Microbiome and morbid obesity increase pathogenic stimulus diversity

Björn L.D.M. Brücher1,2,3,* Ijaz S. Jamall1,2,4

1 Theodor-Billroth-Academy®, Germany, USA
2 INCORE, International Consortium of Research Excellence of the Theodor-Billroth-Academy®, Germany, USA
3 Department of Surgery, Carl-Thiem-Klinikum, Cottbus, Germany
4 Risk-Based Decisions Inc., Sacramento, CA, USA

Received 22 March 2018, Accepted 21 November 2018

Abstract — The microbiome, the relationship between environmental factors, a high-fat diet, morbid obesity, and host response have been associated with cancer, only a small fraction of which (<10%) are genetically triggered. This non-genetic association is underpinned by a worldwide increase in morbid obesity, which is associated with both insulin resistance and chronic inflammation. The connection of the microbiome and morbid obesity is reinforced by an approximate shift of about 47% in the estimated total number of bacteria and an increase from 38,000,000,000,000 in a reference man to 56,000,000,000,000 in morbid obesity leading to a disruption of the microbial ecology within the gut. Humans contain 6,000,000,000 microbes and more than 90% of the cells of the human body are microorganisms. Changes in the microflora of the gut are associated with the polarization of ion channels by butyrate, thereby influencing cell growth. The decrease in the relative proportion of Bacteroidetes together with a change in the fermentation of carbohydrates by bacteria is observed in morbid obesity. The disruption of homeostasis of the microflora in the obese changes signaling and crosstalk of several pathways, which results in inflammation while suppressing apoptosis. The interactions between the microbiome and morbid obesity are important to understand signaling and crosstalk in the context of carcinogenesis. This disruption of homeostasis increases remodeling of the extracellular matrix and fibrosis followed by the none-resolvable precancerous niche as the internal pathogenic stimuli continue. The chronic stress explains why under such circumstances there is a greater proclivity for normal cells to undergo the transition to cancer cells.

Keywords: Cancer, Carcinogenesis, Signaling, Chronic inflammation, Fibrosis, Precancerous niche, Somatic mutation theory, Cell transition, Microbiology, Microbiome, Microflora, Virology, Viriome

Introduction

Microbiome research is changing rapidly, as stated by the American Society of Microbiology (ASM) based on new technologies, globally relevant infectious diseases, and increased resistance to antibiotics [1,2]. Understanding the impact of microbiology on evolution and environment is significant and cultures of microbes may be transformed to the virtual microbial cell and we still do not know how artificial intelligence may impact our future understanding of microbiology- and metabolic-driven pathways or their global linkages. Despite the numbers of microbes-driven impact on our understanding of various diseases [3–5], it might not be an understatement that microbiology has driven and still influences life and health [6,7].

Changes in the microflora of the gut are associated with the polarization of ion channels by butyrate, thereby influencing cell growth. The microbiome, the relationship between environmental factors, a high-fat diet, morbid obesity, and host response have been associated with cancer, only a small fraction of which (<10%) are genetically triggered. This non-genetic association is supported by a worldwide increase in morbid obesity, which is associated with both insulin resistance and chronic inflammation. The disruption of homeostasis [8] of the microflora in morbid obesity changes signaling and crosstalk of several pathways, which results in inflammation while suppressing apoptosis. The interactions between the microbiome and morbid obesity are important to understand signaling and crosstalk in the context of carcinogenesis. This disruption of homeostasis increases remodeling of the extracellular matrix and fibrosis followed by the none-resolvable

*Corresponding author: b-bruecher@gmx.de

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
precancerosous niche (PCN) as the internal pathogenic stimuli with pro-inflammatory mediators ensues [9]. The chronic stress response by the body explains why there is a greater proclivity for normal cells to undergo the transition to cancer cells.

Microbiome (Tab. 1)

The reality in terms of the numbers of microbes on earth with its mass generation time and time on Earth had been provided recently by the American Society of Microbiology (ASM) [1]. Humans did not exist while microbes collective experience creating and defeating antibiotics for 20 million times longer than Homo sapiens have known that antibiotics existed [2]. Resistance against antibiotics will occur and any attempt to enhance the immune system will be limited in utility – just a complementary approach as pointed out by Spellberg et al. The numbers provided are amazing as more than 50 quadrillion metric tons microbial cells, 5 \times 10^{22}

Table 1. Microbes in humans and on earth in accordance to references [1,2].

Microbes	Humans	Factor	
On Earth	5 \times 10^{14}	6 \times 10^6	\sim 10^{22}
Mass (metric tons)	5 \times 10^{16}	3 \times 10^8	\sim 10^8
Generation time	30 min	30 years	\sim 5 \times 10^5
Time on Earth/years	3.5 \times 10^9	4 \times 10^5	\sim 10^4

the gut in morbid obesity associated with a decrease in the relative proportion of Bacteroidetes [7].

The numbers provided reveals that de-emphasizing the focus on the host (human body) to a genetic reservoir is not enough. The microbiome with its diversity influences our life and often serves as pathogenic stimuli initiating chronic inflammation [8]. The diversity of the microbiome can result in a dysbiosis triggering a disruption of homeostasis of pro- and anti-inflammatory mediators [9]. Of course, the importance of oral hygiene is well known to be associated with periodontitis, oral plaques, etc. However, affecting the host should not be seen within a localized context as chronic inflammation has much wider effects.

The gram-negative anaerobic Tanneraella forsythia induces activation of inflammatory cells with increase of interleukin 6 (IL-6), and its bacterial entry is dependent on phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt, PKB), and host Ras-related C3 botulinum toxin substrate 1 (Rac1) guanosine-5’-triphosphate (GTP)ase, and its endocytosis, which needs lipid microdomains and clathrin [10].

T. forsythia expresses two sialidases, SiaH and NanH, which are important in bacterial colonization [11]. Oral microbiome composition alters fatty acid metabolism [12] and are not just associated with oral cancer development [13] but also are suspected of promoting esophageal [14,15], pancreatic cancer [16,17], or liver cancer [18]. T. forsythia “contributes to the growth of a partner species, Fusobacterium nucleatum, in co-biofilms” [19]. F. nucleatum is associated with the precancerosous serrated adenomas of the proximal colon [20] and various cancers [21,22].

We assert that the renaissance in microbiology for cancer research has commenced and that it needs an increased effort with close interdisciplinary impact and collaboration between various disciplines.

The Human Microbiome Project (HMP) showed that there is no single healthy microbiome [23] and that there might also be no unhealthy microbiome. The gut microbiome is associated with metabolic signaling pathways such as tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ) through palmitoleic acid and tryptophan metabolism [24]. The palmitoleic acid metabolism was associated with cancer as “...significantly lower content of palmitoleic acid compared to their counterpart non-stem cancer cells” were shown [25].

An explanation was suggested by the demonstration that distant bioelectric signaling suppressed cancer growth by misexpression of hyperpolarizing ion channels and that this effect was mediated by the short-chain fatty acid, butyrate, which is usually produced in the colonic mucosa through bacterial fermentation of carbohydrates [26]. If these findings are reproducible, one plausible way to prevent cancer might be to re-program gut microorganisms to produce butyrate. However, there is evidence that different single components of the microbiome may trigger carcinogenesis through the recently proposed six-step sequence which includes pathogenic biological
stimuli that provoke subclinical chronic inflammation leading to fibrosis with remodeling of the extracellular matrix (ECM) resulting into a precancerous niche (PCN) [27].

Proteomic analysis can help to identify biological processes that could be of importance in carcinogenesis [28]. *Schistosoma haematobium* was associated with bladder cancer using proteomic profiling [29]. Products of the nematode, *Anisakis pegreffii*, were shown to upregulate heat shock protein 70 (Hsp70) with a corresponding decrease in apoptosis [30].

There is also an attempt to use RNA profiling data using differential expression to assess if these data “are sufficient to make the normal and redirected gene expression states indistinguishable from each other but radically different from the tumor state” [31].

It has been proposed that multitargeted cancer therapy against multiple markers could be of future benefit [32]. However, such an approach using RNA would need to differentiate between the different types of RNA. For example, transfer RNAs (tRNAs; synonym: soluble RNA, sRNA) help decode messenger RNA (mRNA) to form a protein and each codon represents a particular amino acid that is recognized by a specific tRNA. tRNA carries an amino acid to the ribosome (directed by a three-nucleotide-sequence in a mRNA) and one tRNA end matches the genetic code (called an anticodon). The involvement of tRNA pathways in cell proliferation and tumorigenesis was recently shown by analyzing breast and prostate cancer cell lines [33]. Furthermore, some 80% of RNAs are short-lived and exist for less than 2 min [34]. This is relevant as protocols used to investigate RNA would have to stipulate the stability of the RNA used, and if stored or frozen, RNA pellets were reconstituted after fluids and/or tissue samples were collected and thus provide information about the quality of material used.

Western diets (typically high in animal protein, sugar, starch, fat, and low in fiber) can trigger chronic systemic inflammation [35] and influence the composition of the intestinal microbiota [36]. The composition of the microbiome in humans is associated with cancer. A greater gut bacterial diversity was tied to slower metastatic melanoma progression, while the patient group with higher bacterial diversity had not reached the median progression free survival (PFS) (more than half had not even progressed), whereas those with intermediate and low bacterial diversity had median PFS of 232 and 188 days, respectively [37]. Patients responding to immunotherapy showed increased levels of *Ruminococaceae*, while non-responding patients showed enriched *Bacteroidales*. This was interpreted as relevant since patients who had a high abundance of the genus *Faecalibacterium* (of the *Ruminococaceae* family and *Clostridiales* order) in their gut exhibited significantly prolonged PFS (median not reached) as compared to patients who had a low abundance (median PFS of 242 days). Moreover, the greater abundance of *Bacteroidales* was associated with more rapid disease progression in melanoma, with high abundance within the gut microbiome associated with significantly reduced PFS (median 188 days) compared to low abundance (median PFS of 393 days). Additionally, immunotherapy responders showed high levels of the beneficial *Clostridiales/Ruminococaceae*, including greater T cell penetration into tumors and higher levels of circulating T cells that kill abnormal cells. Those with abundant *Bacteroidales* had higher levels of circulating regulatory T cells, myeloid-derived suppressor cells, and a blunted cytokine response resulting in a dampening of antitumor immunity.

Pattern recognition receptors (PRRs) include the membrane-bound Toll-like receptors (TLRs) and C-type lectins (CTLS) and are expressed in macrophages, monocytes, neutrophils, epithelial cells and cells of the innate immune system that stimulate inflammation [38]. Receptors recognizing pathogens contain NOD-like receptors (NLRs) and were reported as a novel class of PRRs. NLRs are sensors of pathogen-associated molecular patterns (PAMPs) and host-derived danger signals; danger-associated molecular patterns (DAMPs) lead to an inflammatory response (reviewed in [39–41]). NLRs contain a NOD-, leucine-rich repeat (LRR) and pyrin domain-containing 1 and include NACHT, LRR and PYD domain-containing protein 3 (NLRC3, NALP3), NLR family CARD domain-containing protein 4 (NLRC4), NACHT, LRR, and PYD domain-containing protein 6 (NLRC6), NACHT, LRR and PYD domain-containing protein 7 (NLRC7), NACHT, LRR and PYD domain-containing protein 12 (NLRC12) or NLRC4 [42].

In encephalomyelitis NLRC12 negatively regulates the nuclear factor-kappa B (NF-κB) pathway suppressing inflammation [43].

In NLRC12-deficient mice, NF-κB activation is increased in association with colitis-associated colon cancer [44], which is in accordance with low-expressed NLRC12 in precancerous ulcerative colitis [45]. Human adipose tissues of obese patients have decreased NLRC12 levels and knockout results in weight gain and chronic inflammation [46]. NLRC12 maintained colon microbiome diversity, attenuated colon inflammation, and promoted specific microbes that reversed gut inflammation [45]. Thus, NLRC12 obesity protection is dependent on the microbiome [46]. NLRC12 was reported as a regulator of homeostasis for inflammation and NF-κB signaling pathway and crosstalk [47], but the microbiome data reviewed [45,46] may provide evidence about the important influence of the microbiome with dysbiosis on chronic inflammation, obesity, and the consequent disruption of homeostasis.

Colonic microbiota investigated together with host response genes in fecal and mucosal samples from colorectal cancer (CRC) patients compared to patients with polyps and healthy controls revealed microbiota composition in regard to localization of the primary tumor [48]. The authors stratified the patients in accordance with tissue-associated microbial co-abundance Groups (CAGs). Concerns were raised in terms of microbiota based on cancer site due to the wide variability in the microbiota data [49] and the authors reanalyzed their data in accordance to CAGs and reported that two CAGs at
surgery were associated with longer survival in CRC together with an association of “pre-surgery faecal microbiota with stability of the microbiota after surgery” [50]. The same group investigated microbiota in oral swabs and compared it to results from colonic mucosa and stool probes in CRC and stated that “high abundance of Lachnospiraceae was negatively associated with the colonisation of colonic tissue with oral-like bacterial networks suggesting a protective role for certain microbiota types against CRC, possibly by conferring colonisation resistance to CRC-associated oral taxa and possibly mediated through habitual diet” [51]. However, investigating microbiota is not enough [52] as dynamic changes need to be considered [53].

However, the approach of the disruption of signaling homeostasis-induced crosstalk in the carcinogenesis paradigm “Epistemology of the origin of cancer” is strongly supported by the evidence provided within the various publications of this Special Issue and in terms of the microbiome as dysbiosis with changes in inflammation together with cancer development along the adenoma-carcinoma sequence has been provided [54] without any mutation.

The microbiome is studied in an effort to understand morbid obesity as a metabolic condition beyond just caloric intake [55]. In this context, it has been shown that microbial flora from the cecum of obese mice when introduced into germ-free mice resulted in increased obesity even with lower food consumption while the reverse, introducing bacterial flora from lean mice, resulted in weight loss [56]. Furthermore, it has also been shown that a relationship exists between environmental factors and the host insofar as a high-fat diet appears to promote intestinal cancers leading to the hypothesis that antibiotics might block or otherwise mitigate such cancers. More recently, it was shown that the changes in the composition of the intestinal flora (=dysbiosis) may be causally responsible for this observed increase in intestinal cancer incidence [57]. In all likelihood, chronic inflammation induced by morbid obesity could lead to fibrosis with consequent remodeling of the ECM, which in turn, facilitates the transition of a normal cell to a cancer cell.

Morbid obesity

Morbid obesity is associated with various diseases which, in turn, are themselves associated with chronic inflammation such as is known for cardiovascular diseases, noninsulin-dependent diabetes mellitus (NIDDM), osteoarthritis, and cancer [55]. Lack of physical activity combined with excessive caloric intake along with other factors such as socioeconomic variables, as well as psychiatric and/or metabolic diseases are some of the explanations given for the rise of morbid obesity [58]. Genetics can explain an estimated 7% of obesity [59].

The body mass index (BMI) does not allow one to distinguish lean body mass from fat body mass. Patients with coronary artery diseases or heart failure over 65 years of age with moderate obesity (BMI = 30–35) compared to normal weight people (BMI = 20–25) and morbidly obese (BMI > 35) revealed a decrease in mortality [60]. This paradox was published first in 1999 ([61], reviewed in [62]) and has so far not been satisfactorily explained.

Morbid obesity can be viewed as an internal pathogenic stimulus triggering carcinogenesis because of its association with subclinical inflammation in adipose tissue [63–66] even though its precise role is not fully understood. Diagnostic upper gastrointestinal endoscopies in morbidly obese patients revealed that some 80% exhibit pathologic findings in spite of the fact that most such patients are asymptomatic [67].

Obesity has been strongly associated with precancerous lesions and conditions such as colon adenomas [68–86], monoclonal gammapathy [87–98], chronic pancreatitis [99–102], or inflammatory bowel disease (IBD) [103–106]. Observed risks of cancers associated with obesity include breast [107–111], colorectal [112–115], pancreatic [99–102,116], endometrial [117], prostate [118], renal cell carcinoma [119], and lymphoma or leukemia [87–98,120]. Furthermore, obesity is linked to multiple cancers and a nationwide study in Germany suggested preventive potential in these obesity-associated cancers [121].

The paradox that obesity was also reported with nonsignificant associations of obesity and patient outcomes in lymphoma [122] or with improved survival in lymphoma [123–125] is not well understood. Otherwise, bariatric surgery with induced weight loss resulted in regression of hepatocellular carcinoma (HCC) [126], highlighting the significance of morbid obesity with chronic inflammation in carcinogenesis.

Obesity increases resistance against anti-vascular endothelial growth factor (VEGF) drugs due to the ongoing pro-inflammatory cytokine IL-6 and the profibrotic mediator fibroblast growth factor 2 (FGF-2) which result in decreased sensitivity against anti-VEGF therapy [127]. We contend that the ongoing chronic inflammation continuously promotes the creation of the PCN. Furthermore, it should be noted that metformin inhibited FGF-2 in the experiments (Figs. 7a and 7b of Ref. [127] not shown here). ECM remodeling activated by obesity with its underlying chronic inflammation suggests that obesity or chronic inflammation is not enough as it needs fibrosis, which is subsequently remodeled for aggressive cancer phenotype cells that show enhanced growth and invasiveness [128].

One plausible explanation might be to examine how chronic inflammation induced by morbid obesity explains its association with carcinogenesis as has been previously suggested to examine how nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling plays a crucial in carcinogenesis [27], and how inhibition of the pro-inflammatory inhibitor of kappa B kinase beta (IKKβ)/NF-κB signaling has been shown to be a central pathway in regard to high-fat diet-induced obesity and glucose intolerance [129]. Exogenous fat-induced insulin resistance develops by endogenous fatty acid synthesis in macrophages through modulation of the plasma membrane and through chronic inflammation [130].
Inflammation in adipose tissue (Fig. 1) occurs with early-onset insulin resistance by phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma isoform (PI3Kγ) activity in leukocytes; PI3Kγ affects macrophage gene expression by non-cell autonomous mechanisms, e.g., autocrine cytokines [131]. Inflammation in obesity is activated by G-protein coupled receptor family C group 5 member B (GPRC5B) in adipocytes linking GPRC5B diet-induced obesity to type 2 diabetes (T2D) [132]. Morbid obesity-induced inflammation facilitates cancer progression by neutrophils that are recruited by adipocyte-secreted interleukin beta 1 (IL-β1) resulting in chronic inflammation, which, if persistent, can result in fibrosis and the development of the PCN [133].

The cytokine chemokine (C-X-C motif) ligand 1 (CXCL1) (synonyms: melanoma growth-stimulating activity alpha, GRO1, GROα; neutrophil-activating protein 3 (NAP3), fibroblast secretory protein (FSP)), is released by macrophages, neutrophils, and the epithelium. CXCL1 binds neutrophils at sites of inflammation, is activated by RAS [134], and is reported to be a mitogen [135].

T2D is associated with β cell stress and chronic inflammation as well as subclinical pancreatitis, which increases CXCL1 and triggers proliferation in the human pancreatic ductal epithelium [136]. Interleukin 17 (IL-17) induces the expression of regeneratin islet-derived (REG3)β, which is a mediator of pancreatitis during acinar-to-ductal metaplasia and in early pancreatic intraepithelial neoplasia (PanIN) lesions. The REG3β glycoprotein130 (gp130)/Janus kinase 2 (JAK2)/signal transducers and activators of transcription (STAT3)-dependent pathway decreases sensitivity to cell death, thereby promoting cell growth. The genetic inactivation of REG3β in the context of Kras-driven pancreatic ductal adenocarcinoma (PDAC) resulted in reduced PanIN formation, an effect that could be rescued by the administration of exogenous REG3β [137].

Plasminogen activator inhibitor-1 (PAI1) is produced in the endothelium of blood vessels and in adipocytes and is increased in obesity as well as in cancers. Interestingly, PAI1 promotes fibrosis (Fig. 1) by the pathologic disruption of connective tissue and is increased by Angiotensin II and associated with another chronic disease, atherosclerosis.

ORM1 (synonyms: α1-acid glycoprotein, orosomucoid, α1Agp, AGP, AAG) is synthesized in hepatocytes as an acute phase protein and stabilized by interaction with the PAI1 inhibitory activity [138]. Thus, morbid obesity is associated with an increase of PAI1 by adipocytes, is an inhibitor of fibrolysis (Fig. 1), and can promote fibrosis, which is also increased by Angiotensin II. These factors may serve to explain why morbid obesity is associated with fibrosis [139]. Furthermore, adipocytes can affect a continuous increase of PI3K and chronic PI3K as well as transforming growth factor beta 1 (TGF-β1) and these, in concert, result in Akt-mediated SNAIL-stabilization [140] necessary for generating metalloproteinase 1 (MMP-1) and metalloproteinase 7 (MMP-7). There is also a decrease of the forkhead box protein O3a (FOXO3a) associated with increases of Bel-2-like protein 11 (Bim) and p53 upregulated modulator of apoptosis (PUMA), inhibiting apoptosis [141]. Consequently, anti-apoptotic proteins such as caspase-8 inhibitor and CASP8 and Fas-associated protein with death domain (FADD)-like apoptosis regulator (FLIP) are upregulated [142], which result in lowered internal protection against oxidative stress.

The gene for leptin was discovered by Friedman and coworkers in 1994 [143]. Leptin is produced by adipocytes and promotes the synthesis of α-melanocyte-stimulating hormone (α-MSH) within the median hypothalamus resulting in the inhibition of hunger. It further counteracts the hunger promoter, 36-amino acid neuropeptide (neuropeptide Y, NPY), within the lateral hypothalamus [144–146], which is released in the gut and the hypothalamus and N-arachidonoylthanolamine (anandamide, AYE) [147] and is synthesized by N-arachidonoyl phosphatidylethanolamine (NAPE) through an N-acyltransferase enzyme stimulating satiety [148].

Physiological levels of leptin result in selective suppression of TNFα in macrophage subpopulations by food withdrawal as a centrally mediated anti-inflammatory effect, which is incompletely understood [149].

Paradoxically, leptin has an anti-hunger effect, yet increased levels are found in morbid obesity compared to normal-weight individuals [150], an observation of leptin resistance akin to insulin resistance seen in diabetics. Leptin is similar to the inflammatory cytokine, IL-6 [151], and has an inflammatory [152] and pro-carcinogenic effect via the Janus kinase/signal transducers and activators of transcription (Jak/STAT3) pathway, PI3K/Akt pathway, through up-regulating cyclin-dependent kinase 2 (cdk2, cell division protein kinase 2) and cyclin D1, activating the mitogen-activated protein kinase (MAPK) pathway (through extracellular signal-regulated kinase 1 (Erk1) and extracellular signal-regulated kinase 2 (Erk2) phosphorylation) and also by stimulating the STAT3 pathway and up-regulation of c-myc (one target gene of STAT3) ([153], reviewed in [154]).

Leptin results in a six-fold reduction of apoptosis, an increase in angiogenesis [155], and increases in cultured cytrophoblastic cells in a dose-dependent manner with metalloproteinase 2 (MMP-2), and fetal fibronectin (fFN), which itself promotes and elevates metalloproteinase 9 (MMP-9) activity ([156,157], reviewed in [155]). Apoptosis is reduced through stimulation of NF-κB signaling ([158], reviewed in [155]). Apoptosis is inhibited by leptin in chondrocytes through upregulation of lysyl oxidase-like 3 (LOXL3) mRNA expression via activation of mammalian target of rapamycin complex 1 (mTORC1) [159] (Fig. 1), while the lysyl oxidase inhibitor, β-aminopropionitrile (BAPN), reduces leptin’s pro-fibrotic effects and ameliorates cardiovascular remodeling in diet-induced obesity in rats [160]. Otherwise, leptin-replacement therapy results in cancer-related adverse effects [161].
Epistemology of the origin of cancer

Fig. 1. Simplified scheme of the disruption of signaling homeostasis-induced crosstalk in the carcinogenesis paradigm "Epistemology of the origin of cancer" focusing on energy homeostasis and morbid obesity. The scheme consists of a six-step sequence: (1) a pathogenic stimulus followed by (2) chronic inflammation from which develops (3) fibrosis with associated remodeling of the cellular microenvironment; and from these changes a (4) precancerous niche (PCN), a product of fibrosis, with remodeling by persistent inflammation, develops, which triggers the deployment of (5) a chronic stress escape strategy, and when this fails resolve it by (6) normal cell to cancerous cell transition (NCCCT) by PCN-induced cell matrix stress. This figure was published as original illustration in paper 3 of this Special Issue - Disruption of homeostasis-induced signaling and crosstalk in the carcinogenesis paradigm "Epistemology of the origin of cancer" entitled "Chronic inflammation evoked by pathogenic stimulus during carcinogenesis". We point out, that to the complexity of the content of the Special Issue the original and/or modified version of the original illustration was republished within the following papers of the Special Issue: paper 5 "Microbiome and morbid obesity increase pathogenic stimulus diversity", paper 6 "Precancerous niche (PCN), a product of fibrosis with remodeling by incessant chronic inflammation", paper 7 "Metformin alters signaling homeostasis", paper 8 "Transition from normal to cancerous cell by precancerous niche (PCN) induced chronic cell-matrix stress" and paper 9 "NF-κB signaling and crosstalk during carcinogenesis". Nomenclature: The nomenclature common abbreviations are in bold, followed by the common trivial names (if available) and (if available) by the name in accordance to the International Union of Pure and Applied Chemistry (IUPAC): PCN precancerous niche; CSES chronic stress escape strategy; NCCCT normal cell to cancerous cell transition; SpH K sphingosine kinase isofrom; S1P sphingosine-1-phosphate; IL-6 interleukin 6; IL-8 interleukin 8; TNFα tumor necrosis factor alpha; IFNγ interferon gamma; ALOX12 12-lipoxygenase, 12-LOX, 12S-LOX, arachidonate 12-lipoxygenase 12S type; ALOX5 5-lipoxygenase, 5-LOX, arachidonate 5-lipoxygenase; 12-HETE 12-hydroxyeicosatetraenoic acid; LTD4 leukotriene B4, (5Z,6E,9Z,11Z,14Z)-5,12-dihydroxyicos-6,8,10,14-tetraenoic acid; LTC4 leukotriene C4, (5S,6Z,7E,9E,11Z,14Z)-5,12-dihydroxyicos-6,8,10,14-tetraenoic acid; LTA4 leukotriene A4, 4-((1E,3E,5Z,8Z)-tetradeca-1,3,5,8-tetraenyl)oxiran-2-yl]butanoic acid; LT4 leukotriene D4, (5Z,6E,9Z,11Z,14Z)-5,12-dihydroxyicos-6,8,10,14-tetraenoic acid; PGG2 prostaglandin G2, (1S,5R,6R)-5-(5Z,8E,11Z)-1,2-prostanoyl-2,6,8,10,12-pentadecanoeic acid; PGE2 prostaglandin E2, (1S,5R,6R)-5-(5Z,8E,11Z)-1,2-prostanoyl-2,6,8,10,12-pentadecanoeic acid; cytochrome P450 isoforms; MDA malondialdehyde, propanedial; TXA2 thromboxane A2, (2S,3R,5S)-5-(5Z,8E,11Z)-1,2-prostanoyl-2,6,8,10,12-pentadecanoeic acid; CYP* cytochrome P450 isoforms; 20-OH-PGE2 20-hydroxy prostaglandin E2; 20-HETE 20-hydroxyeicosatetraenoic acid, (5Z,8Z,11Z,14Z)-20-hydroxyicos-5,8,11,14-tetraenoic acid; SOX [sex-determining region Y (Sry) box-containing] transcription factor family; IL-β1 interleukin beta 1; IL-33 interleukin 33; ROS reactive oxygen species; CXC CC chemokine receptors; αSMAD alpha-smooth muscle actin; mir21
The lipogenic enzyme, acetyl-CoA carboxylase 1 (ACC1), has a central function in fatty acid synthesis [162,163]. Inhibition of ACC1 occurs by phosphorylation induced by leptin and mediated through transforming growth factor beta (TGF-β) signaling by activating TGF-β-activated kinase 1 (TAK1). This enzymatic reaction results in the elevation of Smad2 transcription factor acetylation and activation, resulting in cell transition and metastases in mice. Inactive ACC1 levels were found to be increased in metastatic human breast cancer while inhibiting leptin reduced metastasis [164]. This is in accordance with the finding that leptin itself triggers metastasis in A549 lung cancer cells in vitro [165]. As leptin and TGF are increased in obese individuals [166–169], ACC1 can be inactivated during chronic inflammation.

It has recently been shown that lysyl oxidase is increased in morbidly obese patients [170]. This results in an ongoing stimulation of multiple pathways illustrated in Fig. 1. It is known that there is a negative leptin/TGF-β signaling loop [170,171], but leptin was shown to augment signaling in lung fibroblasts by inhibiting the inhibitor of the transcriptional response to TGF-β1 via inhibition of peroxisome proliferator-activated receptor-γ (PPARγ) [172]. This again shows that here also disruption of homeostasis plays a key early role in carcinogenesis. Furthermore, leptin induces cell proliferation and inhibits apoptosis in human hepatocellular carcinoma (HCC) via promotion of Cyclin D1 and Bax/Janus-kinase-2 signaling [173].

The influence of the composition of the microbiome in cancer patients shows that it influences cancer progression and may well play a role in cancer therapy as is illustrated by the metastatic melanoma data [37]. An increased gut bacterial diversity was associated with decreased progression and improved progression-free survival (PFS). Patients with enriched Ruminococcaceae family were associated with responders to immunotherapy, while nonresponders showed a higher composition with Bacteroidales. Abundance of Faecalibacterium revealed prolonged PFS, while Bacteroidales abundance was associated with more rapid disease progression and decreased PFS. Furthermore, enriched Ruminococcaceae family showed higher levels of circulating T cells, while Bacteroidales abundance showed lower circulating regulatory T cells, myeloid derived suppressor cells, and a blunted cytokine response.

Inoculating commercial broiler chickens with infectious bursal disease high virulent strain vvIBDV strain 89163/7.3 resulted into a change of the gut microbiome composition with abundance of Clostridium XIVa and Faecalibacterium compared to virus-free birds indicating an impact to gut-associated lymphoid tissues [174]. Therefore, it was suggested that after the acute phase, gut-associated lymphoid tissue could be modulated by dysregulation of gut mucosal immunity. CRC [175] and IBD [176] are associated with abundance of Faecalibacterium prausnitzii (reviewed in [174]). These findings may impact future virus infection research and its influence on reservoir species, as well as on microbiome and chronic inflammation.

Summary

The microbial ecology has huge impact on life, evolution, as well as pathogenic stimuli on the development on cancer. The interplay of pathogenic stimuli with consequent chronic inflammation [8,9], proteins [177], and the release of cytokines from many cell types provide a micromilieu promoting the PCN (Fig. 1). The complexity of dysregulated homeostasis increases when one considers the microbiome, high-fat diet, and morbid obesity [178]. The microbial flora itself can increase obesity. The effects of changes in the composition of such symbionts in humans on signaling pathways and induced crosstalk are appreciable and influence metabolism and signaling pathways in various ways triggering chronic inflammation, cell proliferation, and the inhibition of apoptosis. Even pathogenic viral stimuli influence gut-associated lymphoid tissue to modulate the microbiome composition. Pathogenic stimuli, with its consequent chronic inflammation, and the interplay of ubiquitous proteins, corresponding enzymes, and eicosanoids are influenced by the microbiome and morbid obesity resulting in the “Disruption of signaling homeostasis induced crosstalk in the carcinogenesis paradigm Epistemology of the origin of cancer.” Remodeled fibrosis results in another prerequisite for the development of cancer (carcinogenesis) – the PCN.

Nomenclature

5-oxo-ETE (6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoic acid

12-HETE 12-hydroxyeicosatetraenoic acid

20-HETE 20-hydroxyeicosatetraenoic acid, (5Z,8Z,11Z,14Z)-20-hydroxyicos-5,8,11,14-tetraenoic acid

20-OH-PGE2 20-hydroxy prostaglandin E2

α-MSH alpha melanocyte-stimulating hormone

αSMAD alpha-smooth muscle actin

ACC1 acetyl-CoA carboxylase 1

AEY N-arachidonoylethanolamine (anandamide)

Akt protein kinase B (=PKB)

ALOX12 12-lipoxygenase, 12-LOX, 12S-LOX, arachidonate 12-lipoxygenase 12S type

AP1 activator protein 1

ASM American Society of Microbiology

BAPN β-aminopropionitrile

BIM Bcl-2 interacting mediator of cell death

BMI body mass index

CAG co-abundance group

cdc42 cell division control protein 42 homolog

Cdk2 cyclin-dependent kinase 2

Cox cyclooxygenase

Cox-1 cyclooxygenase 1

Cox-2 cyclooxygenase 2

Cox-3 isoform of Cox-2 (therefore in brakes)

CRC colorectal cancer

Cytoskeletal stress escape strategy

CTL C-type lectin

CYP* cytochrome P450 isoforms

CXCL1 chemokine (C–X–C motif) ligand 1, GROα, GRO1, MSGA-α, NAP3

CXCR4 C-X-C motif of chemokine receptor 4

DAMP danger associated molecular patterns

E2F4/5 cyclin-dependent complex of Smad3, retinoblastoma-like protein 1 (P107, RBL1), E2F4/5 and d-prostanoïd (DP1)

E-Cadherin CAM 120/80 or epithelial cadherin, cadherin-1, epithelial cadherin

ECM extracellular matrix

Erk1 extracellular signal-regulated kinase 1, mitogen-activated protein kinase 3, MAPK3

Erk2 extracellular signal-regulated kinase 2, mitogen-activated protein kinase 1, MAPK1

FADD Fas-associated protein with death domain

fFN fibroblast growth factor-2

FLIP CASP8 and Fas-associated protein with death domain (FADD)-like apoptosis regulator

FOXO3a forhead box protein O3a

FSP fibroblast secretory protein

Hsp70 heat shock protein 70

gp130 glycoprotein 130

GPRC5B G protein-coupled receptor family C group 5 member B

GROα melanoma growth stimulating activity alpha, CXCL1, GRO1, MSGA-α, NAP3

GRO1 melanoma growth stimulating activity 1, melanoma growth stimulating activity alpha, GROα, CXCL1, MSGA-α, NAP3

GTP guanosine-5′-triphosphate

HCC hepatocellular carcinoma

HMP Human Microbiome Project

IBD inflammatory bowel disease

IFNγ interferon gamma

IL-1β interleukin 1 beta 1

IL-6 interleukin 6

IL-8 interleukin 8

IL-17 interleukin 17

IL-33 interleukin 33

IL-6 interleukin 6

IL-2 interleukin 2

IL-4 interleukin 4

IL-5 interleukin 5

IL-6 interleukin 6

IL-8 interleukin 8

IL-10 interleukin 10

IL-12 interleukin 12

IL-17 interleukin 17

JAK2 Janus kinase 2

MMP-1 matrix metalloproteinase 1

MMP-2 matrix metalloproteinase 2

MMP-7 matrix metalloproteinase 7

MMP-9 matrix metalloproteinase 9

LOX5 5-lipoxygenase, 5-LOX, arachidonate 5-lipoxygenase

LOXL3 lysyl oxidase homolog 3

LOX lysyl oxidase

LTB4 lysyl oxidase homolog 3

MAPK1 mitogen-activated protein kinase 1

MAPK3 mitogen-activated protein kinase 3

MAPK7 mitogen-activated protein kinase 7

MAPK1 mitogen-activated protein kinase 1

MAPK3 mitogen-activated protein kinase 3

MAPK7 mitogen-activated protein kinase 7

MMP-2 matrix metalloproteinase 2

MMP-9 matrix metalloproteinase 9

MMP-1 matrix metalloproteinase 1

MDA malondialdehyde, propanedial

miR21 micro RNA-21

MMP-2 matrix metalloproteinase 2

MMP-9 matrix metalloproteinase 9

MMP-3 matrix metalloproteinase 3

MMP-7 matrix metalloproteinase 7

MMP-10 matrix metalloproteinase 10

NIK NF-κB inducing kinase

NOS nitric oxide synthase

PAF platelet-activating factor

PACAP pituitary adenylate cyclase-activating polypeptide

PCSK9 proprotein convertase subtilisin/kexin type 9

PDGF platelet-derived growth factor

PDK1 phosphoinositide-dependent protein kinase 1

PGD2 prostaglandin D2

PGF2 prostaglandin F2α

PGE2 prostaglandin E2

PI3K phosphatidylinositol-3-kinase

PLA2 phospholipase A2

POU2F1 POU class 2 homeobox 1

PRPP ATP-RT phosphoribosyl pyrophosphate amidotransferase

PRMT1 protein arginine methyltransferase 1

PTX3 pentraxin 3

PTX3 pentraxin 3
Acknowledgement

The manuscripts of this Special Issue were supported by the Theodor-Billroth-Academy (TBA®) and INCORE, (International Consortium of Research Excellence) of the (TBA®). We express our gratitude to the discussions on the web group of the Theodor-Billroth-Academy (TBA®) on LinkedIn, the exchange with scientists at Researchgate.com, as well as personal exchanges with distinguished colleagues who stimulated our thinking, all named individually earlier in publications – we thank each one. We further gratefully acknowledge the support of Marjan S. Rupnik, PhD, Professor of Physiology, Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria, for pre-submission review of the literature and our fruitful discussions.
Conflict of interest

The author reports the following conflict of interest: Bjørn LDM Brücher is Editor-in-Chief in Life Sciences–Medicine of 4open by EDP Sciences. Ijaz S. Jamall is Senior Editorial Board member in Life Sciences–Medicine of 4open by EDP Sciences. The authors, of their own initiative, suggested to the Managing Editorial to perform a transparent peer review of their submittals. Neither author took any action to influence the standard submission and peer-review process, and report no conflict of interest. The authors alone are responsible for the content and writing of the manuscript of this Special Issue. This manuscript contains original material that has not previously been published. Both authors contributed to the discussion on its contents and approved the manuscript.

References

1. Schaechter M, Kolter R, Buckley M (2004), Microbiology in the 21st century: where are we and where are we going? American Society for Microbiology, Washington, DC. Available at https://www.asm.org/Academy/index.asp?bldp29245
2. Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, Bartlett JG, Edwards J, Jr, Infectious Diseases Society of America (2008), The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America, Clin Infect Dis 46, 155–164.
3. Rodrigues Hoffmann A, Proctor LM, Surette MG, Suchodolski JS (2016), The microbiome: the trillions of microorganisms that maintain health and cause disease in humans and companion animals. Vet Pathol 53, 10–21.
4. Tjalsma H, Boleij A, Marchesi JR, Dutilh BE (2012), A human gut microbiome with a high diversity of symbiotic microbes. PLoS Biol 10, e1002533.
5. Savage DC (1977), Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31, 107–133.
6. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006), Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023.
7. Brücher BLD, Jamall IS (2019), Chronic inflammation evoked by pathogenic stimulus during carcinogenesis. 4open 2, 8, 1–22. https://doi.org/10.1051/open/2018006
8. Brücher BLD, Jamall IS (2019), Eicosanoids in carcinogenesis. 4open 2, 9, 1–34. https://doi.org/10.1051/open/2018008
9. Mishima E, Sharma A (2011), Tannerella forsythia invasion in oral epithelial cells requires phosphoinositide 3-kinase activation and clathrin-mediated endocytosis. Microbiology 157, 2382–2391.
10. Honma K, Mishima E, Sharma A (2011), Role of Tannerella forsythia NanH slalase in epithelial cell attachment. Infect Immun 79, 393–401.
11. Wu JS, Zheng M, Zhang M, Pang X, Li L, Wang SS, Yang X, Wu JB, Tang YJ, Tang YL, Liang XH (2018), Porphyromonas gingivalis promotes 4-nitroquinoline-1-oxide-induced oral carcinogenesis with an alteration of fatty acid metabolism. Front Microbiol 9, 2081.
35. Christ A, Günther P, Lauterbach MAR, Duewell P, Honda S, Loher P, Shigematsu M, Palazzo JP, Suzuki R, Xie L, Bourne PE (2015), Developing multi-target.
36. Albenberg LG, Wu GD (2014), Diet and the
27. Brücher BLDM, Jamall IS (2014), Epistemology of
37. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Orhanović I, Boban M, Ćić I, Boban M, – 77.
28. Ferreira R, Oliveira P, Martins T, Magalhães S, Trindade F, Pires MJ, Colaço B, Barros A, Santos L, Amado F, Vitorino R (2015), Comparative proteomic analyses of urine from rat uterine carcinoma chemically induced by exposure to N-butyl-N-[(4-hydroxybutyl)-nitrosamine. Mol Biosyst 11, 1594–1602.
29. Bernardo C, Cunha MC, Santos JH, da Costa JM, Brindeley PJ, Lopes C, Amado F, Ferreira R, Vitorino R, Santos LL (2016), Insight into the molecular basis of Schistosoma–haematobium-induced bladder cancer through urine proteomics. Tumour Biol 37, 11279–11287.
30. Messina CM, Pizzo F, Santulli A, Bušelčić I, Boman M, Orhanović I, Mladićno I (2016), Anisakis pegreffii (Nematoda: Anisakidae) products modulate oxidative stress and apoptosis-related biomarkers in human cell lines. Parasit Vectors 9, 607.
31. Roche K, Felts FA, Park JP, Coissieux MM, Chang C, Chan VBS, Bentires-Alj M, Booth BW (2017), Cancer cell redirection biomarker discovery using a mutual information approach. PLoS One 12, e0179265.
32. Brücher BLDM, Jamall IS (2014), Epistemology of
33. Honda S, Loher P, Shigematsu M, Palazzo JP, Suzuki R, Xie L, Bourne PE (2015), Developing multi-target.
34. Baudrimont A, Voegeli S, Viloria EC, Stritt F, Lenon M, Albenberg LG, Wu GD (2014), Diet and the
27. Brücher BLDM, Jamall IS (2014), Epistemology of
37. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Orhanović I, Boban M, Ćić I, Boban M, – 77.
28. Ferreira R, Oliveira P, Martins T, Magalhães S, Trindade F, Pires MJ, Colaço B, Barros A, Santos L, Amado F, Vitorino R (2015), Comparative proteomic analyses of urine from rat uterine carcinoma chemically induced by exposure to N-butyl-N-[(4-hydroxybutyl)-nitrosamine. Mol Biosyst 11, 1594–1602.
29. Bernardo C, Cunha MC, Santos JH, da Costa JM, Brindeley PJ, Lopes C, Amado F, Ferreira R, Vitorino R, Santos LL (2016), Insight into the molecular basis of Schistosoma–haematobium-induced bladder cancer through urine proteomics. Tumour Biol 37, 11279–11287.
30. Messina CM, Pizzo F, Santulli A, Bušelčić I, Boman M, Orhanović I, Mladićno I (2016), Anisakis pegreffii (Nematoda: Anisakidae) products modulate oxidative stress and apoptosis-related biomarkers in human cell lines. Parasit Vectors 9, 607.
31. Roche K, Felts FA, Park JP, Coissieux MM, Chang C, Chan VBS, Bentires-Alj M, Booth BW (2017), Cancer cell redirection biomarker discovery using a mutual information approach. PLoS One 12, e0179265.
32. Brücher BLDM, Jamall IS (2014), Epistemology of
37. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Orhanović I, Boban M, Ćić I, Boban M, – 77.
28. Ferreira R, Oliveira P, Martins T, Magalhães S, Trindade F, Pires MJ, Colaço B, Barros A, Santos L, Amado F, Vitorino R (2015), Comparative proteomic analyses of urine from rat uterine carcinoma chemically induced by exposure to N-butyl-N-[(4-hydroxybutyl)-nitrosamine. Mol Biosyst 11, 1594–1602.
29. Bernardo C, Cunha MC, Santos JH, da Costa JM, Brindeley PJ, Lopes C, Amado F, Ferreira R, Vitorino R, Santos LL (2016), Insight into the molecular basis of Schistosoma–haematobium-induced bladder cancer through urine proteomics. Tumour Biol 37, 11279–11287.
30. Messina CM, Pizzo F, Santulli A, Bušelčić I, Boman M, Orhanović I, Mladićno I (2016), Anisakis pegreffii (Nematoda: Anisakidae) products modulate oxidative stress and apoptosis-related biomarkers in human cell lines. Parasit Vectors 9, 607.
31. Roche K, Felts FA, Park JP, Coissieux MM, Chang C, Chan VBS, Bentires-Alj M, Booth BW (2017), Cancer cell redirection biomarker discovery using a mutual information approach. PLoS One 12, e0179265.
32. Brücher BLDM, Jamall IS (2014), Epistemology of
37. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Orhanović I, Boban M, Ćić I, Boban M, – 77.
28. Ferreira R, Oliveira P, Martins T, Magalhães S, Trindade F, Pires MJ, Colaço B, Barros A, Santos L, Amado F, Vitorino R (2015), Comparative proteomic analyses of urine from rat uterine carcinoma chemically induced by exposure to N-butyl-N-[(4-hydroxybutyl)-nitrosamine. Mol Biosyst 11, 1594–1602.
29. Bernardo C, Cunha MC, Santos JH, da Costa JM, Brindeley PJ, Lopes C, Amado F, Ferreira R, Vitorino R, Santos LL (2016), Insight into the molecular basis of Schistosoma–haematobium-induced bladder cancer through urine proteomics. Tumour Biol 37, 11279–11287.
30. Messina CM, Pizzo F, Santulli A, Bušelčić I, Boman M, Orhanović I, Mladićno I (2016), Anisakis pegreffii (Nematoda: Anisakidae) products modulate oxidative stress and apoptosis-related biomarkers in human cell lines. Parasit Vectors 9, 607.
31. Roche K, Felts FA, Park JP, Coissieux MM, Chang C, Chan VBS, Bentires-Alj M, Booth BW (2017), Cancer cell redirection biomarker discovery using a mutual information approach. PLoS One 12, e0179265.
52. Mendonça LABM, Dos Santos Ferreira R, de Cássia Avellaneda Guimarães R, de Castro AP, Franco OL, Matias R, Carvalho CME (2018), The complex puzzle of interactions among functional food, gut microbiota, and colorectal cancer. Front Oncol 8, 235.

53. Wu M, Wu Y, Li J, Bao Y, Guo Y, Yang W (2018), The dynamic changes of gut microbiota in Muc2 deficient mice. Int J Mol Sci 19, pii: E26809.

54. Zhang Y, Yu X, Yu E, Wang N, Cai Q, Shuai Q, Yan F, Jiang L, Wang H, Liu J, Chen Y, Li Z, Jiang Q (2018), Changes in gut microbiota and plasma inflammatory factors across the stages of colorectal tumorigenesis: a case-control study. BMC Microbiol 18, 92.

55. Haslam DW, James WP (2005), Obesity. Lancet 366, 1197–209.

56. Bradlow HL (2014), Obesity and the gut microbiome: pathophysiological aspects. Horm Mol Biol Clin Invest 17, 53–61.

57. Schulz MD, Atay C, Heringer J, Romig FK, Kramer KM, Zdichavsky M, Schulz MD, Atay C, Heringer J, Romig FK, Kramer KM, Zdichavsky M, Boldor HL (2014), Obesity and the gut microbiome: a review of the epidemiology. Epidemiol Rev 35, 499–545.

58. Giovannucci E, Ascherio A, Rimm EB, Colditz GA, Stampfer MJ, Willett WC (1995), Physical activity, obesity, and risk for colon cancer and adenoma in men. Ann Intern Med 122, 327–334.

59. Schoen RE, Tangen CM, Kuller LH, Burke GL, Cushman M, Tracy RP, Dobs A, Savage PJ (1999), Increased blood glucose and insulin, body size, and incident colorectal cancer. J Natl Cancer Inst 91, 1147–1154.

60. Sass DA, Schoen RE, Weissfeld JL, Weissfeld L, Thaete FL, Kuller LH, McAdams M, Lanza E, Schatzkin A (2004), Relationship of visceral adipose tissue to recurrence of adenomatous polyps. Am J Gastroenterol 99, 687–690.

61. Keum N, Lee DH, Kim R, Greenwood DC, Giovannucci EL (2005). Visceral adiposity and colorectal adenomas: dose-response meta-analysis of observational studies. Ann Oncol 26, 1101–1109.

62. Otake S, Takeda H, Suzuki Y, Fukui T, Watanabe S, Ishihama K, Saito T, Togashi H, Nakamura T, Matsuzawa Y, Kawata S (2005), Association of visceral fat accumulation and plasma adiponectin with colorectal adenoma: evidence for participation of insulin resistance. Clin Cancer Res 11, 3642–3646.

63. Sato Y, Nozaki R, Yamada K, Takano M, Haruma K (2009), Relation between obesity and adenomatous polyps of the large bowel. Dig Endosc 21, 154–157.

64. Yamaji T, Iwasaki M, Sasazuki S, Kurashashi N, Mutoh M, Yamamoto S, Suzuki M, Motiyama N, Wakabayashi K, Tsugane S (2009), Visceral fat volume and the prevalence of colorectal adenoma. Am J Epidemiol 170, 502–511.

65. Nam SY, Kim BC, Han KS, Ryu KH, Park BJ, Kim HB, Nam BH (2010), Abdominal visceral adipose tissue predicts risk of colorectal adenoma in both sexes. Clin Gastroenterol Hepatol 8, 443–450, e1-e2.

66. Nimptsch K, Giovannucci E, Willett WC, Fuchs CS, Wei EK, Wu K (2011), Body fatness during childhood and adolescence, adult height, and risk of colorectal adenoma in women. Cancer Prev Res (Phila) 4, 1710–1718.

67. Kim BC, Shin A, Hong CW, Sohn DK, Han KS, Ryu KH, Park BJ, Nam JH, Park JW, Chang JJ, Choi HS, Kim J, Oh JH (2012), Association of colorectal adenoma with components of metabolic syndrome. Cancer Causes Control 23, 727–735.

68. Summers RM, Liu J, Sussman DL, Dwyer AJ, Rehani B, Pickhardt PJ, Choi JR, Yao J (2012), Association between visceral adiposity and colorectal polyps on CT colonography. AJR Am J Roentgenol 199, 48–57.

69. Ashktorab H, Paydar M, Yazdi S, Namin HH, Sanderson A, Begum R, Semati M, Etaati F, Lee E, Brim H, Zenebe A, Nunele-Bland G, Laiyemo AO, Nouraie M (2014), BMI and the risk of colorectal adenoma in African-Americans. Obesity (Silver Spring) 22, 1387–1391.

70. Nagata N, Sakamoto K, Arai T, Nikura R, Shimobo T, Shimozaki M, Aoki T, Kishida Y, Sekine K, Tanaka S, Okubo H, Watanabe K, Sakurai T, Yokoi C, Akiyama Y, Yanase M, Noda M, Itoh T, Mizokami M, Uemura N (2014), Visceral abdominal fat measured by computed tomography is associated with an increased risk of colorectal adenoma. Int J Cancer 135, 2273–2281.
82. Yamaji Y, Mitsushima T, Koike K (2014), Pulse-wave velocity, the ankle-brachial index, and the visceral fat area are highly associated with colorectal adenoma. Dig Liver Dis 46, 943–949.
83. Park JH, Kim SJ, Hyun JH, Han KS, Kim BC, Hong CW, Lee SJ, Sohn DK (2017), Correlation between bowel preparation and the adenoma detection rate in screening colonoscopy. Ann Coloproctol 33, 93–98.
84. Soo IK, Kim BJ, Kim B, Choi CH, Kim JW, Kim JG, Chang SK, Kang H (2017), Abdominal fat distribution measured using computed tomography is associated with an increased risk of colorectal adenoma in men. Medicine (Baltimore) 96, e8051.
85. Shapero TF, Chen GI, Devlin T, Gibbs A, Murray IC, Tran S, Weigensberg C (2017), Obesity increases prevalence of colonic adenomas at screening colonoscopy: a Canadian community-based study. Can J Gastroenterol Hepatol 2017, 8750967.
86. Im JP, Kim D, Chung MJ, Jin EH, Han YM, Park MJ, Song JH, Yang SY, Kim YS, Yim JY, Lim SH, Kim JS (2018), Visceral obesity as a risk factor for colorectal adenoma occurrence in surveillance colonoscopy. Gastrointest Endosc 88, 119–127, e4.
87. Friedman GD, Herrinton LJ (1994), Obesity and multiple myeloma. Cancer Causes Control 5, 479–483.
88. Brown LM, Gridley G, Pottern LM, Baris D, Swanso CA, Silverman DT, Hayes RB, Greenberg RS, Swanson GM, Schoenlj B, Schwartz AG, Fraumeni JF, Jr (2001), Diet and nutrition as risk factors for multiple myeloma among blacks and whites in the United States. Cancer Causes Control 12, 117–125.
89. Thompson MA, Kyle RA, Melton LJ 3rd, Plevak MF, Rajkumar SV (2004), Effect of statins, smoking and obesity on progression of monoclonal gammopathy of undetermined significance: a case-control study. Haematologica 89, 629–628.
90. Alexander DD, Mink PJ, Adami HO, Cole P, Mandel JS, Oken MM, Trichopoulos D (2007), Multiple myeloma: a review of the epidemiologic literature. Int J Cancer 120, 40–61.
91. Birnbaum BM, Giovannucci E, Rosner B, Anderson KC, Colditz GA (2007), Body mass index, physical activity, and risk of multiple myeloma. Cancer Epidemiol Biomarkers Prev 16, 1474–1478.
92. Larsson SC, Wolk A (2007), Body mass index and risk of multiple myeloma: a meta-analysis. Int J Cancer 121, 2512–2516.
93. Landgren O, Rajkumar SV, Pfeiffer RM, Kyle RA, Katzmann JA, Dispenzierei A, Cai Q, Goldin LR, Caparoso NE, Fraumeni JF, Jr, Blot WJ, Signorello LB (2010), Obesity is associated with an increased risk of monoclonal gammopathy of undetermined significance among black and white women. Blood 116, 1056–1059.
94. Lichtman MA (2010), Obesity and the risk for a hematological malignancy: leukemia, lymphoma, or myeloma. Oncologist 15, 1083–1101.
95. Lwin ST, Olechnowicz SW, Fowler JA, Edwards CM (2015), Diet-induced obesity promotes a myeloma-like condition in vivo. Leukemia 29, 507–510.
96. Chang SH, Luo S, Thomas TS, O’Brian KK, Colditz GA, Carlsson NP, Carson KR (2016), Obesity and the transformation of monoclonal gammopathy of undetermined significance to multiple myeloma: a population-based cohort study. J Natl Cancer Inst 109. DOI: 10.1093/jnci/djw264
97. Sonderman JS, Bethea TN, Kitahara CM, Patel AV, Harvey C, Knutsen SF, Park Y, Park SY, Fraser GE, Teras LR, Purdie MP, Stolzenberg-Solomon RZ, Gillanders EM, Palmer JR, Colonel LN, Blot WJ (2016), Multiple myeloma mortality in relation to obesity among African Americans. J Natl Cancer Inst 108, pii: djw 120.
98. Thordardottir M, Lindqvist EK, Lund SH, Costello R, Burton D, Konde N, Mailankody S, Eiriksdottir G, Launer LJ, Gudnason V, Harris TB, Landgren O, Kristinsson SY (2017), Obesity and risk of monoclonal gammopathy of undetermined significance and progression to multiple myeloma: a population-based study. Blood Adv 1, 2186–2192.
99. Bruniciardi FC, Chaiken RL, Ryan AS, Seymour NE, Hoffmann JA, Lebovitz HE, Chance RE, Gingerich RL, Andersen DK, Elahi D (1996), Pancreatic polypeptide administration improves abnormal glucose metabolism in patients with chronic pancreatitis. J Clin Endocrinol Metab 81, 3566–3572.
100. Gumbs AA (2008), Obesity, pancreatitis, and pancreatic cancer. Obes Surg 18, 1183–1187.
101. Eibl G, Cruz-Monserrat Z, Kore M, Petrov MS, Goodarzi MO, Fisher WE, Habtezion A, Lugea A, Pandol SJ, Hart PA, Andersen DK; Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer (2018), Diabetes mellitus and obesity as risk factors for pancreatic cancer. J Acad Nutr Diet 118, 555–567.
102. Melitas C, Meiselman M (2018), Metabolic pancreatitis: pancreatic steatosis, hypertriglyceridemia, and associated chronic pancreatitis in 3 patients with metabolic syndrome. Case Rep Gastroenterol 12, 331–336.
103. Karmiris K, Koutroubakis IE, Kouroumalis EA (2005), The emerging role of adipocytokines as inflammatory mediators in inflammatory bowel disease. Inflamm Bowel Dis 11, 847–855.
104. John BJ, Abulaifi AM, Poullis A, Mendall MA (2007), Chronic subclinical bowel inflammation may explain increased risk of colorectal cancer in obese people. Gut 56, 1034–1035.
105. Tilg H, Moschen AR (2008), Role of adiponectin and PBEF/visfatin as regulators of inflammation: involvement in obesity-associated diseases. Clin Sci (Lond) 114, 275–288.
106. Kreuter R, Wankell M, Ahlenstiel G, Hebbard HE (2018), The role of obesity in inflammatory bowel disease. Biochim Biophys Acta Mol Basis Dis 1865, 63–72.
107. Chen S, Chen CM, Zhou Y, Zhou RJ, Yu KD, Shao ZM (2012), Obesity or overweight is associated with worse pathological response to neoadjuvant chemotherapy among Chinese women with breast cancer. PLoS One 7, e41380.
108. Robinson PJ, Bell RJ, Davis SR (2014), Obesity and the risk of breast cancer among pre and postmenopausal women. Asian Pac J Cancer Prev 19, 2429–2436.
111. Nyasani E, Munir I, Perez M, Payne K, Khan S (2018), Linking obesity-leptin-signaling pathways to common endocrine-related cancers in women. Endocrine. DOI: 10.1007/s12020-018-1748-4

112. Tartter PI, Slater G, Papatheastas AE, Aufses AH, Jr (1984), Cholesterol, weight, height, Quetelet’s index, and colon cancer recurrence. J Surg Oncol 27, 232–235.

113. Dignam JJ, Polite BN, Yothers G, Raich P, Colangelo L, O’Connell MJ, Wolmark N (2006), Body mass index and outcomes in patients who receive adjuvant chemotherapy for colon cancer. J Natl Cancer Inst 98, 1647–1654.

114. Wu S, Liu J, Wang X, Li M, Gan Y, Tang Y (2014), Association of obesity and overweight with overall survival in colorectal cancer patients: a meta-analysis of 29 studies. Cancer Causes Control 25, 1489–1502.

115. Colussi D, Fabbri M, Zagari RM, Montale A, Bazzoli F, Ricciardiello L (2018), Lifestyle factors and risk for colorectal polyps and cancer at index colonoscopy in a FIT-positive screening population. United European Gastroenterol J 6, 935–942.

116. da Silva M, Weiderpass E, Licaj I, Lissner L, Rylander C (2018), Excess body weight, weight gain and obesity-related cancer risk in women in Norway: the Norwegian Women and Cancer study. Br J Cancer 119, 646–656.

117. Mu N, Zhu Y, Wang Y, Zhang H, Xue F (2012), Insulin resistance: a significant risk factor of endometrial cancer. Gynecol Oncol 125, 751–757.

118. MacLmns RJ, English DR (2006), Body size and composition and prostate cancer risk: systematic review and meta-regression analysis. Cancer Causes Control 17, 989–1003.

119. Choi Y, Park B, Jeong BC, Seo SI, Jeon SS, Choi HY, Adami HO, Lee JE, Lee HM (2013), Body mass index and survival in patients with renal cell carcinoma: a clinical-based cohort and meta-analysis. Int J Cancer 132, 625–634.

120. Leo QJ, Ollberding NJ, Wilkeus LR, Kolonel LN, Henderson BE, Le Marchand L, Maskarinec G (2014), Obesity and non-Hodgkin lymphoma survival in an ethnically diverse population: the Multiethnic Cohort study. Cancer Causes Control 25, 1449–1459.

121. Wienecke A, Neuhauser H, Kraywinkel K, Barnes B (2018), Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2. Sci Transl Med 10, pii: eaag 0945.

122. Hillers LE, D’Amato JV, Chamberlin T, Padgerta G, Arendt LM (2018), Obesity-activated adipose-derived stromal cells promote breast cancer growth and invasion. Neoplasia 20, 1161–1174.

123. Jones JA, Fayad LE, Elting LS, Rodriguez MA (2010), Carson KR, Bartlett NL, McDonald JR, Luo S, Zeringue Boucher Y, Fukumura D, Jain RK (2018), Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2. Sci Transl Med 10, pii: eaag 0945.

124. Tartter PI, Slater G, Papatheastas AE, Aufses AH, Jr (1984), Cholesterol, weight, height, Quetelet’s index, and colon cancer recurrence. J Surg Oncol 27, 232–235.

125. Dignam JJ, Polite BN, Yothers G, Raich P, Colangelo L, O’Connell MJ, Wolmark N (2006), Body mass index and outcomes in patients who receive adjuvant chemotherapy for colon cancer. J Natl Cancer Inst 98, 1647–1654.

126. Wu S, Liu J, Wang X, Li M, Gan Y, Tang Y (2014), Association of obesity and overweight with overall survival in colorectal cancer patients: a meta-analysis of 29 studies. Cancer Causes Control 25, 1489–1502.

127. Incio J, Ligibel JA, McManus DT, Suboj P, Jung K, Kawaguchi K, Pinter M, Babykutty S, Chin SM, Vardam TD, Huang Y, Rahbari NN, Roberge S, Wang D, Gomes-Santos IL, Puchner SB, Schlett CL, Hoffman U, Ancukiewicz M, Tolaneay SM, Krop IE, Duda DG, Boucher Y, Fukumura D, Jain RK (2018), Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2. Sci Transl Med 10, pii: eaag 0945.
169. Du B, Cawthorn WP, Su A, Doucette CR, Yao Y, Hemati N, Kampert S, McCoIn C, Broome DT, Rosen CJ, Yang G, MacDougald OA (2013), The transcription factor paired-related homeobox 1 (Prx1) inhibits adipogenesis by activating transforming growth factor-β (TGFβ) signaling. J Biol Chem 288, 3036–3047.

170. Pastel E, Price E, Sjöholm K, McCulloch LJ, Rittig N, Liversedge N, Knight B, Moller N, Svensson PA, Kos K (2017), Lysyl oxidase and adipose tissue dysfunction. Metabolism 78, 118–127.

171. Gottschling-Zeller H, Birgel M, Scriba D, Blum WF, Hauner H (1999), Depot-specific release of leptin from subcutaneous and omental adipocytes in suspension culture: effect of tumor necrosis factor-alpha and transforming growth factor-beta1. Eur J Endocrinol 141, 436–442.

172. Jain M, Budinger GR, Lo A, Urich D, Rivera SE, Ghosh AK, Gonzalez A, Chiarella SE, Marks K, Donnelly HK, Soberanes S, Varga J, Radigan KA, Chandel NS, Mutlu GM (2011), Leptin promotes fibroproliferative acute respiratory distress syndrome by inhibiting peroxisome proliferator-activated receptor-γ. Am J Respir Crit Care Med 183, 1490–1498.

173. Chen C, Chang YC, Liu CL, Liu TP, Chang KJ, Guo IC (2007), Leptin induces proliferation and anti-apoptosis in human hepatocarcinoma cells by up-regulating cyclin D1 and down-regulating Bax via a Janus kinase 2-linked pathway. Endocr Relat Cancer 14, 513–529.

174. Li L, Kubasová T, Rychlik I, Hoerl FJ, Rautenschlein S (2018), Infectious bursal disease virus infection leads to changes in the gut associated-lymphoid tissue and the microbiota composition. PLoS One 13, e0192066.

175. Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, Corthier G, Tran Van Nhieu J, Furet JP (2011), Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One 6, e16393.

176. Manichanh C, Rigottier-Gois L, Bonnand E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J (2006), Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55, 205–211.

177. Brücher BLD.M, Jamall IS (2019), Undervalued ubiquitous proteins. 4open 2, 11, 1–21. https://doi.org/10.1051/fopen/2018009

178. Brücher BLD.M, Jamall IS (2019), Precancerous niche (PCN), a product of fibrosis with remodeling by incessant chronic inflammation. 4open 2, 11, 1–21. https://doi.org/10.1051/fopen/2018009

Cite this article as: Brücher BLD.M, Jamall IS. (2019), Microbiome and morbid obesity increase pathogenic stimulus diversity. 4open, 2, 10.