Aspirin-sensitive asthma and upper airway diseases

Jinny E. Chang, M.D., William Chin, M.D., and Ronald Simon, M.D.

ABSTRACT

Background: Aspirin exacerbated respiratory disease (AERD) consists of nasal polyposis, rhinosinusitis, asthma, and aspirin (ASA) sensitivity.

Objective: This article details how to diagnose and treat AERD and describes the procedures associated with ASA challenge and desensitization, benefits associated with ASA desensitization, and appropriate doses for treatment.

Methods: Criteria for diagnosis of AERD as well as desensitization protocols for oral ASA challenge and combined intranasal ketorolac and oral ASA challenge, are detailed in this article based on literature review.

Results: AERD requires a multidimensional approach to treat the disease given the multiple conditions. With successful ASA desensitization and maintenance of ASA administration, all patients are able to achieve ASA tolerance and select patients are able to achieve improvement in clinical markers such as global scores and reduction in use of topical and systemic corticosteroids.

Santner and Beers described the association between nasal polyposis, asthma, and aspirin (ASA) sensitivity in 1968. The condition now commonly includes rhinosinusitis and is referred to as aspirin-exacerbated respiratory disease (AERD). Many, but not all, patients with AERD describe a viral respiratory infection at the beginning of their symptomatic respiratory disease somewhere in their late teens to middle age. Thus, a typical history of a patient suffering from AERD includes the usual history of viral upper respiratory infections throughout life with tolerance of cyclooxygenase 1 (COX-1) inhibitors including ASA and nonsteroidal anti-inflammatory drugs (NSAIDs). They eventually describe a clinical progression from persistent symptoms of a viral cold to rhinitis and then development of nasal polyposis, asthma, and anosmia within 1–5 years from rhinitis. The development of ASA/NSAID sensitivity occurs at any time in the course of their disease.

PATHOPHYSIOLOGY OF AERD

There are several allergic reactions to ASA and NSAIDs including the true allergy to the medication via an IgE pathway that can lead to anaphylaxis. Other reactions include NSAID-induced aseptic meningitis and hypersensitivity pneumonitis from the cellular immunity pathway as well as worsening chronic urticaria via a cross-reaction and arachidonic acid pathway. AERD is not an allergic or IgE-mediated process; therefore, no in vitro testing is available. Although the pathogenesis of AERD is still not clear, abnormalities in arachidonic acid metabolism leading to an increase in proinflammatory markers and a decrease in inflammatory suppressive mediators have been implicated. Long-term treatment with ASA involves downregulation of proinflammatory mediators. It should be noted that high selective COX-2 inhibitors do not cross-react with ASA or other NSAIDs and patients with AERD can tolerate these medications.

From the Scripps Clinic, La Jolla, California
Presented at the North American Rhinology & Allergy Conference, February 4, 2011, Puerto Rico
The authors have no conflicts of interest to declare pertaining to this article
Address correspondence and reprint request to Jinny E. Chang, M.D., Scripps Clinic, 3811 Valley Center Drive, 599, San Diego, CA 92126
E-mail address: Chang.Jinny@scrippshealth.org
Copyright © 2012, OceanSide Publications, Inc., U.S.A.

AMERICAN JOURNAL OF RHINOLOGY & ALLERGY 27

REVIEW

Aspirin-exacerbated respiratory disease (AERD) consists of nasal polyposis, rhinosinusitis, asthma, and aspirin (ASA) sensitivity.

Background: Santner and Beers described the association between nasal polyposis, asthma, and aspirin (ASA) sensitivity in 1968. The condition now commonly includes rhinosinusitis and is referred to as aspirin-exacerbated respiratory disease (AERD). Many, but not all, patients with AERD describe a viral respiratory infection at the beginning of their symptomatic respiratory disease somewhere in their late teens to middle age. Thus, a typical history of a patient suffering from AERD includes the usual history of viral upper respiratory infections throughout life with tolerance of cyclooxygenase 1 (COX-1) inhibitors including ASA and nonsteroidal anti-inflammatory drugs (NSAIDs). They eventually describe a clinical progression from persistent symptoms of a viral cold to rhinitis and then development of nasal polyposis, asthma, and anosmia within 1–5 years from rhinitis. The development of ASA/NSAID sensitivity occurs at any time in the course of their disease.

PATHOPHYSIOLOGY OF AERD

There are several allergic reactions to ASA and NSAIDs including the true allergy to the medication via an IgE pathway that can lead to anaphylaxis. Other reactions include NSAID-induced aseptic meningitis and hypersensitivity pneumonitis from the cellular immunity pathway as well as worsening chronic urticaria via a cross-reaction and arachidonic acid pathway. AERD is not an allergic or IgE-mediated process; therefore, no in vitro testing is available. Although the pathogenesis of AERD is still not clear, abnormalities in arachidonic acid metabolism leading to an increase in proinflammatory markers and a decrease in inflammatory suppressive mediators have been implicated. Long-term treatment with ASA involves downregulation of proinflammatory mediators. It should be noted that high selective COX-2 inhibitors do not cross-react with ASA or other NSAIDs and patients with AERD can tolerate these medications.

AMERICAN JOURNAL OF RHINOLOGY & ALLERGY 27
gastrointestinal (abdominal pain), and hypotension. The refractory period after desensitization for most patients is 2–4 days. Current Scripps challenge/desensitization protocol combine diagnosis and desensitization, because significant preparation is required to optimize patients before desensitization. Also, the entirety of the desensitization protocol must be performed to diagnose ASA insensitivity in those patients who do not have reactions to ASA.

Although oral ASA challenge has been the mainstay in the United States, inhaled and nasal provocation with lysyl-ASA has been performed and validated as a diagnostic tool for ASA-sensitive asthma. We present the intranasal provocation data as a precursor to the Scripps Clinic’s new protocol of combined inhaled ketorolac and oral ASA protocol. Data for nasal polyposis includes a 1991 study with intranasal desensitization with lysine-ASA corresponding to 20, 200, and 2000 µg of ASA until a maximum dose of 2000 µg weekly was reached. This study proved to be efficacious for 43 patients who had reacted to ASA and were 1 month postpolypectomy when desensitization was started. In a 5-year follow-up, recurrent rates of nasal polyps were significantly lower in the ASA-treated group compared with the control group. Another randomized double-blind, placebo-controlled, crossover trial of intranasal desensitization with low-dose lysine-ASA (16 mg) administered in 11 ASA-intolerant patients with nasal polyps found poor clinical effect of the intranasal desensitization treatment, but there was significant improvement at the microscopic level.

Intranasal ketorolac combined oral ASA challenge shortens duration of desensitization to 1.9 days when compared with 2.6 days for the ASA only challenge ($p < 0.001$). The combined challenge also attenuated patients’ respiratory response as measured by FEV1 and decreased the percentage of extrapulmonary reactions such as laryngospasm (7% versus 19%; $p = 0.02$) and gastrointestinal reactions (12% versus 33%; $p = 0.01$) when compared with standard oral ASA challenge and desensitization.

ASA CHALLENGE AND DESENSITIZATION PROTOCOLS

Before attempting to desensitize patients, the safety of the patients should be ensured by screening for risk factors, as well as appropriate location and resources allocated for where the desensitization will take place. The Aspirin Desensitization Joint Task Force recommends that the procedure should take place where equipment for advanced cardiac care, ventilator support, and constant observation by a supervising physician are available. Patients with risk factors of severe asthma, history of life-threatening ASA or NSAID reaction, β-blocker use, recent myocardial infarction, or any other underlying medical condition or drug treatment regimen that would complicate desensitization should undergo inpatient desensitization. Outpatient desensitizations can be considered for facilities with continuous respiratory and cardiovascular monitoring, pulse oximetry, spirometry, and cardiopulmonary resuscitation is available as well as the physician and staff with experience and capability to handle acute and severe asthma exacerbations. Outpatient desensitization should also be considered for patients with a history of life-threatening ASA or NSAID reaction. The Aspirin Desensitization Joint Task Force published their recommendations before the Scripps study, which showed no correlation between the severity of the historical ASA/NSAID reaction and the challenge reaction.

The risks and benefits of the ASA challenge should be discussed with patients and a consent for the procedure obtained and documented in the patient’s medical record.

Oral ASA and combined ketorolac/ASA challenges will be detailed.

Oral ASA Challenge Protocol

In 2007, the Aspirin Desensitization Joint Task Force recommended the following protocol. One week before challenge, establish airway stability and optimize asthma therapy by obtaining spirometry. Patients with FEV1 of >70% of their prior best (and >1.5 L absolute) are candidates for outpatient desensitization. If asthma is poorly controlled, start or increase systemic corticosteroids and dual-controller therapy. If not already on leukotriene-modifying drug therapy, then starting the medication is recommended. Studies from Scripps Clinic have shown specifically that montelukast can decrease lower respiratory (asthmatic) reaction to oral ASA challenge by 90%. Patients should be taken off of antihistamine medications 48 hours before challenge. On day of challenge, the task force recommends placement of i.v. access. However, in unpublished data of patients at Scripps Clinic, we have never needed to use the i.v. access for treatment of reactions to ASA challenge. When ready to begin the challenge, start with 20.25 mg of ASA by mouth followed by 40.5, 81, 162.5 and 325 mg at 90-minute to 3-hour intervals depending on patient’s overall disease characteristics as well as possible reactions to each dose. If the patient has a reaction, that dose should be repeated, after the reaction resolves, until the patient tolerates the dose. Then, proceed with the next dose in the protocol mentioned previously.

Intranasal Ketorolac Challenge Protocol

Intranasal ketorolac has been validated as a method for diagnosing AERD. For the protocol, 1.26-mg actuation of ketorolac in each spray is first prepared. One spray in one nostril, followed by 2 sprays (1 spray in each nostril given at one time), 4 sprays (2 sprays in each nostril given at one time), and then 6 sprays (3 sprays in each nostril given at one time) in 30-minute intervals. ASA st 60 mg is then given an hour later, followed by another 60-mg dose 90 minutes later. A 150-mg dose is given the next morning, followed by 325 mg 3 hours later.

For both protocols, it is important to evaluate patients clinically and to perform spirometry before each dose and as needed. Positive reactions can include naso-ocular symptoms such as itchy wetery eyes, itchy nose, sneezing, and runny nose; naso-ocular and a 15% or greater decline in FEV1; lower respiratory reaction with >20% decline in FEV1; laryngospasm; or systemic reaction such as hives, flushing, gastric pain, or hypotension. A negative reaction is the absence of reactions after the 325-mg dose.

EXPECTATIONS AFTER DESENSITIZATION

ASA desensitization followed by daily ASA treatment (325 or 650 mg twice a day) is more effective in controlling and/or improving upper and lower respiratory symptoms in patients with AERD than just surgical intervention alone. The relapse rate postpolypectomy without ASA desensitization and treatment was as high as 80%. In a longitudinal prospective study at Scripps Clinic and the Scripps Research Institute from 1995 to 2000, 172 AERD patients who were desensitized to ASA and treated with 650 mg of ASA twice a day were followed with telephone interviews and questionnaires every month for 6 months and then every 6 months thereafter for up to 6 years. Seventy-three percent (126/172) of patients completed the study. Of the 126 patients who completed the study, 110/126 (87%) had good-to-excellent response. Responses were rated excellent if patients had improvement in all clinical markers, both global scores, and a reduction in topical and systemic corticosteroids. Good responders were patients who had improvement in some of the clinical markers, at least one of the global, and the same or decrease in corticosteroids. In this responder study population, there was improvement of nasal symptom and olfactory scores ($p < 0.0001$), no recurrence of sinus surgery ($p < 0.0001$), decreased number of sinus infections from five to two a year ($p < 0.0001$), and reduced number of hospitalization and emergency room visits per year. Additionally, this patient population also showed a reduced need for intranasal and oral corticosteroids ($p < 0.0001$ at 12 months follow-up). Improvement with nasal scores, sense of smell, and asthma scores improved...
significantly \((p < 0.0001) \) and prednisone doses decreased with an average of 10.7–5.9 mg daily \((p = 0.0003) \) within as little as 4 weeks. There were 16/126 patients who were nonresponders. Fourteen of the 16 nonresponders had positive skin test to animal dander, molds, and/or dust mites. Thirteen of 16 nonresponders had positive skin test to animal dander, 11 of whom continued to have animals in the home. None of these nonresponders had or was on concurrent immunotherapy.

It should be noted that chronic ASA therapy has side effects such as gastric pain, gastric bleeding, hives, or nose bleed, and patients are often recommended by their surgeon before a procedure and never restarted ASA treatment postprocedure or because of pregnancy. In fact, out of 46 patients who discontinued ASA during the first 12 months of the study, 29 of them had reported improvement in respiratory symptoms but discontinued the treatment for reasons provided previously.

PREDICTING RESPONSE TO ASA DESENSITIZATION

Predictors of response to ASA desensitization and ASA treatment in AERD patients depend on whether patients have other concomitant diseases. Patients with no concomitant disease have the best outcome with ASA desensitization and ASA treatment. AERD patients who have concomitant atopy (allergic rhinitis and/or asthma), fungal sinusitis, or gastroesophageal reflux have increased risk of nonresponse unless those conditions are well controlled.

MAINTENANCE THERAPY

After ASA desensitization, all patients can maintain desensitization with a minimum of 81 mg of ASA, if that is the goal for prevention of cardiovascular disease. ASA doses of 325 mg/day can keep subjects desensitized to any dose of any other COX-1 inhibitor NSAIDs; however, the dose for AERD has been in some debate.

In one study, for patients with AERD who are post–sinus surgery intervention, 100 mg of ASA taken daily by mouth seemed effective in providing improvement in some symptoms. In a year with a follow-up every 3 months, these patients had no recurrence of nasal polyps (26/30 patients), had marked improvement of their asthma symptoms (9/12), nasal breathing (14/16), and sense of smell (7/11 patients). In an attempt to answer the question of which dose of daily ASA is efficacious in treating patients with AERD, patients who were post–sinus surgery and had a positive ASA provocation test were randomized to either 100 or 300 mg of ASA by mouth daily. Thirty-seven of these patients were enrolled and followed for an overall median of 27 months. Patients on 100 mg/day did not show improvement. The patients on 300 mg of ASA per day had significant improvement in olfaction and were polyp free for over a period of 12 months. They also did not need revision sinus surgery in the median follow-up period of 27 months. In addition, asthma medication was reduced in three patients and pulmonary function was improved in five patients.

Despite the foregoing encouraging data, in a study at Scripps, the 300-mg dose is inadequate in treating AERD except in a small percent of patients. In patients who had a response to the initial treatment dose of 650 mg twice a day of ASA, after a year, we found \(\sim 50\% \) of them continue to require 650 mg of ASA twice a day to maintain the improvements. In the other 50\%, we found they could reduce the dose to 325 mg to 975 mg/day without reduction in benefits. Therefore, Scripps Clinic studied 137 patients who had undergone successful ASA desensitization and randomized them into two groups, 650 mg twice daily versus 325 mg twice daily. After 1 month after randomization, the patients either increased or decreased their dosage based on their symptom control and continued that dosage for the remainder of the year. Fifty-two percent of patients on the 325-mg twice daily dose did require an increase in dosage. After dosage adjustment, both 325-mg twice daily and 650-mg twice daily groups showed improvements in number of sinus infections, sinus operations, and hospitalizations for asthma \((p < 0.001) \). Anosmia, nasal/sinus symptoms, and asthma symptoms improved \((p < 0.03) \) and systemic corticosteroid dosages decreased by threefold in the 325-mg twice daily group and fourfold in the 650-mg dose group. Based on these results, it is recommended that the patients begin daily ASA therapy with 650 mg twice daily with subsequent decrease to 325 mg twice daily at the direction of a physician while carefully monitoring symptoms.

CONCLUSION

After careful screening of patients undergoing evaluation for recurrent sinusitis, asthma, and ASA and/or NSAIDs sensitivity, the approach to treatment of these patients with AERD is multidimensional. In addition to addressing their nasal and sinus pathology, attention also needs to be directed toward reducing their exposure to aeroallergens, asthma control, and desensitizing them to ASA and treatment with daily ASA.

REFERENCES

1. Samter M, and Beers RF Jr. Intolerance to aspirin: Clinical studies and consideration of its pathogenesis. Ann Intern Med 68:975–983, 1968.
2. Berges-Gimeno MP, Simon RA, and Stevenson DD. The natural history and clinical characteristics of aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol 89:474, 2002.
3. Szczeklik A. Aspirin-induced asthma as a viral disease. Clin Allergy 18:15–20, 1998.
4. Szczeklik A, Nizankowska E, and Duplaga M. On behalf of the AIANE investigators: Natural history of aspirin-induced asthma. Eur Respir J 16:432–436, 2000.
5. Blanca M, Perez E, Garcia JJ, et al. Angioedema and IgE antibodies to aspirin: A case report. Ann Allergy 62:295–298, 1989.
6. Rodriguez SC, Olguin AM, Miralles CP, and Viladrich PF. Characteristics of meningitis caused by Buprenorph Report of 2 cases and review of the literature. Medicine 85:214–220, 2006.
7. Mastalerz L, Setkowicz M, Sansak M, and Szczeklik A. Hypersensitivity to aspirin: Common eicosanoid alterations in utricaria and asthma. J Allergy Clin Immunol 113:771–775, 2004.
8. Katial R, Strand M, Prasertsuntarasat T, et al. The effect of aspirin desensitization on novel biomarkers in aspirin-exacerbated respiratory diseases. J Allergy Clin Immunol 126:738–744, 2010.
9. Cylmers P, Bocheneck G, Overholt J, et al. Biochemical and clinical evidence that aspirin-intolerant asthmatic subjects tolerate the cyclooxygenase 2-selective analgetic drug celecoxib. J Allergy Clin Immunol 111:1116–1121, 2003.
10. Woessner KM, Simon RA, and Stevenson DD. The safety of celecoxib in patients with aspirin-sensitive asthma. Arthritis Rheum 46:2201–2207, 2002.
11. Stevenson DD, and Simon RA. Lack of cross-reactivity between rofecoxib and aspirin in aspirin-sensitive patients with asthma. J Allergy Clin Immunol 108:47–51, 2001.
12. National Heart, Lung, and Blood Institute. Guidelines for the diagnosis and management of asthma. National Asthma Education and Prevention Program Expert Panel Report 3, NIH Publication No. 08-4051, National Heart, Lung, and Blood Institute, Bethesda, MD, 2007. Available online at www.nhlbi.nih.gov/guidelines/asthma/asthgdln.htm; accessed March 21, 2011.
13. Global Initiative for Asthma (GINA). Global strategy for asthma management and prevention. National Institutes of Health (NIH), Bethesda, MD, 2008. Available online at www.ginasthma.org; accessed June 1, 2009.
14. Rhinosinusitis Task Force Committee. Report of the Rhinosinusitis Task Force Committee Meeting. Alexandria, Virginia, August 17, 1996. Otolaryngol Head Neck Surg 117:51–568, 1997.
15. Rosenfeld RM, Andes D, Bhattacharyya N, et al. Clinical practice guideline: Adult sinusitis. Otolaryngol Head Neck Surg 137:51–531, 2007.
16. Fokkens W, Lund V, Bachert C, et al. EAACI position paper on rhinosinusitis and nasal polyposis executive summary. Allergy 60:583, 2005.
17. Katotomichelakis M, Riga M, Davris S, et al. Allergic rhinitis and aspirin-exacerbated respiratory disease as predictors of the olfactory outcome after endoscopic sinus surgery. Am J Rhinol Allergy 23:348–353, 2009.

18. Zeiss CR, and Lockey RF. Refractory period to aspirin in a patient with aspirin-induced asthma. J Allergy Clin Immunol 57:440–448, 1976.

19. Bianco S, Tobuschi M, and Petrigini G. Aspirin induced tolerance in aspirin-asthma detected by a new challenge test. IRCS J Med Sci 5:129, 1977.

20. Stevenson DD. Aspirin desensitization in patients with AERD. Clin Rev Allergy Immunol 24:159–168, 2003.

21. Pfaar O, and Klimek L. Eicosanoids, aspirin-intolerance and the upper airways—Current standards and recent improvements of the desensitization therapy. J Physiol Pharmacol 57(suppl 12):5–13, 2006.

22. Milewski M, Mastalerz L, Nizankowska E, and Szczeklik A. Nasal provocation test with lysine-aspirin for diagnosis of aspirin-sensitive asthma. J Allergy Clin Immunol 101:581–586, 1998.

23. Nizankowska E, Bestynska-Krypel A, Cmiel A, and Szczeklik A. Oral and bronchial provocation tests with aspirin for diagnosis of aspirin-induced asthma. Eur Respir J 15:863–869, 2000.

24. Parikh AA, and Scadding GK. Intranasal lysine-aspirin in aspirin-sensitive nasal polyposis: a controlled trial. Laryngoscope 115:1385–1390, 2005.

25. Mathison DA, and Stevenson DD. Hypersensitivity to nonsteroidal anti-inflammatory drugs: Indications and methods for oral challenges. J Allergy Clin Immunol 64:669–674, 1979.

26. Pleskow WW, Stevenson DD, Mathison DA, et al. Aspirin desensitization in aspirin-sensitive asthmatic patients: Clinical manifestations and characterization of refractory period. J Allergy Clin Immunol 69:11–19, 1982.

27. Phillips GD, Foord R, and Holgate ST. Inhaled lysine-aspirin as a bronchoprovocation procedure in aspirin-sensitive asthma: Its repeatability, absence of a late phase reaction, and the role of histamine. J Allergy Clin Immunol 84:232–241, 1989.

28. Millewski M, Mastalerz L, Nizankowska E, and Szczeklik A. Nasal provocation test with lysine-aspirin for diagnosis of aspirin-sensitive asthma. J Allergy Clin Immunol 101:581–586, 1998.

29. Patriarca G, Nucera E, Schinco G, et al. Prevention of relapse in nasal polyposis. Lancet 337:1488, 1991.

30. Nucera E, Schiavino D, Milani A, et al. Effects of lysine-acyetalsalicylate (LAS) treatment in nasal polyposis. Two controlled long term prospective follow up studies. Thorax 55(suppl 2):S73–S78, 2000.

31. Parikh AA, and Scadding GK. Intranasal lysine-aspirin in aspirin sensitive nasal polyposis: A controlled trial. Laryngoscope 115:1385, 2005.

32. Lee RU, White AA, Ding D, et al. Use of intranasal ketorolac and modified oral aspirin challenge for desensitization of aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol 105:130–135, 2010.

33. Williams A, Woessner KM, Simon RA, and Stevenson DD. The relationship between historical aspirin-induced asthma and severity of asthma induced during oral aspirin challenges. J Allergy Clin Immunol 120:273–277, 2007.

34. Macy E, Bernstein JA, Castells MC, et al. Aspirin challenge and desensitization for aspirin-exacerbated respiratory disease: A practice paper. Ann Allergy Asthma Immunol 98:172–174, 2007.

35. White AA, Stevenson DD, and Simon RA. The blocking effect of essential controller medications during aspirin challenges in patients with aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol 95:330–335, 2005.

36. White A, Bigby T, and Stevenson DD. Intranasal ketorolac challenge for the diagnosis of aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol 97:190–195, 2006.

37. Horse W. Surgical treatment of nasal polyposis in patients with aspirin intolerance. Thorax 55(suppl 2):S87–S90, 2000.

38. McMains KC, and Kountakis SE. Medical and surgical considerations in patients with Samter’s triad. Am J Rhinol 20:573–574, 2006.

39. Klimek L, and Pfaar O. Aspirin intolerance: Does desensitization alter the course of the disease? Immunol Allergy Clin North Am 29:669–675, 2009.

40. Berges-Gimeno MP, Simon RA, and Stevenson DD. Long-term treatment with aspirin desensitization in asthmatic patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 111:180–186, 2003.

41. Gosepath J, Schaefer D, Amedee RG, and Mann WJ. Individual monitoring of aspirin desensitization. Arch Otolaryngol Head Neck Surg 127:316–321, 2001.

42. Rozasi A, Polzehl D, Deutschle T, et al. Long-term treatment with aspirin desensitization: A prospective clinical trial comparing 100mg and 300mg aspirin daily. Allergy 63:1226–1234, 2008.

43. Lee JA, Simon RA and Stevenson DD. Selection of aspirin dosages for aspirin desensitization treatment in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 119:157, 2007.