Evaluation of the impact of municipal landfills on soil

S. Alganimi¹, J. Alshibee⁹*
¹ College of Science, University of Kerbala, Iraq.

Email: mohammed@uokerbala.edu.iq

Abstract. Enormous quantities of municipal waste are produced around the world and the majority of that waste is disposed of into municipal landfill. These wastes have significant impacts on the environment surrounding them including soil. Many researchers focusing their attention to study the effects on municipal landfills on the surrounding environment. Therefore, the aim of this study was to determine the heavy metal pollution effects of a municipal solid waste landfill located in Kerbala, Iraq. The concentration of two heavy metal amounts that are chromium and nickel, were investigated at two sites near the landfill during 2020. The investigation sites were located about 15 and 30 meters from the edge of the targeted landfill. Disturbed soil samples were collected form the two sites a 2 meters depth. Then, the gathered samples were dried using in room temperature (20 °C) sieved through a 2 mm mesh. The levels of the selected heavy metals were calculated by means of plasma optical emission spectroscopy and linked to the standards of the environmental protection administration. It was found that the concentrations of both metals in close site (site 1) were the higher than the far site (site 2). The analyses also revealed that the concentration of the Nickel is higher than the concentration of the Chromium in both sites. Comparing the concentrations of the selected heavy metals in Kerbala landfill with standards of the environmental protection administration, it was found that all of the assessed heavy metals were found to be within the set standards.

1. Introduction
The Heavy metals are an important part of the earth's ecosystem and naturally exist in fresh water, groundwater and soil[1-3]. According to research literature, iron, for example, can be found high levels up to 50 ppm in surface and ground water [4-7]. The presence of the heavy metals does not pose a direct danger to the human and eco-system since the environment will naturally keep the heavy metal concentrations at balance [8-11]. But, the cumulative impacts of people activity, have greatly changed the normal cycles of many heavy and other elements in the environment, making the eco-systems incapable of balancing the concentration of the heavy metal concentrations in the environment (water, air and soils)[12-15].
In general, the Heavy metals can come from a variety of sources and activated like transportation, agricultural, industrial, mining, planting etc. [16-22]. Heavy metals pollution is large linked with severs health impacts including Alzheimer, cancer, lung diseases, etc. [23-26], as well as harming the environment [13, 27, 28]. Recently, it has been reported that the impacts of heavy metals increased...
significantly global warming on water supply [29-32]. Various treatment techniques like biological[33-37], chemical [33, 38, 39], electrochemical [34, 40-43] and biodegradation [35, 44-46], recovery technologies [30, 31, 36, 37] have been applied to strip heavy metals and other toxic contaminants from water. As the earth population is uncontrolledly expanding, the number and scale of sites used as landfills have risen significantly in order to handle the quantity of municipal solid waste directed to municipal landfills [19, 32, 47]. For instance, it was reported that the average annual production of solid waste in the urban areas of India is about 50 million tonnes. These huge quantities are predicted to be over 240 million tonnes by 2050. The same trend is observed in Iraq by researchers. Researchers revealed that solid waste generation is steadily increasing over the last two decades and the quantity of the solid waste is continually growing [1, 22, 48, 49]. Moreover, extreme quantities of demolishing solid waste are produced which is also disposed of in municipal landfills [2, 50-55]. In the city of Kerbala the quantity of solid waste disposed in landfills increased form 340 thousand tonnes per year during 2005 to reach about 700 thousand tonnes during 2018. These quantities are expected to be near 1 million tonnes per year during 2035. Additionally, Kerbala is affected by many events where the city is faced with instant increase in the quantity of solid waste due to the dramatic increase in the visitor population of the city. one example of large event is the Arba’een religious event where more than 18 million visitor enters the city over 15 days to do religious activities and in the same time produce large quantities of solid waste [3, 7, 19].

Unfortunately, most solid waste generated around the world is poorly managed. About 90 percent of the solid waste generated in India, for example, is poorly managed and disposed of without proper management unit [16, 18]. Solid waste disposal is only contaminating water bodies with a wide variety of contaminants, but also significantly contaminated the underlying soils with many types of pollutants, it has thus become an important issue to the green establishments. Furthermore, disposal sites produce many types of gasses that could lead to serious ecological hazards and higher water usage [26, 28, 56, 57]. Therefore, the current research investigation aims to study the impact of municipal landfill site located in the city of Kerbala on the surrounding soil. The concentration of two heavy metals that are chromium, and nickel in the areas surround the landfill site in order to understand the effects of the landfill on the surrounding soil.

2. Selected landfill site

The target landfill site in this investigation is situated in the southwest of the city of Kerbala (32° 32' 0” N and 32° 28' 0” N as shown in figure 1. This site collects various forms of urban solid waste, fluctuating from plain food refuse to building waste. Generally, the depth of the trenches used for waste disposal was calculated to be between 2 and 4 m at the disposal site. The landfill of Kerbala has been selected to examine the effects of municipal landfills on the surrounding soils because the landfill poorly maintained like the majority of landfills in Iraq. The waste is discarded lacking an appropriate disposal procedure. The landfill is regarded as dumping site without good engineering practice. Besides, the sit contains many rag pickers who market the recently discarded waste to the related businesses, who recycles bottles, canisters, metals and plastic wastes.
3. Materials and methods
In this research, two soil samples were collected from two sites located about 15 and 30 meters from the landfill site. The soil samples were obtained from about 2 meters from the top level of the soil in each site. Plastic containers were used to keep the samples in isolated space and preserve its characterise. The samples were transported to labs for analyses and examination in terms of heavy metals pollution.

At the lab, the related research literature was followed in terms of processing and preparation of the gathered samples [58]. Firstly, the obtained samples were dried out for one day at oven temperature of 65 °C. A 2 mm mesh was used for separating waste and stones/gravels to sew the dry samples. The seven samples were digested with inductively coupled plasma optical emission spectrometry before checking for Cr, Cu, Ni and Pb concentration (model: OPTIMA-2000). After drying, the samples were passed through 2 mm sieve to remove rubble and gravels/chippings. Finally, the samples were examined to find the consecration the chromium and nickel using optical spectroscopy.

4. Results and discussion
Two soil samples collected from two sites that are spread about 15 meters and 30 meters from the landfill site. Table 1 presents the concentration levels of the selected pollutants near the landfill site. The findings gotten shows that, as the distance from the landfill site increases, the concentration levels of the targeted heavy metals (chromium and nickel) are reduced. The connection between the distance from the selected landfill site and the reduction in the concentration of the heavy metal can be regarded from several aspects. One, there has been a drop in rainfall over recent years and a high drought that considerably restricted the penetration of surface rinse into the site and wash out the toxins into nearby land and water bodies. Besides, the water leaching from the accumulated waste in the dump site is normally move for very short distances. Thus, it can be seen that the concentration of the pollutant is increased near the landfill site and drops when the distance increases. Comparing the concentration of the heavy metals around the site with the standard limits, it is clearly the concentrations is below the limits which acceptable sign about the impact of the landfill on the surrounding soils [58].

Pollutant	Site	Distance (m)	Concentration (mg/kg)	Average (mg/kg)	Limitations
Cr	1	15	37.7	31.1	250 mg/kg
	2	30	24.5		
Ni	1	15	46.1	38.5	60 mg/kg
	2	30	30.9		
5. Conclusions
The present research centred on investigating the effects of metal accumulation on the underlying soil within municipal landfill sites, concentrating mostly on chromium, and nickel levels. The findings revealed that the level of contaminants surveyed were negatively related the distance from the sites, at which the concentrations of chromium, and nickel was observed to be decreased as the location of the sampling site be distanced form the landfill site. In addition, the concentration level of the assed heavy metals were below guidelines prosed by the environmental protection. The Nickle have the highest concentration level in the sites investigated. Future researches are recommended to investigate the presence of other heavy metals like cadmium and arsenic near the landfill site.

References

[1] Jawad S F, Saddam N S, Adaami Q J, Kareem M M, Abdulredha M, Mubarak H A, Kot P, Gkantou M and AlKhayyat A 2021 Dye removal from textile wastewater using solar-powered electrocoagulation reactor. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012016

[2] Majdi H S, Shubbar A, Nasr M S, Al-Khafaji Z S, Jafer H, Abdulredha M, Al Masoodi Z, Sadique M and Hashim K J D i B 2020 Experimental data on compressive strength and ultrasonic pulse velocity properties of sustainable mortar made with high content of GGBFS and CKD combinations

[3] Shubbar A A, Jafer H, Abdulredha M, Al-Khafaji Z S, Nasr M S, Al Masoodi Z and Sadique M J J o B E 2020 Properties of cement mortar incorporated high volume fraction of GGBFS and CKD from 1 day to 550 days 30 101327

[4] Abdulhadi B, Kot P, Hashim K, Shaw A, Muradov M and Al-Khaddar R 2021 Continuous-flow electrocoagulation (EC) process for iron removal from water: Experimental, statistical and economic study Science of The Total Environment 756 1-16

[5] Hashim K S, Shaw A, AlKhaddar R, Kot P and Al-Shamma’a A 2021 Water purification from metal ions in the presence of organic matter using electromagnetic radiation-assisted treatment Journal of Cleaner Production 280

[6] Abdulraheem F S, Al-Khafaji Z S, Hashim K S, Muradov M, Kot P and Shubbar A A 2020 Natural filtration unit for removal of heavy metals from water. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012034

[7] Abdulredha M, Al Khaddar R and Jordan D 2017 Hoteliers’ attitude towards solid waste source separation through mega festivals: A pilot study in Karbala. In: International Conference for Doctoral Research: BUID

[8] Abdulla G, Kareem M M, Hashim K S, Muradov M, Kot P, Mubarak H A, Abdellatif M and Abdulhadi B 2020 Removal of iron from wastewater using a hybrid filter. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012035

[9] Alhendal M, Nasir M J, Hashim K S, Amoako-Attah J, Al-Faluji D, Muradov M, Kot P and Abdulhadi B 2020 Cost-effective hybrid filter for remediation of water from fluoride. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012038

[10] Al-Marri S, AlQuzweeni S S, Hashim K S, AlKhaddar R, Kot P, AlKizwini R S, Zubaidi S L and Al-Khafaji Z S 2020 Ultrasonic-Electrocoagulation method for nitrate removal from water. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012073

[11] Abdulredha M, Al Khaddar R, Jordan D, Al-Attabi A and Alzeyadi A 2017 Public participation in solid waste management during mega festivals: A pilot study. In: WCST World Congress on Sustainable Technologies Proceedings 2017: Infonomics Society) pp 38-41

[12] Alyafei A, AlKizwini R S, Hashim K S, Yeboah D, Gkantou M, Al Khaddar R, Al-Faluji D and Zubaidi S L 2020 Treatment of effluents of construction industry using a combined filtration-electrocoagulation method. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012032
[27] Hashim K S, AlKhaddar R, Shaw A, Kot P, Al-Jumeily D, Alwash R and Aljefery M H 2020 Electrocoagulation as an eco-friendly River water treatment method. In Advances in Water Resources Engineering and Management (Berlina: Springer)

[28] Abdulredha M, Kot P, Al Khaddar R, Jordan D, Abdulridha A J E, Development and Sustainability 2020 Investigating municipal solid waste management system performance during the Arba‘een event in the city of Kerbala, Iraq 22 1431-54

[29] Farhan S L, Jasim I A and Al-Mamoori S K 2019 The transformation of the city of Najaf, Iraq: Analysis, reality and future prospects Journal of Urban Regeneration & Renewal 13 160-71

[30] Hashim K S, Al Khaddar R, Jasim N, Shaw A, Phipps D, Kot P, Pedrola M O, Alattabi A W, Abdulredha M, Alawsh R J S and Technology P 2019 Electrocoagulation as a green technology for phosphate removal from River water 210 135-44

[31] Hashim K S, Idowu I A, Jasim N, Al Khaddar R, Shaw A, Phipps D, Kot P, Pedrola M O, Alattabi A W and Abdulredha M J M 2018 Removal of phosphate from River water using a new baffle plates electrochemical reactor 5 1413-8

[32] Isra’a S S, Al-Janabi A, Abdulredha M, Alkandari A, Abdellatif M and Yeboah D 2021 Reusing of furnace bottom ash as an adsorbent for phosphate removal from water. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012006

[33] Abdulredha M, Rafid A, Jordan D and Hashim K J P E 2017 The development of a waste management system in Kerbala during major pilgrimage events: determination of solid waste composition 196 779-84

[34] Al-Anbari R, Alnakeeb A, Abdulredha M J E and Journal T 2013 Landfill site selection for Kerbala municipal solid wastes by using geographical information system techniques 32 13

[35] Alattabi A W, Harris C, Alkhaddar R, Alzeyadi A and Abdulredha M J P e 2017 Online monitoring of a sequencing batch reactor treating domestic wastewater 196 800-7

[36] Al-Sareji O J, Abdulredha M, Mubarak H A, Grmasha R A, Alnowaishry A, Kot P, Al-Khaddar R and AlKhayyat A 2021 Copper removal from water using carbonized sawdust. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012015

[37] ALWAN H H, SALEH L A, AL-MOHAMMED F M, ABDULREDHA M A J J o E S and Technology 2020 EXPERIMENTAL PREDICTION OF THE DISCHARGE COEFFICIENTS FOR RECTANGULAR WEIR WITH BOTTOM ORIFICES 15 3265-80

[38] Alenazi M, Hashim K S, Hassan A A, Muradov M, Kot P and Abdulhadi B 2020 Turbidity removal using natural coagulants derived from the seeds of strychnos potatorum: statistical and experimental approach. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012064

[39] Alenezi A K, Hasan H A, Hashim K S, Amoako-Attah J, Gkantou M, Muradov M, Kot P and Abdulhadi B 2020 Zeolite-assisted electrocoagulation for remediation of phosphate from calcium-phosphate solution. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012031

[40] Hashim K, Kot P, Zubaid S, Alwash R, Al Khaddar R, Shaw A, Al-Jumeily D and Aljefery M 2020 Energy efficient electrocoagulation using baffle-plates electrodes for efficient Escherichia Coli removal from Wastewater Journal of Water Process Engineering 33 10179-86

[41] Hashim K S, Ali S S M, AlRifaie J K, Kot P, Shaw A, Al Khaddar R, Idowu I and Gkantou M 2020 Escherichia coli inactivation using a hybrid ultrasonic–electrocoagulation reactor Chemosphere 247 125868-75

[42] Hashim K S, Shaw A, Al Khaddar R, Ortoneda Pedrola M and Phipps D 2017 Defluoridation of drinking water using a new flow column-electrocoagulation reactor (FCER) - Experimental, statistical, and economic approach Journal of Environmental Management 197 80-8

[43] Hashim K S, Shaw A, Al Khaddar R, Pedrola M O and Phipps D 2017 Energy efficient electrocoagulation using a new flow column reactor to remove nitrate from drinking water -
Experimental, statistical, and economic approach *Journal of Environmental Management* **196** 224-33

[44] Alattabi A W, Harris C, Alkhaddar R, Alzeyadi A and Hashim K 2017 Treatment of Residential Complexes’ Wastewater using Environmentally Friendly Technology *Procedia Engineering* **196** 792-9

[45] Alattabi A W, Harris C B, Alkhaddar R M, Hashim K S, Ortoneda-Pedrola M and Phipps D 2017 Improving sludge settleability by introducing an innovative, two-stage settling sequencing batch reactor *Journal of Water Process Engineering* **20** 207-16

[46] Hashim K S, Ewadh H M, Muhsin A A, Zubaidi S L, Kot P, Muradov M, Aljefery M and Al-Khaddar R 2020 Phosphate removal from water using bottom ash: Adsorption performance, coexisting anions and modelling studies *Water Science and Technology* **83** 1-17

[47] Abdulredha M, Abdulridha A, Shubbar A, Alkhaddar R, Kot P and Jordan D 2020 Estimating municipal solid waste generation from service processions during the Ashura religious event. In: *IOP Conference Series: Materials Science and Engineering*: IOP Publishing) p 012075

[48] Abdulredha M, Kot P, Al Khaddar R, Jordan D and Abdulridha A 2020 Investigating municipal solid waste management system performance during the Arba’een event in the city of Kerbala, *Iraq Environment, Development and Sustainability* **22** 1431-54

[49] Al-Jumeily D, Hashim K, Alkaddar R, Al-Tufaily M and Lunn J 2019 Sustainable and Environmental Friendly Ancient Reed Houses (Inspired by the Past to Motivate the Future). In: *11th International Conference on Developments in eSystems Engineering (DeSE)*, (Cambridge, UK pp 214-9

[50] Shubbar A A, Al-Shaer A, AlKizwini R S, Hashim K, Hawesah H A and Sadique M 2019 Investigating the influence of cement replacement by high volume of GGBS and PFA on the mechanical performance of cement mortar. In: *First International Conference on Civil and Environmental Engineering Technologies (ICCEET)*, (University of Kufa, Iraq pp 31-8

[51] Kadhim A, Sadique M, Al-Mufti R and Hashim K 2020 Long-term performance of novel high-calcium one-part alkali-activated cement developed from thermally activated lime kiln dust *Journal of Building Engineering* **32** 1-17

[52] Kadhim A, Sadique M, Al-Mufti R and Hashim K 2020 Developing One-Part Alkali-Activated metakaolin/natural pozzolan Binders using Lime Waste as activation Agent *Advances in Cement Research* **32** 1-38

[53] Majdi H S, Shubbar A, Nasr M S, Al-Khafaji Z S, Jafer H, Abdulredha M, Masoodi Z A, Sadique M and Hashim K 2020 Experimental data on compressive strength and ultrasonic pulse velocity properties of sustainable mortar made with high content of GGBFS and CKD combinations *Data in Brief* **31** 105961-72

[54] Shubbar A A, Sadique M, Nasr M S, Al-Khafaji Z S and Hashim K S 2020 The impact of grinding time on properties of cement mortar incorporated high volume waste paper sludge ash *Karbala International Journal of Modern Science* **6** 1-23

[55] Shubbar A A, Sadique M, Shanbara H K and Hashim K 2020 *The Development of a New Low Carbon Binder for Construction as an Alternative to Cement*. In *Advances in Sustainable Construction Materials and Geotechnical Engineering* (Berlin: Springer)

[56] Abdulredha M, Muhsin A A, Al-Janabi A, Alajmi B N, Gkantou M, Amako-Attah J, Al-Jumeily D, Mustafina J and AlKhayyat A 2021 Using SF and CKD as cement replacement materials for producing cement mortar. In: *IOP Conference Series: Materials Science and Engineering*: IOP Publishing) p 012007

[57] Abdulredha M, Rafid A, Jordan D and Alattabi A J P e 2017 Facing up to waste: how can hotel managers in Kerbala, Iraq, help the city deal with its waste problem? *196* 771-8

[58] Khan S, Cao Q, Zheng Y, Huang Y and Zhu Y 2008 Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, *China Environmental pollution* **152** 686-92