On the Initial Algebra and Final Co-algebra of some Endofunctors on Categories of Pointed Metric Spaces

Annanthakrishna Manokarana, Romaine Jayewardeneb, Jayampathy Ratnayakeb

aDepartment of Mathematics and Statistics, University of Jaffna, Jaffna, Sri Lanka
bDepartment of Mathematics, University of Colombo, Colombo 3, Sri Lanka

Abstract

We consider two endofunctors of the form $F: X \rightarrow M \otimes X$, where M is a non degenerate module, related to the unit interval and the Sierpinski gasket, and their final co-algebras. The functors are defined on the categories of bi-pointed and tri-pointed metric spaces, with continuous maps, short maps or Lipschitz maps as the choice of morphisms.

First we demonstrate that the final co-algebra for these endofunctors on the respective category of pointed metric spaces with the choice of continuous maps is the final co-algebra of that with short maps and after forgetting the metric structure is of that in the set setting. We use the fact that the final co-algebra can be obtained by a Cauchy completion process, to construct the mediating morphism from a co-algebra by means of the limit of a sequence obtained by iterating the co-algebra. We also show that the Sierpinski gasket (S, σ) is not the final co-algebra for these endofunctors when the morphism is restricted to being Lipschitz maps.

1. Introduction

This paper considers the initial algebra and final co-algebra for two particular endofunctors $F_i: C \rightarrow C$, where C is the category of i-pointed metric spaces with continuous maps (\textit{MS}_i^C), short maps (\textit{MS}_i^S) or Lipschitz maps (\textit{MS}_i^L), and $i = 2, 3$. The two functors are based on the unit
interval $[0, 1]$ and the Sierpinski gasket. These definitions are motivated by [6] and have been considered previously in [4] and [5]. We need some definitions to start.

A bi-pointed set is a set having two distinguished elements. We denote such a set by a triple (X, \top, \bot), where \top and \bot are the two distinguished elements. In a similar manner, a tri-pointed set, denoted by a quadruple (X, T, L, R), consists of a set and three distinguished elements. We will often omit the distinguished points from the description of the set and simply write “Let X be a tri-pointed set...”. To differentiate distinguished points of two (or more) i-pointed sets X and Y, we will use subscripts, such as \bot_X and \top_Y for \bot of X and \top of Y respectively (in the case of $i = 2$).

One can similarly define an i-pointed set for any $i \in \mathbb{N}$. There is a category of i-pointed sets, Set_i, whose objects are i-pointed sets and morphisms are functions which preserve the distinguished elements. An i-pointed metric space (X, d) is an i-pointed set $X = (X, x_1, \ldots, x_i)$ equipped with a one-bounded metric ($d(x, y) \leq 1$ $\forall x, y \in X$) such that the distance between any pair of distinguished elements is 1. The class of i-pointed metric spaces can be raised to the categories MS_i^S, MS_i^L and MS_i^C, where the morphisms are respectively short maps, Lipschitz maps and continuous maps that preserves the distinguished elements. Note that MS_i^L and MS_i^S are subcategories of MS_i^C, MS_i^S is a subcategory of MS_i^L and all these three categories (MS_i^S, MS_i^L, MS_i^C) are subcategories of Set_i. In this paper we will consider only the cases $i = 2$ and $i = 3$.

The functors F_i were defined, for example, in [4], and we invite the reader to refer it for details. The functors F_i are defined at the level of Set_i by $F_i X_i = M_i \otimes X_i$, for a particular set M_i. Here $M_i \otimes X_i$ is the set of equivalence classes of a particular equivalence relation defined on $M_i \times X_i$. We will denote the equivalence class of an element $(m, x) \in M_i \times X_i$ by $m \otimes x$. Details for the two cases $i = 2$ and $i = 3$ are given below.

For the bi-pointed case, we take $M_2 = \{l, r\}$ and consider the equivalence relation on $M_2 \times X$ generated by the relation $(l, \top) \sim (r, \bot)$. The set $M_2 \otimes X$ is lifted to a bi-pointed set by choosing $l \otimes \bot$ and $r \otimes \top$ as $\bot_{M_2 \otimes X}$ and $\top_{M_2 \otimes X}$ respectively. This description is based on Freyd’s description of the unit interval $[0, 1]$ as a final co-algebra (see [4]).
For the tri-pointed case, we take $M_3 = \{a, b, c\}$ and consider the equivalence relation on $M_3 \times X$ generated by the relations $(b, T) \sim (a, L)$, $(a, R) \sim (c, T)$ and $(c, L) \sim (b, R)$. The set $M_3 \otimes X$ is lifted to a tri-pointed set by choosing $a \otimes T$, $b \otimes L$ and $c \otimes R$ as $T_{M_3 \otimes X}$, $L_{M_3 \otimes X}$ and $R_{M_3 \otimes X}$ respectively. This description glues three copies of X as shown in the diagram and is based on the Sierpinski gasket (see [4]).

Given a morphism $f : X \to Y$ of i-pointed sets, $F_i f : M_i \otimes X \to M_i \otimes Y$ is given by $F_i f(m \otimes x) = m \otimes f(x)$. This definition makes F_i an endofunctor on \textbf{Set}_i. One can easily verify that $F_i f$ preserves the distinguished elements. For example, in the bi-pointed case we have $F_2 f(l \otimes \bot_X) = l \otimes f(\bot_X) = l \otimes \bot_Y$ and $F_2 f(r \otimes \top_X) = r \otimes f(\top_X) = r \otimes \top_Y$.

Moreover, the above definitions give rise to endofunctors on \textbf{MS}_i^S, \textbf{MS}_i^L and \textbf{MS}_i^C, where $i = 2, 3$; which we also identify by F_i, as follows. First, for a given i-pointed metric space (X_i, d), $M_i \times X_i$ is given the metric

$$d((m, x), (n, y)) = \begin{cases} \frac{1}{2}d(x, y), & m = n; \\ 1, & m \neq n. \end{cases}$$

We now consider the quotient metric on $M_i \otimes X_i$. Though the quotient metric in general is only a pseudo-metric, in our case it is indeed a metric and the distance between two elements can be computed explicitly as follows (see [4] for proofs).
Lemma 1. The distance $d(m \otimes x, n \otimes y)$ is calculated by the following formulas.
For the bi-pointed case:

$$d(m \otimes x, n \otimes y) = \begin{cases}
\frac{1}{2}d(x, y), & m = n; \\
\frac{1}{2}d(x, T) + \frac{1}{2}d(\perp, y), & m \neq n.
\end{cases}$$

For the tri-pointed case:

$$d((a \otimes x), (a \otimes y)) = \frac{1}{2}d(x, y)$$

$$d((a \otimes x), (b \otimes y)) = \frac{1}{2}\min\{d(x, L) + d(T, y), d(x, R) + 1 + d(R, y)\}$$

A formula similar to the last one holds for other cases of a, b with $a \neq b$.

Given a $(i$-pointed) metric space (X_i, d), we use the same letter d to identify the metrics on $M \times X_i$ and $M \otimes X_i$, since it is understood from the context to which d we refer.

Consider the bi-pointed case. Clearly, by definition, the metric on $M_2 \otimes X_2$ is one bounded and $d(l \otimes \perp, r \otimes T) = 1$. Therefore $M_2 \otimes X_2$ is a bi-pointed metric space and hence $(M_2 \otimes X_2, d)$ is an object in the category of bi-pointed metric spaces with any choice of morphisms (Lipschitz, short or continuous). One can similarly verify that $M_3 \otimes X$ is a tri-pointed metric space with the metric given in Lemma 1.

To define F_i on the categories MS_i^C, MS_i^L and MS_i^S, one needs to show that it acts on morphisms in the expected way. What we need follows from i, ii and iii of the following lemma.

Lemma 2. Let X and Y be two i-pointed metric spaces. If $f : X \to Y$ has any of the following properties then so does $F_i f$.

i). Continuous

ii). Lipschitz

iii). Short map

iv). Isometric embedding
Proof. (i). Let $\epsilon > 0$ be arbitrary. Since f is continuous, $\exists \delta > 0$ such that $d(f(x), f(y)) < \epsilon$, whenever $d(x,y) < \delta$. Choose $\delta_0 = \min\{\delta, \frac{1}{4}\}$.

Suppose that $d_\mathcal{M}X(a \otimes x, b \otimes y) < \delta_0$. Then we have $d_X(x, L_X) < \delta$ and $d_X(y, T_X) < \delta$. By the continuity of f we have $d_Y(f(x), f(L_X)) < \epsilon$ and $d_Y(f(y), f(T_X)) < \epsilon$. Thus, $d_\mathcal{M}Y(F_i f(a \otimes x), F_i f(b \otimes y)) < \epsilon$, which is the required condition for $F_i f$ to be continuous. This completes the proof.

(ii). Let f be a Lipschitz continuous function with the Lipschitz constant k. Note that

$$
\min\{d(f(x), L) + d(T, f(y)) \, , \, d(f(x), R) + 1 + d(R, f(y))\}
= \min\{d(f(x), f(L)) + d(f(T), f(y)) \, , \, d(f(x), f(R)) + 1 + d(f(R), f(y))\}
\leq \min\{kd(x, L) + kd(T, y) \, , \, kd(x, R) + kd(T, L) + kd(R, y)\}
= k \min\{d(x, L) + d(T, y) \, , \, d(x, R) + d(T, L) + d(R, y)\}
$$

Therefore,

$$
d(F_3 f(a \otimes x), F_3 f(b \otimes y)) = d(a \otimes f(x), b \otimes f(y)) \leq kd(a \otimes x, b \otimes y)
$$

This completes the proof.

(iii) is proved in [4] and the proof of (iv) is similar to that of (ii). □

One can now define endofunctors F_i on \mathcal{MS}_i^S, \mathcal{MS}_i^C and \mathcal{MS}_i^L, as supported by Lemma 2.

Authors of [4] have computed the initial algebra (G_i, h_i) and the final co-algebra (S_i, ψ_i) of F_i on \mathcal{MS}_i^S and they have shown that the final co-algebra is obtained by the Cauchy completion of the initial algebra. It turns out that the initial algebra and the final co-algebra of F_i on \mathcal{Set}_i are the same as that of F_i on \mathcal{MS}_i^S after forgetting the metric structure. Moreover, [4] exhibits a bi-Lipschitz isomorphism between two co-algebras of F_3 on \mathcal{MS}_3^L, one being the Sierpinski gasket, and raises the question whether either of these co-algebras of F_3 is the final co-algebra for the endofunctor F_3 on \mathcal{MS}_3^L. This study was initiated based on this question.

Our contribution is in two directions. In Section 2, we show that the final co-algebra of F_i on \mathcal{MS}_i^S is same as that on \mathcal{MS}_i^C. Along the way we show
how the mediating morphism from a co-algebra to the final co-algebra can be obtained by the limit of a sequence obtained by iterating the co-algebra. In Section 3 we show that the initial algebra of \(F_i \) on \(\text{MS}^S_i \) is not the initial algebra of \(F_i \) on \(\text{MS}^C_i \). We still do not know whether the initial algebra of \(F_i \) on \(\text{MS}^C_i \) exists. Moreover, in Section 4, we show that the final co-algebra and initial algebra of \(F_i \) on \(\text{MS}^S_i \) are not the final co-algebra and initial algebra of \(F_i \) on \(\text{MS}^L_i \). In the case of \(F_i \) on \(\text{MS}^L_i \), we do not know whether the final co-algebra and initial algebra exist. However, the results suggests a negative answer to the question that was raised in [4], and mentioned in the above paragraph.

2. Final co-algebra for \(F_i \) on \(\text{MS}^C_i \)

In this section we consider \(F_i \) defined on \(\text{MS}^C_i \). Authors of [4] have computed the initial algebra and final co-algebra of the endofunctor \(F_i \) on \(\text{MS}^S_i \) and shown that the final co-algebra is given by the Cauchy completion of the initial algebra. Let us briefly recall how this is done. Consider the following initial chain starting from the initial object \(I \), where all the maps are isometric embeddings.

\[
\begin{align*}
I & \rightarrow M_i \otimes I \\
M_i \otimes I & \rightarrow M_i^2 \otimes I \\
M_i^2 \otimes I & \rightarrow M_i^3 \otimes I \\
& \vdots \\
M_i^n \otimes I & \rightarrow M_i^{n+1} \otimes I \\
& \vdots
\end{align*}
\]

Take \(C = \bigcup M_i^n \otimes I \). Define a relation on \(C \) as follows. Let \(x, y \in C \). Then \(x \in M_i^r \otimes I \) and \(y \in M_i^s \otimes I \) for some \(r, s \). Without lost of generality take \(s > r \). The relation is defined by \(x \approx y \) iff \(f(x) = y \); where \(f = M_i^{s-1} \otimes ! \circ \cdots \circ M_i^{r} \otimes ! \). Let \(\sim \) be equivalence closure of \(\approx \). Take \(G = C/\sim \). This \(G \) is the colimit of the above chain and also the carrier set of the initial algebra. The morphisms arising in the colimit are given by \(C_n : M_i^n \otimes I \rightarrow G \), where \(C_n(x) = [x] \), which are isometric embeddings. By Adamek’s Theorem (see [2]) the initial algebra is given by \((G, g : M_i \otimes G \rightarrow G) \), where \(g : M_i \otimes G \rightarrow G \) is given by \(g(m \otimes [x]) = [m \otimes x] \). The carrier set of the final co-algebra is the Cauchy completion of \(G \) which we denote by \(S \). Throughout this paper we will consider \(G \) as a dense subset of the complete metric space \(S \).

Authors of [4] have also shown that the initial algebra and final co-algebra of \(F_i \) on \(\text{Set}_i \) are the same as that of \(F_i \) on \(\text{MS}^S_i \), leaving out the metric structure. One can make use of this fact to compute the mediating morphism.
at the set level from a given co-algebra to the final coalgebra, as the limit of a sequence. We demonstrate it for the tri-pointed case, as the construction for the bi-pointed case is similar. Let \((X, e)\) be any co-algebra for \(F_3\) on \(\text{Set}_3\), where \(e\) is a set function. By iterating this coalgebra, we obtain the following chain.

\[
X \xrightarrow{e} M_3^0 \otimes X \xrightarrow{M_3^0 \otimes e} M_3^2 \otimes X \xrightarrow{M_3^2 \otimes e} M_3^3 \otimes X \cdots M_3^{n-1} \otimes X \xrightarrow{M_3^{n-1} \otimes e} M_3^n \otimes X \cdots
\]

Set \(M_3^0 \otimes X = X\) and \(M_3^0 \otimes e = e\). For an \(x \in X\), we can iterate this \(x\) and obtain the sequence \((\chi_n)_{n=0,1,\ldots}\) such that \(\chi_n = m_1 \otimes m_2 \otimes \ldots \otimes m_n \otimes x_n \in M_3^n \otimes X\), given by \(\chi_0 = x\), \(\chi_1 = M_3^0 \otimes e(\chi_0) = e(x)\) and \(\chi_n\) is given inductively by \(\chi_n = M_3^{n-1} \otimes e(\chi_{n-1}) = M_3^{n-1} \otimes e(m_1 \otimes m_2 \otimes \ldots \otimes m_{n-1} \otimes x_{n-1})\). Then we have a corresponding sequence \((\theta_n)\) in \(G\) as follows. \(\theta_1 = [m_1 \otimes \overline{x_1}]\), \(\theta_2 = [m_1 \otimes m_2 \otimes \overline{x_2}], \theta_3 = [m_1 \otimes m_2 \otimes m_3 \otimes \overline{x_3}], \ldots\); where \(\overline{x_i}\) is chosen to be \(T\) or \(L\) or \(R\) provided that the value of \(m_i\) is \(a\) or \(b\) or \(c\) respectively. Since \(G\) is also the carrier set arising in the initial algebra of \(F_i\) on \(\text{MS}_i\), it has a metric structure. Now we shall prove that the sequence \((\theta_n)\) is a Cauchy sequence in \(G\).

Let \(\epsilon > 0\) and choose \(N \in \mathbb{N}\) such that \(N > \frac{\ln \frac{1}{2}}{\ln 2}\). Now for \(q > p > N\), consider \(d_G(\theta_p, \theta_q) = d_G([m_1 \otimes \cdots \otimes m_p \otimes \overline{x_p}], [m_1 \otimes \cdots \otimes m_q \otimes \overline{x_q}]\). The right side of this equality is equal to \(d_G([m_1 \otimes \cdots \otimes m_p \otimes l_{p+1} \otimes \cdots \otimes l_q \otimes \overline{y_q}], [m_1 \otimes \cdots \otimes m_q \otimes \overline{x_q}]\); where \(m_1 \otimes \cdots \otimes m_p \otimes l_{p+1} \otimes \cdots \otimes l_q \otimes \overline{y_q} \sim m_1 \otimes \cdots \otimes m_q \otimes \overline{x_q}\). As \(C_q\) defined above is an isometric embedding, \(d_G([m_1 \otimes \cdots \otimes m_p \otimes l_{p+1} \otimes \cdots \otimes l_q \otimes \overline{y_q}], [m_1 \otimes \cdots \otimes m_q \otimes \overline{x_q}]\) is equal to \(d_{M \otimes l}([m_1 \otimes \cdots \otimes m_p \otimes l_{p+1} \otimes \cdots \otimes l_q \otimes \overline{y_q}, m_1 \otimes \cdots \otimes m_q \otimes \overline{x_q}]\) which is less than or equal to \(\frac{1}{2^q}\) (see Lemma 15 of [4]). But \(\frac{1}{2^q} < \frac{\epsilon}{2^p} < \epsilon\). Thus we have \(d_G(\theta_p, \theta_q) < \epsilon\) which is the required condition for \((\theta_n)\) to be a Cauchy sequence. Thus one can consider the limit \(\lim_{n \to \infty} \theta_n\) in \(S\).

Lemma 3. \(\lim_{n \to \infty} \theta_n\) is independent of the choice of the sequence \((\chi_n)\).

Proof. Suppose we consider two choices for \(\chi_n; \chi_n = m_1 \otimes m_2 \otimes \cdots \otimes m_n \otimes x_n = m'_1 \otimes m'_2 \otimes \cdots \otimes m'_n \otimes y_n\). Thus initially we have \(m_1 \otimes x_1 = m'_1 \otimes y_1\). Without loss of generality take \(m_1 = a\). Then there are two possibilities for \(m'_1\) to be, namely \(b\) or \(c\), and we have \(a \otimes L = b \otimes T\) or \(a \otimes R = c \otimes T\) respectively. Consider the case \(a \otimes L = b \otimes T\). Then the corresponding sequences \(\theta_n, \theta'_n \in G\) given by \(\theta_1 = [a \otimes L], \theta_2 = [a \otimes b \otimes L], \theta_3 = [a \otimes b \otimes \cdots \otimes b \otimes L], \ldots\). 7
and \(\theta'_1 = [b \otimes T], \theta'_2 = [b \otimes a \otimes T], \theta'_n = [b \otimes a \otimes \cdots a \otimes T], \cdots \) are equal. Similarly we can show \(\theta_n = \theta'_n \) for the other cases. Thus their limits are the same.

Thus one can define a function \(f : X \rightarrow S \) by \(f(x) = \lim_{n \rightarrow \infty} \theta_n \), which is well defined according to the above lemma.

Proposition 1. The mediating morphism \(f \) for a given co-algebra is given by \(f(x) = \lim_{k \rightarrow \infty} \theta_k \).

Proof. We only need to prove that \((M_i \otimes f) \circ e = \psi \circ f\) to show that the following diagram commutes, where \(\psi : S \rightarrow M \otimes S \) is given by \(\psi([m_1 \otimes \cdots \otimes m_k \otimes \overline{x}_k]) = m_1 \otimes [m_2 \otimes \cdots \otimes m_k \otimes \overline{x}_k] \). Notice that \(S \) is the Cauchy completion of the \(G \) and we consider \(G \) as the dense subset of \(S \). Thus \(\psi \) found in [4] is written above form.

\[
\begin{array}{ccc}
X & \xrightarrow{e} & M_i \otimes X \\
\downarrow f & & \downarrow M_i \otimes f \\
S & \xrightarrow{\psi} & M_i \otimes S
\end{array}
\]

For \(x \in X \) and \(e(x) = m_1 \otimes x_1 \), \((M_i \otimes e)(m_1 \otimes x_1) = m_1 \otimes m_2 \otimes x_2, \cdots \). Then we have \(f(x) = \lim_{k \rightarrow \infty} [m_1 \otimes \cdots \otimes m_k \otimes \overline{x}_k] \) and \(f(x_1) = \lim_{k \rightarrow \infty} [m_2 \otimes \cdots \otimes m_k \otimes \overline{x}_k] \). Now \(\psi(f(x)) = \psi\left(\lim_{k \rightarrow \infty} [m_1 \otimes \cdots \otimes m_k \otimes \overline{x}_k]\right) = \lim_{k \rightarrow \infty} \psi([m_1 \otimes \cdots \otimes \overline{x}_k]) = \lim_{k \rightarrow \infty} (m_1 \otimes [m_2 \otimes \cdots \otimes m_k \otimes \overline{x}_k]) \). Now \(M_i \otimes fe(x) = M_i \otimes f(m_1 \otimes x_1) = m_1 \otimes f(x_1) \) which is equal to \(m_1 \otimes \lim_{k \rightarrow \infty} [m_2 \otimes \cdots \otimes m_k \otimes \overline{x}_k] \). But \(m_1 \otimes \lim_{k \rightarrow \infty} \theta_k = \lim_{k \rightarrow \infty} m_1 \otimes \theta_k \). Thus the above diagram commutes.

Now suppose that \((X,e)\) is an \(F_i \) co-algebra on \(MS^C_i \). Then leaving out the metric structure, we can calculate the mediating morphism at the set level as given above. The following lemma states that this mediating morphism \(f \) is continuous in the metric setting for both the bi-pointed case and the tri-pointed case. We prove only the tri-pointed case as the bi-pointed case is similar.

Proposition 2. Let \(I \) be the initial object and \(X \) be any object in the category \(MS^C_i \). Let \(\mu \) be the unique morphism \(\mu : I \rightarrow X \) (by initiality condition). Then \(\mu \) and all \(M^n_i \otimes \mu \)'s are isometric embeddings.
Proving μ is an isometric embedding is straightforward. The other part follows from Lemma 2.

Lemma 4. The mediating morphism f, defined above, is continuous.

Proof. Let $x \in X$ and $\epsilon > 0$ be arbitrary. From the definition of f we have
$$d_S(f(x), f(y)) = \lim_{p \to \infty} d_G([m_1 \otimes \cdots \otimes m_p \otimes x_p], [n_1 \otimes \cdots \otimes n_p \otimes y_p]).$$
Therefore, there is some $N \in \mathbb{N}$ such that
$$d_S(f(x), f(y)) - \frac{\epsilon}{4} < d_G([m_1 \otimes \cdots \otimes m_p \otimes x_p], [n_1 \otimes \cdots \otimes n_p \otimes y_p])$$
for all $p > N$ and for all $y \in X$. Choose $p = \max\left\{N + 1, \frac{\ln 4}{\ln 2}\right\}$. Denote $g_p = M_p^{-1} \otimes e \circ \cdots \circ M_1 \otimes e \circ e$. Because g_p is continuous at x, $\exists \delta_p > 0$ such that $d_{M_p \otimes I}(g_p(x), g_p(y)) < \frac{\epsilon}{4}$ whenever $d(x, y) < \delta_p$. Suppose that $d(x, y) < \delta_p$. Then we have

$$d_S(f(x), f(y)) < \frac{\epsilon}{4} + d_{M_p \otimes I}([m_1 \otimes \cdots \otimes m_p \otimes x_p], [n_1 \otimes \cdots \otimes n_p \otimes y_p])$$

$$=[\because M_p \otimes I \xrightarrow{C_p} G \text{ isometric embedding}]$$

$$= \frac{\epsilon}{4} + d_{M_p \otimes X}([m_1 \otimes \cdots \otimes m_p \otimes x_p, n_1 \otimes \cdots \otimes n_p \otimes y_p])$$

$$=[\because M_p \otimes I \xrightarrow{M_p \otimes \mu} M_p \otimes X \text{ isometric embedding}]$$

$$\leq \frac{\epsilon}{4} + d_{M_p \otimes X}([m_1 \otimes \cdots \otimes m_p \otimes x_p, m_1 \otimes \cdots \otimes m_p \otimes x_p] +$$

$$d_{M_p \otimes X}([m_1 \otimes \cdots \otimes m_p \otimes x_p, n_1 \otimes \cdots \otimes n_p \otimes y_p] +$$

$$d_{M_p \otimes X}([n_1 \otimes \cdots \otimes n_p \otimes y_p, n_1 \otimes \cdots \otimes n_p \otimes y_p])$$

$$\leq \frac{\epsilon}{4} + \frac{1}{2p} + d_{M_p \otimes X}(g_p(x), g_p(y)) + \frac{1}{2p}$$

$$< \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{4} = \epsilon$$

completing the proof. \qed

The mediating morphism is uniquely determined for a given co-algebra (X, e) and hence it is unique. Therefore, (S, ψ) is the final co-algebra of F_i on MS_i^C.

9
Proposition 3. The final co-algebra of F_i on MS^C_i is the same as that of F_i on MS^S_i.

3. The initial algebra of F_i on MS^C_i is not that of F_i on MS^S_i

As the final co-algebra of F_i on MS^C_i is the same as the final co-algebra of F_i on MS^S_i, one may wonder whether a similar result holds for the initial algebra of F_i on MS^S_i and MS^C_i. We give a negative answer to this question by giving a counter example (Example 1). First we need some preliminary results. The initial algebra of F_i on MS^S_i is the same as the initial algebra of F_i on Set^i (see [4]). Lemma 5 given below states a way to compute the mediating morphism at the set level for both the tri-pointed and bi-pointed cases. We will use this later to decide whether the mediating morphism is continuous or Lipschitz. Again, we demonstrate it only for the tri-pointed case, as the bi-pointed case is similar.

Let (X,e) be an algebra for F_3 on Set_3, where e is a set function. Let (G,g) be the initial algebra of F_3 in this setting (See [4]). For $x = [((m_1 \otimes \cdots m_k \otimes d)] \in G$; where $d \in \{T, L, R\}$, $\bar{x} = m_1 \otimes \cdots m_k \otimes d_X$. d_X is chosen corresponding to d. For instance if $d = T$, then $d_X = T_X$.

Now consider the chain $M^k_i \otimes X \xrightarrow{M^k_i \otimes e} M^{k-1}_i \otimes X \cdots M_3 \otimes X \xrightarrow{e} X$. Take $g_k = e \circ M_3 \otimes e \cdots M^{k-1}_3 \otimes e$, and define $f : G \longrightarrow X$ by $f(x) = g_k(\bar{x})$.

Lemma 5. The mediating morphism for a given algebra (X,e) for F_i on Set_i, $i = 2$ or 3, is given by $f(x) = g_k(\bar{x})$, where $g_k = e \circ M_i \otimes e \cdots M^{k-1}_i \otimes e$.

Proof. Let us first prove that f is well defined. Let $[(p_1 \otimes \cdots p_r \otimes d_r)] = [(q_1 \otimes \cdots q_s \otimes d_s)]$. Thus we have $p_1 \otimes \cdots p_r \otimes d_r \sim q_1 \otimes \cdots q_s \otimes d_s$. Without loss of generality take $s > r$ and consider the following initial chain, where 0 is the initial object.

Thus $(M^{s-1}_i \otimes \circ M^{s-2}_i \otimes \cdots \otimes M^{s}_i \circ d_r) = q_1 \cdots \otimes d_s$

Since 0 is the initial object, the following diagram commutes.

$$
\begin{array}{c}
M_i \otimes X \xrightarrow{e} X \\
\uparrow M_i \otimes \eta \quad \quad \quad \uparrow \eta \\
M_i \otimes 0 \xleftarrow{!} 0
\end{array}
$$
and hence by applying $M_i \otimes -$ repeatedly we have the following commuting square.

\[
\begin{array}{c}
M_i^s \otimes X \\
\uparrow M_i^s \otimes \eta \\
M_i^s \otimes 0
\end{array}
\quad
\begin{array}{c}
M_i^r \otimes e \circ M_i^{r+1} \otimes e \circ \cdots \circ M_i^{s-2} \otimes e \circ M_i^{s-1} \otimes e \\
\uparrow M_i^r \otimes \eta \\
M_i^r \otimes 0
\end{array}
\quad
\begin{array}{c}
M_i^r \otimes X
\end{array}
\]

Thus

\[
M_i^r \circ e \circ M_i^{r+1} \circ e \circ \cdots \circ M_i^{s-2} \circ e \circ M_i^{s-1} \circ e(q_1 \otimes \cdots q_s \otimes d_{sX}) = p_1 \otimes \cdots p_r \otimes d_{rX}
\]

Now consider $f[(q_1 \otimes \cdots q_s \otimes d_s)] = e \circ M_i \circ e \circ \cdots \circ M_i^{s-1} \circ e(q_1 \otimes \cdots q_s \otimes d_{sX})$. The right side of this equation is equal to

\[
e \circ M_i \circ e \circ \cdots \circ M_i^{s-1} \circ e(M_i^r \circ e \circ \cdots \circ M_i^{s-1} \circ e(q_1 \otimes \cdots q_s \otimes d_{sX}))
\]

which is equal to $e \circ M_i \circ e \circ \cdots \circ M_i^{r-1} \circ e(p_1 \otimes \cdots p_r \otimes d_{rX}) = f[(p_1 \otimes \cdots p_r \otimes d_r)]$. Thus $f[(q_1 \otimes \cdots q_s \otimes d_s)] = f[(p_1 \otimes \cdots p_r \otimes d_r)]$ and therefore f is well defined.

We are left to show that the following diagram commutes.

\[
\begin{array}{ccc}
M_i \otimes G & \overset{g}{\longrightarrow} & G \\
\downarrow M_i \otimes f & & \downarrow f \\
M_i \otimes X & \overset{e}{\longrightarrow} & X
\end{array}
\]

For any $m_0 \otimes [(m_1 \otimes m_2 \otimes \cdots \otimes m_k \otimes x_k)] \in M_i \otimes G$ and $e(m_k \otimes x_k) = x_{k-1}$; where $k = 1, 2, \ldots$, Consider the following equality.

\[
f[(m_0 \otimes m_1 \otimes \cdots \otimes m_k \otimes x_k)] = e \circ M_i \circ e \circ \cdots \circ M_i^k \circ e(m_0 \otimes m_1 \otimes \cdots \otimes m_k \otimes x_{kX})
\]

Applying $M_i^k \otimes e$ to the element $m_0 \otimes m_1 \otimes \cdots \otimes m_k \otimes x_{kX}$, the right side becomes $e \circ \cdots \circ M_i^{k-1} \circ e(m_0 \otimes m_1 \otimes \cdots \otimes m_{k-1} \otimes x_{k-1})$. Continuing this process, eventually we get $f[(m_0 \otimes m_1 \otimes m_k \otimes x_k)] = e(m_0 \otimes x_0)$. Similarly $f[(m_1 \otimes \cdots m_k \otimes x_k)] = x_0$. Thus we have $e \circ M_i \circ f \{m_0 \otimes [(m_1 \otimes \cdots m_k \otimes x_k)]\} = f \circ h \{m_0 \otimes [(m_1 \otimes \cdots m_k \otimes x_k)]\} = e(m_0 \otimes x_0)$ and hence $f \circ h = e \circ M_i \circ f$. □
Proposition 4 (See [4]). Let \(X_0 = \{\bot, \top\} \) be a bi-pointed set. Then there are isometries \(c_0, c_1, c_2, \cdots, c_n, \cdots \) such that \(M^p_2 \otimes X_0 \simeq D_n ; \forall n \in \mathbb{Z}^+ \cup \{0\} \).

Here \(D_n = \left\{ \frac{p}{2^q} / 0 \leq p \leq 2^q & p, q \in \mathbb{Z}^+ \cup \{0\} \right\} \) and \(c_0 : X_0 \rightarrow D_0 = \{0, 1\} \) is given by \(c_0(\bot) = 0, c_0(\top) = 1 \). Moreover, \(c_k : M^k_2 \otimes X_0 \rightarrow D_k \) is given inductively by

\[
c_k(m_1 \otimes \cdots m_k \otimes d) = \begin{cases}
\frac{1}{2} c_k(m_2 \otimes \cdots m_k \otimes d), & m_1 = l; \\
\frac{1}{2} (c_k(m_2 \otimes \cdots m_k \otimes d) + 1), & m_1 = r.
\end{cases}
\]

The following example states that \((D, \phi) \) is not an initial algebra of \(F_2 \) on \(\text{MS}_2^C \) and \(\text{MS}_2^L \). We will show it for the continuous case. The same example will work for the Lipschitz case too.

Example 1. Let \(X_0 = \{\bot, \top\} \) be a bi-pointed set. Consider the function \(e : M_2 \otimes X_0 \rightarrow X_0 \) given by \(e(l \otimes 0) = 0, e(l \otimes 1) = 0 \) and \(e(r \otimes 1) = 1 \). Clearly this \(e \) is Lipschitz as it is a function from a finite metric space and it is also continuous. The initial algebra of \(F_2 \) on \(\text{MS}_2^S \) is the pair \((D, \phi) \) where \(D \) is the dyadic rationals in the unit interval and \(\phi : M_2 \otimes D \rightarrow D \) is as follows.

\[
\phi(m \otimes x) = \begin{cases}
x, & m = l; \\
x + \frac{1}{2}, & m = r.
\end{cases}
\]

Suppose that \((\phi, D) \) is the initial algebra of \(F_2 \) on \(\text{MS}_2^C \). Then there is a unique continuous function \(f \) such that the expected diagram commutes. Suppose that \(f \) is continuous. Then \(\exists \delta > 0 \) such that \(d(f(x), f(y)) < \frac{1}{2} \) whenever \(\forall d(x, y) < \delta \). Choose \(n \) large enough so that \(\frac{1}{2^n} < \delta \).

Thus \(d(1, \frac{2^n - 1}{2^n}) < \delta \) and \(d\left(f(1), f\left(\frac{2^n - 1}{2^n}\right)\right) < \frac{1}{2} \). Now \(f(1) = 1 \) as \(f \) preserves the distinguished elements. Now \(\frac{2^n - 1}{2^n} \in D_n \) and from the straightforward computation we have \(c_n(r \otimes r \otimes \cdots \otimes r \otimes 0) = \frac{2^n - 1}{2^n} \). Thus the element \(\frac{2^n - 1}{2^n} \) is identified with \(r \otimes r \otimes \cdots \otimes r \otimes 0 \). Thus \(f\left(\frac{2^n - 1}{2^n}\right) \) can
be evaluated as follows.

\[
\begin{align*}
 f\left(\frac{2^n - 1}{2^n}\right) &= e_2 \circ M_2 \otimes e_2 \circ \cdots \circ M_{2^n - 2} \otimes e_2 \circ M_{2^n - 1} \otimes e_2 ((r \otimes r \cdots \otimes r \otimes 0) \\
 &= e_2 \circ M_2 \otimes e_2 \circ \cdots \circ M_{2^n - 2} \otimes e_2 ((r \otimes \cdots \otimes r \otimes 0) \\
 &= : \ : \ : \\
 &= e_2(r \otimes 0) = 0
\end{align*}
\]

Therefore we have \(d\left(f(1), f\left(\frac{2^n - 1}{2^n}\right)\right) = d(1, 0) = 1 < \frac{1}{2}\) which is obviously a contradiction. Thus the mediating morphism \(f\) is not continuous. Hence \((\phi, D)\) is not the initial algebra for \(F_2\) on \(\text{MS}_2^C\).

Example 2. Consider the tri-pointed set \(Y_0 = \{T, L, R\}\) and the function \(e_3 : M_3 \otimes Y_0 \rightarrow Y_0\) given by \(e_3(a \otimes T) = T, e_3(c \otimes R) = R\) and \(e_3(a \otimes L) = e_3(a \otimes R) = e_3(b \otimes L) = e_3(b \otimes R) = L\). Because \(e_3\) is a function from a finite metric space, it is Lipschitz and hence continuous too. Consider the initial algebra \((G, g)\) of \(F_3\) on \(\text{MS}_3^S\), where \(g : M_3 \otimes G \rightarrow G\) is given by \(g(m \otimes [x]) = [m \otimes x]\). See the beginning of Section 3.

Leaving out the metric structure, \((G, g)\) is also the initial algebra of \(F_3\) on \(\text{Set}_3\) and \((Y_0, e_3)\) is a \(F_3\) algebra on \(\text{Set}_3\). Thus there exists a unique \(f : G \rightarrow Y_0\) such that following diagram commutes.

\[
\begin{array}{ccc}
 M_3 \otimes G & \xrightarrow{g} & G \\
 \downarrow M_3 \otimes f & & \downarrow f \\
 M_3 \otimes Y_0 & \xrightarrow{e_3} & Y_0
\end{array}
\]

The map \(f\) was found explicitly in Lemma 5. Suppose that \(f\) is continuous at \([T] \in G\). Then \(\exists \delta > 0\) such that \(d(f([T]), f(y)) < \frac{1}{2}\), whenever \(d(T, y) < \delta\). Choose \(n\) large enough so that \(\frac{1}{2^n} < \delta\). Note that \([T] = [a \otimes T] = [a \otimes a \otimes T] = \cdots = [a \otimes a \otimes \cdots \otimes a \otimes T] = \cdots\), and \(f([T]) = f([a \otimes a \otimes \cdots \otimes a \otimes T]) = T_{Y_0}\) as the distinguished elements are preserved by \(f\). Let \(y = [a \otimes a \otimes \cdots \otimes a \otimes L]\), where \(a\) occurs \((n + 1)\) times.
Then \(d([T], y) = \frac{1}{2^{n+1}} < \frac{1}{2^n} < \delta \). However,

\[
\begin{align*}
f(y_0) &= f([a \otimes a \otimes \cdots \otimes a \otimes L]) \\
&= e_3 \circ M_3 \otimes e_3 \circ \cdots \circ e_3 \circ M_3^{n-1} \otimes e_3 \circ e_3 (a \otimes a \otimes \cdots \otimes a \otimes L) \\
&= e_3 \circ M_3 \otimes e_3 \circ \cdots \circ M_3^{n-1} \otimes e_3 (a \otimes \cdots \otimes a \otimes L) \\
&= \vdots \\
&= e_3 (a \otimes L) = L_{Y_0}.
\end{align*}
\]

Therefore \(d(f(T), f(y_0)) = d(T_{Y_0}, L_{Y_0}) = 1 < \frac{1}{2} \), which is a contradiction. Thus \(f \) is not continuous and hence \(f \) is not Lipschitz. Hence \((G, g)\) is not the initial algebra of \(F_3 \) on \(MS_3^C \) as well as on \(MS_3^L \).

4. Final co-algebra and initial algebra of \(F_i \) on \(MS_i^S \) are not that of \(F_i \) on \(MS_i^L \)

In this section we answer two questions. One is the question raised in [4], whether \((S_i, \psi_i)\), the final co-algebra of \(F_i \) on \(MS_i^S \) is the final co-algebra of \(F_i \) on \(MS_i^L \). In Section 2 we have shown that \((S_i, \psi_i)\) is the final co-algebra of \(F_i \) on \(MS_i^C \). However, we provide a negative answer to the question by showing that \((S_i, \psi_i)\) is not the final co-algebra of \(F_i \) on \(MS_i^L \). The initial algebra \((G_i, g_i)\) of \(F_i \) on \(MS_i^S \), after leaving out the metric structure, is the same as that of \(F_i \) on \(Set_1 \) (See [4]). One may ask a similar question, whether \((G_i, g_i)\) of \(F_i \) on \(MS_i^L \), after leaving out the metric structure, is the same as that of \(F_i \) on \(Set_1 \). We give a negative answer to this question too.

As a consequence of Lemma 2, we have \(F_i \) as an endofunctor on \(MS_i^L \). Recall the final co-algebra of \(F_2 \) on \(MS_2^S \) which is \((I, i)\); where \(I = [0, 1] \) and \(i : I \rightarrow M_2 \otimes I \) is given by

\[
i(x) = \begin{cases}
I \otimes x, & x \in [0, \frac{1}{2}] \\
r \otimes x, & x \in [\frac{1}{2}, 1].
\end{cases}
\]

Example 3. Define \(e : I \rightarrow M_2 \otimes I \) by
One can easily show that \(e \) is Lipschitz with Lipschitz constant 2 and thus \((e, I)\) is a co-algebra in \(\text{MS}_{1}^{L} \). Since \((I, i)\) is the final co-algebra in \(\text{Set}_{2} \), after forgetting the metric structure, there exists a unique set function \(f: I \rightarrow I \) such that the expected diagram commutes.

\[
\begin{array}{ccc}
I & \leftarrow & M_{2} \otimes I \\
\uparrow f & & \uparrow M_{2} \otimes f \\
I & \rightarrow & M_{2} \otimes I \\
\end{array}
\]

By commutativity \(f \) must satisfy the following conditions.

\[
f(x) = \begin{cases}
0 & x \in [0, \frac{1}{2}] ; \\
\frac{f(4x - 1)}{2} & x \in \left[\frac{1}{4}, \frac{1}{2} \right] ; \\
\frac{1 + f(4x - 2)}{2} & x \in \left[\frac{3}{4}, 1 \right] ; \\
1 & x \in \left[\frac{3}{4}, 1 \right] .
\end{cases}
\]

Define the following families of intervals for \(n = 1, 2, 3, \cdots \).

\[
I_{n} = \left[\frac{1}{4} + \cdots + \frac{1}{4^{n}} \right] \\
J_{n} = \left[\frac{1}{4} + \cdots + \frac{1}{4^{n}} + \frac{3}{4^{n+1}} \right]
\]

Using the conditions the mediating morphism satisfies, we will show that \(f \) satisfies the following properties.
(a) \(f(x) = 0 \), \(\forall n \in \mathbb{N} \) and \(\forall x \in I_n \)

(b) \(f(x) = \frac{1}{2^n} \), \(\forall n \in \mathbb{N} \) and \(\forall x \in J_n \)

We shall prove these properties by induction on \(n \). First let us prove (a). For \(n = 2 \) and \(x \in I_2 \), we have \(4x - 1 \in [0, \frac{1}{4}] \) and \(f(4x - 1) = 0 \). Thus \(f(x) = \frac{f(4x - 1)}{2} = 0 \). Suppose that \(f(x) = 0 \), \(\forall x \in I_n \). Let \(x \in I_{n+1} \). Then \(4x - 1 \in I_n \) and \(f(4x - 1) = 0 \). Thus \(f(x) = \frac{f(4x - 1)}{2} = 0 \). Thus by induction \(f(x) = 0 \), for \(x \in I_n \).

To prove (b), first consider the case \(n = 1 \) and let \(x \in J_1 \). We then have \(4x - 1 \in [\frac{3}{4}, 1] \) and \(f(4x - 1) = 1 \). Thus \(f(x) = \frac{f(4x - 1)}{2} = \frac{1}{2} \). Now suppose that for any \(x \in J_n \), \(f(x) = \frac{1}{2^{n-1}} \). Let \(x \in J_{n+1} \). We have \(4x - 1 \in J_n \) and \(f(4x - 1) = \frac{1}{2^n} \). Thus \(f(x) = \frac{f(4x - 1)}{2} = \frac{1}{2^{n+1}} \). Thus by induction \(f(x) = \frac{1}{2^n} \), \(x \in J_n \).

With (a) and (b) being proved, to show that \(f \) is not Lipschitz, suppose to the contrary that \(f \) is Lipschitz. Then we have some \(k > 0 \) such that \(d(e(x), e(y)) \leq kd(x, y) \), \(\forall x, y \in I \). Choose \(x = \frac{1}{4} + \cdots + \frac{1}{4^n} + \frac{1}{4^{n+1}} \) and \(y = \frac{1}{4} + \cdots + \frac{1}{4^n} + \frac{3}{4^{n+1}} \). Then \(f(x) = 0 \) and \(f(y) = \frac{1}{2^n} \). From the Lipschitz condition, we have \(\frac{1}{2^n} \leq k \frac{2}{4^{n+1}} \), \(\forall n \in \mathbb{N} \); which implies \(k \geq 2.2^n \), \(\forall n \in \mathbb{N} \). Hence \(k \) is not bounded, which is a contradiction. Therefore \(f \) is not Lipschitz.

Thus we have the following proposition.

Proposition 5. \((I, i)\) is not the final co-algebra of \(F_2 \) on \(\text{MSL}_2 \).

Example 4. Consider the tri-pointed set \(\Delta = \{(x, 0) / x \in [0, 1]\} \cup \{(\frac{1}{2}, \sqrt{3})\} \), whose distinguished elements are given by \(T_\Delta = (\frac{1}{2}, \sqrt{3}) \) and \(L_\Delta = (0, 0) \), \(R_\Delta = (1, 0) \), and the metric is given by the euclidean metric on \(\mathbb{R}^2 \).
Define $e' : \triangle \rightarrow M_3 \odot \triangle$ by

$$e'(x, y) = \begin{cases}
 a \odot \left(\frac{1}{2}, \frac{\sqrt{3}}{2} \right), & (x, y) = \left(\frac{1}{2}, \frac{\sqrt{3}}{2} \right); \\
 b \odot (0, 0), & x \in \left[0, \frac{1}{4} \right] & y = 0; \\
 b \odot (4x - 1, 0), & x \in \left[\frac{1}{4}, \frac{1}{2} \right] & y = 0; \\
 c \odot (4x - 2, 0), & x \in \left[\frac{1}{2}, \frac{3}{4} \right] & y = 0; \\
 c \odot (1, 0), & x \in \left[\frac{3}{4}, 1 \right] & y = 0.
\end{cases}$$

This e' is a Lipschitz map with Lipschitz constant 2 and hence (e', \triangle) is an F_3 co-algebra.

Suppose (S, ψ) is the final co-algebra. Then (S, σ) is also a final co-algebra as they are isomorphic (see [4]). Now, as in Example 3, there exists a unique Lipschitz map $g : \triangle \rightarrow S$ such that the following diagram commutes.

$$\begin{array}{rcl}
S & \xleftarrow{\sigma^{-1}} & M_3 \odot S \\
\uparrow g & & \uparrow M_3 \odot g \\
\triangle & \xrightarrow{e'} & M_3 \odot \triangle
\end{array}$$

By commutativity, g must satisfy the following condition.

$$g(x, 0) = 0, \ x \in \left[0, \frac{1}{4} \right], \ g(x, 0) = 1, \ x \in \left[\frac{3}{4}, 1 \right] \quad \text{and}$$

$$g(x, 0) = \begin{cases}
 \frac{g(4x - 1, 0)}{2}, & x \in \left[\frac{1}{4}, \frac{1}{2} \right]; \\
 1 + \frac{g(4x - 2, 0)}{2}, & x \in \left[\frac{3}{4}, 1 \right].
\end{cases}$$

Using these specific properties of this mediating morphism, g will satisfy the properties given below.

(a) $g(x, 0) = 0, \ x \in I_n, \ \forall \ n \in \mathbb{N}$.

17
(b) \(g(x, 0) = \frac{1}{2^n}, x \in J_n, \forall n \in \mathbb{N}. \)

From these properties it follows, as in Example 3, that \(g \) is not Lipschitz. Hence, neither \((S, \psi)\) nor \((S, \sigma)\) can be the final co-algebra.

Proposition 6. \((S, \psi)\) is not the final co-algebra of \(F_3 \) on \(\text{MS}_{2}^{L} \).

5. **Acknowledgement**

The authors respectfully acknowledge the guidance and resourcefulness of Professor Lawrence S. Moss, at Indiana University Bloomington.

References

[1] Admek, J.H., Herrlich, H. and George, E., 1990. H. and Strecker, G. Abstract and Concrete Categories. Pure and Applied Mathematics, John Wiley & Sons, New York, NY.

[2] Admek, J., 1974. Free algebras and automata realizations in the language of categories. Commentationes Mathematicae Universitatis Carolinae, 15(4), pp.589-602.

[3] M.Barr, Terminal algebra in well founded set theory, Theoretical Computer Science, 144(1993) 299-314

[4] Bhattacharya, P., Moss, L.S., Ratnayake, J. and Rose, R., 2014. Fractal Sets as Final Coalgebras Obtained by Completing an Initial Algebra. In Horizons of the Mind. A Tribute to Prakash Panangaden (pp. 146-167). Springer International Publishing.

[5] Moss, Lawrence S., Jayampathy Ratnayake, and Robert Rose. "Fractal Sets as Final Coalgebras Obtained by Completing an Initial Algebra." Topology, Algebra, and Categories in Logic (TACL 2013) (2013): 157.

[6] Leinster, T., 2011. A general theory of self-similarity. Advances in Mathematics, 226(4), pp.2935-3017.

[7] Admek, J., Milius, S. and Moss, L., 2010. Initial algebras and terminal coalgebras: a survey. Draft, June, 29.