Molecular state $N\Xi$ in the coupled-channel formalism

S.M. Gerasyuta and E.E. Matskevich

Department of Physics, St. Petersburg State Forest Technical University, Institutski Per. 5, St. Petersburg 194021, Russia

The relativistic six-quark equations for the molecule $N\Xi$ are found in the dispersion relation technique. The relativistic six-quark amplitudes of the hexaquark including the quarks of three flavors (u, d, s) are calculated. The pole of these amplitudes determines the mass of $N\Xi$ state $M = 2252 \text{ MeV}$. The binding energy is equal to 3 MeV.

PACS numbers: 11.55.Fv, 11.80.Jy, 12.39.Ki, 12.39.Mk.
Keywords: hexaquarks, dispersion relation technique.

I. INTRODUCTION.

The H-particle, $N\Omega$-state and $N\Omega$ may be strong interaction stable [1]. Jaffe studied the color-magnetic interaction of the one-gluon-exchange potential in the multiquark system and found the most attractive channel is the flavor singlet with quark content $u^2d^2s^2$. The same symmetry analysis of the chiral boson exchange potential leads to the similar result [2]. Up to now, these three interesting candidates of dibaryons are still not found or confirmed by experiments. It seems that one should go beyond these candidates and should search the possible candidates in a wider region, in terms of a more reliable model.

There were a number of theoretical predictions by using various models: the quark-delocalization model [3, 4], the flavor $SU(3)$ skyrmion model [5], the chiral $SU(3)$ quark model [6], the the quark cluster model [7, 8]. By employing the chiral $SU(3)$ quark model Zhang and Yu studied $\Omega\Omega$ and $\Sigma\Omega$ states [9, 10]. Lomon predicted a deuteron-like dibaryon resonance using R-matrix theory [11].

In our previous paper [12] the relativistic six-quark equations are found in the framework of coupled-channel formalism. The dynamical mixing between the subamplitudes of hexaquark is considered. The six-quark amplitudes of dibaryons are calculated. The poles of these amplitudes determine the masses of dibaryons. We calculated the contribution of six-quark subamplitudes to the hexaquark amplitudes.

II. SIX-QUARK AMPLITUDES OF MOLECULAR STATE $N\Xi$.

We derive the relativistic six-quark equations in the framework of the dispersion relation technique. We use only planar diagrams; the other diagrams due to the rules of $1/N_c$ expansion [13-15] are neglected.

We shall consider the derivation of the relativistic generalization of the Faddeev-Yakubovsky approach [16]. In our case the low-lying dibaryons are considered. We take into account the pairwise interaction of all six quarks in the hexaquark.

For instance, we consider the reduced amplitude $\alpha^{112^*}_{11}$ (Fig. 1). The system of graphical equations in Fig. 1. determines the subamplitudes using the self-consistent method [12].

The coefficients are determined by the permutation of quarks [17, 18]. We should use the coefficient multiplying of the diagrams in the graphical equation Fig. 1.

In Fig. 1 the first coefficient is equal to 4, that the number $4 = 2$ (permutation of particles 1 and 2) $\times 2$ (permutation of particles 5 and 6); the second coefficient is equal to 4, that the number $4 = 2$ (permutation of particles 1 and 2) $\times 2$ (permutation of particles 3 and 4); the third coefficient is equal to 4, that the number $4 = 2$ (permutation of particles 1 and 2) $\times 2$ (permutation of particles 5 and 6); the fourth coefficient is equal to 8, that the number $8 = 2$ (permutation of particles 1 and 2) $\times 2$ (permutation of particles 3 and 4) $\times 2$ (permutation of particles 5 and 6); the fifth coefficient is equal to 8, that the number $8 = 2$ (permutation of particles 1 and 2) $\times 2$ (permutation of particles 3 and 4) $\times 2$ (permutation of particles 5 and 6); the sixth coefficient is equal to 8, that the number $8 = 2$ (permutation of particles 1 and 2) $\times 2$ (permutation of particles 3 and 4) $\times 2$ (permutation of particles 5 and 6).

The system of equations for the state $N\Xi$ is given in the Appendix A.
III. CALCULATION RESULTS.

The quark masses of model $m_{u,d} = 410 \text{ MeV}$ and $m_s = 557 \text{ MeV}$ coincide with the ordinary baryon ones in our model \cite{19, 20}. The model in question has only three parameters: the cutoff parameter $\Lambda = 11$ (similar to the three quark model) and the gluon coupling constants g_0 and g_1. These parameters are determined by the $\Lambda\Lambda$ and the di-Ω masses. We have considered the two type of calculations \cite{12}. In the first case we use the gluon coupling constants $g_0 = 0.653$ (diquark 0^+) and $g_1 = 0.292$ (diquark 1^+), which are fitted by the $\Lambda\Lambda$ state with the mass 2173 MeV and the di-Ω with the mass 3232 MeV, respectively. In the second case the gluon coupling constants $g_0 = 0.647$ and $g_1 = 0.325$ are determined by the masses of $\Lambda\Lambda$ state with the $M = 2171 \text{ MeV}$ and the di-Ω state $M = 3093 \text{ MeV}$. The experimental data of these masses are absent, therefore we use the results of paper \cite{4}. In our model the correlation of gluon coupling constants g_0 and g_1 is similar to the S-wave baryon ones. It seems that the first case must prefer that the deuterium state is described more exact.

IV. CONCLUSIONS.

Jaffe considered the most attractive channel of dibaryons (strangeness $S = -2$, isospin $I = 0$, spin-parity $J^P = 0^+$). The molecular state $N\Xi$ (2252 MeV) with the quantum numbers $SIJ = -2, 0, 0$ possesses the binding energy $B = 3 \text{ MeV}$. The binding energy of deuteron is equal to $B = 2.226 \pm 0.003 \text{ MeV}$. The calculated subamplitudes A_i are given in the Table I. The other interesting states give rise to the following binding energy: $\Lambda\Lambda$ (the binding energy $B = 59 \text{ MeV}$) $SIJ = -2, 0, 0$; $N\Lambda$ (the binding energy $B = 32 \text{ MeV}$) $SIJ = -1,
\frac{1}{2}, 1$; $N\Omega$ (the binding energy $B = 39 \text{ MeV}$) $SIJ = -3,
\frac{1}{2}, 2$. The molecule $N\Xi$ will be able to obtain experimentally.

Acknowledgments

The authors would like to thank T. Barnes for useful discussions. The work was carried with the support of the Russian Ministry of Education (grant 2.1.1.68.26) and RFBR, Research Project No. 13-02-91154.

[1] R.L. Jaffe, Phys. Rev. Lett. 38, 195 (1977).
[2] F. Wang, J.L. Ping, H.R. Pang and T. Goldman, Mod. Phys. Lett. A18, 356 (2003).
[3] F. Wang, G.H. Wu, L.J. Teng and T. Goldman, Phys. Rev. Lett. 69, 2901 (1992).
[4] T. Goldman, K. Maltman, G.J. Stephenson Jr, J.-L. Ping and F. Wang, Mod. Phys. Lett. A13, 59 (1998).
[5] V.B. Kopeliovich, Nucl. Phys. A639, 75 (1998).
[6] Z.Y. Zhang, Y.W. Yu, X.Q. Yuen et al., Nucl. Phys. A670, 178 (2000).
[7] T. Kamae and T. Fujita, Phys. Rev. Lett. 38, 471 (1977).
[8] K. Yazaki, Prog. Theor. Phys. Suppl. 91, 146 (1987).
[9] Y.W. Yu, Z.Y. Zhang and X.Q. Yuan, Commun. Theor. Phys. 31, 1 (1999).
[10] Y.W. Yu, Z.Y. Zhang and X.Q. Yuan, High Energy Phys. and Nucl. Phys. 23, 859 (1999).
[11] P. LaFrance and E.L. Lomon, Phys. Rev. D34, 1341 (1986).
[12] S.M. Gerasyuta and E.E. Matskevich, Phys. Rev. D82, 056002 (2010).
[13] G.’t Hooft, Nucl. Phys. B72, 461 (1974).
[14] C. Veneziano, Nucl. Phys. B117, 519 (1976).
[15] E. Witten, Nucl. Phys. B160, 57 (1979).
[16] S.M. Gerasyuta, V.I. Kochkin and E.E. Matskevich, Tetraquarks, pentaquarks, hexaquarks in the relativistic quark model (St. Petersburg University, St. Peterburg, 2012), p. 200.
[17] O.A. Yakubovsky, Sov. J. Nucl. Phys. 5, 1312 (1967).
[18] S.P. Merkuriev and L.D. Faddeev, Quantum Scattering Theory for System of Few Particles (Nauka, Moscow, 1985) p. 398.
[19] S.M. Gerasyuta, Nuovo Cim. A106, 37 (1993).
[20] S.M. Gerasyuta, Z. Phys. C60, 683 (1993).
Appendix A: The system of equations for the molecule $N\Xi$.

\[\alpha_1^{uu} = \lambda + 4 \alpha_1^{0,dd} I_1(1^{uu}0^{ud}) + 4 \alpha_1^{0,ss} I_1(1^{uu}0^{us}) + 8 \alpha_2^{0,dd0,us} I_2(1^{uu0,ud0,us}) , \]

(\text{A1})

\[\alpha_1^{dd} = \lambda + 4 \alpha_1^{0,dd} I_1(1^{dd}0^{ud}) + 4 \alpha_1^{0,ss} I_1(1^{dd}0^{ds}) + 8 \alpha_2^{0,dd0,ds} I_2(1^{dd}0^{ud0,ds}) , \]

(\text{A2})

\[\alpha_1^{ss} = \lambda + 4 \alpha_1^{0,ss} I_1(1^{ss}0^{us}) + 4 \alpha_1^{0,ds} I_1(1^{ss}0^{ds}) , \]

(\text{A3})

\[\alpha_1^{0,dd} = \lambda + \alpha_1^{1,ss} I_1(0^{dd}1^{uu}) + \alpha_1^{1,dd} I_1(0^{dd}3^{uu}) + 2 \alpha_1^{0,dd} I_1(0^{dd}0^{ud}) + 2 \alpha_1^{0,ss} I_1(0^{dd}0^{us}) + 2 \alpha_1^{0,ds} I_1(0^{dd}0^{ds}) + 2 \alpha_2^{0,dd0,ss} I_2(0^{dd}0^{ud0,us}) + 2 \alpha_2^{0,dd0,ds} I_2(0^{dd}0^{ud0,ds}) , \]

(\text{A4})

\[\alpha_1^{0,ss} = \lambda + \alpha_1^{1,ss} I_1(0^{ss}1^{uu}) + \alpha_1^{1,ss} I_1(0^{ss}3^{uu}) + 2 \alpha_1^{0,ss} I_1(0^{ss}0^{us}) + 2 \alpha_1^{0,ss} I_1(0^{ss}0^{ds}) + \alpha_2^{0,ss0,ss} I_2(0^{ss}0^{us0,us}) + 2 \alpha_2^{0,ss0,ds} I_2(0^{ss}0^{ud0,ds}) , \]

(\text{A5})

\[\alpha_1^{0,ds} = \lambda + \alpha_1^{1,dd} I_1(0^{ds}1^{dd}) + \alpha_1^{1,ss} I_1(0^{ds}3^{uu}) + 2 \alpha_1^{0,dd} I_1(0^{ds}0^{ud}) + 2 \alpha_1^{0,ss} I_1(0^{ds}0^{us}) + 2 \alpha_1^{0,ds} I_1(0^{ds}0^{ds}) + 2 \alpha_2^{0,ss0,ds} I_2(0^{ds}0^{us0,ds}) + 2 \alpha_2^{0,dd0,ds} I_2(0^{ds}0^{ud0,ds}) , \]

(\text{A6})

\[\alpha_2^{1,ss} = \lambda + 4 \alpha_1^{0,dd} I_4(1^{uu1,ss}0^{ud}) + 4 \alpha_1^{0,ss} I_3(1^{uu1,ss}0^{us}) + 4 \alpha_1^{0,ds} I_4(1^{uu1,ss}0^{ds}) + 8 \alpha_2^{0,dd0,ss} I_7(1^{ss1,uu}0^{us0,us}) + 8 \alpha_2^{0,dd0,ds} I_6(1^{ss1,uu}0^{ud0,us}) + 8 \alpha_3^{0,dd0,0,ds} I_8(1^{uu1,ss}0^{ud0,us0,ds}) , \]

(\text{A7})

\[\alpha_2^{1,dd} = \lambda + 4 \alpha_1^{0,dd} I_4(1^{dd1,ss}0^{ud}) + 4 \alpha_1^{0,ss} I_4(1^{dd1,ss}0^{us}) + 4 \alpha_1^{0,ds} I_3(1^{dd1,ss}0^{ds}) + 8 \alpha_2^{0,dd0,ss} I_7(1^{ss1,dd}0^{ud0,us}) + 8 \alpha_2^{0,dd0,ds} I_6(1^{ss1,dd}0^{ud0,ds}) + 8 \alpha_3^{0,dd0,0,ds} I_8(1^{dd1,ss}0^{ud0,us0,ds}) , \]

(\text{A8})

\[\alpha_2^{0,ss} = \lambda + \alpha_1^{1,ss} I_4(0^{ds1,uu}1^{ss}) + 2 \alpha_1^{0,dd} I_3(1^{uu0,0,ds}0^{ud}) + 4 \alpha_1^{0,ss} I_4(1^{uu0,0,ds}0^{us}) + 8 \alpha_2^{0,dd0,ss} I_7(1^{uu0,0,ds}0^{ud0,us}) + 8 \alpha_2^{0,dd0,ds} I_6(1^{uu0,0,ds}0^{ud0,ds}) + 8 \alpha_3^{0,dd0,0,ds} I_8(1^{uu0,0,ds}0^{ud0,us0,ds}) , \]

(\text{A9})

\[\alpha_2^{1,dd} = \lambda + \alpha_1^{1,ss} I_4(0^{ds1,uu}1^{dd1,ss}) + 2 \alpha_1^{0,dd} I_3(1^{dd0,0,us}0^{ud}) + 4 \alpha_1^{0,ss} I_4(1^{dd0,0,us}0^{us}) + 8 \alpha_2^{0,dd0,ss} I_7(1^{uu0,0,ds}0^{ud0,us}) + 8 \alpha_2^{0,dd0,ds} I_6(1^{uu0,0,ds}0^{ud0,ds}) + 8 \alpha_3^{0,dd0,0,ds} I_8(1^{uu0,0,ds}0^{ud0,us0,ds}) , \]

(\text{A10})
\[\begin{align*}
\alpha_2^{ss0d} &= \lambda + \alpha_1^{uu} I_4(0u^d0u^d0u^d0u^d) + \alpha_2^{0d0d} I_5(0u^d0u^d0u^d0u^d) + 2 \alpha_2^{0d0d} I_7(0u^d0u^d0u^d0u^d) \\
&+ 2 \alpha_3^{0d0d0d0d} I_8(0u^d0u^d0u^d0u^d), \quad (A10)
\end{align*} \]

\[\begin{align*}
\alpha_2^{ss0d} &= \lambda + \alpha_1^{uu} I_4(0u^d0u^d0u^d0u^d) + \alpha_2^{0d0d} I_5(0u^d0u^d0u^d0u^d) + 2 \alpha_2^{0d0d} I_7(0u^d0u^d0u^d0u^d) \\
&+ 4 \alpha_3^{0d0d0d0d} I_8(0u^d0u^d0u^d0u^d), \quad (A11)
\end{align*} \]

\[\begin{align*}
\alpha_3^{ss0d} &= \lambda + 4 \alpha_1^{uu} I_9(1u^d1u^d1u^d1u^d) + 4 \alpha_2^{0d0d} I_9(1u^d1u^d1u^d1u^d) + 4 \alpha_3^{0d0d} I_9(1u^d1u^d1u^d1u^d) \\
&+ 8 \alpha_3^{0d0d0d0d} I_{10}(1u^d1u^d1u^d1u^d), \quad (A12)
\end{align*} \]

\[\begin{align*}
\alpha_3^{ss0d} &= \lambda + 4 \alpha_1^{uu} I_9(1u^d1u^d1u^d1u^d) + 4 \alpha_2^{0d0d} I_9(1u^d1u^d1u^d1u^d) + 4 \alpha_3^{0d0d} I_9(1u^d1u^d1u^d1u^d) \\
&+ 8 \alpha_3^{0d0d0d0d} I_{10}(1u^d1u^d1u^d1u^d), \quad (A13)
\end{align*} \]

\[\begin{align*}
\alpha_3^{ss0d0d} &= \lambda + \alpha_1^{uu} I_9(0u^d0u^d0u^d0u^d) + \alpha_1^{uu} I_9(0u^d0u^d0u^d0u^d) + \alpha_3^{0d0d} I_9(0u^d0u^d0u^d0u^d) + 8 \alpha_3^{0d0d0d0d} I_{10}(0u^d0u^d0u^d0u^d), \quad (A14)
\end{align*} \]
We used the functions $I_1, I_2, I_3, I_4, I_5, I_6, I_7, I_8, I_9, I_{10}$ [12]:

\[
I_1(ij) = \frac{B_j(s_{13}^{(2)})}{B_i(s_{02}^{(2)})} \int_{(m_1 + m_2)^2} \frac{ds_{12} G_1^2(s_{12}^2) \rho_i(s_{12}^{'2})}{\pi} \left[\frac{1}{s_{12}^{'2} - s_{01}^2} \int_{-1}^{+1} dz_{12} \right]^{1/2} \frac{1}{1 - B_j(s_{13}^{(2)})},
\]

\[
I_2(ikl) = \frac{B_j(s_{13}^{(2)}) B_k(s_{24}^{(2)})}{B_i(s_{02}^{(2)}) B_j(s_{02}^{(2)})} \int_{(m_1 + m_2)^2} \frac{ds_{12} G_1^2(s_{12}^2) \rho_i(s_{12}^{'2})}{\pi} \left[\frac{1}{s_{12}^{'2} - s_{01}^2} \int_{-1}^{+1} dz_{12} \right]^{1/2} \frac{1}{2} \left[\int_{-1}^{+1} dz_{29} \right]^{1/2}
\times \frac{z_3^{(2)^{+}}}{z_3^{(2)^{-}}} \int_{z_3^{(2)^{-}}}^{1} \frac{1}{\sqrt{1 - z_3^{(2)^{-}} - z_3^{(2)^{+}}}} \times \frac{1}{1 - B_j(s_{13}^{(2)}) - B_k(s_{24}^{(2)})},
\]

\[
I_3(ijk) = \frac{B_k(s_{23}^{(2)})}{B_i(s_{02}^{(2)}) B_j(s_{02}^{(2)})} \int_{(m_1 + m_2)^2} \frac{ds_{12} G_1^2(s_{12}^2) \rho_i(s_{12}^{'2})}{\pi} \left[\frac{1}{s_{12}^{'2} - s_{01}^2} \int_{-1}^{+1} dz_{12} \right]^{1/2} \frac{1}{2} \left[\int_{-1}^{+1} dz_{23} \right]^{1/2}
\times \frac{z_3^{(2)^{+}}}{z_3^{(2)^{-}}} \int_{z_3^{(2)^{-}}}^{1} \frac{1}{\sqrt{1 - z_3^{(2)^{-}} - z_3^{(2)^{+}}}} \times \frac{1}{1 - B_k(s_{23}^{(2)})},
\]

\[
I_4(ijk) = I_1(ik),
\]

\[
I_5(ijk) = I_2(ikl),
\]

\[
I_6(ijk) = I_1(ik) \cdot I_1(1j),
\]

\[
I_7(ijk) = \frac{B_k(s_{02}^{(2)}) B_i(s_{02}^{(2)})}{B_i(s_{02}^{(2)}) B_j(s_{02}^{(2)})} \int_{(m_1 + m_2)^2} \frac{ds_{12} G_1^2(s_{12}^2) \rho_i(s_{12}^{'2})}{\pi} \left[\frac{1}{s_{12}^{'2} - s_{01}^2} \int_{-1}^{+1} dz_{12} \right]^{1/2} \frac{1}{2} \left[\int_{-1}^{+1} dz_{23} \right]^{1/2}
\times \frac{z_3^{(2)^{+}}}{z_3^{(2)^{-}}} \int_{z_3^{(2)^{-}}}^{1} \frac{1}{\sqrt{1 - z_3^{(2)^{-}} - z_3^{(2)^{+}}}} \times \frac{1}{1 - B_k(s_{23}^{(2)})},
\]

\[
I_8(ijk) = I_3(ijk) + I_7(ijk).
\]
\[
I_{8}(ijklm) = \frac{B_{l}(s_{0}^{15})B_{m}(s_{0}^{46})}{B_{l}(s_{0}^{12})B_{j}(s_{0}^{45})} \left(\frac{m_{3} + m_{4}}{{\Lambda}_{1}} \right)^{2} \int \frac{ds_{34}^{i} G_{j}^{2}(s_{0}^{34}) \rho_{j}(s_{34}^{i})}{s_{34}^{i} - s_{34}^{i}} \frac{1}{2} \int \frac{dz_{1}(7)}{2} \int \frac{dz_{2}(7)}{2} \int \frac{dz_{3}(7)}{2} \int \frac{dz_{4}(7)}{2} \int \frac{1}{\sqrt{1 - z_{4}^{(7)}(7) - z_{3}^{(7)}(7) - z_{2}^{(7)}(7) + 2z_{1}(7)z_{3}(7)z_{4}(7)}} \\
\times \frac{1}{1 - B_{k}(s_{23}) - B_{l}(s_{45})}.
\]

\[
I_{9}(ijkl) = I_{3}(ijl),
\]

\[
I_{10}(ijklm) = \frac{B_{l}(s_{0}^{23})B_{m}(s_{0}^{45})}{B_{l}(s_{0}^{12})B_{j}(s_{0}^{34})B_{k}(s_{0}^{46})} \left(\frac{m_{3} + m_{4}}{{\Lambda}_{1}} \right)^{2} \int \frac{ds_{ij2}^{i} G_{j}^{2}(s_{ij}^{2}) \rho_{j}(s_{ij}^{2})}{s_{ij}^{2} - s_{ij}^{2}} \frac{1}{2} \int \frac{dz_{1}(10)}{2} \int \frac{dz_{2}(10)}{2} \int \frac{dz_{3}(10)}{2} \int \frac{dz_{4}(10)}{2} \int \frac{dz_{5}(10)}{2} \int \frac{1}{\sqrt{1 - z_{5}^{(10)}(10) - z_{4}^{(10)}(10) - z_{3}^{(10)}(10) + 2z_{1}(10)z_{4}(10)z_{5}(10)}} \\
\times \frac{1}{1 - B_{l}(s_{23}) - B_{m}(s_{45})}.
\]
\[
\begin{align*}
\alpha_2^{1u_10^{u_2}} &= \lambda + 4 \alpha_1^{0u_2} \, I_4(1u_10^{u_2}) + 4 \alpha_1^{0u_2} \, I_3(1u_10^{u_2}) \\
&+ 4 \alpha_1^{0u_2} \, I_4(1s_1u_0^{d_2}) + 8 \alpha_2^{0v_0} \, I_7(1s_1u_0^{d_2}) \\
&+ 8 \alpha_2^{0v_0} \, I_6(1s_1u_0^{d_2}) + 8 \alpha_3^{0v_0} \, I_6(1u_10^{u_2}0^{u_2}0^{d_2})
\end{align*}
\]

Fig. 1. The graphical equations of the reduced amplitude $\alpha_2^{1u_10^{u_2}}$.\cite{A7}.
TABLE I: *N* Ξ (2252*MeV*) (*S1J* = −200). Parameters of model: cutoff $\Lambda = 11.0$, gluon coupling constants $g_0 = 0.653$ and $g_1 = 0.292$. Quark masses $m_{u,d} = 410 MeV$ and $m_s = 557 MeV$.

Subamplitudes	Contributions, percent
A_1^{uu}	1.96
A_1^{dd}	1.96
A_1^{ss}	2.56
A_1^{ud}	4.33
A_1^{us}	5.30
A_1^{ds}	5.30
A_1^{dsu}	7.59
A_2^{ud}	7.59
A_2^{us}	4.93
A_2^{ds}	4.93
A_2^{dssu}	12.95
A_2^{uu}	12.95
A_2^{dd}	11.87
A_2^{ss}	11.87
A_3^{ud}	4.10
A_3^{us}	12.75

$\sum A_1 = 21.41$

$\sum A_2 = 61.73$

$\sum A_3 = 16.86$