Study of the Impact of Expected Credit Loss Model on the Quality of Accounting Information

Yibin Luo

School of Business Southwestern Minzu University, Chengdu, China.
luoyibin0825@163.com

Abstract. In 2017, the Ministry of Finance issued a new standard on financial instruments to achieve convergence with international accounting standards, in which the emergence of expected credit loss model has great significance and far-reaching impact on the development of enterprises in China. In this paper, the impact of expected credit loss model on the quality of corporate accounting information is studied by using Differences-in-Differences method. Using accounting conservatism as a proxy variable for accounting information quality, this paper finds that the expected credit loss model can improve the accounting conservatism of enterprises. The findings of this paper show that the expected credit loss model is effective in improving the quality of accounting information, thus justifying the feasibility and necessity of implementing the new financial instruments standard and providing a good empirical basis for deepening the reform of accounting standards in China in the future.

Keywords: New Financial Instruments Standard; Expected Credit Loss Model; Quality of Accounting Information; Accounting Conservatism

1. Introduction

Accounting standards are the standard for conducting accounting work and the basis for developing accounting system. The root of in-depth accounting practice lays a sound foundation for our economy to go global and plays an important role in maintaining the macroeconomic stability of our country. The world financial crisis in 2008 had a significant impact on the world economy and financial markets. After the crisis, many scholars believe that the complexity of the old financial instruments standard and the pro-cyclical effect of the incurred loss model are the culprits of this crisis, thus objectively accelerating the re-revision of the financial instruments standard. In July 2014, the International Accounting Standards Board (IASB) put the International Accounting Standard No.39-Financial Instruments (IAS 39) to replace International Financial Reporting Standard No.9 - Financial Instruments (IFRS 9). In order to effectively address the practical issues faced by China's financial instruments standards and achieve continuous convergence with IFRSs, in March 2017, the Ministry of Finance revised and issued Company Accounting Standard No.22 - Recognition and Measurement of Financial Instruments (CAS 22), Company Accounting Standard No. 23 (CAS23) and Company Accounting Standard No.24 -Hedge Accounting (CAS24), hereinafter collectively referred to as the "New Financial Instrument Standards".

The core changes of the new financial instruments standard include: First, the classification of financial assets is changed from "four classifications" to "three classifications": measured at amortized cost (AC), measured at fair value through other comprehensive income (FVOCI), measured at fair value through temporary profit or loss (FVTPL). This reclassification reduces the possibility of profit reconciliation and effectively curbs management's self-interest. Secondly, the impairment model of financial assets is changed from Incurred Loss Model (ILM) to Expected Credit Losses (ECL). The incurred loss model can only be impaired when there are objective conditions indicating that there are losses, which leads to the fact that enterprises do not take impairment in a good economic environment. But once the economic situation deteriorates, the will immediately collapse, because the impairment is not enough and there is a time lag in the accrual, and its "pro-cyclicality" will promote the occurrence of economic crisis. The expected credit loss model takes into account the whole life cycle of financial assets to provide for impairment, which is more timely, broader in scope and more adequate than the incurred loss model, and has a certain degree of foresight,
which is conducive to the effective avoidance of financial risks (Yuan Feng, 2021). Third, relevant provisions on hedge accounting are amended so as to better reflect the operation and management activities of companies. The emphasis of this paper is placed on the second aspect, which is the transformation of impairment models.

Some studies have found that expected credit loss models will have an impact on the quality of corporate accounting information. Some scholars argue that expected credit loss models can improve the timeliness, prudence (Huang Wenjie, 2021) and relevance of accounting information (Xiao Xu and Zeng Ting, 2015). Other scholars argue that expected credit loss models can reduce the reliability, comparability (Deng Yongqin et al., 2017), and truthfulness of accounting information (Huang Shizhong, 2015). In summary, this paper is motivated by the fact that the conclusions reached by the present studies are inconsistent, and there is a lack of systematic research and empirical tests on whether the expected credit loss model will ultimately have a positive or negative effect on the quality of accounting information. At present, there is a lack of systematic research and empirical tests.

This paper examines and tests whether the expected credit loss model can positively affect the quality of accounting information through the lens of accounting information quality based on the DID model by using the exogenous event of the implementation of the new financial instruments standard. The study finds that the expected credit loss model can improve the quality of accounting information of financial enterprise.

The contributions of this paper are mainly in three aspects: First, based on the institutional background and relevant data of China's new financial instruments standards, this paper provides an in-depth analysis of the significant impact of the change from the incurred loss model to the expected credit loss model, and investigates the impact of the expected credit loss model on the quality of accounting information in this context, which enriches the research literature related to the change of accounting standards. Second, this paper adopts the CScore model and uses accounting conservatism as a proxy variable for accounting information quality, and expands the research on the factors affecting accounting information quality of listed companies from the perspective of expected credit loss model. Third, this paper has certain practical value and inspirational significance. The new financial instruments standard is an important measure to prevent the financial crisis from coming again, and the change from the incurred loss model to the expected credit loss model is one of the most crucial aspects. A more adequate and timely provision for impairment is conducive to improving the quality of accounting information of financial enterprises and better maintaining the orderly and healthy development of the financial market.

2. Theoretical Analysis and Research Hypothesis

Accounting information is an important basis for enterprises to make decisions, and the quality of accounting information is a prerequisite for effective decision-making. High-quality accounting information can ensure the healthy development of the capital market, while low-quality accounting information can adversely affect the normal operation of the capital market. Therefore, the quality of accounting information has always been an important academic topic, which occupies a very critical position in both the practice and theory of accounting. Chinese scholars have also conducted many studies on accounting information quality and found that corporate governance (Liu Liguo and Du Ying, 2003), tax regulation (Zhou Jianlong, 2006), internal control audit (Zhang Jun and Wang Junzhi, 2009), corporate executives (Qiu Yufang et al., 2011), Liu Qiliang et al., 2013), political connections (Wu Keping and Yu Fusheng, 2013), changes in Chinese accounting standards ( Li Gang, 2016), audit quality (Huang Xiaoyong et al., 2018), industrial policy (Pan Hongbo et al., 2019), and random sampling by the SEC (Liu Yaoyao et al., 2021) are among the various factors that can significantly affect the quality of corporate accounting information.

The incurred loss model was used under the old accounting standards, which required that impairment could only be recognized for assets with objective evidence of an actual loss. No impairment could be made even if there is an indication that a future loss is probable (Xu Aifei, 2018).
Such an impairment model suffers from the disadvantages of not being timely, lacking foresight, and failing to alert investors and regulators to the approaching risk (Zhang Shanshan, 2015), which coupled with the accelerating effects of "pro-cyclicality" and "cliff effect", will likely financial crises and disruptions in financial markets. Instead, the expected credit loss model in the new financial instruments standard does not require the existence of objective evidence of impairment. Companies should recognize expected credit losses for the entire life of the financial instrument as long as there is a significant increase in the credit risk of the financial instrument from the date of initial recognition. If there is no significant increase in the credit risk of the financial instrument from the date of initial recognition, the expected credit losses should also be recognized for 12 months' loss. Compared with the incurred loss model, the expected credit loss model is an impairment model that changes from a fact-based to a forecast-based model (Wang Jingjing and Liu Guangzhong, 2014), which is less complex, more operational. It allows for faster and more impairment provisions, includes expected losses in profit or loss, reduces the impact of actual future losses, and effectively attenuates the "pro-cyclicality" while also preventing the "cliff effect", thus increasing the relevance of accounting information (Xu Aifei, 2018). Although the expected credit loss model is forward-looking, historical accounting information is still a very important key point as a basis to adjust the current data so that the impairment charged under the expected credit loss model better reflects the current situation and future projections of the company (Jiang Lei and Liang Feiyuan, 2015). This shows that there is a very close relationship between the expected credit loss model and the quality of accounting information, which also proves the feasibility of this research.

Expected credit loss model may improve the quality of accounting information. Firstly, Liu Xiaohua and Wang Hua (2015) found that international convergence of China's accounting standards can improve the quality of accounting information by using the Differences-in-Differences method through model building test analysis, and the beginning of China's implementation of the new financial instrument standards and the use of expected credit loss model is the key to achieve international convergence, so the quality of accounting information of Chinese companies is also improved. Secondly, the conversion of incurred loss model to expected credit loss model reduces the objectivity of accounting information to a certain extent, however, if companies can reasonably use the expected credit loss model and accurately predict the relevant indicators, it can reduce the "pro-cyclicality" and thus enhance the truthfulness and usefulness of accounting information (Ke Jian, 2019). After the implementation of the new financial instruments standards, the use of the expected credit loss model will require more impairment provisions for financial assets, which will improve the prudence and timeliness of accounting information. For investors and other information users, the accounting information under the expected credit loss model can undoubtedly reflect the value changes of financial assets more accurately, so that they can obtain more reliable accounting information to make relevant decisions (Huang Wenjie, 2021). In addition, Mushkudiani Z and Shonia N (2016) find that the expected credit loss model achieves a reasonable compromise between providing relevant accounting information to information seekers and improving financial stability, effectively mitigating the amplifying effect of the incurred loss model on "pro-cyclicality" and enhances financial stability.

The expected credit loss model may also reduce the quality of accounting information. First, the provision for impairment does not require objective and sufficient evidence because the expected credit loss model removes the prerequisite of the actual occurrence of the loss event as the recognition of impairment, which increases the difficulty and cost of auditing and invariably leaves room for the management of the audited entity to adjust the surplus. Therefore, from the perspective of auditing, the quality of accounting statements under the expected credit loss model is reduced (Huang Shizhong, 2015). Secondly, the expected credit loss model is unclear in defining the "significant increase" in credit risk in the three stages of impairment, which requires a lot of professional subjective judgment and is difficult, leading to the lack of comparability of accounting information among different companies and further the decreasing in the quality of accounting information (Deng Yongqin et al. 2017). Xiao Xu and Zeng Ting (2015) pointed out that the expected credit loss model reduces
reliability and increases relevance, so the relationship between reliability and relevance of accounting information must be reconciled.

In summary, since the new financial instruments standard has only been implemented for a short period, most of the academic research on the quality of corporate accounting information before and after the use of expected credit loss model is still at the stage of theoretical research. The views are not uniform, and there is a lack of empirical research on this aspect. The impacts the expected credit loss model on the quality of accounting information of listed companies needs further empirical research and testing. Therefore, this paper proposes the following two opposite hypotheses:

H1a: The expected credit loss model can improve the quality of accounting information of a company when other conditions are not changed.

H1b: The expected credit loss model will reduce the quality of accounting information of a company when other conditions are not changed.

3. Study Design

3.1 Study Sample

In view of the fact that the new financial instruments standard is effective from 2018 for A+H-share companies and from 2019 for A-share listed companies, and that the financial industry is the most affected industry among all industries, this paper selects all A-share and A+H-share companies in the financial industry from 2016 to 2018 as the sample, and preprocesses the initial sample as follows: (1) The samples of A+H-share companies in the financial sector that take the lead in implementing the new standards for financial instruments in 2018 shall be the treatment group, and A-share companies in the financial sector that will implement the new standards for financial instruments after 2019 shall be the control group. (2) In order to make the sample size corresponding to each variable in the descriptive statistics consistent and thus the results more objective, 34 samples are excluded from this paper. (3) On this basis, the samples with missing data are eliminated to obtain a total of 197 "company-year" samples. The financial research data in this paper are obtained from CSMAR database, and the data processing software is Stata16.0.

3.2 Research Model

This paper constructs a differences-in-differences (DID) based on this quasi-natural experiment implemented by the new financial instruments standard, citing Liu Yaoyao et al. (2021), which is used to test the impact of the expected credit loss model on the quality of accounting information.

\[
C_{\text{Score}}_{it}/\text{REM}_{it} = \alpha_0 + \alpha_1 \text{Treat}_{it} + \alpha_2 \text{Treat} \times \text{Post}_{it} + \sum \alpha_i \text{Controls}_{it} + \text{Ind}_{i} + \text{Year}_{t} + \epsilon_{i,t} \quad (1)
\]

where: the explanatory variable is the quality of accounting information, measured by accounting conservatism (\(C_{\text{Score}}\)). \(\text{Treat}\) is an event variable used to define A+H-share companies in the financial sector that are the first to use the expected credit loss model in 2018 (\(\text{Treat}=1\)) and A-share companies that have not yet used the expected credit loss model (\(\text{Treat}=0\)). \(\text{Post}\) is a time variable used to distinguish between after the expected credit loss model is used (\(\text{Post}=1\)) and before it is used (\(\text{Post}=0\)). \(\text{DID}\) is the cross product of \(\text{Treat}\) and \(\text{Post}\), that is, \(\text{Treat} \times \text{Post}\). The fixed effect of year is controlled in model (1). Since \(\text{Post}\) is highly correlated with \(\text{Year}\), only \(\text{Treat}\) and \(\text{DID}\) are included in the model in this paper, while \(\text{Post}\) is not included. In the conservatism test below, this paper controls for firm fixed effects and the test results do not change significantly. The regression coefficient of the cross product term \(\text{DID}\) is the focus of this paper. If it is significantly positive, it indicates that the expected credit loss model can significantly improve the quality of accounting information of financial firms and hypothesis H1a is verified, while if it is significantly negative, hypothesis H1b holds.
3.3 Variable Definition

3.3.1 Expected credit loss model

(1) The expected credit loss model is determined for the experimental and control groups, generating the event variable \(\text{Treat}\). Financial industry A+H-share companies that used the expected credit loss model during the study period are the experimental group \(\text{Treat}=1\), otherwise they are the control group \(\text{Treat}=0\). The specific distribution of the event variable \(\text{Treat}\) is shown in Table 1. (2) Expected credit and loss model time variables \(\text{Post}\) are generated. \(\text{Post}\) takes the value of 1 in the year in which the experimental group starts to use the expected credit loss mode, which is 2018 in the sample interval. \(\text{Post}\) takes the value of 0 in the previous years in which the experimental group starts to use the expected credit loss model and in all annual of the control group, i.e., 2016-2017. (3) The cross product term of event variable \(\text{Treat}\) and the time variable \(\text{Post}\) is the core explanatory variable that needs to be focused on in this paper.

| Deadline | Treat | Total | Deadline |
|----------|-------|-------|----------|
| 2016     | 29    | 22    | 51       |
|          |       |       | 2016     |
| 2017     | 46    | 22    | 68       |
|          |       |       | 2017     |
| 2018     | 54    | 24    | 78       |
|          |       |       | 2018     |
| Total    | 129   | 68    | 197      |

3.3.2 Quality of accounting information

Accounting conservatism is an important principle in financial accounting, and accounting conservatism is closely related to the quality of accounting information, which directly affects the profit of enterprises. Therefore, this paper uses accounting conservatism as a measure of accounting information quality, and the higher the accounting conservatism of financial enterprises, the better the quality of accounting information. According to Article 18 of China's Company Accounting Standards-Basic Standards, "Conservatism means that an enterprise should exercise due care in accounting recognition, measurement and reporting of transactions or events, and should not overestimate assets or earnings or underestimate liabilities or expenses." According to Basu (1997), accounting conservatism means that the recognition of "bad news" in accounting surplus should be timelier and more adequate than the recognition of "good news", i.e., liabilities should not be underestimated and assets should not be overestimated, so as to improve the quality of accounting information.

In this paper, by citing the CScore model of Khan and Watts (2009), the measure of accounting conservatism is as follows.

\[
\frac{\text{EPS}_{it}}{P_{it}} = \alpha_0 + \alpha_1 D_{it} + \beta_0 R_{it} + \beta_1 D_{it} \cdot R_{it} + \varepsilon_{it} \tag{2}
\]

\[
G_{\text{score}} = \beta_0 + \mu_1 + \mu_2 \text{SIZE}_{it} + \mu_3 \text{LEV}_{it} + \mu_4 \text{MB}_{it} \tag{3}
\]

\[
C_{\text{score}} = \beta_1 + \gamma_1 + \gamma_2 \text{SIZE}_{it} + \gamma_3 \text{LEV}_{it} + \gamma_4 \text{MB}_{it} \tag{4}
\]

Bringing model (3) and (4) into model (2) respectively, model (5) has been generated.

\[
\frac{\text{EPS}_{it}}{P_{it}} = \alpha_0 + \alpha_1 D_{it} + (\mu_1 + \mu_2 \text{SIZE}_{it} + \mu_3 \text{LEV}_{it} + \mu_4 \text{MB}_{it})R_{it} + \gamma_1 \text{SIZE}_{it} + \gamma_3 \text{LEV}_{it} + \gamma_4 \text{MB}_{it})D_{it} \cdot R_{it} + \varepsilon_{it} \tag{5}
\]

In the above equation, \(\text{EPS}\) is earnings per share, \(P\) is the stock price at the beginning of year \(t\) (using the price of the stock on the last trading day in April of year \(t\)). \(R\) is the stock return (12-month buy-and-hold return from May of year \(t\) to April of the following year, calculated based on the monthly individual stock return considering reinvestment of cash dividends). \(D\) is a dummy variable.
that takes the value of 1 if \( R < 0 \) and 0 vice versa. \( SIZE \) is the total assets and \( MB \) is the market value-to-book ratio, i.e., market value/total assets. \( LEV \) is debt to asset ratio, i.e., the value of total liabilities/total assets. \( Gscore (\beta_0) \) is the timeliness of reflecting "good news" at the firm level. \( Cscore (\beta_1) \) is the timeliness of reflecting "bad news" at the firm level, which is an indicator of accounting conservatism. \( \beta_{0+\beta_1} \) is the incremental timeliness of reflecting "bad news" over "good news" in accounting surplus.

In this paper, we first bring model (3) and model (4) into model (2) to obtain model (5), and then regress model (5) by year and industry, and bring back the obtained regression coefficients \( \gamma_1 \sim \gamma_4 \) with model (4) to calculate the accounting conservatism \( (Cscore) \) of company \( i \) in year \( t+1 \). The larger the value of CScore, the higher the accounting conservatism of the company and the higher the quality of accounting information.

Control variables. With reference to the previous studies related to accounting conservatism, the following control variables are selected in this paper, including company size \( (Size) \), debt to asset ratio \( (LEV) \), return on net assets \( (ROA) \), internal control \( (Icindex) \), and number of people tracked by analysts \( (Analyst) \). The main variables in this paper are defined in Table 2.

| Variables | Variable Definition | Definition |
|-----------|---------------------|------------|
| \( CScore \) | Quality of accounting information | Accounting conservatism for the coming year. The higher of the value, the higher of accounting information quality |
| \( Treat \) | Event variables | If the company uses the expected credit loss model during the study, then it is the experimental group and \( Treat \) takes the value of 1, otherwise it is 0 |
| \( Post \) | Time variable | \( Post \) takes the value of 1 in the year in which the company starts using the expected credit loss model and in subsequent years, otherwise it is 0 |
| \( DID \) | Interchange items | The cross product term of event variable and time variable, i.e. \( Treat*Post \) |
| \( Size \) | Company Size | Natural logarithm of total assets |
| \( LEV \) | Debt to asset ratio | Total liabilities / total assets |
| \( ROA \) | Return on net assets | Net profit/total assets |
| \( Icindex \) | Internal control | The natural logarithm of the Dibble Internal Control Index, which reflects the high level of internal control |
| \( Analyst \) | Number of people tracked by analysts | \( \ln(\text{Number of people tracked by analysts} + 1) \), the more analysts track, the better the expected growth prospects of the company |
| \( Year \) | Annual | Annual dummy variables |

### 4. Empirical Results

#### 4.1 Descriptive Statistics

The descriptive statistics of the main variables in this paper are presented in Table 3. The mean value of the proxy variable for the quality of accounting information \( (Cscore) \) is -0.754 and the standard deviation is 3.212, indicating that the accounting conservatism varies widely across financial firms. The mean value of \( Treat \) is 0.122, which indicates that 12.20% of financial companies implemented the new financial instruments standard and used the expected credit loss model in 2018. In terms of control variables, the mean and standard deviation of \( Size \) are 26.462 and 2.264, respectively, indicating that the asset size of listed companies in China's financial industry does not vary much. The mean and standard deviation of \( ROA \) are 0.783 and 0.172 respectively, indicating that the profitability levels of listed companies in China's financial industry vary little and the operating conditions of the sample companies are generally good on the whole. The mean and standard deviation of \( LEV \) are 0.013 and 0.012 respectively, indicating that there is a small difference
in the debt ratio of listed companies in China's financial industry, and the sample companies all have higher operating risks. The mean and standard deviation of \textit{Icindex} are 6.259 and 1.037 respectively, and the mean and standard deviation of \textit{Analyst} are 2.344 and 1.021 respectively, indicating that the company's development prospects are relatively good. Overall, the distribution characteristics of the variables are in line with expectations.

**Table 3. Descriptive Statistics**

| Variables | Sample Size | Mean Value | Standard Deviation | 25th Percentile | Median | 75th Percentile |
|-----------|-------------|------------|--------------------|-----------------|--------|----------------|
| CScore    | 197         | -0.754     | 3.212              | -0.493          | 0.198  | 0.378          |
| Treat     | 197         | 0.122      | 0.328              | 0.000           | 0.000  | 0.000          |
| Post      | 197         | 0.345      | 0.477              | 0.000           | 0.000  | 1.000          |
| DID       | 197         | 0.396      | 0.49               | 0.000           | 0.000  | 1.000          |
| Size      | 197         | 26.462     | 2.264              | 24.913          | 26.082 | 28.286         |
| LEV       | 197         | 0.013      | 0.012              | 0.008           | 0.011  | 0.018          |
| ROA       | 197         | 0.783      | 0.172              | 0.731           | 0.784  | 0.919          |
| Icindex   | 197         | 6.259      | 1.037              | 6.383           | 6.458  | 6.535          |
| Analyst   | 197         | 2.344      | 1.021              | 1.609           | 2.708  | 3.135          |

**4.2 Empirical Results**

The regression results of the effect of expected credit loss model on accounting information are presented in Table 4. Column (1) shows the regression results before the inclusion of control variables. The coefficient of \textit{DID} is 2.163 (t=3.00) and is significantly positive at the 1% level. Column (2) shows the regression results after the inclusion of control variables. The coefficient of \textit{DID} is 1.641 (t=2.57) and is significantly positive at the 5% level. From the above results, it is shown that the expected credit loss model is significantly and positively related to the proxy variable accounting conservatism (\textit{CScore}) of accounting information quality, that is the expected credit loss model can improve the accounting information quality of financial firms, and the hypothesis H1a is thus verified.

**Table 4. Benchmark return results**

|                  | (1)               | (2)               |
|------------------|-------------------|-------------------|
| **(1)**          | **(2)**           |                   |
| Treat_Post       | 2.163*** (3.00)   | 1.641** (2.57)    |
| Treat            | -3.330*** (-3.20) | -0.828* (-1.72)   |
| Size             | -                 | -1.368*** (-5.55) |
| ROA              | -                 | 7.804 (0.85)      |
| Leverage         | -                 | 6.288*** (3.52)   |
| ICIndex          | -                 | -0.123 (-1.03)    |
| Analyst          | -                 | 0.705*** (3.23)   |
| Constant         | 1.254*** (3.36)   | 30.571*** (5.90)  |
| Year             | YES               | YES               |
| N                | 197               | 197               |
| Adjusted R²      | 0.217             | 0.471             |

Note: \( t \) as conservative value in bracket, same as below
4.3 Conservatism Test

In the above research design section of this paper, model (1) controls for annual fixed effects. Therefore, the conservatism is tested by controlling for firm fixed effects in model (1) by regressing again, and the results are shown in Table 5 below. From the regression results in Table 5, the coefficients of \( \text{DID} \) without and with the inclusion of control variables are still significantly positive at the 1% and 5% levels respectively, indicating that the expected credit loss model's effect on the improvement of accounting information quality still exists, thus providing further conservatism evidence for the previous empirical analysis.

![Table 5. Results of Conservatism Test](image)

|                | (1)               | (2)               |
|----------------|-------------------|-------------------|
|                | CScore            | CScore            |
| \( \text{Treat Post} \) | 2.234*** (3.14)   | 2.324** (2.60)    |
| \( \text{Size} \)       | -0.424 (0.35)     |                   |
| \( \text{ROA} \)        | 13.844 (1.20)     |                   |
| \( \text{Leverage} \)   | -5.679 (-0.94)    |                   |
| \( \text{ICindex} \)    | -0.001 (-0.01)    |                   |
| \( \text{Analyst} \)    | -0.209 (-0.58)    |                   |
| \( \text{Constant} \)   | 0.256 (0.90)      | -6.156 (-0.22)    |
| \( \text{Year} \)       | YES               | YES               |
| \( N \)               | 197               | 197               |
| \( \text{Adjusted } R^2 \) | 0.235             | 0.218             |

5. Research Conclusions and Implications

5.1 Research Conclusions

This paper constructs a DID model using a sample of listed companies in the financial industry from 2016-2018 to test the impact of expected credit loss model on accounting information quality. It finds that the accounting conservatism of A+H-share listed companies that are the first to use the expected credit loss model significantly improves compared to A-share listed companies that do not use the expected credit loss mode. This paper uses accounting conservatism as a proxy variable for accounting information quality, thus demonstrating the significant effect of using the expected credit loss model on improving accounting information quality. The findings of this study confirm the effectiveness of the expected credit loss model on the improvement of accounting information quality, and also affirm the feasibility and necessity of the implementation of the new financial instruments’ standard, which provides a good empirical basis for deepening the reform of accounting standards in China in the future.

5.2 Research Implications

The expected credit loss model can improve the quality of accounting information and promote the healthy development of China's financial market. In the future, the relevant financial sector in China should further improve the expected credit loss model under the premise of continuous convergence with international accounting standards, so as to seek common ground while reserving
differences and make it more adaptable to the development of China's economic market and society, thus further improving the quality of accounting information of enterprises. In the context of the new financial instruments standards, enterprises should also focus on improving the quality of their own accounting information, enhancing their own business level, business ability and professional competence to have better internal control and risk management, and avoid major mistakes caused by subjective judgment in forecasting.

5.3 Research Gaps and Outlook

This study has certain limitations that need to be improved and refined in subsequent in-depth studies. Although this paper confirms the positive effect of expected credit loss model on accounting information quality and makes a reasonable theoretical elaboration, it does not provide a more direct test of accounting information quality itself. In the future, we need to further improve the research design and conduct further systematic research on its impact.

References

[1] Yuan Feng. Research on the impact of new financial instruments standards on the quality of corporate accounting information[J]. Financial Accounting Learning, 2021(27): 78-80.
[2] Huang Wenjie. Research on the impact of new financial instruments standards on the quality of corporate accounting information[J]. Financial Supervision, 2021(12): 97-104.
[3] Xiao Xu, Zeng Ting. Research on expected loss model and its related issues of application in China[J]. Friends of Accounting, 2015(24): 8-13.
[4] Deng Yongqin, Feng Xiaoping, Zhou Yadan. On the revision and implementation of the expected loss model for financial asset impairment[J]. Friends of Accounting, 2017(09): 43-48.
[5] Huang Shizhong. A review of the pros and cons of forward-looking impairment models for financial instruments[J]. Financial Accounting, 2015(01): 42-45.
[6] Xu Aifei. Differences and responses between IFRS9 and China's corporate accounting standards[J]. Finance and Accounting Newsletter, 2018(22): 122-126.
[7] Zhang Shanshan. Impairment of financial instruments: from incurred loss model to expected loss model[J]. China CPA, 2015(07): 103-108.
[8] Wang Jingjing, Liu, Guangzhong. The evolution of expected loss models for impairment of financial instruments and changes in the accounting standards system--and a review of the IASB exposure draft of financial instruments: expected credit losses[J]. Accounting Research, 2014(05): 37-43+94.
[9] Jiang Lei, Liang Feiyuan. Development of international financial instrument impairment models and insights[J]. Finance and Accounting Communication, 2015(28): 114-116.
[10] Liu, Xiaohua, Wang Hua. Market environment, international convergence of accounting standards and accounting information quality[J]. Journal of Shanxi University of Finance and Economics, 2015, 37(07): 111-124.
[11] Ke Jian, Liu Li, Yang Zhongqiang. The impact of the revision of financial instruments standard on the quality of accounting information[J]. Business Accounting, 2019(15): 24-26.
[12] Liu, Yaoyao, Lu, Junwei, Ning Chong. Can the SFC's random checks improve the quality of accounting information of listed companies[J]. Journal of Shanxi University of Finance and Economics, 2021, 43(12): 111-126.
[13] Mushkudiani Z, Shonia N. Implications of the IFRS 9 Impairment Model for Financial Stability. 2016.
[14] Basu S. The Conservatism Principle and the Asymmetric Timeliness of Earnings[J]. Journal of Accounting and Economics, 1997, 24(1): 3-37.
[15] Khan, M., & Watts, R.L. Estimation and empirical properties of a firm-year measure of accounting conservatism. Journal of accounting and economics, 2009, 48(2), 132-150.