Speech frame implementation for speech analysis and recognition

A.A. Konev, V.S. Khlebnikov, A.Yu. Yakimuk

Tomsk State University of Control Systems and Radioelectronics, 40 Lenina Ave., Tomsk, 634012 Russia
E-mail: kaa1@keva.tusur.ru

Abstract. Distinctive features of the created speech frame are: the ability to take into account the emotional state of the speaker, support for working with diseases of the speech-forming tract of speakers and the presence of manual segmentation of a number of speech signals. In addition, the system is focused on Russian-language speech material, unlike most analogs.

Keywords: speech frame, database, database design, speech material.

1. Introduction

The creation of systems for automatic speech processing is one of the most urgent directions in the development of modern information technologies. This area includes speech recognition in various languages, keyword search, text-dependent and text-independent speaker identification systems, language identification systems, assessment of the quality of speech recordings, voice change systems. Any of the systems listed above requires speech material for analysis, training, or algorithm development.

The aim of this work is to design and implement a speech frame that meets the needs of modern speech analysis and recognition systems.

The speech frame should include speech signals and a database containing their structured description, as well as automatic processing tools that allow the user to search for certain parameters of sound signals.

2. Speech frame design.

The infological level of design is an information-logical model of the subject area, from which redundancy of data is excluded and informational features of the control object are displayed without taking into account the features and specifics of a particular DBMS.

Here is a description of of the speech frame and the basic requirements for its design, as the data necessary for building an information-logical model. There are 27 entity tables in total. The tables “Speech signals”, “Announcers”, “Sound units” and “Segmentation” occupy the central place in the structure of the database, the rest of the tables serve as reference books for various parameters. A model of the physical structure of the database was created, taking into account the rules of cascade update and cascade deletion.

A glossary of entities with a brief description of the stored information is given in the form of Table 1.

Table 1. Glossary of Entities

Entity name	Description
ACOUSTIC_ENVIRONMENT	Acoustic environment information
BOOK_DEFECTS	Description of Spelling Defects
BOOK_DIALECTS	Description of dialects and languages
BOOK_EMOTIONS	Emotion data
BOOK_LABIALIZATION	Labialization vowel classifier
BOOK_LOCATION	Place of origin classifier
BOOK_RISE	Vowel Ascent Classifier
BOOK_ROW	Vowel classifier by row
BOOKSEX	Speakers gender description
BOOK_SOFT	Hardness consonant classifier
BOOK_SPEECH_TEMPS	Speech rate data
BOOK_SPEECHYPES	Speech type data
BOOK_STRESSED	Description of stress types
BOOK_UNIT_TYPES	Types of speech units
BOOK_VOICED	Description of voicing / hardness
BOOK_VOICE_TYPES	Voice type information
BOOK_WAY_OF_ORIGIN	Classifier by the way of consonant formation
CLASS	Description of sound units
COMMUNICATION_CHANEL	Description of the communication channel
FILE_FORMAT	File format description
NOISE	Synthetic Noise Information
RECORDING_DEVICE	Recorder data
SEGMENTATION	Segmentation
A glossary of attributes for each entity with a description of primary keys (PK - Primary Key) and foreign keys (FK - Foreign Key) is given in tables 2-18. The ACOUSTIC_ENVIRONMENT table contains information about possible types of acoustic environment at the time of recording a speech signal. The acoustic environment can be: office space (maximum noise level 20 dB), car interior (noise level 40 dB), etc.

Table 2. Glossary of attributes for the ACOUSTIC_ENVIRONMENT table

Attribute name	Description	Data type
ENVIRONMENT_ID(PK)	Environment code	Integer
NOISE_LEVEL(DB)	Noise level in decibels	Floating point
TITLE	Acoustic environment name	Text

The BOOK_DEFECTS table contains information about speech defects encountered by speakers. It is a reference table, the structure of the database allows you to add new attributes to this table for a more detailed description of defects.

Table 3. Glossary of attributes for the BOOK_DEFECTS table

Attribute name	Description	Data type
ID_DEFECT (PK)	Defect code	Integer
TITLE	Defect name	Text

The BOOK_DIALECTS table contains information about the dialects of different languages. For the Russian language, guided by research within the framework of the SpeechDat project, it was decided to use the following distribution of speakers by regional characteristics (dialects):

- Moscow and St. Petersburg;
- South of Russia;
- North of Russia;
- the Urals, Siberia and the Far East;
- The central part of Russia.

Table 4. Glossary of attributes for the BOOK_DIALECTS table

Attribute name	Description	Data type
ID_DIALECT (PK)	Dialect code	Integer
TITLE	Dialect name	Text
LANGUAGE	The name of the language to which this dialect belongs	Text

The BOOK_EMOTIONS table contains possible variants of the emotional coloring of speech signals. After studying a number of works in this area, it was decided to use the following classification of the speaker’s emotional state, based on the work [1] (Table 5).

Table 5. Glossary of attributes for the BOOK_EMOTIONS table

Attribute name	Description	Data type
ID_EMOTION (PK)	Emotion code	Integer
TITLE	Name	Text

The BOOK_LABIALIZATION table contains the classification of vowels by labialization (”rounding” when pronouncing). The vowels O and U are classified as labialized phonemes, the rest of the vowels are considered non-labialized. The BOOK_LOCATION table stores a description of the classification of consonants according to the place of formation. In the developed speech frame, the classification of consonants according to voicedness / voicelessness, softness / hardness, place of formation and method of formation in accordance with the work is implemented.

Table 6. Glossary of attributes for the BOOK_LABIALIZATION table

Attribute name	Description	Data type
ID (PK)	Class code	Integer
TITLE	Name	Text

Table 7. Glossary of attributes for the BOOK_LOCATION table

Attribute name	Description	Data type
ID (PK)	Location code	Integer
TITLE	Name	Text
The BOOK_RISE table contains the possible types of lifting of the tongue when pronouncing vowels (upper, middle and lower ascents).

With the help of the BOOK_ROW table, the division of vowels into types by rows is realized.

Table 8. Glossary of attributes for the BOOK_RISE table

Attribute name	Description	Data type
ID (PK)	Lift type code	Integer
TITLE	Name	Text

Table 9. Glossary of attributes for the BOOK_ROW table

Attribute name	Description	Data type
ID (PK)	Row code	Integer
TITLE	Name	Text

The BOOK_SEX table contains information about the speaker field. The speech frame does not provide for support for gender-reassigned speakers, due to the specific features of the voice of such speakers.

The BOOK_SOFT table contains a list of possible values for the softness of a sound unit (hard consonant, soft consonant, sonorant).

Table 10. Glossary of attributes for the BOOK_SEX table

Attribute name	Description	Data type
ID (PK)	Gender code	Integer
TITLE	Name	Text

Table 11. Glossary of attributes for the BOOK_SOFT table

Attribute name	Description	Data type
SOFT_ID (PK)	Code	Integer
TITLE	Name	Text

The BOOK_SPEECH_TEMPS table contains information about possible speech rates. The following classification is provided:

- normal pace (up to 8 sounds per second inclusive);
- accelerated tempo (up to 12 sounds per second inclusive);
- fast pace (more than 12 sounds per second. Average value of 20 sounds) [2].

Table 12. Glossary of attributes for the BOOK_SPEECH_TEMPS table

Attribute name	Description	Data type
ID (PK)	Speech rate code	Integer
SPEED	Name	Text
SOUNDS_PER_SECOND	Speed (number of sounds per second)	Integer

The BOOK_STRESSED table contains information about the possible types of stress.

In the created alphabet of sound units, all sound units are divided into classes: vowels and consonants. For consonants, the table shows the absence of stress. Vowels, in turn, are divided into subclasses: percussive and unstressed. It should be noted that gradation exists within these subclasses as well. A significant role in the sound of a stressed vowel is played by the sound units surrounding it. In this regard, this subclass is divided into four groups:

1. between solid;
2. between hard and soft;
3. between soft and hard;
4. between soft.

An important factor for unstressed vowels is the type of consonant in front of it and the position relative to the stressed vowel. In this regard, the Potebnya formula was used: the vowels of the stressed syllable - 3 units, the first pre-stressed - 2, the second pre-stressed and post-stressed - 1 unit. According to this formula, unstressed vowels are divided into the following groups: strength of 2 units after hard, strength of 1 unit after hard, strength of 2 units after soft, strength of 1 unit after soft.

Thus, there are 4 options for stressed vowels, 5 options for unstressed ones, 1 option for consonants and 1 option exception for marking the pause between sounds.
The BOOK_UNIT_TYPES table contains information about the types of speech units. The following types of speech are considered - syllable, phrase, text, sound.

The BOOK_VOICED table contains a list of possible voicing values of a sound unit (voiceless consonant, voiced consonant, vowel).

The BOOK_VOICE_TYPES table contains information about the types of voice. The following types of voice are considered - talking, singing, whispering, esophageal.

The BOOK_WAY_OF_ORIGIN table contains the classification of consonants by origin. The consonants are divided into occlusive plosive, occlusive affricates, occlusive nasal and slotted types.

The CLASS table contains information about sounds. The classification is introduced in accordance with the developed alphabet for the sound units of the Russian language. A total of 77 sound units in the Russian version of the sound alphabet. For a foreign language, a new alphabet must be introduced. The WAY_OF_ORIGIN, LOCATION fields are filled only for consonants, the LABIALIZATION, RISE, ROW fields are only for vowels [3].

The COMMUNICATION_CHANNEL table contains data about the used communication channels. In the general case, the use of a communication channel is not mandatory, but in the case of use in the corresponding field of the speech signal description, a link is given to one of the entries in the COMMUNICATION_CHANNEL table.
The RECORDING_DEVICE table contains the description and characteristics of the voice recording device (microphone, mobile phone, and so on).

Table 19. Glossary of attributes for the COMMUNICATION_CHANNEL table

Attribute name	Description	Data type
ID (PK)	Channel code	Integer
TITLE	Name	Text

Table 20. Glossary of attributes for the RECORDING_DEVICE table

Attribute name	Description	Data type
DEVICE_ID (PK)	Recorder ID	Integer
TYPE	Device type	Text
BANDWIDTH	Bandwidth	Float

The NOISE table contains a description of synthetic noise. By default, in the SPEECH_SIGNAL table, the NOISE_ID attribute is set to 0 (no noise), if desired (the presence of synthetic noise in the speech signal), you can set a link to one of the entries in the NOISE table.

The FILE_FORMAT table contains a description of the characteristics of the file formats used for recording speech signals. The table gives a description of the used bit rate, sampling rate, number of channels and file type [4].

Table 21. Glossary of attributes for the FILE_FORMAT table

Attribute name	Description	Data type
ID (PK)	File type code	Integer
DISCRETIZATION_FREQUENCY	Sampling frequency	Float
BITRATE	Bitness	Integer
FILE_TYPE	File type	Text
NUMBER_OF_CHANNELS	Number of channels	Integer

Table 22. Glossary of attributes for the NOISE table

Attribute name	Description	Data type
ID_NOISE (PK)	Synthetic noise code	Integer
NOISE_TYPE	Name or description of the noise	Text
SIGNAL/NOISE_RATIO(DB)	Signal to noise ratio in decibels	Float

The SEGMENTATION table contains the results of segmentation (division of continuous speech into a sequence of sound units). The table can store both the results of manual segmentation and automatic. To control the quality of automatic segmentation, the speech frame contains the results of manual segmentation of seven speech units (103 speech signals in total). Segmentation of each phrase was checked by at least two experts. The signals are selected in such a way that each character of the sound alphabet occurs in manual segmentation at least three times [5].

Table 23. Glossary of attributes for the SEGMENTATION table

Attribute name	Description	Data type
POSITION(PK)	The position of the sound unit in the entire speech signal	Integer
FILENAME (PK)(FK)	The name of the speech signal containing this segment of segmentation	Integer
START_AUDIO	Beginning of a segment of the segmentation	Float
TYPE_ID(FK)	Sound unit code	Text

The SICKNESS table contains information about diseases of the vocal tract. The structure of the table allows you to add new attributes describing speech disease. The SPEAKER table contains information about the speakers. The records of the dates of birth (to calculate the age of the speaker), dialectical affiliation, gender of the speakers are kept.

The SPEECH_SIGNAL table contains a detailed structured description of each signal contained in the speech frame. A description is given of the file structure of the speech signal, the acoustic environment during recording, the characteristics of the recording device, the communication channel, synthetic noises (if any), the voice type of the speaker, the type of speech and
voice used, the rate of speech, diseases of the vocal tract, accent and speech defects.

The SPEECH_UNIT table contains information about speech units. The table contains the spelling of a speech unit, information about its type, as well as transcription in the selected sound alphabet.

Table 24. Glossary of attributes for the SICKNESS table

Attribute name	Description	Data type
ID_SICKNESS(PK)	Disease code	Integer
TITLE	Name	Text

Table 25. Glossary of attributes for the SPEAKER table

Attribute name	Description	Data type
ID(PK)	Announcer code	Integer
SEX(FK)	Floor	Integer
NAME	Name	Text
SURNME	Surname	Text
FAMILY_NAME	Surname	Text
BIRTH_DATE	Date of Birth	Date

Table 26. Glossary of attributes for the SPEECH_SIGNAL table

Attribute name	Description	Data type
FILE_NAME (PK)	File name	Text
SPEECH_UNIT_ID (FK)	Sound unit code	Integer
FILE_NAME	File name	Text
LENGTH	Speech signal length	Time
RECORD_DATE	Date of recording	Date
FILE_FORMAT (FK)	File format description code	Integer
SYNTHETIC_NOISE_TYPE (FK)	Synthetic noise code	Integer
RECORDING_DEVICE (FK)	Recorder code	Integer
DIALECT_ID (FK)	Dialect code	Integer
ACOUSTIC_ENVIRONMENT(FK)	Acoustic environment code	Integer
SPEECH_TYPE_ID (FK)	Speech type code	Integer
VOICE_TYPE_ID (FK)	Voice type code	Integer
SPEECH_TEMP_ID (FK)	Speech rate code	Integer
CHANNEL (FK)	Transmission channel code	Integer
SPEECH_SICKNESS (FK)	Speech disease code	Integer
ACIENT	The presence of an accent	Integer
SPEECH_DEFECT (FK)	Speech Defect Code	Integer
EMOTIONAL_STATE (FK)	Emotional state code	Integer
SPEAKER_ID (FK)	Announcer code	Integer

Table 27. Glossary of attributes for the SPEECH_UNIT table

Attribute name	Description	Data type
ID(PK)	Announcer code	Integer
SPELLING_RECORD(FK)	Spelling notation	Text
TRANSCRIPTION	Transcription	Text
UNIT_TYPE	Speech unit type	Integer

Within the framework of this section of the work, the basic requirements for the structure of the speech frame and the structure of tables were formulated. All requirements were reflected in the conceptual database model. Based on this model and the described business rules, the physical implementation of the database was carried out.

3. Preparation of speech material.

The following requirements were imposed on the selection of speakers:

- the presence of male and female speakers;
- the presence of people of different age categories;
- the presence of speakers with speech impairments.

In accordance with the given requirements, 193 speakers were selected (49 male speakers and 144 female speakers).

Based on a conceptual data model and an attribute level diagram, a speech database has been implemented. The main table of the speech frame is the SPEECH_SIGNAL table, this table contains the description of speech signals. The rest of the tables contain
the data necessary to describe one or another parameter of the speech signal. The exception is tables SPEAKER, CLASS and SEGMENTATION, which contain data on speakers, sound units and manual segmentation, respectively.

As a result of the work carried out, the speech frame contains:
- 77 speech units;
- data on 193 speakers;
- 124 speech signals with a total duration of 842 seconds (14 minutes 2 seconds);
- results of manual segmentation for 103 speech signals.

One of the requirements in the design of the speech frame was the ability to filter records with the description of speech signals according to the characteristics specified by the user. This requirement was implemented using queries built in SQL (Structured Query Language).

The user of the speech frame is given the opportunity to select several parameters for the search. Processing requests of this type is implemented as follows:
1. Using the first search parameter, the speech frame processes the request and generates a sample of signals from the database.
2. Using the second search parameter, a new request is processed, but the signals are sampled not from the database, but from the sample of signals generated at the previous stage.
3. Stage 2 is repeated until the search parameters are over.
4. The results of the work are displayed to the user on the screen.

In addition to requests for data samples from the speech frame, requests for calculating statistical information about the speech frame were implemented.

The correctness of all SQL queries was tested using the black box method.

4. Conclusion
Within the framework of this work, a speech frame was created, which includes speech signals and a database containing their structured description. Distinctive features of the created speech frame are: the ability to take into account the emotional state of the speaker, support for working with diseases of the speech-forming tract of speakers and the presence of manual segmentation of a number of speech signals. In addition, the system is focused on Russian-language speech material, unlike most analogs.

At the moment, the speech frame contains: 77 speech units, data on 193 speakers, 124 speech signals with a total duration of 842 seconds, the results of manual segmentation for 103 speech signals. The speech database consists of 27 tables; 37 SQL queries have been implemented to implement the search functionality in the database.

5. Acknowledgments
This research was funded by the Ministry of Science and Higher Education of Russia, Government Order for 2020–2022, project no. FEWM-2020-0037 (TUSUR).

References
[1] Devillers L., Vidrascu L. 2007 Speaker Classification II 4441 34-42
[2] Kostuchenko E, Novokhrestova D, Pekarskikh S, Shelupanov A et al. 2019 SPECOM 2019: Speech and Computer 11658 pp 359-369
[3] Reddy A, Subramanian 2015 Journal of Voice 29(5) pp 603–610
[4] Deutsch D and Hamaoui K 2005 Acoustical Society of America 117 2476
[5] Yakimuk A Yu, Konev A A, Andreeva Yu V, Nemirovich-Danchenko M M 2019 IOP Conference Series: Materials Science and Engineering 597(1) 012072.