Waterborne ammonia and silver catfish, *Rhamdia quelen*: survival and growth

Sobrevivência e crescimento de jundiá, *Rhamdia quelen*, exposto à amônia

Denise dos Santos Miron¹ Alexssandro Geferson BeckerII,III Vania Lúcia Loro¹ Bernardo BaldisserottoII,III*

ABSTRACT

The aim of the present study was to determine the effects of waterborne un-ionized ammonia (NH₃) on the survival and growth of silver catfish (*Rhamdia quelen*). Juveniles were exposed to 0.10, 0.22, and 0.42mg L⁻¹ NH₃ at pH 8.2 for 45 days. After 15 days, a significant mortality rate (33%) was observed in the fish exposed to 0.42mg L⁻¹ NH₃. After 20 days, 23% and 43% mortality (both significant) was observed in fish exposed to 0.22 and 0.42mg L⁻¹ NH₃, respectively. A significant negative relationship between survival, length, daily weight gain, standard growth rate, and biomass of juveniles of silver catfish per tank with waterborne NH₃ levels was found at the end of the experiment. The resulting survival and waterborne NH₃ relationship indicated that, to avoid any mortality of silver catfish, the maximum level of chronic NH₃ exposure at pH 8.2 would be 0.01mg L⁻¹.

Key words: fish culture, nitrogenous compounds, weight gain.

INTRODUCTION

Ammonia is the main end product from nitrogen metabolism in most teleosts (ISMIÑO-ORBE et al., 2003). This substance is toxic at low concentrations, especially in the NH₃ (unionized ammonia) form (FELIPO & BUTTERWORTH, 2002; MIRON et al., 2008). Reduced growth rates due to NH₃ exposure have been reported in several studies involving freshwater fish, but safe levels vary for different species (THURSTON et al., 1981, 1986; ATWOOD et al., 2000; TOMASSO, 1994; EL-SHAFAI et al., 2004; FRANCES et al., 2000).

The culture of silver catfish (*Rhamdia quelen*) (Quoy & Gaimard, 1824, Heptapteridae, Siluriformes) occurs mainly in Brazil, and this species was the most commonly raised native species in Rio Grande do Sul state (RS; southern Brazil) in 2001-2005 (BALDISSEROTTO, 2009). Due to its importance for Brazilian fish culture, several studies were performed to determine the best water conditions for improving...
the growth of juveniles of this species (COPATTI et al., 2005; BRAUN et al., 2006; ANDRADE et al., 2007). Biochemical and morphological changes due to short-term exposure of silver catfish to waterborne NH$_3$ were demonstrated (MIRON et al., 2008; BECKER et al., 2009; CARNEIRO et al., 2009), but no studies assessing chronic exposure have been performed. Thus, the aim of the present study was to determine the effects of waterborne ammonia on survival and growth of this species.

MATERIAL AND METHODS

Silver catfish juveniles (11.04±0.18g, 11.07±0.07cm) were obtained from a commercial fish culture near Santa Maria, RS, Brazil. The juveniles were placed in continuously aerated 250-L tanks at a stocking density of 100 juveniles tank$^{-1}$. Temperature was maintained at 23-25°C, pH at 7.4, dissolved oxygen at 7.2mg L$^{-1}$, water hardness at 20mg CaCO$_3$ L$^{-1}$, maximum unionized ammonia level at 0.007mg L$^{-1}$, and maximum nitrite level at 0.04mg L$^{-1}$. The photoperiod was 12 h light-12 h dark. Fish were fed (5% total biomass) with commercial food (Purina: 45% crude protein) twice a day (8:30 a.m. and 5:30 p.m.) during the acclimation period (seven days).

The NH$_3$ levels were 0.10±0.02mg L$^{-1}$, 0.22±0.02mg L$^{-1}$, and 0.42±0.02mg L$^{-1}$, i.e., 5, 10, and 20% of the NH$_3$ lethal concentration for 96h at pH 8.2, according to MIRON et al., 2008) and 0.005±0.002mg L$^{-1}$ NH$_3$ for the control group. The ammonia levels were reached by adding concentrated NH$_3$Cl (ammonium chloride) solution according to BOYD & TUCKER (1992). Juveniles were placed in continuously aerated 40-L freshwater polyethylene boxes with a stocking density of 10 juveniles box$^{-1}$ (three replicates per treatment) and exposed for 45 days to these different ammonia concentrations.

Temperature (25.0±0.6°C) and dissolved oxygen levels (7.3±0.1mg L$^{-1}$) were measured with an oxygen meter (YSI Inc., Yellow Springs, USA), and pH was measured with a DMPH-2 pH meter (Digimed, São Paulo, Brazil). Nitrite (maximum level was 0.3±0.1mg L$^{-1}$), alkalinity (87.0±0.1mg CaCO$_3$ L$^{-1}$) and total ammonia (NH$_3$+NH$_4^+$) levels were determined according to BOYD & TUCKER (1992) and NH$_3$ levels were calculated as described by PIPER et al. (1982). Water hardness (22.0±0.1mg CaCO$_3$ L$^{-1}$) was analyzed by the EDTA titrimetric method. All feces and residues were removed daily by suction. Consequently, approximately 20% of the water in the boxes was replaced by water with previously adjusted pH and ammonia concentrations.

Forty-five days after the beginning of the experiment, all juveniles were collected for length and weight measurement. The methodology of this experiment was approved by the Ethical and Animal Welfare Committee of the Universidade Federal de Santa Maria. Standard growth rates (SGR) were calculated according to JORGENSEN & JOBLING (1993) and total biomass was calculated as mean weight x number of surviving juveniles. The coefficients of length and weight variation were calculated by the following equation: CV=(SD/M)x100, where SD is the standard deviation and M is the length or weight mean.

The parameters of the different groups were compared by two-way analysis of variance and the Tukey test, with the aid of software Statistica (1997 version). The relationships between the parameters and waterborne NH$_3$ levels were made with the software Sigma Plot 11.0. The minimum significance level was set at P<0.05 and all data are expressed as mean ± SEM.

RESULTS AND DISCUSSION

No mortality was observed up to the 15th day. After 15 days, a significant mortality rate (33%) was observed in the fish exposed to 0.42mg L$^{-1}$ NH$_3$. After 20 days, 23% and 43% mortality (both significantly different from control) was observed in fish exposed to 0.22 and 0.42mg L$^{-1}$ NH$_3$, respectively. Survival and growth parameters of silver catfish decreased with the increase of waterborne NH$_3$. A significant positive relationship between waterborne NH$_3$ levels and silver catfish mortality was observed at the end of 45 days (Figure 1). The relationship between mortality and waterborne NH$_3$ indicates that the maximum levels to avoid any mortality of silver catfish chronically exposed to NH$_3$ at pH8.2 would be 0.01mg L$^{-1}$. This value is close to the safe NH$_3$ level proposed (0.02mg L$^{-1}$) by the European Inland Fisheries Advisory Commission (EIFAC, 1973) and the United States Environmental Protection Agency (U.S. EPA, 1977) for freshwater fishes.

Moreover, significant negative relationships between length, daily weight gain, standard growth rate, and biomass of silver catfish juveniles per tank with waterborne NH$_3$ levels were found at the end of the experiment (Figures 1 and 2). The coefficients of variation of length and weight did not present any significant differences between treatments (mean range 3.50-6.15 and 9.81-13.69, respectively). The same negative relationship between waterborne NH$_3$ and weight and length gain after 63 days (pH7.6-7.8) was found in channel catfish (*Ictalurus punctatus*) and this
study did not present any safe level for this species (ATWOOD et al., 2000). The safe level for growth of Nile tilapia (*Oreochromis niloticus*) and silver perch (*Bidyanus bidyanus*) is 0.060-0.068 mg L\(^{-1}\) NH\(_3\), pH 7.3-8.1 (FRANCES et al., 2000; EL-SHAF FAI et al., 2004). Fathead minnows (*Pimephales promelas*) can be raised in up to 0.44 mg L\(^{-1}\) NH\(_3\) (pH around 8.0) without significant mortality and growth reduction (THURSTON et al., 1986). Likely, the differences in the values of these NH\(_3\) safe levels are related to the protective effect of higher water hardness levels against NH\(_3\) toxicity (TOMASSO, 1994). In the experiments with Nile tilapia and silver perch, water hardness was 75-120 mg CaCO\(_3\) L\(^{-1}\) (FRANCES et al., 2000; EL-SHAF FAI et al., 2004) and in the experiment with fathead minnows it was 200 mg CaCO\(_3\) L\(^{-1}\) (THURSTON et al., 1986).

Additional experiments exposing silver catfish to the 0.01-0.1 mg L\(^{-1}\) NH\(_3\) range would be interesting, as rainbow trout maintained for 70 days at 0.013, but not at 0.041 mg L\(^{-1}\) NH\(_3\) (pH 7.6), showed higher weight gain and food conversion rates than those kept in NH\(_3\)-free water (WOOD, 2004). This effect was not observed in channel catfish exposed to the same waterborne NH\(_3\) levels (ATWOOD et al., 2000).

CONCLUSION

The obtained results indicate that the safe NH\(_3\) level for silver catfish growth and survival is around 0.01 mg L\(^{-1}\) NH\(_3\). However, growth experiments exposing juveniles of this species to the 0.01-0.1 mg L\(^{-1}\) NH\(_3\) range might yield good survival results.
ACKNOWLEDGEMENTS

This research was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), B. Baldisserotto, V. L. Loro and A. G. Becker received CNPq grants.

REFERENCES

ANDRADE, L.S. et al. Interaction of water alkalinity and stocking density on survival and growth of silver catfish, Rhamdia quelen, juveniles. Journal of the World Aquaculture Society, v.38, n.3, p.454-458, 2007. Disponível em: <http://www3.interscience.wiley.com/cgi-bin/fulltext/118534465/PDFSTART>. Acesso em: 14 jul. 2009. doi:10.1111/j.1749-7345.2007.00118.x.

ATWOOD, H.L. et al. Brain monoamine concentrations as predictors of growth inhibition in channel catfish exposed to ammonia. Journal of Aquatic Animal Health, v.12, p.69-73, 2000. Disponível em: <http://aajs journals.org/doi/abs/10.1.5.77/1.548-8667(2000)012%3C0%3E:BMCAPO%3E2.C0%3B2>. Acesso em: 14 jul. 2009>. doi:10.1577/1548-8667(2000)012%3C0069:BMCAPO%3E2.CO%3B2.

BALDISSEROTTO, B. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, v.39, n.1, p.291-299, 2009. Disponível em: <http://www.scielo.br/pdf/cr/v39n1/a46cr443.pdf>. Acesso em: 14 jul. 2009. doi:10.1590/S0103-84782009000000046.

BECKER, A.G et al. Dissolved oxygen and ammonia levels in water that affect plasma ionic content and gillbladder bile in silver catfish. Ciência Rural, v.39, n.6, p.1768-1773, 2009. Disponível em: <http://www.scielo.br/pdf/cr/v39n6/a260cr1136.pdf>. Acesso em: 7 dez. 2010. doi:10.1590/S0103-84782009000000132.

BOYD, C.E.; TUCKER, C.S. Water quality and pond soil analyses for aquaculture. 1992. 183p. Auburn University. Disponível em: <http://books.google.com/books?id=tpBRk&lr=&id=S4RYEYH5DSC&oi=fnd&pg=PR11&dq=%22BoyBoyd%22+%22Pond%22+water%2C+soil%2C+water%2C+ponds%2C+aquaculture%2C+water%2C+ponds%2C+aquaculture%22+&ots=fnDd&sig=mKkSJflfDSgR%2F3RTHGkCUXzGmGkLw7pA>&url=http://www.scielo.br/pdf/cr/v39n1/a46cr443.pdf>. Acesso em: 14 jul. 2009. doi:10.1590/S0103-84782009000000046.

FRANCES, J. et al. Effects of ammonia on juvenile silver perch (Bidyanus bidyanus). Aquaculture, v.183, n.1-2, p.95-103, 2000. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0044-8486(03)00516-7&lng=en&nrm=iso>. Acesso em: 14 jul. 2009. doi:10.1016/S0044-8486(03)00516-7.

ISMIÑO-ORBE, R.A. et al. Ammonia excretion by tambaqui (Colossoma macropomum) related to water temperature and fish mass. Pesquisa Agropecuária Brasileira, v.38, n.10, p.1243-1247, 2003. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-204X2003001000015>. Acesso em: 14 jul. 2009. doi:10.1590/S0100-204X2003001000015.

JØRGENSEN, E.H.; JOBLING M. Feeding in darkness eliminates density-dependent growth suppression in Arctic char. Aquaculture International, v.1, n.1, p.90-93, 1993. Disponível em: <http://www.springerlink.com/content/17459271156553/>. Ciência Rural, v.41, n.2, fev, 2011.
Waterborne ammonia and silver catfish, *Rhamdia quelen*: survival and growth.

MIRON, D.S. et al. Ammonia and pH effects on some metabolic parameters and gill histology of silver catfish, *Rhamdia quelen* (Heptapteridae). *Aquaculture*, v.277, n.3-4, p.192-196, 2008. Disponível em: <http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D4RWH87B1&_user=687358&_coverDate=06%2F03%2F2008&_rdoc=11&_fmt=high&_orig=browse&_sort=d&_docanchor=&_ct=28&_acct=C000037899&_version=1&_urlVersion=0&_userid=687358&md5=976df75c2b0164c8b543808d2510594d>. Acesso em: 14 jul. 2009. doi:10.1016/j.aquaculture.2008.02.023.

PIPER, R.G. et al. *Fish hatchery management*. Washington: United States Department of the Interior Fish and Wildlife Service, 1982. 517p.

THURSTON, R.V. et al. Increased toxicity of ammonia to rainbow trout, *Salmo gairdneri*, resulting from reduced concentrations of dissolved oxygen. *Canadian Journal of Fisheries and Aquatic Sciences*, v.38, n.8, p.983-988, 1981. Disponível em: <http://jeb.biologists.org/cgi/reprint/207/12/2043>. Acesso em: 14 jul. 2009. doi:10.1242/jeb.00990.

THURSTON, R.V. et al. Chronic toxicity of ammonia to fathead minnows. *Transactions of the American Fisheries Society*, v.115, n.2, p.196-207, 1986. Disponível em: <http://afsjournals.org/doi/abs/10.1577/1548-8659(1986)115%3C196%3ACTOA%3E2.0.CO%3B2>. Acesso em: 14 jul. 2009. doi:10.1577/1548-8659(1986)115<196:CTOA>2.0.CO;2.

TOMASSO, J.R. Toxicity of nitrogenous wastes to aquaculture animals. *Reviews in Fisheries Science*, v.2, n.4, p.291-314, 1994. Disponível em: <http://www.informaworld.com/smpp/content~db=all~content=a907197342>. Acesso em: 14 jul. 2009. doi:10.1080/10641269409388560.

WOOD, C.M. Dogmas and controversies in the handling of nitrogenous wastes: is exogenous ammonia a growth stimulant in fish? *Journal of Experimental Biology*, v.207, n.12, p.2043-2054, 2004. Disponível em: <http://jeb.biologists.org/cgi/reprint/207/12/2043>. Acesso em: 14 jul. 2009. doi:10.1242/jeb.00990.