Supporting Information

Dehydrogenative ester synthesis from enol ethers and water with a ruthenium complex catalyzing two reactions in synergy

Sayan Kar,[a] Jie Luo,[a] Michael Rauch,[a] Yael Diskin-Posner,[b] Yehoshua Ben-David,[a] and David Milstein[a,*]

[a]Department of Molecular Chemistry and Materials Science [b]Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel.

Email: david.milstein@weizmann.ac.il

Table of Contents

1. General Information S2
2. Syntheses and characterization of complexes S3
3. Standard procedure for the reactions S14
4. Representative GC and NMR spectra after reaction S19
5. Mechanistic studies S27
6. Computational studies S30
7. References S94
1. General Information

All experiments were carried out under an inert atmosphere (with N₂ or Ar) using standard Schlenk techniques. Complexes RuH(CO)Acr*PNP(i-Pr) \((1)\), \(^4\)RuHCl(CO)AcrPNP(i-Pr) \((2)\), \(^2\)RuH(CO)PNN\(_{\text{BPy}}\)\((t\text{-Bu})\) \((3)\), \(^3\)RuH(CO)P\(^{\text{tBu}}\)NNH\((t\text{-Bu})\) \((4)\), \(^4,5\)RuH(CO)\(_2\)Acr*PNP(i-Pr) \((5)\) \(^6\) were prepared according to the previously reported procedures. All catalysts were weighed inside a nitrogen filled glove box. The enol ethers were purchased from standard commercial sources (some of the substrates contained KOH or amine in 100 ppm amount as stabilizers). All solvents were purified according to standard procedures under an argon atmosphere, bubbled with argon, and stored over 4 Å molecular sieves. 1,3,5-trimethylbenzene (mesitylene) was purchased from commercial sources and used as received. Deionized water was used for the reactions which was degassed by bubbling argon for 30 minutes prior to its use.

NMR spectra were recorded at room temperature on a Bruker AMX-300, AMX-400 or AMX-500 spectrometers. Chemical shifts of the NMR spectra are reported relative to residual signals of CDCl\(_3\) \((^1\text{H NMR: } \delta = 7.26 \text{ ppm, } ^{13}\text{C NMR: } \delta = 77.16 \text{ ppm})\), benzene-\(d_6\) \((^1\text{H NMR: } \delta = 7.16 \text{ ppm, } ^{13}\text{C NMR: } \delta = 128.06 \text{ ppm})\), dichloromethane-\(d_2\) \((^1\text{H NMR: } \delta = 5.32 \text{ ppm, } ^{13}\text{C NMR: } \delta = 54.00 \text{ ppm})\) or the internal standard mesitylene. \(^{31}\text{P}{{^1}\text{H}}\) NMR chemical shifts are reported in ppm downfield from H\(_3\)PO\(_4\) and referenced to an external 85% solution of phosphoric acid in D\(_2\)O. GC–MS was carried out on HP 6890 (flame ionization detector and thermal conductivity detector) and HP 5973 (MS detector) instruments equipped with a 30 m column (Restek 5MS, 0.32 mm internal diameter) with a 5% phenylmethylsilicone coating (0.25 mm) and helium as carrier gas. GC was carried out on HP 6890 or Agilent 7890B Series GC System with N\(_2\) or Helium as carrier gas. IR spectra were recorded on a Nicolet FTIR spectrophotometer (KBr, thin Film).

Caution: Reactions are associated with H\(_2\) gas. They should be carefully handled inside proper fume hoods without any flame, spark or static electricity sources nearby.
2. Syntheses and characterization of complex RuH(CO)Acr*PNP(Ph) (6)

Synthesis of the ligand

![Synthesis of the ligand reaction](image)

Procedure: Inside a N₂ glove box, 1 mmol (365 mg) of acridine dimethylenebromide was dissolved in 5 mL of hexafluoroisopropanol, to which 2.2 mmol (410 mg) of diphenylphosphine was added dropwise. The solution was transferred to a pressure tube and was heated at 50 °C for 3 days. Afterwards, it was cooled down to room temperature, and 20 mL dichloromethane (DCM) was added. The solution was quickly washed with 30 mL of 10% aqueous NaOH. The organic layer was collected, and the aqueous layer was washed once more with 20 mL DCM. The combined DCM solutions were dried with MgSO₄, and DCM was removed in vacuo, affording a crude yellow solid.

The solid was then taken inside a glove box and dissolved using small amounts of THF. The solution was filtered through a small Celite pad. The THF was then removed, and the resulting yellow solid was washed with pentane, sparing amounts of ether, and methanol to obtain the pure acridinePNP(Ph) ligand in ~70% (400 mg) yield.

³¹P NMR (162 MHz, CDCl₃) δ -9.69.

¹H NMR (400 MHz, Chloroform-d) δ 8.76 (s, 1H), 7.89 (d, J = 8.2 Hz, 2H), 7.52 (t, 8H), 7.43 – 7.23 (m, 16H), 4.42 (d, J = 1.7 Hz, 4H).

¹³C(¹H) NMR (101 MHz, Chloroform-d) δ 146.60, 139.34 (d, J = 16.7 Hz), 136.68 (d, J = 6.2 Hz), 136.14, 133.06 (d, J = 18.7 Hz), 129.72 (d, J = 9.3 Hz), 128.37, 128.24 (d, J = 6.4 Hz), 126.63, 126.23, 125.26, 31.20 (d, J = 15.2 Hz).
Figure S1. 31P{H} NMR spectrum (162 MHz) of acridine PNP(Ph) ligand in CDCl$_3$.

Figure S2. 1H NMR spectrum (400 MHz) of acridine PNP(Ph) ligand in CDCl$_3$.
Figure S3. DEPT 135 NMR spectrum (101 MHz) of acridine PNP(Ph) ligand in CDCl₃.
Synthesis of the aromatic acridine complex

Procedure: Inside a N\textsubscript{2} glove box, 0.1 mmol of RuHCl(CO)(PPh\textsubscript{3})\textsubscript{3} (95.2 mg) and 0.12 mmol of the PNP(Ph) acridine ligand (69 mg) were suspended in 5 mL toluene. The solution was transferred to a pressure tube and was heated at 65 °C for 3 hours. Formation of yellow precipitates was observed during the reaction. After 3 hours, the reaction mixture was cooled to room temperature and the toluene was evaporated in vacuo. The resulting yellow solid was then washed with diethyl ether and THF for multiple times, affording the acridine complex as a yellow powder in 89% yield. The complex is not soluble in less polar solvents such as benzene, toluene, or THF. NMR analysis of a CD\textsubscript{2}Cl\textsubscript{2} solution showed the presence of two major isomers, along with one minor isomer, which can be directly used for the next step synthesis. The possibility of different isomers possible with the ruthenium acridine PNPiPr framework has been discussed before in the context of computational studies. It is thus likely that while for the acridine PNPiPr complex only one isomer is thermodynamically favorable, for the PNPPh complex, their energies are much more similar, leading to their co-observations. As mentioned before, both isomers lead to the generation of the same dearomatized complex upon the addition of super-hydride (next step).

\(^{31}\text{P} \text{NMR (162 MHz, CD}_{2}\text{Cl}_{2} \) \(\delta \) 53.26 (minor, 0.44 P), 45.4 (major, 0.56 P). \(^{1}\text{H} \text{NMR (500 MHz, CD}_{2}\text{Cl}_{2} \) \(\delta \) 9.15 (s, 0.55H), 9.04 (s, 0.45H), 8.09 (d, J = 8.1 Hz, 1H), 7.98 (s, 3.1H), 7.88 (d, J = 5.5 Hz, 1.6H), 7.64 (d, J = 4.2 Hz, 1.7H), 7.53 (d, J = 6.8 Hz, 2.25H), 7.43 (M, 4.9), 7.34 (t, J = 7.0 Hz, 1.71), 7.31 – 7.24 (m, 1.6H), 7.24 – 7.08 (m, 5.6H), 6.91 (m, 1.6H), 5.37 (d, J = 7.9 Hz, 1.53H), 4.57 (d, J = 11.4 Hz, 1.1H), 4.05 (dd, J = 11.0, 3.9 Hz, 6H), -13.97 (t, J = 26.6 Hz, 1H), -16.71 (t, J = 19.9 Hz, 1H). \(^{13}\text{C} \text{NMR (101 MHz, CD}_{2}\text{Cl}_{2} \) \(\delta \) 153.37, 151.93, 144.21, 142.83, 136.58, 135.51, 134.46, 133.71, 133.65, 133.59, 133.35, 132.89, 130.76, 130.32, 130.09, 129.71, 129.45, 129.07, 128.87, 128.46, 128.08, 127.84, 127.50, 127.45, 127.11, 124.97, 124.45, 35.53 (t, J = 10.4 Hz), 34.91 (J = 8.0 Hz). \(\text{IR (thin film, KBr)} = 1953 \text{ cm}^{-1} \) (minor), 1931 cm-1 (major) (CO). \(\text{HR-ESI-MS m/z calcd. for C}_{40}\text{H}_{32}\text{ONaP}_{2}\text{ClRu [6-Cl-Na]}^{+}: 764.0589, \text{ found: 764.1075}. \)
Figure S4. 1H NMR spectrum (400 MHz) of Ru-Acr(Ph)HCl(CO) complex (6-Cl) in CD$_2$Cl$_2$. Two distinct hydride peaks of two different isomers are shown in inset.

Figure S5. 31P{H} NMR spectrum (162 MHz) of Ru-Acr(Ph)HCl(CO) (6-Cl) complex in CD$_2$Cl$_2$. Two distinct major isomers are seen, along with some minor complexes.
Figure S6. 13C(1H) NMR spectrum (101 MHz) of Ru-Acr(Ph)HCl(CO) (6-Cl) complex in C$_6$D$_6$.

Figure S7. 1H-13C HSQC NMR spectrum of Ru-Acr(Ph)HCl(CO) (6-Cl) complex in C$_6$D$_6$.
Synthesis of the acridine complex 6

Procedure: Inside a N₂ glove box, 25 mg of RuHCl(CO)Acr(Ph) complex (obtained in the previous step) was suspended in 5 mL THF. 1 eq of NaBE₃H (pre-dissolved in 3 mL THF) was then added to the solution dropwise over 5 minutes. The solution was allowed to stir for 5 mins at which the reaction solution turned from yellow to dark red. The stirring was then turned off, and the THF was removed *in vacuo*. The resulting solid was washed with diethyl ether (0.5 mLx3). Subsequently, the red solid was dissolved in 5 mL benzene and filtered through a short Celite® plug. The resulting filtrate was then frozen, and benzene was removed afterwards *in vacuo* to obtain complex 6 as red powder in 73% yield.

31P NMR (162 MHz, Benzene-d₆) δ 53.70.

1H NMR (400 MHz, Benzene-d₆) δ 7.70 – 7.48 (m, 3H), 7.47 – 7.30 (m, 3H), 7.06 (d, $J = 6.8$ Hz, 2H), 7.02 – 6.90 (m, 13H), 6.77 – 6.43 (m, 5H), 3.97 (d, $J = 11.9$ Hz, 2H), 3.79 (d, $J = 14.7$ Hz, 1H), 3.71 (d, $J = 14.6$ Hz, 1H), 3.42 (dt, $J = 12.1$, 4.4 Hz, 2H), -21.35 (t, $J = 25.1$ Hz, 1H).

13C NMR (101 MHz, Benzene-d₆) δ 207.84, 152.89, 139.15 (t, $J = 24.1$ Hz), 134.05 (t, $J = 7.6$ Hz), 132.58 (t, $J = 18.1$ Hz), 130.80, 130.18, 129.06, 128.74, 128.38 – 127.76 (m), 126.09, 120.15, 119.31, 36.12, 32.22 (t, $J = 11.7$ Hz).

IR (thin film, KBr) = 1922 cm⁻¹ (carbonyl)

HR-ESI-MS m/z calcd. for C₄₀H₃₂NOP₂Ru [6-H]⁺: 706.1003 , found: 706.1011.
Figure S8. $^{31}P(1H)$ NMR spectrum (162 MHz) of Ru-Acr‡(Ph)H(CO) (6) complex in C$_6$D$_6$.

Figure S9. 1H NMR spectrum (400 MHz) of Ru-Acr‡(Ph)H(CO) (6) complex in C$_6$D$_6$.
Figure S10. 13C$^\text{1H}$ NMR spectrum (101 MHz) of Ru-Acr$^\text{'}$(Ph)H(CO) (6) complex in C$_6$D$_6$.

Figure S11. $^\text{1H}$-13C HSQC NMR spectrum of Ru-Acr$^\text{'}$(Ph)H(CO) (6) complex in C$_6$D$_6$.
2.2. X-ray crystallography of complex 6 + C₆H₆

Selected bond lengths (Å) and angles (°): Ru(1)-H 1.47(2), Ru(1)-P(1) 2.3137(4), Ru(1)-P(2) 2.3087(4), Ru(1)-N(1) 2.0903(11), Ru(1)-C(40) 1.8288(15), P(1)-Ru(1)-H 80.5(9), P(2)-Ru(1)-H 80.1(9), P(2)-Ru(1)-P(1) 157.966(13), N(1)-Ru(1)-H 120.5(9), N(1)-Ru(1)-P(1) 90.48(3), N(1)-Ru(1)-P(2) 90.35(3), C(40)-Ru(1)-H 83.5(9), C(40)-Ru(1)-P(1) 94.47(5), C(40)-Ru(1)-P(2) 93.71(5), C(40)-Ru(1)-N(1) 155.92(6).

Data were collected on a Rigaku Synergy-S diffractometer dual source equipped with Dectris Pilatus R CdTe 300K detector and microfocus, with MoKα (λ=0.71073 Å). The data were processed with CrysAlis³. Structure was solved by direct methods with SHELXT. Data were refined as Full-matrix least-squares refinement based on F² with SHELXL and OLEX2. All non-hydrogen atoms were further refined with anisotropic displacement coefficients. Hydrogen atoms were assigned isotropic displacement coefficients, and their coordinates were allowed to ride on their respective carbons. Hydride was located in the electron density map. Crystallographic data and refinement parameters are summarized in Supplementary Table S1.
Table S1. Crystal data and structure refinement for complex 6 + C₆H₆

Parameter	Value
Complex 6 + C₆H₆	
Identification code	CCDC-2079903
Empirical formula	C₄₆H₃₉N O P₂ Ru
Formula weight	784.79
Temperature	100.00(10) K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, P 1 21/n 1
Unit cell dimensions	a = 12.7847(2) Å, alpha = 90 deg.
	b = 19.6339(3) Å, beta = 91.1120(10) deg.
	c = 14.6880(2) Å, gamma = 90 deg.
Volume	3686.19(9) Å³
Z, Calculated density	4, 1.414 Mg/m³
Absorption coefficient	0.550 mm⁻¹
F(000)	1616
Crystal size	0.181 x 0.131 x 0.055 mm
Theta range for data collection	1.732 to 33.141 deg.
Limiting indices	-19<=h<=19, -30<=k<=30, -22<=l<=22
Reflections collected / unique	143025 / 14072 [R(int) = 0.0729]
Completeness to theta = 25.242	100.0 %
Absorption correction	Gaussian
Max. and min. transmission	1.000 and 0.644
Refinement method	Full-matrix least-squares on F²
Data / restraints / parameters	14072 / 0 / 464
Goodness-of-fit on F²	1.053
Final R indices [I>2σ(I)]	R1 = 0.0322, wR2 = 0.0742
R indices (all data)	R1 = 0.0414, wR2 = 0.0775
Extinction coefficient	n/a
Largest diff. peak and hole	0.539 and -0.490 e.A⁻³
3. General procedure for the reactions

In a N\textsubscript{2} glove box, the ruthenium catalyst (2.25 or 4.5 µmol) was dissolved in 2 mL of dry 1,4-dioxane. 0.3 mmol of enol ether was then added to the solution. The solution was transferred to a 25 mL Schlenk flask with a side arm and taken out of the box. The desired amount of water was then added to the solution under argon flow using Schlenk techniques. The flask was dipped into an oil bath preheated to the desired temperature. After suitable reaction time, the flask was cooled down to room temperature, opened, and a known amount of mesitylene was added to the solution as internal standard. Part of the reaction solution was then dried using MgSO\textsubscript{4} and analyzed via GC-MS, GC and 1H NMR. The yields were calculated based on the peak integration ratios in the GC or 1H NMR spectrum. For selected reactions, the accumulated gas volume in the headspace was measured and analyzed by GC.

All the ester products synthesized in this study have been reported previously in the literature. All products were identified by comparison of the 1H NMR spectra from literature or by GC-MS spectra with those of the commercially available compounds. The GC-MS retention times and observed m/z values are provided in Table S2.

Figure S12. Complexes screened for oxidative dehydrogenative ester synthesis in this study.
Table S2. GC-MS data for esters using HP 6890 equipped with flame ionization and thermal conductivity detectors and HP 5973 (MS detector) instruments, equipped with a 30 m column (Restek 5MS, 0.32 mm internal diameter) with a 5% phenylmethylsilicone coating (0.25 mm) and helium as carrier gas with a flow-rate of 1 ml/min). The parameters are shown in Figure S13.

Compound	Retention Time (min)	Mass/Charge (m/z)	Comments
H₃C⁻CH⁻O⁻CH₃	tᵣ = 5.8 min	m/z = 101.0 (M-CH₃)	
H₃C⁻CH⁻O⁻CH₃	tᵣ = 2.1 min	m/z = 88.1	
Ph⁻O⁻CH₃	tᵣ = 11.5 min	m/z = 150.1	
H₃C⁻CH⁻O⁻CH₃	tᵣ = 4.5 min	m/z = 115.0 (M-H)	
H₃C⁻CH⁻O⁻CH₃	tᵣ = 2.9 min	m/z = 129.1 (M-C₃H₆)	
H₃C⁻CH⁻O⁻CH₃	tᵣ = 11.5 min	m/z = 127.1 (M-CH₃)	
H₃C⁻CH⁻O⁻CH₃	tᵣ = 10.0 min	m/z = 101.1 (M-CH₃)	
	tᵣ = 8.0 min	m/z = 86.0	
	tᵣ = 11.7 min	m/z = 100.0	tᵣ = 15.8 min (30%), 15.85 min (70%) m/z = 168.0 (minor), 168.1 (major)
	tᵣ = 5.8 min	m/z = 103.0 (M-CH₃)	
Figure S13. Method parameters for the GC-MS.

Figure S14. Simplified possible reaction sequences of enol ethers in presence of [Ru] and water.

Figure S15. Unreactive vinyl ethers under the reaction condition of Table 2.
GC analysis of the headspace gas mixture

Figure S16a. GC of a blank air sample. The peak around 1 min is due to the presence of O₂ gas. N₂ was used as the carrier gas.

Figure S16b. Typical GC of the headspace gas after reaction. The peak at 0.25 min is due to the presence of H₂ gas. The negative peak at 0.9 min is for the Ar gas. N₂ was used as the carrier gas.
3.1. Procedure for the kinetic isotope effect experiment

Procedure: In a N₂ glove box, the ruthenium catalyst 6 (4.5 µmol) was dissolved in 2 mL of dry 1,4-dioxane. 0.3 mmol of butyl vinyl ether was then added to the solution. The solution was transferred to a 25 mL Schlenk flask with a side arm and taken out of the box. 0.25 mL of H₂O or D₂O was then added to the solution under argon flow using Schlenk techniques. The flask was dipped into an oil bath preheated to 125 °C. After 24 h, the flask was cooled down to room temperature, opened, and a known amount of mesitylene was added to the solution as internal standard. Part of the reaction solution was then dried using MgSO₄ and analyzed via GC-MS, and ¹H NMR. Yields were calculated from the ¹H NMR spectra. 58% of ester yield was observed when H₂O was used (conversion 67%), whereas 25% of deuterated ester was observed when D₂O was used (conversion 34%).
4. Representative GC and NMR spectra after reaction

4.1. Copies of 1H NMR spectra of selected crude reaction mixtures

Figure S17. 1H NMR of the reaction mixture from table 1, entry 5 in CDCl$_3$. Reaction conditions: butyl vinyl ether (0.3 mmol), H$_2$O (0.2 mL), 1 (1.5 mol%), 1,4-Dioxane (2 mL), 125 °C, 24 h.

Figure S18. 1H NMR of the reaction mixture from table 1, entry 13. Reaction conditions: butyl vinyl ether (0.3 mmol), H$_2$O (0.2 mL), 6 (1.5 mol%), 1,4-Dioxane (2 mL), 125 °C, 24 h.
Figure S19. 1H NMR of the reaction mixture from table 1, entry 3. Reaction conditions: ethyl vinyl ether (0.3 mmol), H_2O (0.2 mL), 1 (1.5 mol%), 1,4-Dioxane (2 mL), 125 °C, 24 h.

Figure S20. 1H NMR of the reaction mixture for the synthesis of P1e. Reaction conditions: vinyl octadecyl ether (0.3 mmol), H_2O (0.25 mL), 6 (1.5 mol%), 1,4-Dioxane (2 mL), 125 °C, 36 h.
Figure S21. 1H NMR of the reaction mixture for the synthesis of P1h. Reaction conditions: vinyl cyclohexyl ether (0.3 mmol), H$_2$O (0.25 mL), 6 (1.5 mol%), 1,4-Dioxane (2 mL), 125 °C, 36 h.

Figure S22. 1H NMR of the reaction mixture for the synthesis of P1i. Reaction conditions: vinyl tert-butyl ether (0.3 mmol), H$_2$O (0.25 mL), 6 (1.5 mol%), 1,4-Dioxane (2 mL), 125 °C, 36 h.
4.2. Copies of GC-MS chromatogram of selected crude reaction mixtures

Figure S23. GC-MS chromatogram of the crude reaction mixture from Table 1, entry 2, showing the generation of ethyl acetate after the reaction (peak at 2.1 min). Detector off during 1,4-dioxane (3-4 min).

Figure S24. GC-MS chromatogram of the crude reaction mixture from Table 1, entry 4, showing the generation of other side products at higher water amount. Detector off during dioxane (3-4 min).

Figure S25. GC-MS chromatogram of the crude reaction mixture from Table 1, entry 5, showing the generation of ester and also hydrogenation side product when 1 is used as catalyst. Detector off during 1,4-dioxane (3-4 min).
Figure S26. GC-MS chromatogram of the crude reaction mixture from Table 1, entry 7, showing that complex 2 is not active in catalyzing the reaction. Detector off during 1,4-dioxane (3-4 min).

Figure S27. GC-MS chromatogram of the crude reaction mixture from Table 1, entry 9, showing that the coordinatively saturated dicarbonyl complex 5 is not a very effective catalyst for the transformation. Detector off during 1,4-dioxane (3-4 min).
Figure S28. GC-MS chromatogram of the crude reaction mixture from Table 1, entry 10, showing the abatement in the hydrogenation side reaction when 6 is used as catalyst. Detector off during 1,4-dioxane (3-4 min).

Figure S29. GC-MS chromatogram of the crude reaction mixture for the synthesis of P1h, showing the generation of the ester as major product along with hydrogenation side product. Detector off during 1,4-dioxane (3-4 min).
Figure S30. GC-MS chromatogram of the crude reaction mixture for the synthesis of P1e, showing the generation of the ester in high yield along with minimal hydrogenation side product. Detector off during 1,4-dioxane (3-4 min).

Figure S31. GC-MS chromatogram of the crude reaction mixture for the synthesis of P1c, showing the formation of benzyl acetate from vinyl benzyl ether via this method. Detector off during 1,4-dioxane (3-4 min).
Figure S32. GC-MS chromatogram of the crude reaction mixture showing the formation of diester P2j via this method. Detector off during 1,4-dioxane (3-4 min).

4.3. MS of the labelled ester
For the synthesis of 18O labelled ester, a standard reaction was set up with vinyl ether but instead of 0.25 mL of H$_2$O, 0.1 mL of H$_2^{18}$O was used as reactant. After 36 h of reaction at a bath temperature of 125 °C, the reaction mixture was worked up via the standard procedure and the GC and GC-MS specta were taken. 56% yield of the ester was observed and the MS spectra showed the presence of 18O atom in the product in the fragmentation pattern.

Figure S33. Comparison of the MS spectra of obtained unlabeled butyl acetate and 18O labelled butyl acetate via this method. The fragmentation pattern clearly indicates the incorporation of an 18O atom in the molecule.
5. Mechanistic studies

5.1. Reaction of complex 1 with vinyl butyl ether and water as observed in NMR

Figure S34. Reaction of complex 1 with vinyl butyl ether and water. [panel 1] 31P{1H} NMR spectrum of complex 1 (5 µmol) in 1,4-dioxane [panel 2] with 5 eq of vinyl butyl ether added, [panel 3] 10 eq of water added to complex 1 [panel 4] complex 1 with added vinyl butyl ether (5 eq) and water (10 eq) [panel 5] after heating panel 4 at 100 oC for half an hour. Water adduct is observed after consumption of all the vinyl ether. The proton NMR and GC-MS displayed the presence of butyl acetate and ethyl butyl ether in the solution of panel 5.
5.3. Reaction between complex 1 and various substrates

Figure S35. Reaction of complex 1 with ester as seen by $^{31}\text{P}\{^1\text{H}\}$ NMR. [panel 1] complex 1 in 1,4-dioxane, [panel 2] after adding 5 eq ethyl acetate, [panel 3] after heating the solution of panel 2 at 125 °C overnight. $^{31}\text{P}\{^1\text{H}\}$ NMR spectra show no reaction between complex 1 and ethyl acetate.
Figure S36. 1H NMR spectra of the hydride region of complex 1 in the presence of (A) ethyl butenyl ether, (B) dihydrofuran, (C) water and (D) butyl vinyl ether, showing the interaction between complex 1 and substrates. C$_6$D$_6$ was used as solvent.
Figure S37. Stacked 31P(1H) NMR spectra showing interaction of different substrates with 1.

6. Computational Studies

All geometries were optimized using Truhlar’s M06-L functional, the triple-ξ def2-TZVP basis set and W06 density fitting to increase computational efficiency as well as Grimme’s D3(0) empirical dispersion correction. To take the influence of the solvent into account optimizations were performed with the integral equation formalism variant (IEFPCM) with the SMD variation of Truhlar and co-workers, with 1,4-dioxane, except otherwise stated. Frequency calculations at this level of theory at 398.15 K were run in order to confirm stationary points and transition states, as well as to compute thermodynamic properties. Single point energies of the optimized structures were computed using the range-separated meta-GGA hybrid functional ωB97M-V of the Head-Gordon group including dispersion correction, together with the triple-ξ def2-TZVPP basis set and the corresponding auxiliary basis sets, def2/J and def2-TZVPP/C, for RIJCOSX density fitting. The single point calculations include the same solvation (SMD) approach as described above in the optimizations. Gibbs free energies were computed by adding the free energy correction terms from the frequency calculations to the single point energies according to:
\[
G_{\omega B97M-V}^{\text{SMD}} = E_{\omega B97M-V}^{\text{el/SMD}} + G_{\text{corr}}^{\text{M06-L freq/SMD}}
\] (1)

Free energy values (\(G^0\)) were then corrected to account for changes in standard states (\(G^0 \rightarrow G^{0'}\) via \(\Delta G^{0'} = \Delta G^0 + RT \ln (Q^{0'}/Q^0)\)). \(^{18}\) Specifically, all species were corrected for the condensed phase (1 atm to 1M at 398.15 K), with the exception of \(H_2\) (maintained at 1 atm standard state) and water (1 atm to 6.17 M at 398.15 K). \(^{19}\) Optimizations and frequency calculations were done using the Gaussian 16 software suite in the C.01 revision. \(^{20}\) Single point calculations were performed using ORCA Software in the 4.2.1 release. \(^{21}\)

For the structures of TS3 and 1a-mer, structures were optimized, and frequency corrections were obtained in the gas phase at 398.15 K due to encountered optimization difficulty in dioxane continuum. Single point energies were calculated with the solvation model (dioxane). The resulting obtained values of free energies are likely to be within ±3 kcal/mol of the previously stated method in eq 1, verified with other selected structures.

6.1. Alternate hydration mechanism without the involvement of ruthenium complex

We considered the possibility of a reaction pathway where the initial hydration happens spontaneously without the involvement of ruthenium complex to generate a hemiacetal, from which dehydrogenation happens catalyzed by the ruthenium complex. This pathway is unlikely as our experimental results (Table 1) show that in the absence of acridine catalyst, no significant hydration products are observed under the reaction conditions. The computational analysis reveals that the uncatalyzed water assisted hydration pathway has a high activation barrier of around ~51.8 kcal/mol (with 2 water molecules involved in the transition state) under our reaction conditions, corroborating the experimental observations.

Figure S38. Uncatalyzed hydration pathway leading to the formation of a hemiacetal. The relevant transition state was found quite high in energy. Free energies (kcal/mol) were calculated at 398.15 K relative to ethyl vinyl ether+2*water and are calculated in a 1,4-dioxane continuum (all solutes are 1 M except for \(H_2O\), which is at 6.17 M).
6.2. Discussion about the possibility of outer sphere pathway involving 6-mer

Another stepwise reaction mechanism involving a first step vinyl ether hydration catalyzed by [Ru], followed by subsequent [Ru] catalyzed dehydrogenation of the generated acetal was also considered. However, during our DFT calculations (with both complex 1 and 6), we were unable to find the relevant zwitter ionic species resulting from initial nucleophilic water attack onto [Ru] bound vinyl ether. All optimization attempts from more than a dozen starting points resulted in spontaneous loss of water from the structure. This hints at the fact that such a zwitter ionic structure minima most likely does not exist in the potential energy surface, or if it does, is relatively very high in energy with facile loss of water being favorable from the structure. Furthermore, the experimental fact that both PPr₂ complex and the PPh₂ complex display similar catalytic activities for ester formation suggest the absence of such a stepwise mechanism where the Lewis acidity of the metal center is expected to play a big role in the reaction rate.

\[
\begin{align*}
\text{CH}_3\text{O} &= \text{Ru} \\
\text{H}_2\text{O} &\rightarrow \text{CH}_3\text{O} \text{Ru} \\
\end{align*}
\]

Figure S39. Stepwise Ru-catalyzed hydration-dehydrogenation pathway with complex 1/6.
6.3. Reaction energy profile for ethyl vinyl ether oxidation by water catalyzed by 1

The energy profiles for both inner-sphere and outer-sphere reaction pathways were calculated also for complex 1 and compared to the energy profile associated with complex 6. While a similar energy profile is observed, there are several differences worth mentioning. First, the fac isomer of complex 1 was energetically uphill by 12.0 kcal/mol with respect to the mer isomer, in contrast to the Ph complex 6 whose fac isomer is 5.6 kcal/mol uphill compared to the mer isomer. Second, the inner sphere H₂ evolution was found less facile with complex 1 (28.6 kcal/mol) as compared to complex 6 (22.4 kcal/mol). Similar trend is also observed for the hydroxide insertion onto bound vinyl ether transition state (28.6 kcal/mol for complex 1, as compared to 17.2 kcal/mol for complex 1, with respect to their mer isomers). Thus, in case of complex 1, the initial H₂ evolution is also the most energetically demanding step under the reaction conditions, along with the hydroxide insertion step. An overall activation barrier of 28.6 kcal/mol was calculated for the Ru-Acr(iPr) system, as compared to the 26.0 kcal/mol for the Acr(Ph) system. These values are close and are also in agreement with the fact that similar reactivities are observed with complex 1 and 6 for the dehydrogenative oxidative ester synthesis from enol ethers.

Figure S40. Energy profile of the inner sphere coupled catalytic pathway from enol ether to ester formation catalyzed by 1. Free energies (kcal/mol) were calculated at 398.15 K relative to 1-mer+water+ethyl vinyl ether and are calculated in a 1,4-dioxane continuum.
(all solutes are 1 M except for H₂ and H₂O, which are at 1 atm and 6.17 M, respectively). Mass balance is ensured throughout. The CO and acridine based ligands are omitted for clarity.

6.4. Energies of water and vinyl ether coordinated intermediates

The energies of the complexes, generating from the coordination of the vinyl ether or water to the metal center, with both complex 1 (Pr system) and 6 (Ph system), are shown in the following table.

Table S3.

Complex	Optimized Structure	dG_{dioxane}^{398K}
6a-mer	![Image](image1.png)	+1.4
6b-mer	![Image](image2.png)	+1.2
6a-fac	![Image](image3.png)	-3.6
6b-fac	![Image](image4.png)	-1.0

Complex	Optimized Structure	dG_{dioxane}^{398K}
1a-mer	![Image](image5.png)	+3.4
1b-mer	![Image](image6.png)	+2.18
1a-fac	![Image](image7.png)	+5.9
1b-fac	![Image](image8.png)	+8.5
6.5. Computed Structures, First Three Frequencies, Coordinates

Note: Only relevant hydrogen atoms shown for clarity.

Color Scheme: ruthenium (magenta), phosphorus (orange), nitrogen (blue), carbon (black), hydrogen (grey), oxygen (red).

Ethyl vinyl ether

![Ethyl vinyl ether diagram]

First three frequencies

	1	2	3
Freq.	99.3003	95.9505	209.9987
Red. Masses	1.6505	4.2766	2.6950
Frc consts	0.0024	0.0232	0.0700
IR Inten	0.4389	2.3154	0.1639

Coordinates

6	-2.798823000	0.195541000	-0.009297000
6	-1.677599000	0.904555000	0.015508000
1	-2.792964000	-0.884549000	-0.061477000
1	-3.751066000	0.709730000	0.023127000
8	-0.452379000	0.341611000	-0.022052000
1	-1.691173000	1.991771000	0.068259000
6	0.639500000	1.262857000	0.014867000
6	1.918348000	0.482870000	-0.032135000
1	0.575572000	1.864520000	0.928523000
1	0.562968000	1.950146000	-0.835222000
1	1.997162000	-0.193561000	0.817730000
1	2.771530000	1.158699000	-0.006535000
1	1.983481000	-0.109648000	-0.943575000

Water
First three frequencies

	1	2	3
\(A \)	1643.5791	3792.4424	3903.6700
Red. masses	1.0824	1.0454	1.0812
Frc consts	1.7227	8.8589	9.7077
IR Inten	76.0039	6.6593	54.3264

Coordinates

8	-4.486777000	1.956755000	-0.005133000
1	-3.526897000	1.911854000	0.008495000
1	-4.762492000	1.075811000	0.262233000

Ethyl acetate

First three frequencies

	1	2	3
\(A \)	46.4758	71.6940	155.9772
Red. masses	1.0609	2.9443	1.8660
Frc consts	0.0014	0.0089	0.0267
IR Inten	0.7146	0.4160	4.5999

Coordinates

6	-4.324713000	-0.921502000	-0.193250000
8	-3.141328000	-0.106406000	-0.302443000
6	-1.990721000	-0.704870000	0.053006000
6	-0.838596000	0.233072000	-0.095353000
1	-0.784273000	0.612724000	-1.114401000
1	0.089375000	-0.269510000	0.155652000
1	-0.969977000	1.095163000	0.557333000
8	-1.925201000	-1.844965000	0.439144000
6	-5.495448000	-0.094630000	-0.630039000
1	-4.422339000	-1.261554000	0.839656000
1	-5.386071000	0.234963000	-1.662340000
1	-5.613735000	0.788296000	-0.003388000
H₂

First frequency

A	Frequencies	Red. masses	Fr. c. const	IR Inten
1	4338.4404	1.0078	11.1764	0.0000

Coordinates

| 1 | -2.503763000 | 1.564580000 | 0.000000000 |
| 1 | -1.760653000 | 1.606642000 | 0.000000000 |

6-mer

First three frequencies

A	Frequencies
1	16.8751
2	19.9776
3	30.3156
Red. masses -- 6.2059 5.7436 5.6023
Frc consts -- 0.0010 0.0014 0.0030
IR Inten -- 0.2628 0.0510 0.4704

Coordinates

44	8.232659	7.701367	3.283387
1	7.042300	8.243090	4.156724
15	9.375237	9.271257	4.546515
15	6.462067	6.666987	2.207288
8	8.486700	5.566393	5.353813
7	8.583211	8.907255	1.499914
6	11.860759	10.181954	5.523633
6	7.739401	10.298700	6.572235
6	8.174410	4.092286	-0.436541
6	7.267479	10.377839	7.873063
6	6.742874	8.185179	0.021731
6	5.814437	3.641842	-0.491285
6	11.189565	9.312636	4.664279
6	9.388457	8.698106	7.271960
6	11.926895	8.513129	3.794763
6	4.123904	4.421988	4.682953
6	8.491683	8.176397	-2.143947
6	13.969307	9.454474	4.630358
6	8.960986	8.485195	-0.878621
6	7.854122	9.619751	8.874517
6	6.305923	7.855406	-1.257465
6	7.157196	7.865740	-2.347707
6	10.528905	9.860808	0.366583
6	11.513043	10.828207	0.255135
6	7.097756	3.392457	-0.958350
6	8.096391	8.529014	0.232952
6	5.116940	4.830684	3.808801
6	5.793047	8.023535	1.161104
6	13.310937	8.586010	3.774470
6	6.683036	5.305190	1.021511
6	5.606198	4.595342	0.491437
6	5.102349	6.118768	3.273239
6	4.079507	6.991009	3.641039
6	9.775929	10.859350	2.429644
6	8.914685	8.778684	8.570649
6	7.967464	5.040511	0.552776
6	13.243732	10.250424	5.506604
6	8.971291	10.844518	3.686148
6	3.105450	5.294800	5.037265
6	8.365854	6.409613	4.561471
6	3.086347	6.579184	4.515949
6	9.615724	9.864930	1.439307
6	11.649737	11.813520	1.219286
6	8.093790	9.462300	6.258638
6	10.790259	11.802955	2.303147
6	10.403888	8.732837	-0.599390

S38
6-fac

First three frequencies

	1	2	3
A	19.7479	29.8199	34.7170
A	5.4445	5.5893	4.9142
A	0.0013	0.0029	0.0035
A	0.0275	0.3760	0.2620

Coordinates

15	-2.307939000	7.574606000	3.019844000
15	0.498488000	6.172452000	5.022373000
8	-2.323507000	7.613028000	7.087173000
7	0.673459000	8.523627000	2.996151000
6	-1.572155000	7.868624000	1.361393000
6	-0.913428000	9.207915000	1.293812000
6	-1.385592000	10.182686000	0.422632000
6	-0.729092000	11.394050000	0.275961000
6	0.419335000	11.635806000	1.017567000
6	0.889805000	10.705861000	1.930081000
6	0.215915000	9.480829000	2.095215000
6	2.077467000	10.965679000	2.807108000
6	2.807427000	9.699716000	3.138471000
6	4.165742000	9.658905000	3.412382000
6	4.771324000	8.489212000	3.850342000
6	4.007040000	7.340817000	3.996422000
6	2.652795000	7.340875000	3.690979000
6	2.035126000	8.536273000	3.270772000
6	1.837322000	6.092495000	3.764116000
6	-1.661987000	7.762294000	6.142451000
44	-0.603135000	8.032822000	4.665068000
6	-3.609386000	8.852586000	3.081029000
6	-4.723740000	8.820720000	2.243327000
First three frequencies

	1	2	3
A	22.5971	25.8336	32.2733

Red. masses --

1	2	3
4.4374	5.2156	4.5908

Frc consts --

1	2	3
0.0013	0.0021	0.0028

IR Inten --

1	2	3
0.2870	0.0982	0.0378

Coordinates
	15	-2.438838000	7.610620000	2.956108000
8	-2.489935000	7.624764000	7.062790000	
7	0.621867000	8.481627000	2.912674000	
6	-1.624511000	7.891754000	1.210822000	
1	-0.899722000	7.072233000	1.269789000	
6	-0.916532000	9.201515000	0.516417000	
6	-1.339933000	10.153972000	0.293828000	
1	-2.218214000	9.948292000	-0.308354000	
6	-0.637960000	11.334898000	1.785028000	
1	-0.974935000	12.063529000	-0.618676000	
6	0.513718000	11.555295000	0.846027000	
1	1.082146000	12.468332000	0.701415000	
6	0.956897000	10.635653000	1.785028000	
6	0.235141000	9.443986000	1.996033000	
6	2.182413000	10.905452000	2.609417000	
1	2.932247000	11.429532000	2.009707000	
1	1.940583000	11.615192000	3.414065000	
6	2.767231000	9.651459000	3.190351000	
6	4.079763000	9.609398000	3.641942000	
1	4.689011000	10.503655000	3.558112000	
6	4.614501000	8.460220000	4.203725000	
1	5.634314000	8.448596000	4.565098000	
6	3.833728000	7.314766000	4.266352000	
1	4.248913000	6.392995000	4.659835000	
6	2.530140000	7.316256000	3.793108000	
6	1.956015000	8.509487000	3.299287000	
6	1.718109000	6.068016000	3.752304000	
1	2.328074000	5.182885000	3.936704000	
1	1.256325000	5.970427000	2.765896000	
6	-1.847366000	7.800164000	6.109573000	
6	-0.797314000	8.094766000	4.644120000	
6	-1.631005000	10.232863000	4.458673000	
6	-0.439477000	10.372336000	5.143737000	
1	-1.661826000	10.492586000	3.409676000	
1	-2.558985000	10.343460000	5.004106000	
8	-0.427034000	10.653360000	6.461054000	
1	0.486778000	10.567259000	4.610866000	
6	0.866142000	10.596995000	7.068635000	
6	0.700556000	10.722793000	8.552487000	
1	1.489836000	11.399186000	6.657546000	
1	1.342396000	9.646247000	6.794190000	
1	0.240410000	11.671872000	8.824258000	
1	1.670883000	10.664522000	9.043268000	
1	0.073353000	9.921589000	8.943922000	
6	1.134796000	5.844662000	6.550699000	
6	0.978526000	6.720074000	7.620813000	
6	1.968414000	4.735300000	6.713207000	
6	1.645437000	6.502249000	8.818221000	
6	2.642365000	4.523055000	7.903027000	
---	-------	-------	-------	
6	2.482965000	5.408812000	8.959928000	
1	0.334237000	7.582502000	7.516327000	
1	2.088646000	4.026509000	5.901299000	
1	1.507687000	7.192756000	9.640850000	
1	3.291872000	3.663186000	8.006551000	
1	3.008440000	5.242530000	9.891468000	
	-3.958637000	8.630727000	7.296722000	
6	-4.478878000	9.188304000	1.762006000	
6	-4.649051000	8.822356000	4.124324000	
6	-5.652340000	9.928118000	1.795811000	
6	-5.827560000	9.547397000	4.155855000	
6	-6.330126000	10.279180000	2.989130000	
1	-3.973802000	9.049932000	0.815509000	
1	-4.254790000	8.403569000	5.043291000	
1	-6.036409000	10.363042000	0.881728000	
1	-6.349546000	9.682324000	5.094660000	
1	-7.245859000	10.684608000	3.014615000	
6	-3.204696000	5.959787000	2.795934000	
6	-3.393344000	5.321650000	1.571467000	
6	-3.696742000	5.352114000	3.951985000	
6	-4.071094000	4.113026000	1.504529000	
6	-4.386267000	4.154184000	3.881744000	
6	-4.577170000	3.532019000	2.656068000	
1	-3.019642000	5.765500000	0.657777000	
1	-3.535408900	5.825039000	4.915005000	
1	-4.209536000	3.629582000	0.545525000	
1	-4.784156000	3.698745000	4.788310000	
1	-5.112012000	2.592211000	2.601420000	
6	-0.492943000	4.478245000	4.713063000	
6	-0.555919000	3.854785000	3.467269000	
6	-1.108455000	3.860629000	5.803650000	
6	-1.185815000	2.628198000	3.324472000	
6	-1.737491000	2.635575000	5.659061000	
6	-1.769832600	2.011764000	4.420423000	
1	-0.107232000	4.322865000	2.599199000	
1	-1.083609000	4.339333000	6.776485000	
1	-1.219915000	2.154208000	2.351586000	
1	-2.201566000	2.166102000	6.517331000	
1	-2.257853000	1.051982000	4.306914000	
1	0.542843000	8.373157000	5.535132000	

6a-mer
S43

Frequencies -- 21.5176 25.0413 31.5158
Red. masses -- 5.3981 4.9867 3.1488
Frc consts -- 0.0015 0.0018 0.0018
IR Inten -- 6.0466 0.4067 0.5293

44 -0.363036000 5.798465000 1.738458000
15 -1.512123000 7.757474000 1.145168000
15 1.596410000 5.267760000 2.888221000
 -2.110253000 5.374019000 4.126514000
 0.866451000 6.014654000 -0.176502000
 -1.415948000 5.546997000 3.213800000
 0.207264000 6.453212000 -1.326151000
 1.914849000 5.125061000 -0.405634000
 -0.468804000 8.561333000 -0.126976000
 -0.430577000 7.715119000 -1.352747000
 -1.033655000 8.171148000 -2.519544000
 -1.017843000 7.425884000 -3.685345000
 -0.406491000 6.182207000 -3.667254000
 0.178980000 5.689719000 -2.513099000
 0.768567000 4.319810000 -2.451210000
 1.971977000 4.321824000 -1.567979000
 3.078302000 3.537667000 -1.845291000
 4.153120000 3.483747000 -0.971683000
 4.084239000 4.215036000 0.200269000
 2.990693000 5.018997000 0.507032000
 2.980770000 5.772862000 1.794191000
 0.523636000 8.631963000 0.324673000
 -0.818415000 9.571429000 -0.344090000
 -1.501040000 9.149455000 -2.510535000
 -1.477106000 7.805483000 -4.588327000
 -0.395376000 5.566375000 -4.560262000
 0.021251000 3.622602000 -2.040320000
 1.006130000 3.942522000 -3.447375000
 3.084681000 2.950132000 -2.757259000
1	5.022091000	2.879287000	-1.194688000			
1	4.915510000	4.189974000	0.897015000			
1	3.934550000	5.672884000	2.315651000			
1	2.800940000	6.840035000	1.632474000			
1	0.395562000	7.123502000	2.299070000			
6	-1.653867000	4.462453000	0.486683000			
1	-2.652412000	4.304001000	0.872461000			
1	-1.594598000	4.858473000	-0.518513000			
6	-0.623748000	3.681651000	1.099548000			
1	0.267110000	3.467879000	0.426628000			
8	-0.893114000	2.770291000	2.012281000			
6	-0.794317000	1.412454000	1.579378000			
1	-1.498898000	1.245817000	0.753790000			
1	-1.149486000	0.828426000	2.429874000			
6	0.597550000	0.980865000	1.189067000			
1	1.308385000	1.164093000	1.993838000			
1	0.962717000	1.487282000	0.295061000			
1	0.600998000	-0.087915000	0.975044000			
6	-3.207985000	7.769326000	0.487669000			
6	-3.653481000	8.769265000	-0.376110000			
6	-4.108897000	6.792431000	0.906737000			
6	-4.962520000	8.775214000	-0.828272000			
6	-5.423023000	6.807468000	0.466201000			
6	-5.848793000	7.793686000	-0.409712000			
1	-2.978433000	9.553122000	-0.695037000			
1	-3.775835000	6.020740000	1.590176000			
1	-5.292100000	9.551396000	-1.507106000			
1	-6.111921000	6.043982000	0.804061000			
1	-6.871341000	7.799776000	-0.764890000			
6	-1.621774000	8.957623000	2.515302000			
6	-2.769336000	9.051312000	3.300427000			
6	-0.513637000	9.737036000	2.850522000			
6	-2.806412000	9.901907000	4.395052000			
6	-0.558821000	10.598508000	3.933799000			
6	-1.704487000	10.680482000	4.712130000			
1	-3.641420000	8.455105000	3.059168000			
1	0.399324000	9.662029000	2.271466000			
1	-3.703460000	9.956811000	4.998448000			
1	0.308354000	11.200169000	4.175448000			
1	-1.736980000	11.348546000	5.563302000			
6	1.970536000	3.592903000	3.493386000			
6	1.011880000	2.972264000	4.297264000			
6	3.174784000	2.935502000	3.255478000			
6	1.256483000	1.728749000	4.852985000			
6	3.415129000	1.683872000	3.805714000			
6	2.458761000	1.079406000	4.605779000			
1	0.068923000	3.469765000	4.486222000			
1	3.935000000	3.397449000	2.641760000			
1	0.504980000	1.263060000	5.478495000			
1	4.355785000	1.185037000	3.609625000			
1	2.647975000	0.104366000	5.036497000			
6b-fac

Frequencies -- 17.2825 30.0457 37.6271
Red. masses -- 5.2967 4.9011 4.9864
Frc consts -- 0.0009 0.0026 0.0042
IR Inten -- 0.0111 0.3230 0.3332

15 -2.335507000 7.714793000 3.062123000
15 0.386366000 6.227777000 5.011486000
8 -2.295868000 7.748198000 7.172414000
7 0.706976000 8.539430000 2.975866000
6 -1.577559000 8.059304000 1.423051000
1 -0.845154000 7.257316000 1.280547000
1 -2.318260000 7.988790000 0.626201000
6 -0.882921000 9.380979000 1.380680000
6 -1.345838000 10.416829000 0.577045000
1 -2.264340000 10.275919000 0.018026000
6 -0.629181000 11.597645000 0.447679000
1 -0.993398000 12.389836000 -0.192730000
6 0.571117000 11.741258000 1.131525000
No	X	Y	Z
1	1.147649	12.654289	1.025038
6	1.040800	10.746376	1.975523
6	0.305228	9.554122	2.129637
6	2.284961	10.910913	2.799079
1	2.998449	11.570399	2.299859
1	2.030247	10.746376	3.428122
6	0.305228	9.554122	2.129637
6	2.284961	10.910913	2.799079
1	2.998449	11.570399	2.299859
1	2.030247	10.746376	3.428122
6	0.305228	9.554122	2.129637
6	2.284961	10.910913	2.799079
1	2.998449	11.570399	2.299859
1	2.030247	10.746376	3.428122

S46
6b-mer

Frequencies -- 18.7560 19.9140 25.2603
Red. masses -- 5.3349 5.1423 5.7400
Frc const -- 0.0011 0.0012 0.0022
IR Inten -- 0.0338 0.0355 0.1474

44 8.427193000 7.559182000 3.208217000
1 7.203414000 8.305532000 3.874654000
15 9.458869000 9.172187000 4.515465000
15 6.579477000 6.613084000 2.164198000
8 8.437999000 5.598754000 5.455880000
7 8.670008000 8.927417000 1.408827000
6 11.752922000 10.325862000 5.664357000
1 11.072483000 10.955165000 6.227747000
	7.517197000	9.993046000	6.350851000
6	7.025646000	10.458610000	7.601286000
1	6.923781000	10.571468000	7.724260000
6	8.565401000	3.991595000	-0.373113000
1	8.025646000	10.571468000	7.724260000
6	4.401430000	4.610385000	4.969281000
1	4.462687000	3.654272000	5.472930000
6	8.479454000	8.341792000	5.067084000
1	9.143737000	7.773163000	3.441933000
6	10.272966000	8.542890000	4.099835000
1	11.332930000	8.542890000	4.099835000
6	6.820730000	8.179138000	5.504636000
1	4.462687000	3.654272000	5.472930000
6	8.479454000	8.341792000	5.067084000
1	9.143737000	7.773163000	3.441933000
6	6.820730000	8.179138000	5.504636000
1	4.462687000	3.654272000	5.472930000
6	8.479454000	8.341792000	5.067084000
1	9.143737000	7.773163000	3.441933000
6	6.820730000	8.179138000	5.504636000
1	4.462687000	3.654272000	5.472930000
6	8.479454000	8.341792000	5.067084000
1	9.143737000	7.773163000	3.441933000
6	6.820730000	8.179138000	5.504636000
1	4.462687000	3.654272000	5.472930000
6	8.479454000	8.341792000	5.067084000
1	9.143737000	7.773163000	3.441933000
6	6.820730000	8.179138000	5.504636000
1	4.462687000	3.654272000	5.472930000
6	8.479454000	8.341792000	5.067084000
1	9.143737000	7.773163000	3.441933000
6	6.820730000	8.179138000	5.504636000
1	4.462687000	3.654272000	5.472930000
6	8.479454000	8.341792000	5.067084000
1	9.143737000	7.773163000	3.441933000
6	6.820730000	8.179138000	5.504636000
1	4.462687000	3.654272000	5.472930000
6	8.479454000	8.341792000	5.067084000
1	9.143737000	7.773163000	3.441933000
6	6.820730000	8.179138000	5.504636000
1	4.462687000	3.654272000	5.472930000
6	8.479454000	8.341792000	5.067084000
1	9.143737000	7.773163000	3.441933000
6	6.820730000	8.179138000	5.504636000
1	4.462687000	3.654272000	5.472930000
6	8.479454000	8.341792000	5.067084000
1	9.143737000	7.773163000	3.441933000

S48
	6	1	6
1	13.119414000	13.502543000	9.067652000
1	13.119414000	13.502543000	9.067652000
6	13.119414000	13.502543000	9.067652000
1	13.119414000	13.502543000	9.067652000
6	13.119414000	13.502543000	9.067652000
1	13.119414000	13.502543000	9.067652000

Frequencies

- 18.5371

Red. masses

- 5.0084

Frc consts

- 0.0010

IR Inten

- 0.0368

8 | 0.323031000 | 9.739561000 | 5.334255000 |
15 | -2.220312000 | 7.603224000 | 3.028310000 |
15	0.257204000	6.119772000	4.817927000
8	-2.543025000	7.731222000	6.906085000
7	0.701797000	8.464320000	2.914401000
6	-1.562104000	8.140030000	1.394793000
1	-0.837995000	7.372647000	1.102526000
6	-2.382967000	7.731222000	0.675483000
1	-0.882015000	8.140030000	1.394793000
6	-1.351452000	8.140030000	0.675483000
1	-2.812600000	10.488290000	2.137788000
6	-0.622462000	11.749422000	2.191413000
1	-0.986687000	12.600921000	1.355005000
6	0.311383000	9.574411000	2.191413000
6	2.336082000	10.832373000	2.936371000
1	3.076692000	11.451030000	2.422260000
6	2.127545000	11.350344000	3.880459000
6	4.232399000	9.288720000	3.260969000
6	4.902512000	10.142315000	3.595491000
6	4.710883000	8.040219000	3.979609000
6	5.747668000	7.917866000	4.264479000
6	3.852292000	6.950963000	3.987634000
6	4.216138000	5.956593000	4.274985000
6	2.526156000	7.098427000	3.604980000
6	2.035651000	8.373955000	3.260969000
6	1.577626000	5.945093000	3.546462000
6	2.086853000	4.993681000	3.711464000
6	1.079050000	5.916380000	2.576965000
6	-1.817298000	7.897537000	6.017284000
6	-0.661040000	8.149845000	4.599929000
1	0.000179000	10.008025000	6.201127000
6	-3.631768000	8.749206000	3.240156000
6	-4.924257000	8.445572000	2.813420000
6	-3.378639000	10.018734000	3.763834000
6	-5.939335000	9.383351000	2.923243000
6	-4.392901000	10.956474000	3.865917000
6	-5.676777000	10.638614000	3.450252000
1	-5.143413000	7.471813000	2.392828000
1	-2.375157000	10.280259000	4.086019000
1	-6.939185000	9.130418000	2.593845000
1	-4.176785000	11.936618000	4.270991000
1	-6.471564000	11.368707000	3.535420000
6	1.239263000	6.009543000	6.355728000
6	1.716261000	7.171700000	6.958891000
6	1.657921000	4.770554000	6.846325000
6	2.582330000	7.095341000	8.039138000
6	2.520937000	4.699646000	7.927185000
6	2.982570000	5.862171000	8.527534000
1	1.422609000	8.138875000	6.563473000
---	----------	----------	----------
1	1.313531	3.855469	6.379481
1	2.948638	8.006340	8.494844
1	2.834967	3.732689	8.299366
1	3.656937	5.804414	9.372539
6	-0.677170	4.568340	4.823472
6	-0.694829	3.714130	3.722359
6	-1.412181	4.224070	5.960448
6	-1.411958	2.528261	3.768068
6	-2.123019	3.037444	6.004412
6	-2.119613	2.184503	4.909460
1	-0.138636	3.965890	2.827534
1	-1.407408	4.879750	6.823771
1	-1.413360	1.870244	2.908316
1	-2.677794	2.776397	6.896591
1	-2.673411	1.254809	4.943740
6	-3.032430	6.011697	2.716301
6	-2.947299	5.347952	1.493828
6	-3.790390	5.441980	3.742878
6	-3.621520	4.150888	1.296355
6	-4.468383	4.254070	3.539864
6	-4.387765	3.606681	2.313649
1	-2.364191	5.765729	0.683311
1	-3.861154	5.944927	4.701273
1	-3.552349	3.649509	0.339314
1	-5.058555	3.828951	4.341772
1	-4.918918	2.676579	2.155646

6d

Frequencies -- **15.3859** 21.6111 31.1717
Red. masses -- **4.2502** 5.1767 4.7998
Frc consts -- **0.0006** 0.0014 0.0027
IR Inten -- **0.1896** 0.0591 0.2068
8	0.802935000	8.881560000	5.819512000
15	-2.330858000	7.604986000	2.985464000
15	0.263586000	6.067193000	2.985464000
8	-2.611896000	7.641954000	6.923526000
7	0.647012000	8.445507000	2.985464000
6	-1.607278000	7.997900000	1.340169000
1	-0.903739000	7.173543000	1.176463000
1	-2.376735000	7.933498000	0.569621000
6	-0.864255000	9.291660000	1.247511000
1	0.363586000	6.067193000	0.514557000
6	0.694813000	11.576233000	0.937786000
1	1.310322000	12.460815000	0.811308000
6	1.869430000	10.610627000	1.852254000
6	0.294390000	9.458619000	3.077957000
6	2.318824000	10.753739000	1.946170000
1	0.903739000	7.173543000	1.176463000
1	-2.117108000	10.140955000	-0.263384000
6	-0.488601000	11.431142000	0.321488000
6	4.709988000	8.006555000	3.802269000
1	5.757242000	7.882510000	4.044220000
6	3.836370000	6.934236000	3.904272000
1	4.204940000	5.960953000	4.210142000
6	2.493942000	7.077521000	3.579183000
6	1.994919000	8.339290000	3.193299000
1	1.555589000	5.918620000	3.578069000
1	0.503448000	4.970137000	3.681526000
6	0.208938000	5.901530000	2.634417000
44	-0.753173000	8.982750000	4.626785000
1	1.621449000	8.408353000	5.632278000
6	-1.794753000	10.392538000	4.413646000
6	-0.730492000	10.860955000	5.112359000
1	-1.779500000	10.498160000	3.338734000
1	-2.758999000	10.305077000	4.895876000
8	-0.788907000	11.081733000	6.405287000
1	0.212563000	11.078138000	4.617570000
6	0.450636000	11.467100000	7.079937000
6	0.506348000	10.743943000	8.388851000
1	0.386531000	12.551784000	7.213936000
1	1.276548000	11.215359000	6.440071000
1	-0.363959000	10.960820000	9.011592000
1	1.394317000	11.052522000	8.934890000
1	0.557783000	9.671275000	8.211100000
6	1.176396000	5.849313000	6.445016000
6	0.838921000	6.563191000	7.591450000
6	2.186508000	4.889564000	6.528312000
---	-------	-------	-------
6	1.493321000	6.328715000	8.788705000
6	2.852195000	4.665302000	7.721871000
6	2.506968000	5.386379000	8.854270000
1	0.068373000	7.322386000	7.534941000
1	2.452840000	4.300378000	5.658952000
1	1.215879000	6.893815000	9.669699000
1	3.637964000	3.921984000	7.766495000
1	3.027149000	5.211511000	9.788750000
6	-3.889472000	8.569652000	3.057873000
6	-4.287615000	9.433928000	2.041732000
6	-4.694293000	8.466358000	4.194164000
6	-5.457177000	10.173096000	2.157525000
6	-5.865164000	9.195257000	4.304917000
6	-6.250045000	10.055344000	3.286017000
1	-3.684049000	9.549683000	1.152669000
1	-4.400152000	7.818832000	5.010049000
1	-5.743842000	10.844425000	1.357932000
1	-6.473662000	9.097700000	5.194930000
1	-7.161278000	10.632694000	3.375126000
6	-3.041144000	5.936638000	2.748812000
6	-3.091663000	5.302878000	1.508646000
6	-3.631864000	5.305122000	3.845574000
6	-3.732976000	4.080071000	1.366421000
6	-4.289309000	4.097208000	3.698036000
6	-4.343786000	3.481356000	2.455208000
1	-2.639992000	5.759598000	0.638226000
1	-3.571230000	5.761896000	4.826970000
1	-3.762514000	3.602544000	0.395096000
1	-4.747324000	3.627594000	4.559253000
1	-4.853073000	2.532836000	2.340460000
6	-0.617578000	4.473013000	4.812450000
6	-0.624271000	3.672265000	3.671485000
6	-1.274300000	4.018767000	5.957716000
6	-1.251109000	2.435472000	3.685220000
6	-1.901191000	2.784876000	5.968020000
6	-1.884071000	1.986184000	4.833498000
1	-0.131917000	4.004519000	2.765941000
1	-1.277248000	4.628602000	6.854298000
1	-1.242869000	1.822572000	2.792688000
1	-2.397426000	2.442921000	6.867452000
1	-2.367257000	1.017353000	4.843276000

6e
Frequencies

1	21.6110	27.6777	31.5533

Red. masses

1	5.2637	4.6383	4.7016

Frc consts

1	0.0014	0.0021	0.0028

IR Inten

1	0.0289	0.6375	0.3845

8	0.811335000	8.853268000	5.982376000
15	-2.079401000	7.295239000	2.975099000
15	0.598413000	5.699157000	4.754360000
8	-2.605328000	6.944013000	6.723607000
7	0.848124000	8.330703000	2.993026000
6	-1.359355000	7.888945000	1.397249000
1	-0.576705000	7.159890000	1.164979000
1	-2.120408000	7.837365000	0.617574000
6	-0.745117000	9.244605000	1.460508000
6	-1.261312000	10.313188000	0.744609000
1	-2.189260000	10.182140000	0.197909000
6	-0.581718000	11.522120000	0.690276000
1	-0.986134000	12.353480000	0.127780000
6	0.642780000	11.632120000	1.330617000
1	1.205695000	12.561210000	1.256210000
6	1.171013000	10.592795000	2.080270000
6	0.445015000	9.396040000	2.206095000
6	2.504020000	10.724486000	2.760878000
1	3.225376000	11.181748000	2.075278000
1	2.438057000	11.442484000	3.590138000
6	3.040869000	9.408937000	3.253129000
6	4.370183000	9.291206000	3.633309000
1	5.003499000	10.171713000	3.589997000
6	4.898782000	8.082703000	4.060061000
1	5.934999000	8.011595000	4.363147000
6	4.090877000	6.956311000	4.048047000
1	4.504903000	5.989708000	4.313613000
6	2.762443000	7.032650000	3.653819000
6	2.195110000	8.283291000	3.315769000
	1.939259000	5.793915000	3.507534000
---	-------------	-------------	-------------
6	2.563670000	4.900073000	3.536688000
1	1.420398000	5.811289000	2.543253000
6	-1.830802000	7.244188000	5.907270000
44	-0.623567000	7.731854000	4.639790000
1	0.450382000	8.784949000	6.878847000
6	-0.623567000	7.731854000	4.639790000
1	0.450382000	8.784949000	6.878847000
1 -7.227921000 9.756785000 2.974284000
6 1.500543000 5.521423000 6.340302000
6 1.003816000 6.088277000 7.511798000
6 2.676190000 4.774055000 6.413918000
6 1.666934000 5.928380000 8.719368000
6 3.346451000 4.622139000 7.615887000
6 2.845298000 5.202225000 8.772028000
1 0.075766000 6.646266000 7.484520000
1 3.070894000 4.295606000 5.525995000
1 1.260403000 6.373548000 9.618585000
1 4.261369000 4.044334000 7.650313000
1 3.369631000 5.082819000 9.711463000

6TS1

\[
\begin{array}{ccc}
1 & 2 & 3 \\
\text{Frequencies} & \text{--} & \text{--} \\
\text{Red. masses} & \text{--} & \text{--} \\
\text{Frc consts} & \text{--} & \text{--} \\
\text{IR Inten} & \text{--} & \text{--} \\
\end{array}
\]

\[
\begin{array}{ccc}
-938.8164 & 17.9175 & 30.7460 \\
1.0705 & 5.4051 & 4.3382 \\
0.5559 & 0.0010 & 0.0024 \\
799.4021 & 0.0317 & 0.2938 \\
\end{array}
\]

8 0.787014000 9.684286000 5.610447000
15 -2.309487000 7.814363000 3.053171000
15 0.258924000 6.327680000 4.984123000
8 -2.528432000 8.201342000 6.909862000
7 0.667312000 8.512097000 2.800300000
6 -1.641691000 8.048091000 1.356779000
1 -0.962705000 7.201709000 1.207987000
1 -2.460222000 7.963447000 0.640264000
6 -0.887197000 9.321123000 1.169516000
6 -1.298876000 10.296758000 0.272530000
1 -2.345360000 10.163898000 -0.259994000
6 -0.507642000 11.409383000 0.025149000
1 -0.828875000 12.159044000 -0.685903000
6 0.706120000 11.544521000 0.685469000
	1	2	3	4	5	6
1	1.333994000	12.407481000	0.489819000			
6	1.124019000	10.607237000	1.618489000			
6	0.316923000	9.454754000	2.899075000			
6	2.380360000	10.771857000	3.295043000			
1	1.124019000	10.607237000	1.618489000			
6	0.316923000	9.454754000	2.899075000			
6	2.380360000	10.771857000	3.295043000			
1	1.124019000	10.607237000	1.618489000			
6	0.316923000	9.454754000	2.899075000			
6	2.380360000	10.771857000	3.295043000			
1	1.124019000	10.607237000	1.618489000			
6	0.316923000	9.454754000	2.899075000			
6	2.380360000	10.771857000	3.295043000			

S57
1 0.556016000 8.152130000 7.287973000
1 2.078654000 4.337095000 6.061993000
1 1.834232000 7.978573000 9.385556000
1 3.394895000 4.196971000 8.127581000
1 3.275494000 6.013736000 9.803644000
6 -0.686518000 4.779308000 5.107349000
6 -0.772450000 3.874379000 4.051476000
6 -1.339608000 4.483683000 6.305797000
6 -1.475271000 2.688045000 4.200532000
6 -2.042665000 3.300297000 6.450334000
6 -2.106198000 2.396206000 5.399516000
1 -0.280467000 4.084997000 3.109678000
1 -1.278197000 5.177496000 7.137078000
1 -1.526629000 1.989728000 3.374673000
1 -2.535898000 3.080454000 7.388633000
1 -2.649206000 1.466657000 5.514565000

6TS2

Frequencies -- -242.6559 15.8925 19.2440
Red. masses -- 6.6320 4.2141 5.3308
Frc consts -- 0.2301 0.0006 0.0012
IR Inten -- 27.3568 0.5908 0.2023
1	-0.687202000	11.801645000	-0.910457000
6	0.728857000	11.324047000	0.636153000
1	1.348788000	12.195220000	0.451308000
6	1.088291000	10.448356000	1.647748000
6	0.304290000	9.305817000	1.905533000
6	2.271069000	10.705294000	2.533469000
1	3.030145000	11.291217000	2.009980000
1	1.960148000	11.343131000	3.375051000
6	2.853532000	9.429895000	3.062519000
6	4.185488000	9.321221000	3.435326000
6	4.832934000	10.184851000	3.324380000
6	4.690420000	8.139311000	3.957861000
1	5.728406000	8.072946000	4.262780000
6	3.853610000	7.034130000	4.057744000
1	4.250719000	6.089796000	4.418969000
6	2.531104000	7.100960000	3.656461000
6	1.993234000	8.324762000	3.200611000
6	2.245626000	5.832690000	2.650873000
6	1.965342000	5.889096000	3.623833000
1	2.376174000	4.976526000	3.762141000
1	1.190170000	7.730810000	5.976549000
6	0.0792479000	8.018511000	4.575614000
1	1.516987000	8.979178000	5.371641000
6	-1.378186000	10.174630000	4.485911000
6	-0.357340000	10.681733000	3.598330000
1	-1.296394000	10.517577000	3.458090000
1	-2.376174000	10.301295000	4.894707000
8	-0.676850000	11.071984000	5.976549000
6	0.394780000	11.478262000	4.912780000
6	0.422771000	10.589760000	3.619806000
1	0.197185000	12.518611000	7.675039000
6	0.334798000	11.434902000	6.860121000
1	-0.534033000	10.609173000	9.140133000
1	1.902687000	10.928834000	9.315051000
1	0.643671000	9.565781000	8.326081000
6	1.156961000	5.750170000	6.448118000
6	0.822484000	6.522682000	7.557014000
6	2.139094000	4.797030000	6.587838000
6	1.458220000	6.321290000	8.774014000
6	2.778937000	4.572091000	7.794410000
6	2.439795000	5.351601000	8.867550000
1	0.075425000	7.296522000	7.460650000
1	2.397635000	4.134589000	5.746320000
1	1.185273000	6.929089000	9.627494000
1	3.539228000	3.806483000	7.889221000
1	2.938934000	5.199122000	9.845405000
6	-3.830433000	8.608448000	3.099895000
6	-4.067196000	9.654468000	2.211676000
6	-4.716069000	8.423871000	4.163277000
6	-5.159732000	10.493589000	2.383769000
6	-5.806464000	9.258487000	4.331826000
6	-6.030865000	10.300290000	3.442418000
1	-3.393102000	9.832142000	1.385387000
1	-4.554368000	7.620142000	4.870981000
1	-5.324255000	11.303373000	1.684083000
1 -6.481296000 9.096474000 5.162694000
1 -6.880910000 10.956806000 3.576028000
6 -3.156205000 5.899336000 2.842902000
6 -3.453123000 5.314352000 1.612452000
6 -3.552712000 5.240320000 4.007679000
6 -4.138443000 4.109918000 1.550458000
6 -4.256721000 4.050018000 3.943020000
6 -4.551142000 3.480951000 2.713878000
1 -3.157886000 5.795982000 0.689670000
1 -3.297395000 5.658239000 4.974391000
1 -4.357146000 3.668360000 0.586304000
1 -4.560693000 3.557968000 4.859390000
1 -5.093081000 2.544955000 2.663781000
6 -0.489425000 4.325338000 4.670908000
6 -0.600886000 3.708252000 3.424380000
6 -1.021334000 3.678090000 5.787266000
6 -1.199329000 2.464325000 3.303600000
6 -1.621385000 2.435468000 5.664352000
6 -1.704344000 1.821073000 4.423629000
1 -0.217574000 4.198078000 2.537044000
1 -0.952257000 4.145438000 6.763305000
1 -1.272318000 1.997985000 2.329068000
1 -2.020147000 1.943800000 6.542857000
1 -2.167444000 0.847098000 4.327985000

6TS3

A

Frequencies -- 625.0786 27.4760 33.3881
Red. masses -- 1.7755 5.906 5.3993
Frc consts -- 0.4087 0.0024 0.0035
IR Inten -- 433.0749 0.0180 0.2669

8 -0.450717000 9.920213000 6.885137000
15 -2.126318000 7.233580000 2.813252000
15 0.710272000 5.880885000 4.702617000
8 -2.246411000 6.989759000 6.797300000
7 0.810695000 8.335984000 2.751540000

S60
6	-1.363961000	7.538254000	1.175058000		
1	-0.580224000	6.775647000	1.106413000		
1	-2.078414000	7.348544000	0.374630000		
6	-0.764059000	8.896127000	1.023696000		
6	-1.249933000	9.788400000	0.076771000		
1	-2.118387000	9.509895000	-0.510319000		
6	-0.614758000	10.997257000	0.159303000		
6	-0.529980000	11.307977000	0.560571000		
1	1.047697000	12.243646000	0.376386000		
6	0.365603000	9.236421000	1.797594000		
6	2.218071000	10.809376000	2.366380000		
1	2.913534000	11.432356000	1.798230000		
1	1.889029000	11.432730000	3.205397000		
6	2.911914000	9.514470000	2.898680000		
6	4.254109000	9.604506000	3.246600000		
1	4.822447000	10.518371000	3.107989000		
6	4.870399000	8.485363000	3.792808000		
1	5.912461000	8.518900000	4.082571000		
6	4.146640000	7.309671000	3.917093000		
1	4.626251000	6.408286000	4.281167000		
6	2.814210000	7.249211000	3.524144000		
6	2.157499000	8.416696000	3.074187000		
6	2.079061000	5.951862000	3.482130000		
1	2.751373000	5.106163000	3.632728000		
6	1.600730000	5.843364000	2.502870000		
6	-1.621599000	7.305753000	5.863601000		
44	-0.574372000	7.810598000	4.460454000		
1	-1.322115000	9.513081000	6.962455000		
6	-1.110488000	9.928398000	4.514178000		
6	-0.097397000	9.927944000	5.557880000		
1	-0.849915000	10.457692000	3.632354000		
1	-2.116012000	10.139904000	4.888620000		
8	1.012292000	10.691022000	5.355120000		
1	0.575774000	8.575808000	5.456506000		
6	2.162513000	10.328219000	6.158852000		
6	3.155229000	11.442357000	6.030840000		
1	2.562067000	9.375582000	5.788318000		
1	1.855637000	10.185887000	7.196685000		
1	3.415538000	11.623137000	4.983750000		
1	4.069979000	11.183855000	6.562412000		
1	2.766671000	12.368249000	6.453215000		
6	-2.827572000	5.550574000	2.679696000		
6	-2.969350000	4.884394000	1.463333000		
6	-3.288672000	4.927780000	3.840568000		
6	-3.565912000	3.632959000	1.409746000		
6	-3.892745000	3.683327000	3.784166000		
6	-4.034021000	3.032716000	2.567021000		
1	-2.619247000	5.336112000	0.544534000		
1	-3.175900000	5.422125000	4.798255000		
1	-3.670790000	3.129433000	0.456430000		
1	-4.245007000	3.217642000	4.695572000		
1	-4.501637000	2.057177000	2.523506000		
6	0.025226000	4.202121000	4.528650000		
6	-0.059643000	3.579269000	3.283282000		
6TS4					
1	2	3			
---	---	---	---		
Frequencies	-294.3637	18.2594	27.5718		
Red. masses	5.5148	5.2248	4.6669		
Frc consts	0.2815	0.0010	0.0021		
IR Inten	219.6098	0.0771	1.0755		

44	0.246606000	-0.428552000	0.959866000
15	-1.097979000	-1.807971000	-0.373358000
15	2.331457000	-0.654247000	-0.0459192000
7	-0.126749000	1.221290000	-0.595062000
6	-1.616254000	-0.797644000	-1.817891000
1	-0.676446000	-0.974710000	-2.342512000
1	-2.252941000	-1.379321000	-2.485603000
6	-2.248675000	0.506378000	-1.458192000
6	-3.582933000	0.760431000	-1.740868000
1	-4.189984000	0.030749000	-1.195877000
6	-4.133474000	2.017658000	-1.536120000
1	-5.171926000	2.206746000	-1.773010000
6	-3.321269000	3.036682000	-1.060743000
1	-3.728591000	4.034611000	-0.929329000
6	-1.989646000	2.812302000	-0.739294000
6	-1.437594000	1.524521000	-0.900162000
6	-1.126914000	3.916799000	-0.195877000
1	-1.369629000	4.108154000	0.862222000
1	-1.369713000	4.861541000	-0.691988000
6	0.337921000	3.621247000	-0.331250000
6	1.284598000	4.633066000	-0.244465000
1	0.946574000	5.649566000	-0.069341000
6	2.639666000	4.367684000	-0.366220000
1	3.366601000	5.164038000	-0.275519000
6	3.046727000	3.072065000	-0.650764000
1	4.096775000	2.855243000	-0.816747000
6	2.122505000	2.045978000	-0.777557000
6	0.750845000	2.293647000	-0.542198000
6	2.533610000	0.699666000	-1.267640000
1	3.562053000	0.719819000	-1.631194000
1	1.883048000	0.410320000	-2.100871000
6	0.570190000	-1.693547000	2.221725000
8	0.771731000	-2.491350000	3.048153000
6	-1.712751000	1.568604000	2.497664000
1	1.140887000	0.767605000	1.765972000
1	-1.673937000	2.305321000	1.740603000
8	-0.215790000	1.931585000	3.220731000
1	0.412153000	1.371095000	2.566717000
1	-0.229109000	1.420922000	4.046350000
6	-1.641652000	0.196337000	1.994202000
1	-2.457036000	0.132616000	1.265490000
1	-1.901893000	-0.480700000	2.811025000
8	-2.585812000	1.798190000	3.490881000
6	-2.915537000	3.190296000	3.705977000
1	-1.996479000	3.782103000	3.675540000
1	-3.301206000	3.232368000	4.723761000
6	-3.928539000	3.668982000	2.706234000
1	-4.850506000	3.093590000	2.775642000
1	-3.557066000	3.581937000	1.684057000
1	-4.167009000	4.716922000	2.884643000
6	-0.486464000	-3.358102000	-1.124504000
6	-0.474066000	-4.527638000	-2.434680000
6	-0.474066000	-0.486464000	-3.358102000
6	-0.032358000	-5.722464000	-0.903657000
6	0.430008000	-6.103360000	-2.975597000
6	0.413962000	-0.012880000	-3.412524000
6	0.004872000	-2.520118000	-3.047803000
6	0.788823000	-0.040571000	-6.620620000
6	0.430008000	-5.769220000	-2.216198000
6	0.413962000	-0.413962000	-5.769220000
1	-0.828699000	-4.508238000	-0.662452000
1	-0.828699000	-0.828699000	-2.520118000
1	0.755451000	-6.703920000	-3.003530000
1	0.755451000	-6.703920000	-3.003530000
6	2.869670000	-2.134248000	-0.974495000
6	2.871720000	-3.357650000	-0.300353000
6	2.871720000	-3.357650000	-0.300353000
6	3.325873000	-2.097806000	-2.290520000
6	3.325873000	-2.097806000	-2.290520000
1	2.510661000	-3.406151000	0.721739000
1	2.510661000	-3.406151000	0.721739000
1	3.332487000	-1.167235000	-2.843713000
1	3.332487000	-1.167235000	-2.843713000
1	3.339336000	-5.442258000	-0.374979000
1	3.339336000	-5.442258000	-0.374979000
1	4.147412000	-3.209130000	-3.931007000
1	4.147412000	-3.209130000	-3.931007000
1	4.174430000	-5.350448000	-2.704076000
6	3.808261000	-0.449257000	1.028939000
6	3.706111000	-0.303166000	2.408317000
6	5.080159000	-0.446253000	0.451777000
6	4.841849000	-0.149351000	3.191070000
6	6.212916000	-0.282631000	1.229365000
6	6.095874000	-0.133655000	2.604597000
1	2.729135000	-0.303270000	2.871817000
1	5.186850000	-0.583690000	-0.618913000
1	4.742186000	-0.040401000	4.263702000
1	7.189799000	-0.277214000	0.762483000
1	6.981554000	-0.009909000	3.214837000
6	-2.664935000	-2.420706000	0.351550000
6	-3.827769000	-2.554829000	-0.405394000
6	-2.693516000	-2.821624000	1.686905000
6	-4.988015000	-3.059878000	0.160585000
6	-3.848010000	-3.340903000	2.249850000
6	-5.001279000	-3.454999000	1.489146000
6	-3.834665000	-2.270326000	-1.449397000
1	-1.801414000	-2.723598000	2.292632000
1	-5.883370000	-3.147379000	-0.441827000
1	-3.846795000	-3.649539000	3.287542000
1	-5.907593000	-3.850970000	1.930087000
TS5

First three frequencies

	1	2	3
A	-289.2022	60.1964	76.8902
A	2.7477	3.1875	3.4374
A	0.1354	0.0068	0.0120
A	13.3802	0.9123	0.9275

Coordinates

6	-1.639497000	-0.373674000	0.474704000	
6	-2.658458000	0.175644000	1.419964000	
6	-0.233377000	0.546578000	-1.199366000	
1	-2.038284000	-1.185510000	-0.136804000	
1	-2.970847000	-0.611217000	2.104101000	
1	-3.542360000	0.540077000	0.898616000	
1	-0.014162000	1.430316000	-1.786467000	
1	-0.726191000	-0.716886000	0.972128000	
8	1.441214000	1.437416000	0.134864000	
1	0.971321000	2.019628000	0.739853000	
1	1.546992000	0.525393000	0.649126000	
8	1.429275000	-0.861430000	1.107915000	
1	2.264399000	-1.286659000	1.354933000	
1	0.972911000	-0.986265000	-0.450928000	
6	0.405460000	-0.713940000	-1.425104000	
1	-0.323582000	-1.515833000	-1.547858000	
1	1.090514000	-0.673235000	-2.265188000	
8	-1.258456000	0.712846000	-0.437678000	
1	-2.246906000	0.989056000	2.015164000	
1-mer

First three frequencies

	1	2	3
A	24.1877	38.2323	47.2942
Red. masses	4.2569	3.4034	3.2571
Frc consts	0.0015	0.0029	0.0043
IR Inten	0.0266	0.2258	0.7127

Coordinates

```
44  -0.217375000  6.355775000  1.344339000
15  -1.832412000  7.534745000  0.169300000
15   1.691341000  5.987845000  2.623814000
  8  -2.160231000  5.207239000  3.282007000
  7   0.952229000  6.119283000  -0.475726000
  6  -1.391028000  5.707331000  2.560150000
  6  -1.637562000 10.108312000  1.277586000
  6  -3.247848000  8.530175000  2.364320000
  6  -2.613944000  8.965193000  1.052658000
  6  -4.053614000  7.458776000 -1.615136000
  6  -2.956844000  5.268193000 -1.048278000
  6  -3.302177000  6.667668000 -0.557375000
  6   3.526360000  4.210755000  3.885355000
  6   1.189899000  9.356261000  3.457058000
  6   2.306329000  4.274739000  2.983166000
  6   0.705580000  6.599447000  5.172430000
  6   1.935293000  8.427901000  3.991932000
  6   1.839952000  6.926774000  4.215226000
  6   0.357304000  6.183708000 -1.753902000
  6   2.200107000  5.459872000 -0.475533000
  6  -0.894794000  8.320324000 -1.196074000
  6  -0.455271000  7.268125000 -2.156764000
  6  -0.936769000  7.322058000 -3.461552000
  6  -0.673101000  6.328302000 -4.387307000
  6   0.069756000  5.232581000 -3.982004000
```
	0.564224000	5.151092000	-2.691136000
	1.304078000	3.954789000	-2.202907000
	2.458106000	4.410997000	-1.380114000
	3.706728000	3.817558000	-0.313496000
	4.737350000	3.817558000	-1.313496000
	3.238809000	5.816050000	0.415184000
	2.998266000	6.732383000	1.563694000
1	-0.769211000	9.782593000	1.853404000
1	-1.276724000	10.543802000	0.347192000
1	-2.120244000	10.906349000	1.843127000
1	-3.827151000	9.348719000	2.794083000
1	-3.920984000	7.680226000	-0.314499000
1	-2.484278000	8.250490000	3.091631000
1	-3.404065000	9.318961000	0.382013000
1	-4.979021000	6.946968000	-1.884713000
1	-4.326853000	8.461310000	-1.286692000
1	-3.463650000	7.552533000	-2.527123000
1	-2.390347000	5.296686000	-1.979137000
1	-2.367939000	4.714355000	-0.314499000
1	-3.868212000	4.699656000	-1.239960000
1	-3.948151000	6.588610000	0.322689000
1	3.951719000	3.205865000	3.875910000
1	4.314811000	4.963890000	3.572510000
1	3.275611000	4.439856000	4.922374000
1	0.816244000	3.625890000	4.445095000
1	0.343040000	3.366519000	2.770853000
1	1.550705000	2.328639000	3.522154000
1	2.601994000	3.934373000	1.985178000
1	-0.247052000	6.962249000	4.783663000
1	0.598429000	5.531564000	5.358270000
1	0.871110000	7.083837000	6.136101000
1	2.014464000	8.940008000	4.952163000
1	2.803626000	8.713377000	3.400284000
1	1.046456000	8.815755000	3.491718000
1	2.785200000	6.592803000	4.654592000
1	-0.046944000	8.810941000	-0.708350000
1	-1.480139000	9.089257000	-1.705970000
1	-1.535416000	8.179927000	-3.747584000
1	-1.051855000	6.401519000	-5.398118000
1	0.266275000	4.416411000	-4.668435000
1	0.630490000	3.354107000	-1.570944000
1	1.617954000	3.308201000	-3.022328000
1	3.859504000	3.024059000	-2.187938000
1	5.715527000	3.758137000	-0.697281000
1	5.258430000	5.494772000	1.006189000
1	3.923268000	6.914595000	2.115163000
1	2.596414000	7.700327000	1.250871000
1	-0.251497000	7.656077000	2.234239000
1-fac

First three frequencies

	1	2	3
A	-23.9063	54.6100	58.1459
A	4.2423	5.0247	4.1572
A	0.0014	0.0088	0.0083
A	0.0237	0.2670	0.6636

Coordinates

1	1.076077000	8.506491000	5.118531000
15	-2.242915000	7.808673000	2.875738000
15	0.627060000	6.127333000	4.870198000
8	-1.817884000	8.186142000	6.934558000
7	0.866239000	8.227722000	2.528550000
6	-1.601703000	7.846892000	1.155263000
1	-1.018043000	6.925925000	1.049834000
1	-2.416817000	7.808133000	0.431363000
6	-0.740524000	9.082888000	0.901271000
6	-1.117455000	9.999190000	-0.032801000
1	-2.082888000	9.880206000	-0.542865000
6	-0.286015000	11.058916000	-0.351486000
1	-0.587834000	11.787314000	-1.092522000
6	0.946742000	11.163065000	0.278242000
1	1.616763000	11.978870000	0.028457000
6	1.334645000	10.249290000	1.244381000
6	0.486004000	9.178402000	1.585562000
6	2.627654000	10.363081000	1.992284000
1	3.355083000	10.958211000	1.437561000
1	2.447780000	10.911888000	2.929510000
6	3.171346000	9.010977000	2.337565000
6	4.526795000	8.742400000	2.440890000
1	5.238679000	9.521212000	2.187739000
	4.977078000	7.509255000	2.891451000
---	-------------	-------------	-------------
1	6.037201000	7.310966000	2.979141000
6	4.052103000	6.533992000	3.233445000
1	4.391628000	5.564614000	3.583558000
6	2.686913000	6.761125000	3.107949000
6	2.321670000	8.016728000	2.657318000
6	1.969494000	5.693638000	3.437167000
1	2.203777000	4.748137000	3.634810000
1	1.004398000	5.533259000	2.603646000
6	-3.228216000	6.236410000	2.927511000
1	-2.416136000	5.501091000	2.870533000
6	-4.166092000	5.937587000	1.767490000
1	-5.068158000	6.544387000	1.794481000
1	-4.484820000	4.894788000	1.820289000
1	-3.695458000	6.076619000	0.795551000
6	-3.924463000	6.068936000	4.268974000
1	-3.266491000	6.298620000	5.108020000
1	-4.280353000	5.044699000	4.394747000
1	-4.796172000	6.720452000	4.344853000
6	-3.366891000	9.287680000	2.893682000
1	-2.702550000	10.046780000	2.460748000
6	-3.722054000	9.740116000	4.301870000
1	-4.283747000	8.984162000	4.851823000
1	-4.341956000	10.637345000	4.262833000
1	-2.837028000	9.980769000	4.888847000
6	-4.601838000	9.201493000	2.011947000
1	-4.388990000	8.817865000	1.014392000
1	-5.041150000	10.193111000	1.889567000
1	-5.368625000	8.569063000	2.459923000
6	1.835530000	6.130106000	6.275223000
1	2.614877000	6.776536000	5.853641000
6	1.328608000	6.798411000	7.542173000
1	0.999633000	7.818037000	7.354991000
1	2.132547000	6.842191000	8.278540000
1	0.502880000	6.254990000	8.000669000
6	2.459226000	4.775133000	6.576382000
1	1.756403000	4.098773000	7.063416000
1	3.297298000	4.906049000	7.262766000
1	2.849436000	4.276057000	5.888999000
6	-0.518203000	4.676176000	5.060149000
1	-1.304915000	4.928930000	4.344580000
6	-1.158811000	4.619101000	6.438938000
1	-0.452613000	4.280890000	7.197601000
1	-1.987673000	3.909208000	6.436080000
1	-1.555767000	5.581224000	6.759743000
6	0.046631000	3.322467000	4.650765000
1	0.402928000	3.311646000	3.622128000
1	-0.737625000	2.566900000	4.726371000
1	0.863781000	2.997033000	5.291932000
6	-1.230910000	8.118028000	5.929202000
44	-0.296628000	8.073018000	4.356984000
1a-fac

(Front view)

(side view)

First three frequencies

	1 A	2 A	3 A
Freq.	24.5626	39.9359	51.3588
Red. masses	4.1235	4.1763	3.8543
Frc consts -- 0.0015 0.0039 0.0060
IR Inten -- 0.4610 0.2133 0.8690

Coordinates

15	-2.447668000	7.586813000	2.729536000
15	0.333082000	6.007598000	4.853276000
8	-2.578115000	7.704959000	6.813191000
7	0.653776000	8.350455000	2.704956000
6	-1.601378000	7.906689000	1.125990000
1	-0.876345000	7.093508000	1.038502000
1	-2.314864000	7.809109000	0.305529000
6	-0.870137000	9.201577000	1.051997000
6	-1.291724000	10.222432000	0.211677000
6	0.646116000	11.383734000	0.762831000
1	1.079661000	10.521022000	1.636145000
6	0.306927000	9.359657000	1.821409000
6	2.345597000	10.679072000	2.426304000
1	3.099121000	11.207771000	1.835870000
1	2.166325000	11.339487000	3.287719000
6	2.884159000	9.361576000	2.902006000
6	4.220899000	9.212920000	3.241946000
1	4.884920000	10.064435000	3.132826000
6	5.757188000	7.910092000	3.725246000
1	3.851855000	6.929593000	3.838077000
1	4.226236000	5.971127000	4.182737000
6	2.513805000	7.036294000	3.481561000
6	1.998513000	8.274620000	3.035498000
6	1.615151000	5.846933000	3.542627000
1	2.195795000	4.936198000	3.694068000
1	1.058760000	5.743126000	2.605501000
6	-3.201559000	5.914606000	2.418376000
1	-3.988100000	6.069404000	1.675662000
6	-3.855771000	5.379318000	3.686193000
1	-3.206335000	5.463803000	4.558666000
1	-4.124440000	4.327323000	3.571919000
1	-4.770165000	5.920746000	3.924577000
6	-2.178919000	4.963309000	1.798949000
1	-2.108992000	5.102158000	0.721336000
1	-2.453810000	3.922204000	1.976829000
1	-1.173596000	5.111406000	2.196623000
6	-3.899561000	8.749765000	2.650626000
1	-3.403022000	9.711819000	2.488129000
6	-4.675407000	8.832820000	3.956668000
1	-5.306380000	7.956582000	4.105702000
1	-5.337840000	6.999915000	3.948854000
1	-4.029218000	8.919669000	4.827242000
6	-4.847359000	8.518470000	1.484192000
1	-4.337550000	8.431359000	0.525397000
1	-5.544312000	9.354101000	1.400927000
1	-5.450452000	7.620387000	1.625253000
	1.392215000	6.059492000	6.383958000
---	-------------	-------------	-------------
6	2.093027000	6.852862000	6.096203000
	0.678844000	6.528499000	7.641984000
1	0.134282000	7.456768000	7.482191000
1	1.410266000	6.710425000	8.432186000
1	-0.025579000	5.790906000	8.024665000
6	2.203961000	4.801867000	6.652767000
1	1.584363000	3.984171000	7.021226000
1	2.949450000	5.004055000	7.423981000
1	2.742249000	4.445570000	5.775385000
	-0.572604000	4.379714000	4.865206000
1	-1.352128000	4.547621000	4.124311000
6	-1.281095000	4.133417000	6.189146000
1	-0.588470000	3.837740000	6.976672000
1	-2.003455000	3.322500000	6.078418000
1	-1.829072000	5.008796000	6.539064000
6	0.215909000	3.162974000	4.405727000
1	0.610413000	3.281890000	3.397203000
1	-0.440296000	2.290085000	4.390405000
1	1.049788000	2.923341000	5.063778000
6	-1.880338000	7.805086000	5.887094000
44	-0.779306000	8.021574000	4.451222000
6	-1.503657000	10.194178000	4.234528000
6	-0.338223000	10.268567000	4.977323000
1	-1.460556000	10.485084000	3.195593000
1	-2.442475000	10.369802000	4.743145000
8	-0.380850000	10.557852000	6.293472000
1	0.617210000	10.437512000	4.488330000
6	0.867638000	10.435606000	6.973940000
6	0.640520000	10.678503000	8.435040000
1	1.581373000	11.150278000	6.547263000
1	1.270296000	9.430584000	6.788188000
1	0.249533000	11.678797000	8.616380000
1	1.576994000	10.577871000	8.981388000
1	-0.068973000	9.959455000	8.843729000
1	0.548800000	8.299618000	5.356903000

1b-fac

![1b-fac diagram]
First three frequencies

\[
\begin{array}{ccc}
\text{1} & \text{2} & \text{3} \\
\text{A} & \text{A} & \text{A} \\
\text{Frequencies} & 33.2909 & 52.1955 & 59.2400 \\
\text{Red. masses} & 4.3635 & 3.7402 & 4.6410 \\
\text{Frc consts} & 0.0028 & 0.0060 & 0.0096 \\
\text{IR Inten} & 0.0207 & 0.3881 & 0.6555 \\
\end{array}
\]

Coordinates

\[
\begin{array}{cccc}
\text{8} & 1.018640000 & 9.292313000 & 5.530144000 \\
\text{15} & -2.362228000 & 7.880586000 & 2.868562000 \\
\text{15} & 0.373716000 & 6.068954000 & 4.881342000 \\
\text{8} & -2.569681000 & 8.039544000 & 1.194320000 \\
\text{15} & 0.705652000 & 10.255671000 & 0.106686000 \\
\text{6} & -1.613782000 & 7.978287000 & 0.442913000 \\
\text{1} & -0.978605000 & 11.347537000 & -0.111530000 \\
\text{1} & -2.403707000 & 12.104213000 & -0.832004000 \\
\text{6} & 0.891468000 & 11.400450000 & 0.599510000 \\
\text{6} & 1.551368000 & 12.286566000 & 0.440853000 \\
\text{6} & 1.240929000 & 10.482688000 & 1.540005000 \\
\text{6} & 0.401401000 & 9.381465000 & 1.763289000 \\
\text{6} & 2.453804000 & 10.605337000 & 2.410623000 \\
\text{6} & 3.230552000 & 11.204197000 & 1.930938000 \\
\text{1} & 2.177525000 & 11.164176000 & 3.318095000 \\
\text{6} & 2.983270000 & 9.257093000 & 2.803845000 \\
\text{6} & 4.326583000 & 9.035546000 & 3.058036000 \\
\text{1} & 5.027687000 & 9.855117000 & 2.929338000 \\
\text{6} & 4.782315000 & 7.796947000 & 3.488587000 \\
\text{6} & 5.832919000 & 7.635994000 & 3.690849000 \\
\text{6} & 3.871614000 & 6.762736000 & 3.644709000 \\
\text{6} & 4.216560000 & 5.783228000 & 3.958674000 \\
\text{6} & 5.202120000 & 6.936124000 & 3.370212000 \\
\text{6} & 2.049917000 & 8.205398000 & 2.952373000 \\
\text{6} & 1.567432000 & 5.793363000 & 3.500150000 \\
\text{1} & 2.111894000 & 4.857192000 & 3.629127000 \\
\text{1} & 0.952225000 & 5.707692000 & 2.598623000 \\
\text{6} & -3.297209000 & 6.285188000 & 2.714313000 \\
\text{1} & -4.120342000 & 6.488253000 & 2.024597000 \\
\text{6} & -3.891112000 & 5.879750000 & 4.053726000 \\
\text{1} & -3.125233000 & 5.782981000 & 4.823623000 \\
\text{1} & -4.408445000 & 4.921959000 & 3.973951000 \\
\text{1} & -4.613679000 & 6.610874000 & 4.416954000 \\
\text{6} & -2.426909000 & 5.201637000 & 2.085066000 \\
\text{1} & -2.386817000 & 5.298013000 & 1.001292000 \\
\text{1} & -2.821565000 & 4.208723000 & 2.308067000 \\
\text{1} & -1.395342000 & 5.232836000 & 2.441895000 \\
\text{6} & -3.658504000 & 9.213534000 & 2.811555000 \\
\text{1} & -3.063605000 & 10.048664000 & 2.422157000 \\
\end{array}
\]
TS1
First three frequencies

	1	2	3
A	\textbf{-996.8853}	35.7060	57.3868

Red. masses -- \textbf{1.0752} 4.2928 4.1858
Fr c cons -- \textbf{0.6295} 0.0032 0.0081
IR Inten -- \textbf{713.6896} 0.0122 0.5383

Coordinates

1	0.568318000	9.083049000	5.349118000
15	-2.398034000	7.810724000	2.825286000
15	0.301121000	6.194320000	4.816850000
8	-2.561651000	7.865278000	6.743395000
7	0.645516000	8.431645000	2.655912000
6	-1.649781000	8.013806000	1.156859000
1	-0.974285000	7.162339000	1.039012000
1	-2.430480000	7.932555000	0.398064000
6	-0.877736000	9.279260000	1.006724000
6	-1.261644000	10.27380000	0.120968000
1	-2.179710000	10.15502700	-0.444246000
6	-0.467979000	11.39788200	-0.077824000
1	-0.770378000	12.16262400	-0.780970000
6	0.724188000	11.52177900	0.623004000
1	1.355507000	12.39027700	1.544710000
6	1.149770000	10.56188400	2.385600000
6	0.307206000	9.429881000	1.757371000
6	2.350629000	10.69063800	2.385600000
1	3.099026000	11.31513100	1.893893000
1	2.095026000	11.22228400	3.147930000
6	2.912262000	9.345968000	2.740322000
6	4.263636000	9.131161000	2.957431000
1	4.956712000	9.953686000	2.815472000
6	4.733635000	7.892916000	3.375430000
1	5.790253000	7.738100000	3.550448000
6	3.835302000	6.853002000	3.559940000
1	4.193121000	5.876474000	3.866870000
6	2.477817000	7.026861000	3.317434000
6	1.999433000	8.289837000	2.914964000
6	1.512018000	5.897264000	3.459573000
1	2.040578000	4.958908000	3.628944000
1	0.913491000	5.788677000	2.549230000
6	-3.407704000	6.272587000	2.631780000
1	-4.218751000	6.543323000	1.950184000
6	-4.027188000	5.854472000	3.956351000
1	-3.276933000	5.693585000	4.730710000
1	-4.587686000	4.925372000	3.841146000
1	-4.718206000	6.606056000	4.337129000
6	-2.597464000	5.168055000	1.959876000
1	-2.516542000	5.327979000	0.886067000
1	-3.073826000	4.197965000	2.109821000
1	-1.578956000	5.093670000	2.344031000
6	-3.608714000	9.219786000	2.848816000
1	-2.968386000	10.049444000	2.528250000
First three frequencies

	1	2	3
A	27.0329	48.2607	53.5414
Frequencies --	4.6814	4.6039	3.3838
Red. masses --	0.0020	0.0063	0.0057
Frc consts --	0.1746	0.7314	0.5198
IR Inten --			

Coordinates

8	0.891427000	9.242364000	5.258426000
15	-2.262880000	7.696581000	2.851652000
15	0.378643000	6.130185000	4.842061000
8	-2.412442000	7.853323000	6.751284000
7	0.754674000	8.314795000	2.664580000
6	-1.547114000	7.928002000	1.171745000
1	-0.870209000	7.082084000	1.022353000
1	-2.337704000	7.865548000	0.421154000
6	-0.781834000	9.202011000	1.050801000
6	-1.169467000	10.216449000	0.184447000
1	-2.085569000	11.341698000	0.009051000
1	-0.679908000	12.119348000	-0.680278000
6	0.817551000	11.450545000	0.709244000
1	1.452081000	12.318298000	0.562477000
6	1.211831000	10.476321000	1.612390000
6	0.399206000	9.344776000	1.809096000
6	2.467082000	10.577267000	2.426673000
1	3.210700000	11.199359000	1.923936000
1	2.237696000	11.088799000	3.371131000
6	3.021897000	9.222473000	2.753200000
6	4.370319000	8.992961000	2.969030000
1	5.071553000	9.810169000	2.835582000
6	4.829740000	7.748708000	3.384532000
1	5.885240000	7.585546000	3.558756000
6	3.922969000	6.716627000	3.572167000
1	4.271904000	5.738045000	3.885219000
6	2.567919000	6.906336000	3.330148000
6	2.104542000	8.172183000	2.922611000
6	1.578698000	5.798419000	3.484360000
1	2.083279000	4.850300000	3.673046000
1	0.976564000	5.686654000	2.577344000
6	-3.318048000	6.189010000	2.632207000
1	-4.096877000	6.477226000	1.921551000
6	-3.998115000	5.804777000	3.937607000
1	-3.288066000	5.657202000	4.751721000
1	-4.562765000	4.878356000	3.820460000
1	-4.699635000	6.571388000	4.266906000
6	-2.517932000	5.058825000	1.990294000
1	-2.423315000	5.200140000	0.914895000
1	-3.009848000	4.097960000	2.150019000
1	-1.503947000	4.974965000	2.383934000
6	-3.465215000	9.127807000	2.878446000
1	-2.834755000	9.936440000	2.490397000
---	---	---	---
6	-3.941682000	9.546949000	4.259268000
1	-4.464249000	8.747817000	4.785384000
1	-4.638491000	10.382127000	4.170759000
1	-3.122769000	9.879815000	4.894377000
6	-4.639617000	8.961836000	1.925845000
1	-4.340885000	8.636431000	0.929373000
1	-5.158622000	9.914375000	1.808995000
1	-5.370774000	8.247027000	2.307137000
6	1.513845000	6.299859000	6.300926000
1	2.184982000	7.078384000	5.920713000
6	0.884098000	6.834855000	7.576293000
1	0.326092000	7.752842000	7.410266000
1	1.671041000	7.061156000	8.297405000
1	0.213561000	6.119468000	8.050300000
6	2.332822000	5.048589000	6.586758000
1	1.727948000	4.253011000	7.022878000
1	3.113927000	5.285744000	7.310959000
1	2.830063000	4.649020000	5.704438000
6	-0.635493000	4.589149000	5.044900000
1	-1.463813000	4.765420000	4.359145000
6	-1.231064000	4.448608000	6.437623000
1	-0.481240000	4.159578000	7.173276000
1	-1.990247000	3.664718000	6.432122000
1	-1.710756000	5.361276000	6.787817000
6	0.055957000	3.307932000	4.599745000
1	0.357735000	3.336947000	3.553959000
1	-0.633782000	2.469542000	4.712117000
1	0.937967000	3.078991000	5.196556000
6	-1.696289000	7.960100000	5.840178000
44	-0.565760000	8.113910000	4.401946000
1	0.698360000	9.420408000	6.184401000

1d
(front view)
First three frequencies

	1	2	3
Frequencies	19.3776	37.5702	43.3288
Red. masses	4.1303	3.9021	3.6392
Fr. consts	0.0009	0.0032	0.0040
IR Inten	0.9564	0.2178	0.2520

Coordinates

8	0.894275000	8.676134000	5.539120000
15	-2.348390000	7.495335000	2.774169000
	x	y	z
-----	--------	--------	--------
6	2.124522000	4.625758000	6.554807000
1	1.494004000	3.791621000	6.864018000
1	2.860049000	4.775101000	7.347531000
1	2.675545000	4.319512000	5.667001000
6	-0.742368000	4.367489000	4.842845000
1	-1.539597000	4.608323000	4.145497000
6	-1.407398000	4.108390000	6.186674000
1	-0.703191000	3.731681000	6.927518000
1	-2.184428000	3.351074000	6.070201000
1	-1.882593000	4.998769000	6.598822000
6	-0.941439000	3.127124000	4.309284000
1	0.314123000	3.257690000	3.287971000
1	-0.743780000	2.290932000	4.299529000
1	0.807163000	2.825289000	4.925480000
6	-1.888920000	7.717121000	5.847972000
44	-0.734426000	7.937811000	4.455173000
1	0.613720000	8.747844000	6.456467000
6	-1.699882000	10.506238000	4.334351000
6	-0.557108000	10.888702000	4.930537000
1	-1.731457000	10.532965000	3.256541000
1	-2.625471000	10.452315000	4.886060000
8	-0.466450000	11.117548000	6.232346000
1	0.348796000	11.032309000	4.348773000
6	0.842101000	11.491195000	6.715955000
6	0.904819000	11.191917000	8.182200000
1	0.982179000	12.558425000	6.518379000
1	1.590235000	10.925341000	6.157234000
1	0.130207000	11.725296000	8.731563000
1	1.871352000	11.494240000	8.581993000
1	0.781620000	10.125698000	8.374449000

TS2
(front view)
First three frequencies

	1	2	3
A	219.2998	29.6775	35.8700

Red. masses -- 8.4659 4.3995 3.2766
Fr. const. -- 0.2399 0.0023 0.0025
IR Inten -- 25.0695 0.2509 0.5060

Coordinates

8	0.667697000	8.523640000	5.796182000	
15	-2.351913000	7.308741000	2.787537000	
15	0.270014000	5.612420000	4.823284000	
8	-2.875640000	7.037822000	6.617326000	
7	0.685078000	8.132180000	2.881805000	
6	-1.496700000	7.750666000	1.220903000	
1	-0.754622000	6.960009000	1.083867000	
1	-2.204261000	7.694069000	0.391629000	
6	-0.792006000	9.061702000	1.240147000	
6	-1.206099000	10.124666000	0.451022000	
1	-2.110309000	10.019617000	-0.140257000	
6	-0.455474000	11.289984000	0.373504000	
1	-0.779947000	12.111737000	-0.251129000	
6	0.738098000	11.367950000	1.076068000	
1	1.355646000	12.256696000	0.992674000	
6	1.163732000	10.334937000	1.900668000	
6	0.371588000	9.179451000	2.036748000	
6	2.448303000	10.430858000	2.673287000	
1	3.219732000	10.907381000	2.060510000	

S82
	2.330153000	11.1173000	3.52540000
	2.928257000	9.092018000	3.156143000
	4.250429000	8.908921000	3.532680000
	4.932502000	9.750954000	3.468546000
	4.709179000	7.681881000	3.987698000
	5.741915000	7.555258000	4.284931000
	6.094999000	4.018505000	
	6.146090000	8.751690000	3.626901000
	7.681881000	3.237194000	
	7.555258000	4.284931000	
	5.333884000	2.592123000	
	5.333884000	2.592123000	
	6.094999000	4.018505000	
	6.146090000	8.751690000	3.626901000
	7.681881000	3.237194000	
	7.555258000	4.284931000	
	5.333884000	2.592123000	
	5.333884000	2.592123000	
	6.094999000	4.018505000	
	6.146090000	8.751690000	3.626901000
	7.681881000	3.237194000	
	7.555258000	4.284931000	
	5.333884000	2.592123000	
	5.333884000	2.592123000	
	6.094999000	4.018505000	
	6.146090000	8.751690000	3.626901000
	7.681881000	3.237194000	
	7.555258000	4.284931000	
	5.333884000	2.592123000	
	5.333884000	2.592123000	
	6.094999000	4.018505000	
	6.146090000	8.751690000	3.626901000
	7.681881000	3.237194000	
	7.555258000	4.284931000	
	5.333884000	2.592123000	
	5.333884000	2.592123000	
	6.094999000	4.018505000	
	6.146090000	8.751690000	3.626901000
	7.681881000	3.237194000	
	7.555258000	4.284931000	
	5.333884000	2.592123000	
	5.333884000	2.592123000	
	6.094999000	4.018505000	
	6.146090000	8.751690000	3.626901000
	7.681881000	3.237194000	
	7.555258000	4.284931000	
	5.333884000	2.592123000	
	5.333884000	2.592123000	
	6.094999000	4.018505000	
	6.146090000	8.751690000	3.626901000
	7.681881000	3.237194000	
	7.555258000	4.284931000	
	5.333884000	2.592123000	
	5.333884000	2.592123000	
	6.094999000	4.018505000	
	6.146090000	8.751690000	3.626901000
	7.681881000	3.237194000	
	7.555258000	4.284931000	
	5.333884000	2.592123000	
	5.333884000	2.592123000	
	6.094999000	4.018505000	
	6.146090000	8.751690000	3.626901000
	7.681881000	3.237194000	
	7.555258000	4.284931000	
	5.333884000	2.592123000	
	5.333884000	2.592123000	
	6.094999000	4.018505000	
	6.146090000	8.751690000	3.626901000
	7.681881000	3.237194000	
	7.555258000	4.284931000	
	5.333884000	2.592123000	
	5.333884000	2.592123000	
	6.094999000	4.018505000	
	6.146090000	8.751690000	3.626901000
	7.681881000	3.237194000	
	7.555258000	4.284931000	
	5.333884000	2.592123000	
	5.333884000	2.592123000	

S83
Index	X	Y	Z
6	-1.38729	9.86928	4.54570
6	-0.17709	10.31171	5.11029
1	-1.47475	10.16409	3.50366
1	-2.26664	10.10153	5.13736
8	-0.15481	10.96392	6.25060
1	0.70350	10.39412	4.48380
6	1.16298	11.36609	6.70948
6	1.10802	11.56407	8.19180
1	1.42558	12.28711	6.18293
1	1.86955	10.58396	6.42486
1	0.36735	12.31352	8.46682
1	2.07769	11.89919	8.55600
1	0.85988	10.63484	8.70354

1e

(front view)

(side view)
First three frequencies

	1	2	3
A	40.2807	43.6344	52.0251
A	3.7684	3.6766	4.1007
A	0.0036	0.0041	0.0065
A	0.3193	0.2279	0.0206

Coordinates

	x	y	z
8	0.723346000	8.727313000	5.944643000
15	-2.033656000	7.251731000	2.758893000
15	0.808519000	5.603960000	4.621498000
8	-2.523643000	6.589877000	6.493181000
7	0.928285000	8.308657000	2.890144000
6	-1.235317000	7.857625000	1.222230000
1	-0.432209000	7.143331000	1.025965000
1	-1.947438000	7.797723000	0.397157000
6	-0.649534000	9.221165000	1.331709000
6	-1.169963000	10.294434000	0.624101000
1	-2.069089000	10.148428000	0.033838000
6	-0.531024000	11.526452000	0.626802000
1	-0.938617000	12.358231000	0.067582000
6	0.660318000	11.661300000	1.322804000
1	1.195128000	12.605447000	2.992510000
6	1.190481000	10.613959000	2.064927000
6	0.507950000	9.385732000	2.126315000
6	2.481984000	10.772879000	2.812408000
1	3.198139000	11.334122000	2.203858000
1	2.332832000	11.408029000	3.697204000
	3.079749000	9.453701000	3.211819000
---	-------------	-------------	-------------
	4.419927000	9.371895000	3.211819000
1	5.015248000	10.279422000	3.550431000
6	5.005731000	8.165222000	3.909011000
1	6.051570000	8.117783000	4.182355000
	4.237434000	7.013478000	3.859892000
1	4.692078000	6.051064000	4.069836000
6	2.896267000	7.052983000	3.498652000
1	2.275193000	8.293654000	3.220058000
6	2.128241000	8.117783000	4.182355000
1	4.237434000	7.013478000	3.859892000
6	2.896267000	7.052983000	3.498652000
1	2.275193000	8.293654000	3.220058000
6	2.128241000	8.117783000	4.182355000
1	4.237434000	7.013478000	3.859892000
6	2.896267000	7.052983000	3.498652000
1	2.275193000	8.293654000	3.220058000
6	2.128241000	8.117783000	4.182355000
1	4.237434000	7.013478000	3.859892000
6	2.896267000	7.052983000	3.498652000
1	2.275193000	8.293654000	3.220058000
6	2.128241000	8.117783000	4.182355000
1	4.237434000	7.013478000	3.859892000
TS3

(front view)

(side view)
First three frequencies

	1	2	3
A	2.256710000	3.685306000	1.097524000
A	2.256710000	3.685306000	1.097524000
A	2.256710000	3.685306000	1.097524000

Red. masses -- 1.7784 3.5684 4.2587
Frc consts -- 0.4730 0.0020 0.0033
IR Inten -- 385.0465 0.1264 0.0377

Coordinates

	-2.354928000	7.382052000	2.730746000
15	0.386581000	5.825210000	4.840940000
8	-2.674687000	7.302212000	6.649554000
7	0.735512000	8.170032000	2.688698000
6	-1.530192000	7.762216000	1.133101000
1	-0.794064000	6.963709000	1.011919000
1	-2.252671000	7.685306000	0.318290000
6	-0.818581000	9.069652000	1.097524000
6	-1.273619000	10.122173000	0.319917000
1	-2.213538000	10.014226000	-0.211813000
6	-0.523852000	11.282362000	0.175604000
1	-0.886641000	12.099171000	-0.433155000
6	0.720584000	11.351311000	0.778438000
1	1.347508000	12.223371000	0.624123000
6	1.200123000	10.320940000	1.580472000
6	0.395960000	9.187859000	1.817285000
6	2.585581000	10.383635000	2.164773000
1	3.291521000	10.692728000	1.386671000
1	2.667942000	11.182844000	2.915265000
6	3.026705000	9.075733000	2.755284000
6	4.362704000	8.882804000	3.072310000
1	5.059192000	9.696288000	2.897746000
6	4.818090000	7.686732000	3.601671000
1	5.862402000	7.553998000	3.849738000
6	3.915878000	6.649843000	3.768583000
1	4.260003000	5.683849000	4.122883000
---	---	---	
6	2.573991000	6.801857000	
6	2.089711000	8.046781000	
6	1.655010000	5.629459000	
1	2.227903000	4.713899000	
1	1.091254000	5.528532000	
6	-3.105340000	5.718303000	
1	-3.868546000	1.614792000	
6	-3.788828000	8.562710000	
1	-3.131436000	5.178099000	
1	-4.104070000	4.129643000	
6	-3.794080000	8.361703000	
1	-4.286409000	8.206698000	
1	-5.450319000	9.181409000	
1	-5.393320000	7.451480000	
6	1.463505000	5.997769000	
1	2.097324000	6.832620000	
6	0.723876000	6.451758000	
1	0.600356000	7.290517000	
1	1.439614000	6.772231000	
6	0.125750000	6.561840000	
6	2.372110000	4.815372000	
1	1.813334000	3.965118000	
1	3.102757000	5.091946000	
1	2.930413000	4.477514000	
6	-0.457177000	4.163652000	
6	-1.261176000	4.264762000	
6	-1.121473000	3.947699000	
1	-0.392283000	3.721721000	
1	-1.805513000	3.099134000	
1	-1.698378000	4.813560000	
6	0.373097000	2.959922000	
1	0.709253000	3.034952000	
1	-0.230094000	2.053485000	
1	1.252257000	2.815033000	
6	-1.949183000	7.501422000	
44	-0.789265000	7.818215000	
6	-1.275674000	9.942179000	
6	-0.123023000	10.009493000	
1	-1.160624000	10.452445000	
1	-2.206914000	10.177930000	
8	-0.346688000	10.257880000	
6	0.796582000	10.139642000	
6	0.309240000	10.090803000	
1	1.469362000	10.981870000	
1	1.343195000	9.228205000	

S89
TS4
(front view)

(side view)
First three frequencies

	1	2	3
A	-413.4617	22.7420	27.4072
A	3.0176	4.0218	4.6734
A	0.3039	0.0012	0.0021
A	743.4817	0.5899	0.7344

Coordinates

44	0.215609000	-0.420775000	0.595603000
15	-1.121175000	-1.781075000	-0.799047000
15	2.415130000	-0.513063000	-0.265515000
7	-0.112466000	1.262705000	-0.940610000
6	-1.466057000	-0.786962000	-2.311618000
1	-0.485242000	-0.607260000	-2.763755000
1	-2.061713000	-1.364460000	-3.018958000
6	-2.132833000	0.512644000	-2.008074000
6	-3.444329000	0.743459000	-2.403580000
1	-3.982775000	-0.048681000	-2.913589000
6	-4.054457000	1.971234000	-2.196404000
1	-5.071757000	2.141230000	-2.523375000
6	-3.331261000	2.982376000	-1.580456000
1	-3.790151000	3.952181000	-1.415678000
6	-2.030811000	2.777441000	-1.145566000
6	-1.406865000	1.528322000	-1.342952000
6	-1.284091000	3.845442000	-0.402636000
1	-1.607559000	3.849141000	0.650150000
1	-1.564345000	4.836345000	-0.770940000
6	0.201576000	3.656448000	-0.483714000
6	1.081536000	4.709978000	-0.275749000
1	0.677240000	5.693629000	-0.058284000
6	2.454889000	4.524657000	-0.332385000
1	3.129312000	5.351689000	-0.152918000
6	2.950431000	3.270811000	-0.663190000
1	4.019990000	3.121404000	-0.774365000
6	2.096289000	2.205666000	-0.909383000
6	0.700325000	2.369895000	-0.756491000
6	2.605245000	0.903404000	-1.423662000
1	3.649891000	0.984119000	-1.732432000
1	2.018121000	0.620147000	-2.301590000
6	-0.438567000	-3.393748000	-1.438106000
1	0.681870000	-3.187827000	-1.467766000
6	-0.631224000	-4.536271000	-0.452640000
1	-1.655604000	-4.909862000	-0.456444000
1	-0.380944000	-4.255066000	0.570595000
1	0.012635000	-5.374763000	-0.726031000
6	-0.855957000	-3.789570000	-2.845820000
1	-0.356050000	-4.718933000	-3.127615000
1	-0.578114000	-3.041200000	-3.587039000
1	-1.927754000	3.963351000	-2.935795000
6	-2.840836000	-2.129193000	-0.181704000
1	-3.214389000	-1.107950000	-0.048611000
6	-2.892452000	-2.821702000	1.175848000
1	-3.833963000	-2.593171000	1.678193000

S91
	x	y	z
1	-2.085053	-2.519367	1.839612
2	-2.843137	-3.904921	1.077045
3	-3.765226	-2.828246	-1.167430
4	-3.490453	-3.874644	-1.304820
5	-3.785492	-2.354265	-2.147684
6	-4.788708	-2.818389	-0.786890
1	3.712881	0.962331	1.205489
2	5.143219	0.332070	-0.462004
3	5.818311	-1.199055	0.388782
4	3.572903	-0.840205	2.321740
5	3.676062	-1.919009	2.200128
6	2.612600	-0.654465	2.797175
1	4.349868	-0.520076	3.018461
2	3.182228	-1.885174	-1.256586
3	4.231081	-1.612395	-1.398204
4	3.144312	-3.192236	-0.476299
5	2.151536	-3.417374	-0.083340
6	3.821293	-3.166705	0.377690
1	3.449974	-4.030818	-1.104909
2	2.543967	-1.966468	-2.641960
3	1.477514	-1.735102	-2.630760
4	2.656340	-2.965011	-3.068653
5	3.006754	-1.264095	-3.333567
6	0.446019	-1.732948	1.822755
1	0.567964	-2.557540	2.643586
2	-1.406470	1.478937	2.465185
3	1.109131	0.763723	1.453931
4	-0.976396	2.367726	1.993830
5	-0.070091	1.109115	3.397636
6	0.540930	0.832790	2.546243
1	-0.292667	0.259416	3.814722
2	-1.636967	0.329697	1.576480
3	-2.301164	0.694047	0.788493
4	-2.196745	-0.420592	2.140316
5	-2.380545	1.749461	3.348287
6	-2.251075	2.998697	4.053311
1	-1.998816	3.781802	3.330363
2	-1.417789	2.920932	4.757193
3	-3.543806	3.283129	4.753786
4	-3.786922	2.495988	5.465977
5	-4.366222	3.366386	4.045095
6	-3.472248	4.221142	5.301640
Energies of Computed Structures

	$E_{\omega B97M-V_{\text{refSMD}}}$	$G^\circ \text{corr}^{\text{M06-L$_{pq}$SMD}}$	Imaginary Frequency
Main Cycle Intermediates and Transition States of complex 6			
6-mer	-2451.812888950932	0.500451	
6-fac	-2451.807880184399	0.504386	
6b-fac	-2528.27679651755	0.526216	
6TS1	-2528.236979945745	0.523622	-938.8164
6c	-2527.074177824430	0.508927	
6d	-2759.510380012993	0.612153	
6TS2	-2759.505730365457	0.611821	-242.6559
6e	-2759.521912974986	0.616558	
6TS3	-2759.51053136025	0.613380	-625.0786
Alternate Reaction Pathway Intermediates and Transition States of complex 6			
6a-fac	-2684.267631991996	0.609672	
6TS4	-2760.661002441410	0.636184	-294.3637
TS5	-385.244326553544	0.109791	-289.2022
Organics			
Ethyl Vinyl Ether	-232.413491675489	0.069705	
Water	-76.438317920532	-0.00462	
Hydrogen	-1.160713129166	-0.006738	
Ethyl Acetate	-307.712692350948	0.0722	
Main Cycle Intermediates and Transition States of complex 1			
1-mer	-1999.28016801161	0.648033	
1-fac	-1999.26335929438	0.529431	
1b-fac	-2075.72834157513	0.554507	
--------	------------------	--------	--------
TS1	-2075.69360847472	0.551809	-996.8853
1c	-2074.52553654306	0.535057	
1d	-2306.9575982973	0.637097	
TS2	-2306.95536625218	0.641367	-219.2998
1e	-2306.9789388902	0.648033	
TS3	-2306.97253807245	0.639521	-671.9172

Alternate Reaction Pathway Intermediates and Transition States of complex 1

1a-fac	-2231.7212988878	0.640258	
TS4	-2308.11567501238	0.655057	-413.4617

7. REFERENCES

1. S. Tang, M. Rauch, M. Montag, Y. Diskin-Posner, Y. Ben-David, D. Milstein, *J. Am. Chem. Soc.*, 2020, **142**, 20875-20882.
2. Y.-Q. Zou, N. von Wolff, A. Anaby, Y. Xie, D. Milstein, *Nat. Catal.* 2019, **2**, 415-422.
3. E. Balaraman, Y. Ben-David, D. Milstein, *Angew. Chem. Int. Ed.* 2011, **50**, 11702-11705.
4. A. Kumar, T. Janes, N. A. Espinosa-Jalapa, D. Milstein, *J Am Chem Soc* 2018, **140**, 7453-7457.
5. Y.-Q.; Zou, N. von Wolff, M. Rauch, M. Feller, Q.-Q. Zhou, A. Anaby, Y. Diskin-Posner, L. J. W. Shimon, L. Avram, Y. Ben-David, D. Milstein, *Chem. - Eur. J.* 2021, **27**, 4715-4722.
6. Y. Xie, Y. Ben-David, L. J. W. Shimon, D. Milstein, *J. Am. Chem. Soc.* 2016, **138**, 9077-9080.
7. U. Gellrich, J. R. Khusnutdinova, G. M. Leitus, D. Milstein, *J. Am. Chem. Soc.* 2015, **137**, 4851-4859.
8. G. Sheldrick, SHELXT - Integrated space-group and crystal-structure determination. *Acta Crystallogr. A* 2015, **71**, 3-8.
9. G. Sheldrick, *Acta Crystallogr. C* 2015, **71**, 3-8.
10. O. V. Dolomanov, L. J. Bourhis, R. J. Giddea, J. A. K. Howard, H. Puschmann, *J. Appl. Crystallogr.* 2009, **42**, 339-341.
11. Y. Zhao, D. G. Truhlar, *J. Chem. Phys.* 2006, **125**, 194101.
12. F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, **7**, 3297-3305.
13. F. Weigend, *Phys. Chem. Chem. Phys.* 2006, **8**, 1057-1065.
14. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *J. Chem. Phys.* 2010, **132**, 154104.
15. N. Mardirossian, M. Head-Gordon, *J. Chem. Phys.* 2016, **144**, 214110.
16. (a) O. A. Vydrov, T. Van Voorhis, *J. Chem. Phys.* 2010, **133**, 244103; (b) W. Hujo, S. Grimme, *J. Chem. Theory Comput.* 2011, **7**, 3866-3871.

17. A. Hellweg, C. Hättig, S. Höfener, W. Klopper, *Theor. Chem. Acc.* 2007, **117**, 587-597.

18. C. J. Cramer, Essentials of Computational Chemistry: Theories and Models. 2nd Edition. John Wiley & Sons Ltd: West Sussex, England, 2004.

19. (a) M. Sparta, C. Riplinger, F. Neese, *J. Chem. Theory Comput.* 2014, **10**, 1099-1108; (b) K. H. Hopmann, *Organometallics* 2016, **35**, 3795-3807; (c) D. G. Gusev, *Organometallics* 2020, **39**, 258-270.

20. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, *Gaussian 16 Rev. C.01*, Wallingford, CT, 2016.

21. F. Neese, *Comput. Mol. Sci.* 2018, **8**, e1327.