Placebo response with subcutaneous injections in calcitonin gene-related peptide receptor monoclonal antibody migraine preventative trials – A systematic review and meta-analysis

Sasikanth Gorantla¹, Murali Mohan Reddy Gopireddy², Archana Bhat², Lavanya Ayyasamy², Sarath Kumar Jaganathan Jaishankar¹, Bassil Kherallah¹, and Hrachya Nersesyan¹

Abstract

Background: The majority of CGRP monoclonal antibodies for migraine prevention are administered subcutaneously. Therefore, we attempted to calculate the pooled placebo response with subcutaneous placebo injections in this systematic review and meta-analysis.

Methods: We identified 16 randomized controlled trials that met our inclusion and exclusion criteria through a comprehensive search in five electronic databases (PubMed Central, EMBASE, MEDLINE, Cochrane library and clinical-trials.gov). The risk of bias was assessed for all included studies. Random effects model was used to calculate pooled mean monthly migraine days and 50% response rates.

Results: A total of 4240 subjects were included from 16 studies in this meta-analysis. The pooled mean monthly migraine day reduction with subcutaneous placebo injections was 2.15 (95% CI: 1.60–2.69). The pooled proportion of patients achieving a 50% reduction in mean monthly headache days was 26% (95% CI: 20%–31%). Placebo response accounted for more than 50% of therapeutic gain in our study.

Conclusion: A substantial placebo response was noted with subcutaneous injections in migraine CGRP monoclonal antibody clinical trials. This meta-analysis may serve as a reference point to calculate sample size in clinical trials using subcutaneous interventions for migraine prevention. We registered our study at PROSPERO (CRD42020185300).

Keywords
CGRP antagonists, migraine headache, placebo response, subcutaneous injections

Date received: 4 May 2022; Received revised June 24, 2022; accepted: 18 July 2022

Introduction

Placebo effect is a complex neurobiological phenomenon that may either mimic or enhance the therapeutic response.¹ ² Conditioning, desire, expectations, beliefs and emotions are the key psychological factors that drive the placebo effect.² ³⁻⁴ Headache, like many other pain disorders, can invoke multiple behavioral components that constitute a placebo response.⁵⁻⁸ Migraine headache, a

¹ University of Illinois College of Medicine at Peoria and Illinois Neurological Institute, OSF Healthcare, Peoria, IL, USA
² Evidencian Research Associates, Bangalore, India

Corresponding author:
Sasikanth Gorantla, Department of Neurology, University of Illinois College of Medicine at Peoria and OSF Healthcare Illinois Neurological Institute, 200 E Pennsylvania Avenue, Peoria, IL 61603, USA.
Email: sasikanth.gorantla@osfhealthcare.org
common and debilitating primary headache disorder, is an excellent model to quantify placebo analgesia.

Several meta-analyses estimated the magnitude of placebo response with migraine medications in the past. Previous meta-analyses reported a mean placebo response of 24–30% with acute abortive therapy. Placebo response is higher with acute abortive treatments than preventative therapy. The placebo effect in oral migraine preventative therapy clinical trials was shown to vary from 14% to 31%. Among the preventative interventions, acupuncture showed the highest placebo effect at 50%. A meta-analysis of 22 oral migraine prophylaxis randomized controlled trials (RCT) showed a 50% responder rate (50% RR) of 23.5 ± 8.0% and a 16.8 ± 12.7% reduction in migraine attack frequency with placebos. Macedo et al. conducted a meta-analysis of 32 RCTs and reported a 50% response rate with placebo in 21% [13–28%] of patients; 18% reduction in mean monthly migraine attacks was noted with oral placebos when compared to oral prophylactic medications.

The route of placebo administration may alter the magnitude of the overall therapeutic response. Subcutaneous (subQ) placebos were 6.7% (95% CI 2.4–11.0%) more effective than oral placebos in reducing headache intensity 2 hours after the treatment. However, a network meta-analysis from 2013 reported contradictory findings with no significant advantage of parenteral medication delivery over the enteral route. Invasive procedures, such as sham surgery and sham acupuncture exert a greater placebo effect than oral placebos.

Oral medications have been the mainstay of migraine preventative treatment for decades. The recent approval of calcitonin gene-related peptide monoclonal antibodies (CGRP MAB) – erenumab, galcanezumab, and fremanezumab – transformed the landscape of migraine preventative treatment. CGRP MAB have a unique dosage frequency and route of administration: all three biologics are administered monthly via subQ injections, with fremanezumab also having an option for quarterly administration. In preapproval clinical studies of all three CGRP MAB, the percentage of patients reporting >50% reduction in migraine headache days with placebo was comparable with previous studies for other preventative treatments. Considering the novel route and frequency of CGRP MAB administration, we hypothesized that subQ injections might exert a distinct placebo response than oral medications. A better understanding of this placebo response will aid in designing future research studies and clinical trials with optimal sample size and scientific rigor. Therefore, we aimed to conduct this meta-analysis and systematic review to re-evaluate the pooled placebo response with subQ injections in migraine prevention.

Methods

We conducted a systematic review and meta-analysis of RCTs. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist in our review. We registered our study protocol at the prospective register of systematic review (PROSPERO) prior to the synthesis of the data to avoid unintentional duplication. The registration number is CRD42020185300. Institutional review board approval is not required for meta-analysis at our institution.

Search strategy

Two authors (AB and LA) conducted a systematic database literature searches in PubMed Central, EMBASE, MEDLINE, Cochrane library and clinicaltrials.gov with keywords “Migraine Headache,” “Migraine,” “Randomized Controlled Trial,” “Placebo,” “Calcitonin Gene-Related Peptide,” “Erenumab,” “Galcanezumab,” and “Fremanezumab” from January 2010 through July 2020. We did literature search and data entry in August 2020. In the first step, free text searching of the keywords and their synonyms was performed using appropriate truncations, wildcards and proximity searching. We also searched for key concepts using corresponding subject headings in each database. We conducted the final search by combining the individual results using appropriate Boolean operators. The searches were complemented by screening the references of selected articles to find those that did not appear in the search databases. Additional verification was performed by a simple Google search.

Initial screening was conducted on Mendeley’s reference manager. A blinded full-text screening of the eligible studies was done on a web-based platform (https://www.rayyan.ai/) by 2 authors (SG, MG) and further verified by AB, who served as a third reviewer.

Eligibility criteria

Participants (P): Participants were adults, both men and women, over 18 years of age with a diagnosis of episodic migraine (EM) and chronic migraine (CM). The diagnosis of EM and CM was made according to ICHD-3 criteria.

Intervention (I): To quantify the placebo response, we included placebo-controlled clinical trials that investigated the preventative effect of subQ CGRP antagonists on migraine headaches. Subcutaneous placebo injection is the intervention of interest in this study.

Comparison (C): The data from the placebo arm of the included RCTs at the baseline serve as the comparator.

Outcomes (O): The outcome measures in the included RCTs were reduction in the mean monthly migraine days (MMD) and proportion of patients achieving at least a 50% reduction in MMD at 3 or 6 months compared with the baseline. MMD is defined as the average number of headaches per month, with headaches lasting more than 30 minutes that meet ICHD-3 diagnostic criteria for migraine or probable migraine. 50% responder rate (50% RR) is defined as the percentage of subjects that reported at least 50% reduction in MMD. The outcome measures were collected at either 3 or 6 months.
Study design (S): The double-blinded placebo-controlled RCTs included in this meta-analysis and systematic review. Observational studies, non-placebo-controlled trials, and quasi-experimental studies were excluded. Only published English full-text studies were included, while conference abstracts, unpublished data, and grey literature were excluded.

Data collection
Data were extracted manually from the included studies using a structured data extraction form, developed and pilot tested using the “Cochrane Consumers and Communication Review Group” Data Extraction Template. General information was collected about the study, such as author, year of publication, title, information related to methods section (such as study design), sample sizes, study participants, inclusion and exclusion criteria, quality-related information, and outcome measures.

Risk of bias
The risk of bias was assessed using the Cochrane Risk of Bias tool for RCTs. The assessment was done and reported according to the Cochrane Consumers and Communication Review Group guidelines, which recommend the detailed reporting of the following individual elements for RCTs: “random sequence generation, allocation sequence concealment, blinding (participants, personnel), blinding (outcome assessment), completeness of outcome data, selective outcome reporting and other sources of bias.” The risk of bias was assessed at the study level.

Statistical analysis
We performed a meta-analysis with the final set of selected studies using the R software (R Foundation for Statistical Computing, Vienna, Austria). Random effects model was applied because of the anticipated heterogeneity and final data was reported as pooled prevalence with 95% confidence interval (CI) for outcomes such as the proportion of patients with a 50% reduction in MMD, and pooled mean with 95% CI for continuous outcomes such as placebo and interventional drugs response in MMD reduction. Visual representation of these pooled estimates was done by forest plot. Heterogeneity was evaluated by chi-square of heterogeneity and I2 statistic. A p-value less than 0.1 in the chi-square test indicates significant heterogeneity, whereas the I2 value was used to quantify the heterogeneity using the following criteria: less than 25% = mild heterogeneity, 25–75% = moderate heterogeneity and >75% = substantial heterogeneity. We performed subgroup analyses based on types of migraine and follow-up period due to the high heterogeneity of the study characteristics. Post hoc study design-based subgroup analysis was conducted to analyze the influence of unequal allocation ratio. RCTs included in this meta-analysis were divided into studies with near equal medication to placebo allocation ratio and higher medication to placebo ratio (unequal allocation ratio, i.e. > 1:1). Publication bias was evaluated and visually represented through a funnel plot. We also assessed the asymmetry of the plot using Egger’s test. P-value <0.10 was considered a statistically significant publication bias.

Results

Study selection process
We identified 16 eligible studies after screening 236 results through a systematic literature search, as illustrated in the PRISMA flow diagram. During the second screening stage, 16 studies met the eligibility criteria and were included in our review (Figure 1).

Characteristics of included studies
Characteristics of the studies are described in Table 1. 16 RCTs-Erenumab (6), Fremanezumab (5) and Galcanezumab (5)—were included in this meta-analysis and systematic review. The sample size varied from 104 to 538 in the included RCTs. The reduction in MMD and 50% RR were reported in 16 and 12 studies; 5 RCTs reported a reduction in monthly headache days (MHD) as an outcome measure. Out of 16 RCTs, 12 included patients with EM, 3 had patients with CM, and one study included both EM and CM patients. Most studies were conducted in North America or Europe. Subjects were enrolled in Australia in one study and 2 studies were done in Japan. Out of 16 studies, 11 studies were conducted for 3 months and 5 studies for 6 months. All analyzed studies had a low to unclear risk of bias with respect to all the domains in the Cochrane risk of bias tool and all studies satisfied the criteria to be a high-quality study (Figure 2).

Pooled placebo response of subcutaneous injections used for migraine prevention

Reduction in MMD and 50% response rate (Figures 2 and 3). The pooled MMD reduction was 2.15 (95% CI: 1.60–2.69). However, the heterogeneity was substantial (I2 = 94%; chi-square test for heterogeneity = p < 0.001). Twelve studies reported 50% RR and the pooled proportion of patients achieving a 50% reduction in MMD was 26% (95% CI: 20%–31%). Substantial heterogeneity was also noted with 50% RR (I2 = 94%; chi-square test for heterogeneity p < 0.001). The funnel plot did not show evidence of publication bias. (Eggers test for studies that reported MMD and 50% RR showed a p-value of 0.38 and 0.19, respectively).

Subgroup analysis (Table 2 and supplementary figures A, B, C and D). We performed subgroup analysis based on the duration of the study (11 studies lasted 3 months and 5 studies...
were completed after 6 months). The pooled mean reduction in MMD was higher in the 3-month group (2.45; 95% CI 1.80–3.10; $I^2 = 92\%$) compared with the 6-month group (1.51; 95% CI: 0.57–2.46; $I^2 = 96\%$). The pooled proportion of 50% reduction in MMD was higher in the 6-months group (26%; 95% CI: 14%–37%; $I^2 = 97\%$) compared with 3-month group (25%; 95% CI 20%–31%; $I^2 = 89\%$).

We also analyzed the variation in placebo response between patients with EM and CM. The pooled mean reduction in MMD was higher in RCTs that included patients with CM (3.37; 95% CI: 2.50–4.23; $I^2 = 73\%$) compared to EM (1.99; 95% CI: 1.39–2.58; $I^2 = 94\%$). The pooled 50% RR was higher in EM RCTs (27%; 95% CI: 20%–33%; $I^2 = 93\%$) compared to CM (19%; 95% CI: 12%–26%; $I^2 = 85\%$).

A posteriori subgroup analysis was conducted based on the medication to placebo allocation ratio. Equal allocation was noted in 7 studies and unequal allocation was identified in 9 studies. Higher pooled mean MMD reduction was noted in the unequal/greater medication to placebo ratio group (2.34; 95% CI 1.49–3.18; $I^2 = 95\%$) compared to the studies with the equal allocation (1.92; 95% CI 1.17–2.66; $I^2 = 94\%$). The pooled proportion of 50% reduction in MMD was higher in RCTs with equal medication to placebo allocation ratio (28%; 95% CI: 19%–36%; $I^2 = 95\%$) compared to unequal/greater medication to placebo allocation (23%; 95% CI 16%–31%; $I^2 = 91\%$).

Placebo response accounted for more than 50% of therapeutic gain due to CGRP MAB sub Q injections; 55% of MMD reduction and 59% of 50% RR due to subQ
Study characteristics	Author name and year	Country	Migraine type	Duration (months)	Sample size	Mean migraine and headache days (95% CI)	Participants with 50% reduction in placebo
1 Ferrari, M. D., et al. (2019). FOCUS (Phase 3b trial)	America & Europe	Episodic and chronic migraine	3	279	0.60 (0.30 to 0.90)	NR	
2 Stauffer, V. L., et al. (2018). EVOLVE-1 (Phase 3 trial)	North America	Episodic Migraine	6	433	2.81 (2.33 to 3.28)	164	
3 Skljarevski, V., et al. (2018). Phase 2b study	USA	Episodic Migraine	3	137	3.40 (2.9 to 3.8)	NR	
4 Skljarevski, V., et al. (2018). EVOLVE-2 (Phase 3)	USA	Episodic Migraine	6	461	2.30 (1.90 to 2.69)	166	
5 Reuter, U., et al. (2018). LIBERTY (phase 3b study)	Europe & Australia	Episodic Migraine	3	124	0.20 (0.58 to 0.98)	17	
6 Dodick, D. W., et al. (2018).	North America & Europe (including Russia)	Episodic Migraine	3	110	3.70 (4.53 to 11.93)	NR	
7 Dodick, D. W., et al. (2018). ARISE (Phase 3)	North America & Europe (including Russia)	Episodic Migraine	3	288	1.80 (1.40 to 2.19)	85	
8 Detke, H. C., et al. (2018). REGAIN (phase 3 study)	USA & Europe	Chronic Migraine	3	538	3.00 (2.60 to 3.40)	83	
9 Tepper, S., et al. (2017).	North America & Europe	Chronic Migraine	3	286	4.20 (3.41 to 4.98)	66	
10 Silberstein, S. D., et al. (2017).	NA	Chronic Migraine	3	371	2.50 (1.91 to 3.08)	67	
11 Goadsby, P. J., et al. (2017).	North America, Europe, Turkey	Episodic Migraine	6	316	1.80 (1.40 to 2.19)	84	
12 Sun, H., et al. (2016).	North America & Europe	Episodic Migraine	3	153	2.30 (1.71 to 2.88)	43	
13 Bigal, M. E., et al. (2015).	USA	Episodic Migraine	3	104	3.46 (2.44 to 4.47)	NR	
14 Dodick, D. W., et al. (2014).	USA	Episodic Migraine	3	110	3.00 (2.41 to 3.58)	47	
15 Sakai F., et al. (2019) Phase 2 study	USA	Episodic Migraine	6	136	0.06 (0.46 to 0.58)	10	
16 Sakai F., et al. (2020) Phase 2	Japan	Episodic Migraine	6	230	0.59 (0.18 to 1.00)	47	
therapeutic interventions were found to be due to placebo response (Table 2).

Discussion

Our meta-analysis and systematic review demonstrated a substantial placebo response in migraine prophylaxis with subQ injections (pooled mean MMD reduction of 2.15 and a pooled 50% RR of 26%). The 50% RR with subQ placebos identified in this meta-analysis (26%) was higher than the previous meta-analysis by Macedo et al. with oral placebos (21%).

Invasive placebo interventions evoke unpleasant, painful sensations. Subjects involved in invasive clinical trials have to be more motivated to participate and it transforms into higher anticipation of therapeutic benefits because of their greater emotional investment. Moreover, pain during the procedure triggers an instantaneous expectation of symptom relief from the placebo. Botox PREEMPT trials in which 31 sites around the head were injected with either...
placebo or Botox demonstrated higher placebo responses, attributed to the enhanced invasiveness of the procedure.15

Several neuroimaging studies supported the neurocognitive hypothesis of placebo analgesia. In 2021, the placebo imaging consortium published a “mega-analysis,” a meta-analysis of whole-brain analysis including 603 “healthy subjects” from 20 studies, showing the neuroimaging (functional MRI) correlates of placebo analgesia.39 As expected, subjects who reported higher placebo analgesia showed a greater reduction in pain construction area activity (insula, thalamus, midcingulate, habenula, and supplementary motor areas).39 The neural correlates of placebo analgesia did not differ significantly between migraine patients and healthy subjects, as illustrated by Linman et al.39 The preliminary neuroimaging study (opioid ligand 11C-diprenorphine PET scan and functional MRI) with 9 controls and 9 migraine patients did not reveal any difference in brain activation related to placebo responses between the two groups.40

We hypothesized that migraine headache characteristics influence the placebo effect. Hence, we investigated the impact of migraine-type on placebo response in subgroup analysis. Given the high prevalence of associated psychiatric comorbidities and increased headache burden in CM, a higher placebo response was expected.41,42 A recent meta-analysis that analyzed the placebo response of 5672 CM patients from 7 migraine prevention RCTs showed a greater placebo response with injections to the head in Botox trials followed by intravenous injections; subQ route and oral placebos were inferior to head injections.15 75\% of the therapeutic gain was explained by the placebo response in that study.15 In contrast with that assumption, therapeutic nihilism is common in chronic migraine patients and may decrease the overall response to pharmacological interventions, including placebo. This phenomenon was demonstrated in a recent mindfulness-based cognitive therapy clinical trial that showed higher efficacy in patients with EM than CM.43 In our study, a higher MMD reduction with subQ placebos in chronic migraine was noted. However, 50\% response rate was lower in CM group when compared to EM and it is because a CM patient with higher baseline migraine days needs a substantially higher reduction in the number of migraine days per month than a EM patient with lower baseline migraine frequency, to accomplish 50\% reduction. In our meta-analysis, the average baseline MMD of placebo arms in RCTs with CM is 18 and EM is 8.5. This finding emphasizes the fact that 50\% RR may not serve as an optimal primary outcome measure in CM trials as smaller effect sizes can be missed.

RCT duration has the potential to modify the placebo effect. However, the association between study duration and the placebo effect has been inconsistent. A higher placebo effect was reported in RCTs with shorter follow-up times, especially in psychiatry.44,45 A long-lasting placebo effect is also not an uncommon phenomenon. A sustained placebo effect lasting 6 months was noted in a
pooled analysis that investigated the effect of topiramate on migraine headaches. A prophylactic study examining the impact of botulinum toxin A treatment showed a lasting placebo effect for 9 months. A meta-analysis of 47 RCTs evaluated the impact of sham surgery and showed sustained and consistent effect for 12 months. In our study, we observed superior MMD reduction with a shorter study duration i.e. for 3 months; this finding indicates that the placebo effect on migraine headaches weans over time with subQ injections. However, studies conducted for 6 months showed a slightly higher pooled 50% RR when compared with 3 month RCTs (26% vs 25%). It is interesting to note that the presence of CM RCTs in the 3 month group negatively influenced the 50% response rate as expected; it is supported by the higher average baseline MMD in 3 month RCT placebo group (11) vs 6 month RCT group (8). The 1% difference between 3 month and 6 months groups does not represent a meaningful clinical significance.

We investigated the effect of medication to placebo allocation ratio on the placebo effect as the therapeutic expectation changes with the knowledge of allocation probability. Studies with a 1:1 medication to placebo allocation ratio or near-equal allocation ratio were shown to produce lesser placebo response when compared to RCTs with unbalanced randomization that increases the probability of receiving the medication (medication to placebo allocation ratio > 1:1). Out of 16 RCTs, 7 clinical trials used 1:1 randomization design (41%). All galcanezumab RCTs used a 1:1 design, whereas all fremanezumab trials utilized 1:2 randomization protocols. 2 RCTs in the erenumab group also utilized a 1:1 design. As expected, pooled MMD reduction was lower with studies that used 1:1 randomization (1.92) compared to RCTs with a higher probability of receiving medication (2.34). The pooled 50% RR was higher in 1:1 group (28%) compared to the unequal randomization group (23%) and it is likely due to higher baseline migraine headache frequency in unequally randomized studies (11.1 vs 10.1).

Varied results observed in our subgroup analysis – as measured by the two conventional outcomes, MMD, and 50% RR – were explained by the baseline migraine headache frequency. MMD and 50% RR represent unique migraine characteristics and may not be used interchangeably. Furthermore, the differences reported in sub-group analyses are not statistically significant as the 95% confidence intervals overlapped. The results were reported as it is to avoid selective reporting of statistically significant findings.

All sixteen studies in our meta-analysis used MMD as an outcome measure; 12 studies reported 50% RR and only 5 studies utilized monthly headache days. This is a concerning finding and it is in line with the results of a recent systematic review of 268 preventative clinical trials that identified a high degree of variability and lack of standardization. The discrepancy was profound in preventative trials compared to acute migraine trials. Migraine-specific outcomes such as MMD and 50% RR were used in 69% of studies, headache-specific outcomes in 40% of studies and acute rescue treatment days in 51% of studies, independently or concomitantly. The choice of outcome measure in a clinical trial is predominantly based on the nature of the research question and resource availability. Furthermore, a high degree of inconsistency in outcome measures may negatively influence the results of a meta-analysis. Also, the discrepancy in the outcome measures in this subgroup analyses could be due to unexplored variations in the sample characteristics.

There are some notable limitations in this study. The true placebo effect is defined as the mean difference in effect size between the placebo and non-intervention arms. Hence, we did not “technically” investigate the “true placebo effect.” Hawthorne effect – a behavioral phenomenon where individuals report changes exclusively due to study participation – has the potential to alter the outcomes both in clinical trials and routine practice. It is not feasible to control all the potential confounding factors, such as physiological disease fluctuations, report/recall bias, inaccurate over-the-counter pain medication usage data, and under or undiagnosed psychiatric comorbidities. Despite the extensive analysis, we could not identify the reason for the high prevalence of heterogeneity in our meta-analysis. Some of the included studies reported patient-related outcome measures, but we did not analyze them in our meta-analysis.

Conclusion

Our meta-analysis and systematic review re-demonstrated the significance of placebo response in migraine headache preventative treatments. Subcutaneous injections revealed a greater placebo response when compared with the results from oral prophylactic medication meta-analyses. Further studies to emulate and harness placebo analgesia may increase the efficacy of preventative migraine medications in clinical practice.

Abbreviations

CGRP – Calcitonin Gene-Related Peptide Receptor
MAB – Monoclonal Antibodies
RCT – Randomized Controlled Trials
MMD – Mean Monthly Migraine Days
MHD – Monthly Headache Days
50% RR – 50% responder rate
SubQ – Subcutaneous
EM – Episodic migraine
CM – Chronic migraine
ICHD-3 – International classification of headache disorders, 3rd edition.
Article highlights

- In our study, the placebo response with subcutaneous injections is higher than that of oral medications reported in previous meta-analyses.
- Mean monthly migraine day (MMD) reduction of 2.15 (1.60–2.69) was noted with subcutaneous (subQ) placebos.
- 26% (20–31%) of study participants had a 50% reduction in MMD with subQ placebos.
- More than half of therapeutic gain was due to subQ placebos in our study.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Supplemental material

Supplemental material for this manuscript is available online.

References

1. Finniss DG, Kaptchuk TJ, Miller F, et al. Biological, clinical, and ethical advances of placebo effects. Lancet 2010; 375: 686–695.
2. Price DD, Finniss DG and Benedetti F. A comprehensive review of the placebo effect: recent advances and current thought. Annu Rev Psychol 2008; 59: 565–590.
3. Colloca L, Klinger R, Flor H, et al. Placebo analgesia: psychological and neurobiological mechanisms. Pain 2013; 154: 511–514.
4. Ernst E. Placebo: new insights into an old enigma. Drug Discov Today 2007; 12: 413–418.
5. Bendtsen LMP, Zwart JA and Lipton RB. Placebo response in clinical randomized trials of analgesics in migraine. Cephalalgia 2003; 23: 487–490.
6. Macedo A, Farré M and Baños JE. A meta-analysis of the placebo response in acute migraine and how this response may be influenced by some of the characteristics of clinical trials. Eur J Clin Pharm 2006; 62: 161–172.
7. Loder E, Goldstein R and Biondi D. Placebo effects in oral triptan trials: the scientific and ethical rationale for continued use of placebo controls. Cephalalgia 2005; 25: 124–131.
8. De Craen AJTJ, de Gans J and Kleijn J. Placebo effect in the acute treatment of migraine: subcutaneous placebos are better than oral placebos. J Neurol 2000; 247: 183–188.
9. Diener HC, Tassorelli C, Dodick DW, et al. International Headache Society Clinical Trials Committee. Guidelines of the International Headache Society for controlled trials of preventive treatment of migraine attacks in episodic migraine in adults. Cephalalgia 2020; 40: 1026–1044.
10. Diener HC, Schorn CF, Bingel U, et al. The importance of placebo in headache research. Cephalalgia 2008; 28: 1003–1011.
11. Linde K, Streng A, Jurgens S, et al. Acupuncture for patients with migraine: a randomized controlled trial. JAMA 2005; 293: 2118–2125.
12. Diener HC, Kronfeld K, Boewing G, et al. Efficacy of acupuncture for the prophylaxis of migraine: a multicentre randomised controlled clinical trial. Lancet Neurol 2006; 5: 310–316.
13. van der Kuy PH and Lohman JJ. A quantification of the placebo response in migraine prophylaxis. Cephalalgia 2002; 22: 265–270.
14. Macedo A, Baños JE and Farré M. Placebo response in the prophylaxis of migraine: a meta-analysis. Eur J Pain 2008; 12: 68–75.
15. Swerts DB, Benedetti F and Peres MFP. Different routes of administration in chronic migraine prevention lead to different placebo responses: a meta-analysis. Pain 2022; 163(3): 415–424.
16. Tepper SJ. Anti-calcitonin gene-related peptide (CGRP) therapies: Update on a previous review after the American Headache Society 60th Scientific Meeting, San Francisco, June 2018. Headache 2018; 58(Suppl 3): 276–290.
17. Meissner K, Fassler M, Rücker G, et al. Differential effectiveness of placebo treatments: a systematic review of migraine prophylaxis. JAMA Int Med 2013; 173: 1941–1951.
18. Dodick DW, Ashina M, Brandes JL, et al. ARISE: a phase 3 randomized trial of erenumab for episodic migraine. Cephalalgia 2018; 38: 1026–1037.
19. Goadsby PJ, Reuter U, Hallström Y, et al. A controlled trial of erenumab for episodic migraine. New Eng J Med 2017; 377: 2123–2132.
20. Sun H, Dodick DW, Silberstein S, et al. Safety and efficacy of AMG 334 for prevention of episodic migraine: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol 2016; 15: 382–390.
21. Reuter U, Goadsby PJ, Lanteri-Minet M, et al. Efficacy and tolerability of erenumab in patients with episodic migraine in whom two-to-four previous preventive treatments were unsuccessful: a randomised, double-blind, placebo-controlled, phase 3b study. Lancet 2018; 392: 2280–2287.
22. Tepper S, Ashina M, Reuter U, et al. Safety and efficacy of erenumab for preventive treatment of chronic migraine: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol 2017; 16: 425–434.
23. Dodick DW, Goadsby PJ, Spierings EL, et al. Safety and efficacy of LY2951742, a monoclonal antibody to calcitonin gene-related peptide, for the prevention of migraine: a phase 2, randomised, double-blind, placebo-controlled study. Lancet Neurol 2014; 13: 885–892.
24. Skljarevski V, Oakes TM, Zhang Q, et al. Effect of different doses of galcanezumab vs placebo for episodic migraine prevention: a randomized clinical trial. JAMA Neurol 2018; 75: 187–193.
25. Stauffer VL, Dodick DW, Zhang Q, et al. Evaluation of galcanezumab for the prevention of episodic migraine: the EVOLVE-1 randomized clinical trial. JAMA Neurol 2018; 75: 1080–1088.
26. Skljarevski V, Matharu M, Millen BA, et al. Efficacy and safety of galcanezumab for the prevention of episodic migraine: results of the EVOLVE-2 phase 3 randomized controlled clinical trial. Cephalalgia 2018; 38: 1442–1454.
27. Detke HC, Goadsby PJ, Wang S, et al. Galcanezumab in chronic migraine: the randomized, double-blind, placebo-controlled REGAIN study. Neurology 2018; 91: e2211–e2221.
28. Bigal ME, Dodick DW, Rapoport AM, et al. Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of high-frequency episodic migraine: a multicentre, randomised, double-blind, placebo-controlled, phase 2b study. Lancet Neurol 2015; 14: 1081–1090.
29. Dodick DW, Silberstein SD, Bigal ME, et al. Effect of fremanezumab compared with placebo for prevention of episodic migraine: a randomized clinical trial. JAMA 2018; 319: 1999–2008.
30. Silberstein SD, Dodick DW, Bigal ME, et al. Fremanezumab for the preventive treatment of chronic migraine. New Eng J Med 2017; 377: 2113–2122.
31. Ferrari MD, Diener HC, Ning X, et al. Fremanezumab versus placebo for migraine prevention in patients with documented failure to up to four migraine preventive medication classes (FOCUS): a randomised, double-blind, placebo-controlled, phase 3b trial. Lancet 2019; 394(10203): 1030–1040.
32. Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement.
33. Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition. Cephalalgia 2018; 38: 1–211.
34. Cochrane Collaboration. Cochrane Consumers and Communication Review Group: data extraction template for Cochrane reviews. https://cccrg.cochrane.org/author-resources (accessed 15 November 2021).
35. Higgins JPT, Savović J, Page MJ, et al. Chapter 8: assessing risk of bias in a randomized trial. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ and Welch VA (eds) Cochrane handbook for systematic reviews of interventions version 6.2 (updated February 2021), Cochrane, 2021, https://www.training.cochrane.org/handbook (accessed 15 November 2021).
36. Tatsukou Y, Takeshima T, Ozeki A and Matsumura T. Treatment satisfaction of galcanezumab in Japanese patients with episodic migraine: a phase 2 randomized controlled study. Neurol Ther 2021; 10: 265–278.
37. Sakai F, Takeshima T, Tatsukou Y, et al. Research submission a randomized phase 2 study of erenumab for the prevention of episodic migraine in Japanese adults. Headache 2019; 59: 1731–1742.
38. Liu T. Route of placebo administration: robust placebo effects in laboratory and clinical settings. Neurosci Biobehav Rev 2017; 83: 451–457.
39. Zunhammer M, Spisák T, Wager TD, et al. Meta-analysis of neural systems underlying placebo analgesia from individual participant fMRI data. Nat Commun 2021; 12(1): 1391.
40. Limman C, Catana C, Petkov MP, et al. Molecular and functional PET-fMRI measures of placebo analgesia in episodic migraine: preliminary findings. Neuroimage Clin 2017; 17: 680–690.
41. Lipton RB and Silberstein SD. Episodic and chronic migraine headache: breaking down barriers to optimal treatment and prevention. Headache 2015; 55(Suppl 2): 103–122; quiz 123–126.
42. Buse DC, Manack A, Serrano D, et al. Sociodemographic and comorbidity profiles of chronic migraine and episodic migraine sufferers. J Neurol Neurosurg Psychiatry 2010; 81: 428–432.
43. Seng EK, Conway AB, Grinberg AS, et al. Response to mindfulness-based cognitive therapy differs between chronic and episodic migraine. Neurol Clin Pract 2021; 11: 194–205.
44. Enck P and Klosterhalfen S. Placebo responses and placebo effects in functional gastrointestinal disorders. Front Psych 2020; 11: 797.
45. Weimer K, Colloca L and Enck P. Placebo effects in psychiatry: mediators and moderators. Lancet Psych 2015; 2: 246–257.
46. Bussone G, Diener H, Pfeil J, et al. Topiramate 100 mg/day in migraine prevention: a pooled analysis of double-blind randomised controlled trials. Int J Clin Pract 2005; 59: 961–968.
47. Mathew NT, Frishberg BM, Gawel M, et al. BOTOX CDH Study Group. Botulinum toxin type A (BOTOX) for the prophylactic treatment of chronic daily headache: a randomized, double-blind, placebo-controlled trial. Headache 2005; 45: 293–307.
48. Wartolowska KA, Gerry S, Feakins BG, et al. A meta-analysis of temporal changes of response in the placebo arm of surgical randomized controlled trials: an update. Trials 2017; 18(1): 323.
49. Geraud G, Olesen J, Pfaffenrath V, et al. Comparison of the efficacy of zolmitriptan and sumatriptan: issues in migraine trial design. Cephalalgia 2000; 20: 30–38.
50. Diener HC, Dowson AJ, Ferrari M, et al. Unbalanced randomization influences placebo response: scientific versus ethical issues around the use of placebo in migraine trials. Cephalalgia 1999; 19: 699–700.
51. Burch R. Outcomes in clinical trials for migraine: What should we measure and who should decide? Headache 2021; 61: 227–228.
52. Migraine Clinical Outcome Assessment System (MiCOAS), https://vpgcentral.com/micoas/ (accessed November 15, 2021).
53. Ernst E and Resch KL. Concept of true and perceived placebo effects. BMJ 1995; 311: 551–553.
54. McCarney R, Warner J, Lilffe S, et al. The Hawthorne effect: a randomised, controlled trial. BMC Med Res Methodol 2007; 7: 30.