This is the published version of a paper published in *Angewandte Chemie International Edition*.

Citation for the original published paper (version of record):

Pathipati, S R., van der Werf, A., Eriksson, L., Selander, N. (2016)
Diastereoselective Synthesis of Cyclopenta[c]furans by a Catalytic Multicomponent Reaction.
*Angewandte Chemie International Edition*, 55(39): 11863-11866
https://doi.org/10.1002/anie.201606108

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:diva-134923
Diastereoselective Synthesis of Cyclopenta[c]furans by a Catalytic Multicomponent Reaction

Stalin R. Pathipati, Angela van der Werf, Lars Eriksson, and Nicklas Selander*

Abstract: A diastereoselective three-component reaction between alkynyl enones, aldehydes and secondary amines is reported. With the aid of a benign indium catalyst, a range of highly substituted cyclopenta[c]furan derivatives can be obtained in a single-step procedure. The formation of the stereodefined heterocyclic motifs takes place via in situ generation of enamines followed by two sequential cyclization steps.

Multicomponent reactions (MCRs) involving sequential cyclization steps are powerful approaches for the construction of structurally diverse scaffolds of chemical and biological interest.[1] The selective formation of multiple bonds in a single operational step offers a challenge as well as a great potential for improving atom economy, step efficiency and sustainability in synthesis. Ideally, multicomponent reactions do not only allow for modulative syntheses of compounds with divergent substitution patterns, but may also provide a platform for further transformations.

An example of valuable heterocyclic motifs where MCR approaches have been utilized is furan derivatives.[2] These motifs are important in organic synthesis due to their presence as key structural scaffolds in certain natural products and pharmaceuticals,[3] and also as useful building blocks for synthesis.[4]

Transition metal catalysis has been widely used as a tool for the synthesis of functionalized furan derivatives.[5] The use of gold catalysis for the cyclization of 2-(1-alkynyl)-2-alken-1-ones was first reported by Larock[6] in 2004 and has since been further developed by Zhang[7] and others.[8] For example, the Au1-catalyzed intermolecular reactions of alkynyl enones with nitrones,[7d,l] 3-styrylindoles,[7h] and N-allenamides[7n] provide access to highly functionalized furans (Scheme 1a–c).

Despite the success of transition metal catalysis for the assembly of valuable heterocycles via π-Lewis acid activation, the use of p-block elements can offer new synthetic possibilities. As previously demonstrated, indium reagents and catalysts generally display a high functional group tolerance, providing a useful tool for novel transformations.[9] Herein, a catalytic MCR of alkynyl enones I, aldehydes and secondary amines is reported (Scheme 1d).

In order to develop an efficient catalytic system, and to avoid the formation of hydroamination and aza-Michael side-products, a catalyst screening using alkynyl enone 1a, hydrocinnamaldehyde (2a), and diisopropylamine (3a) was performed (Table 1). In analogy with literature reports, we investigated PPh3AuCl as a catalyst in the presence of molecular sieves in 1,2-dichloroethane (Table 1, entries 1–3). In the absence of AgI salts, no formation of cyclopenta[c]furan 4a was observed after 48 hours at 80°C. However, with 20 mol% of AgOTf or AgNTf2 added, 4a was obtained in 39% and 49% yield, respectively (d.r. >20:1). Interestingly, with 20 mol% of AgOTf alone, a similar yield was obtained.
The use of ZnCl₂ resulted in a low yield (16%) of 4a whereas a significant increase in yield was observed with Zn(OTf)₂ (69%, Table 1, entries 5 and 6). For Sc(OTf)₃ only traces of the product were observed, while Bi(OTf)₃ and In(OTf)₃ furnished product 4a in 52% and 61% yield, respectively (Table 1, entries 7–9). When other indium(III) salts were employed, the formation of 4a took place in higher yields: 76% with InBr₃, and 75% with In(NTf₂)₃ (Table 1, entries 10–12).

Gratifyingly, by increasing the loading of molecular sieves, 4a was obtained in 92% yield (80:20 d.r.) after 18 hours using InBr₃ as the catalyst (Table 1, entry 14). Other solvents (CH₃CN and CDCl₃), and a lower catalyst loading (10 mol%) resulted in decreased yields (Table 1, entries 13, 15 and 16). It should be noted that the d.r. of 4a was not significantly affected by the choice of catalyst. Furthermore, the molar ratio of the starting materials (1, 2 and 3) was important to obtain high yields (see the Supporting Information for additional data).

Next, we explored the scope of this reaction (Table 2). Alkynyl enones comprising various aromatic substituents on the alkyne part (R₁) led to high yields of products 4a–4d, with the exception of the methoxy-substituted derivative 4c which was isolated in 67% yield (Table 2, 4c–4d).

An improved diastereoselectivity was observed upon changing the aldehyde from 2a to one-carbon shorter analogs. However, due to the less reactive conjugated enamines (observable by ¹H NMR), the yields were lower and the reactions required longer times (24 h) (Table 2, 4e–4h). The aliphatic aldehyde heptanal furnished cyclopenta[cfuran 4i in 80% yield.

Furthermore the reaction outcome employing various secondary amines was investigated (Table 2, 4j–4p). The use of dicyclohexylamine led to yields and diastereoselectivities similar to diisopropylamine (Table 2, 4j and 4n). However, when less sterically hindered amines were used, the d.r. improved significantly (up to 97:3 d.r., Table 2, 4k–m and 4o). Albeit the reaction times were shorter for 4k–l and 4o, the isolated yields were low (34–40%). When morpholine was used, we observed around 10% of an alkyne hydroamination product. Notably, in the absence of the catalyst, a full

Table 1: Optimization of reaction conditions. Table 2: Scope with respect to various 2-(1-alkynyl)-2-alken-1-ones, aldehydes, and amines.
conversion into the hydroamination product was observed. With dibenzylamine, and upon alteration of the alkynyl enone substituents R² and R³ we observed a lower yield, and for 4r a poor diastereoselectivity (Table 2, 4p–4r).

Gratifyingly, upon performing the three-component reaction of 1a, 2a, and 3a on a larger scale, product 4a was isolated in 87% yield (1.2 g, Scheme 2). The major diastereomer of the reaction (major-4a, separated by chromatography) was subjected to an oxidative ring-opening using m-CPBA to obtain 5a in 61% yield. Furthermore, in a cycloaddition reaction of major-4a with an in situ generated benzyne, 6a was obtained in 96% yield as a single diastereomer.[10]

Scheme 2. Synthesis of 4a on a 3.0 mmol scale, and transformations of the major diastereomer: i) Oxidation with m-CPBA; ii) cycloaddition with benzylene.

For the metal-catalyzed cyclization reactions with alkynyl enones, two possible pathways were proposed by Larock.[6] An initial formation of the furan ring followed by a nucleophilic attack of the in situ generated enamine on the alkynyl enones, two possible pathways were proposed by Larock. [6] For more oxophilic Lewis catalysts, which proved to be the most competent catalysts for this transformation, are mainly operating via activation of the enone moiety.

Acknowledgements

Financial support from the Swedish Research Council (621-2012-2981) is gratefully acknowledged. We thank Dr. Vipender Singh for initial studies.

Keywords: alkynes · enones · fused-ring systems · indium catalysis · multicomponent reactions

How to cite: Angew. Chem. Int. Ed. 2016, 55, 11863–11866
Angew. Chem. 2016, 128, 12042–12045

The stereochemical outcome of the reaction is controlled by a selective bond formation between alkynyl enone 1 and the enamine. The second cyclization step proceeds with a high level of selectivity, most likely governed by the steric of the amine substituents (c.f. Table 2). The relative stereochemistry (of both diastereomers of product 4a) was determined by differential NOE experiments, and confirmed by an X-ray analysis of 6a.[10]

In summary, an efficient Lewis acid-catalyzed three-component cyclization reaction of aliphatic aldehydes, secondary amines and alkynyl enones was developed. The transformation proceeds in moderate to excellent selectivity, obtaining cyclopentanyl[furan]s comprising a variety of substituents. Excellent diastereomeric ratios were observed for less bulky amines, whereas the isolated yields typically were higher when diisopropylamine was used. We propose that indium catalysts, which proved to be the most competent catalysts for this transformation, are mainly operating via activation of the enone moiety.

Angewandte Chemie International Edition in English 55 (2016) 11863–11866 · 55.5.18
© 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org 11865
[5] a) W. J. Moran, A. Rodríguez, Org. Prep. Proced. Int. 2012, 44, 103; b) A. V. Gulevich, A. S. Dudnik, N. Chernyak, V. Gevorgyan, Chem. Rev. 2013, 113, 3084.

[6] a) T. Yao, X. Zhang, R. C. Larock, J. Am. Chem. Soc. 2004, 126, 11164; b) T. Yao, X. Zhang, R. C. Larock, J. Org. Chem. 2005, 70, 7679.

[7] a) D. Qian, J. Zhang, Chem. Rec. 2014, 14, 280; b) Y. Xiao, J. Zhang, Angew. Chem. Int. Ed. 2008, 47, 1903; Angew. Chem. 2008, 120, 1929; c) F. Liu, Y. Yu, J. Zhang, Angew. Chem. Int. Ed. 2009, 48, 5505; Angew. Chem. 2009, 121, 5613; d) F. Liu, D. Qian, L. Li, X. Zhao, J. Zhang, Angew. Chem. Int. Ed. 2010, 49, 6669; Angew. Chem. 2010, 122, 6819; e) G. Zhou, J. Zhang, Chem. Commun. 2010, 46, 6593; f) H. Gao, X. Wu, J. Zhang, Chem. Commun. 2010, 46, 8764; g) H. Gao, X. Zhao, Y. Yu, J. Zhang, Chem. Eur. J. 2010, 16, 456; h) H. Gao, X. Wu, J. Zhang, Chem. Eur. J. 2011, 17, 2838; i) H. Gao, J. Zhang, Chem. Eur. J. 2012, 18, 2777; j) X. Yu, J. Zhang, Chem. Eur. J. 2012, 18, 12945; k) R. Liu, J. Zhang, Chem. Asian J. 2012, 7, 294; l) Z.-M. Zhang, P. Chen, W. Li, Y. Niu, X.-L. Zhao, J. Zhang, Angew. Chem. Int. Ed. 2014, 53, 4350; Angew. Chem. 2014, 126, 4439; m) L. Zhou, M. Zhang, W. Li, J. Zhang, Angew. Chem. Int. Ed. 2014, 53, 6542; Angew. Chem. 2014, 126, 6660; n) Y. Wang, P. Zhang, D. Qian, J. Zhang, Angew. Chem. Int. Ed. 2015, 54, 14849; Angew. Chem. 2015, 127, 15062; For related MCRs involving Pd, see: o) Y. Xiao, J. Zhang, Adv. Synth. Catal. 2009, 351, 617; p) R. Liu, J. Zhang, Chem. Eur. J. 2009, 15, 9303; q) W. Li, J. Zhang, Chem. Commun. 2010, 46, 8839.

[8] a) N. T. Patil, H. Wu, Y. Yamamoto, J. Org. Chem. 2005, 70, 4531; b) V. Rauniar, Z. J. Wang, H. E. Burks, F. D. Toste, J. Am. Chem. Soc. 2011, 133, 8486; c) C. Verrier, P. Melchiorre, Chem. Sci. 2015, 6, 4242; d) Q. Yao, Y. Liao, L. Lin, X. Lin, J. Ji, X. Liu, X. Feng, Angew. Chem. Int. Ed. 2016, 55, 1859; Angew. Chem. 2016, 128, 1891.

[9] For reviews, see: a) B. C. Ranu, Eur. J. Org. Chem. 2000, 2347; b) J. S. Yadav, A. Antony, J. George, B. V. Subba Reddy, Eur. J. Org. Chem. 2010, 591; c) Z.-L. Shen, S.-Y. Wang, Y.-K. Chok, Y.-H. Xu, T.-P. Loh, Chem. Rev. 2013, 113, 271; For representative examples involving alkenes, see: d) T. Tsuichimoto, T. Maeda, E. Shirakawa, Y. Kawakami, Chem. Commun. 2000, 1573; e) M. Nakamura, K. Endo, E. Nakamura, J. Am. Chem. Soc. 2003, 125, 13002; f) G. R. Cook, R. Hayashi, Org. Lett. 2006, 8, 1045; g) R. Yanada, S. Obika, H. Kono, Y. Takemoto, Angew. Chem. Int. Ed. 2006, 45, 3822; Angew. Chem. 2006, 118, 3906; h) Y. Itoh, H. Tsuji, K. Yamagata, K. Endo, I. Tanaka, M. Nakamura, E. Nakamura, J. Am. Chem. Soc. 2008, 130, 17161; i) T. Tsuichimoto, H. Matsubayashi, M. Kaneko, Y. Nagase, T. Miyamura, E. Shirakawa, J. Am. Chem. Soc. 2008, 130, 15823; j) B. Montaignac, M. R. Vitale, V. Michelet, V. Ratovelomanana-Vidal, Org. Lett. 2010, 12, 2582.

[10] CCDC 1476592 (6a) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.