Janice Drew’s work on diet and cancer

Janice Drew

Janice Drew, Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen, AB21 9SB, United Kingdom

Author contributions: Drew J solely contributed to this manuscript.

Supported by: The Scottish Government, Chief Scientists Office Scotland, Tenovus Scotland, Rank Prize Funds (Nutrition Committee) and NC3Rs/LASA.

Correspondence to: Janice Drew, PhD, Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen, AB21 9SB, United Kingdom. j.drew@abdn.ac.uk

Telephone: +44-1224-712751 Fax: +44-1224-716629

Received: March 18, 2011 Revised: August 6, 2011

Accepted: August 13, 2011

Abstract

Obesity and associated reduced consumption of plant derived foods are linked to increased risk of colon cancer as well as a number of other organ specific cancers. Inflammatory processes are a contributing factor but the precise mechanisms remain elusive. Obesity and cancer incidence are increasing worldwide, presenting bleak prospects for reducing, or preventing, obesity related cancers. The incidence of these preventable cancers can be achieved with greater understanding of the molecular mechanisms linking diet and carcinogenesis. Janice Drew has developed a research program over recent years to investigate molecular mechanisms related to consumption of anti-inflammatory metabolites generated from consumption of plant based diets, the impact of high fat diets and associated altered metabolism and obesity on regulation of colon inflammatory responses and processes regulating the colon epithelium. Comprehensive strategies have been developed incorporating transcriptomics, including the novel gene expression technology, the GenomeLab System and proteomics, together with biochemical analyses of plasma and tissue samples to assess correlated changes in oxidative stress, inflammation and pathology. The approaches developed have achieved success in establishing antioxidant and anti-inflammatory activity of dietary antioxidants and associated genes and pathways that interact to modulate redox status in the colon. Cellular processes and genes altered in response to obesity and high fat diets have provided evidence of molecular mechanisms that are implicated in obesity related cancer.

© 2011 Baishideng. All rights reserved.

Key words: Diet and cancer; Obesity-related cancer; Adipokines; Leptin; Phenolic acids; Mitochondria; Proteomics; Multiplex gene expression

Peer reviewer: Naohisa Yoshida, MD, PhD, Assistant Professor, Department of Molecular Gastroenterology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan

Drew J. Janice Drew’s work on diet and cancer. World J Gastrointest Pathophysiol 2011; 2(4): 61-64 Available from: URL: http://www.wjgnet.com/2150-5330/full/v2/i4/61.htm DOI: http://dx.doi.org/10.4291/wjgp.v2.i4.61

INTRODUCTION AND EDUCATIONAL EXPERIENCE

Dr. Janice Drew is a Senior Research Fellow in the Rowett Institute of Nutrition and Health within the College of
Drew J. Diet and cancer

Life Sciences and Medicine at the University of Aberdeen (Figure 1). She received her BSc Hon (First Class) degree in Horticulture from the University of Strathclyde (Glasgow, UK) in 1991. Her honors project involved investigation of bioactivities of phytochemicals produced from genetically transformed root cultures. She pursued graduate work at the University of Durham (UK) and received her PhD in plant molecular biology in 1994. Subsequently, Dr. Drew trained as a postdoctoral fellow in molecular neuroendocrinology, investigating G protein coupled receptor signalling in circadian rhythms and appetite and energy balance, with Professor Morgan at the Rowett Research Institute (Aberdeen, UK), supported by a Strategic Alliance with Servier (France). Dr. Drew has been an invited speaker at international meetings and is a peer reviewer and editor for scientific journals, guest editing a recent special issue entitled Obesity Cancer Links[1]. Dr. Drew peer reviews grants for international funding agencies and has recently developed a new MSc Molecular Nutrition program at the University of Aberdeen. On the basis of her achievements as an independent investigator she received a promotion firstly in 2000 and again in 2007 and was also awarded for individual performance in 2005.

ACADEMIC STRATEGIES AND GOALS

Over recent years, Dr. Drew has developed a research program investigating links with diet and colon cancer. Hereditary links to colorectal cancer development are well established but the majority of cases are sporadic with little or no evidence of hereditary factors. Inflammation and obesity are increasingly emerging as factors significantly increasing colon cancer risk as well as a number of other organ specific cancers. Plant-derived sources of anti-inflammatory compounds and reduced calorie consumption may be significant factors modulating the life-time risk of developing colorectal cancer. Currently Dr. Drew is investigating the molecular and cellular effects of high fat diets and associated obesity with colon pathology and modulation by anti-inflammatory plant-derived components. A systems approach incorporating genomic, proteomic, biochemical and physiological analysis is applied to identify molecular mechanisms linking obesity and consumption of dietary plant phenolics with regulation of genes and proteins involved in key processes such as, proliferation, differentiation and apoptosis, inflammation and adipokine and endocannabinoid signalling using in vitro cell and human colon explant cultures, in vivo models and human colon tissues. Dr. Drew’s research has contributed to evidence of molecular mechanisms linking anti-inflammatory gut metabolites and diet-induced obesity with colon cancer (Figure 2).

ACADEMIC ACHIEVEMENTS

The following contributions highlight Dr. Drew’s activities in the field of diet and colon cancer.

Diet-induced oxidative stress in colon modulated by dietary phenolics

Dietary antioxidant deficiency was demonstrated to increase oxidative stress and inflammatory prostaglandins in colon tissues[2,3]. Anti-inflammatory plant derived gut metabolites have the potential to alleviate oxidative stress in gut tissue[4,5]. Supplementation of antioxidant deficient diets with salicylic acid, a plant phenolic, was found to reduce oxidative stress and inflammatory prostaglandins with an associated increase in glutathione peroxidase activity[6]. Glutathione peroxidases (Gpx) are important modulators of oxidative stress that is implicated in the pathogenesis of numerous diseases including colon cancer[7]. Novel sites of glutathione peroxidase expression in colon were identified[8]. Both cytosolic isoforms, Gpx1 and Gpx2 were observed in lymphatic tissue. Only Gpx2 was expressed by luminal colon epithelium, implying a specific role in regulating oxidative stress in the gut epithelium[9]. These studies have made a significant contribution to research on the role of Gpx in regulation of the colon epithelium[10]. The ability of plant phenolics to modulate antioxidant enzymes and inflammatory prostaglandins in colon tissue[2,3] and cells[5,6] may be an important mechanism in inhibiting colon cancer development. The studies outlined above have contributed to establishing antioxidant activity of salicylates in cells and tissues[11,12] and citation in reviews on the role of salicylates in cancer prevention[13].

Protein expression profiling in colon in response to pathology and diet

Proteomic approaches have been applied linking pre-cancerous changes, increased levels of inflammatory prostaglandins and oxidative stress with altered protein profiles in colon[13,14]. A targeted organelle proteomic approach led to the first study profiling colon mitochondrial proteins[15] and identification of altered mitochondrial protein pro-
files in colon associated with obesity[10]. The importance of multiple protein expression forms was highlighted[83]. Changes in multiple protein expression forms contribute significantly to changes in protein profiles in colon in responses to pathology[14] and diet[1,15,16]). Multiple protein expression forms of tropomyosin were associated with precancerous changes in colon and may be a significant factor in metabolic changes that result in the onset of colon pathology[14,16]. These studies have contributed to development and application of research strategies and insights on gastrointestinal[17,18] and mitochondrial[19,20] proteins that have been highlighted in reviews of proteomic methodologies and tools to identify and develop biomarkers of colon pathology[11,21]. [17,18]

Molecular mechanisms linking obesity with colon cancer

Insulin, leptin and adiponectin hormones are deregulated in obese individuals. Colon epithelial localisation of insulin, leptin and adiponectin hormone receptor gene expression[22] indicated a role for these hormones in regulating the colon epithelium and potential links to obesity related colon cancer. High fat diets and associated obesity impact on signalling via these receptors with evidence of altered expression of protein profiles in colon mitochondria linked to energy metabolism, electron transport chain, redox regulation, protein synthesis, folding, degradation transport and calcium binding[16,27]. Leptin was shown to up-regulate gene expression of inflammatory cytokines[28] known to be increased in obese individuals[19] and in colon cancer[20]. Leptin was also shown to alter protein profiles in colon tissue linked to calcium binding, cell cycle, cell proliferation, electron transport chain, energy metabolism, protein folding and transport, redox regulation, structural proteins and proteins involved in transport and regulation of mucus production. Further studies highlighted that consumption of high fat diets that lead to obesity increase cancer risk. Consumption of high fat diets was associated with changes in leptin regulated processes and increased expression of the colon stem cell marker Lgr5 (unpublished observations). The studies have made significant progress in establishing and supporting a role for adipokine hormones in regulating colon homeostasis and links with obesity related colon cancer[16,20,28]. Consequently this work has been highlighted in recent studies dissecting the complex associations linking obesity and colon pathology[11,14] and reviews presenting new insights on obesity cancer links[13]. [15]

Validation and application of novel custom designed gene expression technology to study colon pathology

The GenomeLab Genetic Analysis System presents a novel technology platform for quantitative multiplexed gene expression analysis[16,29]. This system permits custom design options for relative quantification of multiple gene target expression simultaneously in a single reaction, using nanogram quantities of total RNA template. A custom designed GeXP assay of inflammatory cytokines showing altered regulation in human colon normal, polyp and tumor tissues has been validated in comparisons with macroarray and single-plex real-time PCR assays[30]. GeXP assays facilitate characterisation of gene expression signatures associated with responses to diet, hormone signalling, therapeutics and/or pathology (Figure 3). Novel custom designed GeXP assays are currently being developed and applied in our clinical, diagnostic and regulatory studies of multiple gene targets linked to colon pathology. [16,29]

CONCLUSION

Identification of the genes and proteins altered in response to obesity and carcinogenesis is a crucial first step in elucidating mechanisms associated with obesity related cancers. Application of comprehensive strategies in model systems has permitted elucidation of inflammatory pathways and cellular processes that are implicated in obesity related cancer and anti-inflammatory dietary metabolites that may be useful in ameliorating the detrimental impact of high fat diets. An understanding of the cellular processes that are altered with consumption of high-fat diets and modulatory effects of consuming plant based diets will assist in developing strategies to reduce these preventable cancers. [16,29]

ACKNOWLEDGMENTS

I am grateful to the past and present members of my

Figure 3 Application of a custom designed multiplex of inflammatory cytokines associated with early events in colon carcinogenesis. GeXP profiling generates gene expression signatures to reveal molecular characteristics associated with pathology. GeXP facilitates a rapid analysis of multiple gene targets simultaneously and is feasible for analysis of small tissue biopsy samples (either fresh or frozen archived tissues) available from clinical specimens since only nanogram quantities of total RNA are required. Custom designed multiplex GeXP assays present opportunities to conduct gene regulatory studies in response to dietary metabolites and links with pathology. Studies in our lab are focused on clinical applications of novel custom designed assays to identify signature gene expression profiles and biomarkers of dysplasia, identification of novel disease sub-types and responses to dietary intervention and therapeutics.
laboratory and collaborators for their contributions to our studies.

REFERENCES

1. Drew JE, Obesity Cancer Links. The Open Obesity Journal 2010; 2:10-11
2. Drew JE, Arthur JR, Farquharson AJ, Russell WR, Morrice PC, Duthie GG. Salicylic acid modulates oxidative stress and glutathione peroxidase activity in the rat colon. Biochem Pharmacol 2005; 70: 886-890
3. Drew JE, Padidar S, Horgan G, Duthie GG, Russell WR, Reid MD, Duncan G, Rucklidge GJ. Salicylate modulates oxidative stress in the rat colon: a proteomic approach. Biochem Pharmacol 2006; 72: 204-216
4. Chu FF, Esoworthy RS, Doroshow JH. Role of Se-dependent glutathione peroxidases in gastrointestinal inflammation and cancer. J Pharmacol Exp Ther 2008; 325: 1481-1495
5. Drew JE, Farquharson AJ, Arthur JR, Morrice PC, Duthie GG. Novel sites of cytosolic glutathione peroxidase expression in colon. FEBS Lett 2005; 579: 6135-6139
6. Florian S, Kreli S, Loewinger M, Kipp A, Banning A, Esoworthy S, Chu FF, Brigiel-Flohe R. Loss of GPx2 increases apoptosis, mitosis, and GPx1 expression in the intestine of mice. Food Radio Biol Med 2010; 49: 1694-1702
7. Russell WR, Drew JE, Scobbie L, Duthie GG. Inhibition of cytokine-induced prostaglandin biogenesis by phytochemicals in human colonic fibroblasts. Biochim Biophys Acta 2006; 1762: 124-130
8. Russell WR, Scobbie L, Chesson A, Richardson AJ, Stewart CS, Duncan SH, Drew JE, Duthie GG. Anti-inflammatory implications of the microbial transformation of dietary phenolic compounds. Nutr Cancer 2008; 60: 636-642
9. Xue H, Tian YM, Yan M, Yang N, Chen X, Xing Y, Zhu JX. Appearance of segmental discrepancy of anion transport in rat distal colon. Bio Pharm Bull 2007; 30: 1407-1411
10. Çebi A, Diraman E, Eren Z. Comparison of aspirin’s antiinflammatory effects with selenium and vitamin E by measuring mitochondrial selenium dependent glutathione peroxidase and cytosolic glutathione peroxidase activity in mouse liver. Asian J Chem 2009; 21: 1359-1364
11. Zhao H, Xu X, Na J, Hao L, Huang L, Li G, Xu Q. Protective effects of salicylic acid and vitamin C on sulfur dioxide-induced kidney peroxidation in mice. Inhal Toxicol 2008; 20: 865-871
12. Chen JW, Zhou SB, Tan ZM. Aspirin and pravastatin reduce leptin-induced oxidized low density lipoprotein receptor-1 expression, adhesion molecules and oxidative stress in human coronary artery endothelial cells. Chin Med J (Engl) 2010; 123: 1553-1556
13. Elwood PC, Gallagher AM, Duthie GG, Mur LA, Morgan G. Aspirin, salicylates, and cancer. Lancet 2009; 373: 1301-1309
14. Drew JE, Rucklidge GJ, Duncan G, Lufty A, Farquharson AJ, Reid MD, Russell WR, Morrice PC, Arthur JR, Duthie GG. A proteomics approach to identify changes in protein profiles in pre-cancerous colon. Biochem Biophys Res Commun 2005; 330: 81-87
15. Padidar S, Bestwick CS, King TP, Rucklidge GJ, Duncan GJ, Reid MD, Drew JE. Profiling of mitochondrial associated proteins from rat colon. J Cell Biochem 2008; 103: 78-97
16. Padidar S, Farquharson AJ, Rucklidge GJ, Drew JE. Influence of increased adipose on mitochondrial-associated proteins of the rat colon: a proteomic and transcriptomic analysis. Biochim Biophys Acta 2008; 1782: 532-541
17. Gourley GR, Yang L, Higgins L, Riviere MA, David LL. Proteomic analysis of biopsied human colonic mucosa. J Pediatr Gastroenterol Nutr 2010; 51: 46-54
18. Chang HJ, Lee MR, Hong SH, Yoo BC, Shin YK, Jeong JY, Lim SB, Choi HS, Jeong SY, Park JC. Identification of mitochondrial FoF1-ATP synthase involved in liver metastasis of colorectal cancer. Cancer Sci 2007; 98: 1184-1191
19. Wallace KB. Mitochondrial off targets of drug therapy. Trends Pharmacol Sci 2008; 29: 361-366
20. Zoratti M, De Marchi U, Gubins E, Szabo I. Novel channels of the inner mitochondrial membrane. Biochim Biophys Acta 2009; 1787: 351-363
21. Bousette N, Gramolini AO, Kislinger T. Proteomics-based investigations of animal models of disease. Proteomics Clin Appl 2008; 2: 638-653
22. Derijks-Engweg JY, Cats A, Smits ME, Schellens JH, Beijnen JH. Improving colorectal cancer management: the potential of improving proteomics. Biomark Med 2008; 2: 253-289
23. Alex P, Gucek M, Li X. Applications of proteomics in the study of inflammatory bowel diseases: Current status and future directions with available technologies. Inflamm Bowel Dis 2009; 15: 616-629
24. Ikonomou G, Samiotaki M, Panayotou G. Proteomic methodologies and candidate CRC serum markers. Crit Rev Clin Lab Sci 2009; 46: 319-342
25. Jimenez CR, Knol JC, Meijer GA, Fijneman RJ. Proteomics of colorectal cancer: overview of discovery studies and identification of commonly identified cancer-associated proteins and candidate CRC serum markers. J Proteomics 2010; 73: 1873-1895
26. Drew JE, Farquharson AJ, Padidar S, Duthie GG, Mercer JG, Arthur JR, Morrice PC, Herrera LN. Insulin, leptin, and adiponectin receptors in colon: regulation relative to differing body adiposity independent of diet and in response to dimethylglycine. Am J Physiol Gastrointest Liver Physiol 2007; 293: G682-G691
27. Padidar S, Farquharson AJ, Williams LM, Hoggard N, Reid MD, Duncan GJ, Drew JE. Impact of obesity and leptin on protein expression profiles in mouse colon. Dig Dis Sci 2011; 56: 1028-1036
28. Padidar S, Farquharson AJ, Williams LM, Kelaiditi E, Hoggard N, Arthur JR, Drew JE. Leptin up-regulates pro-inflammatory cytokines in discrete cells within mouse colon. J Cell Physiol 2011; 226: 2123-2130
29. Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, Capeau J, Feve B. Total adipin expression in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw 2006; 17: 4-12
30. McLean MH, Murray GI, Stewart KN, Morrice P, Mayer C, Hold GL, Thomson J, Fyle N, Hope M, Mowat NA, Drew JE, El-Omar EM. The inflammatory microenvironment in colorectal neoplasia. PLoS One 2011; 6: e15366
31. Gravaghi C, Bo I, Laperre E, Neumont S, Ghobrial IM, Quinby F, Kucherlapati R, Edelmann W, Lamprecht SA. Obesity enhances gastrointestinal tumorigenesis in Apo- mutant mice. Int J Obes (Lond) 2008; 32: 1716-1719
32. Koch TC, Briviba K, Watzl B, Bub A, Barth SW. Obesity-related promotion of aberrant crypt foci in DMH-treated obese Zucker rats correlates with dyslipidemia rather than hyperinsulinemia. Eur J Nutr 2008; 47: 161-170
33. Kukla Malagi V, Wiskinkski KB, Sadim M, Gulden C, Do A, Oflit K, Baron JA, Ahsan H, Mantzoros C, Pasche B. Variants of the adiponectin (ADIPOQ) and adiponectin receptor 1 (ADIPOR1) genes and colorectal cancer risk. JAMA 2008; 300: 1523-1531
34. Hoda MR, Scharl M, Keely SJ, McCoole DF, Barrett KE. Apical leptin induces chloride secretion by intestinal epithelial cells and in a rat model of acute chemotherapy-induced colitis. Am J Physiol Gastrointest Liver Physiol 2010; 298: G271-G272
35. Roberts DL, Diene C, Renenh AG. Biological mechanisms linking obesity and cancer risk: new perspectives. Annu Rev Med 2010; 61: 301-316
36. Drew JE, Mayer CD, Farquharson AJ, Young P, Barrera LN. Custom design of a GoXP multiplexed assay used to assess expression profiles of inflammatory gene targets in normal colon, polyp, and tumor tissue. J Med Diag 2011; 13: 233-242

S-Editor Wu X L-Editor Roememea A E-Editor Zheng XM