cannot be discriminated from other causes such as anesthesia or cooling.1 Continuous TCD, on the other hand, provides information regarding the status of the cerebrovasculature, including the direction of blood within the cerebral vessels.2 TCD can also identify the presence, although not necessarily the composition, of HITS, indicative of cerebral emboli.3 Associated with a greater atheromatous burden of the aorta,4 the number of HITS and the location of HITS-related brain damage seem to influence the occurrence of neurologic complications.3

Employed together, a drop in the TCD signal and EEG slowing suggest an evolving ischemic process, providing the surgical team with the opportunity to correct perfusion abnormalities using mechanical or pharmacological support.2 Alternatively, neuroprotective strategies, such as systemic hypothermia and pharmacologic suppression of neuronal activity,5 could be initiated before the development of irreversible injury. Despite the severity of cerebrovascular disease in these two patients, neuromonitoring identified acceptable cerebral flow, and the maintenance of high perfusion pressures likely minimized the risk during surgery. Neuromonitoring-based interventions have previously been demonstrated to reduce postoperative neuropsychologic dysfunction in cardiac surgical patients,5,6 and may therefore prove to be a useful modality for the increasing proportion of high-risk patients undergoing cardiac surgery.

Alexander Kulik MD
Rosendo A. Rodriguez MD PhD
Howard J. Nathan MD
Marc Ruel MD MPH
University of Ottawa, Ottawa, Canada
E-mail: akulik@ottawaheart.ca

References
1 Edmonds HL Jr, Rodriguez RA, Audenaert SM, Austin EH III, Pollock SB Jr, Ganzel BL. The role of neuromonitoring in cardiovascular surgery. J Cardiothorac Vasc Anesth 1996; 10: 15–23.
2 Kochi K, Sueda T, Orihashi K, Matsuura Y. Central retinal artery color Doppler monitoring versus transcranial Doppler monitoring in cardiac surgery. Heart Vessels 2000; 15: 7–10.
3 Jacobs A, Neveling M, Horst M, et al. Alterations of neuropsychological function and cerebral glucose metabolism after cardiac surgery are not related only to intraoperative microembolic events. Stroke 1998; 29: 660–7.
4 Mackensen GB, Ti LK, Phillips-Bate BG, Mathew JP, Newman ME, Grocott HP. Cerebral embolization during cardiac surgery: impact of aortic atheroma burden. The Neurologic Outcome Research Group (NORG). Br J Anaesth 2003; 91: 656–61.
5 Arom KV, Cohen DE, Strobl FT. Effect of intraoperative intervention on neurological outcome based on electroencephalographic monitoring during cardiopulmonary bypass. Ann Thorac Surg 1989; 48: 476–83.
6 Edmonds HL Jr. Advances in neuromonitoring for cardiothoracic and vascular surgery. J Cardiothorac Vasc Anesth 2001; 15: 241–50.

A 20-joule electrical cardioversion applied directly to the heart elevates troponin I by at least 1.5 ng·mL⁻¹

To the Editor:
There is increasing evidence that even mild elevations in cardiac troponin I (cTnI) may be associated with a decline in survival after cardiac surgery.1,2 Between June and July 2002 we investigated the role of intraoperative direct electrical cardioversion in 267 adult patients undergoing cardiac surgery. For the purposes of the analysis we used the peak cardiac marker level for each patient among samples drawn at the intensive care unit on arrival and four and 18 hr after surgery. Data were analyzed by linear regression analysis performed for the minimum cardiac marker level observed in each group of patients (receiving 0, 1, 2, 3, 4, 5 cardioversion) and for the five lowest values observed in each group. After cardiac surgery cTnI was detectable in all patients (peak value of 10 ± 8.8 ng·mL⁻¹). The linear correlation between the number of electrical cardioversions and the peak cTnI level was statistically significant (r² = 0.9, P < 0.0001) when the minimum value of cTnI for each class of cardioverted patients was considered (Figure). This strong association was maintained (r² = 0.8, P < 0.0001) when the five lowest values of cTnI were analyzed.

Our most important result is that myocardial injury following direct electrical cardioversion can be quantified as the elevation by, at least, 1.5 ng·mL⁻¹ of peak serum cTnI per shock. The originality of our study stands with the analysis of the minimum values: this statistical method, to the best of our knowledge, has never been applied before in medical practice, could be an alternative to multivariate analysis when predictive factors are not yet identified, their value is ≥ 0, their relative role is not comparable and they have different distributions. These conditions are definitely present regarding the release of cardiac biomarkers after cardiac surgery. Our method could be applied to...
other causes of cardiac biomarker release e.g., (cardiopulmonary bypass or aortic cross clamping).

Alberto Zangrillo MD
Giovanni Landoni MD
Giuseppe Crescenzi MD
Anna Mara Scandroglio MD
Maria Grazia Calabrò MD
Lorenzo Mantovani MD
Annalisa Franco MD
Carlo Pappone PhD MD
Vita-Salute University of Milan, Milan, Italy
E-mail: landoni.giovanni@hsr.it
No source of support or conflict of interest exist for this study. Only departmental funds have been used.

References
1 Lasocki S, Provenchere S, Benestiano J, et al. Cardiac troponin I is an independent predictor of in-hospital death after adult cardiac surgery. Anesthesiology 2002; 97: 405–11.
2 Greenson N, Macoviak J, Krishnaswamy P, et al. Usefulness of cardiac troponin I in patients undergoing open heart surgery. Am Heart J 2001; 141: 447–55.

Evaluating intubating conditions using the GCRP recommendations

To the Editor:
I read with great interest the article by Yang et al.1 describing differences in postoperative nausea and vom-

FIGURE Linear correlation between the lowest levels of cTpi in patients receiving 0, 1, 2, 3, 4, ≥5 direct electrical cardioversions in 267 consecutive patients undergoing cardiac surgery.

TABLE The GCRP recommendations on intubating conditions2

Variables	Intubation conditions*	Clinically acceptable	Clinically not acceptable	
Laryngoscopy	Easy	Fair	Difficult	
Vocal cords	Abducted	Intermediate	Closed	
Movement	None	Closing	Closing	
Reaction to insertion of tracheal tube and/or cuff inflation	Movement of the limbs	None	Slight	Vigorous
Coughing	None	Diaphragm	Sustained	

GCRP = good clinical research practice. *Intubation conditions: Excellent = all qualities excellent; Good = all qualities either excellent or good; Poor = the presence of a single quality listed under "poor".

Evaluating intubating conditions using the GCRP recommendations

To the Editor:
I read with great interest the article by Yang et al.1 describing differences in postoperative nausea and vom-

FIGURE Linear correlation between the lowest levels of cTpi in patients receiving 0, 1, 2, 3, 4, ≥5 direct electrical cardioversions in 267 consecutive patients undergoing cardiac surgery.

TABLE The GCRP recommendations on intubating conditions2

Variables	Intubation conditions*	Clinically acceptable	Clinically not acceptable	
Laryngoscopy	Easy	Fair	Difficult	
Vocal cords	Abducted	Intermediate	Closed	
Movement	None	Closing	Closing	
Reaction to insertion of tracheal tube and/or cuff inflation	Movement of the limbs	None	Slight	Vigorous
Coughing	None	Diaphragm	Sustained	

GCRP = good clinical research practice. *Intubation conditions: Excellent = all qualities excellent; Good = all qualities either excellent or good; Poor = the presence of a single quality listed under "poor".

Evaluating intubating conditions using the GCRP recommendations

To the Editor:
I read with great interest the article by Yang et al.1 describing differences in postoperative nausea and vom-

FIGURE Linear correlation between the lowest levels of cTpi in patients receiving 0, 1, 2, 3, 4, ≥5 direct electrical cardioversions in 267 consecutive patients undergoing cardiac surgery.