DISEASES CAUSED BY REACTIONS OF T LYMPHOCYTES TOWARDS INCOMPATIBLE STRUCTURES OF THE MAJOR HISTOCOMPATIBILITY COMPLEX

VI. Autoantibodies Characteristic of Systemic Lupus Erythematosus Induced by Abnormal T-B Cell Cooperation Across I-E*+

BY FEIKJE M. VAN RAPPAARD-VAN DER VEE,** ANTON G. ROLINK,** AND ERNST GLEICHMANN§

From the Department of Immunohistopathology, Central Laboratory of the Netherlands Red Cross Blood Transfusion Service; and Laboratory of Experimental and Clinical Immunology, University of Amsterdam, The Netherlands

The pathogenic significance of the increased association of systemic lupus erythematosus (SLE) with certain structures of the major histocompatibility complex (MHC) (1-4) is unknown. An experimental model of SLE, in which MHC structures play a defined pathogenic role, is the induction of an SLE-like graft-vs.-host reaction (GVHR) in nonirradiated F1 mice (5). In this model, the injection of donor T cells and an H-2 incompatibility in the F1 recipients, regardless of the haplotype, was required for the formation of all autoantibodies studied (6-8). The antibody formation during the GVHR is probably the outcome of two consecutive steps. First, alloreactive donor T helper (Tn) cells react against H-2-incompatible B cells and/or macrophages of the F1 recipient. Thereafter, this reaction, in combination with self-antigen, leads to a positive allogeneic effect that preferentially triggers those F1 B cells that produce autoantibodies characteristic of SLE (5).

Loci within the I region of H-2, I-A, and I-E code for determinants that control antigen presentation and the interactions of T cells with B cells and macrophages (9). Incompatibilities at I-A and/or I-E cause a strong stimulation in the mixed lymphocyte reaction (MLR) (10, 11) and the GVH splenomegaly assay (12). In the present paper, we report that induction of a GVHR across I-E triggered the formation of autoantibodies characteristic of SLE.

Materials and Methods

Mice. Strains B10.A(2R) and B10.A(4R) were purchased from Olac 1976 Ltd. (Bicester, Oxon, United Kingdom), and [B10.A(2R) × B10.A(4R)]F1 mice were bred in our animal facilities. Female mice, 8-10 wk old, were used. The H-2 genotypes of the strains of mice used are shown in Table I.

Induction of GVHR. Single-cell suspensions of donor spleen and lymph node cells were prepared as described previously (6). Cell suspensions contained approximately one part lymph-node

* Supported by a grant from the Volkswagen Foundation, Hannover, Federal Republic of Germany.
** Supported by a grant from the Dutch Kidney Foundation, Amsterdam, The Netherlands.
§ To whom correspondence should be addressed at the Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, P.O.B. 9190, 1006 AD Amsterdam, The Netherlands.
Table I

H-2 Genotypes of Strains of Mice Used

Strain	H-2 haplotypes	Alleles at H-2 (sub)regions							
		K	A	B	J	E	C	S	D
B10.A(2R)	h2	k	k	k	k	d	d	b	
B10.A(4R)	h4	k	k	b	b	(b)*	b	b	b
[B10.A(2R) × B10.A(4R)]F1	h2 × h4	k	k	k/b	k/b	k/(b)*	d/b	d/b	b

* The I-Eb allele does not phenotypically express an Ea chain (13). See Discussion for details.

Detection of Autoantibodies. Autoantibodies to thymocytes were detected by a complement-dependent cytotoxicity test, and the cytotoxic index (CI) was determined as described (6). 51Cr-labeled thymocytes from normal [B10.A(2R) × B10.A(4R)]F1 mice were used as target cells. IgG autoantibodies to erythrocytes were detected by the direct Coombs’ test (5). IgG antibodies against nuclear antigens were determined by the indirect immunofluorescence technique using a fluorescein-labeled rabbit anti-mouse IgG serum; cryostat sections of mouse liver were used as an antigenic substrate as described (7). IgG antibodies reacting exclusively to double-stranded DNA (dsDNA) were determined as described (8).

Results

Untreated B10.A(2R) (n = 10), B10.A(4R) (n = 40), and [B10.A(2R) × B10.A(4R)]F1 (n = 10) mice served as negative controls. All these mice were bled and tested at 8 and 20 wk of age. None of them had spontaneous autoantibodies to thymocytes, erythrocytes, nuclear antigens, or dsDNA. The administration of B10.A(4R) lymphocytes to F1 mice induced the formation of autoantibodies against thymocytes, erythrocytes, nuclear antigens, and dsDNA in all of the recipients. In marked contrast, none of the F1 mice injected with lymphocytes from B10.A(2R) produced autoantibodies to erythrocytes or dsDNA; moreover, autoantibodies to nuclear antigens appeared in just two F1 recipients, and only one F1 mouse of the total group had anti-thymocyte antibodies in the serum giving a CI value >30 (Table II).

Discussion

The mainly negative results obtained with the donor B10.A(2R) indicate that the H-2 incompatibilities in the F1 recipients at the subregions I-B, I-J, I-C, and the S region were too weak to trigger SLE-like autoantibody formation. This finding conforms with the inability of these H-2 (sub)regions to evoke a significant GVH splenomegaly (12) or MLR reactivity (10, 14). In contrast, when B10.A(4R) donor cells were used for the induction of GVHR, autoantibody formation ensued. In this case, the only incompatibility, other than those at I-B, I-J, I-C, and S, against which the B10.A(4R) cells could react, was that determined by the I-Eb subregion of the F1 recipients (Table I). It is known that the molecular product of the I-E subregion, the Ea chain, has to combine with the Eβ chain, coded for by the I-A subregion, to be expressed as a two-chain molecule on the cell surface (13). The crucial point here is that strains of mice possessing a b, f, q, or s allele at I-E do not express the Ea/Eβ molecule on the cell surface. One such nonexpression strain is B10.A(4R) (I-Eb).
Weeks after first injection of donor cells	Number of F₁ mice tested	Erythrocytes	Thymocytes	Nuclear antigens	dsDNA							
		Percent at time indicated	Cumulative percent	Percent at time indicated	Cumulative percent	Mean CI values ± SE of total group	Percent at time indicated	Cumulative percent	Mean log titer of positive mice[‡]	Percent at time indicated	Cumulative percent	Mean log titer of positive mice[‡]
Donor B10.A(2R)												
1	16	0	0	6 ± 4	0	6 ± 4	0	0	<1	0	0	<1
5	16	0	0	8 ± 5	7	7 ± 2	0	0	<1	0	0	<1
9	15	0	0	5 ± 2	7	7 ± 3	0	0	<1	0	0	<1
13	14	0	0	3 ± 3	17	17 ± 2	0	0	<1	0	0	<1
17	12	0	0									
Donor B10.A(4R)												
1	16	0	0	5 ± 3	0	0 ± 3	0	0	<1	0	0	<1
5	15	40	40	44 ± 2	100	100 ± 3	100	100	3.3	100	100	1.8
9	12	92	94	38 ± 2	100	100 ± 3	100	100	3.7	100	100	2.7
13	9	44	100	49 ± 3	100	100 ± 3	100	100	3.7	100	100	2.2
17	9	22	100	42 ± 3	100	100 ± 3	100	100	3.8	100	100	2.1

* Only those F₁ mice whose sera gave a CI >30 were considered to be positive, because normal mice may have serum antibodies to thymocytes, which give CI values up to 30 when compared with the normal mouse serum used as reference.

[‡] All SE values of log titers in this column were ≤0.2.
contrast, strain B10.A(2R) (I-Ek) does express the E_{α}/E_{β} molecule (13). Hence, T cells of B10.A(2R) were not exposed to an I-E incompatibility on B cells and macrophages of [B10.A(2R) × B10.A(4R)]F1 recipient mice, whereas the T cells of B10.A(4R) could react against the E_{α}/E_{β} molecule expressed by such F1 mice (9, 13). This one-way reaction between lymphoid cells of these strains explains (9) the previous observations that mixed-lymphocyte reactivity (10, 14) and GVH splenomegaly (12) occur only in the direction B10.A(4R) anti-B10.A(2R) and not in the opposite direction. The same unidirectionality was found in the present study on the induction by GVHR of SLE-like autoantibodies (Table II).

Thus, our results indicate that an incompatibility at I-E alone provided the stimulus that led to the massive formation of autoantibodies characteristic of SLE. The observed formation of high titers of IgG antibodies to dsDNA (Table II) is especially remarkable because dsDNA has proved to be a very poor immunogen in conventional immunization procedures (15). In all likelihood, the initial reaction leading to autoantibody formation was made by the alloreactive T_H cells of the donor B10.A(4R) against the E_{α}/E_{β} molecule present on F1 macrophages and/or B cells.

An intriguing aspect of these findings is that I-E appears to be the murine analogue of HLA-D/DR (16, 17). Therefore, our findings are of interest with respect to the increased frequency of certain HLA-DR alleles in patients with SLE (1–4). It has been proposed that the formation of autoantibodies in SLE might be due to a GVH-like abnormal cooperation between autologous T and B cells (5). The postulated role of HLA-D/DR in this process would be to combine with etiologic agents, such as viruses or drugs, and then provide an immunogenic stimulus to autologous T_H cells. Thereafter, the activated T_H cells might, in a GVH-like fashion, trigger the normally existing autoreactive B cells involved in SLE (5). Recent studies performed in mice with the SLE-inducing drug diphenylhydantoin are consistent with this concept (18). Conceivably, a given etiologic agent becomes strongly immunogenic for T_H cells only in combination with one or a few alleles of HLA-D/DR, or closely linked loci. This concept might explain why some groups of patients with idiopathic SLE show an increased frequency with HLA-DR3 (1, 2), whereas in others, possibly exposed to a different etiologic agent, there seems to be an association with HLA-DR2 (1, 3). When patients with hydralazine-induced SLE were studied, an increased association with HLA-DR4 was found (4). Thus, regardless of the variable etiology of SLE, these are products of the same locus, HLA-DR, that appear to be involved in the pathogenesis of the disease. The involvement in a well-defined model of SLE of the analogous murine locus, I-E, may help to understand these intriguing pathogenic relationships.

Summary

By induction of a suitable graft-vs-host reaction (GVHR) in H-2 different F1 mice, one can induce the production of autoantibodies characteristic of systemic lupus erythematosus (SLE). The purpose of the present study was to define the intra-H-2 differences in the F1 recipients that are capable of triggering this process. A GVHR was induced in [B10.A(2R) × B10.A(4R)]F1 mice by injecting 10^8 lymphocytes from either parental strain. Whereas the donor B10.A(4R) induced a massive formation of autoantibodies to thymocytes, erythrocytes, nuclear antigens, and double-stranded DNA, the donor B10.A(2R) failed to do so. The intra-H-2 genetics of these two parent \rightarrowF1 combinations are such that the observed autoantibody formation after the
injection of B10.A(4R) T cells must have been triggered exclusively by the incompat-
ible I-E* subregion of the (B10.A(2R) × B10.A(4R))F1 recipients. Because I-E appears
to be the murine analogue of HLA-D/DR, this finding is of interest with respect to
the increased frequency of certain HLA-DR alleles in SLE patients, as discussed.

Received for publication 25 January 1982.

References

1. Gibofsky, A., R. J. Winchester, M. Patarroyo, M. Fotino, and H. G. Kunkel. 1978. Disease
associations of the Ia-like human alloantigens. Contrasting patterns in rheumatoid arthritis
and systemic lupus erythematosus. J. Exp. Med. 148:1728.

2. Celada, A., C. Barras, G. Benzonana, and M. Jeannet. 1979. Increased frequency of HLA-
DRw3 in systemic lupus erythematosus. New Engl. J. Med. 301:1398.

3. Gladman, D. D., P. I. Terasaki, M. S. Park, Y. Iwaki, S. Louie, F. P. Quismorio, E. V.
Barnett, and M. R. Liebling. 1979. Increased frequency of HLA-DRw2 in SLE. Lancet.
I:902.

4. Batchelor, J. R., K. I. Welsh, R. Mansilla Tinoco, C. T. Dollery, G. R. V. Hughes, R.
Bernstein, P. Ryan, P. F. Naish, G. M. Amber, R. F. Bing, and G. I. Russell. 1980.
Hydralazine-induced systemic lupus erythematosus: influence of HLA-DR and sex on
susceptibility. Lancet. I:1107.

5. Gleichmann, E., E. H. van Elven, and J. P. W. van der Veen. 1982. A systemic lupus
erythematosus-like disease in mice induced by abnormal T-B cell cooperation. Preferential
formation of autoantibodies characteristic of SLE. Eur. J. Immunol. In press.

6. Veen, J. P. W. van der, A. G. Rolink, and E. Gleichmann. 1981. Diseases caused by
reactions of T lymphocytes to incompatible structures of the major histocompatibility
complex. III. Autoantibodies to thymocytes. J. Immunol. 127:1281.

7. Veen, F. van der, A. G. Rolink, and E. Gleichmann. 1981. Diseases caused by reactions of
T lymphocytes to incompatible structures of the major histocompatibility complex. IV.
Autoantibodies to nuclear and cellular structures. Clin. Exp. Immunol. 46:589.

8. Elven, E. H. van, F. M. van der Veen, A. G. Rolink, Ph. Issa, Th. M. Duijn, and E.
Gleichmann. 1981. Diseases caused by reactions of T lymphocytes to incompatible structures of the major histocompatibility complex. V. High titers of IgG autoantibodies to
double-stranded DNA. J. Immunol. 127:2435.

9. Klein, J., A. Juretić, C. N. Baxevanis, and Z. A. Nagy. 1981. The traditional and a new
version of the mouse H-2 complex. Nature (Lond.). 291:455.

10. Lozner, E. C., D. H. Sachs, G. M. Shearer, and W. D. Terry. 1974. B-cell alloantigens
determined by the H-2 linked Ir region are associated with mixed lymphocyte culture
stimulation. Science (Wash. D. C.). 183:757.

11. Bach, F. H., C. Grillot-Courvalin, O. J. Kuperman, H. W. Stollinger, C. Hayes, P. M.
Sondel, B. J. Alter, and M. L. Bach. 1977. Antigenic requirements for triggering of cytotoxic
T lymphocytes. Immunol. Rev. 35:76.

12. Livnat, S., J. Klein, and F. H. Bach. 1973. Graft-versus-host reaction in strains of mice
identical for H-2K and H-2D antigens. Nat. New Biol. 243:42.

13. Jones, P. P., D. B. Murphy, and H. O. McDevitt. 1981. Variable synthesis and expression
of Eα and Aα (Eβ) Ia polypeptide chains in mice of different H-2 haplotypes. Immunogenetics.
12:321.

14. Okuda, K., C. S. David, and D. C. Shreffler. 1977. The role of gene products of the I-J
subregion in mixed lymphocyte reactions. J. Exp. Med. 146:1561.

15. Stollar, B. D. 1973. Nucleic acid and antigens. In The Antigens. M. Sela, editor. Academic
Press Inc., New York. 1:1.
16. Delovitch, T. L., and J. A. Falk. 1979. Evidence for structural homology between murine and human Ia antigens. *Immunogenetics*. 8:405.
17. Silver, J., L. E. Walker, R. A. Reisfeld, M. A. Pellegrino, and S. Ferrone. 1979. Structural studies of murine I-E and human DR antigens. *Mol. Immunol.* 16:37.
18. Gleichmann, H., S. Pals, T. Radazskiewicz, and M. Wasser. 1982. T cell-dependent B cell lymphoproliferation and activation induced by the drug diphenylhydantoin. In Proceedings of the 7th International Conference on Lymphatic Tissues and Germinal Centers in Immune Reactions. P. Nieuwenhuis, A. A. van den Broek, and M. G. Hanna, editors, Plenum Publishing Corp., New York. In press.