Pharmacogenetics of type 2 diabetes mellitus, the route toward tailored medicine

Gaia Chiara Mannino | Francesco Andreozzi | Giorgio Sesti

Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy

Correspondence
Gaia Chiara Mannino, Department of Medical and Surgical Sciences, University of Catanzano "Magna Graecia", Viale Europa, loc. Germaneto, Catanzaro 88100, Italy.
Email: gaiamannino@gmail.com

Funding information
Foundation for Diabetes Research of the Italian Diabetes Society ‘Fondazione Diabete Ricerca onlus FO.DI.RI.’; European Community, Grant/Award Number: Medigene- FP7-279171-1

Summary
Type 2 diabetes mellitus (T2DM) is a chronic disease that has reached the levels of a global epidemic. In order to achieve optimal glucose control, it is often necessary to rely on combination therapy of multiple drugs or insulin because uncontrolled glucose levels result in T2DM progression and enhanced risk of complications and mortality. Several antihyperglycemic agents have been developed over time, and T2DM pharmacotherapy should be prescribed based on suitability for the individual patient’s characteristics. Pharmacogenetics is the branch of genetics that investigates how our genome influences individual responses to drugs, therapeutic outcomes, and incidence of adverse effects. In this review, we evaluated the pharmacogenetic evidences currently available in the literature, and we identified the top informative genetic variants associated with response to the most common anti-diabetic drugs: metformin, DPP-4 inhibitors/GLP1R agonists, thiazolidinediones, and sulfonylureas/meglitinides. Overall, we found 40 polymorphisms for each drug class in a total of 71 loci, and we examined the possibility of encouraging genetic screening of these variants/loci in order to critically implement decision-making about the therapeutic approach through precision medicine strategies. It is possible then to anticipate that when the clinical practice will take advantage of the genetic information of the diabetic patients, this will provide a useful resource for the prevention of T2DM progression, enabling the identification of the precise drug that is most likely to be effective and safe for each patient and the reduction of the economic impact on a global scale.

KEYWORDS
pharmacogenetics, precision medicine, T2DM, translational medicine, type 2 diabetes mellitus

1 | INTRODUCTION

Diabetes mellitus is one of the leading causes of mortality worldwide and is a major cause of blindness, kidney failure, heart attacks, stroke, and lower-limb amputation. The number of people with diabetes has risen from 108 million in 1980 to 425 million in 2017, and is still increasing. Type 2 diabetes (T2DM) accounts for around 90% of all diabetes cases; it mainly settles because of the body’s ineffective use of insulin and inability of pancreatic β cells to compensate for the enhanced insulin demand resulting in uncontrolled glucose homeostasis. Over time, poor glycemic control affects several body districts, especially blood vessels and nerves, fostering the development and progression of neuropathies, micro and macrovascular complications, and premature death.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2018 The Authors. Diabetes/Metabolism Research and Reviews Published by John Wiley & Sons Ltd

Diabetes Metab Res Rev. 2019;35:e3109.
https://doi.org/10.1002/dmrr.3109
Interindividual variability in therapeutic response is partly due to genetic heterogeneity, and pharmacogenomics is the discipline that investigates how our entire genome influences individual responses to drugs, and more specifically, pharmacogenetics focuses on genetic variation at a population level, and how these variants can affect therapeutic outcomes and incidence of adverse effects. Pharmacogenetics, therefore, is a key component of the translational medicine effort. Nowadays, genetic investigation has reached an incredible depth of information; single nucleotide polymorphism (SNP) arrays and Next Generation Sequencing allow the screening of common and rare genetic variants in our genome, with an unprecedented throughput. These instruments have already been implemented for the diagnostic processes of pathologic phenotypes and to model prediction of complex traits, through the creation of panels enriched with preselected informative targets for diagnostic and research purposes. Oddly enough, pharmacogenetic studies on oral and injectable anti-hyperglycemic drugs have been piling up in the literature, but this ever-increasing amount of knowledge is far from being translated into clinical practice to help define the best therapeutic choice for patients with T2DM. The aim of this comprehensive review is to discuss pharmacogenetic evidences published until March 2018, according to T2DM pharmacotherapy class (metformin [MET], sulfonylureas/glinides [SUF], thiazolidinediones [TZDs], and GLP-1 receptor agonists/DPP-4 inhibitors), in the effort of providing a critical interpretation of existing findings to offer an overview for their future translation. Defining the nature of drug-gene interactions and identifying means through which trustworthy observations can be translated into clinical practice settings might help decision-making about the therapeutic approach through precision medicine strategies, ameliorate cost-effectiveness of existing treatments, and reduce avoidable adverse side effects.

2 | RESEARCH METHODS

A literature search was performed using MEDLINE with the following search terms:

(“diabetes mellitus, type 2”[MeSH Terms] OR “diabetes mellitus, type 2”[MeSH Major Topic] OR T2 DM[Title/Abstract] OR NIDDM [Title/Abstract] OR type 2 DM [Title/Abstract] OR type II DM [Title/Abstract] OR diabet*[Title/Abstract] AND (type 2[Title/Abstract] OR type-2[Title/Abstract] OR type II[Title/Abstract] OR non-insulin dependent [Title/Abstract])) AND (“pharmacogenetics”[MeSH Major Topic] OR “pharmacogenetics”[MeSH Terms] OR pharmacogen*[Title/Abstract] OR “precision medicine”[MeSH Terms] OR “precision medicine”[MeSH Major Topic] OR “precision medicine”[Title/Abstract] OR (“precision”[Title/Abstract] OR “tailored”[Title/Abstract] OR “personalized”[Title/Abstract] OR “individualized”[Title/Abstract]) AND (“therapy”[Title/Abstract] OR “medicine”[Title/Abstract] OR “clinical practice”[Title/Abstract]) AND (“genetics”[Title/Abstract] OR “polymorphism”[Title/Abstract] OR “snp”[Title/Abstract] OR “gwas”[Title/Abstract] OR “genome wide association”[Title/Abstract])) AND “english”[Language].

Manual integration with the bibliography from the most extensive reviews on the topic has also been carried out.

3 | SUMMARY OF THE LITERATURE

3.1 | Polymorphisms affecting MET response

Metformin (MET) is the only component of the biguanides class used in clinical practice. MET has been the first line approach for T2DM patients of novel diagnosis for decades; it produces durable anti-hyperglycemic effects independently of body weight, carries a low risk of hypoglycemia, and has robust cardiovascular safety profile. For all these reasons, MET is the first choice treatment recommended by guidelines and is suitable for combination therapies with all other antihypoglycemic agents. It has been showed that genetic factors influence glycemic response to MET, with a heritability of 34% for the absolute reduction in HbA1c, adjusted for pretreatment values (Table 1).5

Summary box

For each class of oral antidiabetic drugs, we reviewed pharmacogenetic reports supporting

• associations at GWAS level of significance;
• associations replicated in multiple studies;
• associations with nominal significance lacking replication (supplementary material).

We collectively identified 64 genes and approximately 200 informative genetic variants. The most robust evidence to support specific, biologically plausible, gene-drug interactions, regarded

• Several members of the organic cation transporter family (OCTs), ATM and SLC2A2 loci with MET response;
• CYP2C9, TCF7L2, ABCG8, KCNJ11 and IRS1 loci with SUF response;
• PPARG locus with TZDs response;
• GLP1R locus with DPP-4 inhibitors/GLP-1 receptor agonists response.

3.1.1 | Associations at GWAS level of significance

In the first Genome Wide Association study (GWAs) of MET response performed in two independent subsets of the GoDART cohort and in the UKPDS, both composed of European subjects affected by T2DM, the C allele of rs11212617 was found to be associated with reduced glycemic response to MET (odds ratio [OR] for the ability to achieve a treatment HbA1c <7% in the 18 months after starting MET = 1·35 95% CI 1·22-1·49). rs11212617 is located downstream the gene coding for the ATM serine/threonine kinase, associated with ataxia telangiectasia. After discovery, the researchers were able to link ATM to MET action through functional studies in vitro.5 Although the
genetic association was confirmed through a meta-analysis of five cohorts from the United Kingdom and The Netherlands, more recently, no significant differences in MET's effects by rs11212617 genotype on diabetes incidence or change in insulin sensitivity, fasting glucose levels, HbA1c, or dispostion index were observed either in the large randomized control trial Diabetes Prevention Program (DPP) carried out in individuals with impaired glucose tolerance (IGT) or in smaller studies. It is possible that the latter population

Gene	SNP	Alleles	Region	Start Position (bp)	Function	Associated Traits	Adverse effect	References
ATM	rs11212617	C/A	Intron	11q22.3	108412434	MET response	MET tolerance	5, 6
SLC2A2	rs8192675	A/G	Intron	3q26.2	171007094	MET response		10

Gene	SNP	Alleles	Region	Start Position (bp)	Function	Associated Traits	Adverse effect	References
SLC2A2	rs316019	G/T	6q25.3	160249250	Missense Ala270Ser	MET PK, HbA1c	MET tolerance	40, 41,
	rs145450955	G/A		160250619	Missense Thr201Met	MET PK, HbA1c,		43-47, 50
	rs20191874	C/T		160250625	Missense Thr199le	MET PK		
	rs3119309	C/T		160264040	Intron			
	rs7757336	G/T		160268526	Intron			
	rs2481030	A/G		160353403	Intergenic			

Gene	SNP	Alleles	Region	Start Position (bp)	Function	Associated Traits	Adverse effect	References
IRS1	rs1801278	G/A	2q36.3	226795828	Missense Gly972Arg	Secondary failure		15-17

Gene	SNP	Alleles	Region	Start Position (bp)	Function	Associated Traits	Adverse effect	References
SLC2A1	rs4447885	C/T	6q25.3	160121976	Missense Ser14Phe	MET PK		20, 21
	rs1867551	A/G		160122091	Synonymous Ser52Ser			
	rs12208357	C/T		160122116	Missense Arg61Cys			
	-	C/A		160122224	Missense Gln97Lys			
	rs200684404	C/T		160122228	Missense Pro117Leu			
	rs4709400	C/G		160122578	Intron			
	rs3104736	C/T		160132332	Missense Arg206Cys			
	rs3610319	G/T		160132375	Missense Gly220Val			
	rs4664277	C/T		160136228	Missense Pro283Leu			
	rs2281243	C/T		160136611	Missense Pro341Leu			
	rs34130495	A/G		160139792	Missense Gly401Ser			
	rs628031	G/A		160139813	Missense Met408Val	MET response,	Hypoglycemia,	
	rs72552763	C/G		160139851	Inframe_indel			
	rs36056065	-/GAT			GATAAGTTG		MET tolerance	
	rs622342	C/A		160151834	Intron			
	rs34059508	A/G		160154805	Intron			
	rs2297374	C/T		160154953	Intron			
	rs77630697	G/A	17p11.2	19542448	Missense Gly64Asp			26-28,
	rs77474263	C/T		19548051	Missense Leu125Phe			30, 48,
	rs3564404	C/T		19549655	Missense Thr159Met			51-54, 58
	rs2289669	G/A		19560030	Intron			60
	rs149774861	A/C		19560195	Missense Asp328Ala			
	rs35790011	G/A		19560249	Missense Val338lle			
	rs8065082	C/T		19561878	Intron			
	rs76645859	C/T		19572813	Missense Val480Met			
	rs35395280	G/A		19577330	Missense Cys497Phe			
	rs34399035	C/T	17p11.2	19681658	Missense Gly429Arg	HbA1c		26, 55,
	rs373244724	T/C		19706671	Missense Tyr273Cys	MET PK		57, 59,
	rs56290862	C/A		19707841	Missense Gly211Val	MET PK		61, 62
	rs14690447	G/A		19712704	Missense Pro162Leu	MET PK, MET		
	-	C/G		19713960	Missense Pro103Arg	MET PK, MET		
	-	C/A		19715149	Missense Lys64Asn	MET PK, MET		
	rs12943590	T/C		19716685	5' UTR	MET PK, MET		
	rs34834489	T/A		19716951	upstream_gene	MET PK		
	rs758427	T/C		19717164	Intron			

1 HUGO approved gene symbols.
2 dbSNP record from build 147/GRCh38/hg38 (where available); http://www.ncbi.nlm.nih.gov/snp/

Abbreviations: FPI, fasting plasma insulin; FPG, fasting plasma glucose; HbA1c, glycated haemoglobin; MET, metformin; PD, pharmacodynamics; PK, pharmacokinetics; PPG, postload or 2-h OGTT plasma glucose.
studies failed to replicate the original findings because of inadequate statistical power or pharmacogenetic MET-response interaction with rs11212617 may diverge at different stages of impaired glucose metabolism. In addition to this, more recently, enhancer assays of MET-activated epigenetic sites showed increased enhancer activity in the ATM intron containing SNPs in LD with rs11212617. Interestingly, the LD block encompasses several genes including EXPH5 (Exopholin 5, involved in exosome secretion and intracellular vesicle trafficking) and DDH10 (DEAD-box helicase 10), which resulted upregulated by MET in vitro, while ATM expression was unchanged.

In a meta-analysis performed by the Metformin Genetics (MetGen) Consortium comprising 10 557 participants of European ancestry, a genome-wide statistically significant association was found for the intronic SNP rs8192675, located within SLC2A2, which encodes the GLUT2 glucose transporter. Each copy of rs8192675 C allele was associated with a greater MET-induced Hba1c reduction of 0.17% (P = 6.6 × 10^-14), which was attenuated after adjusting for baseline Hba1c (reduction of 0.07%; P = 2 × 10^-9). Consistent with the functional relevance of this variant, the C allele was associated with lower expression of GLUT2 in the liver. However, there was no effect on MET efficacy in delaying progression to diabetes in the DPP study, again raising the possibility that MET × gene interaction in the prediabetic condition might change when T2DM is established.

3.1.2 Associations replicated in multiple studies

Insulin signalling is triggered by the binding of insulin to the insulin receptor (IR). This activates the IR intrinsic tyrosine kinase activity and promotes tyrosine phosphorylation of IR substrate (IRS) proteins, which serve as a docking station for downstream signal transducers. The most frequent IRS1 variant is rs1801278 (Gly972Arg), and the Arg972 allele is associated with early onset of T2DM. IRS1 Gly972Arg polymorphism was found to be associated with failure to oral hypoglycemic treatment, mostly MET and SUF, in three Italian case-control studies. The relationship between Gly972Arg and efficacy of MET in lowering Hba1c was explored in a small sample of Caucasian T2DM patients, and it returned no significant associations.

The Organic Cation Transporter 1 (OCT1), encoded by SLC22A1, is the main transporter of MET, and highly polymorphic in humans, and several non-synonymous variants modulate MET entrance into target cells. Polymorphism rs628031 (Met408Val) is the only variant identified in all ethnic groups, Europeans, South Americans, Africans, and Asians. Although no associations were found with treatment efficacy in a small European cohort of T2DM patients, carriers of the minor allele (Met408) had a slightly reduced incidence of hyperglycemic events during a 6 months period of combined MET-SUF treatments. The variant Met408 and its closely related proxy rs36056065 (8 bp insertion) were shown to predispose to the occurrence of symptoms of MET intolerance in another small cohort of T2DM patients from Latvia. Earlier studies had proposed Met408Val as predictor for MET treatment efficacy, but genotype/phenotype association has not been consistent across studies.

In a small case-control study performed on Chinese subjects, the 408Val allele (the "nonrisk" allele) resulted homozygous in nine out of the 10 patients whose Hba1c declined by less than 1% after 3 months of MET treatment. Polymorphism rs622342 is the only intronic variant identified in all ethnic groups, with the exception of Pacific Islanders, and has been proposed as negative predictor for MET treatment outcomes. In a European cohort study, the C allele was associated with greater Hba1c reduction in diabetic subjects treated with MET, but this interaction could not be replicated in other cohorts of similar ethnicity (American-European populations) and Central European drug naïve T2DM patients. Indeed, in a study carried out in 122 newly diagnosed, treatment naïve T2DM patients from South India, carriers of the rs622342 C variant were found to be less responsive to MET action on Hba1c. In a small clinical trial on patients with castration-resistant prostate cancer, homozygous carriers of the rs622342 C variant showed lower-MET-related toxicity and reduced drug efficacy on prostate cancer progression compared with A allele carriers. Caucasian, African, and South American populations share the presence of two variants: rs12208357 (Arg61Cys) and a deletion of the methionine codon in position 420, which can be induced by any of three polymorphisms: rs35191146, rs35167514, and rs72552763. Earlier studies in non-diabetic Caucasian subjects have shown altered MET pharmacokinetics and lower transport in the presence of the SNPs rs12208357 (Arg61Cys), rs34130495 (Gly401Ser), rs72552763 (Met420del), and rs34059508 (Gly465Arg). While, more recently, there was no effect on the pharmacokinetics of MET in patients carrying the supposed reduced-function OCT1 allele at Arg61Cys, Gly401Ser, Met420del or Gly465Arg. The same polymorphisms, together with the SLC22A1 promoter-linked synonymous variant rs1867351 (Ser52Ser), were associated with an increase in the renal clearance of MET, possibly driven by a reduction in OCT1 expression or activity. Similarly, in a small cohort of European T2DM patients, the number of OCT1 reduced-function alleles in Arg61Cys and Met420del was significantly associated with two-fold higher odds of the common MET-induced gastrointestinal side effects; nevertheless, a large randomized control trial performed on Scottish subjects (GoDART) and a large-scale meta-analysis on subjects of European ancestry (MetGen) showed no clinically evident reduction in the ability of MET to lower Hba1c in individuals with T2DM in presence of the variants Arg61Cys and Met420del. A small case-control study performed on Chinese T2DM subjects, depicted peculiar phenotype patterns for Ser52Ser and two intronic polymorphisms, rs4709400 and rs2297374, with Ser52Ser–affected Hba1c and postprandial plasma glucose response to MET, rs4709400 affected both fasting and postprandial glucose MET modulation, and rs2297374 modulated Hba1c and fasting insulin levels.

Experimental studies have demonstrated that OCT1-mediated MET uptake is reduced in oocytes expressing rs2282143 (Pro341Leu) and rs4646277 (Pro283Leu), Pro341Leu is frequently high in the Asiatic population; a trend toward higher MET bioavailability was reported in Korean subjects, although it was not statistically significant, and the analyses were not corrected for possible confounders. Of much rarer distribution, the following variants have only been assayed in vitro: rs34104736 (Ser189Leu) and rs36103319 (Gly220Val) have been involved with reduced MET transport, rs34447885 (Ser14Phe) was shown to increase MET
uptake, and cells expressing the extremely rare mutation Gln97Lys, rs200684404 (Pro117Leu), or rs756787089 (Arg206Cys) had reduced MET uptake and pharmacokinetics.

SLC22A2 encodes the Organic Cation Transporter 2 (OCT2), which has strong affinity for MET. The intergenic variants rs3119309, rs7757336, and rs2481030 located between SLC22A2 and SLC22A3 within a linkage block, have been recently associated with the lack of response to MET in a small group of Caucasian patients with T2DM and reduced levels of circulating MET in carriers of the risk alleles. Three nonsynonymous variants, rs145450955 (Thr201Met), rs316019 (Ala270Ser), and rs20191874 (Thr199Ile), were repeatedly shown to influence MET uptake, tubular excretion and clearance, consistent with an increase in circulating MET concentrations, both in vitro and in vivo. Among Iranian T2DM patients treated with MET, carriers of 201Met exhibited higher-HbA1c concentrations, fasting glucose levels, and homeostasis model assessment of insulin resistance (HOMA-IR), and a possible sex specificity, which had never been reported previously. In a small number of Chinese T2DM patients of novel diagnosis, a significantly stronger decrease in HbA1c was observed in heterozygous compared with wild-type 270Ala homozygous after 1 year of treatment with MET, upon adjustment for baseline HbA1c, exercise, and diet. No effects of Ala270Ser or on MET pharmacokinetics or pharmacodynamics were detected in a small group of nondiabetic Korean subjects. Ala270Ser exhibited no genotype/phenotype association when studied in Caucasian subjects.

Notably, in 2013, it has been suggested that interaction with variants in the multidrug and toxin extrusion (MATE) 1 transporter (SLC47A1) may mask SLC22A2 Ala270Ser effects on MET clearance. Several studies performed in European subjects have identified an association between the intronic variants of SLC47A1 rs2289669 and rs8065082 (closely in linkage disequilibrium) and response to MET in subjects with T2DM. Individuals who were homozygous for SLC22A1 rs622342C allele exhibited a larger-MET glucose-lowering effect, which was exacerbated in presence of one or two SLC47A1 rs2289669A alleles. rs2289669A by itself was associated with greater Hba1c decline in newly diagnosed T2DM patients of Chinese, Iranian, and European ethnicity. Newly diagnosed Chinese T2DM patients and healthy Koreans carrying the rs2289669A allele exhibited lower-MET excretion and renal clearance. However, rs2289669 showed no association with MET clearance in studies performed in Caucasian nondiabetic and T2DM patients independently of SLC22A1 rs622342 genotype. Using knockout experiments on mice, it has been revealed that alterations of SLC47A1 sequence on both chromosomes are required in order for MET to accumulate in the liver, fostering lactic acidosis. It is, then, likely that inconsistencies about the effects of rs2289669 and rs622342 might depend on other, more dramatic, mutations of SLC47A1, occurring at an independent site, such as the five nonsynonymous variants, identified in a multiethnic nondiabetic cohort, associated with reduced MET transport in vitro. Additionally, three nonsynonymous variants were demonstrated to be associated with reduced MET transport in vitro: rs149774861 (Asp328Ala), the extremely rare mutation Ala310Val, and rs35646404 (Thr159Met) exclusive of Asiatic populations. SLC47A2 encodes for the transporter MATE2, highly homologous to MATE1, and, as the latter, is involved in excretion of endogenous and exogenous toxic electrolytes through urine and bile. Several non-synonymous variants in SLC47A2 sequence exhibited reduced MET transport activity in vitro: The transcript in presence of the rare mutations Lys64Asn, 59 rs562968062 (Gly211Val), and rs146901447 (Pro162Leu) were not detectable in engineered HEK293 cells, while Tyr273Cys was localized to the wrong cellular compartments. By contrast, the variant Pro162Leu seemed to increase the response to MET in vivo in a cohort of African American subjects. The rare mutation Pro103Arg was found to be correctly expressed at the plasma membrane and to overdouble MET transport activity. Finally, rs34399035 (Gly429Arg) was the only nonsynonymous variant apparently affecting the long-term decrease in Hba1c in European Caucasians, with carriers of the variant showing a 0-8% (95% CI, 0-02-1-6; P = 0.05) lower decrease than the wild-type carriers. The intronic polymorphism rs12943590 was associated with reduced clinical response to MET in US diabetic subjects of African or European ancestry. The non-coding variant rs12943590, in the 5’ UTR, was found to induce no pharmacokinetic differences in Koreans and in a large meta-analysis performed on European T2DM subjects; nevertheless, a small group of Korean nondiabetic volunteers carrying rs12943590 or rs758427 and rs34834489 exhibited increased promoter activity, with a significant raise in renal and secretion clearance.

3.1.3 Associations with nominal significance lacking replication (supporting information)

3.2 Polymorphisms affecting SUF/meglitinides response

For years, the drug of choice alongside MET has belonged to the family of SUF/glinides. Both pharmacuetic classes carry weight gain as side effect and a high risk of hypoglycemia. SUF bind the ATP-dependent K+ (KATP) channels on beta-cells membrane therefore inducing K+ entrance into the cell, the depolarization of the plasma membrane, and the opening of voltage-gated Ca2+ channels. The spike of intracellular Ca2+ levels triggers insulin zymogen fusion with the plasma membrane and insulin secretion. Over time, the compensatory efforts of the beta cells may eventually lead to a decline of beta-cell mass and secondary failure of sulfonylurea/glinides treatment (Table 2).

3.2.1 Associations replicated in multiple studies

The gene CYP2C8 encodes for an enzyme belonging to the cytochrome P450 (CYP) superfamily. In presence of the most diffused dyplotype, CYP2C8*3, defined by the variants rs11572080 (Arg139Lys) and rs10509681 (Lys399Arg), repaglinide metabolism was reported to be increased, resulting in reduced drug bioavailability. By contrast, the frequency of CYP2C8*3 carriers was...
TABLE 2 Summary of genetic variants that influence sulfonylureas/meglitinides therapy outcomes in at least one ethnic group

Gene	SNP	Alleles	Region	Start Position (bp)	Function	Associated Traits	Adverse Effect	References
CYP2C8	rs10509681 (*3)	C/T	upstream	10q23.33	Missense Lys399Arg Missense Arg139Lys	SUF PK	65-67	
CYP2C9	rs1799853 (*2)	C/T	coding	10q23.33	Missense Arg144Cys Missense Ile359Leu	SUF PK	65-67	
SLCO1B1	rs1419015	G/A	intron	12p12.1	Upstream gene Missense Val744Ala	Repaglinide response	SUF PK	65,72,82-95
ABC8	rs757110	T/G	upstream	11p15.1	Missense Ala1369Ser Synonymous Arg1273Arg Synonymous Thr759Thr	SUF response	SUF response, TG	82,96-98,100,103,108,109
ABCC8	rs1801261	C/T	intron	17415318		SUF response	SUF response	
SLCO1B1	rs1799854	C/T	intron	17427157		SUF response, TG		
KCNJ11	rs5210	G/A	UTR	17386704	3’ UTR Missense Lys23Glu	SUF response	Secondary failure	26,97,103,116-121
KCNQ1	rs2237892	C/T	intron	2818521		Repaglinide response	SUF response, FPG	127-129
NOS1AP	rs10494366	G/T	intron	162115895		SUF response	Repaglinide response, FPG, FPI, HbA1c	131,132,134
IRS1	rs1801278	G/A	intron	22679582	Missense Gly972Arg	SUF response, insulin secretion	Secondary failure	15,18,20,135,136
TCF7L2	rs7903146	C/T	intron	112998590		SUF response	Secondary failure	142-144

\[1\] HUGO approved gene symbols.
\[2\] dbSNP record from build 147/GRCh38/hg38 (where available); http://www.ncbi.nlm.nih.gov/snp/

Abbreviations: FPG, fasting plasma glucose; FPI, fasting plasma insulin; HbA1c, glycated haemoglobin; PK, pharmacokinetics; SUF, sulfonylureas/meglitinides; TG, triglycerides.

reported to be higher in a small group of T2DM patients who experienced hypoglycemic events while undergoing treatment with SUF (glimepiride, gliclazide, or glipizide) in respect to wild-type CYP2C9 homozygous subjects, but this difference was not statistically significant.\(^6^8\) The closely related CYP2C9 enzyme is the major responsible for SUF breakdown. The non-CYP2C9 catalytic activity,\(^6^9-72\) resulting in reduced SUF clearance.\(^6^8,69,70,75,76,78,79\) Of notice, these evidences translate into increased odds of moderate to severe hypoglycemic events during treatment with SUF.\(^6^8,80-82\) However, CYP2C9*2 and *3 have been shown not to carry increased risk of hypoglycemia in healthy volunteers and T2DM patients taking glimepiride, glibenclamide, gliclazide,\(^6^9,78,83,84\) or nateglinide.\(^72,85\) Caution should be advised when interpreting these data because it has been recently demonstrated that CYP2C9 catalytic impairment might be counteracted by the effects of genetic variation at the CYP oxidoreductase (POR) gene, which is tightly associated with CYP enzymes and can modulate their activity.\(^86\) Indeed, in a subset of subjects from the GoDART database, it has been reported that the number of CYP2C9*2 and *3 alleles was associated with nearly three-fold increased risk of hypoglycaemic events and better response to SUF only in patients carrying the POR*1/*1 wild-type genotype.\(^87\)

The solute carrier organic anion transporter 1B1 (SLCO1B1) encodes for a transmembrane receptor protein, called OATP1B1, involved in the removal of anionic compounds from the blood into the hepatocyte. SLCO1B1 locus is highly polymorphic; its best characterized non-synonymous variant, rs4149056 (Val174Ala), has been demonstrated to significantly increase repaglinide bioavailability in both T2DM and healthy subjects of Caucasian and Asian ethnicity.\(^88,93\) A larger concentration of nateglinide in the presence of the low-metabolizing variant 174Ala has also been reported;\(^72,94\) but the association has not been consistent throughout other studies.\(^89,91\)

The non-coding SNP rs4149015, located less than 1 kb upstream SLCO1B1 has been found to be associated with an increased glucose-lowering effect of repaglinide,\(^6^5\) an effect that could be attributed to the close proximity with rs4149056 polymorphism.\(^95\)

The ABCG8 gene encodes for a member of the superfamily C of ATP-binding cassette (ABC) transporters, which functions as a modulator of KIR6.2 transporters (encoded by KCNJ11), and together, they form KATP channel complexes. Several SNPs within the ABCG8 locus have been associated to interindividual variability in the response to SUF treatment. The intronic polymorphism rs1799854 (exon 16 -3C → -3 T), often combined with the closely linked non-synonymous variant rs1801261 (Thr759Thr),\(^2^6\) has been associated with reduced insulin secretion after tolbutamide infusion in nondiabetic relatives of T2DM patients.\(^96\) T2DM patients on SUF treatment carrying the rs1799854C genotype exhibited significantly lower-HbA1c levels compared with the patients with T/T genotype and improved insulin sensitivity determined by HOMA index in response to repaglinide, with respect to T carriers.\(^97,98\) However, rs1799854 was not
associated with early failure of SUF therapy in a cross-sectional study performed on a small cohort of T2DM patients.99 T2DM patients on SUF treatment carrying the G/G genotype of the synonymous SNP rs1799859 (Arg1273Arg) had significantly higher-HbA1c levels compared with the patients with A/A genotype.99 Thus implying lower-SUF efficacy. In the same study, no effect of rs757110 (Ala1369Ser) was observed on SUF ability to modulate either fasting and postprandial glucose levels or HbA1c.99 The latter result has been confirmed in several studies across different ethnicities.82,100,101 ten combined with the Nevertheless, in two studies, both performed on Chinese T2DM patients, homozygous carriers of the 1369Ala allele were reported to exhibit enhanced gliazide efficacy.102,103 The ability of ABCC8 polymorphism Ala1369Ser to interfere with SUF therapy is peculiarly controversial because this SNP is in strong linkage disequilibrium with the non-synonymous variant Lys23Glul in KCNJ11,104,105 and it is possible to postulate the existence of a molecular selective specificity for the genetic variation at KATP channels.106 Indeed, when compared with ABCC8-KCNJ11 wild-type haplotype carriers, 1369Ala-23Lys haplotype was shown to increase sensitivity to gliclazide, and miglitinide,106,107 whereas it was less responsive to tolbutamide, chlorpropamide, and gliclizide,106 and no differences have been observed with the use of nateglinide, repaglinide, glipizide, and glibenclamide.84,106,107 Finally, both ABCC8 polymorphisms rs1799854 and rs1799859 resulted associated with circulating triglycerides level after SUF therapy.108,109

KCNJ11 (potassium voltage-gated channel subfamily J member 11) encodes for the pore forming subunit (also named Kir6.2) of the KATP channel designated to modulate glucose-dependent insulin secretion in pancreatic beta cells. Large studies have been able to prove that the non-synonymous polymorphism rs5219 (Lys23Glul)26 is more frequent in T2DM102,105,110-112 and in subjects with decreased insulin secretion,113 although initial reports documented no association between genetic variants in KCNJ11 and T2DM.104,109,114,115 In vitro experiments in human pancreatic islets have demonstrated a reduction in response to SUF in presence of the non-synonymous polymorphism 23Lys,116 which has been confirmed in studies performed on T2DM patients of Chinese ethnicities undergoing SUF therapy,117 alongside the nearby non-coding variant rs5210.24,103 Consistent with the previous observations, 23Lys carriers have been reported to exhibit higher predisposition to secondary failure when treated with SUF.116,118-120 By contrast, studies performed on T2DM patients of Caucasian121 and Asian17 descent have observed a positive effect of the variant 23Lys in response to SUF or no significant differences in the glucose lowering action of the drug.98,111 The risk of hypoglycemic events commonly associated with SUF therapy has been found to be independent from the presence of the Lys23Glul variant122 or its non-synonymous proxy rs5215 (Val337Ile).52

The KCNJ1 gene, located on chromosome 11, belongs to a large family of voltage-gated K+ channels. The intronic variant rs2237895 in KCNJ1 has been found to be associated with reduced insulin secretion in cross-sectional and prospective studies, conferring increased T2DM risk across different ethnicities.123-126 The intronic polymorphisms rs2237892 and rs2237895 were shown to increase repaglinide sensitivity,127,128 whereas a third intronic variant, rs163184, was reported to lower-SUF effects on fasting plasma glucose levels.129

The gene NOS1AP encodes for the nitric oxide synthase (NOS) 1 adaptor protein, which downregulates the neuronal NOS1 and Ca2+ influx channels. The SNP rs10494366 in the NOS1AP gene has been associated with QTc prolongation.130 In the Rotterdam study, a population-based cohort study of elderly people, carriers of the TG or GG genotype at rs10494366 treated with glibenclamide exhibited higher-glucose levels and mortality rates compared with glibenclamide users with the TT genotype.131 In addition, in Chinese patients with T2DM, the TT genotype was associated with an increased effect of repaglinide on insulin resistance measured by HOMA index.132 By contrast, pharmacodynamics studies carried out in Korean healthy volunteers showed no statistically significant differences based on rs10494366 genotype.84 The intronic variant rs12742393 has been associated with T2DM in a cohort of Chinese patients with the C allele showing significant risk for diabetes with an OR of 1.17 (95% CI, 1.07-1.26, P = 0.0005).133 Indeed, the effects of repaglinide treatment on fasting plasma glucose, insulin levels, and HOMA-IR index were reduced in patients with T2DM carrying the NOS1AP rs12742393 risk C allele compared with carriers of the AA genotype.134

As anticipated in Section 3.1.2, IRS1 plays a pivotal role in the transduction of the insulin signalling cascade. The most frequent variant of IRS1, Gly972Arg, was found to be associated with failure of the hypoglycemic treatment with SUF in five case-control studies.15-18,120 Furthermore, diabetic patients carrying the Arg972 variant receiving treatment with insulinotropic hypoglycemic drugs such as SUF and/or glinides had higher-HbA1c levels compared with wild-type carriers.18 In vitro experiments performed on a rat beta-cell line and isolated human islets have proven that the risk allele 972Arg is associated with a marked reduction of insulin secretion in response to SUF.135,136

The locus of transcription factor 7-like 2 gene (TCF7L2) is the strongest known signal associated with T2DM.137 Consistent evidences have been reported for the intronic polymorphisms of TCF7L2 (rs12255372 and rs7903146) with increased risk of T2DM.138-141 Both risk alleles have also been associated to reduced response to SUF treatment in a large randomized control trial on European subjects,142 and rs7903146 polymorphism was associated to SUF treatment failure in an independent study on T2DM German patients.143 A pharmacogenetic study in Asian subjects has assessed the effects exerted on gliclazide hypoglycemic efficacy by several intronic variants in the TCF7L2 locus, in a small number of healthy volunteers;84 the SNPs rs290487, rs11196205, and rs12255372, along with rs7903146, showed no differences when compared with the wild-type alleles,84 although the variant rs290487 had previously been identified as a modulator of repaglinide therapeutic action in Chinese T2DM patients.144

3.2.2 | Associations with nominal significance lacking replication (supporting information)

3.3 | Polymorphisms affecting TZDs response

Since the late 1990s, TZDs are a therapeutic option for patients with T2DM in whom they act by improving insulin sensitivity and preserving 7-cell secretory function. The net effect of TZDs is an increased
mass of small insulin-sensitive subcutaneous adipocytes with decreased lipolytic activity, resulting in decreased free fatty acids concentration and improved adipocytokine profile.145 Similarly to SUF and insulin treatment, TZDs may lead to weight gain, partly because of TZDs' most common side effect, fluid retention, which might foster the formation of peripheral edema in patients with cardiac or renal disease.146 Because of the potential for long-term adverse effect, TZDs use has been subject of debate with one molecule in this class, troglitazone (TRO) being taken off-market since the year 2000, because of increased incidence of drug-induced hepatitis and rosiglitazone (ROSI) being suspected of bringing cardiovascular harm and retracted by the Food and Drug Administration at first, but later, it has been restored in the US market.147 Pioglitazone (PIO) is the only TZD still marketable in Europe, and it has actually been reported to improve cardiovascular events in patients with T2DM and in insulin resistant nondiabetic individuals (Table 3).148-150

3.3.1 Associations replicated in multiple studies

Multiple cytochrome P450 enzymes are involved in the metabolism of TZDs; however, CYP2C8 (previously discussed in Section 3.2.1) is responsible for the catalysis of most of the biotransformation of PIO and ROSI.66,151-155 Its most frequent haplotype is CYP2C8*3, mainly found in Caucasians and Hispanics, designated by the presence of two non-synonymous polymorphisms: rs11572080 Arg139Lys and rs10509681 Lys399Arg.155,156 Carriers of CYP2C8*3 were shown to have significantly lower ROSI area under the curve (AUC), higher-oral clearance,157 lower OR of developing edema,158 and a statistically significant reduced response to ROSI treatment.158,159 Although one early study in a very small cohort detected no association of CYP2C8*3 with the drug glucose-lowering effect,160 CYP2C8*3 polymorphisms were shown to reduce PIO AUC as well, resulting in higher-PIO clearance.161-164 CYP2C8*11, identified by the presence of the infrequent nonsense variant rs78637571 Glu274Stop in subjects of East Asian ethnicity, was reported to increase ROSI AUC and bioavailability in heterozygous subjects.165 Finally, the polymorphism rs11572103 Ile269Phe, designated as CYP2C8*2, has been reported to influence PIO pharmacokinetics in vivo in African Americans.166

PPARG is a nuclear receptor serving as lipid sensor and the cognate receptor for TZDs167; its most common variant, rs1801282 (Pro12Ala), reproducibly associated with decreased risk of T2DM,168-171 has been widely addressed in pharmacogenetics studies on TZDs efficacy. Several reports have been meta-analysed revealing a better response to PIO treatment in terms of improvements in fasting glucose, HbA1c and triglycerides in carriers of the 12Ala allele164,172-174 despite two studies observed no association,175,176 and one reported that insulin levels and insulin resistance were lower in carriers of the Pro12Pro genotype after PIO treatment.172 In response to ROSI, Korean T2DM patients carrying the 12Ala variant have been shown to have significantly greater decrease in fasting glucose levels and HbA1c.177 Earlier studies evaluating how the common genetic variation in PPARG influenced TRO efficacy have revealed a nominal association for multiple SNPs,178 but several smaller and larger study groups failed at replicating the previously reported associations.175,179,180

The docking of PPARG to the transcription factor coactivator PPARGC1A allows the recruitment of two transcription factors to form a highly efficient transcription complex. In Chinese T2DM patients, the non-synonymous polymorphisms (Thr394Thr; rs2970847 and Gly482Ser; rs8192678) in PPARGC1A appear to influence patient response to ROSI therapy.158,173,181 To date, no significant differences were observed when the effects of Gly482Ser were evaluated in patients treated with PIO.173

ADIPOQ encodes the anti-inflammatory cytokine adiponectin, solely expressed in adipose tissue. The variant rs266729, located approximately 1 kb upstream ADIPOQ has been shown to induce greater changes in fasting glucose and HbA1c after treatment with PIO in a study conducted in Chinese T2DM patients,182 and carriers of the homozygous wild-type rs266729 genotype, undergoing treatment with ROSI, exhibited a greater reduction in fasting plasma

TABLE 3 Summary of genetic variants that influence thiazolidinediones therapy outcomes in at least one ethnic group

Gene	SNP	Alleles	Region (bp)	Function	Associated Traits	Adverse Effect	References
CYP2C8	rs10509681	C/T	10q23.3	Missense Lys399Arg Stop gained Glu274Stop	TZD PK ROSI PK PIO PK T2D PK ROSI response	Edema	157-159, 161-166
	rs78637571	C/A	95038992	Missense Arg139Lys			
	rs11572103	A/T	95054951	Missense Ile269Phe			
	rs11572080	A/G	95058349	Missense Arg139Lys			
			95067273				
PPARG	rs1801282	C/G	12351626	Missense Pro12Ala	T2D response, FPG, HbA1c, TG		164, 172-174, 177
PPARGC1A	rs8192678	A/G	23814039	Missense Gly482Ser Synonymous Thr394Thr	ROSI response		158, 173, 181
	rs2970847	C/T	23814301				
ADIPOQ	rs266729	C/G	186841685	Upstream gene	T2D response, FPG, HbA1c	ROSI response	182-184, 186
	rs2241766	A/C	186853100	Synonymous Gly15Gly			
	rs1501299	G/T	186853334				

*HUGO approved gene symbols.

*dbSNP record from build 147/GRCh38/hg38 (where available); http://www.ncbi.nlm.nih.gov/snp/

Abbreviations: FPG, fasting plasma glucose; HbA1c, glycated haemoglobin; PIO, pioglitazone; PK, pharmacokinetics; ROSI, rosiglitazone; TG, triglycerides; TZDs, thiazolidinediones.
Another study conducted in diabetic subjects from Southern China has shown that the synonymous T45G polymorphism at rs2241766 (Gly15Gly) is related to PIO response in T2DM with patients carrying the TG genotype exhibiting a greater reduction in HbA1c, whereas no evidence of pharmacogenetic influence on HbA1c or fasting glucose levels was observed in response to PIO treatment in Iranian T2DM patients.

Together with rs2241766 polymorphism, the intronic SNP rs1501299 has been shown to be associated with reduced fasting glucose and HbA1c levels after ROSI therapy, while opposing evidences were reported in a large cohort of Chinese patients in which the therapeutic efficacy of multiple-dose ROSI was assessed.

3.3.2 Associations with nominal significance lacking replication (supporting information)

3.4 Polymorphisms affecting DPP-4 inhibitors/GLP-1 receptor agonists response

Dipeptidyl peptidase 4 (DPP-4) inhibitors and glucagon like peptide 1 (GLP-1) receptor (GLP-1R) agonists are considered effective options to lower glucose levels because they carry moderate to low risk of hypoglycemia, thus offering better life-quality expectancies to the patients. Because the incretin hormones GLP-1 and GIP (gastric inhibitory polypeptide) are rapidly cleaved into the bloodstream by DPP-4 into inactive forms, DPP-4 inhibitors have been developed to increase circulating incretins level, for the treatment of T2DM.

Adverse effects induced by GLP-1R agonists include transient nausea, vomiting, and diarrhoea, although prescription to patients with a history of pancreatitis, medullary thyroid carcinoma, and multiple endocrine neoplasia syndrome type 2 should be made with caution (Table 4).

3.4.1 Associations at GWAS level of significance

Although several naturally occurring non-synonymous polymorphisms in the gene coding for gastric inhibitory polypeptide receptor (GIPR) have been characterized, the polymorphism rs13306399 (Cys46Ser) was the only one capable of altering the binding of GIP, while both rs13306399 and rs13306403 (Arg316Leu) have been shown to decrease GIP sensitivity in beta cells in vitro. The same polymorphisms, together with the infrequent variants rs13306398 (Gly198Cys) and rs1800437 (Glu354Gln), are also associated with reduced cell surface expression and basal receptor signalling.

Table 4

Gene	SNP	Alleles	Region	Start Position (bp)	Function	Associated Traits	Adverse effect	References
GIPR	rs13306399	C/G	19q13.32	45670699	Missense Cys46Ser	GIP sensitivity, GIP expression		193-196, 198, 199
QPCTL	rs2287019	C/T	Intron	45698914		FPG, PPG		198, 201
GLP1R	rs10305420	C/T	6p21.2	39048860	Missense Pro7Leu	Liraglutide response		197, 203-210, 214-216
	rs3765467	C/T		39065819	Missense Arg131Gln			
	rs376543060	C/T		39066240	Missense Thr149Met			
	rs6923761	A/G		39066296	Missense Gly168Ser			
	rs10305492	A/G		39079018	Missense Ala316Thr			
	rs10305493	C/G		39079155	Missense Ser333Cys			
TCFL7L2	rs7903146	C/T	10q25.2	112998590	Intron	GLP1 response, DPP-4I response, HbA1c		221,225-227
						GLP1 response,		
	rs12255372	G/T		11304914				

Abbreviations: BMI, body mass index; CVD, cardiovascular disease; DPP-4I, DPP-4 inhibitors; FPG, fasting plasma glucose; HbA1c, glycated haemoglobin; PPG, postload or 2-h OGTT plasma glucose; PPI, postload 2-h OGTT plasma insulin.
Polymorphism rs1800437 was further involved with cardiovascular disease incidence and cultured adipocytes carrying the rs1800437 minor C allele manifested a drastic downregulation of the receptor desensitization-resensitization cycle. The A allele of the intronic variant rs10423928 was associated with a lower amount of the splicing isoform required for transmembrane activity. Recently a 6 months follow-up study carried out in a small group of T2DM patients found no evidence of association with DPP-4 inhibitors efficacy, although carriers of the A allele had been reported to exhibit 0.09 (CI 0.07-0.11) mmol/L increase of 2-h postload glucose levels during an OGTT, decreased insulin secretion, and a diminished incretin effect in vivo in large cohort studies, aside of a reduction in body mass index (BMI), lean body mass, and waist circumference. A molecular connection with osteopontin (OPN) was suggested because carriers of rs10423928 had lower-OPN expression in pancreas and adipose tissue, both GIP and OPN modulate cytokine-induced apoptosis. The intron variant rs2287019, falling within the glutaminyl-peptide cyclotransferase-like (QPCTL) gene, approximately 15 kb downstream GIPR, has been associated with BMI at genome-wide level. The risk C allele was also reported to be associated with higher fasting glucose but lower 2-h postload glucose concentrations during an OGTT. Taken together, these findings suggest that GIPR variants could potentially modulate the response to DPP-4 inhibitors, nevertheless, to date, this effect has not been revealed by clinical studies.

The GLP-1 receptor is an important drug target for the treatment of T2DM, and several non-synonymous variants of GLP1R have been carefully characterized: rs367543060 Thr149Met variant, identified of T2DM, and several non-genome GIPR revealed by clinical studies.194,197,202 low levels after exenatide treatment. Finally, the minor (A) allele of the 8GA/7GA) were compared in relation to changes in plasma glucose equilibrium with the intronic short tandem repeat at rs5875654 rs3765467 and rs761386 (an intronic variant in perfect linkage dis- but no significant differences were observed when genotypes at 1 in vivo.203,206 The polymorphism rs10305493 (Ser333Cys) instead of the intestinal endocrine cells.217 In a small pilot study, KCNQ1 polymorphisms rs163184 G was associated with lower-HbA1c reduction in response to DPP4 inhibitors treatment,218 consistent with previous findings in European, South American, and Asian subjects. rs2237895, rs151290, rs2237892, and rs2237897, all falling within the same intron as rs163184, were found to be associated with several OGTT-derived indexes of insulin secretion, although not during the intravenous glucose tolerance test (IVGTT), in nondiabetic subjects. Regardless, nondiabetic individ- uals homozygous for the diabetes protective allele (A) at rs151290 exhibited lower-active GLP-1 concentrations at 10 minutes during the OGTT. Although TCF7L2 (previously addressed in Section 3.2.2) has been suggested to regulate proglucagon gene expression, and thus GLP-1 synthesis in intestinal L cells,221-223 no significant variation in the concentration of GLP-1 was observed in carriers of different genotypes of the risk variant rs7903146. Results reporting impaired insulin secretion in response to GLP-1 infusion rather suggested that two variants (rs7903146, rs12255372) in TCF7L2 might reduce GLP-1 action on beta cells. In support of the latter theory, reduction in HbA1c in response to 24 weeks of treatment with the DPP-4 inhibitor linaclitopin was reportedly attenuated in homozygous carriers of the risk allele rs7903146 T. Nevertheless, other studies have observed no rs7903146 attributable differences in GLP-1-induced beta-cell responsiveness.

Associations replicated in multiple studies

As anticipated in Section 3.2.1, KCNQ1 channels are involved not only with the mechanisms of insulin secretion but also in GLP-1 and GIP release from the intestinal endocrine cells. In a small pilot study, KCNQ1 polymorphisms rs163184 G was associated with lower-HbA1c reduction in response to DPP4 inhibitors treatment,218 consistent with previous findings in European, South American, and Asian subjects. rs2237895, rs151290, rs2237892, and rs2237897, all falling within the same intron as rs163184, were found to be associated with several OGTT-derived indexes of insulin secretion, although not during the intravenous glucose tolerance test (IVGTT), in nondiabetic subjects. Regardless, nondiabetic individ-

Associations with nominal significance lacking replication (supporting information)

4 | CONCLUSIONS

Although the development of T2DM is clearly associated with a familial history of diabetes with a heritability estimated at 30%-70%, the current set of about 100 established susceptibility loci with robust association signals, identified primarily through large-scale GWAS, captures only 10% of familial aggregation of the disease. Disappointingly, although the identification of such a large number of novel susceptibility loci has opened up the opportunity to translate this genetic information into the improvement of T2DM risk prediction, the available data suggest that genetic screening is currently of little value in clinical practice with risk variants adding very little to the predictive power provided by clinical risk factors alone. In addition to this, we are unaware of how most of those susceptibility loci contribute to diabetes incidence, especially in the case of non-coding polymorphisms or genes that do not translate into proteins; therefore, we are yet incapable of exploiting them as drug targets for functional intervention on the disease.
Genetic investigation has also been dedicated to evaluate the interindividual variability in the response to oral and injectable glucose-lowering agents; and in recent years, many pharmacogenetic studies of associations between genetic variants and glucose-lowering drug response have been published. To a large extent, these studies were designed to identify subsets of subjects more or less likely to experience therapeutic response to the drug in question or to develop side effects. Indeed, the care of patients with T2DM requires an individualized approach because of the fact that the disease is heterogeneous, alterations in molecular and pathophysiological pathways of glucose homeostasis differ between subjects, and the variable effects of existing therapies make it difficult to predict individual response to glucose-lowering medications. Clearly, an individualized approach is important because of the multitude of clinical features involved in decision-making including age, body weight, disease duration, life expectancy, glycemic control history, risk of hypoglycemia, adverse effects of glucose-lowering medications, presence of complications and comorbid conditions, and psycho-socio-economic factors.

Throughout this review, it was definitely shown how ethnicity is also a major determinant of the outcomes. The usual approach for T2DM therapy comprises the stepwise addition of medications to lifestyle interventions, usually beginning with a single oral drug and advance to combination therapy, followed by the addition or substitution of insulin, based on the progressive failure of the medications to maintain adequate glucose control. In the context of personalized or precision medicine, pharmacogenetic information may be useful for patient stratification in order to identify responders and to balance the benefits of glucose-lowering medications with their potential risks.

Testing few genetic markers may be a relatively straightforward method to evaluate the above-mentioned biologic factors, keeping in mind that the individual genetic asset is independent from the time point of the disease course; thus, it can reveal information that would otherwise be disguised by the disease itself.

In this comprehensive review, we attempted collecting all the literature on the pharmacogenetics of diabetes medications. Although it is recognized that interindividual variability in therapeutic response is partly due to genetic heterogeneity, the pharmacogenetic studies herein reported have shown no consistent results. For instance, although there is evidence that genetic factors influence up to 34% of the glycemic response to MET, the combined effect of the ATM and SLC2A2 loci on MET response has been shown to be minimal, suggesting that other genetic determinants of MET response remain to be revealed. Moreover, a recent Danish study, carried out in a population-based cohort predominantly treated with MET (55%), has investigated the influence of 48 T2DM susceptibility variants on disease progression assessed as early redemption of either a glucose-lowering drug or an insulin drug prescription. Results have shown that common T2DM-associated gene variants do not significantly affect disease progression requiring additional therapies.

Several issues can be highlighted about the design of most of the studies evaluated for this review. It is important to note that none of the published studies was a prospective randomized clinical trial specifically conceived to unravel pharmacogenetic associations. Such approach would be able to limit selection bias and confounding factors, especially if performed on large-scale cohorts. Instead, we collected several observational, cross-sectional, or retrospective studies, mostly with a small sample size, devoid of the discovery power required to identify smaller effect sizes. Many studies have investigated the effects of genotypes on a single-medication intervention without including a placebo or a control group. Therefore, it is not possible to exclude that these studies have reported the effect of genotype rather than the modification of the response to the medication. In addition, most studies did not address the issue of multiple comparisons, so that it is possible that the reported findings are false positives. Many associations were only assayed in a single study (supporting information), which most of the time did not include enough details to judge the rigorousness of the research. Moreover, a number of studies did not report on testing for Hardy-Weinberg proportions and on masking of genotyping personnel. Furthermore, genotyping calls obtained with probes or restriction fragment length analysis were rarely confirmed by sequencing. With few exceptions, the authors adopted the candidate gene approach, which raises the concern of selective reporting of results and publication bias. Overall, the reported effect size of genetic variants on glucose-lowering drug response is small and, in many cases, clinically meaningless.

Notably, we should always assume the presence of the "winner curse" because of the overestimation of the effect size of a newly identified genetic association, when the statistical power of the discovery study is not sufficient to detect the true OR of smaller magnitude or when positive results are reported and null results are not. As a consequence, winner curse implies that the power required to independently confirm the association will be underestimated, resulting in failure of replication. This type of bias cannot be resolved by meta-analyses since the heterogeneity of pharmacogenetic studies, by itself, precludes comparisons within outcomes and quantitative synthesis with meta-analyses. In addition to this, most findings were only confirmed in one ethnicity. Although each population with its unique genetic and social fingerprint differs from the others in allele frequencies, it would be expected that a specific, biologically supported interaction between gene and drug would be conserved across different ethnicities.

Finally, most of the studies available in the literature have only focused on the effects of a single site on drug efficacy, but researchers have already begun evaluating the joint contribution of T2DM-related loci. In order to account for such heterogeneity, this review groups the results in the following categories: associations at GWAS level of significance, associations replicated in multiple studies, and associations with nominal significance lacking replication. With this outline, we have been able to identify 64 genes and approximately 200 informative genetic variants. Keeping in mind the above described limitations of the studies, some reports seem to provide robust evidence to support specific, biologically plausible, gene-drug interactions. The most robust evidence seem to support a role for variants in OCTs, ATM, and SLC2A2 loci with MET response, CYP2C9, TCF7L2, ABCC8, KCNJ11 and IRS1 loci with SUF response, PPARG locus with TZDs response, and GLP1R locus with DPP-4 inhibitors/GLP-1 receptor agonists response.
5 | FUTURE DIRECTIONS

The incorporation of pharmacogenetic information into clinical practice in the context of personalized medicine cannot occur without the results of well-designed studies proving significant gene-drug interactions. The technology of genetic investigations has reached formidable levels nowadays; commercial probe-based SNP array platforms can now genotype, with greater than 99% accuracy, about one million SNPs at the same time per individual in one assay. Next-generation sequencing can deliver the same information that SNP arrays can produce but with greater resolution and accuracy and the possibility to extend the approach from target SNPs to target genes. Furthermore, next generation sequencing can uncover structural DNA modifications that SNP arrays do not resolve. Cost-wise, the machinery required for signal detection of SNP arrays and next generation sequencing might appear impractical for immediate applications. Nevertheless, it is widely recognized that diabetes imposes an important economic burden on national healthcare system, with the most drainage deriving from hospital inpatient care after the onset of micro/macrovascular complications. An additional healthcare cost is related to the therapeutic failure of drugs as well as serious adverse side effects of drugs on individuals. It is possible then to imagine that when the clinical practice will take advantage of the genetic information of the diabetic patients, this will provide a useful resource for the prevention of T2DM progression and the personalization of treatment enabling the identification of the precise drug that is most likely to be effective and safe for each patient, and the reduction of the economic impact on a global scale.

AUTHORS’ CONTRIBUTIONS

G.C.M. and F.A. researched the literature databases, compared, and discussed each record. G.S. and G.C.M. wrote the manuscript. F.A. edited the manuscript, and G.S. revised the final version.

FUNDING INFORMATION

This work was supported by the European Community (Grant number Medigene-FP7-279171-1) to Giorgio Sesti and by the Società Italiana di Diabetologia-SID (Fondazione DiabeRicerca F.O.D.I. R.I.-MSD scholarship 2014 and 2015) to Gaia Chiara Mannino. The authors declare that funding resources did not take any part in the design of the study, collection, analysis, and interpretation of data and in the writing of the manuscript.

CONFLICT OF INTERESTS

The authors have nothing to disclose.

ORCID

Gaia Chiara Mannino https://orcid.org/0000-0002-6341-4572
Francesco Andreozzi https://orcid.org/0000-0001-9375-1513
Giorgio Sesti https://orcid.org/0000-0002-1618-7688

REFERENCES

1. WHO Global report on diabetes. http://www.who.int/diabetes/global-report/en/. Accessed May 9, 2016.
2. IDF diabetes atlas - 2017 Atlas. http://diabetesatlas.org/resources/2017-atlas.html. Accessed October 30, 2018.
3. Mannino GC, Sesti G. Individualized therapy for type 2 diabetes: clinical implications of pharmacogenetic data. Mol Diagn Ther. 2012;16(5):285-302. https://doi.org/10.1007/s40291-012-0002-7
4. Zhou K, Donnelly L, Yang J, et al. Heritability of variation in glycaemic response to metformin: a genome-wide complex trait analysis. Lancet Diabetes Endocrinol. 2014;2(6):481-487. https://doi.org/10.1016/S2213-8587(14)00500-6
5. Zhou K, Bellenguez C, Spencer CCA, et al. Common variants near ATM are associated with glycaemic response to metformin in type 2 diabetes. Nat Genet. 2011;43(2):117-120. https://doi.org/10.1038/ng.735
6. van Leeuwen N, Nijpels G, Becker ML, et al. A gene variant near ATM is significantly associated with metformin treatment response in type 2 diabetes: a replication and meta-analysis of five cohorts. Diabetologia. March 2012. https://doi.org/10.1007/s00125-012-2537-x;55(7):1971-1977.
7. Florez JC, Jablonski KA, Taylor A, et al. The C allele of ATM rs11212617 does not associate with metformin response in the diabetes prevention program. Diabetes Care. 2012;35(9):1864-1867. https://doi.org/10.2337/dc11-2301
8. Shokri F, Ghaedi H, Ghafouri Fard S, et al. Impact of ATM and SLC22A1 polymorphisms on therapeutic response to metformin in Iranian diabetic patients. Int J Mol Cell Med. 2016;5(1):1-7.
9. Luizon MR, Eckalbar WL, Wang Y, et al. Genomic characterization of metformin hepatic response. PLoS Genet. 2016;12(11):e1006449. https://doi.org/10.1371/journal.pgen.1006449
10. Zhou K, Yee SW, Seiser EL, et al. Variation in the glucose transporter gene SLC2A2 is associated with glyceric response to metformin. Nat Genet. 2016;48(9):1055-1059. https://doi.org/10.1038/ng.3632
11. Sesti G. Insulin receptor substrate polymorphisms and type 2 diabetes mellitus. Pharmacogenomics. 2000;1(3):343-357. https://doi.org/10.1517/14622416.1.3.343
12. Sesti G, Federici M, Hribal ML, Lauro D, Sbraccia P, Lauro R. Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J off Publ Fed Am Soc Exp Biol. 2001;15(12):2099-2111. https://doi.org/10.1096/fj.01-0009rev
13. Marini MA, Frontoni S, Mineo D, et al. The Arg972 variant in insulin receptor substrate-1 is associated with an atherogenic profile in offspring of type 2 diabetic patients. J Clin Endocrinol Metab. 2003;88(7):3368-3371.
14. Morini E, Prudente S, Succurro E, et al. IRS1 G972R polymorphism and type 2 diabetes: a paradigm for the difficult ascertainment of the contribution to disease susceptibility of “low-frequency-low-risk” variants. Diabetologia. 2009;52(9):1852-1857. https://doi.org/10.1007/s00125-009-1426-4
15. Sesti G, Marini MA, Cardellini M, et al. The Arg972 variant in insulin receptor substrate-1 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes. Diabetes Care. 2004;27(6):1394-1398.
16. Prudente S, Morini E, Lucchesi D, et al. IRS1 G972R missense polymorphism is associated with failure to oral antidiabetes drugs in white patients with type 2 diabetes from Italy. Diabetes. 2014;63(9):3135-3140. https://doi.org/10.2337/db13-1966
17. Prudente S, Di Paola R, Pezzilli S, et al. Pharmacogenetics of oral antidiabetes drugs. evidence for diverse signals at the IRS1 locus. Pharmacogenomics J. July 2017. https://doi.org/10.1038/tpj.2017.32;18(3):431-435.
18. Seeringer A, Parmar S, Fischer A, et al. Genetic variants of the insulin receptor substrate-1 are influencing the therapeutic efficacy of oral
antidiabetics. Diabetes Obes Metab. 2010;12(12):1106-1112. https://doi.org/10.1111/j.1463-1326.2010.01301.x

19. Arimany-Nardi C, Koepsell H, Pastor-Anglada M. Role of SLC22A1 polymorphic variants in drug disposition, therapeutic responses, and drug-drug interactions. Pharmacogenomics J. 2015;15(6):473-487. https://doi.org/10.1038/tjp.2015.78

20. Klen J, Gorčić K, Janež A, Dolžan V. The role of genetic factors and kidney and liver function in glycemic control in type 2 diabetes patients on long-term metformin and sulfonylurea cotreatment. Biomed Res Int. 2014;2014:934729. https://doi.org/10.1155/2014/934729

21. Tarasova L, Kalnina I, Geldnere K, et al. Association of genetic variations in the organic cation transporter OCT1, OCT2 and multidrug and toxin extrusion 1 transporter protein genes with the gastrointestinal side effects and lower BMI in metformin-treated type 2 diabetes patients. Pharmacogenet Genomics. 2012;22(9):659-666. https://doi.org/10.1097/FPC.0b013e3283516666

22. Sakata T, Anzai N, Shin HJ, et al. Novel single nucleotide polymorphisms of organic cation transporter 1 (SLC22A1) affecting transport functions. Biochim Biophys Res Commun. 2004;313(3):789-793.

23. Shikata E, Yamamoto R, Takane H, et al. Human organic cation transporter (OCT1 and OCT2) gene polymorphisms and therapeutic effects of metformin. J Hum Genet. 2007;52(2):117-122. https://doi.org/10.1007/s10038-006-0087-0

24. Chen L, Takizawa M, Chen E, et al. Genetic polymorphisms in organic cation transporter 1 (OCT1) in Chinese and Japanese populations exhibit altered function. J Pharmacol Exp Ther. 2010;335(1):42-50. https://doi.org/10.1124/jpet.110.170159

25. Zhou Y, Ye W, Wang Y, et al. Genetic variants of OCT1 influence glycemic response to metformin in Han Chinese patients with type-2 diabetes mellitus in Shanghai. Int J Clin Exp Pathol. 2015;8(8):9533-9542.

26. Singh S, Usman K, Banerjee M. Pharmacogenetic studies update in type 2 diabetes mellitus. World J Diabetes. 2016;7(15):302-315. https://doi.org/10.4243/wjd.v7.i15.302

27. Becker ML, Visser LE, van Schaik RHN, Hofman A, Uitterlinden AG, Pastor K, Janež A, Dolžan V. The MATE1 rs2289669 polymorphism affects the renal functional consequence: studies with metformin and cimetidine. Drug Metab Pharmacokinet. 2013;28(6):509-517. https://doi.org/10.1038/dmpk.2013.054

28. Jablonski KA, McAteer JB, de Bakker PIW, et al. Common variants in OCT2 and OCT3 coding genes are associated with short renal clearance of metformin following ranitidine treatment. Clin Pharmacol Ther. 2015. https://doi.org/10.1002/cpt.567;101(6):763-772.

29. Dujic T, Zhou K, Yee SW, et al. Variants in pharmacokinetic transporters and glycaemic response to metformin: a GoDARTS study. Diabetes. 2009;58(6):1434-1439. https://doi.org/10.2337/db08-0896

30. Cho SK, Chung J. The MATE1 rs2289669 polymorphism encoding organic cation transporter 1 and glycemic response to metformin: a GoDARTS study. Diabetes. 2009;58(6):1434-1439. https://doi.org/10.2337/db08-0896

31. Yoon H, Cho H-Y, Yoo H-D, Kim S-M, Lee Y-B. Influences of organic cation transporter polymorphisms on the population pharmacokinetics of metformin in healthy subjects. AAPS J. 2013;15(2):571-580. https://doi.org/10.1206/s12248-013-9460-z

32. Kimura N, Masuda S, Tanihara Y, et al. Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab Pharmacokinet. 2005;20(5):379-386.

33. Zaharenko L, Kalnina I, Geldner K, et al. Single nucleotide polymorphisms in the intergenic region between metformin transporter OCT2 and OCT3 coding genes are associated with short-term response to metformin monotherapy in type 2 diabetes mellitus patients. Eur J Endocrinol. 2016;175(6):531-540. https://doi.org/10.1530/EJE-16-0347

34. Song IS, Shin HJ, Shin EJ, et al. Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin Pharmacol Ther. 2008;84(5):559-562. https://doi.org/10.1038/cpt.2008.61

35. Wang Z-J, Yin QQP, Tomlinson B, Chow MSS. OCT2 polymorphisms and in-vivo renal functional consequence: studies with metformin and cimetidine. Pharmacogenet Genomics. 2008;18(7):637-645. https://doi.org/10.1097/FPC.0b013e328302cd41

36. Chen Y, Brown C, Castro RA, et al. Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. Clin Pharmacol Ther. 2008;83(2):273-280. https://doi.org/10.1038/sj.clpt.6100275

37. Graham GG, Punt J, Arora M, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50(2):81-98. https://doi.org/10.2165/11534750-00000000-00000

38. Duong JK, Kumar SS, Kirkpatrick CM, et al. Population pharmacokinetics of metformin in healthy subjects and patients with type 2 diabetes mellitus: simulation of doses according to renal function. Clin Pharmacokinet. 2013;52(5):373-384. https://doi.org/10.1007/s40062-013-0046-9

39. Shu Y, Brown C, Castro RA, et al. Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. Mol Diagn Ther. 2013;15(2):189-200. https://doi.org/10.1007/s40291-013-0126-z

40. Kashvi Z, Masoumi P, Mahrooz A, Hashemi-Soteh MB, Bahar A, Alizadeh A. The variant organic cation transporter 2 (OCT2)-T201M contribute to changes in insulin resistance in patients with type 2 diabetes treated with metformin. Diabetes Res Clin Pract. 2015;108(1):78-83. https://doi.org/10.1016/j.diabres.2015.01.024

41. Cho SK, Chung J-Y, The MATE1 rs2289669 polymorphism affects the renal clearance of metformin following ranitidine treatment. Int J Clin Pharmacol Ther. January 2016. https://doi.org/10.5414/CP202473

42. Christensen MMH, Pedersen RS, Stage TB, et al. A gene-gene interaction between polymorphisms in the OCT2 and MATE1 genes
influences the renal clearance of metformin. Pharmacogenet Genomics. 2013;23(10):526-534. https://doi.org/10.1097/FPC.0b013e328364a57d

51. Becker ML, Visser LE, van Schaik RHN, Hofman A, Uitterlinden AG, Stricker BHC. Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: a preliminary study. Diabetes. 2009;58(3):745-749. https://doi.org/10.2337/db08-1028

52. Becker ML, Visser LE, van Schaik RHN, Hofman A, Uitterlinden AG, Stricker BHC. Interaction between polymorphisms in the OCT1 and MATE1 transporter and metformin response. Pharmacogenet Genomics. 2010;20(1):38-44. https://doi.org/10.1097/FPC.0b013e328333bb11

53. He R, Zhang D, Lu W, et al. SLC47A1 gene rs2289669 G>a variants enhance the glucose-lowering effect of metformin via delaying its excretion in Chinese type 2 diabetes patients. Diabetes Res Clin Pract. 2015;109(1):57-63. https://doi.org/10.1016/j.diabres.2015.05.003

54. Mousavi S, Kohan L, Yavarian M, Habib A. Pharmacogenetic variation ofSLC47A1gene and metformin response in type2 diabetes patients. Mol Biol Res Commun. 2017;6(2):91-94.

55. Christensen MMH, Brash-Andersen C, Green H, et al. The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c. Pharmacogenet Genomics. 2011;21(12):837-850. https://doi.org/10.1097/FPC.0b013e3283400100

56. Toyama K, Yonezawa A, Tsuda M, et al. Heterozygous variants of MATE1 and MATE2-K have little influence on the disposition of metformin in diabetic patients. Pharmacogenet Genomics. 2010;20(2):135-138. https://doi.org/10.1097/FPC.0b013e328335639f

57. Kirchheiner J, Roots I, Goldammer M, Rosenkranz B, Brockmoller J. Effect of genetic polymorphisms in cytochrome p450 2C9 and CYP2C8 on the pharmacokinetics of oral antidiabetic drugs: clinical relevance. Clin Pharmacokinet. 2005;44(12):1209-1225.

58. Chen YH, Wang G, Zhang W, Fan L, Chen Y, Zhou H-H. Effect of CYP2C9 and CYP2C19 polymorphisms on the pharmacokinetics and pharmacodynamics of nateglinide in healthy Chinese male volunteers. Eur J Clin Pharmacol. 2013;69(3):407-413. https://doi.org/10.1007/s00228-012-1364-9

59. Thulé PM, Umpierrez G. Sulfonylureas: a new look at old therapy. Curr Diab Rep. 2014;14(4):473. https://doi.org/10.1007/s11892-014-0473-5

60. Wright A, Burden ACF, Paisey RB, Cull CA, Holman RR. U.K. prospective diabetes study group. Sulfonylurea inadequacy: efficacy of addition of insulin over 6 years in patients with type 2 diabetes in the U.K. prospective diabetes study (UKPDS 57). Diabetes Care. 2002;25(2):330-336.

61. Niemi M, Backman JT, Kajosaari LI, et al. Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin Pharmacol Ther. 2005;77(6):468-478. https://doi.org/10.1016/j.cpt.2005.01.018

62. Daily EB, Aquilante CL. Cytochrome P450 2C8 pharmacogenetics: a review of clinical studies. Pharmacogenomics. 2009;10(9):1489-1510. https://doi.org/10.2217/pgs.09.82

63. Thulé PM, Umpierrez G. Sulfonylureas: a new look at old therapy. Curr Diab Rep. 2014;14(4):473. https://doi.org/10.1007/s11892-014-0473-5

64. Wright A, Burden ACF, Paisey RB, Cull CA, Holman RR. U.K. prospective diabetes study group. Sulfonylurea inadequacy: efficacy of addition of insulin over 6 years in patients with type 2 diabetes in the U.K. prospective diabetes study (UKPDS 57). Diabetes Care. 2002;25(2):330-336.
81. Ragia G, Petridis I, Tavridou A, Christakidis D, Manolopoulos VG. Presence of CYP2C9*2 allele increases risk for hypoglycemia in type 2 diabetic patients treated with sulfonylureas. *Pharmacogenomics*. 2009;10(11):1781-1787. https://doi.org/10.2217/pgs.09.96

82. Klen J, Dolžan V, Janež A. CYP2C9, KCNJ11 and ABCC8 polymorphisms and the response to sulphonylurea treatment in type 2 diabetes patients. *Eur J Clin Pharmacol*. 2014;70(4):421-428. https://doi.org/10.1007/s00228-014-1641-x

83. Surendiran A, Pradhan SC, Agrawal A, et al. Influence of CYP2C9 gene polymorphisms on response to glimepiride in type 2 diabetes mellitus patients. *Eur J Clin Pharmacol*. 2011;67(8):797-801. https://doi.org/10.1007/s00228-011-1013-8

84. Cho H-J, Lee S-Y, Kim Y-G, et al. Effect of genetic polymorphisms on the pharmacokinetics and efficacy of glimepiride in a Korean population. *Clin Chim Acta Int J Clin Chem*. 2011;412(19-20):1831-1834. https://doi.org/10.1016/j.cca.2011.06.014

85. Kirchheiner J, Meineke I, Müller G, et al. Influence of CYP2C9 and CYP2D6 polymorphisms on the pharmacokinetics of nateglinide in genotyped healthy volunteers. *Clin Pharmacokinet*. 2004;43(4):267-278.

86. Ragia G, Tavridou A, Elens L, Van Schaik RHN, Manolopoulos VG. CYP2C9*2 allele increases risk for hypoglycemia in POR*1/*1 type 2 diabetic patients treated with sulfonylureas. *Exp Clin Endocrinol Diabetes*. 2014;122(1):60-63. https://doi.org/10.1055/s-0033-1361097

87. Dujic T, Zhou K, Donnelly LA, Leese G, Palmer CNA, Pearson ER. Identification of multiple allelic variants associated with altered expression of SLCO1B1. *Diabetes Obes Metab*. 2010;12:13046. https://doi.org/10.1111/j.1365-2571.2010.00840.x

88. Niemi M, Schaeffeler E, Lang T, et al. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). *Pharmacogenetics*. 2004;14(7):429-440.

89. Kalliokoski A, Neuvonen M, Neuvonen PJ, Niemi M. Different effects of the CYP2C9*2 allele on the pharmacokinetics of nateglinide. *Clin Pharmacol Ther*. 2004;76(2):106-112. https://doi.org/10.1016/j.cpt.2003.08.013

90. Hamming KSC, Soliman D, Matemisz LC, et al. Coexpression of the pancreatic beta cell KATP channel Kir6.2 and the ATP-sensitive potassium channel gene: identification and lack of role in Caucasian patients with NIDDM. *Diabetes*. 1997;46(3):502-507.

91. Florez JC, Burtt N, de Bakker PIW, et al. Haplotype structure and evolutionary analysis of variants in genes encoding the pancreatic beta cell KATP channel and sulfonylurea receptors. *Nat Genet*. 2006;38(3):355-360. https://doi.org/10.1038/ng1786

92. He J, Qiu Z, Li N, et al. Effect of CYP2C18 polymorphisms on the pharmacokinetics and pharmacodynamics of sulfonylureas and nateglinide in healthy Chinese volunteers. *Eur J Clin Pharmacol*. 2011;67(7):701-707. https://doi.org/10.1007/s00228-011-0994-7

93. Xiang Q, Cui YM, Zhao X, Yan L, Zhou Y. The influence of MDR1 G2677T/a genetic polymorphisms on the pharmacokinetics of Repaglinide in healthy Chinese volunteers. *Pharmacology*. 2012;89(1-2):105-110. https://doi.org/10.1159/000336345

94. Zhang W, He Y-J, Han C-T, et al. Effect of SLCO1B1 genetic polymorphism on the pharmacokinetics of nateglinide. *Br J Clin Pharmacol*. 2006;62(5):567-572. https://doi.org/10.1111/j.1365-2125.2006.02686.x

95. Niemi M, Schaeffeler E, Lang T, et al. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). *Pharmacogenetics*. 2004;14(7):429-440.
channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes. 2003;52(2):568-572.

112. Barroso I, Luan J, Middelberg RPS, et al. Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action. PLoS Biol. 2003;1(1):E20. https://doi.org/10.1371/journal.pbio.0000020

113. Nielsen E-MD, Hansen L, Carstensen B, et al. The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes. 2009;58(2):573-577.

114. Sakura H, Wat N, Horton V, Millns H, Turner RC, Ashcroft FM. The E23K variant of KCNJ11 encoding the pancreatic beta-cell adenine 5’-triphosphate-sensitive potassium channel subunit Kir6.2 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes. J Clin Endocrinol Metab. 2006;91(6):2334-2339. https://doi.org/10.1210/jc.2005-2323

115. Zhang H, Liu X, Kuang H, Yi R, Xing H. Association of sulfonylurea receptor 1 genotype with therapeutic response to gliclazide in type 2 diabetes. Diabetes Res Clin Pract. 2007;77(1):58-61. https://doi.org/10.1016/j.diabres.2006.10.021

116. Holstein A, Hahn M, Stumvoll M, Kovacs P. The E23K variant of KCNJ11 encoding the pancreatic beta-cell adenine 5’-triphosphate-sensitive potassium channel subunit Kir6.2 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes. Horm Metab Res Horm Stoffwechselforsch Horm Metabolism. 2009;41(5):387-390. https://doi.org/10.1055/s-0029-1192019

117. Shimajiri Y, Yamana A, Morita S, Furuta H, Furuta M, Sanke T. Kir6.2 E23K polymorphism is related to secondary failure of sulfonylureas in non-obese patients with type 2 diabetes. J Diabetes Investig. 2013;4(5):445-449. https://doi.org/10.1111/jdi.12070

118. El-Sisi AE, Hegazy SK, Metwally SS, Wafa AM, Dawood NA. Effect of genetic polymorphisms on the development of secondary failure to sulfonylurea in Egyptian patients with type 2 diabetes. Ther Adv Endocrinol Metab. 2011;2(4):155-164. https://doi.org/10.1177/2042018811415985

119. Javorský M, Klimcakova L, Schroner Z, et al. KCNJ11 gene E23K variant and therapeutic response to sulfonylureas. Eur J Intern Med. 2012;23(3):245-249. https://doi.org/10.1016/j.ejim.2011.10.018

120. Ragia G, Tavridou A, Petridis I, Manolopoulos VG. Association of KCNJ11 E23K gene polymorphism with hyperglycemia in sulfonylurea-treated type 2 diabetic patients. Diabetes Res Clin Pract. 2012;98(1):119-124. https://doi.org/10.1016/j.diabres.2012.04.017

121. Tsai F-J, Yang C-F, Chen C-C, et al. A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet. 2010;6(2):E1000847. https://doi.org/10.1371/journal.pgen.1000847

122. Unoki H, Takahashi A, Kagawauchi T, et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in east Asian and European populations. Nat Genet. 2008;40(9):1098-1102. https://doi.org/10.1038/ng.208

123. Jonsson A, Isomaa B, Tuomi T, et al. A variant in the KCNQ1 gene predicts future type 2 diabetes and mediates impaired insulin secretion. Diabetes. 2009;58(10):2409-2413. https://doi.org/10.2337/db09-0246

124. Palmer ND, Goodarzi MO, Langefeld CD, et al. Genetic variants associated with quantitative glucose homeostasis traits translates to type 2 diabetes in Mexican Americans: the GUARDIAN (genetics underlying diabetes in Hispanics) consortium. Diabetes. 2015;64(5):1853-1866. https://doi.org/10.2337/db14-0732

125. Yu W, Hu C, Zhang R, et al. Effects of KCNQ1 polymorphisms on the therapeutic efficacy of oral antidiabetic drugs in Chinese patients with type 2 diabetes. Clin Pharmacol Ther. 2011;89(3):437-442. https://doi.org/10.1038/clinph.2010.351

126. Dai X-P, Huang Q, Yin J-Y, et al. KCNQ1 gene polymorphisms are associated with the therapeutic efficacy of repaglinide in Chinese type 2 diabetic patients. Clin Exp Pharmacol Physiol. 2012;39(5):462-468. https://doi.org/10.1111/j.1440-1618.2012.05701.x

127. Schroner Z, Dobrikova M, Klimcakova L, et al. Variation in KCNQ1 is associated with therapeutic response to sulfonylureas. Med Sci Monit Int Med J Exp Clin Res. 2011;17(7):CR392-CR396.

128. Arking DE, Pfeuffer A, Post W, et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat Genet. 2006;38(6):644-651. https://doi.org/10.1038/ng1790

129. Becker ML, Aarnoudse A-JLHJ, Newton-Cheh C, et al. Common variation in the NOS1AP gene is associated with reduced glucose-lowering effect and with increased mortality in users of sulfonylureas. Pharmacogenet Genomics. 2008;18(7):591-597. https://doi.org/10.1097/PPG.0b013e32826e6c5

130. Qin W, Zhang R, Hu C, et al. A variation in NOS1AP gene is associated with repaglinide efficacy on insulin resistance in type 2 diabetes of Chinese. Acta Pharmacol Sin. 2010;31(4):450-454. https://doi.org/10.1038/aps.2010.25

131. Hu C, Wang C, Zhang R, et al. Association of genetic variants of NOS1AP with type 2 diabetes in a Chinese population. Diabetologia. 2010;53(2):290-298. https://doi.org/10.1007/s00125-009-1594-2

132. Wang T, Wang Y, Lv D-M, et al. Effects of NOS1AP rs12742393 polymorphism on repaglinide response in Chinese patients with type 2 diabetes mellitus. Pharmacotherapy. 2014;34(2):131-139. https://doi.org/10.1002/phar.1379

133. Porzio O, Federici M, Hribal ML, et al. The Gly972->Arg amino acid polymorphism in IRS-1 impairs insulin secretion in pancreatic beta cells. J Clin Invest. 1999;104(3):357-364. https://doi.org/10.1172/JCI5870

134. Marchetti P, Lupi R, Federici M, et al. Insulin secretory function is impaired in isolated human islets carrying the Gly972->Arg IRS-1 polymorphism. Diabetes. 2002;51(5):1419-1424.

135. Tong Y, Lin Y, Zhang Y, et al. Association between TCF7L2 gene polymorphisms and susceptibility to type 2 diabetes mellitus: a large human genome epidemiology (HuGE) review and meta-analysis. BMC Med Genet. 2009;10(1):15. https://doi.org/10.1186/1471-2350-10-15.

136. Flores JC, Jablonski KA, Bayley N, et al. TCF7L2 polymorphisms and progression to diabetes in the diabetes prevention program. N Engl J Med. 2006;355(3):241-250. https://doi.org/10.1056/NEJMoa062418

137. Cauchi S, Meyre D, Choquet H, et al. TCF7L2 variation predicts hyperglycemia incidence in a French general population: the data from an epidemiological study on the insulin resistance syndrome (DESIR) study. Diabetes. 2006;55(11):3189-3192. https://doi.org/10.2337/db06-0692

138. Humphries SE, Gable D, Cooper JA, et al. Common variants in the TCF7L2 gene and predisposition to type 2 diabetes in UK European whites, Indian Asians and Afro-Caribbean men and women. J Mol Med Berl Ger. 2006;84(12):1005-1014.

139. Grant SFA, Thorleifsson G, Reynolds TD, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38(3):320-323. https://doi.org/10.1038/ng1732

140. Pearson ER, Donnelly LA, Kimber C, et al. Variation in TCF7L2 influences therapeutic response to sulfonylureas: a GoDARTs study. Diabetes. 2007;56(8):2178-2182. https://doi.org/10.2337/db07-0440

141. Holstein A, Hahn M, Kömer A, Stumvoll M, Kovacs P. TCF7L2 and therapeutic response to sulfonylureas in patients with type 2 diabetes. Endocrinol Metab. 2013;98(1):119-124. https://doi.org/10.1056/NEJMoa0732041
diabetes. BMC Med Genet. 2011;12:30. https://doi.org/10.1186/1471-2350-12-30

144. Yu M, Xu X-I, Yin J-Y, et al. KCNJK11 Lys23Glu and TCF7L2 rs290487C/T polymorphisms affect therapeutic efficacy of regaplinide in Chinese patients with type 2 diabetes. Clin Pharmacol Ther. 2010;87(3):330-335. https://doi.org/10.1038/clpt.2009.242

145. Gerstein HC, Ratner RE, Cannon CP, et al. Effect of rosiglitazone on progression of coronary atherosclerosis in patients with type 2 diabetes mellitus and coronary artery disease: the assessment on the prevention of progression by rosiglitazone on atherosclerosis in diabetes patients with cardiovascular history trial. Circulation. 2010;121(10):1176-1187. https://doi.org/10.1161/CIRCULATIONAHA.109.881003

146. Bolen S, Feldman L, Vassy J, et al. Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. Ann Intern Med. 2007;147(4):386-399.

147. Hiatt WR, Kaul S, Smith RJ. The cardiovascular safety of diabetes drugs—insights from the rosiglitazone experience. N Engl J Med. 2013;369(14):1285-1287. https://doi.org/10.1056/NEJMmp1309610

148. Lincoff AM, Wolski K, Nicholls SJ, Nissen SE. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA. 2007;298(10):1180-1188. https://doi.org/10.1001/jama.298.10.1180

149. Kerman WN, Viscoli CM, Furie KL, et al. Pioglitazone after ischemic stroke or transient ischemic attack. N Engl J Med. 2016;374(14):1321-1331. https://doi.org/10.1056/NEJMoa1506930

150. Young LH, Viscoli CM, Curtis JP, et al. Cardiac outcomes after ischemic stroke or transient ischemic attack: effects of pioglitazone in patients with insulin resistance without diabetes mellitus. Circulation. 2017;135(20):1882-1893. https://doi.org/10.1161/CIRCULATIONAHA.116.024863

151. Soyama A, Hanioka N, Saito Y, et al. Amiodarone N-deethylation by CYP2C8 and its variants, CYP2C8*3 and CYP2C8 P404A. Pharmacol Toxicol. 2002;91(4):174-178.

152. Bidstrup TB, Bjørnsdottir I, Sidelmann UG, Thomsen MS, Hansen KT. The role of genetic variants in CYP2C8, LPIN1, PPARGC1A and PTPRD gene polymorphisms influence type 2 diabetes patients’ response to pioglitazone treatment in menopausal women. Menopause N Y N. 2008;15(6):1151-1156. https://doi.org/10.1097/gme.0b013e31816d5b2d

153. Scheen AJ. Pharmacokinetic interactions with thiazolidinediones. Clin Pharmacokinet. 2007;46(4):1-12. https://doi.org/10.2165/00003088-20074601-00001

154. VandenBrink BM, Foti RS, Rock DA, Wienkers LC, Wahlstrom JL. Effect of rosiglitazone on glycosylated haemoglobin A1c in type 2 diabetes patients with cardiovascular history trial. Circulation. 2010;121(10):1176-1187. https://doi.org/10.1161/CIRCULATIONAHA.109.881003

155. Davies AY, Donnelly L, Tavendale R, et al. CYP2C8 and SLCO1B1 variants and therapeutic response to Thiazolidinediones in patients with type 2 diabetes. Diabetes Care. 2016;39(11):1902-1908. https://doi.org/10.2337/dc15-2464

156. Kircheiner J, Thomas S, Bauer S, et al. Pharmacokinetics and pharmacodynamics of rosiglitazone in relation to CYP2C8 genotype. Clin Pharmacol Ther. 2006;80(6):657-667. https://doi.org/10.1016/j.cpt.2006.09.008

157. Stage TB, Christensen MMH, Feddersen S, Beck-Nielsen H, Børsen K. The role of genetic variants in CYP2C8, LPIN1, PPARGC1A and PPARy on the trough steady-state plasma concentrations of rosiglitazone and on glycosylated haemoglobin A1c in type 2 diabetics. Pharmacogenet Genomics. 2013;23(4):219-227. https://doi.org/10.1097/FPC.0b013e32835f91fc

158. Martis S, Peter L, Hulot J, et al. KCNJ11 Lys23Glu and TCF7L2 polymorphisms affect therapeutic efficacy of regaplinide in Chinese patients with type 2 diabetes. BMC Med Genet. 2011;12:30. https://doi.org/10.1186/1471-2350-12-30

159. Todino A, Niemi M, Neuvonen PJ, Backman JT. Tramethrinpr and the CYP2C8*3 allele have opposite effects on the pharmacokinetics of pioglitazone. Drug Metab Dispos. 2008;36(1):73-80. https://doi.org/10.1124/dmd.107.018010

160. Aquilante CL, Wempe MF, Sidhom MS, Kosmis LA, Predhomme JA. Effect of ABCB1 polymorphisms and atorvastatin on sitagliptin pharmacokinetics in healthy volunteers. Eur J Clin Pharmacol. 2013;69(7):1401-1409. https://doi.org/10.1186/s12882-013-1475-y

161. Radam K, Boume D, Kompella U, Aquilante C. Effect of cytochrome P450 CYP2C8*3 on the population pharmacokinetics of pioglitazone in healthy Caucasian volunteers. Biol Pharm Bull. 2013;36(2):245-251.

162. Kawaguchi-Suzuki M, Frye RF. Current clinical evidence on pioglitazone pharmacogenomics. Front Pharmacol. 2013;4:147. https://doi.org/10.3389/fphar.2013.00147

163. Ye C-W, Lee S-J, Lee SS, et al. Discovery of a novel allelic variant of CYP2C8, CYP2C8*11, in Asian populations and its clinical effect on the rosiglitazone disposition in vivo. Drug Metab Dispos. 2011;39(4):711-716. https://doi.org/10.1124/dmd.110.035899

164. Aquilante CL, Wempe MF, Spencer SH, Kosmis LA, Predhomme JA, Sidhom MS. Influence of CYP2C8*2 on the pharmacokinetics of pioglitazone in healthy African-American volunteers. Pharmacotherapy. 2013;33(9):1000-1007. https://doi.org/10.1002/phar.1292

165. Lehmann JM, Moore LB, Smith-Oliver TA, Willson WO, Willson TM, Kiwiler SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem. 1995;270(22):12953-12956.

166. Altshuler D, Hirschhorn JN, Klannemark M, et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet. 2000;26(1):76-80. https://doi.org/10.1038/79216

167. Deeb SS, Fajas L, Nemoto M, et al. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet. 1998;20(3):284-287. https://doi.org/10.1038/3099

168. Gouda HN, Sagoo GS, Harding A-H, Yates J, Sandhu MS, Higgins JPT. The association between the peroxisome proliferator-activated receptor-gamma2 (PPARG2) Pro12Ala gene variant and type 2 diabetes mellitus: a HuGE review and meta-analysis. Am J Epidemiol. 2010;171(6):645-655. https://doi.org/10.1093/aje/kwp450

169. Ludovico O, Pellegrini F, Di Paola R, et al. Heterogeneous effect of peroxisome proliferator-activated receptor gamma2 Ala12 variant on type 2 diabetes risk. Obes Silver Spring Md. 2007;15(5):1076-1081. https://doi.org/10.1038/oby.2007.617

170. Ramirez-Salazar M, Pérez-Luque E, Fajardo-Araujo M, Garza SM, Malan JA. Effect of the Pro12Ala polymorphism of the PPAR gamma 2 gene on response to pioglitazone treatment in menopausal women. Menopause N Y N. 2008;15(6):1151-1156. https://doi.org/10.1097/gme.0b013e31816d5b2d
205. Koole C, Wootten D, Simms J, et al. Polymorphism and ligand-dependent changes in human glucagon-like peptide-1 receptor (GLP-1R) function: allosteric rescue of loss of function mutation. Mol Pharmacol. 2011;80(3):486-497. https://doi.org/10.1124/mol.111.072884

206. Koole C, Wootten D, Simms J, Miller LJ, Christopoulos A, Sexton PM. Differential impact of amino acid substitutions on critical residues of the human glucagon-like peptide-1 receptor involved in peptide activity and small-molecule allosterity. J Pharmacol Exp Ther. 2015;353(1):52-63. https://doi.org/10.1124/jpet.114.220913

207. Sathanathan A, Man CD, Micheletto F, et al. Common genetic variation in GLP1R and insulin secretion in response to exogenous GLP-1 in nondiabetic subjects: a pilot study. Diabetes Care. 2010;33(9):2074-2076. https://doi.org/10.2337/dc10-0200

208. Jensterle M, Piri B, Goričar K, Dolžan V, Janež A. Genetic variability in GLP-1 receptor is associated with inter-individual differences in weight lowering potential of lixisulin in obese women with PCOS: a pilot study. Eur J Clin Pharmacol. 2015;71(7):817-824. https://doi.org/10.1007/s00228-015-1868-1

209. de Luis DA, Diaz Soto G, Izaola O, Romero E. Evaluation of weight lowering potential of liraglutide in obese female subjects. J Diabetes Complications. 2015;29(4):595-598. https://doi.org/10.1016/j.jdiacomp.2015.02.010

210. de Luis DA, Aller R, Izaola O, Bachiller R. Role of rs6923761 gene variant in glucagon-like peptide 1 receptor in basal GLP-1 levels, cardiovascular risk factor and serum adipokine levels in non type 2 diabetic patients. J Endocrinol Invest. 2015;38(2):143-147. https://doi.org/10.1007/s40618-014-0161-y

211. de Luis DA, Aller R, Izaola O, Bachiller R, Pacheco D. Cardiovascular risk factors and adipocytokines levels in patients with lixisulin, effect of R5923761 gene variant of glucagon-like peptide 1 receptor. J Diabetes Complications. 2015;29(4):595-598. https://doi.org/10.1007/s40618-014-0116-3

212. de Luis DA, Pacheco D, Aller R, Izaola Q. Role of the rs6923761 gene variant in glucagon-like peptide 1 receptor on cardiovascular risk factors and weight loss after biliopancreatic diversion surgery. Ann Nutr Metab. 2014;65(4):259-263. https://doi.org/10.1159/000365975

213. de Luis DA, Aller R, de la Fuente B, et al. Relation of the rs6923761 gene variant in glucagon-like peptide 1 receptor with weight, cardiovascular risk factor, and serum adipokine levels in obese female subjects. J Clin Lab Anal. 2015;29(2):100-105. https://doi.org/10.1002/jcla.21735

214. Manning AK, Hivert M-F, Scott RA, et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet. 2012;44(6):659-669. https://doi.org/10.1038/ng.2274

215. Mahajan A, Sim X, Ng HJ, et al. Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABC811 locus. PLoS Genet. 2015;11(1):e1004876. https://doi.org/10.1371/journal.pgen.1004876

216. Wessel J, Chu AY, Willems SM, et al. Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat Commun. 2015;6:1897. https://doi.org/10.1038/ncomms8897.

217. Hyltén-Cavallius L, Lepsen EW, Wewer Albrechtsen NJ, et al. Patients with long-QT syndrome caused by impaired hERG-encoded Kv11.1. Potassium Channel have exaggerated endocrine pancreatic and incretin function associated with reactive hypoglycemia. Circulation. 2017;135(18):1705-1719. https://doi.org/10.1161/CIRCULATIONAHA.116.024279

218. Gottthardová I, Javorky M, Klimčáková L, et al. KCNQ1 gene polymorphism is associated with glycemic response to treatment with DPP-4 inhibitors. Diabetes Res Clin Pract. 2017;130:142-147. https://doi.org/10.1016/j.diabres.2017.05.018

219. Müssig K, Staiger H, Machicao F, et al. Association of type 2 diabetes candidate polymorphisms in KCNQ1 with incretin and insulin secretion. Diabetes. 2009;58(7):1715-1720. https://doi.org/10.2337/db08-1589

220. Smushkin G, Sathanathan M, Sathanathan A, et al. Diabetes-associated common genetic variation and its association with GLP-1 concentrations and response to exogenous GLP-1. Diabetes. 2012;61(5):1082-1089. https://doi.org/10.2337/db11-1732

221. Yi F, Brubaker PL, Jin T. TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta. J Biol Chem. 2005;280(2):1457-1464. https://doi.org/10.1074/jbc.M411487200

222. Shu L, Matveyenko AV, Kerr-Conte J, Cho J-H, McIntosh CHS, Maedler K. Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired beta-cell function. Hum Mol Genet. 2009;18(13):3288-3299. https://doi.org/10.1093/hmg/ddp178

223. Pilgaard K, Jensen CB, Schou JH, et al. The T allele of rs7903146 TCF7L2 is associated with impaired insulinotropic action of incretin hormones, reduced 24 h profiles of plasma insulin and glucagon, and increased hepatic glucose production in young healthy men. Diabetologia. 2009;52(7):1298-1307. https://doi.org/10.1007/s00125-009-1307-x

224. Schäfer SA, Tscharütter O, Machicao F, et al. Impaired glucagon-like peptide-1-induced insulin secretion in carriers of transcription factor 7-like 2 (TCF7L2) gene polymorphisms. Diabetologia. 2007;50(12):2443-2450. https://doi.org/10.1007/s00125-007-0753-6

225. Lyssenko V, Lupi R, Marchetti P, et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest. 2007;117(8):2155-2163. https://doi.org/10.1172/JCI30706

226. Zimdhall H, Ittrich C, Graef-Mody U, et al. Influence of TCF7L2 gene variants on the therapeutic response to the dipeptidylpeptidase-4 inhibitor linagliptin. Diabetologia. 2014;57(9):1869-1875. https://doi.org/10.1007/s00125-014-3276-y

227. Pyke DA. Diabetes: the genetic connections. Diabetologia. 1979;17(6):333-343.

228. Morris AP, Voight BF, Teslovich TM, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012;44(9):981-990. https://doi.org/10.1038/ng.2383

229. Scott RA, Lagou V, Welch RP, et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet. 2012;44(9):991-1005. https://doi.org/10.1038/ng.2385

230. Poveda A, Koivula RW, Ahmad S, et al. Inmate biology versus lifestyle behaviour in the aetiology of obesity and type 2 diabetes: the GLACIER study. Diabetologia. 2016;59(3):462-471. https://doi.org/10.1007/s00125-015-3818-y

231. American Diabetes Association. 8. Pharmacologic approaches to glycemic treatment: standards of medical Care in Diabetes-2018. Diabetes Care. 2018;41 Suppl 1:573-585. https://doi.org/10.2337/dc18-S008

232. Pozzilli P, Leslie RD, Chan J, et al. The A1C and ABDG of glycemia management in type 2 diabetes: a physician’s personalized approach. Diabetes Metab Res Rev. 2010;26(4):239-244. https://doi.org/10.1002/dmrr.1092

233. Maddaloni E, Pozzilli P. SMART diabetes: the way to go (safe and multifactorial approach to reduce the risk for therapy in diabetes). Endocrine. 2014;46(1):3-5. https://doi.org/10.1007/s12020-013-0128-3

234. Ferdinand KC, Nasser SA. Racial/ethnic disparities in prevalence and care of patients with type 2 diabetes mellitus. Curr Med Res Opin. 2015;31(5):913-923. https://doi.org/10.1185/03007995.2015.102984
235. Saremi A, Schwenke DC, Bahn G, et al. The effect of intensive glucose lowering therapy among major racial/ethnic groups in the veterans affairs diabetes trial. *Metabolism*. 2015;64(2):218-225. https://doi.org/10.1016/j.metabol.2014.10.010

236. Maddaloni E, D’Onofrio L, Pozzilli P. Frailty and geography: should these two factors be added to the ABCDE contemporary guide to diabetes therapy? *Diabetes Metab Res Rev*. 2016;32(2):169-175. https://doi.org/10.1002/dmrr.2762

237. Hornbak M, Allin KH, Jensen ML, et al. A combined analysis of 48 type 2 diabetes genetic risk variants shows no discriminative value to predict time to first prescription of a glucose lowering drug in Danish patients with screen detected type 2 diabetes. *PloS One*. 2014;9(8):e104837. https://doi.org/10.1371/journal.pone.0104837

238. Chen M, Zhang R, Jiang F, et al. Joint effects of diabetic-related genomic loci on the therapeutic efficacy of oral anti-diabetic drugs in Chinese type 2 diabetes patients. *Sci Rep*. 2016;6(1):23266. https://doi.org/10.1038/srep23266.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Mannino GC, Andreozzi F, Sesti G. Pharmacogenetics of type 2 diabetes mellitus, the route toward tailored medicine. *Diabetes Metab Res Rev*. 2019;35:e3109. https://doi.org/10.1002/dmrr.3109