Supplementary Material to:
The influence of TF competition on the relationship between occupancy and affinity
Nicolae Radu Zabet1,2,*, Robert Foy1,2, Boris Adryan1,2,†
1 Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
2 Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
* E-mail: n.r.zabet@gen.cam.ac.uk
† E-mail: ba255@cam.ac.uk

Table S1. TF species default parameters

parameter	lacI	non-cognate	notation
copy number	see main manuscript		TF_x
motif sequence	see Table S2	-	
energetic penalty for mismatch	$1 \ K_B T$	$13 \ K_B T$	ϵ_x
nucleotides covered on left	0 bp	23 bp	$\text{TF}^{\text{left}}_x$
nucleotides covered on right	0 bp	23 bp	$\text{TF}^{\text{right}}_x$
association rate to the DNA	see main manuscript	-	k^{assoc}_x
unbinding probability	0.001474111	0.001474111	p^{unbind}_x
probability to slide left	0.4992629	0.4992629	p^{left}_x
probability to slide right	0.4992629	0.4992629	p^{right}_x
probability to dissociate completely when unbinding	0.1675	0.1675	p^{jump}_x
time bound at the target site	$1.18E \ - \ 6 \ s$	$0.3314193 \ s$	τ^{th}_x
the size of a step to left	1 bp	1 bp	σ^{hop}_x
the size of a step to right	1 bp	1 bp	d^{jump}_x
variance of repositioning distance after a hop	1 bp	1 bp	d^{jump}_x
the distance over which a hop becomes a jump	100 bp	100 bp	d^{jump}_x
the proportion of prebound molecules	0.0	0.9	
affinity landscape roughness	-	$1.0 \ K_B T$	
Table S2. lacI PWM

Position	A	C	G	T
1	0.6200	-0.6900	0.1400	-0.6900
2	0.6200	-0.6900	0.1400	-0.6900
3	0.1600	0.1400	-0.6900	0.1800
4	0.1600	-0.6900	-0.6900	0.6200
5	-0.7000	-0.7000	0.9000	-0.7000
6	-0.6900	-0.6900	-0.6900	0.9300
7	0.0077	-0.0084	-0.0073	0.0083
8	0.0077	-0.0084	-0.0073	0.0083
9	0.0077	-0.0084	-0.0073	0.0083
10	0.0077	-0.0084	-0.0073	0.0083
11	0.0077	-0.0084	-0.0073	0.0083
12	0.0077	-0.0084	-0.0073	0.0083
13	0.0077	-0.0084	-0.0073	0.0083
14	0.0077	-0.0084	-0.0073	0.0083
15	0.0077	-0.0084	-0.0073	0.0083
16	0.6200	-0.6900	0.1400	-0.6900
17	-0.7000	0.9000	-0.7000	-0.7000
18	0.9300	-0.6900	-0.6900	-0.6900
19	0.9300	-0.6900	-0.6900	-0.6900
20	-0.6900	0.1400	-0.6900	0.6200
21	-0.6900	0.1400	-0.6900	0.6200
Generating the *in silico* ChIP profile

```r
generateChIPProfile <- function(input.vec, mean, sd, smooth = NULL) {
  var = sd^2
  shp = mean^2/var
  scl = var/mean
  l = length(input.vec)

  f = dgamma(0:length(input.vec), shape = shp, scale = scl)
  F = rev(cumsum(rev(f)))

  peak.centres = which(input.vec > mean(input.vec))
  peaks = vector("numeric", l)

  for(pc in peak.centres) {
    this.peak = vector("numeric", l)
    this.peak[pc:l] = F[1:(l-pc+1)]
    this.peak[1:(pc-1)] = F[pc:2]
    peaks = peaks + this.peak * input.vec[pc]
  }

  if(!is.null(smooth)){
    if((smooth %% 2) == 0){smooth = smooth - 1}
    mid = round(smooth/2,0) + 1
    d = smooth - mid
    for(i in mid:(length(peaks) - d)) {
      peaks[i] = mean(peaks[max(0,(i-d)):min(length(input.vec),(i+d))])
    }
  }

  return(peaks)
}
```