Risk Factors for the Development of Fistulae and Stenoses in Crohn Disease Patients in the Swiss Inflammatory Bowel Disease Cohort

Jonas Zeitza Nicolas Fournierb Christian Labenza, g Luc Biedermanna Pascal Freic Benjamin Misselwitza Sylvie Scharla Stephan R. Vavrickaa, d, e Michael C. Sulzf Michael Frieda, d Gerhard Roglera, d Michael Scharla, d
for the Swiss Inflammatory Bowel Disease Cohort Study Group

aDivision of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, bInstitute of Social and Preventive Medicine, Université de Lausanne, Lausanne, cDepartment of Gastroenterology, Gastroenterology Bethanien, dZurich Center for Integrative Human Physiology, University of Zurich, and eDepartment of Gastroenterology, Triemli Spital, Zurich, and fDepartment of Gastroenterology and Hepatology, Kantonsspital St. Gallen, St. Gallen, Switzerland; gDepartment of Internal Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany

Keywords
Crohn disease · Fistula · Inflammatory bowel disease · Risk factors · Stenosis

Abstract

\textbf{Background:} Fistulae and stenoses represent frequent and severe complications in patients with Crohn disease (CD). Our study aimed to identify risk factors for fistula and stenosis formation in CD patients. \textbf{Summary:} We retrieved data of 1,600 CD patients from the nationwide Swiss Inflammatory Bowel Disease Cohort Study (SIBDCS). The risk for fistulae and stenoses in relation to gender, age at diagnosis, smoking status at diagnosis, and ileal involvement at diagnosis were analyzed. In the multivariate analysis, female gender showed a lower risk for developing perianal and any fistula (risk ratio [RR] 0.721, 95% confidence interval [CI] 0.582–0.893, \(p = 0.003 \)) and RR 0.717, 95% CI 0.580–0.888, \(p = 0.002 \), respectively), and older age at diagnosis showed a lower risk for developing perianal fistula (RR 0.661, 95% CI 0.439–0.995, \(p = 0.047 \)). Furthermore, ileal involvement was associated with a lower risk for perianal fistula (RR 0.713, 95% CI 0.561–0.906, \(p = 0.006 \)), a lower risk for any fistula (RR 0.709, 95% CI 0.558–0.901, \(p = 0.005 \)), and a higher risk for stenosis (RR 2.170, 95% CI 1.728–2.725, \(p < 0.001 \)). \textbf{Key Messages:} In the nationwide SIBDCS, younger age at diagnosis and male gender were risk factors for developing perianal and nonperianal fistulae. Additionally, ileal involvement was revealed to be a potent risk factor (RR 2.170) for developing a stenosis.

Introduction

Environmental, genetic, and immunological factors as well as the intestinal microbiota have been considered as the major etiological factors in the pathogenesis of inflammatory bowel disease (IBD) [1]. Evidence suggests that the development of IBD is the result of an inappro-

J.Z. and N.F. contributed equally to this work.
Clinical studies proposed that an early diagnosis of IBD or an appropriate treatment strategy early. To further address this aim, here, we evaluated the well-characterized patient collective of the Swiss IBD Cohort Study (SIBDSCS). Our analysis included 1,600 CD patients, thus providing a robust basis for the analysis of risk factors that are associated with the occurrence of fistulae and stenoses.

Patients affected by fistulae often have an impaired quality of life, as these can be painful and may impair psychosocial and sexual function; external fistulae can show significant discharge. Furthermore, the risk for infections is considerable, since fistulae are often the basis for the formation of abscesses because of insufficient drainage of the fistula tract. All these factors also negatively influence the social life and partnership of fistula patients [20, 21]. Besides intestinal and perianal fistulae, the development of strictures is another frequent and severe health issue with clinical features of a sub-ileus or ileus that requires endoscopic or surgical management, including segmental resection, in CD patients [5].

To date, little is known about the pathophysiology as well as the risk factors for the development of CD-associated fistulae. We recently demonstrated a key role for epithelial-to-mesenchymal transition in fistula pathogenesis [22–27]. Previous studies have demonstrated that the extent of disease at diagnosis is associated with the development of fistulae [5]. In contrast, patients with ileitis alone and patients after laparotomy in combination with resection of the bowel have a reduced risk [28].

A further problem that affects both CD and ulcerative colitis patients is intestinal fibrosis and the resulting intestinal stenosis. A key problem with respect to inflammation-associated intestinal fibrosis is the fact that anti-inflammatory strategies, such as anti-TNF antibodies or immunosuppressants, are not effective in resolving already existing fibrosis and that no specific antifibrotic medical therapy currently exists [29]. But recent evidence indicates that most stenotic lesions in CD have a mixed component (fibrosis plus inflammation), and a differentiation can be important for the therapeutic management. A recent study by Rimola et al. [30] indicated that MRI can discriminate different degrees of coexisting fibrosis and inflammation in CD bowel lesions.

From a clinical point of view, therefore, it is essential to identify patient characteristics predicting the development of fistulae and/or stenoses in CD. In the past, tools to predict CD behavior, including clinical, serologic, and genetic markers, have been assessed, albeit with limited success [31]. An increase in knowledge would help to stratify patients according to their risk profile for developing a complicated disease course and to initiate the appropriate treatment strategy early. To further address this aim, here, we evaluated the well-characterized patient collective of the Swiss IBD Cohort Study (SIBDSCS). Our analysis included 1,600 CD patients, thus providing a robust basis for the analysis of risk factors that are associated with the occurrence of fistulae and stenoses.
Methods

Study Design
Patient data were entirely obtained from the register of the nationwide SIBDCS, in which patients with IBD from all regions of Switzerland have prospectively been included since 2006 [32]. The cohort study is supported by the Swiss National Science Foundation and was approved by the local ethical committees (institutional review board approval No. EK-1316, approved on February 5, 2007, by the Cantonal Ethics Committee of the Canton Zurich, Switzerland). The cohort goals and methodology are described elsewhere [32]. We included all of the 1,600 CD patients that were enrolled in the study at the time of data acquisition.

On the one hand, we aimed to identify predictive factors for the development of fistulae and stenoses/strictures in CD. We took 4 covariates into account that do not change over time and are known from the start: gender, age at diagnosis, smoking status at diagnosis, and ileal involvement at diagnosis. We analyzed 4 different kinds of outcomes: perianal fistula, other type of fistula (i.e., nonperianal fistula), any fistula, and stenosis.

On the other hand, we analyzed factors associated with fistulae and stenoses/strictures at the time of occurrence. For this purpose, clinical phenotypes were classified regarding disease location, which was categorized into 1 of 4 groups according to the Montreal classification and was analyzed separately for initial location and current location: ileal disease with or without disease limitation to the cecum (L1), a disease limited to the colon (L2), an ileal disease with disease of the colon beyond the cecum (L3), and additively disease of the upper gastrointestinal tract (L4). We also assessed the history of intestinal surgery. Patients with fistulae were classified into 4 groups: perianal fistula, other type of fistula (i.e., nonperianal fistula), multiple fistulae, and any type of fistula. Perianal fistula and other type of fistula were distinct categories, whereas multiple fistulae and any type of fistula were overlapping with perianal fistula and other type of fistula. Stenoses/strictures were analyzed as any intestinal stenosis. Gender, age at diagnosis, and a smoking history were also taken into account. We further obtained data on therapy with 5-aminosalicylate (5-ASA), antibiotics, steroids, immunosuppressants (azathioprine/6-mercaptopurine), calcineurin inhibitors, and anti-TNF drugs (infliximab, adalimumab, and certolizumab) at enrollment or according to the development of fistulae and stenoses/strictures in CD. We took 4 covariates into account that do not change over time and are known from the start: gender, age at diagnosis, smoking status at diagnosis, and ileal involvement at diagnosis. We analyzed 4 different kinds of outcomes: perianal fistula, other type of fistula (i.e., nonperianal fistula), any fistula, and stenosis.

Statistical Analysis
Clinical data were retrieved from the data center of the SIBDCS at the University of Lausanne. These data and additional data obtained from a review of the patients’ files were entered into a database (Access 2000; Microsoft Switzerland Ltd Liab. Co., Wallisellen, Switzerland). The Statistical Package for the Social Sciences (SPSS, version 21, Chicago, IL, USA) was used for the statistical analysis.

Regarding the risk for developing fistulae and stenoses, for the covariates that do not change over time and are known from the start (gender, age at diagnosis, smoking status at diagnosis, and ileal involvement at diagnosis) a Cox proportional hazards analysis and a multivariate logistic regression model were calculated including all the covariates in the model at the same time. A risk ratio (RR) < 1 means that the risk for complications is diminished, while a RR > 1 means that the risk is increased in that particular group.

Table 1. SIBDCS patient characteristics

Variable	Value
Gender	
Male	762 (47.6)
Female	838 (52.4)
Age at diagnosis, years	
Median	26
IQR	20–37
Range	1–81
Age, years	
Median	39
IQR	28–52
Range	16–88
Initial CD location	
L1 (ileal)	368 (23.0)
L2 (colonic)	329 (20.6)
L3 (ileocolonic)	719 (44.9)
L4 (upper GI tract only)	13 (0.8)
Other/unknown/unclear	171 (10.7)
Current CD location (at enrollment)	
L1 (ileal)	464 (29.0)
L2 (colonic)	492 (30.8)
L3 (ileocolonic)	572 (35.8)
L4 (upper GI tract only)	16 (1.0)
Other/unknown/unclear	56 (3.5)
Smoking status at diagnosis	
Nonsmoker	754 (47.1)
Smoker	836 (52.3)
Unknown	10 (0.6)
Smoking status at enrollment	
Nonsmoker	955 (59.7)
Smoker	635 (39.7)
Unknown	10 (0.6)
Medication history (“ever treated with”)	
5-ASA	888 (55.5)
Antibiotics	604 (37.8)
Steroids	1,303 (81.4)
Immunosuppressants	1,232 (77.0)
Anti-TNF agents	687 (42.9)
Calcineurin inhibitors	19 (1.2)
Current medication (at enrollment)	
5-ASA	290 (18.1)
Antibiotics	68 (4.3)
Steroids	469 (29.3)
Immunosuppressants	792 (49.5)
Anti-TNF agents	519 (32.4)
Calcineurin inhibitors	3 (0.2)
Intestinal resection surgery history	
None	1,031 (64.4)
Yes	569 (35.6)
Outcomes	
Perianal fistula	213 (13.3)
Nonperianal fistula	321 (20.1)
Multiple fistulae	105 (6.6)
Any type of fistula	482 (30.1)
Any stenosis	537 (33.6)

Values are n (%) unless otherwise indicated. SIBDCS, Swiss Inflammatory Bowel Disease Cohort Study; IQR, interquartile range; CD, Crohn disease; GI, gastrointestinal; 5-ASA, 5-aminosalicylate; TNF, tumor necrosis factor.
Table 2. Risk factors for perianal, nonperianal, and other fistulae as well as stenoses in the univariate and multivariate analyses

	Univariate analysis		Multivariate analysis	
	risk ratio 95% CI	p value	risk ratio 95% CI	p value
Outcome: perianal fistulae				
Gender				
Male	1.000 (ref) – –	–	1.000 (ref) – –	–
Female	0.727 0.596–0.886	0.002	0.721 0.582–0.893	0.003
Age at diagnosis				
≤17 years	1.000 (ref) – –	–	1.000 (ref) – –	–
18–40 years	1.032 0.786–1.354	0.822	0.951 0.703–1.288	0.747
>40 years	0.740 0.506–1.082	0.121	0.661 0.439–0.995	0.047
Smoker at diagnosis				
No	1.000 (ref) – –	–	1.000 (ref) – –	–
Yes	1.027 0.842–1.253	0.793	1.062 0.849–1.330	0.597
Ileal involvement at diagnosis				
No	1.000 (ref) – –	–	1.000 (ref) – –	–
Yes	0.740 0.586–0.934	0.011	0.713 0.561–0.906	0.006
Outcome: nonperianal fistulae				
Gender				
Male	1.000 (ref) – –	–	1.000 (ref) – –	–
Female	1.273 0.988–1.640	0.062	1.399 1.065–1.837	0.016
Age at diagnosis				
≤17 years	1.000 (ref) – –	–	1.000 (ref) – –	–
18–40 years	0.899 0.703–1.288	0.747	0.836 0.580–1.203	0.335
>40 years	0.723 0.439–0.995	0.047	0.612 0.369–1.017	0.058
Smoker at diagnosis				
No	1.000 (ref) – –	–	1.000 (ref) – –	–
Yes	1.257 0.973–1.624	0.080	1.151 0.867–1.527	0.331
Ileal involvement at diagnosis				
No	1.000 (ref) – –	–	1.000 (ref) – –	–
Yes	1.123 0.817–1.543	0.474	1.098 0.790–1.526	0.577
Outcome: any fistula				
Gender				
Male	1.000 (ref) – –	–	1.000 (ref) – –	–
Female	0.837 0.706–0.994	0.042	0.717 0.580–0.888	0.002
Age at diagnosis				
≤17 years	1.000 (ref) – –	–	1.000 (ref) – –	–
18–40 years	1.029 0.784–1.351	0.837	0.951 0.702–1.289	0.746
>40 years	0.722 0.494–1.056	0.093	0.663 0.439–1.002	0.051
Smoker at diagnosis				
No	1.000 (ref) – –	–	1.000 (ref) – –	–
Yes	1.106 0.930–1.316	0.254	1.063 0.850–1.330	0.594
Ileal involvement at diagnosis				
No	1.000 (ref) – –	–	1.000 (ref) – –	–
Yes	0.895 0.727–1.101	0.295	0.709 0.558–0.901	0.005
Crude differences about the development of fistulae and stenoses in relation to smoking status, disease location, age at diagnosis, medications, and history of intestinal resection surgery were assessed using the Pearson χ^2 test or the Fisher exact test (Fisher exact test used if strata comprised a sample size ≤ 5). A multivariate logistic regression model was calculated including only factors that were significant in the univariate analysis to identify risk factors for fistulae or stenoses.

Results

Patients’ Characteristics

In total, we included 1,600 CD patients for the retrospective analysis of pre-enrollment data. The detailed characteristics are summarized in Table 1.

Univariate Analysis Identifies Male Gender and Younger Age at Diagnosis as Risk Factors for the Development of Fistulae

In the univariate analysis, female gender was associated with a lower risk for developing perianal fistulae (RR 0.727, 95% confidence interval [CI] 0.596–0.886, $p = 0.002$) and any fistula (RR 0.837, 95% CI 0.706–0.994, $p = 0.042$), while there was a nonstatistically significant trend towards a higher risk for developing nonperianal fistulae (RR 1.273, 95% CI 0.988–1.640, $p = 0.062$) (Table 2). While age at diagnosis had no influence on the development of perianal fistulae, older age at diagnosis (>40 years) compared to age at diagnosis of <18 years was associated with a lower risk for developing nonperianal fistulae (RR 0.723, 95% CI 0.439–0.995, $p = 0.047$) and with a trend towards a lower risk for any fistula (RR 0.722, 95% CI 0.494–1.056, $p = 0.093$). Regarding smoking status at diagnosis, there was a trend towards a development of nonperianal fistulae in smokers (RR 1.257, 95% CI 0.973–1.624, $p = 0.080$) (Table 2). Ileal involvement at diagnosis was associated with a lower risk for developing perianal fistulae (RR 0.740, 95% CI 0.586–0.934, $p = 0.011$) with no statistical difference for developing nonperianal or any fistula (Table 2).

Multivariate Analysis Confirms Male Gender and Younger Age at Diagnosis as Risk Factors for the Development of Fistulae

In the multivariate analysis, female gender was associated with a lower risk for developing perianal fistulae (RR 0.721, 95% CI 0.582–0.893, $p = 0.003$) and any fistula (RR 0.717, 95% CI 0.580–0.888, $p = 0.002$) and with a higher risk for developing nonperianal fistulae (RR 1.399, 95% CI 1.065–1.837, $p = 0.016$) (Table 2), which is in line with the data from the univariate analysis. While age at diagnosis had no influence on the development of perianal fistulae in the univariate analysis, in the multivariate analysis older age at diagnosis (>40 years) compared to an age of diagno-

Table 2 (continued)

Outcome: stenoses	Univariate analysis						
Gender							
Male	1.000 (ref)				1.000 (ref)		
Female	0.912	0.782–1.063	0.238	0.918	0.784–1.075	0.289	
Age at diagnosis							
≤17 years	1.000 (ref)				1.000 (ref)		
18–40 years	0.977	0.793–1.203	0.827	1.022	0.813–1.284	0.855	
>40 years	1.170	0.903–1.517	0.235	1.112	0.841–1.470	0.456	
Smoker at diagnosis							
No	1.000 (ref)				1.000 (ref)		
Yes	1.141	0.980–1.328	0.089	0.992	0.841–1.170	0.922	
Ileal involvement at diagnosis							
No	1.000 (ref)				1.000 (ref)		
Yes	2.153	1.723–2.691	<0.001	2.170	1.728–2.725	<0.001	

CI, confidence interval; ref, reference.
sis <18 years was associated with a lower risk for developing perianal fistulae (RR 0.661, 95% CI 0.439–0.995, \(p = 0.047 \)) and with a trend towards a lower risk for nonperianal (RR 0.612, 95% CI 0.369–1.017, \(p = 0.058 \)) and any fistula (RR 0.663, 95% CI 0.439–1.002, \(p = 0.051 \)) (Table 2).

While there was a trend towards the development of nonperianal fistula in smokers at diagnosis, there was no statistical difference for developing perianal, nonperianal, and any fistula in the multivariate analysis. Ileal involvement at diagnosis was associated with a lower risk for developing perianal fistula (RR 0.713, 95% CI 0.561–0.906, \(p = 0.006 \)), as in the univariate analysis, and any fistula (RR 0.709, 95% CI 0.558–0.901, \(p = 0.005 \)) with no risk for the development of nonperianal fistula (RR 1.098, 95% CI 0.790–1.526, \(p = 0.577 \)) (Table 2).

Univariate Analysis Identifies Smoking and Ileal Involvement at Diagnosis as Risk Factors for the Development of Stenoses

In the univariate analysis, there was no significant difference in the risk for developing stenoses when comparing gender and age at diagnosis (≤17, 18–40, and >40 years). On the other hand, smoking at diagnosis was associated with a trend towards a higher risk for developing stenoses (RR 1.141, 95% CI 0.980–1.328, \(p = 0.089 \)). Ileal involvement at diagnosis was associated with a significant risk for developing stenoses (RR 2.153, 95% CI 1.723–2.691, \(p < 0.001 \)) (Table 2).

Multivariate Analysis Identifies Ileal Involvement at Diagnosis as a Risk Factor for the Development of Stenoses

In the multivariate analysis, there was no significant difference in the risk for developing stenoses when comparing gender, age at diagnosis (≤17, 18–40, and >40 years), and smoking. On the other hand, as in the univariate analysis, ileal involvement at diagnosis was associated with a highly significant risk for developing stenoses (RR 2.170, 95% CI 1.728–2.725, \(p < 0.001 \)) (Table 2).

Markers of Severe Disease Course Are Associated with the Occurrence of Fistulae and Stenoses/Structures in CD at the Time of Occurrence

Factors Associated with the Occurrence of Fistulae in CD

In the univariate analysis, female gender was associated with perianal fistulae (see online suppl. material, www.karger.com/doi/10.1159/000458144). Younger age at diagnosis of CD as well as at the time of enrollment was associated with perianal and multiple fistulae. Compared to ileal disease at the time of initial diagnosis, ileocolonic or colonic CD manifestation was associated with the occurrence of fistulae. During follow-up, colonic CD was associated with a higher likelihood of perianal as well as any fistula. Smoking at the time of initial diagnosis was associated with perianal fistulae. On the other hand, smoking was not significantly associated with nonperianal fistulae. The current smoking status did not significantly affect the incidence of fistulae at all. 5-ASA use was associated with a lower incidence of nonperianal fistulae.

In the multivariate analysis, a history of antibiotics, immunosuppressants, and anti-TNF agents was associated with the occurrence of perianal, nonperianal, and any fistula, while treatment with steroids was not. Use of antibiotics, anti-TNF antibodies, and calcineurin inhibitors at any time was also associated with the development of multiple fistulae. Both a stenosis and a history of intestinal resection were associated with formation of perianal fistula, nonperianal fistula, multiple fistulae, and fistula of any type. In contrast, anemia was not associated with an increased occurrence of fistulae. Multivariate analysis identified male gender, smoking, colonic involvement of CD, stenosis, and use of, or ever having been treated with, antibiotics as well as anti-TNF agents to be associated with perianal fistulae (see online suppl. material). Disease duration, colonic CD, a history of intestinal resection, stenosis, and treatment with antibiotics and/or anti-TNF agents were independently associated with the occurrence of nonperianal fistulae, while a history of 5-ASA use was inversely associated with the occurrence of nonperianal fistulae (see online suppl. material). The detected associations for multiple fistulae were quite similar. Disease duration, an initial colonic or ileocolonic CD location, use of antibiotics and/or anti-TNF agents at any time, current treatment with antibiotics, and an intestinal resection surgery history were independently associated with occurrence of multiple fistulae (see online suppl. material). Independent factors associated with any fistula were initial colonic or ileocolonic CD, treatment with antibiotics and/or anti-TNF agents at any time, current treatment with antibiotics, intestinal resection surgery history, and stenosis in the disease history. Female gender was identified as an independent factor that lowered the risk for developing any fistula (see online suppl. material).

Factors Associated with the Occurrence of Stenoses/Structures in CD

In the univariate analysis, gender, age, and disease duration were not associated with stenosis. Colonic involvement in CD had an inverse association with stenosis com-
pared to ileal disease as the reference. Smoking at any
time was slightly associated with the development of ste-
nosis. Treatment with antibiotics, steroids, or immuno-
modulators at any time was associated with the occur-
rence of stenosis. Anemia, a history of intestinal resec-
tion, and fistulae of any type were also associated with
the onset of stenosis in CD patients (see online suppl. ma-
terial). Multivariate analysis identified disease duration, fis-
tulae, a history of intestinal resection, anemia, and treat-
ment with antibiotics and steroids in the past to be inde-
pendently associated with stenosis, while colonic CD was
inversely associated with stenosis (see online suppl. ma-
terial). Only statistically significant results are mentioned
in the multivariate analysis.

Discussion

Using data from 1,600 SIDBCS patients, we showed
that younger age at diagnosis and male gender are associ-
ated with a higher risk for developing perianal and non-
perianal fistulae. Furthermore, ileal involvement was re-
vealed to be a potent risk factor for developing stenoses.

Also, when assessing factors that are associated with
current fistulae and stenoses, younger age at diagnosis as
well as at enrollment, an ileocolic, colonic, or upper
gastrointestinal manifestation, and a history (but not cur-
rent use) of antibiotic, immunosuppressant, or anti-TNF
antibody treatment were associated with both fistulae and
stenoses. This supports the hypothesis that markers of a
severe disease course in IBD can indicate the develop-
ment of fistulae and stenoses.

Cosnes et al. [33, 34] demonstrated that in the evolu-
tion of the disease the initial location of the lesions was
the main determinant of the time and type of the compli-
cation in CD. Our study revealed that ileal involvement
at diagnosis was a potent risk factor for developing steno-
sis. Furthermore, in our additional analysis of factors that
were associated with the occurrence of fistulae, ileoco-
lonic, colonic, or upper gastrointestinal manifestations of
CD were associated with fistula formation.

When assessing the role of age in the development of
fistulae and stenoses, younger age at diagnosis was a risk
factor for developing perianal fistula. In contrast, surpris-
ingly, a young age at diagnosis was no risk factor for the
development of stenosis. This supports the hypothesis
that fistulae and stenoses might be due to different patho-
genic mechanisms. In the additional analysis of associat-
ed factors, younger age at diagnosis as well as at the time
of enrollment was associated with current perianal and
multiple fistulae. These data are also supported by Cosnes
et al. [33], who showed that the development of a pen-
etrating complication was predicted by being younger
than 40 years at diagnosis, and in younger patients, the
clinical course of CD seems to be more complicated [35].

We also assessed the role of smoking in the develop-
ment of fistulae and stenoses in CD. To date, the evidence
strongly suggests that smoking adversely affects outcome
of CD [36]. In a meta-analysis by Reese et al. [37] of 16
observational studies of 2,962 CD patients, it was demon-
strated that patients with CD who smoked had a 2.5-fold
increased risk for surgical recurrence and a 2-fold risk for
clinical recurrence compared to nonsmokers. In our
study, smoking revealed a trend towards a higher risk for
developing nonperianal fistula and stenosis.

However, in the additional analysis of the association
of smoking with the development of fistulae and stenoses,
current smoking status, compared to smoking at the ini-
tial diagnosis, was not associated with the occurrence of
fistulae at all. A limitation which might have influenced
our results is that we do not have information on the
number of cigarettes smoked per day and on the duration
of current smoking, even though in the literature it was
shown that also light smoking has significant adverse ef-
fects on the outcome in CD patients [38].

In a meta-analysis of 3 large double-blind randomized
studies on the treatment of active CD it was found that
Pentasa 4 g/day is superior to placebo in reducing the CD
Activity Index (CDAI), but the clinical significance of the
magnitude of this difference was not clear [39]. Also, in
the current treatment guidelines, the use of 5-ASA for-
mulations for active ileal or colonic CD is not supported
[40]. In our completive analysis of associated factors,
5-ASA use was associated with a lower occurrence rate of
current fistulae. This is most likely due to the fact that
only patients with mild CD activity are treated with
5-ASA. This is in contrast to the fact that immunosup-
pressant or anti-TNF antibody treatment was associated
with both fistulae and stenoses, since in particular anti-
TNF antibodies are regularly used in severe CD. This
might be a plausible explanation of the association of the
use of immunosuppressants and anti-TNF antibodies,
which are treatments that are used for a more severe dis-
ease course, with the onset of fistula, which is an indicator
of a severe disease course. This is also underlined by data
in the past years demonstrating that IBD-related compli-
cations may be prevented by an earlier, more aggressive
treatment with immunomodulators and/or anti-TNF an-
tibodies [6, 7]. In population-based cohort studies assess-
ing the impact of immunomodulators on the natural his-
mucosal healing, and surgery with respect to the occurrence of disease complications, agents early compared to starting anti-TNF agents late demonstrate a beneficial effect of starting anti-TNF agents early compared to starting anti-TNF agents late with respect to the occurrence of disease complications, mucosal healing, and surgery [43].

Our study has strengths but also limitations. A clear strength is that we present data from a large nation-wide IBD population in which the risk factors for the development of CD-associated fistulae and stenoses were assessed. The particular value is that the data were prospectively gathered over a period of about 7 years. Further, due to the fact that the data were obtained from a nation-wide registry, our data not only reflect the findings of tertiary referral centers but rather those of a general population, including IBD patients from smaller hospitals or private practices. Of note, in Switzerland, there are about 12,000 IBD patients, which amounts to about 0.2% of the Swiss population, and about 3,000 of them have already been included in the SIBDCS. A limitation of our study is that we, in particular with respect to the analysis of stenosis data, could not discriminate in our analysis between patients who suffered from inflammatory stenosis and those who suffered from fibrotic stenosis.

In summary, using a nationwide patient cohort of CD patients, we have demonstrated that age ≤40 years at diagnosis and male gender were associated with a higher risk for developing perianal and nonperianal fistulae and that ileal involvement was revealed to be a potent risk factor for developing stenoses. Furthermore, the development of CD-associated fistulae and stenoses is associated with markers of a severe disease course, such as younger age at diagnosis, a history of intestinal resection, and upper gastrointestinal manifestations. These findings support the current knowledge and suggest a specific awareness of the presence of these complications in these patients.

Acknowledgments

The authors thank the members of the SIBDCS for their contribution.

Statement of Ethics

The cohort study was approved by the local ethical committees (institutional review board approval No. EK-1316, approved on February 5, 2007, by the Cantonal Ethics Committee of the Canton Zurich, Switzerland).

Disclosure Statement

The authors declare that they have no conflicts of interest.
Funding Sources

This work was supported by research grants from the Swiss National Science Foundation to M.S. (grant Nos. 314730-146204 and CRSII3_154488/1) and to G.R. for the Swiss IBD Cohort (grant No. 3347CO-108792). The funding institutions had no role in the study design and data interpretation.

Author Contributions

J.Z. and C.L. wrote the manuscript and interpreted the data. N.F. performed the statistical analysis. All other authors were involved in data acquisition and data interpretation. M.S. conceived the study design and supervised the project. All authors wrote, corrected, and approved the final draft of the manuscript.

References

1 Xavier RJ, Podolsky DK: Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007;448:427–434.
2 Podolsky DK: Inflammatory bowel disease. N Engl J Med 2002;347:417–429.
3 Bernstein CN, Loftus EV Jr, Ng SC, Lakatos PL, Moub M: Hospitalisations and surgery in Crohn’s disease. Gut 2012;61:622–629.
4 Rieder F: The gut microbiome in intestinal fibrosis: environmental protector or provocateur? Sci Transl Med 2013;5:190ps10.
5 Schwartz DA, Loftus EV Jr, Tremaine WJ, Panaccione R, Harmsen WS, Zinsmeister AR, Sandborn WJ: The natural history of adult Crohn’s disease in population-based cohorts. Am J Gastroenterol 2010;105:289–297.
6 Nielsen OH, Rogler G, Hahnloser D, Thomsen OO: Diagnosis and management of fistulizing Crohn’s disease. Nat Clin Pract Gastroenterol Hepatol 2009;6:92–106.
7 Sato Y, Matsui T, Yano Y, Tsurumi K, Okado Y, Matsushima Y, Koga A, Takehashi H, Ninomiya K, Ono Y, Takatsu N, Beppu T, Nagahama T, Hisabe T, Takaki Y, Hirai F, Yao K, Higashi D, Futami K, Washio M: Long-term course of Crohn’s disease in Japan: incidence of complications, cumulative rate of initial surgery, and risk factors at diagnosis for initial surgery. J Gastroenterol Hepatol 2015;30:1713–1719.
8 Felley C, Mottet C, Juillerat P, Froehlich F, Burnand B, Vader JP, Michetti P, Gonvers JJ: Fistulizing Crohn’s disease. Digestion 2005;71:26–28.
9 Hanauer SB, Smith MB: Rapid closure of Crohn’s disease fistulas with continued intravenous cyclosporin A. Am J Gastroenterol 1993;88:646–649.
10 Present DH, Rutgeerts P, Targan S, Hanauer SB, Mayer L, van Hogezand RA, Podolsky DK, Sands BE, Braakman T, DeWoody KL, Schaible TF, van Deventer SJ: Inflimibax for the treatment of fistulas in patients with Crohn’s disease. N Engl J Med 1999;340:1398–1405.
11 Korelitz BI, Present DH: Favorable effect of 6-mercaptopurine on fistulae of Crohn’s disease. Dis Colon Rectum 1985;30:58–64.
12 Sands BE, Anderson FH, Bernstein CN, Chey WY, Feagan BG, Fedorak RN, Kamm MA, Korzenik JR, Lashner BA, Onken JE, Rachmilewitz D, Rutgeerts P, Wild G, Wolf DC, Marsters PA, Travers SB, Blank MA, van Deventer SJ: Inflimibax maintenance therapy for fistulizing Crohn’s disease. N Engl J Med 2004;350:876–885.
13 De Cruz P, Kamm MA, Hamilton AL, Ritchie KJ, Kreyjany EO, Gorelik A, Liew D, Prideaux L, Lawrence IC, Andrews JM, Bampton PA, Gibson PR, Sparrow M, Leong RW, Florin TH, Geary RB, Radford-Smith G, Macrae FA, Debinski H, Selby W, Kronborg I, Johnstone MJ, Woods R, Elliott PR, Bell SJ, Brown SJ, Connell WR, Desmond PV: Crohn’s disease management after intestinal resection: a randomised trial. Lancet 2015;385:1406–1417.
14 Cohen RD: The quality of life in patients with Crohn’s disease. Aliment Pharmacol Ther 2002;16:1603–1609.
15 Ng SC, Plamondon S, Gupta A, Burling D, Kamm MA: Prospective assessment of the effect on quality of life of anti-tumour necrosis factor therapy for perineal Crohn’s fistulas. Aliment Pharmacol Ther 2009;30:757–766.
16 Bataille F, Klebl F, Rummelme P, Schroeder J, Farkas S, Wild PJ, Furst A, Hofstadter F, Scholmerich J, Herfarth H, Rogler G: Morphological characterisation of Crohn’s disease fistulae. Gut 2004;53:1314–1321.
17 Bataille F, Roehrmeier C, Bates R, Weber A, Rieder F, Bremmehl J, Strauch U, Farkas S, Furst A, Hofstadter F, Scholmerich J, Herfarth H, Rogler G: Evidence for a role of epithelial mesenchymal transition during pathogenesis of fistulae in Crohn’s disease. Inflamm Bowel Dis 2008;14:1514–1527.
18 Scharl M, Weber A, Furst A, Farkas S, Jehle E, Pesch T, Kellermeyer S, Fried M, Rogler G: Potential role for SNAIL family transcription factors in the etiology of Crohn’s disease-associated fistulæ. Inflamm Bowel Dis 2011;17:1907–1916.
19 Scharl M, Frei S, Pesch T, Kellermeyer S, Arikkat J, Frei P, Fried M, Weber A, Jehle E, Ruhl A, Rogler G: Interleukin-13 and transforming growth factor β synergise in the pathogenesis of human intestinal fistulæ. Gut 2013;62:63–72.
20 Frei SM, Pesch T, Lang S, Weber A, Jehle E, Yavricka SR, Fried M, Rogler G, Scharl M: A role for tumor necrosis factor and bacterial antigens in the pathogenesis of Crohn’s disease-associated fistulæ. Inflamm Bowel Dis 2013;19:2878–2887.
21 Frei SM, Hemsley C, Pesch T, Lang S, Weber A, Jehle E, Ruhl A, Fried M, Rogler G, Scharl M: The role for dickkopf-homolog-1 in the pathogenesis of Crohn’s disease-associated fistulæ. PLoS One 2013;8:e78892.
22 Kuis W, Scheuchenstein AM, Scheurlen C, Weinzierl M: Risk factors for the development of fistulas in Crohn disease. Z Gastroenterol 1989;27:313–316.
Risk Factors for the Development of Crohn Disease Fistulae and Stenoses

29 Rieder F, Fiocchi C: Intestinal fibrosis in IBD – a dynamic, multifactorial process. Nat Rev Gastroenterol Hepatol 2009;6:228–235.
30 Rimola J, Planell N, Rodriguez S, Delgado S, Ordás I, Ramírez-Morros A, Ayuso C, Aceituno M, Ricart E, Jauregui-Amezaga A, Panes J, Cuartecasas M: Characterization of inflammation and fibrosis in Crohn’s disease lesions by magnetic resonance imaging. Am J Gastroenterol 2015;110:432–440.
31 Dotan I: Disease behavior in adult patients: are there predictors for stricture or fistula formation? Dig Dis 2009;27:206–211.
32 Pittet V, Juillerat P, Mottet C, Felley C, Ballabeni P, Burnand B, Michetti P, Vader JP; Swiss IBD Cohort Study Group: Cohort profile: the Swiss Inflammatory Bowel Disease Cohort Study (SIBDCS). Int J Epidemiol 2009;38:922–931.
33 Cosnes J, Cattan S, Blain A, Beaugerie L, Carbonnel F, Parc R, Gendre JP: Long-term evolution of disease behavior of Crohn’s disease. Inflamm Bowel Dis 2002;8:244–250.
34 Cosnes J, Gower-Rousseau C, Seksik P, Corrot A: Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology 2011;140:1785–1794.
35 Polito JM 2nd, Childs B, Mellits ED, Tokayer AZ, Harris ML, Bayless TM: Crohn’s disease: influence of age at diagnosis on site and clinical type of disease. Gastroenterology 1996;111:580–586.
36 Martin TD, Chan SS, Hart AR: Environmental factors in the relapse and recurrence of inflammatory bowel disease: a review of the literature. Dig Dis Sci 2015;60:1396–1405.
37 Reese GE, Nanidis T, Borysiewicz C, Yamamoto T, Orchard T, Tekkis PP: The effect of smoking after surgery for Crohn’s disease: a meta-analysis of observational studies. Int J Colorectal Dis 2008;23:1213–1221.
38 Seksik P, Nion-Larmurier I, Sokol H, Beaugerie L, Cosnes J: Effects of light smoking consumption on the clinical course of Crohn’s disease. Inflamm Bowel Dis 2009;15:734–741.
39 Hanauer SB, Stromberg U: Oral Pentasa in the treatment of active Crohn’s disease: a meta-analysis of double-blind, placebo-controlled trials. Clin Gastroenterol Hepatol 2004;2:379–388.
40 Van Assche G, Dignass A, Reinisch W; van der Woude CJ, Sturm A, De Vos M, Guslandi M, Oldenburg B, Dotan I, Marteau P, Ardizzzone A, Baumgart DC, D’Haens G, Gionchetti P, Portela F, Vucelic B, Soderholm J, Escher J, Koletzko S, Kolho KL, Lukas M, Mottet C, Tilg H, Vermeire S, Carbounel F, Cole A, Novacek G, Reinhagen M, Tsianos E, Herrlinger K, Oldenburg B, Bouhnik Y, Kiesslich R, Stange E, Travis S, Lindsay J; European Crohn’s and Colitis Organisation (ECCO): The second European evidence-based consensus on the diagnosis and management of Crohn’s disease: special situations. J Crohns Colitis 2010;4:63–101.
41 Ramadas AV, Gunes S, Thomas GA, Williams GT, Hawthorne AB: Natural history of Crohn’s disease in a population-based cohort from Cardiff (1986–2003): a study of changes in medical treatment and surgical resection rates. Gut 2010;59:1200–1206.
42 Chatu S, Saxena S, Subramanian V, Curcin V, Yadegarifar G, Gunn L, Majeed A, Pollok RC: The impact of timing and duration of thiopurine treatment on first intestinal resection in Crohn’s disease: national UK population-based study 1989–2010. Am J Gastroenterol 2014;109:409–416.
43 Nuij VJ, Fuhler GM, Edel MJ, Ouwendijk RJ, Rijk MC, Beukers R, Quispel R, van Tilburg AJ, Tang TJ, Smallbaak H, Bruin KD, Lindenburg F, Peyrin-Biroulet L, van der Woude CJ: Benefit for earlier anti-TNF treatment on IBD disease complications? J Crohns Colitis 2015;9:997–1003.