Synthesis and biological activity of myricetin derivatives containing 1,3,4-thiadiazole scaffold

Xinmin Zhong1†, Xiaobin Wang1,2†, Lijuan Chen1, Xianghui Ruan1, Qin Li1, Juping Zhang1, Zhuo Chen1 and Wei Xue1*

Abstract
Background: Myricetin and 1,3,4-thiadiazole derivatives were reported to exhibit favorable antiviral and antibacterial activities. Aiming to discover novel myricetin analogues with potent activities, a series of novel myricetin derivatives containing 1,3,4-thiadiazole moiety were synthesized, and their antibacterial and antiviral activities were evaluated.

Result: Bioassay results indicated that some target compounds exhibited potential antibacterial and antiviral activities. Among them, compounds 2, 3a, 3b, 3d, 3f, 3i, 3m and 3p exhibited excellent antibacterial activities against Xanthomonas oryzae pv. Oryzae (Xoo), with EC50 values of 42.7, 38.6, 20.8, 12.9, 22.7, 27.3, 18.3 and 29.4 μg/mL, respectively, which were better than that of thiadiazole-copper (94.9 μg/mL). Compounds 3b, 3d, 3e, 3f, 3i and 3o showed good antibacterial activities against Ralstonia solanacearum (Rs), with EC50 values of 37.9, 72.6, 43.6, 59.6, 60.6 and 39.6 μg/mL, respectively, which were superior to that of thiadiazole-copper (131.7 μg/mL). In addition, compounds 3d, 3f, 3i and 3m showed better curative activities against tobacco mosaic virus (TMV), with EC50 values of 152.8, 99.7, 127.1, and 167.3 μg/mL, respectively, which were better than that of ningnanmycin (211.1 μg/mL).

Conclusions: A series of myricetin derivatives containing 1,3,4-thiadiazole scaffold were synthesized, and their antibacterial activities against Xoo and Rs and their antiviral activity against TMV were evaluated. Bioassays indicated that some target compounds exhibited potential antibacterial and antiviral activities. These results indicated this kind of myricetin analogues could be further studied as potential alternative templates in the search for novel antibacterial and antiviral agents.

Keywords: Myricetin, 1,3,4-thiadiazole, Antibacterial activity, Antiviral activity

Background
The rational use of agrochemicals plays a pivotal role in agricultural production by effectively controlling plant diseases [1, 2]. Unfortunately, the application of traditional pesticides is greatly limited due to their negative impacts on the environment and the rapid emergence of resistance [2, 3]. Therefore, searching for high-efficiency and environmentally friendly agrochemicals remains an arduous challenge in pesticide chemistry [1, 4]. In this process, natural products and their derivatives with new modes of action have been developed as pesticides that are safe to the environment [5, 6].

As one of important natural products in medicinal chemistry, myricetin was reported to exhibit extensive bioactivities including antibacterial [7], antiviral [8], anticancer [9], anti-inflammatory [10], antioxidant [11], and hypoglycemic activities [12]. Our previous study extracted a mixture containing myricetin from the bark of Toona sinensis and found it to exhibit moderate antiviral activity against tobacco mosaic virus (TMV) [13]. Using natural myricetin as the lead molecule, some

*Correspondence: wxue@gzu.edu.cn
†Xinmin Zhong and Xiaobin Wang contributed equally to this work
1 State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
Full list of author information is available at the end of the article
myricetin derivatives bearing Schiff-base moiety, which displayed good inhibitory activity against telomerase and excellent anticancer activity against human breast cancer cells MDA-MB-231, were synthesized by Xue et al. [14]. Furthermore, the acceptable antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo) and Ralstonia solanacearum (Rs) of myricetin derivatives containing acidamide moiety were also recently reported by us [15]. Obviously, myricetin derivatives as possible active ingredients play a key role in the searching for novel agrochemicals and pharmaceuticals (Fig. 1).

1,3,4-Thiadiazoles, which represent important nitrogenous heterocycles in medicinal chemistry, have attracted much attentions because of their various pharmacological activities, including antibacterial [16], antifungal [17], antiviral [18], anticonvulsant [19], anxiolytic [20], antinociceptive [21] and anticancer [22] activities. Among the above biological activities, acceptable antibacterial and antiviral activities displayed by 1,3,4-thiadiazoles have been reported well by chemists in recent years. For example, Li et al. [23] found that some 1,3,4-thiadiazole sulfone derivatives exhibited satisfactory antibacterial activities against rice bacterial leaf blight and leaf streak. Recently, we also found some 1,3,4-thiadiazole derivatives bearing 1,4-pentadiene-3-one moiety to exhibit remarkable antiviral activities against plant viruses [24].

Considering these above results, we speculated that introducing 1,3,4-thiadiazole fragment into myricetin might generate novel lead compounds with greater biological activities. Thus, a series of myricetin derivatives containing 1,3,4-thiadiazole scaffold were synthesized (Scheme 1), and their antibacterial activities against Xoo and Rs and their antiviral activity against TMV were evaluated.

Results and discussion

Chemistry

A series of myricetin derivatives containing thiadiazole moiety were successfully prepared in two steps in our current work. All of the target compounds 2, 3a–3q were characterized by infrared spectrum (IR), nuclear magnetic resonance (NMR) spectroscopy, and high resolution mass spectrum (HRMS) analysis. The IR spectral data of compounds 2, 3a–3q showed characteristic frequencies at 1723–1709 cm⁻¹ and 1640–1621 cm⁻¹, which are assigned to the characteristic vibrations of C=O and C=N–, respectively. In the ¹H NMR spectra, the characteristic –CH₂—groups between myricetin scaffold and 1,3,4-thiadiazole heterocycle was observed.
as a signal at approximately 5.27–5.21 ppm. The chemical shifts at 165.59–161.63 and 161.70–154.04 ppm in the 13C NMR spectra confirmed the existence of C=O and C=N-groups, respectively.

Antibacterial activity screening of the title compounds against Xac and Rs in vitro

Using *Ralstonia solanacearum* (strain MR111, Guizhou University, China) and *Xanthomonas oryzae pv. oryzae* (strain PXO99A, Nanjing Agricultural University, China) as the tested bacterial strains, the antibacterial activities of title compounds have been evaluated by the turbidimeter test [1, 3, 4, 6], and the commercial agent thiadiazole-copper was tested as the control. Some compounds with good antibacterial activity against Xoo and Rs were tested at five double-declining concentrations (100, 50, 25, 12.5 and 6.25 μg/mL) to obtain the corresponding EC$_{50}$ values.

The title compounds (2, 3a–3q) were evaluated for antibacterial activities against Xoo and Rs in vitro. Results in Table 1 indicated that most synthesized compounds exhibited appreciable antibacterial activities against Xoo and Rs. For example, compounds 2, 3a, 3b, 3d, 3f, 3i, 3m and 3p showed excellent antibacterial activities against Xoo at 100 μg/mL, with inhibition rates of 84.5, 84.9, 99.6, 87.3, 77.5, 84.5, 99.3 and 84.3%, respectively, which were better than that of thiadiazole-copper (52.3%). The inhibition rates of compounds 2, 3a, 3b, 3d, 3f, 3i, 3m and 3p against Xoo at 50 μg/μL were 54.6, 60.1, 65.2, 90.7, 82.6, 68.2, 80.8 and 71.2%, respectively, which were better than that of thiadiazole-copper (28.7%). Additionally, compounds 3b, 3d, 3e, 3f, 3i and 3o demonstrated good antibacterial activities against Rs at 100 μg/mL, with inhibition rates of 81.4, 64.3, 75.7, 69.3, 64.3 and 65.4%, respectively, which were superior to that of thiadiazole-copper (46.7%). Compounds 3b, 3d, 3e, 3f, 3i and 3o showed good antibacterial activities against Rs at 50 μg/μL (60.2, 30.4, 65.5, 40.5, 52.2 and 52.1%, respectively), which were better than thiadiazole-copper (32.2%).

To further understand antibacterial activity of synthesized compounds, the EC$_{50}$ values of some target compounds, which exhibited better antibacterial activities against Xoo and Rs than thiadiazole-copper, were calculated and summarized in Table 2. Notably, compounds 2, 3a, 3b, 3d, 3f, 3i, 3m and 3p exhibited excellent antibacterial activities against Xoo, with EC$_{50}$ values of 42.7, 38.6, 20.8, 12.9, 22.7, 27.3, 18.3 and 29.4 μg/mL, respectively, which were better than that of thiadiazole-copper (94.9 μg/mL). Meanwhile, compounds 3b, 3d, 3e, 3f, 3i and 3o showed remarkable antibacterial activities against Rs, with EC$_{50}$ values of 37.9, 72.6, 43.6, 59.6, 60.6 and 60.6 μg/mL.

Table 1 Inhibition effect of the compounds 4, 5a–5q against Xoo and Rs

Compd.	R	Xoo 100 μg/mL	Rs 50 μg/mL	Xoo 50 μg/mL	Rs 100 μg/mL	Rs 50 μg/mL
2		84.5 ± 3.9	54.6 ± 8.5	46.5 ± 9.7	28.1 ± 7.8	
3a	H	84.9 ± 5.8	60.1 ± 2.5	36.0 ± 2.6	32.4 ± 6.1	
3b	4-NO$_2$Ph	81.4 ± 4.6	65.2 ± 9.0	81.5 ± 6.7	60.2 ± 6.9	
3c	2-MePh	47.2 ± 1.5	25.9 ± 3.7	49.3 ± 6.7	30.3 ± 3.8	
3d	4-CIPh	99.6 ± 0.1	90.7 ± 4.0	64.3 ± 8.8	30.4 ± 4.1	
3e	Me	58.2 ± 5.1	27.4 ± 5.4	75.7 ± 8.1	65.5 ± 9.9	
3f	2-CIPh	87.3 ± 2.5	82.6 ± 2.6	69.3 ± 0.8	46.5 ± 9.1	
3g	2-FPh	79.7 ± 3.6	21.0 ± 4.9	45.2 ± 5.9	38.3 ± 2.4	
3h	4-OMePh	37.3 ± 6.2	15.5 ± 8.9	28.1 ± 7.6	27.1 ± 6.0	
3i	2,4-di-CIPh	77.5 ± 1.4	68.2 ± 5.4	64.3 ± 6.1	52.1 ± 2.8	
3j	3-NO$_2$Ph	30.0 ± 1.2	79.8 ± 9.7	45.2 ± 8.3	31.1 ± 4.3	
3k	4-BrPh	47.3 ± 4.7	23.3 ± 7.5	26.4 ± 2.6	10.7 ± 1.6	
3l	2-BrPh	50.7 ± 1.9	31.6 ± 4.5	24.0 ± 4.7	16.2 ± 0.7	
3m	2-CI-thiazol-5-s-y	99.4 ± 3.9	80.8 ± 3.7	26.3 ± 3.2	25.0 ± 6.6	
3n	Ph	38.3 ± 4.5	17.7 ± 0.1	45.3 ± 5.6	44.7 ± 5.1	
3o	4-MePh	52.6 ± 3.3	37.6 ± 5.5	65.4 ± 1.7	52.1 ± 5.7	
3p	Pyridin-3-y	84.3 ± 3.8	71.2 ± 5.3	38.0 ± 6.2	12.8 ± 6.0	
Myricetin*	–	40.1 ± 8.3	21.0 ± 5.6	28.6 ± 2.2	17.5 ± 3.3	
Thiadiazole-copper*	–	52.4 ± 2.0	28.7 ± 4.1	46.7 ± 2.0	32.2 ± 2.1	

Average of three replicates

Thiadiazole-copper and myricetin were used for comparison of antibacterial activity
39.6 μg/mL, respectively, which were superior to that of thiadiazole-copper (131.7 μg/mL).

The inhibitory rates in Tables 1 and 2 indicated that most synthesized compounds bearing the same substituted fragment were found to exhibit better antibacterial activity against Xoo than Rs. For example, the EC_{50} values of title compounds 3b, 3d, 3f and 3i against Xoo were respectively 20.8, 12.9, 22.7 and 27.3 μg/mL, which were better than that against Rs (37.9, 72.6, 59.6 and 60.6 μg/mL, respectively). The antibacterial results in Tables 1 and 2 also indicated that the different groups on R had significant effects on the antibacterial activity of the target compounds. Obviously, the presence of heterocycles can effectively enhance the antibacterial activity against Xoo. As examples of this phenomenon, the compounds 3m and 3p, which contain respectively 2-Cl-thiazol-5-yl and pyridin-3-yl groups, exhibited fine antibacterial activities against Xoo at 50 μg/mL, with the inhibition rates of 80.8 and 71.2%, respectively, which were superior to that of thiazazole-copper (28.7%). Meanwhile, when R was substituted with 4-NO_2Ph, 4-ClPh, 2-ClPh and 2,4-di-ClPh groups, the corresponding compounds 3b, 3d, 3f and 3i exhibit remarkable antibacterial activities against Xoo, with the EC_{50} values of 20.8, 12.9, 22.7 and 27.3 μg/mL, respectively, which were better than that of thiazazole-copper (94.9 μg/mL).

Antiviral activity screening of the title compounds against TMV in vivo

Using growing N. tobacum L. leaves at the same age as the test subjects, the curative and protective activities against TMV were evaluated based on the half-leaf blight spot method [25–27], and the commercial agent ningnanmycin was tested as the control under the same conditions. The antiviral activity against TMV in vivo at 500 μg/mL was listed in Tables 3 and 4. The preliminary bioassays results indicated that the inhibitory rates of title compounds against TMV at 500 μg/mL ranged from 18.2 to 68.4% in terms of their curative activity, and ranged from 21.5 to 60.8% in terms of their protective activity. Among them, the inhibitory rates of compounds 3d, 3f, 3i and 3m in curative activity were 59.8, 68.4, 66.8 and 57.1%, respectively, which were better than that of ningnanmycin (51.8%). Moreover, compounds 3c, 3i and 3m were found to exhibit significant protective activities (58.4, 60.8 and 56.7%, respectively), which were similar to ningnanmycin (58.3%).

To further understand antiviral activity of synthesized compounds, the EC_{50} values of 3d, 3f, 3i and 3m were calculated and summarized in Table 4. Notably, the EC_{50} values of 3d, 3f, 3i and 3m were respectively 152.8, 99.7, 127.1 and 167.3 μg/mL, which were better than that of ningnanmycin (211.1 μg/mL).

The antiviral results in Tables 3 and 4 indicated that most of synthesized compounds bearing the same substituted fragment exhibited better protective activity than curative activity against TMV. Meanwhile, Results in Tables 3 and 4 also indicated that the different groups on R had significant effects on the anti-TMV activity of the target compounds. Obviously, the presence of benzyl chloride groups can effectively enhance the curative activity of title compounds against TMV. For example, compounds 3d, 3f, 3i and 3m, which contain respectively 2-ClPh, 4-ClPh, 2,4-di-ClPh and 2-Cl-thiazol-5-yl groups, exhibited excellent curative activities against TMV, with the EC_{50} values of 152.8, 99.7, 127.1 and 167.3 μg/mL, respectively, which were better than that of ningnanmycin (211.1 μg/mL). Furthermore, when the R was 2-MePh,

Compd.	Xoo	Regression equation	r	EC_{50} (μg/mL)	Rs	Regression equation	r	EC_{50} (μg/mL)
2	y = 2.513x + 0.902	0.99	42.7 ± 2.6	/	/	/	/	/
3a	y = 2.885x + 0.454	0.99	38.6 ± 1.4	/	/	/	/	/
3b	y = 1.199x + 3.420	0.99	208 ± 3.6	y = 2.685x + 0.762	0.99	37.9 ± 1.0		
3d	y = 2.328x + 2.418	0.97	129 ± 5.8	y = 2.770x + 0.154	0.99	72.6 ± 1.6		
3e	/	/	/	y = 2.485x + 0.925	0.98	43.6 ± 3.8		
3f	y = 1.982x + 2.314	0.98	227 ± 3.6	y = 3.004x - 0.332	0.99	59.6 ± 2.0		
3i	y = 1.401x + 2.989	0.99	273 ± 1.8	y = 2.365x + 0.786	0.99	60.6 ± 2.1		
3m	y = 2.723x + 1.565	0.98	183 ± 3.6	/	/	/	/	/
3p	y = 2.058x + 1.979	0.99	294 ± 1.0	/	/	/	/	/
3o	/	/	/	y = 1.017x + 3.375	0.96	39.6 ± 5.3		
Thiazazole-copper	y = 1.999x + 1.047	0.99	94.9 ± 2.2	y = 0.930x + 3.028	0.98	131.7 ± 2.9		

Average of three replicates

* The commercial agricultural antibacterial agent thiazazole-copper was used for comparison of antibacterial activity
were similar to that of ningnanmycin. Average of three replicates

Table 3 Antiviral activities of the title compounds against TMV in vivo at 500 µg/mL

Compd.	Curative activity (%)	Protection activity (%)	Compd.	Curative activity (%)	Protection activity (%)
2	18.2 ± 7.3	21.5 ± 9.1	3j	28.7 ± 3.8	39.4 ± 3.1
3a	46.7 ± 5.2	50.3 ± 9.3	3k	28.0 ± 8.6	33.0 ± 7.5
3b	53.8 ± 9.0	54.1 ± 9.4	3l	33.9 ± 9.4	34.2 ± 5.4
3c	37.0 ± 9.1	58.4 ± 1.0	3m	57.1 ± 9.6	56.7 ± 8.2
3d	59.8 ± 9.2	54.3 ± 9.0	3n	48.4 ± 5.9	42.1 ± 7.1
3e	28.7 ± 8.3	35.4 ± 5.1	3o	50.8 ± 3.6	47.3 ± 2.9
3f	68.4 ± 7.4	54.4 ± 7.7	3p	34.6 ± 5.4	36.5 ± 1.6
3g	36.4 ± 3.8	386 ± 7.7	3q	288 ± 6.7	34.4 ± 7.2
3h	44.8 ± 9.4	45.2 ± 1.5	3r	51.8 ± 4.3	58.3 ± 2.9
3i	66.8 ± 9.8	60.8 ± 8.3			

Average of three replicates

* Ningnanmycin and myricetin were used for comparison of antiviral activity

Table 4 The EC50 values of 5d, 5f, 5i and 5m against TMV

Compd.	TMV 500 µg/mL	Regression equation	r	EC50 (µg/mL)
3d	59.8 ± 6.2	y = 0.473x - 3.967	0.98	152.8 ± 3.2
3f	68.4 ± 7.4	y = 0.744x - 3.512	0.99	99.7 ± 2.7
3i	66.8 ± 9.8	y = 0.816x + 3.823	0.99	127.1 ± 2.6
3m	57.1 ± 9.6	y = 0.361x + 4.197	0.99	167.3 ± 4.8
Ningnanmycin*	51.3 ± 2.6	y = 0.203x + 4.154	0.97	211.1 ± 3.6

Average of three replicates

* The commercial agricultural antiviral agent ningnanmycin was used for comparison of antiviral activity

2,4-di-ClPh and 2-Cl-thiazol-5-y1 groups, the protective activities of corresponding compounds 3c, 3i and 3m at 500 µg/mL were 58.4, 60.8 and 56.7%, respectively, which were similar to that of ningnanmycin (58.3%).

Methods and materials

Chemistry

The melting points of the products were determined on an XT-4 binocular microscope (Beijing Tech Instrument Co.). The 1H NMR and 13C NMR (CDCl3 or DMSO as solvents) spectroscopies were performed on a JEOL-ECX 500 NMR spectrometer at room temperature using TMS as an internal standard. The IR spectra were recorded on a Bruker VECTOR 22 spectrometer using KBr disks. High-performance liquid chromatography mass spectrometry was performed on a Thermo Scientific Q Exactive (USA). Unless noted, all solvents and reagents were purchased from Shanghai Titan Scientific Co., Ltd, and were treated with standard methods. Based on the synthesis procedures described in our previous work [14], intermediates 1 (2-((5,7-dimethoxy-4-oxo-2-(3,4,5-trimethoxyphenyl)-4H-chromen-3-yl)oxy)aceto-hydrazide) were prepared using myricetin (5,7-dihydroxy-3-(3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-2-(3,4,5-trihydroxyphenyl)-4H-chromen-4-one) as the starting material.

General synthesis procedure for 5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-3-((5-mercapto-1,3,4-thiadiazol-2-yl)methoxy)-4H-chromen-4-one (2)

To a solution of intermediate 1 (1.00 g, 2.17 mmol) in methanol (30 mL), potassium hydroxide (0.20 mL, 3.16 mmol) and carbon disulfide (0.21 mL, 3.47 mmol) were added, and the reaction mixture was heated under reflux for 16 h. After the reaction was cooled to room temperature, 50 mL of water was added to the mixture, and the pH of the solution was adjusted to five with dilute HCl. Then, a solid precipitated was filtered and recrystallized with ethanol to obtain the intermediate 2. white solid, m. p. 154–155 °C, yield 50.1%; IR (KBr, cm−1): 3229, 2939, 2837, 1639, 1634, 1575, 1498, 1466, 1357, 1253, 1211, 1130, 944, 816; 1H NMR (500 MHz, DMSO- d6) δ 7.24 (s, 2H, Ar–H), 6.87 (d, J = 2.1 Hz, 1H, Ar–H), 6.53 (d, J = 2.1 Hz, 1H, Ar–H), 5.09 (s, 2H, CH2), 3.91 (s, 3H, OCH3), 3.86 (s, 9H, 3 OCH3), 2.91 (s, 3H, OCH3), 13C NMR (125 MHz, DMSO-d6) δ 183.1, 176.9, 169.4, 165.6,
164.6, 163.5, 158.2, 157.9, 145.03, 143.4, 129.9, 113.5, 111.2, 101.5, 98.6, 67.3, 65.5, 61.5, 61.4, 61.3; HRMS (HPLC) m/z: 519.0890, found 519.0883 ([M+H]^+).

General synthesis procedures for title compounds 3a–3p

To a solution of 2 (1.16 mmol) in acetonitrile (30 mL), sodium carbonate (1.74 mmol) and CH3I (1.74 mmol) were added, and the reaction mixture was stirred at 40 °C for 5 h. After the reaction was completed and cooled to room temperature, a solid precipitated was filtered and recrystallized with methanol to obtain the title compound 3a. Based on the similar method, the title compounds 3b–3p were prepared.

5,7-Dimethoxy-2-(3,4,5-trimethoxyphenyl)-3-((5-(methylthio)-1,3,4-thiadiazol-2-yl)methoxy)-4H-chromen-4-one (3a)

A white solid, m. p. 124–125 °C; yield 30.1%; IR (KBr, cm⁻¹): 2942, 1700, 1637, 1604, 1575, 1519, 1477, 1451, 1349, 1362, 1243, 1211, 1164, 1126, 108, 856, 821; ¹H NMR (500 MHz, DMSO-d₆) δ 8.06 (d, J = 8.7 Hz, 2H, Ar–H), 7.62 (d, J = 8.7 Hz, 2H, Ar–H), 7.18 (s, 2H, Ar–H), 6.82 (d, J = 2.1 Hz, 1H, Ar–H), 6.50 (d, J = 2.1 Hz, 1H, Ar–H), 5.21 (s, 2H, CH₂), 4.48 (s, 2H, CH₂), 3.87 (s, 3H, OCH₃); ¹³C NMR (125 MHz, DMSO-d₆) δ 173.3, 165.7, 164.9, 163.3, 161.1, 159.0, 154.3, 152.9, 140.1, 138.6, 125.1, 109.3, 106.1, 96.2, 92.7, 62.3, 61.03, 56.5, 56.4, 56.9, 14.1; HRMS (HPLC) m/z: 555.0866, found 555.0870 ([M+Na]^+).

5,7-Dimethoxy-2-(3,4,5-trimethoxyphenyl)-3-((5-((4-nitrobenzyl)thio)-1,3,4-thiadiazol-2-yl)methoxy)-4H-chromen-4-one (3b)

A yellow solid, m. p. 124–125 °C; yield 30.1%; IR (KBr, cm⁻¹): 2953, 2836, 1645, 1538, 1492, 1472, 1452, 1414, 1357, 1215, 1169, 113, 1105, 992, 817; ¹H NMR (500 MHz, DMSO-d₆) δ 7.81 (s, 2H, Ar–H), 6.81 (s, 1H, Ar–H), 6.49 (s, 1H, Ar–H), 5.22 (s, 2H, CH₂), 3.87 (s, 3H, OCH₃); ¹³C NMR (125 MHz, DMSO-d₆) δ 173.3, 165.7, 164.9, 163.3, 161.2, 159.0, 154.1, 152.9, 140.2, 138.7, 134.1, 133.9, 130.6, 129.0, 125.1, 109.4, 106.1, 96.2, 92.7, 62.4, 61.1, 56.6, 56.4, 56.0, 35.9; HRMS (HPLC) m/z: 665.0798, found 665.0766 ([M+Na]^+).

5,7-Dimethoxy-2-(3,4,5-trimethoxyphenyl)-3-((5-((2-chlorobenzyl)thio)-1,3,4-thiadiazol-2-yl)methoxy)-4H-chromen-4-one (3c)

A white solid, m. p. 112–113 °C; yield 36.6%; IR (KBr, cm⁻¹): 2997, 2942, 2838, 1636, 1603, 1578, 1572, 1505, 1490, 1470, 1454, 1415, 1350, 1245, 1211, 1164, 1127, 1108, 1018, 1003, 853, 820; ¹H NMR (500 MHz, CDCl₃) δ 7.52 (d, J = 7.4 Hz, 1H, Ar–H), 7.38–7.34 (m, 1H, Ar–H), 7.20 (m, 2H, Ar–H), 7.15 (s, 2H, Ar–H), 6.49 (d, J = 2.2 Hz, 1H, Ar–H), 6.37 (d, J = 2.1 Hz, 1H, Ar–H), 5.28 (s, 2H, CH₂), 4.45 (s, 2H, CH₂), 3.97 (s, 3H, OCH₃), 3.91 (s, 3H, OCH₃), 3.90 (s, 3H, OCH₃), 3.88 (s, 6H, 2 OCH₃), 2.31 (s, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 165.7, 164.4, 163.3, 161.2, 159.0, 154.1, 153.0, 153.3, 153.1, 140.2, 138.5, 125.2, 108.8, 106.3, 96.7, 93.8, 62.2, 60.7, 56.7, 56.6, 56.5, 26.9, 15.1; HRMS (HPLC) m/z: 569.0923, found 569.0983 ([M+Na]^+).
5,7-Dimethoxy-2-(3,4,5-trimethoxyphenyl)-3-((5-((2-fluorobenzyl)thio)-1,3,4-thiadiazol-2-yl) methoxy)-4H-chromen-4-one (3l)

A white solid, m. p. 154–155 °C; yield 90.1%; IR (KBr, cm⁻¹): 2942, 1700, 1637, 1604, 1575, 1519, 1471, 1455, 1349, 1362, 1243, 1121, 1164, 1126, 1108, 1017, 856, 821; ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, J = 8.3 Hz, 1H, Ar–H), 7.17 (d, J = 8.3 Hz, 1H, Ar–H), 7.14 (s, 1H, Ar–H), 7.13 (s, 2H, Ar–H), 6.49 (d, J = 2.2 Hz, 1H, Ar–H), 6.38 (d, J = 2.2 Hz, 1H, Ar–H), 5.26 (s, 2H, CH₂), 4.27 (s, 2H, CH₂), 3.98 (s, 6H, OCH₃), 3.91 (s, 6H, OCH₃), 3.88 (s, 6H, OCH₃); ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 165.5, 164.4, 163.6, 161.2, 159.0, 154.0, 153.0, 140.2, 138.7, 134.3, 133.5, 131.6, 129.8, 129.7, 127.2, 125.1, 109.4, 106.0, 96.2, 92.6, 62.4, 61.1, 56.8, 56.4, 56.0, 34.5; HRMS (HPLC) m/z: 665.0789, found 665.0747 ([M+Na]⁺).

5,7-Dimethoxy-2-(3,4,5-trimethoxyphenyl)-3-((5-((3-nitrobenzyl)thio)-1,3,4-thiadiazol-2-yl) methoxy)-4H-chromen-4-one (3j)

A white solid, m. p. 131–132 °C; yield 39.4%; IR (KBr, cm⁻¹): 2945, 1634, 1605, 1558, 1471, 1426, 1352, 1246, 1212, 1163, 1130, 1018, 820; ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, J = 8.3 Hz, 2H, Ar–H), 7.28 (s, 1H, Ar–H), 7.25 (s, 1H, Ar–H), 7.13 (s, 2H, Ar–H), 6.49 (d, J = 2.2 Hz, 1H, Ar–H), 6.38 (d, J = 2.2 Hz, 1H, Ar–H), 5.26 (s, 2H, CH₂), 4.27 (s, 2H, CH₂), 3.98 (s, 3H, OCH₃), 3.91 (s, 3H, OCH₃), 3.88 (s, 3H, OCH₃); ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 165.7, 164.4, 163.8, 161.2, 159.0, 154.0, 153.0, 140.3, 138.8, 134.1, 133.1, 132.5, 129.4, 125.7, 125.1, 109.4, 106.1, 96.2, 92.7, 62.4, 61.0, 56.6, 56.0, 34.2; HRMS (HPLC) m/z: 676.1030, found 676.1012 ([M+Na]⁺).
5,7-Dimethoxy-2-(3,4,5-trimethoxyphenyl)-3-((S-((2-chlorothiazol-5-yl)methyl)thio)-1,3,4-thiadiazol-2-yl) methoxy)-4H-chromen-4-one (3p)

A white solid, m. p. 155–156 °C, yield 60.1%; IR (KBr, cm⁻¹): 2979, 2942, 1643, 1602, 1579, 1505, 1492, 1470, 1454, 1416, 1351, 1246, 1211, 1163, 1128, 1108, 1000, 823; ¹H NMR (500 MHz, DMSO-d₆) δ 7.34 (d, J = 6.9 Hz, 2H, Ar–H), 7.25 (d, J = 10.3 Hz, 3H, Ar–H), 7.18 (s, 2H, Ar–H), 6.82 (t, J = 4.6 Hz, 1H, Ar–H), 6.49 (d, J = 2.1 Hz, 1H, Ar–H), 5.22 (s, 2H, CH₂), 4.34 (s, 2H, CH₂), 3.87 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 3.79 (d, J = 13.8 Hz, 6H, 2 OCH₃), 3.70 (d, J = 7.8 Hz, 3H, OCH₃); ¹³C NMR (125 MHz, CDCl₃) δ 172.1, 164.9, 164.4, 164.0, 160.9, 158.8, 153.3, 151.1, 141.8, 138.1, 137.8, 125.2, 108.8, 106.4, 94.8, 93.8, 62.3, 60.7, 56.7, 56.6, 56.5, 28.4; HRMS (HPLC) m/z: 672.0362, found 672.0262 ([M+Na]^+).

Conclusions

Aiming to discover novel myricetin analogues with potent activities, a series of novel myricetin derivaties containing 1,3,4-thiadiazole moiety were synthesized, and their antibacterial activities against Xoo and Rs and their antiviral activity against TMV were evaluated. Bioassays indicated that some target compounds exhibited potential antibacterial and antiviral activities. Among them, compounds 2, 3a, 3b, 3d, 3f, 3i, 3m and 3p exhibited excellent antibacterial activities against Xoo, with EC₅₀ values of 42.7, 38.6, 20.8, 12.9, 22.7, 27.3, 18.3 and 29.4 μg/mL, respectively, which were better than that of thiadiazole-copper (94.9 μg/mL). Compounds 3b, 3d, 3e, 3f and 3o showed good antibacterial activities against Rs, with EC₅₀ values of 37.9, 72.6, 43.6, 59.6, 60.6 and 39.6 μg/mL, respectively, which were superior to that of thiadiazole-copper (131.7 μg/mL). In addition, compounds 3d, 3f, 3i and 3m showed better curative activities against TMV, with EC₅₀ values of 152.8, 99.7, 127.1, and 167.3 μg/mL, respectively, which were better than that of ningnamycin (211.1 μg/mL). Given the above results, this kind of myricetin analogues could be further studied as potential alternative templates in the search for novel antibacterial and antiviral agents.

Additional file

Additional file 1. All the copies of IR, ¹H NMR, ¹³C NMR and HRMS for the title compounds.

Authors’ contributions

The current study is an outcome of constructive discussion with WX, XZ, LC and XR carry out their synthesis and characterization experiments; XZ, XW, QL, JZ and CZ performed the antiviral and antibacterial activities; WX, XZ,
LC and QL carried out the 1H NMR, 13C NMR, IR and HRMS spectral analyses; WX and XW were involved in the drafting of the manuscript and revising the manuscript. All authors read and approved the final manuscript.

Author details
1 State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China. 2 Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
We have presented all our main data in the form of tables and figures. Meanwhile, all the copies of IR, 1H NMR, 13C NMR and HRMS for the title compounds were presented in the Additional file 1. The datasets supporting the conclusions of the article are included within the article and the Additional file 1.

Consent for publication
This section is not applicable for this manuscript.

Ethics approval and consent to participate
This section is not applicable for this manuscript.

Funding and acknowledgements
The authors gratefully acknowledge Grants from the National Key Research and Development Program of China (No. 2017YFD0200506), the National Nature Science Foundation of China (No. 21462012) and the special fund for outstanding Scientific and Technological Candidates of Guizhou Province (Nos. 2015035, 2013041).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 12 July 2017 Accepted: 11 October 2017
Published online: 17 October 2017

References
1. Xu WM, Han FF, He M, Hu DY, He J, Yang S, Song BA (2012) Inhibition of tobacco bacterial wilt with sulfone derivatives containing an 1,3,4-oxadiazole moiety. J Agric Food Chem 60:1036–1041
2. Wang PY, Zhou L, Zhou J, Wu ZB, Xue W, Song BA, Yang S (2016) Synthesis and antibacterial activity of pyridinium-tailored 2,5-substituted-1,3,4-oxadiazole/thioether/sulfoxide/sulfone derivatives. Bioorgan Med Chem Lett 26:1214–1217
3. Wang X, Li P, Li Z, Yin J, He M, Xue W, Chen Z, Song B (2013) Synthesis and bioactivity evaluation of novel arylimines containing a 3-aminoethyl-2-[(p-trifluoromethoxy)anilino]–4(3H)-quinazolinone moiety. J Agric Food Chem 61:9575–9582
4. Chen MH, Wang XB, Tang BC, Zhang X (2016) Synthesis and antibacterial evaluation of novel Schiff base derivatives containing 4(3H)-quinazolinone moiety. Chem Pap 70:1521–1528
5. Qian X, Lee PW, Cao S (2010) China: forward to the green pesticides via a basic research program. J Agric Food Chem 58:2613–2623
6. Wang PY, Chen L, Zhou J, Fang HS, Wu ZB, Song BA, Yang S (2017) Synthesis and bioactivities of 1-ary-4-hydroxy-1H-pyrrrol-2(5H)-one derivatives bearing 1,3,4-oxadiazole moiety. J Saudi Chem Soc 21:315–323
7. Naz S, Siddiq R, Ahmad S, Rasool S, Sayeed SJ (2007) Antibacterial activity directed isolation of compounds from punica granatum. J Food Sci 72:341–345
8. Yu MS, Lee J, Lee JM, Kim Y, Chin WY, Lee JG, Keum YJ, Jeong YJ (2012) Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsp13. Bioorg Med Chem Lett 22:4049–4054
9. Phillips P, Sangwan V, Cacho DB, Dudeja V, Vickers S, Saluja A (2011) Myricetin induces pancreatic cancer cell death via the induction of apoptosis and inhibition of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Cancer Lett 308:181–188
10. Kim HH, Kim DH, Kim MH, Oh MH, Kim SR, Park KJ, Lee MW (2013) Flavanoid constituents in the leaves of Myrica rubra sieb. et zucc. with anti-inflammatory activity. Arch Pharm Res 36:1533–1540
11. Chobot V, Hadacek F (2011) Exploration of pro-oxidant and antioxidant activities of the flavonoid myricetin. Redox Rep 16:242–247
12. Liu IM, Liou SS, Lan TW, Hsu FL, Cheng JT (2005) Myricetin as the active principle of Abelmoschus moschatus to lower plasma glucose in streptozotocin induced diabetic. Planta Med 71:617–621
13. Zhao HJ, Zhang X, Wang ZB, Chen Y, Xia LJ, Gong HY, Xue W (2014) The synergism of extracts from bark of Toona sinensis and ningnanmycin. Agrochemicals 53:142–144
14. Xue W, Song BA, Zhao HJ, Qi XB, Huang YJ, Liu XH (2015) Novel myricetin derivatives: design, synthesis and anticancer activity. Eur J Med Chem 97:155–163
15. Xiao W, Ruan XH, Li Q, Zhang JP, Zhong XM, Xie Y, Wang XB, Huang MG, Xue W (2017) Synthesis and antibacterial activities of myricetin derivatives containing acidamide moiety. Chem J Chin Univ 38:35–40
16. Li FY, Shi L, Gao MN, Yang X, Xue W, Jin LH, Hu DY, Song BA (2015) Anti-bacterial activities against rice bacterial leaf blight and tomato bacterial wilt of 2-mercapto-5-substituted-1,3,4-oxadiazole/thiadiazole derivatives. Bioorgan Med Chem Lett 25:481–484
17. Liu F, Luo XQ, Song BA, Bhadury PS, Yang S, Jin LH, Xue W, Hu DY (2008) Synthesis and antifungal activity of novel sulfone derivatives containing trimethoxyphenyl substituted 1,3,4-thiadiazole and 1,3,4-oxadiazole moiety. Bioorgan Med Chem Med 16:3632–3640
18. Xu WM, Li SZ, He M, Yang S, Li XY, Li P (2013) Synthesis and bioactivities of novel thioether/sulfone derivatives containing 1,2-thiazadiazole and 1,3,4-thiadiazole/thiadiazole moiety. Bioorgan Med Chem Lett 23:5821–5824
19. Rajak H, Deshmruk R, Aggarwal N, Kashaw S, Kharya MD, Mishra P (2009) Synthesis of novel 2,5-disubstituted 1,3,4-thiadiazoles for their potential anticonvulsant activity: pharmacomorphological model studies. Arch Pharm Chem Life Sci 342:453–461
20. Clenci F, Pocar D, Guido M, Loche A, Perlini V, Brufani M (2001) Synthesis of 2-amino-5-sulfanyl-1,3,4-thiadiazole derivatives and evaluation of their antidepressant and anxiolytic activity. J Med Chem 44:931–936
21. Alitnopp MD, Can OD, Ozkay-YD, Kaplancikli ZA (2016) Synthesis and evaluation of new 1,3,4-thiadiazole derivatives as anticoagulents agents. Molecules 21:1004–1013
22. Fießel EM, El-Sayed WA, Mohamed AM, El-Sofany WA, Awad HM (2017) Synthesis and anticancer activity of new 1-thia-4-azaspiro[4,5] decane, their derived thiazolopyrimidine and 1,3,4-thiadiazole thiohexylosides. Molecules 22:170–182
23. Li FY, Shi L, Yang X, Yang L, Chen KW, Wu F, Shi QC, Xu WM, He M, Hu DY, Song BA (2014) Design, synthesis, and antibacterial activity against rice bacterial leaf blight and leaf streak of 2,5-substituted-1,3,4-oxadiazole/thiadiazole sulfone derivative. Bioorgan Med Chem Lett 24:1677–1680
24. Yu LF, Li JX, Zhou DH, He F, Zeng SH, Su DH (2017) Synthesis and antiviral activity of novel 1,4-pentaden-3-one derivatives containing a 1,3,4-thiadiazole moiety. Molecules 22:658–666
25. Ma J, Li P, Li X, Shi Q, Wan Z, Hu D, Jin L, Song B (2014) Synthesis and antiviral activity of novel 3-(2-((1E,4E)-3-oxo-5-arylpena-1,4-dien-1-y1) phenoxymethyl)-4(3H)-quinazolinone-derivatives. J Agric Food Chem 62:8928–8934
26. Long C, Li P, Chen M, Dong L, Hu D, Song B (2015) Synthesis, anti-tobacco mosaic virus and cucumber mosaic virus activity, and 3D-QSAR study of novel 1,4-pentaden-3-one derivatives containing 4-thioxoquinazoline moiety. Eur J Med Chem 102:639–647
27. Gan X, Hu D, Li P, Wu J, Chen X, Xue W, Song B (2016) Design, synthesis, antiviral activity and three-dimensional quantitative structure–activity relationship study of novel 1,4-pentaden-3-one derivatives containing the 1,3,4-oxadiazole moiety. Pest Manag Sci 72:534–543