Synthesis, Characterization and Thermal Analysis of an Organic-Inorganic Hybrid Salt Involving Trans-Diaquabis(oxalato-κ²O¹,O²)chromate(III) Complex Anion with Piperidinium as Counter Cation

Pierre R. Ndong¹, Martin Signé¹, Patrice T. Kenfack²*, Yves A. Mbiangué³, Gouet Bebga⁴*, Emmanuel Wenger⁵

¹Department of Inorganic Chemistry, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
²Department of Chemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
³Department of Chemistry, Higher Teachers’ Training College, University of Maroua, Maroua, Cameroon
⁴Department of Chemistry, Higher Teachers’ Training College, University of Yaounde I, Yaounde, Cameroon
⁵CRM2, Université de Lorraine, CNRS, Nancy, France
Email: *pakenfack@gmail.com, *gouetbeb@yahoo.fr

Abstract
A new organic-inorganic hybrid salt pipéridinium trans-diaquabis(oxalato)-chromate(III) tetrahydrate, (C₅H₁₀NH₂)[Cr(C₂O₄)₂(H₂O)₂]·4H₂O (1), has been synthesized in water and characterized by FTIR and UV-Vis spectroscopies, elemental and thermal analyses and by single-crystal X-ray diffraction. 1 crystallizes in the orthorhombic non-centrosymmetric space group Cmc2₁, with the unit cell parameters a = 7.4329(3), b = 9.9356(5), c = 23.6756(11) Å, α = β = γ = 90°, V = 1748.45(14) Å³ and Z = 4. The structure of 1 consists of [Cr(C₂O₄)₂(H₂O)₂]¹⁻ mononuclear anions, piperidinium cations and uncoordinated water molecules. The Cr³⁺ ion in the complex [Cr(C₂O₄)₂(H₂O)₂]¹⁻ is coordinated in a slightly distorted octahedral environment by four O atoms from two chelating oxalate dianions in the equatorial plane, and two O atoms from trans-coordinated water molecules occupying the apical positions. In the crystal, N-H⋯O and O-H⋯O hydrogen bond interactions connect the components into a 3-D framework. The IR spectrum of 1 is consistent with the presence of the various molecular building constituents, namely oxalato and aqua ligands, piperidinium cations and solvent water molecules. The UV-Vis spectrum shows two absorption bands around 564 and 416 nm which are...
compatible with an anionic chromium(III) complex in an octahedral environment. Thermal analysis shows a three-step decomposition of 1, leading to formation of a metal oxide residue.

Keywords

Hybrid Salt, Diaquabis(oxalato)chromate(III) Complex, Crystal Structure, Layered Structure, Spectroscopy, Thermal Analysis

1. Introduction

A great interest has been paid to the synthesis of novel organic-inorganic hybrid salt due to their structural diversity [1] and potential applications in gas storage [2], ion exchange and catalysis [3], photoluminescence [4] [5] and magnetism [6]. In this respect, the diaquabis(oxalato)metalate(III) complex anions, [MII(C2O4)2(H2O)2]−, have been extensively used as building blocks for the generation of multifunctional materials formed by two distinct molecular networks, each furnishing a particular structural and physical property [7] [8] [9] [10]. Among the organic cations involved in these hybrid salts, the use of pyridinium cations and their derivatives to build supramolecular architectures has become an extremely active field of investigation around the world [7] [9] [11]-[16]. Furthermore, complexes involving piperidinium cations or their derivatives are known to be useful in the fields of medicine, bioinorganic chemistry and catalysis [17] [18] [19]. These cations obtained via protonation of the imine group of such organic molecules have the ability to self-assemble through the charge-assisted hydrogen bonds.

In continuation of the systematic search for other members of this family of materials, herein we report the synthesis, characterization and thermal analysis of a new organic-inorganic hybrid salt, piperidinium trans-diaquabis(oxalato-κ2O1,O2)chromate(III) tetrahydrate, (C5H10NH2)[Cr(C2O4)2(H2O)2]∙4H2O (1). Two aspects of focal relevance are associated with 1: a) its framework is non-centrosymmetric; b) the number of solvent water molecules per formula unit seems to be the highest obtained so far for this family of bis(oxalato)metalate(III) salts.

2. Experimental

2.1. Materials and Physical Measurements

Reagents were obtained from Prolabo (oxalic acid and piperidine) and Riedel-de Haën (chromium(III) chloride hexahydrate) and used as such without further purification. Elemental analyses were performed using a Thermo Scientific FLASH 2000 Analyzer. The FTIR spectrum was performed with an Alpha-P spectrophotometer in the range 4000 - 400 cm−1 using KBr pallets. The UV-Vis spectrum was recorded on an Aqualytic spectrophotometer in water solution in the range 200 - 800 nm. Thermogravimetric (TG) analysis was investigated on a Mett-
ler-Toledo TGA/DSC Thermogravimetric Analyser with a heating rate of 10˚C/min in flowing air. Single-crystal X-ray measurements were performed using the Agilent SuperNova diffractometer (λ = 0.71073 Å).

2.2. Synthesis of \((\text{C}_5\text{H}_{10}\text{NH}_2)\)[\text{Cr}(\text{C}_2\text{O}_4)_2(\text{H}_2\text{O})_2]\cdot4\text{H}_2\text{O} \ (1)\)

Chromium(III) trichloride hexahydrate, \(\text{CrCl}_3\cdot6\text{H}_2\text{O}\) (6 mmol; 1.6 g) was dissolved in 40 mL of water: solution A. Commercial piperidine \(\text{C}_5\text{H}_{11}\text{N}\) (6 mmol; 0.43 g) and oxalic acid \(\text{H}_2\text{C}_2\text{O}_4\cdot2\text{H}_2\text{O}\) (12 mmol; 1.52 g) were dissolved in 30 mL of water (solution B) and added dropwise in solution A. The mixture was stirred at room temperature for 5 h, then filtered and the filtrate was left to stand in the hood at room temperature. After two weeks, violet crystals suitable for X-ray structure determination were harvested. Yield: 71% based on \(\text{CrCl}_3\cdot6\text{H}_2\text{O}\). Anal. Calcd. for \(\text{C}_9\text{H}_{24}\text{N}\text{CrO}_{14}\) (422.29 g∙mol⁻¹): C, 25.60; H, 5.73; N, 3.32%. Found: C, 25.23; H, 5.68; N, 3.32%. FTIR (KBr disk, cm⁻¹): 3502, 3393, 3135, 2960, 1705, 1400, 1261, 903, 622, 482. UV-Vis (\(\text{H}_2\text{O}\) solution, nm): 416, 564.

2.3. Crystal Structure Determination and Refinement

A suitable single crystal of the material was selected and mounted on a glass fiber. Diffraction data were obtained at 100 K on a Rigaku Oxford Diffraction SuperNova diffractometer with Mo-Kα radiation (λ = 0.71073 Å). The X-ray intensities were corrected using numerical absorption correction based on Gaussian integration over a multifaceted crystal model [20]. The crystal structure was solved by direct method of SHELXT-2014 [21] and refined by full-matrix least-square techniques on \(F^2\) using the SHELXL-2018 program package [22]. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were added in idealized geometrical positions for the organic cations. The positions of hydrogen atoms from the water molecules were assigned from the electron density map generated by Fourier difference and they were refined freely apart from the hydrogen atoms of O5W for which a restraint (O-H bond length of (0.9 ± 0.020) Å was used. They were included as riding atoms with isotopic displacement parameters ADPs \((U_{eq}H = 1.2U_{eq}C = 1.2U_{eq}N = 1.2U_{eq}O)\). DIAMOND program [23] was used to deal with the processed crystallographic data and artwork representations. Details of the structure determination and final refinements are summarized in Table 1 and selected bond lengths (Å) and angles (˚) around the central chromium (III) ion are listed in Table 2.

3. Results and Discussion

3.1. Formation of \((\text{C}_5\text{H}_{10}\text{NH}_2)\)[\text{Cr}(\text{C}_2\text{O}_4)_2(\text{H}_2\text{O})_2]\cdot4\text{H}_2\text{O} \ (1)\)

The combination of piperidine \((\text{C}_5\text{H}_{10}\text{NH})\) with oxalic acid in aqueous medium generates in situ \((\text{C}_5\text{H}_{10}\text{NH}_2)\text{C}_2\text{O}_4\) which reacts with an aqueous solution of \(\text{CrCl}_3\cdot6\text{H}_2\text{O}\). This reaction affords, by slow evaporation of the resulting solution at room temperature after two weeks, the title compound \((\text{C}_5\text{H}_{10}\text{NH}_2)\)[\text{Cr}(\text{C}_2\text{O}_4)_2(\text{H}_2\text{O})_2]\cdot4\text{H}_2\text{O} \ (1)\) as violet prismatic crystals. \(1\) is thermally stable up to 90°C.
Table 1. Crystal data and structure refinement details for 1.

Property	Value
CCDC N˚	1,988,875
Empirical formula	C₉H₂₂NCrO₁₄
Formula weight	422.29
Temperature (K)	100 (1)
Wavelength (Å)	0.71073
Crystal system	Orthorhombic
Space group	Cmc₂₁
a (Å)	7.4329 (3)
b (Å)	9.9356 (5)
c (Å)	23.6756 (1)
a (˚)	90.0
β (˚)	90.0
γ (˚)	90.0
Volume (Å³)	1748.5 (1)
Z, Z’	4, 1/2
Absorption coefficient (mm⁻¹)	0.726
F(000)	884
Crystal size (mm)	0.21 × 0.17 × 0.15
Theta range for data collection (˚)	3.4 - 37.7
Index ranges	−12 < h < 12, −16 < k < 17, −39 < l < 40
Total reflections	25774
Unique reflections (R_m)	4831 (0.025)
Refinement method	Full-matrix least squares on F²
Data/restraints/parameters	4831/2/153
Goodness-of-fit (GOF) on F²	1.06
Final R indices [I > 2 sigma (I)]	R₁ = 0.0220, wR₂ = 0.0571
R indices (all data)	R₁ = 0.0228, wR₂ = 0.0578
Δρmax and Δρmin (e/Å³)	0.31 and −0.81
Flack parameter	0.00 (4)

Table 2. Selected bond lengths (Å) and bond angles (˚) of 1.

Selected bond lengths (Å)

Bond	Length (Å)
Cr1-O1	1.9754 (8)
Cr1-O1i	1.9755 (8)
Cr1-O3	1.9701 (8)

Selected bond angles (˚)

Bond	Angle (˚)
O1-Cr-O1i	82.32 (5)

DOI: 10.4236/csta.2020.92004

Crystal Structure Theory and Applications
3.2. Infrared Spectrum of 1

The FTIR spectrum of 1 (Figure 1) exhibits a weak absorption band centered at 3502 cm\(^{-1}\) attributed to \(\nu_{\text{N-H}}\) of piperidinium cations. The sharp bands observed at 3393 cm\(^{-1}\) and 3135 cm\(^{-1}\) can be assigned to the well-known \(\nu_{\text{O-H}}\) vibrations of the H\(_2\)O molecules of crystallization involved in hydrogen bonding and the H\(_2\)O ligands that are coordinated to the Cr\(^{III}\) sites respectively [24] [25]. The stretching vibration band of C-H (\(\nu_{\text{C-H}}\)) is situated at 2960 cm\(^{-1}\). The strong band appearing at 1705 cm\(^{-1}\) corresponds to \(\nu_{\text{C=O}}\) [26] and the medium-size band at 1400 cm\(^{-1}\) can be assigned to the symmetric stretching absorption of the carboxylate groups of the oxalato ligand [26]. Strong to medium well-resolved bands appear at 1261 cm\(^{-1}\) (\(\nu_{\text{C-N}}\)), 1181 cm\(^{-1}\) (\(\nu_{\text{C-O}}\)), 1081 cm\(^{-1}\) (\(\nu_{\text{C-C}}\)) [27] [28]. The pattern of the \(\delta_{\text{O-C=O}}\) vibrations range of 944 - 875 cm\(^{-1}\) supports the presence of chelating oxalate dianions in the structure of 1. Medium to weak bands observed in the region 622 - 482 cm\(^{-1}\) may be attributed to vibrations \(\nu_{\text{Cr-O}}\) within the coordination spheres around the metallic centers ions. These results are consistent with the presence of \(\text{C}_5\text{H}_{18}\text{NH}_2\) cation, \([\text{Cr(C}_2\text{O}_4)_2\text{(H}_2\text{O})_2]^-\) complex anion, and H\(_2\)O molecules of crystallization in 1.

3.3. UV-Vis Spectrum of 1

The electronic absorption spectrum of 1 (Figure 2) reveals two absorption bands at 416 nm (24038 cm\(^{-1}\)) and 564 nm (17730 cm\(^{-1}\)) corresponding respectively to \(4A_{2g} \rightarrow 4T_{1g}(F)\) and \(4A_{2g} \rightarrow 4T_{2g}(d-d)\) transitions within the octahedral \([\text{Cr(C}_2\text{O}_4)_2\text{(H}_2\text{O})_2]^-\) anionic complex of 1 [8] [24] [29]. Obviously, the present electronic absorption spectrum is virtually superimposable with that reported since the spectral information thus obtained solely relates to \([\text{Cr(C}_2\text{O}_4)_2\text{(H}_2\text{O})_2]^-\) species.

3.4. Thermal Analysis of 1

The thermogravimetric (TG) and differential scanning calorimetry (DSC) curves of 1 depicted in Figure 3 evidence three distinct weight losses in the temperature range 90°C - 389°C with endothermic processes. The possible decomposition reactions, the experimental and calculated percentage weight losses are summarized in
Figure 1. Infrared absorption spectrum of 1.

Figure 2. Electronic absorption spectrum of 1.

Figure 3. TG curve (blue) and DSC curve (orange) of 1.

Table 3. In the temperature range 90°C - 130°C, 1 suffers a first weight loss of 18.48% (calc. 18.47%) corresponding to the release of the four water molecules of crystallization and three molecules of hydrogen from a partial degradation of organic moieties. A second weight loss of 8.56% (calc. 8.57%) occurs between 156°C - 196°C, corresponding to the partial decomposition of the [Cr(C_2O_4)_2(H_2O)_2]^- complex anion framework with release of the coordinating water molecules. The
third weight loss of 55.83% (calc. 54.94%) in the temperature range 250°C - 389°C, attributed to the total decomposition of 1, leads to a final Cr₂O₃ residue [28] [30].

3.5. Crystal Structure of 1

The asymmetric unit of the title compound is shown in Figure 4. The molecular structure is formed by the piperidinium (C₅H₁₀NH₂)⁺ cation in chair conformation, the complex anion, [Cr(C₂O₄)₂(H₂O)₂]⁻ in trans-geometry and four water molecules of crystallization. In the [Cr(C₂O₄)₂(H₂O)₂]⁻ complex anion, the Cr³⁺ ion adopts a slightly distorted octahedral coordination environment defined by two chelating bidentate oxalate ligands in the equatorial plane and by two water O atoms in the axial sites. The expected ideal values 90° and 180° in bond angles O-Cr-O in the above complex anion, vary within a range from 82.32 (5)° to 97.56 (3)° and from 179.87 (4)° to 179.99 (7)° respectively (see Table 2). The two

Table 3. Thermal decomposition data of 1.

Reaction	TGA (°C)	DSC (°C)	Mass loss (%)	
			Wₑₓᵖ	Wₑｃａｌｄ.
(C₅H₁₀NH₂)[Cr(C₂O₄)₂(H₂O)₂]⋅4H₂O	90 - 130	104 (endo)	18.48	18.47
i → 4H₂O, 3H₂				
(C₅H₁₀NH)[Cr(C₂O₄)₂(H₂O)₂]	156 - 196	184 (endo)	8.56	8.57
i → 2H₂O				
(C₅H₁₅NH)[Cr(C₂O₄)₂]				
i → (C₅H₅NH), 2CO₂, 2CO, 1/4O₂	250 - 389	316 (endo)	55.83	54.94
1/2Cr₂O₃				

Figure 4. Molecular structure of 1 with the atom numbering scheme. (i = x + 1, y, z).
Figure 5. Packing diagram of 1, viewed along the b axis, showing pillars of alternating complex anions and piperidinium cations and highlighting the interconnection of the components into a tridimensional network by hydrogen bonds (dashed lines).

Table 4. Hydrogen bond lengths (Å) and bond angles (˚) of 1.

D-H···A	D-H	H···A	D···A	D-H···A
O6W-H7W-O2W	0.83 (3)	1.76 (3)	2.593 (2)	178 (3)
O5W-H6W-O1W	0.83 (3)	1.78 (3)	2.603 (2)	167 (3)
O2W-H2W-O4	0.86 (2)	1.94 (2)	2.799 (1)	175 (2)
O4W-H4W-O1W	0.88 (2)	2.01 (2)	2.878 (1)	173 (2)
O3W-H3W-O3	0.76 (2)	2.12 (2)	2.879 (1)	174 (2)
O1W-H1W-O2	0.85 (2)	1.95 (2)	2.797 (1)	175 (2)
N1-H1-O4	0.82 (3)	2.32 (2)	3.002 (1)	141 (9)
N1-H1-O4	0.82 (3)	2.32 (2)	3.002 (1)	141 (9)
N1-H2-O2	0.91 (3)	2.24 (2)	2.973 (1)	137 (1)
N1-H2-O2	0.91 (3)	2.24 (2)	2.973 (1)	137 (1)
O5W-H5W-O3W	0.84 (2)	1.81 (2)	2.627 (2)	162 (3)
O6W-H8W-O4W	0.84 (3)	1.82 (3)	2.648 (2)	173 (3)

Symmetry codes: (i) x, −y + 1, z−1/2; (ii) x−1/2, y−1/2, z; (iii) x+1/2, y−1/2, z; (iv) x−1/2, y+1/2, z; (v) −x + 1/2, y+1/2, z; (vi) −x + 1, −y + 1, z−1/2; (vii) −x + 1, y, z.

pairs of equatorial Cr-O(ox) distances 1.9754 (8) and 1.9701 (8) Å and the two axial Cr-Ow distances 1.9589 (13) and 1.9653 (14) Å are comparable to those reported in similar compounds [8] [9] [10] [11] [12] [30] [31] and in agreement with the Cr-O(ox) (2.189 ± 0.293) Å and Cr-Ow (2.226 ± 0.411) Å mean values found in the CSD [32]. By contrast, the Cr-Ow bond lengths are slightly shorter than the Cr-O(ox) ones. This situation was not previously observed in homologous salts involving [Cr(C2O4)2(H2O)2]– complex anion [7]-[12]. Packing diagram of 1, viewed along the b axis, showing its layered structure formed of pillars of alternating [Cr(C2O4)2(H2O)2]– complex anions and piperidinium (C5H10NH2)+ cations plus H2O molecules of crystallization (Figure 5). In fact, the layered framework is exclusively the result of 3D interconnectivity between CrIII ions, oxalato and
aqua ligands. The framework formed by \([\text{Cr}(\text{C}_2\text{O}_4)_2(\text{H}_2\text{O})_2])^-\) carries an overall excess negative charge and delineates unoccupied spaces parallel to the \(a\) axis, encapsulating water molecules of hydration and charge-balancing piperidinium cations, \((\text{C}_5\text{H}_{10}\text{NH}_2)^+\). The components are linked by N-H-O [2.24 (2) to 2.32 (2) \(\text{Å}\)] and O-H-O [1.76 (3) to 2.12 (2) \(\text{Å}\)] hydrogen bonds (dashed lines), generating a non-centrosymmetric 3D framework. The values of hydrogen bond lengths (Å) and angles (˚) are summarized in **Table 4**. To the best of our knowledge, **1** and 4-aminopyridinium trans-diaquabis(oxalato-κ2O1,O2)chromate(III) monohydrate [14] seem to be the only compounds having a non-centrosymmetric structure built with the \([\text{Cr}(\text{C}_2\text{O}_4)_2(\text{H}_2\text{O})_2])^-\) complex anions so far. In the other hand, it is worth noting that the number of solvent water molecules per formula unit in **1** is higher, compared to the homologous bis(oxalato)metalate(III) salts known hitherto [7] [10] [11] [14]. This fact of matter reinforces the crystal packing framework through extended hydrogen bridging.

4. Conclusion

In summary, compound **1**, a novel organic-inorganic hybrid salt comprising the trans-diaquabis(oxalato)chromate(III) complex anion and piperidinium cation has been synthesized and characterized spectroscopically, thermally and structurally. Thermal studies revealed that compound **1** is stable to heat up to 90˚C. It crystallizes in the chiral orthorhombic \(Cmc2_1\) space group. This work confirms the great flexibility of synthetic manoeuvres for the self-assembly of bis(oxalato)chromate(III) complex anions with various organic cations. One could consider with serenity the fabrication of a compound in which the organic cation compensating the charge of the anionic complex would be solely replaced by small charged species such as hydronium ions. Such a system with protons balancing the negative charge of the anionic framework could be a good candidate for the exploration of the concept of one-dimensional proton conducting solids [33] [34] [35]. It could be also worth studying the magnetic properties of **1** as well as its antibacterial activities as with related compounds [10] [13]. Work in this direction is in progress in our group.

Supplementary Material

Detailed crystallographic data in CIF format for this paper were deposited with the Cambridge Crystallographic Data Centre (CCDC-1988875). The data can be obtained free of charge at http://www.ccdc.cam.ac.uk/conts/retrieving.html [or from Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 (0) 1223-336033; e-mail: deposit@ccdc.cam.ac.uk].

Acknowledgements

We thank Prof. Elisa Barea, Department of Inorganic Chemistry, University of Granada, Spain for assistance with the thermal measurements and elemental analysis. We are grateful to Prof. Justin Nenwa for fruitful discussions. The authors also thank the International Union of Crystallography (IUCr) and the...
Cambridge Crystallographic Data Center (CCDC) for the promotion of Crystallography in Cameroon.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

[1] Marinescu, G., Andruh, M., Lloret, F. and Julve, M. (2011) Bis(oxalato)chromium(III) Complexes: Versatile Tectons in Designing Heterometallic Coordination Compounds. *Coordination Chemistry Reviews, 255*, 161-185. https://doi.org/10.1016/j.ccr.2010.08.004

[2] Ying, W., Ming, F., Yi, L., Jing, L., Wei, S., Jun, C. and Peng, C. (2010) A Porous 3d-4f Heterometal-Metal-Organic Framework for Hydrogen Storage. *International Journal of Hydrogen Energy, 35*, 8166-8170. https://doi.org/10.1016/j.ijhydene.2009.12.180

[3] Song, F., Zhang, T., Wang, C. and Lin, W. (2012) Chiral Porous Metal-Orgnaic Frameworks with dual Active Sites for Sequential Asymmetric Catalysis. *Proceedings of the Royal Society A, 6*, 1-18. https://doi.org/10.1098/rspa.2012.0100

[4] Sun, L., Li, G.Z., Xu, M.H., Li, X.J., Li, J.R. and Deng, H. (2012) Self-Assembly of 1D, 2D, and 3D Lanthanide-Metal Coordination Polymers Based on a 2-(Pyridin-4-yl)-4,5-imidazoledicarboxylate Linker: Synthesis, Structures, and Luminescence. *European Journal of Inorganic Chemistry, 2012*, 1764-1772. https://doi.org/10.1002/ejic.201101289

[5] Yan, L., Liu, W., Li, C., Wang, Y., Ma, L. and Dong, Q. (2013) Hydrogen Bonded Supra-Molecular Framework in Inorganic-Organic Hybrid Compounds: Syntheses, Structures, and Photoluminescent Properties. *Journal of Molecular Structure, 1035*, 240-246. https://doi.org/10.1016/j.molstruc.2012.11.046

[6] Murase, R., Abrahams, B.F., D’Alessandro, D.M., Davies, C.G., Hudson, T.A., Jameson, G.N.L., Moubarak, B., Murray, K.S., Robson, R. and Sutton, A.L. (2017) Mixed Valency in a 3D Semiconducting Iron-Fluoranilate Coordination Polymer. *Inorganic Chemistry, 56*, 9025-9035. https://doi.org/10.1021/acs.inorgchem.7b01038

[7] Djomo, E.D., Capet, F., Nenwa, J., Béombé, M.M. and Foulon, M. (2015) Crystal Structure of 4-(dimethylamino)pyridinium cis-Diaquabis(oxalato-κ2O,O') Ferrate(III) Hemihydrate. *Acta Crystallographica Section E, 71*, 934-936. https://doi.org/10.1107/S2056989015013213

[8] Bebga, G., Ndassa, I.M., Ndong, P.R., Misse, P.R.N. and Fokwa, B.P.T. (2013) Crystal Structure of Potassium trans-Diaquabis[oxalato-κ2O,O]chromate(III) Urea dissolved, K[Cr(C2O4)2(H2O)2]·2CO(NH2)2, C10H32CrKN4O12. *Zeitschrift fur Kristallographie—New Crystal Structures, 228*, 175-176. https://doi.org/10.1524/ncrs.2013.0069

[9] Nenwa, J., Béombé, M.M., Ngoune, J. and Fokwa, B.P.T. (2010) 4-(Dimethylamino) Pyridinium trans-Diaquabis[oxalato(2‒)-κO1,O2]chromate(III). *Acta Crystallographica Section E, 66*, m1410. https://doi.org/10.1107/S1600536810040353

[10] Marinescu, G., Lescouëzec, R., Armentano, D., De Munno, G., Andruh, M., Uriel, S., Llusar, R., Lloret, F. and Julve, M. (2002) [Cr(bpym)(C2O4)4]+ in Designing Heterometallic Complexes. Crystal Structures and Magnetic Properties of
PPh₄[Cr(bpym)(C₂O₄)₂]·H₂O and [Ag(bpym)][Cr(C₂O₄)₂(H₂O)]·2H₂O (bpym = 2,2'-bipyrimidine). *Inorganica Chimica Acta*, **336**, 46-54. https://doi.org/10.1016/S0020-1693(02)00880-0

[11] Chérif, I., Abdelhak, J., Faouzi Zid, M. and Driss, A. (2012) 2-Amino-5-chloropyridinium cis-Diaquadoxalatochromate(III) Sesquihydrate. *Acta Crystallographica Section E*, **68**, m824-m825. https://doi.org/10.1107/S1600536812023392

[12] Dridi, R., Cherni, S.N., Faouzi Zid, M. and Driss, A. (2013) 2-Amino-6-methyl pyridinium trans-Diaquadoxalatochromate(III) Monohydrate. *Acta Crystallographica Section E*, **69**, m489-m490. https://doi.org/10.1107/S1600536813022058

[13] Dridi, R., Dhieb, C., Cherni, S.N., Boudjada, N.C., Sadfi Zouaoui, N. and Faouzi, Z.M. (2018) A New Supramolecular Chromium(III) Complex: Synthesis, Structural Determination, Optical Study, Magnetic and Antibacterial Activity. *Journal of Molecular Structure*, **1152**, 294-302. https://doi.org/10.1016/j.molstruc.2017.09.111

[14] Chérif, I., Abdelhak, J., Faouzi, Z.M. and Driss, A. (2011) 4-Aminopyridinium Trans-Diaquadoxalatochromate(III) Monohydrate. *Acta Crystallographica Section E*, **67**, m1648-m1649. https://doi.org/10.1107/S1600536811044837

[15] Kahlenberg, V., Wertl, W., Kremenovic, A., Schuster, P. and Schottenberger, H. (2008) Structural Investigations and Thermal Behavior of (NH₄)[Cr(C₂O₄)₂]·2H₂O. *Zeitschrift Für Anorganische Und Allgemeine Chemie*, **634**, 921-926. https://doi.org/10.1002/zaac.200700523

[16] Decurtins, S., Schmalle, H.W., Schnewly, P. and Oswald, H.R. (1993) Photochemical Synthesis and Structure of a 3-Dimensional Anionic Polymeric Network of an Iron(II) Oxalato Complex with Tris(2,2'-bipyridine)iron(II) Cations. *Inorganic Chemistry*, **32**, 1888-1892. https://doi.org/10.1021/ic00062a004

[17] Devi, K.P. and Venkatachalam, K. (2017) Growth, Spectroscopic, Mechanical, Thermal, Antimicrobial and DFT Studies of Piperidinium Hydrogen Oxalate. *Journal of Materials Science: Materials in Electronics*, **28**, 8061-8073. https://doi.org/10.1007/s10854-017-6512-7

[18] Jayashri, T.A., Krishnan, G. and Viji, K. (2017) Spectral, Thermal and Antimicrobial Studies of Gamma Irradiated Potassium Diaquabis(Oxalato)Cobaltate (II). *Oriental Journal of Chemistry*, **33**, 371-377. https://doi.org/10.13005/ojc/330144

[19] Mansoorabadi, P.E., Can, S.O., Reed, M.G.H. and Ragsdale, S.W. (2017). Properties of Intermediates in the Catalytic Cycle of Oxalate Oxidoreductase and Its Suicide Inactivation by Pyruvate. *Biochemistry*, **56**, 2824-2835. https://doi.org/10.1021/acs.biochem.7b02222

[20] Sheldrick, G.M. (2010) SADABS, Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Göttingen.

[21] Sheldrick, G.M. (2015) SHELXT-Integrated space-group and crystal-structure determination. *Acta Crystallographica Section A*, **71**, 3-8. http://doi.org/10.1107/S2053273314026370

[22] Sheldrick, G.M. (2015) Crystal Structure Refinement with SHELXL. *Acta Crystallographica Section C*, **71**, 3-8.

[23] Brandenburg, K. (1999) Diamond, Crystal Impact GbR, Bonn.

[24] Singh, B.P. and Singh, B. (2000) Synthesis and Magnetic Properties of One-Dimensional Metal Oxalate Networks as Molecular-Based Magnets. *Bulletin of Material Science*, **23**, 11-16. https://doi.org/10.1007/BF02708604

[25] Kenfack, T.P., Hastürk, E., Fröhlich, D., Wenger, E., Durand, P., Ngolui, L.J., Lecomte, C. and Jianiak, C. (2019) Water Vapor Single-Gas Selectivity via Flexibility of Three Potential Materials for Autonomous Indoor Humidity Control. *Crystal Growth and
and Design, 19, 2869-2880. https://doi.org/10.1021/acscgd.9b00097

[26] Onggo, D., Jahro, I.S., Martak, F. and Ismunandar (2008) Synthesis of Fe-Li-Cr Multinuclear Complexes as Molecular Magnet Materials. *ITB Journal of Engineering Science*, 40A, 62-70. https://doi.org/10.5614/itbj.science.2008.40.1.6

[27] Chattopadhyay, S.K., Mak, T.C.W., Luo, B.S., Thompson, L.K., Rana, A. and Ghosh, S. (1995) Synthesis, Structural and Magnetic Studies of Imidazolium Bis(oxalato) Cuprate(II). *Polyhedron*, 14, 3661-3667. https://doi.org/10.1016/0277-5387(95)00151-H

[28] Muraleedharan, K. and Kripa, S. (2014) Thermal Dehydration Kinetics of Potassium Bis(oxalato)cuprate(II) Dihydrate. *Journal of Analytical and Applied Pyrolysis*, 107, 298-305. https://doi.org/10.1016/j.jaap.2014.03.015

[29] Nenwa, J., Gouet, B., Signé, M., Bélombé, M.M., Mbarki, M. and Fokwa, B.P.T. (2012) 2-Aminopyridinium trans-Diaquabis(oxalato-κ² O,O)chromate(III). *Acta Crystallographica Section E*, 68, m1325-m1326. https://doi.org/10.1107/S1600536812040950

[30] Rajić, N., Stojakovic, D. and Gabrovšek, R. (2001) On the Thermal Decomposition of Trivalent Trioxalato Complexes of Al, Cr, Mn, Fe and Co. *Journal of Thermal Analysis and Calorimetry*, 63, 191-195. https://doi.org/10.1023/A:1010152907304

[31] Kenfack, T.P., Wenger, E., Ponou, S., Dahau, S., Lambi, J.N. and Lecomte, C. (2013) A New Heteroleptic Oxalate-Based Compound: Poly[[2-(aminomethyl)pyridine]di-μ6-oxalato-chromium(III)potassium(I)]. *Acta Crystallographica Section C*, 70, 12-15. https://doi.org/10.1107/S205322961303088X

[32] Mercury CSD 3.9, Program for Crystal Structure Visualisation, Exploration and Date Analysis from the Cambridge Crystallographic Data Center, 2001-2016. http://www.ccdc.cam.ac.uk/mercury/

[33] Bélombé, M.M., Nenwa, J., Mbiangué, Y.A., Gouet, B., Majoumo, F., Hey-Hawkins, E. and Lönnecke, P. (2009) Water-Filled Pseudo-Nanotubes in Ag₁₁₀H₄₆[Cr(C₂O₄)₃]₄·15H₂O: Synthesis, Characterization and X-Ray Structure. *Inorganica Chimica Acta*, 362, 1-4. https://doi.org/10.1016/j.inoche.2007.03.003

[34] Tepppei, Y., Masaaki, S. and Hiroshi, K. (2009) High Proton Conductivity of One-Dimensional Ferrous Oxalate Dihydrate. *Journal of the American Chemical Society*, 131, 3144-3145. https://doi.org/10.1021/ja808681m

[35] Eboga, T.C., Gouet, B. Mbiangué, Y.A., Nfor, N.E., Djonwoou, P.L., Bélombé, M.M. and Nenwa, J. (2017) Anionic Nanochannels Silver-Deficient Oxalatochromate(III) Complex with Hydronium as Counter Ion: Synthesis, Characterization and Crystal Structure. *Open Journal of Inorganic Chemistry*, 7, 75-87. https://doi.org/10.4236/ojic.2017.73005