Some generalized Pythagorean 2-tuple linguistic Bonferroni mean operators in multiple attribute decision making

Xiyue Tang and Guiwu Wei

Abstract
Green supply chain management is a strategy which strengthens and integrates environmental consideration into whole supply chain. The green strategic supplier plays an important role in the implementation of green supply chain strategy. In the selection methodology of a strategic green supplier, some special requirements are needed which are different from the traditional supplier selection practices. In this paper, we combine the generalized weighted BM operator with Pythagorean 2-tuple linguistic numbers to propose the generalized Pythagorean 2-tuple linguistic-weighted Bonferroni mean operator, and then the multiple attribute decision-making methods are developed based on this operator. Finally, we use an example for green supplier selection to illustrate the multiple attribute decision-making process of the proposed methods.

Keywords
Multiple attribute decision making, Pythagorean 2-tuple linguistic numbers, generalized weighted BM operator, green supplier selection

Introduction
More recently, Pythagorean fuzzy set (PFS)\(^1\)\(^2\) has emerged as an effective tool for depicting the uncertainty of the multiple attribute decision making (MADM) problems. The PFS is also characterized by the membership degree and the non-membership degree, whose sum of squares is less than or equal to 1; the PFS is more general than the intuitionistic fuzzy set (IFS). In some cases, the PFS can solve the problems that the IFS cannot, for example, if a DM gives the membership degree and the non-membership degree as 0.8 and 0.6, respectively, then it is only valid for the PFS. In other words, all the intuitionistic fuzzy degrees are a part of the Pythagorean fuzzy degrees, which indicates that the PFS is more powerful to handle the uncertain problems. Zhang and Xu\(^3\) defined the detailed mathematical expression for PFS and developed a Pythagorean fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) for handling the MADM problem within PFSs. Peng and Yang\(^4\) proposed the division and subtraction operations for PFSs and also developed a Pythagorean fuzzy superiority and inferiority ranking method to solve multiple attribute group decision making (MAGDM) with PFSs. Afterwards, Beliakov and James\(^5\) focused on how the notion of “averaging” should be treated in the case of PFSs. Reformat and Yager\(^6\) applied the PFSs in handling the collaborative-based recommender system. Gou et al.\(^7\) investigated the properties of continuous Pythagorean fuzzy information. Ren et al.\(^8\) proposed the Pythagorean fuzzy TODIM approach to MADM. Garg\(^9\) proposed the new generalized Pythagorean fuzzy information aggregation by using Einstein operations. Zeng et al.\(^10\) developed a hybrid method for the Pythagorean fuzzy multiple-criteria decision making. Garg\(^11\) studied a novel accuracy function under interval-valued Pythagorean fuzzy environment for solving the MADM problem. Liang et al.\(^12\) developed the projection model for fusing the information of Pythagorean fuzzy multicriteria group decision making based on geometric Bonferroni mean. Peng et al.\(^13\) defined some Pythagorean fuzzy information measures. Garg\(^14\) proposed the generalized Pythagorean fuzzy...
geometric aggregation operators using Einstein t-Norm and t-Conorm for multicriteria decision-making process. Wei and Lu15 proposed some Pythagorean fuzzy Maclaurin Symmetric Mean operators in MADM. Wei16 developed some Pythagorean fuzzy interaction aggregation operators for MADM. Wei and Lu17 proposed some Pythagorean fuzzy power aggregation operators, such as Pythagorean fuzzy power average operator, Pythagorean fuzzy power geometric operator, Pythagorean fuzzy power weighted average operator, Pythagorean fuzzy power weighted geometric operator, Pythagorean fuzzy power ordered weighted average operator, Pythagorean fuzzy power ordered weighted geometric operator, Pythagorean fuzzy power hybrid average operator and Pythagorean fuzzy power hybrid geometric operator in MADM. Wei and Lu18 proposed some dual hesitant Pythagorean fuzzy Hamacher aggregation operators in MADM. Lu et al.19 defined the concept of hesitant PFSs and utilized Hamacher operations to develop some hesitant Pythagorean fuzzy aggregation operators. Wei et al.20 defined the concept of Pythagorean 2-tuple linguistic sets (P2TLSs) and utilized arithmetic and geometric operations to develop some Pythagorean 2-tuple linguistic aggregation operators.

Obviously, these established Pythagorean 2-tuple linguistic aggregation operators cannot be used to fuse the arguments which are correlated.21 Meanwhile, the Bonferroni mean (BM)22-29 is a very practical tool to tackle the arguments which are correlated. How to effectively extend the mature BM mean to P2TLN environment is a significant research task which is the focus of this paper.

The organization of this manuscript is as follows. The next section reviews P2TLNs and some other basic definitions. The ‘GP2TLWBM operator’ section introduces the extended GWBM operator30 which can be used to fuse the P2TLNs, and describes some properties of these operators. Then, we study the MADM problem with P2TLNs based on the GP2TLWBM operator. The penultimate section illustrates the functions of the proposed operators with an example for green supplier selection in green supply chain management area. Finally, the conclusions of the study are given.

Preliminaries

P2TLSs

Wei et al.20 proposed the concepts and basic operations of the P2TLSs on the basis of the PFSs1,2 and 2-tuple linguistic model.30-38

Definition 1.20 A P2TLSs A in X is given

$$P = \{(s_{0(x)}, \rho), (\mu_{P}(x), \nu_{P}(x)), x \in X\}$$ \hspace{1cm} (1)

where $s_{0(x)} \in S, \rho \in [-0.5, 0.5], u_{P}(x) \in [0, 1]$ and $v_{P}(x) \in [0, 1]$, with the condition $0 \leq (u_{P}(x))^{2} + (v_{P}(x))^{2} \leq 1, \forall x \in X$. The numbers $\mu_{P}(x), \nu_{P}(x)$ represent, respectively, the degree of membership and degree of non-membership of the element x to linguistic variable $(s_{0(x)}, \rho)$. Then, for $x \in X$, $\pi_{P}(x) = \sqrt{1 - (u_{P}(x))^{2} + (v_{P}(x))^{2}}$ could be called the degree of refusal membership of the element x to linguistic variable $(s_{0(x)}, \rho)$.

For convenience, Wei et al.20 call $p = \langle (s_{p}, \rho), (u_{p}, v_{p}) \rangle$ a Pythagorean 2-tuple linguistic number (P2T LN), where $\mu_{p} \in [0, 1], \nu_{p} \in [0, 1]$, $(\mu_{p})^{2} + (\nu_{p})^{2} \leq 1, s_{0(p)} \in S$ and $\rho \in [-0.5, 0.5]$.

Definition 2.20 Let $p_{1} = \langle (s_{p_{1}}, \rho_{1}), (u_{p_{1}}, v_{p_{1}}) \rangle$ and $p_{2} = \langle (s_{p_{2}}, \rho_{2}), (u_{p_{2}}, v_{p_{2}}) \rangle$ be two P2TLNs, $S(p_{1}) = \Delta(\Delta^{-1}(s_{0(p_{1})}, \rho_{1}) \cdot \frac{1 + (\mu_{p_{1}})_{2} - (\nu_{p_{1}})^{2}}{2})$ and $S(p_{2}) = \Delta(\Delta^{-1}(s_{0(p_{2})}, \rho_{2}) \cdot \frac{1 + (\mu_{p_{2}})_{2} - (\nu_{p_{2}})^{2}}{2})$ be the scores of p_{1} and p_{2}, respectively, and let $H(p_{1}) = \Delta(\Delta^{-1}(s_{0(p_{1})}, \rho_{1}) \cdot \frac{(\mu_{p_{1}})^{2} - (\nu_{p_{1}})^{2}}{2})$ and $H(p_{2}) = \Delta(\Delta^{-1}(s_{0(p_{2})}, \rho_{2}) \cdot \frac{(\mu_{p_{2}})^{2} - (\nu_{p_{2}})^{2}}{2})$ be the accuracy degrees of p_{1} and p_{2}, respectively, then if $S(p_{1}) < S(p_{2}), p_{1} < p_{2}$; if $S(p_{1}) = S(p_{2})$, then equation (1) if $H(p_{1}) = H(p_{2}), p_{1} = p_{2}$; (2) if $H(p_{1}) < H(p_{2}), p_{1}$ is smaller than p_{2}, denoted by $p_{1} < p_{2}$.

Wei et al.20 defined some operational laws of P2TLNs.

Definition 3.20 Let $p_{1} = \langle (s_{p_{1}}, \rho_{1}), (u_{p_{1}}, v_{p_{1}}) \rangle$ and $p_{2} = \langle (s_{p_{2}}, \rho_{2}), (u_{p_{2}}, v_{p_{2}}) \rangle$ be two P2TLNs, then

$$ \begin{align*}
 p_{1} \oplus p_{2} &= \Delta(\Delta^{-1}(s_{0(p_{1})}, \rho_{1}) + \Delta^{-1}(s_{0(p_{2})}, \rho_{2})) , \\
 &\sqrt{(\mu_{p_{1}})^{2} + (\nu_{p_{2}})^{2} - (\mu_{p_{1}})^{2}(\nu_{p_{2}})^{2}, \nu_{p_{1}}\nu_{p_{2}}}; \\
 p_{1} \otimes p_{2} &= \Delta(\Delta^{-1}(s_{0(p_{1})}, \rho_{1}) \cdot \Delta^{-1}(s_{0(p_{2})}, \rho_{2})) , \\
 &\mu_{p_{1}}\mu_{p_{2}}, \sqrt{(u_{p_{1}})^{2} + (v_{p_{2}})^{2} - (u_{p_{1}})^{2}(v_{p_{2}})^{2}, (\mu_{p_{1}})^{2}}; \\
 \lambda p_{1} &= \Delta(\Delta^{-1}(s_{0(p_{1})}, \rho_{1})) , \\
 &\sqrt{1 - (1 - (\mu_{p_{1}})^{2})^{2}, (\nu_{p_{1}})^{2}}; \\
 (p_{1})^{2} &= \Delta(\Delta^{-1}(s_{0(p_{1})}, \rho_{1})^{2}) , \\
 &((\mu_{p_{1}})^{2}, \sqrt{1 - (1 - (\nu_{p_{1}})^{2})^{2}}) .
\end{align*} $$
GWBM operator

Xia et al.24 defined the generalized weighted BM (GWBM) operator.

Definition 4.24 Let \(p, q, r > 0 \) and \(a_i (i = 1, 2, \ldots, n) \) be a collection of non-negative crisp numbers with the weights vector being \(\omega = (\omega_1, \omega_2, \ldots, \omega_n)^T \), thereby satisfying \(\omega_i \in [0, 1] \) and \(\sum_{i=1}^{n} \omega_i = 1 \). The GWBM operator is defined as follows

\[
\text{GWBM}^{\rho, q, r}(a_1, a_2, \ldots, a_n) = \left(\sum_{i,j,k=1}^{n} (\omega_i a_i^p) \odot (\omega_j a_j^q) \odot (\omega_k a_k^r) \right)^{1/(\rho+q+r)}
\]

(2)

The GP2TLWBM operator

This section extends GWBM to fuse the Pythagorean 2-tuple linguistic operators and proposes several new Pythagorean 2-tuple linguistic operators.

\[
\text{GP2TLWBM}^{\alpha, \beta, \gamma}(p_1, p_2, \ldots, p_n) = \left(\bigoplus_{i,j,k=1}^{n} (\omega_i p_i^\alpha) \odot (\omega_j p_j^\beta) \odot (\omega_k p_k^\gamma) \right)^{1/(\alpha+\beta+\gamma)}
\]

(3)

Definition 5. Let \(\alpha, \beta, \gamma > 0 \) and \(p_i = ((s_{p_i}, \rho_{p_i}), (\mu_{p_i}, v_{p_i}))(i = 1, 2, \ldots, n) \) be a collection of P2TLNs with their weights vector being \(\omega = (\omega_1, \omega_2, \ldots, \omega_n)^T \), thereby satisfying \(\omega_i \in [0, 1] \) and \(\sum_{i=1}^{n} \omega_i = 1 \). If

\[
\text{GP2TLWBM}^{\alpha, \beta, \gamma}(p_1, p_2, \ldots, p_n)
\]

where GP2TLWBM\alpha, \beta, \gamma is called the Generalized Pythagorean 2-tuple linguistic weighted Bonferroni mean (GP2TLWBM) operator.

We can obtain the following theorem according to Definition 3.

Theorem 1. Let \(\alpha, \beta, \gamma > 0 \) and \(p_i = ((s_{p_i}, \rho_{p_i}), (\mu_{p_i}, v_{p_i}))(i = 1, 2, \ldots, n) \) be a collection of P2TLNs. The aggregated value by GP2TLWBM is also a P2TLN and

\[
\omega_i p_i^\alpha = \left(\Delta \left(\omega_i \left(\Delta^{-1}(s_{p_i}, \rho_{p_i}) \right)^\beta \right), \sqrt{1 - \left(1 - (1 - v_{p_i}^\beta)^{\omega_i} \right)^2 \omega_i} \right)
\]

(5)

Proof: According to Definition 3, we can obtain

\[
\omega_i p_i^\alpha = \left(\Delta \left(\omega_i \left(\Delta^{-1}(s_{p_i}, \rho_{p_i}) \right)^\beta \right), \sqrt{1 - \left(1 - (1 - v_{p_i}^\beta)^{\omega_i} \right)^2 \omega_i} \right)
\]

(6)
\[\omega_k p_k^\gamma = \left(\Delta \left(\omega_k \left(\Delta^{-1}(s_{p_k}, \rho_k) \right)^\gamma \right), \left(\sqrt{1 - (1 - \mu_k^2)}^\gamma, \sqrt{1 - (1 - v_k^2)}^\gamma \right) \right) \] (7)

Thus

\[(\omega_k p_k^\gamma) \otimes (\omega_l p_l^\rho) \otimes (\omega_l p_l^\gamma) \]

\[= \left(\Delta \left(\omega_i \left(\Delta^{-1}(s_{p_i}, \rho_i) \right)^\alpha \cdot \omega_j \left(\Delta^{-1}(s_{p_j}, \rho_j) \right)^\beta \cdot \omega_k \left(\Delta^{-1}(s_{p_k}, \rho_k) \right)^\gamma \right), \left(\sqrt{1 - (1 - \mu_i^2)^\alpha}, \sqrt{1 - (1 - \mu_j^2)^\beta}, \sqrt{1 - (1 - \mu_k^2)^\gamma} \right) \right) \] (8)

Thereafter

\[\bigoplus_{i,j,k=1}^n (\omega_i p_i^\gamma) \otimes (\omega_j p_j^\rho) \otimes (\omega_k p_k^\gamma) \]

\[= \left(\Delta \left(\sum_{i,j,k=1}^n \left(\omega_i \left(\Delta^{-1}(s_{p_i}, \rho_i) \right)^\alpha \cdot \omega_j \left(\Delta^{-1}(s_{p_j}, \rho_j) \right)^\beta \cdot \omega_k \left(\Delta^{-1}(s_{p_k}, \rho_k) \right)^\gamma \right) \right), \left(\prod_{i,j,k=1}^n \left(1 - (1 - \mu_i^2)^\alpha \cdot (1 - \mu_j^2)^\beta \cdot (1 - \mu_k^2)^\gamma \right), \prod_{i,j,k=1}^n \left(1 - (1 - v_i^2)^\rho, 1 - (1 - v_j^2)^\beta, 1 - (1 - v_k^2)^\gamma \right) \right) \right) \] (9)

Therefore

\[\text{GP2TLWBM}^{2,\beta,\gamma}(p_1, p_2, \ldots, p_n) = \left(\bigoplus_{i,j,k=1}^n (\omega_i p_i^\gamma) \otimes (\omega_j p_j^\rho) \otimes (\omega_k p_k^\gamma) \right)^{1/(\alpha + \beta + \gamma)} \]

\[= \left(\Delta \left(\left(\sum_{i,j,k=1}^n \left(\omega_i \left(\Delta^{-1}(s_{p_i}, \rho_i) \right)^\alpha \cdot \omega_j \left(\Delta^{-1}(s_{p_j}, \rho_j) \right)^\beta \cdot \omega_k \left(\Delta^{-1}(s_{p_k}, \rho_k) \right)^\gamma \right) \right)^{1/(\alpha + \beta + \gamma)}, \left(\prod_{i,j,k=1}^n \left(1 - (1 - \mu_i^2)^\alpha \cdot (1 - \mu_j^2)^\beta \cdot (1 - \mu_k^2)^\gamma \right), \prod_{i,j,k=1}^n \left(1 - (1 - v_i^2)^\rho, 1 - (1 - v_j^2)^\beta, 1 - (1 - v_k^2)^\gamma \right) \right) \right) \] (10)
Hence, equation (4) is maintained. Thereafter

\[
\omega_i \left(\Delta^{-1}(s_i, \rho_i) \right)^x \cdot \omega_j \left(\Delta^{-1}(s_j, \rho_j) \right)^y \cdot \omega_k \left(\Delta^{-1}(s_k, \rho_k) \right)^z \leq \omega_i \omega_j \omega_k \left(\Delta^{-1}(s_{\text{max}}, \rho_{\text{max}}) \right)^{x+y+z} \tag{11}
\]

\[
\sum_{i,j,k=1}^n \left(\omega_i \left(\Delta^{-1}(s_i, \rho_i) \right)^x \cdot \omega_j \left(\Delta^{-1}(s_j, \rho_j) \right)^y \cdot \omega_k \left(\Delta^{-1}(s_k, \rho_k) \right)^z \right) \leq \sum_{i,j,k=1}^n \omega_i \omega_j \omega_k \left(\Delta^{-1}(s_{\text{max}}, \rho_{\text{max}}) \right)^{x+y+z} \tag{12}
\]

\[
\Delta \left(\left(\sum_{i,j,k=1}^n \left(\omega_i \left(\Delta^{-1}(s_i, \rho_i) \right)^x \cdot \omega_j \left(\Delta^{-1}(s_j, \rho_j) \right)^y \cdot \omega_k \left(\Delta^{-1}(s_k, \rho_k) \right)^z \right) \right)^{1/(x+y+z)} \right) \leq (s_{\text{max}}, \rho_{\text{max}}) \tag{13}
\]

Similarly

\[
(s_{\text{min}}, \rho_{\text{min}}) \leq \Delta \left(\left(\sum_{i,j,k=1}^n \omega_i \left(\Delta^{-1}(s_i, \rho_i) \right)^x \cdot \omega_j \left(\Delta^{-1}(s_j, \rho_j) \right)^y \cdot \omega_k \left(\Delta^{-1}(s_k, \rho_k) \right)^z \right)^{1/(x+y+z)} \right) \tag{14}
\]

Thereafter

\[
0 \leq \left(1 - \prod_{i,j,k=1}^n \left(1 - \left(1 - \left(1 - \mu_i^2 \right)^{c_i} \right) \cdot \left(1 - \left(1 - \mu_j^2 \right)^{c_j} \right) \cdot \left(1 - \left(1 - \mu_k^2 \right)^{c_k} \right) \right)^{1/(x+y+z)} \right) \tag{15}
\]

\[
0 \leq 1 - \left(1 - \prod_{i,j,k=1}^n \left(1 - \left(1 - \left(1 - v_i^2 \right)^{a_i} \right) \cdot \left(1 - \left(1 - v_j^2 \right)^{a_j} \right) \cdot \left(1 - \left(1 - v_k^2 \right)^{a_k} \right) \right) \right)^{1/(x+y+z)} \tag{16}
\]

Because \(\mu_i^2 + v_i^2 \leq 1 \)

\[
0 \leq \left(1 - \prod_{i,j,k=1}^n \left(1 - \left(1 - \left(1 - v_i^2 \right)^{a_i} \right) \cdot \left(1 - \left(1 - v_j^2 \right)^{a_j} \right) \cdot \left(1 - \left(1 - v_k^2 \right)^{a_k} \right) \right) \right)^{1/(x+y+z)} \tag{17}
\]
Therefore

\[
\left(1 - \left(1 - \prod_{i,j,k=1}^{n} \left(1 - \left(1 - (1 - \mu_{i,j,k}^{2})^{\omega_{0}}\right) \cdot \left(1 - (1 - \mu_{i,j,k}^{2})^{\omega_{0}}\right)\right)\right)^{1/(\alpha + \beta + \gamma)\right)^{2} \right.
\]

\[
+ \left(1 - \prod_{i,j,k=1}^{n} \left(1 - \left(1 - (1 - \mu_{i,j,k}^{2})^{\omega_{0}}\right) \cdot \left(1 - (1 - \mu_{i,j,k}^{2})^{\omega_{0}}\right)\right)\right)^{1/(\alpha + \beta + \gamma)\right)^{2} \right.
\]

\[
\leq 1 \left(1 - \prod_{i,j,k=1}^{n} \left(1 - \left(1 - (1 - \mu_{i,j,k}^{2})^{\omega_{0}}\right) \cdot \left(1 - (1 - \mu_{i,j,k}^{2})^{\omega_{0}}\right)\right)\right)^{1/(\alpha + \beta + \gamma)\right)^{2} \right.
\]

\[
= 1
\]

Therefore, the proof of Theorem 1 is completed.

Moreover, GP2TLWBM has the following properties.

Property 1 (Idempotency). If \(p_{i}(i = 1, 2, \ldots, n)\) are equal, that is \(p_{i} = p = ((s, \rho), (\mu, v))\), then

\[
\text{GP2TLWBM}^{\alpha, \beta, \gamma}(p_{1}, p_{2}, \ldots, p_{n}) = p
\]

Proof:

\[
\begin{align*}
\text{GP2TLWBM}^{\alpha, \beta, \gamma}(p_{1}, p_{2}, \ldots, p_{n}) & = \left(\bigoplus_{i,j,k=1}^{n} (\omega_{0}p_{i}) \otimes (\omega_{0}p_{j}) \otimes (\omega_{0}p_{k})\right)^{1/(\alpha + \beta + \gamma)} \\
& = \left(\bigoplus_{i,j,k=1}^{n} (\omega_{0}p_{i}) \otimes (\omega_{0}p_{j}) \otimes (\omega_{0}p_{k})\right)^{1/(\alpha + \beta + \gamma)} \\
& = p_{i,j,k=1}^{(\alpha, \beta, \gamma)} (\omega_{0}p_{i}) \otimes (\omega_{0}p_{j}) \otimes (\omega_{0}p_{k}) \\
& = p
\end{align*}
\]

Property 2 (Monotonicity). Let \(p_{i} = ((s_{p_{i}}, \rho_{p_{i}}), (\mu_{p_{i}}, v_{p_{i}}))(i = 1, 2, \ldots, n)\) and \(q_{i} = ((s_{q_{i}}, \rho_{q_{i}}), (\mu_{q_{i}}, v_{q_{i}}))(i = 1, 2, \ldots, n)\) be two collections of GP2LNs.

\[
\begin{align*}
\sum_{i,j,k=1}^{n} \omega_{i} \left(\Delta^{-1}(s_{p_{i}}, \rho_{p_{i}})\right)^{x} \cdot \omega_{j} \left(\Delta^{-1}(s_{p_{j}}, \rho_{p_{j}})\right)^{y} \cdot \omega_{k} \left(\Delta^{-1}(s_{p_{k}}, \rho_{p_{k}})\right)^{z} & \leq \sum_{i,j,k=1}^{n} \omega_{i} \left(\Delta^{-1}(s_{q_{i}}, \rho_{q_{i}})\right)^{x} \cdot \omega_{j} \left(\Delta^{-1}(s_{q_{j}}, \rho_{q_{j}})\right)^{y} \cdot \omega_{k} \left(\Delta^{-1}(s_{q_{k}}, \rho_{q_{k}})\right)^{z}
\end{align*}
\]

If \((s_{p_{i}}, \rho_{p_{i}}) \leq (s_{q_{i}}, \rho_{q_{i}})\) and \(\mu_{p_{i}} \leq \mu_{q_{i}}\) and \(v_{p_{i}} \geq v_{q_{i}}\) hold for all \(i\), then

\[
\text{GP2TLWBM}^{\alpha, \beta, \gamma}(p_{1}, p_{2}, \ldots, p_{n}) \leq \text{GP2TLWBM}^{\alpha, \beta, \gamma}(q_{1}, q_{2}, \ldots, q_{n})
\]

Proof:

Let \(\text{GP2TLWBM}^{\alpha, \beta, \gamma}(p_{1}, p_{2}, \ldots, p_{n}) = ((s, \rho), (\mu, v))\) and \(\text{GP2TLWBM}^{\alpha, \beta, \gamma}(q_{1}, q_{2}, \ldots, q_{n}) = ((s_{q}, \rho_{q}), (\mu_{q}, v_{q}))\), given that \(\Delta^{-1}(s_{p}, \rho_{p}) \leq \Delta^{-1}(s_{q}, \rho_{q})\), we can obtain

\[
\omega_{i} \left(\Delta^{-1}(s_{p_{i}}, \rho_{p_{i}})\right)^{x} \cdot \omega_{j} \left(\Delta^{-1}(s_{p_{j}}, \rho_{p_{j}})\right)^{y} \cdot \omega_{k} \left(\Delta^{-1}(s_{p_{k}}, \rho_{p_{k}})\right)^{z} \leq \omega_{i} \left(\Delta^{-1}(s_{q_{i}}, \rho_{q_{i}})\right)^{x} \cdot \omega_{j} \left(\Delta^{-1}(s_{q_{j}}, \rho_{q_{j}})\right)^{y} \cdot \omega_{k} \left(\Delta^{-1}(s_{q_{k}}, \rho_{q_{k}})\right)^{z}
\]

Therefore
That means \((s_p, \rho_p) \leq (s_q, \rho_q)\), and we also can obtain

\[
\left(1 - \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right) \cdot \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right) \cdot \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right)\right)
\geq \left(1 - \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right) \cdot \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right) \cdot \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right)\right)
\]

\[
\prod_{i,j=1}^{n} \left(1 - \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right) \cdot \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right) \cdot \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right)\right)
\]

\[
\geq \prod_{i,j=1}^{n} \left(1 - \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right) \cdot \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right) \cdot \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right)\right)
\]

\[
1 - \prod_{i,j=1}^{n} \left(1 - \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right) \cdot \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right) \cdot \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right)\right)
\]

Therefore

\[
\left(1 - \prod_{i,j=1}^{n} \left(1 - \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right) \cdot \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right) \cdot \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right)\right)\right)^{1/(\alpha+\beta+\gamma)}
\]

\[
\leq \left(1 - \prod_{i,j=1}^{n} \left(1 - \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right) \cdot \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right) \cdot \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right)\right)\right)^{1/(\alpha+\beta+\gamma)}
\]

Thus

\[
\left(\left(1 - \prod_{i,j=1}^{n} \left(1 - \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right) \cdot \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right) \cdot \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right)\right)\right)^{1/(\alpha+\beta+\gamma)}\right)^2
\]

\[
\leq \left(\left(1 - \prod_{i,j=1}^{n} \left(1 - \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right) \cdot \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right) \cdot \left(1 - \left(1 - \frac{2}{C_0}\right)^0\right)\right)\right)^{1/(\alpha+\beta+\gamma)}\right)^2
\]

which means \(\mu_p^2 \leq \mu_q^2\); similarly, we can obtain \(v_p^2 \geq v_q^2\)

If \((s_p, \rho_p) < (s_q, \rho_q)\) and \(\mu_p^2 < \mu_q^2\) and \(v_p^2 > v_q^2\), then

\[
\text{GP2TLWBM}^{\alpha,\beta,\gamma}_{\omega}(p_1, p_2, \ldots, p_n) \leq \text{GP2TLWBM}^{\alpha,\beta,\gamma}_{\omega}(q_1, q_2, \ldots, q_n)
\]

If \((s_p, \rho_p) < (s_q, \rho_q)\) and \(\mu_p^2 < \mu_q^2\) and \(v_p^2 = v_q^2\), then

\[
\text{GP2TLWBM}^{\alpha,\beta,\gamma}_{\omega}(p_1, p_2, \ldots, p_n) \leq \text{GP2TLWBM}^{\alpha,\beta,\gamma}_{\omega}(q_1, q_2, \ldots, q_n)
\]
Table 1. P2LN decision matrix.

	G₁	G₂	G₃	G₄
A₁	<(s₂, 0), (0.60, 0.70)>	<(s₂, 0), (0.80, 0.50)>	<(s₂, 0), (0.40, 0.60)>	<(s₃, 0), (0.70, 0.70)>
A₂	<(s₂, 0), (0.50, 0.70)>	<(s₄, 0), (0.70, 0.20)>	<(s₄, 0), (0.20, 0.60)>	<(s₁, 0), (0.40, 0.60)>
A₃	<(s₄, 0), (0.70, 0.60)>	<(s₃, 0), (0.50, 0.70)>	<(s₅, 0), (0.50, 0.30)>	<(s₄, 0), (0.60, 0.70)>
A₄	<(s₄, 0), (0.90, 0.20)>	<(s₄, 0), (0.60, 0.50)>	<(s₇, 0), (0.20, 0.50)>	<(s₂, 0), (0.50, 0.60)>
A₅	<(s₄, 0), (0.60, 0.10)>	<(s₁, 0), (0.40, 0.70)>	<(s₂, 0), (0.70, 0.50)>	<(s₃, 0), (0.30, 0.80)>

Table 2. The aggregating results of the green suppliers by the GP2TLWBM operator \((x = \beta = \gamma = 3)\).

	GP2TLWBM
A₁	<(s₂, 0.4987), (0.6852, 0.6078)>
A₂	<(s₄, -0.1947), (0.5658, 0.5038)>
A₃	<(s₄, 0.2377), (0.5816, 0.5239)>
A₄	<(s₅, 0.3924), (0.6777, 0.4788)>
A₅	<(s₄, -0.3444), (0.6057, 0.5373)>

Table 3. The score functions of the green suppliers.

	GP2TLWBM
A₁	(s₁, 0.3744)
A₂	(s₂, 0.0288)
A₃	(s₂, 0.2540)
A₄	(s₃, 0.3164)
A₅	(s₂, -0.0293)

Table 4. Ordering of the emerging technology enterprises.

	Ordering
GP2TLWBM	A₄ > A₃ > A₂ > A₅ > A₁

If \((s₀, p₀) = (s₁, q₁)\) and \(\mu_{p₀}^2 > \mu_{q₁}^2\), then

\[
\text{GP2TLWBM}^{2,\beta,\gamma}(p₁, p₂, \ldots, pₙ) < \text{GP2TLWBM}^{2,\beta,\gamma}(q₁, q₂, \ldots, qₙ);
\]

If \((s₀, p₀) = (s₁, q₁)\) and \(\mu_{p₀}^2 = \mu_{q₁}^2\) and \(\nu_{p₀}^2 = \nu_{q₁}^2\), then

\[
\text{GP2TLWBM}^{2,\beta,\gamma}(p₁, p₂, \ldots, pₙ) = \text{GP2TLWBM}^{2,\beta,\gamma}(q₁, q₂, \ldots, qₙ);
\]

If \((s₀, p₀) = (s₁, q₁)\) and \(\mu_{p₀}^2 = \mu_{q₁}^2\) and \(\nu_{p₀}^2 > \nu_{q₁}^2\), then

\[
\text{GP2TLWBM}^{2,\beta,\gamma}(p₁, p₂, \ldots, pₙ) < \text{GP2TLWBM}^{2,\beta,\gamma}(q₁, q₂, \ldots, qₙ);
\]

Therefore, the proof of Property 2 is completed.

Property 3 (Boundedness). Let \(pᵢ = ((sᵢ, pᵢ), (μᵢ, vᵢ))\) \((i = 1, 2, \ldots, n)\) be a collection of P2TLNs. If \(p^+ = (\max(sᵢ, pᵢ), (\max(μᵢ), \min(vᵢ)))\) and \(p^- = (\min(sᵢ, pᵢ), (\min(μᵢ), \max(vᵢ)))\), then

\[
p^- \leq \text{GP2TLWBM}^{2,\beta,\gamma}(p₁, p₂, \ldots, pₙ) \leq p^+ \tag{29}
\]

Proof:

From Property 1, we can obtain

\[
\text{GP2TLWBM}^{2,\beta,\gamma}(p⁺, p⁺, \ldots, p⁺) = p⁺\tag{30}
\]

From Property 2, we can obtain

\[
p⁻ = \text{GP2TLWBM}^{2,\beta,\gamma}(p⁻, p⁻, \ldots, p⁻) \leq \text{GP2TLWBM}^{2,\beta,\gamma}(p₁, p₂, \ldots, pₙ) \leq \text{GP2TLWBM}^{2,\beta,\gamma}(p⁺, p⁺, \ldots, p⁺) = p⁺\tag{31}
\]
Table 5. Ranking results for different operational parameters of the GP2TLWBM operator.

\((\alpha, \beta, \gamma)\)	\(S(A_1)\)	\(S(A_2)\)	\(S(A_3)\)	\(S(A_4)\)	\(S(A_5)\)	Ordering
(1, 1, 1)	(S_2, -0.3909)	(S_2, -0.0093)	(S_1, -0.2259)	(S_2, 0.2329)	(S_2, -0.0470)	A4 > A3 > A2 > A5 > A1
(2, 2, 2)	(S_1, 0.4865)	(S_2, 0.2463)	(S_2, -0.2861)	(S_2, 0.4689)	(S_2, 0.1864)	A4 > A3 > A2 > A5 > A1
(3, 3, 3)	(S_1, 0.4981)	(S_2, 0.4486)	(S_2, -0.2675)	(S_2, -0.2411)	(S_2, 0.4375)	A4 > A3 > A2 > A5 > A1
(4, 4, 4)	(S_2, -0.4631)	(S_2, -0.4005)	(S_2, -0.2304)	(S_2, 0.0306)	(S_2, -0.3133)	A4 > A3 > A2 > A5 > A1
(5, 5, 5)	(S_2, -0.4193)	(S_2, -0.2858)	(S_2, -0.1875)	(S_2, 0.2662)	(S_2, -0.1284)	A4 > A5 > A3 > A2 > A1
(6, 6, 6)	(S_2, -0.3768)	(S_2, -0.1958)	(S_2, -0.1437)	(S_2, 0.4649)	(S_2, 0.0441)	A4 > A5 > A3 > A2 > A1
(7, 7, 7)	(S_2, -0.3379)	(S_2, -0.1230)	(S_2, -0.1016)	(S_2, -0.3685)	(S_2, 0.1884)	A4 > A5 > A3 > A2 > A1
(8, 8, 8)	(S_2, -0.3029)	(S_2, -0.0627)	(S_2, -0.0623)	(S_2, -0.2286)	(S_2, 0.3086)	A4 > A5 > A3 > A2 > A1
(9, 9, 9)	(S_2, -0.2718)	(S_2, -0.0115)	(S_2, -0.0262)	(S_2, -0.1102)	(S_2, 0.4090)	A4 > A5 > A3 > A2 > A1
(10, 10, 10)	(S_2, -0.2444)	(S_2, 0.0326)	(S_2, 0.0068)	(S_2, -0.0091)	(S_2, 0.4936)	A4 > A5 > A2 > A3 > A1

GP2TLWBM: generalized Pythagorean 2-tuple linguistic-weighted Bonferroni mean.

Table 6. Ordering of the green suppliers.

Ordering	P2TLWA	P2TLWG
	A_4 > A_3 > A_2 > A_5 > A_1	A_4 > A_3 > A_1 > A_2 > A_5

Therefore

\[
p^+ \leq GP2TLWBM_{\alpha; \beta; \gamma}(p_1, p_2, \ldots, p_n) \leq p^- \tag{32}
\]

Model for MADM with P2TLN

Based on the GP2TLWBM operator, in this section, we shall propose the model for MADM with P2TLNs. Let \(A = \{A_1, A_2, \ldots, A_m\}\) be a discrete set of alternatives, and \(G = \{G_1, G_2, \ldots, G_n\}\) be the set of attributes, \(\omega = (\omega_1, \omega_2, \ldots, \omega_n)\) is the weighting vector of the attribute \(G_i(j = 1, 2, \ldots, n)\), where \(\omega_j \in [0, 1]\), \(\sum_{j=1}^{n} \omega_j = 1\).

Suppose that \(R = (r_{ij})_{m \times n} = ((s_{ij}, \rho_{ij}), (\mu_{ij}, v_{ij}))_{m \times n}\) is the P2TLN decision matrix, where \(r_{ij}\) takes the form of the P2TLNs, where \(\mu_{ij}\) indicates the degree that the alternative \(A_i\) satisfies the attribute \(G_j\) given by the decision maker, \(v_{ij}\) indicates the degree that the alternative \(A_i\) does not satisfy the attribute \(G_j\) given by the decision maker, \(\mu_{ij} \in [0, 1], v_{ij} \in [0, 1], (\mu_{ij})^2 + (v_{ij})^2 \leq 1, \pi_{ij} = \sqrt{1 - ((\mu_{ij})^2 + (v_{ij})^2)}, s_{ij} \in S, \rho_{ij} \in [-0.5, 0.5]\).

In the following, we apply the GP2TLWBM (GP2TLWGBM) operator to the MADM problems with P2TLNs.

Step 1. We utilize the decision information given in matrix \(R\), and the GP2TLWBM operator

\[
\hat{p}_i = GP2TLWBM_{\alpha; \beta; \gamma}(p_1, p_2, \ldots, p_m)
\]

\[
= \left(\sum_{i,j,k=1}^{n} (\omega_i p_{ij}^\alpha) \odot (\omega_j p_{ij}^\beta) \odot (\omega_k p_{ij}^\gamma) \right)^{1/(\alpha + \beta + \gamma)}
\]

\[
= \left(\sum_{i,j,k=1}^{n} \omega_i \left(\Delta^{-1}(s_{pi}, \rho_{pi}) \right)^\alpha \cdot \omega_j \left(\Delta^{-1}(s_{pj}, \rho_{pj}) \right)^\beta \cdot \omega_k \left(\Delta^{-1}(s_{pk}, \rho_{pk}) \right)^\gamma \right)^{1/(\alpha + \beta + \gamma)}
\]

\[
= \left(\sum_{i,j,k=1}^{n} \frac{1}{1 - \prod_{i,j,k=1}^{n} \left(1 - (1 - (1 - \mu_{pi}^2 \omega_i)^{1/2}) (1 - (1 - \mu_{pj}^2 \omega_j)^{1/2}) (1 - (1 - \mu_{pk}^2 \omega_k)^{1/2}) \right)^{1/(\alpha + \beta + \gamma)} \cdot \left(1 - (1 - (1 - v_{pi}^2 \omega_i)^{1/2}) (1 - (1 - v_{pj}^2 \omega_j)^{1/2}) (1 - (1 - v_{pk}^2 \omega_k)^{1/2}) \right)^{1/(\alpha + \beta + \gamma)} \right)^{1/(\alpha + \beta + \gamma)}
\]

\[
l = 1, 2, \ldots, m
\]
to derive the overall preference values $\tilde{p}_i(l = 1, 2, \ldots, m)$ of the alternative A_i.

Step 2. Calculate the scores $S(\tilde{p}_i) (l = 1, 2, \ldots, m)$ of the overall P2TLNs $\tilde{p}_i(l = 1, 2, \ldots, m)$ to rank all the alternatives $A_i(l = 1, 2, \ldots, m)$ and then to select the best one(s). If there is no difference between two scores $S(\tilde{p}_i)$ and $S(\tilde{p}_j)$, then we need to calculate the accuracy degrees $H(\tilde{p}_i)$ and $H(\tilde{p}_j)$ of the overall P2TLNs p_i and p_j, respectively, and then rank the alternatives A_i and A_j in accordance with the accuracy degrees $H(\tilde{p}_i)$ and $H(\tilde{p}_j)$.

Step 3. Rank all the alternatives $A_i(l = 1, 2, \ldots, m)$ and select the best one(s) in accordance with $S(\tilde{p}_i) (l = 1, 2, \ldots, m)$.

Step 4. End.

Numerical example and comparative analysis

Numerical example

In this section, we shall present a numerical example to select green suppliers in green supply chain management with P2TLNs in order to illustrate the method proposed in this paper. There is a panel with five possible green suppliers in the green supply chain management $A_i(i = 1, 2, 3, 4, 5)$ to select. The experts select four attributes to evaluate the five possible green suppliers: ① G_1 is the product quality factor; ② G_2 is the environmental factors; ③ G_3 is the delivery factor; ④ G_4 is the price factor. The five possible green suppliers $A_i(i = 1, 2, 3, 4, 5)$ are to be evaluated using the P2TLNs by the decision maker under the above four attributes (whose weighting vector $\omega = (0.15, 0.25, 0.35, 0.25)$), as listed in Table 1.

In the following, we utilize the approach developed to select green suppliers in green supply chain management.

Step 1. According to P2LN $r_j(i = 1, 2, 3, 4, 5, j = 1, 2, 3, 4)$, we can aggregate all P2LN r_j by using the GP2TLWBM operator to obtain the overall P2LN $A_i(i = 1, 2, 3, 4, 5)$ of the green supplier A_i. The aggregating results are shown in Table 2.

Step 2. According to the aggregating results shown in Table 2, the score functions of the green suppliers are shown in Table 3.

Step 3. According to the score functions shown in Table 3 and the comparison formula of score functions, the ordering of the green suppliers is shown in Table 4. Note that “>” means “preferred to”. As we can see, depending on the aggregation operators used, the ordering of the green suppliers is slightly different, but the best green supplier is A_4.

Influence of the parameters on the final result

In order to show the effects on the ranking results by changing parameters of $(\alpha, \beta, \gamma) \in [1, 10]$ in the GP2TLWBM operator, all the results are shown in Tables 5.

Comparative analysis

Then, we compare our proposed method with other existing methods including P2TLWA operator and P2TLWG operator proposed by Wei et al. The comparative results are shown in Table 6.

From the above, we can obtain the same results to show the practicality and effectiveness of the proposed approaches. However, the existing aggregation operators, such as P2TLWA operator and P2TLWG operator, do not consider the information about the relationship between arguments being aggregated, and thus cannot eliminate the influence of unfair arguments on the decision result. Our proposed GP2TLWBM operator considers the information about the relationship between arguments being aggregated.

Conclusion

In this paper, we focused on P2TLN information aggregation operators, as well as their applications in MADM. To aggregate the P2TLNs, the GP2TLWBM operator has been developed. Further research has been conducted to explore the desirable properties of this operator. In addition, we demonstrated the effectiveness of the GP2TLWBM operator in practical MADM problems. At the end of this study, we use an example about green supplier selection in the green supply chain management process to illustrate the applicability of this operator; meanwhile, the analysis of the comparison when the parameters take different values also has been studied. In the future, we shall extend the proposed models to other uncertain and fuzzy MADM problems.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The work was supported by the National Natural Science Foundation of China under Grant No. 71571128 and the Humanities and Social Sciences Foundation of Ministry of Education of the People's Republic of China (No.14XJCZH002, 15YJCZH138) and the construction...
plan of scientific research innovation team for colleges and universities in Sichuan Province (15TD0004).

ORCID iD
Guixiu Wei http://orcid.org/0000-0001-9074-2005

References
1. Yager RR. Pythagorean fuzzy subsets. In: Proceeding of the joint IFSAS world congress and NAIPFS annual meeting, Edmonton, Canada, 2013, pp.57–61.
2. Yager RR. Pythagorean membership grades in multicriteria decision making. IEEE Trans Fuzzy Syst 2014; 22: 958–965.
3. Zhang XL and Xu ZS. Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. Int J Intell Syst 2014; 29: 1061–1078.
4. Peng X and Yang Y. Some results for Pythagorean fuzzy sets. Int J Intell Syst 2015; 30: 1133–1160.
5. Beliakov G and James S. Averaging aggregation functions for preferences expressed as Pythagorean membership grades and fuzzy orthopairs. Fuzzy Sets Syst 2014, pp.298–305.
6. Reformat M and Yager RR. Suggesting recommendations using Pythagorean fuzzy sets illustrated using Netflix movie data. IPMU 2014; 1: 546–556.
7. Gou XJ, Xu ZS and Ren P. The properties of continuous Pythagorean fuzzy information. Int J Intell Syst 2016; 31: 401–424.
8. Ren PJ, Xu ZS and Gou X. Pythagorean fuzzy TODIM approach to multi-criteria decision making. Appl Soft Comput 2016; 42: 246–259.
9. Garg H. A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making. Int J Intell Syst 2016; 31: 886–920.
10. Zeng SZ, Chen JP and Li X. A hybrid method for Pythagorean fuzzy multiple-criteria decision making. Int J Info Tech Dec Mak 2016; 15: 403–422.
11. Garg H. A novel accuracy function under interval-valued Pythagorean fuzzy environment for solving multicriteria decision making problem. IFS 2016; 31: 529–540.
12. Liang D, Xu ZS and Darko AP. Projection model for fusing the information of Pythagorean fuzzy multicriteria group decision making based on geometric Bonferroni mean. Int J Intell Syst 2017; 32: 966–987.
13. Peng XD, Yuan HY and Yang Y. Pythagorean fuzzy information measures and their applications. Int J Intell Syst 2017; 32: 991–1029.
14. Garg H. Generalized Pythagorean fuzzy geometric aggregation operators using Einstein t-Norm and t-Conorm for multicriteria decision-making process. Int J Intell Syst 2017; 32: 597–630.
15. Wei GW and Lu M. Pythagorean fuzzy Maclaurin symmetric mean operators in multiple attribute decision making. Int J Intell Syst 2018; 33: 1043–1070.
16. Wei GW. Pythagorean fuzzy interaction aggregation operators and their application to multiple attribute decision making. IFS 2017; 33: 2119–2132.
17. Wei GW and Lu M. Pythagorean fuzzy power aggregation operators in multiple attribute decision making. Int J Intell Syst 2018; 33: 169–186.
18. Wei GW and Lu M. Dual hesitant Pythagorean fuzzy Hamacher aggregation operators in multiple attribute decision making. Arch Control Sci 2017; 27: 365–395.
19. Lu M, Wei GW, Alsaadi FE, et al. Hesitant Pythagorean fuzzy Hamacher aggregation operators and their application to multiple attribute decision making. IFS 2017; 33: 1105–1117.
20. Wei GW, Lu M, Alsaadi FE, et al. Pythagorean 2-tuple linguistic aggregation operators in multiple attribute decision making. IFS 2017; 33: 1129–1142.
21. Yu DJ. Prioritized information fusion method for triangular intuitionistic fuzzy set and its application to teaching quality evaluation. Int J Intell Syst 2013; 28: 411–435.
22. Beliakov G, James S, Mordelova J, et al. Generalized Bonferroni mean operators in multicriteria aggregation. Fuzzy Sets Syst 2010; 161: 2227–2242.
23. Bonferroni C. Sulle medie multiple di potenze. Bull Matemat Italiana 1950; 5: 267–270.
24. Xia MM, Xu ZS and Zhu B. Generalized intuitionistic fuzzy Bonferroni means. Int J Intell Syst 2012; 27: 23–47.
25. Xu ZS and Yager RR. Intuitionistic fuzzy Bonferroni means. IEEE Trans Syst Man Cybern B Cybern 2011; 41: 568–578.
26. Yager RR. On generalized Bonferroni mean operators for multi-criteria aggregation. Int J Approximate Reason 2009; 50: 1279–1286.
27. Wei GW. Picture 2-tuple linguistic Bonferroni mean operators and their application to multiple attribute decision making. Int J Fuzzy Syst 2017; 19: 997–1010.
28. Jiang XP and Wei GW. Some Bonferroni mean operators with 2-tuple linguistic information and their application to multiple attribute decision making. J Intell Fuzzy Syst 2014; 27: 2153–2162.
29. Wei GW, Zhao XF, Lin R, et al. Uncertain linguistic Bonferroni mean operators and their application to multiple attribute decision making. Appl Math Model 2013; 37: 5277–5285.
30. Herrera F and Martinez L. A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans Fuzzy Syst 2000; 8: 746–752.
31. Herrera F and Martinez L. An approach for combining linguistic and numerical information based on the 2-tuple fuzzy linguistic representation model in decision-making. Int J Uncertain Fuzz Knowl Based Syst 2000; 8: 539–562.
32. Merigó JM, Casanovas M and Martinez L. Linguistic aggregation operators for linguistic decision making based on the Dempster-Shafer theory of Evidence. Int J Uncertain Fuzz Knowl Based Syst 2010; 18: 287–304.
33. Wei GW, Lin R, Zhao XF, et al. Models for multiple attribute group decision making with 2-tuple linguistic assessment information. Int J Comput Intell Syst 2010; 3: 315–324.
34. Wei W. Extension of TOPSIS method for 2-tuple linguistic multiple attribute group decision making with incomplete weight information. Knowl Inf Syst 2010; 25: 623–634.
35. G.W. Wei, H. Gao, J. Wang, Y.H. Huang, Research on Risk Evaluation of Enterprise Human Capital Investment with Interval-valued bipolar 2-tuple linguistic Information. IEEE Access 2018; 6: 35697–35712.
36. Y.H. Huang, G.W. Wei, TODIM method for pythagorean 2-tuple linguistic multiple attribute decision making. J Intell Fuzzy Syst 2018; 35(1): 901–915.
37. Wei GW. Some generalized aggregating operators with linguistic information and their application to multiple attribute group decision making. Comput Ind Eng 2011; 61: 32–38.
38. Wei GW and Zhao XF. Some dependent aggregation operators with 2-tuple linguistic information and their application to multiple attribute group decision making. Expert Syst Appl 2012; 39: 5881–5886.
39. Wei GW. Some cosine similarity measures for picture fuzzy sets and their applications to strategic decision making. Informatica 2017; 28: 547–564.
40. Wei GW. Interval-valued dual hesitant uncertain linguistic aggregation operators in multiple attribute decision making. IFS 2017; 33: 1881–1893.
41. Xu ZS and Yager RR. Power-geometric operators and their use in group decision making. IEEE Trans Fuzzy Syst 2010; 18: 94–105.
42. Yu DJ, Wu YY and Lu T. Interval-valued intuitionistic fuzzy prioritized operators and their application in group decision making. Knowl-Based Syst 2012; 30: 57–66.
43. Ma ZM and Xu ZS. Symmetric Pythagorean fuzzy weighted geometric/averaging operators and their application in multicriteria decision-making problems. Int J Intell Syst 2016; 31: 1198–1219.
44. Wei GW, Gao H and Wei Y. Some q-Rung orthopair fuzzy Heronian mean operators and their application in multiple attribute decision making. Int J Intell Syst 2018; 33: 1426–1458.
45. Wei GW, Lu M, Tang XY, et al. Pythagorean hesitant fuzzy Hamacher aggregation operators and their application to multiple attribute decision making. Int J Intell Syst 2018; 33: 1197–1233.
46. Wang J, Wei GW and Wei Y. Models for green supplier selection with some 2-tuple linguistic neutrosophic number Bonferroni mean operators. Symmetry 2018; 10: 131.
47. Deschrijver G and Kerre EE. A generalization of operators on intuitionistic fuzzy sets using triangular norms and conorms. Notes Intuitionist Fuzzy Sets 2002; 8: 19–27.
48. Wang WZ and Liu XW. Intuitionistic fuzzy geometric aggregation operators based on Einstein operations. Int J Intell Syst 2011; 26: 1049–1075.
49. Wu S, Wang J, Wei G, et al. Research on construction engineering project risk assessment with some 2-tuple linguistic neutrosophic Hamy mean operators. Sustainability 2018; 10: 1536.
50. Wei GW and Wang JM. A comparative study of robust efficiency analysis and data envelopment analysis with imprecise data. Expert Syst Appl 2017; 81: 28–38.
51. Wei GW and Lu M. Pythagorean fuzzy Maclaurin symmetric mean operators in multiple attribute decision making. Int J Intell Syst 2018; 33: 1043–1070.
52. Gao H, Wei GW and Huang YH. Dual hesitant bipolar fuzzy Hamacher prioritized aggregation operators in multiple attribute decision making. IEEE Access 2018; 6: 11508–11522.
53. Wei GW, Alsaadi FE, Hayat T, et al. Projection models for multiple attribute decision making with picture fuzzy information. Int J Mach Learn Cyber 2018; 9: 713–719.
54. Wei GW and Gao H. The generalized dice similarity measures for picture fuzzy sets and their applications. Informatica 2018; 29: 1–18.
55. Gao H, Lu M, Wei GW, et al. Some novel Pythagorean fuzzy interaction aggregation operators in multiple attribute decision making. Fundament Inform 2018; 159: 385–428.
56. Wei GW, Alsaadi FE, Hayat T, et al. Bipolar fuzzy Hamacher aggregation operators in multiple attribute decision making. Int J Fuzzy Syst 2018; 20: 1–12.
57. Wei GW. Some similarity measures for picture fuzzy sets and their applications. Iran J Fuzzy Syst 2018; 15: 77–89.
58. Wei GW and Wei Y. Similarity measures of Pythagorean fuzzy sets based on cosine function and their applications. Int J Intell Syst 2018; 33: 634–652.
59. Wei GW, Alsaadi FE, Hayat T, et al. Picture 2-tuple linguistic aggregation operators in multiple attribute decision making. Soft Comput 2018; 22: 989–1002.
60. Wei GW. Picture fuzzy Hamacher aggregation operators and their application to multiple attribute decision making. FI 2018; 157: 271–320.
61. Wei GW. Picture uncertain linguistic Bonferroni mean operators and their application to multiple attribute decision making. Kybernetes 2017; 46: 1777–1800.
62. Garg H. Nancy, Linguistic single-valued neutrosophic prioritized aggregation operators and their applications to multiple-attribute group decision-making. J Ambient Intell Human Comput, Springer, 2018, doi: 10.1007/s12652-018-0723-5.
63. Tang XY and Wei GW. Models for green supplier selection in green supply chain management with Pythagorean 2-tuple linguistic information. IEEE Access 2018; 6: 18042–18060.