CD133 and membrane microdomains: Old facets for future hypotheses

Christine A Fargeas, Jana Karbanová, József Jászai, Denis Corbeil

Abstract
Understanding all facets of membrane microdomains in normal and cancerous cells within the digestive tract is highly important, not only from a clinical point of view, but also in terms of our basic knowledge of cellular transformation. By studying the normal and cancer stem cell-associated molecule CD133 (prominin-1), novel aspects of the organization and dynamics of polarized epithelial cells have been revealed during the last decade. Its association with particular membrane microdomains is highly relevant in these contexts and might also offer new avenues in diagnosis and/or targeting of cancer stem cells.

Key words: AC133; Cancer; CD133; Membrane microdomains; Membrane vesicles; Prominin-1; Stem cell

Peer reviewer: Zoran Krivokapic, Professor, Dr., MD, FRCS, Institute for Digestive Disease, First Surgical Clinic, Clinical Center of Serbia, 6, Dr Koste Todorovica, Belgrade 11000, Serbia

TO THE EDITOR

We read with great interest a recent Editorial entitled “Multifaceted nature of membrane microdomains in colorectal cancer” by Jahn et al[1] published in issue 17 of the World Journal of Gastroenterology 2011 which proposes to describe the pioneering and recent studies on membrane microdomains (the so-called lipid rafts) and their potential roles in cancers. An important section dealing with prominin-1 (alias CD133), a cholesterol-binding glycoprotein often described as a stem and cancer stem cell marker, is unfortunately entirely based on a single publication released in 2009[2], thus leaving out valuable biochemical and morphological information concerning CD133 and membrane microdomains from earlier works. We fear that as such, it might lead to underestimation of the importance and complexity of such a molecular association and contribute to certain confusion, particularly with regard to the debated AC133 epitope of CD133 and its association with cancer. We propose to expose here earlier overlooked data regarding its expression in epithelial cells and summarize the current knowledge on its cell biology and association with distinctive membrane microdomains. We hope that this might enlighten current issues regarding the implication of CD133 in colorectal cancer, whether it is in metastases, or as a prognostic marker or as a cancer stem cell marker. Actually, the demonstration of the presence of CD133 in Caco-2 cells and its association with membrane microdomains is much less recent than 2009, since it was more than a decade ago that we reported its presence.
in this widely used human colon carcinoma-derived cell line\cite{3}. The detection of CD133 by immunolabeling was originally documented by its particular epitope AC133 that appeared to be restricted to stem/progenitor cell populations but was also thought to be dependent on conformation and/or sensitive to changes in glycosylation\cite{4}. This antigen was attractive in the context of stem/progenitor and cancer stem cells and has often been used to define them in numerous organ systems including the digestive tract, but at the same time controversy was generated on the implication of CD133 as a specific marker\cite{5-10}.

We have previously demonstrated in a key publication of 2000 using the Caco-2 cells as a model of enterocyte epithelial differentiation\cite{11} together with a later study\cite{12}, that the AC133 epitope, but neither the CD133 transcript nor the CD133 protein, is down-regulated upon differentiation, with the result that only a minute sub-fraction of CD133 molecules will carry it\cite{13}. We have therefore stressed several times in the literature that it is important to consider that AC133 antibody detects only a subpopulation of human prominin-1/CD133 glycoproteins carrying the AC133 epitope, and that consequently, AC133 antigen is not fully synonymous with CD133\cite{11-13}. The importance of CD133 glycosylation states for the definition of cancer stem cells has been analyzed by Bindlmaier and colleagues\cite{14}. In the meantime, the prominin-1 (PROM1) gene was shown to be transcriptionally active all along the gastrointestinal tract as CD133 mRNA is detectable by Northern blot\cite{15}, and several studies have demonstrated that in humans, as in mice, its protein is physiologically expressed in several differentiated epithelia\cite{16-20}. Thus, the AC133 epitope might be simply down- or up-regulated during the process of differentiation or transformation, respectively\cite{11-13}. The alteration of the general glycosylation pattern of intestinal cells might explain such a phenomenon\cite{21}. Importantly, the lack of AC133 detection might additionally reflect its instability\cite{22} or its differential accessibility\cite{23} (see below). Of note, the proportion of CD133 molecules carrying (or not) the AC133 epitope in a given differentiated cell remains, however, unknown.

As proposed earlier\cite{19} and pointed out in the Editorial of Jahn and colleagues, the molecular environment surrounding CD133 within the plasma membrane might influence the detection of certain epitopes (e.g., AC133 or those within putative ganglioside-binding sites\cite{24}). To fully appreciate the importance of CD133, one should bear in mind that, at the subcellular level, CD133 selectively marks plasma membrane protrusions, e.g., microvilli and primary cilia, that are located in the apical domain of polarized epithelial cells including Caco-2 cells, and was therefore originally named prominin (from Latin, *prominen*, meaning to project). Within these protrusions, CD133 binds directly to plasma membrane cholesterol\cite{25,26} and is incorporated into membrane microdomains that differ from those found in non-protruding areas of the plasma membrane, as demonstrated biochemically using mild detergents\cite{27}, and morphologically by co-localization with the ganglioside GM1\cite{28}. Such protein-lipid interactions appear essential to maintain the proper localization of CD133 in microvilli\cite{29}, and potentially its physiological function which yet remains elusive\cite{29,30}. Thus, the direct binding of certain gangliosides to CD133\cite{26,27} within the densely packed lipid microdomain might mask some CD133 epitope(s), particularly those in the vicinity of the membrane. Technically, they might be revealed, at least in part, using sensitive methods including harsh conditions for antigen retrieval as in the case of native tissues\cite{8,9,30,31}, upon cell-detachment as in the case of cell lines (e.g., Caco-2 cells)\cite{32}, or by chemical interference with membrane microdomain integrity\cite{33}.

Although tightly associated with plasma membrane, CD133 is nonetheless released into numerous physiological body fluids including urine, saliva, seminal fluids and cerebrospinal fluids in association with small membrane vesicles\cite{34}. It is important to point out that such vesicles are budding from the tip of a microvillus or primary cilium by a molecular mechanism involving cholesterol-dependent membrane microdomains\cite{35,36}. In other words, their release might be modulated by the cholesterol level (and possibly that of other lipids) within the plasma membrane. Interestingly, such release occurs solely during and after the differentiation of Caco-2 cells or, *in vivo*, of neural progenitor cells\cite{37}. Based on the latter observation and the expression of CD133 (AC133 epitope in the case of humans) by numerous somatic stem cells, the concept of “stem cell-specific membrane microdomains” was postulated\cite{38}. Given that membrane microdomains are implicated in several signaling cascades by allowing the formation of active transduction complexes\cite{39}, CD133-containing membrane microdomains might carry and/or functionally organize molecular determinants essential to maintain the stem cell and undifferentiated cell properties and their loss or disposal, e.g., via membrane vesicles, and could modify the status or even the fate of the cells\cite{33,39}. Yet, these microdomains, given their dependence on cholesterol, seem to differ from those defined by Hakomori and co-workers in the glycosynapse concept, and which have been implicated in several biological phenomena related to tumorigenesis\cite{35,38}. However, the coalescence of small CD133-lipid entities into the largest platform within the microvillus membranes might be dragged by carbohydrate moieties, as proposed earlier\cite{33,35,36}. Thus, a certain interdependence of lipid rafts and glycosynapses *per se* might exist. Whether CD133 molecules carrying AC133 epitope are preferentially released upon differentiation remains to be determined. Collectively, numerous physiological and technical parameters might interfere with immuno-detection of certain CD133 epitopes, and importantly, the lack of their detection needs to be evaluated with some caution, and maybe alternative methods such as *in situ* hybridization should complement the investigation\cite{18,30}.

Clinically, in addition to its potential value as a biomarker in tissue diagnosis, the association of CD133/
lipid complexes with extracellular membrane vesicles might offer an alternative screening method for the detection of cancers associated with the digestive tract as demonstrated for central nervous system diseases. Moreover, CD133 expression by cancer stem cells might contribute to outlining new prospects for more effective cancer therapy by targeting tumor-initiating cells.

REFERENCES

1 Jahn KA, Su Y, Brait F. Multifaceted nature of membrane microdomains in colorectal cancer. World J Gastroenterol 2011; 17: 681-690
2 Tábe N, Maresca M, Guo XJ, Garmy N, Fantini J, Yahi N. The first extracellular domain of the tumour stem cell marker CD133 contains an anti-ganglioside-binding motif. Cancer Lett 2009; 278: 164-173
3 Corbel D, Röper K, Hellwig A, Tavsan M, Miraglia S, Watt SM, Simmons PJ, Peault B, Buck DW, Huttner WB. The human AC133 hemeporotic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem 2000; 275: 5512-5520
4 Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, Bray RA, Waller EK, Buck DW. A novel five-transmembrane hemeporotic stem cell antigen: isolation, characterization, and molecular cloning. Blood 1999; 90: 5013-5021
5 Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R. Identification and expansion of human colon-cancer-initiating cells. Nature 2007; 445: 111-115
6 O’Brien CA, Pollett A, Gallinger S, Dick J.E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007; 445: 106-110
7 Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushn A, Mille T, St Clair R, Baljevic M, Theuer K, Huttner WB, Corbeil D. Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. J Clin Invest 2008; 118: 2111-2120
8 Immervoll H, Hoem D, Sakariassen PØ, Steffensen OJ, Mol AH, Miraglia S, Corbeil D. Prominin-1, prominin-2, etc.: prominin family gene products in need of a rational nomenclature. PROMININ-1 (CD133): from progenitor cells to human diseases. Future Lipidol 2006; 1: 213-225
10 Bidlingmaier S, Zhu X, Liu B. The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells. J Mol Med (Berl) 2008; 86: 1025-1032
11 Fargeas CA, Florek M, Huttner WB, Corbel D. Characterization of prominin-2, a new member of the prominin family of pentaspan membrane glycoproteins. J Biol Chem 2003; 278: 8586-8596
12 Weigmann A, Corbel D, Hellwig A, Huttner WB. Prominin-1, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasma membrane protrusions of non-epithelial cells. Proc Natl Acad Sci USA 1997; 94: 12425-12430
13 Fargeas CA, Jaeser A, Missol-Kolka E, Hellwig A, Huttner WB, Corbel D. Identification of novel Prominin-1/CD133 splice variants with alternative C-termini and their expression in epidermis and testis. J Cell Sci 2004; 117: 4301-4311
14 Jászai J, Janich P, Farkas LM, Fargeas CA, Huttner WB, Corbel D. Differential expression of Prominin-1 (CD133) and Prominin-2 in major cephalic exocrine glands of adult mice. Histochim Cell Biol 2007; 128: 409-419
15 Karbanová J, Missol-Kolka E, Fonseca AV, Lorra C, Janich P, Hollerová H, Jászai J, Ehrmann J, Kolář Z, Liebers C, Arl S, Subrtová D, Freund D, Mokry J, Huttner WB, Corbel D. The stem cell marker CD133 (Prominin-1) is expressed in various human glandular epithelia. J Histochem Cytochem 2008; 56: 977-993
16 Missol-Kolka E, Karbanová J, Janich P, Haase M, Fargeas CA, Huttner WB, Corbel D. Prominin-1 (CD133) is not restricted to stem cells located in the basal compartment of murine and human prostate. Prostate 2011; 71: 254-267
17 Ogier-Denis E, Codogno P, Chantret I, Trugnan G. The processing of asparaginyl-linked oligosaccharides in HT-29 cells is a function of their state of enterocytic differentiation. An accumulation of Man9,8-GlcNAc2-Asn species is indicative of an impaired N-glycan trimming in undifferentiated cells. J Biol Chem 1988; 263: 6031-6037
18 Zhou F, Cui C, Ge Y, Chen H, Li Q, Yang Z, Wu G, Sun S, Chen K, Gu J, Jiang J, Wei Y. Alpha2,3-Sialylation regulates the stability of stem cell marker CD133. J Biochem 2010; 148: 273-280
19 Dubreuil V, Marzesse AM, Corbel D, Huttner WB, Wilsch-Bräuninger M. Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1. J Cell Biol 2007; 176: 483-495
20 Florek M, Bauer N, Janich P, Wilsch-Braeuninger M, Fargeas CA, Marzesce AM, Ehninger G, Thiele C, Huttner WB, Corbel D. Prominin-2 is a cholesterol-binding protein associated with apical and basolateral plasmamembranous protrusions in polarized epithelial cells and released into urine. Cell Tissue Res 2007; 328: 311-347
21 Röper K, Corbel D, Huttner WB. Retention of prominin in microvilli reveals distinct cholesterol-based lipid microdomains in the apical plasma membrane. Nat Cell Biol 2000; 2: 582-592
22 Marzesse AM, Wilsch-Bräuninger M, Dubreuil V, Janich P, Langenfeld K, Thiele C, Huttner WB, Corbel D. Release of extracellular membrane vesicles from microvilli of epithelial cells is enhanced by depleting membrane cholesterol. FEBS Lett 2009; 583: 897-902
23 Janich P, Corbel D. GM1 and GM3 gangliosides highlight distinct lipid microdomains within the apical domain of epithelial cells. FEBS Lett 2007; 581: 1783-1787
24 Corbel D, Röper K, Fargeas CA, Jaeser A, Huttner WB. Prominin: a story of cholesterol, plasma membrane protrusions and human pathology. Traffic 2001; 2: 82-91
25 Zachigina S, Oh H, Wilsch-Bräuninger M, Missol-Kolka E, Jászai J, Jansen S, Tanamoto N, Tonagel F, Seelig M, Huttner WB, Corbel D, Dewerchin M, Vinckier S, Moons L, Carmeliet P. Loss of the cholesterol-binding protein prominin-1/CD133 causes disc dysmorphogenesis and photoreceptor degeneration. J Neurosci 2009; 29: 2297-2308
26 Lardon J, Corbel D, Huttner WB, Ling Z, Bouwens L. Stem cell marker prominin-1/AC133 is expressed in duct cells of...
Fargeas CA et al. CD133 and membrane microdomains

the adult human pancreas. Pancreas 2008; 36: e1-e6

31 Kemper K, Sprick MR, de Bree M, Scopelliti A, Vermeulen L, Hoek M, Zeilstra J, Pals ST, Mehmet H, Stassi G, Medema JP. The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res 2010; 70: 719-729

32 Jaksch M, Múnera J, Bajpai R, Terskikh A, Oshima RG. Cell cycle-dependent variation of a CD133 epitope in human embryonic stem cell, colon cancer, and melanoma cell lines. Cancer Res 2008; 68: 7882-7886

33 Marzesco AM, Janich P, Wilsch-Bräuninger M, Dubreuil V, Langenfeld K, Corbeil D, Huttner WB. Release of extracellular membrane particles carrying the stem cell marker promin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 2005; 118: 2849-2858

34 Corbeil D, Marzesco AM, Fargeas CA, Huttner WB. Prominin-1: a distinct cholesterol-binding membrane protein and the organisation of the apical plasma membrane of epithelial cells. Subcell Biochem 2010; 51: 399-423

35 Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000; 1: 31-39

36 Bauer N, Fonseca AV, Florek M, Freund D, Jászai J, Bornhäuser M, Fargeas CA, Corbeil D. New insights into the cell biology of hematopoietic progenitors by studying prominin-1 (CD133). Cells Tissues Organs 2008; 188: 127-138

37 Hakomori SI. Structure and function of glycosphingolipids and sphingolipids: recollections and future trends. Biochim Biophys Acta 2008; 1780: 325-346

38 Regina Todeschini A, Hakomori S. Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim Biophys Acta 2008; 1780: 421-433

39 Jászai J, Fargeas CA, Graupner S, Tanaka EM, Brand M, Huttner WB, Corbeil D. Distinct and conserved prominin-1/CD133-positive retinal cell populations identified across species. PLoS One 2011; 6: e17590

40 Huttner HB, Janich P, Köhrmann M, Jászai J, Siebzehnrubl F, Blümcke I, Suttrop M, Gahr M, Kuhnt D, Nimsy C, Krex D, Schackert G, Löwenbrück K, Reichmann H, Jüttler E, Hacke W, Schellinger PD, Schwab S, Wilsch-Bräuninger M, Marzesco AM, Corbeil D. The stem cell marker prominin-1/CD133 on membrane particles in human cerebrospinal fluid offers novel approaches for studying central nervous system disease. Stem Cells 2008; 26: 698-705

S- Editor Sun H L- Editor Logan S E- Editor Zhang DN