SPATIAL AND TEMPORAL DISTRIBUTIONS OF TRANSIENT HORIZONTAL MAGNETIC FIELDS WITH DEEP EXPOSURE

RYOHKO ISHIKAWA1,2 AND SAKU TSUNETA2

1 Department of Astronomy, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; ryoko.ishikawa@nao.ac.jp
2 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

Received 2010 April 26; accepted 2010 June 23; published 2010 July 14

ABSTRACT

We obtained a long-exposure vector magnetogram of the quiet Sun photosphere at the disk center with a wide field of view of $51'' \times 82''$. The observation was performed at Fe i 525.0 nm with the shutterless mode of the Narrow Band Filter Imager of the Solar Optical Telescope (SOT) on board the Hinode satellite. We summed the linear polarization (LP) maps taken with a time cadence of 60 s for 2 hr to obtain a map with as long of an exposure as possible. The polarization sensitivity would be more than 4.6 (21.2 in exposure time) times the standard observation with the SOT Spectropolarimeter. The LP map shows a cellular structure with a typical scale of $5''$–$10''$. We find that the enhanced LP signals essentially consist of the isolated sporadic transient horizontal magnetic fields (THMFs) with a lifetime of 1–10 minutes and are not contributed by long-duration weak horizontal magnetic fields. The cellular structure coincides in position with the negative divergence of the horizontal flow field, i.e., mesogranular boundaries with downflows. Azimuth distribution appears to be random for the scale size of the mesogranules. Some pixels have two separate appearances of THMFs, and the measured time intervals are consistent with the random appearance. THMFs tend to appear at the mesogranular boundaries, but appear randomly in time. We discuss the origin of THMFs based on these observations.

Key words: convection – magnetic fields – Sun: granulation – Sun: photosphere

Online-only material: animation

1. INTRODUCTION

The Spectropolarimeter (SP) of the Solar Optical Telescope (SOT; Tsuneta et al. 2008a) on board Hinode (Kosugi et al. 2007) reveals ubiquitous granular-sized horizontal magnetic fields in the internetwork regions (Orozco Suárez et al. 2007; Lites et al. 2008; Centeno et al. 2007). Such horizontal fields are highly transient with lifetimes ranging from 1 to 10 minutes, and are called “transient horizontal magnetic fields” (THMFs; Ishikawa et al. 2008). Ishikawa et al. (2010) showed that a THMF has a weak plage region (Ishikawa et al. 2008), and the polar regions (Tsuneta et al. 2008b; Ito et al. 2010). The occurrence rate and the mean field strength of THMFs is about 400 G (Ishikawa et al. 2008), which is comparable to the equipartition field strength corresponding to the granular motion. These results suggest that a local dynamo process due to the granular motion generates THMFs all over the Sun.

Trujillo Bueno et al. (2004) observed that ubiquitous tangled magnetic fields with a mean field strength of ~ 100 G exist on the spatial scale of the granulation (on the order of arcsec) by means of the Hanle effect. They pointed out that magnetic fields detected with the Zeeman effect might be only the tip of the iceberg of the Sun’s magnetism so that most of the magnetism is hidden from traditional observing methods. A fundamental question is whether most of the volume of the granular region is occupied by tangled magnetic fields or has sporadic distinct form of flux tubes.

In this Letter, we study temporal and spatial distributions of THMFs with deep exposure and with a large field of view (FOV). Such long-exposure polarization maps with very wide FOV allow us to obtain global distributions of much weaker horizontal magnetic fields in spatial and time domains. The spatial and temporal distributions would directly address the issues of the hidden magnetism (Trujillo Bueno et al. 2004) and the origin of THMFs.

2. OBSERVATION

A quiet solar region at the disk center was observed with a cadence of 60 s using the Narrowband Filter Imager (NFI) of SOT on 2009 April 25. The FOV is $51'' \times 82''$, and the pixel size is $0.16 (2 \times 2$ summed mode). We continuously take the Stokes I, Q, U, and V images (in total 123 sets) in the blue wing of the Fe i 525.0 nm line with an exposure time of 4.8 s (same as standard SP). The spectral bandwidth of NFI is ~ 100 mÅ. The dark current and the flat-field corrections were performed. Residual crosstalk between the Stokes parameters was removed (Ichimoto et al. 2008). The observation was performed in the shutterless mode, whose modulation scheme is exactly the same as that of SP. The NFI noise level in the Stokes Q and U signals is measured by the standard deviation of each Stokes Q and U images. The spectral bandwidth of NFI is ~ 100 mÅ. The dark current and the flat-field corrections were performed. Residual crosstalk between the Stokes parameters was removed (Ichimoto et al. 2008). The observation was performed in the shutterless mode, whose modulation scheme is exactly the same as that of SP. The NFI noise level in the Stokes Q and U signals is measured by the standard deviation of each Stokes Q and U images.

We summed magnetograms over the whole time sequence. The exposures have constant cadences in 2 hr of observing time, and the total exposure time in the summed magnetograms is 9.8 minutes. This exposure time should be compared with 4.8 s as that of SP. The noise level of the standard SP data is $1.2 \times 10^{-3} I$ for a single wavelength pixel (Ishikawa et al. 2010b). For comparison, assuming that wavelength integration for making a polarization...
map is performed in the range of ~100 mÅ in the blue wing of the Fe \textit{i} 630.25 nm line for SP, the noise level in the wavelength-integrated Stokes \textit{Q} and \textit{U} is $5.4 \times 10^{-4} I$. Thus, the signal-to-noise ratio (S/N) of the summed NFI magnetogram is a factor of $4.6 (= \sqrt{123} \times (5.4 \times 10^{-4})/(1.3 \times 10^{-3}))$ better than that of the standard SP observation. Furthermore, the effective Lande g-factor is 3.0 for the Fe \textit{i} 525.0 nm line and 2.5 for the Fe \textit{i} 630.25 nm line. The polarization sensitivity of the summed NFI magnetogram would be more than 4.6 (21.2 in exposure time) times the standard SP.

$$\sigma(n) = \sigma_0 = 1.0 \times 10^{-3},$$

where n is the number of the LP images ($n = 123$). In Figure 1(b), the regions with summed LP above 1σ, 2σ, and 3σ levels are shown. Thirty percent of the FOV possess LP greater than 1% higher than 1σ (4% greater than 2σ). Do they represent the hidden magnetic fields (Trujillo Bueno et al. 2004)? In Figure 2(c), the pixels with the summed LP $> 1\sigma$ and without any THMF appearance for 2 hr are shown with black, while the pixels with the summed LP $> 1\sigma$ and with one or more THMF appearance are shown with white. We note that the black dot like regions clearly delineate the boundaries of the white regions, where THMFs appear at least once. This

$$\frac{\sigma}{n} = \frac{\sigma_0}{\sqrt{n}},$$

where n is the number of the LP images ($n = 123$). In Figure 1(b), the regions with summed LP above 1σ, 2σ, and 3σ levels are shown. Thirty percent of the FOV possess LP greater than 1% higher than 1σ (4% greater than 2σ). Do they represent the hidden magnetic fields (Trujillo Bueno et al. 2004)? In Figure 2(c), the pixels with the summed LP $> 1\sigma$ and without any THMF appearance for 2 hr are shown with black, while the pixels with the summed LP $> 1\sigma$ and with one or more THMF appearance are shown with white. We note that the black dot like regions clearly delineate the boundaries of the white regions, where THMFs appear at least once. This

3. DEEP LINEAR POLARIZATION MAP

3.1. Spatial Distribution of Linear Polarization

Figure 1(a) shows the map of the circular polarization (CP) summed over the whole observing duration. The FOV has a size that approximately covers one supergranular cell, which is delineated by the scattered vertical network fields. We sum 123 maps of linear polarization, $LP = \sqrt{Q^2 + U^2}/I$ (Figure 1(b)). The deep LP map should potentially show spatial distribution of much weaker horizontal magnetic fields, which have not been detected in the single LP map. The summed LP map clearly shows cellular structures on a scale of $5^\prime-10^\prime$ with voids.

To evaluate the statistical significance of these apparent structures, we here estimate the noise level of the summed LP map. We derive the standard deviation, σ_0 ($\sigma_0 = 1.0 \times 10^{-3}$), of the photon noise of a single LP map from the pixels without any enhanced linear polarization signals. The standard deviation, σ, of the summed LP map is then simply given by $\sigma = \sigma_0/\sqrt{n}$, where n is the number of the LP images ($n = 123$). In Figure 1(b), the regions with summed LP above 1σ, 2σ, and 3σ levels are shown. Thirty percent of the FOV possess LP greater than 1% higher than 1σ (4% greater than 2σ). Do they represent the hidden magnetic fields (Trujillo Bueno et al. 2004)? In Figure 2(c), the pixels with the summed LP $> 1\sigma$ and without any THMF appearance for 2 hr are shown with black, while the pixels with the summed LP $> 1\sigma$ and with one or more THMF appearance are shown with white. We note that the black dot like regions clearly delineate the boundaries of the white regions, where THMFs appear at least once. This

3.2. Occurrence Map of THMFs

Does the cellular distribution in Figure 1(b) consist of isolated sporadic THMFs or weaker magnetic fields, which persist longer? To answer this question, we pick up THMFs from the individual LP maps. The appearance of a THMF is defined by a timing when the area with LP $> 3\sigma_0$ becomes larger than 4 pixels. We track the thus-identified THMF as long as LP $> 3\sigma_0$. Except for the area threshold of 4 pixels used to identify the start of an event, there is no area threshold during the subsequent tracking. Thirty-seven percent of the FOV in the summed map are pixels where THMFs occurred over the course of the observations.

We also investigate how many THMFs appear in the same pixel during 2 hr. In 67% of the pixels that possess at least one THMF, THMFs appear once, and in 24% THMFs appear twice. In this case, two THMFs separated in time appear during the observing time of 2 hr. Figure 2(b) represents the number of occurrences in the small area indicated with the box in Figure 1. The black area corresponds to the region where no THMFs appear during 2 hr. In the occurrence map (Figure 2(b)), the cellular structure on a scale of $\sim 10^\prime$ is identified and the structure is similar to that of the summed LP map in Figure 2(a). Figure 3(a) shows histograms of the 2 hr summed LP map. Each line represents the LP distribution for pixels with different numbers of THMF appearances. Here, we focus on the summed LP histogram for pixels without any THMF appearance shown with dashed line. In spite of no appearance of THMFs, 16% of such pixels possess the summed LP greater than 1σ (4% greater than 2σ). Do they represent the hidden magnetic fields (Trujillo Bueno et al. 2004)? In Figure 2(c), the pixels with the summed LP $> 1\sigma$ and without any THMF appearance for 2 hr are shown with black, while the pixels with the summed LP $> 1\sigma$ and with one or more THMF appearance are shown with white. We note that the black dot like regions clearly delineate the boundaries of the white regions, where THMFs appear at least once. This
indicates that these black pixels are also occupied by THMFs, but their LP does not reach the 3σ threshold. In the summed LP map, we do not find any signature of weak extended horizontal magnetic fields. Instead, the structure seen in the deep-exposure map consists of individual isolated THMFs. The peak of the histogram in Figure 3(a) is shifted toward higher LP with an increasing number of THMF appearances. This indicates that the regions with multiple appearances of THMFs have higher LP. Examples of such multiple appearances are found at positions $[10'', 6'']$ and $[14'', 15'']$ in Figure 2(b). On the other hand, the number of occurrences is not necessarily high in the pixels even with high summed LP. This is consistent with the fact that the LP histograms overlap with LP > 0.22% regardless of different numbers of THMF occurrences (Figure 3(a)). For instance, at $[7'', 10'']$ in Figure 2(b), even though the 2 hr summed LP is high, the number of occurrences is 1. In such regions, THMFs with long lifetimes or with higher linear polarization signals would appear. We confirm that regions with statistically significant summed LP essentially have an isolated THMF at least once for 2 hr of observation time.

3.3. Relation with Photospheric Horizontal Flow

In the previous two sections, we show that the regions where THMFs appear have structures on a scale of $5''$–$10''$, which is larger than a typical granule size. In this section, we compare the summed LP map with the photospheric flow pattern with a spatial scale larger than that of granules. We apply a subsonic filter to the time series of Stokes I images with a cutoff velocity at 10 km s$^{-1}$ (Title et al. 1989). From these filtered images, we
obtain the horizontal flow velocity using the local correlation technique (e.g., November & Simon 1988; Shine et al. 2000). This technique compares the small subfields in each image with those in the subsequent image and obtains the displacement that provides the best correlation. The small subfields are defined by the apodization window with a Gaussian function. The choice of the FWHM of the apodization window should depend on the spatial scale of what we want to track. For the present work we use an FWHM of 1′6 (Okamoto et al. 2009), and the derived velocity maps are averaged over the whole time sequence to measure the horizontal flow with scale size larger than the granular flow in temporal and spatial domains.

Figure 1(c) represents the horizontal flow field plotted over the divergence map ($\nabla \cdot v = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y}$). The positive divergence is distributed with a scale of $5′$–$10′$ and corresponds to mesogranules (e.g., Shine et al. 2000). Comparing Figure 1(b) with (c), it appears that the LP avoids the region with the positive divergence (see the animation corresponding to Figure 1). Figure 3(b) represents the relationship between the LP signals summed over 2 hr and the divergence of the horizontal flow field. We find a weak dependence of LP on the divergence: pixels with weak LP signals appear to have a positive divergence, while pixels with strong LP signals appear to have a negative divergence. The LP signals are essentially concentrated on the negative divergence area, which corresponds to the boundary of mesogranules. On the other hand, we do not find any relationship between the summed LP and the rotation of the horizontal flow field.

3.4. Azimuth Distribution

In Figure 2(e), we plot the azimuth directions of THMFs when the area of each THMF becomes the largest through their time evolution. When multiple THMFs appear at different times at the same position, the lines showing the azimuth direction of each THMF overlap. We find no coherent magnetic field lines extending to a mesogranular scale. Furthermore, even though THMFs appear several times, the azimuth directions seem to be random. These results would suggest that there are no coherent magnetic fields on a mesogranular scale. Thus, even if such magnetic fields exist, the field strength is too weak to maintain its memory to the surface.

3.5. Temporal Distribution

In this section, we examine whether there is any typical timescale for the THMF appearance. As we described in Section 3.2, 37% of the pixels throughout the FOV possess THMFs, and THMFs appear twice in 24% of the pixels that have THMFs at least once. In Figure 3(c), the solid line represents the time intervals between the first and second THMF appearances at each pixel in which the THMF appears twice for 2 hr. We find a strong peak at 2–4 minutes. THMFs have lifetimes ranging from 1 minute to 10 minutes (Ishikawa & Tsuneta 2009a), and this peak would originate from the false identification of THMFs with LP close to the detection threshold. We normalize the histogram by the total number of pixels with time intervals of two THMFs longer than 10 minutes. Over 10 minutes, the distributions do not show any peak. For comparison, as summarized by Leitzinger et al. (2005), the lifetime of the mesogranules ranges from 30 minutes to 6 hr depending on analyses, while the turnover time of granules is believed to be of the order of 1000 s. Though our observing time is limited to 2 hr, we do not see any signature associated with these timescales of the flow field.

Dashed lines show the distribution of time intervals when THMFs randomly appear twice for 2 hr. To put two balls (THMFs) into 123 linearly numbered boxes (time bins) $123 \times 2 = 7503$ combinations are possible in total, and we measure the intervals of two balls for all cases. This corresponds to the case of random distribution (the dashed line in Figure 3(c)). There is a remarkable coincidence between the measured interval of THMFs and the interval of the random distribution. This shows that the multiple appearances of THMF are independent, i.e., random, and are not causally related. Appearances of THMFs are organized by mesogranular velocity field in spatial domain, but are random in time domain.

4. DISCUSSIONS

We have analyzed the vector magnetograms taken at Fe1 525.0 nm with long exposure time to investigate spatial and temporal distributions of THMFs. We find that the deep-exposure LP map has a clear cellular structure with a spatial scale of $5′$–$10′$. Although we anticipate with its better S/N that such an LP map allows us to detect weak polarization signals possibly extended in temporal and spatial domains, we do not find any such structure. Instead, we demonstrate in this Letter that such a summed LP map essentially represents the occurrence distribution of THMFs, which we see in much shorter exposure LP maps. We infer that, in the quiet Sun, isolated horizontal flux tubes exist in the essentially field-free regions. Such isolated flux tubes are sporadically (intermittently) observed as THMFs in the photosphere.

We compare the deep-exposure LP map with the photospheric horizontal flow field and find a correlation between the flow field and the distribution of LP: the regions abundant in LP coincide in position with negative divergence areas. Since $\nabla \cdot v = \nabla \cdot v_{\parallel} + \nabla \cdot v_{\perp}$, this negative divergence area is the region with downflow, corresponding to the boundary of the mesogranules. Interestingly, THMFs do not appear in the intergranular lanes where the downflow dominates (Centeno et al. 2007; Ishikawa & Tsuneta 2009b). The location of THMFs is restricted to the downflow region of mesogranules, although the appearance of THMFs would be driven by the granular upward motion.

The azimuth directions of THMFs appear to be random on a mesogranular scale. When THMFs appear more than once, their azimuth directions and the time interval are random. The random appearance of THMFs in time may not be consistent with a scenario of observed horizontal magnetic fields simply being maintained by recycling (without any dynamo process) of magnetic fields in the granular convective motions: the emerged horizontal magnetic fields do not come back to the convection zone and are not subject to recycling and subsequent emergence. Instead, they reach above the photosphere as suggested by Martínez González & Bellot Rubio (2009) and Ishikawa et al. (2010).

The mesogranular pattern was also found for vertical magnetic elements (e.g., de Wijn et al. 2005). Lites et al. (2008) reported from a single SOT/SP snap shot that the linear polarization signal as well as circular one is organized on a scale of $5′$–$10′$. Are both the vertical magnetic fields and THMFs transported to the mesogranular boundaries with the same mechanism? Such a concentrated circular polarization signal may be at least partially contributed by the footpoints of THMFs found in the mesogranular boundaries. Domínguez Cerdeña (2003) simulated the motion of corks advected by the observed flow velocity field and found that the observed vertical magnetic
elements have a distribution similar to that of the corks (meso-granular concentration). One difference between the two cases (vertical versus horizontal) is that the vertical magnetic fields tend to be pinned down and can stay in the granular and meso-granular downflow regions, while the horizontal fields may be subject to the continuous turnover motion. Indeed, no THMFs appear in the intergranular lanes, while we find elemental vertical flux tubes in the intergranular lanes.

If THMFs are transported by the mesogranular flow and somehow stay in the mesogranular downflows, these THMFs should have had more uniform azimuthal distribution. In fact, there is no correlation in the azimuthal angles of THMFs. The mean field strength of THMFs is comparable to the equipartition field strength (B_{eq}) corresponding to the granular motion and is much stronger than B_{eq} corresponding to the mesogranular flow velocity of 300–500 m s$^{-1}$ (see Table 1 in Leitzinger et al. 2005). This may make the transport of the THMFs with mesogranular flow difficult. These considerations indicate that THMFs are not advected like the vertical magnetic fields.

Then, why do we see such clear concentrations of THMFs around the boundaries of mesogranules? Any dynamo mechanism needs seed magnetic fields. Such seed fields with field strength less than the mesogranular B_{eq} may be easily advected to the boundaries of mesogranulation, and a local dynamo mechanism amplifies the field strength from mesogranular B_{eq} to granular B_{eq}. The local dynamo process can occur anywhere due to the ubiquitous granular motion. But, the seed fields are provided to the mesogranular boundaries by the mesogranular flow field.

As a last note, we have not discussed something important, namely, the relationship between THMFs and supergranulation. The lack of the observations is due to the limitation of the FOV in this particular observation (Figure 1(a)). In order to obtain the supergranular flow pattern by smoothing out the granulation and the mesogranulation, a longer observation and a larger FOV are necessary (Shine et al. 2000). This is left to future Hinode and/or ground-based observations.

Our observation belongs to the Hinode Operation Plan (HOP) 71, supported by K. Ichimoto, R. A. Shine, and T. J. Okamoto. The authors thank V. Martínez Pillet for a stimulating discussion. Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as a domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in cooperation with ESA and NSC (Norway).

REFERENCES

Bellot Rubio, L. R. 2003, in ASP Conf. Ser. 307, Solar Polarization, ed. J. Trujillo-Bueno & J. Sanchez Almeida (San Francisco, CA: ASP), 301
Centeno, R., et al. 2007, ApJ, 666, L137
de Wijn, A. G., et al. 2005, A&A, 441, 1183
Dominguez Cerdeña, I. 2003, A&A, 412, L65
Ichimoto, K., et al. 2008, Sol. Phys., 249, 233
Ishikawa, R., & Tsuneta, S. 2009a, A&A, 495, 607
Ishikawa, R., & Tsuneta, S. 2009b, in ASP Conf. Ser. 415, Hinode 2, ed. B. Lites et al. (San Francisco, CA: ASP), 132
Ishikawa, R., Tsuneta, S., & Jurčák, J. 2010, ApJ, 713, 1310
Ishikawa, R., et al. 2008, A&A, 481, L25
Ito, H., Tsuneta, S., Shiota, D., Tokumaru, M., & Fukui, K. 2010, ApJ, in press
Kosugi, T., et al. 2007, Sol. Phys., 243, 3
Leitzinger, M., et al. 2005, A&A, 444, 245
Lites, B. W., et al. 2008, ApJ, 672, 1237
Martínez González, M. J., & Bellot Rubio, L. R. 2009, ApJ, 700, 1391
November, L. J., & Simon, G. W. 1988, ApJ, 333, 427
Okamoto, T. J., et al. 2009, ApJ, 697, 913
Orozco Suárez, D., et al. 2007, ApJ, 670, L61
Shine, R. A., Simon, G. W., & Hurlburt, N. E. 2000, Sol. Phys., 193, 313
Titte, A. M., Tarbell, T. D., Topka, K. P., Ferguson, S. H., & Shine, R. A. (SOUP Team) 1989, ApJ, 336, 475
Trujillo Bueno, J., Schuckina, N., & Asensio Ramos, A. 2004, Nature, 430, 326
Tsuneta, S., et al. 2008a, Sol. Phys., 249, 167
Tsuneta, S., et al. 2008b, ApJ, 688, 1374