Head-to-head comparison of ^{68}GaGa-P16-093 and ^{68}GaGa-PSMA-617 in dynamic PET/CT evaluation of the same group of recurrent prostate cancer patients

Guochang Wang¹ · Haiyan Hong² · Jie Zang¹ · Qingxing Liu¹ · Yuanyuan Jiang¹ · Xirong Fan³ · Zhaohui Zhu¹ · Lin Zhu² · Hank F. Kung⁴

Abstract

Purpose This study was prospectively designed to evaluate the early dynamic organ distribution and tumor detection capability of ^{68}GaGa-P16-093, which was compared with ^{68}GaGa-PSMA-617 in the same group of recurrent prostate cancer patients.

Methods Twenty patients with recurrent prostate cancer were enrolled. In 2 consecutive days, each patient underwent a 60-min dynamic PET/CT scan after intravenous administration of 148–185 MBq (4–5 mCi) ^{68}GaGa-P16-093 and ^{68}GaGa-PSMA-617, respectively. Following a low-dose CT scan, serial dynamic PET scans were performed from head to proximal thigh at 9 time points (30 s/bed at 4, 7, 10, 13, and 16 min; 1 min/bed at 20, 30, and 45 min; and 2 min/bed at 60 min). Standardized uptake values were measured for semi-quantitative comparison.

Results ^{68}GaGa-P16-093 PET/CT revealed a significantly higher tumor uptake at 4 min (SUVmax 7.88 ± 5.26 vs. 6.01 ± 3.88, $P < 0.001$), less blood pool retention at 4 min (SUVmean 5.12 ± 1.16 vs. 6.14 ± 0.98, $P < 0.001$), and lower bladder accumulation at 60 min (SUVmean 31.33 ± 27.47 vs. 48.74 ± 34.01, $P = 0.042$) than ^{68}GaGa-PSMA-617 scan. Significantly higher ^{68}GaGa-P16-093 uptakes were also observed in the parotid gland, liver, spleen, and kidney. Besides, ^{68}GaGa-P16-093 exhibited a better detectability of tumor than ^{68}GaGa-PSMA-617 (366 vs. 321, $P = 0.009$).

Conclusions ^{68}GaGa-P16-093 showed advantages over ^{68}GaGa-PSMA-617 with higher tumor uptakes, tumor-to-blood pool ratio and detection capability, less blood pool, and bladder accumulation in recurrent prostate cancer patients.

Trial registration: ^{68}GaGa-P16-093 and ^{68}GaGa-PSMA-617 PET/CT Imaging in the Same Group of Prostate Cancer Patients (NCT04796467, Registered 12 March 2021, retrospectively registered)

URL of registry: https://clinicaltrials.gov/ct2/show/NCT04796467

Keywords ^{68}GaGa-P16-093 · ^{68}GaGa-PSMA-617 · Dynamic PET/CT · Prostate cancer

Introduction

Prostate cancer (PCa) is one of the most common male malignancies and a leading cause of death [1]. Early diagnosis and accurate staging are of paramount significances to the treatment and prognosis of PCa, yet there are persistent major challenges for all detection modalities. Blood prostate-specific antigen (PSA) test, digital rectal examination (DRE), and transrectal ultrasound (TRUS) are classic methods to monitor PCa, which are also the most common approaches for clinical screening of PCa by far. Abnormal DRE is an indication for biopsy, but as an independent variable, it is reported that PSA value is a better predictor of PCa than either DRE or TRUS [2]. Nonetheless, all the above
methods have unsurmountable limitations in tumor exact localization, staging of disease, distinguishing between chronic prostatitis and PCa, and so on. Over the past years, multi-parametric MR imaging (mpMRI) has proven to be a valuable imaging tool to avoid unnecessary prostate biopsies, which can better confirm the integrity of the prostate capsule and tumor invasion into tissues and organs around the prostate, through T1, T2-weighted images, DWI, DCE, and other functional sequences [3]. However, mpMRI also exhibited some drawbacks as its specificity for high-grade PCa is only moderate (37%) and limited tumor staging, which are critical for clinical decision-making [4, 5].

In the past few years, PET imaging on prostate cancer patients has been a revolutionary advance due to the development of multitudinous radiopharmaceuticals. Prostate-specific membrane antigen (PSMA), as known as folate hydrolase I or glutamate carboxypeptidase II, is regarded as the best-established target antigen in PCa, as it is highly and specifically expressed on the cells of prostatic adenocarcinoma. Besides, the level of PSMA expression on PCa cells further increases with tumor dedifferentiation and in metastatic castration-resistant prostate cancer (mCRPC) [6–9]. In the current decade, PSMA-targeted PET/CT has proven to be a promising imaging modality with high sensitivity and specificity in detecting PCa and its metastases, even at a very low serum PSA level [10–12]. Currently, quite a few of radiolabeled PSMA probes have been developed, including [68 Ga]Ga-PSMA-11 and [68 Ga]Ga-PSMA-617, which are the most widely used as imaging agents [13]. [68 Ga]Ga-P16-093, a modified radiotracer based on [68 Ga]Ga-PSMA-11, targets cellular PSMA with the urea fragment of a conjugate that employs the HBED-CC chelator for labeling with 68Ga(III) [14, 15]. The HBED-based chelating ligand binds the 68Ga3+ ion with high affinity (K_a nearly 10^39) in a pseudo-octahedral N_2O_4 coordination sphere by its two phenolate O, two amino-acetate carboxylate O, and two amino N donor atoms [15–19], as shown in Fig. 1. Mark A. Green et al. [15] had demonstrated that

![Fig. 1 Structural formula of the [68 Ga]Ga-PSMA-11 (a), [68 Ga]Ga-P16-093 (b), and [68 Ga]Ga-PSMA-617 (c) radiopharmaceuticals](image-url)
both $^{68}\text{Ga}\text{Ga-P16-093}$ and $^{68}\text{Ga}\text{Ga-PSMA-11}$ performed equally well and showed high accuracy in detection of the PCa patients with biochemical recurrence (BCR). Moreover, $^{68}\text{Ga}\text{Ga-P16-093}$ also revealed less urinary excretion than $^{68}\text{Ga}\text{Ga-PSMA-11}$, which may achieve a better detectability of tumor lesions close to the urinary bladder.

Herein, with the purpose of broadening the existing knowledge on $^{68}\text{Ga}\text{Ga-P16-093}$ PET/CT in diagnosis and staging of PCa, we conducted this study to evaluate the early kinetics and compare the detectability of $^{68}\text{Ga}\text{Ga-P16-093}$ with $^{68}\text{Ga}\text{Ga-PSMA-617}$ in the same group of recurrent PCa patients by means of multiparametric PET/CT consisting of a combination of a dynamic and whole-body PET/CT protocol.

Materials and methods

This matched-pair study was approved by the Institutional Review Board of Peking Union Medical College Hospital and registered at clinicaltrials.gov (NCT04796467). Written informed consent was obtained from all subjects. Patients with recurrent prostate cancer were prospectively recruited to this study.

Synthesis of $^{68}\text{Ga}\text{Ga-P16-093}$ and $^{68}\text{Ga}\text{Ga-PSMA-617}$

The P16-093 molecule was synthesized as previously described [14]. $^{68}\text{GaCl}_3$ was eluted from a ^{68}Ge/68Ga generator produced by Eckert & Ziegler using 5 mL of 0.1 M ultrapure hydrochloric acid. The eluted $^{68}\text{GaCl}_3$ solution was added to a reaction vial, which contained P16-093 (15 μg) and NaOAc·3H$_2$O (68 mg) as a lyophilized powder. The reaction mixture was heated for 5 min at 95°C. Subsequently, the final product was diluted with saline and sterilized by filtered through a 0.2-μm sterile vented PVDF filter into a sterile septum-capped vial.

Preparation of PSMA-617 and 68Ga labeling was performed as described previously [20].

The quality control of the labeled product was conducted by ITLC assessment. Final radiochemical purities over 95% for both $^{68}\text{Ga}\text{Ga-P16-093}$ and $^{68}\text{Ga}\text{Ga-PSMA-617}$ were accepted for intravenous injection.

PET/CT imaging acquisition and analysis

In 2 consecutive days, patients were instructed to drink 500 mL of water within 2 h prior to acquisition and to void immediately before the start of scan. Each patient underwent a 60-min dynamic PET/CT (dPET/CT) acquisition by using a Biograph 64 Truepoint TrueV system (Siemens Medical Solutions, Erlangen, Germany) after intravenous injection of 148–185 MBq (4–5 mCi) of $^{68}\text{Ga}\text{Ga-P16-093}$ and $^{68}\text{Ga}\text{Ga-PSMA-617}$, respectively. The dPET/CT scan started with a low-dose CT scan (120 kV, 35 mA, 512×512 matrix, 3-mm layer, and 70 cm field of view) for attenuation correction and anatomical localization from head to proximal thigh. Then PET scan of each patient was performed at 9 time points (30 s/bed at 4, 7, 10, 13, and 16 min; 1 min/bed at 20, 30, and 45 min; and 2 min/bed at 60 min), with the arms placed on the sides of body. The acquired data were reconstructed using ordered-subset expectation maximization (Siemens Biograph 64: 2 iterations, 8 subsets, gaussian filter of 5 mm in full width at half maximum, 168×168 image size).

The mean standardized uptake value (SUVmean) of selected normal tissues was established by placing 3D volumes of interest (VOIs) on the right side of the parotid gland, blood pool (at the arcus aortae level), the right liver lobe, the spleen, the left kidney, and the bladder, respectively. As for prostate cancer lesions, $^{68}\text{Ga}\text{Ga-P16-093}$ and $^{68}\text{Ga}\text{Ga-PSMA-617}$ scans were interpreted independently by 2 experienced nuclear medicine physicians blinded to all relevant clinical information; any focal accumulation that was higher than surrounding background activity and did not match for physiologic tracer uptake was interpreted as PCa lesion. The calculation of maximum standardized uptake value (SUVmax) in PCa lesion was based on body weight, using a spheric VOI that can cover the tumor and avoided high physiological uptakes of surrounding tissues.

Statistical analysis

All statistical analyses were performed using SPSS (version 26.0; IBM Corp, for Windows [Microsoft]). All quantitative data were expressed as mean ± standard deviation (SD). For comparison of uptake values, two-sided paired t-test and Spearman correlation coefficient analysis were used. The results were considered significant when $P < 0.05$.

Results

Characteristics of enrolled patients

A total of 20 patients with recurrent PCa after therapies were enrolled into the study from October 2020 to May 2021, including 6 cases of BCR and 14 cases of mCRPC; the average age of them was 67.8 ± 6.6 years (range 56–83, median 68.5), with a mean Gleason score of 8.5 ± 1.1 (range 7–10, median 9) and a mean PSA level of 36.5 ± 42.0 ng/mL (range 0.2–138.3, median 19.5 ng/mL). The patients’ characteristics are summarized in Table 1. There were no adverse events and clinically evident pharmacological
reactions associated with the injection of 68GaGa-P16-093 and 68GaGa-PSMA-617.

Radionuclide distribution of normal tissues

We calculated the SUV values of specific tissues, in which PSMA ligands showed normally high uptakes (parotid gland, blood pool, liver, spleen, kidney, and bladder). The distribution of the two tracers in body was similar in several aspects, but there were also clearly observable differences (Fig. 2).

Firstly, time-activity curves (TACs) derived from dPET/CT demonstrated that 68GaGa-P16-093 was cleared faster from blood pool than 68GaGa-PSMA-617. It was determined that 68GaGa-P16-093 had a lower initial activity and a more pronounced clearance than 68GaGa-PSMA-617 from 4 to 60 min (two-sided paired t tests, SUVmean 5.12 ± 1.16 vs. 6.14 ± 0.98 at 4 min, $P < 0.001$). Secondly, 68GaGa-P16-093 displayed a more distinct activity in kidneys than 68GaGa-PSMA-617 over time (two-sided paired t tests, SUVmean 8.88 ± 1.79 vs. 7.51 ± 1.39 at 4 min, $P < 0.001$); Bladder accumulation was consistently lower for 68GaGa-P16-093 than 68GaGa-PSMA-617, with the difference being statistically significant not until the 60 min (two-sided paired t tests, SUVmean 31.33 ± 27.47 vs. 48.74 ± 34.01 at 60 min, $P = 0.042$). Thirdly, the liver and spleen also showed physiological uptakes of both two radiopharmaceuticals and the SUV values of 68GaGa-P16-093 were significantly higher than 68GaGa-PSMA-617 (two-sided paired t tests, liver: SUVmean 5.74 ± 1.11 vs. 4.38 ± 0.80 at 4 min, $P < 0.001$; spleen: SUVmean 5.62 ± 1.07 vs. 4.18 ± 0.71 at 4 min, $P < 0.001$). However, their metabolic profiles were different. 68GaGa-P16-093 PET/CT exhibited a gradually upward trend of SUVmean in the liver and spleen over time, but 68GaGa-PSMA-617 PET/CT showed a stable, lower tracer accumulation. Finally, the SUVmean of parotid gland occurred marked increases in the respective VOIs overtime and 68GaGa-P16-093 PET/CT showed a significantly higher uptake than 68GaGa-PSMA-617 PET/CT (two-sided paired t tests, SUVmean 3.68 ± 1.02 vs. 2.95 ± 0.81 at 4 min, $P < 0.001$). Figure 3a–f exhibit the resulting TACs based on the mean values and the standard deviation of all evaluated data derived from blood pool, bladder, kidney, parotid gland, liver, and spleen, respectively.

Uptake values of tumor lesions and detection capability

According to dynamic imaging series, tracer uptakes of PCa lesions started at a very early time point, visible positive at the 4 min, with intensity continually increasing until the end of the dPET/CT. 68GaGa-P16-093 PET/

Table 1 The characteristics of patients

No	Patient classification	Age (years)	Gleason score	PSA (ng/mL)	68GaGa-P16-093 (MBq)	68GaGa-PSMA-617 (MBq)
1	BCR	70	4+4	1.1	159.5	166.1
2	BCR	71	4+3	1.0	177.6	170.2
3	BCR	71	5+5	1.9	166.5	166.5
4	BCR	72	4+4	0.2	177.6	173.9
5	BCR	78	4+5	1.3	155.8	162.4
6	BCR	64	4+3	2.0	166.5	170.2
7	mCRPC	69	3+4	7.0	159.1	159.1
8	mCRPC	66	4+4	9.3	166.8	162.5
9	mCRPC	83	3+4	7.3	166.5	159.1
10	mCRPC	66	5+5	52.0	173.9	181.3
11	mCRPC	68	4+5	89.5	162.8	170.2
12	mCRPC	72	5+5	33.8	159.1	166.5
13	mCRPC	72	5+4	53.7	170.2	162.8
14	mCRPC	57	5+4	32.6	155.4	159.1
15	mCRPC	56	4+3	65.0	161.5	159.1
16	mCRPC	71	5+4	96.2	177.6	170.2
17	mCRPC	63	4+5	29.6	155.4	162.8
18	mCRPC	64	5+4	4.6	170.2	166.5
19	mCRPC	59	4+5	103.4	159.1	151.7
20	mCRPC	63	5+4	138.3	173.9	170.2

BCR: biochemical recurrence; mCRPC: metastatic castration-resistant prostate cancer
CT also demonstrated consistently higher tumor uptakes of nearly all tumor lesions than $[^{68}\text{Ga}]{\text{Ga}}$-PSMA-617 PET/CT (two-sided paired t tests, SUVmax 7.88 ± 5.26 vs. 6.01 ± 3.88 at 4 min, $P < 0.001$; SUVmax 18.85 ± 14.02 vs. 14.27 ± 11.59 at 60 min, $P < 0.001$). The difference in the uptake of the two tracers, both in BCR and mCRPC patients, was not correlated with patients’ age, PSA value, and Gleason score (Spearman correlation coefficient analysis). Figure 3g shows the TAC of tumor lesions. We have also calculated the tumor-to-blood pool ratio (TBR), which revealed a statistically higher ratio for $[^{68}\text{Ga}]{\text{Ga}}$-P16-093 than $[^{68}\text{Ga}]{\text{Ga}}$-PSMA-617 from 4 to 60 min (two-sided paired t test, 1.58 ± 1.11 vs. 0.96 ± 0.57 at 4 min, $P < 0.001$; 13.16 ± 10.41 vs. 5.39 ± 3.37 at 60 min, $P < 0.001$), even the..
TBR of $[^{68}\text{Ga}]$Ga-P16-093 PET/CT at 20 min was significantly higher than that of $[^{68}\text{Ga}]$Ga-PSMA-617 PET/CT at 60 min (two-sided paired t test, 7.43 ± 5.85 vs. 5.39 ± 3.37, $P = 0.002$), as shown in Fig. 3h.

Among these patients, 18 of 20 patients (90.0%) were PET positive. Overall, 366 and 321 focal lesions were identified on $[^{68}\text{Ga}]$Ga-P16-093 PET/CT and $[^{68}\text{Ga}]$Ga-PSMA-617 PET/CT, respectively. The difference was statistically significant (two-sided paired t tests, 366 vs. 321, $P = 0.009$, as shown in Table 2 and Figs. 4 and 5).

Discussion

The clinical application of PET imaging with the 68Ga-labeled PSMA radioligands, such as $[^{68}\text{Ga}]$Ga-PSMA-11 and $[^{68}\text{Ga}]$Ga-PSMA-617, has been regarded as a revolutionary breakthrough in the diagnosis of PCa [21]. In the past few years, PSMA-targeting radiotracers have been structurally modified with the goal to achieve improved specificity and sensitivity for clinical applications [22].

We performed this research by comparing the two agents in the same patients, rather than conducting group analysis. And both PET/CT scans were randomly performed in 2 successive days. Obviously, given the nature of PCa progression, there was no significant variation in PCa lesions within such a short period of time. So, findings of this prospective head-to-head comparison study are credible.

As expected, the biodistribution patterns in normal tissues of $[^{68}\text{Ga}]$Ga-P16-093 were similar to $[^{68}\text{Ga}]$Ga-PSMA-617 and other small molecular weight PSMA-targeting radiotracers [23–26]. But there were substantial differences between them. We will emphasize and discuss the results of this study in detail to further confirm the advantages of $[^{68}\text{Ga}]$Ga-P16-093 over $[^{68}\text{Ga}]$Ga-PSMA-617 as the following.

First and foremost, National Comprehensive Cancer Network (NCCN) guidelines recommend that confirming metastases was a key factor for PCa patients with BCR and CRPC, as this determined their therapeutic schedules [27]. Nevertheless, accurate detection of lesion is still challenging due to its slowly progressive disease occurring and multiple treatment options. There were a number of prospective and retrospective studies using different imaging agents to compare the detectability of biochemical recurrent and progressive PCa patients, with the purpose of finding a more appropriate imaging modality [28–32]. In our study, statistically significant higher tracer uptakes (higher SUVmax) and a superior satisfactory detectability of tumor lesions by $[^{68}\text{Ga}]$Ga-P16-093 are definite advantages over $[^{68}\text{Ga}]$Ga-PSMA-617.

Table 2

No	Patient classification	$[^{68}\text{Ga}]$Ga-P16-093	$[^{68}\text{Ga}]$Ga-PSMA-617						
		Intraprostatic lesions	LN metastases	Osseous metastases	SUVmax	Intraprostatic lesions	LN metastases	Osseous metastases	SUVmax
1	BCR	0	1	0	19.0	0	1	0	13.8
2	BCR	0	0	6	6.5	0	0	6	4.8
3	BCR	0	0	0	0	0	0	0	0
4	BCR	0	1	1	8.5	0	0	1	6.6
5	BCR	0	2	1	19.4	0	1	1	12.7
6	BCR	0	0	0	0	0	0	0	0
7	mCRPC	1	0	39	12.8	1	0	32	7.1
8	mCRPC	0	0	32	40.3	0	0	30	20.5
9	mCRPC	0	0	12	12.3	0	0	12	10.4
10	mCRPC	0	0	36	58.1	0	0	31	33.6
11	mCRPC	0	0	18	47.1	0	0	19	43.4
12	mCRPC	0	0	29	21.6	0	0	24	14.2
13	mCRPC	1	0	64	29.1	1	0	51	15.2
14	mCRPC	0	0	13	6.3	0	0	13	5.7
15	mCRPC	0	7	5	47.7	0	6	4	46.6
16	mCRPC	1	1	0	15.1	1	1	0	8.3
17	mCRPC	0	0	33	26.6	0	0	27	20.8
18	mCRPC	1	3	23	13.8	1	3	23	12.3
19	mCRPC	0	0	31	14.7	0	0	27	10.6
20	mCRPC	0	0	4	14.2	0	0	4	11.0

BCR biochemical recurrence, $mCRPC$ metastatic castration-resistant prostate cancer
Ga-PSMA-617, which might benefit the subsequent management of patients.

Secondly, the faster blood clearance rate of $[^{68}\text{Ga}]$Ga-P16-093 was an important aspect to enhance the detection capability. In this study, the positive finding, as shown in Fig. 4, had well demonstrated this superiority. Furthermore, the lower bladder accumulation exhibited by $[^{68}\text{Ga}]$Ga-P16-093 was also of paramount importance in the diagnosis of recurrent prostate cancer. Low bladder activity was beneficial to identify localized lesions in close anatomical relation to the urinary bladder as recurrence PCa was most frequently associated with pelvic lymph node, which was previously demonstrated in a prospective study [33]. Although there were no lesions found around the bladder in our study, this showed a special advantage of $[^{68}\text{Ga}]$Ga-P16-093 over $[^{68}\text{Ga}]$Ga-PSMA-617 for detection of lesions in the pelvic area. However, it should be noted that the kidney was still the critical organ, since the slightly higher radioactive retention for $[^{68}\text{Ga}]$Ga-P16-093 than $[^{68}\text{Ga}]$Ga-PSMA-617, which was consistent with previous research [15].

Thirdly, as shown in Fig. 3, the higher hepatobiliary excretion and parotid gland cumulated activity value of $[^{68}\text{Ga}]$Ga-P16-093 than $[^{68}\text{Ga}]$Ga-PSMA-617 were phenomena worthy of attention; in general, we prefer a lower uptake in the liver so as not to affect the detection of liver metastases. High liver uptake could, however, be a less significant factor for using $[^{68}\text{Ga}]$Ga-P16-093 imaging in PCa, because it is uncommon to have liver metastasis in these patients.

As for our dPET/CT studies, we also observed that quite a few of PCa lesions presented with visible contrast at 4 min after the injection of imaging agents. Whereas, the blood pool background accumulation was relatively high at this time point, it was not the optimal time point of imaging. Although previous studies have demonstrated that early dynamic scan in PET/CT can reliably identify...
pathologic tracer uptake in PC lesions from physiologic accumulation in the urinary bladder [34]. Our early dynamic PET/CT acquisition did not detect more PCa lesions, which indicated that early dynamic imaging may be of little use due to the shortcomings of technically demanding and time-consuming [35]. Of course, further analyses are needed to confirm this result. The European Association of Nuclear Medicine (EANM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) procedure guideline suggested a 60-min interval (range 50–100 min) was appropriate for uptake time [36]. In our study, the images at 20 min on 68Ga-P16-093 PET/CT exhibited roughly equivalent tracer uptakes of tumor lesions and higher TBR to that at 60 min on 68Ga-PSMA-617 PET/CT. We propose that 68Ga-P16-093 PET/CT allows a more flexible imaging time, which greatly increases the practicability and alleviate concerns with regard to necessary coordination of patient activities. So, we suggest that a 20–60-min interval for uptake time for 68Ga-P16-093 PET/CT scan may be appropriate.

There were some limitations in our study. Firstly, the studied cohort was relatively small. Nevertheless, it was surprising that there were statistically significant differences in many aspects, such as tumor uptake and detection capability, in this small sample. The second limitation was the lack of histological confirmation of both the 68Ga-P16-093 and 68Ga-PSMA-617 avid focal lesions in cases of recurrent PCa. Whereas, quite a few studies had confirmed the high correlation between immunohistochemical findings and PSMA PET/CT imaging in PCa [29, 37]. Therefore, the results of PET/CT are reliable and consistent with pathological examination.

In the past 10 years, precision medicine based on PSMA-targeting theranostic agents has created a dramatic shift in the practice of nuclear medicine. Significant impact of PSMA PET imaging in diagnosis and management of prostate cancer at different stages is well recognized [21, 38]. Recently, 68Ga-PSMA-11 and 18F-PYL (Pylarify; piflufolastat F 18) have received approval by Food and Drug Administration (FDA) [39, 40], and PSMA PET imaging is now becoming an important part of standard clinical practice for diagnosis and treatment of prostate cancers all over the world. 68Ga-PSMA-11 and 68Ga-PSMA-617 are two of the most widely used 68Ga-labeled imaging agents for the diagnosis of prostate cancer. Based on numerous advantages of 68Ga-P16-093, described herein, it could be a well-prepared agent, capable of being readily prepared in high yield and purity at local hospitals. In the past 3 years, 68Ga-P16-093 was under clinical studies in the Indiana University and University of Pennsylvania (IND #133,222).

In addition, with the improvement of positron emission tomography and hybrid imaging technologies, PET/MRI combines the molecular imaging of PET and the anatomical imaging benefits of MRI over CT, without radiation or CT beam-hardening imaging artifacts, which plays a more and more important role in the diagnosis and management of common genitourinary cancers. We also hope to apply PSMA-targeting radiotracers, such as 68Ga-P16-093, to PET/MRI, which enable us to identify malignant lesions more successfully than ever and result in better patient care and outcomes [41, 42].
Conclusions

[68 Ga]Ga-P16-093 is a promising PSMA targeting imaging agent in detecting PCa lesions. Compared with [68 Ga]Ga-PSMA-617, [68 Ga]Ga-P16-093 shows several advantages, including faster blood clearance and lower bladder background, higher tumor uptakes, TBR, and detection capability, which can identify PCa lesions with improved efficiency. These findings warrant further investigation in a larger number cohort of PCa patients.

Funding

This study was supported by the Chinese Academy of Medical Science Innovation Fund for Medical Sciences (2019-I2M-1-001), the Chinese Academy of Medical Science and Translational Medicine Research Foundation (2019XK320032), the National Natural Science Foundation of China (81871392), and the Capital Health Development Scientific Research Project (2018-1-4011).

Data availability

Not applicable.

Declarations

Ethics approval

Ethical approval was obtained from the Institute Review Board of Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and this study was conducted in accordance with the principles of the Declaration of Helsinki.

Consent to participate

Informed consent was obtained from all participants included in the study.

Conflict of interest

Hank F. Kung is the founder of Five Eleven Pharma, which holds the patent rights for [68 Ga]Ga-P16-093 and related technology.

References

1. Paschalis A, de Bono JS. Prostate Cancer 2020: “The times they are a’changing.” Cancer Cell. 2020;38:25–7. https://doi.org/10.1016/j.ccell.2020.06.008.
2. Mottet N, van den Bergh RCN, Briers E, Van den Broeck T, Cumberbatch MG, De Santis M, et al. EAU-ENM-ESRIO-GI Guideline on prostate cancer-2020 update. Part 1: Screening, diagnosis, and local treatment with curative intent. Eur Urol. 2021;79:243–62. https://doi.org/10.1016/j.euro.2020.09.042.
3. Li Y, Han D, Wu P, Ren J, Ma S, Zhang J, et al. Comparison of (68)Ga-PSMA-617 PET/CT with mpMRI for the detection of PCa in patients with a PSA level of 4–20 ng/ml before the initial biopsy. Sci Rep. 2020;10:10963. https://doi.org/10.1038/s41598-020-67385-9.
4. Privé BM, Israel B, Schillam MGM, Muselaers CHJ, Zámecznik P, Mulders PFA, et al. Evaluating F-18-PSMA-1007-PET in primary prostate cancer and comparing it to multi-parametric MRI and histopathology. Prostate Cancer Prostatic Dis. 2021;24:423–30. https://doi.org/10.1038/s41391-020-00292-2.
5. Drost FH, Osses DF, Nieboer D, Steyerberg EW, Bangma CH, Roobol MJ, et al. Prostate MRI, with or without MRI-targeted biopsy, and systematic biopsy for detecting prostate cancer. Cochrane Database Syst Rev. 2019;4:CD012663. https://doi.org/10.1002/14651858.CD012663.pub2.
6. Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3:81–5.
7. Bostwick DG, Pacelli A, Blute M, Roche M, Murphy GP. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer. 1998;82:2256–61. https://doi.org/10.1002/(sici)1097-0142(19980601)82:11<2256::aid-cnrc22%3e3.0.co;2-s.
8. Ghosh A, Heston WD. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem. 2004;91:528–39. https://doi.org/10.1002/jcb.10661.
9. Perner S, Hofer MD, Kim R, Shah RB, Li H, Möller P, et al. Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Hum Pathol. 2007;38:696–701. https://doi.org/10.1016/j.humpath.2006.11.012.
10. Afshar-Oromieh A, Haberkorn U, Schlemmer HP, Fenchel M, Eder M, Eisenhut M, et al. Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: initial experience. Eur J Nucl Med Mol Imaging. 2014;41:887–97. https://doi.org/10.1007/s00259-013-2660-z.
11. Alberts IL, Seide SE, Mingels C, Bohn KP, Shi K, Zacho HD, et al. Comparing the diagnostic performance of radiotracers in recurrent prostate cancer: a systematic review and network meta-analysis. Eur J Nucl Med Mol Imaging. 2021;48:2978–89. https://doi.org/10.1007/s00259-021-05210-9.
12. Fendler WP, Calais J, Eiber M, Flavell RR, Mishoe A, Feng F, et al. Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trial. JAMA Oncol. 2019;5:856–63. https://doi.org/10.1001/jamaoncol.2019.0096.
13. Civelek AC. (68)Ga-PSMA-11 PET: better at detecting prostate cancer than multiparametric MRI? Radiology. 2018;289:738–9. https://doi.org/10.1148/radiol.2018181981.
14. Zha Z, Ploessl K, Choi SR, Wu Z, Zhu L, Kung HF. Synthesis and evaluation of a novel urea-based (68)Ga-complex for imaging PSMA binding in tumor. Nucl Med Biol. 2018;59:36–47. https://doi.org/10.1016/j.nucmedbio.2017.12.007.
15. Green MA, Hutchins GD, Bahler CD, Tann M, Mathias CJ, Territo W, et al. [68]Ga-P16-093 as a PSMA-targeted PET radiopharmaceutical for detection of cancer: initial evaluation and comparison with [(68)Ga]Ga-PSMA-11 in prostate cancer patients presenting with biochemical recurrence. Mol Imag Biol. 2020;22:752–63. https://doi.org/10.1007/s11307-019-01421-7.
16. Eder M, Neels O, Muller M, Bauder-Wust U, Remde Y, Schafer M, et al. Novel preclinical and radiopharmaceutical aspects of [68Ga] Ga-PSMA-HBED-CC: a new PET tracer for imaging of prostate cancer. Pharmaceuticals (Basel, Switzerland). 2014;7:779–96. https://doi.org/10.3390/pharmacy7020077.
17. Mathias CJ, Sun YZ, Welch MJ, Green MA, Thomas JA, Wade KR, et al. Targeting radiopharmaceuticals: comparative biodistribution studies of gallium and indium complexes of multideterminate ligands. Int J Radiat Appl Instrument Part B Nucl Med Biol. 1996;48:659–70. https://doi.org/10.1016/0191-6513(96)00010-1.
18. Mathias CJ, Sun YZ, Welch MJ, Connell JM, Philpott GW, Martell AE, N′-bis(2-hydroxybenzyl)-1-(4-bromacetamidobenzyl)-1,2-ethylene diamine-N, N′-dioacetic acid: a new bifunctional chelate for radiolabelling antibodies. Bioconjug Chem. 1990;1:204–11. https://doi.org/10.1021/bc00003a005.
19. Zoller M, Schuhmacher J, Reed J, Maier-Borst W, Matzku S. Establishment and characterization of monoclonal antibodies against an octahedral gallium chelate suitable for immunoscintigraphy with PET. J Nucl Med. 1992;33:1366–72.
20. Liu C, Liu T, Zhang N, Liu Y, Li N, Du P, et al. (68)Ga-PSMA-617 PET/CT: a promising new technique for predicting risk stratification and metastatic risk of prostate cancer patients. Eur J Nucl Med Mol Imaging. 2018;45:1852–61. https://doi.org/10.1007/s00259-018-4037-9.

21. Farolfi A, Calderoni L, Mattana F, Mei R, Telo S, Fanti S, et al. Current and emerging clinical applications of PSMA PET diagnostic imaging for prostate cancer. J Nucl Med. 2021;62:596–604. https://doi.org/10.2967/jnumed.20.257238.

22. Wester HJ, Schottelius M. PSMA-targeted radiopharmaceuticals for imaging and therapy. Semin Nucl Med. 2019;49:302–12. https://doi.org/10.1053/j.semnucmed.2019.02.008.

23. Afshar-Oromieh A, Malcher A, Eder M, Eisenhut M, Linhart HG, Hadachik BA, et al. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging. 2013;40:486–95. https://doi.org/10.1007/s00259-012-2298-2.

24. Afshar-Oromieh A, Hetzheim H, Kratochwil C, Benesova M, Eder M, Neels OC, et al. The theranostic PSMA ligand PSMA-617 in the diagnosis of prostate cancer by PET/CT: biodistribution in humans, radiation dosimetry, and first evaluation of tumor lesions. J Nucl Med. 2015;56:1697–705. https://doi.org/10.2967/jnumed.115.161299.

25. Benesova M, Schafer M, Bauder-Wust U, Afshar-Oromieh A, Kratochwil C, Mier W, et al. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J Nucl Med. 2015;56:914–20. https://doi.org/10.2967/jnumed.114.147413.

26. Herrmann K, Bluemel C, Weineisen M, Schottelius M, Wester HJ, Czernin J, et al. Biodistribution and radiation dosimetry for a probe targeting prostate-specific membrane antigen for imaging and therapy. J Nucl Med. 2015;56:855–61. https://doi.org/10.2967/jnumed.115.156133.

27. Schaeffer E, Srinivas S, Antoranakis ES, Armstrong AJ, Bekelman JE, Cheng H, et al. NCCN guidelines insights: prostate cancer, version 1.2021. J Natl Comprehen Cancer Netw: JNCCN. 2021;19:134–43. https://doi.org/10.6004/jnccn.2021.0008.

28. Afshar-Oromieh A, Zechnam CM, Malcher A, Eder M, Eisenhut M, Linhart HG, et al. Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2014;41:11–20. https://doi.org/10.1007/s00259-013-2525-5.

29. Morigi JJ, Stricker PD, van Leeuwen PJ, Tang R, Ho B, Nguyen Q, et al. Prospective comparison of 18F-fluoromethylcholine versus 68Ga-PSMA PET/CT in prostate cancer patients who have rising PSA after curative treatment and are being considered for targeted therapy. J Nucl Med. 2015;56:1185–90. https://doi.org/10.2967/jnumed.115.160382.

30. Calais J, Ceci F, Eiber M, Hope TA, Hofman MS, Rischpler C, et al. (18)F-fluorocholine PET/CT and (68)Ga-PSMA-11 PET/CT in patients with early biochemical recurrence after prostatectomy: a prospective, single-centre, single-arm, comparative imaging trial. Lancet Oncol. 2019;20:1286–94. https://doi.org/10.1016/S1470-2045(19)30415-2.

31. Wang B, Liu C, Wei Y, Meng J, Zhang Y, Gan H, et al. A prospective trial of (68)Ga-PSMA and (18)F-FDG PET/CT in nonmetastatic prostate cancer patients with an early PSA progression during castration. Clin Cancer Res. 2020;26:4551–8. https://doi.org/10.1158/1078-0432.CCR-20-0587.

32. Raucher I, Krönke M, König M, Gafita A, Maurer T, Horn T, et al. Matched-pair comparison of (68)Ga-PSMA-11 PET/CT and (18)F-FDG-1007 PET/CT: frequency of pitfalls and detection efficacy in biochemical recurrence after radical prostatectomy. J Nucl Med. 2020;61:51–7. https://doi.org/10.2967/jnumed.119.229187.

33. Pernthaler B, Kulnik R, Gstettner C, Salamon S, Aigner RM, Kvaternik H. A prospective head-to-head comparison of 18F-fluorochrome with 68Ga-PSMA-11 in biochemical recurrence of prostate cancer in PET/CT. Clin Nucl Med. 2019;44:e566–73. https://doi.org/10.1097/rln.0000000000002703.

34. Uprimny C, Kroiss AS, Decristoforo C, Fritz J, Warwitz B, Scarpa L, et al. Early dynamic imaging in (68)Ga-PSMA-11 PET/CT allows discrimination of urinary bladder activity and prostate cancer lesions. Eur J Nucl Med Mol Imaging. 2017;44:765–75. https://doi.org/10.1007/s00259-016-3578-z.

35. Sachpekidis C, Afshar-Oromieh A, Kopka K, Strauss DS, Pan L, Haberkorn U, et al. (18)F-PSMA-1007 multiparametric, dynamic PET/CT in biochemical relapse and progression of prostate cancer. Eur J Nucl Med Mol Imaging. 2020;47:592–602. https://doi.org/10.1007/s00259-019-04569-0.

36. Fendler WP, Eiber M, Beheshti M, Bomanji J, Ceci F, Cho S, et al. (68)Ga-PSMA PET/CT: joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur J Nucl Med Molec Imaging. 2017;44:1014–24. https://doi.org/10.1007/s00259-017-3670-z.

37. Woythal N, Arsenic R, Kempkensteffen C, Miller K, Janssen JC, Huang K, et al. Immunohistochemical validation of PSMA expression measured by (68)Ga-PSMA PET/CT in primary prostate cancer. J Nucl Med. 2018;59:238–43. https://doi.org/10.2967/jnumed.117.195172.

38. Weber WA, Czernin J, Anderson C, Badawi RD, Barthel H, Bengel F, et al. The future of nuclear medicine, molecular imaging, and theranostics. J Nucl Med. 2020;61:263S–S272. https://doi.org/10.2967/jnumed.120.254532.

39. Sartor O, Hope TA, Calais J, Fendler WP. Oliver Sartor talks with Thomas A. Hope, Jerome Calais, and Wolfgang P. Fendler about FDA approval of PSMA. J Nucl Med. 2021;62:146–8. https://doi.org/10.2967/jnumed.120.261834.

40. Carlucci G, Ippisch R, Slavik R, Mishoe A, Blecha J, Zhu S. (68) Ga-PSMA-11 NDA approval: a novel and successful academic partnership. J Nucl Med. 2021;62:149–55. https://doi.org/10.2967/jnumed.120.260455.

41. Bagheri MH, Ahlman MA, Lindenberg L, Turkhey B, Lin J, Cahid Civelek A, et al. Advances in medical imaging for the diagnosis and management of common genitourinary cancers. Urol Oncol. 2017;35:473–91. https://doi.org/10.1016/j.urolonc.2017.04.014.

42. Civelek AC, Niglio SA, Malayeri AA, Lin J, Gurram S, Chalfin D, et al. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety to ciclovine with 68Ga-PSMA-11 in biochemical recurrence of prostate cancer patients. Eur J Nucl Med Mol Imaging. 2017;44:134–51. https://doi.org/10.1007/s00259-016-3578-z.
Authors and Affiliations

Guochang Wang¹ · Haiyan Hong² · Jie Zang¹ · Qingxing Liu¹ · Yuanyuan Jiang¹ · Xirong Fan³ · Zhaohui Zhu¹ · Lin Zhu² · Hank F. Kung⁴

¹ Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China

² College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China

³ Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China

⁴ Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA