ARTÍCULO ESPECIAL

Tratamiento farmacológico de la COVID-19: revisión narrativa de los Grupos de Trabajo de Enfermedades Infecciosas y Sepsis (GTEIS) y del Grupo de Trabajo de Transfusiones Hemoderivados (GTTH)

E. Díaz, R. Amézaga Menéndez, P. Vidal Cortés, M.G. Escapa, B. Suberviola, A. Serrano Lázaro, P. Marcos Neira, M. Quintana Díaz y M. Catalán González

Recibido el 28 de abril de 2020; aceptado el 21 de junio de 2020
Disponible en Internet el 11 de julio de 2020

Resumen La infección por el virus SARS-CoV-2, denominada COVID-19 (CoronaVirus Disease 19), fue detectada inicialmente en China en diciembre 2019, y posteriormente se ha diseminado rápidamente por todo el mundo, hasta el punto de que el 11 de marzo la Organización Mundial de la Salud declaró que el brote podría definirse como pandemia. La COVID-19 presenta un cuadro que oscila desde episodios leves pseudogripales a otros graves e incluso potencialmente mortales debido, sobre todo, a insuficiencia respiratoria aguda. Es frecuente el ingreso de estos pacientes en nuestros servicios de Medicina Intensiva en relación con un síndrome de distrés respiratorio agudo. La falta de un tratamiento con evidencia científica ha llevado al empleo de diferentes pautas terapéuticas, en muchas ocasiones, con modificaciones rápidas de los protocolos. Recientes revisiones en revistas de prestigio han destacado la falta de terapias...
KEYWORDS
COVID-19; ARDS-CoV-2; Treatment; ICU

Pharmacological treatment of COVID-19: Narrative review of the Working Group in Infectious Diseases and Sepsis (GTEIS) and the Working Groups in Transfusions and Blood Products (GTTH)

Abstract Infection by the SARS-CoV-2 virus, known as COVID-19 (COronaVIrus Disease-19) was initially detected in China in December 2019, and has subsequently spread rapidly throughout the world, to the point that on March 11 the World Health Organization (WHO) reported that the outbreak could be defined as a pandemic. COVID-19 disease ranges from mild flu-like episodes to other serious and even life-threatening conditions, mainly due to acute respiratory failure. These patients are frequently admitted to our Intensive Care Units in relation to acute respiratory distress syndrome. The lack of a treatment based on scientific evidence has led to the use of different management guidelines, in many cases with rapid changes in the applied protocols. Recent reviews in reputed journals have underscored the lack of proven therapies and the need for clinical trials to establish clear and objective treatment guidelines. The present study provides an update on the currently applied treatment, and intends to offer help in relation to daily care, without seeking to replace the protocols adopted in each individual center.

© 2020 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

Introducción

La infección por el virus SARS-CoV-2, denominada COVID-19 (CoronaVIrus Disease 19), fue detectada inicialmente en China en diciembre de 20191, y posteriormente se ha diseminar rápidamente por todo el mundo, hasta el punto de que el 11 de marzo la OMS declaró que el brote podría definirse como pandemia2. En nuestro país, la SEMICYUC ha elaborado un Plan de Contingencia para organizar la asistencia a los pacientes críticos con COVID-193. SARS-CoV-2 provoca un cuadro que oscila desde episodios leves seudogripales a otros graves e incluso potencialmente mortales debido, sobre todo, a insuficiencia respiratoria aguda. Es frecuente el ingreso de estos pacientes en nuestros servicios de Medicina Intensiva en relación con síndrome de distrés respiratorio agudo (SDRA)4-6. La falta de un tratamiento respaldado por suficiente evidencia científica ha llevado al empleo de diferentes pautas terapéuticas y modificaciones rápidas de los protocolos. Recientes revisiones y editoriales han destacado la falta de terapias probadas y la necesidad de ensayos clínicos que permitan establecer pautas de tratamiento basadas en la evidencia4-9.

Se ha propuesto la teoría de que la enfermedad COVID-19 presenta varias fases evolutivas. La fase inicial estaría caracterizada por una elevada carga virica, por lo que sería el momento ideal para administrar un tratamiento antivírico efectivo. En una segunda fase, predominaría la respuesta inflamatoria (incluso hablando de tormenta de citocinas), donde los fármacos antiflamatorios tendrían mayor importancia10 (fig. 1). Sin embargo, esta teoría no se ha podido confirmar hasta el momento.

Para la elaboración de este documento se ha realizado una búsqueda bibliográfica en PubMed con las palabras COVID-19 o SARS-CoV-2 o coronavirus y treatment or therapy o tratamiento. De los diferentes fármacos que se han utilizado no se han revisado algunos con poco uso actualmente como ribavirina o ivermectina. El objetivo de este documento es aportar una actualización de la terapia que se está aplicando en la actualidad, y una ayuda en la asistencia diaria, sin pretender sustituir los protocolos adoptados en cada centro.

Tratamiento antivírico

Lopinavir/ritonavir

Lopinavir es un inhibidor de la proteasa empleado en el tratamiento del virus de la inmunodeficiencia humana y que presenta actividad in vitro ante el virus SARS-CoV-1, causante en 2003 del síndrome de distrés respiratorio agudo severo (SARS)11. La combinación con ritonavir prolonga su vida media. También presenta actividad contra el coronavirus causante del MERS-CoV (Middle East respiratory syndrome)12.

En base a su actividad ante otros coronavirus, se ha postulado que podría ser efectivo frente a SARS-CoV-2. Sin embargo, en el primer ensayo clínico aleatorizado (que incluyó a 199 pacientes), publicado recientemente, su uso no muestra mejoría en comparación con el tratamiento estándar13. Se incluyeron 199 pacientes (alrededor del 15% recibieron oxigenoterapia de alto flujo [OAF] o ventilación...
Autor	Diseño del estudio	Fármacos comparados	Objetivos primarios y secundarios	Resultados	Comentarios
Cao et al.13	Ensayo clínico aleatorizado	L/R + tratamiento estándar Vs. Tratamiento estándar	Tiempo hasta mejora clínica	199 pacientes Sin diferencias en tiempo hasta mejora clínica (16 días), ni mortalidad a 28 días, ni en pacientes con detección de ARN vírico	Aleatorización a los 13 días de iniciar la clínica
Zhu et al.16	Retrospectivo	L/R + tratamiento estándar Vs. Umifenovir + tratamiento estándar	Se evaluó carga vírica, tiempo hasta negativización de detección vírica, fiebre y aparición de neumonía	50 pacientes, 34 tratados con L/R de 40 años y 16 de 26 años	Ninguno presentó neumonia o SDRA Grupos con características diferentes
Ye et al.15	Retrospectivo	L/R + tratamiento estándar Vs. Umifenovir + tratamiento estándar	Evolución de fiebre y parámetros analíticos	47 pacientes (5-68 años) Sin diferencias en días de fiebre. Tiempo a negativización de carga vírica de 7,8 días con L/R vs. 12 en control	Pacientes no graves Un solo centro
Deng et al.14	Retrospectivo	L/R Vs. L/R + umifenovir	Carga vírica negativa Evolución de neumonía	33 pacientes Negativización de carga vírica en mayor proporción en combinación a los 7 días (75 vs. 35%) y a los 14 días (94 vs. 53%) Mejoría radiológica al día 7 del 69% en grupo combinación y 29% en monoterapia con L/R.	Mayor número de pacientes con corticoides en grupo L/R
Cai et al.17	Prospectivo	L/R + tratamiento estándar Vs. Favipiravir + tratamiento estándar	Carga vírica, mejora de la neumonía por tomografía	80 pacientes Mediana de aclaramiento de carga vírica de 4 días con favipiravir y de 11 días con L/R Mejoría radiológica en el 91.4% con favipiravir y del 62.2% con L/R	Duración menor a 7 días desde inicio de clínica Un solo centro
Hung et al.18	Ensayo clínico aleatorizado	L/R Vs L/R + interferón beta-1b + ribavirina	Negativización vírica en nasofaringe Tiempo de resolución de síntomas Mortalidad a 30 días	127 pacientes El grupo con tratamiento triple presentó menor tiempo en la negativización vírica (7 vs. 12 días), tiempo hasta la mejora clínica (4 vs. 8 días) Sin diferencias en mortalidad	El grupo combinación una parte fue con triple tratamiento y una parte con L/R y ribavirina

L/R: lopinavir/ritonavir.
mecánica no invasiva, y solo 2 ventilación mecánica invasiva (VM) que fueron aleatorizados con una mediana de evolución de 13 días (en el subgrupo de menos de 12 días tampoco se observaron diferencias). En la tabla 1 se presentan los diferentes estudios.

Los efectos adversos más frecuentes son diarrea, náuseas, vómitos, hipertrigliceridemia e hipercolesterolemia. Los pacientes también pueden presentar pancreatitis o prolongación del QT. Se ha de tener presente que los 2 componentes son inhibidores de la isofrina CYP3A del P450, lo que favorece las interacciones con diversos fármacos de uso común en UCI.

Remdesivir

Remdesivir es un profármaco, perteneciente al grupo de análogos de los nucleótidos, que se metaboliza intracelularmente en un análogo de adenosina trifosfato que inhibe las ARN polimerasas víricas. Presenta amplia actividad contra virus de la familia de los filovirus (virus Ebola, virus de Marburg), coronavirus (SARS-CoV-1, MERS-CoV) y paramixovirus (virus respiratorio sincitial) entre otros. Remdesivir se ha evaluado también como profilaxis en modelos animales ante infección por SARS-CoV y MERS.

Remdesivir presenta menos interacciones que otros antiviricos, con un perfil de seguridad probado en estudios en fase I en más de 500 pacientes con infección por virus Ebola.

Se han publicado recientemente varios estudios sobre el uso de remdesivir en COVID-19 (tabla 2). El primero de ellos evaluó el uso compasivo de remdesivir en pacientes con COVID-19[20]. De los 53 pacientes analizados, el 57% recibió VM y el 8% ECMO. La mortalidad global fue del 13% (18% entre pacientes en VM, 5% entre los no ventilados).

Entre los estudios aleatorizados, Wang et al. evaluaron remdesivir vs. placebo en 237 pacientes adultos en Hubei (China)[31]. Aleatorizaron pacientes con hasta 12 días de evolución desde la aparición de los síntomas (mediana: 11 días), y se permitió el uso concomitante de lopinavir-ritonavir, interferón o corticoides. El tratamiento con remdesivir no se asoció a mejoría clínica.

Beigel et al.[22] aleatorizaron 1.059 pacientes a recibir remdesivir o placebo, con una mediana de 9 días desde el inicio de síntomas. El tiempo de recuperación fue inferior en los pacientes tratados con remdesivir (11 vs. 15 días), aunque esa diferencia no se apreció en los pacientes con VM. La mortalidad a los 14 días fue del 7,1% con remdesivir y del 11,9% con placebo (0,47-1,04), quedando pendiente la evaluación de la mortalidad a los 28 días. Por otro lado, un estudio comparando el tratamiento con remdesivir en pausas de 5 o 10 días (en pacientes sin VM) no mostró diferencias en el estado clínico al día 14[32].

Se han detectado efectos adversos como anemia o desceso del filtrado glomerular hasta en un 28,8% de los pacientes, con similar incidencia en el grupo que recibió placebo. También se ha observado la aparición de hipotensión arterial durante la infusión[22].

Recientemente, el Ministerio de Sanidad ha aprobado su uso en pacientes con COVID-19 hospitalizados con enfermedad grave[24].
Hidroxicloroquina y azitromicina

La hidroxicloroquina es una 4-aminoquinolina antipalúdica que ha demostrado tener actividad in vitro contra diversos virus de ARN, incluído el SARS-CoV-2. Sin embargo, el potencial efecto del citado fármaaco in vivo es una incógnita en la actualidad.

Se cree que hidroxicloroquina actúa a través de múltiples mecanismos: inhibición de la entrada viral, inhibición de la liberación viral en la célula huésped, bloqueo de la activación de las proteasas endosómicas, reducción de la infectividad viral y modulación inmune.

En comparación con la cloroquina, en estudios in vitro, la hidroxicloroquina ha demostrado ser más potente en la inhibición del COVID-19. Se ha demostrado que empleando una dosis segura de sulfato de hidroxicloroquina (6-6,5 mg/kg/día) se alcanzan niveles séricos de 1,4-1,5 μM en humanos, teóricamente suficientes para inhibir la infección por SARS-CoV-2.

Pese a los beneficios teóricos, los ensayos clínicos publicados hasta la fecha aportan una evidencia aún inconsistente. En varios estudios controlados realizados en hospitales chinos, el tratamiento con cloroquina ha logrado, en comparación con controles, prevenir el desarrollo de neumonía, mejorar la imagen radiológica pulmonar, acelerar la negativización del virus y acortar la duración de la enfermedad. Sin embargo, estos estudios contan con importantes limitaciones metodológicas que provocan que sus resultados sean, al menos, cuestionables.

También se ha empleado azitromicina en asociación a hidroxicloroquina. Un estudio francés con escaso tamaño muestral y otros déficits metodológicos objetivó que el tratamiento con hidroxicloroquina aceleraba la conversión al estado de seronegatividad para el virus y que esta situación mejoraba con la combinación con azitromicina.

Un estudio multicéntrico y retrospectivo ha comparado hidroxicloroquina, azitromicina, ambas en combinación o ninguno de ellos. En este estudio, con 1.438 pacientes hospitalizados, el tratamiento con hidroxicloroquina, azitromicina o la combinación de ambos no se asoció a mejora en la mortalidad hospitalaria. Por tanto, es necesario generar más evidencia al respecto, más aún teniendo en cuenta que tanto la hidroxicloroquina como la azitromicina se asocian con la prolongación del intervalo QT.

La eficacia de la hidroxicloroquina se está evaluando actualmente en al menos 30 ensayos clínicos.

Actualmente el Ministerio de Sanidad de España recomienda el empleo de hidroxicloroquina en el contexto de ensayos clínicos.

Autor	Diseño del estudio	Fármacos comparados	Objetivos primarios y secundarios	Resultados	Comentarios
Grein et al.	Retrospectivo	Remdesivir	Evolución clínica	53 pacientes evaluables	Sin grupo control
	Uso compasivo	No comparador		Mortalidad 18% en pacientes que recibieron ventilación mecánica y 5% entre los que no recibieron ventilación mecánica. Mejora de síntomas	
Wang et al.	Ensayo clínico	Remdesivir vs.	Tiempo hasta	236 pacientes	Finalización antes de lo previsto por control de la pandemia
	doble ciego	placebo	mejoría clínica, mortalidad, use	Tiempo hasta aleatorización de 10 días	Inicio de tratamiento superior a 10 días en 49% de los pacientes
			de ventilación mecánica invasiva,	Sin diferencias en tiempo hasta mejoría clínica ni en mortalidad (14 vs. 13%)	
Beigel et al.	Ensayo clínico	Remdesivir vs.	Tiempo hasta	1.063 pacientes	Pendiente de completar estudio para evaluar mortalidad a los 28 días
	doble ciego	placebo	mejoría clínica	Mediana hasta inicio de tratamiento de 9 días	
			Mortalidad a 14 y 28 días	Tiempo hasta mejoría clínica 11 días en grupo remdesivir por 15 días en grupo placebo	

| Tabla 2 | Estudios con remdesivir |
Tabla 3 Estudios con hidroxicloroquina y azitromicina

Autor	Diseño del estudio	Fármacos comparados	Objetivos primarios y secundarios	Resultados	Comentarios
Gautret et al.	Serie de casos	Hidroxicloroquina vs. hidroxicloroquina + azitromicina vs. no tratamiento	Carga vírica al día 6 de inclusión	36 pacientes: 20 con tratamiento y 16 sin tratamiento	Escaso número de paciente. Diferencias en el método para evaluar la carga vírica
Million et al.	Cohorte	Hidroxicloroquina + azitromicina	Empeoramiento clínico. Carga vírica	1.061 pacientes. Mala evolución se asoció a edad avanzada, gravedad clínica inicial, uso de betabloqueantes, uso de ARA-II y baja concentración sérica de hidroxicloroquina	Sin grupo control. Algunos datos incompletos
Borba et al.	Ensayo clínico aleatorizado doble ciego	Cloroquina alta dosis con azitromicina vs. cloroquina dosis baja con azitromicina	Mortalidad a 28 días. Estado clínico a los días 6, 14 y 28	81 pacientes. Mortalidad mayor en grupo de dosis alta, mayor número de efectos adversos relacionados con alargamiento del QT y taquicardia ventricular	Análisis intermedio con finalización de la rama de dosis alta por falta de seguridad
Geleris et al.	Retrospectivo	Hidroxicloroquina vs. no hidroxicloroquina	Tiempo hasta intubación o muerte	1.376 pacientes, 811 tratados con hidroxicloroquina y 565 no. Los tratados con hidroxicloroquina no presentaron menor intubación o muerte (HR: 1,04; IC 95%: 0,82-1,32)	Regresión logística y Propensity score
Rosenberg et al.	Retrospectivo	4 grupos: hidroxicloroquina sola, hidroxicloroquina con azitromicina, azitromicina sola o ninguno de los 2 fármacos	Mortalidad hospitalaria Parada cardíaca, alteraciones en el ECG	1.438 pacientes. No presentaron diferencias en la mortalidad después regresión logística	Estudio retrospectivo. Diferencias en características clínicas entre los grupos
El uso de hidroxicloroquina está contraindicado en tratamiento concomitante con natalizumab (empleado en esclerosis múltiple) y agalactosomia α o β (indicado en enfermedad de Fabry). Igualmente debe realizarse ajuste posológico de hipoglucemiantes, digoxina, betabloqueantes y antipsicóticos (clorpromazina, levomepromazina) dado que potencia su efecto. Su administración debe realizarse con precaución en caso de miastenia gravis, porfiria, patología retiniana, epilepsia (disminuye el umbral de convulsión), daño hepático, insuficiencia renal, déficit de 6-P-deshidrogenasa. Se debe extremar la precaución cuando sea administrada en asociación con fármacos que prolongan el intervalo QT. En la tabla 3 se describen algunos estudios del tratamiento con hidroxicloroquina y azitromicina.

Interferón-β 1b

El interferón-β 1b tiene actividad antivírica e inmunorreguladora, siendo un tratamiento empleado en la esclerosis múltiple. Interferón-β 1b ha demostrado presentar actividad in vitro contra SARS-CoV y MERS\(^\text{56,57}\). También se ha observado una reducción de la carga vírica de MERS en modelos animales\(^\text{37}\). Se ha empleado en monoterapia o en combinación con lopinavir/ritonavir. Un ensayo clínico en fase 2 ha comparado la combinación de lopinavir/ritonavir junto a ribavirina e interferón-β 1b vs. lopinavir/ritonavir en 127 pacientes en Hong Kong\(^\text{15}\), mostrando que la combinación negativizó antes la detección viral mediante proteína C reactiva (PCR). Este estudio se diseñó para que interferón-β 1b no se administrara en el periodo de mayor inflamación por sus efectos proinflamatorios.

Se ha descrito que el interferón reduce la actividad del citocromo P450, por lo que hay que tener presente las potenciales interacciones farmacológicas\(^\text{38}\). Los efectos adversos más frecuentes son un cuadro gripal con fiebre, escalofríos, cefalea, artralgia o mialgia. También se ha descrito hipoglucemia, diarrea, aumento de transaminasas, anemia o trombocitopenia entre otros\(^\text{39}\).

Tratamiento antinflamatorio

Corticoides

La respuesta inmunitaria del paciente parece desempeñar un importante papel en la fisiopatología tanto del daño pulmonar agudo como del SDRA. Los pacientes con COVID-19, particularmente aquellos con neumonía y SDRA, tienen niveles elevados de citocinas proinflamatorias y otros biomarcadores inflamatorios\(^\text{40}\). Este es el motivo por el que algunos autores postulan el empleo de esteroides en este grupo de pacientes. Sin embargo, los resultados obtenidos en otras infecciones víricas muestran que su empleo por vía sistémica puede no solo no ser beneficioso, sino que puede asociarse a un incremento de la replicación y diseminación víricas\(^\text{41-43}\). Por otro lado, es dudoso que puedan asimilarse los resultados de los estudios de corticoides en pacientes en SDRA a los pacientes COVID-19, dado que estos estudios incluyen también a pacientes que presentan SDRA de causas extrapulmonares o no relacionadas con un origen infeccioso\(^\text{44}\).

La evidencia actual sobre la utilidad de los corticoides sistémicos en pacientes con infección por COVID-19 es muy limitada. El trabajo de Wu et al.\(^\text{5}\) es un estudio retrospectivo de un solo centro que incluyó a 201 pacientes con neumonía por COVID-19, de los que 84 presentaron SDRA. En este grupo, el uso de metilprednisolona se correlacionó con una reducción significativa de la mortalidad (HR: 0,38; IC 95%: 0,20-0,72). En la tabla 4 se reseñan otros estudios\(^\text{45-47}\).

Respecto a las recomendaciones institucionales, tanto la OMS como los Centers for Disease Control and Prevention (CDC) americanos no recomiendan el empleo de corticoides más allá del entorno de los ensayos clínicos o el tratamiento específico de pacientes con COVID-19 y shock séptico o condiciones basales que los requieran, del tipo de exacerbación de EPOC o asma. El comité de expertos de la American Thoracic Society tampoco establece ninguna recomendación acerca del empleo de corticoides\(^\text{48}\). Por su parte, las pautas de la Surviving Sepsis Campaign (SSC) sugieren, en adultos con COVID-19 y SDRA en VM, usar corticoides sistémicos, con un grado de recomendación débil\(^\text{49}\).

En cuanto a la dosis a emplear, los regímenes utilizados en China fueron fundamentalmente metilprednisolona 40-80 mg iv diariamente durante un curso de 3-6 días\(^\text{50}\). Dosis equivalentes de dexametasona (7-15 mg diarios) podrían tener la ventaja de estimular una menor retención de líquidos, ya que la dexametasona tiene menos actividad mineralocorticoides\(^\text{51}\).

Tratamiento inmunomodulador

Al igual que en otras entidades causadas por coronavirus, como pueden ser el SARS, en el que se comprobó la existencia de niveles séricos muy elevados de citoquinas proinflamatorias, como interleucina-6 (IL-6), factor de necrosis tumoral α e IL-12\(^\text{52}\); y el MERS, en el que se constató la producción elevada de IL-6, IL-1b e IL-8\(^\text{53}\); la tormenta de citoquinas parece ser uno de los principales mecanismos responsables del fallecimiento de los pacientes COVID-19, en los que se han detectado niveles elevados de citoquinas como IL-6, IL-2, IL-7, IL-10, factor estimulante de colonias de granulocitos, proteína inductible por interferón-γ (IP10), proteína inflamatoria de macrófagos 1a (MIP1A), proteína quimioatractiva de monócitos (MCP1) y factor de necrosis tumoral α\(^\text{1}\). La rápida activación de los monócitos y las células T produce una reacción en la que IL-6 y el factor estimulante de colonias de granulocitos desempeñan un papel fundamental, provocando una respuesta inflamatoria que podría ser la responsable de la alteración del intercambio gaseoso entre el alvéolo y el capilar, y también de la progresión a la fibrosis pulmonar y la disfunción orgánica\(^\text{54}\). Los niveles de las citoquinas mencionadas parecen relacionarse con la gravedad y el pronóstico de la enfermedad.

Para el diagnóstico de la tormenta de citoquinas podemos basarnos en la presencia de SDRA, junto con la de alteraciones de parámetros analíticos como ferritina, PCR, CRP, dímero D, lactato deshidrogenasa, recuento de linfocitos e IL-6. Actualmente no existe una escala validada para el diagnóstico de la tormenta de citoquinas secundaria a COVID-19, por lo que se recomienda una evaluación seriada de dichos marcadores y de la situación respiratoria de estos pacientes para seleccionar aquellos que puedan beneficiarse de la
administración de terapia antiinflamatoria; la escala HSscore (tabla 1 de material adicional) puede ser de ayuda, aunque no es suficientemente sensible ni precoz25,26.

Entre las opciones terapéuticas que se han propuesto, las más importantes son las siguientes:

Tocilizumab

Tocilizumab es un anticuerpo monoclonal recombinante que se une y bloquea tanto el receptor soluble como el receptor de membrana de la IL-6. Entre sus aplicaciones habituales está el tratamiento de la artritis reumatoide (AR) y también forma parte del tratamiento del síndrome de liberación de citoquinas tras la terapia CAR-T (terapia de células T con receptor de antígeno químérico)97. Al actuar sobre el receptor y no sobre la IL-6 circulante, los niveles de IL-6 no son útiles para monitorizar la respuesta al tratamiento, ya que incluso pueden aumentar tras su administración.

Actualmente existen varios ensayos clínicos en periodo de reclutamiento de pacientes COVID-19 con diferentes grados de severidad, pero por el momento, disponemos únicamente de los resultados de 2 pequeños estudios retrospectivos. El primero de ellos consiste en un análisis retrospectivo de 21 pacientes COVID-19 tratados en 2 hospitales de China. Dieciséis de ellos cumplieron criterios de enfermedad grave (≥ 30 respiraciones/min, SaO2 ≤ 93% respirando aire ambiente o relación PaO2/FIO2 ≤ 300), y 4 de enfermedad crítica (necesidad de VM, shock o ingreso en UCI). Los 21 pacientes recibieron lopinavir y metilprednisolona y una dosis de 400 mg iv de tocilizumab, 3 de ellos, además, recibieron una segunda dosis a las 12 h (por persistencia de la fiebre). Dos de los pacientes recibieron VM, uno más ventilación mecánica no invasiva y 9 pacientes OAF. En los 21 pacientes, que presentaban niveles elevados de IL-6, se observaron resultados clínicos (normalización de la temperatura, alivio sintomático y mejora de la oxigenación), analíticos (normalización del recuento de linfocitos y de la PCR) y radiológicos favorables. En este estudio no se observaron reacciones adversas al fármaco58.

En otra serie retrospectiva de pacientes COVID-19 (15 pacientes: 2 con enfermedad moderada, 6 con enferme-

Autor	Diseño del estudio	Fármacos comparados	Objetivos primarios y secundarios	Resultados	Comentarios
Wu et al.5	Retrospectivo	Metilprednisolona	Desarrollo de SDRA y mortalidad en pacientes con SDRA	201 pacientes. Ochenta y cuatro pacientes desarrollaron SDRA. Los factores de riesgo para el desarrollo de SDRA fueron edad mayor de 65 años, fiebre superior a 39°C, neutrofilia, y alteración de la coagulación. Los pacientes con SDRA el recibir tratamiento con metilprednisolona fue un factor protector (HR: 0,38; IC 95%: 0,20-0,72)	No se detalla dosis ni duración de metilprednisolona
Zha et al.45	Retrospectivo	Metilprednisolona	Tiempo de eliminación del virus Tiempo para la recuperación clínica. Estancia hospitalaria No detallados	31 pacientes Tiempo de eliminación del virus de 14 días 11 pacientes recibieron metilprednisolona 40-80 mg/día No hubo diferencias en las variables evaluadas 15 pacientes ingresado en UCI Todos desarrollaron SDRA y recibieron tratamiento con hidrocortisona Mortalidad en 8 de los 15 pacientes	Número escaso de pacientes
Zhou et al.47	Serie de casos	Hidocortisona	No detallados		Bajo número de pacientes. Sin grupo control

Tabla 4 Estudios con corticoides

Medicina Intensiva 45 (2021) 104-121
dad grave y 7 con enfermedad crítica), procedentes de un único centro en China, 8 de los cuales recibieron trato-
mento con metilprednisolona y todos ellos con niveles de IL-6 elevados), se observaron también resultados analí-
ticos generalmente favorables (descenso de PCR y de IL-6).
Sin embargo, de los 7 pacientes críticos, en 4 de ellos no
se obtuvo una respuesta analítica favorable, falleciendo 3
de ellos59. En la tabla 5 se describen algunos estudios con
immunomoduladores.
La administración de tocilizumab está contraindicada
en el contexto de infecciones graves activas. Los efectos
secundarios relacionados con mayor frecuencia con la
administración de tocilizumab son: infecciones del tracto
respiratorio superior, nasofaringitis, cefalea, hipertensión y
elevación de transaminasas hepáticas. Las reacciones adver-
sas más graves fueron infecciones graves, complicaciones de
divergencita y reacciones de hipersensibilidad60.
Debido a la ausencia de resultados concluyentes, la
SSC y el comité de expertos de la American Thoracic
Society no establecen una recomendación acerca del uso
de tocilizumab68,49, sin embargo, las recomendaciones de la
Comisión Nacional de Salud de China y otros expertos reco-
miendan su empleo en pacientes críticos con elevación de
IL-661,62.
La recomendación actual del Ministerio de Sanidad de
España es administrarlo en aquellas fases de la enfermedad
elas que resulta más probable que frenar la cascada infla-
matoria tenga un efecto sobre la necesidad de ventilación24 (ver tabla 2 en material adicional).
Excepcionalmente, se puede valorar una segunda in-
sufión a las 12 h desde la primera infusión en aquellos
pacientes que experimenten un repunte de los parámetros
analíticos tras una primera respuesta favorable.

Tabla 5 Estudios con inmunomoduladores

Autor	Diseño del estudio	Fármacos comparados	Objetivos primarios y secundarios	Resultados	Comentarios
Xu et al.58	Retrospectivo	Tocilizumab No comparador	Evolución clínica y analítica	Mejoría de síntomas. Normalización PCR, recuento linfocitos. Desaparición de la fiebre	21 pacientes (2 en ventilación mecánica)
Luo et al.59	Retrospectivo	Tocilizumab No comparador	Evolución analítica	Descenso de IL-6 y PCR	15 pacientes (4 críticos, 75% mortalidad)
Gritti et al.73	Retrospectivo	Siltuximab No comparador	Evolución clínica y analítica	Descenso de PCR Mejoría clínica en 33%, estabilización en 43%, deterioro en 24%	21 pacientes con soporte respiratorio no invasivo

Sarilumab

Sarilumab es otro antagonista del receptor de la IL-6, empleado también en el tratamiento de la AR, que está
siendo evaluado en pacientes COVID de diferente grave-
dad en varios ensayos clínicos (NCT04357808, NCT04315298, NCT04327388, NCT04324073, NCT04322773), pero no dispo-
nemos de resultados clínicos hasta el momento63. No se
encuentra disponible fuera de ensayos clínicos.

Inhibidores de la proteína-quinasa 1 asociada a AP2

Baricitinib, fedratinib, sunitinib y erlinibit son inhibidores de la proteína quinasa 1 asociada a AP2 (AAK1), regula-
dora de la endocitosis mediada por clatrina a través de la
cual entran en la célula la mayoría de los virus. De ellos,
fedratinib, sunitinib y erlinibit se asocian a serios efectos
secundarios que hacen dudar sobre su utilidad en pacientes
COVID. Por su parte, baricitinib inhibe también la quinasa
asociada a la cyclina G (otro regulador de la endocitosis)
y es, además, un inhibidor de janus quinasas (JAK), por lo
que se ha sugerido su uso para reducir tanto la entrada del
virus en las células como la respuesta inflamatoria64,65, sin
embargo existen dudas acerca de su posible eficacia, dado
que, al mismo tiempo, produce un descenso de la respuesta
antivirica mediada por interferón66.

Las reacciones adversas notificadas con más frecuencia
en los pacientes tratados con baricitinib fueron aumento del
colesterol LDL (33,6%), infecciones del tracto respiratorio
superior (14,7%) y náuseas (2,8%)67.
A día de hoy no disponemos de resultados del empleo de
baricitinib en COVID-19, aunque existen ensayos clínicos en
fase de reclutamiento (NCT04390464, NCT04346147) y otros 2 a la espera de comenzar el mismo.

Anakinra

Anakinra es un antagonista recombinante del receptor de la IL-1, empleado en AR y enfermedad de Still.

El análisis del subgrupo de pacientes con síndrome de activación macrofágica de un ensayo clínico que evaluó la administración de anakinra en pacientes con sepis y fracaso multiorgánico demostró una reducción de la mortalidad a los 28 días frente a placebo48. El síndrome de activación macrofágica, subgrupo de linfohistiocitosis hemofagocítica, se presenta como una tormenta de citocinas que provoca un fracaso multiorgánico generalmente mortal en poco tiempo, habitualmente está asociada a enfermedades reumatológicas, pero puede ser desencadenado por infecciones viricas. Se han observado niveles elevados de IL-1, IL-6, IL-18, receptor soluble de IL-2, PNT e IFN-γ. Se ha propuesto que anakinra puede formar parte del tratamiento de síndrome de activación macrofágica y algunos autores proponen su empleo también en la tormenta de citocinas secundaria a COVID-1945.

Los efectos adversos más frecuentes del tratamiento con anakinra son reacciones locales en el lugar de inyección, aparición de infecciones graves y descenso de neutrófilos70.

Actualmente existen diferentes ensayos clínicos en pacientes con COVID de diferentes grados de gravedad (NCT04364009, NCT04324021, NCT04357366, NCT04339712, NCT04330638), pero no disponemos de resultados clínicos que permitan establecer una recomendación acerca del uso de anakinra.

Ruxolitinib (RXT)

Ruxolitinib (RXT) es un inhibidor selectivo de las quinonas asociadas a Janus (JAK1 y JAK 2), mediadores implicados en la hematopoiesis y la función inmune (participan en la transducción de otras citocinas proinflamatorias y anti-inflamatorias). Se utiliza en el tratamiento de la AR, la mielofibrosis y la policitemia vera y se ha postulado su uso para reducir la tormenta de citocinas inflamatorias71. Actualmente está siendo siendo evaluado en 2 ensayos clínicos en el tratamiento del COVID-19 (NCT04362137, NCT04377620, NCT04334044, NCT04338958, NCT04348695) pero no se dispone todavía de datos.

El Ministerio de Sanidad lo incluye entre las opciones de tratamiento de COVID-19, bien como uso compasivo, bien a través de un ensayo clínico44. En la tabla 3 de material adicional se resumen los criterios de empleo y las contraindicaciones de RXT.

Las reacciones adversas notificadas de forma más frecuente fueron trombocitopenia, neutropenia y anemia. Las 3 reacciones adversas no hematológicas más frecuentes fueron hematomas (21,3%), mareo (15,3%) y cefalea (14,0%). Los pacientes tratados con RXT han sufrido infecciones graves bacterianas, micobacterianas, fúngicas, viricas y otras infecciones oportunistas72.

Siltuximab (STX)

Siltuximab (SXT) es un inhibidor de la IL-6, empleado en la enfermedad de Castleman en pacientes negativos para virus de la inmunodeficiencia humana y virus herpes-8.

Se han publicado los datos de 21 pacientes COVID-19 con neumonia/SDRA en Italia que recibieron SXT. Recibieron una dosis de 11 mg/kg iv (durante una hora), y una segunda dosis a discreción del médico tratante, que recibieron 5 pacientes. De los 21 pacientes, en un 33% se observó mejoría de su estado clínico, en un 43% su situación se estabilizó y el 24% empeoró, incluyendo un fallecimiento. Debe destacarse que los 21 pacientes recibían soporte respiratorio no invasivo49.

El Ministerio de Sanidad plantea su uso en las mismas situaciones que RXT24.

En la tabla 3 de material adicional se resumen los criterios de empleo y las contraindicaciones de STX.

Los efectos secundarios más frecuentes del empleo de STX son las infecciones (incluyendo las infecciones de las vías respiratorias altas), prurito, erupción, artralgia y diarrea. La reacción adversa más grave asociada al uso de siltuximab fue la reacción anafiláctica74.

Profilaxis antitrombótica y anticoagulación

Muchos de los enfermos críticos, especialmente los que fallecen, con COVID-19 desarrollan coagulopatía79-79. Se ha descrito tanto un estado de coagulación intravascular diseminada como un estado de hipercoagulabilidad diferente, descrito mediante tromboelastografía, acompañado de marcadores de inflamación elevados81. La inmovilización, la respuesta inflamatoria, la hipoxia y el desarrollo de coagulación intravascular diseminada aumentan el riesgo trombótico de estos pacientes y se ha especulado sobre el papel que la trombosis microvascular puede desempeñar en la hipoxemia y el fallo multiorgánico.

La incidencia de complicaciones trombóticas en el paciente crítico oscila entre el 25-100%82-87 dependiendo de la intensidad de su búsqueda y del tratamiento administrado. Se ha observado mayor mortalidad en los pacientes con trombosis (HR: 5,4; IC 95%: 2,4-12) y que la anticoagulación basal previene las complicaciones trombóticas (HR: 0,29; IC 95%: 0,091-0,92)88.

Hasta el momento, solo 2 estudios observacionales han investigado la asociación de la tromboprofilaxis y la anticoagulación con la mortalidad. Un reciente estudio no encontró diferencias significativas en la mortalidad valorada a los 28 días, entre pacientes tratados con dosis profilácticas de heparina (40-60 mg/24 h de enoxaparina durante al menos 7 días) respecto aquellos que no la recibieron (30,3 vs. 29,7%; p = 0.91)89. Sin embargo, en los subgrupos de pacientes con SIC ≥4 y con valores de dímeros D superiores a 3.000 ng/ml, la mortalidad a los 28 días fue significativamente más baja (40 vs. 64,2%; p = 0,029 y 32,8% vs. 52,4%, p = 0,017, respectivamente) en los pacientes tratados con heparina88. Paranjpe et al.87 tampoco encontraron diferencias en la mortalidad intrahospitalaria (22,5 vs. 22,8%) de los pacientes que recibían anticoagulación oral, intravenosa o subcutánea respecto a los que no la recibían. Sin embargo, la mortalidad intrahospitalaria disminuió en el subgrupo de pacientes con ventilación mecánica anticoagulados (29 vs.
Autor	Diseño del estudio	Fármacos comparados	Objetivos primarios y secundarios	Resultados	Comentarios
Cui et al.⁹⁵	Descriptivo		Incidencia TEV	TEV 20/81 (25%)	81 pacientes UCI COVID-19 No profilaxis trombótica 184 pacientes UCI COVID-19 Pruebas diagnósticas solo si existía sospecha clínica Todos al menos tromboprophilaxis 17 pacientes (9,2%) anticoagulados por indicación previa 139 pacientes (76%) permanecían ingresados en UCI cuando fue publicado Mediana seguimiento 7 días (RIC: 1-13)
Klok et al.⁸²	Descriptivo		Incidencia acumulada variable compuesta TEV (TEP, TVP) y TA (IAM, ictus, embolismo arterial periférico) Incidencia acumulada de cada evento trombótico	Variable compuesta 31% (IC 95%: 20-41%)	
				TEV 27% (IC 95%: 17-37%)	
				TA 3,7% (IC 95%: 0-8,2%)	
				TEP complicación más frecuente (n = 25, 81%)	
Klok et al.⁸³	Reevaluación de estudio previo		Incidencia acumulada variable compuesta TEV (TEP, TVP) y TA (IAM, ictus, embolismo arterial periférico) Incidencia acumulada de cada evento trombótico	Variable compuesta ajustada por riesgo competitivo 49% (IC 95%: 41-57%)	Mediana seguimiento 14 días (RIC: 6-19)
	Descriptivo			Los pacientes con trombosis tienen más riesgo de morirse, HR: 5,4 (IC 95%: 2,4-12)	
	Ajuste por riesgo competitivo de muerte			La anticoagulación basal previene las complicaciones trombóticas, HR: 0,29 (IC 95%: 0,091-0,92)	
				La anticoagulación basal no se asoció con mortalidad, HR: 0,79 (IC 95%: 0,35-1,8)	
Helms et al.⁸⁴	Observacional Cohorte prospectiva		Incidencia TEV COVID-19 vs no-COVID-19 Incidencia de cada evento trombótico en COVID-19 vs. no COVID-19	Los pacientes COVID-19 con SDRA presentan más complicaciones trombóticas que los pacientes con no COVID-19 con SDRA (11,7 vs. 4,8%; OR: 2,6 [1,1-6,1], p = 0,035), principalmente TEP (11,7 vs. 2,1%; OR: 6,2 [1,6-23,4], p = 0,008)	Tras el emparejamiento: 77 pacientes con SDRA por COVID-19 145 pacientes con SDRA por no COVID-19 de causa bacteriana o vírica Todos heparina profiláctica (77,9 vs. 75,9%) o anticoagulante (22,1 vs. 24,1%). Pruebas diagnósticas solo si existía sospecha clínica
	UCI COVID-19 (n = 150)			En cohorte COVID-19 (n = 150): TEV 64 (42,6%)	
	Cohorte histórica prospectiva UCI no			TEP 25 (16,75%)	
	COVID-19 (n = 233)			Hemorragias 4 (2,7%)	
Autor	Diseño del estudio	Fármacos comparados	Objetivos primarios y secundarios	Resultados	Comentarios
---------------	--------------------	---------------------	-----------------------------------	--	--
Thomas et al.	Descriptivo		Incidencia de la variable compuesta TEP, TVP y TA (IAM, ictus, embolismo arterial periférico)	Incidencia acumulada de la variable compuesta 29% (IC 95%: 12-49%)	63 pacientes COVID-19 UCI Solo estudio trombosis si síntomas Mediana seguimiento 8 días (rango 1-28) Todos tromboprofilaxis con dalteparina ajustada a peso y función renal
Middeldorp et al.	Observacional. Cohorte retrospectiva Modelo de riesgo competitivo	1.ª Incidencia de TVP, TEP o trombosis en otras localizaciones diagnosticadas por pruebas de imagen pacientes planta vs. pacientes UCI 2.ª Incidencia de TVP, TEP o trombosis en otras localizaciones sintomáticas	Incidencia acumulada en UCI a los 21 días (59%;[IC 95%:42-72]) Incidencia acumulada en planta a los 21 días (9,2% [IC 95%: 2,6-21] La proporción de pacientes con TEV fue mayor en UCI que en planta (47 vs. 3,3%; HR: 7,9 [IC 95%: 2,8-23]) La proporción de pacientes con TEV sintomático fue mayor en UCI que en planta (28 vs. 3,3%; HR: 3,9; [IC 95%: 1,3 -12]) Ninguno de los pacientes anticoagulados por otros motivos desarrolló TEV Trombosis 7,7% TEP 2,5% SCAIAM 2,5%/1,1% CID 2,2% Ictus 2,5% Trombosis UCI 16,7% La mitad de los casos de trombosis se diagnosticaron en las primeras 24h	198 pacientes COVID-19 hospitalizados 75 pacientes en UCI (38%) Mediana seguimiento UCI 15 días (RIC: 9-20) Mediana seguimiento planta 4 días (RIC: 2-7) Todos al menos tromboprofilaxis 19 pacientes (9,6%) recibían anticoagulación por indicación previa	
Lodigiani et al.	Descriptivo		Porcentaje de TEV y arterial (SCA/IAM, ictus) Porcentaje CID	Trombosis 7,7% TEP 2,5% SCAIAM 2,5%/1,1% CID 2,2% Ictus 2,5% Trombosis UCI 16,7% La mitad de los casos de trombosis se diagnosticaron en las primeras 24h	388 pacientes COVID-19 hospitalizados 61 pacientes (16%) en UCI Tromboprofilaxis 100% en UCI, 75% en las planta de hospitalización
Autor	Diseño del estudio	Fármacos comparados	Objetivos primarios y secundarios	Resultados	Comentarios
-----------------	---------------------	--------------------------------------	---	---	---
Tang et al.	Observacional	Heparina No heparina	Mortalidad 28 días Mortalidad 28 días estratificada según SIC y dimero D	No diferencias en mortalidad 28 días (30,3 vs. 29,7%; p = 0,91)	449 pacientes COVID-19 graves
Paranjpe et al.	Observacional	Anticoagulación No anticoagulación	Mortalidad intrahospitalaria Sangrado	No diferencias mortalidad intrahospitalaria (22,5 vs. 22,8%)	99 pacientes (22%) recibieron heparina al menos durante 7 días.
Llitjos et al.	Observacional	Dosis profilácticas de anticoagulación Dosis terapéuticas de anticoagulación	Incidencia TEV	Mayor incidencia de TEV en los pacientes tratados con dosis profilácticas vs terapéuticas (100 vs. 56%; p = 0,03)	26 pacientes UCI COVID-19 con VM Todos HBPM o HNF desde el ingreso en UCI. Dosis según médico responsable y riesgo trombótico Se monitorizó actividad anti-Xa (niveles terapéuticos 0,3-0,7 U/ml) 18 pacientes (69%) recibieron dosis terapéuticas Doppler venoso a todos los pacientes en primera semana. Si hipoxemia persistente o deterioro secundario angio-TAC o ETE- si no se podían movilizar para descartar TEP

Tabla 7 Estudios sobre anticoagulación y tromboprofilaxis en pacientes con COVID-19

AC: anticoagulados; CID: coagulación intravascular diseminada; DD: dimero D; HBPM: heparina de bajo peso molecular; HNF: heparina no fraccionada; HR: hazard ratio; HRa: HR ajustada; IAM: infarto agudo de miocardio; IC: intervalo de confianza; LSN: límite superior de la normalidad; RIC: rango intercuartílico; SCA: síndrome coronario agudo; SIC: coagulopatía inducida por sepsis; TA: trombosis arterial; TEP: tromboembolismo pulmonar; TEV: tromboembolismo venoso; TVP: trombosis venosa profunda; VM: ventilación mecánica.
Tabla 8 Dosis de profilaxis antitrombótica

Peso	ClCr > 30 ml/min	ClCr < 30 ml/min
< 80 kg	Enoxaparina 40 mg/24 h sc	Enoxaparina 20 mg/24 h sc
80-100 kg	Bemiparina 3.500 UI/24 h sc	Bemiparina 2.500 UI/24 h sc
> 100 kg	Enoxaparina 60 mg/24 h sc	Enoxaparina 30 mg/24 h sc
	Bemiparina 5.000 UI/24 h sc	Bemiparina 35.000 UI/24 h sc
	Enoxaparina 40 mg/12 h sc	Enoxaparina 40 mg/24 h sc
	Bemiparina 7.500 UI/24 h sc	Bemiparina 5.000 UI/24 h sc

- Profilaxis precoz en todos los pacientes si no hay contraindicaciones
- Valorar uso de medias de compresión neumática
- Suspender si sangrado activo o plaquetas < 30.000/mcl

ClCr: aclaramiento de creatinina.

Tabla 9 Dosis y recomendaciones de anticoagulación

Perfil clínico del paciente	ClCr > 30 ml/min	ClCr < 30 ml/min
DD > 2.000 ng/ml, marcadores de inflamación elevados, necesidad de VM, existencia de otros factores de riesgo trombóticos y/o evolución a FMO	Dosis intermedias:	Dosis intermedias:
	Enoxaparina 1 mg/kg/24 h sc	Enoxaparina 0,5 mg/kg/24 h sc
	Dosis anticoagulantes:	Dosis anticoagulantes:
	Enoxaparina 1,5 mg/kg/24 h o	Enoxaparina 0,75 mg/kg/24 h o
	1 mg/kg/12 h sc	0,5 mg/kg/12 h sc o 1 mg/kg/24 h sc
	Bemiparina 115 UI/kg/24 h sc	Bemiparina 85 UI/kg/24 h sc
	Enoxaparina 1 mg/kg/12 h sc	Enoxaparina 1 mg/kg/24 h sc
Alta sospecha clínica de trombosis + DD elevado (imposibilidad de confirmación)	HNF 10 UI/kg/h (TTPa ratio 1,5-2,5)	HNF 10 UI/kg/h (TTPa ratio 1,5-2,5)
Tratamiento previo con antagonistas vitamina K o ACOD	Si TIH: Fondarparina si ClCr > 50 ml/min:	Si TIH: Fondarparina:
	CICr < 20 ml/min: CONTRAINDICADO	CICr 20-50 ml/min: 5 mg
	Argatrobán: Iniciar a 0,5 mcg/kg/min (dosis máxima 10 mcg/kg/min) para TTPa ratio de 1,5-3. Contraindicado en insuficiencia hepática grave	Argatrobán: sin cambios

- HBPM: monitorizar los niveles de anti-factor-Xa
- Valorar uso concomitante de medias de compresión neumática
- Siempre que sea posible se deben realizar pruebas diagnósticas (ecodoppler venoso, ETT y/o ETE, angio-TAC)
- Si no existen interacciones medicamentosas, riesgo de sangrado o necesidad de técnicas invasivas se podría mantener o iniciar la anticoagulación oral. En caso de duda, consultar posibles interacciones en http://covid19-druginteractions.org/

ClCr: aclaramiento de creatinina; DD: dimero D; ETE: ecocardiografía transesofágica; ETT: ecocardiografía transtorácica; FMO: fracaso multiorgánico; HBPM: heparina de bajo peso molecular; HNF: heparina no fraccionada; sc: subcutánea; TAC: tomografía axial computarizada; TIH: trombocitopenia inducida por heparina; TTPa: tiempo de cefalina; VM: ventilación mecánica.
62.7%) y la duración del tratamiento anticoagulante se asoció a una disminución de la mortalidad (HR: 0.86 por día, IC 95%: 0.82-0.89; p < 0.001). Destacar que no hubo diferencias de sangrado entre los pacientes anticoagulados y no anticoagulados (3 vs. 1.9%; p = 0.2).

Se precisan estudios aleatorizados para las indicaciones de terapia antitrombótica y anticoagulante en estos pacientes.

En las tablas 6 y 7 se detallan estudios de trombosis, anticoagulación y tromboprofilaxis en pacientes con COVID-19.

Basándonos en la evidencia científica actual y en recomendaciones de otras sociedades internacionales se sugieren los esquemas terapéuticos de las tablas 8 y 9.

Tratamiento con plasma convaleciente

El tratamiento con plasma convaleciente (PC) se ha utilizado clásicamente para la prevención y tratamiento de enfermedades infecciosas. Fue utilizado con éxito en el tratamiento de SARS, MERS y la pandemia de H1N1 de 2009. En un metaanálisis de 32 estudios de infección por SARS coronavirus y virus influenza, se demostró una reducción estadísticamente significativa de la mortalidad de pacientes con tratamiento con PC al compararlo con placebo y sin tratamiento (OR: 0.25; IC 95%: 0.14-0.45).

Duan et al. miden la efectividad del tratamiento con PC en 10 pacientes con COVID-19 grave. Utilizan una transfusión de 200 ml de plasma de pacientes recuperados con títulos de anticuerpos altos (1:640). Los efectos que observaron con la transfusión de PC fueron: 1) mejora de los síntomas clínicos y en los parámetros de oxigenación, permitiendo desescalar de VM a OAF y de OAF a oxigenoterapia convencional; 2) reducción de las lesiones pulmonares; 3) mejora de los parámetros de laboratorio (infopenia, PCR, transaminasas); 4) incremento del título de anticuerpos y desaparición del ARN del SARS-CoV-2; 5) mejor pronóstico (3 altas hospitalarias y 7 pacientes con mejora clínica) al compararlo con grupo control (3 muertes, 6 casos de estabilización y uno de mejoría clínica) (p < 0.001). No hubo reacciones adversas graves en ningún paciente. Concluyen que el tratamiento con PC podría ser una opción de tratamiento de rescate seguro y fácilmente accesible para pacientes con COVID grave. La dosis óptima y el momento de transfusión quedan por definir en estudios aleatorizados más potentes. Shen et al. obtuvieron resultados similares en la recogida de 5 casos de pacientes graves con COVID-19 en VM. En global, las 2 series presentan un 0% de mortalidad en el grupo de transfusión por un 30% en el grupo control y sin efectos adversos.

En un estudio aleatorizado, Li et al. comparando en 103 pacientes tratamiento estándar con o sin la adición de PC; no han demostrado mejoría clínica a los 28 días, ni en la mortalidad (15.7% en grupo tratamiento vs. 24% en placebo; OR: 0.65; IC 95%: 0.29-1.46) (p = 0.3). Este estudio presenta importantes limitaciones, como un tiempo desde inicio de los síntomas a la aleatorización de unos 30 días, y una finalización precoz, al terminar la pandemia en China, lo que puede limitar la validez de los resultados. Sin embargo, como se apunta en el editorial acompañante, puede existir un beneficio en el subgrupo de pacientes más graves.

Basándose en las series de Duan et al. y Shen et al., la Infectious Diseases Society of America (IDSA) recomienda la transfusión de PC en el contexto de un ensayo clínico.

Las Guías de la SSC señalan que no hay suficiente evidencia para sugerir o recomendar el uso indiscriminado de plasma de pacientes convalecientes.

Inmunoglobulina intravenosa

La inmunoglobulina intravenosa (IgIV) se ha utilizado como tratamiento coadyuvante para tratar una variedad de patógenos, ya sea como producto combinado, ya en una forma concentrada más centrada en el patógeno (hiperínmun). La posibilidad de que los anticuerpos protectores estén presentes en el producto combinado es mayor.

Cao et al. publican una serie de 3 casos que recibieron altas dosis de IgIV al inicio del SDRA, con una recuperación clínica y radiográfica satisfactoria. Se utilizaron dosis elevadas de IgIV (0.3-0.5 g/kg/día) durante 5 días, sin detectarse eventos adversos. En los 3 pacientes se observó una rápida mejora clínica tras su administración. El momento de la administración de la IgIV es crítico y es posible que no exista beneficio si ya se ha producido un daño sistémico.

Según las Guías de la IDSA, en este momento se desconoce la posible utilidad de la IgIV para el tratamiento del SARS-CoV-2. La SSC avisa contra el uso rutinario de las IgIV. Así, no existe suficiente evidencia para indicar o recomendar el uso indiscriminado de inmunoglobulinas.

Las dosis de los fármacos y las recomendaciones de las principales sociedades y organismos oficiales se encuentran recogidas en el anexo I y la tabla 4 del material adicional.

Financiación

Los autores no han recibido financiación para la elaboración del presente manuscrito.

Conflicto de intereses

Los autores declaran no tener conflicto de interés con el presente manuscrito.

Anexo. Material adicional

Se puede consultar material adicional a este artículo en su versión electrónica disponible en doi:10.1016/j.medin.2020.06.017.

Bibliografía

1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.

2. WHO Director-General’s opening remarks at the media briefing on COVID-19 2020 [Internet] [citado 13 Abr 2020]. Disponible en: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-11-march-2020.

3. Rascado Sedes P, Ballesteros Sanz MA, Bodi Saera MA, Carrasco Rodríguez-Rey LF, Castellanos Ortega A, Catalán González M,
et al. Contingency plan for the intensive care services for the COVID-19 pandemic. Med Intensiva. 2020.
4. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020.
5. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020.
6. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020.
7. Sanders JM, Monogue ML, Jodkowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA. 2020.
8. Bhimraj A, Morgan RL, Hirsch Shumaker A, Lavergne V, Baden L, Cheng VCC, et al. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients with COVID-19. 2020 [cited 15 Apr 2020]. Available en: https://www.idsociety.org/practice-guideline/covid-19-guideline-treatment-and-management/.
9. Estella Á, Garnacho-Montero J. From empiricism to scientific evidence in antiviral treatment in severe cases of coronavirus infection in times of epidemic. Med Intensiva. 2020.
10. Siddiqi HK, Mehra MR. COVID-19 illness in native and immuno-suppressed states: A clinical-therapeutic staging proposal. J Heart Lung Transplant. 2020;39:405–7.
11. Chu CM, Cheng VCC, Hung IFN, Wong MML, Chan KH, Chan KS, et al. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax. 2004;59:252–6.
12. Kim UJ, Won E-J, Kee S-J, Jung S-I, Jung H-C. Combination therapy with lopinavir/ritonavir, ribavirin and interferon-α for Middle Eastern respiratory syndrome. Antivir Ther (Lond). 2016;21:455–9.
13. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavir/ritonavir in adults hospitalized with severe Covid-19. N Engl J Med [Internet]. 2020. http://doi.org/10.1056/NEJMoa2001282 [cited 20 Apr 2020].
14. Deng L, Li C, Zeng Q, Liu X, Li X, Zhang H, et al. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. J Infect. 2020.
15. Ye X-T, Luo Y-L, Xia S-C, Sun Q-F, Ding J-G, Zhou Y, et al. Clinical efficacy of lopinavir/ritonavir in the treatment of Coronavirus disease 2019. Eur Rev Med Pharmacol Sci. 2020;24:3390–6.
16. Zhu Z, Lu Z, Xu T, Chen C, Yang G, Zha T, et al. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. J Infect. 2020.
17. Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J, et al. Experimental treatment with favipiravir for COVID-19: An open-label control study. Engineering (Beijing). 2020.
18. Hung IFN, Lung K-C, Tso EYK, Liu R, Chung TW-H, Chu MY, et al. Triple combination of interferon beta-1b, lopinavir/ritonavir, and ribavirin in the treatment of patients admitted with COVID-19: An open-label, randomised, phase 2 trial. Lancet. 2020;395:1695–704.
19. De Wit E, Feldmann F, Cronin J, Jordan R, Okumura A, Thomas T, et al. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci U S A. 2020;117:6771–6.
20. Grein J, Ohmagari N, Shin D, Daz G, Asperges E, Castagna A, et al. Compassionate use of remdesivir for patients with severe COVID-19. N Engl J Med. 2020.
21. Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020;395:1569–78.
22. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the treatment of Covid-19 - Preliminary report. N Engl J Med. 2020.
23. Goldman JD, Lye DCB, Hui DS, Marks KM, Bruno R, Montenegro R, et al. Remdesivir for 5 or 10 days in patients with severe Covid-19. N Engl J Med. 2020.
24. Tratamientos disponibles sujetos a condiciones especiales de acceso para el manejo de la infección respiratoria por SARS-CoV-2 [Internet]. Agencia Española de Medicamentos y Productos Sanitarios [cited 7 Jun 2020]. Available en: https://www.aemps.gob.es/la-aemps/ultima-informacion-de-la-aemps-acerca-del-covid%e2%80%9119/tratamientos-disponibles-para-el-manejo-de-la-infeccion-respiratoria-por-sars-cov-2/.
25. Touret F, de Lamballerie X. Of chloroquine and COVID-19. Anti- vir Res. 2020;177:104762.
26. Devaux CA, Rolain J-M, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19? Int J Antimicrob Agents. 2020;105938.
27. Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020.
28. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269–71.
29. Colson P, Rolain J-M, Lagier J-C, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents. 2020:105932.
30. Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020;14:72–3.
31. Chen J, Liu D, Liu L, Liu P, Xu Q, Xia L, et al. A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19). J Zhejiang Univ (Med Sci). 2020;49:215–9.
32. Chen Z, Hu J, Zhang Z, Jiang S, Han S, Yan D, et al. Efficacy of hydroxychloroquine in patients with COVID-19: Results of a randomized clinical trial. medRxiv. 2020, http://doi.org/10.1101/2020.03.22.20040758.
33. Gautret P, Lagier J-C, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020:105949.
34. Rosenberg ES, Duform EM, Udo T, Wilberschied LA, Kumar J, Tespierio J, et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York State. JAMA. 2020.
35. Chen F, Chan KH, Jiang Y, Kao RYT, Lu HT, Fan KW, et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol. 2004;31:69–75.
36. Morra ME, van Thanh L, Kamel MG, Ghaza AA, Altitbi AMA, Dat LM, et al. Clinical outcomes of current medical approaches for Middle East respiratory syndrome: A systematic review and meta-analysis. Rev Med Virol. 2018;28:e1977.
37. Chan JF-W, Yao Y, Yeung M-L, Deng W, Bao L, Jia L, et al. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J Infect Dis. 2015;212:1904–13.
38. Martínez MA. Compounds with therapeutic potential against novel respiratory 2019 coronavirus. Antimicrob Agents Chemother. 2020.
39. Zaragozá García F, Ibarra Lorente M. [Interferon beta as a therapy for multiple sclerosis]. Farm Hosp. 2002;26:294–301.
40. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunologic features in severe and moderate coronavirus disease 2019. J Clin Invest. 2020.

41. Arabi YM, Mandourah Y, Al-Hameed F, Sindi AA, Almekhlafi GA, Hussein MA, et al. Corticosteroid therapy for critically ill patients with Middle East respiratory syndrome. Am J Respir Crit Care Med. 2018;197:757–67.

42. Rodrigo C, Leonardi-Bee J, Nguyen-Van-Tam J, Lim WS. Corticosteroids as adjunctive therapy in the treatment of influenza. Cochrane Database Syst Rev. 2016;3:CD010406.

43. Lansbury LE, Rodrigo C, Leonardi-Bee J, Nguyen-Van-Tam J, Shen Lim W. Corticosteroids as adjunctive therapy in the treatment of influenza: An updated Cochrane Systematic Review and meta-analysis. Crit Care Med. 2020;48: e98–106.

44. Villar J, Ferrando C, Martínez D, Ambrós A, Muñoz T, Soler JA, et al. Dexamethasone treatment for the acute respiratory distress syndrome: A multicentre, randomised controlled trial. Lancet Respir Med. 2020;8:267–76.

45. Zha L, Li S, Pan L, Tefsen B, Li Y, French N, et al. Corticosteroid treatment of patients with coronavirus disease 2019 (COVID-19). Med J Aust. 2020;212:416–20.

46. Wang Y, Jiang W, He Q, Wang C, Wang B, Zhou P, et al. Early, low-dose and short-term application of corticosteroid treatment in patients with severe COVID-19 pneumonia: Single-center experience from Wuhan, China. medRxiv. 2020. http://dx.doi.org/10.1101/2020.03.06.20032342.

47. Zhou W, Liu Y, Tian D, Wang C, Wang S, Cheng J, et al. Potential benefits of precise corticosteroids therapy for severe 2019-nCoV pneumonia. Signal Transduct Target Ther. 2020;5:18.

48. Wilson KC, Chotirmall SH, Bai C, Rello J. COVID-19: Interim Guidance on Management Pending Empirical Evidence. From an American Thoracic Society-led International Task Force. 2020:12.

49. Alhazzani W, Maller MH, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving Sepsis Campaign: Guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med. 2020.

50. Shang L, Zhao J, Hu Y, Du R, Cao B. On the use of corticosteroids for 2019-nCoV pneumonia. Lancet. 2020;395:683–4.

51. Villar J, Belda J, Añón JM, Blanco J, Pérez-Méndez L, Ferrando C, et al. Evaluating the efficacy of dexamethasone in the treatment of patients with persistent acute respiratory distress syndrome: Study protocol for a randomized controlled trial. Trials. 2016 22;17:342.

52. Li Y, Chen M, Cao H, Zhu Y, Zheng J, Zhou H. Extraordinary GU-rich single-strand RNA identified from SARS coronavirus contributes an excessive innate immune response. Microbes and Infection. 2013;15:88–95.

53. Lau SKP, Lau CCY, Chan K-H, Li CPY, Chen H, Jin D-Y, et al. Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: Implications for pathogenesis and treatment. J Gen Virol. 2013;94 Pt 12:2679–90.

54. Zhou Y, Fu B, Zheng X, Wang D, Zhao C, qi Y, et al. aberrant pathogenic GM-CSF+ T cells and inflammatory CD14+CD16+ monocytes in severe pulmonary syndrome patients of a new coronavirus [Internet]. Immunology. 2020. http://dx.doi.org/10.1111/imm.13495 [citado 20 Abr 2020].

55. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–4.

56. Fardet L, Galicier L, Lambotte O, Marzac C, Aumont C, Chahwan D, et al. Development and validation of the HSscore, a score for the diagnosis of reactive hemophagocytic syndrome. Arthritis Rheumatol (Hoboken, NJ). 2014;66:2613–20.

57. García Roche A, Díaz Lagares C, Élez E, Ferrer Roca R. Cytokine release syndrome. Reviewing a new entity in the intensive care unit. Med Intensiva. 2019;43:480–8.

58. Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A. 2020;117(20):10970-15. doi: 10.1073/pnas.2005615117.

59. Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J. Tocilizumab treatment in COVID-19: A single center experience. J Med Virol. 2020.

60. Ficha técnica ROACTEMRA 20 mg/ml, concentrado para solución para perfusión [Internet]. [citado 20 Abr 2020]. Disponible en: https://cima.aemps.es/cima/dochecklt/ft/08492001/FT_08492001.html.

61. Zhang C, Wu Z, Li J-W, Zhao H, Wang G-Q. The cytokine release syndrome (CRS) of severe COVID-19 and interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. Int J Antimicrob Agents. 2020;105954.

62. Chinese clinical guidance for COVID-19 pneumonia diagnosis and treatment. 7th ed. [Internet] [citado 20 Abr 2020]. Disponible en: http://kjfymeetingchina.org/msite/news/show/cn/3337.html.

63. Lu C-C, Chen M-Y, Chang Y-L. Potential therapeutic agents against COVID-19: What we know so far. J Chin Med Assoc. 2020.

64. Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395:e30–1.

65. Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O, Smith D, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020;20:400–2.

66. Favalli EG, Biggioggero M, Maioli G, Caporali R. Baricitinib for COVID-19: A suitable treatment? Lancet Infect Dis. 2020.

67. CIIMA: olumiant 4mg comprimidos recubiertos con película [Internet]. [citado 20 Abr 2020]. Disponible en: https://cima.aemps.es/cima/publico/detalle.html?registro=116170010.

68. Shakoor Y, Carello JA, Chatham WW, Amdur RL, Zhao H, Dinarello CA, et al. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: Reanalysis of a prior phase III trial. Crit Care Med. 2016;44:275–81.

69. Adam Montequdo L, Boothby A, Gertner E. Continuous intra-venous anakinra infusion to calm the cytokine storm in macrophage activation syndrome. ACR Open Rheumatol. 2020.

70. Ficha técnica Kineret 100 mg/0,67 ml solución inyectable en jeringa precargada [Internet]. [citado 11 Abr 2020]. Disponible en: https://cima.aemps.es/cima/dochecklt/FT_102203006/FT_102203006.html.

71. Malevolta M, Giacconi R, Brunetti D, Provinciali M, Maggi F. Exploring the relevance of senotherapeutics for the current SARS-CoV-2 emergency and similar future global health threats. Cells. 2020;9.

72. Ficha técnica Jakavi 5mg comprimidos [Internet]. [citado 23 Abr 2020]. Disponible en: https://cima.aemps.es/cima/dochecklt/FT_112773005/FT_112773005.html.

73. Gritti G, Raimondi F, Ripamonti D, Riva I, Landi F, Alborghetti L, et al. Use of siltuximab in patients with COVID-19 pneumonia requiring ventilatory support [Internet]. Respiratory Medicine. 2020; http://dx.doi.org/10.1111/res.14048 [citado 23 Abr 2020].

74. CIIMA: Sylvant 100 mg polvo para concentrado para solución para perfusión [Internet]. [citado 23 Abr 2020]. Disponible en: https://cima.aemps.es/cima/publico/detalle.html?registro=114928001.

75. Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020.
