Respiratory effects of acute milk consumption among asthmatic and non-asthmatic children: a randomized controlled study

Yael Koren 1†, Keren Armoni Domany 2,3†, Guy Gut 4, Amir Hadanny 5, Shira Benor 1, Oren Tavor 1 and Yakov Sivan 3,6*

Abstract

Background: A commonly held public belief is that cow’s milk products increase mucus production and respiratory symptoms. Dietary milk elimination is often attempted despite lack of evidence. Our objective was to investigate whether a single exposure to cow’s milk is associated with respiratory symptoms and changes in pulmonary functions in asthmatic and non-asthmatic children.

Methods: We conducted a prospective double blind, placebo-controlled trial on non-asthmatic and asthmatic children aged 6–18 years evaluated at a pediatric pulmonology unit. The children were randomly challenged with cow’s milk or soy milk substitute. Symptoms, spirometry, fractional-exhaled nitric-oxide (FeNO), and pulse oximetry findings were obtained at baseline and at 30, 60, 90, and 120 min following challenge. A two-way ANCOVA (with repeated measures when required) was used to compare the performances of all groups and subgroups over time. The outcome measures of each participant were compared to his/her own variables over time and in relation to his/her baseline values. In case of missing data points, missingness analysis was performed using Little’s missing completely at random (MCAR) test.

Results: Fifty non-asthmatic children (26 assigned to the cow’s milk group and 24 to the soy substitute group), and 46 asthmatic children (22 in the cow’s milk group and 24 in the soy substitute group) were enrolled. Age, gender, and body mass index Z-score were comparable between the two groups. No changes in symptoms, spirometry, FeNO, or oxygen saturation measurements were observed following challenge in any of the participants in both groups, at any time point compared to baseline.

(Continued on next page)
Background

There is a commonly held belief that cow’s milk increases airway mucus production. Dating back to the 12th century, Maimonides pointed out that the intake of milk can potentially exacerbate asthma [1]. A 2003–2004 survey conducted by the Israeli Center of Disease Control (ICDC) showed that 12% of children in the 7-12th grades abstained from dairy products mostly due to general health considerations, family lifestyle, or veganism [2]. In a 2015–2016 ICDC survey among 5,300 adolescents, 10–14% reported complete milk avoidance [3]. Data from Australia showed that almost 30% of the population believed that milk produces mucus [4, 5]. Balfour-Lynn recently reported that in their department, parents often claim that drinking milk increases mucus production and, therefore they omit milk from their children’s diet. Balfour-Lynn hence recommended that this myth be refuted [6].

One survey of 330 parents of children visiting an outpatient pediatric pulmonology clinic showed that 58% were convinced that there was a relationship between milk consumption and increased mucus production [7]. Indeed, elimination of milk products has become popular, mainly among parents of asthmatic children, under the assumption that avoiding dairy products will improve their children’s respiratory status and reduce the occurrence of exacerbations [8, 9]. Despite this popular belief, no effect of cow’s milk on respiratory status was detected in several studies in adults [5, 10, 11]. To the best of our knowledge, no interventional study has similarly explored the effect of milk on respiratory symptoms and function in children.

Asthma is the most common chronic respiratory illness in children, reaching almost 10% of the pediatric population in the developed world, including Israel [12]. Cough and shortness of breath are the most common presentations of asthma, while airway bronchoconstriction, hyperresponsiveness and reversibility to drugs are its physiologic hallmarks [13]. These are measured by clinical assessment, spirometry, response to challenges, and reversibility following inhalation of bronchodilators. Asthma in children is usually associated with eosinophilic inflammation [14], which can be evaluated by the measurement of the fractional-exhaled nitric-oxide (FeNO), a sensitive marker of airway eosinophilic inflammation in asthma [15].

Methods

Subjects

This was a prospective randomized, double-blind, placebo-controlled, parallel-group trial of asthmatic and non-asthmatic 6-to 18-year-old children. The study was conducted in the pediatric pulmonology unit of the “Dana-Dwek” Children’s Hospital at the Tel Aviv Medical Center in Israel. Asthmatic and non-asthmatic children were recruited from the pediatric pulmonology
clinic in our hospital and those in the community. Children of the hospital personnel were also recruited. A pediatric pulmonologist re-confirmed the diagnosis of asthma for the asthmatic children and ruled out asthma for the controls. Study exclusion criteria were: (a) a known allergy to cow’s milk (including skin, gastrointestinal and respiratory manifestations), (b) acute or recent respiratory infection at the time of testing, (c) use of systemic steroids during the month preceding study initiation, (d) asthma exacerbation that had been treated with short-acting beta-agonists or inhaled corticosteroids within the 48 h prior to the trial, and (e) an underlying disease that could affect clinical assessment, spirometry, or FeNO measurements.

The study was approved by the Tel Aviv Medical Center and the Israeli Ministry of Health IRB (Helsinki Committee, NIH #NCT02745899). Informed written consent was received from all participants and their parents.

Study design

The study design comprised a challenge with either cow’s milk or a soy milk substitute in asthmatic and non-asthmatic children and the assessment of their respiratory response to the challenge. According to the study protocol, all participants were requested to completely avoid all dairy products for the 24 h preceding the intervention. Participants from both the study and control groups were randomly and blindly assigned into subgroups by the type of liquid ingested: either 240 ml of chocolate cow’s milk or 240 ml of a chocolate soy milk substitute, yielding four subgroups: asthmatic children + cow’s milk, asthmatic children + soy milk, non-asthmatic children + cow’s milk, and non-asthmatic children + cow’s milk. We adhered to CONSORT guidelines (http://www.consort-statement.org/) for reporting clinical trials.

Randomization took place immediately following the completion of baseline history, examination, and baseline lung function tests. It was performed by a clinical research coordinator using sequentially numbered sealed opaque envelopes containing the letter A (soy milk) or B (cow’s milk) following a randomization list generated by the website “www.randomizer.org”. This process was concealed and safeguarded by the research coordinator. The randomization list was opened by the researchers only after all participants had completed their tests. Both drinks, soy and milk, shared similar color and consistency, in efforts to assure both participant and researcher were unable to identify the intervention.

Prior to undergoing the intervention, the participants completed a questionnaire that included items pertaining to their demographic, nutritional, and medical background, the latter with specific questions regarding atopy including atopic dermatitis, allergic rhinitis and skin prick tests results for inhaled allergens. The purpose of nutritional questionnaire was to verify that all the participants consumed dairy products daily. BMI Z-scores were calculated using the Children’s Hospital of Philadelphia online Z-score calculator based on the Center for Disease Control growth charts [25]. Parents of the asthmatic children’s group completed the asthma control questionnaire (ACQ), which is a validated tool for the assessment of asthma severity [26]. All parents were asked whether they believed that milk consumption was associated with respiratory symptoms in general, and parents of the asthmatic group were also asked whether they believed that consumption of milk was associated with their child’s asthma symptoms. Clinical and pulmonary function tests were performed prior to ingestion of the assigned beverage (t0) and they were repeated in response to the challenge at 30, 60, 90, and 120 min post-exposure (t30, t60, t90, t120, respectively). A positive response was considered as a significant change in any of these outcome measures at any time point within these 120 min.

The primary outcome of this study was a significant change in either FEV1 or FeNO at any time point within these 120 min compared to baseline (t0). The secondary outcome measures were:

1. Any subjective clinical complaint, such as cough, phlegm, or any breathing problem or difficulty.
2. Any positive clinical findings on physical examination.
3. A significant change in oxygen saturation defined as a decrease in oxygen saturation levels > 1% from baseline.

Spirometry was performed using the Koko spirometer (nSpire Health Inc. Germany) which is routinely used in our laboratory according to the acceptable standards [27]. Normal values for FeNO by the single breath technique in our laboratory are in accordance with published reference values, i.e., a cutoff of 20 parts per billion (ppb) [28]. FeNO was measured with the Niox Mino (Aerocrine, Sweden) with online recording during a single breath exhalation, according to the ERS/ATS guidelines [29]. Oxygen saturation was measured by a pulse oximeter (Massimo Radical-7).

Statistical analysis

The sample size was calculated for FeNO and for FEV1 minimal effect size (0.14), with a partial eta squared of 0.02, for 4 groups with 5 repeated measures. To achieve 80% power with an alpha of 0.05 for FeNO and FEV1, 22 patients in each subgroup were required. Considering a dropout of 15%, 101 patients were recruited. The statistical analysis was performed with SPSS software (IBM Corp. Released 2013. IBM SPSS Statistics for Windows,
Results
Ninety-eight children were recruited into the study between June 2016 and April 2017, reaching our recruitment goal and consisting of 51 non-asthmatic children and 47 diagnosed as having asthma. Two patients, one from each group, were omitted due to inability to reliably perform pulmonary function tests. Eighty-eight children (89.8%) completed spirometry and FeNO measurements at baseline and at 30, 60, 90, and 120 minutes post-challenge, (1760 data points). Eight children missed one measurement each (3 missed 30 minutes post-challenge, (1760 data points). Eight children missed one measurement each (3 missed 30' FeNO, 2 missed 60' FeNO, 2 missed FEV1 at 120', and 1 missed FEV1 at 90'). Twenty-six of the 50 non-asthmatic patients were challenged with cow’s milk and 24 with soy substitute. Twenty-two of the 46 asthmatic children were challenged with cow’s milk and 24 with soy substitute. No unintended events were observed throughout the duration of the intervention in any of the participants.

Of the 46 asthmatic children, 23 (50%) had an ACQ score lower than 0.75, indicating well-controlled disease, while 17 (37%) had a score above 1.5, indicating poorly controlled asthma. In addition, 37 (80%) of the 46 asthmatic children reported having one or more related atopic condition: atopic dermatitis (n = 12), allergic rhinitis (n = 33), or positive skin prick tests to inhaled allergens (n = 29). Information on allergic status was missing for one child.

Age, gender, and BMI z-score were similar for the four subgroups. FeNO data were transformed using logarithmic transformation. The asthmatic children had significantly higher FeNO levels and lower FEV1, FEV1/FVC and FEF25–75 levels at baseline compared to the non-asthmatic controls. None of the baseline levels differed between the soy and cow’s milk intervention groups (Table 1). Oxygen saturation by pulse-oximetry was normal (≥ 97%) in all participants at baseline, again with no group or subgroup differences.

No change in clinical findings was observed among any of the participants at any time point following the cow’s milk or soy challenges compared to baseline (Table 2). There was no change in oxygen saturation. Due to baseline differences in FeNO and spirometry parameters, repeated measures ANCOVA were controlled for the baseline parameters values. There was no significant asthma by time interactions in all parameters (Table 3). There was no interaction between asthmatic and non-asthmatics groups, the intervention (milk vs. soy) groups and FEV1 over time. Similarly, no interaction was found between asthmatic and non-asthmatics groups, the intervention groups and FeNO over time (Table 3; Figs. 1, 2 and 3). Missing values imputation using median values had no effect on repeated measures analysis.

Discussion
The results of our study did not demonstrate any association between the cow milk challenge and acute bronchoconstriction or eosinophilic inflammation in either non-asthmatic or asthmatic children. We used soy milk as a placebo to control for any subjective or physiologic effect of the procedures themselves.

Our results, showing that acute exposure to cow’s milk did not affect symptoms, airway physiology, or FeNO in healthy children, were expected. Nevertheless, our finding that acute exposure to cow milk did not affect these variables also in asthmatic children is of major importance, since this is the group in which the avoidance of dairy products is more common and “rationalized” by their diagnosis of asthma [8, 9]. Undoubtedly, there are other common “health justifications” for dairy avoidance, such as aggravation of atopic dermatitis [30] or gastrointestinal symptoms due to lactose intolerance [31].

Our findings correlate with the observations on these issues in adults. One study from Australia reported that...
Table 1 Baseline characteristics

Demographics	Age (years)	Sexa	BMI Z-score	Parental beliefs	Atopy	ACQ scores	Baseline spirometry and FeNO		
Asthmatic children	**Cow’s milk** (n = 22)	**Soy milk** (n = 24)	**All** (n = 46)	**Non-asthmatic children**	**Cow’s milk** (n = 26)	**Soy milk** (n = 24)	**All** (n = 50)		
p value (asthmatic vs. non-asthmatic)	**CI**	**p value (soy vs. cow’s milk)**	**CI**	**p value (Asthmatic by Milk Interaction)**					
Demographics									
Age (years)	11.0	10.1	10.5	104	10.8	106	0.956 [-1.26-1.33]	0.702 [-1.045-1.545]	0.363
± 3.3	± 3.2	± 3.2	± 3.5	± 2.7	± 3.1				
Sexa	45.4	62.5	54.3	340	54.1	44	0.311	0.066	0.234
± 0.9	± 1.4	± 0.1.2	± 1.06	± 1.07	± 0.95				
BMI Z-score	0.04	0.39	0.23	-0.00	-0.13	0.05	0.435 [-0.609-0.264]	0.278 [-0.675-0.196]	0.589
Parental beliefs									
Milk increases mucus productionb	14 (63.6%)	12 (50%)	26 (56.9%)	6 (24%)	9 (37.5%)	15 (30.6)	0.011	0.906	0.041
Milk effects child’s respiratory symptomsc	5 (22.7%)	7 (29.2%)	12 (26.1%)	0	1 (4.2%)	1 (2%)	0.001 (F)	0.552 (F)	0.006
Milk avoidance during respiratory symptoms (%)	3 (13.6%)	9 (37.5%)	12 (26.1%)	0	1 (4.2%)	(2%)	0.001 (F)	0.07 (F)	0.001
Atopy									
Allergic rhinitis (%)	11 (50%)	17 (70.8%)	33 (71.7%)	2 (7.7%)	1 (4.2%)	3 (6%)	< 0.0001 (F)	1	< 0.0001
Positive skin prick tests to inhaled allergens (%)	14 (63.6%)	15 (62.5%)	29 (63%)	3 (11.5%)	0	3 (6%)	< 0.0001 (F)	0.665	< 0.0001
Atopic dermatitis (%)	5 (22.7%)	7 (29.2%)	12 (26.1%)	1 (3.8%)	1 (4.2%)	2 (4%)	0.003 (F)	0.563	0.021
ACQ scores	0.930	1.144	1.032	1.067					
± 1.033	± 1.116	± 1.067							
Baseline spirometry and FeNO									
FEV₁ t₀	90.5	96.8	93.8	101.0	100.8	1009	0.013 [1.52–1.260]	0.353 [8.4-3.0]	0.248
± 17.0	± 13.7	± 15.5	± 12.8	± 11.3	± 11.7				
FEV₁/FVC t₀	95.8	94.1	94.9	103.3	104	1036	< 0.01 [3.36–13.97]	0.764 [4.57-6.20]	0.646
± 10.3	± 21.5	± 16.9	± 7.2	± 5.4	± 6.4				
FEF₂₅₋₇₅ t₀	80.3	83	81.7	1002	996	999	< 0.01 [8.82–27.62]	0.967 [10.31-9.89]	0.724
± 22.6	± 283	± 25.5	± 22.9	± 18.8	± 20.8				
FeNO (ppb) t₀	40.6	45.6	43	132	14.7	139			
± 37.6	± 41.0	± 38.9	± 13.0	± 7.3	± 10.4				
Log FeNO	3.43	3.34	3.39	257	2.33	245	< 0.0001 [1.251-0.0626]	0.314 [0.544-0.176]	0.859
± 0.92	± 0.86	± 0.88	± 0.49	± 0.66	± 0.59				

Values are given mean ± SD

*Percentage of males, Chi-square

*Percentage of parents believing milk increases mucus production

*Percentage of parents believing milk effects their child’s respiratory symptoms

*Percent predicted

*Two-way ANOVA for Asthmatic GroupXMilK Group interaction

Koren et al. BMC Pediatrics (2020) 20:433
participants who believed in the relationship between cow’s milk and mucus production were more likely to report sensations related to difficulty in swallowing and to perceived thickness of mucus and salivary secretions compared to non-believers [5]. Notably, these subjective sensations occurred regardless of whether they drank cow’s milk or soy milk, with no significant difference between them. In another report from Australia, Pinnock et al. studied respiratory symptoms and consumption of cow’s milk in 60 adults who volunteered to be infected with rhinovirus, and found no association between milk consumption and those symptoms [10]. A third Australian study compared exposure to cow’s milk among 10 asthmatic adults who reported exacerbations following exposure to milk products with 10 controls who consumed rice milk. No association was observed between milk ingestion and respiratory functions regardless of the participant’s prior perceptions [11]. Nguyen also reported not having observed any acute or delayed deterioration of pulmonary functions among 25 atopic asthmatic adults exposed to cow’s milk versus placebo [32]. Of note, asthmatic patients with known milk allergy

Table 2	Spirometry and FeNO means before and following intervention	
	Asthmatic children	Healthy children
	Cow’s milk (n = 22)	Cow’s milk (n = 26)
FEV1 mean (95% CI)	90.5 [50.0-112.4]	101.0 [76.1-121]
	91.4 [58.6-117.5]	102.8 [84.5-122.7]
	92.7 [58.6-114.8]	101.6 [82.7-122.7]
	92.1 [58.3-110.85]	100.6 [84.4-124.6]
	91.5 [60.2-118.3]	101.8 [83.0-123.7]
FEV1/FVC mean (95% CI)	95.8 [71.6-114.4]	103.3 [82.9-114.6]
	94.1 [79.0-110.0]	104 [92.5-114.8]
	97.2 [76.4-114.4]	103.8 [88.8-113.3]
	97.8 [79.6-111.6]	102.4 [87.7-110.7]
	98.9 [78.8-108.8]	102.4 [93.4-114.9]
	99.5 [79.5-113.5]	102.7 [89.5-111.7]
FeNO mean (95% CI)	40.6 [8.1-123.4]	13.2 [5.0-54.1]
	45.6 [5.1-169.4]	14.7 [4.8-32.7]
	39.4 [5.0-126.2]	13.5 [5.0-59.1]
	44.7 [6.0-161.9]	14.7 [5.2-69.2]
	42.1 [5.1-138.4]	13.4 [5.0-58.7]
	42.3 [5.0-151.8]	13.4 [4.4-56.6]

Table 3	Repeated measures ANCOVA analysis of spirometry and FeNO parameters (p-values)
	Asthma Main effect (between groups)
FeNO	0.529
FEV1(predicted)	0.224
FEV1/FVC	0.307
FEF25-75	0.334
act differently. Eighty-six percent of asthmatic adults with bronchial asthma and positive skin tests for milk developed a positive asthmatic response to milk challenge measured by spirometry [33]. Nevertheless, our study excluded children with present known allergy to cow’s milk.

The importance of our findings stems from the widespread belief that cow’s milk consumption provokes respiratory symptoms. This study aims to provide clinicians with evidence to convince parents who eliminate or consider eliminating dairy products from their children’s’ diet that avoiding dairy for respiratory symptoms...
concerns will not provide any protective effect, and might even lead to harmful effects by denying them the well-documented benefits of cow’s milk consumption in childhood and early adulthood.

This study has several limitations. First, we explored the effect of a single exposure of cow’s milk on respiratory parameters. It is still plausible that continuous exposure over days or weeks will result in decreased spirometric values and increased FeNO. Even though none of our participants displayed any symptoms or significant change in lung function tests, a more substantial exposure would help strengthen our findings. Furthermore, one might argue that the pathogenesis underlying increased mucus production following milk exposure is delayed-type hypersensitivity. This type of hypersensitivity may take 2 or more days to develop [34], thus an endpoint of two hours following intervention will not be sufficient to detect any change from baseline values. Nevertheless, none of the parent reported the occurrence of any symptoms in the days following the study. Second, our participants, who consume dairy products regularly, eliminated them for 24 h prior to the exposure. Neither the inclusion of dairy products in one’s regular diet nor their elimination during a given period should be expected to affect healthy children, since their baseline clinical and laboratory status were normal and thus no improvement in respiratory parameters would be expected after a longer elimination time. Nevertheless, we cannot exclude the possibility that a longer elimination of dairy products would result in higher baseline FEV₁ and lower FeNO levels in asthmatics.

On recruitment, we evaluated patients’ health comprising present and past history including allergies, nevertheless, we did not explicitly ask regarding past and resolved milk allergy or intolerance, hence, it is possible that such participants were included. However, since none of the participants showed a positive response to the challenge, such a situation did not affect the results. Whether a positive history can affect the response to challenge should be investigated in a different study.

Finally, while our study did not show any association between exposure to cow’s milk and respiratory symptoms or abnormal pulmonary functions among the patients whose parents believed that milk was associated their children’s respiratory symptoms, that subgroup consisted of only 12 participants.

Conclusions

Acute exposure to cow’s milk is not associated with short-term respiratory symptoms, airway inflammation, or bronchial constriction in both non-asthmatic and asthmatic children. The elimination of cow’s milk from a child’s diet for respiratory considerations is not supported by the evidence that emerged from this study. Further studies for exploring longer elimination periods and prolonged exposure are warranted.

Abbreviations

BMI: Body Mass Index; FeNO: Fractional exhaled Nitric Oxide; FEV₁: Forced Expiratory Volume during the first second; FVC: Forced Vital Capacity; FEF₂₅-₇₅: Forced Expiratory Flow at 25-75%; PPB: Parts per Billion; MCAR: Missing Completely at Random; CI: Confidence interval
Acknowledgements
Not applicable.

Authors’ contributions
YK - Collected the data, analyzed and interpreted the data and drafted the manuscript. KAD –Conceptualized the study, designed the study, collected the data and revised the manuscript. GG- Collected the data, interpreted the data and approved the manuscript. AH – Analyzed and interpreted the data. SB – Helped to design the study interpreted the data and revised the manuscript. OT – Conceptualized the study, designed the study and approved the manuscript. YS - Conceptualized the study, designed the study, interpreted the data, revised and approved the manuscript

Funding
This study did not receive external funding.

Availability of data and materials
All data generated or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
This study was approved by the Tel Aviv Sourasky Medical Center Institutional Review Board and the Israeli Ministry of Health review board (Helsinki Committee, NIH #NCT02745899). Registered April 2016 https://clinicaltrials.gov/ct2/show/NCT02745899?cond=milk+asthma&rank=1. Written consent was obtained from all study participants.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Dana-Dwek Children’s Hospital, Tel Aviv-Yafo, Israel. 2 Pediatric Pulmonary Unit, The Edith Wolfson Medical Center, Holon, Israel. 3 Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. 4 Pediatric Pulmonary Institute, Ruth Children’s Hospital, Rambam Health Care Campus, Haifa, Israel. 5 The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel. 6 Department of Pediatric Pulmonology, Safra Children Hospital, Sheba Medical Center, Tel Hashomer, Israel.

Received: 11 March 2020 Accepted: 25 August 2020
Published online: 12 September 2020

References
1. Rosen F. Moses Maimonides’ treatment on asthma. J Asthma. 1984;21:119–29.
2. ICDC nutrition survey 2003–2004. Available from: https://www.health.gov.il/PublicationsFiles/Mabat_2003-2004-b.pdf.
3. ICDC nutrition survey 2015–2016. Available from: https://www.health.gov.il/PublicationsFiles/mabat_youth_2015_2016_Full.pdf.
4. Pinnock CB, Martin AJ, Mylvaganam A. Cross over trial of a high milk diet in asthmatic children. Proc Nutr Soc Aust. 1989;14:31.
5. Arney WK, Pinnock CB. The milk mucus belief sensations associated with the belief and characteristics of believers. Appetite. 1993;2053–60.
6. Balfour-Lynn IM. Milk, mucus and myths. Arch Dis Child. 2019;10491–3.
7. Lee C, Dozor AJ. Do you believe milk makes mucus? Arch Pediatr Adolesc Med. 2004;158:601–3.
8. Dawson KP, Ford RP, Mogridge N. Childhood asthma what do parents add or avoid in their children’s diets? N Z Med J. 1990;103:239–40.
9. Woods RK, Weiner J, Abramson M, et al. Patients’ perceptions of food-induced asthma. Aust N Z J Med. 1996;26:504–12.
10. Pinnock CB, Graham NM, Mylvaganam A, et al. Relationship between milk intake and mucous production in adult volunteers challenged with rhinovirus-2. Am Rev Respir Dis. 1990;141:352–6.
11. Woods RK, Weiner JM, Abramson M, et al. Do dairy products induce bronchoconstriction in adults with asthma? J Allergy Clin Immunol. 1998;101:45–50.
12. Cohen HA, Blau H, Hoshen M, et al. Seasonality of asthma: a retrospective study. Pediatrics. 2014;133:e923-32.
13. Weiss ST, Van Natta ML, Zeiger RS. Relationship between increased airway responsiveness and asthma severity in the childhood asthma management program. Am J Respir Crit Care Med. 2000;162:50.
14. Toelle BG, Peat JK, Salome CM, et al. Toward a definition of asthma for epidemiology. Am Rev Respir Dis. 1992;146:633–7.
15. Warke TJ, Fitch PS, Brown V, et al. Exhaled nitric oxide correlates with airway eosinophilia in childhood asthma. Thorax. 2002;57:383–7.
16. Lumbia M, Takkinen HM, Luukkainen P, et al. Food consumption and risk of childhood asthma. Pediatr Allergy Immunol. 2015;26:789–96.
17. Nachshon L, Goldberg MR, Elzur A, et al. Food allergy to previously tolerated foods: Course and patient characteristics. Ann Allergy Asthma Immunol. 2018;121(1):77–81.
18. Black RE, Williams SM, Jones IE, et al. Children who avoid drinking cow-milk have low dietary calcium intakes and poor bone health. Am J Clin Nutr. 2002;76:675–80.
19. Morency ME, Birken CS, Lebovic G, et al. TARGet Kids! Collaboration. Association between noncow milk beverage consumption and childhood height. Am J Clin Nutr. 2017;106:597–602.
20. Blake GM, Fogelman I. Bone densitometry, steroids and osteoporosis. Curr Opin Nephrol Hypertens. 2002;11:641–7.
21. Miller GD, Anderson JJ. The role of calcium in prevention of chronic diseases. J Am Coll Nutr. 1998;17:371–25.
22. Health Canada. Canada’s food guide. Ottawa, ON: Health Canada, 2011. Available fromm: https://www.hc-sc.gc.ca/fn-an/food-guide-aliment/indexeng.php. Accessed 2010.
23. American Heart Association: Dietary Recommendations for Healthy Children. 2016. webpage: www.heart.org/HEARTORG/HealthyLiving/Dietary-Recommendations-for-Healthy-Children_UCM_303886_Article.jsp. Vq7q7QsVt1s2016.
24. The Israeli Society of Pediatrics. ‘Milk ConsumptionGuidelines for Infants, Children and Adolescents’, available from: https://www ima.org.il/MainSiteNew/EditClinicalInstruction.aspx?ClinicalInstructionId=211.
25. The Children’s Hospital of Philadelphia Pediatric. Z-Score calculator available from: https://zscore.research.chop.edu/.
26. Juniper EF, O’Byrne PM, Guyatt GH, et al. Development and validation of a questionnaire to measure asthma control. Eur Respir J. 1999;14:902–7.
27. Miller MR, Hankinson J, Brusasco V, et al. Standardization of spirometry; ATS/ERS Task Force. Eur Respir J. 2005;26:319–38.
28. Svan Y, Gadish T, Fireman E, et al. The use of exhaled nitric oxide in the diagnosis of asthma in school children. J Pediatr. 2009;155:21–6.
29. ATS/ERS recommendations for standardized procedures for the online. and offline Measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide. 2005. Am J Respir Crit Care Med. 2005;171:912–30.
30. Johnstone GA, Bilbao RM, Gramah-Brown RA. The use of dietary manipulation by parents of children with atopic dermatitis. Br J Dermatol. 2004;150(6):1186–9.
31. Almon R, Sjöstöm M, Nilsson TK. Lactase non-persistence as a determinant of milk avoidance and calcium intake in children and adolescents. J Nutr Sci. 2013;2:e26.
32. Nguyen MT. Effect of cow milk on pulmonary function in atopic asthmatic patients. Ann Allergy Asthma Immunol. 1997;79:62–4.
33. Pelikan Z. Asthmatic response to milk ingestion challenge in adults: a comparison of the open and double-blind challenges. Int Arch Allergy Immunol. 2013;161:163–73.
34. Warrington R, Watson W, Kim HL, Antonetti FR. An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol. 2011; 7(Suppl 1):1.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.