Foliations on smooth algebraic surfaces over positive characteristic

Wodson Mendson
June 16, 2022

Abstract. We investigate the notion of the p-divisor for foliations on a smooth algebraic surface defined over a field of positive characteristic p and we study some of their properties. We present a structure theorem for the p-divisor of foliations in the projective plane and the Hirzebruch surfaces where we show that, under certain conditions, such p-divisors are reduced.

Contents

1 Introduction 1
2 Notation 3
3 Foliations on surfaces and the p-divisor 3
4 The p-divisor for foliations on \mathbb{P}^2_k 11
5 The p-divisor for foliations on $\mathbb{P}^1_k \times \mathbb{P}^1_k$ 14
6 The p-divisor for foliations on Hirzebruch surfaces 21

1 Introduction

In his monograph [7] Jouanolou showed that a very generic foliation of degree $d \geq 2$ in the projective plane has no algebraic solutions. The crucial point of his argument consists in constructing examples, for each degree $d \geq 2$, of foliations with no algebraic solutions. The term very generic means that there exists a countable union F of closed sets in the space of holomorphic foliations of degree d such that for any foliations \mathcal{F} lying outside F has no algebraic solutions.

In order to prove his theorem, Jouanolou showed the following result.

2010 Mathematics Subject Classification. 32S65; 13N15; 13A35

Keywords. Foliations; Foliations over positive characteristic; Frobenius morphism; p-divisor

This work was developed at IMPA. W. Mendson acknowledges support of CNPq and Faperj
Theorem (Jouanolou). For every \(d \in \mathbb{Z}_{\geq 2} \) the foliation in \(\mathbb{P}^2_k \) defined by the vector field
\[
v_d = (xy^d - 1) \frac{\partial}{\partial x} - (x^d - y^{d+1}) \frac{\partial}{\partial y}
\]
has no algebraic solutions.

Recently, a similar problem was considered in [11] for Hirzebruch surfaces. By assuming certain conditions in the normal bundle it is shown that a foliation in the Hirzebruch surfaces has no algebraic solutions (see [11, Theorem C]).

Interestingly, the analogue of the Jouanolou’s theorem over a field of positive characteristic is completely false (see [15]). The results established in [15] imply the following proposition.

Proposition A. Let \(k \) be an algebraically closed field of characteristic \(p > 0 \). Let \(F \) be a foliation on \(\mathbb{P}^2_k \) and suppose that \(\deg(F) < p - 2 \). Then \(F \) has an invariant algebraic curve.

In positive characteristic \(p \) there are two classes of foliations: the foliations that are \(p \)-closed and the foliations that are not. Given a foliation \(F \) in a smooth algebraic surface \(X \) defined over a field \(k \) of characteristic \(p > 0 \), we say that it is \(p \)-closed if their tangent sheaf \(T_F \) is closed by \(p \)-powers. This is equivalent to say that the \(\mathcal{O}_X \)-morphism
\[
\psi_F : F^*T_F \longrightarrow N_F \quad v \mapsto v^p \mod T_F
\]
is the zero morphism where \(F_X \) is the absolute Frobenius morphism and \(N_F \) is the normal bundle of \(F \). The morphism \(\psi_F \) is called the \(p \)-curvature of the foliation \(F \).

When the foliation is \(p \)-closed it follows from [2, Théorème 1] that there are infinitely many algebraic solutions. On the other hand, if the foliation \(F \) is not \(p \)-closed then there is a divisor \(\Delta_F \), the \(p \)-divisor, which is defined as the degeneracy locus of the \(p \)-curvature morphism \(\psi_F \). An interesting property of the \(p \)-divisor is that every irreducible algebraic solution of the foliations is contained in the support of the \(p \)-divisor.

Since the set of foliations that are not \(p \)-closed is open we can ask about the structure of the \(p \)-divisor for generic foliations.

Problem 1. Let \(X \) be a smooth algebraic surface defined over a field \(k \) of characteristic \(p > 0 \). What can we say about the \(p \)-divisor \(\Delta_F \) of a generic foliation \(F \)?

We present results towards the solution of this problem in the case where \(X \) is the projective plane or a Hirzebruch surface. More precisely, we show the following theorems.

Theorem A. Let \(k \) be an algebraically closed field of characteristic \(p > 0 \). A generic foliation in the projective plane \(\mathbb{P}^2_k \) of degree \(d \geq 1 \) with \(p \parallel d - 1 \) has reduced \(p \)-divisor.

Theorem B. Let \(k \) be an algebraically closed field of characteristic \(p > 0 \). Let \(\Sigma_d \) be the \(d \)-Hirzebruch surface defined over \(k \) and let \(d_1, d_2 \in \mathbb{Z}_{\geq 0} \) such that \(p \parallel d_i \), if \(d_i \neq 0 \). Let \(F \) be a fiber of the natural projection \(\pi : \Sigma_d \longrightarrow \mathbb{P}^1_k \) and \(M_d \) be a section which satisfies \(F \cdot M_d = 1 \) and \(M_d^2 = d \). Then a generic foliation in \(\Sigma_d \) with normal bundle \(N \) which is numerically equivalent to \((d_1 - d + 2)F + (d_2 + 2)M_d\) has reduced \(p \)-divisor.
1.1 Organization of the paper

In Section 2 we fix the notations that will be used in the paper. In Section 3, we introduce the definition of p-divisor of foliations on algebraic surfaces defined over a field of characteristic $p > 0$. We recall the global representation of foliations in the projective plane and in the Hirzebruch surface. We present the definition of the p-divisor of a foliation and we investigate some of their properties, in particular, some applications to algebraicity of foliations on complex projective plane. In Section 4 we consider the problem of the structure of the p-divisor for foliations in the projective plane and in the Hirzebruch surface of type $d > 0$. In Section 5 we study the problem for $\mathbb{P}^1_k \times \mathbb{P}^1_k$. In Section 6 we finalize by considering the Hirzebruch surface of type $d > 0$.

2 Notation

- k = algebraically closed field of characteristic $p > 0$.
- X = smooth algebraic surface defined over k.
- Curve in X = effective divisor in X.
- d-Hirzebruch surface over k ($d \geq 0$) = $\Sigma_d = \mathbb{P}(O_{\mathbb{P}^1_k} \oplus O_{\mathbb{P}^1_k}(d))$.
- M = the curve in Σ_d ($d > 0$) such that $M^2 = -d$.
- \equiv = numerical equivalence in $\text{Div}(X)$.
- $\text{Num}_{\mathbb{Q}}(X) = (\text{Div}(X)/ \equiv) \otimes \mathbb{Q}$.
- If (X, H) is a polarized surface and D is a divisor in X, $\deg(D) = D \cdot H$.
- $U(X, H, N), V(X, H, N)$ = open sets of Lemma 3.12.
- $m_Q(C) = \text{algebraic multiplicity of the curve } C \subset X \text{ at } Q \in X$.
- If $\pi_Q: \text{Bl}_Q(X) \to X$ is the blow up at Q, \mathcal{F} is a foliation in X, $\mathcal{G} = \pi_Q^* \mathcal{F}$ and E is the exceptional divisor, $l(Q) = \text{ord}_E(N_G^* - \pi_Q^* N^*_X)$.
- $O(2)$ = terms of the order at least 2.

3 Foliations on surfaces and the p-divisor

Let k be an algebraically closed field and X be a smooth algebraic surface defined over k. A foliation \mathcal{F} in X is a coherent subsheaf $T_{\mathcal{F}} \subset T_X$ of rank one which satisfies the following properties:

- The sheaf $T_{\mathcal{F}}$ is closed by Lie brackets;
- The quotient $T_X/T_{\mathcal{F}}$ is torsion free, that is, $T_{\mathcal{F}}$ is saturated in T_X.

3
We can define a foliation in X in more explicitly terms. In this terms, a foliation in X consists of a system $\{(U_i, \omega_i, v_i)\}_{i \in I}$ such that:

- The collection $\{U_i\}_{i \in I}$ is an open cover of X;
- For each $i \in I$ we have $v_i \in T_X(U_i)$, $\omega_i \in \Omega^1_X(U_i)$ such that $i_*\omega_i = 0$;
- In $U_i \cap U_j$ we have $\omega_i = f_{ij}\omega_j$ and $v_i = g_{ij}v_j$ for some functions $f_{ij}, g_{ij} \in \mathcal{O}_X(U_{ij})^*$;
- For each $i \in I$ we have $\text{codim} \text{sing}(\omega_i) \geq 2$ and $\text{codim} \text{sing}(v_i) \geq 2$.

Note that the second definition is an alternative version of the first. Indeed, given a foliation $\{(U_i, \omega_i, v_i)\}_{i \in I}$ in X we can construct a saturated subsheaf of T_X in the following way: For each open U of X we define $T_\mathcal{F}(U)$ by

$$T_\mathcal{F}(U) = \{ v \in T_X(U) \mid i_*\omega_i|_{U_i} = 0 \text{ in } U \cap U_i \text{ for all } i \in I \}. $$

We ensure that $T_\mathcal{F}$ is a saturated subsheaf of T_X by using the condition imposed in the singular set of ω_i. Reciprocally, let $T_\mathcal{F}$ be a foliation in X and consider the global section $\omega \in H^0(X, \Omega^1_X \otimes N_\mathcal{F})$ induced by the morphism $T_X \to N_\mathcal{F}$. Then, by definition we obtains a open cover $\{U_i\}_{i \in I}$ of X, 1-forms $\omega_i \in \Omega^1_X(U_i)$ and functions $\{f_{ij}\}_{i,j}$ with $f_{ij} \in \mathcal{O}_X(U_i \cap U_j)$ representing $N_\mathcal{F}$ such that $\omega_i = f_{ij}\omega_j$. Since $T_\mathcal{F}$ is a saturated subsheaf of T_X we ensure that $\text{codim} \text{sing}(\omega_i) \geq 2$ for every i. Note that the vector fields v_i are obtained in a similar way by considering a global section $v \in H^0(X, T_X \otimes T_\mathcal{F})$ induced by the inclusion $T_\mathcal{F} \subset T_X$. By construction, we obtain vector fields $\{v_i\}_{i \in I}$ in $\{U_i\}_{i \in I}$ such that for every i the vector field v_i is tangent to the 1-form ω_i that defines \mathcal{F} in the open set U_i.

Let $\{(U_i, \omega_i, v_i)\}_{i \in I}$ be a foliation in X. The collection $\{f_{ij}^{-1}\}, \{g_{ij}\}$ determines elements of $H^0(X, \mathcal{O}_X^*) = \text{Pic}(X)$ and the line bundles associated are the conormal bundle $\Omega^1_{X/\mathcal{F}}$ and the cotangent bundle Ω^1_X associated to \mathcal{F}. Any divisor in the correspondent linear classes to Ω^1_X and $(\Omega^1_{X/\mathcal{F}})^*$ will be called the canonical divisor and the normal divisor associated to \mathcal{F} and will be denoted by $K_\mathcal{F}$ and $N_\mathcal{F}$.

3.1 The p-divisor for foliations on smooth algebraic surfaces

We start this section recalling the following basic lemma about derivations over fields of positive characteristic.

Lemma 3.1. Let k be an field of characteristic $p > 0$ and R be a k-domain. Let $D \in \text{Der}_k(R)$ be a k-derivation. Then $D^p \in \text{Der}_k(R)$. If $f \in R$ then

$$(fD)^p = f^pD^p - fD^{p-1}(f^{p-1})D.$$

Proof. [S, Proposition (5.3)].

Let X be an algebraic surface defined over a algebraically closed field k of characteristic $p > 0$. Let $\mathcal{F} = \{(U_i, \omega_i, v_i)\}$ be a foliation on X.

4
Definition 3.2. We say that \mathcal{F} is p-closed if for some i we have $v_i \wedge v_i^p = 0$.

Remark 3.3. By Lemma 3.1 we conclude that $v_i \wedge v_i^p = 0$ for some i if and only if $v_j \wedge v_j^p = 0$ for every j.

Suppose that \mathcal{F} is not p-closed. In the open $U_{ij} = U_i \cap U_j$ we have $\omega_i = f_{ij} \omega_j$ and $v_i = g_{ij} v_j$. Since we are assuming that \mathcal{F} is not p-closed we have for each $i, j \in I$

\[
0 \neq i_{v_i^p} \omega_i = i_{(g_{ij} v_j)} f_{ij} \omega_j = i_{(g_{ij} v_j^p + g_{ij} v_j^{p-1}(g_{ij} v_j))} f_{ij} \omega_j = g_{ij}^{p} f_{ij} i_{v_j^p} \omega_j \neq 0.
\]

So, the collection $\{i_{v_i^p} \omega_i\}_{i \in I}$ determines a global section $0 \neq s_\mathcal{F} \in H^0(X, (\Omega^1_X)^{\otimes p} \otimes N_\mathcal{F})$.

Definition 3.4. Let \mathcal{F} be a foliation in X that is not p-closed. The p-divisor associated to \mathcal{F} is the zero divisor of the section $s_\mathcal{F}$, that is, $\Delta_\mathcal{F} = (s_\mathcal{F})_0 \in \text{Div}(X)$.

Remark 3.5. Let \mathcal{F} be a foliation in \mathbb{P}^2_k of degree $d > 0$. Then, we have the formulas:

$\Omega^1_{\mathbb{P}^2_k} = \mathcal{O}_{\mathbb{P}^2_k}(d - 1)$ and $N_\mathcal{F} = \mathcal{O}_{\mathbb{P}^2_k}(d + 2)$. In particular, if \mathcal{F} is not p-closed then the p-divisor is a divisor of degree $\deg(\Delta_\mathcal{F}) = p(d - 1) + d + 2$.

Example 3.6. Let $X = \mathbb{A}^2_k$ and $\alpha \in k$. Let \mathcal{F} be a foliation defined by the vector field $v = x \partial_x + \alpha y \partial_y$. Then, \mathcal{F} is p-closed if and only if $\alpha \in \mathbb{F}_p$ and if $\alpha \notin \mathbb{F}_p$ we have $s_\mathcal{F} = (\alpha^p - \alpha)xy$.

Proposition 3.7. Let X be smooth algebraic surface defined over k and \mathcal{F} be a foliation in X that is not p-closed. Let C be an irreducible algebraic curve on X. If C is \mathcal{F}-invariant then $\text{ord}_C(\Delta_\mathcal{F}) > 0$. Reciprocally, if p does not divides $\text{ord}_C(\Delta_\mathcal{F})$ then C is \mathcal{F}-invariant.

Proof. Suppose that C is \mathcal{F}-invariant and let $R = \mathcal{O}_X, C$ be the ring of regular functions of X along C. Let U be an affine open set such that $T_\mathcal{F}$ if given by a regular vector field v and $N_\mathcal{F}$ is given by a regular 1-form ω. Let $\{f = 0\}$ be the local equation for C in U and note that f is a uniformizer parameter to the ring R. We need to show that $\text{ord}_C(\Delta_\mathcal{F}) > 0$. Now, we have $v(f) = f H$ and $\omega \wedge df = f \sigma$ for some $H \in R$ and $\sigma \in \Omega^1_R/k$. Contraction with the vector field v^p gives $f i_{v^p}(\sigma) = i_{v^p}(\omega \wedge df) = i_{v^p} \omega df - i_{v^p}(df) \omega$. By using the equality $v(f) = f H$ we conclude that $v^p(f) = f H_p$ for some regular function H_p. So, $f i_{v^p} \sigma + v^p(f) \omega = i_{v^p} \omega df$ and we conclude that $i_{v^p} \omega \in \langle f \rangle$. It follows that $\text{ord}_C(\Delta_\mathcal{F}) > 0$.

Reciprocally, suppose that $\text{ord}_C(\Delta_\mathcal{F}) = \alpha \neq 0 \mod p$ and write $\Delta_\mathcal{F} = f^\alpha g$ with $g \in R^\ast$. By [4] Theorem 6.2 we know that $d(\Delta_\mathcal{F})^\alpha = 0$ and expanding this formula we obtain $\alpha \cdot g df \wedge \omega = f(g df - dg \wedge \omega)$, which implies $f|df \wedge \omega$. So, C is \mathcal{F}-invariant.

The Proposition 3.7 has the following consequence (compare with Proposition[A]).

Corollary 3.8. Let k be an algebraically closed field of characteristic $p > 0$. Let \mathcal{F} be a foliation on \mathbb{P}^2_k and suppose that $p \nmid d + 2$. Then \mathcal{F} has an invariant algebraic curve.
Proof. If \mathcal{F} is p-closed then \mathcal{F} admits infinitely many invariant curves by [2, Théorème 1]. We can assume that \mathcal{F} is not p-closed. Since p does not divide $d + 2$ the degree formula: $\deg(\Delta_{\mathcal{F}}) = p(d - 1) + d + 2$ shows that $\deg(\Delta_{\mathcal{F}}) \not\equiv 0 \mod p$. In particular, there exists a prime divisor \mathfrak{p} in the support of $\Delta_{\mathcal{F}}$ such that $\ord_{\mathfrak{p}}(\Delta_{\mathcal{F}}) \not\equiv 0 \mod p$. By Proposition [3.7] the divisor \mathfrak{p} defines a \mathcal{F}-invariant irreducible curve.

Let \mathcal{F} be a foliation in a smooth algebraic surface X and $Q \in \text{sing}(\mathcal{F})$. We say that Q is not degenerated with eigenvalue $\alpha \in \mathbb{K}$ if there exists an affine open subset $U \subset \mathbb{A}^2$ which contains Q such that $\mathcal{F}|_U$ can be represent by a polynomial vector field $v = v_1 + O(2)$ with $v_1 = x\partial_x + \alpha y\partial_y$ and $\alpha \neq 0$.

Definition 3.9. Let \mathcal{F} be a foliation on X and $Q \in \text{sing}(\mathcal{F})$. We say that Q is p-reduced if Q is not degenerated and has type $\alpha(Q)$ satisfying the condition: $\alpha(Q) \not\equiv F_p$.

Lemma 3.10. Let \mathcal{F} be a foliation in an algebraic surface X and $Q \in \text{sing}(\mathcal{F})$ be a p-reduced singularity of \mathcal{F}. Then, \mathcal{F} is not p-closed.

Proof. Let U be an affine open set that contains Q and $x, y \in O_{X,Q}$ local parameters system at Q in U. In the open U the foliation is given by a vector field $v = v_1 + \tilde{v}$ where $v_1 = x\partial_x + \alpha y\partial_y$ with $\alpha \not\equiv F_p$ and \tilde{v} consists of terms that has order at least two. Then, $v^p = v_1^p + \tilde{v}_p$ where \tilde{v}_p contains only homogeneous terms with order at least two. Observe that $v_1^p = x\partial_x + \alpha^p y\partial_y$ and $v_1 \wedge v_1^p$ is the homogeneous component of the smallest degree that occurs in $v \wedge v^p$. Since $\alpha \not\equiv F_p$ we ensure that $v_1 \wedge v_1^p = (\alpha^p - \alpha)\partial_x \wedge \partial_y \neq 0$ and so $v \wedge v^p \neq 0$.

Lemma 3.11. Let X be a smooth projective surface defined over k and \mathcal{F} be a foliation in X that is not p-closed. Let $Q \in \text{sing}(\mathcal{F})$ be a p-reduced singular point of \mathcal{F}. Suppose that $\Delta_{\mathcal{F}}$ is a reduced divisor and let $\pi_Q : \text{Bl}_Q(X) \rightarrow X$ the blowup with center at Q. Then, $\pi^*_{\mathcal{F}}$ defines a foliation in $\text{Bl}_Q(X)$ with reduced p-divisor.

Proof. Let $\mathcal{G} = \pi^*_{\mathcal{F}}\mathcal{F}$ be a foliation induced in $\text{Bl}_Q(X)$. Since Q is p-reduced we have $K_{\mathcal{G}} - \pi^*_{\mathcal{F}}K_{\mathcal{F}} = 0$ and $N_{\mathcal{G}} - \pi^*_{\mathcal{F}}N_{\mathcal{F}} = -E$. Indeed, in an affine open set $U \subset \mathbb{A}^2$ the foliation is represented by a 1-form $\omega = \omega_1 + O(2)$ where $\omega_1 = ydx - axdy$ with $\alpha \not\equiv F_p$ and $O(2)$ containing only terms with order at least two. In a convenient coordinates system the map $\pi_Q : \text{Bl}_Q(X) \rightarrow X$ associate $(x,t) \mapsto (x,xt)$. Since $\pi^*_{\mathcal{F}}\omega$ is a local section of $N_{\pi^*_{\mathcal{F}}}$ we have $[\pi^*_{\mathcal{F}}\omega]_0 = N_{\pi^*_{\mathcal{F}}}^*$. In the other hand, since Q is p-reduced we have

$$\pi^*_{\mathcal{F}}\omega = \pi^*_{\mathcal{F}}\omega_1 + O(2) = (xtdx - \alpha x(xtdt + tdx)) + O(2) = x(t(1 - \alpha)dx + xdt + O(2)).$$

Denote $\tilde{\omega} = t(1 - \alpha)dx + xdt + O(2)$ and note that $\tilde{\omega}$ is a local section of $\pi^*_{\mathcal{F}}N_{\mathcal{F}}$. So, $N^*_{\mathcal{G}} = N^*_{\pi^*_{\mathcal{F}}} = [\pi^*_{\mathcal{F}}\omega]_0 = [x]_0 + [\tilde{\omega}]_0 = E + \pi^*_{\mathcal{F}}N^*_{\mathcal{F}}$. The formula that compares $\pi^*_{\mathcal{F}}K_{\mathcal{F}}$ and $K_{\pi^*_{\mathcal{F}}}$ follows by the adjunction formula: $K_X = K_{\mathcal{F}} - N_{\mathcal{F}}$. So, we have

$$[\Delta_{\mathcal{G}}] = pK_{\mathcal{G}} + N_{\mathcal{G}} = p\pi^*_{\mathcal{F}}K_{\mathcal{F}} + \pi^*_{\mathcal{F}}N_{\mathcal{F}} - E = \pi^*_{\mathcal{F}}[\Delta_{\mathcal{F}}] - E = \Delta_{\mathcal{F}} + (m_Q(\Delta_{\mathcal{F}}) - 1)E$$

where $\Delta_{\mathcal{F}}$ denotes the strict transform of the divisor $\Delta_{\mathcal{F}}$ and $m_Q(\Delta_{\mathcal{F}})$ is the algebraic multiplicity of $\Delta_{\mathcal{F}}$ at Q. Since Q is p-reduced, by using [13] Fact 2.8 we conclude that $m_Q(\Delta_{\mathcal{F}}) = 2$ so that $[\Delta_{\mathcal{G}}] = \Delta_{\mathcal{F}} + E$.

\[\square\]

6
Lemma 3.12. Let \((X,H)\) be a polarized smooth projective surface defined over algebraically closed field \(k\) with characteristic \(p > 2\). Let \(\mathcal{N}\) be an invertible sheaf and let \(\text{Fol}_\mathcal{N}(X) = \mathbb{P}(H^0(X,\Omega_X^1 \otimes \mathcal{N}))\) the space of foliations on \(X\) that has normal bundle \(\mathcal{N}\). Suppose that that space is not empty and consider the following sets

\[
U = \{ \mathcal{F} \in \text{Fol}_\mathcal{N}(X) \mid \Delta_\mathcal{F} \text{ is reduced} \} \quad \text{and} \quad V = \{ \mathcal{F} \in \text{Fol}_\mathcal{N}(X) \mid \Delta_\mathcal{F} \text{ is prime} \}.
\]

Then, \(U\) and \(V\) are open sets.

Proof. First, note that \(\deg(\Delta_\mathcal{F})\) depends only of \(X\) and \(\mathcal{N}\). Indeed, we have the following formula:

\[
\deg(\Delta_\mathcal{F}) = pK_X \cdot H + \mathcal{N} \cdot H = p(K_X + \mathcal{N}) \cdot H + H \cdot H = pK_X \cdot H + (p+1)\mathcal{N} \cdot H.
\]

Given \(e \in \mathbb{Z}_{\geq 1}\) let \(Z_e(X)\) the space that consists of all curves in \(X\) that has degree \(e\). In the following, we will use the fact that \(Z_e(X)\) is a projective algebraic variety over \(k\) (see [9, Theorem 1.4]). Define the following sets

\[
S_e = \{ (C, \mathcal{F}) \in Z_e(X) \times \text{Fol}_\mathcal{N}(X) \mid 2C \leq \Delta_\mathcal{F} \},
\]

\[
\tilde{S}_e = \{ (C, \mathcal{F}) \in Z_e(X) \times \text{Fol}_\mathcal{N}(X) \mid C \leq \Delta_\mathcal{F} \}.
\]

Since the conditions \(2C \leq \Delta_\mathcal{F}\) and \(C \leq \Delta_\mathcal{F}\) are closed relations we have that \(S_e\) and \(\tilde{S}_e\) are closed sets in \(Z_e(X) \times \text{Fol}_\mathcal{N}(X)\). Let \(\pi_e: Z_e(X) \times \text{Fol}_\mathcal{N}(X) \to \text{Fol}_\mathcal{N}(X)\) the natural projection. Since \(\pi_e\) is a proper morphism we ensure that \(\pi_e(S_e)\) and \(\pi_e(\tilde{S}_e)\) are closed sets in \(\text{Fol}_\mathcal{N}(X)\). Denote by \(\mathcal{F} \subset \text{Fol}_\mathcal{N}(X)\) the closed set consisting of \(p\)-closed foliations and consider the following sets:

\[
T_1 = \text{Fol}_\mathcal{N}(X) - (\mathcal{F} \cup \bigcup_{j=1}^{\lfloor \deg(\Delta_\mathcal{F}) \rfloor} \pi_j(S_j)) \quad \text{and} \quad T_2 = \text{Fol}_\mathcal{N}(X) - (\mathcal{F} \cup \bigcup_{j=1}^{\deg(\Delta_\mathcal{F}) - 1} \pi_j(\tilde{S}_j)).
\]

We claim that the following identities holds: \(U = T_1\) and \(V = T_2\). Indeed, the inclusions \(U \subset T_1\) and \(V \subset T_2\) are trivial. Now, let \(\mathcal{G}_1 \in T_1\) and \(\mathcal{G}_2 \in T_2\). Suppose, by contradiction, that \(\Delta_{\mathcal{G}_1}\) is not reduced and that \(\Delta_{\mathcal{G}_2}\) is not a prime divisor. In particular, there are curves \(C_1\) and \(C_2\) in \(X\) such that \(2C_1 \leq \Delta_{\mathcal{G}_1}\) and \(C_2 \leq \Delta_{\mathcal{G}_2}\) with \(\deg(C_2) < \deg(\Delta_{\mathcal{G}_2})\).

Since \(\deg(\Delta_{\mathcal{G}_j})\) depends only on \(K_X\) and \(\mathcal{N}\) by computing the degrees we have:

\[
2\deg(C_1) \leq \deg(\Delta_{\mathcal{G}_1}) = \deg(\Delta_{\mathcal{F}}) \quad \text{and} \quad \deg(C_2) \leq \deg(\Delta_{\mathcal{G}_2}) - 1 = \deg(\Delta_{\mathcal{F}}) - 1
\]

and this implies

\[
\mathcal{G}_1 \in \mathcal{F} \cup \bigcup_{j=1}^{\deg(\Delta_{\mathcal{F}})} \pi_j(S_j) \quad \text{and} \quad \mathcal{G}_2 \in \mathcal{F} \cup \bigcup_{j=1}^{\deg(\Delta_{\mathcal{F}}) - 1} \pi_j(\tilde{S}_j)
\]

a contradiction. \(\square\)

In the following we will denote the open sets above by \(U(X,H,N) \in V(X,H,N)\).
3.2 Global equations for foliations on \mathbb{P}_k^2

Let $e \in \mathbb{Z}_{\geq 0}$ and k be an algebraically closed field. A foliation in \mathbb{P}_k^2 of degree e is determined by a global section of $\Omega_{\mathbb{P}_k^2}^{1}(e+2)$. By using the Euler exact sequence (see [6, Theorem 8.13]) it follows that a foliation in \mathbb{P}_k^2 is given, module elements of k^*, by a 1-form $\Omega = A dx + B dy + C dz$ where $A, B, C \in k[x, y, z]_{e+1}$ with $Z(A, B, C) \subset \mathbb{P}_k^2$ finite set and such that $i_R \Omega = 0$, where R is the radial vector field: $R = x \partial_x + y \partial_y + z \partial_z$.

Suppose that k has characteristic $p > 0$ and let \mathcal{F} be a foliation in \mathbb{P}_k^2 with normal bundle $N = \mathcal{O}_{\mathbb{P}_k^2}(d + 2)$ and suppose that $p \nmid \text{deg}(N)$. Suppose that \mathcal{F} is defined by the homogeneous 1-form: $\omega = Adx + Bdy + Cdz$ and put: $d\omega = (d + 2)(L dy \wedge dz - M dx \wedge dz + N dx \wedge dy)$. Let $v \in \mathfrak{X}_k(\mathbb{A}_k^3)$ be the homogeneous vector field defined by: $v_\omega = L \partial_x + M \partial_y + N \partial_z$. By the [7, Proposition 1.1.4] the association $\omega \mapsto v_\omega$ defines a bijection between the set of projective 1-forms of degree $d + 2$ and the set of homogeneous vector fields in \mathbb{A}_k^3 of degree d that has zero divergent $\text{div}(v_\omega) = L_x + M_y + N_z = 0$. The p-divisor is explicitly given by $\Delta_\mathcal{F} = [i_{\nu_p} \omega] \in \operatorname{Div}(\mathbb{P}_k^2)$.

Example 3.13. Let \mathcal{F} be a foliation of degree two in \mathbb{P}_k^2 defined by the projective 1-form

$$\omega = yz^2 dx - z(4yz + 2xz + 2y^2)dy + (xyz + 4y^2z + 2y^3)dz.$$

Given a prime number $p \in \mathbb{Z}_{\geq 3}$ consider \mathcal{F}_p the foliation obtained by reducing modulo p the 1-form that defines \mathcal{F}. Then, \mathcal{F}_p is not p-closed and $\Delta_{\mathcal{F}_p} = 3\{y = 0\} + (p+1)\{z = 0\}$.

Proof. We will show first that \mathcal{F}_p is not p-closed for every prime $p > 3$. Fix a prime number $p > 3$ and consider the foliation \mathcal{F}_p defined in \mathbb{P}_k^2 by reduction modulo p of the coefficients of the 1-form ω. Since this problem is local, we can restrict the foliation to the open set $U = D_z(z) \cong \mathbb{A}_k^2$. In U, the foliation is given by the vector field $v = (4y + 2x + 2y^2)\partial_x + y \partial_y$. Observe that $v(x) = 4y + 2x + 2y^2$. An inductive argument shows that for every $k \geq 3$ we have

$$v^k(x) = 2^2(2^{k-2} + 2^{k-3} + \cdots + 2 + 1) + 1)y + k2^ky^2 + 2^kx.$$

So, we conclude $v^p(x) = 4y + 2^p x = 4y + 2x$, since $0 = 2^{p-1} - 1 = (2^{p-2} + \cdots + 1)$ in \mathbb{F}_p. In particular, we have

$$v^p(x)v(y) - v^p(y)v(x) = y(v^p(x) - 4y - 2y^2 - 2x) = y(-2y^2) = -2y^3 \neq 0.$$

So, the foliation defined by v is not p-closed, if $p > 3$. This implies that the p-divisor of \mathcal{F}_p is given by $\Delta_{\mathcal{F}_p} = 3\{y = 0\} + (p+1)\{z = 0\}$. \hfill \square

3.3 Applications: foliations on \mathbb{P}_k^2 without algebraic invariant curves

The next two propositions show that, in some cases, the irreducibility of the p-divisor for foliations in \mathbb{P}_k^2 is relate with holomorphic foliations in \mathbb{P}_k^2 without algebraic invariant curves.
Proposition 3.14. Let \mathcal{F} be a non-dicritical foliation in \mathbb{P}^2_C defined by a projective 1-form $\Omega = Adx + Bdy + Cdz$. Let K be a number field and suppose that $A,B,C \in \mathcal{O}_K[x,y,z]_{d+1}$, where \mathcal{O}_K is the integer ring of K. Let $m \in \text{Spn}(\mathcal{O}_K)$ of characteristic p and suppose that p does not divide $d+2$. Let \mathcal{F}_p be a foliation in $\mathbb{P}^2_{k(m)}$ obtained by reduction modulo m of the coefficients of Ω. If $\Delta_{\mathcal{F}_p}$ is irreducible then \mathcal{F} has no algebraic solutions. This can be used to give a simple proof that the Jouanolou foliations of degree two and tree has no algebraic solutions.

Proof. Suppose, by contradiction, that \mathcal{F} has an algebraic solution C. By using Galois automorphism, we can assume that C is defined by an irreducible polynomial over \mathcal{O}_K. In particular, C is reduced as a curve in \mathbb{P}^2_C. Let $F \in \mathcal{O}_K[x,y,z]$ be the irreducible polynomial defining C. By $[3]$ theorem we know that $\deg(F) \leq d+2$. Let $F \otimes k(m)$ be the polynomial obtained by reduction modulo m of F. Note that the reduction modulo m preserves the invariance in the sense that the curve describe by F is invariant by the foliation \mathcal{F}_p. Let $G \in k(m)[x,y,z]$ be an irreducible factor of F. We have that the curve $\{ G = 0 \} \subset \mathbb{P}^2_{k(m)}$ is \mathcal{F}_p-invariant and by the Proposition 3.7 we conclude that $\{ G = 0 \} \leq \Delta_{\mathcal{F}_p}$. Since $\Delta_{\mathcal{F}}$ is irreducible we have $\{ G = 0 \} = \Delta_{\mathcal{F}}$. But, this is a contraction by comparison of degrees, since $p(d-1)+d+2 = \deg(\Delta_{\mathcal{F}_p}) > d+2 \geq \deg(G)$. \hfill \Box

Let \mathcal{F} be a foliation in \mathbb{P}^2_C and Q a reduced singularity of \mathcal{F}. Suppose that Q is not degenerated. In this case, we know that if α is the eigenvalue of Q then $\alpha \notin \mathbb{Q}$. By $[12]$ Appendix II we know that there is an analytic coordinate system such that the foliation is given by the 1-form $\omega = -\alpha y(1+b(x,y))dx+x(1+a(x,y))dy$ with $a,b \in \{x,y\}$. In particular, if C is a reduced algebraic curve that is \mathcal{F}-invariant with $Q \in C$ then in the analytic coordinate system above the C is given by $\{x=0\}, \{y=0\}$ or $\{xy=0\}$. So, computing the Camacho-Sad index we conclude that

$$CS(\mathcal{F},C,Q) = \begin{cases} 1/\alpha & \text{if } C = \{x=0\}, \\ \alpha & \text{if } C = \{y=0\}, \\ \alpha + \alpha^{-1} + 2 & \text{if } C = \{xy=0\}. \end{cases}$$

In particular, we have that the norm of the index is bounded by a constant which depends only on eigenvalue α of Q. More precisely, we have $\|CS(\mathcal{F},C,Q)\| \leq |\alpha| + |\alpha|^{-1} + 2$. We will use this in the following example.

Proposition 3.15. Let \mathcal{F} be a non-degenerated foliation in \mathbb{P}^2_C defined by a projective 1-form ω with coefficients in \mathbb{Z}. Suppose that ω is primitive, that is, the greatest common divisor of the coefficients of ω is equal to 1. Suppose that \mathcal{F} is reduced and define

$$\alpha_{\mathcal{F}} := \sup\{ |\alpha(Q)| \mid Q \in \text{sing}(\mathcal{F}) \} \quad \text{and} \quad \alpha_{\mathcal{F}}^{\#} := \sup\{ |\alpha(Q)|^{-1} \mid Q \in \text{sing}(\mathcal{F}) \}.$$

Let $\beta_{\mathcal{F}} = \alpha_{\mathcal{F}} + \alpha_{\mathcal{F}}^{\#} + 2$ and p be a prime number such that $p > (d_{\mathcal{F}} + 1)\beta_{\mathcal{F}}^{1/2}$ and suppose that $\Delta_{\mathcal{F}_p}$ is a prime divisor. Then, \mathcal{F} has no algebraic solutions.

Proof. Suppose by contradiction that \mathcal{F} has an algebraic solution C. By using Galois automorphism we can assume that C is given by an irreducible polynomial defined over
we conclude that Δ is a divisor such that $\pi D \subseteq C$.

The formula above implies that $d_C \leq (d_F + 1)\beta_F^2 < p$. So, reducing C modulo p we ensure that the reduction $C \otimes \mathbb{F}_p$ has no p-factor, that is, there is no an effective divisor, such that $pD \subseteq C \otimes \mathbb{F}_p$. Let E be an irreducible factor of $C \otimes \mathbb{F}_p$. By Proposition 3.7 we know that E is a \mathcal{F}_p-invariant irreducible curve. Since the p-divisor of \mathcal{F}_p is irreducible we conclude that $\Delta_{\mathcal{F}_p} = E$. But, this is a contradiction by degree comparison.

The interesting fact about Proposition 3.14 and Proposition 3.15 is that we get information about the algebraicity of foliations on \mathbb{P}_k^2 by using only a maximal ideal.

3.4 Global equations for foliations on Σ_d

In this subsection we recall the construction of the Hirzebruch surfaces and how to represent globally foliations in that surfaces. The reference for this section is [5].

Let $\mathbb{G}_m = k^*$ the multiplicative group of k and $d \in \mathbb{Z}_{\geq 0}$. Let μ_d the action of \mathbb{G}_m^2 in $X = (\mathbb{A}_k^2 - 0) \times (\mathbb{A}_k^2 - 0)$ defined by the morphism:

$$
\mu_d : \mathbb{G}_m^2 \times X \longrightarrow X
$$

$$
((a, b), (x_0, x_1; y_0, y_1)) \mapsto (ax_0, ax_1, by_0, \frac{b}{a^d}y_1).
$$

The quotient $\Sigma_d = X/\mu_d$ is a smooth surface defined over k and is isomorphic to the d-Hirzebruch surface, that is, the surface $\mathbb{P}(\mathcal{O}_{\mathbb{P}_k^1} \oplus \mathcal{O}_{\mathbb{P}_k^1}(d))$. It is a ruled surface with structural morphism to \mathbb{P}_k^1 defined by

$$
\pi : \Sigma_d \longrightarrow \mathbb{P}_k^1
$$

$$
(x_0, x_1; y_0, y_1) \mapsto [x_0 : x_1].
$$

Let $d_1, d_2 \in \mathbb{Z}$ and $G \in k[x_0, x_1, y_0, y_1]$. We say that G is bi-homogeneous of the bi-degree (d_1, d_2) if for any monomial $x_0^{a_0}x_1^{a_1}y_0^{b_0}y_1^{b_1}$ in the support of G we have $d_1 = a_0 + a_1 - db_1$ and $d_2 = b_0 + b_1$. Let F and M_d curves in Σ_d such that F is a fiber of the structural projection $\pi : \Sigma_d \longrightarrow \mathbb{P}_k^1$ and M_d is a section of π which satisfies the conditions $M_d \cdot F = 1$ and $M_d^2 = d$. Then $\{F, M_d\}$ forms a base for the vector space $\text{Num}_Q(\Sigma)$. If $D \in \text{Div}(\Sigma_d)$ is a divisor such that $D \equiv d_1F + d_2M_d$ then the global sections of the $\mathcal{O}_{\Sigma_d}(D)$ correspond to bi-homogeneous polynomials of bi-degree (d_1, d_2) in Σ_d. In the following, we will use the following description of foliations in Hirzebruch surfaces (see [5] Proposition 3.2]).

Proposition 3.16. Let $d \in \mathbb{Z}_{\geq 0}$, $d_1, d_2 \in \mathbb{Z}$ and $N = \mathcal{O}_{\Sigma_d}(d_1 - d + 2, d_2 + 2)$. Then, any foliation \mathcal{F} in Σ_d with normal bundle N is uniquely determined, modulo k^*, by a differential 1-form of the type $\Omega = A_0dx_0 + A_1dx_1 + B_0dy_0 + B_1dy_1$ where $A_0, A_1 \in H^0(\Sigma_d, \mathcal{O}(d_1 - d + 1, d_2 + 2))$, $B_0 \in H^0(\Sigma_d, \mathcal{O}_{\Sigma_d}(d_1 - d + 2, d_2 + 1))$ and $B_1 \in H^0(\Sigma_d, \mathcal{O}_{\Sigma_d}(d_1 + 2, d_2 + 1))$ are bi-homogeneous and satisfies the following conditions: $x_0A_0 + x_1A_1 - dy_1B_1 = 0$ and $y_0B_0 + y_1B_1 = 0$.

10
4 The p-divisor for foliations on \mathbb{P}^2_k

In this section, we investigate the structure of the p-divisor for generic foliations in the projective plane. In the next section, k will be denote an algebraically closed field that has characteristic $p > 0$. The following lemma will be important to the next sections.

Lemma 4.1. Let $F \in k[x_0, \ldots, x_n]$ be a reduced polynomial and $l \in \mathbb{Z}$ positive integer with $\gcd(l, p) = 1$. Suppose that $x_0 \nmid F$. Then, $F(x_0^{l}, x_1, \ldots, x_n)$ is reduced.

Proof. First, note that if x_0 does not occurs in F then is nothing to prove. So, we can suppose that x_0 occurs in F. We first consider the case where F is irreducible. Note that it is sufficient to consider the case where $n = 0$. Indeed, if $R = k[x_1, \ldots, x_n]$ and K is their fraction field then by the Gauss Lemma (see [10, Theorem 2.1]) we know that $F \in R[x_0]$ is irreducible if and only if $F = a_0 + a_1x_0 + \cdots + a_dx_0^d \in K[x_0]$ is irreducible and has content 1, that is, the greatest common divisor of the coefficients is equal to 1.

Since we are assuming that F is irreducible we have, in particular, that F is irreducible over $K[x_0]$ where $K = k(x_1, \ldots, x_n)$. Let $g(x_0) = F(x_0) \in K[x_0]$. Note that the content of g is equal to 1, since the coefficients of g are equal to the coefficients of F. In the other hand, the irreducibility of F implies that g is reduced: indeed, to see this note that it is sufficient to proof that $\gcd(g(x_0), \frac{dg}{dx_0}) = 1$. Now, by taking derivatives we have $\frac{dg}{dx_0} = lF'(x_0)x_0^{-1} \neq 0$. Since F is irreducible we ensure that $F'(x_0)$ and $F(x_0)$ are coprime. In particular, we have $\gcd(g(x_0), g'(x_0)) = 1$. So, $g(x_0)$ is reduced in $R[x_0] = k[x_0, x_1, \ldots, x_n]$.

Now we will consider the general case, where F is reduced. Let $R = k[x_1, \ldots, x_n]$ and K their fraction field. Note that, without loss of generality, we can assume that $F \in R[x_0]$ has content equal to 1. Let G and H two irreducible factors of F. We will show that $G = G(x_0^{l}, x_1, \ldots, x_n)$ and $H = H(x_0^{l}, x_1, \ldots, x_n)$ do not have common irreducible factors. By the Gauss Lemma (see [10, Theorem 2.1]) is it sufficient to show that G and H do not have common irreducible factors over $K[x_0]$, where $K = k(x_1, \ldots, x_n)$. In the other hand, since G and H has not common factors over $k(x_0, x_1, \ldots, x_n)$ we have, in particular, that there is no common irreducible factors over $K[x_0]$. So, there exists $A(x_0), B(x_0) \in K[x_0]$ such that $A(x_0)G + B(x_0)H = 1$. Specializing the identity above to x_0 we conclude that $A(x_0)G + B(x_0)H = 1$ and so G, H have no common irreducible factors over $K[x_0]$. So, we consider only the case where the polynomial F is irreducible by considering their decomposition in irreducible factors. \hfill \Box

Remark 4.2. Let $l \in \mathbb{Z}_{>0}$ with $\gcd(l, p) = 1$. In general, we do not ensure that if $f \in k[x]$ is irreducible then $g(x) = f(x^l)$ is irreducible. Indeed, let $p > 2$ and consider $f(x) = x - 1$. If $l \in 2\mathbb{Z}$ then we have $g(x) = f(x^l) = (x^l)^l - 1)(x^l + 1)$.

In the following, we present the proof of the Theorem [A]. Recall the statement.

Theorem A. Let k be an algebraically closed field of characteristic $p > 0$. A generic foliation in \mathbb{P}^2_k of degree $d \geq 1$ with $p \nmid d - 1$ has reduced p-divisor. More precisely, if
N is a fixed bundle then $U(\mathbb{P}^2_k, O_{\mathbb{P}^2_k}(1), N) \neq \emptyset$, if $\deg(N) = 3$ or if $\deg(N) > 3$ with $p + \deg(N) - 3$.

We will consider first the case where $d \in \{1, 2\}$ and after that we will use the case $d = 2$ to show the general case. We will divide the proof in propositions.

Proposition 4.3. A generic foliation in \mathbb{P}^2_k of degree $d \in \{1, 2\}$ has reduced p-divisor. More precisely, we have $U(\mathbb{P}^2_k, O_{\mathbb{P}^2_k}(1), N) \neq \emptyset$, if $\deg(N) = \{3, 4\}$.

Proof. If $\deg(N) = 3$, that is, $d = 1$ then there are examples of foliations with reduced p-divisor. Indeed, if $\alpha \in k - \mathbb{P}_p$ consider the foliation \mathcal{F}_α in \mathbb{P}^2_k given by the 1-form $\Omega_\alpha = -yzdx + \alpha xzdy + (1 - \alpha)xyzdz$. The condition $\alpha \notin \mathbb{P}_p$ implies that \mathcal{F}_α is not p-closed (see Lemma 3.10) with $\Delta_{\mathcal{F}_\alpha} = \{x = 0\} + \{y = 0\} + \{z = 0\}$. Now, consider the case where $\deg(N) = 4$ and let $D_+(z) = \{(x : y : z) \in \mathbb{P}^2_k | z \neq 0\}$. We will get the example by compactification via the isomorphism

$$\Phi: D_+(z) \rightarrow \mathbb{A}_k^2,$$

$$[x : y : z] \mapsto \left(\frac{x}{z}, \frac{y}{z}\right),$$

of a foliation \mathcal{G} in \mathbb{A}_k^2 given by the 1-form: $\omega = ydx - xdy + \omega_2$ where $\omega_2 = a(x, y)dx + b(x, y)dy$ for $a, b \in k[x, y]$ generic homogeneous polynomial of degree two. Note that \mathcal{G} has tree \mathcal{G}-invariant lines which contains the point $(0, 0)$. Indeed, the lines are given explicitly by the polynomial $i_R\omega_2 = l_1l_2l_3$, where R is the radial vector field in \mathbb{A}_k^2: $R = x\partial_x + y\partial_y$. Since a and b are generic, we can assume that l_1, l_2 and l_3 has multiplicity 1 along $\Delta_\mathcal{G}$. Indeed, we choose the lines l_1, l_2, l_3 such that for each i we ensure that $l_i \cap l_\infty = \{P_i\}$ is a p-reduced singularity of \mathcal{G}. In this case, by [13, Fact 2.8] we ensure that l_i occurs with multiplicity 1 in the p-divisor $\Delta_\mathcal{G}$. Let \mathcal{F} be a foliation obtained via compactification of \mathcal{G} in \mathbb{P}^2_k, via Φ. By Lemma 3.10 we know that \mathcal{F} is not p-closed with four invariant lines, l_1, l_2, l_3 and $l_\infty = \{z = 0\}$, and so $\Delta_\mathcal{F} = l_1 + l_2 + l_3 + l_\infty + C$ for some curve C of degree p.

We will show that a generic choice of a, b implies that C is irreducible and has $Q = [0 : 0 : 1]$ as a singularity of multiplicity $m_Q(C) = p - 1$. For this, let $\pi: Bl_Q(\mathbb{P}^2_k) \rightarrow \mathbb{P}^2_k$ the blowup at Q fix E the exceptional divisor and F a fiber of the natural projection $\pi: Bl_Q(\mathbb{P}^2_k) \rightarrow \mathbb{P}^1_k$. Note that $\{F, E\}$ forms a base to the vector space $\text{Num}_Q(Bl_Q(\mathbb{P}^2_k))$ and satisfies the following conditions $E^2 = -1, F \cdot E = 1$ and $F^2 = 0$. Let $\mathcal{H} = \pi^*\mathcal{F}$ the induced foliation. Since Q is a radial singularity we have (see [11, Chapter 2, Section 3]) $N^*_H = \pi^*N^*_F + 2E$ and $K_H = \pi^*K_F - E$. Let H be a line containing the point Q. Since $\pi^*N^*_F = \pi^*(-4H) = -4\pi^*H \equiv -4(F + E)$ and $\pi^*K_F = \pi^*H \equiv F + E$, we conclude

$$\Delta_\mathcal{H} \equiv pK_H + N_H \equiv 2E + \deg(\Delta_\mathcal{F})F = (p + 4)F + 4E.$$

Let $\tilde{l}_1, \tilde{l}_2, l_3$ and \tilde{l}_∞ be the strict transform of l_1, l_2, l_3 and l_∞ respectively. Since $\pi: Bl_Q(\mathbb{P}^2_k) - E \rightarrow \mathbb{P}^2_k - \{Q\}$ is an isomorphism we verify that $\tilde{l}_1, \tilde{l}_2, \tilde{l}_3$ and \tilde{l}_∞ occurs in

1Section 2 for notations
\[\Delta_H, \text{ that is } \Delta_H - \delta_1 - \delta_2 - \delta_3 - \delta_\infty \geq 0. \] Moreover, since \(a, b \) are generic we can assume that \(\text{ord}_i(\Delta_H) \geq 0 \) for \(i \in \{1, 2, 3, \infty\} \). As \((\Delta_H - \delta_1 - \delta_2 - \delta_3 - \delta_\infty) \cdot F = 1 \) there exist an irreducible curve \(C \subset Bl_Q(\mathbb{P}^2) \) that is \(H \)-invariant and such that \(C \cdot F = 1 \). In particular, we have \(C = E + \alpha F \). Note that \(\alpha > 0 \), since \(Q \) is a radial singularity and, in particular, \(E \) is not \(H \)-invariant. Writing \(\Delta_H - \delta_1 - \delta_2 - \delta_3 - \delta_\infty = C + R \) for some divisor \(R \) we conclude (using \(C \cdot F = 1 \)) that \(R \equiv bF \), for some \(b \in \mathbb{Z}_{\geq 0} \). Now, since \(\omega_2 \) is generic we may assume that \(b = 0 \). Indeed, if \(b \neq 0 \), we see that there exist a fiber of the natural projection \(p: Bl_Q(\mathbb{P}^2) \rightarrow \mathbb{P}^1 \) that is \(H \)-invariant (see Proposition [3.7]). By projecting this fiber in \(\mathbb{P}^2 \), we obtain a line which contain \(Q \) that is \(F \)-invariant. Since \(l_1, l_2, l_3 \) and \(l_\infty \) occurs in \(\Delta_F \) with multiplicity 1 and since they are the unique invariant lines of \(F \), we obtain a contraction. So, we conclude that \(R = 0 \) and \(C \) is an irreducible curve that is \(H \)-invariant with \(C \equiv E + pF \). Projecting \(C \) via the map \(\pi \) we obtain in \(\mathbb{P}^2 \) an irreducible algebraic curve of degree \(p \) that has \(Q \) as a singularity and with multiplicity \(p - 1 \). Indeed, \(\pi_*C \) is irreducible and the degree is given by

\[
\deg(\pi_*C) = \pi_*C \cdot H = \pi^*\pi_*C \cdot \pi^*H = (E + pF) \cdot (E + F) = -1 + p + 1 = p.
\]

In other hand, the multiplicity can be computed in the following way:

\[\pi^*\pi_*C = \tilde{C} + m_Q(C)E \equiv (E + pF) + m_Q(C)E \implies 0 = \pi^*\pi_*C \cdot E = (E + pF) \cdot E - m_Q(C) \]

and so \(0 = -1 + p - m_Q(C) \) which implies \(m_Q(C) = p - 1 \). This concludes the proof for \(d \in \{1, 2\} \). \(\square \)

Proposition 4.4. A generic foliation in \(\mathbb{P}^2 \) with normal bundle \(N \) and of degree \(d \geq 3 \) with \(p \nmid d - 1 \) has reduced \(p \)-divisor. More precisely, \(U(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(1), N) \neq \emptyset \), if \(\deg(N) \geq 5 \) with \(p \nmid \deg(N) - 3 \).

Proof. We use the case \(d = 2 \) to show the general case. Let \(e \in \mathbb{Z}_{\geq 0} \) such that \(\gcd(e, p) = 1 \) and \(\mathcal{F} \) be a foliation in \(\mathbb{P}^2 \) of degree 2 that has reduced \(p \)-divisor. By the preceding proposition, we can assume that there exists a foliation that leaves invariant an irreducible algebraic curve \(C \) of degree \(p \) and four lines: \(l_1, l_2, l_3 \) and \(l_\infty \), where \(l_1 \cap l_2 = l_0 \cap l_1 = l_0 \cap l_2 = \{ Q \} \). For simplicity, we suppose that \(l_1 = \{ x = 0 \} \), \(l_2 = \{ y = 0 \} \) and \(l_3 = \{ ux + vy = 0 \} \) for some constants \(u, v \in \mathbb{k}^* \). In this case, \(\mathcal{F} \) is defined by a 1-form of the type \(\Omega_0 = yzA_0dx + xzA_1dy + xyA_2dz \) for certain \(A_0, A_1, A_2 \in \mathbb{k}[x, y, z] \) homogeneous of degree 1 and such that \(A_0 + A_1 + A_2 = 0 \). Consider the finite morphism

\[
\Phi_e: \mathbb{P}^2 \rightarrow \mathbb{P}^2 \quad [x_0 : x_1 : x_2] \mapsto [x_0^e : x_1^e : x_2^e].
\]

Let \(\mathcal{H} \) the foliation in \(\mathbb{P}^2 \) defined by the saturation of the 1-form

\[
\Omega = \Phi_e^*\Omega_0 = e(\text{xyz})^{-1}[yzA_0(x^e, y^e, z^e)dx + xzA_1(x^e, y^e, z^e)dy + xyA_2(x^e, y^e, z^e)dz].
\]

Observe that \(\mathcal{H} \) is a foliation of degree \(e + 1 \) which is not \(p \)-closed. Since \(\gcd(e, p) = 1 \), we can use the Lemma [4.1] to ensure that \(\Phi_e^*l_3 \) and \(\Phi_e^*C \) are reduced curves with irreducible
distinct components. In particular, by the Proposition 3.7 it follows that $\Phi^*_C l_3$ and $\Phi^*_C C$ are \mathcal{H}-invariant curves. We claim that \mathcal{H} has p-divisor $\Delta_{\mathcal{H}} = \{ x = 0 \} + \{ y = 0 \} + \{ z = 0 \} + \Phi^*_C l_3 + \Phi^*_C C$. Indeed, note that $\Delta_{\mathcal{H}}$ is a divisor with degree given by the formula

$$\deg(\Delta_{\mathcal{H}}) = pK_{\mathcal{H}} \cdot O_{\mathbb{P}^2_k}(1) + N_{\mathcal{H}} \cdot O_{\mathbb{P}^2_k}(1) = pe + e + 3.$$

In the other hand, by construction we know that the curves $\{ x = 0 \}, \{ y = 0 \}, \{ z = 0 \}, \Phi^*_C l_3$ and $\Phi^*_C C$ are \mathcal{H}-invariant. In particular, $\Delta_{\mathcal{H}} \supseteq \{ x = 0 \} + \{ y = 0 \} + \{ z = 0 \} + \Phi^*_C l_3 + \Phi^*_C C$. By comparison of the degrees we conclude the equality $\Delta_{\mathcal{H}} = \{ x = 0 \} + \{ y = 0 \} + \{ z = 0 \} + \Phi^*_C l_3 + \Phi^*_C C$. So, it follows that \mathcal{H} is a foliation of degree $e + 1$ in \mathbb{P}^2_k with reduced p-divisor. This finishes the proof of the proposition.

Remark 4.5. In the proof of the Theorem A we saw that is possible to find a foliation \mathcal{F} of degree 2 in \mathbb{P}^2_k that is not p-closed with p-divisor in the form $\Delta_{\mathcal{F}} = l_1 + l_2 + l_3 + l_4 + C$ where C is an irreducible algebraic curve of degree p and $l_i \neq l_j$ if $i \neq j$. Let $P, Q \in \mathbb{P}^2_k$ and fix $\Phi : \mathbb{P}^2_k \rightarrow \mathbb{P}^2_k$ an automorphism such that $\Phi(P), \Phi(Q) \notin C$. Then, $\Phi^* \mathcal{F}$ is foliation that is not p-closed with p-divisor $\Delta_{\Phi^* \mathcal{F}} = \Phi^* l_1 + \Phi^* l_2 + \Phi^* l_3 + \Phi^* l_4 + \Phi^* C$ where $\Phi^* C$ is an irreducible algebraic curve of degree p such that $P, Q \notin \Phi^* C$.

5 The p-divisor for foliations on $\mathbb{P}^1_k \times \mathbb{P}^1_k$

In the following, we will fix x_0, x_1 (resp. y_0, y_1) as the coordinates functions of the first factor (resp. second factor) of $\mathbb{P}^1_k \times \mathbb{P}^1_k$. Let π_1 the projection of $\mathbb{P}^1_k \times \mathbb{P}^1_k$ over the first factor and π_2 the projection of $\mathbb{P}^1_k \times \mathbb{P}^1_k$ over the second factor. Let F and M fibers of π_1 and π_2 respectively. Recall that $\{ F, M \}$ is a base for the vector space $\text{Num}_Q(\mathbb{P}^1_k \times \mathbb{P}^1_k)$ which satisfies the following numerical conditions $F^2 = 0$, $F \cdot M = 1$, and $M^2 = 0$. Observe that for any fibers $F_0 = \pi_1^{-1}(\text{pt})$ and $M_0 = \pi_2^{-1}(\text{pt})$ we have $F_0 \equiv F$ and $M_0 \equiv M$.

Lemma 5.1. Let $C = \mathcal{Z}(f) \subset \mathbb{A}^2_k$ be an irreducible algebraic curve of degree d and $f = f_1 + f_2 + \cdots + f_d$ the decomposition of f in homogeneous terms as element of $k[x, y]$. Suppose that x^d and y^d effectively occurs in f_d and consider \overline{C} the bi-projectivization of C in $\mathbb{P}^1_k \times \mathbb{P}^1_k$ via the isomorphism:

$$\Phi : \mathbb{P}^1_k \times \mathbb{P}^1_k \longrightarrow \mathbb{A}^2_k$$

$$([x_0 : x_1], [y_0 : y_1]) \mapsto \left(\frac{x_0}{x_1}, \frac{y_0}{y_1} \right).$$

Then, \overline{C} is irreducible and if $\{ F, M \}$ is a base for $\text{Num}_Q(\mathbb{P}^1_k \times \mathbb{P}^1_k)$, with $F^2 = 0$, $F \cdot M = 1$ and $M^2 = 0$ then $\overline{C} \equiv \text{deg}(C)(F + M)$.

Proof. The compactification \overline{C} is defined by the following polynomial

$$F = (x_1 y_1)^{d-k} f_k(x_0 y_1, x_1 y_0) + \cdots + (x_1 y_1)^{d-k} f_{k+1}(x_0 y_1, x_1 y_0) + \cdots + f_d(x_0 y_1, x_1 y_0).$$

It is easy to see that F is a homogeneous polynomial of bi-degree (d, d), so that we need only to check their irreducibility. In the other hand, note that if exists an irreducible
factor H of F then necessarily we have $H \not\in \langle x_1y_1 \rangle$ since the hypothesis in f_d implies that $f_d(x_0y_1, x_1y_0) \not\in \langle x_1y_1 \rangle$. But, specializing to $x_1 = 1, y_1 = 1$ we conclude that f is reducible. Contradiction!

Example 5.2. Let C be an affine curve in \mathbb{A}^2_k defined by the equation $f = x + y + xy$. Using the map

$$\Phi : U_{11} \longrightarrow \mathbb{A}^2_k$$

$$(x_0 : x_1, [y_0 : y_1]) \mapsto (x_0, y_0 - x_1, y_1)$$

and projectivizing C in $\mathbb{P}^1_k \times \mathbb{P}^1_k$ via Φ we obtain the curve $\overline{C} = \mathcal{Z}(x_0y_1 + x_1y_0 + x_0y_0)$ of bi-degree $(1, 1) + (2, 2)$. This shows that the condition in Lemma 5.1 is necessary.

Theorem 5.3. Let $d_1, d_2 \in \mathbb{Z}_{\geq 0}$ such that $p \not| d_i$, if $d_i \neq 0$. Then, a generic foliation in $\mathbb{P}^1_k \times \mathbb{P}^1_k$ with normal bundle $N \equiv (d_1 + 2)F + (d_2 + 2)M$ has reduced p-divisor. More precisely, $U(\mathbb{P}^1_k \times \mathbb{P}^1_k, \mathcal{O}_{\mathbb{P}^1_k}(F + M), N) \neq \emptyset$ if

- $N \cdot F - 2 \geq 0$ and $p \nmid N \cdot F - 2$ (if nonzero);
- $\deg(N) - N \cdot F + d - 2 \geq 0$ and $p \nmid \deg(N) - N \cdot F - 2$ (if nonzero).

The proof of the Theorem 5.3 is divided in propositions. We show that given $d_1, d_2 \in \mathbb{Z}_{\geq 0}$ such that $p \nmid d_i$ (if $d_i \neq 0$) we can find a foliation G in $\Sigma_0 = \mathbb{P}^1_k \times \mathbb{P}^1_k$ with the following properties:

(i) $K_G = d_1F_0 + d_2M_0$ where $F_0 = \{x_0 = 0\}$ and $M_0 = \{y_0 = 0\}$.
(ii) F_0 and $M = \{y_1 = 0\}$ are G-invariant curves with $\{Q\} = F_0 \cap M$ a p-reduced singularity of G.
(iii) The p-divisor Δ_G is reduced.

We will consider two cases: A and B.

5.1 Case A

In this subsection, we proof, in particular, that a generic foliation G in $\mathbb{P}^1_k \times \mathbb{P}^1_k$ with cotangent divisor $K_G = d_1F_0 + d_2M_0$ has reduced p-divisor when

$$(d_1, d_2) \in \{(0, 0)\} \cup \{(l, 0) \in \mathbb{Z}^2 \mid l > 0 \text{ and } p \nmid l\} \cup \{(0, l) \in \mathbb{Z}^2 \mid l > 0 \text{ and } p \nmid l\}.$$

We start with the case $d_1 = d_2 = 0$.

Proposition 5.4. A generic foliation in $\mathbb{P}^1_k \times \mathbb{P}^1_k$ with cotangent divisor trivial $K_G \equiv 0$ satisfies $\{2\}$ and $\{0\} \in \{2\}$.

15
Proof. Let \(\omega \) be a 1-form in \(\mathbb{A}^2_k \) given by \(\omega = \alpha y dx + x dy \) with \(\alpha \notin \mathbb{F}_p \). Consider \(\mathbb{A}^2_k \) as an open subset of \(\mathbb{P}^1_k \times \mathbb{P}^1_k \) via the isomorphism

\[
\Phi: \mathbb{P}^1_k \times \mathbb{P}^1_k \rightarrow \mathbb{A}^2_k \quad \left([x_0, x_1], [y_0, y_1] \right) \mapsto \left(\frac{x_0}{x_1}, \frac{y_0}{y_1} \right)
\]

where \(\mathbb{P}^1_k \times \mathbb{P}^1_k \) and \(\mathbb{A}^2_k \) are the projective and affine 2-spaces, respectively. Projectivizing the 1-form \(\omega \) in \(\mathbb{P}^1_k \times \mathbb{P}^1_k \) by the map \(\Phi \) we obtain:

\[
\Phi^* \omega = \frac{\alpha y_0 x_0 dx_0 - \alpha x_0 y_0 dx_1}{x_1^2 y_1} + \frac{x_0 y_0 dy_0 - y_0 x_0 dy_1}{x_1 y_1^2}
\]

and considering their saturation it follows that \(\Omega = \alpha x_1 y_0 y_1 dx_0 - \alpha x_0 y_0 y_1 dx_1 + x_0 x_1 y_1 dy_0 - x_0 x_1 y_0 dy_1 \) a projective 1-form that is bi-homogeneous which defines a foliation \(\mathcal{F}_\Omega \) with \(K_{\mathcal{F}_\Omega} \equiv 0 \). In particular, satisfies (ii). Note that \(F_0, F_1 = \{ x_1 = 0 \} \), \(M = \{ y_1 = 0 \} \) and \(M_0 \) are \(\mathcal{F}_\Omega \)-invariant curves, so that \(\Delta_{\mathcal{F}_\Omega} \geq M_0 + M + F_1 + F_2 \). In the other hand, \(\Delta_{\mathcal{F}_\Omega} \equiv pK_{\mathcal{F}_\Omega} \equiv N_{\mathcal{F}_\Omega} \equiv 2F_0 + 2M_0 \) and by degree comparison we conclude the equality \(\Delta_{\mathcal{F}_\Omega} = M_0 + M + F_1 + F_2 \). In particular, \(\mathcal{F}_\Omega \) satisfies (iii). Now, let \(U_{10} \) be the open set given by \(\{ y_0 \neq 0 \} \cap \{ x_1 \neq 0 \} \). Observe that there exists an isomorphism

\[
\psi: U_{10} \rightarrow \mathbb{A}^2_k \quad \left([x_0: x_1], [y_0: y_1] \right) \mapsto \left(\frac{x_0}{x_1}, \frac{y_1}{y_0} \right) = (x, y).
\]

Restricting the foliation \(\mathcal{F}_\Omega \) to the open \(U_{10} \) we obtain a foliation given by the 1-form: \(\sigma = \alpha y dx - x dy \) and so \(M \cap F_0 = \{ y = 0 \} \cap \{ x = 0 \} = \{ (0,0) \} \) is a \(p \)-reduced singularity. In this way, we conclude that \(\mathcal{F}_\Omega \) satisfies (iii). This finishes the proof for \(d_2 = d_1 = 0 \).}

We pass now to the a more general case.

Proposition 5.5. Let \(d_1, d_2 \in \mathbb{Z}_{\geq 0} \) such that \(p \nmid d_i \) if \(d_i \neq 0 \). Suppose that

\[
(d_1, d_2) \in \{(0,0)\} \cup \{(l,0) \in \mathbb{Z}^2 \mid l > 0 \text{ and } p \nmid l \} \cup \{(0,l) \in \mathbb{Z}^2 \mid l > 0 \text{ and } p \nmid l \}.
\]

Then, a generic foliation in \(\mathbb{P}^1_k \times \mathbb{P}^1_k \) with cotangent divisor \(K_G \equiv d_1 F + d_2 M \) satisfies (i), (ii) and (iii).

Proof. The case \(d_1 = d_2 = 0 \) was considered in the precedent proposition. We will consider the case where \(d_1 = l \) and \(d_2 = 0 \) for \(l > 0 \) with \(p \mid l \). By the symmetry of the the problem we will automatically consider the case where \(d_1 = 0 \) and \(d_2 = l \) for \(l > 0 \) with \(p \nmid l \).

Case \(l = 1 \): Let \(\mathcal{F} \) be a Riccati foliation with respect the first projection \(\pi_1: \mathbb{P}^1_k \times \mathbb{P}^1_k \rightarrow \mathbb{P}^1_k \). Recall (see [1] Chapter 4, Section 1) that a Riccati foliation is defined as a foliation in \(\mathbb{P}^1_k \times \mathbb{P}^1_k \) whose the general fiber \(F \) of \(\pi_1 \) is transverse to \(\mathcal{F} \). Suppose that

(a) The foliation \(\mathcal{F} \) leaves invariant only tree fibers of the first projection \(\pi_1 \). Denote that fibers by \(F_0, F_1, F_2 \).
(b) The foliation \mathcal{F} leaves invariant only one fiber of the second projection π_2. Denote that fiber by M.

(c) The intersections $\{Q_i\} = F_i \cap M$ are p-reduced singularities of \mathcal{F}.

We show that that foliation satisfies [i],[ii] and [iii]. Note that by [i] (see §1, Chapter 4])

$$K_{\mathcal{F}} = \pi_1^\ast K_{\mathbb{P}^1_k} + F_0 + F_1 + F_2 \equiv -2F + 3F = F.$$

So, \mathcal{F} satisfies [i]. Note that the item (c) ensures that \mathcal{F} is not p-closed (see Lemma 3.10) and that \mathcal{F} satisfies [ii], module a change of coordinates. We will show that \mathcal{F} satisfies [iii]. Observe that

$$D = \Delta_{\mathcal{F}} - F_0 - F_1 - F_3 - M \geq 0$$

and by [i] it follows that $\text{ord}_M(\Delta_{\mathcal{F}}) = \text{ord}_{F_i}(\Delta_{\mathcal{F}}) = 1$ for all i (see §3, Fact 2.8]). Since

$$\Delta_{\mathcal{F}} = pK_{\mathcal{F}} + N_{\mathcal{F}} \equiv pF_0 + 3F_0 + 2M_0 \equiv (p + 2)F_0 + 2M_0,$$

the following equality holds

$$D \cdot F = \Delta_{\mathcal{F}} \cdot F - M \cdot F = 2 - 1 = 1.$$

So, there exists an irreducible curve $C \subseteq D$ such that $C \cdot F = 1$. Write $D = C + R$ and note that we have $C \equiv uF_0 + M_0$ and $R \equiv vF_0$, for some $u, v \in \mathbb{Z}_{\geq 0}$. We will show that $v \equiv 0 \mod p$. Suppose, by contradiction, that $v \not\equiv 0$. Then, since $R \equiv vF_0$ we conclude by the Proposition 3.7 that there exists a fiber of the first projection, $F_4 \leq R$, that is \mathcal{F}-invariant. In the other hand, by construction of \mathcal{F}, we know that F_0, F_1 and F_2 are the complete list of \mathcal{F}-invariant fibers. Moreover, all that fibers has multiplicity 1 along the p-divisor $\Delta_{\mathcal{F}}$. So, the fiber F_4 can not exist and we conclude that $v \equiv 0 \mod p$. In the other hand,

$$u + v = C \cdot M_0 + R \cdot M_0 = D \cdot M_0 = \Delta_{\mathcal{F}} \cdot M_0 - 3 = p + 3 - 3 = p.$$

So, if $v \not\equiv 0 \mod p$ implies that $v = p$ and by consequence it follows $u = 0$. But this implies $C \equiv M$ so that C is a fiber of the second projection which is \mathcal{F}-invariant. This is a contradiction, since by construction we know that M is the unique fiber of the second projection that is \mathcal{F}-invariant and satisfies $\text{ord}_M(\Delta_{\mathcal{F}}) = 1$. So, $v = 0$ and C is an irreducible curve \mathcal{F}-invariant with $C \equiv pF_0 + M_0$ and \mathcal{F} has p-divisor given by

$$\Delta_{\mathcal{F}} = F_0 + F_1 + F_2 + M + C$$

which is reduced. So, \mathcal{F} satisfies [i],[ii] and [iii] and we conclude the argument to the case $(d_1, d_2) = (1, 0)$.

Case $l > 0$ and $p \nmid l$: We use the precedent case ($l = 1$) to study the present case. Let \mathcal{F} be a foliation in $\mathbb{P}^1_k \times \mathbb{P}^1_k$ as in the precedent case. As we had proved, a generic foliation which satisfies [i],[ii] and [iii] has p-divisor in the form

$$\Delta_{\mathcal{F}} = F_0 + F_1 + F_3 + M + C$$
where C is an irreducible curve with $C \equiv pF_0 + M_0$, F_0, F_1 and F_2 are fibers of the first projection π_1 and M is a fiber of the second projection π_2.

Let $\Phi : \mathbb{P}^1_k \times \mathbb{P}^1_k \to \mathbb{P}^1_k \times \mathbb{P}^1_k$ be a finite ramified map of degree l with ramification divisor R. Suppose that Φ ramifies only along the curves F_0 and F_1. Let $\mathcal{G} = \Phi^*\mathcal{F}$ the foliation defined by the pull-back of \mathcal{F} by Φ. Explicitly, if Ω is the bi-homogeneous 1-form which defines \mathcal{F} then \mathcal{G} is the foliation defined by the saturation of $\Phi^*\Omega$. Observe that since F_0 and F_1 are \mathcal{F}-invariant $K_\mathcal{G} = \Phi^*K_\mathcal{F}$. So, $\Phi^*K_\mathcal{F} = \Phi^*F = lF$ and we conclude that \mathcal{G} satisfies (ii) and $N_\mathcal{G} \equiv (l+2)F + 2M$ and $\Delta_\mathcal{G} \equiv pK_\mathcal{G} + N_\mathcal{G} \equiv (pl + l + 2)F + 2M$. By Lemma 4.1 we know that Φ^*C and Φ^*F_2 are reduced curves that has no irreducible components in common. In particular,

\[
\Delta_\mathcal{G} \geq \Phi^*C + \Phi^*F_2 + F_1 + F_0 + M.
\]

in the other hand, $\Phi^*C \equiv \Phi^*(pF + M) \equiv plF + M$ and $\Phi^*F_2 = lF$ and so

\[
\Phi^*C + \Phi^*F_2 + F_0 + F_1 + M = (pl + l + 2)F + 2M
\]

and by comparison degree we obtain the following equality

\[
\Delta_\mathcal{G} = \Phi^*C + \Phi^*F_2 + F_1 + F_0 + M.
\]

In particular, $\Delta_\mathcal{G}$ is a reduced divisor and \mathcal{G} satisfies (iii). We will show that \mathcal{G} satisfies (i). For that, let Q the point in $F_0 \cap M$. By the precedent case, more precisely, by (iii) we know that Q is a p-reduced singularity. Fix U an affine open set around $Q = (0,0)$ such that $\Phi|_{\Phi^{-1}(U)} : \Phi^{-1}(U) \to U$ is locally defined by $\Phi : (x, y) \mapsto (x^l, y) = (\tilde{x}, \tilde{y})$ and \mathcal{F} is given by the 1-form $\omega = \alpha jdx - \tilde{x}d\tilde{y} + O(2)$. Then, $\Phi^*\mathcal{F}$ is given on $\Phi^{-1}(U)$ by the 1-form $\sigma = l\alpha ydx - xdy + O(2)$. Since we are assuming that Q is a p-reduced singularity $\alpha \not\in \mathbb{F}_p$ and so $l\alpha \not\in \mathbb{F}_p$. We conclude that \mathcal{G} has $\{Q\} = F \cap M$ as p-reduced singularity. In particular, satisfies (ii). This finishes the proof of the case $(d_1, d_2) = (l, 0)$ with $l > 1$ and $p \nmid l$. The cases above finish the proof of the proposition. \hfill \Box

5.2 Case B

In this subsection, we show that a generic foliation \mathcal{G} in $\mathbb{P}^1_k \times \mathbb{P}^1_k$ with cotangent divisor $K_\mathcal{G} \equiv d_1F + d_2M$ satisfies the following

(i) $K_\mathcal{G} \equiv d_1F_0 + d_2M_0$ where $F_0 = \{x_0 \equiv 0\}$ and $M_0 = \{y_0 \equiv 0\}$,

(ii) F_0 and $M = \{y_1 \equiv 0\}$ are \mathcal{G}-invariant curves with $\{Q\} = F_0 \cap M$ a p-reduced singularity of \mathcal{G},

(iii) The p-divisor $\Delta_\mathcal{G}$ is reduced

when $(d_1, d_2) \in \{(l_1, l_2) \in \mathbb{Z}^2 \mid l_1, l_2 > 0 \text{ and } p \nmid l_1l_2\}$. We start with the case $d_1 = d_1 = 1$.

Proposition 5.6. A generic foliation in $\mathbb{P}^1_k \times \mathbb{P}^1_k$ with cotangent divisor $K_\mathcal{G} \equiv F + M$ satisfies (i), (ii) and (iii).
Proof. Indeed, in the open set U_{11} consider the foliation defined by the 1-form: $\omega = ydx - xdy + b(x,y)dx + \tilde{a}(x,y)dy$. In the proof of Theorem \square we saw that for a generic choice of $\tilde{a}, \tilde{b} \in k[x,y]$ the 1-form ω defines a foliation with reduced p-divisor in \mathbb{A}^2_k which is explicitly given by $\Delta = l_1 + l_2 + l_3 + C$ where l_1, l_2, l_3 are distinct lines that pass through point $(0,0)$ and C is an irreducible curve that passes through point $(0,0)$ of degree p and with multiplicity $p - 1$ over $(0,0)$. Moreover, by the Remark \square we can assume that C does not pass through points $\{(0 : 1 : 0), (1 : 0 : 0)\}$. For simplicity, we will assume that $l_1 = \{x = 0\}$, $l_2 = \{y = 0\}$ and $l_3 = \{ux + vy = 0\}$ for some non zero constants $u, v \in k$.

In this case, we have $\tilde{a}(x,y) = x\alpha(x,y)$ and $b(x,y) = y\beta(x,y)$ for some $a, b \in k[x,y]$.

Using the isomorphism $\phi: U_{11} \rightarrow \mathbb{A}^2_k$ which associates $([x_0 : x_1], [y_0 : y_1]) \rightarrow \left(\frac{x_0}{x_1}, \frac{y_0}{y_1}\right)$ we can compactify ω to a foliation in $\mathbb{P}^1_k \times \mathbb{P}^1_k$. In this case, the foliation obtained is explicitly given by the 1-form: $\Omega = A_0dx_0 + A_1dx_1 + B_0dy_0 + B_1dy_1$ where

$$A_0 = x_1y_0y_1(x_1y_1 + b(x_0y_1, x_1y_0)), \quad A_1 = -x_0y_0y_1(x_1y_1 + b(x_0y_1, x_1y_0)),$$

$$B_0 = x_0x_1y_1(-x_1y_1 + a(x_0y_1, x_1y_0)), \quad B_1 = -x_0x_1y_0(-x_1y_1 + a(x_0y_1, x_1y_0)).$$

The projective 1-form Ω defines a foliation \mathcal{F}_Ω in $\mathbb{P}^1_k \times \mathbb{P}^1_k$ such that $K_{\mathcal{F}_{\Omega}} \equiv F + M$ and so \mathcal{F}_{Ω} satisfies (\square). We claim that $\Delta_{\mathcal{F}_{\Omega}}$ is reduced. Indeed, note that

$$\Delta_{\mathcal{F}_{\Omega}} \equiv pK_{\mathcal{F}_{\Omega}} + N_{\mathcal{F}_{\Omega}} \equiv p(F + M) + (3F + 3M) = (p + 3)(F + M).$$

By the homogeneous equations of \mathcal{F}_{Ω}, we see that $F_0 = \{x_0 = 0\}, F_1 = \{x_1 = 0\}, M_0 = \{y_0 = 0\}$ and $M = \{y_1 = 0\}$ are \mathcal{F}_{Ω}-invariant. Moreover, bi-projectivizing the line L via Φ in $\mathbb{P}^1_k \times \mathbb{P}^1_k$ we know by the Lemma \square that the obtained curve L, is irreducible \mathcal{F}_{Ω}-invariant with $\mathbb{L} \equiv F_0 + M_0$. Since C does not pass through the point $\{(0 : 1 : 0), (1 : 0 : 0)\}$ we can apply the Lemma \square to conclude that the irreducible curve of degree p in \mathbb{A}^2_k projectivize to an irreducible curve, \mathbb{C}, in $\mathbb{P}^1_k \times \mathbb{P}^1_k$ that is \mathcal{F}_{Ω}-invariant and such that: $\mathbb{C} \equiv p(F_0 + M_0)$. So, we obtain $\Delta_{\mathcal{F}_{\Omega}} = F_0 + F_1 + M_0 + M + \mathbb{L} + \mathbb{C}$ and we ensure that $\Delta_{\mathcal{F}_{\Omega}}$ is a reduced divisor. This shows that \mathcal{F} satisfies (\square).

Observe that restricting the foliation to the open set $U_{10} = \{y_0 \neq 0\} \cap \{x_1 \neq 0\}$ the foliation in \mathbb{A}^2_k is given by the 1-form $\sigma = y_1(y_1 + b(x_0y_1, 1))dx_0 - x_0(-y_1 + a(x_0y_1, 1))dy_1$. Since $a, b \in k[x,y]$ are generic, we can assume that $a(x_0y_1, 1) = a_0 + O(2)$ and $b(x_0y_1, 1) = b_0 + O(2)$ where $a_0/b_0 \in \mathbb{F}_p$, so that we obtain a foliation in Σ_0 which satisfies (\square) and (\square) with $d_1 = d_2 = 1$.

Using the precedent proposition we will consider the general case.

Proposition 5.7. Let $d_1, d_2 \in \mathbb{Z}_{\geq 0}$ such that $p \nmid d_1$, if $d_i \neq 0$. Suppose that

$$\langle d_1, d_2 \rangle \in \{(l_1, l_2) \in \mathbb{Z}^2 | l_1, l_2 > 0 \text{ and } p \nmid l_1l_2\}.$$

Then, a generic foliation in $\mathbb{P}^1_k \times \mathbb{P}^1_k$ with cotangent divisor $K_G \equiv d_1F + d_2M$ satisfies $(\square), (\square)$ and (\square).

19
Proof. Let $l \in \mathbb{N}$ be a positive integer coprime to p and consider the finite map:

$$\Phi_l : \mathbb{P}^1_k \times \mathbb{P}^1_k \to \mathbb{P}^1_k \times \mathbb{P}^1_k$$

$$([x_0, x_1], [y_0, y_1]) \mapsto (l x_0 y_0 y_1, l x_1 y_0 y_1 + b(x_0^l, x_1^l)).$$

Let R_{Φ_l} be the ramification divisor of Φ_l and G the foliation in $\mathbb{P}^1_k \times \mathbb{P}^1_k$ described by the saturation of the 1-form $\Phi_l^* \Omega$, where Ω is the projectivization of the 1-form in \mathbb{A}^2_k given by $\sigma = y_1(1 + b(x_0 y_1, 1)) dx_0 - x_0(-y_1 + a(x_0 y_1, 1)) dy_1$ where $a, b \in k[x, y]$ are generic with $a(x_0 y_1, 1) = a_0 + O(2)$, $b(x_0 y_1, 1) = b_0 + O(2)$ and $a_0/b_0 \notin \mathbb{F}_p$. Recall that by Proposition 5.6 we can assume that the foliation defined by Ω, \mathcal{F}_Ω, is not p-closed with p-divisor given by $\Delta_{\mathcal{F}_\Omega} = F_0 + F_1 + M_0 + M + L + C$ where $F_0 = \{x_0 = 0\}$, $F_1 = \{x_1 = 0\}$, $M_0 = \{y_0 = 0\}$, $M = \{y_1 = 0\}$ and with L, C irreducible curves such that $C \equiv p(F_0 + M_0)$ and $L \equiv F_0 + M_0$. We have $R_{\Phi_l} = (l - 1) F_0 + (l - 1) F_1 \equiv 2(l - 1) F_0$ and since F_0 and F_1 are \mathcal{F}_Ω-invariant we conclude that $K_G = \Phi^* K_\mathcal{F} = \Phi^*(F \div M) = pF + M$. In explicit terms, the foliation G is defined by the 1-form: $\gamma = A_0 dx_0 + A_1 dx_1 + B_0 dy_0 + B_1 dy_1$ where

$$A_0 = lx_0 y_0 y_1(x_1^l y_0 + b(x_0^l, x_1^l)),$$

$$B_0 = x_0 x_1 y_1(-x_1^l y_0 + a(x_0^l, x_1^l)),$$

and

$$A_1 = -lx_0 y_0 y_1(x_1^l y_0 + b(x_0^l, x_1^l)),$$

$$B_1 = -x_0 x_1 y_0(-x_1^l y_0 + a(x_0^l, x_1^l)).$$

We will show the following equality: $\Delta_G = F_0 + F_1 + M_0 + M + \Phi_l^* L + \Phi_l^* C$. Note that the curves $\Phi_l^* L$ and $\Phi_l^* C$ are G-invariant. Indeed, since $\gcd(l, p) = 1$ and x_0, x_1 do not divide the equations which define L and C, using the Lemma 4.1 we conclude that $\Phi_l^* L$ and $\Phi_l^* C$ are reduced and have distinct irreducible components. In particular, follows that $\Phi_l^* L$ and $\Phi_l^* C$ are G-invariant (see Proposition 3.7). Since F_0, F_1, M_0, M are G-invariant $\Delta_G \geq F_0 + F_1 + M_0 + M + \Phi_l^* L + \Phi_l^* C$. Note that Δ_G is a divisor that has bi-degree given by the formula:

$$pK_G + N_G \equiv p(lF_0 + M_0) + ((l + 2)F_0 + 3M_0) \equiv (pl + l + 2)F_0 + (p + 3)M_0.$$

In the other hand

$$F_0 + F_1 + M_0 + M + \Phi_l^* L + \Phi_l^* C \equiv F_0 + F_0 + M_0 + M_0 + (lF_0 + M_0) + (plF_0 + pM_0)$$

$$= (pl + l + 2)F_0 + (p + 3)M_0.$$

So, by bi-degree comparison, we conclude the following equality $\Delta_G = F_0 + F_1 + M_0 + M + \Phi_l^* L + \Phi_l^* C$. This shows that G satisfies (iii).

We need to show that $F_0 \cap M = \{x_0 = 0\} \cap \{y_1 = 0\}$ is a p-reduced singularity of G. Indeed, restricting the foliation G to the open set U_{10} we obtain a foliation in \mathbb{A}^2_k given by the 1-form $\omega = l(y + b(x^l y_1, 1)) dx - x(-y + a(x^l y_1, 1)) dy$ and we conclude that $(0, 0)$ is p-reduced since we are assuming that $a(x_0 y_1, 1) = a_0 + O(2)$ and $b(x_0 y_1, 1) = b_0 + O(2)$ with $a_0/b_0 \notin \mathbb{F}_p$. By symmetry, that is, replacing F_0 by M_0, follows that given $d_1, d_2 \in \mathbb{Z}_{\geq 0}$ with $p \nmid d_1$ (if $d_1 \neq 0$) we can construct foliations in $\mathbb{P}^1_k \times \mathbb{P}^1_k$ with the following properties:

(i) The canonical divisor K_G is numerically equivalent to the divisor $d_1 F_0 + d_2 M_0$ where F_0 and M_0 are fibers of the first and second projection, respectively:
(ii) The curves F_0 and M_0 are \mathcal{G}-invariant and $\{Q\} = F_0 \cap M_0$ is a p-reduced singularity of \mathcal{G};

(iii) The p-divisor $\Delta_{\mathcal{G}}$ is reduced.

This finishes the proof of the proposition. \hfill \Box

Considering the junction of the case A and B we obtain the complete proof of the Theorem 5.3.

6 The p-divisor for foliations on Hirzebruch surfaces

Let $d \in \mathbb{Z}_{>0}$ and M_d be a section of the natural projection $\pi: \Sigma_d \rightarrow \mathbb{P}^1_k$ and F be a fiber of π such that $M_d^2 = \mathcal{F}$ and $F = 1$. The curves M_d and F form a base of the vector space $\text{Num}_{Q}(\Sigma_d)$. Note that for any other divisor $D \in \text{Div}(\Sigma_d)$ such that $(D, F) = \text{Num}_{Q}(\Sigma_d)$ and which satisfies $D^2 = d$ and $D \cdot F = 1$ we have $D = M_d$. Indeed, write $D = aM_d + bF$ for some $a, b \in \mathbb{Q}$ and observe that $1 = D \cdot F = a$ and $d = D^2 = a^2d + 2ab = d + 2b$ and so $b = 0$.

Fix $\{F, M_d\}$ as a basis for $\text{Num}_{Q}(\Sigma_d)$ and let Q be the point in the intersection $F \cap M$, where $M = \{y_1 = 0\}$ is the curve in Σ_d with negative self-intersection, that is, $M^2 = -d$. Let $Bl_Q: Bl_Q(\Sigma_d) \rightarrow \Sigma_d$ the blowup of Σ_d at Q and $c_F: Bl_Q(\Sigma_d) \rightarrow Q^{d+1}$ the map that consists in the contraction of the strict transform of F in $Bl_Q(\Sigma_d)$. Let E the exceptional divisor associated to Bl_Q and $\Phi_{d+1}: \Sigma_{d+1} \rightarrow \Sigma_d$ the rational map which consist in the composition of birational maps:

$$\Phi_{d+1}^* = Bl_Q \circ c_F^{-1}: \Sigma_{d+1} \rightarrow Bl_Q(\Sigma_d) \rightarrow \Sigma_d.$$

Let \tilde{M}_{d+1} the strict transform of M_d in $Bl_Q(\Sigma_d)$ and consider $E = (c_F)_*\mathcal{E}$ and $M_{d+1} = (c_F)_*\tilde{M}_{d+1}$ the induced curves by the contraction. Observe that $\{E, M_{d+1}\}$ forms a basis for $\text{Num}_{Q}(\Sigma_d)$ and satisfies the following conditions: $E^2 = 0$, $E \cdot M_{d+1} = 1$ and $M_{d+1}^2 = d + 1$.

Lemma 6.1. If \mathcal{F} is a foliation in Σ_d with $K_{\mathcal{F}} \equiv d_1F + d_2M_d$ then $\mathcal{G} = (\Phi_{d+1}^*)^* \mathcal{F}$ is a foliation in Σ_{d+1} with $K_{\mathcal{G}} \equiv (d_1 - l(Q) + 1)E + d_2M_{d+1}$.

Proof. Let $\mathcal{H} = Bl_Q^* \mathcal{F}$ be the induced foliation in $Bl_Q(\Sigma_d)$. Then, $K_{\mathcal{G}} = (c_F)_*K_{\mathcal{H}}$ and

$$K_{\mathcal{H}} = Bl_Q^*K_{\mathcal{F}} + (1 - l(Q))E \equiv Bl_Q^*(d_1F + d_2M_d) + (1 - l(Q))\mathcal{E}.$$

Since $Bl_Q^*F = \mathcal{F} + E$ and $Bl_Q^*M_d = \tilde{M}_{d+1}$, we conclude that $K_{\mathcal{H}} \equiv d_1\tilde{F} + d_2\tilde{M}_{d+1} + (d_1 - l(Q) + 1)\mathcal{E}$ and it follows

$$K_{\mathcal{G}} = (c_F)_*K_{\mathcal{H}} \equiv (d_1 - l(Q) + 1)(c_F)_*\mathcal{E} + d_2(c_F)_*\tilde{M}_{d+1} \equiv (d_1 - l(Q) + 1)E + d_2M_{d+1}$$

which finishes the proof of the lemma. \hfill \Box
Theorem B. Let \(\Sigma_d \) the d-Hirzebruch surface over \(k \) and \(d_1, d_2 \in \mathbb{Z}_{\geq 0} \) such that \(p \nmid d_i \), if \(d_i \neq 0 \). Then, a generic foliation in \(\Sigma_d \) with normal bundle \(N \equiv (d_1 - d + 2)F + (d_2 + 2)M_d \) has reduced \(p \)-divisor. More precisely, \(U(\Sigma_d, \mathcal{O}_\Sigma_d(F + M_d), N) \neq \emptyset \) if

- \(N \cdot F - 2 \geq 0 \) and \(p \nmid N \cdot F - 2 \) (if nonzero);
- \(\deg(N) - (1 + d)N \cdot F + d - 2 \geq 0 \) and \(p \nmid \deg(N) - (1 + d)N \cdot F + d - 2 \) (if nonzero).

Proof. The proof will be done by induction on \(d \). The case \(d = 0 \) was considerate in the Theorem 5.3. Suppose that the result is true for all \(j \)-Hirzebruch surfaces with \(j \leq d \), that is, suppose that for each \(j \in \{0, \ldots, d\} \) and for each \(d_1, d_2 \in \mathbb{Z}_{\geq 0} \) with \(p \nmid d_i \) (if \(d_i \neq 0 \)) we can find a foliation \(\mathcal{H} \) such that

(i) \(K_{d} \equiv d_1F_0 + d_2M_j \), where \(F_0 \) is a fiber of the natural projection \(\pi: \Sigma_j \rightarrow \mathbb{P}^1_k \) and \(M_j \) is a section of \(\pi \) such that \(M_j^2 = j \) and \(M_j \cdot F = 1 \);

(ii) If \(M \) is the section of negative self-intersection of \(\Sigma_d \) then \(F_0 \) and \(M \) are \(\mathcal{H} \)-invariant and \(\{Q\} = F_0 \cap M \) is a \(p \)-reduced singularity of \(\mathcal{H} \) where \(M^2 = -j \);

(iii) The \(p \)-divisor \(\Delta_m \) is reduced.

We will show that the same holds over \(\Sigma_{d+1} \). Fix \(d_1, d_2 \in \mathbb{Z}_{\geq 0} \) such that \(p \nmid d_i \), if \(d_i \neq 0 \). Let \(\mathcal{G} \) a foliation in \(\Sigma_d \) which satisfies (i), (ii) and (iii) for \(j = d \).

Let \(Q \) the \(p \)-reduced singularity in \(F_0 \cap M \) and \(\pi_Q: Bl_Q(\Sigma_d) \rightarrow \Sigma_d \) the blowup with center at \(Q \). By the Lemma 3.11, we know that \(Bl_Q(\Sigma_d) \mathcal{F} \) is a foliation in \(Bl_Q(\Sigma_d) \) with reduced \(p \)-divisor. More precisely, if \(\overline{E} \) denotes the exceptional divisor and \(\mathcal{G} = \pi_Q^*\mathcal{F} \), we know that \(\Delta_{\mathcal{G}} = \Delta_{\mathcal{F}} + \overline{E} \). We claim that since \(Q \) is \(p \)-reduced we ensure that over \(\overline{E} \) there exists at least a \(p \)-reduced singularity of \(\mathcal{G} \).

Indeed, in an open neighborhood of \(Q \) the foliation is given by a 1-form of the type \(\omega = \alpha y dx + xdy + O(2) \) and considering the chart \(\pi_Q^*\mathcal{F}(x, t) \rightarrow (x, t) \) we see that in a neighborhood of \(\overline{E} \) the foliation \(\mathcal{G} \) is given by the 1-form \(\sigma = (\alpha + 1)tdx + xdt + O(2) \). In particular, \(Q \) is \(p \)-reduced. Denote by \(c_F: Bl_Q(\Sigma_d) \rightarrow \mathcal{Y} \) the contraction of the line \(\mathcal{F} \) that is the strict transform of \(F_0 \). Since \(Q \in F_0 \), the line \(\mathcal{F} \) has self-intersection \(-1 \) so that there exists that contraction. The out surface, \(\mathcal{Y} \), is the Hirzebruch surface of type \(d + 1 \) \((\Sigma_{d+1}) \). We will show that \(c_F(\mathcal{G}) \) is a foliation in \(\Sigma_{d+1} \) that satisfies (i), (ii) and (iii). Let \(\overline{E} \) the exceptional divisor associated with the blowup \(Bl_Q \) and \(M_{d+1} \) the strict transform of the curve \(M_d \). Denote by \(E = c_F(\overline{E}) \) and \(M_{d+1} = c_F(\overline{M_{d+1}}) \) the induced curves by the contraction \(c_F \). Observe that we have the following formulas: \(E^2 = 0, E \cdot M_{d+1} = 1 \) and \(M_{d+1}^2 = d + 1 \). If \(\{P\} = c_F(\overline{F}) \) then \(c_F(\overline{Bl_Q(\Sigma_d)} - \{\overline{F}\}) \rightarrow \Sigma_{d+1} - \{P\} \) is an isomorphism. In particular, as \(\Delta_{\mathcal{F}} \) is reduced we have \(\Delta_{c_F(\mathcal{G})} \) is reduced and so that we have (iii). The local verification done above shows that \(E \cap M = \{Q_2\} \) is a \(p \)-reduced singularity of \(c_F(\mathcal{G}) \) and the Lemma 6.1 ensures that \(K_{d} \equiv d_1E + d_2M_{d+1} \). So, we obtains (i). This finishes the proof of the theorem. \(\square \)

Remark 6.2. Let \(d \in \mathbb{Z}_{\geq 0} \) and \(F \) be a section of the natural projection \(\pi: \Sigma_d \rightarrow \mathbb{P}^1_k \) and \(M_d \) a section of \(\pi \) such that \(F \cdot M_d = 1 \) and \(M_d^2 = d \). Define

\[S_d = \{(d_1, d_2) \in \mathbb{Z}^2 \mid \text{there exists a foliation in } \Sigma_d \text{ with canonical divisor } K \equiv d_1F + d_2M_d \}. \]
Theorem B can be formulated in the following way:

Following from [5, Proposition 3.6] that:

- \(S_0 = \{(d_1, d_2) \in \mathbb{Z}^2 \mid d_1, d_2 \geq 0\} \cup \{(-2, 0)\} \cup \{(0, -2)\}. \)
- \(If \ d > 0: \ S_d = \{(d_1, d_2) \in \mathbb{Z}^2 \mid d_1 \geq -1, d_2 \geq 0\} \cup \{(d, -2)\}. \)

Now, define

\(R_d = \{(d_1, d_2) \in \mathbb{Z}^2 \mid there \ exists \ a \ foliation \ in \ \Sigma_d \ with \ reduced \ p\text{-}\text{divisor} \ and \ K \equiv d_1F + d_2M_d\}. \)

Theorem [2] can be formulated in the following way:

- \(R_0 = S_0 - S_0(p) \cup \{(-2, 0)\} \cup \{(0, -2)\}, \)
- \(Se \ d > 0: \ R_d = S_d - S_d(p) \cup \{-1, d\} \mid d \in \mathbb{Z}_{\geq 0}\} \cup \{(d, -2)\}\)

where \(S_d(p) = \{(d_1, d_2) \in S_d \mid p \mid d_1 \ or \ p \mid d_2\} \cup \{(0, 0)\}. \)

The following proposition shows that for each point \(P \) on \(l = \{(1, c) \in \mathbb{Z}^2 \mid c \in \mathbb{Z}_{\geq 0}\}\)
we can find an example of foliation such that their \(p\text{-}\text{divisor} \ has \ a \ \text{p-factor} \).

Proposition 6.3. Let \(\mathcal{F} \) be a foliation that is not \(p\text{-}\text{closed} \ of \ degree \(d \) in \(\mathbb{P}_k^2 \) and \(Q \in \mathbb{P}_k^2 - \text{sing}(\mathcal{F}) \cup Z(\Delta\mathcal{F}) \). Let \(\mathcal{G} = Bl_Q\mathcal{F} \) the induced foliation in \(Bl_Q(\mathbb{P}_k^2) \). Then, \(\mathcal{G} \) is not \(p\text{-}\text{closed} \ and \(\Delta\mathcal{G} \) has a \(p\text{-}\text{factor} \. \) Moreover, \(K_\mathcal{G} \equiv -F + dM_1 \).

Proof. The condition \(Q \notin \text{sing}(\mathcal{F}) \) implies that \(l(Q) = 0 \). So, we have \(N_\mathcal{G} = Bl_Q N_\mathcal{F} \)
and \(K_\mathcal{G} = Bl_QK_\mathcal{F} + (1 - l(Q))E = Bl_QK_\mathcal{F} + E. \) So, \([\Delta_\mathcal{G}] = pK_\mathcal{G} + N_\mathcal{G} = Bl_Q\Delta_\mathcal{F} + pE = \Delta_\mathcal{F} + pE \) where the last equality follows from the condition \(Q \notin Z(\Delta_\mathcal{F}) \). In particular, \(\text{ord}_E(\Delta_\mathcal{G}) = p \). Now, we have \(K_\mathcal{G} = Bl_QK_\mathcal{F} + E \equiv (d - 1)(E + F) + E \equiv (d - 1)F + dE \). Write \(M_1 \equiv aF + bE \). Since \(1 = M_1 \cdot F = b \) we have \(M_1 \equiv aF + E \) and since \(1 = M_1^2 = (aF + E)^2 = 2a - 1 \) we obtain \(a = 1 \). So, \(M_1 = F + E \) and this implies \(E = M_1 - F \). So, \(K_\mathcal{G} \equiv (d - 1)F + dE \equiv (d - 1)F + d(M_1 - F) \equiv -F + dM_1 \) which ends the proof of the proposition.

Acknowledgements. W. Mendson thanks J.V. Pereira for discussions about the results of this paper and for their remarks about this work. The author also thanks Eduardo Vital for suggestions and comments on the manuscript and also thanks Cesar Hilario for comments on the introduction. The author acknowledge support of CNPq, Faperj, and the Instituto de Matemática Pura e Aplica (IMPA).

References

[1] M. Brunella, *Birational geometry of foliations*, vol. 1 of IMPA Monographs, Springer, 2015.

[2] M. Brunella and M. Nicolau, *Sur les hypersurfaces solutions des équations de pfaff*, Comptes Rendus De L Academie Des Sciences Serie I-mathematique, 329 (1999), pp. 793–795.
[3] M. M. Carnicer, *The Poincaré problem in the nondicritical case*, Ann. of Math. (2), 140 (1994), pp. 289–294.

[4] D. Cerveau, A. Lins-Neto, F. Loray, J. V. Pereira, and F. Touzet, *Complex codimension one singular foliations and Godbillon-Vey sequences*, Mosc. Math. J., 7 (2007), pp. 21–54, 166.

[5] C. Galindo, F. Monserrat, and J. Olivares, *Foliations with isolated singularities on Hirzebruch surfaces*, arXiv preprint arXiv:2007.10071, (2020).

[6] R. Hartshorne, *Algebraic geometry*, vol. 52, Springer Science & Business Media, 1977.

[7] J. P. Jouanolou, *Équations de Pfaff algébriques*, vol. 708 of Lecture Notes in Mathematics, Springer, Berlin, 1979.

[8] N. M. Katz, *Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin*, Publications mathématiques de l’IHÉS, 39 (1970), pp. 175–232.

[9] J. Kollár, *Rational curves on algebraic varieties*, vol. 32 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., Springer-Verlag, Berlin, 1996.

[10] S. Lang, *Algebra*, vol. 211 of Graduate Texts in Mathematics, Springer-Verlag, New York, third ed., 2002.

[11] R. Lizarbe, *On the density of foliations without algebraic solutions on weighted projective planes*, arXiv preprint arXiv:2106.12494, (2021).

[12] J.-F. Mattei and R. Moussu, *Holonomie et intégrales premières*, Annales Scientifiques de l’École Normale Supérieure, 13 (1980), pp. 469–523.

[13] M. McQuillan, *Curves on surfaces of mixed characteristic*, Eur. J. Math., 3 (2017), pp. 433–470.

[14] W. Mendson, *Folheações de codimensão um em característica positiva e aplicações*, PhD thesis, Instituto de Matemática Pura e Aplicada, 2022.

[15] J. V. Pereira, *Invariant hypersurfaces for positive characteristic vector fields*, J. Pure Appl. Algebra, 171 (2002), pp. 295–301.

Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro RJ, Brazil

E-mail address: oliveirawodson@gmail.com