Tomato 26S Proteasome subunit RPT4a regulates ToLCNDV transcription and activates hypersensitive response in tomato

Pranav Pankaj Sahu¹,², Namisha Sharma¹, Swati Puranik¹, Supriya Chakraborty², Manoj Prasad¹

¹ National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
² School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India

* Corresponding author: Manoj Prasad, E-mail: manoj_prasad@nipgr.res.in

National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi110
067, India, Tel: ++91-11-26735160, Fax: ++91-11-26741658
Supplementary Figure 1. Bacterial expression and purification of SlRPT4a. (A) Coomassie brilliant blue stained 12% SDS-PAGE containing induced and uninduced SlRPT4-GST fusion protein (69kDa); (B) Purified SlRPT4 protein. Band represents fractions of GSTaffinity purification of SlRPT4-GST fusion protein.

Supplementary Figure 2. Accumulation of Coat protein (CP) specific transcripts, (A) Northern hybridization showing the Relative accumulation of CP transcripts in the leaf samples infiltrated with empty vector (EV), SlRPT4-cmyc and RNA Pol II-3-gfp construct alone, and co-infiltrated with RNA Pol II-3-gfp and SlRPT4-muc construct. Fragment corresponding to ToLCNDV-CP gene was used as probe. Total RNA is shown as equivalent loading in the experiment. Data depicts means±SD of three independent experiments (n=3); *, P<0.05; **, P<0.01; ***, P<0.001.
Supplementary Figure 3. TRV-based VIGS in tomato and *Nicotiana benthamiana*. (A) Phenotype of tomato and *N. benthamiana* plant at 21 day post-silencing. Fragments corresponding to *Slpds* and *Nbpds* were used to produce TRV-based gene silencing constructs. After 21 day post silencing typical leaf bleaching symptoms were observed. (B), Northern blot analysis to evaluate the relative level of *pds* gene in control (without virus, mock or silencing treatments), vector infiltrated (TRV:00) and *pds* silenced (*pds-*) plants. Tubulin gene from tomato and Nicotiana were used as internal control.

Supplementary Figure 4. Accumulation of SIRPT4 in H*^T* (ToLCNDV) and H*SIRPT4+T* (TRV:SIRPT4+ToLCNDV). (A) Northern hybridization to evaluate the accumulation of *SIRPT* transcript. (B) Relative accumulation of *SIRPT4* in the experimental samples. Tomato plant infected with TRV: 00 vector was used as negative control. Bars show standard deviations (±SD). Ethidium bromide-stained total RNA has been shown as the equivalent loading control of the experiment.
Supplementary Figure 5. Phenotype of Mock and SIRPT4 silenced cv. H-88-78-1 at 21 day post ToLCNDV infection. (A) Symptom remission. Systemic leaves showed symptom recovery in mock plants, however SIRPT4 silenced cv. H-88-78-1 was failed to recover from the ToLCNDV infection. $H^{TRV:00+T}$, mock plant infected with ToLCNDV; $H^{TRV:SIRPT4+T}$, SIRPT4 silenced plant infected with ToLCNDV, UL, upper leaf; LL, lower leaf. (B) Comparison of progression of leaf curl symptom between Control (H^{T}) and SIRPT4 silenced cv. H-88-78-1 ($H^{TRV:SIRPT4+T}$) at 7-28 dpi of ToLCNDV.
Supplementary Figure 6. Accumulation of DNA-B specific ToLCNDV molecule. Southern blot of tomato genomic DNA from all experimental plants were hybridized with ToLCNDV-BC1 (encoding Movement proteins) gene specific probe. Replicative forms of ToLCNDV genome are designate as open circular (OC), linear (Lin), supercoiled (SC) and single strand (SS). TRV:00 infiltrated H-88-78-1 was taken as a mock control. Ethidium bromide stained DNA from each experiment were shown as equivalent loading. (C) Relative accumulation of viral DNA in the samples HT and HSRPT4+T at different time points. Data depicts means±SD of three independent experiments (n=3); *, P<0.05; **, P<0.01; ***, P<0.001.
Supplementary Figure 7. Estimation of antioxidant enzyme activity in cv. H-88-78-1. (A) Specific activity of APX was measured as 1 μmol of ascorbate oxidized min⁻¹. (B) Specific activity of CAT was measured as 1 μmol H₂O₂ oxidized min⁻¹. (C) Levels of lipid peroxidation expressed in terms of MDA concentration. (D) Percentage electrolytic leakage. Data depicts means±SD of three independent experiments (n=3); *, P<0.05; **, P<0.01; ***, P<0.001. Mock, TRV:00 infiltrated cv. H-88-78-1; TRV:SIRPT4; SIRPT4 silenced cv. H-88-78-1.
Supplementary Table-S1. List of primers used in the study

Primer Name	Forward Primer Sequence	Reverse Primer Sequence
pGEX4-RPT4	CCGGATCCATGGCGACCGAAGAACG	CGGAATTCCTTAATCTTGTGCAAAAAATCAG
Primers used for VIGS		
pTRV-Slpds	CCGCTCGAGCTGACGACGACTTTTCGATGC	CGGAATTCATATATGGAATGTGCAATTACAG
pTRV-SIRPT4	CCGCTCGAGCTGACGACGACTTTTCGATGC	CGGAATTCCTTACTATATTACCAACCCGTTCCT
Primers used for Southern blot analysis		
Coat protein	ACAGAAAACCCAGAATGTACAGAA	CAACATTAAAGGCATTTCAGATTAG
BC1	GTTTTGTGGCTCCCCCTTCGGTCA	GTTTTGTGGCTCCCCCTTCGGTCA
Primers used for transient expression analysis		
pCAMBIA1302: SIRPT4	CATGCCATGGATAATGGGACCGAAGACG	GGACTAGTTATCTTGGCAAAAAATCAG
Primers used for Northern blot analysis		
Rep gene	TTTAAAGTGCTTTAGATTAGTG	CACCATTTAAGGTGCTTACAGAAGA
Coat Protein	ATGAAATTCAGCTACATGGCGCTA	CTGGGAATGATGATCTGGCCCTTCGG
SIRPT4	CCGCTCGAGCTGACGACGACTTTTCGATGC	CGGAATTCCTTACTATATTACCAACCCGTTCCT
Slpds	CCGCTCGAGCTGACGACGACTTTTCGATGC	CGGAATTCATATATGGAATGTGCAATTACAG
Nbpds	TAAACCCTGACGAGCTTTTCAGATGC	TTTAACCCATGAAATGTGCAATTACAG
αTubulin	CAAACTTACCAAGATTCAAGATGCTACAG	ACAATTTATCCCTACCACAG
Primers used for EMSA and ChIP assay		
DNA-A-IR_EMSA	AAAACTTGTCTTTGTATT	TGGTTGAGGGCCACCTAAA
(2592-47)		
DNA-B-IR_EMSA	ACACCATATGGGATTATGTGTAAT	AACGGCGTGCAATGATTACAGC
(2617-67)		
DNA-A-Rep_EMSA	GACTATGCTTTATGGGCCTAAA	CCATTTTACAATTTCATCCT
(1939-2046)		
IR_ChIP	AAAACTTGTCTTTGTATT	TGGTTGAGGGCCACCTAAA
(2592-47)		
pENTER-RPT4	CACCATGGGCGACGAGGAAGAGACGCCG	TTCCCCAACCAGAAGAATGCTGAG
pENTER-RNA Pol- II-3	CACCATGGGCGACGAGGAGGCTTTCGATCCAG	TTAACCTCCAGCATTGAGGCCCC
Actin 7	CGGTGTGATGATAATAGGACG	GCTTCATCAACACATACGC