Impact of C-reactive protein levels on differentiating of severe fever with thrombocytopenia syndrome from Japanese spotted fever

Takeshi Kawaguchi1, Kunihiko Umekita1, Atsushi Yamanaka2, Seiichiro Hara3, Tetsuro Yamaguchi4, Eisuke Inoue5, Akihiko Okayama1

1Department of Rheumatology, Infectious Diseases, and Laboratory Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan

2Department of Internal Medicine, Miyazaki Prefectural Miyazaki Hospital, Miyazaki, Japan

3Department of Internal Medicine, Miyazaki Prefectural Nichinan Hospital, Miyazaki, Japan

4Department of Internal Medicine, Miyazaki Prefectural Nobeoka Hospital, Miyazaki, Japan

5Showa University Research Administration Center, Showa University, Tokyo, Japan
Contact information

Corresponding author: Kunihiko Umekita, M.D., Ph.D.

Department of Rheumatology, Infectious Diseases and Laboratory Medicine, Faculty of Medicine, University of Miyazaki

5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan

Phone: 81-985-7284

Fax: 81-985-4709

E-mail: kunihiko.umekita@med.miyazaki-u.ac.jp

Alternate corresponding author: Takeshi Kawaguchi, M.D.

Department of Rheumatology, Infectious Diseases and Laboratory Medicine Faculty of Medicine, University of Miyazaki

5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan

Phone: 81-985-7284

Fax: 81-985-4709

E-mail: takeshi.kawaguchi@med.miyazaki-u.ac.jp

Key points:

Early differentiation between severe fever with thrombocytopenia syndrome (SFTS) and Japanese spotted fever (JSF) is important for treatment selection and infection control. We found that normal C-reactive protein is an important factor for differentiation between SFTS from JSF.
Abstract

Background. Severe fever with thrombocytopenia syndrome (SFTS) is an emerging viral hemorrhagic fever in China, Korea, and Japan. Japanese spotted fever (JSF), which belongs to the group of spotted fever group rickettsioses, is also endemic to western Japan. Patients with SFTS or those with JSF display many of the same clinical manifestations. Sudden fever, rash, tick bite, and neurological and gastrointestinal symptoms may be seen in both infections, but the frequency and severity of each disease has not been compared and studied. Because laboratory confirmation of pathogens takes time, it is important to predict a diagnosis of SFTS or JSF based on the features of clinical characteristics at the initial presentation, particularly in primary care settings.

Methods. We conducted a case series review at four medical facilities in Miyazaki, Japan. Based on the medical records, clinical and laboratory characteristics were compared between patients with SFTS and those with JSF.

Results. Eighty-one patients were enrolled in this study, including 41 with SFTS and 40 with JSF. The absence of rash \((P < .001) \), leukopenia \((P < .001) \), and normal C-reactive protein (CRP) levels \((P < .001) \) were the variables distinguishing SFTS from JSF. Normal CRP levels \(\leq 1.0 \text{ mg/dL} \) had a 95% sensitivity (84–99%) and 97% specificity (87–100%) for SFTS, with a positive likelihood ratio of 37.1 (5.35–257).

Conclusions. Normal serum CRP levels were shown to differentiate SFTS from JSF with a very high probability.

Keywords: severe fever with thrombocytopenia syndrome; Japanese spotted fever; differentiation.
Introduction

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging viral hemorrhagic fever in East Asia [1]. The causative agent of SFTS is a novel Banyangvirus of the Phenuiviridae family, Huaiyangshan bangyangvirus, also called SFTS virus (SFTSV). SFTS was first reported in China in 2011 [2], and many cases of SFTS have been reported in China, South Korea and western Japan. Between 2013 and 2019, 50–70 cases of SFTS per year were reported in Japan [3]. Although the fatality rate of SFTS is 10%–20% in China and South Korea [4-5], it is 31% in Japan [6] for unknown reasons. Japanese spotted fever (JSF) was first described in 1984 and is a member of the spotted fever group rickettsiosis [7]. JSF is caused by Rickettsiae japonica and presents a clinical manifestation similar to that of Mediterranean spotted fever. Except for 20 cases reported in China [8], one case reported in South Korea [9], and one case of a spotted fever group Rickettsia species closely related to R. japonica in Thailand [10], JSF has been confined to western Japan. JSF cases in Japan increased from 66 in 2004 to 215 in 2015, with a fatality rate of 1.5%–2.3% [11]. Both SFTS and JSF are potentially fatal diseases; however, SFTS has a higher mortality rate.

These two endemic zoonoses are both tick-borne infections. Because the species of vector mites that carry both SFTS and JSF are Haemaphysalis longicornis, H. flava, and Amblyomma testudinarium, the seasons and regions in which both diseases occur are identical. Patients with SFTS and JSF show similar clinical manifestations. These include sudden fever, rash, tick bite, and neurological and gastrointestinal symptoms for both infections [12, 13]; however, no studies have compared the frequency and severity of each disease. Therefore, it is difficult to differentiate between SFTS and JSF during the initial presentation of acute febrile patients suspected of having a tick-borne infection. The early differential diagnosis of these two diseases is important because patients with each disease require different treatments and infection-control strategies. JSF can be treated with antibiotics, whereas an effective antiviral therapy for SFTS is lacking. Human-to-human transmission of SFTSV may occur through exposure to blood or body secretions [14]. Although a
laboratory diagnosis of SFSTV and *R. japonica* infections can be established by the detection of pathogen genes or a serological analysis of antibodies, these tests take time and require special laboratory equipment. It would be more useful to predict a diagnosis of SFTS or JSF based on the clinical characteristics at initial presentation, particularly in primary care settings. Two previous studies have analyzed the differences between SFTS and scrub typhus [15, 16], but the differences in the clinical manifestations of SFTS and JSF remained unknown. Additionally, it is important to differentially distinguish JSF from SFTS because patients with JSF frequently display more severe conditions than patients with scrub typhus [13]. Therefore, we assessed the clinical characteristics of SFTS and JSF, which is useful for differentiating these infections in Miyazaki, Japan where both diseases are prevalent.

Materials and Methods

Study protocol

We conducted a retrospective case series review at four medical facilities (University of Miyazaki Hospital, Miyazaki Prefectural Miyazaki Hospital, Miyazaki Prefectural Nichinan Hospital, and Miyazaki Prefectural Nobeoka Hospital) in Miyazaki, Japan. Based on the medical records, the baseline clinical and laboratory parameters were compared between patients with SFTS and those with JSF. Baseline characteristics included the season of infection, comorbidities, and the duration from the onset of illness to the first hospital visit. The laboratory parameters consisted of a complete blood count, chemistry, and coagulation system tests. Central nervous system involvement was evaluated to assess an altered mental status and was defined as a Glasgow coma scale score < 15, apathy, lethargy, dysarthria, tremors, and convulsions. Pulmonary involvement, such as bacterial pneumonia, pulmonary mycoses, and pulmonary hemorrhage, was evaluated. Cardiac involvement, including shock, heart failure, arrhythmia, cardiomyopathy, and ischemic heart disease, was also evaluated.
Patients

Adult patients aged ≥20 years with SFTS or JSF who presented to the medical facilities described above from January 2008 to December 2018 were enrolled in this study. These patients were suspected of having tick-borne infections because they showed several of the following symptoms: sudden fever, mountain dwelling, history of mountain activity, tick bite, rash, neurological and gastrointestinal symptoms, elevated liver enzymes, and no finding of other suspected infections. Patients with sudden fever, elevated liver enzymes, leukopenia, and thrombocytopenia were suspected of having SFTS regardless of a rash or tick bite. SFTS or JSF was diagnosed in each hospital described above. Reverse transcriptase–polymerase chain reaction (PCR) was used to detect the presence of the SFTSV gene in patient blood samples [17] or the *R. japonica* gene in blood or eschar [18]. Alternatively, in patients with JSF, a fourfold increase in immunoglobulin G (IgG) of an indirect immunofluorescence assay to pathogens in samples obtained after a two-week interval was also used for diagnosis [19]. These tests were performed in the Miyazaki Prefectural Institute for Public Health and Environment (Miyazaki, Japan), which is the local government-authorized laboratory for testing these infectious agents in Japan.

Statistical Analysis

We used Fisher’s exact test to analyze the categorical data and the Mann-Whitney U test to analyze the continuous variables to compare the patient characteristics by disease. A receiver operating characteristic (ROC) curve was constructed to compare the discrimination ability of each variable. All tests were two-tailed, and *p* < 0.05 was considered statistically significant. All statistical analyses were performed using EZR (Saitama Medical Center, Jichi Medical University, Saitama, Japan), which is a graphical user interface for R (version 3.5.1; The R Foundation for Statistical Computing, Vienna, Austria).
Patient Consent Statement

The study protocol was approved by the research ethics reviewing committee of the Faculty of Medicine, University of Miyazaki (No. O-0241). Informed consent was obtained in the form of opt-out on the web-site from January 2008 to December 2017, and written informed consent was obtained from January to December 2018.

Results

A total of 81 patients diagnosed in each hospital were enrolled in this study, including 41 with SFTS and 40 with JSF. The 40 patients with SFTS had their diagnoses confirmed by reverse-transcriptase PCR analysis of plasma samples, and one patient was diagnosed by the presence of increased antibodies to SFTSV. Twenty patients with JSF had diagnoses confirmed by PCR analysis (plasma sample in 8 patients and eschar sample in 12 patients). The remaining 20 patients were diagnosed by the increase of antibodies to R. japonica.

The clinical characteristics, outcomes, and treatments of these patients are shown in Table 1 through Table 4. On average, the patients with SFTS (77 years) were older than those with JSF (70 years). Underlying diseases or durations before visiting the hospital were comparable between groups (Table 1).

Gastrointestinal and hemorrhagic symptoms and altered mental status were more frequently observed in patients with SFTS. By contrast, skin involvements were more frequently observed in patients with JSF than in those with SFTS (Table 2).

Higher proportions of patients with SFTS had leukopenia, thrombocytopenia, prolonged activated partial thromboplastin time (aPTT), and elevated levels of aspartate aminotransferase, lactate dehydrogenase, and creatine kinase than the patients with JSF. C-reactive protein (CRP) levels were higher in the patients with JSF than in those with SFTS (Table 3).
The patients with SFTS had more complications than those with JSF, including central nervous system involvement, pulmonary involvement, and secondary bacterial and fungal infections. The patients with SFTS had a greater tendency for bacterial pneumonia, pulmonary mycoses, and bacteremia than those with JSF. All patients with JSF were treated with antibiotics, and the JSF fatality rate was 5%. None of the patients with SFTS received ribavirin or plasma exchange, and almost half of the patients with SFTS were administered corticosteroids for the treatment of virus-associated hemophagocytic syndrome. The SFTS fatality rate was 31.7%, which was higher than that of JSF (Table 4). Corticosteroid administration and secondary infections were more common in severe SFTS cases, including fatal cases, than in mild SFTS cases, but it is not clear whether corticosteroid administration affected death and secondary infections.

We tried to extract the variables that can distinguish SFTS from JSF at the first visit based on the data described above. When normal CRP levels or leukopenia were used, SFTS could be differentiated from JSF in most cases.

We compared the predictive accuracy of each variable for differentiating SFTS from JSF by using the area under the ROC curve (AUC) (Table 5). AUC was high for variables including the absence of rash, leukopenia, and normal CRP levels, and it was the highest for normal CRP levels. Based on the ROC curves obtained for each variable, the optimal cut-off for differentiating SFTS from JSF was normal CRP < 0.85 mg/dL (100%), and a white blood cell (WBC) count < 3,230/μL (99%) to reflect the presence of leukopenia (Supplementary Figures S1). Even if the cut-off for normal CRP levels was set to CRP ≤ 1.0 mg/dL, nearly same AUC (96%) was reported. The same was true for a leukopenia cut-off with a WBC count < 4,000/μL (94%). Therefore, a normal CRP level of ≤ 1.0 mg/dL may be convenient for clinicians when distinguishing between SFTS and JSF. In this case, normal CRP levels (≤ 1.0
mg/dL) had a 95% sensitivity (84–99%) and 97% specificity (87–100%) for SFTS, with a positive likelihood ratio of 37.1 (5.35–257).

Discussion

JSF and scrub typhus are common tick-borne infections in Japan and are curative with antibiotics; however, it can take a few weeks for laboratory confirmation tests to see an increase in antibodies. Indeed, 20 (50%) of the JSF cases in the current study were diagnosed by serological tests. In addition, SFTS showed severe clinical manifestations in the patients in this study. Many complications, including bacterial and fungal infections in patients with SFTS, indicate the importance of early differentiation of SFTS from JSF.

In our study, altered mental status, thrombocytopenia, and prolonged aPTT were observed relatively frequently in patients with JSF and SFTS; however, these indicators occurred less frequently in JSF than in SFTS. Thrombocytopenia has previously been reported to occur more frequently in patients with JSF than in patients with scrub typhus [13]. Therefore, these variables are valid for distinguishing between SFTS and scrub typhus, but they are not very effective for distinguishing between SFTS and JSF. Cardiomegaly in chest X-ray is more common in SFTS than in scrub typhus [20]. This simple finding may be useful in primary care settings. Unfortunately, we could not extract data on chest X-ray findings; thus, we have not examined this point in this study.

Rash was observed frequently (97.5%) in JSF and appeared a characteristic systemic macular erythematous eruption. Conversely, rash was relatively rare (24.4%) in SFTS and was limited to the area around the eschar. Typical rash in JSF has diagnostic value itself for the well experienced clinician; however, the presence of a rash is not sufficient for distinguishing between these two diseases.

Normal CRP levels had a particularly high sensitivity and specificity for distinguishing SFTS from JSF. However, CRP was elevated in two SFTS cases with secondary infection (pneumonia). In cases with
elevated CRP levels, leukopenia and the absence of rash were shown to be helpful for distinguishing SFTS from JSF. In fact, two cases with elevated CRP levels had leukopenia, and one of the two cases lacked a rash. These parameters could be obtained by routine physical examination and laboratory blood tests, which are available in primary care settings.

Two studies previously proposed a scoring system for differentiating SFTS from scrub typhus using variables including altered mental status, leukopenia (WBC count < 4,000/μL), thrombocytopenia (platelet count < 150 × 10^3/μL or 80 × 10^3/μL), prolonged aPTT (> 35 s), and normal CRP levels (≤ 1.0 mg/dL) [15, 16]. Therefore, we first attempted to establish a scoring system to differentiate SFTS from JSF using these three variables (normal CRP levels, leukopenia, and the absence of rash); however, we found that these variables caused quasi-complete separation. Furthermore, these variables had a large variance inflation factor. Therefore, we did not perform a multivariate analysis and did not establish a scoring system.

CRP is a non-specific acute-phase protein produced in hepatocytes under the control of cytokines such as interleukin-6 (IL-6) and IL-1 [21]. Sun et al. reported that the serum levels of several cytokines, including IL-6, IL-1, and IL-10, were elevated in patients with SFTS [22]. Therefore, it is questionable that CRP levels are normal in SFTS despite the production of these cytokines. The SFTSV non-structural protein activates the tumor progression locus 2 and promotes the production of IL-10 [23], which suppresses the production of IL-6. Thus, the low levels of CRP in SFTS might be partially explained by high levels of IL-10 in patients with SFTS. Crimean-Congo hemorrhagic fever (CCHF) shows clinical manifestations similar to SFTS [12]. Erturk et al. [24] reported that CRP levels were not elevated in patients with CCHF, potentially due to leukopenia and acute liver failure. It remains unclear why serum CRP levels are not elevated in SFTS. Further investigation of its pathogenesis is necessary.

Our study has several limitations. First, we enrolled only patients from tertiary medical institutes. Sixty-one cases with SFTS and 91 cases with JSF were reported in our area according to the
Infectious Diseases Weekly Report in Miyazaki Prefecture between 2008 and 2018 [25]. The coverage of patients with SFTS in this study was as high as 67% (41/61), whereas that of patients with JSF was only 44% (40/91). There was a possibility of selection bias for the patients with JSF because only severe cases were admitted to the hospitals and included in this study. Second, we could not identify the possibility of co-infection of SFTS and JSF. Co-infection with spotted fever group rickettsiosis was identified in 77 of 823 patients with SFTSV in China [26]. In South Korea, Park and colleagues [16] argued that the clinical evidence on the possibility of co-infection of both SFTS and scrub typhus is not substantial. In contrast, Sang et al. [27] reported that co-infection was observed in 3%–5% of both SFTS and JSF cases. The frequency of co-infection of SFTS and JSF in Japan is unknown. Unfortunately, we observed only a few cases with stored samples, and we could not identify any cases with the co-infection of both SFTS and JSF. Because there are few reports about the co-infection of SFTS and JSF, further studies are necessary to identify cases with co-infection of SFTS and JSF. Third, our study was conducted retrospectively, and a limited number of patients were enrolled. Quasi-complete separation was observed when CRP and leukopenia were used as variables to distinguish SFTS from JSF, and we could not perform a multivariate analysis. However, we determined that three parameters (normal CRP, leukopenia, and the absence of rash) were good variables for differentiating SFTS from JSF with high sensitivity and specificity. If these criteria are met, each has a positive likelihood ratio of ≥10, resulting in a higher diagnostic value. A prospective study using these markers identified in the current study to distinguish SFTS from JSF with more patients is necessary to evaluate their values in real-world practice.

In conclusion, when clinicians intend to differentiate between SFTS and JSF among patients with suspected tick-borne infection, a single item, a normal CRP level, strongly differentiates SFTS from JSF. Additionally, variables such as the absence of rash and leukopenia may be helpful when patients have elevated CRP levels.
Footnotes

Acknowledgments. We would like to thank ENAGO (http://www.enago.jp) for English language editing.

Author contributions. T. K., K. U., and A. O. conceptualized and designed the study. T. K. analyzed the information and wrote the manuscript. T. K., A. Y., S. H. and T. Y. collected the data. E. I. contributed to the statistical data analysis. All authors read and corrected the final draft.

Conflicts of interest. All authors declare that they have no competing interests.

Financial support. This study was funded by a Grant-in Aid for Clinical Research from Miyazaki University Hospital.

Previous presentation. This work was presented at the 2nd Annual Meeting of The Japanese Association for Severe Fever with Thrombocytopenia Syndrome on September 15, 2019 in Tokyo, Japan under the title ‘Differentiation of severe fever with thrombocytopenia syndrome with thrombocytopenia syndrome from Japanese spotted fever’.
References

1) Sivas JA, Aguilar PV. The Emergence of Severe Fever with Thrombocytopenia Syndrome Virus. Am J Trop Med Hyg 2017; 97:992-6.

2) Yu XJ, Liang MF, Zhang SY, et al. Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med 2011; 364:1523-32.

3) National Institute of Infectious Diseases-Japan. Severe fever with thrombocytopenia syndrome (SFTS) in Japan, as of June 2019. Infectious Agent Surveillance Report. Tokyo: The Institute; 2019. P. 111-2.

4) Hao Li, Qing-Bin Lu, Bo Xing, et al. Epidemiological and clinical features of laboratory-diagnosed severe fever with thrombocytopenia syndrome in China, 2011-17: a prospective observational study. Lancet Infect Dis 2018; 18:1127-37.

5) Choi SJ, Park SW, Bae IG, et al. Severe fever with thrombocytopenia syndrome in South Korea, 2013–2015. PLoS Negl Trop Dis 2016; 10:e0005264.

6) Kato H, Yamagishi T, Shimada T, et al. Epidemiological and Clinical Features of Severe Fever with Thrombocytopenia Syndrome in Japan, 2013-2014. PLoS ONE 2016; 11:e0165207.

7) Mahara F, Koga K, Sawada S, et al. The first report of the rickettsial infections of spotted fever group in Japan: three clinical cases [in japanese]. Kansenshogaku Zasshi 1985; 59:1165-71.

8) Li H, Zhang PH, Du J, et al. Rickettsia japonica Infections in Humans, Xinyang, China, 2014-2017. Emerg Infect Dis 2019; 25:1719-22.

9) Chung MH, Lee SH, Kim MJ, et al. Japanese spotted fever, South Korea. Emerg Infect Dis 2006; 12:1122-4.
10) Gaywee J, Sunyakumthorn P, Rodkvamtook W, et al. Human infection with Rickettsia sp. Related to R. japonia, Thailand. Emerg Infect Dis 2007; 13:657-9.

11) National Institute of Infectious Diseases-Japan. Scrub typhus and Japanese spotted fever in Japan 2007-2016. Infectious Agent Surveillance Report. Tokyo: The Institute; 2017. P. 109-12.

12) Saijo M. Pathophysiology of severe fever with thrombocytopenia syndrome and development of specific antiviral therapy. J Infect Chemother 2018; 24:773-81.

13) Sando E, Suzuki M, Katoh S, et al. Distinguishing Japanese Spotted Fever and Scrub Typhus, Central Japan, 2004-2015. Emerg Infect Dis 2018; 24:1633-41.

14) Gai Z, Liang M, Zhang S, et al. Person-to-person transmission of severe fever with thrombocytopenia syndrome bunyavirus through blood contact. Clin Infect Dis 2012; 54:249-52.

15) Kim MC, Chong YP, Lee SO, et al. Differentiation of Severe Fever with Thrombocytopenia Syndrome from Scrub Typhus. Clin Infect Dis 2018; 66:1621-4.

16) Park SW, Lee CS, Kim JH, et al. Severe fever with thrombocytopenia syndrome: comparison with scrub typhus and clinical diagnostic prediction. BMC infect Dis 2019; 19:174. doi: 10.1186/s12879-019-3773-1.

17) National Institute of Infectious Diseases - Japan. Laboratory tests of SFTS. Infectious Agent Surveillance Report. Tokyo: The Institute; 2014. p. 40-41.

18) Furuya Y, Katayama T, Yoshida Y, Kaiho I. Specific amplification of Rickettsia japonica DNA from clinical specimens by PCR. J Clin Microbial 1995; 33:487-9.

19) Uchida T, Tashiro F, Funato T, Kitamura Y. Immunofluorescence Test with Rickettsia montana for Serologic Diagnosis of Rickettsial Infection of the Spotted Fever Group in Shikoku, Japan. Microbiol Immunol 1986; 30: 1061-6.
20) Yun JH, Hwang HJ, Jung J, et al. Comparison of chest radiographic findings between severe fever with thrombocytopenia syndrome and scrub typhus. Medicine 2019; 98:46(e17701).

21) Pepys MB, Hirschfield GM. C-reactive Protein: A Critical Update. J Clin Invest 2003; 111:1805-12.

22) Sun Y, Jin C, Zhan F, et al. Host Cytokine Storm Is Associated With Disease Severity of Severe Fever With Thrombocytopenia Syndrome. J Infect Dis 2012; 206:1085-94.

23) Choi Y, Park SJ, Sun Y, et al. Severe fever with thrombocytopenia syndrome phlebovirus non-structural protein activates TPL2 signaling pathway for viral immunopathogenesis. Nat Microbiol 2019; 4: 429-37.

24) Erturk A, Cure E, Parlak E, et al. Serum resistin levels may be new prognostic factor of Crimean-congo hemorrhagic fever. Int J Clin Exp Med 2014; 7:3536-42.

25) Infectious Diseases Weekly Report in Miyazaki Prefecture. Miyazaki Prefectural Institute for Public Health and Environment. Available at https://www.pref.miyazaki.lg.jp/contents/org/fukushi/eikanken/center/infectious/2019/ (Accessed 10 November 2019) written in Japanese.

26) Lu QB, Li Hao, Zhang PH, et al. Severe Fever with Thrombocytopenia Syndrome Complicated by Co-Infection with Spotted Fever Group Rickettsiae, China. Emerg Infect Dis 2016; 22:1957-60.

27) Sang HR, Ji YK, Hye HC, et al. Coinfection of Severe Fever with Thrombocytopenia Syndrome and Scrub Typhus in Patients with Tick-Borne Illness. Am J Trop Med Hyg 2019; 101:1259-62.
Table 1. Clinical characteristics of the subjects (n=81)

Variable	SFTS (n=41)	JSF (n=40)	P value
Season			0.614
Spring-Summer (March-August)	32 (78.0)	29 (72.5)	
Autumn-Winter (September-February)	9 (22.0)	11 (27.5)	
Age, mean (SD), y	77 (12.7)	70 (13.5)	0.05
Male sex	17 (41.5)	24 (60.0)	0.12
Underlying disease^a			
No obvious underlying disease	8 (20.0)	9 (25.0)	0.78
Diabetes	4 (9.8)	8 (22.2)	0.21
Hypertension	18 (43.9)	13 (36.1)	0.48
Dyslipidemia	9 (22.0)	4 (11.1)	0.23
Cardiovascular disease	3 (6.3)	3 (8.3)	1
Cerebrovascular disease	2 (4.9)	2 (5.6)	1
Chronic liver disease	3 (6.3)	0	0.24
Rheumatic disease	0	3 (8.3)	0.11
Solid tumor	0	1 (2.8)	0.48
Immunosuppressive condition	0	2 (5.6)	0.23
Independence in activities of daily living^b	39 (95.1)	33 (97.1)	1
Duration before hospital visit, mean (SD), d	4 (2.0)	4 (2.0)	0.45

Abbreviations: SFTS, severe fever with thrombocytopenia syndrome; JSF, Japanese spotted fever.

All clinical characteristics were evaluated when the patients initially visited our hospital. Data are presented as the No (%) of patients unless otherwise specified.

^aThe available data are from 39 and 36 patients with SFTS and JSF, respectively.

^bThe available data are from 41 and 34 patients with SFTS and JSF, respectively.
Table 2. Clinical symptoms and physical findings (n=81)

Variable	SFTS (n=41)	JSF (n=40)	P value
Fever	40 (97.6)	40 (100)	1
Loss of appetite	35 (85.4)	23 (57.5)	0.007
Vomiting	6 (14.6)	4 (10.0)	0.74
Diarrhea	22 (53.7)	5 (12.5)	<.001
Tick bite/eschar	13 (31.7)	33 (82.5)	<.001
Rash	10 (24.4)	39 (97.5)	<.001
Lymphadenopathy	15 (36.6)	4 (10.0)	0.008
Altered mental status	21 (51.2)	11 (27.5)	0.04
Convulsion	1 (2.4)	0	1
Petechiae/purpura	8 (19.5)	1 (2.5)	0.02
Oral bleeding	8 (19.5)	0	0.005
Melena	5 (12.2)	1 (2.5)	0.2

Abbreviations: SFTS, severe fever with thrombocytopenia syndrome; JSF, Japanese spotted fever.

All physical findings were evaluated when the patients initially visited our hospital. Data are presented as the No (%) of patients.
Table 3. Laboratory data at the initial presentation (n=81)

Variable	SFTS (n=41)	JSF (n=40)	P value
White blood cell count, /μL\(^a\)	1450 (910)	7250 (4150)	<.001
Leukopenia (WBC count <4,000/μL\(^a\))	39 (95.1)	3 (7.7)	<.001
Leukocytosis (WBC count >10,000/μL\(^a\))	0	12 (30.8)	<.001
Neutrophils, %\(^b\)	58.0 (17.4)	84.5 (9.6)	<.001
Lymphocytes, %\(^c\)	32.0 (13.8)	10.0 (6.9)	<.001
Monocytes, %\(^b\)	5.5 (5.2)	5.0 (3.3)	0.09
Hemoglobin, g/dL\(^a\)	14.1 (2.0)	13.4 (1.8)	0.16
Platelet, × 10\(^3\)/μL\(^a\)	5.8 (4.2)	9.2 (4.6)	<.001
Thrombocytopenia (platelet count <80 × 10\(^3\)/μL), n (%)\(^a\)	32 (78.0)	14 (35.9)	<.001
Total-bilirubin, mg/dL\(^a\)	0.48 (0.19)	0.80 (0.70)	<.001
Aspartate aminotransferase, IU/L\(^a\)	164 (202)	66 (74)	<.001
Alanine aminotransferase, IU/L\(^a\)	80 (95)	50 (43)	0.005
Lactate dehydrogenase, IU/L\(^c\)	546 (387)	386 (169)	0.003
Alkaline phosphatase, IU/L\(^d\)	170 (212)	223 (261)	0.001
Creatine kinase, IU/L\(^d\)	383 (4479)	185 (1330)	0.003
Blood urea nitrogen, mg/dL\(^c\)	19.0 (11.8)	19.6 (11.4)	0.81
Creatinine, mg/dL\(^c\)	0.8 (0.4)	1.0 (0.8)	0.1
	Median (SD) 1	Median (SD) 2	p-value
------------------------------------	---------------	---------------	---------
C-reactive protein, mg/dL^a	0.16 (0.49)	14.1 (7.14)	<.001
Normal CRP level (≤1.0 mg/dL), n (%)^a	39 (95.1)	1 (2.6)	<.001
Prothrombin time-INR^e	1.04 (0.15)	1.08 (0.12)	0.03
aPTT, s^e	46.4 (14.6)	38.8 (11.8)	0.007
aPTT>40, n (%)^e	31 (75.6)	14 (35.9)	0.008

Abbreviations: SFTS, severe fever with thrombocytopenia syndrome; JSF, Japanese spotted fever; WBC, white blood cell; aPTT, activated partial thromboplastin time.

All laboratory data were evaluated when the patients initially visited our hospital. Data are presented as the median, (SD) unless otherwise specified.

^aThe available data are from 41 and 39 patients with SFTS and JSF, respectively.

^bThe available data are from 39 and 36 patients with SFTS and JSF, respectively.

^cThe available data are from 41 and 38 patients with SFTS and JSF, respectively.

^dThe available data are from 39 and 34 patients with SFTS and JSF, respectively.

^eThe available data are from 41 and 32 patients with SFTS and JSF, respectively.
Table 4. Major complications, clinical course and treatment

Variable	SFTS (n=41)	JSF (n=40)	P value
Complications			
Central nerve system involvementa	25 (61.0)	12 (32.5)	0.01
Pulmonary involvementb	11 (26.8)	1 (2.5)	0.003
Cardiac involvementc	10 (24.4)	10 (24.4)	1
Infection	13 (31.7)	1 (2.5)	0.005
Bacterial pneumonia	6 (14.6)	1 (2.5)	0.12
Pulmonary mycoses	4 (9.8)	0	0.13
Bacteremia	3 (7.3)	0	0.24
Clinical course			
Intensive care unit admission	3 (7.3)	2 (5.0)	1
Mechanical ventilation	6 (14.6)	2 (5.0)	0.26
Continuous renal replacement therapy	1 (2.4)	2 (5.0)	0.62
In-hospital death	13 (31.7)	2 (5.0)	0.003
Treatment			
Ribavirin	0	0	-
Antibiotics	26 (63.4)	40 (100)	<0.001
Corticosteroid	23 (56.1)	0	<0.001
Transfusion^d	12 (29.3)	3 (7.5)	0.02
---------------------	-----------	---------	------
Plasma exchange	0	0	-

Abbreviations: SFTS, severe fever with thrombocytopenia syndrome; JSF, Japanese spotted fever.

Data are presented as the No (%) of patients.

^aCentral nervous system involvement: altered mental status defined as a Glasgow coma scale score < 15, apathy, lethargy, dysarthria, tremor, and convulsion

^bPulmonary involvement: bacterial pneumonia, pulmonary mycoses, and pulmonary hemorrhage

^cCardiac involvement: shock, heart failure, arrhythmia, cardiomyopathy, and ischemic heart disease

^dTransfusion: platelet concentrates, red cell concentrates, and fresh frozen plasma
Table 5. Predictive accuracy of each variable on differentiating SFTS from JSF.

Variable	AUC	Sensitivity	Specificity	Positive likelihood ratio	Negative likelihood ratio
Loss of appetite	0.65 (0.55-0.74)	0.85 (0.71-0.94)	0.43 (0.27-0.59)	1.49 (1.10-1.99)	0.34 (0.15-0.78)
Diarrhea	0.70 (0.61-0.80)	0.54 (0.37-0.69)	0.86 (0.73-0.96)	4.29 (1.80-10.2)	0.53 (0.37-0.75)
Tick bite/eschar	0.75 (0.66-0.85)	0.32 (0.18-0.48)	0.18 (0.07-0.33)	0.38 (0.24-0.62)	3.90 (1.93-7.89)
Absence of rash	0.87 (0.79-0.94)	0.76 (0.60-0.88)	0.98 (0.87-1.00)	30.2 (4.33-211)	0.25 (0.15-0.43)
Lymphadenopathy	0.63 (0.54-0.72)	0.37 (0.22-0.53)	0.90 (0.76-0.97)	3.66 (1.33-10.1)	0.71 (0.55-0.91)
Altered mental status	0.63 (0.52-0.73)	0.51 (0.35-0.67)	0.73 (0.56-0.85)	1.86 (1.04-3.34)	0.67 (0.47-0.97)
Petechiae/purpura	0.59 (0.52-0.65)	0.20 (0.09-0.35)	0.96 (0.87-1.00)	7.80 (1.02-59.6)	0.83 (0.70-0.97)
Oral bleeding	0.60 (0.54-0.66)	0.12 (0.04-0.26)	0.98 (0.87-1.00)	4.88 (0.60-39.9)	0.90 (0.80-1.02)
Leukocytopenia					
WBC <4000/μL	0.94 (0.88-0.99)	0.95 (0.84-0.99)	0.92 (0.81-0.99)	12.4 (4.16-36.8)	0.05 (0.01-0.21)
<3230/μL	0.99 (0.98-1)	0.95 (0.84-0.99)	0.97 (0.87-1.00)	37.1 (5.35-257)	0.05 (0.01-0.19)
<3000/μL	0.94 (0.89-0.99)	0.90 (0.77-0.97)	0.97 (0.86-0.98)	35.2 (5.10-244)	0.10 (0.04-0.25)
Platelet <150 ×10^3/μL 0.54 (0.48-0.60) 0.95 (0.84-0.99) 0.13 (0.04-0.65) 1.09 (0.95-1.25) 0.38 (0.08-1.85)
<80 ×10^3/μL 0.72 (0.62-0.84) 0.78 (0.62-0.89) 0.64 (0.47-0.79) 2.17 (1.39-3.41) 0.34 (0.18-0.64)

Normal CRP

CRP ≤1 mg/dL 0.96 (0.92-1.00) 0.95 (0.84-0.99) 0.97 (0.87-1.00) 37.1 (5.35-257) 0.05 (0.01-0.19)
<0.85 mg/dL 1.00 (0.99-1.00) 0.93 (0.80-1.00) 1.00 (0.87-1.00) Inf (NaN-Inf) 0.07 (0.03-0.22)

Abbreviations: WBC, white blood cell; CRP, C-reactive protein.

We analyzed with 41 cases of SFTS and 39 cases of JSF. One patient with JSF for whom C-reactive protein data were unavailable was excluded. aPPT was excluded because it contained some missing values.