LETTERS TO THE EDITOR

Evaluation of Rapid Diagnostic Tests for Assessment of Hepatitis B in Resource-Limited Settings

James S. Leathers*, M. Belen Pisano†, Viviana Re†, Gertine van Oord‡, Amir Sultan§, Andre Boonstra‡ and Jose D. Debes‡,‖

Chronic Hepatitis B (HBV) is the most important cause of liver disease worldwide. There is a need for low-cost tests to aid in diagnosis and management of HBV infection in resource-limited settings. We evaluated the utility of several rapid diagnostic tests (RDT) in three different continents (Europe, South America, Africa). The HBsAg RDT showed optimal sensitivity and specificity. Our results suggest that these RDTs could be used for screening and management of HBV.

Dear Editor,

Chronic Hepatitis B virus (HBV) infection is the most frequent cause of liver disease worldwide. There is a need for low-cost tests to aid in diagnosis and management of HBV infection in resource-limited settings. We evaluated the utility of several rapid diagnostic tests (RDT) in three different continents (Europe, South America, Africa). The HBsAg RDT showed optimal sensitivity and specificity. The anti-HBeAb RDT showed acceptable sensitivity and excellent specificity. Our results suggest that these RDTs could be used for screening and management of HBV.

A total of 200 unique serum and whole-blood samples were tested using RDTs. The median age of patients was 40 years (IQR 31–50) and 67% were male. HBV genotypes A–F were tested. The HBsAg serum strip had a sensitivity and specificity of 100%. The median HBsAg level of tested samples (in those available) was 2800 IU/mL (range: 150–110,000). The anti-HBeAb serum cassette had a sensitivity of 80% and a specificity of 100%. The HBsAg whole-blood cassette and strip had specificities of 100%, but sensitivities of 56% and 45%, respectively. The anti-HBsAb serum cassette had a sensitivity of 57% and a specificity of 93%. The anti-HBsAb serum strip had a sensitivity of 20% and a specificity of 100%. The HBeAg serum strip had a sensitivity of 81% and a specificity of 67%. The median HBeAg level of tested samples (in those available) was 2806 IU/mL (range: 1952–3149). Specific RDT performance is available in Table 1.

The HBsAg serum strip RDT demonstrated optimal sensitivity and specificity in the three different continents, indicating that it can reliably diagnose HBV in various populations with different genotypes. The anti-HBeAb

* Department of Emergency Medicine, UC Davis School of Medicine, UC Davis Health, Sacramento, CA, US
† Virology Institute “Dr. J.M. Vanella”, Faculty of Clinical Sciences, CONICET, Universidad Nacional de Córdoba, Córdoba, AR
‡ Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, NL
§ Department of Gastroenterology, Addis Ababa University, Addis Ababa, ET
‖ Department of Medicine, University of Minnesota, Minneapolis, MN, US

Corresponding author: Jose D. Debes, MD (debes003@umn.edu)
RDT showed acceptable sensitivity and excellent specificity, making it useful to differentiate HBeAb status. Overall, whole-blood HBsAg and serum anti-HBsAb kits performed poorly, as they were specific but insufficiently sensitive to be clinically useful for screening. The serum HBeAg kits demonstrated acceptable sensitivity, but poor specificity, making them unlikely to be useful in the clinical setting. Our results suggest that HBsAg and anti-HBeAb serum RDTS are reliable and, in conjunction with alanine aminotransferase levels (ALTs), can be useful for diagnosis, as well as informing the need for treatment in resource-limited settings.

Data Accessibility Statements
Study data will be made available upon request of the corresponding author.

Ethical and Consent
Ethical approval was given by the ethical committee of the Erasmus MC, Rotterdam. MEC-2017_1140 and respective ethical committees at the Virology Institute and Addis Ababa University.

Acknowledgements
This work was supported by the Doris Duke International Clinical Research Fellowship Program at the University of Minnesota to JL, the Robert Wood Johnson Foundation, AFMDP, Mititalo Foundation and NIH-NCI R21 CA215883-01A1 all to JDD. Funding sponsors had no role in the production of this manuscript.

Competing Interests
The authors have no competing interests to declare.

Table 1: Rapid Diagnostic Test Performance.

Test Type (Catalog Number)	Number¹ Tested (T/P/N)	Test Site² (A/E/N)	Age³	Male	Sensitivity	Specificity
HBsAg Serum Strip (HBV 211)	81/55/26	A/E/N	39	74%	100%	100%
HBsAg WB Cass. (HBV 214)	23/16/7	A/N	43	70%	56%	100%
HBsAg WB Strip (HBV 213)	13/11/2	A/N	42	54%	45%	100%
Anti-HBsAb Serum Cass. (HBV 222)	38/23/15	N	52	58%	57%	93%
Anti-HBsAb Serum Strip (HBV 221)	46/20/26	N	38	80%	20%	100%
Anti-HBeAb Serum Cass. (HBV 232)	64/20/44	N	37	63%	80%	100%
HBeAg Serum Strip (HBV 242)	27/16/11	A/N	39	81%	82%	67%

¹T = total, P = known positive, N = known negative; ²A = Argentina, E = Ethiopia, N = Netherlands; ³Median age.

Author Contributions
James Leathers: study design, data collection, data analysis, writing; Maria Belen Viviana: data collection, data analysis, writing; Viviana Re: data collection, data analysis, writing; Gertine van Oord: data collection, writing; Amir Sultan: data collection, writing; Andre Boonstra: study design, data collection, data analysis, writing; Jose D. Debes: study design, data collection, data analysis, writing.

References

1. Amini A, Varsaneux O, Kelly H, et al. Diagnostic accuracy of tests to detect hepatitis B surface antigen: A systematic review of the literature and meta-analysis. *BMC Infectious Diseases*. 2017; 17: 698. DOI: https://doi.org/10.1186/s12879-017-2772-3
2. Chevaliez S, Challine D, Naija H, et al. Performance of a new rapid test for the detection of hepatitis B surface antigen in various patient populations. *Journal of Clinical Virology: The Official Publication of the Pan American Society for Clinical Virology*. 2014; 59: 89–93. DOI: https://doi.org/10.1016/j.jcv.2013.11.010
3. El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. *Gastroenterology*. 2012; 142: 1264–1273.e1261. DOI: https://doi.org/10.1053/j.gastro.2011.12.061
4. Schweitzer A, Horn J, Mikolajczyk RT, Krause G and Ott JJ. Estimations of worldwide prevalence of chronic hepatitis B virus infection: A systematic review of data published between 1965 and 2013. *Lancet (London, England)*. 2015; 386: 1546–1555. DOI: https://doi.org/10.1016/S0140-6736(15)61412-X
