Concerning Increase in Antimicrobial Resistance in Shiga Toxin-Producing
Escherichia coli Isolated from Young Animals during 1980–2016

FLORE CHIRILA, ALEXANDRA TABARAN, NICODIM FIȚ, GEORGE NADAS, MARIAN MIHAIU, FLAVIU TABARAN, CORNEL CĂTOI, OANA LUCIA REGET, and SORIN DANIEL DĂN

1Microbiology Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur street no.3/5, Cluj-Napoca, Romania; 2Animal Breeding and Food Safety Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur street no.3/5, Cluj-Napoca, Romania; and 3Pathologic Anatomy Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur street no.3/5, Cluj-Napoca, Romania

(Received February 13, 2017—Accepted June 19, 2017—Published online September 12, 2017)

This study was conducted in order to assess the antimicrobial resistance patterns of *E. coli* isolated from young animals affected between 1980 and 2016. The selected isolates for this study (n=175) carried *stx1/stx2* genes and the most prevalent type of pathogenic *E. coli* found belonged to serogroup O101, antigen (K99)–F41 positive. All STEC-positive isolates were tested for susceptibility to 11 antimicrobials. Multidrug resistance (MDR) increased from 11% during the 1980s to 40% between 2000 and 2016. Resistance to tetracycline and streptomycin was the most frequent co-resistance phenotype (37%). Co-resistance to tetracycline and sulfonamide was found in 21% of *E. coli* isolates, while the MDR pattern to tetracycline, sulfonamide, and streptomycin was observed in 12% of the strains tested. Only 8% of isolates were co-resistant to tetracycline, ampicillin, streptomycin, and sulfonamide. The most common resistance genes found were those encoding for tetracycline, sulphonamides, and streptomycin, with 54% (n=95) of the tested isolates containing at least one of the genes encoding tetracycline resistance. A total of 87% of *E. coli* that tested positive for tetracycline (*tetA*, *tetB*, and *tetC*) and sulphonamide (*sul1*) resistance genes were isolated between 2000 and 2016. A large number of isolates (n=21) carried int1 and a nucleotide sequence analysis revealed that all class 1 integron gene cassettes carried *int1* and a nucleotide sequence analysis revealed that all class 1 integron gene cassettes carried *int1* and a nucleotide sequence analysis revealed that all class 1 integron gene cassettes carried *int1*, while the MDR pattern to tetracycline, sulfonamide, and streptomycin was observed in 12% of the strains tested. Only 8% of isolates were co-resistant to tetracycline, ampicillin, streptomycin, and sulfonamide. The most common resistance genes found were those encoding for tetracycline, sulphonamides, and streptomycin, with 54% (n=95) of the tested isolates containing at least one of the genes encoding tetracycline resistance. A total of 87% of *E. coli* that tested positive for tetracycline (*tetA*, *tetB*, and *tetC*) and sulphonamide (*sul1*) resistance genes were isolated between 2000 and 2016. A large number of isolates (n=21) carried int1 and a nucleotide sequence analysis revealed that all class 1 integron gene cassettes carried *sul1*, *tet*, and *dfrA1* resistance genes. An increase was observed in the level of resistance to antimicrobials in Romania, highlighting the urgent need for a surveillance and prevention system for antimicrobial resistance in livestock in Eastern Europe.

Key words: *E. coli*, Shiga toxin-producing *E. coli*, antibiotic resistance, health

Pathogenic *Escherichia coli* strains belong to the multiple bacteria responsible for the occurrence of enteric diseases (11). Based on their virulence scheme, *E. coli* isolates may be classified into six pathogroups: enterotoxigenic *E. coli* (ETEC), Shiga toxin-producing *E. coli* (STEC), enteropathogenic *E. coli* (EPEC), enteroinvasive *E. coli* (EIEC), enteraggregative *E. coli* (EAggEC), and enteroadherent *E. coli* (EAdEC) (28, 44). ETEC infection is the most common type of colibacillosis in calves and piglets (47). Young animals are the most susceptible to ETEC infection during their first d of life, developing watery diarrhea if infected (22).

Commensal *E. coli* strains were susceptible to a large number of antimicrobial agents (32); however, due to the extensive use and uncontrolled treatment of farm animals (65, 66), antimicrobial-resistant strains have become a serious issue (66). The appropriate use of antimicrobial agents to treat neonatal diarrhea will be facilitated by a national database in which the most efficient antimicrobials are published according to their susceptibility. Although multiple studies have briefly described antimicrobial resistance and virulence factors in *E. coli* strains isolated from dairy calves in different regions worldwide (13, 23, 41), similar studies have yet to be performed in Romania. The most frequently prescribed antibi-

* These authors contributed equally to this work.

+ Corresponding author. E-mail: alexandra.lapusan@usamvcluj.ro; Tel: +40740140463; Fax: +400264596384.
acquisition of gene-encoding enzymes (e.g. β-lactamases) (60), increased activity of efflux pumps (59), acquisition of several genes that will lead to the production of bacterial cell walls lacking binding sites for antimicrobials, and the acquisition of mutations that will lead to decreased permeability (60). If these resistance genes are located on plasmids, they may be able to transfer rapidly among a number of bacterial species (38).

The horizontal transfer of resistance genes is a mechanism for the dissemination of multi-drug resistance (MDR) because resistance genes may be found in clusters and transferred together to the recipient (19). These genes may be transferred by different mechanisms of conjugation, transformation, or transduction. Under natural conditions, conjugation and transduction appear to be the most important transfer mechanisms in bacteria (56).

These mechanisms often involve integrons, which are mobile genetic elements that acquire antimicrobial resistance gene cassettes. Integrons are defined as genetic units that include determinants of the components of a site-specific recombination system capable of capturing mobile gene cassettes (3). The presence of class 1 integrons has been strongly correlated with MDR in Enterobacteriaceae (37).

This study aimed to investigate trends in resistance and antimicrobial resistance genes in 175 E. coli isolated from young animals (calves, foals, and piglets) with diarrhea symptoms in Romania during a 35-year period. The results of this study address the existing gap in resistance trends in E. coli isolates. This extended period of study will help to describe the evolution of resistance and emphasize the role of clinical medicine in the occurrence of resistant E. coli.

Materials and Methods

Samples and isolates

Samples were aseptically collected from calves, foals, and piglets by rectal swabbing, placed in sterile tubes, and transferred to the laboratory in a cool box within 3 h of collection. After arrival in the Microbiology Laboratory in the University of Agricultural Sciences and Veterinary Medicine Cluj, rectal swabs were transferred into separate tubes containing 2 mL nutrient broth and cultured at 37°C for one d following the steps stated in the ISO 16654:2001 protocol (26). Briefly, each sample was inoculated on MacConkey (Merck, Darmstadt, Germany) agar plates and incubated at 37°C overnight.

Confirmation and selection of E. coli bacteria

All lactose-fermenting colonies were tested and considered positive after the application of an indole test. The indole test was made using Kovac’s reagent (0.5 mL) added to 2 mL of peptone water previously inoculated with 5 mL of bacterial growth. Samples were considered to be indole positive when a pink–red color developed within 15 min. Among the total number of E. coli strains identified (n=1346), only 175 were further subjected to susceptibility testing and the molecular characterization of resistance genes. The selection of these strains was based on serotype, the molecular identification of virulence genes, and clinical signs in animals (10).

Serotyping and virulence gene identification

E. coli were serotyped based on the O (somatic lipopolysaccharide) antigen. The somatic antigen “O” was from lactose-positive strains (serogroup) and identified by serum agglutination in wells with monovalent anticolibacillar serum from O1–O157.

Multiplex PCR for detecting the genes encoding Shiga toxins (stx1 and stx2), intimin (eaec), heat-stable enterotoxin (Stx), heat-labile enterotoxin (LT), and the limbriae of F41 and K99 was performed using the primers described in Table S1 (Supplementary file).

The PCR assay was conducted in a final volume of 50 μL comprising the following: 1×PCR green Buffer, 1.5 mM MgCl2; 10 pmol of each primer, deoxynucleotides (dNTPs) each at 200 μM, 1.25 U of Taq DNA polymerase (Promega, Madison, WI, USA), and 5 μL of genomic DNA in a concentration of 50 ng μL–1. PCR was performed under the following conditions: 94°C for 3 min followed by 25 cycles of 94°C for 30 s, 54°C for 45 s, and 50°C for 1 min, and a final extension step of 70°C for 3 min. E. coli strains 152–2 (5) (eaec/stx1/stx2) and ETEC23 (Sta/LT-III/F41/K99) were used as positive controls, and E. coli DH5α was the negative control in all tests. Positive and negative controls were previously isolated in the Microbiology Laboratory in the University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca.

Susceptibility testing

The disk diffusion method of Bauer et al. (1966) (4) was used for susceptibility testing. Isolates were examined against several classes of antibiotics: Penicillins testing ampicillin (AMP, 10 μg), cephalosporins testing cefotaxime (CTX, 30 μg), cefazidime (CAZ, 30 μg), macrolide testing chloramphenicol (CHL, 30 μg), quinolones testing ciprofloxacin (CIP, 5 μg) and nalidixic acid (NA, 30 μg), aminoglycoside testing gentamicin (GEN, 10 μg), streptomycin (S, 10 μg), sulfonamide testing sulfathiazole (SMX, 300 μg), trimethoprim/sulfamethoxazole (SXT, 1.25/23.75 μg), and tetracyclines (TET, 30 μg). The zones of inhibition were measured (including the diameter of the disk) using a ruler to the nearest millimeter and recorded. The E. coli ATCC 25922 strain was used as a quality control organism. Isolates were classified as “Resistant” or “Susceptible” based on the standard interpretation chart according to the Clinical Laboratory Standards Institute (12). Intermediate susceptible strains were considered susceptible in the interpretation of the results. We classified strains that showed resistance to three or more antimicrobials as MDR.

PCR method for identification of resistance genes

All 175 strains were tested for the presence of S, GEN, sulfonamide, beta-lactams, erythromycin, TET, trimethoprim, and quinolone resistance determinants. In order to detect expressed and unexpressed genes, all isolates were screened, not taking into account their susceptibility profiles. The genes that were chosen for investigation were selected according to their prevalence among E. coli, which was previously suggested by other studies (17, 51).

DNA extraction followed a short protocol previously described by Mihaiu et al. (2014) (40). Briefly, 2–3 E. coli colonies growing on MacConkey media were removed with a sterile plastic loop and resuspended in 150 μL Chelex solution (Sigma Aldrich, St. Louis, MO, USA). The selection of specific E. coli colonies was based on lactose-fermenting properties and biochemical confirmation by the API 20E test (BioMerieux, Lyon, France). Sample tubes were subjected to high temperatures (94°C–15 min and 56°C–10 min). Assessments of the quantity and purity of DNA were made on a Nanodrop ND-1000 spectrophotometer analyzer (NanoDrop Technologies, Wilmington, DE, USA).

The identification of genes associated with resistance was performed by PCR and the sets of primers used are shown in Table S1 (Supplementary file). Eight classes of antimicrobials were investigated through the amplification of the following genes: aadA1 (S), tet(A), tet(B), tet(C), tet(G) (TET), dfrA1 (trimethoprim), qnrA (quinolones), aac (GEN), sul1 (sulfonamides), blalgy, blascm, blaCTX (beta-lactams), and ereA (erythromycin).

The PCR reaction mix (25 μL) comprised: 1×PCR green Buffer, 2.5 mM MgCl2; 5 pmol of each primer, dNTPs each at 200 μM, 2.5U of TaqDNA polymerase (Promega), and 100 ng of genomic DNA. Singleplex PCR was performed under the following conditions: 94°C for 3 min followed by 35 cycles of 94°C for 30 s, 58°C for 30 s, and 72°C for 1 min, and a final extension step of 73°C for 5 min.
Following amplification, 10 μL from each PCR reaction containing the amplified product was loaded onto agarose gels (2%). The gels were stained with EvaGreen (JenaBioscience, Jena, Germany) and electrophoresed (90 W) for 40 min. Visualization was performed under UV light with a Gel Doc XR+Imager (Bio-Rad, Hercules, CA, USA). Strains of *E. coli* O157:K88ac:H19, CAPM 5933 and *E. coli* O159:H20, CAPM 6006 were used as positive controls.

Integron class identification and characterization

The presence of class 1 and class 2 integrons was analyzed by the PCR amplification of integrase genes (*int1* and *int2*), variable regions containing gene cassettes (*c1gc* and *c2gc*), and the 3′ conserved region of the class 1 integron (*qacEΔ1 and sul1*) (29).

Amplification products were extracted from gels with the FavorPrep™ Gel/PCR Purification Kit (Favorgen, Ping-Tung, Taiwan). The amplified products were sequenced in an authorized laboratory (Macrogen, Seoul, Korea) with the class 1 and class 2 integron forward and reverse primers (Table 1). In order to identify gene cassettes in integrons, each gene cassette region in classes 1 and 2 was amplified and further sequenced. Sequence alignments were confirmed using the GenBank database and BLASTX search engine (2).

Statistical analysis

The Mann-Kendall test was performed to identify increasing or decreasing trends over the period studied. The magnitude of change over the 35-year period was estimated using a slope parameter (Q), which is a measure of trend strength. A decreasing trend over the period studied was confirmed. The magnitude of change over the 35-year period was estimated using a slope parameter (Q), which is a measure of trend strength. A decreasing trend over the period studied was confirmed.

Table 1. *E. coli* resistance patterns

Co-resistance pattern	No. (%) of isolates
TET, TREP	37 (21)
AMP, TET, TREP	21 (12)
CF, QUIN, OXT	2 (1)
AMP, TET, TREP, SXT	9 (5)
TET, AMP, QUIN, OXT, GEN	3 (1)
AMP, TREP, OXT, CF, QUIN, GEN	3 (1)
AMP, CF, TREP, OXT, SXT, GEN	1 (0.5)
AMP, TET, CF, TREP, OXT, NA, GEN	1 (0.5)
AMP, CF, TREP, OXT, SXT, GEN	2 (1)
Others*	34 (19)
No resistance	63 (36)
Susceptible	

* Isolates with two or less antimicrobial agents.

Table 2. Hemolytic and fimbrial adhesin-producing *E. coli* strains isolated from young animals with diarrhea and positive for Stx

Toxins	1980–1989	1990–1999	2000–2016	Serogroups (no. isolates)
LT-I and Stx-1	3 (1.7)	12 (6.8)	5 (2.8)	O1(1), O17(1), O23(3), O78(1), O139(11), O146(1), O153(2)
LT-II and Stx-1	5 (2.8)	16 (9.1)	21 (12)	O23(4), O26(3), O55(2), O103(4), O117(5), O123(1), O124(6), O144(3), O146(7), ONT(1), Rugous(6)
LT-I and Stx-2	0	1 (0.55)	2 (1.1)	O1(1), O101(1), O103(2), ONT(1), Rugous(1)
LT-II and Stx-2	0	0	6 (3)	O103(2), O117(2), O123(1), O124(1), O144(1), Rugous(2)
Stx and Stx-1	4 (2.2)	2 (1.1)	3 (1.7)	O144(3), Rugous(5)
Sta and Stx-2	2 (1.1)	1 (0.5)	5 (2.8)	O23(2), O26(3), O55(2), O103(2), O117(1), O123(3)
Eae and Stx-1	4 (2.2)	3 (1.7)	6 (3.4)	O146(1), ONT(1), Rugous(5)
Eae and Stx-2	0	2 (1.1)	5 (2.8)	O23(6), O26(5), O55(4), O103(4), O117(15), O123(11), O124(6), O144(3), O146(7), ONT(1), Rugous(16), N* (41)
Fimbriae				O103(2), O117(5), O123(3), O124(1), O144(5), Rugous(12), N* (22)

* N—not typed.
11.4% between 1980 and 1989 (n=4) to 40% between 2000 and 2016 (n=28). Significant changes in resistance patterns (P<0.001) were noted when comparing the isolates collected in 1980s with those from the 1990s and 2000s. This significant increase was observed for TET, sulfonamide, and S. Regarding the other classes of antimicrobials studied, no significant changes were noted; however, a slight increase was found.

Seventy-four (43%) E. coli isolates showed MDR phenotypes, with 19 (10.8%) exhibiting resistance to 4 or more antimicrobial classes. A larger proportion of these MDR isolates was recovered between 2000 and 2016 (n=34) than between 1980 and 1989, during which only 6 isolates were MDR. Between 1990 and 1999, we isolated 34 strains that showed MDR phenotypes. No significant difference (Mann-Kendall test) (P>0.05) was noted when the number of MDR phenotypes isolated between 1990 and 1999 was compared with that isolated between 2000 and 2016. Two strains showed resistance to all the antimicrobials tested and both of them were recovered in 2004.

The most common co-resistance phenotypes identified were TET/S (37%) (Table 1), followed by TET/sulfonamide (21%) and TET/S/sulfonamide (12%).

Resistance to cephalosporin and sulphonmethoxazole/trimethoprim was rare and only found in isolates that showed MDR. None of the isolates collected between 1980 and 1990 showed resistance to cephalosporin and only one isolate was resistant to sulphonmethoxazole/trimethoprim. Three isolates collected between 2000 and 2016 showed concurrent resistance to cephalosporin and sulphonmethoxazole/trimethoprim.

In the present study, GEN resistance was not observed in isolates collected in the 1980s. In the 1990s, only one isolate was resistant to GEN, and this number increased between 2007 and 2016 to 6 isolates.

Prevalence of resistance genes

The most common resistance genes found were those encoding for TET, sulfonamide, and S resistance. A total of 54% (n=95) of the tested isolates contained at least one of the genes encoding TET resistance, with the *tetA* gene being the most prevalent (48%; n=84). Three out of the 95 isolates that carried TET genes were not phenotypically resistant to TET. The genes *tetB* and *tetC* were also identified at a high proportion (38% and 24%, respectively). Genes responsible for resistance to sulfonamides (*sul1*) and trimethoprim (*dfrA1*) were detected in 22% (n=40) and 18% (n=33), respectively, of the isolates. We found that 87% of *E. coli* that tested positive for TET (*tetA*, *tetB*, and *tetC*) and sulfonamide (*sul1*) resistance genes were isolated between 2000 and 2016. This resistance to sulfonamide was observed in six isolates (11%) between 1980 and 1990, while this number markedly increased (64%) between 2010 and 2016. Furthermore, 29% of *E. coli* that carried the beta-lactamase (*blaTEM*) gene was isolated in the 2000s. None of the *E. coli* isolated within the 1980s tested positive for beta-lactam or quinolone genes (Table 3).

According to our statistical analysis, the prevalence of TET, trimethoprim, sulfonamide, and beta-lactamase genes was significantly higher (P<0.001) between 2000 and 2016 than in the 1980s.

Integron characteristics

Among the *E. coli* isolates investigated (n=175), 23 (13%) showed integrase-positive results. Among these, 21 (91%) carried *int1*, 4 (17%) *int2*, and 2 (8%) *int1* and *int2*. Collectively, they accounted for 48% of the 47 MDR isolates characterized in the present study. Our results also revealed a higher prevalence of integron-positive *E. coli* isolated between 2000 and 2016 (n=15; 71%).

The nucleotide sequence analysis revealed that all class 1 integron gene cassettes carried *sul1*, *tet*, and *dfrA1* resistance genes. Four gene cassettes that encoded resistance to trimethoprim (*dfrA1*), S (*aadA1*), and beta-lactams (*blaSHV* and *blaTEM*) were detected in five class 1 integrons. Two different types of class 2 integrons, *dfrA1-aadA1* and (*blaTEM-aadA1*), were found in int2-positive isolates.

Discussion

The major goal of the present study was to document antimicrobial resistance patterns among *E. coli* isolates that caused neonatal diarrhea in young calves born between 1980 and 2016 in Romania. This study is important because almost 25% of calves are affected by diarrhea before weaning (58), making it the number one cause of morbidity and mortality (61). A previous study on European production animal systems, which did not include Romania, reported very high levels of antimicrobial resistance in veal farms (46), indicating that these units are a key target in risk reduction strategies (16).

We confirmed that veal farms represent an important reservoir of resistant bacteria because the pathogenic *E. coli* isolated exhibited increased resistance to 6 antimicrobial agents, including AMP, sulfonamide, TET, SXT, and S, which is a cause for concern due to the implied hazards. Meat quality is constantly monitored in Romania to ensure there are no residues in meat; however, there is a risk that drug-resistant strains are passed on through direct contact between humans and animals (notably farmers). There is a further indirect threat to human health as a result of animal excretion, resulting

Phenotype of resistance	Resistance genes detected
TET, STREP	*TetA, aadA1*
AMP, TET, STREP	*blaTEM, tetA, tetB, tetC, aadA1*
CF, QUIN, OXT	*dfrA1, qnrA, tet A, tetB, blaTEM*
AMP, TET, STREP, SXT	*blaTEM, tet A, tetB, tetC, aadA1, dfrA1*
TET, AMP, QUIN, OXT, GEN	*tet A, tetB, tetC, blaTEM, sul1*
AMP, STREP, OXT, CF, QUIN, GEN	*sul1, tet A, tetC, blaTEM, sul1*
AMP, CF, STREP, OXT, SXT, GEN	*blaTEM, tet A, tetB, tetC, aadA1, dfrA1*
AMP, TET, CF, STREP, OXT, NA, GEN	*blaTEM, tet A, aadA1, dfrA1, ereA*
AMP, CF, TET, STREP, OXT, SXT, GEN	*blaTEM, tet A, tetB, aadA1, dfrA1*
in the release of resistant bacteria into the environment, thereby providing opportunities for exposure and the creation of selective pressure for the development of antimicrobial resistance (62).

The present study revealed a high prevalence of resistance to TET, sulfonamide, and AMP. This pattern of resistance has increased over time and may have occurred due to the irresponsible use of these antimicrobials in animal treatments for different infections (21). A previous study reported the yearly use of 300,000 kg of antimicrobials in some countries as veterinary prescriptions for animals (63).

In contrast to other studies, our results on the resistance of E. coli isolates from neonatal diarrhea-affected calves showed a markedly lower trend (49, 69). This pattern difference may reflect the various uses of antimicrobial agents in different regions and countries. Due to the high resistance rate of E. coli isolated between 2010 and 2016 to AMP, S, and TET, the phenotypes of resistance have increased from those between 1980 and 1989. The increase in antimicrobial resistance to these agents over time may be explained by some (TET, S, penicillin, and sulfonamides) being added to calf milk replacer in order to combat the stresses faced early in life (7). This practice was previously performed in an attempt to delay morbidity and decrease mortality (6) as well as promote increased growth and improve feed efficiency (8).

Previous studies reported a link between the level of antimicrobial usage in growth units and acquired resistance in E. coli in calves (14, 27, 68). Therefore, antimicrobial therapy in animals may be the cause of the high level of resistant bacteria diffused in the farm environment (6). The age-related occurrence of resistance has also been suggested. E. coli serotypes isolated from older calves were found to have different resistance patterns from those from younger calves (25). This finding indicates that the shift observed in resistance patterns is due to the acquisition of new resistant strains rather than to the reestablishment of the same strains (30). Our study focused on young aged animals (2–4 months old) bred in the same environment and growth systems. We considered contamination to be influenced by diet and resistance to be the highest in the milk-feeding period (17).

Resistance to sulfonamide was one of the most common resistance profiles identified, and also showed the greatest increase over time. Sulfonamides were introduced in the 1930s and have since been used as therapy. In veterinary medicine, sulfonamide is one of the most commonly used antimicrobials (39) and a high prevalence of clinical resistance has been reported in bacteria isolated from humans and food products (19, 21, 31). This phenomenon is often associated with the presence of sul genes (31). Sulfonamide resistance genes are also associated with mobile genetic elements (integrons), which play a major role in the dissemination of multiple antimicrobial resistance genes (5).

A corresponding resistance gene was detected in most phenotypically resistant strains. Under conditions in which the gene was not identified, a possible explanation was provided by the limited number of genes tested in this study. This study also showed that resistance genes were identified in phenotypically susceptible strains. This result may be explained by possible lack of expression in these bacteria. To the best of our knowledge, this study is the first to describe the antimicrobial resistance patterns and genes involved in E. coli causing neonatal diarrhea in young calves in Romania. Among 175 E. coli isolates, 112 were resistant to at least one antimicrobial tested and 37 were classified as MDR.

The identification of a high proportion of tetA and/or tetB genes in TET-resistant isolates indicates that the main mechanism of TET resistance in calf E. coli isolates is through active efflux (70). A predominance of the tetB gene has been observed among TET-doxycycline-resistant E. coli isolates of diarrheic calves, which is consistent with previous findings obtained in different countries (15, 53). Resistance genes were carried by phenotypically susceptible strains of bacteria, which may have led to their expression not yet occurring. Other studies have also shown the lack of expression of resistance genes in some bacteria (33, 50, 57).

Integron genes in Enterobacteriaceae are widespread and contribute to MDR (36, 37). Class 1 and class 2 integron genes were found within our E. coli isolates. Their prevalence was lower than that previously reported in E. coli isolated from poultry and pigs (34). In the present study, 13% of stx-positive strains were also positive for integrons. Previous studies revealed a higher prevalence of integron-positive STEC strains isolated in the USA and originating from human patients (n=81) and sick animals (n=193; poultry, cattle, and swine) (54). Zhao et al. (2001) (71) revealed an integron class 1 prevalence of 18% in 50 analyzed STEC strains originating from humans, animals, and food. Our results revealed the lack of marked variations in the antimicrobial-resistance gene cassettes present in the two different integron types. They all contained genes coding for resistance to S/spectinomycin (aadA1) and/or trimethoprim (dfrA1). A study performed in Brazil on thirty-two STEC strains showed that the integrase gene associated with class 1 integrons in 22% of isolates, all of which had a uniform size and contained a single gene cassette, aadA1 (S resistance) (9). Povilonis et al. (2010) (48) described similar findings to the present results, showing that the most prevalent integron types contained the arrays dfrA1-aadA1 (36%), dfrA17-aadA5 (23%), and dfrA1-sat1-aadA1 (78%), while Skurnik et al. (2005) (55) revealed that 85% of class 1 integrons carried the dfr and/or aadA genes. Our results showed that the most common gene cassette array was dfrA1, which was present in 21 of the integron 1-positive strains. Most of the integron-positive strains (87%) were resistant to at least three different antimicrobials and their prevalence was higher between 2000 and 2016 (P<0.001) than between 1980 and 1989. In integron-negative strains, 23% were resistant to at least three antimicrobials and were isolated at a higher frequency between 1989 and 1999 (P<0.001) than between 1980 and 1989. Our results were consistent with previous findings reported by Nagachinta & Chen (2009) (43), who showed that all integron-positive strains examined were resistant to at least three different antimicrobials. Integron-positive strains were significantly more resistant to TET (82%), sulfonamides (65%) and trimethoprim (46%) than integron-negative strains. The strains isolated between 2000 and 2016 showed a higher prevalence of integron classes, which is a clear warning signal for the rapid spread of antimicrobial resistance.

Another factor that is a cause for concern is that all
integron-positive strains showed virulence factors that are relevant because neonatal diarrhea produced by *E. coli* strains is an important cause of economic losses on farms. Most of the isolates showing the presence of these virulence factors were isolated between 2000 and 2016, which is concerning and draws attention to not only *E. coli* becoming more resistant to antimicrobials, but also more aggressive. *E. coli* isolated from animals may also present genes that are related to virulent strains in humans (35). In this study, we identified 5 strains with the gene for LT-II, which was unexpected because it is not common in calves (42).

E. coli producing Shiga toxins and carrying the eae gene are commonly isolated from the feces of calves and cattle (1); however, we only found twenty isolates that carried the eae gene. The presence of the stx1 and stx2 genes in 13% of the analyzed *E. coli* isolates is consistent with that reported by Güler et al. (2008) (24) in Turkey, revealing that 13% and 5% of *E. coli* isolated from diarrheic calves presented stx1 and stx2, respectively.

The STEC strains of *E. coli* showed markedly high resistance patterns, particularly between 2000 and 2016, which is very important because the Stx toxin may be involved in economic losses and also has a large impact on human health because these animals may be carriers to humans. Cattle are considered to be a major reservoir of STEC worldwide (1); however, field literature indicates that regions with a high prevalence of STEC in dairy cattle typically do not have a high incidence of cases of human infections (42).

Conclusion

STEC-positive *E. coli* isolated from calves affected by neonatal diarrhea showed a high level of resistance to currently used antimicrobials. The results of the present study, which were obtained over a period of 35 years, suggest concerning increases in resistant STEC strains in young calves affected by neonatal diarrhea. The high rate of STEC isolation, diversity of ETEC serogroups, and presence of virulence factors described here identify dairy calves as important reservoirs of STEC and ETEC in our setting. This analysis provides information regarding the development of resistance over time, which lays the groundwork for understanding the evolution of MDR at the genetic level in Romania. Most MDR *E. coli* serogroups are associated with human diseases, which suggests a potential source of public health and environmental spread in the European community.

Acknowledgements

This study was published under the frame of the European Social Fund. Human Resources Development Operational Programme 2007–2013, project no. POSDRU/159/1.5/S/136893.

References

1. Aidar-Ugrinovich, L., J. Blanco, M. Blanco, J.E. Blanco, L. Leomil, G. Dahbi, and A.P. de Castro. 2007. Serotypes, virulence genes, and intimin types of Shiga toxin-producing *Escherichia coli* (STEC) and enteropathogenic *E. coli* (EPEC) isolated from calves in São Paulo, Brazil. Int. J. Food Microbiol. 115:297–306.

2. Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.

3. Backx, A., H.E. Smith, van A. Essen, K.T. Veldman, and D.J. Mevius. 2006. Characterization of integrons in *E. coli* isolates of Dutch veal calves and dairy cows, p. 724. Proceedings of the 11th International Symposium on Veterinary Epidemiology and Economics, Cairns, Australia.

4. Bauer, A.W., W.M.M. Kirby, J.C. Sherris, and M. Turck. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Path. 45:493–496.

5. Bean, G.J., S.T., Flickinger, W.M. McCully, D. Sept, D.B. Weibel, and K.J. Amann. 2009. A22 disrupts the bacterial actin cytoskeleton by directly binding and inducing a low-affinity state in mreB. Biochem. 48:4852–4857.

6. Berge, A.C.B., W.B. Eppeuron, and R.H. Pritchard. 2005. Assessing the effect of a single dose florfenicol treatment in feedlot cattle on the antimicrobial resistance patterns in faecal *Escherichia coli*. Vet. Res. 36:723–734.

7. Berge, A.C.B., D.A. Moore, and W.M. Sischo. 2006. Field trial evaluating the influence of prophylactic and therapeutic antimicrobial administration on antimicrobial resistance of fecal *Escherichia coli* in dairy calves. Appl. Environ. Microbiol. 72:3872–3878.

8. Berge, A.C.B., T.E. Besser, D.A. Moore, and W.M. Sischo. 2009. Evaluation of the effects of oral colostrum supplementation during the first fourteen days on the health and performance of preweaned calves. J. Dairy Sci. 92:286–295.

9. Cergole-Novella, M.C., A.C.C. Pignatari, M. Castanheira, and B.E.C. Gutiérrez. 2011. Molecular typing of antimicrobial-resistant Shiga-toxin-producing *Escherichia coli* strains (STEC) in Brazil. Res. Microbiol. 162:117–123.

10. Cheesbrough, M. 1985. Medical laboratory manual for tropical countries, p. 400–480. Volume II: Microbiology.

11. Cho, Y.I., and K.J. Yoon. 2014. An overview of calf diarrhea—infec-
tious etiology, diagnosis, and intervention. J. Vet. Sci.15:1–17.

12. CLSI. 2010. Performance standards for antimicrobial susceptibility evaluation of the effects of oral colostrum supplementation during the first fourteen days on the health and performance of preweaned calves. J. Dairy Sci. 92:286–295.

13. de Verde, K., A. Nyman, C. Greko, and B. Bengtsson. 2012. Antimicrobial resistance and virulence factors in *Escherichia coli* from Swedish dairy calves. Acta Vet. Scand. 54:1.

14. Di Labio, E., G. Regula, A. Steiner, R. Miseres, A. Thomann, and U. Ledergerber. 2007. Antimicrobial resistance in bacteria from Swiss veal calves at slaughter. Zoonoses Public Hlth. 54:344–352.

15. Dolesjka, M., D. Senk, A. Cizek, J. Rybarikova, O. Sychra, and I. Literak. 2008. Antimicrobial resistant *Escherichia coli* isolates in cattle and house sparrows on two Czech dairy farms. Res. Vet. Sci. 85:491–494.

16. Dorado-Garcia, A., H. Graveland, M.E. Bos, K.M. Verstappen, B.A. Van Cleeft, J.A. Klyutmans, and D.J. Heederik. 2015. Effects of reducing antimicrobial use and applying a cleaning and disinfection program in veal calf farming: Experiences from an intervention study to control livestock-associated MRSA. PLoS One 10:e0135826.

17. Duse, A. 2015. Antimicrobial resistant *Escherichia coli* in faeces from preweaned dairy calves. Ph.D. thesis. Swedish University of Agricultural Sciences, Uppsala, Sweden.

18. Dzidic, S., J. Suskovic, and B. Kos. 2008. Antibiotic resistance in bacteria. Food Tech. Biotech. 46:11–21.

19. Enne, V.I., D.M. Livermore, P. Stephens, and L.M.C. Hall. 2001. Persistence of sulfonamide resistance in *Escherichia coli* in the UK despite national prescribing restriction. Lancet 357:1325–1328.

20. European Centre for Disease Prevention and Control. 2015. Shortage of acellular pertussis-containing vaccines and impact on immunisation programmes in the EU/EEA—8 October 2015. Stockholm.

21. European Food Safety Authority Panel on Biological Hazards (EFSA). 2008. Foodborne antimicrobial resistance as a biological hazard. Scientific Opinion. EFSA J. 7:651:1–87.

22. Foster, D.M., and G.W. Smith. 2009. Pathophysiology of diarrhea in calves. The Vet. Clin. North Am., Food Animal Practice 25:13–36.

23. González, E.A., and J. Blanco. 1989. Serotypes and antibiotic resistance of verotoxigenic (VTEC) and necrotizing (NTEC) *Escherichia coli* strains isolated from calves with diarrhea. FEMS Microbiol. Lett. 60:31–36.

24. Güler, L., K. Gündüz, and Ü. Ok. 2008. Virulence factors and antimicrobial susceptibility of *Escherichia coli* isolated from calves in Turkey. Zoonoses Public Hlth. 55:249–257.
25. Hinton, M., A.J. Hedges, and A.H. Linton. 1985. The ecology of *Escherichia coli* in market calves fed a milk-substitute diet. J. Appl. Bact. 58:27–35.

26. ISO 16654. 2001. 1st ed. Microbiology—Horizontal method for the detection of *Escherichia coli* O157, International Organization for Standardization, Geneva, Switzerland.

27. Jones, R.N., M. Castanheira, B.J. Hu, et al. 2013. Update of contemporary antimicrobial resistance rates across China: reference testing results for 12 medical centers (2011). Diagn. Microbiol. Infect. Dis. 77:258–266.

28. Kaper, J.B., J.P. Nataro, and H.L. Mobley. 2004. Pathogenic *Escherichia coli*. Nat. Rev. Microbiol. 2:123–140.

29. Leverstein-Van Hall, M.A., A.T. Box, H.E. Blok, A.C. Fluit, and J. Verhoef. 2002. Evidence of extensive interspecies transfer of integron-mediated antimicrobial resistance genes among multidrug-resistant *Enterobacteriaceae* in a clinical setting. J. Infect. Dis. 186:49–56.

30. Maynard, C., J.M. Fairbrother, S. Bekal, F. Sanschagrin, R.C. Headrick, Y.H. Schukken, and S.P. Oliver. 2007. Phenotypic and genotypic antimicrobial resistance patterns of *Escherichia coli* isolated from dairy cows with mastitis. Vet. Microbiol. 124:319–328.

31. McEwen, S.A., and P.J. Fedorka-Cray. 2002. Antimicrobial use and resistance in animals. Clin. Infect. Dis. 34:S93–S106.

32. Misam, M., A. Lapusan, R. Tanasucia, R. Solowu, R. Mihaiu, O. Moștoci, S. Chirila, M. Caștian, and I. Bora. 2015. Typing of intimin genes in human and animal enteropathogenic *Escherichia coli* characterization of a new intimin variant. Infect. Immun. 68:64–71.

33. Nataro, J.P., and J.B. Kaper. 1998. Pathogenesis and diagnosis of Shiga toxin-producing *Escherichia coli* infections. Clin. Microbiol. Rev. 11:450–479.

34. Nataro, J.P., and J.B. Kaper. 1998. Diarrheagenic *Escherichia coli*. Clin. Microbiol. Rev. 11:142–201.

35. Nijsten, R., N. London, A. van den Bogaard, and E. Stobberingh. 1996. Antibiotic resistance among *Escherichia coli* isolated from feecal samples of pig farmers and pigs. J. Antimicrob. Chemother. 37:1131–1140.

36. Oswald, E., H. Schmitt, S. Morabito, H. Karch, O. Marches, and A. Caprioli. 2000. Typing of intimin genes in human and animal entero-hemorrhagic and enteropathogenic *Escherichia coli*: characterization of a new intimin variant. Infect. Immun. 68:64–71.

37. Paton, J.C., and A.W. Paton. 1998. Pathogenesis and diagnosis of Shiga toxin-producing *Escherichia coli* infections. Clin. Microbiol. Rev. 11:450–479.

38. Putilov, V., J. Šepútienė, M. Ružūnas, R. Šiūgūdièienè, M. Virgillis, A. Pavilonè, and E. Sužiedèlienè. 2010. Transferable class 1 and 2 integrons in *Escherichia coli* and *Salmonella enterica* isolates of human and animal origin in Lithuania. Foodborne Pathog. Dis. 7:1185–1192.

39. Rybacková, J., M. Dolejská, D. Materna, I. Literák, and A. Cizek. 2010. Phenotypic and genotypic characteristics of antimicrobial resistant *Escherichia coli* isolated from symbiotic flies, cattle and sympatric insectivorous house martins from a farm in the Czech Republic (2006–2007). Res. Vet. Sci. 89:179–183.

40. Ryu, S.H., J.H. Lee, S.H. Park, et al. 2012. Antimicrobial resistance profiles among *Escherichia coli* strains isolated from commercial and cooked foods. Int. J. Food Microbiol. 159:263–266.

41. Schwartz, S., C. Kehrenberg, and T.R. Walsh. 2001. Use of antimicrobial agents in veterinary medicine and food animal production. Int. J. Antimicrob. Agents 17:431–437.

42. Sen, P.K. 1968. Estimates of the regression coefficient based on Kendall's tau. J. Am. Statist. Assoc. 63:1379–1389.

43. Shahrami, M., S.D. Farhad, and H. Mottaz. 2015. Characterization of *Escherichia Coli* virulence genes, pathotypes and antibiotic resistance properties in diarrheic calves in Iran. Biol. Res. 47:28.

44. Singh, R., C.M. Schroeder, J. Meng, et al. 2005. Identification of antimicrobial resistance and class 1 integrons in Shiga toxin-producing *Escherichia coli* recovered from humans and food animals. J. Antimicrob. Chemother. 56:216–219.

45. Skurnik, D., A. Le Menac'h, D. Zurakowski, D. Mazel, P. Courvalin, E. Denamur, A. Andremont, and R. Ruimy. 2005. Integron-associated antibiotic resistance and phylogenetic grouping of *Escherichia coli* isolates from healthy subjects free of recent antibiotic exposure. Antimicrob. Agents Chemother. 49:3062–3065.

46. Slater, J.H. 1985. Gene transfer in microbial communities. p. 89–98. *In H.O. Halvorsen, D. Pamer, M. Rogul (ed.). Engineered Organisms in the Environment—Scientific Issues. Washington D.C.*

47. Srinivasan, V., B.E. Gillespie, M.J. Lewis, L.T. Nguyen, S.I. Heardiek, Y.H. Schukken, and S.P. Oliver. 2007. Phenotypic and genotypic antimicrobial resistance patterns of *Escherichia coli* isolated from dairy cows with mastitis. Vet. Microbiol. 124:319–328.

48. Stanton, A.L., D.F. Kelton, S.J. LeBlanc, J. Wormuth, L.K. Fox, and K.E. Leslie,. 2013. Effects of tulathromycin on incidence of various diseases and growth of young heifers. J. Am. Vet. Med. Assoc. 243:267–276.

49. Sun, J., Z. Deng, and A. Yan. 2014. Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochem. Bioph. Res. Co. 453:254–267.

50. Tenover, F.C. 2003. Mechanisms of antimicrobial resistance in bacteria. Antimicrob. Agents Chemoth. 47:763–771.

51. Tenover, F.C. 2006. Mechanisms of antimicrobial resistance in bacteria. Am. J. Med. 119:S3–S10.

52. Van Boeckel, T.P., C. Brower, M. Gilbert, D.L. O'Naraide, and S. Hopkins. 2015. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. U.S.A. 112:5649–5654.

53. Van Boeckel, T.P., C. Brower, M. Gilbert, et al. 2015. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. U.S.A. 112:5649–5654.

54. Van Boeckel, T.P., C. Brower, M. Gilbert, et al. 2015. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. U.S.A. 112:5649–5654.

55. Van Boeckel, T.P., C. Brower, M. Gilbert, et al. 2015. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. U.S.A. 112:5649–5654.

56. Van Boeckel, T.P., C. Brower, M. Gilbert, et al. 2015. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. U.S.A. 112:5649–5654.

57. Vinke, J.M., A. Fasu, R. de Vries, and C. Fauque. 2013. Phenotypic resistance in food-borne bacterial contaminants in Vietnam. Appl. Environ. Microbiol. 73:7906–7911.
66. Van, T.T.H., J. Chin, T. Chapman, L.T. Tran, and P.J. Coloe. 2008. Safety of raw meat and shellfish in Vietnam: An analysis of *Escherichia coli* isolations for antibiotic resistance and virulence genes. Int. J. Food Microbiol. 124:217–223.

67. Wellington, E.M., A.B. Boxall, P. Cross, *et al.* 2013. The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect. Dis. 13:155–65.

68. Yamamoto, S., E. Iwabuchi, M. Hasegawa, H. Esaki, M. Muramatsu, N. Hirayama, and K. Hirai. 2013. Prevalence and molecular epidemiological characterization of antimicrobial-resistant *Escherichia coli* isolates from Japanese black beef cattle. J. Food Prot. 76:394–404.

69. You, J.Y., B.M. Moon, I.G. Oh, B.K. Baek, L.G. Li, B.S. Kim, B.D. Stein, and J.H. Lee. 2006. Antimicrobial resistance of *Escherichia coli* O157 from cattle in Korea. Int. J. Food Microbiol. 106:74–78.

70. Zhang, L.L., D.Q. Zhu, H. Wang, L. Hou, and W. Chen. 2012. Humic acid-mediated transport of tetracycline and pyrene in saturated porous media. Environm. Toxicol. Chem. 31:534–541.

71. Zhao, S., D.G. White, G.E. Beilei, *et al.* 2001. Identification and characterization of integron-mediated antibiotic resistance among Shiga Toxin-Producing *Escherichia coli* isolates. Appl. Environm. Microbiol. 4:1558–1564.