Supporting Information

Ti-alloying of BaZrS$_3$ chalcogenide perovskite for photovoltaics

Xiucheng Weia, Haolei Huia, Samanthe Pereraa, Aaron Shengb, David F. Watsonb, Yi-Yang Sunc, Quanxi Jiad, Shengbai Zhange, and Hao Zenga,*

aDepartment of Physics, University at Buffalo, the State University of New York, Buffalo, NY 14260, USA

bDepartment of Chemistry, University at Buffalo, the State University of New York, Buffalo, NY 14260, USA

cState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China

dDepartment of Materials Design and Innovation, University at Buffalo, the State University of New York, Buffalo, NY 14260, USA

eDepartment of Physics, Applied Physics & Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

* corresponding author: haozeng@buffalo.edu
Figure S1. (a) The XRD patterns of Ba(Zr$_{1-x}$Ti$_x$)O$_3$ powder samples for $x=0$, 0.01, 0.02, 0.03, and 0.04. All peaks shift to higher angles, and the amount of shift increases with increasing x. The inset is an enlarged view of (110) peak. The maximum peak shift for 4% alloyed sample is 0.11° (shown by the two dotted lines); (b) The XRD pattern of Ba(Zr$_{1-x}$Ti$_x$)O$_3$ powders for $x=0$, 0.05, 0.075, and 0.1. The inset is an enlarged view of (110) peak. The maximum peak shift for the 10% alloyed sample is 0.19° (shown by the two dotted lines).
Figure S2. The typical SEM images of (a) 0 at%, (b) 1 at%, (c) 2 at%, (d) 3 at%, (e) 4 at%, (f) 5 at%, (g) 7.5 at%, and (h) 10 at% Ti alloyed Ba(Zr$_{1-x}$Ti$_x$)$_3$ powder samples. All scale bars are 5 µm.
Figure S3. (a) The XRD patterns of Ba(Zr$_{1-x}$Ti$_x$)S$_3$ for x=0, 0.05, 0.075, and 0.1. The additional peaks indicated by vertical black lines from left to right are assigned to BaS (110), BaTiS$_3$ (201), BaS (111), ZrO$_2$ (220), TiS$_2$ (110), and ZrS$_2$ (201) peaks, respectively; The enlarged view of (b) (121) peak; (c) (040) peak; and (d) (240) peak of BaZr$_3$S$_3$, showing peaks shifting to higher angles as Ti alloying percentage increases.
Figure S4. The Raman spectra of Ba(Zr_{1-x}Ti_x)S_3 for x=4, 7.5, and 10 at%, measured at room temperature. More Raman scattering modes appear, indicating phase separation at higher Ti alloying concentrations. Peaks labeled with asterisk marks (370 cm\(^{-1}\) and 473 cm\(^{-1}\)) cannot be assigned to BaZrS\(_3\) phase, which may be from BaTiS\(_3\) or binary phases.
Figure S5. The Tauc plot of Ba(Zr$_{1-x}$Ti$_x$)S$_3$ powders for x=0, 0.075, and 0.1. Tails in the absorption spectra at lower energies come from secondary phases for 7.5 and 10 at% Ti alloyed samples.