Evolving role of Sorafenib in the management of hepatocellular carcinoma

Ioannis A Ziogas, Georgios Tsoulfas

Ioannis A Ziogas, Aristotle University of Thessaloniki School of Medicine, 54124 Thessaloniki, Greece

Georgios Tsoulfas, 1st Department of Surgery, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece

Author contributions: Ziogas IA and Tsoulfas G contributed equally to this work.

Conflict-of-interest statement: Authors declare no conflict of interests for this article.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Georgios Tsoulfas, MD, PhD, FACS, Assistant Professor of Surgery, 1st Department of Surgery, Aristotle University of Thessaloniki, 66 Tsimiski Street, 56403 Thessaloniki, Greece. tsoulfasg@gmail.com
Telephone: +30-6971-895190
Fax: +30-2310-332022

Received: January 28, 2017
Peer-review started: February 10, 2017
First decision: March 27, 2017
Revised: April 3, 2017
Accepted: April 23, 2017
Article in press: April 25, 2017
Published online: June 10, 2017

Abstract

Hepatocellular carcinoma (HCC) is one of the most common malignant diseases worldwide and comes third in cancer-related mortality. Although there is a broad spectrum of treatment options to choose from, only a few patients are eligible candidates to receive a curative therapy according to their stage of disease, and thus palliative treatment is implemented in the majority of the patients suffering from liver cancer. Sorafenib, a multikinase inhibitor, is the only currently approved agent for systemic therapy in patients with advanced stage HCC and early stage liver disease. It has been shown to improve the overall survival, but with various side effects, while its cost is not negligible. Sorafenib has been in the market for a decade and has set the stage for personalized targeted therapy. Its role during this time has ranged from monotherapy to neoadjuvant and adjuvant treatment with surgical resection, liver transplantation and chemoembolization or even in combination with other chemotherapeutic agents. In this review our aim is to highlight in depth the current position of Sorafenib in the armamentarium against HCC and how that has evolved over time in its use either as a single agent or in combination with other therapies.

Key words: Sorafenib; Hepatocellular carcinoma; Liver neoplasm; Multikinase inhibitor; Targeted therapy; Tumor angiogenesis; Signaling pathways; Adjuvant therapy; Liver cancer; Liver transplantation; Liver resection

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Hepatocellular carcinoma (HCC) is an aggressive and invasive malignancy. Curative options, such as resection and liver transplantation, are limited to only a few patients, who are suitable candidates. Sorafenib is the only approved systemic treatment in HCC, especially for advanced tumor stage and early stage liver disease. Recent findings suggest that it may also be helpful in carefully selected decompensated patients. Its adjuvant role is yet to be proven with more promising results. The combination of Sorafenib with other chemotherapy agents has shown improved efficacy and safety. We aim
GENERAL PRINCIPLES

Molecular mechanisms
As stated above, HCC is a tumor with abundant vasculature and high heterogeneity, especially when it comes to the various signaling pathways involved. One of the key pathways involved in the growth and proliferation of HCC is the Raf/MEK/ERK mitogen-activated protein (MAP) kinase cascade, which shows particularly increased activity. This over-activation is mainly achieved by the combined action of hepatitis virus proteomics and growth factors, with platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) playing a critical role and highlighting the linkage between angiogenesis and HCC development.

Sorafenib (Nexavar, BAY 43-9006), a biaryl urea, is an oral multikinase inhibitor of the serine/threonine-kinases (c-RAF and BRAF), therefore blocking the Raf/MEK/ERK pathway, and of the vascular endothelial growth factor receptor 2 (VEGFR2), VEGFR3, platelet-derived growth factor receptor (PDGFR), FLT3, Ret, and c-KIT. Moreover, it has been shown to result in apoptosis in various human tumor cell lines, independently of its involvement in the Raf/MEK/ERK pathway, by: (1) down-regulating an anti-apoptotic protein, the myeloid cell leukemia-1 (Mcl-1), member of the Bcl-2 family; and (2) inhibiting the phosphorylation of eukaryotic translation initiation factor 4E (eIF4E), which normally, when phosphorylated, promotes the expression of oncogenic genes. According to this rationale, Sorafenib is an effective drug against not only the tumor compartment, but also the formation of new vessels. It's mechanism of action is illustrated in Figure 1.

Sorafenib's history
This therapeutic action was firstly assessed in an uncontrolled phase 2 clinical trial of 137 patients with advanced and unresectable HCC, not having received any prior systemic therapy and with Child Pugh (CP) A or B cirrhosis. The dosage administered was 400 mg orally twice a day in 4-wk cycles with a partial response of 2.2%, a minor response of 5.8% and a 33.6% of the patients reporting non progressive disease for at least 16 wk. Some other major data reported were the 4.2-mo median time to progression (TTP) and the 9.2-mo OS, while CP A and B patients showed only negligible differences regarding the pharmacokinetics.

Such positive results could not but be followed by the international phase 3, randomized, double-blind, placebo-controlled ”Sorafenib HCC Assessment Randomized Protocol” (SHARP) clinical trial. For this purpose, 602 patients with advanced stage HCC, Eastern Cooperative Oncology Group (ECOG) performance status from 0 to 2, CP A liver disease and without any preceding systemic treatment, were randomized either for Sorafenib, same dosage as in phase 2, or for placebo. According to the data reported, Sorafenib resulted in a median OS of 10.7 mo vs the 7.9 mo of the placebo, as well as in a median
TTP of 24 wk compared to 12 wk of the placebo. Also, although the median TTP based on radiologic findings was 5.5 mo in the Sorafenib arm compared to 2.8 mo in the placebo arm, there was again no complete response, while the partial response was limited[9]. In spite of the positive clinical effects and the improvement in OS, Sorafenib was assessed within the frontiers of advanced stage HCC, but very early stage liver disease. This leads to many questions regarding its potential place in the treatment of patients with both advanced HCC and liver disease.

Adverse effects
On the other hand, nobody claimed that Sorafenib was harmless. The SHARP trial, as a phase 3 study, except for the effectiveness, also reported details about some possible adverse effects, which were more frequent in the Sorafenib group compared to the placebo one (80% vs 52%, respectively). The most commonly described toxicities were grade 1 and 2 regarding the severity, i.e., weight loss, anorexia, diarrhea, changes in voice, hand-foot skin reaction, rash or desquamation and hair loss[9]. Some of these toxicities led to drug discontinuation (Sorafenib 11% vs placebo 5%)[9]. Another important study, the Sorafenib Italian Assessment (SOFIA) trial, showed that intervening by down-dosing at the appropriate time might be beneficial regarding an improved toxicity-tolerance rate and an increased OS[20].

Moreover, significant findings from the routine clinical practice were presented by Sacco et al[21], who stated that when Sorafenib is administered early at a low dose, especially in patients characterized as high-risk, it may be easier to render the patients compliant to the continuation of the therapy and for the drug to be well-tolerated. As a result, Sorafenib may induce some harmful events, mostly minor, which can be better tolerated by adjusting the dosage.

FOOD AND DRUG ADMINISTRATION APPROVAL
According to the European Association for the Study of the Liver (EASL) - European Organisation for Research and Treatment of Cancer (EORTC) guidelines (2012), Sorafenib is currently the only standard systemic treatment for HCC[6]. Its use is approved since 2007 upon the publication of the results of two studies: (1) the SHARP trial[9], conducted in the United States of America and Europe; and (2) the Sorafenib Asia-Pacific (Sorafenib-AP) trial[22], conducted in South Korea, China and Taiwan, which both showed an increased OS and a reduced risk of mortality in patients treated with Sorafenib. However, the aforementioned guidelines[6] highlight that Sorafenib is recommended only in patients with early stage liver disease - Child-Pugh A - and advanced stage HCC - Barcelona - Clinic Liver Cancer (BCLC) stage C - or as an adjuvant therapy combined with loco-regional treatment options. Sorafenib’s current place in the treatment algorithm, in accordance with the BCLC staging system for HCC, is presented in Figure 2[4,23].

MONOTHERAPY
As mentioned above, the results of systemic monotherapy with Sorafenib were encouraging according to a phase 2 trial[9], and two phase 3 trials (SHARP[9] and Sorafenib-AP[22]). There was general agreement that Sorafenib has a great impact in increasing the OS, even though in the
phase 2 study 28% of the patients, who had CP B cirrhosis, showed a shorter median OS of 3.2 mo and could tolerate the treatment for only 1.8 mo. Also the incidence of ascites, encephalopathy and advanced hyperbilirubinemia is higher in advanced liver disease\cite{24}. Interestingly, a phase 1 study, assessing the use of Sorafenib in patients with higher Child-Pugh class, underlined its link with the dose-limiting rises in serum bilirubin concentration\cite{25}. Therefore, treatment guidelines\cite{7} recommend taking bilirubin into consideration when adjusting the dose of Sorafenib. In addition, a post-marketing trial (GIDEON)\cite{26} has shown equivalent results regarding safety and dosing strategy regardless of the Child-Pugh score. On the other hand, several studies evaluating the role of Sorafenib among the different stages of liver function reserve, reported a decreased response in advanced CP class, while liver-specific toxicities were independent of the liver cirrhosis stage\cite{27-29}.

On the whole, a systematic review has shown that in a male elderly population with advanced HCC and CP A cirrhosis, Sorafenib monotherapy can yield a statistically significant, yet clinically insignificant, increase in OS, time to tumor progression and disease control rate\cite{30}. Besides, the cumulative data underline the decrease response of HBV-infected patients when compared to HCV, while patients with worse level of cirrhosis tend to display a more prominent Sorafenib-driven toxicity\cite{30}.

A study published in 2017 analysing the SEER-Medicare database, reported that elderly patients with advanced stage HCC may survive longer if treated with Sorafenib vs placebo (150.5 d vs 62 d, respectively), while the most remarkable factor associated with increased mortality was treatment taking place in an urban setting, although this survival effect was found to be neither prolonged, nor cost-effective in decompensated patients\cite{31}. Currently, a randomized controlled phase 3 study - the B Child Patient-Optimization of Sorafenib Treatment (BOOST) study - is ongoing so as to evaluate the safety and efficacy of Sorafenib in CP B patients and is going to provide helpful information regarding the treatment of patients with decompensated disease\cite{32}. However, reality is that for most patients Sorafenib is only one of the treatments that they receive, thus rendering it essential to review the adjuvant role of Sorafenib within the spectrum of other therapies.

SORAFENIB AND SURGICAL RESECTION

Currently, surgical resection remains the treatment of choice for HCC, when it is associated with solitary masses and the hepatic remnant can maintain liver function\cite{6}. Recently, there has been great interest concerning the down-staging of advanced HCC in order to make surgical resection even more efficient. One way to accomplish that is by taking advantage of Sorafenib’s use as a
neoadjuvant treatment. In fact, a study has reported the incidence of Sorafenib-driven tumor necrosis, when used pre-operatively, therefore making resection an applicable treatment modality for a previously unresectable HCC tumor\(^23\). Moreover, the use of Sorafenib before surgery was not found to lead to any intra- or post-operative side-effects\(^34\).

However, it is unclear whether Sorafenib could also be efficacious as an adjuvant therapy post-operatively. Specifically, a phase 3 study (STORM) evaluating its use after resection or ablation showed that Sorafenib is not superior to placebo when it comes to OS, recurrence-free survival or time to recurrence\(^38\). Unfortunately, many patients enrolled in this study could not tolerate the standard dose used\(^35\). These results are against incorporating Sorafenib in the guidelines as an appropriate adjuvant treatment option after resection\(^6\).

SORAFENIB AND LIVER TRANSPLANTATION

Another curative treatment, especially for patients within the Milan criteria is orthotopic liver transplantation\(^36,38\). The challenges involved in liver transplantation, such as graft availability, have led to the increased use of grafts, including split grafts or those from living donors or from marginal donors. However, sometimes the delay between joining the waiting list and actually having a liver transplant may be quite significant, leading to patients dropping off the list\(^37\). Consequently, those patients with HCC waiting for a liver donor for at least six months are recommended to receive the so called “bridging therapy”, which mainly consists of locoregional treatment approaches, such as radiofrequency ablation (RFA) or transarterial chemoembolization (TACE)\(^6\). The rationale of “bridging” is entirely understandable when trying to prevent tumor progression in cirrhotic patients with HCC, who patiently wait a suitable donor organ to become available. An alternative strategy is down-staging of HCC patients outside the Milan criteria, in an effort to make them eligible for transplantation. A legitimate question is whether Sorafenib has an adjuvant role in this endeavor.

This neoadjuvant use of Sorafenib for down-staging comes with little evidence not demonstrating any significant advantages, even though some cases seem to accomplish reduction in the tumor boarder, down-staging and therefore allowing the patient to be added to the waiting list\(^38,39\). All-in-all, Sorafenib has shown a safe profile, when used before transplantation, with insignificant post-operative negative events\(^40,41\). Besides, the Sorafenib-driven hypoxia, because of its antiangiogenic effects, is thought to result in alterations in molecular mechanisms and growth factors, thus allowing the tumor to develop resistance and become more invasive or even metastatic\(^42\). Until more convincing data is reported from large clinical trials, the use of Sorafenib in this setting should be limited to investigational protocols.

On the other hand, the post-operative adjuvant use of Sorafenib has proven to be inefficient (STORM trial)\(^35\), but when it comes to post-transplantation, results may be different. Specifically, a lot of studies agree with the fact that the use of Sorafenib, either concomitantly with mammalian target of rapamycin (mTOR) inhibitors or without them, can improve the survival when used for recurrent disease after liver transplantation, with the disadvantage of some drug-induced toxicity leading to a decrease in the dosage or even cessation of treatment\(^43-50\). As a matter of fact, Sorafenib has also resulted in complete remission of recurrent HCC after liver transplantation\(^51\). In general its use in this setting is thought to be safe\(^52\).

Alltogether, current evidence is not favorable regarding the adjuvant use of sorafenib either pre- or post-transplantation and more research on this particular topic needs to take place, especially in the form of randomized controlled trials\(^53\).

SORAFENIB AND LOCOREGIONAL THERAPIES

Current guidelines suggest the implementation of transarterial TACE in patients with intermediate stage HCC, consisting of multiple nodules, presenting without symptoms, invasion of the vessels or metastases and without advanced liver disease\(^5\). Although TACE can be helpful and efficient in this particular group of patients by improving survival\(^4\), it is classified as a palliative option because it cannot achieve complete necrosis of the tumor and is associated with increased recurrent disease and tumor proliferation\(^54\). This tumor growth is also promoted by the ischemic area appearing after treatment with TACE, and owes its existence to the overexpression of certain growth factors, with VEGF playing a major role\(^55,56\). VEGF’s place in this equation lies on the side of tumor progression and metastasis and thus Sorafenib can be the ideal agent to deal with this process and impede angiogenesis, while simultaneously supplementing the promising action of TACE by eliminating the possibilities of future proliferation or recurrence\(^57\).

Some phase 2 studies\(^58,59\) evaluating the concurrent use of TACE and Sorafenib in patients with HCC not amenable to resection have shown a fairly safe profile for this combination with encouraging results regarding the efficacy and toxicity. When this duet was compared to TACE plus placebo in intermediate stage HCC on the background of HCV infection, it greatly improved time to tumor progression, without any unforeseen adverse events\(^60\). The comparison mentioned above was also assessed in a meta-analysis of six studies (1254 patients) reassuring that TACE plus sorafenib in either intermediate or advanced stage HCC patients can increase OS, time to tumor progression, as well as objective response rate, while the risk of side effects is also high\(^61\). Other recent meta-analyses, however, evaluating the marriage of Sorafenib and TACE for unresectable HCC showed an improvement in time to tumor progression, but not in
Sorafenib in HCC

Ziogas IA et al.

It should also be mentioned that Sorafenib has been assessed in combination with drug-eluting beads (DEB)-TACE, an alternative method of delivering regional chemotherapy with minimal systemic exposure, for the management of both intermediate and advanced stage HCC. The results proved the increased efficacy and safety of this strategy[57].

Another important issue is that of the time of TACE and Sorafenib administration, for which three different options have been suggested: (1) TACE is followed by antiangiogenic therapy; (2) continuous antiangiogenic treatment interrupted only for the moment of TACE administration; and (3) continuous antiangiogenic therapy with no interruption at the moment of TACE administration[64]. Although the first two options are superior regarding the risk of bleeding, which is reduced, the third eliminates the possibilities of VEGF increase after TACE.

In general, it appears that Sorafenib plus TACE can lead to improved clinical results, especially regarding the intermediate stage HCC, mainly consisting of a highly heterogeneous group of patients for whom the overall approach is still to be defined based on several ongoing studies[57,65].

SORAFENIB AND OTHER CHEMOTHERAPEUTIC DRUGS

Sorafenib and hypoxia-inducible factor-1α inhibitors

Locoregional treatment modalities can be efficient when it comes to HCC, but up to a point. Radiofrequency and microwave ablation trigger hypoxia and consequently hypoxia-induced angiogenesis, thus increasing the possibility of HCC recurrence. This process is primarily mediated by the hypoxia-inducible factor (HIF)-1α/vascular endothelial growth factor-A (VEGF-A) pathway, which can be impeded by Sorafenib[66]. Therefore, Sorafenib has been shown to limit the tumor’s invasive nature in vitro, a result of the cobalt chloride’s increase of the expression of HIF-1α, and to reduce proliferation and promote apoptosis in HCC cells[66].

2-Methoxyestradiol (2ME2), an inactive end product of estrogen metabolism, has recently been proven to have an antitumor effect by inhibiting proliferation and angiogenesis and by promoting apoptosis in many cancer types and especially in HCC[67]. The most important mechanism 2ME2 acts is through the inhibition of HIF-1 and the down-regulation of the HIF-driven VEGF expression[68]. It has been shown that 2ME2 comes up with synergistic effects in combination with Sorafenib in accordance to HCC suppression and antiangiogenesis, effects mostly driven by HIF-1 and -2 deregulation[69].

Sorafenib and mTOR inhibitors

mTOR, a protein kinase, plays a key role in cell growth, proliferation, angiogenesis and metabolism in several cancers, including HCC[70]. It represents the target of rapamycin and its analogues, as well as Everolimus and Sirolimus, which present with an antitumor profile through the down-regulation of hypoxia-inducible factor, thus resulting in low VEGF and PDGF expression.

Everolimus has been evaluated in a phase 1/2 study in patients with advanced stage HCC, who were previously treated with systemic therapy, and has shown encouraging results in terms of tolerability and efficacy[71]. However, when Everolimus was combined with Sorafenib, again in a phase 1 trial, so that its maximum tolerated dose (MTD) could be determined, the results were disappointing regarding its efficacy in the MTD[72]. In addition, a randomized clinical trial (EVOLVE-1)[73] assessing the use of Everolimus in patients with advanced HCC, who presented with tumor progression during or after taking Sorafenib or who showed limited tolerability towards Sorafenib, reported no increase in OS.

On the other hand, the significant immunosuppressive role of mTOR inhibitors has been used in combination with Sorafenib vs Sorafenib alone in cases of post-transplantation late recurrent HCC, thus highlighting the broadening of the horizons in the treatment options against HCC towards the direction of personalized molecular targeted therapy[74]. Besides, cohort studies[46,49] assessing the combination of Sorafenib and mTOR inhibitors in the same disease context showed improved survival, but with some serious adverse events.

As a result, it is suggested that further studies are carried out, so as to evaluate the combination of mTOR inhibitors with Sorafenib in terms of achieving the maximum possible synergy and the minimum possible toxicity overlap.

Sorafenib and PI3K/AKT inhibitors

Despite the blockade of the Raf/MEK/ERK cascade by Sorafenib, HCC has remarkable compensation through the over-expression of several other pro-survival pathways. The phosphoinositide 3-kinase (PI3K)/AKT pathway comes into play here as one of those and data state that it can render the tumor less susceptible to Sorafenib[75]. Thus, synergy may result from the combination of Sorafenib with a PI3K/AKT inhibitor, such as PKI-587 which simultaneously blocks the mTOR pathway, and this significant additive inhibitory effect has been proven in liver cancer stem cell patterns[76].

Sorafenib and WNT/β-catenin inhibitors

The complexity of the molecular mechanisms involved in the multistep process of tumor growth in HCC has been shown to incorporate mutations in the Wnt/β-catenin pathway as well[77]. Therefore, it is possible that the Wnt/β-catenin pathway represents a novel target for systemic treatment in HCC and as such it may also show an additive effect when used concurrently with Sorafenib. Indeed, not only has Sorafenib been able to down-regulate this pathway in different models[78], but also FH535, a Wnt/β-catenin inhibitor, was found to impede tumor growth of HCC and hepatoblastoma[79,80]. Moreover, when Sorafenib was combined with FH535, their synergistic
effect on inhibiting the proliferation of HCC was more significant[81,82].

Sorafenib and MEK inhibitors
The MAPK/ERK kinases (MEK) 1 and 2 can be consequently activated if a Ras mutation shows up, as they are found downstream in the RAS cascade, the activation of which can therefore provide proliferative and anti-apoptotic capabilities to the tumor. This “vertical” type of inhibition totally differs from the “parallel” blockade previously described in the mTOR inhibition, in which two unconnected cascades are concurrently inhibited[83]. Interestingly, MEK inhibitors, such as Refametinib (BAY 869766) which is an allosteric MEK 1/2 inhibitor, have proven their efficacy in preclinical HCC models[84]. When combined with Sorafenib in a phase 2 trial, Refametinib was found efficacious, especially in case of Ras mutations, and was well-tolerated[85].

Sorafenib and JAK/STAT inhibitors
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway plays an important part as a signal transduction cascade, with several proteins of the STAT family participating in cell growth, immunity and survival[86]. The one with the most significant role in oncogenesis is STAT3[87]. This STAT3 protein is key in modulating sensitization of HCC in recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), an antitumor drug with encouraging efficacy[88]. When Sorafenib was combined with TRAIL, it decreased the expression of STAT3 and proteins involved in its actions, thus rendering, the previously resistant to TRAIL, HCC susceptible to TRAIL-induced apoptosis[89]. Besides, Sorafenib targets STAT3 in a kinase-independent manner in patients with HCC[88,89].

In addition, the SH2 domain-containing tyrosine phosphatases family (SHP-1 and SHP-2), which are included in the family of protein tyrosine phosphatases (PTP), consist of two Src Homology (SH) 2 domains just as their name indicates[90]. These phosphatases dephosphorylate STAT3, leading to a significant decrease in its activation[91] and as a result they represent a potential target for systemic treatment of HCC. In fact, SHP-1 is a target of Sorafenib and through conformational modifications and signaling pathways, in which STAT3 is also involved, Sorafenib can also exhibit its anti-HCC effect[92]. However, we have already experienced the evolution of Sorafenib through its derivatives, such as SC-43 and SC-40, which are potent SHP-1 agonists and have proven to be superior to Sorafenib for the management of HCC[92]. Another novel derivative of Sorafenib, SC-59, when combined with radiotherapy has also shown to be superior to Sorafenib for treating HCC and its actions are mediated through STAT3 inhibition[93]. Last but not least, the synergistic combination of Sorafenib with SC-43, through their SHP-1 agonist effects, has been found efficacious, as it decreased tumor size and improved survival in preclinical models[94].

Sorafenib and phytochemicals
Data from preclinical models indicate that dietary phytochemicals with anti-inflammatory, antioxidant and anti-neoplastic characteristics may reduce the risk of HCC.

Curcumin is a yellow polyphenol derived from turmeric and has been shown to be protective against HCC caused by aflatoxins in mice[95]. Due to its solubility issues, polymeric nanoparticle formations of curcumin (NFC) have been developed and it is reported that the use of NFC alone or in combination with Sorafenib presents with remarkable findings regarding the suppression of tumor proliferation and invasiveness of HCC, as well as that of lung metastases[96].

Resveratrol is also a dietary polyphenol, mostly present in grapes, berries, peanuts and red wine, and has appeared as a promising chemopreventive agent against liver cancer[97]. The combination of Resveratrol and Sorafenib can lead to apoptosis and reduced tumor growth in HCC mice by fighting the diverted metabolic phenotype of aerobic glycolysis[98].

Indole-3-carbinol (I3C), found in cruciferous vegetables, is also one of the phytochemicals that have recently emerged with antineoplastic and antiangiogenic properties[99]. Specifically, its combined use with sorafenib has shown synergy by increasing the latter’s cytotoxicity and antiangiogenic properties, by promoting cell cycle arrest and apoptosis, as well as by reducing the expression of p-Akt, HIF-1α, VEGF and EGFR in HCC cells[100].

Regorafenib: A new era
Several antiangiogenic drugs with the same antiangiogenic capabilities as Sorafenib have been developed over time for the management of HCC, mostly as second-line systemic therapy agents.

In case of failure to respond to Sorafenib, patients with HCC can be treated with another multikinase inhibitor, Regorafenib[100]. The addition of a fluorine atom in the central phenyl ring of Sorafenib transforms Regorafenib into an agent with increased potency[101]. A phase 2 study evaluating Regorafenib for intermediate or advanced HCC in patients that had previously received Sorafenib reported encouraging results, such as an OS of 13.8 mo, a safety profile similar to Sorafenib and no deaths attributed to Regorafenib[102]. Recently, in July 2016, at the ESMO World Congress on Gastrointestinal Cancer in Barcelona findings from a phase 3 trial (RESORCE, NCT01774344) assessing Regorafenib in HCC patients, who received prior therapy with Sorafenib, exhibited a remarkable increase in median OS for those treated with Regorafenib vs those receiving placebo as a second-line agent after radiologic progression under Sorafenib (10.6 vs 7.8)[103].

Almost a decade has passed with numerous clinicians and scientists getting negative results in trials for systemic therapy in HCC patients, while the RESORCE trial is the only one after the SHARP trial to come forward with positive findings. The most important causes of those negative results are: (1) the heterogeneity among the
HCC patients recruited and the lack of selection criteria based on molecular patterns; and (2) the imbalance between adverse events and tolerable dosage vs anticancer efficiency and drug potency of the tested agents. Current advances in medicine and biology will improve our knowledge regarding the different and complex molecular mechanisms and driving mutations involved in this vast heterogeneity of this unique and multidimensional type of cancer and will guide us towards the right direction of conducting successful trials in the near future.[104]

CONCLUSION

Sorafenib represents a type of medicinal revolution, therefore making antiangiogenesis drugs a feasible choice when it comes to dealing with cancer and opening the road for personalized targeted therapy. Currently, Sorafenib is the only accepted treatment for systemic therapy, as it has shown to increase the OS in patients suffering from advanced HCC, but with liver disease of early stage with tolerable adverse effects. Recently, studies show that Sorafenib is also safe in patients with advanced liver disease as well, but neither adequately efficient, nor cost-effective. Thus, ongoing studies (i.e., BOOST trial) are going to define its role in decompensated population in the future and up until then, patient selection in patients treated with Sorafenib is critical.

All-in-all, Sorafenib has evolved through time by being evaluated in several treatment protocols either as a neoadjuvant or as an adjuvant agent. Its use prior to or after liver transplantation has demonstrated a range of some minor advantages to even complete remission of recurrence, while preserving an acceptable safety profile. Still, a lot of research is needed in this field, as Sorafenib’s role post-resection was not that much promising, while its combination with TACE showed encouraging results. Overall, understanding the molecular mechanisms of HCC and Sorafenib, as well as those resulting from the implementation of other treatment methods, will guide us to the future development of combinations involving Sorafenib, agents with higher efficacy that derive from Sorafenib or even second-line agents that will complement the therapeutic role that Sorafenib could not accomplish by itself.

REFERENCES

1 El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007; 132: 2557-2576 [PMID: 17570226 DOI: 10.1053/j.gastro.2007.04.061]
2 Ursino S, Greco C, Cartei F, Colosimo C, Stefanelli A, Cacopardo B, Berretta M, Fiorica F. Radiotherapy and hepatocellular carcinoma: update and review of the literature. Eur Rev Med Pharmacol Sci 2012; 16: 1599-1604 [PMID: 23111978]
3 Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 2004; 127: S35-S50 [PMID: 15508101 DOI: 10.1053/j.gastro.2004.09.014]
4 Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet 2012; 379: 1245-1255 [PMID: 22535326 DOI: 10.1016/S0140-6736(11)61347-0]
5 Llovet JM, Bruix J. Novel advancements in the management of hepatocellular carcinoma in 2008. J Hepatol 2008; 48 Suppl 1: S20-S37 [PMID: 18304676 DOI: 10.1016/j.jhepat.2008.01.022]
6 European Association For The Study Of The Liver. European Organisation For Research And Treatment Of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2012; 56: 908-943 [PMID: 22424438 DOI: 10.1016/j.jhep.2011.12.001]
7 Kudo M, Trevisani F, Abou-Alfa GK, Rimassa L. Hepatocellular Carcinoma: Therapeutic Guidelines and Medical Treatment. Liver Cancer 2016; 6: 16-26 [PMID: 27995084 DOI: 10.1159/000449343]
8 Taketomi A. Clinical trials of antiangiogenic therapy for hepatocellular carcinoma. Int J Clin Oncol 2016; 21: 213-218 [PMID: 26899258 DOI: 10.1007/s10147-016-0669-0]
9 Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Grete T, Galle PR, Seitz JF, Borbath I, Häussinger D, Giammarisi T, Shah M, Moscovic M, Viozitis D, Bruij J. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359: 378-390 [PMID: 18695154 DOI: 10.1056/NEJMoa0708857]
10 Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 2002; 31: 339-346 [PMID: 12149612 DOI: 10.1038/ng0802-339]
11 Calvisi DF, Lada S, Gorden A, Farina M, Conner EA, Lee JS, Factor VM, Thorgeirsson SS. Ubiquitization of activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 2006; 130: 1117-1128 [PMID: 16618406 DOI: 10.1053/j.gastro.2006.01.006]
12 Stickel L, Betting A, Malkowski B, Foerster R, Hofschneider PH, Hildt E. Integrity of c-Raf-1/MEK signal transduction cascade is essential for hepatitis B virus gene expression. Oncogene 2003; 22: 2604-2610 [PMID: 12730674 DOI: 10.1038/sj.onc.1203630]
13 Giambartolomé S, Covone F, Levervo M, Balsano S. C. Sustained activation of the Raf/MEK/Erk pathway in response to EGF in stable cell lines expressing the Hepatitis C Virus (HCV) core protein. Oncogene 2001; 20: 2606-2610 [PMID: 11420671 DOI: 10.1038/sj.onc.120372]
14 Gollob JA, Wilhelm S, Carter C, Kelley SL. Role of Raf kinase in cancer: therapeutic potential of targeting the Raf/MEK/Erk signal transduction pathway. Semin Oncol 2006; 33: 392-406 [PMID: 16890795 DOI: 10.1053/j.smemonc.2006.04.002]
15 Wilkinson SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shu J, Gavvakis L, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Ayalor D, Taylor I, Gerdich R, Voznesensky A, Riedl B, Post LE, Bollag G, Trail P A. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004; 64: 7099-7109 [PMID: 15466206 DOI: 10.1158/0008-5472.CAN-04-1443]
16 Rahman M, Davis EM, Bauer C, Dent P, Grant S. Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation. J Biol Chem 2005; 280: 35217-35227 [PMID: 16109713 DOI: 10.1074/jbc. MS06551200]
17 Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, Wilhelm S, Lynch M, Carter C. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res 2006; 66: 11151-11158 [PMID: 17178882 DOI: 10.1158/0008-5472.CAN-06-1377]
18 Villanueva A, Newell P, Chiang DY, Friedman SL, Llovet JM. Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis 2007; 27: 55-76 [PMID: 17295177 DOI: 10.1055/ s-2006-960171]
19 Abou-Alfa GK, Schwartz L, Ricci S, Amadori D, Santoro A, Figer A, De Greve J, Douillard JY, Latha C, Schwartz B, Taylor I, Moscovic M, Saltz L B. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol 2006; 24: 4293-4300 [PMID: 16909373 DOI: 10.1200/JCO.2005.01.3441]
20 Iavarone M, Cabibbo G, Pisaglia F, Zavaglia C, Gricco A, Villa E, Campan C, Colombo M. Field-practice study of sorafenib therapy for
Sacco R, Bargellini I, Ginanni B, Bertini M, Faggioni L, Federici G, Romano A, Bertoni M, Metrangolo S, Alturaone E, Parisi G, Tumino E, Scarumazzino A, Bresci G, Bartolozzi C. Long-term results of sorafenib in advanced-stage hepatocellular carcinoma: what can we learn from routine clinical practice? Exp Rev Anticancer Ther 2012; 12: 869-875 [DOI: 10.1586/er.12.58]

Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, Luo R, Feng J, Ye S, Yang TX, Xu J, Sun Y, Liang H, Liu J, Wang J, Tak WY, Pan H, Baroc k K, Zou J, Volotis D, Guan Z. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomized, double-blind, placebo-controlled trial. Lancet Oncol 2009; 10: 25-34 [DOI: 10.1016/S1470-2045(08)70285-7]

Bruijs J, Gores GJ, Mazzaferrro V. Hepatocellular carcinoma: clinical frontiers and perspectives. Gut 2014; 63: 844-855 [DOI: 10.1136/gutjnl-2013-306627]

Abou-Alfa GK, Amadori D, Santoro A, Figer A, De Grove J, Lathia C, Volotis D, Anderson S, Moscovic M, Ricci S. Safety and Efficacy of Sorafenib in Patients with Hepatocellular Carcinoma (HCC) and Child-Pugh A versus B Cirrhosis. Gastrointestinal Cancer Res 2011; 4: 40-44 [DOI: 10.21738/JGRCR2011]

Miller AA, Murry DJ, Ozwart K, Hollis DR, Kennedy EB, Abou-Alfa G, Desai A, Hwang J, Villalona-Calero MA, Dees EC, Lewis LD, Falkih MG, Edelman MJ, Milliard F, Frank RC, Hohl RJ, Ratain MJ. Phase I and pharmacokinetic study of sorafenib in patients with hepatic or renal dysfunction: CALGB 60301. J Clin Oncol 2009; 27: 1800-1805 [DOI: 10.1200/JCO.2008.20.0931]

Lencioni R, Kudo M, Ye SL, Bronswicki JP, Chen XP, Dagher L, Furuse J, Geschwind JF, de Guevara LL, Papandreou C, Takayama M, Tyon SK, Nakajima K, Lehr R, Heldner S, Sacco R. Complete regression of locally advanced hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomized, double-blind, placebo-controlled trial. Lancet Oncol 2015; 16: 1344-1354 [DOI: 10.1016/S1470-2045(15)00198-9]

Mazzaferrro V, Regalia E, Doci R, Andreola S, Pulvirenti A, Bozetti F, Montalto F, Annunziata M, Morabito A, Gennari L. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med 1996; 343: 693-699 [DOI: 10.1056/NEJM199603143341104]

Freedman RD, Edwards EB, Harper AM. Waiting list removal rates among patients with chronic and malignant liver diseases. Am J Transplant 2006; 6: 1416-1421 [DOI: 10.1111/j.1668-6765.2006.01321.x]

Vageli PA, Hirose R. Downstaging of hepatocellular carcinoma prior to liver transplant: is there a role for adjuvant sorafenib in locoregional therapy? J Gastroenterol Cancer 2010; 41: 217-220 [PMID: 20443078 DOI: 10.1007/s12029-010-9163-x]

Gosse N, Radeau S, Rode A, Ducerf C, Mabrut JY, Merle P. Liver Transplantation After Neoadjuvant Sorafenib Therapy: Preliminary Experience and Literature Review. Exp Clin Transplant 2016 May 17; Epub ahead of print [DOI: 10.221271 DOI: 10.6002/ect.2015.0299]

Frenette CT, Boktour M, Burroughs GG, Kaseh A, Aloia TA, Galali J, Gaber AO, Monsour I, Ghobraal RM. Pre-transplant utilization of sorafenib is not associated with increased complications after liver transplantation. Transplant Int 2013; 26: 734-739 [DOI: 10.1111/tia.12117]

Saida RI, Shah SA, Rawson AP, Grossman S, Piperi B, Buzogzadeh A. Treating hepatocellular carcinoma with sorafenib in liver transplant patients: an initial experience. Transplant Proc 2010; 42: 4582-4584 [DOI: 10.1016/j.transproceed.2010.09.147]

Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 2008; 8: 592-603 [PMID: 18565035 DOI: 10.1038/nrc2442]

Sposito C, Mariani L, Germini A, Flores Reyes M, Borgini M, Grossi G, Bloori S, Mazzaferrro V. Comparative efficacy of sorafenib versus best supportive care in recurrent hepatocellular carcinoma after liver transplantation: a case-control study. J Hepatol 2013; 59: 59-66 [DOI: 10.1016/j.jhep.2013.02.026]

Waghay A, Balci B, El-Gazzaz G, Kim R, Pelley R, Narayanan Menon KV, Estfan B, Romero-Marrero C, Acevo F. Safety and efficacy of sorafenib for the treatment of recurrent hepatocellular carcinoma after liver transplantation. Clin Transplant 2013; 27: 555-561 [PMID: 23738296 DOI: 10.1111/ctr.12150]

Zavaglia C, Airoldi A, Mancuso A, Vangelis M, Viganò R, Cordone G, Gentiluomo M, Belli LS. Adverse events affect sorafenib safety in patients with recurrent hepatocellular carcinoma after liver transplantation. Exp Clin Transplant 2016; 24: 1193-1201 [DOI: 10.1097/ecltpd.000000000000004684]
recent hepatocellular carcinoma after liver transplantation. Jpn J Clin Oncol 2010; 40: 768-773 [PMID: 20494947 DOI: 10.1093/jco/ hyq055]

Stauff K, Fischer L, Seegers B, Vettonazzi E, Nashan B, Sterneck M. High toxicity of sorafenib for recurrent hepatocellular carcinoma after liver transplantation. Transpl Int 2012; 25: 1158-1164 [PMID: 22882364 DOI: 10.10111.1432-2277.2012.01540.x]

de'Angelis N, Landi F, Nencioni M, Palen A, Lahat E, Salloum C, Componnag P, Lim C, Contentin C, Caldero J, Luciani A, Ferry C, Azoulay D. Role of Sorafenib in Patients With Recurrent Hepatocellular Carcinoma After Liver Transplantation. Prog Transplant 2016 [PMID: 25559074 DOI: 10.1111/petr.12446]

Lee HY, Yang KH, Choi BH, Park YM, Yoon KT, Ryu JH, Cha CW. Complete Regression of Recurrent Advanced Hepatocellular Carcinoma After Liver Transplantation in Response to Sorafenib Treatment: A Case Report. Transplant Proc 2016; 48: 247-250 [PMID: 26918367 DOI: 10.1016/j.transproceed.2015.11.012]

Vitale A, Boccapgni P, Kertusha X, Zanussi G, D’Armino F, Lodo E, Pastorelli D, Ramirez Morales R, Lombardi G, Senolzo M, Berra P, Cillo U. Sorafenib for the treatment of recurrent hepatocellular carcinoma after liver transplantation? Transplant Proc 2012; 44: 1989-1991 [PMID: 22974889 DOI: 10.1016/j.transproceed.2012.06.046]

Castelli G, Lombardi G, Antonucci M, Sacco R. Transarterial chemoembolization and sorafenib in hepatocellular carcinoma. Expert Rev Anticancer Ther 2014; 14: 831-845 [PMID: 24850249 DOI: 10.1515/14737140.2014.920964]

Park JW, Koh YH, Kim HB, Kim HY, An S, Choi J, Woo SM, Nam BH. Phase II study of concurrent transcatheter chemoembolization and sorafenib in patients with unresectable hepatocellular carcinoma. J Hepatol 2012; 56: 1336-1342 [PMID: 22314421 DOI: 10.1016/j.jhep.2012.01.006]

Chung YH, Han G, Yoon JH, Yang J, Wang J, Shao GL, Kim BI, Lee TY, Chao Y. Interim analysis of START: Study in Asia of the combination of TACE (transcatheater arterial chemobolization) with sorafenib in patients with hepatocellular carcinoma trial. Int J Cancer 2013; 132: 2448-2458 [PMID: 23129123 DOI: 10.1002/ijc.27925]

Sanonno D, Laulletta G, Russi S, Conteveda C, Sansonno L, Dammacco F. Transarterial chemoembolization plus sorafenib: a sequential therapeutic scheme for HCV-related intermediate-stage hepatocellular carcinoma: a randomized clinical trial. Oncol Lett 2012; 17: 559-366 [PMID: 22334456 DOI: 10.1016/j.theonecolonol.2011.03.013]

Zhang L, Hu P, Chen X, Bie P. Transarterial chemoembolization (TACE) plus sorafenib versus TACE for intermediate or advanced stage hepatocellular carcinoma: a meta-analysis. PLoS One 2014; 9: e91124 [PMID: 24651044 DOI: 10.1371/journal.pone.0091124]

Wang G, Liu Y, Zhou SF, Qu P, Xu L, Wen P, Wen J, Xiao X. Sorafenib combined with transarterial chemorbolization in patients with hepatocellular carcinoma: a meta-analysis and systematic review. Hepatol Int 2016; 10: 501-510 [PMID: 26835632 DOI: 10.1007/s12244-015-0700-7]

Strebel BM, Dufour JF. Combined approach to hepatocellular carcinoma: a new treatment concept for nonresectable disease. Expert Rev Anticancer Ther 2008; 8: 1743-1749 [PMID: 18983234 DOI: 10.1586/14737140.8.11.1743]

Montella L, Palmieri G, Addeo R, Del Prete S. Hepatocellular carcinoma therapy of sorafenib and TACE for unresectable HCC: a systematic review and meta-analysis. Expert Rev Anticancer Ther 2011-0313

Ziogas IA, Dufour JF, de'Angelis N, Landi F, Nencioni M, Palen A, Lahat E, Salloum C, Componnag P, Lim C, Contentin C, Caldero J, Luciani A, Ferry C, Azoulay D. Role of Sorafenib in Patients With Recurrent Hepatocellular Carcinoma After Liver Transplantation. Prog Transplant 2016 [PMID: 25559074 DOI: 10.1111/petr.12446]

Lee HY, Yang KH, Choi BH, Park YM, Yoon KT, Ryu JH, Cha CW. Complete Regression of Recurrent Advanced Hepatocellular Carcinoma After Liver Transplantation in Response to Sorafenib Treatment: A Case Report. Transplant Proc 2016; 48: 247-250 [PMID: 26918367 DOI: 10.1016/j.transproceed.2015.11.012]

Vitale A, Boccapgni P, Kertusha X, Zanussi G, D’Armino F, Lodo E, Pastorelli D, Ramirez Morales R, Lombardi G, Senolzo M, Berra P, Cillo U. Sorafenib for the treatment of recurrent hepatocellular carcinoma after liver transplantation? Transplant Proc 2012; 44: 1989-1991 [PMID: 22974889 DOI: 10.1016/j.transproceed.2012.06.046]

Castelli G, Lombardi G, Antonucci M, Sacco R. Transarterial chemoembolization and sorafenib in hepatocellular carcinoma. Expert Rev Anticancer Ther 2014; 14: 831-845 [PMID: 24850249 DOI: 10.1515/14737140.2014.920964]

Park JW, Koh YH, Kim HB, Kim HY, An S, Choi J, Woo SM, Nam BH. Phase II study of concurrent transcatheter chemoembolization and sorafenib in patients with unresectable hepatocellular carcinoma. J Hepatol 2012; 56: 1336-1342 [PMID: 22314421 DOI: 10.1016/j.jhep.2012.01.006]

Chung YH, Han G, Yoon JH, Yang J, Wang J, Shao GL, Kim BI, Lee TY, Chao Y. Interim analysis of START: Study in Asia of the combination of TACE (transcatheater arterial chemobolization) with sorafenib in patients with hepatocellular carcinoma trial. Int J Cancer 2013; 132: 2448-2458 [PMID: 23129123 DOI: 10.1002/ijc.27925]

Sanonno D, Laulletta G, Russi S, Conteveda C, Sansonno L, Dammacco F. Transarterial chemoembolization plus sorafenib: a sequential therapeutic scheme for HCV-related intermediate-stage hepatocellular carcinoma: a randomized clinical trial. Oncol Lett 2012; 17: 559-366 [PMID: 22334456 DOI: 10.1016/j.theonecolonol.2011.03.013]

Zhang L, Hu P, Chen X, Bie P. Transarterial chemoembolization (TACE) plus sorafenib versus TACE for intermediate or advanced stage hepatocellular carcinoma: a meta-analysis. PLoS One 2014; 9: e91124 [PMID: 24651044 DOI: 10.1371/journal.pone.0091124]
Handel S, Simon JA. A small-molecule inhibitor of Tcf/β-catenin signaling down-regulates PPARgamma and PPARdelta activities. *Mol Cell Thor* 2008; 7: 521-529 [PMID: 18347139 DOI: 10.1186/1553-7163.MC7-2063]

Liu J, Li G, Liu D, Liu J. FH535 inhibits the proliferation of HepG2 cells via downregulation of the Wnt/β-catenin signaling pathway. *Mol Med Rep* 2014; 9: 1299-1302 [PMID: 24482011 DOI: 10.3802/mmr.2014.120]

Galuppo R, Maynard E, Shah M, Daily MF, Chen C, Spear BT, Gedaly R. Synergistic inhibition of HCC and liver cancer stem cell proliferation by targeting RAS/RAF/MAPK and WNT/β-catenin pathways. *Anticancer Res* 2014; 34: 1709-1713 [PMID: 24692700]

Vilchez V, Turciós L, Martí F, Gedaly R. Targeting Wnt/β-catenin pathway in hepatocellular carcinoma treatment. *World J Gastroenterol* 2016; 22: 823-832 [PMID: 26811628 DOI: 10.3748/wjg.v22.i2.823]

Rixe O, Fojo T. Is cell death a critical end point for anticancer therapies or is cytostasis sufficient? *Clin Cancer Res* 2007; 13: 7280-7287 [PMID: 18094408 DOI: 10.1158/1078-0432.CCR-07-2141]

Schmieder R, Puehler F, Neuhauß K, Adjei AA, Minder JW, Mummberg D, Ziegelbauer K, Scholz A. Allosteric MEK1/2 inhibitor refametinib (BAY 86-9766) in combination with sorafenib for Asian patients with unresectable hepatocellular carcinoma. *Neoplasia* 2013; 15: 1161-1171 [PMID: 24204195 DOI: 10.1593/neo.130182]

Lim HY, Heo J, Choi HJ, Lin CY, Yoon JH, Hsu C, Rau KM, Poon YF, Yeow WP, Tai WT, Liu TH, Huang HP, Lin YC, Shiau CW, Chen PJ, Huang JW, Chen PJ, Wang Y, Lin W, Zhai Z, Sun Y, Zhou Y, Yin Q, Abudumijiti H, Chen R, Zhang R, Zhou L, Zhou Z, Zhu R, Yang J, Wang C, Zhang H, Zhou Y, Xu L, Guo C. By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice. *Oncotarget* 2015; 6: 13073-13071 [PMID: 25938543 DOI: 10.18632/oncotarget.3800]

Abdelmaged MM, El-Naga RN, El-Demerdash E, Elmazmar M. Indole-3-carbinol enhances sorafenib cytotoxicity in hepatocellular carcinoma cells: A mechanistic study. *Sci Rep* 2016; 6: 32733 [PMID: 27612096 DOI: 10.1038/srep32733]

Ravi S, Singal AK. Regorafenib: an evidence-based review of its potential in patients with advanced liver cancer. *Core Evid* 2014; 9: 81-87 [PMID: 25116428 DOI: 10.2014/CE.048626]

Trojan J, Waidmann O. Role of regorafenib as second-line therapy and landscape of investigational treatment options in advanced hepatocellular carcinoma. *J Hepatocellular Carcinoma* 2016; 3: 31-36 [PMID: 27703962 DOI: 10.1017/JHC.112537]

Brux J, Tak WY, Gasbarrini A, Santoro A, Colombo M, Lim HY, Mazzaferrro V, West R, Reig M, Wagner A, Bologni L. Regorafenib as second-line therapy for intermediate or advanced hepatocellular carcinoma: multicentre, open-label, phase II safety study. *Eur J Cancer* 2013; 49: 3412-3419 [PMID: 23809766 DOI: 10.1016/j.ejca.2013.05.028]

Brux J, Merle P, Granito A, Huang Y-H, Bodoky G, Yokosuka O, Rosmorduc O, Gerolami R, Masi G, Paul JR. Efficacy and safety of regorafenib versus placebo in patients with hepatocellular carcinoma (HCC) progressing on sorafenib: Results of the international, randomized phase 3 resoruce trial. *Ann Oncol* 2016; 27: ii1-ii3 [DOI: 10.1093/annonc/mdw237.0]

Brizi MP, Pignataro D, Tampellini M, Scagliotti GV, Di Maio M. Systemic treatment of hepatocellular carcinoma: why so many failures in the development of new drugs? *Expert Rev Anticancer Ther* 2016; 16: 1053-1062 [PMID: 27548441 DOI: 10.1080/14737548.2016.1227706]
