Electronic Supporting Information

Protonation state of the Cu₄S₂CuZ site in nitrous oxide reductase: redox dependence and insight into reactivity

Esther M. Johnston, Simone Dell’Acqua, Sofia R. Pauleta, Isabel Moura and Edward I. Solomon

S1 Experimental Methodology

S1.1 Materials

All reagents were purchased from Sigma-Aldrich and of the highest grade commercially available. Deuterated water (99.9%), deuterated sodium hydroxide (99+%) and deuterated glycerol (99+% D) were obtained from Cambridge Isotopes. Nitrous oxide reductase (N₂OR) was isolated from Marinobacter hydrocarbonoclasticus 617 (formerly Pseudomonas nautica) grown under microaerobic conditions in the presence of nitrate, as described previously. MhN₂OR was isolated after two chromatographic steps that were performed aerobically, without added reductants, in Tris-HCl buffer at pH 7.6, as described by Dell’Acqua et. al. These purification conditions were shown to maximize the amount of Cu₄S₂CuZ content relative to Cu₄S CuZ* in the purified enzyme. Samples containing larger amounts of CuZ* were purified in parallel with three chromatographic purification steps from a batch of cells grown under anaerobic conditions in the presence of nitrate, and that had been stored at -80 ºC for a long period. The total MhN₂OR concentration was determined by bicinchoninic acid (BCA) assay with bovine serum albumin as the protein standard; copper content was determined by the 2,2'-biquinoline assay, as previously described. MhN₂OR isolated by the first method had a copper content of 6.4 ± 0.2 Cu per monomer, while MhN₂OR isolated by the second method contained 6.2 ± 0.7 Cu per monomer, consistent with full occupancy of the copper sites in both the protein samples used. The total spin intensity quantified by EPR for the dithionite reduced MhN₂OR samples was one spin per monomer, consistent with the presence of CuZ or CuZ* in the 1-hole redox state and reduced CuA. The percentage of CuZ versus CuZ* in the samples used for this study was determined by EPR spin quantitation (Figure S1). The total spin of a dithionite reduced enzyme sample (where CuA and 2-hole CuZ are 1 electron reduced and only both 1-hole CuZ and 1-hole CuZ* contribute to the total spin) was compared to the total spin after 2 hours of reduction by 100 equivalents of reduced methyl viologen (which reduces 1-hole CuZ* to 4CuI but leaves 1-hole CuZ in the 3CuI/CuII state). Samples purified with high amounts of CuZ contained 60±10% CuZ, while samples purified to obtain more CuZ* contained 10±10% CuZ. Purified MhN₂OR in 100 mM Tris-HCl buffer at pH 7.6 was stored frozen at -80°C in small aliquots and thawed just prior to the preparation of spectroscopic samples.

S1.2 Spectroscopic studies

Spectroscopic samples of 1-hole and 2-hole CuZ were prepared in a glove box under N₂ atmosphere. Samples of 1-hole CuZ were prepared from MhN₂OR (60% CuZ...
and 40\% \text{Cu}_Z\text{*) that had been incubated with 100 equivalents of reduced methyl viologen. The methyl viologen was removed using a PD-10 Sephadex G-25 medium (GE HealthCare) desalting column with 100 mM phosphate at pH 7.6 as the elution buffer. The protein-containing column fractions were concentrated by centrifugation using Amicon Ultra concentrators with an Ultracell regenerated cellulose membrane (Millipore). For pH dependence studies, during the concentration step samples were buffer exchanged to 100 mM MES pD 6.0, 100 mM phosphate pD 7.6, or 100 mM CAPS pD 10. The total spin intensity observed by EPR was not changed by buffer exchanging to different pHs. To determine the effect of deuteration, samples were prepared in parallel at pH/pD 7.6 and pH/pD 10. Samples of 2-hole Cu\text{Z} were prepared by reducing \text{MhN}_2\text{OR} (60\% \pm 10\% \text{Cu}_Z, 40\% \pm 10\% \text{Cu}_Z\text{*) with 10 equivalents of sodium ascorbate, which reduces the Cu\text{A} site rapidly and the 2-hole Cu\text{Z} site very slowly, and spectra were collected within 1 hour so that minimal reduction of 2-hole Cu\text{Z} was observed. In parallel, \text{MhN}_2\text{OR samples containing 90\% \pm 10\% Cu}_Z\text{*) were reduced with 10 equivalents of sodium ascorbate to obtain the spectral features of 1-hole Cu\text{Z*}. Corrected absorption spectra of 2-hole Cu\text{Z} were obtained by subtracting the spectral contribution of the appropriate concentration of 1-hole Cu\text{Z*}. Ascorbate reduced samples of \text{MhN}_2\text{OR containing Cu}_Z were buffer exchanged by centrifugation to 100 mM MES pD 6.0, 100 mM phosphate pD 7.6, or 100 mM CAPS pD 10 for pH dependence experiments. Typical \text{MhN}_2\text{OR concentrations used for spectroscopic samples were 0.1-0.3 mM for absorption, MCD and EPR, and up to 0.5 mM for resonance Raman. The concentration of the dimer \text{MhN}_2\text{OR was determined using the extinction coefficient of 7100 M}^{-1}\text{cm}^{-1} \text{at 640 nm for the dimer in the dithionite reduced spectrum in the purified protein and corrected according to the volume changes involved in spectroscopic sample preparation.}^4

Absorption spectra were acquired in a Teflon-sealed 3 mm small volume quartz cell at room temperature using an Agilent 8453 UV-visible spectrophotometer with deuterium and tungsten sources. MCD samples were prepared by mixing protein samples in deuterated buffer 1:1 with deuterated glycerol. MCD spectra were collected on CD spectropolarimeters (Jasco J810 with an S20 PMT detector for the 300-900 nm region and a Jasco J730 with an InSb detector for the 600-2000 nm region) with sample compartments modified to insert magnetocryostats (Oxford Instruments SM4-7T). Low temperature absorption spectra were additionally obtained from the samples used for MCD using a double-beam Cary 500 spectrophotometer modified to accommodate a liquid helium cryostat (Janis Research Super Vari-Temp). Low temperature absorption spectra were corrected by subtracting the background spectrum from a cell containing a 50:50 mixture of buffer and deuterated glycerol and an additional scattering correction to account for the differences in glassing between the protein and background samples. EPR and resonance Raman samples were frozen in 4 mm diameter quartz sample tubes. EPR spectra were collected using a Bruker EMX spectrometer with an ER 041 XG microwave bridge, and an ER4102ST sample cavity for X-band and an ER 051 QR microwave bridge, an ER 5106QT resonator, and an Oxford continuous-flow CF935 cryostat for Q-band. X-band samples were run at 77 K in a liquid nitrogen finger dewar. Q-band samples were run at 77 K using a cooling He gas flow. EPR spectra were baseline corrected using WinEPR (Bruker) and simulated using Simfonia (Bruker). Resonance Raman spectra were collected using a series of lines from a Kr^+ ion laser (Coherent 190CK), a Ti-sapphire laser (M-squared SolsTice, pumped by a 12 W Lighthouse
Photonics Sprout diode pumped solid state laser), and a Dye laser (Rhodamine 6G, Coherent 699) with incident power of 20-30 mW arranged in a 130° backscattering configuration. The scattered light was dispersed through a triple monochromator (Spex 1877 CP, with 1200, 1800, and 2400 grooves mm\(^{-1}\) gratings) and detected with a back-illuminated CCD camera (Andor iDus model). Resonance Raman samples were immersed in a liquid nitrogen finger dewar at 77 K. The spectrum of black carbon in an identical quartz EPR tube was subtracted to remove the spectral contribution from quartz scattering. The intensity of the ice peak at ~229 cm\(^{-1}\) was used to normalize the intensities of vibrations to obtain resonance Raman excitation profiles.

S1.3 Computational Details

A computational model of Cu\(_{2}\) was built from the atomic coordinates of the crystal structure of Pseudomonas stutzeri N\(_{2}\)OR, the only known structure of the Cu\(_{4}\)S\(_{2}\) cluster (PDB ID 3SBP, resolution 1.7 Å).\(^5\) The model included the Cu\(_{4}\)S\(_{2}\) core and 7 ligating His residues, where the α carbon and distal nitrogen were constrained at their crystallographic positions. A computational model for Cu\(_{2}\)\(^*\) with a hydroxide bridging ligand and identical α carbon and distal nitrogen constraints was constructed from the crystal structure of Paracoccus denitrificans N\(_{2}\)OR (PdN\(_{2}\)OR, PDB ID 1FWX).\(^6\) Two larger structural models were also optimized: (1) including a second sphere Lys-Glu salt bridge near the Cu\(_{1}\)-Cu\(_{IV}\) edge in both sites (Lys397 for PdN\(_{2}\)OR and Lys454 for PsN\(_{2}\)OR)\(^7\) for the 1-hole redox state of Cu\(_{2}\) with an SH– edge ligand and for 1-hole Cu\(_{2}\)\(^*\) with an OH– edge ligand and (2) including two second sphere carboxylate residues, Asp127 and Asp240 (which hydrogen bond to the His ligands of Cu\(_{I}\) and Cu\(_{II}\)), in optimizations of 1-hole and 2-hole Cu\(_{2}\) with SH– or S\(^2\)– edge ligation. Including the second sphere residues did not significantly perturb the core Cu-S bond lengths (Table S3), geometries or the spin distribution of the cluster, so the smaller computational model lacking second sphere residues was used for the analysis of the spectroscopic properties of Cu\(_{2}\). Calculations were performed using Gaussian 09 (version d01).\(^8\) Molecular structures and frequencies were visualized using Avogadro, an open source molecular builder and visualization tool (Version 1.1.1).\(^9\) VMD 1.9.1 was used to visualize molecular orbitals,\(^10\) and QMForge was used to obtain Mulliken spin populations of different orbitals and to analyze TD-DFT calculations.\(^11\) Geometry optimizations were performed using the B3LYP functional, the TZVP basis set on all core atoms (Cu\(_{4}\)S\(_{2}\)) and the ligating His nitrogens, and the SV basis set on all remaining atoms. The optimizations of the large model (2), including two second sphere Asp residues, were additionally performed using a larger basis set with TZVP on the Cu\(_{4}\)S\(_{2}\) core and all His ring heavy atoms. The resulting structures, spin distributions, and relative energies of the singlet and triplet ground states did not differ significantly from the smaller basis set optimizations (see Tables S4-S6), thus the structures optimized with TZVP only on the Cu\(_{4}\)S\(_{2}\) core and ligating nitrogens were used for frequency, TD DFT, and single point calculations. Optimizations, single points, frequencies, and TD-DFT calculations were performed with PCM values of 4.0 and 10.0 and no significant change in the spin distribution, frequencies, or TD-DFT was observed. Spin distributions, frequencies, and TD-DFT results reported are from calculations with a PCM of 4.0. TD-DFT calculations were additionally performed with the functional B98, which has previously shown to predict the experimental spectrum of a Cu\(_{3}\)S\(_{2}\) model complex.\(^12\) As described in the Analysis,
models with an edge S$^{2-}$ or SH$^-$ were optimized for both 1-hole and 2-hole redox states and the 2-hole models were optimized in both triplet and broken symmetry singlet spin states (the singlet states were always lower in energy). This was further tested with the functionals M06L, M06, and TPSSh, which all predict that singlet ground states are lower in energy by at least 5 kcal/mol for the 2-hole redox state; however, these functionals predict a restricted singlet ground state wavefunction for the 2-hole Cu$_Z$ site, while B3LYP predicts a more chemically reasonable spin polarized wavefunction.

To determine the relative energy of deprotonation ($\Delta\Delta E$) of the edge SH$^-$ in the 2-hole versus 1-hole redox state, the larger structural models including two second sphere Asp residues were used. The directly deprotonated versions of the 2Asp model (with loss of H$^+$ to solvent) were considered and the energies of an internal proton transfer from the edge SH$^-$ to Asp127 were also calculated for the 1-hole and 2-hole redox states. The PCM dependence of the $\Delta\Delta E$ of deprotonation was also evaluated by obtaining the singlet point energies with different PCM values for structures optimized with a PCM of 4.0. The ΔG for deprotonation of 1-hole Cu$_Z$ was also approximated from frequency calculations using structures with identical fixed atom constraints and the same number and magnitude for the imaginary frequencies associated with the fixed atom constraints. To minimize the error introduced into the vibrational energy correction by the fixed atom constraints, the masses of the fixed atoms were artificially increased until the calculated ΔG correction showed no further significant dependence on the fixed atom masses (~200 Da). The resulting ΔG was very similar to the calculated ΔE, indicating that the energy differences are electronic in origin.

S2 Supporting Figures, Tables, and Schemes

Figure S1: Methyl viologen reduction of three dithionite reduced samples of N$_2$OR to quantify the % Cu$_Z$ from the % spin remaining after reduction. Black and red: N$_2$OR prepared with two aerobic chromatographic steps (“Form I”), containing ~60% Cu$_Z$ and ~40% Cu$_Z^*$. Green: N$_2$OR prepared with three aerobic chromatographic steps (“Form II”), containing ~90% Cu$_Z^*$ and ~10% Cu$_Z$.
Figure S2: Second derivative (black) of the X band EPR spectrum of 1-hole CuZ at 77 K, 9.6349 GHz, with simulation in red.

Band	Energy (cm$^{-1}$)	C_0/D_0	Assignment	Energy (cm$^{-1}$)	C_0/D_0	Assignment
1	8900	-0.137	d-d	8000	-0.016	CuI dz2
2	11400	---	IT	10000	----	IT
3	12000	-1.565	d-d	11100	-0.218	CuI dxz
4	13100	-0.054	d-d	12900	-0.194	CuI dyz
5	14600	-0.273	S px	14300	-0.327	S px
6	15800	0.565	S py	15700	0.196	S py
7	16900	0.144	S pz	16500	0.091	S pz
8	18000			18000	0.170	CuI dxy
9	18500		His π_1	19800	-0.029	His π_1
10	21400		His π_1	21000	-0.045	His π_1
11	22200	-0.256	His π_1	22300	0.193	His π_1
12	25900	-0.027	His π_1	24000	-0.047	His π_1
13	28800	-0.005	His π_2	28100	-0.002	His π_2
14	31600	0.005	His π_2			

Table S1: Transition energies, C_0/D_0 ratios, and assignments from simultaneous fitting of the low temperature absorption and MCD spectra of 1-hole CuZ and 1-hole CuZ* (values and assignments for CuZ* reproduced from Ref. 7).
Scheme S1: Simplified acceptor and donor MOs for sulfide charge transfer transitions in resting Cu$_Z^*$, derived from DFT calculations of the Cu$_Z^*$ cluster with a hydroxide bridged edge (B3LYP, tzvp on Cu$_4$SON$_7$, sv on remainder, PCM=4.0).
Figure S3: Resonance Raman spectrum of resting Cu$_Z^*$ at 77 K and 605 nm excitation; excitation profile of resting Cu$_Z^*$. Reproduced from Ref. 7.

Figure S4: Lack of pH dependence of the MCD, resonance Raman, and EPR spectra of 1-hole Cu$_Z$ at pH 6 (red), pH 7.6 (green) and pH 10 (blue). Note that the presence of weak S-H bends in the resonance Raman spectra at pH 6 and pH 7.6 is due to incomplete deuteration of the samples.

Figure S5: Absorption spectrum of 2-hole Cu$_Z$ at 10 K, after ascorbate reduction and before (blue) or after (black) subtraction of the spectral contribution of 1-hole Cu$_Z^*$.

Figure S6: Resonance Raman spectra of ascorbate reduced N$_2$OR containing 2-hole Cu$_Z$ and 1-hole Cu$_Z^*$ at pH 6.0 (red), pH 7.6 (green), and pH 10 (blue), with energies of the vibrations of the 2-hole Cu$_Z$ site labeled.
Bond Lengths (Å)	1-hole SH	1-hole S¹	2-hole SH	2-hole S¹
Cu_Ir-S₁	2.437	2.641	2.385	2.383
Cu_Ir-S₂	2.264	2.262	2.270	2.288
Cu_Ir-S₃	2.229	2.226	2.232	2.229
Cu_Ir-S₄	2.255	2.244	2.217	2.202
Cu_Ir-S₅	2.351	2.350	2.340	2.229
Cu_Ir-S₆	2.478	2.508	2.448	2.278
S₁-S₂	3.379	3.402	3.164	3.010
Cu_Ir-N₁₄	2.098	2.057	2.030	2.066
Cu_Ir-N₁₈	2.198	2.270	2.100	2.215
Cu_Ir-N₂₂	2.116	2.085	2.193	2.043
Cu_Ir-N₂₆	2.060	2.051	2.045	2.058
Cu_Ir-N₃₀	2.026	2.028	1.998	2.009
Cu_Ir-N₃₄	2.076	2.088	2.051	2.066
Cu_Ir-N₄₈	2.037	2.034	2.086	2.001

Table S2: Comparison of the important bond lengths and angles for the Cu₇ site obtained from X-ray crystallography of Ps₅N₂OR (PDB ID 3SBP, resolution 1.7 Å) and the optimized structure of the 1-hole Cu₇ site with an SH¹ edge ligand (B3LYP, TZVP on Cu, S, and ligating N atoms, and SV on all remaining atoms, PCM of 4.0). For comparison, the optimized structure of the OH bridged model of resting Cu₇* is also included.

Bond Lengths (Å)	1-hole SH	1-hole S²	2-hole SH	2-hole S²
Cu_Ir-S₁	2.437	2.641	2.385	2.383
Cu_Ir-S₂	2.264	2.262	2.270	2.288
Cu_Ir-S₃	2.229	2.226	2.232	2.229
Cu_Ir-S₄	2.255	2.244	2.217	2.202
Cu_Ir-S₅	2.351	2.350	2.340	2.229
Cu_Ir-S₆	2.478	2.508	2.448	2.278
S₁-S₂	3.379	3.402	3.164	3.010
Cu_Ir-N₁₄	2.098	2.057	2.030	2.066
Cu_Ir-N₁₈	2.198	2.270	2.100	2.215
Cu_Ir-N₂₂	2.116	2.085	2.193	2.043
Cu_Ir-N₂₆	2.060	2.051	2.045	2.058
Cu_Ir-N₃₀	2.026	2.028	1.998	2.009
Cu_Ir-N₃₄	2.076	2.088	2.051	2.066
Cu_Ir-N₄₈	2.037	2.034	2.086	2.001

Table S3: Comparisons of key bond lengths for small computational models (white columns) of 1-hole and 2-hole Cu₇ and large computational models (grey columns) including two second sphere Asp residues (optimized with B3LYP; tzvp Cu₄S₂N₇/sv; PCM=4.0).
Bond Lengths (Å)	1-hole SH 2Asp	1-hole S² 2Asp	2-hole SH⁻ 2Asp	2-hole S² 2Asp
CuI-S₁	2.464	2.565	2.422	2.406
CuII-S₁	2.262	2.258	2.269	2.285
CuIII-S₁	2.226	2.229	2.229	2.225
CuIV-S₁	2.244	2.267	2.215	2.194
CuI-S₂	2.350	2.216	2.338	2.215
CuIV-S₂	2.508	2.319	2.470	2.293
S₁-S₂	3.502	3.443	3.206	3.074
CuI-N₂₄	2.057	2.021	1.997	2.018
CuII-N₂₄	2.085	2.156	2.022	2.071
CuIII-N₂₄	2.051	2.055	2.033	2.046
CuIV-N₂₄	2.028	2.048	2.003	2.013
CuI-N₃₀	2.270	3.028	2.149	2.394
CuII-N₃₀	2.270	2.956	2.171	2.484
CuIII-N₃₀	2.028	2.048	2.033	2.046
CuIV-N₃₀	2.034	2.086	2.061	2.073

Table S4: Basis set dependence of the calculated structures of 1-hole and 2-hole Cu₄ for large computational models (white: tzvp Cu₄S₂N₇/sv; grey: tzvp Cu₄S₂His₇/sv, B3LYP, PCM=4.0).

Model	Mulliken Atomic Spin Density
1-hole SH⁻ 2Asp	CuI 0.17, CuII 0.11, CuIII 0.05, CuIV 0.10, μ₄S² 0.34, μ₂S 0.16
1-hole S² 2Asp	CuI 0.15, CuII 0.04, CuIII 0.01, CuIV 0.09, μ₄S² 0.27, μ₂S 0.40

Table S5: Basis set dependence of the Mulliken atomic spin density distribution of 1-hole Cu₄ with 2 Asp residues (white: tzvp Cu₄S₂N₇/sv; grey: tzvp Cu₄S₂His₇/sv, B3LYP, PCM=4.0).

Mulliken Atomic Spin Density	CuI 0.37, CuII 0.06, CuIII 0.06, CuIV 0.04, μ₄S² 0.20, μ₂S 0.16
2-hole SH⁻ S=0	α LUMO 0.03, β LUMO 0.17, α LUMO 0.36, β LUMO 0.03
2-hole S² S=0	α LUMO 0.22, β LUMO 0.05, α LUMO 0.18, β LUMO 0.07

Table S6: Basis set dependence of the Mulliken atomic spin density in the α and β LUMOs of 2-hole Cu₄S₂ and 2-hole Cu₄S(SH) (white: tzvp Cu₄S₂N₇/sv, grey: tzvp Cu₄S₂His₇/sv, B3LYP and PCM=4.0).
Figure S7: Ground state wavefunction of the 1-hole SH model of \(\text{Cu}_Z \).

	\(g_x \)	\(g_y \)	\(g_z \)
SH bridge	2.044	2.057	2.158
OH bridge	2.055	2.076	2.243

Table S7: Computationally predicted g values for SH\(^{-}\) bridged model of 1-hole \(\text{Cu}_Z \) (B3LYP, tzvp on \(\text{Cu}_4\text{S}_2\text{N}_7 \), sv on remainder, PCM=4.0) and OH\(^{-}\) bridged model of 1-hole \(\text{Cu}_Z^* \) with second sphere Lys and Glu (B3LYP, tzvp on \(\text{Cu}_4\text{SN}_7\text{O} \), sv on remainder, PCM=4.0), calculated using Orca.\(^{13}\)

1-hole SH\(^{-}\) bridge	1-hole OH bridge						
Energy (cm\(^{-1}\))	**Vibration**	**Energy (cm\(^{-1}\))**	**Vibration**				
(H/D shift)		(H/D shift)					
461 (-125)	S-H bend \text{		} to Cu\(_{\text{I}}\)-Cu\(_{\text{IV}}\)	682 (-175)	O-H bend \text{		} to Cu\(_{\text{I}}\)-Cu\(_{\text{IV}}\)
426 (-123)	S-H bend \text{\perp} to Cu\(_{\text{I}}\)-Cu\(_{\text{IV}}\)	510 (-128)	O-H bend \text{\perp} to Cu\(_{\text{I}}\)-Cu\(_{\text{IV}}\)				
396 (-8)							
320 (+1)	Cu\(_{\text{II}}\)-\(\mu_2\)S-Cu\(_{\text{IV}}\) sym	341 (+1)	Cu\(_{\text{II}}\)-S-Cu\(_{\text{III}}\)-Cu\(_{\text{IV}}\)				
310 (+6)	Cu\(_{\text{III}}\)-\(\mu_4\)S	312 (-3)	Cu\(_{\text{III}}\)-S-Cu\(_{\text{IV}}\) sym				
299 (-2)	Cu\(_{\text{II}}\)-\(\mu_4\)S-Cu\(_{\text{IV}}\) sym	285 (0)	Cu\(_{\text{III}}\)-S-Cu\(_{\text{IV}}\) antisym				
268 (-3)			Cu\(_{\text{IV}}\)-OH				
242 (-2)	Cu\(_{\text{II}}\)-\(\mu_2\)S						
178 (0)	Cu\(_{\text{IV}}\)-\(\mu_2\)S						
162 (0)	Cu\(_{\text{II}}\)-\(\mu_4\)S	209 (0)	Cu\(_{\text{II}}\)-S				

Table S8: Vibrations predicted for the 1-hole SH\(^{-}\) bridged model of \(\text{Cu}_Z \) and the 1-hole OH bridged model of \(\text{Cu}_Z^* \). Stretching vibrations of the \(\mu_2 \) edge ligand are highlighted in grey.
Figure S8: Pictorial representations of the vibrations of the 1-hole SH⁻ model listed in Table S4.

Figure S9: TD DFT predicted absorption spectra of the 1-hole SH⁻ bridged model of Cu₂ (top) and the OH bridged model of Cu₂⁻ (bottom) with two functionals: A) B3LYP, and B) B98.
Bond Lengths (Å)	1-hole SH	2-hole SH⁺	2-hole S⁻
Cu₁-S₁	2.437	2.385	2.383
Cu₂-S₁	2.264	2.270	2.288
Cu₃-S₁	2.229	2.232	2.229
Cu₄-S₁	2.255	2.217	2.202
Cu₁-S₂	2.351	2.340	2.229
Cu₄-S₂	2.478	2.448	2.278
Cu₁-S₁-Cu₄	91.0°	97.5°	95.8°
Cu₁-S₂-Cu₄	87.8°	92.6°	98.0°
S₁-S₂	3.379	3.164	3.010
Cu₁-Cu₄	3.350	3.463	3.403
Cu₁-Cu₃	3.320	3.177	3.341
Cu₄-Cu₄	2.694	2.660	2.682
Cu₃-Cu₃	3.162	3.208	3.164
Cu₃-Cu₄	3.343	3.317	3.383

Table S9: Comparison of important bond lengths and angles of the broken symmetry singlet 2-hole 4CuS(SH) and 4Cu₂S models with the computational model of 1-hole Cu₂ (B3LYP, TZVP on Cu, S, and ligating N atoms, and SV on all remaining atoms, PCM of 4.0).

Figure S10: Structural models of 2-hole SH⁻ with second sphere Asp residues and 2-hole S⁻ model after internal proton transfer.
Figure S11: Dependence of the $\Delta\Delta E$ for deprotonation of the 2-hole 4CuS(SH) model (+1 charge) relative to the 1-hole 4CuS(SH) model (neutral) on the dielectric used for the PCM.

Figure S12: Comparison of the experimental absorption spectrum of 2-hole Cu$_2$ (black) and the TD DFT predicted absorption spectrum of the broken symmetry singlet 2-hole 4Cu2S model (green, B3LYP; blue, B98; TZVP on Cu$_4$S$_2$N$_7$, SV on remainder, PCM of 4.0).
Table S10: Predicted vibrations of the 2-hole 4Cu2S model of 2-hole Cu2_z and the 1-hole SH$^-$ model of 1-hole Cu2_z, vibrations with edge ligand character highlighted in grey.

Energy (cm$^{-1}$)	Vibration	Energy (cm$^{-1}$)	Vibration
461	S-H bend // to Cu$_{I}-$Cu$_{IV}$	320	Cu$_{II}$-μ_4S-Cu$_{IV}$ sym
426	S-H bend \perp to Cu$_{I}-$Cu$_{IV}$	310	Cu$_{III}$-μ_4S
344	Cu$_{II}$-μ_4S-Cu$_{IV}$ sym	312	μ_2S-Cu$_{II}$-μ_4S sym, Cu$_{III}$-μ_2S
309	μ_2S-Cu$_{II}$-μ_4S antisym, Cu$_{III}$-μ_2S	297	Cu$_{II}$-μ_4S
299	Cu$_{III}$-μ_4S	256	Cu$_{IV}$-μ_2S
242	Cu$_{IV}$-μ_2S	202	Cu$_{I}$-μ_4S

Figure S13: Pictorial representations of the vibrations of the 2-hole μ_2S$^-$ model listed in Table S6.
Calculated Structures

1-hole SH° small model (B3LYP; tzvp Cu₄S₂N₇/sv; PCM=4.0)

Atom	X	Y	Z
Cu	15.86139	27.55597	1.79755
Cu	12.74928	26.73854	0.98044
Cu	13.70871	25.35849	-1.6976
Cu	15.23553	24.5845	0.38261
S	16.63083	25.38456	2.26727
S	14.67052	26.70118	-0.14984
N	10.8479	26.8082	0.28351
N	9.04306	26.5699	-0.97603
N	12.66796	22.11305	-4.17502
N	12.93728	23.70057	-2.64538
N	14.65004	20.62702	-0.93098
N	14.93705	22.59769	0.04673
N	12.44895	26.55091	3.02619
N	12.20806	27.04802	5.17805
N	14.94305	28.69998	3.4348
N	13.757	30.195	4.58299
N	16.54144	29.32417	0.89527
N	16.71898	31.01201	-0.53001
N	13.24926	26.94095	-3.02532
N	12.54999	28.77303	-4.08699
C	10.34988	26.98969	-0.93461
C	9.82961	26.26193	1.05574
C	8.69711	26.10499	0.28674
C	7.36497	25.56102	0.61601
C	13.47622	23.11861	-3.71994
C	11.56026	22.04478	-3.34597
C	11.72884	23.03508	-2.39655
C	10.79505	23.40098	-1.29493
C	15.32373	21.81892	-0.96343
C	13.79875	20.64682	0.16634
C	13.98108	21.87646	0.76882
C	13.32991	22.439	1.98394
C	11.82032	27.34213	3.89135
C	13.26121	25.71403	3.78026
C	13.12532	26.00638	5.11981
C	13.79395	25.449	6.31296
C	13.96169	29.59036	3.36096
C	15.40285	28.7359	4.74617
C	14.68279	29.66452	5.4767
C	14.78501	30.121	6.88399
C	16.40314	29.6851	-0.37487
C	16.97783	30.45348	1.58238
C	17.0973	31.51697	0.70766
C	17.51601	32.92799	0.886
C	13.30511	28.27144	-3.0407
C	12.44548	26.56758	-4.08474
1-hole OH small model (B3LYP; tzvp Cu₄S₂N₇/sv; PCM=4.0)

2.2

C 21.76000010000 43.46800050000 13.8479930000
C 22.45598100000 42.85002300000 15.0341560000
N 22.20486900000 41.54007300000 15.4668000000
2-hole SH small model, S=0 (B3LYP; tzvp Cu_4S_2N_7/sv; PCM=4.0)

3 1

Cu 15.65823 27.6691 1.76304
Cu 12.71994 26.73202 1.00224
Cu 13.67199 25.38976 -1.7519
Cu 15.13829 24.56938 0.31009
S 16.42529 25.49663 2.17437
S 14.63163 26.67881 -0.14801
N 10.86237 26.74981 0.26729
N 9.04303 26.56999 -0.97598
N 12.66798 22.1131 -4.1748
N 12.92966 23.71812 -2.66591
	14.64999	20.62699	-0.931
	14.88984	22.61465	0.00911
	12.45192	26.55184	3.02778
	12.20805	27.048	5.178
	14.91333	28.68303	3.44487
	13.75701	30.19498	4.58298
	16.26094	29.4106	0.91155
	16.71891	31.01203	-0.53007
	13.18331	26.95353	-2.973
	12.55002	28.77302	-4.08693
	10.35241	26.97255	-0.94179
	9.84675	26.19506	1.03856
	8.70442	26.0773	0.27821
	7.36497	25.561	0.616
	13.46777	23.13181	-3.74207
	11.56972	22.0385	-3.33535
	11.73015	23.03996	-2.39734
	10.79497	23.4009	-1.29518
	15.28617	21.83291	-0.99861
	13.81914	20.63496	0.18141
	13.97005	21.87766	0.763
	13.33002	22.43901	1.984
	11.82306	27.34716	3.89329
	13.2546	25.70624	3.78464
	13.11952	26.0025	5.12274
	13.79396	25.44901	6.31297
	13.94218	29.59062	3.3666
	15.38147	28.71118	4.75373
	14.67593	29.65485	5.47957
	14.78501	30.12099	6.88399
	16.28589	29.72726	-0.37961
	16.70913	30.53016	1.61332
	17.00374	31.54335	0.72083
	17.51601	32.92798	0.886
	13.28317	28.28487	-3.02466
	12.37101	26.57334	-4.02729
	11.96963	27.6871	-4.71963
	11.08807	27.77501	-5.87496
	10.87409	27.40063	-1.79015
	9.99723	25.91193	2.07512
	8.41702	26.6477	-1.77291
	7.08371	24.69058	-0.00801
	6.57709	26.32741	0.47908
	7.33239	25.23752	1.6693
	12.85021	21.51652	-4.97735
	14.3999	23.40961	-4.22592
	10.77958	21.30489	-3.46479
	10.24189	24.3311	-1.5157
	10.0522	22.60013	-1.14234
	11.32988	23.55388	-0.34016
	14.79657	19.84305	-1.56071
---	---	---	
H	16.00453	22.09087 -1.77067	
H	13.21065	19.78219 0.46689	
H	12.793	23.38338 1.76934	
H	14.07684	22.6436 2.77402	
H	12.59578	21.72944 2.4015	
H	11.10413	28.12369 3.6494	
H	11.85958	27.49391 6.02222	
H	14.40875	24.57601 6.0382	
H	14.46563	26.19402 6.78366	
H	13.0734	25.12166 7.08631	
H	13.6838	29.83922 2.47931	
H	16.18711	28.06534 5.09139	
H	13.092	30.9355 4.78751	
H	15.0989	31.18162 6.94018	
H	13.82454	30.03576 7.42673	
H	15.5341	29.52566 7.43179	
H	16.02564	29.07325 -1.20544	
H	16.7967	30.53756 2.69452	
H	16.84709	31.49349 -1.41634	
H	18.48593	33.06843 0.37169	
H	16.8118	33.6779 0.47704	
H	17.66894	33.1585 1.95304	
H	13.83849	28.91408 -2.33661	
H	12.11695	25.53968 -4.2302	
H	12.46179	29.74958 -4.35484	
H	11.58618	28.22798 -6.75503	
H	10.74471	26.77154 -6.17578	
H	10.18697	28.38732 -5.67346	
H	17.52601	25.61015 1.39473	

2-hole S² small model, S=0 (B3LYP; tzvp Cu₄S₂N₇/sv; PCM=4.0)

Cu	15.23096	24.54935 0.33875
Cu	13.69156	25.36458 -1.69996
Cu	12.72744	26.7311 0.9859
Cu	15.86465	27.51747 1.76888
S	14.68315	26.4056 -0.07963
S	16.51355	25.4504 1.99241
N	12.54991	28.77318 -4.08708
N	13.19784	26.95621 -2.97113
N	16.71899	31.01205 -0.53007
N	16.43966	29.3618 0.9126
N	13.75697	30.19496 4.58298
N	14.94252	28.69924 3.43732
N	12.20789	27.04799 5.17804
N	12.45695	26.56105 3.02715
N	14.91995	22.59702 0.0319
N	14.65012	20.62699 -0.93089
N	12.93552	23.70174 -2.64707
N	12.66792	22.11308 -4.17514
N 9.04337 26.56951 -0.97597		
N 10.84714 26.80972 0.28202		
C 11.08806 27.77497 -5.875		
C 12.38747 26.57393 -4.02609		
C 13.28722 28.28486 -3.02417		
C 17.51602 32.92796 0.88603		
C 17.05995 31.5301 0.71226		
C 16.87644 30.48831 1.60001		
C 16.36265 29.69905 -0.36809		
C 14.78504 30.121 6.88397		
C 14.68257 29.66443 5.47722		
C 15.40228 28.73477 4.74763		
C 13.96085 29.58894 3.36234		
C 13.79403 25.449 6.31295		
C 13.13251 26.01241 5.11786		
C 13.27666 25.72799 3.77759		
C 11.81775 27.34344 3.89363		
C 13.32961 22.43902 1.9837		
C 13.97423 21.87485 0.76551		
C 13.80258 20.64127 0.16947		
C 15.31348 21.81949 -0.97485		
C 10.79524 23.4011 -1.29457		
C 11.72825 23.03453 -2.39658		
C 11.56107 22.04323 -3.34506		
C 13.4748 23.1203 -3.72212		
C 7.36485 25.56119 0.61606		
C 8.69775 26.10366 0.28668		
C 9.83006 26.26128 1.05555		
C 10.34807 26.99185 -0.93595		
H 11.58121 28.23556 -6.75421		
H 10.18324 28.38033 -5.66729		
H 10.74994 26.77085 -6.18066		
H 12.45435 29.74916 -4.35258		
H 12.14106 25.5374 -4.22699		
H 13.83722 28.91795 -2.33419		
H 17.70765 33.14153 1.95094		
H 16.7643 33.65893 0.52895		
H 18.45583 33.12808 0.33492		
H 16.76636 31.51246 -1.41272		
H 17.03037 30.4828 2.67438		
H 16.07333 29.04137 -1.18197		
H 15.55258 29.5401 7.42247		
H 13.83073 30.00422 7.4337		
H 15.07093 31.18939 6.95249		
H 13.081 30.92512 4.78527		
H 16.21413 28.09681 5.08683		
H 13.38432 29.82837 2.47361		
H 13.0651 25.07745 7.05924		
H 14.4328 26.19931 6.82032		
H 14.44271 24.60381 6.02913		
X	Y	Z
---	---	---
H	11.8598	27.49027
H	13.96091	25.02466
H	11.09018	28.11267
H	12.59394	21.73068
H	14.07736	22.65344
H	12.80116	23.8644
H	13.1721	19.79849
H	16.04945	22.07264
H	14.78856	19.84731
H	11.3341	23.55731
H	10.04849	22.6042
H	10.24713	24.33448
H	10.76411	21.31941
H	14.41537	23.39153
H	12.85262	21.52133
H	7.31662	25.28373
H	6.55674	26.29475
H	7.12596	24.65425
H	8.42793	26.61311
H	9.97651	26.00687
H	10.87719	27.39855

1-hole SH\(^+\) model with 2Asp (B3LYP; tzvp Cu\(_5\)S\(_2\)N\(_7\)/sv; PCM=4.0)

X	Y	Z	
Cu	15.9695	27.55711	1.76019
Cu	12.75043	26.7413	0.96994
Cu	13.6932	25.37288	-1.70069
Cu	15.22099	24.58413	0.37046
S	16.61098	25.36324	2.30761
S	14.67326	26.69678	-0.15078
N	10.84102	26.82347	0.29123
N	9.04306	26.5699	-0.97603
N	12.66792	22.11308	-0.17497
N	12.92804	23.72008	-2.64333
N	14.65004	20.62703	-0.3098
N	14.93876	22.59562	0.04962
N	12.44279	26.54683	3.02602
N	12.20805	27.04802	5.17804
N	14.95042	28.69976	3.43587
N	13.75699	30.195	4.58299
N	16.64422	29.29802	0.89741
N	16.71898	31.012	-0.53
N	13.14751	26.94168	-2.96127
N	12.55001	28.77301	-4.08699
C	10.34778	26.99764	-0.9294
C	9.82238	26.275	1.06069
C	8.69473	26.10925	0.28759
C	7.36496	25.56102	0.61601
C	13.46194	23.12044	-3.72314
C	11.57259	22.04894	-3.34071
C	11.72994	23.04761	-2.39382
---	---	---	---
C	10.79509	23.40095	-1.29496
C	15.31596	21.82223	-0.96848
C	13.80569	20.64189	0.17123
C	13.98919	21.87066	0.77545
C	13.32991	22.439	1.98394
C	11.82056	27.34211	3.8904
C	13.25285	25.70808	4.74856
C	14.68122	29.6637	5.47788
C	14.78501	30.121	6.884
C	16.43354	29.68924	-0.36477
C	17.095	30.42796	1.57303
C	17.14007	31.5014	0.6959
C	17.51601	32.92799	0.886
C	13.29111	28.26567	-3.03413
C	12.30579	26.57747	-3.99555
C	11.93459	27.69617	-4.69784
C	11.08801	27.77498	-5.875
H	10.88485	27.39689	-1.78358
H	9.96493	26.02313	2.10674
H	8.43726	26.59815	-1.79054
H	7.12854	24.65413	0.0247
H	6.55238	26.29087	0.42904
H	7.31882	25.28051	1.68169
H	12.97541	21.40807	-4.95937
H	14.407	23.3848	-4.18949
H	10.77962	21.31657	-3.46765
H	10.2158	24.31627	-1.5172
H	10.07076	22.58483	-1.12365
H	11.33028	23.58531	-0.34526
H	14.75134	19.87286	-1.60379
H	16.03426	22.08321	-1.73991
H	13.16049	19.80707	0.42785
H	12.81148	23.38867	1.75231
H	14.06482	22.6485	2.784
H	12.58164	21.7365	2.39047
H	11.10683	28.12317	3.64461
H	13.89941	24.96786	3.32146
H	11.87978	27.5096	6.02037
H	14.42511	24.58913	6.03312
H	14.45336	26.19795	6.79559
H	13.07267	25.10164	7.07841
H	13.4034	29.83417	2.46537
H	16.2171	28.10108	5.09014
H	13.09005	30.93537	4.77659
H	15.06598	31.191	6.95267
H	13.8333	29.9995	7.43858
H	15.55749	29.54385	7.42013
Atom	x	y	z
------	----	----	------
H	16.05601	29.05647	-1.16197
H	17.34278	30.40378	2.63102
H	16.51978	31.56279	-1.44881
H	18.44899	33.18824	0.34679
H	16.72902	33.60716	0.50466
H	17.67571	33.15415	1.95496
H	13.90266	28.91058	-2.41183
H	12.0234	25.54705	-4.18398
H	12.58505	29.75659	-4.34739
H	10.70606	26.77554	-6.14415
H	10.20945	28.43689	-5.73133
H	11.62853	28.16492	-6.76183
H	17.75833	25.30369	1.59519
C	12.16299	18.93701	-6.787
C	13.59632	19.43191	-6.54551
O	14.56594	18.76222	-7.0102
O	13.722	20.53727	-5.86164
C	14.196	33.28501	-3.744
C	14.88901	32.08996	-3.11738
O	14.28993	30.96104	-3.09233
O	16.05912	32.33457	-2.61277
H	11.65481	18.74735	-5.8205
H	11.5754	19.71319	-7.31524
H	13.91077	34.00392	-2.95039
H	14.88664	33.81767	-4.42342
H	13.28879	32.98596	-4.29565
H	12.16479	18.01024	-7.38428

1-hole S² model with 2Asp (B3LYP; tzvp Cu₄S₃N₇/sv; PCM=4.0)
H	13.43236	29.88732	2.45265	
H	16.47555	28.42552	4.97273	
H	12.99251	30.81908	4.81911	
H	14.87287	29.79291	7.43003	
H	15.653	29.65293	7.37992	
H	16.1888	30.27557	2.46049	
H	16.45652	31.56612	-1.423	
H	18.25635	33.33484	0.16869	
H	16.58946	33.52293	0.76424	
H	17.9025	33.10585	1.90519	
H	13.90351	28.89371	-2.40472	
H	12.03578	25.54348	-4.19275	
H	12.59168	29.75814	-4.34077	
H	10.71237	26.77391	-6.14831	
H	10.20415	28.42996	-5.72737	
H	11.62276	28.17252	-6.76254	
C	12.163	18.93703	-6.787	
C	13.42821	19.78692	-6.98195	
O	14.26187	19.44778	-7.87501	
O	13.55497	20.82272	-6.20122	
C	14.19601	33.285	-3.744	
C	14.86178	32.06629	-3.14697	
O	14.2432	30.94958	-3.15968	
O	16.02686	32.28712	-2.62439	
H	12.09768	18.58065	-5.73994	
H	11.2597	19.54972	-6.97801	
H	13.88638	33.97103	-2.93017	
H	14.90925	33.84405	-4.37769	
H	13.30456	33.01609	-4.33636	
H	12.16522	18.07078	-7.46931	

2-hole S2 model with 2Asp (B3LYP; tzvp Cu\textsubscript{4}S\textsubscript{2}N\textsubscript{7}/sv; PCM=4.0)
2-hole SH⁺ model with 2Asp (B3LYP; tzvp Cu₄S₂N₇/sv; PCM=4.0)

Cu 15.76265 27.66164 1.74807
Cu 12.72241 26.75078 0.99493
Cu 13.66954 25.40454 -1.76279
Cu 15.11444 24.58004 0.29396
S 16.40051 25.46064 2.21048
S 14.62762 26.69306 -0.15971
N 10.85238 26.77985 0.27818
N 9.04299 26.56986 -0.976
N 12.66792 22.11295 -4.17504
N 12.92263 23.74294 -2.66624
N 14.65006 20.62707 -0.93097
Atom	X	Y	Z
N	14.87461	22.62157	-0.00051
N	12.4478	26.5512	3.02729
N	12.208	27.04799	5.17798
N	14.9326	28.69181	3.44185
N	13.757	30.195	4.583
N	16.41388	29.35958	0.92171
N	13.13618	26.9533	-2.94886
N	12.54998	28.77305	-4.08703
C	10.34925	26.98457	-0.93603
C	9.83584	26.22594	1.04828
C	8.70048	26.08911	0.2816
C	7.36501	25.56107	0.61601
C	13.45241	23.13555	-3.74992
C	11.58562	22.0451	-3.32609
C	11.7353	23.05564	-2.39175
C	10.79525	23.40109	-1.29489
C	15.26272	21.84388	-1.01444
C	13.83416	20.62718	0.19208
C	13.97577	21.87412	0.76729
C	13.3298	22.43893	1.98395
C	11.82532	27.34954	3.89253
C	13.24617	25.70137	3.78294
C	13.11533	25.99828	5.12171
C	13.79401	25.449	6.31299
C	13.96022	29.59599	3.36183
C	15.38854	28.71751	4.75482
C	14.6751	29.65502	5.4804
C	14.785	30.121	6.884
C	16.33101	29.72423	-0.36525
C	16.88271	30.47782	1.61299
C	17.06896	31.51606	0.71355
C	17.516	32.928	0.886
C	13.28781	28.28087	-3.03136
C	12.29147	26.58049	-3.98254
C	11.92854	27.69627	-4.69218
C	11.08799	27.775	-5.87501
H	10.87686	27.40356	-1.78577
H	9.98214	25.95449	2.08864
H	8.42664	26.62681	-1.78172
H	7.09877	24.67909	0.00108
H	6.56801	26.3154	0.46392
H	7.32897	25.24983	1.67316
H	12.97174	21.40339	-4.9854
H	14.38528	23.41024	-4.2346
H	10.80014	21.3019	-3.43452
H	10.20818	24.31088	-1.51851
H	10.07743	22.57872	-1.13057
H	11.32101	23.58354	-0.33908
H	14.77138	19.85998	-1.58661
H	15.95073	22.11618	-1.8088
Electronic Supporting Information References

1. S. Dell’Acqua, S. R. Pauleta, J. J. G. Moura and I. Moura, *Philosophical Transactions of the Royal Society B-Biological Sciences*, 2012, 367, 1204-1212.
2. E. M. Johnston, S. Dell’Acqua, S. Ramos, S. R. Pauleta, I. Moura and E. I. Solomon, *Journal of the American Chemical Society*, 2014, 136, 614-617.
3. T. Rasmussen, B. C. Berks, J. N. Butt and A. J. Thomson, *Biochemical Journal*, 2002, 364, 807-815.
4. M. Prudencio, A. S. Pereira, P. Tavares, B. Besson, I. Cabrito, K. Brown, B. Samyn, B. Devreese, J. Van Beeumen, F. Rusnak, G. Fauque, J. J. G. Moura, M. Tegoni, C. Cambillau and I. Moura, *Biochemistry*, 2000, 39, 3899-3907.
5. A. Pomowski, W. G. Zumft, P. M. H. Krones and O. Einsle, *Nature*, 2011, 477, 234-U143.
6. K. Brown, K. Djunic-Carugo, T. Haltia, I. Cabrito, M. Saraste, J. J. G. Moura, I. Moura, M. Tegoni and C. Cambillau, *Journal of Biological Chemistry*, 2000, 275, 41133-41136.
7. S. Ghosh, S. I. Gerelsky, S. D. George, J. M. Chan, I. Cabrito, D. M. Dooley, J. J. G. Moura, I. Moura and E. I. Solomon, *Journal of the American Chemical Society*, 2007, 129, 3899-3907.
8. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford, CT, USA, 2009.
9. M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison, *Journal of Cheminformatics*, 2012, 4.
10. W. Humphrey, A. Dalke and K. Schulten, *Journal of Molecular Graphics*, 1996, 14, 33-38.
11. A. L. Tenderholt, Version 2.3.2 edn.
12. I. Bar-Nahum, A. K. Gupta, S. M. Huber, M. Z. Ertem, C. J. Cramer and W. B. Tolman, *Journal of the American Chemical Society*, 2009, 131, 2812-+.
13. F. Neese, *Wiley Interdisciplinary Reviews-Computational Molecular Science*, 2012, 2, 73-78.