Instructions

1. **We need to clearly see the changes you have made.**
 - Do: annotate PDF using the comment facility, or provide a separate list of your corrections using line numbers.
 - Don’t: send a revised word file of your manuscript or internally edit the PDF. Help on making proof corrections is available at http://www.geolsoc.org.uk/ProofCorrections

2. **Proofs (typeset version) should not be posted to any website or server.** You can post the accepted (pre-typeset) manuscript 12 months after online publication or the original (i.e. not peer reviewed) manuscript now. These proofs are for checking purposes only. They should not be considered as final publication format and must not be used for any other purpose. Please do not print and distribute multiple copies. Neither excerpts nor the article in its entirety should be included in other publications until the final version has been published and citation details are available. Please see our Terms and Conditions at https://www.geolsoc.org.uk/Publications/Lyell-Collection/Using-the-Lyell-Collection/Copyright-Permissions-and-Terms-of-Use

3. **Permissions:** Permission to reproduce any third-party material in your paper should have been obtained prior to acceptance. If your paper contains figures, tables or text requiring permission to reproduce, and you have not already obtained that permission, please inform me immediately by email.

4. **Check this proof carefully for errors:** Once it is published online no further changes can be made.

5. **References:** All references to papers in this volume will be dealt with by the production editor.

6. **Figures and tables:** Please check that they are complete and the correct content and legend are present. Figures in the proof are low-resolution versions that will be replaced with higher resolution versions when the paper is published. If you need to replace/resupply any figures, please indicate this in your proof amends and upload them to the following ftp site:
 - Site Name: ftp.novatechset.com
 - Username: gsl_guest
 - Password: Gst!@#090418

 If you have FTP software (such as Filezilla) you can place the figures directly onto the FTP site detailed above. If you do not have FTP software, a free version of Filezilla can be downloaded from here: https://filezilla-project.org/. Or you can send your figures to your GSL Production Editor (reply to your proof email) and they will upload the figures on your behalf.

7. **Special characters:** Please check that special characters, equations, taxonomy and units, if applicable, have been reproduced accurately.

8. **ORCID IDs:** Only those supplied at submission stage appear on this proof. Additional ORCID IDs can be added as part of your corrections.

Funding information

- Only funding information supplied at submission (shown in the table below) will be transmitted to CrossRef, assuming the mandatory fields are complete.
- Instructions on how to add missing or additional funding information can be found at http://www.geolsoc.org.uk/ProofCorrections
- Please note that providing additional funding information does not alter the text in the Funding section of your proof. If you have any changes to this section, please provide as part of your corrections.

### Funding agency (mandatory)	Funding agency ID (mandatory)	Grant number (optional)	Principal award recipient
Grantová Agentura České Republiky | http://dx.doi.org/10.13039/501100001824 | 18-24378S | Vojtěch Janoušek

Please answer all queries

No	Query
Q1	Please check this proof carefully for errors, once it is published online no further changes can be made. In particular, check author names, affiliations & corresponding email address and that figures, tables and equations are correct. Also, please check your proof to ensure you have acknowledged your funding source (if applicable).
Q2	Please check that the funding details are shown correctly for this paper and amend if necessary.
Post-Archean granitic rocks: contrasting petrogenetic processes and tectonic environments

VOJTECH JANOUŠEK1,2*, BERNARD BONIN3, WILLIAM J. COLLINS4, FEDERICO FARINA5 & PETER BOWDEN6

1Czech Geological Survey, Klárov 3, 118 21 Prague 1, Czech Republic
2Institute of Petrology and Structural Geology, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
3UMR 8148 ‘GEOPS’, Université Paris-Sud, CNRS, Université Paris-Saclay, Bâtiment 504, Rue du Belvédère, F-91405 Orsay Cedex, France
4School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
5Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, 20133 Milano, Italy
6Département de Géologie, Laboratoire Magmas et Volcans, Faculté des Sciences et Techniques, Université Jean Monnet, 23 rue du Dr Paul Michelon, 42023 Saint Etienne, France

VJ, 0000-0002-6581-9207; BB, 0000-0002-2981-4046; WJC, 0000-0003-3982-6873; FF, 0000-0002-7112-7047; PB, 0000-0002-4334-8205
*Correspondence: vojtech.janousek@geology.cz

Abstract: Granitic rocks represent a ubiquitous component of upper continental crust but their origin remains highly controversial. This controversy stems from the fact that the granites may result from fractionation of mantle-derived basaltic magmas or partial melting of different crustal protoliths at contrasting pressure–temperature conditions, either water-fluxed or fluid-absent. Consequently, many different mechanisms have been proposed to explain the compositional variability of granites ranging from whole igneous suites down to mineral scale. This Special Publication presents an overview of the state of the art, as well as envisages future avenues towards a better understanding of granite petrogenesis.

Granite (sensu lato) represents a ubiquitous rock type dominating the upper–middle continental crust (Taylor & McLennan 2009; Rudnick & Gao 2014). For this reason, the granites have attracted a plethora of studies, some dating back to the dawn of modern igneous geology in the mid-eighteenth century. Ever since, the controversy regarding the origin of granites has been raging more or less continuously, even though focusing on various aspects of the ‘granite problem’ (e.g. see Pitcher 1987, 1993; Clarke 1996; Cobbing 2000; Young 2003 for reviews).

The ‘great debate’

The modern dispute on the origin of granites dates back to James Hutton who, based on carefully made observations of textures, field relationships, as well as the presence of country-rock metasedimentary xenoliths in granitic intrusions of the Scottish Highlands, proposed the revolutionary idea that granite had to be a product of crystallization from a ‘fluidal substance’ (i.e. magma) (Hutton 1788, 1794). This was in sharp contrast with the then governing Wernerian theory (Werner 1787) in which the granites belonged to the ‘Primitive foundation’, precipitated from the primeval ocean.

The other flare-up in the heated debate was centred on the so-called ‘room problem’, considering the way in which large granitic batholiths can be accommodated within crust, especially in cases when the country rock did not show evidence of strong deformation. The other disputed observation

From: JANOUŠEK, V., BONIN, B., COLLINS, W. J., FARINA, F. & BOWDEN, P. (eds) Post-Archean Granitic Rocks: Petrogenetic Processes and Tectonic Environments. Geological Society, London, Special Publications, 491, https://doi.org/10.1144/SP491-2019-197
© 2020 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/). Published by The Geological Society of London.
Publishing disclaimer: www.geolsoc.org.uk/pub_ethics
came from the study of migmatite terrains, especially in Nordic countries, where the contacts between intrusions, partially molten and residual rocks were often transitional.

An apparent remedy was offered by the ‘transformists’, who proposed in situ conversion of pre-existing rocks by metasomatic fluids or other mechanisms (Read 1957; Mehnert 1968). However, the, ‘magmatists’ assumed that granites were a product of crystal differentiation from a primary basaltic magma. Indeed, the eutectic and cotectic compositions of common granites, reproduced by water-present melting experiments, represent a powerful argument against the metasomatic models (Bowen 1948; Tuttle & Bowen 1958).

Another breakthrough came in the late 1960s and early 1970s when it was recognized that many granites are crustally derived, having originated by partial melting of metasediments (Winkler 1965). These publications were followed by the first experiments that generated granites by dehydration melting of metapelitic starting materials (Brown & Fyfe 1970).

With the advancement of geochemistry, new source-orientated paradigms emerged. Most notably, it was the classification of Chappell & White (1974), further elaborated over the years (Chappell & White 1992, 2001). Mainly based on modal composition and major-element whole-rock geochemistry, it distinguished granites generated by partial melting of lower-crustal meta-igneous rocks (thus termed I-type) from those originating by anatexis of metasedimentary sources (S-type). As a result of the popularity of this scheme, the ‘alphabetic soup’ terminology was supplemented by anorogenic A-types (Loiselle & Wones 1979), mantle-derived M-types (White 1979), charnockitic C-types (Kilpatrick & Ellis 1992) and hybrid H-types (Castro et al. 1991), eventually leading to a considerable confusion (Clarke 1992).

Nowadays, it is widely believed that a significant number of granites, including those occurring at active continental margins, may result from fractionation of mantle-derived basaltic magmas (Grove et al. 2003; Ulmer et al. 2018). Many others, especially those in collisional orogens, are the ultimate product of regional metamorphism, leading to partial melting of different crustal protoliths at contrasting pressure–temperature conditions, either water-fluxed or fluid-absent (Clemens 2003, 2005, 2012; Brown 2010, 2013; Weinberg & Hasalová 2015; Collins et al. 2016; Yakymchuk 2019).

In collisional orogens, granitic crustal melts can be produced due to both crustal thickening and thinning, as well as decompression of high-grade, metamorphic terrains. The heat necessary for anatexis can be: (1) produced in situ, due to radioactive decay in a thickened continental crust rich in U, Th and K, (2) advected from basic intrusion(s) or quickly exhumed, still hot, lower-crustal metamorphic complexes; (3) conducted from a thermal anomaly in the mantle (originating due to slab break-off, thermal boundary layer detachment, mantle delamination, asthenosphere upwelling in extensional settings or ascent of a mantle plume); or (4) come from an underlying metasomatized/crustally-contaminated lithospheric mantle where it is produced by in situ radioactive decay (Henk et al. 2000; Clark et al. 2011; Bea 2012).

Why the ‘granite problem’ is still there

Granites are difficult to study for four main reasons. The first problem is that granitic melts, regardless of their parental composition, tend to evolve towards the granite minimum in the course of crystallization or are often minimal melts to start with (Johannes & Holz 1996). Secondly, the generally high viscosity of siliceous melts, especially the low-temperature S-type ones (Dingwell 1999), means that many granites (sensu lato) do not represent pure melts. They rather are mixtures of cumulus phase(s) or even crystal mushes, from which liquids were extracted and erupted as dacites or rhyolites (Bachmann & Bergantz 2004, 2008; Bachmann & Huber 2016; Cashman et al. 2017), or partial melts that have carried entrained material from the source, either restite or peritectic phases (Chappell et al. 1987; Stevens et al. 2007; Clemens et al. 2010, 2011). Moreover, during its construction, a granitic pluton may also incorporate extra material either from the country rock (xenocrysts) or the previous pulses of the same magmatism (antecrysts) (Streck 2008; Jeram et al. 2018). A distinct (third) possibility remains of mixing or mingling with some other magma pulses, either broadly cognetic, during incremental construction commonly invoked for the granitic plutons (Bartley et al. 2006; Farina et al. 2012; Chen & Nabelek 2017; Hines et al. 2018), or even coming from a contrasting, mantle source (Hibbard 1995; Perugini & Poli 2000; Didier & Barbarin 1991). Last, but not least, granitic plutons are commonly associated with hydrothermal systems, and the water-rich fluid unmixed during crystallization inevitably results in alterations.

To obscure things further, the methods we are using are not flawless. The large sets of compositional data require machine processing but sophisticated statistical methods very often cannot decipher any useful patterns beyond the analytical or natural noise. Alternatively, they may yield undisputed truths and obvious conclusions, apparent to anyone with a good working knowledge of field relationships, petrology and/or the composition of granitic rocks. Given the number of mineral phases, including accessories, (nearly) all trace elements behave
as compatible ones, complicating whole-rock-based
geochemo modulation (Janoušek et al. 2016). Of
course, these techniques are also difficult to apply
when not dealing with pure melts.

Frustratingly, progress in understanding granite
generation has not always advanced in step
with the effort invested. As in other branches of sci-
ence, the existence of a large community of active
researchers also has its downside, as the relevant lit-
erature is massive and impossible to follow in its
entirety. Any progressive or even ground-breaking
ideas can thus be swamped by work that represents
only incremental, if any, advancement.

As previous disputes have shown, the large com-

munity tends to buffer changes in the long-term sta-
tus quo; any innovative approach has to struggle with
tradition, or even rigidity, and most workers tend to
stick to existing paradigms. Moreover, geologists
typically believe and apply their own experience;
thus, depending on the country of origin and terrains
they have worked in, they prefer certain ideas and
models over the others. Nowadays, it is unthinkable
that Hutton, for the sake of being unbiased, inten-
tionally sought field evidence for his influential the-
ory on the origin of granites only after its first
public presentation.

Lastly, all of us are, to varying degrees, ignorant
or careless regarding the original definitions and
proper meaning of even the most elementary terms.
Over time, some of them (e.g. the adjective
‘calc-alkaline’) have lost their original meaning
and should be either redefined or dropped. More-
over, granite petrologists, like other igneous petrolo-
gists, have introduced a plethora of historical and
parochial names for essentially the same rock types
that still persist in the current literature despite
the sterling efforts of the IUGS Subcommission on
Systematics of Igneous Rocks (Streckeisen 1976;
Le Maitre 2002). Thus, we all should strive to use
the approved terminology with as much rigour as
possible.

Ways ahead

From the above it follows that the origin of granitic
rocks is likely to remain a matter of passionate debate
for years to come. It will certainly be fuelled by
an increasing demand for raw materials, increasing
computer power and progress in analytical tech-
niques. The latter will secure a never-finishing flux
of increasingly affordable, high-quality composi-
tional data, including non-traditional isotopic sys-
tems such as Ce, Ca, Li, Mg, Si, Cr or stable Sr
(Johnson et al. 2004; Foden et al. 2015; Tomascak
et al. 2016; Teng et al. 2017), as well as in situ ele-
mental and isotopic data for both individual minerals
and melt inclusions. To tackle the flood of data, an
increasing role will be played by statistical and com-
puting methods, data mining and online databases,
shared through the World Wide Web. There is also
a clear trend towards the increased application of
ever-improving tools for phase-equilibria modelling
(Ghiorso & Sack 1995; Asimow & Ghiorso 1998;
Holland & Powell 1998, 2011; Connolly 2005;
Gualda et al. 2012; Green et al. 2016) that will
become integrated into larger packages for compre-

hensive modelling of igneous rocks (Bohrson et al.
2014; Mayne et al. 2016). But at the same time, we
should not forget that we ultimately try to describe
and explain natural phenomena, and thus detailed
and careful field and petrological work remain indis-

pensable even in the twenty-first century.

In this Special Publication the Editors aim to pre-

sent an overview of the state of the art, as well as
envisioning future avenues towards a better under-

standing of granite petrogenesis. As such, it is a
follow-up of the excellent GSL Special Publication
Understanding Granites: Integrating New and Classical Techniques of Castro et al. (1999), which is
now exactly 20 years old. The current Special Publica-

tion contains 10 papers, covering four main
themes:

• Compositional variability of granitic rocks gener-
ated in contrasting geodynamic settings during the
Proterozoic–Phanerozoic periods.
• Main permissible mechanisms producing subduc-
tion-related granites.
• Crustal anatexis of different protoliths, and the
role of water in granite petrogenesis.
• Theoretical tools available for modelling whole-
rock geochemical evolution and phase-mineral
equilibria to decipher the evolution of granitic
suites in P–T–t space.

Granitoids are the most common rocks in the Earth’s
continental crust and display many varieties, and
thus require classification. After a historical review
of previous schemes suggested on various grounds,
Bonin et al. (2020) state that classification should
preferentially link the bulk chemical composition
to the stoichiometry of the constituent minerals.
Based on statistical analysis of a large database of
granitic compositions, they identify the most dis-
criminant geochemical variables. They suggest the
winning strategy is to use simple atomic parameters
(e.g. millication-based) that can be linked to modal
proportions and compositions/structure of individ-
ual rock-forming minerals.

A-type granitoids, less abundant than the other
granite types, have generated no worldwide consen-
sus about their origins. Collins et al. (2019) compare
A-type granitoids in two classical type localities: the
Mesozoic Younger Granites province (northern
Nigeria) and the Paleozoic Lachlan Fold Belt
(eastern Australia). They show that rocks of the
anorogenic Nigerian province crystallized from hotter and drier liquids than those of the post-orogenic A-types of the Lachlan Fold Belt province, which were situated in a distal back-arc setting. In the latter case, A-type granites are not strictly within-plate, as generally assumed, but nonetheless were hotter and more anhydrous that the associated S- and I-type granites. Whether large batholiths originate from magmas occurring at the end of fractionation trends defining a basalt–(basaltic) andesite–dacite–rhyolite series, or form by partial melting of older crustal lithologies (amphibolites or intermediate igneous rocks) remains a contentious issue (see Castro 2019). Moyen (2019) explores the thermal implications of both scenarios, two situations appear equally favourable for generating large volumes of granites: short-lived high basaltic flux, where granites result mostly from basalt differentiation, and long-lived systems with no or only minimal basalt flux, where granites are chiefly a product of crustal melting.

In the original alphabetical classification (ChapPELL & WHITE 1974), I-type granitoids were defined as having originated from partial melting of igneous rocks located within the Earth’s lower crust. Geological and geochemical features provide evidence that other formations may be involved, such as immature quartzofeldspathic metasedimentary suites. In a review of experimental data, Castro (2019) shows that I-type granitoids should be subdivided into two classes: ‘primary granitoids’ that are directly related to subduction and composed of fractionated liquids from intermediate magma systems of broadly andesitic composition, and ‘secondary granitoids’ that are crustal melts produced by fluid-fluxed melting of older subduction-related igneous rocks that resided in the continental crust.

Fiannacca et al. (2019) describe Late Paleozoic peraluminous granites and trondhjemites from southern Italy, demonstrating the contrasting roles of water-fluxed and fluid-absent (dehydration) melting during magma genesis. They also explain an unusual low-Ca trondhjemite suite by metasomatic alteration, highlighting the need for petrographical analysis in conjunction with geochemical modelling. Nabelek (2019) provides an overview of compositional variability and possible genetic lines of peraluminous leucogranites that are ubiquitous in collisional orogens, such as the Variscides and Himalayas. Based mainly on phase-equilibria and whole-rock geochemical considerations, it is concluded that most of these syn- to post-collisional leucogranites are characterized by the presence of muscovite, biotite and tourmaline, and formed under vapour-poor conditions involving a peritectic breakdown of muscovite.

In their first contribution, Mayne et al. (2019b) present the background, overall philosophy and explore full potential of their new software (RCRUST) (Mayne et al. 2016) which allows phase-equilibria modelling along pressure–temperature paths with composition as a variable. To demonstrate the utility of RCRUST for process-orientated investigations, the authors briefly present four possible fields of application. In the first, they explore the evolution of the water content in a fully-hydrated but fluid-absent rock composition along pressure–temperature trajectories that evolve towards granulite- and eclogite-facies peak metamorphic conditions. The second and third cases investigate the effect of melt loss during partial melting and the role of peritectic crystals entrained from the source. The last of the open-system processes presented deals with melt-crystal separation during crystallization, mimicking processes like crystal settling or filter pressing in magma reservoirs.

In their second contribution, Mayne et al. (2019a) apply RCRUST to investigate the control exerted by the source on the bulk composition of anatectic melts derived by partial melting of an average pelite under both water-deficient and water in excess conditions. The initial magnesium, iron, sodium and calcium contents of the source are varied, as are the pressure–temperature path followed by the system and the melt extraction threshold. The resulting melt compositions are compared to those of natural S-type granites. The work confirms that the strongest control on melt composition is exerted by the availability of a water-rich fluid in the source, while bulk-rock composition and the degree of melt retention in the source have only a minor influence.

Another interesting application of the path-dependent phase-equilibria modelling using the software RCRUST is presented in the case study of the Buddusò Pluton in NE Sardinia by Farina et al. (2019). The authors propose that the internal chemical variability of this normally-zoned pluton, homogeneous in terms of whole-rock Sr–Nd isotopic compositions, could have been generated by crystallization differentiation of the same hydrous tonalitic parental magma. The inferred mechanism invokes compaction in a rheologically locked crystal-rich magma chamber (Bachmann & Bergantz 2004).

Petrogenesis of igneous suites, including granitoids, may be deciphered by whole-rock geochemical modelling. Janoušek & Moyen (2019) provide an overview of the current approaches and argue that petrogenetic modelling is a powerful tool to rule out impossible scenarios and to constrain likely processes inferred from geological and petrological observations. Particularly promising seems to be the development of integrated, coherent and comprehensive software, using the R and Python languages (Shen 2014; Janoušek et al. 2016; Mayne et al. 2016), that combines thermodynamic and
whole-rock geochemistry-based petrogenetic model of igneous rocks.

Acknowledgements The editors are indebted to all presenters of the granite session at the Goldschmidt Conference in Paris for having provided such an exciting account of many aspects of the multifaceted granite science. In particular, all the authors of this volume are thanked for their deep knowledge, hard work and tireless dedication to finish this book. We are equally grateful to all reviewers for their helpful comments and expertise, and also for sticking to the tight deadlines imposed by the editors. Last but not least, we would like to acknowledge Jo Armstrong, the Production Editor of the current volume, with Bethan Phillips and Angharad Hills, the commissioning assistants, for their tireless and competent work and good humour, as well as all the others at the Geological Society in London, without whom this volume could not have materialized.

Q2 Funding V. Janoušek was supported by grant No. 18-24378S from the Grant Agency of the Czech Republic.

Author contributions VJ: conceptualization (equal), project administration (lead), supervision (lead), writing – original draft (lead), writing – review & editing (lead); BB: conceptualization (equal), supervision (equal), writing – review & editing (equal); WJC: conceptualization (equal), supervision (equal), writing – review & editing (equal); FF: conceptualization (equal), supervision (equal), writing – review & editing (equal); PB: conceptualization (equal), writing – review & editing (equal).

References

Asmow, P.D. & Ghiorso, M.S. 1998. Algorithmic modifications extending MELTS to calculate subsolidus phase relations. American Mineralogist, 83, 1127–1132, https://doi.org/10.2138/am-1998-9-1022

Bachmann, O. & Bergantz, G.W. 2004. On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. Journal of Petrology, 45, 1565–1582, https://doi.org/10.1093/petrology/egh019

Bachmann, O. & Bergantz, G.W. 2008. Rhyolites and their source mushes across tectonic settings. Journal of Petrology, 49, 2277–2285, https://doi.org/10.1093/petrology/egn068

Bachmann, O. & Huber, C. 2016. Silicic magma reservoirs in the Earth’s crust. American Mineralogist, 101, 2377–2404, https://doi.org/10.2138/am-2016-5675

Bartley, J.M., Coleman, D.S. & Glazner, A.F. 2006. Incremental pluton emplacement by magmatic crack-seal. Transactions of the Royal Society of Edinburgh: Earth Sciences, 97, 383–396, https://doi.org/10.1017/S0263593300001528

Bea, F. 2012. The sources of energy for crustal melting and the geochemistry of heat-producing elements. Lithos, 153, 278–291, https://doi.org/10.1016/j.lithos.2012.01.017

Borghini, W.A., Spera, F.J., Ghiorso, M.S., Brown, G.A., Creamer, J.B. & Mayfield, A. 2014. Thermodynamic model for energy-constrained open-system evolution of crustal magma bodies undergoing simultaneous recharge, assimilation and crystallization: the Magma Chamber Simulator. Journal of Petrology, 55, 1685–1717, https://doi.org/10.1093/petrology/egu036

Bowen, B., Janoušek, V. & Moyen, J.-F. 2020. Chemical variation, modal composition and classification of granitoids. In: Janoušek, V., Bonin, B., Collins, W.J., Farina, F. & Bowden, P. (eds) 2020. Post-Archean Granitic Rocks: Petrogenetic Processes and Tectonic Environments. Geological Society, London, Special Publications, https://doi.org/10.1144/SP491-2019-138

Bowen, N.L. 1948. The granite problem and the method of multiple prejudices. In: Gilluly, J. (ed.) Origin of Granite. Geological Society America Memoirs, 28, 79–90.

Brown, G.C. & Fyfe, W.S. 1970. The production of granitic melts during ultrametamorphism. Contributions to Mineralogy and Petrology, 28, 310–318, https://doi.org/10.1007/BF00388953

Brown, M. 2010. Melting of the continental crust during orogenesis: the thermal, rheological, and compositional consequences of melt transport from lower to upper continental crust. Canadian Journal of Earth Sciences, 47, 655–694, https://doi.org/10.1139/E09-057

Brown, M. 2013. Granite: from genesis to emplacement. Geological Society of America Bulletin, 125, 1079–1113, https://doi.org/10.1130/B30877.1

Cashman, K.V., Sparks, R.S.J. & Ludden, J.D. 2017. Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science, 355, eaag3055, https://doi.org/10.1126/science.aag3055

Castro, A. 2019. The dual origin of I-type granites: the contribution from experiments. In: Janoušek, V., Bonin, B., Collins, W.J., Farina, F. & Bowden, P. (eds) Post-Archean Granitic Rocks: Contrasting Petrogenetic Processes and Tectonic Environments. Geological Society, London, Special Publications, https://doi.org/10.1144/SP491-2018-110

Castro, A., Moreno-Ventas, I. & De La Rosa, J.D. 1991. H (Hybrid)-type granitoids: a proposed revision of the granite-type classification and nomenclature. Earth Science Reviews, 31, 237–253, https://doi.org/10.1016/0012-8252(91)90020-G

Castro, A., Fernández, C. & Vigneux, J.L. (eds) 1999. Understanding Granites: Integrating New and Classical Techniques. Geological Society, London, Special Publications, 168, https://doi.org/10.1144/GSL.SP.1999.168.01.18

Chappell, B.W. & White, A.J.R. 1974. Two contrasting granite types. Pacific Geology, 8, 173–174.

Chappell, B.W. & White, A.J.R. 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83, 1–26, https://doi.org/10.1017/S0263593300007720

Chappell, B.W. & White, A.J.R. 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48, 489–499, https://doi.org/10.1046/j.1440-0952.2001.00882.x
CHAPPELL, B.W., WHITE, A.J.R. & WYBORN, D. 1987. The importance of residual source material (restite) in granite petrogenesis. Journal of Petrology, 28, 571–604, https://doi.org/10.1093/petrology/28.6.1111

CHEN, Y.Y. & NABELEK, P.I. 2017. The influences of incremental pluton growth on magma crystallinity and aureole rheology: numerical modeling of growth of the Papoose Flat pluton, California. Contributions to Mineralogy and Petrology, 172, 89, https://doi.org/10.1007/s00410-017-1405-6

CLARKE, D.B. 1992. ‘Theory of the Earth’: the status of granite science. Proceedings of the Geologists’ Association, 103, 9–16, https://doi.org/10.1016/S0033-5981(05)80013-6

Clements, J.D. 2003. S-type granite magmas – petrogenetic issues, models and evidence. Earth-Science Reviews, 61, 1–18, https://doi.org/10.1017/S001282520200107-7

Clements, J.D. 2005. Granites and granitic magmas: strange phenomena and new perspectives on some old problems. Proceedings of the Geologists’ Association, 116, 9–16, https://doi.org/10.1016/S0033-5981(05)80013-6

Clements, J.D. 2012. Granitic magmatism, from source to emplacement: a personal view. Applied Earth Science, 121, 107–136, https://doi.org/10.11179/1743913Y0000000743

Clements, J.D., HELPS, P.A. & STEVENS, G. 2010. Can we detect a signal from the source? Earth and Planetary Science Letters, 293, 44–56, https://doi.org/10.1016/j.epsl.2010.05.033

Connolly, J.A.D. 2005. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters, 236, 524–541, https://doi.org/10.1016/j.epsl.2005.04.033

Dider, J. & Barbarin, B. (eds) 1991. Enclaves and Granite Petrology. Developments in Petrology, 13. Elsevier, Amsterdam.

Dowell, D.B. 1999. Granitic melt viscosities. In: Castro, A., Fernandez, C. & Vigneresse, J.L. (eds) 1999. Understanding Granites: Integrating New and Classical Techniques. Geological Society of London, Special Publications, 168, 27–38, https://doi.org/10.1144/GSL.SP.1999.168.01.03

Farina, F., Stevens, G. & Villaros, A. 2012. Multi-batch, incremental assembly of a dynamic magma chamber: the case of the Peninsula Pluton granite (Cape Granite Suite, South Africa). Mineralogy and Petrology, 106, 193–216, https://doi.org/10.1007/s00710-012-0224-8

Farina, F., Mayne, M.J., Stevens, G., Sookaarial, R., Frei, D. & Gerdes, A. 2019. Phase equilibria constraints on crystallization differentiation: insights into the petrogenesis of the normally zoned Buddusò Pluton in north-central Sardinia. Journal of Petrology, 60, 44–55, https://doi.org/10.1017/jpet.2019.105

Fodin, J., Sossi, P.A. & Wawryk, C.M. 2015. Fe isotopes and the contrasting petrogenesis of A-, I- and S-type granite. Lithos, 212–215, 32–44, https://doi.org/10.1016/j.lithos.2014.10.015

Ghiorso, M.S. & Sack, R.O. 1995. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology, 119, 197–212, https://doi.org/10.1007/BF00307281

Green, E.C.R., White, R.W., Diesler, J.A., Powell, R., Holland, T.J.B. & Palin, R.M. 2016. Activity–composition relations for the calculation of partial melting equilibria in metamorphic rocks. Journal of Metamorphic Petrology, 34, 845–869, https://doi.org/10.1111/jmp.12211

Grove, T.L., Elkins-Tanton, L.T., Parman, S.W., Chatterjee, N., Muntener, O. & Gaetani, G.A. 2003. Fractional crystallization and mantle-melt controls on calc-alkaline differentiation trends. Contributions to Mineralogy and Petrology, 145, 515–533, https://doi.org/10.1007/s00410-003-0448-z

Gualda, G.A.R., Ghiorso, M.S., Lemos, R.V. & Carley, T.L. 2012. Rhyolite–MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. Journal of Petrology, 53, 875–890, https://doi.org/10.1093/petrology/egt080

Hein, A., von Blanckenburg, F., Finger, F., Schaltegger, U. & Zilch, G. 2000. Syn-convergent high-temperature metamorphism and magmatism in the...
Variscides: a discussion of potential heat sources. In: Franke, W., Haak, V., Ockeen, O., & Tanner, D. (eds) 2000. Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geological Society, London, Special Publications, 179, 387–399, https://doi.org/10.1144/GSL.SP.2000.179.01.23

Hibbard, M.J. 1995. Mixed magma rocks. In: Petrography to Petrogenesis. Prentice-Hall, Englewood Cliffs, NJ, 242–260.

Hines, R., Paterson, S.R., Memeiti, V., & Chambers, J.A. 2018. Nested tectono-thermal growth of zoned upper crustal plutons in the Southern Uplands Terrane, UK: fractionating, mixing, and contaminated magma fingers. Journal of Petrology, 59, 483–516, https://doi.org/10.1093/petrology/egy034

Holland, T.J.B. & Powell, R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16, 300–343, https://doi.org/10.1111/j.1525-1314.1998.00140.x

Holland, T.J.B. & Powell, R. 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29, 333–383, https://doi.org/10.1111/j.1525-1314.2010.00923.x

Hutton, J. 1788. Theory of the Earth: or an investigation of the laws observable in the composition, dis-solution, and restoration of land upon the Globe. Transactions of the Royal Society of Edinburgh: Earth Sciences, I, 209–304, https://doi.org/10.1017/S0080456800029227

Hutton, J. 1794. Observations on granite. Transactions of the Royal Society of Edinburgh: Earth Sciences, 3, 77–85, https://doi.org/10.1017/S0080456800023035

Janoušek, V., Moyen, J.-F. 2019. Whole-rock geochemical modelling of granite genesis: the current state of play. In: Janoušek, V., Bonin, B., Collins, W.J., Farina, F., & Bowden, P. (eds) 2020. Post-Archean Granitic Rocks: Petrogenetic Processes and Tectonic Environments. Geological Society, London, Special Publications, 491, https://doi.org/10.1144/SP491-2018-160

Janoušek, V., Moyen, J.F., Martin, H., Erban, V., & Farrow, C. 2016. Geochemical Modelling of Igneous Processes – Principles and Recipes in R Language. Bringing the Power of R to a Geochemical Community. Springer, Berlin.

Jerrem, D.A., Dobson, K.J., Morgan, D.J., & Pankhurst, M.J. 2018. The petrogenesis of magmatic systems: using igneous textures to understand magmatic processes. In: Burchardt, S. (ed.) Volcanic and Igneous Plumbing Systems: Understanding Magna Transport, Storage, and Evolution in the Earth’s Crust. Elsevier, Amsterdam, 191–229

Johannes, W. & Holtz, F. 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Springer, Berlin.

Johnson, C.M., Beard, B.L., & Albarède, F. (eds) 2004. Geochemistry of Non-Traditional Stable Isotopes. Reviews in Mineralogy and Geochemistry, 55.

Kilpatrick, J.A. & Ellis, D.J. 1992. C-type magmas: igneous charnockites and their extrusive equivalents. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83, 155–164, https://doi.org/10.1017/S0263593300007847

Le Maître, R.W. (ed.) 2002. Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Sub-committee on the Systematics of Igneous Rocks. 2nd edn. Cambridge University Press, Cambridge.

Lobeille, M.C. & Wones, D.R. 1979. Characteristics and origin of anorogenic granites. Geological Society of America Abstracts with Programs, 11, 468.

Mayne, M.J., Moyen, J., Stevens, G., & Kalandene, L. 2016. Rcrust: a tool for calculating path-dependent open system processes and application to melt loss. Journal of Metamorphic Geology, 34, 663–682, https://doi.org/10.1111/jmg.12199

Mayne, M.J., Stevens, G., & Moyen, J.-F. 2019a. A phase equilibrium investigation of selected source controls on the composition of melt batches generated by sequential melting of an average metapelite. In: Janoušek, V., Bonin, B., Collins, W.J., Farina, F., & Bowden, P. (eds) 2020. Post-Archean Granitic Rocks: Petrogenetic Processes and Tectonic Environments. Geological Society, London, Special Publications, 491, https://doi.org/10.1144/SP491-2018-121

Mayne, M.J., Stevens, G., & Johnson, T. 2019b. Performing process-oriented investigations involving mass transfer using Rcrust: a new phase equilibrium modelling tool. In: Janoušek, V., Bonin, B., Collins, W.J., Farina, F., & Bowden, P. (eds) 2020. Post-Archean Granitic Rocks: Petrogenetic Processes and Tectonic Environments. Geological Society, London, Special Publications, 491, https://doi.org/10.1144/SP491-2018-148

Meinert, K.R. 1968. Migmatttes and the Origin of Granitic Rocks. Elsevier, Amsterdam.

Moyen, J.-F. 2019. Granites and crustal heat budget. In: Janoušek, V., Bonin, B., Collins, W.J., Farina, F., & Bowden, P. (eds) 2020. Post-Archean Granitic Rocks: Petrogenetic Processes and Tectonic Environments. Geological Society, London, Special Publications, 491, https://doi.org/10.1144/SP491-2018-181

Nabelek, P.I. 2019. Petrogenesis of leucogranites in collisional orogens. In: Janoušek, V., Bonin, B., Collins, W.J., Farina, F., & Bowden, P. (eds) 2020. Post-Archean Granitic Rocks: Petrogenetic Processes and Tectonic Environments. Geological Society, London, Special Publications, 491, https://doi.org/10.1144/SP491-2018-118

Pergini, D. & Poll, G. 2000. Chaotic dynamics and fractals in magmatic interaction processes: a different approach to the interpretation of mafic microgranular enclaves. Earth and Planetary Science Letters, 175, 93–103, https://doi.org/10.1016/S0012-821X(99)00222-4

Pitcher, W.S. 1987. Granites and yet more granites forty years on. Geologische Rundschau, 76, 51–70, https://doi.org/10.1007/BF01820573

Pitcher, W.S. 1993. The Nature and Origin of Granite. 1st edn. Chapman & Hall, London.

Read, H.H. 1957. The Granite Controversy. Thomas Murby & Co., London.

Rudnick, R.L. & Gao, S. 2014. Composition of the continental crust. In: Holland, H.D. & Turekian,
K.K. (eds) Treatise on Geochemistry. 2nd edn. Elsevier, Amsterdam, 1–51.

Shen, H. 2014. Interactive notebooks: sharing the code. Nature, 515, 151–152, https://doi.org/10.1038/515151a.

Stevens, G., Villaros, A. & Moyen, J.F. 2007. Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites. Geology, 35, 9–12, https://doi.org/10.1130/G22959A.1.

Streck, M.J. 2008. Mineral textures and zoning as evidence for open system processes. In: Putirka, K.D. & Teply, F.J. III (eds) Minerals, Inclusions and Volcanic Processes. Reviews in Mineralogy and Geochemistry, 69, 595–622.

Streckeisen, A. 1976. To each plutonic rock its proper name. Earth-Science Reviews, 12, 1–33, https://doi.org/10.1016/0012-8252(76)90052-0.

Taylor, S.R. & McLennan, S.M. 2009. Planetary Crusts: Their Composition, Origin and Evolution. Cambridge University Press, Cambridge.

Teng, F.Z., Dauphas, N. & Watkins, J.M. (eds) 2017. Non-Traditional Stable Isotopes: Retrospective and Prospective. Reviews in Mineralogy and Geochemistry, 82.

Tuttle, O.F. & Bowen, N.L. 1958. Origin of Granite in the Light of Experimental Studies in the System NaAlSi₃O₈-KAlSi₃O₈-SiO₂-H₂O. Geological Society of America Memoirs, 74.

Ulmer, P., Kaser, R. & Münzener, O. 2018. Experimentally derived intermediate to silica-rich arc magmas by fractional and equilibrium crystallization at 1.0 GPa: an evaluation of phase relationships, compositions, liquid lines of descent and oxygen fugacity. Journal of Petrology, 59, 11–58, https://doi.org/10.1093/petrology/egy017.

Weinberg, R.F. & Hasalová, P. 2015. Water-fluxed melting of the continental crust: a review. Lithos, 212–215, 158–188, https://doi.org/10.1016/j.lithos.2014.08.021.

Wernher, A.G. 1787. Kurze Klassifikation und Beschreibung der verschiedenen Gebirgsarten. Walthersche Hofbuchhandlung, Dresden, Germany.

White, A.J.R. 1979. Sources of granite magmas. Geological Society of America Abstracts with Programs, 11, 539.

Winkler, H.G.F. 1965. Petrogenesis of Metamorphic Rocks. Springer, Berlin.

Yakymchuk, C. 2019. On granites. Journal of the Geological Society of India, 94, 9–22, https://doi.org/10.1007/s12594-019-1261-2.

Young, D.A. 2003. Mind over Magma. The Story of Igneous Petrology. Princeton University Press, Princeton, NJ.