HMI Ring-Diagram Analysis: Effects of Tracking, Noise, and Resolution

Sarbani Basu1 · Richard S. Bogart2

Received: 20 April 2022 / Accepted: 2 July 2022 / Published online: 5 August 2022 © The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Ring-diagram analysis is a standard local helioseismic technique. Data from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) are routinely used for ring-diagram analysis, and fits to the power spectra as well as inversion results are standard data products. In this article we examine the effects of different tracking rates, noise, and resolution on ring-diagram results. Most of the analysis is for 15° tiles, but we also examine the effects of different tile sizes. The largest effect that we find is that of spatial resolution. Doppler noise has very little effect on the results, except perhaps at the deepest regions for which the tiles can give reliable results; variations in the tracking rate have a similar effect.

Keywords Oscillations, solar · Helioseismology, observations · Helioseismology, inverse modeling · Interior, convective zone

1. Introduction
Ring-diagram analysis has been used to study large-scale flows in the outer regions of the Sun. This technique involves using high-degree p-modes from three-dimensional (3D) power spectra that are obtained from parts of the solar surface, which are tracked with a known speed (Hill, 1988). The 3D spectra are fit with a model to obtain mode frequencies, as well as two velocity parameters [U_x and U_y], representing horizontal displacement of the centers of the rings in the frequency plane corresponding to different modes; this displacement is caused by horizontal flows. These parameters are inverted for the depth dependence of the transverse velocity of the observed field (relative to the tracking rate); conventionally, U_x is chosen to be the zonal direction and U_y is the meridional direction. These velocity parameters have been used extensively to study solar near-surface flows and their evolution.
(e.g. Haber et al., 2000a; González Hernández et al., 2006; Basu and Antia, 2010; Jain et al., 2012; Bogart, Baldner, and Basu, 2015; Lekshmi, Nandy, and Antia, 2018; Hanson, Gizon, and Liang, 2020; Komm, 2021). While most ring-diagram results are for solar flows, there has also been a limited amount of work on the structure of the near-surface layers of the Sun. (e.g. Basu, Antia, and Bogart, 2004, 2007; Bogart et al., 2008; Baldner, Bogart, and Basu, 2013).

The Helioseismic and Magnetic Imager (HMI: Scherrer et al., 2012) onboard the Solar Dynamics Observatory (SDO) is the primary source of high-cadence, high-spatial resolution data suitable for ring-diagram analyses. Prior to this, the Michelson Doppler Imager (MDI: Scherrer et al., 1995) onboard the Solar and Heliospheric Observatory was the source of space-based data, but at a lower spatial resolution. The ground-based Global Oscillations Network Group project (GONG: Hill et al., 1996) also produces ring-diagram data, but at a lower spatial resolution than HMI. The HMI project routinely produces tracked cubes of different spatial sizes and durations, power spectra, and fits to the power spectra, as well as flow inversions. Documentation on the pipeline analysis modules and associated data products can be found on the web pages of the HMI Ring Diagrams Team (hmi.stanford.edu/teams/rings/). We use the HMI pipeline for tracking and fitting the power spectra used in our analysis.

The rest of the article is organized as follows: In Section 2 we describe the data analysis. Section 3 discusses the analysis of the results obtained with standard 15° tiles. This section describes how the tracking rate, noise, and pixel resolution affect flow-inversion results. Section 4 describes the effect of noise on 30° tiles. In Section 5 we show that it is possible to invert data obtained by fitting 5° tiles – inversion results from these tiles are not an HMI data product; the pipeline only provides frequencies and the fit parameters. In this section, we also examine the effects of noise on flows obtained from 5° tiles. Finally, in Section 6 we discuss the implications of the results.

2. Data and Data Processing

The HMI ring-diagram pipeline and the resulting data products are described by Bogart et al. (2011a,b). Briefly, the photosphere is tiled with sets of mapped, overlapping, circular analysis regions in the Dopplergrams centered at fixed Carrington coordinates, of diameters 5°, 15°, and 30°, respectively, each tracked for about the time it takes to rotate through its diameter. The spatial–temporal power spectra of the resultant data cubes are fit with two different models for the peaks corresponding to acoustic-mode ridges. One model, rdfitc, is based on that of Basu and Antia (1999) and fits asymmetric profiles to the peaks. The anisotropies in the distribution of power around a ring are fitted explicitly. The fits are done with frequency as the independent variable. The process is slow, but it results in a large number of fitted modes. Also, because the frequency resolution associated with the comparatively long tracking times is high, the fits somewhat oversample the data, in that parameters of adjacent modes are correlated. The second is the model rdfitf based on Haber et al. (2000b) where a symmetric profile is fit to the peaks. In this case, the anisotropy around a ring is removed by remapping the horizontal wavelength from a Cartesian k_x, k_y grid to a k_r, k_θ polar grid, then averaging the rings in frequency, determining the Fourier components, and dividing out the frequency-independent part of the signal. To speed up the code, the remapped rings in θ are Fourier transformed, and only the low-order coefficients are retained. The angular transform is inverted back to θ-coordinates and the data are sub-sampled to a coarser grid in azimuth. This makes the process fast, but it also means that the number of fitted modes can
be very small. Additionally, as we show below, the uncertainties in the flow parameters are overestimated.

The fitted U_x- and U_y-parameters are inverted using the Optimally Localized Averages (OLA) method. In some cases, as a comparison, we also use the Regularized Least Squares (RLS) method. OLA and RLS inversions are complementary in nature (Sekii, 1997), and inversions can be trusted if both inversion techniques return the same results. RLS aims to find values of U_x and U_y that give the best fit to the data (i.e. give the smallest residuals) while keeping uncertainties small; the aim of OLA is not to fit the data at all, but to find linear combinations of the data in such a way that the corresponding combination of kernels, the averaging or resolution kernel, provides a localized average of the underlying flow, again while keeping uncertainties small. The techniques, as applied to ring-diagram data, are described by Basu, Antia, and Tripathy (1999).

Ring-diagram analysis at the scale of the 5° tiles is possible with the comparatively high spatial resolution of HMI. Similar analyses based on data from GONG and MDI were generally restricted to tiles of 15° diameter. Also, because of the volume of data involved, the HMI 30° tiles are mapped at only half the spatial resolution of the others. Consequently, most of our work is focused on the results obtained with 15° tiles. For these, we chose to examine data from two periods, each involving five successive time samples, centered around times when the heliographic latitude of the disk center $B_0 \approx 0$, one during solar minimum and one during solar maximum. (We also included five time samples from a time of low solar activity near the start of the SDO mission when B_0 was not so close to 0.) The length of the tracking intervals for each sample depends upon the tile size. For the 15° tiles in the HMI pipeline it is 2304 45-second images, corresponding to an interval of 28 hours 48 minutes. (For the MDI and GONG pipelines the corresponding length is 1664 1-minute images for an interval of 27 hours 44 minutes.) For each of the fifteen temporal targets for the 15° study, we analyzed 11 regions: five on the Equator at central meridian distances of 0°, ±15°, and ±30°; and six on the central meridian at latitudes ±30°, ±60°, and ±67.5°. These target times, and characteristics of the associated regions, are described in Table 1.

For the studies using 30° tiles, which are tracked twice as long (57 hours 36 minutes) but only half as often, we used the three target Carrington times, defined by the combination [Carrington rotation:longitude of central meridian], during solar minimum [2224:060], [2224:030], and [2225:360], with regions on the Equator at central meridian distances 0°, ±30°, and on the central meridian at latitudes ±45°. For the 9 hours 36 minute trackings of 5° tiles, we examined the seven Carrington times from [2224:035] (07 December 2019 16:33) – [2224:005] (09 December 2019 16:12) sampled every 5° in rotation. For each of these times we analyzed regions on the central meridian at latitudes 0°, ±30°, ±45°, and ±60°. Apart from the 15° tile containing AR 12227 in 2014 noted in Table 1, all of the regions studied were magnetically quiet, as measured by the associated Magnetic Activity Index (MAI), a measure of the average line-of-sight component of magnetic flux in the region during the tracking interval.

The measured flows inferred from the Doppler displacement of the acoustic modes are, of course, with respect to the frame of reference, which depends on the tracking rate (and direction). For the MDI and GONG pipelines, the aim was to keep the displacements small by tracking at a rate corresponding to the expected differential rotation appropriate to the latitude of the tile center. For this purpose, a differential rotation model inferred from surface Doppler measurements (Snodgrass, 1984) was adopted. In the HMI pipeline, the tiles are tracked at a uniform rate consistent with their Carrington coordinates. To the extent that measured flows, after correction for the frame of reference, differ in the two cases, these differences may be attributable to the effect of tracking at the different rates. On the other
Table 1 Description of target times selected for analysis of 15° tiles. For each target in Carrington time (Carrington Rotation and longitude of central meridian), the midpoint of the tracking interval is given, along with the heliographic latitude [degrees] of disc center at that time. The last two columns give the maximum value of the Magnetic Activity Index (MAI) associated with any of the 15° tiles sampled at that time and the Carrington coordinates of the associated tile. For the five times during solar maximum, those correspond to a tile that contained Active Region AR 12227.

Target	MidTime	B_0	MAI	Location
2097:315	23 May 2010 09:33:22.5	-1.715	1.808	315.0+30.0
2097:300	24 May 2010 12:45:22.5	-1.582	1.894	300.0+30.0
2097:285	25 May 2010 15:58:07.5	-1.448	1.197	285.0+00.0
2097:270	26 May 2010 19:10:52.5	-1.314	1.239	300.0+00.0
2097:255	27 May 2010 22:22:52.5	-1.179	2.465	255.0−30.0
2157:030	06 Dec 2014 07:57:22.5	+0.233	21.811	000.0+00.0
2157:015	07 Dec 2014 11:16:52.5	+0.087	27.394	000.0+00.0
2158:360	08 Dec 2014 14:35:37.5	-0.059	27.365	000.0+00.0
2158:345	09 Dec 2014 17:55:07.5	-0.205	25.753	000.0+00.0
2158:330	10 Dec 2014 21:13:52.5	-0.350	26.904	000.0+00.0
2224:060	05 Dec 2019 11:55:52.5	+0.375	1.376	060.0+00.0
2224:045	06 Dec 2019 15:14:37.5	+0.229	1.424	060.0+00.0
2224:030	07 Dec 2019 18:34:07.5	+0.084	1.508	015.0+00.0
2224:015	08 Dec 2019 21:52:52.5	-0.062	1.707	015.0−30.0
2225:360	10 Dec 2019 01:12:22.5	-0.208	1.499	000.0−30.0

Hand, they might simply be due to the sensitivity, especially of the mode-fitting procedures, to different instantiations of similar populations. To examine this issue, we have not only compared results from the same HMI data tracked at both the Carrington rate and the so-called Snodgrass rate, but also from data tracked at a slightly different rate. To that end, we have used means of the f-mode fits of 5° tiles over a full year around the time of solar minimum to estimate coefficients for a similar near-surface differential rotation model. This model, which might be termed a “helioseismic” surface differential rotation, is about 10 m s$^{-1}$ faster at the Equator than the photospheric rate, which is to be expected due to its slightly deeper sensitivity. It also, however, has a slightly steeper latitude dependence—the two models cross around latitude 70°. This is likely attributable to the fact that our model is based on data taken during solar minimum, while the observations on which the Snodgrass model is based were made around a time of solar maximum. If we use HMI f-mode data from a year around solar maximum, the values for the derived A_2- and A_4-coefficients (see Figure 1) agree very closely with those in the Snodgrass model. The derived A_0-coefficient representing the Equatorial rotation rate is effectively constant over the cycle, and it accounts for most of the difference between the Snodgrass and our helioseismic model.

In order to investigate the sensitivity of flows inferred from ring-diagram analysis to noise in the measured data, we have taken the tracked data cubes used in the original HMI pipeline analysis for the selected target regions, and added normally distributed random noise centered at zero to the value at each voxel. The per pixel noise in the original Dopplergrams ranges from about 15 m s$^{-1}$ at disc center to about 50 m s$^{-1}$ near the limb (Schou et al., 2012). Since the mapping involved in the tracking involves a cubic-convolution interpolation and is close in scale to the observational pixel resolution (except for 30° tiles), the per-voxel noise in the tracked cubes can be assumed to be somewhat less or compara-
Figure 1 Comparison of a differential-rotation model based on HMI 5° ring-diagram \(f \)-mode fits averaged over a year around solar minimum (solid red curve; the “helioseismic” rate) and the Snodgrass rate based on photospheric Doppler measurements over about two years around solar maximum (dashed blue curve). The rotation rate for the models as a function of latitude is displayed in the Carrington coordinate system, the \(U_x \)-value expected in the absence of a local zonal flow when tracking at the Carrington rate. The rotation model is the standard \(\Omega = A_0 + A_2 \sin^2 \lambda + A_4 \sin^4 \lambda \), where \(\lambda \) is the heliographic latitude. The coefficients for the Snodgrass rate, expressed in units of \(\mu \text{ rad s}^{-1} \), are \(A_0 = 2.8364 \), \(A_2 = -0.3441 \), \(A_4 = -0.5037 \); for the helioseismic rate they are \(A_0 = 2.8480 \), \(A_2 = -0.3160 \), \(A_4 = -0.5491 \).

ble over most of the disc, on the order of 10 m s\(^{-1}\). (By way of comparison, the total RMS per image pixel, including both acoustic-mode signal and solar “noise”, such as granulation and supergranulation, is about 360 m s\(^{-1}\) near disc center and 500 m s\(^{-1}\) at \(\mu \approx 0.5 \).) To these remapped and tracked data we have added noise with RMS values of 1, 3, 10, 30, and 100 m s\(^{-1}\), respectively, before repeating the rest of the pipeline analysis.

We have experimented with two simple methods of reducing the spatial resolution of HMI Doppler data to investigate the effects upon the inferences from the ring-diagram analyses: i) interpolating to mapped tracked cubes at lower resolution; and ii) binning the original Dopplergram pixels prior to mapping and tracking. Method i), which effectively undersamples the original data near disc center, is in fact used in the HMI pipeline for the 30° tiles, which are mapped at a resolution of 0.08° heliographic per pixel rather than 0.04° per pixel, which closely matches the spatial sampling of the HMI images at disc center. As method ii) more closely approximates the data expected from an instrument of lower resolution, we only present those findings here. The fact that a 50% reduction in resolution with that method has minimal effects (see Section 3) encourages confidence in the HMI pipeline results for the 30° tiles.

3. Results for 15-Degree Tiles

In Figure 2 we show inversion results for two 15° tiles obtained by inverting modes obtained with both rdfitf and rdfitc fits. The uncertainties obtained with rdfitf are much larger than those with rdfitc, raising the question whether rdfitf uncertainties are overestimated or whether
Figure 2 A comparison of flows obtained by OLA inversions of rdfitc (dark blue) and rdfitf (blue-green) fits for 15° tiles at two locations. The top row is for a tile at 30° N on the central meridian during CR 2224, CM longitude 30°, the bottom row is for a tile at the disk center at Carrington time [2157:15]. The points are plotted at the center of gravity of the averaging kernels. The vertical error bars show 1σ uncertainty, while the horizontal error bars are a measure of the resolution of the inversions, and they are the distance between the 25th and 75th quantiles of the averaging kernels. Note that uncertainties in the rdfitf results are much larger than those in the rdfitc results.

rdfitc errors are underestimated. To examine this, we look at the distribution of the residuals obtained with RLS inversions of all 165 15° tiles. If the residuals normalized by uncertainties have a distribution with σ ≈ 1, the estimates of the uncertainties, on average, are correct; if σ is considerably less than unity, the uncertainties are overestimated. The distribution of the residuals is shown in Figure 3, along with Gaussian fits to the residuals. It is clear that rdfitf uncertainties are overestimates. Given these results, in the rest of the article, unless otherwise specified, we will only show inversion results for flow parameters obtained with rdfitc. In Figure 4 we show the results obtained with the standard 15° set, which may be considered to be the fiducial results against which we compare results with changed data properties – tracking rate, noise, and spatial resolution.

3.1. Effects of the Tracking Rate

As mentioned in Section 2, ring diagrams with MDI data were constructed from regions tracked at the Snodgrass rate applicable to their central latitude, while the standard HMI rings are tracked at the Carrington rate. In the top row of Figure 5 we show the cumulative distribution function (CDF) of the differences in the U_y-parameter for the same set of Dopplergrams tracked at Carrington and Snodgrass rates; of course, only the modes that are common between the two sets could be used. We do not show the CDF for the zonal parameter U_x, since the difference in tracking rates causes a large shift. Also shown are the
Figure 3 Top Panel: The distributions of residuals normalized by uncertainty for RLS inversions of \(\text{rdfitf} \) parameters of all 15° regions are shown as the blue histograms. The red curve shows a Gaussian with \(\sigma = 0.61 \) fitted to the histogram. The fit to the distribution with \(\sigma < 1 \) implies that the uncertainties are overestimated, on average, by a factor of \(1/0.61 \).

Bottom Panel: Same as the upper panel, but for \(\text{rdfite} \) results. The red curve shows a Gaussian with \(\sigma = 1.03 \) fitted to the histogram. Thus, on average, \(\text{rdfite} \) errors have not been underestimated. In all panels, the vertical dotted lines mark \(\pm 1\sigma \) and \(\pm 2\sigma \).

The differences between Carrington tracking and rings tracked at the helioseismically inferred near-surface rotation rate described above. Note that the differences are smallest at the disc center and become progressively larger at higher latitudes. The differences are also not quite symmetric around zero difference, and the distribution of the differences is skewed somewhat, indicating that the \(U_y \)-parameter obtained with Snodgrass tracking is lower than that obtained with Carrington tracking. Although this is a systematic difference, the magnitude of the difference is well within 1\(\sigma \) statistical errors – only 0.2\(\sigma \) at a latitude of 60°.

In the bottom row of Figure 5 we show the differences between tracking at the Snodgrass and Helioseismic rates for both \(U_x \)- and \(U_y \)-parameters. There is a remaining constant offset in \(U_x \), but the differences between \(U_y \) for the two rates are much smaller than those in the top row. Notably, the asymmetry is smaller too, and the regions with the larger \(U_x \)-offsets appear to have large \(U_y \)-differences as well as larger asymmetry around zero.

These results were obtained using fitted modes of all degrees and orders, and they do not say anything about the depth dependence of the results. We inverted the results for each region on the central meridian and examined the differences as a function of depth and distance from the disc center. The results are shown in Figures 6 and 7. The figures show so-called “box and whiskers” plots of the differences. The colored bars show the differences...
between the 16th and 84th quantiles (if the distribution of differences were a Gaussian, these would correspond to ±1σ), the horizontal line is the median, and the vertical lines show the region between the 2nd and the 98th quantiles (i.e. approximately ±2σ). As one can see from Figure 7, the 1σ spread in the results is much smaller (approximately ±5 m s\(^{-1}\)) when the tracking rates are similar; the 2σ spread in the results, however, is similar. Interestingly, but expected given the results in Figure 5, differences in the zonal tracking rate result in differences in the meridional flows. The differences are not inconsistent with the scatter in the results in Figure 4; moreover, the median difference in the results is close to zero, assuring us that the HMI flow results are reliable. To gauge whether or not the differences due to tracking are significant, in Figure 8 we show the distributions of the differences normalized by uncertainties. It is clear from the figure that the median change is generally less than 1σ; the effect of the tracking differences is seen in the size of the “boxes” which are supposed to be a 2σ spread, but for the “Snodgrass – Carrington” case are sometimes greater than 5σ. Although we have not shown any rdfitf results, we should note that the absolute differences are larger; because the uncertainties are larger too, however, they are not statistically significant.

This does raise the question of what is the “best” rate to track regions – different tracking rates essentially mean that we are not looking at exactly the same region. However, given that the regions are tracked for relatively short intervals, the mismatch is small relative to the size of the region. Of course, the tracking rate can only be “correct” for a particular latitude and a particular depth. The extent of this effect may be understood by considering the situation at 60° latitude, where our mean measured zonal flow (really the mean rotation at target depth in the Carrington frame) is its greatest: \(\approx 200 \) m s\(^{-1}\). Since regions are tracked for the length of time for them to rotate through their diameter, the fraction of the region that is “misregistered” due to differential rotation over the course of the tracking is the non-
Figure 5 The cumulative distribution function (CDF) of the differences between U_y-parameters of common modes for regions tracked with different tracking rates. Top row: differences with respect to the Carrington rate, in the sense of (other–Carrington), we do not show U_x-differences because of the large differences in the tracking rates. Bottom row: the CDF of the differences between U_x- and U_y-parameters of common modes for regions tracked with the Helioseismic and Snodgrass rates. The differences are in the sense of Helioseismic – Snodgrass. In all panels, the vertical dotted lines correspond to 0 difference, while the horizontal lines mark the 25th, 50th, and 75th quantiles.

dimensionalized value of the differential rotation rate in units of degrees per degree in the Carrington frame, or about 4% at that latitude. Likewise, the total linear distance traversed by a feature moving at the differential rotation rate at that depth and latitude over the course of a 15° interval is about 20 Mm, roughly the size of a supergranule. Also, we cannot rule out a purely numerical effect in the fitting procedure; both rdfitc and rdfitf were developed for fitting MDI’s Snodgrass-rate tracked rings, and the effect of the large distortion of the rings in the zonal direction caused by Carrington-rate tracking could potentially lead to cross-talk between the fitted parameters U_x and U_y. In any case, the effect is only marginally significant (see Figure 8). Nevertheless, this merits additional study using a larger data sample and different tracking durations, as well as a thorough check of correlations among parameters obtained by the mode-fitting routines; such a study is beyond the scope of this work.

3.2. Effects of Resolution

We examine the effects of reduced spatial resolution next. The difference in U_x- and U_y-inversion results between rings created with different mapped pixel resolutions and the standard HMI one (0.04° heliographic per pixel) are shown in Figure 9. As can be seen, the
Figure 6 Box-and-whisker plots showing the differences in inversion results (upper panels) and uncertainties (lower panels) obtained with Carrington and Snodgrass tracking. The zonal differences are actually $\Delta U_x - \langle \Delta U_x \rangle$, where $\langle \Delta U_x \rangle$ is the average at a given latitude and depth; this accounts for the large difference in the tracking rates. The results for each latitude (shown by different colors) are shifted slightly in radius to avoid overlapping results. Results are for inversions centered at 0.98, 0.985, 0.99, 0.995, and 0.999 R_\odot.

Figure 7 Box-and-whisker plots showing the differences in inversion results (upper panels) and uncertainties (lower panels) obtained with Snodgrass and Helioseismic tracking. In this case, the U_x-results have not been modified by subtracting the average difference.

differences for results with 0.08° pixel$^{-1}$ and 0.16° pixel$^{-1}$ are quite small, especially at low latitudes, and the median differences for these cases is again close to zero. Recall that MDI rings are constructed with Dopplergrams with a resolution of 0.125° pixel$^{-1}$, thus resolution that is slightly worse than MDI does not appear to affect results significantly at low latitudes. The differences are larger at higher latitudes, and that is a direct effect of foreshortening being worse when the pixels are larger. This is why standard MDI ring diagrams were not constructed for latitudes higher than ±60°, while HMI ones are. The effects of resolution are most obvious when resolution is degraded further, and we can see large changes
Figure 8 Box-and-whisker diagrams of meridional-flow differences caused by differences in the tracking rate normalized by uncertainties (i.e. the z-scores). The panel on the left shows Snodgrass – Carrington, the panel on the right shows Helioseismic – Snodgrass.

Figure 9 Box-and-whisker diagram showing differences in inversion results when the spatial resolution of the Dopplergrams is changed. The differences are with respect to the fiducial HMI resolution of 0.04° per pixel. Panels on the left show differences in zonal flow velocities, panels on the right show meridional-flow differences. Colors indicate spatial resolution.

in the results for 0.24° and 0.32° pixel$^{-1}$. The median difference is often non-zero for these cases and the scatter is large. However, the spread in the velocity differences is consistent with the uncertainties in the inversion results, which change with the pixel scale. The differences in uncertainties in the inversion results are shown in Figure 10. As can be seen, the uncertainties increase systematically as the resolution becomes worse.

The change in uncertainties can be understood in terms of the modes, and the number of modes, which can be fitted. A large pixel scale means a larger Δk – the minimum difference in wavenumber k – which means that fewer modes can be fitted, and in turn less information
Figure 10 Box-and-whisker diagram showing the differences in the uncertainties in the inversion results caused by differences in spatial resolution. We only show results for two latitudes on the meridian, 0° (“disc center”) and the average of ±67.5°; the results for other latitudes lie in between these two extremes.

obtained. The larger pixels also mean that the Nyquist limit on the wavenumber is lower, so that one cannot obtain parameters for modes of very high degree, which adversely affects inversion results, particularly close to the surface. The change in uncertainties is quite noticeable, particularly at 0.99 R⊙. This is a result of the fact that these sets i) have very few f-modes, ii) the f-modes have large errors, particularly the ones with lower frequency and hence the higher inertia, and ii) in this case the number of n = 1 modes is small too. It just happens that the data limitations affect inversion results in the range 0.985 R⊙ to about 0.993 R⊙.

The parameters for the inversions were chosen to keep the radial resolution of the inversions similar in all cases, to allow us to compare the results at a given radius. Given that in inversion results radial resolution and statistical uncertainty have an inverse relationship – the poorer the resolution, i.e. the larger the width of the averaging kernels, the lower the uncertainty – making the resolution kernels wider when inverting the lower resolution data will decrease the uncertainties. We could have opted to choose inversion parameters such that the uncertainties were similar, but in that case we would not be comparing the flow results around the same depth.

It should be noted that the effect of degraded spatial resolution on rdfitf results is much larger. We could not fit regions with 0.32° pixel⁻¹ resolution at all with rdfitf. We only obtained a few tens of viable modes for regions with of 0.24° pixel⁻¹, not enough to be able to invert. For the other two cases, the absolute differences are larger, but consistent with the larger uncertainties.

3.3. Effects of Noise

Added noise has a much smaller effect on the results; this is shown in Figure 11. Note that the abscissa has a much smaller scale than that of Figure 9, which shows the effect of reduced spatial resolution. Changes in the uncertainties are shown in Figure 12. The differences in flow velocities at low latitudes are negligible close to the surface, even at the highest noise levels. At these latitudes, noise only affects the deepest layers; this is a result of the increasing difficulty of fitting the higher-order n modes that allow deeper inversions.
Figure 11 Box-and-whisker diagrams for differences in inversion results between sets with added Doppler noise than the standard HMI set. Note that the y-scale is smaller than that in Figure 9, showing that greater Doppler noise has a minimal effect on the results, except at high latitudes.

Figure 12 Box-and-whisker diagrams showing the differences in the uncertainties in the inversion results as a result of added Doppler noise. We show only the results for the same regions as in Figure 10; the results for other latitudes lie in between these two extremes.

However, the effect is still much smaller than that of degraded resolution. The effect on the uncertainties of the results is small too. Even at high latitudes, the median difference is close to zero at all depths, and the scatter in the results is consistent with the formal uncertainties in the inversion results.
Figure 13 Top row: The distribution of residuals normalized by uncertainty for RLS inversions of \texttt{rdfitf} parameters of all 30° regions are shown as the blue histograms. The red curve shows a Gaussian with $\sigma = 0.50$ fitted to the histogram. Bottom row: Residuals for \texttt{rdfitc} parameters. The red curve shows a Gaussian with $\sigma = 1.03$ fitted to the histogram. In all panels, the vertical dotted lines mark $\pm 1\sigma$ and $\pm 2\sigma$.

As in the case where we examined the effect of using different tracking rates, results obtained with \texttt{rdfitf} parameters show larger absolute changes; because of the large uncertainties in the results, however, the changes are not statistically significant.

4. Effect of Noise on 30-Degree Tiles

Ring diagrams constructed with 30° tiles allow us to probe the dynamics of the near-surface shear layer over its entire radial extent. Inversion results are reliable from the surface down to about 0.95 R_\odot, and even deeper at the disc center. As in the case of the standard 15° tiles, \texttt{rdfitf} fits overestimate mode errors, and in this case by almost a factor of two; this can be seen from the distribution of residuals in the top row of Figure 13. Residuals from \texttt{rdfitc} parameters seem to suggest that the uncertainties are reasonable (Figure 13 bottom row).

The differences in the flow-inversion results between the noise-added and the standard 30° rings are shown in Figure 14; the figure also shows the differences in the formal uncertainties in the flow inversions. We show the combined results for the Equator and latitude $\pm 45^\circ$, since there are not many regions in our sample. The median differences in the inversion results are again close to zero, and the spread is consistent with the formal uncertainties. The changes are much smaller than for the 15° case (Figure 11); this is consistent with the
fact that uncertainties in the 30° parameters are less than those in the 15° parameters. The largest effect is seen at the deepest layers that are inaccessible to 15° rings. There is a larger change (compared with the 15° case) at the shallowest layer too. That is undoubtedly because HMI 30° rings have a lower spatial resolution (see Section 2). The changes in the uncertainties are also smaller than in the 15° case. We were somewhat perplexed as to why the error-added data seem to have a large spread of cases with lower uncertainties, while the spread is smaller on the side with the (expected) larger errors; however, looking at the distribution of errors, we found that the effect is mostly caused by outliers, which have a greater influence because of the relatively small number of regions. These results led us to conclude that added Doppler noise, at least to the level of 100 m s$^{-1}$, does not affect the inferred flow velocities. This is not very surprising, given the several times greater magnitude of the “solar noise” due to granulation and supergranulation.

5. Results for 5-Degree Tiles

While the HMI pipeline produces 5° tiles routinely, and also provides fitted parameters (only with rdfite), it does not produce inversion results; it was always assumed that inversions of the fitted modes would be difficult, if not impossible, because only parameters for a small number of modes can be determined, a few hundred modes, instead of one thousand or more for 15° rings. Most of the fitted modes are the $f\ell$, $p_{1\ell}$, and $p_{2\ell}$-modes, though it is possible to fit the $n = 3$ modes for many regions. These modes have been used to study near-surface flows (e.g. Bogart, Baldner, and Basu, 2015) assuming that averaging the flow parameters in bins of different lower turning points of the modes allows us to estimate the flow velocities. It should be noted that even smaller rings have been used in inversions (Featherstone, Hindman, and Thompson, 2011), but only in combination with much larger rings, and not on their own. As we show in Figure 15, the 5° rings can be inverted in isolation. The OLA and RLS results agree reasonably well, and the OLA averaging kernels are well localized. As is seen from the figure, we obtain independent velocity estimates at two depths. Inversions are possible at high latitudes also; although in this study we have not used 5° rings at very high
latitudes, a judicious selection of inversion parameters allows us to invert regions above 70°; the limiting latitude is being investigated, RLS residuals imply that the mode uncertainties are overestimated by rdfitf by about 15% (see Figure 16).

It could be asked how the 5° results compare with 15° results. Such a comparison, however, is not straightforward. First, flows change over short distances; the 15° tiles cover many 5° tiles. If ring diagrams used square tiles, this would not be a problem as there would be nine 5° tiles per 15° tile, but the regions in both cases are circular. Another issue is that 15° tiles are tracked three times longer than 5° tiles, and thus have three times better frequency resolution (and three times poorer temporal resolution). To compare 5° and 15° results we worked around these problems by i) covering the 15-degree tiles by the 27 5° tracked tiles over the longer interval whose circular apodizations were more than half within that of the 15° tile, to ensure coverage in both space and time; ii) averaging the mode parameters obtained using the 27 5° tiles; iii) inverting the 15° tiles using only every third mode to account for the difference in frequency resolution; and iv) not using the $n \geq 3$ modes, since those cannot be reliably fitted for 5° tiles. We show the results in Figure 17. As the results show, the flow structure determined from the average parameters obtained from the 27 5° rings that cover a standard 15° ring agrees well with that found with the 15° ring data.

Added Doppler noise has a slightly larger effect on 5°-flow results than for the larger rings; however, the median change is again consistent with zero (Figure 18). The spread in values is higher at higher latitudes, but they are consistent with the uncertainties in the results. The change in uncertainties is larger than for the 15° and the 30° cases (see Figure 19), but the changes are not large enough to make the inversion results unreliable.

6. Summary

We have conducted a study to examine the effects of tracking rate, spatial resolution, and Doppler noise on results obtained by ring-diagram analysis of helioseismic data. We use the HMI ring-diagram pipeline to carry out the analysis.

Our results show that for both 15° and 30° rings, uncertainties returned by rdfitf are overestimated. This would imply that inversion results provided by the HMI project are not as
Figure 16 The distribution of residuals normalized by uncertainty for RLS inversions of rdfitc parameters of all 5° regions are shown as the blue histograms. The vertical dotted lines mark ±1σ and ±2σ. The red curve shows a Gaussian with σ = 0.875 fitted to the histogram, denoting that uncertainties in the flow parameters are slightly overestimated.

Figure 17 A comparison of inversions of 15° and 5° tiles covering 15° regions at latitudes of ±30° along the central meridian for Carrington time [2225:60]. The points in red are the 15° results, while the points in black are 5° results obtained by averaging all 5° regions in the given 15° region (see text for details).

precise as they could be, given that those are inversions of parameters obtained by rdfitf. Given this, in addition to our finding that the 5° rdfitc fits produced by the HMI pipeline can be inverted, it appears desirable to add inversions of all of the rdfitc fits to the set of HMI pipeline products. The reason that was not done in the first place is that due to the computational cost, during the first five years of the SDO mission, rdfitc fits to 15° and 30° power spectra were only performed for tiles along the central meridian and Equator. With
Figure 18 Box-and-whisker plots for differences in inversion results between noise-added data and the standard dataset for 5° tiles. Results are shown at 0.9932, 0.9948, 0.9964, 0.9980, and 0.9996 \(R_\odot \). As usual, the results for the different noise cases at any given radius have been displaced slightly for visibility. Each group, from right to left, shows the difference in results for added noise of 3 m s\(^{-1}\), 10 m s\(^{-1}\), and 30 m s\(^{-1}\).

Figure 19 Box-and-whisker plots showing the change in the uncertainties in the inversion results between noise-added data and the standard dataset for 5° tiles.

additional computing resources, full-disc fits were added to the pipeline beginning with Carrington Rotation 2172 (December 2015); however, retrospective processing of the data for the full mission has only very recently been completed.

We find that the rate at which regions on the solar surface are tracked in the zonal direction has a small effect on the flow parameters obtained in the meridional direction. However,
the differences are small, well within statistical uncertainties, and the overall effect on the inversion results is small as well.

The largest effect on flow results is that of spatial resolution: small pixels give better results than larger ones. If we keep the radial resolution of the inversions the same for all pixel scales, the uncertainties in the inversion results increase substantially. That said, pixel scales of up to 0.16° per pixel (i.e. somewhat poorer resolution than MDI) give similar results.

Added Doppler noise has almost no effect on the flows. While this might seem surprising, it is not if one considers the magnitude of the Doppler signal in the modes themselves, as well as the magnitude of the noise due to granulation and supergranulation. The effect is even smaller if one examines the results obtained with 30° tiles.

We find that it is possible to obtain reliable inversion results from 5° rings. This opens up the possibility of studying high-latitude flows – 5° rings with HMI data can be constructed at latitudes as high as 80° depending on the value of the B_0-angle. The flow parameters obtained are somewhat more sensitive to noise than the larger tiles; even then, however, the sensitivity is not so great as to make flow estimates unreliable.

Acknowledgments This work uses data from the Helioseismic and Magnetic Imager. HMI data are courtesy of NASA/SDO and the HMI science team. This research was supported in part by NASA Contract NAS5-02139 to Stanford University.

Author contributions R.S. Bogart created the ring diagrams and determined the mode parameters. S. Basu did the inversions. S. Basu prepared the figures. Both S. Basu and R.S. Bogart wrote and reviewed the txt.

Data Availability The HMI data used in this article are publicly available from the JSOC at jsoc.stanford.edu. The fitted parameters of the rings diagrams and inversion results used for the current study are available from the corresponding author on reasonable request.

Declarations

Disclosure of Potential Conflicts of Interest The authors declare that they have no conflicts of interest.

Competing interests The authors declare no competing interests.

References

Baldner, C.S., Bogart, R.S., Basu, S.: 2013, The sub-surface structure of a large sample of active regions. Solar Phys. 287, 265. DOI. ADS.

Basu, S., Antia, H.M.: 1999, Large-scale flows in the solar interior: effect of asymmetry in peak profiles. Astrophys. J. 525, 517. DOI. ADS.

Basu, S., Antia, H.M.: 2010, Characteristics of solar meridional flows during solar cycle 23. Astrophys. J. 717, 488. DOI. ADS.

Basu, S., Antia, H.M., Bogart, R.S.: 2004, Ring-diagram analysis of the structure of solar active regions. Astrophys. J. 610, 1157. DOI. ADS.

Basu, S., Antia, H.M., Bogart, R.S.: 2007, Structure of the near-surface layers of the Sun: asphericity and time variation. Astrophys. J. 654, 1146. DOI. ADS.

Basu, S., Antia, H.M., Tripathy, S.C.: 1999, Ring diagram analysis of near-surface flows in the Sun. Astrophys. J. 512, 458. DOI. ADS.

Bogart, R.S., Baldner, C.S., Basu, S.: 2015, Evolution of near-surface flows inferred from high-resolution ring-diagram analysis. Astrophys. J. 807, 125. DOI. ADS.

Bogart, R.S., Basu, S., Rabello-Soares, M.C., Antia, H.M.: 2008, Probing the subsurface structures of active regions with ring-diagram analysis. Solar Phys. 251, 439. DOI. ADS.
