Titanium dioxide-based picoseconds pulsed fiber laser performances comparison in the 1.5-micron region

M F A Rahman1,2, P H Reddy3,4, M C Paul4, S Das4, A Dhar4, M F M Rusdi2, A A Latiff2, K Dimyati2, and S W Harun2

1 Fakulti Teknologi Kejuruteraan Elektrik & Elektronik, Universiti Teknikal Malaysia Melaka, 76100 Hang Tuah Jaya, Melaka, Malaysia.
2 Photonics Engineering Laboratory, Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
3 Academy of Scientific and Innovative Research (AcSIR), CSIR-CGCRI Campus, Kolkata, India.
4 Fiber Optics and Photonics Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, 700032, Kolkata, India.
5 Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, 76100 Hang Tuah Jaya, Melaka, Malaysia.

mfauziar@utem.edu.my

Abstract. We demonstrated and compared picoseconds pulsed fiber lasers based on Titanium dioxide based saturable absorbers (SAs); 20 cm long Titanium dioxide-doped fiber (TiO2:DF) and Titanium dioxide PVA film (TiO2:PF) in the 1.5-micron region. The laser cavity utilized 2.4 m long Erbium-doped fiber (EDF) as the gain medium. A self-starting pulsed laser with a consistent repetition rate of ~1 MHz emerged stably with the incorporation of TiO2 based SAs. The TiO2:DF SA produced 9.74 ps pulsed laser at a central wavelength of 1553 nm within a pump power range of 106-142 mW. The fiber SA promoted slightly higher slope efficiency and maximum pulse energy of 13.17% and 8.56 nJ, respectively in comparison with the film SA. On the other hand, the TiO2:PF SA generated stable 3.89 ps pulsed laser at an operating wavelength of 1560 nm within 86-142 mW pump power range. The film SA also produced slightly greater maximum output power of 12.17 mW and maximum peak power of 3.43 kW, respectively at the maximum pump power. The results confirmed that both TiO2 SAs can be good alternative pulse modulator in the 1.5-micron region.

Keywords. Optical fiber laser, fiber saturable absorber, Titanium dioxide, thin film

1. Introduction

Passive pulsed fiber lasers have several advantages in comparison with the active one, which includes, simplicity, flexibility and compactness. They also have significant potentials for use in many applications, such as telecommunication, biomedical and material engraving. Numerous methods have been claimed able to facilitate passively pulsed fiber lasers such as nonlinear polarization rotation [1], semiconductor saturable mirror (SESAMs) [2], carbon nanotubes (CNT) [3], graphene [4, 5], transition metal dichalcogenides (TMD) [6] and several others [7-26] including those which have been reported by our research group lately.

Although SESAMs have been successfully developed for commercial use in the last past two decades, they suffer from a relatively narrowband operation and has to be designed for explicit
wavelength. In addition to that, they are also quite bulky for fiber lasers and have a complex fabrication. NPR based lasers are environmentally unstable and have to be securely located in limited movements surroundings. On the other hand, CNT requires quite a complex bandgap engineering or diameter control for obtaining broader operation bandwidth. Additionally, graphene has a small absorption of 2.3% at 1550 nm. Thus, in this regard, new SA material that is small, easy to integrate, possessing quite a fast recovery time and can perform well in a robust environment is highly desirable.

Titanium dioxide (TiO$_2$), that belongs to transition metal oxides (TMO) have seized attention in recent years as alternative SAs in several regions; 1 [27], 1.55- [28, 29] and 2-micron [30]. It has a recovery time of \sim1.5 ps at room temperature [31], while Z scanning performed on anatase and rutile TiO$_2$ proved that it has saturable absorption feature. The modulation depth (35.41%) and the saturation intensity (0.013%) of TiO$_2$ [29] also are comparable to the others SAs [6]. Although it has a bandgap of \sim3.2 eV (\sim387 nm), it was claimed able to operate in the visible [32] and infrared [33] regions.

In this report, we demonstrated and compared TiO$_2$DF SA and TiO$_2$PF SA based picoseconds lasers performances in the EDFL cavity. The TiO$_2$PF was fabricated in-house, using polyvinyl alcohol (PVA) as the polymer film. On the other hand, the TiO$_2$DF was fabricated by doping TiO$_2$ element into silicate glass fiber core. Experimentally, we obtained about the same value of pulse repetition rates (\sim1 MHz) for both TiO$_2$ based SAs. The fiber laser performances of these TiO$_2$ based SAs are summarized and elaborated in the following topics to come.

2. Fabrication and Characterization of the Titanium dioxide-based SA

2.1. TiO$_2$DF SA (fiber) fabrication

The TiO$_2$DF was fabricated by doping TiO$_2$ element into silica glass matrix via a conventional modified chemical vapor deposition (MCVD) through bubbling of Helium (He) and Oxygen (O$_2$) gases into Titanium tetrachloride (TiCl$_4$) and Silicon tetrachloride (SiCl$_4$) containing bubbles. The developed TiO$_2$DF has core diameter and numerical aperture (NA) of \sim40 μm and 0.21, respectively. The fabricated fiber also contains 4.0 mol % doping levels of TiO$_2$. To effectively works as fiber SA, the TiO$_2$DF was cut into 20 cm length. Both of its arms were then fusion spliced with 10 cm long single-mode fiber (SMF28), to form 10 cm SMF28 – 20 cm TiO$_2$DF – 10 cm SMF28. However, in this report, the whole piece is regarded as TiO$_2$DF SA only. The TiO$_2$DF fabrication process in details, along with its important fiber characteristics can be found in [13].

2.2. TiO$_2$PF SA (film) fabrication

The TiO$_2$ powder used in the film SA was purchased from Sigma Aldrich. The powder is 99 % pure and has a diameter of lower than 45 μm. First, the host solution was prepared by dissolving 1 g of polyvinyl alcohol (PVA) into 120 ml of deionized (DI) water. Then, the host mixture was stirred using a magnetic stirrer at 90°C temperature, until the PVA powder fully dispersed. The mixture was then removed from the heating device and cooled down to room temperature. Additionally, TiO$_2$ solution was prepared by dissolving TiO$_2$ powder into DI water with the help of 1% sodium dodecyl sulphate (SDS) solvent. The mixture was stirred for 5 minutes and centrifuged at 3000 rpm for \sim15 minutes, to yield supernatant containing TiO$_2$ suspension. The TiO$_2$ suspension was collected and then poured onto the prepared PVA host solution. Next, the mixed solution was centrifuged to yield a composite precursor solution. The precursor solution was then transferred onto a flat and clean petri dish and left for two days at room temperature, to form TiO$_2$ composite film SA with a thickness of \sim30 μm. The TiO$_2$ film fabrication details and its important characteristics are explained in [30, 34]. To be effectively served as an effective SA, the composite film (TiO$_2$PF SA) was cut into a square shape of 1 mm x 1 mm and sandwiched between two clean fiber ferrules with the aid of an index matching gel. Then, a clean fiber adapter was carefully fixed at the coupling spot. The whole piece was then inserted into the EDFL cavity.

2.3. Linear absorption profile of the TiO$_2$ based SAs.

Figure 1 depicts linear absorption profiles of the TiO$_2$PF SA and the TiO$_2$DF SA taken at their respective mode-locked operating regime. The measurements were conducted by coupling the SA between a broadband white light source (WLS) and an optical spectrum analyzer (OSA). The net reduction of the injected WLS intensity is regarded as the linear absorption of the tested SA. As shown, the TiO$_2$PF SA shows relatively more consistent absorption profile than the TiO$_2$DF SA, due to the highly uniform
structure obtained in the thin film. The TiO$_2$PF SA has slightly lower absorption of 1.55 dB at 1560 nm wavelength as compared to the TiO$_2$DF SA (that has an absorption of 2.95 dB at 1553 nm wavelength).

![Figure 1. Linear absorption profile of TiO$_2$ based SAs.](image)

3. Picoseconds pulsed fiber laser cavity design

The proposed design of the mode-locked based TiO$_2$ element is shown in Figure 2. The laser cavity is driven by a 980 nm laser diode pump. The light enters into a wavelength division multiplexer (WDM) and then into 2.4 meters long Erbium-doped fiber (EDF) gain medium. An isolator ensures unidirectional light propagation in the cavity. The EDF is a commercial glass fiber (IsoGain, I-25) from Fibercore and has core diameter and NA of 4 µm and 0.23, respectively. In addition to that, the EDF has core concentricity of less than 0.5 µm and absorption of 23-27 dB/m at 980 nm wavelength. As shown, 3 dB coupler 1 is used to separate the laser output into equal halves. Half of the laser output is then channeled into 3 dB coupler 2, while the remaining half, is left to be looped inside in the cavity. The 3 dB coupler 2 divides the light into further halves, providing real-time light measurements at two different ports. The TiO$_2$ based SAs, acts as mode-lockers; exploiting its linear and non-linear absorption characteristic to generate stable picoseconds pulsed lasers. A commercial single-mode fiber (SMF28) with a length of 195 nm, is appended before the SA to provide sufficient intracavity nonlinear and dispersion in the cavity. At the same time, it also reduces the pulse repetition rate and improves the pulse energy. This improved pulse energy would be sufficient enough to saturate the SA for a reliable self-starting mode-locked operation. A digital oscilloscope (OSC) and a radio frequency spectrum analyzer (RFSA) with a pre-connected photo-detector were employed to measure the pulse in the time and frequency domain, respectively, while an OSA records the output laser spectrum. The output power is measured via an optical power meter.
4. Picosecond pulsed fiber laser performances

The mode-locked EDFL based on TiO$_2$DF SA self-started at 106 mW threshold pump power and destructed into continuous laser (CW) laser when the pump power goes beyond 142 mW. Figure 3(a) depicts the mode-locked laser optical spectrum with a central wavelength of 1553 nm. The 3 dB spectral bandwidth (3 dB SB) is found to be 0.269 nm (33.58 GHz). The pulsed laser has a pulse repetition rate of 0.984 MHz. The autocorrelator trace as depicted in Figure 3(b), shows a single enveloped pulse with a pulse duration of ~9.74 ps (using sech2 fitting analysis). Based on the obtained 3 dB SB of 33.58 GHz, the time-bandwidth product (TBP) is measured to be 0.33 which is slightly higher than the transform limit value of 0.315. This phenomenon indicates that the pulse is marginally chirped.

Figure 2. Mode-locked EDFL based on TiO$_2$ based SA cavity design.

Figure 3. Mode-locked EDFL based on TiO$_2$DF SA (a) optical spectrum (b) autocorrelator trace
Figure 4. Mode-locked EDFL based on TiO$_2$PF SA (a) optical spectrum (b) autocorrelator trace

On the other hand, mode-locked EDFL based on TiO$_2$PF SA self-emerged at a threshold pump power of 86 mW and remained stable until 142 mW. Figure 4(a) illustrates the generated pulsed laser output spectrum, indicating a central wavelength of 1560 nm. As seen, the 3 dB SB is measured as 0.75 nm (72.57 GHz). The pulsed laser has a pulse repetition rate of 1.01 MHz. The autocorrelator trace as provided in Figure 4(b), depicts a pulse duration of ~3.89 ps (based on the sech2 fitting analysis). By considering the 3 dB SB as 72.57 GHz, the time-bandwidth product (TBP) is calculated to be 0.36, slightly greater than the transform limit of 0.315, which also indicates that the pulse is chirped.

The TiO$_2$DF SA based pulsed laser performances as a function of pump power (106-142 mW) is demonstrated in Figure 5(a). As depicted, the output power increases linearly within a range of 3.73-8.42 mW. The pulse energy and the peak power also ascend with the increase of pump power. The maximum pulse energy and peak power are measured to be 8.56 nJ and 0.88 kW, respectively. The calculated slope efficiency is found to be 13.17%.

On the other hand, the TiO$_2$PF SA based pulsed laser performances against increasing pump power (86-142 mW) is demonstrated in Figure 5(b). As illustrated, the output power ascends linearly from 7.58 mW to 12.17 mW. The pulse energy and the peak power also increases almost linearly with the rise of pump power. The maximum pulse energy and peak power are found to be 4.21 nJ and 3.43 kW, respectively. The obtained slope efficiency is measured to be 8.17%.

Table 1 summarizes and compares the TiO$_2$DF SA and TiO$_2$PF SA based pulsed laser performances and characteristics. Both TiO$_2$ based SAs, have about the same repetition rate of ~1 MHz, due to the same cavity length (~204 m) used in the design. The generated pulse repetition rates via these TiO$_2$ SAs are examined to be associated with a single cavity round trip period, suggesting that the generated pulsed lasers are mode-locked lasers. As demonstrated, the TiO$_2$PF SA generates higher output power and peak power as compared to the TiO$_2$DF SA. Conversely, the TiO$_2$DF SA generates better slope efficiency and higher pulse energy. Higher pulse energy generated via the film SA is attributed to a slightly broader
pulse width obtained in the optical spectrum. In summary, both SAs produce almost comparable laser performances. However, in the aspect of durability, the TiO$_2$DF was observed to have better pulse stability when tested under several hours of laser operation at the maximum pump power operation [13].

5. Conclusion
We have demonstrated and compared picoseconds pulsed fiber laser at 1.5-micron by utilizing TiO$_2$ based SAs; fiber and film. Both pulsed fiber lasers have almost the same repetition rate of ~1MHz. The TiO$_2$DF SA generated 9.74 ps pulsed laser at 1553 nm wavelength. In addition, it generated higher slope efficiency and maximum pulse energy of 13.15% and 8.56 nJ, respectively, in comparison to the TiO$_2$PF SA. On the other hand, the TiO$_2$PF SA produced 3.89 ps pulsed laser at 1560 wavelength. The TiO$_2$ film based pulsed laser had relatively higher maximum output power and maximum peak power of 12.17 mW and 3.43 kW, respectively. In overall, the TiO$_2$DF provides advantages in terms of thermal damage threshold, flexibility and durability. These features are important for a portable laser source design.

Acknowledgement
The authors would like to acknowledge Universiti Teknikal Malaysia Melaka (JURNAL/2019/FTKEE/Q00029) for the financial support.

References
[1] Feng X, Tam H-y and Wai P 2006 Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation Optics express 14 8205-10
[2] Hakulinen T and Okhotnikov O G 2007 8 ns fiber laser Q switched by the resonant saturable absorber mirror Optics letters 32 2677-9
[3] Schibli T, Minoshima K, Kataura H, Itoga E, Minami N, Kazaoui S, Miyashita K, Tokumoto M and Sakakibara Y 2005 Ultrashort pulse generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes Optics Express 13 8025-31
[4] Martinez A and Sun Z 2013 Nanotube and graphene saturable absorbers for fibre lasers Nature Photonics 7 842
[5] Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P and Tang D Y 2009 Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers Advanced Functional Materials 19 3077-83
[6] Chen B, Zhang X, Wu K, Wang H, Wang J and Chen J 2015 Q-switched fiber laser based on transition metal dichalcogenides MoS$_2$, MoSe$_2$, WS$_2$, and WSe$_2$ Optics express 23 26723-37
[7] Rahman M, Latiff A, Rusdi M, Dimyati K and Harun S 2018 Passively Q-switched fibre laser utilizing erbium-doped fibre saturable absorber for operation in C-band region Journal of

Table 1. Mode-locked EDFL performances comparison between TiO$_2$DF SA (fiber) and TiO$_2$PF SA (film).

Optical quantity	Unit	TiO$_2$DF SA (fiber)	TiO$_2$PF SA (film)
Central wavelength	nm	1553	1560
Pump power	mW	106-142	86-142
Output power	mW	3.73-8.42	7.58-12.17
Peak power	kW	0.39-0.88	2.14-3.43
Slope efficiency	%	13.17	8.17
Pulse energy	nJ	3.79-8.56	1.98-4.21
Repetition rate	MHz	0.984	1.01
Pulse width	ps	9.74	3.89
SNR (FF)	dB	54	67
Linear absorption	dB	1.55	2.95

Modern Optics 1-5

[8] Tey K, Rahman M, Rosol A, Rusdi M, Mahyuddin M, Harun S and Latiff A 2017 Q-switched double-clad Ytterbium-doped fiber laser using MoS2 flakes saturable absorber. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012054

[9] Rahman M, Rusdi M, Harun S and Yasin M 2018 Q-Switched Thulium-Doped Fiber Laser Using Vanadium Oxide Saturable Absorber Nonlinear Optics, Quantum Optics: Concepts in Modern Optics 48

[10] Rahman M F, Latiff A A, Rusdi M F, Dinyati K and Harun S W 2018 Q-switched ytterbium-doped fiber laser via a thulium-doped fiber saturable absorber Applied Optics 57 6510-5

[11] Ab Rahman M F, Latiff A A, Rosol A H A, Dinyati K, Wang P and Harun S W 2018 Ultrashort Pulse Soliton Fiber Laser Generation With Integration of Antimony Film Saturable Absorber Journal of Lightwave Technology 36 3522-7

[12] Rahman M, Latiff A, Zaidi U, Rusdi M, Rosol A, Bushrao A, Dinyati K and Harun S 2018 Q-switched and mode-locked thulium-doped fiber laser with pure Antimony film Saturable absorber Optics Communications 421 99-104

[13] Reddy P H, Rahman M, Paul M, Latiff A, Rosol A, Das S, Dhar A, Bhadra S K, Dinyati K and Harun S 2018 Titanium dioxide doped fiber as a new saturable absorber for generating mode-locked erbium doped fiber laser Optik 158 1327-33

[14] Rahman M, Zahililah M, Latiff A, Rosol A, Lokman M, Bushrao A, Dinyati K and Harun S 2018 Pure Antimony film as saturable absorber for Q-switched erbium-doped fiber laser Journal of Modern Optics 65 811-7

[15] Rahman M, Dhar A, Das S, Dutta D, Paul M, Rusdi M, Latiff A, Dinyati K and Harun S 2018 An 8 cm long holmium-doped fiber saturable absorber for Q-switched fiber laser generation at 2-μm region Optical Fiber Technology 43 67-71

[16] Rahman M, Rusdi M, Lokman M, Mahyuddin M, Latiff A, Rosol A, Dinyati K and Harun S 2017 Holmium Oxide Film as a Saturable Absorber for 2 μm Q-Switched Fiber Laser Chinese Physics Letters 34 054201

[17] Rusdi M, Latiff A, Ahmad M, Rahman M, Rosol A, Harun S and Ahmad H 2019 Nickel Oxide as a Q-switcher for Short Pulsed Thulium Doped Fiber Laser Generation. In: Journal of Physics: Conference Series: IOP Publishing) p 012029

[18] Rahman M, Rusdi M, Muhammad A, Latiff A, Ahmad A, Dinyati K and Harun S 2019 Ytterbium doped fiber saturable absorber for a stable passively Q-switched fiber laser in the 1-micron region. In: Journal of Physics: Conference Series: IOP Publishing) p 012008

[19] Rahman M, Rusdi M, Latiff A, Hisyam M, Dinyati K and Harun S 2019 Passively Q-switched Erbium doped fiber laser by incorporating a segment of Thulium doped fiber saturable absorber. In: Journal of Physics: Conference Series: IOP Publishing) p 012010

[20] Rahman M, Latiff A, Reddy P, Das S, Dhar A, Paul M and Harun S 2019 Passively Q-switched fiber laser utilizing new hafnium–bismuth–erbium co-doped fiber as saturable absorber Indian Journal of Physics 1-5

[21] Rahman M, Reddy P, Paul M, Das S, Dhar A, Baharom M, Latiff A, Rusdi M, Wang P and Dinyati K 2019 Titanium dioxide fiber saturable absorber for Q-switched fiber laser generation in the 1-micrometer region Applied optics 58 3495-500

[22] Baharom M, Rahman M, Latiff A, Wang P and Harun S 2019 Lutetium (III) oxide film as passive mode locker device for erbium-doped fiber laser cavity Optics Communications

[23] Rusdi M, Rosol A, Rahman M, Mahyuddin M, Latiff A, Ahmad H, Harun S and Yasin M 2019 Q-switched and mode-locked thulium doped fiber lasers with nickel oxide film saturable absorber Optics Communications 447 6-12

[24] Rahman M F A, Latiff A A, Rusdi M F M, Dinyati K and Harun S W 2019 Passively Q-switched fibre laser utilizing erbium-doped fibre saturable absorber for operation in C-band region Journal of Modern Optics 66 235-9

[25] Baharom M, Rahman M, Latiff A, Wang P, Arof H and Harun S 2019 Lutetium oxide film as a passive saturable absorber for generating Q-switched fiber laser at 1570 nm wavelength Optical Fiber Technology 50 82-6

[26] Rahman M, Mahyuddin M, Latiff A, Paul M, Dhar A, Das S, Yupapin P, Yasin M and Harun S 2019 Holmium based nanoseconds pulsed fibre laser generation in the 2-micron region Optik
163157

[27] Ahmad H, Salim M, Ali Z, Ismail M F, Thambiratnam K, Latif A, Nayan N and Harun S W 2016
Titanium dioxide-based Q-switched dual wavelength in the 1 micron region Chinese Optics
Letters 14 091403

[28] Reddy P H, Rahman M, Paul M, Latiff A, Rosol A, Das S, Dhar A, Bhadra S K, Dimyati K and
Harun S 2018 Titanium Dioxide Doped Fiber as a New Saturable Absorber for Generating
Mode-Locked Erbium Doped Fiber Laser Optik-International Journal for Light and Electron
Optics

[29] Ahmad H, Reduan S, Ali Z, Ismail M A, Ruslan N, Lee C, Puteh R and Harun S W 2015 C-Band
Q-Switched Fiber Laser Using Titanium Dioxide (TiO$_2$) As Saturable Absorber IEEE
Photonics Journal 8 1-7

[30] Rusdi M F M, Latiff A A, Paul M C, Das S, Dhar A, Ahmad H and Harun S W 2017 Titanium
Dioxide (TiO$_2$) film as a new saturable absorber for generating mode-locked Thulium-
Holmium doped all-fiber laser Optics & Laser Technology 89 16-20

[31] Elim H, Ji W, Yuwono A, Xue J and Wang J 2003 Ultrafast optical nonlinearity in poly
(methylmethacrylate)-TiO$_2$ nanocomposites Applied physics letters 82 2691-3

[32] Kuznetsov V N and Serpone N 2006 Visible light absorption by various titanium dioxide
specimens The Journal of Physical Chemistry B 110 25203-9

[33] Luxon J T and Summitt R 1969 Interpretation of the infrared absorption spectra of stannic oxide
and titanium dioxide (rutile) powders The Journal of Chemical Physics 50 1366-70

[34] Ahmad H, Salim M, Ali Z, Ismail M, Thambiratnam K, Latif A, Nayan N and Harun S 2016
Titanium dioxide-based Q-switched dual wavelength in the 1 micron region Chinese Optics
Letters 14 091403