Complete mitochondrial genome of a hen harrier *Circus cyaneus* (Accipitriformes: Accipitridae) from South Korea

Eun Hwa Choi, Gankhuyag Enkhtsetseg, Su Youn Baek, Jihye Hwang, Bia Park, Kuem Hee Jang, Shi Hyun Ryu and Ui Wook Hwang

Department of Biology, Teachers College & Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, South Korea; Institute for Korean Herb-Bio Convergence Promotion, Kyungpook National University, Daegu, South Korea; Research Center for Endangered Species, National Institute of Ecology, Yeongyang, South Korea; Strategic Planning Department, Nakdonggang National Institute of Biological Resources, Sangju, South Korea

ABSTRACT

A hen harrier *Circus cyaneus* (Accipitriformes: Accipitridae), a migrant raptor having a wide breeding range from Europe to Northeast Asia, migrates to more southerly areas (Southern Europe, China, Korea and Japan) in winter. In this study, the complete mitochondrial genome of *C. cyaneus* was completely sequenced and characterized. It was 20,173 bp in length being composed of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and two control regions. It has a base composition of A (32.2%), G (12.6%), C (30.5%) and T (24.7%). The phylogenetic tree reconstructed based on the maximum likelihood (ML) method confirms that *C. cyaneus* places within the clade of the family Accipitridae in the monophyletic avian order Accipitriformes.

The mitochondrial genome of *C. cyaneus* is 20,173 bp long (GenBank accession no. KU237286), which exhibits the same gene order with that of the order Accipitriformes. It contains total 37 genes including 13 PCGs (COX1-3, ND1-6, ND4L, CYTB, ATP6 and ATP8), 2 rRNAs (16S rRNA and 12S rRNA), 22 tRNAs and 2 control regions (CR and 3'CR), of which 28 genes places on the heavy strand (H-strand) and the remaining 9 genes are located on the light strand (L-strand). The overall genome components and gene orders are identical to those of *C. cyaneus* published with the specimens of Inner Mongolia (Gao et al. 2018). The overall A + T content of *C. cyaneus* mitogenome is 56.9%: 53.7% for PCGs, 56.7% for tRNAs, 53.2% for rRNAs and 67.0% for CRs. In the PCGs (11,400bp long), 12 are encoded in the H-strand, and the only one (CYTB) is located in the L-strand. All PCGs use the conventional start codons ATN except for COX1 using GTG which was also employed as the initiation-codon in other avian species (Slack et al. 2003). CR (3,571bp long) locates between *trnT* and *trnP*, which is divided into three domains of Domain I, Central Conserved Domain II, and Domain III. Domain II exhibits only five conserved boxes of F, E, D, C and B-box, generally existing in Aves, is not found.

The maximum likelihood (ML) tree was reconstructed with 13 PCGs among 27 accipitriform species (Figure 1). The best fitting model mtVer + I+G4 was selected for the ML analysis. The ML tree confirms that *C. cyaneus* places within the clade of the family Accipitridae in the monophyletic avian order

CONTACT

Ui Wook Hwang (uwhwang1@gmail.com) Department of Biology, Teachers College & Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 41665, South Korea

These authors are equally contributed for this work.

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Accipitriformes. Within the family Accipitridae, there are found four different clades of Clade 1, 2, 3 and 4. In Clade 2, *C. cyaneus* from South Korea is grouped with *C. cyaneus* from Inner Mongolia within the monoclade of the genus *Circus*. *Accipiter* is a sister genus of *Circus*. The relationships of the four families of Accipitriformes are consistent with those of Burleigh et al. (2015) and Jiang et al. (2015).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was financially supported by the National Institute of Biological Resources (NIBR), the Ministry of Environment (MOE), Republic of Korea, granted to UWH [NIBR201503204].

Data availability statement

The data that support the findings of this study are openly available in NCBI at https://www.ncbi.nlm.nih.gov/nuccore/KU237286.1. The information of the supplementary table was deposited in Figshae DB (https://doi.org/10.6084/m9.figshare.13139693.v1).

References

Burleigh JG, Kimball RT, Braun EL. 2015. Building the avian tree of life using a large-scale, sparse supermatrix. Mol Phylogenet Evol. 84: 53–63.

Chan PP, Lowe TM. 2019. tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol Biol. 1962:1–14.

Ferguson-Lees J, Christie DA. 2006. Raptors of the world. Princeton, NJ: Princeton University Press, USA.

Gao X, Sun G, Xia T, Zhao C, Wei Q, Sha W, Zhang H. 2018. Complete mitochondrial genome sequence of the hen harrier (*Circus cyaneus*). Mitochondrial DNA Part B. 3(2):668–669.

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 41:95–98.

Jiang L, Chen J, Wang P, Ren Q, Yuan J, Qian C, Hua X, Guo Z, Zhang L, Yang J, et al. 2015. The mitochondrial genomes of *Aquila fasciata* and *Buteo lagopus* (Aves, Accipitriformes): sequences, structure and phylogenetic analyses. PLOS One. 10(10):e0141037.

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilms A, Lopez R, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics. 23(21):2947–2948.

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 37(5):1530–1534.

Slack KE, Janke A, Penny D, Arnason U. 2003. Two new avian mitochondrial genomes (penguin and goose) and a summary of bird and reptile mitogenomic features. Gene. 302(1–2):43–52.