Implications of CDF W-mass and $(g - 2)_\mu$ on $U(1)_{L_\mu - L_\tau}$ model

Seungwon Baek,

Department of Physics, Korea University,
Anam-ro 145, Sungbuk-gu, Seoul 02841, Korea

E-mail: sbaek1560@gmail.com

ABSTRACT: We study the implications of the recent anomalies in the W-boson mass and the anomalous magnetic moment of the muon on $U(1)_{L_\mu - L_\tau}$ model. We show that the introduction of vector-like leptons which mix with muon can solve both anomalies. Contrary to the conventional wisdom the electroweak scale Z'-boson is allowed without conflict with the trident neutrino production experiments.
1 Introduction

Although the standard model (SM) has been very successful for decades, there are some hints indicating the existence of new physics (NP). The measurement of the anomalous magnetic moment of the muon, $a_\mu = (g - 2)_\mu/2$, from the Muon $g - 2$ Collaboration at Fermilab [1], when combined with the value reported by the E821 Collaboration at the Brookhaven National Laboratory [2], deviates from the SM prediction [3] by 4.2σ,

$$\Delta a_\mu = a_\mu^{\text{exp}} - a_\mu^{\text{SM}} = (25.1 \pm 5.9) \times 10^{-10},$$

(1.1)

although more precise nonperturbative QCD calculation is required in the theory side. The deviation may be explained by a NP which couples to the muon.

The $U(1)_{L_\mu - L_\tau}$ extension of the SM gauge group [4, 5] has received much attention [6–9] as, among other things, the contribution of the new gauge boson, Z', can solve the discrepancy [10]. However the experimental data for the cross section of the neutrino trident production, the scattering of the muon neutrino off heavy nuclei producing a $\mu^+\mu^-$ pair, or the process $\nu_\mu N \rightarrow \nu_\mu N \mu^+\mu^-$ in the SM, turn out to be very stringent in constraining the parameter space of $U(1)_{L_\mu - L_\tau}$ models. The CHARM-II Collaboration [11] and the CCFR Collaboration [12] detected the events with the cross sections

$$\frac{\sigma_{\text{CHARM-II}}}{\sigma_{\text{SM}}} = 1.58 \pm 0.57 \quad \text{and} \quad \frac{\sigma_{\text{CCFR}}}{\sigma_{\text{SM}}} = 0.82 \pm 0.28,$$

(1.2)

\[\text{We refer the reader to the references in [3] for more theoretical contributions.}\]
which are in good agreement with the SM expectations. Applying the 2σ upper bound from the CCFR result, the authors of [13] found that only a small region with \(m_{Z'} \sim \mathcal{O}(10^{1\pm1}) \) MeV and the gauge coupling \(\sim \mathcal{O}(10^{-4}) \) can explain the \(\Delta a_{\mu} \) in the minimal model of \(U(1)_{L_\mu-L_\tau} \), excluding the electroweak scale gauge boson of \(U(1)_{L_\mu-L_\tau} \), among other things. The model can be extended, for example, to incorporate the neutrino masses and mixings to explain the neutrino oscillation data [7, 8].

Recently the CDF Collaboration has announced the measurement of the W-boson mass [14]

\[
m_W = 80, 433.5 \pm 9.4 \text{ MeV},
\]

which is in tension with the SM prediction \(m_W^{\text{SM}} = 80, 357 \pm 6 \text{ MeV} \) from the precision electroweak data by 7σ. This may also call for NP if it is confirmed by the future experiments [15–64].

In this paper we show that a minimal extension of the \(SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{L_\mu-L_\tau} \) symmetry is broken spontaneously when the new scalar field \(\Phi \sim (1,1,0,1) \) develops the vacuum expectation value (VEV). By definition the second (the third) generation left-handed doublet \(\ell_\mu \) (\(\ell_\tau \)) and right-handed singlet \(\mu_R(\tau_R) \) leptons of the SM also have \(U(1)_{L_\mu-L_\tau} \) charge +1(−1). All the rest SM fields are neutral under the new \(U(1) \) group. Then the bare masses of the VLLs and the new Yukawa interactions are allowed

\[
\mathcal{L} \supset -m_L \bar{L}L - m_E \bar{E}E - y_L \bar{L}P_R E H - y_E \bar{E}P_L EH + \text{H.c.,}
\]

\[
-\lambda_L \bar{L}P_L \ell_\mu \Phi - \lambda_E \bar{E}P_L E \Phi^* + \text{H.c.,}
\]

where \(H \sim (1,2,1/2,0) \) is the SM Higgs doublet scalar. We assume the new Yukawa couplings are real parameters. We can decompose the VLL doublets as \(L_{L(R)} = (\tilde{N}, \tilde{E})_{L(R)}^T \).

After the breaking of \(SU(2)_L \times U(1)_Y \) and \(U(1)_{L_\mu-L_\tau} \) symmetries by \(\langle H^0 \rangle = v/\sqrt{2} \) and \(\langle \Phi \rangle = v_R/\sqrt{2} \), respectively, the fermion mass matrix in the basis \((\mu, \tilde{E}, E)\) is in the form,

\[
\mathcal{L}_{\text{mass}} = -(\bar{\mu} \tilde{E} E) \left(\begin{array}{ccc} m_\mu & \frac{\lambda E v}{\sqrt{2}} & 0 \\ \frac{\lambda E v^*}{\sqrt{2}} & m_L & 0 \\ 0 & \frac{y_E v}{\sqrt{2}} & m_E \end{array} \right) P_L \left(\begin{array}{c} \mu \\ \tilde{E} \\ E \end{array} \right) + \text{H.c.}
\]

2 The Model

We introduce vector-like leptons (VLLs) which transform like \(L \sim (1,2,-1/2,2) \) and \(E \sim (1,1,-1,2) \) in the gauge group \(SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{L_\mu-L_\tau} \). The \(U(1)_{L_\mu-L_\tau} \) symmetry is broken spontaneously when the new scalar field \(\Phi \sim (1,1,0,1) \) develops the vacuum expectation value (VEV). By definition the second (the third) generation left-handed doublet \(\ell_\mu \) (\(\ell_\tau \)) and right-handed singlet \(\mu_R(\tau_R) \) leptons of the SM also have \(U(1)_{L_\mu-L_\tau} \) charge +1(−1). All the rest SM fields are neutral under the new \(U(1) \) group. Then the bare masses of the VLLs and the new Yukawa interactions are allowed.

\[
\mathcal{L} \supset -m_L \bar{L}L - m_E \bar{E}E
\]

\[
-y_L \bar{L}P_R E H - y_E \bar{E}P_L EH + \text{H.c.,}
\]

\[
-\lambda_L \bar{L}P_L \ell_\mu \Phi - \lambda_E \bar{E}P_L E \Phi^* + \text{H.c.,}
\]

where \(H \sim (1,2,1/2,0) \) is the SM Higgs doublet scalar. We assume the new Yukawa couplings are real parameters. We can decompose the VLL doublets as \(L_{L(R)} = (\tilde{N}, \tilde{E})_{L(R)}^T \).

After the breaking of \(SU(2)_L \times U(1)_Y \) and \(U(1)_{L_\mu-L_\tau} \) symmetries by \(\langle H^0 \rangle = v/\sqrt{2} \) and \(\langle \Phi \rangle = v_R/\sqrt{2} \), respectively, the fermion mass matrix in the basis \((\mu, \tilde{E}, E)\) is in the form,
Denoting the above 3×3 charged lepton mass matrix as \mathcal{M}, we can diagonalize it by biunitary transformation,

$$V_R^L M V_L = \hat{\mathcal{M}}, \quad (2.3)$$

where $V_{L,R}$ are real orthogonal matrices, and $\hat{\mathcal{M}}$ is diagonal with positive eigenvalues. We denote the mass eigenstates as (E_1, E_2, E_3) and the corresponding masses as (M_1, M_2, M_3) with E_1 and M_1 identified as the mass eigenstate of the muon μ' and its mass, $m_{\mu'} = 0.105658$ GeV, measured in experiments, respectively. To guarantee we always get an eigenvalue $m_{\mu'}$ we use the procedure presented in Appendix A.

3 The Muon $(g - 2)$

![Feynman diagram for the muon $(g - 2)$.](image)

Figure 1: Feynman diagram for the muon $(g - 2)$.

Without introducing the VLLs, the minimal model predicts the contribution of the $U(1)_{L_{\mu} - L_{\tau}}$ gauge boson, Z', to the muon $(g - 2)$ to be [10]

$$a_{\mu}^{Z'} = \frac{g_3^2 m_{\mu}^2}{4\pi^2} \int_0^1 dx \frac{x^2(1 - x)}{m_{Z'}^2 x(1 - x) + m_{\mu}^2 x^2}. \quad (3.1)$$

In the presence of the VLLs which mix with μ the new contribution can be enhanced due to the chirality flip in the VLL line with enhancement factor $M_{3(3)}/m_{\mu}$, which can be huge [65]. In Fig. 1 we show the Feynman diagram for the Z' contributions to $(g - 2)_\mu$. There are also the corresponding diagrams with Z' replaced by Z. But the Z-mediated μ-mixing with $E_{2,3}$ are suppressed compared to that of Z'-mediated μ-mixing with $E_{2,3}$. But we included all the $Z'_{(\tau)}$ contributions in our numerical calculation in the following sections.

Including the VLL contributions, the NP contribution to the muon $(g - 2)$ is given by [66]

$$a_{\mu}^{Z'_{(\tau)}} = \frac{m_{\mu}^2}{4\pi^2} \sum_j \int_0^1 dx \left(\frac{C_{1j}^{V}(Z^{(\tau)})^2 f(x, M_j, m_{Z^{(\tau)}})}{x M_j^2 + (1 - x)m_{Z^{(\tau)}}^2 - x(1 - x)m_{\mu}^2} + \frac{C_{1j}^{A}(Z^{(\tau)})^2 f(x, -M_j, m_{Z^{(\tau)}})}{x M_j^2 + (1 - x)m_{Z^{(\tau)}}^2 - x(1 - x)m_{\mu}^2} \right). \quad (3.2)$$
where \(m_{\mu'}(=M_1)\) is the physical muon mass, \(C_{ij}^{V(A)} = (C_{ij}^R \pm C_{ij}^L)/2\), and \(j = 1, 2, 3(2, 3)\) for the \(Z'(Z)\) contribution. The couplings \(C_{ij}^{L(R)}(Z(\theta))\) and the loop function \(f\) are listed in the Appendix B. The NP contribution, \(a_{\mu}^{NP}\), is the sum of the \(Z'\) and \(Z\) contributions
\[
a_{\mu}^{NP} = a_{\mu}^{Z'} + a_{\mu}^{Z}. \tag{3.3}
\]
When \(M_{2(3)} \gg m_{\mu}\), in a good approximation we obtain [66]
\[
a_{\mu}^{Z'} \simeq \frac{g_X^2 m_\mu}{16\pi^2 m_{Z'}} \sum_{i=2,3} M_i V_{L1i} V_{R1i}, \tag{3.4}
\]
Before presenting the results we consider a couple of relevant constraints. The effective Yukawa interaction between the Higgs boson and the muon pair in our model is given by
\[
\mathcal{L} \ni - m_\mu V_{L11} V_{R11} h \bar{\mu} \mu', \tag{3.5}
\]
where \(m_\mu\) is the mass parameter in (2.2), which is not necessarily equal to the physical mass \(m_{\mu'}\) due to mixing. Recently the CMS Collaboration has found the “evidence for Higgs boson decay to a pair of muons” [67]. This measurement gives a constraint
\[
0.8 < \left| \frac{m_\mu V_{L11} V_{R11}}{m_{\mu'}} \right| < 1.6. \tag{3.6}
\]
The \(Z\)-boson interaction with the muon pair has been measured precisely at per mille level, whose effective vector- and axial-vector-couplings are fitted to be [68]
\[
\bar{g}_V^\mu = -0.0366 \pm 0.0023, \quad \bar{g}_A^\mu = -0.4994 \pm 0.0005, \tag{3.7}
\]
at 1\sigma level. In our model the coupling deviates from the SM prediction at tree level, which we can read from (B.2),
\[
\Delta \bar{g}_V^\mu = \frac{1}{2} \left(|V_{L31}|^2 - |V_{R21}|^2 \right),
\]
\[
\Delta \bar{g}_A^\mu = \frac{1}{2} \left(|V_{L31}|^2 + |V_{R21}|^2 \right). \tag{3.8}
\]
We impose 2\sigma allowed range of (3.7).

There are lower bounds on the masses of VLLs from the colliders. The most stringent constraint comes from the analyses of the multilepton final states at the LHC. In the Ref. [69], the CMS Collaboration searched for signals of a type-III seesaw mechanism in events with three or more electrons or muons with the data sample of 35.9 fb\(^{-1}\) collected at \(\sqrt{s} = 13\) TeV. In the type-III seesaw seesaw mechanism \(SU(2)_L\) triplet VLLs with \(Y = 0\) mix with the SM leptons to generate the neutrino masses. The charge and neutral VLLs, \(\Sigma^\pm, \Sigma^0\), can be pair-produced, \(pp \rightarrow \Sigma^+ \Sigma^-, \Sigma^\pm \Sigma^0\). From their subsequent decays the masses of the VLLs below 850 GeV are excluded [69]. In our model we don’t have the final states including electrons, and the pair-production cross sections are also expected to be suppressed due to the mixing between the doublet and singlet VLLs. Given the absence
of a dedicated study, as far as we are aware of, on the collider constraint on our model we adopt the above 850 GeV as a conservative lower bound for the VLL masses.

Fig. 2 shows the prediction of \((g - 2)\mu\) in the \((m_{Z'}, g_X)\)-plane along with constraints. For this plot we scanned in the region

\[
\begin{align*}
g_X &\in (10^{-5}, 1), \\
m_{Z'} &\in (10^{-3}, 10^3) \text{ (GeV)}, \\
m_{L,E} &\in (850, 5000) \text{ (GeV)}, \\
\lambda_{L,E}, y_{L,E} &\in (-\sqrt{4\pi}, \sqrt{4\pi}).
\end{align*}
\]

(3.9)

We collected 5000 points satisfying \(1\sigma\) range of \((g - 2)\mu\),

\[
19.2 \times 10^{-10} < a^{\text{NP}}_\mu < 31.0 \times 10^{-10},
\]

(3.10)
as well as (3.6), and (3.7). They are divided into three categories: (A) those excluded by the trident and/or CMS constraints (represented by tiny gray points in Fig. 2), (B) those allowed by \((g - 2)\mu\) but disfavoured by the CDF \(M_W\) whose precise meaning will be given in the next Section (represented by light red points in Fig. 2), and (C) those allowed both by \((g - 2)\mu\) and by the CDF \(M_W\) (represented by red points in Fig. 2).

The light gray region is excluded at 95% C.L. by the CCFR measurement of the neutrino trident production cross section. The dark gray region is disfavored by the observation of the SM \(Z\) boson decay into four leptons at the CMS Collaboration at the LHC [70]. We also show the predictions of the minimal model without the VLLs, obtained from Eq. (3.1), with blue contours. The thick and thin contour lines give the central and \(\pm 1\sigma\) values of Eq. (1.1), respectively. They are consistent with the plot in Ref. [13]. We can see \(m_{Z'} \gtrsim 100\) MeV region of the minimal model is disfavored by the trident experiments.

In our model we can see many points (light red and red points) even with electroweak scale \(m_{Z'}\) can accommodate \(\Delta a_\mu\) from VLL contributions while satisfying the neutrino trident experiments. There are some points (red points) which can satisfy both \(\Delta a_\mu\) and the CDF \(M_W\). Although the process of the neutrino trident production has contributions from the VLLs, their contributions are always subleading due to the fact that there is no enhancement proportional to \(M_2, M_3\) contrary to the \((g - 2)\mu\). And the contribution from the virtual muon in the diagram is dominant, and we neglected the VLL contribution in the calculation of the trident cross section.

We can see a peculiar hollow corridor along the diagonal in the middle of the scattered points. It can be roughly understood as follows. For a given \(m_{Z'} \gtrsim 1\) GeV, the points above the hollow corridor are obtained mainly by the muon contribution with small \(V_{L(R)12}\) and/or \(V_{L(R)13}\), making the VLL contributions subdominant. For the VLL contributions to be sizable, it turns out that \(v_\Phi (= m_{Z'}/g_X) \gtrsim 1\) TeV is required to generate the sizable mixing with the muon and the VLLs. This explains the hollow corridor.

4 CDF II \(W\)-mass

By including the CDF II \(W\)-mass measurement in (1.3) in the fitting, the authors of [19, 32] found that the excess can be explained by enhancing especially the oblique \(T\)-parameter of
Figure 2: Scatter plot in the \((m_{Z'}, g_X)\)-plane. The light gray region is excluded by the CCFR measurement of the neutrino trident production cross section at 95% C.L.. The dark gray region is disfavored by the observation of the SM \(Z\) boson decay into four leptons by the CMS Collaboration at the LHC. We show the predictions of the minimal model without the VLLs leptons with blue contours. The thick and thin contour lines give the central and \(\pm 1\sigma\) values of Eq. (1.1), respectively. Tiny gray points are excluded by the trident and/or CMS constraints. Light red points are allowed by \((g - 2)_{\mu}\) but disfavoured by the CDF \(M_W\). Red points are allowed by both the \(\Delta a_{\mu}\) and the CDF \(M_W\). See the text for the constraints when generating the points.

the electroweak precision tests. We calculated the \(S, T\)-parameters in our model. The NP contribution can be obtained from the Lagrangian terms

\[
\mathcal{L} \supset -\frac{g}{\sqrt{2}} W^+_\mu \bar{\tilde{\nu}} \gamma^\mu \tilde{E} + H.c. \\
- \left(-\frac{g'}{2} B_\mu + \frac{g}{2} W^3_\mu \right) \bar{\tilde{N}} \gamma^\mu \tilde{N} - \left(-\frac{g'}{2} B_\mu - \frac{g}{2} W^3_\mu \right) \bar{\tilde{E}} \gamma^\mu \tilde{E} - \left(-g B_\mu \right) \bar{\tilde{E}} \gamma^\mu E.
\]

Using \(P_{L(R)} \tilde{E} = V_{L_{2i}} P_{L(R)} E_i, P_{L(R)} E = V_{L_{3i}} P_{L(R)} E_i\), we get [71]

\[
T = \frac{1}{4\pi s_W c_W m_Z^2} \left[2 \sum_{i=2,3} \left\{ (V_{L_{2i}} - V_{R_{2i}})^2 \tilde{\Pi}_{LL}(M_0, M_i, 0) + V_{L_{2i}} V_{R_{2i}} \tilde{\Pi}_{VV}(M_0, M_i, 0) \right\} \\
- \sum_{i,j=2,3} \left\{ (g_L^{ij}(W^3) - g_R^{ij}(W^3))^2 \tilde{\Pi}_{LL}(M_i, M_j, 0) + g_L^{ij}(W^3) g_R^{ij}(W^3) \tilde{\Pi}_{VV}(M_i, M_j, 0) \right\} \right],
\]

(4.2)
Figure 3: Scatter plot in \((S,T)\)-plane. The star mark represents the best fit point, and the dashed (solid) ellipse is 68\% (95\%) contour of fits to the oblique parameters \(S\) and \(T\) including the CDF result. The light red and the red points are the ones in Figs. 2 accommodating the \(\Delta q_\mu\) at the 1\(\sigma\) level. The red points also satisfy the fit at the 95\% CL., which we consider CDF \(M_W\)-favoured ones.

and

\[
S = \frac{1}{\pi} \left(\tilde{\Pi}'_{VV}(M_0, M_0, 0) - \sum_{i, j=2, 3} \left\{ (g^{ij}_L(B) - g^{ij}_L(W^3))(g^{ij}_L(W^3) - g^{ij}_L(W^3))\tilde{\Pi}'_{LL}(M_i, M_j, 0) + \frac{1}{2}(g^{ij}_L(B)g^{ij}_R(W^3) + g^{ij}_L(W^3)g^{ij}_R(B))\tilde{\Pi}'_{VV}(M_i, M_j, 0) \right\} \right),
\]

where \(g^{ij}_L(R)(W^3) = V_{L(R)_{2i}}V_{L(R)_{2j}}\) and \(g^{ij}_L(R)(B) = V_{L(R)_{2i}}V_{L(R)_{2j}} + 2V_{L(R)_{3i}}V_{L(R)_{3j}}\). The explicit expressions for the vacuum polarization amplitudes and their derivatives, \(\tilde{\Pi}\) and \(\tilde{\Pi}'\), are listed in the Appendix C. In the above calculation we neglected the contributions from the mixing between \(\mu'\) and \(\tilde{E}, E\) because they are suppressed either by the small muon mass compared to \(M_2, M_3\) or by the small mixing angles. We have checked the divergences are cancelled and the final results are finite, which validates our calculation.

Fig. 3 shows the predictions of \(S, T\)-parameters for the data points in Fig. 2. The star mark represents the best fit point, and the dashed (solid) ellipse is 68\% (95\%) contour of fits to the oblique parameters \(S\) and \(T\) including the CDF result [19, 32]. The light red
and the red points are the ones in Fig. 2 accommodating the Δa_{μ} at the 1σ level. We can see that the red points also satisfy the fit at the 95% CL., which we consider CDF M_W-favoured ones. Fig. 3 shows that the contribution of the VLLs to the T parameter can be sizable enough to explain the CDF M_W measurement. But the S parameter is barely affected by the presence of the VLLs.

Fig. 4(a) shows scatter plot in (a) (y_L, y_E)- (b)$($$\lambda_L, \lambda_E$)- (c)$($$M_2, M_3$)-plane. We use the same data points with the ones in Fig. 2. The red points favour the CDF M_W while the light red points do not. We can see that the Δa_{μ} can be accommodated in a wide range of $y_L(E)$ while the CDF M_W favoured points require rather large y_E values although they are still in the perturbative regime. Fig. 4(b) shows that neither Δa_{μ} or CDF M_W does not need large values of $\lambda_L(E)$. In Fig. 4(c) we can see that although relatively light VLLs are slightly favoured for the CDF M_W, even VLLs as heavy as a few TeV can still account for the Δa_{μ}.

5 Conclusions

The anomalies in the measurements of the anomalous magnetic moment of muon and the W-boson mass, if confirmed by future experiments, suggest the existence of new physics beyond the standard model of particle physics. We considered a possible solution to both of these problems. We extended the gauge group of the standard model to include $U(1)_{L\mu-L\tau}$. We also added a vector-like lepton doublet L and a vector-like lepton singlet E with hypercharge, $-1/2$ and -1, respectively. The extra gauge group is broken by a scalar singlet field Φ. All the new particles are charged under $U(1)_{L\mu-L\tau}$.

We showed that the stringent constraint on the solution to the muon $(g - 2)$ in the minimal $U(1)_{L\mu-L\tau}$ is significantly lifted. We also found that the excess of the W-boson mass can be explained in the perturbative regime.
Acknowledgments

This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT), Grant No. NRF-2018R1A2A3075605.

A The treatment of the μ-mass

Due to the sizable mixings between the muon and the VLLs, m_μ in (2.2) can be sizably different from the physical mass m_μ'. Since the muon mass is precisely measured in the experiments, $m_\mu' \approx 0.10565837$ GeV, we use this value as an input parameter. Then the bare muon mass parameter m_μ in (2.2) can be calculated by solving the characteristic equation,

$$\text{det}(M^T M - m_{\mu'}^2 1) = 0,$$

(A.1)

where 1 is the 3×3 unit matrix. The (A.1) is a quadratic equation for m_μ, which can be easily solved. We take smaller positive solution of m_μ. Then the diagonalization of (2.2) by (2.3) guarantees that the lightest eigenvalue corresponds to the experimentally measured muon mass.

B The $Z(Z') - \mu - E_j$ couplings and the loop-function

The $Z^{(i)}$-boson interactions with E_i ($i = 1, \cdots, 3$) are given by

$$\mathcal{L} \supset -Z_\mu^{(i)} E_i \gamma^\mu \left[C_{ij}^{L}(Z^{(i)}) P_L + C_{ij}^{R}(Z^{(i)}) P_R \right] E_j,$$

(B.1)

where we note $E_1 \equiv \mu'$ and

$$C_{ij}^{L}(Z') = g_X \left[2 \delta_{ij} - V_{L1i} V_{L1j} \right],$$

$$C_{ij}^{R}(Z') = g_X \left[2 \delta_{ij} - V_{R1i} V_{R1j} \right],$$

$$C_{ij}^{L}(Z) = \frac{e}{c_W s_W} \left[-\frac{1}{2} + s_W^2 \right] \delta_{ij} + \frac{1}{2} V_{L3i} V_{L3j},$$

$$C_{ij}^{R}(Z) = \frac{e}{c_W s_W} \left[s_W^2 \delta_{ij} - \frac{1}{2} V_{R2i} V_{R2j} \right].$$

(B.2)

The loop-function is [66]

$$f(x, M, m_X)$$

$$= x(1 - x) \left(x + \frac{2M}{m_\mu} - 2 \right) - \frac{x^2}{2m_X^2} \left(M - m_\mu \right)^2 \left(x - \frac{M}{m_\mu} \right).$$

(B.3)
C The vacuum polarization amplitudes

The vacuum polarization amplitudes are defined as

\[
\Pi_{LL}(m_1, m_2, 0) = \frac{m_1^2 + m_2^2}{4} \left(\text{div} + \ln \frac{m_1^2}{m_2^2} \right) + \frac{m_1^2 + m_2^2}{8} + \frac{m_1^4 + m_2^4}{8(m_1^2 - m_2^2)} \ln \frac{m_2^2}{m_1^2},
\]

\[
\Pi_{LR}(m_1, m_2, 0) = -\frac{m_1 m_2}{2} \left(\text{div} + \ln \frac{m_1^2}{m_2^2} + 1 - \frac{m_1^2 + m_2^2}{2(m_1^2 - m_2^2)} \ln \frac{m_2^2}{m_1^2} \right),
\]

\[
\Pi'_{LL}(m_1, m_2, 0) = -\frac{1}{6} \left(\text{div} + \ln \frac{m_1^2}{m_2^2} \right) - \frac{m_1^4 - 8m_1^2 m_2^2 + m_2^4}{18(m_1^2 - m_2^2)^2} - \frac{(m_1^2 + m_2^2)(m_1^2 - 4m_1^2 m_2^2 + m_2^4)}{12(m_1^2 - m_2^2)^3} \ln \frac{m_2^2}{m_1^2},
\]

\[
\Pi'_{LR}(m_1, m_2, 0) = -\frac{m_1 m_2}{2} \left(\frac{m_1^2 + m_2^2}{2(m_1^2 - m_2^2)^2} + \frac{m_2^4 m_1^2}{(m_1^2 - m_2^2)^3} \ln \frac{m_2^2}{m_1^2} \right),
\]

\[
\Pi_{VV}(m_1, m_2, 0) = 2 \left(\bar{\Pi}_{LL}(m_1, m_2, 0) + \bar{\Pi}_{LR}(m_1, m_2, 0) \right),
\]

\[
\bar{\Pi}_{VV}(m_1, m_2, 0) = 2 \left(\bar{\Pi}'_{LL}(m_1, m_2, 0) + \bar{\Pi}'_{LR}(m_1, m_2, 0) \right),
\]

where \(\text{div} = 1/\epsilon + \log 4\pi - \gamma_E \).

References

[1] Muon g-2 collaboration, Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801 [2104.03281].

[2] Muon g-2 collaboration, Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035].

[3] T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model, Phys. Rept. 887 (2020) 1 [2006.04822].

[4] X.G. He, G.C. Joshi, H. Lew and R.R. Volkas, New Z-prime Phenomenology, Phys. Rev. D 43 (1991) 22.

[5] X.-G. He, G.C. Joshi, H. Lew and R.R. Volkas, Simplest Z-prime model, Phys. Rev. D 44 (1991) 2118.

[6] S. Baek and P. Ko, Phenomenology of U(1)(L(mu)-L(tau)) charged dark matter at PAMELA and colliders, JCAP 10 (2009) 011 [0911.1646].

[7] S. Baek, H. Okada and K. Yagyu, Flavour Dependent Gauged Radiative Neutrino Mass Model, JHEP 04 (2015) 049 [1501.01530].

[8] S. Baek, Dark matter and muon \((g-2)\) in local \(U(1)_{L_\mu-L_\tau}\)-extended Ma Model, Phys. Lett. B 756 (2016) 1 [1510.02168].

[9] S. Baek, Dark matter contribution to \(b \rightarrow s\mu^+\mu^-\) anomaly in local \(U(1)_{L_\mu-L_\tau}\) model, Phys. Lett. B 781 (2018) 376 [1707.04573].

[10] S. Baek, N.G. Deshpande, X.G. He and P. Ko, Muon anomalous g-2 and gauged L(muon) - L(tau) models, Phys. Rev. D 64 (2001) 055006 [hep-ph/0104141].
11] CHARM-II collaboration, *First observation of neutrino trident production*, *Phys. Lett. B* **245** (1990) 271.

12] CCFR collaboration, *Neutrino tridents and W Z interference*, *Phys. Rev. Lett.* **66** (1991) 3117.

13] W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, *Neutrino Trident Production: A Powerful Probe of New Physics with Neutrino Beams*, *Phys. Rev. Lett.* **113** (2014) 091801 [1406.2332].

14] CDF collaboration, *High-precision measurement of the W boson mass with the CDF II detector*, *Science* **376** (2022) 170.

15] Y.-Z. Fan, T.-P. Tang, Y.-L.S. Tsai and L. Wu, *Inert Higgs Dark Matter for New Cdf W-Boson Mass and Detection Prospects*, 2204.03693.

16] C.-T. Lu, L. Wu, Y. Wu and B. Zhu, *Electroweak Precision Fit and New Physics in light of W Boson Mass*, 2204.03796.

17] P. Athron, A. Fowlie, C.-T. Lu, L. Wu, Y. Wu and B. Zhu, *The W boson Mass and Muon g – 2: Hadronic Uncertainties or New Physics?*, 2204.03996.

18] G.-W. Yuan, L. Zu, L. Feng and Y.-F. Cai, *W-boson mass anomaly: probing the models of axion-like particle, dark photon and Chameleon dark energy*, 2204.04183.

19] A. Strumia, *Interpreting electroweak precision data including the W-mass CDF anomaly*, 2204.04191.

20] J.M. Yang and Y. Zhang, *Low Energy SUSY Confronted with New Measurements of W-Boson Mass and Muon G-2*, 2204.04202.

21] J. de Blas, M. Pierini, L. Reina and L. Silvestrini, *Impact of the Recent Measurements of the Top-Quark and W-Boson Masses on Electroweak Precision Fits*, 2204.04204.

22] X.K. Du, Z. Li, F. Wang and Y.K. Zhang, *Explaining The Muon g – 2 Anomaly and New CDF II W-Boson Mass in the Framework of (Extra)Ordinary Gauge Mediation*, 2204.04286.

23] T.-P. Tang, M. Abdughani, L. Feng, Y.-L.S. Tsai and Y.-Z. Fan, *NMSSM neutralino dark matter for W-boson mass and muon g – 2 and the promising prospect of direct detection*, 2204.04356.

24] G. Cacciapaglia and F. Sannino, *The W Boson Mass Weighs in on the Non-Standard Higgs*, 2204.04514.

25] M. Blennow, P. Coloma, E. Fernández-Martínez and M. González-López, *Right-handed neutrinos and the CDF II anomaly*, 2204.04559.

26] F. Arias-Aragón, E. Fernández-Martínez, M. González-López and L. Merlo, *Dynamical Minimal Flavour Violating Inverse Seesaw*, 2204.04672.

27] K. Sakurai, F. Takahashi and W. Yin, *Singlet Extensions and W Boson Mass in the Light of the Cdf II Result*, 2204.04770.

28] J. Fan, L. Li, T. Liu and K.-F. Lyu, *W-Boson Mass, Electroweak Precision Tests and SMEFT*, 2204.04805.

29] X. Liu, S.-Y. Guo, B. Zhu and Y. Li, *Unifying gravitational waves with W boson, FIMP dark matter, and Majorana Seesaw mechanism*, 2204.04834.
[30] H.M. Lee and K. Yamashita, *A Model of Vector-like Leptons for the Muon $g - 2$ and the W Boson Mass*, 2204.05024.

[31] Y. Cheng, X.-G. He, Z.-L. Huang and M.-W. Li, *Type-Ii Seesaw Triplet Scalar and Its Vev Effects on Neutrino Trident Scattering and W Mass*, 2204.05031.

[32] E. Bagnaschi, J. Ellis, M. Madigan, K. Mimasu, V. Sanz and T. You, *SMEFT Analysis of m_W*, 2204.05260.

[33] A. Paul and M. Valli, *Violation of Custodial Symmetry from W-Boson Mass Measurements*, 2204.05267.

[34] H. Bahl, J. Braathen and G. Weiglein, *New physics effects on the W-boson mass from a doublet extension of the SM Higgs sector*, 2204.05269.

[35] P. Asadi, C. Cesaretti, K. Fraser, S. Homiller and A. Parikh, *Oblique Lessons from the W Mass Measurement at CDF II*, 2204.05283.

[36] L. Di Luzio, R. Gröber and P. Paradisi, *Higgs physics confronts the M_W anomaly*, 2204.05284.

[37] P. Athron, M. Bach, D.H.J. Jacob, W. Kotlarski, D. Stöckinger and A. Voigt, *Precise calculation of the W boson pole mass beyond the Standard Model with FlexibleSUSY*, 2204.05285.

[38] J. Gu, Z. Liu, T. Ma and J. Shu, *Speculations on the W-Mass Measurement at Cdf*, 2204.05296.

[39] J.J. Heckman, *Extra W-Boson Mass from a D3-Brane*, 2204.05302.

[40] K.S. Babu, S. Jana and V.P. K., *Correlating W-Boson Mass Shift with Muon $g - 2$ in the 2HDM*, 2204.05303.

[41] Y. Heo, D.-W. Jung and J.S. Lee, *Impact of the CDF W-mass anomaly on two Higgs doublet model*, 2204.05304.

[42] X.K. Du, Z. Li, F. Wang and Y.K. Zhang, *Explaining the New Cdfii W-Boson Mass in the Georgi-Machacek Extension Models*, 2204.05728.

[43] K. Cheung, W.-Y. Keung and P.-Y. Tseng, *Iso-doublet Vector Leptoquark solution to the Muon $g - 2$, R_{K,K^*}, R_{D,D^*}, and W-mass Anomalies*, 2204.05942.

[44] A. Crivellin, M. Kirk, T. Kitahara and F. Mescia, *Correlating $t \rightarrow cZ$ to the W Mass and B Physics with Vector-Like Quarks*, 2204.05962.

[45] M. Endo and S. Mishima, *New physics interpretation of W-boson mass anomaly*, 2204.05985.

[46] T. Bielcikter, S. Heinemeyer and G. Weiglein, *Excesses in the low-mass Higgs-boson search and the W-boson mass measurement*, 2204.05975.

[47] R. Balkin, E. Madge, T. Menzo, G. Perez, Y. Soreq and J. Zupan, *On the Implications of Positive W Mass Shift*, 2204.05992.

[48] Y.H. Ahn, S.K. Kang and R. Ramos, *Implications of New CDF-II W Boson Mass on Two Higgs Doublet Model*, 2204.06485.

[49] X.-F. Han, F. Wang, L. Wang, J.M. Yang and Y. Zhang, *A Joint Explanation of W-Mass and Muon G-2 in 2Hdm*, 2204.06505.
[50] M.-D. Zheng, F.-Z. Chen and H.-H. Zhang, *The Wℓν-vertex corrections to W-boson mass in the R-parity violating MSSM*, 2204.06541.

[51] J. Kawamura, S. Okawa and Y. Omura, *W boson mass and muon g − 2 in a lepton portal dark matter model*, 2204.07022.

[52] A. Ghoshal, N. Okada, S. Okada, D. Raut, Q. Shafi and A. Thapa, *Type III seesaw with R-parity violation in light of m_W (CDF)*, 2204.07138.

[53] P.F. Perez, H.H. Patel and A.D. Plascencia, *On the W-mass and New Higgs Bosons*, 2204.07144.

[54] P. Mondal, *Enhancement of the W boson mass in the Georgi-Machacek model*, 2204.07844.

[55] K.-Y. Zhang and W.-Z. Feng, *Explaining W boson mass anomaly and dark matter with a U(1) dark sector*, 2204.08067.

[56] D. Borah, S. Mahapatra, D. Nanda and N. Sahu, *Type II Dirac Seesaw with Observable ∆N_{eff} in the light of W-mass Anomaly*, 2204.08266.

[57] T.A. Chowdhury, J. Heeck, S. Saad and A. Thapa, *W boson mass shift and muon magnetic moment in the Zee model*, 2204.08390.

[58] G. Arcadi and A. Djouadi, *The 2HD+a model for a combined explanation of the possible excesses in the CDF M_W measurement and (g − 2)_µ with Dark Matter*, 2204.08406.

[59] V. Cirigliano, W. Dekens, J. de Vries, E. Mereghetti and T. Tong, *Beta-Decay Implications for the W-Boson Mass Anomaly*, 2204.08440.

[60] L.M. Carpenter, T. Murphy and M.J. Smylie, *Changing patterns in electroweak precision with new color-charged states: Oblique corrections and the W boson mass*, 2204.08546.

[61] O. Popov and R. Srivastava, *The Triplet Dirac Seesaw in the View of the Recent CDF-II W Mass Anomaly*, 2009.04363.

[62] J.P. Leveille, *The Second Order Weak Correction to (G-2) of the Muon in Arbitrary Gauge Models*, Nucl. Phys. B 137 (1978) 63.

[63] M. Du, Z. Liu and P. Nath, *CDF W mass anomaly in a Stueckelberg extended standard model*, 2204.09024.

[64] A. Bhaskar, A.A. Madathil, T. Mandal and S. Mitra, *Combined explanation of W-mass, muon g − 2, R_K(μ) and R_D(μ) anomalies in a singlet-triplet scalar leptoquark model*, 2204.09031.

[65] A. Crivellin and M. Hoferichter, *Combined Explanations of (g − 2)μ, (g − 2)e and Implications for a Large Muon EDM*, PoS ALPS2019 (2020) 009 [1905.03789].

[66] CMS collaboration, *Evidence for Higgs boson decay to a pair of muons*, JHEP 01 (2021) 148 [2009.04363].

[67] CMS collaboration, *Search for evidence of Type-III seesaw mechanism in multilepton final states in pp collisions at √s = 13 TeV*, 083C01.
[70] CMS collaboration, *Observation of Z Decays to Four Leptons with the CMS Detector at the LHC*, *JHEP* **12** (2012) 034 [1210.3844].

[71] G. Cynolter and E. Lendvai, *Electroweak Precision Constraints on Vector-like Fermions*, *Eur. Phys. J. C* **58** (2008) 463 [0804.4080].