RESEARCH ARTICLE

Organ dysfunction during continuous veno-venous high cut-off hemodialysis in patients with septic acute kidney injury: A prospective observational study

Gianluca Villa¹,²*, Cosimo Chelazzi¹,², Elena Morettini¹, Lucia Zamidei³, Serafina Valente⁴, A. Lucia Calfini⁵, Giovanni Zagli¹,², A. Raffaele De Gaudio¹,², Stefano Romagnoli¹,²

¹ Department of Health Science, Section of Anesthesiology and Intensive Care, University of Florence, Florence, Italy, ² Department of Anesthesiology and Intensive Care, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy, ³ Anesthesiology and Intensive Care Unit, Ospedale Santo Stefano, Prato, Italy, ⁴ Intensive Cardiac Coronary Unit, Heart and Vessel Department, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy, ⁵ Clinical Chemistry Laboratory, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy

* gianluca.villa1@gmail.com

Abstract

Background
Continuous veno-venous hemodialysis with high cut-off membranes (HCO-CVVHD) removes inflammatory mediators involved in organ dysfunction during sepsis. The aim of the present study was to assess the variations in SOFA score and identify early predictors of short-term mortality in a cohort of patients with septic shock, treated with HCO-CVVHD for acute kidney injury (AKI).

Methods
An observational prospective multicenter cohort study was conducted in four mixed medical-surgical ICUs. Thirty-eight patients with septic shock and AKI (KDIGO stage ≥1) treated with HCO-CVVHD have been included in this study. Patients were divided into Survivors and non-Survivors according to mortality observed at 72 hr of treatment. The variation of SOFA scores and clinical/biochemical parameters were described over time. A logistic regression analysis was used to identify the baseline clinical and biochemical parameters associated with 72 hrs-ICU mortality.

Results
Overall, the mean SOFA score was 12±3 at baseline, 10.9±3 at 6hrs, 9.8±3 at 12hrs, 8.9±3.3 at 24 hrs, and 8±3.5 at 48 hrs after HCO-CVVHD initiation; and 6.5±2.7 at 24 hrs and 6.6±3 at 48 hrs after HCO-CVVHD discontinuation. In the multivariate regression analysis, baseline serum lactate levels and AKI stage independently correlated with short-term mortality during HCO-CVVHD. A significant reduction was observed in circulating levels of TNFα and IL-6 among Survivors.
Conclusions

SOFA score significantly decreased early after initiation of HCO-CVVHD in patients with septic AKI. Baseline lactate levels and the AKI stage resulted to be associated to 72 hrs-ICU-mortality.

Introduction

Severe sepsis and septic shock are common causes of death among patients admitted to intensive care units (ICUs) [1,2]. Acute kidney injury (AKI) is an independent risk factor for death in these patients [3]. Persistent systemic inflammation, immunoparalysis and secondary infections are thought to play key roles in sepsis-related organ dysfunction [4]; indeed, an imbalance between pro- (e.g. IL-1 and 6, TNFα) and anti-inflammatory (e.g. IL-4 and 10) cytokines may be associated with a worse clinical outcome [5]. Unselective removal of inflammatory and anti-inflammatory mediators by means of blood purification therapies may positively impact organ dysfunction in septic patients, particularly regarding hemodynamic and respiratory functions [6]. As such, continuous veno-venous hemodialysis with high cut-off membrane (HCO-CVVHD) has been used as an adjuvant therapy in septic patients with AKI [7]. The higher-than-standard pore size (i.e. >0.01μm) allows HCO to remove large molecules such as inflammatory mediators [6]. The aim of this observational study was to describe the variations in Sequential Organ Failure Assessment (SOFA) scores, and to identify baseline clinical and biochemical parameters statistically associated with early mortality in a cohort of patients with septic shock, treated with HCO-CVVHD for AKI.

Material and methods

This was an observational prospective multicenter study performed in four mixed general ICUs. The regional Ethical Board (“Comitato Etico di Area Vasta Centro, Regione Toscana”) reviewed and approved the protocol for all participating centers (n’ 2013/0024940). The consent for analysis and publication of clinical data have been written obtained by the patients, if conscious. If the patient was not able to sign consent forms at the study enrollment, permission for analysis and publication of clinical data was obtained before the patient’s ICU discharge (for survived patients) or it was waived (for dead patients) in accordance with local ethics committee. Consent forms are stored in the ICU of the principal investigator (Prof. A. R De Gaudio).

All patients with septic shock (defined according to the Surviving Sepsis Campaign guidelines [8]) and AKI (defined as a KDIGO stage≥1 [9]) undergoing HCO-CVVHD were considered for inclusion. Inclusion and exclusion criteria are described in Fig 1. HCO-CVVHD was performed using a Prismaflex machine (Gambro Lundia AB–Lund, Sweeden) and SepteX membranes (a polyarylethersulfone high cut-off membrane with a 1.1m2 surface area; Gambro Lundia AB–Lund, Sweden) in all patients. Treatment parameters prescribed and actually delivered during HCO-CVVHD have been derived from memory cards within Prismaflex machines used. Clinical and biochemical observations have been limited at the first 72 hrs of treatment with HCO-CVVHD, i.e. the maximum time of treatment achievable with a single extracorporeal circuit according to the filter manufacturer. According to local routine clinical practice, HCO-CVVHD discontinuation has been decided according to recovery of clinical stability (mostly in terms of hemodynamic status) and renal function. In particular, at the end of the HCO filter life-span, if patient was clinically improved and able to maintain an adequate
fluid balance/urinary flow/solute control (spontaneously or with diuretic administration), she or he was considered adequately weaned from HCO-CVVHD. On the other hand, if clinical stability was not associated with recovery of good renal function at the end of HCO life-span, HCO-CVVHD was substituted with another CRRT modality performed with a high-flux membrane (usually CVVHDF).

For sample size evaluation, the mean SOFA score in patients with AKI and sepsis, at baseline and during the following four days, was derived from the literature [10]. Assuming a mean mortality rate of 30% during the first 48 hrs of treatment, a sample size of 38 patients was needed to observe a reduction in SOFA score equal to 2.5 at 48 hrs after HCO-CVVHD initiation through a t-Student test for paired data with a power of 90% and a type I error rate of 2.5%. The SOFA score reduction equal to 2.5 has been chosen considering this as the minimal SOFA score variation with a clinical relevance.

Patients have been divided in “Survivors” and “non-Survivors” groups according to the occurrence of death during the 72 hrs of HCO-CVVHD. SOFA score, Acute Physiology and Chronic Health Evaluation (APACHE) II, clinical and biochemical data were recorded at baseline, then at 6, 12, 24, and 48 hrs after HCO-CVVHD [11] initiation; and at 24 and 48 hrs after HCO-CVVHD discontinuation. If another HCO-CVVHD treatment was required after these first 72 hrs, the latter time points were calculated from the discontinuation of the last HCO filter utilized. All parameters were described both for Survivors and non-Survivors groups. In addition, the circulating levels of inflammatory mediators (IL-6, TNF-a and IL-10) were measured at baseline, then at 24 and 48 hrs after HCO-CVVHD initiation, and at 24 hrs after HCO-CVVHD discontinuation.

The Shapiro-Wilk test was used to test the data for normality. Continuous variables were presented as mean ± standard deviation (SD) or median [I-III interquartile range] where appropriate. The variations of these parameters over time with respect to the baseline were evaluated using t-Student test for paired data or Wilcoxon signed-rank test, according to data distribution. Similarly, the differences between Survivors and not-Survivors were tested using t-Student test for un-paired data or Mann-Whitney Wilcoxon. Categorical variables were analyzed using the chi-square test and given as a percentage. For each time point, a mean
difference (SD) was expressed to evaluate the SOFA score trend in the observed population with respect to the baseline value. Finally, the differences in baseline characteristics between groups were analyzed through univariate and multivariate regression analysis in order to identify the baseline parameters associated with survival at 72 hrs of treatment. All variables with a p value less than 0.3 at the univariate analysis have been considered for the multivariable analysis. Statistical results were expressed as p value, Odds Ratio (OR) and 95% confidence interval (95%CI). For continuous variables statistically associated with survival at 72 hrs of treatment at multivariate analysis, a ROC analysis was performed in order to analyze its accuracy in predicting outcome and to identify a cut-off value applicable in clinical practice.

Data were analyzed using STATA 9.1 software (STATA corp, 490, Lakeway Drive College Station, 77845, Texas, US).

Results
The study included 38 patients (S1 Table) enrolled from March 2013 to September 2014. Of these, 17 (44.7%) were medical and 21 (55.2%) were surgical. Table 1 summarizes baseline patients’ clinical characteristics for the entire population and specifically for Survivors (N = 30) and non-Survivors (N = 8). Prescribed and delivered treatment parameters for both groups, calculated according to standard nomenclature [12,13], are described in Table 2. Excluding a transient hypotension at the HCO-CVVHD initiation that occurred in 5 patients, no others adverse events have been reported during treatments. All hypotensive episodes have been mostly attributed to the blood filling into the extracorporeal circuit; they did not require further increase of vasoactive drugs and spontaneously recovered. Exogenous replacement for albumin or coagulation factors were necessary for none of the observed patients during treatments.

At the HCO-CVVHD initiation (baseline), the mean SOFA score was 12.03±3.02. During treatment, the mean ±SD values of SOFA score were 10.97±3 at 6 hrs (N = 38; p<0.001; mean difference 1.05±1.45, 95%CI[0.58–1.53]), 9.82±3.03 at 12 hrs (N = 38; p<0.001; mean difference 2.21±1.99, 95%CI[1.56–2.86]), 8.91±3.34 at 24 hrs (N = 37; p<0.001; mean difference 3.03±2.72, 95%CI[2.12–3.93]), and 8±3.48 at 48 hrs after HCO-CVVHD initiation (N = 34; p<0.001; mean difference 4.06±3.48, 95%CI[2.84–5.27]). After HCO-CVVHD discontinuation, SOFA scores were 6.5±2.73 at 24 hrs (N = 30; p<0.001; mean difference 5.42±3.78, 95% CI [3.96–6.90]) and 6.57±3.04 at 48 hrs (N = 30; p<0.001; mean difference 5.36±3.99, 95%CI [3.80–6.90]). Fig 2 shows the variation of SOFA score over time for the entire population and specifically for Survivors and non-Survivors groups. Clinical parameters observed for Survivors and non-Survivors at each time point are presented in Table 3. TNFα and IL-6 significantly decreased during the treatment, particularly for Survivors (p<0.05; see Table 3 and Fig 3). At multivariate logistic regression analysis the baseline serum lactate (p = 0.03, OR 1.45, 95%CI [1.01–2.06]) and initial KDIGO stage (p = 0.04, OR 7.79, 95%CI[0.93–65.4]) were independently associated to 72 hrs-ICU mortality. A ROC analysis for baseline lactate levels has shown a ROC-AUC equal to 0.79 (95%CI, 0.57–1.00). Sensitivity and specificity related to the different baseline lactate levels were calculated. With a sensitivity equals to 75% and a specificity equals to 90%, a baseline lactate level of 5.2 mmol/l was identified as the cut-off value that best distinguishes between patients who survived and those who died after 72 hrs of HCO-CVVHD. Every patient not-survived during this observational study died during HCO-CVVHD. The cumulative hospital mortality rate for the entire cohort was 39.5%.

Discussion
It is well known that an adequate source control and an effective antibiotic treatment are the only etiological therapies able to improve patient survival [8,14,15]. However, in selected cases,
Extracorporeal blood purification therapies (e.g. HCO-CVVHD) may positively affect clinical outcome through multiple effects, including the reduction in inflammatory burden and restoring immunocompetence [16].

Table 1. Baseline characteristics of the overall population and for the separate subgroups of Survivors and not-Survivors.

Variables	Tot	Survivors (N = 30)	non-Survivors (N = 8)	p	OR	95%CI
Male gender	71.1%	73.3%	62.5%	0.55	0.60	0.11–3.14
Age (years)	74.5 [64–79]	75 [64–80]	72 [68.5–77]	0.76	1.01	0.94–1.09

Microorganisms

- Klebsiella spp.: 21.1% 20% 25% 0.43 2.99 0.20–44.73
- E. coli: 21.1% 20% 25% 0.36 4.32 0.18–97.53
- Ps. aeruginosa: 21.1% 20% 25% 0.37 3.80 0.21–69.85
- St. aureus: 10.5% 10% 12.5% 0.45 3.22 0.16–68.19
- Str. pneumoniae: 10.5% 10% 12.5% 0.91 1.14 0.14–9.53
- Candida spp.: 10.5% 10% 12.5% 0.97 1.06 0.05–23.83
- Aspergillus spp.: 10.5% 10% 12.5% 0.84 0.74 0.01–0.90
- Other: 18.4% 20% 12.5% 0.78 0.71 0.07–7.16

Source of infection

- Pneumonia: 31.6% 30% 37.5% 0.69 1.4 0.27–7.15
- Peritonitis: 23.7% 26.7% 12.5% 0.42 0.39 0.04–3.71
- Urinary tract: 10.5% 10% 12.5% 0.16 4.67 0.54–40.03
- Blood stream: 18.4% 16.7% 25% 0.59 1.67 0.26–10.77
- Soft tissue: 15.8% 16.7% 12.5% 0.78 0.71 0.07–7.16
- APACHE II: 37.55 ± 3.5 37.6 ± 3.06 38 ± 2.92 0.89 1.14 0.89–1.11
- SOFA: 12.02 ± 3.0 12.10 ± 2.99 11.75 ± 3.33 0.77 0.96 0.74–1.25
- KDIGO: 0.05 8.03 0.99–64.8

Norepinephrine (mcg/kg/min) 0.20 [0.15–0.30] 0.23 [0.15–0.30] 0.18 [0.08–0.33] 0.77 0.38 0.0–292.57

SAP (mmHg): 103 ± 27 105 ± 26 95 ± 27 0.34 0.98 0.95–1.01

MAP (mmHg): 65 ± 15 67 ± 15 60 ± 14 0.24 0.96 0.91–1.03

Heart rate (bpm): 83 [80–100] 83 [80–99] 88 [80–106] 0.37 1.02 0.98–1.06

CVP (mmHg): 12 ± 4 11 ± 4 13 ± 5 0.32 1.11 0.91–1.36

RR (breath/min): 18 ± 6 18 ± 6 18 ± 5 0.89 0.99 0.86–1.14

PaO2/FiO2: 230 ± 126 227 ± 117 240 ± 126 0.79 1.00 0.99–1.00

PEEP (cmH2O): 6 [5–8] 6 [4–8] 7 [6–8] 0.36 1.15 0.86–1.53

Arterial HCO3- (mmol/L): 22.3 ± 3.9 22.9 ± 3.8 19.8 ± 3.4 0.05 0.75 0.56–0.99

Lactate (mmol/L): 5.8 [5.5–6.5] 6.1 [5.5–6.1] 7.3 [6.3–7.3] 0.01 1.35 1.06–1.71

ScvO2 (%): 58 ± 15 60 ± 15 55 ± 14 0.44 0.98 0.92–1.04

WBC (10⁹/L): 17.89 ± 11.72 18.20 ± 12.17 16.73 ± 10.53 0.75 0.99 0.92–1.06

Pit (10⁹/L): 97 [67–226] 100 [68–226] 83 [33.5–206.5] 0.78 1.00 0.99–1.00

AT (%): 60 ± 21 62 ± 21 54 ± 23 0.38 0.98 0.94–1.02

PCT (ng/ml): 5.6 [2–20.4] 4.5 [2–20.6] 6.4 [3.7–7.2] 0.34 0.97 0.90–1.03

CRP (mg/L): 143 [65–237] 143 [45–248] 143 [81–187] 0.81 1.00 0.99–1.01

Differences between groups were obtained using univariate logistic regression analysis. Abbreviations: SAP, systolic arterial pressure; MAP, mean arterial pressure; CVP, central venous pressure; RR, respiratory rate; PEEP, positive end expiratory pressure; ScvO2, central venous oxygen saturation; WBC, white blood cells; Pit, platelets; AT, antithrombin; PCT, procalcitonin; CRP, C-reactive protein.

doi:10.1371/journal.pone.0172039.t001
In this prospective, observational, cohort, multicenter study, a significant improvement in organ function as assessed by trends of SOFA score over time has been observed for patients with septic shock and AKI during treatment with HCO-CVVHD. The reduction in SOFA score was observed early during the treatment, persisting up to 48 hrs after discontinuation of HCO-CVVHD. Lactatemia and a higher KDIGO stage of AKI were independently associated to short-term mortality.

The effects of HCO membranes in septic patients with AKI have been tested previously, with conflicting results [17]. The lack of a standardized definition of HCO membranes (e.g. high permeability, super high-flux) and the different settings and/or treatment modalities may explain these non-homogeneous clinical results [7].

For standardization purpose, “high cut-off membranes” are nowadays defined as membranes with a cut-off value that approximates the molecular weight of albumin (i.e. 60 KDa) after blood exposure [12,13,18]. This feature is important to achieve clinically relevant clearance of “filterable” toxins, such as inflammatory mediators [7,19–21].

Several small experimental and clinical studies have shown that the application of extracorporeal therapies with HCO filters in septic patients with AKI may improve organ function. The pilot study by Morgera et al. showed significant reductions in APACHE II and Multiple Organ Dysfunction Score (MODS) in patients filtered with HCO membranes versus standard high-flux membranes [22]. In a retrospective study, we have previously shown a reduced need of vasoactive drugs/mechanical ventilation and better short term survival during HCO-CVVHD in patients with septic AKI sustained by gram-negative bacteria [23]. Furthermore, in a randomized controlled trial involving 30 septic patients with AKI, it was demonstrated that HCO-hemofiltration significantly reduced 48 hrs-SAPS II with respect to baseline [24]. Nevertheless, no definitive evidence of reduced long-term mortality has been established for HCO-CVVHD [6,7,23].

In our study, variations in SOFA score and reduced need for vasopressors were the hallmarks of efficacy of treatments in terms of organ dysfunction improvement. Indeed, we

| Table 2. HCO-CVVHD treatment parameters across the groups. |
|------------------|------------------|------------------|------------------|------------------|------------------|
| | Tot | Survivors (N = 30) | Non-Survivors (N = 8) | p | OR | 95%CI |
| Weight (Kg) | 71 [67; 78] | 71 [66; 78] | 72 [70; 77.5] | 0.53 | 1.05 | 0.91–1.21 |
| Prescribed dose (ml/kg/hr) | 35 | 35 | 35 | | | |
| Qb (ml/min) | 132.5 [125;143] | 132.5 [125; 140] | 132 [124; 147.5] | 0.72 | 1.01 | 0.93–1.10 |
| Qd (ml/hr) | 2350 [2214; 2587] | 2280 [2094; 2511] | 2388 [2228; 2448] | 0.76 | 1.00 | 0.99–1.00 |
| NET UF (ml/hr) | 73.5 [61; 86] | 73.5 [62; 87] | 74 [56.5; 86] | 0.74 | 0.99 | 0.94–1.04 |
| Downtime (min) | 86.6 [38; 124.9] | 80 [24.9; 125.5] | 91.8 [60.9; 121.8] | 0.63 | 1.00 | 0.99–1.01 |
| Delivered dose (ml/kg/hr) | 32.89 [31.96; 34.07] | 33.05 [31.95; 34.39] | 32.77 [32.04; 33.52] | 0.62 | 0.86 | 0.47–1.57 |
| Delivered/Prescribed dose (%) | 93.9 [91.3; 97.4] | 94.4 [91.3; 98.3] | 93.6 [91.5; 95.8] | 0.63 | 0.95 | 0.77–1.17 |
| Anticoagulation | Heparin | 17 (44.7%) | 13 (43.3%) | 4 (50%) | | |
| | No-Anticoagulation | 21 (55.3%) | 17 (56.7%) | 4 (50%) | |
| CRRT requirements after 72 hrs | 12 (40%) | 12 (40%) | - | 0.63 | 1.00 | 0.98–1.01 |
| | No-CRRT | 18 (60%) | 18 (60%) | | 0.63 | 1.00 |
| | HCO-CVVHD | 2 (6.7%) | 2 (6.7%) | | 0.63 | 1.00 |
| | HF-CVVHDF | 10 (33.3%) | 10 (33.3%) | | 0.63 | 1.00 |

Patients have been treated without anticoagulation to reduce risk of bleeding after surgical source control. Differences between groups were obtained using univariate logistic regression analysis. Abbreviations: Qb, Blood flow; Qd, Dialysate flow; NET UF, Net ultrafiltration, HF-CVVHDF, Hemodiafiltration with high-flux membrane.

doi: 10.1371/journal.pone.0172039.t002
observed a significant SOFA score reduction (greater than 2.5 points) already at 48 hrs of HCO-CVVHD treatment (see Fig 2). Although the observational nature of this study does not allow to univocally advocate this effect to HCO-CVVHD, some considerations can be done. The observed reductions in SOFA score was greater than the mean reduction reported for similar septic patients not treated with HCO-CVVHD [10]. A more pronounced and earlier reduction in SOFA score has been observed among Survivors than non-Survivors patients (Fig 2). Of note, SOFA score lowered as earlier as in 6 hours in treated survivors, reaching significance in 12 hours: making it an early predictor of survival during HCO-CVHHD (see Fig 2). This observed reduction was more pronounced and earlier even to that described in literature for septic patients with AKI and a favorable ICU outcome not treated with HCO-CVVHD [10]. This may suggest a possible positive effect of HCO-CVVHD in our population.

Consistently, the improvement of SOFA score was associated with improved hemodynamics and a significant reduction in vasoactive need, in particular norepinephrine [23,25] (see Table 3). In Survivors, a significant reduction of norepinephrine dose was already evident 6 hours after HCO-CVVHD initiation. In several studies, hemodynamic stability has been correlated with the reduction of inflammatory mediators obtained with HCO [26]. In particular, an effective transmembrane removal of inflammatory mediators by means HCO, has been demonstrated for IL-6 and TNF-a [27–29]. Similarly, also in this cohort of septic patients, median values of TNF-a and IL-6 significantly lowered during HCO-CVVHD (p<0.05, see Table 3).
Table 3. Clinical and biochemical parameters for both the overall population and the Survivors and non-Survivors subgroups.

Variables	t0 (baseline)	t6	t12	t24	t48	t post-24	t post-48
Sample size (pts)	38	38	38	37	34	30	30
Survivors	30	30	30	30	30	30	30
Non-Survivors	8	8	8	7	4	-	-

Norepinephrine (mcg/kg/min)
| Survivors | 0.20 [0.15–0.30] | 0.20 [0.10–0.30] | 0.20 [0.05–0.25] | 0.10 [0.0–0.23] | 0.10 [0.0–0.20] | 0.05 [0.0–0.10] | 0 [0–0.10] |
| Non-Survivors | 0.23 [0.15–0.30] | 0.18 [0.10–0.30] | 0.18 [0.0–0.25] | 0.08 [0.0–0.15] | 0.06 [0.0–0.10] | 0.05 [0.0–0.10] | 0 [0–0.10] |

SAP (mmHg)
| Survivors | 103±27 | 106±20 | 110±24 | 106±26 | 117±27* | 123±23* | 121±22* |
| Non-Survivors | 95±27 | 91±20† | 92±17 | 79±36† | 83±28† | | - |

PAM (mmHg)
| Survivors | 65±15 | 68±13 | 69±12 | 69±14 | 72±16* | 71±18 | 73±13 |
| Non-Survivors | 62±15† | 59±10† | 62±18 | 50±17† | | | - |

HR (bpm)
| Survivors | 83 [80–100] | 87 [80–95] | 83 [76–97] | 80 [75–90] | 79 [70–88] | 80 [70–90]* | 80 [70–90]* |
| Non-Survivors | 88 [80–106] | 82 [80–102] | 94 [80–106] | 91 [75–107] | 90 [75–90] | | - |

CVP (mmHg)
| Survivors | 12±4 | 13±3 | 12±4 | 13±4 | 12±4 | 11±4 | 11±4 |
| Non-Survivors | 11±4† | 12±3 | 11±4 | 12±4 | 12±4 | 11±3 | - |

RR (breath/min)
| Survivors | 18±6 | 17±5 | 16±5 | 16±5 | 17±5 | 18±5 | 18±5 |
| Non-Survivors | 18±6† | 18±4 | 18±3 | 19±5 | 17±3 | | - |

PaO2/FiO2
| Survivors | 230±126 | 246±101 | 243±101 | 266±106 | 268±128 | 308±109* | 297±110* |
| Non-Survivors | 227±117 | 247±92 | 247±96 | 276±101* | 276±130* | 308±109* | 297±110* |

Urinary output (ml/h)
| Survivors | 40 [0–80] | 15 [0–50]* | 18 [0–60] | 10 [0–50] | 20 [0–50] | 83 [10–100]* | 100 [20–150]* |
| Non-Survivors | 50 [0–80] | 20 [0–50]† | 40 [10–60]† | 20 [0–50]† | 20 [0–50]† | 83 [10–100]* | 100 [20–150]* |

Serum creatinine (mg/dl)
| Survivors | 1.8 [1.3–2.6] | 1.5 [1.1–1.9]*| 1.3 [0.9–1.5]*| 1.1 [0.8–1.5]*| 0.8 [0.6–1.2]*| 1.2 [0.7–1.6]*| 1.2 [0.7–1.9]* |
| Non-Survivors | 1.4 [1.3–1.5] | 1.1 [1–1.4]† | 1 [0.8–1.3]† | 0.9 [0.8–1.3] | 0.7 [0.4–1.1] | | - |

Urea (mg/dl)
| Survivors | 0.8 [0.6–1.4] | 0.7 [0.5–1.1]*| 0.6 [0.4–0.9]*| 0.5 [0.4–0.8]*| 0.3 [0.3–0.5]*| 0.6 [0.4–0.8]*| 0.7 [0.3–1.1]* |
| Non-Survivors | 0.9 [0.6–1.7] | 0.7 [0.4–1.2]*| 0.7 [0.4–0.9]*| 0.5 [0.4–0.8]*| 0.4 [0.3–0.7]*| 0.6 [0.4–0.8]*| 0.7 [0.3–1.1]* |

Lactate (mmol/L)
| Survivors | 2.5 [1.5–4.8] | 2.2 [1.7–5.1] | 2 [1.3–3.4]* | 1.9 [1.2–3]* | 1.7 [1–2.4]* | 1.3 [0.8–1.7]*| 1 [0.7–1.6]* |
| Non-Survivors | 2.4 [1.4–3.3]† | 1.9 [1.7–4.1]†| 1.7 [1.2–2.8]*| 1.6 [1–2.1]* | 1.7 [1–2]*† | 1.3 [0.8–1.7]*| 1 [0.7–1.6]* |

ScvO2 (%)
| Survivors | 58±14 | 65±12* | 66±11* | 67±11* | 69±7* | 72±6* | 76±6* |
| Non-Survivors | 60±15 | 68±10* | 70±8*† | 71±7* | 69±7* | 72±6* | 76±6* |

WBC (10⁹/L)
| Survivors | 15.8 [8–27.2] | 16.4 [10.2–29.6] | 14.7 [8.8–26.4] | 13.9 [9.1–23.4] | 13.3 [7.8–22.4] | 12.4 [7.5–16.8]* | 13.2 [6.9–16.6]* |
| Non-Survivors | 16.2 [8–27.2] | 15.6 [10.2–29.9] | 14.6 [8.8–26.4] | 14.5 [9.1–27.6] | 13.7 [9.8–22.8] | 12.4 [7.5–16.8]* | 13.2 [6.9–16.6]* |

Pit (10⁹/L)
| Survivors | 96.5 [67–226] | 105 [62–230] | 102.5 [65–204] | 105 [50–201] | 83 [40–153]* | 94.5 [59–153]* | 109 [66–151] |

(Continued)
We are aware that, because of the observational nature of this study, a causal correlation between the reduction of inflammatory mediators and HCO-CVVHD cannot be univocally defined. Interestingly, this effect was particularly evident for Survivors, paralleling the reduction in SOFA score and norepinephrine (Table 3). Indeed, considering that no differences were observed between groups for IL-6 or TNF-α levels before the HCO-CVVHD initiation, we cannot assume that baseline cytokine levels might be considered as outcome predictors in our patients. Nevertheless, the statistically significant reduction exclusively observed among survivors, might suggest that an early reduction of cytokine levels during the treatment might be a potential predictor for positive outcome during HCO-CVVHD. Although clinical fascinating, this cytokines reduction during extracorporeal treatments has not been univocally related to positive outcome in septic patients; furthermore, considering the high costs and the limited laboratory feasibility for cytokine analysis, the reduction in circulating cytokines might unlikely be proposed as predictor in the ICU clinical routine practice.

Variables	t0 (baseline)	t6	t12	t24	t48	t post-24	t post-48
Survivors	100 [66–226]	107.5 [73–230]	108.5 [66–204]	109.5 [56–201]	101.5 [40–159]	94.5 [59–153]	109 [66–151]
Non-Survivors	83 [33.5–206.5]	75.5 [26.5–195]	66 [21.5–192]	105 [18–254]	28 [7–49]	-	-
AT III (%)	60±21	51±19*	48±20*	50±18*	54±22	68±24	70±26
Survivors	54±23	54±18*	52±19*	53±18*	56±21	68±24	70±26
Non-Survivors	24.4±2.3	23±2	23.7±2.2	24.9±1.8	25.1±2.3	26.6±1.7	26.8±1.5
Albumin (g/L)	243±2.6	23.3±2.1	22.5±2.1	25±2.1	24.3±2.6	-	-
Survivors	6.6 [2–20.4]	4.7 [1.5–16.3]	2.9 [1.4–17.8]	2.9 [1.1–16.9]	1.3 [0.4–2.6]	1.6 [0.4–4.3]	1.3 [0.4–2.6]
Non-Survivors	6.4 [3.7–7.2]	5.7 [4.3–13.6]	4 [2.4–14.3]	4.4 [1.7–14.4]	1.3 [1.1–4.3]	-	-
PCT (ng/ml)	143 [65–237]	135 [50–231]	135 [45–229]	102 [52–217]	96 [49–166]	55 [27–85]	44 [20–89]
Survivors	143 [45–248]	121 [42–237]	118 [40–236]	101 [34–237]	90 [31–157]	55 [27–85]	44 [20–89]
Non-Survivors	143 [81–187]	152 [75–216]	152 [84–214]	149 [62–217]	149 [100–193]	-	-
IL-6 (pg/ml)	46.1 [21.2–113]	38.3 [11.4–52.8]	32.5 [15.4–46.4]	23.5 [15.2–35]	-	-	
Survivors	76.6 [22.9–167]	39.9 [13.9–58.2]	33.8 [20.9–49.7]	23.5 [15.2–35]	-	-	
Non-Survivors	24 [17.4–94]	14.7 [10.5–48.8]	15.4 [10.4–32.5]	-	-		
IL-10 (pg/ml)	228 [98.3–1091]	85.4 [61–171]	99.1 [40–178]	54.4 [29.7–141.4]	-	-	
Survivors	233 [167–1450]	108.2 [69.3–406]	108.1 [68.8–193]	54.4 [29.7–141.4]	-	-	
Non-Survivors	98.3 [59.8–1091]	39.7 [38.3–165]	32.7 [17–165]	-	-		
IL-10 (pg/ml)	28.1 [10.8–87.4]	20.1 [7.5–29.7]	12.2 [8.1–21]	10 [5.2–30.3]	-	-	
Survivors	39.5 [10.5–198.2]	21 [5.5–60.9]	11.8 [9.65–33.3]	10 [5.2–30.3]	-	-	
Non-Survivors	11.7 [11.5–28.1]	14.6 [10.7–20.1]	20.9 [7.9–21]	-	-		

* Value statistically different to the baseline using statistical test for pairs data.
† Value statistically different between groups using statistical test for unpaired data.

doi:10.1371/journal.pone.0172039.t003

We are aware that, because of the observational nature of this study, a causal correlation between the reduction of inflammatory mediators and HCO-CVVHD cannot be univocally defined. Interestingly, this effect was particularly evident for Survivors, paralleling the reduction in SOFA score and norepinephrine (Table 3). Indeed, considering that no differences were observed between groups for IL-6 or TNF-α levels before the HCO-CVVHD initiation, we cannot assume that baseline cytokine levels might be considered as outcome predictors in our patients. Nevertheless, the statistically significant reduction exclusively observed among survivors, might suggest that an early reduction of cytokine levels during the treatment might be a potential predictor for positive outcome during HCO-CVVHD. Although clinical fascinating, this cytokines reduction during extracorporeal treatments has not been univocally related to positive outcome in septic patients; furthermore, considering the high costs and the limited laboratory feasibility for cytokine analysis, the reduction in circulating cytokines might unlikely be proposed as predictor in the ICU clinical routine practice.
The observed ICU-mortality was lower to that expected from literature and based to baseline APACHE II score. In particular, with a baseline APACHE II score of 37.55 ± 3.55 (37.6 ± 3.06 and 38 ± 2.92 for Survivors and non-Survivors, respectively), a 71% mortality rate could be expected in this population. Interestingly, overall, we observed an in-hospital mortality rate

Fig 3. Circulating levels of inflammatory mediators. Concentrations of mediators are expressed in a logarithmic scale.

doi:10.1371/journal.pone.0172039.g003
of 39.5%. The identification of specific baseline patients’ characteristics associated with early (72 hrs) ICU-mortality during HCO-CVVHD may be of prognostic values for physicians using this invasive extracorporeal treatment. The initial KDIGO-AKI stage and serum lactate levels were independently associated with survival at 72 hour of HCO-CVVHD. The baseline values of serum lactate concentration were different between the groups: 2.4 vs 6.3 mEq/l in Survivors and non-Survivors, respectively. In light of this, it would be expected that serum lactates concentration (particularly values higher than 5.2 mmol/l) and AKI stage correlate with mortality. It can be thus speculated that early initiation of extracorporeal treatment, at lower degrees of global hypoxia and organ dysfunction, may positively affect the outcome [30–33]. In light of this, even though the observational nature of the study does not allow to correlate clinical improvements with HCO-CVVHD, our results suggest that HCO-CVVHD may retain a positive clinical effect in patients with septic AKI. Clearly, results on these outcomes cannot be generalized for all septic patients. Indeed, although the mean SOFA score observed by Carbonell et al.[10] (used for sample size calculation) is consistent with those observed in other important studies on similar population as ALBIOS [34], EUPHAS [35] or even in the most recent ABDOMIX [36], a wide dispersion of SOFA score values has been observed, also within each single study. As a consequence, SOFA score utilized for sample size evaluation might not necessarily align that observed in our septic shock population, and thus potentially under-powering this study.

Conclusions

HCO-CVVHD was associated with a significant reduction in SOFA score in a cohort of patients with septic shock and AKI. This effect was evident early during the treatment and associated with a significant reduction of circulating inflammatory mediators, such as IL-6 and TNF-a. Serum lactate levels and the initial stage of AKI were statistically associated to 72 hrs-ICU mortality.

Supporting information

S1 Table. Complete data set. All clinical data for each patients are reported in this table. (PDF)

Author Contributions

Conceptualization: GV ARDG CC SR.
Data curation: GV ALC.
Formal analysis: GV ALC.
Funding acquisition: ARDG.
Investigation: GV CC SR EM LZ SV GZ.
Methodology: GV ARDG CC SR.
Project administration: GV.
Supervision: ARDG.
Validation: ARDG.
Visualization: GV ARDG CC SR.
Writing – original draft: GV.

Writing – review & editing: GV ARDG CC SR.

References

1. Kim WY, Huh JW, Lim C-M, Koh Y, Hong S-B. Analysis of progression in risk, injury, failure, loss, and end-stage renal disease classification on outcome in patients with severe sepsis and septic shock. J Crit Care. 2012; 27: 104.e1–7.

2. Zoller M, Maier B, Hornuss C, Neugebauer C, Döbbeler G, Nagel D, et al. Variability of linezolid concentrations after standard dosing in critically ill patients: a prospective observational study. Crit Care. 2014; 18: R148. doi: 10.1186/cc13984 PMID: 25011656

3. Cardinal-fernández P, Ferruolo A, El-assar M, Santiago C, Gómez-gallego F, Martín-pellicer A, et al. Genetic predisposition to acute kidney injury induced by severe sepsis. J Crit Care. Elsevier Inc.; 2013; 28: 365–370. doi: 10.1016/j.jcrc.2012.11.010 PMID: 23499421

4. Honore PM, Jacobs R, Joannes-Boyau O, De Regt J, Boer W, De Waele E, et al. Septic AKI in ICU patients. diagnosis, pathophysiology, and treatment type, dosing, and timing: a comprehensive review of recent and future developments. Ann Intensive Care. Springer Open Ltd; 2011; 1: 32. doi: 10.1186/2110-5820-1-32 PMID: 21906387

5. Angus DCD, van der Poll T. Severe Sepsis and Septic Shock. N Eng J Med. 2013; 369: 840–51.

6. Rimmlé T, Kellum JA. Clinical review: blood purification for sepsis. Crit Care. 2011; 15: 205. doi: 10.1186/cc9411 PMID: 21371356

7. Villa G, Zaragoza JJ, Sharma A, Neri M, De Gaudio AR, Ronco C. Cytokine Removal with High Cut-Off Membrane: Review of Literature. Blood Purif. 2014; 38: 167–173. doi: 10.1159/000369155 PMID: 25471681

8. Dellingere RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013; 41: 580–637. doi: 10.1097/CCM.0b013e3182783af PMID: 23353941

9. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012; 2: 1–138.

10. Carbonelli N, Blasco M, Ferreres J, Blanquer J, García-Ramón R, Mesejo A, et al. Sepsis and SOFA score: related outcome for critically ill patients. Clin Nephrol. 2004; 62: 185–92. PMID: 15481850

11. Giannoni C, Chelazzi C, Villa G, De Gaudio a. R. Organ dysfunction scores in ICU. Trends Anaesth Crit Care. Elsevier Ltd; 2013; 3: 89–96.

12. Neri M, Villa G, Garzotto F, Bagshaw S, Bellomo R, Cerda J, et al. Nomenclature for renal replacement therapy in acute kidney injury: basic principles. Crit Care. England; 2016; 20: 318.

13. Villa G, Neri M, Bellomo R, Cerda J, De Gaudio AR, De Rosa S, et al. Nomenclature for renal replacement therapy and blood purification techniques in critically ill patients: practical applications. Crit Care. 2016; 20: –.

14. Villa G, Di Maggio P, De Gaudio AR, Novelli A, Antoniotti R, Fiaccadori E, et al. Effects of continuous renal replacement therapy on linezolid pharmacokinetic/pharmacodynamics: a systematic review. Crit Care. England; 2016; 20: 374.

15. Villa G, Cassette M, Tofani L, Valente S, Chelazzi C, Falsini S, et al. Linezolid extracorporeal removal during haemodialysis with high cut-off membrane in critically ill patients. Int J Antimicrob Agents. Elsevier B.V.; 2015; 46: 465–8. doi: 10.1016/j.ijantimicag.2015.06.015 PMID: 26315198

16. Villa G, D’Alfonso M, Di Maggio P, Bernardi M, Chelazzi C, Caldini A, et al. Role of Hemodialysis with High Cut-Off Membranes in a Patient with a Non-Recognized Leishmaniasis. Blood Purif. 2014; 38: 239–241. doi: 10.1159/000368958 PMID: 25531235

17. Honore PM, Jacobs R, Boer W, Joannes-Boyau O, De Regt J, De Waele E, et al. New insights regarding rationale, therapeutic target and dose of hemofiltration and hybrid therapies in septic acute kidney injury. Blood Purif. 2012; 33: 44–51. doi: 10.1159/000333837 PMID: 22179226

18. Boschetti-de-Fierro A, Voigt M, Storr M, Krause B. Extended characterization of a new class of membranes for blood purification: the high cut-off membranes. Int J Artif Organs. 2013; 36: 455–63. doi: 10.5301/ijao.5000220 PMID: 23661558

19. Chelazzi C, Giugni D, Giannoni C, Villa G, De Gaudio AAR. Use of Continuous Venovenous Hemofiltration with a High Cutoff Membrane in a Patient with Severe Acute Pancreatitis. Open J Nephrol. 2012; 02: 78–81.
20. Caldini A, Chelazzi C, Terreni A, Biagioli T, Giannoni C, Villa G, et al. Is procalcitonin a reliable marker of sepsis in critically ill septic patients undergoing continuous veno-venous hemodialfiltration with "high cut-off" membranes (HCO-CVVHDF)? Clin Chem Lab Med. 2013; 51: 261–3.

21. Villa G, Di Maggio P, De Gaudio AR. Is Procalcitonin Reduction Indicative of Immunomodulation in Septic Patients Treated with Hemodialysis with High Cutoff Membrane? Blood Purif. 2014; 38: 100–101. doi: 10.1159/000363496 PMID: 25342312

22. Morgera S, Slowinski T, Melzer C, Sobottke V, Vargas-Hein O, Volk T, et al. Renal replacement therapy with high-cut-off hemofilters: Impact of convection and diffusion on cytokine clearances and protein status. Am J Kidney Dis. 2004; 43: 444–53. PMID: 14981602

23. Chelazzi C, Villa G, D’Alfonso M, Mancinelli P, Consales G, Berardi M, et al. Hemodialysis with high cut-off hemodialyzers in patients with multi-drug resistant gram-negative sepsis and acute kidney injury: a retrospective, case-control study. Blood Purif. 2016; 42: 186–93. doi: 10.1159/000446978 PMID: 27352068

24. Morgera S, Haase M, Kuss T, Vargas-Hein O, Zuckermann-Becker H, Melzer C, et al. Pilot study on the effects of high cut-off hemofiltration on the need for norepinephrine in septic patients with acute renal failure. Crit Care Med. 2006; 34: 2099–104. doi: 10.1097/01.CCM.0000229147.50592.F9 PMID: 16763508

25. Morgera S, Rocktaeschel J, Haase M, Lehmann C, von Heymann C, Ziemer S, et al. Intermittent high permeability hemofiltration in septic patients with acute renal failure. Nephron Clin Pract. 2003; 29: c75–c80.

26. Heering P, Morgera S, Schmitz FJ, Schmitz G, Willers R, Schultheiss HP, et al. Cytokine removal and cardiovascular hemodynamics in septic patients with continuous venovenous hemofiltration. Intensive Care Med. 1997; 23: 288–96. PMID: 9083231

27. Morgera S, Klonower D, Rockta J, Haase M, Priem F, Ziemer S, et al. TNF-α elimination with high cut-off haemofilte rs: a feasible clinical modality for septic patients? Nephrol Dial Transplant. 2003; 18: 1361–1369. PMID: 12808174

28. Atan R, Peck L, Visvanathan K, Skinner N, Eastwood G, Bellomo R, et al. High cut-off hemofiltration versus standard hemofiltration: effect on plasma cytokines. Int J Artif Organs. 2016; 39: 479–86. doi: 10.5301/ija.5000527 PMID: 27834446

29. Kade G, Lubas A, Rzeszotarska A, Korsak J, Niemczyk S. Effectiveness of High Cut-Off Hemofilters in the Removal of Selected Cytokines in Patients During Septic Shock Accompanied by Acute Kidney Injury-Preliminary Study. Med Sci Monit. 2016; 22: 4338–4344. doi: 10.12659/MSM.896819 PMID: 27840404

30. Mariano F, Cantaluppi V, Stella M, Romanazzi GM, Assenzio B, Cairo M, et al. Circulating plasma factors induce tubular and glomerular alterations in septic burns patients. Crit Care. England; 2008; 12: R42.

31. Gomez H, Ince C, De Backer D, Pickkers P, Payen D, Hotchkiss J, et al. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock. 2014; 41: 3–11.

32. Ricci Z, Romagnoli S, Villa G, Ronco C. Modality and dosing of acute renal replacement therapy. Minerva Urol Nefrol. 2016; 68: 78–86. PMID: 26554733

33. Villa G, Ricci Z, Ronco C. Renal Replacement Therapy. Crit Care Clin. 2015; 31: 839–48. doi: 10.1016/j.ccc.2015.06.015 PMID: 26410148

34. Caironi P, Tognoni G, Masson S, Fumagalli R, Pesenti A, Romero M, et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014; 370: 1412–21. doi: 10.1056/NEJMoa1305727 PMID: 24635772

35. Cruz D, Antonelli M, Fumagalli R, Foltran F, Brienza N, Donati A, et al. Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial. JAMA. 2009; 301: 2445–2452. doi: 10.1001/jama.2009.856 PMID: 19531784

36. Payen DM, Guilhot J, Launey Y, Lukaszewicz AC, Kaaki M, Veber B, et al. Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: a multicenter randomized control trial. Intensive Care Med. 2015; 41: 975–984. doi: 10.1007/s00134-015-3751-z PMID: 25862039