Transparent Testa16 (TT16), a transcript regulator belonging to the B_sister MADS box proteins, regulates proper endothelial differentiation and proanthocyanidin accumulation in the seed coat. Our understanding of its other physiological roles, however, is limited. In this study, the physiological and developmental roles of TT16 in an important oil crop, canola (Brassica napus), were dissected by a loss-of-function approach. RNA interference (RNAi)-mediated down-regulation of tt16 in canola caused dwarf phenotypes with a decrease in the number of inflorescences, flowers, siliques, and seeds. Fluorescence microscopy revealed that tt16 deficiency affects pollen tube guidance, resulting in reduced fertility and negatively impacting embryo and seed development. Moreover, Bntt16 RNAi plants had reduced oil content and altered fatty acid composition. Transmission electron microscopy showed that the seeds of the RNAi plants had fewer oil bodies than the nontransgenic plants. In addition, tt16 RNAi transgenic lines were more sensitive to auxin. Further analysis by microarray showed that tt16 down-regulation alters the expression of genes involved in gynoecium and embryo development, lipid metabolism, auxin transport, and signal transduction. The broad regulatory function of TT16 at the transcriptional level may explain the altered phenotypes observed in the transgenic lines. Overall, the results uncovered important biological roles of TT16 in plant development, especially in fatty acid synthesis and embryo development.
before the divergence of gymnosperm and angiosperm lineages 300 million years ago but after the separation of the fern lineage 400 million years ago (Becker et al., 2002; Stellari et al., 2004). B genes are predominantly expressed in petal and stamen primordia; however, the expression of Bsister genes is found almost exclusively in female reproductive structures or is even restricted to the ovules (Theissen et al., 1996, 2000; Becker et al., 2002; de Folter et al., 2006). It has been hypothesized that the B class proteins are important for male reproductive organ development, whereas the Bsister proteins are important for female reproductive organ development (Becker et al., 2002).

Transparent Testa16 (TT16) is a Bsister gene that acts as a transcription factor and appears to play a role in seed coat pigmentation and proanthocyanidin (PA) accumulation in the endothelium of developing seeds. A tt16 mutant, in which the TT16/ABS gene encoding a MIKC-type MADS box protein was disrupted, showed altered seed pigmentation and PA accumulation, but TT16/ABS alone does not appear to be crucial for female reproductive development in Arabidopsis (Arabidopsis thaliana; Nesi et al., 2002). Interestingly, the recently characterized Bsister MADS box Floral Binding Protein24 (FB24) from petunia (Petunia hybrida) was unable to complement the Arabidopsis tt16 mutant, despite having similar developmental roles to TT16/ABS (de Folter et al., 2006). The only other Bsister MADS box gene in Arabidopsis is GORDITA (GOA; formerly known as AGL63), which like TT16/ABS arose from duplication during the diversification of the Brassicaceae (Erdmann et al., 2010). Functional studies suggest that GOA not only contributes to integument development but also regulates fruit growth (Erdmann et al., 2010; Prasad et al., 2010); however, up to now, the detailed physiological functions of the Bsister transcription factors have not been extensively studied.

In developing oilseeds, transcription factors not only govern fruit and seed development but also storage lipid metabolism, including fatty acid (FA) and triacylglycerol synthesis, which is of interest for biotechnological applications in seed oil modification. WRINKLED1 (WRI1) is a member of the APETALA2/ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEINS belonging to the A class in the ABCDE model, and overexpression of WRI1 enhanced the transcription of FA biosynthetic genes, leading to increased triacylglycerol accumulation in both seeds and leaves (Cernac and Benning, 2004; Baud and Lepiniec, 2009). LEAFY COTYLEDON1 (LEC1) is an NFY-B-type or CCAAT-binding factor-type transcription factor, and LEC2 belongs to the plant-specific B3 transcription factor family (Lotan et al., 1998; Stone et al., 2001). LEC2 and LEC1 can control the expression of FA biosynthesis genes (Baud et al., 2007; Mu et al., 2008). To date, however, there is no report on the function of Bsister proteins in FA synthesis or triacylglycerol accumulation, despite their importance in other aspects of seed development.

This study aimed to determine the physiological functions of four recently identified canola (Brassica napus) TT16 (BnTT16) homologs in plant development and seed oil synthesis. Using an RNA interference (RNAi) approach, we found that down-regulation of TT16 in canola affects pollen tube guidance, reduces fertility, and influences FA synthesis and embryo development. The results strongly suggest that TT16 plays multiple physiological roles beyond endothelial development and PA accumulation and that TT16 may be a suitable biotechnological target for seed oil modification.

RESULTS

Down-Regulation of BnTT16s Alters Canola Development

We identified four TT16 homologs from canola based on the analysis of ESTs and genomic DNA sequences, in which two shared the identical sequences of the
reported BnTT16.1 (EU192028) and BnTT16.2 (EU192029). The other two were named BnTT16.3 (HM449990) and BnTT16.4 (HM449889). Similar to TT16 in Arabidopsis, the BnTT16s regulate endothelium development and PA accumulation (G. Chen, W. Deng, F. Peng, M. Truksa, S. Singer, C. Snyder, and R. Weselake, unpublished data). As shown in Figure 1A, TT16s have much higher expression levels in female organs, consistent with other plant B-sister genes (Chen et al., 2012). Although the expression levels of the four TT16s varied, they all have the highest expression level in the embryo of early developing seeds (15 d after flowering [DAF]).

To assess the effects of the loss of function of four TT16s on canola growth and development, a 146-bp conserved complementary DNA fragment was cloned into pHellsgate 12 under the control of a cauliflower mosaic virus 35S promoter for subsequent generation of canola RNAi transgenic plants. Over 40 transgenic lines (TT16s RNAi) were generated, and 10 were used for further study. All 10 transgenic lines showed lower accumulation of TT16 transcripts (Fig. 1B). In line RNAi-4-1, the overall TT16 expression level decreased about 50% (Fig. 1B) and the expression of each TT16 was down-regulated (Fig. 1A). Therefore, this line was selected as a representative for further study.

Multiple phenotypes related to vegetative growth and development were identified in transgenic plants. Nontransgenic (NT) plants flowered earlier than the transgenic plants, indicating that down-regulation of TT16s delayed the transition from vegetative growth to reproductive stage in canola. As shown in Figure 2, A and B, the 40-d-old transgenic plants exhibited dwarf stature and smaller, wrinkled leaves compared with the NT plants. Dwarf phenotypes were also identified in 70-d-old TT16 RNAi transgenic plants (Fig. 2C).

Regarding the influence of tt16 down-regulation on the reproductive organs, the first phenotype is that the RNAi plants had larger flowers and floral organs with stigmas protruding out of the unopened buds (Fig. 2D; Supplemental Table S2). Moreover, the number of inflorescences and total flowers in transgenic plants significantly decreased compared with the NT plants (Fig. 2, E and F; P < 0.01). In addition, the transgenic plants produced shorter siliques and fewer seeds (Supplemental Fig. S1; P < 0.01).

Down-Regulation of Bntt16s Affects Pollen Tube Guidance

To investigate the cause(s) for the reduced seed set of the canola tt16 lines, pollen viability was first tested using iodine-potassium iodide staining. Pollen in both tt16 RNAi and NT lines stained as normal dark brown color, indicating that pollen viability was not affected.
(data not shown). Second, to determine if pollen tube development in style was affected by \(tt16\) down-regulation, styles were stained with aniline blue and pollen tubes were counted by fluorescence microscopy. The pollen tube numbers in RNAi and NT plants showed no statistical difference, indicating that the pollen tube developed normally in RNAi lines (Fig. 3, A–C). RNAi and NT lines were manually cross-pollinated to examine pollen development. As shown in Figure 3D, transgenic lines pollinated with pollen from NT lines produced shorter siliques and fewer seeds, whereas NT lines pollinated with pollen from RNAi plants produced normal siliques and seeds. Therefore, the reduced fertility in RNAi plants was not due to pollen development. Finally, we examined pollen tube extension by fluorescence microscopy. Most of the pollen tubes can extend into the ovules in 2-DAF siliques of self-pollinated NT plants and NT plants pollinated with line 4-1 (Fig. 4, A and B), whereas only a few pollen tubes can extend into the ovules in siliques (2 DAF) of self-pollinated line 4-1 and line 4-1 pollinated with NT plants (Fig. 4, C and D). Overall, these results revealed that \(tt16\) down-regulation affected pollen tube guidance, thus resulting in reduced fertility.

Down-Regulation of \(Bntt16s\) Alters Seed Development and Lipid Synthesis

The \(Bntt16\) RNAi plants also produced abnormal mature seeds in terms of seed morphology. In order to characterize this phenotype in detail, we first examined embryos at 8, 12, 20, 24, and 34 DAF. As shown in Figure 5A, the embryos of \(tt16\) RNAi transgenic plants developed normally at 8 and 12 DAF but abnormally at 20, 24, and 34 DAF. We compared seed morphology between RNAi and NT lines. The seeds of the \(tt16\) RNAi lines can be classified into two types. Type 1 seeds were deflated and flattened, whereas type 2 seeds were wrinkled and irregular in shape (Fig. 5B). Type 1 seeds had only seed coats with no embryo. Type 2 seeds contained defective embryos with irregular single cotyledons. Some embryos of type 2 seeds turned dark brown at maturity (Fig. 5C). Finally, we compared the seeds by microscopy. As shown in Figure 5, D and E, the transverse sections of mature type 2 seeds illustrate the defective embryo with single cotyledon and remaining endosperm. The transverse sections of mature type 1 seeds had seed coats but no embryo, demonstrating that embryo abortion occurred in type 1 seeds. Collectively, these results strongly indicate that down-regulation of \(tt16s\) affects the development of embryos and seeds.

The FA content and composition in mature seeds were analyzed using gas chromatography-mass spectrometry. The FA content was dramatically decreased, which was consistent with transmission electron microscopy observations showing fewer oil bodies in RNAi

Figure 3. Pollen tubes development in a \(tt16\) RNAi transgenic line and artificial pollination. A, Style section of a NT plants. The arrow indicates a pollen tube. B, Style section of the \(tt16\) RNAi transgenic line 4-1. Bars = 8 \(\mu\)m. C, Number of pollen tubes in style sections. SE values (\(n = 3\)) are indicated by vertical bars. D, Artificial pollination. 1, NT plants without artificial pollination. 2, NT plants with artificial pollination (self-pollination). 3, NT plants pollinated with line 4-1 (cross-pollination). 4, Line 4-1 without artificial pollination. 5, Line 4-1 with artificial pollination (self-pollination). 6, Line 4-1 pollinated with NT plants (cross-pollination).

Figure 4. Guiding of pollen tubes to ovules in self- and cross-pollinated plants. A, Self-pollinated NT plants. B, NT plants pollinated with \(tt16\) RNAi transgenic line 4-1. C, Self-pollinated line 4-1. D, Line 4-1 pollinated with NT plants. Arrows indicate pollen targeted into ovules.
seeds compared with the NT (Fig. 6). The FA composition of RNAi seeds was also significantly different from the NT (Table I). The percentage of 16-carbon FA and very-long-chain FA (C20-22) was higher in the RNAi lines. The transgenic seeds also showed an increase in linoleic acid (18:2 cis6,9) at the expense of oleic acid (18:1 cis9) compared with NT seeds.

Down-Regulation of \(\text{Bntt16s} \) Alters the Expression of Genes Involved in Gynoecium and Embryo Development, Lipid Metabolism, and Auxin Signaling

To further understand why the down-regulation of transcription factor \(\text{tt16s} \) caused the above phenotypes, we compared the gene expression profiles of RNAi plants (2-DAF siliques) with the NT line by microarray. In order to validate the results from the microarray analyses, 20 genes were selected and further studied by real-time PCR. Nineteen out of 20 genes showed similar expression patterns by microarray assay (Fig. 7). The results indicated that the data from the microarray were reproducible and reliable.

Analysis of the microarray data revealed that genes involved in lipid metabolism, gynoecium and embryo development, and auxin transport and signal transduction were affected by \(\text{tt16} \) down-regulation (Tables II–IV). For lipid metabolism, nine genes were down-regulated and 18 genes were up-regulated. For example, 3-Oxoacyl-ACP reductase5 (KAR5) and Chloroplastic acetyl-coenzyme A carboxylase1 (BCCP1), both involved in FA synthesis, were down-regulated in RNAi plants (Table II; Harwood, 1988; O’Hara et al., 2007). For gynoecium and embryo development, 50 genes were down-regulated and 15 genes were up-regulated. GAMETOPHYTE FACTOR1 (GFA1)/MATERNAL EFFECT EMBRYO ARREST5 (MEE5), which regulates egg cell differentiation in embryo sacs, was down-regulated in transgenic plants (Table III; Liu et al., 2009). Interestingly, microarray analysis showed that the expression of many auxin-related genes was altered as well (Table IV).

Down-Regulation of \(\text{tt16s} \) Alters the Response to Auxin

As shown in Table IV, eight genes related to auxin transport and signal transduction were down-regulated and nine were up-regulated in the microarray data. We hypothesized that down-regulation of \(\text{TT16s} \) may have changed canola’s response to auxin. To further investigate this, we examined the auxin dose response on adventitious root formation of hypocotyl segments. The results showed that the promotion of root organ growth was significantly different between transgenic and NT plants with \(P < 0.05 \) as determined by \(t \) test.
regeneration from hypocotyl explants was auxin dose dependent in both NT and \textit{tt16} RNAi plants (Fig. 8). In NT seedlings, however, the synthetic auxin, naphthaleneacetic acid, promoted adventitious root regeneration at concentrations above 0.1 mM, while in \textit{tt16} RNAi seedlings, the critical concentration was 10-fold lower (0.01 mM). At 0.1 and 0.5 mM, there were more adventitious roots in \textit{tt16s} RNAi lines than in NT plants. These results indicated that down-regulation of \textit{tt16s} conferred increased sensitivity to auxin.

DISCUSSION

The function of transcription factor TT16 in regulating endothelial differentiation and PA accumulation has been reported in Arabidopsis and petunia (Nesi et al., 2002; de Folter et al., 2006). Our knowledge of its other physiological functions, however, is very limited. Here, we generated \textit{Bntt16} RNAi plants and comprehensively studied the physiological function of canola TT16s, including possible mechanisms at the transcription level. Currently, the RNAi method is broadly applied to study gene functions. However, several reports have shown that off-target gene silencing can occur during RNAi and result in misleading conclusions in RNAi experiments (Jackson et al., 2003; Xu et al., 2006). In order to minimize the potential off-target gene silencing, we selected the 146-bp \textit{TT16}-specific fragment by a BLAST search against the Brassica genome database (http://brassicadb.org). In addition, a publicly Web-based computational tool called siRNA Scan was developed to identify potential off-targets (Xu et al., 2006). Using this tool, we further analyzed the designed fragment to check the risk of potential nonspecific effects (off-target effects), and no potential off-target candidates against the canola mRNA database were detected in our designed fragment.

The \textit{tt16} RNAi transgenic plants displayed reduced fertility, and fluorescence microscopy observation indicated impaired guidance of pollen tubes to the ovule.

Table I. Total FA and FA compositions in NT and \textit{tt16} RNAi plants

Asterisks denote significant differences (*P < 0.05 and **P < 0.01) between transgenic and NT plants by \(t \) test. The data are means ± se corresponding to three independent experiments.

FA	NT Plant	RNAi Plant
16:0	4.4 ± 0.0	7.6 ± 0.0**
16:1	0.1 ± 0.0	0.4 ± 0.0**
18:0	2.8 ± 0.1	4.9 ± 0.2**
18:1	73.4 ± 0.2	60.1 ± 0.1**
18:2	11.8 ± 0.0	19.4 ± 0.3**
18:3	4.9 ± 0.0	4.6 ± 0.1*
20:0	0.9 ± 0.1	1.3 ± 0.0*
20:1	0.8 ± 0.0	0.3 ± 0.1**
22:0	0.9 ± 0.2	1.3 ± 0.1**
Total FA (mg g\(^{-1}\))	413.0 ± 4.4	261.7 ± 6.2**
Total FA (mg seed\(^{-1}\))	1.9 ± 0.0	0.9 ± 0.0**

Figure 7. Verification of microarray data using real-time PCR. A, Genes involved in lipid metabolism. B, Genes involved in gynoecium and embryo development. C, Auxin-related genes.
Table II. Microarray analysis of tt16 RNAi plants: genes involved in lipid metabolism in siliques (2 DAF) of tt16 RNAi plants

Microarray data were analyzed using the open-source R statistical programming language and Bioconductor packages with $P < 0.01$ (Gentleman et al., 2004; R Development Core Team 2010). GO, Gene Ontology categories.

Gene Name	Gene Identifier	Arabidopsis Genome Initiative Locus Identifier	Ratio	P Value	Description
LTPG1	EV178367	AT1G27950	2.73	0.0004	Glycosylphosphatidylinositol-anchored lipid protein transfer 1 (LTPG1); GO: lipid transport
KAR5	CN830460	AT1G24360	2.46	0.0004	3-Oxooacyl-acyl-reductase 5 (KAR5); GO: fatty acid biosynthesis process
ACOX3	TA34635_3708	AT1G06290	2.16	0.0014	Acyl-CoA oxidase 3 (ACOX3); GO: fatty acid β-oxidation, medium-chain fatty acid metabolic process
FADS	ES267177	AT1G06090.1	1.52	0.0023	Fatty acid desaturase family protein (FADS); GO: lipid metabolic process, oxidation-reduction process
FAR4	TA27656_3708	AT3G11980	1.22	0.0012	Fatty acid reductase 2 (FAR4); GO: oxidation-reduction process, pollen exine formation
PPAT	TA25260_3708	AT2G18250	1.08	0.0024	4-Phosphopantetheine adenylyltransferase (PPAT); GO: lipid metabolic process, lipid storage
LTP12	TA20970_3708	AT3G51590	0.91	0.0029	Lipid transfer protein 12 (LTP12); GO: lipid transport, bind fatty acids and acyl-CoA esters and can transfer several different phospholipids
ACO2	DY023994	AT5G65110	0.85	0.0021	Acyl-CoA oxidase 2 (ACO2); GO: fatty acid β-oxidation, long-chain fatty acid metabolic process, long-chain fatty acid biosynthesis
BCCP1	CB331865	AT5G16390	0.83	0.0027	Chloroplastic acetyl-CoA carboxylase 1 (BCCP1); GO: fatty acid biosynthetic process, encodes for the biotin carboxyl-carrier subunit of the multienzyme plastidial acetyl-CoA carboxylase complex
PLC	EE464144	AT1G49740	−3.41	0.0001	PLC-like phosphodiesterase superfamily protein (PLC); GO: intracellular signal transduction, lipid metabolic process
SGNH	EV135949	AT2G38180	−2.95	0.0001	Hydrolase-type esterase superfamily protein (SGNH); GO: lipid metabolic process, metabolic process
ACO3	ES9111417	AT1G06290	−2.73	0.0004	Acyl-CoA oxidase 3 (ACO3); GO: fatty acid β-oxidation, medium-chain fatty acid metabolic process
KAS2	TA34448_3708	AT1G74960	−2.69	0.0005	β-Ketoacyl-ACP synthetase 2 (KAS2); GO: unsaturated fatty acid biosynthetic process, involved in fatty acid elongation from 16:0-ACP to 18:0-ACP
PHS1	TC105857	AT4G14440	−1.72	0.0018	3-Hydroxyacyl-CoA dehydratase 1 (PHS1); GO: fatty acid catabolic process, involved in unsaturated fatty acid degradation
ACPB	TA21354_3708	AT1G31812	−1.4	0.0016	Acyl-CoA-binding protein 6 (ACPB); GO: lipid transport, response to absence of light, response to cold, response to freezing
PLC	BQ704400	AT3G08510	−1.4	0.0013	Phospholipase C (PLC); GO: lipid metabolic process, metabolic process, signal transduction
GLIP1	DY024637	AT3G48460	−1.39	0.0031	GDSL-like lipase (GLIP1); GO: lipid metabolic process, metabolic process
ECH	TA26530_3708	AT4G29010	−1.36	0.001	Enol-CoA hydrolase/isomerase family (ECH); GO: fatty acid β-oxidation, flower development, jasmonic acid biosynthetic process
FAR3	CB686175	AT4G33790	−1.35	0.0007	Fatty acid reductase 3 (FAR3); GO: microsporogenesis, oxidation-reduction process, wax biosynthetic process
FADS2	TA21960_3708	AT3G12120	−1.34	0.0011	Fatty acid desaturase 2 (FADS2); GO: lipid metabolic process, oxidation-reduction process, responsible for the synthesis of 18:2 fatty acids
ECHIb	CX278875	AT4G14430	−1.28	0.0026	Enol-CoA hydrolase/isomerase b (ECHIb); GO: fatty acid catabolic process, involved in unsaturated fatty acid degradation
LTP	CD843685	AT5G64080	−1.23	0.0025	Lipid-transfer protein (LTP); GO: lipid transport
KC82	TC95262	AT1G04220	−1.2	0.0035	3-Ketoacyl-CoA synthase 2 (KCS2); GO: biosynthesis of very-long-chain fatty acids
ACPD	TA19551_3708	AT3G02630	−1.06	0.001	Stearyl-acyl-carrier-protein desaturase family protein (ACPD); GO: fatty acid biosynthetic process, oxidation-reduction process
HSP	CD822549	AT3G49050	−1.06	0.0019	α/β-Hydrolase superfamily protein (HSP); GO: lipid catabolic process, lipid metabolic process
LTP	EV148422	AT1G36150	−1.02	0.0016	Lipid-transfer protein (LTP); GO: lipid transport
LTP	CX192351	AT1G18280	−0.83	0.0025	Lipid-transfer protein (LTP); GO: lipid transport
Microarray analysis of tt16 RNAi plants: genes involved in gynoecium and embryo development in siliques (2 DAF) of tt16 RNAi plants

Microarray data were analyzed using the open-source R statistical programming language and Bioconductor packages with \(P < 0.01 \) (Gentleman et al., 2004; R Development Core Team 2010). GO, Gene Ontology categories.

Gene Name	Gene Identifier	Arabidopsis Genotype Initiative Locus Identifier	Ratio	P Value	Description
Pepper	ES902629	AT4G26000	3.26	0.0018	Pepper; GO: gynoecium development, shoot development
EMB1865	EE453093	AT3G18390	2.46	0.0015	Embryo defective1865 (EMB1865); GO: embryo development ending in seed dormancy
LEA	TC104467	AT2G44060	2.32	0.0004	Late embryogenesis abundant protein (LEA); GO: embryo development ending in seed dormancy
EMB1745	EV057385	AT1G13120	1.78	0.0005	Embryo defective1745 (EMB1745); GO: embryo development ending in seed dormancy
EMB1738	TA24074_3708	AT1G1680.1	1.73	0.0012	Embryo defective1738 (EMB1738); GO: embryo development ending in seed dormancy
L19e	TC101398	AT1G02780	1.7	0.0027	Ribosomal protein L19e family protein (L19e); GO: embryo development ending in seed dormancy
EDA9	TA29939_3708	AT4G34200.1	1.37	0.0004	Embryo sac development arrest9 (EDA9); GO: megagametogenesis ending in seed dormancy
EMB161	EG019088	AT5G27740	1.23	0.0009	Embryo defective161 (EMB161); GO: embryo development ending in seed dormancy
GFA1/MEE5	TA30692_3708	AT1G06220	1.09	0.0035	Gametophyte factor 1 (GFA1)/maternal effect embryo arrest5 (MEE5); GO: embryo development ending in seed dormancy, regulation of embryo sac egg cell differentiation
LEA4-1	EE407756	AT1G32560	1.07	0.0016	Late embryogenesis abundant4-1 (LEA4-1); GO: embryo development ending in seed dormancy, seed development
EDA2474	TA33458_3708	AT3G46560	0.98	0.0019	Embryo defective2474 (EDA2474); GO: embryo development ending in seed dormancy
EDA25	EE414397	AT1G72440	0.96	0.0019	Embryo sac development arrest 25 (EDA25); GO: embryo sac development, polar nucleus fusion
OVA6	TC98067	AT5G52520	0.96	0.0027	Ovule abortion6 (OVA6); GO: embryo sac development, metabolic process, ovule development
MEE49	DY017410	AT4G01560	0.82	0.0033	Maternal effect embryo arrest49 (MEE49); GO: embryo development ending in seed dormancy
EDA3004	TC98127	AT3G06350	0.77	0.0032	Embryo defective3004 (EDA3004); GO: embryo development ending in seed dormancy
EDA1637	TA21841_3708	AT3G57870	4.52	0.0001	Embryo defective1637 (EDA1637); GO: embryo development ending in seed dormancy
EDA2759	EV176859	AT5G63050	3.25	0.0004	Embryo defective2759 (EDA2759); GO: embryo development ending in seed dormancy
PRD3	EE505648	AT1G01690	2.8	0.0003	Putative recombination initiation defects 3 (PRD3); GO: embryo sac development
EDA1624	TA23462_3708	AT3G55620	2	0.0007	Embryo defective1624 (EDA1624); GO: embryo development ending in seed dormancy
EDA1144	EE467621	AT1G48850	1.78	0.0005	Embryo defective1144 (EDA1144); GO: embryo development ending in seed dormancy
LEA	TA23013_3708	AT3G17520	1.75	0.0012	Late embryogenesis abundant protein family protein (LEA); GO: embryo development ending in seed dormancy
EDA1303	CD832555	AT1G56200	1.73	0.0030	Embryo defective1303 (EDA1303); GO: embryo development ending in seed dormancy
EDA60	TC82547	AT1G01040	1.63	0.0026	Embryo defective60 (EDA60); GO: regulation of seed maturation ending in seed dormancy
EDA140	TC100011	AT4G24270	1.32	0.0007	Embryo defective140 (EDA140); GO: embryo development ending in seed dormancy
EDA1401	EV093340	AT5G20920	1.26	0.0017	Embryo defective1401 (EDA1401); GO: embryo development ending in seed dormancy
EDA1211	EE47572	AT5G22640	1.26	0.0022	Embryo defective1211 (EDA1211); GO: embryo development, embryo development ending in seed dormancy
EDA1138	TC108258	AT5G26742	1.11	0.0013	Embryo defective1138 (EDA1138); GO: embryo development ending in seed dormancy
LEA	TA24711_3708	AT3G53040	1.07	0.0013	Late embryogenesis abundant protein (LEA); GO: embryo development ending in seed dormancy
EDA1401	BQ704950	AT5G20920	1.01	0.0022	Embryo defective1401 (EDA1401); GO: embryo development ending in seed dormancy
LEA	DY002842	AT4G21020	0.89	0.0030	Late embryogenesis abundant protein family protein (LEA); GO: embryo development ending in seed dormancy
in transgenic plants (Fig. 4). The fertilization process begins when the pollen grain germinates on the female stigmatic cells. Then, pollen tubes emerge at the base of the stigmatic papillae and grow down to the style and through the transmitting tissue of the style and septum (Hill and Lord, 1987; Lennon et al., 1998). When the pollen tube emerges from the septum, it grows over the surface of the septum to a funiculus and then grows along the funicular surface to the micropylar opening of the ovule, where it enters to release the sperm cells (Yadegari and Drews, 2004). Pollen tubes are guided through female tissues until they turn toward an available ovule. The two synergid cells in the female gametophyte have important roles in pollen tube guidance (Shimizu and Okada, 2000; Higashiyama et al., 2001; Okuda et al., 2009). The egg cells and central cells also play a role in pollen tube guidance (Chen et al., 2007; Alandete-Saez et al., 2008). GFA1/MEE5, which regulates egg cell differentiation in the embryo sac, was down-regulated in transgenic plants (Table III; Pagnussat et al., 2005; Liu et al., 2009). Based on our study, the down-regulation of GFA1/MEE5 in tt16 RNAi transgenic plants may have affected the development of egg cells, resulting in impaired guidance of pollen tubes to the ovule.

Table IV. Microarray analysis of tt16 RNAi plants: genes involved in auxin signal transduction and transport in 2-DAF siliques of tt16 RNAi plants

Microarray data were analyzed using the open-source R statistical programming language and Bioconductor packages with $P < 0.01$ (Gentleman et al., 2004; R Development Core Team 2010). GO, Gene Ontology categories.

Gene Name	Gene Identifier	Arabidopsis Genome Initiative Locus Identifier	Ratio	P Value	Description
IAA27	EV128512	AT4G29080	3.49	0.0005	IAA inducible27 (IAA27); GO: regulation of translation, response to auxin stimulus
WXR1	TA3-4132-3708	AT2G31190	2.95	0.0002	Weak auxin response1 (WXR1); GO: auxin polar transport, response to UV-B
PIN3	TC1-03218	AT1G070940	1.62	0.0031	Pin-formed3 (PIN3); GO: auxin polar transport
TIR3	EV025801	AT3G02260	1.57	0.0015	Transport inhibitor response3 (TIR3); GO: auxin polar transport, response to auxin stimulus
ILR1	TC1-02010	AT3G02875	1.34	0.0026	IAA-Leu resistant1 (ILR1); GO: auxin metabolic process, metabolic process, proteolysis
ARF8	TC64476	AT5G37020	1.14	0.0029	Auxin response factor8 (ARF8); GO: regulation of transcription, response to auxin stimulus
IAA13	CX1-87222	AT2G33310.3	1.04	0.0007	Auxin-induced protein13 (IAA13); GO: regulation of transcription, response to auxin stimulus
MYB15	TC91892	AT3G23250	0.84	0.0025	Myb domain protein15 (MYB15); GO: regulation of transcription, response to auxin stimulus
ARF17	EE455835	AT1G77850	−3.94	0.0003	Auxin response factor17 (ARF17); GO: auxin-mediated signaling pathway, regulation of transcription
RBX1	TC92162	AT5G20570	−2.57	0.0002	RING box1 (RBX1); GO: protein ubiquitination, response to auxin stimulus
Auxin homeostasis gene					Auxin homeostasis; GO: auxin homeostasis, auxin-mediated signaling pathway
BRX	EE465134	AT1G31880	−1.76	0.0018	Brevis radix (BRX); GO: auxin-mediated signaling pathway
ETA3	DY002982	AT4G11260	−1.26	0.0016	Enhancer of tir1-1 auxin resistance3 (ETA3); GO: auxin-mediated signaling pathway
AXR1	TC75767	AT1G05180	−1.21	0.0007	Auxin resistant1 (AXR1); GO: auxin homeostasis, auxin-mediated signaling pathway
CNX1	CD836602	AT5G20990	−1.16	0.0022	Molybdenopterin biosynthesis protein (CNX1); GO: auxin-mediated signaling pathway
GH3	EE455254	AT4G03400	−1.1	0.0015	Auxin-responsive GH3 family protein (GH3); GO: response to auxin stimulus, response to light stimulus
TIR1	ES900600	AT3G62980	−0.94	0.0018	Transport inhibitor response1 (TIR1); GO: auxin-mediated signaling pathway, response to auxin stimulus

![Figure 8. Auxin dose response of tt16 RNAi transgenic lines. Hypocotyl explants of 9-d-old canola seedlings were incubated on one-half-strength Murashige and Skoog medium containing the indicated naphthalene-acetic acid concentrations for 20 d. 4-1, tt16 RNAi transgenic line 4-1.](image-url)
Lipids are essential for the growth and development of plants. Although many of the reactions in storage lipid metabolism have been well studied in plants, less is known about their regulatory mechanisms, especially at the transcriptional level. A few transcription factors have been identified as potential regulators of storage lipid biosynthesis in plants. WRI1, for example, can enhance the transcription of FA biosynthetic genes, including BCCP2 (Baud et al., 2009). LEC2 directly regulates WRI1, which, in turn, controls the expression of a subset of genes involved in late glycolysis and FA biosynthesis as well as the biosynthesis of biotin and lipoic acids (Baud et al., 2007). Overexpression of the Arabidopsis LEC1 gene causes globally increased expression of FA biosynthetic genes, encoding products involved in key reactions of condensation, chain elongation, and desaturation of FA biosynthesis (Ohlrogge and Browse, 1995). Down-regulation of the FA biosynthetic pathway (Ohlrogge and Browse, 1995). Down-regulation of FA synthesis in canola seeds. Down-regulation of some genes encoding enzymes and/or proteins involved in the lipid metabolism pathway.

Microarray analysis showed that transcripts of two FA synthesis genes, KAR5 and BCCP1, accumulated at lower rates than in NT plants (Table II). The KAR enzyme catalyzes the first reduction step in FA biosynthesis (Harwood, 1988). O’Hara et al. (2007) reported that antisense expression of the canola KAR gene results in reduced seed oil content and seed yield. BCCP1 is an essential subunit for a heteromeric acetyl-CoA carboxylase, which catalyzes the ATP-dependent formation of malonyl-CoA in the first committed step of the FA biosynthetic pathway (Ohlrogge and Browse, 1995). Down-regulation of BCCP1 decreases FA accumulation in seeds and severely affects normal vegetative plant growth (Li et al., 2011). The down-regulation of KAR5 and BCCP1 expression in siliques (2 DAF) may explain the decreased FA accumulation in tt16 RNAi transgenic plants. We speculate that TT16s may directly or indirectly interact with the cis-regulatory elements of KAR5 and BCCP1 genes, thereby regulating FA synthesis in canola seeds. Down-regulation of these genes in the tt16 RNAi lines is consistent with the reduced seed oil content in mature seeds.

The changes observed in seed FA composition in tt16 RNAi plants (Table I) may also be explained by our microarray data. The down-regulation of β-Ketoacyl-ACP Synthetase2 (KAS2), which is required for the biosynthesis of these longer FA (Lee et al., 2009). We also found that the embryos of tt16 RNAi transgenic lines develop abnormally beyond 20 DAF (Fig. 5).

Canola, the synthesis and accumulation of storage lipids in the embryo occurs between about 3 and 6 weeks after flowering (Weselake et al., 2009). The abnormal embryo development may be due, at least partly, to the decreased synthesis of storage oil, although we could not rule out other possibilities. Indeed, other studies have shown that some genes encoding components of FA synthesis play important roles in embryo and seed development in Arabidopsis and canola (O’Hara et al., 2007; Wu and Xue, 2010; Li et al., 2011).

The phytohormone auxin regulates essential aspects of plant growth and developmental processes (Friml, 2003). Auxin regulates gene expression through a ubiquitin-dependent proteolytic signal transduction system (Dharmasiri and Estelle, 2004). The auxin/indole-3-acetic acid (Aux/IAA) proteins are able to repress the activity of Auxin Response Factor (ARF) proteins (Tiwari et al., 2004). Increased auxin reduces the levels of Aux/IAA proteins by accelerating their degradation (Zenser et al., 2001), such that ARF activity is derepressed and numerous auxin-mediated transcriptional changes occur (Tiwari et al., 2004). Aux/IAA proteins act as negative regulators of the auxin response (Wang et al., 2005). ARF proteins can be either activators or repressors of auxin-related gene transcription (Vanste and Friml, 2009). In this study, it is interesting that down-regulation of tt16s confers increased sensitivity to auxin (Fig. 8). Microarray data showed that two AUX/IAA genes, IAA27 and IAA13, are down-regulated in transgenic plants, which may explain why the transgenic plants show more sensitivity to auxin. Also, the fact that tt16 RNAi transgenic lines had fewer inflorescences and flowers suggests that the plants are more sensitive to auxin (Mockaitis and Estelle, 2008; Deng et al., 2012), which further confirms the conclusion that down-regulation of tt16s confers increased sensitivity to auxin. However, analysis of the root growth of transgenic plants showed that there was no obvious difference between the tt16 RNAi and NT plants. This result indicates a complex mechanism of tt16 and auxin signal transduction in the regulation of root development in canola.

In summary, our data demonstrate that TT16 plays roles in pollen tube guidance, FA synthesis, and embryo development in addition to its known role in endothermum development in the seed coat. These results expand our knowledge about the physiological functions of Bister MADS proteins in plant development and provide valuable information for improving canola quality by using modern breeding biotechnologies.

MATERIALS AND METHODS

Plant Material and Growing Conditions

Canola (Brassica napus) double haploid line DH1207S plants were grown in the greenhouse or growth chamber. The growth conditions were set as...
follows: 16-h-day/8-h-night cycle, 25°C/20°C day/night temperature, 60% relative humidity, 250 μmol m⁻² s⁻¹ light intensity. Canola plants were transformed as described by Bondaruk et al. (2007).

Light Microscopy

Mature seeds were fixed in formaldehyde:acetic acid:ethanol (5:5:90) for 24 h. Fixed tissues were dehydrated in a series of ethanol-toluene concentrations and embedded in paraffin wax at 56°C. Sections of 8 μm thickness were cut with a rotary microtome and fixed on glass slides. Sections were dewaxed with toluene and then stained with 0.01% toluidine blue. Observations were made with a light microscope.

Pollination Assay and Fluorescence Observation of Pollen Tube Development

For hand pollination, large flower buds (1 d before anthesis) were emasculated and covered with pollination bags. Tagged pistils were hand pollinated 1 d later, covered for 5 to 7 d for seed production, and then left uncovered to maturity. The pistils (2 DAF) were embedded in paraffin, and sections were made with a rotary microtome. Style sections were stained with aniline blue and observed with a Leica DMRXA epifluorescence microscope. For fluorescence observation of pollen tube extension to ovules, pistils (2 DAF) were fixed with 3:1 95% ethanol:glacial acetic acid overnight and softened with 8 M urea. Ultrathin sections were stained with uranyl acetate followed by aniline blue and mounted in a drop of 50% glycerin. Samples were observed with a Leica DMRXA epifluorescence microscope.

Electron Microscopy

Mature embryos were fixed in 2% glutaraldehyde in 75 mM phosphate buffer, pH 7.2, and were postfixed in 2% osmium in the same buffer. An ethanol dehydration series was performed, and the samples were embedded in Spurr resin. Ultrathin sections were stained with uranyl acetate followed by lead citrate. Micrographs were taken using a Philips/FEI Morgagni transmission electron microscope.

Microarray Analysis

Total RNA was isolated from the siliqueas (2 DAF) using an RNeasy plant mini kit (Qiagen) according to the manufacturer’s instructions. Quantity and purity of RNA were measured with a NanoDrop 1000 (PEQLAB Biotechnologie). Microarray analysis was performed using the Agilent 4x44k Brassica Gene Expression Microarray (Agilent Technologies). Cy3-labeled complementary RNA was produced with the Quick Amp Labeling Kit, one-color (Agilent Technologies), and hybridized to the microarrays according to the manufacturer’s instructions. Hybridized and washed slides were scanned at 5-μm resolution with a GenePix 4000B scanner (Molecular Devices). Image processing was performed with Feature Extraction Software 10.5.1.1 (Agilent Technologies). Microarray data were analyzed using the open-source R statistical programming language and Bioconductor packages (Genteman et al., 2004, R Development Core Team 2010).

Quantitative Reverse Transcription-PCR

RNA was extracted using the RNeasy plant mini kit (Qiagen). DNase-treated RNA was then reverse transcribed using the Quantitect Rev Transcription kit (Qiagen). Quantitative reverse transcription-PCR was performed to confirm microarray results according to the method reported previously by Chen et al. (2010). The primers used in this assay are listed in Supplemental Table S1.

Auxin Dose-Response Experiments

Hypocotyl explants of 9-d-old seedlings from NT and tt16 RNAi were incubated on one-half-strength Murashige and Skoog medium containing the indicated naphthaleneacetic acid concentrations in growth chamber conditions described as above for 20 d.

Sequence data from this article can be found in the GenBank/EMBL data libraries under accession numbers EU192028, EU192029, HM449989, and HM449990.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Short siliqueas of the tt16 RNAi transgenic line.

Supplemental Table S1. Primers used in this study.

Supplemental Table S2. The lengths of sepals, stamens, and pistils of open flowers and buds in RNAi plants (line 4-1) and NT plants.

ACKNOWLEDGMENTS

We thank Lihua Jin and Arlene Oatway for their help in microcopy observations, Troy Locke for his help in microarray data analysis, and Joe Hammerlin for his help in plant transformation.

Received April 18, 2012; accepted July 22, 2012; published July 30, 2012.

LITERATURE CITED

Alandete-Saez M, Ron M, McCormick S (2008) GEX3, expressed in the male gametophyte and in the egg cell of Arabidopsis thaliana, is essential for microsporogenous pollen tube guidance and plays a role during early embryogenesis. Mol Plant 1: 586–598

Baud S, Lepiniec L (2009) Regulation of de novo fatty acid synthesis in maturing oilseeds of Arabidopsis. Plant Physiol Biochem 47: 448–455

Baud S, Mendoza MS, To A, Harsoet E, Lepiniec L, Dubreucq B (2007) WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J 50: 825–838

Baud S, Wuilleme S, To A, Rochat C, Lepiniec L (2009) Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis. Plant J 60: 933–947

Becker A, Kaufmann K, Freildenhoven A, Vincent C, Li M, Saedler H, Theissen G (2002) A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes. Mol Genet Genomics 266: 942–950

Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29: 464–489

Bondaruk M, Johnson S, Degau B, Boora P, Bilodeau P, Morris JJ, Wiehler W, Foroud N, Weselake R, Shah S (2007) Expression of a cDNA encoding palmityl-acyl carrier protein desaturase from cat’s claw (Doxantha unguis-cati L.) in Arabidopsis thaliana and Brassica napus leads to accumulation of unusual unsaturated fatty acids and increased stearic acid content in the seed oil. Plant Breed 126: 186–194

Cernac A, Benning C (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40: 575–585

Chen G, Deng W, Truksa M, Peng FY, Weselake RJ, Song XY, Shah S (2010) A survey of quantitative real-time polymerase chain reaction internal reference genes for expression studies in Brassica rapa. Anal Biochem 405: 138–140

Chen BH, Li HJ, Shi QY, Yuan L, Liu J, SreenivasaR, Raskar R, Grossniklaus U, Yang WC (2007) The central cell plays a critical role in pollen tube guidance in Arabidopsis. Plant Cell 19: 3563–3577

Colombo M, Mosier S, Vanzulli S, Laridel Pi, Kater MM, Colombo L (2008) AGL23, a type I MADS-box gene that controls female gametophyte and embryo development in Arabidopsis. Plant J 54: 1057–1048

deleter F, Shchennikova AV, Franken J, Busscher M, Baskar R, Grossniklaus U, Angenent GC, Immink RGH (2006) A novel MADS-box gene involved in ovule and seed development in petunia and Arabidopsis. Plant J 47: 934–946

Deng W, Yang YW, Ren ZX, Audran-Delalande C, Mila I, Wang XY, Song HL, Hu YH, Bouzayan M, Li ZG (2012) The tomato SlIAA15 is involved in trichome formation and axillary shoot development. New Phytol 194: 379–390

Dharmasiri N, Estelle M (2003) The major clades of MADS-box genes have multiple regulatory functions in plant development. Bioessays 25: 379–382

Hammerlindl for his help in plant transformation.

Received April 18, 2012; accepted July 22, 2012; published July 30, 2012.

Plant Physiol. Vol. 160, 2012

changes in activity of fatty acid synthase components. Plant Cell Physiol 48: 736–744.

Ohrlegge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7: 957–970

Okuda S, Tsutsui H, Shina K, Sprunck S, Takeuchi H, Yui R, Kasahara RD, Hamamura Y, Mizukami A, Susaki D, et al (2009) Defensin-like polyepitide LUREs are pollen tube attractants secreted from synergid cells. Nature 458: 357–361

Pagnussat GC, Yu H-J, Ngo QA, Rajani S, Mayalagu S, Johnson CS, Capron A, Xie L-F, Ye D, Sundaresan V (2005) Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132: 603–614

Prasad K, Zhang X, Tobon E, Ambrose BA (2010) The Arabidopsis B-sister MADS-box protein, GORDITA, represses fruit growth and contributes to integument development. Plant J 62: 203–214

R Development Core Team (2010) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna

Shimizu KK, Okada K (2000) Attractive and repulsive interactions between female and male gametophytes in Arabidopsis pollen tube guidance. Development 127: 4511–4518

Stellari GM, Jaramillo MA, Kramer EM (2004) Evolution of the APE-TALA3 and PISTILLATA lineages of MADS-box-containing genes in the basal angiosperms. Mol Biol Evol 21: 506–519

Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98: 11806–11811

Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4: 75–85

Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, Winter K-U, Saedler H (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42: 115–149

Theissen G, Kim JT, Saedler H (1996) Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43: 484–516

Tiwari SB, Hagen G, Guilfoyle TJ (2004) Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell 16: 533–543

Tiwari SB, Wang XJ, Hagen G, Guilfoyle TJ (2001) AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 13: 2809–2822

Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136: 1005–1016

Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latché A, Pech JC, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17: 2676–2692

Weselake RJ, Taylor DC, Rahman MH, Shah S, Laroche A, McVetty PBE, Harwood JL (2009) Increasing the lipid content of transgenic oils. J Biotechnol Adv 27: 866–878

Wu GZ, Xue HW (2010) Arabidopsis β-ketoacyl-[acyl carrier protein] synthase I is crucial for fatty acid synthesis and plays a role in chloroplast division and embryo development. Plant Cell 22: 3726–3744

Xu F, Zhang Y, Kang L, Roossinck MJ, Mysore KS (2008) Computational estimation and experimental verification of off-target silencing during posttranscriptional gene silencing in plants. Plant Physiol 142: 429–440

Yadegari R, Drews GN (2004) Female gametophyte development. Plant Cell (Suppl) 16: S133–S141

Zenser N, Ellsmore A, Leasure C, Callis J (2001) Auxin modulates the degradation rate of Aux/IAA proteins. Proc Natl Acad Sci USA 98: 11795–11800

Erdmann R, Gramzow L, Melzer R, Theißen G, Becker A (2010) GORDITA (AGL63) is a young paralog of the Arabidopsis thaliana Bsister MADS box gene ABS (TT16) that has undergone neofunctionalization. Plant J 63: 914–924

Friml J (2003) Auxin transport: shaping the plant. Curr Opin Plant Biol 6: 7–12

Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge YC, Gentry J, et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80

Harwood JL (1988) Fatty acid metabolism. Annu Rev Plant Physiol Plant Mol Biol 39: 101–138

Higashiyama T, Yabe S, Sasaki N, Nishimura Y, Miyagishima S, Kuroiwa H, Kuroiwa T (2001) Pollen tube attraction by the synergid cell. Science 293: 1483–1485

Hill JP, Lord EM (2002) The role of fatty acid biosynthesis in Arabidopsis. Plant Physiol 129: 1180–1188

Hollander JS (2002) The role of fatty acid biosynthesis in Arabidopsis. Plant Physiol 129: 1180–1188

Jackson AL, Bartz SR, Schelter J, Kobayashi SY, Burchard J, Mao M, Li B, Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6: 688–698

Krivek BA, Fletcher JC (2005) The structure of the transmitting tissue of Arabidopsis thaliana (L.) and the path of pollen tube growth. Sex Plant Reprod 22: 2479–2481

Lennon KA, Roy S, Hepler PK, Lord EM (1998) The structure of the transmitting tissue of Arabidopsis thaliana (L.) and the path of pollen tube growth. Sex Plant Reprod 11: 49–59

Li X, Irlanslan H, Brachova L, Qian HR, Li L, Che P, Wurtele ES, Nikolau BJ (2011) Reverse-genetic analysis of the two biontin-containing subunit genes of the heteromeric acetyl-coenzyme A carboxylase in Arabidopsis indicates a unidirectional functional redundancy. Plant Physiol 155: 293–314

Liu M, Yuan L, Liu NY, Shi DQ, Liu J, Yang WC (2009) GAMETOGENIC FACTOR 1, involved in pre-mRNA splicing, is essential for megagameto- genesis and embryogenesis in Arabidopsis. J Integr Plant Biol 51: 261–271

Lotan T, Ohto M, Yee KM, West MA, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDONI is sufficient to induce embryo development in vegetative cells. Cell 93: 1195–1205

Melzer R, Wang YQ, Theissen G (2010) The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower. Semin Cell Dev Biol 21: 118–128

Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24: 55–80

Mu JY, Tan HL, Zheng Q, Fu FY, Liang Y, Zhang J, Yang XH, Wang T, Chong K, Wang XJ, et al (2008) LEAFY COTYLEDONI is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol 148: 1042–1054

Nesi N, Debeaujon I, Jond C, Stewart AJ, Jenkins GI, Caboche M, Lepiniec L (2002) The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell 14: 2463–2479

Ng M, Yanofsky MF (2001) Function and evolution of the plant MADS-box gene family. Nat Rev Genet 2: 186–195

O’Hara P, Slabas AR, Favoret T (2007) Antisense expression of 3-oxoacyl-ACP reductase affects whole plant productivity and causes collateral influences on plant development and physiology. Mol Biol Evol 24: 1554–1562.