Experimental considerations of acute heat stress assays to quantify coral thermal tolerance

J. J. V. Nielsen1,2,3, G. Matthews7, K. R. Frith2,8, H. B. Harrison3,4, M. R. Marzonie2,3,4, K. L. Slaughter3,5, D. J. Suggett6 & L. K. Bay2

Understanding the distribution and abundance of heat tolerant corals across seascapes is imperative for predicting responses to climate change and to support novel management actions. Thermal tolerance is variable in corals and intrinsic and extrinsic drivers of tolerance are not well understood. Traditional experimental evaluations of coral heat and bleaching tolerance typically involve ramp-and-hold experiments run across days to weeks within aquarium facilities with limits to colony replication. Field-based acute heat stress assays have emerged as an alternative experimental approach to rapidly quantify heat tolerance in many samples yet the role of key methodological considerations on the stress response measured remains unresolved. Here, we quantify the effects of coral fragment size, sampling time point, and physiological measures on the acute heat stress response in adult corals. The effect of fragment size differed between species (Acropora tenuis and Pocillopora damicornis). Most physiological parameters measured here declined over time (tissue colour, chlorophyll-a and protein content) from the onset of heating, with the exception of maximum photosynthetic efficiency (Fv/Fm) which was surprisingly stable over this time scale. Based on our experiments, we identified photosynthetic efficiency, tissue colour change, and host-specific assays such as catalase activity as key physiological measures for rapid quantification of thermal tolerance. We recommend that future applications of acute heat stress assays include larger fragments (>9 cm2) where possible and sample between 10 and 24 h after the end of heat stress. A validated high-throughput experimental approach combined with cost-effective genomic and physiological measurements underpins the development of markers and maps of heat tolerance across seascapes and ocean warming scenarios.

Coral reefs are under increasing threat from climate change with strong and direct impacts from the interaction of chronic ocean warming and the increasing frequency of acute heat waves driving episodes of mass coral bleaching. The process of bleaching is a well-described physiological response to the interaction of temperature and light, resulting in nutritional and oxidative stress in the coral holobiont (reviewed in). It is recognised as the loss of coral colour due to expulsion of symbiotic algae and/or photosynthetic pigments. When environmental stressors persist and/or events are extreme, bleaching may be followed by coral mortality. Therefore, the ability of populations and species to cope with increasing temperature extremes is likely to define the structure and function of coral reefs into the future. Until recently, high throughput approaches capable of measuring and comparing heat tolerance within and between populations had only been applied to coral larvae and not to adult colonies.

Acute thermal stress experiments provide a tool to identify and predict tolerance to stress using large sample sizes across environmental gradients. In the marine environment, such experiments have been used to investigate heat stress thresholds in metabolic, molecular, and/or behavioural traits across a variety of marine vertebrates and invertebrates. These various approaches have identified heat-tolerant corals after exposure to...
Results

Experiment 1: Effect of fragment size. Effect of fragment size differed between species and physiological metrics investigated. Collectively, fragment size affected nearly all examined physiological metrics in *P. damicornis* except photosynthetic efficiency while an effect of fragment size was largely absent in *A. tenuis* samples. Treatments at high temperatures resulted in significant declines across all metrics relative to treatments at ambient temperatures. Tissue colour change was affected by the interaction of treatment and fragment size in both species (A. *tenuis*, df = 106, z = −3.26, p = 0.001; *P. damicornis*, df = 106, z = 2.50, p = 0.023). In *A. tenuis*, large fragments (−0.34 ± 0.05 colour units) exhibited nearly twice the colour loss of small fragments (−0.19 ± 0.07 colour units) (Fig. 1F, df = 106, t = −5.745, z = −6.24, p < 0.001). In *P. damicornis*, large fragments (−0.40 ± 0.06 colour unit) exhibited slightly less colour loss relative to the small fragments (−0.34 ± 0.05 colour unit, df = 106, t = −4.231, z = −3.26, p < 0.0001) while in *P. damicornis*, small fragments (−0.19 ± 0.06 colour unit, df = 106, t = −4.231, p < 0.0001, Fig. 1A) while in *P. damicornis*, large fragments (−0.40 ± 0.06 colour unit) exhibited nearly twice the colour loss of small fragments (−0.34 ± 0.05 colour unit, df = 106, t = −5.745, p < 0.0001). See statistical outputs in Supplementary materials S3.1 and S3.2.

Chlorophyll-*a* content and catalase activity (U) in *P. damicornis* were both affected by the interaction of treatment and fragment size (Chl-*a*; df = 96, z = −1.975, p = 0.048, Fig. 1H; catalase; df = 86, z = 2.82, p < 0.005, Fig. 1J, respectively). Catalase activity (U) varied within heat-treated corals between fragment sizes (df = 86, t = 2.146, p = 0.035; large = 0.286 ± 0.1 U; small = 0.30 ± 0.01) but not for ambient corals (df = 86, t = 1.851, p = 0.068). In *A. tenuis*, chlorophyll-*a* content and catalase activity were only affected by temperature (chlorophyll-*a* df = 104, z = −6.24, p < 0.001, Fig. 1C; catalase activity df = 93, z = 2.38, p = 0.017, Fig. 1E) but not fragment size, or their interaction.

Photosynthetic efficiency was only affected by treatment in both species, but not fragment size or their interaction (Fig. 1B,G). Finally, *P. damicornis* protein content was affected by both treatment and fragment size, but not by their interaction (Treatment; df = 102, z = −3.173, p = 0.002; Size df = 102, z = −2.761, p = 0.0068, Fig. 1I). In *A. tenuis*, protein content was only impacted by treatments (df = 91, z = −5.112, p < 0.0001, Fig. 1D).

Experiment 2: Time effect. All physiological metrics except catalase experienced a significant initial decline immediately following heat stress. Most metrics then continued to decline through time before reaching a steady-state between 10 and 24 h after heat stress. However, photosynthetic efficiency was stable until the final
sampling point at 48 h (Fig. 2). Coral tissue colour recorded an initial decrease immediately following the exposure to heat stress (0 h, T0, − 9.98%, z = − 3.18, \(p = 0.0015 \)), and remained stable until 6 h and then declined steadily until 24 h (T5; post hoc \(t = 7.57, p < 0.001 \)) before stabilising again and remaining unchanged until 48 h (T6, Fig. 2A, T5–T6 \(t = 2.51, p = 0.18 \)). Similarly, chlorophyll-a content declined at 0 h (T0, − 24.18%, z = − 2.44, \(p = 0.015 \)) before stabilising at 10 h (T3, Fig. 2A). In contrast, photosynthetic efficiency (\(F_{v}/F_{m} \)) declined by 5.8% immediately following the experiment (z = − 2.4, \(p = 0.016 \)) and remained stable until the 24-h sampling point (T5, Fig. 2A) before declining again after 48-h (T6, Fig. 2A).

Antioxidative catalase activity did not change initially following exposure to heat stress but recorded a significant increase 6 h after heat stress (T0–T2, \(t = − 3.24, p = 0.037 \)). Catalase activity then decreased towards the
end of the experiment and was nearly absent by 24 h (T₅, ~ 88.38%, Fig. 2B). Finally, protein content recorded an initial decrease immediately following heat exposure (26.44%, z = − 2.35, p = 0.019) and then declined in the first 10 h (T₀–T₃ t = 3.48, p = 0.02) before stabilising (~ 58.1%, Fig. 2B). All statistical outcomes from post-hoc comparisons are presented in Supplementary material S4.2.

Experiment 3: Physiological measures comparisons. To investigate how rapid, non-invasive measures of coral thermal tolerance (Fᵥ/Fₘ and colour change) compared to more time-consuming and labour-intensive measures, we performed a Principal Component Analysis. The PCA identified response patterns of multiple physiological measures to acute thermal exposure in A. tenuis (Fig. 3). Four of the five physiological response measurements (colour change, protein and chlorophyll content, and Fᵥ/Fₘ) were correlated to and accounted for variation along PC1 (43% variation explained), while only catalase activity separated data along PC2 (21% variation explained). All physiological metrics analysed were significant in driving the separation among samples (Fig. 3A).

To identify which metrics were driving data variability we examined correlations among the physiological metrics (Fig. 3B). Both tissue colour change and maximum photosynthetic efficiency (Fᵥ/Fₘ) showed a significantly positive correlation to the three laboratory-derived metrics (catalase, protein, and chlorophyll-α content). Both tissue colour change and Fᵥ/Fₘ were most strongly correlated with host protein content. As such, both non-invasive physiological measures of tolerance describe overall patterns observed.

Cost–benefit analysis. Of all physiological measurements utilised here, the more rapid field-based measures of maximum photosynthetic efficiency (Fᵥ/Fₘ) and tissue colour change carried the lowest associated costs (including labour) and were also the most time-efficient (Tables 1, 2). Based on 100 samples, we estimated a time of ~ 45 min to gather and a further 45 min to analyse maximum photosynthetic efficiency data and ~ 100 min to

Figure 2. Percent change in physiological metrics over time in heat-treated relative to ambient corals. Fragments from nine colonies were sampled through time at 0–48 h (T₀–T₆) after the end of heat stress from both an ambient (29.6 °C) and heated treatment (34.6 °C). (A) Fluorometric and colour assays. (B) Biochemical assays. Points represent the estimated marginal means of physiological metrics at each sampling time point (T₁–T₆). Error bars indicate the upper and lower 95% confidence intervals.
gather and analyse tissue colour changes. In comparison, > 28 h was required to quantify protein content in the laboratory with catalase and chlorophyll assays each requiring approximately 25 h to complete.

Discussion

Variation in coral thermal tolerance both within and between reef systems is likely key to their continued survival under further ocean warming. To date, aquarium-based ramp and hold experiments have been widely applied to investigate variation in thermal tolerance but are limited logistically in terms of how many samples can be included and the sampling areas they can cover. Recently, acute heat stress assays have increased the capacity to quantify heat tolerance in adult corals through field-deployments with rapid experimental turnover. However, efforts to scale towards higher throughput both within studies and through
Comparisons among studies must be based on solid methodologies that control technical sources of variance and utilise common measures of coral thermal tolerance\(^1\text{3,4,6}\).

Our study investigated the effect of fragment size and sampling timing on coral acute thermal tolerance. We presented a cost analysis of all physiological measures analysed herein to provide planning background to other users of acute thermal stress assays and finally, we showed how rapid, non-invasive measures of coral thermal tolerance \((F_v/F_m)\) and tissue colour change compared to more time-consuming and labour-intensive measures using evidence from multiple physiological traits. Together, our results highlight the need to consider fundamental experimental design criteria of these assays to ensure that results are repeatable and comparable among studies.

Fragment size affected *P. damicornis* more than *A. tenuis. There are currently no guidelines on appropriate fragment sizes for experimental examination of coral thermal tolerance\(^1\text{3}\) and this metric is rarely reported\(^3\). The coral restoration literature has suggested that larger fragments may result in greater survival\(^1\text{5}\) although this is not always the case\(^3\text{4–5}\). With the advance of acute heat stress assays, fragment size could therefore be a source of technical variability. In our study, effect of fragment size differed between species; one out of five physiological responses of *A. tenuis* were significantly affected by fragment size while in *P. damicornis* four out of five measures showed significant fragment size effects. In *A. tenuis*, large fragments showed greater colour loss than the small fragments in the ambient treatment. Similarly, fragments of *Acropora palmata* have recorded differential bleaching resistance during a natural thermal stress event where small fragments recorded less bleaching than larger ones\(^3\). Additionally, corallite formation differs between the two species where *A. tenuis* produces an apical corallite characteristic for the *Acroporidae* while *P. damicornis* does not. The presence of an apical corallite in the absence of Symbiodiniaceae-rich tissues could potentially skew the colour change metric. Whilst we did not test this factor explicitly, it would be important in the future to consider species-specific morphology when designing data-gathering protocols that span diverse taxa.

Changes in protein content and catalase enzyme activity were more pronounced in large relative to small fragments in *P. damicornis*. Protein and catalase assays from small fragments may be nearing the detection limits of the instrument (spectrophotometer), and the issue is further compounded by quantifying surface area by wax fragments in *P. damicornis* morphology when designing data-gathering protocols that span diverse taxa.

Choosing when to sample post heat stress impacts conclusions drawn. Responses to heat stress varies with exposure duration and sampling time. Sampling variation may therefore limit how different combinations of measurements can ultimately be used to reconcile large-scale heat stress assay data sets. Therefore, sampling time is a critical component of experimental design. Here we observed that physiological responses decreased up to 24 h post heating with the notable exception of photosynthetic efficiency which was stable up to 24 h. We therefore recommend sampling between 10 and 24 h post heating. Sampling prior to 10 h post heating could fail to detect a response while sampling post 24 h may result in sampling of mortality or severe tissue necrosis, particularly at higher temperatures (see\(^3\)). We did not sample past two days post heating (48 h) to maintain the rapidity of these acute heat stress assays. Other studies have also reported rapid changes in response...
to acute heat stress; for example, Dove et al.59 found significantly reduced protein and chlorophyll content following a 6-h temperature exposure while Traylor-Knowles et al.60 found upregulated heat shock protein expression in response to heat stress after only 2 h 30 min and evidence of protein degradation after 5 h. The decline through time observed in most traits in the present study may complicate direct comparisons of results between studies depending on the traits quantified and the sampling time point.

Time- and cost- efficient physiological measures to capture coral thermal tolerance variability. Capitalising on the rapid throughput of acute heat stress assays requires the adoption of standardised phenotyping measures which can be quantified rapidly at the field in minimal cost. Maximum photosynthetic efficiency (F_{v}/F_{m}) and tissue colour change are both time- and cost-efficient to capture, making them ideal candidate measurements for rapid tests of coral thermal tolerance. While photosynthetic efficiency was the fastest measure quantified in this study, the capital outlay for a fluorometer such as the one used here (~ $50,000 AUD) may be beyond the scope of some groups. However, cheaper alternatives exist (for example AquaPen55, ~$4050 AUD) and the costsing presented here are highly conservative. While fluorometric data is fast to gather and has a low cost per sample when considering the lifespan of the instrument, it is not currently possible to calibrate fluorometric data between studies due to the lack of universal standards, multiple sensor types and diverse sampling protocols used56,61. This makes direct comparisons between studies challenging.

When considering capital costs and accessibility, tissue colour change is by far the most cost-effective measure captured, further reducing processing and analysis time investment through the development of automated approaches62. Recent technological advances also allow scaling of automated bleaching assessments with the implementation of new technologies such as hyperspectral imaging65, despite additional and significant capital costs. If these rapid measures (tissue colour change and F_{v}/F_{m}) are to be used at a large scale, it is important to keep their relationship to coral thermal tolerance in mind and carefully consider which measures best address the research question.

Selecting physiological measures of coral thermal tolerance for acute heat stress assays. Photosynthetic efficiency and tissue colour change are higher-order traits, derived from multiple other measures. For example, changes in tissue colour can result from a loss of Symbiodiniaceae cells, loss of chlorophyll pigmentation within those cells18, or the loss of coral tissue itself. Photosynthetic efficiency, on the other hand, is a direct measure of viability of the symbiont partners and only an indirect indicator of thermal tolerance of the coral holobiont8,45. We therefore examined whether tissue colour change and photosynthetic efficiency captured differences in other physiological measures of thermal tolerance in *A. tenuis*. We found that both photosynthetic efficiency and tissue colour change showed similar responses to heat stress as chlorophyll-a and protein content but not catalase activity. Similarly, acute heat stress studies of *Stylophora pistillata*22 found that changes in F_{v}/F_{m} values correspond well to other physiological measures quantified and a high correlation between F_{v}/F_{m} and tissue colour change was reported in *Siderastrea siderea*64. Coral host catalase activity showed an opposite trend to all other measures as catalase was correlated to PC2 rather than PC1 (Fig. 3A). The opposing trend displayed by the catalase vector in the PCA is expected as catalase generally increases during heat stress31,65, while all other measures as catalase was correlated to PC2 rather than PC1 (Fig. 3A).

Selecting physiological measures of coral thermal tolerance for acute heat stress assays. Photosynthetic efficiency and tissue colour change are both time- and cost-efficient to capture, making them ideal candidate measurements for rapid tests of coral thermal tolerance. While photosynthetic efficiency was the fastest measure quantified in this study, the capital outlay for a fluorometer such as the one used here (~ $50,000 AUD) may be beyond the scope of some groups. However, cheaper alternatives exist (for example AquaPen55, ~$4050 AUD) and the costsing presented here are highly conservative. While fluorometric data is fast to gather and has a low cost per sample when considering the lifespan of the instrument, it is not currently possible to calibrate fluorometric data between studies due to the lack of universal standards, multiple sensor types and diverse sampling protocols used56,61. This makes direct comparisons between studies challenging.

When considering capital costs and accessibility, tissue colour change is by far the most cost-effective measure captured, further reducing processing and analysis time investment through the development of automated approaches62. Recent technological advances also allow scaling of automated bleaching assessments with the implementation of new technologies such as hyperspectral imaging65, despite additional and significant capital costs. If these rapid measures (tissue colour change and F_{v}/F_{m}) are to be used at a large scale, it is important to keep their relationship to coral thermal tolerance in mind and carefully consider which measures best address the research question.

Materials and methods

Study region, species, and collection. Acute heat stress assays on *Acropora tenuis* and *Pocillopora damicornis* were conducted in the Far Northern Great Barrier Reef (FNGBR) in January 2019 (Fig. 4A). This region of the Reef is characterised by high summer temperatures and irradiance54,55 and experienced consecutive bleaching events in the austral summers of 2016 and 2017 (18–82% bleaching, n = 15 reefs56). All coral samples were collected on SCUBA (3–6 m) under Great Barrier Reef Marine Park permit G16/38488. Colony colour was assessed against the Coral Watch reference chart at the time of collection76. Fragments were placed in perforated zip-lock bags for no more than 2 h, and further fragmented for experiments. Fragments were placed in aquaria (60L) on the vessel deck, supplied with ambient flow-through seawater, and shaded with cloth prior to being...
moved into the experimental tanks. Seven separate experimental runs were conducted no later than 24 h after collection across three experiments (Table 3). The two species were selected to represent two abundant genera and for their ease of collection with hand tools. Collection, transport, and fragmentation are likely stressful for corals and our protocol did not allow for recovery time prior to experimental exposure, hence heated fragments were compared to ambient-held fragments.

Temperature treatments and experimental design. Heat treatment profiles were designed following Palumbi et al. and Voolstra et al. using a new delivery system designed by the National Sea Simulator Facility at the Australian Institute of Marine Science (AIMS, Supplementary material S1). The temperature manipulation

Table 3. Coral collection and experiment details. Collection dates are given as day of January 2019.

Purpose of experiment	Reef	Coordinates	Species collected	Colonies sampled	Treatments	MMM °C	Collection date	Experiment date
1. Fragment Size effect	13–123	144.1348°E, 13.8552°S	*A. tenuis*	9	Ambient and +6 °C	28.6	14/01	15/01
			P. damicornis	9				
2. Time effect	Creech	144.1071°E, 13.6447°S	*A. tenuis*	9	Ambient and +6 °C	28.46	15/01	16/01
3. Alternative physiological measurements	Corbett	144.2405°E, 13.9227°S	*A. tenuis*	18	Ambient, +3 °C, +6 °C	28.58	10–11/01	11/01
	Lagoon	144.0906°E, 13.8517°S	*A. tenuis*	15	Ambient, +3 °C, +6 °C	28.66	12–13/01	13/01
	Mantis	143.8808°E, 12.3041°S	*A. tenuis*	15	Ambient, +3 °C, +6 °C	28.54	18/01	19/01
	11–049	143.3262°E, 11.3637°S	*A. tenuis*	23	Ambient and +6 °C	29.11	28/01	28/01

Figure 4. Collection and experimental designs used to examine the influence of fragment size on two species (*A. tenuis* and *P. damicornis*) and time of sampling on multiple physiological measures. (A) Map of sampling locations, size of dot indicates number of colonies sampled per site and colour shows Max Monthly Mean (MMM) temperature of each site. Map generated in R version 4.1.3. (B) Temperature profiles used to test for size effects in *A. tenuis* and *P. damicornis* (ambient and high treatments only, experiment 1) and to investigate multiple physiological measures across five reefs in *A. tenuis* (all three treatments, experiment 3). (C) Temperature profile and sampling time points for assessing changes in physiological metrics through time (experiment 2).
system was run indoors onboard a research vessel and consisted of an initial ramp up over 3 h from ambient incoming seawater to the desired treatment temperature. Treatment temperature was held for 3 h, followed by ramp down to ambient within 1.5 h. Once returned to ambient temperature, corals were maintained for 11 h in the dark before data collection and sampling (Fig. 4B). The control treatment was held at ambient temperature for the duration of the experiment and ambient temperatures ranged between 29.5 and 30.9 °C across the sampling duration. Treatments used were ambient, mid (approx. + 3 °C) and high (+ 6 °C). Experimental temperatures and Max Monthly Mean (MMM) temperatures are presented in Supplementary material S2. Lighting profiles followed summer, mid-day light levels at Lizard Island in the northern GBR (450 µmol photons m⁻² s⁻¹, no ramping, 7 h:11 h light:dark, 60% blue, 20% white, 10% green, and 10% red, 10 M, Lizard Island Light From 26 Feb 2012 | AIMS metadata | aims.gov.au). We conducted three separate experiment to test the effects of (1) fragment size, (2) timing of measurements and (3) physiological proxies for heat tolerance. In experiment 2 (time-effect), ambient-treated corals experienced reductions in most physiological measures and thus responses were expressed as % change in physiological measures (colour change, Fv/Fm chlorophyll-a and protein content, and catalase activity) in heated corals relative to their ambient counterparts.

Experiment 1: Size effect. Nine colonies each of *A. tenuis* and *P. damicornis* (Table 3) from reef 13 to 123 were fragmented into six large (9.05 ± 0.44 cm², 12.45 ± 0.7 cm², *A. tenuis* and *P. damicornis*, respectively) and six small fragments (3.51 ± 0.19 cm², 7.13 ± 0.34 cm², *A. tenuis* and *P. damicornis*, respectively). Three large and three small fragments from each colony were assigned to the two treatments (ambient and + 6 °C, 1 size pair per tank per treatment, n = 216 for both species). The fragments were wrapped in aluminium foil and snap frozen in liquid N₂ 11 h after the end of heat stress for further analysis.

Experiment 2: Time effect. Samples of *A. tenuis* were collected from nine individual colonies at Creech reef (Table 3). Samples were further fragmented (18 per colony, ~ 5 cm in length), and distributed across treatments (ambient and + 6 °C, n = 3 fragments per colony per tank, total = 162 fragments). Sampling occurred immediately after the end of heat stress (T₀), and then at 2 h (T₁), 6 h (T₂), 10 h (T₃), 14 h (T₄), 24 h (T₅), and 48 h (T₆) after the end of heat stress (Fig. 1C). At each sampling point, one fragment per colony per treatment was sampled apart from T₆ (48 h) when all remaining samples were preserved.

Experiment 3: Alternative physiological measurements. Collections of *A. tenuis* to evaluate physiological metrics (including chlorophyll-a and protein content, catalase activity, tissue colour change, and photosynthetic efficiency) took place across five reefs and included 86 colonies (Table 3). Four fragments were made per colony except for reef 11-049 where only two fragments per colony were made. Fragments were distributed between treatments (n = 1 per colony per treatment) and sampled after an 11 h recovery period at ambient temperature.

Photosynthetic efficiency. Photo-physiological status is a common diagnostic to measure effects of heat exposure and coral bleaching⁸,³⁵ and thus we also quantified photosystem II (PSII) maximum photochemical efficiency (Fv/Fm, dimensionless) using Pulse Amplitude Modulated Fluorometry of chlorophyll-a (PAM, Diving-PAM, Heinz Walz GmbH, Effeltrich, Germany, MI = 8, SI = 8, saturation width = 0.8, Gain = 3, Damp = 2)³³,⁷⁸. A clear piece of PVC tubing was used to maintain a constant distance (2 mm) between the glass fibre-optic probe (6 mm Ø) and the coral fragment. Samples were dark acclimated for 30 min before measurements were taken. Each fragment was measured twice at different spots approx. 1/3 distance from the apical coralite. For experiments 1 (size) and 3 (physiological measures), values of Fv/Fm were determined 10 h after the end of heat stress (Fig. 4B). For experiment 2 (time) Fv/Fm was measured at sampling time points (T₀–T₆).

Visual signs of bleaching. For experiments 1 (size) and 3 (physiological measures), samples were photographed prior to, and after, heat treatment with a digital SLR camera (Nikon D300, F stop = 4, shutter speed = 100, ISO = 400). For experiment 2 (time), samples were also photographed at each time point (T₀–T₆, Fig. 4C). Photographs were taken at a distance of 25 cm against a dark background, which included the Coral Watch colour reference chart⁶. Tissue colour was assessed as per Nielsen et al.⁷⁹.

Sampling and sample preparation for physiological assays. A pressurized air gun and 0.02 µm filtered seawater (FSW) was used to remove tissue from coral skeletons⁸⁰. The resulting slurry was homogenised (30 s, 40% power, Pro200, Bio-gen Series, ProScientific, USA) and aliquots were removed for chlorophyll-a, protein analysis. For catalase activity, 1 ml of host tissue was aliquoted into Eppendorf tubes.

Surface area quantification. Surface area of each blasted coral skeleton was quantified according to the double wax dipping method⁸¹, which has been shown to accurately calculate the surface area of branching species⁸¹. Skeletons were bleached (10%), rinsed, dried, and stored at room temperature prior to dipping. Cylindrical shapes of known sizes were used to produce a standard curve of surface area. Skeletons and standards were immersed (4 s) into hot wax (65 °C), removed, swirled to air-dry and left to dry for a further 15 min before weighing. The dipping procedure was repeated, and surface area calculated as the weight difference between the first and second dip.
Chlorophyll-a quantification. Pre-chilled ethanol (0.8 ml, EtOH, 95%) was added to each frozen sample and vortexed until the pellet was fully resuspended then sonicated (3 min, 40% power, Sonic Power® MU-600, Mirae Ultrasonic Tech Co, Korea), vortexed, and incubated on ice in the dark to extract pigments (20 min). Triplicate aliquots (200 µl) were loaded onto a 96 microwell plate (Immulon® 4, HBX) using EtOH (95%) as a blank and absorbance was read immediately at 664 nm and 649 nm. Chlorophyll-a content was calculated following Eq. (1)\(^{82,83}\), corrected for absorbance in the blanks and normalised to surface area of the coral fragment.

\[
\left(13.36 \times \text{Abs}_{664\text{nm}}\right) - \left(5.19 \times \text{Abs}_{649\text{nm}}\right)/0.794
\]

(1)

Protein content. Water-soluble protein content was determined using the Bio-Rad DC Protein Assay following the manufacturer’s guidelines. Protein samples were thawed on ice, homogenised and diluted 1:1 in NaOH (200 µl, 1 M). Samples were sonicated using an ultrasonic water bath for 5 min (40% amplitude, Sonic Power® MU-600, Mirae Ultrasonic Tech Co, Korea) before being digested in an oven for 1 h at 90 °C. Samples were then centrifuged (10 min, 2000 rpm) before loading 10 µl per replicate into a microtiter plate (96-well, 300 µl, Immulon® 4, HBX). Reagent A (25 µl) was added and allowed to stand for 5 min before adding 200 µl of Reagent B. The plate was covered and incubated in the dark at room temperature for 15 min. After incubation, the plate was loaded into the spectrophotometer (Synergy H4 Hybrid Reader®, Bio-Tek, Winooski, VT, USA) and absorbance read at 750 nm (25°C). Protein content was normalised to surface area and reported as mg cm\(^{-2}\).

Catalase activity. Catalase activity was quantified as the change in H\(_2\)O\(_2\) concentration over time\(^{31}\). Samples were thawed on ice, vortexed (40 s) and 30 µl were added to a UV-transparent micro-well plate (UV-Star®, 96 wells, Greiner Bio-One, Monroe, NC, USA) in triplicate with FSW as blanks. 60 µl of PBS (50 mM, pH 7) and 20 µl of EDTA (10 mM) were added to the plate before adding 120 µl of H\(_2\)O\(_2\) (50 mM) as substrate for the reaction. The plate was immediately loaded into the spectrophotometer (Synergy H4 Hybrid Reader*) and absorbance was read at 240 nm every 30 s for 15 min. Catalase activity (U) was assessed over the linear portion of the curve and expressed as specific activities (U mg\(^{-1}\) protein).

Cost–benefit of alternative physiological measurements. A qualitative cost–benefit analysis was conducted to contrast the data returned relative to resource and time investment across the various physiological measurements. We identified the consumables and (capital) equipment required for each physiological measurement (Supplementary material S6). Cost of consumables per 100 samples was calculated from pricing available online or via direct quotes. No shipping or GST costs were included. The cost of equipment use per 100 samples was based on an approximation of how many samples were likely to be processed over a conservative lifespan of the respective item. Time estimates were based on our in-laboratory experiences processing the samples for this study (n = 779 fragments). Chlorophyll, protein, and catalase assays according to methods presented here, require the samples to be tissue blasted. Therefore, the cost and time requirement of tissue blasting should be accounted for if planning to conduct any of these. Similarly, these assays are standardised to fragment surface area, and the costs associated with this assay are therefore also included. No sample preservation costs were included in these estimates.

Statistical analyses. All statistical analyses were conducted in R\(^84\). The effects of fragment size were investigated by generalised linear mixed effects models. We assumed a Gaussian distribution of all dependent variables and checked for normality of modelled residuals and homoscedasticity of plotted residuals (package DHARMa\(^85\)). The models were fitted by restricted maximum likelihood and generated using the glmmTMB function in the R package glmmTMB\(^86\), where treatment (ambient vs high) and fragment size (large vs small) were used as fixed effects. Colony identity was fitted as a random effect with a random intercept\(^87\). Model fit was evaluated by assumption fit and R\(^2\)\(^88\). Adjusted p-values for the Post-hoc Tukey HSD tests were calculated using the single-step method.

Because of the decline in coral condition in the ambient treatment evident in the time effect in experiment, data were transformed to percent change in the heated treatment relative to ambient and modelled against a gaussian distribution using a linear mixed effects model using the glmmTMB R package\(^86\). Assumptions and homoscedasticity were confirmed as above. Time was modelled as a categorical variable rather than a continuous to allow direct, post-hoc comparisons between specific sampling times. Post-hoc comparisons were investigated with Tukey’s HSD tests.

The relative importance of multiple physiological metrics driving observed differences in thermal responses to acute heat stress was assessed by Principal Component Analysis (PCA) performed in R, using the package vegan\(^89\). Based on Eigenvalues (> 1), we used two principal components (PCs) to account for the variability within the data. PC1 (43%) and PC2 (21%) cumulatively accounted for 64% of the variance. Additionally, each physiological trait was correlated to each other and a heatmap produced using the lattice R package\(^90\).

Data availability
Data and associated code to produce the statistical and graphical components of this manuscript are available on JJVN’s GitHub (https://github.com/josephinenielsen/AcuteHeatStressMethods_SciReps.git).

Received: 23 May 2022; Accepted: 8 September 2022
Published online: 07 October 2022
References

1. Portner, H. O. et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (2019).
2. Genevier, L. G. C., Jamil, T., Raittos, D. E., Krokos, G. & Hotet, I. Marine heatwaves reveal coral reef zones susceptible to bleaching in the Red Sea. Glob. Chang. Biol. 25, 2338–2351 (2019).
3. Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science (80-.). 359, 80–83 (2018).
4. Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral–symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).
5. Suggett, D. J. & Smith, D. J. Coral bleaching patterns are the outcome of complex biological and environmental networking. Glob. Chang. Biol. 26, 68–79 (2020).
6. Baker, A. C., Glynn, P. W. & Riegl, B. Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar. Coast. Shelf Sci. 80, 435–471 (2008).
7. Brown, B. E., Dunne, R. P., Scoffin, T. P. & Le Tissier, M. D. A. Solar damage in intertidal corals. Mar. Ecol. Prog. Ser. 105, 219–230 (1994).
8. Suggett, D. J. & Smith, D. J. Interpreting the sign of coral bleaching as friend vs. foe. Glob. Chang. Biol. 17, 45–55 (2010).
9. Maynard, J. A., Anthony, K. R. N., Marshall, P. A. & Masiri, I. Major bleaching events can lead to increased thermal tolerance in corals. Mar. Biol. 155, 173–182 (2008).
10. Weis, V. M. The susceptibility and resilience of corals to thermal stress: adaptation, acclimatization or both?: NEWS and VIEWS. Mar. Ecol. Prog. Ser. 80, 219–224 (1995).
11. Pörtner, H. O. The susceptibility and resilience of corals to thermal stress: adaptation, acclimatization or both?: NEWS and VIEWS. Mar. Ecol. Prog. Ser. 80, 219–224 (1995).
12. Dixon, G. B. et al. Coral physiology and microbe dynamics under combined warming and ocean acidification. PLoS ONE 6, e26687 (2011).
13. Evensen, N. et al. Differential coral bleaching-contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 190, 15–25 (2015).
14. Leggat, W. et al. Differential responses of the coral host and their algal symbiont to thermal stress. PLoS ONE 6, e26687 (2011).
15. Nitschke, M. R. et al. Utility of photochemical traits as diagnostics of thermal tolerance amongst great barrier reef corals. Front. Mar. Sci. 5, 1–18 (2018).
16. Warner, M. E., Fitt, W. K. & Schmidt, G. W. Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc. Natl. Acad. Sci. 96, 8007–8012 (1999).
17. Fitt, W. K., Brown, B. E., Warner, M. E. & Dunne, R. P. Coral bleaching: Interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20, 51–65 (2001).
18. Tolosa, I., Treignier, C., Grover, R. & Ferrier-Pagès, C. Impact of feeding and short-term temperature stress on the content and isotopic signature of fatty acids, sterol, and alcohols in the scleractinian coral Turbinaria reniformis. Coral Reefs 30, 763–774 (2011).
19. Grottoli, A. G. et al. Coral physiology and microbiome dynamics under combined warming and ocean acidification. PLoS ONE 13, e0191156 (2018).
20. Chow, M. H., Tsang, R. H. L., Lam, E. K. Y. & Ang, P. Quantifying the degree of coral bleaching using digital photographic technique. J. Exp. Mar. Bio. Ecol. 479, 60–68 (2016).
21. Nielsen, J. V. et al. Physiological effects of heat and cold exposure in the common reef coral Acropora millepora. Coral Reefs 39, 259–269 (2020).
22. McLachlan, R. H., Price, J. T., Solomon, S. L. & Grottoli, A. G. Thirty years of coral heat-stress experiments: a review of methods. Coral Reefs 39, 885–902 (2020).
23. Edmunds, P. J. & Burgess, S. C. Correction: Size-dependent physiological responses of the branching coral Pocillopora verrucosa to elevated temperature and PCO2 (J. Exp. Biol. (2016) 219 (3896-3906) doi: 10.1242/jeb.146381). J. Exp. Biol. 221, 3896–3906 (2018).
24. Madin, J. S., Baird, A. H., Dornelas, M. & Connolly, S. R. Mechanical vulnerability explains size-dependent mortality of reef corals. Ecol. Lett. 17, 1008–1015 (2014).
43. Pausch, R. E., Williams, D. E. & Miller, M. W. Impacts of fragment genotype, habitat, and size on outplanted elkhorn coral success under thermal stress. Mar. Ecol. Prog. Ser. 592, 109–117 (2018).

44. Shenkar, N., Fine, M. & Loya, Y. Size matters: bleaching dynamics of the coral Oculina patagonica. Mar. Ecol. Prog. Ser. 294, 181–188 (2005).

45. Middlebrook, R., Anthony, K. R. N., Hoegh-Guldberg, O. & Dove, S. Heating rate and symbiotic productivity are key factors determining thermal stress in the reef-building coral Acropora formosa. J. Exp. Biol. 213, 1026–1034 (2010).

46. Hoey, A. J. et al. Recent advances in understanding the effects of climate change on coral reefs. Diversity 8, 12 (2016).

47. Marhofer, S. R. et al. Signatures of adaptation and acclimatization to reef flat and slope habitats in the coral pocillopora damicornis. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.704709 (2021).

48. Cornwell, B. et al. Widespread variation in heat tolerance and symbiont load are associated with growth tradeoffs in the coral acropora hyacinthus in palau. Elife 10, 1–15 (2021).

49. McClanahan, T. R. et al. Large geographic variability in the resistance of corals to thermal stress. Glob. Ecol. Biogeogr. 29, 2229–2247 (2020).

50. Magozzi, S. & Calosi, P. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming. Glob. Chang. Biol. 21, 181–194 (2015).

51. Drury, C., Manzello, D. & Lirman, D. Genotype and local environment dynamically influence growth, disturbance response and survivorship in the threatened coral, Acropora cervicornis. PLoS ONE 12, 1–21 (2017).

52. McLachlan, R. H., Dobson, K. L., Schmeltzer, E. R., Thurber, R. V. & Grottoli, A. G. A review of coral bleaching specimen collection, preservation, and laboratory processing methods. Peerj 9, 1–21 (2021).

53. Okubo, N., Motokawa, T. & Omori, M. When fragmented coral spawn? Effect of size and timing on survivorship and fecundity of fragmentation in Acropora formosa. Mar. Biol. 151, 353–363 (2007).

54. Bruno, J. F. Fragmentation in Madracis mirabilis (Duchasssing and Michelotti): How common is size-specific fragment survivorship in corals? J. Exp. Mar. Bio. Ecol. 230, 169–181 (1998).

55. Suggett, D. J. et al. Optimizing return-on-effort for coral nursery and outplanting practices to aid restoration of the Great Barrier Reef. Restor. Ecol. 27, 683–693 (2019).

56. Howlett, L., Camp, E. F., Edmondson, J., Henderson, N. & Suggett, D. J. Coral growth, survivorship and return-on-effort within nurseries at high-value sites on the Great Barrier Reef. PLoS ONE 16, 1–15 (2021).

57. Veal, C. J., Carmi, M., Fine, M. & Hoegh-Guldberg, O. Increasing the accuracy of surface area estimation using single wax dipping of coral fragments. Coral Reefs 29, 893–897 (2010).

58. Voolstra, C. R. et al. Contrasting heat stress response patterns of coral holobionts across the Red Sea suggest distinct mechanisms of thermal tolerance. Mol. Ecol. 30, 4466–4480 (2021).

59. Dove, S. et al. Response of holosymbiotic pigments from the scleractinian coral Montipora monstrosa to short-term heat stress. Limnol. Oceanogr. 51, 1149–1158 (2006).

60. Traylor-Knowles, N., Dobson, K. L., Schmeltzer, E. R., Thurber, R. V. & Grottoli, A. Growth, survivorship and return-on-effort within nurseries at high-value sites on the Great Barrier Reef. PLoS ONE 16, 1–15 (2021).

61. Schuback, N. et al. Single-turnover variable chlorophyll fluorescence as a tool for assessing phytoplankton photosynthesis and primary productivity: opportunities, caveats and recommendations. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.690607 (2021).

62. Macadam, A., Novell, C. J. & Quigley, K. Machine learning for the fast and accurate assessment of fitness in coral early life history. Remote Sens. 13, 1–17 (2021).

63. Teague, J., Willans, J., Allen, M. J., Scott, T. B. & Day, J. C. C. Applied marine hyperspectral imaging; coral bleaching from a spectral viewpoint. Spectrosc. Eur. 31, 13–17 (2019).

64. Davies, S. W., Riess, J. B., Marchetti, A. & Castillo, K. D. Symbiodinium functional diversity in the Coral Siderastrea siderea Is. Front. Mar. Sci. 8, 1–17 (2021).

65. Tang, J. et al. Increased ammonium assimilation activity in the scleractinian coral pocillopora damicornis but not its symbiont after acute heat stress. Front. Mar. Sci. 7, 1–10 (2020).

66. Sweet, M. et al. Species–specific variations in the metabolomic profiles of Acropora hyacinthus and Acropora millepora mask acute temperature stress effects in adult coral colonies. Front. Mar. Sci. 8, 1–15 (2021).

67. Newton, J. R., Smith-Keune, C. & Jerry, D. R. Thermal tolerance varies in tropical and sub-tropical populations of barramundi (Lates calcarifer) consistent with local adaptation. Aquaculture 308, S128–S132 (2010).

68. Waltham, N. J. & Sheaves, M. Acute thermal tolerance of tropical estuarine fish occupying a man-made tidal lake, and increased exposure risk with climate change. Estuar. Coast. Shelf Sci. 195, 173–181 (2017).

69. Iwabuchi, B. L. & Gosselin, L. A. Implications of acute temperature and salinity tolerance thresholds for the persistence of intertidal invertebrate populations experiencing climate change. Ecol. Evol. 10, 7739–7754 (2020).

70. Cox, J., Schubert, A. M., Travisano, M. & Putonti, C. Adaptive evolution and inherent tolerance to extreme thermal environments. BMC Evol. Biol. 12, 1–17 (2012).

71. Quigley, K. M., Lay, K. K. & Willis, B. L. Temperature and water quality-related patterns in sediment-associated Symbiodinium spp. impact symbiotic uptake and fitness of juveniles in the genus Acropora. Front. Mar. Sci. 4, 1–17 (2017).

72. Voolstra, C. R. et al. Extending the natural adaptive capacity of coral holobionts. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00214-3 (2021).

73. Cossiard, J. M. et al. Adjustable temperature array for characterizing ecological and evolutionary responses on thermal physiology. Methods Ecol. Evol. 2019, 1339–1346 (2019).

74. Smith, G. & Spillman, C. New high-resolution sea surface temperature forecasts for coral reef management on the Great Barrier Reef. Coral Reefs 38, 1039–1056 (2019).

75. Bainbridge, S. J. Temperature and light patterns at four reefs along the Great Barrier Reef during the 2015–2016 austral summer: understanding patterns of observed coral bleaching. J. Oper. Oceanogr. 10, 16–29 (2017).

76. Siebeck, U. E., Marshall, N. J., Kluter, A. & Hoegh-Guldberg, O. Monitoring coral bleaching using a colour reference card. Coral Reefs 25, 453–460 (2006).

77. Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science (80-.). 344, 895–899 (2014).

78. Saxby, T., Dennison, W. C. & Hoegh-Guldberg, O. Photosynthetic responses of the coral Montipora digitata to cold temperature stress. Mar. Ecol. Prog. Ser. 248, 85–97 (2003).

79. Desclaussaux, E. S. M., Desen, M. A., Shepherd, K. M., Jones, G. B. & Harrison, P. L. Air blasting as the optimal approach for the extraction of antioxidants in coral tissue. J. Exp. Mar. Bio. Ecol. 448, 146–148 (2013).

80. Holmes, G., Ortiz, J., Kaniewska, P. & Johnstone, R. Using three-dimensional surface area to compare the growth of two Pocilloporid coral species. Mar. Biol. 155, 421–427 (2008).

81. Naumann, M. S., Niggl, W., Laforsch, C., Glaser, C. & Wild, C. Coral surface area quantification-evaluation of established techniques by comparison with computer tomography. Coral Reefs 28, 109–117 (2009).

82. Ritchie, R. J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 89, 27–41 (2006).
Acknowledgements
The authors would like to thank multiple people who provided invaluable assistance with this project one way or another; C. Voolstra for initial discussions and brainstorming ideas for the experimental approach; V.J. Mocelin for field-trip logistics and execution and M. Nitschke for assistance with PAM data analysis; the staff at the National SeaSimulator Facility at the Australian Institute of Marine Science, in particular T. Barker who constructed and tested the system and S. Green who constructed the electronic controls. Both went above and beyond ensuring that the authors were equipped to set up and operate the system in the field in lieu of technicians and made the entire system extremely user-friendly. We wish to thank the AIMS Long Term Monitoring Program team and the crew of the RV Solander for field support. Finally, we acknowledge the Traditional Owners of the northern Great Barrier Reef whose sea country this data was gathered from.

Author contributions
J.J.V.N., D.J.S., and L.K.B. designed the experiment; J.J.V.N., G.M., and L.K.B. performed the experiments; J.J.V.N., G.M., K.R.F., and K.L.S. conducted the photo analysis and laboratory assays. J.J.V.N., K.L.S., and H.B.H. analysed the data; J.J.V.N., M.R.M., H.B.H., D.J.S., and L.K.B. provided input on data interpretation. J.J.V.N. wrote the manuscript with input from all authors. All authors approved the final version of the manuscript.

Funding
JJVN was supported by a James Cook University Postgraduate Research Scholarship. Research funds and resources were provided by Agouron, AIMS@JCU and The Australian Institute of Marine Science (AIMS) through internal appropriation to LKB.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-20138-2.

Correspondence and requests for materials should be addressed to J.J.V.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022