Supporting Information for:

Expanding the Catalytic Triad in Epoxide Hydrolases and Related Enzymes

Beat A. Amrein1, Paul Bauer1, Fernanda Duarte1, Åsa Janfalk Carlsson2, Agata Naworyta\dag, Sherry L. Mowbray*1, Mikael Widersten*2 and Shina C. L. Kamerlin*1.

1 Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24, Uppsala, Sweden. 2 Department of Chemistry-BMC, Uppsala University, BMC Box 576, SE-751 23, Uppsala, Sweden.

\dag Present Address: Freelance Conference Coordinator (formerly postdoctoral researcher, Uppsala University). E-mail: anaworyta@gmail.com

*Corresponding authors E-mail: sherry.mowbray@icm.uu.se (Sherry L. Mowbray); mikael.widersten@kemi.uu.se (Mikael Widersten); kamerlin@icm.uu.se (Shina C. L. Kamerlin).
Table of Contents

S1. Calibrating the Relevant Reference Reactions for EVB Simulations S4
S1.1. Calibrating the first step of the reaction: Nucleophilic attack S4
S1.2. Calibrating the second step: Hydrolysis of the alkyl-enzyme intermediate S7
S2. References S9
S3. Figures & Tables S11

Figure S1: Active-site structures and electron density maps for WT and H300N mutant forms of StEH1

Figure S2: Residue frequency plots based on sequence alignments of (A) members of the epoxide hydrolase-like superfamily showing the aspartate nucleophile, (B) enzymes from the epoxide hydrolase subfamily that have the aspartate nucleophile and (C) members of the dehalogenase enzyme family showing the aspartate nucleophile

Figure S3: Overlay of transition-state structures for the hydrolysis step catalysed by the wild-type form of StEH1

Figure S4: Active site of the wild-type and E35Q mutant form of StEH1 showing the alkyl-enzyme intermediate

Table S1: Data collection and refinement statistics S16
Table S2: Comparison of residues at position 35 and 104 (StEH1 numbering), indicating incidences of residue conservation among related enzymes. S17
Table S3: Calculated and observed activation and reaction free energies for the reaction of (R,R)- and (S,S)-TSO in wild-type StEH1 with different H104 protonation states S20
Table S4: Uncorrected (absolute) activation free energies, in kcal mol$^{-1}$, for the hydrolysis step of (R,R)- and (S,S)-TSO in wild-type StEH1 S21
Table S5: Calculated and observed activation energies, and calculated reaction free energies for the reaction of (R,R)-TSO in different mutant forms of StEH1 S21
Table S6: Calculated and observed activation energies, and calculated reaction free energies for the reaction of (S,S)-TSO in different mutant forms of StEH1 S22
Table S7: Uncorrected (absolute) activation free energies, in kcal·mol⁻¹, for the hydrolysis step, of (R,R)- and (S,S)-TSO in wild-type StEH1

Table S8: Microscopic rate and thermodynamic constants for StEH1-catalyzed (R,R)-TSO hydrolysis

Table S9: Absolute energies for each optimized stationary point along the reaction profiles of nucleophilic attack of acetate on styrene oxide

S4. Empirical Valence Bond Parameters Used in This Work

Table S10: EVB mapping parameters used in this work

Figure S5: Structures of the different VB states used in this work

Table S11: Van der Waals parameters used for atoms constituting reacting part

Table S12: Atom types in different VB states

Table S13: Atomic charges

Table S14: Bond parameters for covalent bonds of the reacting part

Table S15: Bond types in different VB states

Table S16: Angle parameters used for bending adjacent bonds in reacting part

Table S17: Angle types of the different VB states

Table S18: Torsion parameters used in the reacting part

Table S19: Torsion types in different VB states

Table S20: Improper Torsion Parameters

Table S21: Improper torsions of the different VB states

S5. Cartesian Coordinates for Key Stationary Points
S1. Calibrating the Relevant Reference Reactions for EVB Simulations

S1.1. Calibrating the first step of the reaction: Nucleophilic attack

Epoxide hydrolysis is an extensively studied reaction, and these compounds are known to hydrolyze spontaneously\(^1\), or through acid\(^1\)\(^{-}\)\(^8\) or base\(^1\)\(^9\) catalysis. The challenge here is the fact that in our system, nucleophilic attack of D105 leads to the formation of an oxyanion, which is likely to be a hugely unfavorable reaction at ambient pH. In fact, no direct experimental data are available to characterize this step of the reaction; the closest available experimental data correspond to the reaction between propylene oxide and acetate as an anion in acidic conditions (glacial acetic acid), for which an activation barrier of 18.5–19.0 kcal·mol\(^{-1}\) has been reported\(^2\). However, the fact that the reaction considered in ref. \(^2\) is acid-catalyzed means that this value only provides a lower limit for the activation barrier and is not a real estimate of the activation barrier for the uncatalyzed reaction modeled here. In the absence of direct experimental data for this process, we have estimated the energetics of this step using DFT calculations of the model reaction. Bruice et al. have previously studied the uncatalyzed reaction of methyl styrene oxide with acetate as a nucleophile\(^4\). For this reaction, they obtained a gas phase activation barrier of 20.0 and 21.0 kcal·mol\(^{-1}\) for C1 and C2 attack, respectively. However, when solvation effects were included (at the CPCM+B3LYP/6-31+G(d,p)//B3LYP/6-31+G(d,p) level of theory), the activation barrier increased to 29.9 and 32.5 kcal·mol\(^{-1}\) for C1 and C2 attack, respectively. Here, we have performed an unconstrained transition state optimization using trans-stilbene oxide and propionate anion as a model. The geometry optimization for this system was performed using the B3LYP functional\(^{10-12}\) and the 6-311+G** basis set. Solvation was implicitly included using the C-PCM continuum solvent model\(^{13}\) with the UFF radii. The resulting transition state was characterized by frequency calculations, as well as by following the intrinsic reaction coordinate.
(IRC)14,15 to minima in both reactant and product directions. Entropy and zero-point energy contributions were obtained by performing frequency calculation on the stationary points (Table S9). All quantum chemical calculations were performed using Gaussian 0916.

It should be noted that the choice of the B3LYP functional as our reference state was deliberate and we are aware of the errors that could affect this estimation, which in some cases also cancel out by the use of this functional17. For example, it is well known that the description of anionic species is extremely challenging with DFT methods, as they tend towards unphysical charge delocalization18. This problem, combined with the poor solvation of anionic species by implicit solvent models, can lead to artificially low reaction barriers. This has been well established when using hydroxide and other anionic species as a nucleophile in calculations with implicit solvation19. In previous studies we introduced a constant correction for the undersolvation of the hydroxide ion to reproduce the experimental solvation free energy of this anion19. Similar corrections have also been suggested by others20. However, in the present case it is unclear what the appropriate correction factor would be, and therefore in light of the (at least partial) accumulation of errors between not including dispersion and inappropriate solvation of the charged species, we believe it is safer to use a functional that is not corrected for dispersion in order to avoid remedying one error while maintaining another, thus potentially obtaining completely unphysical results. Additionally, using B3LYP allows us to directly compare to previous work21-23. Despite these challenges, in the context of the current work, it is again crucial to emphasize that here the reference reaction in aqueous solution is only used as a frame of reference to compare the energetics of the reaction with different histidine protonation states (Table S3) and to facilitate direct comparison with previous works in related systems that use this functional21,22,24. Our results show that we can reproduce the large expected
catalytic effect of StEH1 and the trends in activation barrier upon mutation (see Tables S5 and S6 and Figure 8 in the main text). These results in themselves provide a rigorous test of the reliability of our overall parameterization and calibration procedure.

As the substrate is symmetrical, the overall activation barrier for the nucleophilic attack on either C1 or C2 would presumably be the same for both enantiomers in solution. However due to small differences in orientation of the epoxide ring relative to the acetate nucleophile at the transition state, the activation energy could vary slightly. Following the protocol described at the beginning of this section, we calculated an activation barrier of 32 kcal·mol$^{-1}$ and a reaction free energy of 22 kcal·mol$^{-1}$ for the uncatalyzed alkylation step in solution (see Figure 1 of the main text for an overview of the catalytic cycle). These values are similar to those previously reported by Bruice et al. for the nucleophilic attack of acetate on methyl styrene oxide4. While the activation barrier may seem quite high, opening the epoxide ring to yield a charged oxyanion, is highly unfavorable in aqueous solution, and, in fact, the experimental values for acid-catalyzed or spontaneous epoxide ring-opening to give a protonated oxygen are much lower2. Furthermore, as can be seen in the main text, the catalytic effect of the enzyme on this step is quite large, as the oxyanion is stabilized by not one but two residues forming the oxyanion hole, Y154 and Y235, and the oxygen of the D105 is stabilized by the backbone amides of F33 and W106. The effect of tyrosine has been experimentally25,26 and theoretically4,27 investigated using phenol and 1,8-bis-phenylenediol as tyrosine models. Bruice et al. have shown that general-acid catalysis by phenol can decrease the activation energy by 10 kcal·mol$^{-1}$ compared to the uncatalyzed reaction4. However, it has been suggested that the stabilization provided by the two tyrosines, even though is an important contributor to catalysis, is not as great as that exhibited by 1,8-bis-phenylenediol in butanone solvent4.
S1.2. **Calibrating the second step: hydrolysis of the alkyl-enzyme intermediate**

The reference reaction for the second step (hydrolysis of the alkyl-enzyme intermediate) is far more straightforward to calibrate, as both acid- and base-catalyzed ester hydrolysis were studied experimentally in detail. Experimental data\(^{28}\) for imidazole as general base suggest an activation barrier of about 19 kcal·mol\(^{-1}\) (correcting also for the cost of bringing the reacting fragments from infinite separation into the reacting complex, which is our starting point for the calculations here – see refs. \(^{29,30}\). The reaction free energy can be derived from experiments investigating the breakdown of analogs of tetrahedral intermediate species and oxygen exchange data for ester hydrolysis reactions\(^{31}\). Here, the free energy is related to the activation energy for the breakdown reaction as:

\[
k_{\text{reverse}} = \left(\frac{k_e}{k_h}\right) \cdot 2k_{\text{breakdown}}
\]

where \(k_e\) is the pseudo-first order rate constant for oxygen exchange with water and \(k_h\) is the first order rate constant for general-based catalyzed hydrolysis of water at the carbonyl carbon. The values of the ratio \(k_e/k_h\) have been reported by Bender and Heck\(^{31}\), with values varying between 0.15 to 0.7 for different substrates. The rate for the breakdown has been estimated to be approximately \(10^7\) s\(^{-1}\) for structural analogues\(^{32}\). From these values, the free-energy barrier for the reverse reaction was estimated as 8.6 kcal·mol\(^{-1}\), leading to a free energy of \(\Delta G_{\text{INT}2} = 10.4\) kcal·mol\(^{-1}\). Therefore, \(\Delta G_{\text{INT}2} = 19\) kcal·mol\(^{-1}\) and \(\Delta G_{\text{INT}2} = 10\) kcal·mol\(^{-1}\) were used as approximations to calibrate the reaction where histidine acts as a base. Note here that as we do not model the final breakdown of the tetrahedral intermediate, and we are examining a range of mutants relative to the wild-type enzyme (i.e. we are interested in the relative rather than absolute values), the precise free energy for the formation of this intermediate is less crucial. As mentioned above, for the final step of the cycle (**Figure 1** of the main text), it is unclear whether
the reaction proceeds through an actual tetrahedral intermediate or not, and what the lifetime of such a reaction would be, but this has limited impact on our computational studies, as it is known to be very fast and not rate-limiting. The only feature of potential interest here is the fact that the anionic oxygen after opening the epoxide ring will likely be protonated at some point upon breakdown of the tetrahedral intermediate; however, this is very challenging to model computationally within a VB framework, and is, again, not a contributor to the rate-limiting step of the reaction.
S2. References

(1) Long, F. A.; Pritchard, J. G. *J. Am. Chem. Soc.* 1956, 78, 2663-2667.
(2) Isaacs, N. S.; Neelakantan K. *Can. J. Chem.* 1968, 46, 1043-1046
(3) Biggs, J.; Chapman, N. B.; Wray, V. *J. Chem. Soc. B* 1971, 66-71.
(4) Lau, E. Y.; Newby, Z. E.; Bruice, T. C. *J. Am. Chem. Soc.* 2001, 123, 3350-3357.
(5) Koskikallio, J.; Whalley, E. *Trans. Faraday. Soc.* 1959, 55, 815-823.
(6) Pritchard, J. G.; Long, F. A. *J. Am. Chem. Soc.* 1956, 78, 2667-2670.
(7) Long, F. A.; Pritchard, J. G.; Stafford, F. E. *J. Am. Chem. Soc.* 1957, 79, 6008-6013.
(8) Muniz, R. C. D.; de Sousa, S. A. A.; Pereira, F. D.; Ferreira, M. M. C. *J. Phys. Chem. A* 2010, 114, 5187-5194.
(9) Pritchard, J. G.; Long, F. A. *J. Am. Chem. Soc.* 1956, 78, 2663-2667.
(10) Becke, A. D. *J. Chem. Phys.* 1993, 98, 5648-5652.
(11) Lee, C.; Yang, W.; Paar, R. G. *Phys. Rev. B* 1988, 37, 785-789.
(12) Vosko, S. H.; Wilk, L.; Nusair, M. *Can. J. Phys.* 1980, 58, 1200-1211.
(13) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. *J. Comput. Chem.* 2003, 24, 669-681.
(14) Hratchian, H. P.; Schlegel, H. B. *J. Chem. Phys.* 2004, 120, 9918-9924.
(15) Hratchian, H. P.; Schlegel, H. B. *J. Chem. Theory and Comput.* 2005, 1, 61-69.
(16) Gaussian 09 Rev. C1. Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, M. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ó.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
(17) Cohen, A. J.; Mori-Sanchez, P.; Yang, W. *Chem. Rev.* 2012, 112, 289-320.
(18) Cohen, A. J.; Mori-Sanchez, P.; Yang, W. T. *Science* 2008, 321, 792-794.
(19) Duarte, F.; Geng, T.; Marloie, G.; Al Hussain, A. O.; Williams, N. H.; Kamerlin, S. C. L. *J. Org. Chem.* 2014, 79, 2816-2828.
(20) Pliego, J. R.; Riveros, J. M. *J. Phys. Chem. A* 2001, 105, 7241-7247.
(21) Hopmann, K. H.; Himo, F. *J. Phys. Chem. B* 2006, 110, 21299-21310.
(22) Hopmann, K. H.; Himo, F. Chemistry **2006**, *6*, 6898-6909.

(23) Lonsdale, R.; Hoyle, S.; Grey, D. T.; Ridder, L.; Mulholland, A. J. Biochemistry **2012**, *51*, 1774-1786.

(24) Lind, M. E. S.; Himo, F. Angew. Chem. Int. Ed. **2013**, *52*, 4563-4567.

(25) Hine, J.; Linden, S. M.; Kanagasabapathy, V. M. J. Org. Chem. **1985**, *50*, 5096-5099.

(26) Hine, J.; Linden, S. M.; Kanagasabapathy, V. M. J. Am. Chem. Soc. **1985**, *107*, 1082-1083.

(27) Omoto, K.; Fujimoto, H. J. Org. Chem. **2000**, *65*, 2464-2471.

(28) Jencks, W. P.; Carriuolo, J. J. Am. Chem. Soc. **1961**, *83*, 1743–1750.

(29) Hine, J. J. Am. Chem. Soc. **1971**, *93*, 3701-3708.

(30) Warshel, A.; Sharma, P. K.; Kato, M.; Xiang, Y.; Liu, H. B.; Olsson, M. H. M. Chem. Rev. **2006**, *106*, 3210-3235.

(31) Bender, M. L.; Heck, H. D. A. J. Am. Chem. Soc. **1967**, *89*, 1211–1220.

(32) McClelland, R. A.; Kanagasabapathy, V. M.; Steenken, S. Can. J. Chem. **1990**, *68*, 375-382.

(33) Read, R. J. Acta Crystallogr. A **1986**, *42*, 140-149.

(34) Kleywegt, G. J.; Jones, T. A. Structure **1996**, *4*, 1395-1400.

(35) Engh, R. A.; Huber, R. Acta Crystallogr. Sect. A **1991**, *47*, 392-400.

(36) Elfström, L. T.; Widersten, M. Biochem. J. **2005**, *390*, 633-640.

(37) Elfström, L. T.; Widersten, M. Biochemistry **2006**, *45*, 205-212.

(38) Thomaeus, A.; Carlsson, J.; Åqvist, J.; Widersten, M. Biochemistry **2007**, *46*, 2466-2479.

(39) Thomaeus, A.; Naworyta, A.; Mowbray, S. L.; Widersten, M. Protein Sci. **2008**, *17*, 1275-1284.

(40) Warshel, A. Computer Modeling of Chemical Reactions in Enzymes and Solutions; 1st ed.; Wiley: New York, 1991.

(41) Åqvist, J.; Warshel, A. Chem. Rev. **1993**, *93*, 2523-2544.
S3. Figures & Tables

Figure S1: Active-site structures with corresponding σ-weighted \((2m|Fo| − D|Fc|)^{33}\) electron density maps, for (A) wild-type, and (B) H300N mutant forms of StEH1. Maps are contoured at their RMSD values (0.29 e/Å\(^3\) for the wild-type, and 0.38 e/Å\(^3\) for the mutant). Note that the electron density for the hydrolytic water (shown between D105 and E35 in panel A) is lost in the H300N mutant structure.
Figure S2: Residue frequency calculated based on sequence alignments of: (A) all members of the epoxide hydrolase-like superfamily showing the aspartate nucleophile, (B) enzymes from the epoxide hydrolase subfamily that have the aspartate nucleophile and (C) members of the dehalogenase enzyme family showing the aspartate nucleophile. The corresponding plots from aligning BLAST results to the StEH1 sequence and selecting annotated sequences from mammals, plants, fungi and bacteria can be found in Figure 5 of the main text. The plots show the probability of finding a given residue at a particular sequence position, with the *Solanum tuberosum* epoxide hydrolase residue numbers indicated below the sequence. H104 has high sequence conservation in all cases, with the background of unrelated residues in the sequence database likely to be caused by either unrelated or mischaracterized sequences in the database, as the results starting from a BLAST search show almost total conservation. In this search, only members of the dehalogenase family show a different residue, glutamine, at this position.
Figure S3: Overlay of representative transition state (TS) structures for the hydrolytic step of the reaction catalysed by StEH1. Shown here are TS obtained from water attack on (A) the intermediate formed after attack at the C1 carbon of TSO, and (B) the intermediate formed after attack at the C2 carbon of TSO. Here, the (R,R)-TSO intermediates are shown in red, and the (S,S)-TSO intermediates are shown in blue.
Figure S4: Active site of the (A) wild-type and (B) E35Q variants of StEH1 at the tetrahedral intermediate formed upon alkylation of the (R,R) (blue) and (S,S) (yellow) enantiomers of TSO (blue). This figure is based on structures obtained from the last EVB-FEP/US window of our simulations (corresponding to the tetrahedral intermediate formed from hydrolysis of the alkyl-enzyme intermediate, see Figure 1 of the main text). The panels are shown in two parts: the ball-and-stick structures show a single snapshot from the endpoint of our EVB simulations, while the cluster of conformers shown in line format are the different E35 and Q35 conformations from our EVB simulations of this reaction step. In the wild-type variant (panel A), E35 points towards (protonated) H104 forming a salt-bridge. In the E35Q variant (panel B), Q35 preferentially interacts with either the hydrolytic water molecule ((S,S)-enantiomer, yellow), or is much more
flexible, and points away from the substrate complex and out of the active site \(((R,R)\text{-enantiomer, blue})\). In the latter case, this allows great solvent accessibility to the reacting atoms, whereas the E35-H104 and Q35-hydrolytic water interactions act as a closed “gate”, preventing solvent access to the active site. Note that the views at the top and bottom of each panel are identical structures that have been rotated to better illustrate the differences in the position of residue 35 in the different systems.
Table S1: Data collection and refinement statistics. The space group is P2₁,2₁,2₁. Information in parentheses refers to the highest resolution shell.

Data collection statistics
Data collection beamline/detector
Cell axial lengths (Å)
Resolution range (Å)
Number of reflections measured
Number of unique reflections
Average multiplicity
Completeness (%)
Rmeas (%)
σ
Wilson B-factor (Å²)

Refinement statistics
Resolution range (Å)
Number of reflections used in working set
No. of reflections for R_free calculation
R-value, R_free (%)
No. of non-hydrogen atoms
No. of solvent waters
Mean B-factor, protein atoms, A and B molecules (Å²)
Mean B-factor, solvent atoms (Å²)
Ramachandran plot outliers (%)^a
r.m.s. deviation from ideal bond length (Å)^b
r.m.s. deviation from ideal bond angle (°)^b

^a Calculated using a strict-boundary Ramachandran plot³⁴.
^b Using the parameters of Engh & Huber³⁵.

S16
Table S2: Comparison of residues at position 35 and 104 (StEH1 numbering), indicating residue conservation to preserve charge neutrality in the active site. Sequences presented here were obtained from BLAST as described in the main text. The green cells indicate conservation of the H104-E/D35 pattern at the active site, while the red cells indicate replacement of H104 by another residue. As can be seen, when H104 is replaced by a non-ionizable residue, the adjacent E35 is replaced by either a Ser or Thr residue.

#	Seq. ID	Residue Number	32	33	34	35	36	37	38	101	102	103	104	105	106	107	
1	tr	Q41415	Q41415_SOLTU	G	F	P	E	L	W	Y	V	V	A	H	D	W	G
2	tr	S8E221	S8E221_9LAM1	G	F	P	E	L	W	Y	V	V	G	H	D	W	G
3	tr	D8L7V7	D8L7V7_PRUPE	G	F	P	E	L	W	Y	V	V	G	H	D	W	G
4	tr	B9RT84	B9RT84_RICCO	G	F	P	E	L	W	Y	V	V	G	H	D	W	G
5	tr	W9RQ4	W9RQ4_9ROSAS	G	F	P	E	L	W	Y	V	V	G	H	D	W	G
6	tr	D8L7V8	D8L7V8_PRUPE	G	F	P	E	L	W	Y	L	V	G	H	D	W	G
7	tr	Q76E1	Q76E1_CITJA	G	F	P	E	L	W	Y	L	V	G	H	D	W	G
8	tr	B9SAT9	B9SAT9_RICCO	G	F	P	E	L	W	Y	L	V	G	H	D	W	G
9	tr	Q39856	Q39856_SOYBN	G	F	P	E	L	W	Y	L	V	A	H	D	W	G
10	tr	O49857	O49857_SOYBN	G	F	P	E	L	W	Y	L	V	A	H	D	W	G
11	tr	B9RF7	B9RF7_RICCO	G	F	P	D	L	W	Y	L	V	G	H	D	W	G
12	tr	B3VRM3	B3VRM3_NICBE	G	F	P	E	L	W	Y	L	V	A	H	D	W	G
13	tr	B9GSC2	B9GSC2_POPTR	G	F	P	E	L	W	Y	L	V	G	H	D	W	G
14	tr	A9PBN3	A9PBN3_POPTR	G	F	P	E	L	W	Y	L	V	G	H	D	W	G
15	tr	A2Q30	A2Q30_MEDTR	G	F	P	E	L	W	Y	L	V	A	H	D	W	G
16	tr	B9I7B7	B9I7B7_POPTR	G	F	P	E	L	W	Y	L	V	A	H	D	W	G
17	tr	B9RF7	B9RF7_RICCO	G	F	P	E	L	W	Y	L	V	A	H	D	W	G
18	tr	B3VMR4	B3VMR4_NICBE	G	F	P	E	L	W	Y	L	V	A	H	D	W	G
19	tr	G7KX11	G7KX11_MEDTR	G	F	P	E	L	W	Y	L	V	A	H	D	W	G
20	tr	I2CW84	I2CW84_MACMU	G	F	P	E	S	W	Y	F	I	G	H	D	W	G
21	tr	Q17QK4	Q17QK4_BOVIN	G	F	P	E	S	W	F	F	I	G	H	D	W	G
22	tr	S9Q9A4	S9Q9A4_PTEAL	G	F	P	E	S	W	F	F	I	G	H	D	W	G
23	tr	F1RJ53	F1RJ53_PIG	G	F	P	E	S	W	F	F	I	G	H	D	W	G
24	sp	Q6Q2C2	HYES_PIG	G	F	P	E	S	W	F	F	I	G	H	D	W	G
25	tr	L8H3	L8H3_9CEPA	G	F	P	E	S	W	F	I	G	H	D	W	G	G
26	tr	K7CY76	K7CY76_PANTR	G	F	P	E	S	W	F	I	G	H	D	W	G	G
27	sp	P34913	HYES_HUMAN	G	F	P	E	S	W	F	I	G	H	D	W	G	G
28	tr	U3F8Z4	U3F8Z4_CALJA	G	F	P	E	S	W	F	I	G	H	D	W	G	G
29	tr	F7FNE8	F7FNE8_CALJA	G	F	P	E	S	W	F	I	G	H	D	W	G	G
30	tr	K9IAL5	K9IAL5_DESRO	G	F	P	E	S	W	F	F	I	G	H	D	W	G
Accession	Expression	Function	Tissue	Development	Pathway	Disease	Mutation										
--------------	------------	----------	--------	-------------	---------	---------	----------										
M1EL05																	
G5BY92																	
Q5RKK3																	
S7PCN0																	
G7PZN4																	
L8I2A0																	
U3Auw4																	
L7JMW7																	
Q3UB32																	
J81MCJ1																	
W9C033																	
K1W7D7																	
M7T034																	
F2RN91																	
V5HR52																	
B2WHB7																	
Members of the Dehalogenase Enzyme Family using an Aspartate Nucleophile

#	Seq. ID	Residue Number			
72	gi	34922418	sp	OS2866.3-HYES_CORS2	G W P Q S W Y V I G H D W G
73	gi	34922418	sp	OS2866.3-DHAA_RILHO	G N P T S S H L V A Q D W G
74	gi	306755666	sp	Q1JU72.1-DEHA_BURSP	G F P Q N L H L V G H D R G
75	gi	28558082	sp	P59337.1-DHAA_BRADU	G N P T S S H L V A Q D W G
76	gi	461925	sp	Q01398.1-DEH1_MORSB	G F P Q N R A L V G H D R G
77	gi	28558081	sp	P59336.1-DHAA_RHOSD	G N P T S S Y L V I H D W G
78	gi	6122634	sp	A5U5S9.1-DHAA_MYCTA	G N P T S S Y L V I H D W G
79	gi	9789853	sp	P51698.4-LINB_SPHPI	G N P T S S Y L V I H D W G
80	gi	28558089	sp	Q93K00.1-DHAA_MYCAV	G E P T W S Y L F V Q D W G
81	gi	28558089	sp	Q8U671.1-DHAA_AGRTP	G N P T S S Y L V L Q D Y G
82	gi	167016874	sp	Q93K00.1-DHAA_MYCAV	G E P T W S Y L F V Q D W G
83	gi	226729402	sp	B2HJU9.1-DHAA_RHORH	G N P T S S Y L V I H D W G
84	gi	226729403	sp	B4RF90.1-DHAA_RHORH	G N P T S S Y L V I H D W G
85	gi	28558089	sp	Q8U671.1-DHAA_AGRTP	G E P T W S Y L F V Q D W G
86	gi	54036966	sp	P64302.1-DHMA1_MYCBO	G E P T W S Y L F V Q D W G
87	gi	122415385	sp	Q1QBB9.1-DHMA_PSYCK	G E P T W S Y L F V Q D W G
88	gi	189083120	sp	B0SY51.1-DHMA_CAUSK	G E P T W S Y L F V Q D W G
89	gi	54036967	sp	P64304.1-DHMA2_MYCBO	G N P T W S F S M G Q D W G
90	gi	729681	sp	P22643.2-DHMA_XANAU	G E P T W S Y L V V Q D W G
91	gi	152805199	sp	Q938B4.1-DHAA_MYSX2	G N P T S S Y L V I H D W G
92	gi	81829712	sp	Q6NAM1.1-DHAA_RHOPA	G F P Q T H V L A G H D R G
Table S3: Calculated\(^{(a)}\) and observed\(^{(b)}\) activation (\(\Delta G^\ddagger\)) and reaction free energies (\(\Delta G^\circ\)), in kcal\(\cdot\)mol\(^{-1}\), for the hydrolysis of (\(R,R\))- and (\(S,S\))-TSO for the wild-type enzyme and different H104 protonation states. HIP and HID refer to the protonated and deprotonated forms of H104, following the nomenclature used by the force field. The corresponding EVB parameters are presented in Section S4.

System	Step I		Step II					
	\(\Delta G_1^\ddagger\)	\(\Delta G_1^\circ\)	\(\Delta G_2^\ddagger\)	\(\Delta G_2^\circ\)	\(\Delta G_4^{\text{ktat}}\)			
	Calc.	Exp.	Calc.	Exp.	Calc.	Exp.	Calc.	Exp.
(\(R,R\))-TSO								
C1 HID	13.0±1.7	14.4	-8.7±1.9	-1.7	6.2±1.9	15.8	-6.3±2.1	15.9
C2 HID	11.6±1.3	14.4	-8.1±1.3	-1.7	3.3±1.3	15.8	-8.4±1.5	15.9
C1 HIP	18.3±1.1	14.4	3.4±1.6	-1.7	24.8±2.4	15.8	16.6±2.6	15.9
C2 HIP	14.7±1.0	14.4	0.2±1.4	-1.7	17.7±1.6	15.8	8.6±1.7	15.9
(\(S,S\))-TSO								
C1 HID	12.1±2.1	16.0	-6.2±2.6	-0.2	9.1±2.2	17.0	-2.5±2.3	16.9
C2 HID	13.6±2.1	16.0	-8.7±2.2	-0.2	3.8±2.2	17.0	-8.2±2.2	16.9
C1 HIP	15.2±0.6	16.0	2.2±1.0	-0.2	24.0±2.3	17.0	16.6±2.6	16.9
C2 HIP	16.9±0.8	16.0	0.4±1.1	-0.2	16.6±1.7	17.0	8.8±1.8	16.9

\(^{(a)}\) All calculated energies are averages and standard deviations based on ten individual EVB simulations generated from different starting structures, as outlined in the Methodology section. \(\Delta G_1^\ddagger\) and \(\Delta G_2^\ddagger\) correspond to activation barriers for the alkylation and hydrolysis steps respectively, with the barrier to the hydrolysis step corrected by adding the calculated activation barrier of the hydrolysis step to the free energy of the intermediate. For the corresponding uncorrected (absolute) activation barriers, see Table S4. \(^{(b)}\) Exp. refers to experimental values of the enzyme-catalyzed reaction for the respective step, derived from the kinetic data presented in ref. 36–39.
Table S4: Uncorrected (absolute) activation free energies, in kcal·mol⁻¹, for the hydrolysis step of the (R,R)- and (S,S)-TSO reactions in wild-type StEH1⁴,⁵.

System	(R,R)-TSO	(S,S)-TSO				
	ΔG⁺₂	ΔG⁺₀	ΔG⁻₂	ΔG⁻₀	ΔG⁺₂	ΔG⁺₀
	Calc.	Exp.	Calc.	Exp.	Calc.	Exp.
C1 HID	14.9±0.2	15.8	2.5±0.9	15.3±1.5	17.0	3.8±1.5
C2 HID	11.3±0.4	15.8	-0.4±0.8	12.5±0.8	17.0	0.5±1.1
C1 HIP	21.4±1.6	15.8	13.3±1.8	21.8±1.6	17.0	14.3±2.1
C2 HIP	17.6±0.4	15.8	8.4±0.4	16.2±1.1	17.0	8.4±1.3

(a) All calculated energies are averages and standard deviations based on ten individual EVB simulations generated from different starting structures, as outlined in the Methodology section. ΔG⁺₂ corresponds to activation barriers for the hydrolysis step. (b) Exp. refers to experimental values of the enzyme-catalyzed reaction for the respective step, respectively, derived from the kinetic data presented in ref. 36-39.

Table S5: Calculated⁴ and observed⁵ activation energies (ΔG⁺) and reaction free energies (ΔG⁰), in kcal·mol⁻¹, for the hydrolysis of (R,R)-TSO for different mutant forms of StEH1. The corresponding EVB parameters are presented in Section S4.

System	Step I			Step II				
	ΔG⁺₂	ΔG⁺₀	ΔG⁻₂	ΔG⁻₀	ΔG⁺₂	ΔG⁺₀	ΔG⁺₁kJcat	
	Calc.	Exp.	Calc.	Exp.	Calc.	Exp.	Calc.	
C1								
E35Q	18.5±1.1	16.1±1.5	-0.5±1.1	21.2±1.6	17.8±1.5	9.2±1.5	18.1	
Y149F	14.8±1.1	14.3±1.5	-1.8±1.1	17.9±1.2	15.3±1.5	9.7±1.4	15.5	
Y154F	18.7±0.8	n.d.	4.1±1.0	n.d.	21.4±1.7	n.d.	12.4±2.1	19.3
Y235F	17.8±0.7	n.d.	5.4±1.2	n.d.	29.2±1.0	n.d.	21.8±1.0	19.3
H300N	17.5±1.0	18.5±1.0	-0.3±1.1	n.d.	n.d.	n.d.	n.d.	

C2

E35Q	15.5±0.7	16.1±1.3	-0.5±1.3	17.4±3.1	17.8±3.3	6.2±3.3	18.1	
Y149F	13.0±0.5	14.3±1.5	-3.1±0.9	13.5±4.3	15.3±7.4	7.4±3.9	15.5	
Y154F	16.2±1.3	n.d.	2.9±1.5	n.d.	22.3±1.7	n.d.	14.5±1.6	19.3
Y235F	18.4±1.3	n.d.	5.7±1.5	n.d.	21.3±2.1	n.d.	12.0±2.3	19.3
H300N	16.8±0.8	18.5±1.0	1.9±0.9	n.d.	n.d.	n.d.	n.d.	

(a) All calculated energies are averages and standard deviations based on ten individual EVB simulations generated from different starting structures, as outlined in the Methodology section. ΔG⁺₁ and ΔG⁻₁ correspond to activation barriers for the alkylation and hydrolysis steps respectively, with the barrier to the hydrolysis step corrected by adding the calculated EVB barrier to the free energy of the intermediate from the hydrolysis step. For the corresponding uncorrected (absolute) activation barriers, see Table S7. (b) Exp. refers to experimental values of the enzyme-catalyzed reaction for the respective step, derived from the kinetic data presented in ref. 36-39. n.d.: Not determined. (c) In most cases H104 is protonated and D265 is deprotonated, the exceptions to this are the reactions involving the H300N and E35Q mutants, where H104 is most likely neutral. Additionally, in the H300N variant D265 is protonated, as discussed in the main text.
Table S6: Calculated\(^{(a)}\) and observed\(^{(b)}\) activation energies (\(\Delta G^\ddagger\)) and reaction free energies (\(\Delta G^\circ\)), in kcal·mol\(^{-1}\), for the hydrolysis of \((S,S)\)-TSO for different mutant forms of StEH1. The corresponding EVB parameters are presented in Section S4.

System	Step I							
	\(\Delta G^\ddagger_1\)	\(\Delta G^\circ_1\)	\(\Delta G^\ddagger_2\)	\(\Delta G^\circ_2\)	\(\Delta G^\ddagger_{kcat}\)			
	Calc.	Exp.	Calc.	Exp.	Calc.	Exp.	Calc.	Exp.
C1								
E35Q	17.0±0.8	15.6	2.2±1.2	-1.2	19.9±1.5	17.6	8.9±1.6	17.6
Y149F	15.2±0.4	15.5	2.0±1.4	0.0	20.1±1.5	16.2	12.4±1.5	16.6
Y154F	16.3±1.6	n.d.	1.0±1.9	n.d.	19.9±2.2	n.d.	12.4±2.2	n.d.
Y235F	17.7±0.8	n.d.	3.0±0.9	n.d.	24.2±0.9	n.d.	16.3±0.9	n.d.
H300N\(^{(c)}\)	17.5±0.7	19.8	2.5±0.8	-1.2	n.d.	n.d.	n.d.	n.d.
C2								
E35Q	19.3±0.7	15.6	4.7±0.7	-1.2	20.9±1.5	17.6	10.8±2.0	17.6
Y149F	17.1±0.6	15.5	-0.3±0.8	0.0	15.5±1.0	16.2	7.4±0.9	16.6
Y154F	17.6±1.0	n.d.	1.1±1.0	n.d.	16.8±1.4	n.d.	9.3±1.5	n.d.
Y235F	17.6±0.5	n.d.	3.3±0.6	n.d.	20.7±1.1	n.d.	12.1±1.2	n.d.
H300N\(^{(c)}\)	21.2±0.4	19.8	4.9±0.6	-1.2	n.d.	n.d.	n.d.	n.d.

\(^{(a)}\)All calculated energies are averages and standard deviations based on ten individual EVB simulations generated from different starting structures, as outlined in the Methodology section. \(\Delta G^\ddagger_1\) and \(\Delta G^\ddagger_2\) correspond to activation barriers for the alkylation and hydrolysis steps respectively, with the barrier to the hydrolysis step corrected by adding the calculated activation barrier of the hydrolysis step to the free energy of the intermediate. For the corresponding uncorrected (absolute) activation barriers, see Table S7. \(^{(b)}\) Exp. refers to experimental values of the enzyme-catalyzed reaction for the respective step, derived from the kinetic data presented in ref. \(^{36-39}\). n.d.: Not determined. \(^{(c)}\) In most cases H104 is protonated and D265 is deprotonated, the exceptions to this are the reactions involving the H300N and E35Q mutants, where H104 is most likely neutral. Additionally, in the H300N variant D265 is protonated, as discussed in the main text.
Table S7: Uncorrected (absolute) activation free energies, in kcal·mol⁻¹, for the hydrolysis step of the reaction of various mutant forms of StEH1 with (R,R)- and (S,S)-TSO (a,b).

System	(R,R)-TSO		(S,S)-TSO					
	ΔG²⁺	ΔG²°	ΔG²⁺	ΔG²°				
	Calc.	Exp.	Calc.	Exp.	Calc.	Exp.	Calc.	Exp.
C1								
E35Q	17.6±0.8	17.8	5.6±1.5	17.7±0.6	17.6	6.6±0.8		
Y149F	19.7±0.5	15.3	11.5±0.9	18.1±0.5	16.2	10.4±0.6		
Y154F	17.3±1.3	n.d.	8.3±1.8	18.9±0.5	n.d.	11.4±0.6		
Y235F	23.9±0.3	n.d.	16.4±0.5	21.2±0.4	n.d.	13.3±0.4		
C2								
E35Q	16.8±2.4	17.8	5.6±2.7	16.2±1.2	17.6	6.1±1.7		
Y149F	16.5±0.3	15.3	8.7±0.4	15.7±0.6	16.2	7.7±0.8		
Y154F	19.3±0.4	n.d.	11.5±0.5	15.7±0.5	n.d.	8.2±0.6		
Y235F	15.6±1.1	n.d.	6.3±1.4	17.4±0.8	n.d.	8.9±0.9		

(a) All calculated energies are averages and standard deviations based on ten individual EVB simulations generated from different starting structures, as outlined in the Methodology section. ΔG²⁺ corresponds to activation barriers for the hydrolysis step. (b) Exp. refers to experimental values of the enzyme-catalyzed reaction for the respective step, derived from the kinetic data presented in ref. 36-39. n.d.: Not determined.

Table S8: Microscopic rate and thermodynamic constants for StEH1-catalyzed (R,R)-TSO hydrolysis.

Enzyme	Kₛ (µM)	k₁ (s⁻¹)	k₂ (s⁻¹)	k₋₂ (s⁻¹)	k₃ (s⁻¹)
WT	36±22(a)	260±56(a)	16±18(a)	24±3(b)	
E35Q	27±22(a)	16±3(a)	6.7±2(a)	0.95±0.04(a)	
H300N	60±40(b)	0.3±0.06(b)	0.13±0.02(b)	0.003±0.0005(b)	
E35Q/H300N	31±6	0.27±0.02	0.0083±0.0038	0	

(a) Adapted from ref. 38. (b) Adapted from ref. 36.
Table S9: Absolute electronic energy (E_{el}, in atomic units), zero-point energy contribution (E_{ZPE}, in kcal·mol$^{-1}$), entropies (S, in cal·mol$^{-1}$·K$^{-1}$) and frequencies (ν, in cm$^{-1}$) for each optimized stationary point along the reaction profiles of nucleophilic attack of acetate on styrene oxide. RS, TS, and PS denote reactant, transition and product states, respectively.

Species	E_{el} (a.u)	E_{ZPE} (kcal·mol$^{-1}$)	S (cal·mol$^{-1}$·K$^{-1}$)	ν (cm$^{-1}$)
RS	-844.779505481	167.6949	167.433	1.8
TS	-844.741593384	167.5307	140.424	-358.1
PS	-844.760935349	169.1559	138.552	27.3

ΔG^\ddagger_{calc} $^{(a)}$=31.7

ΔG^o_{calc} $^{(a)}$=21.7

$^{(a)}$ ΔG^\ddagger_{calc} and ΔG^o_{calc} refer to the activation and reaction free energies calculated relative to the reactant complex.
S4. Empirical Valence Bond Parameters Used in This Work

The EVB parameters used in this work were obtained as outlined in the Methodology section of the main text. All parameters not listed here are standard OPLS-AA parameters for the relevant atom types.

The off-diagonal elements, describing the coupling between the two diabatic states, can be represented by simple exponential functions of the form:

$$H_{ij} = A_{ij} \exp \left[-\mu (r_{ij} - r_0) \right]$$

(2)

where r_{ij} denotes the distance between atoms i and j and r_0 denotes the equilibrium distance or, as in this work, by constant functions where the parameter μ is set equal to zero. The off-diagonal elements (H_{ij}) and gas-phase shift (α_i) values used in this work to calibrate the reference reactions are presented below. For more details of the meaning of these parameters, please see e.g. refs. 40,41. For details of the mechanism please see Figure 1 of the main text. Note that in line with the EVB philosophy, the same parameters were then used unchanged in all enzyme runs (i.e. all fitting was done only in the background reaction, and not in subsequent runs).

Table S10: EVB mapping parameters used in this work\(^{(a)}\).

| | \begin{tabular}{l|l|l|l|l} \hline Step I (Alkylation) & \multicolumn{2}{c|}{C1} & \multicolumn{2}{c}{C2} \\ \hline \multicolumn{1}{c|}{(R,R)-TSO} & H_{ij} & α_i & H_{ij} & α_i \\ \hline (S,S)-TSO & 63.84 & 11.04 & 63.87 & 2.37 \\ \hline Step II (Hydrolysis) & \multicolumn{2}{c|}{C1} & \multicolumn{2}{c}{C2} \\ \hline \multicolumn{1}{c|}{(R,R)-TSO} & H_{ij} & α_i & H_{ij} & α_i \\ \hline (S,S)-TSO & 46.49 & 289.19 & 44.61 & 290.29 \\ \hline \end{tabular} | (a) Both H_{ij} and α_i are constants. All values given in kcal mol\(^{-1}\). |
Figure S5: Structures of the different VB states used in this work.
EVB Parameters

Table S11: Van der Waals Parameters Used for Atoms Constituting the Reacting Part.

Type	\(A_i \) (kcal\(^{1/2}\)·mol\(^{-1/2}\)·Å\(^6\))	\(B_i \) (kcal\(^{1/2}\)·mol\(^{-1/2}\)·Å\(^3\))	\(C_i \) (kcal·mol\(^{-1}\))	\(\alpha_i \) (Å\(^2\))	\(A_{1-4} \) (kcal\(^{1/2}\)·mol\(^{-1/2}\)·Å\(^6\))	\(B_{1-4} \) (kcal\(^{1/2}\)·mol\(^{-1/2}\)·Å\(^3\))	mass (a.u.)
CA	1059.13	23.67	0	0	748.92	16.74	12.01
CO4	1802.24	34.18	250	1.7	1274.38	24.17	12.01
CT	944.52	22.03	250	2.5	667.88	15.58	12.01
CHMI	944.52	22.03	250	1.7	667.88	15.58	12.01
H	0.00	0.00	30	2.8	0.00	0.00	1.01
HA	69.58	4.91	0	0	49.20	3.47	1.01
HC	49.20	3.47	0	0.0	34.79	2.45	1.01
HC1	109.18	6.99	0	0.0	77.20	4.94	1.01
HC2	84.57	5.41	0	0.0	59.80	3.83	1.01
NA	971.75	28.31	180	2.5	687.13	20.02	14.01
O	616.44	23.77	90	2.2	435.89	16.81	16.00
OCRB	616.44	23.77	90	1.8	435.89	16.81	16.00
OH	976.93	31.26	90	2.0	690.79	22.10	16.00
OH1	690.37	23.36	0	0.0	488.17	16.87	16.00
OH2	760.65	25.04	100	2.8	537.86	17.71	16.00
OS	445.13	18.25	90	2.0	314.75	12.91	16.00
OS1	445.13	18.25	0	0.0	314.75	12.91	16.00
OT3	762.88	24.39	100	2.8	539.44	17.25	16.00

For all atoms except reacting atoms, a standard 6-12 Lennard Jones potential was used. In the case of the reacting atoms, which change bonding patterns between atoms \(i \) and \(j \), an alternate function of the form: \(V_{\text{react}} = C_i C_j \exp(-\alpha_i \alpha_j r_{ij}) \) was used to prevent artificial repulsion between these atoms as bonding patterns change. \(r_{ij} \) denotes the distance (Å) between atoms \(i \) and \(j \).
Table S12: Atom Types in Different VB States.

Atom Number	State I	State II	State III	State II	State III	
1	CA	CA	CA	CA	CA	
2	HA	HA	HA	HA	HA	
3	CA	CA	CA	CA	CA	
4	HA	HA	HA	HA	HA	
5	CA	CA	CA	CA	CA	
6	HA	HA	HA	HA	HA	
7	CA	CA	CA	CA	CA	
8	HA	HA	HA	HA	HA	
9	CA	CA	CA	CA	CA	
10	HA	HA	HA	HA	HA	
11	CA	CA	CA	CA	CA	
12	CT	CT	CT	CT	CT	
13	HC2	HC	HC2	HC1	HC1	
14	OS1	OH	OH	OH	OH	
15	CT	CT	CT	CT	CT	
16	HC2	HC1	HC1	HC	HC2	
17	CA	CA	CA	CA	CA	
18	CA	CA	CA	CA	CA	
19	HA	HA	HA	HA	HA	
20	CA	CA	CA	CA	CA	
21	HA	HA	HA	HA	HA	
22	CA	CA	CA	CA	CA	
23	HA	HA	HA	HA	HA	
24	CA	CA	CA	CA	CA	
25	HA	HA	HA	HA	HA	
26	CA	CA	CA	CA	CA	
27	HA	HA	HA	HA	HA	
28	CT	CT	CT	CT	CT	
29	HC2	HC	HC2	HC	HC2	
30	HC2	HC	HC2	HC	HC2	
31	CO4	CO4	CHM1	CO4	CHM1	
32	OCRB	OS	OS1	OS	OS1	
33	O	O	OH	O	OH	
34	OT3	OT3	OH2	OT3	OH2	
35	H	H	H	H	H	
36	H	H	H	H	H	
37	CT	CT	CT	CT	CT	
38	HC2	HC2	HC2	HC2	HC2	
39	HC2	HC2	HC2	HC2	HC2	
40	CA	CA	CA	CA	CA	
41	NA	NA	NA	NA	NA	
	H	H	H	H	H	H
---	---	---	---	---	---	---
42	CA	CA	CA	CA	CA	CA
43	HA	HA	HA	HA	HA	HA
44	NA	NA	NA	NA	NA	NA
45	CA	CA	CA	CA	CA	CA
46	HA	HA	HA	HA	HA	HA
47	HA	HA	HA	HA	HA	HA
#	(S,S)-TSO C1 Attack	(R,R)-TSO C1 Attack	(S,S)-TSO C2 Attack	(R,R)-TSO C2 Attack		
----	---------------------	---------------------	---------------------	---------------------		
1	-0.1554	-0.1381	-0.1864	-0.1591		
2	-0.1465	-0.1881	-0.1902	-0.2195		
3	0.1448	0.1166	0.0918	0.1069		
4	-0.1542	-0.1176	-0.1410	-0.0332		
5	-0.1465	-0.1881	-0.1902	-0.2195		
6	0.1448	0.1166	0.0918	0.1069		
7	-0.1542	-0.1176	-0.1410	-0.0332		
8	0.1279	0.0889	0.0802	0.0597		
9	-0.1277	-0.0128	0.0894	-0.1930		
10	0.0709	0.3399	0.2444	0.6359		
11	0.1485	0.0333	-0.0183	-0.1122		
12	-0.2516	-0.8686	-0.9634	-0.8867		
13	0.0709	0.5376	0.5850	-0.1615		
14	0.1485	-0.1447	-0.1801	0.0439		
15	0.1277	-0.0714	-0.0554	-0.0739		
16	-0.1542	-0.0684	-0.0543	0.0003		
17	0.1229	0.0894	0.0892	0.0811		
18	-0.1277	-0.0128	0.0894	-0.1930		
19	0.1485	0.1078	0.1006	0.1261		
20	-0.1542	-0.0684	-0.0543	0.0003		
21	0.1229	0.0894	0.0892	0.0811		
22	-0.1465	-0.1837	-0.2373	-0.2299		
23	0.1448	0.1078	0.1006	0.1261		
24	-0.1542	-0.0684	-0.0543	0.0003		
25	0.1229	0.0894	0.0892	0.0811		
26	-0.1465	-0.1837	-0.2373	-0.2299		
27	0.1448	0.1078	0.1006	0.1261		
28	-0.1554	-0.1714	-0.1603	-0.1408		
29	-0.4798	-0.2931	-0.6835	-0.2349		
30	0.1448	0.1078	0.1006	0.1261		
31	-0.1554	-0.1714	-0.1603	-0.1408		
32	0.1448	0.1078	0.1006	0.1261		
33	-0.4798	-0.2931	-0.6835	-0.2349		
34	0.1448	0.1078	0.1006	0.1261		
35	0.9712	0.8939	1.0299	0.7074		
36	0.8384	0.6370	0.5175	-0.4041		
37	-0.8384	-0.6260	-0.8898	-0.8838		
38	-0.8340	-0.8340	-0.7762	-0.8340		
39	0.4170	0.4170	0.3665	0.4170		
40	0.0600	0.0600	0.0600	0.0600		
41	-0.5700	-0.5700	-0.5400	-0.5700		
42	0.4200	0.4200	0.4600	0.4200		
	43	44	45	46	47	
---	------	------	------	------	------	
	0.2950	0.2950	0.3850	0.2950	0.3850	
	0.2950	0.2950	0.3850	0.2950	0.3850	
	0.2950	0.2950	0.3850	0.2950	0.3850	
	0.1150	0.1150	0.1150	0.1150	0.1150	
	0.1150	0.1150	0.1150	0.1150	0.1150	
	0.1150	0.1150	0.1150	0.1150	0.1150	
	-0.4900	-0.4900	-0.5400	-0.4900	-0.5400	
	-0.4900	-0.4900	-0.5400	-0.4900	-0.5400	
	-0.4900	-0.4900	-0.5400	-0.4900	-0.5400	
	-0.0150	-0.0150	0.2150	-0.0150	0.2150	
	-0.0150	-0.0150	0.2150	-0.0150	0.2150	
	-0.0150	-0.0150	0.2150	-0.0150	0.2150	
	0.1150	0.1150	0.1150	0.1150	0.1150	
	0.1150	0.1150	0.1150	0.1150	0.1150	
	0.1150	0.1150	0.1150	0.1150	0.1150	
Table S14: Bond Parameters for Covalent Bonds of the Reacting Part.

Bond Type	E_D (kcal·mol$^{-1}$)	α (Å2)	r_0 (Å)	k_b (kcal·mol$^{-1}$·Å$^{-2}$)	b (Å)
0	Not Set				
1		734	1.0800		
2		938	1.4000		
3		634	1.5100		
4		680	1.0900		
5		536	1.5290		
6		640	1.4100		
7		634	1.5220		
8		428	1.3270		
9		1140	1.2290		
10		634	1.5040		
11		854	1.3810		
12		1040	1.3700		
13		868	1.0100		
14		954	1.3430		
15		976	1.3350		
16		820	1.3940		
17		1312	1.2500		
18		2000	0.9572		
19		900	1.3640		
20		1106	0.9450		
21		560	1.5100		
22		680	1.0880		
23		520	1.5090		
24		640	1.3800		
25	80.00	2.0	1.4100		
26	80.00	2.0	1.3800		
27	284.72	1.2	1.0100		
28	245.78	1.5	0.9572		

Morse bonds (reacting atoms): $V_{\text{Morse}} = D_e \{1 - \exp[-\alpha (r_{ij} - r_0)]\}^2$; Harmonic bonds (non-reacting atoms): $V_{\text{Harmonic}} = 0.5k (r_{ij} - r_0)^2$.

S32
Table S15: Bond Types in Different VB States.

Number	Bond Type	#1	#2	C1 Attack	C2 Attack	
		State I	State II	State III	State II	State III
1		1	1	1	1	
1		2	2	2	2	
1		7	2	2	2	
3		4	1	1	1	
3		5	2	2	2	
5		6	1	1	1	
5		11	2	2	2	
7		8	1	1	1	
7		9	2	2	2	
9		10	1	1	1	
9		11	2	2	2	
11		12	21	3	3	
12		13	22	4	4	
12		14	0	0	6	
12		14	25	0	0	
12		15	23	5	5	
14		0	0	0	0	
12		32	0	25	6	
14		15	6	6	6	
15		16	22	4	4	
15		17	21	3	3	
15		32	0	0	25	
17		18	2	2	2	
17		22	2	2	2	
18		19	1	1	1	
18		20	2	2	2	
20		21	1	1	1	
20		26	2	2	2	
22		23	1	1	1	
22		24	2	2	2	
24		25	1	1	1	
24		26	2	2	2	
26		27	1	1	1	
28		29	4	4	4	
28		30	4	4	4	
28		31	7	5	7	
Table S16: Angle Parameters Used for Bending Adjacent Bonds in the Reacting Part.

Angle Type	k_a (kcal·mol⁻¹·rad⁻²)	Θ_0 (°)	Angle Type	k_a (kcal·mol⁻¹·rad⁻²)	Θ_0 (°)
0	No Set				
1	70.0	120.00	17	140.0	109.80
2	126.0	120.00	18	140.0	110.00
3	140.0	120.00	19	140.0	111.00
4	70.0	109.50	20	70.0	128.20
5	126.0	114.00	21	140.0	117.00
6	100.0	109.50	22	140.0	117.00
7	75.0	110.70	23	160.0	126.00
8	66.0	107.80	24	400.0	104.52
9	126.0	111.10	25	70.0	113.00
10	162.0	111.40	26	75.0	117.20
11	160.0	120.40	27	75.0	117.20
12	166.0	123.40	28	60.0	60.00
13	166.0	116.90	29	185.2	111.55
14	140.0	121.60	30	120.0	109.50
15	140.0	130.70	31	70.0	130.70
16	140.0	106.30	32	110.0	108.50

Angle potential: $V_{\text{angle}} = 0.5 \sum k (\Theta - \Theta_0)^2$
Table S17: Angle Types of the Different VB States.

Atom Number	Angle Type	C1 Attack	C2 Attack					
	#1	#2	#3	State I	State II	State III	State II	State III
1	1	3	4	1	1	1	1	1
1	1	3	5	2	2	2	2	2
1	1	7	8	1	1	1	1	1
1	1	7	9	2	2	2	2	2
2	2	1	3	1	1	1	1	1
2	2	1	7	1	1	1	1	1
3	3	1	7	2	2	2	2	2
3	3	5	6	1	1	1	1	1
3	3	5	11	2	2	2	2	2
4	4	3	5	1	1	1	1	1
5	5	11	9	2	2	2	2	2
5	5	11	12	3	3	3	3	3
6	6	5	11	1	1	1	1	1
7	7	9	10	1	1	1	1	1
7	7	9	11	2	2	2	2	2
8	8	7	9	1	1	1	1	1
9	9	11	12	3	3	3	3	3
10	10	9	11	1	1	1	1	1
11	11	12	13	4	4	4	4	4
11	11	12	14	6	0	0	6	6
11	11	12	15	5	5	5	5	5
11	11	12	32	0	6	6	0	0
12	12	14	15	28	0	0	0	0
12	12	15	14	28	6	6	0	0
12	12	15	16	0	0	0	7	7
12	12	15	16	27	7	7	0	0
12	12	15	17	5	5	5	5	5
12	12	15	32	0	0	0	6	6
13	13	12	14	0	0	0	4	4
13	13	12	31	0	13	30	0	0
13	13	12	14	26	0	0	0	0
13	13	12	15	27	7	7	0	0
13	13	12	32	0	4	4	0	0
14	14	12	15	28	0	0	0	0
14	14	15	16	26	4	4	0	0
14	14	15	17	6	6	6	0	0
15	15	12	32	0	6	6	0	0
13	12	15	0	0	0	7	7	
----	----	----	----	----	----	----	----	
14	12	15	0	0	0	6	6	
14	15	16	0	0	0	0	0	
14	15	17	0	0	0	0	0	
15	17	18	3	3	3	3	3	
15	17	22	3	3	3	3	3	
15	32	31	0	0	0	0	13	30
16	15	17	4	4	4	4	4	
16	15	32	0	0	0	4	4	
17	15	32	0	0	0	0	6	
17	18	19	1	1	1	1	1	
17	18	20	2	2	2	2	2	
17	22	23	1	1	1	1	1	
17	22	24	1	1	1	1	1	
18	17	22	1	1	1	1	1	
18	20	21	1	1	1	1	1	
18	20	26	2	2	2	2	2	
19	18	20	1	1	1	1	1	
20	26	24	1	1	1	1	1	
20	26	27	1	1	1	1	1	
21	20	26	1	1	1	1	1	
22	24	25	1	1	1	1	1	
22	24	26	1	1	1	1	1	
23	24	24	1	1	1	1	1	
24	26	27	1	1	1	1	1	
25	24	26	1	1	1	1	1	
28	31	32	22	10	6	10	6	
28	31	33	22	11	6	11	6	
28	31	34	0	0	0	0	6	
29	28	30	8	8	8	8	8	
29	28	31	4	4	7	4	7	
30	28	31	4	4	7	4	7	
31	34	36	0	0	0	0	32	
32	31	33	23	12	29	12	29	
32	31	34	0	0	0	29	0	
33	31	34	0	0	29	0	29	
35	34	36	24	24	0	24	0	
37	40	41	14	14	14	14	14	
37	40	46	15	15	15	15	15	
38	37	39	8	8	8	8	8	
38	37	40	4	4	4	4	4	
39	37	40	4	4	4	4	4	
40	41	42	1	1	1	1	1	
Table 18: Torsion Parameters Used in the Reacting Part.

Torsion Type	V_1	V_2	V_3	Torsion Type	V_1	V_2	V_1
0		0.5		19		0.5	
1	0.0000	-3.6250	0.0000	20	0.0000	2.3250	0.0000
2	-1.0300	-0.1565	0.1575	21	0.0000	5.0000	0.0000
3	0.8555	-0.2500	0.3315	22	0.0000	2.4000	0.0000
4	0.0000	0.0000	0.2310	23	1.5925	-0.4125	0.2465
5	-0.8485	-0.2280	0.2925	24	0.0000	0.0000	-0.1125
6	0.0000	0.0000	0.2340	25	0.0000	0.4100	0.0000
7	0.0000	0.0000	0.1500	26	0.3250	-0.1250	0.3350
8	2.1595	0.0000	0.0000	27	0.0000	0.0000	0.3800
9	-0.6100	-0.0630	0.2110	28	0.0000	0.0000	-0.0500
10	0.0000	0.0000	0.0990	29	-0.6680	0.0000	0.0000
11	0.0000	0.0000	-0.2765	30	-0.2605	-1.0090	0.9980
12	-0.1385	0.6140	-0.3470	31	-0.1780	-0.0870	0.2460
13	0.0000	0.0000	0.0660	32	-0.6285	-0.9030	0.0015
14	2.3345	2.5620	0.0000	33	0.0000	1.6000	0.0000
15	0.0000	2.5620	0.0000	34	0.5000	0.2730	0.2250
16	1.1830	-0.1310	0.2525	35	0.0000	0.2730	0.0000
17	0.0000	0.0000	0.2100	36	0.7500	2.7500	0.0000
18	0.0000	1.4000	0.0000	37	0.0000	2.7500	0.0000

$V_{\text{torsion}} = V_1 (1 + \cos(n\phi - \delta)) + V_2 (1 + \cos2(n\phi - \delta)) + V_3 (1 + \cos3(n\phi - \delta))$, n is the periodicity (number of maxima per turn) and δ is the phase shift.$^{(a)}$
Table S19: Torsion Types in Different VB States.

Atom Number	Torsion Type	C1 Attack	C2 Attack								
	State I	State II	State III	State II	State III						
#1	#2	#3	#4								
1	7	9	10	1	1	1	1	1	1	1	1
1	3	5	11	1	1	1	1	1	1	1	1
1	7	9	11	1	1	1	1	1	1	1	1
2	1	3	4	1	1	1	1	1	1	1	1
2	1	3	5	1	1	1	1	1	1	1	1
2	1	7	8	1	1	1	1	1	1	1	1
2	1	7	9	1	1	1	1	1	1	1	1
3	1	7	8	1	1	1	1	1	1	1	1
3	1	7	9	1	1	1	1	1	1	1	1
3	5	11	9	1	1	1	1	1	1	1	1
3	5	11	12	1	1	1	1	1	1	1	1
4	3	5	6	1	1	1	1	1	1	1	1
4	3	5	11	1	1	1	1	1	1	1	1
6	5	11	9	1	1	1	1	1	1	1	1
6	5	11	12	1	1	1	1	1	1	1	1
7	1	3	4	1	1	1	1	1	1	1	1
7	1	3	5	1	1	1	1	1	1	1	1
7	9	11	5	1	1	1	1	1	1	1	1
7	9	11	12	1	1	1	1	1	1	1	1
10	9	11	5	1	1	1	1	1	1	1	1
10	11	12	1	1	1	1	1	1	1	1	1
11	12	15	14	26	0	0	0	0	0	0	0
11	12	15	14	3	3	3	0	0	0	0	0
11	12	15	16	4	4	4	4	4	4	4	4
11	12	15	17	5	5	5	5	5	5	5	5
11	12	15	32	0	0	0	0	0	0	0	0
11	12	32	31	0	9	26	0	0	0	0	0
12	14	15	16	27	0	0	0	0	0	0	0
12	14	15	17	26	0	0	0	0	0	0	0
12	15	32	31	0	0	0	0	0	0	0	0
13	12	14	15	27	0	0	0	0	0	0	0
13	12	15	14	6	6	6	6	6	6	6	6
13	12	15	16	7	7	7	7	7	7	7	7
13	12	15	17	4	4	4	4	4	4	4	4
---	---	---	---	---	---	---					
13	12	32	31	0	10	27					
14	12	15	16	6	0	0					
14	12	15	17	3	0	0					
14	12	15	32	0	0	8					
15	12	32	31	0	9	26					
15	17	18	19	1	1	1					
15	17	18	20	1	1	1					
15	17	22	23	1	1	1					
15	17	22	24	1	1	1					
16	15	32	31	0	0	10					
17	15	32	31	0	0	9					
17	18	20	21	1	1	1					
17	18	20	26	1	1	1					
17	18	20	25	1	1	1					
18	17	22	23	1	1	1					
18	17	22	24	1	1	1					
18	20	26	24	1	1	1					
18	20	26	27	1	1	1					
19	18	20	21	1	1	1					
19	18	20	26	1	1	1					
21	20	26	24	1	1	1					
21	20	26	27	1	1	1					
22	17	18	19	1	1	1					
22	17	18	20	1	1	1					
22	24	26	20	1	1	1					
22	24	26	27	1	1	1					
23	22	24	25	1	1	1					
23	22	24	26	1	1	1					
25	24	26	20	1	1	1					
25	24	26	27	1	1	1					
28	31	32	12	0	14	26					
28	31	32	15	0	0	14					
28	31	34	36	0	0	31					
29	28	31	32	0	13	6					
29	28	31	33	0	0	6					
29	28	31	34	0	0	6					
30	28	31	32	0	13	6					
30	28	31	33	0	0	6					
30	28	31	34	0	0	6					
32	12	15	14	0	8	8					
32	12	15	16	0	6	6					
32	12	15	17	0	3	3					
---	---	---	---	---	---	---	---				
32	31	34	36			32	32				
33	31	32	12			30	32				
33	31	32	15			33	30				
33	31	34	36			32	32				
34	31	32	12			30	32				
34	31	32	15			33	30				
35	45	46	47			33	33				
37	40	41	42	18		37	37				
37	40	41	43	18		37	40				
38	37	40	41	17		38	37				
39	37	40	41	17		39	40				
40	41	43	44	20		40	41				
41	40	41	43	19		41	41				
41	40	46	47	19		41	41				
41	46	47	19			41	41				
41	43	45	46	21		41	43				
41	43	45	35			41	43				
42	41	43	44	20		42	41				
42	41	43	45	20		42	42				
43	45	46	40	22		43	45				
43	45	46	47	22		43	45				
44	43	45	46	21		44	43				
44	43	45	35			44	43				
46	40	41	42	18		46	40				
46	40	41	43	18		46	46				
R1	28	31	32	25		R1	28				
R1	28	31	33	25		R1	28				
R2	37	40	41	16		R2	37				

S42
Table S20: Improper Torsion Parameters.

Improper Type	k_a (kcal·mol$^{-1}$·rad$^{-2}$)	τ_0 (°)
0	Not Set	
1	1.1	180
2	10.5	180
3	1.0	180

Improper torsion potential: $V_{\text{torsion}} = k (\tau - \tau_0)^2$. k is the force constant and τ is the equilibrium angle (in degrees).

Table S21: Improper Torsion Angles of the Different VB States.

#1	#2	#3	#4	State I	State II	State III
1	3	5	4	1	1	1
1	7	9	8	1	1	1
3	1	7	2	1	1	1
11	5	3	6	1	1	1
11	9	7	10	1	1	1
12	11	5	9	1	1	1
15	17	18	22	1	1	1
17	18	19	1	1	1	1
17	22	24	23	1	1	1
18	20	26	21	1	1	1
20	26	24	27	1	1	1
22	24	26	25	1	1	1
28	31	32	33	2	2	0
37	40	41	41	1	1	1
40	41	43	42	3	3	3
40	46	47	45	1	1	1
43	45	46	35	0	0	3
44	43	41	45	1	1	1
S5. Cartesian Coordinates for Key Stationary Points

Optimized stationary points along the reaction profiles of the nucleophilic attack of acetate on (S,S)-TSO. RS, TS, and PS denote reactant, transition and product states respectively.

Reactant

Element	X	Y	Z
C	-4.54071000	-2.80493400	0.25243300
H	-5.10939500	-3.69277100	0.00037200
C	-3.49485400	-2.88013900	1.17225800
H	-3.24790400	-3.82676200	1.63948000
C	-2.76840600	-1.73599500	1.49991700
H	-1.96130000	-1.79738400	2.22260000
C	-3.07323600	-0.50654800	0.90441600
C	-4.12788700	-0.43630900	-0.01375900
H	-4.38283000	0.51597800	-0.46436100
C	-4.85652500	-1.57919900	-0.33649900
H	-5.67389000	-1.51295100	-1.04583500
C	-2.26185300	0.69230800	1.25349200
H	-1.70870100	0.62069800	2.18768300
C	-1.70286500	1.61567500	0.23176600
H	-1.94776900	1.38878800	-0.80381700
O	-2.84320500	1.98872000	1.02561300
C	-0.43604000	2.37256300	0.43154600
C	0.53491400	2.35925600	-0.57650000
H	0.34527300	1.81852800	-1.49795100
C	-0.18730600	3.08808700	1.60899700
H	-0.94245600	3.11900400	2.38593000
C	1.74161200	3.03644900	-0.40516700
H	2.48630300	3.01722200	-1.19281900
C	1.01672500	3.76893800	1.77689400
H	1.19782300	4.32319100	2.69103400
C	1.98605000	3.74272600	0.77258000
H	2.92183200	4.27369700	0.90509200
C	7.41140900	-3.41615600	-2.64784400
H	7.50651100	-3.54972200	-3.72634900
H	8.13225900	-2.65754300	-2.32590100
H	7.67428200	-4.34734500	-2.13965000
C	5.99475100	-2.96668700	-2.24670900
O	5.21566000	-2.59766700	-3.16794300
O	5.72621700	-2.98675900	-1.01307800
TS

C -3.36325800 -1.51569100 -1.81448300
H -4.00426800 -2.36582800 -2.01913500
C -2.66945800 -1.43368600 -0.60701300
H -2.76920700 -2.21985600 0.13305200
C -1.85066200 -0.33705100 -0.34781600
H -1.31460000 -0.27539200 0.59321500
C -1.70468600 0.69335500 -2.75708900
H -3.77005800 -0.54892200 -3.69604800
C -0.81354900 1.82251600 -0.96952600
H -0.46890800 1.87789800 0.05198100
C -0.89443500 3.13961600 -1.64379600
H -1.07302400 3.05990200 -2.72508000
O -2.03338700 3.39471600 -0.88695000
C 0.27462700 4.08699600 -1.42174700
C 1.07105300 4.50316800 -2.49266300
H 0.85516500 4.13355900 -3.48967400
C 0.56000200 4.58296300 -0.14429500
H -0.06783300 4.28815800 0.68919700
C 2.13767500 5.38216000 -2.29463300
H 2.74316400 5.69612200 -3.13828600
C 1.62597800 5.45785800 0.06043400
H 1.83505400 5.83074000 1.05759900
C 2.42101700 5.86002400 -1.01536200
H 3.24788300 6.54387900 -0.85796500
C 2.86045700 0.04576100 -2.47285000
H 3.09231300 -0.36935900 -3.45428400
H 3.60900200 0.80712700 -2.23209400
C 2.92888000 -0.73498900 -1.71303600
C 1.47303400 0.69665200 -2.47040600
O 0.93099900 0.98677700 -3.55008000
O 0.99328700 0.90762700 -1.29794900

Product

C -3.19453 -3.50771 -0.18685
H -3.90255 -4.30983 -0.36372
C -2.55518 -3.39370 1.04673
H -2.76487 -4.10532 1.83783
C -1.64929 -2.35551 1.26721
H -1.16285 -2.26685 2.23365
C -1.35997 -1.41997 0.26610
C -2.01047 -1.54557 -0.96726
	X	Y	Z
H	-1.80184	-0.83512	-1.75586
C	-2.91996	-2.57774	-1.19142
H	-3.41631	-2.65676	-2.15267
C	-0.34843	-0.32699	0.56175
H	-0.33770	-0.16625	1.64000
C	-0.63690	1.06571	-0.07696
H	-0.68190	0.92193	-1.17367
O	-1.80851	1.54759	0.45065
C	0.55112	2.01601	0.15590
C	1.21028	2.61360	-0.92336
H	0.90727	2.35777	-1.93466
C	0.95917	2.37072	1.45016
H	0.45586	1.93456	2.30669
C	2.24376	3.53442	-0.72627
H	2.73516	3.98737	-1.58131
C	1.99313	3.28148	1.65651
H	2.29550	3.53580	2.66736
C	2.64161	3.87039	0.56645
H	3.44398	4.58240	0.72637
C	2.91520	-1.74337	-0.72360
H	3.39315	-1.75673	-1.70159
H	3.51688	-1.17149	-0.01611
H	2.84485	-2.76822	-0.34778
C	1.52417	-1.16611	-0.84064
O	0.93027	-1.02851	-1.89145
O	1.03640	-0.85290	0.36368

S46