Gut and intestinal biometrics of the giant trevally, *Caranx ignobilis*, fed an experimental diet with difference sources of activated charcoal [version 2; peer review: 2 approved]

Firdus Firdus¹,², Samadi Samadi³, Abdullah A. Muhammadar⁴, Muhammad A. Sarong⁵, Zainal A. Muchlisin⁴, Widya Sari¹, Agung S. Batubara⁴

¹Departement of Biology, Faculty of Mathematics and Natural Science, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
²Graduate School of Mathematics and Applied Science, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
³Animal Husbandry Department, The Faculty of Agriculture, Syiah Kuala University, Banda Aceh, Aceh, 23111, Indonesia
⁴Departement of Aquaculture, Faculty of Marine and Fishery, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
⁵Departement of Biology Education, Faculty of Teacher Training and Education, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia

First published: 26 May 2020, 9:444
https://doi.org/10.12688/f1000research.23788.1
Latest published: 13 Oct 2020, 9:444
https://doi.org/10.12688/f1000research.23788.2

Abstract

Background: The giant trevally, *Caranx ignobilis*, is a commercially important marine fish in Indonesia. This species was initially cultured in Aceh Province. Previous reports showed that charcoal has a positive effect on survival and feed utilization of the giant trevally. However, the effects of adding charcoal to the diet on gut and intestine biometrics has, to our knowledge, never been described.

Methods: Four activated charcoal sources were tested in this study using a completely randomized experimental design; coconut shell charcoal, mangrove wood charcoal, rice husk charcoal, and kernel palm shell charcoal. All treatments were performed with four replications. Juvenile giant trevally (average body weight, 16.52 ± 3.12 g; and average total length, 10.26 ± 0.64 cm) were stocked into the experimental tank at a density of 15 fish per tank. The fish were fed an experimental diet twice daily at 7 AM and 5 PM *ad satiation* for 42 days.

Results: Analysis of variance showed that adding charcoal to the diet had significant effects on the length and width of the foveola gastrica and villous intestine (*P* < 0.05). The greatest length and width of the foveola gastrica was recorded in fish fed an experimental diet of rice husk charcoal with average values of 311.811 ± 9.869 µm and 241.786 ± 10.394 µm, respectively. The greatest length of intestinal villous was found in fish fed the mangrove wood charcoal diet, with a value of 135.012 ± 5.147 µm, but this length was not significantly different to
that in fish fed rice charcoal and kernel palm shell charcoal. However, the greatest width of intestinal villous was recorded in fish fed the control diet (without charcoal; P < 0.05).

Conclusion: The optimal sizes of the foveola gastrica and villous intestine were found in fish fed an experimental diet with rice husk charcoal.

Keywords
Foveola gastrica, villous intestine, coconut shell, mangrove wood, rice husk, and kernel palm shell

Corresponding author: Samadi Samadi (samadi177@unsyiah.ac.id)

Author roles: Firdus F: Conceptualization, Formal Analysis, Methodology, Project Administration, Resources, Writing – Original Draft Preparation; Samadi S: Writing – Review & Editing; Muhammadar AA: Supervision, Validation, Writing – Review & Editing; Sarong MA: Supervision, Validation, Writing – Review & Editing; Muchlisin ZA: Validation, Writing – Review & Editing; Sari W: Project Administration, Software; Batubara AS: Data Curation, Software

Competing interests: No competing interests were disclosed.

Grant information: This study was supported by Kemenristekdikti, the Republic of Indonesia through the Doctoral Dissertation Scheme, Contract Number: 17/UN11.2/PP/SP3/2018.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2020 Firdus F et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Firdus F, Samadi S, Muhammadar AA et al. Gut and intestinal biometrics of the giant trevally, *Caranx ignobilis*, fed an experimental diet with difference sources of activated charcoal [version 2; peer review: 2 approved]

F1000Research 2020, 9:444 https://doi.org/10.12688/f1000research.23788.2

First published: 26 May 2020, 9:444 https://doi.org/10.12688/f1000research.23788.1
Organogenesis of the digestive system occurs as fish age, and this process is strongly dependent on the quantity and quality of food, which is related to the development of mucosal cells, amplification of apical plasma membranes, and formation of the foveola gastrica and intestinal villi. It has been hypothesized that adding activated charcoal to the diet triggers the digestive organogenesis system process. In this study, we tested four charcoal sources in the diet to evaluate the morphology of the gut and intestine of giant trevally. Information on the gut and intestinal morphology is important to understand the absorption mechanism of nutrients from the diet.

Methods

Time and site

The study was conducted at the Center for Brackish Water Aquaculture, Ujung Batee, Aceh, Indonesia from February to July 2018. The activated charcoal was characterized at the Integrated Laboratory of Calibration, Universitas Gajah Mada, Yogyakarta, Indonesia. Histological samples were prepared at the Laboratory of Histology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia.

Experimental design

A completely randomized experimental design with five treatments consisting of control and four different charcoal sources was used in this study. The experimental groups were: (A) the experimental diet without charcoal, (B) the experimental diet with 2% charcoal from coconut shell, (C) the experimental diet with 2% charcoal from mangrove wood, (D) the experimental diet with 2% charcoal from rice husk, and (E) the experimental diet with 2% charcoal from kernel palm shell. All treatments were performed with four replications.

Experimental fish

A total of 300 giant trevally juveniles of mixed sex (average body weight, 16.52 ± 3.12 g; total length, 10.28 ± 0.64 cm) were purchased from a local farmer in Lancang Barat Village, Aceh Utara District, Aceh, Indonesia. The fish were acclimatized in ponds (ponds size 2 m x 1.8 m and temperature of around 29°C) at the Center for Brackish Water Aquaculture, Ujung Batee for 2 weeks. The fish were fed an experimental diet containing 50% crude protein twice daily at 7 AM and 5 PM at 3% of body weight per day (Table 1).

Charcoal preparation and activation

The raw coconut shells, mangrove wood, rice husks, and kernel palm shells were chopped and ground. Approximately 500 g of the ground materials were placed on aluminum foil and heated in a furnace at 400°C for 1 hour. Nitrogen gas was flowed into the furnace to remove the oxygen. Then, the temperature was decreased to 30°C gradually and held for 1 hour. After 1 hour, the charcoal was removed from the furnace, sieved through a No. 40 mesh, and held in a jar before activation.
activating. A total of 100 g of sieved charcoal was taken and mixed with 400 ml of 0.2 M citric acid. The solution was stirred for 24 hours. After 24 hours, the solution was filtered through filter paper. The filtered charcoal was washed with distilled water and dried in an oven at 110°C for 24 hours.

Diet preparation
The experimental diet was formulated from both plant and animal-based protein sources, such as Ebi-shrimp meal, fish meal, blood meal, soybean meal, rice flour, and corn flour. All raw materials were subjected to a proximate analysis before use in the formulation. Three types of amino acids i.e. isoleucine, L-tryptophan, and DL-methionine were also added (Table 1). A total of 2% of the tested charcoal sources was added to the formulation (Table 1). The formulated diets were subjected to a proximate analysis before use in the experiment.

Stocking and feeding
The fish was captured randomly, measured for body weight and total length, and then distributed into 20 plastic containers (48 × 43 × 70 cm) at a stocking density of 15 fish per container. The water volume in the container was 75 L. The fish were fed an experimental diet twice daily at 7 AM and 5 PM to satiation for 42 days.

Histological sample preparation
Gastric and intestinal samples were collected at the end of the study. Three fish from each treatment were taken randomly from the experimental tanks. The fish were anesthetized with 30 mg L⁻¹ clove oil, and the abdomen of the fish was gently dissected following the procedure of Purushothaman et al. The stomach and intestines were removed with scalpel scissors and preserved in 4% formalin for 1 week. Histological sampling was carried using the paraffin method based on Osman and Caceci. The samples were dehydrated through an alcohol series and cleared in xylol. Subsequently, the gut and intestine samples were embedded in paraffin. The paraffin block was sectioned to 6 µm, and the sections were stained with hematoxylin and eosin. The size (height and width) of villi was determined using a binocular microscope (Zeiss Primo Star, Carl Zeiss Suzhou Co., Ltd., Suzhou, China) which was connected to a CCD camera and computer monitor. All efforts were made to lessen harm to the animals by complying to the guidelines of ethics animal use in research of Syiah Kuala University.

Data analysis
The qualitative gut and intestinal morphology data were subjected to one-way analysis of variance followed by Duncan’s multiple range test. The analysis was performed using SPSS.
ver. 18.0 software. The qualitative (histological) gut and intestinal data were analyzed descriptively. A P-value < 0.05 was considered significant.

Results

Adding activated charcoal to the diet significantly affected the length and width of the foveola gastrica and intestinal villi ($P < 0.05$). In general, fish fed the activated charcoal diets produced better results than those not fed the charcoal (Figure 1 and Figure 2). The best foveola gastrica morphology was obtained with the rice husk charcoal and the mean length and width of the foveola gastrica were 311.811 µm and 241.786 µm, respectively; followed by coconut shell charcoal (257.040 µm and 183.816 µm), kernel palm charcoal (229.969 µm and 169.131 µm µm), and mangrove wood charcoal (229.595 µm and 166.509 µm).

The greatest length of the villous intestine was recorded in fish fed a diet with activated charcoal than those not fed the activated charcoal (Figure 3). The greatest growth of intestinal villi was determined in the mangrove active charcoal (mean, 135.012 µm) group, but this value was not significantly different from the rice husk or kernel palm shell charcoals (Figure 4). However, the greatest intestinal villi width was obtained in the treatment without activated charcoal (38.341 µm), and this value was significantly different from the other treatments.

The qualitative (histological) gut and intestinal data were analyzed descriptively. A P-value < 0.05 was considered significant.

Discussion

The results show that adding activated charcoal to the diet of *C. ignobilis* significantly affected foveola gastrica and intestinal villi biometrics. According to Pirarat *et al.*19, activated charcoal plays a significant role stimulating the development of epithelial cells of the digestive organs. Activated charcoal in the diet functions as a decontaminating agent to eliminate pathogenic organisms and toxic compounds, such as mycotoxins20. Hence, a longer foveola gastrica and larger intestinal villi were able to provide more nutrients to be absorbed due to a larger surface area of digestive organs43. Optimal development of the alimentary tract was recorded in giant trevally juveniles fed the experimental diet containing rice husk charcoal. This was presumably due to the high hemicellulose, cellulose, and lignin contents in the rice husk charcoal. A previous report indicated that rice husk charcoal contains 29.3% hemicellulose, 34.4% cellulose, and 19.2% lignin44, while mangrove wood charcoal has 30% hemicellulose, 36% cellulose, and 28% lignin45, coconut shell charcoal has 19.27% hemicellulose, 33.61% cellulose, and 36.51% lignin46, and kernel palm charcoal has 26.27% cellulose, 12.61% hemicellulose, and 42.96% lignin47. Maria and Banu48 and Jamilatun *et al.*49 reported that the concentration and quality of charcoal depend on the composition of hemicellulose, cellulose, and lignin. The quality of the activated charcoal is higher

![Figure 1](image-url). **Figure 1.** The average of length and width of the foveola gastrica. (A) Diet without charcoal, (B) diet with coconut shell charcoal, (C) diet with mangrove wood charcoal, (D) diet with rice husk charcoal, (E) diet with kernel palm shell charcoal.
Figure 2. Histology of *foveola gastrica* from a juvenile giant trevally. (A) Diet without charcoal, (B) diet with coconut shell charcoal, (C) diet with mangrove wood charcoal, (D) diet with rice husk charcoal, (E) diet with kernel palm shell charcoal. M, tunica mucosa; SM, tunica submucosa; Mc, tunica muscularis; Le, lamina epithelialis; Lp, lamina propria; m, muscle; Lm, longitudinal muscle fibers; Cm, circular muscle fibers (Cm).

Figure 3. The average length and width of intestine villi from juvenile giant trevally. (A) Diet without charcoal, (B) diet with coconut shell charcoal, (C) diet with mangrove wood charcoal, (D) diet with rice husk charcoal, (E) diet with kernel palm shell charcoal.
when these three components increase. According to Jasman50, rice husk contains 85–95\% activated charcoal, while mangrove wood has 76\% activated charcoal51, kernel palm shell 65\% activated charcoal47, and coconut shell has 60\% activated charcoal46.

The microscopic observations showed that the intestinal villi of the fish fed the diet with activated rice husk charcoal had a more pointed shape compared to other treatments, in which the villi tended to be round and blunt. According to Guo et al.52, blunt or rounded villi probably occur due to inflammation in the intestinal mucosa, which is characterized by infiltration of neutrophils into the lamina propria. An increase of intestinal villus size is related to nutrient absorption capacity. According to Nafis et al.53, long mucosal folds increase nutrient absorption and reduce food flow movement due to reduced peristaltic contractions, which provides sufficient time to optimally absorb nutrients. The increase in intestinal villi size is strongly related to the activities of digestive enzymes, such as lactase, sucrase, alkaline phosphatase, and disaccharidase54–57.

The morphology of the intestinal villi of fish fed a diet without activated charcoal was wider and shorter than that of fish fed the diets with activated charcoal. This was probably due to impaired intestinal mucosal integrity, causing interference in nutrient absorption. According to Choc58, shortening of the intestinal villi is related to the accumulation of intestinal pathogenic bacteria, resulting in increased susceptibility to infection in the intestinal mucosal layer. This causes the digestive organs to form more secretory cells than absorbent cells, which reduces nutrient uptake59,60. The active charcoal likely acts as an adsorbent of metabolic pathogens in the intestine in the form of endotoxins and ammonia, therefore, it was able to improve intestinal function61.

Conclusions
The application of activated charcoal in the diet significantly affected the length and width of the foveola gastrica and intestinal villi of giant trevally, *C. ignobilis*. The optimal biometrics of the foveola gastrica and intestinal villi were observed in fish fed the experimental diet with activated rice husk charcoal.

Data availability
Figshare: Gut and intestinal biometrics of the giant trevally, *Caranx ignobilis*, fed an experimental diet with difference sources of activated charcoal. https://doi.org/10.6084/m9.figshare.12203525.v240.

This project contains the following underlying data:
- DATA BIOMETRIC GUT OF GIANT TREVALLY *Caranx ignobilis* Edited (XLSX). (Raw biometric data for the foveola gastrica of all fish examined in this study.)
• DATA BIOMETRIC OF INTESTINE OF GIANT TREVALLY Caranx ignobilis (carc. LXSX). (Raw biometric data for the intestinal villi of all fish examined in this study.)

Figshare: Gut and intestinal biometrics of the giant trevally, Caranx ignobilis, fed an experimental diet with difference sources of activated charcoal. https://doi.org/10.6084/m9.figshare.12269606.v2

This project contains uncropped, unprocessed images of the foveola gastrica of the giant trevally.

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Acknowledgments

We thank the Kemenristekdikti for supporting this study. All staff at the Center for Brackish Water Aquaculture in Ujung Batee who assisted with this study are acknowledged. Special thanks to Mr. Boihaqi and Maisyarah Rita for their assistance during the study.

References

1. Fishbase: Family Carangidae - Jacks and pompanos. 2020. (Accessed on 9 April 2020).

2. Wetherbee BM, Holland KN, Meyer CG, et al.: Use of a marine reserve in Kaua’i, Hawaii by the giant trevally, Caranx ignobilis. Fish Res. 2004; 67(3): 253–263.

3. Meyer CG, Holland KN, Papastamatiou YP: Acoustic telemetry reveals multi-seasonal spatiotemporal dynamics of a giant trevally Caranx ignobilis aggregation. Mar Ecol Prog Ser. 2019; 621: 185–197.

4. Acuña-Marreiro D, Salinas-De-León P: New record of two Indo-Pacific reef fish, Caranx ignobilis and Naso annulatus, from the Galápagos Islands. Mar Biodivers Rec. 2013; 6: 1–5.

5. Amarsinghe US, Wickramaratne IU, Wijeyaratne MJS: Hook selectivity of giant trevally (Caranx ignobilis) and nakedbreast trevally (Carangoides gymnostethus) (Carangidae) caught in the hook-and-line fishery off Negombo, Sri Lanka. J Aquat Sci. 2015; 11: 16–26.

6. Neethiselan N, Karthy A, Mol CB: Gillnet selectivity on the yellow fin trevally (Caranx ignobilis, Forsskal, 1775) along Thohukuduki coast, Southeast coast of India. J Exp Zool India. 2015; 18(1): 29–37.

7. Timorya Y, Abdullah A, Batubara AS, et al.: Conservation and economic status fishes in the Krueng Sabee River, Aceh Jaya District, Aceh Province, Indonesia. IOP Conf Ser: Earth Environ Sci. 2018; 216: 012044.

8. Batubara AS, Muchlisin ZA, Thamrern MY, et al.: Check list of marine fishes from Simeulue Island waters, Aceh Province, Indonesia. Acet J Anim Sci. 2017; 2(2): 77–84.

9. Abdussamad EM, Kasim HM, Balasubramanian TS: Distribution, biology and behaviour of the giant trevally, Caranx ignobilis-a candidate species for mariculture. Bangladesh J Fish Res. 2008; 12: 89–94.

10. Santos SR, Xiang Y, Tagawa AW: Population structure and comparative phylogeography of jack species (Caranx ignobilis and C. melampygus) in the high Hawaiian islands. J Hered. 2011; 102(1): 47–54.

11. Dally R, Filmalet JD, Daly CA, et al.: Acoustic telemetry reveals multi-seasonal spatiotemporal dynamics of a giant trevally Caranx ignobilis aggregation. Mar Ecol Prog Ser. 2019; 621: 185–197.

12. Alonge TO, Lawal MO, Aderolu AZ, et al.: Evaluation of soybean meal replacement with sesame seed meal using activated charcoal as an additive in the diet of African catfish juveniles, Clarias gariepinus. Int J Aquat Sci. 2019; 406: 012029.

13. Purba GY, Haryono E, Manan J, et al.: Gillnet selectivity on the yellow fin trevally, Caranx ignobilis, fed an experimental diet with difference sources of activated charcoal. https://doi.org/10.6084/m9.figshare.12269606.v2

14. Abduysyahid S, Anggoro S, Bambarng AN: The distribution of capture fisheries based small pelagic-mackerel fish species in Balikpapan waters, East Kalimantan. Int J Eng Sci. 2014; 6(2): 149–153.

15. Purba GY, Haryono E, Manan J, et al.: Gillnet selectivity on the yellow fin trevally, Caranx ignobilis, fed an experimental diet with difference sources of activated charcoal. https://doi.org/10.6084/m9.figshare.12269606.v2

16. Abu-Tarshik MA, Alzahab AS, Alkhalaf HM, et al.: Effects of dietary bamboo charcoal on growth parameters, apparent digestibility and ammonia nitrogen excretion of tiger puffer fish, Takifugu rubripes. Aquacult Sci. 2009; 57(1): 53–60.

17. Mohammad AA, Mazlan AG, Samat A, et al.: Crude protein and amino acids content in some common feeds of tiger grouper (Epinephelus fuscoguttatus) juveniles. AMCL Bioflux. 2011; 4(4): 449–504.

18. Tenny AT, Kudai A, Kasthem BM, et al.: Fish conservation status in the Galapagos Islands. Mar Ecol Prog Ser. 2011; 416: 172–182.

19. Abduysyahid S, Anggoro S, Bambarng AN: The distribution of capture fisheries based small pelagic-mackerel fish species in Balikpapan waters, East Kalimantan. Int J Eng Sci. 2014; 6(2): 149–153.

20. Purba GY, Haryono E, Manan J, et al.: Gillnet selectivity on the yellow fin trevally, Caranx ignobilis, fed an experimental diet with difference sources of activated charcoal. https://doi.org/10.6084/m9.figshare.12269606.v2

21. Michael FR, Saleh NE, Shalaby SM, et al.: Dietary added bamboo charcoal can evoke pangeniosis in growth and can reduce ammonia from culture medium. Int J Fish Aquac. 2014; 6(7): 87–93.

22. Thoa J, Tuyt J, Leonhert K, et al.: Effect of activated charcoal-supplemented diet on growth performance and intestinal morphology of Nile tilapia (Oreochromis niloticus). Thai J Vet Med. 2015; 45(1): 113–119.

23. Boonanuntanassarn S, Khaoem P, Pitaksong T, et al.: The effects of the supplementation of activated charcoal on the growth, health status and fillet composition-odor of Nile tilapia (Oreochromis niloticus) before harvesting. Aquacult Int. 2014; 22(4): 1417–1436.

24. Thu M, Koshio S, Ishikawa M, et al.: Effects of dietary bamboo charcoal on growth parameters, apparent digestibility and ammonia nitrogen excretion of tiger puffer fish, Takifugu rubripes. Aquacult Sci. 2009; 57(1): 53–60.
37. Javahery S, Nekoubin H, Moradlu AH:

35. Burr G, Gatlin D III, Ricke S:

31. Liu H, Guo X, Gooneratne R,

29. Infante JZ, Cahu C:

25. Aderolu AZ, Lawal MO, Adesola TT:

http://www.doi.org/10.6084/m9.figshare.12301124.v
giant trevally, Caranx ignobilis, fed an experimental diet with difference
reared under different stocking densities. Life Sci J. 2018; 15(4): 203–209.
Published Full Text

26. Michael FR, Helal AM: Rule of dietary activated wood charcoal on the
growth and biochemical composition of Gilthead Seabream (Sparus aurata)
recently [clarified]. Iran J. Ichthyol. 2017; 8(3): 203–209.
Reference Source

27. Samadai S, Bahrekazemi M: The effect of diets containing different
levels of active charcoal on growth performance, body composition, and
haematological parameters and possibility of heavy metals detoxification in
big sturgeon (Huso huso), Aquac. Res. 2020; 51(1): 91–101.
Publisher Full Text

28. Firdus F, Muhammadar AA, Samadi S, et al.: The effect of feeding with the
addition of activated charcoal on feed conversion and survival of juvenile
Giant Trevally (Caranx ignobilis). IOP Conf Ser: Earth Environ Sci. 2020; 425:
012051.
Publisher Full Text

29. Infante JZ, Cahu C: Development and response to a diet change of some
digestive enzymes in sea bass (Dicentrarchus labrax) larvae. Fish Physiol
Biochem. 1994; 12(6): 399–408.
Published Abstract | Publisher Full Text

30. Pryor GS, Royes JB, Chapman FA, et al.: Mannanoligosaccharides in
fish nutrition: effects of dietary supplementation on growth and
gastrointestinal villi structure in Gulf of Mexico sturgeon. N Am J Aquac.
2003; 65(2): 106–111.
Publisher Full Text

31. Liu H, Guo X, Gooneratne R, et al.: The gut microbiome and degradation
enzyme activity of wild freshwater fishes influenced by their trophic
levels. Sci Rep. 2016; 6: 24340.
Published Abstract | Publisher Full Text | Free Full Text

32. Özel OT, Çakşun I, Çakmak E: Intestine villi morphology of black sea trout
(Salmo labrax. Pallas, 1814). Limnfish. 2018; 4(1): 42–46.
Publisher Full Text

33. Infante JZ, Cahu CL: Ontogeny of the gastrointestinal tract of marine fish
larvae. Camp Biochem Physiol C Toxicol Pharmacol. 2001; 130(4): 477–487.
Published Abstract | Publisher Full Text

34. Wilson JM, Castro LFC: Morphological diversity of the gastrointestinal tract
in fishes. Fish physiology. 2010; 30: 1–55.
Published Full Text

35. Burr G, Gatlin D III, Ricke S: Microbial ecology of the gastrointestinal tract
of fish and the potential application of prebiotics and probiotics in fish
fins. World Aquaculture society. 2005; 8(4): 425–436.
Published Abstract | Publisher Full Text

36. Hosenifar SH, Roosta Z, Hajimoradloo A, et al.: The effects of Lactobacillus
acidophilus. as feed supplement on skin mucosal immune parameters,
intestinal microbiota, stress resistance and growth performance of black
swordtail (Xiphophorus helleri). Fish Shellfish Immunol. 2015; 42(2):
523–538.
Published Abstract | Publisher Full Text

37. Javahery S, Nekoubin H, Moradlu AH: Effect of anaesthesia with clove oil
in fish (review). Fish Physiol Biochem. 2012; 38(6): 1545–1552.
Published Abstract | Publisher Full Text

38. Purushothaman K, Luo D, Saui JM, et al.: Morpho-histological characterisation
of the alimentary canal of an important food fish, Asian seabass (Lates
calcarifer). Peer. 2016; 4: e2237.
Published Abstract | Publisher Full Text | Free Full Text

39. Osman AHK, Caceci T: Histology of the stomach of Tilapia nilotica (Linnaeus,
1758) from the River Nile. J Fish Biol. 1991; 38(2): 211–223.
Publisher Full Text

40. Muchlisin ZA, Firdus F, Samadi S, et al.: Gut and intestinal biometrics of the
giant trevally, Caranx ignobilis, fed an experimental diet with difference
sources of activated charcoal. figshare. Dataset. 2020.
http://www.doi.org/10.6084/m9.figshare.12203525.v2

41. Muchlisin ZA, Firdus F, Samadi S, et al.: Gut and intestinal biometrics of the
giant trevally, Caranx ignobilis, fed an experimental diet with sources of activated charcoal. figshare. Figure. 2020.
http://www.doi.org/10.6084/m9.figshare.12301124.v2

42. Muchlisin ZA, Firdus F, Samadi S, et al.: Gut and intestinal biometrics of the
giant trevally, Caranx ignobilis, fed an experimental diet with difference
sources of activated charcoal. figshare. Figure. 2020.
http://www.doi.org/10.6084/m9.figshare.12203525.v2

43. Quayyum MA, Jahan R, Jahan N, et al.: Effects of bamboo charcoal added feed
on reduction of ammonia and growth of Pangasius hypophthalmus. J Aquac.
Res Dev. 2014; 6(6): 1–5.
Published Full Text

44. Maryono M, Sudding S, Rahmawati R: Preparation and quality analysis of
coconut shell charcoal briquette observed by starch concentration. Jurnal
Chemica. 2013; 14: 74–83.
Published Full Text

45. Jamilatun S, Setyawan M, Salamah S, et al.: Pemanfaatan arang aktif paraik
sama dengan aktivator natrium karbonat (Na2CO3) 5% untuk mengurangi kadar
besi (Fe) dalam air ledeng. Jurnal Teknologi Hasil Hutan. 2008; 23: 99–104.
Published Full Text

46. Maryono M, Sudding S, Rahmawati R: Preparation and quality analysis of
coconut shell charcoal briquette observed by starch concentration. Jurnal
Chemica. 2013; 14: 74–83.
Published Full Text

47. Sunardi S, Nurliani N: Pemanfaatan arang aktif sekam paraik padi dengan
aktivator natrium karbonat (Na2CO3) 5% untuk mengurangi kadar
besi (Fe) dalam air ledeng. Jurnal Teknologi Hasil Hutan. 2008; 23: 99–104.
Published Full Text

48. Maria NSL, Banu ASS: Activated carbon from rice husk for treating
dye water waste. International Journal of Green Chemistry. 2015; 1(1): 1–9.
Reference Source

49. Jambilat S, Setyawan M, Salmah S, et al.: Pembuatan arang aktif dari
tempurung kelapa dengan aktivasi sebelum dan sesudah piorisasi. 2015.
Reference Source

50. Jasman J: Uji coba arang aktif sekam padi sebagai media filtrasi dalam
menurunkan kadar Fe pada air sumur bor di Asrama Jurusan Kesehatan
Lingkungan Manado. Jurnal Kesehatan Lingkungan. 2011; 1(1): 49–53.
Reference Source

51. Jauhari A: Penanggulangan kadar besi (Fe) air sumur menggunakan
arang aktif kayu bakau (Rhizophora mucronata.Lamck) dengan aktivator
natrium karbonat. Jurnal Hutan tropis. Borneo. 2009; 28: 321–331.
Published Full Text

52. Guo J, Luo Y, Luo AC, et al.: Adsorption of hydrogen sulphide (H2S) by
activated carbons derived from oil-palm shell. Carbon. 2007; 45(2): 330–336.
Published Full Text

53. Naifis M, Zainuddin Z, Mayynthia D: Gambaran histologi saluran pencernaan
ikan gabus (Channa striata). Jimvet. 2017; 1(2): 196–202.
Reference Source

54. Samanya M, Yamauchi K: Morphological changes of the intestinal villi
in chickens fed the dietary charcoal powder including wood vinegar
compounds. J Poult Sci. 2001; 38(4): 289–301.
Published Full Text

55. Gilmore MS, Ferretti JJ: The thin line between gut commensal and pathogen.
Science. 2003; 299(5615): 1999–2002.
Published Full Text

56. Yamauchi K: Review of a histological intestinal approach to assessing the
intestinal function in chickens and pigs. Anm Sci J. 2007; 78(4): 356–370.
Published Full Text

57. Šabatková J, Kumprecht I, Zobač P, et al.: The probiotic BioPlus 2B as an
alternative to antibiotics in diets for broiler chickens. Acta Veterinaria Brno.
2006; 77: 569–574.
Published Full Text

58. Chot C: Managing gut health through nutrition. Br Poult Sci. 2009; 50(1):
9–15.
Published Full Text

59. McLean E, Donaldson EM: Absorption of bioactive proteins by the
gastrointestinal tract of fish: a review. J Aquat Anim Health. 1990; 2(1): 1–11.
Published Full Text

60. Ringo E, Olsen RE, Mayhew TM, et al.: Electron microscopy of the intestinal
microflora of fish. Aquaculture. 2003; 227(1-4): 395–415.
Published Full Text

61. Mulyono P, Wibisono W: Kinetika adsorpsi amonia dalam air dengan karbon
aktif. Jurnal Media Teknik. 2007; 2: 26–42.
Reference Source
Open Peer Review

Current Peer Review Status: ✔ ✔

Version 2

Reviewer Report 13 October 2020

https://doi.org/10.5256/f1000research.28490.r72869

© 2020 Salam A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

✔ Abdus Salam
Department of Aquaculture, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, Bangladesh

Gut and intestinal biometrics of the giant trevally, *Caranx ignorabilis*, fed an experimental diet with different sources of activated charcoal.

The title should be different not difference. Others are fine.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Aquaculture, Aquaponics, fish nutrition

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 10 July 2020

https://doi.org/10.5256/f1000research.26249.r65152

© 2020 Salam A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

✔ Abdus Salam
Department of Aquaculture, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh,
Bangladesh

- It seems the manuscript has potentials in the scientific world, and work was done and formatted with care. The abstract is concise but well written.

- The introduction has supported with up to date literature and aim and objectives are well described.

- Results supported with details and tables and figures were provided.

- The discussion was also well described and literature supported.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Aquaculture

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 15 June 2020

https://doi.org/10.5256/f1000research.26249.r63939

© 2020 Samanta S. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

✅ Srikanta Samanta
The paper has communicated a short but interesting study on the beneficial effects of adding different types of charcoal as a dietary component of giant trevally. The addition of charcoal has significantly improved the gastro-intestinal microstructures including foveola gastrica & villous intestine and thereby, has the potentiality to improve the fish nutrition and health. The rice husk was recorded as the best source of charcoal with respect to 3 other sources including coconut shell, mangrove wood, and kernel palm shell. However, some deficiencies have been noticed which needs rectification.

1. In Abstract: This species was---: Better to use The species was---

2. Four activated charcoal sources were tested in this study -----but in Experimental Design mentioned ----A completely randomized experimental design with five different charcoal sources----

3. In Abstract: average total length, 10.26 ± 0.64 cm, In Experimental fish : total length, 10.28 ± 0.64 cm

4. ponds size 2 x 1.8 m. No unit given after 2. It may be 2 m X 1.8 m

5. (see Table 1): see may be deleted

6. Table 1 : CaCo3 : CaCO3

7. In Abstract: and 241.786 μm --- In Figure 1 241.768

8. Figure 2 and 4: Histological sample ---- may be replaced by ---- Histology

9. Sentence to be modified: Hence, a longer foveola gastrica and larger intestinal villi provide a larger surface area to absorb nutrients43.

10. Sentence to be modified: A previous report indicated that rice husk charcoal contains 39% hemicellulose, 44% cellulose, and 30% lignin44: Since the addition of 3 parameters are giving values >100%, you may mention "up to" otherwise people will not understand.

11. Sentence to be modified/changed: The active charcoal likely acts as an adsorbent of metabolic pathogens in the intestine in the form of endotoxins and ammonia to improve intestinal function61. The sentence to be rewritten to increase clarity.

12. It has been noticed that the SE values have gone out of the bar area. Please check about it and reason behind. For the paper, the fish growth parameters may be given as supplements for better clarity.

Is the work clearly and accurately presented and does it cite the current literature?

Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Aquatic Chemistry

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 22 Jul 2020

Samadi Samadi, Syiah Kuala University, Banda Aceh, Indonesia

Dear Prof. Srikantha Samanta,
Thank you very much for your comment and we will revise the article based on your suggestions.
Best regards,
Samadi

Competing Interests: No competing interests were disclosed.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com