Chinese medicine Di-Huang-Yi-Zhi protects PC12 cells from H$_2$O$_2$-induced apoptosis by regulating ROS-ASK1-JNK/p38 MAPK signaling

Li-Min Zhang¹, Rong-Rong Zhen¹, Chao Gu¹, Tian-Li Zhang¹, Yue Li¹, Miao Jin¹, Bing Hu²*, and Hong-Mei An³*

Abstract

Background: Oxidative stress mediates the nerve injury during the pathogenesis of Alzheimer’s disease (AD). Protecting against oxidative stress damage is an important strategy to prevent and treat AD. Di-Huang-Yi-Zhi (DHYZ) is a Chinese medicine used for the treatment of AD, but its mechanism remains unknown. This study is aimed to investigate the effect of DHYZ on H$_2$O$_2$ induced oxidative damage in PC12 cells.

Methods: PC12 cells were treated with H$_2$O$_2$ and DHYZ. Cell proliferation was detected by Cell counting kit-8 (CCK-8) assay. Cytotoxicity of H$_2$O$_2$ was measured by lactate dehydrogenase (LDH) release assay. Apoptosis were identified by Annexin V-FITC/PI staining. Caspase 3 activity was detected by commercial kit. Mitochondrial membrane potential (MMP) was detected by JC-1 staining. Reactive oxygen species (ROS) was 2′,7′-Dichlorodihydrofluorescein diacetate (DCFH-DA) staining. Protein expression and phosphorylation was identified by western blot.

Results: The results showed that DHYZ antagonized H$_2$O$_2$-mediated cytotoxicity and proliferation inhibition. DHYZ reduced ROS production, stabilize mitochondrial membrane potential, inhibit Caspase-3 activity and apoptosis induced by H$_2$O$_2$. In addition, DHYZ inhibited the phosphorylation of ASK1, JNK1/2/3 and p38 MAPK which were up-regulated by H$_2$O$_2$.

Conclusions: The present study suggested that DHYZ protected PC12 cells from H$_2$O$_2$-induced oxidative stress damage and was related to inhibition of ROS production and ASK1-JNK/p38 MAPK signaling. The present study provides experimental evidence for the application of DHYZ for the management of oxidative stress damage and AD.

Keywords: Alzheimer’s disease, Oxidative stress, Chinese herb, Di-Huang-Yi-Zhi, PC12 cells, Apoptosis, Signal transduction

Background

Alzheimer’s disease (AD) is an age-related degenerative disease of the central nervous system. AD presents as progressive cognitive impairment, and is closely related to β-amyloid (Aβ) and Tau pathology [1–3]. Both Aβ and Tau can cause oxidative stress (OS) [4–6]. OS can mediate nerve injury and participate in the pathogenesis of AD [7, 8]. Reactive oxygen species (ROS) are the main effectors in the OS process, and can oxidize proteins, lipids and DNA, affect mitochondrial function, activate Caspase-3, promote neuronal apoptosis, and thus participate in the pathogenesis of AD [9, 10]. Intervention of OS damage is an important strategy for the prevention and treatment of AD [11, 12].

Traditional Chinese medicine (TCM) is known to play an important role in the prevention and treatment of AD. Based on the theory of TCM, clinical medication and related studies, we established a Chinese herbal formula Di-Huang-Yi-Zhi (DHYZ). DHYZ consists of Shu-Di (prepared root of Rehmannia glutinosa (Gaert.) Libosch. ex Fisch. et Mey.), Yi-Zhi-Ren (fruits of Alpinia oxyphylla Miq.), Shi-Chang-Pu (root of Acorus tatarinowii Schott), Fu-Shen (Poria with hostwood) and
Dan-Shen (root of *Salvia miltiorrhiza* Bunge) (Chinese patent ZL20081020471533). All these herbs are effective for the prevention and treatment of AD.

Previous studies have shown that DHYZ can antagonize Aβ-mediated neurotoxicity and inhibit Aβ-induced neurocyte apoptosis in vitro [15]. DHYZ can also reduce synaptic loss, antagonize Aβ-mediated nerve injury and inhibit phosphorylation of Tau protein, thereby improving the learning and memory abilities of AD mice and rats [14, 15]. DHYZ can enhance the therapeutic effect of Donepezil on AD and Parkinson’s disease dementia, improve clinical symptoms, cognitive ability and daily lives of patients [16, 17]. The effect of DHYZ on OS damage remains unknown. The present study explored the protective effect of DHYZ on OS mediated by H2O2 in PC12 cells.

Materials and methods

Chemicals and reagents

Roswell Park Memorial Institute (RPMI)-1640 medium was purchased from Corning (Manassas, VA). Fetal bovine serum (FBS), penicillin, streptomycin and trypsin were purchased from Gibco (Grand Island, NY). Caspase 3 activity assay kit, cell counting kit-8 (CCK-8), lactate dehydrogenase (LDH) cytotoxicity assay kit, mitochondrial membrane potential (MMP) assay kit, N-acetyl-L-cysteine (NAC), and reactive oxygen species (ROS) assay kit were purchased from Beyotime Biotechnology (Haimen, Jiangsu, China). Apoptosis detection kit was from BD Biosciences (San Jose, CA, USA). Antibodies against Apoptosis signal-regulating kinase 1 (ASK1) and c-Jun N-terminal kinase (JNK)1/2/3 were purchased from Abcam (Cambridge, UK). Antibodies against glyceraldehyde-3-phosphate dehydrogenase (GAPDH), p-ASK1 (S83), and p-JNK1/2/3 (T183/Y185) were from Bioworld (St. Louis Park, MN). Antibodies against p38 mitogen-activated protein kinase (MAPK) and p-p38 MAPK (T180/Y182) were purchased from Cell Signaling Technology (Danvers, MA).

DHYZ extraction

Herbs in DHYZ are Shu-Di (prepared root of *R. glutinosa* (Curt.) Libosch. ex Fisch. et Mey.), Yi-Zhi-Ren (fruit of *A. oxyphylla* Miq.), Shi-Chang-Pu (root of *A. tatarinowii* Schott), Fu-Shen (*Poria* with hostwood) and Dan-Shen (root of *Salvia miltiorrhiza* Bunge) (Chinese patent ZL20081020471533). All herbs were obtained from Shanghai University of Traditional Chinese Medicine, Shanghai, China. Voucher specimen is deposited in Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China (specimen number: DHYZ-001). Extraction and quality control of DHYZ has been previously described, Salvianolic acid B was used as a reference phytochemical [13, 18–20]. DHYZ extract was dissolved in serum-free RPMI-1640 medium, passed through 0.22 μm filter for sterilization and stored at −20 °C.

Cell culture

PC12 cells were purchased from The Cell Bank of Type Culture Collection of Chinese Academy of Sciences. PC12 cells were cultured in RPMI-1640 containing 10% FBS, 100 U/mL penicillin and 100 μg/mL streptomycin, and maintained at 37 °C in a humidified incubator with 5% CO2. PC12 cells in logarithmic growth phase were used for subsequent experiments.

Cell proliferation assay

PC12 cells were seeded into a 96-well plate (1 × 10⁴/well). After 24 h of culture, PC12 cells were treated with different concentrations of DHYZ or the same volume of serum-free RPMI-1640 for 4 h. CCK-8 reagent was used to detect cell proliferation according to the manufacturer’s instructions. Cell survival rate was calculated by the following formula: Cell survival (%) = (experimental OD value/control OD value) × 100%.

LDH cytotoxicity assay

PC12 cells were plated in a 96-well plate (1 × 10⁴/well). After 24 h of culture, DHYZ (50–200 μg/mL) or the same volume of serum-free RPMI-1640 were added. After 24 h of treatment, the cells were treated with H2O2 (400 μM) for 4 h. The amount of LDH released in each group was measured according to the manufacturer’s instructions. The results were expressed as fold of non-treated normal group.

Detection of apoptosis

PC12 cells treated with DHYZ and H2O2 were collected and washed with PBS. The cells were suspended in 100 μl Binding Buffer. Annexin V-FITC and propidium iodide (PI) (5 μl each) were added, mixed and incubated for 15 min at room temperature, and then 400 μl Binding Buffer was added and mixed. Cell apoptosis was detected by flow cytometry (BD Biosciences, San Jose, CA).

MMP detection

PC12 cells were incubated in a 24-well plate (5 × 10⁴/well). After 24 h of culture, different concentrations of DHYZ or the same volume of serum-free RPMI-1640 were added. After 24 h, PC12 cells were treated with 400 μM H2O2 for 4 h. JC-1 staining was performed according to the manufacturer’s instructions. Fluorescence microscopy and flow cytometry were used to identify positive JC-1 staining.
Detection of Caspase-3 activity
PC12 cells treated with DHYZ and H$_2$O$_2$ were collected, and the activity of Caspase-3 was detected according to the manufacturer's manual.

ROS detection
The ROS production was detected according to the manufacturer's instructions. Briefly, PC12 cells were cultured in a 6-well plate (2.5 × 105 cells/well). After 24 h of culture, DHYZ (50–200 μg/mL) or the same volume of serum-free RPMI-1640 were added. After 24 h, the cells were treated with 400 μM of H$_2$O$_2$ for 4 h. For ROS detection, the cells were incubated with 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) (10 μmol/L) for 30 min at 37 °C, observed under a fluorescence microscope and quantified with a fluorescence microplate reader (Thermo Fischer Scientific, Waltham, MA). For ROS inhibition, DHYZ-treated PC12 cells were incubated with NAC (500 μM) for 2 h followed by H$_2$O$_2$ treatment.

Western blot
PC12 cells treated with DHYZ and H$_2$O$_2$ were collected, lysed in RIPA buffer and quantified using the BCA kit. Proteins were separated by 8–10% SDS-PAGE electrophoresis and transferred to PVDF membrane on a semidyne transfer unit. The membranes were blocked with 5% non-fat milk for 2 h, incubated with antibodies against ASK1, p-ASK1, JNK1/2/3, p-JNK1/2/3, p38 MAPK and p-p38 MAPK (1:800) or GAPDH (1:2000) at 4 °C overnight. The blots were washed with TBST and incubated with secondary antibody (1:5000) at 37 °C for 2 h. The bands were visualized by the ECL method. Proteins expression were quantified by Image J software.

Statistical analysis
All data were analyzed by SPSS 21.0 software, and the results were expressed as mean ± standard deviation (SD). Intergroup differences were analyzed by one-way analysis of variance (ANOVA) and LSD-t or Dunnett's test. P < 0.05 was considered as significant difference.

Results
DHYZ attenuates H$_2$O$_2$-mediated cytotoxicity
We first observed the effects of H$_2$O$_2$ and DHYZ on PC12 cell proliferation. As shown in Fig. 1, 100–600 μM of H$_2$O$_2$ significantly inhibited the proliferation of PC12 cells (P < 0.01), and the 50% inhibitory concentration (IC50) was about 400 μM. Low doses of DHYZ (25–400 μg/mL) showed no significant effect on the proliferation of PC12 cells. Based on these observations, 400 μM of H$_2$O$_2$ and 50–200 μg/mL of DHYZ were selected for subsequent experiments. Further study revealed that DHYZ could antagonize the inhibitory effects of H$_2$O$_2$ on proliferation of PC12 cells (P < 0.05).

The cytotoxicity of H$_2$O$_2$ on PC12 cells was detected by the LDH release assay. LDH is released from cells when cell membrane is damaged, and thus can reflect cell damage and cytotoxicity. The results showed that the LDH release from PC12 cells increased after H$_2$O$_2$ treatment (P < 0.01). After DHYZ treatment, the H$_2$O$_2$-induced LDH release was reduced (P < 0.05). These results suggested that DHYZ could antagonize H$_2$O$_2$-mediated cytotoxicity.

DHYZ antagonizes H$_2$O$_2$-induced apoptosis
Apoptosis contributes to oxidative stress-mediated neuronal damage [21]. In the present study, Annexin V-FITC and PI double staining were used to detect apoptosis by flow cytometry. The results showed that H$_2$O$_2$ could promote apoptosis of PC12 cells (P < 0.01). Apoptosis of PC12 cells was significantly decreased after DHYZ treatment in a dose-dependent manner (P < 0.01) (Fig. 2).

DHYZ undermines H$_2$O$_2$-induced reduction of MMP
Mitochondria are important organelles that regulate apoptosis. In this study, MMP was detected by JC-1 staining. JC-1 accumulates in the mitochondrial matrix, forms J-aggregates and produces red fluorescence when the MMP is high, while JC-1 exists as a monomer and emits green fluorescence when the MMP is low. The PC12 cells showed green fluorescence after H$_2$O$_2$ treatment. Upon DHYZ treatment, the red fluorescence intensity of PC12 cells increased and the green fluorescence decreased (Fig. 3) (P < 0.05). These results suggested that DHYZ could reverse H$_2$O$_2$-induced reduction of MMP.

DHYZ inhibits H$_2$O$_2$-activated Caspase-3
Caspase-3 is an executive protease in the apoptotic process, which is regulated by mitochondria and death receptor pathway [22]. In this study, a specific enzyme substrate was used to detect the activity of Caspase-3. The results showed that the activity of Caspase-3 increased significantly in PC12 cells after H$_2$O$_2$ treatment (P < 0.01). DHYZ inhibited H$_2$O$_2$-activated Caspase-3 in a dose-dependent manner (Fig. 4) (P < 0.05).

Effect of DHYZ on H$_2$O$_2$-induced ROS production
H$_2$O$_2$ can produce HO• to damage cells [23]. We observed ROS production by DCFH-DA staining. DCFH-DA enters cells and generates DCFH under the action of esterases. DCFH generates fluorescent DCF under the action of ROS. The fluorescence intensity of DCF can reflect ROS level. The results showed that the green fluorescence of PC12 cells was enhanced after H$_2$O$_2$ treatment (P < 0.01), but DHYZ treatment decreased the green fluorescence in a dose-dependent manner (P < 0.05) (Fig. 5A and B).
suggested that DHYZ could reduce H_{2}O_{2}-induced ROS production.

NAC was further used to block the ROS production. The results showed that 500 μM of NAC significantly inhibited ROS production, and also antagonized the effects of H_{2}O_{2} on Caspase-3 activity and apoptosis (P < 0.01). NAC also attenuated the effects of DHYZ on Caspase-3 activity and apoptosis (P < 0.05) (Fig. 5C-F). These observations suggested that ROS participated in the effects of H_{2}O_{2} and DHYZ.

![Fig. 1](image1.png)

Fig. 1 Effects of DHYZ on H_{2}O_{2}-mediated cytotoxicity. PC12 cells were treated with H_{2}O_{2} for 4 h (a) or DHYZ for 24 h (b) and cell proliferation was detected by CCK-8 assay. PC12 cells were pre-treated with DHYZ for 24 h, followed by H_{2}O_{2} treatment for 4 h and subjected to CCK-8 assay (c) and LDH release assay (d). *P < 0.01, versus normal group; **P < 0.05, ***P < 0.001, versus control group. The data are mean ± SD of three independent experiment each in triplicate.

![Fig. 2](image2.png)

Fig. 2 Effects of DHYZ on H_{2}O_{2}-induced apoptosis. DHYZ and H_{2}O_{2} treated PC12 cells were stained with Annexin V/PI, apoptosis was identified by flow cytometry (A) and expressed as mean ± standard deviation (the sum of early apoptosis (right lower quadrant) and late apoptosis (right upper quadrant)) (B). a, normal group; b, H_{2}O_{2} group; c, control group; d, H_{2}O_{2} + DHYZ (50 μg/ml) group; e, H_{2}O_{2} + DHYZ (100 μg/ml) group; f, H_{2}O_{2} + DHYZ (200 μg/ml) group. *P < 0.01, versus normal group; ***P < 0.001, versus control group. The data are mean ± SD of three independent experiment each in triplicate.
Effect of DHYZ on H\textsubscript{2}O\textsubscript{2} activated ASK1-JNK/p38 MAPK signaling

ROS can activate ASK1-JNK/p38 MAPK signal transduction [24, 25]. We detected the expression and phosphorylation of ASK1-JNK/p38 MAPK by Western blot. As shown in Fig. 6, H\textsubscript{2}O\textsubscript{2} up-regulated the phosphorylation of ASK1, JNK and p38 MAPK, without affecting their expressions. DHYZ inhibited the phosphorylation of ASK1, JNK and p38 MAPK induced by H\textsubscript{2}O\textsubscript{2}.

Discussion

Brain, as an organ with high oxygen consumption, is prone to accumulate ROS during the metabolic process. In addition, fewer antioxidant enzymes can penetrate the blood-brain barrier, and the brain contains more unsaturated fatty acids and transition metals, which also lead to ROS accumulation, promote synapse and neuronal loss, and accelerate the progress of AD [11, 26]. Antioxidative damage and maintenance of normal neuronal function are important strategies to prevent and treat AD [12, 26]. The present study showed that H\textsubscript{2}O\textsubscript{2} had cytotoxic effect on PC12 cells and inhibited cell proliferation. DHYZ could antagonize the cytotoxicity and proliferation inhibition of H\textsubscript{2}O\textsubscript{2}, suggesting that DHYZ had neuroprotective effect.

Under physiological condition, the body is in an equilibrium state of redox. During oxidative stress, excessive ROS accumulation in cells lead to irreversible mitochondrial permeability, transition pore opening, decreased MMP, release of cytochrome C from mitochondria, successive activation of Caspase-9 and Caspase-3, and apoptosis initiation [27–29]. The present study showed that apoptosis of PC12 cells was observed after H\textsubscript{2}O\textsubscript{2} treatment, accompanied by decrease of MMP and increase of Caspase-3 activity, suggesting that H\textsubscript{2}O\textsubscript{2} could induce apoptosis through the mitochondrial pathway. Upon DHYZ treatment, the effect of H\textsubscript{2}O\textsubscript{2} on apoptosis was antagonized.

ROS is an effector of oxidative stress in cells. The present study showed that H\textsubscript{2}O\textsubscript{2} increased the ROS level in PC12 cells. NAC-mediated inhibition of ROS could antagonize the effects of H\textsubscript{2}O\textsubscript{2} on apoptosis and Caspase-3, suggesting that H\textsubscript{2}O\textsubscript{2} mediated oxidative...
Fig. 5 Effects of DHYZ on H2O2-induced ROS production. DHYZ and H2O2 treated PC12 cells were stained with DCFH-DA, observed under a fluorescence microscope (×200) (A), detected by fluorescence microplate reader and expressed as fold of non-treated normal group (B). DHYZ treated PC12 cells were incubated with NAC for 2 h, followed by H2O2 treatment and subjected to ROS (C), Caspase-3 activity (D), apoptosis detection (E) and expressed as 100% of total (F). a, normal group; b, H2O2 group; c, control group; d, H2O2 + DHYZ (50 μg/ml) group; e, H2O2 + DHYZ (100 μg/ml) group; f, H2O2 + DHYZ (200 μg/ml) group. △P < 0.01, versus normal group; *P < 0.05, **P < 0.01, ***P < 0.001, versus control group or versus NAC (−) group. The data are mean ± SD of three independent experiment each in triplicate.

Fig. 6 Effects of DHYZ on H2O2-activated proteins phosphorylation. DHYZ and H2O2 treated PC12 cells were subjected to western blot with indicated antibodies (a, c and e) and quantified by Image J software (b, d and f). *P < 0.01, versus normal group; **P < 0.05, ***P < 0.01, ****P < 0.001, versus control group. The data are mean ± SD of three independent experiment each in triplicate.
stress damage in PC12 cells through ROS. Moreover, NAC could also reduce the protective effect of DHYZ on PC12 cells, suggesting that inhibiting ROS was an important mechanism of DHYZ.

ROS can activate ASK1-JNK/p38 MAPK signal transduction [24, 25, 30, 31]. ROS can promote ASK1 phosphorylation, activate JNK or p38 MAPK, regulate downstream apoptosis-related proteins, and induce neuronal apoptosis. Inhibiting JNK and MAPK can protect against nerve damage [32, 33]. The present study showed that phosphorylation of ASK1, JNK and p38 MAPK were up-regulated after H2O2 treatment. DHYZ could also inhibit the phosphorylation of ASK1, JNK and p38 MAPK. These observations suggested that ASK1, JNK and p38 MAPK participated in the effect of DHYZ.

DHYZ is established according to the TCM principles. Shu-Di (prepared root of R. glutinosa (Gaert.) Libosch. ex Fisch. et Mey.) is the Monarch (Jun) herb and used for tonifying kidney. Shi-Chang-Pu (root of A. tatarinowii Schott) and Dan-Shen (root of S. miltiorrhiza Bunge) are the Minister (Chen) herbs and used for dissolving stasis and phlegm, and calming mental-state. Fu-Shen (Portia with hostwood) is the Assistant (Zuo) herb and used for calming spirit. Yi-Zhi-Ren (fruits of A. oxyphylla Miq.) is the Guide (Shi) herb and used as herb for warming kidney. All these herbs are synergistically acted in DHYZ from the perspective of TCM and have showed beneficial for AD treatment [13, 34–38].

The main components of DHYZ including Verbascoside, Catalpinoside, Rehmannioside A, Oxyphylliodiol A and B, Stigmasterol, Apigenin, Cypotenol, Trametenolic acid B, Asatone, Bissarcin, Tanshinone IIA and Salvanolic acid B [18–20, 36]. Verbascoside protects PC12 cells from 1-methyl-4-phenylpyridinium ion (MPP+) induced neurotoxicity via down-regulation of extracellular hydrogen peroxide level [3]. Other compounds, such as Catalpinoside, Rehmannioside A, Stigmasterol, Apigenin, Trametenolic acid B, Asatone, Tanshinone IIA and Salvanolic acid B have showed neuro-protective effect against oxidative stress damage through different mechanism [40–47]. However, the role of those compounds in DHYZ need further explore.

Conclusions

In summary, the present study suggested that DHYZ protected PC12 cells from H2O2-induced oxidative stress damage, and its mechanism was related to inhibition of ROS production and ASK1-JNK/p38 MAPK phosphorylation. The present study provided experimental evidence for alleviating oxidative stress damage, preventing and treating AD and neurodegenerative diseases by TCM.
markers in the pathogenesis of Alzheimer disease. Curr Med Chem. 2014;21(19):2208–17.

9. Butterfield DA, Boyd-Kimbald D, Perry G. Oxidative stress, amyloid-β peptide, and altered key molecular pathways in the pathogenesis and progression of Alzheimer’s disease. J Alzheimers Dis. 2018;62(3):1395–67.

10. Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018;14:450–64.

11. Jiang T, Sun Q, Chen S. Oxidative stress: a major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog Neurobiol. 2016;147:1–19.

12. Bonda DJ, Wang X, Perry G, Nunomura A, Tabaton M, Zhu WX, Smith MA. Oxidative stress in Alzheimer disease: a possibility for prevention. Neuropharmacology. 2010;59(4–5):290–4.

13. An HM, Lin C, Gu C, Chen JJ, Sun WX, Jin M, et al. Di-Huang-Yi-Zhi herbal formula attenuates amyloid-β-induced neurotoxicity in PC12 cells. Exp Ther Med. 2017;13(6):3003–8.

14. An HM, Jin M, Hu B, Chen JL, Yu ZH, Gu C. Effects of Di-huang-Yi-Zhi on learning and memory ability in senile dementia rats induce by Aβ40–42. Chin J Gerontol. 2012;32:1409–12 Chinese.

15. Xiang JF, Yang XY, Han M, Xiong YJ, Zhang L, Ding X, Tan ZH. Effect of Di-huang-Yi-Zhi granules on dementia mice induced by α-amyloid. Lishizhen Med Mat Med Res. 2017;28:2865–7 Chinese.

16. Gu C, Shen T, An HM, Cui Y, Zhou J, Ye Q, Liu T, Wang WX, Zhang TL. Combined therapy of Di-Huang-Yi-Zhi with Donepezil in patients with Parkinson’s disease dementia. Neurosci Lett. 2015;606:13–7 Chinese.

17. Gu C, Yuan CK, Shen T, Ye Q, Liu T, An HM. A clinical observation on Di-huang-Yi-Zhi combined with Donepezil for 50 patients with Alzheimer’s disease. J Trad Chin Med. 2014;55:482–5 Chinese.

18. Lin GB, Xie Y, Li GW, An HM, Yuan XR. Extraction and inclusion process of mixed volatile oil in Di-Huang-Yi-Zhi Granules. Chin J Exp Trad Med Formu. 2017;11(3):157–8 Chinese.

19. Lin GB, Xie Y, Li GW, An HM, Yuan XR. The aqueous extract and purification technique of Di-huang-Yi-Zhi Granules. Chin J Exp Trad Med Formu. 2012;18(1):385–7 Chinese.

20. Lin GB, Xie Y, Li GW, An HM. Studies on quality standard of Di-huang-Yi-Zhi Granules. Chin J Trad Chin Med Pharm. 2012;7(7):785–8 Chinese.

21. Radi E, Formichi P, Battisti C, Federico A. Apoptosis and oxidative stress in PC12 cells: roles of JNK, P38 MAPKs, and mitochondrial apoptosis pathways activation during apoptosis. Annu Rev Genet. 1999;33:269–90.

22. Chauhan V, Chauhan A. Oxidative stress in Alzheimer’s disease. Pathophysiol. 2006;13(3):195–208.

23. Sinha K, Das J, Pal PB, Sil PC. Oxidative stress. The mitochondrial-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol. 2013;87(7):1157–80.

24. Aminzadeh A. Protective effect of tropisetron on high glucose induced oxidative stress and apoptosis in PC12 cells. J Pak Med Assoc. 2017;67(3):819–26.

25. Sultana R, Butterfield DA. Role of oxidative stress in the progression of Alzheimer’s disease. Alzheimers Res. 2010;19(1):341–53.

26. Luo P, Chen L, Zhao Y, Xu H, Huo K, Zhao M, Yang Y, Zhou F. Protective effect of exogenous 1a-aphyllan on hydrogen peroxide-induced oxidative stress in PC12 cells. Free Radic Res. 2012;46(6):766–76.

27. Liu TT, Zhou X, Chen H, Ge Q, Shen Y, Pan S. Resveratrol protects PC12 cells against H2O2-induced apoptosis via the mitochondrial-mediated signaling pathway. Arch Biochim Biophys Sin. 2016;48(4):342–53.

28. Aminzadeh A, Amoroso S, Pannaccione A, Cataldi M, Pignataro G, Fraternali E, et al. Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions. Toxicol Lett. 2003;139(2–3):125–33.

29. Kadowaki H, Nishihara U, Urano F, Sadamottsu C, Matsuzawa A, Takeda K, et al. Amyloid β induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death Differ. 2005;12(1):19–24.

30. Nagai H, Naguchi T, Takeda K, Ichijo H. Pathophysiological roles of ASK1 MAP kinase signaling pathways. J Biochem Mol Biol. 2007;40(1):1–6.

31. Chen K, Lu Y, Liu C, Zhang L, Fang Z, Yu G. Morroniside prevents H2O2 or Aβ1-42-induced apoptosis via attenuating JNK and p38 MAPK phosphorylation. Eur J Pharmocol. 2018;834:295–304.

32. Aminzadeh A, Dehpour AR, Safa M, Mirzamohammadi S, Sharifi AM. Investigating the protective effect of lithium against high glucose-induced neurotoxicity in PC12 cells: involvements of ROS, JNK and p38 MAPKs, and apoptotic mitochondria pathway. Cell Mol Neurobiol. 2014;34(9):1143–50.

33. Jiang B, Du J, Liu JH, Bao YM, An LJ. Catalpol attenuates the neurotoxicity induced by beta-amyloid(1–42) in cortical neuron-glia cultures. Brain Res. 2008;1188:139–47.

34. Shi SH, Zhao X, Liu AJ, Liu L, Wu B, et al. Protective effect of ni-butanol extract from Alpinia oxyphylla on learning and memory impairments. Physiol Behav. 2015;139:13–20.

35. Geng Y, Li C, Liu J, Xing G, Zhou L, Dong M, et al. Beta-sarapin improves cognitive function by suppressing neuronal apoptosis in the Di-huang-Yi-Zhi hippocampus injection rats. Biol Pharm Bull. 2010;33(5):836–43.

36. Lin S, Song K, Chen ZF, Jiang S, Pan CL, Li YB, et al. Safety on compatibility of TCM prescriptions for treating Alzheimer disease. Based on data mining. Chin J Inform Trad Chin Med. 2015;22(5):41 Chinese.

37. Chong CM, Su H, Liu JJ, Wang Y. The effects of bioactive components from the rhizome of Salvia miltonioides (Danshen) on the characteristics of Alzheimer’s disease. Chin Med. 2019;14:19.

38. Sheng QG, Zhang JR, Pu XP, Ma LL. Protective effect of verbascoside on 1-methyl-4-phenyl/4-sulfonatophenol-induced neurotoxicity in PC12 cells. Eur J Pharmacol. 2002;451(1):119–24.

39. Moon MK, Choi BM, Oh GH, Pah JO, Kim JK, Oh H, et al. Catalpol protects Neuro 2A cells from hydrogen peroxide-induced cytotoxicity via the expression of heme oxygenase-1. Toxicol Lett. 2003;145(1):46–54.

40. Sun M, Shen X, Li Y. Parthenolide attenuates cognitive deficits in rats with vascular adaptations through suppressing oxidative stress, inflammation and apoptosis. Biomed Pharmacother. 2019;120:104992.

41. Sun J, Tan L, Liu J, Pan J, Yao Q. Stigmasteryl exerts neuro-protective effect against ischemia-reperfusion injury through reduction of oxidative stress and inactivation of autophagy. Neuropsychiatr Dis Treat. 2015;11:3091–3091.

42. Guo H, Kong S, Chen W, Dai Z, Lin T, Su J, et al. Apigenin mediated protection against OGD-evoked neuron-like injury in differentiated PC12 cells. Arch Biochem. 2014;539(1):219–217.

43. Wang J, Wang A, He H, She X, He Y, Li S, et al. Trametametic acid B protects against cerebral ischemia and reperfusion injury through modulation of microRNA-10a and PI3K/Akt/mTOR signaling pathways. Biomed Pharmacother. 2019;112:106962.

44. Lam KKC, Yao P, Wang H, Duan CL, Dong TTX, Tsim KWK. Acanor from Acorus Tatarinowii rhizome prevents oxidative stress-induced cell injury in cultured astrocytes: a signaling triggered by Akt activation. PLoS One. 2017;12(6):e0179077.

45. Wang X, Xiang W, Wang S, Xu K. Tanshinone II A ameliorates oxaliplatin-induced neurotoxicity via mitochondrial protection and autophagy promotion. Am J Transl Res. 2019;11(5):3409–9.

46. Liu N, Fan M. Protective functions of salvianolic acid B in PC-12 cells against hydrogen peroxide-triggered damage by mediation of microRNA-26a. Antf Cells Nanomed Biotechnol. 2019;47(1):4030–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.