Parametric excitation of multiple resonant radiations from localized wavepackets

Matteo Conforti¹, Stefano Trillo², Arnaud Mussot¹ & Alexandre Kudlinski¹

¹PhLAM/IRCICA, CNRS-Université Lille 1, UMR 8523/USR 3380, F-59655 Villeneuve d’Ascq, France, ²Dipartimento di Ingegneria, Università di Ferrara, Via Saragat 1, 44122 Ferrara, Italy.

Fundamental physical phenomena such as laser-induced ionization, driven quantum tunneling, Faraday waves, Bogoliubov quasiparticle excitations, and the control of new states of matter rely on time-periodic driving of the system. A remarkable property of such driving is that it can induce the localized (bound) states to resonantly couple to the continuum. Therefore experiments that allow for enlightening and controlling the mechanisms underlying such coupling are of paramount importance. We implement such an experiment in a special optical fiber characterized by a dispersion oscillating along the propagation coordinate, which mimics “time”. The quasi-momentum associated with such periodic perturbation is responsible for the efficient coupling of energy from the localized wave-packets (solitons in anomalous dispersion and shock fronts in normal dispersion) sustained by the fiber nonlinearity, into free-running linear dispersive waves (continuum) at multiple resonant frequencies. Remarkably, the observed resonances can be explained by means of a unified approach, regardless of the fact that the localized state is a soliton-like pulse or a shock front.

Our experimental set-up realizes a platform for studying the coupling of localized states of a nearly conservative (Hamiltonian) system into radiation modes induced by periodic driving. A sketch of the physical principle is depicted in Fig. 1. Time periodic driving of the system rules fundamental physical phenomena such as laser-induced ionization, driven quantum tunneling, Faraday waves, Bogoliubov quasiparticle excitations, and the control of new states of matter. The localized states that we exploit are nonlinear (non-spreading) wavepackets of optical fibers, namely temporal solitons and dispersive shock waves (DSWs). They share the property to have a well-defined wavenumber and group-velocity which are crucial for determining their resonances. Their excitation is readily accessible by operating with opposite group-velocity dispersion (GVD, \(\beta_2 = \frac{d^2}{dk} \)): anomalous (\(\beta_2 < 0 \)) for solitons in order to balance nonlinearity, whereas DSWs emerge from a gradient catastrophe occurring in the normal GVD (\(\beta_2 > 0 \)). Despite such difference, both are essentially described by a Hamiltonian model, namely the nonlinear Schrödinger equation (NLSE), where the propagation distance plays the role of evolution variable (usually time). This allows us to introduce periodic driving by employing photonic crystal fibers whose flexibility to engineer dispersion is fully exploited to have a longitudinal periodic GVD, thus realizing dispersion oscillating fibers (DOFs). We report clear evidence that this built-in and tailorable periodicity of the dispersion is responsible for the parametric excitation of radiation modes which are amplified out of quantum fluctuations at multiple resonant frequencies (even for a spatially harmonic variation). This thus constitutes a novel implementation of quasi-phase-matching. This is in marked contrast with radiation caused by standard perturbations such as third-order (or higher) dispersion, which usually feature isolated resonances. Our results also clearly show that the parametric excitation of resonances is neither a prerogative of solitons nor of systems with periodic injection or extraction of energy such as fiber lasers, passive cavities or lumped amplifier links where dissipative resonances lead to the generation of so-called Kelly sidebands.

Results

Theory. Perturbation theory allows us to predict the frequency detunings \(\omega_{RR} \) of the resonant radiations (RR) that can be parametrically excited in a DOF. They turn out to be given by the roots of the following expression (see Supplementary information for a detailed derivation):

\[
\hat{D}(\omega_{RR}) - k_{nl} = \frac{2\pi m}{\Lambda}, \quad m = 0, \pm 1, \pm 2, \ldots
\]
where \(D(\omega) = -\Delta k_1 \omega + \beta_3 \omega^3/2 + \beta_1 \omega^5/6 + \ldots\) is the average linear dispersion in the pump reference frame. \(\beta_3 = d^2k/d\omega^2\) and \(\Delta k_1\) arises from the deviation of the actual group-velocity from the natural one\(^{22}\). In Eq. (1), \(k_{nl}\) is a well defined nonlinear wavenumber fixed by power. For a bright soliton \(k_{nl} = \gamma P/2\), where \(P\) and \(\gamma\) are the soliton peak power and the fiber nonlinearity, whereas for a shock wave \(k_{nl} = -\gamma P_b\), being \(P_b\) the power of the background field over which the RR propagates\(^{23}\). Equation (1) generalizes previously proposed formulas\(^{31,32}\) and expresses momentum conservation: it states that the difference between the momentum of the linear waves and the momentum generated by the nonlinear pump must be equal to the virtual momentum carried by the periodic modulation of the dispersion.

We verified that Eq. (1) describes accurately the parametric excitation of RR in both GVD regimes. A clear illustration of this phenomenon is provided in Fig. 2, which shows the simulated evolution of a hyperbolic secant pulse (150 fs duration, peak power \(P\)) based on the NLSE with included periodic GVD and dispersion slope \(\beta_3\) (see methods). Figure 2a displays the time domain evolution of a pulse with \(P = 15\) W, corresponding to a nearly fundamental soliton launched in a 150 m long DOF of period \(\Lambda = 5\) m. Strong radiation traveling slower than the soliton becomes visible beyond the activation distance \(z_a \sim 20\) m, corresponding to maximum pulse compression. In the spectral domain, the radiation modes correspond to several distinct and well defined frequencies [see Fig. 2b,c] that agree with the prediction based on Eq. (1)(vertical green lines). The peak detuned by \(-9\) THz from the pump turns out to be the standard RR \([m = 0\) in Eq. (1)], whereas other twelve peaks originate from the periodic perturbation \([m \neq 0\) in Eq. (1)].
When pumping in the normal GVD regime, we selected a higher peak power and duration \((P = 100 \text{~W}, 280 \text{~fs}) \) in order to access wave-breaking, and a shorter modulation period \((\Lambda = 0.5 \text{~m}) \) in order to have resonances in a realistic frequency span. In this case, the localized state is the shock front that emerges over the pulse leading edge after the breaking and activation distance \(z \sim 8 \text{~m} \), which is clearly visible in Fig. 2d. Also in this regime, we identify a first spectral peak at \(-15 \text{~THz}\) in the anomalous GVD region [see Fig. 2e,f] as the standard RR \((m = 0 \text{~mode}) \) due to \(\beta_3 \), while other five peaks are clearly visible. These are parametrically excited resonant modes that correspond to \(m = \pm 1, \pm 2, 3 \) which position are also well predicted by Eq. (1) (see vertical green lines).

We emphasize that in both configurations, the \(m = 0 \) isolated resonance lies in the opposite GVD regime with respect to the localized wavepackets that generate it, and disappear for \(\beta_3 = 0 \). Conversely, the parametric resonances with \(m \neq 0 \) lie in both normal and anomalous GVD regimes. They also survive the absence of higher-order dispersion \((\beta_4 = 0, n \leq 3) \), and their number is infinite for a harmonic perturbation. In practice, their actual number is limited because their amplitude decreases with the frequency shift and they become weaker than the pulse spectrum envelope and/or the noise background. Note also that it is important to take into account the group-velocity deviation \(\Delta k_l \) [see Fig. 2a,d] in the \(\hat{D} \) term of Eq. (1) in both configurations, in order to accurately predict the actual values of the resonances.

The nature of coupling process is further clarified by the spectrograms corresponding to Fig. 2, which are displayed in Fig. 3. In both cases, the pump wave-packets remain clearly localized in both temporal and spectral domains, while shedding energy into radiation modes, which disperse in time while remaining at the frequencies predicted by the resonances in Eq. (1). We have found that the localized pumps experience temporal and spectral breather with the period of the perturbation and refill the radiation at each cycle of spectral broadening (see multimedia files). In spite of this transfer of energy the radiation damping of the pump is small, thus confirming the metastable nature of these wave-packets.

Experiments

We have designed two experiments in order to observe the parametrically excited resonances from both solitons and DSWs. The experiment, sketched in Fig. 4 and detailed in methods, simply consists of a femtosecond laser pulse launched in DOFs, whose parameters are close to those used in the illustration examples in Figs. 2–3. Due to experimental constraints, only the initial pulses were slightly different. In a first experiment, a 150 fs pulse centered at 1075 nm was launched in a 150 m-long DOF with a modulation period of 5 m. Figure 5a shows the longitudinal profile of the fiber diameter measured during the draw process (left axis) and the corresponding calculated zero dispersion wavelength (ZDW, right axis). At the pump wavelength of 1075 nm, the average dispersion is slightly anomalous, so that the pump pulse is able to excite a near-fundamental soliton for peak powers in the order of a few tens of watts. An experimental power map, representing the output spectrum recorded for increasing pump peak power, is plotted in Fig. 5b. It shows that, for increasing pump peak power, the spectrum rapidly evolves from a hyperbolic secant shape to a much more structured and highly asymmetric one containing more and more sharp spectral resonances. More precisely, these discrete spectral sidebands corresponds to the parametric excitation of the RR that stems from the periodic variation of the second order dispersion. Numerical simulations of the generalized NLSE (see methods and supplementary information), without any free parameter, also reproduce these features with an excellent quantitative agreement. This can be seen in Fig. 5c, where the experimental spectrum obtained for a pump peak power of 25 W (red line) is compared with the simulated one (blue line). In addition, it is worth noting that the theory is quite robust since the observed peaks are accurately predicted by solutions of Eq. (1) (green vertical lines) in these experiments.

The second experiment presented here is devoted to investigating radiating DSWs. The DOF is shorter (50 m) as well as the modulation period (0.5 m, see longitudinal profile in Fig. 5d). It has been pumped with 280 fs pulses. The pump wavelength was tuned to 1037 nm so that it lies in the normal average dispersion region required to generate a shock wave from a few hundreds of watts of peak power (see additional experimental details in supplementary...

Figure 3 | Spectrograms corresponding to evolutions in Fig. 2 (numerical modeling). (a) soliton configuration. (b) shock wave configuration. The spectrograms represent the spectra over gated time intervals and are computed at the output of each fibers (for the evolution along the fibers, see the additional multimedia files). ZDW: zero-dispersion wavelength.

Figure 4 | Experimental set-up P: polarizer; HWP: half-wave plate.
information). Figure 5e shows the experimental power map. Starting at about 50 W, a RR peak is generated across the average zero dispersion wavelength. For increasing pump peak powers, additional discrete spectral sidebands corresponding to parametrically excited RR appear, similarly to the soliton case. The DOF period being 10 times shorter in this case, the spacing between two adjacent peaks is \(\sqrt{10} \) times larger than in the soliton case, as expected from Eq. (1).

These results are again in excellent agreement with numerical simulations using a generalized NLSE and with Eq. (1), as shown in Fig. 5f and in supplementary information.

Conclusions

To summarize, we have demonstrated that localized states (either a soliton or a dispersive shock wave) can efficiently transfer energy to multiple resonant radiations at different frequencies, as a result of the quasi-momentum associated to a DOF. Our experimental results, supported by numerical simulations and by the perturbative analysis that leads to Eq. (1), prove that a DOF is a very simple and highly tailorable platform allowing to study the periodicity-induced coupling of nonlinear bound states to the radiation continuum, which is a general feature in systems driven by a time-periodic Hamiltonian. The DOF platform can also be successfully used to study how this coupling process due to higher order dispersion develop in the presence of a train of random solitons arising from spontaneous modulation instability or in driven-damped deformations of Hamiltonian systems such as those describing passive ring resonators.

Methods

Simulation. The results illustrated in Figs. 2–3 have been obtained from numerical integration of the following NLSE for the electric field envelope \(E = E(z,t) \) propagating along the fiber\(^{11} \)

\[
\begin{align*}
\frac{\partial E}{\partial z} &- \frac{\beta_2}{2} \left(\frac{\partial E}{\partial t} \right)^2 + \frac{\beta_3}{6} \left(\frac{\partial E}{\partial t} \right)^3 + \gamma |E|^2 E = 0, \\
\end{align*}
\]

Equation 2 is well known to maintain conservative (Hamiltonian) structure despite the periodic perturbation embedded in the term \(\beta_2(z) = \beta_2 + \delta \beta_2 \sin(2\pi z/\Lambda) \) (where...
8. Gomez-Leon, A. & Platero, G. Floquet-Bloch theory and topology in periodically nearly resonant with the soliton period (whose leading front is, in the unperturbed case, locally a dark soliton). The radiating soliton excited in Fig. 2a,b,c is characterized by a soliton number order dispersion relatively small (as defined in Ref. 12). For the dispersive shock wave experiment, the OPO was used and tuned to 1037 nm. The pulses at the DOF input were measured at 280 fs FWHM, with a chirp C = 1.24. Spectra out of the DOF were acquired with an optical spectrum analyzer with a resolution of 0.2 nm. The output power was measured with a power meter and the input power was deduced knowing the DOF total attenuation. It was cross-checked by cutting the DOF at the end of the experiment and measuring the power out of the 0.5 m DOF initial section.

Experiments. Experiments have been performed exploiting a Ti:Sa oscillator delivering 140 fs full width at half maximum (FWHM) near transform limited pulses. They are sent into an optical parametric oscillator (OPO) allowing to generate tunable slightly chirped femtosecond pulses. The output beam then passes through a combination of two polarizers and two half-wave plates in order to carefully adjust the polarization state and pump power simultaneously. It is launched in the DOF with an initial section of 0.5 mDOF, with a chirp C = 0.35 (as defined in Ref. 12). For the dispersive shock wave experiment, the OPO was used and tuned to 1037 nm. The pulses at the DOF input were measured at 280 fs FWHM, with a chirp C = 1.24. Spectra out of the DOF were acquired with an optical spectrum analyzer with a resolution of 0.2 nm. The output power was measured with a power meter and the input power was deduced knowing the DOF total attenuation. It was cross-checked by cutting the DOF at the end of the experiment and measuring the power out of the 0.5 m DOF initial section.

1. Cohen-Tannoudji, J. D.-R. C. & Gryndberg, G. Atom-Photon Interactions (Wiley- New York, 1992).
2. Grifoni, M. & Hänggi, P. Driven quantum tunneling. Phys. Rep. 304, 229–354 (1998).
3. Staliunas, K., Longhi, S. & deValcarcel, G. J. Faraday Patterns in Bose-Einstein Condensates. Phys. Rev. Lett. 89, 210406 (2002).
4. Staliunas, K., Longhi, S. & deValcarcel, G. J. Faraday Patterns in low-dimensional Bose-Einstein Condensates. Phys. Rev. A, 70, 011601 (2004).
5. Engels, P., Atherton, C. & Hoefler, M. A. Observation of Faraday waves in a Bose-Einstein condensate. Phys. Rev. Lett. 98, 095301 (2007).
6. Abdullaev, F. Kh., Gómez-Leon, A. & Platero, G. Floquet-Bloch theory and topology in periodically driven lattices. Phys. Rev. Lett. 110, 200403 (2013).
7. Lindner, N. H., Rafea, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Phys. 7, 490–495 (2011).
8. Longhi, S. & Della Valle, G. Floquet bound states in the continuum. Sci. Rep. 3, 2219 (2013).
9. Kevrekidis, P. G., Theodorakis, G., Frantzeskakis, D. J. & Malomed, B. A. Feshbach Resonance Management for Bose-Einstein Condensates. Phys. Rev. Lett. 90, 230401 (2003).
10. Agrawal, G. P. Nonlinear Fiber Optics, Academic Press (5th edition, 2012).
11. Dudley, J. M. & Taylor, J. R. Ten years of nonlinear optics in photonic crystal fibre. Nature Photon. 3, 85 (2009).
12. Rothenberg, J. E. & Grischikowsky, D. Observation of the formation of an optical intensity shock and wave-breaking in the nonlinear propagation of pulses in optical fibers. Phys. Rev. Lett. 62, 531 (1989).
13. Fatome, J., Finot, C., Millot, G., Armaroli, A. & Trillo, S. Observation of optical undular bores in multiple four-wave mixing. Phys. Rev. X 4, 021022 (2014).
14. Wan, W., Jia, S. & Fleischer, J. W. Dispersive superfluid-like shock waves in nonlinear optics. Nature Phys. 3, 46 (2006).
15. Droques, M., Kudlinski, A., Bouwmans, G., Martinelli, G. & Mussot, A. Dynamics of the modulation instability spectrum in optical fibers with oscillating dispersion. Phys. Rev. A 87, 033813 (2013).
16. Bahabad, A., Murnane, M. & Kaptay, H. Quasi-phase-matching of momentum and energy in nonlinear optical processes. Nature Photon. 4, 570 (2010).
17. Akhmediev, N. & Karlsson, M. Cherenkov radiation emitted by solitons in optical fibers. Phys. Rev. A 51, 2602 (1995).
18. Skryabin, D. V. & Gorbach, A. V. Looking at a soliton through the prism of optical supercontinuum. Rev. Mod. Phys. 82, 1287 (2010).
19. Erkintalo, M., Xu, Y. Q., Murdoch, S. G., Dudley, J. M. & Genty, G. Cascade phase-matching and nonlinear symmetry breaking in fiber frequency combs. Phys. Rev. Lett. 109, 223904 (2012).
20. Conforti, M. & Trillo, S. Dispersive wave emission from wave breaking. Opt. Lett. 38, 3815 (2013).
21. Conforti, M., Baronio, F. & Trillo, S. Resonant radiation shed by dispersive shock waves. Phys. Rev. A 89, 013807 (2014).
22. Webb, K. E., Xu, Y. Q., Erkintalo, M. & Murdoch, S. G. Generalized dispersive wave emission in nonlinear fiber optics. Opt. Lett. 38, 151 (2013).
23. Pandit, N., Noske, D. U., Kelly, S. M. & Taylor, J. R. Characteristic instability of fiber loop soliton lasers. Electron. Lett. 28, 455 (1992).
24. Luo, K., Xu, Y., Erkintalo, M. & Murdoch, S. Resonant radiation in synchronously pumped passive Kerr cavities. Opt. Lett. 40, 427 (2015).
25. Smith, N. J., Blow, K. J. & Andonovic, I. Sideband generation through perturbations to the average soliton model. J. Lightwave Technol. 19, 1329 (1992).
26. Turitsyn, S. K., Bale, B. G. & Fedoruk, M. P. Dispersion-managed solitons in fibre systems and lasers. Phys. Rep. 521, 135 (2012).
27. Hasegawa & Kodama, Y. Guiding-center soliton. Phys. Rev. Lett. 66, 161 (1991).
28. Pelinovsky, D. E., Kevrekidis, P. G. & Frantzeskakis, D. J. Averaging for solitons with nonlinearity management. Phys. Rev. Lett. 91, 240201 (2003).
29. Abdullaev, F. Kh., Caputo, J. G. & Flytzanis, N. Envelope soliton propagation in media with temporally modulated dispersion. Phys. Rev. E 50, 1532 (1994).
30. Pelinovsky, D. E. & Jang, J. Parametric resonances and radiative decay of dispersion-managed solitons. SIAM J. Appl. Math. 64, 1360 (2004).
31. Kirr, E. & Weinstein, M. I. Parameterically excited Hamiltonian partial differential equations. SIAM J. Math. Anal. 33, 16–52 (2001).

Acknowledgments
This work was partly supported by the Agence Nationale de la Recherche through the ANR TOPWAVE project, the Labex CEPI and Equipe FLUX through the Programme d'Investissement d'Avenir, by the French Ministry of Higher Education and Research, the Nord-Pas de Calais Regional Council and Fonds Européen de Développement Regional (FEDER) through the “Contrat de Projet Etat Région (CPER) 2007–2013” and the “Campus Intelligence Ambiante (CIA)”, and by the by the Italian Ministry of University and Research (MIUR) under Grant PRIN 2012BNWZ2. We are grateful to François Copie for producing Figure 1.

Author contributions
A.K. carried out experiments. The development of analytical tools was carried out by M.C. and S.T. and simulations were performed by M.C. and A.M. All authors conceived the idea of this work, participated in the analysis and interpretation of the results and in the writing of the paper.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Conforti, M., Trillo, S., Mussot, A. & Kudlinski, A. Parametric excitation of multiple resonant radiations from localized wavepackets. Sci. Rep. 5, 9433; DOI:10.1038/srep09433 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/