Possible Tau Appearance Experiment with Atmospheric Neutrinos

Todor Stanev

Bartol Research Institute, University of Delaware, Newark, DE 19716, USA

We suggest an experimental measurement that could detect the appearance of tau neutrinos due to $\nu_\mu \rightarrow \nu_\tau$ oscillations of atmospheric neutrinos by measuring the energy spectra of neutrino induced showers. τ neutrinos deposit a large fraction of their energy in showers generated by ν_τ CC interactions and the subsequent τ-lepton decay. The appearance of ν_τ will enhance the spectrum of neutrino induced showers in energy ranges corresponding to the neutrino oscillation parameters. A shower rate lower than the ‘no oscillation’ prediction is an indication for $\nu_\mu \rightarrow \nu_\tau$ oscillations.

I. INTRODUCTION

The Super–Kamiokande experiment, a densely instrumented water–Cherenkov detector of very large dimensions, confirmed [1] earlier indications [2] that the abnormal ratio of atmospheric muon to electron neutrinos can be interpreted best as muon to tau or sterile neutrino oscillations. The oscillation hypothesis is supported by the low ratio of muon to electron neutrino events and by the disappearance of muon neutrino events as a function of the distance to their production site. Several independent data sets, measuring different neutrino energy ranges and neutrino interaction processes, are fully consistent with oscillations in maximum mixing and Δm^2 values of $3.5 \times 10^{-3} \text{ eV}^2$ [3].

None of the data sets, that have been currently analyzed, however, contain any signatures of tau lepton appearance. The low ν_τ deep inelastic scattering cross section below 10 GeV and the very short τ–lepton lifetime prevent the direct observation, although the experimental sample should contain a number of τ–leptons. Several long baseline accelerator experiments have been proposed with the aim to detect τ neutrinos and confirm the $\nu_\mu \rightarrow \nu_\tau$ oscillation hypothesis. [4]. These employ an accelerator neutrino beam that is more restricted in energy than the cosmic ray beam and high resolution near and distant ($\sim 700 \text{ km}$) detectors that are able to identify ν_τ interactions.

We propose an experiment that uses the short lifetime of the τ–leptons to detect one of the signatures of their appearance. Charge current ν_τ interactions and the subsequent τ decays will create hadronic/electromagnetic showers that will practically coincide in vertex and in time. Much higher fraction of the ν_τ energy will be deposited in the form of showers than in either ν_μ CC interactions or in neutral current (NC) interactions of any neutrino flavor. A measurement of the energy spectrum of shower events initiated by atmospheric neutrinos will be able to register the appearance of ν_τ, that are present at a very low level in the atmospheric neutrino flux in the absence of neutrino oscillations. The shower signal is generated by atmospheric neutrinos of energy above 10 GeV. The neutrino induced showers can be contained inside a big water (or ice) Cherenkov detector that does not have to be very densely instrumented.

In the case of $\nu_\mu \rightarrow \nu_\tau$ oscillations an excess of neutrino induced showers will created at certain shower energies that will reflect the values of the oscillation parameters. In the case of $\nu_\mu \rightarrow \nu_\tau$ neutrinos the shower rate will correspondingly decrease, although by smaller amounts.

II. SHOWERS GENERATED BY τ NEUTRINO CC INTERACTIONS

We envision a detector that consists of three or four strings of photomultipliers in the fashion of the high energy neutrino telescopes [5] on a circle of radius 10 to 15 meters instrumented with photomultipliers every 4 to 5 m. Such an arrangement has been already proposed [6] for the measurement of the energy spectrum of neutrino induced muons. This detector will not be able to reconstruct the shower development or differentiate between purely electromagnetic and hadronic showers, but should be able to contain showers of energy up to 1000 GeV. The depth of maximum X_{max} for 1000 GeV electromagnetic showers is $\sim 290 \text{ g/cm}^2$ and about 100 g/cm^2 larger for hadronic showers, i.e. 3 – 4 meters of water or ice. Accounting for the absorption length of Cherenkov light, about 25 m, the electromagnetic and hadronic showers will appear indistinguishable in such relatively crude (in comparison to Super–Kamiokande) detector. So we define as shower energy E_{sh} the total energy released in the form of hadrons, photons and electrons in the final state, i.e. $E_{\text{sh}} = y \times E_\nu$ in NC interactions.

Assuming that muon neutrinos and antineutrinos oscillate into ν_τ, there will be three sources of neutrino induced showers: those due to $\nu_e (\bar{\nu}_e)$ CC interactions, NC interactions of all three neutrino flavors and CC interactions of ν_τ and $\bar{\nu}_\tau$. Electron neutrino CC interactions deposit the total neutrino energy in the form of a shower. The fraction of shower energy in NC interactions is defined by the differential cross section $\frac{d\sigma}{dy}$ which is energy dependent. To determine $\nu_\tau (\bar{\nu}_\tau)$ CC interaction contribution one has to add to $\frac{d\sigma}{dy}$ the fraction of the...
between the two mass eigenstates.

Fig. 1 shows the distribution of the fraction of neutrino energy deposited in shower form for NC neutrino interactions, dotted one is for CC interactions. The two distributions yield on the average 48% of the neutrino energy in showers. The oscillation probability in a simple two neutrino scenario is given in convenient units as

\[
P_{\nu_1 \to \nu_2} = \sin^2 2\theta \sin^2 \left[1.27 \frac{(L/{\text{km}})(\Delta m^2/{\text{eV}}^2)}{(E_\nu/{\text{GeV}})} \right],
\]

where \(\Delta m^2 = |m_{\nu_1}^2 - m_{\nu_2}^2|\) and \(\theta\) is the mixing angle between the two mass eigenstates.

III. NEUTRINO FLUXES FOR DIFFERENT OSCILLATION PARAMETERS

In the energy range below 100 GeV atmospheric neutrinos are generated predominantly by the decay chain \(\pi^\pm \to \nu_\mu (\bar{\nu}_\mu) + \mu \to \nu_\mu (\bar{\nu}_\mu) + \nu_e (\bar{\nu}_e) + e^\pm\) of pions produced in interactions of cosmic rays in the atmosphere. In the 100 GeV range the spectrum of neutrinos from pion decay is one power of \(E\) steeper than the cosmic ray spectrum because of time dilation, while those of neutrinos from muon decay are steeper by two powers of the energy.

The oscillation probability in a simple two neutrino scenario is given in convenient units as

\[
P_{\nu_1 \to \nu_2} = \sin^2 2\theta \sin^2 \left[1.27 \frac{(L/{\text{km}})(\Delta m^2/{\text{eV}}^2)}{(E_\nu/{\text{GeV}})} \right],
\]

where \(\Delta m^2 = |m_{\nu_1}^2 - m_{\nu_2}^2|\) and \(\theta\) is the mixing angle between the two mass eigenstates.

IV. THE ENERGY SPECTRUM OF NEUTRINO INDUCED SHOWERS

Fig. 2. Neutrino fluxes of all three flavors (dots: \(\nu_e\), dashes: \(\nu_\mu\), dash–dash: \(\nu_\tau\)) in the presence of \(\nu_\mu \to \nu_\tau\) oscillations with maximum mixing and \(\Delta m^2 = 10^{-2}, 10^{-2.5}\) and \(10^{-3}\) eV\(^2\) from left to right.

Fig. 2 shows the fluxes of atmospheric \(\nu+\bar{\nu}\) for all three neutrino flavors coming from the lowest \(\pi\) sterdian of solid angle (cos \(\theta\) from -1 to -0.5) for maximum mixing and \(\Delta m^2 = 10^{-2}, 10^{-2.5}\) and \(10^{-3}\) eV\(^2\) derived from the atmospheric neutrino fluxes of Ref. [10]. The flux of muon neutrinos is now split between muon and tau neutrinos, the valleys in muon neutrinos corresponding to peaks in tau neutrinos. Because the neutrino pathlength in this cos \(\theta\) range varies only between \(R_\oplus\) and \(2R_\oplus\) and the neutrino energy of interest is relatively high, the oscillation patterns are not completely smeared, as they are in the GeV range. The peak in the \(\nu_\tau\) spectrum at 70 GeV and \(\Delta m^2 = 10^{-2}\) eV\(^2\), for example, corresponds to \(\nu_\mu\) oscillation probability of 0.83 for \(1 R_\oplus\) and 0.55 for \(2 R_\oplus\). The energy spectrum of \(\nu_e\) is very steep and the \(\nu_\tau\) flux (that derives from \(\nu_\mu\)) is higher than the \(\nu_e\) flux below 500 (50) GeV for \(\Delta m^2 = 10^{-2}\) \((10^{-3})\) eV\(^2\). If the angular range were narrower and closer to vertical direction the peaks and valleys in the \(\nu_\tau\) flux would be even more obvious.

The energy spectrum of showers induced by different neutrino flavors and interactions. The solid line indicates showers generated by NC interactions of all three flavors and the dotted line gives the showers of \(\nu_\mu\) and \(\bar{\nu}_e\) CC interactions. The sum of these two contributions is the expected shower energy spectrum in the absence of neutrino oscillations. The other three curves show the contribution of \(\nu_\tau\) and \(\bar{\nu}_e\) CC interactions for the three values of \(\Delta m^2\) used in Fig. 2. We assume here that the muons generated in \(\nu_\mu\) CC interactions will be detected and used to veto the accompanying showers.

Trine

\(\tau\)-lepton energy \((1 - y) \times E_\nu\) which is not carried away by neutrinos at its decay.
At the lowest shower energy shown, 5 GeV, the contribution of electron neutrino CC interaction is the biggest because ν_e deposit all of their energy in the form of showers. Because of the steepness of the ν_e energy spectrum, however, NC interactions dominate for shower energies above 15 GeV. The contribution of $\nu_\tau (\bar{\nu}_\tau)$ CC interactions is 5–10% at 5 GeV. It increases with energy to become dominant for $\Delta m^2 \geq 10^{-2.5}$ and vanishes at high shower energy where the neutrino oscillation probability is very small. The low contribution at threshold is related to the small ν_τ CC cross section at energies only slightly higher than the τ lepton mass.

Table I gives the total rates of shower events in four wide logarithmically equally spaced energy intervals. The total rates above $E_{sh} = 10$ GeV are 2.1 events per Kt.yr in π steradian in the absence of oscillations. This rate increases by 60% to 3.35 for $\Delta m^2 = 10^{-2}$ eV2 in the case of $\nu_\mu \to \nu_\tau$ oscillations and has intermediate values for lower Δm^2. The corresponding decrease in the case of sterile neutrinos is by 25% to 1.60.

Table I. Shower event rates (in (Kt.yr)$^{-1}$) for different Δm^2 in four energy bins for the lowest π steradian of solid angle, i.e. between the nadir and 30 degrees below the horizon.

E_{sh}, GeV	Δm^2, eV2	0	0.01	0.005	0.002
$\nu_\mu \to \nu_\tau$					
10 – 25					
25 – 63					
63 – 160					
> 160					
$\nu_\mu \to \nu_\tau$					
10 – 25					
25 – 63					
63 – 160					
> 160					

Fig. 3 shows the total shower rate (the sum of all three contributions in Fig. 3) for Δm^2 of 0.002, 0.005 and 0.01 eV2. The no oscillation case is given with a solid line. The upper three histograms (thick lines) are for $\nu_\mu \to \nu_\tau$ oscillations while the lower three (thin lines) are for $\nu_\mu \to \nu_\nu$ case. The shapes of the energy spectrum that reflect the ν_τ contribution are as essential as the increase in the total rate. With the decrease of Δm^2 the shower excess moves to lower energy. The biggest excess for $\Delta m^2 = 0.01$ eV2 is in the range of 40 to 150 GeV. $\Delta m^2 = 0.005 (0.002)$ eV2 causes an excess above 20 (10) GeV.

In the case of $\nu_\tau \to \nu_\nu$ oscillations the changes in the shower rate are less spectacular. The only difference with the no oscillations case is the missing contribution of NC interactions of the oscillated muon neutrinos. Still, the decrease of the rates in the 10 – 50 GeV range is of order 30 – 40%.
V. DISCUSSION AND CONCLUSIONS

The rates of shower events are sufficiently high for a relatively crude detector as described in the Introduction. Four strings on radius of 15 m with length of 200 m each enclose a volume of 90 Kt of water or ice. This translates into a statistics of 190 events/yr above 10 GeV in the absence of oscillations and 270 events/yr for $\Delta m^2 = 0.002$ eV2. Two years of measurement should be enough to observe the enhancement in the shower rate with good statistics if Δm^2 is not lower than 2×10^{-3} eV2.

The requirements for the energy and angular resolution of the detector are not very high. Table 1 gives the rates in wide bins to demonstrate the relatively low sensitivity to the energy resolution of the detector. Smearing of the rates shown in Fig. 3 with a Gaussian distribution mimicking energy resolution of 30% does not change significantly the detectability of ν_τ appearance. Restricting the measurement to showers closer to vertical direction enhances the appearance effect as the peaks and valleys in the ν_τ flux become more noticeable, although it decreases the statistics of the signal events. An angular resolution of order 10° should be good enough for the measurement of the rates in π steradian given in Table 1.

The presented calculation is not accurate enough to determine the actual detector rates because it assumes that:

a) ν_μ($\bar{\nu}_\mu$) CC interactions are identified and are not counted as shower events. In practice some of these events (at high y) would not be distinguishable and will increase the experimentally measured shower rate;

b) all τ decay energy not carried away by neutrinos contributes to E_{sh}. Actually a fraction of the τ decay energy is carried by muons and does not contribute to the shower rate, especially in the $\tau^\pm \rightarrow \mu^\pm \nu_\mu (\bar{\mu}_\mu) \bar{\nu}_\tau (\nu_\tau)$ channel with a branching ratio of 17.4% [1].

These effects are not included in the calculation because their strength depends very much on the detector design and can only be studied by detector Monte Carlo codes that account for the Cherenkov light propagation in water or ice and detector efficiency.

The absolute normalization of the predicted shower flux is not better than $20 - 25\%$ [3]. This does not, however, decrease significantly the sensitivity to oscillation parameters because the energy spectra of the shower events are significantly different for Δm^2 greater than about 2×10^{-3} eV2. The spectral changes would be easier to detect if the measurement could be extended to shower energies lower than 10 GeV, where the contribution of oscillated τ neutrinos is not significant.

The large uncertainty in the absolute normalization will not allow a definite conclusion for the case of oscillations in sterile neutrinos. A combination of the muon neutrino disappearance with no increase of the shower rate will be, however, an important indication in favor of such oscillations.

In conclusion, a measurement of the energy spectrum of neutrino induced showers will provide valuable complimentary information on the oscillations of atmospheric muon neutrinos. An increase of the shower rate would be a detection of the appearance of τ neutrinos in $\nu_\mu \rightarrow \nu_\tau$ oscillations for Δm^2 greater than 2×10^{-3} eV2.

Acknowledgements The author acknowledges valuable discussions with R. Engel, T.K. Gaisser, F. Halzen and D. Seckel. This research is supported in part by U.S. Department of Energy contract DE FG02 01ER 4062.

[1] Y. Fukuda et al., Phys. Rev. Lett. 81, 1562 (1998); Y. Fukuda et al., Phys. Lett. B433, 9 (1998); Y. Fukuda et al., Phys. Lett. B436, 33 (1998); Y. Fukuda et al., Phys. Rev. Lett. 82, 2644 (1999).

[2] K.S. Hirata et al. Phys. Lett. B280, 146 (1992); R. Becker–Szendy et al. Phys. Rev. D46, 3720 (1992).

[3] K. Scholberg, in Proc. of the 1999 Venice Workshop on Neutrino Telescopes (ed. M. Baldo–Ceolin), in print.

[4] See a list of the proposed long baseline oscillation experiments and a collection of documents at http://www.hep.anl.gov/ndk/longbnews/.

[5] L. Pasquali & M.H. Reno, Phys. Rev. D59: 093003 (1999).

[6] F. Halzen & J.G. Learned, Proc. Fifth International Symposium on Neutrino Telescopes, Venice (1993), ed. M. Baldo–Ceolin; see the contributions of C. Spiering, Z. Dzhilkibaev, L. Resvanis & L. Moscoso in Proc. Eight International Symposium on Neutrino Telescopes, Venice (1999), ed. M. Baldo–Ceolin, in print.

[7] L. Moscoso (for the Antares Collaboration), in Ref. 3.

[8] M. Gluck, E. Reya, and A. Vogt, Z. Phys. C67, 433 (1995)

[9] T. Sjöstrand, Comp. Phys. Comm. 39, 347 (1986); ibid 43, 367 (1987); T. Sjöstrand, JETSET version 7.4, program manual.

[10] V. Agrawal, T.K. Gaisser, P. Lipari & T. Stanev, Phys. Rev. D53, 1314 (1996).

[11] C. Caso et al. Eur. Phys. J. C3, 1 (1998).

[12] W. Frati, T.K. Gaisser, A.K. Mann & T. Stanev, Phys. Rev. D48, 1140 (1993)