Electrochemical Performance of $\text{Li}_{4-x}\text{Ti}_5\text{Cu}_x\text{O}_{12}$ for Lithium Ion Capacitor Applications

Performa Elektrokimia $\text{Li}_{4-x}\text{Ti}_5\text{Cu}_x\text{O}_{12}$ untuk Aplikasi Kapasitor Ion Litium

Ahmad Sohib, Achmad Subhan, Wahyu Bambang Widayatno*, Slamet Priyono, Chairul Hudaya, Ilma Nuroniah, Sherly Novia Sari, Bambang Prihandoko

1Research Center for Physics, Indonesian Institute of Sciences, Kawasan Puspiptek Gd. 440-442
Tangerang Selatan, Indonesia
*Pos-el: wahyubw@gmail.com

ARTICLE INFO

Abstrak

Senyawa litium titanat (LTO) menarik banyak perhatian karena memiliki karakteristik yang unik untuk aplikasi penyimpanan energi. LTO terdoping merupakan salah satu pendekatan untuk meningkatkan performa LTO. Hingga saat ini, kinerja LTO yang didoping dalam kapasitor ion jarang dikaji. Tujuan dari penelitian ini adalah menyintesis LTO yang didoping Cu melalui reaksi solid state dan milling energi tinggi serta mempelajari kinerja elektrokimia kapasitor ion litium. LTO terdoping Cu disintesis dengan menggunakan metode solid state berbasis high energy milling. Pola difraksi menunjukkan bahwa LTO yang didoping Cu telah berhasil disintesis, meskipun terdapat pengotor seperti Baddeleyite, Zr_4O_8, dan Li_2O (~50%) muncul di setiap sampel. Profil cyclic voltammetry dari LTO Cu-doped berbasis setengah sel menunjukkan bahwa puncak oksidasi dan reduksi menurun karena kandungan pengotornya. Resistansi listrik dari LTO dan LTO terdoping menjadi lebih kecil karena meningkatnya kandungan dopan, sementara resistensi transfer muatan menjadi semakin meningkat seiring kandungan dopan. Performa sel penuh LIC menyatakan bahwa LIC berbasis LTO/karbon aktif secara umum menunjukkan kapasitansi yang lebih tinggi daripada LIC berbasis LTO/Cu 0,025/karbon aktif.

Kata kunci: Litium titanat, Cu-doping, Performa elektrokimia, Kapasitor litium ion

©2020 Widyariset. All rights reserved

DOI: http://dx.doi.org/10.14203/widyariset.6.1.2020.43-50
Keywords: Abstract
Lithium titanate (LTO) has attracted considerable attention since it has unique characteristics for energy storage application. Doped LTO is one of the approaches to improve LTO performance. To date, doped LTO performance in full-cell lithium ion capacitor has rarely been discussed. This study is aimed to synthesize Cu-doped LTO via solid state reaction and high energy milling and investigate its electrochemical performance in full-cell of lithium ion capacitor. The diffraction patterns show that Cu-doped LTO has been successfully synthesized, even though the impurities such as Baddeleyite, Zr\textsubscript{4}O\textsubscript{8}, and Li\textsubscript{2}O (approximately 50%) appear in each sample. Cyclic voltammogram profile of half-cell based Cu-doped LTO shows that the oxidation and reduction peaks are declined due to its impure content. The electrical resistance of LTO and Cu-doped LTO decrease as doping content increases, while charge transfer resistance becomes higher. Full-cell performance of LIC represents that LIC based LTO//Activated carbon shows higher capacitance than that of LIC based LTO\textsubscript{Cu 0.025}//Activated carbon.

INTRODUCTION
Energy storage devices such as lithium ion battery (LIB) and electro double layer capacitor (EDLC) are widely developed in order to support renewable energy application in the future. These devices are chosen due to their natures, for instance high energy density (LIB) and power density (EDLC) (Lu et al. 2017; Shellikeri et al. 2018). Recently some researchers have discovered a new energy storage device named lithium ion capacitor (LIC). This device is ascribed as a promising device especially for hybrid electrical vehicle (HEV) application (Li et al. 2018). LIC theoretically owns high energy and power density donated from anode material of LIB and porous cathode of EDLC (Ding et al. 2018). Unfortunately, performance of LIC has to be explored in order to meet the desired properties of energy storage applications.

Spinel-lithium titanate (Li\textsubscript{4-x}Ti\textsubscript{5}O\textsubscript{12}), usually abbreviated as LTO, is one of the popular materials applied for negative electrode of energy devices due to its advantages. This material, which is classified into Fd3m group, is commonly called as “zero-strain” material (Sun, Radovanovicb, and Cui 2014). This is due to the material property which may not suffer volume expansion during advanced charge-discharge process because of its compatibility with comercial electrolyte, LiPF\textsubscript{6} (Sandhya, John, and Gouri 2014). LTO is also featured with excellent safety such as low volume expansion enabling to avoid explosion and good cycle stability performance. Therefore, this material is applied for lithium ion capacitor or hybrid supercapacitors in order to be installed in HEV applications (Ni et al. 2012; Zhao et al. 2016). Instead of that, LTO owns crucial drawbacks such as low electrical conductivity and inferior diffusion property, in which many researchers intensively pay attention to (Liu et al. 2013). To overcome these drawback, LTO has recently been modified through some approaches such as reducing size particles and substituting ion metal to the structure of LTO (Huang et al. 2005; Meng et al. 2018). Wang et al. (2013) have tried to insert certain amount of Cu3+ into Li site (Li\textsubscript{4-x}Ti\textsubscript{5}O\textsubscript{12}, x = 0, 0.1, and 0.2) for anode of LIB. This substitution may enhance the conductivity and stabilize the polarization degree. Cu-doped LTO composites were also successfully obtained and its performance can be characterized in
half-cell battery. This modification could stabilize LTO structure, which can retain the electrochemical performance at about 92.2% of its initial value after 500 cycles (Chen et al. 2015). To our knowledge, metallic-ion-doped LTO is intensively employed as negative electrode in LIB to enhance its electrical conductivity. However, due to its new development, the study of metal-ion-doped LTO for lithium ion capacitor, especially Cu-doped LTO for negative electrode of LIC, is still rare to find.

In this paper, LTO doped by low concentration of Cu$^{3+}$ will be studied in a full-cell of LIC. Cu-doped LTO was successfully synthesized via solid state reaction followed by wet milling using High Energy Milling (HEM). The half-cell based Cu-doped LTO is evaluated by employing Cyclic Voltammetry (CV), Charge-Discharge (CD), and Electrochemical Impedance Spectroscopy (EIS) measurements. In addition, the full-cell LIC based LTO and Cu-doped LTO is also examined by CV and CD at various scan rate and current density to investigate its performance for lithium ion-capacitor application.

METHODOLOGY

Initially, Li$_{4-x}$Ti$_5$O$_{12}$Cu$_x$ ($x = 0, 0.025, 0.05,$ and 0.075) was synthesized via wet-milling process and followed by sintering. Li$_2$CO$_3$ (Merck, purity >98%), Cu(NO$_3$)$_2$.3H$_2$O (Merck, >90%), and TiO$_2$ (Merck, Anatase, purity >90%) were used as raw materials for Li, Cu, and Ti sources, respectively. To obtain 5 g of Li$_{4-x}$Ti$_5$O$_{12}$Cu$_x$, the raw materials, mixed with 10 mL deionized water, were milled by High Energy Milling (HEM) featured by ZrO$_2$ balls with ratio of 10:1 in weight (balls:raw materials) for 5 hours. The sludges were then sintered at 900°C for three hours with heating rate of 5°C/min in order to acquire the powder of Li$_{4-x}$Ti$_5$O$_{12}$Cu$_x$, Li$_{4-x}$Ti$_5$O$_{12}$Cu$_x$ ($x = 0.025, 0.05,$ and 0.075) and were named as LTO, LTOCu 0.025, LTOCu 0.05, and LTOCu 0.075 respectively.

To study the electrochemical performance, the sample was prepared into coin cell CR2032 type. The electrode contains active material, e.g. LTO or Commercial Food-Grade (FG), Activated Carbon (Technical Grade), Polyvinylidene Fluoride (PVDF, Technical grade) as binder and carbon black (Super-P, Technical grade) as conducting agents with ratio 85:10:5 in weight respectively. Initially, the materials were mixed in N,N-Dimethylacetamide (DMAc) at 70°C and the slurry was casted on copper foil and aluminium foil for anode and cathode respectively. The casted slurry was then heated at 80°C in order to evaporate the solvent and shaped into 16 mm–diameter disc. For half-cell, the LTO electrode was crimped with Metallic lithium, while for the full-cell capacitor, the LTO electrode was paired with a cathode based FG. The electrolyte and separator employed in this preparation were 1 M LiPF$_6$ dissolved in ethylene-carbonate and ethyl-methyl-carbonate (EC:EMC) in ratio 3:7 v/v and Celgard separator.

The X-Ray Diffraction characterization (Rigaku SmartLab at Research Center for Physics, LIPI) was initially executed at 2-theta range 10° to 90° with Cu Kα with wave length of 1.541862 Å to probe the phase formation of each samples. Electrochemical Impedance Spectroscopy (EIS) via EIS (HIOKI 5322-50 LCR HiTESTER) was also conducted to evaluate the impedance of each cell with frequency of 0.1 kHz-50 kHz. Cyclic voltammetry analysis was performed through both half-cell and full-cell capacitor at various scan rate under 3.0 volt. The full-cell capacitors was also measured by Charge-Discharge (CD) test using various current density of 10, 50, and 100 mAg$^{-1}$ in the range of 0.5–3.0 volt.

45
RESULT AND DISCUSSION

Figure 1 displays the diffraction pattern of LTO, LTOCu 0.025, LTOCu 0.05, and LTOCu 0.075. It can be seen that the spinel-LTO are definitely detected in each sample at 2-theta around 18.35°, 35.60°, 37.25°, 43.25°, 47.36°, 57.21°, 62.82°, 66.07°, 74.34°, 75.37°, 79.39°, and 82.35° (ICSD 98-016-9866) followed by higher crystallinity than other samples. The other phases are also observed at various 2-theta referring to Baddeleyite-ZrO$_2$ (ICSD 98-004-1010), Zirconium oxide (ICSD 98-016-4861), and Dilithium oxide (Li$_2$O, ICSD 98-010-8886).

Figure 1. XRD-pattern of (a) LTO, (b) LTOCu 0.025, (c) LTOCu 0.05, and (d) LTOCu 0.075

Table 1. The percentage of impurities contained in each sample

Samples	Impurity (%)			
	Spinel-LTO	Baddeleyite	Zr$_2$O$_4$	Li$_2$O
LTOCu 0	54.2	22.1	10.2	13.5
LTOCu 0.025	41.1	40.5	18.4	-
LTOCu 0.05	38.5	22.1	39.4	-
LTOCu 0.075	50.5	38.8	10.7	-

The graph is also featured by peak magnification at the highest peak of reflection index (111). It is obviously shown that the peaks appear shifted as it is substituted by Cu$^{3+}$, especially for LTOCu 0.025, in which shifting peak is observed more significantly than those of LTOCu 0.05 dan LTOCu 0.075 samples. In addition, the diffraction graph is analyzed using Rietveld refinement method to calculate the percentage of the impurities, as listed in Table 1. It is clearly shown that spinel-LTO contained in each sample seems to decrease as the doping increase. This phenomenon is due to the additional zirconium material suspected from the ZrO$_2$-ball during high energy milling and the excessive Li source which unsuccessfully reacts with titanium oxide during milling process. The presence of impurities contained in each sample will affect the electrochemical performance in each cell.

Figure 2. (a) Cyclic Voltammogram and (b) Cole-cole plot of LTO, LTOCu 0.025, LTOCu 0.05, and LTOCu 0.075

To understand the electrochemical behavior of each sample, half-cells was initially characterized using CV and EIS. Figure 2a shows CV profile of each sample, which was assembled with lithium metallic into coin cell, at a voltage range of 0.5–2.5 volt with scan rate of 0.1 mVs$^{-1}$. It is clearly
shown that oxidation and reduction peaks are detected at a voltage rate of 1.4–1.75 volt, in which the working voltage of LTO is located, namely 1.55 volt. In addition, other peaks are generally undetected in the voltage rage, suggesting that the impurities observed by XRD characterization is ascribed as non-active materials to produce oxidation and reduction peak. Some reference also reported that the existence of these peaks can be an indication that the reaction inside of each cell is reversible (Linden and Reddy 2002). Furthermore, the peak pairs may relate to kinetic properties of LTO and Cu-doped LTO inside the cell, such as mobility of Li\(^+\). Based on current response analysis, the peak pairs become dull as the LTO contained in the samples decreased. The cell based pristine LTO represent the highest peaks which can be affected by the LTO contained in the sample. This phenomenon is also supported by the voltage difference of redox peaks presented as 0.29 volt, 0.24 volt, 0.21 volt and 0.22 volt for sample LTO, LTOCu 0.025, LTOCu 0.05, and LTOCu 0.075 respectively. The difference of peak pairs voltage indicates the polarization degree of the ions in the electrode (Zhang et al. 2016; Song et al. 2014).

The Cole-cole plot of each sample is presented in Figure 2 (b) featured by the equivalent circuit as an inset in the graph. The semicircles of each sample are fitted using software Z-View in order to determine the electrical resistance (R\(_S\)) and charge transfer resistance (R\(_{CT}\)). Based on the equivalent circuit, the R\(_S\) and R\(_{CT}\) are defined as interception of the semicircle with Z’ (X-axis) at high and low frequency respectively (Nuroniah et al. 2019).

As listed in Table 2, it can be seen that electrical resistance is declined. In contrast, the charge transfer resistance is elevated. The increasing R\(_{CT}\) may be due to the impurity of Baddeleyite and Zr\(_4\)O\(_8\) contributing to inferior conductance property of LTO (Wang et al. 2014). The R\(_S\) decreases as copper content increases due to the high electrical conductivity of copper suggesting fast electron transfer via external circuit.

Table 2. Electrical and Charge Transfer Resistance of Each Samples

LTOCu	Electrical Resistance (ohm)	Charge Transfer Resistance (ohm)
0	17.40	114.84
0.025	9.51	142.37
0.05	7.69	155.28
0.075	4.59	163.12

The sample of LTOCu 0.05 however possess sharper peak pairs than those of LTOCu 0.075 due to lower LTO content as shown in Table 2.
Table 3. Specific Capacitance of Full-Cell LIC Based LTO and LTOCu 0.025

Specific Current (mA g⁻¹)	Specific Capacitance (F g⁻¹)	LTO	LTOCu 0.025
10	5.45	0.43	
50	2.63	0.16	
100	3.55	0.08	

To further understand the electrochemical performance, full-cell LIC based LTO//AC-FG and LTOCu 0.025//AC-FG are investigated by charge-discharge measurement as shown in Figure 3. The measurement was conducted at 1.0–3.0 volt with various current densities of 10, 50, and 100 mA g⁻¹ (c) and (d) respectively. However, the slope linearity of the presented curve is dissimilar with that of EDLC (Lee and Yoon 2013) which can be caused by combination mechanism of electrode materials adopted from LIB and EDLC. By this measurement, the specific capacitance can also be obtained as listed in the Table 3. The specific capacitances were calculated via the following equation (Sun et al. 2017):

\[(F g^{-1}) = (mAh g^{-1}) \cdot 3.6 / \Delta V\]

\(\Delta V\) represents the potential window of the measurements and (mAh g⁻¹) specific capacity of the full-cell LIC. It can be seen that the specific capacitance of LTO//AC-FG is higher than that of LTOCu 0.025//AC-FG. This phenomenon may be due to the presence of impurity which affected the mobility of Li⁺ to reach the structure. Declined as increasing current during the measurement for both of samples.

Figure 3 (a-b) Cyclic voltammetry of full cell LIC based (a) LTO//AC-FG and LTOCu 0.025//AC-FG at various scan rate of 5-20 mVs⁻¹ and (c-d) Charge-discharge profile at current density 10 mA g⁻¹, 50 mA g⁻¹, and 100 mA g⁻¹
CONCLUSION
LTO and Cu-doped LTO are successfully conducted via high energy milling although each sample contains 50% impurities detected through XRD analysis. Electrochemical behavior of half-cell exhibit that undoped LTO perform as the highest redox peaks. As Cu increases, the electric conductivity decreases, while the charge transfer resistance increases to some extent. Full-cell performance of LIC represents that LTO/AC-FG shows higher capacitance than that of LTOCu 0.025/AC-FG. For further study, Cu-doped LTO can be synthesized via HEM with certain milling time and Ti-based balls in order to reduce the impurity content.

ACKNOWLEDGMENT
This research is partially funded by Ministry of Research, Technology, and Higher Education of Republic of Indonesia under Insentif Riset Sistem Inovasi Nasional (INSINAS) scheme (contract number 30/INS-1/PPK/E4/2019) and partially supported by Indonesia Toray Science Foundation 26th Research Grant (FY 2019). The authors acknowledge Research Center for Physics, Indonesian Institute of Sciences (LIPI) for providing the experimental and characterization supports.

REFERENCES
Chen, Yinan Huang, Cuihua An, Hao Zhang, Yijing Wang, and Lifang Jiao. 2015. “Copper-Doped Dual Phase Li$_4$Ti$_5$O$_12$−TiO$_2$ Nanosheets as High-Rate and Long Cycle Life Anodes for High-Power Lithium-Ion Batteries.” Chem. Sus. Chem. 8: 114–22.

Chen, George Z., and George Z. Chen. 2017. “Supercapacitor and Supercapattery as Emerging Electrochemical Energy Stores.” International Materials Reviews 62(4): 173–202.

Ding, Jia, Wenbin Hu, Eunsu Paek, and David Mitlin. 2018. “Review of Hybrid Ion Capacitors: From Aqueous to Lithium to Sodium.” Chemical Reviews 118: 6457–98.

Doloksaribu, Maryati, Kuwat Triyana, and Bambang Prihandoko. 2017. “The Effect of Concentration Nanoparticles MnO$_2$ Doped in Activated Carbon as Supercapacitor Electrodes.” International Journal of Applied Engineering Research 12(19): 8625–31.

Huang, Shahua, Zhaoyin Wen, Zhonghua Gu, and Xiujian Zhu. 2005. “Preparation and Cycling Performance of Al$^{3+}$ and F- Co-Substituted Compounds Li$_4$Al$_{1-x}$Ti$_{5-x}$F$_{12-y}$.” Electrochimica Acta 50: 4057–62.

Lee, Byungwan, and Jung Rag Yoon. 2013. “Synthesis of High-Performance Li$_4$Ti$_5$O$_12$ and Its Application to the Asymmetric Hybrid Capacitor.” Electron. Mater. Lett. 9(6): 871–73.

Li, Bing, Junsheng Zheng, Hongyou Zhang, Liming Jin, Daijun Yang, Hong Lv, Chao Shen, Annadanesh Shellikeri, Yiran Zheng, Ruiqi Gong, Jim P. Zheng, and Cunman Zhang. 2018. “Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium-Ion Capacitors.” Adv. Mater. 1705670: 1–19.

Linden, David, and Thomas B. Reddy. 2002. Handbook of Batteries. Third Edit. Edited by T. B. Reddy. New York: McGraw-Hill Companies.

Liu, Wei, Yu Wang, Xiaolin Jia, and Baojia Xia. 2013. “The Characterization of Lithium Titanate Microspheres Synthesized by a Hydrothermal Method.” Journal of Chemistry 2013: 1–9.

Lu, Xiaopeng, Xingning Wang, Min Wang, and Haisheng Fang. 2017. “Cycling Stability of LiMnPO$_4$/C Composite Obtained by Different Processing Routes.” Int. J. Electrochem. Sci. 12: 2909–16.

Meng, Weiwei, Yongjun Xu, Beilei Yan, and Jike Guo. 2018. “Titanium-Modified Li$_4$Ti$_5$O$_12$ with a Synergistic Effect of Surface Modifying, Bulk Doping, and Size Reducing.” Ionics 24: 1019–27.
Ni, Jiangfeng, Liuxiang Yang, Haibo Wang, and Lijun Gao. 2012. “A High-Performance Hybrid Supercapacitor with Li$_4$Ti$_5$O$_{12}$-C Nano-Composite Prepared by In-Situ and Ex-Situ Carbon Modification.” J. Solid State Electrochem. 12: 2791–96.

Nuroniah, Ilma, Slamet Priyono, Achmad Subhan, Bambang Prihandoko, Andi Suhandi, and Ahmad Sohib. 2019. “Synthesis and Characterization of Al-Doped Li$_4$Ti$_5$O$_{12}$ with Sol Gel Method for Anode Material Lithium Ion Battery.” Materials Today: Proceedings 13: 65–70.

Sandhya, C. P., Bibin John, and C. Gouri. 2014. “Lithium Titanate as Anode Material for Lithium-Ion Cells: A Review.” Ionics 20: 601–20.

Shellikeri, A., S. Yturriaga, J. S. Zheng, W. Cao, M. Hagen, J. A. Read, T. R. Jow, and J. P. Zheng. 2018. “Hybrid Lithium-Ion Capacitor with LiFePO$_4$/AC Composite Cathode – Long Term Cycle Life Study, Rate Effect and Charge Sharing Analysis.” Journal of Power Sources 392(May): 285–95.

Song, Hannah, Tae-gyung Jeong, Young Hoon Moon, Ho-iwan Chun, Kyung Yoon Chung, Hyung Sun Kim, Byung Won Cho, and Yong-Tae Kim. 2014. “Stabilization of Oxygen-Deficient Structure for Conducting Li$_4$Ti$_5$O$_{12-d}$ by Molybdenum Doping in a Reducing Atmosphere.” Sci. Rep. 4: 4350.

Sun, Fei, Jihui Gao, Yuwen Zhu, Xinxin Pi, Lijie Wang, Xin Liu, and Yukun Qin. 2017. “A High Performance Lithium Ion Capacitor Achieved by the Integration of a Sn-C Anode and a Biomass-Derived Microporous Activated Carbon Cathode.” Sci. Rep. 7: 40990.

Sun, Xiangcheng, Pavle V. Radovanovich, and Bo Cui. 2014. “Advances in Spinel Li$_4$Ti$_5$O$_{12}$ Anode Materials for Lithium-Ion Batteries.” New Journal of Chemistry 39(1): 38–63.

Wang, Zhiguo, Zhixing Wang, Wenjie Peng, Huajun Guo, and Xinhai Li. 2014. “An Improved Solid-State Reaction to Synthesize Zr-Doped Li$_4$Ti$_5$O$_{12}$ Anode Material and Its Application in LiMnO$_2$/Li$_4$Ti$_5$O$_{12}$ Full-Cell.” Ceramics International 40(7): 10053–59.

Xu, Xuenia, Feier Niu, Dapeng Zhang, Chenxiao Chu, Chunsheng Wang, Jian Yang, and Yitai Qian. 2018. “Hierarchically Porous Li$_3$VO$_4$/C Nanocomposite as an Advanced Anode Material for High-Performance Lithium-Ion Capacitors.” Journal of Power Sources 384 (November 2017): 240–48.

Zhang, Yu, Yun Zhang, Ling Huang, Zhongfu Zhou, Jingfeng Wang, Heng Liu, and Hao Wu. 2016. “Electrochimica Acta Hierarchical Carombola-like Li$_4$Ti$_5$O$_{12}$-TiO$_2$ Composites as Advanced Anode Materials for Lithium-Ion Batteries.” Electrochimica Acta 195: 124–33.

Zhao, Enbo, Chuanli Qin, Hong-ryun Jung, Gene Berdichevsky, Alper Nese, Seth Marder, and Gleb Yushin. 2016. “Lithium Titanate Confined in Carbon Nanopores for Asymmetric Supercapacitors.” Nano 10: 3977–84.

Zhao, Enyue, Xiangfeng Liu, Zhongbo Hu, Limei Sun, and Xiaoling Xiao. 2015. “Facile Synthesis and Enhanced Electrochemical Performances of Li2TiO3-Coated Lithium-Rich Layered Li1.13Ni0.30Mn0.57O2 Cathode Materials for Lithium-Ion Batteries.” Journal of Power Sources 294: 141–49.