γ-Ray Spectroscopy in Λ Hypernuclei

H. Tamura,* 1 S. Ajimura, 2 H. Akikawa, 3,† D.E. Alburger, 4 K. Aoki, 5 A. Banu, 6 R.E. Chrien, 4 G.B. Franklin, 7 J. Franz, 8 Y. Fujii, 1 Y. Fukao, 3 T. Fukuda, 9 O. Hashimoto, 1 T. Hayakawa, 2 E. Hiyama, 5 H. Hotchi, 9,‡ K. Imai, 3 W. Imoto, 9 Y. Kakiguchi, 5 M. Kameoka, 1 T. Kishimoto, 2 A. Krutenkova, 10 T. Maruta, 5 A. Matsumura, 1 M. May, 4 S. Mihami, 2 Y. Miura, 1 K. Miwa, 3 T. Miyoshi, 1,‡ K. Mizunuma, 1 T. Nagae, 5 S.N. Nakamura, 1 K. Nakazawa, 11 M. Niiyama, 3 H. Nomura, 1 H. Nouni, 5 Y. Okayasu, 1 S. Ota, 3 T. Ohtaki, 9 H. Outa, 5,§ P. Pile, 4 B.P. Quinn, 7 A. Rusek, 4 P.K. Saha, 9 Y. Sato, 5 T. Saitoh, 6 M. Sekimoto, 5 R. Sutter, 4 H. Takahashi, 3,† T. Takahashi, 1 L. Tang, 12 K. Tanida, 13 S. Terashima, 3 M. Togawa, 3 A. Toyoda, 5 M. Ukai, 1 H. Yamauchi, 1 L. Yuan, 12 S.H. Zhou 14

1 Department of Physics, Tohoku University, Sendai 980-8578, Japan
2 Department of Physics, Osaka University, Toyonaka 560-0043, Japan
3 Department of Physics, Kyoto University, Kyoto 606-8502, Japan
4 Brookhaven National Laboratory, NY 11973, USA
5 Institute of Particle and Nuclear Studies, KEK, Tsukuba 305-0801, Japan
6 GSI, Darmstadt D-64291, Germany
7 Carnegie Mellon University, Pittsburgh, PA 15213, USA
8 Department of Physics, University of Freiburg, Freiburg 79104, Germany
9 Osaka Electro-Communication University, Neyagawa, 572-8530 Japan
10 Institute for Theoretical and Experimental Physics, Moscow, 117218 Russia
11 Department of Physics, Gifu University, Gifu 501-1193, Japan
12 Department of Physics, Hampton University, Hampton, VA 23668, USA
13 RIKEN, Wako 351-0198, Japan
14 China Institute of Atomic Energy, Beijing 102413, China
(E930’01, E509, E518 collaborations)

The present status of hypernuclear γ-ray spectroscopy with Hyperball is summarized. We observed two γ transitions of $^{16}_{Λ}O(1^{-}\rightarrow 1^{-}, 0^{-})$ and obtained the strength of the ΛN tensor force. In $^{10}_{Λ}B(K^{-}, π^{-}\gamma)$ data, we did not observe the spin-flip M1 transition of $^{10}_{Λ}B(2^{-}\rightarrow 1^{-})$, but γ rays from hyperfragments such as $^{7}_{Λ}Li(7/2^{+}\rightarrow 5/2^{+})$ and $^{9}_{Λ}Be(3/2^{+}\rightarrow 1/2^{+})$ were observed. In $^{11}_{Λ}B(π^{+}, K^{+}\gamma)$ data, we observed six γ transitions of $^{11}_{Λ}B$. We also attempted an inclusive γ-ray measurement with stopped K^{-} beam.

†Present address: Japan Atomic Energy Research Institute, Tokai 319-1195, Japan.
‡Present address: University of Houston, Houston, TX 77204-5506, USA.
§Present address: RIKEN, Wako 351-0198, Japan.
¶Present address: KEK, Tsukuba 305-0801, Japan.
∗Supported by Grant-In-Aid for Scientific Research from Ministry of Education of Japan, No.11440070 and 15204014.
1. Introduction

Since 1998, our project of hypernuclear \(\gamma \) spectroscopy with a germanium (Ge) detector array, Hyperball, has brought great progress in hypernuclear physics by revealing precise structure of several light \(\Lambda \) hypernuclei with a resolution in the keV range.

Hyperball is a large-acceptance germanium (Ge) detector array dedicated to hypernuclear \(\gamma \) spectroscopy. It has a large efficiency of 2.5 \% at 1 MeV realized with fourteen large-volume Ge detectors, and is featured by special readout electronics which enables detection of \(\gamma \) rays under extremely high counting-rate conditions in hypernuclear experiments with meson beams. Details of Hyperball are described in Ref. [1,2].

One of the most important physics motivations of hypernuclear \(\gamma \) spectroscopy is the study the \(\Lambda N \) interaction. In particular, we have been investigating the strengths of the \(\Lambda N \) spin-dependent forces from precise level structure of \(p \)-shell \(\Lambda \) hypernuclei. The potential of the \(\Lambda N \) two-body effective interaction can be written as:

\[
V_{\Lambda N}^{\text{eff}}(r) = V_0(r) + V_\sigma(r)\sigma_\Lambda\sigma_N + V_\Lambda(r)\Lambda \sigma_N + V_N(r)\Lambda \sigma_N + V_T(r)[3(\sigma_\Lambda \hat{r})(\sigma_N \hat{r}) - \sigma_\Lambda \sigma_N]
\]

The four spin-dependent terms, namely, the spin-spin term \(V_\sigma \), the \(\Lambda \)-spin-dependent spin-orbit term \(V_\Lambda \), and the tensor term \(V_T \), have not been studied well by experiments of the \((K^- \pi^-)\) and \((\pi^+, K^+)\) reaction spectroscopy. The radial integrals of \(V_\sigma, V_\Lambda, V_N, \) and \(V_T \) with the \(pNs_\Lambda \) wavefunction in \(p \)-shell hypernuclei are denoted as \(\Delta, S_\Lambda, S_N, \) and \(T \), respectively. These effective-interaction parameters can be experimentally determined from low-lying level energies of \(p \)-shell hypernuclei [3,4]. However, because of a small level spacing between the spin-doublet states, high-resolution \(\gamma \)-ray spectroscopy with Ge detectors is necessary to investigate them.

1.1. Recent Experiments

Table 1 shows all the Hyperball experiments we have carried out. In 1998, we performed two experiments, KEK E419 for \(\Lambda^7 \)Li [11,12] and BNL E930(98) for \(\Lambda^9 \)Be [13], as we already reported in the HYP2000 conference. After that, we carried out the second run of BNL E930 (E930(01)) for \(^{16} \)O and \(^{10} \)B targets. With the \(^{16} \)O target data, we observed \(^{16} \Lambda^8 \)O and \(^{1} \Lambda^5 \)N \(\gamma \) rays as described later. With the \(^{10} \)B target data, we did not observe the \(^{10} \Lambda^8 \)B(2\(^-\) \(\rightarrow \) 1\(^-\)) \(\gamma \) ray transition, but observed several \(\gamma \) rays from hyperfragments such as \(^7 \)Li, \(^9 \)Be, \(^{11} \)B, \(^{12} \)C(\(K_{\text{stop}}, \gamma \)) hyperfragments, and \(^7 \)Li.

Experiment	Year	Line	Target/Reaction	Hypernuclei studied
KEK E419	1998	K6	\(^7 \Lambda\)Li(\(\pi^+, K^+\gamma \))	\(^7 \Lambda\)Li
BNL E930(98)	1998	D6	\(^9 \Lambda\)Be(\(K^-, \pi^-\gamma \))	\(^9 \Lambda\)Be
BNL E930(01)	2001	D6	\(^{16} \Lambda\)O(\(K^-, \pi^-\gamma \))	\(^{16} \Lambda\)O, \(^{15} \Lambda\)N
			\(^{10} \Lambda\)B(\(K^-, \pi^-\gamma \))	\(^{10} \Lambda\)B, \(^9 \Lambda\)Be, \(^7 \)Li etc.
KEK E509	2002	K5	\(^7 \Lambda\)Li, \(^9 \Lambda\)Be, \(^{10} \Lambda\)B, \(^{11} \Lambda\)B, \(^{12} \Lambda\)C(\(K_{\text{stop}}, \gamma \)) hyperfragments (\(^7 \)Li)	\(^7 \Lambda\)Li
KEK E518	2002	K6	\(^{11} \Lambda\)B(\(\pi^+, K^+\gamma \))	\(^{11} \Lambda\)B
Figure 1. Level schemes of $^7\Lambda\text{Li}$, $^9\Lambda\text{Be}$, $^{10}\Lambda\text{B}$, $^{11}\Lambda\text{B}$, and $^{16}\Lambda\text{O}$ determined from Hyperball experiments. Newly observed γ rays, measured level energies, and assigned spins in the recent experiments (E930('01), E509, E518) are shown in thick arrows and bold letters.

as $^7\Lambda\text{Li}$ and $^9\Lambda\text{Be}$. In 2002, we moved Hyperball from BNL to KEK and performed two experiments, E509 for hyperfragments [9] and E518 for $^{11}\Lambda\text{B}$ [10].

Figure 1 shows the level schemes of p-shell hypernuclei determined from these Hyperball experiments. The γ rays first observed and identified in E930('01), E509, and E518, which are shown in thick arrows, are described in detail in the following sections.

2. $^9\Lambda\text{Be}$ and the spin-orbit force

The experiment BNL E930 aims at determination of all the spin-dependent force strengths from structure of several p-shell hypernuclei. Using high-intensity and pure K^- beam at 0.93 GeV/c provided by the D6 beam line at BNL AGS, hypernuclei were produced by the $(K^-\pi^-,\pi^-)$ reaction. The momenta of incident K^- and scattered π^- were measured with magnetic spectrometers to obtain the hypernuclear excitation spectrum. γ rays were detected with Hyperball installed around the target.

We previously reported that the $^9\Lambda\text{Be}$ target data in E930('98) exhibited the $5/2^+, 3/2^+ \rightarrow 1/2^+$ transitions and revealed a hypernuclear fine structure of $^9\Lambda\text{Be}(5/2^+, 3/2^+)$ [7]. Recently, we have applied Doppler-shift correction to this $^9\Lambda\text{Be}$ spectrum and observed clearly-
Figure 2. Doppler-shift corrected spectrum of $^9\Lambda\text{Be}$ γ rays around 3 MeV obtained in the E930(’98) experiment. The two-peak structure was well fitted by the simulated peak shape with a lifetime of < 0.1 ps.

Figure 3. γ-ray spectrum for the mass region slightly higher than the bound-state region of $^{10}\Lambda\text{B}$ ($-18 < -B_\Lambda < 28$ MeV). A γ-ray peak from $^9\Lambda\text{Be}$ is observed.

separated two peaks as shown in Fig. 2. This structure was well fitted by the simulated peak shape with a short lifetime (< 0.1 ps). The γ-ray energies were obtained to be $3024 \pm 3 \pm 1$ and $3067 \pm 3 \pm 1$ keV, and the separation energy to be 43 ± 5 keV. The separation energy and the lifetime have been revised from the previous values in Ref. [7].

In the ^{10}B target data taken in E930(’01), we observed a γ-ray peak at 3065 keV, when the mass region slightly higher than the $^{10}\Lambda\text{B}$ bound states is selected, as shown in Fig. 3. $^9\Lambda\text{Be}$ can be produced by proton emission from excited states of $^{10}\Lambda\text{B}$, and this observed γ-ray energy coincides with the energy of one of the $^9\Lambda\text{Be}$ γ rays observed in the ^9Be target run. Therefore, this γ ray is assigned as one of the $^9\Lambda\text{Be}$ transitions of $3/2^+ \rightarrow 1/2^+$ or $5/2^+ \rightarrow 1/2^+$. The $^{10}\Lambda\text{B}(3^-, -B_\Lambda \sim 1$ MeV) state, which is expected to have a large cross section, mostly decays into $^9\Lambda\text{Be}(3/2^+) + p$ (see Fig. 1(d)), while other $^{10}\Lambda\text{B}$ excited states decaying into $^9\Lambda\text{Be}(5/2^+) + p$ have much smaller cross sections [11]. Therefore, we assigned the observed peak as $3/2^+ \rightarrow 1/2^+$. From this spin assignment, the previous result for the Λ-spin-dependent spin-orbit force parameter of $-0.02 < S_\Lambda < 0.03$ MeV [7] was improved to $-0.02 < S_\Lambda < -0.01$ MeV. This sign of the Λ-spin-dependent spin-orbit term is consistent with the $p_{1/2} - p_{3/2}$ spin-orbit splitting in $^{13}\Lambda\text{C}$ measured with NaI counter arrays by the BNL E929 experiment [12].
3. \(^{16}\Lambda\text{O}\) and \(\Lambda N\) tensor force

The purpose of the \(^{16}\text{O}\) target run in E930('01) is to investigate the \(\Lambda N\) tensor force strength \((T)\), which has never been studied experimentally. Since the one-pion exchange is forbidden in the \(\Lambda N\) interaction, the tensor force is expected to be small, but the kaon exchange and the two-pion exchange through the \(\Sigma\)-\(\Lambda\) coupling are expected to give some contribution to the tensor force.

It was pointed out that energy spacings of the spin doublets in \(p_{1/2}\)-shell hypernuclei are sensitive to the \(\Lambda N\) tensor force strength \([3]\). According to a shell-model calculation by Millener, the spacing of the ground-state doublet \((0^- , 1^-)\) of \(^{16}\Lambda\text{O}\) is given as

\[
E(1^-) - E(0^-) = -0.382\Delta + 1.378S_\Lambda - 0.004S_N + 7.850T + \Lambda\Sigma\ \text{(MeV)},
\]

where \(\Lambda\Sigma\) denotes the effect of \(\Lambda - \Sigma\) coupling. By the \(^{16}\text{O}(K^-,\pi^-)\) reaction, we can populate the 6 MeV-excited \(^{16}\text{O}\) \([p_{3/2}]^{-1}(s_{1/2})\Lambda_1^-\) state and detect \(M1\) transitions from this state to each member of the ground-state doublet, even if the spacing is too small \((-100\ \text{keV})\) to detect the spin-flip \(M1\) transition between the doublet members (see Fig. 1 (c)). In addition, the 11 MeV-excited \(([p_{1/2}]^{-1}(p_{1/2})\Lambda)_{0^+}\) state and the 17 MeV-excited \(([p_{3/2}]^{-1}(p_{3/2})\Lambda)_{0^+}\) state of \(^{16}\Lambda\text{O}\) are expected to decay to excited states of \(^{15}\text{N}\) by proton emission with sizable branching ratios, which is followed by emission of \(^{15}\Lambda\text{N}\) \(\gamma\) rays. The ground-state doublet spacing of \(^{15}\Lambda\text{N}\), which also has a large contribution of the \(\Lambda N\) tensor force, may also be measured.

The experimental method and setup are almost identical to those in the previous E930 run for \(^9\text{Be}\) described in Ref. [7]. We used a 20 cm-thick water target and irradiated it with \(4.0 \times 10^{10}\ \text{K}^-\) in total. More description on this experiment is found in Ref. [8].

Figure 4 shows preliminary \(\gamma\)-ray spectra for \(^{16}\Lambda\text{O}\). Figure 4 (a) shows the spectrum when events in the 6 MeV-excited \(1^-\) state region of the \(^{16}\text{O}\) mass spectrum \((-21 < -B_\Lambda < 8\ \text{MeV})\) are selected. A broad bump is observed at around 6.55 MeV. After the event-by-event Doppler-shift correction was applied, the broad bump is resolved into two narrower peaks as shown in (b). This structure is not observed for the highly unbound region \((-B_\Lambda > 50\ \text{MeV})\) as shown in Fig. 4 (c), in which beam-induced \(\gamma\) rays from the \(^{16}\text{O}\) target are observed. (The 6130 keV \(^{16}\text{O}\) peak width demonstrates the resolution in this energy region.)

The structure at 6.55 MeV is thus attributed to the \(M1(1^-_2 \rightarrow 1^-_1, 0^-)\) transitions in \(^{16}\Lambda\text{O}\). The peaks in Fig. 4 (b) were fitted with the expected Doppler-corrected peak shape which was calculated from a simulation for the Doppler-shift correction. The spectrum was fitted well with two peaks as shown in Fig. 5. The energies (and the counts) of these peaks were obtained as 6534.1±1.5 keV (149±18 counts) and 6560.2±1.3 keV (226±30 counts). By comparing the ratio of the peak counts with the expected branching ratios, the 6534 keV and 6560 keV peaks were assigned as \(1^-_2 \rightarrow 1^-_1\) and \(1^-_2 \rightarrow 0^-\) transitions, respectively [8]. Then we obtained the energy spacing of the ground-state doublet:

\[
E(1^-) - E(0^-) = 26.1 \pm 2.0\ \text{keV}\ \text{(preliminary)}.
\]

It is the smallest spacing in hypernuclear fine structure observed so far. This very small spacing results from a cancellation of the spin-spin force \((\Delta\ \text{term})\) and the tensor force \((T\ \text{term})\) contributions. It gives the tensor term strength of \(T = +30\ \text{keV}\ \text{(preliminary)}\) from...
Figure 4. γ-ray spectrum of 16O (preliminary). (a) Bound-state region ($-21 < -B_{\Lambda} < 8$ MeV) is gated. (b) Same as (a) but Doppler-shift correction is applied. (c) Highly unbound region ($-B_{\Lambda} > 50$ MeV) is gated.

Figure 5. (a) Simulated peak shape for a fast γ transition after Doppler-shift correction. (b) The structure around 6.55 MeV in Fig. 4 (b) was fitted with two peaks of the simulated peak shape (preliminary).

Eq. 1 and with the Δ, S_{Λ}, and S_N values already determined from previous Hyperball experiments. This is the first experimental information on the ΛN tensor force.

The meson-exchange baryon-baryon interactions models (ND, NF, NSC89, NSC97f) predict a tensor force strength of $T = 18 - 54$ keV through a G-matrix calculation [13]. They are almost consistent with the experimental value.

4. Study of $^{10}_\Lambda$B

The purpose of the 10B target run in E930(01) is to measure the energy spacing of the $^{10}_\Lambda$B ground-state doublet ($2^-, 1^-$) by observing the spin-flip M1 transition ($2^- \rightarrow 1^-$). Since the production cross section of the 2^- state is large enough, the M1 transition can be easily observed if the level spacing is as large as predicted (~ 200 keV). On the other hand, if the spacing is smaller than ~ 100 keV, the γ transition is overcome by weak decay.

Figure 6 is a preliminary γ-ray spectrum when the bound-state region of $^{10}_\Lambda$B($K^-, \pi^-)$ is selected. We observed no peak structure. Considering the number of the expected γ-ray peak yield, we concluded that the 2^- state is higher than the 1^- state only by 100 keV or less, or the order of the spins in the doublet is reversed. Thus, we confirmed the old result by Chrien et al. [14] with higher statistics. The confirmed result of $E(2^-) - E(1^-) < 100$ keV seems contradictory to the Δ value (0.4 MeV) obtained from the 7Li ground-state
7

Figure 6. Preliminary γ-ray spectrum for the bound-state region of \(^{10}_ΛB\) \((-23 < -B_Λ < 7\) MeV). No peak is observed.

doublet \((3/2^+,1/2^+)\) spacing, suggesting that more theoretical and experimental studies are necessary, particularly for the Σ-Λ coupling effect as investigated in Ref. [11].

5. Complete study of \(^7ΛLi\)

In the \(^{10}_ΛB\) target data in E930('01), we observed γ rays from \(^7ΛLi\) produced as hyperfragments from highly excited states of \(^{10}_ΛB\), presumably though the s-substitutional \(^{10}_ΛB\) \((3^+, \sim 28\) MeV excited) state decaying into \(^7ΛLi + ^3He\) as shown in Fig. II (d). Figure 7 (a) shows the γ-ray spectrum when the unbound region \((0 < -B_Λ < 40\) MeV) was selected. The \(M1(3/2^+ \rightarrow 1/2^+)\) and \(E2(5/2^+ \rightarrow 1/2^+)\) γ rays of \(^7ΛLi\) previously observed in E419 are identified. We selected the \(E2\) γ-ray events \((2042 < E_γ < 2058\) keV) and plotted a spectrum of another γ ray emitted in coincidence. As shown in Fig. 7 (b), a peak was observed at 471 keV. The probability that background fluctuation makes such a peak anywhere in the region of 0.1–1 MeV is 0.006%. This peak is assigned as the \(M1(7/2^+ \rightarrow 5/2^+)\) transition, because it is the only transition emitted in coincidence with \(E2(5/2^+ \rightarrow 1/2^+)\). This is the first successful application of the γ-γ coincidence method to hypernuclei.

The observed energy can be compared with theoretical predictions. A cluster-model calculation by Hiyama et al. predicted the \((7/2^+,5/2^+)\) spacing to be 560 keV when the Λ-spin-dependent spin-orbit force is assumed to be zero [15]. It is close to the observed value. According to the Millener’s shell-model calculation [11], the energy spacing is described as \(E(7/2^+) \rightarrow E(5/2^+) = 1.29\Delta + 2.20S_Λ + 0.02S_N - 2.39T + \LambdaΣ\). By using the already determined values of \(\Delta\), \(S_Λ\), \(S_N\), \(T\), and the theoretically calculated \(ΛΣ\) value, the equation gives 511 keV, being also close to the observation. It is found that the observed value is consistent with the already-known strengths of the spin-spin force \(\Delta\) and the very small spin-orbit force \(S_Λ\).

Together with the E419 results [11], we have clarified the complete level scheme and energies of all the bound states of \(^7ΛLi\) as shown in Fig. II (a).

6. Spectroscopy of \(^{11}_ΛB\) (E518)

In 2002, we carried out a γ spectroscopy experiment of \(^{11}_ΛB\) with the \((\pi^+, K^+)\) reaction at 1.05 GeV/c employing Hyperball and the SKS spectrometer at KEK-PS [10]. One of the purposes of this experiment is to measure the transition probability \(B(M1)\) of
the Λ spin-flip $M1$ transition $^{11}_\Lambda$B$(3/2^+ \rightarrow 1/2^+)$ and extract information on the magnetic moment of a Λ inside a nucleus by the method described in Ref. \cite{16}. The other purpose is to cross-check the ΛN spin-dependent interaction parameters which have been determined from the $^7_\Lambda$Li, $^9_\Lambda$Be, and $^{16}_\Lambda$O experiments with Hyperball.

The experimental setup is almost identical to the one in E419 \cite{15}. We used a 10 cm-thick 98%-enriched 11B metal target. When the bound-state region is gated in the 11B mass spectrum, the γ-ray spectrum exhibited six peaks as shown in Fig. 8. One of them was observed in the Doppler-shift-corrected spectrum. They are attributed to transitions from $^{11}_\Lambda$B, but the assignment of all these γ rays and the reconstruction of the level scheme are difficult because of low statistics which does not allow $\gamma\gamma$ coincidence measurement.

The prominent peak at 1482 keV is assigned as $E2(1/2^+ \rightarrow 5/2^+)$ (see Fig. 8(e)). It is likely an $E2$ transition because its narrow width indicates a lifetime of the transition longer than ~ 10 ps, which gives a very small $B(M1)$ value if it is an $M1$ transition. The $1/2^+ \rightarrow 5/2^+$ transition is the only $E2$ transition expected in $^{11}_\Lambda$B, and the observed largest γ-ray yield is also consistent with this assignment. It is to be noted that the shell-model prediction by Millener \cite{11} for this $E2$ energy with the experimentally determined ΛN interaction parameters is 1020 keV, significantly lower than the observed energy.

7. Hyperfragments (E509)

In KEK-PS E509, we attempted an experiment of inclusive γ-ray measurement in the stopped K^- absorption reaction, which is known to produce various hyperfragments with large production yields. See Ref. \cite{9} for details. We stopped K^- from the K5 beam line on several light targets (7Li, 9Be, 10B, 11B, and 12C) and measured γ rays with Hyperball.
From the ^{10}B, ^{11}B, and ^{12}C targets, we observed the $^{7}\text{Li}(5/2^+ \rightarrow 1/2^+)$ transition at 2050 keV. The yield of this γ ray for the ^{10}B target is very large, 500 counts in 3.5 days' beam time, suggesting the effectiveness of this method. The production rate of the $^{7}\text{Li}(5/2^+)$ state is derived to be $0.075 \pm 0.016\%$ per stopped K^- on ^{10}B target.

This method is powerful with a larger Ge detector array, by which the $\gamma\gamma$ coincidence method allows detection of hypernuclear γ rays and their assignments. It may open a new possibility to study various hypernuclei including neutron/proton-rich ones which cannot be produced by the direct reactions such as (K^-,π^-) and (π^+,K^+).

8. Future Plans

We are now constructing Hyperball2, an upgraded version of Hyperball for near-future experiments at KEK and BNL. It has an efficiency twice as large as the present Hyperball,
realizing a $\gamma\gamma$ coincidence efficiency larger by four times. It will play an essential role in study of hypernuclei having complicated level schemes such as $^{11}_\Lambda$B.

At the 50 GeV proton accelerator facility at J-PARC, we plan to pursue various types of hypernuclear γ spectroscopy experiments [17,18]. We have started development of faster readout techniques and faster background-suppression counters necessary for the stronger beams expected at J-PARC.

9. Summary

We have investigated various p-shell Λ hypernuclei employing Hyperball. In E930(’01), we successfully observed two γ transitions of $1^-_2 \rightarrow 1^-_1, 0^-$ at 6.55 MeV, and the ground-state doublet $(1^-_1, 0^-)$ spacing was obtained to be $E(1^-_1) - E(0^-) = 26.1 \pm 2.0$ keV. It gives the ΛN tensor force strength of $T = 30$ keV. All the ΛN spin-dependent force parameters have been thus determined from our γ spectroscopy experiments. In 10B($K^-, \pi^-\gamma$) data, we observed γ rays from hyperfragments such as $^3_\Lambda$Be($3/2^+ \rightarrow 1/2^+$) and $^7_\Lambda$Li($7/2^+ \rightarrow 5/2^+$). In the observation of the $^7_\Lambda$Li($7/2^+ \rightarrow 5/2^+$) transition, we successfully applied the $\gamma\gamma$ coincidence method to hypernuclei for the first time. On the other hand, the spin-flip M1 transition of $^{10}_\Lambda$B($2^- \rightarrow 1^-$) was not observed. At KEK, we studied $^{11}_\Lambda$B with the (π^+, K^+) reaction and observed six γ transitions. We also performed a pioneering experiment with the (K_{stop}, γ) reaction (E509), and observed a γ-ray peak from $^7_\Lambda$Li hyperfragments. Hypernuclear γ spectroscopy will be further pursued with much stronger beams at J-PARC.

REFERENCES

1. H. Tamura et al., Phys. Rev. Lett. 84 (2000) 5963.
2. K. Tanida, Ph.D thesis, University of Tokyo (2000).
3. R.H. Dalitz and A. Gal, Ann. Phys. 116 (1978) 167.
4. D.J. Millener, A. Gal, C.B. Dover and R.H. Dalitz, Phys. Rev. C 31 (1985) 499.
5. K. Tanida et al., Phys. Rev. Lett. 86 (2001) 1982.
6. J. Sasao et al., Phys. Lett. B 579 (2004) 258.
7. H. Akikawa et al., Phys. Rev. Lett. 88 (2002) 082501.
8. M. Ukai et al., in these proceedings.
9. K. Tanida et al., Nucl. Phys. A 721 (2003) 999c; K. Miwa et al., in these proceedings.
10. Y. Miura et al., in these proceedings.
11. D.J. Millener, in these proceedings.
12. S. Ajimura et al., Phys. Rev. Lett. 86 (2001) 4255.
13. D.J. Millener, Proc. Jlab Sponsored Workshop on Hypernuclear Physics with Electromagnetic Probes, Ed. L. Tang and O. Hashimoto, Hampton, December 1999, p.79.
14. R.E. Chrien et al., Phys. Rev. C 41 (1990) 1062.
15. E. Hiyama et al., Nucl. Phys. A 639 (1998) 173c.
16. H. Tamura, Nucl. Phys. A 691 (2001) 86c.
17. K. Imai et al., Letter of Intent for Nuclear and Particle Physics Experiments at the J-PARC, KEK, L06 (2003), http://www-ps.kek.jp/jhf-np/LOIlist/LOIlist.html
18. T. Nagae, in these proceedings.