On Noncentral Tanny-Dowling Polynomials and Generalizations of Some Formulas for Geometric Polynomials

Mahid M. Mangontarum1 and Norlailah M. Madid2
Department of Mathematics
Mindanao State University–Main Campus
Marawi City 9700
Philippines

1mmangontarum@yahoo.com
1mangontarum.mahid@msumain.edu.ph
2norlailahmadid07@gmail.com

Abstract
In this paper, we establish some formulas for the noncentral Tanny-Dowling polynomials including sums of products and explicit formulas which are shown to be generalizations of known identities. Other important results and consequences are also discussed and presented.

1 Introduction
The geometric polynomials $[16]$, denoted by $w_n(x)$, are defined by

$$w_n(x) = \sum_{k=0}^{n} k! \left\{ \begin{array}{c} n \\ k \end{array} \right\} x^k,$$

(1)

where $\left\{ \begin{array}{c} n \\ k \end{array} \right\}$ are the well-celebrated Stirling numbers of the second kind $[6, 15]$. These polynomials are known to satisfy the exponential generating function

$$\sum_{n=0}^{\infty} w_n(x) \frac{z^n}{n!} = \frac{1}{1 - x(e^z - 1)}$$

(2)

and the recurrence relation

$$w_{n+1}(x) = x \frac{d}{dx} [w_n(x) + xw_n(x)].$$

(3)

The case when $x = 1$ yields

$$w_n := w_n(1) = \sum_{k=0}^{n} k! \left\{ \begin{array}{c} n \\ k \end{array} \right\},$$

(4)
the geometric numbers (or ordered Bell numbers). Recall that the numbers \(\binom{n}{k} \) count the number of partitions of a set \(X \) with \(n \) elements into \(k \) non-empty subsets. These numbers can also be interpreted as the number of ways to distribute \(n \) distinct objects into \(k \) identical boxes such that no box is empty. On the other hand, the numbers \(k! \binom{n}{k} \) can be combinatorially interpreted as the number of distinct ordered partitions of \(X \) with \(k \) blocks, or the numbers of ways to distribute \(n \) distinct objects into \(k \) distinct boxes. It follows immediately that the geometric numbers count the number of distinct ordered partitions of the \(n \)-set \(X \).

The study of geometric polynomials and numbers has a long history. Aside from the paper of Tanny [16], one may also see the works of Boyadzhiev [4], Dil and Kurt [8], and the references therein for further readings. Benoumhani [3] studied two equivalent generalizations of \(w_n(x) \) given by

\[
F_{m,1}(n; x) = \sum_{k=0}^{n} m^k k! W_m(n, k)x^k
\]

and

\[
F_{m,2}(n; x) = \sum_{k=0}^{n} k! W_m(n, k)x^k,
\]

where \(W_m(n, k) \) denote the Whitney numbers of the second kind of Dowling lattices [2]. These are called Tanny-Dowling polynomials and are known to satisfy the following exponential generating functions:

\[
\sum_{n=0}^{\infty} F_{m,1}(x) z^n \frac{x^n}{n!} = \frac{e^z}{1 - x(e^{mx} - 1)},
\]

\[
\sum_{n=0}^{\infty} F_{m,2}(x) z^n \frac{x^n}{n!} = \frac{e^z}{1 - \frac{x}{m}(e^{mx} - 1)}.
\]

More properties can be seen in [2, 3]. In a recent paper, Kargın [9] established a number of explicit formulas and formulas involving products of geometric polynomials, viz.

\[
(x + 1) \sum_{k=0}^{n} \binom{n}{k} w_k(x) w_{n-k}(x) = w_{n+1}(x) + w_n(x),
\]

\[
\sum_{k=0}^{n} \binom{n}{k} w_k(x_1) w_{n-k}(x_2) = \frac{x_2 w_n(x_2) - x_1 w_n(x_1)}{x_2 - x_1},
\]

\[
w_n(x) = x \sum_{k=1}^{n} \binom{n}{k} (-1)^{n+k}k!(x+1)^{k-1},
\]

and

\[
w_n(x) = \sum_{k=0}^{n} \binom{n}{k} k! x^k \frac{2^{n+1}(x+1)x^k + (-1)^{k+1}}{(2x+1)^{k+1}}.
\]
This was done with the aid of the two-variable geometric polynomials \(w_k(r; x) \) defined by

\[
\sum_{n=0}^{\infty} w_n(r; x) \frac{z^n}{n!} = \frac{e^{rx}}{1 - x(e^z - 1)}, \tag{13}
\]

A natural generalization of \(F_{m,1}(x) \) and \(F_{m,2}(x) \) are the noncentral Tanny-Dowling polynomials introduced by Mangontarum et al. \[12\] defined as

\[
\tilde{f}_{m,a}(n; x) = \sum_{k=0}^{n} k! \tilde{W}_{m,a}(n, k) x^k, \tag{14}
\]

where \(\tilde{W}_{m,a}(n, k) \) are the noncentral Whitney numbers of the second kind with an exponential generating function given by

\[
\sum_{n=k}^{\infty} \tilde{f}_{m,a}(n; x) \frac{z^n}{n!} = \frac{me^{-az}}{m - x(e^{mz} - 1)}. \tag{15}
\]

Looking at (15), it is readily observed that

\[
\tilde{f}_{m,0}(n; x) = w_n \left(\frac{x}{m} \right),
\]

\[
\tilde{f}_{m,-1}(n; x) = F_{m,2}(n; x)
\]

and

\[
\tilde{f}_{1,-r}(n; x) = w_n(r, x).
\]

The numbers \(\tilde{W}_{m,a}(n, k) \) admit a variety of combinatorial properties which can be seen in [12]. These numbers appear to be a common generalization of \(\{n\} \) and \(W_m(n, k) \), as well as other notable numbers reported by the respective authors in [1, 5, 10, 11, 13]. It is important to note that the noncentral Whitney numbers of the second kind is equivalent to the \((r, \beta)\)-Stirling numbers by Corcino \[7\] and the \(r\)-Whitney numbers of the second kind by Mező \[14\].

In the present paper, we establish some formulas for the noncentral Tanny-Dowling polynomials including sums of products and explicit formulas. These formulas are shown to generalize the above-mentioned identities obtained by Kargın \[9\] for the geometric polynomials when the parameters are assigned with specific values. We also discuss some identities resulting from the said formulas.

2 Formulas for Sum of Products

Now, the exponential generating function in (15) can be rewritten as

\[
\sum_{n=0}^{\infty} \tilde{f}_{m,a}(n; x) \frac{z^n}{n!} = \frac{1}{1 - \frac{x}{m}(e^{mz} - 1)} \cdot e^{-az}.
\]
Hence, by applying (2) and using Cauchy’s product for two series, we obtain
\[
\sum_{n=0}^{\infty} \tilde{F}_{m,a}(n; x) \frac{z^n}{n!} = \sum_{n=0}^{\infty} m^n w_n \left(\frac{x}{m} \right) \frac{z^n}{n!} \sum_{n=0}^{\infty} (-a)^n \frac{z^n}{n!}
\]
\[
= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \binom{n}{k} w_k \left(\frac{x}{m} \right) m^k (-a)^{n-k} \right) \frac{z^n}{n!}.
\]

Comparing the coefficients of \(\frac{z^n}{n!}\) yields the result in the next theorem.

Theorem 1. The noncentral Tanny-Dowling polynomials \(\tilde{F}_{m,a}(n; x)\) satisfy the following identity:
\[
\tilde{F}_{m,a}(n; x) = \sum_{k=0}^{n} \binom{n}{k} m^k w_k \left(\frac{x}{m} \right) (-a)^{n-k}.
\]

(16)

Alternative proof of Theorem 1. From [12, Theorem 10], the noncentral Whitney numbers of the second kind satisfy the following formula in terms of the Stirling numbers of the second kind:
\[
\tilde{W}_{m,a}(n, k) = \sum_{j=0}^{n} \binom{n}{j} (-a)^{n-j} m^j - k \left\{\binom{j}{k}\right\}.
\]

Multiplying both sides by \(k! x^k\) and summing over \(k\) gives the desired result.

Before proceeding, we see that when \(m = 1\) and \(a = -r\), (16) becomes
\[
\tilde{F}_{1,-r}(n; x) = \sum_{k=0}^{n} \binom{n}{k} w_k(x) r^{n-k} = w_n(r; x),
\]
which is precisely an identity obtained by Kargın [9, Equation (13)].

By applying the exponential generating function in (15),
\[
\sum_{n=0}^{\infty} \left[\tilde{F}_{m,a-m}(n; x) - \tilde{F}_{m,a}(n; x) \right] \frac{z^n}{n!} = \frac{me^{-(a-m)z}}{m-x(e^{mz} - 1)} - \frac{me^{-az}}{m-x(e^{mz} - 1)}
\]
\[
= \frac{m}{x} \left[\frac{me^{-az}}{m-x(e^{mz} - 1)} - e^{-az} \right]
\]
\[
= \frac{m}{x} \sum_{n=0}^{\infty} \tilde{F}_{m,a}(n; x) \frac{z^n}{n!} - \sum_{n=0}^{\infty} (-a)^n \frac{z^n}{n!}
\]
\[
= \sum_{n=0}^{\infty} \frac{m}{x} \left(\tilde{F}_{m,a}(n; x) - (-a)^n \right) \frac{z^n}{n!}.
\]

Comparing the coefficients of \(\frac{z^n}{n!}\) gives
\[
\tilde{F}_{m,a-m}(n; x) - \tilde{F}_{m,a}(n; x) = \frac{m}{x} \left[\tilde{F}_{m,a}(n; x) - (-a)^n \right].
\]

The result in the next theorem follows by solving for \(x \tilde{F}_{m,a-m}(n; x)\).
Theorem 2. The noncentral Tanny-Dowling polynomials $\tilde{F}_{m,a}(n; x)$ satisfy the following recurrence relation:

$$x\tilde{F}_{m,a-m}(n; x) = (m + x)\tilde{F}_{m,a}(n; x) - (-a)^n m. \quad (17)$$

Setting $m = 1$ and $a = -r$ in (17) gives

$$x\tilde{F}_{1,-r-1}(n; x) = (1 + x)\tilde{F}_{1,-r}(n; x) - r^n$$

which is exactly the following identity [9, Equation (14)]:

$$xw_n(r+1; x) = (1 + x)w_n(r; x) - r^n.$$

On the other hand, when $a = 0$ and $a = m$ in (17), we get

$$x\tilde{F}_{m,-m}(n; x) = (m + x)w_n\left(\frac{x}{m}\right) \quad (18)$$

and

$$(m + x)\tilde{F}_{m,m}(n; x) = xw_n\left(\frac{x}{m}\right) - (-m)^{n+1}, \quad (19)$$

respectively. Applying (16) yields

$$xm^n \sum_{k=0}^{n} \begin{pmatrix} n \\ k \end{pmatrix} w_k\left(\frac{x}{m}\right) = (m + x)w_n\left(\frac{x}{m}\right) \quad (20)$$

and

$$(m + x)m^n \sum_{k=0}^{n} \begin{pmatrix} n \\ k \end{pmatrix} w_k\left(\frac{x}{m}\right) (-1)^{n-k} = xw_n\left(\frac{x}{m}\right) - (-m)^{n+1}. \quad (21)$$

These are generalizations of the results obtained by Dil and Kurt [8] using the Euler-Seidel matrix method. That is, setting $x = 1$ and $m = 1$ gives

$$\sum_{k=0}^{n} \begin{pmatrix} n \\ k \end{pmatrix} w_k = 2w_n$$

and

$$2 \sum_{k=0}^{n} \begin{pmatrix} n \\ k \end{pmatrix} (-1)^k w_k = (-1)^n w_n + 1.$$

The next theorem contains a formula for the sum of product of noncentral Tanny-Dowling polynomials for different values of a.

Theorem 3. The noncentral Tanny-Dowling polynomials satisfy the following relation:

$$x \sum_{k=0}^{n} \begin{pmatrix} n \\ k \end{pmatrix} \tilde{F}_{m,a_1}(k; x)\tilde{F}_{m,a_2}(n - k; x) = \tilde{F}_{m,\bar{A}}(n + 1; x) + \bar{A}\tilde{F}_{m,\bar{A}}(n; x), \quad (22)$$

where $\bar{A} = a_1 + a_2 + m$ for real numbers a_1 and a_2.

5
Proof. We start by taking the derivative of (15) with respect to z. That is,
\[
\frac{\partial}{\partial z} \left(\frac{me^{-az}}{m - x(e^{mz} - 1)} \right) = \frac{me^{-az}}{m - x(e^{mz} - 1)} \cdot \frac{x me^{mz}}{m - x(e^{mz} - 1)} - \frac{ame^{-az}}{m - x(e^{mz} - 1)}.
\]
Replacing a with $\bar{A} = a_1 + a_2 + m$ yields
\[
\frac{\partial}{\partial z} \left(\frac{me^{-\bar{A}z}}{m - x(e^{mz} - 1)} \right) = \sum_{n=k}^{\infty} \bar{F}_{m,\bar{A}}(n + 1; x) \frac{z^n}{n!}
\]
in the left-hand side while we get
\[
\frac{me^{-\bar{A}z}}{m - x(e^{mz} - 1)} \cdot \frac{x me^{mz}}{m - x(e^{mz} - 1)} = \frac{me^{-a_1z}}{m - x(e^{mz} - 1)} \cdot \frac{me^{-a_2z}}{m - x(e^{mz} - 1)}
\]
\[
= x \sum_{n=k}^{\infty} \sum_{k=0}^{n} \binom{n}{k} \bar{F}_{m,a_1}(k; x) \bar{F}_{m,a_2}(n - k; x) \frac{z^n}{n!}
\]
and
\[
\frac{\bar{A}me^{-\bar{A}z}}{m - x(e^{mz} - 1)} = \bar{A} \cdot \sum_{n=k}^{\infty} \bar{F}_{m,\bar{A}}(n; x) \frac{z^n}{n!}
\]
in the right-hand side. Combining the above equations and comparing the coefficients of $\frac{z^n}{n!}$ gives the desired result.

When $a_1 = a_2 = 0$ in (22),
\[
x \sum_{k=0}^{n} \binom{n}{k} w_k \left(\frac{x}{m} \right) w_{n-k} \left(\frac{x}{m} \right) = \bar{F}_{m,m}(n + 1; x) + m \bar{F}_{m,m}(n; x).
\]
Applying (17) to the right-hand side of this equation gives
\[
x \sum_{k=0}^{n} \binom{n}{k} w_k \left(\frac{x}{m} \right) w_{n-k} \left(\frac{x}{m} \right) = \frac{x w_{n+1} \left(\frac{x}{m} \right) - (-m)^{n+2}}{m + x} + m \frac{x w_n \left(\frac{x}{m} \right) - (-m)^{n+1}}{m + x}
\]
which can be simplified into the following identity:
\[
(m + x) \sum_{k=0}^{n} \binom{n}{k} w_k \left(\frac{x}{m} \right) w_{n-k} \left(\frac{x}{m} \right) = w_{n+1} \left(\frac{x}{m} \right) + m w_n \left(\frac{x}{m} \right).
\]
Obviously, this identity boils down to the result obtained by Kargin [9] in (9) when $m = 1$.

Theorem 4. For $x_1 \neq x_2$, the following formula holds:
\[
\sum_{k=0}^{n} \binom{n}{k} \bar{F}_{m,a_1}(k; x_1) \bar{F}_{m,a_2}(n - k; x_2) = \frac{x_2 \bar{F}_{m,a_1+a_2}(n; x_2) - x_1 \bar{F}_{m,a_1+a_2}(n; x_1)}{x_2 - x_1}.
\]
Proof. Note that we can write
\[
\frac{me^{-a_1 z}}{m - x_1(e^{m z} - 1)} \cdot \frac{me^{-a_2 z}}{m - x_2(e^{m z} - 1)} = \frac{1}{x_2 - x_1} \left[\frac{x_2 me^{-(a_1+a_2) z}}{m - x_2(e^{m z} - 1)} - \frac{x_1 me^{-(a_1+a_1) z}}{m - x_1(e^{m z} - 1)} \right].
\]
Following the same method used in the previous theorem leads us to the desired result. \(\square\)

This theorem contains a formula for the sums of products of noncentral Tanny-Dowling polynomials for different values of \(x\). When \(a_1 = a_2 = 0\), (24) reduces to
\[
\sum_{k=0}^{n} \binom{n}{k} w_k \left(\frac{x_1}{m} \right) w_{n-k} \left(\frac{x_2}{m} \right) = \frac{x_2 w_n \left(\frac{x_2}{m} \right) - x_1 w_n \left(\frac{x_1}{m} \right)}{x_2 - x_1}. \tag{25}
\]
It is clear to see that when \(m = 1\), we recover the sum of products of geometric polynomials in (10).

3 Explicit formulas

In Theorem 1, we obtained an explicit formula that expresses the noncentral Tanny-Dowling polynomials in terms of the geometric polynomials. Now, with \(g_n = \frac{1}{a^n} \tilde{F}_{m,a}(n; x)\) and \(f_j = \left(\frac{m}{a} \right) ^ j w_j \left(\frac{x}{m} \right)\), the binomial inversion formula
\[
f_n = \sum_{j=0}^{n} \binom{n}{j} g_j \iff g_n = \sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} f_j. \tag{26}
\]
allows us to express the geometric polynomials \(w_n \left(\frac{x}{m} \right)\) in terms of the noncentral Tanny-Dowling polynomials as follows.
\[
w_n \left(\frac{x}{m} \right) = \frac{1}{m^n} \sum_{j=0}^{n} \binom{n}{j} a^{n-j} \tilde{F}_{m,a}(j; x). \tag{27}
\]
In this section, we will derive more explicit formulas for both polynomials.

Using \(x - m\) in place of \(x\) in (15) gives
\[
\sum_{n=k}^{\infty} \tilde{F}_{m,a}(n; x-m) \frac{z^n}{n!} = \frac{me^{-(-a-m)(-z)}}{m + x(e^{-m z} - 1)} = \sum_{n=k}^{\infty} \tilde{F}_{m,-a-m}(n; -x) \frac{(-z)^n}{n!}.
\]
By comparing the coefficients of \(\frac{z^n}{n!}\), we get
\[
\tilde{F}_{m,a}(n; x-m) = (-1)^n \tilde{F}_{m,-a-m}(n; -x). \tag{28}
\]
Applying (17) to the right-hand side gives
\[\tilde{F}_{m,a}(n; x - m) = (-1)^n \left[\frac{(m - x)\tilde{F}_{m,-a}(n; -x) - a^n m}{-x} \right]. \]
Replacing \(-x\) and \(-a\) with \(x\) and \(a\), respectively, and solving for \(\tilde{F}_{m,a}(n; x)\) yields
\[\tilde{F}_{m,a}(n; x) = \frac{(-1)^n x\tilde{F}_{m,-a}(n; -x - m) + (-a)^n m}{m + x}. \]

By (14), we get the next theorem.

Theorem 5. The noncentral Tanny-Dowling polynomials satisfy the following explicit formula:
\[\tilde{F}_{m,a}(n; x) = x \sum_{k=0}^{n} (-1)^{n+k} k! \tilde{W}_{m,-a}(n, k)(m + x)^{k-1} + \frac{(-a)^n m}{m + x}. \] (29)

Setting \(a = 0\) in \(\tilde{W}_{m,a}(n, k)\) allows us to express the noncentral Whitney numbers of the second kind in terms of \(\binom{n}{k}\). More precisely, when \(a = 0\) in [12, Proposition 7], we can see that
\[\tilde{W}_{m,0}(n, k) = m^{n-k} \binom{n}{k}. \]

Thus, (29) becomes
\[w_n \left(\frac{x}{m} \right) = x \sum_{k=0}^{n} (-1)^{n+k} k! m^{n-k} \binom{n}{k} (m + x)^{k-1} \] (30)
when \(a = 0\). Moreover, when \(m = 1\), we recover the explicit formula in [11]. The expression \(m^{n-k} \binom{n}{k}\) is actually called translated Whitney numbers of the second kind and is denoted by \(\binom{n}{k}^{(m)}\). These numbers satisfy the recurrence relation given by [11, Theorem 8]
\[\binom{n}{k}^{(m)} = \binom{n-1}{k-1}^{(m)} + mk \cdot \binom{n-1}{k}^{(m)} \]
and the explicit formula [13, Proposition 2]
\[\binom{n}{k}^{(m)} = \frac{1}{m^k k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} (m^j)^n. \]

More properties of these numbers can be seen in [11]. With these, we may also write
\[w_n \left(\frac{x}{m} \right) = x \sum_{k=0}^{n} (-1)^{n+k} k! \binom{n}{k}^{(m)} (m + x)^{k-1}, \] (31)
an explicit formula for the geometric polynomials \(w_n \left(\frac{x}{m} \right)\) in terms of the translated Whitney numbers of the second kind.
Now, it can be shown that
\[
\frac{y^2 - 1}{2y} \left(e^{-a(2z)} + \frac{e^{-a(2z)}}{y + e^{mz}} \right) = \frac{e^{-a(2z)}}{1 - \left(\frac{1}{y^2 - 1} \right) (e^{m(2z)} - 1)}.
\]

Notice that the right-hand side is
\[
\frac{e^{-a(2z)}}{1 - \left(\frac{1}{y^2 - 1} \right) (e^{m(2z)} - 1)} = \frac{me^{-a(2z)}}{m - \left(\frac{m}{y^2 - 1} \right) (e^{m(2z)} - 1)} = \sum_{n=0}^{\infty} 2^n \tilde{F}_{m,a} \left(n; \frac{m}{y^2 - 1} \right) \frac{z^n}{n!}.
\]

Also, in the left-hand side, we have
\[
\frac{e^{-a(2z)}}{y - e^{mz}} = \frac{1}{y - 1} \sum_{n=0}^{\infty} \tilde{F}_{m,2a} \left(n; \frac{m}{y - 1} \right) \frac{z^n}{n!}
\]
and
\[
\frac{e^{-a(2z)}}{y + e^{mz}} = \frac{1}{y + 1} \sum_{n=0}^{\infty} \tilde{F}_{m,2a} \left(n; \frac{-m}{y + 1} \right) \frac{z^n}{n!}.
\]

Combining these equations and comparing the coefficients of \(\frac{z^n}{n!} \) results to
\[
2^{n+1} \tilde{F}_{m,a} \left(n; \frac{m}{y^2 - 1} \right) = \frac{y + 1}{y} \tilde{F}_{m,2a} \left(n; \frac{m}{y - 1} \right) + \frac{y - 1}{y} \tilde{F}_{m,2a} \left(n; \frac{-m}{y + 1} \right).
\]

Note that if we set \(x = \frac{m}{y^2 - 1} \), then \(y = \frac{m + x}{x} \). Hence, skipping the tedious computations allow us to write
\[
(m + 2x)\tilde{F}_{m,2a} \left(n; \frac{x}{m + 2x} \right) = 2^{n+1} (m + x)\tilde{F}_{m,a} \left(n; \frac{x^2}{m + 2x} \right) - m\tilde{F}_{m,2a} \left(n; \frac{-mx}{m + 2x} \right).
\]

The next theorem is obtained by applying (14).

Theorem 6. The noncentral Tanny-Dowling polynomials satisfy the following explicit formula:
\[
\tilde{F}_{m,2a} \left(n; \frac{x}{m} \right) = \sum_{k=0}^{n} k!x^k \left[\frac{2^{n+1}(m+x)x^k\tilde{W}_{m,a}(n,k) + (-m)^{k+1}\tilde{W}_{m,2a}(n,k)}{(m+2x)^{k+1}} \right].
\]

(32)

Since it is already known that \(\tilde{W}_{m,0}(n,k) = \binom{n}{k}^{(m)} \), then when \(a = 0 \), the right-hand side can be expressed in terms of the translated Whitney numbers of the second kind. That is,
\[
w_n \left(\frac{x}{m} \right) = \sum_{k=0}^{n} k!x^k \binom{n}{k}^{(m)} \left[\frac{2^{n+1}(m+x)x^k + (-m)^{k+1}}{(m+2x)^{k+1}} \right].
\]

(33)
Lastly, when $m = 1$, we recover the explicit formula in \cite{12}.

Finally, we will end by mentioning an explicit formula for $\tilde{F}_{m,a}(n; x)$ established in \cite{12, Theorem 19} that is given by

$$\tilde{F}_{m,a}(n; x) = \frac{m}{m + x} \sum_{k=0}^{\infty} \left(\frac{x}{m + x} \right)^k (mk - a)^n. \quad (34)$$

This explicit formula entails interesting particular cases. For instance, when $a = 0$,

$$w_n \left(\frac{x}{m} \right) = \frac{m^{n+1}}{m + x} \sum_{k=0}^{\infty} \left(\frac{x}{m + x} \right)^k k^n. \quad (35)$$

When $m = 1$ and then $x = 1$, we get formulas for the ordinary geometric polynomials and numbers. That is,

$$w_n(x) = \frac{1}{x + 1} \sum_{k=0}^{\infty} \left(\frac{x}{x + 1} \right)^k k^n \quad (36)$$

and

$$w_n = \sum_{k=0}^{\infty} \frac{k^n}{2k+1}. \quad (37)$$

References

[1] H. Belbachir and I. Bousbaa, Translated Whitney and r-Whitney numbers: a combinatorial approach, *J. Integer Seq.* 16 (2013), Article 13.8.6.

[2] M. Benoumhani, On Whitney numbers of Dowling lattices, *Discrete Math.* 159 (1996), 13–33.

[3] M. Benoumhani, On some numbers related to Whitney numbers of Dowling lattices, *Adv. Appl. Math.* 19 (1997), 106–116.

[4] K. N. Boyadzhiev, A Series transformation formula and related polynomials, *Int. J. Math. Math. Sci.* 23 (2005), 3849–3866.

[5] A. Z. Broder, The r-Stirling numbers, *Discrete Math.* 49 (1984), 241–259.

[6] L. Comtet, *Advanced Combinatorics*, D. Reidel Publishing Co., 1974.

[7] R. B. Corcino, The (r, β)-Stirling numbers, *The Mindanao Forum*, 14 (1999), 91–99.

[8] A. Dil and V. Kurt, Investigating geometric and exponential polynomials with Euler-Seidel matrices, *J. Integer Seq.* 14 (2011), Article 11.4.6.

[9] L. Kargın, Some formulae for products of geometric polynomials with applications, *J. Integer Seq.* 20 (2017), Article 17.4.4.
[10] M. Koutras, Non-central Stirling numbers and some applications, *Discrete Math.* 42 (1982), 73–89.

[11] M. M. Mangontarum and A. M. Dibagulun, On the translated Whitney numbers and their combinatorial properties, *British J. Appl. Sci. Technology* 11 (2015), 1–15.

[12] M. M. Mangontarum, O. I. Cauntongan, and A. P. M.-Ringia, The noncentral version of the Whitney numbers: a comprehensive study, *Int. J. Math. Math. Sci.* 2016 (2016).

[13] M. M. Mangontarum, A. P. M.-Ringia, and N. S. Abdulcarim, The translated Dowling polynomials and numbers, *International Scholarly Research Notices* 2014, Article ID 678408, 8 pages, (2014).

[14] I. Mező, A new formula for the Bernoulli polynomials, *Results Math.* 58 (2010), 329–335.

[15] J. Stirling, Methodus differentialissme tractus de summatione et interpolatione serierum infinitarum, *London*, 1730.

[16] S. M. Tanny, On some numbers related to the Bell numbers, *Canad. Math. Bull.* 17 (1975), 733–738.