Your fairness may vary: Group fairness of pretrained language models in toxic text classification

Ioana Baldini, Dennis Wei, Karthikeyan Natesan Ramamurthy, Mikhail Yurochkin, Moninder Singh
IBM Research
{ioana,dwei,knatesa,moninder}@us.ibm.com, mikhail.yurochkin@ibm.com

While the progress in NLP tasks due to pretrained language models (LMs) [7, 15, 18, 5, 10] is clear [19, 25], the reasons behind this success are not as well understood [20, 16], and there are also downsides. In particular, several studies have documented the bias (defined further below) of LM-based models [12, 26] and others discuss potential societal harms [2, 1] for individuals or groups. Focusing on downstream applications, it becomes important to examine the behavior of LMs in terms of measures other than just task accuracy.

Figure 1: Balanced accuracy versus equalized odds (group: race) for several fine-tuned LMs on the Jigsaw dataset when varying only the random seed used in fine-tuning.

We focus on toxic text classification using fine-tuned LMs. Text toxicity predictors are already used in deployed systems [17] and they are crucial for content moderation since online harassment is on the rise [24].

We use the term bias herein to refer to systematic disparity in representation or outcomes for individuals based on their membership in certain protected groups such as religion, race, and gender. In NLP systems, bias is broadly understood in two categories, intrinsic and extrinsic. Intrinsic bias refers to the bias inherent in the representations [3], with respect to protected groups. Extrinsic bias refers to the bias in downstream tasks, such as disparity in false positive rates across protected groups in a specified application. Measuring intrinsic bias in LM embeddings does not necessarily reflect the behavior of models built by fine-tuning LMs, especially since some studies show that intrinsic metrics of bias do not correlate with application bias metrics [8]. In this work, we restrict our focus to group fairness measures, which fall under the category of extrinsic bias measures. In particular, we use equalized odds [9] as a metric for group fairness [23].

Figure 2: FST parameter search space (group: religion) for BERT.

We analyze the performance of more than a dozen LMs on the binary classification task of identifying toxic text using the Jigsaw dataset [4] and three protected groups: religion, race, and gender and sexual orientation. We include in our study a series of small, regular and large LMs with the number of parameters varying from 12M to 400M (ordered by size): Small - ALBERT [14], MobileBERT [22], SqueezeBERT [13], DistilBERT [21]; Regular - BERT [7], ELECTRA [5], Funnel (small) [6], RoBERTa [15], GPT2 [18], DeBERTa [10]; Large - ELECTRA-large, BERT-large, RoBERTa-large, DeBERTa-large.

We address the following questions:

Model size: Building on the work of [1] and [11], how does the group fairness of fine-tuned LM classifiers vary with their size? Figure 3 shows the task performance (as measured by balanced accuracy1 versus group fairness as measured by equalized odds. The size of the model is color-coded. The results show that no blanket statement can be made with respect to the bias of large versus regular versus compressed models.

1All models’ accuracy are around 95% with very little variation across models.
a) religion
b) race
c) gender and sexual orientation

Figure 3: Balanced accuracy versus equalized odds for several fine-tuned LMs on the Jigsaw dataset.

a) DistilBERT
b) BERT
c) ELECTRA-large

Figure 4: Accuracy, balanced accuracy and equalized odds for fine-tuned LMs on the Jigsaw dataset when varying the amount of data used in training and the random seeds (error bars are shown).

Figure 5: Balanced accuracy versus equalized odds for BERT for FST without and with calibration and TPP. Baseline points are shown in black. Best operating points for FST with calibration for equalized odds less than 0.05 are shown in orange.

Random seeds: One source of variation in the performance of LMs is random initialization. What is the effect of random seeds on the accuracy-fairness tradeoff? Figure 1 plots results for fine-tuned LMs where the random seed is varied. For any given model, the accuracy (not shown) and balanced accuracy are impressively stable, while fairness metrics can see variations of up to 5 points.

Data size: The size of training/fine-tuning data is an important dimension alongside model size. What happens with the tradeoff between accuracy and fairness when more data is used for fine-tuning? Figure 4 plots accuracy, balanced accuracy and equalized odds for three models (one in each category) when varying the training size. The points are averages across multiple runs obtained with different random seeds and error bars are shown. Accuracy plateaus sooner than equalized odds. The trends are similar for other models and protected groups.

Bias mitigation via post-processing: Given the expense of training and fine-tuning large LMs, to what extent can we correct extrinsic bias by only post-processing LM outputs? We experimented with one post-processing method, Fair Score Transformer (FST) [27] that was proven efficient in mitigating bias in binary classifiers operating on tabular data. Figure 2 shows the tuning of FST (epsilon and threshold for binary classification). Figure 5 shows pareto fronts for FST without and with calibration and TPP. Overall, FST manages to improve classifier fairness with varied degree of success across protected groups. Similar trends are observed across all 14 models.

Our analysis and results call for a careful introspection of models and tasks, using various performance and fairness measures.
References

[1] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. 2021. On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT ’21, page 610–623, New York, NY, USA. Association for Computing Machinery.

[2] Su Lin Blodgett, Solon Barocas, Hal Daumé III, and Hanna Wallach. 2020. Language (technology) is power: A critical survey of “bias” in NLP. In Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics, pages 5454–5476, Online. Association for Computational Linguistics.

[3] Tolga Bolukbasi, Kai-Wei Chang, James Zou, Venkatesh Saligrama, and Adam Kalai. 2016. Man is to computer programmer as woman is to homemaker? debiasing word embeddings. In Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS’16, page 4356–4364, Red Hook, NY, USA. Curran Associates Inc.

[4] Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. 2019. Nuanced metrics for measuring unintended bias with real data for text classification. In Companion of The 2019 World Wide Web Conference, WWW.

[5] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. 2020. ELECTRA: pre-training text encoders as discriminators rather than generators. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

[6] Zihang Dai, Guokun Lai, Yiming Yang, and Quoc Le. 2020. Funnel-transformer: Filtering out sequential redundancy for efficient language processing. In Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.

[7] J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional transformers for language understanding. In NAACL-HLT.

[8] Seraphina Goldfarb-Tarrant, Rebecca Marchant, Ricardo Muñoz Sanchez, Mugdha Pandya, and Adam Lopez. 2021. Intrinsic bias metrics do not correlate with application bias. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics, Online. Association for Computational Linguistics.

[9] Moritz Hardt, Eric Price, and Nati Srebro. 2016. Equality of opportunity in supervised learning. Advances in neural information processing systems, 29:3315–3323.

[10] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. 2021. DeBERTa: decoding-enhanced BERT with disentangled attention. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.

[11] Sara Hooker, Nyalleng Moorosi, Gregory Clark, S. Bengio, and Emily L. Denton. 2020. Characterising bias in compressed models. ArXiv, abs/2010.03058.

[12] Ben Hutchinson, Vinodkumar Prabhakaran, Emily Denton, Kellie Webster, Yu Zhong, and Stephen Denyul. 2020. Social biases in NLP models as barriers for persons with disabilities. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 5491–5501, Online. Association for Computational Linguistics.

[13] Forrest Iandola, Albert Shaw, Ravi Krishna, and Kurt Keutzer. 2020. SqueezeBERT: What can computer vision teach NLP about efficient neural networks? In Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing, pages 124–135, Online. Association for Computational Linguistics.

[14] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. 2020. ALBERT: A lite BERT for self-supervised learning of language representations. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

[15] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach.

[16] Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right for the wrong reasons: Diagnosing syntactic heuristics in natural language inference. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3428–3448, Florence, Italy. Association for Computational Linguistics.

[17] Perspective. 2021. Using Machine Learning to Reduce Toxicity Online. https://perspectiveapi.com/how-it-works/. [Online; accessed 21-July-2021].

[18] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language Models are Unsupervised Multitask Learners.

[19] Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018. Know what you don’t know: Unanswerable questions for SQuAD. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 784–789, Melbourne, Australia. Association for Computational Linguistics.
[20] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. 2021. A primer in bertology: What we know about how bert works. Transactions of the Association for Computational Linguistics, 8:842–866.

[21] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2020. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter.

[22] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. 2020. Mobilebert: a compact task-agnostic BERT for resource-limited devices. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 2158–2170. Association for Computational Linguistics.

[23] Sahil Verma and Julia Rubin. 2018. Fairness definitions explained. In Proceedings of the International Workshop on Software Fairness, FairWare ’18, page 1–7, New York, NY, USA. Association for Computing Machinery.

[24] Emily A. Vogels. 2021. The State of Online Harassment. https://www.pewresearch.org/internet/2021/01/13/the-state-of-online-harassment/. [Online; accessed 21-July-2021].

[25] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. 2019. SuperGLUE: A stickier benchmark for general-purpose language understanding systems. arXiv preprint 1905.00537.

[26] Kellie Webster, Xuezhi Wang, Ian Tenney, Alex Beutel, Emily Pitler, Ellie Pavlick, Jilin Chen, and Slav Petrov. 2020. Measuring and reducing gendered correlations in pre-trained models. CoRR, abs/2010.06032.

[27] Dennis Wei, Karthikeyan Natesan Ramamurthy, and Flávio du Pin Calmon. 2020. Optimized score transformation for fair classification. In The 23rd International Conference on Artificial Intelligence and Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily, Italy], volume 108 of Proceedings of Machine Learning Research, pages 1673–1683. PMLR.