Adverse Effect of Circadian Rhythm Disorder on Reparative Angiogenesis in Hind Limb Ischemia

Kazuhito Tsuzuki, MD; Yuuki Shimizu, MD, PhD; Junya Suzuki, MD; Zhongyue Pu, MD; Shukuro Yamaguchi, MD, PhD; Yusuke Fujikawa, MD; Katsuhiro Kato, MD, PhD; Koji Ohashi, MD, PhD; Mikito Takefuji, MD, PhD; Yasuko K. Bando, MD, PhD; Noriyuki Ouchi, MD, PhD; John W. Calvert, PhD; Rei Shibata, MD, PhD; Toyoaki Murohara, MD, PhD

BACKGROUND: Circadian rhythm disorders, often seen in modern lifestyles, are a major social health concern. The aim of this study was to examine whether circadian rhythm disorders would influence angiogenesis and blood perfusion recovery in a mouse model of hind limb ischemia.

METHODS AND RESULTS: A jet-lag model was established in C57BL/6J mice using a light-controlled isolation box. Control mice were kept at a light/dark 12:12 (12-hour light and 12-hour dark) condition. Concentrations of plasma vascular endothelial growth factor and circulating endothelial progenitor cells in control mice formed a circadian rhythm, which was diminished in the jet-lag model (P<0.05). The jet-lag condition deteriorated tissue capillary formation (P<0.001) and tissue blood perfusion recovery (P<0.01) in hind limb ischemia, which was associated with downregulation of vascular endothelial growth factor expression in local ischemic tissue and in the plasma. Although the expression of clock genes (ie, Clock, Bmal1, and Cry) in local tissues was upregulated after ischemic injury, the expression levels of cryptochrome (Cry) 1 and Cry2 were inhibited by the jet-lag condition. Next, Cry1 and Cry2 double-knockout mice were examined for blood perfusion recoveries and a reparative angiogenesis. Cry1 and Cry2 double-knockout mice revealed suppressed capillary density (P<0.001) and suppressed tissue blood perfusion recovery (P<0.05) in the hind limb ischemia model. Moreover, knockdown of CRY1/2 in human umbilical vein endothelial cells was accompanied by increased expression of WEE1 and decreased expression of HOXC5. This was associated with decreased proliferative capacity, migration ability, and tube formation ability of human umbilical vein endothelial cells, respectively, leading to impairment of angiogenesis.

CONCLUSIONS: Our data suggest that circadian rhythm disorder deteriorates reparative ischemia-induced angiogenesis and that maintenance of circadian rhythm plays an important role in angiogenesis.

Key Words: angiogenesis ■ circadian rhythm ■ cryptochrome ■ endothelial progenitor cell ■ hind limb ischemia ■ vascular endothelial growth factor

Circadian rhythm is an endogenous diurnal rhythm that induces oscillations in organisms and generates periodicity even when there is no time information from the outside environment. It is a fundamental function that has been acquired by life on the Earth, from plants, cyanobacteria, Drosophila, fish, and birds to mammals and higher primates, and is responsible for adaptation to the environmental changes during the rotation cycle. Conversely, circadian rhythm disorders in humans, resulting from modern society lifestyles changes, such as shift work, jet lag, or nighttime mobile telephone use, have emerged as major social...
Tsuzuki et al. Circadian Rhythm and Angiogenesis

For instance, many epidemiological studies have reported that circadian rhythm disorders correlate with an increased risk of obesity, diabetes mellitus, hypertension, arrhythmia, and ischemic heart disease. However, there is still a large knowledge gap between the precise causal mechanism underlying the pathogenesis of circadian rhythm disorders, especially in the setting of reparative angiogenesis. Accordingly, we investigated the effects of circadian rhythm disorder on reparative angiogenesis and its potential molecular mechanisms in the setting of hind limb ischemia (HLI) using both an environment-induced and a genetically induced circadian rhythm disruption in a mouse model.

METHODS

The data, analytic methods, and study materials of this study are available from the corresponding author on reasonable request.

Animal Care

All procedures of animal care and use in this study were approved by the Animal Ethics Review Board of Nagoya University School of Medicine. Our study conformed to the guidelines from Directive 2010/63/EU of the European Parliament on the protection of animals used for scientific purposes or the National Institutes of Health Guide for the Care and Use of Laboratory Animals. We used the only male mice in present studies, as described in the ATVB Council Statement for considering sex difference as a biological variable. Male C57BL/6J mice (age, 8 weeks) were purchased from Charles River Laboratories Japan, Inc (Kanagawa, Japan). Cry1 and Cry2 deficiency mice were kindly provided by Dr Takeshi Todo (Osaka University). In this study, we use Cry1 and Cry2 double-heterozygous knockout (Cry1/2-DKO) mice. A new set of wild-type HLI mice was repeated for the DKO experiments. Wild-type littermates were used as controls for the DKO experiments. Mice (male, aged 8–10 weeks) were randomly assigned to the experimental groups. All the mice were anesthetized with medetomidine hydrochloride (0.3 mg/kg), midazolam (4 mg/kg), and butorphanol tartrate (5 mg/kg) before the surgical procedure as well as during laser Doppler measurements of limb blood perfusion. We used a 26-gauge needle to draw about 500 to 1000 μL of blood from the heart cavity of mice by slow aspiration, taking care not to destroy blood cells, and used it for the following experiments. Cervical dislocation was used for the animal euthanasia method.

Mouse Jet-Lag Model

Male C57BL/6J mice (aged 8 weeks) were set in a home cage in a light-shield mouse-housing box (MELQUEST,
The mice were acclimatized to the environment in Nagoya University Graduate School of Medicine for 1 week (light-dark [LD] condition with 9:00 [zeitgeber time 0: ZT0]– 21:00 [ZT12] light period) before being housed under the control condition and advance time shift condition (8-hour phase advance once every 4 days) with LED lights on and off that are adjusted by an optional timer (MELQUEST, No. LCT-8). The animals were allowed ad libitum access to food and water and were regularly subjected to observation. After 12 days of housing in control or jet-lag environment, a unilateral lower limb ischemia model was created in these mice as described below. Thereafter, the control group was housed under normal condition, and the jet-lag group was continued to be housed in the jet-lag model.

Enzyme-Linked Immunosorbent Assay
Concentrations of vascular endothelial growth factor (VEGF) and stromal cell–derived factor-1 (SDF-1) α proteins in murine blood plasma samples were determined by ELISA kits (mouse VEGF ELISA kit, R&D Systems, and mouse CXCL12/SDF-1α Quantikine ELISA kit, respectively), according to manufacturer’s instructions. Plasma levels of VEGF and SDF-1α in sham operation and at day 7 after HLI surgery were measured every 6 hours (6:00, 12:00, 18:00, and 24:00) in both the control and jet-lag groups.

Flow Cytometry
Blood samples were collected every 6 hours (6:00, 12:00, 18:00, and 24:00). Endothelial progenitor cell (EPC) populations in blood were analyzed using fluorescence-activated cell sorting with fluorescein isothiocyanate–labeled anti-CD34 monoclonal antibody (1:1000, BD Bioscience) and phycoerythrin-labeled anti-flk1 monoclonal antibody (1:100, BD Bioscience). Isotype-matched IgGs were used for negative control. Immunofluorescence-labeled cells were analyzed by fluorescence-activated cell sorting and Cell Quest Software, counting 10 000 events per sample.

Mouse Model of HLI
Unilateral HLI was induced in mice under anesthesia. Left femoral artery ligation and total excision of the branches were performed as previously described.

Blood Perfusion Assessment
The laser Doppler perfusion imaging system (Moor Instruments, Devon, UK) was used to record blood flow changes before and after surgery on postoperative days (PODs) 0, 7, 14, 21, and 28 around 10 AM. Briefly, the animals were kept in a dorsal position after intraperitoneal anesthesia with their hind limbs slightly fixed and excess hairs removed before imaging. Room temperature was stabilized at 25 °C, and mouse body temperatures were kept at 37 °C by using a hotplate. To account for variables, including light and temperature, calculated perfusion was expressed as a ratio of surgical (ischemic)/nonsurgical (nonischemic) limb. Individuals with limb amputations were excluded from this analysis because it was not possible to evaluate blood flow to the target limb using laser Doppler.

Severity of Ischemic Limb Status
States of ischemic limbs were divided into 3 groups: limb loss, toe necrosis, and limb salvage. Limb ischemia severity was compared between the control and jet-lag groups.

Isolation of RNA and Real-Time Reverse Transcription–Polymerase Chain Reaction
RNA was isolated using the RNeasy Micro Kit, according to the manufacturer's instructions (QIAGEN). Reverse transcription was performed with 1-μg total RNA in a standard manner with ReverTra Ace qPCR RT Master Mix (TOYOBO) supplemented with DNase treatment. Real-time reverse transcription–polymerase chain reaction analysis of the VEGF, SDF-1, Clock, Bmal1, VEGFR1, VEGFR2, WEE1, HOXC5, and GAPDH mRNAs was performed on C1000 Thermal Cycler (BIO-RAD) using SYBR Green I and the following conditions: 95 °C for 10 minutes, followed by 40 cycles at 95 °C for 15 seconds and 60 °C for 45 seconds. The forward primer for mouse VEGF was as follows: 5′-AGCACAGCAATGTGATGC-3′; the reverse primer: 5′-AATGCTTTCTCCGCTCTGAA-3′.
5'-ATCGGCTTGGAACCCAGAGG-3'; the reverse primer for mouse HIF1 was as follows: 5'-CTGCGAGATGCAAGAGGTTGC-3'; the reverse primer for mouse HIF1 was as follows: 5'-GTGCTGACTCTGCTGGAG-3'. The forward primer for mouse HoxC5 was as follows: 5'-CATGCAAGCTTTCTGTGCATC-3'; the reverse primer: 5'-CATTTGCCAGAGGCTTCAGAG-3'. The forward primer for mouse OXCR1 was as follows: 5'-CTCGGCTAGCTCTCTTTT-3'; the reverse primer: 5'-GAAGATTCGGATTCCGCAAGATC-3'. The forward primer for mouse Clock was as follows: 5'-GCAAAAATCGCCACCTGAG-3'; the reverse primer: 5'-TTGGAAAGGAACGAGACGCA-3'.

Cell Culture
Human umbilical vein endothelial cells (HUVECs) were purchased from Lonza. When cultured HUVECs reached ~90% confluent, monolayers of cells were transfected with siRNA against both Cry1 (100 pmol/L, Ambion) and Cry2 (100 pmol/L, Ambion) or scrambled sequence (negative control, 200 pmol/L, Ambion).26 Transfections were performed with Lipofectamine 2000 (Thermo Fisher Scientific) by incubating the HUVECs with the respective siRNA for 1 day.26 Afterward, medium containing the transfecting siRNA agent was removed from the cell monolayers, washed twice with cold PBS, and replenished with fresh EB M-2 with 0.5% fetal bovine serum (FBS). For another experiment, HUVECs were cultured with 0.1% dimethyl sulfoxide (vehicle group) or 40 μmol/L of KLO01 (funakoshi) in EBM-2 with 0.5% FBS for 16 hours.

Tube Formation Assay
HUVECs were cultured in the complete medium, and were changed to EBM-2 with 0.5% FBS medium as a serum starvation overnight. After overnight starvation, the cells were transferred onto a 6-well plate coated with Matrigel (Becton Dickinson, Bedford, MA) at 2×10^4 cells/well in EBM-2 with 0.5% FBS medium.22 Cells were incubated at 37 °C for 6 hours, and morphological changes of HUVECs were observed and photographed in 3 different fields per well under a microscope. Inhibition of tube formation was assessed by the measurement of total tube length formed in each photograph using the Image J software (version 1.51).22

Proliferation Assay
Cells were incubated in a 96-well tissue culture plate with the WST-1 reagent for 6 hours.18,22 We then evaluated cell proliferation using the Premix WST-1 Cell Proliferation Assay System (TAKARA Bio Inc), according to the manufacturer’s instructions, with a scanning multimwell spectrophotometer (440 nm; reference, 600 nm).18,22 The measured absorbance directly correlates to the number of viable cells.

Migration Assay
Cell migration assay was performed using 3-mm pore size Costar transwell migration chambers (Corning Inc) in 24-well plates. Then, 4×10^4 cells/100 μL in EBM-2 with 0.5% FBS were plated on the top of the chamber membrane and incubated for 8 hours. Then, Cells were then fixed with 3% paraformaldehyde at room temperature for 15 minutes and stained with 0.1% 4',6-diamidino-2-phenylindole for 3 minutes. The stain was rinsed off thoroughly with PBS. Cells remaining on the top of the migration chamber were removed by
gently swabbing using a cotton tip, and stained cells adhering to the bottom of the chamber membrane were counted. The cell numbers of 5 random fields at the magnification of 200 for each migration chamber membrane were counted, and the average number was recorded.

**Statistical Analysis**

Results are expressed as mean±SEM. Shapiro-Wilk normality test was performed to evaluate data distribution. Homogeneity of variance was evaluated by F test. Normally distributed data with 1 variable were analyzed by the unpaired Student t test to evaluate the statistical significance between the 2 groups; 1-way ANOVA along with the Tukey post hoc test was used for ≥3 groups. We also used a 2-way repeated-measures ANOVA (Bonferroni) to assess the changes over time. Nonnormally distributed data were analyzed by 2-tailed Mann-Whitney U test between 2 groups and Kruskal-Wallis H test with post hoc Dunn test among 3 groups. GraphPad Prism software version 8.0 (GraphPad Software Inc) was used. Values of P<0.05 were considered statistically significant.27

**RESULTS**

**Relationship Between Circadian Rhythm and Circulating VEGF, SDF-1, and EPCs With or Without Daily Jet Lag**

Circadian fluctuations in plasma VEGF levels were observed in normally housed control mice peaking around noon (ie, resting period for mouse). In contrast, the circadian variation in plasma VEGF concentrations disappeared in the jet-lag group. In addition, plasma VEGF levels were consistently decreased in the jet-lag group compared with the control group (Figure 1A). Figure 2B demonstrates that circadian fluctuations of SDF-1 levels peaked at around noon in a similar manner as the kinetics for plasma VEGF levels in normally housed control mice. However, the jet-lag intervention merely shifted the peak in plasma SDF-1 levels. Next, the number of mobilized EPCs in the peripheral blood peaked at daytime (ie, resting period for mice) in normally housed mice. Conversely, the intraday variability of circulating EPCs disappeared in the jet-lag model, and the number of EPCs in the peripheral blood decreased compared with the control group (Figure 1C and 1D).

**Continuous Jet Lag Inhibits Angiogenesis and Blood Perfusion Recovery in a Murine Model of HLI**

Jet lag did not change the food and water consumption of the experimental mouse (Figure S1). Laser Doppler measurement of the blood flow in the lower limbs revealed that the jet-lag group had poorer blood flow recovery compared with the control group (Figure 2A and 2B). Moreover, on day 28 of the limb ischemia, the leg/toe necrosis and prolapses were more severe in the jet-lag model than in the control group (Figure 2C and 2D). Furthermore, when ischemic skeletal muscle tissues were harvested and the capillary density was assessed at day 28 of limb ischemia, the capillary density was lower in the jet-lag group than in the control group (Figure 2E and 2F). Both VEGF and SDF-1 mRNA were significantly downregulated in the jet-lag group compared with the control group (Figure 2G and 2H). In addition, Figure 2I and 2J show that plasma VEGF and SDF-1 levels were also lower in the jet-lag group than in the control group. Furthermore, circulating EPCs after limb ischemia were suppressed in the jet-lag group compared with the control group (Figure S2). Taken together, these results indicate that environment-induced circadian rhythm disturbance decreases VEGF and SDF-1 expression in both local ischemic tissues and plasma, resulting in reduced angiogenic response and impaired blood flow recovery.

**Time Course of Clock Gene Expression After Ischemic Injury In Vivo and Impact of Cryptochrome Deficiency on Blood Perfusion Recovery and Angiogenesis in an HLI Model**

Next, the time courses of core-loop forming clock gene expression, mRNA of Clock, Bmal1, Period (Per), and Cry, were investigated in the setting of blood perfusion recovery in ischemic tissues to elucidate the molecular mechanisms in terms of a peripheral clock on reparative angiogenesis. Figure 3A through 3C revealed that the expression of Cry1, Cry2, and Clock in local tissues were upregulated, peaking around POD7 after ischemic injury. The expression of Bmal1 was upregulated, peaking around POD3 in ischemic hind limbs (Figure 3D). In contrast, the expression of Per2 was downregulated at POD5, as shown in Figure 3E. Interestingly, in the jet-lag group, the expression levels of Cry1 and Cry2, Clock, and Bmal1 in ischemic tissues were down-regulated at POD7 (Figure 3F through 3I) compared with the control group. On the other hand, the expression of Per2 was upregulated, contrary to other clock genes at POD5 (Figure 3J). Subsequently, we examined whether Cry deficiency would deteriorate reparative angiogenesis in HLI. Figure 4A and 4B revealed that Cry1/2-DKO mice demonstrated worse
Figure 1. Circadian kinetics of circulating vascular endothelial growth factor (VEGF), stromal cell–derived factor-1 (SDF-1), and endothelial progenitor cells in mice.

A, Plasma level of VEGF concentration under control or jet-lagged condition for 13 days at 6:00, 12:00, 18:00, and 24:00 detected by ELISA kit. Values are mean±SEM (n=8 for each). *P<0.05 vs 6:00, #P<0.05 vs at the same time of control, by 1-way ANOVA and Tukey post hoc tests.

B, Plasma level of SDF-1α concentration under control or jet-lagged condition for 13 days at 6:00, 12:00, 18:00, and 24:00 detected by ELISA kit. Values are mean±SEM (n=8 for each). *P<0.05 vs 6:00, #P<0.05 vs at the same time of control, by 1-way ANOVA and Tukey post hoc tests.

C, Representative images of circulating CD34- and Flk1-positive cells by fluorescence-activated cell sorting analysis (C) and the quantification of CD34 and Flk1 double-positive cell ratio (D) at 6:00, 12:00, 18:00, and 24:00. Data are mean±SEM (n=5). *P<0.05 vs 6:00, #P<0.05 vs at the same time of control, by 1-way ANOVA and Tukey post hoc tests. FITC indicates fluorescein isothiocyanate.
blood perfusion recovery compared with control wild-type mice. In addition, Cry1/2 deficiency suppressed capillary density at POD28 in the ischemic limb (Figure 4C and 4D). Furthermore, the expressions of VEGF and SDF-1 in the ischemic skeletal muscle were downregulated in the CRY1/2 mice following HLI (Figure S3A and S3B).

Cryptochrome Promotes the Proliferation, Migration, and Tube Formation of Endothelial Cells via Modulating WEE1 and HOXC5 Expression

Finally, to gain insight into the potential molecular mechanism, the role of Cry in endothelial cells on
angiogenesis was investigated by loss-of-function studies. Knockdown of CRY1 and CRY2 in HUVECs did not influence the expression of CLOCK or BMAL1 (Figure S4A and S4B). Interestingly, PER, which is known to form a dimer with CRY, was upregulated in response to CRY1/2 double knockdown that could be considered a compensatory response (Figure S4C). The effects on angiogenesis were next evaluated in terms of proliferation, migration, and tube formation ability of endothelial cells as a functional analysis experiment. Analyses revealed that the CRY1/2 knockdown group inhibited the proliferation of vascular endothelial cells (Figure 5A). In addition, the migration ability of HUVECs with CRY1/2 knockdown, as evaluated by Boyden chamber experiments, demonstrated that the migration ability of HUVECs with CRY1/2 knockdown was inhibited (Figure 5B and 5C). Furthermore, when the tubular morphological features were evaluated by Matrigel experiments, it was found that CRY1/2 knockdown-treated HUVECs inhibited the tubular morphological features (Figure 5D and 5E). Taken together, CRY1/2 in HUVECs plays an important role in angiogenesis.

To gain insight into the clock control gene by CRY, quantitative polymerase chain reaction was performed on CRY1/2 knockdown-treated HUVECs. Although the expression levels of VEGFR1 and VEGFR2 were not changed (Figure S5A and S5B), the expression of WEE1, a mitotic cycle stopper, was upregulated and the expression of HOXC5, a gene involved in a migratory capacity of endothelial cells, was downregulated within CRY1/2 knockdown HUVECs (Figure 5F and 5G). Conversely, treatment with KL001, which is a stabilizer of CRY1 and CRY2, promoted proliferation, migration, and tubular formation of HUVECs (Figure 6A through 6E). Moreover, the expression of WEE1 was downregulated (Figure 6F), and the expression of HOXC5 was upregulated, by KL001 (Figure 6G).

DISCUSSION

The major findings of the present study are as follows: (1) plasma VEGF levels display circadian rhythm peaking at around noon in mice, which is diminished by circadian rhythm disturbance by a jet-lag model; (2) circulating EPCs show diurnal variation in mice, which is canceled by jet-lag model-induced circadian rhythm disruption; (3) constant jet lag inhibits reparative angiogenesis as well as blood perfusion recovery in a mouse model of HLI; (4) deficiency of Cry1 and Cry2 genes inhibits angiogenesis and blood perfusion recovery in a mouse model of HLI; and (5) cryptochrome in endothelial cells promotes angiogenesis in terms of the proliferation, migration, and tube formation. The summary of the adverse effect of circadian rhythm disorder on reparative angiogenesis in HLI is shown in Figure S6.

The number of patients with ischemic CVD is increasing worldwide, especially in developed countries, and interventions against these diseases are one of the most important medical issues as they cannot only prolong life expectancy but also improve quality of life.28 The disturbance of regular circadian rhythms attributable to modern social lifestyle, such as shift work and jet lag, has recently become a hot topic of modern health concerns,2–4 and observational studies have suggested an association between circadian rhythm disorders and the risk of cardiovascular events.29 However, most of the reports on circadian rhythm disorders and the cardiovascular systems have come from epidemiological studies, and their molecular mechanisms are not fully understood.

VEGF is one of the key growth factors to augment postnatal angiogenesis and vasculogenesis.30,31 Previous studies reported that tumor-related VEGF expression in mice displayed a circadian rhythm.32,33 and another study demonstrated that Per2-deficient mice showed less VEGF expression in a myocardial infarction model.34 However, it is not known if a circulating VEGF level displays a 24-hour circadian rhythm under physiological conditions or if a disruption in circadian rhythms disturbs the circulating level of VEGF. Bone marrow–derived EPCs circulate in the peripheral blood and are incorporated into newly formed blood vessels, contributing to vasculogenesis.35 Thus, circulating EPCs play an important role in vascular repair/regeneration during blood perfusion recovery at ischemic tissues. Circadian
Figure 3. The time series expression of peripheral clock genes in ischemic muscles and the impact of jet-lag condition.

A through E. The time series of mRNA levels of cryptochrome (Cry) 1, Cry2, Clock, Bmal1, and Period 2 (Per2) in the samples collected from sham or ischemic muscles at post–hind limb ischemia day 0, 3, 5, 7, and 14. Data are mean±SEM. *P<0.05, **P<0.01, and ***P<0.001 vs sham, by 2-way ANOVA and Bonferroni post hoc tests.

F through J. The expressions of Cry1, Cry2, Clock, Bmal1, and Per2 in ischemic muscles at day 7 of postoperation in the control or jet-lag group. Data are mean±SEM (n=5). *P<0.05, **P<0.01 vs control, by unpaired Student t test. POD indicates postoperative day.
changes of circulating EPCs in blood have been reported to be disturbed in non–dipper-type hypertension and type 2 diabetes mellitus. In addition, in an animal model, mobilization of EPCs in blood was inhibited by Per2 knockout. However, there is not any evidence on the impact of circadian rhythm disorder on the kinetics of circulating EPCs in 24-hour intraday variation to date. Herein, our data unveiled the evidence that circulating VEGF and EPCs in physiological conditions display circadian rhythm peaking at daytime (ie, resting period for mouse), which were diminished by a constant jet-lag condition. Moreover, the present study also revealed that the environment-induced constant circadian rhythm disorder has an adverse effect on reparative angiogenesis in a mouse model of HLI.

The suprachiasmatic nucleus in the hypothalamus is the main body of the biological clock, and the clock cells in this region contain clock genes and keep time at a rhythm of ≈24 hours. However, each cell in the peripheral tissues also individually contains clock genes, which are coordinated with the central clock and form a 24-hour cycle of gene expression at the cellular level. As a central oscillation mechanism for clock genes, the core loops formed by CLOCK, BMAL1, PER, and CRY and auxiliary interlocking loops formed by Rev-Erb and ROR control the

Figure 4. Deficiency of cryptochrome (Cry) 1 and Cry2 genes inhibited angiogenesis and blood perfusion recovery in hind limb ischemia (HLI). Representative images A, and summary of laser Doppler perfusion imaging ratio (ischemic/nonischemic) B, in wild-type (WT) or Cry double-knockout (DKO) mice. Data are mean±SEM (n=8). *P<0.05 vs WT analyzed using 2-way ANOVA and Bonferroni post hoc tests. †P<0.05 vs at the same time of WT, by 1-way ANOVA and Tukey post hoc tests. C, Immunostaining with anti-CD31 (red) to detect blood endothelial cells. Bar=100 μm. D, Quantitative analysis of CD31-positive cells in HLI in each group. Data are mean±SEM (n=5). ***P<0.001 vs WT, by unpaired Student t test. POD indicates postoperative day.
transcriptional activity of the core loops by dynamically forming spontaneous circadian rhythms and are involved in various physiological phenomena as clock outputs.\(^{41}\) The molecules act as transcriptional factors, with CLOCK and BMAL forming heterodimers and regulating gene expression positively.\(^{42}\) In contrast, heterodimers of PER and CRY regulate gene expression negatively,\(^{43}\) creating an oscillation of gene expression in the cell over a period of 24 hours in an exquisite balance.\(^{44,45}\) In the present study, we focused on CRY among the 4 major clock genes.\(^{46}\) It has been reported in humans that

**Figure 5.** Suppression of cryptochrome (Cry) 1 and Cry2 has the inhibitory effects on angiogenesis in human umbilical vein endothelial cells (HUVECs).

- **A.** WST-1 proliferation assay of HUVECs in the response to the treatment with siRNA-scr or siRNA-Cry1/2.
- **B** and **C,** Representative images of migrating cells stained by 4′,6-diamidino-2-phenylindole and its quantitative analysis. Data are mean±SEM. *P*<0.05 vs siRNA-scr, analyzed by 2-tailed Mann-Whitney *U* tests. Bar=300 μm.
- **D,** Representative images of tube formation of HUVECs (D) and quantitative analysis by tube length (E) in each group. Data are mean±SEM (n=4). **P*<0.01 vs siRNA-scr, analyzed by unpaired Student *t* test. Bar=1 mm.
- **F** and **G,** The expressions of mRNA Wee1 and HOXC5 in HUVECs treated with siRNA-scr or siRNA-Cry1/2 by quantitative polymerase chain reaction. Data are mean±SEM. *P*<0.05, **P*<0.01, vs siRNA-scr, by unpaired Student *t* test.
CRY1 mutation develops sleep phase regression syndrome, whereas CRY2 mutation exhibits a phenotype of sleep phase advance syndrome. Another article reported that double knockout of Cry1 and Cry2 in mice results in strongly impaired circadian rhythm. Herein, we observed that Cry1/2 DKO mice were impaired in blood perfusion recovery in a unilateral lower limb ischemia model and displayed reduced capillary density compared with wild-type mice.

Figure 6. Stabilization of cryptochrome (Cry) 1 and Cry2 promotes angiogenesis in human umbilical vein endothelial cells (HUVECs).

A, WST-1 proliferation assay of HUVECs in the response to the treatment with vehicle (Veh) or KL001 (40 μmol/L). Data are mean±SEM (n=8). ***P<0.001 vs Veh, analyzed by unpaired Student t test. B and C, Representative images of migrating cells stained by 4′,6-diamidino-2-phenylindole (DAPI) and its quantitative analysis. Data are mean±SEM (n=4). *P<0.05 vs Veh, analyzed by unpaired Student t test. Bar=300 μm. Representative images of tube formation of HUVECs (D) and quantitative analysis by tube length (E) in each group. Data are mean±SEM. ***P<0.001 vs Veh, analyzed by unpaired Student t test. Bar=1 mm. F and G, The expressions of mRNA Wee1 and HOXC5 in HUVECs treated with vehicle or KL001 (40 μmol/L) by quantitative polymerase chain reaction. Data are mean±SEM. *P<0.05 vs Veh, by unpaired Student t test.
The expression of the G2/M inhibitor WEE1 is under circadian control via CLOCK/BMAL1-responsive E-box elements in the Wee1 gene promoter. Moreover, Cry deficiency in liver cells displays the continuous expression of Wee1. Systematic genome-wide RNA interference screens found that HOXC5 is one of the potent molecules involved in the migratory activity of endothelial cells. Our results from the loss-of-function study revealed that the expression of HOXC5 was increased with decreased proliferative capacity and migration ability of endothelial cells.

In conclusion, circadian rhythm disorders reduced angiogenic activity in the ischemic tissue, suggesting that correcting circadian rhythm disorders should be recommended in terms of prevention of disease progression, especially in patients with ischemic CVD. Furthermore, on the basis of our new findings, interventions for the therapeutic timing with our chronobiological understanding in diurnal kinetics of angiogenesis and vascular formation, or the regulations of molecules (VEGF, EPC, and cryptochrome) involved in it, might lead to clinical applications. For example, chronotherapy based on our findings would be expected to improve therapeutic efficacy and safety with maximum efficiency and fewer adverse effects in therapeutic angiogenesis in ischemic diseases, or conversely in anti-cancer therapy in the future.

In conclusion, circadian rhythm disorders reduced angiogenic activity in the ischemic tissue, suggesting that they may have adverse effects on CVD. Correction of circadian rhythm may be an important therapeutic target in patients with CVD.

ARTICLE INFORMATION
Received January 14, 2021; accepted June 21, 2021.

Affiliations
Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (K.T., Y.S., Z.P., S.Y., Y.F., K.K., K.O., M.T., Y.K.B., N.O., T.M.); Division of Cardiothoracic Surgery, Department of Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA (J.W.C.); and Department of Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan (R.S.).

Acknowledgments
We are grateful to the staff from the Division of Experimental Animals at the Nagoya University School of Medicine for assisting with animal experiments. We thank Yoko Inoue for her technical assistance.

Sources of Funding
This work was supported by a grant (No. 17H06745 to Dr Shimizu) from the Ministry of Education, Culture, Sports, Science and Technology of Japan; and a grant from Japan Foundation for Applied Enzymology (No. 14T020 to Dr Shimizu).

Disclosures
None.

Supplementary Material
Figures S1–S6

REFERENCES
1. Huang RC. The discoveries of molecular mechanisms for the circadian rhythm: the 2017 Nobel Prize in Physiology or Medicine. Biomed J. 2018;41:5–8. DOI: 10.1016/j.bj.2018.02.003.
2. Golombek DA, Casiraghi LP, Agostino PV, Paladin N, Duhart JM, Plano SA, Chiesa JJ. The times they’re a-changing: effects of circadian desynchronization on physiology and disease. J Physiol Paris. 2013;107:310–322. DOI: 10.1016/j.jphysparis.2013.03.007.
3. Roenneberg T, Kantermann T, Juda M, Vetter C, Allebrandt KV. Light and the human circadian clock. Handb Exp Pharmacol. 2013;217:311–331.
4. Wittmann M, Dinich J, Merrow M, Roenneberg T. Social jetlag: misalignment of biological and social time. Chronobiol Int. 2006;23:497–509. DOI: 10.1080/07420520500545979.
45. Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ. Circadian rhythms from multiple oscillators: lessons from diverse organisms. *Nat Rev Genet*. 2005;6:544–556. DOI: 10.1038/nrg1633.

46. Sancar A. Regulation of the mammalian circadian clock by cryptochrome. *J Biol Chem*. 2004;279:34079–34082. DOI: 10.1074/jbc.R400016200.

47. Patke A, Murphy PJ, Onat OE, Krieger AC, Ozcelik T, Campbell SS, Young MW. Mutation of the human circadian clock gene CRY1 in familial delayed sleep phase disorder. *Cell*. 2017;169:203–215.e13. DOI: 10.1016/j.cell.2017.03.027.

48. Hirano A, Shi G, Jones CR, Lipzen A, Pennacchio LA, Xu Y, Hallows WC, McMahon T, Yamazaki M, Ptacek LJ, et al. A Cryptochrome 2 mutation yields advanced sleep phase in humans. *Elife*. 2017;5:e16695. DOI: 10.7554/eLife.16695.

49. Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H. Control mechanism of the circadian clock for timing of cell division in vivo. *Science*. 2003;302:255–259. DOI: 10.1126/science.1086271.

50. Williams SP, Odell AF, Karnezis T, Farnsworth RH, Gould CM, Li J, Paquet-Fifield S, Harris NC, Walter A, Gregory JL, et al. Genome-wide functional analysis reveals central signaling regulators of lymphatic endothelial cell migration and remodeling. *Sci Signal*. 2017;10:eaal2987. DOI: 10.1126/scisignal.aal2987.

51. Williams SP, Gould CM, Nowell CJ, Karnezis T, Achen MG, Simpson KJ, Stacke SA. Systematic high-content genome-wide RNAi screens of endothelial cell migration and morphology. *Sci Data*. 2017;4:170009. DOI: 10.1038/sdata.2017.9.

52. Oshima T, Yamanaka I, Kumar A, Yamaguchi J, Nishiwaki-Ohkawa T, Muto K, Kawamura R, Hirota T, Yagita K, Irie S, et al. C-H activation generates period-shortening molecules that target cryptochrome in the mammalian circadian clock. *Angew Chem Int Ed Engl*. 2015;54:7193–7197. DOI: 10.1002/anie.201502942.

53. Lee JW, Hirota T, Kumar A, Kim NJ, Irie S, Kay SA. Development of small-molecule Cryptochrome stabilizer derivatives as modulators of the circadian clock. *ChemMedChem*. 2015;10:1489–1497. DOI: 10.1002/cmdc.201500260.

54. Manfredini R, Gallerani M, Portaluppi F, Salmi R, Zamboni P, Fersini C. Circadian variation in the onset of acute critical limb ischemia. *Thromb Res*. 1998;92:163–169. DOI: 10.1016/S0049-3848(98)00127-3.
Supplemental Material
**Figure S1.** Constant jet-lag model does not change food and water consumption. (A-B) Five mice were kept in a single breeding cage. The consumptions of food (g/cage/week) and water (ml/cage/week) were checked under control or constant jet-lagged condition. Data are mean ± SEM (n=8). vs. control condition, by unpaired Student’s t-test. N.S.=not significant.
Figure S2. The time course of EPC mobilizations of HLI model mice under regular condition or constant jet-lagged condition. (A) The quantification of circulating CD34 and Flik1 double-positive cells at 6:00, 12:00, 18:00, and 24:00. Data are mean ± SEM (n= 4 for each). *p< 0.05 vs. 6:00, #p< 0.05 vs. at the same time of control, by one-way ANOVA and Tukey’s post hoc tests.
Figure S3. Deficiency of Cry1 and Cry2 suppressed the expressions of VEGF, SDF1, and HOXC5, and upregulated the expressions of Wee1 in skeletal muscles of both sham-operated and HLI model mice. (A-B) The expressions of VEGF and SDF1 in sham or ischemic muscles at post-operative day 7 of the WT and Cry DKO mice. Data are mean ± SEM (n=5). ***p<0.005 vs. WT-sham or WT-HLI mice, by one-way ANOVA and Tukey’s post hoc tests. (C-D) The expressions of Wee1 and HOXC5 in sham or ischemic muscles at POD 7 of the WT and Cry DKO mice. Data are mean ± SEM (n=5). ***p<0.005 vs. WT mice, by one-way ANOVA and Tukey’s post hoc tests.
Figure S4. Effects of Cry1/2-KD on Clock, BMAL1 and Per2 expression in endothelial cells (A–C) The expressions of mRNA Clock, BMAL1 and Per2 in HUVECs treated with siRNA-scr or siRNA-Cry1/2 by qPCR. Data are mean ± SEM (n=6). *p<0.05, vs. siRNA-scr, by 2-tailed Mann-Whitney U tests. N.S. = not significant.
Figure S5. Cry1/2-KD did not alter VEGFR1 and 2 expression in HUVECs.  
(A–B) The expressions of mRNA VEGFR1 and VEGFR2 in HUVECs treated with siRNA-scr or siRNA-Cry1/2 by qPCR. Data are mean ± SEM (n=5).  
N.S.=not significant, by 2-tailed Mann-Whitney U tests.
Figure S6. Potential mechanisms of circadian rhythm disorder on vasculogenesis and angiogenesis As a systemic effect, circadian rhythm disorder results in suppression of VEGF expression and decreased circulating EPCs, thus impairing vasculogenesis. On the other hand, the local effect of circadian rhythm disorder includes inhibition of Cryptochrome expression in ischemic tissues and impaired regulation of Wee1 and HOXC5 expression, resulting in worsening of reparative angiogenesis.