Blowing-up points on l.c.K. manifolds.

Victor Vuletescu

Abstract

It is a classical result, due to F. Tricerri, that the blow-up of a manifold of locally conformally Kähler (l.c.K. for short) type at some point is again of l.c.K. type. However, the proof given in [5] is somehow unclear. We give a different argument to prove the result, using "standard tricks" in algebraic geometry.

Keywords: Blow-up of a manifold at a point, locally conformally Kähler manifold, Lee form.

2000 Mathematics subject classification: 53C55, 14E99

1 Introduction

We begin by recalling the basic definitions and facts; details can be found for instance in the book [2].

Definition 1 Let (X, J) be a complex manifold. A hermitian metric g on it is called locally conformally Kähler, l.c. K. for short, if there exists some open cover $U = \{U_\alpha\}_{\alpha \in A}$ of X such that for each $\alpha \in A$ there is some smooth function f_α defined on U_α such that the metric $g_\alpha = e^{-f_\alpha} g$ is Kähler.

A complex manifold (X, J) will be called of l.c.K. type if it admits an l.c.K. metric.

Letting ω to be the Kähler form associated to g by $\omega(X, Y) = g(X, JY)$, one can immediately show that the above definition is equivalent to the existence of a closed 1–form θ such that $d\omega = \theta \wedge \omega$. The form θ is called the Lee form of the metric g. It is almost immediate to see that θ is closed; it is exact iff the metric g is global conformally equivalent to a Kähler metric. Usually, by an l.c.K. manifold one understands a hermitian manifold whose metric is...
not globally conformally Kähler. In particular, the first Betti number of an l.c.K. manifold is always strictly positive; more, for compact Vaisman manifolds (l.c.K. with parallel Lee form) the fundamental group fits into an exact sequence

$$0 \rightarrow G \rightarrow \pi_1(M) \rightarrow \pi_1(X) \rightarrow 0$$

where $\pi_1(X)$ is a fundamental group of a Kähler orbifold, and G a quotient of \mathbb{Z}^2 by a subgroup of rank ≥ 1 (see [4]). Moreover, the l.c.K. class is not stable to small deformations: some Inoue surfaces do not admit l.c.K. structures and they are complex deformations of other Inoue surfaces with l.c.K. metrics (see [5], [1]).

However, l.c.K. manifolds share with the Kähler ones the property of being closed under blowing-up points. To can state the result, let X be a complex manifold and $P \in X$ some fixed point. We denote by \hat{X} the manifold obtained by blowing-up P, by $c : \hat{X} \rightarrow X$ the blowing-up map and E the exceptional divisor of π (i.e. $E = c^{-1}(\{P\})$). The goal is to prove the following

Theorem 1 If the complex manifold X carries an l.c.K. metric, then so does its blow-up \hat{X} at any point.

The result was stated in [5], but the proof in this paper has a gap.

For the sake of completeness, we include in the next section some basic facts about blow-up’s of points on complex manifolds. Eventually, in the last section we prove the theorem.

2 Basic facts about blow-up’s of points.

This section is entirely standard and is almost an verbatim reproduction of facts from classical texts, as for instance [3].

Let X be a complex, n—dimensional manifold. Let $P \in X$ be a point; choose a holomorphic local coordinate system (x_1, \ldots, x_n) defined in some open neighborhood U of P such that $x_1(P) = \cdots = x_n(P) = 0$. Consider the manifold $U \times \mathbb{P}^{n-1}(\mathbb{C})$ and assume $[y_1 : \ldots : y_n]$ is some fixed homogenous coordinate system on $\mathbb{P}^{n-1}(\mathbb{C})$. Let $\hat{U} \subset U \times \mathbb{P}^{n-1}(\mathbb{C})$ be the closed subset defined by the system of equations $x_i y_j = x_j y_i$, $1 \leq i < j \leq n$. One can check that \hat{U} is actually a submanifold of $U \times \mathbb{P}^{n-1}(\mathbb{C})$. Moreover, the restriction of the projection onto the first factor $c : \hat{U} \rightarrow U$ has the following properties: the
fiber of \(c \) above \(P \), \(c^{-1}\{P\} \), is a submanifold \(E \) of \(\hat{U} \) which is biholomorphic to \(\mathbb{P}^{n-1}(\mathbb{C}) \) and the restriction of \(c \) at \(\hat{U} \setminus E \) defines a biholomorphism between \(\hat{U} \setminus E \) and \(U \setminus \{P\} \). Using it, we can glue \(\hat{U} \) to \(X \) along \(U \setminus \{P\} \).

The resulting manifold will usually be denoted by \(\hat{X} \); the map \(c \) above extends obviously to a map - denoted by the same letter - \(\hat{c} : \hat{X} \to X \).

Notice that on one hand \(\hat{c} \) is a biholomorphic map between \(\hat{X} \setminus E \) and \(X \setminus \{P\} \) and, on the other hand, \(\hat{c} \) "contracts" \(E \), i.e. \(\hat{c}(E) = \{P\} \) (\(E \) is called accordingly the "exceptional divisor" of \(\hat{c} \)).

Let now \(y \in \hat{X} \) be some point. If \(y \notin E \), then the tangent map

\[
c_{*,y} : T_y(\hat{X}) \to T_{c(y)}(X)
\]

is an isomorphism, while if \(y \in E \) then the rank of this map is one and its kernel consists of those vectors that are tangent at \(y \) to \(E \), i.e. \(\text{Ker}(c_{*,y}) = T_y(E) \).

Next, recall that to each closed complex submanifold \(E \) of codimension one of some complex manifold \(X \) one can associate a holomorphic vector bundle, usually denoted \(\mathcal{O}_X(E) \); see e.g. [3], Chapter 1, Section 1. If one chooses a hermitian metric \(h \) in \(\mathcal{O}_X(E) \) there exists and is unique a linear connection \(D \) in the vector bundle which is also compatible with the complex structure (see e.g. the Lemma on page 73, [3]). The curvature \(\Omega_E \) of this connection is a closed \((1,1)\)-form.

We shall next exemplify the computation of the curvature of a metric connection in the special case we are interested in, namely when \(E \) is the exceptional divisor of some blow-up. So let \(X \) be a manifold, \(P \in X \), \(U \) a coordinate neighborhood of \(P \) as in the beginning of the section and \(\hat{X} \) the blow-up of \(X \) at \(P \). For \(\varepsilon \) small enough set

\[
U_{2\varepsilon} \overset{def}{=} Q \in U \mid |x_i(Q)| < 2\varepsilon \text{ for all } i = 1, \ldots, n\}.
\]

Let \(\pi' : U \times \mathbb{P}^{n-1}(\mathbb{C}) \to \mathbb{P}^{n-1}(\mathbb{C}) \) be the projection onto the the second factor; then \(\mathcal{O}_{\hat{U}}(E) = \pi'^*(\mathcal{O}_{\mathbb{P}^{n-1}(\mathbb{C})}(-1)) \). Let \(\omega_{FS} \) be the Kähler form of the Fubini-Study metric on \(\mathbb{P}^{n-1}(\mathbb{C}) \); then \(-\omega_{FS} \) is the curvature of the canonical connection of the natural metric \(h \) in the tautological line bundle \(\mathcal{O}_{\mathbb{P}^{n-1}(\mathbb{C})}(-1) \). Let \(h' \overset{def}{=} \pi'^*(h) \) be the induced metric in \(\mathcal{O}_{\hat{U}}(E) \); then its curvature will be \(\pi'^*(-\omega_{FS}) \). On the other hand, the line bundle \(\mathcal{O}_{\hat{X}}(E) \) is trivial outside \(E \); fix a nowhere vanishing section \(\sigma \) of it and let \(h'' \) be the unique metric making \(\sigma \) into a unitary basis. Let now \(\varrho_1, \varrho_2 \) be a partition of unity such that \(\varrho_1 \equiv 1 \) on \(U_\varepsilon \) and \(\varrho_1 \equiv 0 \) outside \(U_{2\varepsilon} \) and respectively \(\varrho_2 \equiv 0 \)
on \(U_\varepsilon \) and \(\equiv 1 \) outside \(U_{2\varepsilon} \). Let \(h = \varrho_1 h' + \varrho_2 h'' \); it is a hermitian metric on \(O_X(E) \). Its curvature will be zero outside \(U_{2\varepsilon} \) since \(h = h'' \) there. In \(U_\varepsilon \), its curvature will be the pull-back (via \(\pi' \)) of \(-\omega_{FS} \), hence it is semi-negative definite; moreover, its restriction to \(E \) will be negative definite on vectors that are tangent along \(E \), since the restriction of \(\pi' \) to \(E \) is a biholomorphism between \(E \) and \(\mathbb{P}^{n-1}(\mathbb{C}) \).

3 Proof of the theorem.

Proof. First, let us fix the terminology. We will say that a \((1,1)\)-form \(\omega \) on a complex manifold \((M, J_M)\) is positive (semi-)definite if for any point \(m \in M \) and any non-zero tangent vector \(v \in T_mM \) one has \(\omega(v, J_M v) > 0 \) (respectively \(\geq 0 \)), in other words if it is the Kähler form of some hermitian metric on \(M \).

Let now \(\omega \) be the Kähler form of an l.c.K. metric on \(X \). We see \(c^*(\omega) \) is a \((1,1)\)-form on \(\hat{X} \) which is positive definite on \(X \setminus E \) and satisfies \(dc^*(\omega) = c^*(\theta) \wedge c^*(\omega) \), where \(\theta \) is the Lee form of the given l.c.K. metric on \(X \). As \(E \) is simply connected we see (e.g. by using Lemma 4.4 in [3]) there exists an open neighborhood \(U \) of \(E \) and a smooth function \(f : \hat{X} \to \mathbb{R} \) such that \(\omega \overset{def}{=} c^* c^*(\omega) \) satisfies \(d\omega = \theta' \wedge \omega' \) and such that \(\theta'_{|U} \equiv 0 \).

On the other hand, we can find a hermitian metric in the holomorphic line bundle \(O_{\hat{X}}(E) \) on \(\hat{X} \) associated to \(E \) such that the curvature \(\Omega_E \) of its canonical connection is negative definite along \(E \) (i.e. \(\Omega_E(v, J_{\hat{X}} v) < 0 \) for every non-vanishing vector \(v \in T_P(E) \) and for every \(P \in E \), is negatively semidefinite at points of \(E \) (i.e. \(\Omega_E(v, J_{\hat{X}} v) \leq 0 \) for any \(P \in E \) and any \(v \in T_P(\hat{X}) \)) and is zero outside \(U \) (cf. e.g. [3], pp 185-187). Notice that \(\Omega_E \) is closed.

We infer that for some positive integer \(N \) the \((1,1)\)-form \(h \overset{def}{=} N \omega' - \Omega_E \) is positive definite.

Indeed, this is obvious outside \(U \) as \(\Omega_E \) vanishes here and \(N \omega' \) is positive definite for any \(N > 0 \).

Along \(E \), as both \(\omega' \) and \(-\Omega_E \) are positive semidefinite, we have only to check the definiteness of \(h \). Let \(y \in E \) be some point and \(v \in T_y(\hat{X}) \). Assume \(h(v, J_{\hat{X}} v) = 0 \); since both \(\omega' \) and \(-\Omega_E \) are positive semidefinite, we get \(\omega'(v, J_{\hat{X}} v) = \Omega_E(v, J_{\hat{X}} v) = 0 \). But \(\omega'(v, J_{\hat{X}} v) = 0 \) implies \(c^*(\omega)(v, J_{\hat{X}} v) = 0 \); so \(\omega(c_{*,y}(v), J_{\hat{X}} c_{*,y}(v)) = 0 \) hence \(v \in Ker(c_{*,y}) \). As \(Ker(c_{*,y}) = T_y(E) \) we
get that $v \in T_y(E)$; but as $-\Omega_E(v, J \vec{x} v) = 0$ we see that $v = 0$

To check the assertion on U, it suffices to notice that for each point x in U there exists some n_x such that $N \omega' - \Omega_E$ is positive definite at x for all $N \geq n_x$, hence also positive definite on a neighborhood of x; since U is relatively compact, we can cover it by finitely many such neighborhoods, and take the maximum of the corresponding n'_xs.

Last, let us see that $N \omega' - \Omega_E$ is l.c.k. One has
\[d(N \omega' - \Omega_E) = N d\omega' = \theta' \wedge N \omega'. \]

But $\theta' \wedge \Omega_E = 0$ since their supports are disjoint, so we have
\[d(N \omega' - \Omega_E) = \theta' \wedge N \omega' - \theta' \wedge \Omega_E = \theta' \wedge (N \omega' - \Omega_E). \]

Acknowledgments. I wish to thank L.Ornea and I. Vaisman for useful discussions; also, I’m especially grateful to V. Brînzaescu for a careful reading of a preliminary version of this paper.

References

[1] F.A. Belgun, *On the metric structure of non-Kähler complex surfaces*, Math. Ann. 317 (2000), 1–40.

[2] S. Dragomir & L. Ornea; *Locally conformal Kähler geometry*. Progress in Mathematics (Boston, Mass.). 155. Boston, MA: Birkhäuser. xi, 327 p.

[3] Ph. Griffiths & J. Harris, *Principles of algebraic geometry* Wiley, New York, 1978, xii + 813 pp.

[4] L. Ornea & M. Verbitsky, *Topology of locally conformally Kähler manifolds with potential*, [arXiv:0904.3362](http://arxiv.org/abs/0904.3362).

[5] F. Tricceri, *Some examples of locally conformal Kahler manifolds*. Rend. Sem. Mat., Torino 40, No.1, 81-92 (1982).

Universitatea București,
Facultatea de Matematică și Informatică,
Str. Academiei 14,
010014, București, România.
Email: vuli@fmi.unibuc.ro