Spin Transport Hydrodynamics of Polarized Deuterium-Tritium Fusion Plasma

Ronghao Hu,1,2 Hao Zhou,1,2 Zhihao Tao,1,2 Zhihao Zhang,1,2 Meng Lv,1,2 Shiyang Zou,3 and Yongkun Ding3

1College of Physics, Sichuan University, Chengdu, 610065, People’s Republic of China
2Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu, 610064, People’s Republic of China
3Institute of Applied Physics and Computational Mathematics, Beijing, 100094, People’s Republic of China

(Dated: April 26, 2022)

The spin transport equations for polarized deuterium-tritium (DT) fusion plasma are derived with the density matrix formulation, which are used to investigate the hydrodynamics of polarized DT-gas-filled targets during indirectly driven inertial confinement fusion implosions. The depolarization of DT ions by strong self-generated magnetic fields can be captured by the spin transport equation. The neutron yield, angular distribution and neutron beam polarization are obtained from three-dimensional spin transport hydrodynamics simulations of the target implosions. The simulation results indicate that an optimized spin alignment of the polarized target can reduce the depolarization of DT ions and the neutron beams induced by polar mode asymmetries in indirectly driven implosions.

Inertial confinement fusion (ICF) is a promising approach to produce controlled burning plasmas and high flux neutron beams in laboratory [1]. Using spin-polarized fuels in ICF can potentially enhance the neutron yield and modify the angular distribution of the neutron beam, and more importantly generate spin-polarized neutron beam in certain emission direction [2–5]. Polarized neutron scattering and polarized neutron imaging are indispensable tools to probe the structure and dynamics of magnetic systems [6]. Increasing the flux of the polarized neutron source can shorten the time required to obtain high quality scattering signals and neutron images. Both deuterium-tritium (DT) and deuterium-deuterium (DD) reactions can be used in ICF to generate polarized neutron beams [7]. However, the key nuclear physics data, such as fusion cross-section, neutron angular distribution and neutron polarization for polarized DT and DD reactions at ICF relative conditions, lack experimental measurements [8]. For DD reaction, Kulsrud et al. developed the theoretic framework to predict fusion cross-section, neutron angular distribution and neutron polarization for arbitrary DT polarizations [2]. Ab initio calculations can also be used to predict the polarized DT fusion cross-section and neutron angular distribution [9]. For DD reaction, several models give inconsistent predictions of fusion cross-sections [5]. These nuclear physics data can be measured using ICF implosions [9] [10] as long as polarized targets can be assembled. The atomic beam source can generate polarized deuterium and tritium atoms with high polarization [11,12]. The nuclear polarization of atoms can be preserved during recombination to form “hyperpolarized molecules” [13]. If the polarized gas can be filled into the ICF capsule without severe depolarization, then the most significant question remaining is whether the polarized fuel could survive in the ICF implosion and produce polarized neutron beam.

The major depolarization mechanism of polarized DT fuel during ICF implosion is magnetic field induced depolarization [14]. Hydrodynamic instabilities, like Rayleigh-Taylor instability (RTI) and Richtmyer-Meshkov instability, can generate intense magnetic fields due to the Biermann battery effect [15,17]. The periods of the Larmor precession for DT nuclei in strong magnetic fields are close to the ICF confinement time, so the depolarization can not be neglected. Due to the smaller gyromagnetic ratio, deuterons can sustain a higher polarization than tritons during the implosion. The depolarization and spin transport process can be simulated using particle-based methods [18], hydrodynamic methods [19] or hybrid methods [14]. Hydrodynamics simulations are widely used to interpret ICF experiments [20], but conventional hydrodynamics codes do not include spin transport simulation. For spin polarized fusion, the probability distributions for spin eigenstates of DT are necessary to obtain the fusion cross-section and neutron angular distribution. The previously proposed spin transport equation using the vector polarization is not enough for spin-1 particles, whose tensor polarization is also needed to obtain the probability distribution for spin eigenstates [19,21]. In this Letter, we present the unified spin transport equation for spin-$\frac{1}{2}$ (T) and spin-1 (D) particles using the density matrix formulation, and three-dimensional (3D) spin transport hydrodynamics (STHD) simulation results of spin-polarized targets in the stagnation phase of indirectly driven ICF implosions. The depolarization of DT ions by strong self-generated magnetic fields can be captured by the spin transport equation. The neutron yield, angular distribution and neutron polarization can be obtained from the STHD simulations, which solve the hydrodynamic equations, magnetic induction equation, spin transport equations and fusion rate equation self-consistently. STHD simulations can be used to interpret the polarized ICF
experiments and optimize the physics design of ICF polarized neutron source. We show as an example that an optimized spin alignment of the polarized DT fuel can reduce the neutron beam depolarization induced by polar mode asymmetries in indirectly driven implosions.

To obtain the spin transport equation for DT nuclei, we start from the single particle Schrödinger equation

$$i\hbar \frac{\partial}{\partial t} \Psi_{\alpha} = \hat{H} \Psi_{\alpha},$$

with the Hamiltonian \hat{H},

$$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 - \hat{\mu} \cdot \hat{B},$$

where α denotes the α-th particle, m is the particle mass, $\hat{\mu} = \gamma \hat{s}$ is the magnetic moment, γ is the gyromagnetic ratio, \hat{s} is spin operator and \hat{B} is the magnetic field. Here the spin-orbit and spin-spin interaction terms in the Hamiltonian are neglected because the interaction ratio, $\hat{\mu} = \gamma \hat{s}$, spin operator and \hat{B} is the magnetic field. The collisional depolarization induced by polar mode asymmetries in indirectly driven implosions.

The wavefunction cross-sections are relatively small. The collisional depolarization induced by polar mode asymmetries in indirectly driven implosions.

The velocity of the particle can be defined as

$$\mathbf{v}_\alpha = \frac{\hat{J}_\alpha}{n_\alpha},$$

As the components of spin operator \hat{s} are Hermitian and $\hat{\mu} \cdot \hat{B}$ is also Hermitian, the second term on the right-hand side of Eq. (4) is zero. The current density is defined as

$$\mathbf{J}_\alpha = \frac{\hbar}{2m} \nabla \Psi_{\alpha}^\dagger \Psi_{\alpha} + \Psi_{\alpha}^\dagger \frac{\hbar}{2m} \nabla \Psi_{\alpha},$$

and the equation of continuity can be obtained

$$\frac{\partial n_\alpha}{\partial t} + \nabla \cdot \mathbf{J}_\alpha = 0.$$

The velocity of the particle can be defined as

$$\mathbf{v}_\alpha = \frac{\hat{J}_\alpha}{n_\alpha} = \frac{\nabla S_\alpha - i\hbar \Psi_{\alpha}^\dagger \nabla \Psi_{\alpha}}{m},$$

where $[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$ is the commutator.

The total density of a particle specie is $n = \sum_\alpha n_\alpha$. The density matrix of a particle specie is defined as $\hat{n}_\alpha = \sum_\alpha n_\alpha \hat{\eta}_\alpha/n$ and the fluid velocity is $\mathbf{v} = \sum_\alpha n_\alpha \mathbf{v}_\alpha/n$. With these definitions, we can obtain the spin transport equation for a particle specie as

$$\frac{\partial \hat{n}_\alpha}{\partial t} + \nabla \cdot (n_\alpha \mathbf{v}_\alpha) = \frac{i}{\hbar} \left[\hat{\mu} \cdot \mathbf{B}, n_\alpha \hat{\eta}_\alpha \right] - \nabla \cdot \hat{\mathbf{K}} + \nabla \cdot \hat{\mathbf{Q}},$$

where $\hat{\mathbf{K}} = \sum_\alpha n_\alpha [\hat{\eta}_\alpha - \hat{n}(\mathbf{v}_\alpha - \mathbf{v})]$ is the thermal-spin coupling, $\hat{\mathbf{Q}} = \frac{i}{\hbar} \sum_\alpha \left[\nabla \hat{\eta}_\alpha, n_\alpha \hat{\eta}_\alpha \right]$ is the nonlinear spin fluid contribution. The spin transport equation still contains the explicit sum over all particles, and further statistical relations are needed to close the system. If the spin distribution and thermal distribution are not correlated, the thermal-spin coupling $\hat{\mathbf{K}} = 0$. And if the typical fluid length scale $L \gg \lambda_{ik}$, where λ_{ik} is the thermal de Broglie wavelength, the nonlinear spin fluid contribution $\hat{\mathbf{Q}}$ can be neglected.

The probability distribution for spin eigenstates can be obtained from diagonal terms of the density matrix. The trace of density matrix is conserved and unity $\text{Tr}(\hat{n}) = 1$.

For tritons, the probabilities for spin eigenstates $m_z = \{\frac{1}{2}, -\frac{1}{2}\}$ are η_{00}^T and η_{11}^T respectively. The triton polarization in $+z$ direction is $p_z^T = \eta_{00}^T - \eta_{11}^T$. The vector polarization of deuteron is $p_z^D = \eta_{00}^D - \eta_{22}^D$ and the tensor polarization of deuteron is $p_{zz}^D = \eta_{02}^D - 2\eta_{11}^D + \eta_{22}^D$. The fusion cross-section and neutron angular distributions can be obtained from probability distributions for spin eigenstates of DT. For simplicity, we adopt the formulas of Kuhrud et al. [2] in our simulations. The fusion cross-section of DT reaction can be calculated as

$$\sigma = \sigma_0 \left[\frac{3}{2} \left(\eta_{00}^T \eta_{00}^D + \eta_{11}^T \eta_{22}^D \right) + \eta_{11}^D \right] + \frac{1}{2} \left(\eta_{00}^T \eta_{22}^D + \eta_{11}^T \eta_{00}^D + 2\eta_{11}^D \right) (3\cos^2 \theta + 1),$$

where σ_0 is the unpolarized cross-section. The total differential cross-section for neutrons is

$$\frac{d\sigma}{d\Omega} = \sigma_0 \left[\frac{9}{4} \left(\eta_{00}^T \eta_{00}^D + \eta_{11}^T \eta_{22}^D \right) \sin^2 \theta \right.$$

$$\left. + \frac{1}{4} \left(\eta_{00}^T \eta_{22}^D + \eta_{11}^T \eta_{00}^D + 2\eta_{11}^D \right) (3\cos^2 \theta + 1) \right],$$

where θ is the polar angle. The differential cross-sections for neutrons with $m_z = \{\frac{1}{2}, -\frac{1}{2}\}$ are $d\sigma^+/(d\Omega)$ and $d\sigma^-/(d\Omega)$ respec-
FIG. 1. 3D STHD simulation results of a polarized DT-gas-filled capsule at bang time, (a) fuel density, (b) magnetic field strength, (c) fraction of depolarized tritons (η_{T11}), (d) fraction of depolarized deuterons ($\eta_{D11} + \eta_{D22}$). The initial fuel polarization is 0.9, the initial spins of DT fuel are perpendicular to the axis of hohlraum. The data in $x,y > 0$ region are set to be transparent in (a), (c) and (d) for better visibility.

The cross-section and differential cross-sections (9)-(11) are used in the fusion rate equations to obtain the neutron yield, neutron angular distribution and neutron polarization of polarized DT fusion.

As the spin transport equation contains fluid quantities n, v and magnetic field B, it must be solved in combination with hydrodynamic equations and magnetic induction equation. A numerical scheme to solve the spin transport equation is developed and implemented in a 3D STHD simulation code SPINSIM [23], which numerically guarantees that the diagonal terms of the density matrix are bounded in [0,1] and $\text{Tr}(\hat{\eta}) = 1$. The capsule-only STHD simulation results of a polarized DT-gas-filled capsule are shown in Fig. 1. The capsule is made of a high density carbon (HDC) shell filled with highly polarized DT gas ($p_T^z = p_D^z = p_D^{zz} = 0.9$). The outer radius and thickness of the HDC shell are 1040 μm and 40 μm respectively. The density of HDC is 3.52 g/cm3 and the density of the DT gas is 4 mg/cm3. The initial temperature of the capsule is 65.65 K. Because the hydrodynamic instabilities and magnetic fields are amplified during the stagnation phase of the implosion [17], only the stagnation phase is simulated with SPINSIM. The radiation hydrodynamics code MULTI-IFE [24] is used to provide the fluid quantities as input data for STHD simulations. The capsule is ablated by radiations with peak temperature of 250 eV and reaches maximum fusion rate after 12.85 ns (bang time) [23]. The polar mode-2 (P_2) perturbation which forms from low-mode radiation drive asymmetries [25, 26] is added to the implosion velocity of STHD simulation. The asymmetry amplitude of shell radius measured at bang time is $P_2/P_0 = 0.21$. High-mode perturbations, which rise from the defects of the target, are also added with 64 random RTI spikes and bubbles [23]. The density distribution of the fuel at bang time is shown in Fig. 1(a). The axis of polar asymmetry, which
alignment cases have larger DT polarizations than the parallel alignments are smaller than the deuteron polarizations as shown in Figs. 2(a) and 2(b). The deuteron vector polarization p^D_2 measured at $\theta = 90^\circ$ for different P_2 amplitudes with various conditions of initial fuel polarization, spin alignment and high-mode perturbation shown in Figs. 2(b) and 2(c). The deuteron yields and absolute values of neutron polarization decrease with the increasing of absolute values of P_2 perturbation amplitudes. Reduction of initial fuel polarization and increment of high-mode perturbations can cause the reduction of neutron yields and absolute values of neutron polarization. Reductions of neutron beam depolarization by P_2 perturbations with perpendicular alignment are significant under all conditions as depicted in Fig. 3(c).

In summary, we have derived the spin transport equation using the density matrix formulation to model the spin transport hydrodynamics of spin-$\frac{1}{2}$ and spin-1 particles. The spin transport equations can be solved in combination with hydrodynamic equations and magnetic induction equations. The solutions of spin transport equations can be used in fusion rate equations to obtain the neutron yield, neutron angular distribution and neutron polarization of polarized DT fusion. The STHD simulation results show that optimized spin alignment of the polarized DT-gas-filled target can reduce the neutron beam depolarization induced by polar mode asymmetries in indirectly driven implosions. The polarized DT-gas-filled target investigated in this Letter is different from the ignition target which contains a high density DT ice layer [1]. Polarized DT ice are more difficult to produce than polarized DT gas [3]. The polarized DT-gas-filled targets can be useful in experiments of nuclear data measurement [9, 10] and neutron beam production [27]. It is promising to obtain highly polarized neutron beams using polarized DT-gas-filled target implosions, which will expand the range of applications of fusion based neutron sources.

This work was supported by the National Natural Science Foundation of China (Grant No. 12105193) and Fundamental Research Funds for the Central Universities (Grant No. 2021SCU12119).
E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, et al., Fuel gain exceeding unity in an inertially confined fusion implosion, Nature 506, 343 (2014); S. Le Pape, L. F. Berzak Hopkins, L. Diven, A. Pak, E. L. Dewald, S. Bhandarkar, L. R. Bennedetti, T. Bunn, J. Biener, J. Crippen, et al., Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility, Phys. Rev. Lett. 120, 245003 (2018); A. B. Zylstra, A. L. Kritcher, O. A. Hurricane, D. A. Callahan, K. Baker, T. Braun, D. T. Case, D. Clark, K. Clark, T. Döppner, et al., Record energetics for an inertial fusion implosion at NIF, Phys. Rev. Lett. 126, 025001 (2021).

[2] R. Kulsrud, H. Furth, E. Valeo, and M. Goldhaber, Fusion reactor plasmas with polarized nuclei, Phys. Rev. Lett. 49, 1248 (1982); R. Kulsrud, E. Valeo, and S. Cowley, Physics of spin-polarized plasmas, Nucl. Fusion 26, 1443 (1986).

[3] R. M. More, Nuclear spin-polarized fuel in inertial fusion, Phys. Rev. Lett. 51, 396 (1983).

[4] M. Temporal, V. Brandon, B. Canaud, J. Didelez, R. Fedosejevs, and R. Ramis, Ignition conditions for inertial confinement fusion targets with a nuclear spin-polarized DT fuel, Nucl. Fusion 52, 103011 (2012).

[5] G. Ciullo, R. Engels, M. Büsch er, and A. Vasilyev, Nuclear Fusion with Polarized Fuel (Springer, Cham, 2016).

[6] N. Kardjilov, I. Manke, M. Strobl, A. Hilger, W. Treimer, M. Meissner, T. Krist, and J. Banhart, Three-dimensional imaging of magnetic fields with polarized neutrons, Nature Phys. 4, 399 (2008); P. Lázpita, J. M. Barandiarán, J. Gutiérrez, C. Mondelli, A. Sozio, and V. A. Chernenko, Polarized neutron study of Ni-Mn-Ga alloys: Site-specific spin density affected by martensitic transformation, Phys. Rev. Lett. 119, 155701 (2017); A. Hilger, I. Manke, N. Kardjilov, M. Osenberg, H. Markötter, and J. Banhart, Tensorial neutron tomography of three-dimensional magnetic vector fields in bulk materials, Nature Comm. 9 (2018).

[7] R. B. Perkins and J. E. Simmons, T(d,n)He reaction as a source of polarized neutrons, Phys. Rev. 124, 1153 (1961); J. E. Simmons, W. B. Broste, G. P. Lawrence, J. L. McKibben, and G. G. Ohlsen, Reaction D(d,n)3He at 0° with polarized beam: A new source of polarized neutrons from 7 to 18 MeV, Phys. Rev. Lett. 27, 113 (1971).

[8] G. Hupin, S. Quaglioni, and P. Navrátil, Ab initio predictions for polarized deuterium-tritium thermonuclear fusion, Nature Comm. 10, 351 (2019).

[9] A. B. Zylstra, H. W. Herrmann, M. G. Johnson, Y. H. Kim, J. A. Frenje, G. Hale, C. K. Li, M. Rubery, M. Paris, A. Bacher, et al., Using inertial fusion implosions to measure the T + 3He fusion cross section at nucleosynthesis-relevant energies, Phys. Rev. Lett. 117, 035002 (2016).

[10] D. T. Casey, D. B. Sayre, C. R. Brune, V. A. Smalyuk, C. R. Weber, R. E. Tipton, J. E. Pino, G. P. Grim, B. A. Remington, D. Dearborn, et al., Thermonuclear reactions probed at stellar-core conditions with laser-based inertial-confinement fusion, Nature Phys. 13, 1227 (2017).

[11] A. Roberts, P. Elmer, M. Ross, T. Wise, and W. Haeberli, Medium field rf transitions for polarized beams of hydrogen and deuterium, Nucl. Instr. and Meth. Phys. Res. A 322, 6 (1992).

[12] C. Baumgarten, B. Braun, V. Carassiti, G. Ciullo, G. Court, P. Dalpiaz, E. Garutti, A. Golendukhin, G. Graw, W. Haeberli, et al., The storage cell of the polarized H/D internal gas target of the HERMES ex-
experiment at HERA, Nucl. Instr. and Meth. Phys. Res. A 496, 277 (2003).

[13] R. Engels, M. Gaßler, R. Gorski, K. Grigoryev, M. Mikirtychyants, A. Nass, F. Rathmann, H. Seyfarth, H. Strohre, P. Weiss, et al., Production of hyperpolarized \(\text{H}_2 \) molecules from \(\text{H} \) atoms in gas-storage cells, Phys. Rev. Lett. 115, 113007 (2015).

[14] R. Hu, H. Zhou, Z. Tao, M. Lv, S. Zou, and Y. Ding, Spin depolarization induced by self-generated magnetic fields during cylindrical implosions, Phys. Rev. E 102, 043215 (2020).

[15] C. A. Walsh, J. P. Chittenden, K. McGlinchey, N. P. L. Niasse, and B. D. Appelbe, Self-generated magnetic fields in the stagnation phase of indirect-drive implosions on the National Ignition Facility, Phys. Rev. Lett. 118, 155001 (2017).

[16] Z. Gong, Y. Shou, Y. Tang, and X. Yan, Energetic spin-polarized proton beams from two-stage coherent acceleration in laser-driven plasma, Phys. Rev. E 102, 053212 (2020); Z. Gong, K. Z. Hatsagortsyan, and C. H. Keitel, Retrieving transient magnetic fields of ultrarelativistic laser plasma via ejected electron polarization, Phys. Rev. Lett. 127, 165002 (2021).

[17] M. Marklund and G. Brodin, Dynamics of spin-\(\frac{1}{2} \) quantum plasmas, Phys. Rev. Lett. 98, 025001 (2007).

[18] D. S. Clark, C. R. Weber, J. L. Milovich, J. D. Salmonson, A. L. Kritcher, S. W. Haan, B. A. Hammel, D. E. Hinkel, O. A. Hurricane, O. S. Jones, et al., Three-dimensional simulations of low foot and high foot implosion experiments on the national ignition facility, Phys. Plasmas 23, 056302 (2016).

[19] W. Y. Zhang and R. Balescu, Statistical mechanics of a spin-polarized plasma, J. Plasma Phys. 40, 199–213 (1988); R. Balescu and W. Y. Zhang, Kinetic equation, spin hydrodynamics and collisional depolarization rate in a spin-polarized plasma, ibid. 40, 215–234 (1988).

[20] J. P. Chittenden, B. D. Appelbe, F. Manke, K. McGlinchey, and N. P. L. Niasse, Signatures of asymmetry in neutron spectra and images predicted by three-dimensional radiation hydrodynamics simulations of indirect drive implosions, Phys. Plasmas 23, 052708 (2016).