The Lock is the Key: Development of Novel Drugs through Receptor Based Combinatorial Chemistry

Nikola Maraković and Goran Šinko*

Institute for Medical Research and Occupational Health, Ksaverska cesta 2, p.p. 291, HR-10001 Zagreb, Croatia

* Corresponding author: E-mail: gsinko@imi.hr

Received: 16-12-2016

Abstract

Modern drug discovery is mainly based on the de novo synthesis of a large number of compounds with a diversity of chemical functionalities. Though the introduction of combinatorial chemistry enabled the preparation of large libraries of compounds from so-called building blocks, the problem of successfully identifying leads remains. The introduction of a dynamic combinatorial chemistry method served as a step forward due to the involvement of biological macromolecular targets (receptors) in the synthesis of high affinity products. The major breakthrough was a synthetic method in which building blocks are irreversibly combined due to the presence of a receptor. Here we present various receptor-based combinatorial chemistry approaches. Huisgen’s cycloaddition (1,3-dipolar cycloaddition of azides and alkynes) forms stable 1,2,3-triazoles with very high receptor affinity that can reach femtomolar levels, as the case with acetylcholinesterase inhibitors shows. Huisgen’s cycloaddition can be applied to various receptors including acetylcholinesterase, acetylcholine binding protein, carbonic anhydrase-II, serine/threonine-protein kinase and minor groove of DNA.

Keywords: Drug design; Dynamic combinatorial chemistry; Huisgen’s cycloaddition; in situ click-chemistry; Receptor-accelerated synthesis; Receptor-assisted combinatorial chemistry

1. Introduction

The main focus of drug discovery is the identification of compounds that can modify molecular targets associated with certain diseases inducing a positive response. While natural products have inspired the design of most drugs in the past, the processes of lead discovery and optimization today rely on the preparation of large collections of new compounds, referred to as “libraries”. Choosing large numbers of structurally diverse compounds is primarily governed by the complexity of natural products, which increases the difficulty, time, and cost of the preparation of such compounds. Also, as suggested by a computational study by Bohacek et al., the total number of “drug-like” compounds (< 30 non-hydrogen atoms, < 500 Daltons; only H, C, N, O, P, S, F, Cl and Br; stable in the presence of water and oxygen) is as large as $10^{63}$ indicating that the vast majority of “drug-like” compounds are yet to be discovered.1 The introduction of combinatorial chemistry seemed to resolve the problem of preparing large libraries by focusing on building libraries of more complex compounds from simple building blocks. Building blocks are combined in a maximum number of possible combinations through independent synthesis. In the final step, each compound is independently tested for activity.

Independent testing of a large number of newly synthesized compounds significantly reduces the potential of conventional combinatorial methods. However, by the early 2000s, it became clear that conventional combinatorial chemistry turned out to be much less efficient than expected with only a few developed drugs reported and most industrial combinatorial chemistry libraries were disbanded.2

In 1894, the German chemist Emil Fischer suggested a model of enzyme specificity by which an enzyme and its substrate possess specific complementary geometric shapes that fit exactly one into another like a lock and key. Although this model is more than 100 years old, E. Fischer’s idea is still valid. Dixon and Villar showed that a protein can bind a set of structurally diverse molecules with similar affinities in the nanomolar range, whereas analogues closely related to one of the good binders show only weak affinities (> 2.5 mM).3 Chemists created an approach where novel potentially bioactive compounds are not synthesized by pure statistical reorganization of joi-
ning building blocks but forcing them in the right di-
rection by including a macromolecular target (receptor) it-
self in this process. This was done through the introd-
uction of a receptor-assisted combinatorial chemistry
(RACC), sometimes also referred to as target-guided
synthesis (TGS). In contrast to conventional combinator-
ial methods, in RACC the macromolecular target (protein
or DNA) is directly involved in the choice of joining build-
ing blocks.

The concept of RACC can be divided into dynamic
combinatorial chemistry (DCC) and receptor-accelerated
synthesis (RAS), also called kinetically controlled TGS.
In DCC, the reaction that joins the building blocks is re-
versible, whereas RAS uses only reactive building blocks
joined irreversibly. The subset of RAS called in situ
chemistry, which uses the Huisgen’s 1,3-dipolar cycload-
dition of azides and alkynes (Huisgen’s cycloaddition) to
irreversibly join the building blocks, will be covered with
special interest.

2. Dynamic Combinatorial Chemistry
Method

Dynamic combinatorial chemistry is a subset of
RACC in which building blocks are joined through a re-
versible covalent reactions, generating a large equili-
brium-controlled library of compounds referred to as a
dynamic combinatorial library (DCL). The addi-
tion of biological targets during the generation of DCL stabilizes
the library members with the highest affinity toward the
biological target, moving the equilibrium toward high-affi-
ity members. A comparison of the composition of the
library with and without the biological target leads to the
identification of a hit compound. Therefore, the synthesis
and screening of library members are combined in one
step, which speeds-up the process of hit identification.

Moreover, hit identification is possible without any
specific receptor assays used. Instead, increased amounts
of the highest affinity library members are detected with
established analytical methods like HPLC, mass spec-
rometry (MS), NMR spectroscopy or even X-ray crystallo-
graphy. It may be more advantageous for the library to
amplify many members with moderate affinities than just
a few with high affinities. This behaviour reflects the com-
plex nature of DCLs consisted of members interconnected
through a set of equilibrium reactions. To address this
problems numerous theoretical studies of DCLs have
been done. The studies suggested that, unless exces-
si"
protocol for analysis of imine-based DCL using a suitable size-exclusion chromatography (SEC) column to retain all non-binders from DCL followed by denaturation of eluted protein-ligand complexes and MS analysis of binders.\textsuperscript{32}

2.2. Disulfide Interchange

To demonstrate utility of a disulfide interchange for DCC approach, Ramström and Lehn designed a DCL of disulfides capable of binding to concavalin A (Con A), a member of lectins.\textsuperscript{25,33} DCL of disulfide carbohydrate dimers (Table 1) was generated by incubating disulfide dimers with an initiating reagent dithiothreitol (DTT) capable of reducing some disulfides to thiols. DTT is oxidized to a stable 6-membered cyclic disulfide that should not take part in the interconversion of the library disulfides. Upon initiation, interconversion between disulfides occurred with the rate dependent on pH. At pH 7.4, a reasonable rate of interconversion was obtained and receptor binding was not affected. Disulfide interchange could be stopped by lowering the pH (< 5) and final equilibrium distribution of DCL analyzed by HPLC. In the absence of any receptor, all expected ditopic combinations were generated in approximately equal amounts. When a receptor Con A was present during the interconversion, a significant amount of the bis-mannoside (Man/Man) and the mannose-containing heterodimers (Man/Gal, Man/Ara, Man/Xyl) was found to be bound to the receptor.\textsuperscript{25} Moreover, receptor-induced shifts in equilibrium resulted in the amplification of mannose-containing dimers, which is in accordance with concepts of the DCC approach.

One of the major drawbacks of using DCL of disulfides to identify potent inhibitors of protein targets is the labile nature of disulfide bond. However, once identified disulfide compounds can be replaced with their carbon

Table 1. Structures of the disulfide-linked carbohydrate dimers.\textsuperscript{25}

| Compound\textsuperscript{a} | α/β | R\textsuperscript{2a} | R\textsuperscript{2e} | R\textsuperscript{4a} | R\textsuperscript{4e} | R\textsuperscript{5} | n |
|-----------------------------|-----|---------------------|---------------------|---------------------|---------------------|---------------------|---|
| (Man/Man)                   | α   | OH                  | H                   | H                   | OH                  | CH\textsubscript{2}OH | 3 |
| (Gal\textsubscript{C2}/Gal\textsubscript{C2}) | β   | H                   | OH                  | OH                  | H                   | CH\textsubscript{2}OH | 2 |
| (Gal\textsubscript{C2}/Gal\textsubscript{C3}) | β   | H                   | OH                  | OH                  | H                   | CH\textsubscript{2}OH | 3 |
| (Glc/Glc)                   | β   | H                   | OH                  | OH                  | H                   | CH\textsubscript{2}OH | 2 |
| (Ara/Ara)                   | β   | H                   | OH                  | OH                  | H                   | H                   | 2 |
| (Xyl/Xyl)                   | β   | H                   | OH                  | OH                  | H                   | H                   | 2 |

\textsuperscript{a} Man = D-mannose; Gal\textsubscript{C2} = D-galactose, n = 2; Gal\textsubscript{C3} = D-galactose, n = 3; Glc = D-glucose; Ara = L-arabinose; Xyl = D-xylose

Maraković and Šinko: The Lock is the Key: Development of Novel Drugs ...
analogues, with bioisosteric thioether or amide linker instead of the disulfide bond. Using modified MS analysis that enables analysis of DCLs of thiols/disulfides under non-denaturing conditions, Schofield et al. have identified inhibitors to various protein targets by preparing carbon analogues of identified disulfide compounds.27,34

2.3. Reversible Acylhydrazone Formation

Ramström et al. developed DCLs of constituents potentially capable of binding to plant Con A using reversible hydrazidecarbonyl/acylhydrazone inter-conversion.21 Acylhydrazone libraries were generated from a series of oligohydrazide core building blocks A–I and a set of aldehyde counterparts 5–10 based on six common, naturally occurring carbohydrates, potentially capable of interacting with the binding site of Con A (Fig. 2). A set of initial 15 building blocks could give rise to a library containing at least 474 different species. Also, 15 sub-libraries were formed by mixing all building blocks except one specific hydrazide or aldehyde building block under the same conditions.21 Following equilibration libraries were subsequently subjected to the lectin assay in which the inhibitory potency of library constituents was monitored.

The resulting inhibitory effects of the sub-libraries have been matched to the activity of the complete library. The largest effect was noticed on the removal of the mannose unit from complete DCL indicating that the mannose unit is necessary for inhibition. Similarly, trivalent core building block G was the most active. The effect of the compound assembled from these two fragments was estimated in a binding assay, resulting in an IC₅₀ value in the micromolar range (22 μM), indicating that the DCC approach using reversible hydrazidecarbonyl/acylhydrazone interconversion enabled the identification of a novel tritopic mannoside showing potent binding to Con A (Fig. 3).

However, the full potential of acylhydrazone-based DCLs in drug discovery is somewhat limited because of the requirement for acidic pH which is incompatible with most protein targets. Greaney et al. have managed to circumvent this obstacle by introducing nucleophilic catalysis of reversible acylhydrazone formation by using aniline as a nucleophilic catalyst at less acidic pH and thus identify acylhydrazone inhibitors of GST isozymes.35,36

Figure 2. A series of oligohydrazide A–I and aldehyde building blocks 5–10 generating an acylhydrazone dynamic combinatorial library of potential plant lectin Con A inhibitors.21
Figure 3. Compound 10₃-G identified as the best binder to Con A (IC₅₀ = 22 μM) from the acylhydrazone dynamic combinatorial library generated from a series of oligohydrazide and aldehyde building blocks.²¹

Figure 4. Dynamic combinatorial library composed of glutathione (GSH) conjugates potentially capable of binding to glutathione S-transferase (GST) generated from GSH, GSH analogues, and ethacrynic acid (EA).³⁷
2.4. Conjugate Addition of Thiols to Enones

Shi and Greaney extended the number of reversible chemical reactions suitable for DCL generation by using conjugated addition of thiols to enones. Shi and Greaney designed a biased DCL generated using glutathione (GSH; 11), three GSH analogues 13–15, and the enone ethacrynic acid (EA; 12) (Fig. 4). Three analogues were expected to be misfits for the G site of glutathione S-transferase (GST) since the γ-glutamyl residue is critical for binding, thus biasing the DCL equilibrium composition in the presence of GST toward the GSH adduct 16. EA is an inhibitor of GST and has provided a structural scaffold for development of GST inhibitors. Blank DCL, assembled in the absence of GST resulted in the distribution of four conjugates 16–19. Upon incubation with GST from Schistosoma japonica (SjGST), DCL reduced to the expected GS-EA adduct 16. Adduct 16 was increased from 35% of total conjugate concentration to 92% at equilibrium, due to large differences in binding affinity between 16 and peptides lacking the γ-glutamyl residue. Control experiments with BSA instead of SjGST produced no changes to the blank DCL composition, confirming that the active site of SjGST is responsible in amplification of 16.

Shi et al. used the thiol addition methodology to create new GST inhibitors from nonbiased DCLs. Since

![Figure 5. A nonbiased DCL of potential GST inhibitors generated from glutathione (GSH) and 14 enone ethacrynic acid analogues.](image-url)
structural features of the H site change across different GST isozymes, the authors explored the H site of SjGST by constructing a DCL with reversed stoichiometry from that in biased DCL, whereby 14 EA analogues reacted with GSH to afford 14 GS-EA adducts (Fig. 5). MS analysis and deconvolution studies revealed that adducts 21am and n were amplified in the presence of SjGST, while adduct 21f was suppressed. To examine the inhibition potency of SjGST, 21a, 21n, non-amplified adduct 21b, and the suppressed adduct 21f were synthesized and their IC50 values measured. Results indicated that the extent of DCL amplification reflected the relative binding affinities of DCL components for the SjGST. Piperidine and leucine amides 21a (IC50 = 0.61 μM) and 21n (IC50 = 1.40 μM) were amplified from the library at the expense of the weaker binder lysine amide 21f (IC50 = 8.2 μM). Moreover, contrary to the proposed model structure of the SjGST/GS-EA Michaelis complex which identified a series of residues that could interact with the EA carboxylic acid group,39 amplified adducts 21a and 21n indicated that the carboxylic acid group of EA is not essential for binding in the H site and may be extended without change of inhibitory activity.

3. Receptor-Accelerated Synthesis

Receptor-accelerated synthesis (RAS), also called kinetically controlled TGS, is a subset of RACC, which uses kinetic control to increase the relative amounts of the highest-affinity library members during library generation.4,40 While the library members in the DCC approach are generated via reversible reactions, RAS uses building blocks which irreversibly combine into larger molecules. Process of hit identification and optimization takes advantage of combining synthesis and screening into one step (Fig. 6). Step 1 includes synthesis of reactive building blocks, while in step 2 these building blocks irreversibly combine due to the presence of a receptor. The hit identification consists of determining whether a formation of a product is significantly accelerated in the presence of a target molecule (receptor).

The selectivity for one or more products over others arises from two factors, one related to the binding of building blocks to the receptor, and the other to the ability of a receptor to accelerate their irreversible joining. With regard to the binding of the starting building blocks to the receptor, simultaneous binding of highest-affinity building blocks in close proximity leads to rate acceleration. However, upon joining the starting building blocks to the product, the binding interactions of building blocks to the receptor may strengthen or weaken in accordance with the Fischer’s lock and key model. Thus, highest-affinity building blocks might not form a product with the highest affinity for the receptor. As far as the ability of a given receptor to promote the coupling of reactive building blocks is concerned, it is important to note that receptors do not normally act as coupling catalysts. The demands for a reaction suitable for RAS are different from the DCC approach or from a conventional organic reaction. Ideally, complementary reactive groups should combine very slowly in solution generating a stable product with no or only minor side products. Kolb et al. identified Huisgen’s cycloaddition as the one having the ideal reactivity profile for RAS.41,42 This methodology has been successfully applied in numerous examples known as in situ click chemistry.43 So far, RAC approaches have included C–N bond formation,44–46 C–S bond formation,47–49 C–C bond formation,50 and ami-
Substitution Reaction Using a Thiol as the Nucleophile

Huc and Nguyen were the first to demonstrate the utility of a substitution reaction using a thiol as a nucleophile for the identification of an inhibitor via RAS approach. This reaction is widely used in organic chemistry since thiols are more reactive than alcohols. In initial study, they chose to target a zinc-containing metalloenzyme, bovine CA-II (EC 4.2.1.1). CA-II isozymes play a role in many important biological processes, including respiration, bone respiration, calcification, acid secretion, and pH control. The CA-II active site is a conical cleft with the Zn(II) ion located at its bottom with two secondary hydrophobic binding sites located in close proximity of this cleft. They tested the ability of CA-II to accelerate the formation of para-substituted aromatic sulfonamide inhibitors 24a–e using competition assays optimized to limit side reactions, such as disulfide formation, alky chloride hydrolysis, and trialkyl sulfonium formation (Fig. 7).

Thiol 22 was treated with two competing alkyl chlorides in buffered water at pH 6 for 48 h, first in the absence of CA-II, then in the presence of CA-II. HPLC analysis of the final thioether products confirmed that CA-II strongly favours formation of more potent inhibitors. For example, when chloride 23a competes with 23d, the yield of more potent inhibitor 24d changes from 50% in the absence of CA-II to 92% in its presence. On the contrary, when products have similar affinities for CA-II, their final yields are negligibly affected by the presence of CA-II. To confirm that CA-II serves as the reaction vessel, Huc and Nguyen conducted several control experiments, including varying CA-II concentration, replacing CA-II by BSA, replacing thiol 22 by a thiol that has no affinity for CA-II, and adding an inhibitor of CA-II, methazolamide. All of these experiments confirmed that the active site of CA-II templates product formation.

Besides alkyl halides, thiols can also react with epoxide rings in protein-templated irreversible formation of biologically active ligands. Okhanda et al. have utilized such epoxide ring opening to identify inhibitors of recombinant human 14-3-3 protein, involved in immunoglobulin class switching, via RAS approach.

Amide Formation Between Thio Acids and Sulfonyl Azides

The choice of biological target for the RAS or the RACC is not limited to enzymes only. It has been shown that RAS can be utilized to discover small molecules that modulate or disrupt protein-protein interactions (PPIs) called protein-protein interaction modulators (PPIMs). PPIs are crucial for a large number of vital biological processes and interesting in the development of novel therapies for a variety of diseases. Among PPI targets for cancer treatment are also proteins of the Bcl-2 family. Some of the Bcl-2 proteins act as anti-apoptotic proteins (Bcl-2,
Bcl-X<sub>L</sub>, and Mcl-1) and others as pro-apoptotic proteins. Pro-apoptotic proteins can be further classified into multidomain BH1-3 proteins (Bax and Bak) and BH3-only proteins (Bad, Bim, and Noxa). Bcl-2 proteins play an important role in the apoptosis. Most likely, apoptosis is initiated by binding the BH3 domain of BH3-only proteins

![Figure 8. N-Acylsulfonamide compounds targeting Bcl-X<sub>L</sub>](image)

$$K_i (\text{Bcl-X}_L) < 1.0 \text{ nM}$$

**Figure 8.** *N*-Acylsulfonamide compounds targeting Bcl-X<sub>L</sub>. 57–59

![Figure 9. PPIM identification via sulfo-click RAS approach](image)

$$K_i (\text{Bcl-X}_L) = 19 \text{ nM}$$

**Figure 9.** PPIM identification via sulfo-click RAS approach. 60
Figure 10. Screening of anti-apoptotic Bcl-X\textsubscript{L} via sulfo-click RAS approach for PPIM discovery.\textsuperscript{51}
into a hydrophobic groove on the surface of anti-apoptotic proteins. Therefore, designing a molecule capable of mimicking the BH3 domain is a promising strategy for novel anticancer treatments. Thus, N-acylsulfonamides, ABT-737, and ABT-263, capable of disrupting Bcl-X\textsubscript{L}, Bad interaction, were prepared (Fig. 8).

Hu \textit{et al.} applied the RAS approach for the discovery of N-acylsulfonamide PPIMs. They designed building blocks structurally similar to ABT-737 and ABT-263, having a sulfonyl azide or a thio acid functional groups, and incubated these as binary mixture together with Bcl-XL for 6 h. LC/MS analysis revealed that, of all the 18 possible products, only N-acylsulfonamide SZ4TA2 was detected (Fig. 9).

Control experiments involving incubation of reactive building blocks in the absence of Bcl-X\textsubscript{L} or in the presence of Bcl-X\textsubscript{L} and various BH3-containing peptides, confirmed that the surface of Bcl-X\textsubscript{L} protein acts as a template for the sulfo-click reaction. To generate new hit compounds, Kulkarni \textit{et al.} designed two sublibraries, one with thio acids and the other with sulfonyle azides, among which were those with a structural resemblance to ABT-737 or ABT-263 and those that were randomly chosen. Eighty-one binary mixtures containing one thio acid (TA1–TA9) and one sulfonyl azide (SZ1–SZ9) were incubated with the protein Bcl-X\textsubscript{L} for 6 h at 37 °C (Fig. 10). LC/MS analysis of binary mixtures with or without Bcl-X\textsubscript{L} present during reaction resulted in elevated amounts of the previously reported hit compound, and three new products SZ7TA2, SZ9TA1, and SZ9TA6 in the presence of Bcl-X\textsubscript{L}. Control experiments with native and mutated pro-apoptotic Bim BH3 peptides and Bcl-X\textsubscript{L} proteins indicated that protein-templated N-acylsulfonamide formation happened solely at the binding sites of Bcl-X\textsubscript{L}. In order to evaluate the IC\textsubscript{50}, all four hit compounds were subjected to dose-response studies and binding studies. All of the hit compounds show high to modest affinity for Bcl-X\textsubscript{L} protein and can modulate the interaction between Bcl-X\textsubscript{L} and BH3 peptide ligand.

Nature of sulfo-click reaction and substrate scope challenge its applicability in the RAS approach. As thiocarboxylic acids are nucleophilic, readily dimerize, and present storage and stability issues, their preparation and handling is therefore very demanding. Namelikonda \textit{et al.} optimized the one-pot deprotection/amidation variant of sulfo-click reaction in the presence and absence of Bcl-X\textsubscript{L} starting from the 9-fluorenylmethyl (Fm)-protected thiostereos and sulfonylazides. Optimal deprotection of Fm thiostereos TA1′–TA3′ prepared from thioacid building blocks TA1–TA3 was achieved in one minute at room temperature with 3.5% 1,8-diazabicycloundec-7-ene (DBU)/DMF. Resulting thioacids TA1–TA3 were immediately diluted with methanol and incubated with sulfonylazides SZ1–SZ6 as binary mixtures in the presence and absence of Bcl-X\textsubscript{L}. Product analysis failed to detect an increased amount of the previously reported hit compound SZ4TA2 in the presence of Bcl-X\textsubscript{L}, presumably due to the change in pH of the incubation sample probably due to the strong basicity of DBU. Experiments were repeated with a weaker base (5% piperidine/DMF) and the amount of SZ4TA2 was increased to the same level as before containing purified thioacid TA2. However, a side reaction producing piperidine amide was observed, but this unwanted byproduct did not interfere with Bcl-X\textsubscript{L} templated reaction.

4. \textit{In situ} Click Chemistry

So far, only a RAS approach using a combination of strong nucleophilic (basic) and electrophilic (acidic) building blocks has been discussed. However, a subset of receptor-accelerated synthesis, termed \textit{in situ} click chemistry, has been developed utilizing the Huisgen’s cycloaddition, a reaction independent to the acid-base reactivity paradigm, as shown in literature.

4.1. The Huisgen’s 1,3-Dipolar Cycloaddition

The Huisgen’s 1,3-dipolar cycloaddition of azides and alkynes to form 1,2,3-triazoles is a model example among the reactions that meet the criteria of click chemistry (Fig. 11). Originally introduced by Barry Sharpless in 1999, click chemistry refers to a group of reactions that generate carbon-heteroatom bonds.

Click chemistry has been successfully applied in many areas, including organic synthesis, bioconjugation, drug discovery, and polymer and material sciences. Huisgen’s cycloaddition is preferred since azides and alkynes are easy to implement and are inert in the acidic/basic environments and under physiological conditions. However, spontaneous cycloaddition is very slow, since reaction proceeds only if azide and alkyne in-

![Figure 11](image-url). Huisgen’s 1,3-dipolar cycloaddition of azides and alkynes.\textsuperscript{41}
teract properly oriented. It was only after the discovery of dramatic rate acceleration of the azide-alkyne cycloaddition under copper(I) catalysis that it gained its popularity.\textsuperscript{82,83} This reaction exclusively forms 1,4-disubstituted 1,2,3-triazoles (anti-triazoles). The 1,5-disubstituted 1,2,3-triazoles (syn-triazoles) are prepared by using magnesium acetylides or ruthenium catalysis.\textsuperscript{84,85} Recently, efficient recyclable nanocatalysts have been developed for regioselective synthesis of 1,2,3-triazoles in water.\textsuperscript{86} Thermal reaction is extremely slow and gives a mixture of isomers which are chromatographically separable. In addition, 1,2,3-triazole moieties have some favourable physicochemical properties attractive for application to the drug discovery and biomedicine. They are very stable to both metabolic and chemical degradation, being inert to hydrolytic, oxidizing, and reducing conditions, even at higher temperatures.\textsuperscript{25} Due to resemblance with amide moiety in size, dipolar moment, and H-bond acceptor capacity, the 1,2,3-triazole ring can serve as its non-classic bioisostere.\textsuperscript{44,45,87,88} Since 1,2,3-triazoles are basic aromatic heterocyclic compounds, they are bioisosteres of aromatic rings and double bonds.\textsuperscript{65,66} Additionally, the aforementioned physicochemical properties of 1,2,3-triazole moiety together with similarity to amide bond, make it a useful linker to generate “twin drugs”\textsuperscript{83–85,89} bidentate inhibitors,\textsuperscript{83–85} linkers to immobilized fluorescent tags or small molecules,\textsuperscript{71} and anion receptors.\textsuperscript{90}

4. 2. In situ Click Chemistry Using Acetylcholinesterase as a Template

Inspired by a report by Mock \textit{et al.} on dramatic rate acceleration of azide and alkyne cycloaddition by sequestering azide and alkyne moieties inside the cavity of cu-

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{in situ click chemistry screening}
\caption{In situ click chemistry screening of binary mixtures of tacrine/phenylphenanthridinium-based building blocks for the discovery of bivalent inhibitors to AChE.\textsuperscript{91,98}}
\end{figure}

Maraković and Šinko: The Lock is the Key: Development of Novel Drugs ...
curbituril, a macrocycle made of glycouril, Lewis et al. were the first to investigate the potential of Huisgen’s cycloaddition for application to target-guided synthesis. In their proof-of-concept study, they selected enzyme acetylcholinesterase (AChE; EC 3.1.1.7) which plays a vital role in neuro-transmission in central and peripheral nervous system. The active site of AChE is a narrow gorge with the catalytic binding site located at its bottom. The second binding site, known as peripheral site, is at the rim of the active site. Since reversible AChE inhibi-

![Diagram of acetylene building blocks for in situ click chemistry screening of AChE.](image-url)

**Figure 13.** A library of acetylene building blocks for *in situ* click chemistry screening of AChE.
bitor are used clinically to treat neurodegenerative disorders, such as Alzheimer’s disease, various small-molecule ligands specific for each binding site have been developed, together with such which simultaneously bind to both sites and therefore possess higher affinity for AchE.97–99 Moreover, dimerization of an inactive fragment of a selective and potent reversible AchE inhibitor Huperzine A has shown that an inactive ligand can be transformed into highly potent inhibitors.100 To address the possibility of self-assembly of bivalent AchE inhibitors via Huisgen’s cycloaddition, Lewis et al. used a library of known site-specific inhibitors based on tacrine (a catalytic site binder with $K_d$ of 18 nM) and phenylphenanthridinium (a peripheral site binder with $K_d$ of 1.1 μM) derivatized with alkyl chains bearing terminal azide and alkyne moieties (Fig. 12).99,100

Each of the binary mixtures was incubated with AchE at room temperature for 6 days. Upon examination of binary mixtures, it was established that only TZ2 + PA6 combination gave a detectable amount of the triazole product.101 Blocking the active site with reversible (tacrine) or irreversible (disopropyl fluorophosphate) inhibitor blocked formation of the triazole product, confirming that the active site is a template for reaction. HPLC analysis revealed that the enzyme-templated product is exclusively a syn-isomer. A comparison of the dissociation constant of syn-TZ2PA6 ($K_d$ of 77 fM) and anti-TZ2PA6 ($K_d$ is 720 fM) showed that AchE templated the formation of a more potent inhibitor. Comparison of kinetic parameters and literature data for related non-covalent inhibitors of AchE, revealed that in situ generated syn-TZ2PA6 was the most potent non-covalent AchE inhibitor known at the time.99,102–104

Manetsch et al. revisited the AchE system to screen for additional in situ hits.105 LC/MS analysis revealed three new hit compounds – TZ2PA5, TA2PZ6, and TA2PZ5 – in addition to the TZ2PA6. All of the products were identified as syn-isomers with dissociation constants in femtomolar and picomolar range. Krasiński et al. substituted phenylphenanthridinium moiety with aromatic heterocycles that were not previously known to interact with AchE while tacrine building block TZ2 was chosen as an “anchor molecule” (Fig. 13).106

Analysis of binary TZ2/acetylene mixtures with AchE revealed that only phenylethynylhydro-isouquinolines PIQ-A5 and PIQ-A6 formed significant amounts of triazole products identified as syn-isomers. Incubation of a mixture of 10 acetylene building blocks with TZ2 and AchE gave only expected triazole products TZ2PIQ-A5 and TZ2PIQ-A6 demonstrating the feasibility of multi-component screening. With the equilibrium dissociation constant of only 33 fM, TZ2PIQ-A5 surpasses the inhibition potency of syn-TZ2PA6.

Beside the development of potent reversible AchE inhibitors for treating Alzheimer’s disease, another kind of medical treatment has preoccupied the attention of research-
Figure 14. Compound 26 with high affinity to Lymnaea stagnalis, Aplysia californica, and the Y55W Aplysia californica mutant AChBPs and constituent alkyne 27 and azide 28 shown in retrosynthetic representation.\textsuperscript{124}

Figure 15. In situ click chemistry screening of azide libraries 28a and 28b against alkyne 27.\textsuperscript{124}
To confirm that flexible subunit interfaces in the AChBPs are capable to template the formation of 26, the constituent alkyne 27 and azide 28 were incubated in the presence of Ls, As, and AcY55W AChBPs in sodium phosphate buffer at room temperature for 3 days. Analysis of the reaction mixture by LC/MS–SIM method confirmed that Ls AChBP successfully catalyzed the formation of compound 26, while both Ac and AcY55W AChBPs gave the product but in much lower amount. Control reaction with Ls AChBP inhibited with a known competing ligand methyllycaconitine (MLA) gave a relatively low amount of product, thus confirming that the ACh binding site at flexible subunit interface indeed served as the template for the cycloaddition reaction. The search for new compounds with improved affinity and selectivity for closely related AChBPs continued using triazole 26 as a lead. Azide libraries 28a and 28b comprising building blocks with quaternary nitrogen centers, were incubated with alkyne 27 in the presence of Ls, As, and AcY55W AChBPs at room temperature for 3 days (Fig. 15).

LC/MS–SIM analysis revealed that Ls AChBP catalyzed the formation of triazole products 26, 38, 39, 40, and 41 more efficiently than Ac or AcY55W AChBPs. It was also shown that the amount of in situ generated product is related to its affinity to the specific AChBP. For instance, the most amplified triazole 40 was shown to possess the highest affinity (Ka = 0.96 nM) to Ls AChBP. Next, the alkyne library with the previously tested quinolone derivative 27 and diversely substituted aryl propargyl ethers was incubated with azide 33 in the presence of Ls, Ac, and AcY55W AChBPs. LC/MS–SIM analysis revealed that all of the tested alkynes underwent AChBP-templated cycloaddition reactions with azide 33. However, the previously described triazole 40 was again formed in the highest amount with the highest affinity for all AChBPs. Finally, azides 28–37 were mixed with alkynes in the presence of Ls AChBP for 10 days. Analysis revealed that 40 was formed in the greatest amount, thus demonstrating that Ls AChBP can catalyze the formation of the highest affinity product from a bulk of various azides and alkynes present in the reaction mixture, analogously to the AChE system. All in situ click chemistry experiments with AChBPs included BSA control reaction which exhibited no product formation. Crystal structure of triazole 40 in complex with Ac AChBP confirmed a bound conformation, and a pose predicted from previously seen conformations of quaternary amines that bind to nAChRs through cation-quadrupole interactions involving π-electron-rich aromatic side chains (e.g., tryptophan). Triazole moiety forms a hydrogen bond with a neighbouring water molecule which again suggests that precursors in in situ click chemistry drive a conformation preferred by the triazole product rather than accommodating a conformation of the free protein, a fact previously reported for the AChE system.

4. 4. DNA Minor Groove Templation Role

The templation potential of in situ click chemistry can be expanded to the minor groove of double-helical DNA, as shown by Pouliens-Kerstien and Dervan and more recently by Imoto et al. In their pioneer work, Pouliens-Kerstien and Dervan explored the Huisgen’s cycloaddition to link two aromatic-substituted hairpin polyamides capable of sequence-specific binding to DNA in the DNA-templated reaction. Polyamides composed of three aromatic amino acids, N-methylpyrrole (Py), N-methylimidazole (Im), and N-methyl-3-hydroxyphyrrole, distinguish four Watson–Crick base pairs by a set of pairing rules and represent a potential way to modulate transcription. Longer binding-site size is considered to be crucial for application in gene regulation since longer sequences should occur less frequently in genome leading to the development of various polyamide motifs for selective targeting. The most promising strategy came from chemical ligation of two hairpin polyamides to form dimers. However, though having an excellent affinity and specificity to 10 base pair (bp) DNA sequences, hairpin dimers lack the cell and nuclear uptake properties of smaller hairpins, apparently due to size and shape. Six-ring hairpin polyamides with alkyne 42a and 42b or azide 43a and 43b moieties with different linker lengths were designed so that their matching sites are adjacent on the DNA, which allows the formation of hairpin dimers in situ (Fig. 16).

Experiments were carried out at 37 °C at pH 7.0 with equimolar concentrations of one azide, one alkyne and DNA duplex A (1 μM). When any pair of hairpin polyamides (42a + 43a, 42a + 43b, 42b + 43a, 42b + 43b) was combined in solution, HPLC analysis of the reaction mixtures (verified using matrix-assisted laser desorption/ionization-time of flight mass spectrometry) revealed significant acceleration of formation of hairpin dimers in the presence of DNA template with respect to the nontemplated reaction between 42a and 43a. The rate of dimer formation from 42a and 43b was slower than the rate of formation from 42a and 43a, presumably due to the additional flexibility in the linker of 43b, which allows the reactants to more freely adopt nonproductive conformation. Also, the rate of product formation from pairings of 42b with 43a and 43b is decreased due to the differences in the reactivity between 42a, activated with an electron withdrawing group (EWG), and EWG-free alkyne 42b. Moreover, when the alkynyl reactant is substituted with an EWG, stereoelectronics of the reaction pathway favoured formation of 1,4-regiosomer. Thermal reaction between 42a and 43a or 43b afforded predominantly the 1,4-regiosomeric products, while DNA-templated reactions afforded them exclusively. When the EWG-free alkyne 42b was paired with either 43a or 43b, each thermal reaction produced two corresponding regiosomers in a ratio of 1:1, while DNA-templated reaction produced only a single isomer (42b + 43a) or a ratio of 3:1 (42b + 43b).
DNA-templated cycloadditions were found to be sensitive upon separation of the hairpin-binding sites with additional bp. Thus, upon insertion of one bp between two adjacent five bp hairpin-binding sites for the hairpin polyamides 42a,b and 43a,b (DNA duplex B), the only product formed from 42b and 43b was detected with about 50% yield. When two intervening bp were inserted (DNA duplex C), no product was detected using various pairs of hairpin polyamides. DNA-templated cycloadditions were also found to be sensitive upon DNA sequence of the two hairpin-binding sites, as illustrated by the mismatch tolerance study of optimal pair 42a and 43a. When a single bp mismatch is present under azide hairpin polyamide-binding or under each of the two hairpin-binding sites, the rate of the hairpin dimer-forming cycloaddition is nearly halved or lowered over 2.5 fold, respectively. However, when the concentration of reacting hairpins 42a and 43a was varied from 1 μM to 0.5 μM, a threshold concentration that defined the ability of hairpins to distinguish between match site and double bp mismatch site was detected somewhere between 1 μM and 0.75 μM. The authors suggested that, at some lower concentration, an additional threshold exists that allows hairpins to distinguish the match site from a single bp mismatch site, rendering the possibility to increase the ratio of hairpin dimer formation on match over mismatch DNA and the overall hairpin dimer yield.

Recently, Di Antonio et al. have demonstrated the ability of the in situ click chemistry multicomponent approach to identify potent and selective small molecules binding a region of chromosomes formed by guanine-rich sequences of DNA called G-quadruplex (G4). In their study, they selected G4 formed by the human telomeric DNA (H-Telo). No adduct was formed when the reaction mixture was incubated in the absence of DNA, in the presence of double-stranded DNA, or in the presence of telomeric oligonucleotides pre-annealed to prevent G4 formation, thus confirming that H-Telo serves as a reaction pot. Moreover, adducts obtained from a reaction conducted in the presence of RNA G4-structure demonstrated selective RNA versus DNA G4 structure binding. More recently, Glassford et al. have expanded the templation potential of the in situ click chemistry to E. coli 70S ribosomes or their 50S subunits and thus synthesized potent macrolide antibiotics that target bacterial ribosome. Also, the in situ click chemistry approach has been applied to explore the conformational space of the ligand binding site of a M. tuberculosis transcriptional repressor EthR which regulates the transcription of monoxygenase EthA and thus controls the sensitivity of M. tuberculosis to an-

Figure 16. DNA-templated dimerization of hairpin polyamides on DNA duplexes with hairpin binding sites separated with zero (A), one (B), or two (C) base pairs.
tibiotic ethionamide. The *in situ* formed inhibitor, displayed 10-fold higher activity than the starting azide, and induced a significant conformational change of the ligand-binding domain of EthR.145

5. Iterative *in situ* Click Chemistry

In addition to the development of coupled bivalent enzyme inhibitors targeting the active site, *in situ* click chemistry can produce multivalent ligands active on protein surface, such as allosteric, interfacial, or non-functional surface sites. Once a bivalent ligand has been formed *via in situ* approach from the corresponding azide and alkyne building blocks, that biligand can serve as an anchor ligand for the identification of a triligand, and so forth, in a so-called iterative *in situ* click chemistry approach. This approach has been successfully introduced by Agnew et al. to identify a triligand antibody-like capture agent against human or bovine CA-II (h(b)CA-II) (Fig. 17).146

![Figure 17. Iterative *in situ* click chemistry approach for developing triligand capture agent for human or bovine carbonic anhydrase II (b(h)CA-II).146](image-url)
Figure 18. *In situ* click chemistry approach for developing triligand capture agent/inhibitor for Akt1 kinase.\textsuperscript{150}
The first anchor ligand was identified by screening a comprehensive one-head-one-compound (OBOC) peptide library consisting of short chain peptides, against fluorescently labelled bCA-II. Analysis of the position-dependent frequency of amino acids identified the anchor ligand, a short heptapeptide comprised of non-natural D-amino acids and a terminal, acetylene-containing amino acid D-propargylglycine (D-Pra), showing an approximately 500 μM affinity for bCA-II. This anchor ligand was used in the second screen against the OBOC peptide library, in which peptides were modified with an azide linker, in the presence of bCA-II to identify the triazole product showing a 3 μM binding affinity for bCA-II. The screen was repeated with this terminal D-Pra-containing biligand as the new anchor unit to identify a triligand, which exhibited strong binding affinities against bCA-II (64 nM) and hCA-II (45 nM). However, no regioselectivity was observed for the two triazoles in the triazole capture agent. On-bead, protein-templated triligand formation was confirmed by an enzyme-linked colorimetric assay containing a biotin conjugate of the biligand as the new anchor unit to identify a triligand, a short heptapeptide comprised of non-natural D-amino acids and the terminal, acetylene-containing amino acid D-propargylglycine (D-Pra), showing an approximately 500 μM affinity for bCA-II. This anchor ligand was used in the second screen against the OBOC peptide library, in which peptides were modified with an azide linker, in the presence of bCA-II to identify the triazole product showing a 3 μM binding affinity for bCA-II. The screen was repeated with this terminal D-Pra-containing biligand as the new anchor unit to identify a triligand, which exhibited strong binding affinities against bCA-II (64 nM) and hCA-II (45 nM). However, no regioselectivity was observed for the two triazoles in the triazole capture agent. On-bead, protein-templated triligand formation was confirmed by an enzyme-linked colorimetric assay containing a biotin conjugate of the biligand anchor. The triligand was only formed in the presence of b(h)CA-II, and not when b(h)CA-II was absent or other proteins (transferrin, BSA) used instead. Similarly, on-bead, protein-templated formation was not observed when the incorrect biligand anchor was used. The triligand did not interfere with bCA-II intrinsic esterase activity, which indicated that it binds away from the active site.

The strategy described was also applied to identify a high-specificity, triligand capture agent/inhibitor for Akt1 kinase. Akt1 kinase is responsible for signal transduction from the plasma membrane to downstream effector molecules that control cell growth, apoptosis, and translation. To ensure the development of an allosteric site inhibitor, Millward et al. carried out an initial screen against a large OBOC peptide library on a kinase preinhibited with an ATP-competitive inhibitor, Ac7. One of the N-terminal azido-amino acid-containing peptides generated in the initial screen showed almost 95% inhibition of the Akt1 kinase in the absence and presence of the conjugated small molecule inhibitor and was therefore employed as an anchor for biligand development (Fig. 18).

The most promising candidate from biligand screens was modified with 5-hexynoic acid at the N-terminus and used as an anchor ligand for triligand development which finally resulted in the tertiary peptide containing two triazole moieties. An analytical assay based on immune-PCR revealed that the click reaction between the on-bead secondary peptide and the soluble anchor peptide was approximately 10-fold more efficient in the presence of Akt1 than in its absence, confirming the requirement for the target protein to template the click reaction. The biligand showed 100-fold improvement in its affinity for Akt relative to the anchor peptide, while the triligand showed 2–3 fold affinity gain for Akt1 ($K_d = 200$ nM). The specificity characterization of the anchor, biligand, and triligand for a panel of His-tagged protein kinases revealed that the anchor was very specific for the Akt1 protein, with only modest cross-reactivity to GSK3β protein kinase. The biligand showed reduced specificity, with significant binding to GSK3β. For the triligand, binding to GSK3β was reduced to the level observed for the anchor peptide. These observations indicate that large improvements in affinity may come at the expense of reduced specificity, whereas increased specificity is not necessarily accompanied by increased affinity. This inverse correlation between affinity and selectivity is in accordance with previous studies on small molecule protein kinase inhibitors, antibody–small molecule interactions, DNA–protein interactions, and protein–protein interactions. Measuring Akt1 kinase activity under varying substrate and triligand concentrations eliminated the possibility of a competitive mode of Akt1 inhibition by the triligand with respect to ATP and peptide substrates. This confirmed that the triligand binds to a location away from the active site of the kinase and that inhibition occurs via an allosteric mechanism. Finally, the anchor, biligand, and triligand were tested for the ability to recognize Akt from the ovarian cancer cell line OVCAR3 in immunoprecipitation (IP) experiments. IP experiments confirmed the increased affinity of the biligand relative to the anchor peptide in OVCAR3 cell lysates from both cells stimulated with a combination of epidermal growth factor (EGF) and insulin and from untreated control cells. The triligand showed somewhat increased IP of Akt relative to the biligand only in lysates from induced cells. However, an analysis of the total IP protein by SDS-PAGE electrophoresis showed low non-selective binding for all ligands. The authors observed IP of the protein that likely corresponds to the GSK3β kinase by the triligand, and to a lesser degree, by the anchor and the biligand. The underlying rationale for GSK3 binding to ligands is yet to be explained. However, IP experiments confirm the increase in capture efficiency of ligands, particularly in stimulated cells, as they are being translated from anchor to triligand with their affinity and selectivity criteria increased.

6. Conclusion

Receptor-based combinatorial chemistry is a promising strategy developed for identifying possible leads in drug discovery whereby the biomolecular target of interest is used to “fish out” building blocks that couple into high affinity compounds. Theoretical studies have shown that, unless excessive amounts of a molecular target are used, high affinity compounds have a high probability of being significantly amplified over other possible combinations of building blocks. Also, any significantly amplified compound is guaranteed to be a high affinity compound.

The examples listed in this review have illustrated the potential of various receptor-based combinatorial che-
mistry approaches to identify high affinity compounds and, in some occasions, their potential to elucidate the binding modes of substrates to their biomolecular target.

The in situ click chemistry approach combines building blocks through 1,3-dipolar cycloaddition of azides and alkynes (Huisgen’s cycloaddition). This approach is predominantly used for the discovery of enzyme inhibitors targeting enzyme active sites as illustrated with examples from the AChE system, although the templation potential of this approach can be extended to more flexible intersubunit binding sites and even minor groove of double-helical DNA. Examples from AChE and AChBP systems have shown that in situ click chemistry allows one to freeze in-frame conformations that associate with high-affinity inhibitors and are normally not detected by conventional structural methods. These findings set out a stage for developing unusual strategies of drug design where the most selective compounds would induce distinctive conformations of the target.

More efficient and synergistic approaches that combine receptor based combinatorial chemistry with in silico methods such as de novo structure based design (SBD) or molecular docking studies limit the selection of the coupling partners that have to be incubated with protein target to the ones based on retrosynthesis of in silico designed hits thus indicating that the full potential of receptor based combinatorial chemistry in drug discovery is yet to be discovered.157,158

7. Acknowledgements

This work was supported by the Croatian Science Foundation (Grant HRZZ 4307 PI: Z. Kovarik).

8. References

1. R. S. Bohacek, C. McMartin, W. C. Guida, Med. Res. Rev., 1996, 16, 3–50. https://doi.org/10.1002/(SICI)1098-1128(199601)16:1<3::AID-MED1>3.0.CO;2-6
2. H. N. Weller, D. S. Nirschl, E. W. Petrillo, M. A. Poss, C. J. Andres, C. L. Cavallaro, M. M. Echols, K. A. Grant-Young, J. G. Houston, A. V. Miller, R. T. Swann, J. Comb. Chem., 2006, 8, 664–669. https://doi.org/10.1021/cc050164h
3. S.L. Dixon, H. O. Villar, J. Chem. Inf. Comp. Sci., 1998, 38, 1192–1203. https://doi.org/10.1021/ci980105+
4. J. D. Cheeseman, A. D. Corbett, J. L. Gleason, R. J. Kazlauskas, Chem. Eur. J., 2005, 11, 1708–1716. https://doi.org/10.1002/chem.200403371
5. R. Huisgen, G. Szeimies, L. Moebius, Chem. Ber., 1967, 100, 2494–2507. https://doi.org/10.1002/cber.19671000806
6. R. Huisgen, In: 1,3-Dipolar cycloaddition – introduction, survey, mechanism., A. Padwa, Ed., Wiley: New York, 1984, Vol. 1, pp. 1–176.
7. P. T. Corbett, J. Leclaire, L. Vial, K. R. West, J.-L. Wietor, J. K. M. Sanders, S. Otto, Chem. Rev., 2006, 106, 3652–3711. https://doi.org/10.1021/cr020452p
8. M. Mondal, A. K. Hirsch, Chem. Soc. Rev., 2015, 44, 2455–2488. https://doi.org/10.1039/C4CS00493K
9. Y. Kubota, S. Sakamoto, K. Yamaguchi, M. Fujita, Proc. Natl. Acad. Sci. USA, 2002, 99, 4854–4856. https://doi.org/10.1073/pnas.082643499
10. M. S. Congreve, D. J. Davis, L. Devine, C. Granata, M. O’Reilly, P. G. Wyatt, H. Jhoti, Angew. Chem., Int. Ed., 2003, 42, 4479–4482. https://doi.org/10.1002/anie.200351951
11. S. Otto, J. Mater. Chem., 2005, 15, 3357–3361. https://doi.org/10.1039/b500703h
12. A. V. Eliseev, M. I. Nelen, Chem. Eur. J., 1998, 4, 825–834. https://doi.org/10.1002/(SICI)1521-3765(19980515)4:5<825::AID-CHEM825>3.0.CO;2-7
13. J. S. Moore, N. W. Zimmerman, Org. Lett., 2000, 2, 915–918. https://doi.org/10.1021/ol000572s
14. Z. Grote, R. Scopelliti, K. Severin, Angew. Chem., Int. Ed., 2003, 42, 3821–3825. https://doi.org/10.1002/anie.200351623
15. P. T. Corbett, S. Otto, J. K. M. Sanders, Chem. Eur. J., 2004, 10, 3139–3143. https://doi.org/10.1002/chem.200400300
16. K. Severin, Chem. Eur. J., 2004, 10, 2565–2580. https://doi.org/10.1002/chem.200305660
17. J.-M. Lehn, R. A. Woods, D. H. Bartón, J. E. Corrie, D. A. Widdowson, Chem. Eur. J., 1977, 5, 2455–2463. https://doi.org/10.1002/10211521-3765(19990903)5:9<2455::AID-CHEM2455>3.0.CO;2-H
18. S. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders, J. F. Stoddart, Angew. Chem., Int. Ed., 2002, 41, 899–952. https://doi.org/10.1002/1021-3773(20020503)41:9<1440::AID-ANIE11111460>3.0.CO;2-N
19. I. Huc, J.-M. Lehn, Proc. Natl. Acad. Sci. USA, 1997, 94, 2106–2110. https://doi.org/10.1073/pnas.94.6.2106
20. M. Hochgürtel, R. Biesinger, H. Kroth, D. Piecha, M. W. Hofmann, S. Krause, O. Schaaf, C. Nicolau, A. V. Eliseev, J. Med. Chem., 2003, 46, 356–358. https://doi.org/10.1021/jm025589m
21. O. Ramström, S. Lohmann, T. Bunyapaiboonsri, J.-M. Lehn, Chem. Eur. J., 2004, 10, 1711–1715. https://doi.org/10.1002/chem.200305551
22. M. Sindelar, K. T. Wanner, ChemMedChem, 2012, 7, 1678–1690. https://doi.org/10.1002/cmdc.201200201
23. N. Nazarpack-Kandlousy, J. Zweigenbaum, J. Henion, A.V. Eliseev, J. Comb. Chem., 1999, 1, 199–206. https://doi.org/10.1021/cc980036b
24. B. Shi, R. Stevenson, D. J. Campopiano, M. F. Greaney, J. Am. Chem. Soc., 2006, 128, 8459–8467. https://doi.org/10.1021/ja050849y
25. O. Ramström, J.-M. Lehn, Chem. Bio. Chem., 2000, 1, 41–48. https://doi.org/10.1002/1439-7633(20000703)1<1<41::AID-CBIC41>3.0.CO;2-L
26. L. Milanesi, C.A. Hunter, S.E. Sedielnikova, J.P. Waltho, D. A. Widdowson, Chem. Eur. J., 2006, 12, 1081–1087. https://doi.org/10.1002/chem.200500357
138. J. L. Czlapinski, T. L. Sheppard, J. Am. Chem. Soc., 2001, 123, 8618–8619. https://doi.org/10.1021/ja0162212
139. D. Summerer, A. Marx, Angew. Chem., Int. Ed., 2002, 41, 89–90. https://doi.org/10.1002/1521-3773(20020104)41:1<89::AID-ANIE89>3.0.CO;2-G
140. Z. J. Gartner, R. Grubina, C. T. Calderone, D. R. Liu, Angew. Chem., Int. Ed., 2003, 42, 1370–1375. https://doi.org/10.1021/anie.200390351
141. R. N. Warrender, D. N. Butler, D. Margetić, F. M. Pfeffer, R. A. Russell, Tetrahedron Lett., 2001, 41, 4671–4675. https://doi.org/10.1016/S0040-4039(00)00685-7
142. M. Di Antonio, G. Biffi, A. Mariani, E.-A. Raiber, R. Rodriguez, S. Balasubramanian, Angew. Chem., Int. Ed., 2012, 51, 11073–11078. https://doi.org/10.1021/anie.201206281
143. A. Ambrus, D. Chen, J. Dai, T. Bialis, R. A. Jones, D. Yang, Nucleic Acids Res., 2006, 34, 2723–2735. https://doi.org/10.1093/nar/gkl348
144. I. Glassford, C. N. Teijaro, S. S. Daher, A. Weil, M. C. Small, S. K. Redhu, D. J. Colussi, M. A. Jacobson, W. E. Childers, B. Buttaro, A. W. Nicholson, A. D. MacKerell, B. S. Cooperman, R. B. Andrade, J. Am. Chem. Soc., 2016, 138, 3136–3144. https://doi.org/10.1021/jacs.5b13008
145. N. Willand, M. Desroses, P. Toto, B. Diriz, E. C. Lens, V. Vilkeret, P. Rucktooa, C. Locht, A. Baulard, B. Deprez, ACS Chem. Biol., 2010, 5, 1007–1013. https://doi.org/10.1021/cb100177g
146. H. D. Agnew, R. D. Rohde, S. V. Millward, A. Nag, W.-S. Yeo, J. H. Hein, S. M. Pitram, A. T. Ahad, A. M. Burns, J. R. Krom, V. V. Fokin, K. B. Sharpless, J. R. Heath, Angew. Chem., Int. Ed., 2009, 48, 4944–4948. https://doi.org/10.1021/anie.200900488
147. K. S. Lam, S. E. Salmon, E. M. Hersh, V. J. Hruby, W. M. Kazmierski, R. J. Knappt, Nature, 1991, 354, 82–84. https://doi.org/10.1038/354082a0
148. D. G. Udagamasooriya, S. P. Dineen, R. A. Brekken, T. Kodakek, J. Am. Chem. Soc., 2008, 130, 5744–5752. https://doi.org/10.1021/ja711193x
149. G. Liu, K. S. Lam, In: Combinatorial Chemistry-A Practical Approach Series., H. Fenniri, Ed., Oxford University Press: New York, 2000, pp. 43–44.
150. S. W. Millward, R. K. Henning, G. A. Kwong, S. Pitram, H. D. Agnew, K. M. Deyle, A. Nag, J. Hein, S. S. Lee, J. Lim, J. A. Pfeilsticker, K. B. Sharpless, J. R. Heath, J. Am. Chem. Soc., 2011, 133, 18280–18288. https://doi.org/10.1021/ja2064389
151. I. Vivanco, C. L. Sawyers, Nat. Rev. Cancer, 2002, 2, 489–501. https://doi.org/10.1038/354082a0
152. C. M. Niemeyer, M. Adler, R. Wacker, Trends Biotechnol., 2005, 23, 208–216. https://doi.org/10.1016/j.tibtech.2005.02.006
153. S. L. Posy, M. A. Hermensmeier, W. Vaccaro, K.-H. Ott, G. Todderud, J. S. Lippy, G. L. Trainor, D. A. Loughney, S. R. Johnson, J. Med. Chem., 2011, 54, 54–66. https://doi.org/10.1021/jm101195a
154. J. F. Schildbach, D. J. Panka, D. R. Parks, G. C. Jager, J. Novotny, L. A. Herzenberg, M. Mudgett-Hunter, R. E. Bruccoleri, E. Haber, M. N. Margolies, J. Biol. Chem., 1991, 266, 4640–4647.
155. L. Jen-Jacobson, Biopolymers, 1997, 44, 153–180. https://doi.org/10.1002/(SICI)1097-0282(1997)44:2<153::AID-BIP4>3.0.CO;2-U
156. J. T. Nguyen, M. Porter, M. Amoui, W. T. Miller, R. N. Zuckermann, W. A. Lim, Chem. Biol., 2000, 7, 463–473. https://doi.org/10.1016/S1074-5521(00)00130-7
157. C. Peruzzotti, S. Borrelli, M. Ventura, R. Pantano, G. Fumagalli, M. S. Christodoulou, D. Monticelli, M. Luzzani, A. C. Fallacara, C. Tintori, M. Botta, D. Passarella, ACS Med. Chem. Lett., 2013, 4, 274–277. https://doi.org/10.1021/ml300394w
158. M. Mondal, N. Radeva, H. Koster, A. Park, C. Potamitis, M. Zervou, G. Klebe, A. K. H. Hirsch, Angew. Chem., Int. Ed., 2014, 53, 3259–3263. https://doi.org/10.1002/anie.201309682

Povzetek

Sodobno odkrivanje zdravil v glavnem temelji na de novo sintezah velikega števila spojin z različnimi kemijskimi funkcionalnimi skupinami. Čeprav je kombinatorialna kemija omogočila pripravo velikih količin spojin iz različnih gradnikov, to je vedno težava identifikacije spojin vodnic. Odkrivanje dinamičnih metod kombinatorialne kemije predstavlja korak naprej, saj pri sami sintezi visoko afinitetnih produktov vključuje biološke makromolekularne tarče (receptorje). Glavni preoblik je temelj iz iskanja in je preoblikovanja receptorjev. Pri Huisgenovem cikloadicijem (1,3-dipolarna cikloadicija azidov z alkini) nastanejo stabilni 1,2,3-triazoli; pogosto z zelo visokimi afinitetami do receptorjev. Odkritje dinamičnih metod kombinatorialne kemije je vendar zelo težava in veliko varijativnosti. Rouxsevski cikloadiciji lahko uporabimo tudi pri različnih drugih receptorjih: acetiholinarizere, ki veže na acetiholin; karboanhidrazi-II, serin/teonin-proteinski kinazi in pri vezavi na malčev DNA.

Maraković and Šinko: The Lock is the Key: Development of Novel Drugs ...