An Observational Study of Physicians' Workflow Interruptions in Outpatient Departments in China

Ximin Zhu
School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology

Yinhuan Hu (hyh288@hotmail.com)
School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology

Liuming Wang
Tongji Hospital

Dehe Li
School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology

Xiaoyue Wu
School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology

Shixiao Xia
Wuhan Union Hospital

Siyu Cheng
Wuhan Medical Center for Women and Children

Research Article

Keywords: outpatient, workflow interruptions, interdepartmental difference, observational study

Posted Date: December 14th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1083856/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Workflow interruptions are frequent in hospital outpatient clinics. Eventually, not only reducing the work efficiency and quality, but also further threatening patient safety. Over the last 10–15 years, research on workflow interruptions in inpatient care has increased, but there is a lack of research on the interruptions in outpatient clinics. The present study aimed to study the differences in physicians' workflow interruptions among outpatient departments in the tertiary hospital in China.

Methods: In a tertiary hospital, a standardized observational study of 32 doctors' workflow in outpatient department of four typical clinical specialties was conducted. The record of workflow interruptions was based on a self-made observation instrument after verifying its reliability and validity. Linear regression methods were used to assess outpatient characteristics as predictors of the number of interruptions. The Kruskal-Wallis test was used to analyze the difference about the duration of interruptions among specialties, and the Chi-Square Test was used to examine the sources of interruptions among different specialties, to determine whether interruption source is associated with specialty.

Results: The number of patients was the significant independent predictor of the number of interruptions ($p<0.001$). In terms of work tasks being interrupted, the highest interruption rate occurred when physicians were asking health history: 19.95 interruptions per hour. The distribution of interruption sources among the four clinical specialties were statistically different ($\chi^2 = 16.988$, $p = 0.049$).

Conclusion: The findings indicate that physicians' workflow interruptions are connected with many contents in the work system. Further emphasis should be placed on the effective application of hospital management measures in an interrupted environment to promote a safe and efficiency outpatient care.

1. Introduction

It is common that physicians are interrupted frequently in the hospitals. M Weigl, A Mueller, P Angerer and F Hoffmann [1] observed that pediatricians were interrupted 4.8 times per hour. A study by T Bellandi, A Cerri, G Carreras, S Walter, C Mengozzi, S Albolino, E Mastrominico, F Renzetti, R Tartaglia and J Westbrook [2] reported that doctors and nurses had an interruption frequency of approximately 13 times per hour. Research in China also indicated a high workflow interruption frequency. For example, in all observed medication administration rounds, 94.51% of the rounds were interrupted. [3]. Workflow interruptions divert physician's attention to the interrupting event and away from the current task[4], which may in turn affect the quality and efficiency of the services, and consequently pose a risk to the patient safety[5, 6].

Interruption is defined as an event that diverts the attention of a doctor from a task at hand; when people resume work after an interruption, they often find themselves distracted and unable to concentrate[7]. Previous studies have compared workflow interruptions among different medical workplaces[8], quantified the frequency and sources of interruptions, and studied the association between interruptions and work tasks[9, 10]. Earlier research believe that interruptions can only have negative effects. Workflow
interruption is frequently the root cause of suboptimal staff communication, lack of focus during diagnostic procedures, insufficient handovers, and medication errors during drug administration[11]. However, more and more studies report that workflow interruptions also have a positive effect[9, 12, 13], which is related to the nature of work tasks and greatly affected by the different evaluations of physicians and patients. One should also look on the systemic advantages of interruptions: it's bad for the patient, but perhaps good for the system. Anyway, if we look not at the systemic level and only at the individual level, interruptions should be assessed by the interrupted[14].

Now, there are significant researches on interruptions in the process of health services delivery. Several attempts have been made to conduct observational studies that focus on a specific department[15, 16] or care provider and explore the frequency and effect of interruptions[3, 17, 18]. Moreover, some studies have just discussed a specific source of interruption, such as a paging device[14, 19], a communication device[20] or electronic medical record[21]. Furthermore, many studies have examined whether there is a relationship between interruptions and multitasking[2, 22, 23], workloads[1, 24–27], work quality and efficiency[12, 28], work outcomes[29, 30] and patient satisfaction[11]. Several studies have been made to discuss the impact of interruption based on the theory of human-environment relationship in ergonomics[1, 11, 31, 32].

Currently, there are a few studies on interruptions in outpatient departments in China, mostly focused on nursing and drug delivery. Therefore, there is a need for more researches to analyze workflow interruptions in outpatient department. In other words, to optimize outpatient management, it is important to know the sources of interruptions and the relationship between interruptions and work system[9]. Unlike western countries, the main body of health service delivery in China is tertiary general hospitals. They usually include outpatient department and inpatient department. This type of hospitals has to undertake one-half of the medical services of entire country. But there are some major problems in tertiary general hospitals, such as large numbers of large-scale hospitals (about 50 hospitals with more than 3000 beds in 2019), a large number of patients and overcrowding in outpatient department. In addition, some surveys have shown that the patient experience is low in China[33]. All these are challenges to hospital management. The situations that doctor deal with in the outpatient setting are complex and changeable, and the patients are also in different health conditions. Before seeing a doctor, patients will make self-judgment on their own condition or choose an appropriate department for treatment through hospital guidance. Compared with patients referred by family doctors, the process of such patients will increase the doctor's workload. Presently, the workflow of outpatient department includes problems such as the incompletely developed appointment registration system[34, 35], poor consultation process, and inadequate information applications[36], which has led to a high frequency of interruptions in outpatient department.

For the doctors, the consulting process for the current patient is an independent complete process. If there is an external interruption, it will not only affect the continuity of the process, but also affect doctor's situation awareness[37, 38]. For patients, the process of receiving medical services requires privacy. They don't want anyone else to interrupt in any way. From the perspective of hospital management, interruption
is a hidden danger for patient safety management[29, 39], which will affect the quality of medical services and the reputation of the hospital. Therefore, it is necessary to understand the occurrence of interruption in the outpatient system.

In this study, we observed the entire process of physicians' outpatient care using a self-made interruption observation instrument to record the frequency and sources of interruptions and determine whether the interruptions differ among specialties. We tried to understand the current situation and explore its connotation through the study of the interruption in the complex outpatient system. This is also the focus of the doctor's work system for ergonomics research in the health field.

2. Method

2.1 Setting and participants

This study was conducted in outpatient department of a large tertiary general hospital with average daily outpatient visits of 8,000 in Wuhan, China, in October and November 2019. This hospital is the most typical tertiary hospital in China, with a large number of outpatient visits and advanced diagnosis and treatment technology. Serving time of doctors in outpatient department is divided into morning and afternoon shifts and each shift lasts about 3 hours. We chose a shift as an observation unit. Surgical Medicine, Internal Medicine, Pediatrics, and Neurology are typical specialties with high physician workload and pressure. Thus, we selected the four specialties to observe physicians' workflow interruption in this study. The attending physician receives average 100 patients per shift, and the chief physician receives average 50 patients usually.

Generally, 2 doctors share the same consulting room with desks and office supplies on it, such as computers with internet, printers, medical card machine. There is also an examination area in the consultation room for private physical examination. The desk is the main work area of the outpatient doctor. Outside the consultation room is the waiting area for patients. Patients visit the doctors through the procedures of getting queuing numbers, waiting for the number calls in the waiting area, and electronically calling numbers. Due to the large number of outpatients and the lack of management to waiting patients, many patients are queuing besides doctor's desk during physicians' consultation.

Doctors with outpatient care qualifications are attending physicians and chief physicians, and they were all included in this study. The observers obtained the permission and consent of observed doctors and patients to enter the consulting room for observation and did not collect any patient-related information.

2.2 Observation methods

We used the observation method, that is, to observe and record the work tasks and working hours of the observer for a longer period of time. Expert observation using standardized methods has been shown to be valid and reliable for healthcare services, with a specific application in the investigation of workflow
Before the investigation, the observers were trained to understand the contents of the tasks and interruption sources to ensure that all information was effectively and accurately recorded.

Before the formal observation, two pre-surveys were conducted to check the internal consistency of the measurement tool (Kappa value reached 0.6), that is, two observers simultaneously observed the workflow of a physician. Every item recorded was examined to verify the consistency of the tool and the familiarity of our observers with the content of the tool. During the formal observation, an observer entered the room for continuous observation, recorded the duration of interruptions using a stopwatch, and determined the source of interruption and the type of task being interrupted. The recorded information also included the identity of patients (numbered according to the order of entering the consulting room), start and end time of interruption, source of interruption, type of work task, and remarks for special events.

2.3 Identification of work tasks and workflow interruptions

In this study, we want to get the information about workflow interruptions and the work tasks being interrupted. So, it is important to clarify the classification and content of work tasks and record them correctly. Three phases were carried out to clarify work tasks.

First, we conducted literature reviews to understand the outpatient physician's job goals and job responsibilities. The second stage was to randomly select several outpatient physicians in a tertiary public hospital for pilot observation and enumerate all work task based on their work specifications. As a result, we made a task list. Finally, we invited some outpatient department managers and outpatient physicians to discuss the connotation and significance of each task in the task list and summarize the category of work tasks. Table 1 presents 8 work tasks associated with doctor-patient communication tasks and non-doctor-patient communication tasks[8, 9, 40, 41].
Table 1
Types of work tasks

Category	Work task	Definition
Doctor-patient communication task	1 Asking health history	Inquire about the occurrence, development, current symptoms and treatment history of the disease from patients and their relatives.
	2 Explaining procedures	Explain the procedure and various precautions to patients.
	3 Diagnosing and explaining health conditions	Diagnose the patient and explain the result of examination.
	4 Giving medication precaution and health guidance	Give patients medication guidance, health guidance, follow-up matters, etc. after discharge from the hospital.
	5 Others	Other contacts between patients and doctors.
Non-doctor-patient communication task	6 Physical examination	Physical examination refers to the detection and measurement of the human body’s structure and function development level.
	7 Documentation	Handle paperwork and operations including paper medical records and electronic medical records.
	8 Contacting outside	Contact the inpatient department or operating room related to patient care.

Moreover, we employed a classification system suitable for this study, which divides workflow interruptions into 11 types (cf. Table 2)[5, 8, 25, 30, 42, 43]. In this study, the closed-loop workflow of outpatient physicians is the whole work tasks and sequence from the current patient's visit to stay away from the physician's desk. Workflow interruption means that an existing work task is interrupted by an unrelated task, or an existing task is interrupted to perform tasks that are not planned. For example, when the current patient sees a doctor, an action that is interrupted by an unrelated person or business is recorded as an interruption. Different from previous research, interruption by patients or their relatives means that the current patient’s process is interrupted by patients who was not visiting currently, such as people behind the queue or outside the consulting room. After we combined the recommendations of outpatient department managers and physicians and ensured that there were no missing or unsuitable classifications, an observation chart was created as an observational instrument.
Table 2

Category	Workflow interruption source	Definition
Interruption by patients or their relatives	1 Asking about medical examination results	Patients interrupt physicians to ask about the results of their physical and chemical examinations such as x-ray, blood tests, and urine tests.
	2 Asking for health guidance	Patients interrupt to ask for medical guidance, dietary restrictions, lifestyle behavior changes, and ways to improve their health when at home.
	3 Asking about the waiting time	Patients interrupt while they are queuing outside to ask when they can see a doctor.
	4 Asking about procedures	Patients interrupt to ask about procedures such as inpatient procedures and outpatient treatment procedures.
	5 Medical disputes	Patients interrupt to seek solutions due to dissatisfaction with medical results, service attitudes, outpatient procedures, etc.
	6 Others	Patients interrupt because of other issues.
Interruption by colleagues	7 Work issues	Questions about patient’s condition, multi-section consultation, etc.
	8 Private issues	Issues regarding interpersonal relationships.
Interruption by phone	9 Phone	An interruption because of the doctor’s phone.
Interruption by equipment/system/network failure	10 Equipment/system/network failure	Doctors are interrupted by hospital systems, network failure, medical equipment, and so on.
Interruption by others	11 Others	Interrupted by other people or other issues.

2.4 Statistics

The data were entered into an Excel via double data entry and checked for errors and illogical values. The descriptive statistics included characteristics of outpatient department and interruptions in the hospital. Linear regression methods were used to assess outpatient characteristics as predictors of the number of interruptions. Potential risk factors for the number of interruptions included number of patients, outpatient duration, doctor title, specialties and day of the week. To assess the association between
outpatient characteristics and number of interruptions, univariate analyses were performed using linear regression. The Kruskal-Wallis test was used to analyze the difference about the duration of interruptions among specialties, and the Chi-Square Test was used to examine the sources of interruptions among different specialties, to determine whether interruption source is associated with specialty. All analyses were performed using SPSS 20.0, and p < 0.05 was considered statistically significant for all tests.

3. Results

3.1 Characteristics of outpatient and workflow interruptions

In total, we observed 32 physicians, and obtained 904 outpatient visits. Only 23 of the 32 physicians were willing to provide information such as age and doctor title. Among the 23 physicians, the male to female ratio was 7:5, and the average age was 37.9 years. A total of 320 interruptions were observed, and the total duration of interruptions was 138.82 min, which suggests that the doctors’ workflow was interrupted 6.12 times per hour. Characteristics of doctors in outpatient department are shown in Table 3.

Characteristic (per doctor)	Average	SD(Range)
Number of patients	28	11.76 (5-59)
Number of interruptions	10	7.88(0-35)
Duration of interruption(min)	4.3	3.54 (0-15.14)
Outpatient duration(h)	3.16	0.5(2.58-4.22)

Characteristics of interruptions are shown in Table 4. The most common category of interruptions was interruption by patients or their relatives, followed by interruption by phone. The highest interruption rate, when stratified by work task type, occurred when doctors were asking health history: 19.95 interruptions per hour. Doctors were interrupted 14.33 times per hour when they were doing physical examination. The most of interruptions lasted less 1 minute, which was account for 90%.
Table 4
Characteristics of workflow interruption

Characteristic	N
Category of interruptions N (%)	
Interruption by patients or their relatives	221 (69)
Interruption by colleagues	28 (8.8)
Interruption by phone	45 (14)
Interruption by equipment/system/network failure	15 (4.7)
Interruption by others	11 (3.5)
Task being interrupted N (rates per hour)	
Asking health history	150 (19.95)
Explaining procedures	13 (5.23)
Diagnosing and explaining health conditions	57 (8.74)
Giving medication precaution and health guidance	23 (12.59)
Other patient-physician communication	3 (2.92)
Physical examination	10 (14.33)
Documentation	64 (6.47)
Contacting outside	0
Length of interruption N (%)	
< 1 minute	288 (90)
1-5 minutes	31 (9.6)
> 5 minutes	1 (0.4)

Note: N =320, number of interruptions

In univariate analysis, only the number of patients was significant independent predictors of the number of interruptions. With each additional patient on outpatient, the number of interruptions increased by approximately 1 (coefficient=0.76, P<0.001). Outpatient duration, doctor title, specialties and day of the week were not significant independent predictors of the number of interruptions.

3.2 Distribution of interruptions in different departments

Table 5 presents workflow interruptions grouped by departments and Table 6 shows the sources of interruptions among the four specialties. We can see that all of the departments were interrupted by patients or their relatives the most. So, it was expected to explore subtypes under this category. In Internal
Medicine, the most common source was interruptions by patients or their relatives because of other issues and asking about procedures, accounting for 27.5% and 17% of all interruptions, respectively. In Surgical Medicine, patients or their relatives asking about procedures (N = 12; 25%) was the most common interruption source, followed by interruption by patients or their relatives because of other issues (N = 11; 23%). In Pediatrics, the most common interruption source was patients or their relatives asking about procedures (N = 19; 29.7%), whereas interruptions due to medical disputes did not occur. In Neurology, the most common interruption category was interruptions by patients or their relatives because of other issues (N = 28; 25%), and all subtypes under the category were observed.

Table 5

Specialty	Number of observations	Number of interruptions	Observed time (h)	Interruptions per hour	Duration of interruption (min)
Internal Medicine	277	98	15.17	6.46	45.41
Surgical Medicine	162	48	8.09	5.94	21.79
Pediatrics	210	64	14.75	4.34	23.38
Neurology	256	110	14.26	7.71	48.25

Table 6

Specialty	Source of interruptions				
	Interruption by patients or their relatives: % (N)	Interruption by colleagues: % (N)	Interruption by phone: % (N)	Interruption by equipment/system/network failure: % (N)	Interruption by others: % (N)
Internal Medicine	65.3 (64)	7.1 (7)	12.3 (12)	8.2 (8)	7.1 (7)
Surgical Medicine	75 (36)	4.2 (2)	16.6 (8)	2.1 (1)	2.1 (1)
Pediatrics	65.6 (42)	14.1 (9)	10.9 (7)	7.8 (5)	1.6 (1)
Neurology	71.8 (79)	9.1 (10)	16.4 (18)	0.9 (1)	1.8 (2)

Note: N, number of interruptions.

A Kruskal-Wallis test analysis demonstrated statistically significant difference in sources of interruptions based on four specialties ($\chi^2 =16.988, p = 0.049$). Hypothesis testing was applied to examine the difference in the duration of interruptions among the four specialties. It was found that the duration of
interruptions was not significantly different among the four specialties ($\chi^2 = 2.732$, df = 3, Kruskal-Wallis = 0.435), but the difference about the duration of interruptions by phone, equipment/system/network failure, and other interruptions were significantly different among specialties ($\chi^2 = 8.324$, df = 3, Kruskal-Wallis = 0.04). A pairwise comparison of the significance level adjusted by Bonferroni found that the difference between Pediatrics and Surgical Medicine ($\chi^2 = -2.795$, Kruskal-Wallis = 0.031) was statistically significant, but there was no statistically significant difference between Pediatrics and Internal Medicine, Pediatrics and Neurology, Internal Medicine and Surgical Medicine, Internal Medicine and Neurology, Surgical Medicine and Neurology.

4. Discussion

The outpatient environment in China is complex with short-term communication and frequent task changes, which impose significant demands upon outpatient physicians. In order to understand the working environment and high workload of outpatient physicians, it is necessary to comprehensively consider the relationship between patients, doctors, and hospital management. Workflow interruption is one of the influencing factors of workload[25]. In this vein, we set out to study the outpatient workflow interruption and the differences in the distribution of interruptions among different specialties in a typical tertiary hospital in China. In terms of our results, this study contributes to the current research on doctors’ workflow interruption from the following aspects.

First, this study recorded and quantified the physician's workflow interruptions from four different clinical specialties in outpatient department of tertiary general hospitals in China through standardized observations, which enriched the evidence of the physician's workflow interruption with outpatient care and various clinical departments. A considerable amount of literature has been published to show the interruptions about inpatient care and few is about outpatient care. In our research, the physicians’ outpatient workflows were interrupted overall approximately 6.12 times per hour, which was lower than that in emergency department[8, 24]. Among the four clinical specialties we observed, Neurology was the specialty with the most frequent interruptions of 7.71 times per hour. Regarding interruption sources, our study showed that the majority of sources was attributed to patients and their relatives, which is quite different from previous studies that were mostly attributed to intra-departmental communication[16, 30, 38] and telephone/ beeper calls[44]. The reason may lie in the queuing management of the visiting patients during physicians' consultation in China. There are some patients queuing in the consulting room in outpatient department and some patients who return to the room after obtaining the test/examination result or the prescribed medicine can enter the consulting room directly without the queuing number. These may be potential risks for the patient to interrupt the doctor[45]. Regarding the physicians’ work tasks being interrupted, the rate per hour of being interrupted during asking patients’ health history is higher than that during other work tasks, which may be the result of frequent change of consulting patient and the physicians' consultation usually begins with the task of asking patients’ health history. When the doctor resumes talking to the patient, they may forget to ask something or repeat the questions[46]. These interruptions disrupt the communication so that the doctor's attention cannot be
focused on the current patient's consultation. This interferes with the thought process and increases cognitive demands, thereby increasing the risk of errors[30]. The difference in the interruption sources among different clinical specialties mainly stems from the characteristics of specialties[16]. Different clinical specialties have different outpatient procedures, and the conditions of patients in these specialties are different.

Second, our study discussed and analyzed how physicians' workflow interruptions operated in the complex work system. The outpatient care in Chinese tertiary general hospital is characterized with large patient flow and frequent task switching of physicians. Physicians in outpatient care work for nearly 3 hours per half day and have limited range of motion. Therefore, we observed that part of interruptions occurred actively by physicians themselves. Workflow interruption can be an adaptive response of doctors in an outpatient setting, which is similar to other interruption studies [47–49]. In some studies, the interruption is to obtain more information to better deal with the patients' condition, or is the response strategy of the doctor to deal with a certain prompt [24]. For example, queuing in the consulting room is chaotic, and doctors suspend work tasks to maintain visit order. Or, in order to improve the work efficiency, doctors will actively choose to be interrupted when dealing with documentation, and perform multitasking simultaneously[50]. Task of differing modalities, in this case verbal and nonverbal, can more easily be performed in parallel than tasks of the same modality[24]. Actually, doctors will reduce the impact of interruption by multitasking, ignoring or deferral. This kind of active interruption can effectively increase the working efficiency of physicians while they can also increase the physicians' workload[51]. Previous study have showed that task-switching introduces risk of no-resumption or resuming at the wrong place in a task sequence[24]. Moreover, a non-interrupted process is also a requirement of the hospital to realize the patient-centered concept and to improve the patient experience. Therefore, the most important management measure is to optimize the physician's outpatient working environment. For example, it is helpful to limit the number of patients entering the consulting room. In order to reduce the physicians' interruptions by patients due to non-medical issues, assistants can be arranged outside the consulting room or in a waiting area of patients to solve such problems.

In this study, the rate per hour of interruptions during doctor-patient communication task was much higher than that during non-doctor-patient communication task. This phenomenon is different from the previous study[24]. In this regard, it should be attributed to the patient's consciousness and the fact that doctors tend to have more time during doctor-patient communication tasks than that during non-doctor-patient communication tasks[52]. For example, patients believe that doctors are more likely to accept interruptions during doctor-patient communication tasks and shift doctors' attention to themselves. Therefore, the environment, not only the physical environment but also hospital outpatient service system and hospital management measures, plays an important role in understanding the occurrence of interruptions[9, 53]. When discussing the high workload of physicians, interruption, as an intermediate product, is the result of the dynamic action of people and the system. When it comes to one outpatient shift, doctors tend to complete the daily consultations by taking care of patients quickly and attentively. Under this circumstance, interruption may be repeated many times in a short period of time, also known
as "nested interruption", which will increase the mental workload of providers and influence their subjective cognition[52].

Third, the results of our study are generalized and practical. The observed hospital is a typical tertiary general hospital in China. According to China's 2020 Health Statistics Yearbook, there were about 2,749 tertiary hospitals in China, accounting for 8% of all hospitals, but they had to undertake one-half of the health services of entire country. This type of hospitals has advanced technology and high-quality services, and usually is the first choice for patients to seek medical treatment in China. Although we only conducted observations in this hospital, the results are widely applicable to most tertiary hospitals in China and also to the same scale hospitals with large number of patients in the world. The high frequency of interruptions and complex sources of interruptions revealed by our study are common problems in many hospitals. Therefore, the interruption management strategies and hospital management measures proposed in our study could be references for most of the hospitals and have great practicability and generalization.

Finally, workflow interruptions in healthcare are definitely a worthy topic for research using approaches from ergonomics. In our study, physician's workflow interruption reflects the conflicting relationship between patients and doctors, and the dependence of doctors on hospital management. In a study on a multi-level human factors framework of workload, workload was divided into three levels: unit-level workload, job-level workload and task-level workload [53]. Among them, the task-level workload is closely related to interruptions of workflow [54]. The framework reflects the interaction among patients, medical staffs and hospitals. At the same time, the relationship among them also plays an important role in exploring the occurrence of interruption. In outpatient department, patients are the main reason for the physicians' workflow interruptions. On one hand, the idea of "patient-centered" has gradually integrated into the hospital management measures and physicians' cognition. In result, the doctor-patient relationship has gradually become harmonious. The hospital's humanized services have brought about an increase in the doctor's workload, which is a risk factor for the number of interruptions. On the other hand, it is understandable that patients are eager to obtain an explanation of the test result. But the interruption reflects patients' lack of awareness of the respect for order and privacy, which leads to dissatisfaction of other patients and an increase in physicians' workload. We explored the in-depth reasons for the sources of interruption and found that most of them were related to hospital management system. The physician's active interruption and various sources of interruption in our study are all corroborative. Hospital management system will affect the behavior of physicians and patients, and play a decisive role in the interruptions of workflow and physicians' workload to a large extent. In summary, it is necessary to systematically discuss the causes of physicians' workflow interruptions. Human factors theory provides a good framework for discussing the interaction between humans and the environment.

In this study, the specific connotation of interruption is based on the judgment of patient-centered. It should be a complete process from entering the consultation room to leaving the consultation room to patients, and any person or event that has nothing to do with his/her disease is interruption. But if we
only look at the interruption from one angle, our discussion tends to be one-sided[10]. Interruption by patients or their relatives is bad for the current visiting patients, but it can help patients who interrupt the workflow achieve more medical information to improve medical effects. To reduce these interruptions by patients or their relatives, we recommend to set up medical assistants in outpatient department to answer the questions of returning patients. In this way, they can achieve information not interrupting the doctors who is visiting the other patient. Interruption by phone and interruption by equipment/system/network failure are also common in our study. This interruption is more random than interruption by colleagues and patients, because colleagues and patients are able to pick a time when it is appropriate to interrupt. Previous research has shown that ‘random’ interruptions are more strongly related to work impairment than ‘reflexive’ interruptions[9]. Moreover, phone-related prompt and interruptions are always easier to cause task switching, which means they have a higher priority[38]. In order to reduce ‘random’ interruptions, electronic assistance and regular maintenance may be a promising approach[55].

4.1 Limitations

In this study, a typical hospital was chosen to represent the current status and characteristics of outpatient services in China. However, tertiary public hospitals are the main body of health service delivery in China. This type of hospital provides most of health services, and has strong medical strength and patient trust. Therefore, the study reflected the actual situation of interruptions in outpatient department in China to a certain extent, and had broad applicability and generalizability. Second, based on the requirements of the hospital used for the observations, all physicians observed in this study were limited by hospital outpatient arrangement; thus, the study was incomplete random sampling. Therefore, we asked the manager to try their best to select randomly without taking particular factors about the doctors into consideration. The research method was the observation method, and limitations to the study include those inherent to observational studies. Although the observers had been trained beforehand on the content of the observations and the precautions to be taken, there remained a great potential for bias between theory and the understanding of observers, which was unavoidable. For the observed physicians and patients, although measures were taken to reduce the risk of the Hawthorne effect (the observer stood at least 1 meter away from the physician in the clinic; during the study, the investigator did not actively talk to the subject[8]), and tried not to explain our research and observation entries before the study began, it still cannot be ruled out that the doctors may have inferred our observations, thus modifying their responses accordingly.

4.2 Implications for research and practice

Our investigation is helpful to the growing research on interruptions based on the outpatient work systems, and to explore the internal reasons for the difference about interruptions among different clinical specialties. In an outpatient setting, interruption is inevitable and necessary to a certain extent. In view of the large number of outpatient visits and the poor hospital management, future research should explore the significance and impact of outpatient workflow interruptions, and how to reduce unnecessary interruptions while ensuring the efficiency of the outpatient. Since its potential impact depends on the
patient and the environment, interruption resolution strategies to improve the workload of doctors should be considered in the wider hospital system. This refers particularly to interruptions during important diagnostic tasks that are passive or ineffective. Therefore, subsequent research should focus on the interrelationship among patients, tasks, and hospital's environments, which are often conducive to complex interruption scenarios. We currently choose a single observation method, and in the future, we will use a mixed research method to study the interruption process and the impact of it. This study also provides information for future research through discussing the possibility of interruptions among different departments and processing strategies for interruptions in a complex work system, so as to improve the doctor's workload, reduce decision-making errors and improve patient safety. In the end, research on interruption that account for the various impacts of patients, tasks, clinical specialties, and the hospital environment and contrive to understand the interrelationships among them in the complex environment of the outpatient will eventually advance the overall understanding of interruption.

Regarding the impact of the interruption on outpatient practice, our results call for further efforts in the design of hospital management and outpatient work systems to improve the workload of doctors. Since interruption is inevitable to some extent, and even needs to exist. Therefore, it is necessary to identify the meaning and impact of the interruption. Establish a full-process team through hospital outpatient management to reduce interruptions caused by queuing, waiting and other chores. Outpatient doctors work in complex and dynamic situations. Thus, it is expected to improve the doctor's non-technical skills and the flexible design of outpatient management, which can be adjusted according to the patient's situation at any time. In addition, the participation and promotion of the whole society is beneficial to improving the health literacy of patients.

5. Conclusion

The observation of the entire outpatient process allowed a more detailed and clear understanding of workflow interruptions, which will lay the foundation for further research on the effects of interruptions on physicians and patients. Our findings further prove that there are certain differences about the interruption among clinical specialties, not limited to the departments with obvious differences like Emergency Department and Primary Care Department. Our research results increase the knowledge on interruptions of outpatient department, and provide a basis for future research about the fields of tasks, clinical specialties and hospital managements.

Declarations

Ethics approval and consent to participate This research was conducted with the permission of the Ethics Committee of Tongji Medical College of Huazhong University of Science and Technology (IORG No. IORG0003571). Prior to the beginning of the study, the informed consent of the outpatient department manager of the hospital was requested and obtained. Informed consent for study participation was obtained from all subjects including physicians and patients (if patients are under 16/illiterate/dead,
from a parent and/or legal guardian/next of kin). We conformed that all methods were carried out in accordance with relevant guidelines and regulations.

Consent for publication Not Applicable.

Availability of data and materials The datasets generated and/or analysed during the current study are not publicly available due to privacy or ethical restrictions but are available from the corresponding author on reasonable request.

Competing interests The authors declare that they have no competing interests.

Funding The study was supported by the National Natural Science Foundation of China (Grant Number 71774062) and the Fundamental Research Funds for the Central Universities (Grant Number 2021WKYXZX008)

Authors’ contribution XZ, YH, LW, DL conceived and designed the study. XZ, DL, LW, SX, SC and XW collected data. XZ analyzed data and drafted the manuscript. All authors provided constructive suggestions to improve the paper. All authors have seen and approved the final version of the paper.

Acknowledgements The authors acknowledge all the participants involved in our research for their contributions.

References

1. Weigl M, Mueller A, Angerer P, Hoffmann F: **Workflow interruptions and mental workload in hospital pediatricians: an observational study.** *Bmc Health Services Research* 2014, 14.

2. Bellandi T, Cerri A, Carreras G, Walter S, Mengozzi C, Albolino S, Mastrominico E, Renzetti F, Tartaglia R, Westbrook J: **Interruptions and multitasking in surgery: a multicentre observational study of the daily work patterns of doctors and nurses.** *Ergonomics* 2018, 61(1):40–47.

3. Zhao J, Zhang X, Lan Q, Wang W, Cai Y, Xie X, Xie J, Zeng Y: **Interruptions experienced by nurses during pediatric medication administration in China: An observational study.** *Journal for Specialists in Pediatric Nursing* 2019, 24(4).

4. Pereira D, Mueller P, Elfering A: **Workflow interruptions, social stressors from supervisor(s) and attention failure in surgery personnel.** *Industrial Health* 2015, 53(5):427–433.

5. Wakefield B-J: **Measurement of the frequency and source of interruptions occurring during bedside nursing handover in the intensive care unit: an observation study.** *Australian Critical Care* 2017, 30(2):57–57.

6. Magrabi F, Li SYW, Dunn AG, Coeira E: **Challenges in Measuring the Impact of Interruption on Patient Safety and Workflow Outcomes.** *Methods of Information in Medicine* 2011, 50(5):447–453.

7. Chisholm CD, Collison EK, Nelson DR, Cordell WH: **Emergency Department Workplace Interruptions Are Emergency Physicians "Interrupt-driven" and "Multitasking"?** *Academic Emergency Medicine*
8. Chisholm CD, Dornfeld AM, Nelson DR, Cordell WH: Work interrupted: A comparison of workplace interruptions in emergency departments and primary care offices. Annals Of Emergency Medicine 2001, 38(2):146–151.

9. Weigl M, Mueller A, Zupanc A, Glaser J, Angerer P: Hospital doctors' workflow interruptions and activities: an observation study. Bmj Quality & Safety 2011, 20(6):491–497.

10. McCurdie T, Sanderson P, Aitken LM, Liu D: Two sides to every story: The Dual Perspectives Method for examining interruptions in healthcare. Applied Ergonomics 2017, 58:102–109.

11. Weigl M, Hoffmann F, Mueller A, Barth N, Angerer P: Hospital paediatricians' workflow interruptions, performance, and care quality: a unit-based controlled intervention. European Journal Of Pediatrics 2014, 173(5):637–645.

12. Weigl M, Mueller A, Holland S, Wedel S, Woloshynowycz M: Work conditions, mental workload and patient care quality: a multisource study in the emergency department. Bmj Quality & Safety 2016, 25(7):499–508.

13. Elfering A, Grebner S, Ebener C: Workflow interruptions, cognitive failure and near-accidents in health care. Psychology Health & Medicine 2015, 20(2):139–147.

14. Klemets J, Evjemo TE: Technology-mediated awareness: Facilitating the handling of (un)wanted interruptions in a hospital setting. International Journal Of Medical Informatics 2014, 83(9):670–682.

15. Elfering A, Nutzi M, Koch P, Baur H: Workflow interruptions and failed action regulation in surgery personnel. Safety and health at work 2014, 5(1):1–6.

16. Schneider A, Williams DJ, Kalynych C, Wehler M, Weigl M: Physicians’ and nurses’ work time allocation and workflow interruptions in emergency departments: a comparative time-motion study across two countries. Emergency medicine journal: EMJ 2020.

17. Flynn EA, Barker KN, Gibson JT, Pearson RE, Berger BA, Smith LA: Impact of interruptions and distractions on dispensing errors in an ambulatory care pharmacy. American Journal Of Health-System Pharmacy 1999, 56(13):1319–1325.

18. Westbrook JI, Coiera E, Dunsmuir WTM, Brown BM, Kelk N, Paoloni R, Tran C: The impact of interruptions on clinical task completion. Quality & Safety In Health Care 2010, 19(4):284–289.

19. Fargen KM, O’Connor T, Raymond S, Sporrer JM, Friedman WA: An observational study of hospital paging practices and workflow interruption among on-call junior neurological surgery residents. Journal of graduate medical education 2012, 4(4):467–471.

20. Vaisman A, Wu RC: Analysis of Smartphone Interruptions on Academic General Internal Medicine Wards. Applied Clinical Informatics 2017, 8(1):1–11.

21. Magrabi F, Li SYW, Day R, Coiera E: Errors and electronic prescribing: a controlled laboratory study to examine task complexity and interruption effects. Journal of the American Medical Informatics Association 2010, 17(5):575–583.
22. Kalisch BJ, Aebersold M: **Interruptions and multitasking in nursing care**. *Joint Commission journal on quality and patient safety* 2010, **36**(3):126–132.

23. Raban MZ, Walter SR, Douglas HE, Strumpman D, Mackenzie J, Westbrook JI: **Measuring the relationship between interruptions, multitasking and prescribing errors in an emergency department: a study protocol**. *Bmj Open* 2015, **5**(10).

24. Walter SR, Raban MZ, Dunsmuir WTM, Douglas HE, Westbrook JI: **Emergency doctors’ strategies to manage competing workload demands in an interruptive environment: An observational workflow time study**. *Applied Ergonomics* 2017, **58**:454–460.

25. Weigl M, Mueller A, Vincent C, Angerer P, Sevdalis N: **The association of workflow interruptions and hospital doctors’ workload: a prospective observational study**. *Bmj Quality & Safety* 2012, **21**(5):399–407.

26. Kim JH, Parameshwara N, Guo W, Pasupathy KS: **The Impact of Interrupting Nurses on Mental Workload in Emergency Departments**. *International Journal Of Human-Computer Interaction* 2019, **35**(3):206–217.

27. Jianfei X, Qian S, Siyuan T, Siqing D, Zhuqing Z, Sainan Z, Yinglong D, Xiangyan Z, Sk CA: **Knowledge, attitude and practice regarding nursing interruptions among Chinese nurses: A nationwide cross-sectional survey**. *International journal of nursing sciences* 2020, **7**(1):66–73.

28. Cooper CH, Tupper R, Holm K: **Interruptions During Medication Administration: A Descriptive Study**. *Medsurg nursing: official journal of the Academy of Medical-Surgical Nurses* 2016, **25**(3):186–191.

29. Pachler D, Kuonath A, Specht J, Kennecke S, Agthe M, Frey D: **Workflow Interruptions and Employee Work Outcomes: The Moderating Role of Polychronicity**. *Journal Of Occupational Health Psychology* 2018, **23**(3):417–427.

30. Blocker RC, Heaton HA, Forsyth KL, Hawthorne HJ, El-Sherif N, Bellolio MF, Nestler DM, Hellmich TR, Pasupathy KS, Hallbeck MS: **Physician, Interrupted: Workflow Interruptions and Patient Care in the Emergency Department**. *The Journal of Emergency Medicine* 2017, **53**(6):798–804.

31. Sasangohar F, Donmez B, Easty AC, Trbovich PL: **Mitigating nonurgent interruptions during high-severity intensive care unit tasks using a task-severity awareness tool: A quasi-controlled observational study**. *Journal Of Critical Care* 2015, **30**(5).

32. Xie J, Liu J, Liu L, Wang Y, Dai L, Wu X, Ding S, Zeng S, Zhou J: **Practice and effectiveness of management in nursing interruptions**. *Chinese Journal of Nursing* 2016, **51**(8):951–955.

33. Hu G, Chen Y, Liu Q, Wu S, Guo J, Liu S, Wang Z, Zhao P, Sun J, Hu L *et al.*: **Patient experience of hospital care in China: major findings from the Chinese Patient Experience Questionnaire Survey (2016-2018)**. *Bmj Open* 2019, **9**(9).

34. Ye X, Zhang L, Ma J, Yang X, Yuan Y: **Setup and management of the multi-functional post for outpatients**. *Chinese Journal of Hospital Administration* 2019, **35**(11):944–946.

35. Li X, Wang J, Fung RYK: **Approximate dynamic programming approaches for appointment scheduling with patient preferences**. *Artificial Intelligence In Medicine* 2018, **85**:16–25.
36. Zhang N, Meng L, Yang J, Wang Y, Jiang D, Bai X, Wang X, Pan X: Optimization of the Workflow of Outpatient Pharmacy in Our Hospital. *China Pharmacy* 2011, **22**(13):1171–1175.

37. Weigl M, Beck J, Wehler M, Schneider A: Workflow interruptions and stress at work: a mixed-methods study among physicians and nurses of a multidisciplinary emergency department. *Bmj Open* 2017, **7**(12).

38. Weigl M, Catchpole K, Wehler M, Schneider A: Workflow disruptions and provider situation awareness in acute care: An observational study with emergency department physicians and nurses. *Applied Ergonomics* 2020, **88**.

39. Weigl M, Hornung S, Glaser J, Angerer P: Reduction of Hospital Physicians’ Workflow Interruptions: A Controlled Unit-Based Intervention Study. *Journal Of Healthcare Engineering* 2012, **3**(4):605–620.

40. See KC, Phua J, Mukhopadhyay A, Lim TK: Characteristics of distractions in the intensive care unit: how serious are they and who are at risk? *Singapore Medical Journal* 2014, **55**(7):358–362.

41. Brixey JJ, Robinson DJ, Johnson CW, Johnson TR, Turley JP, Patel VL, Zhang J: Towards a hybrid method to categorize interruptions and activities in healthcare. *International Journal Of Medical Informatics* 2007, **76**(11-12):812–820.

42. Brixey JJ, Tang Z, Robinson DJ, Johnson CW, Johnson TR, Turley JP, Patel VL, Zhang J: Interruptions in a level one trauma center: A case study. *International Journal Of Medical Informatics* 2008, **77**(4):235–241.

43. Allard J, Wyatt J, Bleakley A, Graham B: "Do you really need to ask me that now?": a self-audit of interruptions to the ‘shop floor’ practice of a UK consultant emergency physician. *Emergency Medicine Journal* 2012, **29**(11):872–876.

44. Coiera E: The science of interruption. *Bmj Quality & Safety* 2012, **21**(5):357–360.

45. Schutijser BCFM, Klopotowska JE, Jongerden IP, Spreeuwenberg PMM, De Bruijne MC, Wagner C: Interruptions during intravenous medication administration: A multicentre observational study. *Journal of Advanced Nursing* 2019, **75**(3):555–562.

46. Gurvich I, O’Leary KJ, Wang L, Van Mieghem JA: Collaboration, Interruptions, and Changeover Times: Workflow Model and Empirical Study of Hospitalist Charting. *M&Som-Manufacturing & Service Operations Management* 2020, **22**(4):754-774.

47. Catrine A, Ekman I, Ehnfors M: A Comparison of the Concept of Patient Participation and Patients’ Descriptions as Related to Healthcare Definitions. *International Journal of Nursing Terminologies and Classifications* 2010, **21**(1):21–32.

48. Eldh AC, Luhr K, Ehnfors M: The development and initial validation of a clinical tool for patients’ preferences on patient participation - The 4Ps. *Health Expectations* 2015, **18**(6):2522-2535.

49. Ringdal M, Chaboyer W, Ulin K, Bucknall T, Oxelmark L: Patient preferences for participation in patient care and safety activities in hospitals. *Bmc Nursing* 2017, **16**.

50. Salvucci DD, Bogunovich P, Acm: Multitasking and Monotasking: The Effects of Mental Workload on Deferred Task Interruptions; 2010.
51. Grundgeiger T, Sanderson P: **Interruptions in healthcare: Theoretical views.** *International Journal of Medical Informatics* 2009, **78**(5):293–307.

52. Sasangohar F, Donmez B, Easty AC, Trbovich PL: **Effects of Nested Interruptions on Task Resumption: A Laboratory Study With Intensive Care Nurses.** *Human Factors* 2017, **59**(4):628–639.

53. Holden RJ, Scanlon MC, Patel NR, Kaushal R, Escoto KH, Brown RL, Alper SJ, Arnold JM, Shalaby TM, Murkowski K et al: **A human factors framework and study of the effect of nursing workload on patient safety and employee quality of working life.** *Bmj Quality & Safety* 2011, **20**(1):15–24.

54. Havaei F, MacPhee M: **The impact of heavy nurse workload and patient/family complaints on workplace violence: An application of human factors framework.** *Nursing Open* 2020, **7**(3):731–741.

55. France DJ, Levin S, Hemphill R, Chen K, Rickard D, Makowski R, Jones I, Aronsky D: **Emergency physicians’ behaviors and workload in the presence of an electronic whiteboard.** *International Journal of Medical Informatics* 2005, **74**(10):827–837.