Simvastatin attenuates chromium-induced nephrotoxicity in rats

Zahra Goodarzi1, Esmaeil Karami1, Massumeh Ahmadizadeh2,3*

1Department of Occupational Health, Engineering, School of Health, Semnan University of Medical Sciences, Semnan, Iran
2Department of Occupational Health, Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
3Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

Implication for health policy/practice/research/medical education:
In an experimental study, we found that simvastatin (SIMV) as an antioxidant agent protects kidney against chromium induced nephrotoxicity. The mechanism of this renoprotective effects mainly includes amelioration of lipid peroxidation produced by chromium as well as elevation of glutathione (GSH).

Please cite this paper as:
Goodarzi Z Karami E, Ahmadizadeh M. Simvastatin attenuates chromium-induced nephrotoxicity in rats. J Nephropathol. 2017;6(1):5-9. DOI: 10.15171/jnp.2017.02.

1. Background
Hexavalent chromium (Cr (VI)) compounds are extremely toxic and carcinogenic. Environmental and occupational exposure to chromium compounds especially hexavalent chromium (Cr (VI)), is widely recognized as a potential nephrotoxic in humans and animals (1-6). Several investigators reported chromium-induced kidney disease in humans (1-3). Renal dysfunction in hard-chrome plating workers are reported (2). It has been suggested that long term exposure to chromium Cr (VI) produced chronic renal injury and caused alterations in renal function among fer-
rochromium-producing workers (3). Sahu et al found that subcutaneous injection of chromium (VI) resulted in histopathological alterations in the rat kidney (4). Balakrishnan et al reported that administration of chromium in rats significantly reduced the antioxidant markers such as superoxide dismutase and reduced glutathione (GSH) along with significant increase in peroxidation markers such as malondialdehyde (MDA) in the rat kidney as compared with control animals (5). Khan et al exhibited Cr (VI) produced injury in rat kidney (6). Velma and Tchounwou found Cr (VI) induced significant levels of oxidative stress in both liver and kidney organs, however the kidney appears to be more vulnerable and sensitive to Cr-induced toxicity than the liver (7). Molina-Jijón et al found K(2)Cr(2)O(7)-induced renal dysfunction, histological damage, oxidant stress, and the decrease in antioxidant enzyme activity in rat kidney tissue (8) Arreola-Mendoza et al observed that chromium produced kidney injury in female rat (9). Likewise, Parveen et al reported that chromium-treated rats showed significant increases in markers of renal injury in serum, including blood urea nitrogen (BUN), serum creatinine and decreased markers such as urea nitrogen (BUN), serum creatinine and decreased in markers of renal injury in serum, including blood urea nitrogen (BUN), serum creatinine and decreased in markers of renal injury in serum, including blood urea nitrogen (BUN), serum creatinine and decreased in markers of renal injury in serum, including blood urea nitrogen (BUN), serum creatinine and decreased in markers of renal injury in serum, including blood urea nitrogen (BUN), serum creatinine and decreased in markers of renal injury in serum, including blood urea nitrogen (BUN), serum creatinine and decreased in markers of renal injury in serum, including blood urea nitrogen (BUN), serum creatinine and decreased in markers of renal injury in serum, including blood urea nitrogen (BUN), serum creatinine and decreased in markers of renal injury in serum, including blood urea nitrogen (BUN), serum creatinine and decreased in markers of renal injury in serum, including blood urea nitrogen (BUN), serum creatinine and decreased in markers of renal injury in serum, including blood urea nitrogen (BUN), serum creatinine and decreased in markers of renal injury in serum, including blood urea nitrogen (BUN), serum creatinine and decreased.

The mechanism by which Cr (VI) induced nephrotoxicity is not completely understood. However, the role of oxidative stress in injury associated with hexavalent chromium exposure suggests that anti-oxidant supplementation may mitigate chrome-induced toxicity.

Statins are commonly used for lowering serum cholesterol levels (11). In addition, these agents have antioxidant property (12). Simvastatin (SIMV) has been shown to be protective agents against renal injury induced by cisplatin in rat and lead in mice (13,14). However, the effects of this chemical on Cr (VI)-induced nephrotoxicity has not been reported.

2. Objectives
The purpose of this study is to investigate the effects of SIMV on Cr (VI)-induced nephrotoxicity in rat.

3. Materials and Methods
Our study is a randomized controlled trial, approved by the ethical committee of Jundishapur University of Medical Sciences, Ahvaz, Iran.

3.1. Chemicals
All reagents and chemicals were of analytical grade or higher purity. Sodium dichromate was purchased from Aldrich Chemical Co., simvastatin obtained from Tehran Chemie pharmaceutical Co., 1,1,3,3-tetraethoxypropane (TEP) was prepared from Merek Chemical Co., other products included 5,5-dithiobis,2-nitrobenzoic acid (DTNB), trichloroacetic acid (TCA), thiobarbituric acid (TBA), reduced glutathione (GSH) and sodium pentobarbital were supplied from Sigma Chemical Co.

3.2. Animal treatments
Adult male Wistar rats (180-220 g) were randomly divided into eight groups of six rats each. The animals were kept in the standard 12-hour darkness, brightness and temperature 23 ± 2°C. The groups were assigned the following regimens: Group one: rats were treated (oral gavages) with SIMV at dose of 20 mg/kg BW/day. Group two: used as controls (given vehicle, normal saline). Groups three, five and seven were pretreated with SIMV (20 mg/kg BW/day). For all treatments, all rats were killed with overdose of sodium pentobarbital. Kidney tissues removing were washed with normal saline. The part of kidney tissues were removed, fixed and processed for light microscopy, using hematoxylin-eosin (H&E) staining technique. Five histological sections each at least 15 μm apart were taken from each tissue block and stained with H&E. The criteria for cell injury included nuclear dilation, loss of staining capacity and obvious cellular swelling. Then, other part of kidney tissues were collected for determination of MDA and GSH.

Peroxidation markers: MDA, the product of lipid peroxidation, was estimated by the method described by Buege and Aust (15). Tissues lipid peroxidation was measured in whole-kidney homogenate at 10000 g for 10 minutes, the supernatant was taken. Aliquots (1 mL) were analyzed for MDA content after the addition of 2 mL of TBA reagent. Then tube was in vortex mix for 10 seconds and placed in a boiling water bath (90-100°C) for 20 minutes. After cooling for 7 minutes, the resulting supernatant was removed and measured at wave of 532 nm with the use of the SE-RIEC-7000 spectrophotometer. MDA concentration was determined by using 1,1, 3, 3-tetraethoxypropane as external standard (0.5-2.5 μM).

Estimation of reduced GSH: Reduced GSH (GSH) was measured by the method of Ellman (16). For measurement of the kidney tissues GSH, 5 mL of aliquots was added to 4 mL distill water (DW) and 1
mL of 5% TCA and also, the mixture was vortexed and centrifuged at 3000 g for 15 minutes. Then 2 mL of supernatant was added to 4 mL Tris buffer (0.4M, pH 8.9) and 0.1 mL of DTNB. The mixture was allowed to stand for 5 minutes, and forming a yellow substance. The absorbance was measured at 412 nm.

3.3. Ethical issues
The research was approved by ethical committee of Jundishapur University of Medical Sciences. Prior to the experiment, the protocols were confirmed to be in accordance with the guidelines of Animal Ethics Committee of Jundishapur University of Medical Sciences.

3.4. Statistical analysis
The data were analyzed using SPSS 16.0. Data were analyzed by using One-way analysis of variance (ANOVA), followed by post hoc analysis with LSD test. Probability value of ≤0.05 was determined to be statistically significant.

4. Results
Sodium dichromate (Cr (VI)) induced dose-dependent elevation of MDA level in rat kidney when compared to the control group (P ≤ 0.05). SIMV had no effect on MDA levels in rat kidney when compared to those in control value, but this chemical significantly (P ≤ 0.05) decreased MDA concentration in Cr (VI) treated rats when compared to those which received the same dose of Cr (VI) only (Figure 1). The level of GSH significantly decreased in Cr (VI) treated rats when compared to control animals. However, pre-treatment of animals with SIMV markedly increased GSH levels in Cr (VI) treated rats when compared to those in non-pretreated rats which received the same dose of Cr (VI) (Figure 2).

Administration of saline (vehicle) alone did not produce detectable injury in rat kidney (Figure 3A). However, Cr (VI)-induced damage in the kidney tissue. The loss of the nuclei in the lining epithelium of the necrotic tubules were noted. Loss of the nuclei in the lining epithelium of the necrotic tubules, nuclear dilation, loss of staining capacity and obvious cellular swelling were observed in chromium-treated rats (Figure 3B). The extent of injury was increased in dose dependent manner. SIMV had no obvious injury in rat kidney and the kidney tissue was similar to control animals. However, this agent protected kidney damage in Cr (VI) treated rats (Figure 3C).

5. Discussion
Nephrotoxicity is one of the most common adverse effects of toxic chemicals. The results of the present study demonstrated that Cr (VI) produced dose–dependent adverse effects on rat kidney. Nephrotoxicity of Cr (VI) was reported by several investigators (1-5). Our findings along with others suggested that kidney is susceptible for Cr (VI)-induced toxicity. We observed that Cr (VI) produced damage mainly in proximal convoluted tubular cells. Our finding is consistent with previous reports (1,3,17). The proximal convoluted tubular segment represents the most susceptible site of injury via metabolic activation (17). It has been reported that Cr (VI) compounds are selectively accumulated in the proximal convoluted tubular cells where in high dose induce renal tubular injury (1,3,17). We observed that Cr (VI) nephrotoxicity was accompanied by decreased renal GSH. Reduced GSH is considered to play a central role in protection of cells from oxidant injury. We found that the depletion of GSH in a dose dependent manner in chromium treated rats. Standeven et al showed that GSH protects against the acute nephrotoxicity of chromium (18). We also found that the exposure of rats to Na (2) Cr(2)O(7) for 8 consecutive days provoked renal damages with a significant increase in kidney MDA.
Accordingly, Yonar et al reported that the levels of MDA, as an index of lipid peroxidation, increased as well as reduced GSH levels in Cyprinus carpio kidney treated with chromium (19).

The mechanism by which Cr (VI) produced renal injury was not completely understood. However, Gunaratnam et al reported that pretreatment with cytochrome p450 inducing agents, either phenobarbitone (PB) or 3-methylcholanthrene (3-MC) resulted in amelioration of Cr (VI) toxicity in rat liver. They suggested that the inducing agents increase the amount of enzymatic reduction of Cr (VI) (20).

Since kidneys usually have low drug-metabolizing enzyme activities, chemically induced nephrotoxicity has been assumed to be produced by toxic intermediate(s) generated in the liver and transported to the kidney. As Cr (VI) is eliminated via the kidney, the generation of metabolites in kidney may at least in part be responsible for kidney toxicity. Another possibility for chromium caused renal damage is that translocation of Cr (VI) metabolites from the liver to the kidney via general circulation produced kidney injury.

We found that pretreatment of animals with SIMV markedly decreased lipid peroxidation and increased GSH levels in Cr (VI) treated rats. These findings suggested that SIMV protected kidney cells against chromium toxicity and support the view that these organs have ability to metabolize Cr (VI) and induced oxidative stress. Parihar et al found that SIMV lower calcium-induced oxidative stress in rat isolated mitochondria (21). Additionally, Yao et al observed that SIMV attenuates MDA level and protects the heart against myocardial injury caused by acute myocardial ischemia (22).

The present study was consistent with previous studies in finding that SIMV may attenuate renal injury induced by Cr (VI). Furthermore, Iseri et al found that SIMV attenuates cisplatin –induced renal damage (13). Mohammadi et al found that pretreatment of rats with SIMV caused protective effects on renal tissue of mice expose to lead (14). Moreover, Todorovic et al showed that pretreatment with SIMV significantly protected rat kidney injured by ischemia-reperfusion injury (12). On the basis of these results, we conclude that SIMV may also prevent the occurrence of chromium VI-induced adverse effects in kidney.

6. Conclusions

In conclusion, Cr (VI) caused biochemical and structural alterations in rat kidney. Administration of SIMV improved biochemical and histopathological alterations induced by chromium in rat. It seems SIMV due to antioxidant property has protective effect on kidney and thereby reduced generation of reactive toxic metabolites responsible for chromium–induced nephrotoxicity.

Acknowledgements

The authors wish to thank the research deputy of Ahvaz Jundishapur University of Medical Sciences for offering the grants for this investigation. The source of data used in this paper was from master thesis of Zahra Goodarzi, student of Occupational Health Engineering Department, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Our special thanks go to Dr. B. Mohammadian for reviewing histopathological samples.

Authors’ contribution

MA designed the research. ZG and EK provided extensive intellectual contribution, collection and analysis of the data and wrote some parts of paper. MA prepared the final draft.

Conflicts of interest

The authors declared no competing interests.
Funding/Support
This study was supported by Physiology Research Center and the research deputy of Ahvaz Jundishapur University of medical sciences (Grant NO. PRC-151).

References
1. Wedeen RP, Qian LF. Chromium-induced kidney disease. Environ Health Perspect. 1991;92:71-4. doi: 10.2307/3431139.
2. Liu CS, Kuo HW, Lai JS, Lin TL. Urinary N-acetyl-beta-glucosaminidase as an indicator of renal dysfunction in electroplating workers. Int Arch Occup Environ Health. 1998;71(5):348-52. doi: 10.1007/s004200050291.
3. Wang X, Qin Q, Xu X, Xu J, Wang J, Zhou J, et al. Chromium-induced early changes in renal function among ferrochromium-producing workers. Toxicology. 1994;90(1-2):93-101. doi: 10.1016/0300-483X(94)90208-9.
4. Sahu BD, Koneru M, Bijargi SR, Kota A, Sistla R. Chromium-induced nephrotoxicity and ameliorative effect of carvedilol in rats: involvement of oxidative stress, apoptosis and inflammation. Chem Biol Interact. 2014;223C:69-79. doi: 10.1016/j.chbi.2014.09.009.
5. Balakrishnan R, Satish Kumar CS, Rani MU, Srikanth V, Boobalan G. Protective role of tocotrienol-rich fraction (TRF) from palm oil against potassium dichromate K2Cr2O7-induced acute renal injury in rats. Indian J Pharmacol. 2013;45(5):490-5.
6. Khan MR, Siddiqui S, Parveen K, Javed S, Diwakar S, Siddiqui WA. Nephroprotective action of tocotrienol-rich fraction (TRF) from palm oil against potassium dichromate (K 2 Cr 2 O 7)-induced acute renal injury in rats. Chem Biol Interact. 2010;186(2):228-38.
7. Selma V, Tchounwou PB. Oxidative stress and DNA damage induced by chromium in liver and kidney of goldfish, Carassius auratus. Biomark Insights. 2015;8:43-51. doi: 10.4137/BMI.S11456.
8. Molina-Jijón E, Tapia E, Zazueta C, El Hafidi M, Molina-Jijón E, Tapia E, Zazueta C, El Hafidi M, et al. Chromium-induced early changes in renal function among ferrochromium-producing workers. Toxicology. 1994;90(1-2):93-101. doi: 10.1016/0300-483X(94)90208-9.
9. Arreola-Mendoza L, Del Razo LM, Mendoza-Garrido ME, Martin D, Namorado MC, Calderon-Salinas JV, et al. The protective effect of alpha-tocopherol against dichromate-induced renal tight junctional damage is mediated via ERK1/2. Toxicol Lett. 2009;191(2-3):279-88. doi: 10.1016/j.toxlet.2009.09.011.
10. Parveen K, Khan MR, Siddiqui WA. Pyenogenol prevents potassium dichromate K2Cr2O7-induced oxidative damage and nephrotoxicity in rats. Chem Biol Interact. 2009;181(3):343-50.
11. Kinsella A, Raza A, Kennedy S, Fan Y, Wood AE, Watson RW. The impact of high-dose statin therapy on transendothelial neutrophil migration and serum cholesterol levels in healthy male volunteers. Eur J Clin Pharmacol. 2011;67(11):1103-8. doi: 10.1007/s00228-011-1062-z.
12. Todorovic Z, Nesic Z, Stojanovic Z, Basta-Jovanovic G, Radiojevic-Skodnic S, Velickovic R, et al. Acute protective effects of simvastatin in the rat model of renal ischemia-reperfusion injury: it is never too late for the pretreatment. J Pharmacol Sci. 2008;107(4):465-70. doi: 10.1254/jphs.SC0070374.1254.
13. Iseri S, Ercan F, Gedik N, Yuktur M, Aline C. Simvastatin attenuates cisplatin-induced kidney and liver damage in rats. Toxicology. 2007;230:256-64. doi: 10.1016/j.tox.2007.04.007-0262-x.
14. Mohammadi S, Zahami E, Mohadeh Z, Moghtahedi F, Chopan H, Moghmmi F, et al. Effects of different doses of simvastatin on lead induced kidney damage in Balb/C male mice. Pharm Sci. 2015;20:157-62.
15. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302-10. doi: 10.1016/S0076-6879(78)52032-6.
16. Ellman GL. Tissue sulphhydryl groups. Arch Biochem Biophys. 1959;82:70-7. doi: 10.1016/0003-8861(59)90090-6.
17. Cristofoti P, Zanetti E, Grego D, Piaia A, Trevisan A. Renal proximal tubule segment-specific nephrotoxicity: an overview on biomarkers and histopathology. Toxicol Pathol. 2007;35(2):270-5.
18. Standeven AM, Wetterhahn KE. Possible role of glutathione in chromium(VI) metabolism and toxicity in rats. Pharmacol Toxicol. 1991;68(6):469-76. doi: 10.1111/j.1600-0773.1991.tb01272.x.
19. Yonar ME, Yonar SM, Çoban MZ, Eroğlu M. Antioxidant effect of propolis against exposure to chromium in Cyprinus carpio. Environ Toxicol. 2014;29(2):155-64. doi: 10.1002/tox.20782.
20. Gunaratnam M, Pohlscheidt M, Grant MH. Pretreatment of rats with the inducing agents phenobarbitone and 3-methylcholanthrene ameliorates the toxicity of chromium (VI) in hepatocytes. Toxicol In Vitro. 2002;16(5):509-16. doi: 10.1016/S0887-3333(02)00040-1.
21. Parihar A, Parihar MS, Zenebe WJ, Ghafoorifar P. Statins lower calcium-induced oxidative stress in isolated mitochondria. Hum Exp Toxicol. 2012;31(4):355-63. doi: 10.1177/0960327111429141.
22. Yao HC, Yang LJ, Han QF, Wang LH, Wu L, Zhang CY, et al. Postconditioning with simvastatin decreases myocardial injury in rats following acute myocardial ischemia. Exp Ther Med. 2015;9(4):1166-70. doi: 10.3892/etm.2015.2273.