ΔCDM predictions for galaxy protoclusters – I. The relation between galaxies, protoclusters and quasars at \(z \sim 6 \)

Roderik A. Overzier,\(^1*\) Qi Guo,\(^1\) Guinevere Kauffmann,\(^1\) Gabriella De Lucia,\(^1\) Rychard Bouwens\(^2\) and Gerard Lemson\(^3,4\)

\(^1\)Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany
\(^2\)Astronomy Department, University of California, Santa Cruz, CA 95064, USA
\(^3\)Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Moenchhofstr. 12-14, 69120 Heidelberg, Germany
\(^4\)Max-Planck-Institut für extraterrestrische Physik, Giessenbach Str., 85748 Garching, Germany

Accepted 2008 November 18. Received 2008 November 17; in original form 2008 October 14

ABSTRACT
Motivated by recent observational studies of the environment of \(z \sim 6 \) QSOs, we have used the Millennium Run (MR) simulations to construct a very large (\(\sim 4\degree \times 4\degree \)) mock redshift survey of star-forming galaxies at \(z \sim 6 \). We use this simulated survey to study the relation between density enhancements in the distribution of \(i_{775} \)-dropouts and Lyα emitters, and their relation to the most massive haloes and protocluster regions at \(z \sim 6 \). Our simulation predicts significant variations in surface density across the sky with some voids and filaments extending over scales of \(1\degree \), much larger than probed by current surveys. Approximately one-third of all \(z \sim 6 \) haloes hosting \(i \)-dropouts brighter than \(z = 26.5 \text{mag (} \sim M_{\text{UV,}z=6}^{i} \text{)} \) become part of \(z = 0 \) galaxy clusters. \(i \)-dropouts associated with protocluster regions are found in regions where the surface density is enhanced on scales ranging from a few to several tens of arcminutes on the sky. We analyse two structures of \(i \)-dropouts and Lyα emitters observed with the Subaru Telescope and show that these structures must be the seeds of massive clusters in formation. In striking contrast, six \(z \sim 6 \) QSO fields observed with Hubble Space Telescope show no significant enhancements in their \(i_{775} \)-dropout number counts. With the present data, we cannot rule out the QSOs being hosted by the most massive haloes. However, neither can we confirm this widely used assumption. We conclude by giving detailed recommendations for the interpretation and planning of observations by current and future ground- and space-based instruments that will shed new light on questions related to the large-scale structure at \(z \sim 6 \).

Key words: galaxies: clusters: general – galaxies: high-redshift – galaxies: starburst – cosmology: observations – cosmology: theory – large-scale structure of Universe.

1 INTRODUCTION
During the first decade of the third millennium we have begun to put observational constraints on the status quo of galaxy formation at roughly one billion years after the big bang (e.g. Bouwens et al. 2003; Stanway, Bunker & McMahon 2003; Bouwens et al. 2004a,b; Dickinson et al. 2004; Yan & Windhorst 2004a; Malhotra et al. 2005; Ouchi et al. 2005, hereafter O05; Shimasaku et al. 2005; Bouwens et al. 2006, hereafter B06; Overzier et al. 2006). Statistical samples of star-forming galaxies at \(z = 6 \) – either selected on the basis of their large \((i - z) \) colour due to the Lyman break redshifted to \(z \sim 6 \) (\(i \)-dropouts), or on the basis of the large equivalent width of Lyα emission (\(\text{Lyα emitters} \)) – suggest that they are analogous to the population of Lyman-break galaxies (LBGs) found at \(z \sim 3–5 \) (e.g. Bouwens et al. 2007, hereafter B07). A small subset of the \(i_{775} \)-dropout has been found to be surprisingly massive or old (Dow-Hygelund et al. 2005; Yan et al. 2006; Eyles et al. 2007). The slope of the ultraviolet (UV) luminosity function at \(z = 6 \) is very steep and implies that low-luminosity objects contributed significantly to reionizing the Universe (Yan & Windhorst 2004b; B07; Khochfar et al. 2007; Overzier et al. 2008a). Cosmological hydrodynamic simulations are being used to reproduce the abundances as well as the spectral energy distributions of \(z = 6 \) galaxies. Exactly how these objects are connected to local galaxies remains a highly active area of research (e.g. Davé, Finlator & Oppenheimer 2006; Nagamine et al. 2006; Night et al. 2006; Finlator, Davé & Oppenheimer 2007; Robertson et al. 2007; Nagamine et al. 2008).

The discovery of highly luminous QSOs at \(z \sim 6 \) (e.g. Fan et al. 2001, 2003, 2004, 2006a; Goto 2006; Venemans et al. 2007a) is of equal importance in our understanding of the formation of the
first massive black holes and galaxies. Gunn & Peterson (1965) absorption troughs in their spectra demarcate the end of the epoch of reionization (e.g. Fan et al. 2001; White et al. 2003; Walter et al. 2004; Fan et al. 2006). Assuming that high-redshift QSOs are radiating near the Eddington limit, they contain supermassive black holes (SMBHs) of mass \(\sim 10^7 M_\odot \) (e.g. Barth et al. 2003; Willott, McLure & Jarvis 2003; Vestergaard 2004; Jiang et al. 2007; Kurk et al. 2007). The spectral properties of most \(z \sim 6 \) QSOs in the rest-frame UV, optical, infrared and X-ray are similar to those at low redshift, suggesting that massive, and highly chemically enriched galaxies were vigorously forming stars and SMBHs less than one billion years after the big bang (e.g. Bertoldi et al. 2003; Maiolino et al. 2005; Jiang et al. 2006; Wang et al. 2007).

Hierarchical formation models and simulations can reproduce the existence of such massive objects at early times (e.g. Haiman & Loeb 2001; Springel et al. 2005; Begelman, Volonteri & Rees 2006; Volonteri & Rees 2006; Li et al. 2007; Narayanan et al. 2008), provided however that they are situated in extremely massive haloes. Large-scale gravitational clustering is a powerful method for estimating halo masses of quasars at low redshifts, but cannot be applied to \(z \sim 6 \) QSOs because there are too few systems known. Their extremely low space density determined from the Sloan Digital Sky Survey (SDSS) of \(\sim 1 \) Gpc\(^{-3} \) (comoving) implies a (maximum) halo mass of \(M_{\text{halo}} \sim 10^{12} M_\odot \) (Fan et al. 2001; Li et al. 2007). A similar halo mass is obtained when extrapolating from the \((z = 0)\) relationship between black hole mass and bulge mass of Magorrian et al. (1998), and using \(\Omega_{\Lambda}/\Omega_{\text{m}} \sim 10 \) (Fan et al. 2001). Because the descendants of the most massive haloes at \(z \sim 6 \) may evolve into haloes of \(> 10^{13} M_\odot \) at \(z = 0 \), in a Lambda cold dark matter (ΛCDM) model (e.g. Springel et al. 2005; Suwa, Habe & Yoshikawa 2006; Li et al. 2007, but see De Lucia & Blaizot 2007; Trenti, Santos & Stiavelli 2008 and Section 5 of this paper), it is believed that the QSOs trace highly biased regions that may give birth to the most massive present-day galaxy clusters. If this is true, the small-scale environment of \(z \sim 6 \) QSOs may be expected to show a significant enhancement in the number of small, faint galaxies. These galaxies may either merge with the QSO host galaxy, or may form the first stars and black holes of other (proto)cluster galaxies.

Observations carried out with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST), allowed a rough measurement of the two-dimensional overdensities of faint i-dropouts detected towards the QSOs J0836+0054 at \(z = 5.8 \) (Zheng et al. 2006) and J1030+0524 at \(z = 6.28 \) (Stiavelli et al. 2005). Recently Kim et al. (2008) presented results from a sample of five QSO fields, finding some to be overdense and some to be underdense with respect to the HST/ACS Great Observatories Origins Deep Survey (GOODS). Priddey et al. (2008) find enhancements in the number counts of submillimetre galaxies. Substantial overdensities of i-dropouts and Ly\(\alpha \) emitters have also been found in non-QSO fields (e.g. Shimakawa et al. 2003; O05; Ota et al. 2008, hereafter O08), suggesting that massive structures do not always harbour a QSO, which may be explained by invoking a QSO duty cycle. At \(z \sim 2-5 \), significant excesses of star-forming galaxies have been found near QSOs (e.g. Djorgovski et al. 2003; Kashikawa et al. 2007), radio galaxies (e.g. Miley et al. 2004; Venemans et al. 2007b; Overzier et al. 2008b), and in random fields (Steidel et al. 1998, 2005). Although the physical interpretation of the measurements is uncertain, these structures are believed to be associated with the formation of clusters of galaxies.

The idea of verifying the presence of massive structures at high redshift through the clustering of small galaxies around them has recently been explored by e.g. Muñoz & Loeb (2008a) using the excursion set formalism of halo growth (Zentner 2007). However, the direct comparison between models or simulations and observations remains difficult, mainly because of complicated observational selection effects. This is especially true at high redshift. In order to investigate how a wide variety of galaxy overdensities found in surveys at \(z \sim 2-6 \) are related to cluster formation, we have carried out an analysis of the progenitors of galaxy clusters in a set of cosmological N-body simulations. Our results will be presented in a series of papers. In Paper I, we use the Millennium Run Simulations (Springel et al. 2005) to simulate a large mock survey of galaxies at \(z \sim 6 \) to derive predictions for the properties of the progenitors of massive galaxy clusters, paying particular attention to the details of observational selection effects. We will try to answer the following questions.

(i) Where do we find the present-day descendants of the i-dropouts?

(ii) What are the typical structures traced by i-dropouts and Ly\(\alpha \) emitters in current surveys, and how do they relate to protoclusters?

(iii) How do we unify the (lack of excess) number counts observed in QSO fields with the notion that QSOs are hosted by the most massive haloes at \(z \sim 6 \)?

The structure of the present paper is as follows. We describe the simulations, and construction of our mock i-dropout survey in Section 2. Using these simulations, we proceed to address the main questions outlined above in Sections 3–5. We conclude the paper with a discussion (Section 6), an overview of recommendations for future observations (Section 7), and a short summary (Section 8) of the main results.

2 SIMULATIONS

2.1 Simulation description

We use the semi-analytic galaxy catalogues that are based on the Millennium Run (MR) dark matter simulation of Springel et al. (2005). Detailed descriptions of the simulations and the semi-analytic modelling have been covered extensively elsewhere, and we kindly refer the reader to those works for more information (e.g. Kauffmann et al. 1999; De Lucia, Kauffmann & White 2004; Springel et al. 2005; Croton et al. 2006; Lemson & Springel 2006; De Lucia & Blaizot 2007, and references therein).

The dark matter simulation was performed with the cosmological simulation code GADGET-2 (Springel 2005), and consisted of 2160\(^3\) particles of mass \(8.6 \times 10^8 h^{-1} M_\odot \) in a periodic box of 500 \(h^{-1} \) Mpc on a side. The simulations followed the gravitational growth as traced by these particles from \(z = 127 \) to 0 in a \(\Lambda \)CDM cosmology (\(\Omega_\Lambda = 0.25, \Omega_M = 0.75, h = 0.73, n = 1, \sigma_8 = 0.9 \)) consistent with the Wilkinson Microwave Anisotropy Probe (WMAP) year 1 data (Spergel et al. 2003). The results were stored at 64 epochs (‘snapshots’), which were used to construct a detailed halo merger tree during post-processing, by identifying all resolved dark matter haloes and subhaloes, and linking all progenitors and descendants of each halo.

Galaxies were modelled by applying semi-analytic prescriptions of galaxy formation to the stored halo merger trees. The techniques and recipes include gas cooling, star formation, reionization heating, supernova feedback, black hole growth and ‘radio-mode’ feedback from galaxies with a static hot gas atmosphere, and are described in Croton et al. (2006). The photometric properties of galaxies are then modelled using stellar population synthesis models, including a simple dust model. Here we use the updated models ‘delucia2006a’
of De Lucia & Blaizot (2007) that have been made publicly available through an advanced data base structure on the MR website\(^1\) (Lemson & Virgo Consortium 2006).

2.2 Construction of a large mock survey at \(z \sim 6\)

We used the discrete MR snapshots to create a large, continuous mock survey of \(i_{775}\)-dropout galaxies at \(z \sim 6\). The general principle of transforming a series of discrete snapshots into a mock pencil beam survey entails placing a virtual observer somewhere in the simulation box at \(z = 0\) and carving out all galaxies as they would be observed in a pencil beam survey along that observer's line of sight. This technique has been described in great detail in Blaizot et al. (2005) and Kitzbichler & White (2007). In general, one starts with the snapshot \(i = 63\) at \(z = 0\) and records the positions, velocities and physical properties of all galaxies within the cone out to a comoving distance corresponding to that of the next snapshot. For the next segment of the cone, one then uses the properties as recorded in snapshot \(i = 62\), and so on. The procedure relies on the reasonable assumption that the large-scale structure (positions and velocities of galaxies) evolves relatively slowly between snapshots. By replicating the simulation box along the light cone and limiting the opening angle of the cone, one can in principle construct unique light cones out to very high redshift without crossing any region in the simulation box more than once. The method is straightforward when done in comoving coordinates in a flat cosmology using simple Euclidean geometry (Kitzbichler & White 2007).

Because the comoving distances or redshifts of galaxies recorded at a particular snapshot do not correspond exactly to their effective position along the light cone, we need to correct their magnitudes by interpolating over redshift as follows:

\[
M_{\text{cor}}(z(d)) = M(z_i) + \frac{dM}{dz}(z_i - z)
\]

where \(M_{\text{cor}}(z(d))\) is the observer-frame absolute magnitude at the observed redshift, \(z(d)\) (including peculiar velocities along the line of sight), \(M(z_i)\) is the magnitude at redshift \(z_i\) corresponding to the \(i\)th snapshot, and \(dM/dz\) is the first-order derivative of the observer-frame absolute magnitude. The latter quantity is calculated for each galaxy by placing it at neighbouring snapshots, and ensures that the \(K\)-correction is taken into account (Blaizot et al. 2005). Finally, we apply the mean attenuation of the intergalactic medium using Madau (1995) and calculate the observer-frame apparent magnitudes in each filter.

In this paper, we use the fact that the selection of \(z \sim 6\) galaxies through the \(i\)-dropout technique is largely free of contamination from objects at lower (and higher) redshift (BO06) provided that the observations are deep enough. Because the transverse size of the MR simulation box (500 \(h^{-1}\) Mpc) corresponds to a comoving volume between \(z \approx 5.6\) and 7.3 (the typical redshift range of \(i\)-dropouts surveys) we can use the three simulation snapshots centred at \(z = 5.7\), 6.2 and 6.7 to create a mock survey spanning this volume, while safely neglecting objects at other redshifts.

We extracted galaxies from the MR data base by selecting the \(z\)-axis of the simulation box to lie along the line of sight of our mock field. In order to compare with the deepest current surveys, we calculated the apparent magnitudes in the \(HST/ACS\) \(V_{606}, i_{775}\) and \(z_{850}\) filters and the 2MASS \(J, H\) and \(K_s\) filters. We derived observed redshifts from the comoving distance along the line of sight (including the effect of peculiar velocities), applied the \(K\)-corrections and IGM absorption, and calculated the apparent magnitudes in each band. Fig. 1 shows the spatial \(X\) coordinate versus the redshift of objects in the simulated light cone. Fig. 2 shows the entire simulated volume projected along the \(Z\)-axis or redshift axis. These figures show that there exists significant filamentary and strongly clustered substructure at \(z \approx 6\), both parallel and perpendicular to the line of sight.

Our final mock survey has a comoving volume of \(\sim 0.3\) Gpc\(^3\), and spans an area of 4.4 x 4.4 when projected on to the sky. It contains \(\sim 1.6 \times 10^9\) galaxies at \(z = 5.6\)–7.3 with \(z \leq 27.5\) mag (corresponding to an absolute magnitude\(^2\) of \(M_{V,AB} \sim -19.2\) mag, about one mag below \(M_{V,AB} \sim -20\)). For comparison and future reference, we list the main \(i\)-dropout surveys together with their areal coverage and detection limit in Table 1.

2.3 Colour–colour selection

In the left-hand panel of Fig. 3 we show the \(V_{606}-z_{850}\) versus \(i_{775}-z_{850}\) colour–colour diagram for all objects satisfying \(z \leq 27.0\). The

\[
1/\text{http://www.mpa-garching.mpg.de/millennium/}
\]

\(2\)The rest-frame absolute magnitude at 1350 Å is defined as \(M_{1350} \approx m_i - 5 \log_{10}(d_L/10\text{pc}) + 2.5 \log_{10}(1 + z)\).
i-dropouts populate a region in colour–colour space that is effectively isolated from lower redshift objects using a simple colour cut of $i_{775} - z_{850} \gtrsim 1.3-1.5$. Note that although our simulated survey only contains objects at $z > 5.6$, it has been shown (Stanway et al. 2003; Bouwens et al. 2004a; Dickinson et al. 2004; B06) that this colour cut is an efficient selection criterion for isolating starburst galaxies at $z \sim 6$ with blue $z_{850} - J$ colours (see right-hand panel of Fig. 3). For reference, we have overplotted colour tracks for a 100-Myr-old continuous star formation model from Bruzual & Charlot (2003) for different amounts of reddening in $E(B-V)$ of 0.0 (blue), 0.2 (green) and 0.4 (red). Redshifts are indicated along the zero-reddening track. Only objects at $z > 5.6$ are included in the simulations, as i_{775}-dropouts surveys have been demonstrated to have very little contamination (see text for details).

Figure 3. Colour–colour diagrams of the MR mock i_{775}-dropout survey. To guide the eye we have indicated tracks showing the colours of a 100-Myr-old continuous starburst model from Bruzual & Charlot (2003) for different amounts of reddening in $E(B-V)$ of 0.0 (blue), 0.2 (green) and 0.4 (red). Redshifts are indicated along the zero-reddening track. Only objects at $z > 5.6$ are included in the simulations, as i_{775}-dropouts surveys have been demonstrated to have very little contamination (see text for details).

Table 1. Overview of i-dropout surveys.

Field name	Survey Area (arcmin²)	z-band detection limita (AB mag)	Reference
MR mock	70 000	~ 27.5	This paper
HUDF	11.2	~ 29.2 (10σ, 0.2 arcsec)	B06
HUDF05	20.2	~ 28.9 (5σ, 0.2 arcsec)	B07, Oesch et al. (2007)
HUDF-Ps	17.0	~ 28.5 (10σ, 0.2 arcsec)	B06
GOODS	316	~ 27.5 (10σ, 0.2 arcsec)	B06
ACS/GTO	46	~ 27.3 (6σ, 1.5 arcsec)	Bouwens et al. (2003)
SDF	876	~ 26.6 (3σ, 2.0 arcsec)	Kashikawa et al. (2004)
SXDF	~ 4680	~ 25.9 (5σ, 2.0 arcsec)	Ota, Kashikawa & Nakajima (2005)
UKIDSS UDS + SXDF	~ 2160	~ 25.0 (5σ, 2.0 arcsec)	McLure et al. (2006)
QSO SDSSJ0836+0054 ($z = 5.82$)	11.5	~ 26.5 (5σ, 0.2 arcsec)	Zheng et al. (2006), Ajiki et al. (2006)
QSO SDSSJ1306+0356 ($z = 5.99$)	~ 11.5	~ 26.5 (5σ, 0.2 arcsec)	Kim et al. (2008)
QSO SDSSJ1630+4012 ($z = 6.05$)	~ 11.5	~ 26.5 (5σ, 0.2 arcsec)	Kim et al. (2008)
QSO SDSSJ1048+4637 ($z = 6.23$)	~ 11.5	~ 26.5 (5σ, 0.2 arcsec)	Willott et al. (2005)
QSO SDSSJ1030+0524 ($z = 6.28$)	~ 30	~ 26.2 (3σ, 1.5 arcsec)	Willott et al. (2005)
QSO SDSSJ1148+5251 ($z = 6.43$)	~ 11.5	~ 26.2 (3σ, 1.5 arcsec)	Willott et al. (2005)
HUDF-Ps	~ 4012	~ 26.5 (5σ, 0.2 arcsec)	Kim et al. (2008)

aThe numbers between parentheses correspond to the significance and the diameter of a circular aperture.

3 The current paper uses magnitudes and colours defined in the HST/ACS $V_{606}, i_{775}, z_{850}$ filter system in order to compare with the deepest surveys available in literature. Other works based on ground-based data commonly use the SDSS-based $r′ i′ z′$ filter set, but the differences in colours are minimal.
2.4 i-dropout number densities

In Table 2 we list the surface densities of i_{775}-dropouts selected in the MR mock survey as a function of limiting z_{850}-magnitude and field size. For comparison, we calculated the surface densities for regions having areas comparable to some of the main i_{775}-dropout surveys: the SDF (876 arcmin2), two GOODS fields (320 arcmin2), a single GOODS field (160 arcmin2), and a HUDF-sized field (11.2 arcmin2). The errors in Table 2 indicate the ±1σ deviation measured among a large number of similarly sized fields selected from the mock survey, and can be taken as an estimate of the influence of (projected) large-scale structure on the number counts (usually referred to as ‘cosmic variance’ or ‘field-to-field variations’). At faint magnitudes, the strongest observational constraints on the i_{775}-dropout density come from the HST surveys. Our values for a GOODS-sized survey are 105, 55 and 82 per cent of the values given by the most recent estimates by B07 for limiting z_{850} mag of 27.5, 26.5 and 26.0 mag, respectively, and consistent within the expected cosmic variance allowed by our mock survey. Because the total area surveyed by B07 is about 200× smaller than our mock survey, we also compare our results to the much larger SDF from O08. At $z = 26.5$ mag the number densities of ~0.18 arcmin$^{-2}$ derived from both the real and mock surveys are perfectly consistent.

Last, we note that in order to achieve agreement between the observed and simulated number counts at $z \sim 6$, we did not require any tweaks to either the cosmology (e.g. see Wang et al. 2008, for the effect of different WMAP cosmologies), or the dust model used (see Kitzbichler & White 2007; Guo & White 2008, for alternative dust models better tuned to high-redshift galaxies). This issue may be further investigated in a future paper.

2.5 Redshift distribution

In Fig. 4 we show the redshift distribution of the full mock survey (thick solid line), along with various subsamples selected according to different $i_{775} - z_{850}$ colour cuts that we will refer to later on in this paper. The standard selection of $i_{775} - z_{850} > 1.3$ results in a distribution that peaks at $z \approx 5.8$. We have also indicated the expected scatter resulting from cosmic variance on the scale of GOODS-sized fields (error bars are 1σ). Some, mostly ground-based, studies make use of a more stringent cut of $i_{775} - z_{850} > 1.5$ to reduce the chance of foreground interlopers (dashed histogram). Other works have used colour cuts of $i_{775} - z_{850} \lesssim 2$ (blue histogram) and $i_{775} - z_{850} \gtrsim 2$ (red histogram) in order to try to extract subsamples at $z \lesssim 6$ and $z \gtrsim 6$, respectively. As can be seen in Fig. 4, such cuts are indeed successful at broadly separating sources from the two redshift ranges, although the separation is not perfectly clean due to the mixed effects of age, dust and redshift on the $i_{775} - z_{850}$ colour. For reference, we have also indicated the model redshift distribution from B06 (thin solid line). This redshift distribution was derived for a much fainter sample of $z_{850} \lesssim 29$ mag, which explains in part the discrepancy in the counts at $z \gtrsim 6.2$. Evolution across the redshift range will furthermore skew the actual redshift distribution towards lower values (see discussion in Muñoz & Loeb 2008b). This is not included in the B06 model, and its effect is only marginally taken into account in the MR mock survey due to the relatively sparse snapshot sampling across the redshift range. Unfortunately, the exact shape of the redshift distribution is currently not very well constrained by spectroscopic samples (Malhotra et al. 2005). A more detailed analysis is beyond the scope of this paper, and we conclude by noting that the results presented below are largely independent of the exact shape of the distribution.

2.6 Physical properties of i-dropouts

Although a detailed study of the successes and failures in the semi-analytical modelling of galaxies at $z \sim 6$ is not the purpose of our investigation, we believe it will be instructive for the reader if we at least summarize the main physical properties of the model galaxies
in our mock survey. Unless stated otherwise, throughout this paper we will limit our investigations to i-dropout samples having a limiting magnitude of $z_{580}=26.5$ mag,4 comparable to M_{UV} at $z = 6$ (see Bouwens et al. 2007). This magnitude typically corresponds to model galaxies situated in dark matter haloes of at least 100 dark matter particles ($\sim 10^{11} M_\odot h^{-1}$). This ensures that the evolution of those haloes and their galaxies has been traced for some time prior to the snapshot from which the galaxy was selected. In this way, we ensure that the physical quantities derived from the semi-analytic model are relatively stable against snapshot-to-snapshot fluctuations. A magnitude limit of $z_{580} = 26.5$ mag also conveniently corresponds to the typical depth that can be achieved in deep ground-based surveys or relatively shallow HST-based surveys.

In Fig. 5 we plot the cumulative distributions of the stellar mass (top left-hand panel), SFR (top right-hand panel) and stellar age (bottom left-hand panel) of the i_{775}-dropouts in the mock survey. The median stellar mass is $\sim 5 \times 10^{10} M_\odot h^{-1}$, and about 30 per cent of galaxies have a stellar mass greater than $10^{11} M_\odot$. The median SFR and age are $\sim 30 M_\odot$ yr$^{-1}$ and ~ 160 Myr, respectively, with extrema of $\sim 500 M_\odot$ yr$^{-1}$ and ~ 400 Myr. These results are in general agreement with several studies based on modelling the stellar populations of limited samples of i_{775}-dropouts and Lyα emitters for which deep observations with HST and Spitzer exist. Yan et al. (2006) have analysed a statistically robust sample and find stellar masses ranging from $\sim 1 \times 10^{8} M_\odot$ for IRAC-undetected sources to $\sim 7 \times 10^{9} M_\odot$ for the brightest 3.6-μm sources, and ages ranging from ~ 40 to 400 Myr (see also Dow-Hygelund et al. 2005; Eyles et al. 2007; Lai et al. 2007, for additional comparison data). We also point out that the maximum stellar mass of $\sim 7 \times 10^{10} M_\odot$ found in our mock survey (see top left-hand panel) is comparable to the most massive i-dropouts found, and that ‘supersmassive’ galaxies having masses in excess of $\gtrsim 10^{11} M_\odot$ are absent in both the simulations and observations (McLure et al. 2006). Lastly, in the bottom right-hand panel we show the distribution of the masses of the haloes hosting the model i-dropouts. The median halo mass is $\sim 3 \times 10^{12} M_\odot$. Our results are in the range of values reported by Overzier et al. (2006) and McLure et al. (2008) based on the angular correlation function of large i_{775}-dropout samples, but we note that halo masses are currently not very well constrained by the observations.

3 THE RELATION BETWEEN i-DROPOUTS AND (PROTO)CLUSTERS

In this section we study the relation between local overdensities in the i-dropout distribution at $z \sim 6$ and the sites of cluster formation. Throughout this paper, a galaxy cluster is defined as being all galaxies belonging to a bound dark matter halo having a dark matter mass5 of $M_{\text{tophat}} \gtrsim 10^{15} h^{-1} M_\odot$ at $z = 0$. In the MR we find 2832 unique haloes, or galaxy clusters, fulfilling this condition, 21 of which can be considered supersmassive ($M_{\text{tophat}} \gtrsim 10^{15} h^{-1} M_\odot$). Furthermore, a protocluster galaxy is defined as being a galaxy at ~ 6 that will end up in a galaxy cluster at $z = 0$. Note that these are trivial definitions given the data base structure of the MR simulations, in which galaxies and haloes at any given redshift can be related to their progenitors and descendants at another redshift (Lemson & Virgo Consortium 2006).

3.1 Properties of the $z = 0$ descendants of i-dropouts

In Fig. 6 we plot the distribution of number densities of the central haloes that host the $z = 0$ descendants of the i-dropouts in our mock survey as a function of the halo mass. The median halo mass hosting the i-dropout descendants at $z = 0$ is $3 \times 10^{12} M_\odot h^{-1}$ (dotted line). For comparison we indicate the mass distribution of all haloes at $z = 0$ (dashed line). The plot shows that the fraction of haloes that can be traced back to a halo hosting an i-dropout at $z \sim 6$ is a strong function of the halo mass at $z = 0$. 45 per cent of all cluster-sized haloes at $z = 0$ (indicated by the hatched region) are related to the descendants of haloes hosting i-dropouts in our mock survey, and 77 per cent of all clusters at $z = 0$ having a mass of $M > 7 \times 10^{14} M_\odot h^{-1}$ can be traced back to at least one progenitor halo at $z \sim 6$ hosting an i-dropout. This implies that the first seeds of galaxy clusters are already present at $z \sim 6$. In addition, many i-dropout galaxies and their haloes may merge and end up in the same descendant structures at $z = 0$, which was not accounted for in our calculation above where we only counted unique haloes at $z = 0$. In fact, about ~ 34 per cent (~ 2 per cent) of all i-dropouts ($z_{580} \leq 26.5$) in the mock survey will end up in clusters of mass $>1 \times 10^{13} (>7 \times 10^{12} M_\odot h^{-1})$ at $z = 0$. This implies that roughly one-third of all galaxies one observes in a typical i-dropout survey

4 For reference: a z_{580} magnitude of ≤ 26.5 mag for an unattenuated galaxy at $z \sim 6$ would correspond to a star formation rate (SFR) of $\sim 7 M_\odot$ yr$^{-1}$, under the widely used assumption of a $0.1-125 M_\odot$ Salpeter initial mass function and the conversion factor between SFR and the rest-frame 1500 Å UV luminosity of 8.0×10^{37} erg s$^{-1}$ Hz$^{-1} M_\odot$ yr$^{-1}$ as given by Madau, Pozzetti & Dickinson (1998).

5 The ‘tophat’ mass, M_{tophat}, is the mass within the radius at which the halo has an overdensity corresponding to the value at virialization in the tophat collapse model (see White 2001).
can be considered 'protocluster' galaxies. The plot further shows that the majority of haloes hosting i-dropouts at \(z \sim 6 \) will evolve into haloes that are more typical of the group environment. This is similar to the situation found for LBGs or dropout galaxies at lower redshifts (Ouchi et al. 2004).

In Fig. 7 we plot the stellar mass distribution of those \(z = 0 \) galaxies that host the descendants of the i-dropouts. The present-day descendants are found in galaxies having a wide range of stellar masses (\(M_\star \sim 10^{9-12} M_\odot \)), but the distribution is skewed towards the most massive galaxies in the MR simulations. The median stellar mass of the descendants is \(\sim 10^{11} M_\odot \) (dotted line in Fig. 7).

3.2 Detecting protoclusters at \(z \sim 6 \)

We will now focus on to what extent local overdensities in the i-dropout distribution at \(z \sim 6 \) may trace the progenitor seeds of the richest clusters of galaxies in the present-day Universe. In Fig. 8 we plot the sky distribution of the i-dropouts in our 4.4 \(\times \) 4.4 MR mock survey (large and small circles). Large circles indicate those i-dropouts identified as protocluster galaxies. We have plotted contours of i-dropout surface density, \(\delta_{\Sigma,i} \equiv \left(\Sigma_{\Sigma,i} - \Sigma_{\Sigma,0} \right) / \Sigma_{\Sigma,0} \), and \(\Sigma_{\Sigma,0} \) being the local and mean surface density measured in circular cells of 5 arcmin radius. Negative contours representing underdense regions are indicated by blue lines, while positive contours representing overdense regions are indicated by red lines. The green dashed lines indicate the mean density.

The distribution of protocluster galaxies (large circles) correlates strongly with positive enhancements in the local i-dropout density distribution, indicating that these are the sites of formation of some of the first clusters. In Fig. 9 we plot the frequency distribution of the i-dropouts shown in Fig. 8, based on a counts-in-cells analysis of 20,000 randomly placed ACS-sized fields of 3.4 \(\times \) 3.4 arcmin\(^2\) (solid histograms). On average, one expects to find about two i-dropouts at a random ACS pointing down to a depth of \(z_{850} = 26.5 \), but the distribution is skewed with respect to a pure Poissonian distribution as expected due to the effects of gravitational clustering. The Poissonian expectation for a mean of two i-dropouts is indicated by a thin line for comparison.

The panel on the right-hand side shows a zoomed-in view to give a better sense of the small fraction of pointings having large numbers of i-dropouts. Also in Fig. 9 we have indicated the counts histogram derived from a similar analysis performed on i-dropouts extracted from the GOODS survey using the samples of B06. The GOODS result is indicated by the dotted histogram, showing that it lies much closer to the Poisson expectation than the MR mock survey. This is of course expected as our mock survey covers an area over 200\(\times \) larger than GOODS and includes a much wider range of environments. To illustrate that the (small) fraction of pointings with the largest number of objects is largely due to the presence of regions associated with protoclusters, we effectively ‘disrupt’ all protoclusters by randomizing the positions of all protocluster galaxies and repeat the counts-in-cells calculation. The result is shown by the dashed histograms in Fig. 9. The excess counts have largely disappeared, indicating that they were indeed due to the protoclusters. The counts still show a small excess over the Poissonian distribution due to the overall angular clustering of the i-dropout population.

We can use our counts-in-cells analysis to predict the cumulative probability, \(P_{\geq \delta} \), of randomly finding an i-dropout overdensity equal or larger than \(\delta_{\Sigma,ACS} \). The results are shown in Fig. 10. The four panels correspond to the subsamples defined using the four different \(i_{775} - z_{850} \) colour cuts (see Section 2.5 and Fig. 4). Panel insets show the full probability range for reference. The figure shows that the probability of finding, for example, cells having a surface overdensity of i-dropouts of \(\geq 3 \) is about half a per cent for the \(i_{775} - z_{850} \geq 1.3 \) samples (top left-hand panel, solid line). The other panels show the dependence of \(P_{\geq \delta} \) on i-dropout samples selected using different colour cuts. As the relative contribution from foreground and background galaxies changes, the density contrast between real, physical overdensities on small scales and the ‘field’ is increased.
Figure 8. Projected distribution on the sky of the $z \sim 6$-dropouts selected from the MR mock survey according to the criteria $i_{775} - z_{850} > 1.3$ and $z \leq 26.5$ mag (small and large points). Contours indicate regions of equal density, defined as $\delta \Sigma_{5 \text{arcmin}} \equiv (\Sigma_{5 \text{arcmin}} - \bar{\Sigma}_{5 \text{arcmin}})/\bar{\Sigma}_{5 \text{arcmin}}$, $\bar{\Sigma}_{5 \text{arcmin}}$ and $\Sigma_{5 \text{arcmin}}$ being the local and mean surface density measured in circular cells of 5 arcmin radius. Overdense and underdense regions of $\delta \Sigma_{5 \text{arcmin}} = \pm [0.25, 0.5, 1.0]$ are shown in red and blue contours, respectively. The mean density ($\delta \Sigma_{5 \text{arcmin}} = 0$) is indicated by the green dashed contour. Large black points mark protocluster galaxies that end up in galaxy clusters at $z = 0$.

The results presented in Fig. 10 provide us with a powerful way to interpret many observational findings. Specifically, overdensities of i-dropouts have been interpreted as evidence for large-scale structure associated with protoclusters, at least qualitatively. Although Fig. 10 tells us the likelihood of finding a given overdensity, this is not sufficient by itself to answer the question whether that overdensity is related to a protocluster due to a combination of several effects. First, because we are mainly working with photometrically selected samples consisting of galaxies spanning about one unit redshift, projection effects are bound to give rise to a range of surface densities. Secondly, the number counts may show significant variations as a function of position and environment resulting from the large-scale structure. The uncertainties in the cosmic variance can be reduced by observing fields that are larger than the typical scale length of the large-scale structures, but this is often not achieved in typical observations at $z \sim 6$. Thirdly, surface overdensities that are related to genuine overdensities in physical coordinates are not necessarily due to protoclusters, as we have shown that the descendants of i-dropout can be found in a wide range of environments at $z = 0$, galaxy groups being the most common (see Fig. 6). We have separated the contribution of these effects to $P_{\geq \delta}$ from that due to protoclusters by calculating the fraction of actual protocluster i-dropouts in each cell of given overdensity δ. The results are also shown in Fig. 10, where dashed histograms indicate the combined probability of finding a cell of overdensity $\geq \delta$ consisting of more
than 25 (blue lines), 50 (green lines) and 75 per cent (red lines) protocluster galaxies. The results show that while, for example, the chance of $P(\delta \geq 2.5)$ is about 1 per cent, the chance that at least 50 per cent of the galaxies in such cells are protocluster galaxies is only half that, about 0.5 per cent (see top left-hand panel in Fig. 10).

The figure goes on to show that the fractions of protocluster galaxies increases significantly as the overdensity increases, indicating that the largest (and rarest) overdensities in the i-dropout distribution are related to the richest protocluster regions. This is further illustrated in Fig. 11 in which we plot the average and scatter of the fraction of protocluster galaxies as a function of z. Although the fraction rises as the overdensity increases, there is a very large scatter. At $\delta \approx 4$ the average fraction of protocluster galaxies is about 0.5, but varies significantly between 0.25 and 0.75 (1σ).

3.3 Some examples

Although the above sections yield useful statistical results, it is interesting to look at the detailed angular and redshift distributions of the i-dropout in a few of the overdense regions. In Fig. 12 we show 16 30×30 arcmin2 regions having overdensities ranging from $\delta_{\Sigma, ACS} \sim 8$ (bottom left-hand panel) to ~ 3 (top right-hand panel). In each panel we indicate the relative size of an ACS pointing (red square), and the redshift, overdensity and present-day mass of the most massive protoclusters are given in the top left- and right-hand corners. Field galaxies are drawn as open circles, while protocluster galaxies are drawn as filled circles. Galaxies belonging to the same protocluster are drawn in the same colour. While some regions contain relatively compact protoclusters with numerous members inside the 3.4 \times 3.4 arcmin2 ACS field of view (e.g. panels #0, 1 and 8), other regions may contain very few or highly dispersed galaxies.

Also, many regions contain several overlapping protoclusters as the selection function is sensitive to structures from a relatively wide range in redshift inside the 30×30 arcmin2 regions plotted. Although the angular separation between galaxies belonging to the same protocluster is typically smaller than ~ 10 arcmin or 25 Mpc (comoving), Fig. 13 shows that the overdensities of regions centred on the protoclusters are significantly positive out to much larger radii of between 10 and 30 arcmin, indicating that the protoclusters form inside very large filaments of up to 100 Mpc in size that contribute significantly to the overall (field) number counts in the protocluster regions. In Fig. 14 we plot the redshift coordinate against one of the angular coordinates using the same regions and colour codings as in Fig. 12. Protoclusters are significantly more clumped in redshift space compared to field galaxies, due to flattening of the velocity field associated with the collapse of large structures. In each panel, a red dashed line marks $z = 5.9$, which roughly corresponds to, respectively, the upper and lower redshift of samples selected by placing a cut at $i_{775} - z_{850} \lesssim 2$ and $i_{775} - z_{850} \gtrsim 2$ (see the redshift selection functions in Fig. 4). Such colour cuts may help reduce the contribution from field galaxies by about 50 per cent, depending on the redshift one is interested in. We also mark the typical redshift range of $\Delta z \approx 0.1$ probed by narrowband filters centred on the redshift of each protocluster using blue dotted lines. As we will show in more detail in Section 4.2 below, such narrowband selections offer one of the most promising methods for finding and studying the earliest collapsing structures at high redshift, because of the significant increase in contrast between cluster and field regions. However, such surveys are time-consuming and only probe the part of the galaxy population that is bright in the Lyα line.
Figure 12. Panels show the angular distribution of i_{775}-dropouts in 30×30 arcmin2 areas centred on each of 16 protoclusters associated with overdensities $\delta_{\Sigma, \text{ACS}} \gtrsim 3$. Field galaxies are drawn as open circles, and cluster galaxies as filled circles that are colour coded according to their cluster membership. The ACS field of view is indicated by a red square. Numbers near the top of each panel indicate the ID, redshift, overdensity and cluster mass (at $z = 0$) of the protoclusters in the centre of each panel.

Figure 13. Lines show overdensity as a function of radius for each of the protocluster regions shown in Fig. 12.

4 COMPARISON WITH OBSERVATIONS FROM THE LITERATURE

Our mock survey of i-dropouts constructed from the MR, due to its large effective volume, spans a wide range of environments and is therefore ideal for making detailed comparisons with observational studies of the large-scale structure at $z \sim 6$. In the following subsections, we will make such comparisons with two studies of candidate protoclusters of i-dropouts and Lyα emitters found in the SDF and SXDF.

4.1 The candidate protocluster of Ota et al. (2008)

When analysing the sky distribution of i-dropouts in the 876 arcmin2 Subaru Deep Field, O08 discovered a large surface overdensity, presumed to be a protocluster at $z \sim 6$. The magnitude of the overdensity was quantified as the excess of i-dropouts in a circle of 20 Mpc comoving radius. The region had $\delta_{\Sigma, 20\text{Mpc}} = 0.63$ with 3σ significance. Furthermore, this region also contained the highest density contrast measured in a 8 Mpc comoving radius $\delta_{\Sigma, 8\text{Mpc}} = 3.6$ (5σ) compared to other regions of the SDF. By relating the total overdensity in dark matter to the measured overdensity in galaxies through an estimate of the galaxy bias parameter, the authors estimated a mass for the protocluster region of $\sim 1 \times 10^{15} M_\odot$.

We use our mock survey to select i-dropouts with $i_{775} - z_{850} > 1.5$ and $z_{850} < 26.5$, similar to O08. The resulting surface density was 0.16 arcmin$^{-2}$ in very good agreement with the value of 0.18 arcmin$^{-2}$ found by O08. In Fig. 15 we plot the sky distribution of our sample, and connect regions of constant (positive) density $\delta_{\Sigma, 20\text{Mpc}}$. Next we selected all regions that had $\delta_{\Sigma, 20\text{Mpc}} \geq 0.63$. These regions are indicated by the large red circles in Fig. 15. We find ~ 30 (non-overlapping) regions in our entire mock survey.
Figure 14. Panels show redshift versus one of the angular coordinates of i_{775}-dropouts for each of the protocluster regions shown in Fig. 12. Field galaxies are drawn as open circles, and cluster galaxies as filled circles that are colour coded according to their cluster membership as in Fig. 12. Red dashed lines mark $z = 5.9$, which roughly corresponds to, respectively, the upper and lower redshift of samples selected by placing a cut at $i_{775} - z_{850} \lesssim 2$ and $i_{775} - z_{850} \gtrsim 2$. Blue dotted lines mark the redshift range ($\Delta z \approx 0.1$) probed by narrowband Lyα filters.

4.2 The Lyα-selected protocluster of Ouchi et al. (2005)

The addition of velocity information gives studies of Lyα samples a powerful edge over purely photometrically selected i_{775}-dropout samples. As explained by Monaco et al. (2005, and references therein), peculiar velocity fields are influenced by the large-scale structure: streaming motions can shift the overall distribution in redshift, while the dispersion can both increase and decrease as a

survey having $\Delta z \approx 0.1$ probed by narrowband Lyα filters.

We conclude that local overdensities in the distribution of i-dropouts on scales of $\sim 10-50$ comoving Mpc similar to the one found by O08 indeed trace the seeds of massive clusters. Because our mock survey is about 80× larger than the SDF, we expect that one would encounter such protocluster regions in about one in three (2.7) SDF-sized fields on average. However, the fraction of actual protocluster galaxies is in the range 16–50 per cent (0–80 per cent for 8 Mpc radius regions). This implies that while one can indeed find the overdense regions where clusters are likely to form, there is no way of verifying which galaxies are part of the protocluster and which are not, at least not when using photometrically selected samples. These results are consistent with our earlier finding that there is a large scatter in the relation between the measured surface overdensity and both cluster ‘purity’ and the mass of its descendant cluster at $z = 0$ (Section 3.2).
Figure 15. The sky distribution of i-dropouts selected using criteria matched to those of O08. Grey solid lines are surface density contours of $\delta_{E,20\text{Mpc}} = 0, +0.2, +0.4, +0.6, +0.8$ and $+1.0$. Large red dashed circles mark overdense regions of $\delta_{E,20\text{Mpc}} > 0.65$, corresponding to similar overdensities as that associated with the candidate $z \sim 6$ protocluster region found by O08 in the Subaru Deep Field. Small red circles inside each region mark a subregion having the largest overdensity $\delta_{E,8\text{Mpc}}$ measured in a 8 Mpc comoving radius (projected) cell (see text for further details).

Figure 16. Mock Lyα survey at $z=5.8 \pm 0.05$ constructed from the MR mock i753-dropout sample. Grey solid lines are surface density contours of $\delta_{E,20\text{Mpc}} = -0.25$ to 3.25 with a step increase of 0.5 as in fig. 2 of O05. The black dashed line marks the average field density. Small circles indicate field galaxies. Large circles indicate protocluster galaxies.

result of velocity gradients. Galaxies located in different structures that are not physically bound will have higher velocity dispersions, while galaxies that are in the process of falling together to form non-linear structures such as a filaments, sheets (or ‘pancakes’) and protoclusters will have lower velocity dispersions. Using deep narrow-band imaging observations of the SXDF, O05 were able to select Lyα candidate galaxies at $z \sim 5.7 \pm 0.05$. Follow-up spectroscopy of the candidates in one region that was found to be significantly overdense ($\delta \gtrsim 3$) on a scale of 8 Mpc (comoving) radius resulted in the discovery of two groups (‘A’ and ‘B’) of Lyα emitting galaxies each having a very narrow velocity dispersion of $\lesssim 200 \text{ km s}^{-1}$. The three-dimensional density contrast is of the order of ~ 100, comparable to that of present-day clusters, and the space density of such protocluster regions is roughly consistent with that of massive clusters (see O05).

In order to study the velocity fields of collapsing structures and carry out a direct comparison with O05, we construct a simple Lyα survey from our mock sample as follows. First, we construct a (Gaussian) redshift selection function centred on $z = 5.8$ with a standard deviation of 0.04. As it is not known what causes some galaxies to be bright in Lyα and others not, our simulations do not include a physical prescription for Lyα as such. However, empirical results suggest that Lyα emitters are mostly young, relatively dust-free objects and a subset of the i753-dropout population. The fraction of galaxies with high equivalent width Lyα is about 40 per cent, and this fraction is found to be roughly constant as a function of the rest-frame UV continuum magnitude. Therefore, we scale our selection function so that it has a peak selection efficiency of 40 per cent. Next, we apply this selection function to the i753-dropouts from the mock survey to create a sample with a redshift distribution similar to that expected from a narrowband Lyα survey. Finally, we tune the limiting z_{lim} magnitude until we find a number density that is similar to that reported by O05. By setting $z_{\text{lim}} < 26.9$ mag we get the desired number density of $\sim 0.1 \text{ arcmin}^{-2}$. The mock Ly$\alpha$ field is shown in Fig. 16.

In the top left-hand panel of Fig. 17 we plot the overdensities measured in randomly drawn regions of 8 Mpc (comoving) radius against the protocluster purity parameter, analogous to Fig. 11. Although the median purity of a sample increases with overdensity (dashed line), the scatter indicated by the points is very large even for overdensities as large as $\delta \approx 3$ found by O05 (marked by the shaded region in the top panel of Fig. 17). To guide the eye, we have plotted regions of purity >0.5 as red points, and regions having purity >0.5 and $\delta > 3$ as blue points in all panels of Fig. 17. Next, we calculate the velocity dispersion, $\sigma_{v_{\text{bi}}}$, from the peculiar velocities of the galaxies in each region using the bi-weight estimator of Beers, Flynn & Gebhardt (1990) that is robust for relatively small numbers of objects ($N \lesssim 10–50$), and plot the result against δ and cluster purity in the top right-hand and bottom left-hand panels of Fig. 17, respectively.

Although gravitational clumping of galaxies in redshift space causes the velocity dispersions to be considerably lower than the velocity width allowed by the bandpass of the narrowband filter ($\langle \sigma_{v_{\text{bi}}} \rangle \sim 1000 \text{ km s}^{-1}$ compared to $\sigma_{\text{NB}} \approx 1800 \text{ km s}^{-1}$ for $\sigma_{\text{NB}} = 0.04$), the velocity dispersion is not a decreasing function of the overdensity (at least not up to $\delta \approx 3–4$) and the scatter is significant. This can be explained by the fact that protoclusters regions are rare, and even regions that are relatively overdense in angular space still contain many galaxies that are not contained within a single bound structure. A much stronger correlation is found between dispersion and cluster purity (see bottom left-hand panel of Fig. 17). Although
Galaxies, protoclusters and quasars at $z \sim 6$ 589

The scatter in dispersion is large for regions with a purity of $\lesssim 0.5$, the smallest dispersions are associated with some of the richest protocluster regions. This can be understood because the 'purer' structures represent the bound inner cores of future clusters at $z = 0$. The velocity dispersions are low because these systems do not contain many field galaxies that act to inflate the velocity dispersion measurements. Therefore, the velocity dispersion correlates much more strongly with the protocluster purity than with the surface overdensity. The overdensity parameter helps, however, in reducing some of the ambiguity in the cluster richness at small dispersions (compare black and blue points at small δ_{Σ} in the bottom left-hand panel). The shaded regions indicated in Fig. 17 are representative of lower purity samples, implying that their structure has the characteristics of Lyα galaxies falling into a protocluster at $z \sim 6$.

5 WHERE IS THE LARGE-SCALE STRUCTURE ASSOCIATED WITH $z \sim 6$ QSOs?

For reasons explained in the Introduction, it is generally assumed that the luminous QSOs at $z \sim 6$ inhabit the most massive dark matter in the early Universe. The HST/ACS, with its deep and wide-field imaging capabilities in the F775W and F850LP bands, has made it possible to test one possible implication of this by searching for small neighbouring galaxies tracing these massive haloes. In this section, we will first investigate what new constraint we can put on the masses of the host haloes based on the observed neighbour statistics. Muñoz & Loeb (2008a) have addressed the same problem and that field must contain a supermassive halo of $\gtrsim 10^{12.5} M_\odot$. However, the scatter is very large: for example, for a given $z_{\text{ABS}} < 26.5$ neighbour count (in a $20' \times 20'$ Mpc region) of $\gtrsim 5$, the halo mass is always above $\sim 10^{11.5} M_\odot$, and if one observes $\delta_{\text{ABS}, \text{ACS}} < 2$ one could conclude that that field must contain a supermassive halo of $\gtrsim 10^{12.5} M_\odot$. Thus, in principle, one can only estimate a lower limit on the

by presenting some clear examples from the simulations that would signal a massive overdensity in future observations.

Several searches for companion galaxies in the vicinity of $z \sim 6$ QSOs have been carried out to date. In Table 1 we list the main surveys, covering in total six QSOs spanning the redshift range $5.0 < z < 6.4$. We have used the results given in Stiavelli et al. (2005), Zheng et al. (2006) and Kim et al. (2008) to calculate the surface overdensities associated with each of the QSO fields listed in Table 1. Only two QSOs were found to be associated with positive overdensities to a limiting magnitude of $z_{\text{ABS}} = 26.5$: J0836+0054 ($z = 5.82$) and J1030+0524 ($z = 6.28$) both had $\delta_{\Sigma, \text{ACS}} \approx 1$, although evidence suggests that the overdensity could be as high as $\lesssim 2$–3 when taking into account subclustering within the ACS field or sources selected using different signal-to-noise ratio or colour cuts (see Stiavelli et al. 2005; Ajiki et al. 2006; Zheng et al. 2006; Kim et al. 2008, for details). The remaining four QSO fields (J1306+0356 at $z = 5.99$, J1630+0401 at $z = 6.05$, J1048+4637 at $z = 6.23$ and J1148+5251 at $z = 6.43$) were all consistent with having no excess counts with $\delta_{\Sigma, \text{ACS}}$ spanning the range from about -1 to $+0.5$ relatively independent of the method of selection (Kim et al. 2008). Focusing on the two overdense QSO fields, Fig. 10 tells us that overdensities of $\delta_{\Sigma, \text{ACS}} \gtrsim 1$ are fairly common, occurring at a rate of about 17 per cent in our $4' \times 4'$ simulation. The probability of finding a random field with $\delta_{\Sigma} \gtrsim 2$–3 is about 5% per cent. It is evident that none of the six quasar fields has highly significant overdensity. The case for overdensities near the QSOs would strengthen if all fields showed a systematically higher, even if moderate, surface density. However, when considering the sample as a whole the surface densities of i-dropouts near $z \sim 6$ QSOs are fairly average, given that four of the QSO fields have lower or similar number counts compared to the field. With the exception perhaps of the field towards the highest redshift QSO J1148+5251, which lies at a redshift where the i-dropout selection is particularly inefficient (see Fig. 4), the lack of evidence for substantial (surface) overdensities in the QSO fields is puzzling.

In Fig. 18 we have plotted the number of i_{PTFS}-dropouts encountered in cubic regions of $20' \times 20' \times 20 h^{-1}$ Mpc against the mass of the most massive dark matter halo found in each region. Panels on the left-hand side and on the right-hand side are for limiting magnitudes of $z_{\text{ABS}} = 27.5$ and 26.5, respectively. Because the most massive haloes are so rare, here we have used the full MR snapshots at $z = 5.7$ (top panels) and $z = 6.2$ (bottom panels) rather than the light cone in order to improve the statistics. There is a systematic increase in the number of neighbours with increasing maximum halo mass. However, the scatter is very large: for example, focusing on the neighbour count prediction for $z = 5.7$ and $z_{\text{ABS}} = 26.5$, the total number of neighbours of a halo of $10^{12.5} h^{-1} M_\odot$ can be anywhere between 0 and 20, and some of the most massive haloes of $10^{13} h^{-1} M_\odot$ have a relatively low number of counts compared to some of the haloes of significant lower mass that are far more numerous. However, for a given $z_{\text{ABS}} < 26.5$ neighbour count (in a $20' \times 20' \times 20 h^{-1}$ Mpc region) of $\gtrsim 5$, the halo mass is always above $\sim 10^{11.5} h^{-1} M_\odot$, and if one observes $\gtrsim 25 i_{\text{PTFS}}$-dropout counts one could conclude that that field must contain a supermassive halo of $\gtrsim 10^{12.5} h^{-1} M_\odot$. Thus, in principle, one can only estimate a lower limit on the

6 The significance of the overdensity in this field is less than originally stated by Zheng et al. (2006) as a result of underestimating the contamination rate when a V_{606} image is not available to reject lower redshift interlopers.
maximum halo mass as a function of the neighbour counts. The left-hand panel shows that the scatter is much reduced if we are able to count galaxies to a limiting $z_{850} = 27.5$ (left-hand panel) and $z_{850} = 26.5$ mag, respectively. There is a wide dispersion in the number of neighbours, even for the most massive haloes at $z \sim 6$. The highest numbers of neighbours are exclusively associated with the massive end of the halo mass function, allowing one to derive a lower limit for the mass of the most massive halo for a given number of neighbour counts. The scatter in the number of neighbours versus the mass of the most massive halo reduces significantly when going to fainter magnitudes. The small squares in the panels on the right-hand side correspond to the three richest regions (in terms of $z_{850} < 26.5$ mag drops) that are shown in close-up in Fig. 19.

Figure 18. Panels show the number of neighbours (i_{775}-dropouts) in cubic regions of $(20 \ h^{-1})^3$~Mpc3 versus the mass of the most massive halo found in each of those regions. Top and bottom panels are for snapshots at $z = 5.7$ and 6.2, respectively. Left- and right-hand panels are for neighbour counts down to limiting magnitudes of $z_{850} = 27.5$ (left-hand panel) and $z_{850} = 26.5$ mag, respectively. There is a large dispersion in the number of neighbours, even for the most massive haloes at $z \sim 6$. The highest numbers of neighbours are exclusively associated with the massive end of the halo mass function, allowing one to derive a lower limit for the mass of the most massive halo for a given number of neighbour counts. The scatter in the number of neighbours versus the mass of the most massive halo reduces significantly when going to fainter magnitudes. The small squares in the panels on the right-hand side correspond to the three richest regions (in terms of $z_{850} < 26.5$ mag drops) that are shown in close-up in Fig. 19.

by the small squares in Fig. 18. The central position corresponding to that of the most massive halo in each region is indicated by the green square. Large and small dots correspond to dropout galaxies having $z_{850} < 26.5$ and >27.5 mag, respectively. For reference, we use blue circles to indicate galaxies that have been identified as part of a protocluster structure. The scale bar at the top left-hand panel in each panel corresponds to the size of an ACS/WFC pointing used to observe $z \sim 6$ QSO fields. We make a number of interesting observations. First, using the current observational limits on depth ($z_{850} = 26.5$ mag) and field size (3.4 arcmin, see scale bar) imposed by the ACS observations of QSOs, it would actually be quite easy to miss some of these structures as they typically span a larger region of two to three ACS fields in diameter. Going to much fainter magnitudes would help considerably, but this is at present unfeasible. Note, also, that in three of the panels presented here, the galaxy associated with the massive central halo does not pass our magnitude limits. It is missed due to dust obscuration associated with very high SFRs inside these haloes, implying that they will be missed by large-area UV searches as well (unless, of course, they also host a luminous, unobscured QSO).

Finally, we investigate the level of mutual correspondence between the most massive haloes selected at $z = 6$ and 0. In Fig. 19 we already saw that the richest regions are associated with a very large number of galaxies that will become part of a cluster when evolved to $z = 0$. In the top row of Fig. 20 we show the mass of the most massive progenitors at $z = 5.7$ (left-hand panels), $z = 6.2$ (middle panels) and $z = 6.7$ (right-hand panels) of haloes selected at $z = 0$ (see also Trenti et al. 2008). The dotted line indicates the threshold corresponding to massive galaxy clusters at $z = 0$. Although the progenitor mass increases systematically with increasing local mass, the dispersion in the mass of the most massive $z \sim 6$ progenitors is about or over one order of magnitude, and this is true even for the most massive clusters. As explained in detail by Trenti et al. (2008) this observation leads to an interesting complication when using the refinement technique often used to simulate the most massive regions in the early Universe by resimulating at high redshift the most massive region identified at $z = 0$ in a coarse grid simulation. In the bottom panels of Fig. 20 we show the inverse relation between the most massive haloes selected at $z \sim 6$ and their most massive descendant at $z = 0$. From this it becomes clear that even though the most massive $z \sim 6$ haloes (e.g. those associated with QSOs) are most likely to end up in present-day clusters, some evolve into only modest local structures more compatible with, e.g. galaxy groups. This implies that the present-day descendants of some of the first, massive galaxies and SMBHs must be sought in subcluster environments.

6 DISCUSSION

Although our findings of the previous section show that the apparent lack of excess neighbour counts near $z \sim 6$ QSOs is not inconsistent with them being hosted by supermassive dark matter haloes as suggested by their low comoving abundance and large inferred black hole mass, it is interesting to note that none of the QSO fields have densities that would place them amongst the richest structures in the $z \sim 6$ Universe. This leads to an intriguing question: where is the large-scale structure associated with QSOs?

One possibility that has been discussed (e.g. Kim et al. 2008) is that while the dark matter density near the QSOs is significantly higher compared to other fields, the strong ionizing radiation from the QSO may prohibit the condensation of gas thereby suppressing galaxy formation. Although it is not clear how important such
Figure 19. Close-up views of three \((20 h^{-1})^3\) Mpc\(^3\) regions that were found to be highly overdense in \(z_{\text{drop}} < 26.5\) mag \(i_{775}\)-dropouts as marked by the squares in Fig. 18. The top row of panels correspond to the three richest regions found at \(z = 5.7\), while the bottom row corresponds to those at \(z = 6.2\). The position of the most massive halo in each region is indicated by a green square. Large and small dots correspond to dropout galaxies having \(z_{\text{drop}} < 26.5\) and <27.5 mag, respectively. Galaxies that have been identified as part of a protocluster structure are indicated by blue circles. The scale bar at the top left-hand side in each panel corresponds to the size of an ACS/WFC pointing used to observe \(z \sim 6\) QSO fields. Note that the galaxy corresponding to the most massive halo as indicated by the green square is not always detected in our \(i_{775}\)-dropout survey due to dust obscuration associated with very high SFRs.

Feedback processes are exactly, we have found that protoclusters in the MR form inside density enhancements that can extend up to many tens of Mpc in size. Although we do not currently know whether the \(z \sim 6\) QSOs might be associated with overdensities on scales larger than a few arcminutes as probed by the ACS, it is unlikely that the QSO ionization field will suppress the formation of galaxies on such large scales (Wyithe, Loeb & Carilli 2005). An alternative, perhaps more likely, explanation for the deficit of \(i_{775}\)-dropouts near QSOs, is that the dark matter halo mass of the QSOs is being greatly overestimated. Willott et al. (2005) suggest that the combination of the steepness of the halo mass function for rare high-redshift haloes on one hand, combined with the sizeable intrinsic scatter in the correlation between black hole mass and stellar velocity dispersion or halo mass at low redshift on the other hand, makes it much more probable that a \(10^9 M_\odot\) black hole is found in relatively low-mass haloes than in a very rare halo of extremely high mass. Depending on the exact value of the scatter, the typical mass of a halo hosting a \(z \sim 6\) QSO may be reduced by \(\sim 0.5–1.5\) in \(\log M_{\text{halo}}\) without breaking the low-redshift \(M–\sigma_v\) relation. The net result is that QSOs occur in some subset of haloes found in substantially less dense environments, which may explain the observations. This notion seems to be confirmed by the low dynamical mass of \(\sim 5 \times 10^{10} M_\odot\) estimated for the inner few kpc region of SDSS J1148+5251 at \(z = 6.43\) based on the CO line emission (Walter et al. 2004). This is in complete contradiction to the \(\sim 10^{12} M_\odot\) stellar mass bulges and \(\sim 10^{13} M_\odot\) mass haloes derived based on other arguments. If true, models should then explain why the number density of such QSOs is as observed. On the other hand, recent theoretical work by Dijkstra et al. (2008) suggests that in order to facilitate the formation of a supermassive \((\sim 10^9 M_\odot)\) black hole by \(z \sim 6\) in the first place, it may be required to have a rare pair of dark matter haloes \((\sim 10^{13} M_\odot)\) in which the intense UV radiation from one halo prevents fragmentation of the other so that the gas collapses directly into an SMBH. This would constrain the QSOs to lie in even richer environments.

7 RECOMMENDATIONS FOR FUTURE OBSERVATIONS

The predicted large-scale distributions of \(i_{775}\)-dropouts and Ly\(\alpha\) emitters as shown in, e.g. Figs 8, 15 and 16 show evidence for variations in the large-scale structure on scales of up to \(\sim 1'\sim 2'\), far larger than currently probed by deep HST or large-area ground-based surveys. A full appreciation of such structures could be important for a range of topics, including studies of the luminosity function at
\(z \approx 6 \) and studies of the comparison between \(\Lambda \)CDM predictions and gravitational clustering on very large scales. The total area probed by our simulation is a good match to a survey of \(\sim 20 \) deg\(^2\) targeting \(i_{775} \)-dropouts and Ly\(\alpha \) emitters at \(z \sim 6 \) planned with the forthcoming Subaru/HyperSuprimeCam (first light expected 2013; M. Ouchi, private communications).

We found that the \(i_{775} \)-dropouts associated with protoclusters are almost exclusively found in regions with positive density enhancements. A proper understanding of such dense regions may also be very important for studies of the epoch of reionization. Simulations suggest that even though the total number of ionizing photons is much larger in very large protocluster regions covering several tens of comoving Mpc as compared to the field (e.g. Ciardi et al. 2003, but see Iliev et al. 2006), they may still be the last to fully reionize, because the recombination rates are also much higher. If regions associated with QSOs or other structures were to contain significant patches of neutral hydrogen, this may affect both the observed number densities and clustering of LBGs or Ly\(\alpha \) emitters relative to our assumed mean attenuation (McQuinn et al. 2007). However, since our work mostly focuses on \(z \approx 6 \) when reionization is believed to be largely completed, this may not be such an issue compared to surveys that probe earlier times at \(z \gtrsim 7 \) (e.g. Kashikawa et al. 2006; McQuinn et al. 2007).

Our evaluation of the possible structures associated with QSOs leads to several suggestions for future observations. While it is unlikely that the Wide Field Camera 3 (WFC3) to be installed onboard \(HST \) in early 2009 will provide better constraints than \(HST/ACS \) due to its relatively small field of view, we have shown that either by surveying a larger area of \(\sim 10 \times 10 \text{ arcmin}^2 \) or by going deeper by \(\sim 1 \) mag in \(z_{850} \), one significantly reduces the shot noise in the neighbour counts allowing more reliable overdensities and (lower) limits on the halo masses to be estimated. A single pointing with ACS would require \(\sim 15-20 \) orbits in \(z_{850} \) to reach a point source sensitivity of \(5 \sigma \) for a \(z_{850} = 27.5 \) mag object at \(z \sim 6 \). Given the typical structure sizes of the overdense regions shown in Fig. 19, a better approach would perhaps be to expand the area of the current QSO fields by several more ACS pointings at their present depth of \(z_{850} = 26.5 \) mag for about an equal amount of time. However, this may be achieved from the ground as well using the much more efficient wide-field detector systems. Although this has been attempted by Willott et al. (2005) targeting three of the QSO fields, we note that their achieved depth of \(z_{850} = 25.5 \) was probably much too shallow to find any overdensities even if they are there. We would like to stress that it is extremely important that foreground contamination is reduced as much as possible, for example by combining the observations with a deep exposure in the \(V_{606} \) band. This is currently not available for the QSO fields, making it very hard to calculate the exact magnitude of any excess counts present. While a depth of \(z_{850} = 27.5 \) mag seems out of reach for a statistical sample with \(HST \), narrow-band Ly\(\alpha \) surveys targeting the typically UV-faint Ly\(\alpha \) emitters from the ground would be a very efficient alternative. Although a significant fraction of sources lacking Ly\(\alpha \) may be lost compared to dropout surveys, they have the clear additional advantage of redshift information. Most Ly\(\alpha \) surveys are carried out in the atmospheric transmission windows that correspond to redshifted Ly\(\alpha \) either at \(z \approx 5.7 \) or 6.6 for which

Figure 20. The correspondence between the most massive haloes selected at \(z = 0 \) and 6 (see also Trenti et al. 2008). In the top row of panels we plot the mass of the most massive progenitor of haloes selected at \(z = 0 \) for snapshots at \(z = 5.7 \) (left-hand panels), \(z = 6.2 \) (middle panels) and \(z = 6.7 \) (right-hand panels). In all panels the dotted line indicates the mass corresponding to the threshold we use to define clusters at \(z = 0 \) (\(M \geq 10^{14} h^{-1} \text{ M}_\odot \text{ Mpc}^{-3} \)). The dispersion in the mass of the most massive \(z \sim 6 \) progenitors of \(z = 0 \) clusters is over an order of magnitude. Conversely, the most massive haloes present at \(z \sim 6 \) are not necessarily the most massive haloes at \(z = 0 \), and a minority does not even pass the threshold imposed for qualifying as a \(z = 0 \) cluster.
efficient narrow-band filters exist. We therefore suggest that the experiment is most likely to succeed around QSOs at \(z \approx 5.7\) rather than the QSOs at \(z \approx 5.8-6.4\) looked at so far. It is, however, possible to use combinations of e.g. the \(z \approx 5.7\) narrow-band filter with medium or broad-band filters at \(\sim 9000 \AA\) to place stronger constraints on the photometric redshifts of \(i_{775}\)-dropouts in QSO fields (e.g. see Ajiki et al. 2006).

In the next decade, JWST will allow for some intriguing further possibilities that may provide some definite answers: using the target 0.7–0.9 \(\mu\)m sensitivity of the Near-infrared Camera (NIRCam) on JWST we could reach point sources at 10r as faint as \(z_{\text{SDF}} = 28.5\) mag in a 10 000-s exposure, or we could map a large \(\sim 10 \times 10\) arcmin\(^2\) region around QSOs to a depth of \(z_{\text{SDF}} = 27.5\) mag within a few hours. The Near-infrared Spectrograph (NIRSpec) will allow >100 simultaneous spectra to confirm the redshifts of very faint line or continuum objects over a >9 arcmin\(^2\) field of view.

8 SUMMARY

The main findings of our investigation can be summarized as follows.

(i) We have used the N-body plus semi-analytic modelling of De Lucia \\& Blaizot (2007) to construct the largest \((4^\times 4')^2\) mock galaxy redshift survey of star-forming galaxies at \(z \sim 6\) to date. We extracted large samples of \(i_{775}\)-dropouts and Ly\(\alpha\) emitters from the simulated survey, and showed that the main observational (colours, number densities, redshift distribution) and physical properties (\(M_\star\), SFR, age, \(M_{\text{bh, o}}\)) are in fair agreement with the data as far as they are constrained by various surveys.

(ii) The present-day descendants of \(i_{775}\)-dropouts (brighter than \(M_{i_{775}}^\star = -28\)) are typically found in group environments at \(z = 0\) (halo masses of a few times \(10^{13} M_\odot\)). About one-third of all \(i_{775}\)-dropouts ends up in haloes corresponding to clusters, implying that the contribution of ‘protocluster galaxies’ in typical \(i_{775}\)-dropout surveys is significant.

(iii) The projected sky distribution shows significant variations in the local surface density on scales of up to \(1^\circ\), indicating that the largest surveys to date do not yet probe the full range of scales predicted by our \(\Lambda\)CDM models. This may be important for studies of the luminosity function, galaxy clustering and the epoch of reionization.

(iv) We present counts-in-cells frequency distributions of the number of objects expected per \(3.4 \times 3.4\) arcmin\(^2\) \(HST/ACS\) field of view, finding good agreement with the GOODS field statistics. The largest positive deviations are due to structures associated with the seeds of massive clusters of galaxies (‘protoclusters’). To guide the interpretation of current and future \(HST/ACS\) observations, we give the probabilities of randomly finding regions of a given surface overdensity depending on the presence or absence of a protocluster.

(v) We give detailed examples of the structure of protocluster regions. Although the typical separation between protocluster galaxies does not reach beyond \(\sim 10\) arcmin (25 Mpc comoving), they sit in overdensities that extend up to 30 arcmin radius, indicating that the protoclusters predominantly form deep inside the largest filamentary structures. These regions are very similar to two protoclusters of \(i_{775}\)-dropouts or Ly\(\alpha\) emitters found in the SDF O08 and SXDF O05 fields.

(vi) We have made a detailed comparison between the number counts predicted by our simulation and those measured in fields observed with \(HST/ACS\) towards luminous \(z \sim 6\) QSOs from SDSS, concluding that the observed fields are not particularly overdense in neighbour counts. We demonstrate that this does not rule out that the QSOs are in the most massive haloes at \(z \sim 6\), although we can also not confirm it. We discuss the possible reasons and implications of this intriguing result (see the discussion in Section 6).

(vii) We give detailed recommendations for follow-up observations using current and future instruments that can be used to better constrain the halo masses of \(z \sim 6\) QSOs and the variations in the large-scale structure as probed by \(i_{775}\)-dropouts and Ly\(\alpha\) emitters (see Section 7).

ACKNOWLEDGMENTS

Many colleagues have contributed to this paper. We thank Tom Abel, Jérémy Blaizot, Bernadetta Ciardi, Soyoung Kim, Sangeeta Malhotra, James Rhoads, Massimo Stiavelli and Bram Venemans for their time and suggestions. We are grateful to Masami Ouchi for a careful reading of our manuscript and insightful comments. We owe great gratitude to Volker Springel and Simon White and their colleagues at MPA responsible for the Millennium Run Project. The Millennium Simulation data bases used in this paper and the web application providing online access to them were constructed as part of the activities of the German Astrophysical Virtual Observatory.

RAO acknowledges the support and hospitality of the Aspen Center for Physics where part of this research was carried out.

REFERENCES

Ajiki M. et al., 2006, PASJ, 58, 113

Barth A. J., Martini P., Nelson C. H., Ho L. C., 2003, ApJ, 594, L95

Beers T. C., Flynn K., Gebhardt K., 1990, AJ, 100, 32

Bertoldi F. et al., 2003, A&A, 409, L47

Begelman M. C., Volonteri M., Rees M. J., 2006, MNRAS, 370, 289

Blaizot J., Wadadekar Y., Guiderdoni B., Colombi S. T., Bertin E., Bouchez F. R., Devriendt J. E. G., Hatton S., 2005, MNRAS, 360, 159

Bouwens R. J. et al., 2003, ApJ, 595, 589

Bouwens R. J., 2004a, ApJ, 606, L25

Bouwens R. J., Illingworth G. D., Blakeslee J. P., Broadhurst T. J., Franx M., 2004b, ApJ, 611, L1

Bouwens R. J., Illingworth G. D., Blakeslee J. P., Franx M., 2006, ApJ, 653, 53 (B06)

Bouwens R. J., Illingworth G. D., Franx M., Ford H., 2007, ApJ, 670, 928 (B07)

Bruzual G., Charlot S., 2003, MNRAS, 344, 1000

Ciardi B., Stoehr F., White S. D. M., 2003, MNRAS, 343, 1101

Croton D. J. et al., 2006, MNRAS, 365, 11

Davé R., Finlator K., Oppenheimer B. D., 2006, MNRAS, 370, 273

De Lucia G., Blaizot J., 2007, MNRAS, 375, 2

De Lucia G., Kauffmann G., White S. D. M., 2004, MNRAS, 349, 1101

Dixitson M. et al., 2004, ApJ, 600, L99

Dijkstra M., Haiman Z., Mesinger A., Wyithe J. S., 2008, MNRAS, 391, 1961

Djorgovski S. G., Stern D., Mahabal A. A., Brunner R., 2003, ApJ, 596, 67

Dow-Hygelund C. C. et al., 2005, ApJ, 630, L137

Eyles L. P., Bunker A. J., Ellis R. S., Lacy M., Stanway E. R., Stark D. P., Chiu K., 2007, MNRAS, 374, 910

Fan X. et al., 2001, AJ, 122, 2833

Fan X. et al., 2003, AJ, 125, 1649

Fan X. et al., 2004, AJ, 128, 515

Fan X. et al., 2006a, AJ, 131, 1203

Fan X. et al., 2006b, AJ, 132, 117

Finlator K., Davé R., Oppenheimer B. D., 2007, MNRAS, 376, 1861

Goto T., 2006, MNRAS, 371, 769

Gunn J. E., Peterson B. A., 1965, ApJ, 142, 1633

Guo Q., White S. D. M., 2008, preprint (arXiv:0809.4259)

Haiman Z., Loeb A., 2001, ApJ, 552, 459
