THE PHYSICS OF PROTOPLANETESIMAL DUST AGGLOMERATES. II.
LOW-VELOCITY COLLISION PROPERTIES

DOREEN LANGKOWSKI
Institut für Geophysik und extraterrestrische Physik, Technische Universität zu Braunschweig, Mendelsohnstraße 3,
D-38106 Braunschweig, Germany

JENS TEISER
Institut für Planetologie, Westfälische Wilhelmsuniversität Münster, Wilhelm-Klemm-Straße 10,
D-48149 Münster, Germany; j.teiser@uni-muenster.de

AND

JÜRGEN BLUM
Institut für Geophysik und extraterrestrische Physik, Technische Universität zu Braunschweig,
Mendelsohnstraße 3, D-38106 Braunschweig, Germany; j.blum@tu-bs.de

Received 2007 May 19; accepted 2007 November 5

ABSTRACT

For the investigation of collisions among protoplanetesimal dust aggregates, we performed microgravity experiments in which the impacts of high-porosity millimeter-sized dust aggregates into 2.5 cm high-porosity dust aggregates can be studied. The dust aggregates consisted either of monodisperse spherical, quasi-monomodisperse irregular, or polydisperse irregular micrometer-sized dust grains and were produced by random ballistic deposition with porosities between 85% and 93%. Impact velocities ranged from ~0.1 to ~3 m s⁻¹, and impact angles were almost randomly distributed. In addition to the smooth surfaces of the target aggregates formed in our experiments, we “molded” target aggregates such that the radii of the local surface curvatures corresponded to the projectile radii, decreasing the targets’ porosities to 80%–85%. The experiments showed that impacts into the highest porosity targets almost always led to sticking, whereas for the less porous dust aggregates, consisting of monodisperse spherical dust grains, the collisions with intermediate velocities and high impact angles resulted in the bouncing of the projectile with a mass transfer from the target to the projectile aggregate. Sticking probabilities for the impacts into the “molded” target aggregates were considerably decreased. For the impacts into smooth targets, we measured the depth of intrusion and the crater volume, and were able to derive some interesting dynamical properties which can help to derive a collision model for protoplanetesimal dust aggregates. Future models of the aggregate growth in protoplanetary disks should take into account noncentral impacts, impact compression, the influence of the local radius of curvature on the collisional outcome, and the possible mass transfer between the target and projectile agglomerates in nonsticking collisions.

Subject headings: accretion, accretion disks — methods: laboratory — planetary systems: formation — solar system: formation

Online material: color figure, mpeg animations

1. INTRODUCTION

Young stars are surrounded by accretion disks. It is now widely accepted that the formation of planetesimals, the kilometer-sized precursors of the terrestrial planets and of the cores of the gas planets, is initiated by the process of agglomeration of protoplanetary dust in these disks. For the young solar system, the circumstellar disk is also known as the “solar nebula.” Due to a decreasing rate of accretion, the gas disk cools down, and fine dust particles condense. Typical initial grain sizes, as evidenced by astronomical observations of circumstellar accretion disks (Kessler-Silacci et al. 2006; Przygodda et al. 2003), primitive meteorites from our own solar system (Kerridge 1993), and recent measurements from comets (Harker et al. 2005; Keller et al. 2005; Hörz et al. 2006), are in the (sub)micron range.

The velocities of these dust grains relative to the gas disk are caused by Brownian motion, gravity-induced drift motion, and gas turbulence, and result in mutual collisions among the grains (Weidenschilling & Cuzzi 1993), which can lead to the growth of dust agglomerates. When the collision velocities are sufficiently low, the dust particles show a hit-and-stick behavior (Poppe et al. 2000; Blum & Wurm 2000; Dominik & Tielens 1997), and the dust agglomerates are bound by weak van der Waals forces (Heim et al. 1999). As a consequence, fractal dust agglomerates are formed whose fractal dimensions, \(D_f \), defined by the relation between agglomerate mass \(m \) and size \(s \), \(m \propto s^{D_f} \), range from \(D_f \approx 1.4–1.5 \) (Blum et al. 2000; Krause & Blum 2004; Paszun & Dominik 2006) for Brownian motion–dominated growth, to \(D_f \approx 1.8–1.9 \) for growth caused by drift motions (Blum et al. 1998) or gas turbulence (Wurm & Blum 1998). Due to the increasing agglomerate mass and the consequentially increasing collision velocities for protoplanetary dust (Weidenschilling & Cuzzi 1993), collisions eventually lead to the compaction of the agglomerates (Dominik & Tielens 1997; Blum & Wurm 2000), so that the fractal dimensions increase to \(D_f = 3 \) (Weidenschilling & Cuzzi 1993; Blum 2004). Such agglomerates are, however, not compact but can be quite porous. Simulation experiments suggest that the volume filling factors, given by

\[
\phi = 1 - p = \frac{\rho}{\rho_0},
\]

where \(p, \rho, \) and \(\rho_0 \) are the porosity, the mass density of the aggregate material, and the mass density of the solid grain material,
3. What is the influence of projectile mass, velocity, impact angle, local radius of curvature, and porosity on the outcome of a collision?

4. What are the sticking efficiencies in mutual collisions between protoplanetesimal, nonfractal dust agglomerates?

5. What are the coefficients of restitution in nonsticking collisions?

3. EXPERIMENTAL SETUP, SAMPLES, AND PROCEDURES

For the experimental simulations of dust-dust collisions between millimeter-sized and centimeter-sized dust agglomerates, we used monolithic dust-agglomerate samples of 2.5 cm diameter and ~1 cm height as targets, and smaller fragments of such samples as projectiles. All samples were formed by random ballistic deposition (RBD; see Paper I and Blum & Schräpler 2004 for details of the RBD process). Table 1 summarizes the physical properties of the particles and the resulting RBD agglomerates. Three monomer particle types were used: (1) monodisperse SiO$_2$ spheres with 1.5 μm diameter, (2) quasi-monodisperse, irregular diamond particles with ~1.5 μm diameter, and (3) polydisperse, irregular SiO$_2$ grains with diameters in the range 0.1–10 μm. The motivation for the use of these three samples lay less in their cosmochemical relevance to protoplanetary dust than in their span of morphologies and size distributions, and in their relevance to the question of how these morphologies influence the outcome of the collisions. As was shown by Poppe et al. (2000), the impact of the material on the sticking behavior is smaller than the influence of the individual particle morphology. Our experiments span a wide range in morphological parameters, and so we consider them relevant for protoplanetary collision processes.

It is interesting to note that the volume filling factor of the agglomerates (see Table 1), which describes the fraction of the volume filled with particles, is dependent on the particle morphology and the width of the particle size distribution (Paper I), and varies by a factor of 2 between monodisperse, spherical monomers (φ = 0.15) and polydisperse, irregular grains (φ = 0.07). The broader the size distribution, the fluffier the agglomerates. For RBD agglomerates consisting of spherical monodisperse particles, one expects a volume filling factor of φ = 0.15 (Vold 1959; Watson et al. 1997), which is exactly found in our samples (see Paper I and Blum & Schräpler 2004).

To simulate the collisional history of protoplanetary dust aggregates and to test the influence of the local target surface curvature on the outcome of a collision, we also performed a series of impact experiments into “molded” targets. These targets, consisting of 1.5 μm diameter SiO$_2$ spheres with an initial volume filling factor of φ = 0.15, were slightly locally compacted by a half-spherical mold with 1 mm radius so that they ultimately consisted of asperities with local radii of curvature of 1 mm (representing, e.g., sticking projectiles from previous impacts). X-ray tomography of the “molded” targets showed that the “hills” consisted of uncompressed aggregated dust (φ = 0.15–0.17), while the “valleys” were slightly compressed to a volume filling factor of φ = 0.17–0.20. Examples of an unprocessed and a processed target and several projectile agglomerates are shown in Figure 1. For the realization of collisions between dusty targets and dusty projectiles, we developed a setup whose functionality is depicted in Figure 2.

The experiments are performed under microgravity conditions within a pressurized capsule which is, prior to each impact experiment, held at the top of the microgravity drop tower in Bremen. Inside the experimental setup, a set of five typically
millimeter-sized projectile agglomerates is held in a device that is able to simultaneously release the projectiles when an electrical current is applied to two solenoid magnets. The projectiles’ release is done while the experiment capsule is held at ambient gravitational acceleration. Due to the gravitational acceleration, the released projectiles gain vertical velocities proportional to their time of flight. After some preselected travel distance (or time of flight), the experiment capsule is released to free fall. Thus, the relative velocity between the projectiles and the target is frozen, and the impacts happen at a residual acceleration level of less than \(10^{-3}\) m s\(^{-2}\), mimicking the conditions in protoplanetary disks. The free-fall height of the projectiles can be adjusted from \(\sim5\) to \(\sim45\) cm. Due to a limited acceleration length of the projectiles of \(\leq 45\) cm, the *maximum* impact velocity is \(\sim3\) m s\(^{-1}\), while the *actual* impact velocity is only determined by the time lapse between the projectile release and the start of the free-fall phase of the whole experiment. For the simulation of random impacts, the target can be tilted by \(30^\circ\) and \(60^\circ\) relative to the velocity vector of the projectiles. For the exclusion of aerodynamic effects during the collisions, the experiment chamber is evacuated to less than 20 Pa pressure.

During the free-fall time of 4.74 s, the impacts are observed by a set of different cameras and illumination schemes (see Fig. 2). (1) A high-speed (462 frames per second [fps]), high-resolution (1k \(\times\) 1k pixels) camera with a field of view (FOV) of 30 \(\times\) 30 mm\(^2\) is arranged such that it observes the impacts tangential to the target

during the collisions, the experiment chamber is evacuated to less than 20 Pa pressure.

During the free-fall time of 4.74 s, the impacts are observed by a set of different cameras and illumination schemes (see Fig. 2). (1) A high-speed (462 frames per second [fps]), high-resolution (1k \(\times\) 1k pixels) camera with a field of view (FOV) of 30 \(\times\) 30 mm\(^2\) is arranged such that it observes the impacts tangential to the target

during the collisions, the experiment chamber is evacuated to less than 20 Pa pressure.
surface; the illumination is provided by a synchronized xenon flash lamp with \(C_24 \frac{1}{C_22} \) flash duration. Due to the limited resolution, this camera can only detect particles \(>30 \mu m \). (2) Another high-speed (220 fps), low-resolution \((256 \times 256 \text{ pixels})\) camera with a FOV of \(56 \times 56 \text{ mm}^2 \) can observe the impacts perpendicular (in the case of non-normal impacts) or almost perpendicular (in the case of normal impacts) to the target surface; additional illumination is provided by a laser curtain with 30 mm width and 1 mm thickness parallel and close to the surface of the target; this camera-illumination combination was specifically installed for detecting small fragments that are otherwise invisible. (3) An additional low-speed (25 fps), low-resolution \((720 \times 576 \text{ pixels})\) video camera with a FOV of \(52 \times 41 \text{ mm}^2 \), located 30° from the target normal, observes the target surface before and after the impacts; a point-source illumination for the determination of, e.g., crater depths, is provided by a halogen lamp located 32° above the target’s “horizon.”

Data analysis consists of a thorough image analysis that includes the determination of projectile sizes, impact velocities, and impact angles with respect to the local target normal, and the determination of the outcomes of the collisions (sticking, rebound, or fragmentation), as well as parameters that determine the effects during the collisions, such as projectile and fragment sizes, depths of intrusion, crater depths, and fragment velocities.

The variable parameters in the experiment are the projectile velocity, the impact angle, the physical agglomerate properties (see Table 1), and the projectile mass. Figure 3 gives an overview of the projectile masses, the impact velocities, and the impact angles for the three agglomerate compositions described in Table 1 and impacts into unprocessed targets. For a better statistical representation, the impact angle \(\theta \) (relative to the target normal) is replaced by the squared sine of the above-defined angle, \(\sin^2(\theta) \), so that each \(\sin^2(\theta) \) interval has the same statistical probability for random collisions. The original projectiles had sizes of typically 1 mm, and thus masses of \(m_{\text{proj}} \sim 10^{-6} \text{ kg} \). During the release of these projectiles, a small fraction of their mass fragmented off and, in most cases, also hit the target. This means that we could observe, in addition to the original projectiles, several collisions between projectiles of submillimeter sizes and the target agglomerates. The lower limit of agglomerate masses of \(\sim 10^{-9} \text{ kg} \) is due to the finite resolution of the cameras (see above). The target masses are in the range \(m_{\text{targ}} \approx 1.0–1.5 \text{ g} \), so that \(m_{\text{proj}} \ll m_{\text{targ}} \) for all impacts. Thus, our impact experiments are valid for all target masses \(m_{\text{targ}} \gg m_{\text{proj}} \) and are not restricted to target sizes of centimeters. Impact velocities ranged from \(\sim 0.1 \text{ to } 3 \text{ m s}^{-1} \), with a slight systematic increase in velocity with increasing projectile mass. This effect, with a typical difference in impact velocity between the largest and the smallest projectiles of \(\sim 0.5 \text{ m s}^{-1} \), is due to some residual friction of the traveling projectiles with the rarefied-gas atmosphere of \(\sim 20 \text{ Pa} \) pressure. The total number of microgravity experiments performed for these experiments is 45. The experiments were carried out in three series between 2003 November and 2004 October.

Figure 4 shows the parameter space of the impact experiments of SiO\(_2\) dust aggregates with \(\phi = 0.15 \) into “molded” targets with \(\phi = 0.15–0.20 \). These data were collected in a drop tower.
campaign comprising nine flights in 2006 April. Due to the morphology of the target surface (see Fig. 1), the variation of the impact angle is irrelevant, so all impacts were carried out normal to the target surface.

4. EXPERIMENTAL RESULTS

4.1. Sticking Properties

For dust aggregates consisting of irregular SiO$_2$ and diamond particles, the sticking probability in the mass-velocity-impact angle range is very close to unity (see Fig. 3), with only a few projectile aggregates bouncing off the target. For dust aggregates consisting of spherical, monodisperse SiO$_2$ grains, i.e., for the densest projectiles and targets, the distribution of the sticking (Fig. 3, open circles) and nonsticking collision events (Fig. 3, filled circles) in the parameter space is not random. It is evident that the nonsticking collisions into the flat targets occur preferentially for intermediate velocities of \sim1–2 m s$^{-1}$, for larger impact angles, and for more massive projectiles. A determination of the sticking probability as a function of projectile mass and the components of the impact velocity normal and tangential to the target surface is shown in Figure 5. Sticking probabilities

Fig. 3.—Distribution of the experiment parameters impact angle, projectile mass, and impact velocity for the three agglomerate types consisting of spherical, monodisperse SiO$_2$ particles (top), irregular quasi-monodisperse diamond particles (middle), and polydisperse, irregular SiO$_2$ particles (bottom). Open symbols denote collisions that resulted in sticking, filled symbols those in which the projectile bounced off the target after the impact.

Fig. 4.—Masses and impact velocities of the agglomerates consisting of spherical, monodisperse SiO$_2$ particles with $\varphi = 0.15$ for impacts into “molded” targets with $\varphi = 0.15$–0.20. The open circles denote sticking, the full circles denote bouncing, the asterisks denote fragmentation without mass transfer to the target, and the diamonds denote fragmentation with mass transfer to the target.
were derived by running averaging over 13 data points sorted in projectile mass and normal/tangential impact velocity. From Figures 3 and 5, it is clearly visible that: (1) the sticking probability is \(\beta = 1 \) for aggregates with \(m \approx 10^{-7} \) kg and falls steadily to values \(\beta \approx 0.5 \) for the highest aggregate masses of \(m \approx 5 \times 10^{-6} \) kg; (2) for both very low \((v \approx 0.5 \text{ m s}^{-1}) \) and very high \((v \approx 2 \text{ m s}^{-1}) \) normal impact velocities, the sticking probability is \(\beta \approx 1 \) (however, note that projectile velocity and mass are not independent parameters, and that the lowest impact velocities stem from the smallest projectiles), whereas the sticking probability drops to \(\beta \approx 0.5 \) for normal impact velocities in the range \(0.5 \text{ m s}^{-1} \leq v \leq 1.5 \text{ m s}^{-1} \); and (3) the sticking probability decreases steadily for increasing tangential impact velocity and reaches values as low as \(\beta \approx 0.4 \) for the highest tangential velocities of \(\sim 1.7 \text{ m s}^{-1} \).

For the “molded” and slightly compressed targets, sticking is even the exception (see Fig. 4), while for the flat and fluffy targets most collisions result in mass gain of the target. We find a sticking probability of \(\beta \approx 0.2 \) when the target is slightly compacted and has local radii of curvature comparable to the projectile radii. It was observed that the projectiles stuck to the target only when they accidentally hit a “valley.” Figure 6 shows examples of movies of collisions into unprocessed and “molded” target aggregates (animations available online).

4.2. Mass Transfer in Collisions

Due to the low number of nonsticking collisions for the agglomerates consisting of irregular monomers, we could not perform a statistical analysis of the properties of the bouncing agglomerates for nonspherical monomers. Thus, this and the following subsections will mainly deal with the analysis of the nonsticking collisions of agglomerates consisting of spherical, monodisperse SiO\(_2\) particles into flat, soft targets of the same material.

Figure 7 displays an example of a collision in which the impinging agglomerate bounces off after impact. From a comparison between the first and the last image of the sequence (see inset), it is evident that the size of the projectile agglomerate changes. We determined the mass ratio, \(\mu \), of the projectile immediately after and before the impact using

\[
\mu = \frac{m'}{m} \approx \left(\frac{s'_{\text{max}} s'_{\text{min}}}{s_{\text{max}} s_{\text{min}}} \right)^{3/2},
\]

where \(s'_{\text{max}}, s'_{\text{min}}, s_{\text{max}}, \) and \(s_{\text{min}} \) denote the maximum and minimum linear extension of the agglomerate after and before the impact, respectively. Figure 8 shows the distribution of the derived mass ratios. Although the statistics is still somewhat poor, it can be seen that the mass transfer between target and projectile agglomerate can be considerable and obtains mostly values in the range \(\mu = 1-4 \). The mean mass ratio is \(\bar{\mu} = 2.1 \). This means that on average, a nonsticking impact leads to a considerable mass loss of the (more massive) target agglomerate, a process which has not been considered before.

4.3. Coefficient of Restitution and Energy Loss

In the case of nonsticking, the kinetic energy is not fully absorbed by the projectile and target agglomerates. A typical method
Fig. 6.—Examples of collisions of high-porosity dust-aggregate projectiles into targets of the same composition. The width of the full image is 27.5 mm. **Top left:** Irregular SiO$_2$ particles: impact velocity $v = 0.8$–1.0 m s$^{-1}$. **Top right:** Diamond particles: impact velocity $v = 1.7$–2.3 m s$^{-1}$. **Bottom:** Spherical SiO$_2$ particles and “molded” target: impact velocity $v = 0.38$ m s$^{-1}$. [See the electronic edition of the Journal for accompanying mpeg animations.]

Fig. 7.—Example of a nonsticking collision with mass transfer between the target and the projectile agglomerate. Shown is a sequence of four images recorded with the high-resolution high-speed camera. The inset (bottom right) is a copy of the projectile from the first frame. Projectiles and target consist of 1.5 μm SiO$_2$ spheres and have volume filling factors of $\phi = 0.15$. The impact velocity is $v = 1.77$ m s$^{-1}$ [See the electronic edition of the Journal for accompanying mpeg animation].

Fig. 8.—Histogram of the mass ratio μ defined in eq. (2).
to describe the amount of plasticity in a collision uses the coefficient of restitution, \(\epsilon \), defined by

\[
\epsilon = \frac{v'}{v},
\]

Here, \(v' \) and \(v \) denote the relative velocity between the projectile and the target after and before the collision. Figure 9 shows the coefficients of restitution for all 18 nonsticking impacts of agglomerates consisting of SiO\(_2\) spheres as a function of impact velocity and projectile mass. The data points are scattered between relatively low (\(\epsilon < 0.1 \)) and rather high (\(\epsilon > 0.4 \)) values, with no apparent dependence of the coefficient of restitution on the impact velocity or projectile mass. The mean value of the coefficient of restitution is \(\bar{\epsilon} = 0.20 \), and the rms value is \((\bar{\epsilon}^2)^{1/2} = 0.16\).

The coefficient of restitution plays an important role in the dense dust-dominated subdisk and inside condensations caused by the streaming instability, in which mutual collisions among the dust aggregates can act as “cooling” (Johansen et al. 2007). For the physical processes inside colliding dust aggregates, it is, however, more interesting to consider the ratio of total kinetic energy after and before the collision (taking into account the mass transfer from target to projectile) as a function of the squared impact parameter. Figure 10 shows these data. Also plotted in Figure 10 is the linear relation

\[
\frac{E'_{\text{kin}}}{E_{\text{kin}}} = \epsilon^2(0) + \epsilon^2(1) \sin^2 \theta,
\]

which is for \(\epsilon^2(0) = 0 \) (perfectly inelastic central collisions) and \(\epsilon^2(1) = (\frac{1}{2})^2 = 0.51 \) (pure frictional transition from translational to rotational motion and no plasticity for glancing collisions) an upper limit for dust aggregate collisions (Blum & Münch 1993). It is evident that our data fall much below the upper limit given by equation (4). This means that plasticity plays a role not only for the normal but also for the tangential component of the collision; i.e., the shear strength of the aggregate material is overcome during the impacts. However, the data in Figure 10 show an increasing trend of \(E'_{\text{kin}}/E_{\text{kin}} \) with increasing \(\sin^2 \theta \), which was also observed by Blum & Münch (1993); i.e., the total amount of plasticity decreases with increasing impact parameter.

4.4. Semielastic Rebound and Tensile Strength

Even for the cases in which the projectile agglomerates stick to the target after the collision, the total kinetic energy is initially not fully dissipated into plastic deformation of the aggregates. An example is given in Figure 11. After impacting the target, the projectile (consisting of irregular SiO\(_2\) particles) is rebounding but is not able to escape from the target, as the interparticle attraction is too strong. Figure 12 shows the temporal dependence of the displacement of the projectile from its deepest penetration during the rebounding phase of its trajectory.

The example in Figure 11 also demonstrates how the mass transfer described in §4.2 works: on the way out of the target, the projectile is decelerated (see Fig. 12) by the adhesion forces between the projectile and the target. As long as the adhesion is more powerful than the tensile strength (see below), the projectile remains attached to the target and drags target material along with it. In the cases of nonsticking, the tensile strength of the macroscopic dust aggregate (see Table 1) is overcome when some of the target material sticks to the projectile agglomerate. It is clear that the tensile strength is almost reached by the rebounding particle in Figure 11. Thus, we can use the data in Figure 12 to estimate the dynamic tensile strength of the high-porosity agglomerate and then compare this value to the static measurements of the same material. We fit a parabolic function

\[
l(t) = \frac{1}{2} a_0 t^2 + v_0 t
\]
to the first three data points in Figure 12, obtaining \(a_0 = -185 \text{ m s}^{-2}\) and \(v_0 = 0.76 \text{ m s}^{-1}\) for the maximum initial acceleration and velocity of the rebounding projectile (Fig. 12, solid curve). In addition to that, we fit a decaying exponential function of the form

\[
l(t) = l_0 \left[1 - \exp\left(-\frac{t}{\tau}\right)\right],
\]

where \(l_0 = 2.2 \times 10^{-3} \text{ m}\) and \(\tau = 3.1 \times 10^{-3} \text{ s}\), to all data points shown in Figure 12 (dashed curve). Neither function is motivated by physical considerations; rather they only help to estimate the initial acceleration. Differentiations of the function in equation (6) yield an initial velocity and acceleration of \(v_0 = 0.71 \text{ m s}^{-1}\) and \(a_0 = -227 \text{ m s}^{-2}\). With an estimated mass of the rebounding agglomerate of \(m = 1.7 \times 10^{-6} \text{ kg}\) (including the mass transfer from the target to the impinging projectile), we get for the lower limit of the tensile strength, \(T \simeq 210 \text{ N m}^{-2}\), values of

\[
T \simeq 210 \text{ N m}^{-2}
\]

for the parabolic function and

\[
T \gtrsim 260 \text{ N m}^{-2}
\]

for the decaying exponential function, respectively. These values are in good agreement with the static values \(T = 300 \text{ N m}^{-2}\) (see Paper I and Table 1).

4.5. Intrusion and Crater Depths

For those impact events in which the projectiles stick to the target agglomerate, we were able to determine the depth of intrusion \(d\), perpendicular to the surface. It turned out that the depth of intrusion was generally larger for higher impact energies. Figure 13 shows the data for all projectile and target materials as a function of the kinetic impact energy of the projectiles.

In order to penetrate into the target agglomerate, the projectiles need to overcome the compressive strength of the target. The data in Figure 13 suggest that a threshold energy \(E_{\text{min}}\) is required to yield a finite penetration depth. For the determination of this value, we assume a linear dependence between the depth of intrusion and the logarithm of the impact energy, as suggested by the data in Figure 13. A least-squares fit of

\[
d_i = x \log\left(\frac{E_{\text{kin}}}{E_{\text{min}}}\right)
\]

(for \(E_{\text{kin}} \geq E_{\text{min}}\)) results in \(x = 0.54 \text{ mm}\) and \(E_{\text{min}} = 3.1 \times 10^{-9} \text{ J}\) for spherical \(\text{SiO}_2\), \(x = 0.47 \text{ mm}\) and \(E_{\text{min}} = 2.8 \times 10^{-10} \text{ J}\) for irregular diamond, and \(x = 0.61 \text{ mm}\) and \(E_{\text{min}} = 8.0 \times 10^{-10} \text{ J}\) for irregular \(\text{SiO}_2\), respectively (Fig. 13, solid lines).

If we only consider the projectiles whose energies are close to the threshold energy \(E_{\text{min}}\), we find that their masses are \(m \approx 10^{-9} \text{ kg}\). With aggregate densities of 300 \text{ kg m}^{-3} for spherical \(\text{SiO}_2\), 390 \text{ kg m}^{-3} for diamond, and 182 \text{ kg m}^{-3} for irregular \(\text{SiO}_2\), we get typical projectile volumes at the onset of intrusion of \(V = 3.3 \times 10^{-12} \text{ m}^3\), \(V = 2.6 \times 10^{-12} \text{ m}^3\), and \(V = 5.5 \times 10^{-12} \text{ m}^3\), respectively. Using the above-derived minimum impact energies for intrusion, \(E_{\text{min}}\), we can derive the critical impact pressure \(p_{\text{min}} = E_{\text{min}}/V = 940 \text{ Pa}\), \(p_{\text{min}} = 100 \text{ Pa}\), and \(p_{\text{min}} = 150 \text{ Pa}\), respectively, which is remarkably close to the static compressive strengths of the respective target aggregates (see Table 1). Thus,
for the onset of penetration, a minimum impact pressure equivalent to the compressive strength is required.

In addition to the depth of intrusion, we also derived the crater depths for the nonsticking events. This was either done by a determination of shadow lengths inside the craters cast by oblique illumination or by a measurement of the length of the escaping projectile agglomerate. In this technique, the crater depth is approximated by measuring the difference between the length of the escaping projectile (which is, due to the mass transfer between target and projectile, larger than before the impact; see § 4.2) and the length of the part of the projectile protruding out of the target at closest approach. A comparison of the crater depth and the depth of intrusion for the case of spherical SiO$_2$ monomers (the only case for which we have sufficiently many rebounding projectiles) shows that the crater depths are a factor of ~3 larger than the depths of intrusion. However, the mass transfer is less than a factor of ~3 due to the only partial penetration of the projectiles.

4.6. Impact Fragmentation and the Influence of Local Surface Curvature and Density Enhancement

In a few cases, the impinging projectile agglomerate fragments upon impact. Part of the residual fragments leave the target agglomerate, while the other fragments stick to the target. Most fragmentation events occur when the projectile either hits a previously captured projectile or another surface irregularity with low radius of curvature. Therefore, we systematically investigated the influence of the local radius of curvature of the target aggregate on the outcome of a collision. For this, we used previously “molded” target aggregates (see § 3 and Fig. 1c) and made a series of impacts of millimeter-sized, high-porosity projectile aggregates.

As already mentioned in § 4.1 and as visible in Figure 4, the sticking probability is considerably reduced by the surface sculpting. Only 5 out of 25 projectiles stuck to the target, and sticking was apparently restricted to those cases in which the projectile hit a “valley” on the target. In contrast to that, the fragmentation efficiency, while negligible for impacts into smooth flat targets, increases to 24% (6 projectiles). However, most (14) of the projectiles semielastically rebounded after the impact, which makes the rebound probability of 56% the most likely single collisional outcome for the impacts into “molded” targets.

It is clear from these experiments that, aside from impact velocity, impact angle, aggregate mass, and aggregate packing density, the local radius of curvature and, thus, the collisional history of protoplanetary dust aggregates plays an important role for the outcome of mutual collisions.

5. DISCUSSION: IMPACT DYNAMICS OF HIGH-POROSITY DUST AGGLOMERATES

From the results presented in the previous section, we can derive some fundamental (although approximate and preliminary) dynamical properties of high-porosity dust aggregates. If we assume for simplicity that the aggregates are fully elastic during collisions, we can use the well-known Hertzian equation of motion (Hertz 1882) for the collision between a spherical particle of radius \(s \) and mass \(m \) and an infinitely large sphere,

\[
\frac{d^2 \delta}{dt^2} = \frac{4}{3} s^{1/2} E^* \delta^{3/2},
\]

where \(E^* \) is the elasticity parameter, defined by

\[
E^* = \frac{1}{2} \frac{E}{1 - \nu^2}
\]

for like materials. Here, \(E \) and \(\nu \) are the modulus of elasticity and the Poisson number of the materials, respectively. As our aggregates very likely have Poisson numbers \(\nu \approx 0 \) (i.e., they are highly compressive), equation (11) reduces to

\[
E^* = \frac{1}{2} E.
\]

With equation (12), equation (10) can be solved for the maximum penetration:

\[
\delta_{\text{max}} = \left(\frac{15 m v^2}{8 s^{1/2} E^*} \right)^{2/5},
\]

where \(v \) is the initial collision velocity. If we identify \(\delta_{\text{max}} \) with the measured intrusion of the projectiles, \(d_i \), and plot these double-logarithmically as a function of the parameter \(m v^2 s^{1/2} / E \), motivated
by the functionality in equation (13), we see that we can indeed find a slope close to 2/5, as predicted by equation (13) (Fig. 14).

The two straight lines in Figure 14 formally give $E = 430$ Pa and $E = 17,800$ Pa. Taking the geometric mean of these two values, the agglomerates penetrate as deep as if they had a modulus of elasticity of ~2800 Pa. As the collisions are clearly dominated by plasticity, we expect the compressive strength to be of the same order as the modulus of elasticity, i.e., dominated by plasticity, we expect the compressive strength to

$$\frac{m v^2}{2} / \frac{d^2}{4}.$$

The indicated straight lines have slopes of $2/5$ (see eq. [13]).

In Figure 15, we plot the crater volume as a function of the normal component of the impact energy, $E_{\text{kin},n}$. It is evident that there is a strong correlation between these two quantities. We fit a power law $V \propto E_{\text{kin},n}^\alpha$ to the data in Figure 15, with $\alpha = 0.75 \pm 0.03$. Thus, the dynamic impact pressure slightly increases with impact energy from ~200 Pa to ~2000 Pa for the impact energy range between $\sim 3 \times 10^{-9}$ and $\sim 2 \times 10^{-5}$ J (see Fig. 16). The slightly increasing values of p_{dyn} toward larger impact energies are probably caused by the compaction of the aggregate volume during impact. For the minimum impact energy for which intrusion was found (see above), $E_{\text{min}} = 3.1 \times 10^{-9}$ J, a minimum dynamic pressure of ~300 Pa is required to cause the formation of a crater and, thus, compaction of the aggregate material in the contact zone between the projectile and the target agglomerate. This pressure is very close to the minimum stress under which the material yields (see Fig. 4 in Paper I).

With these data, we can also explain the mass transfer observed in many nonsticking collisions (see § 4.2 and Figs. 7 and 8). During the impact, the projectile and part of the target volume are slightly compacted. As was shown in Paper I, aggregate compaction increases the tensile strength of the material. Thus, the compacted parts in the collisional volume have higher inner cohesion, so that they are more likely to keep sticking together after the impact.

6. SUMMARY

We performed oblique impact experiments of typically 0.2–3 mm diameter projectile agglomerates into 2.5 cm diameter target agglomerates of identical composition. We used three different particle types (monodisperse spherical SiO2 with 1.5 μm diameter, irregular diamond with 1–2 μm diameter, and irregular SiO2 with 0.1–10 μm diameter) and produced agglomerates by the random ballistic deposition process (Blum & Schräpler 2004). Depending on the particle type, the agglomerates had volume filling factors of $\phi = 0.15$ (for monodisperse SiO2), $\phi = 0.11$ (for diamond), and $\phi = 0.07$ (for irregular SiO2). Impact velocities ranged between 0.1 and 3 m s$^{-1}$.
From the results of our experimental investigation presented in the previous sections, we can draw the following conclusions:

1. For a similar distribution of projectile masses, impact velocities, and impact angles, the volume filling factor (porosity) of projectile and target has a considerable influence on the collisional outcome. Whereas very porous dust aggregates ($\phi \leq 0.10$) almost always stick, the sticking probability decreases with increasing filling factor for $\phi \approx 0.15$ (Figs. 3–5).

2. For dust aggregates with volume filling factors $\phi \approx 0.15$, projectiles with diameters ≥ 1 mm only stick in near-central collisions, while near-grazing impacts lead to a rebound of the projectile (see Fig. 3). The reason for the mass dependence of the sticking behavior is the interplay between the energy of the bouncing aggregates (which is, due to an almost mass-independent coefficient of restitution [see Fig. 9], proportional to the aggregate mass) and the contact energy (which is roughly proportional to the aggregates’ cross section). For small aggregates, the inertial energy of the rebounding aggregates is not capable of breaking the contacts, whereas large aggregates easily bounce off. For large aggregates, central collisions lead to a deeper penetration of the projectile aggregate into the target and thus to a larger contact area with stronger binding forces.

3. Collisions that do not lead to sticking between projectile and target agglomerate result, on average, in a mass transfer from the larger to the smaller collision partner, i.e., to a mass loss of the target agglomerate (see Figs. 7 and 8). This can be explained by an impact compaction of material comprising the projectile and part of the target, and a resulting higher cohesion (tensile strength) of the compacted material.

4. In the case of nonsticking, most of the kinetic energy of the projectile is dissipated in the collision. The residual energies of the bouncing projectiles (including the mass transfer effect) are very small for near-central collisions and increase with increasing impact angle up to a few 10 percent of the precollision energy (see Fig. 10).

5. The tensile strength of the agglomerates made of irregular SiO$_2$ particles, $T \approx 260$ Pa, as estimated in one experiment in which the projectile almost rebounded after a collision (see Fig. 11), is in good agreement with the static measurements (see Table 1). The tensile strength is responsible for aggregate cohesion and sticking upon impact.

6. If we identify the compressive strength of the agglomerates made of spherical SiO$_2$ particles with the estimated dynamic impact pressure (see eq. [16] and Fig. 16), we see that the compressive strength increases with impact energy, as was already indicated by the static measurements in Paper I. For impact velocities ≤ 3 m s$^{-1}$ and projectile sizes ≈ 1 mm, we get a maximum compressive strength of $C \approx 2000$ Pa.

7. Above the threshold value for the impact energy, $E_{\text{min}} \approx 3 \times 10^{-10} - 3 \times 10^{-9}$ J, a crater is formed. The crater volume scales with the normal component of the impact energy as $V \propto E_{\text{kin}}^{0.75}$. The corresponding dynamical pressure, $p_{\text{dyn}} = E_{\text{kin}}/V$, is only weakly dependent on impact energy, $p_{\text{dyn}} \propto E_{\text{kin}}^{0.25}$, and ranges from ≈ 200 to ≈ 2000 Pa in our experiments. The threshold value for crater formation of $p_{\text{dyn}} \approx 200$ Pa corresponds well with the onset of compaction measured by Blum & Schräpler (2004) and Paper I. The largest crater volumes were found for the highest impact energies close to the transition between sticking and nonsticking. These crater volumes (see Fig. 15) are typically $V = 10^{-8}$ m3. Comparison with the masses of the largest (and, thus, most energetic) projectile agglomerates and the projectile densities (see data in Table 1) shows that the corresponding projectile volumes are also $V_{\text{proj}} \approx 10^{-8}$ m3. Thus, the amount of compaction of the target and projectile agglomerates in these cases is not negligible. From Blum & Schräpler (2004), we can see that at a compression of 2000 Pa, the volume filling factor increases from $\phi = 0.15$ to $\phi = 0.20$. If these static compaction measurements are transferable to the dynamic problem, we conclude that a volume at least twice as large as the projectile’s is compressed to 0.20/0.15 = 1.33 of its previous volume filling factor.

8. Impact fragmentation was only rarely observed for impacts into flat and high-porosity targets. When the target surface was artificially roughened with a local radius of curvature of 1 mm (which resulted in a slight compaction of the target agglomerate to $\phi \approx 0.2$), the sticking probability was considerably reduced, and bouncing and fragmentation were the dominating processes. Earlier experiments by Blum & Münch (1993) also found impact fragmentation when two similarly sized dust aggregates collide at velocities of a few m s$^{-1}$. Thus, the local radius of curvature of two colliding dust aggregates plays a dominating role in the outcome of the collision.

7. CONCLUSIONS

In Paper I, we showed that macroscopic protoplanetary dust aggregates are expected to be very porous. Depending on the collisional history and the size of the aggregates, we expect the dusty objects to have volume filling factors between $\phi \approx 0.1$ (for all objects whose collision velocities never exceeded ~ 1 m s$^{-1}$, i.e., for sizes ≤ 1 cm) and $\phi \approx 0.3$ (for all objects with sizes ≥ 1 m). In this paper, we confirmed that collisions among fluffy protoplanetary dust aggregates with velocities ~ 1 m s$^{-1}$ lead to impact pressures of ≤ 2000 Pa and, thus, to a moderate increase in volume filling factor. Collisions between (sub)millimeter-sized dust aggregates and centimeter- to decimeter-sized fluffy objects are very abundant in the solar nebula, and the impact velocities range around 1 m s$^{-1}$ (Weidenschilling & Cuzzi 1993). Thus, our microgravity experiments match the solar nebula conditions very closely and are directly applicable to growth models.

We find that the submillimeter-sized dust aggregates always stick to much larger target aggregates, regardless of impact velocity and impact angle. The larger, millimeter-sized aggregates, however, behave differently. Sticking is restricted to the higher velocities and to the smaller impact angles. This trend was found for dust aggregates consisting of monodisperse spherical particles, quasi-monodisperse irregular particles, and irregular monomer particles with a wide size distribution, although quantitative differences in the sticking probabilities exist. Thus, for random impacts in the solar nebula, the sticking probability in collisions between millimeter-sized dust aggregates and centimeter- to decimeter-sized dusty bodies is below unity. Moreover, nonsticking (and even fragmentation) is favored when the local radius of curvature at the point of impact of the larger body is similar to the projectile radius. This can be the case for collisions between similar-sized dust aggregates or between projectiles and targets with irregular, nonflat surface textures. Another interesting feature we found in our experiments is that nonsticking impacts (i.e., those with higher impact angles) lead to a mass transfer from the larger to the smaller body.

As a consequence, future growth models for protoplanetary dust should take into account that the outcome of a single collision between dust aggregate A and dust aggregate B is not only dependent on the size of A and B and the mutual collision velocity, but is also influenced by the collisional history (e.g., compaction and the distribution of local radii of curvature on the surfaces of A and B) and the (random) impact angle of the particular
In addition to that, due to the possible occurrence of mass transfer from a larger body A to a smaller body B (in bouncing collisions) or fragmentation of the smaller object B (e.g., when it hits a part of the surface of A where the local radius of curvature is small), the numerical description of the collisional outcome (and its use in, e.g., Smoluchowski’s growth equation) becomes rather complex.

From our experimental findings, we consider it rather unlikely that protoplanetary bodies can grow beyond decimeter sizes in a direct and simple hit-and-stick manner. Although our experiments suggest that small projectiles stick at higher velocities than large projectiles, this trend does not imply that kilometer-sized bodies can form by the accumulation of very small dust aggregates or single particles. Recent experiments by Schräpler & Blum (unpublished) show that at impact velocities \(\geq 15 \text{ m s}^{-1} \), dust aggregates cannot grow by the accumulation of single grains (and, therefore, also not by the accumulation of small dust aggregates). However, meter-sized bodies in protoplanetary disks possess velocities on the order of 50 m s\(^{-1}\) (Weidenschilling & Cuzzi 1993) relative to small grains. Moreover, experiments by Wurm et al. (2005a) suggest that impacts between dusty projectiles into fluffy dusty targets at around \(\sim 10 \text{ m s}^{-1} \) never lead to an accumulation of mass on the larger body, but lead to strong fragmentation of the projectile and cratering (i.e., mass loss) of the target. A possible way out of this dilemma could be the indirect effect of projectile or fragment capturing by aerodynamic (Wurm et al. 2001a, 2001b) or electrostatic (Blum 2004) forces, or by gravitational collapse in locally overdense regions in the midplane of protoplanetary disks (Johansen et al. 2007).

We are indebted to the German Space Agency DLR for supporting this work (grant 50 WM 0336) and for providing us with the drop tower flights. We thank the staff at the ZARM drop tower facility for their help and hospitality during our campaigns.

REFERENCES

Blum, J. 2004, in ASP Conf. Ser. 309, Astrophysics of Dust, ed. A. N. Witt, G. C. Clayton, & B. T. Draine (San Francisco: ASP), 369
Blum, J., & Münch, M. 1993, Icarus, 106, 151
Blum, J., & Schräpler, R. 2004, Phys. Rev. Lett., 93, 5503
Blum, J., Schräpler, R., Davidson, B. J. R., & Trigo-Rodríguez, J. M. 2006, ApJ, 652, 1768 (Paper I)
Blum, J., & Wurm, G. 2000, Icarus, 143, 138
Blum, J., Wurm, G., Poppe, T., & Heim, L.-O. 1998, Earth Moon Planets, 80, 285
Blum, J., et al. 2000, Phys. Rev. Lett., 85, 2426
Dominik, C., & Tielens, A. G. G. M. 1997, ApJ, 480, 647
Harker, D. E., Woodward, C. E., & Wooden, D. H. 2005, Science, 310, 278
Heim, L.-O., Blum, J., Preuss, M., & Butt, H.-J. 1999, Phys. Rev. Lett., 83, 3328
Hertz, H. 1882, J. Reine Angewandte Math., 92, 156
Hörz, F., et al. 2006, Science, 314, 1716
Johansen, A., Oishi, J. S., Mac Low, M.-M., Klahr, H., Henning, T., & Youdin, A. 2007, Nature, 448, 1022
Johnson, K. L. 1985, Contact Mechanics (Cambridge: Cambridge Univ. Press)
Keller, H. U., et al. 2005, Science, 310, 281
Kerridge, J. F. 1993, Icarus, 106, 135
Kessler-Silacci, J., et al. 2006, ApJ, 639, 275
Krause, M., & Blum, J. 2004, Phys. Rev. Lett., 93, 1103
Ormel, C. W., Spaans, M., & Tielens, A. G. G. M. 2007, A&A, 461, 215
Paszun, D., & Dominik, C. 2006, Icarus, 182, 274
Poppe, T., Blum, J., & Henning, T. 2000, ApJ, 533, 454
Poppe, T., & Schräpler, R. 2005, A&A, 438, 1
Przygodda, F., van Boekel, R., Ábrahám, P., Melnikov, S. Y., Waters, L. B. F. M., & Leinert, C. 2003, A&A, 412, L43
Vold, M. J. 1959, J. Colloid Interface Sci., 14, 168
Watson, P. K., Mizob, H., Castellanos, A., & Pérez, A. 1997, in Powders & Grains 97, ed. R. Behringer & J. T. Jenkins (Rotterdam: A. A. Balkema), 109
Weidenschilling, S. J., & Cuzzi, J. N. 1993, in Protostars and Planets III, ed. E. H. Levy & J. I. Lunine (Tucson: Univ. Arizona Press), 1031
Wurm, G., & Blum, J. 1998, Icarus, 132, 125
Wurm, G., Blum, J., & Colwell, J. E. 2001a, Icarus, 151, 318
———. 2001b, Phys. Rev. E, 64, 6301
Wurm, G., Paraskov, G., & Krauss, O. 2005a, Phys. Rev. E, 71, 1304
———. 2005b, Icarus, 178, 253