Association between insulin resistance and left ventricular hypertrophy in asymptomatic Black sub-Saharan African hypertensive patients: A case-control study

Bernard KIANU PHANZU (✉ doctorkianu@gmail.com)
University Hospital of Kinshasa
https://orcid.org/0000-0001-9836-9532

Nkodila Natuhoyila Aliocha
Universite de Kinshasa

Kintoki Vita Eleuthère
University Hospital of Kinshasa

M’Buyamba Kabangu Jean-René
University Hospital of Kinshasa

Longo-Mbenza Benjamin
American School of Kinshasa

Research article

Keywords: Hyperinsulinaemia, insulin resistance, obesity, sedentary time, left ventricular hypertrophy, left ventricular mass, hypertension, Black, sub-Saharan African

DOI: https://doi.org/10.21203/rs.3.rs-33818/v2

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Conflating information exists regarding the association between insulin resistance (IR) and left ventricular hypertrophy (LVH). Here, we described the associations between parameters of obesity, fasting insulinaemia, homeostasis model assessment of insulin resistance (HOMA-IR) and LVH in Black patients with essential hypertension. Methods: A case-control study was conducted at the Centre Médical de Kinshasa (CMK), the Democratic Republic of the Congo, between January and December 2019. Cases and controls were hypertensive patients with and without LVH, respectively. The relationships between obesity indices, physical inactivity, parameters of glucose metabolism and lipid disorders and LVH were assessed using linear and logistic regression analyses in simple and univariate exploratory analyses, respectively. When differences were observed between LVH and the independent variables, the effect of potential confounders was studied by adjustment in multiple linear regression and conditional logistic regression in multivariate analysis. The coefficients of determination (R^2), the adjusted ORs and their 95% CIs were calculated to determine the association between LVH and the independent variables.

Results: Eighty-eight cases (52 men) were compared to 132 controls (81 men). Nineteen percent (19%) of left ventricular mass (LVM) variation was predicted by age; 31.3%, by the duration of hypertension; 44.4%, by body mass index (BMI); 42.5%, by waist circumference (WC); 20%, by glycaemia; 44.8%, by insulinaemia; and 43.7%, by HOMA-IR. In multiple linear regression analysis, duration of hypertension, BMI, insulinaemia and HOMA-IR explained 68.3% of the variability in the increase in LVM. In the logistic model, obesity multiplied the risk of LVH by 3 (aOR: 2.8, 95% CI (1.06-7.4), p = 0.038) and IR by 8 (aOR: 8.4, 95% CI (3.7-15.7), p <0.001). Conclusions: Obesity and IR appear to be the main predictors of LVH in Black sub-Saharan African hypertensive patients. The comprehensive management of cardiovascular risk factors should be emphasized with particular attention to obesity and IR. A prospective Black sub-Saharan population-based study with serial imaging remains essential to better understand subclinical LV deterioration over time and to confirm the role of IR in Black sub-Saharan individuals with hypertension.

Background

Hypertensive patients with insulin resistance (IR) are at increased risk of cardiovascular events compared to hypertensive patients without IR [1]. Similarly, the presence of hypertension-mediated organ damage (HMOD), including left ventricular hypertrophy (LVH), has well-established adverse prognostic significance [2].

IR is classically defined as an impaired biological response to insulin stimulation of target tissues [3]. Gerald M. Reaven’s pioneering works suggest that there is a pathophysiological link between IR and almost all cardiovascular risk factors. Indeed, Reaven, fondly remembered as the father of IR because of his contribution to understanding the central role of IR in cardiovascular disease, developed the insulin suppression test; the first quantitative method for assessing insulin-mediated glucose uptake in humans [4]. Using this test, he established the importance of IR in human disease, especially in type 2 diabetes [5, 6]. In a non-diabetic patient population, he illustrated the role of IR in the development of essential
hypertension [7], the osmotic balance [8], stimulation of the sympathetic nervous system [9], hypercoagulability [10], decreased clearance of urinary uric acid with resultant hyperuricaemia [11], increased postprandial lipaemia and accumulation of residual lipoproteins [12], the occurrence of lipid abnormalities such as hypertriglyceridaemia [13], low HDL-c [14], and a decrease in the diameter of LDL-c particles [15].

LVH is a HMOD and full-fledged cardiovascular risk factor, and it is associated with poor prognostic value [16-19]. Despite extensive studies, the pathophysiology of cardiac hypertrophy remains incompletely understood [20]. Both genetic [21, 22] and environmental factors [23, 24] are involved in this pathophysiology. IR is one of the environmental factors that are cited as being involved in the occurrence of LVH [24-26].

However, conflicting information exists regarding the association between IR and LVH in hypertensive patients. We sought to assess this relationship among a hypertensive sub-Saharan Black population.

Methods

Study design and setting

This was a case-control study conducted at the Centre Médical de Kinshasa (CMK) between January and December 2019. The CMK is a reference clinic, working on international standards and norms, with a cardiology unit named « pôle de cardiologie » (« cardiology centre ») with highly qualified and regularly retrained personnel, that provides cardiovascular explorations such as Doppler echocardiography, a coronary scanner and cardiopulmonary exercise testing. A cardiovascular rehabilitation unit, the only one in central Africa, is also operational there.

Patient selection

Consecutive asymptomatic hypertensive patients aged 20 years or older attending the outpatient clinic of the CMK Pôle de cardiologie between January and December 2019 were screened for clinical or laboratory evidence of secondary hypertension and renal or hepatic disease. Patients in whom a cause of secondary hypertension was found, as well as patients in whom renal or hepatic disease was diagnosed, were not included in this study. All other patients were invited by written informed consent forms to participate in this study and underwent cardiac Doppler ultrasound.

Participants with heart disease unrelated to high blood pressure were excluded. Each participant who met echocardiographic diagnostic criteria for LVH was matched for sex and age with two hypertensive patients without LVH.

A total of 267 participants were initially selected to participate in the study, 106 with LVH and 161 without LVH. Of these, 47 were excluded due to dilated cardiomyopathy in 20 participants (8 with LVH and 12 without LVH), ischaemic cardiopathy in 14 participants (5 with LVH and 9 without LVH), significant valvulopathy in 5 participants (2 with LVH and 3 without LVH), pericarditis in 5 participants without LVH,
and hypertrophic cardiomyopathy in 3 participants with LVH. The final analysis therefore included 220 participants: 88 (40%) with and 132 (60%) without LVH. The flow chart in Figure 1 summarizes the selection of cases and controls.

Study procedures

Anamnestic data

Demographic data (age and sex), lifestyle habits (heavy alcohol consumption, current smoking, and sedentary behavior), medical history including cardiovascular risk factors (age at diagnosis of high blood pressure, history of diabetes mellitus, dyslipidaemia, hyperuricaemia, and menopause) and previous cardiovascular events (stroke, ischaemic heart disease, heart failure, chronic kidney disease, and cardiovascular surgery), and current medication use for chronic disease (antihypertensive treatment, antidiabetic treatment and other treatments including statins, antiplatelet agents, hypouricaemics, oral contraception, and hormone replacement therapy) were collected during an in-person directed interview using an ad hoc questionnaire.

Anthropometric data

Anthropometric parameters were measured by a final year medical student who had also undergone a study-training session held by the authors. The student measured both primary variables (weight, height, waist size, and hip measurement) according to WHO recommendations and a derived variable (body mass index (BMI)) as follows:

- Body weight was measured to the nearest 100 g using a validated electronic balance with the participants upright in light clothing without shoes;
- Height was obtained to the nearest centimeter using a measuring rod, with the participant standing, barefoot and bareheaded;
- Waist circumference was measured to the nearest 0.1 cm using a measuring tape applied directly to the skin along a horizontal line passing through the umbilicus.
- The body surface area (BSA) was calculated using the DuBois formula [27] as follows: \(\text{BSA (m}^2) = \frac{\text{height (cm)}}{725} \times \text{weight (kg)}^{0.425} \times 0.00718413 \); and
- BMI was obtained by dividing the weight (kg) by the square of height (m²)

Blood pressure

BP was measured non-invasively by 24 hour-ambulatory blood pressure monitoring (ABPM) using a TONOPORT V (GE Health care, Freiburg, GERMANY) type recorder. During this recording, the participants were asked to maintain their usual way of life.

Echocardiographic data
Left ventricular measurements were taken according to the 2015 American Society of Echocardiography and the European Association of Cardiovascular Imaging updated guidelines for cardiac chamber quantification [28] using a Vivid T8 (GE Health care, Freiburg, GERMANY) type ultrasound system equipped with 3.5 MHz transducers. Two-dimensional guided M-mode echocardiography was performed on a parasternal long-axis view. Interventricular septum (IVS) thickness in diastole (IVSd), left ventricular posterior wall thickness in diastole (LVPWd), and left ventricular end-diastolic diameter (LVEDd), all measured in mm, were assessed at a level just below the mitral valve leaflets at end-diastole. Simultaneous ECG was performed to correlate left ventricular measurements with the cardiac cycle. Diastolic wall thickness was measured at the onset of the QRS wave. LVM was calculated based on the American Society of Echocardiography simplified cubed equation linear method using the following equation: \(LVM \text{ (grams)} = 0.8 \times 1.04 \times [(LVEDd + IVSd + LVPWd)^3 - (LVEDd)^3] + 0.6 \text{ g.} \) LVM was indexed to BSA and to height as mass/BSA and mass/height\(^{2.7}\). The relative wall thickness (RWT) of the left ventricle (LV) was calculated as follows: \(\frac{2 \times \text{LVPWd}}{\text{LVEDd}}\). In accordance with international recommendations [29], the parameters of LV diastolic function were measured by recording transmitial flow velocity using conventional Doppler echocardiography. With pulsed wave Doppler (PW), transmitial flow velocity was recorded from the apical transducer position with the sample volume situated between the mitral leaflet tips. E (Peak E-wave velocity) and A (Peak A-wave velocity) and Deceleration time of early filling (DT) were recorded in apical four-chamber view with color flow imaging for optimal alignment of PW Doppler with blood flow. The PW Doppler sample volume (1–3 mm axial size) was placed between mitral leaflet tips using low wall filter setting (100–200 MHz) and low signal gain so that the optimal spectral waveforms should not display spikes. Moreover, E, A and DT were measured as the averages of five consecutive cardiac cycles, and the E/A ratio was calculated. Tissue Doppler echocardiography, which measures the velocity of the regional cardiac wall, was performed by activating the tissue Doppler echocardiographic function, as carried out for two dimensional and M-mode echocardiography. Mitral annular velocities were recorded from the apical window. Sample volumes were located at the lateral site of the mitral annulus. Peak early diastolic mitral annular velocity (\(e',\text{ cm/s}\)) was measured over five cardiac cycles, and the mean was calculated. The calculated \(E/e'\) ratio was used as a parameter of left ventricular filling pressure (LVFP).

Laboratory measurements

For all analyses, a blood sample was taken from the cubital vein between 7 a.m. and 9 a.m. following an overnight fast that started at 10pm the previous day. All analyses were carried out at the CMK laboratory. Blood was collected in a dry tube for the assessment of serum uric acid level, total cholesterol, LDL-cholesterol, HDL-cholesterol and triglycerides. Serum was used for the analysis. The assay was performed by the standard colorimetric method. Readings were measured using the colorimetric spectrophotometer brand HELIOS Epsilon (Milwaukee, USA). The blood glucose test was performed on plasma oxalate by colorimetric method using « BIOLABO » test (France).

The insulin concentration was assessed with EDTA plasma by ELISA. The optical density reading was performed on a string read from the firm HUMAREADER HUMAN (Germany).
Assessments of glycated haemoglobin were performed with plasma treated with EDTA by the electrophoretic method using HYRYS HYDRASIS from the firm SEBIA (France).

Serum creatinine was measured by the simple colorimetric Jaffe method. Readings were assessed with a colorimetric spectrophotometer (Spectrum 2100 brand, South Africa).

Operational Definitions

Lifestyle data

Sedentary was defined as sitting for more than 7 hours a day [30]. Cigarette smoking was defined as regular smoking for at least 30 days preceding the interview date regardless of the number of cigarettes smoked [31].

Excessive alcohol consumption was defined as drinking more than 2 glasses of beer or its equivalent every day for at least a year [32].

Anthropometric parameters

Overweight was defined as a BMI between 25 and 29.9 kg/m\(^2\) of BSA [33].

Obesity was defined as a BMI equal to or greater than 30 kg/m\(^2\) of BSA [33]. Abdominal obesity was defined as a waist circumference of more than 102 cm and > 88 cm for men and women, respectively [33].

Bioclinical data

Poor control of arterial hypertension was defined as an average systolic blood pressure greater than 130 mmHg and/or average diastolic BP greater than 80 mmHg on 24-hour ABPM [34].

Paraclinical data

Diabetes mellitus was defined as a fasting blood glucose ≥ 10 mmol/l with a glycated haemoglobin level greater than 7% [35].

Hyperinsulinaemia was been defined as fasting insulin > 90 mmol/L.

IR was defined as a HOMA-IR of ≥ 2.5 [36].

Dyslipidaemia was defined as an HDL-cholesterol level of <1.03 mmol/L for males or <1.04 mmol/L for females, an LDL-cholesterol level ≥ 3.38 mmol/L, a total cholesterol level ≥ 5.17 mmol/L, and/or a triglyceride level ≥ 1.69 mmol/L [37].

The atherogenicity index (AI) was calculated by the total cholesterol-to-HDL-c ratio. The AI was considered high when this ratio was greater than 5 [38].
Hyperuricaemia was defined as a uric acid level > 420 mmol/L [39].

Echographic data

LVH was defined as LVM > 115 g/m2 or > 48 g/m$^{2.7}$ for males when indexed to BSA or to height, respectively, and > 95 g/m2 or > 44 g/m$^{2.7}$ for females when indexed to BSA or to height, respectively.

Four LV geometric patterns were defined as follows [40]: normal geometry (normal LVM and RWT \leq 0.42), concentric remodelling (normal LVM and RWT > 0.42), eccentric hypertrophy (LVH and RWT \leq 0.42) and concentric hypertrophy (LVH and RWT > 0.42).

Three patterns of diastolic dysfunction (DD) were defined as follows [41, 42]: abnormal relaxation (grade I of DD: E/A ratio <1 and prolonged deceleration time), pseudonormal relaxation (grade II: E/A ratio >1 and intermediate values of deceleration time), and restrictive patterns (reversible and irreversible, grade III–IV, respectively; E/A ratio > 2 and shortened deceleration time).

Normal LVFP was defined by an E/e’ ratio <8 [43]. Elevated LVFP was defined by an E/e’ lateral > 12 [43]

The dilation of the left atrium (LA) was defined as an area of the LA of > 20 cm2 of body surface [44].

Statistical Analyses

Data were presented in the form of absolute (n) and relative (%) frequencies for categorical variables and as averages (± standard deviation) for quantitative variables. Paired comparisons between the cases and controls were made using Pearson square Chi-square test or the Fisher’s Exact test as appropriate for categorical variables and using Student’s t-test for continuous variables.

Linear regression was used to determine factors predictive of LVM variations. The following variables were entered in the univariate analysis: parameters of obesity (WC, HC, BMI), parameters of glucose metabolism (Fasting glucose, HBA1c, fasting insulinaemia, and HOMA-IR), parameters of lipid metabolism (TC, HDL-c, LDL-c, and triglycerides), parameters of renal function (creatinine and uricaemia), parameters of phosphocalcic metabolism (calcium, ionized calcium, and phosphorus). When significant associations were observed between LVM and the independent variables, the effect of potential confounders was studied by adjustment in multiple linear regression.

Simple logistic regression was used to determine factors predictive of LVH. The following variables were entered in the univariate analysis: Medical and social history (duration of HTN, cigarette smoking, excessive alcohol consumption, and menopause), sedentary lifestyle, uncontrolled HTN, dyslipidaemia, High AI, diabetes mellitus, hyperinsulinaemia, hyperuricaemia and IR. When associations were observed between LVH and the independent variables, the effect of potential confounders was studied by adjustment in conditional logistic regression (multivariate analysis).

The significance threshold retained was then $p <0.05$. Statistical analyses were performed using XLStat 2020 and SPSS (Statistic Package for Social Sciences) for Windows version 24 software
Ethical considerations

This research was conducted in strict compliance with the recommendations of the Helsinki Declaration III. Approval to conduct the study was obtained from the ethics committee of the University of Kinshasa School of Public health. Each participant provided written informed consent for to participate in the study. All respondents were debriefed on the results of the study.

Results

Characteristics of cases and controls

As illustrated in Table 1, cases and controls did not differ significantly with respect to the matching variables. The proportion of newly diagnosed hypertensive patients was similar between cases and controls. The mean duration of hypertension in known hypertensive participants was significantly longer in participants with LVH than in those without LVH. Compared to patients without LVH, patients with LVH had significantly higher (p ≤0.05) BMI, WC, HC, and average 24-hour systolic blood pressure. There was a significantly higher proportion of sedentary persons among patients with LVH (Table 1) with significantly higher RWT, E-wave deceleration time, E/e' ratio (although within normal limits), triglyceridaemia, AI, glycaemia, HbA1c,insulinaemia, HOMA-IR, IR and hyperuricaemia (Table 2). Conversely, the HDL-c level and E/A ratio were significantly lower in patients with LVH.

Table 1 General characteristics of Black hypertensive patients stratified by the presence or absence of LVH
Characteristics	LVH+ n=88	LVH- n=132	p value
Demographic characteristics			
Age (years)	52.6±10.6	50.3±9.5	0.096
Sex	0.421		
Male	52(59.1)	81(61.4)	
Female	36(40.9)	51(38.6)	
Medical & social history			
Known HTN	60(68.2)	76(57.6)	0.074
Duration of HTN	5.0 (1.0-8.0)	4.0 (2.0-6.0)	0.014
ND HTN	28(31.8)	56(42.4)	0.149
Cigarette smoking	87(98.9)	132(100.0)	0.400
Alcohol intake	85(96.6)	128(97.0)	0.582
Menopause	14(38.9)	27(52.9)	0.141
Anthropomorphic measurements			
BMI (kg/m2)	32.6±5.1	28.7±4.3	<0.001
WC (cm)	109.3±13.2	99.3±10.0	<0.001
HC (cm)	112.7±9.9	103.8±9.2	<0.001
Overweight	22(25.0)	64(48.5)	<0.001
Total obesity	65(73.9)	47(35.6)	<0.001
abdominal obesity	34(61.4)	43(32.6)	<0.001
Lifestyle history			
Sedentarity	71(80.7)	52(39.4)	<0.001
Treatment history & examination findings			
Uncontrolled HTN	20(22.7)	18(13.6)	0.060
SBP (mmHg)	138.8±7.8	133.4±7.2	0.048
DBP (mmHg)	82.5±8.7	79.9±9.1	0.087
HR (bpm)	62.1±13.5	70.0±13.4	0.199
HTN=hypertension; ND HTN= newly diagnosed hypertension; WC = waist circumference; BMI= body mass index; HC= hip circumference; HR=heart rate; SBP=systolic blood pressure; DBP=diastolic blood pressure.

Table 2 Echographic and biological characteristics of Black hypertensives stratified by the presence or absence of LVH
Variables	LVH+	LVH-	P
	n=88	n=132	
Echocardiographic measurements			
LVED (mm)	46.5±4.4	42.9±4.1	<0.001
IVS (mm)	12.7±1.1	10.7±1.5	<0.001
PWT (mm)	12.5±0.8	10.7±1.5	<0.001
SWT (mm)	25.2±1.6	21.3±2.9	<0.001
LVEF (%)	63.8±5.4	65.1±4.9	0.062
LVM (g)	222.2±38.4	156.8±34.8	<0.001
LVMth (g/m^{2.7})	54.7±8.4	37.6±6.6	<0.001
LVMlbsa (g/m²)	108.5±15.7	79.7±15.0	<0.001
RWT	0.55±0.1	0.50±0.1	0.001
E (Cm/s)	0.85±0.6	1.08±0.6	0.029
E/A ratio	0.71±0.2	0.99±0.2	0.034
DT (ms)	215.8±39.4	172.8±37.7	<0.001
E/e’ ratio	7.4 (4.9 – 7.5)	5.5 (4.5-7.0)	<0.001
LAA (cm²)	17.3±3.5	14.7±2.7	0.001
SPAP (mmHg)	26.9±3.1	26.0±2.7	0.019
Biological parameters			
TC (mmol/L)	5.5±1.0	5.4±1.0	0.305
LDL-c (mmol/L)	3.8±1.1	3.6±1.1	0.126
Triglycerides (mmol/L)	1.25±0.6	1.05±0.6	0.027
HDL-c (mmol/L)	1.1±0.3	1.3±0.4	0.003
Glycaemia (mmol/L)	6.3±2.1	5.4±1.6	<0.001
HbA1C (%)	6.3±1.6	5.9±1.1	0.016
Insulinaemia (mmol/L)	122.8±43.1	72.7±25.8	<0.001
AI	5.2±1.6	4.6±1.8	0.008
HOMA-IR	2.36±0.8	1.41±0.6	0.014
Uric acid (mmol/L)	388.3±98.4	352.9±89.5	0.007
Creatinine (mmol/L)	84.7±22.6	84.3±16.2	0.854
Calcium (mmol/L) | 2.30±0.2 | 2.3±0.2 | 0.105
Ionized calcium (mmol/L) | 1.20±0.11 | 1.22±0.2 | 0.331
Phosphorus (mmol/L) | 1.06±0.2 | 1.09±0.3 | 0.333
Dyslipidaemia | 75(85.2) | 98(74.2) | 0.036
High AI | 45(51.1) | 48(36.4) | 0.021
T2DM | 20(22.7) | 23(17.4) | 0.212
Hyperinsulinaemia | 8(9.1) | 11(8.3) | 0.514
IR | 42(47.7) | 2(1.5) | <0.001
Hyperuricemia | 29(33.0) | 22(16.7) | 0.004

LVED= left ventricular end-diastolic diameter ;IVS= interventricular septal thickness; PWT= posterior wall thickness; SWT= sum of wall thickness; LVEF= Left ventricular ejection fraction; LVM= left ventricular mass; LVM\textsubscript{h}= left ventricular mass indexed to height2.7; LVM\textsubscript{bsa}= left ventricular mass indexed to body surface area ; RWT=relative wall thickness; E= mitral E wave; E/A= ratio of peak early and late diastolic flow velocities ; DT= deceleration time; LAA= left atrium area; SPAP= systolic pulmonary arterial pressure; TC=total cholesterol; LDL\textsubscript{c}=low density lipoprotein; LDL-c= low density lipoprotein ; HDL\textsubscript{c}= high density lopoprotein; AI= atherogenicity index ; HbA1C= glycated haemoglobin; T2DM=type 2 diabetes melitus; HOMAIR= Homeostatic Model Assessment for Insulin Resistance; IR= insulin resistance.

Determinants of Left Ventricular mass

In the simple linear regression, as illustrated in Table 3, there was a significant and positive relationship between LVM and age, duration of hypertension, BMI, WC, Glycaemia, insulinaemia, and HOMA-IR.

Table 3 Simple linear regression showing determinants of left ventricular mass in Black patients with essential hypertension
Variables	r	β	p
Age in years	0.190	0.22	0.005
HTN duration in years	0.313	0.57	<0.001
BMI (kg/m\(^2\))	0.444	0.99	<0.001
WC in cm	0.425	0.39	<0.001
Glycaemia (mmol/L)	0.201	1.19	0.003
Insuline (mmol/L)	0.448	0.12	<0.001
HOMA-IR	0.437	5.80	<0.001

HTN=hypertension ; BMI=body mass index ; WC= waist circumference ; HOMA-IR= homeostatic model assessment for insulin resistance.

Nineteen percent (19%) of LVM variation was predicted by age ; 31.3%, by the duration of hypertension ; 44.4%, by BMI ; 42.5%, by WC ; 20%, by glycaemia ; 44.8%, by insulinaemia ; and 43.7%, by HOMA-IR (Figure 2 and b).

In multiple linear regression, patient’s predicted LVM was equal to 0.56 (hypertension duration) + 0.67 (BMI) + 0.08 (Insulin levels) +0.27 (HOMAIR).

The duration of hypertension, BMI, insulin and HOMA-IR predicted 68.3% of the patient’s LVM (Table 4).

Table 4. Multiple linear regression showing determinants of left ventricular mass in Black patients with essential hypertension
Variables	LVM Ih		
	β	SE	p
(Constant)	6.84	8.72	0.435
Age (years)	0.14	0.104	0.183
HTN duration	0.56	0.14	<0.001
BMI (kg/m2)	0.67	0.23	0.004
WC (cm)	0.001	0.09	0.994
Glycaemia (mmol/L)	0.06	0.46	0.903
Insuline (mmol/L)	0.08	0.04	0.034
HOMA-IR	0.27	1.81	0.021

$R^2 = 0.683$, overall p ≤ 0.001

HTN=hypertension ; BMI= body mass index ; WC= waist circumference ; HOMA-IR= homeostatic model assessment for insulin resistance

\[Y = 0.56 X_1 + 0.67 X_2 + 0.08 X_3 + 0.27 X_4 + 6.84 \]

With $Y = \text{LVM Ih}; X_1 = \text{HTN duration}; X_2 = \text{BMI}; X_3 = \text{Insuline}; X_4 = \text{HOMA-IR}$

Determinants of LVH

In univariate analysis, global obesity, abdominal obesity, sedentary status, AI, hyperuricaemia, and IR were significant predictors of LVH.

After multivariate adjustment, only total obesity and IR persisted as independent determinants of LVH. Obesity increased the risk of LVH three-fold (OR 2.8, 95% CI 1.06-7.40, \(p = 0.038\)) and IR increased it eight-fold (OR 8.4, 95% CI 3.7-15.7, \(p < 0.001\)) (Table 5).

Table 5 Logistic regression analysis showing determinants of LVH among Black hypertensive patients
Variables	Univariate analysis	Multivariate analysis		
	p	OR (95% CI)	p	aOR (95% CI)
Total Obesity				
No	1	1	1	1
Yes	0.000	5.1 (2.8-9.3)	**0.038**	2.8 (1.06-7.4)
Abdominal Obesity				
No	1	1	1	1
Yes	0.000	3.3 (1.9-5.8)	0.275	1.9 (0.6-6.3)
Sedentary				
No	1	1	1	1
Yes	0.000	6.4 (3.4-12.1)	0.123	1.9 (0.8-4.5)
High AI				
No	1	1	1	1
Yes	0.031	1.8 (1.06-3.2)	0.579	1.3 (0.6-2.9)
Hyperuricaemia				
No	1	1	1	1
Yes	0.006	2.5 (1.3-4.7)	0.145	2.1 (0.8-5.4)
IR				
No	1	1	1	1
Yes	0.000	9.3 (3.8-25.5)	**0.000**	8.4 (3.7-15.7)

AI= atherogenic index ; IR= insulin resistance

Discussion

In this study, four factors that explained the bulk of the increase in LVM (68%), were established. These were the duration of hypertension, BMI, insulinaemia and HOMA-IR. However, only IR and total obesity emerged as the independent determinants of LVH. We also observed that patients with LVH were more often sedentary, had higher obesity parameters, and more abnormalities in carbohydrate and lipid metabolism compared to patients without LVH. In addition, they also had significantly higher uric acid levels, AI, and E/e’ ratio as well as a lower E/A ratio and e’ and a longer mitral E wave deceleration time.

Conflicting information exists regarding the involvement of insulin resistance in the development of LVH. Costa et al. [45] did not find any relationship between IR (with insulin measured during glucose tolerance...
test) and LVM in a small sample of 35 non-obese hypertensive Brazilian subjects. Galvan et al. [46], after adjusting for blood pressure and body mass index (BMI), also found that IR (With insulin sensitivity measured by the insulin clamp technique) was not an independent determinant of LVH in a small sample of 50 Italian non-diabetic subjects. These results are opposite to those found in the present study. The difference in profile of the study population, the sample size and the methods used to diagnose insulin resistance could explain this difference. In our study, HOMA-IR was used to diagnose IR. This method has the advantage of a simpler implementation than the hyperinsulinemic euglycemic glucose clamp, which is the gold standard method for the determination of insulin sensitivity [47]. HOMA-IR has been the subject of numerous validations which have shown a satisfactory correlation with the gold standard method (r = 0.72 to 0.82 depending on the studies) with no notable difference according to sex, age, weight, diabetic or hypertensive status [48]. There is no agreed HOMA-IR threshold for defining IR in the sub-Saharan Black African population. The cut-off of 2.5 used in the present study has been used in various Black Central African [49], African-American [50], European American [51], Caucasian [36] and Asian [52, 53] studies. Our results concurred, however, with data obtained in populations other than Black sub-Saharan Africans. Sasson et al. [54] demonstrated a significant association between IR and LVH, which was independent of blood pressure level and BMI [59]. Lind et al [55] also found such an association and demonstrated that hyperinsulinaemia was responsible for 43% of the variation in the left ventricular mass. In a recent prospective population study, Cauwenberghs et al [56] found that basal insulin resistance / hyperinsulinaemia and its worsening during follow-up predicted left ventricular remodelling.

The pathophysiological arguments that can support this association are as follows: It is now recognized that LVH is mediated not only by mechanical stress from pressure overload but also by various neurohormonal substances and metabolic abnormalities that independently exert trophic effects on cardiomyocytes and the extracellular matrix [22, 57]. This is substantiated by the high prevalence of LVH in normotensive type 2 diabetic individuals [58, 59]. Insulin resistance, by multiple and complex mechanisms, has been shown to promote cardiomyocyte hypertrophy and matrix deposition, regardless of its effect on systemic blood pressure [60].

The transmembrane transport and mitochondrial oxidation of glucose are reduced due to a down regulation of the expression of glucose transporter-4 in response to insulin resistance [61]. Therefore, energy metabolism then depends on the oxidation of fatty acids for more than 90% of its needs leading to an increase in plasma levels of fatty acids. The predominant oxidation of fatty acids and reduction in the energy supply from glucose and pyruvates lead to the formation of end products of non-enzymatic glycation (AGEs or advanced glycation end products), an excess of glycolytic compounds and increased synthesis of ceramide, all of which promote apoptosis. AGEs bind to specific receptors, activate protein kinase C, whose overexpression stimulates the growth factor of median connective tissue, synthesis of collagen and interstitial fibrosis. Additionally, insulin resistance and an increase in the mitochondrial influx of fatty acids predispose to an overproduction of superoxide ions involved in the genesis of hypertrophy, fibrosis, and left ventricular dysfunction. Furthermore, IR generates reactive oxygen species which are involved in the genesis of LVH and fibrosis [62].
The association between the duration of hypertension and LVH has been highlighted in several previous studies. In the Democratic Republic of Congo, Lepira et al [63] showed that the duration of hypertension predicted the occurrence of electrical LVH. This association accounts for the influence of the duration of myocardial exposure to chronic barometric overload represented by hypertension.

In the present study, we found that hypertensive participants with LVH had a lower E/A ratio and a longer deceleration time that indicated abnormalities in relaxation [41, 42, 64] associated with normal LVFP, as evidenced by a normal E/e’ ratio ([8] [43] with almost normal LAA. The presence of an isolated relaxation abnormality without an impact on filling pressures is believed to be due to the relatively short duration of HTN (5 years and 4 years in participants with LVH and patients without LVH, respectively). Diastolic dysfunction is a consequence of both IR [65, 66] and of LVH and the underlying myocardial fibrosis [42, 67-70]. In addition, the mitochondrial dysfunction that accompanies IR state is thought to play a role in both LVH and diastolic dysfunction [71]. However, this is still a subject of debate. On the one hand, a certain degree of diastolic dysfunction exists in hypertensive patients long before they develop LVH [72]; on the other hand, regression of LVH after antihypertensive treatment does not necessarily lead to the normalization of diastolic function [74].

Our hypertensive patients with LVH were often sedentary, with higher obesity parameters and more abnormalities in carbohydrate and lipid metabolism. Controversies exist regarding the relationship between a sedentary lifestyle and LVM. Gibbs et al. [75] observed relationships between sedentary lifestyle and obesity and increased LVM in Caucasian adults but not in Black populations. In a previous analysis, we assessed this association in a sub-Saharan Blacks population and White Maghrebi population and found that sedentary lifestyle was associated with a lower LVM in the White Maghrebi population but not in the sub-Saharan Black population [76]. Likewise, in the present study of sub-Saharan Black patients, although a larger proportion of patients with LVH were sedentary, no significant association was found between sedentary lifestyle and LVM. It is possible that a potential qualitative difference exists in the cardiovascular consequences of sedentary behaviours.

The association between obesity and LVH appears to be a common finding. However, there exists a divergence as regards the concentric or eccentric geometry pattern of this hypertrophy in obese hypertensive patients. Some authors have found a predominance of eccentric geometry [77], whereas others, including ourselves, have found a predominance of concentric geometry [78, 79]. Concentric geometry is more often attributed to pressure overload, whereas eccentric geometry is attributed to volume overload [80]. When hypertension, a condition of pressure overload and obesity, coexist, the resulting hypertrophic phenotype would be determined by the predominance of one over the other. This may explain the divergent results in the literature based on the study population. Furthermore, an initially concentric geometry can evolve over time towards an eccentric geometry.

The sedentary behaviour-obesity combination is essentially characterized by a chronic caloric excess. Experimental research has shown that prolonged and uninterrupted sitting sessions lead to an increase in
blood levels of insulin and glucose. Obesity is linked to IR via complex mechanisms e.g., inflammation due to the accumulation of lipids, the inhibitory effect of fatty acid oxidation on glucose oxidation, and the secretion of adipocytokines which have all been associated with the development of local and systemic IR [81]. Therefore, IR would bridge the gap between sedentary lifestyle/obesity and LVH.

Significantly higher uric acid levels were found in hypertensives with LVH than in those without LVH. This is in agreement with previous studies which have shown that hypertensives with LVH have higher uric acid levels [82]. A causal link was suggested since normalization of uric acid levels using hypouricaemic treatment led to a reduction in the LVM[83, 84]. Several mechanisms could be used to explain the increase in LVM due to hyperuricaemia, including the systemic inflammatory response, oxidative stress [85, 86], activity of the renin angiotensin aldosterone system [87], endothelial dysfunction [88] and the expression of endothelin-1 in cardiac fibroblasts that promotes interstitial fibrosis in myocardium [89]. Furthermore, some indirect effects of hyperuricaemia, such as increased BP, a parallel decrease in glomerular filtration rate, deterioration in adhesion and platelet aggregation, and increased aortic stiffness, could further contribute to the development of LVH [90].

Finally, this study found a higher AI in hypertensive participants with LVH than in those without LVH, which suggests an increase risk of coronary events. This aligns with a previous study that established that LVH is a risk factor for coronary heart disease mortality [91].

Study limitations

Our study must be interpreted within the context of its potential limitations and strengths. First, echocardiographic measurements are prone to measurement errors as a result of signal noise, acoustic artefacts, and angle dependency. In addition, it is important to keep in mind the intraobserver variability of transthoracic 2D echocardiography, which is not as good as the real-time 3D technique [28, 92]; however, in the present study, echocardiography was performed by an experienced cardiologist with post-graduate training in cardiac imaging. Second, the case-control design we used meant we could not truly assess cause-effect relationships. Third, the in-hospital and monocentric desing makes it risky to extrapolate the results to all sub-Saharan Black hypertensive patients. Our study covers a gap, in that, to the best of our knowledge, this is the first description of the association between IR and LVH in Black sub-Saharan African hypertensive patients.

Conclusions

Our results showed direct and significant associations between the duration of hypertension, BMI, insulinaemia and HOMA-IR and LVM. IR and obesity emerged as independent determinants of LVH in hypertension. These results might indicate that in addition to haemodynamic factors related to high blood pressure, changes in LVM in hypertensive patients may be mediated by IR. Early detection and effective management of IR should be considered in all hypertensive patients to prevent or delay the
development of LVH and its consequences. In addition, these results should stimulate further research to assess the efficacy and safety of pharmacological and nonpharmacological insulin sensitization measures on IR in hypertensive patients, even non-diabetic patients.

A prospective Black sub-Saharan population-based study with serial imaging remains essential to better understand subclinical LV deterioration over time and to confirm the role of IR in Black sub-Saharan hypertensive patients.

List Of Abbreviations

ABPM= ambulatory blood pressure monitoring

AI=atherogenicity index

BMI= Body mass index

BSA = Body Surface Area

DBP=Diastolic Blood Pressure.

DT= deceleration time

E/A = ratio of peak early and late diastolic flow velocities

E=mitral E wave

HbA1C=glycated haemoglobin

HC=hip circumference

HDL-c=high density lipoprotein

HMOD = hypertension-mediated organ damage

HOMAIR=Homeostatic Model Assessment for Insulin Resistance

HR=Heart rate

HTN=hypertension

IR=insulin resistance.

IVS=interventricular septal thickness

LAA=left atrium area

LDL-c=low density lipoprotein
LVED=Left ventricular end-diastolic diameter
LVEF=Left ventricular ejection fraction
LVM=left ventricular mass
LVMlbs=left ventricular mass indexed to body surface area
LVMlh=left ventricular mass indexed to height 27
ND HTN=newly-diagnosed hypertension
PWT=Posterior wall thickness
RWT=relative wall thickness
SBP=Systolic Blood Pressure
SPAP=systolic pulmonary arterial pressure
SWT=Sum of wall thickness
T2DM=type 2 diabetes melitus
TC=total cholesterol
WC=Waist circumference

Declarations

Ethics approval and consent to participate: Ethics approval and consent to participate the study was approved by the research ethics committee at Public health school of Kinshasa. All participants provided informed consent.

Consent for publication: Not applicable.

Availability of data and materials: Because consent given by study participants did not include data sharing with third parties, anonymized data can be made available to investigators for analysis on reasonable request to the corresponding author.

Competing interests

The authors declare that they have no competing interests.

Funding: None.
Authors' contributions

Design and concept of study: Kianu Phanzu Bernard

Acquisition of data: Kianu Phanzu Bernard

Manuscript draft: Kianu Phanzu Bernard

Supervision: Kintoki Vita Eleuthère, Longo-Mbenza Benjamin, M’Buyamba-Kabangu Jean-René

Statistical analysis: Nkodila Natuhoyila Aliocha

All authors read and approved the final manuscript.

Acknowledgements

We would gratefully acknowledge Dr Rodolph Amhed, Managing Director of the Centre Médic de Kinshasa for granting us permission to conduct this study in CMK;

References

1. Bigazzi R, Bianchi S, Buoncristiani E, Campese VM. Increased cardiovascular events in hypertensive patients with insulin resistance: a 13-year follow-up. Nutr Metab Cardiovasc Dis. 2008;18:314-9.

2. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021-4.

3. Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98:2133-223.

4. Shen SW, Reaven GM, Farquhar JW. Comparison of impedance to insulin-mediated glucose uptake in normal subjects and in subjects with latent diabetes. J Clin Invest. 1970;49:2151-60.

5. Ginsberg H, Kimerling G, Olefsky JM, Reaven GM. Demonstration of insulin resistance in untreated adult onset diabetic subjects with fasting hyperglycemia. J Clin Invest. 1975;55:454-1.

6. Olefsky J, Farquhar JW, Reaven G. Relationship between fasting plasma insulin level and resistance to insulin-mediated glucose uptake in normal and diabetic subjects. Diabetes. 1973;22:507-13.

7. Fuh MM, Shieh SM, Wu DA, Chen YD, Reaven GM. Abnormalities of carbohydrate and lipid metabolism in patients with hypertension. Arch Intern Med. 1987;147:1035-8.

8. Zavaroni I, Coruzzi P, Bonini L, Mossini GL, Musiari L, Gasparini P, et al. Association between salt sensitivity and insulin concentrations in patients with hypertension. Am J Hypertens. 1995;8:855-8.

9. Reaven GM, Lithell H, Landsberg L. Hypertension and associated metabolic abnormalities—the role of insulin resistance and the sympathoadrenal system. N Engl J Med. 1996;334:374-81.

10. Abbasi F, McLaughlin T, Lamendola C, Lipinska I, Tofler G, Reaven GM. Comparison of plasminogen activator inhibitor-1 concentration in insulin-resistant versus insulin-sensitive healthy women.
11. Facchini F, Chen YD, Hollenbeck CB, Reaven GM. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. JAMA. 1991;266:3008-11.

12. Chen YD, Swami S, Skowronski R, Coulston A, Reaven GM. Differences in postprandial lipemia between patients with normal glucose tolerance and noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1993;76:172-7.

13. Reaven GM, Lerner RL, Stern MP, Farquhar JW. Role of insulin in endogenous hypertriglyceridemia. J Clin Invest. 1967;46:1756-7.

14. Golay A, Zech L, Shi MZ, Chiou YA, Reaven GM, Chen YD. High density lipoprotein (HDL) metabolism in noninsulin-dependent diabetes mellitus: measurement of HDL turnover using tritiated HDL. J Clin Endocrinol Metab. 1987;65:512-8.

15. Reaven GM, Chen YD, Jeppesen J, Maheux P, Krauss RM. Insulin resistance and hyperinsulinemia in individuals with small, dense low density lipoprotein particles. J Clin Invest. 1993;92:141-6.

16. Stewart MH, Lavie CJ, Shah S, Englert J, Gilliland Y, Qamruddin S, et al. Prognostic implications of left ventricular hypertrophy. Prog Cardiovasc Dis. 2018;61:446-55.

17. Bombelli M, Facchetti R, Carugo S, Madotto F, Arenare F, Quarti-Trevano F, et al. Left ventricular hypertrophy increases cardiovascular risk independently of in-office and out-of-office blood pressure values. J Hypertens. 2009;27:2458-64.

18. Gardin JM, McClelland R, Kitzman D, Lima JA, Bommer W, Klopfenstein HS, et al. M-mode echocardiographic predictors of six- to seven-year incidence of coronary heart disease, stroke, congestive heart failure, and mortality in an elderly cohort (the Cardiovascular Health Study). Am J Cardiol. 2001;87:1051-7.

19. Desai CS, Bartz TM, Gottdiener JS, Lloyd-Jones DM, Gardin JM. Usefulness of left ventricular mass and geometry for determining 10-year prediction of cardiovascular disease in adults aged >65 years (from the cardiovascular health study). Am J Cardiol. 2016;118:684-90.

20. Yu W, Chen C, Fu Y, Wang X, Wang W. Insulin signaling: a possible pathogenesis of cardiac hypertrophy. Cardiovasc Ther. 2010;28:101-5.

21. Sharma P, Middelberg RP, Andrew T, Johnson MR, Christley H, Brown MJ. Heritability of left ventricular mass in a large cohort of twins. J Hypertens. 2006;24:321-4.

22. Chien KL, Hsu HC, Su TC, Chen MF, Lee YT. Heritability and major gene effects on left ventricular mass in the Chinese population: a family study. BMC Cardiovasc Disord. 2006;6:37.

23. Harshfield GA, Grim CE, Hwang C, Savage DD, Anderson SJ. Genetic and environmental influences on echocardiographically determined left ventricular mass in Black twins. Am J Hypertens. 1990;3:538-43.

24. Lorell BH, Carabello BA. Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation. 2000;102:470-9.
25. Devereux RB, Roman MJ, Paranicas M, O'Grady MJ, Lee ET, Welty TK, et al. Impact of diabetes on cardiac structure and function: the strong heart study. Circulation. 2000;101:2271-6.

26. Ilercil A, Devereux RB, Roman MJ, Paranicas M, O'Grady M J, Welty TK, et al. Relationship of impaired glucose tolerance to left ventricular structure and function: the strong heart study. Am Heart J. 2001;141:992-8.

27. Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition. 1989;5:303-11.

28. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16:233-70.

29. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF, 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American society of echocardiography and the European association of cardiovascular imaging. J Am Soc Echocardiogr. 2016;29:277-314.

30. Chau JY, Grunseit AC, Chey T, Stamatakis E, Brown WJ, Matthews CE, et al. Daily sitting time and all-cause mortality: a meta-analysis. PLoS One. 2013;8:e80000.

31. Ryan H, Trosclair A, Gfroerer J. Adult current smoking: differences in definitions and prevalence estimates–NHIS and NSDUH, 2008. J Environ Public Health. 2012;2012:918368.

32. Moos RH, Schutte KK, Brennan PL, Moos BS. Older adults’ alcohol consumption and late-life drinking problems: a 20-year perspective. Addiction. 2009;104:293-302.

33. GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13-27.

34. O'Brien E, White WB, Parati G, Dolan E. Ambulatory blood pressure monitoring in the 21st century. J Clin Hypertens (Greenwich). 2018;20:1108-11.

35. d'Emden MC, Shaw JE, Jones GR, Cheung NW. Guidance concerning the use of glycated haemoglobin (HbA1c) for the diagnosis of diabetes mellitus. Med J Aust. 2015;203:89-90.

36. Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Cuervo M, Goni L, Martinez JA. Interplay of an obesity-based genetic risk score with dietary and endocrine factors on insulin resistance. Nutrients. 2019;12:33.

37. Wu L, Parhofer KG. Diabetic dyslipidemia. Metabolism. 2014;63:1469-79.

38. Elshazly MB, Nicholls SJ, Nissen SE, St John J, Martin SS, Jones SR, et al. Implications of total to high-density lipoprotein cholesterol ratio discordance with alternative lipid parameters for coronary atheroma progression and cardiovascular events. Am J Cardiol. 2016;118:647-55.

39. Kerola T, Kauppi J, Sares-Jaske L, Anttonen O, Juntila MJ, Huikuri HV, et al. Long-term prognostic impact of hyperuricemia in community. Scand J Clin Lab Invest. 2019;79:148-53.

40. Oktay AA, Lavie CJ, Milani RV, Ventura HO, Gilliland YE, Shah S, et al. Current perspectives on left ventricular geometry in systemic hypertension. Prog Cardiovasc Dis. 2016;59:235-46.
41. Galderisi M, Cosyns B, Edvardsen T, Cardim N, Delgado V, Di Salvo G, et al. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2017;18:1301-10.

42. Nagueh SF. Left ventricular diastolic function: understanding pathophysiology, diagnosis, and prognosis with echocardiography. JACC Cardiovasc Imaging. 2020;13:228-44.

43. Sharifov OF, Schiros CG, Aban I, Denney TS, Gupta H. Diagnostic accuracy of tissue doppler index e/e’ for evaluating left ventricular filling pressure and diastolic dysfunction/heart failure with preserved ejection fraction: a systematic review and meta-analysis. J Am Heart Assoc. 2016;5:e002530.

44. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1-39.

45. Costa CH, Batista MC, Moises VA, Kohlmann NB, Ribeiro AB, Zanella MT. Serum insulin levels, 24-hour blood pressure profile, and left ventricular mass in nonobese hypertensive patients. Hypertension. 1995;26:1085-8.

46. Galvan AQ, Galetta F, Natali A, Muscelli E, Sironi AM, Cini G, et al. Insulin resistance and hyperinsulinemia: no independent relation to left ventricular mass in humans. Circulation. 2000;102:2233-8.

47. Singh B, Saxena A. Surrogate markers of insulin resistance: a review. World J Diabetes. 2010;1:36-47.

48. Bonora E, Targher G, Alberiche M, Bonadonna RC, Saggiani F, Zenere MB, et al. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care. 2000;23:57-63.

49. On'kin J, Longo-Mbenza B, Tchokonte-Nana V, Okwe AN, Kabangu NK. Hyperbolic relation between beta-cell function and insulin sensitivity for type 2 diabetes mellitus, malaria, influenza, Helicobacter pylori, Chlamydia pneumoniae, and hepatitis C virus infection-induced inflammation/oxidative stress and temporary insulin resistance in Central Africans. Turk J Med Sci. 2017;47:1834-41.

50. Vardeny O, Gupta DK, Claggett B, Burke S, Shah A, Loehr L, et al. Insulin resistance and incident heart failure the ARIC study (Atherosclerosis Risk in Communities). JACC Heart Fail. 2013;1:531-6.

51. Owei I, Umekwe N, Provo C, Wan J, Dagogo-Jack S. Insulin-sensitive and insulin-resistant obese and non-obese phenotypes: role in prediction of incident pre-diabetes in a longitudinal biracial cohort. BMJ Open Diabetes Res Care. 2017;5:e000415.

52. Yamada C, Mitsuhashi T, Hiratsuka N, Inabe F, Araida N, Takahashi E. Optimal reference interval for homeostasis model assessment of insulin resistance in a Japanese population. J Diabetes Investig. 2011;2:373-6.
53. Singh Y, Garg MK, Tandon N, Marwaha RK. A study of insulin resistance by HOMA-IR and its cut-off value to identify metabolic syndrome in urban Indian adolescents. J Clin Res Pediatr Endocrinol. 2013;5:245-51.

54. Sasson Z, Rasooly Y, Bhesania T, Rasooly I. Insulin resistance is an important determinant of left ventricular mass in the obese. Circulation. 1993;88:1431-6.

55. Lind L, Andersson PE, Andren B, Hanni A, Lithell HO. Left ventricular hypertrophy in hypertension is associated with the insulin resistance metabolic syndrome. J Hypertens. 1995;13:433-8.

56. Cauwenberghs N, Knez J, Thijs L, Haddad F, Vanassche T, Yang WY, et al. Relation of insulin resistance to longitudinal changes in left ventricular structure and function in a general population. J Am Heart Assoc. 2018;7:e008315.

57. Nwabuo CC, Vasan RS. Pathophysiology of hypertensive heart disease: beyond left ventricular hypertrophy. Curr Hypertens Rep. 2020;22:11.

58. Sato A, Tarnow L, Nielsen FS, Knudsen E, Parving HH. Left ventricular hypertrophy in normoalbuminuric type 2 diabetic patients not taking antihypertensive treatment. QJM. 2005;98:879-84.

59. Santra S, Basu AK, Roychowdhury P, Banerjee R, Singhania P, Singh S, et al. Comparison of left ventricular mass in normotensive type 2 diabetes mellitus patients with that in the nondiabetic population. J Cardiovasc Dis Res. 2011;2:50-6.

60. Velagaleti RS, Gona P, Chuang ML, Salton CJ, Fox CS, Blease SJ, et al. Relations of insulin resistance and glycemic abnormalities to cardiovascular magnetic resonance measures of cardiac structure and function: the Framingham Heart Study. Circ Cardiovasc Imaging. 2010;3:257-63.

61. Yilmaz S, Canpolat U, Aydogdu S, Abboud HE. Diabetic cardiomyopathy; summary of 41 years. Korean Circ J. 2015;45:266-72.

62. Letonja M, Petrovic D. Is diabetic cardiomyopathy a specific entity? World J Cardiol. 2014;6:8-13.

63. Lepira FB, Kayembe PK, M’Buyamba-Kabangu JR, Nseka MN. Clinical correlates of left ventricular hypertrophy in Black patients with arterial hypertension. Cardiovasc J S Afr. 2006;17:7-11.

64. Silbiger JJ. Pathophysiology and echocardiographic diagnosis of left ventricular diastolic dysfunction. J Am Soc Echocardiogr. 2019;32:216-32.

65. Devereux RB, de Simone G, Palmieri V, Oberman A, Hopkins P, Kitzman DW, et al. Relation of insulin to left ventricular geometry and function in African American and white hypertensive adults: the HyperGEN study. Am J Hypertens. 2002;15:1029-35.

66. Olszanecka A, Dragan A, Kawecka-Jaszcz K, Fedak D, Czarnecka D. Relationships of insulin-like growth factor-1, its binding proteins, and cardiometabolic risk in hypertensive perimenopausal women. Metabolism. 2017;69:96-106.

67. Lopez B, Gonzalez A, Diez J. Circulating biomarkers of collagen metabolism in cardiac diseases. Circulation. 2010;121:1645-54.
68. Ihm SH, Youn HJ, Shin DI, Jang SW, Park CS, Kim PJ, et al. Serum carboxy-terminal propeptide of type I procollagen (PIP) is a marker of diastolic dysfunction in patients with early type 2 diabetes mellitus. Int J Cardiol. 2007;122:e36-8.

69. Wachtell K, Smith G, Gerdts E, Dahlof B, Nieminen MS, Papademetriou V, et al. Left ventricular filling patterns in patients with systemic hypertension and left ventricular hypertrophy (the LIFE study). Losartan intervention for endpoint. Am J Cardiol. 2000;85:466-72.

70. Spinale FG. Bioactive peptide signaling within the myocardial interstitium and the matrix metalloproteinases. Circ Res. 2002;91:1082-4.

71. Lahera V, de Las Heras N, Lopez-Farre A, Manucha W, Ferder L. Role of mitochondrial dysfunction in hypertension and obesity. Curr Hypertens Rep. 2017;19:11.

72. El Saiedi SA, Mira MF, Sharaf SA, Al Musadder MM, El Kaffas RMH, AbdelMassih AF, et al. Left ventricular diastolic dysfunction without left ventricular hypertrophy in obese children and adolescents: a Tissue Doppler Imaging and Cardiac Troponin I Study. Cardiol Young. 2018;28:76-84.

73. Solomon SD, Appelbaum E, Manning WJ, Verma A, Berglund T, Lukashevich V, et al. Effect of the direct Renin inhibitor aliskiren, the Angiotensin receptor blocker losartan, or both on left ventricular mass in patients with hypertension and left ventricular hypertrophy. Circulation. 2009;119:530-7.

74. Wachtell K, Bella JN, Rokkedal J, Palmieri V, Papademetriou V, Dahlof B, et al. Change in diastolic left ventricular filling after one year of antihypertensive treatment: the losartan intervention for endpoint reduction in hypertension (LIFE) study. Circulation. 2002;105:1071-6.

75. Gibbs BB, Reis JP, Schelbert EB, Craft LL, Sidney S, Lima J, et al. Sedentary screen time and left ventricular structure and function: the CARDIA study. Med Sci Sports Exerc. 2014;46:276-83.

76. Annis C, Phanzu BK, Sidibe M, El Hattaoui M, Dounia B, Kabangu J-RMb, et al. The influence of ethnicity in the relationship between sedentary screen time and left ventricular mass: insights from the MAG-SALVAGES. World J Cardiovasc Dis. 2017;7:11-23.

77. Fox E, Taylor H, Andrew M, Han H, Mohamed E, Garrison R, et al. Body mass index and blood pressure influences on left ventricular mass and geometry in African Americans: the atherosclerotic risk in communities (ARIC) study. Hypertension. 2004;44:55-60.

78. Avelar E, Cloward TV, Walker JM, Farney RJ, Strong M, Pendleton RC, et al. Left ventricular hypertrophy in severe obesity: interactions among blood pressure, nocturnal hypoxemia, and body mass. Hypertension. 2007;49:34-9.

79. Woodiwiss AJ, Libhaber CD, Majane OH, Libhaber E, Maseko M, Norton GR. Obesity promotes left ventricular concentric rather than eccentric geometric remodeling and hypertrophy independent of blood pressure. Am J Hypertens. 2008;21:1144-51.

80. Grossman W, Paulus WJ. Myocardial stress and hypertrophy: a complex interface between biophysics and cardiac remodeling. J Clin Invest. 2013;123:3701-3.

81. Abel ED, O'Shea KM, Ramasamy R. Insulin resistance: metabolic mechanisms and consequences in the heart. Arterioscler Thromb Vasc Biol. 2012;32:2068-76.
82. Catena C, Colussi G, Capobianco F, Brosolo G, Sechi LA. Uricaemia and left ventricular mass in hypertensive patients. Eur J Clin Invest. 2014;44:972-81.

83. Gingles CR, Symon R, Gandy SJ, Struthers AD, Houston G, MacDonald TM, et al. Allopurinol treatment adversely impacts left ventricular mass regression in patients with well-controlled hypertension. J Hypertens. 2019;37:2481-9.

84. Szwejkowski BR, Gandy SJ, Rekhraj S, Houston JG, Lang CC, Morris AD, et al. Allopurinol reduces left ventricular mass in patients with type 2 diabetes and left ventricular hypertrophy. J Am Coll Cardiol. 2013;62:2284-93.

85. Takimoto E, Kass DA. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension. 2007;49:241-8.

86. Takimoto E, Champion HC, Li M, Ren S, Rodriguez ER, Tavazzi B, et al. Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. J Clin Invest. 2005;115:1221-31.

87. Corry DB, Eslami P, Yamamoto K, Nyby MD, Makino H, Tuck ML. Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system. J Hypertens. 2008;26:269-75.

88. Yu MA, Sanchez-Lozada LG, Johnson RJ, Kang DH. Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J Hypertens. 2010;28:1234-42.

89. Cheng TH, Lin JW, Chao HH, Chen YL, Chen CH, Chan P, et al. Uric acid activates extracellular signal-regulated kinases and thereafter endothelin-1 expression in rat cardiac fibroblasts. Int J Cardiol. 2010;139:42-9.

90. Ramirez-Sandoval JC, Sanchez-Lozada LG, Madero M. Uric acid, vascular stiffness, and chronic kidney disease: is there a link? Blood Purif. 2017;43:189-95.

91. Brown DW, Giles WH, Croft JB. Left ventricular hypertrophy as a predictor of coronary heart disease mortality and the effect of hypertension. Am Heart J. 2000;140:848-56.

92. Mor-Avi V, Sugeng L, Weinert L, MacEneaney P, Caiani EG, Koch R, et al. Fast measurement of left ventricular mass with real-time three-dimensional echocardiography: comparison with magnetic resonance imaging. Circulation. 2004;110:1814-8.