Atypical pituitary abscess lacking rim enhancement and diffusion restriction with an unusual organism, *Moraxella catarrhalis*: A case report and review of the literature

Tatsuya Kawano¹, Naoki Shinojima¹, Satoko Hanatani², Eiichi Araki², Yoshiki Mikami³, Akitake Mukasa¹

Department of ¹Neurosurgery, ²Metabolic Medicine, ³Diagnostic Pathology, Kumamoto University Hospital, Kumamoto, Japan.

E-mail: Tatsuya Kawano - freedom_tattyann811@yahoo.co.jp; Naoki Shinojima - nshinojima-kuh@umin.ac.jp; Satoko Hanatani - shanatani@kuh.kumamoto-u.ac.jp; Eiichi Araki - earaki@gpo.kumamoto-u.ac.jp; Yoshiki Mikami - mika@kuhp.kyoto-u.ac.jp; Akitake Mukasa - mukasa-nsu@umin.ac.jp

INTRODUCTION

Pituitary abscess (PA) was first described by Simmonds in 1914.²⁷ Although rare and occurring in 0.2–1.1% of all operated pituitary regions,²² PA is potentially life threatening and associated with high mortality if prompt diagnosis and treatment are not instituted.²⁰,²⁶ Thus, early diagnosis, prompt surgical drainage by the transsphenoidal approach, appropriate antibiotic therapy, and hormone replacement are indispensable to the treatment of PA.²⁶ As seen in...
cerebral abscess, rim enhancement on postgadolinium T1-weighted magnetic resonance imaging (MRI) is a typical radiological finding of PA,[5,15,24] though other sellar cystic lesions such as pituitary adenoma with cystic degeneration, Rathke's cleft cyst, and cystic craniopharyngioma, which can show similar radiological appearances of rim enhancement, make the diagnosis rather difficult.[25] Diffusion-weighted imaging (DWI) has been widely used to distinguish brain abscesses from other ring-enhancing mass lesions such as certain malignancies and necrotic disease.[25] Thus, evaluation with both gadolinium-enhanced T1-weighted imaging and DWI is useful to distinguish PA from other sellar cystic lesions.[1,9,12,16,18-21] Herein, we report an atypical case of PA, suffered from Moraxella catarrhalis, showing neither rim enhancement nor diffusion restriction. In general, M. catarrhalis causes otitis media and sinusitis in children, and bronchitis and pneumonia in the elderly. To the best of our knowledge, there have been no cases of PA suffered from M. catarrhalis.

CASE REPORT

A 77-year-old woman presented to a local hospital with headache, polyuria, polydipsia, and fatigue for a month, but had no fever. Her laboratory studies showed panhypopituitarism without inflammatory findings such as an increase in white blood cells or C-reactive protein. MRI showed a 15 mm enlarged pituitary gland with heterogeneous contrast enhancement. She was referred to our hospital, where an ophthalmological evaluation showed normal visual acuity and no visual field disturbance. She was started on hormonal replacement therapy and was followed up.

Six months later, she had blurred vision in the left eye, and an ophthalmological evaluation showed a decrease in visual acuity with bitemporal hemianopia. MRI showed further pituitary enlargement with thickening of the pituitary stalk compressing the optic chiasma and a positive dural tail sign. Neither ring enhancement nor diffusion restriction was observed [Figure 1a-c]. The lesion was assumed to be lymphocytic hypophysitis or a pituitary tumor; but a histological diagnosis was needed for undertaking appropriate treatment.

Endoscopic endonasal transsphenoidal surgery was performed, and a thick, creamy yellow pus was drained out of the sellar lesion [Figure 1d]. The intraoperative rapid pathological findings showed polymorphonuclear leukocytes infiltrating the pituitary gland and no tumor cells, also reaffirmed by postoperative pathological results [Figure 2a and b]. We made an intraoperative diagnosis of PA and subsequently performed irrigation and drainage of the abscess. Postoperative MRI revealed no apparent change from preoperative MRI [Figure 3a-c]. We identified M. catarrhalis as organism by mass spectrometer (VITEK® MS). She was switched from broad-spectrum antibiotics to appropriate antibiotics; her visual function gradually recovered, while the improvement of pituitary function was not observed, and she was discharged. Written and informed consent was obtained from the patient for the publication of this manuscript and its accompanying images.

DISCUSSION

PA can be a life-threatening condition and is associated with high mortality rates.[10,13] Therefore, prompt diagnosis and treatment are crucial. However, the diagnosis of PA remains difficult because of its rarity, lack of specificity in its clinical manifestations,[27,22] and confounding by other, more frequent sellar cystic lesions showing similar radiological appearances of rim enhancement, such as pituitary adenoma with cystic degeneration, Rathke's cleft cyst, and cystic craniopharyngioma.[26] It can be difficult to distinguish a brain abscess from a cystic or necrotic brain
tumor on conventional MRI images. Several practical methods have been reported in conventional MRI, such as focusing on the significantly lower signal of the abscess capsule in T2WI, and that the capsule on the ventricular side of the abscess is less well developed than the capsule on the cortical side of the abscess. However, these characteristics are not always present in all abscesses. Furthermore, hypointense rims may also appear in cases of brain tumors such as metastases.

DWI is useful for the differential diagnosis of PA, other sellar cystic lesions as well as cerebral abscesses. So far, the evaluation of PA on DWI has been reported in 12 cases, summarized in Table 1. The finding of diffusion restriction is not always observed; Huang et al. reported that three of five patients with PA lacked this finding. In contrast, all of the above-mentioned 12 cases manifested with rim enhancement. Nonetheless, neither rim enhancement nor diffusion restriction was observed in the present case, which, to the best of our knowledge, is the first such case to be reported. These findings were probably not picked up by imaging because it captures the late stages of the PA once it liquefies, as discussed by Wang et al. Therefore, our case may have been in the early stages of the abscess before liquefaction.

The development of PA is thought to be due to hematogenous dissemination or by the direct extension of an adjacent infection such as sphenoid sinusitis, meningitis and cavernous sinus thrombosis. Intracranial infections caused by Moraxella are very rare, and there have been few reports of intracerebral abscesses caused by M. catarrhalis. M. catarrhalis commonly causes otitis media and sinusitis in children and bronchitis and pneumonia in the elderly with chronic obstructive pulmonary disease.

To the best of our knowledge, this is the first case of PA affected by M. catarrhalis. In our case, the atypical MRI findings of PA, in addition to the abscess stage, may be related to this rare organism.

CONCLUSION

PA is rare and potentially life threatening if not promptly treated. However, its correct diagnosis is challenging. Our case reveals that PA can present without rim enhancement and diffusion restriction and M. catarrhalis can be an organism of PA. Therefore, even if PA is not suggested preoperatively, it is necessary to consider it as a possible diagnosis. Finally, intraoperative rapid histopathological
findings are useful for determining the correct diagnosis of PA and instituting appropriate surgical treatment.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Anik Y, Koc K, Anik I, Meric M, Demirci A. Diffusion weighted MRI of primary pituitary abscess. Case report. Neuroradiol J 2007;20:282-6.
2. Burdette JH, Elster AD, Ricci PE. Acute cerebral infarction: Quantification of spin-density and T2 shine-through phenomena on diffusion-weighted MR images. Radiology 1999;212:333-9.
3. Dutta P, Bhansali A, Singh P. Pituitary abscess: Report of four cases and review of literature. Pituitary 2006;9:267-73.
4. Dalan R, Leow MK. Pituitary abscess: Our experience with a case and a review of the literature. Pituitary 2008;11:299-306.
5. Erdogan G, Deda H, Tonyukuk V. Magnetic resonance imaging and computerized tomography images in a case of pituitary abscess. J Endocrinol Invest 2001;24:887-91.
6. Falcone S, Post MJ. Encephalitis, cerebritis, and brain abscess: Pathophysiology and imaging findings. Neuroimaging Clin N Am 2000;10:333-53.
7. Gao L, Guo X, Tian R, Wang Q, Feng M, Bao X, et al. Pituitary abscess: Clinical manifestations, diagnosis and treatment of 66 cases from a large pituitary center over 23 years. Pituitary 2017;20:189-94.
8. Haines AB, Zimmerman MS, Morgello S, Weingarten K, Becker RD, Jennis R, et al. MR imaging of brain abscess. AJR Am J Roentgenol 1989;152:1073-85.
9. Huang KT, Bi WL, Smith TR, Zamani AA, Dunn IF, Laws ER Jr. Intrasellar abscess following pituitary surgery. Pituitary 2015;18:731-7.
10. Kotani H, Abiru H, Miyao M, Kakimoto Y, Kawai C, Ozeki M, et al. Pituitary abscess presenting a very rapid progression: Report of a fatal case. Am J Forensic Med Pathol 2012;33:280-3.
11. Levinson W. Medical Microbiology and Immunology. New York: McGraw Hill; 1998.
12. Medic Stojanoska M, Kozic D, Bjelan M, Vulekovic P, Vuckovic N, Vukovic B, Kovacev Zavisic B. Pituitary abscess with unusual clinical course. Acta Clin Croat 2016;55:650-4.
13. Obrador S, Blazquez MG. Pituitary abscess in a craniopharyngioma. Case report. J Neurosurg 1972;36:785-9.
14. Ramakrishna R, Nair MN, Huber B, Sekhar LN. A rare case of recurrent frontal osteoma complicated by mucopyocele with an unusual organism, *Moraxella catarrhalis*. World Neurosurg 2014;82:240.e13-9.
15. Sabbah P, Bonardel G, Herve R, Marjou F, Hor F, Pharaboz C, et al CT and MRI findings in primitive pituitary abscess: A case report and review of literature. J Neuroradiol 1999;26:196-9.
16. Sherrod BA, Makarenko S, Iyer RR, Eli I, Kestle JR, Coulldwell WT. Primary pituitary abscess in an adolescent female patient: Case report, literature review, and operative video. Childs Nerv Syst 2021;37:1423-8.
17. Simmonds M. On embolic processes in the pituitary gland. Virchows Arch Path Anat 1914;217:226-39.
18. Strickland BA, Pham M, Bakhsheshian J, Carmichael J, Weiss M, Zada G. Endoscopic endonasal transsphenoidal drainage of a spontaneous candida glabrata pituitary abscess. World Neurosurg 2018;109:467-70.
19. Taguchi Y, Yoshida K, Takashima S, Tanaka K. Diffusion-weighted MRI findings in a patient with pituitary abscess. Intern Med 2012;51:683.
20. Takao H, Doi I, Watanabe T. Diffusion-weighted magnetic resonance imaging in pituitary abscess. J Comput Assist Tomogr 2006;30:514-6.
21. Takaya T, Yamasaki F, Tominaga A, Hidaka T, Arita K, Kurisu K. A pituitary abscess showing high signal intensity on diffusion-weighted imaging. Neurosurg Rev 2006;29:246-8.
22. Vates GE, Berger MS, Wilson CB. Diagnosis and management of pituitary abscess: A review of twenty-four cases. J Neurosurg 2001;95:233-41.
23. Viagappan GM, Cudlip S, Lee PY, Kitchens N, Bell BA. Brain abscess caused by infection with *Moraxella catarrhalis* following a penetrating injury. J Infect 1998;36:130-1.
24. Wang Z, Gao L, Zhou X, Guo X, Wang Q, Lian W, et al. Magnetic resonance imaging characteristics of pituitary abscess: A review of 51 cases. World Neurosurg 2018;114:e900-12.
25. Xu XX, Li B, Yang HF, Du Y, Li Y, Wang WX, et al. Diffusion-weighted imaging. Neurosurg Rev 2006;29:246-8.
26. Kurisu K. A pituitary abscess showing high signal intensity on diffusion-weighted imaging. Neuroimaging Clin North Am 1991;1:1-16.