Longitudinal Associations between TPO gene variants and TPOAb seroconversion in a population based study: Tehran Thyroid Study (TTS)

Amir Hossein Ghanoooni¹#, Azita Zadeh-Vakili¹#, Boshra Rezvankhah¹, Somayyeh Jafari Nodushan¹, Mahdi Akbarzadeh², Atieh Amouzegar³, Maryam S. Daneshpour², Davood Khalili⁴, Yadollah Mehrabi⁴, Farzaneh Sarvghadi¹, Seyed Alireza Ebadí⁵, Fereidoun Azizi³∗.

¹Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

²Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

³Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

⁴Department of Biostatistics and Epidemiology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

⁵Department of Internal Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

∗Corresponding author: Endocrine Research Center and Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Email: azizi@endocrine.ac.ir

#Contributed equally
Abstract

Background: Autoimmune thyroid diseases are among the most common autoimmune diseases in the world. They are usually accompanied by the presence of anti-thyroid antibodies as the early predictive marker. Genetic determinants of the susceptibility to develop thyroid antibodies are still poorly understood. This study aimed to investigate the relation between thyroid peroxidase (TPO) gene variants (53 SNPs) and positive TPOAb and also to evaluate the effect of some environmental factors on changes from negative to positive TPOAb (Seroconversion).

Methods: Participants from the Tehran Thyroid Study (TTS) in phases 1 and 2 (N=5317, ≥ 20 years) were evaluated for the positive TPOAb and its relationship with 53 SNPs from TPO gene (a cross-sectional approach). At the second stage of the study (a longitudinal approach), negative TPOAb participants (control group, N= 4815) were followed up for about 5.5 (5.54±1.62) years until they have had positive results for TPOAb (“TPOAb seroconversion”). The association between TPO gene polymorphisms and TPOAb seroconversion was evaluated using logistic regression analysis and SKAT package (sequence kernel association test).

Results: In cross-sectional analyses, 17 SNPs were associated with TPOAb positivity (521 positive TPOAb participants) after the adjustment for age, sex, body mass index (BMI), smoking, the number of parity and oral contraceptive consumption (P <0.05). In longitudinal analyses, there was an association between TPOAb seroconversion and four SNPs before, and three SNPs after adjustment (P <0.05).
Conclusions: TPOAb seroconversion could be affected by some thyroid peroxidase gene variants.

Keywords: Autoimmune thyroid diseases, TPOAb, seroconversion, TPO gene, single nucleotide polymorphism, SNP.
Autoimmune thyroid diseases (ATIDs) are among the most prevalent type of autoimmune disorders (1). Although the exact pathogenesis of these disorders is not yet understood, there is increasing evidence in favor of a role of genetic factors in collaboration with environmental triggers (2). The basis for development of these disorders is production of antibodies against cellular and molecular structures of thyroid gland. Although thyroid peroxidase antibody (TPOAb) has not been identified as a direct cause of thyroid cell destruction, there is a strong association between TPOAb and autoimmune thyroid disorders and they are present in the serum of 90% to 95% of Hashimoto thyroiditis patients (3). This association makes them a reliable serological marker for diagnosis ofAITDs. The prevalence of anti-thyroid antibodies is between 5% to 24% among different communities. This prevalence has been reported above 10% in a study that has been performed in the framework of NHANES\(^1\); with a prevalence of 13% for TPOAb and 11.5% for thyroglobulin antibody (TgAb) (4). The prevalence of TPOAb was reported 12.8% in Tehran Thyroid Study (TSS) (5).

Genetic background plays the most important role in predisposition to an autoimmune disorder (6-8). Preliminary studies for determination of genetic contribution to autoimmune thyroid disorders performed by “candidate gene identification” approach and mainly focused upon the genes having a role in the regulation of the immune system. With the introduction of the Genome-wide association studies (GWAS), it has become possible to perform genotyping on numerous individuals and at a high rate (9).

\(^1\) National Health and Nutrition Examination Survey
Genome-Wide Association Studies for detecting the relationship between genetic polymorphisms and levels of TPOAb in prospective cohorts are still scarce. Soo-Heon Kwak et al. in 2014 performed a two-stage GWAS on 4238 individuals along with measurement of their serum levels of TSH, T4, and TPOAb (10). They identified a novel variant of thyroid peroxidase (TPO) gene that was associated with TPOAb positivity. Two meta-analysis surveys assessed GWAS studies for demonstrating the association between genetic polymorphism and positive TPOAb and serum levels. In a meta-analysis survey by Medici et al in 2014, it was shown that the coexistence of multiple variants in an individual, considerably increases the risk of positive TPOAb and also the risk of increased levels of TSH (11). In the other meta-analysis by Matana et al in 2017, a novel polymorphism in the GRIN3A gene was significantly associated with levels of TPOAb in women (12). No study has longitudinally evaluated the association between SNPs of TPO gene and TPOAb seroconversion.

The purpose of this study was to investigate the relation between the variants in TPO locus (53 SNPs) and TPOAb positivity/seroconversion and also to evaluate the effect of some environmental factors on the conversion.

Materials and Methods

Subjects and Study design

This study was conducted in the framework of the Tehran Thyroid Study (TTS); a cohort study, being performed in the context of Tehran Lipid and Glucose Study (TLGS), to collect comprehensive information on the thyroid diseases and their long-term consequences in the population of Tehran, the capital of Iran. TLGS and TTS have been
described extensively elsewhere (13). Briefly, TTS has been started at 1997. It designed in two stages, first stage was cross-sectional (phase 1) and second was a longitudinal study (phase 2, 3, and 4). The length of each study phase was about three years and the intervals between phases were four years. A total population of TTS was 5783. In the first phase 4174 and in second phase 1609 new subjects participated. The subjects of TTS were adults (aged ≥ 20 years) with thyroid function test results (5).

In the present study, the first stage was a cross-sectional (the first phase of TTS), and the second one was a longitudinal study (phases 2-4 of TTS). The study population was TTS participants who had genotype data for selected polymorphisms of the TPO gene and also had information for TPOAb test results at baseline (first and second phase of TTS). Pregnant women (n=40) were excluded. In the cross-sectional stage, we examined the correlation of different polymorphisms genotypes of the TPO gene with positive TPOAb. In the second stage of the study, TPOAb positive subjects (n=521) were excluded from the analysis, and negative TPOAb subjects (n=4237) were examined in subsequent phases until TPOAb seroconversion (until phase 4). Flowchart of participants through the study is shown in Fig.1.

The effect of polymorphisms on seroconversion was evaluated in the presence of some probable effective factors, such as age, sex, BMI, smoking, the number of parity and the use of Oral Contraceptive pills (OCPs).

Phenotypic measurements and covariates TPOAb measurements were performed on frozen serum samples. Measurement for all samples were done in the same day using
IEMA (Immunoenzymometric assay) method by monoband Inc. Lake Forest, CA 92630, USA kit. Inter and intra-assay CVs were 3.9% and 4.7%, respectively. The normal (negative) range defined for this kit was less than 35 IU/ml (5). Body mass index (BMI) was calculated as weight in kilograms divided by the height in meters squared. Weight and height were taken by trained health care provider and were measured according to the standard protocol. Data on Parity, smoking and OCP consumption (biphasic or triphasic contraceptive tablets) were obtained by questionnaire. Smoking status was categorized as ever (daily or sometimes consumption) and never smokers by question at questionnaire (14).

Genetic Data

Genotyping: Blood samples used for extraction of genomic DNA from peripheral lymphocytes as previously described (Truett et al., 2000). Quality and quantity of extracted DNA were assessed by electrophoresis and spectrophotometry. Genotyping was performed with Illumina Human OmniExpress-24-v1-0 bead chip containing 649,932 SNP loci (Illumina Inc., San Diego, CA, USA) (14). A total of 65 SNPs of TPO gene was recognized. After the quality check, the genotype information for selected markers was extracted from the chipped dataset for all individuals.

Quality control and genetic association

Deviation from Hardy-Weinberg equilibrium (P < 0.01) used to filter low-quality SNPs. Forty-nine SNPs with MAF greater than 0.05 (4 SNPs had MAF<0.05) were considered for association analysis by logistic regression (Supplementary Table 1 and Supplementary figure 1). The reference alleles, for running logistic regression, were
selected according to the GWAS catalog web reference (https://www.ebi.ac.uk/gwas/).
The reference homozygote genotype level was considered as the reference genotype for reporting odds ratio (OR). All models adjusted for age, sex, BMI, smoking, OCP use and number of parity as covariates, using principal components (PC1 and PC2) from the genome-wide SNP data. To calculate Hardy-Weinberg equilibrium (HWE), and statistically evaluation of genetic association we used PLINK2 (https://www.cog-genomics.org/plink/2.0/) (genomic inflation=1.001). Sequence-based kernel machine association test (SKAT) was used to increase the study capability where the minor MAF was less than 0.05 or sparse samples. Therefore, 53 SNPs were tested by SKAT (Supplementary Table 1). SKAT model was designed and implemented in two steps. During the first step, by the Haploview software and using the Four Gamet rule, SNPs were split into linkage disequilibrium (LD) blocks. In this step, SNPs were grouped into 17 blocks (supplementary figures 2&3). In the second step, the relationship between positive TPOAb and the blocks (adjusted for age, sex, smoking, parity, BMI, and OCP consumption) and pc1 and pc2 under the SKAT model was measured.

The statistical power of two stages of the study by the SKAT package for a sample size of 5327 in the cross-sectional step (the first step) and 4531 in the second step, considering 17 LD blocks and a significant level of 0.05, was 76% and 72% for first and second stages, respectively.

Statistical Analysis

For describing the basic characteristics of the subjects, for continuous variables (age, number of parities, and body mass index), mean and standard deviation were used, for continuous
variables with non-normal distribution (TPOAb level), median and interquartile range were used and qualitative variables (gender, smoking, and OCP consumption) were reported as a percentage and numeric. To evaluate SNPs and describing allele frequency indices, MAF, and heterozygosity were used. Finally, testing for deviations from HWE was also performed by the Chi-Square test. To investigate the differences leven test (for equality of variances), t-test (for equality of means), and Chi-Square test (for equality of proportions) were used. Data were analyzed using Haploview, R (SKAT and SnpStats packages), and PLINK software.

Results

Baseline characteristics of participants have been summarized and shown in the table 1. Of the 5783 participants in the Tehran Thyroid Study, 5327 subjects took part in the current study (40 pregnant women and 416 subjects without genotyping were excluded) (Figure 1). At the baseline TPOAb negative and positive subjects were 4531(85.2%) and 787(14.8%), respectively. At the first stage, with a cross-sectional approach, 49 SNPs were assessed by the logistic regression model with the outcome of positive TPOAb. Among these, 17 SNPs had a significant association with positive TPOAb, after adjustment for age, gender, smoking status, BMI, and the number of parities (P<0.05) (Table 2). A number of SNPs were also significant but were not included in the table due to irrational odds ratio. Age and female sex increased the probability of positive TPOAb (OR>1; P<0.05), but smoking had a protective role (OR<1; P<0.05). In longitudinal stage, among 294 subjects with seroconversion, 4 SNPs showed a significant association with TPOAb seroconversion, before adjustment for the confounder variables (rs9326161, rs13431646, rs11896517, and rs6605278) (P<0.05). After adjustment for age, gender,
smoking, BMI, number of parities, and OCP consumption, 3 SNPs had a significant
association with TPOAb seroconversion (rs6605278, rs1126799, rs4927624) (P<0.05)
(Table 3). Among these SNPs, rs6605278 showed statistically significant association
before and after adjustment.

In longitudinal approach, our results showed that age and BMI had significant effect on the
association between aforementioned SNPs and seroconversion. Age had a protective
effect on the TPOAb seroconversion risk while BMI increased it (P<0.001). We observed
significant difference between two sex for rs1126799 in the cross-sectional and also
longitudinal stages, there is significant difference between two sex, which suggests that
minor allele (T) of this SNP increases the risk in one while decreases the risk in another.
For almost all polymorphisms, the effect of the confounders was the same; Exceptions: In
the two SNPs (rs9678469, rs4927616) the effect of age was not significant. In two SNPs
(rs1514684, rs13431646) the effect of smoking was not significant. In one SNP
(rs9678469) the effect of BMI was not significant. About number of parities, significant
association (protective effect) was found only in two SNPs (rs938330 and rs13431646).
And about OCP consumption, just in one SNP (rs11682968) significant association with
positive TPOAb (seroconversion) was found.

Genetic analysis results

Genetic analysis using the PLINK software showed that; after adjustment for the variables of
age, gender, smoking, BMI, number of parities, and OCP consumption, there was no
significant association between the SNPs and positive TPOAb, in either cross-sectional or
longitudinal stages (Supplementary Tables 2, 3).
Using SKAT, 53 studied polymorphisms were divided into 17 blocks according to their common LD. Results of the final analysis in the cross-sectional stage showed that 2 of the blocks had a significant association with positive TPOAb (block number 4 including: rs11211644, rs1546588, rs11675342, rs11675434, rs13400534, rs11682968; P=0.009 and block number 11 including: rs6588678, rs2048722, rs1126797, rs13430369, rs2276704, rs13431173, rs732609, rs3755551, rs9383300; P=0.015); but in longitudinal analyses, none of the blocks showed a significant association with TPOAb seroconversion (P>0.05) (Table 4). All SNPs with significant association in each stages of the study along with statistical analyses used, have been summarized in table 5.

Discussion

Factors affecting the production of antibodies against thyroid structure are not yet well understood. In recent years, several studies have been performed to investigate the genetic susceptibility to raise autoimmune thyroid diseases by examination of thyroid specific and/or immune regulatory genes (6-8, 15, 16). In the present study we investigated the association of 53 SNP near or within TPO gene polymorphisms with TPOAb positivity and also with changes from negative to positive TPOAb (TPOAb seroconversion) over the time. Our study included an adult sample of 5327 and whom all had TPOAb test results at baseline and 4 phases of TTS. We detected significant association between positive TPOAb and 21 SNPs (17 SNPs in cross-sectional and 4 SNPs in longitudinal phases) and 2 blocks of SNPs in SKAT method.. Among these 21 variants, according to dbSNP (https://www.ncbi.nlm.nih.gov/snp/), 14 SNPs (rs4490233, rs13423589, rs11897977, rs1967512, rs2070882, rs6588678, rs3755551, rs938330,
rs4927621, rs12465127, rs17732233, rs1126799, rs2048727, rs6605278) are reporting for the first time in association with TPOAb.

Previous GWAS studies have reported the association of many variants with TPOAb levels and/or positivity (10-12, 16). Among the associated variants a few number are located in or near TPO locus. Kwak et al. have identified 9 variants of TPO gene been suggestively associated with TPOAb positivity in Koreans. There was only one variant, rs2071403, of significant association (p=1x10^{-10})(10). Rs2071403 and two of the suggestively identified associated SNPs (rs11682968 and rs13400534) were included in our study; the first one deviated from HWE and failed to pass the quality control but the two last ones were in the associated block no. 11. Rs2071403 was also included in the Tomari examination (2017) and showed no significant association with TPOAb in patients with AITD, although it was associated with the development of their disease. Tomari et al. examined the relationship between 8 SNPs of TPO gene and development, severity and intractability of AITDs in Japanese patients (17). They found that the serum levels of TPOAb were significantly associated with rs2071400 and rs2048722 polymorphisms. Rs2048722 is an intronic variant and was associated with TPOAb positivity in the first stage of our study. Two SNPs; including rs732609 and rs1126797 were showed no significant association in Tomari et. al. study while both of them are located in the associated block no.4 in our study. Rs732609 has previously been reported to be associated with TPOAb levels in Iranians with subclinical hypothyroidism (18). This variant is a missense mutation in exon 12 (Thr725Pro) and could affect the interactions with heme prosthetic group in the catalytic site (19). This is conceivable that slight
changes in the TPO structure, occurs following single residual substitution, may trigger autoimmune reaction.

The next associated SNP from the cross stage is rs7048722 that has previously reported as associated variant (17). In our study, this intronic variant is present in the associated block no. 11.

We recognized rs11675434, which is located near the TPO gene, in block no.4. This SNP has been reported in a GWAS meta-analyses in 18,297 individuals for TPOAb-positivity and in 12,353 individuals for TPOAb serum levels (11) and showed significant association with both phenotypes ($p=1.5 \times 10^{-6}$ & 1.4×10^{-13} respectively). Considering the strong association of this variant, it seems probable that this block has been recognized as associated block because of being included rs11675434. Rs2071402 and 1126799 are other associated variants in our study that have been examined in relation with TPOAb and showed no association (17). Remaining 17 associated variants of TPO gene (table 2) are reported for the first in relation with TPOAb positivity/seroconversion. Among these newly reported variants only rs13431173 is located in coding region and resulted in replacement of Methionine for Valine.

About the confounders, observations in the first stage indicate that age, female sex, and higher BMI increase the probability of positive TPOAb, but smoking has a protective role in most variants. Previously, the protective effect of smoking on developing HT and the production of anti-thyroid antibodies such as TPOAb and TgAb have been reported (20, 21). In longitudinal approach, we found that increasing age did not always increase the likelihood of TPOAb positivity. This means that the risk increases until a certain age, but then decreases. More details were noticeable in Amouzegar et al. longitudinal survey on
TTS population which has showed that TPOAb seroconversion was higher in women than in men and decreased with increasing age but increased again in the elderly male population (5). This finding was different from the results of Li et al. study which showed no significant association between both age and gender with TPOAb seroconversion (22). This difference may be due to decrease in the number of subjects in elderly population in Li study. In current study, with increasing BMI, the risk of TPOAb positivity also increases. It is suggested that weight gain increases the incidence of thyroid autoimmunity. The association between obesity and the increased prevalence of autoimmune diseases, including AITDs, has been reported in several previous studies (23-27). The observations of this study were in line with previous studies. It seems that chronic low-grade inflammation in obesity is involved in pathogenesis of autoimmune diseases such as AITDs and TPOAb positivity (26). More broadly, the lack of effect of parity on TPOAb positivity in the TTS population has been reported in a concurrent study (28). Similar results about parity and negative effect of OCP consumption has been reported in several previous studies (29-32).

In this study, we examined the association between TPO gene variants and seroconversion during about 5.5 (5.54±1.62) years follow up. This longitudinal association has not been previously examined. We detected a significant association between four variants before adjustment for covariates and 3 variants after adjustment. Rs1126799 is common between cross and longitudinally associated variants and the others are reported for the first time in regards of TPOAb.
The strengths of this study were; having a good sample size in cross-sectional approach, the
prospective approach of the study for evaluation of confounder variables and acceptable
length of follow-up. The longitudinal view has been conducted in very little studies and
can examine the effect of the confounders on an outcome in the presence of a specific
SNP. Simultaneous analysis of all SNPs of a gene together in a GWAS study is much
stronger than “candidate gene” studies. The use of genetic statistical analysis methods,
especially the "Sequence Kernel Association Test", such as SKAT software used in this
study, can increase the strength of statistical analysis in the field of genetics.

As limitation in this study, reducing the TPOAb positive subjects in longitudinal approach
resulted in insufficient sample size for an acceptable power. Positive TPOAb levels alone
would not be indicative of autoimmune thyroid disease, so it was better to use thyroid
function tests to diagnose the clinical condition of the thyroid. In the present study, the
extraction of genetic polymorphisms was from ChIP-PED data in GWAS test, but the
number of SNPs selected for final analysis is much lower than conventional GWAS
studies. Of course, conducting studies based on the whole genome would be better and
have a more powerful achievement in genetic studies.

This study was performed on a gene. Further studies, based on GWAS review data, are
recommended on other genes, for example, those related to thyroid structure, immune
system, and non-thyroid structures, and even chromosomes. And the value will be greatly
enhanced by comparing the outcomes of clinical diseases such as hypothyroidism with
genetic findings. Subsequent studies based on longitudinal approach with long-term
follow-up of individuals can examine more effective confounders in the occurrence of a
gene. Undoubtedly, such studies can open a new window to Personalized (Precision)
Medicine and can be used to detect, track or treat autoimmune diseases such as Hashimoto's thyroiditis.

Conclusion

For the first time, we found in a population-based study significant relationship between some TPO gene SNPs and positive TPOAb and show the effect of age, sex, and BMI as confounders on the incidence of TPOAb seroconversion.

List of abbreviations

Autoimmune thyroid diseases (ATIDs), thyroid peroxidase antibody (TPOAb), thyroglobulin antibody (TgAb), Tehran Thyroid Study (TSS), Genome-wide association studies (GWAS), thyroid peroxidase (TPO), Tehran Lipid and Glucose Study (TLGS), body mass index (BMI), Sequence-based kernel association test (SKAT), minor allele frequency (MAF), linkage disequilibrium (LD), Hardy-Weinberg equilibrium (HWE), Oral Contraceptive pills (OCPs).

Declaration

Ethics approval and consent to participate
This study was reviewed by the Ethics Committee of the Endocrine and Metabolism Research Center of Shahid Beheshti University of Medical Sciences and its code was IR.SBMU.ENDOCRINE.REC.1398.017.

Consent for publication

All information of the participants in this study has been obtained with their knowledge and consent.

Availability of data and materials

Fundamental information about TLGS and TTS studies are available in previous published articles like reference number 14. The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request after permission of Endocrine and Metabolism Research Center of Shahid Beheshti University of Medical Science.

Competing interests

The authors declare that they have no competing interests.

Funding

No sources of funding for this study.
Authors' contributions

AG: collected database and integrated study design, result and discussion. AZ: strict supervised and made fundamental changes in article, BR: collected database, result and discussion. SJN: collected database, result and discussion. MA: analyzed data and prepared result. AA: supervised and guided study design. MSD: supervised in genetic guidance. DK and YM: guided in data analysis and result. FS and SAE: supervised. FA: strict supervised.

Acknowledgements

The authors would like to thank Dr. MirAlireza Takyar for his guidance and suggestions about genetic studies.

References

1. Delshad H, Mehran L, Tohidi M, Assadi M, Azizi F. The incidence of thyroid function abnormalities and natural course of subclinical thyroid disorders, Tehran, I.R. Iran. Journal of endocrinological investigation. 2012;35(5):516-21.

2. Zeitlin AA, Simmonds MJ, Gough SC. Genetic developments in autoimmune thyroid disease: an evolutionary process. Clinical endocrinology. 2008;68(5):671-82.

3. Hansen PS, Brix TH, Iachine I, Kyvik KO, Hegedus L. The relative importance of genetic and environmental effects for the early stages of thyroid autoimmunity: a study of healthy Danish twins. European journal of endocrinology. 2006;154(1):29-38.

4. Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). The Journal of clinical endocrinology and metabolism. 2002;87(2):489-99.
5. Amouzegar A, Gharibzadeh S, Kazemian E, Mehran L, Tohidi M, Azizi F. The prevalence, incidence and natural course of positive antithyroperoxidase antibodies in a population-based study: Tehran thyroid study. PLoS One. 2017;12(1):e0169283.

6. Ban Y, Tomer Y. Genetic susceptibility in thyroid autoimmunity. Pediatric endocrinology reviews: PER. 2005;3(1):20-32.

7. Eschler DC, Hasham A, Tomer Y. Cutting edge: the etiology of autoimmune thyroid diseases. Clinical reviews in allergy & immunology. 2011;41(2):190-7.

8. Tomer Y. Genetic susceptibility to autoimmune thyroid disease: past, present, and future. Thyroid. 2010;20(7):715-25.

9. Altshuler D, Donnelly P, Consortium IH. A haplotype map of the human genome. Nature. 2005;437(7063):1299.

10. Kwak SH, Park YJ, Go MJ, Lee KE, Kim S-j, Choi HS, et al. A genome-wide association study on thyroid function and anti-thyroid peroxidase antibodies in Koreans. Human molecular genetics. 2014;23(16):4433-42.

11. Medici M, Porcu E, Pistis G, Teumer A, Brown SJ, Jensen RA, et al. Identification of novel genetic Loci associated with thyroid peroxidase antibodies and clinical thyroid disease. PLoS genetics. 2014;10(2):e1004123.

12. Matana A, Popović M, Boutin T, Torlak V, Brdar D, Gunjača I, et al. Genome-wide meta-analysis identifies novel gender specific loci associated with thyroid antibodies level in Croatians. Genomics. 2019;111(4):737-43.

13. Azizi F, Zadeh-Vakili A, Takyar M. Review of Rationale, Design, and Initial Findings: Tehran Lipid and Glucose Study. International journal of endocrinology and metabolism. 2018;16(4 Suppl):e84777.
14. Azizi F, Rahmani M, Emami H, Mirmiran P, Hajipour R, Madjid M, et al. Cardiovascular risk factors in an Iranian urban population: Tehran lipid and glucose study (phase 1). Sozial-und präventivmedizin. 2002;47(6):408-26.

15. Liu X, Bai X, Zhao J, Gao C, Du P, Zhang JA. Associations between NLRC4 Gene Polymorphisms and Autoimmune Thyroid Disease. 2020;2020:1378427.

16. Brčić L, Barić A, Gračan S, Torlak V, Brekalo M, Škrabić V, et al. Genome-wide association analysis suggests novel loci underlying thyroid antibodies in Hashimoto's thyroiditis. Scientific reports. 2019;9(1):5360.

17. Tomari S, Watanabe M, Inoue N, Mizuma T, Yamanaka C, Hidaka Y, et al. The polymorphisms in the thyroid peroxidase gene were associated with the development of autoimmune thyroid disease and the serum levels of TPOAb. Endocrine journal. 2017:EJ17-0191.

18. Khoshi A, Sirghani A, Ghazisaeedi M, Mahmudabadi AZ, Azimian A. Association between TPO Asn698Thr and Thr725Pro gene polymorphisms and serum anti-TPO levels in Iranian patients with subclinical hypothyroidism. Hormones. 2017;16(1):75-83.

19. Begum M, Islam MT, Hossain SR, Bhuyan GS, Halim MA, Shahriar I, et al. Mutation spectrum in TPO gene of Bangladeshi patients with thyroid dyshormonogenesis and analysis of the effects of different mutations on the structural features and functions of TPO protein through in silico approach. BioMed research international. 2019;2019.

20. Effraimidis G, Tijssen JGP, Wiersinga WM. Discontinuation of Smoking Increases the Risk for Developing Thyroid Peroxidase Antibodies and/or Thyroglobulin Antibodies: A Prospective Study. The Journal of Clinical Endocrinology & Metabolism. 2009;94(4):1324-8.
21. Zhang Y, Shi L, Zhang Q, Peng N, Chen L, Lian X, et al. The association between cigarette smoking and serum thyroid stimulating hormone, thyroid peroxidase antibodies and thyroglobulin antibodies levels in Chinese residents: A cross-sectional study in 10 cities. PLOS ONE. 2019;14(11):e0225435.

22. Li Y, Teng D, Shan Z, Teng X, Guan H, Yu X, et al. Antithyroperoxidase and antithyroglobulin antibodies in a five-year follow-up survey of populations with different iodine intakes. The Journal of Clinical Endocrinology & Metabolism. 2008;93(5):1751-7.

23. Song RH, Wang B, Yao QM, Li Q, Jia X, Zhang JA. The Impact of Obesity on Thyroid Autoimmunity and Dysfunction: A Systematic Review and Meta-Analysis. Frontiers in immunology. 2019;10:2349.

24. Habib A, Molayemat M, Habib A. Elevated serum TSH concentrations are associated with higher BMI Z-scores in southern Iranian children and adolescents. Thyroid research. 2020;13:9.

25. Bhowmick SK, Dasari G, Levens KL, Rettig KR. The prevalence of elevated serum thyroid-stimulating hormone in childhood/adolescent obesity and of autoimmune thyroid diseases in a subgroup. Journal of the National Medical Association. 2007;99(7):773-6.

26. Gremese E, Tolusso B, Gigante MR, Ferraccioli G. Obesity as a risk and severity factor in rheumatic diseases (autoimmune chronic inflammatory diseases). Frontiers in immunology. 2014;5:576.

27. Zynat J, Li S, Ma Y, Han L, Ma F, Zhang Y, et al. Impact of Abdominal Obesity on Thyroid Auto-antibody Positivity: Abdominal Obesity Can Enhance the Risk of Thyroid Autoimmunity in Men. 2020;2020:6816198.
28. Takyar M, Rahmani M, Amouzegar A, Madreseh E, Tohidi M, Mehran L, et al. Parity and Incidence of Thyroid Autoimmunity: A Population-Based Tehran Thyroid Study. Thyroid. 2020.

29. Pedersen IBl, Laurberg P, Knudsen N, Jørgensen T, Perrild H, Ovesen L, et al. Lack of association between thyroid autoantibodies and parity in a population study argues against microchimerism as a trigger of thyroid autoimmunity. European journal of endocrinology. 2006;154(1):39-45.

30. Bjergved L, Carlé A, Jørgensen T, Perrild H, Laurberg P, Krejbjerg A, et al. Parity and 11-year serum thyrotropin and thyroid autoantibody change: a longitudinal population-based study. Thyroid. 2016;26(2):203-11.

31. Walsh JP, Bremner AP, Bulsara MK, O’Leary P, Leedman PJ, Feddema P, et al. Parity and the Risk of Autoimmune Thyroid Disease: A Community-Based Study. The Journal of Clinical Endocrinology & Metabolism. 2005;90(9):5309-12.

32. Sgarbi JA, Kasamatsu TS, Matsumura LK, Maciel RM. Parity is not related to autoimmune thyroid disease in a population-based study of Japanese-Brazilians. Thyroid. 2010;20(10):1151-6.
Tables and figures

Figure 1: Flowchart of participants in Tehran Thyroid Study (TTS)

5783 total population in TTS

- Have no genotype: 416
- TPOAb+ in phase 1: 521
- TPOAb+ new cases in phase 2: 266
- TPOAb+ during phases (2 or 3 or 4): 294 (6.5%)
- TPOAb- entire phases (1 to 4): 4237 (93.5%)

5327 cross-sectional assessment

- Total thyroidectomy and pregnant women in phase 1 & 2: 40
- missing data: 9

4531 cohort assessment

- have no genotype: 416
- TPOAb+ in phase 1: 521
- TPOAb+ new cases in phase 2: 266
- TPOAb+ during phases (2 or 3 or 4): 294 (6.5%)
- TPOAb- entire phases (1 to 4): 4237 (93.5%)

5783 total population in TTS
	TPOAb negative*	TPOAb positive*	P-Value
Age, years, mean(± SD)	40.06(±11.66)	41.18(±13.47)	0.02
Sex, n(%)			
Male, 2209(42%)	2032(91.9%)	177(8.0%)	<0.001
Female, 3109(58%)	2499(81.0%)	610(19.0%)	OR:2.62 (95%CI 2.34-3.34)
Smoking, n(%)			
daily	290(81%)	68(19%)	0.65
no	3020(81.2%)	697(18.8%)	
sometime	1221(98.3%)	22(1.7%)	
BMI (kg/m2), mean ±SD	26.38±4.68	27.94±5.62	<0.001
Parity, number			
Mean (min-max)	2.17	3.02	0.46
(SD)	(0.38)	(3.04)	
OCP in women*** n(%)			
yes	1603(79.1%)	422(20.9%)	<0.001
no	896(82.6%)	188(17.4%)	OR:1.25 (95%CI 1.04-1.51)

* Positive TPOAb means TPOAb≥35 IU / ml

** The number and percentage of TPOAb positive and negative individuals were evaluated based on all individuals in phase 1 and 2.

*** based on OCP use in Phase 2 (OCP consumption information in Phase 1 not available)
Table 2: Significant associations between 17 SNPs and Positive TPOAb in Cross-Sectional approach after adjustment for confounders *

SNP	Genotype	Genotype	OR	P-value	SNP	Genotype	Genotype	OR	P-value	
rs4490233	(AA) ref.	403	20		rs3755551	(TT) ref.	334	20	<0.001	
	(AG)	1869	222	2.266		(TC)	1729	275	2.496	<0.001
	(GG)	2151	538	4.879		(CC)	2361	482	3.338	<0.001
rs13423589	(TT) ref.	117	6	<0.001	rs938330	(CC) ref.	486	194		
	(TG)	1185	254	3.686		(CT)	1898	422	0.527	<0.001
	(TG)	3125	520	2.29		(TT)	2036	164	0.199	<0.001
rs11897977	(GG) ref.	49	4		rs4927621	(GG) ref.	870	80		
	(GA)	915	261	3.083		(GA)	2155	397	1.937	<0.001
	(AA)	3456	515	1.66		(AA)	1403	303	2.433	<0.001
rs2071402	(AA) ref.	795	22		rs12465127	(AA) ref	929	249		
	(AG)	2088	339	5.612		(AG)	2137	374	0.632	<0.001
	(GG)	1534	419	10.03		(GG)	1362	155	0.428	<0.001
rs10193983	(AA) ref.	60	107		rs17732233	(TT) ref.	342	229		
	(AG)	877	384	0.247		(TC)	1698	393	0.317	<0.001
	(GG)	3488	288	0.046		(CC)	2388	156	0.094	<0.001
rs1967512	(CC) ref.	444	175		rs1126799	(CC) ref.	1101	137		
	(CT)	1833	561	0.75		(CT)	2208	398	1.398	0.002
	(TT)	2148	43	0.048		(TT)	1112	243	1.77	<0.001
rs2070882	(TT) ref.	896	278		rs2048727	(AA) ref.	1931	184		
	(TC)	2132	373	0.546		(AG)	1946	374	0.486	<0.001
	(CC)	1399	129	0.29		(GG)	547	205	0.247	<0.001
rs6588678	(GG) ref.	1899	205		rs6605278	(TT) ref.	116	175		
	(GA)	1965	416	1.88		(TC)	1126	561	0.311	<0.001
	(AA)	563	157	2.512		(CC)	3185	43	0.008	<0.001
rs2048722	(GG) ref.	966	134							
	(GA)	2162	441	1.468						
	(AA)	1294	204	1.176					0.19	

* Confounders were age, sex, BMI, smoking and number of parities. Age, gender and BMI had significant effect on positive TPOAb and smoking had significant protective effect.
Table 3: Significant associations between 6 SNPs and TPOAb seroconversion in longitudinal study before and after adjustment for confounder variables.*

SNP	Genotype	Before Adjustment	After Adjustment*						
		L95	U95	P-value	OR	L95	U95	P-value	
rs9326161	(TT) ref.	0.287	0.076	1.081	0.065	0.292	0.051	1.686	0.169
	(TC)	0.227	0.063	0.820	0.024	0.202	0.037	1.092	0.063
	(CC)	0.227	0.06	0.865	0.03	0.297	0.034	2.609	0.273
rs13431646	(TT) ref.	0.258	0.072	0.922	0.037	0.314	0.038	2.570	0.280
	(TC)	0.227	0.06	0.865	0.03	0.297	0.034	2.609	0.273
	(CC)	0.258	0.072	0.922	0.037	0.314	0.038	2.570	0.280
rs11896517	(CC) ref.	0.444	0.191	1.032	0.059	0.651	0.166	2.555	0.538
	(CT)	0.404	0.18	0.907	0.028	0.461	0.122	1.744	0.254
	(TT)	0.408	0.228	0.73	0.003	0.283	0.125	0.641	<0.001
rs6605278	(TT) ref.	0.379	0.219	0.656	0.001	0.237	0.108	0.516	<0.001
	(TC)	0.408	0.228	0.73	0.003	0.283	0.125	0.641	<0.001
	(CC)	0.379	0.219	0.656	0.001	0.237	0.108	0.516	<0.001
rs4927624	(CC) ref.	0.830	0.621	1.109	0.208	0.711	0.474	1.066	0.099
	(CT)	0.797	0.564	1.126	0.198	0.594	0.359	0.985	0.044
	(TT)	0.823	0.613	1.104	0.194	0.653	0.434	0.981	0.04
rs1126799	(CC) ref.	0.810	0.574	1.144	0.231	0.583	0.354	0.961	0.034
	(CT)	0.823	0.613	1.104	0.194	0.653	0.434	0.981	0.04
	(TT)	0.810	0.574	1.144	0.231	0.583	0.354	0.961	0.034

* Confounder were age, sex, BMI, smoking, number of parities and OCP consumption.
Table 4: Association between TPO gene SNPs blocks (based on common LD) and TPOAb positivity in cross-sectional and longitudinal approaches with SKAT software

BLOCK	SNP	POSITION	MAP1	MAP2	BLOCK	SNP	POSITION	MAP1	MAP2
1	rs4490233	1372933	0.729	0.438	10	rs13431646	1472441	0.182	0.667
	rs13423589	1373270				rs6588678	1479168		
	rs4076290	1375171				rs2048722	1492028		
	rs11897977	1380953	0.434	0.341		rs1126797	1494031		
	rs10153889	1393643				rs13430369	1494742		
	rs10190521	1394200				rs2276704	1495956	0.015	0.575
	rs1996207	1394528				rs13431173	1496098		
2	rs938326	1398009	0.094	0.554	11	rs3755551	1498985		
	rs938326	1398009				rs938330	1502370		
3	rs11211644	1400723				rs12465127	1504913	0.438	0.733
	rs1496588	1403306							
	rs11675342	1403856							
	rs11675434	1404043							
	rs13400534	1408111							
	rs11682968	1408458							
4	rs2071402	1413427	0.009	0.051	13	rs13398180	1513015	0.846	0.897
	rs10193983	1419511							
5	rs1967512	1419728	0.061	0.351	14	rs13398180	1513015	0.846	0.897
	rs9678469	1423335							
6	rs10519477	1427818	0.878	0.995	15	rs11896517	1514340	0.259	0.629
	rs4927606	1431524							
	rs1514684	1437406	0.061	0.351					
7	rs9751407	1437777	0.484	0.119	16	rs17732233	1515292		
	rs7602332	1446194				rs1126799	1516904	0.238	0.843
	rs1024515	1447925				rs2048727	1519979		
8	rs4927608	1449756				rs4927625	1521757	0.345	0.640
	rs2070882	1454229				rs6605278	1543458		
	rs6706775	1455689							
	rs4927611	1456232	0.544	0.309					
	rs4927612	1456368							
	rs4927616	1459113							
9	rs6732480	1459640							

MAP = Minimum Achieved P-value (significant is MAP <0.05)

*MAP in cross-sectional stage

**MAP in cohort stage
Table 5: Polymorphisms with significant association

Significant SNPs in the first stage (cross-sectional) after adjusting variables	Significant SNPs in the second stage (longitudinal) before adjusting variables	Significant SNPs in the second stage (longitudinal) after adjusting the variables	Significant SNPs in the SKAT analysis in cross-sectional stage
rs4490233	rs9326161	rs4927624	(Block 4): rs11211644
rs13423589	rs13431646	rs1126799*	rs1546588
rs11897977	rs11896517	rs6605278*	rs11675342
rs2071402	rs6605278*		rs11675434
rs10193983			rs13400534
rs1967512			rs11682968
rs2070882			
rs6588678			
rs2048722**			
rs3755551**			
rs938330**			
rs4927621			
rs12465127			
rs17732233			
rs1126799*			
rs2048727			
rs6605278*			

* Both in the cross-sectional and longitudinal study is significant.

** Both in the logistic regression and in the SKAT analysis (in the cross-sectional stage) is significant.
