Design, Synthesis and Conformational Analysis of Oligobenzanilides as Multi-Facial \(\alpha \)-helix Mimetics

Theo Flack, Charles Romain, Andrew J. P. White, Peter R. Haycock, and Anna Barnard*

Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK.

E-mail: a.barnard@imperial.ac.uk

Contents

Supplementary Figures and Tables

Figure S1 ... 5
Figure S2 ... 6
Table S1 ... 6
Table S2 ... 7
Figure S3 ... 7
Figure S4 ... 8
Figure S5 ... 9
Figure S6 ... 10

Computational Supplementary Information 11
Chemical Synthesis

General Methods .. 34
General Procedures for Monomer Synthesis 37
General Procedures for Oligomer Synthesis 42
Sidechain Synthesis .. 47
Monomer Synthesis .. 53
Synthesis of 1 ... 53
Synthesis of 2 ... 57
Synthesis of 3 ... 60
Synthesis of 4 ... 64
Synthesis of 5 ... 67
Synthesis of 6 ... 69
Synthesis of 7 ... 72
Synthesis of 8 ... 75
Synthesis of 9 ... 78
Synthesis of 10 ... 83
Synthesis of 11 ... 88
Synthesis of 12 ... 92
Synthesis of 13 ... 96
Section	Page
Oligomer Synthesis	99
Synthesis of 14	99
Synthesis of 15	100
Synthesis of 16	101
Synthesis of 17	102
Synthesis of 18	103
NMR Spectra	105
NMR Spectra for Sidechains SC1-SC10	105
Spectra for Monomers 1-13 and Intermediates (S1-S31)	116
NMR Spectra of Oligomers 14-16 & 17	161
Variable Temperature NMR Spectroscopy	165
Table S3	167
X-ray Crystallography	167
References	168
Supplementary Figures and Tables

Figure S1: Chemical space explored using the synthetic route developed.
Figure S2: Trimers synthesised using the solid-phase methodology developed.

Table S1: Geometrical properties of the two crystallographically independent form of 16 calculated from the X-ray crystal structure.

Compound	ω_1 (°)a	ω_2 (°)b	ω_3 (°)c	ω_4 (°)d	τ (°)e	χ_c (°)f	χ_N (°)g	a+b+c (°)
3-S$_{a}$	-19.4	-4.4	173.7	163.6	11.9	2.9	12.1	359.0
3-R$_{a}$	25.9	7.0	-170.3	-156.7	16.5	2.7	16.3	358.2

$a \omega_1$ (°) = $\angle R_3 CNR_2$

$b \omega_2$ (°) = $\angle OCNR_1$

$c \omega_3$ (°) = $\angle R_3 CNR_1$

$d \omega_4$ (°) = $\angle OCNR_2$

$e \tau$ (°) = $(\omega_1 + \omega_2)/2$

$f \chi_c$ (°) = $(\omega_1 + \omega_4) - 180$

$g \chi_N$ (°) = $(\omega_1 + \omega_3) - 180$
Table S2: Deviation of aromatic rings from planarity of the amide bond. Values of 90° for Φ2 and Φ3 represents absolute perpendicularity between the plane of the amide and the aromatic ring.

Compound	Φ1 (°) a	Φ2 (°) b	Φ3 (°) c
3-Sa	163.6	52.9	40.6
3-Ra	-156.7	-48.2	-38.9

a Φ1 (°) = θC2NC1O
b Φ2 (°) = θC3C2NC1

Figure S3: 1H NMR spectra of dimers 14-16 at 298K. DOIs: 10.14469/hpc/5163, 10.14469/hpc/5164, 10.14469/hpc/5165
Figure S4: Experimental and simulated 1H NMR spectra of dimer 16 at the slow exchange limit. Inlets show anisochronicity observed for methylene protons 2-Hα and 2-Hα' (blue) and methyl doublets 2-Hγ', 2-Hδ' and 1-Hβ' (red). DOI: 10.14469/hpc/5165
Figure S5: Experimental and simulated 1H NMR spectra of dimer 14 at the slow exchange limit. Anisochronicity is observed for methylene protons 2-H_α, 2-H_α' and 1-H_α'. DOI: 10.14469/hpc/5163
Figure S6: 1H-1H NOESY analysis of dimer 16 at room temperature.

a 1H-1H NOESY spectra. True nOe correlations are circled in black. COSY artefacts are left uncircled. nOe correlations observed are shown as double-headed arrows.
b Partial 2D 1H-1H NOESY spectra (7.20 - 6.20 ppm) showing inter-monomer correlations between 2-H5 and 1-H6/1-H2.
c Selective NOE spectra confirming the through-space correlation between protons 2-H5 and 1-H6/1-H2.
d Rotation about the Ar-CO bond in solution leads to simultaneous proximity between protons 2-H5 and 1-H6/1-H2. DOI: 10.14469/hpc/5165
Computational Supporting Information

Computational details:

DFT calculations were performed using Gaussian 09 (revision D01). Unless otherwise stated, calculations used the ωB97xD density functional (which includes a second-generation dispersion correction) and the 6-31G(d,p) basis set for all atoms. A self-consistent reaction cavity continuum solvation model was used with DMSO as the solvent [scrf=(cpcm,solvent=DMSO)]. All calculations were performed with ultrafine grid (integral=grid=ultrafine) and without restriction on symmetry (No Symm). All transition states were characterized by normal coordinate analysis revealing precisely one imaginary mode corresponding to the intended reaction. Vibrational frequency calculations only were performed using 6-311++G(d,p) basis set for selected transition states as per Table S9.

The geometry of the molecular structure determined by X-Ray diffraction was used as a starting point to build a molecular structure where all alkyl groups have been replaced by methyl groups. Geometry optimisation of this molecule model led to compound I_{anti/cis} (S7) which will be the reference (ΔG_{298} = 0 kcal/mol) and the starting point of the following calculations. Full coordinates for all the stationary points are available on the data repository at DOI: 10.14469/hpc/5171.

To distinguish the different possible conformations, the following notations will be used (as defined in Figure 2 and Figure S8):

- cis / trans

 for folded and extended conformations, respectively.

- anti / sym

 with regards to the position of the O-alkoxy substituent of the aryl moieties.

- anti/ syn

prime (’) is used in cis conformations (when relevant) to indicate that the O-alkoxy substituent of the Aryl-N group is pointing away from the carbonyl (in the absence of the O-alkoxy substituent of the Aryl-N is pointing toward the carbonyl)

\[
\begin{align*}
\text{Me} & \quad \text{anti} & \quad \text{anti}’ \\
\text{OR} & \quad \text{HN Me} & \quad \text{RO} & \quad \text{NH Me} \\
\text{HOOC} & \quad \text{anti / anti’} & \quad \text{anti / anti’} \\
\end{align*}
\]

anti* / syn*

star (*) is used in trans conformations (when relevant) to indicate that the O-alkoxy substituent of the Aryl-C(O) group is pointing in opposite direction of the carbonyl group.

\[
\begin{align*}
\text{Me} & \quad \text{anti} & \quad \text{anti}’ \\
\text{NH} & \quad \text{MeNH} & \quad \text{OR} & \quad \text{OR} \\
\text{Me} & \quad \text{Me} & \quad \text{anti / anti*} & \quad \text{anti / anti*} \\
\text{RO} & \quad \text{RO} & \quad \text{HOOC} & \quad \text{HOOC} \\
\text{N} & \quad \text{N} & \quad \text{anti} & \quad \text{anti} \\
\end{align*}
\]
Figure S7: Selected dihedral angles ω_1, ω_2 and ω_3 corresponding to amide bond rotation (blue), aryl-C(O) bond rotation (red) and aryl-N bond rotation (green), respectively.

Figure S8: Example of conformational exchanges (as per Figure 2 in manuscript).
Amide bond rotation (dihedral angle ω_1 rotation):

A relaxed scan of the amide dihedral angle $\omega_1(36 \times 10^\circ)$ was performed using $\text{I}_{\text{anti/cis}}$ as starting point. The total energy (kcal/mol) was plotted against the dihedral angle ω_1 and show a series of minima and maxima as per Figure S9. Maxima were subjected to transition state optimisation. Minima were deduced from the corresponding TS (either using IRC calculations or by moving atoms along the negative frequency of the TS).

Figure S9: Relaxed potential energy scan of the amide dihedral angle ω_1 rotation.
Figure S10: Concerted rotations of the amide bond and Ar-N bond leading to an anti/cis ↔ syn/trans conformational exchange via transition state I-TS1 ($\Delta G_{298} = 12.1$ kcal/mol) obtained from relaxed scan (Figure S9).

Table S3: Data for Figure S10 (all data at DOI: 10.14469/hpc/5272.

Name	ΔG_{298} (kcal/mol)	Job ID	DOI:
I$_{\text{anti/cis}}$	0 (reference)		10.14469/hpc/5267
I-TS1	12.1	10051682	10.14469/hpc/5273
I$_{\text{syn/trans}^*}$	3.9	10050358	10.14469/hpc/5274
IRC I-TS1	***	10050319	10.14469/hpc/5275
Figure S11: Total energy along IRC from **I-TS1**.

Figure S12: Rotation of the amide bond only leading to a cis/trans conformational exchange from an anti conformation via transition state **I-TS2** ($\Delta G_{298} = 14.1$ kcal/mol) obtained from relaxed scan (Figure S9).
Table S4: Data for S12 (all data at DOI: 10.14469/hpc/5272).

Name	ΔG_{298} (kcal/mol)	Job ID	DOI:
$I_{\text{anti}/\text{cis}}$	0 (reference)	10050139	10.14469/hpc/5267
$I_{\text{anti'}/\text{cis}}$	1.4	10052065	10.14469/hpc/5276
I-TS2	14.1	10051683	10.14469/hpc/5277
$I_{\text{anti}/\text{trans}}$	4.3	10051924	10.14469/hpc/5278
IRC I-TS2	***	10051760	10.14469/hpc/5279

Figure S13: Total energy along IRC from I-TS2.

Figure S14: ω_1 along IRC from I-TS2.
Based on the geometry of I-TS2, a transition state I-TS3 corresponding to \(\text{syn'}/\text{cis} \leftrightarrow \text{syn}/\text{trans} \) conformational exchange involving an amide bond rotation only was found.

Figure S15: Rotation of the amide bond only leading to a cis/trans conformational exchange from a syn' conformation via transition state I-TS3 \((\Delta G_{298} = 14.4 \text{ kcal/mol})\) from a syn' conformation.

Table S5: Data for S15 (all data at DOI: 10.14469/hpc/5272)

Name	\(\Delta G_{298} \) (kcal/mol)	Job ID	DOI:
\(\text{I}_{\text{anti/cis}} \)	0 (reference)	10050139	10.14469/hpc/5267
\(\text{I}_{\text{syn'}/\text{cis}} \)	0.1	10052297	10.14469/hpc/5280
I-TS3	14.2	10051689	10.14469/hpc/5281
\(\text{I}_{\text{syn/trans}^*} \)	3.7	10052296	10.14469/hpc/5282
IRC I-TS3	***	10052168	10.14469/hpc/5283
Transition states **I-TS4** and **I-TS5** were found with the O-methoxy of the benzamide not ‘passing’ underneath the amide moiety and thus not leading to a syn/anti interconversion, contrary to **I-TS1** and **I-TS6** (described in Figure S10 and Figure S19). It appears that the O-methoxy ‘moves away’ to allow the carbonyl rotation.

![Figure S16: Rotation of the amide bond only leading to a cis/trans conformational exchange from an anti conformation via transition state **I-TS4** ($\Delta G_{298} = 16.2$ kcal/mol).](image)

Table S6: Data for Figure S16 (all data at DOI: 10.14469/hpc/5272).

Name	ΔG_{298} (kcal/mol)	Job ID	DOI:
$I_{anti/cis}$	0 (reference)	10050139	10.14469/hpc/5267
I-TS4	16.2	10053641	10.14469/hpc/5284
$I_{anti/trans^*}$	4.0	10053925	0.14469/hpc/5285
IRC I-TS4	***	10053911	10.14469/hpc/5286

Table S7: Data for Figure S18 (all data at DOI: 10.14469/hpc/5272)

Name	ΔG_{298} (kcal/mol)	Job ID	DOI:
$I_{anti/cis}$	0 (reference)	10050139	10.14469/hpc/5267
$I_{syn/cis}$	0.3	10050255	10.14469/hpc/5288
I-TS5	16.2	10050255	10.14469/hpc/5288
$I_{syn/trans}$	4.1	10053933	10.14469/hpc/5287
IRC I-TS5	***	10053642	10.14469/hpc/5290

19
Figure S17: Total energy along IRC from I-TS4.

Figure S18: Rotation of the amide bond only leading to a cis/trans conformational exchange from a syn conformation via transition state I-TS5 ($\Delta G_{298} = 16.2$ kcal/mol).
To cover every possibility, from the geometry of I-TS1 corresponding to an anti/cis ↔ syn/trans conformational exchange, I-TS6 corresponding to a syn/cis ↔ anti/trans conformational exchange was calculated and found to be $\Delta G_{298} = 12.4 \text{ kcal/mol}$.

Figure S19: Concerted rotations of the amide bond and Ar-N bond leading to a syn/cis ↔ anti/trans conformational exchange via transition state I-TS6 ($\Delta G_{298} = 12.4 \text{ kcal/mol}$) deduced from I-TS1 (Figure S10).

Table S8: Data for Figure S19 (all data at DOI: 10.14469/hpc/5272).

Name	ΔG_{298} (kcal/mol)	Job ID	DOI:
$I_{\text{syn/cis}}$	0.6	10053931	10.14469/hpc/5293
I-TS6	12.1	10053991	10.14469/hpc/5291
$I_{\text{anti/trans}}$	3.8	10053941	10.14469/hpc/5292
Overall, it appears that concerted Ar-N and amide bond rotations have slightly lower energy barrier ($\Delta G_{298} = 12.1$ kcal/mol and 12.1 kcal/mol for I-TS1 and III-TS6, respectively) than amide bond rotation only (e.g. $\Delta G_{298} = 14.1$ kcal/mol and 16.2 kcal/mol for I-TS2 and I-TS4, respectively). Depending on the orientation of the Ar-N moiety regarding the carbonyl of the amide group, rotation of the amide bond will allow the carbonyl group to push the O-methoxy substituent of the Ar-N and induce concerted rotations (as per I-TS1 and III-TS6).

Table S9: Comparison of selected TS at different DFT levels (all data at DOI: 10.14469/hpc/5320)

Structure	Conformation exchange	ΔG_{298} (kcal/mol)	Bond rotation(s)
I-TS1	anti/cis ↔ syn/trans*	12.1	Concerted Ar-N and Ar-N
I-TS2	anti'/cis ↔ anti/trans	14.1	Amide only
I-TS2	anti/cis ↔ anti/trans*	16.2	Amide only
I-TS2	syn/cis ↔ anti/trans	12.1	Concerted Ar-N and amide
I-TS3	syn'/cis ↔ syn/trans*	14.4	Amide only
I-TS5	syn/cis ↔ syn/trans	16.2	Amide only

Overall, it appears that concerted Ar-N and amide bond rotations have slightly lower energy barrier ($\Delta G_{298} = 12.1$ kcal/mol and 12.1 kcal/mol for I-TS1 and III-TS6, respectively) than amide bond rotation only (e.g. $\Delta G_{298} = 14.1$ kcal/mol and 16.2 kcal/mol for I-TS2 and I-TS4, respectively). Depending on the orientation of the Ar-N moiety regarding the carbonyl of the amide group, rotation of the amide bond will allow the carbonyl group to push the O-methoxy substituent of the Ar-N and induce concerted rotations (as per I-TS1 and III-TS6).

Table S9: Comparison of selected TS at different DFT levels (all data at DOI: 10.14469/hpc/5320)

Structure	wb97xD	6-31G(d,p)	6-311++G(d,p)	M06-2X
I	0.00	0.00	0.00	0.00
I-TS1	12.13	10.11	10.89	10.87
I-TS2	14.08	14.93	12.4	13.45
I-TS4	16.2	16.57	15.08	15.88
I-TS4	16.68	16.63	15.48	15.74

a) geometry optimisation and vibrational frequency calculations performed using density functional and basis set (for all atoms) as notified in the table; b) vibrational frequency calculations only using geometry optimized using 6-31G(d,p) basis set (for all atoms) and density functional as indicated in the table.
Ar-C(O) rotation (dihedral angle ω_2 rotation)

A relaxed scan of the Ar-C(O) dihedral angle ω_2 (36 x 10°) was performed using an extended conformation (II) as starting point. The total energy (kcal/mol) was plotted against the dihedral angle ω_2 and show a series of minima and maxima as per Figure S20. Maxima were subjected to transition state optimisation. Minima were deduced from the corresponding TS by moving atoms along the negative frequency.

![Scan of Total Energy](image)

Figure S20: Relaxed potential energy scan of the Ar-C(O) dihedral angle ω_2 rotation in cis conformation.

Figure S20 shows independent rotations about the Ar-C(O) bond in cis-conformations with energy barriers below 6 kcal/mol on the potential energy surface, in line with a free rotation in solution at room temperature. During rotations about the Ar-C(O) bond, the molecule can keep adopting cis-conformations, i.e. rotation of the Ar-C(O) bond can occur without inducing amide bond rotations (without cis/trans conformational exchange).

A relaxed scan of the Ar-C(O) dihedral angle ω_2 (36 x 10°) was performed using $I_{\text{syn/trans}}$ as starting point. The total energy (kcal/mol) was plotted against the dihedral angle ω_2 and shows a series of minima and maxima as per Figure S22. Maxima were subjected to transition state optimisation. Minima were deduced from the corresponding TS by moving atoms along the negative frequency.

Figure S22 shows that Ar-C(O) bond rotations in trans conformations occur with energy barriers below 10 kcal/mol on the PES ($I_{\text{anti/cis}}$ as reference with $\Delta G_{298} = 0$ kcal/mol).
Figure S21: Ar-C(O) dihedral rotation energy profile in cis-conformation (from relaxed scan as per Figure S20.)

Figure S22: Relaxed potential energy scan of the Ar-C(O) dihedral angle ω_2 rotation in trans conformation.

Does not induce cis/trans conformational exchange (no concerted amide bond rotations).
Table S10: Data for Figure S21 (all data at DOI: 10.14469/hpc/5294).

Name	ΔG_{298} (kcal/mol)	Job ID	DOI:
$I_{anti/cis}$	0.0	10050139	10.14469/hpc/5267
II-TS$_{anti/anti'}$	3.7	10050943	10.14469/hpc/5295
II$_{anti'}$	1.0	10052008	10.14469/hpc/5296
II-TS$_{anti'/cis}$	5.8	10050994	10.14469/hpc/5297
II$_{cis}$	-0.2	10052006	10.14469/hpc/5298
II-TS$_{anti'/cis}$	3.6	10050944	10.14469/hpc/5299
II$_{cis'}$	0.1	10052007	10.14469/hpc/5300
II-TS$_{cis'/anti}$	4.4	10050953	10.14469/hpc/5301

Table S11: Data for Figure S23 (all data at DOI: 10.14469/hpc/5294)

Name	ΔG_{298} (kcal/mol)	Job ID	DOI:
II$_{syn}$ (=$I_{syn/trans}$)	3.9	10053635	10.14469/hpc/5302
II'$_{TS_{anti/anti'}}$	9.6	10053603	10.14469/hpc/5303
II'$_{syn}$	4.2	10053627	10.14469/hpc/5304
II'$_{TS_{syn'/anti}}$	6.4	10053604	10.14469/hpc/5305
II'$_{TS_{anti}}$	4.0	10053628	10.14469/hpc/5306
II'$_{TS_{anti'/anti}}$	9.0	10053605	10.14469/hpc/5307
II'$_{TS_{anti/syn}}$	4.2	10053643	10.14469/hpc/5308
II'$_{TS_{anti/syn}}$	6.0	10053606	10.14469/hpc/5309
II'$_{syn}$	3.9	10053629	10.14469/hpc/5310
Figure S23: Ar-C(O) dihedral rotation energy profile in trans-conformation (from relaxed scan as per Figure S22).

Ar-N rotation (dihedral angle ω3 rotation)

From I_{anti/cis}, a relaxed scan of the Ar-N dihedral angle (72 x 10°) was performed. The total energy (kcal/mol) was plotted against the dihedral ω3 and show a series of minima and maxima as per Figure S24. Maxima were subjected to transition state optimisation followed by IRC calculations to confirm the identity of the TS. Both ends of the IRC were subjected to optimisation and the output geometries were found in good accordance with the minima found in the scan (excepted when notified). As deduced form IRC, III-TS5 was found to directly lead to III_{anti/cis}. III_{anti/cis} and the corresponding III-TS6 (as noted in Figure S24) were calculated but were not included in the reaction profile.
Figure S24: Relaxed potential energy scan of the Ar-N dihedral angle ω_3 rotation.

Figure S25: Ar-N dihedral angle ω_3 rotation energy profile (as per Figure S24).
concerted Ar-N and amide bond rotations

Figure S26: Ar-N dihedral angle ω_3 rotation energy profile (as per Figure S24.)

Table S12: Data for Figure S25 and Figure S26 (all data at DOI: 10.14469/hpc/5311).

Name	ΔG_{298} (kcal/mol)	Job ID	DOI:
III-TS1)	12.1	10050284	10.14469/hpc/5312
III$_{\text{syn/trans}}$	3.9	10050358	10.14469/hpc/5274
III-TS2	14.9	10050297	10.14469/hpc/5313
III$_{\text{anti/trans}}$	4.1	10051635	10.14469/hpc/5314
III-TS3	12.4	10050417	10.14469/hpc/5315
III$_{\text{syn/cis}}$	0.3	10050461	10.14469/hpc/5318
III-TS4	3.8	10051078	10.14469/hpc/5317
III$_{\text{syn/cis}}$	0.6	10051052	10.14469/hpc/5316
III-TS5	16.7	10050464	10.14469/hpc/5319
Ar-N rotation (dihedral angle ω_3 rotation) with restricted cis conformation (restricted dihedral angle ω_1).

Figure S27: Restricted potential energy scan of Ar-N dihedral angle ω_3 rotation with amide bond blocked in cis conformation.

The transition state corresponding to a solely dihedral rotation of the Ar-N bond in constrained cis conformation has not been found upon explicit optimization of the geometries of the maxima from the above restricted scan. This is likely due to the steric bulk induced by the ortho substituent of the Ar-N. Thus, rotation about the Ar-N bond either trigger the amide bond rotation and lead to a trans conformation (as per I-TS1 $\Delta G_{298} = 12.1$ kcal/mol) or lead a steric clash with the N-Me group (as per III-TS5 $\Delta G_{298} = 16.7$ kcal/mol).
Figure S28: Independent (left) and concerted rotations (right) about Ar-N bond.
Figure S29: Enantiomer exchange via bond rotations in constant cis conformations (lowest maximum energy barrier at 16.7 kcal/mol).

Figure S30: Possible enantiomer exchange pathway via bond rotations leading to trans conformations (lowest maximum energy barrier at 14.4 kcal/mol).
Boltzmann Distributions:

The population distributions of the extended vs folded conformations were calculated based on their relative energy via amide, Ar-N or concerted rotations using the following assumptions:

- The population difference is a function of two dihedral angles (Ar-N and amide).
- Take X-ray crystal structure as minimum energy conformation.
- Entropies of the conformers are similar.

Calculations were performed as follows: The probability that state E_i is occupied is:

$$P_i = Ce^{-E_i/kT}$$

The constant C can be found by summing over all P_i, which should give unity—the probability that some state is occupied. Thus, $1 = C\sum P_i$, or $C = \frac{1}{Z}$, where $Z = \sum P_i$ is called the partition function. Each state of the system is represented in Z by its Boltzmann factor. Boltzmann factor at 298 K and at standard state (1 M) is:

$$N_i = e^{-\varepsilon_i/kbT}$$

The resulting population distribution is:

$$\frac{N_J}{N} = \frac{e^{-\varepsilon_J/kbT}}{\sum_i e^{-\varepsilon_i/kbT}}$$

$N_{total} = 1.000000001383280000$
Energy Level No.	Conformation	Relative Energy (kcal/mol)	Relative Energy (cal/mol)	Boltzmann Factor (N_i)	Population (N_i/N_{total})
1	X-ray	0.0	0.0	1.00	1.00
2	Concerted	12.1	12100	1.34x10^{-9}	1.34x10^{-9}
3	Amide	14.1	14100	4.56x10^{-11}	4.56x10^{-11}
4	Ar-N	16.7	16700	5.66x10^{-13}	5.66x10^{-13}
Chemical Synthesis

General Methods

General Information

All non-aqueous reactions were performed in oven dried flasks, under a nitrogen atmosphere via a Schlenk line unless stated otherwise. Solvents were removed under reduced pressure at 40 °C. Analytical thin layer chromatography was performed on Merck Si60, F254 aluminium chromatography plates. Spots were visualized by UV light (operating at 254 and 365 nm), and using the appropriate stain (potassium permanganate, ninhydrin or bromocresol green). Flash column chromatography was carried out manually on Merck 60 silica gel, eluting with solvents as supplied, under a positive air pressure, or run on a Biotage Isolera One flash purification system using a Biotage SNAP KP-Sil cartridge. Where stated, SPE ion exchange was performed using Biotage ISOLUTE SCX-II cartridges eluting with methanolic ammonia (2 N).

Crystal structure images produced using CYLview, 1.0b; Legault, C. Y., Universit de Sherbrooke, 2009. (http://www.cylview.org)

NMR Spectra files are available at the DOI links for each compound in the methods section.

Materials

All solvents and reagents were purchased from Sigma-Aldrich Ltd (Gillingham, UK), Apollo Scientific (Stockport, UK), Acros Organics (Geel, Belgium), Alfa Aesar (Heysham, UK), Fluorochem (Hadfield, UK) and VWR (Radnor, US) unless otherwise stated, and were used without further purification. Anhydrous solvents were dispensed using Pure SolvTM solvent drying towers (Innovative Technology Inc.). Brine refers to a saturated solution of sodium chloride.
Instrumentation

1H NMR spectra were recorded on Bruker AV-400 instrument at 400 MHz using deuterated solvents as a reference for internal deuterium lock unless stated otherwise. Chemical shift data is given as δ_H in units of parts per million (ppm) relative to tetramethylsilane (TMS), where δ_H(TMS) = 0.00 ppm. Coupling constants (J), calculated using MestReNova™ NMR software, are quoted in Hz and recorded to the nearest 0.1 Hz. Data are presented as follows: δ, integration, multiplicity (br = broad, app = apparent, s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, sext = sextet, sep = septet, m = multiplet), coupling constant (J) and assignment. The following internal references were used: δ_H(CDCl$_3$) = 7.26 ppm; δ_H(C$_6$D$_6$) = 7.16 ppm; δ_H((CD$_3$)$_2$SO) = 2.50 ppm; δ_C(CD$_3$OD) = 3.31 ppm.

13C NMR spectra were recorded on Bruker AV-400 instrument at 101 MHz using deuterated solvents as a reference for internal deuterium lock unless stated otherwise. Chemical shift data is given as δ_C in units of parts per million (ppm) relative to tetramethylsilane (TMS), where δ(TMS) = 0.00 ppm. Data are presented as follows: δ and assignment. The following internal references were used: δ_C CDCl$_3$ = 77.16; δ_C C$_6$D$_6$ = 128.06; δ_C((CD$_3$)$_2$SO = 39.52; δ_C(CD$_3$OD) = 49.00.

High resolution mass spectrometry (HRMS) data were acquired by the Imperial College Mass Spectrometry service and m/z values are reported in Daltons. HRMS analyses were performed on a Waters LCT Premier Electrospray Time of Flight mass spectrometer operating in both ES+ and ES- mode. Samples were references against; Leucine-enkephalin [M+H]$^+$ = 556.2771, Sulfadimethoxine [M+H]$^+$ = 311.0814. MassLynx v4.1 software was used to analyse spectra. This version of the software does not account for the electron and all the calibrations/references are calculated accordingly.

Analytical and preparative LC-MS experiments were performed on a Waters LC-MS platform consisting of a Waters 2767 sample manager, Waters 515 HPLC pump, XBridge™ C$_{18}$ columns (Analytical - 4.6 mm x 100 mm, Preparative - 19 mm x 100 mm) coupled to a Waters 2998 Photodiode Array detector (200-700 nm) and a Waters 3100 mass spectrometer.
(ESI+ and ESI-). For analytical runs, a linear gradient of 1.2 mL/min from 5% solvent A (H₂O/FA 0.1%) to 98% solvent B (CH₃CN/FA 0.1%) over 10 mins was used unless stated otherwise. For preparative runs, a linear gradient of 20 mL/min from 5% solvent A to 98% solvent B over 10 min was used unless stated otherwise. MassLynx v4.1 software was used to analyse spectra and chromatograms obtained.

Infra-red spectra were recorded as solids or neat liquids on an Agilent Cary 630 FT-IR spectrometer. Selected absorbances (υ_{max}) are recorded as frequency of absorption (cm⁻¹).

X-ray crystallography was performed by the Imperial College X-ray Crystallography Service. Single crystal X-ray data were collected on an Agilent Xcalibur PX Ultra A diffractometer with graphite monochromatized (Cu-K = 0.615 mm⁻¹) radiation at 173 K.
General Procedures for Monomer Synthesis

Procedure A (N-Boc protection of amines)

\[
R \text{NH}_2 \xrightarrow{\text{Boc}_2\text{O, Et}_3\text{N}} CH_2\text{Cl}_2, 0 \, ^\circ\text{C} - 25 \, ^\circ\text{C} \xrightarrow{\text{R} \text{NH}_2\text{O}}
\]

To a stirring solution of amine (1 eq.) in anhydrous dichloromethane (10 mL/g) was added anhydrous triethylamine (1.2 eq.) under a nitrogen atmosphere. The reaction mixture was cooled to 0 °C and di-tert-butyl dicarbonate (1 eq.) was added portion-wise over 10 min. The reaction mixture was warmed to room temperature and stirred for 16 h under a nitrogen atmosphere. The reaction was followed by TLC (ninhydrin). The reaction mixture was diluted with dichloromethane (50 mL/g). The organic layer was washed with 0.1 M hydrochloric acid (10 mL/g x2), water (10 mL/g) and brine (10 mL/g), dried (MgSO\textsubscript{4}) and concentrated \textit{in vacuo}.

Procedure B (Oxidation of alcohol)

\[
\text{BocHN} \xrightarrow{\text{Dess-Martin periodinane}} CH_2\text{Cl}_2, 0 \, ^\circ\text{C} - 25 \, ^\circ\text{C} \xrightarrow{1-3 \text{ h}} \text{BocHN}
\]

A stirring solution of alcohol (1 eq.) in anhydrous dichloromethane (10 mL/g) was cooled to 0 °C under a nitrogen atmosphere. DessMartin periodinane (1.2 eq.) was added portion-wise over 5 min. The reaction mixture was stirred at 0 °C for 15 min, then warmed to room temperature slowly. The reaction was followed by TLC (dinitrophenylhydrazine). Upon completion, the reaction mixture was diluted with diethyl ether (100 mL/g) and 10% sodium thiosulphate solution (25 mL/g) and saturated sodium bicarbonate solution (25 ml/g) were added. The resulting suspension was stirred rapidly until the precipitate was fully dissolved. The layers were separated and the aqueous layer was extracted with diethyl ether (2 x 50 mL/g). The organic layers were combined and washed with 10% sodium thiosulphate solution (2 x 20 mL/g), saturated sodium bicarbonate solution (2 x 20 mL/g)
and brine (20 mL/g), dried (MgSO₄) and concentrated in vacuo. The product was verified by ¹H NMR and carried forward without further purification.

Procedure C (SₐAr)

![Chemical Reaction](image)

Procedure adapted from Shaginian *et al.*¹ Sodium hydride (60% dispersion in mineral oil) (2.5 eq.) was suspended in anhydrous tetrahydrofuran (20 mL/g) and the alcohol (1.1 eq.) was added dropwise at 0 °C under a nitrogen atmosphere. The reaction mixture was stirred at 0 °C for 15 min. 3-fluoro-4-nitrobenzoic acid (1 eq.) was added portion-wise over 10 min at 0 °C with rapid stirring. The reaction mixture was stirred at 0°C for 15 min, then warmed to room temperature slowly. The reaction was followed by TLC (bromocresol green) and LC-MS. Upon completion, saturated NH₄Cl (10 mL/g) was added and the reaction mixture was poured into ethyl acetate (50 mL/g). The organic layer was washed with 1 M hydrochloric acid (20 mL/g x 3), water (20 ml/g) and brine (20 ml/g). The organic layer was dried (MgSO₄), filtered and concentrated in vacuo.

Procedure D (Phenol Alkylation)

![Chemical Reaction](image)

Procedure adapted from Murphy *et al.*² To a stirred solution of methyl-3-hydroxy-4-nitrobenzoate in (1 eq.) and potassium carbonate (5 eq.) in dimethylformamide (10 mL/g) was added bromide (1.5 eq.). The reaction mixture was warmed to 50 °C under a nitrogen atmosphere. The reaction was followed by TLC (potassium permanganate) and LC-MS. Upon completion, the reaction mixture was cooled to room temperature, poured into water
(20 mL/g) and extracted with ethyl acetate (3 x 100 mL/g). The combined organic fractions were washed with 5% lithium chloride (20 mL/g x 2), water (20 mL/g x 2) and brine (20 mL/g), dried (MgSO$_4$) and concentrated in vacuo.

Procedure E (Ester Hydrolysis)

![Chemical structure of ester hydrolysis](image)

Procedure adapted from Murphy et al. To a stirring solution of amino ester in methanol: tetrahydrofuran (20 mL/g, 1:1, v/v) was added 10% sodium hydroxide solution (10 mL/g) and the reaction mixture heated to 40 °C. The reaction mixture was stirred for 16 h and followed by TLC (ninhydrin and bromocresol green) and LC-MS. Further equivalents of alcohol and sodium hydride were added if required. Upon completion, the organic solvents were removed in vacuo, the residue dissolved in water (20 mL/g) and acidified to pH 4 with conc. hydrochloric acid. The precipitate was extracted with dichloromethane (50 mL/g x 3), the combined organic extracts washed with water (20 mL/g x 2) and brine (20 mL/g x 1), dried (MgSO$_4$) and concentrated in vacuo.

Procedure F (Hydrogenation - Pd/C)

![Chemical structure of hydrogenation](image)

A flame-dried, two-necked round-bottom flask equipped with a stirrer bar was evacuated and backfilled with argon (x 3). The flask was charged with palladium on carbon (10 wt.%) and a solution of nitro-acid/nitro-ester in methanol (20 mL/g) was added to the flask under inert atmosphere. The flask was evacuated with care and backfilled with hydrogen (x3). The reaction mixture was stirred gently and followed by TLC (ninhydrin) and LC-MS.
Upon completion, the reaction was filtered through a celite plug and concentrated \textit{in vacuo}. The residue was taken up in dichloromethane and washed with water (20 mL/g x 2) and brine (20 mL/g x 1), dried (MgSO$_4$) and concentrated \textit{in vacuo}. In the majority of cases, the product was of sufficient purity to take forward without further purification.

Procedure G (Reductive Amination)

\[
\begin{align*}
\text{Procedure adapted from Long et al.}^3 \text{ To a solution of primary aniline (1 eq.) in anhydrous methanol (20 mL/g) was added aldehyde (1.1 eq.) and 2-methylpyridine borane complex (1.2 eq) under a nitrogen atmosphere. The reaction mixture was stirred at room temperature and followed by TLC (ninhydrin) and LC-MS. Upon completion, the solvent was removed \textit{in vacuo}. The crude reaction mixture was dissolved in dichloromethane (50 mL/g) and washed with 1M hydrochloric acid (20 mL/g x 3), water (20 mL) and brine (20 mL). The organic layer was dried (MgSO$_4$), filtered and concentrated \textit{in vacuo}. Purification by column chromatography or trituration afforded the desired product.}
\end{align*}
\]

Procedure H (Fmoc protection of anilines)

\[
\begin{align*}
\text{Procedure adapted Long et al.}^3 \text{ A solution of fluorenylmethyloxycarbonyl chloride (1.2 eq) in anhydrous chloroform (10 mL/g) was added dropwise to a solution of secondary aniline (1 eq) and sodium hydrogen carbonate (1.2 eq) in anhydrous chloroform (20 mL/g). The reaction mixture was stirred at 50 °C under a nitrogen atmosphere and followed by}
\end{align*}
\]
TLC (ninhydrin). Upon completion, the reaction was concentrated and the crude reaction mixture was dissolved in dichloromethane (50 mL/g). The organic layer was washed with 1 M hydrochloric acid (20 mL/g x3) and brine (20 mL), dried (MgSO₄), filtered and concentrated in vacuo. Purification by column chromatography afforded the desired product.
Solid-phase Synthesis of Oligomers

General Methods

2-chlorotrityl chloride resin (1.15 mmol/g, 100-200 mesh; carrier: polystyrene, crosslinked with 1 % DVB) was purchased from Merck (Kenilworth, US). TentaGel S Rink-amide Fmoc resin (0.21 mmol/g, 100-200 mesh; carrier: polystyrene mesh, crosslinked with 1 % DVB) was purchased from Rapp Polymere (Tübingen, DE). 1-Chloro-N,N,2-trimethyl-1-propenylamine (Ghosez’s reagent) and anhydrous N-methyl-2-pyrrolidone were purchased from Sigma-Aldrich Ltd (Gillingham, UK). Ghosez’s reagent was aliquoted into flame-dried 1 mL amber vials under an argon atmosphere and stored at -20 °C. Couplings were performed under microwave irradiation using a Biotage Initiator Classic. Biotage microwave reaction vials (2-5 mL, cat. # 351521) were equipped with a Biotage microwave stirrer (2-5 mL, cat. # 355543) and sealed with a Biotage septa cap (cat. # 352598). All other reactions were performed on an orbital shaker in a 5 mL polypropylene syringe fitted with a frit and Luer plug. Resin washes (vide infra) consisted of; N-methyl-2-pyrrolidone (5 mL x3), N,N-dimethylformamide (5 mL x3) and dichloromethane (5 ml x3). All washes were left to stand for 10 sec and then filtered under water vacuum.

General Procedures for SPS

Resin Loading (2-Cl Trt)

In a flame-dried, two-necked round-bottom flask, 2-Chlorotrityl chloride resin (0.3 mmol/g) was swelled in anhydrous dichloromethane (10 mL/g) for 30 min under a nitrogen atmosphere. A solution of Fmoc protected monomer (1.5 eq) in anhydrous dichloromethane
(2 mL/g) and anhydrous \(N,N \)-diisopropylethylamine (5 eq.) were added and the reaction mixture was stirred gently at room temperature for 16 h under a nitrogen atmosphere. The reaction mixture was transferred to a syringe and filtered under water vacuum. The resin was washed (Section) and dried under a flow of nitrogen. Remaining reactive sites on the resin were "capped" with dichloromethane:\(N,N \)-diisopropylethylamine:methanol (17:2:1, 10 mL/g, 30 min). The resin was washed and stored under reduced pressure in a desiccator. Exact resin loading was calculated via UV-Vis spectroscopy (\textit{vide infra}).

Resin Loading (Rink Amide)

\[
\begin{align*}
\text{NHFmoc} \quad
\text{ii) Fmoc-protected monomer, HATU, DiPEA, DMF} \\
\text{i) 20\% piperidine in DMF} \\
\end{align*}
\]

In a flame-dried, two-necked round-bottom flask, rink amide resin (0.22 mmol/g) was swelled in anhydrous DMF (10 mL/g) for 30 min under a nitrogen atmosphere. Fmoc protected monomer (2 eq.) was pre-activated with HATU (1.95 eq.) and anhydrous \(N,N \)-diisopropylethylamine (5 eq.) in anhydrous dimethylformamide (1 mL/g) for 15 min under a nitrogen atmosphere. The pre-activated monomer solution was added to the resin and stirred gently at room temperature for 16h under a nitrogen atmosphere. The reaction mixture was transferred to a syringe and filtered under water vacuum. The resin was washed (Section) and dried under a flow of nitrogen. Remaining reactive sites on the resin were acetylated with acetic anhydride (5% in DMF, v/v, 10 mL/g, 45 min). The resin was washed and stored under reduced pressure in a desiccator. Exact resin loading was calculated via UV-Vis spectroscopy (\textit{vide infra}).
Determination of Resin Loading

Before Fmoc deprotection, the level of resin substitution was determined using UV-Vis spectroscopy. The dibenzofulvene-piperidine adduct has UV absorption maxima at 290 nm ($\varepsilon = 5,280$-$5,800 \, M^{-1}$) and 301 nm ($\varepsilon = 6,200$-$7,800 \, M^{-1}$). The absorption maxima at 290 nm (A_{290}) was recorded and resin loading calculated using Equation 1;

$$\text{Loading}(\text{mmol/g}) = \frac{A_{290}}{(w(\text{mg}) \times 1.75)}$$ \hspace{1cm} (1)

where $w(\text{mg})$ = weight of resin in mg

Procedure - ca.1 mg of resin was weighed and the mass recorded to 2 d.p. The resin was suspended in 20% piperidine in DMF (3 mL) (20% piperidine) in a quartz cuvette and left for 10 min with occasional agitation. A_{290} was measured in comparison to a 20% piperidine blank. Recordings were performed in triplicate. Molar equivalents for subsequent couplings were calculated with respect to (w.r.t) the determined resin loading.

General Procedure for Acyl Chloride Preactivation

A flame-dried, two-necked round bottom flask was evacuated and backflushed with nitrogen (x3). A solution of Fmoc protected monomer (2 eq. w.r.t resin loading) in anhydrous N-methyl-2-pyrrolidone (1 mL) and Ghosez’s reagent (1.9 eq. w.r.t resin loading) were added under a nitrogen atmosphere. The reaction mixture was stirred at room temperature for 1.5 h. Acid chloride formation was followed by LC-MS. An aliquot of reaction mixture (10 μL) was removed, quenched with anhydrous methanol (100 μL) and left for 15 min. Reaction progress was determined by the ratio of methyl carboxylate/carboxylic acid peak areas in the HPLC trace (50% MeCN to 98% MeCN (0.1% FA) over 10 min).
General Procedure for Oligomer Formation - Double Coupling

Procedure adapted from Long et al for a Biotage Initiator microwave reactor (cf. CEM Liberty™ microwave assisted peptide synthesiser). Fmoc protected pre-loaded resin (0.2-0.3 mmol/g, 1 eq.) was swelled in N-methyl-2-pyrrolidone (5 mL, 5 min) and washed (Section). A solution of 20% piperidine in NMP (5 mL, 20 min x2) was added to the resin. The resin was washed, dried under a flow of nitrogen, transferred to a flame-dried microwave reaction vial and dried further under high vacuum (30 min). The vial was evacuated and backfilled with nitrogen (x3). A solution of Fmoc protected acyl chloride obtained by pre-activation (vide supra) in N-methyl-2-pyrrolidone was added to the reaction vial and heated via microwave irradiation (60 W, 60 °C, 30 min, stirring = 300 RPM). The reaction mixture was transferred to a 5 mL syringe, filtered under water vacuum and the resin washed and dried under a flow of nitrogen. The resin was transferred to a flame-dried microwave vial, dried under high vacuum and a second solution of acyl chloride (2 eq. w.r.t resin loading) was added under a nitrogen atmosphere. The reaction mixture was subjected to microwave irradiation (60 W, 60 °C, 20 min, stirring = 300 RPM). The reaction mixture was transferred to a syringe, filtered under water vacuum and dried under a flow of nitrogen. The coupling efficiency was determined by UV-Vis spectroscopy (vide supra).

General Procedure for Cleavage from Solid Support

A final Fmoc deprotection was performed (20% piperidine, 5 mL, 20 min x 2) and the resin washed thoroughly with dichloromethane (10 x 5 mL). The resin was dried under a nitrogen atmosphere. A solution of 30% hexafluoro-2-propanol in dichloromethane (5 mL,
1 h) was added and shaken rapidly. The reaction mixture was filtered and the filtrate was concentrated under a flow of nitrogen (ca. 1 mL). The crude product was precipitated by addition of ice-cold ether and isolated via centrifugation. The crude solid was dissolved in acetonitrile:water (1:1, 5 mL) and lyophilised to afford an off-white solid. The helix mimetics were analysed and purified (if necessary) by LC-MS. Purity and identity of the helix mimetics was determined via LC-MS.
Sidechains

tert-butyl (3-hydroxypropyl)carbamate (SC1)

SC1 was synthesised from 3-amino propan-1-ol (5.00 g, 66.56 mmol) using general procedure A to yield the title compound as a colourless oil (12.64 g, 100%). \(R_f \) (n-hex:EtOAc, 1:1) = 0.3; \(\nu_{\text{max}}/\text{cm}^{-1} \): 3339 (O-H), 2976 (N-H), 2875, 1685 (C=O), 1511, 1366, 1249, 1165, 1042; \(^1 \text{H} \) NMR (400 MHz, CDCl₃): \(\delta_H \) 4.99 (s, 1H, OH), 3.63 (q, \(J = 5.6 \) Hz, 2H, HOCH₂), 3.42 (t, \(J = 4.7 \) Hz, 1H, NH), 3.25 (q, \(J = 6.3 \) Hz, 2H, HNCH₂), 1.65 (p, \(J = 6.0 \) Hz, 2H, HOCH₂CH₂), 1.42 (s, 9H, \(\text{CH}_3 \)) ; \(^{13} \text{C} \) NMR (101 MHz, CDCl₃): \(\delta_C \) = 157.1 (C=O), 79.5 (C(CH₃)₃), 59.2 (HOCH₂), 37.0 (NHCH₂), 32.8 (HOCH₂CH₂), 28.4 ((CH₃)₃); HRMS-ESI (m/z): Calcd. for \([\text{C}_8\text{H}_{17}\text{NO}_3\text{Na-H}]^+\): 198.1106. Found: 198.1105. DOI: 10.14469/hpc/5181

tert-Butyl (4-hydroxybutyl)carbamate (SC2)

SC2 was synthesised from 4-amino butan-1-ol (5.00 g, 56.09 mmol) using general procedure A to yield the title compound as a colourless oil (11.20 g, 98%). \(R_f \) (n-hex:EtOAc, 1:1) = 0.3; \(\nu_{\text{max}}/\text{cm}^{-1} \): 3345 (O-H), 2932 (N-H), 2870, 1685 (C=O), 1523, 1366, 1249, 1165, 1036; \(^1 \text{H} \) NMR (400 MHz, CDCl₃): \(\delta_H \) 3.68 (t, \(J = 5.8 \) Hz, 2H, HOCH₂), 3.17 (t, \(J = 7.4 \) Hz, 2H, HNCH₂), 1.65 1.54 (m, 4H, HOCH₂CH₂CH₂CH₂), 1.46 (s, 9H, (CH₃)₃) (HO and HN protons not observed); \(^{13} \text{C} \) NMR (101 MHz, CDCl₃): \(\delta_C \) 156.2 (C=O), 79.3 (C(CH₃)₃), 62.5 (HOCH₂), 40.5 (HNCH₂), 29.72 (HOCH₂CH₂), 28.42 ((CH₃)₃), 26.6 (HNCH₂CH₂); HRMS-ESI (m/z): Calcd. for \([\text{C}_9\text{H}_{19}\text{NO}_3+\text{H}]^+\): 190.1445. Found: 190.1443. DOI: 10.14469/hpc/5183
tert-Butyl (5-hydroxypentyl)carbamate (SC3)

![Structure of tert-Butyl (5-hydroxypentyl)carbamate](image)

SC3 was synthesised from 5-amino pentan-1-ol (3.00 g, 29.08 mmol) using general procedure A to yield the title compound as a colourless oil (5.81 g, 98%). Rf (n-hex:EtOAc, 1:1) = 0.35; ν_{max}/cm⁻¹: 3340 (O-H), 2932 (N-H), 2864, 1685 (C=O), 1523, 1366, 1249, 1165, 1053; ¹H NMR (400 MHz, CDCl₃): δ_H 4.64 (br, 1H, OH), 3.61 (t, J = 6.5 Hz, 2H, HOC_H2), 3.10 (t, J = 7.0 Hz, 2H, HNC_H2), 2.42 (br, 1H, NH), 1.61 1.33 (m, 15H, HOCH₂CH₂CH₂CH₂CH₂NH); ¹³C NMR (101 MHz, CDCl₃): δ_C = 156.1 (C=O), 79.1 (C(CH₃)₃), 62.5 (HOCH₂), 40.5 (HNCH₂), 32.2 (HOCH₂CH₂), 29.8 (HNCH₂CH₂), 28.4 ((CH₃)₃), 22.9 (HOCH₂CH₂CH₂); HRMS-ESI (m/z): Calcd. for [C₁₀H₂₂NO₃+H]⁺: 204.1597. Found: 204.1600. DOI: 10.14469/hpc/5184

tert-Butyl (6-hydroxyhexyl)carbamate (SC4)

![Structure of tert-Butyl (6-hydroxyhexyl)carbamate](image)

SC4 was synthesised from 6-amino hexan-1-ol (1.00 g, 8.50 mmol) using general procedure A to yield the title compound as an amorphous white solid (1.73 g, 100%). ν_{max}/cm⁻¹: 3368 (O-H), 2932 (N-H), 2859, 1685 (C=O), 1517, 1366, 1243, 1165, 1059; ¹H NMR (400 MHz, CDCl₃): δ_H 4.27 (s, 1H, OH), 3.60 (t, J = 6.5 Hz, 2H, HOCH₂), 3.08 (t, J = 7.0 Hz, 2H, HNCH₂), 1.59 1.50 (m, 15H, HOCH₂CH₂CH₂CH₂CH₂ & (CH₃)₃); ¹³C NMR (101 MHz, CDCl₃): δ_C = 156.1 (C=O), 79.1 (C(CH₃)₃), 62.5 (HOCH₂), 40.5 (HNCH₂), 32.58 (HOCH₂CH₂), 30.06 (HNCH₂CH₂), 28.4 ((CH₃)₃), 26.4 (HOCH₂CH₂CH₂), 25.3 (HOCH₂CH₂CH₂CH₂); HRMS-ESI (m/z): Calcd. for [C₁₁H₂₄NO₃+H]⁺: 218.1756. Found: 218.1760. DOI: 10.14469/hpc/5185
N-tert-Butoxycarbonylpyrrole-2-carboxaldehyde (SC5)

To a stirring solution of pyrrole-2-carboxaldehyde (3.00 g, 31.54 mmol, 1.00 eq.) in anhydrous acetonitrile (20 mL) under a nitrogen atmosphere were added di-tert-butyl dicarbonate (6.90 g, 31.54 mmol, 1.00 eq.), anhydrous triethylamine (5.10 mL, 37.85 mmol, 1.2 eq.) and 4-(dimethylamino)pyridine (0.38 g, 3.15 mmol, 0.1 eq.). The reaction mixture was stirred at room temperature for 16h. The solvent was removed *in vacuo* and purification by column chromatography [SiO₂, EtOAc/hexanes, 0:1 to 1:9] afforded the title product as a colourless oil (5.81 g, 95%). Rf (EtOAc/Hexanes, 1:9) = 0.3; ν max/cm⁻¹: 3138 (N-H), 1746 (HC=O), 1668 (NC=O), 1439, 1332, 1293, 1249; ¹H NMR (400 MHz, CDCl₃): δH 10.33 (d, J = 0.7 Hz, 1H, ArC=O), 7.45 (dd, J = 3.1, 1.8 Hz, 1H, ArC₃H), 7.19 (dd, J = 3.7, 1.8 Hz, 1H, ArCH₃), 6.29 (ddd, J = 3.7, 3.0, 0.7 Hz, 1H, ArCH₃), 1.65 (s, 9H, (CH₃)₃); ¹³C NMR (101 MHz, CDCl₃): 182.3 (C=O), 148.4 (NC=O), 134.7 (ArC), 127.4 (ArCH), 121.2 (ArCH), 111.7 (ArCH), 85.8 (C(CH₃)₃), 27.9 ((CH₃)₃); HRMS-ESI (m/z): Calcd. for [C₁₀H₁₃NO₃+H]⁺: 196.0974. Found: 196.0980. DOI: 10.14469/hpc/5186
3-(\(N,N'\)-di-\(\text{tert}\)-butoxycarbonylguanidino)-propan-1-ol (SC6)

To a stirring solution of 3-amino propan-1-ol (0.20 mL, 2.66 mmol, 1.00 eq.) in anhydrous dichloromethane (15 mL) was added anhydrous triethylamine (0.35 mL, 2.66 mmol, 1.00 eq.) under a nitrogen atmosphere. The reaction mixture was cooled to 0 °C and \(N,N\)-di-Boc-1\(H\)-pyrazole-1-carboxamidine (0.85 g, 2.73 mmol, 1.50 eq.) was added in one portion. The reaction was followed by TLC (ninhydrin). After 5h, the reaction was diluted with dichloromethane (50 mL), washed with 0.1 M hydrochloric acid (2 x 20 mL), water (1 x 20 mL) and brine (1 x 20 mL), dried (MgSO\(_4\)) and concentrated in vacuo. Purification by column chromatography [SiO\(_2\), CH\(_2\)Cl\(_2\):EtOAc, 1:1] afforded the title compound as a white solid (0.75 g, 89%). R\(_f\) (CH\(_2\)Cl\(_2\)/MeOH 95:5) = 0.5; \(\nu_{\text{max}}/\text{cm}^{-1}\) : 3278 (O-H), 2977, 1729 (C=O), 1634 (C=N), 1556, 1131; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\)H 11.47 (s, 1H, NH), 8.48 (s, 1H, NH), 4.71 (s, 1H, OH), 3.65 3.54 (m, 4H, HOCH\(_2\)CH\(_2\)CH\(_2\)), 1.77 1.63 (m, 2H, HOCH\(_2\)CH\(_2\)), 1.52 (s, 9H, (CH\(_3\))\(_3\)), 1.50 (s, 9H, (CH\(_3\))\(_3\)); \(^1\)H NMR (101 MHz, CDCl\(_3\)) ; \(\delta\)C = 162.8 (C=N), 157.2 (C=O), 153.2 (C=O), 83.5 (C(CH\(_3\))\(_3\)), 79.5 (C(CH\(_3\))\(_3\)), 57.7 (HOCH\(_2\)), 36.8 (HNCH\(_2\)), 32.9 (HOCH\(_2\)CH\(_2\)), 28.2 ((CH\(_3\))\(_3\)), 28.1 ((CH\(_3\))\(_3\)); HRMS-ESI (m/z): Calcd. for [C\(_{14}\)H\(_{27}\)N\(_3\)O\(_5\)+H]\(^+\): 318.2029. Found: 318.2029. DOI: 10.14469/hpc/5187
tert-Butyl (3-oxopropyl)carbamate (SC7)

![Chemical structure of tert-Butyl (3-oxopropyl)carbamate (SC7)](image)

SC7 was synthesised from **SC1** (1.00 g, 5.78 mmol) using general procedure B to yield the title compound as a yellow oil (0.90 g, 91% (crude)). Product carried forward without further purification. R_f (CH$_2$Cl$_2$:MeOH, 9:1) = 0.25; 1H NMR (400 MHz, CDCl$_3$) δ_H 9.80 (d, J = 1.0 Hz, HC=O), 4.90 (s, 1H, NH), 3.42 (q, J = 6.0 Hz, 2H, O=CHCH$_2$), 2.76 2.61 (m, 2H, NHCH$_2$), 1.54 1.50 (m, 2H, NHCH$_2$CH$_2$), 1.42 (s, 9H, (CH$_3$)$_3$). NMR data consistent with literature.4 DOI: 10.14469/hpc/5188

tert-Butyl (6-oxohexyl)carbamate (SC8)

![Chemical structure of tert-Butyl (6-oxohexyl)carbamate (SC8)](image)

SC8 was synthesised from **SC4** (0.44 g, 2.03 mmol) using general procedure B to yield the title compound as a colourless oil (0.25 g, 57%). Product carried forward without further purification. R_f (EtOAc:n-hex, 1:1) = 0.7; 1H NMR (400 MHz, CDCl$_3$) δ_H 9.77 (s, 1H), 4.57 (s, 1H, NH), 3.13 (q, J = 6.7 Hz, 2H, O=CHCH$_2$), 2.45 (td, J = 7.3, 1.7 Hz, 2H, NHCH$_2$), 1.66 (dt, J = 15.0, 7.3 Hz, 2H, O=CHCH$_2$CH$_2$), 1.57 1.31 (m, 13H, (CH$_3$)$_3$) & 2 x CH$_2$). NMR data consistent with literature.5 DOI: 10.14469/hpc/5189

tert-Butyl (3-oxopropyl)carbamate (SC9)

![Chemical structure of tert-Butyl (3-oxopropyl)carbamate (SC9)](image)

SC9 was synthesised from **SC6** (1.00 g, 3.15 mmol) using general procedure B to yield the title compound as a colourless oil (0.64 g, 65%). Product carried forward without further purification. R_f (CH$_2$Cl$_2$:MeOH, 95:5) = 0.35; 1H NMR (400 MHz, CDCl$_3$) δ_H 9.85 (t, J
= 1.0 Hz, 1H, H-C=O), 3.76 (t, J = 6.1 Hz, 2H, H-C=OCH₂), 2.81 (td, J = 6.1, 1.0 Hz, 2H, H-C=OCH₂CH₂), 1.53 (s, 9H, (CH₃)₃), 1.51 (s, 9H, (CH₃)₃). NMR data consistent with literature. DOI: 10.14469/hpc/5190

2-Bromo-N-tritylacetamide (SC10)

A stirring solution of tritylamine (3.00 g, 11.57 mmol, 1.00 eq.) and potassium carbonate (1.90 g, 13.90 mmol, 1.20 eq.) in anhydrous dichloromethane (50 mL) was cooled to 0 °C and bromoacetyl bromide (1.01 mL, 11.57 mmol, 1.00 eq.) was added dropwise under a nitrogen atmosphere. The reaction mixture was warmed to room temperature over 1h and stirred at room temperature for 16 h. The reaction mixture was diluted with dichloromethane (50 mL), washed with water (20 mL x 2) and brine (20 mL x 2), dried (MgSO₄) and concentrated in vacuo. Purification by column chromatography [SiO₂, CH₂Cl₂] afforded the title compound as a white solid (4.28 g, 97%). Rf (CH₂Cl₂) = 0.6; ν max/cm⁻¹ : 3261, 3053, 3027 (N-H), 1657 (C=O); ¹H NMR (400 MHz, CDCl₃) δH 7.71 (s, 1H, NH), 7.38 7.18 (m, 15H, trityl), 3.92 (s, 2H, CH₂); ¹³C NMR (101 MHz, CDCl₃); δC 164.3 (C=O), 144.0 (ArC), 128.5 (ArC), 128.1 (ArC), 127.3 (ArC), 70.9 (C-(C₆H₅)₃), 30.0 (BrCH₂); HRMS-ESI (m/z): Calcd. for [C₂₁H₁₈BrNO+Br]⁻ 457.9755; Found: 457.9747. DOI: 10.14469/hpc/5191
Monomer Synthesis

Synthesis of 1

\[
\begin{align*}
\text{NO}_2 & \quad \text{Benzyl alcohol, NaH, THF} \\
\text{F} & \quad 0 \, ^\circ C - \text{rt, 16 h} \\
\text{OH} & \quad (85\%) \\
\end{align*}
\]

\[
\begin{align*}
\text{NO}_2 & \quad \text{SnCl}_2.2\text{H}_2\text{O, EtOAc} \\
\text{OH} & \quad 50 \, ^\circ C, 24 \, h \\
\text{S1} & \quad (75\%) \\
\end{align*}
\]

\[
\begin{align*}
\text{Benzaldehyde, pic. BH}_3, \text{MeOH} \\
\text{rt, 16 h} \\
\text{S2} & \quad (64\%) \\
\end{align*}
\]

\[
\begin{align*}
\text{Fmoc-Cl, NaHCO}_3 & \quad \text{CHCl}_3 \\
\text{50 \, ^\circ C, 24 h} \\
\text{S3} & \quad (67\%) \\
\end{align*}
\]

3-(benzyloxy)-4-nitrobenzoic acid (S1)

\[
\begin{align*}
\text{NO}_2 & \quad \text{O} \\
\text{OH} & \quad (\text{S1}) \\
\end{align*}
\]

S1 was synthesised from 3-fluoro-4-nitrobenzoic acid (2.00 g, 10.80 mmol) using general Procedure C. Crude product triturated with diethylether to afford the title compound as a yellow solid (2.32 g, 85%). \(R_f\) (\(n\):hex:EtOAc, 1:1, 0.1% AcOH) = 0.45; \(\nu_{max}/cm^{-1}\) : 3060 (O-H), 2831, 1690 (C=O), 1606, 1523 (NO\(_2\)), 1293, 1249; \(^1\)H NMR (400 MHz, DMSO-d\(_6\)) \(\delta_H\) 13.61 (s, 1H, O\(\cdot\)H), 7.99 (d, \(J = 8.3\) Hz, 1H, ArCH), 7.87 (d, \(J = 1.5\) Hz, 1H, ArCH), 7.66 (dd, \(J = 8.3, 1.6\) Hz, 1H, ArCH), 7.50 7.28 (m, 5H, phenyl), 5.39 (s, 2H, OCH\(_2\)); \(^{13}\)C NMR
(101 MHz, DMSO-d₆): δC 165.7 (C=O), 150.5 (ArC−NO₂), 142.3 (ArC-O), 135.8 (ArCH), 135.6 (ArC), 128.5 (ArCH), 128.1 (ArCH), 127.3 (ArCH), 125.03 (ArCH), 121.6 (ArCH), 115.8 (ArCH), 70.6 (OCH₂); HRMS-ESI (m/z): Calcd. for [C₁₄H₁₁NO₅+H]⁺: 272.0559. Found: 272.0567. DOI: 10.14469/hpc/5109

4-amino-3-(benzyloxy)benzoic acid (S2)

\[
\begin{align*}
\text{NH}_2 & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{NH}_2
\end{align*}
\]

To a stirring solution of S1 (2.00 g, 7.20 mmol, 1.00 eq.) in anhydrous ethyl acetate (50 mL) was added tin(II) chloride dihydrate (8.10 g, 36.00 mmol, 5.00 eq.). The reaction mixture was heated to 50 °C under a nitrogen atmosphere for 24 h with a calcium chloride drying tube attached. Upon completion, saturated sodium hydrogen carbontate (50 mL) was added drop-wise with rapid stirring. The resulting precipitate was removed via filtration through celite and the filtrate was transferred to a separating funnel. The aqueous mixture was extracted with ethyl acetate (50 mL x 3) and the combined organic fractions washed with saturated sodium bicarbonate (20 mL x 2), water (20 mL x 2) and brine (20 mL), dried (MgSO₄). The solvent was removed in vacuo to afford the title compound as a pale yellow solid (1.35 g, 75 %). \(R_f (n:\text{hex}:\text{EtOAc}, 1:1) = 0.70 \); \(\nu_{max}/\text{cm}^{-1}: 1690 \) (C=O), 1623 (N-H), 1523, 1439; \(^1\)H NMR (400 MHz, DMSO-d₆): \(\delta_H 12.14 \) (s, 1H, OH), 7.68 7.29 (m, 7H, 2 x ArCH & phenyl), 6.72 (d, J = 8.0 Hz, 1H, ArCH), 6.10 5.30 (br, 2H, NH₂), 5.16 (s, 2H, OCH₂(C₆H₅)); \(^{13}\)C NMR (101 MHz, DMSO-d₆): \(\delta_C 168.1 \) (C=O), 144.5 (ArCO), 143.5 (ArCN), 137.7 (ArC), 128.8 (ArCH phenyl), 128.2 (ArCH phenyl), 127.8 (ArCH phenyl), 124.7 (ArCH), 117.9 (ArCH), 113.1 (ArCH), 112.9 (ArCH), 69.8 (OCH₂(C₆H₅)); HRMS-ESI (m/z): Calcd. for [C₁₄H₁₃NO₃-H]⁺: 242.0817. Found: 242.0823. DOI: 10.14469/hpc/5110
4-(benzylamino)-3-(benzyloxy)benzoic acid (S3)

S3 was synthesised from S2 (1.30 g, 5.30 mmol) using general procedure C. Precipitate isolated via vacuum filtration. The resulting solid was recrystallised from hot methanol to afford the product as a white solid (1.11 g, 64%). R_f (EtOAc:n-hex, 1:2) = 0.45. ν_{max}/cm$^{-1}$: 2864 (O-H), 1668 (C=O), 1601, 1455, 1277; 1H NMR (400 MHz, DMSO-d$_6$): δ_H 12.08 (s, 1H, O-H), 7.57 7.53 (m, 2H, 2 x ArCH), 7.44 7.29 (m, 9H, ArCH x 9), 7.25 7.19 (m, 1H, ArCH), 6.45 (d, J = 8.4 Hz, 1H, ArCH), 6.39 (t, J = 6.4 Hz, 1H, NH), 5.22 (s, 2H, CH$_2$), 4.45 (d, J = 6.3 Hz, 2H, CH$_2$); 13C NMR (101 MHz, DMSO-d$_6$): δ167.9 (C=O), 144.8 (ArCO), 142.8 (ArCN), 140.2 (ArC), 137.5 (ArC), 128.9 (ArC), 128.8 (ArC), 128.2 (ArC), 127.9 (ArC), 127.3 (ArC), 127.1 (ArC), 124.8 (ArC), 117.5 (ArC), 112.2 (ArC), 108.9 (ArC), 70.1 (CH$_2$), 46.1 (CH$_2$). HRMS-ESI (m/z): Calcd. for [C$_{21}$H$_{19}$NO$_3$+H]$^+$: 334.1443. Found: 334.1453. DOI: 10.14469/hpc/5111

4-((((9H-fluoren-9-yl)methoxy)carbonyl)(benzyl)amino)-3-(benzyloxy)benzoic acid (1)

1 was synthesised from S3 (1.00 g, 3.00 mmol) using general procedure D. Purified by column chromatography [SiO$_2$, CH$_2$Cl$_2$:MeOH, 10:0 to 95:5 over 15 CV] to afford the title compound as an amorphous white solid (1.12 g, 67%). R_f (CH$_2$Cl$_2$:MeOH, 97.5:2.5) = 0.2;
\(\nu_{\text{max}}/\text{cm}^{-1} \): 2937, 1713, 1612, 1562, 1255; \(^1\)H NMR (500 MHz, DMSO-d\(_6\), 373K) \(\delta_H \) 12.48 (s, 1H, OH), 7.76 (d, J = 7.6 Hz, 2H, 2 x ArCH Fmoc), 7.61 (d, J = 1.8 Hz, 1H, ArCH), 7.44 (dd, J = 8.1, 1.8 Hz, 1H, ArCH), 7.36 7.24 (m, 9H), 7.21 7.10 (m, 7H), 6.98 (d, J = 8.1 Hz, 1H, ArCH), 5.03 (s, 2H, OCH\(_2\)), 4.70 (s, 2H, NCH\(_2\)), 4.34 (d, J = 6.6 Hz, 2H, OCH\(_2\)CH), 4.07 (t, J = 6.6 Hz, 1H, OCH\(_2\)CH); \(^{13}\)C NMR (126 MHz, DMSO-d\(_6\), 373 K) \(\delta_C \): 166.0 (C=O), 154.4 (C=O), 153.5, 143.1, 140.3, 136.8, 136.1, 133.8, 130.6, 128.8 (ArCH), 127.7, 127.5, 127.1, 126.9, 126.5, 126.2, 124.2, 121.3 (ArCH), 119.3 (ArCH Fmoc), 113.8 (ArCH), 69.6 (OCH\(_2\)), 66.5 (OCH\(_2\)CH), 52.3 (NCH\(_2\)), 46.2 (OCHCH\(_2\))(one aromatic carbon not observed); HRMS-ESI (m/z): Calcd. for [C\(_{36}\)H\(_{29}\)NO\(_5\)+H\(^+\)]: 556.2124. Found: 556.2125. DOI: 10.14469/hpc/5112
Synthesis of 2

3-ethoxy-4-nitrobenzoic acid (S4)

S4 was synthesised from 3-fluoro-4-nitrobenzoic acid (2.00 g, 10.80 mmol) using general Procedure C to afford the title compound as a brown solid (2.47 g, 94%).

Experimental details:
- **Rf** (CH$_2$Cl$_2$:MeOH, 97.5:2.5) = 0.5;
- ν_{max} cm$^{-1}$: 1657 (C=O), 1528 (NO$_2$), 1287, 1237;
- 1H NMR (400 MHz, DMSO-d$_6$): δ_H 13.57 (s, 1H, O$_2$H), 7.95 (d, J = 8.3 Hz, 1H, ArCH), 7.74 (d, J = 1.6 Hz, 1H, ArCH), 7.63 (dd, J = 8.3, 1.6 Hz, 1H, ArCH), 4.28 (q, J = 6.9 Hz, 2H, O–CH$_2$), 1.35 (t, J = 6.9 Hz, 3H, O–CH$_2$CH$_3$);
- 13C NMR (101 MHz, DMSO-d$_6$): δ_C 166.2 (C=O), 151.2 (ArCNO$_2$), 142.7 (ArCO), 136.1 (ArC), 125.3 (ArCH), 121.7 (ArCH), 115.8 (ArCH), 65.8 (OCH$_2$), 14.7 (OCH$_2$CH$_3$);
- HRMS-ESI (m/z): Calcd. for [C$_9$H$_9$NO$_5$-H]$^-$: 210.0402. Found:
4-amino-3-ethoxybenzoic acid (S5)

\[
\text{NH}_2 \quad \begin{array}{c}
\text{O} \\
\text{O}
\end{array} \quad \text{O} \quad \text{OH} \\
\text{O} \\
\text{O}
\]

S5 was synthesised from S4 (2.50 g, 11.42 mmol) using general Procedure B to afford the title compound as a brown solid (2.03 g, 98\%). \(R_f\) EtOAC:n-hex, 1:1 = 0.50; \(\nu_{\text{max}}/\text{cm}^{-1}\): 1690 (C=O), 1623 (N-H), 1522, 1254; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta_H\) 12.08 (s, 1H, OH), 7.36 (dd, J = 8.1, 1.8 Hz, 1H, ArCH), 7.29 (d, J = 1.8 Hz, 1H, ArCH), 6.64 (d, J = 8.2 Hz, 1H, ArCH), 5.48 (s, 2H, NH\(_2\)), 4.03 (q, J = 6.9 Hz, 2H, OCH\(_2\)), 1.36 (t, J = 6.9 Hz, 3H, OCH\(_2\)CH\(_3\)); \(^{13}\)C NMR (101 MHz, DMSO-\(d_6\)): \(\delta_C\) 168.0 (C=O), 144.7 (ArCO), 143.4 (ArCN), 124.4 (ArC), 117.8 (ArCH), 112.6 (ArCH), 112.5 (ArCH), 63.9 (OCH\(_2\)CH\(_3\)), 15.2 (OCH\(_2\)CH\(_3\)); HRMS-ESI (m/z): Calcd. for [C\(_9\)H\(_{11}\)NO\(_3\)+H]+: 182.0817. Found: 182.0824.

3-ethoxy-4-(ethylamino)benzoic acid (S6)

\[
\text{NH} \quad \begin{array}{c}
\text{O} \\
\text{O}
\end{array} \quad \text{O} \quad \text{OH} \\
\text{O} \\
\text{O}
\]

S6 was synthesised from S5 (2.03 g, 11.21 mmol) using general procedure C. Trituration from dichloromethane afforded the title product as a white solid (1.78 g, 73\%). \(R_f\) (n-hex:EtOAc, 1:1) = 0.3; \(\nu_{\text{max}}/\text{cm}^{-1}\): 2970 (O-H), 1712 (C=O), 1612, 1562; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta_H\) 12.07 (s, 1H, OH), 7.46 (dd, J = 8.3, 1.9 Hz, 1H, ArCH), 7.27 (d, J = 1.6 Hz, 1H, ArCH), 6.54 (d, J = 8.3 Hz, 1H, ArCH), 5.44 (t, J = 5.8 Hz, 1H, NH), 4.06 (q, J = 6.9 Hz, 2H, OCH\(_2\)CH\(_3\)), 3.25 3.12 (m, 2H, NHCH\(_2\)), 1.37 (t, J = 6.9 Hz, 3H, OCH\(_2\)CH\(_3\)), 1.17 (t, J = 7.1 Hz, 3H, NHCH\(_2\)CH\(_3\)); \(^{13}\)C NMR (101 MHz, DMSO-\(d_6\)): \(\delta_C\) 168.1 (C=O), 144.8
(ArCO), 142.8 (ArCN), 124.8 (ArCH), 117.0 (ArC), 111.2 (ArCH), 107.8 (ArCH), 64.0
(OCH₂), 37.2 (NHCH₂), 15.1 (OCH₂CH₃), 14.7 (NHCH₂CH₃); HRMS-ESI (m/z): Calcd.
for [C₁₁H₁₅NO₃+H]⁺: 210.1130. Found: 210.1128. DOI: 10.14469/hpc/5115

4-(((9H-fluoren-9-yl)methoxy)carbonyl)(ethyl)amino)-3-ethoxybenzoic acid (2)

![Chemical structure of 2](attachment:image.png)

2 was synthesised from S6 (1.50 g, 7.10 mmol) using general procedure D. Purified by column
chromatography [SiO₂, CH₂Cl₂:MeOH, 10:0 to 9:1 over 20 CV] to afford the title compound
as an amorphous white solid (2.08 g, 68%). Rₓ(CH₂Cl₂:MeOH, 97.5:2.5) = 0.35; ν max/cm⁻¹:
2971, 2742, 1713, 1562, 1192; ¹H NMR (500 MHz, DMSO-d₆, 373 K): δH 12.55 (s, 1H,
OH), 7.75 (d, J = 7.5 Hz, 2H, 2 x ArCH Fmoc), 7.56 7.51 (m, 2H, 2 x ArCH), 7.34 (t,
J = 7.6 Hz, 2H, 2 x ArCH Fmoc), 7.30 (d, J = 7.7 Hz, 2H, 2 x ArCH Fmoc), 7.19 (t, J =
7.5 Hz, 2H, 2 x ArCH Fmoc), 7.14 (d, J = 7.9 Hz, 1H, ArCH), 4.31 (d, J = 6.7 Hz, 2H,
OCH₂Fmoc), 4.08 (t, J = 6.7 Hz, 1H, OCH₂CH₂Fmoc), 4.02 (q, J = 6.9 Hz, 2H, OCH₂),
3.52 (q, J = 7.1 Hz, 2H, NCH₂), 1.24 (t, J = 6.9 Hz, 3H, OCH₂CH₃), 1.00 (t, J = 7.1 Hz,
3H, NCH₂CH₃); ¹³C NMR (126 MHz, DMSO-d₆, 373 K): δC 166.2 (C=O), 153.9 (C=O),
143.3 (ArC), 140.3 (ArC), 133.8, 130.7, 129.0 (ArCH), 126.9 (ArCH), 126.2 (ArCH), 124.2
(ArCH), 121.2 (ArCH), 119.3 (ArCH), 113.4 (ArCH), 66.2 (OCH₂ Fmoc), 63.5 (OCH₂),
46.3 (OCH₂CH₂ Fmoc), 43.4 (NCH₂), 13.9 (OCH₂CH₃), 12.5 (NCH₂CH₃)(one aromatic
carbon not observed); HRMS-ESI (m/z): Calcd. for [C₂₆H₂₇NO₅-H]: 432.1827. Found:
432.1811. DOI: 10.14469/hpc/5116
Synthesis of 3

$\text{NO}_2 \xrightarrow{\text{Isobutanol, NaH, THF}} 0 ^\circ \text{C} - \text{rt, 16 h} (99\%)$

$\text{O}_2 \xrightarrow{\text{H}_2 (g), \text{Pd/C, MeOH}} \text{rt, 0.5 h} (96\%)$

$\text{Isovaleraldehyde, pic. BH}_3, \text{MeOH} \xrightarrow{\text{rt, 16 h}} (74\%)$

3-isobutoxy-4-nitrobenzoic acid (S7)

S7 was synthesised from 3-fluoro-4-nitrobenzoic acid (5.00 g, 27.01 mmol) using general procedure C to afford the title compound as a yellow solid (6.21 g, 99%). $R_f (\text{CH}_2\text{Cl}_2:\text{MeOH}, 95:5) = 0.50; \nu_{\text{max}}/\text{cm}^{-1} : 2960 (\text{O-H}), 1690 (\text{C}=\text{O}), 1606, 1517 (\text{NO}_2), 1243; ^1\text{H NMR} (400 MHz, \text{MeOD}): \delta_H 7.84 (d, J = 8.3 Hz, 1H, Ar\text{CH}), 7.82 (d, J = 1.5 Hz, 1H, Ar\text{CH}), 7.70 (dd, J = 8.3, 1.6 Hz, 1H, Ar\text{CH}), 3.98 (d, J = 6.3 Hz, 2H, O\text{CH}_2), 2.12 (sep, J = 6.6 Hz, 1H, O\text{CH}_2\text{CH}), 1.07 (d, J = 6.7 Hz, 6H, CH(\text{CH}_3)_2); ^{13}\text{C NMR} (101 MHz, \text{MeOD}): \delta_C 166.3 (\text{C}=\text{O}), 151.5 (\text{ArCNO}_2), 142.7 (\text{ArCO}), 135.4 (\text{ArC}), 124.5 (\text{ArCH}), 121.1 (\text{ArCH}), 115.1
(ArCH), 75.5 (OCH₂, 28.1 (O–CH₂CH), 17.9 (CH(CH₃)₂); HRMS-ESI (m/z): Calcd. for [C₁₁H₁₃NO₅-H]: 238.0715. Found: 238.0721. DOI: 10.14469/hpc/5117

4-amino-3-isobutoxybenzoic acid (S8)

S8 was synthesised from S7 (6.20 g, 26.66 mmol) using general procedure B. Purification by column chromatography [SiO₂, CH₂Cl₂:MeOH, 10:0 - 95:5 over 10 CV] afforded the title product as a pale brown solid (5.50 g, 96%). Rf (CH₂Cl₂:MeOH, 97.5:2.5) = 0.45; ν max/cm⁻¹: 2920 (O-H), 1679 (C=O), 1612, 1517, 1287, 1030; ¹H NMR (400 MHz, MeOD): δH 7.49 (dd, J = 8.2, 1.8 Hz, 1H, ArCH), 7.42 (d, J = 1.8 Hz, 1H, ArCH), 6.71 (d, J = 8.2 Hz, 1H, ArCH), 3.82 (d, J = 6.4 Hz, 2H, OCH₂), 2.14 (sep, J = 6.6 Hz, 1H, OCH₂CH), 1.09 (d, J = 6.7 Hz, 6H, OCH₂CH(CH₃)₂); ¹³C NMR (101 MHz, MeOD): δC 169.3 (C=O), 145.4 (ArCO), 142.7 (ArCN), 124.1 (ArCH), 118.2 (ArC), 112.5 (ArCH), 111.9 (ArCH), 74.4 (OCH₂CH), 28.1 (OCH₂CH), 18.2 (OCH₂CH(CH₃)₃); HRMS-ESI (m/z): Calcd. for [C₁₁H₁₅NO₅+H]⁺: 210.1130. Found: 210.1134. DOI: 10.14469/hpc/5118

3-isobutoxy-4-(isopentylamino)benzoic acid (S9)

S9 was synthesised from S8 (0.83 g, 4.25 mmol) using general procedure C. Precipitate isolated via vacuum filtration and washed with ice-cold methanol (3 x 20 mL) to afford the title product as a white solid (0.88g, 74 %). Rf (CH₂Cl₂:MeOH, 97.5:2.5) = 0.25; ¹H NMR (400 MHz, CDCl₃): δH 7.72 (dd, J = 8.3, 1.8 Hz, 1H, ArCH), 7.42 (d, J = 1.8 Hz, 1H,
4-(((9H-fluoren-9-yl)methoxy)carbonyl)(isopentyl)amino)-3-isobutoxybenzoic acid (3)

3 was synthesised from S9 (0.50 g, 2.00 mmol) using general procedure D. Purified by column chromatography [SiO₂, CH₂Cl₂:MeOH, 10:0 to 95:5 over 10 CV] to afford the title compound as a white solid (0.72 g, 79%). Rₚ(CH₂Cl₂:MeOH, 97:5:2.5) = 0.3; ¹H NMR (500 MHz, DMSO-d₆, 373 K): δ_H 12.50 (s, 1H, OH) 7.74 (d, J = 7.7 Hz, 2H, 2 x ArCH Fmoc), 7.55 7.50 (m, 2H, 2 x ArCH), 7.35 (d, J = 7.5 Hz, 2H, 2 x ArCH Fmoc), 7.28 (br, 2H, 2 x ArCH Fmoc), 7.19 (t, J = 7.4 Hz, 2H, 2 x ArCH Fmoc), 7.14 (d, J = 8.4 Hz, 1H, ArCH), 4.30 (br s, 2H, OCH₂CH Fmoc), 4.07 (br s, J = 7.1 Hz, 1H, OCH₂CH Fmoc), 3.72 (d, J = 6.1 Hz, 2H, OCH₂), 3.49 (br s, 2H, ArNCH₂), 1.93 (sep, J = 6.7 Hz, 1H, OCH₂CH), 1.51 (sep, J = 6.6 Hz, 1H, ArNCH₂CH₂CH), 1.30 (q, J = 7.3 Hz, 2H, ArNCH₂CH₂CH), 0.91 (d, J = 6.7 Hz, 6H, OCH₂CH(CH₃)₂), 0.80 (d, J = 6.6 Hz, 6H, ArNCH₂CH₂CH(CH₃)₂); ¹³C NMR (126 MHz, DMSO-d₆, 373 K): δ_C = 166.1 (C=O), 154.1 (C=O), 143.2 (ArCO), 140.3 (ArCN), 133.9, 130.6, 128.8 (ArCH), 126.8 (ArCH Fmoc), 126.2 (ArCH Fmoc), 124.5, 124.2
(ArCH Fmoc), 121.1, 119.2 (ArCH Fmoc), 113.1 (ArCH), 73.9 (OCH₂), 66.2 (OCH₂CH Fmoc), 47.0 (ArNCH₂), 46.2 (OCH₂CH Fmoc), 36.3 (ArNCH₂CH₂), 27.3 (OCH₂CH), 24.6 (ArNCH₂CH₂CH), 21.6 (OCH₂CH(CH₃)₂), 18.2 (ArNCH₂CH₂CH(CH₃)₂); HRMS-ESI (m/z): Calcd. for [C₃₁H₃₅NO₅+H]⁺: 502.2593. Found: 502.2592. DOI: 10.14469/hpc/5120
Synthesis of 4

3-isopropoxy-4-nitrobenzoic acid (S10)

S10 was synthesised from 3-fluoro-4-nitrobenzoic acid (5 g, 27.01 mmol) using general procedure C to afford the title compound as a yellow solid (6.03 g, 98%). R_f (n-hex:EtOAc, 1:4, 0.1% AcOH) = 0.3; ν_{max}/cm$^{-1}$: 2954 (O-H), 1657 (C=O), 1533 (NO$_2$), 1277, 1209; 1H NMR (400 MHz, CDCl$_3$): δ_H 7.83 7.80 (m, 2H, 2 x ArCH), 7.76 (dd, J = 8.3, 1.6 Hz, 1H, ArCH), 4.82 (sep, J = 6.1 Hz, 1H, CH(CH$_3$)$_2$), 1.46 (d, J = 6.1 Hz, 6H, CH(CH$_3$)$_2$); 13C NMR (101 MHz, CDCl$_3$): δ_C = 169.9 (C=O), 150.8 (ArCNO$_2$), 144.4 (ArCO), 133.3 (ArC), 125.1 (ArCH), 121.8 (ArCH), 117.4 (ArCH), 73.2 (OCH(CH$_3$)$_2$), 21.8 (CH(CH$_3$)$_2$); HRMS-ESI (m/z): Caled. for [$C_{10}H_{11}NO_5$-H]$: 224.0559. Found: 224.0568. DOI: 10.14469/hpc/5121
3-isopropoxy-4-nitrobenzoic acid (S11)

\[\text{NH}_2 \]
\[\text{O} \]
\[\text{O} \]
\[\text{O} \]
\[\text{OH} \]

S11 was synthesised from S10 (6.00 g, 26.66 mmol) using general procedure B. Purification by column chromatography [SiO\(_2\), CH\(_2\)Cl\(_2\):MeOH, 10:0 - 97.5:2.5 over 10 CV] afforded the title product as an off white solid (4.91 g, 94%). \(R_f \) (CH\(_2\)Cl\(_2\):MeOH, 95:5) = 0.5; \(\nu_{\text{max/cm}^{-1}} \) : 3429 (N-H), 2953 (O-H), 2864, 1657 (C=O), 1595, 1533, 1277, 1210; \(^1\)H NMR (400 MHz, CD\(_3\)OD): \(\delta_H \) 7.49 (dd, \(J = 8.2 \), 1.8 Hz, 1H, ArCH), 7.46 (d, \(J = 1.8 \) Hz, 1H, ArCH), 6.72 (d, \(J = 8.2 \) Hz, 1H, ArCH), 4.61 (sep, \(J = 6.2 \) Hz, 1H, OCH(CH\(_3\))\(_2\)), 1.36 (d, \(J = 6.0 \) Hz, 6H, OCH(CH\(_3\))\(_2\)); \(^{13}\)C NMR (101 MHz, CD\(_3\)OD): \(\delta_C \) 169.1 (C=O), 144.3 (ArCO), 142.4 (ArCN), 124.0 (ArCH), 119.1 (ArC) 114.2 (ArCH), 113.6 (ArCH), 70.7 (OCH, 21.0 (OCH(CH\(_3\))\(_2\))); HRMS-ESI (m/z): Calcd. for [C\(_{10}\)H\(_{13}\)NO\(_3\)+H]\(^+\): 196.0974. Found : 196.0967. DOI: 10.14469/hpc/5122

4-(isobutylamino)-3-isopropoxybenzoic acid (S12)

\[\text{NH} \]
\[\text{O} \]
\[\text{O} \]
\[\text{O} \]
\[\text{OH} \]

S12 was synthesised from S11 (2.00 g, 6.06 mmol) using general procedure C. Recrystallised from hot ethanol to afford product as a white solid (0.56 g, 23%). \(R_f \) (n-hex:EtOAc, 7:3) = 0.3; \(\nu_{\text{max/cm}^{-1}} \) : 3418 (O-H), 1657 (C=O), 1595, 1444, 1366, 1276; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta_H \) 7.68 (dd, \(J = 8.4 \), 1.8 Hz, 1H, ArCH), 7.46 (d, \(J = 1.8 \) Hz, 1H, ArCH), 6.54 (d, \(J = 8.4 \) Hz, 1H, ArCH), 5.13 (br, 1H, NH), 4.64 (sep, \(J = 6.1 \) Hz, 1H, OCH(CH\(_3\))\(_2\)), 3.02 (d, \(J = 6.9 \) Hz, 2H, NHCH\(_2\)H), 1.95 (sep, \(J = 6.7 \) Hz, 1H, NHCH\(_2\)CH), 1.37 (d, \(J =
6.0 Hz, 6H, OCH(CH₃)₂, 0.99 (d, J = 6.6 Hz, 6H, NHCH₂CH(CH₃)₂); ¹³C NMR (101 MHz, CDCl₃): δC 172.4 (C=O), 144.4 (ArCO), 143.4 (ArCN), 125.6 (ArCH₁), 115.6 (ArC), 113.1 (ArCH), 107.9 (ArCH), 70.1 (OCH(CH₃)₂), 50.7 (NHCH₂), 28.0 (NHCH₂CH₂), 22.2 (OCH(CH₃)₂), 20.4 (NHCH₂CH₂CH₃). HRMS-ESI (m/z): Calcd. for [C₁₄H₂₁NO₃+H]⁺ 252.1600. Found: 252.1608. DOI: 10.14469/hpc/5123

4-(((9H-fluoren-9-yl)methoxy)carbonyl)(isobutyl)amino)-3-isopropoxybenzoic acid (4)

4 was synthesised from S12 (0.50 g, 1.80 mmol) using general procedure D. Purified by column chromatography [SiO₂, CH₂Cl₂:MeOH, 10:0 to 95:5 over 10 CV] to afford the title compound as a colourless oil (0.62 g, 73%). Rf (CH₂Cl₂:MeOH, 97.5:2.5) = 0.3; ¹H NMR (400 MHz, DMSO-d₆, 373 K): δH 7.76 (d, J = 7.6 Hz, 2H, 2 x ArCH Fmoc), 7.52 (d, J = 1.8 Hz, 1H, ArCH), 7.49 (dd, J = 8.1, 1.8 Hz, 1H, ArCH), 7.35 (t, 2H, 2 x ArCH Fmoc), 7.29 (br, 2H, 2 x ArCH Fmoc), 7.19 (t, 2H, 2 x ArCH Fmoc), 7.13 (d, J = 8.0 Hz, 1H, ArCH), 4.56 (sep, J = 6.0 Hz, 1H, OCH(CH₃)₂), 4.32 (d, J = 6.4 Hz, 2H, OCH₂ Fmoc), 4.07 (t, J = 6.5 Hz, 1H, OCH₂CH Fmoc), 3.30 (br, 2H, ArNCH₂), 1.64 (sep, 7.2 Hz, 1H, ArNCH₂CH), 1.20 (d, J = 6.0 Hz, 6H, OCH(CH₃)₂), 0.80 (d, J = 6.6 Hz, 6H, ArNCH(CH₃)₂); ¹³C NMR (101 MHz, DMSO-d₆, 373 K): δC 166.6 (C=O), 154.9 (C=O), 153.1, 143.7, 140.7, 135.4, 130.9, 129.5 (ArCH), 127.3 (ArCH Fmoc), 126.6 (ArCH Fmoc), 124.7 (ArCH Fmoc), 121.3 (ArCH), 119.7 (ArCH Fmoc), 114.7 (ArCH), 70.3 (OCH), 66.6 (OCH₂CH Fmoc), 56.5, 46.8, 26.9, 21.6, 19.9; HRMS-ESI (m/z): Calcd. for [C₂₉H₃₁NO₅+H]⁺: 474.2280. Found: 474.2296. DOI: 10.14469/hpc/5124
4-(benzylamino)-3-isopropoxybenzoic acid (S13)

S13 was synthesised from S11 (1.00 g, 7.29 mmol) using general procedure G. Precipitate isolated by vacuum filtration to afford the title compound as a white solid (0.93 g, 56%). R_f (n-hex:EtOAc, 1:1) = 0.7; ν_{max}/cm$^{-1}$: 3301 (N-H), 2971 (O-H), 1668 (C=O), 1595, 1522, 1410, 1277, 1203, 1115; 1H NMR (400 MHz, CDCl$_3$): δ_H 7.68 (dd, J = 8.4, 1.8 Hz, ArC$_H$), 7.52 (d, J = 1.8 Hz, 1H, ArCH), 7.44 7.29 (m, 5H, benzyl), 6.57 (d, J = 8.4 Hz, 1H, ArC$_H$), 4.71 (sep, J = 6.2 Hz, 1H, OCH(CH$_3$)$_2$), 4.48 (s, 2H, NHCH$_2$(C$_6$H$_5$)), 1.41 (d, J = 6.0 Hz, 6H, (OCHCH$_3$)$_2$); 13C NMR (101 MHz, CDCl$_3$): δ_C 172.5 (C=O), 143.9 (ArCO), 143.7 (ArCN), 138.6 (ArC phenyl), 128.8 (ArC phenyl), 127.4 (ArCH phenyl), 127.2 (ArCH phenyl), 127.2 (ArCH phenyl).
phenyl), 125.4 (ArCH), 116.5 (ArC), 112.9 (ArCH), 108.5 (ArCH), 71.0 (OCH(CH$_3$)$_2$), 47.2 (NCH$_2$(C$_6$H$_5$)), 22.2 (OCH(CH$_3$)$_2$); HRMS-ESI (m/z); Calcd. for [C$_{17}$H$_{19}$NO$_3$+H]: 286.1456 Found: 286.1443. DOI: 10.14469/hpc/5134

4-((((9H-fluoren-9-yl)methoxy)carbonyl)(benzyl)amino)-3-isopropoxybenzoic acid (5)

![Chemical Structure Image]

5 was synthesised from **S13** (0.50 g, 2.20 mmol) using general procedure H. Purified by column chromatography [SiO$_2$, EtOAc:n-hex, 2:8 to 1:1 over 10 CV] to afford the title compound as a white solid (0.62 g, 59%). R_f (EtOAc:n-hex, 1:1) = 0.3; ν_{max}/cm$^{-1}$: 2976, 1702, 1595, 1449, 1405; 1H NMR (500 MHz, DMSO-d$_6$, 373 K) δH 12.46 (s, 1H, OH), 7.76 (d, J = 7.5 Hz, 2H, 2 x ArCH Fmoc), 7.48 (d, J = 1.9 Hz, 1H, ArCH), 7.38 (dd, J = 8.1, 1.8 Hz, 1H, ArCH), 7.36 7.33 (m, 2H, 2 x ArCH Fmoc), 7.29 (br, 2H, 2 x ArCH Fmoc), 7.25 7.11 (m, 7H, 2 x ArCH Fmoc & C$_6$H$_5$), 6.94 (d, J = 8.1 Hz, 1H, ArCH), 4.67 (s, 2H, ArNCH$_2$(C$_6$H$_5$)), 4.52 (sep, J = 5.9 Hz, 1H, OCH), 4.38 (d, J = 6.6 Hz, 2H, OCH$_2$CH Fmoc), 4.10 (t, J = 6.6 Hz, 1H, OCH$_2$CH Fmoc), 1.17 (d, J = 6.0 Hz, 6H, OCH(CH$_3$)$_2$); 13C NMR (101 MHz, DMSO-d$_6$): δC 168.1 (C=O), 153.3 (C=O), 145.7, 143.7, 143.7, 141.2, 140.2, 128.8, 128.6, 127.6, 127.2, 125.7, 125.2, 124.6, 120.3, 117.5, 113.6, 108.9 (ArCH), 71.1 (OCH$_2$), 64.3 (OCH$_2$Fmoc), 50.6 (ArNCH$_2$), 46.1 (OCH$_2$CH Fmoc), 22.3 (CH(CH$_3$)$_2$); HRMS-ESI (m/z): Calcd. for [C$_{32}$H$_{29}$NO$_5$+H]$^+$: 508.2124. Found: 508.2136. DOI: 10.14469/hpc/5135
Synthesis of 6

4-(((1-(tert-butoxycarbonyl)-1H-pyrrol-2-yl)methyl)amino)-3-isopropoxybenzoic acid (S14)

S14 was synthesised from S11 (0.96 g, 4.90 mmol) using general procedure G. Purified by column chromatography [SiO$_2$, CH$_2$Cl$_2$:MeOH, 10:0 to 9:1 over 10 CV] to afford the title compound as a white solid (0.80 g, 43%). R_f (CH$_2$Cl$_2$:MeOH, 95:5) = 0.3; ν max/cm$^{-1}$: 3468 (N-H), 2976 (O-H), 1735 (C=O), 1662 (C=O), 1590, 1539, 1444, 1276, 1126; 1H NMR (400 MHz, CDCl$_3$) : δ_H 7.65 (dd, J = 8.3, 1.8 Hz, 1H, ArCH), 7.44 (d, J = 1.9 Hz, 1H,
ArCH), 7.21 (dd, J = 3.4, 1.8 Hz, 1H, ArCH pyrrole), 6.64 (d, J = 8.5 Hz, 1H, ArCH), 6.16 (dd, J = 3.3, 1.8 Hz, 1H, ArCH pyrrole), 6.08 (t, J = 3.3 Hz, 1H, ArCH pyrrole), 5.59 (s, 1H, NH), 4.69 4.57 (m, 3H, OCH & NHCH₂), 1.60 (s, 9H, (CH₃)₃), 1.36 (d, J = 6.0 Hz, 6H, (CH₃)₂); ¹³C NMR (101 MHz, CDCl₃) : δC 172.1 (C=O), 149.3 (NC=O), 143.7 (ArCO), 143.6 (ArCN), 131.7 (ArC pyrrole), 125.3 (ArCH), 121.8 (ArCH pyrrole), 116.0 (ArC), 113.3 (ArCH pyrrole), 113.0 (ArCH), 110.1 (ArCH pyrrole), 108.4 (ArCH), 84.0 (C(CH₃)₃), 70.7 (OCH), 40.7 (NHCH₂), 28.0 (C(CH₃)₃), 22.1 (CH₃)₂; HRMS-ESI (m/z); Calcd. for [C₂₀H₂₆N₂O₅+H]⁺: 375.1920 Found: 375.1907. DOI: 10.14469/hpc/5136

4-(((9H-fluoren-9-yl)methoxy)carbonyl)((1-tert-butoxycarbonyl)-1H-pyrrol-2-yl)methyl)amino)-3-isopropoxybenzoic acid (6)

6 was synthesised from S14 (173 mg, 0.46 mmol) using general procedure H. Purified by column chromatography [SiO₂, EtOAc:n-hex] to afford the title compound as a colourless oil (62.7 mg, 22%). Rf (EtOAc:n-hex, 1:1) = 0.5; ν max/cm⁻¹ : 2976 (O-H), 1685 (C=O), 1422, 1310; ¹H NMR (500 MHz, DMSO-d₆, 373 K): δH 12.49 (s, 1H, OH), 7.75 (d, J = 7.6 Hz, 2H, 2 x ArCH Fmoc), 7.49 (d, J = 1.9 Hz, 1H, ArCH), 7.39 (dd, J = 8.1, 1.8 Hz, 1H, ArCH), 7.34 (t, J = 7.5 Hz, 2H, 2 x ArCH Fmoc), 7.28 (d, J = 7.5 Hz, 2H, 2 x ArCH Fmoc), 7.17 (t, J = 7.4 Hz, 2H, 2 x ArCH Fmoc), 7.11 (dd, J = 3.4, 1.8 Hz, 1H, ArCH pyrrole), 6.99 (d, J = 8.0 Hz, 1H, ArCH), 6.11 (dtt, J = 2.9, 1.9, 1.0 Hz, 1H, ArCH pyrrole), 6.05 (t, J = 3.3 Hz, 1H, ArCH pyrrole), 4.93 (s, 2H, ArNCH₂), 4.55 (sep, J = 6.0 Hz, 1H, OCH(CH₃)₂), 4.33 (d, J = 6.7 Hz, 2H, OCH₂CH Fmoc), 4.09 (t, J = 6.7 Hz, 1H, OCH₂CH
Fmoc, 1.50 (s, 9H, (CH$_3$)$_3$), 1.21 (d, J = 6.0 Hz, 6H, OCH(CH$_3$)$_3$); 13C NMR (101 MHz, DMSO-d$_6$): δ 167.3 (C=O), 153.4 (C=O), 149.1 (C=O), 144.1 (ArC), 144.0, 141.2, 131.4, 130.3, 128.2, 128.0, 127.6, 127.3, 125.7, 125.5, 122.0, 121.6, 120.6, 120.5, 110.7 (ArCH), 84.4 (C(CH$_3$)$_3$), 70.6 (OCH), 67.3 (OCH$_2$CHFmoc), 46.9 (OCH$_2$CHFmoc), 27.9 (C(CH$_3$)$_3$), 22.1 (OCH(CH$_3$)$_2$); HRMS-ESI (m/z): Calcd. for [C$_{35}$H$_{36}$N$_2$O$_7$+H]$^+$: 597.2601. Found: 597.2617. DOI: 10.14469/hpc/5137
Synthesis of 7

```
NO2
F

O

\text{Isobutanol,}
\text{NaH, THF}
\text{0 °C - rt, 16 h}
(99%)

H2 (g), Pd/C, MeOH
\text{rt , 0.5 h}
(96%)

SC8
pic. BH3, MeOH
rt, 16 h
(62%)

Fmoc-Cl, NaHCO3
CHCl3
50 °C, 24 h
(54%)
```

4-((6-((\text{tert-butoxycarbonyl}amino)hexyl)amino)-3-isobutoxybenzoic acid (S15)

```
N
O

H

\text{BocHN}
\text{Fmoc}
\text{Fmoc-Cl, NaHCO3}
\text{CHCl3}
\text{50 °C, 24 h}
(54%)

\text{BocHN}
\text{Fmoc}
\text{NH}
\text{S15}
```

S15 was synthesised from **S8** (271 mg, 1.39 mmol) using general procedure G. Purified by column chromatography [SiO2, CH2Cl2:AcOH, 100:0.1] to afford the title compound as a white solid (352 mg, 62%). R_f (n-hex:EtOAc, 1:1) = 0.5; ν_{max}/cm$^{-1}$: 3384 (N-H), 2965 (O-H), 2920, 1668 (C=O), 1601 (NC=O), 1523, 1444, 1249, 1170; 1H NMR (400 MHz, CDCl$_3$) : δ_H 7.69 (dd, $J = 8.3$, 1.8 Hz, 1H, ArCH), 7.41 (d, $J = 1.8$ Hz, 1H, ArCH), 6.56 (d, $J = 8.4$ Hz, 1H, ArCH), 4.52 (s, 1H, HNC=O), 3.82 (d, $J = 6.6$ Hz, 2H, OCH$_2$CH),
3.20 (t, J = 7.2 Hz, 2H, ArNHCH₂), 3.12 (q, J = 6.1 Hz, 2H, HNC=OCH₂), 2.15 (sep, J = 6.7 Hz, 1H, OCH₂CH), 1.67 (p, J = 7.1 Hz, 2H), 1.56 1.31 (m, 15H, 3 x CH & (CH₃)₃), 1.04 (d, J = 6.7 Hz, 6H, OCH₂CH(CH₃)₂); ¹³C NMR (101 MHz, CDCl₃): δ 171.9 (C=O), 156.0 (N=O), 145.0 (ArCO), 143.0 (ArCN), 125.5 (ArCH), 116.0 (ArC), 111.1 (ArCH), 108.0 (ArCH), 79.1 (OC(CH₃)₃), 74.7 (OCH₂CH(CH₃)₂), 43.0 (NC=OCH₂), 40.5, 30.0, 29.1, 28.4 (OC(CH₃)₃), 28.2, 26.7, 26.5, 19.4 (OCH₂CH(CH₃)₂); HRMS-ESI (m/z); Calcd. for [C₂₂H₃₆N₂O₅+H]: 409.2702. Found: 409.2704. DOI: 10.14469/hpc/5138

4-(((9H-fluoren-9-yl)methoxy)carbonyl)(6-((tert-butoxycarbonyl)amino)hexyl)amino)-3-isobutoxybenzoic acid (7)

![Chemical Structure](image)

7 was synthesised from S15 (270 mg, 0.66 mmol) using general procedure H. Purified by column chromatography [SiO₂, CH₂Cl₂:AcOH, 100:0.1] to afford the title compound as a colourless oil (224 mg, 54%). Rf (CH₂Cl₂:AcOH, 100:0.1) = 0.15; ν max/cm⁻¹: 2953, 1696, 1506, 1405, 1254, 1154;¹H NMR (400 MHz, DMSO-d₆, 373 K): δH 11.82 (s, 1H, OH), 7.76 (d, J = 7.6 Hz, 2H, 2 x ArCHFmoc), 7.55 7.48 (m, 2H, 2 x ArCH), 7.34 (t, J = 7.5 Hz, 2H, 2 x ArCHFmoc), 7.28 (d, J = 16.3 Hz, 2H, 2 x ArCHFmoc), 7.19 (t, J = 7.4 Hz, 2H, 2 x ArCHFmoc), 7.14 (d, J = 8.5 Hz, 1H, ArCH), 6.21 (s, 1H, NH), 4.29 (br s, 2H, OCH₂CHFmoc), 4.07 (br s, J = 6.8 Hz, 1H, OCH₂CHFmoc), 3.72 (d, J = 6.1 Hz, 2H, OCH₂CH), 3.45 (br, 2H, ArNCH₂), 3.12-2.82 (m, 6H, 3 x CH₂), 2.02 1.85 (br m, 1H, OCH₂CH), 1.37 (s, 9H, (CH₃)₃), 1.25 1.15 (m, 4H, 2 x CH₂), 0.91 (d, J = 6.7 Hz, 6H, OCH₂CH(CH₃)₂); ¹³C NMR (101 MHz, DMSO-d₆, 373 K): δC 170.8 (C=O), 166.2 (C=O), 155.0 (C=O), 154.1,
143.2, 140.3, 134.0, 130.7, 128.8, 126.9, 126.2, 124.2, 121.1, 119.3, 113.1, 76.8 (OC(CH$_3$)$_3$), 73.9 (OCH$_2$), 66.2 (OCH$_2$CH Fmoc), 48.7, 46.2 (OCH$_2$CHFmoc), 28.9, 27.8 (OC(CH$_3$)$_3$), 27.3, 25.4, 25.4, 20.2, 18.5, 18.2; HRMS-ESI (m/z): Calcd. for [C$_{37}$H$_{46}$N$_2$O$_7$+H]$^+$: 631.3396. Found: 631.3383. DOI: 10.14469/hpc/5139
Synthesis of 8

\[
\begin{align*}
\text{NO}_2^+ \quad \text{F} & \quad \text{Isobutanol, NaH, THF} \quad 0 \, ^\circ \text{C} - \text{rt, 16 h} \quad (99\%) \\
\text{O} \quad \text{O} & \quad \text{S7} \\
\text{H}_2(g), \text{Pd/C, MeOH} & \quad \text{rt, 0.5 h} \quad (96\%) \quad \text{S8} \\
\text{SC9} & \quad \text{pic. BH}_3, \text{MeOH} \quad \text{rt, 16 h} \quad (73\%)
\end{align*}
\]

(Z)-4-((3-(2,3-bis(tert-butoxycarbonyl)guanidino)propyl)amino)-3-isobutoxy benzoic acid (S16)

\[
\begin{align*}
\text{BocHN} & \quad \text{N} \quad \text{Fmoc} \\
\text{NH} & \quad \text{OH} \quad \text{O} \quad \text{O} \\
\text{S7} & \quad \text{S8} \\
\text{Fmoc-Cl, NaHCO}_3 & \quad \text{CHCl}_3 \\
\text{50 \, ^\circ \text{C}, 24 h} & \quad (20\%) \\
\text{S16} \\
\end{align*}
\]

S16 was synthesised from S8 (280 mg, 1.44 mmol) using general procedure G. Purified by column chromatography [SiO\(_2\), CH\(_2\)Cl\(_2\):MeOH, 10:0 to 9:1 over 10 CV] to afford the title compound as a white solid (537 mg, 73\%). \(R_f \) (CH\(_2\)Cl\(_2\):MeOH, 95:5) = 0.75; \(\nu_{\text{max}}/\text{cm}^{-1} \) : 1H NMR (400 MHz, CDCl\(_3\)) \(\delta_H \) 11.48 (s, 1H, NH), 8.41 (t, \(J = 5.4 \) Hz, 1H, NH), 7.69
(dd, J = 8.3, 1.8 Hz, 1H, ArCH), 7.42 (d, J = 1.8 Hz, 1H, ArCH), 6.55 (d, J = 8.4 Hz, 1H, ArCH), 4.85 (s, 1H, NH), 3.81 (d, J = 6.6 Hz, 2H, OCH2(CH3)2), 3.54 (td, J = 7.0, 5.3 Hz, 1H, NHCH2), 3.31 (t, J = 7.0 Hz, 2H, NHCH2), 2.14 (sep, J = 6.7 Hz, 1H, OCH2CH(CH3)2), 1.95 (p, J = 7.0 Hz, 2H NHCH2), 1.49 (s, 9H, CH3), 1.49 (s, 9H, CH3), 1.04 (d, J = 6.7 Hz, 6H, OCH2CH(CH3)2);

13C NMR (101 MHz, CDCl3) δC 172.0 (C=O), 163.5 (C=N), 156.3 (C=O), 153.3 (C=O), 145.0 (ArCO), 142.9 (ArCN), 125.4 (ArCH), 116.4 (ArC), 111.2 (ArCH), 107.7 (ArCH), 83.2 (OC(CH3)3), 79.3 (OC(CH3)3), 74.8 (OCH2CH(CH3)2), 40.5 (NHCH2), 38.6 (NHCH2), 28.9 (NHCH2CH2CH2NH), 28.3 (OC(CH3)3), 28.2 (OCH2CH(CH3)2), 28.1 (OC(CH3)3), 19.4 (OCH2CH(CH3)2);

HRMS-ESI (m/z): Calcd. for [C25H40N4O7+H]+: 509.2975. Found: 509.2978. DOI: 10.14469/hpc/5140

(Z)-4-((((9H-fluoren-9-yl)methoxy)carbonyl)(3-(2,3-bis(tert-butoxycarbonyl) guanidino) propyl)amino)-3-isobutoxybenzoic acid (8)

8 was synthesised from S16 (100 mg, 0.19 mmol) using general procedure H. Purified by column chromatography [SiO2, EtOAc:n-hex, 1:9 to 2:8 over 10 CV] to afford the title compound as an amorphous, white solid (28 mg, 20%); Rf (CH2Cl2) = 0.25; νmax/cm−1: 3043, 1802, 1772, 1743, 1710, 1137; 1H NMR (400 MHz, CDCl3, 323 K): δH 11.51 (s, 1H, OH), 8.48 (t, J = 5.4 Hz, 1H, NH), 8.11 (s, 1H, NH), 7.78 (d, J = 7.6 Hz, 2H, 2 x ArCH Fmoc), 7.67 (d, J = 8.0 Hz, 1H, ArCH), 7.62 (d, J = 7.5 Hz, 2H, 2 x ArCH Fmoc), 7.54 7.49 (m, 2H, 2 x ArCH), 7.41 (t, J = 7.5 Hz, 2H, 2 x ArCH Fmoc), 7.32 (t, J = 7.5 Hz, 2H, ArCH), 4.50 (d, J = 7.2 Hz, 2H, OCH2CH Fmoc), 4.38 (t, J
= 6.2 Hz, 2H, OCH\textsubscript{2}CH), 4.32 (t, J = 7.1 Hz, 1H, OCH\textsubscript{2}CH Fmoc), 3.89 (d, J = 6.5 Hz, 2H, ArNCH\textsubscript{2}), 3.60 (td, J = 6.9, 5.3 Hz, 2H, ArNCH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}), 2.20 (sep, J = 6.7 Hz, 1H, OCH\textsubscript{2}CH), 2.08 (q, J = 6.5 Hz, 2H, ArNCH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}), 1.50 (s, 9H, (CH\textsubscript{3})\textsubscript{3}), 1.47 (s, 9H, (CH\textsubscript{3})\textsubscript{3}), 1.10 (d, J = 6.7 Hz, 6H, OCH\textsubscript{2}CH(CH\textsubscript{3})\textsubscript{2}; 13C NMR (101 MHz, CDCl\textsubscript{3}, 323 K) : δ\textsubscript{C}: 166.3 (C=O), 163.6, 156.3, 153.3, 152.9, 146.5, 143.7, 141.34, 132.1, 127.9, 127.1, 125.0, 124.3, 123.4, 120.1, 117.0, 111.9, 83.2 (C(CH\textsubscript{3})\textsubscript{3}), 79.3 (C(CH\textsubscript{3})\textsubscript{3}), 75.3 (OCH\textsubscript{2}CH), 67.4 (OCH\textsubscript{2}CH Fmoc), 62.6 (ArNCH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}), 47.0 (OCH\textsubscript{2}CH Fmoc), 38.1 (ArNCH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}), 28.5 (ArNCH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}), 28.3 (CH\textsubscript{3})\textsubscript{3}, 28.2 (OCH\textsubscript{2}CH), 28.1 (CH\textsubscript{3})\textsubscript{3}, 19.3 (OCH\textsubscript{2}CH(CH\textsubscript{3})\textsubscript{2}); HRMS-ESI (m/z): Calcd. for [C\textsubscript{40}H\textsubscript{50}N\textsubscript{4}O\textsubscript{9}+H]+: 731.3656. Found: 731.3657. DOI: 10.14469/hpc/5141
Synthesis of 9

To a stirring solution of 3-hydroxy-4-nitrobenzoic acid (2.00 g, 2.00 mmol, 1.00 eq.) in methanol (40 mL) was added ≥ 98% sulphuric acid (0.10 mL, cat.). The mixture was heated
at reflux for 24 h and the solvent removed in vacuo. The residue was taken up in ethyl acetate (100 mL), washed with saturated sodium bicarbonate (20 mL x 2), water (20 mL x 1) and brine (1 x 20 mL), dried (MgSO$_4$) and concentrated in vacuo to afford the title compound as an orange solid (2.04 g, 94%). R_f (n-hex:EtOAc, 1:1) = 0.9; ν_{max}/cm$^{-1}$: 1724 (C=O), 1674, 1607, 1517 (ArC−NO$_2$), 1433, 1277; 1H NMR (400 MHz, MeOD): δ_H 8.11 (d, $J = 8.7$ Hz, 1H, ArCH), 7.73 (d, $J = 1.6$ Hz, 1H, ArCH), 7.60 (dd, $J = 8.6$, 1.7 Hz, 1H, ArCH), 3.95 (s, 3H, OCH$_3$); 13C NMR (101 MHz, MeOD) δ_C 165.1 (C=O), 153.1 (ArC-NO$_2$), 137.8 (ArC), 136.6 (ArC), 125.1 (ArCH), 120.5 (ArCH), 119.8 (ArCH), 51.9 (OCH$_3$); HRMS-ESI (m/z): Calcd. for [C$_8$H$_7$NO$_5$−H]: 196.0246 Found: 196.0255. DOI: 10.14469/hpc/5142

Methyl 4-nitro-3-(2-oxo-2-(tritylamino)ethoxy)benzoate (S18)

S18 was synthesised from S17 (1.18 g, 5.98 mmol) using general procedure D. Purification by column chromatography [SiO$_2$, n-hex:EtOAc, 10:0 - 95:5 over 10 CV] afforded the title product as a yellow solid (2.82 g, 95 %). R_f (n-hex:EtOAc, 1:1) = 0.45; ν_{max}/cm$^{-1}$: 3407 (N-H), 1730 (C=O), 1690 (C=O), 1590, 1523 (NO$_2$), 1300, 1232; 1H NMR (400 MHz, CDCl$_3$) δ_H 8.14 (s, 1H, NH), 8.02 (d, $J = 8.4$ Hz, 1H, ArCH), 7.80 (dd, $J = 8.4$, 1.5 Hz, 1H, ArCH), 7.37 7.22 (m, 15H, trityl), 4.68 (s, 2H, OCH$_2$), 3.98 (s, 3H, OCH$_3$); 13C NMR (101 MHz, CDCl$_3$): δ_C 165.1 (C=O), 164.8 (C=O), 150.4 (ArCNO$_2$), 144.4 (ArCO), 128.8 (ArCH trityl), 128.2 (ArCH trityl), 127.4 (ArCH trityl), 126.6, 123.0, 115.7 (ArCH), 70.8 (C(C$_6$H$_5$)$_3$), 68.5 (OCH$_2$), 53.2 (OCH$_3$) (trityl quaternary carbon not observed); HRMS-ESI (m/z): Calcd. for [C$_{29}$H$_{24}$N$_2$O$_6$−H]: 495.1550. Found: 495.1556. DOI: 10.14469/hpc/5143
Methyl 4-amino-3-(2-oxo-2-(tritylamino)ethoxy)benzoate (S19)

\[
\begin{align*}
\text{NH}_2 \quad &\quad \text{O} \\
\text{O} &\quad \text{N} \\
\text{OH} &\quad \text{N} \\
\text{H} \\
\end{align*}
\]

S19 was synthesised from S18 (4.24 g, 8.56 mmol) using Procedure F but ethyl acetate used as solvent due to poor solubility in methanol. Purified by column chromatography [SiO\textsubscript{2}, n-hex:EtOAc, 10:0 to 1:1 over 20 CV] to afford the title compound as a white solid (3.34 g, 83\%). \(R_f\) (n-hex:EtOAc, 1:1) = 0.20; \(\nu_{\text{max}}/\text{cm}^{-1}\) : 3356 (N-H), 1668 (C=O), 1612, 1522; \(^1\text{H NMR}\) (400 MHz, CDCl\textsubscript{3}): \(\delta_H\) 7.67 7.63 (m, 2H, ArCH\&NH), 7.56 (d, \(J = 1.7\) Hz, 1H, ArCH), 7.34 7.26 (m, 10H, trityl), 7.23 7.17 (m, 5H, trityl), 6.76 (d, \(J = 8.2\) Hz, 1H, ArCH), 4.65 (s, 2H, OCH\textsubscript{2}), 3.90 (s, 3H, OCH\textsubscript{3}); \(^{13}\text{C NMR}\) (101 MHz, CDCl\textsubscript{3}): \(\delta_C\) 166.9 (C=O), 166.8 (C=O), 144.4 (ArCO), 144.1 (ArCN), 128.8 (ArC), 128.7 (ArCH trityl), 128.2 (ArCH trityl), 127.4 (ArCH trityl), 125.7 (ArCH), 114.8 (ArCH), 113.7 (ArCH), 70.5 (C(C\textsubscript{6}H\textsubscript{5})\textsubscript{3}), 68.8 (OCH\textsubscript{2}), 52.0 (OCH\textsubscript{3}) (quarternary carbon not observed); HRMS-ESI (m/z): Calcd. for [C\textsubscript{29}H\textsubscript{26}N\textsubscript{2}O\textsubscript{4}H+]: 467.1965. Found: 467.1971. DOI: 10.14469/hpc/5144

4-amino-3-(2-oxo-2-(tritylamino)ethoxy)benzoic acid (S20)

\[
\begin{align*}
\text{NH}_2 \quad &\quad \text{O} \\
\text{O} &\quad \text{N} \\
\text{OH} &\quad \text{N} \\
\text{H} \\
\end{align*}
\]

S20 was synthesised from S19 (2.80 g, 6.06 mmol) using general procedure E. Purified by column chromatography [SiO\textsubscript{2}, CH\textsubscript{2}Cl\textsubscript{2}:MeOH, 10:0 to 9:1 over 10 CV] to afford the title compound as a white solid (2.10 g, 76\%). \(R_f\) (CH\textsubscript{2}Cl\textsubscript{2}:MeOH, 97.5:2.5) = 0.45; \(\nu_{\text{max}}/\text{cm}^{-1}\) : 3396 (N-H), 2920 (O-H), 2848, 1697 (C=O), 1618 (C=O), 1523, 1238 (C-O); \(^1\text{H NMR}\)

80
(400 MHz, CDCl$_3$): δ_H 12.18 (s, 1H, OH), 8.73 (s, 1H, NH), 7.41 7.35 (m, 2H, 2 x ArCH), 7.32 7.14 (m, 15H, trityl), 6.64 (d, J = 8.1 Hz, 1H, ArCH), 5.60 (s, 2H, NH$_2$), 4.74 (s, 2H, CH$_2$); 13C NMR (101 MHz, CDCl$_3$): δ_C 170.0 (C=O), 167.7 (C=O), 145.0 (ArCO), 144.0 (ArCN), 143.4 (ArC), 128.9 (ArCH trityl), 128.0 (ArCH trityl), 127.0 (ArCH trityl), 125.0 (ArCH), 113.2 (ArCH trityl), 113.0 (ArCH), 69.7 (C(C$_6$H$_5$)$_3$), 67.7 (OCH$_2$) (quaternary carbon not observed). HRMS-ESI (m/z): Calcd. for [C$_{28}$H$_{24}$N$_2$O$_4$+H]$^+$: 453.1805. Found: 453.1814. DOI: 10.14469/hpc/5145

4-(isobutylamino)-3-(2-oxo-2-(tritylamino)ethoxy)benzoic acid (S21)

S21 was synthesised from S20 (1.00 g, 2.21 mmol) using general procedure G. Purified by recrystallisation from hot methanol to afford the title compound as a white solid (1.01 g, 87%). R_f (CH$_2$Cl$_2$:MeOH, 97.5:2.5) = 0.5; 1H NMR (400 MHz, CDCl$_3$) δ_H 7.80 (dd, J = 8.4, 1.7 Hz, 1H, ArCH), 7.58 (d, J = 1.8 Hz, 1H, ArCH), 7.52 (s, 1H, NH), 7.34 7.25 (m, 10H, trityl), 7.22 7.17 (m, 5H, trityl), 6.63 (d, J = 8.5 Hz, 1H, ArCH), 4.67 (s, 2H, OCH$_2$), 3.02 (d, J = 6.9 Hz, 2H, NHCH$_2$), 1.88 (sep, J = 6.7 Hz, 1H, NHCH$_2$CH), 0.97 (d, J = 6.7 Hz, 6H, NHCH$_2$CH(CH$_3$)$_2$); 13C NMR (101 MHz, CDCl$_3$): δ_C 171.1 (C=O), 166.7 (NC=O), 144.3 (ArCO), 143.2 (ArCN), 143.1 (ArC trityl), 128.5 (ArCH trityl), 128.1 (ArCH trityl), 127.2 (ArCH trityl), 127.1 (ArCH), 116.2 (ArC) (ArC), 112.7 (ArCH), 108.8 (ArCH), 70.4 (C(C$_6$H$_5$)$_3$), 68.6 (OCH$_2$), 50.8 (ArNHCH$_2$), 28.0 (ArNHCH$_2$CH), 20.4 (ArNHCH$_2$CH(CH$_3$)$_2$); HRMS-ESI (m/z): Calcd. for [C$_{32}$H$_{32}$N$_2$O$_4$+H]$^+$: 523.2593. Found: 523.2597. DOI: 10.14469/hpc/5146
4-(((9H-fluoren-9-yl)methoxy)carbonyl)(isobutyl)amino)-3-(2-oxo-2-(tritylamino)ethoxy)benzoic acid (9)

9 was synthesised from S21 (1.00 g, 1.96 mmol) using general procedure H. Purified by column chromatography [SiO$_2$, CH$_2$Cl$_2$:MeOH, 10:0 to 9:1 over 10 CV] to afford the title compound as an amorphous, pale yellow solid (0.89 g, 61%). R_f (CH$_2$Cl$_2$:MeOH, 97.5:2.5) = 0.5; ν_{max}/cm$^{-1}$: 2595, 1696, 1511, 1405, 1154; 1H NMR (500 MHz, DMSO-d$_6$, 373 K): δH 12.50 (s, 1H, O$_2$H), 8.09 (s, 1H, NH), 7.77 (d, J = 7.6 Hz, 2H, 2 x ArCH Fmoc), 7.59 (d, J = 1.8 Hz, 1H, ArCH), 7.56 (dd, J = 8.0, 1.8 Hz, 1H, ArCH), 7.35 (t, J = 7.5 Hz, 2H, 2 x ArCH Fmoc), 7.31, 7.12 (m, 20H, trityl, 2 x ArCH Fmoc, ArCH), 4.61 (s, 2H, OCH$_2$), 4.29 (d, J = 6.4 Hz, 2H, OCH$_2$CH), 4.06 (t, J = 6.5 Hz, 1H, OCH$_2$CH), 3.31 (s, 2H, ArNCH$_2$), 1.67 1.57 (m, 1H, ArNCH$_2$CH), 0.74 (d, J = 6.6 Hz, 6H, (CH$_3$)$_2$); 13C NMR (126 MHz, DMSO-d$_6$, 373 K): δC 165.9 (C=O), 165.6 (C=O), 154.3 (C=O), 152.7, 143.9, 143.2, 140.3, 134.1, 130.5, 128.8, 127.9, 127.0, 126.8, 126.2, 126.0, 124.2, 121.9 (ArCH), 119.3 (ArCH Fmoc), 113.7 (ArCH), 69.2 (C-(C$_6$H$_5$)$_3$), 67.6 (OCH), 66.2 (OCH$_2$CH Fmoc), 55.9 (ArNCH$_2$), 46.3 (OCH$_2$CH Fmoc), 26.5 (ArNCH$_2$CH$_2$), 19.3 (ArNCH$_2$CH(CH$_3$)$_2$); HRMS-ESI (m/z): Calcd. for [C$_{47}$H$_{42}$N$_2$O$_6$+H]$^+$: 731.3140. Found: 731.3121. DOI: 10.14469/hpc/5147
Synthesis of 10

\[
\begin{align*}
\text{SC2, NaH, THF} & \quad \text{\begin{tikzpicture}
\node (S22) at (0,0) {\text{S22}};
\node (S23) at (2,0) {\text{S23}};
\node (S24) at (2,-2) {\text{S24}};
\node (10) at (-2,-2) {\text{10}};
\end{tikzpicture}} \quad H_2(g), \text{Pd/C, MeOH} \\
& \quad \text{0 °C - rt, 16 h (91%)} \\
& \quad \text{rt, 0.5 h (93%)} \\
& \quad \text{2-Methylbutyraldehyde, pic. BH}_3, \text{MeOH} \\
& \quad \text{rt, 16 h (92%)} \\
\end{align*}
\]

3-(4-((tert-butoxycarbonyl)amino)butoxy)-4-nitrobenzoic acid (S22)

S22 was synthesised from 3-fluoro-4-nitrobenzoic acid (2.00 g, 10.80 mmol) using general procedure C to afford the title compound as a yellow solid (3.14 g, 82%). Rf (EtOAc/AcOH 100:0.1) = 0.6; \(\nu_{\text{max}}\)/cm\(^{-1}\): 3362 (N-H), 2976 (O-H), 2926, 1690 (C=O), 1522 (NO\(_2\)), 1249, 1165; \(^1\)H NMR (400 MHz, MeOD): \(\delta\)H 7.86 7.81 (m, 2H, 2 x ArCH), 7.69 (dd, \(J = 8.3, 1.5\) Hz, 1H, ArCH), 4.23 (t, \(J = 6.2\) Hz, 2H, OCH\(_2\)), 3.14 (t, \(J = 6.8\) Hz, 2H, NHCH\(_2\)), 1.86 (p, \(J = 8.5\) Hz, 2H, OCH\(_2\)CH\(_2\)), 1.69 (p, \(J = 7.0\) Hz, 2H, NHCH\(_2\)CH\(_2\)), 1.45 (s, 9H,
(CH₃)₃; ¹³C NMR (101 MHz, MeOD): δC 166.2 (C=O), 157.2 (NC=O), 151.4 (ArCNO₂), 142.6 (ArCO), 135.4 (ArC), 124.6 (ArCH), 121.2 (ArCH), 115.2 (ArCH), 78.5 (C(CH₃)₃), 69.1 (OCH₂), 61.2 (NCH₂), 39.5 (OCH₂CH₂), 27.4 (C(CH₃)₃), 25.9 (NCH₂CH₂); HRMS-ESI (m/z): Calcd. for [C₁₆H₂₂N₂O₇-H]: 353.1356. Found : 353.1349. DOI: 10.14469/hpc/5148

(Z)-3-(3-(2,3-bis(4-amino-3-((tert-butoxycarbonyl)amino)butoxy)benzoic acid (S23)

S23 was synthesised from S22 (3.14 g, 8.90 mmol) using general procedure F. Residue triturated with dichloromethane to afford the title product as a white solid (2.06 g, 70%). Rf (CH₂Cl₂:MeOH 97.5:2.5) = 0.25; νmax/cm⁻¹: 3468 (N-H), 2942 (O-H), 1668 (C=O), 1612, 1271; ¹H NMR (400 MHz, DMSO-d₆): δH 12.07 (s, 1H, OH), 7.35 (dd, J = 8.2, 1.7 Hz, 1H, ArCH), 7.27 (d, J = 1.8 Hz, 1H, ArCH), 6.85 (t, J = 5.7 Hz, 1H, NH), 6.63 (d, J = 8.2 Hz, 1H, ArCH), 5.50 (s, 2H, ArNH₂), 3.97 (t, J = 6.3 Hz, 2H, OCH₂CH₂), 3.00 (q, J = 6.6 Hz, 2H, NHCH₂), 1.80 1.68 (m, 2H, OCH₂CH₂), 1.66 1.51 (m, 2H, NHCH₂CH₂), 1.39 (s, 9H, (CH₃)₃); ¹³C NMR (101 MHz, DMSO-d₆): δC 168.0 (C=O), 156.1 (NC=O), 144.8 (ArCO), 143.3 Ar(CN), 124.4 (ArCH), 117.7 (ArC), 112.5 (ArCH), 112.3 (ArCH), 77.8 (C(CH₃)₃), 67.9 (OCH₂CH₂), 40.0 (NCH₂CH₂ HSQC), 28.7 ((CH₃)₃, 26.7 (OCH₂CH₂CH₂), 26.6 (OCH₂CH₂CH₂CH₂NH); ¹H-¹³C NMR ((400, 101) MHz, DMSO-d₆) δH/C (7.35 124.36), (7.28 112.30), (6.63 112.48), (3.97 67.92), (3.00 39.96), (1.74 26.67, 1.57 26.61), (1.39 28.73); HRMS-ESI (m/z): Calcd. for [C₁₆H₂₅N₂O₅-H]: 325.1775. Found : 325.1763. DOI: 10.14469/hpc/5149
S24 was synthesised from S23 (1.00 g, 1.27 mmol) using general procedure G. Purified by column chromatography [SiO₂, CH₂Cl₂:MeOH, 10:0 to 9:1 over 10 CV] to afford the title compound as a white solid (0.88 g, 88%).

\[\text{Rf (n-hex:EtOAc:AcOH, 1:1:0.01) = 0.45; } \nu_{\text{max}} / \text{cm}^{-1}: \text{3367 (N-H), 2954 (O-H), 1680 (C=O), 1601, 1523, 1277; } \]

\[^1\text{H NMR (400 MHz, CDCl}_3\text{)}: \delta_H 7.68 (dd, J = 8.4, 1.8 Hz, 1H, ArCH), 7.40 (d, J = 1.8 Hz, 1H, ArCH), 6.53 (d, J = 8.4 Hz, 1H, ArCH), 4.64 (s, 1H, NH), 4.06 (t, J = 6.3 Hz, 2H, OCH₂), 3.21 (q, J = 6.8 Hz, 2H, CH₂NCH=O), 3.13 (dd, J = 12.7, 6.1 Hz, ArNCH₂), 2.98 (dd, J = 12.7, 7.3 Hz, 1H, ArNCH'₂), 1.85 (dq, J = 12.1, 6.5 Hz, 2H, OCH₂CH₂), 1.79 1.60 (m, 3H, ArNHCH₂CH & OCH₂CH₂), 1.44 (s, 10H, (CH₃), & ArNHCH₂CH(CH₃)CH₂), 1.30 1.14 (m, 1H, ArNHCH₂CH(CH₃)CH'H₂), 0.99 0.90 (m, 6H, ArNHCH₂CH(CH₃)CH₂CH₃); \]

\[^{13}\text{C NMR (101 MHz, CDCl}_3\text{)}: \delta_C 171.7 (\text{C=O), 156.0 (C=O), 144.6 (ArCO), 143.5 (ArCN), 125.7 (ArCH), 115.7 (ArC), 111.1 (ArCH), 107.7 (ArCH), 79.3 (OC(CH₃)), 68.0 OCH₂CH₂), 48.9 (ArNHC(CH₃), 40.3 (CH₂NHC=O), 34.4 (ArNHCH₂CH), 28.4 (OC(CH₃)), 27.3 (ArNHCH₂CH₃), 27.0 (CH₂CH₂NHC=O), 26.5 (OCH₂CH₂), 17.5 (ArNHCH₂CH(CH₃)CH₂CH₃), 11.3 (ArNHCH₂(CH₃)). \]

CH₂CH₃; HRMS-ESI (m/z); Calcd. for [C₂₁H₃₄N₂O₅+H] : 395.2546. Found : 395.2553.

DOI: 10.14469/hpc/5150
4-(((9H-fluoren-9-yl)methoxy)carbonyl)(2-methylbutyl)amino)-
3- (4-((tert-butoxycarbonyl)amino)butoxy)benzoic acid (10)

[Chemical structure image]

10 was synthesised from S24 (0.90 g, 2.29 mmol) using general procedure H. Purified by column chromatography [SiO₂, CH₂Cl₂:MeOH, 10:0 to 9:1 over 10 CV] to afford the title compound as an amorphous, white solid (0.48 g, 34%); Rₖ (CH₂Cl₂:MeOH, 97.5:2.5) = 0.25; ν max/cm⁻¹: 2959, 1696, 1405, 1160; ¹H NMR (500 MHz, DMSO-d₆): δH 12.43 (s, 1H, O:H), 7.76 (d, J = 7.6 Hz, 2H, 2 x ArCH Fmoc), 7.53 (d, J = 1.8 Hz, 1H, ArCH), 7.51 (dd, J = 8.0, 1.8 Hz, 1H, ArCH), 7.35 (t, J = 7.5 Hz, 2H, 2 x ArCH Fmoc), 7.31 (br, 2H, 2 x ArCH Fmoc), 7.20 (t, J = 7.4 Hz, 2H, 2 x ArCH Fmoc), 7.13 (d, J = 8.0 Hz, 1H, ArCH), 6.27 (s, 1H, NH), 5.34 (br, 2H, OCH₂CH Fmoc), 4.08 (br, 1H, OCH₂CH Fmoc), 3.96 (t, J = 6.4 Hz, 2H, OCH₂CH₂CH₂CH₂), 1.66 (p, J = 7.1 Hz, 2H, OCH₂CH₂), 1.55 1.47 (m, 2H, OCH₂CH₂CH₂), 1.47 1.39 (m, 1H, ArNCH₂CH), 1.37 (s, 9H, (CH₃)₃), 1.36 1.26 (m, 1H, ArNCH₂CH(CH₃)CH₂), 1.04 (m, 1H, ArNCH₂CH(CH₃)CHH'), 0.81 0.74 (m, 6H, ArNCH₂CH(CH₃)CH₂CH₃); ¹³C NMR (126 MHz, DMSO-d₆): δC 166.6 (C=O), 155.5 (C=O), 154.9 (C=O), 154.2, 143.7, 140.8, 134.8, 131.0, 129.2 (ArCH), 127.3 (ArCH Fmoc), 126.6 (ArCH Fmoc), 124.6 (ArCH Fmoc), 121.5 (ArCH), 119.7 (ArCH Fmoc), 113.7 (ArCH), 77.4 (C(CH₃)₃), 68.1 (OCH₂), 66.6 (OCH₂CH Fmoc), 54.8 (ArNCH₂), 46.8 (OCH₂CH Fmoc), 39.7 (OCH₂CH₂CH₂CH₂), 33.3 (OCH₂CH₂CH₂), 28.2 ((CH₃)₃), 26.3 (ArNCH₂CH), 26.2 (OCH₂CH₂), 26.0 (OCH₂CH₂CH₂), 16.7 (ArNCH₂CH(CH₃)CH₂CH₃), 10.5 (ArNCH₂CH(CH₃)CH₂CH₃); HRMS-ESI (m/z): Calcd. for [C₃₆H₄₄N₂O₇H]+: 617.3257.
Synthesis of 11

S25 was synthesised from 3-fluoro-4-nitrobenzoic acid (4.00 g, 21.60 mmol) using general procedure C to afford the title compound as a yellow solid (7.51 g, 94%). Rf (EtOAc/AcOH 100:0.1) = 0.6. ν max/cm−1: 3378 (N-H) 2937 (O-H), 2865, 1695 (C=O), 1528 (NO$_2$), 1254, 1170; 1H NMR (400 MHz, DMSO-d$_6$): δ$_H$ 13.56 (s, 1H, OH), 7.95 (d, J = 8.3 Hz, 1H, ArCH), 7.74 (d, J = 1.6 Hz, 1H, ArCH), 7.62 (dd, J = 8.3, 1.6 Hz, 1H, ArCH), 6.78 (t, J = 5.7 Hz, 1H, NH), 4.20 (t, J = 6.3 Hz, 2H, OCH$_2$), 2.98 2.82 (m, 2H, NCH$_2$), 1.78 1.66
(m, 2H, H₈, OCH₂CH₂), 1.44 1.34 (m, 13H, OCH₂CH₂CH₂CH₂ & (CH₃)₃); ¹³C NMR (400 MHz, DMSO-d₆): δC 165.8 (C=O), 155.6 (NC=O), 150.9 (ArCNO₂), 142.1 (ArCO), 135.7 (ArCO), 124.9 (ArCH), 121.2 (ArCH), 115.3 (ArCH), 77.3 (C(CH₃)₃), 69.3 (OCH₂), 39.5 (NCH₂, HSQC), 29.0 (OCH₂CH₂), 28.3 (OCH₂CH₂), 28.0 (C(CH₃)₃), 22.5 (OCH₂CH₂CH₂);
¹H-¹³C NMR ((400, 101) MHz, DMSO-d₆) δH/δC (7.96 124.74), (7.77 115.04), (7.64 120.97), (4.22 69.06), (2.93 39.51), (2.52 39.52), (1.73 27.77), (1.43 22.29), (1.38 28.04). HRMS-ESI (m/z): Calcd. for [C₁₇H₂₄N₂O₇+H]⁺: 367.1512. Found : 367.1505. DOI: 10.14469/hpc/5152

(4-Amino-3-((5-((tert-butoxycarbonyl)amino)pentyl)oxy)benzoic acid (S26)

S₂⁶ was synthesised from S₂⁵ (7.51 g, 20.40 mmol) using general procedure F. Residue triturated with dichloromethane to afford the title product as a white solid (5.67 g, 82%). Rf (CH₂Cl₂:MeOH 97.5:2.5) = 0.30; ¹H NMR (400 MHz, DMSO-d₆): νmax/cm⁻¹: 3468 (N-H), 2942 (O-H), 1668 (C=O), 1612; ¹H NMR (400 MHz, DMSO-d₆): δH 12.07 (s, 1H, OH), 7.34 (dd, J = 8.2, 1.8 Hz, 1H, ArCH), 7.26 (d, J = 1.8 Hz, 1H, ArCH), 6.80 (t, J = 5.7 Hz, 1H, NH), 6.62 (d, J = 8.2 Hz, 1H, ArCH), 5.47 (s, 2H, NH₂), 3.94 (t, J = 6.4 Hz, 2H, OCH₂CH₂), 2.93 (td, J = 6.8, 6.3 Hz, 2H, NCH₂CH₂), 1.72 (tt, J = 10.3, 6.4 Hz, 2H, OCH₂CH₂CH₂), 1.45 1.40 (m, 4H, OCH₂CH₂CH₂CH₂), 1.36 (s, 9H, (CH₃)₃); ¹³C NMR (400 MHz, DMSO-d₆): δC 168.0 (C=O), 156.0 (NC=O), 144.8 (ArCO), 143.3 (ArCN), 124.4 (ArCH), 117.7 (ArC), 112.5 (ArCH), 112.2 (ArCH), 77.8 (C(CH₃)₃), 68.1 (OCH₂CH₂), 40.0 (NHCH₂CH₂, HSQC), 29.7 (OCH₂CH₂), 28.9 (NHCH₂CH₂), 28.7 ((CH₃)₃), 23.3 ((OCH₂CH₂CH₂); ¹H-¹³C NMR ((400, 101) MHz, DMSO-d₆) δH/δC (7.35 124.19), (7.27 112.27), (6.64 112.49), (3.95 68.13), (2.95 39.97), (1.75 29.06), (1.38 28.61); HRMS-ESI (m/z): Calcd. for [C₁₇H₂₇N₂O₅-H]⁺: 339.1912. Found : 339.1920. DOI: 10.14469/hpc/5153
3-((5-((tert-Butoxycarbonyl)amino)pentyl)oxy)-4-(isopentylamino)benzoic acid (S27)

S27 was synthesised from S26 (3.00 g, 8.90 mmol) using general procedure G. Purified by column chromatography [SiO₂, CH₂Cl₂:MeOH, 10:0 to 9:1 over 10 CV] to afford the title compound as a white solid (2.29 g, 63%).

R_f (CH₂Cl₂:MeOH, 97.5:2.5 = 0.4; ν_{max}/cm⁻¹: 3440 (N-H), 1662 (C=O); \(^1\)H NMR (400 MHz, CDCl₃): δ_H 7.70 (dd, J = 8.4, 1.8 Hz, 1H, ArC₆H), 7.41 (d, J = 1.8 Hz, 1H, ArCH), 6.54 (d, J = 8.5 Hz, 1H, ArCH), 4.56 (s, 1H, NH), 4.04 (t, J = 6.5 Hz, 2H, OCH₂), 3.27 3.10 (m, 4H, C₆H₂NHC−−O & NHCH₂), 1.84 (dt, J = 6.7 Hz, 2H, OCH₂CH₂CH₂), 1.72 (sep, J = 6.7 Hz, 1H, OCH₂CH(CH₃)₂), 1.62 1.38 (m, 13H, (CH₃)₃ & 2 x CH₂), 0.97 (d, J = 6.6 Hz, 6H, OCH₂CH(CH₃)₂);

\(^{13}\)C NMR (101 MHz, CDCl₃): δ_C 172.0 (C=O), 156.0 (NC=O), 144.7 (ArCO), 143.4 (ArCN), 125.7 (ArCH), 115.8 (ArC), 111.0 (ArCH), 107.6 (ArCH), 79.2 (OC(CH₃)₃), 68.2 (OCH₂CH₂), 41.3 (NC=OCH₂), 40.5 (NHCH₂CH₂), 38.2, 29.9, 28.9, 28.4 (OC(CH₃)₃), 26.1, 23.4 (NHCH₂CH₂CH(CH₃)₂), 22.6 (NHCH₂CH₂CH(CH₃)₂); HRMS-ESI (m/z): Calcd. for [C₂₂H₃₆N₂O₅+H]⁺: 409.2710. Found : 409.2702. DOI: 10.14469/hpc/5154
4-(((9H-Fluoren-9-yl)methoxy)carbonyl)(isopentyl)amino)-3-
((5-((tert-butoxycarbonyl)amino)pentyl)oxy)benzoic acid (11)

11 was synthesised from S27 (1.57 g, 2.50 mmol) using general procedure H. Purified by column chromatography [SiO₂, CH₂Cl₂:MeOH, 10:0 to 9:1 over 15 CV] to afford the title compound as an amorphous pale yellow solid (1.35 g, 86%); Rf (CH₂Cl₂) = 0.25; νₚₓᵧ cm⁻¹: 2932, 1702, 1277, 1171, 1512; ¹H NMR (400 MHz, DMSO-d6, 373 K): δH 7.74 (d, J = 7.7 Hz, 2H, 2 x ArCH Fmoc), 7.56 7.50 (m, 2H, 2 x ArCH), 7.35 (d, J = 7.6 Hz, 2H, 2 x ArCH Fmoc), 7.28 (br, 2H, 2 x ArCH Fmoc), 7.20 (t, J = 7.6 Hz, 2H, 2 x ArCH Fmoc), 7.12 (d, J = 7.2 Hz, 1H, ArCH), 4.32 (d, J = 6.5 Hz, 2H, OCH₂CH Fmoc), 4.07 (t, J = 6.3 Hz, 1H, OCH₂CH Fmoc), 3.94 (t, J = 6.4 Hz, 2H, OCH₂CH₂), 3.48 (d, J = 8.0 Hz, 2H, ArNCH₂), 2.98 (q, J = 6.6 Hz, 1H), 2.94 2.87 (m, 3H), 1.70 1.60 (m, 2H), 1.56 1.41 (m, 3H), 1.37 (d, J = 0.4 Hz, 9H, (CH₃)₃), 1.35 1.23 (m, 2H), 0.80 (d, J = 6.6 Hz, 6H); ¹³C NMR (101 MHz, DMSO-d6, 373 K): δC 166.2 (C=O), 155.0 (C=O), 154.1 (C=O), 143.2 (ArC), 140.3 (ArC), 133.9, 130.6, 128.9, 126.9, 126.2, 124.2, 121.1, 119.3, 119.1, 113.2, 76.9 (C(CH₃)₃)), 67.8 (OCH₂CH₂), 66.2 (OCH₂CH Fmoc), 63.5, 49.9, 46.9, 46.3, 36.2, 28.5, 27.8 ((CH₃)₃), 24.6, 22.2, 21.6 (ArNCH₂CH₂CH(CH₃)₂). HRMS-ESI (m/z): Calcd. for [C₃₇H₄₆N₂O₇+H]⁺: 631.3383. Found: 631.3372. DOI: 10.14469/hpc/5155
Synthesis of 12

\[
\text{NO}_2 \xrightarrow{\text{SC6, NaH, THF}} 0 \degree C - rt, 16 \text{ h (91\%)} \]

\[
\text{H}_2(g), \text{Pd/C, MeOH} \xrightarrow{\text{rt, 0.5 h (93\%)}} \]

\[
\text{Isovaleraldehyde} \xrightarrow{\text{pic. BH}_3, \text{MeOH}} \text{rt, 16 h (92\%)} \]

\[
\text{(Z)-3-(3-(2,3-Bis(tert-butoxycarbonyl)guanidino)propoxy)-4-nitrobenzoic acid (S28)} \]

\[
\text{S28 was synthesised from 3-fluoro-4-nitrobenzoic acid (1.00 g, 5.30 mmol) using general procedure C. Purification by column chromatography [SiO}_2, \text{EtOAc:AcOH, 100:0.1] afforded the title product as a pale yellow solid (2.38 g, 91\%). Rf (EtOAc:AcOH, 100:0.1) = 0.3;} \]

92
S29 was synthesised from S28 (2.38 g, 4.91 mmol) using general procedure F. Purified by column chromatography [SiO₂, CH₂Cl₂:MeOH, 10:0 to 9:1 over 10 CV] to afford the title compound as a white solid (2.07 g, 93%). R_f (CH₂Cl₂:MeOH, 97.5:2.5) = 0.4; ν_max/cm⁻¹ : 3334 (N-H), 2982 (O-H), 1724 (C=N), 1618 (C=O), 1131; ¹H NMR (400 MHz, CDCl₃): δ_H 11.51 (s, 1H, NH), 8.52 (t, J = 5.7 Hz, 1H, NH), 7.64 (dd, J = 8.2, 1.7 Hz, 1H, ArCH), 7.50 (d, J = 1.7 Hz, 1H, ArCH), 6.69 (d, J = 8.2 Hz, 1H, ArCH), 4.18 (t, J = 5.7 Hz, 2H, OCH₂CH₂), 3.69 (q, J = 6.6 Hz, 2H, NCH₂CH₂), 3.65 3.56 (br m, 1H, NHCH₂) 2.12 (p, J = 6.5 Hz, 2H, OCH₂CH₂), 1.52 (s, 9H, (CH₃)₃), 1.51 (s, 9H, (CH₃)₃); ¹³C NMR (101 MHz, CDCl₃): δ_C 171.5 (C=N), 163.4 (C=O), 156.2 (NC=O), 153.3 (NC=O), 145.0 (ArCO), 142.2 (ArCN), 125.3 (ArCH), 118.2 (ArC), 113.2 (ArCH), 112.6 (ArCH), 83.3 (C(CH₃)₃), 79.4 (C(CH₃)₃), 66.4 (OC(CH₃)₃), 38.6 (NHCH₂), 28.8 ((CH₃)₃), 28.3 (OCH₂CH₂CH₂), 28.1 ((CH₃)₃), 28.1 (NCH₂CH₂CH₂CH₂); HRMS-ESI (m/z): Calcd. for [C₂₁H₃₃N₄O₇+H]: 453.2349. Found: 453.2355. DOI: 10.14469/hpc/5157
(Z)-3-(3-(2,3-Bis(tert-butoxycarbonyl)guanidino)propoxy)-4-(isopentylamino)benzoic acid (S30)

S30 was synthesised from S29 (0.56 g, 1.23 mmol) using general procedure G. Purified by column chromatography [SiO₂, CH₂Cl₂:MeOH, 10:0 to 9:1 over 10 CV] to afford the title compound as a white solid (0.59 g, 92%). Rf (CH₂Cl₂:MeOH, 97.5:2.5) = 0.25. ¹H NMR (400 MHz, CDCl₃) : δH 11.46 (s, 1H, NH), 8.46 (t, J = 5.3 Hz, 1H, NH), 7.71 (dd, J = 8.3, 1.8 Hz, 1H, ArCH), 7.43 (d, J = 1.8 Hz, 1H, ArCH), 6.54 (d, J = 8.4 Hz, 1H, ArCH), 4.14 (t, J = 6.0 Hz, 2H, OCH₂), 3.64 (dt, J = 6.7, 5.5 Hz, 2H, OCH₂CH₂N), 3.21 (t, J = 7.5 Hz, 2H, ArNHCH₂), 2.15 2.09 (m, 2H, OCH₂CH₂NH), 1.78 1.65 (m, 1H, NHCH₂CH₂CH(CH₃)₂), 1.62 1.45 (m, 20H, 2 x (CH₃)₃ & ArNHCH₂CH₂), 1.01 0.93 (m, 6H, ArNHCH₂CH₂CH(CH₃)₂); ¹³C NMR (101 MHz, CDCl₃): δC 172.2 (C=O), 163.5 (C=N), 156.3 (C=O), 153.3 (C=O), 144.5 (ArCO), 143.3 (ArCN), 125.9 (ArCH), 115.8 (ArC), 111.2 (ArCH), 107.7 (ArCH), 83.2 (OC(CH₃)₃), 79.3 (OC(CH₃)₃), 66.0 (OCH₂CH₂), 41.3, 38.2, 38.1, 28.8 (OC(CH₃)₃), 28.3, 28.1 (OC(CH₃)₃), 26.1, 22.6 (NHCH₂CH₂CH(CH₃)₂); LRMS (m/z): Calcd. for [C₂₂H₄₂N₄O₇+H]⁺: 523.313. Found: 523.381. DOI: 10.14469/hpc/5158
(Z)-4-((((9H-Fluoren-9-yl)methoxy)carbonyl)(isopentyl)amino)-3-(3-(2,3-bis
(tert-butoxycarbonyl)guanidino)propoxy)benzoic acid (12)

12 was synthesised from S30 (0.40 g, 0.76 mmol) using general procedure H. Purified by
column chromatography [SiO₂, CH₂Cl₂:MeOH, 100:0 to 95:5 over 15 CV] to afford the ti-
tle compound as an amorphous, pale pink solid (0.26 g, 45%). Compound unstable at
temperature required to resolve the NMR spectrum. \(R_f \) (CH₂Cl₂:MeOH, 97.2:2.5) = 0.35;
\(\nu_{\text{max}}/\text{cm}^{-1} \): 2954, 1707, 1612, 1282, 1131; \(^1\)H NMR (500 MHz, DMSO-d₆, 353 K): \(\delta_H \)
11.34 (s, 1H, NH), 8.20 (s, 1H, NH), 7.75 (d, \(J = 7.6 \) Hz, 2H, 2 x ArCH Fmoc), 7.57
7.48 (m, 2H, 2 x ArCH), 7.37 7.24 (m, 4H, 4 x ArCH), 7.19 (t, \(J = 7.3 \) Hz, 2H, 2
x ArCH Fmoc), 7.11 (d, \(J = 8.0 \) Hz, 1H, ArCH), 4.33 (br, 2H, OCH₂CH Fmoc), 4.05
(br, 1H, OCH₂CH Fmoc), 4.00 (t, \(J = 6.3 \) Hz, 2H, OCH₂CH₂), 3.47 (br, 2H, ArNCH₂)
3.40 (t, \(J = 6.8 \) Hz, 2H, OCH₂CH₂CH₂), 1.91 (p, \(J = 6.6 \) Hz, 2H, OCH₂CH₂CH₂), ,
1.39 (br, \(J = 12.3 \) Hz, 19H, 2 x C(CH₃)₃ & ArNCH₂CH₂CH₂), 1.26 (br, \(J = 6.0 \) Hz, 2H,
ArNCH₂CH₂CH₂), 0.79 (d, \(J = 6.5 \) Hz, 6H, (CH₃)₂); \(^{13}\)C NMR (126 MHz, DMSO-d₆, 323 K):
\(\delta_{167.3} \) (C=O), 163.5 (C=N), 155.8 (C=O), 154.9, 154.6, 152.4, 144.0, 141.1, 134.2, 131.4,
129.9 (ArCH), 127.9, 127.2, 125.4, 122.2 (ArCH), 120.4 (ArCH Fmoc), 113.6 (ArCH), 83.2
(C(CH₃)₃), 78.4 (C(CH₃)₃), 67.1 (OCH₂CH₂), 66.2 (OCH₂CH₂Fmoc), 47.6 (ArNCH₂CH₂), 46.9
(OCH₂CH Fmoc), 37.7 (OCH₂CH₂CH₂), 37.0 (OCH₂CH₂CH₂), 28.9 (ArNCH₂CH₂CH₂),
28.4 (C(CH₃)₃), 28.0 (C(CH₃)₃), 25.5 (ArNCH₂CH₂CH₂), 22.8 ((CH₃)₂); HRMS-ESI (m/z):
Calcd. for [C₄₁H₅₂N₄O₉+H]^+: 745.3813. Found: 745.3820. DOI: 10.14469/hpc/5159
Synthesis of 13

4-((3-((Tert-butoxycarbonyl)amino) propyl)amino)-3-(2-oxo-2-(tritylamino)ethoxy) benzoic acid (S31)
S31 was synthesised from **S20** (0.50g, 1.12 mmol) using general procedure G. Purified by column chromatography [SiO\(_2\), CH\(_2\)Cl\(_2\):MeOH, 100:0 to 95:5 over 10 CV] to afford the title compound as a colourless oil (0.66 g, 97%). \(R_f\) (CH\(_2\)Cl\(_2\):MeOH, 97.5:2.5) = 0.4; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta_H\) 7.77 (d, J = 8.5 Hz, 1H, ArCH), 7.56 (d, J = 2.4 Hz, 1H, ArCH), 7.35 7.16 (m, 15H, trityl), 6.62 (d, J = 8.5 Hz, 1H, ArCH), 4.82 (br, 1H, NH), 4.64 (s, 2H, OCH\(_2\)), 3.68 (t, J = 5.7 Hz, 2H, NCH\(_2\)), 3.31 (q, J = 6.3 Hz, 2H, ArNCH\(_2\)CH\(_2\)CH\(_2\)NH), 1.73 1.64 (m, 2H, ArNCH\(_2\)CH\(_2\)CH\(_2\)), 1.47 (s, 9H, (C\(\text{H}_3\)_3); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta_C\) 170.6 (C=O), 166.9 (C=O), 144.3 (ArC), 143.4 (ArC), 128.7, 128.7, 128.6 (ArC trityl), 128.1 (ArC trityl), 128.0, 127.2, 126.9, 113.0 (ArCH), 108.8 (ArCH), 70.4 (C(C\(\text{H}_5\)_3)), 68.7 (OCH\(_2\)), 59.2 (ArNCH\(_2\)), 36.9 (ArNCH\(_2\)CH\(_2\)CH\(_2\)), 32.9 (ArNCH\(_2\)CH\(_2\)CH\(_2\)), 28.4 (C(CH\(_3\))_3); LRMS-ESI (m/z): Calcd. for [C\(_{36}\)H\(_{39}\)N\(_3\)O\(_6\)+H]\(^+\): 610.291. Found: 610.389. DOI: 10.14469/hpc/5160

4-(((9H-Fluoren-9-yl)methoxy)carbonyl)(3-((tert-butoxycarbonyl)amino)propyl)amino)-3-(2-oxo-2-(tritylamino)ethoxy)benzoic acid (13)

\[\text{H NMR (500 MHz, DMSO-d}_6\): \(\delta_H\) 8.10 (s, 1H, NH), 7.76 (dt, J = 7.5, 0.9 Hz, 2H, ArCH Fmoc), 7.60 7.55 (m, 2H, A x ArCH), 7.37 7.31 (m, 2H, ArCH Fmoc), 7.27 7.13 (m, 20H, trityl & 5 x ArCH), 6.12 (s, 1H, NH), 4.61 (s, 2H, OCH\(_2\)), 4.23 (d, J = 6.7 Hz, 2H, OCH\(_2\)CH), 4.03 (t, J = 6.9 Hz, 1H, OCH\(_2\)CH), 3.50 (q, J = 7.3,

13 was synthesised from **S31** (0.50 g, 0.82 mmol) using general procedure H. Purified by column chromatography [SiO\(_2\), CH\(_2\)Cl\(_2\):MeOH, 100:0 to 95:5 over 10 CV] to afford the title compound as a pale yellow oil. An alcohol by-product could not be separated from the title compound. \(R_f\) (CH\(_2\)Cl\(_2\)) = 0.45; \(^1\)H NMR (500 MHz, DMSO-d\(_6\)): \(\delta_H\) 8.10 (s, 1H, NH), 7.76 (dt, J = 7.5, 0.9 Hz, 2H, ArCH Fmoc), 7.60 7.55 (m, 2H, A x ArCH), 7.37 7.31 (m, 2H, ArCH Fmoc), 7.27 7.13 (m, 20H, trityl & 5 x ArCH), 6.12 (s, 1H, NH), 4.61 (s, 2H, OCH\(_2\)), 4.23 (d, J = 6.7 Hz, 2H, OCH\(_2\)CH), 4.03 (t, J = 6.9 Hz, 1H, OCH\(_2\)CH), 3.50 (q, J = 7.3,
5.2 Hz, 2H, ArN\textsubscript{2}CH\textsubscript{2}), 2.88 (qd, J = 7.1, 5.8 Hz, 2H, ArNCH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}), 1.55 1.51 (m, 2H, ArNCH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}), 1.35 (s, 9H, (CH\textsubscript{3})\textsubscript{3}); 13C NMR (101 MHz, DMSO-d\textsubscript{6}, 373 K): \delta_{C} 166.2 (C=O), 155.5 (C=O), 155.4 (C=O), 154.5 (C=O), 153.3, 144.3, 143.6, 140.7, 133.9, 131.2, 129.5, 128.4, 128.3, 127.5, 127.4, 127.3 (ArCH Fmoc), 126.7, 126.5, 124.7, 122.3 (ArCH), 119.8 (ArCH Fmoc), 113.9 (ArCH), 77.3 (C(CH\textsubscript{3})\textsubscript{3}), 69.5 (C(C\textsubscript{6}H\textsubscript{5})\textsubscript{3}), 67.8 (OCH\textsubscript{2}), 66.8 (OCH\textsubscript{2}CHFmoc), 46.9 (OCH\textsubscript{2}CHFmoc), 46.6 (ArNCH\textsubscript{2}), 37.5 (ArNCH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}), 32.8 (ArNCH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}), 28.2 (C(CH\textsubscript{3})\textsubscript{3}); HRMS-ESI (m/z): Calcd. for [C\textsubscript{51}H\textsubscript{49}N\textsubscript{3}O\textsubscript{8}+H]+: 832.3598. Found: 832.3593. DOI: 10.14469/hpc/5161
Oligomer Synthesis

4-(N-benzyl-4-(benzylamino)-3-(benzyloxy)benzamido)-3-(benzyloxy)benzoic acid (14)

Synthesised on a 30 µmol scale using the general procedure for oligomer formation using double couplings as standard. Purified by column chromatography [SiO₂, CH₂Cl₂:MeOH, 10:0 to 9:1 over 10 CV] to afford the product as a colourless oil (8.2 mg, 42%). \(R_f \) (CH₂Cl₂) = 0.65; \(^1H \) NMR (500 MHz, CDCl₃): \(\delta \) 7.57 7.52 (m, 2H, \(H_{2/4} \)), 7.34 7.17 (m, 20H, ArCH), 7.02 (d, \(J = 8.0 \) Hz, 1H, \(H_1 \)), 6.97 (d, \(J = 1.8 \) Hz, 1H, \(H_{12} \)), 6.83 (dd, \(J = 8.3, 1.9 \) Hz, 1H, \(H_{16} \)), 6.24 (d, \(J = 8.3 \) Hz, 1H, \(H_{14} \)), 5.06 (br, 2H, \(H_{27} \)), 4.84 (s, 2H, \(H_{19} \)), 4.71 (s, 2H, \(H_8 \)), 4.28 (s, 2H, \(H_{40} \)); HRMS-ESI (\(m/z \)): Calcd. for \([C_{22}H_{28}N_2O_5+H]^+\) 649.2702. Found: 649.2721. DOI: 10.14469/hpc/5163

Figure S31: UV chromatogram and extracted ion chromatogram of 14
3-ethoxy-4-(3-ethoxy-N-ethyl-4-(ethylamino)benzamido)benzoic acid (15)

Synthesised on a 30 µmol scale using using the general procedure for oligomer formation using double couplings as standard. R_f (CH$_2$Cl$_2$) = 0.50; Purified by column chromatography [SiO$_2$, CH$_2$Cl$_2$:MeOH, 10:0 to 9:1 over 10 CV] to afford the product as a colourless oil (2.8 mg, 23%).; 1H NMR (500 MHz, CDCl$_3$): δ_H 7.58 (dd, J = 8.0, 1.7 Hz, 1H, H$_2$), 7.52 (d, J = 1.7 Hz, 1H, H$_4$), 7.10 (d, J = 8.0 Hz, 1H, H$_1$), 6.88 (dd, J = 8.2, 1.9 Hz, 1H, H$_{23}$), 6.84 (d, J = 1.8 Hz, 1H, H$_{19}$), 6.26 (d, J = 8.3 Hz, 1H, H$_{22}$), 3.99 (q, J = 6.8 Hz, 2H, H$_9$), 3.89 3.82 (m, 4H, H$_{14/28}$), 3.09 (q, J = 7.2 Hz, 2H, H$_{25}$), 1.38 (t, J = 6.9 Hz, 3H, H$_{10}$), 1.30 (t, J = 7.0 Hz, 3H, H$_{29}$), 1.21 (t, J = 7.2 Hz, 3H, H$_{17}$), 1.18 (t, J = 7.1 Hz, 3H, H$_{26}$); HRMS-ESI (m/z): Calcd. for [C$_{42}$H$_{36}$N$_2$O$_5$+H]$^+$: 401.2076. Found: 401.2093. DOI: 10.14469/hpc/5164

Figure S32: UV chromatogram and extracted ion chromatogram of 15
3-isobutoxy-4-(4-(isobutylamino)-N-isopentyl-3-isopropoxybenzamido)benzoic acid (16)

Synthesised on a 30 µmol scale using the general procedure for oligomer formation using double couplings as standard. Purified by column chromatography [SiO2, CH2Cl2:MeOH, 10:0 to 9:1 over 20 CV] to afford the title compound as a white solid (6.2 mg, 40%). \(R_f \) (CH2Cl2) = 0.60. \(^1\)H NMR (400 MHz, CDCl3): \(\delta_H \) 7.56 (dd, \(J = 8.2, 1.7 \) Hz, 1H, \(H_2 \)), 7.52 (d, \(J = 1.8 \) Hz, 1H, \(H_4 \)), 7.08 (d, \(J = 8.0 \) Hz, 1H, \(H_1 \)), 6.88 (dd, \(J = 8.3, 1.8 \) Hz, 1H, \(H_{18} \)), 6.80 (d, \(J = 1.8 \) Hz, 1H, \(H_{14} \)), 6.37 (br, 1H, \(H_{17} \)), 4.24 (hept, \(J = 6.3 \) Hz, 1H, \(H_{25} \)), 3.51 (m, 4H, \(H_{29 \& 33} \)), 2.87 (d, \(J = 6.8 \) Hz, 2H, \(H_{20} \)), 2.12 (hept, \(J = 6.7 \) Hz, 1H, \(H_{30} \)), 1.87 (dt, \(J = 13.4, 6.7 \) Hz, 1H, \(H_{21} \)), 1.73 1.38 (m, 3H, \(H_{34 \& 35} \)), 1.18 (d, \(J = 6.0 \) Hz, 6H, \(H_{26 \& 27} \)), 1.04 (d, \(J = 6.7 \) Hz, 6H, \(H_{31 \& 32} \)), 0.93 (d, \(J = 6.7 \) Hz, 6H, \(H_{22 \& 23} \)), 0.88 (d, \(J = 6.4 \) Hz, 6H, \(H_{36 \& 37} \)); HRMS-ESI (m/z): Calcd. for \([\text{C}_{30}\text{H}_{44}\text{N}_2\text{O}_5+\text{H}]^+\): 513.3328. Found: 513.3336. DOI: 10.14469/hpc/5165

Figure S33: UV chromatogram and extracted ion chromatogram of 16
Trimers

4-(N-Isobutyl-4-(N-isobutyl-4-(isobutylamino)-3-isoproxybenzamido)-3-isoproxybenzamido)-3-isoproxybenzoic acid (17)

Synthesised on a 30 µmol scale using the general procedure for oligomer formation using double couplings as standard. Purified by column chromatography to afford the title compound as a white solid (2.14 mg, 10%). 1H NMR (500 MHz, DMSO-d6, 398 K): 1H 7.42 (dd, $J = 8.0, 1.7$ Hz, 1H), 7.38 (d, $J = 1.7$ Hz, 1H), 7.25 (d, $J = 8.1$ Hz, 1H), 6.95 (d, $J = 8.1$ Hz, 1H), 6.82 (dd, $J = 8.1, 1.8$ Hz, 1H), 6.71 6.67 (m, 3H), 6.28 (d, $J = 8.1$ Hz, 1H), 4.53 (hept, 1H), 4.22 (hept, $J = 6.1$ Hz, 1H), 4.15 (hept, $J = 6.0$ Hz, 1H), 3.60 (d, $J = 7.0$ Hz, 2H), 3.45 (d, $J = 6.9$ Hz, 2H), 2.90 (d, $J = 6.7$ Hz, 2H), 1.92 1.74 (m, 2H), 1.66 (d, $J = 6.8$ Hz, 1H), 1.19 (d, $J = 6.0$ Hz, 6H), 1.17 (d, $J = 6.0$ Hz, 6H), 1.05 (d, $J = 6.0$ Hz, 6H), 0.92 0.88 (m, 12H), 0.79 (d, $J = 6.7$ Hz, 6H); HRMS-ESI (m/z): Calcd. for [C$_{42}$H$_{59}$N$_3$O$_7$+H]$^+$ 718.4431. Found: 718.4445. DOI: 10.14469/hpc/5162
Figure S34: UV chromatogram and extracted ion chromatogram of 17

4-(3-(2-Amino-2-oxoethoxy)-4-(3-(4-aminobutoxy)-N-isobutyl-4-((2-methylbutyl) amino)benzamido)-N-isopentylbenzamido)-3-((5-aminopentyl)oxy)benzoic acid (18)

Synthesised on a 20 µmol scale using the general procedure for oligomer formation using double couplings as standard. Cleavage and global deprotection was performed using Reagent K (TFA/TIPS/H₂O/thiosanisole/phenol/EDT, 82.5/5/5/5/2.5, 5 mL). After 1 h, the reaction column was evacuated and the TFA solution was concentrated to ca. 1 mL under a steady flow of nitrogen. The crude oligomer was precipitated via addition of ice-cold ether and subsequently isolated via centrifugation. Mass directed purification by RP LC-MS afforded the title compound as a white solid (0.42 mg, 2.5%). Not enough sample was recovered after mass directed purification to obtain a ¹H NMR spectrum. HRMS-ESI
(m/z): Calcd. for [C_{46}H_{68}N_{6}O_{8}-H]^+ 831.5020. Found: 831.5031.

Figure S35: UV chromatogram and extracted ion chromatogram of 18
NMR Spectra

NMR Spectra files are available at the DOI links for each compound in the methods section above

NMR Spectra for Sidechains (SC1-SC10)
SC3
Spectra for Monomers 1-13 and Intermediates S1-S31
Oct18-2018.5.fid
T Flak TF-3-124 in d6-dmso; 1H spectrum at 373K using Av500; Oct18-2018/5

Oct18-2018.6.fid
T Flak TF-3-124 in d6-dmso; 13C{1H} spectrum at 373K using Av500; Oct18-2018/6
1H NMR (400 MHz, DMSO-d_6) δ 12.08 (s, 1H), 7.36 (dd, $J = 8.1, 1.8$ Hz, 1H), 7.29 (d, $J = 1.8$ Hz, 1H), 6.64 (d, $J = 8.2$ Hz, 1H), 5.48 (s, 2H), 4.03 (q, $J = 6.9$ Hz, 2H), 1.36 (t, $J = 6.9$ Hz, 3H).
Oct22-2018.2.fid
T Flak TF-4-4 in d6-dmso ; 1H spectrum at 373K using Av500 ; Oct22-2018/2

Oct22-2018.1.fid
T Flak TF-4-4 in d6-dmso ; 13C{1H} spectrum at 373K using Av500 ; Oct22-2018/1
Nov27-2018.1.fid
T Flack TF-3-57 in d6-dmso; 1H spectrum at 373K using Av400D; Nov27-2018/1

Nov27-2018.3.fid
T Flack TF-3-57 in d6-dmso; 13C{1H} spectrum at 373K using Av400D; Nov27-2018/3
NMR Spectra for Oligomers (Dimers 14-16 and Trimer 17)
Sep21-2017.20.fid
TF-3-16 12.5mM

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

163
Variable Temperature NMR Spectroscopy

The barrier to rotation about the Ar-N axis (ΔG), the rate of enantiomerisation (k) and the half-life of racemisation ($t_{1/2}$) were calculated using the equations presented by Sandstrom.\(^7\)

If two chemically equivalent nuclei are exchanged by an intermolecular process (e.g. $A \rightleftharpoons B$), the observed NMR spectrum is a function of the difference in resonance frequencies ($\Delta \nu_A - \Delta \nu_B$) and the rate of exchange (k) (Figure S36).

\[\Delta \nu_{o} = (\Delta \nu_{A/B})^{1/2} (\Delta \nu_{B})^{1/2} \]

Figure S36: The exchange regimes observed in a reversible, unimolecular process. At the slow exchange limit, the rate of chemical exchange is much slower than the NMR timescale and so the NMR spectrum consists of two resonances. At the coalescence temperature, the rate of chemical exchange is approximately equal to the NMR timescale and so a single broad resonance is observed in the NMR spectrum. When the rate of chemical exchange is fast compared to the NMR timescale, the NMR spectrum appears as a single resonance at the mean of the chemical shifts observed in the slow exchange regime. This is known as the fast exchange limit.

At the coalescence temperature, assuming an equal population of conformers, the lifetime of a conformation is equal to:

\[\tau = \frac{\sqrt{2}}{\pi \Delta \nu_{1/2}} \]

(2)

Assuming first-order kinetics, the rate constant (k) is inversely proportional to the lifetime
\[k = \frac{1}{\tau} \quad (3) \]

Therefore, at the coalescence temperature, the rate of exchange between the two species is equal to:

\[k = \frac{\pi \Delta \nu_o}{\sqrt{2}} \quad \text{(for uncoupled signals)} \quad (4) \]

\[k = \pi \sqrt{\frac{(\Delta \nu_o)^2 + 6(J_{AB})^2}{2}} \quad \text{(for coupled signals)} \quad (5) \]

These approximate values of \(k \) were refined using gNMR v5.0 (https://home.cc.umanitoba.ca). The Gibbs Free Energy of Activation (\(\Delta G^\ddagger \)) is related to the rate constant by the Eyring equation;

\[k = \kappa \left(\frac{k_b T}{h} \right) e^{\frac{-\Delta G^\ddagger}{RT}} \quad (6) \]

where \(\kappa \) is the transmission coefficient (assumed to be equal to 1 in most cases), \(k_b \) is the Boltzmann constant, \(T \) is the temperature, \(h \) is the Planck constant and \(R \) is the gas constant. Therefore, substituting the value for \(k \) into the following formula gives the value of \(\Delta G^\ddagger \) in kJ/mol;

\[\Delta G^\ddagger = 0.01914 \times T_c \times (10.319 + \log_{10}\left(\frac{T_c}{k}\right)) \quad (7) \]
Table S14: Barriers to bond rotation in amides 14, 15 and 16 via VT \(^1\)H NMR analysis

Amide	Solvent	Coalescing Signals	\(\Delta\nu / \text{Hz}\)	\(J_{AB} / \text{Hz}\)	\(T_c / \text{K}\)	\(k_{\text{approx}} / \text{s}^{-1}\)	\(k / \text{s}^{-1}\)	\(\Delta G^{\dagger}_{\text{Ar-N}} / \text{kJ mol}^{-1}\)	\(t_{1/2}^b\) / s
1	CDCl\(_3\)	1-H\(_\alpha\)	113.40	10.98	298.00	258.90	264.02	59.16	0.0013
1	CDCl\(_3\)	2-H\(_\alpha\)	123.18	14.06	328.00	284.31	287.13	65.14	0.0012
1	CDCl\(_3\)	2-H\(_\alpha\)	180.61	14.02	318.00	402.24	401.59	62.19	0.0009
3	CDCl\(_3\)	1-H\(_\beta\)'	32.44	-	278.00	72.06	67.44	58.18	0.0051
3	CDCl\(_3\)	2-H\(_\gamma\)'	18.13	-	273.00	40.27	38.76	58.35	0.0089
3	CDCl\(_3\)	2-H\(_\delta\)	18.66	-	268.00	41.45	39.12	57.22	0.0089
3	CDCl\(_3\)	2-H\(_\beta\)	67.35	-	288.00	149.60	129.21	58.80	0.0027
2\(^c\)	CDCl\(_3\)	2-H\(_\alpha\)'	-	-	-	-	-	-	-
2	CDCl\(_3\)	1-H\(_\alpha\)'	-	-	-	-	-	-	-
2	CDCl\(_3\)	2-H\(_\alpha\)	-	-	-	-	-	-	-

\(^a\) Barrier to bond rotation at coalescence temperature.
\(^b\) \(t_{1/2} = \ln 2/2k\) - corresponds to the rate of racemisation. \(k\) is the rate constant for enantiomerisation of the amide. \(^c\) Thermodynamic parameters for 2 could not be determined due to spectral crowding.

X-ray Crystallography

The X-ray crystal structure of 16

Crystal data for 16: \(\text{C}_{30}\text{H}_{44}\text{N}_{2}\text{O}_{5}\), \(M = 512.67\), triclinic, \(P-1\) (no. 2), \(a = 10.9267(3)\), \(b = 13.0725(6)\), \(c = 21.6323(9)\) Å, \(\alpha = 75.589(4)\), \(\beta = 87.706(3)\), \(\gamma = 85.942(3)\)°, \(V = 2984.4(2)\) Å\(^3\), \(Z = 4\) [two independent molecules], \(D_c = 1.141 \text{ g cm}^{-3}\), \(\mu(\text{Cu-K}\alpha) = 0.615 \text{ mm}^{-1}\), \(T = 173\) K, colourless platy needles, Agilent Xcalibur PX Ultra A diffractometer; 11411 independent measured reflections (\(R_{\text{int}} = 0.0348\)), F2 refinement,\(^8,9\) \(R1(\text{obs}) = 0.0461\), \(wR2(\text{all}) = 0.1285\), 8414 independent observed absorption-corrected reflections [\(|F_o| > 4\sigma(|F_o|)], completeness to \(\Theta_{\text{null}}(67.7°) = 98.9\%\)], 699 parameters. CCDC 1902316.

The structure of 16 was found to contain two crystallographically independent molecules (3-A and 3-B) in the asymmetric unit. The OH and NH hydrogen atoms on O14A, N26A, O14B and N26B were all located from \(\Delta F\) maps and refined freely subject to OH and NH distance constraints of 0.90 Å.
References

(1) Shaginian, A.; Whitby, L. R.; Hong, S.; Hwang, I.; Farooqi, B.; Searcey, M.; Chen, J.; Vogt, P. K.; Boger, D. L. *J. Am. Chem. Soc.* **2009**, *131*, 5564–5572.

(2) Murphy, N. S.; Prabhakaran, P.; Azzarito, V.; Plante, J. P.; Hardie, M. J.; Kilner, C. A.; Warriner, S. L.; Wilson, A. *J. Chem. Eur. J.* **2013**, *19*, 5546–5550.

(3) Long, K.; Edwards, T. A.; Wilson, A. *J. Bioorg. Med. Chem.* **2013**, *21*, 4034–4040.

(4) Skerlj, R. T. et al. *J. Med. Chem.* **2010**, *53*, 3376–3388.

(5) Grünenfelder, C. E.; Kisunzu, J. K.; Wennemers, H. *Angew. Chem. Int. Ed.* **2016**, *55*, 8571–8574.

(6) Sarciaux, M.; Pantel, L.; Midrier, C.; Serri, M.; Gerber, C.; Marcia De Figueiredo, R.; Campagne, J. M.; Villain-Guillot, P.; Gaultieri, M.; Racine, E. *J. Med. Chem.* **2018**, *61*, 7814–7826.

(7) Sandstrom, J. *Dynamic NMR Spectroscopy*; Academic Pr, 1983.

(8) Bruker AXS, *SHELXTL v5.1*; 1998.

(9) Sheldrick, G. M. *Acta Cryst.* **2015**, *C71*, 3–8.