Emerging Insights Into Chronic Renal Disease Pathogenesis in Hypertension From Human and Animal Genomic Studies

Isha S. Dhande, Michael C. Braun, Peter A. Doris

ABSTRACT: The pathogenic links between elevated blood pressure and chronic kidney disease remain obscure. This article examines progress in population genetics and in animal models of hypertension and chronic kidney disease. It also provides a critique of the application of genome-wide association studies to understanding the heritability of renal function. Emerging themes identified indicate that heritable risk of chronic kidney disease in hypertension can arise from genetic variation in (1) glomerular and tubular protein handling mechanisms; (2) autoregulatory capacity of the renal vasculature; and (3) innate and adaptive immune mechanisms. Increased prevalence of hypertension-associated chronic kidney disease that occurs with aging may reflect amplification of heritable risks by normal aging processes affecting immunity and autoregulation.

Key Words: blood pressure • genome-wide association study • genomic structural variation • kidney diseases • prevalence

The prevalence of chronic kidney disease (CKD; stages 1–4) in US adults is 15% and increases with age, rising to 38% in people 65 and older. Prevalence is greater in the non-Hispanic Black population (16%) than other ethnic groups (Hispanic [14%], non-Hispanic White [13%], and non-Hispanic Asian [12%] populations). In population-scale genomic studies, the diagnosis of CKD relies on indirect assessments including excretion of protein and serum levels of markers, such as creatinine and cystatin. Renal biopsy data is helpful from a diagnostic and prognostic standpoint but is not required for CKD staging, and there is insufficient collated biopsy information available to directly inform large-scale population studies. Although high blood pressure (BP) increases CKD risk, other factors also influence risk as CKD prevalence ranges from 1 in 3.6 to 4.5 in diagnosed and undiagnosed hypertensives.

The pathogenic mechanisms connecting hypertension to CKD are not well understood. Heritable risk has created hope that population genetic studies associating phenotypes of renal function with underlying genetic variation will point to disease mechanisms indicated by the function of genes associated with disease. Studies of genetic risk in rat models of heritable hypertensive renal diseases have also been pursued in the expectation that these studies provide an alternative path to uncover genes involved. These studies have progressed sufficiently to illustrate several themes and to examine obstacles to further progress.

HERITABILITY OF RISK OF RENAL DISEASE

Population genetics studies require evidence of heritability. The most recent population-based family studies indicate that risk of CKD is increased 3-fold in individuals with a first-degree relative affected by CKD. Heritability of renal function, the proportion of trait variation attributable to genetic variation, calculated from twin-pair correlations of estimated glomerular filtration rate (eGFR) and albuminuria is 77.6% and 45.2%, respectively. Heritability of GFR measured as creatinine clearance is 33% to 53%. Albminuria and eGFR are used in population-based genome-wide association studies (GWAS) because they are practical to assess in large scale. They present some limitations: urinary albumin creatinine ratio...
Nonstandard Abbreviations and Acronyms

Abbreviation	Acronym	Description
BP	blood pressure	
CKD	chronic kidney disease	
COVID-19	coronavirus disease 2019	
eGFR	estimated glomerular filtration rate	
FHH	Fawn-Hooded Hypertensive	
GWAS	genome-wide association studies	
NF-κB	nuclear factor-κB	
PKC	protein kinase C	
SNP	single-nucleotide polymorphisms	
SV	structural variation	
TNF	tumor necrosis factor	
UMOD	Uromodulin	

requires the independent measurement of 2 variables, each introducing error; eGFR typically uses serum creatinine and requires adjustments depending on patient variables. Serum creatinine is influenced by heritable effects on creatinine metabolism, in addition to difference in GFR, leading to the recent introduction of blood urea nitrogen in GWAS studies.

GWAS studies test for association of renal function with allelic state at each of a very large number of genome-wide single-nucleotide polymorphisms (SNPs). The resulting multiple hypothesis testing is generally addressed in 2 ways: by elevation of the threshold for statistical significance for any single SNP/phenotype association, and; by retesting associations observed in a discovery population in a replication population. This approach requires very large subject numbers and multiple, often multi-national, populations are used to achieve these numbers. This transancestry population sample pooling may obscure genetic variation that is subpopulation specific. Another obstacle in GWAS arises from its reliance on a single class of genetic variation. New long-read sequencing technologies reveal an important role for genomic structural variation (SV) in trait divergence within populations. SV’s range upwards from 50 base pairs and include larger events, such as duplication, insertion, deletion, transposition, and inversion. Population SV is still being described, so it remains unclear to what extent SVs can be imputed from adjacent SNP genotypes. Furthermore, some SVs can confound SNP genotyping (Figure 1), obstructing discovery of SNP association in regions containing SV.

PROGRESS IN GWAS

An important rationale for large-scale population genetics studies was the view that genetic variants creating common polygenic disease susceptibility might be frequent in a population and shared across populations of different ancestry. This common disease:common variant hypothesis posited that the set of trait-associated variants is concise (ie, not composed of a very large number of unique variants) and allows a tractable discovery task in general, this has not been the outcome. Most GWAS studies of disease susceptibility have accounted for only a portion of observed heritability. This missing heritability has been the source of much conjecture. In general, GWAS does find and confirm SNP associations, but understanding of pathogenesis has generally not emerged.

The most recent GWAS of renal function studied in excess of 750 000 subjects, with a replication population of ≈280 000 subjects. Heritability in this study population of renal function was estimated at 39%. A total of 308 index SNPs were found that explained 19.6% of eGFR heritability. Thus, 308 SNP’s account for ≈8% of the total (heritable and nonheritable) eGFR variation, on average 0.025% per SNP. These small effects leave 80% of the heritability missing. In the replication cohort, 264 of these SNPs were significant: even with small effect sizes, SNP associations are largely confirmed. Among replicated eGFR SNP associations, 34 SNPs were significantly associated with blood urea nitrogen. The replicated SNPs were then studied for association with CKD in the CKDGen studies (≈625 000 subjects including ≈64 000 CKD cases). This analysis found that 23 of 264 SNPs significantly associate with CKD. These studies epitomize the dichotomy of complex disease association studies: replicable SNP associations are evident but provide little insight into disease processes. There appear to be other effects that are heritable that cannot be mapped in these studies.

Several explanations for the inability of GWAS to account fully for the heritability of CKD risk have been considered. For example, heritability arises from a very large number of small effect variants, and all are discoverable with population sizes not yet achieved. This has been termed the omicnic thesis of heritability. Another possible explanation is that the genetic architecture of renal function is attributed to rare variants that have large effects but that are highly heterogenous. These may go undiscovered in GWAS because they are sufficiently rare that the SNP genotypes linked to these variants are most often linked to wild-type sequences that are not disease associated. The reliance of GWAS on genotyping arrays that address very large numbers of SNPs provides a one-dimensional view of genetic association. SNPs reflect variants largely obtained from the analysis of human genome sequencing data and provide information that is genotyped accurately and inexpensively. This sequencing used principally short-read methods that are not instructive about SV longer than the short reads.
Elevated renal perfusion pressure results in the migration of adaptive immune cells into the kidney. The existence of this phenomenon occurring in response to elevated BP, and independent of immune signaling induced by hypertensive agents used to elevate BP, has been elegantly shown by Shimada et al. 17 Acute renal injury and associated tissue damage initiate sterile immune responses arising from danger signals conveyed by damage-associated molecular patterns. 18 Since the chronic renal disease is associated with acute injury19 and may, in the presence of hypertension, reflect the persistent effect of injury mechanisms, the sustained activation of immune responses may play a role in CKD in hypertensives. The involvement of immune cells, notably T and B lymphocytes, in hypertension and renal injury has been extensively examined in animal models.20–23 These lymphocytes are typified by the cell surface expression of T- and B-cell receptors that are a key characteristic of these cells that drives the immunologic process by which they may contribute to renal injury. These adaptive immune receptors are highly divergent in the population and much of this divergence arises from SV. Thus, while key receptors on immune cells are central to renal injury, the natural genetic variation in these hypervariable receptors cannot be adequately addressed by SNP arrays, and consequently, they are dramatically under-represented on these arrays. The extent of this under-representation has recently been surveyed by Mikocziova et al. 24 Recent efforts to generate accurate and complete assemblies of immunoglobulin, T-cell receptor, and natural killer cell receptors in a single individual have exploited state of the art long-read and other mapping and assembly approaches.25 They have concluded that a full accurate and complete assembly of variation in some of these regions in a single individual is a technical challenge that has not yet been overcome and will require further methodological improvements. These problematic regions of the genome, and others of perhaps similar complexity and biological importance, underscore that the notion that SNP-based GWAS is a comprehensive tool for uncovering genetic variation contributing to disease traits is one in need of re-assessment.
SV has been predicted to have a high phenotypic impact and recent studies have begun to assess this proposition directly. Newer high accuracy long-read sequencing supported by optical mapping techniques have begun to provide a rich source of information about genomic SV. The features of SV in humans have been summarized recently by Eichler who points out that emerging data sets applying long-read sequencing and assembly to human genomes have begun to re-shape our view of allocation of genetic variation in the genome between the SNPs and larger-scale variation and indicates that bases with SNP variation represent only of the total variant bases in the human genome. The SNP variation assessed in GWAS represents a small portion of the total genetic variation and may account for a similar portion of the phenotypic variation among humans. Recently completed telomere to telomere sequencing of the human genome has revealed the 8% of the genome that was previously not represented in the data sets used for GWAS SNP arrays and much of this missing genome was the result of complex SV. Population-scale studies to assemble a deep collection of SV have begun however, the technical approaches that allowed SNP-based association studies to sample comprehensive collections of SNPs in large populations has not yet emerged for SV.

GWAS SUCCESS AND PROSPECTS

Apolipoprotein 1

Discovery of Black patient-specific CKD risk alleles has been made in using a modified GWAS approach called admixture mapping. This exploits recent admixture in American persons of African ancestry with other populations and postulates that SNP marker variation enriched in the admixed population includes genomic regions associated with CKD and this might be mapped by combining ancestral divergence in the genome with disease susceptibility mapping. A locus reflecting African ancestry was identified on chromosome 22 that was associated with focal segmental glomerulosclerosis and hypertensive renal disease. In subjects homozygous for risk alleles, focal segmental glomerulosclerosis risk was increased by 5-fold and hypertensive renal disease risk was increased 2.2-fold. Variation in the APOL1 gene drives the renal disease effect.

APOL1 encodes an apolipoprotein providing innate immune defense against trypanosome infection. Such infection is endemic in West Africa. In this locale, the human immune system and parasitic trypanosomes have engaged in a genetic arms race in which mutations in trypanosome defense mechanisms have been met by the emergence of APOL1 mutations that overcome adapted pathogen resistance. Resistance to African trypanosomal diseases such as sleeping sickness likely provide a fitness benefit that has caused such variant APOL1 alleles to rise in frequency in endemic regions. There are 2 variant alleles of APOL1 that confer CKD susceptibility, both lead to amino acid changes in APOL1 (Figure 2). Inheritance of a single variant allele creates only a slight increased risk of nephropathy, while the presence of 2 risk alleles leads to a marked increase in risk. In addition to amplifying renal disease risk in hypertension, pathogenic APOL1-mediated disease may be increased in states of innate immunity activation. Consequently, APOL1 may influence risk of CKD development in HIV and coronavirus disease 2019 (COVID-19) infection and may occur in genetically susceptible patients treated with interferons.

The disease-associated alleles have been recreated experimentally in both cellular and animal models (zebrafish and mouse). The mechanism of pathogenesis remains obscure. APOL1 may participate in functional specialization of the podocyte. The minor effects of presence of a single risk allele implies a loss of function mutation, but this explanation is not fully satisfactory. The different amino acid changes in the 2 risk alleles both affect a similar region of the protein, so each allele seems likely to contribute to loss of function. However, amplification of disease in the presence of strong upregulation of expression of the APOL1 gene in an interferon-dependent manner suggests that disease results from gain of function-mediated injury. It has been observed that overexpression of even the nonrisk APOL1 allele in the podocyte can produce injury, suggesting disruption of cellular functions, possibly including those involving proteins that interact with APOL1.

Most recently, a mechanism of APOL1 pathogenesis has been proposed involving interactions with APOL3 and phosphatidylinositol 4-kinase, a Golgi membrane-localized enzyme involved in vesicular trafficking and mitochondrial fusion. In podocytes APOL1 resides at the Golgi in contact with APOL3. Deletion of APOL3 increases mitochondrial fission, an event recapitulated in trypanosomes that have ingested host APOL1. Reduced levels of PI(4)P are observed in podocytes expressing APOL1 variants and in biopsies from patients with disease risk alleles of APOL1. Variants of APOL1 have been proposed to inactivate APOL3 function, leading to reduced phosphatidylinositol 4-kinase activity, with a consequent alteration in vesicular trafficking activity in podocytes, possibly connected to alterations in the podocyte actomyosin cytoskeleton. APOL3 null alleles also increase risk of nondiabetic nephropathy. At this time, the mechanism by which risk alleles of APOL1 create renal injury remains an active area of investigation.
It is important to retain a suitable perspective on the population risk attributable to \textit{APOL1} variation in the Black population. Only 13% of Black individuals possess the risk genotype of \textit{APOL1}. Among Black participants in the Dallas Heart Study 69.8% of individuals with nondiabetic CKD lacked the \textit{APOL1} risk genotype and 50% of Black patients with end-stage renal disease had the risk genotype.59 Among the 50% with end-stage disease who lacked the risk genotype, it is likely that other genetic factors contribute to risk of CKD, and these unknown risk variants may be shared with populations lacking recent African ancestry.

\textbf{Uromodulin}

\textit{UMOD} (Uromodulin) encodes the most abundant urinary protein, also known as Tamm-Horsfall protein, which is produced in epithelial cells of the medullary thick ascending limb and distal convoluted tubule and secreted into urine and blood. Rare variants in uromodulin have previously been associated with renal disease, notably autosomal dominant tubulointerstitial nephropathy.60 However, GWAS association between \textit{UMOD} variation and loss of renal function has been attributed to a common variation representing the highly prevalent ancestral allele that modifies \textit{UMOD} gene expression.61,62 The genetic and pathogenic insights into \textit{UMOD} function and variation have been recently thoroughly reviewed.63,64 Renal functions of \textit{UMOD} are complex and include a potential role as an antibacterial agent providing defense from retrograde bacterial colonization of the urinary tract to interactions with tubular mechanisms regulating sodium reabsorption. No clear mechanism of pathogenesis has yet emerged to connect genetic variation in the \textit{UMOD} locus with loss of renal function.

\textbf{EXPRESSION VARIANTS}

Several groups have investigated whether GWAS associations arising outside of genes may induce effects by altering nearby gene expression. Xu et al65 showed that 3 genes, \textit{NAT8B}, \textit{CASP9}, and \textit{MUC1} initially identified in GWAS have expression traits linked to eGFR. Increased expression of a common \textit{MUC1} splice variant was a plausible explanation for its renal function GWAS signal. Ko et al66 report an alternative approach in which RNA-seq analysis of gene expression in 96 kidney cortex samples was performed. Expression of nearly 2000 out of 17 000 genes examined was associated with nearby SNP, yielding cis-expression quantitative trait loci, or cis-eQTLs. Kidney gene expression SNPs were enriched with SNPs identified in GWAS mapping. Additional filtering produced a list of genes, including \textit{PGAP3}, \textit{SPATA5L1}, \textit{ALMSIIP1}, \textit{PIGU}, \textit{EEF1AKMT2}, and \textit{MANBA}, likely able to influence renal function through heritable effects on...
their expression. Additional analysis of MANBA showed its risk allele was associated with a 50% reduction in its expression in normal human kidney. Rare heterozygous loss of function mutation of MANBA is associated with loss of renal function in humans. Nephrotic renal injury is greater in mice with monoallelic or biallelic loss of MANBA function and toxic acute tubule injury induced inflammasome activation and fibrosis in the latter. MANBA may contribute to population renal disease risk by modifying adaptation to renal toxicant exposure.

In the genome, MANBA is colocalized with NFKB1, a gene also implicated by GWAS in CKD. Both NFKB1/ MANBA contain promoter sequence variation affecting regulation of their expression, and this region is associated with many autoimmune diseases, including Crohn disease, ulcerative colitis, and primary biliary cholangitis. Like CKD, these diseases also involve inflammation and immune cell infiltration for which NFKB1 is a key inflammatory signaling gene. Two other genes within the nuclear factor kappaB (NF-κB) signaling pathway, NFATC1 and PTPRO, have emerged in renal GWAS studies. Protein tyrosine phosphatase, receptor O (PTPRO) and NF-κB are activated by T- and B-cell signaling, while NFATC1 is the major transcription factor responding to such signals. Variants generating gene expression effects may act through more than one gene in the NFKB1/MANBA locus to drive disease risk.

ANIMAL MODEL APPROACHES TO GENETICS OF PROGRESSIVE RENAL DISEASE

Inbred rodent models of CKD harbor natural genetic variation contributing to disease pathogenesis. Full inbreeding reduces genetic complexity because each pair of maternal and paternal autosomes are identical. These models also allow confirmation of mapping results by targeted backcrossing of chromosomal segments between unaffected and affected inbred lines (congenic line creation). Once disease loci have been proven, genetic variation associated with specific genes in the congenic segment can be investigated by approaches including whole genome sequencing, targeted gene deletion or amplification, and analysis of gene expression, alternative gene splicing and protein abundance. While human population genetics studies produce statistical findings, animal models allow investigation of kidney tissue during disease progression and of the biological consequences of disease gene variation.

Munich Wistar Fromter Rat

The capacities of such approaches are exemplified in the Munich Wistar Fromter rat, a model of BP-associated progressive renal disease. Mapping studies indicated that locus on chromosome 6 was linked to renal injury. A congenic line in which the chromosome 6 genomic region from the hypertensive but albuminuria resistant spontaneously hypertensive rat (SHR/Rkb) line was substituted into Munich Wistar Fromter narrowed the causative variation to a gene-rich 4.9 Mb region containing 75 protein-coding genes. To identify the causal variation, genomic resequencing was performed allowing variant comparison between the lines. Five genes in the region were affected by potentially deleterious mutation, however, none appeared to be an explicit candidate gene for renal injury. Expression of genes in this region isolated glomeruli from SHR and Munich Wistar Fromter revealed increased gene expression of Tmem63c in Munich Wistar Fromter compared with SHR and the congenic line, indicating likely cis-regulation of expression. Immunohistochemistry indicated podocyte restriction of Tmem63c expression. Tmem63c functional studies were performed in zebrafish and reduced gene function correlated with increased urinary protein filtration which was partially rescued by expression of Tmem63c. These studies exemplify approaches available in animal models to identify, confirm and further investigate natural genetic variation that may drive pressure-related loss of renal function.

Fawn-Hooded Hypertensive Rat

Roman et al have discovered genetic variation that contributes to BP-driven renal injury in the Fawn-Hooded Hypertensive (FHH) rat. FHH experiences focal segmental glomerulosclerosis and proteinuria with increasing BP as animals age. Their work uncovered 3 distinct pathogenic mechanisms of renal disease. Genetic variation in Shroom3 in FHH alters its interactions with actin and contributes to podocyte foot process fusion and albuminuria. Shroom3 has also been mapped in human populations as containing variation that can influence renal function and Shroom3 antagonism affects podocyte structure in mice. Albuminuria in FHH arises from variation in Rab38 that acts to reduce tubular reuptake of filtered protein. Rab38 has been associated with diabetes-associated proteinuria in human populations. Single-nucleotide variation in gamma adducin (Add3), a cytoskeletal protein, also contributes to renal injury in FHH. The Add3 variant present in FHH impairs physiological autoregulation of renal blood flow. Autoregulation occurs by intrinsic myogenic reflex contraction of renal blood vessels with increasing perfusion pressure which limits increases in blood flow and reduces transmission of elevated pressure to the glomerulus. The role of Add3 variation was uncovered by mapping of a chromosome 1 locus contributing to disease. Creation of congenic animals narrowed this region to ≈2 Mb. Genetic variation isolated in this ≈2 Mb segment affects the renovascular myogenic reflex.
fluxes which were investigated to reveal an effect of Add3 variation to increase BK channel-opening probability. This may act to limit calcium influx into vascular smooth muscle cells resulting from pressure-induced depolarization, and thereby impair development of pressure-driven myogenic tone. Interestingly, Hunt et al mapped a human GFR locus to the region of the genome containing Add3. Thus, in FHH 3 distinct mechanisms of renal injury have been identified.

SHR

Another well-established rat model of CKD is the spontaneously hypertensive rat, SHR. This strain was produced by selective breeding on the trait of elevated BP, generating animals with elevated systolic BP (180–200 mm Hg). Inbreeding to fix the hypertensive genetic variation was performed in 3 parallel lineages. Among the A, but not the B and C, lineages it was observed that hypertension resulted in stroke and that stroke was preceded by the emergence of progressive proteinuric renal disease. Fixation of stroke-risk alleles resulted in SHR-A3, commonly called the stroke-prone SHR, SHRSP. Renal autoregulatory capacity is identical in SHR lines that differ in susceptibility to renal injury. Renal injury emerges when systolic BP exceeds the autoregulatory range (>18 weeks of age) and is accelerated by salt loading. Before emergence of renal injury, SHR-A3 has slightly higher BP than other SHR lines. Genetic mapping in a cross between SHR-A3 and SHR-B2 revealed genetic variation on chromosome 17 responsible for higher systolic BP in SHR-A3. Congenic replacement of this locus in SHR-A3 results in systolic BP identical to SHR-B2 and partial amelioration in renal injury. Genetically determined elevation of systolic BP beyond the autoregulatory range contributes to renal injury in SHR-A3.

Eng et al used the 2 kidney-one clipped rat model in which hypertension is induced by reduction of blood flow in a single renal artery, resulting in elevated angiotensin II to uncover a link between hypertension and renal inflammation. The absence of injury in the clipped kidney that is partially protected from elevated BP, but experiences similar levels of angiotensin II as the unclipped kidney, indicated that injury was primarily driven by pressure. A predominant effect of pressure on renal injury was confirmed in angiotensin II or norepinephrine-induced hypertension in which one kidney was protected from increased pressure by a servo-controlled device in the renal artery. These studies have been extended to determine whether recruitment of leukocytes into the kidney in hypertension is driven by angiotensin or pressure and reveal that it is increased perfusion pressure that drives leukocyte infiltration. Induction of injury creates renal inflammation that is accompanied by release of cytokines from damaged tissue and leukocyte recruitment. Leukocyte infiltration in response to pressure may be relevant to APOL1-induced renal injury in humans because leukocyte infiltration will promote cytokine upregulation of APOL1 gene expression which in turn promotes glomerular injury. Thus, immune mechanisms of hypertensive renal injury may be subject to genetic influences arising within immune cells recruited to the kidney.

SHR-A3 provides support for this concept. The immunoglobulin heavy chain (Igh) gene encodes B-cell receptors and secreted antibodies. Igh is extremely variable in both SNP and SV in mammals. High diversity may reflect adaptations in a gene that has numerous segments (constant, joining, diversity, and variable) with substantial similarity. The expressed products of Igh are also diversified by immunoglobulin affinity maturation during B-cell development that arises by somatic hypermutation of Igh to increase antibody specificity and affinity. Replacement of the Igh locus from SHR-A3 with the same locus from SHR-B2 curtails renal injury without affecting preinjury BP. In SHR-A3 Igh contains variation that markedly increases serum levels of IgG2c and reduces IgG2b. There is also extensive variation in the large part of the gene encoding Igh VDJ segments. Immunoglobulins contribute, both directly and indirectly, to a wide range of CKD. The extensive Igh SNP and SV in humans is poorly addressed by SNP-based genotyping arrays and provides an illustration of the inability of SNP-GWAS studies to provide comprehensive genetic association studies.

A third genetic variant driving renal injury in SHR-A3 affects T- and B-lymphocyte function (Figure 3). T- and B-cell receptor stimulation activates responses including cell proliferation and atrophy, cytokine production, and altered metabolic state that are mediated by Ca++ signaling. Stomal interaction molecule 1 (STIM1) protein gates entry of Ca++ into lymphocytes. In SHR-A3 STIM1 contains a premature stop codon producing a truncated protein and reducing Ca++ signaling. Replacement of the defective STIM1 allele in SHR-A3 remedies defective Ca++ signaling and substantially reduces renal injury without effect on preinjury BP. Rare genetic defects in humans producing complete loss of STIM1 function are associated with autoimmune disease attributable to disturbed antibody formation. Thus, SHR-A3 has accumulated 2 gene variants with important consequences for antibody formation that drive renal injury in the presence of hypertension.

AGING, INFLAMM-AGING, AND AUTOREGULATION

CKD risk alleles coexist with nonheritable factors, such as increasing age, that compound with genetic predisposition. Collectively, age-related diseases share pathogenic mechanisms including chronic sterile inflammation, called inflamm-aging. Aging is associated with...
increased levels of cytokines and chemokines. Gene expression profiling reveals age-related altered immune functions in multiple organs and tissue infiltration of lymphocytes is also observed. Age differences in immune function reflect altered proliferative responses to continuous antigenic inputs that may require compromises between immune cell compartment size, stemness, and differentiation. This occurs alongside impairment of memory cell generation due to negative regulatory programs compromising T-cell expansion. Maladaptive B-cell responses in aging are revealed by deficient antibody responses to vaccination. Aged B cells have impaired interactions with T cells that may impair immunoglobulin maturation, altered transcription factor profiles, and altered metabolic responses to stimulation. Fibroblasts increase TNF (tumor necrosis factor-α) production with aging, and this may alter healing. These changes mirror some of the genetic alterations in immune function discussed earlier, yielding aging phenotypes that echo and amplify genetic predisposition to immune dysfunction.

Studies seeking to find the genetic basis of variation in longevity in human centenarians have identified genes and pathways that include extensive involvement of immune genes operating in PKC (protein kinase C) and NF-κB pathways central to immune cell function. Interestingly, studies in model organisms have also identified similar genes and pathways in aging traits. Thus, interaction may occur between genetic variation that drives aging and immune system function that affects the emergence and progression of renal disease.

The aging kidney experiences reduced glomerular filtration, renal blood flow, glomerular plasma flow rate, ultrafiltration coefficient, and glomerular hydraulic permeability. These are often present in aging without kidney disease and suggest that age-indexing GFR might avoid skewing the definition of CKD. Age-related changes in renal function have also been examined in rats. In the normotensive outbred Sprague-Dawley rat strain 90% of 24-month-old animals experience proteinuria and glomerular IgM accumulation indicating glomerular dysfunction. Afferent arteriolar resistance is decreased in aged rats; consequently, glomerular perfusion pressure increases with rising albuminuria.

The link between aging, hypertension, and renal injury may involve renal autoregulation. Normal autoregulation is impaired in aged mice compared with genetically
matched young animals.135–137 In aged animals increased renal artery pressure resulted in increased renal blood flow, while younger animals were able to completely autoregulate blood flow.138 The altered myogenic response in aged animals was reflected in reduction of pressure-induced intracellular calcium in the afferent arteriole. Autoregulatory capacity is also reduced in aging humans. Hill et al138 proposed that defective autoregulation in aging humans as indicated by morphological correlation between focal dilated renal arterioles, hypertrophic glomeruli, and subsequent focal segmental glomerulosclerosis.

SUMMARY

Progressive disease in hypertension is complex with interaction between heritable and nonheritable elements. Phenotypic description of renal function in population-scale studies is constrained and likely limits GWAS success. GWAS is also limited by using SNP variants and is uninformed regarding other genomic variation, including SV, that contribute to phenotype diversity.5,10 Undoubtedly, better understanding of the full scope of human genetic variation and tools for SV genotyping will advance genetic studies of CKD. Animal models have contributed additional insight, amplifying the role of genes critical to glomerular barrier formation and tubular reabsorption of filtered protein and indicating that genetic variation can affect autoregulation of renal blood flow. Pressure-induced renal injury initiates a chronic sterile inflammatory and immune response. Animal models have also indicated that genetic variation affecting immune responses can determine progression and severity of disease. While experimental gene knockout is useful only for defining the capacity of a gene to induce a renal phenotype, human CKD risk alleles may ultimately be reconstituted in animal models to demonstrate their effects and their interactions with other risk variants to yield polygenic animal models of greater usefulness. Finally, heritable influences contributing to renal injury may interact with aspects of normal aging to amplify the effects of elevated BP on disease.

ARTICLE INFORMATION

Affiliations
Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas HSC, Houston (I.S., P.A. Doris) and Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston (M.C.B.).

Sources of Funding
This work was supported by the National Institutes of Health (Award Numbers: NIH R01DK069632 and R01DK081866) to PA. Doris and American Heart Association postdoctoral fellowship award (AHA 17POST33660779) to I.S. Dhande.

Disclosures
None.

REFERENCES

1. Centers for Disease Control and Prevention. Chronic Kidney Disease in the United States, 2019 [Internet]. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention. Accessed July 8, 2021. https://www.cdc.gov/chronicdisease/pdf/data/2019_CKD.pdf
2. Pairollo R, Short SAP, Kibbler AA, Amodu A, Stillman IE, Rennie HG, McMahon GM, Waikey SS. Bleeding complications after percutaneous native kidney biopsy: results from the Boston Kidney Biopsy Cohort. Kidney Int Rep. 2020;5:511–518. doi: 10.1016/j.ekir.2020.01.012
3. Crews DC, Plantinga LC, Miller ER 3rd, Saran R, Hugdman E, Saydah SH, Williams DE, Powe NR; Centers for Disease Control and Prevention. Chronic Kidney Disease Surveillance Team. Prevalence of chronic kidney disease in persons with undiagnosed or prehypertension in the United States. Hypertension. 2010;55:1102–1109. doi: 10.1161/HYPERTENSIONAHA.110.150722
4. Zhang J, Thiø CHL, Gansevoort RT, Snieder H. Familial aggregation of CKD and heritability of kidney biomarkers in the general population: the Helsines cohort study. Am J Kidney Dis. 2021;77:869–878. doi: 10.1053/j.ajkd.2020.11.012
5. Rao F, Wessel J, Wen G, Zhang L, Rana BK, Kennedy BP, Greenwood TA, Salem RM, Chen Y, Khankhanti S, et al. Renal albumin excretion: twin studies identify influences of heredity, environment, and adrenergic pathway polymorphism. Hypertension. 2007;49:1015–1031. doi: 10.1161/HYPERTENSIONAHA.106.081979
6. Hurst SC, Hassstedt SJ, Coon H, Camp NJ, Cawthon RM, Wu LL, Hopkins PN. Linkage of creatinine clearance to chromosome 10 in Utah pedigrees replicates a locus for end-stage renal disease in humans and renal failure in the fawn-hooded rat. Kidney Int. 2002;62:143–148. doi: 10.1111/j.1523-1755.2002.id0557x
7. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, Kusek JW, Van Lentle F; Chronic Kidney Disease Epidemiology Collaboration. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145:247–254. doi: 10.7326/0003-4819-145-4-200608150-00004
8. Wuttke M, Li Y, Li M, Sieber KB, Feltosa MF, Gorski M, Tin A, Wang L, Chu AY, Hoppmann A, et al; Lifelines Cohort Study; V. A. Million Veteran Program. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat Genet. 2019;51:1957–1972. doi: 10.1038/s41438-019-0407-x
9. Ebert P, Audano PA, Zhu Q, Rodriguez-Martin B, Porubsky D, Bondner MJ, Sulovari A, Ebier J, Zhou W, Serra Mari R, et al. Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science. 2021;372:eabf7117. doi: 10.1126/science.abf7117
10. Alonge M, Wang X, Benoît M, Soyk S, Pereira L, Zhang L, Suress H, Ramakrishnani S, Maumus F, Ciren D, et al. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell 2020;182:145–161.e23. doi: 10.1016/j.cell.2020.05.021
11. Ho SS, Urban AE, Mills RE. Structural variation in the sequencing era. Nat Rev Genet. 2020;21:171–189. doi: 10.1038/s41576-019-0180-9
12. Collins RL, Brand H, Kanchi KL, Layer RM, Chen Y, Khandrika S, et al. Renal albumin excretion: twin studies identify influences of heredity, environment, and adrenergic pathway polymorphism. Hypertension. 2007;49:1015–1031. doi: 10.1161/HYPERTENSIONAHA.106.081979
13. Abe HJ, Larson DE, Regier AA, Chiang C, Das I, Kanchi KL, Layer RM, Chen Y, Khandrika S, et al. Renal albumin excretion: twin studies identify influences of heredity, environment, and adrenergic pathway polymorphism. Hypertension. 2007;49:1015–1031. doi: 10.1161/HYPERTENSIONAHA.106.081979
14. Chakravarti A; Population genetics-making sense out of sequence. Nat Genet. 1999;21(1 suppl):56–60. doi: 10.1038/4482
15. Lander ES. The new genomics: global views of biology. Science. 1996;274:536–539. doi: 10.1126/science.274.5287.536
16. Boyle EA, Li Y, Frichard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169:1177–1186. doi: 10.1016/j.cell.2017.05.038
17. Shimada S, Abaiss-Battad JM, Alsheikh AJ, Yang C, Stumpf M, Kurth T, Mattson DL, Cowley AW Jr. Renal perfusion pressure determines infiltration of leukocytes in the kidney of rats with Angiotensin II-induced hypertension. Hypertension. 2020;76:849–858. doi: 10.1161/HYPERTENSIONAHA.120.15295
18. Quinn GZ, Dhillon P, Susztak K. It takes two to tango: the role of dysregulated metabolism and inflammation in kidney disease development. Semin Nephrol. 2020;40:199–205. doi: 10.1053/j.semnephrol.2020.01.010
19. Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81:442–448. doi: 10.1038/ki.2011.379

20. Mcmaster WG, Kirabo A, Madhur MS, Harrison DG. Inflammation, immunity, and hypertensive end-organ damage. Circ. Res. 2015;116:1022–1033. doi: 10.1161/CIRCRESAHA.116.303697

21. Norlander AE, Madhur MS, Harrison DG. The immunology of hypertension. J Exp Med. 2018;1521–33. doi: 10.1516/jem.2017.773

22. Chan CT, Sobey CG, Lieu M, Ferens D, Kett MM, Deep H, Kim HA, Krishnan SM, Lewis CV, Salimova E, et al. Obligate role for B Cells in the development of Angiotensin II-dependent hypertension. Hypertension. 2015;66:1023–1033. doi: 10.1161/HYPERTENSIONAHA.115.057979

23. Caillon A, Mian MOR, Fraulob-Aquino JC, Huo KG, Barhoumi T, Ouerd S, Sinnaeve PR, Paradis P, Schirrli EL, Y4 T Cells mediate Angiotensin II-induced hypertension and vascular injury. Circulation. 2017;135:2155–2162. doi: 10.1161/CIRCULATIONAHA.117.027058

24. Mikocziøva I, Gefføv, Vólld MI. Immunoglobulin gene variants and its impact on human disease. Genes Immun. 2021;22:205–217. doi: 10.1038/s41435-021-00145-5

25. Zhang JY, Roberts H, Flores DSC, Cutler AJ, Brown AC, Whalley JP, Welch AE, Dougherty ML, Nelson BJ, Shah A, Dutcher SK, et al. Characterizing the major structural variant alleles of the human genome. Cell. 2019;176:1698. doi: 10.1016/j.cell.2020.05.024

26. Weischenfeldt J, Symmons O, Spitz F, Korbel JO. Phenotypic impact of structural variants in human diseases and other traits. e15. doi: 10.1016/j.cell.2020.05.024

27. Velez JCA, Caza T, Larsen CP. COVAN is the new HIVAN: the re-emergence of collapsing glomerulopathy with COVID-19. Nat Rev Nephrol. 2020;16:565–567. doi: 10.1038/s41581-020-0339-2

28. Datta S, Kataria R, Zhang JV, Moore S, Pettipas K, Mohamed A, Zahler N, Pollak MR, Olaisi OA. Kidney disease-associated APOL1 variants have dose-dependent, dominant toxic gain-of-function. J Am Soc Nephrol. 2020;31:2038–2096. doi: 10.1681/ASN.2020010079

29. Beckerman P, Bi-Karchin J, Park AS, Qu C, Dumond PD, Soomro I, Boustany-Kari CM, Pullen SS, Miner JH, Hu CA, et al. Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice. Nat Med. 2017;23:429–438. doi: 10.1038/nm.4287

30. Almarri MA, Bergström A, Prado-Martinez J, Yang F, Fu B, Dunham AS, Almarri MA, Bergström A, Prado-Martinez J, Yang F, Fu B, Dunham AS, Almarri MA, Bergström A, Prado-Martinez J, Yang F, Fu B, Dunham AS. Genetic variation, comparative genomics, and the diagnosis of stage renal disease in African Americans. Nat Genet. 2008;40:1185–1192. doi: 10.1038/ng.232

31. Dhande et al. Genomics of Hypertensive Renal Disease. Hypertension. 2021;78:1689–1700. doi: 10.1161/HYPERTENSIONAHA.121.18112

32. Chan S, Lam E, Saghbini M, Bocklandt S, Hastie A, Cao H, Holmlin E, Levy-Sakin M, Pastor S, Mostovoy Y, Li L, Leung AKY, McCaffrey J, Young E, Audano PA, Sulovari A, Graves-Lindsay TA, Cantsilieris S, Sorensen M, Jeffet J, Margalit S, Michaeli Y, Ebenstein Y. Single-molecule optical genome mapping in nanochannels: multidisciplinarity at the nanoscale. Methods Mol Biol. 2019;176:663–675. doi: 10.1007/978-1-4939-8666-8_16

33. Welch AE, Dougherty ML, Nelson BJ, Shah A, Dutcher SK, et al. Characterizing the major structural variant alleles of the human genome. Cell. 2019;176:663–675.e19. doi: 10.1016/j.cell.2018.12.019

34. Almarri MA, Bergström A, Prado-Martinez J, Yang F, Fu B, Dunham AS, Almarri MA, Bergström A, Prado-Martinez J, Yang F, Fu B, Dunham AS, Almarri MA, Bergström A, Prado-Martinez J, Yang F, Fu B, Dunham AS. Immunoglobulin germline gene variation and hypertensive end-organ damage. J Am Soc Nephrol. 2021;65:51–66. doi: 10.1681/ASN.2020050021

35. Almarri MA, Bergström A, Prado-Martinez J, Yang F, Fu B, Dunham AS, Almarri MA, Bergström A, Prado-Martinez J, Yang F, Fu B, Dunham AS, Almarri MA, Bergström A, Prado-Martinez J, Yang F, Fu B, Dunham AS. Immunoglobulin germline gene variation and hypertensive end-organ damage. J Am Soc Nephrol. 2020;31:2502–2505. doi: 10.1681/ASN.2020070954

36. Almarri MA, Bergström A, Prado-Martinez J, Yang F, Fu B, Dunham AS, Almarri MA, Bergström A, Prado-Martinez J, Yang F, Fu B, Dunham AS, Almarri MA, Bergström A, Prado-Martinez J, Yang F, Fu B, Dunham AS. Immunoglobulin germline gene variation and hypertensive end-organ damage. J Am Soc Nephrol. 2020;31:2502–2505. doi: 10.1681/ASN.2020070954

37. Almarri MA, Bergström A, Prado-Martinez J, Yang F, Fu B, Dunham AS, Almarri MA, Bergström A, Prado-Martinez J, Yang F, Fu B, Dunham AS, Almarri MA, Bergström A, Prado-Martinez J, Yang F, Fu B, Dunham AS. Immunoglobulin germline gene variation and hypertensive end-organ damage. J Am Soc Nephrol. 2020;31:2502–2505. doi: 10.1681/ASN.2020070954

38. Almarri MA, Bergström A, Prado-Martinez J, Yang F, Fu B, Dunham AS, Almarri MA, Bergström A, Prado-Martinez J, Yang F, Fu B, Dunham AS, Almarri MA, Bergström A, Prado-Martinez J, Yang F, Fu B, Dunham AS. Immunoglobulin germline gene variation and hypertensive end-organ damage. J Am Soc Nephrol. 2020;31:2502–2505. doi: 10.1681/ASN.2020070954
of the genomic architecture of a complex trait locus in hypertensive rat models links Tmem63c to kidney damage. Elife. 2019;8:e42068. doi: 10.7554/eLife.42068

78. Schulz A, Schütten S, Schulte L, Kossmeier P, Nyengaard JR, Vetter R, Huber M, Kretz R. Genetic locus on MWF rat chromosome 6 affects kidney damage in response to L-NAMe treatment in spontaneously hypertensive rats. Physiol. Genomics. 2010;42:126–133. doi: 10.1152/physgen.00052.2010

79. Kuipers MH, Provoost AP, de Jong W. Development of hypertension and proteinuria with age in fawn-hooded rats. Clin Exp Pharmacol Physiol. 1986;13:201–209. doi: 10.1111/j.1440-2824.1986.tb03388.x

80. Simons JL, Provoost AP, Anderson S, Troy JL, Rennke HG, Sandstrom DJ, Brenner BM. Pathogenesis of glomerular injury in the fawn-hooded rat: early glomerular capillary hypertension predicts glomerular sclerosis. J Am Soc Nephrol. 1993;3:1775–1782. doi: 10.1681/ASN.1993031775

81. Yeo NC, O’Meara CC, Bonomo JA, Veth KN, Tomar R, Flister MJ, Drummond IA, Bowden DW, Freedman BI, Lazur J, et al. Shrooom3 contributes to the maintenance of the glomerular filtration barrier integrity. Genomics. 2016;25:57–65. doi: 10.1126/ggb.2015.72881.114

82. Matsuura R, Hiraishi A, Holzman LB, Hanayama H, Harano K, Nakamuro E, Hamazaki Y, Doi K, Nandakumar M, Nori E. SHROOM3, the gene associated with chronic kidney disease, affects the podocyte structure. J Am Soc Nephrol. 2020;31:880–700. doi: 10.1681/ASN.20190807884

83. Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963;27:282–293. doi: 10.1253/jcj.27.282

84. Okamoto K, Yamori Y, Nagako A. Establishment of the Stroke-prone Spon- taneously Hypertensive Rat (SHR). Circ Res. 1974;3:1413–1453.

85. Abu-Amarah I, Bidani AK, Hacioglu R, Williamson GA, Griffin KA. Differential effects of salt on renal hemodynamics and potential pressure transmission in stroke-prone and stroke-resistant spontaneously hyper- tensive rats. Am J Physiol Renal Physiol. 2005;289:F565–F577. doi: 10.1152/ajprenal.00404.2012

86. Fan F, Geurts. AM, Bidani MR, Ge Y, Zhang C, Wang S, Liu Y, Gao W, Guo Y, Li L, et al. A mutation in γ-adducin impairs autoregulation of renal blood flow and promotes the development of kidney disease. J Am Soc Nephrol. 2020;31:687–700. doi: 10.1681/ASN.2019080784

87. Griffin KA, Polichnowski A, Venkatachalam MA, Bidani AK. Systolic blood pressure as the trigger for the renal myogenic response: protective or autoregulatory? Clin Sci Transl Med. 2013;30:1250–1256. doi: 10.1038/scitranslmed.2013026

88. Hill RM, Slack HS, Chih-Tung W, Hwang SJ, Bergmann S, Campbell H, et al. Common variants in UMOD proteinuria with age in fawn-hooded rats. Circ Cardiovasc Genet. 2011;4:223–231. doi: 10.1161/CIRCGENETICS.110.958934

89. Carlström M, Wilcox CS, Arendshorst WJ. Renal autoregulation in health and disease. Physiol Rev. 2015;95:405–511. doi: 10.1152/physrev.00036.2010

90. Loutzenhiser R, Griffin KA, Bidani AK. Critical blood pressure threshold dependence of hypertensive injury and repair in a malignant nephrosclerosis model. Hypertension. 2014;64:801–807. doi: 10.1161/HYPERTENSIONAHA.114.03609

91. Carstöm M, Wilcox CS, Arndshorst WJ. Renal autoregulation in health and disease. Physiol. Rev. 2015;95:405–511. doi: 10.1152/physrev.00042.2012

92. Bell R, Herring SM, Gokul N, Monita G, Grove ML, Boerwinkle E, Doris PA. High-resolution identity by descent mapping uncovers the genetic basis for blood pressure differences between spontaneously hyperten- sive rat lines. Cric Cardiovasc Genet. 2011;1:229–231. doi: 10.1161/CIRCGENETICS.011098.9394

93. Eng E, Veniant M, Floege J, Fingerle J, Alpers CE, Menard J, Clozel JP, Johnson JR. Renal proliferative and phenotypic changes in rats with two-kidney, one-clip Goldblatt hypertension. Am J Hypertens. 1994;7:177–185. doi: 10.1093/ahj/72.177

94. Polichnowski AJ, Cowley AW Jr. Pressure-induced renal injury in angio- tensin II versus nonrenoprotective induced hypertensive rats. Hypertension. 2009;4:1269–1277. doi: 10.1161/HYPERTENSIONAHA.109.139287

95. Mori T, Cowley AW Jr. Role of pressure in angiotensin II-induced renal injury: chronic servo-control of renal perfusion pressure in rats. Hyperten- sion. 2004;43:752–759. doi: 10.1161/01.HYP.0000120971.49659.6a

96. Lee SB, Kullar R. Mechanistic connection between inflammation and fibro- sis. Kidney Int Suppl. 2010;19:226–229. doi: 10.1038/suppl.2010.418
98. Schindorf DO. Overview of factors contributing to the pathophysiology of progressive renal disease. Kidney Int 2008;74:860–866. doi: 10.1038/kji.2008.351

99. Eddy AA. Overview of the cellular and molecular basis of kidney fibrosis. Kidney Int Suppl (2011) 2011;2:4–8. doi: 10.1038/kinsup.2011.2

100. Watson CT, Breden F. The immunoglobulin heavy chain locus: genetic variation, missing data, and implications for human disease. Genes Immun 2012;13:363–373. doi: 10.1038/gene.2012.12

101. Gonzalez-Garay ML, Cranford SM, Braun MC, Doris PA. Diversity in the preimmune immunoglobulin repertoire of SHR lines susceptible and resistant to end-organ damage. Genes Immun 2014;15:528–533. doi: 10.1038/gene.2014.40

102. Watson CT, Kos JT, Gibson WS, Newman L, Dekus G, Busse CE, Smith ML, Jackson KJ, Collins AM. A comparison of immunoglobulin IGHV, IGHD and IGHE genes in wild-derived and classical inbred mouse strains. Immunol Cell Biol 2019;97:888–901. doi: 10.1111/imcb.12288

103. Gidoni M, Snir O, Peres A, Polak P, Lindeman I, Mikocziova I, Sarna VK, Gadala-Maria D, Gidoni M, Marquez S, Vander Heiden JA, Kos JT, Herring SM, Gokul N, Monita M, Bell R, Boerwinkle E, Wenderfer SE, Watson CT, Matsen FA 4th, Jackson KJL, Bashir A, Smith ML, Wang Y, Tao A, Vaeth M, Feske S. Calcium regulation of T cell metabolism. Cell Rep 2019;22:881–889. doi: 10.1016/j.celrep.2019.11.019

104. Berry CT, Liu X, Myles A, Nandi S, Chen YH, Hershberg U, Brodsky IE, Dhande IS, Zhu Y, Kneedler SC, Joshi AS, Hicks MJ, Wenderfer SE, Stevens LA, Li S, Wang C, Huang C, Becker BN, Bomback AS, Brown WW, 106. Ryu S, Han J, Norden-Krichmar TM, Zhang Q, Lee S, Zhang Z, Atzmon G, Niedernhofer LJ, Robbins PD, Barzilai N, et al. Genetic signature of human longevity in PKC and NFκB signaling. Aging Cell 2021;20:e13362. doi: 10.1111/ace.13362

107. Spindler SR, Li R, Dhabhi JM, Yamakawa A, Sauer F. Novel protein kinase signaling systems regulating lifespan identified by small molecule library screening using Drosophila. PLoS One 2012;7:e39792. doi: 10.1371/journal.pone.0039792

108. Zhang Q, Li J, Purkayashta S, Tang Y, Zhang H, Yin Y, Li B, Liu G, Cai D. Hypothalamic programming of systemic ageing involving IKKβ, NFκB and GnRH. Nature 2013;497:211–216. doi: 10.1038/nature12143

109. Curran SP, Ruvkun G. Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet 2007;3:e56. doi: 10.1371/journal.pgen.0030056

110. Davies DF, Shock NW. Age variation in glomerular filtration rate, effective renal plasma flow, and tubular excretory capacity in adult males. J Clin Invest 1990;95:496–507. doi: 10.1172/JCI102286

111. Hoang K, Tan JC, Derby G, Blouch KL, Maskel M, Ma I, Lemley KV, Myers BD. Determinants of glomerular hypofiltration in aging humans. Kidney Int 2004;65:1417–1424. doi: 10.1038/sj.ki.5002706

112. Delaney P, Jager KJ, Bökenkamp A, Christensson A, Dubourg L, Eriksen BO, Gaillard F, Gamaro G, van der Giet M, Glassock RJ, et al. CKD: a call for an age-adapted definition. J Am Soc Nephrol 2019;30:1805–1805. doi: 10.1681/ASN.2019030238

113. Cousar WG, Stilmant MM. Mesangial lesions and focal glomerular sclerosis in the aging rat. Lab Invest 1975;32:491–501.

114. Anderson S, Rennike HG, Zatz R. Germline adaptations with normal aging and with long-term converting enzyme inhibition in rats. Am J Physiol 1994;267(1 pt 2):F35–F43. doi: 10.1152/ajprenal.1994.267.1.F35

115. Wei J, Zhu Z, Zhang J, Jiang S, Lu W, Long L, Buggs J, Tan X, Cheng F, Liu R. Ageing impairs renal autoregulation in mice. Hypertension 2020;75:405–412. doi: 10.1161/HYPER PHYSIOLOGICA NA.119.13588

116. Thoﬀ P, Tsuczek Z, Soﬁnowska D, Gautam T, Mitschelen M, Tarantini S, Deak F, Koller A, Sonntag WE, Csiszar A, et al. Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension. J Cereb Blood Flow Metab 2013;33:1732–1742. doi: 10.1038/jcbfm.2013.143

117. Springo Z, Thoﬀ P, Tarantini S, Asphele NM, Tsuczek Z, Sonntag WE, Csizsar A, Koller A, Ungvari Z. Ageing impairs myogenic adaptation to pulsatile pressure in mouse cerebral arteries. J Cereb Blood Flow Metab 2015;35:527–530. doi: 10.1038/jcbfm.2014.256

118. Hill GS, Heudes D, Barilji Y. Morphometric study of arterioles and glomeruli in the aging kidney suggests focal loss of autoregulation. Kidney Int 2003;63:1027–1036. doi: 10.1046/j.1523-1755.2003.00831.x