Exotic phases of finite temperature $SU(N)$ gauge theories

Joyce C. Myersa and Michael C. Ogilvieb

aDepartment of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, UK
bDepartment of Physics, Washington University, One Brookings Dr., Campus Box 1105, St. Louis, MO, 63130, USA

Abstract

We calculate the phase diagrams at high temperature of SU(N) gauge theories with massive fermions by minimizing the one-loop effective potential. Considering fermions in the adjoint (Adj) representation at various N we observe a variety of phases when $N_f \geq 2$ Majorana flavours and periodic boundary conditions are applied to fermions. Also the confined phase is perturbatively accessible. For $N = 3$, we add Fundamental (F) representation fermions with antiperiodic boundary conditions to adjoint QCD to show how the $Z(3)$-symmetry breaks in the confined phase.

Key words: finite temperature QCD
PACS: 11.10.Wx, 12.38.Bx, 12.38.Gc

1. Introduction

The phase diagram of pure $SU(N)$ gauge theories is defined by a confined phase in which the $Z(N)$ center symmetry is preserved, and a deconfined phase in which the center symmetry is spontaneously broken. Lattice simulations have been particularly important in the study of the confined phase because it is in a region of strong coupling where perturbation theory is not valid. In this paper we discuss theories which are QCD-like, given by two $Z(N)$-invariant extensions to pure Yang-Mills theory: 1) center-stabilized Yang-Mills theory, which introduces multiply wound adjoint Polyakov loops to Yang-Mills theory, and 2) adjoint QCD [QCD(Adj)], which is QCD with adjoint representation fermions rather than fundamental.

In 1 we performed lattice simulations with an adjoint Polyakov loop extension to Wilson action. The action has the form:
\[S = S_W + \sum_x H_A \text{Tr}_A P(x); \quad S_W(\beta, U) = -\beta \sum_p \left(1 - \frac{1}{N} \text{Re} \text{Tr}_F U_p \right), \quad (1) \]

where \(\sum_x \) is over all spatial sites. Figure 1 shows the resulting phase diagram for \(SU(3) \) as a function of the inverse coupling \(\beta = 2N/g^2 \) and the tunable parameter \(H_A \). Two important features of this phase diagram are that the confined phase is accessible in a region of weak coupling, and that there is a region of the parameter space in which a new, ”skewed” phase is favoured over both the confined and deconfined phases. Both of these features were recently confirmed in [2] in simulations using a demon algorithm. Simulations of a similar theory in [3] also confirm that the confined phase becomes accessible beyond the deconfinement temperature of the pure gauge theory.

2. Center-stabilized Yang-Mills theory

The simulation results using eq. (1) are in good agreement with high-temperature perturbation theory [4]. However, for \(SU(4) \) both lattice results and perturbation theory agree that the confined phase is not observed in the weak-coupling limit, unlike in \(SU(3) \). In order to perturbatively obtain the confined phase for arbitrary \(N \) we introduced in [4] an extension in terms of the Polyakov loop \(P = \text{diag}\{e^{iv_1}, e^{iv_2}, ..., e^{iv_N}\} \) to the boson contribution [5] from pure Yang-Mills theory

\[V_{CYM}(P) = -\frac{2}{\pi^2\beta^4} \sum_{n=1}^{\infty} \frac{1}{n^4} |\text{Tr}_A (P^n)| + \frac{1}{\beta} \sum_{n=1}^{N/2} \text{Tr}_F (P^n) \text{Tr}_F (P^\dagger_n), \quad (2) \]

where \(|N/2| \) is the integer part of \(N/2 \). This is the minimum number of terms required to obtain the confined phase for some value of the \(a_n \) parameters. This potential was recently extensively studied in [6] and we have adopted their notation and the nomenclature "center-stabilized Yang-Mills theory". We minimized \(V_{CYM} \) with respect to the eigenvalue angles \(v_i \) to obtain the phase diagram for a range of values of the \(a_n \).

3. Adjoint QCD

In order to have a renormalizable theory we also study adjoint QCD where periodic boundary conditions (PBC) are applied to fermions in the adjoint representation. The lattice action in eq. (1) and the center-stabilized theory of eq. (2) are both approximations to adjoint QCD with PBC. The one-loop effective potential for \(N_f \) Majorana flavours \((N_{f,Dirac} = \frac{1}{2}N_f) \) of fermions in representation \(R \) and with finite mass \(m \) is [7]
Fig. 2. $N = 3$: (Left) $V_{ADJ(+)}$, $N_f = 2$ Majorana flavours; (Right) $V_{CY M}$ vs. a_1

$$V_{1\text{-loop}} = \frac{1}{\beta V_3} \left[-N_f \ln \det \left(-D_R^2 (P) + m^2 \right) + \ln \det \left(-D_{adj}^2 (P) \right) \right]$$

$$= \frac{m^2 N_f}{\pi^2 \beta^2} \sum_{n=1}^{\infty} \frac{(\pm 1)^n}{n^2} \text{Re} \left[\text{Tr}_R (P^n) \right] K_2 (n \beta m) - \frac{2}{\pi^2 \beta^4} \sum_{n=1}^{\infty} \frac{1}{n^4} \text{Tr}_A (P^n).$$ (3)

We minimize $V_{1\text{-loop}}$ with respect to the Polyakov loop eigenvalue angles v_i to obtain the phase diagram as a function of $m \beta$. The resulting phase diagram of adjoint QCD is quite rich in the case of $N_f \geq 2$ Majorana flavours ($N_f, \text{Dirac} \geq 1$) and PBC on fermions [8]. The phase diagram for $N = 3$ and $N_f = 2$ is shown in Figure 2 (L). The dots correspond to the results of the numerical minimization of $V_{1\text{-loop}}$ in eq. (3). Similarly, the phase diagram of the center-stabilized theory is shown in Figure 2 (R). The phase curves in Figure 2 can be classified according to the Polyakov loop eigenvalue angles: $v = \{v_1, v_2, \ldots, v_N\}$. For $N = 3$ the confined phase is defined by $v = \{0, \frac{2 \pi}{3}, \frac{4 \pi}{3}\}$. The deconfined phases are defined by $v = \{0, 0, 0\}$ and $Z(3)$ rotations. The skewed phases are $SU(2) \times U(1)$ phases defined by $v = \{0, \pi, \pi\}$ and $Z(3)$ rotations.

4. QCD with fermions in the adjoint and fundamental representations

The perturbative accessibility of the confined phase in both the center-stabilized theory and in adjoint QCD for $N_f \geq 2$ Majorana flavours is useful for studying how the $Z(3)$ symmetry is broken when adding fundamental fermions with antiperiodic boundary conditions (ABC). We opt to add the fundamental fermions to adjoint QCD to have a renormalizable theory. For $N_F = 3$ Dirac flavours of fundamental fermions asymptotic freedom is maintained for up to $N_A = 4$ Majorana flavours of adjoint fermions.

Figure 3 (L) shows the phase diagram for $N = 3$ from minimizing eq. (3) for $N_A = 4$ Majorana flavours of adjoint fermions and PBC. Figure 3 (R) shows effect of adding $N_F = 3$ Dirac flavours of fundamental fermions with antiperiodic boundary conditions to adjoint QCD. Here the mass of the adjoint fermions is fixed at $m_A = 1$. As the mass of fundamental fermions m_F is brought down from infinity the eigenvalues of the confined phase shift so that the $Z(3)$ symmetry is broken. $m_F = \infty$ corresponds to adjoint QCD and the confined phase is given by $v = \{0, -\phi, \phi\}$ where $\phi = \frac{2 \pi}{3}$ and $\text{Tr}_F P = 0$. The contours in the confined phase of Figure 3 (R) represent intervals of $\Delta \phi = \pi/36$ away
Fig. 3. \(N = 3 \): (Left) Phase diagram of adjoint QCD with \(N_A = 4 \) Majorana flavours. (Right) The phase diagram of \(V_{QCD(F(-A_{+(+})} \) at high temperature as it varies with \(m_F \) \((N_F = 3, N_A = 4, m_A = 1) \).

from \(\nu = \{0, -2\pi/3, 2\pi/3\} \). As \(m_F \to 0 \), \(\phi \) decreases towards roughly \(\pi/3 \), depending on \(T \), and \(Tr_P \) goes out from 0 along the real axis towards 2, keeping the confined phase distinguishable at any observed \(m_F \) from the deconfined phase which has \(Tr_P = 3 \).

5. Conclusions

We study three \(Z(N) \)-invariant Polyakov loop extensions to Yang-Mills theory that offer confinement in a perturbatively accessible regime, as well as additional phases under certain conditions. An adjoint Polyakov loop extension gives perturbative confinement for \(N = 3 \). Center-stabilized Yang-Mills theory includes the minimum number of powers of adjoint Polyakov loop terms needed to get perturbative confinement for all \(N \). As well this theory contains various other phases depending on the values of the \(a_n \) parameters. Adjoint QCD for \(N_A = 2 \) or more Majorana flavours and PBC on fermions also gives perturbative confinement for all \(N \), and small \(m/\beta \), in addition to other phases contained in the center-stabilized model. Adding fundamental representation fermions to adjoint QCD, while being careful to preserve asymptotic freedom, shows that in the confined phase the \(Z(3) \) symmetry is broken in a predictable way. The degree of symmetry breaking depends on the mass of fundamental fermions \(m_F \) and the temperature, but the confined phase remains distinguishable from the deconfined phase for all observed \(m_F/\beta \).

References

[1] J. C. Myers and M. C. Ogilvie, Phys. Rev. D 77 (2008) 125030 [arXiv:0707.1869 [hep-lat]].
[2] C. Wozar, T. Kastner, B. H. Wellegehausen, A. Wipf and T. Heinzel, arXiv:0808.4046 [hep-lat].
[3] A. Dumitru and D. Smith, Phys. Rev. D 77 (2008) 094022 [arXiv:0711.0868 [hep-lat]].
[4] M. C. Ogilvie, P. N. Meisinger and J. C. Myers, PoS LAT2007 (2007) 213 [arXiv:0710.0649 [hep-lat]].
[5] D. J. Gross, R. D. Pisarski and L. G. Yaffe, Rev. Mod. Phys. 53 (1981) 43.
[6] M. Unsal and L. G. Yaffe, arXiv:0803.0344 [hep-th].
[7] P. N. Meisinger and M. C. Ogilvie, Phys. Rev. D 65 (2002) 056013 arXiv:hep-ph/0108026.
[8] J. C. Myers and M. C. Ogilvie, arXiv:0809.3964 [hep-lat].