Synthesis of Calcium Ferrite from Waste Gypsum Board

Kenichi Higuchi, Akira Gushima and Tsuneo Ikeda

Synopsis: Chemical recycle process of waste gypsum board obtaining synthetic calcium ferrite for steelmaking have been investigated. Thermodynamic estimation and results of small-scale heating tests revealed that decomposition of gypsum promoted in proper range of partial pressure of O_2 and in lower partial pressure of SO_3 through preventing formation of CaS. Adding Fe$_3$O$_4$ to gypsum contributed a lowering of decomposition temperature of gypsum resulting in formation of calcium ferrite in lower temperature. Decomposition of gypsum was incomplete after heating in air at 1180°C. In contrast, calcium ferrite was successfully obtained by 2-step heat treatment of gypsum; firstly forming CaS thorough reduction by composite carbon and subsequently heating mixture fine between Fe$_3$O$_4$ and CaS at 1180°C. Furthermore a possibility of forming calcium ferrite was found even in a single heat treatment if we adapt proper gas and material conditions. After trial tests with using large-scale rotary kiln, it was confirmed that heating of sample consisting with gypsum, coke fine and Fe$_3$O$_4$ at temperature less than 1200°C resulted in the formation of calcium ferrite accompanying with high desulfurization degree of gypsum.

Key words: calcium sulfate; calcium oxide; calcium sulfide; rotary kiln; decomposition; desulfurization; chemical recycle.

1. 緒言

石膏ボードは建築資材として広く普及しており、その生産量はこの30年間で倍以上と飛躍的に伸びている。一方で、建築物の解体時などに発生する廃石膏ボードの排出量も今後ますます増大し、300万t/年に達すると予測されている。しかし、廃石膏ボードは、埋め立て処理をすると硫化水素を発生させることから、1999年の廃棄物改正に伴い、安定型から管理型処分が必要となり、安価な埋め立て処理が困難となっている。廃石膏ボードのリサイクル技術として、廃石膏を石膏ボードの原料として活用する方法が開発されているが、紙との分離が困難な点、石膏ボード中の結晶粒子が石膏化過程で粗大化するため再石膏化しにくい点、から原料石膏の6％に留まっているのが現状である。

一方、カルシウムフェライト（CaOとFe$_3$O$_4$から構成される化合物）は、鉄鉱石焼結過程で結合相として形成する鉱物として知られるが、その高い脱硫能力を活用し、旋回吹錬時の亜鉛代替材として製造検討が進められている。さらに、今後膨大な埋蔵量を持つ高リン亜鉛使用時の対策技術としても重要性が高まると考えられる。

そこで、廃石膏ボードを熱分解処理して脱硫すると同時に、製鋼用資源として有用なカルシウムフェライトとして活用するプロセスを検討した。ここで、カルシウムフェライト製造時に発生するSO$_2$は、水酸化マグネシウムを用いた脱硫装置を活用し無害化を図ることで、CaOの再資源化プロセスが構築可能である。更に、得られるカルシウムフェライトは、鋼が焼錬用の他に高機能性焼結用原料などへも適用できると考え、高価な産業廃棄物処理の代替となるプロセスを提案できる可能性がある。

まず、焼結プロセスの可能性について、熱力学的検討を行い、石膏ボードを用いた基礎試験（電気炉焼成）を実施した。さらに、ロータリーキル装置を用いた焼成実験を実施した。

2. 石膏ボードの特性

Table 1に石膏ボードの成分を示す。国内で製造される数種の石膏ボードの内、広く用いられているのはGB-R (Gypsum Board Regular type)であり、全体の81%を占める。

主成分は、CaOとSであり、CaSO$_4$・2H$_2$Oとして存在している。不純物含有量は少なく、脱硫後も不純物の少ないCaO源として利用できる。石膏ボードの乾式加熱による脱水反応は、以下の過程を経る。
CaSO₄·2H₂O（二水石膏）
→ CaSO₄·1/2H₂O（半水石膏，130°C）
→ β-CaSO₄（可溶性無水石膏，190°C）
→ α-CaSO₄（無水石膏，1195°C）

West and Suttonは、石膏の熱分解反応に関して、空気中での1225°Cからの熱分解開始、CO₂ガス中またはC添加による熱分解開始温度が低い、Fe₂O₃添加によるCaO・Fe₂O₃生成、を報告している。また、熱分解速度を下げる共存物質として、CaC₂。Pyrite精鉱（FeS₂）[10]、Na⁺[11]が報告されている。最近、Miharaら[11]も、廃石膏の再利用を目的にCO₂ガス下でのFe₂O₃との混合による熱分解促進を見が出している。

3. 熱力学的検討

平衡状態図に関しては、CaSO₄-CaO-CaS-SO₂-CO₂系の相平衡条件が明らかにされている[10]。ガス条件による固相安定相の変化も検討されている[10]。本稿では、2種の気相が関連することを踏まえて化学ポテンシャル図にて検討を行った。

3.1 石膏の熱分解反応

石膏ボードの主成分であるCaSO₄の熱分解反応は、Table 2中 (1), (2) 式のように表される。また、熱分解生成物であるCaOと気相の関係として (3), (4) 式も関連する。なお、本稿では熱力学データを主としてTurkdogan[10]の値を用いた。

Fig.1 に (1)～(4) 式から得られる1000°C, Ca-O-S 系の化学ポテンシャル図を示す。この図から、1) 低P₆, 低P₂O₃条件でCaSO₄がCaOへ熱分解する、2) 適度にP₆が低下すると、CaSが生成する、ことが分かる。CやCO₂ガスによる石膏の熱分解が促進されること、報告されており[10][11]、上記解析結果と一致している。

すなわち、石膏ボードを脱硫させる観点からは、①適正なP₆とする（P₆が高さと熱分解しない）、一方、P₆が過低に低いとCaSが生成）、②P₆を低く保つ（ガス気流条件とする）、ことが重要であると考えられる。なお、平衡する気相は、P₆の高い順からSO₂、SO₃、S₂、COS、CS₂、CS₂と変化するが、本研究で想定するP₆の範囲 (10⁻¹～10⁻¹⁵ atm)ではSO₂が主体であるので、SO₂のみを考慮する。

CaSO₄(s) = CaO(s)+SO₂(g)+1/2O₂(g)	(1)	ΔG° = +641870-237.73T(J)(990-1195°C)
α-CaSO₄(s) = CaO⁺SO₂(g)+1/2O₂(g)	(2)	ΔG° = +6453380-233.88T(J)(1195-1365°C)
CaO(s)+SO₂(g)+3CO(g) = CaS(s)+3CO₂(g)	(3)	ΔG° = -3382460-177.27T(J)(1000-1300°C)
Fe₂O₃(s)+FeO(s)+3SO₂(g)+1/2O₂(g)	(4)	ΔG° = -2896660-85.30T(J)(1000-1300°C)
Fe₂SO₄(s) = Fe₂O₃(s)+3SO₂(g)+1/2O₂(g)	(5)	ΔG° = +7752230-723.87T(J)(400-800°C)
FeSO₃(s) = 1/2Fe₂O₃(s)+SO₂(g)+1/2O₂(g)	(6)	ΔG° = +203470-202.34T(J)(500-630°C)
FeO(s)+O₂(g) = Fe(g)+SO₂(g)	(7)	ΔG° = -206730-15.82T(J)(906-988°C)

Table 2. Thermodynamic data used in this study[10], 'm' represents melting point.

Table 1. Chemical compositions of Gypsum Board Products and Coke fine used in this study (mass%).

CaO	T.S.	T.Fe	FeO	SiO₂	Al₂O₃	MgO	TiO₂	P	Cl	Cu	Zn	K₂O	Na₂O	CaO	F	Cr	C.W	T.C
GB-R	37.46	20.84	0.01	0.01	0.81	0.35	0.09	0.02	0.056	0.008	0.003	0.004	0.024	0.021	0.209	<0.001	0.66	n.a
GB-S	37.56	21.42	0.06	0.01	0.78	0.21	0.08	0.02	0.052	0.004	0.002	0.003	0.016	0.024	0.028	<0.001	0.65	n.a
GB-F	37.58	20.94	0.07	0.02	0.60	0.32	0.08	0.02	0.056	0.002	0.005	0.007	0.021	0.017	0.192	<0.001	0.59	n.a
Coke fine	0.41	0.64	0.49	n.a	6.59	3.56	n.a	0.19	n.a	n.a	n.a	n.a	0.108	0.062	n.a	n.a	n.a	78.7

n.a; not analyzed

Fig. 1. Chemical potential diagram for Ca-S-O system at 1000°C.
3・2 カルシウムフェライト製造の可能性

石膏ボードを脱硫し、かつ生成したCaOとFe₂O₃からカルシウムフェライトを生成させる可能性についてCaFe-S-O系の相平衡関係を用いて検討した。本系では、硫化酸化物としてCaSO₄, Fe₃(SO₄)₂, Fe₃O₄, 落化物としてCaS, FeS, 酸化物として, FeO, CaO カルシウムフェライト (2CaO · Fe₂O₃, CaO · FeO₂) を考慮する必要がある。

さらに、カルシウムフェライトはP₀₀₀₀によって、CWF, CWF, CWF, 'W' と複雑に変化する (C : CaO, W : FeO, F : Fe₂O₃, W : (Ca, Fe) 0)。Table 2に示す、Fe-S-O系について (5) ~ (10) 式、Fe-Ca-O系について (11) ~ (17) 式の熱力学データからFe-Ca-Sの相平衡関係を推定した。なおここで、検討しているプロセスの温度が比較的低温であり、液相も存在しないことから、酸化金属のSの溶解は小さい (aₓₓₓₓ = 1)。②硫化酸化物、硫化物CaS, FeSは相互の溶解度が小さく、かつ固溶体も不存在しない。すなわちaₓₓₓₓ = 1 と仮定した。なお、Fe-Ca-S状態図からの、985℃において、共晶反応により融液が生成し、1000℃において、Fe共存する組成、L + CaS + FeS となるが (22)、平衡時P₀₀₀₀のデータが不明のため図では省略した。

Fig.2に (1) ~ (17) 式から得られる 1000℃、全圧1 atmのCaFe-S-O系の化学ポテンシャル図を示す。この結果から、①Fe系硫化酸化物 (Fe₃(SO₄)₂, Fe₃O₄) 生成の可能性はない。②石膏とFe₂O₃からカルシウムフェライトを製造する際に最適なP₀₀₀₀が存在し、かつ強化予想図で速やかにSOₓガスを排出することが重要である。③強化予想図ではFe-S系融液が生成する、ことが示唆された。

また石膏単味のCaSO₄/CaO平衡線 (Fig.1) と本系のCaSO₄/CaO平衡線を比較すると、Fe₂O₃を共存させることにより、石膏単味よりも高P₀₀₀₀、高CaO化している。これは熟分解温度が低温化することを示し、石膏の熟分解処理にFe₂O₃を添加させることは、カルシウムフェライトの製造のみならず、石膏熟分解温度の低温化にも寄与することが分かった。

すなわち平衡論的には、石膏ボードとFe₂O₃を原料として比較的低温でカルシウムフェライトを製造することが可能である。その生成条件は、基本的に前節で示した石膏単味の熟分解反応の促進条件と同一であり、適正なP₀₀₀₀とすることで、P₀₀₀₀を低く保つこと、であると考えられた。

4. 実験方法

4・1 空気中でのカルシウムフェライト製造 (実験1)

焼成実験では、Table 1に示す板状の紙付き石膏ボード (GB-R) を63 µmに破砕したものを用いた。破砕時に残留した大粒の紙は取り除いた。Fe₂O₃源として特級試薬Fe₂O₃ (99%以上) を用いた。

空気中での反応を検討するために石膏ボードと試薬Fe₂O₃を混合後、空気中で焼成する実験を実施した。生成するカルシウムフェライトを2CaO · Fe₂O₃, CaO · Fe₂O₃, CaO · 2Fe₂O₃ (以降Ca₂Fe, CF, CF₂と表す) と想定し、CaOにFe₂O₃のモル比を2 : 1, 1 : 1, 1 : 2とした。石膏ボード材と試薬Fe₂O₃を所定の割合で30分間自動乳鉢で混合後、1水添加後に手造粒し錠状、圧粉成形しプレート (Φ15 mm, h 4 mm, W 1.7 g, 成型E 4 Mpa) の2種類の試料を作成した。形箱電気炉を用い、1180℃、4時間空気中で焼成した。焼成温度がCF-CF₂共晶 (1205℃) の融液生成を避けるため、1180℃とした。

焼成後の試料は、X線回折で生成物の半定量分析を実施した。強度比の高い以下の格子面間隔 (A) における強度の純物質との比率から半定量した。一部の試料については組織観察を行った。

CaSO₄ : 3.49, CaS : 2.013, CaO : 2.4059, Fe₂O₃ : 1.6941, FeO₃ : 2.0993, CF : 2.579, CF₂ : 4.612, 2CF : 7.37

石膏ボードの反応特性としては、CaSO₄の熟分解とCaSへの転換が起こる。そこで、石膏ボードの脱硫率Dsを着目し、Dsを焼成中の重量変化を考慮して式 (18) から求めた。

Ds(%) = (1 - T.S/T.Fe(after) / T.S/T.Fe(before)) × 100

4・2 2段反応 (分解+カルシウムフェライト生成) の検討 (実験2)

石膏の熟分解温度は、CやCO₂-CO₂条件では1000℃以下に低下する。さらに、Fe₂O₃が共存するときに、低温熟分解が促進されることも報告されている。そこで一度、石膏ボード、C、Fe₂O₃を含む混合粉を熟分解し、その熟分解粉を用いてカルシウムフェライトの生成させる2段プロセス
を検討した。混合粉の組成は、予備試験で最も低温（892℃）で熱分解開始を示した組成（石膏ポード78mass%， コークス粉18mass%，試薬Fe₂O₃ 10mass%）を選んだ。標記混合粉を30分間自動乳鉢で混合後、熱分解させた。熱分解は、混合粉をPtのつぼに入れた後、鉄型電気炉でN₂ 5 L/min流通下で1100℃、2時間で行った。得られた熱分解粉、試薬Fe₂O₃をCaO: Fe₂O₃のモル比が2:1, 1:1, 1:2となるように添加した後焼成し、カルシウムフェライトを製造した。焼成は実験1と同様に、タブレット状にした後、箱型電気炉を用い、1180℃、4時間で焼成した。

4・3 1段反応による脱硫およびカルシウムフェライト生成（実験3）

工業的には1段反応が製造効率から理想的である。そこで、上記2段階反応を1段で再現可能かを検討した。石膏ポード、コークス粉と過剰の特級試薬Fe₂O₃を加えて、熱分解とカルシウムフェライト生成を1段で行う実験を実施した。

実験適用を想定して混合粉に水を添加後、手造りして顆粒状の試料を作成した。焼成条件は、実験2の2段反応において、1180℃で融液生成が見られたことを考慮して1100℃とし、4時間で焼成した。1段反応を促進させるためには、反応場での気相中SO₂濃度やO₂濃度が重要と考え、試料上にArを1 L/minで吹き付ける影響、コークス粉配合割合の影響も検討した。

4・4 大型ロータリーキルン焼成テスト（実験4）

前節の1段反応の検証として、大型ロータリーキルン（全長6.5 m、有効長4.9 m、Fig.3）での連続装入試験を実施した。原料は石膏ポード（GB-R）、コークス粉、試薬Fe₂O₃用い、配合を石膏ポード：コークス粉：Fe₂O₃＝72：18：10（mass%）とした。混合粉を粒径4～8 mm、水分3.9%のミニベレットとして、キルンに供した。原料中T.SとT.Feはそれぞれ14.2mass%, 7.1 mass%であった。焼成物は、化学分析の他、組織観察、X線回折、EPMAで解析を行った。

5. 実験結果

5・1 空気中でのカルシウムフェライト製造（実験1）

Fig.4, Fig.5に空気中焼成試験（実験1）の結果を示す。生成したカルシウムフェライトはいずれの石膏ポード配合比率でもCF₂であった。これは、石膏ポードの熱分解が十分に進まず、見掛け上、低CaO条件であった影響と考えられる。顆粒状の方がCF₂生成量は多かった。これは、タブレット状では、熱分解で生成するO₂、SO₂ガスが十分に排出されず、熱分解が十分に進まなかった影響と考えられる。石膏ポード配合比率が低いほど、脱硫率は高かったものの、60%に留まった（Fig.5）。

同じ試料条件で示差熱天秤（N, 周囲気、10℃/min）で石膏の熱分解開始温度を測定すると、同様に石膏ポード配合比率が低くCaO含有量が低い程、熱分解開始温度は低下し た23（Fig.6）。そして、石膏ポード配合比率が低いほど、脱硫率も高かったのは、熱分解温度が低下し、分解反応が促進されたためと考えられる。

以上から、1180℃、空気中での石膏ポードの焼成では、カルシウムフェライトは生成するものの、CaSO₄の完全分解は困難であり、P₀₅の低下などの組合せが必要であることが分かった。

Fig. 3. Appearance of rotary kiln. Distance from discharging hole T1: 0 m, T2: 0.5 m, T3: 1.5 m.

Fig. 4. Changes in mineral composition of samples after heating at 1180℃ in air for 4 hours with CaO/Fe₂O₃ (Test 1).

Fig. 5. Changes in T.S content after heating and desulfurization degree of gypsum with CaO/Fe₂O₃ (Test 1).
5・2 2段反応（実験2）
実験2の2段処理の熱分解過程で得られた熱分解係数を解析した結果、T.S = 31.7 mass% でT.C = 4.4 mass%であり、3段回折から、CaSと同定された。コークス粉添加により、熱分解時のP0が低下し、CaSO4がCaSとなったものと考えられる。グラファイト添加でも同様の知見が得られていた。

Fig.7に2段プロセスによるカルシウムフェライト製造試験結果（実験2）を示す。CaO/Fe2O3が0.2以上で、多量のカルシウムフェライトが生成した。生成物のT.Sは、0.2 mass%以下と低く、石膏バードの脱硫も十分進行していた。なお、本条件では熱分解粉中のカーボンの燃焼により融液が生成していた。

よって、石膏バードを一度強還元条件でCaSに還元した後に、Fe2O3を添加して、空気中焼成すると、石膏バードが完全に熱分解されてカルシウムフェライトが生成すること分かった。

5・3 1段反応（実験3）
Fig.8で同様の効果を1段処理で観察した試験の結果を示す。空気中に保持した条件での焼成では、脱硫率は最大でも35%までしか到達しなかった。一方、Ar吹付けによって、脱硫率が向上し、特に低CaO/Fe2O3条件でその影響が大きかった。さらに、コークス粉の配合を増やすと脱硫率が向上し、最大95%、T.Sが0.5 mass%まで到達した。また、いずれの場合も、生成したカルシウムフェライトはCF2であった。

よって、1段反応でも、生成SO2ガスの反応圧の除去と反応圧のP0低下により、石膏バードの脱硫およびカルシウムフェライトの生成が可能であることが分かった。

5・4 ロータリーキルン焼成試験結果（実験4）
Table 3にロータリーキルン試験基準と結果を示す。Run 1、Run 2は炉内が高温となり、T2が1050°Cを越え、成品は溶融状態であった。高温かつ滞留時間を長時間とした条件では、高い脱硫率を示した。

ロータリーキルンの安定性を考慮すると、融液が発生する高温条件での操業は、脱硫は進むものの、望ましくない。Run 3のように温度を低温に保つよりも、滞留時間を十分長くすれば、ある程度の脱硫率まで到達することが分かった。C量の調整などによりCaS生成を最小化すれば、より高い脱硫率が期待できる。

Table 3. Experimental condition and results of large-scale rotary kiln test.

Run No.	Residence time	Temperature	Appearance of product	T.S of product	SOx in exhaust gas	desulfurization degree			
	min	°C	°C	°C	Exhaust gas	mass%	m³	%	
1	140	1250	1075	762	molten	0.4	0.644	–	80.9
2	25	1250	1150	809	molten	16.6	0.140	–	17.6
3	140	1081	1039	690	pellet	2.8	0.625	92.7	78.5

1 Calculated from sulfur content in product
2 Calculated from SOx concentration of exhaust gas
6. 考察

6・1 焼成物の鉱物組織
実験1の焼成後試料の組織写真をPhoto 1に示す。顕微鏡観察により焼成物が観察された。一方、タブレット状では試料表面層の一部に少量のCFが見られ、中央部には未熱分解石英が多く残存していた。試料の充填構造で大きく組織が異なったことは、石英の脱硫、その後のカルシウムフェライト形成に、ガス拡散条件が大きく影響を及ぼしていることを示唆する。

Fig.9、Photo 2にロータリーキルン試験（Run 3）の原料投入、焼成温度が低かった焼成物を採取し、解析した結果を示す。いずれの焼成物も非晶質スラグを伴い、焼成物の半定量分析の合計は100%とはならなかった。この試料にも未熱分解CaSO4は検出されず、CaSは焼成時間とともに減少する傾向があった（Fig.9）。生成カルシウムフェライトはC2Fのみが検出された。

組織は、A) CaS+C2F, B) マグネットイート + スラグ, C) C2F主体、の3種に分類された。Bは、焼成温度が高く、カルシウムフェライトがスラグとマグネタイトに溶解溶融したもののと考えられる。この組織には未熱分解CaSO4は検出されず、CaSの共存は観察されなかった。

焼成時間が短時間でもC2Fが生成されており、C2Fの生成速度は十分速いと考えられる。

以上の結果から、含炭ペレット化した石英のキルン焼成では、CaSO4は容易にCaSに還元され、その後のCaSの酸化過程で脱硫が進行するものと考えられる。

6・2 カルシウムフェライト生成メカニズム
Ca-Fe-S-O系化学ポテンシャル図（Fig.2）を用いると、カルシウムフェライト生成メカニズムは以下のようと考えられる。

実験1では、空気中焼成であったため、石英ボードの熱分解反応が速く、完全な分解で至らなかった（図中①）。実験2では、熱分解過程でCaSを生成し、CaSの酸化とともにカルシウムフェライトが生成した（図中②）。実験3および

Photo 1. Microstructures of mixtures of gypsum board and hematite after heating in air (Test 1), H=Fe2O3, CF2=CaO·2Fe2O3, G=CaSO4.

Photo 2. Microstructures of products sampled by operation time in rotary kiln test, Run 3. A; CaS + C2F type , Pale: C2F, Gray; CaS, Dark: pore, B; Magnetite + slag type, Pale: Magnetite, Gray; Slag, C; C2F type, Gray; C2F, Dark: Pore.

Fig. 9. Changes in mineral composition and desulfurization degree of product samples with operation time in rotary kiln test, Run 3.
びロータリーキルン焼成では、内装カーボンの燃焼によって還元雰囲気が生じるとともに、気相中SO\(_2\)ガスを除くことにより熱分解反応が促進され、その後酸化過程でカルシウムフェライトが生成したと推定される（図中③）。

6・3 キルン焼成における反応過程の推定

カルシウムフェライトの形成反応を検証するため、キルン焼成の30分中断時のペレット試料のEPMAによる元素分析解析（ZAFF補正法）を実施した。試料は4・4節と同一のペレットであり、小型キルンで焼成した。焼成後試料の構成鉱物はCaO 5%、C\(_2\)F 54%、CaS 32%、CaSO\(_4\) 4%（mass）、T.Sは10.6 mass%であった。Photo 3に組織写真、Table 4にEPMA解析結果をそれぞれ示す。コークス粉の灰分由来と推定されるSiO\(_2\)の周囲にCaOが生成しており、2～3 mass%のSが含有されていた。また、球状CaSの周囲にC\(_2\)Fが生成していたことから、C\(_2\)F生成メカニズムは、式(19)に示すCaSとFe\(_2\)O\(_3\)の直接反応と考えられる。

2CaS + 3O\(_2\) + Fe\(_2\)O\(_3\) → 2CaO・Fe\(_2\)O\(_3\) + 2SO\(_2\) ———— 式(19)

Fig.10にキルン焼成時の反応過程の推定を示す（P\(_{SO2}\) = 0.01 atm一定とした。実際はガス側条件で変化する。昇温に伴い、コークス粉が燃焼してP\(_{O2}\)が低下し、CaSO\(_4\)の熱分解が促進される。このとき酸化鉄と接触している部分では、カルシウムフェライトが生成する。本実験の配合条件ではFe\(_2\)O\(_3\)に対してCaO過剰であるので、過剰なCaO分はCaSまで還元される。あるいは、800℃以下、P\(_{O2}\)＜10\(^{-16}\)であれば直接CaSO\(_4\)がCaSに転化する。その後コークス燃焼の終了に伴いP\(_{O2}\)が上昇し、バーナーによる昇温も進む。Run 1、Run 2のように固体温度が1200℃を超える条件では溶融が進み、組織は液相主体となり、冷却時に過飽和となったマグネタイトが晶出する（B組織）。Run 3のように固体温度が110℃以下に抑えられると、液相を介さずに式(19)に示すCaSからのカルシウムフェライト生成が起こる。この過程が不完全であったものが、Aタイプの組織に相当する。部分的にはCaSO\(_4\)からのカルシウムフェライト生成も起き、これがC組織に相当すると思われる。また、キルン内の温度、雰囲気の不均一性に応じて、生成物にばらつきが生じたと考えられる。

7. 結言

廃石膏ボードの資源化の可能性を採るため、廃石膏ボードを用いたカルシウムフェライトの合成を試みた。その結果、以下の知見を得た。

1) 石膏ボードの熱分解温度は、低P\(_{O2}\)化、低P\(_{SO2}\)化で低温化する。併し、低P\(_{O2}\)条件ではCaSが生成するので、石膏ボードの脱硫処理にはP\(_{O2}\)制御が重要である。

2) 石膏ボードに酸化鉄を加え、P\(_{O2}\)とP\(_{SO2}\)を適正に制御することで、石膏の熱分解温度が低下するとともに、カルシウムフェライトの生成が期待できる。

3) 石膏ボードの空気中、1180℃での焼成では、CaSO\(_4\)の完全分解は困難であった。一方、石膏ボードを一度強還元条件でCaSに還元した後に、Fe\(_2\)O\(_3\)を添加し、空気中焼成すると石膏ボードが完全に熱分解されてカルシウムフェライトが生成した。さらに、生成CaSO\(_4\)の反応場からの除去と反応場のP\(_{O2}\)低下を確保すれば、1段反応でもカルシウムフェライトの生成が可能であることが分かった。

4) ロータリーキルンによる焼成実験を実施し、含炭化とFe\(_2\)O\(_3\)の共存の効果により、高い石膏の脱硫率が得られ

Table 4. Results of phase analysis with EPMA. Each portion number is in correspondence with that in Photo 3.

Portion	Ca	Fe	S	O	Total	Identified phase
						SiO\(_2\)
1	0.5	0.3	0.0	30.8	31.6	CaO
2	0.6	0.3	0.0	33.2	34.2	C\(_2\)F
3	41.8	1.1	3.4	39.7	86.0	
4	43.7	2.5	1.6	35.2	82.9	
5	31.5	36.1	0.7	28.4	96.7	CaS
6	31.9	35.2	3.6	28.5	99.3	
7	57.1	0.8	45.0	2.7	105.5	
8	56.9	0.6	44.8	2.6	104.9	

Fig. 10. Reaction route during rotary kiln test. Run 3. A, B and C represent microstructure types shown in Photo 2.
こと、およびカルシウムフェライトが生成することを確認した。溶融を抑制した1200℃以下の操業でも、脱硫率は93%と高かった。今後、低温での高脱硫率を追求すべく、基礎試験で最適条件、キルン操業条件を明らかにする必要がある。

文 献
1) 石膏ボードハンドブック環境編、石膏ボード工業会、東京、(2014)、196。
2) Pollution Eng., 35(2003)、24。
3) M.Nishi: J. Soc. Inorg. Mater. Jpn., 9(2002)、254。
4) I.Kokubo, S.Yamamoto, M.Inatomi and M.Ichinohe: Tetsu-to-Hagané, 55(1969)、S157。
5) C.W.P.Finn, C.J.C.Clark and M.J.McCarthy: Proc. of 2nd National Chemical Engineering Conf., Institution of Chemical Engineers, Queensland、(1974)、88。
6) V.P.Khaidukov, E.V.Karpenko, S.M.Zevin and T.A.Tumanova: 50th Ironmaking Conf. Proc., ISS, Warrendale、(1991)、139。
7) M.S.Lee and P.V.Barr: Ironmaking Steelmaking, 29(2002)、96。
8) K.Nagano: Tetsu-to-Hagané, 90(2004)、51。
9) 石膏石灰ハンドブック、石膏石灰学会編、技報堂、東京、(1972)、104。
10) R.R.West and W.J.Sutton: J. Am. Ceram. Soc., 37(1954)、221。
11) I.Gruncharov, Y.Pelovski, Pl.Kirilov and I.Dombalov: Gypsum & Lime, 205(1986)、385。
12) Y.Fukuda and Y.Saruki: Inorganic Materials, 4(1997)、356。
13) N.Mihara, S.Okumura, Y.Kojima and H.Matsuda: J. Soc. Inorg. Mater. Jpn., 13(2006)、51。
14) E.Turkdogan, B.B.Rice and J.V.Vinters: Metall. Trans. B, 58(1974)、1527。
15) N.Mihara, S.Okumura, S.Ozawa, Y.Kojima, H.Matsuda, K.Kyaw, T.Iwashita, Y.Goto, S.Ikehara and A.Gushima: J. Soc. Inorg. Mater. Jpn., 11(2004)、266。
16) E.Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press、New York、(1980)、7、8、11、20。
17) M.W.Chase, Jr., C.A.Davies, J.R.Downey, Jr., D.J.Frurip, R.A.McDonald and A.N.Syverud: JANAF Thermochemical Tables, 3rd Ed., Amer. Chem. Soc. & Amer. Inst. Phys. for National Bureau of Standards、New York、(1985)、626、628、1639。
18) L.von Bogdandy and H.J.Engell: 'The reduction of Iron ores', Springer-Verlag、Düsseldorf、(1971)、29。
19) M.Hillert, M.Selleby and B.Sundman: Metall. Trans. A, 21A(1990)、2759。
20) W.S.Chung, T.Murayama and Y.Ono: J. Jpn. Inst. Met., 52(1988)、973。
21) S.Okumura, N.Mihara, K.Kamiya, S.Ozawa, M.S.Onyango, Y.Kojima, H.Matsuda, K.Kyaw, Y.Goto and T.Iwashita: Ind. and Eng. Chem. Res., 42(2003)、6046。
22) V.Raghavan: Phase Diagrams of Ternary Iron Alloys Part 2, The Indian Institute of Metals、Calcutta、(1988)、88。
23) I.Komaki: Private communication、(2003)。
24) K.Soya, N.Mihara, S.Ikehara, M.Kubota and H.Matsuda: J. Soc. Inorg. Mater. Jpn., 16(2009)、225。