EFFECTIVE NON-VANISHING OF ASYMPTOTIC ADJOIN SYZYGIES

XIN ZHOU

(Communicated by Irena Peeva)

ABSTRACT. The purpose of this paper is to establish an effective non-vanishing theorem for the syzygies of an adjoint-type line bundle on a smooth variety as the positivity of the embedding increases. Our purpose here is to show that for an adjoint-type divisor \(B = K_X + bA \) with \(b \geq n + 1 \), one can obtain an effective statement for arbitrary \(X \) which specializes to the statement for Veronese syzygies in the paper “Asymptotic Syzygies of Algebraic Varieties” by Ein and Lazarsfeld. We also give an answer to Problem 7.9 in that paper in this setting.

INTRODUCTION

The purpose of this paper is to establish an effective non-vanishing theorem for the syzygies of an adjoint-type line bundle on a smooth variety as the positivity of the embedding increases. In particular, we give an answer to Problem 7.9 in [EL] in this setting.

Let \(X \) be a smooth projective variety of dimension \(n \) over \(\mathbb{C} \), and let \(L \) be a very ample line bundle on \(X \). Then \(L \) defines an embedding

\[
X \hookrightarrow \mathbb{P}(L) = \mathbb{P}^r(L) = \text{Proj } S,
\]

where \(r(L) = h^0(X,L) - 1 \) and \(S = \text{Sym}^1 H^0(X,L) \). Given a divisor \(B \) on \(X \), write

\[
R(X,B;L) = \bigoplus_m H^0(X,mL+B),
\]

which is viewed as a finitely generated graded \(S \)-module. We will be interested in the syzygies of \(R(X,B;L) \) over \(S \). Specifically, \(R \) has a graded minimal free resolution

\[
P : \ldots \to F_p \to \ldots \to F_0 \to R \to 0,
\]

where \(F_p = \bigoplus_j S(-a_{p,j}) \) is a free \(S \)-module. Write \(K_{p,q}(X,B;L) \) for the finite dimensional vector space of minimal \(p \)-th syzygies of degree \((p+q) \) so that

\[
F_p \cong \bigoplus_q K_{p,q}(X,B;L) \otimes \mathbb{C} S(-p-q).
\]
Ein and Lazarsfeld [EL] studied these groups for $L = L_d = dA$ when A is a very ample line bundle and d is very large. It is elementary that:
- For $q > n + 1$, $K_{p,q}(X, B; L_d) = 0$.
- For $q = 0$ or $q = n + 1$, $K_{p,q}(X, B; L_d) \neq 0$ for only finitely many values of p, which can be determined completely.

So the interesting question is when $K_{p,q}(X, B; L_d)$ is non-zero for $1 \leq q \leq n$. The first main result of [EL] was that if one fixes $1 \leq q \leq n$, and if $d \gg 0$, then

$$K_{p,q}(X, B; L_d) \neq 0$$

for

$$O(d^{q-1}) \leq p \leq r(d) - O(d^{n-1}).$$

Remark 0.1. Another result of similar flavor on surfaces is [EGHP, Prop. 3.4].

The second main result of [EL] was the effective statement for $X = \mathbb{P}^n$, $B \in |O_{\mathbb{P}^n}(k)|$, $1 \leq q \leq n$, and d large. Specifically,

$$K_{p,q}(\mathbb{P}^n, B; L_d) \neq 0$$

for

$$\left(\frac{q+d}{d}\right) - \left(\frac{d-k-1}{q}\right) - q \leq p \leq \left(\frac{d+n}{n}\right) - \left(\frac{d+n-q}{n-q}\right) + \left(\frac{k+n}{n-q}\right) - q - 1.$$

Our purpose here is to show that for an adjoint-type divisor $B = K_X + bA$ with $b \geq n + 1$, one can in fact obtain an effective statement for arbitrary X which specializes to the statement above on Veronese syzygies. Before stating the theorem, we fix some notation. Given very ample line bundles H_1, \ldots, H_c on X, let Z be a complete intersection of divisors from $|H_1|, \ldots, |H_c|$. Write

$$\phi(H_1, \ldots, H_c; L_d) = h^0(Z, L_d).$$

Via the Koszul resolution of \mathcal{O}_Z, for sufficiently large d, $\phi(H_1, \ldots, H_c; L_d)$ can be expressed, independent of the choice of the particular divisors (which will be the case for us), as an alternating sum of terms of the form $h^0(X, dL - \sum_{j \in J} H_j)$, where $J \subseteq \{1, \ldots, c\}$. The following two special cases appear in the statement of our main result:

$$n_d := \phi(-K_X - (n-q)A + B, A, \ldots, A; L_d),$$

$$N_d := \phi((d-q)A - B, A, \ldots, A; L_d).$$

Our main result is:

Theorem. Fix $1 \leq q \leq n$. Then for sufficiently large d,

$$K_{p,q}(X, B; L_d) \neq 0$$

for every value of p satisfying

$$n_d - q \leq p \leq h^0(X, L_d) - N_d - q - 1.$$
It may be instructive to see an example of how the theorem works. Let $X = \mathbb{P}^2$, and put $B = 0$, $A = \mathcal{O}_X(1)$. Then we’re looking at the minimal free resolution of the image of \mathbb{P}^2 in its d-th Veronese embedding, and we work out the statement in the case $q = 1$.

- In the lower bound, Z is 2 points and $n_d = h^0(Z, \mathcal{O}_{\mathbb{P}^2}(d)) = 2$.
- In the upper bound, Z' consists of d points and $N_d = h^0(Z, \mathcal{O}_{\mathbb{P}^2}(d)) = d$.

So for the d-th Veronese embedding of \mathbb{P}^2 with large d, the theorem asserts that

$$K_{p,1}(X, 0; dL) \neq 0, \text{ for } 1 \leq p \leq \left(\frac{d+2}{2} \right) - d - 2,$$

which was a result of Ottaviani and Paoletti; cf. [OP]. More generally, one can recover [EL, Thm. 6.1]. (See the example in §2.1 below.)

The proof of the theorem follows the line of attack of [EL], which involves constructing secant varieties that exhibit syzygies. The main new observation here is that for adjoint B, one can work with secant varieties that do not vary with d. This greatly simplifies the calculations, and gives an effective statement which specializes to the case of Veronese embeddings. For a number of facts we use in the proof, we will refer to [EL] when appropriate, instead of repeating the arguments in detail.

In §1, we give a proof of the main theorem. In §2, we work out some examples.

1. Proof of the main result

We first give an alternative definition of $K_{p,q}(X, B; L)$ used in the proof. Throughout, X is a smooth complex projective variety of dimension n and L and A are very ample divisors on X. (We will be setting $L = dA$ later.) Let

$$V = H^0(X, L)$$

and write V_X for $V \otimes \mathcal{O}_X$, the trivial vector bundle on X modeled on V.

Fix an integer $b \geq n + 1$ and set

$$B = K_X + bA + P,$$

where K_X is a canonical divisor on X and P is globally generated (we have to include globally generated instead of having only trivial for the application of duality after Proposition 1.12). Note that the higher cohomologies of B vanish thanks to Kodaira vanishing. As in [G] and [EL], define $K_{p,q}(X, B; L)$ to be the cohomology at the middle of the following complex:

$$\bigwedge^{p+1} V \otimes H^0(B + (q-1)L) \to \bigwedge^p V \otimes H^0(B + qL) \to \bigwedge^{p-1} V \otimes H^0(B + (q+1)L).$$

As motivated in the introduction, we will fix the index $q \in [1, n]$. As is well known, these Koszul cohomology groups are governed by the cohomologies of the vector bundle M_L on X defined by the exact sequence

$$0 \to M_L \to V_X \to L \to 0.$$
Proposition 1.1. For $1 \leq q \leq n$, $K_{p,q}(X, B; L) = H^q(\Lambda^{p+q} M_L \otimes O_X(B))$.

Proof. Recalling that B has vanishing higher cohomologies, the conclusion follows as in [EL Prop. 3.2], and the proof of [EL Prop. 3.3]. See also [EL93 Sect. 1] and [E Thm. 5.8].

Next, we recall the following construction from [EL, §3]. Suppose a quotient $\pi : V \twoheadrightarrow W$ of V with $\dim W = w$ and a subscheme Z of X satisfy

$$Z = X \cap \mathbb{P}(W)$$

in $\mathbb{P}(V)$ scheme-theoretically. Then we have the diagram

$$
\begin{array}{ccccccccc}
0 & \rightarrow & M_L & \rightarrow & V \otimes O_X & \rightarrow & L & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & \Sigma_W & \rightarrow & W \otimes O_X & \rightarrow & L \otimes O_Z & \rightarrow & 0 \\
\end{array}
$$

(1.3)

whose bottom exact sequence defines Σ_W, a torsion-free sheaf on X of rank w. Furthermore, as in [EL, §3], $\bigwedge^w \Sigma_W$ maps onto $I_{Z/X}$ and one gets a surjective map:

$$\sigma_\pi : \bigwedge^w M_L \rightarrow I_{Z/X}. \quad (1.4)$$

We modify [EL, Def. 3.8]:

Definition 1.2. We say that W carries weight q syzygies for B if the map induced by σ_π,

$$H^q(X, \bigwedge^w M_L(B)) \rightarrow H^q(X, I_{Z/X}(B)),$$

is surjective. (We also say the same for $q = 0$ for notational convenience even though it isn’t necessarily directly related to syzygies.)

Remark 1.3. If for some $q \geq 1$, $H^q(X, I_{Z/X}(B)) \neq 0$ and W carries weight q syzygies for B, then combining Proposition 1.1 and Definition 1.2 gives us

$$K_{w-q,q}(X, B; L) \neq 0.$$

The lemma below describes the same kind of inductive behavior as in [EL Thm. 3.10], with our new definition. Let’s recall some notation first. Take a general divisor $X \in |A|$ so that X is smooth, irreducible and so that (1.3) remains exact after tensoring with O_X. Let

$$V' = V \cap H^0(X, I_{X/X}(L))$$

with the intersection inside V. Set $W' = \pi(V')$. Write

$$V = V/V', \quad W = W/W', \quad L = L|_X, \quad B = B|_X, \quad Z = Z \cap X, \quad A = A|_X, \quad P = P|_X.$$

As in [EL, (3.14)], we get the analogue of (1.3) above for the barred objects and we have the surjection

$$\sigma : \bigwedge^w M_{\mathcal{W}} \rightarrow I_{\mathcal{Z}/\mathcal{X}}$$
so we can study the behavior of \(W \) with respect to carrying syzygies. In fact, the same kind of argument as in the proof of [EL, Thm. 3.10] yields:

Lemma 1.4. For \(q \geq 1 \), if \(W \) carries weight \(q-1 \) syzygies for \(B + A \) on \(X \) and if
\[
H^q(X, I_{Z/X}(B + A)) = 0,
\]
then \(W \) carries weight \(q \) syzygies for \(B \) on \(X \).

Remark 1.5. The assumption under which we’ll apply the lemma is that \(X \) has dimension at least 2. (The dimension one case is completely understood; cf. EL, Prop. 5.1.) For the readers familiar with [EL], \(K_{p, q} \) with the same \(q \) are described by cohomology one differently in indices in this paper. Compare Remark 1.1 and [EL, Cor. 3.3]. This explains why \(K_{p, 1} \) is treated differently in [EL]. (Compare [EL, Thm. 4.1] with Proposition 1.11.)

We next give an analogue of [EL, Def. 5.3]. Take \(\left(n + 1 - q \right) \) divisors
\[
D_1 \in |-K_X - (n - q)A + B|,\quad D_2 \ldots D_{n+1-q} \in |A|,
\]
and let \(Z = D_1 \cap D_2 \cap \ldots \cap D_{n+1-q} \).

Definition 1.6. We say that \(Z \) is adapted to \((X, B, L, n, q) \) if \(Z \) is constructed from \(X, B, A, n, q \) as above and the \(\{D_i\} \) meet transversely.

To get started, we take \(D_i \) general in its linear series. Then we have:

Proposition 1.7.

(i) One has, for every \(J \subseteq \{1, 2, \ldots, n + 1 - q\} \) and \(i > 0 \),
\[
H^i(X, B - \Sigma_{j \in J} D_j) = H^i(X, B + A - \Sigma_{j \in J} D_j) = 0.
\]

(ii) \(H^q(X, I_{Z/X}(B)) \neq 0 \) and \(H^q(X, I_{Z/X}(B + A)) = 0 \).

(iii) If \(\overline{Z} = Z \cap X \), then \(\overline{Z} \) is adapted to \((X, B + A, A, n - 1, q - 1) \).

Proof.

(i) Thanks to the choice of \(D_1 \), this follows from Kodaira vanishing.

(ii) Since \(X \) is a smooth projective variety and the \(D_i \) meet transversely, \(Z \) is a complete intersection. So \(I_{Z/X} \) is resolved by the Koszul complex with the \(j \)-th term \(\bigwedge^j E \) where \(E = \bigoplus_{i=1}^{n+1-q} O_X(-D_i) \). Use the Koszul resolution twisted by \(B \) and (i) to find:
\[
H^q(X, I_{Z/X}(B)) = H^{q+n+1-q-1}(X, B - (\Sigma_{i=1}^{n+1-q} D_i)) = H^n(X, K_X) \neq 0.
\]

The other claim follows similarly using Kodaira vanishing.

(iii) Using adjunction, we have
\[
\mathcal{B} = K_X + (b - 1)A + \mathcal{P},
\]
so \(\mathcal{B} \) has the shape as in [EL]. As \(X \) is general and \(D_i \)'s are general, we can assume \(\{D_i\} \) meet transversely. (Similarly, in the finite number of steps in the induction, we are free to assume that the corresponding divisors intersect transversely.) \(\overline{D}_1 \) is in the correct linear series by adjunction. The rest is immediate. \(\square \)
Now let \(L_d = dA \) and we take \(d \) large enough so that for any \(i \), \(H^i(X, L_d - iA) = 0 \) (i.e. the embedding \(X \subset |A| \) is \(d \)-regular in the sense of Castelnuovo-Mumford).

Definition 1.8. We say that \(d \) satisfies the effective conditions for \(B \) if \(L_d - nA - B \) is very ample.

Remark 1.9. Assume that \(d \) satisfies the effective conditions for \(B \). Note that \(\sum_{i=1}^C D_i = B - K_X \) by construction. Via the Koszul resolution on \(\{D_i\} \) twisted by \(L_d \) and using Kodaira vanishing, the following statements hold, and furthermore, they hold after cutting down by hyperplanes repeatedly until we reach the base case of the inductive proof in Proposition 1.11:

1. The map \(H^0(X, L_d) \to H^0(Z, L_d) \) is surjective or, equivalently, \(H^1(X, I_Z/X(L_d)) = 0 \).
2. The map \(H^0(Z, L_d) \to H^0(Z, L_d) \) is surjective or, equivalently, \(H^1(Z, L_d - A) = 0 \).
3. \(H^1(X, I_Z/X(L_d - A)) = 0 \) (or, equivalently, with \(W' \) chosen below, the map \(V' \to W' \) is surjective).
4. The map \(H^0(X, L_d) \to H^0(X, L_d) \) is surjective or, equivalently, \(H^1(X, L_d - A) = 0 \).

Remark 1.10. In [EL], complete intersections \(Z_d \) were chosen that varied with \(d \). The surjectivity of the above four maps cannot be guaranteed. This results in the ineffectivity and a number of complications which we are able to circumvent as in the proof of Proposition 1.11.

Proposition 1.11. For \(1 \leq q \leq n - 1 \), if \(d \) satisfies the effective conditions for \(B \), then \(H^0(Z, L_d) \) carries weight \(q \) syzygies for \(B \).

Proof. Set \(W = H^0(Z, L_d) \). When \(d \) satisfies the effective conditions for \(B \), \(L_d - D_i \) is globally generated for all \(i \). So \(I_{Z/X} \otimes \mathcal{O}_X(L_d) \) is globally generated. Then \(Z = X \cap \mathbb{P}(W) \) scheme-theoretically. Furthermore, by Remark 1.9, we have the following diagram:

\[
\begin{array}{ccccccccc}
0 & \to & V' = H^0(X, L_d - A) & \to & V = H^0(X, L_d) & \to & V = H^0(X, L_d) & \to & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
0 & \to & W' = H^0(Z, L_d - A) & \to & W = H^0(Z, L_d) & \to & W = H^0(Z, L_d) & \to & 0 \\
& & 0 & & 0 & & 0 & & \\
\end{array}
\]

Moreover, when we cut down by hyperplanes as in Lemma 1.4, we obtain the corresponding diagrams in lower dimensions.

We prove the proposition by induction on \(q \). Notice that by construction, \(Z \) is always of dimension \(q - 1 \). Our assumption \(\dim X \geq 2 \) (below Remark 1.3) will always be satisfied, because \(\dim X = n \geq q + 1 \geq 2 \). When \(q = 1 \), \(Z \) consists of points. \(Z = \emptyset, W = 0 \). So the conclusion is trivially true for \(q = 0 \). Then the conclusion is true for \(q = 1 \) by Proposition 1.7 (ii) and Lemma 1.4. Then apply Lemma 1.4 repeatedly. \(\square \)
Recalling Remark 1.3, the previous proposition gives $K_{p,q}(X, B; L_d) \neq 0$ for a specific p. We in fact get a range of non-vanishings by enlarging W but keeping \overline{W} fixed, as in [EL, Thm. 3.11]. The result is:

Proposition 1.12. Fix $1 \leq q \leq n - 1$. If d satisfies the effective conditions for B, and $h^0(X, L_d) - h^0(Z, L_d) > n$, then $K_{p,q}(X, B; L_d) \neq 0$ for p in the range

$$h^0(Z, L_d) - q \leq p \leq h^0(X, L_d - A) + h^0(Z, L_d) - q.$$

\[\square\]

Now we work to apply duality to the above proposition. In order to prove Theorem 1.16, we combine the above proposition with the range we get using duality.

Let $B' = L_d - B + K_X$. Notice that when d is large, B' will be of the form

$$K_X + b'A + P'$$

with $b' \geq n + 1$ and P' globally generated. We work with d large enough so that B' is indeed of this form.

Proposition 1.13. For $1 \leq q \leq n$,

$$K_{p,q}(X, B; L_d) = K_{r_d - p - n, n - q}(X, B'; L_d)^*,$$

where $r_d = h^0(X, L_d) - 1$.

Proof. See [G, Thm. 2.c.6] and [EL, Prop. 3.5] for $1 \leq q \leq n - 1$ and combine with [EL, Rmk. 3.4] for $q = n$. \[\square\]

We want to apply Proposition 1.12 to B'. Let Z' be a complete intersection adapted to $(X, B', A, n, n - q)$. Denote by D_i', the general divisors in the corresponding linear series.

Lemma 1.14. If d satisfies the effective condition for B, then d satisfies the effective condition for B'.

Proof. By the definition of B' and (1.1), $L_d - nA - B' = L_d - nA - (L_d - B + K_X) = B - nA - K_X$, which is very ample. \[\square\]

Remark 1.15. Note that when d is large, the other assumption in Proposition 1.12 is also satisfied for B'.

Finally, we arrive at the main result:

Theorem 1.16. Fix $1 \leq q \leq n$. For sufficiently large d, if

$$h^0(Z, L_d) - q \leq p \leq h^0(X, L_d) - h^0(Z', L_d) - q - 1,$$

then $K_{p,q}(X, B; L_d) \neq 0$.

Proof. For $1 \leq q \leq n - 1$, by Proposition 1.12 we have $K_{p,q}(X, B; L_d) \neq 0$ for

(1.7) $$h^0(Z, L_d) - q \leq p \leq h^0(X, L_d - A) + h^0(Z, L_d) - q.$$
By Lemma 1.14 and Remark 1.15, we can apply Proposition 1.12 to \(B' \) and we have non-vanishings for \(p \) in the range
\[
h^0(Z', L_d) - (n - q) \leq r_d - p - n \leq h^0(X, L_d - A) + h^0(Z', L_d) - (n - q),
\]
i.e.
\[
r_d - n - (h^0(X, L_d - A) + h^0(Z', L_d) - (n - q)) \leq p \leq r_d - n - (h^0(Z', L_d) - (n - q)).
\]
(1.8)

Now we show that the right hand side of (1.8) is of higher order than the left hand side of (1.9), so the two ranges overlap. The right hand side of (1.8) has order \((d-1)^n \) and \((d-2)^n \), so we consider \(q \) to be in the range of (1.8) and (1.9).

For \(q = n \), we have from Proposition 1.13 and [EL, Prop. 5.1] that \(K_{p,n}(X, B; dL) \neq 0 \) if and only if
\[
0 \leq r(L_d) - p - n \leq r(B').
\]
This unwinds to be
\[
h^0(X, L_d) - h^0(X, L_d - bA) - n \leq p \leq h^0(X, L_d) - n - 1.
\]
Therefore, the statement is not only true, but also sharp for \(q = n \).

\[\square\]

2. Examples

We conclude by working out the statement of the main theorem in some interesting special cases.

2.1. Projective space. Take \(X = \mathbb{P}^n \). Let \(B \) be a divisor in \(|O_{\mathbb{P}^n}(k)| \). Assume \(k \geq 0 \), so that \(B \) satisfies 1.11. In this case, \(Z \) is a complete intersection of \((n-q) \) divisors in \(|O_{\mathbb{P}^n}(1)| \) and a divisor in \(|-K_X - (c-1)L + B| = |O_{\mathbb{P}^n}(k + q + 1)| \). So,
\[
h^0(Z, dL) = \binom{q + d}{d} - \binom{d - (k + q + 1) + q}{q}.
\]

\(Z' \) is a complete intersection of \(q \) divisors in \(|O_{\mathbb{P}^n}(1)| \) and a divisor in \(|-K_X - (c' - 1)L + B'| = |(d - k - q)L| \). So,
\[
h^0(Z', dL) = \binom{d + n - q}{n - q} - \binom{n - q + d - (d - k - q)}{d - (d - k - q)}
\]
\[
= \binom{d + n - q}{n - q} - \binom{k + n}{n - q}.
\]
So by Theorem 1.16 for large \(d \), \(K_{p,q}(X, B; dL) \neq 0 \) for \(p \) in the range
\[
\left(\frac{q + d}{d} \right) - \left(\frac{d - k - 1}{q} \right) - q \leq p \leq \left(\frac{d + n}{n} \right) - \left(\frac{d + n - q}{n - q} \right) + \left(\frac{k + n}{n - q} \right) - q - 1.
\]
This corollary of Theorem [1.16] coincides with the result in [EL, Thm. 6.1], but the proof is simpler since we are able to take Z independent of d and it is a specialization of the general result.

2.2. Product of projective spaces. Let $X = \mathbb{P}^s \times \mathbb{P}^t$, so $n = \dim X = s + t$. Divisors B satisfying (1.1) are of type (u, v) with $u \geq t + 1, v \geq s + 1$. As mentioned in the introduction, we can compute n_d and N_d in the statement of the theorem (cf. (0.2)) through the Koszul resolution. Via the Kunneth formula, we find, for $1 \leq q \leq n$ and sufficiently large d,

$$K_{p,q}(X, B; L_d) \neq 0$$

for p in the range

$$\sum_{i=0}^{s+t-q} (-1)^i \binom{s+t-q}{i} \binom{d-i+s}{s} \binom{d-i+t}{t} + \sum_{i=0}^{s+t-q} (-1)^{i+1} \binom{s+t-q}{i} \binom{d-i-u-q+t+s}{s} \binom{d-i-v+q+s+t}{t} - q \leq p \leq \left(\binom{d+s}{s} \binom{d+t}{t} \right) - \left(\sum_{i=0}^q (-1)^i \binom{s+t-q}{i} \binom{d+i+s}{s} \binom{d+i+t}{t} \right) - q - 1.$$

Remark 2.1. The minimal free resolutions of classical Segre or multi-Segre embeddings with line bundles of type $(1, \ldots, 1)$ are much studied. Rubei studies $\mathbb{P}^1 \times \ldots \times \mathbb{P}^1$ in [R] with respect to the behavior N_p. Netay studies $\mathbb{P}^m \times \mathbb{P}^n$ in [N], giving an algorithm for computing the groups as representations. Snowden studies $\mathbb{P}^m \times \ldots \times \mathbb{P}^m$ in [S] and proves a finiteness theorem as we vary the number of direct product factors and the dimensions of the projective spaces.

2.3. Grassmannian $\text{Gr}(2,4)$. Let $X = \text{Gr}(2,4)$, 2 dimensional subspaces of \mathbb{C}^4. Then $\text{Pic}(X) = \mathbb{Z}$ and $\mathcal{O}_X(K_X) = \mathcal{O}_X(-4)$. For the Plucker embedding, the embedding line bundle $A = \mathcal{O}_X(1)$. Assume B is of type $\mathcal{O}_X(k)$ where $k \geq 1$ (satisfying (1.1)). Then:

$$h^0(Z, L_d) = \sum_{i=0}^{4-q} (-1)^i \binom{4-q}{i} h^0(X, \mathcal{O}_X(d-i))$$

$$+ \sum_{i=0}^{4-q} (-1)^{i+1} \binom{4-q}{i} h^0(X, \mathcal{O}_X(d-i-(k+q)))$$

$$h^0(Z', L_d) = \sum_{i=0}^{q} (-1)^i \binom{q}{i} h^0(X, \mathcal{O}_X(d-i))$$

$$+ \sum_{i=0}^{q} (-1)^{i+1} \binom{q}{i} h^0(X, \mathcal{O}_X(k+q-i)).$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Using the Borel-Weil-Bott theorem, \(H^0(\mathcal{O}_X(m)) \) corresponds to \(GL_4 \)-representations corresponding to rectangular Young diagrams with 2 rows and \(m \) columns. The dimension of these representations is given by

\[
 f(m) := \frac{(m + 1)(m + 2)(m + 2)(m + 3)}{12}
\]

(cf. [FH] Thm. 6.3 (1)). Combined with the expressions for \(h^0(Z, L_d) \) and \(h^0(Z', L_d) \), we get for \(1 \leq q \leq 4 \) and sufficiently large \(d \), \(K_{p,q}(X, B; L_d) \neq 0 \) for \(p \) in the range

\[
 \sum_{i=0}^{4-q} (-1)^i \binom{4-q}{i} f(d - i) + \sum_{i=0}^{4-q} (-1)^{i+1} \binom{4-q}{i} f(d - i - k - q) - q
\]

\[
 \leq p \leq r(d) - \left(\sum_{i=0}^{q} (-1)^i \binom{q}{i} f(d - i) \right) - \left(\sum_{i=0}^{q} (-1)^{i+1} \binom{q}{i} f(k + q - i) \right) - q - 1.
\]

The same can be done in principle for any Grassmannian as requested in [EL, Problem 7.9].

Acknowledgements

The author is grateful to Mihai Fulger, Bill Fulton, Thomas Lam, Linquan Ma, Mircea Mustata, and Zhixian Zhu for helpful comments and discussions. The author is especially indebted to Rob Lazarsfeld for introducing him to the topic and for numerous suggestions and encouragement.

References

[E] David Eisenbud, *The geometry of syzygies*, A second course in commutative algebra and algebraic geometry, Graduate Texts in Mathematics, vol. 229, Springer-Verlag, New York, 2005. MR2103875 (2005h:13021)

[EGHP] David Eisenbud, Mark Green, Klaus Hulek, and Sorin Popescu, *Restricting linear syzygies: algebra and geometry*, Compos. Math. **141** (2005), no. 6, 1460–1478, DOI 10.1112/S0010437X05001776. MR2188445 (2006m:14072)

[EL] Lawrence Ein and Robert Lazarsfeld, *Asymptotic syzygies of algebraic varieties*, Invent. Math. **190** (2012), no. 3, 603–646, DOI 10.1007/s00222-012-0384-5. MR2995182

[EL93] Lawrence Ein and Robert Lazarsfeld, *Syzygies and Koszul cohomology of smooth projective varieties of arbitrary dimension*, Invent. Math. **111** (1993), no. 1, 51–67, DOI 10.1007/BF01231279. MR1193597 (93m:13006)

[FH] William Fulton and Joe Harris, *Representation theory*, A first course, Graduate Texts in Mathematics, vol. 129, Readings in Mathematics, Springer-Verlag, New York, 1991. MR1153249 (93a:20069)

[G] Mark L. Green, *Koszul cohomology and the geometry of projective varieties*, J. Differential Geom. **19** (1984), no. 1, 125–171. MR739785 (85e:14022)

[N] Igor Netay, *Syzygy algebras for the Segre embedding*, arXiv:1108.3733.

[OP] Giorgio Ottaviani and Raffaella Paoletti, *Syzygies of Veronese embeddings*, Comp. Math. **125** (2001), no. 1, 31–37, DOI 10.1023/A:1002662809474. MR1818055 (2002g:13023)

[R] Elena Rubei, *On syzygies of Segre embeddings*, Proc. Amer. Math. Soc. **130** (2002), no. 12, 3483–3493 (electronic), DOI 10.1090/S0002-9939-02-06597-8. MR1918824 (2003g:13013)

[S] Andrew Snowden, *Syzygies of Segre embeddings and Delta-modules*, to appear.

Department of Mathematics, University of Michigan, East Hall, 530 Church Street, Ann Arbor, Michigan 48109-1043

E-mail address: paulxz@umich.edu