Antiepileptic Drug Carbamazepine Binds to a Novel Pocket on the Wnt Receptor Frizzled-8

Yuguang Zhao,* Jingshan Ren, James Hillier, Weixian Lu, and E. Yvonne Jones*

ABSTRACT: Misregulation of Wnt signaling is common in human cancer. The development of small molecule inhibitors against the Wnt receptor, frizzled (FZD), may have potential in cancer therapy. During small molecule screens, we observed binding of carbamazepine to the cysteine-rich domain (CRD) of the Wnt receptor FZD8 using surface plasmon resonance (SPR). Cellular functional assays demonstrated that carbamazepine can suppress FZD8-mediated Wnt/β-catenin signaling. We determined the crystal structure of the complex at 1.7 Å resolution, which reveals that carbamazepine binds at a novel pocket on the FZD8 CRD. The unique residue Tyr52 discriminates FZD8 from the closely related FZD5 and other FZDs for carbamazepine binding. The first small molecule-bound FZD structure provides a basis for anti-FZD drug development. Furthermore, the observed carbamazepine-mediated Wnt signaling inhibition may help to explain the phenomenon of bone loss and increased adipogenesis in some patients during long-term carbamazepine treatment.

INTRODUCTION

Ligands belonging to the Wnt family of secreted lipoproteins play central roles in tissue morphogenesis and homeostasis through binding to members of the frizzled (FZD) family of cell surface receptors. Overexpression of FZD proteins has been observed in cancers, and FZD8 has been proposed as a therapeutic target in human lung cancer and renal cell carcinoma. The anti-FZD antibodies vantictumab (OMP-18R5), IgG-2919, and IgG-2921 have been taken into phase 1 clinical trials (ClinicalTrials.gov: NCT01345201) or preclinical trials for targeting speciﬁc FZDs for carbamazepine binding. The first small molecule-bound FZD structure has provided the author and source are cited. This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

Results

Screening of Small Molecules for Binding to FZD8CRD. Wnt ligands bind to the FZD receptor CRD to initiate Wnt signaling. Small molecule antagonists that bind to the FZD CRD could therefore have therapeutic potential in cancers with upregulated Wnt signaling. We used SPR to screen for small molecules that bind to FZD8CRD. Small molecules from the Maybridge fragments library (58 compounds) and our own laboratory collection (44 compounds) were screened. All of the compounds screened are listed in Supporting Information, Table S1. Initial screening identified three hits showing SPR responses (Figure 1): carbamazepine, kahweol, and quinacrine (number 79, 87, and 99 in Supporting Information, Table S1). Further analysis of these hits with other irrelevant protein controls eliminated quinacrine as a nonspecific binder. Kahweol and carbamazepine were then carried forward to guided drug design. To date, no structural information about small molecules binding to FZD receptors has been published. We have used surface plasmon resonance (SPR) to screen a set of small molecules and report here the high-resolution crystal structure of the extracellular FZD8 cysteine-rich domain (FZD8CRD) bound with carbamazepine.
co-crystallization with FZD8_{CRD}. While kahweol did not yield a complex structure, the structure of carbamazepine in complex with FZD8_{CRD} was determined (Figure 2). In the absence of further evidence to support kahweol binding, we focused all further work on carbamazepine.

Structure of FZD8_{CRD} and Its Complex with Carbamazepine. The amino acid sequence of FZD8_{CRD} is fully conserved between human and mouse. Therefore, although we used a mouse cDNA sequence, the resulting structure is identical to human FZD8_{CRD}. Thus, we refer to it simply as FZD8_{CRD} hereafter. The apo FZD8_{CRD} structure was determined at 2.3 Å resolution in space group P2₁, with four molecules in the asymmetric unit (ASU, Figure 2A). The carbamazepine complex structure (1.7 Å resolution) crystallized in the same condition (see the Experimental Section) with similar lattice contacts to the apo structure, but with higher crystallographic symmetry resulting in space group P2₁₂₁₂₁, with two molecules in each ASU (Figure 2B).

The overall structure of FZD8_{CRD}, either apo or in complex with carbamazepine, is almost identical to those of previously reported apo or Wnt-bound FZD8_{CRD} except at the CRD C-terminus, which forms a β-hairpin with the remaining residues of a Rhinovirus 3C protease cleavage site (used to remove purification tags; Figure 2C and the Experimental Section). In both our structures, the ASUs contain dimers resulting from two-fold noncrystallographic symmetry (Figure 2A,B). This dimeric arrangement, as well as the other lattice packing interactions, differs from the distinctive dimer, mediated by unsaturated fatty acyl–FZD CRD binding, that has been observed for a number of FZD CRD structures, including FZD8.15,17–19

In the apo structure, the four molecules of FZD8_{CRD} in the ASU fall into two conformations (“a” and “b”, Figure 2D) regarding loop_6 (residues R137 to L147). However, both copies of the carbamazepine-bound FZD8_{CRD} are in conformation “b” (Figure 2D). This suggests that carbamazepine may stabilize conformation “b” upon binding. The Xenopus Wnt8-15 or human Wnt3-16 bound FZD8_{CRD} loop_6 corresponds most closely to conformation “a” (Figure 3E). This suggests that Wnt binding may prefer the loop_6 conformation “a.”

Carbamazepine Binds FZD8_{CRD} at a Novel Pocket. Carbamazepine (SH-dibenzo[b,f]azepine-5-carboxamide), sold under the trade names Tegretol, Equetro, Carbatrol, Epitol, and Orteril, is a tricyclic compound (Figure 3A). The 1.7 Å resolution complex structure unambiguously showed carbamazepine binding to the FZD8_{CRD}. The simulated annealing omit electron density map showed clear electron density for all atoms of carbamazepine (Figure 3B) and both molecules in the ASU show similar quality density. FZD8_{CRD} possesses two well-documented Wnt binding sites: a hydrophobic groove that binds the palmitoleic acid moiety (PAM) that is appended to the Wnt thumb (site 1) and the Wnt index finger binding site (site 2).15,16 The carbamazepine binding pocket is sandwiched by the two Wnt binding sites (Figures 3C and 4A). This pocket is largely hydrophobic and neutral in surface charge but is surrounded by positively and negatively charged patches (Figure 3D). Aside from Wnt, there are many FZD CRD binding proteins that have been reported, but none of them bind at this pocket. The Wnt mimic Norrin protein
binds at site 2 on FZD4CRD (Figure 4A), while all other reported binders bind at or near site 1. These include the Clostridium difficile toxin B (TcdB22) that binds FZD2CRD (Figure 4B), the Wnt surrogate B12 module that binds FZD8CRD and the peptide FZ7-21 that binds FZD7CRD (Figure 4C), the DARPin module DRPB that binds FZD8CRD and the antibody Fab F2.I that binds FZD5CRD (Figure 4D). Carbamazepine does not overlap with any of the reported FZD CRD ligands when the various structures are superimposed (Figure 4) and instead binds to residues located between the two Wnt binding sites in a novel binding pocket (Figures 3 and 4).

The carbamazepine binding pocket comprises residues from helix α3 (S90, M91), loop_2 (Y52, Q56), loop_4 (P94, P103, L104, P105, P106), and loop_6 (R137). The residues L104 and R137 use their main chain atoms to interact with carbamazepine, while the other interacting residues use their side chains (Figure 5A). A distinctive feature of this pocket is a cluster of four hydrophobic prolines. The interacting residues from the two copies of FZD8CRD in the crystallographic ASU ("a" and "b") show similar interactions with carbamazepine, except for the residue Q56. Q56 of molecule "a" interacts with a carbamazepine nitrogen (N17) atom and azepine ring (C7, Figure 5B), while in the other copy, "b", Q56 interacts with the carbamazepine azepine and benzyl rings (Figure 5C). The difference in the Q56 side-chain conformation may be due to crystal packing, as this area of molecule "a" contacts a neighbor packing molecule. When two representative copies of apo FZD8CRD were superimposed, no overlap was detected with any of the reported FZD CRD ligands.
structures are aligned with carbamazepine-bound structures, the Q56 side chain from the apo structure would sterically hinder carbamazepine binding (Figure 5D). This suggests that Q56 may undergo a conformational change upon carbamazepine binding. The carbamazepine—protein interactions are mainly hydrophobic, especially those involving P105 and P103, which form extensive hydrophobic interactions with the azepine ring and two benzyl rings of carbamazepine (Figure 5E). Y52 forms a hydrogen bond through a water molecule to the nitrogen (N17) of the carboxamide head of carbamazepine (Figure 5A). There are three additional ordered water molecules within the pocket that are conserved between the two molecules in the ASU. The positions of water molecules could guide carbamazepine modification to develop more potent FZD8 inhibitors.

Binding Specificity and Affinity of Carbamazepine. In addition to the 10 FZDs, the human genome also encodes 5 secreted FZD-related proteins (sFRPs), important Wnt regulatory proteins,26 and all FZDs and sFRPs possess a conserved FZD CRD. Sequence alignment of all FZD and sFRP CRDs shows that only one proline residue (P94) is fully conserved among the residues interacting with carbamazepine (Figure 5F). Another proline, P106, is conserved in all FZDs/sFRPs, except for FZD9/10. The residue S90 is highly conserved but absent in FZD3/6 and sFRP3/4. Other carbamazepine-interacting residues are only partially conserved among FZDs and sFRPs. FZD8 and FZD5 are closely related (>80% sequence identity within the CRD), sharing most of the carbamazepine-interacting residues, including Q56, which is unique to these FZDs. However, the residue Y52 is found only in FZD8 (Figure 5F). The sequence alignment suggests that of all the other FZDs/sFRPs, FZD8 is the most likely candidate to bind to carbamazepine, followed by FZD1, 2, and 7.

We then used biophysical methods to measure the affinity of the interaction between carbamazepine and FZD8CRD, as well as the cross-reactivity of carbamazepine with the CRDs of FZD5 and 7. We have previously used a thermal shift assay (also known as differential scanning fluorimetry) to investigate small molecule—protein interactions.27,28 However, we found that FZD CRDs are highly thermostable (remaining folded at 95 °C), which precluded the measurement of melting curves. We therefore turned to SPR as an alternative method for the detection of small molecule—protein interactions.29,30 All three (FZD8, 5, and 7) CRD constructs yield correctly folded protein samples as evidenced by their gel filtration profiles (Supporting Information, Figure S1). Biotinylated samples of protein samples as evidenced by their gel filtration profiles (Supporting Information, Figure S1) and the HEK293T TOPFlash response to canonical Wnt ligands is dependent mainly on FZD1, 2, and 7.31 To observe the specific response from FZD8, we therefore used an FZD1, 2 and 7 knockout HEK293T cell line31 and introduced the full-length mouse FZD8 expression cassette by lentiviral transduction.32 The cell line was further stably transformed with a T-cell factor/lymphoid enhancer-binding factor 1 luciferase (TCF/LEF, TOPFlash) plasmid to minimize reporter plasmid transfection variations. The cells were then stimulated with a conditioned medium from mouse L-cells expressing Wnt3a, in the presence of a carbamazepine concentration series (Figure 7). Carbamazepine starts to inhibit Wnt3a-induced TOPFlash luciferase activity at a concentration of 8 μM (unpaired t-test, P < 0.0001), with greater inhibition seen at higher concentrations. However, we found that carbamazepine can only partially suppress Wnt3a-induced luciferase activity even at the high concentration of 64 μM, luciferase activity remained around 60% (Figure 7).

DISCUSSION AND CONCLUSIONS

FZD proteins, as essential Wnt receptors, are a central point for Wnt signaling intervention in diseases such as cancer. While macromolecules like antibodies, peptides, the FZD5/8-binding B12 protein, and DARPin molecules targeting FZD CRDs have been described,8,18,23,24 small molecules may offer advantages such as being easier to manufacture, more stable, less expensive, and having the potential to be administered orally. Among the methods of screening small molecules for binding to target proteins, SPR provides a measure of direct molecular interactions, allowing an effective triage for candidates with the highest potential for generating complex crystal structures. Structural information forms the basis for rational drug design. We have obtained the first FZD-small molecule structure and discovered that carbamazepine specifically binds to the FZD8CRD and not to the closely related FZD5. To date, no antibodies or synthetic FZD binders have been reported that can distinguish between FZD8 and FZD5. Conceivably, carbamazepine may offer this potential.

We noticed that the carbamazepine can only partially suppress Wnt3a-induced luciferase activity, even at a high concentration of 64 μM (Figure 7), which is in agreement with the recently reported weak Wnt inhibitory effects in mouse adipose cells.33 The binding pocket that we have identified in

Figure 6. SPR analysis of carbamazepine interaction with FZD5, 7, 8 CRD. Biotinylated mouse FZD5, human FZD7, and mouse FZD8 CRD were immobilized on individual flow cells of a SA chip, respectively. A carbamazepine concentration series was used as an analyte. The SPR sensorgrams are shown in the right panels. ND, not detectable; RU, resonance units.

Carbamazepine only binds to FZD8; however, the commonly used cell line (HEK293T) expresses FZD8 at a very low level, and the HEK293T TOPFlash response to canonical Wnt ligands is dependent mainly on FZD1, 2, and 7.31 To observe the specific response from FZD8, we therefore used an FZD1, 2 and 7 knockout HEK293T cell line31 and introduced the full-length mouse FZD8 expression cassette by lentiviral transduction.32 The cell line was further stably transformed with a T-cell factor/lymphoid enhancer-binding factor 1 luciferase (TCF/LEF, TOPFlash) plasmid to minimize reporter plasmid transfection variations. The cells were then stimulated with a conditioned medium from mouse L-cells expressing Wnt3a, in the presence of a carbamazepine concentration series (Figure 7). Carbamazepine starts to inhibit Wnt3a-induced TOPFlash luciferase activity at a concentration of 8 μM (unpaired t-test, P < 0.0001), with greater inhibition seen at higher concentrations. However, we found that carbamazepine can only partially suppress Wnt3a-induced luciferase activity even at the high concentration of 64 μM, luciferase activity remained around 60% (Figure 7).
there is a significant difference.

FZD8\textsubscript{CRD} does not overlap with the known Wnt binding sites. Thus, the mechanism of action is allosteric. However, the carbamazepine binding pocket may still be important for Wnt signaling. It was previously demonstrated that the disruption of the carbamazepine binding region (insertion of a tripeptide, GSG, before the carbamazepine interacting residues Y52 or R137) abolished Wnt8 binding to FZD8.14 The carboxamazine binding affinity K_d value of 17 \textmu M and starting inhibitory concentration of 8 \textmu M are comparable to the reported Wnt/\textbeta-catenin inhibitory concentration of 5–10 \textmu M in adipose cells.33 and colon cancer cells.34 Carbamazepine is the primary drug used to treat epilepsy. Typical doses are between 400 and 1000 mg per day and the carbamazepine plasma concentration in patients during treatment reaches 20–40 \textmu M,35 which is higher than the K_d value and inhibitory concentration we observed.

Epilepsy is a common serious neurological disorder, affecting 1–2\% of the population (over 50 million people) worldwide.38 The etiology of epilepsy is multifactorial and the involvement of Wnt signaling misregulation has recently received attention.37 Wnt/\textbeta-catenin signaling may play a role in the development of temporal lobe epilepsy.38 Conditional knock-out of the major Wnt/\textbeta-catenin negative regulator adenomatosus polyposis coli (APC) gene in mice, which results in elevated Wnt/\textbeta-catenin signaling, causes chronic seizures39 with similar features to those seen in humans with infantile spasms, a common syndrome in childhood epilepsy.40 In a mouse model, both deletion and overexpression of \textbeta-catenin have a significant impact on seizure susceptibility.41 The kainic acid-induced epilepsy animal model shows upregulated Wnt/\textbeta-catenin signaling.42 Increased Wnt/\textbeta-catenin signaling is associated with the increased number of neuronal stimuli,43 while decreased Wnt/\textbeta-catenin signaling by the Wnt antagonist Dickkopf-related protein 1 (DKK1) has been shown to be able to protect against the development of hippocampal sclerosis, which is a hallmark of temporal lobe epilepsy.44 The antiepileptic drug carbamazepine (an inhibitor of voltage-gated sodium channels45) has been shown to decrease Wnt/\textbeta-catenin signaling in the human colon adenocarcinoma SW480 cell line51 and mouse adipocyte 3T3-L1 cells.39 The results presented here contribute further evidence that Wnt signaling modulation may be involved in carbamazepine treatment of epilepsy. This warrants further studies of the role of Wnt-FZD8 signaling modulation in the therapeutic mechanism of carbamazepine against epilepsy.

It is noteworthy that long-term antiepileptic drug (AED) treatment can have side effects, including disorders of bone metabolism leading to bone loss.46–50 The exact mechanism of this pathological change is not completely understood. It is commonly accepted that intact Wnt signaling is essential for proper bone formation and remodeling.51 The strength and integrity of the human skeleton depend on a delicate equilibrium between bone resorption by osteoclasts and bone formation by osteoblasts. Wnt/\textbeta-catenin signaling can inhibit osteoclastogenesis52 and increase bone mass. On the other hand, inhibition of Wnt signaling can lead to bone loss. Among the 10 FZD receptors, FZD8 and FZD9 are particularly relevant to bone metabolism. While FZD9 regulates osteoblast function through noncanonical Wnt signaling,53,54 FZD8 mediates canonical Wnt/\textbeta-catenin signaling and inhibits osteoclastogenesis.52 The discovery that carbamazepine can inhibit FZD8-mediated Wnt signaling may help to explain the loss of bone density associated with long-term treatment with carbamazepine. In addition, weight gain affecting patients treated with carbamazepine has also been linked to Wnt signaling inhibition.53 Carbamazepine use has also been shown to reduce the risk of prostate cancer,55,56 and synergistically inhibits breast cancer cell proliferation when combined with other anticancer treatment,57 although the exact mechanisms remain to be investigated.

In summary, we have identified carbamazepine as a specific ligand for the Wnt receptor FZD8 using an SPR screen of small molecules. The high-resolution crystal structure of the complex reveals a novel binding site in FZD8\textsubscript{CRD} that allows small molecule interactions to discriminate between closely related FZDs. As well as potentially explaining the loss of bone density observed in patients following long-term treatment with carbamazepine, our carbamazepine–FZD8\textsubscript{CRD} structure also provides a new avenue to explore the design and development of FZD specific inhibitors.

EXPERIMENTAL SECTION

Protein Production and Crystallization. Mouse FZD8 (UniProtKB Q61091) residues A28-R153 (identical amino acid sequence to human FZD8\textsubscript{CRD}) with glycosylation site mutations (N49E and N152E) were PCR amplified from the template cDNA (Source Bioscience, Nottingham U.K.; clone ID 40130820) and cloned into a stable cell line vector pNeo-sec58 with a Rhinovirus 3C cleavage site, a monovenus fluorescent protein, and 6xHis tags. The resulting 3C protease treated protein contains two additional amino acids (GT) from KpnI cloning site and six amino acids (LEVLFAQ) from the 3C cleavage site at the C-terminus. HEK293S GnT1– cells
were co-transfected with this plasmid and a PhiC31 integrase expression vector (pCB92/pgk-ϕC31). The polyclonal population of cells following G418 (1 mg/mL) selection was cultured in a CompacT automated cell culture system. The secreted proteins were captured by Talon beads, to remove the monoVenus and His tags, and concentrated to 10 mg/mL using the Superdex 200 16/60 column (GE Healthcare). The resulting cell line was further transformed using a Super TOPFlash plasmid (pRL-IRES-GFP sequence after the expression cassette. The resulting cell line was further transformed using a Super TOPFlash firefly luciferase expression cassette in a stable cell line, followed by blastocidin selection. The polyclonal population from the blastocidin selection (20 µg/mL−1) was seeded in a 96-well plate (104 cells/well) and transfected with a constitutive Renilla luciferase plasmid (pRL-IRES-K; Promega) at a concentration of 10 ng/mL−1 with lipofectamine 2000 (Invitrogen). Twenty-four hours after transfection, the media were replaced with carbamazepine dilution series diluted in Wnt3a conditional media from the Wnt3a producing mouse L Wnt-3A cell line (ATCC CRL-2647, ref 67). The culture medium from L-cells served as the Wnt3a control medium. The firefly and Renilla luciferase activities were measured 24 h later using the Dual-Glo luciferase reporter assay system (Promega) with an Ascent luminoskan luminometer (Labsystems). The firefly luciferase activity was normalized with the constitutive Renilla luciferase activity.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jmedchem.9b02020.

List of screen compounds (Table S1) and size-exclusion chromatography of FZD_CRD profiles (Figure S1) (PDF)

Analytical data (CSV)

Accession Codes

PDB codes for structures of FZD8CRD and its complex with carbamazepine are 6TFM and 6TFB, respectively. The authors would like to thank Professor Michel Boutrous (DFKZ, Germany) for the human full-length FZD8 plasmid (pHL-Avi3 vector). To produce biotinylated proteins, these plasmids were co-transfected with the pDisplay_BirA-ER plasmid into HEK293T cells with the media supplemented with 20 µM biotin. This procedure allows in vivo biotinylation to occur. The dialyzed conditioned media were directly used for the immobilization of ligands. The affinity was measured at 25 °C in 10 mM HEPES, pH 7.4, 150 mM NaCl, 0.005% Tween20, and 2% DMSO using a Biacore S200 machine (GE Healthcare). The biotinylated ligands (1000 RU each) were coupled to a SA sensor chip (GE Healthcare), and the analyte carbamazepine was tested using a two-fold serial dilution. The resulting cell line was further transformed using a Super TOPFlash firefly luciferase expression cassette in a stable cell line, followed by blastocidin selection. The polyclonal population from the blastocidin selection (20 µg/mL−1) was seeded in a 96-well plate (104 cells/well) and transfected with a constitutive Renilla luciferase plasmid (pRL-IRES-K; Promega) at a concentration of 10 ng/mL−1 with lipofectamine 2000 (Invitrogen). Twenty-four hours after transfection, the media were replaced with carbamazepine dilution series diluted in Wnt3a conditional media from the Wnt3a producing mouse L Wnt-3A cell line (ATCC CRL-2647, ref 67). The culture medium from L-cells served as the Wnt3a control medium. The firefly and Renilla luciferase activities were measured 24 h later using the Dual-Glo luciferase reporter assay system (Promega) with an Ascent luminoskan luminometer (Labsystems). The firefly luciferase activity was normalized with the constitutive Renilla luciferase activity.

AUTHOR INFORMATION

Corresponding Authors

Yuguang Zhao — Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom; orcid.org/0000-0001-8916-8552; Phone: (0044)1865-287551; Email: yuguang@strubi.ox.ac.uk

E. Yvonne Jones — Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom; Phone: (0044)1865-287559; Email: yvonne@strubi.ox.ac.uk

Authors

Jingshan Ren — Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom; orcid.org/0000-0003-4015-1404

Table 1. Data Collection and Refinement Statistics

Description	FZD8CRD	FZD8CRD-carbamazepine
data set	FZD8CRD	FZD8CRD-carbamazepine
PDB code	6TFM	6TFB
wavelength (Å)	0.916	0.916
space group	P2₁	P2₁
unit cell dimensions (Å)	a = 52.3, b = 66.0, c = 72.7; α = β = γ = 90°	a = 52.0, b = 68.1, c = 73.8; α = β = γ = 90°
resolution (Å)	72.7–2.34	2.38–2.34
unique reflections	20741 (1024)	25589 (1212)
Rmerge (%)	0.19 (0.83)	0.13 (---)
< I > / < σ(I)	7.3 (2.3)	9.4 (1.0)
CC half	0.99 (0.89)	0.99 (0.84)
completeness (%)	98.9 (98.5)	99.2 (95.3)
redundancy	6.5 (5.9)	11.5 (8.5)

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jmedchem.9b02020.

- List of screen compounds (Table S1) and size-exclusion chromatography of FZD_CRD profiles (Figure S1) (PDF)
- Analytical data (CSV)

Accession Codes

PDB codes for structures of FZD8CRD and its complex with carbamazepine are 6TFM and 6TFB, respectively. The authors will release the atomic coordinates and experimental data upon article publication.

Journal of Medicinal Chemistry

pubs.acs.org/jmc

Article

3257

https://dx.doi.org/10.1021/acs.jmedchem.9b02020

J Med Chem. 2020, 63, 3252–3260
James Hillier — Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom

Weixian Lu — Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jmedchem.9b02020

Author Contributions

Y.Z. and E.Y.J. designed the project and wrote the manuscript together with J.H. and J.R., Y.Z. performed experiments and analyzed data with J.R. and J.H. W.L. helped with tissue culture.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Diamond Light Source for beamtime and the staff of beamline I04-1 for assistance with crystal testing and data collection (under BAG application MX14744). We thank Professor Michel Boutros (DFKZ, Germany) for assistance with using the Biacore S200 machine. This work was enabled by using the HEK293T FZD1, 2, 7 knockout cell line. We thank Drs Laura Diaz Saez and Oleg Fedorov (TDI, Oxford) for assistance with using the Biacore S200 machine. This work was funded by Cancer Research UK, the UK Medical Research Council (to EYJ, C375/A17721 and MR/M000141/1), and the Wellcome Trust (grant 203141/Z/16/Z supporting the Wellcome Centre for Human Genetics).

ABBREVIATIONS

FZD_{CRD}, frizzled cysteine-rich domain; ASU, asymmetric unit; SPR, surface plasmon resonance; TCF/LEF, T-cell factor/lymphoid enhancer-binding factor 1

REFERENCES

(1) Nusse, R.; Clevers, H. Wnt/beta-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell 2017, 169, 895–999.
(2) Merle, P.; Kim, M.; Herrmann, M.; Gupte, A.; Lefrancois, L.; Califano, S.; Trepo, C.; Tanaka, S.; Vitvitski, L.; de la Monte, S.; Wands, J. R. Oncogenic Role of the Frizzled-7/beta-Catenin Pathway in Hepatocellular Carcinoma. J. Hepatol. 2005, 43, 854–862.
(3) Simmons, G. E., Jr; Pandey, S.; Nedeljkovic-Kurepa, A.; Saxena, M.; Wang, A.; Pruitt, K. Frizzled 7 Expression is Positively Regulated by SIRT1 and Beta-Catenin in Breast Cancer Cells. PLoS One 2014, 9, No. e98861.
(4) Wang, H. Q.; Xu, M. L.; Ma, J.; Zhang, Y.; Xie, C. H. Frizzled-8 as a Putative Therapeutic Target in Human Lung Cancer. Biochem. Biophys. Res. Commun. 2012, 417, 62–66.
(5) Yang, Q.; Wang, Y.; Pan, X.; Ye, J.; Gan, S.; Qu, F.; Chen, L.; Chu, C.; Gao, Y.; Cui, X. Frizzled 8 Promotes the Cell Proliferation and Metastasis of Renal Cell Carcinoma. Oncotarget 2017, 8, 78989–79002.
(6) Steinhart, Z.; Pavlovic, Z.; Chandrashekhar, M.; Hart, T.; Wang, X.; Zhang, X.; Robitaille, M.; Brown, K. R.; Jakseri, S.; Overmeer, R.; Boj, S. F.; Adams, J.; Pan, J.; Clevers, H.; Sidhu, S.; Moffat, J.; Angers, S. Genome-Wide CRISPR Screens Reveal a Wnt-FZD5 Signaling Circuit as a Druggable Vulnerability of RNF43-mutant Pancreatic Tumors. Nat. Med. 2017, 23, 60–68.
(7) Guiney, A.; Axelrod, F.; Bond, C. J.; Cain, J.; Chartier, C.; Donigan, L.; Fischer, M.; Chaudhari, A.; Ji, M.; Kapoun, A. M.; Lam, A.; Lazetic, S.; Ma, S.; Mitra, S.; Park, I. K.; Pickell, K.; Sato, A.; Satyal, S.; Stroud, M.; Tran, H.; Yen, W. C.; Lewicki, J.; Hoey, T. Wnt Pathway Inhibition via the Targeting of Frizzled Receptor Results in Decreased Growth and Tumorigenesis of Human Tumors. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 11717–11722.
(8) Raman, S.; Beilschmidt, M.; To, M.; Lin, K.; Liu, F.; Jmeian, Y.; Ng, M.; Fernandez, M.; Fu, Y.; Mascall, K.; Duque, A.; Wang, X.; Pan, G.; Angers, S.; Moffat, J.; Sidhu, S. S.; Magram, J.; Sinclair, A. M.; Fransson, J.; Julien, J. P. Structure-guided Design Fine-tunes Pharmacokinetics, Tolerability, and Antitumor Profile of Multispecific Frizzled Antibodies. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 6812–6817.
(9) Generoso, S. F.; Giustianino, M.; La Regina, G.; Bottone, S.; Passacantilli, S.; Di Maro, S.; Cassese, H.; Bruno, A.; Mallardo, M.; Dentece, M.; Silvestri, R.; Marinelli, L.; Sarnataro, D.; Bonatti, S.; Novellino, E.; Stornaiuolo, M. Pharmacological Filtering Chaperones Act as Allosteric Ligands of Frizzled4. Nat. Chem. Biol. 2015, 11, 280–286.
(10) Riccio, G.; Bottone, S.; La Regina, G.; Badolati, N.; Passacantilli, S.; Rossi, G. B.; Accardo, A.; Dentece, M.; Silvestri, R.; Novellino, E.; Stornaiuolo, M. A Negative Allosteric Modulator of WNT Receptor Frizzled 4 Switches into an Allosteric Agonist. Biochemistry 2018, 57, 839–851.
(11) Yang, S.; Wu, Y.; Xu, T. H.; de Waal, P. W.; He, Y.; Pu, M.; Chen, Y.; Debruyne, Z. J.; Zhang, B.; Zaidi, S. A.; Popov, P. J.; Guo, Y.; Han, G. W.; Lu, Y.; Suno-Powell, K.; Dong, S.; Harikumar, K. G.; Miller, L. J.; Katrich, V.; Xu, H. E.; Shui, W.; Stevens, R. C.; Melcher, K.; Zhao, S.; Xu, F. Crystal Structure of the Frizzled 4 Receptor in a Ligand-Free State. Nature 2018, 560, 666–670.
(12) Hamdoun, S.; Fleischer, E.; Klinger, A.; Effert, T. L. Worsane Derivatives Target the Wnt/Beta-Catenin Signaling Pathway in Multidrug-resistant Acute Lymphoblastic Leukemia Cells. Biochem. Pharmacol. 2017, 146, 63–73.
(13) Lee, H. J.; Bao, J.; Miller, A.; Zhang, C.; Wu, J.; Baday, Y. C.; Guibao, C.; Li, L.; Wu, D.; Zheng, J. J. Structure-based Discovery of Novel Small Molecule Wnt Signaling Inhibitors by Targeting the Cysteine-rich Domain of Frizzled. J. Biol. Chem. 2015, 290, 30596–30606.
(14) Dann, C. E.; Hsieh, J. C.; Rattner, A.; Sharma, D.; Nathans, J.; Leahy, D. J. Insights into Wnt Binding and Signalling from the Structures of Two Frizzled Cysteine-Rich Domains. Nature 2001, 412, 86–90.
(15) Hirai, H.; Matoba, K.; Mihara, E.; Arimori, T.; Takagi, J. Crystal Structure of a Mammalian Wnt-Frizzled Complex. Nat. Struct. Mol. Biol. 2019, 26, 372–379.
(16) Janda, C. Y.; Waghray, D.; Levin, A. M.; Thomas, C.; Garcia, K. C. Structural Basis of Wnt Recognition by Frizzled. Science 2012, 337, 59–64.
(17) Debruyne, Z. J.; Ke, J.; Harikumar, K. G.; Gu, X.; Borowsky, P.; Williams, B. O.; Xu, W.; Miller, L. J.; Xu, H. E.; Melcher, K. Wnt5a Promotes Frizzled4 Signalosome Assembly by Stabilizing Cysteine-Rich Domain Dimerization. Genes Dev. 2017, 31, 916–926.
(18) Nile, A. H.; de Sousa, E. M. F.; Mukund, S.; Piskol, R.; Hansen, S.; Zhou, L.; Zhang, Y.; Fu, Y.; Gogol, E. B.; Komuves, L. G.; Mordas, Z.; Angers, S.; Frank, Y.; Koth, C.; Fairbrother, W. J.; Wang, W.; de Sauvage, F. J.; Hannoush, R. N. A Selective Peptide Inhibitor of Frizzled 7 Receptors Disrupts Intestinal Stem Cells. Nat. Chem. Biol. 2018, 14, 582–590.
(19) Nile, A. H.; Mukund, S.; Stanger, K.; Wang, W.; Hannoush, R. N. Unsaturated Fatty Acyl Recognition by Frizzled Receptors Mediates Dimerization upon Wnt Ligand Binding. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 4147–4152.
(20) Chang, T. H.; Hsieh, F. L.; Zebisch, M.; Harlos, K.; Elegeheert, J.; Jones, E. Y. Structure and Functional Properties of Norrin Mimic Wnt for Signalling With Frizzled4, Lrp5/6, and Proteoglycan. Elife 2015, 4, No. e06554.
(21) Shen, G.; Ke, J.; Wang, Z.; Cheng, Z.; Gu, X.; Wei, Y.; Melcher, K.; Xu, H. E.; Xu, W. Structural Basis of the Norrin-Frizzled 4 Interaction. Cell Res. 2015, 25, 1078–1081.
(22) Chen, P.; Tao, L.; Wang, T.; Zhang, J.; He, A.; Lam, K. H.; Liu, Z.; He, X.; Perry, K.; Dong, M.; Jin, R. Structural Basis for
Recognition of Frizzled Proteins by Clostridium Difficile Toxin B. Science 2018, 360, 664–669.

(23) Janda, C. Y.; Dang, L. T.; You, C.; Chang, J.; de Lau, W.; Zhong, Z. A.; Yan, K. S.; Marecic, O.; Siepe, D.; Li, X.; Moody, J. D.; Williams, B. O.; Clevenger, H.; Pfeffer, J.; Baker, D.; Kuo, C. J.; Garcia, K. C. Surrogate Wnt Agonists that Phenocopy Canonical Wnt and Beta-Catenin Signalling. Nature 2017, 545, 234–237.

(24) Dang, L. T.; Miao, Y.; Ha, A.; Yuki, K.; Park, K.; Janda, C. Y.; Jude, K. M.; Mohan, K.; Ha, N.; Vallon, M.; Yuan, J.; Vilches-Moreu, J. G.; Kuo, C. J.; Garcia, K. C.; Baker, D. Receptor Subtype Discrimination using Extensive Shape Complementary Designed Interfaces. Nat. Struct. Mol. Biol. 2019, 26, 407–414.

(25) Laskowski, R. A.; Swindells, M. B. LigPlot+ : Multiple Ligand-Protein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786.

(26) Mii, Y.; Taia, M. Secreted Wnt "Inhibitors" are not Just Inhibitors: Regulation of Extracellular Wnt by Secreted Frizzled-Related Proteins. Dev. Growth Differ. 2011, 53, 911–923.

(27) Ren, J.; Zhao, Y.; Fry, E. E.; Stuart, D. I. Target Identification and Mode of Action of Four Chemically Divergent Drugs against EV71 Infection. J. Med. Chem. 2018, 61, 724–733.

(28) Zhao, J.; Harlos, K.; Jones, D. M.; Zeltina, A.; Bowden, T. A.; Padilla-Parrá, S.; Fry, E. E.; Stuart, D. I. Toremifene Interacts with and Destabilizes the Ebola Virus Glycoprotein. Nature 2016, 535, 169–172.

(29) Olaru, A.; Bala, C.; Jaffrezzic-Renault, N.; Aboul-Enein, H. Y. Surface Plasmon Resonance (SPR) Biosensors in Pharmaceutical Analysis. Crit. Rev. Anal. Chem. 2015, 45, 97–105.

(30) Yadav, S. P.; Bergvist, S.; Doyle, M. L.; Neubert, T. A.; Yannikou, A. P. MIRG Survey 2011: Snapshot of Rapidly Evolving Label-free Technologies used for Characterizing Molecular Interactions. J. Biotechnol. 2012, 153, 94–100.

(31) Voloshanenko, O.; Gmach, P.; Winter, J.; Kranz, D.; Boutros, M. Mapping of Wnt-Frizzled Interactions by Multiplex CRISPR Targeting of Receptor Gene Families. FASEB J. 2017, 31, 4832–4844.

(32) Elekeheer, J.; Behiels, E.; Bishop, B.; Scott, S.; Woolley, R. E.; Griffiths, S. C.; Byrne, E. F. X.; Chang, V. T.; Stuart, D. I.; Jones, E. Y.; Siebold, C.; Aricescu, A. R. LentiTransduction of Mammalian Cells for Fast, Scalable and High-Level Production of Soluble and Membrane Proteins. Nat. Protoc. 2018, 13, 2991–3017.

(33) Im, D. U.; Kim, S. C.; Chau, G. C.; Um, S. H. Carbazapine Enhances Apgidogenisis by Inhibiting Wnt/beta-Catenin Expression. Cells 2019, 8, No. e1460.

(34) Akhoundi, M. S. A.; Sheikhzadeh, S.; Mirhashemi, A.; Ansari, E.; Kheirandish, Y.; Allaeddini, M.; Dehpour, A. Decreased Bone Density Induced by Antiepileptic Drugs can Cause Accelerated Orthodontic Tooth Movement in Male Wistar Rats. Int. Orthod. 2018, 16, 73–81.

(35) Coppola, G.; Fortunato, D.; Auricchio, G.; Mainolfi, C.; Operto, F. F.; Signoriello, G.; Pasquato, A.; Salvatore, M. Bone Mineral Density in Children, Adolescents, and Young Adults with Epilepsy. Epilepsia 2009, 50, 2140–2146.

(36) Feldkamp, J.; Becker, A.; Witte, O. W.; Scharff, D.; Scherbaum, W. A. Long-Term Anticonvulsant Therapy leads to Low Bone Mineral Density—Evidence for Direct Drug Effects of Phenytoin and Carbamazepine on Human Osteoblast-Like Cells. Exp. Clin. Endocrinol. Diabetes 2000, 108, 37–43.

(37) Hoikka, V.; Alhava, E. M.; Karjalainen, P.; Keranen, T.; Savolainen, K. E.; Riekkinen, P.; Korhonen, R. Carbazapine and Bone Mineral Metabolism. J. Clin. Endocrinol. Metab. 2017, 102, 1319–1329.

(38) Zhong, Z.; Ethen, N. J.; Williams, B. O. WNT Signaling in Bone Development and Homeostasis. Wiley Interdiscip. Rev. Dev. Biol. 2014, 3, 489–500.

(39) Albers, J.; Keller, J.; Baranowsky, A.; Beil, F. T.; Catala-Lehnens, P.; Schulze, J.; Amling, M.; Schinke, T. Canonical Wnt Signaling Inhibits Osteoclastogenesis Independent of Osteoprotegerin. J. Cell Biol. 2013, 200, 537–549.

(40) Albers, J.; Schulze, J.; Beil, F. T.; Gebauer, M.; Baranowsky, A.; Keller, J.; Marshall, R. P.; Wintges, K.; Friedrich, F. W.; Priemel, M.; Schilling, A. F.; Rieger, J. M.; Cornils, K.; Fehse, B.; Streichert, T.; Sauter, G.; Jakob, F.; Insogna, L. K.; Pober, B.; Knoebeloch, K. P.; Francke, U.; Amling, M.; Schinke, T. Control of Bone Formation by the Serpine Receptor Frizzled-9. J. Cell Biol. 2011, 192, 1057–1072.

(41) Heilmann, A.; Schinke, T.; Bindl, R.; Wehner, T.; Rapp, A.; Haffner-Luntzer, M.; Nemitz, C.; Liedert, A.; Amling, M.; Ignatius, A. Histone Deacetylase Inhibitors may Reduce the Risk of Prostate Cancer: A Population-based Case-Control Study. Cancer Causes Control 2016, 27, 637–645.

(42) Stettner, M.; Kramer, G.; Strauss, A.; Kitikina, T.; Ohle, S.; Kieseier, B. C.; Thelen, P. Long-term Antiepileptic Treatment with Histone Deacetylase Inhibitors may Reduce the Risk of Prostate Cancer. Eur. J. Cancer Prev. 2012, 21, 55–64.

(43) Meng, Q.; Chen, X.; Sun, J.; Zhao, C.; Sui, G.; Cai, L. Carbazapine Promotes Her-2 Protein Degradation in Breast Cancer Cells via the Wnt/beta-Catenin Signaling Pathway. Glia 2016, 64, 1083–1091.

(44) Catterall, W. A. Molecular Properties of Brain Sodium Channels: An Important Target for Anticonvulsant Drugs. Adv. Neuror. 1999, 79, 441–456.

(45) Haffner-Luntzer, M.; Nemitz, C.; Liedert, A.; Amling, M.; Ignatius, A. Histone Deacetylase Inhibitors may Reduce the Risk of Prostate Cancer: A Population-based Case-Control Study. Cancer Causes Control 2016, 27, 637–645.

(46) Albers, J.; Keller, J.; Baranowsky, A.; Beil, F. T.; Catala-Lehnens, P.; Schulze, J.; Amling, M.; Schinke, T. Canonical Wnt Signaling Inhibits Osteoclastogenesis Independent of Osteoprotegerin. J. Cell Biol. 2013, 200, 537–549.

(47) Albers, J.; Schulze, J.; Beil, F. T.; Gebauer, M.; Baranowsky, A.; Keller, J.; Marshall, R. P.; Wintges, K.; Friedrich, F. W.; Priemel, M.; Schilling, A. F.; Rieger, J. M.; Cornils, K.; Fehse, B.; Streichert, T.; Sauter, G.; Jakob, F.; Insogna, L. K.; Pober, B.; Knoebeloch, K. P.; Francke, U.; Amling, M.; Schinke, T. Control of Bone Formation by the Serpine Receptor Frizzled-9. J. Cell Biol. 2011, 192, 1057–1072.
Cancer Cells by Modulating HDAC6 Activity and Acetylation of Hsp90. *Mol. Cell Biochem.* 2011, 348, 165–171.

(58) Zhao, Y.; Ren, J.; Padilla-Parra, S.; Fry, E. E.; Stuart, D. I. Lysosome Sorting of Beta-Glucocerebrosidase by LIMP-2 Is Targeted by the Mannose 6-Phosphate Receptor. *Nat. Commun.* 2014, 5, No. 4321.

(59) Chen, C. M.; Krohn, J.; Bhattacharya, S.; Davies, B. A Comparison of Exogenous Promoter Activity at the ROSA26 Locus Using a PhiC31 Integrate Mediated Cassette Exchange Approach in Mouse ES Cells. *PLoS One* 2011, 6, No. e23376.

(60) Zhao, Y.; Bishop, B.; Clay, J. E.; Lu, W.; Jones, M.; Daenke, S.; Siebold, C.; Stuart, D. I.; Jones, E. Y.; Aricescu, A. R. Automation of Large Scale Transient Protein Expression in Mammalian Cells. *J. Struct. Biol.* 2011, 175, 209–215.

(61) Winter, G.; Lobley, C. M.; Prince, S. M. Decision Making in Xia2. *Acta Crystallogr., Sect. D: Biol. Crystallogr.* 2013, 69, 1260–1273.

(62) Emsley, P.; Cowtan, K. Coot: Model-Building Tools for Molecular Graphics. *Acta Crystallogr., Sect. D: Biol. Crystallogr.* 2004, 60, 2126–2132.

(63) Lebedev, A. A.; Isupov, M. N. Space-Group and Origin Ambiguity in Macromolecular Structures with Pseudo-Symmetry and its Treatment with the Program Zanuda. *Acta Crystallogr., Sect. D: Biol. Crystallogr.* 2008, 64, 2428–2432.

(64) Aricescu, A. R.; Lu, W.; Jones, E. Y. A Time- and Cost-Efficient System for High-Level Protein Production in Mammalian Cells. *Acta Crystallogr., Sect. D: Biol. Crystallogr.* 2006, 62, 1243–1250.

(65) Howarth, M.; Liu, W.; Puthenveetil, S.; Zheng, Y.; Marshall, L. F.; Schmidt, M. M.; Wittrup, K. D.; Bawendi, M. G.; Ting, A. Y. Monovalent, Reduced-size Quantum Dots for Imaging Receptors on Living Cells. *Nat. Methods* 2008, 5, 397–399.

(66) DasGupta, R.; Kaykas, A.; Moon, R. T.; Perrimon, N. Functional Genomic Analysis of the Wnt-Wingless Signaling Pathway. *Science* 2005, 308, 826–833.

(67) Willert, K.; Brown, J. D.; Danenberg, E.; Duncan, A. W.; Weissman, I. L.; Reya, T.; Yates, J. R 3rd.; Nusse, R. Wnt Proteins are Lipid-modified and can Act as Stem Cell Growth Factors. *Nature* 2003, 423, 448–452.