Rings whose total graphs have small vertex-arboricity and arboricity

Morteza Fatehi, Kazem Khashyarmanesh, Abbas Mohammadian

Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O.Box 1159-91775, Mashhad, Iran

Abstract

Let \(R \) be a commutative ring with non-zero identity, and \(Z(R) \) be its set of all zero-divisors. The total graph of \(R \), denoted by \(T(\Gamma(R)) \), is an undirected graph with all elements of \(R \) as vertices, and two distinct vertices \(x \) and \(y \) are adjacent if and only if \(x + y \in Z(R) \). In this article, we characterize, up to isomorphism, all of finite commutative rings whose total graphs have vertex-arboricity (arboricity) two or three. Also, we show that, for a positive integer \(v \), the number of finite rings whose total graphs have vertex-arboricity (arboricity) \(v \) is finite.

Mathematics Subject Classification (2020). Primary: 05C99, Secondary: 13A99

Keywords. total graph, arboricity, vertex-arboricity

1. Introduction

In [1], D.F. Anderson and A. Badawi introduced the total graph of ring \(R \), denoted by \(T(\Gamma(R)) \), as the graph with all elements of \(R \) as vertices, and for distinct \(x, y \in R \), the vertices \(x \) and \(y \) are adjacent if and only if \(x + y \in Z(R) \), where \(Z(R) \) is the set of zero-divisors of \(R \). They studied some graph theoretical parameters of \(T(\Gamma(R)) \) such as diameter and girth. In addition, they showed that the total graph of a commutative ring is connected if and only if \(Z(R) \) is not an ideal of \(R \). In [7], H.R. Maimani et al. gave the necessary and sufficient conditions for the total graphs of finite commutative rings to be planar or toroidal and in [5] T. Chelvam and T. Asir characterized all commutative rings such that their total graphs have genus two.

Suppose that \(G \) is a graph, and let \(V(G) \) and \(E(G) \) be the vertex set and edge set of \(G \), respectively. The vertex-arboricity of a graph \(G \), denoted by \(va(G) \), is the minimum positive integer \(k \) such that \(V(G) \) can be partitioned into \(k \) sets \(V_1, V_2, \ldots, V_k \) such that \(G[V_i] \) is a forest for each \(i \in \{1, 2, \ldots, k\} \), where \(G[V_i] \) is the induced subgraph of \(G \) whose vertex set is \(V_i \) and its edge set consists of all of the edges in \(E(G) \) that have both endpoints in \(V_i \). This partition is called acyclic partition. The vertex-arboricity can be viewed as a vertex coloring \(f \) with \(k \) colors, where each color class \(V_i \) induces a forest; namely, \(G[f^{-1}(i)] \) is an acyclic graph for each \(i \in \{1, 2, \ldots, k\} \). Vertex-arboricity, also known as point arboricity, was first introduced by G. Chartrand, H.V. Kronk, and C.E.

*Corresponding Author.

Email addresses: m.fatehi.h@gmail.com (M. Fatehi), khashyar@ipm.ir (K. Khashyarmanesh), abbasmohammadian1248@gmail.com (A. Mohammadian)

Received: 10.07.2019; Accepted: 03.05.2020
Wall [4] in 1968. Note that a graph with no cycles is a forest, and it has vertex-arboricity one.

Likewise, the arboricity of a graph G, denoted by $\nu(G)$, is the least number of line-disjoint spanning forests into which G can be partitioned, that is, there is some collection of $\nu(G)$ subgraphs of G, where each subgraph is a forest and each edge in G is in exactly one such subgraph. Arboricity of a graph was first introduced by C. St. J. A. Nash-Williams [4] in 1964.

The main purpose of this paper is to characterize all finite commutative rings whose total graph has vertex-arboricity (arboricity) two or three. In addition, we show that, for a positive integer v, there are only finitely many finite rings whose total graph has vertex-arboricity (arboricity) v.

Now, we recall some definitions of graph theory which are necessary in this article. Let $G = (V(G), E(G))$ be a graph with vertex set $V(G)$ and edge set $E(G)$. We use n and e to denote the number of vertices and the number of edges of G, respectively. A graph in which each pair of distinct vertices is joined by an edge is called a complete graph. A bipartite graph G is a graph whose vertex set $V(G)$ can be partitioned into two subsets V_{1} and V_{2} such that the edge set of such a graph consists of precisely those edges which join vertices in V_{1} to vertices of V_{2}. In particular, if $E(G)$ consists of all possible such edges, then G is called the complete bipartite graph and denoted by the symbol $K_{r,s}$, where $|V_{1}| = r$ and $|V_{2}| = s$.

For a vertex $x \in V(G)$, $\deg(x)$ is the degree of vertex x, $\delta(G) = \min\{\deg(x) : x \in V(G)\}$, $\Delta(G) = \max\{\deg(x) : x \in V(G)\}$. For a nonnegative integer d, a graph is called d-regular if every vertex has degree d. Let $S \subset V(G)$ be any subset of vertices of G. Then the induced subgraph $G[S]$ is the graph whose vertex set is S and whose edge set consists of all of the edges in $E(G)$ that have both endpoints in S. A spanning subgraph for G is a subgraph of G which contains every vertex of G. A graph without any cycle is called acyclic graph. A forest is an acyclic graph. Let G_{1} and G_{2} be subgraphs of G, we say that G_{1} and G_{2} are disjoint if they have no vertex and no edge in common. The union of two disjoint graphs G_{1} and G_{2}, which is denoted by $G_{1} \cup G_{2}$ is a graph with $V(G_{1} \cup G_{2}) = V(G_{1}) \cup V(G_{2})$ and $E(G_{1} \cup G_{2}) = E(G_{1}) \cup E(G_{2})$. For any graph G, the disjoint union of k copies of G is denoted by kG. Graphs G and H are said to be isomorphic to one another, written $G \cong H$, if there exists a one-to-one correspondence $f : V(G) \rightarrow V(H)$ such that for each pair x, y of vertices of G, $xy \in E(G)$ if and only if $f(x)f(y) \in E(H)$. Also, for a rational number p, $[p]$ is the first integer number greater than or equal to p, and $[p]$ is the first integer number less than or equal to p.

2. Basic properties

First of all, let us recall some of the basic facts about total graphs and vertex arboricity, which we shall use in the rest of the paper.

Lemma 2.1 ([7, Lemma 1.1]). Let x be a vertex of $T(\Gamma(R))$. Then the following statements are true.

(i) If $2 \in Z(R)$, then $\deg(x) = |Z(R)| - 1$.

(ii) If $2 \notin Z(R)$, then $\deg(x) = |Z(R)| - 1$ for every $x \in Z(R)$ and $\deg(x) = |Z(R)|$ for every vertex $x \notin Z(R)$.

Remark 2.2. It is clear that $va(G) = 1$ if and only if G is acyclic. For a few classes of graphs, the vertex-arboricity is easily determined. For example, $va(C_{n}) = 2$, where C_{n} is a cycle graph with n vertices. If n is even, $va(K_{n}) = \frac{n}{2}$; while if n is odd, $va(K_{n}) = \frac{n+1}{2}$. So, in general, $va(K_{n}) = \lceil \frac{n}{2} \rceil$. Also, $va(K_{r,s}) = 1$ if $r = 1$ or $s = 1$, and $va(K_{r,s}) = 2$ otherwise.
Lemma 2.3 ([3, Lemma 1]). Let G be the disjoint union of graphs G_1, G_2, \ldots, G_k. Then, for all i with $1 \leq i \leq k$,

$$\text{va}(G) = \max \text{ va}(G_i).$$

Now, we are ready to show that for a positive integer v, there are only finitely many finite rings whose total graph has vertex-arboricity v.

Theorem 2.4. For any positive integer v, the number of finite rings whose total graphs have vertex-arboricity v is finite.

Proof. Let R be a finite ring. We want to obtain a complete subgraph (with vertex set T) of $T(\Gamma(R))$. To achieve this, we consider the following two cases:

(a) R is local. In this case $Z(R)$ is the maximal ideal of R and $|R| \leq |Z(R)|^2$ [8]. In this situation, we put $T = Z(R)$.

(b) R is not local. Then there is a natural number $n \geq 2$ and there are local rings R_1, R_2, \ldots, R_n such that $R = R_1 \times R_2 \times \cdots \times R_n$. We may assume that $|R_1| \leq |R_2| \leq \cdots \leq |R_n|$. Now put $R_i' = 0 \times R_2 \times \cdots \times R_n$. Since $|R| = |R_1||R_1'|$, we have $|R| \leq |R_1'|^2$. In this situation, we put $T = R_1'$.

Now, it is easy to see that, for every elements x and y of T, x is adjacent to y in $T(\Gamma(R))$. Thus there is an induced subgraph $K_{|T|}$ in $T(\Gamma(R))$. Hence Remark 2.2 implies that $\text{va}(K_{|T|}) \leq v$, and so $\lceil \frac{|T|}{v} \rceil \leq v$. Thus $|R| \leq 4v^2$, and so the proof is complete. \hfill \Box

Let $\text{Reg}(\Gamma(R))$ be the induced subgraph of $T(\Gamma(R))$ with vertices $\text{Reg}(R) = R - Z(R)$, and $Z(\Gamma(R))$ be the induced subgraph of $T(\Gamma(R))$ with vertices $Z(R)$. Next, we record some facts concerning total graphs. If $Z(R)$ is an ideal of R, then $Z(\Gamma(R))$ is a complete subgraph of $T(\Gamma(R))$ and is disjoint from $\text{Reg}(\Gamma(R))$. Thus, the following theorem of D.F. Anderson and A. Badawi gives a complete description of $T(\Gamma(R))$.

Theorem 2.5 ([1, Theorem 2.2]). Let R be a commutative ring such that $Z(R)$ is an ideal of R, and let $|Z(R)| = n$ and $\frac{R}{Z(R)} = m$. Then the following statements hold.

(i) If $2 \in Z(R)$, then $\text{Reg}(\Gamma(R))$ is the union of $m - 1$ disjoint K_n's.

(ii) If $2 \notin Z(R)$, then $\text{Reg}(\Gamma(R))$ is the union of $\frac{m - 1}{2}$ disjoint $K_{n,n}$'s.

Theorem 2.6. Let R be a finite commutative ring with identity and I be a nontrivial ideal contained in $Z(R)$. Set $|I| = n$ and $\frac{I}{Z(R)} = m$. Then the following statements hold.

(i) If $2 \in I$, then $\text{va}(T(\Gamma(R))) \geq \lceil \frac{n}{2} \rceil$.

(ii) If $2 \notin I$, then $\text{va}(T(\Gamma(R))) \geq \max\{\lceil \frac{n}{2} \rceil, 2\}$.

Proof. Let G be the spanning subgraph of $T(\Gamma(R))$ such that, for every two vertices $x, y \in R$, x is adjacent to y in G if $x + y \in I$. Now, since I is an ideal of R contained in $Z(R)$, by making obvious modification to the proof of Theorem 2.5, one can show that

$$G = \left\{ \begin{array}{ll}
 mK_n & \text{if } 2 \in I \\
 K_n \cup (\frac{m-1}{2})K_{n,n} & \text{if } 2 \notin I.
\end{array} \right.$$

Now, by Remark 2.2 in conjunction with Lemma 2.3, we have the following equalities

$$\text{va}(G) = \left\{ \begin{array}{ll}
 \lceil \frac{n}{2} \rceil & \text{if } 2 \in I \\
 \max\{\lceil \frac{n}{2} \rceil, 2\} & \text{if } 2 \notin I.
\end{array} \right.$$

Now, since G is a subgraph of $T(\Gamma(R))$, we have that $\text{va}(G) \leq \text{va}(T(\Gamma(R)))$, and so the proof is complete. \hfill \Box

The following corollary is immediate from Theorem 2.5.

Corollary 2.7. Let R be a finite commutative ring with identity, $Z(R)$ be nontrivial ideal of R and set $|Z(R)| = n$ and $\frac{R}{Z(R)} = m$. Then the following statements hold.

(i) If $2 \in Z(R)$, then $\text{va}(T(\Gamma(R))) = \lceil \frac{n}{2} \rceil$.

(ii) If $2 \notin Z(R)$, then $\text{va}(T(\Gamma(R))) = \max\{\lceil \frac{n}{2} \rceil, 2\}$.

Let \(\text{gr} \) denote the girth of a graph. Theorem 3.1 [2, Theorem 4.7] states that for any commutative ring \(R \), the girth of its zero-divisor graph \(\text{gr}(\Gamma(R)) \) is at most 3. Moreover, this girth is \(2k \) if and only if \(R \) is a \(k \)-fold extension of a field. Theorem 3.2 [10, Theorem 2] further characterizes rings with girth 4 based on their structure. The vertex-arboricity of the total graph \((\Gamma(R)) \) is a topic of interest, as explored in Remark 3.3 and subsequent results. The authors classify finite commutative rings whose total graphs have vertex-arboricity two or three. The proof of these results involves detailed analysis of the properties of commutative rings and their associated graphs.
Let 3.3 implies that 6. If 3.2 then 3.1. If 2.2 and 6. Theorem 2, these rings have vertex-arboricity 8.

Remark two non-isomorphic rings of order 9.

Theorem 3.6. Let R be a finite commutative ring such that $va(T(\Gamma(R))) = 2$. Then the following statements hold.

(i) If R is local, then R is isomorphic to one of the following rings:

- \mathbb{Z}_9, \mathbb{Z}_8, \mathbb{Z}_6, \mathbb{Z}_4, \mathbb{Z}_2, \mathbb{Z}
- $\mathbb{Z}_9[x]$, $\mathbb{Z}_8[x]$, $\mathbb{Z}_6[x]$, $\mathbb{Z}_4[x]$, $\mathbb{Z}_2[x]$, \mathbb{Z}
- $\mathbb{Z}_9[x, y]$, $\mathbb{Z}_8[x, y]$, $\mathbb{Z}_6[x, y]$, $\mathbb{Z}_4[x, y]$, $\mathbb{Z}_2[x, y]$, \mathbb{Z}
- $\mathbb{Z}_9[x, y, z]$, $\mathbb{Z}_8[x, y, z]$, $\mathbb{Z}_6[x, y, z]$, $\mathbb{Z}_4[x, y, z]$, $\mathbb{Z}_2[x, y, z]$, \mathbb{Z}
- $\mathbb{Z}_9[x, y, z, w]$, $\mathbb{Z}_8[x, y, z, w]$, $\mathbb{Z}_6[x, y, z, w]$, $\mathbb{Z}_4[x, y, z, w]$, $\mathbb{Z}_2[x, y, z, w]$, \mathbb{Z}

(ii) If R is not local, then R is isomorphic to one of the following rings:

- $\mathbb{F}_2 \times \mathbb{F}_2$, $\mathbb{F}_2 \times \mathbb{F}_4$, $\mathbb{F}_2 \times \mathbb{F}_4$, $\mathbb{F}_2 \times \mathbb{F}_4$.

Proof. (i) Assume that R is a local ring, and let $|Z(R)| = n$ and $|\mathbb{Z}[\bar{x}]| = m$. Then by Theorem 2.5, $T(\Gamma(R))$ has an induced subgraph isomorphic to K_n and so by Remark 2.2, $|Z(R)| \leq 4$. Now, we consider the following two cases:

(a) If $2 \in Z(R)$, then by Theorem 3.2, $|R| = 2^k$ and $k \leq 4$. Since $va(T(\Gamma(R))) = 2$, Theorem 3.1 implies that $|R| = 16, 8$. According to Corbas and Williams [6] there are two non-isomorphic rings of order 16 with maximal ideals of order 4, namely $\mathbb{Z}[x]/(x^2)$ and $\mathbb{Z}[x]/(x^2 + x + 1)$ (see also Redmond [11]), so for these rings have $T(\Gamma(R)) \cong K_4$. Therefore, by Remark 2.2, these rings have vertex-arboricity 2. In [6] it is also shown that there are 5 local rings of order 8 (except \mathbb{F}_8) as follows:

- \mathbb{Z}_8, $\mathbb{Z}_2[x]/(x^2)$, $\mathbb{Z}_4[x]/(x^2)$, $\mathbb{Z}_2[x, y]/(x, y)\mathbb{Z}_2$, $\mathbb{Z}_4[x]/(x^2)$.

In all of these rings we have $|Z(R)| = 4$ and hence $T(\Gamma(R)) \cong K_4$. Then, by Remark 2.2, these rings have vertex-arboricity 2.

(b) If $2 \notin Z(R)$, then $|Z(R)| = 3$. According to [6], there are two rings of order 9 namely, \mathbb{Z}_9 and $\mathbb{Z}_4[x]/(x^2)$. For these rings, we have $T(\Gamma(R)) \cong K_3 \cup K_3, 3$. Hence, by Corollary 2.7, these rings have vertex-arboricity 2.

(ii) Suppose that R is not local. Since R is finite, there are finite local rings R_1, \ldots, R_t (with $t \geq 2$) such that $R = R_1 \times R_2 \times \cdots \times R_t$. Now, according to Remarks 2.2 and 3.3, $x, y \in \mathbb{F}_4$. Hence, each of the sets V_1 and V_2 has exactly two vertices such that their first components are the same and have exactly two vertices such that the second components are the same. So, each vertex in V_1 and V_2 has degree 2, which is a contradiction, since the subgraphs of $T(\Gamma(\mathbb{F}_4 \times \mathbb{F}_4))$ induced by the sets V_1 and V_2 are union of cycles. Thus we have $va(T(\Gamma(\mathbb{F}_4 \times \mathbb{F}_4))) > 2$.

Now, according to the Figure 1, we have $va(T(\Gamma(\mathbb{F}_4 \times \mathbb{F}_4))) = 3$.

\[\begin{array}{c}
\text{(a)} & \text{(b)} & \text{(c)} \\
(0, 0) & \text{(0, a)} & \text{(0, a)} \\
(a^2, 0, a) & (1, a) & (1, a^2) \\
(0, a^2) & \text{(1, a)} & \text{(1, a^2)} \\
\end{array} \]

Figure 1
we have the following candidates:
\[Z_2 \times Z_2, Z_6, Z_2 \times Z_4, Z_2 \times \frac{Z_2[x]}{[x^2]}, Z_2 \times F_4, Z_3 \times Z_3, Z_3 \times Z_4, Z_3 \times \frac{Z_2[x]}{[x^2]}, Z_3 \times F_4, \\
Z_2 \times Z_2 \times Z_2, Z_4 \times Z_4, Z_4 \times \frac{Z_2[x]}{[x^2]}, Z_4 \times \frac{Z_2[x]}{[x^2]}, Z_4 \times F_4, Z_2 \times \frac{Z_2[x]}{[x^2]}, F_4, F_4 \times F_4. \]

Now we examine each of the above rings.

The total graph of the ring \(Z_2 \times Z_2 \) is isomorphic to the cycle of size 4. We consider the acyclic partition \(V_1 = \{(0,0),(1,0)\} \) and \(V_2 = \{(0,1),(1,1)\} \) of \(V(T(\Gamma(Z_2 \times Z_2))) \).

Hence, the subgraphs of \(T(\Gamma(Z_2 \times Z_2)) \) induced by sets \(V_1 \) and \(V_2 \) are acyclic. Thus \(va(T(\Gamma(Z_2 \times Z_2))) = 2 \).

For \(Z_6 \), by considering the acyclic partition \(V_1 = \{0,1,3\} \) and \(V_2 = \{2,4,6\} \) of \(V(T(\Gamma(Z_6))) \), we have \(va(T(\Gamma(Z_6))) = 2 \).

For \(Z_2 \times Z_4 \), we put \(V_1 = \{(0,0),(0,2),(1,1),(1,3)\} \) and \(V_2 = \{(0,1),(0,3),(1,0),(1,2)\} \). Now, it is easy to see that \(va(T(\Gamma(Z_2 \times Z_4))) = 2 \). Since \(T(\Gamma(Z_4)) \cong T(\Gamma(\frac{Z_2[x]}{[x^2]})) \), by Remark 3.4, we have \(T(\Gamma(Z_2 \times Z_4)) \cong T(\Gamma(Z_2 \times Z_2)) \). Thus \(va(T(\Gamma(Z_2 \times Z_2))) = 2 \).

For \(Z_2 \times F_4 \), by using the acyclic partition
\[V_1 = \{(0,0),(0,1),(1,0),(1,a)\} \text{ and } V_2 = \{(0,a),(0,a^2),(1,1),(1,a^2)\} \]
of \(V(T(\Gamma(Z_2 \times F_4))) \), we have \(va(T(\Gamma(Z_2 \times F_4))) = 2 \).

For \(Z_3 \times Z_3 \), we consider the acyclic partition \(V_1 = \{(0,0),(0,1),(1,0),(1,1),(2,1)\} \) and \(V_2 = \{(0,2),(2,0),(1,2),(2,2)\} \) of \(V(T(\Gamma(Z_3 \times Z_3))) \). Hence \(va(T(\Gamma(Z_3 \times Z_3))) = 2 \).

For \(Z_3 \times Z_4 \), the graph \(T(\Gamma(Z_3 \times Z_4)) \) has a complete graph \(K_6 \) as a subgraph with vertex set \(\{(0,0),(1,0),(2,0),(0,2),(1,2),(2,2)\} \), and so, by Remark 2.2, we have \(va(T(\Gamma(Z_3 \times Z_4))) > 2 \). Also by Remark 3.4, we have \(T(\Gamma(Z_3 \times Z_4)) \cong T(\Gamma(Z_3 \times \frac{Z_2[x]}{[x^2]}) \). Thus \(va(T(\Gamma(Z_3 \times Z_4))) > 2 \).

For \(Z_3 \times F_4 \), according to the Figure 2 we have \(va(T(\Gamma(Z_3 \times F_4))) = 2 \).

For \(Z_2 \times Z_2 \times Z_2 \), by Lemma 3.5, we have \(va(T(\Gamma(Z_2 \times Z_2 \times Z_2))) > 2 \).

For \(Z_4 \times Z_4 \), the graph \(T(\Gamma(Z_4 \times Z_4)) \) has a \(K_8 \) as a subgraph with vertex set \(\{(0,0),(1,0),(2,0),(3,0),(0,2),(1,2),(2,2),(3,2)\}, \) and so, by Remark 2.2, we have \(va(T(\Gamma(Z_4 \times Z_4))) > 3 \).

According to Remark 3.4, \(T(\Gamma(Z_4 \times Z_4)) \cong T(\Gamma(Z_4 \times \frac{Z_2[x]}{[x^2]}) \cong T(\Gamma(\frac{Z_2[x]}{[x^2]} \times \frac{Z_2[x]}{[x^2]})). \) So the vertex-arboricity of graphs \(T(\Gamma(Z_4 \times \frac{Z_2[x]}{[x^2]})) \) and \(T(\Gamma(\frac{Z_2[x]}{[x^2]} \times \frac{Z_2[x]}{[x^2]})) \) is greater than three.

For \(Z_4 \times F_4 \), the graph \(T(\Gamma(Z_4 \times F_4)) \) has a \(K_8 \) as a subgraph with vertex set \(\{(0,0),(0,1),(0,a),(0,a^2),(2,0),(2,1),(2,a),(2,a^2)\}. \)
and so, by Remark 2.2, we have \(\text{va}(T(\Gamma(Z_4 \times F_4))) > 3 \). Also by Remark 3.4, \(T(\Gamma(Z_4 \times F_4)) \cong T(\Gamma(\frac{Z_2[z]}{\langle z^2 \rangle} \times F_4)) \). Therefore \(\text{va}(T(\Gamma(\frac{Z_2[z]}{\langle z^2 \rangle} \times F_4))) > 3 \).

For \(F_4 \times F_4 \), by Lemma 3.5, we have \(\text{va}(T(\Gamma(F_4 \times F_4))) > 2 \).

Lemma 3.7. For the ring \(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \), \(\text{va}(T(\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2))) = 4 \).

Proof. First, by Remark 3.3, we have \(\text{va}(T(\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2))) > 2 \).

Now, let \(T(\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2)) = G \) and \(A = A_0 \cup A_1 \), where \(A_0 = \{(0,0,z) : z \in \mathbb{Z}_3\} \) and \(A_1 = \{(0,1,z) : z \in \mathbb{Z}_3\} \). Also put \(B = B_0 \cup B_1 \), where \(B_0 = \{(1,0,z) : z \in \mathbb{Z}_3\} \) and \(B_1 = \{(1,1,z) : z \in \mathbb{Z}_3\} \). It is clear that the two sets \(A \) and \(B \) are partition for \(V(G) \). Let \(\{V_1, V_2, V_3\} \) be an acyclic partition for \(V(G) \). If \(|V_i| \geq 5 \) for some \(j \in \{1,2,3\} \), then \(|A \cap V_j| \geq 3 \) or \(|B \cap V_j| \geq 3 \), which is impossible, since \(G[A] \) and \(G[B] \) are complete graphs isomorphic to \(K_6 \) and \(G[V_i] \) \((1 \leq i \leq 3) \) are acyclic induced subgraphs of \(G \). Therefore \(|V_i| = 4 \) for some \(i \in \{1,2,3\} \).

We know that every vertex of \(G[A_0] \) \((G[A_1]) \) are adjacent to every vertex of \(G[B_0] \) \((G[B_1]) \) and \(G[V_i] \) \((1 \leq i \leq 3) \) are acyclic induced subgraphs of \(G \). Hence without the loss of generality we can assume that \(|A_0 \cap V_1| = |B_1 \cap V_1| = 2 \) and \(|A_1 \cap V_2| = |B_0 \cap V_2| = 2 \). Then \(V_3 = \{a_0, a_1, b_0, b_1 : a_0 \in A_2, b_1 \in B_1, 0 \leq s, t \leq 1\} \). It follows that \(G[V_3] \) is a cycle of length 4, which is a contradiction and so \(\text{va}(G) > 3 \).

Now, by using the following partition of \(V(G) \), we have that \(\text{va}(G) = 4 \).

\[V_1 = \{(0,0,0), (1,0,0), (1,1,2)\}, \quad V_2 = \{(0,1,0), (1,1,1), (1,0,1)\}, \]
\[V_3 = \{(0,1,2), (0,0,2), (1,0,2)\}, \quad V_4 = \{(0,0,1), (0,1,1), (1,1,0)\}. \]

Theorem 3.8. Let \(R \) be a finite commutative ring such that \(\text{va}(T(\Gamma(R))) = 3 \). Then the following statements hold.

(i) If \(R \) is local, then \(R \) is isomorphic to \(\mathbb{Z}_{25} \) or \(\frac{\mathbb{Z}[x]}{(x^5)} \).

(ii) If \(R \) is not local, then \(R \) is isomorphic to one of the following rings:

\[\mathbb{Z}_3 \times \mathbb{Z}_4, \mathbb{Z}_3 \times \frac{\mathbb{Z}[x]}{(x^5)}, \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{F}_4 \times \mathbb{F}_4, \mathbb{Z}_2 \times \mathbb{Z}_3, \mathbb{Z}_3 \times \mathbb{Z}_5, \mathbb{F}_4 \times \mathbb{Z}_5, \mathbb{Z}_5 \times \mathbb{Z}_5. \]

Proof. (i) Assume that \(R \) is a local ring. We consider the following two cases:

(a) If \(2 \in Z(R) \), then, by Theorem 2.5, we have \(T(\Gamma(R)) \cong mK_n \). Hence, by Remark 2.2, \(5 \leq |Z(R)| \leq 6 \). But, in this situation \(2 \in Z(R) \), and so, there are no such local rings.

(b) If \(2 \notin Z(R) \), then, by Theorem 2.5, we have \(T(\Gamma(R)) \cong K_n \cup \{\frac{z_1}{x}K_{n,n}\} \). Hence, by Remark 2.2, \(5 \leq |Z(R)| \leq 6 \). Therefore \(|Z(R)| = 5 \) and so there exist two local rings, \(\mathbb{Z}_{25} \) and \(\frac{\mathbb{Z}[x]}{(x^5)} \) of order 25. For these rings we have \(T(\Gamma(R)) \cong K_5 \cup 2K_{5,5} \). Hence, by Corollary 2.7, we have \(\text{va}(T(\Gamma(R))) = 3 \).

(ii) Suppose that \(R \) is not a local ring. Arguments similar to those used in proof of Theorem 3.6 (ii), in conjunction with Remarks 2.2 and 3.3 show that we have the following candidates:

\[\mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{Z}_6 \times \mathbb{Z}_4, \mathbb{Z}_2 \times \frac{\mathbb{Z}[x]}{(x^2)}, \mathbb{Z}_2 \times \mathbb{F}_4, \mathbb{Z}_3 \times \mathbb{Z}_3, \mathbb{Z}_3 \times \mathbb{Z}_4, \mathbb{Z}_3 \times \frac{\mathbb{Z}[x]}{(x^2)}, \mathbb{Z}_3 \times \mathbb{F}_4, \]
\[\mathbb{Z}_2 \times \frac{\mathbb{Z}[x]}{(x^2)}, \mathbb{Z}_4 \times \mathbb{Z}_4, \mathbb{Z}_4 \times \frac{\mathbb{Z}[x]}{(x^2)}, \mathbb{Z}_4 \times \mathbb{F}_4, \]
\[\mathbb{Z}_2 \times \mathbb{Z}_5, \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3, \mathbb{Z}_3 \times \mathbb{Z}_5, \mathbb{Z}_4 \times \mathbb{Z}_5, \mathbb{Z}_5 \times \frac{\mathbb{Z}[x]}{(x^2)}, \mathbb{Z}_5 \times \mathbb{F}_4, \mathbb{F}_4 \times \mathbb{F}_4. \]

According to the proof of Theorem 3.6 (ii), we examine the following cases:

For \(\mathbb{Z}_3 \times \mathbb{Z}_4 \), we consider the partition

\[V_1 = \{(0,0), (1,1), (1,2), (1,3)\}, \quad V_2 = \{(0,2), (2,0), (2,1), (2,3)\} \]

and

\[V_3 = \{(0,1), (0,3), (1,0), (2,2)\}. \]
of $V(T(\Gamma(Z_3 \times Z_4)))$. The subgraphs of $T(\Gamma(Z_3 \times Z_4))$ induced by the sets V_1, V_2 and V_3 are acyclic graphs. Hence, we have $va(T(\Gamma(Z_3 \times Z_4))) = 3$. The Remark 3.4 implies that $T(\Gamma(Z_3 \times Z_4)) \cong T(\Gamma(Z_3 \times \frac{Z_2[|x|]}{(x^2)})$ and so $va(T(\Gamma(Z_3 \times \frac{Z_2[|x|]}{(x^2)}))) = 3$.

For rings $Z_2 \times Z_2 \times Z_2$ and $F_4 \times F_4$, by Lemma 3.5, we have $va(T(\Gamma(Z_2 \times Z_2 \times Z_2))) = va(T(\Gamma(F_4 \times F_4))) = 3$.

For rings $Z_2 \times Z_2 \times Z_3$, by Lemma 3.7, we have $va(T(\Gamma(Z_2 \times Z_2 \times Z_3))) > 3$.

For $Z_3 \times Z_5$, by using the acyclic partition

$$V_1 = \{(0, 4), (1, 0), (1, 3), (2, 3)\},$$

$$V_2 = \{(0, 0), (0, 1), (1, 2), (1, 4), (2, 1)\}$$

and

$$V_3 = \{(0, 2), (0, 3), (1, 1), (2, 0), (2, 2), (2, 4)\}$$
of $V(T(\Gamma(Z_3 \times Z_5)))$, we have $va(T(\Gamma(Z_3 \times Z_5))) = 3$.

For $Z_4 \times Z_5$, the graph $T(\Gamma(Z_4 \times Z_5))$ has a complete graph K_{10} as a subgraph with vertex set $\{(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4)\}$, and so, we have $va(T(\Gamma(Z_4 \times Z_5))) \geq 5$. Also, Remark 3.4, $T(\Gamma(Z_4 \times Z_5)) \cong T(\Gamma(\frac{Z_2[|x|]}{(x^2)} \times Z_5))$ and so

$$va(T(\Gamma(\frac{Z_2[|x|]}{(x^2)} \times Z_5))) \geq 5.$$

For $F_4 \times Z_5$, according to Figure 3, we have $va(T(\Gamma(F_4 \times Z_5))) = 3$.

For $Z_5 \times Z_5$, by Figure 4, we conclude that $va(T(\Gamma(Z_5 \times Z_5))) = 3$.

Thus the proof is complete. \hfill \square

4. The arboricity of the total graph

In this section, we characterize all finite commutative rings whose total graph has arboricity two or three. In addition, we show that, for a positive integer v, there are only finitely many finite rings whose total graph has arboricity v. We begin the section with the following result of C. St. J. A. Nash-Williams.

Theorem 4.1\ ([9]). For a graph G, $\nu(G) = \max \left\lfloor \frac{e_H}{n_H - 1} \right\rfloor$, where $n_H = |V(H)|$, $e_H = |E(H)|$ and H ranges over all non-trivial induced subgraphs of G.

Figure 3

For $Z_5 \times Z_5$, by Figure 4, we conclude that $va(T(\Gamma(Z_5 \times Z_5))) = 3$.
Theorem 4.2. For a graph G, $\lceil \frac{\delta(G)+1}{2} \rceil \leq \nu(G) \leq \lceil \frac{\Delta(G)+1}{2} \rceil$. In particular, if G is d-regular, then $\nu(G) = \lceil \frac{d+1}{2} \rceil = \lceil \frac{n-1}{2} \rceil$, where $n = |V(G)|$ and $e = |E(G)|$.

Proof. First, it is clear that, if G has some isolated vertices, say $X = \{x_1, x_2, \ldots, x_k\}$, then $\nu(G) = \nu(G[V(G) \setminus X])$. So, we can assume that G has no isolated vertices. Let H be a subgraph of G with $|V(H)| = n'$ and $|E(H)| = e'$. Then we have

$$\frac{e'}{n'-1} \leq \Delta(H)n' \leq \frac{\Delta(H)+1}{2},$$

Since $\Delta(H) \leq \min\{\Delta(G), n' - 1\}$, we have $\frac{e'-1}{n'-1} \leq \frac{\Delta(G)+1}{2}$, and hence, by Theorem 4.1, $\nu(G) \leq \lceil \frac{\Delta(G)+1}{2} \rceil$. On the other hand $\frac{e}{n-1} \geq \frac{\delta(G)n}{2(n-1)} > \frac{\delta(G)}{2}$. Since $\nu(G)$ is an integer, $\nu(G) \geq \lceil \frac{\delta(G)+1}{2} \rceil$, as required.

Clearly, in view of the above theorem, $\nu(K_n) = \lceil \frac{n}{2} \rceil$. So, by arguing as in the proof of Theorem 2.4, we have the following theorem.

Theorem 4.3. For any positive integer v, the number of finite rings R whose total graph has arboricity v is finite.

Theorem 3.1 implies that $T(\Gamma(R))$ has arboricity one if and only if either R is an integral domain or R is isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2[x]/(x^2)$. Now, we will classify, up to isomorphism, all the finite commutative rings whose total graph has arboricity two or three.

Theorem 4.4. Let R be a finite ring such that $\nu(T(\Gamma(R))) = 2$. Then the following statements hold.

(i) If R is local, then R is isomorphic to one of the following rings:

$$\mathbb{Z}_9, \mathbb{Z}[x]/(x^2), \mathbb{Z}_8, \mathbb{Z}_2[x]/(x^2), \mathbb{Z}_2[x, y]/(x^2, y^2), \mathbb{Z}_4[x]/(x^2), \mathbb{F}_4[x]/(x^2), \mathbb{Z}_4[x]/(x^2 + x + 1)$$

(ii) If R is not local, then R is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$ or \mathbb{Z}_6.

Proof. (i) Assume that R is a local ring. If $2 \in Z(R)$, then, by Lemma 2.1 and Theorem 4.2, we have $|Z(R)| = 4$. Then by Theorem 3.2, $|R| = 16, 8$. Now, by same argument of
Theorem 3.6. Let R be a finite ring. If
\[Z_8, \frac{Z_4[x]}{(x^3)}, \frac{Z_4[x]}{(x^2 + 2)}, \frac{Z_4[x]}{(x,y)^2}, \frac{F_4[x]}{(x^2)}, \frac{Z_4[x]}{(x^2 + x + 1)}. \]
If $2 \notin Z(R)$, then $|Z(R)| = 3$. So, R is isomorphic to Z_9 or $\frac{Z_2[x]}{(x^2)}$.

(ii) If R is not a local ring, then, by Theorem 4.2, we have $3 \leq |Z(R)| \leq 4$. When $|Z(R)| = 3$, it is clear that R is isomorphic to $Z_2 \times Z_2$. Moreover, if $|Z(R)| = 4$, then R is isomorphic to Z_6, and so the proof is complete.

By slight modifications in the proof of Theorem 4.4, one can prove the following theorem.

Theorem 4.5. Let R be a finite ring such that $\nu(T(\Gamma(R))) = 3$. Then the following statements hold.

(i) If R is local, then R is isomorphic to Z_{25} or $\frac{Z_5[x]}{(x^2)}$.

(ii) If R is not local, then R is isomorphic to one of the following rings:
\[Z_2 \times F_4, Z_3 \times Z_3, Z_2 \times Z_4, Z_2 \times \frac{Z_2[x]}{(x^2)}, Z_2 \times Z_5, Z_3 \times F_4. \]

In general, we can determine the arboricity of the total graph as in the following theorem.

Theorem 4.6. Let R be a finite ring.

(i) If $2 \in Z(R)$, then $\nu(T(\Gamma(R))) = \left\lfloor \frac{|Z(R)|}{2} \right\rfloor$.

(ii) If $2 \notin Z(R)$, then the following statements hold.

(1) If $|Z(R)| = 2k + 1$, then $\nu(T(\Gamma(R))) = k + 1$.

(2) If $|Z(R)| = 2k$, then $k \leq \nu(T(\Gamma(R))) \leq k + 1$.

Proof. It follows from Lemma 2.1 and Theorem 4.2. \qed

References

[1] D.F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra, 320, 2706–2719, 2008.
[2] D.F. Anderson and A. Badawi, The total graph of a commutative ring without the zero element, J. Algebra Appl. 11 1–18 pages, 2012.
[3] G.J. Chang, C. Chen and Y. Chen, Vertex and tree arboricities of graphs, J. Comb. Optim. 8 295–306, 2004.
[4] G. Chartrand, H.V. Kronk and C.E. Wall, The point arboricity of a graph, Israel J. Math. 6, 169–175, 1968.
[5] T.T. Chelvam and T. Asir, On the genus of the total graph of a commutative ring, Comm. Algebra, 41, 142–153, 2013.
[6] B. Corbas and G.D. Williams, Ring of order p^5. II. Local rings, J. Algebra, 231 (2), 691–704, 2000.
[7] H.R. Maimani, C. Wickham and S. Yassemi, Rings whose total graph have genus at most one, Rocky Mountain J. Math. 42, 1551–1560, 2012.
[8] B.R. McDonald, Finite rings with identity , Pure Appl. Math. 28, Marcel Dekker, Inc., New York, 1974.
[9] C.St.J.A. Nash-Williams, Decomposition of finite graphs into forests, Journal London Math. Soc, 39, 12, 1964.
[10] R. Raghavendran, finite associative rings, Compositio Math. 21, 195–229, 1969.
[11] S.P. Redmond, On zero-divisor graphs of small finite commutative rings, Discrete Math. 307, 1155–1166, 2007.