\textbf{L^2-harmonic forms on complete Vaisman manifold}

Teng Huang and Qiang Tan

Abstract

In this article, we first consider the L^2 Morse-Novikov cohomology on a complete Riemannian manifold equipped with a parallel 1-form. Based on a vanishing theorem of L^2 Morse-Novikov cohomology, we prove that the L^2-harmonic forms on a complete, simply connected, Vaisman manifold $(M, J, g, \omega, \theta)$ are identically zero.

Keywords. Vaisman manifold, Morse-Novikov cohomology, Vanishing theorem

1 Introduction

Let M be a complete n-dimensional Riemannian manifold. A basic question, pertaining both the function theory and topology on M, is: when are there non-trivial harmonic k-forms on M? When X is not compact, a growth condition on the harmonic forms at infinity must be imposed, in order that the answer to this question would be useful. A natural growth condition is square-integrable, if $\Omega^k_{(2)}(X)$ denotes the L^2-forms of degree k on M and $\mathcal{H}^k_{(2)}(X)$ the harmonic forms in $\Omega^k_{(2)}(X)$. One version of this basic question is: what is the structure of $\mathcal{H}^k_{(2)}(X)$?

The Hodge theorem for compact manifolds states that every real cohomology class of a compact manifold M is represented by a unique harmonic form. That is, the space of solutions to the differential equation $(d + d^*)\alpha = 0$ on L^2-forms over M is a space that depends on the metric on M. This space is canonically isomorphic to the purely topological real cohomology space of M. The study of $\mathcal{H}^k_{(2)}(M)$, a question of so-called L^2-cohomology of M, is rooted in the attempt extending Hodge theory to non-compact manifolds. No such result holds in general for complete non-compact manifolds, but there are numerous partial result about the L^2-cohomology of non-compact manifold. The study of the L^2-harmonic forms on a complete Riemannian manifold is a very fascinating and important subject. There has been some recent interest in the study of L^2 harmonic forms on certain non-compact moduli spaces occurring in gauge theories [12].

T. Huang: School of Mathematical Sciences, University of Science and Technology of China; Key Laboratory of Wu Wen-Tsun Mathematics, Chinese Academy of Sciences, Hefei, 230026, P.R. China; e-mail: htmath@ustc.edu.cn; htustc@gmail.com

Q. Tan: Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China; e-mail: tanqiang@ujs.edu.cn
Suppose that \((M, \omega)\) is a complete, Kähler manifold of complex dimension \(n\) and \(\omega\) is the Kähler form on \(M\). The metric induced by Kähler form allows one to define the class of square-integrable forms of all bi-degrees, \(\Omega^{p,q}_{(2)}(M)\). We denote by \(H^{p,q}_{(2)}(M)\) the space of \(L^2\)-harmonic \((p, q)\)-forms. There are many articles study the Kähler case [1, 6, 7, 8, 10, 17]. In many situations, e.g., \((M, \omega) = \text{hyperbolic upper half plane in } \mathbb{C}^n\), it happens that \(H^{p,q}_{(2)}(M) = \{0\}\) unless \(p + q = n\). The middle dimension, when \(p + q = n\), is always a special case. For example, there are no results in [17] about \(L^2\) harmonic forms in these dimensions.

The main object of the present paper is the following notion. Let \((M, J, g)\) be a connected complex Hermitian manifold of complex dimension at least 2. Denote by \(\omega\) its fundamental Hermitian two-form, with the convention \(\omega(X, Y) = g(X, JY)\). A locally conformally Kähler (LCK) manifold is a complex Hermitian manifold, with a Hermitian form \(\omega\) satisfying \(d\omega = \theta \wedge \omega\), where \(\theta\) is a closed 1-form, called the Lee form of \(M\). A compact LCK manifold never admits a Kähler structure, unless the cohomology class \([\theta] \in H^1_{dR}(M)\) vanishes [23]. LCK manifolds form an interesting class of complex non-Kähler manifolds, including all non-Kähler surfaces which are not class VII. In many situations, the LCK structure becomes useful for the study of topology and complex geometry of an LCK-manifold. An LCK manifold \((M, J, g, \omega, \theta)\) is called Vaisman if \(\nabla \theta = 0\), where \(\nabla\) is the Levi-Civita connection of metric \(g\). The Vaisman manifold is a distinguished class among the LCK manifolds. In this article, we focus on the Vaisman case. We prove a vanishing theorem as follows.

Theorem 1.1. Let \((M, J, g, \omega, \theta)\) be a complete, simply-connected, Vaisman manifold of complex dimension \(n\). Then for any \(k \geq 0\), the space \(H^k_{(2)}(M)\) of \(L^2\)-harmonic \(k\)-forms is trivial.

2 Preliminaries

2.1 \(L^2\)-harmonic forms

Let \((M, g)\) be a complete Riemannian manifold. Let \(\Omega^k(M)\) and \(\Omega^k_0(M)\) denote the smooth \(k\)-forms on \(M\) and the smooth \(k\)-forms with compact support on \(M\). Let \(\langle \cdot, \cdot \rangle\) denote the pointwise inner product on \(\Omega^*(M)\) given by \(g\). The global inner product is defined by

\[
(\alpha, \beta) = \int_M \langle \alpha, \beta \rangle d\text{Vol}.
\]

We also write \(|\alpha|^2 = \langle \alpha, \alpha \rangle\), \(\|\alpha\|^2_{L^2(M, g)} = \int_M |\alpha|^2 d\text{Vol}\) and let

\[
\Omega^k_{(2)}(M, g) = \{\alpha \in \Omega^k(M) : \|\alpha\|_{L^2(M, g)} < \infty\}.
\]

The operator of exterior differentiation is \(d : \Omega^k_0(M) \to \Omega^{k+1}_0(M)\), and it satisfies \(d^2 = 0\); its formal adjoint is \(\delta : \Omega^{k+1}_0(M) \to \Omega^k_0(M)\); we have

\[
\forall \alpha \in \Omega^k_0(M), \forall \beta \in \Omega^{k+1}_0(M), \int_M \langle d\alpha, \beta \rangle = \int_M \langle \alpha, \delta \beta \rangle.
\]
We can define
\[
\mathcal{H}^k_{(2)}(M) = \{ \alpha \in \Omega^k_{(2)}(M) : d\alpha = 0, \ \delta\alpha = 0 \}.
\]
Because the operator \(d + \delta\) is elliptic, we have by elliptic regularity: \(\mathcal{H}^k_{(2)}(M) \subset \Omega^k(M)\). The space \(\Omega^k(M)\) has the following Hodge-de Rham-Kodaira orthogonal decomposition
\[
\Omega^k_{(2)}(M) = \mathcal{H}^k_{(2)}(M) \oplus d(\Omega^{k-1}_0(M)) \oplus \delta(\Omega^{k+1}_0(M)),
\]
where the closure is taken with respect to the \(L^2\) topology [2].

2.2 Morse-Novikov cohomology

Let \(M\) be a differential manifold and \(\eta\) a closed 1-form on \(M\). The Morse-Novikov cohomology of a manifold \(M\) refers to the cohomology of complex of smooth real form \(\Omega^*(M)\), with the differential operator defined as follow
\[
d_{\eta} = d + e(\eta),
\]
d being the exterior differential and \(e(\eta)\) the operator given by
\[
e(\eta)(\alpha) = \eta \wedge \alpha, \ \forall \alpha \in \Omega^*(M).
\]
Recall that the Morse-Novikov cohomology, also known as Lichnerowicz cohomology (defined independently by Novikov and Lichnerowicz in [16] and [18]) is the cohomology of the complex \((\Omega^*(M), d_{\eta})\)
\[
\Omega^0(M) \xrightarrow{d_{\eta}} \Omega^1(M) \xrightarrow{d_{\eta}} \Omega^2(M) \rightarrow \cdots
\]
Denote by \(H^*_\eta(M)\) the cohomology of the complex \((\Omega^*(M), d_{\eta})\). In fact, the sequence above is an acyclic resolution for \(\ker d_{\eta}\), as each \(\Omega^*(M)\) is soft, [5 Proposition 2.1.6 and Theorem 2.1.9]. Thus, by taking global sections in (2.3), we compute the cohomology groups of \(M\) with values in the sheaf \(\ker d_{\eta}, H^i(M, \ker d_{\eta})\). What we obtain is actually the Morse-Novikov cohomology.

Proposition 2.1. ([3 Proposition 4.4]) Let \(M\) be a differentiable manifold and \(\eta\) a closed 1-form on \(M\). Then,
(i) The differential complex \((\Omega^*(M), d_{\eta})\) is elliptic. Thus, if \(M\) is compact the cohomology groups \(H^k_{\eta}\) have finite dimension.
(ii) If \(\eta\) is exact the \(H^*_\eta(M) \cong H^*_d\), (M).

If the 1-form \(\eta\) is not exact then, in general, \(H^k_{\eta}(M) \not\cong H^k_d\). We recall some results proved by Guédira-Lichnerowicz [11] which will be useful in the sequel. Suppose that \(M\) is a differential manifold of dimensional \(n\), that \(\eta\) is a closed 1-form on \(M\) and that \(g\) is a Riemannian metric. Consider the vector field \(U\) on \(M\) characterized by the connection \(\eta(X) = g(X, U)\), for all vector field \(X\) on \(M\). Denote by \(i_U\) the contraction by the vector field \(U\), that is
\[
i_U(\alpha) = (-1)^{nk+n}(\ast \circ e(\eta) \circ \ast)(\alpha), \ \text{for} \ \alpha \in \Omega^k(M),
\]

being the Hodge star isomorphism. Then, we define the operator \(\delta_\eta : \Omega^k_0(M) \to \Omega^{k-1}_0(M) \) by
\[
\delta_\eta = \delta + i_U.
\] (2.5)

Then, it is easy to prove that \((d_\eta \alpha, \beta) = (\alpha, \delta_\eta \beta) \), for all \(\alpha \in \Omega^{k-1}_0(M) \) and \(\beta \in \Omega^k_0(M) \). If \(M \) is compact, since the complex \((\Omega^*(M), d_\eta) \) is elliptic, we obtain an orthogonal decomposition of the space \(\Omega^k(M) \) as follows
\[
\Omega^k(M) = \mathcal{H}^k_\eta(M) \oplus d_\eta(\Omega^{k-1}(M)) \oplus \delta_\eta(\Omega^{k+1}(M)),
\] (2.6)
where
\[
\mathcal{H}^k_\eta(M) = \{ \alpha \in \Omega^k(M) : d_\eta(\alpha) = 0, \delta_\eta(\alpha) = 0 \}.
\]

From (2.6), it follows that \(\mathcal{H}^k_\eta(M) \cong \mathcal{H}^k_\eta(M) \). Unlike de Rham cohomology, Morse-Novikov cohomology \(H^i_\eta(M) \), is not a topological invariant, it depends on \([\eta] \in H^1_{dR}(M)\). Also, Riemannian properties involving this one-form can be important. For instance, it was shown in [3] that if on a compact manifold \(M \) there exists a Riemannian metric \(g \) and a closed one-form \(\eta \) such that \(\eta \) is parallel with respect to \(g \), then for any \(i \geq 0 \), \(H^i_\eta(M) = 0 \).

We now define the spaces of generalized \(L^2 \)-harmonic forms as follows:
\[
\mathcal{H}^k_{(2),\eta}(M) = \{ \alpha \in \Omega^k_{(2)}(M) : d_\eta(\alpha) = 0, \delta_\eta(\alpha) = 0 \}.
\]

Following the idea in [3], we have

Theorem 2.2. Let \(M \) be a complete manifold and \(\eta \) a closed 1-form on \(M \), \(\eta \neq 0 \). Suppose that \(g \) is a Riemannian metric on \(M \) such that \(\eta \) is parallel with respect to \(g \). Then, \(\mathcal{H}^*_{(2),\eta} \) is trivial.

Proof. Since \(\eta \) is a parallel and non-null it follows that \(|\eta| = c \), with \(c \) constant, \(c > 0 \). Assume, without the loss of generality, that \(c = 1 \). Note that if \(c \neq 1 \), we can consider the Riemannian metric \(g' = c^2 g \) and it is clear that the module of \(\eta \) with respect to \(g' \) is 1 and that \(\eta \) is also parallel with respect to \(g' \). Under the hypothesis is \(c = 1 \), we have that
\[
\eta(U) = 1.
\] (2.7)

Using that \(\eta \) is parallel and that \(U \) is Killing, we obtain that (see (2.4))
\[
\mathcal{L}_U = -\delta \circ e(\eta) - e(\eta) \circ \delta,
\] (2.8)
\[
\delta \circ \mathcal{L}_U = \mathcal{L}_U \circ \delta.
\] (2.9)

From (2.1–2.5), (2.7) and (2.9), we deduce the following relations:
\[
d_\eta \circ i_U = -i_U \circ d_\eta + \mathcal{L}_U + Id, \quad \delta_\eta \circ i_U = -i_U \circ \delta_\eta,
\] (2.10)
\[
d_\eta \circ \mathcal{L}_U = \mathcal{L}_U \circ d_\eta, \quad \delta_\eta \circ \mathcal{L}_U = \mathcal{L}_U \circ \delta_\eta.
\] (2.11)
where Id denotes the identity transformation. Let $\xi : \mathbb{R} \to \mathbb{R}$ be smooth, $0 \leq \xi \leq 1$,

\[\xi(t) = \begin{cases} 1, & t \leq 0 \\ 0, & t \geq 1 \end{cases} \]

and consider the compactly supported function

\[f_j(x) = \xi(\rho(x_0, x) - j), \]

where j is a positive integer and $\rho(x_0, x)$ stands for the Riemannian distance between x and a base point x_0. On the other hand, (2.8) implies that

\[\langle L_U \alpha, f_j \alpha \rangle = -\langle \alpha, df_j \alpha \rangle - \langle \alpha, i_U (df_j) \wedge \alpha \rangle \]

for all $\alpha \in \Omega^k(M)$. Here we use the identity

\[L_U (\alpha \wedge \beta) = (L_U \alpha) \wedge \beta + \alpha \wedge (L_U \beta). \]

Noting that $0 \leq f_j \leq 1$ and $\lim_{i \to \infty} f_j(x) = \alpha(x)$, it follows from the dominated convergence theorem that

\[\lim_{i \to \infty} \langle f_j, \alpha \rangle = \| \alpha \|^2. \] (2.15)

Since $|U| = 1$ and $supp(df_j) \subset B_{j_i + 1} \setminus B_{j_i}$, one obtains

\[|(i_U \alpha, *(df_j \wedge \alpha))| \leq C \int_{B_{j_i + 1} \setminus B_{j_i}} |\alpha(x)|^2 \to 0, \text{ as } i \to \infty, \] (2.16)

where C is a constant independent of j_i. It now follows from (2.12) and (2.14)–(2.16) that $\alpha = 0$. This proves that $\mathcal{H}^{(2)}_{(2), \eta}(M) = \{0\}$.

\[\Box \]
2.3 Locally conformally Kähler manifolds

In this section we will give the necessary definitions and properties of locally conformally Kähler (LCK) manifolds. In what follows, M will denotes a connected, smooth manifold of complex dimension n; J will be an integrable complex structure. For a Hermitian metric g, we denote by ∇ the Levi-Civita connection and by ω the fundamental two-form defined as $\omega(X,Y) = g(JX,Y)$.

A Locally conformally Kähler manifolds is a complex manifold X covered by a system of open subsets U_α endowed with local Kähler metrics g_α, conformal on overlaps $U_\alpha \cap U_\beta$: $g_\alpha = c_{\alpha\beta} g_\beta$. The metrics $e^{f_\alpha} g_\alpha$ glue to a global metric whose associated 2-form satisfies the integrability condition $d\omega = \theta \wedge \omega$, thus being locally conformal with the Kähler metrics g_α. Here $\theta|_{U_\alpha} = df_\alpha$. The closed 1-form θ is called the Lee form. This gives another definition of an LCK structure, which will be used in this paper.

Definition 2.3. Let (M, g, ω) be a complex Hermitian manifold, $\dim_{\mathbb{C}} M > 1$, with

$$d\omega = \theta \wedge \omega,$$

where θ is a closed 1-form. Then M is called a locally conformally Kähler (LCK) manifold.

If one performs a conformal change, $\omega_1 = e^{f}\omega$, the Lee form θ changes to $\theta_1 = \theta + df$. The cohomology class $[\theta] \in H^1_{dR}(M)$ is an important invariant of an LCK-manifold. Clearly, $[\theta] \in H^1_{dR}(M)$ vanishes if and only if ω is conformally equivalent to a Kähler structure. In this case (M, ω) is called globally conformally Kähler.

An LCK-form ω on an LCK-manifold satisfies $d\omega = \omega \wedge \theta$, therefore it is $(d - \theta)$-closed. The cohomology class $[\omega] \in H^2(M)$ is called the Morse-Novikov class of the LCK-manifold. It is an invariant of the LCK-manifold, roughly analogous to the Kähler class on a Kähler manifold. In [19], the author defined three cohomology invariants, the Lee class, the Morse-Novikov class, and the Bott-Chern class, of an LCK-structure. These invariants play together the same role as the Kähler class in Kähler geometry [20, 21, 22].

Among the LCK manifolds, a distinguished class is the following:

Definition 2.4. Let (M, g, ω, θ) be an LCK manifold and ∇ its Levi-Civita connection. We say that M is an LCK manifold with parallel Lee form θ, or Vaisman manifold, if $\nabla \theta = 0$. If $\theta \neq 0$, then after rescaling, we may always assume that $|\theta| = 1$. Unless otherwise stated, we shall assume implicitly that $|\theta| = 1$ for all Vaisman manifolds we consider.

We can constructed a Kähler potential on a Vaisman manifold with exact Lee form [25, 27].

Proposition 2.5. Let M be an LCK manifold with parallel Lee form θ, and θ^\sharp be the dual vector field of θ. Consider a diffeomorphism flow ψ_t associated with θ^\sharp. Then ψ_t acts on M preserving the LCK structure.

Proof. For a more detailed proof see [9] or [26, Proposition 4.1].
The Lee form θ is by definition closed. Passing to a covering if necessary, we may assume that it is exact: $\theta = dt$. Write $r = e^{-t}$.

Definition 2.6. Let M be an LCK manifold with exact Lee form $\theta = dt$. The function $r = e^{-t}$ is called the potential of M. Clearly, r is defined uniquely up to a positive constant multiplier.

Let (M, g, ω) be an LCK manifold with exact Lee form θ, r its potential and $\omega \in \Omega^{1,1}(M)$ the Hermitian form of (M, g). One can see that $r\omega$ is positive definite since r is a positive function. Then, we have

$$d(r\omega) = rd\omega - e^{-t}dt \wedge \omega = r(\theta \wedge \omega) - \theta \wedge (r\omega) = 0,$$

i.e., $r\omega$ is a Kähler form.

Proposition 2.7. ([26, Proposition 4.4]) Let (M, J, g) be a Vaisman manifold. Assume that the Lee form θ is exact, and let r be the corresponding potential function. Then r is the Kähler potential for the Kähler form $r\omega$.

Proof. Let L_{θ} be the operator of Lie derivative along the vector field θ^\sharp dual to θ. Then $L_{\theta}\omega = 0$ by Proposition 2.5. Similarly,

$$L_{\theta^\sharp}r = i_{\theta^\sharp}dr = *(\theta \wedge *dr) = -* (\theta \wedge *(r\theta)) = -r.$$

Therefore, $L_{\theta^\sharp}(r\omega) = -r\omega$. On the other hand, $r\omega$ is closed, i.e., $d(r\omega) = 0$. We obtain

$$r\omega = -L_{\theta^\sharp}(r\omega) = -di_{\theta^\sharp}(r\omega) = -d*(\theta \wedge *(r\omega)).$$

Let $d^c = -J \circ d \circ J$ be the twisted de Rham differential. We notice that

$$\theta \wedge *(r\omega) = r\theta \wedge \frac{\omega^{n-1}}{(n-1)!} = r\left(\frac{1}{(n-1)!}L^{n-1}\theta\right) = *J(r\theta),$$

and $dr = -r\theta$. Therefore,

$$r\omega = dJ(r\theta) = -dJdr = dd^cr.$$

Hence the function r is a Kähler potential for the form $r\omega$.

The Kähler potential on the universal covering space \tilde{M} was first noted by Verbitsky [26]. As a consequence, Ornea-Verbitsky [20, 21, 22] introduced and started the study of the more general notion of a LCK metric with (positive) potential.

Remark 2.8. Suppose that the Kähler form ω on a Kähler manifold M is given by a global potential, $\omega = i\partial\bar{\partial}\lambda$ for a smooth $\lambda \in C^2(M)$ with $\lambda \geq 1$. Suppose that for all $x \in M$, there exists a constants $A, B < \infty$ such that

$$|\partial\lambda(x)|^2_\omega \leq (A + B\lambda(x)), \tag{2.17}$$

where \(| \cdot |_\omega\) is the norm induced by the Kähler form \(\omega\). If \(M\) is complete, then \((M, \omega)\) was called Kähler convex [17].

We denote by \(r_g\) the metric on a complete, simply-connected, Vaisman manifold \((M, J, g, \omega, \theta)\) induced by Kähler form \(r_\omega = dd^c r = i\partial\bar{\partial}(2r)\). Noting that \(|\partial t|^2_g = |\partial \theta|^2_g = \frac{1}{2}\) since \(\theta = dt\) and \(|\theta|^2_g = 1\). We then have
\[
|\partial (2r)|^2_g = |2e^{-f} \partial t|^2_g = 4r |\partial t|^2_g = 2r.
\]
In particular, the Kähler potential \(2r\) satisfies (2.17). It is true that a complete, simply-connected Vaisman manifold become Kähler after a conformal change of the metric, but this metric is never complete.

Let \((M, J, \theta)\) be a Vaisman manifold. Since the Lee form \(\theta\) is parallel, \(|\theta| = 2c\) for some \(c \in \mathbb{R}\), \(c \neq 0\). We adopt the notations
\[
u = |\theta|^{-1}\theta, \ U = u^\sharp, \ v = -u \circ J, \ V = -JU.
\]
We recall that given a real \((2n - 1)\)-dimensional \(C^\infty\) differentiable manifold \(N\) and \(c \in \mathbb{R}\), \(c \neq 0\), a \(c\)-Sasakian structure on \(N\) is a synthetic object \((\psi, \xi, \eta, \gamma)\) consisting of a \((1, 1)\)-tensor field \(\psi\), a vector field \(\xi \in \mathcal{X}(N)\), a 1-form \(\eta\), and a Riemannian metric \(\gamma\), satisfying the following identities:
\[
\begin{align*}
\psi^2 &= -I + \eta \otimes \xi \\
\eta \circ \psi &= 0, \ \eta(\xi) = 1 \\
\gamma(\psi X, \psi Y) &= \gamma(X, Y) - \eta(X)\eta(Y) \\
[\psi, \psi] + 2(d\eta) \otimes \xi &= 0 \\
d\eta &= c\phi,
\end{align*}
\]
where the 2-form \(\phi\) is given by \(\phi(X, Y) = \gamma(X, \psi Y)\). A \((2n - 1)\)-dimensional manifold \(N\) carrying a \(c\)-Sasakian structure is a \(c\)-Sasakian manifold. Of course, one may always go back to a usual Sasakian structure by a transformation:
\[
\hat{\psi} = \psi, \ \hat{\xi} = \frac{1}{c}\xi, \ \hat{\eta} = c\eta, \ \hat{\gamma} = c^2\gamma.
\]
We then have

Proposition 2.9. ([24] and [9] Proposition 5.1) Let \(M\) be a Vaisman manifold. Let \(S\) be a leaf of \(\mathcal{F}_0\) and \(i : S \hookrightarrow M\) the inclusion. Let \((\psi, \xi, \eta, \gamma)\) on \(S\) be given by
\[
\psi = J \circ (di) + (i^* v) \otimes (U \circ i) \\
\xi = V \circ i, \ \eta = i^* v \\
\gamma = i^* g,
\]
Then \((\psi, \xi, \eta, \gamma)\) is a \(c\)-Sasakian structure on \(S\).
Using
\[g = \gamma + u \otimes u \]
and the De Rham decomposition theorem, we obtain

Proposition 2.10. ([27] and [9, Proposition 5.2]) The universal Riemannian covering manifold \(M \) of a complete Vaisman manifold is the Riemannian product of a simply connected \(c \)-Sasakian manifold \(N \), which is the universal covering space of a leaf \(N \) of \(F_0 \) and the real line.

3 Vanishing theorems

3.1 Riemannian manifold with parallel 1-form

In this section, we recall some notations and definitions on differential geometry [27]. Let \(M \) be a \(C^\infty \)-manifold. We denote by \(\Omega^\ast(X) \) the smooth forms on \(M \). Given an odd or even from \(\alpha \in \Omega^\ast(M) \), we denote by \(\tilde{\alpha} \) its parity, which is equal to 0 for even forms, and 1 for odd forms. An operator \(f \in \text{End}(\Lambda^\ast(M)) \) preserving parity is called even, and one exchanging odd and even forms is odd, \(\tilde{f} \) is equal to 0 for even forms and 1 for odd ones. Given a \(C^\infty \)-linear map \(\Omega^1(M) \to \Omega^{\text{even}}(M) \) or \(\Omega^1(M) \to \Omega^{\text{odd}}(M) \), \(p \) can be uniquely extended to a \(C^\infty \)-linear derivation \(\rho \) on \(\Omega^\ast(M) \), using the rule

\[\rho|_{\Omega^0(M)} = 0, \quad \rho|_{\Omega^1(M)} = p, \quad \rho(\alpha \wedge \beta) = \rho(\alpha) \wedge \beta + (-1)^{\tilde{\alpha}\tilde{\beta}} \alpha \wedge \rho(\beta). \]

Then, \(\rho \) is an even (or odd) differentiation of the graded commutative algebra \(\Omega^\ast(M) \). Verbitsky gave a definition of the structure operator of \((M, \omega) \), see [27] Definition 2.1.

Definition 3.1. Let \(M \) be a Riemannian manifold equipped with a parallel differential \(k \)-form \(\eta \). Consider an operator \(C : \Omega^1(M) \to \Omega^{k-1}(M) \) mapping \(\alpha \in \Omega^1(M) \) to \(*(*\omega \wedge \alpha) \). The corresponding differentiation

\[C : \Omega^\ast(M) \to \Omega^{\ast+k-2}(M) \]

is called the structure operator of \((M, \eta) \).

Definition 3.2. ([27 Definition 2.3]) Let \(M \) be a Riemannian manifold, and \(\omega \in \Omega^k(M) \) a differential form, which is parallel with respect to the Levi-Civita connection. Denote by \(d_C \) the supercommutator

\[\{d, C\} := dC - (-1)^{\tilde{C}d}Cd. \]

This operator is called the twisted de Rham operator of \((M, \omega) \). Being a graded commutator of two graded differentiations, \(d_C \) is also a graded differentiation of \(\Omega^\ast(M) \).

Lemma 3.3. ([27 Proposition 2.5]) Let \(M \) be a Riemannian manifold equipped with a parallel differential \(k \)-form \(\eta \), and \(L_\eta \) the operator \(\alpha \mapsto \alpha \wedge \eta \). Then

\[d_C = \{L_\eta, d^\ast\}, \]

where \(\{\cdot, \cdot\} \) denotes the supercommutator, and \(d^\ast \) is the adjoint to \(d \).
Remark 3.4. If \(\eta \) is a parallel one form on \(M \), then in fact the structure operator of \(M \) is \(C = i_\eta \). The operator \(d_C \) is the Lie derivative \(\mathcal{L}_\eta \) since \(\{d, i_\eta\} = \mathcal{L}_\eta \).

We recall some results which proved by Verbitsky (See [27, Proposition 2.5 and Corollary 2.9]).

Proposition 3.5. Let \(M \) be a Riemannian manifold equipped with a parallel differential \(k \)-form \(\eta \), \(d_C \) the twisted de Rham operator constructed above and \(\ast_C \) its Hermitian adjoint. Then,

(i) The following supercommutators vanish:

\[
\{d, d_C\} = 0, \quad \{d, d_C^*\} = 0, \quad \{d^*, d_C\} = 0, \quad \{d^*, d_C^*\} = 0.
\]

(ii) The Laplacian \(\Delta = \{d, d^*\} \) commutes with \(L_\eta : \alpha \mapsto \alpha \wedge \eta \) and its adjoint operator \(\Lambda_\eta \) which is denoted as \(\Lambda_\eta : \Omega^i(M) \to \Omega^{i-k}(M) \).

Following Proposition 3.5, if \(\alpha \) is a harmonic form on \(M \), then \(\alpha \wedge \eta \) is harmonic.

Corollary 3.6. Let \(M \) be a complete manifold and \(\eta \) a closed 1-form on \(M \), \(\eta \neq 0 \). Suppose that \(g \) is a Riemannian metric on \(M \) such that \(\eta \) is parallel with respect to \(g \). If \(\alpha \) is a \(L^2 \)-harmonic \(k \)-form on \(M \), then \(\eta \wedge \alpha \) is a \(L^2 \)-harmonic \((k+1)\)-form.

Proof. Since the 1-form \(\eta \) is a parallel, \(|\eta| = \text{const} \). Therefore, \(\eta \wedge \alpha \in \Omega^{k+1}(M) \). Following Proposition 3.5, it implies that \(\Delta(\eta \wedge \alpha) = 0 \). Then, we have \(d(\eta \wedge \alpha) = 0 \) and \(d^*(\eta \wedge \alpha) = 0 \).

Let \((M, g)\) be a complete Riemannian manifold. A differential form \(\alpha \) is called \(d \)-bounded if there exists a form \(\beta \) on \(M \) such that \(\alpha = d\beta \) and

\[
\|\beta\|_{L^\infty(M,g)} = \sup_{x \in M} |\beta(x)|_g < \infty.
\]

It is obvious that if \(M \) is compact, then every exact form is \(d \)-bounded. However, when \(M \) is not compact, there exist smooth differential forms which are exact but not \(d \)-bounded. For instance, on \(\mathbb{R}^n \), \(\alpha = dx^1 \wedge \cdots \wedge dx^n \) is exact, but it is not \(d \)-bounded.

Let us recall some concepts introduced by Cao-Xavier in [1]. A differential form \(\alpha \) on a complete non-compact Riemannian manifold \((M, g)\) is called \(d \)-sublinear if there exist a differential form \(\beta \) and a number \(c > 0 \) such that \(\alpha = d\beta \) and

\[
|\alpha(x)|_g \leq c, \quad |\beta(x)|_g \leq c(1 + \rho(x, x_0)),
\]

where \(\rho(x, x_0) \) stands for the Riemannian distance between \(x \) and a base point \(x_0 \) with respect to \(g \).

In [13], the author extended the idea of Cao-Xavier’s [1] to the case of Riemannian manifold equipped with a parallel differential form. We then have a result as follows. Here, we give a proof in detail for the readers convenience.

Theorem 3.7. [13 Theorem 2.9] Let \((M, \eta)\) be a Riemannian manifold equipped with a parallel differential \(k \)-form \(\eta \). If \(\eta = d\beta \) is \(d \)-sublinear, then for any \(\alpha \in \mathcal{H}^p(\mathcal{X}) \), we have

\[
\eta \wedge \alpha = 0.
\]
Proof. Let \(\{f_j\}_{j=0,1,2,...} \) be the compactly supported functions which are the same as the functions in the proof of Theorem 2.2. Let \(\alpha \) be a harmonic \(p \)-form in \(L^2 \), and consider the form \(\nu = \beta \wedge \alpha \). Observing that \(d^*(\eta \wedge \alpha) = 0 \) since \(\eta \wedge \alpha \in H^{p+k}_c(X) \) and noticing that \(f_j \nu \) has compact support, one has

\[
0 = (d^*(\eta \wedge \alpha), f_j \nu) = (\eta \wedge \alpha, d(f_j \nu)) = (\eta \wedge \alpha, f_j \eta \wedge \alpha) + (\eta \wedge \alpha, df_j \wedge \beta \wedge \alpha). \tag{3.1}
\]

Since \(0 \leq f_j \leq 1 \) and \(\lim_{j \to \infty} f_j(x)(\eta \wedge \alpha)(x) = (\eta \wedge \alpha)(x) \), it follows from the dominated convergence theorem that

\[
\lim_{j \to \infty} (\eta \wedge \alpha, f_j \eta \wedge \alpha) = ||\eta \wedge \alpha||^2. \tag{3.2}
\]

Since \(\eta \) is bounded, \(\text{supp}(df_j) \subset B_{j+1} \setminus B_j \) and \(|\beta(x)| = O(\rho(x_0, x)) \), one obtains

\[
| (\eta \wedge \alpha, df_j \wedge \beta \wedge \alpha) | \leq (j + 1)C \int_{B_{j+1} \setminus B_j} |\alpha(x)|^2 d\text{Vol}, \tag{3.3}
\]

where \(C \) is a constant independent of \(j \).

We claim that there exists a subsequence \(\{j_i\}_{i \geq 1} \) such that

\[
\lim_{i \to \infty} (j_i + 1) \int_{B_{j_i+1} \setminus B_{j_i}} |\alpha(x)|^2 d\text{Vol} = 0. \tag{3.4}
\]

If not, there would exist a positive constant \(a \) such that

\[
\lim_{i \to \infty} (j_i + 1) \int_{B_{j_i+1} \setminus B_{j_i}} |\alpha(x)|^2 d\text{Vol} \geq a > 0, \quad j \geq 1.
\]

This inequality implies

\[
\int_M |\alpha(x)|^2 d\text{Vol} = \sum_{j=0}^{\infty} \int_{B_{j+1} \setminus B_j} |\alpha(x)|^2 d\text{Vol} \geq a \sum_{j=0}^{\infty} \frac{1}{j+1} = +\infty
\]

a contradiction to the assumption \(\int_M |\alpha(x)|^2 d\text{Vol} < \infty \). Hence, there exists a subsequence \(\{j_i\}_{i \geq 1} \) for which (3.4) holds. Using (3.3) and (3.4), one obtains

\[
\lim_{i \to \infty} (\eta \wedge \alpha, df_j \wedge \beta \wedge \alpha) = 0 \tag{3.5}
\]

It now follows from (3.1), (3.2) and (3.5) that \(\eta \wedge \alpha = 0 \).

There is a very known result. Let \(M \) be a compact Riemannian manifold, \(\alpha \) be a closed 1-form and \(\pi : \tilde{M} \to M \) be the universal covering. Then the pull back form \(\pi^*(\alpha) \) is \(d \) (sublinear) (see [14, Proposition 1]). We observe a useful lemma as follows.

Lemma 3.8. Let \(M \) be a complete, non-compact Riemannian manifold. If the \(C^\infty \)-function \(f \) on \(M \) satisfies \(\nabla^2 f = 0 \), then for any \(x \in M \),

\[
|f(x)| \leq c(\rho(x, x_0) + 1),
\]

where \(c \) is a uniform positive constant.
Proof. Since $\nabla^2 f = 0$, $|\nabla f| = \text{const.}$ Let x_0 be a fix point on M. For any point x in M, there exists a geodesic $s : [0, 1] \to M$ such that $s(0) = x_0$ and $s(1) = x$. Thus

$$|f(s(1)) - f(s(0))| \leq c\rho|\nabla f|,$$

where ρ is the Riemannian distance between x_0 and x, c is a positive constant independent on $x \in M$.

We then have

Lemma 3.9. Let M be a complete, simply-connected manifold and η a closed 1-form on M, $\eta \neq 0$. Suppose that g is a Riemannian metric on M such that η is parallel with respect to g. Then for any L^2-harmonic k-form α on M, we have

$$e(\eta)(\alpha) = 0, \ i_U(\alpha) = 0. \quad (3.6)$$

In particular, for any $k \geq 0$,

$$\mathcal{H}^k(M) \subset \mathcal{H}^k_{(2),\eta}(M).$$

Proof. Since M is simply-connected, there is a function f on M such that $\eta = df$. Therefore, $\nabla^2 f = 0$ since $\nabla \eta = 0$. By the Lemma 3.8, η is d(sublinear). Let α be a L^2-harmonic k-form. Then, $\ast \alpha$ is also a L^2-harmonic $(n - k)$-form. Following Theorem 3.7 and Corollary 3.6, it implies that

$$e(\eta)(\alpha) = \eta \wedge \alpha = 0, \ i_U(\alpha) = (-1)^{nk+n} \ast e(\eta)(\ast \alpha) = 0.$$

Therefore, $d_\eta \alpha = d\alpha + e(\eta)\alpha = 0$ and $\delta_\eta \alpha = \delta \alpha + i_U \alpha = 0$, i.e., $\alpha \in \mathcal{H}^k_{(2),\eta}(M)$.

Noting that the Lee form from θ on a complete simply connected Vaisman manifold is parallel. Following Proposition 3.9, we then have

Corollary 3.10. Let $(M, J, g, \omega, \theta)$ be a complete, simply-connected Vaisman manifold. If α is a L^2-harmonic k-form on M, then

$$e(\theta)(\alpha) = 0, \ i_{\theta^\sharp}(\alpha) = 0. \quad (3.7)$$

where θ is the Lee form and θ^\sharp is the Lee filed. In particular, for any $k \geq 0$,

$$\mathcal{H}^k_{(2)}(M) \subset \mathcal{H}^k_{(2),\theta}(M).$$

Theorem 3.11. Let M be a complete, simply-connected manifold and η a closed 1-form on M, $\eta \neq 0$. Suppose that g is a Riemannian metric on M such that η is parallel with respect to g. Then for any $k \geq 0$, the spaces $\mathcal{H}^k_{(2)}(M)$ of L^2-harmonic k-forms for all k are trivial.

Proof. The conclusion follows from Theorem 2.2 and Lemma 3.9.

Proof of Theorem 1.1. The conclusion follows from Theorem 3.11 and Corollary 3.10.
Remark 3.12. If $(M, J, g, \omega, \theta)$ is a closed, smooth Vaisman manifold and $\pi : (\tilde{M}, \tilde{J}, \tilde{g}, \tilde{\omega}, \tilde{\theta}) \to (M, J, g, \omega, \theta)$ its universal covering. Then $(\tilde{M}, \tilde{J}, \tilde{g}, \tilde{\omega}, \tilde{\theta})$ is a complete, simply-connected Vaisman manifold. Therefore, $\mathcal{H}^n_{(2)}(\tilde{M}, \tilde{g}) = \{0\}$.

We recall a well-known property of the space of L^2 harmonic n-forms on a complete $2n$-dimensional manifold under conformal metric (see [2, Proposition 5.2]).

Proposition 3.13. If $g_1 = e^f g_2$ are two conformally equivalent Riemannian metric on a smooth $2n$-dimensional manifold M, then $$\mathcal{H}^n_{(2)}(M, g_1) = \mathcal{H}^n_{(2)}(M, g_2).$$

Corollary 3.14. Let (M, J, g) be a Vaisman manifold. Assume that the Lee form θ is exact, and let r be the corresponding potential function. Then $\mathcal{H}^n_{(2)}(M, rg) = 0$.

Acknowledgements

We would like to thank Professor H.Y. Wang for drawing our attention to the Vaisman manifold and generously helpful suggestions about these. This work is supported by Natural Science Foundation of China No. 11801539 (Huang), No. 11701226 (Tan) and Natural Science Foundation of Jiangsu Province BK20170519 (Tan).

References

[1] Cao, J. G., Xavier, F., *Kähler parabolicity and the Euler number of compact manifolds of non-positive sectional curvature*. Math. Ann. 319 (2001), 483–491.

[2] Carron, G., *L^2 harmonic forms on non-compact Riemannian manifolds*. Surveys in analysis and operator theory (Canberra, 2001), 49–59.

[3] de León, M., López, B., Marrero, J. C., Padrón, E., *On the computation of the Lichnerowicz-Jacobi cohomology*. J. Geom. Phys. 4 (2003), 507–522.

[4] Chen, B.Y., *Geometry of submanifolds*. Pure and Appl. Math., Marcel Dekker, Inc., New York, 1973.

[5] Dimca, A., *Sheaves in Topology*. Springer Verlag, 2004.

[6] Donnelly, H. *L^2 cohomology of pseudoconvex domains with complete Kähler metric*. Mich. Math. J. 41 (1994), 433–442.

[7] Donnelly, H. *L^2 cohomology of the Bergman metric for weakly pseudoconvex domain*. Ill. Math. J. 41 (1997), 151–160.

[8] Donnelly, H., Fefferman, C., *L^2 cohomology and index theorem for the Bergman metric*. Ann. Math. 118 (1983), 593–618.

[9] Dragomir, S., Ornea, L., *Locally conformal Kähler geometry*. Progress in Mathematics, 155. Birkhäuser, Boston, MA, 1998.

[10] Gromov, M., *Kähler hyperbolicity and L^2-Hodge theory*. J. Differential Geom. 33 (1991), 263–292.

[11] Guédiar, F., Lichnerowicz, A., *Géométrie des algèbres de Lie locales de Kirillov*. J. Pure Appl. Math. 63 (1984), 407–484.
[12] Hitchin, N., \textit{L}^2\text{-Cohomology of Hyperkähler Quotients}. Comm. Math. Phys. \textbf{211} (2000), 153–163.

[13] Huang, T., \textit{L}^2\text{ harmonic forms on complete special holonomy manifolds}. Ann. Glob. Anal. Geom. (2019). Doi: 10.1007/s10455-019-09654-z

[14] Jost, J., Zuo, Kang, \textit{Vanishing theorems for} \textit{L}^2\text{-cohomology on infinite coverings of compact Kähler manifolds and applications in algebraic geometry}. Comm. Anal. Geom. \textbf{8} (2000), 1–30.

[15] Kashiwada, T., Sato, S., \textit{On harmonic forms on compact locally conformal Kähler manifolds with parallel Lee form}. Ann. Fac. Sci. Kinshasa, Zaire, \textbf{6} (1980), 17–29.

[16] Lichnerowicz, A., \textit{Les variétés de Poisson et leurs algèbres de Lie associées J}. Differential Geom. \textbf{12} (1977), 253–300.

[17] McNeal, J. D., \textit{L}^2\text{ harmonic forms on some complete Kähler manifolds}. Math. Ann. \textbf{323}, (2002) 319–349.

[18] Novikov, S. P., \textit{The Hamiltonian formalism and a multivalued analogue of Morse theory}. (Russian) Uspekhi Mat. Nauk 37 (1982), 3–49.

[19] Ornea, L., Verbitsky, M. \textit{Morse-Novikov cohomology of locally conformally Kähler manifolds}. J. Geom. Phys. \textbf{59} (2009), 295–305.

[20] Ornea, L., Verbitsky, M., \textit{Locally conformal Kähler manifolds with potential}. Math. Ann. \textbf{248}, (2010) 25–33.

[21] Ornea, L., Verbitsky, M., \textit{Automorphisms of locally conformally Kähler manifolds}. Int. Math. Res. Not. \textbf{4}, 2012 894–903.

[22] Ornea, L., Verbitsky, M., \textit{Positivity of LCK potential}. J. Geom. Anal. (2018). https://doi.org/10.1007/s12220-018-0046-y

[23] Vaisman, I., \textit{On locally and globally conformal Kähler manifolds}. Trans. Amer. Math. Soc. \textbf{282} (1980), 533–542.

[24] Vaisman, I., \textit{Locally conformal Kaehler manifolds with parallel Lee form}. Rendiconti di Matern., Roma, \textbf{12} (1979), 263–284.

[25] Vaisman, I., \textit{A survey of generalized Hopf manifolds}. Rend. Sem. Mat. Torino, Special issue (1984), 205-221.

[26] Verbitsky, M. S., \textit{Vanishing Theorems for Locally Conformal Hyperkaähler Manifolds}. Tr. Mat. Inst. Steklova, \textbf{246} (2004), 64–91.

[27] Verbitsky, M. \textit{Manifolds with parallel differential forms and Kähler identities for G}2\text{-manifolds}. J. Geom. Phys. \textbf{61} (2011), 1001–1016.