Weak Gibbs measures and large deviations

C-E Pfister1 and W G Sullivan2

1 Faculty of Basic Sciences, Section of Mathematics, EPFL, Station 8, CH-1015 Lausanne, Switzerland
2 Department of Mathematics and Statistics, Belfield, Dublin 4, Ireland

E-mail: charles.pfister@epfl.ch and Wayne.Sullivan@ucd.ie

Received 19 May 2017, revised 1 November 2017
Accepted for publication 10 November 2017
Published 14 December 2017

Recommended by Professor Rafael de la Llave

Abstract

Let \((X, T)\) be a dynamical system, where \(X\) is a compact metric space and \(T : X \to X\) a continuous onto map. For weak Gibbs measures we prove large deviations estimates.

Keywords: dynamical systems, Gibbs measure, large deviations
Mathematics Subject Classification numbers: 37C35, 37A60, 60F10

1. Introduction

In [PS1] a general method for proving large deviations estimates for dynamical systems \((X, T)\) is developed. In this note we make the connection with the main results of [PS1] and the notion of weak Gibbs measures, which was not explicit in the original paper.

Let \(X\) be a compact metric space and \(T : X \to X\) a continuous map which is onto. \(C(X)\) is the set of real-valued continuous functions on \(X\), \(M_1(X)\) the set of Borel probability measures on \(X\) (with weak convergence topology) and \(M_1(X, T)\) the subset of \(T\)-invariant probability measures. Let \(x \in X\) and

\[
E_n(x) := \frac{1}{n} \sum_{k=0}^{n-1} \delta_{T^k x}.
\]

The metric entropy of \(\nu \in M_1(X, T)\) is denoted \(h(T, \nu)\) and \(B_{\nu}(x, \varepsilon)\) is the dynamical ball \(\{y \in X : d(T^k x, T^k y) \leq \varepsilon, k = 0, \ldots, m - 1\}\). There are several variants in the literature for the definition of weak Gibbs measures (see e.g. [BV] and [Yu]). In this paper a weak Gibbs measure is defined as follows.
Definition 1. Let $\varphi \in C(X)$. A probability measure ν is a weak Gibbs measure for φ if
$\forall \delta > 0 \exists \varepsilon > 0$ such that for $0 < \varepsilon \leq \varepsilon \delta$ \exists $N_{\delta, \varepsilon} < \infty$, $\forall m \geq N_{\delta, \varepsilon}$, $\forall x \in X$,
$$-\delta \leq -\frac{1}{m} \ln(\nu(B_m(x, \varepsilon))) - \int \varphi \, d\nu_m(x) \leq \delta.$$

The set of weak Gibbs measures for a given φ is convex (possibly empty). Gibbs measures as defined in [Bo] (see [Bo], theorem 1.2) and quasi-Gibbs measures (see [HR], proposition 2.1) are examples of weak Gibbs measures since these measures satisfy the stronger inequalities: there exists $0 < \varepsilon_0 < \infty$ such that for $0 < \varepsilon \leq \varepsilon_0$ $\exists K_{\varepsilon} < \infty$, $\forall m$, $\forall x \in X$,
$$-\frac{K_{\varepsilon}}{m} \leq -\frac{1}{m} \ln(\nu(B_m(x, \varepsilon))) - \int \varphi \, d\nu_m(x) \leq \frac{K_{\varepsilon}}{m}.$$

2. Results

If ν is a weak Gibbs measure, then
$$0 = \lim_{\varepsilon \downarrow 0} \lim_{m \to \infty} \inf_{x \in X} \left(\frac{1}{m} \ln(\nu(B_m(x, \varepsilon))) - \int \varphi \, d\nu_m(x) \right)$$
$$= \lim_{\varepsilon \downarrow 0} \lim_{m \to \infty} \sup_{x \in X} \left(\frac{1}{m} \ln(\nu(B_m(x, \varepsilon))) - \int \varphi \, d\nu_m(x) \right),$$

that is, $-\varphi$ is a lower, respectively upper, energy function for ν in the sense of [PS1] (definitions 3.2 and 3.4). Indeed, in [PS1] a function e on X is called a lower energy function for ν if it is upper semi-continuous and
$$\lim_{\varepsilon \downarrow 0} \lim_{m \to \infty} \inf_{x \in X} \left(\frac{1}{m} \ln(\nu(B_m(x, \varepsilon))) + e \int \nu_m(x) \right) \geq 0.$$
(2.1)

It is called an upper energy function for ν if it is lower semi-continuous, bounded and
$$\lim_{\varepsilon \downarrow 0} \lim_{m \to \infty} \sup_{x \in X} \left(\frac{1}{m} \ln(\nu(B_m(x, \varepsilon))) + e \int \nu_m(x) \right) \leq 0.$$
(2.2)

The terminology used in [PS1] comes from statistical mechanics.

Proposition 1. If the continuous function e verifies (2.1) and (2.2), then ν is a weak Gibbs measure for $\varphi = -e$.

Proof. For any $\delta > 0$, if ε is small enough and m large enough,
$$-\delta \leq \inf_{m \geq N_{\delta, \varepsilon}} \inf_{x \in X} \left(\frac{1}{m} \ln(\nu(B_m(x, \varepsilon))) - \int \varphi \, d\nu_m(x) \right)$$
$$\leq \lim_{m \to \infty} \inf_{x \in X} \left(\frac{1}{m} \ln(\nu(B_m(x, \varepsilon))) - \int \varphi \, d\nu_m(x) \right)$$
$$\leq \lim_{m \to \infty} \sup_{x \in X} \left(\frac{1}{m} \ln(\nu(B_m(x, \varepsilon))) - \int \varphi \, d\nu_m(x) \right)$$
$$\leq \sup_{m \geq N_{\delta, \varepsilon}} \sup_{x \in X} \left(\frac{1}{m} \ln(\nu(B_m(x, \varepsilon))) - \int \varphi \, d\nu_m(x) \right) \leq \delta,$$

so that for $\forall m \geq N_{\delta, \varepsilon}$ and $\forall x \in X$
For any dynamical system \((X, T)\) and any weak Gibbs measure the following large deviations estimates are true.

Theorem 1. Let \(\nu\) be a weak Gibbs measure for \(\varphi \in C(X)\).

1. If \(G \subset M_1(X)\) is open, then for any ergodic probability measure \(\rho \in G\)
 \[
 \liminf_m \frac{1}{m} \ln \nu(E_m \in G) \geq h(T, \rho) + \int \varphi \, d\rho.
 \]
2. If \(F \subset M_1(X)\) is convex and closed, then
 \[
 \limsup_m \frac{1}{m} \ln \nu(E_m \in F) \leq \sup_{\rho \in F \cap M_1(X)} (h(T, \rho) + \int \varphi \, d\rho).
 \]

Proof. Proposition 3.1 and theorem 3.2 in [PS1].

Proposition 2. If \(\nu\) is a weak Gibbs measure for \(\varphi \in C(X)\), then the topological pressure
\[
P(\varphi) = 0.
\]

Proof. This is an immediate consequence from theorem 1, theorem 9.10 and corollary 9.10.1 in [Wa]. Let \(G = F = M(X)\). Then

\[
P(\varphi) = \sup_{\rho \text{ ergodic}} (h(T, \rho) + \int \varphi \, d\rho) \leq 0 \leq \sup_{\rho \in M_1(X)} (h(T, \rho) + \int \varphi \, d\rho) = P(\varphi).
\]

The following hypothesis about the entropy-map \(h(T, \cdot)\) and the dynamical system \((X, T)\) are sufficient to obtain a full large deviations principle.

Theorem 2. Let \(\nu\) be a weak Gibbs measure for \(\varphi \in C(X)\). If the entropy map \(h(T, \cdot)\) is upper semi-continuous, then for \(F \subset M_1(X)\) closed

\[
\limsup_m \frac{1}{m} \ln \nu(E_m \in F) \leq \sup_{\rho \in F \cap M_1(X)} (h(T, \rho) + \int \varphi \, d\rho).
\]

If the ergodic measures are entropy dense, then for \(G \subset M_1(X)\) open

\[
\liminf_m \frac{1}{m} \ln \nu(E_m \in G) \geq \sup_{\rho \in G \cap M_1(X)} (h(T, \rho) + \int \varphi \, d\rho).
\]

Proof. Theorems 3.1 and 3.2 in [PS1].

Entropy density of the ergodic measures means ([PS1]): for any \(\mu \in M_1(X, T)\), any neighbourhood \(N\) of \(\mu\) and any \(h^* < h(T, \mu)\), there exists an ergodic measure \(\rho \in N\) such that \(h(T, \rho) \geq h^*\). Entropy density is true under various types of specifications properties for the dynamical system \((X, T)\), see e.g. [CTY, GK], [KLO, PS1] and [PS2]. See also [C].
Proposition 3. If \(\nu \in M_1(X, T) \) is a weak Gibbs measure for \(\varphi \in C(X) \), then it is an equilibrium measure for \(\varphi \).

Proof. By definition an equilibrium measure \(\mu \in M_1(X, T) \) for a continuous function \(f \) satisfies the variational principle

\[
P(f) = \sup \left\{ h(T, \rho) + \int f \, d\rho : \rho \in M_1(X, T) \right\} = h(T, \mu) + \int f \, d\mu.\]

Since \(P(\varphi) = 0 \), \(h(T, \nu) \leq -\int \varphi \, d\nu \). Since \(\nu \) is a weak Gibbs measure for \(\varphi \),

\[
\lim_{m} \sup_{\varepsilon > 0} \int \varphi \, d\nu_m(x) = \lim_{m} \sup_{\varepsilon > 0} \frac{1}{m} \ln \nu(B_m(x, \varepsilon))
\]

\[
\lim_{m} \inf_{\varepsilon > 0} \int \varphi \, d\nu_m(x) = \lim_{m} \inf_{\varepsilon > 0} \frac{1}{m} \ln \nu(B_m(x, \varepsilon)).
\]

By the ergodic theorem there exists an integrable function \(\varphi^* \) such that

\[
\lim_{m} \int \varphi \, d\nu_m(x) = \varphi^*(x) \quad \nu - a.s.
\]

and

\[
\int \varphi \, d\nu = \int \varphi^* \, d\nu.
\]

Therefore

\[
h(T, \nu) \leq -\int \varphi(x) \, d\nu(x) = \int \left(-\lim_{m} \sup_{\varepsilon > 0} \frac{1}{m} \ln \nu(B_m(x, \varepsilon)) \right) \, d\nu(x).
\]

Let \(\mathcal{P} = \{A_1, \ldots, A_p\} \) be a finite measurable partition of \(X \), \(\max_i \text{diam} A_i < \varepsilon \). For \(x \in X \), let \(\mathcal{P}^n(x) \) be the element of the partition \(\mathcal{P}^n = \mathcal{P} \vee T^{-1} \mathcal{P} \vee \cdots \vee T^{-n+1} \mathcal{P} \) containing \(x \). By the McMillan–Breiman theorem

\[
h_{\mathcal{P}}(x) := \lim_{n} \frac{1}{n} \ln \nu(\mathcal{P}^n(x)) \quad \nu - a.s.
\]

and

\[
\int h_{\mathcal{P}}(x) \, d\nu(x) = h_{\mathcal{P}}(T, \nu),
\]

where

\[
h_{\mathcal{P}}(T, \nu) = \lim_{n} \left(-\frac{1}{n} \sum_{B \in \mathcal{P}^n} \nu(B) \ln \nu(B) \right) \leq h(T, \nu).
\]

Since \(B_n(x, \varepsilon) \supset \mathcal{P}^n(x) \), for any \(\varepsilon > 0 \),

\[
\int \left(-\lim_{m} \sup_{\varepsilon > 0} \frac{1}{m} \ln \nu(B_m(x, \varepsilon)) \right) \, d\nu(x) \leq \int h_{\mathcal{P}}(x) \, d\nu(x) \leq h(T, \nu),
\]

so that \(-\int \varphi \, d\nu \leq h(T, \nu)\). \(\square \)
3. Concluding remark

The results in [PS1] are proven for continuous \(\mathbb{Z}_d^+ \)-actions or \(\mathbb{Z}_d^d \)-actions on \(X \). The results of this note are also true for these cases. The empirical measure \(\mathcal{E}_n(x) \) and the dynamical ball \(B_n(x, \varepsilon) \) are defined as in [PS1].

References

[BV] Bomfim T and Varandas P 2017 Multifractal analysis for weak Gibbs measures: from large deviations to irregular sets Ergod. Theor. Dynam. Syst. 37 79–102
[Bo] Bowen R 2008 Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lecture Notes in Mathematics vol 470) 2nd edn, ed J-R Chazottes (Berlin: Springer)
[CTY] Climenhaga V, Thompson D J and Yamamoto K 2017 Large deviations for systems with non-uniform structure Trans. Am. Math. Soc. 369 4167–92
[C] Comman H 2017 Criteria for the density of the graph of the entropy map restricted to ergodic states Ergod. Theor. Dynam. Syst. 37 758–85
[GK] Gelfert K and Kwietniak D 2017 On density of ergodic measures and generic points Ergod. Theor. Dynam. Syst. accepted (https://doi.org/10.1017/etds.2016.97)
[HR] Haydn N T A and Ruelle D 1992 Equivalence of Gibbs and equilibrium states for homeomorphisms satisfying expansiveness and specification Commun. Math. Phys. 148 155–67
[KLO] Kwietniak D, Lacka M and Oprocha P 2016 A panorama of specification-like properties and their consequences Contemp. Math. 669 155–86
[PS1] Pfister C-E and Sullivan W G 2005 Large deviations estimates for dynamical systems without the specification property Nonlinearity 18 237–61
[PS2] Pfister C-E and Sullivan W G 2007 On the topological entropy of saturated sets Ergod. Theor. Dynam. Syst. 27 929–56
[Wa] Walters P 1982 An Introduction to Ergodic Theory (Berlin: Springer)
[Yu] Yuri M 2003 Weak Gibbs measures for intermittent systems and weakly Gibbsian states in statistical mechanics Commun. Math. Phys. 241 453–66