Relationship between Human Eye and Different Divergence of Skeletal Class I Pattern: A Correlative Study

Garima Gupta¹, Shashank Gupta², Manish Goyal³, Neha Gupta⁴

ABSTRACT

Introduction: All the systems in the body are interconnected to form a single structural unit. Scientific evaluations of potential correlations between the stomatognathic system and the eye are based on different scientific approaches. Some recent studies have shown that the various genes and growth factors involved in the eye formation play an important role in the development of the stomatognathic system also.¹,²

In this study, patterns of horizontal, average, or vertical growth were diagnosed from the lateral cephalograms. These growth patterns were correlated with the visual acuity, corneal diameter, corneal thickness, axial length, retinal nerve fiber layer thickness, and intraocular pressure of each patient.

Materials and Methods: A total of 150 samples were selected. The sample selected for the study ranged in the age group from 18 to 24 years. Individual were subjected to radiographs (lateral cephalograms) and various eye tests. The subjects were divided into horizontal, average, and vertical growth patterns on the basis of the Go-Gn-SN angle.

Results: Positive correlation was found between visual acuity and mandibular plane angle among the average growth pattern, and negative correlation was found between visual acuity and mandibular plane angle among the horizontal growth pattern. So, the present study concludes that there is a correlation between the human eye variables and the growth patterns, and thus malocclusion can be anticipated on this basis.

Keywords: Divergence, Eye, Pax-6, Pax-9, Skeletal pattern.

How to cite this article: Gupta G, Gupta S, Goyal M, et al. Relationship between Human Eye and Different Divergence of Skeletal Class I Pattern: A Correlative Study. J Mahatma Gandhi Univ Med Sci Tech 2018;3(2): 54–60.

Source of support: Nil
Conflict of interest: None

INTRODUCTION

All the systems in the body are interconnected to form a single structural unit. Scientific evaluations of potential correlations between the stomatognathic system and the eye are based on different scientific approaches. Some recent studies have shown that the various genes and growth factors involved in the eye formation play an important role in the development of the stomatognathic system also.¹,²

In this study, patterns of horizontal, average, or vertical growth were diagnosed from the lateral cephalograms. These growth patterns were correlated with the visual acuity, corneal diameter, corneal thickness, axial length, retinal nerve fiber layer thickness, and intraocular pressure of each patient.

MATERIALS AND METHODS

The 150 samples were selected. Good-quality lateral cephalograms of 150 patients were obtained based on the following criteria:

Inclusion Criteria

- Subjects of age group 18–24 years having a class I skeletal pattern
- Subjects should not have any facial deformity or syndrome

Exclusion Criteria

- Subjects having class II and class III skeletal pattern
- Subjects with history of orthodontic, orthognathic, or plastic surgery
- Subjects with history of eye surgery

Sampling Method

The subjects were divided into three groups:³

- Group I—Horizontal growth pattern Go Gn-SN angle = 25–29
- Group II—Average growth pattern Go Gn-SN angle = 30–34
- Group III—Vertical growth pattern Go Gn-SN angle = 35–39

Methodology

The standardized lateral cephalogram of each patient was obtained. The cephalometric landmarks were identified: angle between point A-Nasion-point B (ANB), beta angle, and mandibular plane angle. The subjects were then referred to a renowned eye institute with academic interest. Different eye test variables were established and identified by a qualified ophthalmologist. Eye test variables taken were the following:

© The Author(s). 2018 Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Visual Acuity

During an eye test, ophthalmologists use eye charts to measure how well you see in the distance, compared with other human beings. The standard placement of the eye chart is on a wall that is 20 feet away from your eyes. Vision is considered “normal” when there is a 20/20 vision (or 20/20 visual acuity), that is, a letter can be read at 20 feet.

Corneal Diameter

The corneal diameter (CD) is the limbus-to-limbus distance, and clinically both the horizontal and vertical dimensions are regarded as important.

Corneal Thickness

Corneal thickness measurements are indicative of the metabolic status of the cornea, as they provide an index of corneal hydration. Such measurements give valuable information on the physiological status of the cornea and its changes associated with disease, trauma, and hypoxia.

Axial Length

The axial length is the distance from the corneal surface to an interference peak corresponding to the retinal pigment epithelium. A majority of axial length elongation takes place in the first 3–6 months of life and a gradual reduction of growth over the next 2 years, and by 3 years the adult size is attained.

Retinal Nerve Fiber Layer (RNFL)

Optical coherence tomography is a relatively new noncontact imaging technique that has been developed to assess tissue thickness with micrometer scale sensitivity.

Intraocular Pressure (IOP)

In human eyes in particular, the axial length undergoes daily fluctuations of some 15–40 μm, with a mean period of approximately 21 hours. Although diurnal fluctuations in axial length have been observed in many species, the underlying physiologic control mechanisms are unknown.

Various scans obtained during investigation were shown in Figure 1 and interpreted in Figure 2.

Statistical Analysis

The data obtained were subjected to statistical analysis.

The statistical analysis was done using Statistical Package of Social Science. Data comparison was done by applying specific statistical tests to find out the statistical significance of the comparisons. Quantitative variables were compared using mean values and qualitative variables using proportions. Significance level was fixed at $p < 0.05$.

Results

Table 1 illustrates descriptive statistics for optical parameters for group I. The mean corneal diameter of the left eye was slightly higher than the right. The mean corneal thickness of the right eye was slightly higher than the left. The mean axial length of the right eye was slightly higher than the left. The mean RNLF of the right eye was slightly higher than the left.

Table 2 illustrates descriptive statistics for optical parameters for group II. The mean corneal diameter of the left eye was slightly higher than the right. The mean corneal thickness of the right eye was slightly higher than the right. The mean corneal diameter of the left eye was slightly higher than the right. The mean RNLF of the right eye was slightly higher than the left.

Table 3: Descriptive statistics for optical parameters for group III

Parameter	Minimum	Maximum	Mean	Std. deviation
Visual acuity RT	0.0000	0.5440	0.036295	0.1019236
Visual acuity LT	0.0000	0.6990	0.043047	0.1112065
Corneal diameter RT	10.99	13.58	11.8400	0.53919
Corneal diameter LT	11.00	12.30	11.8708	0.37218
Corneal thickness RT	454	590	535.98	30.178
Corneal thickness LT	456	590	536.12	31.277
Axial length RT	21.73	25.10	23.5351	0.77267
Axial length LT	21.50	25.15	23.5139	0.85975
RNLF RT	85	111	95.53	8.352
RNLF LT	83	115	93.08	7.958
IOP RT	10	18	13.41	1.779
IOP LT	10	16	12.88	1.752
eye was slightly higher than the left. The mean IOP of the right eye was slightly higher than the left.

Table 3 illustrates descriptive statistics for optical parameters for group III. The mean corneal diameter of the left eye was slightly higher than the right. The mean corneal thickness of the left eye was slightly higher than the right. The mean axial length of the right eye was slightly higher than the left. The mean RNLF of the right eye was slightly higher than the left. The mean IOP of the right eye was slightly higher than the left.

Table 4 illustrates the Pearson correlation matrix between dental and optical parameters among group I, which shows negative correlation between visual acuity of the left eye and mandibular plane angle, beta angle, and ANB angle.

Table 5 illustrates the Pearson correlation matrix between dental and optical parameters among group II, which shows positive correlation between visual acuity of the left eye and mandibular plane angle.

Table 6 illustrates the Pearson correlation matrix between dental and optical parameters among group III, which shows no statistically significant correlations between dental and optical parameter correlation to be found. Although there was statistically significant correlation was found within the optical as well as dental parameters.
Eye development is initiated by the master control gene Pax-6, a homeobox gene, and so is the stomatognathic system. The Pax-6 gene locus is a transcription factor for the various genes and growth factors involved in eye formation.

In an immunohistochemical study by Lei, the expression of Pax-6 was seen in various developmental stages of the tooth. At the bud stage and cap stage, Pax-6 was expressed in the central parts of the tooth buds/enamel organs and in the oral epithelia adjacent to the tooth germs.

As the various systems in the body are interconnected to form a single structural unit, a pathological condition in one area can also affect other areas. There are many known correlations between the visual and motor system. The importance of visual function, particularly the paracentral peripheral field of view, in motor coordination, ambulation, and the maintenance of balance has been amply demonstrated. In line with current medical principles, which are moving toward a more holistic view of the human body, this study aims to investigate, in an interdisciplinary manner, the incidence of dental malocclusions together with posture and eye convergence disorders. This study was conducted to determine the clinical association between teeth malocclusions, wrong posture, and ocular convergence disorders. A total of 605 children attending at the 3rd, 4th, and 5th years of seven Genoa primary schools were examined. Each child underwent the following examinations: (i) dental/occlusal,
Table 4: Pearson correlation matrix between dental and optical parameters among group 1

	Age	Mandibular plane	ANB	Beta	Visual acuity	Corneal diameter	Corneal thickness	Axial length	RNLF	IOP LT	IOP RT				
Age	1	0.100	0.235	0.064	0.205	0.132	0.118	0.211	0.172	0.115	0.253	-0.141	-0.059	0.000	0.057
Mandibular plane	1	0.063	0.233	0.271	-0.350*	-0.271	-0.126	0.104	0.092	0.186	0.020	0.002	-0.022	-0.139	-0.169
ANB	1	0.338*				-0.304*	-0.094	0.023	0.049	0.033	-0.013	0.045	0.036	0.021	0.034
Beta	1	0.353*				-0.169	-0.051	0.123	0.127	0.163	-0.021	-0.269	-0.238	-0.065	-0.062
Visual acuity	1	0.144													
Visual acuity LT	1	-0.065	0.010		-0.064	-0.053	-0.060	0.016	0.222	0.302*	0.006	-0.038			
Corneal diameter RT	1	0.688**	0.274		0.235	-0.047	0.125	-0.036	0.072	0.570*	0.592*				
Corneal diameter LT	1	0.521**	0.494**		0.186	0.235	0.039	0.073	0.407**	0.398*					
Corneal thickness RT	1	0.974**	0.373**		0.015	0.025	0.437**	0.340*							
Corneal thickness LT	1	-0.054	0.306*		-0.057	-0.049	0.389**	0.308*							
Axial length RT	1	0.530**	0.096		0.081	-0.237	-0.428**								
Axial length LT	1	0.099	0.222		0.272	0.079									
RNLF RT	1	0.857**			0.126	-0.043									
RNLF LT	1	0.246			0.088										
IOP RT	1	0.901**			0.006										
IOP LT	1	0.077			0.176										

*Highly significant i.e., p value is less than 0.01
**Moderately significant i.e., p value is less than 0.05

Table 5: Pearson correlation matrix between dental and optical parameters among group 2

	Age	Mandibular plane	ANB	Beta	Visual acuity	Corneal diameter	Corneal thickness	Axial length	RNLF	IOP LT	IOP RT					
Age	1	-0.036	-0.109	-0.119	0.006	0.117	0.243	0.133	-0.219	-0.034	-0.190	-0.276	0.167	0.290*		
Mandibular plane	1	0.065	0.172	0.349*	-0.114	0.114	-0.114	0.060	-0.160	0.176	0.172	0.175	0.169	0.164	0.117	0.156
ANB	1	0.632**	-0.085	0.014	0.004	-0.132	-0.110	-0.085	-0.126	0.043	0.087	0.032	0.025			
Beta	1	-0.058	-0.072	0.114	-0.004	-0.132	-0.110	-0.085	-0.126	0.043	0.087	0.032	0.025			
Visual acuity RT	1	0.781**	0.368**		0.058	0.025	0.063	0.162	0.121	0.077	0.012	-0.004	0.116			
Visual acuity LT	1	0.368**			0.029	-0.012	0.006	0.211	0.224	0.082	0.019	-0.028	0.072			
Corneal diameter RT	1	0.616**	0.089		0.119	0.118	0.266	-0.134	-0.126	0.130	0.152					
Corneal diameter LT	1	0.616**	0.089		0.119	0.118	0.266	-0.134	-0.126	0.130	0.152					
Corneal thickness RT	1	0.971**			0.107	0.293*	-0.141	-0.258	0.460**	0.450*						
Corneal thickness LT	1	0.971**			0.107	0.293*	-0.141	-0.258	0.460**	0.450*						
Axial length RT	1	0.648**			0.011	-0.129	0.012	0.061								
Axial length LT	1	-0.010	0.052		0.223	0.263										
RNLF RT	1	0.862**			0.010	-0.169										
RNLF LT	1	0.047			0.012	-0.101										
IOP RT	1	0.883**			0.006											
IOP LT	1	0.883**			0.006											

*Highly significant i.e., p value is less than 0.01
**Moderately significant i.e., p value is less than 0.05
Table 6: Pearson correlation matrix between dental and optical parameters among group III

Age	Mandibular plane ANB	Beta angle	Visual acuity RT	Visual acuity LT	Corneal diameter RT	Corneal diameter LT	Corneal thickness RT	Corneal thickness LT	Axial length RT	Axial length LT	RNLF RT	RNLF LT	IOP RT	IOP LT
Age	1	-0.065	-0.095	-0.226	0.138	0.126	0.032	0.001	0.251	-0.069	-0.096	0.114	0.086	
Mandibular plane	1	0.014	-0.100	0.067	-0.039	0.086	0.043	-0.198	0.037	-0.043	0.093	0.099	0.236	0.251
ANB	1	0.631**	-0.129	-0.171	0.060	-0.034	0.236	0.244	-0.164	-0.139	0.230	0.139	0.182	0.165
Beta angle	1	-0.021	-0.136	-0.022	-0.104	0.030	-0.170	-0.128	0.165	0.125	0.012	0.036		
Visual acuity RT	1	0.767**	0.115	0.270	-0.220	-0.185	0.176	0.161	0.135	0.064	-0.055	-0.100		
visual acuity LT	1	-0.080	0.020	-0.169	-0.131	0.153	0.127	-0.043	-0.015	-0.359*	-0.340*			
Corneal diameter RT	1	0.710**	0.111	0.110	-0.054	-0.120	0.308*	0.145	0.186	0.242				
Corneal diameter LT	1	-0.024	-0.060	0.118	0.160	0.100	-0.127	0.208	0.108					
Corneal thickness RT	1	0.985**	-0.362*	-0.273	0.372**	0.098	-0.069	0.084						
Corneal thickness LT	1	-0.398**	-0.317*	0.422**	0.164	-0.047	0.131							
Axial length RT	1	0.946**	-0.262	-0.194	-0.157	-0.161								
Axial length LT	1	-0.199	-0.200	-0.218	-0.207									
RNLF RT	1	0.896**	-0.012	0.087										
RNLF LT	1	-0.105	0.004											
IOP RT	1	0.866**												
IOP LT	1													

*Highly significant i.e., p value is less than 0.01
**Moderately significant i.e., p value is less than 0.05
into consideration in our study. Thus, the visual acuity can serve as a basis for the determination of malocclusion in a horizontal grower.

Group II: Average Grower
A positive correlation is seen between the visual acuity of the left eye and the mandibular plane in group II, i.e., average grower. It was observed that by determining the visual acuity in an average grower, it can be assumed that some type of malocclusion may be present.

Group III: Vertical Grower
There was no statistically significant correlations between dental and optical parameters in group III. However, there was a statistically significant correlation that was found within the optical as well as dental parameters.

Conclusion
Positive correlation was found between visual acuity and mandibular plane angle among the average growth pattern, and negative correlation was found between visual acuity and mandibular plane angle among the horizontal growth pattern. So, correlation is present between dental and eye variables.

Hence, if the patient is referred from an ophthalmologist, then by analyzing the various eye variables and correlating them with the growth pattern of the patient, malocclusion can be forestalled.

In the future, it will serve as an excellent interdisciplinary approach to diagnosis and treatment planning.

References

1. Simpson TI, Price DJ. Pax6; a pleiotropic player in development. Bioessays 2002;24(11):1041–1051. DOI: 10.1002/bies.10174.
2. Lei H, Liu H, et al. Immunohistochemical localization of Pax6 in the developing tooth germ of mice. J Mol Histol 2014;45(4):373–379. DOI: 10.1007/s10735-014-9564-5.
3. Grover N, Kapoor DN, et al. Smile analysis in different facial patterns and its correlation with underlying hard tissues. Prog Orthod 2015;16(1):28. DOI: 10.1186/s40510-015-0099-4.
4. Wu PC, Chen YJ, et al. Assessment of macular retinal thickness and volume in normal eyes and highly myopic eyes with third-generation optical coherence tomography. Eye 2008;22(4):551–555. DOI: 10.1038/sj.eye.6702789.
5. Mashige KP. A review of corneal diameter, curvature and thickness values and influencing factors. African Vision and Eye Health 2013;72(4):185–194. DOI: 10.4102/aveh.v72i4.58.
6. Eballe AO, Koki G, et al. Central corneal thickness and intraocular pressure in the Cameroonian nonglaucomatous population. Clin Ophthalmol 2010;4:717. DOI: 10.2147/OPTH.S10575.
7. Wilson LB, Quinn GE, et al. The relation of axial length and intraocular pressure fluctuations in human eyes. Invest Ophthalmol Vis Sci 2006;47(5):1778–1784. DOI: 10.1167/iovs.05-0869.
8. Paunescu LA, Schuman JS, et al. Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using Stratus OCT. Invest Ophthalmol Vis Sci 2004;45(6):1716–1724. DOI: 10.1167/iovs.03-0514.
9. Sadler TW. Langman’s Med embryology. Lippincott Williams & Wilkins; 2011 Dec 15.
10. Silvestrini–Biavati A, Migliorati M, et al. Clinical association between teeth malocclusions, wrong posture and ocular convergence disorders: an epidemiological investigation on primary school children. BMC pediatrics 2013;13(1):12. DOI: 10.1186/1471-2431-13-12.
11. Lin SY, White GE. Mandibular position and head posture as a function of eye dominance. J Clin Pediat Dent 1996;20(2):133–140.