START – Self-Tuning Adaptive Radix Tree

Philipp Fent, Michael Jungmair, Andreas Kipf, Thomas Neumann

Technische Universität München

April 20, 2020
Learned indexes

- Small and efficient
- Adapt to data distribution
- Fast for read-only workloads
Learned indexes
- Small and efficient
- Adapt to data distribution
- Fast for read-only workloads

ART – Adaptive Radix Tree
- Used in practice
- Well understood
- Fast for various workloads
- But: limited adaption to data distribution
- and slower than a well-trained machine learning model
Learned indexes
- Small and efficient
- Adapt to data distribution
- Fast for read-only workloads

START Self Tuning ART
- Bridges the gap
- Adapts to data: 85% faster!
- Keep robustness

ART – Adaptive Radix Tree
- Used in practice
- Well understood
- Fast for various workloads
- But: limited adaption to data distribution
- and slower than a well-trained machine learning model
Self-Tuning ART

Byte 1

Byte 2

Byte 3

Byte 4

ART

START

Philipp Fent et al. START – Self-Tuning Adaptive Radix Tree
Self-Tuning ART

Byte 1

Byte 2

Byte 3

Byte 4

ART

cost model

optimizer

introduce multilevel nodes

START
Multilevel Nodes

Rewired memory nodes

- Dense regions with many keys
- Subtrees of full nodes
- Keep data continuous
Multilevel Nodes

Rewired memory nodes
- Dense regions with many keys
- Subtrees of full nodes
- Keep data continuous

Sparse regions
- Already use path compression
- Still: improve common prefixes
- Reduce chains of small nodes
Rewired Memory Nodes

Node256

256 children

...
Rewired Memory Nodes

Node256
256 children

Node16M
64K Node256
Rewired Memory Nodes

Memory File	Virtual Pages	Physical Pages
'a'	'b'	'b'
		(φ)
(φ)	'b'	
(φ)		(φ)

Note: The diagram illustrates the rewiring of memory nodes between virtual and physical pages.
Rewired Memory Nodes

virtual pages

physical pages

page 1

page 2

page 3

page 4

∅
Rewired Memory Nodes

virtual pages

physical pages

page 1

page 2

page 3

page 4

∅
Rewired Memory Nodes

virtual pages

physical pages

page 1

page 2

page 3

page 4

∅
Rewired Memory Nodes

virtual pages

physical pages

page 1

access(19)

page 2

page 3

page 4

∅
Rewired Memory Nodes

virtual pages

physical pages

page 1

page 2

page 3

page 4

access(11)
Multilevel Node4

- Helps reduce sparse affix nodes
- Use all 64 Bytes of a cacheline
Cost Model for Node Lookup

- Minimize the average child lookup cost
- Consider individual node cost

[ns/lookup]	Levels
Node4	1
Node16	1
Node48	1
Node256	1
Rewired64K	2
Rewired16M	3
MultiNode4	2-4
Cost Model for Node Lookup

- Minimize the average child lookup cost
- Consider individual node cost

Node	Levels	Cached	Header	Cached	Uncached
Node4	1	7		7	68
Node16	1	5		77	162
Node48	1	2		165	168
Node256	1	2		88	92
Rewired64K	2	6		87	162
Rewired16M	3	6		88	165
MultiNode4	2-4	6		6	68
Bottom-up Optimization
Bottom-up Optimization

25
[130, 80, ...]

20
[60, ...]

5
[20, ...]

10
[30, ...]

5
[25, ...]
Bottom-up Optimization

![Diagram of a binary tree with leaf nodes labeled with intervals and internal nodes labeled with 2 and 15. The intervals are: 25 [130, 80, ...], 20 [60, ...], 5 [20, ...], 10 [30, ...], 5 [25, ...].]
Bottom-up Optimization

1-level: \[25 + 15 \]

2-level: \[\begin{align*}
20 & \quad \{60, \ldots\} \\
25 & \quad \{130, 80, \ldots\} \\
40 \cdot 2 + 215 & \\
130 + 85 & \\
80 + 55 & \\
215 & \quad \{255, 130, 85, 55, \ldots\}
\end{align*}\]
Performance

https://learned.systems/sosd

Datasets

Latency [ns / op]

Indexes

- ART
- START
- RS
- RMI

Philipp Fent et al.

START – Self-Tuning Adaptive Radix Tree
Conclusion

- START – Best of both worlds?
- Adapt to real-world data distribution
- Still with robust underpinning of ART
- Inserts still possible and efficient
- But: might degrade multilevel nodes

github.com/jungmair/START

fent@in.tum.de