MAI Cancellation in DS/CDMA using a new Approach on WDS

Y. Jabrane, R. Iqdour, B. Ait Es said and N. Naja

Department of Physics, Cadi Ayyad University, Faculty of Sciences Semlalia, Avenue Prince My Abdellah, P.O. Box 2390, 40001, Marrakesh, Morocco

Abstract: The steeping chip weighting waveforms are used in Multiple Access Interference cancellation by emphasizing the received spreading signal, therefore, that allows to solve the problem of orthogonality for the chip waveforms. The goal of this study was to elaborate a useful method based on fuzzy systems to determine the despreading sequences weighted by the steeping chip weighting waveforms for Direct Sequence Code Division Multiple Access (DS/CDMA). The validity of the proposed method has been tested by numerical examples for an Additive White Gaussian Noise channels and shows that the parameter values of the chip weighting waveforms are good and the Bit Error Rate (BER) performance of the system does not undergone any degradation.

Key words: Direct sequence- code division multiple access- weighted despreading sequences- fuzzy systems- multiple access interference

INTRODUCTION

In a DS/CDMA system, the biggest problem limiting its performances and capacity is due to interference produced by multiple access of several users in the channel[1-2] (Multiple Access Interference MAI). Several studies have been made in the goal to reject MAI, but are disadvantaged by their computational complexity in the number of users and their requiring knowledge of delays, amplitudes and modulation waveforms of the desired user and the interfering users.

In a previous work[3-4], a method has been proposed to Weight Despreading Sequences (WDS) by stepping chip weighting waveforms, with the purpose to the MAI cancellation. The despreading sequences were expressed according to one parameter. This parameter has been adjusted in order to maximize the signal to interference plus noise ratio (SINR), nevertheless, for each spreading code the calculation of optimal values of this parameter which maximize SINR while varying the signal to noise ratio (SNR) is not so easy.

In this study, we propose a new method based on fuzzy systems to determine the WDS for a DS/CDMA system. Our goal is to reduce the complexity calculation of the optimal values of the parameter for each SNR by using the learning ability and the high-speed computational capacity features of fuzzy systems.

Model statement: We consider the system described by Huang and Tung-Sang[3], the transmitted signal relative to the kth user, given by:

\[S_k(t) = \sqrt{2P}b_k(t)a_k(t)\cos(\omega_c t + \Theta_k) \] (1)

Where P and \(\omega_c \), common to all users, are the transmitted power and the carrier frequency, respectively, \(\Theta_k \) is a random phase. \(b_k(t) \) is a binary data signal and \(a_k(t) \) is the spreading code, which have respectively \(T_b \) and \(T_c \) as durations where \(T_b = NT_c \) and \(N \) is the period of the spreading sequence, \(a_k(t) \) and \(b_k(t) \) are given by:

\[a_k(t) = \sum_{j=-\infty}^{\infty} a_j^{(k)} P_c(t - jT_c) \] (2)

\[b_k(t) = \sum_{j=-\infty}^{\infty} b_j^{(k)} P_b(t - jT_b) \] (3)

Thus, the received signal \(r(t) \) at the base station is given by:

\[r(t) = \sum_{k=1}^{K} S_k(t - \tau_k) + n(t) \]

\[= \sqrt{2P} \sum_{k=1}^{K} a_k(t - \tau_k) b_k(t - \tau_k) \cos(\omega_c t + \Phi_k) + n(t) \] (4)

\(K \) is the total number of active users, \(\tau_k \) and \(\Phi_k \) are random time delays and phases, respectively, which are related by: \(\Phi_k = \Theta_k - \omega_c \tau_k \), for \(1 \leq k \leq K \). \(n(t) \) is an Additive White Gaussian Noise.

Corresponding Author: Y. Jabrane, Department of Physics, Cadi Ayyad University, Faculty of Sciences Semlalia, Avenue Prince My Abdellah, P.O. Box 2390, 40001, Marrakesh, Morocco
Noise (AWGN) with tow-sided power spectral density \(N_0 \). The weighted despreading sequence for the \(k \)th receiver is given by [3]:
\[
\hat{a}_k(t) = \sum_{j=-\infty}^{\infty} a_j \left(t - jT_c \right) \left(\frac{k}{j} \right)_c \left(\frac{k}{j+1} \right)_c \quad \text{for } 0 \leq t \leq T_c,
\]
where \(\left(\frac{k}{j} \right)_c = a_\alpha \left(\frac{k}{j} \right)_j \) for \(0 \leq j \leq T_c \), is the \(j \)th chip weighting waveforms for the \(k \)th receiver conditioned on the status of three consecutive chips: \(\left(\frac{k}{j} \right)_c \) and \(\left(\frac{k}{j+1} \right)_c \) are given by:
\[
\begin{align*}
\left(\frac{k}{j} \right)_c &= a_\alpha \left(\frac{k}{j} \right)_j \quad \text{for } j \in [0, T_c) \\
\left(\frac{k}{j+1} \right)_c &= a_\alpha \left(\frac{k}{j+1} \right)_j \\
\end{align*}
\]
and \(a_\alpha \) is chosen equal to 10. We assume that \(\left(\frac{k}{j} \right)_j \) and \(\left(\frac{k}{j+1} \right)_j \) are given by [3]:
\[
\begin{align*}
\left(\frac{k}{j} \right)_j &= \begin{cases} 1 & \text{if } 0 \leq j \leq T_c \\
0 & \text{otherwise} \end{cases} \\
\end{align*}
\]

The elements of the chip weighting waveform vector \(\{w_1(t), w_2(t), w_3(t), w_4(t)\} \) are given by:
\[
\begin{align*}
w_1(t) &= \mathcal{L}(\varepsilon)P_T(t) + \mathcal{L}(\varepsilon)P_T(t) - \mathcal{L}(\varepsilon)P_T(t) - \mathcal{L}(\varepsilon)P_T(t) \\
w_2(t) &= \mathcal{L}(\varepsilon)P_T(t) + \mathcal{L}(\varepsilon)P_T(t) - \mathcal{L}(\varepsilon)P_T(t) - \mathcal{L}(\varepsilon)P_T(t) \\
w_3(t) &= \mathcal{L}(\varepsilon)P_T(t) + \mathcal{L}(\varepsilon)P_T(t) - \mathcal{L}(\varepsilon)P_T(t) - \mathcal{L}(\varepsilon)P_T(t) \\
w_4(t) &= \mathcal{L}(\varepsilon)P_T(t) + \mathcal{L}(\varepsilon)P_T(t) - \mathcal{L}(\varepsilon)P_T(t) - \mathcal{L}(\varepsilon)P_T(t)
\end{align*}
\]

The parameter of stepping chip weighting waveforms and \(\mathcal{L}(\varepsilon) \) is a monotonically decreasing function with \(\varepsilon \): \(\mathcal{L}(\varepsilon) = \left[C^{\frac{\varepsilon}{2}-1} \right] \), where the constant C is chosen equal to 10. We assume that \(\varepsilon = 0 \) and \(\Phi_0 = 0 \) for the \(i \)th receiver. The \(\text{SNR}_i \) is given by [3]:
\[
\text{SNR}_i = \frac{\mathcal{L}(\varepsilon)^2}{2k_0^2 \mathcal{L}(\varepsilon)k_0} = \frac{1}{\mathcal{L}(\varepsilon)^2}
\]

As can be seen from the Fig. 1, the values of the parameter \(\varepsilon \) should be tuned to its optimal for different values of \(k_b = \text{SNR} \), so the corresponding optimal values of \(\varepsilon \) to \(\text{SNR}=13 \text{ dB}, \text{SNR}=18 \text{ dB}, \text{SNR}=25 \text{ dB} \) are respectively nearly equal to 2.25, 3.2
and 8. That allows us to reduce the bit error rate in
detection given by:

\[
BER = \text{erfc}\left(\sqrt{\frac{\text{max}(\text{SINR})}}{2}\right)
\]

(10)

It is remarkable from eq. (8) and eq. (9) that it is not
easy to calculate the optimal values of \(\varepsilon \) for each
code in a given code set.

Fuzzy systems based determination: Takagi-Sugeno fuzzy systems\(^5\) form a very special class of
fuzzy systems because the conclusion of each rule is
crisp (not a fuzzy set). A typical single antecedent
fuzzy rule in a Takagi-Sugeno model of order \(d \) has
the form: \(R_k \) if \(x_t \) is \(A_k \) then:

\[
\hat{y}_{t,k} = p_k^{(d)}(x_t)
\]

(11)

for \(k = 1, 2, \ldots, c \). Where \(x_t \) is the input variable
\((x_t \in \mathbb{R}^n)\), \(A_k \) is a fuzzy set of \(R_k \) and \(p_k^{(d)}(x_t) \) is a
polynomial of order \(d \) in the components \(x_{t,j} \) of \(x_t \).

In the sequel, we will suppose \(d=1 \). For convenience,
we will write the conclusion of rule \(R_k \) relatively to
input \(x_t \) as:

\[
\hat{y}_{t,k} = x_t, \beta_k
\]

(12)

Where,

\[
\beta_k = (\beta_1, \cdots, \beta_n)^T
\]

(13)

An intercept is allowed in the conclusion \(\hat{y}_{t,k} \) if
we suppose \(x_{t,1} = 1 \) (bias term). Output \(\hat{y}_t \) relative
to input \(x_t \) obtained after aggregating a set of \(c \) TS
rules can be written as a weighted sum of the
individual conclusions:

\[
y_t = \sum_{k=1}^{c} \Pi(x_t) \hat{y}_{t,k}
\]

(14)

\[
\Pi(x_t) = \frac{\mu_{A_k}(x_t)}{\sum_{j=1}^{c} \mu_{A_j}(x_t)}
\]

(15)

Where \(\mu_{A_k} \) is the membership function related
to the fuzzy set \(A_k \). The setting up of a fuzzy system
requires two types of tuning\(^6\):

Structural tuning: The number of the fuzzy rules \(c \)
and the antecedent fuzzy sets \((A_k, k = 1, \ldots, c)\) are
identified. Many techniques are available in the
literature. In this study we used an exhaustive
method, based on the use of the Gustafson-Kessel
(GK) fuzzy clustering algorithm, which consists to
initialise and to adjust the parameters for each
selected structure, while starting with a system with
two rules \((c = 2)\). The optimal number of the clusters \(c \) is that which gives a minimal value of the Root
Mean Squares Error (RMSE) validity criterion.

Parametric tuning: The model parameters (linear
and non-linear) are estimated. The goal of the
parameters optimisation is to find the best
approximation \(\hat{y}_t \) to the measured output \(y_t \). The
linear parameters \(\beta_k \) are identified using the
Weighted Least Square (WLS) algorithm, while the
Levenberg-Marquardt (LM) algorithm is using to
estimate the non linear parameters \((S_k \) and \(m_k)\).
The TS Fuzzy model employed has eight inputs and
one output: Seven of the inputs are bound directly to
the used code\(^7-8\):

\[
\begin{pmatrix}
\hat{y}_t \in [-1,-1,1] \times [-1,-1,1] \times [-1,-1,1] \\
\left[\Gamma^I \right] \\
\left[\Gamma^II \right] \\
\left[\Gamma^III \right] \\
\left[\Gamma^IV \right] \\
\left[\Gamma^V \right] \\
\left[\Gamma^VI \right] \\
\left[\Gamma^VII \right] \\
\end{pmatrix}
\]

The last input is \(k_h \) and the output of the TS
fuzzy model is \(\varepsilon_{f_k} \). The \(k_h \) values of training data
have been taken from the range of \([0.25\ dB, 25\ dB]\).

Code	011000100101010110101111111011011
Code 2	011000100101010110101111111011011
Code 3	00000000100110101001111111011011
Code 4	00000001001001001001101111111101
Code 5	00110000001100010010011011111111
Code 6	11001001001100110011010111011000
Code 7	10010001001101001001100111111111
Code 8	00100000001111111010011011111111
Code 9	10011110111000111000101011111111

Table 1: Code of N=31

In this section, we present the numerical results
of our proposed method with \(k=9 \) as number of users.
The used codes in Table 1 are those of Gold having
\(N=31 \) for their good correlation properties\(^9-10\). Table
2 gives \(\varepsilon_{f_k} \) and \(\varepsilon_{opt} \) for each code and allow us to
train our TS fuzzy model for different values of \(k_h \).

RESULTS AND DISCUSSION

After learning, the TS fuzzy model generalize the
relation between the optimal values of \(\varepsilon \) (= \(\varepsilon_{opt} \))
and spreading code while varying \(k_h \) values to maximize

Fig. 2: The \(\varepsilon_{f_k} \) and \(\varepsilon_{opt} \) versus their number (K=9)
TABLE 2: Quantities $\Gamma^{(i)}_{[v_1, v_2, v_3]}$ and \hat{N}_i of the code set having $N=31$

code	$\Gamma^{(i)}_{[-1,-1,-1]}$	$\Gamma^{(i)}_{[-1,-1,1]}$	$\Gamma^{(i)}_{[-1,1,-1]}$	$\Gamma^{(i)}_{[-1,1,1]}$	$\Gamma^{(i)}_{[1,-1,-1]}$	$\Gamma^{(i)}_{[1,-1,1]}$	$\Gamma^{(i)}_{[1,1,-1]}$	$\Gamma^{(i)}_{[1,1,1]}$	\hat{N}_i
1	10	8	4	4	2	3	20		
2	2	4	8	4	6	7	12		
3	4	8	8	4	3	16			
4	2	8	8	2	2	9	12		
5	4	8	8	4	4	3	16		
6	2	8	8	6	6	1	16		
7	9	10	6	3	1	2	20		
8	4	8	8	4	4	3	16		
9	3	10	10	3	3	2	16		

ϵ_{opt} and ϵ_{fs}. Figure 3 illustrates, for different values of unseen k_b, the optimal values of the parameter ϵ_{opt} calculated directly by eq. (8) and eq. (9) and the results given by the TS fuzzy model ϵ_{fs}. According to this figure, we can conclude that the values obtained by the TS fuzzy model and the optimal values are identically near.

Figure 4 describes the bit error rate (BER) performances of the ith user’s receiver versus k_b when the values given by the TS fuzzy model and the optimal values are used in the performance expression given by eq. (10). We remark that the BER does not undergo any degradation. It remains to note that the same results are obtained for the other codes given in Table 1. Another manner to prove the validity of our model consists to compute the RMSE (Root Mean Square Error) of both phases: training and test. The RMSE is given by:

$$RMSE = \sqrt{\frac{1}{m_f} \sum_{l=1}^{m_f} (\epsilon_{opt}(l) - \epsilon_{fs}(l))^2}$$ (12)

For 500 iterations, The RMSEs were 0.015 and 0.016 for the training and test (unseen k_b) phases, respectively. As we do not obtain a greater error these results are in good agreement with those given on the figures.

CONCLUSION

In this study, a new method based on Takagi-Sugeno fuzzy systems permitted us to determine easily the optimal values of ϵ while varying the SNR and therefore the determination of the despreading sequences weighted by stepping chip weighting waveforms for a DS-CDMA system. It is worth concluding from the numerical evaluations that we get the nearly optimal values of $\epsilon = \epsilon_{opt}$ quickly and easily by the proposed method and the bit error
rate performance does not undergo any degradation while using the values obtained ε_{fs} instead of the optimal values.

REFERENCES

1. Verdu, S., 1986. Minimum probability of error for asynchronous Gaussian multiple-access channels. IEEE Trans. Inform. Theory., pp: 85-96.
2. Jabrane, Y., R. Iqdour, B. Ait Essaid and N. Naja, 2005. Comparison of performances in cancellation of interferences in a CDMA system between two methods of detection conventional and maximum likelihood. AMSE International conference on modeling and simulation, 22-23-34 November 2005. Marrakesh, Morocco.
3. Huang, Y. and T. S. Ng, 1999. A DS-CDMA system using despreading sequences weighted by adjustable chip waveforms. IEEE Trans. Commun., 47: 1884-1896.
4. Monk, A. M., M. Davis and C. W. Helstrom, 1994. A noise-weighting approach to multiple access noise rejection -part I: theory and background. IEEE J. Select Areas. Comm., 12: 817-827.
5. Fiordaliso, A., 1999. Systèmes flous et prévision de séries temporelles. Hermes Science.
6. Bernadette, B. M. and C. Marsala, 2003. Logique floue, principes, aide à la décision. Hermes.
7. Jabrane, Y., R. Iqdour, B. Ait Essaid, N. Naja and S. Soukri, 2007. Neural Networks for Interferences suppression in DS/CDMA with Rayleigh fading channel and power control error. Science Publications JCS., 3: 174-179.
8. Jabrane, Y., R. Iqdour, B. Ait Essaid and N. Naja, 2006. Determination of weighted despreading sequences for a DS/CDMA system using a new method. IEEE section, 4th International Conference JTEA 12-14 Mai 2006, Tunisie.
9. Dinan, H. and E. B. Jabbari, 1998. Spreading codes for direct sequence CDMA and wideband CDMA cellular networks. IEEE Comm. Mag., 36: 48-54.
10. Kärkkäinen, H. A. and K. P. A. Leppänen, 2000. The influence of initial-phases of a PN code set on the performance of an asynchronous DS/CDMA system. Wirless Pers.Commun., 13: 279-293.