Salt stress and senescence: identification of cross-talk regulatory components

Annapurna Devi Allu1,2, Aleksandra Maria Soja3, Anhui Wu1, Jedrzej Szymanski3 and Salma Balazadeh1,2,*

1 University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24–25, Haus 20, D-14476 Potsdam-Golm, Germany
2 Max-Planck Institute of Molecular Plant Physiology, Plant Signaling Group, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
3 Max-Planck Institute of Molecular Plant Physiology, Department of Molecular Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany

* To whom correspondence should be addressed. E-mail: balazadeh@mpimp-golm.mpg.de

Received 17 December 2013; Revised 17 March 2014; Accepted 19 March 2014

Abstract

Leaf senescence is an active process with a pivotal impact on plant productivity. It results from extensive signalling cross-talk coordinating environmental factors with intrinsic age-related mechanisms. Although many studies have shown that leaf senescence is affected by a range of external parameters, knowledge about the regulatory systems that govern the interplay between developmental programmes and environmental stress is still vague. Salinity is one of the most important environmental stresses that promote leaf senescence and thus affect crop yield. Improving salt tolerance by avoiding or delaying senescence under stress will therefore play an important role in maintaining high agricultural productivity. Experimental evidence suggests that hydrogen peroxide (H2O2) functions as a common signalling molecule in both developmental and salt-induced leaf senescence. In this study, microarray-based gene expression profiling on Arabidopsis thaliana plants subjected to long-term salinity stress to induce leaf senescence was performed, together with co-expression network analysis for H2O2-responsive genes that are mutually up-regulated by salt induced- and developmental leaf senescence. Promoter analysis of tightly co-expressed genes led to the identification of seven cis-regulatory motifs, three of which were known previously, namely CACGTGT and AAGTCAA, which are associated with reactive oxygen species (ROS)-responsive genes, and CCGCGT, described as a stress-responsive regulatory motif, while the others, namely ACGCGGT, AGCMGNC, GMCACGT, and TCSTYGACG were not characterized previously. These motifs are proposed to be novel elements involved in the H2O2-mediated control of gene expression during salinity stress-triggered and developmental senescence, acting through upstream transcription factors that bind to these sites.

Key words: Arabidopsis, hydrogen peroxide, longevity, reactive oxygen species, salt stress, senescence, signal cross-talk, transcription factor.

Introduction

During the course of senescence, nutrients accumulated in the growing and maturing leaves are exported to actively growing organs such as young leaves, developing fruits, or flowers and storage organs. This mobilization is continued until most of the nutrients are removed from the senescing leaves (Hörtensteiner and Feller, 2002). Therefore, leaf senescence is a critical developmental process for plant fitness. Global transcriptome studies of senescent Arabidopsis thaliana leaves indicated that differential gene expression plays an important role in the regulation of this process (Buchanan-Wollaston
et al., 2005; van der Graaff et al., 2006). Identifying and understanding the functions of the genes that initiate and carry out senescence are essential to manipulate senescence for economic purposes (e.g. to increase biomass and crop yield, and modify production traits).

Developmental senescence is a highly regulated genetically controlled degenerative process. As senescence can normally not be induced easily in young leaves of Arabidopsis, it was proposed that age-related changes (ARCs) are needed to allow the execution of senescence at a later developmental stage of a leaf (Jibrani et al., 2013). Although the molecular or cellular nature of age-related factors that manifest ARCs are not well defined at present, the termination of cell division or the end of leaf cell expansion may represent such factors (discussed in Jibrani et al., 2013). Also, ARCs occurring at the level of various phytohormones (i.e. ethylene, cytokinins, jasmonic acid, and salicylic acid), metabolites (such as sugars), and active forms of oxygen [reactive oxygen species (ROS)] may contribute to establish a senescence-competent status of the leaf (Guo and Gan, 2005).

Of the various possible inducers of the senescence programme, ROS have attracted a lot of attention during the past few years. In addition to their harmful effect on cellular components, ROS are now recognized as an essential component of many developmental and physiological processes including flowering, senescence, and root development (Mittler et al., 2004; Zimmermann and Zentgraf, 2005; Zimmermann et al., 2006; Tsukagoshi et al., 2010). As by-products of aerobic metabolism, ROS are continuously produced in different cellular compartments and their endogenous levels are controlled in a finely tuned manner by a series of enzymatic and non-enzymatic antioxidants. It is becoming increasingly evident that the loss of certain antioxidant activities and the subsequent accumulation of ROS [superoxide, singlet oxygen, hydroxyl radical, and hydrogen peroxide (H$_2$O$_2$)] with age are signals for the initiation of leaf senescence (Leshem, 1988; Navabpour et al., 2003; Mittler et al., 2004; Zimmermann and Zentgraf, 2005). However, currently their specific roles in the regulation of the senescence process are far from being understood. Transcript profiling experiments revealed massive changes in gene expression in response to various ROS-generating conditions, including to H$_2$O$_2$ treatment itself (Vandenbeye et al., 2003; Vanderauwera et al., 2005; Balazadeh et al., 2012). This includes expression changes of a large number of senescence-associated transcription factors, further supporting the involvement of ROS in the genetically controlled process of ageing.

Although leaf senescence is largely governed by a genetic programme, abiotic stresses including nutrient (e.g. nitrogen) deprivation, extended darkness, drought, cold, high temperature, salt stress, or wounding are well known to affect the initiation and progression of senescence (Whitehead et al., 1984; Becker and Apel, 1993; Lutts et al., 1996; Yoshida, 2003; Munné-Bosch and Alegre, 2004; Buchanan-Wollaston et al., 2005; Munns, 2005; Parlitz et al., 2011). Under natural conditions, plants are continuously exposed to multiple stresses, and as non-motile organisms they must adjust their physiology to an ever-changing surrounding environment for survival. An example for such an adjustment is the acceleration of vegetative growth, combined with the promotion of leaf senescence, to enter rapidly into the reproductive phase and reach the next generation. Such stress-modulated developmental changes require a sophisticated integration of regulatory networks of abiotic stress responses with the developmental senescence programme.

Data from large-scale expression profiling experiments obtained from plants undergoing developmental or abiotic stress-induced senescence (Buchanan-Wollaston et al., 2005; van der Graaff et al., 2006; Parlitz et al., 2011) indicate an overlap in the expression changes and suggest the existence of signalling cross-talk linking the different types of senescence. In addition, various late-flowering and/or stay-green mutants in Arabidopsis such as gigantea (gi), oresara1 (ore1), ore3, and ore9 indicate a possible link between longevity and stress tolerance (Koornneef et al., 1991; Oh et al., 1997; Kurepa et al., 1998; Park et al., 1999; Woo et al., 2004). In Arabidopsis, the anac092-I stay-green mutant retained chlorophyll at a higher level than the wild type when salt stressed for several days (150 mM NaCl), indicating a role for the NAC transcription factor ANAC092/ORE1 not only in developmental senescence (Kim et al., 2009), but also in the regulation of salt-promoted senescence (Balazadeh et al., 2010). Overexpression of JUB1, a further member of the NAC transcription factor gene family, in transgenic Arabidopsis extends plant longevity and confers abiotic stress tolerance through a tight regulation of the cellular H$_2$O$_2$ level (Wu et al., 2012). OsTZF1, a member of the CCH-type zinc-finger gene family in rice (Oryza sativa), is a negative regulator of developmental and abiotic stress-induced senescence. Transgenic plants overexpressing OsTZF1 exhibit delayed senescence under various abiotic stress conditions including high salinity, darkness, and dehydration, indicating that both tolerance to oxidative stress and retarded senescence are based on the same cellular factor(s) (Jan et al., 2013). These and other reports support the model that stress-induced and senescence regulatory pathways share common elements.

Salinity stress is a major abiotic stress limiting plant growth and productivity worldwide. By triggering a wide range of cellular events, salinity, like other abiotic stresses, superimposes its downstream effects on the existing developmental signalling processes. This leads to the activation of whole-plant responses, such as growth reduction, changes in biomass allocation, leaf senescence, and death of plants (Volkmar et al., 1998; Munns, 2002; Pic et al., 2002; Munné-Bosch and Alegre, 2004). It has been proposed that many salt stress-triggered processes, such as a decline in photosynthetic activity or an increase in membrane damage, reflect a hastening of the naturally occurring senescence process (Dwivedi et al., 1979; Dhindsa et al., 1981). In sweet potato, treatment of detached mature leaves with NaCl (140 mM and 210 mM) accelerated leaf senescence in a dose-dependent manner on days 6 and 9 after treatment. The early leaf senescence induced by salt was accompanied by a decrease in chlorophyll content, reduction of photosynthetic efficiency (F_v/F_m), and an elevation of H$_2$O$_2$ level (Chen et al., 2012). The fact that ROS, especially H$_2$O$_2$, accumulate during both salinity stress (Gomez et al.,
2004; Rubio et al., 2009; Hanqing et al., 2010; Chen et al., 2012) and developmental senescence (Zimmermann and Zentgraf, 2005; Bieker et al., 2012) suggests the existence of ROS-mediated cross-talk between the two processes.

Although salinity triggers leaf senescence in different plant species, the regulatory mechanisms integrating salt stress signalling with senescence are incompletely known at present. With respect to agriculture, however, a better understanding of such processes is expected to aid in the breeding of crops with improved salt tolerance by avoiding or delaying senescence during salinity stress. Although in Arabidopsis various transcriptome studies were performed in the past to characterize the global expression responses to salt stress (Kreps et al., 2002; Seki et al., 2002; Tajii et al., 2004; Gong et al., 2005; Matsui et al., 2008; Zeller et al., 2009), little attention has so far been paid to studying the regulation of gene expression during senescence in salt-stressed plants. Here, the transcriptomes of Arabidopsis leaves during salt-induced senescence were therefore analysed and compared with transcriptomes from leaves during developmental senescence (Buchanan-Wollaston et al., 2005; Balazadeh et al., 2008; Breeze et al., 2011) and plants subjected to H$_2$O$_2$ treatment. By integrating co-expression data with promoter analyses, candidate cis-regulatory elements (CREs) governing gene expression under the three conditions examined could be identified. The results thus provide novel information relevant for studies on the transcriptional programmes that control H$_2$O$_2$-mediated salt-induced senescence and shed light on the complex signal transduction pathways that regulate leaf senescence under salt stress.

Materials and methods

General

Standard molecular techniques were performed as described (Sambrook and Russell, 2001). Oligonucleotides were obtained from Eurofins MWG Operon (Ebersberg, Germany). The Arabidopsis Hormone Database (http://ahd.cbi.pku.edu.cn/) and the Arabidopsis eFP Browser (http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi) were used for expression analyses.

Plant material and stress treatments

Arabidopsis thaliana (L.) Heyn. (Col-0 ecotype) was germinated and grown on 0.5× Murashige and Skoog (MS) agar medium containing 1% sucrose. The plants were grown in a growth chamber at 22 °C under a 16:8 h light/dark cycle; the light period started at 06:00 h. Seeds were sown on glass wool placed on a plastic tray having small holes in its bottom, which allows the contact of the glass wool and later the roots with the liquid medium in a plastic box placed below. The medium used was essentially as described by Loque et al. (2003). Six plants were grown in each hydroponic box and the growth medium was replaced with fresh, autoclaved solution every seventh day to limit the growth of microorganisms and supply enough nutrients for normal plant growth.

Stress treatments were initiated at 10:00 h by adding NaCl (final concentration: 150 mM) to the liquid medium, and medium without NaCl served as control. Leaves (entire shoots) of treated and control plants were frozen in liquid nitrogen and used for expression profiling. The experiment was performed in three independent biological replications.

Expression analysis by qRT-PCR

Total RNA extraction, cDNA synthesis, and quantitative real-time PCR (qRT-PCR) were carried out as described (Caldana et al., 2007; Balazadeh et al., 2008). ACTIN2 (At3g18780) served as reference gene in all qRT-PCR experiments. ACTIN2 primers were Actin2-fwd (5′-TCCCTCAGCACATTCCAGCAGAT-3′) and Actin2-rev (5′-ACCAGATCCTGTACCTCGTATCATC-3′). SAG12 and WRKY53 primer sequences were as follows: SAG12-fwd, 5′-AACAAGCCAGACGCTACTTG-3′ and SAG12-rev, 5′-ACC GGACATCCTCATACACCCT-3′; WRKY53-fwd, 5′-ATCC GGGCAGTCTCCGAATCT-3′ and WRKY53-rev, 5′-AGAACC TCTCCATCGCAAA-3′.

Microarray hybridizations

Affymetrix ATH1 hybridizations were performed by Atlas Biolabs (http://www.atlas-biolabs.com/). Expression data were analysed using Bioconductor (Gentleman et al., 2004). Data quality was evaluated by affy and affyPL packages. Data were normalized with robust multiarray averaging (Irizarry et al., 2003). Statistical testing for differential expression was performed using the Limma Bioconductor package.

Expression data were submitted to the NCBI Gene Expression Omnibus (GEO) repository (http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE53308.

Response classification

Response classification was based on gene differential expression (2-fold expression difference as cut-off) upon H$_2$O$_2$ (1 h and/or 5 h 10 mM H$_2$O$_2$) treatment or long-term NaCl treatment (4 d, 150 mM NaCl). Developmental senescence-up-regulated genes (SAGs) were extracted from Buchanan-Wollaston et al. (2005), Balazadeh et al. (2008) and Breeze et al. (2011), and developmental senescence-down-regulated genes (SDGs) were extracted from Buchanan-Wollaston et al. (2005) and Breeze et al. (2011). Up- or down-regulated genes or those exhibiting no response were attributed as having a value of 1, −1, or 0, respectively. In this way, each gene was categorized into one of 26 clusters, each representing one of 26 possible patterns of expression in the three listed conditions.

Co-expression analysis

Time series data were obtained from NASC (experiments 143 and 140 from the AtGenExpress consortium for oxidative stress and salt stress responses, respectively) and Breeze et al. (2011) (developmental senescence). The significance of the differential gene expression in the time series experiments was estimated using paired t-test.
between treatment and the corresponding control. Data sets of 350 genes (cluster 26) identified as robustly up-regulated in all three conditions were extracted. The time series data were Z-transformed independently, centring expression of each gene to 0 and normalizing its standard deviation to 1. Subsequently, three correlation matrices were obtained, one for each data set. Each correlation matrix was transformed into a binary adjacency matrix, using the chosen significance cut-off, and represented as a network. Finally, the intersection of these three networks was obtained, representing the gene co-expression structure conserved across all three experimental conditions. In the intersection network, communities were identified using the greedy search algorithm (Clauset et al., 2004). The robustness of the community search was checked for correlation thresholds 0.1–0.9, and the seven regulatory modules presented herein are stable between the thresholds 0.4 and 0.65. The value applied here (i.e. 0.6) represents a compromise between correlation significance and the size of identified communities.

Cis-regulatory elements analysis
In the approach used here motifs of length 6–12 nucleotides were looked for in the 590bp upstream regions (obtained from http://arabidopsis.org/tools/bulk/sequences/index.jsp). To detect motifs, the ZOOPS model (Bailey and Elkan, 1995) was used, which considers that the motif occurrence can be zero or one in a sequence. The maximum number of sites to find was set to 10. To verify if the identified motifs are previously characterized Arabidopsis CREs, the TOMTOM tool (Motif Comparison Tool) was used. TOMTOM searches motif–motif databases and measures statistical similarity between motifs (Gupta et al., 2007). Finally, PatMatch (Yan et al., 2005) (http://www.arabidopsis.org/cgi-bin/patmatch/nph-patmatch.pl) was used to find all genes in the Arabidopsis genome containing the given motif in their promoter sequence.

Function enrichment analysis
agriGO (http://bioinfo.cau.edu.cn/agriGO/index.php) was employed to extract function annotations for genes harbouring a given motif in their promoter sequence. In the present analysis the tool SEA (singular enrichment analysis) was used. SEA determines gene ontology (GO) term enrichment in one group of genes by comparing it with a reference group of genes (Du et al., 2010). As a background, Arabidopsis gene models from TAIR9 were used.

Results
Salinity induces leaf senescence in plants subjected to long-term moderate stress
In order to study the molecular mechanism of salt-induced senescence and its potential cross-talk with developmental senescence, an experimental condition was first set up under which salinity stress induces characteristics of developmental senescence. To this end, Arabidopsis plants were grown hydroponically, allowing sampling of shoots and roots separately. Twenty-eight-day-old Arabidopsis plants were salinity stressed by treatment of roots with NaCl (150 mM) for 6 h and 4 d, respectively (see the Materials and methods). The 6 h salt stress did not induce leaf senescence; no change in chlorophyll content and no visible yellowing occurred. Likewise, expression of SAG12 and WRKY53 (known senescence marker genes; Noh and Amasino, 1999; Zentgraf et al., 2010) was unaffected in leaves upon short-term salt stress (Fig. 1). In contrast, long-term salt stress (4 d) was accompanied by a reduction in photosynthetic efficiency of PSII and chlorophyll level. The F_{v}/F_{m} ratio and chlorophyll content declined by ~10% and ~20%, respectively, after 4 d of stress, and expression of SAG12 and WRKY53 was induced (Fig. 1). These results indicate that leaf senescence in Arabidopsis is triggered by salt treatment after 4 d under the experimental conditions used here. Next, the expression level of 179 ROS-responsive genes was tested using a previously established qRT-PCR platform (Wu et al., 2012). Expression profiling was performed in three biological replicates. Considering a 2-fold expression difference as cut-off, a total of 23 and 138 ROS-responsive genes were up-regulated after 6 h and 4 d of NaCl treatment, respectively (Fig. 1; Supplementary Table S1 available at JXB online), indicating an increased accumulation of ROS after long-term salt stress.

Comparison of developmental and salt-triggered senescence transcriptomes
In order to identify possible cross-talk components shared between developmental and salt-triggered senescence, the expression profile of Arabidopsis leaves was first obtained under the condition of salt-induced senescence (4 d) and then it was compared with the transcriptome of developmental leaf senescence. Genes undergoing expression changes during developmental senescence were previously reported (e.g. Buchanan-Wollaston et al., 2005; Balazadeh et al., 2008; Breeze et al., 2011); using the reported transcriptome data, a list of 3705 developmental senescence-up-regulated and 2619 down-regulated genes was compiled, which was used here for comparison. The analysis revealed genes that are unique to either developmental or salt stress-induced senescence, and those that are shared among the two types of senescence (Fig. 2a; Supplementary Tables S2, S3 at JXB online). In total, 1602 genes were differentially expressed after 4 d of NaCl treatment, compared with non-stressed control plants, of which 1051 were up- and 551 were down-regulated (Supplementary Table S2). The majority of the responding genes, namely 797 of the 1051 salinity-up-regulated genes (~76%) and 380 of the 551 down-regulated genes (~69%), are known developmental senescence-up- and down-regulated genes, respectively (χ^{2} test P-value $<$2.2e-16; Fig. 2a; Supplementary Table S3). Such an extensive overlap between the two types of transcriptomes (1177 genes in total) further supports the conclusion that long-term salt treatment of hydroponically grown plants induces a condition similar to that of developmental senescence.

However, expression of 266 genes was specifically altered (142 genes up- and 124 genes down-regulated) in salinity-induced senescence (Supplementary Table S2 at JXB online). While the down-regulated genes did not exhibit enrichment in any functional category, the up-regulated genes were enriched in those responsive to salt stress (seven genes), water deprivation (five genes), and abscisic acid (ABA) stimulus (six genes) (Supplementary Table S2). Common for these three groups are the two LOW-TEMPERATURE-INDUCED (LTI) genes LTI63 (identical to RD29B) and LTI78 (RD29A) (Nordin et al., 1993; Msanne et al., 2011). The most enriched functional group is ‘lipid transport’, represented by five lipid
transfer proteins: one LTP type 3 (AT4G33550), three LTP type 5 (AT2G37870, AT3G22620, and AT1G62790), and one LTP type 4 protein (AT3G53980). LTPs are glycosylphosphatidylinositol (GPI)-anchored membrane proteins involved in fatty acid transport during cuticular wax and suberin synthesis (Borner et al., 2003; Debono et al., 2009), and some of them have specific functions during flower and embryo development (Pagnussat et al., 2005; Schmid et al., 2005).

While none of the LTPs identified in our study has been experimentally characterized, up-regulation of five members of the same gene family indicates regulation of extracellular lipid synthesis during salt-induced senescence. Notably, none of these genes is up-regulated upon short-term (6 h) salinity stress (data not shown).

H$_2$O$_2$, a potential signalling element in the cross-talk between developmental and salt-triggered senescence

The cellular level of ROS, particularly H$_2$O$_2$, increases upon salinity stress and when leaves age, suggesting H$_2$O$_2$ as a potential signalling molecule in both processes (Gomez et al., 2004; Bhattarajee, 2005; Zimmermann and Zentgraf, 2005; Zimmermann et al., 2006; Rubio et al., 2009; Hanqing et al., 2010; Chen et al., 2012; Bieker et al., 2012). To gain more insight into the possible role of H$_2$O$_2$ as a cross-talk component of signalling pathways controlling developmental and stress-induced senescence, H$_2$O$_2$ early-responsive genes were first identified and compared with the senescence transcriptomes. To this end, *Arabidopsis* seedlings were treated with H$_2$O$_2$ for 1 h and 5 h, respectively, and subjected to expression profiling using Affymetrix ATH1 arrays. In total, 2228 genes were differentially expressed upon H$_2$O$_2$ treatment (1214 up and 1014 down) (Supplementary Table S4 at JXB online), of which 1030 genes (362 up- and 668 down-regulated) were specifically altered upon H$_2$O$_2$ treatment, but not during salinity-induced or developmental senescence (Supplementary Table S4). Approximately 40% (473 of 1177) of the genes regulated during both developmental and salt-induced senescence were early H$_2$O$_2$-responsive (Fig. 2b). Such an extensive overlap further suggests ROS (H$_2$O$_2$) as a regulator of cross-talk between developmental and salt-induced senescence signalling pathways.

Identification of regulatory components across experimental conditions

To identify regulatory elements representing cross-talk points between salt-induced and developmental senescence
expression in the three experimental conditions. In the following, a significant change of expression is referred to as gene activation (positive or negative for up- and down-regulation, respectively) in particular experimental set-ups. For example, cluster 14 includes 1704 genes that are positively activated only during developmental senescence, while cluster 26 includes 350 genes positively activated in all three experimental conditions. Importantly, as similarities of gene expression patterns were not looked at specifically, but rather response specificity, each of the 26 clusters includes genes likely to differ remarkably in the timing of the response, its scale, and duration. Thus, as is shown below, within each cluster multiple putative regulatory mechanisms can be identified, responsible for triggering different sets of genes at different times of the response and with different strengths.

To identify CREs potentially involved in H$_2$O$_2$-mediated salt-induced senescence, only clusters containing genes responsive to all three experimental conditions were selected for promoter motif analysis (clusters 1 and 26).

Promoter analysis and identification of cis-regulatory elements

Sequences of promoters from genes included in clusters 1 (containing 51 genes negatively activated in all three conditions) and 26 (containing 350 genes positively activated in all three conditions) were queried for the presence of CREs using a pipeline of motif search and motif validation tools. To this end, a set of tools available in the MEME Suite (multiple expectation maximization for motif elicitation) (Bailey and Elkan, 1994) and PatMatch (Yan et al., 2005), previously proven successful in multiple similar studies, such as for the prediction of conserved motifs in potato (Solanum tuberosum L.) NAC genes (Singh et al., 2013), was used. The analysis pipeline consists of four steps: (i) MEME is used for primary motif search; (ii) TOMTOM defines whether the motif is an already known CRE; (iii) PatMatch determines how many genes in the whole Arabidopsis genome contain the motif in the promoter region; and (iv) agrigo reports the functional assignment (Du et al., 2010). Figure 3 shows an example of the identification of a significantly enriched motif (CACGTGT) among the genes exhibiting positive activation in all experimental conditions (cluster 26), which by TOMTOM was identified as an elongated G-box (CACGTG), a bZIP transcription factor recognition site. In parallel, PatMatch detected the presence of the motif in a total of 2140 genes in the Arabidopsis genome. Subsequently, to validate the result, all these genes were again used as a query in MEME. Finally, functional analysis by agrigo revealed a significant enrichment of genes containing the motif for multiple stress-related functional categories, including, for example, ‘water deprivation’, ‘abscisic acid stimulus’, and ‘salt stress response’. Note that the functional enrichment analysis is performed on all genes containing the motif of interest, not only those included in the cluster analysed. This is important, since in this way it is shown that the candidate CREs are significantly related to certain gene functions throughout the whole genome and not only within the frame of the identified cluster.

Gene clustering

Typically, gene clustering is based on distance matrices, such as Euclidean distance or Pearson’s correlation coefficient (Usadel et al., 2009). However, due to the large number of genes and low number of experimental points, a different approach was taken here. Thus, genes were first classified as ‘up-regulated’, ‘down-regulated’, or ‘not affected’ during developmental senescence, salt-induced senescence, or treatment with H$_2$O$_2$ (1 h and/or 5 h) and in this way each gene was assigned to one of 26 clusters (Supplementary Table S5 at JXB online), each representing one of 26 possible patterns of pathways signalled by H$_2$O$_2$, the co-expression of genes and the distribution of the CREs in promoters of the genes undergoing significant changes of expression in the three experimental conditions (salt-induced senescence, developmental senescence, and H$_2$O$_2$ treatment) were explored. A three-step analysis was performed, as outlined in detail below: (i) a set of candidate genes responsive in all three experimental conditions was identified; (ii) putative CREs significantly enriched and common for genes involved in salt-induced senescence, developmental senescence, and oxidative stress responses were identified; and (iii) using correlation analysis, the promoter analysis was then integrated with the co-expression information, highlighting CREs most likely to be responsible for governing the changes in gene expression.

Fig. 2. Shared gene expression responses. (a) Venn diagram showing the overlap of genes differentially expressed during developmental and salt-induced senescence. (b) Venn diagram showing the overlap of genes affected during developmental senescence, salt-induced senescence, and upon hydrogen peroxide (H$_2$O$_2$) treatment. Numbers indicate the number of genes up-regulated (upper values) or down-regulated (lower values) in the different conditions.
In total, seven motifs significantly enriched only among genes commonly up-regulated upon H$_2$O$_2$ treatment, and salt-induced and developmental senescence (genes in cluster 26) were found. These are: CACGTGT, AAGTCAA, ACGCGGT, AGCMGNC, GMCACGT, TCSTYGACG, and CCGCGT (Table 1). Three of them (CCGCGT, CACGTGT, and AAGTCAA) are known CREs present in promoters of stress- and ROS-responsive genes (Ma et al., 2012; Petrov et al., 2012); the remaining four are novel and as yet uncharacterized in terms of biological function. Function enrichment analysis indicated that genes harbouring AAGTCAA, CACGTGT, and GMCACGT in their promoters are associated with specific molecular functions, biological processes, or cellular compartments (see below and Supplementary Table S6 at JXB online). The same analysis performed on cluster 1 (51 genes down-regulated in all experimental conditions) resulted in the identification of three conserved motifs; however, none of them exhibited a significant enrichment in the clusters analysed or could be associated with a certain biological function.

Functional enrichment analysis of candidate cis-regulatory elements

The present analysis showed that the CACGTGT bZIP (or ACTG ABRE) CRE is very significantly over-represented among genes up-regulated in response to all applied experimental conditions (61 genes, P-value <0.00001, calculated by Fischer’s exact test). Interestingly, 56 of these 61 genes are transcriptionally induced by ABA treatment (Arabidopsis...
Table 1. Enrichment of the top seven motifs in genes commonly up-regulated upon H$_2$O$_2$ treatment, and salt-induced and developmental senescence (genes within cluster 26)

Genes outside	Genes in cluster	Genes in cluster	Remaining genes	P-value
motif cluster	with motif	without motif	input (5999 genes)	
AAGTCAA	87	263	4701	1.31E-04
CACGTGT	61	289	2918	1.17E-05
TCSTYGAGC	9	341	5613	0.00096247
CCGCGT	32	318	5422	3.64E-05
ACGCAGT	19	331	5579	5.78E-07
AGCMGNC	61	289	5057	9.82E-05
GMCAGGT	67	283	4828	0.01322002

eFP Browser Database and Arabidopsis Hormone Database). Moreover, despite the fact that as many as 2140 Arabidopsis genes contain the motif in their promoter sequence (Supplementary Table S7 at JXB online), almost all of them are involved in the responses to various abiotic stimuli, including drought stress and ABA treatment. SAG113, which encodes a Golgi-localized, highly ABA-induced protein phosphatase 2C (PP2C; Zhang and Gan, 2012), is among the 61 genes containing the CACGTGT motif. SAG113 is expressed in senescing leaves and its transcript levels are significantly reduced in the aba2 and abi4 ABA biosynthesis/signalling mutants. It has been shown that SAG113 is a direct target gene of the NAC transcription factor AtNAP (also called ANAC029), a key regulator of leaf senescence, and that it is specifically involved in the control of water loss during leaf senescence (Zhang and Gan, 2012). Among the 61 genes containing the CACGTGT motif, nine encode transcription factors, five of which are ABA-induced NAC factors (ANAC029/AtNAP, ANAC055, ANAC062, ANAC072/RD26, and ANAC102).

GMCAGGT is probably an extended version of the bZIP motif, since it encompasses the CACGT sequence. It has been identified with a higher P-value than the other motifs (P=0.01322) and, genome wide, 3251 genes were found to contain the motif in their promoter sequence (Supplementary Table S7 at JXB online). A total of 805 of these genes contain GMCAGGT, representing a ‘merged’ variant of the above-reported CACGT G-box and GMCAGGT, while 516 genes contain both of them in their promoters but as separate CREs.

Function enrichment analysis indicated that in addition to the functions identified for the CACGTGT element, GMCAGGT is present in a range of genes related to sugar metabolism and protein transport. This finding supports the notion that GMCAGGT might have a specific regulatory function, different from that of the G-box element. On the other hand, 805 genes containing the merged GMCAGGT motif are highly enriched in genes involved in photosynthesis, including genes coding for proteins of the photosynthetic complexes.

Another significantly enriched motif (P=0.000131) in cluster 26 is AAGTCAA which was previously identified as a motif over-represented in clusters enriched in singlet oxygen-modulated genes (Petrov et al., 2012). While there are as many as 5344 genes in the Arabidopsis genome containing the AAGTCAA motif (Supplementary Table S7 at JXB online), the enrichment analysis shows that these genes are associated with specific stress responses and metabolic functions. In contrast to genes containing the bZIP motif, the AAGTCAA motif is related rather to ‘biotic stimulus’, including ‘immune response’, ‘response to chitin’, and ‘programmed cell death’. Moreover, genes related to transmembrane receptor activity and a range of catalytic activities are also over-represented. Compartment-wise, the AAGTCAA motif is highly specific to genes encoding membrane proteins located in the endoplasmic reticulum and plasma membranes.

Another previously characterized motif is CCGCGT. Although in the present analysis no significant functional enrichment was found for the genes containing this CRE in their promoters, it has previously been reported that CCGCGT belongs to the conserved DNA motifs (CMs) present in the promoters of the cold-responsive transcription factor genes CBF2 and ZAT12 (Vogel, 2005; Doherty et al., 2009). The present experiments indicate a function for the motif in mediating salt stress-induced senescence and the response to oxidative stress.

The three remaining putative CREs did not exhibit significant enrichment in any functional gene category, which might be due to the fact that they occurred in only a limited number of genes (e.g. TCSTYGACG in only 218, and ACGCGGT in 372 of all Arabidopsis genes; Supplementary Table S7 at JXB online), or due to the fact that the genes putatively regulated via these CREs are not strictly defined by GO [here only functional categories exhibiting a false discovery rate (FDR) ≤0.05 are reported].

Summarizing, the analysis of the cis-elements involved in salt stress-induced senescence, developmental senescence, and the oxidative stress response resulted in the identification of seven cis-regulatory motifs, three of which are previously-characterized CREs involved in ROS signalling. Additionally, some of these CREs were found to be present in genes encoding proteins of related physiological functions and subcellular localization.

Co-expression analysis

In a second step, the question was asked of how many separate regulatory modules are found in cluster 26, defined as sets of genes exhibiting different temporal patterns of expression, and whether these modules are connected to the identified CREs. As initially stated, such an analysis was impossible using the original data set, mainly due to the low number of data points and large number of genes.
analysed. It was therefore decided to integrate other, publicly available data sets and to support the results with an extensive co-expression analysis. To address this task, an independent set of time series data, including salt stress, oxidative stress, and senescence, was used. For oxidative stress and salt stress responses, NASC arrays were used (experiments 143 and 140 from the AtGenExpress consortium), that include a 24 h microarray time series experiment where samples were taken at 0.5, 1, 3, 6, 12, and 24 h after treatment with salt (150 mM NaCl) or 10 μM methyl viologen (paraquat) to induce oxidative stress (Kilian et al., 2007). The senescence time series data were taken from Breeze et al. (2011) and included samples collected over 11 d of developmental leaf senescence (Supplementary Table S8 at JXB online). Although growth conditions and treatments in the time series experiments were different from those in the present experiment, as many as 85% of the genes identified as differentially expressed in the original data sets exhibit similar changes in the time series experiments (the same sign of the change and a P-value ≤0.01). The remaining 15% of the genes exhibited changes which were noisy and mostly of low magnitude in the time series experiments, and thus could not be classified statistically. This result shows that the response specificity in the time series experiments adequately resembles the present data despite the fact that, for example, methyl viologen instead of H₂O₂ was used to induce oxidative stress. The data were therefore used to reconstruct three co-expression networks (one each for developmental senescence, salinity-induced senescence, and oxidative stress) of 350 genes up-regulated in all three conditions (from cluster 26). Using a correlation coefficient threshold of 0.6, an intersection network was identified. In this network, nodes represent 350 genes of cluster 26. Each pair of nodes is connected with an edge, if the correlation coefficient between two genes exceeds 0.6 in all three experimental conditions. In the intersection network, communities were identified using a fast greedy search algorithm (Clauset et al., 2004). Community, in the context of network analysis, is defined as a group of nodes that are more densely connected internally than with the rest of the network. Thus, in the present gene correlation network, communities correspond to regulatory modules: groups of tightly co-expressed genes, probably being co-regulated by the same transcriptional regulators (Segal et al., 2003). Figure 4 shows a network representation of cluster 26.

![Network representation of the correlation structure of genes responsive to long-term moderate salt stress, oxidative stress, and affected during developmental senescence. All network communities are colour-coded; for communities containing more than five genes (1–7), the CREs enriched in the gene’s promoters (with a P-value cut-off of 0.0001) are listed.](https://academic.oup.com/jxb/article-abstract/65/14/3993/2877498)
Seven regulatory modules containing more than five genes each were identified within the network by the community search algorithm (Supplementary Table S9 at JXB online).

Remarkably, genes connected by an edge in this network tend to share one or more of the selected candidate CREs, with a frequency well beyond that expected by chance (P-value estimated by a permutation test <0.001). Comparison of the gene co-expression with the distribution of the candidate CREs in the cluster 26 genes indicated that certain CREs are characteristic for certain modules (Table 2). The CACGTGT and GMCAGTGT motifs are found only in modules 1 and 5–7, and in all of them are very significantly enriched. CCGCGT, ACGCGGT, and TCSTYGACG are specific for modules 3 and 7; AGCMGNC is present in all modules except module 2. Finally, AAGTCAA is distributed between multiple modules, with a significant enrichment in modules 3, 4, 5, and 7. The reciprocal check of the candidate CREs was done using single modules as a query in MEME CRE, and a positive verification was obtained for all hits except of the least significant (Table 2).

Discussion

Leaf senescence is triggered prematurely by various environmental cues such as, for example, salinity (Volkmar et al., 1998; Munns, 2002; Munné-Bosch and Alegre, 2004). Although several studies have been conducted in the past to profile the transcriptomes of salt-stressed Arabidopsis plants and during developmental senescence, to the authors’ knowledge, so far no attempt has been undertaken to identify regulatory components allowing cross-talk between salt-induced and developmental senescence. Table 3 represents a brief summary of Arabidopsis salinity stress gene expression profiling experiments reported so far. As indicated, most of the earlier studies were performed under experimental conditions that limited the investigation of leaf senescence induced by salinity. For example, a short duration of salinity stress (a few hours) is a condition in which leaves do not display typical senescence characteristics. Similarly, transcript analyses of whole seedlings including roots are not appropriate to study molecular processes relevant for leaf senescence. In this study, an experimental condition was therefore employed under which salinity stress induces symptoms characteristic for developmental senescence. It was shown that long-term (4 d), moderate (150 mM) NaCl treatment of hydroponically grown, 28-day-old Arabidopsis plants induces leaf senescence as measured by chlorophyll content, photosynthetic activity, and the expression level of developmental senescence marker genes. Microarray-based expression profiling revealed that 797 out of 1051 salinity-up-regulated genes (~76%), and 380 out of 551 down-regulated genes (~69%) are known SAGs, strongly suggesting that salt-induced senescence and developmental senescence share signalling pathways in Arabidopsis. Furthermore, the transcript levels of 138 ROS-responsive genes were up-regulated upon 4 d of NaCl treatment, indicating an elevated accumulation of ROS after long-term salt stress. ROS are proposed as major candidate signalling molecules involved in salt stress signal transduction (Gomez et al., 2004; Munns and Tester, 2008; Rubio et al., 2009; Hanqing et al., 2010; Chen et al., 2012). Although an excess accumulation of cellular ROS which are finally converted to H₂O₂ leads to an oxidative burst or cell death, maintaining their appropriate level is critical for mediating the acquisition of tolerance to stress as well as signal transduction of plant growth and development. It has been shown that an increased level of H₂O₂ is one of the earliest events in plants during senescence (Bhattacharjee, 2005; Zimmermann et al., 2006). Timing and progression of senescence is tightly regulated through synergistic or antagonistic interactions between various signalling molecules such as sugars, nitrogen, hormones, and ROS. It has been shown that the coordinated interplay between the H₂O₂-scavenging enzymes catalase 2 (CAT2) and

Table 2. Analysis of the CRE enrichment presented in network communities

The P-values shown were estimated by Fisher’s exact test comparing the number of genes identified by MEME as containing the specified CRE in relation to the community size and frequency of the CRE in all gene promoters.

Community	1	2	3	4	5	6	7
AAGTCAA	4	4	11	9	11	4	17
P-value	0.000815	0.00145	1.49E-14	2.72E-09	2.33E-07	0.063647	5.54E-14
CACGTGT	11	2	2	1	20	5	10
P-value	1.86E-16	0.034632	0.020618	0.286934	6.57E-23	0.001796	1.20E-08
TCSTYGACG	1	0	3	0	0	1	4
P-value	0.036911	1	3.55E-06	1	1	0.123278	4.92E-06
CCGCGT	0	0	6	3	4	2	11
P-value	1	1	9.86E-10	0.000675	0.001089	0.077927	3.14E-13
ACGCGGT	0	0	3	1	1	1	8
P-value	1	1	3.99E-05	0.099643	0.242691	0.242691	9.37E-11
AGCMGNC	6	3	4	12	11	5	12
P-value	1.31E-07	0.003029	6.17E-05	1.17E-16	7.25E-10	0.001796	3.89E-11
GMCACGT	6	2	0	3	27	8	10
P-value	2.32E-07	0.041106	1	0.005719	7.32E-34	4.59E-06	3.07E-08
Table 3. Summary of Arabidopsis salt stress-related gene expression profiling experiments

NaCl concentration	Time points	Plant age	Tissue	Growth condition	Array format	Source	Remarks
200 mM	1, 12 h	10 d	Whole seedlings	Grown on solid medium transferred to liquid medium	Affymetrix whole-genome tiling array	1	High NaCl concentration, roots included
250 mM	2, 10 h	3 weeks	Whole seedlings	Treatment in hydroponic condition	Affymetrix whole-genome tiling array	2	High NaCl concentration, roots included
150 mM	3, 24 h	4 weeks	Plants	Whole plants	25 425, 70-mer oligonucleotide array	3	Short term
250 mM	2 h	2 weeks	Whole seedlings	Hydroponics	−7000 cDNA glass slide microarray	4	High NaCl concentration, roots included, low transcript coverage
100 mM	3, 27 h	4 weeks	Leaves, roots	Hydroponics	−8100 gene oligonucleotide chip	5	Low transcript coverage
250 mM	1, 2, 5, 10, 24 h	3 weeks	Whole plants	Hydroponics	−7000 cDNA glass slide microarray	6	High NaCl concentration, low transcript coverage

Data were taken from the following publications (‘Source’): 1, Zeller et al. (2009); 2, Matsui et al. (2008); 3, Gong et al. (2005); 4, Taji et al. (2004); 5, Krops et al. (2002); 6, Seki et al. (2002).

Ascorbate peroxidase 1 (APX1) leads to a distinct increase in H₂O₂ at the time plants start to bolt and enter senescence (Ye et al., 2000; Zimmermann et al., 2006). Various delayed or accelerated leaf senescence mutants (such as ore1, ore3, ore9, jbb1, vtc, and crp5/sold1) exhibit an altered antioxidant status, further suggesting ROS (H₂O₂) as promising candidates acting as nodes for the cross-talk between developmental senescence and stress signalling pathways (Woo et al., 2004; Pavet et al., 2005; Jing et al., 2008; Wu et al., 2012). The transition from the response to stress to the induction of senescence may occur as a result of a tight interaction between ROS and hormonal signalling networks, thereby allowing plants to regulate senescence under unfavourable environmental conditions. However, the regulatory role of ROS for the control of stress-induced senescence is currently not particularly clear. The identification of elements regulating SAGs through an involvement of ROS will therefore lead to significant progress in the understanding of stress-induced senescence.

All the above facts triggered an interest to study the participation of H₂O₂ in integrating regulatory networks of salinity- and age-triggered leaf senescence.

Genes whose expression is regulated by a common upstream transcription factor generally exhibit significant co-expression in conditions where the transcription factor is active. This has been shown for multiple regulons, such as those involved in the response to changing environments, nutrient availability, or being active during morphogenesis (Stuart et al., 2003; Ma and Bohnert, 2007). This general characteristic allowed study of the properties of regulatory networks in Arabidopsis at the genome scale; for example, by integrating data of 963 microarray chips from a wide range of experimental conditions, Mentzen and Wurtele (2008) estimated 982 regulons for Arabidopsis, ranging in size from one to 1623 genes. More importantly, however, besides giving a general overview of the regulatory network organization, the co-expression analysis was successfully applied to uncover regulatory modules having specific molecular functions. Examples include the co-expression analysis of enzymatic genes involved in indole, flavonoid, and phenylpropanoid biosynthetic pathways (Gachon et al., 2005), the identification of new genes involved in the biosynthesis of cellulose and cell wall components (Brown et al., 2005; Persson et al., 2005), uncovering of a clade of brassinosteroid-related genes (Lisso et al., 2005), and many others (reviewed by Usadel et al., 2009). Co-regulation of multiple genes by a common upstream TF is related to the presence of a common CRE in their promoters (Dare et al., 2008; Spitz and Furlong, 2012; Ma et al., 2013). Therefore, the integration of efficient motif search algorithms (reviewed by Das and Dai, 2007) allowed the successful use of co-expression analysis in revealing the functions of certain transcription factors or regulatory elements. Examples of such approaches include Myb transcription factors regulating glucosinolate metabolism in Arabidopsis (Hirai et al., 2007), the identification of targets of the OBPI transcription factor in drought stress (Vandepoele et al., 2009), the characterization of regulatory networks of WRKY (Berri et al., 2009) and bZIP proteins (Wei et al., 2012), transcriptional regulators involved in phytohormone signal transduction (van Verk et al., 2011), and many others (computational methods reviewed by Stifanelli et al., 2013). All these studies showed that a combination of carefully designed co-expression analyses (including proper choice of experiments, data type, and computational strategy) with a potent motif search algorithm is a powerful approach for the identification of new condition-specific regulons and new transcription factor targets. In this study, the transcript profiles of salt-induced senescence, developmental senescence, and H₂O₂-treated samples were compared. Clustering of microarray expression profiles for...
all genes differentially expressed during developmental senescence, salt-induced senescence, and treatment with H$_2$O$_2$ resulted in 26 possible patterns of expression. Promoter CRE analysis was performed only on clusters containing genes with similar expression behaviour among all three experimental conditions (i.e. clusters 1 and 26). The present data suggest that long-term moderate salt stress, H$_2$O$_2$ signalling, and senescence trigger a common transcriptional programme, characterized by several tightly co-regulated gene clusters sharing specific CREs (Fig. 5). Co-expression-based analysis of the cis-elements involved in the H$_2$O$_2$ response as well as salt-induced and developmental senescence resulted in the identification of three previously characterized CREs involved in stress signalling (CACGTGT, AAGTCAA, and CCGCGT), indicating the reliability of the computational analysis pipeline. Additionally, four new putative CREs, namely ACGCGGT, AGCMGNC, GMCACGT, and TCSTYGACG, were identified, one of which (GMCACGT) was enriched in promoters of genes involved in specific biological processes (Supplementary Table S6 at JXB online), thus probably playing a role in shaping the transcriptional response to the applied conditions. The CACGTGT is an extended CACGTG motif, one of the most common palindromic G-boxes/ABREs (abscisic acid response elements), also known as a bZIP-binding motif (Jakoby et al., 2002; Toledo-Ortiz et al., 2003; Chintalapati and Rajendra, 2004). The bZIP transcription factors interact as dimers with ABREs, which are ACGT-containing ‘G-boxes’ in promoters (Hattori et al., 2002). G-boxes are involved in the response to abiotic stress (anaerobiosis, cold, ultraviolet light irradiation) and hormone signalling, especially ABA (Menkens et al., 1995; Shinozaki and Yamaguchi-Shinozaki, 1997; Gilmour et al., 1998). ABA is a key hormone for the regulation of plant growth, development, and stress adaptation (Davies and Jones, 1991; Giraudat et al., 1994; Finkelstein et al., 2002; Chaves et al., 2009; Ashraf, 2010; Xue-Xuan et al., 2010). ABA is also known as a hormone triggering senescence, and some Arabidopsis mutants with deficiencies in ABA biosynthesis or signalling have been reported to exhibit a changed senescence programme (Pourtau et al., 2004; Lim and Nam, 2005; Passioura, 2007; Yang et al., 2011). Various studies suggest interplay between ROS and ABA signalling, implicating ROS as second messengers in ABA signal transduction pathways (Pei et al., 2000; Joo et al., 2001; Murata et al., 2001; Torres et al., 2002, 2005; reviewed by Cho et al., 2009). For example, cellular ROS levels are enhanced by ABA treatment in Arabidopsis guard cells (Pei et al., 2000). Furthermore, ABA increases H$_2$O$_2$ levels in maize embryos and seedlings, and in Vicia faba guard cells, a process that precedes stomatal closure (Guan et al., 2000; Zhang et al., 2001; Jiang and Zhang, 2002, 2003). The enrichment of CACGTGT in cluster 26 genes suggests it as a core stress-specific CRE linking salt and oxidative stress responses with senescence. Additionally, one of the new putative CREs, GMCACGT, exhibits a high sequence overlap with the bZIP element. In accordance with the present findings, Petrov et al. (2012) recently reported the G-box/ABRE-containing element GACACGTG to be over-represented in promoters of genes responding to more than one type of ROS (singlet oxygen-up-regulated genes, superoxide-up- and down-regulated genes, and H$_2$O$_2$-down-regulated genes).

Another previously reported CRE, namely AAGTCAA, was identified by Petrov et al. (2012) as being enriched among singlet oxygen-modulated genes, although no further characterization of the CRE was reported. Its relatively high frequency (presence in almost 2000 Arabidopsis genes),
however, suggests that it plays a role in mediating more general stress signals or that it acts as an enhancer coupled with more specific binding sites. Remarkably, genes containing the bZIP element and AAGTCAA differ significantly in terms of their function. Whereas genes containing different forms of the bZIP element are involved in abiotic stress responses and signalling, the AAGTCAA element is found in genes involved in biotic stress defence and a range of metabolic processes. Additionally, the extended bZIP element GMCACGTGTG appears to be present in genes encoding photosynthesis-related proteins. Thus, an emerging picture of gene expression regulation in response to salt stress and oxidative stress, and during senescence suggests that at least these two CREs are common for all of these conditions, while the other five reported might have auxiliary roles.

In summary, the present analysis further supports the model that developmental and salt-triggered senescence share H₂O₂ signalling pathways in Arabidopsis. In this study, previously characterized and four novel putative CREs probably involved in the response to H₂O₂ treatment and in both types of senescence, and thus representing potential regulatory elements acting at cross-talk points of the three physiological processes, were identified. Six of the seven identified motifs are significantly enriched in genes sharing specific molecular functions. In addition, the highly specific associations of individual motifs with certain functional gene categories reflect a hierarchical and function-specific organization of the transcription regulatory network. Future work should be directed towards understanding the biological relevance of the newly identified motifs in planta.

Supplementary data

Supplementary data are available at JXB online.

Table S1. Expression of ROS-responsive genes determined by qRT-PCR.

Table S2. Genes differentially expressed after 4 d of salinity stress.

Table S3. Comparison of genes differentially expressed during salt-induced senescence, developmental senescence, and upon H₂O₂ treatment.

Table S4. Transcripts responsive to 1 h and 5 h H₂O₂ (10 mM) treatment.

Table S5. Classification of gene response specificity and number of genes in clusters.

Table S6. Function enrichment analysis of genes containing identified cis-regulatory elements.

Table S7. Genes of the Arabidopsis genome containing each CRE described in the manuscript.

Table S8. AtGenExpress data sets.

Table S9. Classification of the genes according to their response to individual treatments (gene cluster) and their co-expression with genes belonging to the same cluster (gene community).

Acknowledgements

SB thanks the Deutsche Forschungsgesellschaft (FOR 948; BA4769/1–2) for funding. ADA thanks the German Academic Exchange Service (DAAD) for providing a doctoral fellowship (grant no. A/07/71707). AS thanks Dr Sebastian Proost for fruitful discussions. All authors thank Dr Karin Koehl and the Green Team for expert plant care. We also thank the University of Potsdam and the Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, for supporting our research. We are grateful to the anonymous reviewers for their helpful comments on the manuscript.

References

Ashraf M. 2010. Inducing drought tolerance in plants: some recent advances. Biotechnology Advances 28, 169–183.

Bailey T, Elkan C. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings of the International Conference on Intelligent Systems for Molecular Biology 2, 28–36.

Bailey TL, Elkan C. 1995. The value of prior knowledge in discovering motifs with MEME. Proceedings of the Third International Conference on Intelligent Systems for Molecular Biology. Palo Alto, CA: AAAI Press, 21–29.

Balazadeh S, Jasport N, Arif M, Mueller-Roeber B, Maurino VG. 2012. Expression of ROS-responsive genes and transcription factors after metabolic formation of H₂O₂ in chloroplasts. Frontiers in Plant Science 3, 234.

Balazadeh S, Riaño-Pachon DM, Mueller-Roeber B. 2008. Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biology 10 (Suppl. 1), 63–75.

Balazadeh S, Siddiqi H, Allu AD, Matallana-Ramirez LP, Caledana C, Mehrnia M, Zanor Mi, Köhler B, Mueller-Roeber B. 2010. A gene regulatory network controlled by the NAC transcription factor ANAC092/AINAC2/OR1 during salt-promoted senescence. The Plant Journal 62, 250–264.

Becker W, Apel K. 1993. Differences in gene expression between natural and artificially induced leaf senescence. Planta 189, 74–79.

Berri S, Abbruscato P, Faivre-Rampant O, et al. 2009. Characterization of WRKY co-regulatory networks in rice and Arabidopsis. BMC Plant Biology 9, 120.

Bhattacharjee S. 2005. Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plant. Current Science 89, 1113–1121.

Bieker S, Riester L, Stahl M, Franzening J, Zentgraf U. 2012. Senescence-specific alteration of hydrogen peroxide levels in Arabidopsis thaliana and oilseed rape spring variety Brassica napus L. cv. Mozart. Journal of Integrative Plant Biology 54, 540–554.

Borner GHH, Lilley KS, Stevens Tj, Dupree P. 2003. Identification of glycophosphatidylinositol-anchored protein in Arabidopsis. A proteomic and genomic analysis. Plant Physiology 132, 568–577.

Breeze E, Harrison E, McHattie S, et al. 2011. High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. The Plant Cell 23, 873–894.

Brown DM, Zeef LAH, Ellis J, Goodacre R, Turner SR. 2007. A gene expression and signaling pathways between developmental and metabolite formation of H₂O₂. The Plant Cell 19, 2842–2863.

Brown DM, Zeef LAH, Ellis J, Goodacre R, Turner SR. 2007. A gene expression and signaling pathways between developmental and metabolite formation of H₂O₂. The Plant Cell 19, 2842–2863.

Caldana C, Scheible WR, Mueller-Roeber B, Ruizcic S. 2007. A quantitative RT-PCR platform for high-throughput expression profiling of 2500 rice transcription factors. Plant Methods 3, 7.

Chaves MM, Flexas J, Pinheiro C. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany 103, 551–560.

Chen HJ, Lin ZW, Huang GJ, Lin YH. 2012. Sweet potato calmodulin SPCAM is involved in salt stress-mediated leaf senescence. H₂O₂ elevation and senescence-associated gene expression. Journal of Plant Physiology 169, 1892–1902.
containing abscisic acid response element.

oxidase under biotic stresses.

The expression, function and regulation of mitochondrial alternative

molecule for the response.

in comparison with its relative

stress adaptation competence in the extremophile

peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts.

Bioinformatics 8, S21.

Dwidedi S, Kar M, Mishra D. 1979. Biochemical changes in excised leaves of Oryza sativa subjected to water stress. Physiologia Plantarum 45, 35–40.

Finkelstein RR, Gampala SS, Rock CD. 2002. Abscisic acid signaling in seeds and seedlings. The Plant Cell 14 (Suppl.): S15–S45.

Gachon CM, Langlois-Meurinne M, Henry Y, Saindrenan P. 2005. Transcriptional co-regulation of secondary metabolism enzymes in Arabidopsis: functional and evolutionary implications. Plant Molecular Biology 58, 229–245.

Gentleman RC, Carey VJ, Bates DM, et al. 2004. Bioconductor: open software development for computational biology and bioinformatics. Genome Biology 5, R80.

Gilmore SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal 16, 433–442.

Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J. 1991. The Plant Journal 71, 389–398.

Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal 16, 433–442.

Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J. 1991. The Plant Journal 71, 389–398.

Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal 16, 433–442.

Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J. 1991. The Plant Journal 71, 389–398.

Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal 16, 433–442.

Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J. 1991. The Plant Journal 71, 389–398.

Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal 16, 433–442.

Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J. 1991. The Plant Journal 71, 389–398.

Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal 16, 433–442.

Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J. 1991. The Plant Journal 71, 389–398.

Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal 16, 433–442.

Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J. 1991. The Plant Journal 71, 389–398.

Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal 16, 433–442.

Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J. 1991. The Plant Journal 71, 389–398.

Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal 16, 433–442.

Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J. 1991. The Plant Journal 71, 389–398.

Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal 16, 433–442.

Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J. 1991. The Plant Journal 71, 389–398.

Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal 16, 433–442.

Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J. 1991. The Plant Journal 71, 389–398.

Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal 16, 433–442.

Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J. 1991. The Plant Journal 71, 389–398.

Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal 16, 433–442.
Ma S, Bohnert HJ. 2007. Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression. Genome Biology 8, R49.

Ma S, Shah S, Bohnert HJ, Snyder M, Kumar SPD. 2013. Incorporating motif analysis into gene co-expression networks reveals novel modular expression pattern and new signaling pathways. PLoS Genetics 9, e1003840.

Matsuji A, Ishida J, Morosawa T, et al. 2008. Arabidopsis transcriptionome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant and Cell Physiology 49, 1135–1149.

Menkens AE, Schindler U, Cashmore AR. 1995. The G-box: a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends in Biochemical Sciences 20, 506–510.

Mentzen WI, Wurtele ES. 2008. Regulon organization of Arabidopsis. BMC Plant Biology 8, 99.

Mittler R, Vanderauwera S, Gollery M, van Breusegem F. 2004. Reactive oxygen gene network of plants. Trends Plant Sciences 9, 490–498.

Msanne J, Lin J, Stone JM, Awada T. 2011. Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transplants. Planta 234, 97–107.

Munne-Bosch S, Alegre L. 2004. Die and let live: leaf senescence contributes to plant survival under drought stress. Functional Plant Biology 31, 203–216.

Munns R. 2002. Comparative physiology of salt and water stress. Plant, Cell and Environment 25, 239–250.

Munns R. 2005. Genes and salt tolerance: bringing them together. New Phytologist 167, 645–663.

Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59, 651–681.

Murata Y, Pei ZM, Mori IC, Schroeder J. 2001. Abscisic acid activation of plasma membrane Ca²⁺ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abt1-1 and abt1-2:1 protein phosphatase 2C mutants. The Plant Cell 13, 2513–2523.

Navabpour S, Morris K, Allen R, Harrison E, A-H-Mackerness S, Spitz F, Furlong EEM. 2003. Expression of senescence-enhanced genes in response to oxidative stress. Journal of Experimental Botany 54, 2285–2292.

Noh Y-S, Amasino RM. 1999. Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Molecular Biology 41, 181–194.

Nordin K, Vahala T, Palva ET. 1993. Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heyn. Plant Molecular Biology 21, 641–653.

Oh SA, Park JH, Lee GI, Paek KH, Park SK, Nam HG. 1997. Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. The Plant Journal 12, 527–535.

Pagnussat GC, Yu HJ, Nogo QA, Rajani S, Mayalagu S, Johnson CS, Capron A, Xie LF, Ye D, Sundaresan V. 2005. Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132, 603–614.

Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG. 1999. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285, 1579–1582.

Paritz S, Kunze R, Mueller-Roeber B, Balazadeh S. 2011. Regulation of photosynthesis and transcription factor expression by leaf shading and re-illumination in Arabidopsis thaliana leaves. Journal of Plant Physiology 168, 1311–1319.

Passioura J. 2007. The drought environment: physical, biological and agricultural perspectives. Journal of Experimental Botany 58, 113–117.

Pavet V, Olmos E, Kiddle G, Mowla S, Kumar S, Alvarez ME, Foyer CH. 2006. Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. Plant Physiology 139, 1291–1303.

Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI. 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406, 731–734.

Persson S, Wei H, Milne J, Page GP, Somerville CR. 2005. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proceedings of the National Academy of Sciences, USA 102, 8633–8638.

Petrov V, Vermeirssen V, De Clercq I, Van Breusegem F, Minkov I, Vandepoele K, Gechev TS. 2012. Identification of cis-regulatory elements specific for different types of reactive oxygen species in Arabidopsis thaliana. Genetics 199, 52–60.

Pic E, Teysendier B, Tardieu F, Turc O. 2002. Leaf senescence induced by mild water deficit follows the same sequence of macroscopic, biochemical, and molecular events as monocarpic senescence in pea. Plant Physiology 126, 236–246.

Pourtou N, Marés M, Purdy S, Quentin N, Ruiu A, Wingler A. 2004. Interactions of abscisic acid and sugar signalling in the regulation of leaf senescence. Planta 219, 765–772.

Rubio MC, Bustos-Sammended P, Clemente MR, Becana M. 2009. Effects of salt stress on expression of antioxidant genes and proteins in the model legume Lotus japonicus. New Phytologist 181, 851–859.

Sambrook J, Russell D. 2001. Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

Schmid M, Davison TS, Henz SR, et al. 2005. A gene expression map of Arabidopsis thaliana development. Nature Genetics 37, 501–506.

Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller D, Friedman N. 2003. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics 34, 166–176.

Sekšra M, Narusaka M, Ishida J, et al. 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold, and high-salinity stresses using a full-length cDNA microarray. The Plant Journal 31, 279–292.

Shinozaki K, Yamaguchi-Shinozaki K. 1997. Gene expression and signal transduction in water-stress response. Plant Physiology 115, 327–334.

Singh AK, Sharma V, Pal AK, Acharya V, Ahuja PS. 2013. Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.). DNA Research 20, 403–423.

Spitz F, Furlong EEM. 2012. Transcription factors: from enhancer binding to developmental control. Nature Reviews Genetics 13, 613–626.

Stifanelli PF, Creanza TM, Anglani R, Liuuzzi VC, Mukherjee S, Schena FP, Ancona N. 2013. A comparative study of covariance selection models for the inference of gene regulatory networks. Journal of Biomedical Informatics 46, 894–904.

Stuart, JM, Segal E, Koller D, Kim SK. 2003. A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255.

Taj T, Motoaki S, Masakazu S, Tetsuya S, Masatomo K, Ishiyama K, Narusaka Y, Narusaka M, Zhu J-K, Shinozaki K. 2004. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiology 135, 1697–1709.

Toledo-Ortiz G, Hug E, Quail PH. 2003. The Arabidopsis basic/helix–loop–helix transcription factor family. The Plant Cell 15, 1749–1770.

Torres MA, Dangl JL, Jones JD. 2002. Arabidopsis gpo1 phox homologues AtbrohD and AtbrohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proceedings of the National Academy of Sciences, USA 99, 517–522.

Torres MA, Jones JD, Dangl JL. 2005. Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nature Genetics 37, 1130–1134.

Tsukagoshi H, Busch W, Benfey PN. 2010. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143, 606–616.

Usadel B, Obayashi T, Mutwil M, Giorgi FM, Bassel GW, Tanimoto M, Chow A, Steinhauser D, Persson S, Provat N. 2009. Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant, Cell and Environment 32, 1633–1651.

Van der Graaff E, Schwake R, Schneider A, Desimone M, Flügge UI, Kunze R. 2006. Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiology 141, 776–792.
Gang G, Cheng-Jiang R, Xue-Xuan X, Hong-Bo S, Yuan-Yuan M, Gang X, Jun-Na S, Dong-Arabidopsis oxygen species-responsive NAC transcription factor, regulates longevity in Wu A, Allu AD, Garapati P, oxidative stress. senescence mutants of Woo HR, Kim JH, Nam HG, Lim PO. 2005. Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant, Cell and Environment 29, 1049–1060. Zimmermann P, Heinlein C, Orendi G, Zentgraf U. 2003. A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proceedings of the National Academy of Sciences, USA 100, 16113–16118. Vandepoele K, Quimbaya M, Casneuf T, Veylder LD, Van de Peer Y. 2009. Unraveling transcriptional control in Arabidopsis using cis-regulatory elements and coexpression networks. Plant Physiology 150, 535–546. Vanderauwera S, Zimmermann P, Rombauts S, Vandenaeyer S, Zimmermann P, Heinlein C, Orendi G, Zentgraf U. 2005. Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiology 138, 806–821. Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF. 2005. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. The Plant Journal 41, 195–211. Volkmar KM, Hu Y, Steppuhn H. 1998. Physiological responses of plants to salinity: a review. Canadian Journal of Plant Science 78, 19–27. Wei K, Chen J, Wang Y, Chen Y, Chen S, Lin Y, Pan S, Zhong X, Xie D. 2012. Genome-wide analysis of bZIP-encoding genes in maize. DNA Research 19, 463–476. Whitehead CS, Halevy AH, Reid MS. 1984. Role of ethylene and 1-aminocyclopropane-1-carboxylic acid in pollination and wounding induced senescence in Petunia hybrida flowers. Physiologia Plantarum 61, 643–648. Woo HR, Kim JH, Nam HG, Lim PO. 2004. The delayed leaf senescence mutants of Arabidopsis, ore1, ore3, and ore9 are tolerant to oxidative stress. Plant and Cell Physiology 45, 923–932. Wu A, Allu AD, Garapati P, et al. 2012. JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis. The Plant Cell 24, 482–506. Xue-Xuan X, Hong-Bo S, Yuan-Yuan M, Gang X, Jun-Na S, Dong-Gang G, Cheng-Jiang R. 2010. Biotechnological implications from abscisic acid (ABA) roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions. Critical Reviews in Biotechnology 30, 222–230. Yan T, Yoo D, Berardini TZ, Mueller LA, Weems DC, Weng S, Cherry JM, Rhee SY. 2005. PatMatch: a program for finding patterns in peptide and nucleotide sequences. Nucleic Acids Research 33, W262–W266. Yang SD, Seo PJ, Yoon HK, Park CM. 2011. The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. The Plant Cell 23, 2155–2168. Ye Z, Rodriguez R, Tran A, Hoang H, de los Santos D, Brown S, Vellanoweth RL. 2000. The developmental transition to flowering represses ascorbate peroxidase activity and induces enzymatic lipid peroxidation in leaf tissue in Arabidopsis thaliana. Plant Science 158, 115–127. Yoshida K. 2003. Molecular regulation of leaf senescence. Current Opinion in Plant Biology 6, 79–84. Zeller G, Henz SR, Widmer CK, Sachsenberg T, Ratsch G, Weigel D, Laubinger S. 2009. Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. The Plant Journal 58, 1068–1082. Zentgraf U, Laun T, Miao Y. 2010. The complex regulation of WRKY53 during leaf senescence of Arabidopsis thaliana. European Journal of Cell Biology 89, 133–137. Zhang K, Gan SS. 2012. An abscisic acid–ANAP transcription factor–SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves. Plant Physiology 158, 961–969. Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP. 2001. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiology 126, 1438–1448. Zimmermann P, Heinlein C, Orendi G, Zentgraf U. 2006. A comprehensive analysis of hydrogen peroxide-regulated gene expression in Arabidopsis thaliana stressed conditions. Journal of Plant Physiology 163, 79–84. Zhou C, Chen J, Wang Y, Chen Y, Chen S, Lin Y, Pan S, Zhong X, Xie D. 2012. Genome-wide analysis of bZIP-encoding genes in maize. DNA Research 19, 463–476. Whitehead CS, Halevy AH, Reid MS. 1984. Role of ethylene and 1-aminocyclopropane-1-carboxylic acid in pollination and wounding induced senescence in Petunia hybrida flowers. Physiologia Plantarum 61, 643–648.