Original Research Article

Screening of Mungbean [Vigna radiata (L.) Wilczek] Genotypes for Resistance against Mungbean Yellow Mosaic Virus (MYMV) under Field Condition

Darshan T. Dharajiya¹,²*, Y. Ravindrababu³ and Nalin K. Pagi², ⁴

¹Department of Plant Molecular Biology and Biotechnology, ²Department of Genetics and Plant Breeding, C. P. College of Agriculture (CPCA), Sardarkrushinagar Dantiwada Agricultural University (SDAU), Sardarkrushinagar-385506, Gujarat, India
³Pulses Research Station, SDAU, Sardarkrushinagar-385506, Gujarat, India
⁴Department of Horticulture, B. A. College of Agriculture, Anand Agricultural University, Anand-388 110, Gujarat, India

*Corresponding author

Keywords
Mungbean [Vigna radiata (L.) Wilczek], MYMV, Field screening, Disease incidence

Abstract
Mungbean [Vigna radiata (L.) Wilczek] is an important short duration grain legume which is grown in different parts of the country, for grain and green manure. It is an outstanding source of easily digestible proteins with low flatulence, which balances the staple rice diet in Asia. Mungbean yellow mosaic disease (MYMD) caused by whitefly (Bemisia tabaci) transmitted mungbean yellow mosaic virus (MYMV) is an important constraint of mungbean in India. Thirty five Indian mungbean genotypes were evaluated to identify the source of resistance against MYMV during kharif-2013. The per cent disease incidence (PDI) of MYMV among 35 mungbean genotypes was worked out up to ninth week after sowing and it varied from 0 to 84.96%. At maturity stage of crop (ninth week after sowing), mean PDI was 27.09% and mean disease severity index (DSI) was 2.73. Out of 35 mungbean genotypes, five were found highly resistant, six were resistant and seven were moderately resistant. While, eight genotypes were found moderately susceptible, seven were susceptible and two were highly susceptible. Five genotypes namely, Meha, Bada Mung 7, KM 2245, IPM 0205-7 and IPM 02-3 found highly resistant during present investigation which can be used for the development of mapping population for the development of MYMV resistant varieties.

Introduction
Mungbean [Vigna radiata (L.) Wilczek] is one of the most important pulse crops in India. In the traditional vegetarian diet of Indian population, pulses occupy second place next to cereals and is the main source of protein, ranking after chickpea and pigeonpea. It is an important short duration grain legume which can be grown in varied environments, across...
all three crop seasons viz., kharif, rabi and summer in different parts of the country, as sole or intercrop for grain and green manure (Robertson et al., 2004). It is also known as greengram, green bean, moong, mash bean, golden gram and green soy. It is an excellent source of easily digestible proteins with low flatulence, which complements the staple rice diet in Asia (Saminathan, 2013). The center of origin for mungbean is not exactly known. However, according to Vavilov, (1926), it might have originated in India and the central Asiatic region (Dharajiya et al., 2017). Mungbean belongs to family Leguminosae and sub-family Papilionaceae. Mungbean is a self-pollinated diploid plant having 2n=2x=22 chromosomes with a genome size of 0.60 pg/1C (579 Mb/1C) (Arunuganathan and Earle, 1991; Somta and Srinives, 2007).

Mungbean is grown throughout the Southern Asia, including India, Pakistan, Nepal, Burma, Bangladesh, Indonesia, Sri Lanka, Thailand, Vietnam, Malaysia, China and Philippines.

In India, the major mungbean growing states are Maharashtra, Gujarat, Tamil Nadu, Andhra Pradesh, Bihar, Uttar Pradesh, Rajasthan, Karnataka and Orissa (Singh et al., 2010; Inbasekar, 2014). Mungbean was cultivated in about 3.38 million hectares during 2013-14 with a total production of 1.61 million tones and a productivity of 474 kg/ha in India (Anonymous, 2015). In Gujarat, the area under mungbean has been 1.83 lakh hectares with a total production of 1.06 lakh tones and a productivity of 579 kg/ha during 2013-14 (Anonymous, 2015).

India covers up to 55% of the total world acreage and 45% of total production and it leads Pakistan, Sri Lanka, Thailand and China. The average yield of mungbean is very low, not only in India but in the entire tropical and subtropical Asia (Rishi, 2009). The yield of mungbean has been stagnant over the years. Improvement in the yield of mungbean is becoming difficult, mainly due to the occurrence of pests and diseases (Karthikeyan et al., 2014). Major biological stresses of mungbean are mungbean yellow mosaic virus, leaf crinkle virus, anthracnose, powdery mildew, Cercospora leaf spot, gram pod borer, bruchid and whitefly (Pande et al., 2000). Plant viral diseases cause serious economic losses in many major crops by reducing seed yield and quality (Kang et al., 2005). Mungbean yellow mosaic disease (MYMD) is reported to be the most destructive viral disease among the various viral diseases, caused by yellow mosaic virus. Among the various diseases, the MYMD was given special attention because of severity and ability to cause yield loss up to 85%, which is spreading faster towards newer areas (AVRDC, 1998). Mungbean yellow mosaic virus causes severe yield reduction in all mungbean growing countries in Asia, including India. MYMV is transmitted by whitefly (Bemisia tabaci Genn.). The whitefly is one of the most economically important pests in many tropical and subtropical regions (Karthikeyan et al., 2014).

Incidence and management of the MYMV disease depend on the vector (whitefly) population, which in turn depends on environmental conditions (Alam et al., 2014). However, pesticides can provide temporary management of whitefly, but do not give effective control of MYMD. A more efficient and environmentally safe long-term solution is the development of mungbean cultivars resistant to both virus and its vector, B. tabaci. A good deal of research efforts has been directed towards the screening of mungbean germplasm against MYMD (Akhtar et al., 2011). Mungbean genotype evaluation against MYMD through exposing them to high inoculum by planting in natural hot spots has been a principal method; it may be prone to
errors as different responses were observed for the same genotypes in different years. Resistance in mungbean germplasm against MYMV has been recognized earlier by different workers by using a common acceptable scale based on the severity of the disease (Panduranga et al., 2011; Paul et al., 2013; Suman et al., 2015; Khaliq et al., 2017; Abrol and Sharma, 2018). Hence, the present investigation was carried out for the identification of MYMV resistant mungbean genotypes of India by field screening to identify the source of resistance against MYMV.

**Materials and Methods**

**Experimental materials**

Total thirty five mungbean genotypes used in the experiment are given in Table 1 and were procured from Pulses Research Station, SDAU, Sardarkrushinagar, Gujarat, India.

**Field evaluation of mungbean genotypes against MYMV**

The field evaluation of mungbean genotypes against MYMV was carried out at Pulses Research Station, SDAU, Sardarkrushinagar, during Kharif-2013. In the field experiment, each genotype was sown in a single row of 4 m length with spacing of 45cm x 15cm in two replications using a randomized block design (RBD). Recommended cultural practices were followed to express genetic potential without insecticide sprays to maintain optimum whietyl (vector) population for high inoculum pressure of MYMV pathogen. The crop was regularly monitored for the development of symptoms of the disease. For recording MYMV incidence, observations were recorded at an interval of one week up to nine weeks after sowing. Based on the severity of the MYMV incidence, the genotypes were grouped into different categories based on 0 - 5 scale given in Table 2 (Bashir, 2005). The per cent disease incidence (PDI) and disease severity index (DSI) for MYMV were determined in all the mungbean genotypes at weekly interval. The equation for the PDI is as follow.

\[
PDI = \frac{\text{Total no. of infected plants of the genotype}}{\text{Total no. of plants of the genotype}} \times 100
\]

Spread of the per cent increase in the PDI was the difference between weekly observations. The number of genotypes infected per week was calculated. Weather data that consisted of maximum and minimum temperature (°C), rainfall (mm) and relative humidity (%) were recorded at Meteorological Station, Agronomy instructional farm, SDAU, Sardarkrushinagar.

**Statistical analysis**

The data obtained from field experiments conducted using RBD with two replications was subjected to the statistical analysis as per procedure of RBD (Gomez and Gomez, 2012). The data in percentages were transformed using arcsine transformation prior to analysis.

**Results and Discussion**

The set of 35 mungbean genotypes were screened against MYMV under field conditions during kharif, 2013 season. No disease symptoms were observed on any of the genotype till the crop was two weeks old. Afterwards, the symptoms of MYMV disease started to appear on the leaves of young plants of susceptible varieties which became more pronounced with time. After three weeks of sowing, four genotypes started to show symptoms of MYMV which increased with time up to seventh weeks and after seventh week total genotypes showing symptoms were 30 which were constant with time up to harvesting (Figure 1).
Table 1 Mungbean genotypes used in the experiment

| Sr. No. | Name of genotype | Centre responsible for developing |
|---------|------------------|----------------------------------|
| 1       | Vamban 2         | National Pulses Research Centre (NPRC), Vambam |
| 2       | COGG 912         | Tamil Nadu Agricultural University (TNAU), Coimbatore |
| 3       | AKM 9904         | Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola |
| 4       | IPM 02-3         | Indian Institute of Pulses Research (IIPR), Kanpur |
| 5       | VGG rsil 1       | National Pulses Research Centre (NPRC), Vambam |
| 6       | LGG 460          | Andhra Pradesh Agricultural University (APAU), Lam |
| 7       | SML 1082         | Punjab Agricultural University (PAU), Ludhiana |
| 8       | IPM 02-17        | Indian Institute of Pulses Research (IIPR), Kanpur |
| 9       | VGG rt 1         | National Pulses Research Centre (NPRC), Vambam |
| 10      | Kopergaon        | Agricultural Research Station, Kopergaon |
| 11      | VGG ru 1         | National Pulses Research Centre (NPRC), Vambam |
| 12      | DGG 1            | University of Agricultural Sciences (UAS), Dharwad |
| 13      | IPM 409-4        | Indian Institute of Pulses Research (IIPR), Kanpur |
| 14      | MH 2-15          | Chaudhary Charan Singh Agricultural University (CCSAU), Hisar |
| 15      | IPM 0205-7       | Indian Institute of Pulses Research (IIPR), Kanpur |
| 16      | MH 3-18          | Chaudhary Charan Singh Agricultural University (CCSAU), Hisar |
| 17      | M2 1451          | Punjab Agricultural University (PAU), Ludhiana |
| 18      | Sona Mung 1      | Bidhan Chandra Krishi Viswa Vidyalaya (BCKV), Mohanpur |
| 19      | Pusa 0871        | Indian Agricultural Research Institute (IARI), New Delhi |
| 20      | Pusa 672         | Indian Agricultural Research Institute (IARI), New Delhi |
| 21      | IPM 02-19        | Indian Institute of Pulses Research (IIPR), Kanpur |
| 22      | KM 2245          | Chandra Shekhar Azad University of Agriculture and Technology(CSAUAT), Kanpur |
| 23      | MH 521           | Chaudhary Charan Singh Agricultural University (CCSAU), Hisar |
| 24      | RMG 991          | Rajasthan Agricultural Research Institute (RARI), Durgapura |
| 25      | Pusa 9531        | Indian Agricultural Research Institute (IARI), New Delhi |
| 26      | HUM 1            | Banaras Hindu University (BHU), Varanasi |
| 27      | Vamban 1         | National Pulses Research Centre (NPRC), Vambam |
| 28      | Pusa Ratna       | Indian Agricultural Research Institute (IARI), New Delhi |
| 29      | Bada Mung 7      | INA |
| 30      | TM 96-2          | Bhabha Atomic Research Centre (BARC), Mumbai |
| 31      | VC 1997-17       | INA |
| 32      | Pant M 5         | Govind Ballabh Pant University of Agriculture and Technology (GBPuation), Pantanagar |
| 33      | Meha (IPM 99-125)| Indian Institute of Pulses Research (IIPR), Kanpur |
| 34      | GM 4             | Sardarkrushinagar Dantiwada Agricultural University (SDAU), Sardarkrushinagar |
| 35      | GM 3             | Sardarkrushinagar Dantiwada Agricultural University (SDAU), Sardarkrushinagar |

INA: Information not available
Table.2 Disease rating scale used for categorization of mungbean genotypes against MYMV (Bashir, 2005)

| Disease scale | Percent infection               | Infection category       | Reaction group |
|---------------|---------------------------------|--------------------------|----------------|
| 0             | All plants free of disease      | Highly resistant         | HR             |
|               | symptoms                        |                          |                |
| 1             | 1-10% infection                 | Resistant                | R              |
| 2             | 11 - 20% infection              | Moderately resistant     | MR             |
| 3             | 21 - 30% infection              | Moderately susceptible   | MS             |
| 4             | 30 - 50% infection              | Susceptible              | S              |
| 5             | More than 50% infection         | Highly susceptible       | HS             |

Table.3 Genotype wise appearance of MYMV disease

| Weeks after sowing | Genotypes in which disease appeared for the first time                                                                 | Total no. of genotypes |
|--------------------|------------------------------------------------------------------------------------------------------------------------|------------------------|
| 1                  | None of the genotype showed disease symptoms                                                                            | -                      |
| 2                  | None of the genotype showed disease symptoms                                                                            | -                      |
| 3                  | Vamban 2, AKM 9904, Sona Mung 1, Pusa Ratna                                                                             | 04                     |
| 4                  | COGG 912, VGG rsil 1, SML 1082, IPM 02-17, Kopergaon, DGG 1, IPM 409-4, MH 2-15, MH 3-18, Pusa 0871, IPM 02-19, MH 521, HUM 1, Vamban 1, TM 96-2, VC 1997-17, Pant M 5, GM 3 | 18                     |
| 5                  | VGG rt 1, M2 1451, Pusa 672, Pusa 9531                                                                                   | 04                     |
| 6                  | LGG 460, RMG 991, GM 4                                                                                                | 03                     |
| 7                  | VGG ru 1                                                                                                               | 01                     |

Genotypes namely, Meha, Bada Mung 7, KM 2245, IPM 0205-7 and IPM 02-3 showed no disease symptoms up to 9th week

Total 35

Fig.1 Number of mungbean genotypes infected at weekly interval and in progressive mode
Table 4: PDI of MYMV on mungbean genotypes

| Sr. No. | Name of genotype | PDI at maturity (after 9 weeks)* | Sr. No. | Name of genotype | PDI at maturity (after 9 weeks)* |
|---------|------------------|----------------------------------|---------|------------------|----------------------------------|
| 1       | Vamban 2         | 49.42 (44.67)                   | 21      | IPM 02-19        | 21.59 (27.67)                   |
| 2       | COGG 912         | 22.88 (28.56)                   | 22      | KM 2245          | 0.00 (0.04)                     |
| 3       | AKM 9904         | 39.94 (39.20)                   | 23      | MH 521           | 43.49 (41.26)                   |
| 4       | IPM 02-3         | 0.00 (04.06)                    | 24      | RMG 991          | 05.63 (13.72)                   |
| 5       | VGG rsil 1       | 36.90 (37.40)                   | 25      | Pusa 9531        | 19.09 (25.90)                   |
| 6       | LGG 460          | 02.91 (09.65)                   | 26      | HUM 1            | 43.51 (41.27)                   |
| 7       | SML 1082         | 24.61 (29.73)                   | 27      | Vamban 1         | 13.27 (21.36)                   |
| 8       | IPM 02-17        | 18.27 (25.27)                   | 28      | Pusa Ratna       | 84.96 (67.19)                   |
| 9       | VGG rt 1         | 28.65 (32.36)                   | 29      | Bada Mung 7      | 00.00 (04.06)                   |
| 10      | Kopergaon        | 27.51 (31.63)                   | 30      | TM 96-2          | 38.97 (38.62)                   |
| 11      | VGG ru 1         | 04.35 (12.01)                   | 31      | VC 1997-17       | 16.11 (23.66)                   |
| 12      | DGG 1            | 47.16 (43.37)                   | 32      | Pant M 5         | 19.53 (26.22)                   |
| 13      | IPM 409-4        | 09.20 (17.63)                   | 33      | Meha             | 00.00 (04.06)                   |
| 14      | MH 2-15          | 27.56 (31.66)                   | 34      | GM 4             | 07.92 (16.34)                   |
| 15      | IPM 0205-7       | 00.00 (04.06)                   | 35      | GM 3             | 12.13 (20.37)                   |
| 16      | MH 3-18          | 29.12 (32.65)                   |         | Mean PDI         | 27.09                           |
| 17      | M2 1451          | 09.94 (18.30)                   |         | S.Em±            | 1.16                            |
| 18      | Sona Mung 1      | 59.25 (50.33)                   |         | CD (0.01)        | 3.45                            |
| 19      | Pusa 0871        | 29.39 (32.82)                   |         | CD (0.05)        | 2.57                            |
| 20      | Pusa 672         | 19.52 (26.19)                   |         | CV (%)           | 4.78                            |

* = Mean of two replications; PDI = Per cent Disease Incidence; S.Em± = Standard Error of mean; CV = Coefficient of Variation; CD (0.01) = Critical Difference at 1% level of significance; CD (0.05) = Critical Difference at 5% level of significance; Figures in parenthesis are square root transformation values

Fig.2 Weekly progress of mean PDI and mean DSI of MYMV in mungbean genotypes
Table 5 Information on some environmental factors and occurrence of MYMV in mungbean genotypes

| SMW | Weeks after sowing | Temperature (°C) | RH% | Rainfall (in mm) | Mean DSI | % incidence (mean PDI) of MYMV | % weekly increase in mean PDI | Remark/observation |
|-----|-------------------|------------------|------|-----------------|---------|-------------------------------|-----------------------------|----------------------|
|     | Max. | Min. | Avg. | RH1 | RH2 | Mean DSI | % incidence (mean PDI) of MYMV | % weekly increase in mean PDI |                      |
| 29  | 1    | 33.69| 27.46| 30.57| 88  | 66  | 0.0 | 0 | - | Sowing and germination |
| 30  | 2    | 32.10| 25.86| 28.98| 93  | 82  | 211.4 | 0.0 | 0 | - | Landing of whitefly |
| 31  | 3    | 31.26| 25.21| 28.24| 96  | 86  | 43.4 | 1.25 | 6.84 | - | Appearance of disease in susceptible genotypes |
| 32  | 4    | 30.70| 25.49| 28.09| 93  | 76  | 9.3 | 1.64 | 10.21 | 3.38 | Spreading of disease in other genotypes |
| 33  | 5    | 30.63| 26.00| 28.31| 93  | 84  | 80.8 | 2.04 | 16.74 | 6.53 | Maximum % weekly increase in PDI and severity |
| 34  | 6    | 31.80| 25.87| 28.84| 87  | 63  | 0 | 2.52 | 21.62 | 4.88 | Fast increase in PDI and DSI |
| 35  | 7    | 32.71| 25.77| 29.24| 87  | 65  | 0 | 2.67 | 25.27 | 3.65 | Fast spreading of disease |
| 36  | 8    | 34.24| 25.76| 30.00| 86  | 56  | 0 | 2.73 | 26.37 | 1.09 | Very slow spreading of MYMV |
| 37  | 9    | 37.20| 27.14| 32.17| 90  | 46  | 0 | 2.73 | 27.09 | 0.73 | Highest and regular infection at maturity of crop |

Max.: Maximum; Min.: Minimum; Avg.: Average; RH: Relative Humidity (%); RH1: Relative Humidity (0700 LMT Obs.); RH2: Relative Humidity (1400 LMT Obs.); PDI: Per cent Disease Incidence; DSI: Disease Severity Index; SMW: Standard Meteorological Week
Table 6 Distribution of mungbean genotypes in various infection categories of MYMV

| Reaction category         | Disease severity | No. of genotypes | Genotypes                                           |
|--------------------------|------------------|------------------|-----------------------------------------------------|
| Highly Resistant (HR)    | 0                | 5                | Meha, Bada Mung 7, KM 2245, IPM 0205-7, IPM 02-3    |
| Resistant (R)            | 1                | 6                | LGG 460, VGG ru 1, IPM 409-4, M2 1451, RMG 991, GM 4 |
| Moderately Resistant (MR)| 2                | 7                | IPM 02-17, Pusa 672, Pusa 9531, Vamban 1, VC 1997-17, Pant M 5, GM 3 |
| Moderately Susceptible (MS)| 3            | 8                | COGG 912, SML 1082, VGG rt 1, Kopergao, MH 2-15, MH 3-18, Pusa 0871, IPM 02-19 |
| Susceptible (S)          | 4                | 7                | AKM 9904, VGG rsil 1, DGG 1, MH 521, HUM 1, TM 96-2, Vamban 2 |
| Highly Susceptible (HS)  | 5                | 2                | Pusa Ratna, Sona Mung 1                             |

Fig 3 Number of mungbean genotypes categorized in different disease reaction against MYMV

However, the disease incidence was recorded up to nine weeks after sowing but disease score did not vary that much after seven weeks, though, the number of plants infected increased with time.

The symptoms of MYMV disease in different genotypes appeared at different time/weeks. The disease symptoms were observed in some genotypes during early stage of the crop (third week after sowing); considered as susceptible to highly susceptible, based on observations up to nine weeks. The genotypes showing early symptoms were Vamban 2, AKM 9904, Sona Mung 1 and Pusa Ratna. Besides this, some genotypes viz., LGG 460, RMG 991,
GM 4 and VGG ru 1 showed disease symptoms during later stage (sixth to seventh week). Overall genotype wise appearance of MYMV disease during each week of kharif, 2013 is given in Table 3. The PDI of the 35 mungbean genotypes was worked out up to ninth week and it varied from 0 to 84.96% after nine weeks. The PDI of each genotype after ninth week is given in Table 4. After nine weeks, maximum PDI was observed in Pusa Ratna (84.96%) followed by Sona Mung 1 (59.25%) indicating that they were highly susceptible to MYMV whereas, minimum PDI was recorded in Meha, IPM 02-3, KM 2245, Bada Mung 7 and IPM 0205-7 having 0% incidence of MYMV which lead them to categorize under highly resistant or immune genotypes among all the genotypes screened.

During kharif, 2013, different genotypes showed DSI between 0-5, in which, maximum DSI (5) was observed in Pusa Ratna and Sona Mung 1. However, no disease symptoms were observed in five genotypes namely, Meha, IPM 02-3, KM 2245, Bada Mung 7 and IPM 0205-7. To find out overall disease incidence of all the genotypes against MYMV, mean PDI and mean DSI were calculated and represented in Figure 2.

Results showed that MYMV disease appeared during third week after sowing and increased with time up to seventh week, after that PDI and DSI were almost constant. At ninth week after sowing, mean PDI was 27.09% and mean DSI was 2.73. Results showed that increase in mean DSI was higher during third and fourth weeks, followed by decreased rate of increase in DSI up to seventh week, which was increased up to a small degree after seventh week.

The results indicated that symptoms of MYMV on mungbean plants started to appear during third week, initiating development of the disease among the population. During fourth week, per cent weekly increase in PDI was 3.38% indicating slow increase in disease incidence. Maximum per cent weekly increase in PDI was during fifth week (6.53%) due to increase in minimum temperature, mean temperature, relative humidity and rain fall. During sixth week, per cent weekly increase in PDI was 4.88% which might be due to increase in temperature. Per cent weekly increase in PDI during seventh week was 3.65% as the temperature and relative humidity were increased. Hence, conclusion may be drawn that increase in temperature and relative humidity increased the PDI of MYMV which resulted in fast spreading of MYMV disease in mungbean. Rainfall was observed during second week to fifth week of crop growth followed by no rainfall till ninth week of crop growth. It can be concluded that increase in PDI during third to fifth week might be due to limited rainfall coupled with high humidity and favourable environment for vector of MYMV. The information on the development of MYMV disease and some environmental factors during the experimental period is shown in Table 5.

On the basis of disease severity recorded, the mungbean genotypes were classified into six disease infection categories (Table 6). Out of 35 mungbean genotypes, five were found highly resistant, six were resistant and seven were moderately resistant. While, eight genotypes were found moderately susceptible, seven were susceptible and two were highly susceptible (Figure 3).

In the present study, out of 35 mungbean genotypes, developed from the different parts of the country, five genotypes namely, Meha, Bada Mung 7, KM 2245, IPM 0205-7, IPM 02-3 found highly resistant. These genotypes can be utilized in breeding program for the development of MYMV resistant varieties. Some researchers have tried to find out the
source of resistance against MYMV in mungbean but most of them got little success in India (Singh et al., 1996; Awasthi and Singh, 2008; Salam et al., 2009; Mohan et al., 2014; Deepa et al., 2017 and Nair et al., 2017). Further work should be carried out at the different agro-climatic zones of India for more consecutive seasons to check the stable reaction of mungbean genotypes against MYMV. The number of genotypes should be increased for the field screening to find out more number of resistant genotypes. But the present study will provide the source of resistance against MYMV to carry out further breeding work to develop MYMV resistant variety.

Five genotypes namely, Meha, Bada Mung 7, KM 2245, IPM 0205-7, IPM 02-3 found highly resistant during present investigation which can be used for the selection of mungbean genotypes for the development of mapping population for molecular breeding, development of molecular markers, QTL identification for MYMV resistance, as well as development of MYMV resistant varieties. The present investigation also gives idea about the effect of weather conditions on the MYMV incidence.

Acknowledgements

The authors thank authorities of SDAU and staff of Pulses Research Station, Sardarkrushinagar, Gujarat, India, for providing facilities to conduct the research work.

References

Abrol, S., and Sharma, P. 2018. Screening of mungbean accessions against mungbean yellow mosaic virus (MYMV) under sub-tropical irrigated conditions of Jammu region, India. International Journal of Current Microbiology and Applied Sciences, 7(2): 42-50.

Akhtar, K.P., Sarwar, G., Abbas, G., Asghar, M.J., Sarwar, N., and Shah, T.M. 2011. Screening of mungbean germplasm against mungbean yellow mosaic India virus and its vector Bemisia tabaci. Crop Protection, 30(9): 1202-1209.

Alam, A.M., Somta, P., Jompuk, C., Chatwachirawong, P., and Srinives, P. 2014. Evaluation of mungbean genotypes based on yield stability and reaction to mungbean yellow mosaic virus disease. The Plant Pathology Journal, 30(3): 261-268.

Anonymous. 2015. E-Pulses data book. Area, production and yield of different Pulses in India. Indian Institute of Pulses Research (IIPR). Kanpur, India. Available at <http://www.iipr.res.in/e-pulse-data-book.html>.

Arumuganathan, K., and Earle, E.D. 1991. Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter, 9(3): 208-218.

AVRDC. 1998. Diseases and insect pests of mungbean and blackgram: A bibliography, Shanhua, Taiwan, Asian Vegetable Research and Development Centre, 1999. VI. P. 254.

Awasthi, L.P., and Singh, S. 2008. Screening of mungbean germplasm for field resistance to mungbean yellow mosaic virus. NEW BOTANIST-International Journal of Plant Science Research, 35: 65-70.

Bashir, M. 2005. Studies on viral diseases of major pulse crops and identification of resistant sources. Technical annual report (April, 2004 to June, 2005) of ALP Project. Crop Sciences Institute, National Agricultural Research Centre, Islamabad. p. 169.

Deepa, H., Govindappa, M.R., Kenganal, M., Kulkarni, S.A., and Biradar, S.A. 2017.
Screening of greengram genotypes against mungbean yellow mosaic virus diseases under field condition. *International Journal of Pure and Applied Bioscience*, 5(2): 1049-1056.

Dharajiya, D.T., Khadia, S.M., Pagi, N.K., Khatrani, T.J., Jasani, H.V., Khunt, A.D., and Ravindrababu, Y. 2017. Modified method of high quality genomic DNA extraction from mungbean [Vigna radiata (L.) Wilczek] suitable for PCR based amplification. *Indian Journal of Science and Technology*, 10(20): 1-7.

Gomez, K.A., and Gomez, A.A. 2012. Statistical procedures for agricultural research. John Wiley & Sons, Inc., UK.

Inbasekar, K. 2014. Pulses production in India: Challenges and Strategies. *Economic Affairs*, 59(3): 403-414.

Kang, B.C., Yeam, I., and Jahn, M.M. 2005. Genetics of plant virus resistance. *Annual Review of Phytopathology*, 43: 581-621.

Karthikeyan, A., Shobhana, V.G., Sudha, M., Raveendran, M., Senthil, N., Pandiyar, M., and Nagarajan, P. 2014. Mungbean yellow mosaic virus (MYMV): a threat to green gram (Vigna radiata) production in Asia. *International Journal of Pest Management*, 60(4): 314-324.

Khaliq, N., Koul, V., Shankar, U., Ganai, S.A., Sharma, S., and Norboo, T. 2017. Screening of mungbean (Vigna radiata (L.) Wilczek) varieties against whitefly (Bemisia tabaci Genn.) and mungbean yellow mosaic virus (MYMV). *International Journal of Current Microbiology and Applied Sciences*, 6(8): 129-132.

Mohan, S., Sheeba, A., Murugan, E., and Ibrahim, S.M. 2014. Screening of mungbean germplasm for resistance to mungbean yellow mosaic virus under natural condition. *Indian Journal of Science and Technology*, 7(7): 891-896.

Nair, R.M., Götz, M., Winter, S., Giri, R.R., Boddepalli, V.N., Sirari, A., Bains, T.S., Taggar, G.K., Dikshit, H.K., Ask, M., and Boopathi, M. 2017. Identification of mungbean lines with tolerance or resistance to yellow mosaic in fields in India where different begomovirus species and different Bemisia tabaci cryptic species predominate. *European Journal of Plant Pathology*, 149(2): 349-365.

Pande, S., Sharma, S.B., and Ramakrishna, A. 2000. Biotic stresses affecting legumes production in the Indo-Gangetic Plain. In: Legumes in rice and wheat cropping systems of the Indo-Gangetic Plain - constraints and opportunities. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). Patancheru, Andhra Pradesh, India, pp. 129-155.

Panduranga, G.S., Vijayalakshmi, K., Reddy, K.L., and Rajashekar, H. 2011. Evaluation of mungbean germplasm for resistance against whitefly (Bemisia tabaci Genn.) and mungbean yellow mosaic virus (MYMV) disease. *Indian Journal of Entomology*, 73(4): 338-342.

Paul, P.C., Biswas, M.K., Mandal, D., and Pal, P. 2013. Studies on host resistance of mungbean against mungbean yellow mosaic virus in the agro-ecological condition of lateritic zone of West Bengal. *The Bioscan*, 8(2): 583-87.

Rishi, N. 2009. Significant plant virus diseases in India and a glimpse of modern disease management technology. *Journal of General Plant Pathology*, 75(1): 1-18.

Robertson, M.J., Fukai, S., and Peoples, M.B. 2004. The effect of timing and severity of water deficit on growth, development, yield accumulation and
nitrogen fixation of mungbean. *Field Crops Research*, 86(1): 67-80.
Salam, S.A., Patil, M.S., and Salimath, P.M. 2009. Evaluation of mungbean cultures against MYMV in Karnataka under natural conditions. *Legume Research*, 32(4): 286-289.
Saminathan, B. 2013. Mercury induced changes in germination and biochemical analysis of green gram (*Vigna radiata* (L.) Wilczek). *International Journal of Environmental Biology*, 3(4): 151-156.
Singh, B.B., Dixit, G.P., and Katiyar, P.K. 2010. *Vigna* research in India (25 years of research achievements). All India Coordinated Research Project on MULLaRP, Indian Institute of Pulses Research (IIPR), Kanpur, India. pp. 1-155.
Singh, K., Singh, S., and Kumar, R.K. 1996. Inheritance to mungbean yellow mosaic in mungbean. *Indian Journal of Pulses Research*, 9: 90.
Somta, P., and Srinives, P. 2007. Genome research in mungbean (*Vigna radiata* (L.) Wilczek) and blackgram (*V. mungo* (L.) Hepper). *Science Asia*, 33(1): 69-74.
Suman, S., Sharma, V.K., Kumar, H., and Shahi, V.K. 2015. Screening of mungbean [*Vigna radiata* (L.) Wilczek] genotypes for resistance to mungbean yellow mosaic virus (MYMV). *Environment and Ecology*, 33(2A): 855-859.
Vavilov, N.I. 1926. The origin of the cultivation of “primary” crops, in particular cultivated hemp. *Studies on the Origin of Cultivated Plants*, 221-233.

**How to cite this article:**
Darshan T. Dharajiya, Y. Ravindrrababu and Nalin K. Pagi. 2018. Screening of Mungbean [*Vigna radiata* (L.) Wilczek] Genotypes for Resistance against Mungbean Yellow Mosaic Virus (MYMV) under Field Condition. *Int.J.Curr.Microbiol.App.Sci.* 7(05): 3472-3483. doi: [https://doi.org/10.20546/ijcmas.2018.705.401](https://doi.org/10.20546/ijcmas.2018.705.401)