Scheduling on Grid with communication Delay

Difrawi Samouriq, gscholar4@gmail.com
International Institute of Research

Abstract

Parallel processing, the core of High Performance Computing (HPC), was and still the most effective way in improving the speed of computer systems. For the past few years, the substantial developments in the computing power of processors and the network speed have strikingly changed the landscape of HPC. Geography distributed heterogeneous systems can now cooperate and share resources to execute one application. This computing infrastructure is known as computational Grid or Grid Computing. Grid can be viewed as a distributed large-scale cluster computing. From other perspective, it constitutes the major part of Cloud Computing Systems in addition to thin clients and utility computing [1,2, 3]. Hence, Grid computing has attracted many researchers [4]. The interest in Grid computing has gone beyond the paradigm of traditional Grid computing to a Wireless Grid computing [5,6].

Introduction

Parallel processing, the core of High Performance Computing (HPC), was and still the most effective way in improving the speed of computer systems. For the past few years, the substantial developments in the computing power of processors and the network speed have strikingly changed the landscape of HPC. Geography distributed heterogeneous systems can now cooperate and share resources to execute one application. This computing infrastructure is known as computational Grid or Grid Computing. Grid can be viewed as a distributed large-scale cluster computing. From other perspective, it constitutes the major part of Cloud Computing Systems in addition to thin clients and utility computing [1,2, 3]. Hence, Grid computing has attracted many researchers [4]. The interest in Grid computing has gone beyond the paradigm of traditional Grid computing to a Wireless Grid computing [5,6].

One challenging problem in Grids Computing is finding an analytical performance Scheduling model that considers the communication speed and the processing speed at the same time. A well-known tool for this purpose is the stochastic queuing theory [7, 8, 9, 10]. Another important tool is using Divisible Load Theory (DLT)[31]. In principle divisible load theory is a deterministic theory; however, it has been shown that for great instance it is equivalent to Markov Chain Modeling [11].

DLT has demonstrated its effectiveness in scheduling and allocating very large independent tasks on Grid originated from multiple resources [12-14]. This work does not consider the
communication time or consider it negligible, and so it was not included in the analytical model developed. In [36] Communication time is considered; however, the finish time did not have a closed form solution. In [8] communication time is well thought-out but not in dividing the load so the transfer input time of the load was not part of the model.

In this work, we propose an analytical scheduling model for the Grid based on DLT, which takes into considerations the communication time as well as the computation time.

Literature Review

The most important and inherent problem in traditional distributed systems such as loosely coupled parallel systems, massively parallel processors computers(MPP), cluster of workstations(COW) and, of course, in Computational Grid Systems is scheduling. However, scheduling jobs on the Grid is different from that for other systems for one or more of the following reasons: (1) The resources in the Grid are in different autonomous domains, while in other systems you find that resources within a single administrative domain (2). The resources are invariant while in the Grid the computing power available varies over the time. (3) The scheduler in the Grid does not have a single system image as the case for other parallel and distribute systems. The broad definition of the Grid [15] divulges the difficulty of scheduling on Grid if all Grid System characteristics and settings are to be considered; Grid defined in [15] as "A type of parallel and distributed system that enables the sharing, selection, and aggregation of geographically distributed autonomous and heterogeneous resources dynamically at runtime depending on their availability, capability, performance, cost, and users’ quality-of-service requirements". Thus, in literature you find numerous scheduling algorithms and models for the Grid. Those algorithms and models can be categorized in different classes based on which of the Grid computing characteristics are considered. The subsets of the scheduling algorithms in Grids can be classified under one of the following categories:

- Local vs. Global
- Static vs. Dynamic
- Optimal vs. Suboptimal
- Approximate vs. Heuristic
- Distributed vs. Centralized
- Cooperative vs Independent

Obviously from the Grid definition and structure, the Grid scheduling cannot be local it has to be Global. Static scheduling assumes that all the resources available and the tasks to be scheduled are all known at the time we run the scheduling algorithm or model. An example of such algorithms found in [16-20]. Static algorithm is not fault-tolerant. That is, if a machine is not available (malfunction or the link to that machine is broken), we do not have a mechanism do re-distribute the load. To alleviate such problem, some algorithms consider rescheduling mechanisms [21]. The dynamic scheduling handles the situations where the available resources, tasks and the size of the tasks are not available at the time of scheduling. We refer to such scheduling as online scheduling. A good example of such algorithms found in [22]. In case of static mode, one can do an optimal assignment.
Otherwise, we should look for suboptimal solutions. Suboptimal solution can be either approximate or heuristic. Example of Heuristic algorithms can be found in [23]. Centralized schedulers suffer from single point failure problem and low performance under heavy load. Consequently, it is not scalable. If a distributed scheduling mechanism is adopted, the second important question is whether the schedulers reside in different nodes are working together or independently. An example of cooperative algorithm in Grid found in [24].

Another issue to consider in scheduling models is the application nature and objective. The subtasks of some applications are independent and others have some precedence relation. The later requires synchronization of those subtasks in different distributed processors in a Grid [25].

Since scheduling affects drastically the performance of Grids, one can find in the literature many articles discuss scheduling in Grid computing Systems. For example, The Resource CoAllocation scheduling algorithm [27] minimizes the execution time of a task; however, it suffers from high communication overhead. Optimal Resource Constraint (ORC) algorithm [28] and Job schedule Model based on the Grid [29] are also both suffer from high communication delay, though the first algorithm simplifies the allocation process and the later maximizes CPUs utilizations and the throughput. Some algorithms are fault-tolerant [30]; however, jobs have high waiting time. In the most of those algorithms, it is very hard to find optimal criteria. In [25], the computing power consumed by a schedule is set as a criterion of the schedule, and accordingly a performance limit is derived. The algorithm is not realistic since it deals only with coarse-grained applications, which implies that the communication delay is negligible.

Obtaining a closed form solution for the general problem where \(n \) subtasks be assigned to \(N \) geography distributed heterogeneous processors in a Grid such that optimum finish time is achieved talking into considering all dependencies among subtasks and the nature of the Grid is a very complex problem[26].

In this proposal we consider applications of divisible nature. A "divisible" load or Job (we will use Load and Job interchangeable) is a kind of load that is perfectly divisible by any number of available parallel machines (processors). Each fraction of the load can be communicated independently to a Grid (computing parallel machine) and executed independently as well. At the end, the results agglomerated at the originating node. The Divisible Load Theory (DLT) is a well established theory which seeks the optimal finish time of the load by scheduling a fraction of the load to each computing device (processors) in the heterogeneous parallel systems (here is the Grid) such that all subtasks on all the processors stop at the same time. DLT has emerged as a powerful tool to schedule divisible data-intensive applications on all sorts of distributed systems including Grids [31-35].

Recently, they were several attempts to exploit the DLT to model scheduling of arbitrarily divisible load on the Grid. Most of the attempts do not consider the communication time [12-14]. In [8] communication time is well thought-out but not in dividing the load so the transfer input time of the load was not part of the model. The communication and computation time are considered at the same time in [36]. However, the paper does not provide a closed form solution for the minimum finish time. The proposed work is aiming at
alleviating the shortcoming of the previous work. So our objective is to come up with closed form solution for the minimum finish time of executing an arbitrarily divisible application on the Grid taking into considerations the communication time as well as the computation time simultaneously.

Proposed work and Problem Definition

In this proposal we will attempt to model the Grid scheduling problem based on Divisible Load Theory taking into consideration the communication time as well as the computation time. We also consider that the load is available in multiple sources and will be executed in multiple heterogeneous worker nodes in the Grid. The load can be divided into N fractions where N is the number of heterogeneous worker nodes or simply nodes in the Grid. The analytical model should calculate the optimal fraction of the load that has to be assigned to each Node in the Grid such that the optimality criterion (Objective Function) is achieved. Our solution is based on "optimality Principle"[26]. To be more realistic to existing Grid Systems, we assume that the load is available in different sources and can be communicated to any of the N available Nodes. In calculating the optimal fraction of the load to be assigned to each Node (Sink) in the Grid, the heterogeneous speed of the links and the available computing power of the Nodes in Grid are modeled.

At this stage we consider the speed of the links and the speed of the nodes involved in computation of a given job is invariant during the execution period of the job. We believe this is not a realistic assumption though it is acceptable. In the future we plan to extend this work by releasing this constraint.

Methods: The research approach

Since the objective is to come up with a scheduling analytical model and develop a closed form solution that shows the effect of the different parameters of the Grid system on the scheduling performance and on the system performance as well, I will use only the mathematical tools and analysis developed for DTL theory. May be a simulation is needed at later stages to confirm the validity of the analytical results.

References

1. Rajkumar Buyya, Chee Shin Yeo, and Srikumar Venugopal, “Market-Oriented Cloud Computing: Vision, Hype, and Reality for Delivering IT Services as Computing Utilities”, Keynote paper in Proceedings of the 10th IEEE International Conference on High Performance Computing and Communications (HPCC 2008), pp. 5-13, September 25-27, 2008.

2. Rajesh Krishna Panta, Saurabh Bagchi, and Issa M Khalil, “Efficient wireless reprogramming through reduced bandwidth usage and opportunistic sleeping,” Ad Hoc Networks, Vol 7, Issue 1, pp. 42-62, 2009.

3. Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion Stoica and
4. Christian Vecchiola, Suraj Pandey, and Rajkumar Buyya, “High-Performance Cloud Computing: A View of Scientific Applications”, in Proceedings of 10th International symposium on Pervasive Systems, Algorithms and Networks (I-SPAN 2009, IEEE CS Press, USA), pp. 6-14, December 14-16, 2009.

5. Salah Bouktif, Faheem Ahmed, Issa Khalil, and Giuliano Antoniol, “A novel composite model approach to improve software quality prediction,” Information and Software Technology, Vol. 52, Issue 12, pp. 1298-1311, 2010.

6. Ioan Toma, Kashif Iqbal, Dumitru Roman, Thomas Strang, Dieter Fensel, Brahmananda Sapkota, Matthew Moran and Juan Miguel Gomez, “Discovery in grid and web services environments: A survey and evaluation”, Multiagent and Grid Systems, Volume 3, Number 3, pp. 341-352, 2007.

7. Sanjay P. Ahuja and Jack R. Myers, "A Survey on Wireless Grid Computing", The Journal of Supercomputing, Volume 37, Number 1, 3-21, DOI: 10.1007/s11227-006-3845-z, 2006.

8. Issa Khalil, Saurabh Bagchi, Ness Shroff, “Analysis and evaluation of SECOS, a protocol for energy efficient and secure communication in sensor networks,” Ad Hoc Networks, Vol. 5, Issue 3, pp. 360-391, 2007.

9. Sunilkumar S Manvi and Mahantesh N Birje, "Wireless Grid Computing : A Survey", IETE Journal of Education, Volume 50, Issue 3, pp.119-131, 2009.

10. Guozhong Tian, Chuangbai Xiao, Xiao Xu, ChaoQin Gao1, Nuslati and Mardan, “Grid Workflow Scheduling Based on Time Prediction of Queuing Theory”, Proceedings of the 2010 IEEE, International Conference on Information and Automation,PP. 36-39 June 20-23, 2010, Harbin, China.

11. EunJoung Byuna, SungJin Choia, MaengSoon Baikb, “MJSA Markov job scheduler based on availability in desktop grid,” Future Generation Computer Systems, 2007, 23: 616–622.

12. Rajesh Panta, Saurabh Bagchi, Issa Khalil, Luis Montestruque, “Single versus multi-hop wireless reprogramming in sensor networks,” proceedings of the 4th International Conference on Testbeds and research infrastructures for the development of networks & communities (TRIDENTCOM), PP. 34, 2008

13. Yash Patel, John Darlington, “A Novel Stochastic Algorithm For Scheduling QoS-Constrained Workflows In A Web Service-Oriented Grid,” In Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, 2006: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology,2006:185-194.

14. Jia Yu, Rajkumar Buyya and Chen Khong Tham, “Cost-based scheduling of scientific workflow applications on utility grids,” The Journal of System and Software, 2005, 233, 236-242.

15. Saurabh Bagchi, Ness B Shroff, Issa MI Khalil, Rajesh K Panta, Mark D Krasniewski, James V Krogmeier, “Protocol for secure and energy-efficient reprogramming of wireless multi-hop sensor networks,” US patent number 8107397, 2012.
16. Moges, M. and Robertazzi, T.G., Optimal Divisible Load Scheduling and Markov Chain Models, Proceedings of the 2003 Conference on Information Sciences and Systems, The Johns Hopkins University, Baltimore, MD, USA, 2003.

17. Issa M Khalil, Abdallah Khreishah, Salah Bouktif, Ayaz Ahmad, “Security concerns in cloud computing,” International Conference on Information Technology: New Generations (ITNG), pp. 411-416, 2013.

18. Wong, H.M., Yu, D., Veeravalli, B. and Robertazzi, T.G., "Data Intensive Grid Scheduling: Multiple Sources with Capacity Constraints," Proc. of the IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS 2003), Nov. 2003

19. Issa M Khalil, “ELMO: energy aware local monitoring in sensor networks,” IEEE Transactions on Dependable and Secure Computing, Vol 8, Issue 4, pp. 523-536, 2011.

20. M. A. Moges, M. A. and Robertazzi, T. G., "Grid Scheduling Divisible Loads from Two Sources," Computers and Mathematics with Applications, vol. 58, 2009, pp. 1081-1092.

21. Viswanathan, S., Veeravalli, B., and Robertazzi, T. G., "Resource Aware Distributed Scheduling Strategies for Large-Scale Computational Cluster/Grid Systems," IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 10, Oct. 2007, pp. 1450-1461.

22. M. Baker, R. Buyya and D. Laforenza, Grids and Grid Technologies for Wide-area Distributed Computing, in J. of Software-Practice & Experience, Vol. 32, No.15, pp:1437-1466, December 2002

23. H. Casanova, A. Legrand, D. Zagorodnov and F. Berman, Heuristics for Scheduling Parameter Sweep Applications in Grid Environments, in Proc. of the 9th heterogeneous Computing Workshop (HCW'00), pp. 349-363, Cancun, Mexico, May 2000.

24. Issa Khalil “MCC: Mitigating colluding collision attacks in wireless sensor networks,” IEEE Global Telecommunications Conference (GLOBECOM 2010), pp. 1-5, 2010.

25. H. Chen and M. Maheswaran, Distributed Dynamic Scheduling of Composite Tasks on Grid Computing Systems, in Proc. of the 16th International Parallel and Distributed Processing Symposium (IPDPS 2002), pp. 88-97, Fort Lauderdale, Florida USA,April 2002.

26. A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi, C. Kesselman, P. Kunszt and M. Ripeanu, Giggle: A Framework for Constructing Scalable Replica Location Services, in Proc. of the ACM/IEEE Conference on Supercomputing, pp.1-17, Baltimore, Maryland USA, November 2002.

27. K. Kurowski, B. Ludwiczak, J. Nabrzyski, A. Oleksiak and J. Pukacki, Improving Grid Level Throughput Using Job Migration And Rescheduling, Scientific Programming vol.12, No.4, pp. 263-273, 2004.

28. Issa Khalil “MIMI: Mitigating Packet Misrouting in Locally-Monitored Multi-hop Wireless Ad Hoc Networks” Global Telecommunications Conference (GLOBECOM 2008), pp. 1-5, 2008.

29. A. Takefusa, S. Matsuoka, H. Casanova and F. Berman, A Study of Deadline Scheduling for Client-Server Systems on the Computational Grid, in Proc. of the 10th
IEEE International Symposium on High Performance Distributed Computing (HPDC-10'01), pp. 406–415, San Francisco, California USA, August 2001.

30. K. Cooper, A. Dasgupta, K. Kennedy, C. Koelbel, A. Mandal, G. Marin, M. Mazina, J. Mellor-Crummey, F. Berman, H. Casanova, A. Chien, H. Dail, X. Liu, A. Olugbile, O. Sievert, H. Xia, L. Johnson, B. Liu, M. Patel, D. Reed, W. Deng, C. Mendes, Z. Shi, A. Yarkhan and J. Dongarra, New Grid Scheduling and Rescheduling Methods in the GrADS Project, in Proc. of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04), pp.199–206, Santa Fe, New Mexico USA, April 2004.

31. D. Wright, Cheap Cycles from the Desktop to the Dedicated Cluster: combining Opportunistic and Dedicated Scheduling with Condor, in Proc. of Conference on Linux Clusters: the HPC Revolution, Champaign Urbana, IL USA, June 2001.

32. L He, S.A. Jarvis, D.P. Spooner, D. Bacigalupo, G. Tan and G.R. Nudd, Mapping DAG-based Applications to Multiclusters with Background Workload, in Proc. Of IEEE International Symposium on Cluster Computing and the Grid (CCGrid’05), pp.855-862, May 2005.

33. Issa Khalil, Saurabh Bagchi, “SECOS: Key Management for Scalable and Energy Efficient Crypto On Sensors,” Proc. IEEE Dependable Systems & Networks (DSN), Italy, June, 2003.

34. H. Shan, L. Oliker, R. Biswas, and W. Smith, Scheduling in Heterogeneous Grid Environments: The Effects of Data Migration, in Proc. of ADCOM2004: International Conference on Advanced Computing and Communication, Hmedabad Gujarat, India,December 2004.

35. N Fujimoto and K Hagihara, Near-optimal dynamic task scheduling of precedence constrained coarse-grained tasks onto a computational grid, Second International Symposium on Parallel and Distributed Computing 2003 Proceedings, pp. 80-87, 2003.

36. Bataineh, S., “Divisible Load Distribution in a Network of Processors” Journal of Interconnection Networks (JOIN), Vol. 9, pp. 31-51, 2008.

37. Diana Moise , Izabela Moise , Florin Pop, Valentin Cristea, “Resource CoAllocation for Scheduling Tasks with Dependencies, in Grid”, The Second International Workshop on High Performance in Grid Middleware HiPerGRID 2008.

38. K.Somasundaram, S.Radhakrishnan, “Node Allocation In Grid Computing Using Optimal Resource Constraint (ORC) Scheduling,” VOL.8 No.6, IJCSNS International Journal of Computer Science and Network Security, June 2008.

39. Homer Wu, Chong-Yen Lee, Wuu-Yee chen, Tsang Lee, “A Job schedule Model Based on Grid Environment”, IEEE Proceeding of the First International Conference on Complex, Intelligent and Software Intensive System, CISIS’07 2007.

40. Ms.P.Muthuchelvi, Dr.V.Ramachandran, “ABRMAS: Agent Based Resource Management with Alternate Solution,” IEEE, The Sixth International Conference on Grid and Cooperative Computing, GCC 2007. (Check it on the Internet)

41. Divisible Load Theory publication list at the author’s web page at www.ece.sunysb.edu.

42. M. Drozdowski. Scheduling for Parallel Processing. Springer, New York, USA, 2009.

43. H. Casanova, A. Legrand and Y. Robert. Parallel Algorithms. CRC Press, FL USA, 2009.
44. T.G. Robertazzi. Networks and Grids: Technology and Theory. Springer, New York, 2007.

45. Amin Shokripour and Mohamed Othman, Survey on Divisible Load Theory and its Applications, International Conference on Information Management and Engineering, pp. 300-304, 2009.

46. Monir Abdullah, Mohamed Othman, Hamidah Ibrahim and Shamala Subramaniam, Closed form Solution for Scheduling Arbitrarily Divisible Load Model in Data Grid Applications: Multiple Sources, American Journal of Applied Sciences 6 (4): 626-630, 2009.

47. Issa Khalil, Abdallah Khreishah, Muhammad Azeem, “Consolidated Identity Management System for secure mobile cloud computing,” Computer Networks, Volume 65, pp. 99-110, 2014.