B Cell Receptor-Mediated Syk-Independent Activation of Phosphatidylinositol 3-Kinase, Ras, and Mitogen-Activated Protein Kinase Pathways

Takeaki Yokozeki, Kristin Adler, Danielle Lankar and Christian Bonnerot

J Immunol 2003; 171:1328-1335; doi: 10.4049/jimmunol.171.3.1328
http://www.jimmunol.org/content/171/3/1328

References

This article cites 59 articles, 34 of which you can access for free at:
http://www.jimmunol.org/content/171/3/1328.full#ref-list-1

Why The JI? Submit online.

• Rapid Reviews! 30 days* from submission to initial decision
• No Triage! Every submission reviewed by practicing scientists
• Fast Publication! 4 weeks from acceptance to publication

*average

Subscription

Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
B Cell Receptor-Mediated Syk-Independent Activation of Phosphatidylinositol 3-Kinase, Ras, and Mitogen-Activated Protein Kinase Pathways

Takeaki Yokozeki, Kristin Adler, Danielle Lankar, and Christian Bonnerot

The Syk tyrosine kinase is a key molecule in the development of the B cell lineage and the activation of B lymphocytes after Ag recognition by the B cell Ag receptor (BCR). Several genetic studies with chicken B cells have reported that the recruitment of Syk by BCR is essential for activation of a cascade of signaling molecules including phosphatidylinositol 3-kinase, mitogen-activated protein kinases, Ras signaling pathways, phospholipase C-γ2 activation, and calcium mobilization. The identification of a Syk-deficient mouse IIA1.6/A20 B cell line provided us the opportunity to investigate Syk-mediated signaling in mouse. Surprisingly, phosphatidylinositol 3-kinase, Ras, and mitogen-activated protein kinases were activated upon BCR cross-linking in these Syk-deficient mouse B cells, whereas, as expected from results obtained in chicken B cells, phospholipase C-γ2 activation and calcium mobilization were impaired as well as the NF-κB pathway. These results indicate that BCR signaling is not strictly dependent on Syk expression in mouse IIA1.6/A20 B cells. Thus, B lymphocyte activation may be initiated by Syk-dependent and Syk-independent signaling cascades. *The Journal of Immunology*, 2003, 171: 1328–1335.

B lymphocytes recognize Ags through their clonally distributed B cell receptors (BCRs), which play an important role on immune responses of host animals. Cross-linking of BCR by multivalent Ag first results in activation of intracellular signal transduction pathways. Subsequently, the cells induce B cell functions, such as gene expressions for cytokine production and B cell differentiation, and a rapid targeting of the BCR-Ag complex to specialized Ag-processing compartments for Ag presentation to CD4+ T cells (1–6). The B cell functions seem to be closely related to BCR signalings; however, the molecular mechanisms underlying these functions remain to be solved.

Biochemical analysis has led to description of the various steps in BCR signaling after Ag recognition (4–6). The engagement of BCR leads to the tyrosine phosphorylation by Src family tyrosine kinases (SFKs) of immunoreceptor tyrosine-based activation motifs (ITAMs) in both the Ig-α and Ig-β subunits of BCR. Syk is then recruited to phosphorylated ITAM via its Src homology 2 domains and is activated, leading to the turning on of various signaling pathways. Syk activates four major signaling pathways: phospholipase (PLC)-γ2, phosphatidylinositol 3-kinase (PI3K), Ras, and Rac. The activation of these pathways leads, in turn, to further signal transduction, such as intracellular calcium mobilization, the activation of Akt, and mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 MAPK (7–14). Most of these Syk targets in BCR signaling were identified in a Syk-deficient chicken DT40 B cell line, and Syk-dependent BCR signaling in mouse B cells is poorly understood because B cell development in the Syk−/− mouse is blocked at an early stage of B cell differentiation and these mice lack both immature and mature B cells (15–18). Although BCR signaling in the DT40 cell line may differ from that in mouse B cells, these lines of evidence suggest that Syk is required for the initiation of almost all types of BCR signaling.

We recently identified a variant of the well-characterized A20/IIA1.6 B cells that lacked Syk tyrosine kinase. This provided us with an opportunity to investigate the function of Syk in mouse B cell signaling. As described in DT40 cells, BCR engagement did not result in PLC-γ2 activation for the induction of calcium mobilization in these mouse Syk-deficient B cells. Cell complementation with wild-type and kinase-dead Syk clearly demonstrated that PLC-γ2 activation and calcium mobilization were strictly dependent on the kinase activity of Syk in BCR signaling. In contrast, PI3K and Ras were activated by BCR cross-linking in these cells. The lack of Syk resulted in slightly lower levels of BCR-induced phosphorylation of the three MAPKs, ERK2, JNK1, and p38. Full activation of MAPKs was strictly dependent on Syk kinase activity. As a consequence of this partial inactivation of the MAPK pathway, BCR engagement in the Syk-deficient cells induced gene expression, whereas activation of the NF-κB pathway was impaired. These results clearly demonstrate that fully active BCR signaling is initiated by Syk-dependent and Syk-independent pathways in mouse A20/IIA1.6 cells, and that Syk-independent pathways are responsible for the activation of Ras and PI3K.

Materials and Methods

Antibodies

The anti-IκBα 52008 Ab was generously provided by R. W. Weil (Institut Pasteur, Paris, France) (19). Anti-Syk (N-19), anti-PLC-γ2 (Q-20), anti-ERK2 (C-14-G), anti-JNK1 (C-17), anti-p38 (C-20), anti-Lyn (20), anti-
Fyn (FY3N), anti-Btk (K-23), anti-c-Yes (3), anti-Lck (3A5), and anti-B cell linker protein (BLNK) (H-80) Abs were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Anti-phospho-p44/42 MAPK (Thr202/Tyr204), anti-phospho-stress-activated protein kinase/JNK (Thr183/Tyr185), anti-phospho-p38 MAPK (Thr180/Tyr182), and anti-phospho-Akt (Ser473) Abs were obtained from Cell Signaling Technology (Saint Quentin, France). Anti-Brunot’s tyrosine kinase (Btk) (65251A), anti-CD19 (ID3), and anti-phosphotyrosine (PY-20) Abs were obtained from BD Pharmingen (San Diego, CA). Another anti-phosphotyrosine Ab, 4G10, was purified from the culture medium of hybridoma 4.G10. Anti-ZAP-70 and anti-BLNK, and CD19 (11) were performed, as described above. Production of tyrosine kinases and BCR in a Syk-deficient mouse B cell line

We established a Syk-deficient B cell line (C35) from IIA1.6, a variant of A20 B lymphoma cells. Syk protein was undetectable by Western blotting (Fig. 1A), and no Syk mRNA was detected by RT-PCR analysis (Fig. 1B). In contrast, we detected other tyrosine kinases, including Btk and several SFKs, including Lyn, Fyn, Btk, and c-Yes, but not Lck, and the expression of Lyn was somewhat up-regulated in C35 cells (Fig. 1A). We also investigated ZAP-70 expression by Western blotting and RT-PCR analysis, but we detected neither the protein (Fig. 1A) nor the mRNA (Fig. 1B). Syk expression was then reconstituted in Syk-deficient cells with cDNA encoding wild-type Syk (WT8 and WT4) or kinase-dead Syk (K395R mutant) (KD20 and KD3) (Fig. 1C). The WT8 and KD20, and WT4 and KD3 clones were selected because they expressed similar level of Syk protein (Fig. 1C). C35 cells were transfected with insertless vector (V6) (Fig. 1C), and used as control Syk-deficient cells in experiments using the Syk-reconstituted cells. Flow cytometric analysis revealed that all the clones expressed similar levels of BCR at the cell surface (Fig. 1D).

Impaired BCR-induced tyrosine phosphorylation in Syk-deficient cells

The engagement of BCR induces the tyrosine phosphorylation of many cellular proteins. Thus, the level of tyrosine phosphorylation peaked within 2.5 min after BCR engagement in Syk-positive parental cells (Fig. 2A), and then gradually decreased (data not shown). In contrast, only a few tyrosine phosphorylations (such as 110-, 63-, 57-, and 55-kDa proteins in Fig. 2A, and 33-kDa protein (data not shown)) were induced by BCR cross-linking in Syk-deficient B cells. The expression of wild-type Syk in C35 cells

Ras assay

In the case of transient transfection, cells were electroporated with 50 µg of plasmids, and cultured for 48 h. Transfected or stimulated cells were lysed in lysis buffer (50 mM HEPES, pH 7.4, 2.5 mM MgCl2, 10% glycerol, 1% Nonidet P-40, 0.1 µM aprotinin, 1 µM leupeptin, 1 mM PMSF) at 4°C. After centrifugation at 15,000 rpm for 15 min, the resulting supernatant was incubated for 45 min at 4°C with glutathione-Sepharose 4B beads (Amersham Pharmacia Biotech, Piscataway, NJ) precomplexed with GST fused to a Ras-binding domain of Raf (GST-Raf-RBD) protein expressed in Escherichia coli. Then beads were washed three times. Precipitated Ras protein was analyzed by Western blot analysis with an anti-Ras Ab.

Measurement of inositol trisphosphate content and calcium mobilization

Cells were suspended in Ringer’s solution (10 mM HEPES, pH 7.4, 140 mM NaCl, 4 mM KCl, 1 mM MgCl2, 1 mM CaCl2, and 10 mM glucose), incubated at 37°C for 5 min, and stimulated with 30 µg/ml rabbit anti-mouse IgG F(ab’)2. Then reaction was terminated by addition of 0.2% vol of 20% perchloric acid, and intracellular content of inositol trisphosphate (IP3) was determined by the n-nitro-IP3-H assay system (Amersham Pharmacia Biotech). For measurement of calcium mobilization, cells were loaded with Fluo-3-AM (Molecular Probes), as described previously (21). Then, cells were resuspended in Ringer’s solution, and intracellular free calcium levels were monitored by flow cytometry with a FACS Calibur. Basal Ca2+ levels were measured over 35 s, and then either 30 µg/ml rabbit anti-mouse IgG F(ab’)2 or 10 µM ionomycin was added. The data initially acquired with CellQuest software were converted with the FCS Assistant Program (BD Biosciences).

IL-2 secretion

Cells resuspended in fresh RPMI 1640 medium were cultured in a 96-well plate (1 × 103 cells/wells) for 2 h and stimulated by incubation with 30 µg/ml rabbit anti-mouse IgG F(ab’)2. After 24 h, the IL-2 secreted into the medium was determined by sandwich ELISA, using two different anti-IL-2 Abs (BD PharMingen; 18161D and 18172D) and streptavidin-HRP (Pierce).
SFK activation in Syk-deficient cells, Ig-subunits to recruit and activate Syk (18, 23). Therefore, to confirm phosphotyrosine Abs. As seen in Fig. 2 and the precipitates were analyzed by Western blotting with anti-noprecipitated with anti-Ig-subunits, Lyn phosphorylates tyrosine residues in ITAMs in Ig-subunits, as described previously (22). Thus, BCR-mediated tyrosine phosphorylation of PLC-γ2 was restored in transfected cells expressing wild-type Syk, but not in cells expressing kinase-dead Syk mutant (Fig. 2C). BLNK is a critical adaptor protein for full activation of PLC-γ2, forming a signaling complex with Ig-α/β subunits, Syk, Btk, and PLC-γ2 (8, 24–29). Thus, we investigated the BCR-induced tyrosine phosphorylation of BLNK, and it was revealed to depend on the presence of functional Syk (Fig. 2D), suggesting failure of the complex formation in Syk-deficient cells. The impairment of PLC-γ2 activation suggested a similar calcium signaling defect in Syk-deficient cells. Indeed, intracellular calcium concentration did not increase after BCR stimulation in Syk-deficient cells and kinase-dead Syk-reconstituted cells, whereas the expression of wild-type Syk restored BCR-induced calcium mobilization in these cells (Fig. 2E). Our data were therefore consistent with previous reports, as Syk was absolutely required for BCR-induced intracellular calcium mobilization and PLC-γ2 activation in mature mouse B cells (18) and in chicken DT40 B cells (7).

FIGURE 1. Expression of tyrosine kinases and BCR in mouse B cell lines. A, Loss of Syk expression in A20/JIA1.6 cells. Cell lysates prepared from parental cells and Syk-deficient C35 cells were analyzed by Western blotting using the Abs indicated. Jurkat human T cell lysate was used as a positive control for the detection of Lck and ZAP-70 proteins. B, Absence of Syk and ZAP-70 mRNA in Syk-deficient cells. The amounts of mRNA for Syk and ZAP-70 were determined by RT-PCR analysis. Actin mRNA was also amplified as a control. Jurkat human T cells were used as a positive control for the detection of ZAP-70 mRNA. C, The reconstitution of Syk in Syk-deficient C35 cells. Cell lysates prepared from Syk-reconstituted clones and parental cells were analyzed by Western blotting using an anti-Syk Ab. D, FACS analysis of surface expression of BCR in the cell lines used. Cells were incubated with (open) or without (filled) biotinylated anti-mouse IgG2a F(ab')2, followed by DTAF-labeled streptavidin. Relative cell number is plotted against a logarithmic scale of fluorescence intensity.

(WT8 and WT4 cells) restored a pattern of BCR-induced tyrosine phosphorylation similar to that observed in parental cells, except for the additional strong tyrosine phosphorylation of a 70-kDa protein (Fig. 2A). As expected, tyrosine phosphorylation as seen in parent cells was not induced by BCR stimulation in V6, KD20, and KD3 cells, although the tyrosine-phosphorylated 70-kDa protein was detected in KD20 and KD3 cells, but not in V6 cells. The phosphorylation of this protein was correlated with the Syk levels (Fig. 1C), and both wild-type and kinase-dead Syk were tyrosine phosphorylated in stimulated WT8 and KD20 cells if analyzed by immunoprecipitation (data not shown), suggesting that the 70-kDa protein was the Syk tyrosine kinase phosphorylated by other tyrosine kinase(s), as described previously (22). Thus, BCR-mediated tyrosine phosphorylation was almost dependent on Syk expression in mouse B cells. Nevertheless, SFKs also contribute to tyrosine phosphorylation of some proteins. Upon BCR cross-linking, Lyn phosphorylates tyrosine residues in ITAMs in Ig-α/β subunits to recruit and activate Syk (18, 23). Therefore, to confirm SFK activation in Syk-deficient cells, Ig-α/β subunits were immunoprecipitated with anti-Ig-α Ab before and after BCR stimulation, and the precipitates were analyzed by Western blotting with anti-phosphotyrosine Abs. As seen in Fig. 2B, Ig-α/β subunits were tyrosine phosphorylated after, but not before, BCR cross-linking, and this phosphorylation was independent of Syk function. Therefore, tyrosine kinases such as Lyn upstream of Syk, in BCR signaling, were fully active in Syk-deficient cells.

Failure of BCR-induced PLC-γ2 activation and calcium mobilization in Syk-deficient cells

We then investigated the activation of signaling molecules downstream from Syk, such as PLC-γ2, PI3K, and Ras, in C35 B cells. The BCR-induced activation of PLC-γ2, as assessed by the level of tyrosine phosphorylation of this molecule, was lower in Syk-deficient cells than in parental B cells (Fig. 2C). Intracellular content of IP_3, an enzymatic product of PLC-γ2, was also measured in these cells, and we found that it was increased by 4.1-fold, reaching at 2.4 pmol/10^6 cells, 2 min after BCR stimulation in parental cells, whereas there was no significant IP_3 production in BCR-stimulated Syk-deficient cells (data not shown). Full tyrosine phosphorylation of PLC-γ2 was restored in transfected cells expressing wild-type Syk, but not in cells expressing kinase-dead Syk mutant (Fig. 2C). BLNK is a critical adaptor protein for full activation of PLC-γ2, forming a signaling complex with Ig-α/β subunits, Syk, Btk, and PLC-γ2 (8, 24–29). Thus, we investigated the BCR-induced tyrosine phosphorylation of BLNK, and it was revealed to depend on the presence of functional Syk (Fig. 2D), suggesting failure of the complex formation in Syk-deficient cells. The impairment of PLC-γ2 activation suggested a similar calcium signaling defect in Syk-deficient cells. Indeed, intracellular calcium concentration did not increase after BCR stimulation in Syk-deficient cells and kinase-dead Syk-reconstituted cells, whereas the expression of wild-type Syk restored BCR-induced calcium mobilization in these cells (Fig. 2E). Our data were therefore consistent with previous reports, as Syk was absolutely required for BCR-induced intracellular calcium mobilization and PLC-γ2 activation in mature mouse B cells (18) and in chicken DT40 B cells (7).

Syk-deficient B cells did initiate PI3K and Ras pathways upon BCR stimulation

We analyzed the PI3K and Ras pathways in Syk-deficient mouse B cells. We assessed PI3K activation in response to BCR engagement by measuring the level of phosphorylation of the Ser^{1137} residue of Akt because this phosphorylation depends on PI3K activity (12) (data not shown). BCR engagement clearly induced the phosphorylation of Akt in Syk-deficient cells and parental cells (Fig. 3A). However, the level of Akt phosphorylation was higher in wild-type (WT8) than in kinase-dead (KD20) Syk-expressing cells (Fig. 3A), suggesting that overexpressed Syk participated to PI3K activation.

Ras activation was detected by a pull-down assay, using GST-Raf-RBD that associates with the active form of Ras, as demonstrated by transient transfection with a construct encoding a dominant-positive mutant of Ras (Ras G12V) (Fig. 3B). Ras was immediately activated by BCR stimulation, remained active for a few minutes, and was then inactivated within 5 min in Syk-positive parental cells (Fig. 3C). As shown in Fig. 3D using Syk-deficient and Syk-reconstituted cells, we found that the activation of Ras occurred independently of the activity of Syk tyrosine kinase. Therefore, Syk plays a critical role in the PLC-γ2 pathway, but it was not necessary to turn on PI3K and Ras pathways. Nevertheless, Syk might participate in the activation of PI3K and Ras because the levels of Akt phosphorylation and activated Ras were higher in WT8 cells (which express 3-fold higher amount of Syk than parental cells) than in KD20 or Syk-deficient V6 cells (Fig. 3, A and D). These results suggest that overexpression of Syk may facilitate the activation of PI3K and Ras.
Syk is not absolutely required for the activation of MAPKs upon BCR stimulation

MAPKs are critical targets of Syk and turn on the transcription of many genes in B cells. We therefore investigated the activation of ERK2, JNK1, and p38 MAPKs following BCR engagement in parental and Syk-deficient B cells. In both cells, ERK2 was strongly activated after 2.5 min. A second wave of ERK2 phosphorylation occurred after 30 min, but only in parental cells and cells reconstituted with wild-type Syk (WT8) (Fig. 4A). The observed Syk-independent ERK activation was consistent with the activation of Ras (Fig. 3C), a critical regulator of the Ras-Raf-MAPK kinase-ERK pathway, in Syk-deficient cells. The activation

FIGURE 3. BCR stimulation did induce the activation of PI3K and Ras pathways in mouse Syk-deficient B cells. A. BCR-induced activation of PI3K pathway. Cells were stimulated by BCR cross-linking for the time indicated and lysed. The lysate was analyzed by Western blotting using an anti-phospho-Akt (Ser473) Ab (top). The total amount of Akt in the lysate was also determined with an anti-Akt Ab (bottom). B–D, BCR-induced tyrosine phosphorylation of Ig-α/β subunits, PLC-γ2, and BLNK. Cells were stimulated by BCR cross-linking for the time indicated (B) or 2.5 min (C and D), and lysed. The lysate was subjected to immunoprecipitation with anti-Ig-α (B), anti-PLC-γ2 (C), or anti-BLNK (D) Abs. The amount of tyrosine-phosphorylated proteins in the immunoprecipitates was analyzed by Western blotting with anti-phosphotyrosine Abs (top). The precipitated Ig-α, PLC-γ2, and BLNK were also detected with specific Abs to them (bottom). E, BCR-induced intracellular calcium mobilization. Cells loaded with Fluo-3-AM cell-permeable calcium indicator were stimulated by BCR cross-linking (filled line) or the addition of 10 μM ionomycin (gray line), and changes in fluorescence in FL1 were monitored with a FACS Calibur.
of JNK1 (Fig. 4B) and p38 (Fig. 4C) was also observed in both parental and Syk-deficient cells, although these two proteins were phosphorylated to a lesser extent in Syk-deficient cells than in parental cells. Given the inability of mouse Syk-deficient B cells to activate PLC-γ2 and BLNK (Fig. 2, C–E), this BLNK-PLC-γ2-independent activation of MAPKs is consistent with the results obtained in mouse B cells lacking BLNK, which plays a critical role in the PLC-γ2 activation, in which normal activation of JNK and p38 was observed after BCR stimulation (30). The expression of wild-type Syk, but not of kinase-dead Syk, enhanced the activation of JNK1 and p38 (Fig. 4, B and C, respectively). These results indicate that Syk was not absolutely required for the activation of MAPK activation, although its overexpression can increase the phosphorylation of these kinases.

BCR-induced CD19 pathway was initiated by Syk

Mouse B cells apparently have Syk-independent mechanism(s) to initiate some signalings upon BCR stimulation. The Syk-independent signalings could be mediated via B cell coreceptor CD19, because: 1) tyrosine residues at the cytoplasmic tail of CD19 are phosphorylated upon BCR stimulation, resulting in recruitment of various signaling molecules, including p85 subunit of PI3K (11, 31–35); 2) the phosphorylation of CD19 is shown to be eliminated in Lyn-deficient B cells (35) and is not affected by overexpression of a dominant-negative form of Syk (11); 3) chicken CD19 molecule has not been found yet. Therefore, we investigated the BCR-induced tyrosine phosphorylation of CD19 molecule and recruitment of p85 subunit of PI3K to it in Syk-deficient cells. The equal cell surface expression of CD19 molecule on the clones was confirmed by flow cytometric analysis (Fig. 5A). In the experiment for immunoprecipitation of CD19 molecule, cell surface molecules including CD19 were first biotinylated, and then cells were stimulated and lysed. After immunoprecipitation with anti-CD19 Ab, CD19 molecule was revealed as a 100-kDa protein on Western blot analysis with streptavidin-HRP (Fig. 5B). Unexpectedly, Western blotting of the immunoprecipitated CD19 with antiphosphotyrosine Abs showed that BCR-induced tyrosine phosphorylation of CD19 occurred in parental cells and WT8 cells, but not in C35, V6, and KD20 cells (Fig. 5B). In addition, p85 subunit of PI3K was coimmunoprecipitated with the CD19 molecule after BCR stimulation only in the presence of functional Syk (Fig. 5B). In contrast with previous work using dominant-negative mutant of Syk in A20 cells (11, 35), Syk-deficient cells indicate that Syk plays a pivotal role for initiation of BCR-induced CD19 pathway. Thus, the Syk-independent mechanism to activate PI3K, Ras, and MAPKs in BCR signaling must involve other mechanism(s) from the CD19 pathway.

Inhibition of the BCR-induced NF-κB pathway and IL-2 secretion in Syk-deficient cells

These results indicated the critical role of Syk for PLC-γ2 activation and led us to investigate the effects of Syk tyrosine kinase on gene expression in B cells after BCR engagement. PLC-γ2 activation is required for the BCR-mediated activation of NF-κB (36), a transcription factor that is maintained in an inactive state in the cytosol by binding to IκB. The degradation of IκB induces the translocation of NF-κB to the nucleus and NF-κB-dependent gene transcription. In cells expressing functional Syk (parental cells and WT8), IκB degradation occurred rapidly after BCR stimulation (5 min) (Fig. 6A). In contrast, in Syk-deficient cells (C35, V6) and cells reconstituted with kinase-dead Syk, IκB degradation remained detectable after 30 min of stimulation. Therefore, the impairment of PLC-γ2 activation in Syk-deficient mouse B cells may lead to a defect in IκB degradation, preventing the translocation of NF-κB to the nucleus to induce gene transcription. However, many known or unknown transcription factors may control gene expression in B cells. We investigated the effect of Syk on the induction of gene expression after BCR stimulation by measuring IL-2 secretion. This secretion acts as a measure of IL-2 gene expression because unstimulated cells did not secrete IL-2 (Fig. 6B) or transcribe the IL-2 gene (data not shown). Syk-deficient cells (C35, V6) and cells producing kinase-dead Syk (KD20) produced IL-2 upon BCR stimulation. However, the level of IL-2 production was 40–60% lower in these cells than in parental cells or cells reconstituted with wild-type Syk. Therefore, Syk is not absolutely required to induce a signaling cascade leading to gene activation.
upon BCR engagement in mouse IIA1.6/A20 B cells. Although it is required to investigate in other types of mouse B cells, our results led us to propose a new model of BCR-mediated signal transduction in mouse B cells in which Syk-dependent and Syk-independent pathways participate to drive the activation of mature B cells.

Discussion
Syk tyrosine kinase plays a key role in the initiation of Ag-dependent B lymphocyte activation. Thus, disruption of the syk gene impairs B cell differentiation in mice and BCR signaling in the chicken B cell line, DT40. In this study, we established a Syk-deficient mouse B cell line and investigated the activity of signaling molecules involved in BCR-mediated B cell activation. With this new model, we were able to demonstrate clearly that the BCR-induced activation of PI3K, Ras, and MAPKs (ERK2, JNK1, and p38) was not strictly dependent on Syk expression in mouse IIA1.6/A20 B cells. However, our results do confirm the crucial role of Syk tyrosine kinase in the activation of PLC-γ2, calcium signaling, and NF-κB-dependent regulation of gene transcription in B cells.

The involvement of Syk in BCR signaling has been clearly established using Syk-deficient chicken B cells. However, the phenotype of Syk-deficient B cells differs between chicken DT40 cells and mouse A20/IIA1.6 cells. Thus, almost all BCR signaling events were abolished in Syk-deficient DT40 cells, whereas PI3K, Ras, and MAPKs remained active after BCR stimulation in mouse A20/IIA1.6 Syk-deficient cells. One key issue to be addressed is the molecular basis of these differences. Syk-deficient DT40 cells were obtained by inactivation of the syk gene (7), whereas Syk-deficient C35 cells were obtained, without genetic manipulation or mutagenesis, by screening the A20 subclones obtained by the limiting dilution method. Thus, there is a possibility that C35 cells could express an undetectable amount of Syk mRNA or Syk protein, which thus allowed the activation of certain signalings. However, this is unlikely to be the case for three main reasons. First, a defect in PLC-γ2 activation was observed in C35 cells (Fig. 2, C–E) and in DT40 cells; second, PI3K, Ras, and MAPKs were activated in C35 cells overexpressing kinase-dead Syk (Fig. 3, A and D, and Fig. 4); third, the overexpression of dominant-negative mutant of Syk, containing the two Src homology 2 domains, did not change the phenotype of the C35 cells (data not shown). Although these two inactive forms of Syk should compete with undetectable amounts of endogenous Syk for binding to phosphorylated ITAMs, we observed no change in Ras and PI3K activation in these conditions. We cannot completely exclude the other possibility that the slight increased expression of Lyn in C35 cells (as in Fig. 1A) might give some effects in the phenotype of the C35 cells (data not shown).
ERK activation in Syk-deficient cells (data not shown). As compared with ERK activation in Syk-positive parental cells, Syk-deficient C35 cells were found to be more sensitive to this inhibitor. This result implies that Syk activity is capable of compensating, in some degree, the inhibition of PI3K pathway to ERK activation, and suggests that Ras, PI3K, and Syk-dependent PLC-γ2 pathways cooperatively and complementary regulate ERK activation like the model of Jacob et al. (37).

One possibility to be considered could be the difference of stages at which DT40 cells and A20/IIA.1.6 cells have matured: immature-like chicken DT40 cells have an IgM as membrane Ig (mlg) of BCR, while memory-like mouse A20/IIA.1.6 cells express a BCR of class IgG2a. mlgM has the short cytoplasmic tail (KVVK), but in the case of mlgG, the sequence is extended by 25 residues to form a cytoplasmic tail containing a YxxM sequence (“x” means any amino acid), which resembles the tyrosine-based endocytosis signal (38), or the binding motif of p85 subunit of PI3K if phosphorylated. In fact, the mlg tail is suggested to contribute to BCR-mediated responses (39, 40). Nevertheless, some evidences showing differences in BCR signaling between IgM-bearing immature mouse B cells and chicken DT40 cells have been accumulated. For example, BCR-mediated activations of ERK, JNK, and p38 MAPKs are almost lost in BLNK-deficient DT40 cells (13), but nearly intact in BLNK-deficient mouse B cells (30). BLNK or Btk deficiency results in complete loss of BCR-induced calcium mobilization in DT40 cells (13, 41), but partial or slight impairment in mouse B cells (20, 33, 42–44). It is possible that DT40 cells lack a Syk-independent pathway(s) for BCR signaling, SFKs can themselves activate various signaling pathways without Syk. Although DT40 cells express Lyn, they do not express several SFKs (7), which are normally expressed in mouse B cells (Fig. 1A) (45–47) and might be required to induce the activation of PI3K and/or Ras in the absence of Syk. Thus, Syk seems to be absolutely required for BCR signaling in DT40 cells, whereas mouse B cells may have developed an alternative pathway(s) to initiate B cell activation, despite the difference of class of mlg.

What is the Syk-independent mechanism to initiate PI3K and Ras in mouse B cells? Interestingly, Pleiman et al. (48) demonstrated the BCR-induced activation of PI3K in mouse B cells by its association with Fyn, as well as Lyn (48, 49), which implies that not only redundancy among these kinases, but also quantitatively additional activation of PI3K. According to the recent model of Jacob et al. (37), Ras and PI3K cross-regulate their activations each other in mouse B cells. In fact, active Ras is capable of activating PI3K pathway in mouse B cells (37), most likely by the direct association of p110 catalytic subunit of PI3K with Ras, as described in fibroblasts (50–52). Although the mechanism for the BCR-mediated Ras activation is still not yet understood, one proposed mechanism is a direct recruitment of Shc, the adaptor protein for Grb2-Sos Ras guanine nucleotide exchange complex, to tyrosine-phosphorylated Ig-α (at Tyr182) and Ig-β (at Tyr195) subunits (4, 6). The critical role of Shc in BCR-induced Ras-ERK pathway has been already shown in mouse B cells (37), although this adaptor molecule is not required in chicken DT40 cells (9). Given the evidences that BCR-induced tyrosine phosphorylation of Ig-α/β subunits does not require Syk (18) (Fig. 2B) and that Shc phosphorylation, which leads to further recruitment of the Grb2-Sos complex, depends on the action of Lyn in mouse B cells (23), this pathway could account for the activation of Ras in Syk-deficient mouse B cells.

The other new finding is the Syk-dependent initiation of CD19 pathway upon BCR stimulation. Because Lyn-deficient B cells showed no tyrosine phosphorylation of CD19, it is thought that Lyn is the dominant tyrosine kinase that phosphorylates CD19 upon BCR stimulation (35). However, our results showed the Syk-dependent phosphorylation of CD19 (Fig. 5B). Because Lyn is also implicated in phosphorylation of ITAMs in Ig-α/β subunits, followed by activation of Syk (23), collaboration of both Lyn and Syk may be required for the maximal tyrosine phosphorylation of CD19 upon BCR stimulation. Another group using dominant-negative mutant of Syk did not obtain similar result, suggesting that this mutant did not completely inhibit Syk function in A20 cells (11). During preparation of manuscript, it was reported that BCR-induced phosphorylation of Akt is not reduced in the absence of CD19 (20), suggesting that the Syk-dependent recruitment of PI3K to CD19, as seen in Fig. 5B, might not play a central role in the BCR-induced PI3K activation.

Is it possible to speculate relationship between the BCR signalings and B cell function? We have shown that Syk-activated PLC-γ2 pathway may link to NF-κB-dependent regulation of gene transcription in mouse B cells. Strictly regulated Syk-dependent BCR signaling has been reported to be important in the developmental program leading to the maturation of the B cell lineage (17, 18). Interestingly, mice lacking Btk, BLNK, PLC-γ2, both the Rel and RelA components of NF-κB, or IκB kinase α, all of which are molecules acting downstream from Syk, also show a similar defect, although less severe than Syk-deficient mice, in B cell development in the spleen at the stage at which mature B cells are formed (43, 44, 53–58). This may again confirm the role of Syk to turn on the PLC-γ2/NF-κB pathway in mouse B cell development. Oppositely, given the evidences that immature Syk-/- B cells are able to differentiate into Ab-secreting plasma cells (17) and that down-regulation of BCR at the cell surface does not require Syk either (18, 59), Syk-independent pathways, such as those involving the activation of PI3K, Ras, and/or MAPKs, may be involved in these processes. We are currently going out further analysis of B cell functions in mouse Syk-deficient cells.

Acknowledgments
We thank the people of the Unité 520 Institut National de la Santé et de la Recherche Médicale, especially Claire Hivroz, for critical reading of the manuscript. We also thank Robert Weil and Georges Gaudriaut for kind gift of anti-I-κBα Ab and technical advice of Ras assay, respectively.

References
1. Lanzavecchia, A. 1987. Antigen uptake and accumulation in antigen-specific B cells. Immunol. Rev. 99:39.
2. Germain, R. N. 1994. MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 76:287.
3. Cresswell, P. 1994. Assembly, transport, and function of MHC class II molecules. Annu. Rev. Immunol. 12:259.
4. Tamir, I., and J. C. Cambier. 1998. Antigen receptor signaling: integration of protein tyrosine kinase functions. Oncogene 17:1353.
5. Takata, M., H. Sabe., A. Hata, T. Inazu, Y. Homma, T. Nukada, H. Yamamura, and T. Kurosaki. 1998. Involvement of guanosine triphosphatases and phospholipase C-γ2 in NF-κB and IκB-dependent regulation of gene transcription in mouse B cells. J. Exp. Med. 188:1287.
6. Takata, M., H. Sabe., A. Hata, T. Inazu, Y. Homma, T. Nukada, H. Yamamura, and T. Kurosaki. 1998. Tyrosine kinase Lyn and Syk regulate B cell receptor-coupled Ca2+ mobilization through distinct pathways. EMBO J. 17:1341.
7. Fu, C., C. W. Turck, T. Kurosaki, and A. C. Chan. 1998. BLNK: a central linker protein in B cell activation. Immunity 9:52.
8. Hashimoto, A., H. Okada, A. Jiang, M. Kurosaki, S. Greenberg, E. A. Clark, and T. Kurosaki. 1999. Syk upstream of phosphoinositide 3-kinase in B cell receptor signaling. J. Biol. Chem. 274:32862.
33. Buhl, A. M., and J. C. Cambier. 1999. Phosphorylation of CD19 Y484 and Y515, and phosphatidylinositol 3-kinase activation. Immunology 153:817.

34. Brooks, S. R., X. Li, E. J. Volanakis, and R. H. Carter. 2000. Systematic analysis of the role of CD19 cytoplasmic tyrosines in enhancement of activation in Daudi human B cells: clustering of phosphatase C and Vav and of Grb2 and Sos with different CD19 tyrosines. J. Immunol. 164:4548.

35. Fujimoto, M., Y. Fujimoto, J. C. Poe, P. J. Jansen, C. A. Lowell, A. L. DeFranco, and T. F. Tedder. 2000. CD19 regulates Src family protein tyrosine kinase activation in B cells through processive amplification. Immunity 13:47.

36. Petro, J. B., and W. N. Khan. 2001. Phospholipase C-coupled Bruton’s tyrosine kinase to the NF-kB signaling pathway in B lymphocytes. J. Biol. Chem. 276:1715.

37. Jacob, A. D., C. Poon, M. Pradhan, and K. M. Coggeshall. 2002. Convergence of signaling pathways on the activation of ERK in B cells. J. Biol. Chem. 277:23420.

38. Trowbridge, I. S., J. F. Collawn, and C. R. Hopkins. 1993. Signal-dependent membrane protein trafficking in the endocytic pathway. Annu. Rev. Cell Biol. 9:239.

39. Knight, A. M., J. M. Luccoq, A. R. Prescott, S. Ponnambalam, and C. Watts. 1997. Antigen endocytosis and presentation mediated by human membrane IgGl in the absence of the IgGl/3 dimer. EMBO J. 16:3542.

40. Pogue, S. L., and C. C. Goodnow. 2000. Gene dose-dependent maturation and receptor editing of B cells expressing immunoglobulin (IgGl or IgM/IgGl) tail antigen receptors. J. Exp. Med. 191:1031.

41. Takata, M., and T. Kurosaki. 1996. A role for Bruton’s tyrosine kinase in B cell antigen receptor-mediated activation of phospholipase C-2. J. Exp. Med. 184:31.

42. Lindsberg, M.-L., M. Brunswick, H. Yamada, A. Lees, J. Inman, C. H. June, and J. J. Mond. 1991. Biochemical analysis of the immune B cell defect in xid mice. J. Immunol. 147:5774.

43. Jumaa, H., B. Wollscheid, M. Mitterer, J. Wienands, M. Reth, and P. J. Nielsen. 1999. Abnormal development and function of B lymphocytes in mice deficient for the signaling adaptor protein SLIP-65. Immunity 11:547.

44. Pappu, R., A. M. Cheng, B. Li, Q. Gong, C. Chiu, N. Griffin, M. White, B. B. H. Bolland, A. C. Chan, and R. A. Whatley. 1999. Requirement for B cell linker protein (BLNK) in B cell development. Science 286:1949.

45. Burkhardt, A. L., M. Brunswick, J. B. Bolen, and J. J. Mond. 1991. Anti-immunoglobulin stimulation of B lymphocytes activates src-related protein-tyrosine kinases. Proc. Natl. Acad. Sci. USA 88:7410.

46. Gold, M. R., R. Chiu, J. R. Igham, T. M. Saxton, L. V. Oostveen, J. D. W. Watts, M. Affolter, and R. Aebersold. 1994. Activation and serine phosphorylation of the p56Lck protein tyrosine kinase in response to antigen receptor cross-linking in B lymphocytes. J. Immunol. 153:2369.

47. Wechsler, R. L., and J. G. Monroe. 1995. src-family tyrosine kinase p55src expression in murine splenic B cells and is activated in response to antigen receptor cross-linking. J. Immunol. 154:3234.

48. Pleiman, C. M., W. M. Hertz, and C. J. Cambier. 1994. Activation of phosphatidylinositol-3’-kinase by Src-family kinase SH3 binding to the p85 subunit. Science 263:1609.

49. Yamanashi, Y., Y. Fukui, B. Wongsasant, Y. Kinoshita, Y. Ichimori, K. Toshiyoshia, and T. Yamamoto. 1992. Activation of Src-like protein-tyrosine kinase Lyn and its association with phosphorylated SH3-kinase upon B-cell antigen receptor-mediated signaling. Proc. Natl. Acad. Sci. USA 89:1118.

50. Rodriguez-Viciana, P., P. H. Warne, B. Vanhaesebroeck, M. D. Waterfield, and J. Downward. 1996. Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J. 15:2442.

51. Rodriguez-Viciana, P. P. H. Warne, R. Dhand, B. Vanhaesebroeck, I. Gout, M. J. Fery, M. D. Waterfield, and J. Downward. 1994. Phosphoinositide 3-kinase as a direct target of Ras. Nature 370:527.

52. Kodaki, T., R. Woscholoski, B. Balkoff, P. Rodriguez-Viciana, J. Downward, and P. J. Parker. 1994. The activation of phosphorylated 3-kinase by Ras. Curr. Biol. 4:798.

53. Kerner, J. D., M. W. Appleby, R. N. Moht, S. Chien, D. J. Rawlings, C. R. Maliszewski, O. N. Witte, and R. M. Perlmutter. 1995. Impaired expansion of mouse B cell progenitors lacking Btk. Immunity 3:301.

54. Khan, N. W., F. T. Alt, R. M. Gerstein, B. A. Malynn, I. Larsson, G. Rathbun, L. Davidson, S. Muller, A. B. Kortan, and L. A. Herzenberg. 1995. Defective B cell development and function in Btk-deficient mice. Immunity 3:283.

55. Grossmann, M., L. A. O’Reilly, R. Gugayian, A. Strasser, J. M. Adams, and S. Gerondakis. 2000. The anti-apoptotic activities of Rel and RelA required during B-cell maturation involve the regulation of Bcl-2 expression. EMBO J. 19:6351.

56. Hayashi, K., Y. Nimmo, N. Okamoto, S. Tsuji, Y. Hara, R. Goitsuka, and D. Kitamura. 2000. The B-cell-restricted adaptor BASH is required for normal development and antigen receptor-mediated activation of B cells. Proc. Natl. Acad. Sci. USA 97:2755.

57. Wang, D., J. Feng, R. Wen, J.-C. Marine, M. Y. Sangster, E. Parganas, A. Hoffmeyer, C. W. Jackson, L. J. Cleveland, P. J. Murray, and J. N. Ihle. 2000. Phospholipase Cγ2 is essential in the functions of B cell and several Fc receptors. Immunity 13:25.

58. Kaisho, T., K. Takeda, T. Tsujimura, T. Kawai, F. Nomura, N. Terada, and S. Akira. 2001. IκB ε kinase α is essential for mature B cell development and function. J. Exp. Med. 193:417.

59. Ma, H.-T. M. Yanke, J. H. A. Di. Asli. M. Harrison, and R. G. Geahlen. 2001. Visualization of Syk-antigen receptor interactions using green fluorescent protein: differential roles for Syk and Lyn in the regulation of receptor capping and internalization. J. Immunol. 166:1507.