Study on Tunnel Risk Assessment Based on Rough Set and Grey Theory

Xuling Wu, Jierui Pan, Yuxuan Liao, Ying Zhou*

Architecture and Urban-Rural Planning College, Sichuan Agricultural University, Chengdu, Sichuan, 611830, China

Jierui Pan and Yuxuan Liao contributed equally to this work.

*Corresponding author’s e-mail: zhouying3333@163.com

Abstract. The surrounding environment of railway tunnel engineering is complex, and it is prone to major safety accidents. It is necessary to adopt feasible and accurate evaluation methods. The evaluation index system of tunnel is established. Rough set is used to quantify the evaluation index and form the reference index. The risk evaluation model of tunnel based on rough set and grey is established, and the risk of Sheguchong tunnel in Yunnan Province is validated to evaluate the validity of the model.

1. Introduction

The surrounding environment of railway tunnel project is complex, and unexpected events caused by external factors are easy to affect the progress of the project. Therefore, scientific tunnel risk assessment can provide construction worker with opportunities to prevent and recover losses in advance, reduce accidents in construction projects, avoid delays and even stoppages, and ensure the long-term effectiveness and safety of the tunnel.

Now, there are three kinds of methods for tunnel risk assessment: subjective weighting, objective weighting and subjective and objective integrated weighting. The first two kinds of algorithms have some shortcomings, such as ignoring the subjective information of decision makers, while the latter one has a high complexity, which affects its applicability to a certain extent.

2. Establishment of Tunnel Risk Assessment Model Based on Rough Set and Grey Theory

2.1 Establishment of Tunnel Risk Assessment Index System

The first step in risk assessment is to identify the source of risk, and establish different risk factors for different tunnel engineering risk assessment indicators according their characteristics.

2.2 Basic Principles of Rough Set and Grey Theory Model

Rough set theory based on data mining is used to extract the core indicators, calculate the attribute importance of each indicator, and then make a comprehensive evaluation of the research object. It is characterized by eliminating the interference of subjective factors without providing prior knowledge. Grey system theory is a forecasting model for the problem that both explicit information and uncertain information exist. In this paper, rough set theory and grey system theory are applied to tunnel risk assessment. According to the characteristics of tunnel accidents, a tunnel risk assessment index system is proposed. Experts engaged in tunnel risk assessment are invited to grade the importance of the index.
The objective weight of the evaluation index is determined by rough set theory and the grey system theory is used for qualitative evaluation, so that a tunnel risk assessment model is constructed.

2.3 Establishment of Evaluation Model

2.3.1 Establishment of Grey System Evaluation System
Risk assessment index information system $S= (U, R, V, f)$, U is a finite object set, R is a non-empty finite attribute set, V is a set of attribute values, f is the information function of U and R. Conditional attributes are evaluation indexes, and the set of conditional attributes can be $C=\{c_{11}, c_{12}, \ldots\}$. The decision attribute is the risk score of each evaluation index, and the decision attribute can be $D=\{y\}$. Even if there is an evaluation relationship between the original index value and the index score, the risk importance of the index is expressed by the index risk score.

2.3.2 Rough Set to Determine Weight
(1) The knowledge expression system is constructed from the lower level to the higher level. The conditional attributes of each index are set as C. The higher level indicators constitute decision attributes. After the numerical system, the risk importance of RD to RC, $\gamma_{RC}(RD)$ is calculated as follows:

$$\gamma_{RC}(R) = \frac{\sum_{[y]R \in U/R} \text{card}(R[y]R)}{\text{card}(U)}$$

Formula: $\text{card}(U)$ denotes the number of elements in the set U.

(2) The dependence of RD on $RC-\{c_{ij}\}$ can be calculated as follows after removing the attribute

$$\gamma_{RC-\{c_{ij}\}}(RD) = \frac{\sum_{[y]R \in (U/RD)} \text{card}(R[y]R)}{\text{card}(U)}$$

(3) Get the importance of index c_{ij}.

$$\sigma_{ij}(c_{ij}) = \gamma_{RC}(RD) - \gamma_{RC-\{c_{ij}\}}(RD), (i, j = 1, 2, \ldots, n)$$

Find out the comprehensive weight of each index in the evaluation result.

$$\omega_{i} = \sum_{j=1}^{n} a_{ij}b_{ij}$$

Formula: AJ is the weight of the first index relative to the system; b_{ij} is the weight of the second index relative to the first index.

2.4 Application of Grey System Theory
(1) Establish the numerical matrix of tunnel and divide the risk assessment grades into $E=\{E1, E2, E3, E4\}=\{\text{extremely high, high, medium, low}\}$ according to table 1. The tunnel risk assessment experts are requested to evaluate the project indicators appropriately and form the evaluation matrix H according to the results.

$$H = \begin{bmatrix}
H_{11} & H_{12} & \cdots & H_{1n} \\
H_{21} & H_{22} & \cdots & H_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
H_{m1} & H_{m2} & \cdots & H_{mn}
\end{bmatrix}$$
Table 1. Evaluation Scores and Corresponding Grading Criteria

Evaluation results	[4,3)	[3,2)	[2,1)	[1,0)
Level	extremely high	height	moderate	low degree

(2) Establishing Whitening Weight Function

In this paper, tunnel risk is classified as extremely high risk, high risk, medium risk and low risk. According to the grading criteria, the whitening weight function is as follows:

Table 2. ash classes and corresponding whitening weight functions

Grey classifications	Grey number	definite weight functions
e=1	$\otimes 1\epsilon(0,4,+\infty)$	$f(z(h_{ij})) = \begin{cases}
h_{ij} / 4, & h_{ij} \in [0, 4] \\		
1, & h_{ij} \in [4, +\infty] \\		
0, & h_{ij} \in [0, 4]		
\end{cases}$		
e=2	$\otimes 2\epsilon(0,3,6)$	$f(z(h_{ij})) = \begin{cases}
h_{ij} / 3, & h_{ij} \in [0, 3] \\		
(6 - h_{ij}) / 3, & h_{ij} \in [3, 6] \\		
0, & h_{ij} \in [0, 6]		
\end{cases}$		
e=3	$\otimes 3\epsilon(0,2,4)$	$f(z(h_{ij})) = \begin{cases}
h_{ij} / 2, & h_{ij} \in [0, 2] \\		
(4 - h_{ij}) / 2, & h_{ij} \in [2, 4] \\		
0, & h_{ij} \neq [0, 4]		
\end{cases}$		
e=4	$\otimes 4\epsilon(0,1,2)$	$f(z(h_{ij})) = \begin{cases}
 1, & h_{ij} \in [0, 1] \\
 2 - h_{ij}, & h_{ij} \in [1, 2] \\
 0, & h_{ij} \in [0, 2]
\end{cases}$ |

(3) Weight Vector Matrix of Grey Evaluation

The weight of grey evaluation is as follows:

\[
\bar{r}_{ije} = \frac{1}{\sum_{e=1}^{4} \sum_{c=1}^{n} X_{ije}} \sum_{k=1}^{4} f_{c}(h_{ik})
\]

(6)

In formula: X_{ije} is the grey evaluation coefficient.

The weight vector of grey evaluation is $R_{ij} = r_{ije}$, then the weight matrix of each grey class corresponding to the secondary index is:

\[
R_i = \begin{bmatrix}
\Gamma_{i1} \\
\Gamma_{i2} \\
\Gamma_{i3} \\
\Gamma_{i4}
\end{bmatrix} = \begin{bmatrix}
\Gamma_{i11} & \Gamma_{i12} & \Gamma_{i13} & \Gamma_{i14} \\
\Gamma_{i21} & \Gamma_{i22} & \Gamma_{i23} & \Gamma_{i24} \\
\vdots & \vdots & \vdots & \vdots \\
\Gamma_{i41} & \Gamma_{i42} & \Gamma_{i43} & \Gamma_{i44}
\end{bmatrix}
\]

(7)

(4) Comprehensive evaluation

The results of secondary indicators should be operated as follows:

\[
Z_{C} = R_i \cdot E^T
\]

(8)

The results of the first-level indicators should be operated as follows:

\[
Z_i = C_i \cdot Z_{C}
\]

(9)

The evaluation results can be obtained as follows:
3. Case Study on Risk Assessment of Sheguchong Tunnel

3.1 Project Survey
The Sheguchong Tunnel in Yunnan Province is located in Sheguchong Village, Xinxian Township, Pingbian County. The tunnel site is a low-mountain topography of erosion. The surface vegetation of the tunnel body is well developed, mostly wooden bushes, and the entrance and exit of the tunnel are early slopes. Only the rural convenience road communicates with the outside world, and the convenience road often collapses in the rainy season, resulting in poor traffic conditions.

3.2 Model Application

3.2.1 Establishment of Index System
This study divides tunnel engineering safety risk into three first-level indicators: environmental risk, technology and management risk, and other risks.
First, the environmental risk is mainly the geological and hydrological impact of tunnel engineering. Among them, collapse, mud burst, water burst, plastic deformation and broken ring, gas emission are the main sources of tunnel environmental risk. Secondly, the risk of technology and management, i.e. the behaviour of construction technology and management personnel, may hinder the construction during the construction process. Third, other risks are the third-party risks excluded from link risks and technology management risks, which are manifested in investment and economic market changes.

Environmental risk	Water and mud inrush	Landslide	large deformation	Gas
Technology and Management risks	Technical staff level	Material Science	transport	equipment
Other risks	Design and construction methods	Market Changes in Investment Economy		

3.2.2 Rough Set to Determine Weight
Seven tunnel risk assessment experts are invited to grade the importance of risk indicators points. The weights and weight vectors of 12 indicators are obtained by calculation. Processing as follows:

\[
Z = Z \cdot \omega^T
\]
(10)

B1	B2	B3	C11	C12	C13	C14	C21	C22	C23	C24	C25	C31	C32	C33	
1	4	3	2	4	4	3	2	2	4	2	3	3	1	1	1
2	3	3	2	3	4	3	2	2	3	2	3	3	1	2	2
3	4	2	2	4	4	4	4	2	4	2	3	3	2	1	1
4	3	2	2	4	3	3	3	2	3	2	3	3	1	3	1
5	4	3	4	4	4	4	4	2	4	2	2	3	1	1	1
6	3	4	3	4	3	3	3	3	3	3	2	2	3	1	1
7	4	2	2	4	4	4	4	3	4	3	2	2	1	1	1

Table 3 uses rough sets to determine the weights of indicators and gets them according to (1), (2), (3) and formula (4), the weights of the second-level indicators are as follows.
Table 5. Weights of Specific Indicators

Bi in the system	The proportion of Cij in Bi	Cij in the system
0.5	0.3182	0.1951
	0.2273	0.1137
	0.2273	0.1137
	0.2273	0.1137
0.3752	0.1739	0.0621
	0.2609	0.0932
	0.2174	0.0776
	0.1739	0.0621
0.1428	0.25	0.0357
	0.3333	0.0476
	0.4167	0.0595

3.2.3 Grey System Evaluation

The grey weight matrix of the index is determined according to the ranking matrix and formula (6)(7). According to formula (8) (9) (10), the following table results are obtained.

Table 6. Comprehensive assessment results

Overall evaluation results	Level indicators	The weight	The evaluation results	The secondary indicators	The weight	The evaluation results
2.4258	B1	0.5	2.5996	C11	0.1591	3.0588
				C12	0.1137	3.2572
				C13	0.1137	3.1236
				C14	0.1137	3.1172
				C21	0.0621	2.2179
				C22	0.0932	2.5713
				C23	0.0621	2.8496
				C24	0.0776	2.1524
				C25	0.0621	2.2347
	B2	0.3572	2.4121	C31	0.0595	1.4956
				C32	0.0476	2.1474
				C33	0.0357	2.05

From the results of the above rough set and grey theory comprehensive model calculation, it can be seen that the risk assessment grade of the Sheguchong tunnel in Yunnan Province is high, and the value is 2.4258. Level 1 indicator B1 environmental risk is dominant. The risk of C11 collapse, C12 water inrush and mud inrush, C13 soft rock large deformation in the secondary index under B1 is very obvious, which should be paid great attention to and corresponding control measures should be taken. The capability risk of C23 technicians and the assessment level of C14 gas explosion risk are also high, which should be paid close attention to.

4. Conclusion

In this paper, grey system theory and rough set theory are applied to tunnel risk assessment. The tunnel risk assessment system independently completes the risk assessment of tunnel engineering projects. Its evaluation results are more concise and effective, and overcome the lack of objective scientific theory support for tunnel safety risk assessment and the subjective evaluation method. The problem has achieved ideal results. The combination of rough set and grey theory enriches and improves the research methods in this field, and provides a new prediction model and ideas for the study of Tunnel Risk assessment.
References

[1] Shengcai Li, Lei Xiao. “Statistics of industrial accidents in China during the period from January to February in 2018”, Journal of Safety and Environment, vol. 18, no. 02, pp. 823-824, 2018.

[2] Li Zhang, Ping Bo, Zhongyu Wang, etc. “Assessment of accident emergency plan based on analytic hierarchy process and fuzzy comprehensive evaluation”, Journal of Safety Science and Technology, vol. 11, no. 9, pp. 126-131, 2015.

[3] Núñez, M.C., Penadés, J.H., Canós, et al. “Towards a Total Quality Framework for the Evaluation and Improvement of Emergency Plans Management”, Proceedings of the ISCRAM 2015 Conference - Kristiansand, May 24-27, 2015.

[4] J. Raikes, G. McBean. “Responsibility and liability in emergency management to natural disasters: A Canadian example”, International Journal of Disaster Risk Reduction, vol. 16, pp. 12-18, 2016.

[5] Shizhao Ding; project management, China Construction Industry Publishing House, 2014: 108–110.

[6] H.H. Einstein. Risk and risk analysis in rock engineering[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research. 1996 (2)