Evaluation of postharvest properties in different passion fruit species during ripening

Evaluación de propiedades poscosecha de diferentes especies de fruta de la pasión durante la maduración

ABSTRACT

During ripening, many transformations occur in passion fruits. The ripening stage affects fruit quality and post-harvest properties. Fruits with 65% yellow epidermis present chemical characteristics that meet industrial standards, facilitating harvest estimations and loss avoidance. Thus, this study aimed to evaluate the post-harvest properties of passion fruit species (genotypes of the yellow passion fruit and sweet passion fruit, and yellow passion fruit cultivar FB 200) during ripening. The fruits were evaluated by the color of the epidermis and the chemical characteristics of the pulp (titratable acidity, vitamin C, carotenoids, soluble solids content, and ratio). This experiment was conducted with a completely randomized design and a split-plot arrangement, where the plots were the species and the subplots were the evaluation periods (50, 58, 66, 74 and 82 days after anthesis), with four replications and 10 fruits per plot. The yellow passion fruit genotype and cultivar, harvested at 82 days after anthesis, presented desirable characteristics for the juice industry and for fresh consumption. The sweet passion fruit had a higher soluble solids content and titratable acidity ratio because of its high content of soluble solids and low acidity, which translate to a better fruit flavor.

Additional key words: ascorbic acid; carotenoids; Passiflora alata; Passiflora edulis.
The passion fruit belongs to the Passifloraceae Family and is grown in tropical and subtropical climate countries. The larger producers are located in South America, where Brazil, Colombia, Peru and Ecuador stand out (Coelho et al., 2016). Brazil is the world’s biggest producer of passion fruit with about 700,000 t of fruits per year, while Colombia produced about 228,000 t in a cultivated area of 10,000 ha in 2018. However, increasing productivity requires fruits that meet the standards required by markets for fresh consumption and industrial processing, i.e. big fruits with good peel appearance and color, a good ratio of soluble solids and titratable acidity and a good juice yield (Aires et al., 2020; Hurtado-Salazar et al., 2020; Martínez et al., 2020; Medeiros et al., 2020).

Commercial fruit production for the genus Passiflora is restricted to the species Passiflora edulis f. edulis Sims (yellow passion fruit) because of its high fruit quality and juice yield, which are connected to its economic potential and quick financial return (Braga et al., 2017; Ribeiro et al., 2019). However, the species Passiflora alata Curtis (sweet passion fruit) has great importance in the production of herbal medicines (Nascimento and Barbosa, 2014) and is highly regarded because of its taste and pleasant smell, which translate to higher market values (Alves et al., 2012).

During ripening, carotenoids and other phenolic compounds are degraded by biochemical reactions that generate other volatile compounds, in addition, chemical transformations occur, such as sugar accumulation and reduction of acidity, with changes in peel color (Coelho et al., 2010; Rotili et al., 2018).

There are reports that, at the end of ripening, the sweet passion fruit pulp (Passiflora alata Curtis) presents about 18°Brix, with titratable acidity ranging from 1 to 2% citric acid (Alves et al., 2012); the yellow passion fruit (Passiflora edulis Sims) presents about 16°Brix, with 4% citric acid (Vianna-Silva et al., 2008); the orange cv. Valência fruit (Citrus sinensis (L.) Osbeck) when produced in the conventional system presents about 11°Brix, with titratable acidity ranging from 0.8 to 1.0% citric acid (Arruda et al., 2011); and the mango ‘Ubá’ (Mangifera indica) presents pulp with about 18°Brix and 0.5% citric acid (Benevides et al., 2008).

The ripening stage directly influences fruit quality and post-harvest shelf-life. Fruit harvest occurs after natural abscission and can lead to significant losses. Therefore, changes caused by ripening, especially color changes, aid harvest plans (Botelho et al., 2019). Fruits with approximately 65% yellow colored epidermis have chemical characteristics in the pulp that
meet the required standards, aiding harvest plans and reducing risks of wrinkles, wilting, and deterioration (Silva et al., 2005).

An ideal harvest point provides fruits with better quality and reduces losses. Therefore, this study aimed to evaluate the post-harvest properties in a yellow passion fruit genotype (P. edulis Sims), a sweet passion fruit genotype (P. alata), and the yellow passion fruit cultivar FB 200 (Flora Brasil 200 - P. edulis f. flavicarpa) at different ripening stages.

MATERIALS AND METHODS

This experiment was conducted in an orchard located at the Federal University of Jataí, in Goias state - Brazil, where the annual average temperature is 23.3°C, and the annual rainfall index is 1,541 mm (Melo and Dias, 2019). The orchard had espaliers spaced at 3×4 m with two-wire threads, irrigated daily with a drip system (Gomes et al., 2019).

A completely randomized design in a split-plot scheme was adopted, with the fruits (yellow passion fruit, sweet passion fruit, and yellow passion fruit cultivar FB 200) as the plots, and the days of evaluation as the subplots, with four replicates and 10 fruits per plot.

Fruits in the full physiological stage were harvested manually, based on the color change from green to yellow, when harvested fruits had an epidermis that was at least 20% yellow. The harvests were performed at five points: 50, 58, 66, 74 and 82 days after anthesis (DAA) because the literature indicates that fruits are physiologically mature at 50 DAA.

At each evaluation period, 40 fruits from each species were harvested: a yellow passion fruit genotype (Passiflora edulis Sims), a sweet passion fruit genotype (Passiflora alata), and yellow passion fruit commercial cultivar ‘FB 200’ (Passiflora edulis f. flavicarpa). After harvest, the fruits were sent to the laboratory in plastic boxes with one fruit layer, where they were washed in running water, dried at room temperature, and evaluated for epidermis color, titratable acidity, vitamin C content, carotenoids, soluble solids and ratio between the soluble solids and titratable acidity content.

The epidermis color was evaluated with the CIElab model using a colorimeter that measures the reflected light with a cartesian coordinate system (Konica Minolta, model CR-10), in which units or points of approximate visual uniformity were obtained (Kong et al., 2019). Two readings on opposite sides of the epidermis on each fruit were taken to obtain the Hue angle (h°), which represents the color of the samples.

The soluble solids content (SSC) was determined as recommended by AOAC (2016) method number 942.15, in which some drops of the juice samples were placed in a portable refractometer (Atago model Pal-1), and, after the reading, the results were expressed in °Brix.

The titratable acidity (TA) was evaluated following the procedure proposed by AOAC method number 942.15 (AOAC, 2016), with titration of 5 mL of pulp in a 0.1 N NaOH solution and phenolphthalein, in which the solution was stirred until the samples presented a persistent pink color. The results were given in % of citric acid/100 mL of pulp.

The ratio, which represents the flavor of the fruits, was obtained through the relationship between the soluble solids content and titratable acidity (SSC/TA).

The vitamin C content was determined by titration with Tillmans reagent, using 2,6-dichloroindophenol sodium salt, following the procedure indicated by AOAC (2016) method number 967.21. The results were given in mg of ascorbic acid/100 mL of pulp.

For the carotenoid content, 1.5 mL of pure acetone were added to 150 mg of pulp, stirred for 24 h at a low temperature and in absence of light, followed by analysis with a spectrophotometer, in which the absorbances were determined at 470, 646.8 and 663.2 nm, and the carotenoid levels were determined with the equations described by Lichtenthaler (1987), expressed as µg per mL of extract.

The data were submitted to analysis of variance. Regression models physiologically explained the behavior of the fruits; these models were based on the coefficient of determination and the potential to explain the biological phenomenon. The averages of the analyzed characteristics were compared with the Tukey test (P<0.05). The data were analyzed with SAS (SAS, 2004).

RESULTS AND DISCUSSION

The titratable acidity of the fruits presented a linear behavior, increasing over time and reaching the highest point at 82 DAA, especially for the FB 200 cultivar
and the yellow passion fruit genotype. The cultivar had the greatest citric acid accumulation at the end of the experiment. The sweet passion fruit presented a lower acidity content during ripening, probably because its main characteristic is sweeter pulp (Pereira et al., 2018). The estimated citric acid percentage for each 100 mL of pulp for the FB 200 cultivar was 2.91% at 50 d and 6.04% at 82 d; for the yellow passion fruit genotype, it was 2.58% at 50 d and 4.33% at 82 d; and for the sweet passion fruit, it was estimated at 0.89% at 50 d and 1.22% citric acid at 81.99 d (Fig. 1).

The decrease in the vitamin C content during ripening occurs because of the degradation caused by the ascorbate oxidase enzyme, which intensifies in activity when fruits mature (Costa et al., 2020). According to Coelho et al. (2010), the ascorbic acid content in fruit pulp is preserved throughout storage when fruits are harvested at an advanced ripening stage.

The carotenoid content in the yellow passion fruit and the FB 200 cultivar during ripening presented a quadratic behavior, and the content in the sweet passion fruits was adjusted to the linear model. There was an increase in carotenoids during the evaluated days, in which the commercial cultivar presented the highest content, and the sweet passion fruit presented the lowest carotenoid content, indicating that the cultivar has a predominance of pigments in its pulp, which is probably why its juice is yellower (Gomes et al., 2019). The carotenoid accumulation estimate during ripening for the FB 200 cultivar was 1.82 µg mL⁻¹ at 50 d and 2.88 µg mL⁻¹ at 82.01 d; for the yellow passion fruit, it was estimated at 1.08 µg mL⁻¹ of

Figure 1. Titratable acidity of the pulp from different species: FB 200 cultivar (*Passiflora edulis* f. *flavicarpa*), yellow passion fruit (*Passiflora edulis* Sims) and sweet passion fruit (*Passiflora alata*) during the ripening.

Figure 2. Vitamin C content in the pulp of different species: FB 200 cultivar (*Passiflora edulis* f. *flavicarpa*), yellow passion fruit (*Passiflora edulis* Sims) and sweet passion fruit (*Passiflora alata*) during ripening.
Carotenoids are important precursors of vitamin A and have considerable antioxidant activity that is associated with a reduced risk of degenerative diseases. They are responsible for intensifying the yellow coloration of the pulp. Levels vary according to the fruit ripening stage and are synthesized during maturation by metabolic pathways to act as antioxidants (Rotili et al., 2013).

The soluble solids content was adjusted to the quadratic model, increasing with ripening and reaching the highest level at 82 DAA. During the experiment, the sweet passion fruit presented the highest soluble solids content, which is one of its main characteristics, and the FB 200 cultivar presented a reduced soluble solids content, probably caused by the high titratable acidity content (Tab. 1) since a decrease in the soluble solids content leads to an increase in titratable acidity (Munaretto et al., 2020). The soluble solids content estimated during the ripening of the sweet passion fruits was 13.93°Brix at 55.47 d and 22.49°Brix at 81.84 d; for the yellow passion fruits, it was 14.52°Brix at 50.04 d and 17.53°Brix at 81.79 d. For the FB 200 cultivar, the soluble solids content was estimated at 12.92°Brix at 50.04 d and 16.05°Brix at 82.04 d (Fig. 4).

Soluble solids are water-soluble compounds that indicate the amount of sugars in fruit pulp, with other compounds at reduced proportions, such as acids, vitamins, amino acids, and some pectins. The highest point of soluble solid accumulation is reached at the end of maturation (Chitarra and Chitarra, 2005). Several factors affect the soluble solids content, especially weather conditions, harvest point, and harvest season (Moura et al., 2016). The industry prefers fruits with a soluble solids content of about 14°Brix because it allows better technological productivity, which means a lower amount of sugar will be necessary for passion fruit juice production (Silva et al., 2018).

The evaluation of soluble solids content is one of the most efficient ways to assay fruit quality because it has compounds that give the fruit flavor, which makes them more desirable in the consumer market and in the processing industry. In addition, fruits with higher soluble solids contents mean that a smaller number of fruits is used in juice production (Dias et al., 2017).

The soluble solids content/titratable acidity (SSC/TA) ratio presented a quadratic behavior, increasing during ripening and reaching the highest content at 82 DAA. The yellow passion fruit and FB 200 cultivar presented lower values for the ratio, and the sweet passion fruit presented the highest ratio. The estimated ratio for the sweet passion fruit was 15.86 at 81.74 d. The carotenoid content estimated for the sweet passion fruit during ripening was 0.10 µg mL⁻¹ at 51.22 and 0.27 µg mL⁻¹ at 82.11 d (Fig. 3).
57.59 d and 27.13 at 81.87 d; for the yellow passion fruit, the ratio estimate was 3.52 at 53.08 d and 6.71 at 81.74 d. The estimated ratio for the FB 200 cultivar was 2.60 at 50.02 and 4.91 at 82.01 d (Fig. 5).

The ratio had a balance between sugars and acidity content; therefore, sweeter fruits lead to higher SSC/TA values (Silva et al., 2016b). The ratio is a very important characteristic because a balance between the soluble solids content and acidity determines the fruit flavor (Rotili et al., 2018).

At the end of the experiment (82 DAA), the epidermis of the yellow passion fruit and sweet passion fruit presented similar hue angle values (h°) without a significant difference. The FB 200 cultivar, however, differed statistically from the others, presenting a hue angle of 95.10° (Tab. 1). These results indicate that the FB 200 cultivar presented fruits with a more intense epidermis color although all evaluated fruits were closer to the yellow color according to the L°C°h° (Ferreira and Spricigo, 2017).

Color is one of the main aspects used by consumers to evaluate fruit quality (Rotili et al., 2018). Salazar et al. (2015) obtained a hue angle closer to 90° for yellow passion fruits, which, according to the authors, indicates a more intense yellow color, caused by the process of chlorophyll degradation in the pericarp and by the synthesis and/or manifestation of carotenoids. Similar hue angle values were obtained by Vianna-Silva et al. (2010) for yellow passion fruits at 63 DAA.

The titratable acidity had a significant difference between the evaluated species. The FB 200 cultivar fruits had the highest acidity content, and the sweet passion fruits presented the lowest values (Tab. 1), probably because of its main characteristics, which include a sweet taste and low acidity (Alves et al., 2012). A minimum of 2.5% citric acid is demanded by the industry by default for passion fruit pulp used in juice processing (Viana et al., 2016).

The acidity content obtained in the present study for the FB 200 cultivar and yellow passion fruit corroborates the values obtained by Gomes et al. (2019), who obtained 4.56 and 5.34% citric acid, respectively, for these fruits under the conditions of the Brazilian Savanna. Ferreira and Antunes (2019) observed yellow passion fruits in São Paulo state-Brazil with about 4% citric acid. Botelho et al. (2017) evaluated fruits from the FB 200 cultivar in Mato Grosso state-Brazil and obtained pulp with about 3% acidity. The acidity content in fruit pulp varies according to the ripening stage, where the ripest fruits present a lower acidity (Braga et al., 2020).

Figure 5. Soluble solids/titratable acidity ratio in the juice of different species: FB 200 cultivar (Passiflora edulis f. flavicarpa), yellow passion fruit (Passiflora edulis Sims) and sweet passion fruit (Passiflora alata) during ripening.

Table 1. Fruit characterization of passion fruit from different species: FB 200 cultivar (Passiflora edulis f. flavicarpa), yellow passion fruit (Passiflora edulis Sims) and sweet passion fruit (Passiflora alata) at 82 DAA.

Passion fruit	Hue angle (h°)	Titratable acidity (% of citric acid/100 mL)	Vitamin C (mg of ascorbic acid/100 mL)	Carotenoids (µg mL-1)	Soluble solids content (°Brix)	SSC/TA ratio
FB 200	95.10 a	4.19 a	66.21 a	2.12 a	14.13 c	3.58 b
Yellow	80.54 b	3.59 b	69.15 a	1.19 b	15.83 b	4.63 b
Sweet	80.75 b	1.01 c	53.55 b	0.17 c	19.41 a	19.72 a
CV (%)	18.63	12.52	13.25	23.25	16.72	15.65

Means followed by the same letter are not different (P< 0.05) according to Tukey’s test.
The soluble solids content differed among the species. The sweet passion fruit produced fruits with the highest soluble solids content, confirming the sweet flavor attributed to this species. The FB 200 cultivar presented the lowest solids content (Tab. 1). Gama et al. (2013) produced fruits from the FB 200 cultivar with a soluble solids content of 13.1 °Brix. Braga et al. (2017) evaluated the chemical characteristics of yellow passion fruit and reported fruits with a soluble solids content of 13° Brix. The values observed in the present study agree with the standard established by the Brazilian Ministry of Agriculture and Supplies for the quality standards of passion fruit, i.e. at least 11 °Brix (Mapa, 2018).

The ratio between the titratable acidity and soluble solids content was higher in the sweet passion fruit, which differed from the values observed for the yellow passion fruit and FB 200 cultivar (Tab. 1). Fruit flavor is represented by the titratable acidity and soluble solids ratio, in which a lower acidity content implies a higher ratio (Braga et al., 2017). The SSC/TA ratio tends to increase during ripening because of a reduction in acidity levels. The bigger the ratio is, the better the fruit quality will be, leading to more acceptance by consumers (Silva et al., 2019).

The SSC/TA ratio for yellow passion fruit, by default, ranges from 3.0 to 4.5 (Chitarra and Chitarra, 2005). Dias et al. (2017), who worked with different cultivars of the yellow passion fruit, obtained a ratio lower than 2, probably because the acidity content was higher than 8% in all evaluated cultivars. Borges et al. (2020) obtained an SSC/TA ratio for sweet passion fruit ranging from 8 to 17. Moura et al. (2020) evaluated fruits from the FB 200 cultivar and obtained an SSC/TA ratio of 3.0, similar to the results founded in the present study.

The vitamin C content in the FB 200 cultivar did not differ from the yellow passion fruit; however, both differed from the sweet passion fruit, which presented a lower vitamin C content (Tab. 1). The recommended daily intake according to the Brazilian Ministry of Health is 45 mg of vitamin C for adults (Anvisa, 2003); values equal to or greater than this recommendation confer benefits to human health, reducing the risk of developing chronic diseases.

Despite being very important to nutrition, there is no requirement for the vitamin C content of fruits in the processing industry (Moura et al., 2016). The ripening stage and production location, along with other factors, influence the values of this content (Estevam et al., 2018). Salazar et al. (2015), who evaluated yellow passion fruits grafted on wild species of the Passiflora genus in a greenhouse, obtained a vitamin C content of 36.06 mg 100 g⁻¹ in yellow passion fruits. Alves et al. (2012) obtained approximately 20 mg 100 mL⁻¹ for sweet passion fruits produced in Viçosa-MG, Brazil. Conde et al. (2017) obtained about 25 mg of ascorbic acid in purple passion fruits produced in Colombia.

For the carotenoid content, the species differed from each other, with the FB 200 cultivar presenting the highest levels (Tab. 1). According to Zeraik et al. (2010), high levels of carotenoids are responsible for promoting a more intense juice color, and the synthesis of carotenoids is influenced by the season in which fruits are produced.

CONCLUSION

The post-harvest properties of fruits of different passion fruit species vary during ripening, which sees an adjustment of the characteristics responsible for good acceptance in the consumer market. At 82 DAA, the fruits of the yellow passion fruit and cultivar FB 200 presented desirable characteristics for industrial use and fresh consumption. During ripening, the sweet passion fruit presented a higher SSC/TA ratio because of its high content of soluble solids and low acidity content, resulting in a better fruit flavor.

Acknowledgments

The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for their financial support.

Conflict of interests: The manuscript was prepared and reviewed with the participation of the authors, who declare that there exists no conflict of interest that puts at risk the validity of the presented results.

BIBLIOGRAPHIC REFERENCES

Aires, E.S., C.A. Aragão, I.L.S. Gomes, G.N. Souza, and I.G.V. Andrade. 2020. Alternative substrates for production of yellow passion fruit seedlings. Rev. Agric. Neotrop. 7(1), 43-48. Doi: 10.32404/rean.v7i1.3890
Alves, R.R., L.C.C. Salomão, D.L. Siqueira, P.R. Cecon, and D.F.P. Silva. 2012. Relações entre características físicas e químicas de frutos de maracujazeiro-doce cultivado em Viçosa-MG. Rev. Bras. Frutic. 34(2), 619-623. Doi: 10.1590/S0100-29452012000200058
Anvisa, Agência Nacional de Vigilância Sanitária of Brazil. 2003. Regulamento técnico sobre rotulagem nutricional de alimentos embalados. http://portal.anvisa.gov.br/documents/33880/2568070/res0560_23_12_2003.pdf;5d4fc713-9c66-4512-b3c1-ae65767d9bc; consulted: August, 2020.

AOAC, Association of Official Analytical Chemists International. 2016. Official methods of analysis of the Association of Official Analytical Chemists International. 20th ed. Washington, DC. pp. 945-989.

Arruda, M.D., I.H. Fischer, M. Zanette, B. Silva, and C. Santos. 2011. Qualidade físico química de frutos de laranja Valência provenientes de cultivos orgânico e convencional. Citrus Res. Technol. 32(2), 103-108. Doi: 10.5959/2256-3122.20110012

Benevides, S.D., A.M. Ramos, P.C. Stringheta, and V.C. Castro, 2008. Qualidade da polpa e manca da manga Ubá. Ciênc. Tecnol. Aliment. 28(3), 571-578. Doi: 10.1590/S0101-20612008000300011

Botelho, S.C.C., C.M. Hauth, F.M. Botelho, G. Roncatto, C. Wobeto, and S.S. Oliveira. 2019. Qualidade pós-colheita de frutos de maracujazeiro-amarelo colhidos em diferentes estádios de maturação. Rev. Ciênc. Agrar. 62, 1-8. Doi: 10.22491/rca.2019.5005

Botelho, S.C.C., G. Roncatto, F.M. Botelho, S.S. Oliveira, and C. Wobeto. 2017. Qualidade pós-colheita de frutos de maracujazeiro-amarelo produzidos em mato grosso. Nativa 5(Spec.), 471-476. Doi: 10.5935/2318-7670.v5n6spp02

Braga, L.A.C., E.R. Alencar, A.M. Costa, and N.T.V. Junqueira. 2020. Physicochemical aspects of genotypes of Passiflora alata Curtis. Braz. J. Food Technol. 23, e2019188. Doi: 10.1590/1981-6723.2019188

Braga, L.A.C., F.B. Penha, L.F.A. Souza, A.C.C. Braga, E.C.N. Rodrigues, T.S. Bezerra, and P.D. Oliveira. 2020.Perfil sensorial e avaliação físico-química de néctar misto de Pitaya e Maracujá. Braz. J. Develop. 6(6), 38970-38972. Doi: 10.34117/bjvd6n6-440

Braga, C.S., D.V. Rodrigues, R.B. Bispo, V. Götter, K.C. Martin, and S.A.M. Souza. 2017. Caracterização e diversidade genética de espécies do gênero Passiflora com base em características físicas e químicas dos frutos. Rev. Ciênc. Agroamb. 15(2), 181-186. Doi: 10.5327/z1677-606220172002

Chitarra, M.I.F. and A.B. Chitarra. 2005. Pós-colheita de frutas e hortaliças: fisiologia e manuseio. 2nd ed. UFLA, Lavras, Brazil.

Conde, C.G., K.P.T. Guordo, E.G. Llamas, N.P. Pájaro-Castro, and Y.G. Milano. 2017. Caracterización química y evaluación de la actividad antioxidante de la pulpa de Passiflora edulis Sims (gulupa). Rev. Cuba Plant. Med. 22(2).

Costa, M.S., F.A.C. Almeida, B.E.S. Coelho, J.D.S. Costa, and A. Figueiredo Neto. 2020. Composição química da polpa de manga ‘Ataulfo’ em diferentes estádios de maturação. J. Environ. Analys. Prog. 5(1), 11-16. Doi: 10.24221/jeap.5.1.2020.2637.011-016

Dias, D.G., R.F. Pegoraro, V.M. Maia, and A.C. Medeiros. 2017. Production and postharvest quality of irrigated passion fruit after N-K fertilization. Rev. Bras. Frutic. 39(3), e-553. Doi: 10.1590/0100-29452017553

Estevam, M.I.F., P.A. Souza, P.B. Maracajá, E.M. Batista, and B.M. Reges. 2018. Físico-química de variedades de acerola em dois estádios de maturação. Rev. Ver. de Agroec. Des. Sus. 15(4), 459-465. Doi: 10.18378/rvads.v15i4.5736

Ferreira, M.O. and M.A. Antunes. 2019. Qualidade de frutos de maracujá amarelo comercializados na CEAGESP - Bauru - SP. Rev. Agrofib. 1(1), 71-84.

Ferreira, M.D. and P.C. Spricigo. 2017. Colorimetria - princípios e aplicações na agricultura. pp. 209-220. In: Ferreira, M.D. (ed). Instrumentação pós-colheita em frutas e hortaliças. Embrapa Instrumentação, São Carlos, Brazil.

Flores, P.S., D.F.P. Silva, C.H. Bruckner, S.P. Oliveira, and L.C.C. Salomão. 2011. Caracterização físico-química de frutos de maracujazeiro amarelo provenientes da irradiação com raios gama. Ciênc. Rural 41(11), 1903-1906. Doi: 10.1590/S0103-84782010011000009

Gama, V.N., J.T. Cunha, I.M. Lima, M.A. Bacarin, and D.M. Silva. 2013. Photosynthetic characteristics and quality of five passion fruit varieties under field conditions. Acta Physiol. Plant. 35(5), 941-948. Doi: 10.1007/s11738-012-1137-1

Gomes, F.R., P.H.M. Souza, M.M. Costa, D.G. Sena-Júnior, A.L.P. Souza, V.M. Azevedo, L.C. Carneiro, S.C.S. Cruz, and D.F.P. Silva. 2019. Quality of the pulp of passion fruit produced in the Brazilian Savanna. J. Agric. Sci. 11(4), 470-475. Doi: 10.5539/jas.v11n4p470

Hurtado-Salazar, A., D.F.P. Silva, N. Ceballos-Aguirre, J. Ocampo, and C.H. Bruckner. 2020. Promissory passiflora species (Passifloraceae) for its tolerance to water-salt stress. Rev. Colomb. Cienc. Hortic. 14(1), 44-49. Doi: 10.17584/rcch.2020v14i1.10574

Kong, X., M.J. Murdoch, I. Vogels, D. Sekulovski, and I. Heynderickx. 2019. Perceived speed of changing color in chroma and hue directions in CIELAB. J. Opt. Soc. Am. 36(6), 1022-1032. Doi: 10.1364/JOSAA.36.001022

Lichtenthaler, H.K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method. Enzymol. 148, 362-385. Doi: 10.1016/0076-6879(87)48036-1

Mapa, Ministério da Agricultura, Pecuária e do Abastecimento of Brazil. 2018. Regulamento técnico para...
fixação dos padrões de identidade e qualidade para suco de maracujá. In: http://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=08/10/2018&jornal=515&pagina=26&totalArquivos=232; consulted: August, 2020.

Martínez, M.A., A.C. Morillo, and W. Reyes-Ardila. 2020. Characterization of the genetic diversity in Passiflora spp. in the Boyacá department, Colombia. Chil. J. Agri. Res. 80(3), 542-551. Doi: 10.4067/S0718-58392020000300042

Medeiros, S.A.S., M.A.F. Bezerra, J.A.M. Nascimento, L.F. Cavalcante, C.A.S. Freitas, and C.S. Ferreira. 2020. Yield and postharvest quality of yellow passion fruit under water irrigation depths, phosphate and organic fertilization. Irriga 25(1), 14-26. Doi: 10.15809/irriga.2020v25n1p14-26

Melo, B.M., and D.P. Dias. 2019. Microclima e conforto termico de remanescentes florestais urbanos no municipio de Jataí-GO. Rev. Soc. Bras. Arbor. Urb. 14(2), 1-15. Doi: 10.5380/revsbau.v14i2.66657

Moura, M.G.S., K.R.F. Schwan-Estrada, E. Clemente, and G. Munaretto, L.M., T. Silva, R.V. Botelho, and J.T.V. Resende. 2020. Flowering, fruit production and quality of passion fruit hybrids in Minas Gerais, Brazil. Com. Sci. 11, e3478.

Moura, G.S., K.R.F. Schwann-Estrada, E. Clemente, and G. Franzener. 2016. Conservação pós-colheita de frutos de maracujá-amarelo por derivados de capim-limão (Cymbopogon citratus). Amb. Guar. 12(2), 667-682. Doi: 10.5935/ambiencia.2016.02.11

Munaretto, L.M., T. Silva, R.V. Botelho, and J.T.V. Resende. 2020. Quality of black berries cv. Xavante treated in pre-harvest with silicon. Ap. Res. Agrotech. 13, 6495-1.

Nascimento, K.C. and J.F. Barbosa. 2014. Caracterização morfoanatômica de nectários extraflorais de Passiflora alata, Passifloraceae. Rev. Uninig. Rev. 20(1), 45-50.

Pereira, L.D.A. Carlos, and L. Vitorazi. 2008. Qualidade de frutos de maracujazeiro amarelo colhidos na região norte do estado do Rio de Janeiro, Brasil. Rev. Bras. Frutic. 32(1), 57-66. Doi: 10.1590/0100-29452008000300012

Ribeiro, R.M., A.P. Viana, E.A. Santos, D.L. Rodrigues, and S.C. Freisigke. 2019. Breeding passion fruit populations - review and perspectives. Funct. Plant Breed. J. 1(1), art.2. Doi: 10.35418/2526-4117/v1n1a2

Rotili, M.C.C., S. Coutro, V.M. Celant, J.A. Vorpagel, F.K. Barp, A.B. Salibe, and G.C. Braga. 2013. Composição, atividade antioxidante e qualidade do maracujá-amarelo durante armazenamento. Semina: Ciênc. Agr. 34(1), 227-240. Doi: 10.1590/S0100-29452013000400004

Rotili, M.C.C., F. Villa, G.C. Braga, D.L.B. França, S. Rosanelli, J.C.U. Laureth, and D.F. Silva. 2018. Bioactive compounds, antioxidant and physic-chemical characteristics of the dovalysis fruit. Acta Sci. Agron. 40(1), e5565. Doi: 10.4025/actasciagron.v40i1.5565

Salazar, A.H., D.E.P.D. Silva, C.S. Sediyama, and C.H. Bruckner. 2015. Caracterização física e química de frutos de maracujazeiro-amarelo enxertado em espécies silvestres do gênero Passiflora cultivado em ambiente protegido. Rev. Bras. Frutic. 37(3), 635-643. Doi: 10.1590/0100-2945-101/14

SAS, Statistical Analysis System. 2004. SAS/STAT user guide, Version 9.1. 2. Cary, NC.

Silva, M.S., E.M. Ataíde, A.K.E. Santos, and J.M.A. Souza. 2016a. Qualidade de frutos de maracujazeiro amarelo produzidos na safra e entressafra no Vale do São Francisco. Rev. Iber. Téc. Postc. 17(1), 41-49.

Silva, Q.J., F. Figueiredo, and V.L.A.G. Lima. 2016b. Características físicas e químicas de cirigueleiras cultivadas na Zona da Mata Norte de Pernambuco. Rev. Ceres 63(3), 285-290. Doi: 10.1590/0004-737X201663030002

Silva, T.V., E.D. Resende, A.P. Viana, R.C.C. Rosa, S.M.E. Pereira, L.A. Carlos, and L. Vitorazi. 2005. Influência dos estádios de maturação na qualidade do suco do maracujá-amarelo. Rev. Bras. Frutic. 27(3), 472-475. Doi: 10.1590/S0100-29452005000300031

Silva, A.C.G., N.S. Silva, and E.F. Souza. 2019. Pós-colheita do maracujá-amarelo com revestimentos a base de amido da entrecasa de mandioca. Rev. Verde 14(2), 238-245. Doi: 10.18378/rvads.v14i2.6220

Silva, L., M.S. Silveira, R.A. Pereira, and M.A. Bezerra. 2018. Composição físico-química e bioativa dos frutos de Passiflora tenuifila Killip (maracujá-alho). Rev. Cuba. Plant Med. 24(1).

Viana, M.L., A.M. Costa, and S. Celestino. 2016. Informações para a composição de tabela nutricional da polpa do maracujá BRS Pérola do Cerrado. Bol. Pesqui. Desenvolv. 355. Embrapa Cerrados, Planaltina, Brazil.

Vianna-Silva, T., R.V. Lima, I.G. Azevedo, R.C.C. Rosa, M.S. Souza, and J.G. Oliveira. 2010. Determinação da maturidade fisiológica de frutos de maracujazeiro amarelo produzidos na região norte do estado do Rio de Janeiro, Brasil. Rev. Bras. Frutic. 32(1), 57-66. Doi: 10.1590/S0100-29452010000500012

Vianna-Silva, T., E.D.D. Resende, A.P. Viana, S.M.D.F. Pereira, L.D.A. Carlos, and L. Vitorazi. 2008. Qualidade do suco de maracujá-amarelo em diferentes épocas de colheita. Food Sci. Tech. 23(3), 545-550. Doi: 10.1590/0100-20612008000300007

Zeraik, M.L., C.A.M. Pereira, V.G. Zuin, and J.H. Yariwake. 2010. Maracujá: um alimento funcional? Rev. Bras. Farmac. 20(3), 459-471. Doi: 10.1590/S0102-695X2010000300026

POST-HARVEST PROPERTIES OF PASSION FRUIT SPECIES