A note on solutions of linear systems

Branko Maleševića, Ivana Jovovića,
Milica Makragića, Biljana Radičićb

aFaculty of Electrical Engineering, University of Belgrade,
Bulevar kralja Aleksandra 73, 11000 Belgrade, Serbia
bFaculty of Civil Engineering, University of Belgrade,
Bulevar kralja Aleksandra 73, 11000 Belgrade, Serbia

Abstract

In this paper we will consider Rohde’s general form of \{1\}-inverse of a matrix A. The necessary and sufficient condition for consistency of a linear system $Ax = c$ will be represented. We will also be concerned with the minimal number of free parameters in Penrose’s formula $x = A^{(1)c} + (I - A^{(1)}A)y$ for obtaining the general solution of the linear system. This results will be applied for finding the general solution of various homogenous and non-
-homogenous linear systems as well as for different types of matrix equations.

Keywords: Generalized inverses, linear systems, matrix equations

1. Introduction

In this paper we consider non-homogeneous linear system in n variables

$$Ax = c,$$

where A is an $m \times n$ matrix over the field \mathbb{C} of rank a and c is an $m \times 1$ matrix over \mathbb{C}. The set of all $m \times n$ matrices over the complex field \mathbb{C} will be denoted by $\mathbb{C}^{m \times n}$, $m, n \in \mathbb{N}$. The set of all $m \times n$ matrices over the complex field \mathbb{C} of rank a will be denoted by $\mathbb{C}^{a \times n}_m$. For simplicity of notation, we will write $A_{i \rightarrow} (A_{i,j})$ for the i^{th} row (the j^{th} column) of the matrix $A \in \mathbb{C}^{m \times n}$.

Email addresses:
Branko Malešević <malesevic@etf.rs>, Ivana Jovović <ivana@etf.rs>, Milica Makragić <milica.makragic@etf.rs>, Biljana Radičić <biljana.radicic@yahoo.com>

Preprint submitted to ISRN Algebra April 29, 2013.
Any matrix X satisfying the equality $AXA = A$ is called $\{1\}$-inverse of A and is denoted by $A^{(1)}$. The set of all $\{1\}$-inverses of the matrix A is denoted by $A^{\{1\}}$. It can be shown that $A^{\{1\}}$ is not empty. If the $n \times n$ matrix A is invertible, then the equation $AXA = A$ has exactly one solution A^{-1}, so the only $\{1\}$-inverse of the matrix A is its inverse A^{-1}, i.e. $A^{\{1\}} = \{A^{-1}\}$. Otherwise, $\{1\}$-inverse of the matrix A is not uniquely determined. For more informations about $\{1\}$-inverses and various generalized inverses we recommend A. Ben-Israel and T. N. E. Greville [1] and S. L. Campbell and C. D. Meyer [2].

For each matrix $A \in \mathbb{C}^{m \times n}$ there are regular matrices $P \in \mathbb{C}^{n \times n}$ and $Q \in \mathbb{C}^{m \times m}$ such that

$$QAP = E_a = \begin{bmatrix} I_a & 0 \\ 0 & 0 \end{bmatrix},$$

(2)

where I_a is $a \times a$ identity matrix. It can be easily seen that every $\{1\}$-inverse of the matrix A can be represented in the form

$$A^{(1)} = P \begin{bmatrix} I_a & U \\ V & W \end{bmatrix} Q$$

(3)

where $U = [u_{ij}]$, $V = [v_{ij}]$ and $W = [w_{ij}]$ are arbitrary matrices of corresponding dimensions $a \times (m - a)$, $(n - a) \times a$ and $(n - a) \times (m - a)$ with mutually independent entries, see C. Rohde [8] and V. Perić [7].

We will generalize the results of N. S. Urquhart [9]. Firstly, we explore the minimal numbers of free parameters in Penrose’s formula

$$x = A^{(1)} c + (I - A^{(1)} A) y$$

for obtaining the general solution of the system \([1]\). Then, we consider relations among the elements of $A^{(1)}$ to obtain the general solution in the form $x = A^{(1)} c$ of the system \([1]\) for $c \neq 0$. This construction has previously been used by B. Malešević and B. Radić [3] (see also [4] and [5]). At the end of this paper we will give an application of this results to the matrix equation $AXB = C$.

2. The main result

In this section we indicate how technique of an $\{1\}$-inverse may be used to obtain the necessary and sufficient condition for an existence of a general solution of a non-homogeneous linear system.
Lemma 2.1. The non-homogeneous linear system \((1) \) has a solution if and only if the last \(m - a \) coordinates of the vector \(c' = Qc \) are zeros, where \(Q \in \mathbb{C}^{m \times m} \) is regular matrix such that \((2) \) holds.

Proof: The proof follows immediately from Kroneker–Capelli theorem. We provide a new proof of the lemma by using the \(\{1\} \)-inverse of the system matrix \(A \). The system \((1) \) has a solution if and only if \(c = AA^{(1)}c \), see R. Penrose [6]. Since \(A^{(1)} \) is described by the equation \((3) \), it follows that

\[
AA^{(1)} = AP \begin{bmatrix} I_a & U \\ V & W \end{bmatrix} Q = Q^{-1} \begin{bmatrix} I_a & U \\ 0 & 0 \end{bmatrix} Q.
\]

Hence, we have the following equivalences

\[
c = AA^{(1)}c \iff (I - AA^{(1)})c = 0 \iff \left(Q^{-1}Q - Q^{-1} \begin{bmatrix} I_a & U \\ 0 & 0 \end{bmatrix} Q \right) c = 0
\]

\[
\iff Q^{-1} \begin{bmatrix} 0 & -U \\ 0 & I_{n-a} \end{bmatrix} Qc = 0 \iff \begin{bmatrix} 0 & -U \\ 0 & I_{n-a} \end{bmatrix} c' = 0
\]

\[
c' = \begin{bmatrix} c_a' \\ c_{n-a}' \end{bmatrix} \iff \begin{bmatrix} 0 & -U \\ 0 & I_{n-a} \end{bmatrix} \begin{bmatrix} c_a' \\ c_{n-a}' \end{bmatrix} = 0 \iff \begin{bmatrix} -Uc_{n-a}' \\ c_{n-a}' \end{bmatrix} = 0
\]

\[
\iff c_{n-a}' = 0.
\]

Furthermore, we conclude \(c = AA^{(1)}c \iff c_{n-a}' = 0 \). \(\Box \)

Theorem 2.2. The vector

\[
x = A^{(1)}c + (I - A^{(1)}A)y,
\]

\(y \in \mathbb{C}^{n \times 1} \) is an arbitrary column, is the general solution of the system \((1) \), if and only if the \(\{1\} \)-inverse \(A^{(1)} \) of the system matrix \(A \) has the form \((3) \) for arbitrary matrices \(U \) and \(W \) and the rows of the matrix \(V(c_a' - y_{a}') + y_{(n-a)}' \)

are free parameters, where \(Qc = c' = \begin{bmatrix} c_a' \\ 0 \end{bmatrix} \) and \(P^{-1}y = y' = \begin{bmatrix} y_a' \\ y_{n-a}' \end{bmatrix} \).

Proof: Since \(\{1\} \)-inverse \(A^{(1)} \) of the matrix \(A \) has the form \((3) \), the solution of the system \(x = A^{(1)}c + (I - A^{(1)}A)y \) can be represented in the form

\[
x = P \begin{bmatrix} I_a & U \\ V & W \end{bmatrix} Qc + \left(I - P \begin{bmatrix} I_a & U \\ V & W \end{bmatrix} QA \right) y
\]

\[
= P \begin{bmatrix} I_a & U \\ V & W \end{bmatrix} c' + \left(I - P \begin{bmatrix} I_a & U \\ V & W \end{bmatrix} QAPP^{-1} \right) y.
\]
According to Lemma 2.1 and from (2) we have
\[x = P \left[\begin{array}{c|c} I_a & U \\ \hline V & W \end{array} \right] \left[\begin{array}{c} c' \\ 0 \end{array} \right] + \left(I - P \left[\begin{array}{c|c} I_a & U \\ \hline V & W \end{array} \right] \left[\begin{array}{c} 0 \\ 0 \end{array} \right] P^{-1} \right) y. \]

Furthermore, we obtain
\[
\begin{align*}
 x &= P \left[\begin{array}{c} c' \\ Vc'_a \end{array} \right] + \left(I - P \left[\begin{array}{c} I_a & U \\ \hline V & W \end{array} \right] \left[\begin{array}{c} 0 \\ 0 \end{array} \right] P^{-1} \right) \left[\begin{array}{c} y_a \\ y_{n-a} \end{array} \right] \\
 &= P \left[\begin{array}{c} c' \\ Vc'_a \end{array} \right] + \left(PP^{-1} - P \left[\begin{array}{c} I_a & U \\ \hline V & W \end{array} \right] \left[\begin{array}{c} 0 \\ 0 \end{array} \right] P^{-1} \right) \left[\begin{array}{c} y_a \\ y_{n-a} \end{array} \right] \\
 &= P \left[\begin{array}{c} c' \\ Vc'_a \end{array} \right] + P \left(I - \left[\begin{array}{c} I_a & U \\ \hline V & W \end{array} \right] \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \right) P^{-1} \left[\begin{array}{c} y_a \\ y_{n-a} \end{array} \right] \\
 &= P \left[\begin{array}{c} c' \\ Vc'_a \end{array} \right] + P \left[\begin{array}{c} 0 \\ -V \end{array} \right] \left[\begin{array}{c} y'_a \\ y'_{n-a} \end{array} \right],
\end{align*}
\]

where \(y' = P^{-1}y \). We now conclude
\[
\begin{align*}
 x &= P \left(\left[\begin{array}{c} c' \\ Vc'_a \end{array} \right] + \left[\begin{array}{c} 0 \\ -V y'_a + y'_{n-a} \end{array} \right] \right) = P \left[\begin{array}{c} c' \\ V(c'_a - y'_a) + y'_{n-a} \end{array} \right].
\end{align*}
\]

Therefore, since matrix \(P \) is regular we deduce that \(P \left[\begin{array}{c} c' \\ V(c'_a - y'_a) + y'_{n-a} \end{array} \right] \) is the general solution of the system (1) if and only if the rows of the matrix \(V(c'_a - y'_a) + y'_{n-a} \) are \(n - a \) free parameters. \(\square \)

Corollary 2.3. The vector
\[x = (I - A^{(1)}) y, \]
\(y \in \mathbb{C}^{n \times 1} \) is an arbitrary column, is the general solution of the homogeneous linear system \(Ax = 0 \), \(A \in \mathbb{C}^{m \times n} \), if and only if the \(\{1\} \)-inverse \(A^{(1)} \) of the system matrix \(A \) has the form (3) for arbitrary matrices \(U \) and \(W \) and the rows of the matrix \(-V y'_a + y'_{(n-a)} \) are free parameters, where \(P^{-1}y = y' = \left[\begin{array}{c} y'_a \\ y'_{n-a} \end{array} \right]. \)

Example 2.4. Consider the homogeneous linear system
\[
\begin{align*}
 x_1 + 2x_2 + 3x_3 &= 0 \\
 4x_1 + 5x_2 + 6x_3 &= 0.
\end{align*}
\]
The system matrix is

\[
A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}.
\]

For regular matrices

\[
Q = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \quad \text{and} \quad P = \begin{bmatrix} 1 & \frac{2}{3} & 1 \\ 0 & -\frac{1}{3} & -2 \\ 0 & 0 & 1 \end{bmatrix}
\]

equality (2) holds. Rohde’s general \{1\}-inverse \(A^{(1)}\) of the system matrix \(A\) is of the form

\[
A^{(1)} = P \begin{bmatrix} 1 & 0 \\ v_{11} & v_{12} \end{bmatrix} Q
\]

According to Corollary 2.3 the general solution of the system (4) is of the form

\[
x = P \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -v_{11} & -v_{12} & 1 \end{bmatrix} P^{-1} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix},
\]

where

\[
P^{-1} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 1 \end{bmatrix}.
\]

Therefore, we obtain

\[
x = P \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -v_{11} & -v_{12} & 1 \end{bmatrix} \begin{bmatrix} y_1 + 2y_2 + 3y_3 \\ -3y_2 - 6y_3 \\ y_3 \end{bmatrix}
= P \begin{bmatrix} 0 \\ 0 \\ -v_{11}y_1 - (2v_{11} - 3v_{12}y_2 - (3v_{11} - 6v_{12} - 1)y_3 \end{bmatrix}.
\]

If we take \(\alpha = -v_{11}y_1 - (2v_{11} - 3v_{12}y_2 - (3v_{11} - 6v_{12} - 1)y_3\) as a parameter we get the general solution

\[
x = \begin{bmatrix} 1 & \frac{2}{3} & 1 \\ 0 & -\frac{1}{3} & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \alpha \end{bmatrix} = \begin{bmatrix} \alpha \\ -2\alpha \\ \alpha \end{bmatrix}.
\]
Corollary 2.5. The vector
\[x = A^{(1)}c \]
is the general solution of the system (1), if and only if the \(\{1\} \)-inverse \(A^{(1)} \) of the system matrix \(A \) has the form (3) for arbitrary matrices \(U \) and \(W \) and the rows of the matrix \(Vc' \) are free parameters, where \(Qc = c' = \begin{bmatrix} c' \\ 0 \end{bmatrix} \).

Remark 2.6. Similar result can be found in paper B. Malešević and B. Radičić [3].

Example 2.7. Consider the non-homogeneous linear system
\[
\begin{align*}
 x_1 + 2x_2 + 3x_3 &= 7 \\
 4x_1 + 5x_2 + 6x_3 &= 8.
\end{align*}
\]
According to Corollary 2.5 the general solution of the system (5) is of the form
\[
x = P \begin{bmatrix} 1 & 0 \\ v_{11} & v_{12} \end{bmatrix} Q \begin{bmatrix} 7 \\ 8 \end{bmatrix} = P \begin{bmatrix} 7 \\ -20 \\ 7v_{11} - 20v_{12} \end{bmatrix}.
\]
If we take \(\alpha = 7v_{11} - 20v_{12} \) as a parameter we obtain the general solution of the system
\[
x = P \begin{bmatrix} 7 \\ -20 \\ \alpha \end{bmatrix} = P \begin{bmatrix} 1 & \frac{2}{3} & 1 \\ 0 & -\frac{1}{3} & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 7 \\ -20 \\ \alpha \end{bmatrix} = \begin{bmatrix} -\frac{19}{3} + \alpha \\ \frac{20}{3} - 2\alpha \\ \alpha \end{bmatrix}.
\]
We are now concerned with the matrix equation
\[AX = C, \]
where \(A \in \mathbb{C}^{m \times n} \), \(X \in \mathbb{C}^{n \times k} \) and \(C \in \mathbb{C}^{m \times k} \).

Lemma 2.8. The matrix equation (6) has a solution if and only if the last \(m - a \) rows of the matrix \(C' = QC \) are zeros, where \(Q \in \mathbb{C}^{m \times m} \) is regular matrix such that (2) holds.
Proof: If we write \(X = [X_{i1} \ X_{i2} \ldots \ X_{ik}] \) and \(C = \{C_{i1} \ C_{i2} \ldots \ C_{ik}\} \), then we can observe the matrix equation (6) as the system of matrix equations

\[
AX_{i1} = C_{i1} \\
AX_{i2} = C_{i2} \\
\vdots \\
AX_{ik} = C_{ik}.
\]

Each of the matrix equation \(AX_{ii} = C_{ii}, \ 1 \leq i \leq k \), by Lemma 2.1 has solution if and only if the last \(m-a \) coordinates of the vector \(C'_{ii} = QC_{ii} \) are zeros. Thus, the previous system has solution if and only if all entries of the last \(m-a \) rows of the matrix \(C' \) are zeros. \(\square \)

Theorem 2.9. The matrix

\[
X = A^{(1)}C + (I - A^{(1)}A)Y \in \mathbb{C}^{n \times k},
\]

\(Y \in \mathbb{C}^{n \times k} \) is an arbitrary matrix, is the general solution of the matrix equation (6) if and only if the \(\{1\}^{-}\text{inverse} \ A^{(1)} \) of the system matrix \(A \) has the form (3) for arbitrary matrices \(U \) and \(W \) and the entries of the matrix

\[
V(C' - Y'+ Y'_{(n-a)})
\]

are mutually independent free parameters, where \(QC = C' = \begin{bmatrix} C'_{a} \\ 0 \end{bmatrix} \) and \(P^{-1}Y = Y' = \begin{bmatrix} Y'_{a} \\ Y'_{n-a} \end{bmatrix} \).

Proof: Applying the Theorem 2.2 on the each system \(AX_{ii} = C_{ii}, \ 1 \leq i \leq k \), we obtain that

\[
X_{ii} = P \left[\frac{C'_{a\dot{i}}}{V(C'_{a\dot{i}} - Y'_{a\dot{i}}) + Y'_{n-a\dot{i}}} \right]
\]

is the general solution of the system if and only if the rows of the matrix \(V(C'_{a\dot{i}} - Y'_{a\dot{i}}) + Y'_{n-a\dot{i}} \) are \(n-a \) free parameters. Assembling these individual solutions together we get that

\[
X = P \left[\frac{C'_{a}}{V(C' - Y') + Y'_{n-a}} \right]
\]
is the general solution of the matrix equation \((6)\) if and only if entries of the matrix \(V(C'_a - Y'_a) + Y'_{n-a}\) are \((n-a)k\) mutually independent free parameters. □

From now on we proceed with the study of the non-homogeneous linear system of the form

\[xB = d, \] \quad (7)

where \(B\) is an \(n \times m\) matrix over the field \(\mathbb{C}\) of rank \(b\) and \(d\) is an \(1 \times m\) matrix over \(\mathbb{C}\). Let \(R \in \mathbb{C}^{n \times n}\) and \(S \in \mathbb{C}^{m \times m}\) be regular matrices such that

\[RBS = E_b = \begin{bmatrix} I_b & 0 \\ 0 & 0 \end{bmatrix}. \] \quad (8)

An \(\{1\}\)-inverse of the matrix \(B\) can be represented in the Rohde’s form

\[B^{(1)} = S \begin{bmatrix} I_b \\ N \\ M \\ K \end{bmatrix} R \] \quad (9)

where \(M = [m_{ij}]\), \(N = [n_{ij}]\) and \(K = [k_{ij}]\) are arbitrary matrices of corresponding dimensions \(b \times (n-b)\), \((m-b) \times b\) and \((m-b) \times (n-b)\) with mutually independent entries.

Lemma 2.10. The non-homogeneous linear system \((7)\) has a solution if and only if the last \(m-b\) elements of the row \(d' = dS\) are zeros, where \(S \in \mathbb{C}^{m \times m}\) is regular matrix such that \((8)\) holds.

Proof: By transposing the system \((7)\) we obtain system \(B^T x^T = d^T\) and by transposing the matrix equation \((8)\) we obtain that \(S^T B^T R^T = E_b\). According to Lemma 2.1 the system \(B^T x^T = d^T\) has solution if and only if the last \(m-b\) coordinates of the vector \(S^T d^T\) are zeros, i.e. if and only if the last \(m-b\) elements of the row \(d' = dS\) are zeros. □

Theorem 2.11. The row

\[x = dB^{(1)} + y(I - BB^{(1)}), \]

\(y \in \mathbb{C}^{1 \times n}\) is an arbitrary row, is the general solution of the system \((7)\), if and only if the \(\{1\}\)-inverse \(B^{(1)}\) of the system matrix \(B\) has the form \((9)\) for arbitrary matrices \(N\) and \(K\) and the columns of the matrix \((d'_b - y'_b)M + y'_{n-b}\) are free parameters, where \(dS = d' = [d'_b | 0]\) and \(yR^{-1} = y' = [y'_b | y'_{n-b}]\).
Proof: The basic idea of the proof is to transpose the system (7) and to apply the Theorem 2.2. The \(\{1\} \)-inverse of the matrix \(B \) is equal to a transpose of the \(\{1\} \)-inverse of the matrix \(B^T \). Hence, we have

\[
(B^T)^{(1)} = (B^{(1)})^T = \left(S \left[\frac{I_b}{N} M \right] R \right)^T = R^T \left[\frac{I_b}{M^T} N^T \right] S^T.
\]

We can now proceed analogously to the proof of the Theorem 2.2 to obtain that

\[
x^T = R^T \left[\frac{d'_{b}^T}{M^T(d'_{b} - y'_{n-b}) + y'_{n-b}} \right]
\]

is the general solution of the system \(B^T x^T = d^T \) if and only if the rows of the matrix \(M^T(d'_{b} - y'_{n-b}) + y'_{n-b} \) are \(n - b \) free parameters. Therefore,

\[
x = [d'_{b} \ | \ (d'_{b} - y'_{n-b}) M + y'_{n-b}] R
\]

is the general solution of the system (7) if and only if the columns of the matrix \((d'_{b} - y'_{n-b}) M + y'_{n-b} \) are \(n - b \) free parameters. □

Analogous corollaries hold for the Theorem 2.11.

We now deal with the matrix equation

\[
XB = D,
\]

where \(X \in \mathbb{C}^{k \times n} \), \(B \in \mathbb{C}^{n \times m} \) and \(D \in \mathbb{C}^{k \times m} \).

Lemma 2.12. The matrix equation (10) has a solution if and only if the last \(m - b \) columns of the matrix \(D' = DS \) are zeros, where \(S \in \mathbb{C}^{m \times m} \) is regular matrix such that (8) holds.

Theorem 2.13. The matrix

\[
X = DB^{(1)} + Y (I - BB^{(1)}) \in \mathbb{C}^{k \times n},
\]

\(Y \in \mathbb{C}^{k \times n} \) is an arbitrary matrix, is the general solution of the matrix equation (10) if and only if the \(\{1\} \)-inverse \(B^{(1)} \) of the system matrix \(B \) has the form (9) for arbitrary matrices \(N \) and \(K \) and the entries of the matrix

\[
(D'_{b} - y'_{n-b}) M + y'_{n-b}
\]

are mutually independent free parameters, where \(DS = D' = [D'_{b} \mid 0] \) and \(Y R^{-1} = Y' = [Y'_{b} \mid Y'_{n-b}] \).
3. An application

In this section we will briefly sketch properties of the general solution of the matrix equation

\[AXB = C, \]

(11)

where \(A \in \mathbb{C}^{m \times n} \), \(X \in \mathbb{C}^{n \times k} \), \(B \in \mathbb{C}^{k \times l} \) and \(C \in \mathbb{C}^{m \times l} \). If we denote by \(Y \) matrix product \(XB \), then the matrix equation (11) becomes

\[AY = C. \]

(12)

According to the Theorem 2.9 the general solution of the system (12) can be presented as a product of the matrix \(P \) and the matrix which has the first \(a = \text{rank}(A) \) rows same as the matrix \(QC \) and the elements of the last \(m - a \) rows are \((m - a)n\) mutually independent free parameters, \(P \) and \(Q \) are regular matrices such that \(QAP = E_a \). Thus, we are now turning on to the system of the form

\[XB = D. \]

(13)

By the Theorem 2.13 we conclude that the general solution of the system (13) can be presented as a product of the matrix which has the first \(b = \text{rank}(B) \) columns equal to the first \(b \) columns of the matrix \(DS \) and the rest of the columns have mutually independent free parameters as entries, and the matrix \(R \), for regular matrices \(R \) and \(S \) such that \(RBS = E_b \). Therefore, the general solution of the system (11) is of the form

\[X = P \begin{bmatrix} G_{ab} & F \\ H & L \end{bmatrix} R, \]

where \(G_{ab} \) is a submatrix of the matrix \(QCS \) corresponding to the first \(a \) rows and the first \(b \) columns and the entries of the matrices \(F, H \) and \(L \) are \(nk - ab \) free parameters. We will illustrate this on the following example.

Example 3.1. We consider the matrix equation

\[AXB = C, \]

where \(A = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}, \ B = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix} \) \text{ and } C = \begin{bmatrix} 1 & 2 & 1 \\ -2 & -4 & -2 \end{bmatrix}. \) If we take \(Y = XB \), we obtain the system

\[AY = C. \]
It is easy to check that the matrix \(A \) is of the rank \(a = 1 \) and for matrices \(Q = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \) and \(P = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \) the equality \(QAP = E_a \) holds. Based on the Theorem 2.9, the equation \(AY = C \) can be rewritten in the system form

\[
AY_{i1} = \begin{bmatrix} 1 \\ -2 \end{bmatrix},
AY_{i2} = \begin{bmatrix} 2 \\ -4 \end{bmatrix},
AY_{i3} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}.
\]

Combining the Theorem 2.2 with the equality

\[
\begin{bmatrix} c_1' & c_2' & c_3' \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ -2 & -4 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix}
\]

yields

\[
Y_{i1} = P \begin{bmatrix} 1 \\ v - vz_{11} + z_{21} \end{bmatrix},
Y_{i2} = P \begin{bmatrix} 2 \\ 2v - 2vz_{12} + z_{22} \end{bmatrix},
Y_{i3} = P \begin{bmatrix} 1 \\ v - vz_{13} + z_{23} \end{bmatrix},
\]

for an arbitrary matrix \(Z = \begin{bmatrix} z_{11} & z_{12} & z_{13} \\ z_{21} & z_{22} & z_{23} \end{bmatrix} \). Therefore, the general solution of the system \(AY = C \) is

\[
Y = P \begin{bmatrix} 1 & 2 & 1 \\ \alpha & \beta & \gamma \end{bmatrix}.
\]

From now on, we consider the system

\[
XB = D
\]

for

\[
D = P \begin{bmatrix} 1 & 2 & 1 \\ \alpha & \beta & \gamma \end{bmatrix} = \begin{bmatrix} 1 + 2\alpha & 2 + 2\beta & 1 + 2\gamma \\ \alpha & \beta & \gamma \end{bmatrix}.
\]
There are regular matrices \(R = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \) and \(S = \begin{bmatrix} 1 & -2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \) such that \(RBS = E_b \) holds. Since the rank of the matrix \(B \) is \(b = 1 \), according to the Lemma 2.12 all entries of the last two columns of the matrix \(D' = DS \) are zeros, i.e. we have \(\gamma = \alpha, \beta = 2\alpha \). Hence, we get that the matrix \(D' \) is of the form

\[
D' = \begin{bmatrix}
1 + 2\alpha & 0 & 0 \\
\alpha & 0 & 0
\end{bmatrix}
\]

Applying the Theorem 2.13, we obtain

\[
X = \begin{bmatrix}
1 + 2\alpha & (1 + 2\alpha - t_{11})m_{11} + t_{12} \\
\alpha & (\alpha - t_{21})m_{11} + t_{22} \\
& \gamma_{11} \\
& \gamma_{12}
\end{bmatrix}
\begin{bmatrix}
1 + 2\alpha - t_{11}m_{11} + t_{13} \\
(1 + 2\alpha - t_{11})m_{12} + t_{13} \\
(\alpha - t_{21})m_{12} + t_{21} + t_{13} \\
(\alpha - t_{21})m_{22} + t_{22} \\
\gamma_{21} \\
\gamma_{22}
\end{bmatrix}
\]

for an arbitrary matrix \(T = \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \end{bmatrix} \). Finally, the solution of the system \(AXB = C \) is

\[
X = \begin{bmatrix}
1 + 2\alpha - \beta_1 - \beta_2 \\
\alpha - \gamma_1 - \gamma_2 \\
\gamma_1 \\
\gamma_2
\end{bmatrix}
\]

Acknowledgment. Research is partially supported by the Ministry of Science and Education of the Republic of Serbia, Grant No.174032.

References

[1] A. Ben–Israel and T.N.E. Greville, Generalized Inverses: Theory and Applications, Springer, New York, 2003.

[2] S.L. Campbell and C.D. Meyer, Generalized Inverses of Linear Transformations, SIAM series CLASSICS in Applied Mathematics, Philadelphia, 2009.

[3] B. Malešević and B. Radičić, Non-reproductive and reproductive solutions of some matrix equations, Proceedings of International Conference Mathematical and Informational Technologies 2011, pp. 246 - 251, Vrnjačka Banja, 2011.
[4] B. Malešević and B. Radičić, Reproductive and non-reproductive solutions of the matrix equation $AXB = C$, arXiv:1108.4867.

[5] B. Malešević and B. Radičić, Some considerations of matrix equations using the concept of reproductivity, Kragujevac J. Math., Vol. 36 (2012) No. 1, pp. 151–161.

[6] R. Penrose, A generalized inverses for matrices, Math. Proc. Cambridge Philos. Soc., Vol. 51 (1955), pp. 406–413.

[7] V. Perić, Generalized reciprocals of matrices, (in Serbo-Croatian), Matematika (Zagreb), Vol. 11 (1982) No. 1, pp. 40–57.

[8] C.A. Rohde, Contribution to the theory, computation and application of generalized inverses, doctoral dissertation, University of North Carolina at Raleigh, 1964.

[9] N.S. Urquhart, The nature of the lack of uniqueness of generalized inverse matrices, SIAM Review, Vol. 11 (1969) No. 2, pp. 268–271.