Oligodendrogenesis after cerebral ischemia

Ruiian Zhang1, Michael Chopp1,2 and Zheng Gang Zhang1*

1 Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
2 Department of Physics, Oakland University, Rochester, MI, USA

*Correspondence: zhazh@neuro.hfh.edu

INTRODUCTION

More than 80% of stroke is ischemic stroke triggered by blockage of blood flow within major cerebral arteries by clots, which leads to infarction in white and gray matter (Dewar et al., 2003; Cui et al., 2009; Karki et al., 2009). Studies from experimental stroke and patients with stroke show that adult brain has the capability to self-repair in response to stroke. However, the spontaneous brain repair process is constrained with limited improvement of neurologic outcome (Benowitz and Carmichael, 2010). Thus, stroke remains the leading cause of adult disability around the world (Demaerschalk et al., 2010).

Neurogenesis, oligodendrogenesis, angiogenesis, and astrogliosis are major brain repair processes during stroke recovery (Zheng and Chopp, 2009). Cerebral ischemia induces neurogenesis and angiogenesis in the adult human and rodent brains, which have been studied in depth (Jin et al., 2001, 2006; Zhang et al., 2001; Arvidsson et al., 2002; Parent et al., 2002; Macas et al., 2006; Minger et al., 2007; Curtis et al., 2011). In contrast, stroke-induced oligodendrogenesis in ischemic brain has not been broadly studied (Dewar et al., 2003; Pham et al., 2012). Oligodendrocytes, myelin forming cells in the central nervous system (CNS) and are the majority of proliferating cells (Dawson et al., 1999; Picard-Riera et al., 2002; Fancy et al., 2004; Menn et al., 2006). The SVZ contains glial fibrillary acidic protein (GFAP) expressing neural stem cells that generate intermediate progenitors of transgenic mice, recent studies demonstrate that OPCs originating from neural progenitor cells in the subventricular zone (SVZ) of the lateral ventricle differentiate into myelin forming oligodendrocytes under physiological and ischemic conditions (Li et al., 2011; Zawadzka et al., 2010; Zhang et al., 2011, 2012; Rafalski et al., 2013). Preclinical studies show that enhancement of endogenous oligodendrogenesis in ischemic brain by cell-based and pharmacological therapies facilitates brain repair processes and reduces neurological deficits (Li et al., 2005; Zhang and Chopp, 2009; Morris et al., 2010; Zhang et al., 2011b, 2012). These findings have led to a hope for a neurorestorative treatment of stroke which aims to manipulate endogenous neurogenesis, angiogenesis and oligodendrogenesis and thereby to improve brain repair. In this article, we will review proliferation and differentiation of OPCs in adult rodent brain after focal cerebral ischemia and therapies that amplify endogenous oligodendrogenesis in ischemic brain.

STROKE INDUCES OLIGODENDROGENESIS

Oligodendrocyte progenitor cells identified by the chondroitin sulfate proteoglycan NG2 and platelet-derived growth factor receptor alpha (PDGFRα) comprise 3–9% of the total cell number in the adult CNS and are the majority of proliferating cells (Dawson et al., 2003; McTigue and Tripathi, 2008). These OPCs continuously differentiate into mature myelinating oligodendrocytes throughout the gray and white matter of the adult brain (Gensert and Goldman, 1997; Franklin, 2002; McTigue and Tripathi, 2008; Fancy et al., 2011). OPCs are locally present in the corpus callosum, the striatum, and the cortex and are derived from neural progenitor cells in the SVZ (Nait-Oumesmar et al., 1999; Roy et al., 1999; Picard-Riera et al., 2002; Fancy et al., 2004; Menn et al., 2006). The SVZ contains glial fibrillary acidic protein (GFAP) expressing neural stem cells that generate intermediate progenitors (Alvarez-Buylla et al., 2008). Retinovial lineage tracking studies show that although the majority of the neural progenitor cells give rise to homogenous neuronal progeny, some progenitor cells generate OPCs in the adult brain (Menn et al., 2006). OPCs...
generated from the SVZ migrate to white matter tracts of corpus callosum, fimbria fornix and striatum (Menon et al., 2006). Studies of inducible Cre recombination transgenic mice confirm Ascl1 and nestin-expressing neural stem and progenitor cells in adult brain generate OPCs (Li et al., 2010; Zhang et al., 2011, 2012). Early retroviral lineage tracking studies show that the production of OPCs by adult SVZ neural stem cells is limited (Menon et al., 2006). However, using nestin CreER; miR101 (36) mice in which Cre recombination leads to deletion of a membrane-targeted tomato fluorescent protein and expression of a membrane-targeted green fluorescent protein in adult neural stem and progenitor cells, Rafaski et al. (2013) recently demonstrated that a substantial fraction of OPCs are generated from adult SVZ nestin-expressing neural stem and progenitor cells under physiological condition. In vitro, tracking the lineage progression of primary adult SVZ neural stem cells, Ortega et al. (2013) recently demonstrated that the adult neural stem cells generated oligodendrogliogenic clones which gave rise to NG2 positive OPCs by symmetric cell division or NG2 positive OPC and GFAP positive astroglial progeny by asymmetric cell division. However, oligodendrogliogenic clones do not generate OPC and neuronal progeny. These data suggest that adult neural progenitor cells contain oligodendrogliogenic and neuronal lineages and they are distinct and not shared (Ortega et al., 2013).

Stroke acutely induces mature oligodendrocyte damage, leading to loss of myelin, which is associated with loss of axons (Pantoni et al., 1996; Dewar et al., 2003). However, during stroke recovery there is a significant increase in generation of OPCs and some of them become mature myelinating oligodendrocytes in peri-infarct gray and white matter where sprouting axons are present (Gregersen et al., 2001; Zhang et al., 2011, 2012; Umino et al., 2012). An increase in mature myelinating oligodendrocytes observed after stroke in the adult brain likely result from new oligodendrocytes differentiated from OPCs. Studies in adult transgenic mice that express a tamoxifen-inducible form of Cre recombinase under control of an Ascl1 or nestin promoter have shown that OPCs generated in the gray and white matter and OPCs from the SVZ are involved in generation of new oligodendrocytes (Zheng et al., 2011, 2012). During the first 2 weeks after stroke, a robust increase in Ascl1-expressing OPCs was observed in ischemic boundary regions of the gray and white matter. However, 2 months after stroke, the Ascl1 or nestin lineage cells in per-infarct white matter exhibited myelin sheet morphology and expressed protein components of myelin, cyclic nucleotide 3'-phosphodiesterase (CNPase) and myelin basic protein (MBP; Zhang et al., 2011, 2012). In addition to resident OPCs in white matter, stroke recruits SVZ neural progenitor cell-generated OPCs by attracting them from the SVZ to the ischemic striatum and corpus callosum (Zhang et al., 2010b, 2012). It is uncertain whether SVZ neural progenitor cells share neuronal and oligodendrocyte lineages after experimental induction of demyelination, although under physiological conditions they do not (Ortega et al., 2013). Demyelination in the corpus callosum produced by lysolecithin induces SVZ generated doublecortin (DCX) lineage neuroblasts to differentiate into OPCs (Ishibashi et al., 2010). However, DCX lineage OPCs were not detected in adult ischemic brain, although stroke greatly increases DCX lineage neuroblasts (Liu et al., 2009; Zhang et al., 2009). These data indicate that stroke induces oligodendrogenesis by recruiting resident OPCs in white and gray matter and OPCs generated by SVZ neural progenitor cells and that new oligodendrocytes generated after stroke become mature myelinating oligodendrocytes. SVZ generated OPCs are present in humans after demyelination (Nait-Oumesmar et al., 2007). Stromal-derived factor 1a (SDF-1α) and vascular endothelial growth factor (VEGF) secreted by activated cerebral endothelial cells in the ischemic boundary region are likely involved in OPC migration to peri-infarct gray and white matters (Zhang et al., 2005, 2006; Imiotila et al., 2004; Ohab et al., 2006; Robin et al., 2006; Hayakawa et al., 2012; Bain et al., 2013; de Castro et al., 2013). Glutamatergic inputs from damaged axons in the corpus callosum may also trigger migration of OPCs from the SVZ to peri-infarct areas (Eiseberria et al., 2010).

In addition to serving as a source to generate myelination oligodendrocytes, OPCs act as a surveillance network to detect brain injury (Hughes et al., 2013). Molecules produced by reactive astrocytes and microglia after brain injury trigger OPC proliferation and regulate OPC differentiation (Moore et al., 2011; Miron et al., 2013). For example, insulin-like growth factor-1 (IGF-1) and bone morphogenetic proteins (BMPs) secreted by astrocytes promotes and inhibit, respectively, the generation of myelinating oligodendrocytes (Moore et al., 2011). Transformation of pro-inflammatory (M1) microglia and macrophages to anti-inflammatory (M2) drives OPCs to differentiate into mature oligodendrocytes in a model of focal demyelination (Miron et al., 2013). However, the role of such cross-talk in mediating stroke-induced oligodendrogenesis has not been investigated.

THERAPIES ENHANCE ENDOGENOUS OLIGODENDROGENESIS IN THE ISCHEMIC BRAIN

Stroke increases OPC generation in the SVZ, yet endogenous oligodendrogenesis from SVZ neural stem and progenitor cells in response to stroke is limited. Emerging preclinical studies show that cell and pharmacological based therapies initiated at days after stroke enhance endogenous oligodendrogenesis and axonal outgrowth (Li et al., 2005; Zhang and Chopp, 2009; Morris et al., 2010; Zhang et al., 2010b, 2012). Erythropoietin (EPO) regulates neural stem and progenitor cell function through interaction with its receptor EPOR in the adult SVZ (Shingo et al., 2001; Tisi et al., 2006; Chen et al., 2007; Wang et al., 2007). Administration of recombinant human EPO (rhEPO) 24 h after stroke induced sustained OPC proliferation in the peri-infarct white matter and the SVZ (Zhang et al., 2010b). Moreover, rhEPO treatment substantially amplified myelinating oligodendrocytes and increased myelinated axons in peri-infarct white matter (Ishii et al., 2006; Zhang et al., 2010b). Thymosin β4 (Tβ4) is a G-actin binding protein (Goldstein et al., 2005). Administration of Tβ4 24 h after stroke robustly increased NG2 positive OPCs in the SVZ and mature myelinating oligodendrocytes and OPCs in the peri-infarct striatum and corpus callosum 2 months after stroke (Morris et al., 2010). Treatment of stroke with cerebrolysin, a mixture of neurotrophic peptides, amplified generation of OPCs in the SVZ and mature oligodendrocytes in white matter of the peri-infarct region (Zhang et al., 2010a, 2013). Furthermore, administration

"fnctl-07-00201" — 2013/10/27 — 17:51 — page 2 — #2
of mesenchymal stromal cells (MSCs) even at 7 days after stroke substantially increased NG2 positive OPCs in the SVZ and MBP positive oligodendrocytes in the peri-infarct striatum and cor-
pus callosum 4 months after stroke (Li et al., 2009). The effect of MSCs on enhancement of oligodendrogenesis appears specific because the treatment with MSCs significantly reduced GFAP pos-
tive astrocytes in peri-infarct regions (Li et al., 2005). These data indicate that cell and pharmacological based therapies amplify stroke-induced oligodendrogenesis. Aging reduces oligodendro-
cytes in rodent and human brains (Sim et al., 2002; Pelvig et al.,
2008; Shen et al., 2008a,b). By tracking progeny of SVZ nestin lin-
eage neural progenitor cells in ischemic brain of transgenic mice at age of 12 months, a study shows that stroke increased nestin lineage
OPCs and oligodendrocytes and that administration of sildenafil, a potent phosphodiesterase type 5 (PDE5) inhibitor, further aug-
mented neural progenitor cell proliferation and attenuated EPO-increased neural progenitor cell proliferation (Wang et al., 2007; Liu et al., 2013a).

SIGNALING PATHWAYS MEDIATE OLIGODENDROGENESIS IN THE ISCHEMIC BRAIN

Sonlic hedehog (Shh) is a member of the family of the hedge-
ho proteins and binds to the transmembrane receptor protein, patched (ptc), which, in the absence of Shh, exerts an inhibitory effect on the seven transmembrane receptor smoothened (Smoo; Ingham and McMahon, 2001; Gutiérrez-Frias et al., 2004). In the canonical way, binding of Shh to ptc blocks the inhibitory effect of ptc on Smoo. Once activated, Smoo induces complex series of intracellular reactions that targets the Gli family of transcription factors (Ruiz i Altala et al., 2002). In addition to neurogenesis, the Shh signaling pathway regulates proliferation of neural progenitor cells in the SVZ give rise to OPCs that migrate to the white matter (Arnett et al., 2004; Ligon et al., 2004, 2006; de Castro et al., 2015; Ferent et al., 2013). In the adult brain, the Shh-expressing neural progenitor cells in the SVZ give rise to OPCs that migrate to the white matter (Arnett et al., 2004; Ligon et al., 2006; Menn et al., 2006). Stroke upregulated Shh signal in SVZ neural progenitor cells and blockage of the Shh pathway with cycloamine, a specific inhibitor of Smoo, suppressed stroke-induced neural progenitor cell proliferation and attenuated EPO-increased neural progenitor cell proliferation (Wang et al., 2007; Liu et al., 2013a,b). Furthermore, administration of cycloamine to ischemic ani-
mals abolished cerebrolysin-enhanced oligodendrogenesis (Zhang et al., 2013). Consistent with stroke, in a model of focal demyelina-
tion induced by lysolecithin in the corpus callosum of adult mice, the blocking of Shh signaling with its physiological antagonist, hedgehog interacting protein, led to a decrease of OPC prolifera-
tion and differentiation (Ferent et al., 2015). Together, these data suggest that the Shh pathway in SVZ neural progenitor cells plays an important role in mediating oligodendrogenesis in the ischemic brain.

Wnt signaling in adult neural progenitor cells regulates oligo-
dendrogenesis (Rafalski et al., 2013). Overexpression of Wnt3 in SVZ neural progenitor cells results in a substantial and selective increase of PDGFRa positive OPCs in adult mouse brain (Rafalski et al., 2013). However, the canonic Wnt signaling pathway nega-
tively regulates OPC differentiation (Fancy et al., 2011). The re-
evance of Wnt signaling to ischemia-induced oligodendrogenesis remains to be established.

Phosphatidylinositol 3-kinase (PI3K) and its downstream target, Akt, affect multiple cellular functions such as cell survival, proliferation, and differentiation (Voget al., 2003). Mitogen-activated protein kinases (MAPKs) belong to fami-
lies of Ser/Thr-specific kinases activated by extracellular stim-
uli through protein phosphorylation (Rubinfeld and Seger, 2005). Extracellular signal-regulated kinases (ERKs), ERK1 and ERK2, are MAPKs (Rubinfeld and Seger, 2005). The PI3K/Akt, p38MARK and ERK1/2 signals are involved in OPC differentiation (Chew et al., 2010; Fyffe-Manisch et al., 2011; Santra et al., 2012; Rafalski et al., 2013). Inactivation of either p38 MAPK signaling with the inhibitor SB202190 or PI3K with the inhibitor LY294002 significantly reduces adult neural progenitor cells-generated OPCs (Santra et al., 2012; Rafalski et al., 2013). Inactivation of p38MAPK with the inhibitor SB202190 in adult neural progenitor cells activated ERK1/2 and abolished TGF-α-induced OPCs (Santra et al., 2012). Therefore, activation of PI3K/Akt and p38MAPK signals and cross-talk between p38MAPK and ERK signals in neural progenitor cells appear to be important in regulating generation of OPCs.

MICRORNNAS MEDIATE PROCESSES OF OLIGODENDROGENESIS AFTER STROKE

MicroRNAs (miRNAs), small non-coding RNAs, regulate neural stem cell function and play a pivotal role in controlling processes of OPC generation and differentiation (He et al., 2012). Dicer is an endoribonuclease that cleaves double-stranded RNA and pre-miRNA into short double-stranded RNA (Kos et al., 2010). During development, disruption of miRNA biogenesis by condi-
tional ablation of Dicer in nestin lineage neural progenitor cells results in neural progenitor cell death and abnormal neuronal OPC differentiation (Kawase-Koga et al., 2009). Conditional deletion of Dicer in Olig2 lineage cells led to impairment of OPC differenti-
ation (Dugas et al., 2010; Nave, 2010; Zhao et al., 2010), whereas ablation of Dicer in proteolipid protein (PLP) lineage oligoden-
drocytes resulted in dysmyelination (Shin et al., 2009). These data suggest that in addition to neural progenitor cells, miRNAs are required for maintaining OPCs in the undifferentiated state and for preserving myelin in mature oligodendrocytes. Indeed, studies on miRNA profiles and functions show that OPCs and oligoden-
drocytes express distinct sets of miRNAs (Dugas et al., 2010; Nave, 2010; Zhao et al., 2010). For example, over expression of miR-219 and miR-338 in OPCs promoted oligodenolcyte differentiation by repressing targeting genes including PDGFRa, Sost, Zfp238, FoxJ3, and Hes5 (Dugas et al., 2010; Zhao et al., 2010).

During development, the miR-17-92 cluster, a cluster of seven miRNAs, regulates processes of proliferation and survival of

Zhang et al. Oligodendrogenesis after cerebral ischemia
CNPase-expressing oligodendrocytes via upregulation of PTEN and thus inactivation of Akt (Budde et al., 2010). The adult SVZ neural progenitor cells expressed the miR17-92 cluster and stroke substantially upregulated this cluster expression (Liu et al., 2011, 2013a,b). Attenuation of members of the miR17-92 cluster, miR18a and miR19a, or elevation of this cluster in adult SVZ neural progenitor cells suppressed or enhanced neural progenitor cell proliferation, respectively, via alteration of PTEN protein levels (Liu et al., 2013a). Thus, the miR17-92 cluster may regulate processes of oligodendrogenesis in adult brain. The Shh-signaling pathway functionally interacts with the miR-17-92 cluster in neural progenitor cells in mediating cell proliferation (Northcott et al., 2009; Uzel et al., 2009). In vitro and in vivo studies show that activation and suppression of the Shh signaling pathway down- and up-regulated, respectively, expression of the miR-17-92 cluster in SVZ neural progenitor cells under non-ischemic and ischemic conditions (Liu et al., 2013a,b).

In addition, miR-9 and miR-20b are likely involved in stroke-induced oligodendrogenesis by targeting serum response factor (SRF; Buller et al., 2012). Stroke considerably downregulated miR-9 and miR-20b in white matter. Overexpression of miR-9 and miR-200 in OPCs suppressed SRF expression and inhibited OPC differentiation (Buller et al., 2012). Collectively, these findings demonstrate that miRNAs are involved in processing stroke-induced oligodendrogenesis.

HISTONE DEACETYLASES AND STROKE-INDUCED OLIGODENDROGENESIS

Classes I and II histone deacetylase (HDAC) activity is required for oligodendrocyte differentiation during brain development (Shen and Casaccia-Bonnefil, 2008; Shen, 2008a,b). Pharmacological inhibition of HDAC activity and conditional ablation of HDAC1 and HDAC2 in the oligodendrocyte lineage cells lead to reduction of OPGs and mature oligodendrocytes (Shen and Casaccia-Bonnefil, 2007; Shen et al., 2008, Yu et al., 2009). There are few studies that have examined the role of classes I and II HDACs in mediating processes of oligodendrogenesis in ischemic brain. Stroke increased HDAC1 and HDAC2 proteins in OPCs and cyttoplasmic HDAC4 proteins in OPGs, which was accompanied by reduction of the acetylation levels of histones H3 and H4 (Kasai et al., 2013). Interestingly, treatment of stroke with valproic acid, a pan HDAC inhibitor, considerably increased OPGs and new oligodendrocytes in the adult rat (Liu et al., 2012). These data suggest that HDACs are involved in stroke-induced oligodendrogenesis. The sirtuins, a family of NAD-dependent histone deacetylases, regulate crucial metabolic pathways and are linked to lifespan (Penner et al., 2010; Yu and Aueroux, 2010). Inactivation of SIRT1 in SVZ neural progenitor cells expanded OPGs, which was mediated by activation of Akt and p38 MAPK signaling (Rafalski et al., 2013). However, additional studies are needed to investigate the specific roles of individual HDACs and SIRT1 in proliferation and differentiation of OPGs during adult brain repair.

SUMMARY

Stroke induces oligodendrogenesis. OPGs resident in white matter and OPGs derived from neural progenitor cells contribute to generation of mature myelination oligodendrocytes that interact with axons and astrocytes during post stroke brain remodeling. Potential mechanisms underlying stroke-induced oligodendrogenesis are emerging. Recent studies show that in addition to facilitating salutary conduction, myelination in adult brain contribute to maintaining axonal integrity, neural plasticity and circuitry function (Fields, 2008; Nave, 2010; Faney et al., 2011; Zatorre et al., 2012; Young et al., 2013). It is essential for future studies to investigate mechanisms that temporally and spatially coordinate controlling oligodendrogenesis at multiple stages, and to study relevance of remyelination by oligodendrogenesis to neuronal circuitry, which will greatly enhance the development of new therapies for stroke and other demyelination diseases.

ACKNOWLEDGMENTS

This work was supported by National Institutes of Health Grants RO1 AG037506 (Michael Chopp) and RO1 NS075156 (Zheng Gang Zhang). The content is solely the responsibility of the authors and does not necessarily represent the official view of the National Institutes of Health.

REFERENCES

Alberts-Bruce, A., Kohwi, M., Nguyen, T. M., and Merkle, F. T. (2008). The heterogeneity of adult neural stem cells and the emerging complexity of their niche. Cold Spring Harb. Symp. Quant. Biol. 73, 357–369. doi: 10.1101/sqb.2008.73.039

Amott, H. A., Faney, S. P., Alberts, J. A., Zhao, C., Plant, S. R., Kang, S., et al. (2004). fliH12 transcription factor Ogb1 is required to repair demyelinated lesions in the CNS. Science 304, 2111–2115. doi: 10.1126/science.1105709

Arvidsson, A., Collin, T., Kirk, D., Kokaia, Z., and Lindvall, O. (2002). Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 965–970. doi: 10.1038/nm747

Bain, J. M., Moore, L., Ren, Z., Simonelli, S., and Lusini, S. W. (2013). Vascular endothelial growth factors A and C are induced in the SVZ following neonatal hypoxia-ischemia and exert different effects on neonatal glial progenitors. Transl. Stroke Res. 4, 136–140. doi: 10.1007/s12982-012-0213-3

Benowitz, L. I., and Carmichael, S. T. (2010). Promoting axonal rewiring to improve outcomes after stroke. Neurobiol. Dis. 37, 259–266. doi: 10.1016/j.nbd.2009.11.009

Budde, H., Schmitt, S., Frizzen, D., Opitz, L., Salinas-Riester, G., and Simon, M. (2010). Control of oligodendroglial cell number by the miR-17-92 cluster. Development 137, 2127–2132. doi: 10.1242/dev.045355

Buller, B., Chopp, M., Veno, Y., Zhang, L., Zhang, R. L., Morris, D., et al. (2012). Regulation of serum response factor by miR16-2-20d and miR16-5-2-20d oligodendrocyte progenitor cell differentiation. Glia 60, 1906–1914. doi: 10.1002/glia.22408

Chen, Z. Y., Aminovitskii, P., Prchal, J. T., and Nopachi, C. T. (2007). Endothelial erythropoietin signaling is required for normal neural progenitor cell proliferation. J. Biol. Chem. 282, 2575–2585. doi: 10.1074/jbc.M701988200

Chow, L. I., Golly, W., Cheng, Y., and Gilly, V. (2010). Mechanisms of regulation of oligodendrocyte development by p38 mitogen-activated protein kinase. J. Neurosci. 30, 11121–11127. doi: 10.1523/JNEUROSCI.2586-10.2010

Cui, X., Chopp, M., Zachark, A., Roberts, C., Lu, M., Savant-Shmulev, S., et al. (2009). Chemokine, vascular and therapeutic effects of combination Simvastatin and BMSC treatment of stroke. Neurobiol. Dis. 36, 35–41. doi: 10.1016/j.nbd.2009.06.012

Curts, M. A., Lam, M., and Fiall, B. L. (2011). Neurogenesis in humans. Eur J. Neurosci. 33, 1170–1174. doi: 10.1111/j.1460-9568.2010.07616.x

Dawson, M. R., Polito, A., Levine, J. M., and Reynolds, R. (2003). NG2-expressing progenitor migration during development, in adulthood and in pathology. Cell Mol. Life Sci. 60, 1906–1914. doi: 10.1007/s00018-013-1365-6 [Epub ahead of print].

de Castro, F., Bribian, A., and Ortega, M. C. (2013). Regulation of oligodendrocyte precursor migration during development, in health and in pathology. Cell Mol. Life Sci. 60, 1906–1914. doi: 10.1007/s00018-013-1365-6 [Pub ahead of print].

Demerschka, B. M., Hwang, H. M., and Leung, G. (2008). CNS use burden of ischemic stroke: a systematic literature review. Am. J. Manag. Care 16, S25–S33.
Fancy, S. P., Zhao, C., and Franklin, R. J. (2004). Increased expression of Franklin, R. J., and Ffrench-Constant, C. (2008). Remyelination in the CNS: from Franklin, R. J. (2002). Why does remyelination fail in multiple sclerosis? Goldstein, A. L., Hannappel, E., and Kleinman, H. K. (2005). Thymosin beta4: Gregersen, R., Christensen, T., Lehrmann, E., Diemer, N. H., and Finsen, B. (2001). Gensert, J. M., and Goldman, J. E. (1997). Endogenous progenitors remyelinate He, X., Yu, Y., Awatramani, R., and Lu, Q. R. (2012). Unwrapping myelination by Hayakawa, K., Seo, J. H., Pham, L. D., Miyamoto, N., Som, A. T., Guo, S., et al. (2013). Trends Neurosci. 36, 561–570. doi: 10.1016/j.tins.2008.04.001 Franklin, R. J. (2002). Why does remyelination fail in multiple sclerosis? Nat. Rev. Neurosci. 3, 705–714. doi: 10.1038/nrn1717 Franklin, R. J., and French-Constant, C. (2008). Remyelination in the CNS: from demyelination to remyelination in the adult CNS. Mol. Cell. Neurosci. 27, 247–254. doi: 10.1016/j.mcn.2004.06.015 Ferrer, I., Zamora, C., Durán, P., Rout, M., and Trabilló, E. (2013). Sonic Hedgehog signaling in a positive oligodendrocyte regulator during demyelination. J. Neurosci. 33, 1759–1772. doi: 10.1523/JNEUROSCI.3334-12.2013 Field, R. D. (2008). White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 31, 361–370. doi: 10.1016/j.tins.2008.04.001 Jin, K., Wang, X., Liu, X., Mao, X. O., Zhu, W., Wang, Y., et al. (2008). Evidence for stroke-induced neurogenesis in the human brain. Proc. Natl. Acad. Sci. U.S.A. 105, 13198–13202. doi: 10.1073/pnas.0605352103 Karki, K., Knight, R. A., Hui, Y., Yang, D., Zhang, J., Liihebert, K. A., et al. (2009). Serotonin and dopamine improve neurological outcome after experimental intracranial hemorrhage. Stroke 40, 3386–3391. doi: 10.1161/STROKEAHA.108.554993 Kaslin, H., Chopp, M., Liu, X., Roberts, C., and Zhang, Z. (2015). Role of histone deacetylase in stroke-induced oligodendroglia. Stroke 46, ATMP71. Kwon-Koga, Y., Ono, G., and Nao, T. (2009). Different timings of Dicer deletion affect neurogenesis and gliogenesis in the developing mouse central nervous system. Dev. Dyn. 238, 2809–2812. doi: 10.1002/dvdy.22309 Knöd, L., Loosfelt, L., and Höivik, W. (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11, 597–610. doi: 10.1038/nrg2683 Li, L., Lamm, K. M., Vemuri, P. B., Lagoa, D. C., Elia, A. J., and Cammigning, L. A. (2005). Focal cerebral ischemia induces a multilineage reparative response from adult subventricular zone that is predominantly gliogenic. Glia 53, 1615–1619. doi: 10.1002/glia.20103 Li, Y., Chen, J., Zhang, C., Wang, L., Lu, D., Katkovski, M., et al. (2005). Glial brain and remyelination after treatment of stroke in rats with narrow stromal cells. Glia-6, 407–417. doi: 10.1002/glia.20126 Ligon, K. L., Alberts, J. A., Kho, T., Weiss, J., Kosan, M. R., Natt, C. L., et al. (2004). The oligodendroglial lineage marker OLIG2 is ubiquitously expressed in diffuse glia. J. Neurosci. Exp. Brain Res. 65, 489–500. Ligon, K. L., Fance, S. P., Franklin, R. J., and Rowitch, D. H. (2006). Olig2 gene function in CNS development and disease. Glia 54, 1–10. doi: 10.1002/glia.20273 Liu, X. S., Chopp, M., Kasaw, H., Jin, L. F., Henszek-Solget, A., Zhang, R. L., et al. (2012). Valproic acid increases white matter repair and neurogenesis after stroke. Neurobiol. Dis. 43, 115–121. doi: 10.1016/j.nbd.2011.09.006 Liu, X. S., Chopp, M., Wang, X. L., Zhang, L., Henszek-Solget, A., Tang, Y., et al. (2016). MicroRNA-124 substantially modulates the proliferation and survival of neural progenitor cells after stroke. J. Biol. Chem. 281, 12478–12486. doi: 10.1074/jbc.M115.699003 Liu, X. S., Chopp, M., Zhang, R. L., and Zhang, Z. G. (2018). MicroRNA in cerebral ischemia-induced neurogenesis. J. Neurochem. Exp. Brain Res. 72, 718–722. doi: 10.1007/s00221-012-2822-z Liu, X. S., Chopp, M., Zhang, R. L., Razzuolo, L., Ballant, T., Henszek-Solget, A., et al. (2009). Gene profiles and electrophysiology of doublecortin-expressing cells in the subventricular zone after ischemic stroke. J. Cereb. Blood Flow Metab. 29, 297–307. doi: 10.1038/jcbfm.2008.119 Macan, J., Nem, C., Páti, K. H., and Monnma, S. (2006). Increased generation of neuronal progenitors after ischemic injury in the aged adult human forebrain. J. Neurosci. 26, 13134–13149. doi: 10.1523/JNEUROSCI.4467-06.2006 McGinnis, D. M., and Tripathy, R. B. (2008). The life, death, and replacement of oligodendrocytes in the adult CNS. J. Neurosci. 31, 361–370. doi: 10.1523/JNEUROSCI.5422-10.2011 Menon, B., Garcia-Verdugo, J. M., Y zuske, C., Gonzalez-Perez, O., Rowitch, D., and Alvarez-Buylla, A. (2006). Origin of oligodendrocytes in the subventricular zone of the adult brain. J. Neurosci. 26, 7907–7918. doi:10.1523/JNEUROSCI.1299-06.2006 Minuter, S. L., Ekonomou, A., Carta, E. M., Chiver, A., Perry, R. H., and Ballard, C. G. (2007). Endogenous neurogenesis in the human brain following cerebral infarction. Regen. Med. 2, 69–74. doi: 10.2217/rme.06.59 Moos, V. E., Bond, A., Zhao, W., Yuan, Y. J., Rakh, J. M., Shadrack, J. L., et al. (2013). M2 microglia and macrophages drive oligodendroglia differentiation during CNS remyelination. Nat. Neurosci. 16, 1218–1226. doi: 10.1038/nn.3469 Moos, C. S., Abbali, S. L., Brown, A., Ardoganjosia, A., and Cooks, J. S. (2011). How factors secreted from astrocytes impact myelin repair. J. Neurosci. Res. 89, 15–21. doi: 10.1002/jnr.22482 Morris, J. D., Chopp, M., McTigue, D. M., and Tripathi, R. B. (2008). The life, death, and replacement of oligodendrocytes in the adult CNS. Trends Neurosci. 31, 361–370. doi: 10.1016/j.tins.2008.04.001 ---fnce-07-00201--- 2013/10/27 — 17:51 — page 5 — #5 Zheng et al. Oligodendrogenesis after cerebral ischemia
null
brain of middle-aged mice. PLoS ONE 7:e48141. doi: 10.1371/journal.pone.0048141
Zhang, R. L., Zhang, Z. G., Zhang, L., and Chopp, M. (2001). Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience 105, 33–41. doi: 10.1016/S0306-4522(01)00117-8
Zhang, Z. G., and Chopp, M. (2009). Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol. 8, 491–500. doi: 10.1016/S1474-4422(09)70061-4
Zhang, Z. G., Zhang, J., Song, A., Zhang, R., Daviss, K., Powers, C., et al. (2009). VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J. Clin. Invest. 119, 829–838. doi: 10.1172/JCI39069
Zhao, X., He, X., Han, X., Yu, Y., Ye, F., Chen, Y., et al. (2010). MicroRNA-mediated control of oligodendrogial differentiation. Neuron 65, 612–626. doi: 10.1016/j.neuron.2010.02.018
Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Received: 09 August 2013; paper pending published: 17 September 2013; accepted: 14 October 2013; published online: 29 October 2013. Citation: Zhang R, Chopp M and Zhang ZG (2013) Oligodendrogenesis after Cerebral Ischemia. Front. Cell. Neurosci. 7:201. doi: 10.3389/fncel.2013.00201
This article was submitted to the journal Frontiers in Cellular Neuroscience. Copyright © 2013 Zhang, Chopp and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.