Novel Synthetic, Host-defense Peptide Protects Against Organ Injury/Dysfunction in a Rat Model of Severe Hemorrhagic Shock

Noriaki Yamada, MD, PhD,* Lukas B. Martin, MD, † Elisabeth Zechendorf, MSc, † Gareth S. D. Purvis, BSc,* Fausto Chiazza, PhD, ‡ Barbara Varrone, MSc, ‡ Massimo Collino, PhD, ‡ Joanna Shepherd, MD, § Lena Heinbockel, PhD, ¶ Thomas Gutsmann, PhD, ¶ Wilmar Correa, PhD, ¶ Klaus Brandenburg, PhD, ¶ Gernot Marx, MD, † Tobias Schuerholz, MD, || Karim Brohi, MD, § Christoph Thiemermann, MD, PhD*

Objective: To evaluate (1) levels of the host-defense/antimicrobial peptide LL-37 in patients with trauma and hemorrhagic shock (HS) and (2) the effects of a synthetic host-defense peptide: Pep19-4LF on multiple organ failure (MOF) associated with HS.

Background: HS is a common cause of death in severely injured patients. Although these peptides differ in sequence and structure, they are predominantly short (10–50 amino acids) and have a major global effect on patient outcomes and resource utilization. The MOF after HS is associated with excessive systemic inflammation, secondary to the release of damage-associated molecular patterns (DAMPs) from extensive tissue damage and ischemia reperfusion injury. Therapeutic agents that reduce the incidence and severity of MOF following HS could, therefore, have a major global effect on patient outcomes and resource utilization. The MOF after HS is associated with excessive systemic inflammation, secondary to the release of damage-associated molecular patterns (DAMPs) from extensive tissue damage and ischemia reperfusion injury. To date, there are no specific pharmacological interventions used clinically to prevent MOF following/associated with HS.

Conclusions: Trauma-associated HS results in release of LL-37. The synthetic host-defense/antimicrobial peptide Pep19-4LF attenuates the organ injury/dysfunction associated with HS.

Keywords: antimicrobial peptides, hemorrhagic shock, LL-37, multiple organ failure, NF-κB pathway

Severe injuries account for 9% of the deaths worldwide. Although guidelines for the early management of hemorrhagic shock (HS, including resuscitation and organ support strategies) have decreased the rates of immediate (on scene/within 60 min) and early (emergency department and operating room/within 1–4 h) deaths, post-injury multiple organ failure (MOF) is still associated with significant morbidity and mortality. Therapeutic agents that reduce the incidence and severity of MOF following HS could, therefore, have a major global effect on patient outcomes and resource utilization. The MOF after HS is associated with excessive systemic inflammation, secondary to the release of damage-associated molecular patterns (DAMPs) from extensive tissue damage and ischemia reperfusion injury. To date, there are no specific pharmacological interventions used clinically to prevent MOF following/associated with HS.

Host-defense/antimicrobial peptides are known for more than 100 years and form part of the innate immune system of insects, plants, and vertebrates by defending the host against invading microorganisms. Although these peptides differ in sequence and structure, they are predominantly short (10–50 amino acids) amphipathic molecules. The most extensively studied host-defense/antimicrobial peptide in humans is the cathelicidin-derived peptide LL-37. LL-37 exhibits strong bactericidal properties, but at the same time neutralizes pathogenic factors released during injury/infection including lipopolysaccharide (LPS) or lipoprotein. In addition to the interaction with PAMPs (pathogen-associated molecular patterns), LL-37 modulates the inflammatory response induced by DAMPs and, hence, modulates many physiological host functions including inflammation, angiogenesis, and wound healing. Thus, host-defense/antimicrobial peptides are attractive candidates for the development of novel therapeutic interventions in infectious and inflammatory diseases. The systemic application of LL-37 as a potential drug in man, however, is limited by its toxicity. The challenge is to develop synthetic host-defense/antimicrobial peptides...
(mimetics) that have little or no adverse effects. Peptide 19-4LF (Pep19-4LF) is one of several new synthetic host-defense/antimicrobial peptides, which belongs to the class of synthetic anti-LPS peptides (SALP = synthetic anti-LPS peptides). In addition to binding LPS, these peptides, however, exhibit potent anti-inflammatory effects in experimental sepsis by interacting with a variety of PAMPs and DAMPs.

The role of host-defense/antimicrobial peptides in HS is unknown. Therefore, the aims of the present study were to (1) investigate the plasma levels of LL-37 in patients with trauma with or without HS and (2) to explore the effects of Pep19-4LF on the organ injury/dysfunction associated with HS. We report here for the first time, that (1) the plasma levels of LL-37 are elevated in patients with trauma/HS (when compared with trauma without HS) and that (2) Pep19-4LF attenuates the HS-associated organ injury/dysfunction. Mechanistically, Pep19-4LF has prosurvival and anti-inflammatory properties, as it activates the Akt/endothelial nitric oxide synthase (eNOS) cell survival pathways and attenuates the activation of the nuclear factor kappa B (NF-kB) pathway in the rat in vivo. Moreover, Pep19-4LF exhibits its anti-inflammatory activity, at least in part, by directly interacting/binding to the DAMP heparan sulfate in human mononuclear cells (MNCs) in vitro. These data suggest that Pep19-4LF may prevent the MOF in patients caused by trauma-associated HS, which, in turn, may improve outcome in these patients.

METHODS

Additional details relating to materials and methodology are provided in the supplemental, http://links.lww.com/SLA/B192.

Use of Human Subjects—Ethic Statement

All patients or their legal representative gave written informed consent. Before inclusion of the first individual, the local National Health Service Research Ethics Committee (REC: 07/Q0603/29) approved this study, which was performed in accordance with the Declaration of Helsinki in its latest form. The use of plasma from healthy volunteers was approved by the ethics committee of the University Hospital Aachen (EC Nr.206_09, 5 January 2010).

Use of Experimental Animals—Ethic Statement

The experimental protocols used in this study have been approved by the Animal Welfare Ethics Review Board of Queen Mary University of London and the study was performed under license issued by home office (Procedure Project License; PPL:70/7348). Animal care was in accordance with the Home Office guidance on Operation of Animals (Scientific Procedures Act 1986) published by Her Majesty’s Stationery Office and the Guide for the Care and Use of Laboratory Animals of the National Research Council.

Hemorrhagic Shock and Quantification of Organ Injury and Dysfunction

The present study was carried out on 46 male Wistar rats (Charles River Ltd, Margate, UK) weighing 230 to 350 g receiving a standard diet and water ad libitum. HS and quantification of organ injury and dysfunction were performed as described previously in this journal (supplemental Fig. 1, http://links.lww.com/SLA/B192).

Experimental Design

The following groups were studied (total n = 45): sham + vehicle (n = 11), sham + Pep19-4LF (n = 6), HS + vehicle (n = 12), HS + Pep19-4LF-low dose (LD) (n = 8), HS + Pep19-4LF-HD (n = 8). Rats were administered vehicle (saline 1.5 mL/kg/h) or Pep19-4LF (LD = 66 μg/kg·h; high dose (HD) = 333 μg/kg·h) continuously for 4 h after resuscitation using infusion pump for rodents (PHD2000, 70–2000; Harvard Apparatus, MA). We excluded 11 rats from data analysis due to surgical/technical issues (n = 5) before onset of HS and death during resuscitation (n = 6). The doses of Pep19-4LF used in the present study were based on efficacy seen in previous in vitro and in vivo studies.

Statistics

Unless otherwise stated, the data are expressed as median and standard error or described in box and whisker format showing medians, interquartile ranges, and full ranges of n observations, where n represents the number of animals/experiments studied. Statistical analysis was carried out using Prism 6 for Mac OS X (GraphPad, San Diego, CA). The distribution of the data was assessed using D’Agostino’s K-squared test or Kolmogorov–Smirnov test. Unless otherwise stated, normal distributed data were assessed by 1- or 2-way analysis of variance followed by Bonferroni post hoc test. Unless otherwise stated, not normally distributed data were analyzed with a nonparametric test (Kruskal-Wallis followed by Dunn test). A P value less than 0.05 was considered to be significant.

RESULTS

Plasma Concentrations of the Host-defense Antimicrobial Peptide Cathelicidin LL-37

Figure 1 shows plasma concentrations of LL-37 in healthy volunteers and trauma patients recruited from an urban major trauma center. The median age of the healthy volunteers was 47 (32–53) years with 80% men. Further demographic and clinical parameters of trauma patients are described in supplemental Table 1, http://links.lww.com/SLA/B192. Admission blood samples of trauma patients were obtained within 2 hours of injury (supplemental Table 1, http://links.lww.com/SLA/B192). When compared to healthy volunteers, trauma
patients (n = 24) and trauma hemorrhage patients (n = 23) (defined as patients who received ≥2 units of packed red blood cells on admission) showed significantly higher plasma levels of LL-37. When compared to trauma patients, the plasma levels of LL-37 were significantly higher in trauma hemorrhage patients (Fig. 1). Increased levels were associated (at time of admission) with (1) low systolic blood pressure, (2) high heart rate, (3) high lactate, and (4) low base deficit (supplemental Fig. 3, http://links.lww.com/SLA/B192). Moreover, we performed a subgroup analysis with focus on patients with an Injury Severity Score (ISS) higher than 24. Applying this threshold to the cohort resulted in an equivalent median ISS between the groups (supplemental Table 2, http://links.lww.com/SLA/B192). Notably, this subgroup analysis shows different LL-37 serum concentrations between trauma patients and trauma hemorrhage patients (supplemental Fig. 2, http://links.lww.com/SLA/B192).

Pep19-4LF Attenuates the Decline in Blood Pressure During Resuscitation After HS

When compared to sham-operated rats, HS rats treated with vehicle showed a significant decline in mean arterial pressure (MAP) after resuscitation (Fig. 2). Intravenous administration of HD Pep19–4LF significantly attenuated the decline in MAP observed during the resuscitation period in HS-rats, whereas the LD of Pep19–4LF had no effect. In contrast, the HD of Pep19–4LF abolished the increases in serum interleukin 6 (IL-6) and monocyte chemotactic protein-1 (MCP-1). In HS rats, we also observed increases in serum IL-10 and CXCL1, but these effects were not significant (Figs. 5A,B). Treatment of HS rats with Pep19–4LF abolished the increases in IL-6, MCP-1, IL-10, and C-X-C motif ligand 1 caused by HS (Figs. 5A–D).

Pep19-4LF Attenuates the Activation of Nuclear Factor Kappa B (Liver and Kidney) Caused by Hemorrhagic Shock

Having shown that Pep19-4LF significantly attenuates kidney dysfunction and liver injury caused by HS, we next explored the potential mechanism(s) underlying the observed beneficial effects of high dose of Pep19-4LF. When compared to sham-operated rats, HS rats treated with vehicle exhibited a significant increase in phosphorylation of IκB kinase α and β (IKKα/β), which is essential for IkB phosphorylation (Figs. 6A,F). Following HS-induced phosphorylation of IkB (Figs. 6B,G), the p65 subunit of NF-κB is freed to translocate to the nucleus, as shown in Figs. 6C,H. The intravenous administration of HD Pep19–4LF attenuated the phosphorylation of IKKα/β on Ser176/180, and of IkBα on Ser32/36 and, accordingly, the nuclear translocation of the NF-κB subunit p65 in both liver and kidney (Figs. 6A–C,F–H).

Pep19-4LF Increases Activation of Akt and eNOS in Kidney and Liver After Hemorrhagic Shock

As activation of the Akt-survival pathway is known to reduce HS-induced organ dysfunction, we next investigated whether the HD of Pep19–4LF activates Akt in kidney and liver of HS rats (Figs. 6D,I). As activation of the Akt-survival pathway is known to reduce HS-induced organ dysfunction, we next investigated whether the HD of Pep19–4LF activates Akt in kidney and liver of HS rats (Figs. 6D,I). When compared to sham-operated rats, HS rats treated with vehicle showed a significant reduction in the phosphorylation of Akt on Ser473 in both kidney and liver.
This effect was associated with a reduction in the Akt-mediated eNOS phosphorylation at Ser\(^{1177}\). In contrast, treatment of HS rats with Pep19-4LF attenuated the decline in Akt phosphorylation on Ser\(^{473}\) and of eNOS phosphorylation on Ser\(^{1177}\) in kidney and liver, when compared to HS rats treated with vehicle (Figs. 6D,J).

(Figs. 6D,J). This effect was associated with a reduction in the Akt-mediated eNOS phosphorylation at Ser\(^{1177}\). In contrast, treatment of HS rats with Pep19-4LF attenuated the decline in Akt phosphorylation on Ser\(^{473}\) and of eNOS phosphorylation on Ser\(^{1177}\) in kidney and liver, when compared to HS rats treated with vehicle (Figs. 6E,J).
Pep19-4LF Inhibits the Heparan Sulfate–induced Tumor Necrosis Factor Alpha Secretion in Human Peripheral Blood Mononuclear Cells

As discussed above, traumatic injury and trauma-associated HS result in the release of a variety of endogenous toll-like receptor (TLR) ligands, including heparan sulfate.1,9 We report here that heparan sulfate stimulates the release of tumor necrosis factor alpha (TNFα) from human MNCs, and that this effect is reduced/abolished in a concentration-dependent manner by Pep19-4LF (Fig. 7A).

Pep19-4LF Exhibits Binding to Heparan Sulfate

To gain a better understanding of the mechanism(s) by which Pep19-4LF reduces the formation of TNFα in human MNCs challenged with heparan sulfate, we investigated the potential binding of Pep19-4LF to heparan sulfate by isothermal titration calorimetry. There was an exothermic reaction between the 2 reactants, running into a saturation of binding at higher mass ratios (Fig. 7B). The rather steep slope of the sigmoidal curve indicates distinct binding of the reaction partners and may explain that the binding epitopes of heparan sulfate to receptors (ie, TLR4) are hidden by the peptide.

Pep19-4LF Does Not Show Hemolytic Activity

Finally, possible cytotoxic effects of Pep19-4LF were studied in the hemolysis assay with RBC as sensitive target cells for cytotoxicity. Pep19-4LF caused no considerable degree of hemolysis in concentrations of up to 100 μg/mL (Fig. 7C).

DISCUSSION

We report here for the first time that trauma leads (within 2 h) to a significant increase in the plasma levels of the host-defense/antimicrobial peptide LL-37. Most notably, the highest levels of LL-37 were found in patients with trauma complicated by severe hemorrhage (Fig. 1) and were associated with low systolic blood pressure, high heart rate, high lactate and low base deficit.

Using a reverse translational approach, we investigated whether pharmacological intervention with synthetic host-defense/antimicrobial peptides attenuates the MOF associated with HS in rats. As the therapeutic use of LL37 in man is limited by its systemic toxicity in therapeutic doses,9,10 we synthesized Pep19-4LF, which does not cause any significant adverse effects (hemolysis) in the doses used (Fig. 7C). The administration of Pep19-4LF significantly attenuated the fall in blood pressure (Fig. 2) and the rise in serum lactate caused by HS (Fig. 3D). Thus, Pep19-4LF reduces the delayed vascular decompensation and organ/tissue ischemia probably due to increased microvascular perfusion secondary to increased perfusion pressure. Moreover, Pep19-4LF significantly attenuated the liver injury, renal dysfunction, pancreatic injury, and lung inflammation caused by HS (Fig. 3A–C,E–H). As neutrophils and macrophages play an important role in HS-associated lung inflammation, we evaluated the degree of macrophage infiltration (measured as number of CD68-positive cells) and the degree of neutrophil activation (measured as MPO activity) in the lung. HS resulted in a significant increase in the number of macrophages in the lung and a significant increase in MPO activity, both of which was attenuated by the treatment of HS rats with Pep19-4LF (Fig. 4). Neutrophils and macrophages release (via degranulation) proinflammatory cytokines, such as IL-6 or MCP-1 which importantly contribute to acute lung injury/inflammation.19 The proinflammatory cytokines IL-6 and MCP-1 are important mediators of alterations associated with organ dysfunction and even lethality following HS and resuscitation.20–23 For instance, a monoclonal antibody against IL-6 reduces the organ dysfunction and inflammation caused by...
Indeed, we report here that Pep19-4LF also attenuates the rise in serum IL-6 and MCP-1 caused by HS in the rat (Fig. 5).

What, then, are the mechanisms by which Pep19-4LF attenuates HS-associated organ injury/dysfunction? There is good evidence that PAMPs and DAMPs released during trauma-HS interact with TLRs (ie, TLR2, 4) resulting in activation of NF-κB.24–26 Indeed, we observed a significant increase in (a) the degree of phosphorylation of IKKα/β on Ser176/180 and (b) of IκBα on Ser32/36, and thus resulting in (c) increased nuclear translocation of NF-κB subunit p65 (Fig. 6) in liver/kidneys of rats with HS. This activation of NF-κB in key target organs was attenuated in HS rats treated with Pep19-4LF during resuscitation. IκBα masks the nuclear localization signals of NF-κB proteins and sequesters NF-κB as an inactive complex in the cytoplasm, thereby inhibiting NF-κB.27–28 Signal-induced proteolytic degradation of IκBα, which has been phosphorylated by IκB kinases (IKKα/β) liberates NF-κB to translocate to the nucleus.29 Subsequently, NF-κB activates the transcription of a number of genes involved in producing proinflammatory cytokines and chemokines known to result in the transcription of a multitude of proinflammatory cytokines, chemokines, and proteins that are widely implicated in the pathophysiology of MOF.17,16 Thus, the organ protective effects of Pep19-4LF in HS are associated with a significant reduction in the activation of the NF-κB pathway, which in turn accounts for the reduced formation of IL-6 and MCP-1.

We also investigated the effects of HS with or without Pep19-4LF on the degree of activation of the Akt-survival pathway (Fig. 6). When compared to sham rats, HS rats treated with vehicle showed a significantly decreased phosphorylation of Akt on Ser473 (indicating

FIGURE 5. Pep19-4LF attenuates the increase in IL-6 and MCP-1 caused by HS. The serum concentrations of (A) IL-6, (B) MCP-1, (C) IL-10, and (D) C-X-C motif ligand 1 (CXCL1) were determined using a cytometric bead array in sham and HS rats treated with vehicle or Pep19-4LF (333 μg/kg·h) throughout 4 h after resuscitation. All parameters were assessed 4 h subsequent to HS. Data are presented as box and whiskers format, showing medians, interquartile range, and full range. E, Heatmap of measured cytokines. The following groups were studied: sham + vehicle (n = 11); HS + vehicle (n = 12), HS + Pep19-4LF-HD (n = 8). Statistical analysis was performed using 1-way analysis of variance (ANOVA) followed by Bonferroni post hoc test. §P < 0.05 versus sham + vehicle and +P < 0.05 versus HS + vehicle.
Most notably, HþPep19-4LF attenuates the activation of NF-κB by enhancing the formation of small amounts of HS on eNOS (Fig. 6A), which is caused by heparan sulfate in these conditions associated with ischemia/inflammation including ventilation-induced lung injury, sepsis-induced organ dysfunction, myocardial infarction, and HS-induced organ dysfunction.16,30–33 Moreover, activation of Akt results in phosphorylation and activation of eNOS at Ser1177 that enhances the formation of small amounts of NO, which is pivotal for the preservation of microvascular perfusion and, hence, reducing organ injury.31,34,35 We report here that the degree of eNOS phosphorylation on Ser1177 is significantly higher in HS rats treated with Pep19-4LF indicating activation of eNOS and enhanced formation of NO in the microcirculation at least of kidney and liver. We propose that the enhanced formation of NO by eNOS in HS rats treated with Pep19-4LF contributes to improved microcirculatory perfusion resulting in better tissue oxygenation and lower lactate levels (Fig. 3D). Thus, the organ protective effects of Pep19-4LF in HS are associated with its interaction with relevant DAMPs, such as heparan sulfate.

Limitations the Study

We used an acute model of HS, which leads to vascular decompensation (eg, a fall in MAP despite fluid resuscitation), MOF, and systemic inflammation within 4 h of the onset of resuscitation. Even at this relatively early time point, HS and resuscitation led to organ dysfunction and activation of transcription (kidney/liver) of NF-κB and expression of NF-κB-dependent proteins. Although Pep19-4LF showed some very striking, beneficial effects in this acute setting, further experiments with trauma/hemorrhage and recovery (for 24–48h) are necessary to confirm that the observed early reduction in MOF does indeed translate to improved outcome and ultimately reduced mortality. In addition, future studies in large animals (pigs) may be useful to confirm efficacy and to explore other aspects of the potential mechanism(s) of action (ie, effects on microcirculation and blood gas analyses) of Pep19-4LF in HS. It would have been very useful to investigate whether Pep19-4LF does inhibit iNOS expression, improve microcirculatory blood flow, or improves cardiac contractility (to understand the improvements in MAP seen during resuscitation). Lack of the above data does, however, not hinder the clinical translation of our findings, as approved by the regulatory authorities (Medicines and Healthcare Products Regulatory Agency in the UK) will primarily depend on the availability of the relevant preclinical and phase I safety data.
FIGURE 7. Pep19-4LF interacts with heparan sulfate. A, Inhibitory effect of Pep19-4LF on heparan sulfate-induced TNFα release in human peripheral blood mononuclear cells from healthy donors. Pep19-4LF was added at the indicated weight ratios of the concentrations of heparan sulfate to Pep19-4LF. B, Red blood cells, obtained from citrated human blood were suspended at a concentration equivalent to 5% of the normal hematocrit. Pep19-4LF and melittin (as control) were added at different concentrations and the supernatants were analyzed for hemoglobin. Results are expressed as the percentage released with respect to sonicated controls (100% release) or controls processed without peptide (0% release). C, Enthalpy of the Pep19-4LF-heparan sulfate binding. Isothermal calorimetric titration of a 1 to 4 mM Pep19-4LF solution into a 200 μg/mL heparan sulfate dispersion. The enthalpy changes at each injection were measured and the area under the peak was integrated and plotted against the weight ratio of the concentrations of Pep19-4LF to heparan sulfate. A downward peak corresponds to an exothermic reaction, and an upward peak corresponds to an endothermic reaction.

data rather than further efficacy and/or mechanistic studies in a higher species. Given the pilot character of our clinical study investigating LL-37 levels in patients with trauma and trauma hemorrhage in men, our findings should be confirmed and extended by a measurements of LL-37 at several time points over an extended period to provide a dynamic picture of the changes in plasma LL-37 in patients with trauma and trauma hemorrhage. It would also be useful to investigate the influence of sex on the level of LL-37 in trauma/hemorrhage although the present study would need to be done in a much larger patient cohort.

In conclusion, we report here for the first time that trauma and trauma-hemorrhage result in a significant release of the host-defense/antimicrobial peptide LL-37. As the systemic administration of higher doses of LL-37 leads to adverse effects, we have synthesized a small host-defense/antimicrobial peptide, Pep19-4L. Like LL-37, Pep19-4LF neutralizes the effects of LPS and lipoproteins. Pep19-4LF abolishes the release of TNFα caused by heparan sulfate in human MNCs. In addition, Pep19-4LF attenuates the organ injury/dysfunction caused by severe hemorrhage and resuscitation in the anesthetized rat. This protective effect of Pep19-4LF was associated with activation of the Akt/eNOS-survival pathway (kidney and liver), which increases the resistance of these organs to injury. In addition, Pep19-4LF also attenuates the activation of NF-κB in these organs, resulting in the reduced formation of the proinflammatory cytokines IL-6 and MCP-1. Thus, we propose that Pep19-4LF may be useful to reduce the organ injury/dysfunction and inflammation caused by severe hemorrhage and resuscitations in patients with trauma.

REFERENCES
1. WHO. Violence and Injuries: The Facts 2014. Geneva, Switzerland: World Health Organization; 2015.
2. Sauaia A, Moore EE, Johnson JL, et al. Temporal trends of postinjury multiple-organ failure: still resource intensive, morbid, and lethal. J Trauma Acute Care Surg. 2014;76:582–592. discussion 592–593.
3. Lord IM, Midwinter MJ, Chen YF, et al. The systemic immune response to trauma: an overview of pathophysiology and treatment. Lancet. 2014;384:1455–1465.
4. Lehrer RI, Ganz T. Antimicrobial peptides in mammalian and insect host defence. Curr Opin Immunol. 1999;11:23.
5. Guani-Guerra E, Santos-Mendoza T, Lugo-Reyes SJO. et al. Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin Immunol. 2010;135:1–11.
6. Martin L, Van Meegern A, Donnning S, et al. Antimicrobial peptides in human sepsis. Front Immunol. 2015;6:404.
7. Schuerholz T, Brandenburg K, Marx G. Antimicrobial peptides and their potential application in inflammation and sepsis. Crit Care. 2012;16:207.
8. Hu Z, Murakami T, Suzuki K, et al. Antimicrobial cathelicidin peptide LL-37 inhibits the LPS/ATP-induced pyroptosis of macrophages by dual mechanism. PLoS One. 2014;9:e85765.
9. Hancock REW, Sahl H-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24:1551–1557.
10. Zhang L, Falla T. Antimicrobial peptides: therapeutic potential. Expert Opin Pharmacother. 2006;7:653–663.
11. Gutsmann T, Razquin-Olazarin I, Kowalski I, et al. New antisepsic peptides to protect against endotoxin-mediated shock. Antimicrob Agents Chemother. 2010;54:3817–3824.
12. De Tejada GM, Heinbockel L, Ferrer-Espada R, et al. Lipoproteins/peptides are sepsis-inducing toxins from bacteria that can be neutralized by synthetic anti-endotoxin peptides. Sci Rep. 2015;5:14292.
13. Schuerholz T, Doemming S, Hone M, et al. The anti-inflammatory effect of the synthetic antimicrobial peptide 19-2.5 in a murine sepsis model: a prospective randomized study. Crit Care. 2013;17:R3.
14. Martin L, Schmitz S, De Santis R, et al. Peptide 19-2.5 inhibits heparan sulfate-triggered inflammation in murine cardiomyocytes stimulated with human sepsis serum. PLoS One. 2015;10:e0127584.
15. Martin L, De Santis R, Koczera P, et al. The synthetic antimicrobial peptide 19-2.5 interacts with heparanase and heparan sulfate in murine and human episi. PLoS One. 2015;10:e0143583.
16. Sordi R, Nandra KK, Chiazza F, et al. Artesunate protects against the organ injury and dysfunction induced by severe hemorrhage and resuscitation. *Ann Surg*. 2017;265:408–411.

17. Sordi R, Chiazza F, Johnson FL, et al. Inhibition of iκB kinase attenuates the organ injury and dysfunction associated with hemorrhagic shock. *Mol Med*. 2015;21:563–575.

18. Rahbar E, Cardenas JC, Baimukanova G, et al. Endothelial glycocalyx shedding and vascular permeability in severely injured trauma patients. *J Transl Med*. 2015;13:117.

19. Dewar D, Moore FAM, Moore EE, et al. Postinjury multiple organ failure. *Injury*. 2009;40:912–918.

20. Jarrer D, Chaudry IH, Wang P. Organ dysfunction following hemorrhage and sepsis: mechanisms and therapeutic approaches (review). *Int J Mol Med*. 1999;4:575–583.

21. Sordi R, Chiazza F, Patel NS, et al. ‘Preconditioning’ with low dose lipopolysaccharide aggravates the organ injury/dysfunction caused by hemorrhagic shock in rats. *PLoS One*. 2015;10:e0122096.

22. Bahrami S, Yao YM, Leichtfried G, et al. Significance of TNF in hemorrhage-related hemodynamic alterations, organ injury, and mortality in rats. *Am J Physiol*. 1997;272:H2119.

23. Zhang Y, Zhang J, Korff S, et al. Delayed neutralization of interleukin 6 reduces organ injury, selectively suppresses inflammatory mediator, and partially normalizes immune dysfunction following trauma and hemorrhagic shock. *Shock*. 2014;42:218–227.

24. Pradeu T, Cooper E. The danger theory: 20 years later. *Front Immunol*. 2012;3:287.

25. Pradeu T, Cooper E. The danger theory: 20 years later. *Front Immunol*. 2012;3:287.

26. Martin L, Koczera P, Zechendorf E, et al. The endothelial glycocalyx: new diagnostic and therapeutic approaches in sepsis. *Biomed Res Int*. 2016;2016:7358278.

27. Jacobs MD, Harrison SC. Structure of an IκBα/NF-κB complex. *Cell*. 1998;95:749–758.

28. Sentfleben U, Karin M. The IKK/NF-κB pathway. *Crit Care Med*. 2002;30(suppl 1):S18–S26.

29. Cantley L. The phosphoinositide 3-kinase pathway. *Science*. 2002;296:1655–1657.

30. Shu Y, Tao W, Miao QR, et al. Improvement of ventilation-induced lung injury in a rodent model by inhibition of inhibitory κB kinase. *J Trauma Acute Care Surg*. 2014;76:1417–1424.

31. Khan AI, Coldewey SM, Patel NSA, et al. Erythropoietin attenuates cardiac dysfunction in experimental sepsis in mice via activation of the beta-common receptor. *Dis Model Mech*. 2013;6:1021–1030.

32. Coldewey SM, Rogazzo M, Collino M, et al. Inhibition of IκB kinase reduces the multiple organ dysfunction caused by sepsis in the mouse. *Dis Model Mech*. 2013;6:1031–1042.

33. Cai Z, Semenza GL. Phosphatidylinositol-3-kinase signaling is required for erythropoietin-mediated acute protection against myocardial ischemia/reperfusion injury. *Circulation*. 2004;109:2050–2053.

34. Cabrales P, Tsai AG, Intaglietta M. Exogenous nitric oxide induces protection during hemorrhagic shock. *Resuscitation*. 2009;80:707–712.

35. Nandra KK, Collino M, Rogazzo M, et al. Pharmacological preconditioning with erythropoietin attenuates the organ injury and dysfunction induced in a rat model of hemorrhagic shock. *Dis Model Mech*. 2013;6:701–709.

36. Horst K, Hildebrand F, Pfeifer R, et al. Impact of haemorrhagic shock intensity on the dynamic of alarmins release in porcine poly-trauma animal model. *Eur J Trauma Emerg Surg*. 2016;42:67–75.

37. Wu H, Ma J, Wang P, et al. HMGB1 contributes to kidney ischemia reperfusion injury. *J Am Soc Nephrol*. 2010;21:1878–1890.

38. Sodhi CP, Jia H, Yamaguchi Y, et al. Intestinal epithelial TLR-4 activation is required for the development of acute lung injury after trauma/hemorrhagic shock via the release of HMGB1 from the gut. *J Immunol*. 2015;194:4931–4939.

39. Torres Filho IP, Torres LN, Salgado C, et al. Plasma syndecan-1 and heparan sulfate correlate with microvascular glycocalyx degradation in hemorrhaged rats after different resuscitation fluids. *Am J Physiol Heart Circ Physiol*. 2016;310:H1468–1478.

40. Levy RM, Mollen KP, Prince JM, et al. Systemic inflammation and remote organ injury following trauma require HMGB1. *Am J Physiol Regul Integr Comp Physiol*. 2007;293:R1538–R1544.