STING-dependent cytosolic DNA sensor pathways regulate NKG2D ligand expression

Nina Le Bert1, Adeline R Lam1,2, Samantha SW Ho1, Yu J Shen1,2, Mo M Liu1, and Stephan Gasser1,2,*

1Immunology Programme; Centre of Life Sciences; Department of Microbiology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore; 2NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore

Keywords: Natural killer cells, NKG2D, signal transduction, tumor immunology, DNA sensor

Natural killer group 2, member D (NKG2D, also known as KLRK1) belongs to the C-type lectin-like receptors expressed by natural killer (NK) cells, activated CD8+ T cells, CD4+ T cells under certain conditions and subsets of NKT cells and γδ T cells.1 NKG2D contributes to the activation of NK cells and is one of the main receptors required for lysis of tumor cell lines by NK cells. In CD8+ T cells, NKG2D provides a co-stimulatory signal that enhances T-cell immune responsiveness. The ligands for NKG2D are distant relatives of class I major histocompatibility complex (MHC) molecules. In mice, many NKG2D ligands belong to the family of retinoic acid early inducible-1 (RAE-1) proteins (RAE-1α-ε). In addition, three isoforms of the minor histocompatibility antigen H60 and the murine UL16-binding protein like transcript-1 (MULT-1) bind to NKG2D. NKG2D ligands are absent or expressed at low levels on normal cells. In contrast, tumor cells and virus-infected cells frequently upregulate the cell surface expression of several NKG2D ligands.

DNA Damage Response

Constant surveillance of genomic insults by the DNA damage response (DDR) is critical to ensure genome integrity and suppression of tumorigenesis, as the genome is continuously exposed to a plethora of exogenous and endogenous DNA damage.2 The DDR is initiated by the ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) kinases, which govern a complex network of effector pathways including apoptosis, cell cycle arrest and DNA repair.

The DDR also plays an important role in the immune surveillance of cancer.3 We recently reported that the DDR induces the expression of NKG2DLs through the activation of Sting-dependent cytosolic DNA sensor pathways.3 Strikingly, our data suggest that DNA damage in lymphoma cells leads to the presence of single-stranded (ss) and double-stranded (ds) DNA in the cytosol (Fig. 1). It is conceivable that cytosolic DNA is released by dysfunctional mitochondria upon DNA damage or generated during repair of damaged genomic DNA. Inhibition of ATM and ATR, which are mostly nuclear proteins, led to the disappearance of cytosolic DNA indicating that nuclear DNA repair pathways are required for the generation of cytosolic DNA. The DDR is constitutively active in many tumor cells possibly due to oncogene-induced replication stress resulting in collapsed replication forks and associated DNA damage.6 DDR-dependent homologous recombination plays an important role in restarting collapsed forks. Deletion of genomic DNA might result from homologous recombination between dispersed homologous sequences. In summary, our data suggest that nuclear DNA damage results in the presence of DNA in the cytosol of lymphoma cells.

STING-Dependent Cytosolic DNA Sensor Pathway

In the presence of cytosolic dsDNA the stimulator of interferon genes (STING, officially known as TMEM173) recruits tank-binding kinase 1 (TBK1), which then phosphorylates and activates interferon regulatory factor 3 (IRF3), a transcription factor required for the expression of type I interferons (IFNs) and other anti-viral proteins.7 This STING-mediated anti-viral signaling pathway is also important for expression of NKG2DLs in response to DNA damage, as genetic inhibition of Sting, Tbk1 or Irf3 impaired NKG2DL expression (Fig. 1).3 A number of STING-dependent cytosolic DNA sensors have been described to date, including ZBP1, IFI16, DDX41 and cGAS.8 We found that the upregulation of NKG2DLs in response to the genotoxic drug cytosine arabinoside (Ara-C) is partially dependent upon Zbp1 in B-cell lymphoma.3 In contrast, the
nco

N G-dependent DNA sensor pathways induce the expression of ligands for NKG2D in
but not Zbp1
Sting
a number of tumor cells relied on
, constitutive expression of NKG2DLs in
tumorigenesis remains to be investigated.
potential role of cytosolic DNA sensors in
tumorigenesis, so far. Hence, STING-dependent DNA sensor pathways may con-
tribute to immunosurveillance of tumors

Figure 1. STING-dependent DNA sensor pathways induce the expression of ligands for NKG2D in
B-cell lymphoma cells. Damaged DNA and the ensuing DNA damage response lead to the presence
of single-stranded and double-stranded DNA in the cytosol. Cytosolic DNA activates STING-
dependent DNA sensor pathways, which induce the expression of NKG2DLs and potentially other immunomodulatory molecules.

Irf3 Regulates NKG2DL Expression in B-cell Lymphoma of Eμ-Myc Mice
To study the functional importance of Irf3-induced NKG2DL expression,
we crossed Eμ-Myc mice to Irf3-deficient mice. Eμ-Myc mice overexpress c-Myc
under the control of immunoglobulin heavy chain enhancer region (Eμ), analogous
to human Burkitt lymphoma. Eμ-Myc mice heterozygous for Irf3 expressed no
detectable NKG2DLs at the cell surface of B-cell lymphomas.3 Irf3−/− Eμ-Myc
mice showed a reduced survival rate and increased tumor load. In agreement with
a role of Irf3-induced NKG2DL expression in tumor surveillance, B-cell lympho-
mas in NKG2D-deficient Eμ-Myc mice arose significantly earlier, but no change
in survival was reported.3 Hence, Irf3-dependent effects, other than NKG2DL
expression, are likely to play a role in promoting tumor surveillance and survival of
Eμ-Myc mice. Activation of IRF3 leads to the expression of type I IFNs, which
play a critical role in immunosurveillance of tumors.10 In addition to enhancing
the anti-tumor responses of NK cells, type I IFNs are also critical for enabling
cross-presentation of tumor antigens by dendritic cells.10 In summary, our data suggest
that the presence of cytosolic DNA in tumor cells may activate anti-viral
immune pathways leading to recognition
and lysis of these self-cells. Thus, activation
of the cytosolic DNA sensor pathway in

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

References
1. Rauler DH, Gasser S, Gowen BG, Deng W, Jung
H. Regulation of ligands for the NKG2D activating
receptor. Annu Rev Immunol 2013; 31:413-41;
PMID:23983806; http://dx.doi.org/10.1146/
annurev-immunol-032712-095951
2. Gasser S, Oruschic S, Brown EJ, Rauler DH. The
DNA damage pathway regulates innate immune system
ligands of the NKG2D receptor. Nature 2005;
436:1186-90; PMID:15995699; http://dx.doi.
org/10.1038/nature03884
3. Lam AR, Le Bert N, Ho SS, Shen YJ, Tang ML,
Xiong GM, Croxford JL, Koo CX, Ishii KJ, Akira
S, et al. RAE1 ligands for the NKG2D receptor are
regulated by STING-dependent DNA sensor pathway
in lymphoma. Cancer Res 2014; 74:2193-203;
PMID:24599060; http://dx.doi.org/10.1158/0008-
5472.CAN-13-1703
4. Jackson SP, Bartek J. The DNA-damage response in
human biology and disease. Nature 2009; 461:1071-
8; PMID:19847258; http://dx.doi.org/10.1038/
nature08467
5. Croxford JL, Tang ML, Pan MF, Huang CW,
Kamran N, Phua CM, Chng WJ, Ng SB, Rauler
DH, Gasser S. ATM-dependent spontaneous regres-
ion of early Eμ-myc-induced murine B-cell leu-
kemia depends on natural killer and T cells. Blood
2013; 121:2512-21; PMID:23349395; http://dx.doi.
org/10.1182/blood-2012-08-449025
6. Branzeti D, Foiani M. Maintaining genome stabili-
ty at the replication fork. Nat Rev Mol Cell Biol
2010; 11:208-19; PMID:20177396; http://dx.doi.
org/10.1038/nrm2852
7. Diner EJ, Vance RE. Taking the STING out of cyto-
solic DNA sensing. Trends Immunol 2014; 35:1-2;
PMID:24251656; http://dx.doi.org/10.1016/j.ti.
2013.10.011
8. Yanai H, Savitsky D, Tamura T, Taniguchi T.
Regulation of the cytosolic DNA-sensing system
in innate immunity: a current view. Curr Opin
Immunol 2009; 21:17-22; PMID:19362700; http://
dx.doi.org/10.1016/j.coi.2009.01.005
9. Shen YJ, Lam AR, Ho SS, Koo CX, Le Bert N, Gasser
S. Cancer Pathogenesis and DNA sensing. In: Ishii
KJ, Tang CK, eds. Biological DNA Sensor: The
impact of nucleic acids on disease and vaccinology
Elsevier, 2013;205-29.
10. Dunen GP, Kooch CM, Schreiber RD. Interferons,
immunity and cancer immunodx, Nat Rev
Immunol 2006; 6:836-48; PMID:17063185; http://
dx.doi.org/10.1038/nri1961