Power Transfer by Volume Conduction: In Vitro Validated Analytical Models Predict DC Powers Above 1 mW in Injectable Implants

MARC TUDELA-PI1, LAURA BECERRA-FAJARDO1, ARACELYS GARCÍA-MORENO1, JESUS MINGUILLON1, AND ANTONI IVorra1,2
1Department of Information and Communications Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain
2Serra Húnter Fellow Programme, Universitat Pompeu Fabra, 08018 Barcelona, Spain
Corresponding author: Antoni Ivorra (antoni.ivorra@upf.edu)

This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme under Grant 724244. The work of Antoni Ivorra was supported by the ICREA under the ICREA Academia Programme.

ABSTRACT

Galvanic coupling, or more precisely volume conduction, has been recently studied by different research groups as a method for intrabody communications. However, only in a very few occasions its use for powering implants has been proposed and proper analyses of such capability are still lacking. We present the development and the in vitro validation of a set of analytical expressions able to estimate the maximum ac and dc powers attainable in elongated implants powered by volume conduction. In particular, the expressions do not describe the complete power transfer channel but the behavior of the implants when the presence of an electric field is assumed. The expressions and the in vitro models indicate that time-averaged powers above 1 mW can be readily obtained in very thin (diameter < 1 mm) and short (length < 15 mm) implants when ac fields that comply with safety standards are present in the tissues where the implants are located. The expressions and the in vitro models also indicate that the obtained dc power is maximized by delivering the ac field in the form of short bursts rather than continuously. The study results support the use of volume conduction as a safe option to power implants.

INDEX TERMS
Conducting materials, implantable biomedical devices, implantable electrodes, wireless power transmission.

I. INTRODUCTION

In the field of active implantable medical devices (AIMDs), miniaturization is hampered because of the use of batteries and inductive coupling as energy sources [1]–[4]. Modern battery technologies offer too low energy densities for submillimetric miniaturization [5] and power transfer by inductive coupling, although it offers the additional benefit of allowing communications [6]–[11], requires embedding wide and rigid coils within the implants.

Non-electrical power transfer methods, based on ultrasounds [12]–[16] or infrared light [17], [18], have been occasionally proposed and demonstrated as alternatives to inductive coupling for transmitting power to AIMDs [19].

In addition, research efforts are being carried out for developing the so-called energy harvesters, also known as energy scavengers, which may provide electrical energy to AIMDs from energy sources available within the human body; typically from movements and temperature gradients [20], [21]. However, all these methods require bulky and rigid parts (e.g., piezoelectric crystals or photodiodes) within the implant that are typically much larger than the electronics they feed. To the best of our understanding, for power consumptions in the order of 1 mW, none of these methods is capable of allowing the development of AIMDs shaped as thin rods with diameters below 1 mm, which is a conformation highly beneficial in terms of minimal invasiveness as it allows percutaneous deployment (i.e., injection instead of surgery) [22]–[24].

We have recently shown in vivo that galvanic coupling, or more precisely volume conduction, can be an effective power transfer method for injectable AIMDs [25].
Remarkably, although galvanic coupling for intrabody communications has been studied lately by different research groups [26], it appears that recently only in a very few occasions, besides in our own publications, its use for powering implants has been explicitly proposed [27]–[29]. It must be noted, however, that in a few additional studies power transfer by volume conduction is also proposed but referred to as capacitive coupling [30]–[32].

To the best of our knowledge, we are pioneering the development of thread-like implants to be deployed deeply within tissues and to be powered by volume conduction. Other authors on power transfer by volume conduction have favored planar configurations to be deployed subcutaneously as these configurations obviously exhibit higher power transfer efficiency. However, we deem those planar configurations to be of little practical interest. They require much more complex implantation procedures than those required for tubular geometries which can be deployed by injection or catheterization [23], [33], [34].

The present study is intended to support the exploration of volume conduction as a power transfer method for allowing the development of very thin and flexible AIMDs suitable for deployment through injection or catheterization. We present the development, and the in vitro validation, of a set of analytical expressions able to estimate the maximum ac and dc powers attainable in elongated AIMDs which are powered by volume conduction. In particular, the expressions estimate the maximum ac and dc powers that the implants can obtain (or “harvest”) when ac fields that comply with safety standards are present in the tissues where the implants are located.

II. METHODS: MODELS

A. GENERAL FEATURES OF THE MODELS

The expressions developed in this study model the presence of an elongated implant within a tissue where an electric field exists due to external delivery of current. The modeled implant consists of two pick-up electrodes at its opposite ends and an electrical load (i.e., the electronics to be powered). This setup would represent hypothetical scenarios of use for the proposed power transfer method such as the scenario depicted in Fig. 1.

The electric field is modeled as homogeneous at the location of the implant and it consists in a sinusoidal waveform of frequency f and amplitude E_{peak} that can be applied continuously or in the form of bursts with duration B and repetition frequency F. Unless otherwise stated, $f = 5\,\text{MHz}$. The angle formed by the field and the implant (i.e., direction defined by the two electrodes of the implant) is α. Unless otherwise stated, $\alpha = 0$. In order to develop concise analytical expressions, the following assumptions and simplifications were made (most of them illustrated in Fig. 3):

1) The implant is modeled as two conductive spheres, representing its pick-up electrodes (diameter D and inter-center separation L) and a resistance R_{Load} across these two electrodes that accounts for the electronics of the device (Fig. 3a).

2) The volume of homogeneous medium surrounding the implant is infinite relative to the dimensions of the implant.

3) The medium surrounding the implant (i.e., body tissue) is resistive. That is, rather than modeling the tissue surrounding the implant with, for instance, a Cole impedance model as it would be appropriate in a multi-frequency study, the tissue is modeled with a single resistance. This assumption is supported by the fact that at a single sinusoidal frequency the passive electrical properties of any material are appropriately modeled by a RC circuit (see Fig. 3b) and, at the frequencies considered here ($1\,\text{MHz} < f < 20\,\text{MHz}$), soft tissues are predominately resistive and the capacitive component can be neglected [35]. In particular, the phase of the admittivity of muscle tissue is only 11.5° at $1\,\text{MHz}$, 8.7° at $10\,\text{MHz}$ and 10.8° at $20\,\text{MHz}$ [36].

4) The passive electrical properties of the medium (i.e., body tissue) surrounding the implant are isotropic. This assumption is supported by the fact that when high-frequency current is applied through the tissues,
the capacitive membranes of the cells are virtually short-circuited, thus making the tissue isotropic [37]. Even in the case of muscle tissue, which is highly anisotropic at low frequencies, it can be considered isotropic for frequencies above 1 MHz [38].

5) The skin effect is considered negligible. The skin effect causes ac current density to concentrate near the surface of the conductors and hinders electric field penetration. However, in human tissues, because their relatively poor conductivity, the skin effect only becomes significant at frequencies well above 10 MHz [40]. As latter discussed, for power transfer by volume conduction, we recommend the use of field frequencies below 20 MHz because of the skin effect.

6) The electrode-electrolyte interface impedance is considered negligible. This assumption is supported by the fact that the interface impedance of metal electrodes is roughly equivalent to a capacitance above 0.1 F/m² [39] that, for the electrode dimensions and the frequencies considered here, translates into an impedance magnitude in the order of tenths of ohm or a few ohms (e.g., 0.4 Ω for a spherical electrode with a diameter D of 0.5 mm and at a frequency f of 5 MHz). Therefore, the electrode-electrolyte impedance is negligible to the equivalent resistance across the implant electrodes (see Section II.C).

B. LIMITATIONS IMPOSED BY SAFETY STANDARDS

The safety standards developed by IEEE [41] and the International Commission on Non-Ionizing Radiation Protection (ICNIRP) [42], [43] implicitly limit the maximum value of E_{peak}. These safety standards for human exposure to electromagnetic fields identify two general sources of risk regarding passage of radiofrequency (RF) currents through the body: 1) risk of thermal damage due to the Joule heating and 2) risks caused by unsought electrical stimulation of excitatory tissues with harmful effects ranging from mild perception to death by ventricular fibrillation.

The limitations specified by the standards regarding heating are indicated as a limitation to the so-called Specific Absorption Rate (SAR). It can be calculated at any point of the tissue with the following expression

$$\text{SAR} = \frac{\sigma (E_{\text{rms}})^2}{\rho}$$ \hspace{1cm} (1)

where σ is the electrical conductivity of the tissue (S/m), ρ is the mass density of the tissue (kg/m³) and E_{rms} is the root mean square value of the electric field in the tissue (V/m).

Both the IEEE standard and the ICNIRP guidelines indicate the same SAR limitations averaged over 6 minutes and 10 g mass of tissue for localized exposure in the frequency range from 100 kHz to 3 GHz. For general public and at any human body location the SAR limit is 2 W/kg. For occupational exposure or persons in controlled environments – as would be the case considered here – this limit is 10 W/kg and it is further increased up to 20 W/kg if the localized exposure is at extremities. The SAR limit entails the following limitation for continuous sinusoidal fields

$$E_{\text{peak}} \leq \sqrt{\frac{2\rho \text{SAR}}{\sigma}}$$ \hspace{1cm} (2)

and for fields applied in the form of sinusoidal bursts

$$E_{\text{peak}} \leq \sqrt{\frac{2\rho \text{SAR}}{\sigma FB}}.$$ \hspace{1cm} (3)

Unless otherwise stated, here the SAR limit of 10 W/kg averaged over 10 g of tissue has been considered. At 5 MHz and in muscle tissue ($\sigma \approx 59$ S/m [36], $\rho \approx 1000$ kg/m³ [44]), this field amplitude limit is roughly 180 V/m for $FB = 1$ and 580 V/m for $FB = 0.1$.

The standards indicate that above a specified frequency the risks caused by unsought electrical stimulation are negligible and only the SAR limitation applies. This frequency is 5 MHz in the case of the IEEE standard, which we deem more precisely defined than the ICNIRP standard regarding the specification of the limits to avoid the risks of unsought stimulation. This eliminates the risk of unsought electrical stimulation for continuous sinusoidal fields. However, for sinusoidal fields applied in the form of bursts, the IEEE standard rightfully indicates that the low frequency harmonics must be checked and it specifies

$$\sum_{0}^{5\text{MHz}} \frac{E_n}{MPE_n} \leq 1$$ \hspace{1cm} (4)

where E_n is the magnitude of the n^{th} Fourier component of the exposure E, and MPE_n is the maximum permissible exposure for n frequency. For persons in controlled environments and exposed tissues that are neither the brain nor the heart, the standard determines a MPE of $2.1 \sqrt{2}$ V/m for frequencies below 3350 Hz. For frequencies above, the MPE is calculated as

$$MPE_n = \frac{2.1 \sqrt{2}}{3350 f_n}.$$ \hspace{1cm} (5)

This condition establishes another limit to E_{peak} that can be lower than the threshold specified by the SAR limitation (3) for low duty cycles (see appendix A). For muscle tissue at 5 MHz ($\sigma = 0.59$ S/m [36]), if $FB \geq 0.1$ then this second threshold is higher than that imposed by the SAR limitation and hence it can be neglected.

C. ABSOLUTE MAXIMUM ATTAINABLE POWER

The implant is seen as a load by the tissues surrounding it. Therefore, since the passive electrical properties of tissues are linear, a Thévenin equivalent circuit can be implemented (Fig. 3b).

This Thévenin model (circuit outside dashed square/box in Fig. 3b composed of $v_{\text{FB}}(t)$ and R_{FB}) locally models the tissues surrounding the implant, the implant electrodes and the presence of the electric field.
The Thévenin voltage is the open-circuit voltage. That is, the voltage across the implant electrodes when $R_{\text{Load}} = \infty$. If the electric field present at the location of the implant is sinusoidal, the Thévenin voltage ($V_{\text{Th}}(t)$) is also sinusoidal with amplitude [45]

$$V_{\text{Th peak}} = E_{\text{peak}} L \cos (\alpha)$$

or, in general, for any field waveform

$$V_{\text{Th rms}} = E_{\text{rms}} L \cos (\alpha).$$

The power drawn by the load is

$$P_{\text{Load}} = \frac{V_{\text{Load}}^2}{R_{\text{Load}}} = \frac{R_{\text{Load}}}{R_{\text{Th}} + R_{\text{Load}}}.$$ \hspace{1cm} (8)

For the circuit described in Fig. 3b, P_{Load} is maximized when R_{Load} matches R_{Th}. Hence the maximum power that the implant can draw is

$$\max (P_{\text{Load}}) = \frac{\max (V_{\text{Th rms}})^2}{4R_{\text{Th}}}.$$ \hspace{1cm} (9)

D. MAXIMUM UNREGULATED DC POWER

Most AIMDs will require dc power for functioning. In Fig. 4 it is represented the most likely circuit topology to be employed in AIMDs for extracting a dc power: a diode bridge full-wave rectifier combined with a smoothing capacitor.

For analyzing the behavior of this system, a procedure similar to that described in [47] is followed. Two assumptions are made. First, it is assumed that the ripple factor of the rectifier is almost zero. That is, the load voltage, $v_{\text{Load}}(t)$, is assumed to be constant (i.e., $v_{\text{Load}}(t) = V_{\text{Load}}$) once the circuit has reached steady-state.

Second, the diodes of the full-wave rectifier are modeled by the series combination of an ideal diode, an ideal voltage source (V_{Diode}) which accounts for the forward voltage and a resistance (R_{Diode}). Initially, it is also assumed that the electric field at the location of the implant is a continuous sinusoidal field.

Fig. 5 illustrates the main waveforms of the circuit under the previous assumptions.

The constant load voltage, V_{Load}, can be expressed as being equal to the value of the Thévenin voltage at specific time points

$$V_{\text{Load}} = |v_{\text{Th}}(kT_t \pm t_1)| \quad \text{or} \quad V_{\text{Load}} = |V_{\text{Th peak}} \cos (kT_t \omega \pm \varphi)|$$

where k is an integer, T_t is the period of the rectified signal, ω is the angular frequency of the field and φ is a phase angle.
that relates both voltages. In particular, for \(k = 0 \)

\[
V_{\text{Load}} = V_{\text{Th peak}} \cos (\phi).
\]

(13)

On the other hand, \(i_{\text{Load}}(t) \) can be expressed as

\[
i_{\text{Load}}(t) = |i_{\text{Implant}}(t)| - i_C(t).
\]

(14)

Since \(v_{\text{Load}}(t) \) is constant, \(i_{\text{Load}}(t) \) is also constant

\[
i_{\text{Load}} = \frac{1}{T_r} \int_0^{T_r} i_{\text{Load}}(t) \, dt
\]

\[
= \frac{1}{T_r} \int_0^{T_r} |i_{\text{Implant}}(t)| - i_C(t) \, dt.
\]

(15)

And since the average of \(i_C(t) \) must be zero

\[
i_{\text{Load}} = \frac{1}{T_r} \int_0^{T_r} |i_{\text{Implant}}(t)| \, dt.
\]

(16)

The diode bridge only conducts when \(|v_{\text{Th}}(t)| > v_{\text{Load}}(t) + 2V_{\text{Diode}} \). Therefore (17), as shown at the bottom of this page.

As indicated in Fig. 5, \(i_{\text{Implant}} \) flows between \(kT_r - t_2 \) and \(kT_r + t_2 \). These time points can be related to the phase of \(v_{\text{Th}}(t) \) defining a new phase angle

\[
\theta = \omega_r T_2 = \cos^{-1} \left(\frac{V_{\text{Load}} + 2V_{\text{Diode}}}{V_{\text{Th peak}}} \right).
\]

(18)

Then \(i_{\text{Load}} \) can be calculated using (16) and (17) as follows

\[
i_{\text{Load}} = \frac{1}{T_r} \left[\int_0^{t_2} \frac{V_{\text{Th peak}} \left(\cos \omega t - \cos \phi \right) - 2V_{\text{Diode}}}{2R_{\text{Diode}} + R_{\text{Th}}} \, dt
\]

\[
+ \int_{T_r - t_2}^{T_r} \frac{V_{\text{Th peak}} \left(\cos \omega t - \cos \phi \right) - 2V_{\text{Diode}}}{2R_{\text{Diode}} + R_{\text{Th}}} \, dt \right]
\]

\[
= \frac{2}{\pi} \frac{V_{\text{Th peak}} \sin \theta - \theta (V_{\text{Load}} + 2V_{\text{Diode}})}{2R_{\text{Diode}} + R_{\text{Th}}}.
\]

(19)

From (13) and (19), the power obtained at the load is

\[
P_{\text{Load dc}} = \frac{V_{\text{Load}}}{2} \frac{V_{\text{Th peak}}}{R_{\text{Th}}} \frac{\cos \phi}{\left(2R_{\text{Diode}} + R_{\text{Th}} \right)} \cos \theta \left(V_{\text{Load}} + 2V_{\text{Diode}} \right).
\]

(20)

It can be numerically verified that for a given \(V_{\text{Th peak}} \) and a given \(V_{\text{Diode}} \) there is an optimum value of \(V_{\text{Load}} \) that maximizes the obtained dc power.

The absolute maximum possible dc power will be obtained in the case of no losses, that is, in the case of ideal diodes (i.e., \(V_{\text{Diode}} = 0 \) and \(R_{\text{Diode}} = 0 \)). In this case (18) can be rearranged as

\[
v_{\text{Load}} = V_{\text{Th peak}} \cos (\theta).
\]

(21)

Comparing (13) with (21), we can assert that, for this case, \(\theta \) is equal to \(\phi \). Thus (20) becomes

\[
P_{\text{Load dc ideal}} = \frac{2V_{\text{Th peak}}}{\pi R_{\text{Th}}} \cos \phi \left(\sin \phi - \cos \phi \cos \phi \right).
\]

(22)

And it can be numerically determined that \(P_{\text{Load dc ideal}} \) is maximum when \(\phi \approx 1.166 = \phi_{\text{opt}} \left(V_{\text{Load}} \approx 0.394 \right. \) \(V_{\text{Th peak}} \) and \(R_{\text{Th}} \approx 1.35R_{\text{Diode}} \).

Substituting (6) into (22), and noticing that \(E_{\text{peak}} \) has to fulfill (2), the maximum dc power that the implant can draw is

\[
\max (P_{\text{Load dc ideal}}) = \frac{4 \max (\text{SAR}) \rho L^2}{\pi R_{\text{Th}} \sigma} \cos \phi_{\text{opt}} \left(\sin \phi_{\text{opt}} - \phi_{\text{opt}} \cos \phi_{\text{opt}} \right).
\]

(23)

For conductive spherical electrodes \(R_{\text{Th}} \) is calculated as (10), and in this case (23) becomes

\[
\max (P_{\text{Load dc ideal}}) = \frac{4 \max (\text{SAR}) \rho D^2 L^2}{\pi} \cos \phi_{\text{opt}} \left(\sin \phi_{\text{opt}} - \phi_{\text{opt}} \cos \phi_{\text{opt}} \right).
\]

(24)

The ratio between the maximum dc power that the implants can draw (24) and the absolute maximum attainable power (11) is

\[
\eta = \frac{\max (P_{\text{Load dc ideal}})}{\max (P_{\text{Load}})} = \frac{16}{\pi} \cos \phi_{\text{opt}} \left(\sin \phi_{\text{opt}} - \phi_{\text{opt}} \cos \phi_{\text{opt}} \right) \approx 0.9226.
\]

(25)

The above expressions were found under the assumption of a continuous sinusoidal field. For fields in the form of
sinusoidal bursts with duration B and repetition frequency F,
$$I_{Load\ FB} = \frac{2FB V_{\text{Th\ peak}} \sin \theta - \theta (V_{\text{Load}} + 2V_{\text{Diode}})}{\pi (2R_{\text{Diode}} + R_{\text{Th}})}$$
(26)

where the product FB is the duty cycle of the bursts and it is comprised between FB_{min} and 1, where FB_{min} is the minimum duty cycle to prevent unsought stimulation.

Hence the obtained power is
$$P_{\text{Load\ dc\ FB}} = V_{\text{Load}} I_{\text{Load\ FB}} = \frac{2FB V_{\text{Th\ peak}} \cos \varphi}{\pi (2R_{\text{Diode}} + R_{\text{Th}})} \cdot \left[V_{\text{Th\ peak}} \sin \theta - \theta (V_{\text{Load}} + 2V_{\text{Diode}})\right].$$
(27)

If $V_{\text{Th\ peak}} \gg V_{\text{Diode}}$ the phase angle θ defined in (18) will be equal to φ, see (13). Therefore, replacing θ by φ, and substituting (13) into (27) lead to
$$P_{\text{Load\ dc\ FB}} (V_{\text{Th\ peak}} \gg 2V_{\text{Diode}}) = \frac{2FB V_{\text{Th\ peak}} \cos \varphi}{\pi (2R_{\text{Diode}} + R_{\text{Th}})} \cos \varphi \left[\sin \varphi - \varphi \cos \varphi\right].$$
(28)

E. MAXIMUM VOLTAGE-REGULATED DC CURRENT

In most practical cases the dc voltage will have to be regulated at a specific magnitude (e.g., +3.3 V) for powering the circuitry of the AIMD. Although switching regulators may be an option, because of size limitations, low-dropout (LDO) linear regulators will probably be preferred.

The circuit in Fig. 6 represents such scenario. Linear regulators provide a regulated dc voltage at their output (V_{Load}) if the dc voltage at their input satisfies $V_{\text{Reg}} \geq V_{\text{Load}} + V_{\text{Drop}}$, where V_{Drop} is the so-called dropout voltage, and they waste a small portion (I_Q) of the input current (I_{Reg}) so that $I_{\text{Load}} = I_{\text{Reg}} - I_Q$.

In this case, since V_{Load} is fixed, the objective is not to determine which is the maximum dc power at the load ($V_{\text{Load}} I_{\text{Load}}$) but the maximum current that can be obtained.

The load seen by the diode-bridge and the smoothing capacitor (C_1) is the combination of the actual load (R_{Load}) and the load of the LDO regulator. Hence the power expressions obtained above must be equaled to
$$P_{\text{Load+Reg}} = V_{\text{Reg}} I_{\text{Reg}} = V_{\text{Reg}} (I_{\text{Load}} + I_Q).$$
(29)

The maximum regulated dc current that can be obtained (I_{Load}) is that one that ensures that the regulator works properly, that is, that for $V_{\text{Reg}} = V_{\text{Load}} + V_{\text{Drop}}$.

III. METHODS: SETUP FOR IN VITRO VALIDATION OF THE MODELS

An in vitro experimental setup that replicates the assumptions made to develop the previous expressions was implemented (Fig. 7).

The ac electric field was delivered by two 86.5 mm × 30 mm parallel aluminum plates acting as the external electrodes.

These two electrodes were attached to opposite internal sides of a polycarbonate container (inner dimensions: 84 mm × 86.5 mm × 30 mm) filled with a NaCl solution whose conductivity was measured with a conductivity tester (HI 98312 by Hanna). Sinusoidal voltages, either continuous or in the form of bursts, were generated across the electrodes by the combination of a function generator (4064 by BK Precision) and a custom-made high-frequency (HF) high-voltage (HV) amplifier.

In all instances, the applied voltage was measured using a digital oscilloscope (TPS2014 by Tektronix). Unless otherwise stated, the amplitude of the applied voltage (A) was adjusted to obtain a SAR of 10 W/kg (in particular, for the described experimental setup, this corresponds to 2.2 W). That is,
$$A = \sqrt{\frac{2\rho SAR}{\sigma FA}} d$$
(30)

where d is the distance between the plate electrodes (84 mm).

The dimensions of this setup were chosen to be large for maximizing the uniformity of the electric field at the location of the pick-up electrodes while allowing the use of the custom-made high-frequency high-voltage amplifier (limited to 180 V, 1 A and 5 MHz).

The pick-up electrodes of the implants were represented by stainless steel (SAE 317) spherical electrodes with three different diameters: 0.5 mm, 1 mm, and 1.5 mm. Each electrode was laser welded to a 5 cm piece of 32 AWG enameled copper
wire. The ends of the copper wires were connected to the validation circuits described below.

A. VALIDATION CIRCUIT FOR ABSOLUTE MAXIMUM ATTAINABLE POWER

To validate (11), the pick-up electrodes were connected to a high-precision potentiometer acting as a variable resistor (see validation circuit A. in Fig. 7). Before connection, the resistance of the potentiometer (R_{Load}) was adjusted to match R_{Th} as provided by (10). Such adjustment was performed using a multimeter (38XR-A by Amprobe). After connection, the load voltage, $v_{Load}(t)$, was recorded using the digital oscilloscope and max (P_{Load}) was calculated as the square of the rms recorded voltage divided by the value of R_{Load}, considering a time interval of 5 μs.

B. VALIDATION CIRCUIT FOR MAXIMUM UNREGULATED DC POWER

To validate (20) and (27), it was implemented a PCB with the implant circuit represented in Fig. 4. The diodes of the diode-bridge were Schottky diodes (RB521ZS-30 by Rohm Semiconductor). The capacitor C had a capacitance of 10 μF. R_{Load} was again a high-precision potentiometer acting as a variable resistor.

The diode model parameters used in the analytical expressions were: $V_{Diode} = 0.2$ V and $R_{Diode} = 14$ Ω.

In the experiments reported below in which the value of R_{Load} was not fixed, the expression for $P_{Load dc}$ was numerically maximized for obtaining the optimum ϕ value and hence the optimum R_{Load} was found for maximum power. When the value of R_{Load} was fixed, the expression for $P_{Load dc FB}$ was numerically maximized for obtaining the optimum FB value.

C. VALIDATION CIRCUIT FOR MAXIMUM VOLTAGE-REGULATED DC CURRENT

A LDO regulator (ADP7112 by Analog Devices) adjusted to produce +3.3 V was mounted on the referred PCB to implement the implant circuit in Fig. 6. To study its analytical behavior, its quiescent current (I_Q) was set to 80 μA and its dropout voltage (V_{Drop}) to 30 mV. Both values are given by the manufacturer for $I_{Load} = 10$ mA. The capacitor C had a capacitance of 10 μF.

IV. RESULTS

A. DEPENDENCY ON INTER-ELECTRODE DISTANCE AND ON ELECTRODES DIAMETER

At $f = 5$ MHz, for a SAR of 10 W/kg and for the properties of a saline solution that resembles the properties of muscle tissue, Fig. 8 displays a set of results obtained by applying the analytical expressions together with the corresponding validation results using the in vitro setup. In particular, the absolute maximum attainable power, max (P_{Load}), in Fig. 8a, and the maximum obtained dc (unregulated) power, max (P_{LoadDC}) and max ($P_{LoadDC FB}$), in Fig. 8b and in Fig. 8c, are represented as a function of the inter-electrode distance (L) and the electrodes diameter (D). Besides confirming the validity of the models, these results indicate that dc powers above 1 mW can be obtained in very thin (diameter < 1 mm) and short (length < 15 mm) implants. Harvested dc power is larger when the sinusoidal electric field is delivered in the form of bursts (Fig. 8c), than when it is delivered continuously (Fig. 8b). However, even when the field is delivered in the form of bursts, the obtained dc power is still considerably smaller than the absolute maximum attainable power (Fig. 8a). This fall in performance becomes especially
noticeable for short inter-electrode distances. As further stressed in the following sub-sections, fall in performance is more severe for short implants because the voltage picked up by the implant electrodes approaches the magnitude of the forward voltage of the rectifier diodes and hence the relative energy losses are higher.

B. DEPENDENCY ON THE CONDUCTIVITY OF THE MEDIUM

As (11) indicates, and as we *in vitro* demonstrated in [48], the absolute maximum attainable power is independent of the conductivity of the medium.

Therefore, here only the dependency of max (\(P_{\text{LoadOptDC}}\)) on the conductivity of the medium is inspected. In Fig. 9, harvested dc power is surveyed for three different NaCl solutions with conductivities representative of those found in human tissues. In the case of a continuous field (Fig. 9a) it can be observed a notable dependency on the conductivity of the medium.

For instance, for \(L = 3\) cm, the obtained dc power for \(\sigma = 0.2\) S/m nearly doubles that for \(\sigma = 1.52\) S/m. The main reason for this dependency is that \(E_{\text{peak}}\), and hence \(V_{\text{Thpeak}}\), must be reduced at higher conductivities for keeping the SAR value (2) and that causes bigger relative losses at the diodes of the full-wave rectifier.

On the other hand, if the field is applied in the form of bursts (Fig. 9b), since \(E_{\text{peak}}\), and hence \(V_{\text{Thpeak}}\), can be higher for the same SAR, the obtained dc power is not only higher but also less dependent on the conductivity of the medium. For instance, for \(L = 3\) cm, the dc power for \(\sigma = 0.2\) S/m is only about 20% higher than that for \(\sigma = 1.52\) S/m.

C. DEPENDENCY ON LOAD RESISTANCE AND IMPEDANCE MATCHING

In the two previous sub-sections it was applied the optimum \(R_{\text{Load}}\) to maximize the harvested power. Since, in most scenarios, \(R_{\text{Load}}\) will be a non-adjustable parameter, it is worth inspecting how the harvested power depends on it.

In Fig. 10 it is displayed the dependency of the maximum attainable power on the value of \(R_{\text{Load}}\) for the range from 200 \(\Omega\) to 200 k\(\Omega\) in the case of a modeled implant with \(D = 1\) mm and \(L = 30\) mm in a medium with \(\sigma = 0.58\) S/m. For these parameters \(R_{\text{Th}}\) is 550 \(\Omega\). If the voltage is not rectified, that is, if the resistive load is directly connected to the implant electrodes, the dissipated power at the load (\(P_{\text{Load ac}}\)) is maximum when \(R_{\text{Load}} = R_{\text{Th}}\). That is the point at which the absolute maximum attainable power is reached.

Similarly, a (lower) maximum harvested dc power is found at a \(R_{\text{Load}} = R_{\text{LoadOpt dc}}\), if the sinusoidal electric field is applied continuously.

In both cases the obtained power decreases substantially when \(R_{\text{Load}}\) is lower or higher than the optimum one. However, if the electric field is applied in the form of bursts, the drop in harvested dc power can be mitigated, and actually reverted, for loads above \(R_{\text{LoadOpt dc}}\). The use of bursts introduces an additional parameter for allowing power optimization: the duty cycle, \(FB\).

By reducing \(FB\) the loss in performance due to the increase of \(R_{\text{Load}}\) can be compensated. Moreover, since by reducing \(FB\) the field amplitude, \(E_{\text{peak}}\), can be increased for the same SAR value, the losses associated with the diodes are reduced and hence the power obtained at the load is higher.
the case of optimum FB current of $500 \mu A$.

The importance of optimizing the duty cycle: to obtain a load.

For a range of inter-electrode distances (L) proposed and studied. And, to the best of our knowledge, the use of volume conduction for powering AIMDs has been

As stated in the introduction, only in a very few occasions the use of volume conduction for powering AIMDs has been proposed and studied. And, to the best of our knowledge, no commercial AIMDs use it. The reasons why other teams are reluctant – or did not conceive – to use volume conduction for power thin and elongated implants can only be guessed.

One of the few studies in which volume conduction has been studied for powering elongated implantable devices is [29]. Although that study reinforces the main notion of the present study (i.e., volume conduction can be an effective method for powering AIMDs), it must be noted that some of the results and conclusions of that study are implausibly benign according to the assumptions and results of the present study. For instance, that study reports that with an inter-electrode distance of only 1 mm the implant can harvest a dc voltage of 0.44 V when the SAR is below 1 W/kg ($f = 13.9 \text{ MHz, } FB = 1$). We deem this result is implausible because a harvested dc voltage of 0.44 V by an implant placed 5 cm inside the tissues would imply $V_{\text{Th}} \geq 0.44 \text{ V}$ which in turn would imply $E_{\text{Th}} \geq 440 \text{ V/m}$ in its surrounding tissues. Furthermore, since volume conduction is a non-focalized wireless power transfer method, the electric field is expected to be higher in more superficial locations. Although we do not have enough information to compute the exact value of the SAR averaged over 10 g of tissue, the magnitude of the electric field in the implant location together with the distance between external electrodes (from 2 to 5 cm), leads us to be skeptical about the feasibility of achieving the powers reported in [29] without exceeding the limits established by international safety standards. Another result of that study that we deem implausible is the absence of a significant impact on the obtained power by the relative angle between the external electrodes and the implant electrodes. Since the electric field direction depends on the orientation of the external electrodes, such result would imply that the obtained power is independent of α. And this, as illustrated in Fig. 12, is far from what our models and previous results [25] indicate: if the electric field is perpendicular to the implant then the harvested power is null.

Powering AIMDs by volume conduction requires the delivery of currents through external electrodes so that electric fields appear in the tissues where the AIMDs are located. For the sake of brevity and simplicity, the aspects related to current delivery are intentionally neglected in the present study; the presence of a homogeneous electric field is assumed. We will treat these aspects in subsequent studies. However, there is an aspect worth briefly discussing now: the impact of the skin effect. In particular, at 10 MHz the current density 10 cm deep within muscles, $J_{10 \text{ cm}}$, is approximately half

![FIGURE 11. Dependency of the maximum voltage-regulated ($\pm 3.3 \text{ V}$) dc current attainable at the implant load on the inter-electrode distance (FB) for three different field patterns: continuous (green), in the form of bursts with a constant duty cycle of 0.2 (dark blue) and in bursts with an optimized duty cycle (blue). Conditions: $SAR = 10 \text{ W/kg, } f = 5 \text{ MHz, } \sigma = 0.58 \text{ S/m (0.3}\% \text{ NaCl), } \rho = 1000 \text{ kg/m}^3$ and $D = 1 \text{ mm}$. Solid lines: results from the analytical expressions; continuous (19), bursts (26). Markings: experimental results; using the circuit represented in Fig. 6.](image-url)
Additionally, it must be noted that the results obtained here demonstrate that the maximum attainable power can be well above 1 mW and that such power is enough to supply the electronics of most AIMDs. For instance, power consumption of the electronics of a recently commercialized injectable glucose sensor (Eversense by Senseonics Inc.) is in the order of 250 µW [50].

VI. CONCLUSION

This study supports the use of volume conduction as a safe option to power very thin and flexible AIMDs. It provides a theoretical framework for optimizing both the design of the implants and the applied electric fields used to power them.

The developed analytical expressions, which are in vitro validated in the present study, indicate that dc powers above 1 mW can be readily obtained in very thin (diameter < 1 mm) and short (length < 15 mm) implants when ac electric fields that comply with safety standards are present in the tissues where the implants are located. Other main conclusions are:

1) The obtained dc power is maximized by delivering the ac field in the form of short bursts rather than continuously.
2) The maximum attainable dc power depends on the conductivity of the medium. Such dependency is minimized by delivering the ac field in the form of short bursts rather than continuously.
3) Both the absolute maximum attainable power and the maximum attainable dc power exhibit a distinctive dependency on the frequency. If the ac field is delivered in the form of bursts rather than continuously, it is possible to set the value of the optimum load resistance by adjusting the duty cycle of the bursts.

The use of volume conduction for powering AIMDs could overcome some of the limitations imposed by other technologies in terms of size and invasiveness. This would improve the deployment and usability of AIMDs in several applications such as bioelectronic medicines [51], neuro-prostheses [52] and implantable sensors [53].

APPENDIX

Appendix A. Maximum field amplitude limited by unsought stimulation in the case of sinusoidal electric fields applied in the form of bursts.

The waveform obtained for this case considering a single period can be mathematically expressed as

\[
E(t) = \begin{cases}
E_{\text{peak}} \sin(2\pi ft), & |t| < B/2 \\
0, & |t| \geq B/2
\end{cases}
\] (A.1)

where \(E_{\text{peak}}\) must fulfill (3) to avoid tissue overheating. The complex Fourier series representation of (A.1) can be defined as

\[
E(t) = \sum_{n=\infty} c_n e^{i2\pi F t} .
\] (A.2)
The complex Fourier coefficients of (A.2) can be determined as

\[
c_n = F \int_{-B/2}^{B/2} E(t) e^{-in\pi Ft} dt \quad (A.3)
\]

Integrating (A.3) and applying

\[
E_n = \begin{cases} \frac{E_{peak}FB}{2}, & F_n = f \\ \frac{Fn}{2|c_n|}, & F_n \neq f \end{cases} \quad (A.4)
\]

the \(E_n \) magnitude of the \(n \)th Fourier component of the exposure field can be determined. Finally, the obtained set of \(E_n \) has to fulfill (4) to avoid possible stimulation. In this studied case, (4) limits the maximum \(E_{peak} \) when \(FB \) tends to be much lower than 1. This fact is illustrated in Fig. 13.

Considering a \(SAR = 10 \text{ W/kg}, f = 5 \text{ MHz}, \sigma = 0.59 \text{ S/m}, \) and \(\rho = 1000 \text{ kg/m}^3 \).

REFERENCES

[1] M. Nathan, “Microbattery technologies for miniaturized implantable medical devices,” Current Pharmaceutical Biotechnol., vol. 11, no. 4, pp. 404–410, Jun. 2010.

[2] S. Rao and J. Chiao, “Body electric,” IEEE Microw. Mag., vol. 16, no. 2, pp. 54–64, 2015.

[3] A. Kiourti and K. S. Nikita, “A review of in-body biotelemetry devices: Implantables, ingestibles, and injectables,” IEEE Trans. Biomed. Eng., vol. 64, no. 7, pp. 1422–1430, Jul. 2017.

[4] H. Munaf, “Leadless pacemakers?: A new era in cardiac pacing,” J. Cardiol., vol. 67, no. 1, pp. 1–5, 2016.

[5] M. Rasouli and L. S. J. Phee, “Energy sources and their development for application in medical devices,” Expert Rev. Med. Devices, vol. 7, no. 5, pp. 693–709, Jan. 2014.

[6] D. Guiraud, T. Stiegitz, G. Taroni, and J.-L. Divoux, “Original electronic design to perform epi- and neural stimulation in paraplegia,” J. Neur. Eng., vol. 3, no. 4, pp. 276–286, Sep. 2006.

[7] M. Ghovanloo and K. Najafi, “A wideband frequency-shift keying wireless link for inductively powered biomedical implants,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 12, pp. 2374–2383, Dec. 2004.

[8] S. A. Mirbozorgi, P. Yeon, and M. Ghovanloo, “Robust wireless power transmission to mm-sized free-floating distributed implants,” IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 3, pp. 692–702, Jun. 2017.

[9] D. Ahn and M. Ghovanloo, “Optimal design of wireless power transmission links for millimeter-sized biomedical implants,” IEEE Trans. Biomed. Circuits Syst., vol. 10, no. 1, pp. 125–137, Feb. 2016.

[10] N. Ha-Van and C. Seo, “Modeling and experimental validation of a butterfly-shaped wireless power transfer in biomedical implants,” IEEE Access, vol. 7, pp. 107225–107233, 2019.

[11] H.-J. Kim, H. Hirayama, S. Kim, K. J. Han, R. Zhang, and J.-W. Choi, “Review of near-field wireless power and communication for biomedical applications,” IEEE Access, vol. 5, pp. 21264–21285, 2017.

[12] M. Sahin and V. Pikov, “Wireless microstimulators for neural prosthetics,” Crit. Rev. Biomed. Eng., vol. 39, no. 1, pp. 63–77, 2011.

[13] D. Seo, J. M. Carmena, J. M. Rabaey, M. M. Maharbiz, and E. Alon, “Model validation of unthethered, ultrasonic neural dust motes for cortical recording,” J. Neurosci. Methods, vol. 244, pp. 114–122, Apr. 2015.

[14] A. Ibrahim, M. Meng, and M. Kiani, “A comprehensive comparative study on inductive and ultrasonic wireless power transmission to biomedical implants,” IEEE Sensors J., vol. 18, no. 9, pp. 3813–3826, May 2018.

[15] T. C. Chang, M. J. Weber, J. Charthad, S. Baltasvias, and A. Arbabian, “End-to-end design of efficient ultrasonic power links for scaling towards submillimeter implantable receivers,” IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 5, pp. 1100–1111, Oct. 2018.

[16] R. V. Taalla, M. S. Areefin, A. Kaynak, and A. Z. Kouzani, “A review on miniaturized ultrasonic wireless power transfer to implantable medical devices,” IEEE Access, vol. 7, pp. 2092–2106, 2019.

[17] K. Mathieson, J. Loudin, G. Goetz, P. Huie, L. Wang, T. I. Kamins, L. Galambos, R. Smith, J. S. Harris, A. Sher, and D. Palanker, “Photo-voltaic retinal prosthesis with high pixel density,” Nature Photon., vol. 6, no. 6, pp. 391–397, May 2012.

[18] A. Abdo, M. Sahin, D. S. Freedman, E. Cevik, P. S. Spuhler, and M. S. Unlu, “Floating light-activated microelectrode stimulators tested in the rat spinal cord,” J. Neural Eng., vol. 8, no. 5, Sep. 2011, Art. no. 056012.

[19] A. Kim, M. Ochoa, R. Rahimi, and B. Ziaie, “New and emerging energy sources for implantable wireless microdevices,” IEEE Access, vol. 3, pp. 89–98, 2015.

[20] A. Cadei, A. Dionisi, E. Sardini, and M. Serpelloni, “Kinetic and thermal energy harvesters for implantable medical devices and biomedical autonomous sensors,” Meas. Sci. Technol., vol. 25, no. 1, Nov. 2013, Art. no. 012003.

[21] M. Dezyni, H. Ghaffoorifar, S. Sheikhhaei, and W. A. Serdijn, “A 60 mV input voltage, process tolerant start-up system for thermoelectric energy harvesting,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 10, pp. 3568–3577, Oct. 2018.

[22] P. R. Troyk, “Injectable electronic identification, monitoring, and stimulation systems,” Annu. Rev. Biomed. Eng., vol. 1, no. 1, pp. 177–209, Aug. 1999.

[23] M. I. Kane, P. P. Breen, F. Quondamatteo, and G. Olaighin, “BION microstimulators: A case study in the engineering of an electronic implantable medical device,” Med. Eng. Phys., vol. 33, no. 1, pp. 7–16, Jan. 2011.

[24] X. Li, W. A. Serdijn, W. Zheng, Y. Tian, and B. Zhang, “The injectable neurostimulator: An emerging therapeutic device,” Trends Biotechnol., vol. 33, no. 7, pp. 388–394, Jul. 2015.

[25] L. Becerra-Fajardo, M. Schmidbauer, and A. Ivorra, “Demonstration of 2 mm thick microcontrolled injectable stimulators based on rectification of high frequency current bursts,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 8, pp. 1343–1352, Aug. 2017.

[26] M. Seyedi, B. Kibret, D. T. H. Lai, and M. Faulkner, “A survey on intrabody communications for body area network applications,” IEEE Trans. Biomed. Eng., vol. 60, no. 8, pp. 2067–2079, Aug. 2013.

[27] S. A. Hackworth, “Design, optimization, and implementation of a volume conduction energy transfer platform for implantable devices,” Ph.D. dissertation, Univ. Pittsburgh, Pittsburgh, PA, USA, 2010.
[28] W. Zhu, W. Fang, S. Zhan, Y. Zhou, Q. Gao, and X. Gao, “Volume conduction energy transfer for implantable devices,” J. Biomed. Res., vol. 27, no. 6, pp. 509–514, 2013.

[29] P. Chen, H. Yang, R. Luo, and B. Zhao, “A tissue-channel transcutaneous power transfer technique for implantable devices,” IEEE Trans. Power Electron., vol. 33, no. 11, pp. 9753–9764, Nov. 2018.

[30] A. M. Sodagar and P. Amari, “Capacitive coupling for power and data telemetry to implantable biomedical microsystems,” in Proc. 4th Int. IEEE/EMBS Conf. Neural Eng., vol. 9, Apr. 2009, pp. 411–414.

[31] R. Jegadeesan, K. Agarwal, Y.-X. Guo, S.-C. Yen, and N. V. Thakor, “Wireless power delivery to flexible subcutaneous implants using capacitive coupling,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 1, pp. 280–292, Jan. 2017.

[32] R. Erfani, F. Marefat, A. M. Sodagar, and P. Mohseni, “Modeling and experimental validation of a capacitive link for wireless power transfer to biomedical implants,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 7, pp. 923–927, Jul. 2018.

[33] J. S. Ho, “Wireless power transfer to deep-tissue microimplants,” Proc. Natl. Acad. Sci. USA, vol. 111, no. 22, pp. 7974–7979, 2014.

[34] A. Ivtor, L. Becerra-Fajardo, and Q. Castellví, “In vivo demonstration of injectable microstimulators based on charge-balanced rectification of epidermically applied currents,” J. Neural Eng., vol. 12, no. 6, 2015, Art. no. 066010.

[35] J. P. Reilly, “Impedance and current distribution,” in Applied Bioelectricity: From Electrical Stimulation to Electropathology, New York, NY, USA: Springer-Verlag, 1998, pp. 12–68.

[36] D. Andreuccetti, R. Fossi, and C. Petrucci, “An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz–100 GHz,” IFAC-CNIR, Florence, Italy, Tech. Rep., 1997. [Online]. Available: http://tiremif.ifac.cnir.it/tisprop/

[37] S. Grimnes and G. Martinsen, “Passive tissue electrical properties,” in Bioimpedance and Bioelectricity Basics, 3rd ed. Amsterdam, the Netherlands: Elsevier, 2015, pp. 25–102.

[38] K. R. Foster and R. P. Schwan, “Dielectric properties of tissue,” in CRC Handbook of Biological Effects of Electromagnetic Fields, C. Polk and E. Postow, Eds. Boca Raton, FL, USA: CRC Press, 1996, pp. 494–522.

[39] S. Grimnes and G. Martinsen, “Electrolytics,” in Bioimpedance and Bioelectricity Basics, 3rd ed. Amsterdam, the Netherlands: Elsevier, 2015, pp. 9–36.

[40] A. Vander Vorst, A. Rosen, and Y. Kotsuka, RF/Microwave Interaction With Biological Tissues. Hoboken, NJ, USA: Wiley, 2006.

[41] IEEE Standard for Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. Standard IEEE C95.3-2014. The Institute of Electrical and Electronics Engineers, New York, NY, USA, 2014.

[42] International Commission on Non-Ionizing Radiation Protection, “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz),” Health Phys., vol. 74, no. 4, pp. 494–522, 1998.

[43] International Commission on Non-Ionizing Radiation Protection, “Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz),” Health Phys., vol. 99, no. 6, pp. 818–836, 2010.

[44] S. R. Ward and R. L. Lieber, “Density and hydration of fresh and fixed human skeletal muscle,” J. Biomech., vol. 38, no. 11, pp. 2317–2320, Nov. 2005.

[45] D. J. Griffiths, “Special techniques,” in Introduction to Electrodyamics, 3rd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 1999, pp. 119–153.

[46] S. Grimnes and G. Martinsen, “Geometrical analysis,” in Bioimpedance and Bioelectricity Basics, 3rd ed. Amsterdam, the Netherlands: Elsevier, 2015, pp. 141–178.

[47] T. Ohira, “Power efficiency and optimum load formulas on RF rectifiers featuring flow-angule equations,” IEICE Electron. Express, vol. 10, no. 11, 2013, Art. no. 20130230.

[48] M. Tudela-Pi, L. Becerra-Fajardo, and A. Ivtor, “Powering implants by galvanic coupling: A validated analytical model predicts powers above 1 mW in injectable implants,” in World Congress on Medical Physics and Biomedical Engineering (IFMBE Proceedings), vol. 68/3, Singapore: Springer, 2019.

[49] L. Becerra-Fajardo, R. Garcia-Arnau, and A. Ivtor, “Injectable stimulators based on rectification of high frequency current bursts: Power efficiency of 2 mm thick prototypes,” in Converting Clinical and Engineering Research on Neurorehabilitation II, Cham, Switzerland: Springer, 2017, pp. 667–671.

[50] A. D. Dehennis, M. Mailand, D. Grice, S. Getzaff, and A. E. Colvin, “A near-field-communication (NFC) enabled wireless fluorimeter for fully implantable biosensing applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2013, pp. 298–299.

[51] K. Birmingham, V. Gradinaru, P. Anikeeva, W. M. Grill, V. Pikov, B. McLaughlin, P. Parisch, D. Weber, L. Ludwig, and K. Famm, “Bionic medicines: A research roadmap,” Nature Rev. Drug Discovery, vol. 13, no. 6, pp. 399–400, May 2014.

[52] X. Navarro, T. B. Krueger, N. Lago, S. Micera, T. Stieglitz, and P. Dario, “A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems,” J. Peripheral Nervous Syst., vol. 10, no. 3, pp. 229–258, Sep. 2005.

[53] I. Andreu-Perez, D. R. Leff, H. M. D. Ip, and G.-Z. Yang, “From wearable sensors to smart implants-towards pervasive and personalized healthcare,” IEEE Trans. Biomed. Eng., vol. 62, no. 12, pp. 2750–2762, Dec. 2015.

ARACELYS GARCÍA-MORENO was born in Caracas, Venezuela, in 1982. She received the B.Sc. degree in electronic engineering from Universidad Simon Bolivar, Caracas, in 2005, and the M.Sc. degree in biomedical engineering from Ghent University, Ghent, Belgium, and RWTH Aachen University, Aachen, Germany, in 2017. She is currently pursuing the Ph.D. degree with the Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.

Since October 2017, she has been a Predoctoral Trainee Researcher. Her research focuses on the development and implementation of processes, technologies and components for the construction of implantable electronic devices for electrical stimulation.
JESUS MINGUILLON was born in Granada, Spain, in 1990. He received the M.Sc. degree in telecommunication engineering, the M.Sc. degree in electrical and electronic engineering, and the Ph.D. degree in information and communication technologies from the University of Granada, Granada, Spain, in 2014, 2015, and 2018, respectively.

He worked on the design and development of non-invasive brain–computer interfaces and other biosignal-based systems. Moreover, he investigated the use of these systems in daily-life contexts and published his main results in international high-impact journals and conferences. He is currently a Postdoctoral Researcher with the Biomedical Electronics Research Group (BERG), Pompeu Fabra University, Barcelona, Spain. His main research focuses on the design and development of power supply and bidirectional communication systems (hardware–software) for volume-conduction-based implants, in the framework of two European projects: Electronic AXONs (wireless microstimulators based on electronic rectification of epidermically applied currents) and EXTEND (Bidirectional Hyper-Connected Neural Systems).

ANTONI IVORRA received the Ph.D. degree in electronics engineering from the Universitat Politècnica de Catalunya, Barcelona, Spain, in 2005. He is currently an Associate Professor with Universitat Pompeu Fabra (UPF), Barcelona, where he leads the Biomedical Electronics Research Group. Prior to joining the UPF, in 2010, he enjoyed a four-year postdoctoral stay at the University of California at Berkeley, from 2005 to 2009, followed by an eight-month Postdoctoral position at the CNRS-Institut Gustave Roussy, Villejuif, France. From 1998 to 2005, he was with the Biomedical Applications Group, Centre Nacional de Microelecetrònica, Bellaterra, Spain. He is the author or coauthor of 50 publications in peer-reviewed journals, four book chapters, and more than 35 conference contributions. He is the inventor or co-inventor of 11 families of patent applications. His research is focused on bioelectrical phenomena and, in particular, on exploring the use of these phenomena for implementing new methods and devices for biomedical applications. Specifically, his main research topics are electroporation, particularly for tissue ablation, electrical bioimpedance for diagnostic purposes, and injectable electronics for neuroprosthetics.

* * *