VC-DIMENSIONS OF SHORT PRESBURGER FORMULAS

DANNY NGUYEN, IGOR PAK

Received June 5, 2018
Online First March 13, 2019

We study VC-dimensions of short formulas in Presburger Arithmetic, defined to have a bounded number of variables, quantifiers and atoms. We give both lower and upper bounds, which are tight up to a polynomial factor in the bit length of the formula.

1. Introduction

The notion of VC-dimension was introduced by Vapnik and Červonenkis in [15]. Although originally motivated by applications in probability and statistics, it was quickly adapted to computer science, learning theory, combinatorics, logic and other areas. We refer to [16] for the extensive review of the subject, and to [3] for an accessible introduction to combinatorial and logical aspects.

1.1. Definitions of VC-dimension and VC-density

Let X be a set and $S \subseteq 2^X$ be a family of subsets of X. For a subset $A \subseteq X$, let $S \cap A := \{ S \cap A : S \in S \}$ be the family of subsets of A cut out by S. We say that $A \subseteq X$ is shattered by S if $S \cap A = 2^A$, i.e., for every subset $B \subseteq A$, there is $S \in S$ with $B = S \cap A$. The largest size $|A|$ among all subsets $A \subseteq X$ shattered by S is called the VC-dimension of S, denoted by VC(S). If no such largest size $|A|$ exists, we write VC(S) = ∞.

Mathematics Subject Classification (2010): 03C45, 52C07
The shatter function \(\pi_S \) is defined as follows:
\[
\pi_S(n) = \max \{|S \cap A| : A \subseteq X, |A| = n\}.
\]
The VC-density of \(S \), denoted by \(\text{vc}(S) \) is defined as
\[
\inf \left\{ r \in \mathbb{R}^+ : \limsup_{n \to \infty} \frac{\pi_S(n)}{n^r} < \infty \right\}.
\]
The classical theorem of Sauer and Shelah [11,12] states that
\[
\text{vc}(S) \leq \text{VC}(S).
\]
In other words, \(\pi_S(n) = O(n^d) \) in case \(S \) has finite VC-dimension \(d \). In general, VC-density can be much smaller than VC-dimension, and also behaves a lot better under various operations on \(S \).

1.2. NIP theories and bounds on VC-dimension/density

It is of interest to distinguish the first-order theories in which VC-dimension and VC-density behave nicely. Let \(\mathcal{L} \) be a first-order language and \(M \) be an \(\mathcal{L} \)-structure. Consider a partitioned \(\mathcal{L} \)-formula \(F(x; y) \) whose free variables are separated into two groups \(x \in M^m \) (objects) and \(y \in M^n \) (parameters). For each parameter tuple \(y \in M^n \), let
\[
S_y = \{ x \in M^m : M \models F(x; y) \}.
\]
Associated to \(F \) is the family \(S_F = \{ S_y : y \in M^n \} \). We say that \(F \) is NIP, short for “\(F \) does not have the independence property”, if \(S_F \) has finite VC-dimension. The structure \(M \) is called NIP if every partitioned \(\mathcal{L} \)-formula \(F \) is NIP in \(M \).

One prominent example of an NIP structure is Presburger Arithmetic \(\text{PA} = (\mathbb{Z}, <, +) \), which is the first-order structure on \(\mathbb{Z} \) with only addition and inequalities. The main result of this paper are the lower and upper bounds on the VC-dimensions of PA-formulas. These are contrasted with the following notable bounds on the VC-density:

Theorem 1.1 ([1]). Given a PA-formula \(F(x; y) \) with \(y \in \mathbb{Z}^n \), \(\text{vc}(S_F) \leq n \) holds.

In other words, VC-density in the setting of PA can be bounded solely by the dimension of the parameter variables \(y \). It cannot grow very large when we vary the number of object variables \(x \), quantified variables or the description of \(F \). This follows from a more general result in [1], which says
that every quasi-o-minimal structure satisfies a similar bound on the VC-density. We refer to [1] for the precise statement of this result and for the powerful techniques used to bound the VC-density.

Karpinski and Macintyre raised a natural question whether similar bounds would hold for the VC-dimension. In [5], they gave upper bounds for the VC-dimension in some o-minimal structures (PA is not one), which are polynomial in the parameter dimension n. Later, they extended their arguments in [6] to obtain upper bounds on the VC-density, this time linear in n. Also in [6], the authors claimed to have an effective bound on the VC-dimensions of PA-formulas. However, we cannot locate such an explicit bound in any papers. To our knowledge, no effective upper bounds on the VC-dimensions of general PA-formulas exist in the literature.

1.3. Main results

We consider PA-formulas with a fixed number of variables (both quantified and free). Clearly, this also restricts the number of quantifier alternations in F. The atoms in F are linear inequalities in these variables with some integer constants and coefficients (in binary). Given such a formula F, denote by $\ell(F)$ the length of F, i.e., the total bit length of all symbols, operations, integer coefficients and constants in F.

We can further restrict the form of a PA-formula by requiring that it does not contain too many inequalities. For fixed k and t, denote by Short-PA(k,t) the family of PA-formulas with at most k variables (both free and quantified) and t inequalities. When k and t are clear, a formula $F \in$ Short-PA(k,t) is simply called a short Presburger formula. In this case, $\ell(F)$ is essentially the total length of a bounded number of integer coefficients and constants. Our main result is a lower bound on the VC-dimensions of short Presburger formulas:

Theorem 1.2. For every d, there is a short Presburger formula $F(x; y) = \exists u \forall v \Psi(x, y, u, v)$ in the class Short-PA(10, 18) with

$$\ell(F) = O(d^2) \quad \text{and} \quad \text{VC}(F) \geq d.$$

Here x, y are singletons and $u \in \mathbb{Z}^6, v \in \mathbb{Z}^2$. The expression Ψ is quantifier-free, and can be computed in probabilistic polynomial time in d.

So in contrast with VC-density, the VC-dimension of a PA-formula F crucially depends on the actual length $\ell(F)$. For the formulas in the theorem, we have:

$$\text{VC}(F) = \Omega((\ell(F) \frac{1}{2}), \quad \text{and} \quad \text{vc}(F) \leq 1,$$
where the last inequality follows by Theorem 1.1. Note that if one is allowed
an unrestricted number of inequalities in F, a similar lower bound to Theo-
rem 1.2 can be easily established by an elementary combinatorial argument.
However, since the formula F is short, we can only work with a few integer
coefficients and constants. t various decision problems with short Presburger
sentences are intractable.

The construction in Theorem 1.2 uses a number-theoretic technique that
employs continued fractions to encode a union of many arithmetic progres-
sions. This technique was explored earlier in [8] to show that various decision
problems with short Presburger sentences are intractable. In this construc-
tion we need to pick a prime roughly larger than 4^d, which can be done in
probabilistic polynomial time in d. This can be modified to a deterministic
algorithm with run-time polynomial in d, at the cost of increasing $\ell(F)$:

Theorem 1.3. For every d, there is a short Presburger formula $F(x;y) =
\exists u \forall v \Psi(x,y,u,v)$ in the class Short-PA(10,18) with

$$\ell(F) = O(d^3) \quad \text{and} \quad \text{VC}(F) \geq d.$$

Here x,y are singletons and $u \in \mathbb{Z}^6$, $v \in \mathbb{Z}^2$. The expression Ψ
is quantifier-
free, and can be computed in deterministic polynomial time in d.

We conclude with the following polynomial upper bound for the VC-
dimensions of all (not necessarily short) Presburger formulas in a fixed num-
ber of variables:

Theorem 1.4. For a Presburger formula $F(x;y)$ with at most k
variables (both free and quantified), we have:

$$\text{VC}(F) = O(\ell(F)^c),$$

where c and the $O(\cdot)$ constant depend only on k.

This upper bound implies that Theorem 1.2 is tight up to a polynomial
factor. The proof of Theorem 1.4 uses an algorithm from [7] for decomposing
a semilinear set, i.e., one defined by a PA-formula, into polynomially many
simpler pieces. Each such piece is a polyhedron intersecting a periodic set,
whose VC-dimension can be bounded by elementary arguments.

We note that the number of quantified variables is vital in Theorem 1.4.
In §3.3, we construct PA-formulas $F(x;y)$ with x,y singletons and many
quantified variables, for which $\text{VC}(F)$ grows doubly exponentially compared
to $\ell(F)$.
2. Proofs

We start with Theorem 1.3, and then show how it can be modified to give Theorem 1.2.

Proof of Theorem 1.3. Let \(A = \{1, 2, \ldots, d\} \) and \(S = 2^A \). Since \(S \) contains all of the subsets of \(A \), we have \(\text{VC}(S) = d \). We order the sets in \(S \) lexicographically. In other words, for \(S, S' \in S \), we have \(S < S' \) if \(\sum_{i \in S} 2^i < \sum_{i \in S'} 2^i \). Thus, the sets in \(S \) can be indexed as
\[
S_0 < S_1 < \cdots < S_{2^d-1},
\]
where \(S_0 = \emptyset, S_1 = \{1\}, \ldots, S_{2^d-1} = A \). Next, define:

\[
T := \bigsqcup_{0 \leq j < 2^d} \{i + dj : i \in S_j\}.
\]

We show in Lemma 2.1 below that the set \(T \) is definable by a short PA formula \(G_T(t) \) with only 8 quantified variables and 18 inequalities. Using this, it is clear that the parametrized formula
\[
F_T(x; y) := G_T(x + dy)
\]
describes the family \(S \) (with \(y \) as the parameter), and thus has VC-dimension \(d \). We remark that \(G_T \) has only 1 quantifier alternation (see below).

Lemma 2.1. The set \(T \) is definable by a short Presburger formula \(G_T(t) = \exists u \forall v \Psi(t, u, v) \) with \(u \in \mathbb{Z}^6, v \in \mathbb{Z}^2 \) and \(\Psi \) a Boolean combination of at most 18 inequalities in \(t, u, v \) with binary length \(\ell(\Psi) = O(d^3) \).

Proof. Our strategy is to represent the set \(T \) as a union of arithmetic progressions (APs). In [8], given \(d \) progressions \(\text{AP}_i = \{a_i, a_i + c_i, \ldots, a_i + b_i c_i\} \), we gave a method to define \(\text{AP}_1 \cup \cdots \cup \text{AP}_d \) by a short Presburger formula of length polynomial in \(\sum \log(a_i b_i c_i) \). For each \(1 \leq i \leq d \), let \(J_i = \{j : 0 \leq j < 2^d, i \in S_j\} \). From (2.1), we have:

\[
T = \bigsqcup_{i=1}^d \{i + dJ_i\}.
\]

From the lexicographic ordering of the sets \(S_j \), we can easily describe each set \(J_i \) as:

\[
J_i = \{m + 2^{i-1} + 2^j n : 0 \leq m < 2^{i-1}, 0 \leq n < 2^{d-i}\}.
\]

So each set \(J_i \) is not simply an AP, but the Minkowski sum of two APs. However, we can easily modify each \(J_i \) into an AP by defining:

\[
J'_i = \{2^d(m + 2^{i-1}) + 2^j n : 0 \leq m < 2^{i-1}, 0 \leq n < 2^{d-i}\}.
\]
It is clear that \(J'_i \) is an AP that starts at \(2^{d+i-1} \) and ends at \(2^{d+i} - 2^i \) with step size \(2^i \). Let \(\text{AP}_i := i + dJ'_i \) and

\[
(2.5) \quad T' = \bigcup_{i=1}^{d} \text{AP}_i.
\]

This is a union of \(d \) arithmetic progressions. Using the construction from [8], we can define \(T' \) by a short Presburger formula:

\[
t' \in T' \iff \exists w \forall v \Phi(t', w, v),
\]

where \(t' \in \mathbb{Z}, \ w, v \in \mathbb{Z}^2 \) and \(\Phi \) is a Boolean combination of at most 10 inequalities. This construction works by finding a single continued fraction \(\alpha = [a_0; b_0, a_1, b_1, \ldots, a_{2d-1}] \) whose successive convergents encode the first and last points of our \(\text{AP}_1, \ldots, \text{AP}_d \). We refer to Section 4 in [8] for the details. For each \(i \), the smallest and largest terms in \(\text{AP}_i \) are respectively \(\beta_i = i + d2^{d+i-1} \) and \(\gamma_i = i + d(2^{d+i} - 2^i) \), which have binary lengths \(O(d) \). Each term \(a_k \) and \(b_k \) in the continued fraction \(\alpha \) is at most the product of these \(\beta_i \) and \(\gamma_i \). Since \(\prod_{i=1}^{d} \beta_i \gamma_i \) has binary length \(O(d^2) \), and so does each term \(a_k \) and \(b_k \). Therefore, the final continued fraction \(\alpha \) is a rational number \(p/q \) with binary length \(O(d^3) \). This implies that \(\ell(\Phi) = O(d^3) \) as well.

To get a formula for \(T \), note that from (2.2), (2.3), (2.4) and (2.5), we have:

\[
t \in T \iff \exists t', i, r, s: \ t' \in T', \ 1 \le i \le d, \ 0 \le s < 2^d, \ t' = i + d(2^d r + s), \ t = i + d(r + s).^1
\]

Here \(r \) and \(s \), respectively stand for \(m + 2^{i-1} \) and \(2^i n \) in (2.3). Using \(\exists w \forall v \Phi(t', w, v) \) to express \(t' \in T' \), we get a formula \(G_T(t) \) defining \(T \) with 8 quantified variables \(t', i, r, s \in \mathbb{Z}, \ w, v \in \mathbb{Z}^2 \) and 18 inequalities. Note that \(t', i, r, s \) and \(w \) are existential variables, so \(G_T \) has the form \(\exists u \forall v \Psi(t, u, v) \) with \(u \in \mathbb{Z}^6, v \in \mathbb{Z}^2 \) and \(\Psi \) quantifier-free.

Proof of Theorem 1.2. Note that the above construction of \(F_T \) and \(G_T \) is deterministic with run-time polynomial in \(d \). In Theorem 1.2, only the existence of a short PA formula with high VC-dimension is needed. For this, our lower bound can be improved to \(\text{VC}(F) \ge c \sqrt{\ell(F)} \), for some \(c > 0 \), as follows. Recall that \(\beta_i = i + d2^{d+i-1} \) and \(\gamma_i = i + d(2^{d+i} - 2^i) \) are the smallest and largest terms of each \(\text{AP}_i \) in (2.5). Pick the smallest prime \(p \) larger than \(\max(\gamma_1, \ldots, \gamma_d) \approx d4^d \). This prime \(p \) can substitute for the large number \(M \)

^1 Each equality is a pair of inequalities.
in Section 4.1 of [8], which was (deterministically) chosen as $1 + \prod_{i=1}^{d} \beta_i \cdot \gamma_i$, so that it is larger and coprime to all β_i and γ_i. The rest of the construction follows verbatim. Note that $\log p = O(d)$ by Chebyshev’s theorem. So the final continued fraction $\alpha = [a_0; b_0, a_1, b_1, \ldots, a_{2d-1}]$ has length $O(d^2)$, because now each term a_k, b_k has length at most $\log p$. This completes the proof.

Proof of Theorem 1.4. Let $F(x; y)$ be any PA formula with free variables $x \in \mathbb{Z}^m$, $y \in \mathbb{Z}^n$ and n' other quantified variables, where m, n, n' are fixed. In [7] (Theorem 5.2), we gave the following polynomial decomposition on the semilinear set defined by F:

$$(2.6) \quad \Sigma_F := \{(x, y) \in \mathbb{Z}^{m+n} : F(x; y) = \text{true}\} = \bigsqcup_{j=1}^{r} R_j \cap T_j.$$

Here each R_j is a polyhedron in \mathbb{R}^{m+n}, and each $T_j \subseteq \mathbb{Z}^{m+n}$ is a periodic set, i.e., a union of several cosets of some lattice $T_j \subseteq \mathbb{Z}^{m+n}$. In other words, the set defined by F is a union of r pieces, each of which is a polyhedron intersecting a periodic set. Our decomposition is algorithmic, in the sense that the pieces R_j and lattices T_j can be found in time $O(\ell(F)^c)$, with c and $O(\cdot)$ depending only on m, n, n'. The algorithm describes each piece R_j by a system of inequalities and each lattice T_j by a basis. Denote by $\ell(R_j)$ and $\ell(T_j)$ the total binary lengths of these systems and basis vectors, respectively. These also satisfy:

$$(2.7) \quad \sum_{j=1}^{r} \ell(R_j) + \ell(T_j) = O(\ell(F)^c).$$

Each R_j can be written as the intersection $H_{j1} \cap \cdots \cap H_{jf_j}$, where each H_{jk} is a half-space in \mathbb{R}^{m+n}, and f_j is the number of facets of R_j. Note that $f_j \leq \ell(R_j) = O(\ell(F)^c)$. We rewrite (2.6) as:

$$(2.8) \quad \Sigma_F = \bigsqcup_{j=1}^{r} H_{j1} \cap \cdots \cap H_{jf_j} \cap T_j.$$

Therefore, the set Σ_F is a Boolean combination of $f_1 + \cdots + f_r$ half-spaces and r periodic sets. In total, there are

$$(2.9) \quad f_1 + \cdots + f_r + r = O(\ell(F)^c)$$

of those basic sets.

For a set $\Gamma \subseteq \mathbb{R}^{m+n}$ and $y \in \mathbb{Z}^n$, denote by Γ_y the subset $\{x \in \mathbb{Z}^m : (x, y) \in \Gamma\}$ and by S_Γ the family $\{\Gamma_y : y \in \mathbb{Z}^n\}$. For a half-space $H \subset \mathbb{R}^{m+n}$, it is easy
to see that \(VC(S_H) = 1 \). For each periodic set \(T_j \) with period lattice \(T_j \), the family \(S_{T_j} \) has cardinality at most \(\det(T_j \cap \mathbb{Z}^n) \leq 2^{O(\ell(T_j))} \). Thus, we have

\[
VC(S_{T_j}) \leq \log |S_{T_j}| = O(\ell(T_j)).
\]

Let \(\Gamma_1, \ldots, \Gamma_t \subseteq \mathbb{Z}^{m+n} \) be any \(t \) sets with \(VC(S_{\Gamma_i}) = d_i \). By an application of the Sauer-Shelah lemma ([11,12]), if \(\Sigma \) is any Boolean combination of \(\Gamma_1, \ldots, \Gamma_t \), then we can bound \(VC(S_{\Sigma}) \) as:

\[
VC(S_{\Sigma}) = O((d_1 + \cdots + d_t) \log(d_1 + \cdots + d_t)).
\]

Applying this to (2.8), we get \(VC(S_{\Sigma_F}) = O(\ell \log \ell) \), where

\[
\ell = \sum_{j=1}^r \left(VC(S_{T_j}) + \sum_{j' = 1}^{f_j} VC(S_{H_{j,j'}}) \right) \leq \sum_{j=1}^r VC(S_{T_j}) + f_j.
\]

By (2.7), (2.9) and (2.10), we have \(\ell = O(\ell(F)^c) \). We conclude that \(VC(F) = O(\ell(F)^{2c}) \).

\[\square\]

3. Final remarks and open problems

3.1.

The proof of Theorem 1.2 is almost completely efficient except for finding a small prime \(p \) larger than a given integer \(N \). This problem is considered to be computationally very difficult in the deterministic case, and only exponential algorithms are known (see [9,14]).

3.2.

Our constructed short formula \(F \) is of the form \(\exists \forall \). It is interesting to see if similar polynomial lower bounds are obtainable with existential short formulas. For such a formula \(F(x;y) = \exists z \Phi(x,y,z) \), the quantifier-free expression \(\Phi(x,y,z) \) captures the set of integer points \(\Gamma \) lying in a union of some polyhedra \(P_i \)'s. Note that the total number of polyhedra and their facets should be bounded, since we are working with short formulas. Therefore, \(F \) simply capture the pairs \((x,y)\) in the projection of \(\Gamma \) along the \(z \) direction. Denote this set by \(\text{proj}(\Gamma) \). The work of Barvinok and Woods [2] shows that \(\text{proj}(\Gamma) \) has a short generating function, and can even be counted efficiently in polynomial time. In our construction, the set that yields high VC-dimension is a union arithmetic progressions, which cannot be counted efficiently unless \(P = \text{NP} \) (see [13]). This difference indicates that \(\text{proj}(\Gamma) \) has a much simpler combinatorial structure, and may not attain a high VC-dimension.
3.3.

One can ask about the VC-dimension of a general PA-formula with no restriction on the number of variables, quantifier alternations or atoms. Fischer and Rabin famously showed in [4] that PA has decision complexity at least doubly exponential in the general setting. For every $\ell > 0$, they constructed a formula $\text{Prod}_\ell(a, b, c)$ of length $O(\ell)$ so that for every triple

$$0 \leq a, b, c < 2^{2^{2\ell}},$$

we have $\text{Prod}_\ell(a, b, c) = \text{true}$ if and only if $ab = c$. Using this “partial multiplication” relation, one can easily construct a formula $F_\ell(x; y)$ of length $O(\ell)$ and VC-dimension at least 2^{2^ℓ}. This can be done by constructing a set similar to T in (2.1) with d replaced by 2^{2^ℓ} using Prod_ℓ. We leave the details to the reader.

Regarding upper bound, Oppen showed in [10] that any PA-formula F of length ℓ is equivalent to a quantifier-free formula G of length $2^{2^{2\ell}}$ for some universal constant $c > 0$. This implies that $\text{VC}(G)$, and thus $\text{VC}(F)$, is at most triply exponential in $\ell(F)$. We conjecture that a doubly exponential upper bound on $\text{VC}(F)$ holds in the general setting. It is unlikely that such an upper bound could be established by straightforward quantifier elimination, which generally results in triply exponential blow up (see [17, Thm 3.1]).

Acknowledgements. We are grateful to Matthias Aschenbrenner and Artém Chernikov for many interesting conversations and helpful remarks. This paper was finished while both authors were visitors at MSRI; we are thankful for the hospitality, great work environment and its busy schedule. The second author was partially supported by the NSF.

References

[1] M. Aschenbrenner, A. Dolich, D. Haskell, D. Macpherson and S. Starchenko: Vapnik-Chervonenkis density in some theories without the independence property, I, Trans. AMS 368 (2016), 5889–5949.
[2] A. Barvinok and K. Woods: Short rational generating functions for lattice point problems, Jour. AMS 16 (2003), 957–979.
[3] A. Chernikov: Models theory and combinatorics, course notes, UCLA; available electronically at https://tinyurl.com/y8ob6uyv.
[4] M. J. Fischer and M. O. Rabin: Super-Exponential Complexity of Presburger Arithmetic, in: Proc. SIAM-AMS Symposium in Applied Mathematics, AMS, Providence, RI, 1974, 27–41.
[5] M. Karpinski and A. Macintyre: Polynomial bounds for VC dimension of sigmoidal and general Pfaffian neural networks, *J. Comput. System Sci.* 54 (1997), 169–176.

[6] M. Karpinski and A. Macintyre: Approximating volumes and integrals in o-minimal and p-minimal theories, in: *Connections between model theory and algebraic and analytic geometry*, Seconda Univ. Napoli, Caserta, 2000, 149–177.

[7] D. Nguyen and I. Pak: Enumeration of integer points in projections of unbounded polyhedra, *SIAM J. Discrete Math.* 32 (2018), 986–1002.

[8] D. Nguyen and I. Pak: Short Presburger Arithmetic is hard, in: *Proc. 58th FOCS*, IEEE, Los Alamitos, CA, 2017, 37–48.

[9] J. C. Lagarias and A. M. Odlyzko: Computing $\pi(x)$: an analytic method, *J. Algorithms* 8 (1987), 173–191.

[10] D. C. Oppen: A $2^{2^{2^n}}$ upper bound on the complexity of Presburger arithmetic, *J. Comput. System Sci.* 16 (1978), 323–332.

[11] N. Sauer: On the density of families of sets, *J. Combin. Theory, Ser. A* 13 (1972), 145–147.

[12] S. Shelah: A combinatorial problem; stability and order for models and theories in infinitary languages, *Pacific J. Math.* 41 (1972), 247–261.

[13] L. J. Stockmeyer and A. R. Meyer: Word problems requiring exponential time: preliminary report, in: *Proc. Fifth STOC*, ACM, New York, 1973, 1–9.

[14] T. Tao, E. Croot and H. Helfgott: Deterministic methods to find primes, *Math. Comp.* 81 (2012), 1233–1246.

[15] V. N. Vapnik and A. Ja. Červonenkis: The uniform convergence of frequencies of the appearance of events to their probabilite, *Theor. Probability Appl.* 16 (1971), 264–280.

[16] V. N. Vapnik: *Statistical learning theory*, John Wiley, New York, 1998.

[17] V. D. Weispfenning: Complexity and uniformity of elimination in Presburger arithmetic, in: *Proc. 1997 ISSAC*, ACM, New York, 1997, 48–53.

Danny Nguyen

Department of Mathematics

University of Michigan

Ann Arbor, MI 48109

ndanny@umich.edu

Igor Pak

Department of Mathematics

UCLA, Los Angeles, CA 90095

pak@math.ucla.edu