Isolation and Characterization of Microsatellite Loci in *Byrsonima cydoniifolia* (Malpighiaceae) and Cross-Amplification in *B. crassifolia* ¹

Vanessa Bernardes²,³,⁶, Daniela Elaine dos Anjos³, Sara Giselle de Cássia Alexandre Gondim³, Devanir Mitsuyuki Murakami⁴, Nair Biazão⁵, and Mariana Pires de Campos Telles²,³

¹Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia CP 13174001-970, Goiás, Brazil; ²Laboratório de Genética e Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia CP 13174001-970, Goiás, Brazil; ³Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Barra do Garças CP 78600-000, Mato Grosso, Brazil; and ⁴Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, Barra do Garças CP 78600-000, Mato Grosso, Brazil

Methods and Results: Seventeen microsatellite markers were isolated by a microsatellite-enriched library protocol. Fourteen polymorphic and three monomorphic loci were identified in *B. cydoniifolia*. The mean number of alleles in the three populations were 6.5, 6.5, and 8.2, ranging from three to 17 for different loci and populations. Mean observed and expected heterozygosities were 0.706 and 0.727, respectively. The fixation index was close to zero for all but two loci. Nine microsatellite loci were successfully cross-amplified in *B. crassifolia*.

Conclusions: This new set of microsatellite markers will be a useful tool for genetic studies of *B. cydoniifolia*, supporting strategies for maintaining the genetic diversity of this species and possibly that of many related species.

Key words: Byrsonima crassifolia; Byrsonima cydoniifolia; genetic variability; Malpighiaceae; murici; simple sequence repeat (SSR).

Byrsonima cydoniifolia A. Juss. (Malpighiaceae) is a species of fruit tree known as “murici” of the genus *Byrsonima* Rich. ex Kunth, which includes more than 150 species widely distributed in Central and South America (Aguiar et al., 2005). In Brazil, this tree is found in the sandy soils of the cerrado biome, mainly occurring in the floodplains of central Brazil (Pott and Pott, 1994). Species of the genus *Byrsonima* have a mixed mating system that includes pollination by bees and seed dispersal by animals. In various regions of Brazil, several species of this genus are commonly used as a source of raw material for food industries or are consumed directly by humans. The wood is harvested, and the leaves are used in traditional medicine to treat fever, ulcers, and skin infections or as anti-asthmatics (Garritano et al., 2006).

Despite its potential economic, medicinal, and ecological importance, there is a shortage of population genetic studies on *B. cydoniifolia*. Microsatellite markers can provide fine-scale information useful for understanding mating systems, population genetic structure, dispersal, and gene flow. However, such markers are available for only a few species in the genus *Byrsonima* (Croft and Schaal, 2012). Thus, in this paper, we describe the first development and characterization of microsatellite loci in *B. cydoniifolia*, allowing further studies of genetic diversity and population genetic structure in natural populations of this species. Cross-amplification in a related species (*B. crassifolia* L.) was successfully performed, suggesting that the newly characterized microsatellite markers might also be useful for genetic studies in other related *Byrsonima* species.

METHODS AND RESULTS

Samples from 90 individuals of *B. cydoniifolia* from three localities were analyzed, including 24 individuals from Bon Jardim, Goiás (16°16'41.6"S, 52°02'23.5"W), 30 from Barra do Garças, Mato Grosso (15°30'20.6"S, 52°16'50.3"W), and 36 from Araguaiana, Mato Grosso (14°41'48.1"S, 51°44'19"W).

doi:10.3732/apps.1400016

Applications in Plant Sciences 2014 2(5): 1400016; http://www.bioone.org/loi/apps © 2014 Bernardes et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY-NC-SA).
Vouchers (CNMT2476, CNMT983, CNMT2465) were deposited at the herbarium of the Universidade Federal de Mato Grosso (CNMT). Cross-amplification was tested for 24 individuals from one population of *B. crassifolia* from Silvânia, Goiás (16°43′6.8″S, 48°13′12.9″W; voucher no. CNMT2479).

A microsatellite-enriched library was constructed for *B. cydoniifolia* using protocols adapted from Billote et al. (1999). Genomic DNA was extracted from leaf tissue of a single adult *B. cydoniifolia* tree using the cetyltrimethylammonium bromide (CTAB) 2% protocol (Doyle and Doyle, 1987). Approximately 250 ng of genomic DNA was completely digested with the restriction enzyme *AgiI* (10 U/μL) (Invitrogen, Carlsbad, California, USA). The fragments were then ligated with the adapters *Rsa*21 (5′-CTCTTGGTACCGCTGACACTA-3′) and *Rsa*25 (5′-TAGTCACCCTGGAAGACGACA-3′) using T4 DNA ligase. To amplify the amount of ligated fragments, 5 μL of the ligation products were amplified with *Rsa*21 (10 μM) in a 50-μL reaction. The PCR conditions consisted of an initial step of 4 min at 95°C, followed by 20 cycles of 30 s at 94°C, 1 min at 60°C, and 1 min at 72°C; with a final extension at 72°C for 8 min.

The amplified DNA fragments (200–1200 bp in size) containing microsatellites were enriched for repeats by hybridization with a pool of 5′-biotinylated oligonucleotide probes ([CT]), ([GT]), and captured by streptavidin-coated magnetic beads (Promega Corporation, Madison, Wisconsin, USA). Enriched fragments were amplified by PCR using *Rsa*21 (10 μM) as the primer. The PCR products were ligated to a pGEM-T Easy Vector (Promega Corporation), and plasmid DNA was transformed into *E. coli* XL1-Blue Competent Cells (Stratagene, La Jolla, California, USA). A total of 60 positive clones were selected using the β-galactosidase gene and sequenced in an ABI3500 automated sequencer (Applied Biosystems, Carlsbad, California, USA) using the BigDye Terminator Cycle Sequencing Kit (Applied Biosystems). Screening for microsatellites was performed using WebSat software (Martins et al., 2009). Sequences of hybrid clones, duplicates, and those with short flanking sequences were discarded. Twenty-two (37%) of the sequenced clones contained microsatellites with at least seven uninterrupted repeats; 17 of these sequences were suitable for designing locus-specific primers with Primer3 (Rozen and Skalsky, 2000). The parameters used for microsatellite primer design were (1) a maximum of 3°C difference in melting temperature between the primers; (2) a GC content ranging from 40% to 60%; and (3) a PCR product size ranging from 150 to 200 bp.

The 17 primer pairs were used for the identification of polymorphic loci using a test panel of three *B. cydoniifolia* individuals selected randomly from three populations. Polymorphisms were evaluated in 6% denaturing polyacrylamide gels stained with silver nitrate (Creste et al., 2001) and sized by comparison to a 10-bp DNA ladder standard (Invitrogen). Each of the 17 primer pairs tested successfully amplified a microsatellite region; of these, 14 revealed polymorphic loci, whereas three were monomorphic. To characterize the microsatellite polymorphisms, the forward primers of each pair were labeled with one of three fluorescent dyes (5′ HEX, 5′ NED, or 5′-FAM) (Table 1). Amplifications were performed in a final volume of 10 μL using 3.75 ng of template DNA and 0.23 mM primers (forward + reverse), 0.23 μL of Taq DNA polymerase (5 U; Phoneutria, Belo Horizonte, Minas Gerais, Brazil) under the following conditions: 3 cycles of 94°C for 5 min (one cycle); 35 cycles of 94°C for 1 min, 46–62°C (depending on primers [Table 1]) for 1 min, and 72°C for 1 min; and 72°C for 45 min (one cycle). The lengths of the amplification products were determined using an automated sequencer (Applied Biosystems, Carlsbad, California, USA) using the ABI Prism 3500 Genetic Analyzer (ABI, Foster City, CA).

Table 1. Characteristics of 17 microsatellite loci developed in *Byrsonima cydoniifolia.*

Locus	Primer sequence (5′-3′)	Repeat motif	Allele size range (bp)	T_m (°C)	GenBank accession no.
BCY01	F: HEX-AGATGAGCTACCTCGGAGG	(TG)₁₀	160–192	60	KJ001649
	R: TGGCAATCTTGGACACATTCA				
BCY01c	F: HEX-ATTAGGAGATAGTGAGG	(AG)₈GA₂₀	149–175	60	KJ001650
	R: GTCGAAGAAGCATCCACCTG				
BCY03	F: 6-FAM-AGGGTAGAAGGAGGGCGTTG	(AGGG)₃(TG)₁	140–160	48	KJ001651
	R: ACATCCAGATGGCTCCGATT				
BCY04	F: TGCTCTGATACACATGAAA	(AAG)₄	176^a	52	KJ001652
	R: CAGCAAGAAATCTCGTGTGGA				
BCY05^a	F: NED-ATGATGTTGCTCCTACAGGA	(CA)₄	177–215	58	KJ001653
	R: TTATTTTCCAGGCGCTTTC				
BCY06^a	F: NED-TTATGGTGTATGCTTTAATGCT	(CA)₄	169–177	62	KJ001654
	R: ACTCCGTGATCGAAAGACC				
BCY07^a	F: HEX-AGAGGCAATGGTGGCTCAT	(CA)₄	180–200	60	KJ001655
	R: TCTCTCTTGCATCCGACGGTC				
BCY08^a	F: NED-CTGAAATCTGACAGAATTGAA	(AG)₁₄	151–167	60	KJ001656
	R: TGCTGGATATGTCCTCCAC				
BCY09^a	F: 6-FAM-TGCCATATCTTCTACACAGAGA	(AG)₁₉	175–221	58	KJ001657
	R: CAACGGTCTCTGCGAATACTCA				
BCY10^a	F: NED-AAAGGCAAGCTCTACCAGCTT	(CA)₁₂	169–189	59	KJ001658
	R: TTGCAGCATGGCAAGCACC				
BCY11^a	F: 6-FAM-GAATTTACAAAATCTTAGATCAGAAGTCG	(TG)₁₂Tr_{AT}_k	135–189	58	KJ001659
	R: GCGACACCTTCTAAATATTG				
BCY12^a	F: NED-CGATTATCTTCTTTGCTGGTAA	(GT)₈	196–202	62	KJ001660
	R: TGGAAATATTTCTCTGGATTTG				
BCY13^a	F: 6-FAM-TGGGTAGCCGCTTACCTC	(AC)₈	180–190	46	KJ001661
	R: GCCAACAGTTCCTCTTCTC				
BCY14^a	F: HEX-TGCAAGGAAATGTCACGGAGG	(TC)₁₂	170–200	62	KJ001662
	R: TGCAATACCTCCCATGATGTT				
BCY15^a	F: CAAGGTTAGGAGAACACT	(CT)₁₅	152^b	54	KJ001663
	R: GCAACACCAGCCACATAC				
BCY16^a	F: NED-TGAGGGACGTTACGAGTTCG	(CT)₁₅	150–175	64	KJ001664
	R: TGGGTGTGAGCTCCTAGATTGA				
BCY17^a	F: GCCGCCTGTGCGGTAAGCTT	(TG)₉	166^c	48	KJ001665
	R: CCCCCATACAAATCCCGTCTC				

Note: T_m = annealing temperature.

^aFor each forward primer of polymorphic loci, the fluorescent label is indicated at the 5′ end.

^bFragment size range based on 90 individuals from three populations in Brazil.

^cPrimers that were amplified successfully in cross-amplification with *Byrsonima crassifolia.*

^dMonomorphic loci not used to analyze genetic variability.

http://www.bioone.org/loi/apps
The new set of microsatellite loci described here will provide a powerful tool for studying genetic diversity, mating system parameters, gene flow, and the spatial genetic structure of *B. cydoniifolia*. This information can then be used to create effective strategies for conservation and the management of future germplasm banks. Furthermore, the success of cross-amplification in *B. crassifolia* suggests that this set of markers will also be useful for future population genetic studies in other species of *Byrsonima*.

LITERATURE CITED

AGUIAR, R. M., J. P. DAVID, AND J. M. DAVID. 2005. Unusual naphtoquinones, catechin and triterpene from *Byrsonima microphylla*. Phytochemistry 66: 2388–2392.

BILLIOTE, N., P. J. L. LACEDA, A. M. RISTERUCCI, AND F. C. BARENS. 1999. Microsatellite-enriched libraries: Applied methodology for the development of SSR markers in tropical crops. *Fruits* 54: 277–288.

CRESTE, S., A. TULMANN-NETO, AND A. FIGUEIRA. 2001. Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining. *Plant Molecular Biology Reporter* 19: 299–306.

DOYLE, J. J., AND J. L. DOYLE. 1987. A rapid DNA isolation procedure for small quantities of fresh tissue. *Phytochemical Bulletin* 19: 11–15.

GARRITANO, G. C. L. JORGE, AND A. P. S. M. GULIAS. 2006. Murici. In R. F. Vieira, T. S. Agostini-Costa, D. B. Silva, F. R. Ferreira, and S. M. Sano [eds.], Frutas nativas da região Centro-Oeste do Brasil, Vol. 14. Embrapa Recursos Genéticos e Biotecnologia, Distrito Federal, Brasília, Brazil.

GOUDET, J. 2002. FSTAT 2.9.3.2: A program to estimate and test gene diversities. *Genetics and Molecular Biology* 25: 399–401.

LEWIS, P. O., AND D. ZAYKIN. 2000. Genetic Data Analysis: Computer program for the analysis of allelic data (software). Website: http://www. eeb.uconn.edu/people/plewis/software.php [accessed 14 April 2014].

MARTINS, W. S., D. C. S. LUCAS, K. F. S. NEVES, AND D. J. BERTIOLI. 2009. Plantas do Pantanal. Empresa Brasileira de Pesquisa Agropecuária, Centro de Pesquisa Agropecuária do Pantanal, EMBRAPA-SPI, Corumbá, Mato Grosso, Brazil.

POTT, A., AND V. J. POTT. 1994. Planas do Pantanal. Empresa Brasileira de Pesquisa Agropecuária, Centro de Pesquisa Agropecuária do Pantanal, EMBRAPA-SPI, Corumbá, Mato Grosso, Brazil.

ROZEN, S., AND H. SKALETSKY. 2000. Primer3 on the WWW for general users and for biologist programmers. In S. Misener and S. A. Krawetz [eds.], Methods in molecular biology, vol. 132: Bioinformatics methods and protocols, 365–386. Humana Press, Totowa, New Jersey, USA.

VAN OOSTERHOUT, C., W. F. HUTCHINSON, D. P. M. WILLS, AND P. SHIPLEY. 2004. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. *Molecular Ecology Notes* 4: 535–538.