Global stability of an epidemic model with stage structure and nonlinear incidence rates in a heterogeneous host population

Baodan Tian¹,²*, Yunguo Jin²,³, Shouming Zhong² and Ning Chen¹

Abstract

In this paper, we study an epidemic model with stage structure and latency spreading in a heterogeneous host population. We show that if the disease-free equilibrium exists, then the global dynamics are determined by the basic reproduction number R_0. We prove that the disease-free equilibrium is globally asymptotically stable when $R_0 \leq 1$, and there exists a unique endemic equilibrium which is globally asymptotically stable when $R_0 > 1$. The global stability of the endemic equilibrium is also proved by using a graph-theoretic approach to the method of Lyapunov functions. Finally, numerical simulations are given to illustrate the main theoretical results.

Keywords: heterogeneous host; epidemic model; stage structure; nonlinear incidence rate; Lyapunov function

1 Introduction

A heterogeneous host population can be divided into several homogeneous groups according to models of transmission, contact patterns, or geographic distributions. Multi-group epidemic models have been proposed in the literature of mathematical epidemiology to describe the transmission dynamics of infectious diseases in heterogeneous host populations, such as measles, mumps, gonorrhea, HIV/AIDS, West-Nile virus and vector-borne diseases such as malaria. Various forms of multi-group epidemic models have subsequently been studied to understand the mechanism of disease transmission. One of the most important subjects in this field is to obtain a threshold that determines the persistence or extinction of a disease. Guo et al. in [1] developed a graph-theoretic approach to prove the global asymptotic stability of a unique endemic equilibrium of a multi-group epidemic model. By applying the idea, global stability of endemic equilibrium for several classes of multi-group epidemic models was investigated in [1–10].

In the real world, some epidemics, such as malaria, dengue, fever, gonorrhea and bacterial infections, may have a different ability to transmit the infections in different ages. For example, measles and varicella always occur in juveniles, while it is reasonable to consider the transmission of diseases such as typhus, diphtheria in adult population. In recent years, epidemic models with stage structure have been studied in many papers [11–17]. For some disease (for example, tuberculosis, influenza, measles), on adequate contact with an...
infective, a susceptible individual becomes exposed, that is, infected but not infective. This individual remains in the exposed class for a certain period before becoming infective (see, for example, [18–22]).

In this paper, we formulate an epidemic model with latency spreading in a heterogeneous host population. Let $S_k^{(1)}$, $S_k^{(2)}$, E_k, I_k and R_k denote the immature susceptible, mature susceptible, infected but non-infectious, infectious and recovered population in the kth group, respectively. The disease incidence in the kth group can be calculated as

$$
\sum_{i=1}^{2} s_k^{(i)} \sum_{j=1}^{n} \beta_{ij}^{(i)} G_j(I_j),
$$

where the sum takes into account cross-infections from all groups and $\beta_{ij}^{(i)}$ is the transmission coefficient between compartments $S_k^{(i)}$ and I_j. $G_j(I_j)$ includes some special incidence functions in the literature. For instance, $G_j(I_j) = \frac{I_j}{\delta_{ij}}$ (saturation effect). Let $d_k^{(1)}$ and $d_k^{(2)}$ represent death rates of $S_k^{(1)}$ and $S_k^{(2)}$ populations, respectively. Then we obtain the following model for a disease with latency:

$$
\begin{aligned}
\dot{S}_k^{(1)} &= \varphi_k(S_k^{(1)}) + \sum_{j=1}^{n} \beta_{ij}^{(1)} S_k^{(1)} G_j(I_j) - a_k S_k^{(1)}, \\
\dot{S}_k^{(2)} &= a_k S_k^{(1)} - \sum_{j=1}^{n} \beta_{ij}^{(2)} S_k^{(2)} G_j(I_j) - d_k^{(2)} S_k^{(2)}, \\
\dot{E}_k &= \sum_{i=1}^{2} \sum_{j=1}^{n} \beta_{ij}^{(i)} S_k^{(i)} G_j(I_j) - (d_k + \eta_k) E_k, \\
\dot{I}_k &= \eta_k E_k - (d_k + \mu_k + \gamma_k) I_k, \\
\dot{R}_k &= \gamma_k I_k - d_k R_k, \quad k = 1, 2, \ldots, n,
\end{aligned}
$$

(1)

where $\varphi_k(S_k^{(1)})$ denotes the net growth rate of the immature susceptible class in the kth group (a typical form of $\varphi_k(S_k^{(1)})$ is $\varphi_k(S_k^{(1)}) = b_k - d_k^{(1)} S_k^{(1)}$ with b_k the recruitment constant and $d_k^{(1)}$ the natural death rate). a_k is the conversion rate from an immature individual to a mature individual in group k. η_k represents the rate of becoming infectious after a latent period in the kth group. d_k, μ_k and γ_k are the natural death rate, the disease-related death rate and the recovery rate in the kth group, respectively. All parameter values are assumed to be nonnegative and $a_k, \eta_k, d_k^{(1)}, d_k > 0$

Remark The model (1) can be regarded as an SVEIR model such that $S_k^{(1)}$ is unvaccinated and $S_k^{(2)}$ is vaccinated with vaccination rate a_k. References studied on the SVEIR model can be seen in [23, 24] and so on.

Since the variable R_k does not appear in the remaining four equations of (1), if we denote $m_k := d_k + \mu_k + \gamma_k$, then we can obtain the following reduced system:

$$
\begin{aligned}
\dot{S}_k^{(1)} &= \varphi_k(S_k^{(1)}) + \sum_{j=1}^{n} \beta_{ij}^{(1)} S_k^{(1)} G_j(I_j) - a_k S_k^{(1)}, \\
\dot{S}_k^{(2)} &= a_k S_k^{(1)} - \sum_{j=1}^{n} \beta_{ij}^{(2)} S_k^{(2)} G_j(I_j) - d_k^{(2)} S_k^{(2)}, \\
\dot{E}_k &= \sum_{i=1}^{2} \sum_{j=1}^{n} \beta_{ij}^{(i)} S_k^{(i)} G_j(I_j) - (d_k + \eta_k) E_k, \\
\dot{I}_k &= \eta_k E_k - m_k I_k, \quad k = 1, 2, \ldots, n.
\end{aligned}
$$

(2)

The initial conditions for system (2) are

$$
S_k^{(1)}(0) > 0, \quad S_k^{(2)}(0) > 0, \quad E_k(0) > 0, \quad I_k(0) > 0, \quad k = 1, 2, \ldots, n.
$$

(3)
The organization of this paper is as follows. In the next section, we prove some preliminary results for system (2). In Section 3, the main theorem of this paper is stated and proved. In the last section, a brief discussion and numerical simulations which support our theoretical analysis are given.

2 Preliminaries

We assume:

(A1) \(\varphi_k \) and \(G_k \) are Lipschitz on \([0, +\infty)\);

(A2) \(\varphi_k \) is strictly decreasing on \([0, +\infty)\), and there exists \(S^{(1)}_{k0} > 0 \) such that

\[
\varphi_k \left(S^{(1)}_{k0}\right) - a_k S^{(1)}_{k0} = 0;
\]

(A3) \(\frac{G_k(x)}{x} \) is nonincreasing on \((0, +\infty)\) and

\[
\delta_k = \lim_{x \to 0} \frac{G_k(x)}{x} > 0 \text{ exists, } k = 1, 2, \ldots, n.
\]

From our assumptions, it is clear that system (2) has a unique solution for any given initial conditions (3) and the solution remains nonnegative. If (A2) holds, then we see that system (2) has a disease-free equilibrium

\[
P_0 = \left(S^{(1)}_{10}, S^{(2)}_{10}, \ldots, S^{(1)}_{n0}, S^{(2)}_{n0}, 0, 0, \ldots, 0\right),
\]

where

\[
\varphi_k \left(S^{(1)}_{k0}\right) = d^{(2)}_k S^{(2)}_{k0}, \quad a_k S^{(1)}_{k0} = d^{(2)}_k S^{(2)}_{k0}, \quad k = 1, 2, \ldots, n. \tag{4}
\]

For two nonnegative \(n \)-square matrices \(A = (a_{ij}) \) and \(B = (b_{ij}) \), we write \(A \leq B \) if \(a_{ij} \leq b_{ij} \) for all \(i \) and \(j \), and \(A < B \) if \(A \leq B \) and \(A \neq B \). Following [25], we set matrices

\[
F := \left(\sum_{i=1}^{2} \beta^{(i)}_{kj} S^{(i)}_{k0} \delta_j \right)_{n \times n}, \quad V := \text{diag} \left(\frac{m_1(d_1 + \eta_1)}{\eta_1}, \frac{m_2(d_2 + \eta_2)}{\eta_2}, \ldots, \frac{m_n(d_n + \eta_n)}{\eta_n} \right).
\]

The next generation matrix for system (2) is

\[
Q := FV^{-1} = \left(\frac{n_k \sum_{i=1}^{2} \beta^{(i)}_{kj} S^{(i)}_{k0} \delta_j}{m_k(d_k + \eta_k)} \right)_{n \times n}
\]

\[
= \begin{bmatrix}
\frac{n_1 \sum_{i=1}^{2} \beta^{(i)}_{11} S^{(i)}_{10} \delta_1}{m_1(d_1 + \eta_1)} & \cdots & \frac{n_1 \sum_{i=1}^{2} \beta^{(i)}_{1n} S^{(i)}_{10} \delta_n}{m_1(d_1 + \eta_1)} \\
\vdots & \ddots & \vdots \\
\frac{n_n \sum_{i=1}^{2} \beta^{(i)}_{n1} S^{(i)}_{n0} \delta_1}{m_n(d_n + \eta_1)} & \cdots & \frac{n_n \sum_{i=1}^{2} \beta^{(i)}_{nn} S^{(i)}_{n0} \delta_n}{m_n(d_n + \eta_n)}
\end{bmatrix}.
\]

Thus, we obtain the basic reproduction number \(R_0 \) for system (2) as

\[
R_0 = \rho(Q),
\]

where \(\rho \) denotes the spectral radius.
Let $N_k = S^{(1)}_k + S^{(2)}_k + E_k + I_k$, $d_k = \min\{d^{(3)}_k, d^{(2)}_k, d_k, m_k\}$, $k = 1, 2, \ldots, n$. Then from (2) we have
\[
\dot{N}_k \leq \varphi_k(S^{(1)}_k) + d^{(1)}_k S^{(1)}_k - d_k N_k. \tag{5}
\]

We derive from (5) that the region
\[
\Gamma = \left\{ (S^{(1)}_1, S^{(2)}_1, \ldots, S^{(1)}_n, S^{(2)}_n, E_1, \ldots, E_n, I_1, \ldots, I_n) \in \mathbb{R}^{4n} : S^{(1)}_k \leq S^{(1)}_{k0}, S^{(2)}_k \leq S^{(2)}_{k0}, \varphi_k(S^{(1)}_k) + S^{(2)}_k + E_k + I_k \leq \frac{\varphi_k(0) + d^{(1)}_k S^{(1)}_{k0}}{d_k}, k = 1, 2, \ldots, n \right\}
\]
is positively invariant with respect to (2). Let Γ^0 denote the interior of Γ.

3 Main results

In the section, we study the global stability of equilibria of system (2).

Theorem 3.1 Assume that (A1)-(A3) hold and $B = (\sum_{i=1}^{2} \beta^{(i)}_{ij})$ is irreducible.

1. If $R_0 \leq 1$, then P_0 is globally asymptotically stable in Γ;
2. If $R_0 > 1$, then P_0 is unstable and system (2) admits at least one endemic equilibrium in Γ^0.

Proof Let
\[
S = (S^{(1)}_1, S^{(2)}_1, \ldots, S^{(1)}_n, S^{(2)}_n), \quad S^0 = (S^{(1)}_{10}, S^{(2)}_{10}, \ldots, S^{(1)}_{n0}, S^{(2)}_{n0}),
\]
\[
I = (I_1, I_2, \ldots, I_n), \quad Q(S, I) = \left(\frac{\sum_{i=1}^{2} \sum_{j=1}^{n} \eta_k \beta^{(i)}_{ij} S^{(i)}_k G_j(I_j)}{m_k(d_k + \eta_k) I_j} \right)_{n \times n}.
\]

Notice that B is irreducible, then $Q(S, I)$ and Q are irreducible. By (A3), we have $0 \leq Q(S, I) \leq Q$. Hence $Q(S, I) + Q$ is also irreducible. That is, $0 \leq Q(S, I) < Q$ and $Q(S, I) + Q$ is irreducible provided that $S \neq S^0$. Thus, by [26], Corollary 1.5, p.27, $\rho(Q(S, I)) < \rho(Q)$ if $S \neq S^0$. Since Q is irreducible, there exist $\omega_k > 0$, $k = 1, 2, \ldots, n$, such that
\[
(\omega_1, \omega_2, \ldots, \omega_n) \rho(Q) = (\omega_1, \omega_2, \ldots, \omega_n) Q.
\]

Consider a Lyapunov functional
\[
L = \sum_{k=1}^{n} \frac{\omega_k \eta_k}{m_k(d_k + \eta_k)} \left[E_k + \frac{d_k + \eta_k}{\eta_k} I_k \right].
\]

Differentiating L along the solution of system (2), we obtain
\[
\dot{L} = \sum_{k=1}^{n} \frac{\omega_k \eta_k}{m_k(d_k + \eta_k)} \left[\sum_{i=1}^{2} \sum_{j=1}^{n} \eta_k \beta^{(i)}_{ij} G_j(I_j) - \frac{m_k(d_k + \eta_k)}{\eta_k} I_k \right] = \sum_{k=1}^{n} \omega_k \left[\sum_{i=1}^{2} \sum_{j=1}^{n} \eta_k \beta^{(i)}_{ij} G_j(I_j) - \frac{m_k(d_k + \eta_k)}{\eta_k} I_k \frac{\sum_{i=1}^{2} \sum_{j=1}^{n} \eta_k \beta^{(i)}_{ij} G_j(I_j)}{m_k(d_k + \eta_k)} - I_k \right]
\]
\[(\omega_1, \omega_2, \ldots, \omega_n)(Q(S, I)I^T - I^T) \leq (\omega_1, \omega_2, \ldots, \omega_n)(QI^T - I^T) = [\rho(Q) - 1](\omega_1, \omega_2, \ldots, \omega_n)I^T \leq 0. \]

If \(R_0 < 1 \), then \(\dot{L} = 0 \) if and only if \(I^T = 0 \). If \(R_0 = 1 \), then \(\dot{L} = 0 \) implies
\[(\omega_1, \omega_2, \ldots, \omega_n)(Q(S, I)I^T - I^T) = 0. \]

Therefore, \(\dot{L} = 0 \) if and only if \(I = 0 \), or \(S = S^0 \). On the other hand, from the last equation in system (2), we see that \(I = 0 \) implies that \(E_k = 0 \) for \(k = 1, 2, \ldots, n \). Hence, the largest invariant subset of the set, where \(\dot{L} = 0 \), is the singleton \(\{ P_0 \} \). By LaSalle’s invariance principle, \(P_0 \) is globally asymptotically stable for \(R_0 \leq 1 \).

If \(R_0 > 1 \) and \(I \neq 0 \), then
\[[\rho(Q) - 1](\omega_1, \omega_2, \ldots, \omega_n)I^T > 0. \]

Thus, by continuity, we have \(\dot{L} = (\omega_1, \omega_2, \ldots, \omega_n)(Q(S, I)I^T - I^T) > 0 \) in a neighborhood of \(P_0 \) in \(\Gamma^0 \). This implies that \(P_0 \) is unstable. From a uniform persistence result of [27] and a similar argument as in the proof of Proposition 3.3 of [28], we can deduce that the instability of \(P_0 \) implies the uniform persistence of system (2) in \(\Gamma^0 \). This together with the uniform boundedness of solutions of system (2) in \(\Gamma^0 \) implies that system (2) has an endemic equilibrium in \(\Gamma^0 \) (see Theorem 2.8.6 of [29] or Theorem D.3 of [30]). The proof is completed. \(\square \)

By Theorem 3.1, we have that if \(B = (\sum_{j=1}^{2} \beta_{kj}^{(i)}) \) is irreducible, (A1)-(A3) hold and \(R_0 > 1 \), then system (2) has an endemic equilibrium \(P^* \) in \(\Gamma^0 \). Let
\[P^* = (S_1^{(1)*}, S_2^{(2)*}, \ldots, S_n^{(1)*}, S_n^{(2)*}, I_1^*, I_2^*, \ldots, I_n^*), \]

then the components of \(P^* \) satisfy
\[\phi_k(S_k^{(1)*}) = \sum_{i=1}^{2} S_k^{(i)*} \sum_{j=1}^{n} \beta_{kj}^{(i)} G_j(I_j^*) + d_k^{(2)} S_k^{(2)*}, \quad (6) \]
\[a_k(S_k^{(1)*}) = S_k^{(2)*} \sum_{j=1}^{n} \beta_{kj}^{(2)} G_j(I_j^*) + d_k^{(2)} S_k^{(2)*}, \quad (7) \]
\[\sum_{i=1}^{2} S_k^{(i)*} \sum_{j=1}^{n} \beta_{kj}^{(i)} G_j(I_j^*) = (d_k + \eta_k)E_k^* = \frac{m_k(d_k + \eta_k)}{\eta_k} I_k^*, \quad k = 1, 2, \ldots, n. \quad (8) \]

Since \(\phi_k \) is strictly decreasing on \([0, +\infty)\), we have
\[\left[\phi_k(S_k^{(1)*}) - \phi_k(S_k^{(1)*}) \right] \left(1 - \frac{S_k^{(1)*}}{S_k^{(1)*}} \right) \leq 0, \quad (9) \]

where equality holds if and only if \(S_k^{(1)*} = S_k^{(1)*}, k = 1, 2, \ldots, n \).
We further make the following assumption:

(A4) \(G_k \) is strictly increasing on \([0, +\infty)\), and

\[
\frac{G_k(x_k)I_k}{G_k(x_k)K_k} + \frac{G_k(I_k)}{G_k(x_k)} - \frac{I_k}{x_k} - 1 \leq 0, \quad k = 1, 2, \ldots, n,
\]

where \(x_k > 0 \) is chosen in an arbitrary way and equality holds if \(I_k = x_k \).

Theorem 3.2 Assume that \(B = \{\sum_{i=1}^{2} \beta_{ij}^{(0)} \} \) is irreducible. If \(R_0 > 1 \), then \(P^* \) is globally asymptotically stable.

Proof Set \(\beta_{kj}^{(0)} = \sum_{i=1}^{2} \beta_{kj}^{(i)} \), \(k, j = 1, 2, \ldots, n \), and

\[
\beta = \begin{bmatrix}
\sum_{i=1}^{2} \beta_{1i}^{(0)} & -\beta_{21} & \cdots & -\beta_{m1} \\
-\beta_{12} & \sum_{i=1}^{2} \beta_{2i}^{(0)} & \cdots & -\beta_{m2} \\
\vdots & \vdots & \ddots & \vdots \\
-\beta_{1n} & -\beta_{2n} & \cdots & \sum_{i=1}^{2} \beta_{ni}^{(0)}
\end{bmatrix}.
\]

Then \(\beta \) is also irreducible. It follows from Lemma 2.1 of [1] that the solution space of the linear system

\[
\beta v = 0
\]

has dimension 1 with a basis

\[
v := (v_1, v_2, \ldots, v_n)^T = (\xi_1, \xi_2, \ldots, \xi_n)^T,
\]

where \(\xi_k \) denotes the cofactor of the \(k \)th diagonal entry of \(\beta \). Note that from (11) we have

\[
\sum_{j=1}^{n} \beta_{kj} v_k = \sum_{j=1}^{n} \beta_{kj} v_j, \quad k = 1, 2, \ldots, n.
\]

From (13), we have

\[
\sum_{k=1}^{n} v_k \sum_{j=1}^{n} \sum_{i=1}^{2} \beta_{kj}^{(i)} S_k^{(i)} G_j(I_k^{*})
\]

\[
= \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{2} \beta_{kj}^{(i)} S_k^{(i)} v_j G_k(I_k) = \sum_{k=1}^{n} \left[\sum_{j=1}^{n} \sum_{i=1}^{2} \beta_{kj}^{(i)} S_k^{(i)} G_k(I_k^{*}) v_j \right] G_k(I_k) G_k(I_k^{*})
\]

\[
= \sum_{k=1}^{n} \left[\sum_{j=1}^{n} (\beta_{kj} v_j) \right] G_k(I_k) G_k(I_k^{*}) = \sum_{k=1}^{n} \left[\sum_{j=1}^{n} (\beta_{kj} v_k) \right] G_k(I_k) G_k(I_k^{*})
\]

\[
= \sum_{k=1}^{n} v_k \sum_{j=1}^{n} \sum_{i=1}^{2} \beta_{kj}^{(i)} S_k^{(i)} G_j(I_k^{*}) G_k(I_k) G_k(I_k^{*})
\]

(14)
Consider a Lyapunov functional

\[
V = \sum_{k=1}^{n} v_k \left(\int_{I_k} \frac{E_k + \eta_k}{\eta_k} \left[\frac{G_k(x) - G_k(I_k^*)}{G_k(x)} \right] dx \right).
\]

Differentiating \(V \) along the solution of system (2), we obtain

\[
\dot{V} = \sum_{k=1}^{n} v_k \left\{ \varphi_k(S_k^{(1)}) - d_k^{(2)} S_k^{(2)} - \frac{m_k(d_k + \eta_k)}{\eta_k} I_k \right. \\
- \frac{S_k^{(2)+}}{S_k^{(2)}} \left[\varphi_k(S_k^{(1)}) - S_k^{(1)} \sum_{j=1}^{n} \beta_{kj} G_j(I_j) - a_k S_k^{(1)} \right] \\
- \frac{S_k^{(2)+}}{S_k^{(2)}} \left[a_k S_k^{(1)} - S_k^{(2)} \sum_{j=1}^{2} \beta_{kj} G_j(I_j) - d_k^{(2)} S_k^{(2)} \right] \\
- \frac{E_k^*}{E_k} \left[\sum_{j=1}^{2} \sum_{j=1}^{n} \beta_{kj} G_j(I_j) - (d_k + \eta_k) E_k \right] \\
+ \frac{G_k(I_k^*)}{G_k(I_k)} \left[(d_k + \eta_k) E_k - \frac{m_k(d_k + \eta_k)}{\eta_k} I_k \right] \right\} \\
= \sum_{k=1}^{n} v_k \left\{ \varphi_k(S_k^{(1)}) \left(1 - \frac{S_k^{(1)+}}{S_k^{(1)}} \right) + d_k^{(2)} S_k^{(2)} \left(1 - \frac{S_k^{(2)+}}{S_k^{(2)+}} \right) \\
+ \frac{a_k S_k^{(1)+}}{\beta_{kj}} G_j(I_j) \sum_{j=1}^{n} \frac{S_k^{(1)+}}{S_k^{(1)+}} + \frac{S_k^{(2)+}}{S_k^{(2)+}} \right\} \\
- \frac{E_k^*}{E_k} \sum_{i=1}^{2} \sum_{j=1}^{n} \beta_{kj} G_j(I_j) \left[(d_k + \eta_k) E_k \right] \left(1 - \frac{E_k G_k(I_k^*)}{E_k^* G_k(I_k)} \right) \\
+ \frac{m_k(d_k + \eta_k)}{\eta_k} I_k G_k(I_k^*) - \frac{m_k(d_k + \eta_k)}{\eta_k} I_k \frac{I_k}{I_k^*}. \]

From (7) and (8), we have

\[
\dot{V} = \sum_{k=1}^{n} \left\{ \varphi_k(S_k^{(1)}) \left(1 - \frac{S_k^{(1)+}}{S_k^{(1)}} \right) + d_k^{(2)} S_k^{(2)} \left(1 - \frac{S_k^{(2)+}}{S_k^{(2)+}} \right) \\
- \frac{E_k^*}{E_k} \sum_{i=1}^{2} \sum_{j=1}^{n} \beta_{kj} G_j(I_j) \left[1 - \frac{S_k^{(1)+}}{S_k^{(1)+}} \frac{S_k^{(2)+}}{S_k^{(2)+}} \right] \\
+ \sum_{i=1}^{2} \sum_{j=1}^{n} \beta_{kj} G_j(I_j) \left[1 - \frac{E_k G_k(I_k^*)}{E_k^* G_k(I_k)} \right] \right\}.
\]
By (10) and (14), we obtain

\[
\dot{V} \leq \sum_{k=1}^{n} v_k \left\{ \varphi_k \left(S_k^{(1)} \right) \left(1 - \frac{S_k^{(1)+}}{S_k^{(1)}} \right) + d_k^{(2)} \left(1 - \frac{S_k^{(2)}}{S_k^{(2)\ast}} \right) \right. \\
- E_k^2 \sum_{i=1}^{2} S_k^{(i)} \sum_{j=1}^{n} \beta_{kj}^{(i)\ast} G_i(I_j) + \left[\frac{2^{(2)\ast}}{S_k^{(2)\ast}} \sum_{j=1}^{n} \beta_{kj}^{(2)\ast} G_i(I_j^\ast) + d_k^{(2)} \frac{S_k^{(2)}}{S_k^{(2)\ast}} \right] \\
\times \left(1 - \frac{S_k^{(1)+}}{S_k^{(1)}} \right) + \sum_{i=1}^{2} S_k^{(i)} \sum_{j=1}^{n} \beta_{kj}^{(i)\ast} G_i(I_j^\ast) \left[2 - \frac{E_k G_k(I_k^\ast)}{E_k G_k(I_k)} \right] \right\} =: B_1.
\]

(15)

From (6), we know that

\[
\varphi_k \left(S_k^{(1)+} \right) \left(1 - \frac{S_k^{(1)+}}{S_k^{(1)}} \right) = \left(\sum_{i=1}^{2} S_k^{(i)} \sum_{j=1}^{n} \beta_{kj}^{(i)\ast} G_i(I_j^\ast) + d_k^{(2)} \frac{S_k^{(2)}}{S_k^{(2)\ast}} \right) \left(1 - \frac{S_k^{(1)+}}{S_k^{(1)}} \right).
\]

(16)

By (16), we can rewrite \(B_1 \) as

\[
\dot{V} = \sum_{k=1}^{n} v_k \left\{ \left[\varphi_k \left(S_k^{(1)} \right) - \varphi_k \left(S_k^{(1)+} \right) \right] \left(1 - \frac{S_k^{(1)+}}{S_k^{(1)}} \right) \\
+ d_k^{(2)} \frac{S_k^{(2)}}{S_k^{(2)\ast}} \left(3 - \frac{S_k^{(1)} + S_k^{(2)}}{S_k^{(1)+} + S_k^{(2)\ast}} \right) \right. \\
- E_k^2 \sum_{i=1}^{2} S_k^{(i)} \sum_{j=1}^{n} \beta_{kj}^{(i)} G_i(I_j) + \left[\frac{2^{(2)\ast}}{S_k^{(2)\ast}} \sum_{j=1}^{n} \beta_{kj}^{(2)\ast} G_i(I_j^\ast) \right] \\
\times \left(2 - \frac{S_k^{(1)+}}{S_k^{(1)}} \right) + \sum_{i=1}^{2} S_k^{(i)} \sum_{j=1}^{n} \beta_{kj}^{(i)\ast} G_i(I_j^\ast) \left[2 - \frac{E_k G_k(I_k^\ast)}{E_k G_k(I_k)} \right] \left\} \right. \\
= B_2.
\]

(17)

By (9) and the arithmetic-geometric mean, we easily see that

\[
B_1 \leq \sum_{k=1}^{n} v_k \left\{ - \frac{E_k}{E_k} \sum_{i=1}^{2} S_k^{(i)} \sum_{j=1}^{n} \beta_{kj}^{(i)} G_i(I_j) \\
+ S_k^{(2)\ast} \sum_{j=1}^{n} \beta_{kj}^{(2)\ast} G_i(I_j^\ast) \left(2 - \frac{S_k^{(1)+}}{S_k^{(1)}} \right) \right. \\
+ S_k^{(1)+} \sum_{j=1}^{n} \beta_{kj}^{(1)\ast} G_i(I_j^\ast) \left(1 - \frac{S_k^{(1)+}}{S_k^{(1)}} \right) \\
\times \left(2 - \frac{E_k G_k(I_k^\ast)}{E_k G_k(I_k)} \right) \left\} =: B_2. \right.
\]
We can rewrite B_2 as

$$B_2 = \sum_{k=1}^{n} v_k \left\{ 3 \sum_{j=1}^{n} \beta_{kj}^{(2)} G_j(I_j^*) \left[3 \frac{S_k^{(1)+} G_j(I_j^*)^2}{S_k^{(1)+} S_k^{(2)+}} - \frac{S_k^{(2)+} E_k G_j(I_j^*)}{S_k^{(2)+} E_k G_j(I_j^*)} \right] + S_k^{(1)+} \sum_{j=1}^{n} \beta_{kj}^{(1)} G_j(I_j^*) \left[2 - \frac{S_k^{(1)+}}{S_k^{(1)+}} \right] - \frac{S_k^{(1)+} E_k G_j(I_j^*)}{S_k^{(2)+} E_k G_j(I_j^*)} \right\} + \sum_{i=1}^{2} \sum_{j=1}^{n} \beta_{kj}^{(i)} G_j(I_j^*) \left[1 - \frac{E_k G_k(I_k^*)}{E_k G_k(I_k^*)} \right] \right\}. $$

By the arithmetic-geometric mean, we have that

$$B_2 \leq \sum_{k=1}^{n} v_k \left\{ 3 \sum_{j=1}^{n} \beta_{kj}^{(2)} G_j(I_j^*) \left[1 - \left(\frac{E_k G_j(I_j^*)}{E_k G_j(I_j^*)} \right)^{\frac{1}{2}} \right] + 2 S_k^{(1)+} \sum_{j=1}^{n} \beta_{kj}^{(1)} G_j(I_j^*) \left[1 - \left(\frac{E_k G_j(I_j^*)}{E_k G_j(I_j^*)} \right)^{\frac{1}{2}} \right] + \sum_{i=1}^{2} \sum_{j=1}^{n} \beta_{kj}^{(i)} G_j(I_j^*) \left[1 - \frac{E_k G_k(I_k^*)}{E_k G_k(I_k^*)} \right] \right\} =: B_3. $$

We can rewrite B_3 as

$$B_3 = \sum_{k=1}^{n} v_k \left\{ 3 \sum_{j=1}^{n} \beta_{kj}^{(2)} G_j(I_j^*) \left[1 - \left(\frac{E_k G_j(I_j^*)}{E_k G_j(I_j^*)} \right)^{\frac{1}{2}} + \ln \left(\frac{E_k G_j(I_j^*)}{E_k G_j(I_j^*)} \right) \right] + 2 S_k^{(1)+} \sum_{j=1}^{n} \beta_{kj}^{(1)} G_j(I_j^*) \left[1 - \left(\frac{E_k G_j(I_j^*)}{E_k G_j(I_j^*)} \right)^{\frac{1}{2}} + \ln \left(\frac{E_k G_j(I_j^*)}{E_k G_j(I_j^*)} \right) \right] \right\} + \sum_{i=1}^{2} \sum_{j=1}^{n} \beta_{kj}^{(i)} G_j(I_j^*) \left[1 - \frac{E_k G_k(I_k^*)}{E_k G_k(I_k^*)} + \ln \frac{E_k G_k(I_k^*)}{E_k G_k(I_k^*)} \right] \right\} + \sum_{i=1}^{2} \sum_{j=1}^{n} \beta_{kj}^{(i)} G_j(I_j^*) \ln \frac{E_k G_k(I_k^*)}{E_k G_k(I_k^*)} \right\}.$$

Using the fact that $1 - x + \ln x \leq 0$, where equality holds if and only if $x = 1$, we obtain

$$B_3 \leq \sum_{k=1}^{n} v_k \sum_{i=1}^{2} S_k^{(i)+} \sum_{j=1}^{n} \beta_{kj}^{(i)} G_j(I_j^*) \left[- \ln \frac{E_k G_j(I_j^*)}{E_k G_j(I_j^*)} - \ln \frac{E_k G_k(I_k^*)}{E_k G_k(I_k^*)} \right] = \sum_{k=1}^{n} v_k \sum_{i=1}^{2} S_k^{(i)+} \sum_{j=1}^{n} \beta_{kj}^{(i)} G_j(I_j^*) \ln \frac{G_k(I_k^*) G_j(I_j^*)}{G_k(I_k^*) G_j(I_j^*)} = \sum_{k=1}^{n} \beta_{kj} \ln \frac{G_k(I_k^*) G_j(I_j^*)}{G_k(I_k^*) G_j(I_j^*)}. $$

(19)
In the following, we will show that

\[H_n := \sum_{k=1}^{n} v_k \sum_{j=1}^{n} \beta_{kj} \ln \frac{G_k(I_k)G_j(I_j^*)}{G_k(I_k^*)G_j(I_j)} \equiv 0. \] (20)

We first give the proof of (20) for \(n = 2 \), which would give a reader the basic yet clear ideas without being hidden by the complexity of terms caused by larger values of \(n \). When \(n = 2 \), we have

\[H_2 = \sum_{k=1}^{2} v_k \sum_{j=1}^{2} \beta_{kj} \ln \frac{G_k(I_k)G_j(I_j^*)}{G_k(I_k^*)G_j(I_j)}. \]

Formula (12) gives \(v_1 = \beta_{21} \) and \(v_2 = \beta_{12} \) in this case. Expanding \(H_2 \) yields

\[
H_2 = \beta_{21} \beta_{12} \ln \frac{G_1(I_1)G_2(I_2^*)}{G_2(I_2)G_1(I_1)} + \beta_{12} \beta_{21} \ln \frac{G_2(I_2)G_1(I_1^*)}{G_1(I_1)G_2(I_2)}
\]

\[+ \beta_{21} \beta_{12} \ln \frac{G_1(I_1)G_2(I_2^*)}{G_2(I_2)G_1(I_1)} + \beta_{12} \beta_{21} \ln \frac{G_2(I_2)G_1(I_1^*)}{G_1(I_1)G_2(I_2)}
\]

\[= \beta_{12} \beta_{21} \left[\ln \frac{G_1(I_1)G_2(I_2^*)}{G_2(I_2)G_1(I_1)} + \ln \frac{G_2(I_2)G_1(I_1^*)}{G_1(I_1)G_2(I_2)} \right] = 0.\]

For more general \(n \), by a similar argument as in the proof of \(\sum_{k,j=1}^{n} v_k \beta_{kj} \ln \frac{E_k E_j}{E_k E_j} \equiv 0 \) in [7], we obtain that

\[\sum_{k=1}^{n} v_k \sum_{j=1}^{n} \beta_{kj} \ln \frac{G_k(I_k)G_j(I_j^*)}{G_k(I_k^*)G_j(I_j)} = \sum_{k,j=1}^{n} v_k \beta_{kj} \ln \frac{G_k(I_k^*)G_j(I_j)}{G_k(I_k)G_j(I_j^*)} \equiv 0. \]

From (17)-(19), we see that if \(\dot{V} = 0 \), then

\[S_k^{(i)} = S_k^{(i)*}, \quad i = 1, 2, k = 1, 2, \ldots, n. \] (21)

If (21) holds, it follows from (2) that

\[
\begin{cases}
0 = \varphi_k(S_k^{(1)*}) - \sum_{i,j=1}^{n} \beta_{kj} S_j^{(1)*} S_k G_j(l_j) - a_k S_k^{(1)*}, \\
0 = a_k S_k^{(2)*} - \sum_{i,j=1}^{n} \beta_{kj} S_j^{(2)*} S_k G_j(l_j) - d_k S_k^{(2)*}.
\end{cases}
\]

Then we obtain that

\[\dot{E}_k = (\varphi_k(S_k^{(1)*}) - a_k S_k^{(1)*}) + (a_k S_k^{(1)*} - d_k S_k^{(2)*}) - (d_k + \eta_k) E_k. \]

This implies that

\[
\lim_{t \to +\infty} E_k = \frac{(\varphi_k(S_k^{(1)*}) - a_k S_k^{(1)*}) + (a_k S_k^{(1)*} - d_k S_k^{(2)*})}{(d_k + \eta_k)} = E_k^*.
\] (22)

By (22) and the fourth equation of system (2), we have

\[
\lim_{t \to +\infty} I_k = \frac{\eta_k E_k^*}{m_k} = I_k^*.
\] (23)
From (21)-(23) and the characteristics of V, we obtain that the largest invariant subset of the set, where $\dot{V} = 0$, is the singleton \(\{ P^* \} \). By LaSalle’s invariance principle, P^* is globally asymptotically stable for $R_0 > 1$. \hfill \square

4 Numerical examples

For certain sexually transmitted diseases, AIDS/HIV for example, it is natural to consider two groups of people: a group of males and a group of females. Further, it is always assumed that there are two important age stages for the susceptible, a group of immature susceptible $S^{(1)}_k$ who are less than 18 years old, and a group of mature susceptible $S^{(2)}_k$ who are more than 18 years old. Thus, we consider the following model:

\[
\begin{align*}
\dot{S}^{(1)}_k &= \varphi_k(S^{(1)}_k) - \sum_{j=1}^{2} \beta_{kj}^{(1)} S^{(1)}_k G_j(I_j) - a_k S^{(1)}_k, \\
\dot{S}^{(2)}_k &= a_k S^{(1)}_k - \sum_{j=1}^{2} \beta_{kj}^{(2)} S^{(2)}_k G_j(I_j) - d^{(2)}_k S^{(2)}_k, \\
\dot{E}_k &= \sum_{i=1}^{2} \sum_{j=1}^{2} \beta_{kj}^{(i)} S^{(i)}_k G_j(I_j) - (d_k + \eta_k) E_k, \\
\dot{I}_k &= \eta_k E_k - m_k I_k, \quad k = 1, 2,
\end{align*}
\]

where $\varphi_k(S^{(1)}_k) = b_k - d^{(1)}_k S^{(1)}_k$, $G_j(I_j) = \frac{I_j}{1 + \alpha_j I_j}$.

Clearly, (A1)-(A4) hold. We fix the parameters as follows:

\[
\begin{align*}
b_1 &= 50, \quad b_2 = 30, \quad d_1^{(1)} = 0.001, \quad d_1^{(2)} = 0.2, \quad d_2^{(1)} = 0.002, \\
d_2^{(2)} &= 0.3, \quad d_1 = 0.1, \quad d_2 = 0.2, \quad \eta_1 = 0.1, \quad \eta_2 = 0.2, \\
m_1 &= 0.5, \quad m_2 = 0.6, \quad a_1 = 0.6, \quad a_2 = 0.5, \quad \alpha_1 = \alpha_2 = 0.1.
\end{align*}
\]

Then we have $P_0 \approx (83.1947, 249.5840, 59.7610, 99.6016, 0, 0, 0, 0, 0)$.
Figure 2 Dynamic behavior of system (24) with parameter values in (25) and Case 2. $R_0 \approx 1.0941$. The initial conditions are: $S^{(1)}_1(0) = 70, S^{(2)}_1(0) = 200, S^{(1)}_2(0) = 80, S^{(2)}_2(0) = 240, E_1(0) = 1, E_2(0) = 9, I_1(0) = 3, I_2(0) = 6$.

Case 1. If $\beta^{(1)}_{1j} = \beta^{(2)}_{1k} = 0.002, \beta^{(1)}_{2j} = \beta^{(2)}_{2k} = 0.002, k = 1, 2, j = 1, 2$, then we obtain

$$Q \approx \begin{pmatrix} 0.6656 & 0.5546 \\ 0.3187 & 0.2656 \end{pmatrix}, \quad R_0 \approx 0.9312.$$

By Theorem 3.1, the disease dies out in both groups. Numerical simulation illustrates this fact (see Figure 1).

Case 2. If $\beta^{(1)}_{1j} = \beta^{(2)}_{1k} = 0.0025, \beta^{(1)}_{2j} = \beta^{(2)}_{2k} = 0.002, k = 1, 2, j = 1, 2$, then we have $P^* \approx (82.7845, 244.9127, 59.4787, 98.2113, 4.6734, 1.0441, 0.9347, 0.3480)$ and $R_0 \approx 1.0941$.

By Theorem 3.2, the disease persists in both groups. Numerical simulation illustrates this fact (see Figure 2).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in writing this paper. All authors read and approved the final paper.

Author details
1 School of Science, Southwest University of Science and Technology, Mianyang, 621010, China. 2 School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China. 3 School of Statistics, Chengdu University of Information Technology, Chengdu, 610103, China.

Acknowledgements
This work is supported by the National Natural Science Foundation of China (51349011), Scientific Research Fund of Sichuan Provincial Education Department (11ZB192, 14ZB0115) and Doctoral Research Fund of Southwest University of Science and Technology.
References
1. Guo, H, Li, MY, Shuai, Z: Global stability of the endemic equilibrium of multigroup SIR epidemic models. Can. Appl. Math. Q. 14, 259-284 (2006)
2. Sun, R, Shi, J: Global stability of multigroup endemic model with group mixing and nonlinear incidence rates. Appl. Math. Comput. 218, 280-286 (2011)
3. Yuan, Z, Wang, L: Global stability of epidemiological models with group mixing and nonlinear incidence rates. Nonlinear Anal., Real World Appl. 11, 995-1004 (2011)
4. Kuniya, T: Global stability analysis with a discretization approach for an age-structured multigroup SIR epidemic model. Nonlinear Anal., Real World Appl. 12, 2640-2655 (2011)
5. Yuan, Z, Zou, X: Global threshold property in an epidemic model for disease with latency spreading in a heterogeneous host population. Nonlinear Anal., Real World Appl. 11, 3479-3490 (2011)
6. Sun, R: Global stability of the endemic equilibrium of multigroup SIR epidemic models with nonlinear incidence rates. Comput. Math. Appl. 60, 2286-2291 (2010)
7. Li, MY, Shuai, Z, Wang, C: Global stability of multi-group epidemic models with distributed delays. J. Math. Anal. Appl. 361, 38-47 (2010)
8. Shu, H, Fan, D, Wei, J: Global stability of multi-group SEIR endemic models with distributed delays and nonlinear transmission. Nonlinear Anal., Real World Appl. 13, 1581-1592 (2012)
9. Ding, D, Ding, X: Global stability of multi-group vaccination endemic models with delays. Nonlinear Anal., Real World Appl. 12, 1991-1997 (2011)
10. Chen, H, Sun, J: Global stability of delay multigroup endemic models with group mixing and nonlinear incidence rates. Appl. Math. Comput. 218, 4391-4400 (2011)
11. Alexanderian, A, Gobbert, MK, Rister, KR, Gaff, H, Lenhart, S, Schaefer, E: An age-structured model for the spread of epidemic cholera: analysis and simulation. Nonlinear Anal., Real World Appl. 12, 3483-3498 (2011)
12. Liu, Y, Guo, S, Luo, Y: Impulsive epidemic model with differential susceptibility and stage structure. Appl. Math. Model. 36, 370-378 (2012)
13. Zhang, X, Huo, H, Sun, X, Fu, Q: Impulsive epidemic model with differential susceptibility and stage structure. Appl. Math. Model. 36, 370-378 (2012)
14. Shi, X, Cui, J, Zhou, X: Stability and Hopf bifurcation analysis of an eco-epidemic model with a stage structure. Nonlinear Anal. TMA 74, 1088-1106 (2011)
15. Wu, C, Weng, P: Stability analysis of a SIS model with stage structured and distributed maturation delay. Nonlinear Anal. TMA 71, e892-e901 (2009)
16. Inaba, H: Stability analysis of a SIS model with stage structured and distributed maturation delay. Math. Biosci. 201, 15-47 (2006)
17. Feng, Z, Huang, W, Castillo-Chavez, C: Global behavior of a multi-group SIS epidemic model with age structure. J. Differ. Equ. 218, 292-324 (2005)
18. Wang, W: Global behavior of an SEIR epidemic model with two delays. Appl. Math. Lett. 15, 423-428 (2002)
19. Li, MY, Smith, HL, Wang, L: Global dynamics of an SEIR epidemic model with vertical transmission. SIAM J. Appl. Math. 62, 58-69 (2001)
20. Sahu, GP, Dhar, J: Analysis of an SVEIS epidemic model with partial temporary immunity and saturation incidence rate. Appl. Math. Model. 36, 908-923 (2012)
21. Zhang, T, Teng, Z: Extinction and permanence for a pulse vaccination delayed SEIRS epidemic model. Chaos Solitons Fractals 39, 2411-2425 (2009)
22. Meng, X, Jiao, J, Chen, L: Two profitless delays for an SEIRS epidemic disease model with vertical transmission and pulse vaccination. Chaos Solitons Fractals 40, 2114-2125 (2009)
23. Jiang, Y, Wei, H, Song, X, Mei, L, Su, G, Qiu, S: Global attractiveness and permanence of a delayed SEIRS epidemic model with pulse vaccination and saturation incidence. Appl. Math. Comput. 213, 312-321 (2009)
24. Xu, R: Global stability of a delayed epidemic model with latent period and vaccination strategy. Appl. Math. Model. 36, 5293-5300 (2012)
25. Van den Driessche, P, Watmough, J: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29-48 (2002)
26. Berman, A, Plemmons, RJ: Nonnegative Matrices in Mathematical Science. Academic Press, New York (1979)
27. Freedman, HI, Tang, MX, Ruan, SG: Uniform persistence of flows near a closed positively invariant set. J. Dyn. Differ. Equ. 6, 583-600 (1994)
28. Li, MY, Graef, JR, Wang, L, Karsai, J: Global dynamics of a SEIR model with varying total population size. Math. Biosci. 160, 191-213 (1999)
29. Bhattacharyya, NP, Szego, GP: Dynamics Systems: Stability Theory and Applications. Springer, Berlin (1967)
30. Smith, HL, Waltman, P: The Theory of Chemostat: Dynamics of Microbial Competition. Cambridge University Press, Cambridge (1995)