Unified Description of Quark and Lepton Mixing Matrices Based on a Yukawaon Model

Yoshio Koide
(Osaka University)

一部に新潟大学でのセミナーに使ったスライドを再利用します。悪しからず。
Unified description of quark and lepton mixing matrices based on a Yukawaon model

Hiroyuki Nishiura and Yoshio Koide

Faculty of Information Science and Technology, Osaka Institute of Technology, Hirakata, Osaka 573-0196, Japan
Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

(Received 4 November 2010; published 15 February 2011)

Based on a supersymmetric Yukawaon model with O(3) family symmetry, possible forms of quark and lepton mixing matrices are systematically investigated under a condition that the up-quark mass matrix form leads to the observed nearly tribimaximal mixing in the lepton sector. Although the previous model could not provide a good fitting of the observed quark mixing, the present model can give a reasonably good fitting not only for lepton mixing but also for the quark mixing by using a different origin of the CP violation from one in the previous model.

DOI: 10.1103/PhysRevD.83.035010

PACS numbers: 12.60.-i, 11.30.Hv
私はモデルビルダー（模型屋）である

模型屋は数字合わせに熱中すべきではない。模型屋は、現象を分析し、そこから自然構造の主たる骨格を見抜くことをもっぱらの稼業とする。（細かな数字あわせは、物理が達成された後、テクノロジー屋に任せればよい。我々がやることではない。）

今回依頼されたタイトルのPRDに出した仕事は、私の本業とはちょっと異なるジャンルの仕事である。（タイトルそのものはむろん私が目ざすもの。）しかし、PRDに出した仕事は、後述するように、模型屋としてもやっておかねばならない仕事でもある。
依頼されたトーク・タイトルの仕事 (PRD(2011))の位置づけ

(1) PLB(2008): M_{ν} を $M_u^{1/2}$ で記述するモデルを提案

$$M_{\nu} = \left(M_u^{1/2} M_e^{-1} + M_e^{-1} M_u^{1/2} \right)^{-1}$$

M_e が対角型の基底ではM_u は対角型ではない。
欲しいのは、M_e が対角型の基底でのM_u の形。

$M_u^{1/2}$ を $(M_u^{1/2})^{\text{diag}}$ と V_{CKM} の観測値で記述

(2) PLB(2009): V_{CKM} の観測値を使う代わりに、M_e の対角型基底での $M_u^{1/2}$ のモデルを具体的に提案

M_u, M_d, M_{ν} を（荷電レプトン質量値 + 4 parameters）によって記述。
しかし、V_{CKM} が少し合わない。これはモデルの本質的欠陥か？

(3) PRD(2011): 可能なさらなるパラメターを導入し、観測値との不一致のないモデルが可能かどうかを調べる。
観測値とのよい一致を得る。しかし、パラメターが多い。

(4) 現在: 他の観点からのユカワオンモデルの試みも考察中
Yukawaon model in the quark sector and nearly tribimaximal neutrino mixing

Yoshio Koide

Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

ARTICLE INFO

Article history:
Received 13 July 2009
Received in revised form 14 August 2009
Accepted 19 August 2009
Available online 21 August 2009
Editor: T. Yanagida

ABSTRACT

For the purpose of deriving the observed nearly tribimaximal neutrino mixing, a possible yukawaon model in the quark sector is investigated. Five observable quantities (2 up-quark mass ratios and 3 neutrino mixing parameters $\sin^2 2\theta_{\text{mix}}, \tan^2 \theta_{\text{mix}}$ and $|U_{13}|$) are excellently fitted by two parameters (one in the up-quark sector and another one in the right-handed Majorana neutrino sector).
今回のトークの流れ
PDRでの仕事の紹介だけでなく、その前後の話も含めて、このタイトルでの目ざす物理の紹介を行いたい。

1. ユカワオン模型の考え方
2. M_ν を M_u で表す
 最初の試み: YK, PLB 665 (2008)
 MNSとCKM: YK, PLB 680 (2009)
3. MNS と CKM はどこまで数値あわせが可能か？
 H.Nishiura & YK, PRD83 (2011) の紹介
4. 最近の試み
1. ユカワオン模型の考え方

\[Y_{f}^{eff} = \frac{y_{f}}{\Lambda} \langle Y_{f} \rangle \]

In Nature,
No. of fundamental constants should be economic,
although No. of fundamental matters will be rich.
1.1 「質量」の起源と「質量スペクトルと混合」の起源を区別せよ！

「質量」の起源の探求： とらえどころのない課題
時代とともに「質量」の概念も変化している
物理学の進展につれて少しずつ明らかになってくる
「質量スペクトル」の探求： いつの時代でも、現実的な研究課題
として歴史的役割を果たしてきた
「質量」の起源と「質量スペクトルと混合」の起源を
分けて探求したい。当面は前者のみを研究対象とする。
「質量」の起源は当面はHiggsとして、深入りはしない。

Higgs には family の足をつけたくない。
Yukawaons は gauge singlets！
GUT シナリオには影響を与えない
1.2 なぜユカワオンを考えるのか？

標準模型: 湯川結合定数が質量スペクトルと混合の起源
しかし、「基本定数」がそんなに多いはずはない!

ユカワオン模型

\[W_Y = \sum_{i,j}^y u_i^c(Y_u)_{ij} q_i H_u + \sum_{i,j}^y d_i^c(Y_d)_{ij} q_j H_d \]
\[+ \sum_{i,j}^y \ell_i(Y_d)_{ij} e_j^c H_u + \sum_{i,j}^y \ell_i(Y_e)_{ij} e_j^c H_d + h.c. + \sum_{i,j}^y Y_{R_i}^c(Y_R)_{ij} \nu_i^c \nu_j^c \]

- 物質の存在形態から力学的に計算可能な量とる。
 \(Y_f \) (Yukawaons)は fields であり、そのVEVが\(Y_f^{\text{eff}} \)を与える。\(Y_f^{\text{eff}} = \frac{y_f}{\Lambda} \langle Y_f \rangle \)

- 「係数」ではなく「場」なので、量子数の割り当てが可能。
 現象論に便利
1.3 ユカワオンであるための条件

(i) ユカワオンは SU(3)_c × SU(2)_L × U(1)_Y に対して singlets.
(ii) Quarks and leptons は、family symmetry G の triplets (または anti-triplets)

Triplet は triplet でなければならず、2+1 でもなければ、1 + 1’ + 1” でもない！

(iii) ユカワオンはその G に対して、3 × 3 (3 × 3*) であるべき。

質量スペクトルと混合は、Yukawa coupling constants から来るのではなく、VEVの構造のみから来る！
すべての質量スペクトルと混合を基本的VEV $\langle \Phi_e \rangle$ で理解したい

$$\langle \Phi_e \rangle = k_e \text{diag}(\sqrt{m_e}, \sqrt{m_\mu}, \sqrt{m_\tau})$$

$$\langle Y_e \rangle_e \propto \langle \Phi_e \rangle_e \langle \Phi_e \rangle_e$$

$$\langle Y_u \rangle_e \propto \langle \Phi_u \rangle_e \langle \Phi_u \rangle_e$$

$$\langle \Phi_u \rangle_e \propto \langle \Phi_e \rangle_e \langle S_u \rangle_e \langle \Phi_e \rangle_e$$

$$\langle Y_d \rangle_e \propto \langle \Phi_e \rangle_e \langle S_d \rangle_e \langle \Phi_e \rangle_e$$

$$\langle S_q \rangle_e \propto X + a_q 1 = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + a_q \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
1.5 VEVスペクトルを得る手順

(1) O(3) and U(1)$_{X}$ invariantなY_fについてのsuperpotentialを書き下す。

(2) SUSY vacuum conditions $\partial W / \partial \Theta_f = 0$から，

\[\langle Y_f \rangle \] 間のVEV relationsを得る。ただし $\langle \Theta_f \rangle = 0$を仮定。

(3) すなわち，U(1)$_{X}$を適当に割り当てることにより，結果として，

\[\langle Y_e \rangle, \langle Y_\nu \rangle, \langle Y_u \rangle, \langle Y_d \rangle, \cdots \] 間の関係式を得ることができる。

(例)

\[W_e = \lambda_e \text{Tr}[\Phi_e \Phi_e \Theta_e] + \mu_e \text{Tr}[Y_e \Theta_e] + W_\Phi \]

\[\Rightarrow \frac{\partial W}{\partial \Theta_e} = \lambda_e \Phi_e \Phi_e + \mu_e Y_e = 0 \]

\[\Rightarrow \langle Y_e \rangle = -\frac{\lambda_e}{\mu_e} \langle \Phi_e \rangle \langle \Phi_e \rangle \]
2. M_ν を M_u で表す

最大の売り：M_ν を $M_u^{1/2}$ と M_e で表す！

メインの骨格:

$$M_\nu = m_D M_R^{-1} m_D^T$$

$$m_D = M_e \quad \leftarrow \mathrm{SU(2)}_L \text{を破らない！} \quad (注)$$

$$M_R = M_u^{1/2} M_e + M_e M_u^{1/2}$$

YK, JPG 35 (2008) 125004; PLB 665 (2008) 227–230

(注)標準模型では $m_D m_D^\dagger$ と $M_e M_e^\dagger$ とは同じファミリー対称性の変換に従うべき

YK, PRD 71, 016010 (2005); arXiv: 0801.3491 [hep-ph].
2.1 M_ν と M_u の関係についての経験則

JPG (2008)
U(3) family symmetry
Dirac neutrino mass matrix
$Y_\nu = Y_u^{1/2} Y_e^{-1} + Y_e^{-1} Y_u^{1/2}$

PLB (2008)
O(3) family symmetry
Seesaw mass matrix
$M_\nu = Y_e Y_R^{-1} Y_e$
$Y_R = Y_u^{1/2} Y_e + Y_e Y_u^{1/2}$

Y_e が対角型となる基底では、$Y_u^{1/2}$ は対角型ではない！

CKM matrix の定義より
$<Y_u>_d = V^T(\delta) <Y_u>_u V(\delta)$

e 基底と d 基底とは近いと推測して
$<Y_u>_e = V^T(\delta) <Y_u>_u V(\delta)$ と選んでみる
なぜか \(V(\pi) \) が \(U_{\text{MNS}} \) を見事に与える

| \(\delta \) | \(\sin^2 2\theta_{23} \) | \(\tan^2 \theta_{12} \) | \(|U_{13}| \) | \(\Delta m_{21}^2/\Delta m_{32}^2 \) |
|-------|-----------------|-----------------|------------|---------------------|
| 0 | 0.3890 | 0.4679 | 0.01156 | 0.00220 |
| 60° | 0.7702 | 0.4979 | 0.01779 | 0.00100 |
| 90° | 0.9237 | 0.5228 | 0.01529 | 0.00070 |
| 120° | 0.9836 | 0.5434 | 0.01055 | 0.00063 |
| 180° | 0.9998 | 0.5604 | 0.00034 | 0.00062 |

YK, Physics Letters B 665 (2008) 227–230
2.2 M_u のモデルを考える:

YK, PLB 680, 76 (2009)

- $V(\pi)$ の根拠が不明なので、代わりに具体的に M_u のモデルを仮定して、ここから $\langle Y_u^{1/2} \rangle_e$ の形を求めることにしよう。
- ヒント: Democratic Universal Seesaw Model

\[
M_u = \Phi_e (1 + a_u X)^{-1} \Phi_e \\
M_d = \Phi_e (1 + a_d X)^{-1} \Phi_e
\]

a_u, a_d を適当に選ぶことにより、quark mass ratios and CKM parameters を見事に説明

YK, H.Fusaoka, Z Phys. C71, 459 (1996)
YK-Fusaoka model $\left(M_u, M_d\right) \rightarrow \left(M_u^{1/2}, M_d\right)$

\[
\sqrt{\frac{m_{u1}}{m_{u2}}} = 0.043 \quad \sqrt{\frac{m_{u2}}{m_{u3}}} = 0.057 \quad \text{for } a_u = -0.56
\]

\[
\sqrt{\frac{m_u}{m_c}} = 0.045^{+0.013}_{-0.010} \quad \sqrt{\frac{m_c}{m_t}} = 0.060 \pm 0.005 \quad \text{at } \mu = m_Z
\]

\[
\langle \Phi_u \rangle_u \rightarrow \langle \Phi_u \rangle_u \cdot \text{diag}(+1, -1, +1)
\]

| a_u | v_{u1}/v_{u2} | v_{u2}/v_{u3} | $\sin^2 2\theta_{atm}$ | $\tan^2 \theta_{solar}$ | $|U_{13}|$ |
|--------|----------------|----------------|------------------------|------------------------|----------|
| -0.55| -0.0355 | -0.0654 | 0.9679 | 0.7236 | 0.0113 |
| -0.56| -0.0425 | -0.0570 | 0.9848 | 0.7033 | 0.0128 |
| -0.57| -0.0514 | -0.0495 | 0.9955 | 0.6807 | 0.0146 |
O(3) model では, fields の順序を入れ替えた項も登場可能

\[Y_R \propto Y_e P_u \Phi_u + \Phi_u P_u Y_e + \xi (P_u Y_e \Phi_u + \Phi_u Y_e P_u) \]

| ξ | $\sin^2 2\theta_{atm}$ | $\tan^2 \theta_{solar}$ | $|U_{13}|$ |
|-------|------------------------|--------------------------|---------|
| 0 | 0.9848 | 0.7033 | 0.0128 |
| $+0.004$ | 0.9825 | 0.4891 | 0.0123 |
| $+0.005$ | 0.9819 | 0.4486 | 0.0122 |
| $+0.006$ | 0.9812 | 0.4123 | 0.0120 |
| -0.0011 | 0.9897 | 0.4854 | 0.0142 |
| -0.0012 | 0.9900 | 0.4408 | 0.0143 |
| -0.0013 | 0.9904 | 0.4008 | 0.0144 |

YK, PLB 680, 76 (2009)
How about CKM?

| a_u | a_d | α_d | m_{d1}/m_{d2} | m_{d2}/m_{d3} | $|V_{us}|$ | $|V_{cb}|$ | $|V_{ub}|$ | $|V_{td}|$ |
|-------|-------|------------|------------------|------------------|----------|----------|----------|----------|
| −0.56 | −0.620| 4° | 0.1078 | 0.0273 | 0.2035 | 0.0666 | 0.0101 | 0.0178 |
| −0.56 | −0.625| 6° | 0.0783 | 0.0313 | 0.2187 | 0.0818 | 0.0123 | 0.0190 |
| −0.56 | −0.630| 8° | 0.0542 | 0.0362 | 0.2222 | 0.0977 | 0.0146 | 0.0194 |
| −0.58 | −0.630| 2° | 0.1959 | 0.0195 | 0.2272 | 0.0448 | 0.0088 | 0.0163 |

傾向としてはいい線を行っている。
しかし，$|V_{13}|$ と $|V_{31}|$ は大きすぎる。
2パラメーターではやっぱり無理？
Down-quark sector は改良が必要。
Summary of PLB 680 (2009)

Sector	Parameters	Predictions								
M_V	$\xi = +0.0005$	$\sin^2 \theta_{atm}$, $\tan^2 \theta_{solar}$, $	U_{13}	$						
$M^{1/2}_u$	$\xi = -0.0012$	0.982, 0.449, 0.012								
	$a_u = -0.56$	0.990, 0.441, 0.014								
	$\sqrt{m_u/m_c} = 0.0425$, $\sqrt{m_c/m_t} = 0.0570$									
	two parameters	5 observables: fitted excellently								
M_d	$a_d e^{i\alpha_d}$	$\sqrt{m_d/m_s}$, $\sqrt{m_s/m_b}$, $	V_{us}	$, $	V_{cb}	$, $	V_{ub}	$, $	V_{td}	$
	two parameters	6 observables: not always excellent								
3. MNS と CKM はどこまで数値あわせが可能か？

- 「少ないパラメターで全体の概略をほぼ記述する」という方針を放棄
- 原理的に可能な項はすべて考慮する。

\[
Y_R \propto Y_e P_u \Phi_u + \Phi_u P_u Y_e + \xi (P_u Y_e \Phi_u + \Phi_u Y_e P_u)
\]

\[M_u^{1/2}, M_d にも \xi_u, \xi_d 項を考える。\]
CPの破れの位相は、係数 a_d ではなく、位相行列 P_d に持たせる:

\[
M_{u}^{1/2} \propto M_{e}^{1/2}(1 + a_u X) M_{e}^{1/2} \\
+ \xi_u \left[M_{e}^{1/2} M_{e}^{1/2}(1 + a_u X) + (1 + a_u X) M_{e}^{1/2} M_{e}^{1/2} \right] \\
+ m_{0u} \mathbf{1} \\
M_{d} \propto P_d \left\{ M_{e}^{1/2}(1 + a_d X) M_{e}^{1/2} \\
+ \xi_d \left[M_{e}^{1/2} M_{e}^{1/2}(1 + a_d X) + (1 + a_d X) M_{e}^{1/2} M_{e}^{1/2} \right] \\
+ m_{0d} \mathbf{1} \right\} P_d
\]

where

\[P_d = v_P \text{diag}(e^{i\delta_1}, e^{i\delta_2}, e^{i\delta_3}) \]
How many parameters

Parameters	Total
PLB (2009)	
a_u, $a_d \exp(i \alpha_d)$, ξ_v	4
PRD (2011)	
a_u, ξ_u, m_{0u}:	3
a_d, ξ_d, m_{0d}:	3
P_d: 2, ξ_v:1	9
Predicted	
q-mass ratios: 4	
MNS: 4, CKM: 4	12
実際には$m_{0u}=0, \xi_d=0$としてパラメーター値探し
パラメーターで、すでに観測値が知られている11個の物理量
（4 q-mass ratios, 4 CKM, $\sin^22\theta_{atm}, \tan^2\theta_{solar}$,
$|U_{13}|$）の数値合わせを行う。
パラメーター値
\[a_u = -1.64, \quad \xi_u = 0.0070, \quad \xi_v = 0.0031 \]
\[a_d = -16.6, \quad m_{0d} = -0.0061 \]
\[\delta_1 = 191^\circ \text{ or } 165^\circ, \quad \delta_2 = 180^\circ \]
予言値 と 観測値

\[|V_{us}| = 0.2259 \quad |V_{us}| = 0.2252 \pm 0.0009 \]
\[|V_{cb}| = 0.04141 \quad |V_{cb}| = 0.0406 \pm 0.0013 \]
\[|V_{ub}| = 0.00418 \quad |V_{ub}| = 0.00389 \pm 0.00044 \]
\[|V_{td}| = 0.00854 \quad |V_{td}| = 0.0084 \pm 0.0006 \]

\[
\sin^2 2\theta_{atm} = 0.999 \quad \sin^2 2\theta_{atm} > 0.92
\]
\[
\tan^2 \theta_{solar} = 0.457 \quad \tan^2 \theta_{solar} = 0.47^{+0.05}_{-0.03}
\]
\[
|U_{13}|^2 = 2.56 \times 10^{-4} \quad |U_{13}|^2 < 0.039
\]
予言値のパラメーター変動に対する敏感さ
4. 最近の試み

前述の仕事はまだしっくり来ない。
もっと少ないパラメターで、もっとすっきりとしたモデルがあるはず。

引き次ぐべき路線
(i) ユカワオン模型の基本線は守る
(ii) 荷電レプトンの質量値は基本的パラメターと見なす。
(iii) Quarks とleptons は統一して記述されるはず。

新しい観点
(i) Mass and mixing 以外での検証可能な物理
 Family symmetry: gauge symmetry と見なす
(ii) もっとの多方面の可能性を試みる。
 など、など。
4.1 Model with $U(3) \times O(3)$ family symmetries

YK, JPG 38, 085004 (2011)

Sumino model

$$H_e = \frac{y_e}{\Lambda^2} \bar{e}_L^i \Phi_{i\alpha}^e \Phi^{eT}_{\alpha j} e_R^j H$$

Φ_e: $(3, 3)$ of $U(3) \times O(3)$

に刺激されて $U(3) \times O(3)$ family symmetries を持ったモデルを考える。そのことにより, 低いcut off scale $\Lambda \sim 10^8$ GeV を持ち, LHCで検出可能なモデルを提案する。
4.2 How to make $|U_{13}|^2$ large?

- 最近のT2K実験は $0.03 < \sin^2 2\theta_{13} < 0.28$ をsuggestしている。しかるに, yukawaon model では $|U_{13}|^2 \sim 10^{-4}$

- なぜ $M_R = M_u^{1/2} M_e + M_e M_u^{1/2}$ を考えると
 $\sin^2 2\theta_{atm} \approx 1$ がうまく得られたのか？
 $M_\nu = (M_u^{1/2} M_e^{-1} + M_e^{-1} M_u^{1/2})^{-1}$
 その原因は次の事実にある:
 \[
 \frac{m_\mu}{m_\tau} \approx \sqrt{\frac{m_c}{m_t}}
 \]

 実験値の変更を期待するなら, quark mass ratio のみ

- あるいは, M_e を対角型でないと考える:

 YK, Nishiura, arXiv:1106.5202 [hep-ph]:

\[
4.2 \quad \text{How to make } |U_{13}|^2 \text{ large?}
\]

- 最近のT2K実験は $0.03 < \sin^2 2\theta_{13} < 0.28$ をsuggestしている。しかるに, yukawaon model では $|U_{13}|^2 \sim 10^{-4}$

- なぜ $M_R = M_u^{1/2} M_e + M_e M_u^{1/2}$ を考えると
 $\sin^2 2\theta_{atm} \approx 1$ がうまく得られたのか？
 $M_\nu = (M_u^{1/2} M_e^{-1} + M_e^{-1} M_u^{1/2})^{-1}$
 その原因は次の事実にある:
 \[
 \frac{m_\mu}{m_\tau} \approx \sqrt{\frac{m_c}{m_t}}
 \]

 実験値の変更を期待するなら, quark mass ratio のみ

- あるいは, M_e を対角型でないと考える:

 YK, Nishiura, arXiv:1106.5202 [hep-ph]:

4.3 Yukawaon model based on a new fundamental VEV Φ_0

YK & H.Nishiura, arXiv:1106.5202

Φ_eの代わりにΦ_0を仮定する

$$
\langle Y_e \rangle_0 \propto \langle \Phi_0 \rangle_0 (1 + a_e X_2) \langle \Phi_0 \rangle_0
$$

$$
\langle Y_u \rangle_0 \propto \langle \Phi_u \rangle_0 \langle \Phi_u \rangle_0
$$

$$
\langle \Phi_u \rangle_0 \propto \langle \Phi_0 \rangle_0 (1 + a_u X_3) \langle \Phi_0 \rangle_0
$$

$$
\langle Y_d \rangle_0 \propto \langle \Phi_0 \rangle_0 (1 + a_d X_3) \langle \Phi_0 \rangle_0
$$

$$
X_3 = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}
$$

$$
X_2 = \frac{1}{2} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}
$$
4.4 SU(5) compatible yukawaon model
YK, arXiv:1106.0971

- Y_f は gauge singlets → GUT scenario には影響しない
 （GUTの長所・短所ともに引き継ぐ）
 試しに SU(5) GUT を考えてみるのも悪くはなかろう.
- Sumino’s family gauge symmetry を取り入れたい.
 ただし, family U(3) と SU(5) との統一は考えない.
- この機会に, cutoff scale なしのモデルを追求してみたい.
どうせのことなら ∧ なしのモデルを創ろう！

\[W_{e,d} = y_e \bar{5}_i Y_e^{ij} \bar{5}^{ij}_j + y_d \bar{5}_i Y_d^{ij} \bar{5}^{ij}_j \]

\[+ M_5 \bar{5}_i \bar{5}^{ij}_i + y_5 \bar{5}^{ij}_i 10_i \bar{5}_H \]

\[W_u = y_u 10_i Y_u^{ij} \bar{1}0^{ij}_j + M_{10} \bar{1}0^{ij}_i 10^{ij}_i + y_{10} 10^{ij}_i 10_i \bar{5}_H \]

\[\Rightarrow \frac{y_e y_5}{M_5} \bar{5}_i Y_e^{ij} 10_j \bar{5}_H + \frac{y_d y_5}{M_5} \bar{5}_i Y_d^{ij} 10_j \bar{5}_H \]

\[+ \frac{y_u y_{10}}{M_{10}} 10_i Y_u^{ij} 10_j \bar{5}_H \]
Neutrino sector

\[W_\nu = y_e \bar{5}_i Y_e^{ij} 5''_j + M_5 \bar{5}''_i 5''_i + y_1 \bar{5}''_i 1_i 5_H \]

\[\Rightarrow \frac{y_e y_1}{M_5} \bar{5}_i Y_e^{ij} 1_j 5_H \]

即ち、\(Y_\nu = Y_e \) を得る。

更に、Majorana neutrino mass term

\[W_R = \lambda_R 1_i Y_R^{ij} 1_j \]

を仮定する。

\[M_\nu = \frac{y_e^2 y_1^2}{\lambda_R} \left(\frac{v_{Hu}}{M_5} \right)^2 \langle Y_e \rangle \langle Y_R \rangle^{-1} \langle Y_e \rangle \]
ユカワオン模型の現状

- いろいろの観点からモデルの改良がなされつつあるが、いずれにせよ、これらはまだ現象論の段階であり、かつ、現在進行中の試みである。まだまだいろいろな試みが試されるべき。（ユカワオン模型はまだまだいろいろの発展的可能性を持っている。）
- 理論的裏付けはこれからという段階である（ユカワオンの数減らし、SUSY breaking effects の考察など。）

今後ともユカワオン模型をごひいきに！