжина хвилі оптичного випромінювання; \(k = 0, 1, 2... \) – коефіцієнт, який визначається вузлом вимірювання оптичної різниці ходу променів у вимірювальній камері оптико-частотного перетворювача.

Залежність витрат газу від потужності оптичного випромінювання описується виразом:

\[Q = z \cdot P \cdot k \],

де \(z \) – коефіцієнт пропорційності.

Коефіцієнт пропорційності визначається методом тюрування витрат до числа, що описує відношення оптичної різниці ходу променів до довжини хвилі світла, тобто показанню вуза вимірювання оптичної різниці ходу променів.

Твердотільний радіовимірювальний оптико-частотний перетворювач витрат газу реалізований на основі конструкції, яка складається з НЕМТ польового транзистора (ATF35143) і біополярного транзистора (BFT93). В цій конструкції фоточутливим елементом виступають як польовий, так і біполярний транзистор (рис. 1). Теоретично і експериментально показано, що на електродах колектор-стік запропонованої транзисторної структури існує від’ємний диференційний опір, що відповідає вузлу вимірювання відносно витрати польового транзистора. Електричне коло створює додатковий зворотний позитивний зв’язок від джерела до входу, а також через опір \(R_1 \) здійснюється керування з постійного струму біполярного транзистора VT1, а ємність \(C_2 \) здійснює блокувальну роль, такої що захищає джерело постійного струму \(U_1 \) від струмів надзвичайно високих частот. Коливальний контур утворений пасивною індуктивністю \(L_1 \) і ємністю складовою постійного опору транзисторної структури. Емність \(C_2 \) здійснює змінювану ємністю складовою постійного опору транзисторної структури, яка існує на електродах колектор-стік біполярного та польового транзисторів. При заміні пасивної індуктивності на активний індуктивний елемент перетворювач повністю можна виконати в інтегральному вигляді.

Для вивчення поведінки твердотільного радіовимірювального оптико-частотного перетворювача витрат газу в динамічному режимі необхідно отримати залежності активної і реактивної складових постійного опору на електродах колектор-стік транзисторної структури, частоти генерації, характеристики перетворення і чутливості від дії оптичного випромінювання і в кінцевому результаті від витрат газу. Розрахунки зроблені на основі еквівалентної схеми біполярного та польового НЕМТ транзисторів (рис. 2).

Вольт-амперна характеристика радіовимірювального перетворювача на основі НЕМТ польового транзистора і біполярного транзистора має ділянки від’ємного опору, що дозволяє компенсувати втрати енергії в коливальному контурі, який утворений еквівалентною ємністю колектор-стік структурі і зовнішньою індуктивністю. Функція перетворення розраховується із системи рівнянь, які складаються на основі еквівалентної схеми перетворювача (рис. 3). Система рівнянь Кірхгофа, згідно напрямкам контурних струмів, має вигляд:

Рис. 1. Схема радіовимірювального оптико-частотного перетворювача витрат газу.
Рис. 2. Еквівалентна схема перетворювача на основі НЕМТ полового транзистора і біполярного транзистора.

Рис. 3. Перетворена еквівалентна схема перетворювача на основі НЕМТ полового транзистора і біполярного транзистора.

Роз'язання системи рівнянь проводилось методом Гауса на персональному комп'ютері за допомогою пакету програм “Matlab 9.4” [19]. Параметри транзисторів, які складають фоточутливу структуру, а також параметри еквівалентної схеми перетворювача визначались з робіт [20–23]. Розрахунки повного опору структури дозволяють отримати всі необхідні метрологічні характеристики радіовимірювального оптико-частотного перетворювача витрат газу.

На рис. 4 представлено теоретичні і експериментальні залежності активної складової від потужності випромінювання з різними напругами живлення. Аналіз показує, що спостерігається незначне зростання від’ємного диференційного опору з зростанням потужності оптичного випромінювання від 0 мкВт/см² до 80 мкВт/см² з напругами живлення 3,3 В. З із зменшенням напруги живлення до 2,2 В спостерігається більше зростання.

Рис. 4. Теоретичні і експериментальні залежності активної складової від потужності випромінювання з різними напругами живлення.
О.В. Осадчук, В.С. Осадчук, Я.О. Осадчук, Д.Р. Ільчук, Г.О. Пастушенко

від’ємного диференційного опору до 65 Ом із зміною потужності випромінювання від 0 мкВт/см² до 80 мкВт/см². На рис. 5 представлена залежність від’ємного диференційного опору від напруги живлення при різних значеннях потужності випромінювання. Зростання напруги живлення більше 3,5 В приводить до меншої залежності активного опору від потужності світлового потоку.

Теоретичні та експериментальні залежності реактивної складової повної опору твердотільного радіовимірювального оптико-частотного перетворювача витрат газу від потужності випромінювання представлені на рис. 6. Реактивна складова має східний характер і її значення по модулю майже лінійно змінюється із зростанням потужності світлового випромінювання.

Для визначення функції перетворення необхідно знайти залежність частоти генерації від витрат газу. Це можливо зробити розв’язавши систему рівнянь (4), яка складена для змінного струму на основі еквівалентної схеми (рис. 3). При розділені повного опору на дійсну і уявну складові, неважко визначити еквівалентну ємність коливального контуру, яка залежить від потужності падаючого випромінювання і відповідно до витрат газу. Функція перетворення в цьому випадку має вигляд:

\[
F_{\text{rot}} = \frac{1}{2} \sqrt{\frac{C_{\text{e}}(Q)C_{\text{d}}(Q)C_{\text{a}}(Q)C_{\text{b}}(Q) + C_{\text{e}}(Q)C_{\text{d}}(Q)C_{\text{a}}(Q)C_{\text{b}}(Q) + C_{\text{e}}(Q)C_{\text{d}}(Q)C_{\text{a}}(Q)C_{\text{b}}(Q) + C_{\text{e}}(Q)C_{\text{d}}(Q)C_{\text{a}}(Q)C_{\text{b}}(Q)}{LC_{\text{e}}(Q)C_{\text{d}}(Q)C_{\text{a}}(Q)C_{\text{b}}(Q)}}. \tag{5}
\]

На рис. 7 представлена залежність частоти генерації від витрат газу. Найкращу залежність для функції перетворення можна одержати, якщо довжина хвилі оптичного випромінювання дорівнює 0,95 мкм. Експериментальні дослідження показали, що частота генерації збільшується від 810,15 МГц до 813,75 МГц, якщо напруга збільшується від 1,4 В до 3,8 В. Рівняння чутливості визначається на основі виразу (5) і описується формулкою:

\[
S_{\text{q}} = \frac{1}{4} \left(\frac{\partial C_{\text{e}}(Q)}{\partial Q} C_{\text{e}}(Q)C_{\text{d}}(Q)C_{\text{a}}(Q)C_{\text{b}}(Q) + \frac{\partial C_{\text{e}}(Q)}{\partial Q} C_{\text{e}}(Q)C_{\text{d}}(Q)C_{\text{a}}(Q)C_{\text{b}}(Q) + \frac{\partial C_{\text{e}}(Q)}{\partial Q} C_{\text{e}}(Q)C_{\text{d}}(Q)C_{\text{a}}(Q)C_{\text{b}}(Q) + \frac{\partial C_{\text{e}}(Q)}{\partial Q} C_{\text{e}}(Q)C_{\text{d}}(Q)C_{\text{a}}(Q)C_{\text{b}}(Q) \right) + \frac{\partial C_{\text{e}}(Q)}{\partial Q} C_{\text{e}}(Q)C_{\text{d}}(Q)C_{\text{a}}(Q)C_{\text{b}}(Q) \right) - \frac{A_{\text{e}}(Q)}{LC_{\text{e}}(Q)C_{\text{d}}(Q)C_{\text{a}}(Q)C_{\text{b}}(Q)} - \frac{A_{\text{e}}(Q)}{LC_{\text{e}}(Q)C_{\text{d}}(Q)C_{\text{a}}(Q)C_{\text{b}}(Q)} - \frac{A_{\text{e}}(Q)}{LC_{\text{e}}(Q)C_{\text{d}}(Q)C_{\text{a}}(Q)C_{\text{b}}(Q)} - \frac{A_{\text{e}}(Q)}{LC_{\text{e}}(Q)C_{\text{d}}(Q)C_{\text{a}}(Q)C_{\text{b}}(Q)} \right) \left(\frac{1}{LC_{\text{e}}(Q)C_{\text{d}}(Q)C_{\text{a}}(Q)C_{\text{b}}(Q)} \right)^{1/2}. \tag{6}
\]
де \(A_1 = C_{bc}(Q)C_{ac}(Q)C_2 + C_{bc}(Q)C_{ad}(Q)C_2 + C_{bc}(Q)C_{ac}(Q)C_2 + C_{bc}(Q)C_{ad}(Q)C_2 \).

Рис. 7. Залежність частоти генерації від потужності оптичного випромінювання.

Рис. 8. Залежність вихідної змінної напруги від напруги живлення.

Рис. 9. Залежність чутливості радіовимірювального оптико-частотного витратоміра від витрат газу.

На рис. 8 наведені теоретична і експериментальна залежність вихідної напруги від напруги живлення. Вихідна напруга зростає від 1,75 В майже до 2,78 В із зростанням напруги живлення від 1,6 В до 3,3 В. Чутливість пристрою складає від 296 кГц/л/год до 262 кГц/л/год (рис. 9). Температурно-стабільна ділянка роботи твердотільного радіовимірювального оптико-частотного перетворювача витрат газу лежить в діапазоні температур від -40 °C до +80 °C.

Частота 812 - 814 МГц вибрана згідно стандарту EN 300 466, або Європейського стандарту ECC DEC (01)02. Теоретичні і експериментальні залежності частоти генерації радіовимірювального оптико-

Рис. 10. Спектр передачі радіовимірювального оптико-частотного витратоміра без зміни витрат газу.
частотного витратоміра показали, що зі зростанням витрат газу від 0 л/год до 4 л/год зменшуються частота генерації від 812,65 МГц до 811,62 МГц при напрузі живлення 3,3 В, а при напрузі живлення 3,8 В від 813,00 МГц до 811,80 МГц. Дослідження показали, що вибором режиму живлення з постійної напруги, можна отримати лінійну залежність частоти генерації від витрат газу при напрузі живлення 3,3 В, при якій існує найменша зміна частоти генерації в діапазоні від 20 °C до 80 °C. Проведені експериментальні та теоретичні дослідження показали, що чутливість розробленого пристрою складає 262,5 кГц/л/год (рис. 9).

На рис. 10 та рис. 11 представлені скріншоти з програми SDRSharp з приймачем на основі RTL2832U + R820T [24, 25]. Частота дискретизації (ширина смуги приймача) вибрана на рівні 2,5 МГц. Чим більше значення, тим ширше ми будемо бачити смугу на аналізаторі спектра. Вибір ширини смуги пропускання ґрунтується на продуктивності комп'ютера. Чим ширша смуга пропускання, тим більше ресурсів необхідно задіяти для програми. Наприклад, ширина пропускання на комп'ютері з процесором Core i5 і оперативною пам'яттю в 16 гігабайт складає 2,5 MSPS. Як видно з рис. 10, ширина спектру передачі оптико-частотного витратоміра без зміни витрат газу складає 2 кГц на частоті 812,650 МГц при напрузі живлення 3,3 В. На рис. 11 представлено спектр радіовимірювального оптико-частотного витратоміра при зміні витрат газу.

Рис. 11. Спектр передачі радіовимірювального оптико-частотного витратоміра при зміні витрат газу.

Висновки

Розроблено математичну модель твердотільного радіовимірювального оптико-частотного перетворювача витрат газу, що дозволило отримати аналітичні залежності функції перетворення та рівняння чутливості приладу. Запропоновано конструкцію витратоміру газу на основі транзисторної структури з від’ємним диференційним опором, яка складається з НЕМТ польового транзистора i біполярного транзистора з пасивним індуктивним елементом. В основі роботи твердотільного радіовимірювального оптико-частотного витратоміру газу лежить інтерферометричний спосіб рефрактометрії оптично прозорих рідин і газів. Використовуючи середовище Matlab, розраховано основні параметри сенсора газу та доведено адекватність розробленої математичної моделі. Встановлено, що на виході радіовимірювального оптико-частотного витратоміра існують періодичні коливання, частота яких змінюється зі зміною витрат газу. Проведені теоретичні і експериментальні дослідження показали, що зі зростанням напрузи живлення від 0 л/год до 4 л/год зменшується частота генерації від 812,65 МГц до 811,62 МГц при напрузі живлення 3,3 В, а при напрузі живлення 3,8 В від 813,00 МГц до 811,80 МГц. Показано, що вибором режиму живлення з постійної напруги можна отримати лінійну залежність частоти генерації від витрат газу та вибирати канали для передачі вимірювальної інформації. Проведені дослідження показали, що чутливість розробленого пристрою складає
Твердотільний радіовимірювальний оптико-частотний перетворючий витрат газу

262 ккал/л/год. Отримані теоретичні та експериментальні дослідження мають гарний збіг, відносна похибка не перевищує 2,5 %.

Osadchuk О.В. – професор, д.т.н., завідувач кафедри радіотехніки;
Osadchuk В.С. – професор, д.т.н., професор кафедри радіотехніки;
Osadchuk Я.О. – к.т.н., доцент кафедри радіотехніки;
Глькук Д.Р. – аспірант кафедри радіотехніки;
Пустушенко Г.О. – магістр кафедри метрології та промислової автоматики.

[1] H. Schaumburg, Sensoren (Stuttgart, Teubner, 1992).
[2] R.G. Jackson, Latest sensors (Technosphere, Moscow, 2007).
[3] Sensors: Reference Manual/Under total. ed. V.M. Sharapova, E.S. Polishchuk, (Technosphere, Moscow, 2012).
[4] V.S. Osadchuk, A.V. Osadchuk, Y.A. Yushchenko, Elektronika ir Elektrotechnika 84(4), 89 (2008).
[5] Microelectronic sensors of physical quantities / Ed. Z. Yu. Gotra, Vol. 2 (League - Press, Lviv, 2002).
[6] R.A. Hooshmand, M. Joorabian, IEEE Proc.-Sci. Meas. Technol. 153(4), (2006).
[7] Kwang-Jow Gan, Kuan-Yu Chun, Wen-Kuan Yeh, International Journal on Recent and Innovation Trends in Computing and Communication 3(8), 5224 (2015).
[8] Rainer Engel1, Hans-Joachim Baade, Determination of liquid flowmeter characteristics for precision measurement purposes by utilizing special capabilities of ptb’s “hydrodynamic test field”, Conference: 6th International Symposium on Fluid Flow Measurement (Querétaro, Mexico, 2006). (DOI: 10.13140/2.1.1424.0321).
[9] A.V. Osadchuk, V.S. Osadchuk, Radiomeasuring microelectronic transducers of physical quantities. International Siberian Conference on Control and Communications (SIBCON) (2015) (DOI: 10.1109/sibcon.2015.7147167).
[10] N.G. Tarnovskii, V.S. Osadchuk, A.V. Osadchuk, Russian Microelectronics 29(4), 279 (2000) (DOI:10.1007/BF02773276).
[11] A.V. Osadchuk, V.S. Osadchuk, I.A. Osadchuk, O.O. Seletskas, P. Kisała, K. Nurseitova, Proceedings SPIE Volume 11176, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 111761I (2019).
[12] A.V. Osadchuk, V.S. Osadchuk, I.A. Osadchuk, Maksat Kolimoldayev, Pawel Komada, Kanat Mussabekov, Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments104451X (2017).
[13] A.V. Osadchuk, V.S. Osadchuk, I.A. Osadchuk, P. Kisała, T. Zyska, A. Annabaev, K. Mussabekov, Przegląd Elektrotechniczny R93(3), 113 (2017).
[14] Yulin Jiang, Sensors 20, 1431 (2020) (DOI:10.3390/s20051431).
[15] Jianfeng Chen, Kai Zhang, Leiyang Wang and Mingyue Yang, Sensors 20, 4804 (2020) (DOI:10.3390/s20174804).
[16] Mateusz Turkowski, Artur Szczeciki and Maciej Szudarek, Sensors 19, 530 (2019) (DOI:10.3390/s19030530).
[17] Thi Huong Ly Nguyen and Suhyun Park, Sensors 20, 388 (2020) (DOI:10.3390/s20020388).
[18] Patent № 34077 of Ukraine, G01 No. 21/45. Optical flowmeter of gas with frequency output / Osadchuk V.S., Osadchuk O.V., Deundyak V.P., Deundyak M.V. // Publ. Bul. No. 14 dated July 25, 2008.
[19] MATLAB Programming Fundamental (MathWorks, Inc, 2019).
[20] S.M. Sze, K.Ng. Kwok, Physics of Semiconductor Devices (Wiley-Interscience, Hoboken, USA, 2007).
[21] User’s Guide includes PSPISE A/D, PSPISE A/D Basics and PSPISE Cadence Design Systems. Inc All rights reserved (2016).
[22] L. Rosado, Physical electronics and microelectronics. Ed. V.A. Terekhova (Higher school, Moskow, 1991).
[23] V.V. Brajlovskyj, A.D. Veryga, Z.J. Gotra et al., Radioelectron. Commun. Syst. 53, 550 (2010) (DOI:10.3103/S0735272720100005).
[24] https://airspy.com/download/.
[25] https://www.rtl-sdr.com/tag/sdrsharp/.
A.V. Osadchuk, V.S. Osadchuk, I.A. Osadchuk, D.R. Ilchuk, G.A. Pastushenko

Solid State Radio-Measuring Optical-Frequency Transducer of Gas Flow Rate

Vinnytsia National Technical University, Vinnytsia, Ukraine. osadchuk.av69@gmail.com

The paper presents a study of a solid state radio-measuring optical-frequency transducer of gas consumption based on a transistor structure with a negative differential resistance. A mathematical model of a solid state radio-measuring optical-frequency flowmeter was developed, which made it possible to obtain the conversion function and the sensitivity equation. The solid state radio-measuring optical-frequency gas flowmeter is based on a transistor structure with a negative differential resistance, consisting of a HEMT field-effect transistor and a bipolar transistor with a passive inductive element. When replacing the passive inductance with an active inductive element, the transducer can be completely integrated. The operation of a solid state radio-measuring optical-frequency gas flowmeter is based on the interferometric method of refractometry of optically transparent liquids and gases. The negative differential resistance formed by the parallel connection of the impedance with the capacitive component on the collector-drain electrodes of the transistor structure and inductance leads to the occurrence of electrical oscillations in the oscillator circuit. Theoretical and experimental studies have shown that with an increase in gas consumption from 0 l/h to 4 l/h, the generation frequency decreases from 812.65 MHz to 811.62 MHz at a supply voltage of 3.3 V, and at a supply voltage of 3.8 V from 813.00 MHz to 811.80 MHz. It is shown that by choosing a constant voltage power supply mode, it is possible to obtain an almost linear dependence of the generation frequency on the gas flow rate and choose channels for transmitting measurement information. Studies have shown that the sensitivity of the developed device is 262 kHz/l/h. The obtained theoretical and experimental studies are in good agreement, the relative error does not exceed 2.5 %.

Keywords: solid state radio-measuring optical-frequency gas flowmeter, photosensitive transistor, negative differential resistance, frequency, interferometric refractometry.