Guar (*Cyamopsis tetragonoloba* L.): A Potential Candidate for the Rehabilitation of Feldspar Mine Spoil Amended with Bioinoculants

R. Junia, R.C. Kasana’, N. Jain, G.K. Aseri

ABSTRACT
Excessive feldspar mining is becoming an alarming issue due to the untreated mine spoil. For the success in the remediation of mine spoil, selection of plant species is an important factor. Therefore being a nitrogen fixer, legumes can be an alternative and are needed to be broadcasted for the rehabilitation of mined lands. In this context guar (*Cyamopsis tetragonoloba* L.) can be preferred which excels in enhancing soil fertility and is already in cultivation but not experimented with feldspar due to not establishing its rhizosphere fertility. In this study to enhance the fertility status and biological activities of feldspar mine spoil plantation of guar is done with the inoculation of microbes *Azotobacter Azospirillum* and *Glomus mosseae* (AMF) and organic and inorganic amendments. This attempt has successfully enhanced the rhizosphere enzymes at the rate of 10-65% maximum with AMF+ OM+ NPK50% (*T*1), nutrient uptake 10-70% maximum with *Azotobacter*+ OM+ NPK 50% (*T*2) and plant metabolites 10-51% also observed maximum with *T*3 over the uninoculated control. Guar has also shown positive response towards the applied treatment and grown well. Based on the results it can be inferred that guar can tolerate detrimental effects of feldspar mining. Hence, it is concluded that guar can be a potential crop to restore soil health of feldspar mined land for sustainable development.

Key words: *Azotobacter, Azospirillum, AMF, Bioinoculants, Soil Fertility, Mine spoil, Macro and micronutrients.*

INTRODUCTION
Feldspar is one of the most important minerals in the earth’s crust (Balic-Zunic *et al.*, 2011), comprising a complex series of aluminosilicates with varying amounts of iron, potassium, sodium, calcium and traces of barium, magnesium, phosphorus, and titanium (Sartor *et al.*, 2018). Its global production has been estimated at 25.31 million tonnes, whereas, India stands fourth with 7% reserves (Anonymous, 2015a). The industrial revolution led to a greater demand for the feldspar due to its extensive use, as a major ingredient for ceramic and glass industry (Gaied and Gallala, 2015) and India stands third as world’s leading ceramic tile producer and consumer (Anonymous, 2015b). Therefore feldspar mining is valuable for Indian economy. But feldspar mining is carried out by open cast method, which causes extensive and palpable damage to the environment (Dugaya, 2009). The problem of open cast mining is very acute in India and large areas are continually being unproductive every year (Kundu and Ghose, 2000). Simultaneously it causes detrimental effects on land ecosystem, environment and socio-economic health (Keil *et al.*, 2016).

In favour of conservation of nature and natural resources, forests and other protected lands cannot be leased out for cultivation to fetch ever growing population; therefore, we need to revive mined lands by using all available means including phytoremediation (Mukhopadhyay and Maiti, 2010). Microbes assisted phytoremediation approach has already become popular to mitigate soil fertility, which is damaged by the open cast mining (Juwarkar and Singh, 2010). Thus, plants with industrial potential and tolerance to the abiotic stress are required to address these issues for sustainable rehabilitation. In this context, guar (*Cyamopsis tetragonoloba* L.) has been used as alternate crop to establish soil fertility (Bhattacharyya, 2015) which directly support microbial consortium, thus giving a long-term solution and has wide industrial applications (Abidi *et al.*, 2015) besides drought tolerance (Kumawat and Mahla, 2015). Guar is a first choice for improving soil health, because of its ability to fix nitrogen (Brar and Singh, 2017), has short life span and less water requirement. India accounts for 80% of the total guar produced in the world and are single largest producer of guar seed, where Rajasthan has been taken as reference for all studies on guar seed, being single largest state producer (Baldodiya and Awasthi, 2018). Since, plantation alone is not enough, eco-restoration programme in any mine spoil must be...
supplemented with organic amendments for better results (Juwarkar et al., 2016), therefore microbes – assisted phytoremediation, can be planned to achieve rehabilitation of feldspar mine spoil. In this research study, *Azotobacter, Azospirillum and Glomus mosseae* (AMF) have been used in various treatments with organic and inorganic amendments to enhance soil fertility and pave the path for possibilities of guar cultivation in feldspar mine spoil.

MATERIALS AND METHODS

Feldspar mine at Sarana village is one of the major sites of feldspar mining, situated at Ajmer, India (25°38” and 26°58” North Latitudes and 73°54” and 75°22” East Longitudes). The experiment was conducted during summer season (May, 2017) at Greenhouse Govindgarh, Pushkar (Ajmer). Growth from guar seed was evaluated for total 16 treatments in three replication using Randomised Block Design. The treatments were: (1) mine spoil only (control); (2) mine spoil + *Azotobacter* (3) mine spoil + *Azotobacter* + organic manure (OM); (4) mine spoil + *Azotobacter* + AMF; (5) mine spoil + *Azotobacter* + NPK (50%); (6) mine spoil + *Azotobacter* + OM + NPK (50%); (7) mine spoil + *Azospirillum* (8) mine spoil + *Azospirillum* + OM; (9) mine spoil + *Azospirillum* + AMF; (10) mine spoil + *Azospirillum* + NPK (50%); (11) mine spoil + *Azospirillum* + OM + NPK (50%); (12) mine spoil + AMF; (13) mine spoil + OM + NPK (50%); (14) mine spoil + AMF + NPK (50%); (15) mine spoil + OM + NPK (50%); (16) full dose of NPK (100%). Total 48 plants and rhizosphere soil samples have been tested from zero analysis to three months.

500 kg of feldspar mine spoil from the core area of feldspar mine at Sarana village has been transported to green house and zero analysis was carried out. As per given treatments, 9 kg mine spoil was filled in earthen pots (12-15 kg capacity). *Azotobacter, Azospirillum and Glomus mosseae* (AMF) were isolated from soil samples by using Jensen Nitrogen Free media, semi solid malate media and wheat based live culture, respectively. These three cultures were mass produced on the same and inoculated as per the treatments. The pots with control (T1), of respective plants, were also inoculated with their respective microbial media after the sterilization. The full dose (100%) of NPK comprised nitrogen (urea) = 10.5 gm, super phosphate = 15.5gm, potash = 4.25gm and half dose (50 % of the same), were given on 30th day after sowing. All pots were watered up to field capacity; alternate days in first month and weekly onwards. The plant height, shoot diameter and canopy were recorded at the interval of one month. Plants were harvested after three months and their roots, shoots and leaves were oven dried and weighed for the further analysis.

The plant samples were processed in the laboratory for the estimation of chlorophyll a and chlorophyll b at 645 and 663 nm respectively (Arnon, 1949) and reducing sugar at 540 nm (Nelson, 1944). Dried powder was digested using Triacid (Nitric + Sulfuric + Perchloric acid) digestion method given by Piper (1942). Total nitrogen was determined by using Kjeldahl method (Saez-Plaza et al., 2013), phosphorus (P) determined by vanadomolybdate yellow colour method by Jackson, (1987), potassium (K), calcium (Ca), magnesium (Mg) and micronutrients (Cu, Mn, Zn and Fe) were determined through Atomic Absorption Spectroscopy (AAS) method. Rhizosphere soil was taken for the estimation of physico-chemical biological properties of soil pH, EC, available phosphorus by using method given by Olsen (1954), dehydrogenase activity was measured by using 2,3,5- triphenyltetrazolium chloride (TTC), spectro photometrically given by Tabatabai (1992), phosphatase by Tabatabai and Bremner (1969) and organic carbon (OC) method given by Walkley and Black (1934).

Statistical Analysis

The data was subjected to analysis of variance and mean of inoculated and control treatments were compared by the Scheffe’s test for planned comparison upto LSD (Least Significant Difference).

RESULTS AND DISCUSSION

Zero Analysis

The physical and chemical properties of the soil collected from feldspar mine showed that the soil is highly alkaline in nature and poor in major nutrients (Table 1). Feldspar mine spoil is of average 72% gravel and seasonally provide cohesive environment for water holding and microbes assisted mineral solubilization hence, the poor fertility of the feldspar mine spoil is depicted by the low concentration of major minerals (N, P, K, Ca and Mg) and micronutrients (Cu, Zn, Mn, and Fe).

According to Tripathi et al. (2012), soil clay content directly effects nutrients and nutrient transformation in the soil and is showed significant correlation with organic C, nitrogen and available phosphorous, found in coal mine spoil. Therefore, in present study the soil texture of having low clay content may be responsible for the lower

Table 1: Characteristics of feldspar mine spoil.

Parameters	Units	Feldspar mine spoil
* pH (1:2)		9.25
EC	dS m⁻¹	0.279
Gravel: Sand: Silt: Clay	%	72.2:11.5:10.8:5.5
Organic C	%	0.36
Nitrogen (N)	mg kg⁻¹	2.03
Phosphorous (P)	mg kg⁻¹	2.03
Potassium (K)	mg kg⁻¹	2.03
Calcium (Ca)	cmol kg⁻¹	3.23
Magnesium (Mg)	cmol kg⁻¹	3.46
Copper (Cu)	ppm	0.111
Zinc (Zn)	ppm	0.212
Iron (Fe)	ppm	0.59
Manganese (Mn)	ppm	0.126
Dehydrogenase	pkat g⁻¹	0.175

* Potential of hydrogen, **Electrical conductivity.
macronutrients and OC, whereas, Yaseen et al. (2014) statistically proved the positive correlation of organic carbon with EC, available P and N. Therefore in feldspar mine spoil low EC, N and P was may be due to low organic carbon. Similarly Pasayat and Patel (2015) while assessing the iron mine spoil quality stated that, soil texture also effects other soil properties, which in turn determines microbial growth, hence low dehydrogenase activity was attributed towards the poor soil texture of feldspar mine spoil.

Growth Parameters

Influence of microbial inoculants, organic inorganic amendments can be clearly seen on plant growth parameters in feldspar mine spoil (Table 2). We have recorded maximum plant height (121 cm) in treatment Azotobacter + OM + NPK 50% followed by treatment AMF + OM + NPK 50% (116 cm) over the uninoculated control and other treatments. Same trend was found in shoot diameter, plant canopy and dry weight. Overall, Azotobacter has successfully influenced plant growth in comparison of Azospirillum, whereas AMF was also found to be significant at P≤0.05%. Azotobacter (Hindersah et al., 2018), Azospirillum (Widawati and Suliasih, 2019) and Mycorrhizae (Aggangan and Cortes, 2018) are known to excel in unfavourable environment and proved to establish soil fertility of groundnut (Arachis hypogaea) in mercury spoil, great millet (Sorghum bicolor) in tin spoil and Narra (Pterocarpus indicus) in copper mine spoil, respectively. As Azotobacter releases growth promoting hormones auxin, cytokinin and gibberellin (Vikhe, 2014), that stimulate cell extension and division which promote plant growth (Takatsuka and Umeda, 2014). AM fungi inoculated seedlings of Eucalyptus tereticornis showed 95% survival over the control seedlings and their growth was also significantly higher in bauxite mine spoil (Karthikeyan and Krishnakumar, 2012). Study by Gul et al. (2019), also supported our results where growth of guar responded well towards the consortium of bioinoculants and inorganic fertilizers. Hence, these bioinoculants were found to be effective in reviving the soil health and plant development and growing plants together with rhizobacteria and AMF in feldspar mine spoils stimulated the plant germination, shoot as well as root growth.

Enzymatic Activities

The presence of small dehydrogenase activity and 5.5% clay in feldspar mine spoil indicated the signs of possibility for the rejuvenation of mined land as clay content directly effects soil organic carbon, available P and microbial growth. Table 3 is showing the results of the improvement in rhizosphere enzymatic activity, available P and organic carbon in guar. Among the enzymatic activities, the alkaline phosphatase activity of the soil has been increased throughout the incubation period in all the treatments than uninoculated control, irrespective of feldspar concentration in the spoil. Percentage increment in AMF+ OM+ NPK 50% treatment has been recorded 46.86% which was found to be highest followed by Azospirillum+ OM+ NPK 50% with 44.4% increment. Results are in similarity with Gucwa-Przepiora et al. (2016), who recorded enhanced alkaline phosphatase activity in Plantago lanceolata by introducing AMF in Zn/Pb mine spoil.

On the other side, AMF also dominated over acid phosphatase activity which has been recorded highest in AMF+ OM+ NPK 50% treatment with 76% increment, followed by Azotobacter+ OM+ NPK 50% with 72%. This may be due to the reason given by Sinegani and Sharifi, (2007) that, phosphatase produced by plants is exclusively

Table 2: Growth of guar as influenced by bio-inoculants in feldspar spoils.

Treatments	Height (cm)	Shoot diameter (inches)	Canopy (m² plant⁻¹)	Dry Wt. (gm plant⁻¹)
T - 1: Control	60	0.091	5.5	22
T - 2: NPK 100%	80	0.125	7.5	48
T - 3: Azotobacter	72	0.098	5.8	34
T - 4: Azotobacter + OM	96	0.101	6.0	53
T - 5: Azotobacter + AMF	98	0.107	6.3	72
T - 6: Azotobacter + NPK 50%	103	0.115	6.6	85
T - 7: Azotobacter + OM + NPK 50%	121	0.132	7.4	119
T - 8: Azospirillum	70	0.096	6.0	35
T - 9: Azospirillum + OM	97	0.097	6.2	58
T - 10: Azospirillum + AMF	99	0.106	6.6	76
T - 11: Azospirillum + NPK 50%	101	0.116	6.8	97
T - 12: Azospirillum+ OM + NPK 50%	104	0.119	6.9	105
T - 13: AMF	71	0.098	5.9	32
T - 14: AMF + OM	93	0.102	6.5	54
T - 15: AMF + NPK 50%	100	0.111	6.5	81
T - 16: AMF + OM + NPK 50%	116	0.129	7.0	109
LSD (0.05)	4.1	0.01	0.21	1.9
acid phosphatase, in addition it may be produced by bacteria, fungi and Yeast. In present study, AMF have been found to mineralise maximum soil phosphorous in AMF + OM + NPK 50% treatment. This is similar to the findings of Kumar et al. (2011), who also observed that phosphatase activity is related to soil OM and NPK in soil. The increase in the bacterial count in Azotobacter+ OM+ NPK 50% (T10) and Azospirillum+ OM + NPK 50% (T12) was found (50 x 10^9 CFU ml^-1) and (48 x 10^9 CFU ml^-1) respectively and significant at P<0.05%, over the uninoculated control. The higher bacterial count over the control was anticipated due to the microbial stimulation with presence of plant root exudates in the rhizosphere (Rani and Juwarkar, 2012). On the same side, dehydrogenase activity in the soil followed the same trend as of microbial count. DHA activities were also found maximum with T1 (4.76 pkat g^-1) and T12 (4.69 pkat g^-1). The result is supported by Rath et al. (2010), who found that the soil enzyme activities have indicated significant positive correlation with the number of bacterial and fungal colonies in iron and chromite mine spoil in Orissa, India. Similarly Rao and Tak, (2002), while finding the effects of Glomus mosseae on the plant species grown on limestone mine spoil found that, inoculation with AM-fungus had significantly enhanced the dehydrogenase activities compared to that of the uninoculated plants.

Availability of Olsen P was found maximum with AMF in combination with OM+ NPK 50% which is higher than NPK 100% alone. Organic carbon (OC) was also increased in the reclaimed site over the control. Maximum accumulation of OC was observed in Azotobacter+ OM+ NPK 50% treatment followed by Azospirillum + OM + NPK 50% and AMF+ OM+ NPK 50%. The results are in line with the previous studies showed that, soil organic carbon of coal mine increased after inoculation with AMF (Qian et al., 2012) and organic matter (Shrestha et al., 2019). This enhancement was due to the accumulation of organic matter in the mine soil, which has accelerated organic carbon production. These findings agree with the study by Ekka and Behera (2011) and Rath et al. (2010) who found the direct relationship between amount of organic carbon and soil organic matter. Legumes are also known to increase soil organic carbon. (Rothe et al. 2002) has reported the increment in SOC by legumes. The same findings have also been observed in the present study where guar grown in feldspar mine spoil improved the SOC.

Metabolites

The photosynthetic pigments chlorophyll a, chlorophyll b, total chlorophyll and reducing sugar content in the leaves of guar grown on feldspar mine spoil are presented in Fig 1. Total chlorophyll content was found to be highest in treatment with Azotobacter+ OM+ NPK 50% (6.21 mg g^-1 fwt.) followed by Azospirillum+ OM+ NPK 50% (6.16 mg g^-1 fwt.) and AMF+ OM + NPK 50% (6.10 mg g^-1 fwt.). The results were found significant at P<0.05% over the uninoculated control. The increase in the chlorophyll content was may be due the nitrogen fixation by guar. This is supported by Hokiaipour and Darbandi, (2011), who found that chlorophyll content in the leaves is positively influenced by fertilizer application, especially nitrogen. Verdugo et al. (2010) observed the increased chlorophyll content after the introduction of AMF in rye grass grown in copper mine whereas, Vafadar et al. (2014), Rajashekar and Nagarajan (2005) have seen similar rise in the chlorophyll content.

Table 3: Effect of bio-inoculants on rhizosphere enzymes, Olsen P and C availability in feldspar soil

Treatments	Dehydrogenase (pkat g^-1)	Acid-Phosphatase (nkat g^-1)	Alkaline-phosphatase (nkat g^-1)	Olsen P (mg g^-1)	Organic Carbon (%)
T - 1: Control	2.85	2.2	4.9	3.4	1.04
T - 2: NPK 100%	3.02	3.7	6.0	4.2	1.08
T - 3: Azotobacter	2.94	2.9	6.1	3.6	1.17
T - 4: Azotobacter + OM	4.12	3.1	6.2	4.7	1.41
T - 5: Azotobacter + AMF	4.27	3.9	7.8	5.8	1.48
T - 6: Azotobacter + NPK 50%	4.24	4.1	7.3	5.6	1.46
T - 7: Azotobacter + OM + NPK 50%	4.76	4.7	7.9	6.2	1.52
T - 8: Azospirillum	3.02	2.5	5.3	3.6	1.08
T - 9: Azospirillum + OM	3.35	3.6	6.4	4.9	1.16
T - 10: Azospirillum + AMF	3.59	3.7	6.9	5.6	1.29
T - 11: Azospirillum + NPK 50%	3.55	4.3	7.0	5.4	1.27
T - 12: Azospirillum + OM + NPK 50%	4.69	4.5	7.7	6.2	1.36
T - 13: AMF	3.56	3.0	5.1	3.8	1.15
T - 14: AMF + OM	3.87	4.0	6.6	4.2	1.27
T - 15: AMF + NPK 50%	3.77	4.1	7.0	4.9	1.37
T - 16: AMF + OM + NPK 50%	4.61	4.9	7.9	6.4	1.5
LSD (0.05)	0.03	0.03	0.04	0.02	0.01
content after the introduction of *Azotobacter chroococcum* and organic manure in mine spoil. Guar has shown increased chlorophyll content and this is directly responsible for the production of various metabolites including reducing sugar. Jin *et al.* (2015) reported that the level of sugar content increased in the leaves of maize plant with increased level of nitrogen. Similarly, in our studies the percentage of reducing sugar enhanced significantly with the increase of nitrogen, which may be due to the nitrogen fixation by the microbial inoculants and by guar itself.

Macro & Micro nutrients

The mineral uptake in guar upon introduction of bio inoculants in mine spoil has shown significant increase over the uninoculated control (Table 4), the percentage increase in N was found to be 7 to 29%, in P it was 11 to 86%, N 5 to 50%, in Ca to 3 to 16% and in Mg it was 16 to 71%. The present study demonstrated the highest N content in a treatment of *Azospirillum*+ OM and NPK 50%, highest P content was in AMF + OM + NPK 50% treatment and K, Ca, Mg content was highest in *Azotobacter*+ OM and NPK 50%. This result is in the line with Yang *et al.* (2016), who observed that legume- rhizobia have always provided a synergistic approach on nitrogen management and was enhanced by introducing compatible soil organisms including mycorrhizal hyphae which is known for mineral solubilisation and mobilization (Temperton *et al.*, 2007). We have observed highest N uptake with *Azospirillum* and significant intake.

![Fig 1: Influence of bio-inoculants on plant metabolites in feldspar mine spoil.](image)

Note: The figure describes the variations in the chlorophyll and reducing sugars accumulation in guar with different treatments at the significance level (P<0.05).

Treatments: T1 = control, T2 = NPK 100%, T3 = *Azotobacter*, T4 = *Azotobacter* + OM, T5 = *Azotobacter* + GM, T6 = *Azotobacter* + NPK 50%, T7 = *Azotobacter* + OM + NPK 50%, T8 = *Azospirillum*, T9 = *Azospirillum* + OM, T10 = *Azospirillum* + OM, T11 = *Azospirillum* + NPK 50%, T12 = *Azospirillum* + OM + NPK 50%, T13 = AMF, T14 = AMF + OM, T15 = AMF + NPK 50%, T16 = AMF + OM + NPK 50%.

Table 4: Effect of bioinoculants on nutrient influx of guar in feldspar spoil.

Treatments	N	P	K	Ca	Mg	Fe	Cu	Mn	Zn
T - 1: Control	6.1	1.7	3.8	27.0	3.3	119	8.6	13.0	18.4
T - 2: NPK 100%	8.6	2.3	5.1	29.6	4.9	137	10.3	14.9	20.2
T - 3: *Azotobacter*	6.6	1.9	4.0	28.0	3.9	132	9.9	14.7	19.4
T - 4: *Azotobacter* + OM	6.9	3.4	4.2	28.5	4.6	141	10.4	15.4	20.4
T - 5: *Azotobacter* + AMF	7.2	3.6	4.2	29.2	5.2	155	11.9	16.3	21.8
T - 6: *Azotobacter* + NPK 50%	7.6	3.8	5.3	30.8	6.3	187	12.8	17.4	22.6
T - 7: *Azotobacter* + OM + NPK 50%	8.2	4.0	6.4	32.0	7.0	237	13.9	18.8	23.3
T - 8: *Azospirillum*	6.5	1.8	4.1	27.9	3.8	129	9.5	14.5	19.3
T - 9: *Azospirillum* + OM	6.7	3.1	4.3	29.3	4.9	163	11.0	15.6	20.8
T - 10: *Azospirillum* + AMF	7.3	2.6	4.2	30.7	5.6	178	11.7	16.4	21.3
T - 11: *Azospirillum* + NPK 50%	7.5	3.6	5.2	31.2	6.1	194	12.6	17.5	22.7
T - 12: *Azospirillum* + OM + NPK 50%	8.0	3.9	5.9	31.9	6.8	223	13.8	18.7	23.4
T - 13: AMF	6.5	1.9	3.9	27.5	4.0	119	9.1	14.6	19.6
T - 14: AMF + OM	6.9	3.1	4.1	28.8	3.8	164	10.7	16.3	20.2
T - 15: AMF + NPK 50%	7.6	3.4	5.0	29.6	5.6	177	12.1	17.4	21.9
T - 16: AMF + OM + NPK 50%	8.0	4.3	5.5	31.0	6.6	232	13.9	18.8	23.5

LSD (0.05)

0.12 0.02 0.03 1.13 0.09 8.0 0.14 0.16 0.06
with AMF. Similarly, Nayak et al. (2015) indicated that organic amendments significantly enhanced the nutrient status of iron mine spoil. Nyokki and Ndakidemi (2014) reported that rhizobia inoculation of leguminous crops supplied with P fertilizer improves the uptake of N, P, K, Ca and Mg. Whereas, Haferburg and Kothe (2010) reported the use of bacteria and AMF as natural biofertilizers for the delivery of metals and nutrients to the plants in metal spoils.

Phosphorous content is low in mine spoil, but the greater P concentration in feldspar mine spoil, may be due to mobilization of P by AMF (Taratdar and Marschner, 1994). Phosphate solubilization by rhizobacterial isolates may be influenced by the production of organic acids such as formic, acetic, propionic, lactic, glycolic, fumaric and succinic acids (Yasmin et al., 2009), resulting in mineralization and mobilization of unavailable soil P, thus helping in increased uptake of P by the plants (Dotaniya et al., 2014). Feldspar has insoluble form of potassium (8-10%) and therefore, this K could be effectively utilized by native potassium solubilizing microorganisms (Kasana et al., 2017). Similarly, Ullaman et al. (1996), has seen absorption of K enhanced rapidly upon introduction of Bacillus mucilaginosus that can solubilize rock K mineral such as potash feldspar by production and excretion of organic acids. In our study, along with guar bioinoculants also have nitrogen fixing properties which have shown positive impact in the mineral solubilisation that supports the uptake of essential macro nutrients by the plant.

Cu, Mg and Zn resulted in significant increase but, Fe content (237 mg g⁻¹) was observed much higher over the control and almost three folds in case of feldspar mine spoil, since feldspar, mica and quartz are most likely responsible for the release of these metal elements (Nagaraju et al., 2013). There has been no fixed trend observed in the absorption of Cu, Zn, and Mn, these micronutrients have been found with almost similar enhancement in all the treatments.

CONCLUSION

Hence, successful rehabilitation must involve the development of microbially driven nutrient cycling for the long-term provision of nutrients to the plant. Besides this, the use of legume also supported the rehabilitation of the spoil due to its exclusive properties of with standing stress conditions. In this study, Azotobacter, Azospirillum and AMF played a key role in supporting guar to establish its rhizosphere fertility in feldspar mine spoil. The study clearly stated that the feldspar mine spoil showed the sign of restoration due to the gradual accumulation of OC, N and available P with the applied treatments and due to guar itself. Hence, it is concluded that guar can be a potential crop to restore soil health of feldspar mined land for sustainable development in combination with various bioinoculants.

REFERENCES

Abidi, N., Liyanage, S., Auld, D., Imel, R. K., Norman, L., Grover, K., Angadi, S., Singla, S. and Trostle, C. (2015). Challenges and opportunities for increasing Guar production in the United States to support unconventional oil and gas production. In hydraulic fracturing impacts and technologies, pp 228-247. DOI:10.1201/18581-13.

Aggangan, N.S. and Cortes, A.D. (2018). Screening mined-out indigenous mycorrhizal fungi for the rehabilitation of mine tailing areas in the Philippines. *Reforesta*, 6:71-85.

Anonymous (2015a). Indian Minerals Yearbook (Part- II: Mineral Reviews), 57th Edition Ministry of Mines Indian Bureau of Mines Website: www.ibm.gov.in

Anonymous (2015b). U.S. Geological survey minerals year book.

Arnon, D. I. (1949). Copper enzymes in isolated chloroplast: polyphenol oxidase in Beta vulgaris. *Plant Physiology*, 24:1-15.

Baldodiyia, V.K. and Awasthi, P.K. (2018). Guar (*Cyamopsis tetragonoloba* L.) seed production status in India. *International Journal of Chemical Studies*, 6:1436-1440.

Balic-Zunic, T., Katerinopoulou, A. and Edsberg, A.(2011). Application of powder X-ray diffraction and the Rietveld method to the analysis of oxidation processes and products in sulphide mine tailings. *Neues Jahrbuch für Mineralogie Abhandlungen*, 188: 31-47.

Bhattacharyya, R., Ghosh, B., Mishra, P., Mandal, B., Rao, C., Sarkar, D., Das, K., Anil, K.S., Lalitha, M., Hati, K.M. and Franzluebbers, A.J. (2015). Soil degradation in India: Challenges and potential solutions. *Sustainability*, 7: 3528-3570.

Brar, S.K. and Singh, P. (2017). Response of cluster bean (*Cyamopsis tetragonoloba* L. Taub.) cultivars to dual inoculation with fixing and phosphorous solubilizing bacteria. *Legume Research*, 40: 100-104.

Dotaniya, M.L., Datta, S.C., Biswas, D.R., Meena, H.M. and Kumar, K. (2014). Production of oxalic acid as influenced by the application of organic residue and its effect on phosphorus uptake by wheat (*Triticum aestivum* L.) in an Inceptisol of north India. *National Academy Science Letters*, 37: 401-405. DOI: 10.1007/s40009-014-0254-3.

Dugaya, D. (2009). Rehabilitation of coal mine area: a case from Birsampur Colliery, Chhattisgarh, India.Kostas Kommitcas (Eds). First international conference on indicators for land rehabilitation and sustainable development. Publication house of electronics industry, Beijing, China, pp.34-45.

Ekka, N.J. and Behera, N. (2011). Species composition and diversity of vegetation developing on an age series of coal mine spoil in an open cast coal field in Orissa, India. *Tropical Ecology*, 52: 327-343.

Gaied, M.E. and Gallala, W. (2015). Beneﬁciation of feldspar ore for application in the ceramic industry: Inﬂuence of composition on the physical characteristics. *Arabian Journal of Chemistry*, 8:186–190

Guo-Ca, Przepiora, E., Nadgorska-Socha A., Fojcik, B. and Chmura, (2011). Application of powder X-ray diffraction and the Rietveld method to the analysis of oxidation processes and products in sulphide mine tailings. *Neues Jahrbuch für Mineralogie Abhandlungen*, 188: 31-47.

Gul, A., Salam, A., Afridi, M.S., Bangash, N.K., Ali, F., Ali M. Y., Khan, S. and Mubeen, R. (2019). Effect of urea, biofertilizers and their interaction on the growth, yield and
yield attributes of *Cyanopsis tetragonoloba*. Indian Journal of Agricultural Research. 53: 423-428.

Haferburg, G. and Kothe, E. (2010). Metallonics: lessons for metalliferous soil remediation. Applied microbiology and biotechnology. 87: 1271-1280.

Hindersah, R., Handyman, Z., Indriani, F.N., Suryatmana, P. and Nurulayen, N. (2018). *Azotobacter* population, soil nitrogen and groundnut growth in mercury-contaminated tailing inoculated with *Azotobacter*. Journal of Degraded and Mining Lands Management. 5: 1269.

Hokmalipour S. and Darbandi M.H. (2011). Effects of nitrogen fertilizer on chlorophyll content and other leaf index in three cultivars of maize (*Zea mays* L.). World Applied Sciences Journal.15:1780–1785.

Jackson, M.L. (1967). Soil Chemical Analysis. Prentice-Hall of India Private Limited. New Delhi, pp. 452.

Jin, X., Yang, G., Tan, C. and Zhao, C. (2015). Effects of nitrogen stress on the photosynthetic CO2 assimilation, chlorophyll fluorescence, and sugar-nitrogen ratio in corn. Scientific Reports Nature. 5: 1-9.

Juwarkar, A.A., Singh, L., Kumar, G.P., Jambhulkar, H.P. and Kanflade, H. (2016). Biodiversity promotion in restored mine land through plant-animal interaction. Journal of Ecosystem and Ecography. 6: 176.

Juwarkar, A.A., and Singh, S.K. (2010). Microbe-assisted phytoremediation approach for ecological restoration of zinc mine spoil dump. International Journal of Environment and Pollution. 43: 236-250.

Kasana, R.C., Panwar, N.R., Burman, U., Pandey, C.B. and Kumar, P. (2017). Isolation and identification of two potassium solubilizing fungi from arid soil. International Journal of Current Microbiology and Applied Sciences. 6: 1752-1762.

Keil, D.E., Buck, B., Goossens, D., Teng, Y., Pollard, J., Mc Laurin, B., Gerads, R. and DeWitt, J. (2016). Health effects from exposure to atmospheric mineral dust near Las Vegas, NV, USA. Toxicology reports. 3: 785-795.

Karthikeyan, A., Krishnakumar, N. (2012). Reforestation of bauxite mine spoils with Eucalyptus tereticornis Sm. seedlings inoculated with arbuscular mycorrhizal fungi. Annals of Forest Research. 55: 207-216.

Kumar, S., Chaudhuri, S. and Maiti, S. K. (2011). Soil phosphatase activity in natural and mined soil. Indian Journal of Environmental Protection. 31(11).

Kumawat, R. N. and Mahla, H. R. (2015). Effect of foliar applied urea and planting pattern on the leaf pigments and yield of cluster bean (*Cyanopsis tetragonoloba*) grown in low rainfall areas of Western India. Legume Research: An International Journal. 38: 96-100.

Kundu, N.K. and Ghose, M.K. (2000). Probable impact on land-use due to opencast coal mining. Indian Journal of Environmental Studies and Policy. 21: 87-96.

Mukhopadhyay, S. and Maiti, S. K. (2010). Phytoremediation of metal mine waste. Applied Ecology and Environmental Research. 8: 207-222.

Nagaraju, A., Kumar, K.S. and Thejaswi, A. (2013). Evaluation of plants growing on lead mine spoils: Significance for abandoned mine reclamation in Andhra Pradesh, India. Resources and Environment. 3: 155-162.

Nayak, S., Mishra, C.S.K. and Mohanty, S. (2015). Remediation of iron mine spoil by organic amendments: Influence on chemical properties, bacterial-fungal population and growth of *Acacia mangium*. The Ecoscan. 9: 169-173.

Nelson, N. (1944). A photometric adaptation of the Somogyi method for determination of glucose. The Journal of Biological Chemistry. 153: 375-380.

Nyoki, D. and Ndakidemi, P. A. (2014). Effects of *Bradyrhizobium japonicum* inoculation and supplementation with phosphorus on macronutrients uptake in cowpea (*Vigna unguiculata* (L.) Walp). American Journal of Plant Sciences. 5: 442.

Olsen, S.R., Cole, C.V. Watanabe, F.S. and Dean, L.A. (1954). Estimation of Available phosphorus in soil by extraction with sodium bicarbonate. US Department of Agriculture, 939: 1-19.

Pasayat, M. and Patel, A. K. (2015). Assessment of Physico-Chemical Properties Influencing Mine Spoil Genes in Chronosequence Iron Mine Overburden Spoil and Implications of Soil Quality. International Journal of Current Microbiology and Applied Sciences. 4: 1095-1110.

Piper, C.S. (1942). Soil and Plant Analysis. Hans, Bombay, pp. 368.

Qian, M., Wang, L.P. and Yin, N.N. (2012). Effects of AMF on soil enzyme activity and carbon sequestration capacity in reclaimed mine soil. International Journal of Mining Science and Technology. 22: 553–557.

Rajasekaran, S. and Nagarajan, S.M. (2005). Effect of dual inoculation (AMF and Rhizobium) on chlorophyll content of *Vigna unguiculata* (L) Walp. Var. Pusa 151. Mycorrhiza News.17: 10-11.

Rani, R. and Juwarkar, A. (2012). Biodegradation of phorate in soil and rhizosphere of Brassica juncea (L) (Indian Mustard) by a microbial consortium. International biodeterioration and biodegradation. 71: 36-42.

Rao, A.V. and Tak, R. (2002). Growth of different tree species and their nutrient uptake in limestone mine spoil as influenced by arbuscular mycorrhizal (AM)-fungi.Indian arid zone. Journal of Arid Environments. 51: 113–119.

Rath, M., Mishra, C.S.K. and Mohanty, R. C. (2010). Microbial population and some soil enzyme activities in iron and chromite mine spoil. International journal of Ecology and Environmental sciences. 36: 187-193.

Rothe, A., Cromack, K., Resh, S. C., Makineci, E. and Son, Y. (2002). Soil carbon and nitrogen changes under Douglas-fir with and without red alder. Soil Science Society of America Journal. 66: 1988-1995.

Sartor, F.D.L., Spricigo, L.P., Niero, D.F., Bernardin, A.M., Montedo, O.R.K. and Angioletto, E. (2018). Effect of the addition of the waste generated from the feldspar mining on the obtainment of ceramic brick. Materials Science Forum. 930: 164-169.

Saez-Plaza, P., Navas, M.J., Wybraniec, S., Micha³owski, T. and Asuero, A.G. (2013). An Overview of the Kjeldahl Method of Nitrogen Determination. Part II. Sample Preparation, Working Scale, Instrumental Finish and Quality Control. Critical Reviews in Analytical Chemistry. 43:224-272.

Shrestha, P., Gautam, R. and Ashwath, N. (2019). Effects of agronomic treatments on functional diversity of soil microbial community and microbial activity in a revegetated coal mine spoil. Geoderma. 338: 40-47.
Guar (*Cyamopsis tetragonoloba* L.): A Potential Candidate for the Rehabilitation of Feldspar Mine Spoil Amended with Bioinoculants

Sinegani, A.S. and Sharifi, Z. (2007). Changes of available phosphorus and phosphatase activity in the rhizosphere of some field and vegetation crops in the fast growth stage. Journal of Applied Sciences and Environmental Management, 11: 113-118.

Tabatabai, M.A. (1982). Soil enzymes. In: Methods of soil analysis: Part 2 Chemical and Microbiological properties. A.L. Page, R.H. Miller and D.R. Keeney (eds.), Amer. Soc. Agron, Madison, Wisconsin. pp. 903-947.

Tabatabai, M.A. and Bremner, J.M. (1969). Use of P-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry. 1: 301-307.

Tabaksukha, H. and Umeda, M. (2014). Hormonal control of cell division and elongation along differentiation trajectories in roots. Journal of experimental botany. 65: 2633-2643.

Tarafdar, J.C. and Marschner, H. (1994). Efficiency of VAM hyphae in utilisation of organic phosphorus by wheat plants. Soil Science and Plant Nutrition. 40: 593-600.

Temperton, V.M., Mwangi, P.N., Scherer-Lorenzen, M., Schmid, B. and Buchmann, N. (2007). Positive interactions between nitrogen-fixing legumes and four different neighbouring species in a biodiversity experiment. Oecologia. 151: 190-205.

Tripathi, N., Singh, R.S. and Chaulya, S.K. (2012). Dump stability and soil fertility of a coal mine spoil in Indian dry tropical environment: A long term study. Environmental management. 50: 697-706.

Ullman, W.J., Kirchman, D.L., Welch, S.A. and Vandevivere, P. (1996). Laboratory evidence for microbiologically mediated silicate mineral dissolution in nature. Chemical Geology. 132: 11-17.

Vafadar, F., Amooaghaie, R. and Otroshy, M. (2014). Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of *Stevia rebaudiana*. Journal of Plant Interactions. 9: 128-136.

Verdugo, C., Sanchez, P., Santibanez, C., Urrestarazu, P., Bustamante, E., Silva, Y., Gourdon, D. and Ginocchio, R. (2010). Efficacy of lime, biosolids, and mycorrhiza for the phytostabilization of sulfide copper tailings in Chile: a greenhouse experiment. International journal of phytoremediation. 13: 107-125.

Vikhe, P.S. (2014). *Azotobacter* species as a natural plant hormone synthesizer. Research Journal on Recent Science. 3: 59-63.

Walkey, A.J. and Black, I.A. (1934). Estimation of soil organic carbon by the chromic acid titration method. Soil science. 37: 29-38.

Widawati, S. and Suliasih, S. (2019). Role of indigenous nitrogen-fixing bacteria in promoting plant growth on post tin mining soil. Makara Journal of Science. pp28-38.

Yang, Y., Liang, Y., Han, X., Chiu, T.Y., Ghosh, A., Chen, H. and Tang, M. (2016). The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Scientific reports. 6: 20489.

Yasmin, F., Othman, R., Sijam, K. and Saad, M.S. (2009). Characterization of beneficial properties of plant growth-promoting rhizobacteria isolated from sweet potato rhizosphere. African Journal of Microbiology Research. 3: 815-821.

Yaseen, S., Pal, A., Singh, S. and Skinder, B.H. (2014). Soil quality in the agricultural fields in the vicinity of selected mining areas of Raniganj coal field India. Journal of environmental and analytical toxicology. 5:269.