Continuum directed random polymers on disordered hierarchical diamond lattices

Jeremy Thane Clark∗
University of Mississippi, Department of Mathematics

Abstract

I discuss a family of models for a continuum directed random polymer in a disordered environment in which the polymer lives on a fractal, $D^{b,s}$, called the diamond hierarchical lattice. The diamond hierarchical lattice is a compact, self-similar metric space forming a network of intertwining pathways (continuum polymers) connecting a beginning node, A, to a termination node, B. This fractal depends on a branching parameter $b \in \{2, 3, \cdots\}$ and a segmenting number $s \in \{2, 3, \cdots\}$, and there is a canonical uniform probability measure μ on the collection of directed paths, $\Gamma^{b,s}$, for which the intersection set of two randomly chosen paths is almost surely either finite or of Hausdorff dimension $(\log s - \log b)/\log s$ when $s \geq b$. In the case $s > b$, my focus is on random measures on the set of directed paths that can be formulated as a subcritical Gaussian multiplicative chaos measure with expectation μ. When normalized, this random path measure is analogous to the continuum directed random polymer (CDRP) introduced by Alberts, Khanin, Quastel [Journal of Statistical Physics 154, 305-326 (2014)], which is formally related to the stochastic heat equation for a $(1+1)$-dimension polymer.

Keywords: Gaussian multiplicative chaos, diamond hierarchical lattice, random branching graphs

1 Introduction

Alberts, Khanin, and Quastel [2, 3] introduced a continuum directed random polymer (CDRP) model for a one-dimensional Wiener motion (the polymer) over a time interval $[0, 1]$ whose law is randomly transformed through a field of impurities spread throughout the medium of the polymer. The polymer’s disordered environment is generated by a time-space Gaussian white noise $\{W(x)\}_{x \in D}$ where $D := [0, 1] \times \mathbb{R}$ (in other terms, W is a δ-correlated Gaussian field). For an inverse temperature parameter $\beta > 0$, the CDRP is a random probability measure Q^W_β on the set of trajectories $\Gamma := C([0, 1])$ that is formally expressed as

$$Q^W_\beta(dp) = \frac{1}{M(\Gamma)} M(dp) \quad \text{for} \quad M(dp) = e^{\beta W_p - \frac{\beta^2}{2} E[W_p^2]} \mu(dp), \quad (1.1)$$

where μ refers to the standard Wiener measure on Γ and $\{W_p\}_{p \in \Gamma}$ is a Gaussian field formally defined by integrating the white noise over a Brownian trajectory: $W_p = \int_0^1 W(p(r)) dr$. The random measure $M \equiv M(W)$ is a function of the field such that $E[M] = \mu$ and yet M is a.s. singular with respect to μ.

The rigorous mathematical meaning of the random measure M in (1.1) requires special consideration since exponentials of the field W_p do not have an immediately clear meaning, and, indeed, if the measure M is singular with respect to μ the expression $\exp\{\beta W_p - (\beta^2/2)E[W_p^2]\}$ cannot define a Radon-Nikodym derivative $dM/d\mu$ anyway. The construction approach of M in [3] involves an analysis of the finite-dimensional distributions through Wiener chaos expansions. Another point-of-view

∗jeremy@olemiss.edu
is that the random measure M has the form of a Gaussian multiplicative chaos (GMC) measure over the Gaussian field $\{W_p\}_{p \in \Gamma}$. GMC theory began with an article by Kahane [21] and much of the progress on this topic has been motivated by the demands of quantum gravity theory [4, 11, 12, 25] although GMC theory arises in many other fields, including random matrix theory [29] and number theory [27]. A GMC is classified as subcritical or critical, respectively, depending on whether the expectation measure, $\mathbb{E}[M]$, is σ-finite or not. Because of its relevance to quantum gravity, the relatively unwieldy case of critical GMC has attracted the most attention, with recent results in [5, 20, 24]. The random measure M in (1.1) is subcritical since $\mathbb{E}[M] = \mu$ is a probability measure. Shamov [28] has formulated subcritical GMC measure theory in a particularly complete and accessible way.

In this article, I will study a GMC measure analogous to (1.1) for a CDRP living on a fractal $D^{b,s}$ referred to as the diamond hierarchical lattice. Given a branching parameter $b \in \{2, 3, \cdots \}$ and a segmenting parameter $s \in \{2, 3, \cdots \}$, the diamond hierarchical lattice is a compact metric space that embeds bs shrunken copies of itself, which are arranged through b branches that each have s copies running in series; see the construction outline below in (A) and (B) of Section 1.1. Diamond hierarchical lattices provide a useful setting for formulating toy statistical mechanical models; for example, [14, 15, 16, 17, 18, 22, 26]. Lacoin and Moreno [23] studied (discrete) directed polymers on disordered diamond hierarchical lattices, classifying the disorder behavior based on the cases $b < s$, $b = s$, and $b > s$, which are combinatorially analogous, respectively, to the $d = 1$, $d = 2$, and $d > 3$ cases of directed polymers on the $(1 + d)$-rectangular lattice. In [1], we studied a functional limit theorem for the partition function of the $b < s$ diamond lattice polymer in a scaling limit in which the temperature grows as a power law of the length of the polymer. This limit result is analogous to the intermediate disorder regime in [2] for directed polymers on the $(1 + 1)$-rectangular lattice. My focus here will be developing theory for a CDRP corresponding to the limiting partition function obtained in [1].

A similar CDRP model on the $b = s$ diamond lattice, if it exists, would likely require a different approach for its construction; see [6] for computations relevant to the continuum limit of discrete polymers. It is interesting to compare this question with results [7, 8] by Caravenna, Sun, and Zygouras on scaling limits for $(1 + 2)$-rectangular lattices polymers.

1.1 Overview of the continuum directed random polymer on the diamond lattice

In this section I will sketch the construction of the continuum directed random polymer on the diamond hierarchical lattice and explore some of its properties. I discuss the diamond lattice fractal and its relevant substructures in more detail in Section 2. Proof of propositions are placed in Section 3.

A. The sequence of diamond hierarchical graphs

For a branching number $b \in \{2, 3, 4, \cdots \}$ and a segmenting number $s \in \{2, 3, 4, \cdots \}$, the first diamond graph $D^{b,s}_1$ is defined by b parallel branches connecting two root nodes A and B wherein each branch is formed by s bonds running in series. The graphs $D^{b,s}_{n+1}$, $n \geq 1$ are then constructed inductively by replacing each bond on $D^{b,s}_1$ by a nested copy of $D^{b,s}_n$; see the illustration below of the $(b, s) = (2, 3)$ case.

![Diagram](image-url)
The set of bonds (edges) on the graph $D_{n}^{b,s}$ is denoted by $E_{n}^{b,s}$. A directed path is a one-to-one function $p: \{1, \cdots, s^n\} \to E_{n}^{b,s}$ such that the bonds $p(j)$, $p(j+1)$ are adjacent for $1 \leq j \leq s^n - 1$ and the bonds $p(1)$ and $p(s^n)$ connect to A and B, respectively. I will use the following notations:

\[
\begin{align*}
V_{n}^{b,s} &= \text{Set of vertex points on } D_{n}^{b,s} \\
E_{n}^{b,s} &= \text{Set of bonds on the graph } D_{n}^{b,s} \\
\Gamma_{n}^{b,s} &= \text{Set of directed paths on } D_{n}^{b,s} \\
[p]_{n} &= \text{The path in } \Gamma_{n}^{b,s} \text{ determined by } p \in \Gamma_{N}^{b,s} \text{ for } N > n
\end{align*}
\]

Remark 1.1. The hierarchical structure of the sequence of diamond graphs implies that $V_{n}^{b,s}$ is canonically embedded in $V_{N}^{b,s}$ for $N > n$. The vertices in $V_{n}^{b,s} \setminus V_{n-1}^{b,s}$ are referred to as the n^{th} generation vertices. In the same vein, $E_{n}^{b,s}$ and $\Gamma_{n}^{b,s}$ define equivalence relations on $E_{N}^{b,s}$ and $\Gamma_{N}^{b,s}$, respectively. For instance, $p, q \in \Gamma_{N}^{b,s}$ are equivalent up to generation n if $[p]_{n} = [q]_{n}$.

Remark 1.2. $V_{n}^{b,s}$ is a countable, dense subset of $D_{n}^{b,s}$.

Remark 1.3. In analogy to Remark 1.1, $V_{n}^{b,s}$ is canonically identifiable with $\cup_{n=1}^{\infty} V_{n}^{b,s}$. Also, $E_{n}^{b,s}$ and $\Gamma_{n}^{b,s}$ define equivalence relations on $E_{n}^{b,s}$ and $\Gamma_{n}^{b,s}$ for each $n \in \mathbb{N}$.

Remark 1.4. The measure ν is defined such that $\nu(V_{n}^{b,s}) = 0$ and, under the interpretation of Remark 1.3, $\nu(e) = 1/|E_{n}^{b,s}|$ for each $n \in \mathbb{N}$ and $e \in E_{n}^{b,s}$. Similarly μ is defined so that $\mu(p) = 1/|\Gamma_{n}^{b,s}|$ for any $p \in \Gamma_{n}^{b,s}$.

Remark 1.5. Let $(\Gamma_{i,j}^{b,s}, \mu^{(i,j)})$ be copies of $(\Gamma_{N}^{b,s}, \mu)$ corresponding to the embedded subcopies, $D_{i,j}^{b,s}$, of $D_{b,s}$. The path space $(\Gamma_{b,s}, \mu)$ can be decomposed as

\[
\Gamma_{b,s} = \bigcup_{i=1}^{b} \bigtimes_{j=1}^{s} \Gamma_{i,j}^{b,s} \quad \text{and} \quad \mu = \frac{1}{b} \sum_{i=1}^{b} \prod_{j=1}^{s} \mu^{(i,j)} \quad (1.2)
\]

by way of s-fold concatenation of the paths.

Proposition 1.6. Fix some $p \in \Gamma_{b,s}$ and let $q \in \Gamma_{b,s}$ be chosen uniformly at random, i.e., according to the measure $\mu(dq)$. Define the set of intersection times $I_{p,q} = \{ r \in [0,1] | p(r) = q(r) \}$, and define $N_{p,q}^{(n)} := \sum_{k=1}^{s^n} 1_{[p]_{n}(k) = [q]_{n}(k)}$, in other terms, as the number of bonds shared by $[p]_{n}$, $[q]_{n} \in \Gamma_{n}^{b,s}$.

3
(i). As \(n \to \infty \) the sequence of random variables \(T_{p,q}^{(n)} = (\frac{1}{sn})^b N_{p,q}^{(n)} \) converges almost surely to a limit \(T_{p,q} \). The moment generating function \(\varphi_n(t) = \mathbb{E}\exp\{tT_{p,q}^{(n)}\} \) converges pointwise to the moment generating function of \(T_{p,q} \), and, in particular, the second moment of \(T_{p,q}^{(n)} \) converges to the second moment of \(T_{p,q} \).

(ii). \(I_{p,q} \) is a finite set with probability \(1 - p_{b,s} \) for \(p_{b,s} \in (0,1) \) satisfying \(p_{b,s} = \frac{1}{2}[1 - (1 - p_{b,s})^s] \). In this case, the intersections occur only at vertex points.

(iii). In the event that \(I_{p,q} \) is infinite, the Hausdorff dimension of \(I_{p,q} \) is almost surely \(h := \frac{\log s - \log b}{\log s} \).

Definition 1.7. The intersection time \(T_{p,q} \) of two paths \(p, q \in \Gamma_{b,s} \) is defined as

\[
T_{p,q} := \lim_{n \to \infty} \left(\frac{1}{sn} \right)^h N_{p,q}^{(n)} .
\]

Remark 1.8. The intersection time satisfies the formal identity

\[
\int_0^1 \int_0^1 \delta_D(p(r), q(t)) \, dr \, dt = T_{p,q} ,
\]

where \(\delta_D \) is the \(\delta \)-distribution on \(D_{b,s} \) satisfying \(f(x) = \int_{D_{b,s}} \delta_D(x,y) f(y) \nu(y) \) for a test function \(f : D_{b,s} \to \mathbb{R} \). The above identity can be understood in terms of the discrete graphs \(D_n^{b,s} \) for which any two directed paths \(p, q : \{1, \cdots, s^n\} \to E_n^{b,s} \) satisfy

\[
\frac{1}{sn} \sum_{1 \leq j \leq s^n} \frac{1}{sn} \sum_{1 \leq k \leq s^n} 1_{p_j = q_k} \cdot (\frac{1}{sn})^h \sum_{1 \leq j \leq s^n} 1_{p_j = q_j} = (\frac{1}{sn})^h N_{p,q}^{(n)} .
\]

(C). A Gaussian field on directed paths

Let \(W \) denote a Gaussian white noise on \((D_{b,s}, \nu) \) defined within some probability space \((\Omega, \mathcal{F}, \mathbb{P}) \), i.e., a linear map from \(\mathcal{H} := L^2(D_{b,s}, \nu) \) into a Gaussian subspace of \(L^2(\Omega, \mathcal{F}, \mathbb{P}) \) such that

\[
\psi \in \mathcal{H} \quad \mapsto \quad W(\psi) \sim \mathcal{N}(0, \|\psi\|^2_{\mathcal{H}}) .
\]

I also use the alternative notations

\[
W(\psi) \equiv (W, \psi) \equiv \int_{D_{b,s}} W(x) \psi(x) \nu(dx) ,
\]

where the field \(W(x) \), \(x \in D_{b,s} \) formally satisfies the \(\delta \)-correlation \(\mathbb{E}[W(x)W(y)] = \delta_D(x,y) \).

Next I discuss a field \(W_p \), \(p \in \Gamma_{b,s} \) formally defined by integrating the white noise along paths:

\[
W_p = \int_0^1 W(p(r)) \, dr .
\]

The kernel \(K_{\Gamma}(p,q) \) is given by the intersection time by the identity [1.3]

\[
K_{\Gamma}(p,q) = \mathbb{E}[W_p W_q] = \int_0^1 \int_0^1 \delta_D(p(r), q(t)) \, dr \, dt = T_{p,q} .
\]

Define \(Y : \mathcal{H} \to L^2(\Gamma_{b,s}, \mu) \) as

\[
(Y\psi)(p) = \int_0^1 \psi(p(r)) \, dr .
\]
Theorem 1.13. Let βY be a Gaussian multiplicative chaos on paths.

Remark 1.10. I prove Proposition 1.9 by constructing a sequence of GMC measures $\{M^{(n)}_\beta\}_{n \in \mathbb{N}}$ that form a martingale and have well-defined Radon-Nikodým derivatives $dM^{(n)}_\beta/d\mu$.

Remark 1.11. I prove Proposition 1.9 by constructing a sequence of GMC measures $\{M^{(n)}_\beta\}_{n \in \mathbb{N}}$ that form a martingale and have well-defined Radon-Nikodým derivatives $dM^{(n)}_\beta/d\mu$.

By \cite{28} the existence and uniqueness of the subcritical GMC measure M_β in Proposition 1.9 is equivalent to the operator βY defining a random shift of the field W. In other terms, the law \mathbb{P}_β determined by $L_{\mathbb{P}_\beta}[W] := \mathbb{P}_{\beta \times \mu}[W + \beta Y]$ is absolutely continuous with respect to the law \mathbb{P}.

Theorem 1.12. βY defines a random shift of the field W.

Theorem 1.13. For $\beta > 0$ let the random measure $M_\beta(dp)$ be defined as in Proposition 1.9.

(i) M_β is a.s. mutually singular to μ.

(ii) The product measure $M_\beta \times M_\beta$ is a.s. supported on pairs $(p,q) \in \Gamma^{b,s} \times \Gamma^{b,s}$ such that the intersection set $I_{p,q} = \{r \in [0,1] | p(r) = q(r)\}$ is either finite or has Hausdorff dimension $\delta = (\log s - \log b)/\log s$.

To see that Y is a bounded operator, notice that by Jensen’s inequality

$$
\int_{\Gamma^{b,s}} |(Y\psi)(p)|^2 \mu(dp) \leq \int_{\Gamma^{b,s}} \int_0^1 |\psi(p(r))|^2 dr \mu(dp) = \int_{\Gamma^{b,s}} |\psi(x)|^2 \nu(dx) = \|\psi\|_{\mathcal{H}}^2.
$$

In particular, Y is continuous when the topology of the codomain is identified with $L^0(\Gamma^{b,s}, \mu)$, i.e., convergence in measure with respect to μ. In the terminology of \cite{28}, a continuous function Y from \mathcal{H} to $L^0(\Gamma^{b,s}, \mu)$ is referred to as a generalized \mathcal{H}-valued function over the measure space $(\Gamma^{b,s}, \mu)$. The pair (W,Y) encodes the Gaussian field W on $\Gamma^{b,s}$ by defining

$$
\int_{\Gamma^{b,s}} W_p f(p) \mu(dp) =: \langle W, Y^* f \rangle \text{ for a test function } f \in L^2(\Gamma^{b,s}, \mu).
$$

The adjoint $Y^*: L^2(\Gamma^{b,s}, \mu) \to \mathcal{H}$ can be expressed in the form $(Y^*f)(x) = \int_{\Gamma^{b,s}} f(p) \int_0^1 \delta_D(p(r), x)$. I will use the notation $(Y\psi)(p) \equiv \langle Y_p, \psi \rangle$ and summarize (1.5) as $W_p = (Y_p, W)$.

Proposition 1.9. There exists a unique random measure, $M_\beta(dp)$, on $(\Gamma^{b,s}, \mu)$ satisfying the properties (I)-(III) below.

(I). $E[M_\beta] = \mu$

(II). M_β is adapted to the white noise W. Thus I can write $M_\beta(dp) \equiv M_\beta(W, dp)$.

(III). For $\psi \in \mathcal{H}$ and a.e. realization of the field W,

$$
M_\beta(W + \psi, dp) = e^{\beta(Y\psi)(p)} M_\beta(W, dp).
$$

Remark 1.10. M_β is the subcritical Gaussian multiplicative chaos on $(\Gamma^{b,s}, \mu)$ over the field (W,Y) with expectation μ.

Remark 1.11. I prove Proposition 1.9 by constructing a sequence of GMC measures $\{M^{(n)}_\beta\}_{n \in \mathbb{N}}$ that form a martingale and have well-defined Radon-Nikodým derivatives $dM^{(n)}_\beta/d\mu$.
(iii). Let $(\Gamma^{b,s}_{i,j}, M^{(i,j)}_\beta)$ be independent copies of $(\Gamma^{b,s}, M_\beta)$ corresponding to the first-generation embedded copies, $D^{b,s}_{i,j}$, of $D^{b,s}$. Then there is equality in distribution of random measures

$$M^{\sqrt{\beta}} = \frac{1}{b} \sum_{i=1}^{b} \prod_{j=1}^{s} M^{(i,j)}_\beta$$

under the identification $\Gamma^{b,s} = \bigcup_{i=1}^{b} \times \Gamma^{b,s}_{i,j}$.

Remark 1.14. Part (ii) of the Theorem 1.13 implies that the random measure M_β almost surely has no atoms.

The next theorem states two strong disorder properties in the $\beta \gg 1$ regime. Analogous results were obtained in [23] for discrete polymers on diamond graphs.

Theorem 1.15. Let the random measure $M_\beta(dp)$ be defined as in Proposition 1.9 and define the random probability measure $Q_\beta(dp) = M_\beta(dp)/M_\beta(\Gamma^{b,s})$. As $\beta \to \infty$,

(i). the random variable $M_\beta(\Gamma^{b,s})$ converges in probability to 0, and

(ii). the random variable $\max_{p \in \Gamma^{b,s}} Q_\beta(p)$ converges in probability to 1.

Remark 1.16. In particular, part (ii) implies that when $\beta \gg 1$ most of the weight of the measure $M_\beta(dp)$ is concentrated on a single course-grained path $p \in \Gamma^{b,s}$.

(E). A Gaussian multiplicative chaos martingale

I will expand on the structure and properties of the map $Y : \mathcal{H} \to L^2(\Gamma^{b,s}, \mu)$.

Proposition 1.17. The linear operator Y is compact and has the following properties:

(i). Y can be decomposed as $Y = UD$ where $U : \mathcal{H} \to L^2(\Gamma^{b,s}, \mu)$ is an isometry and $D : \mathcal{H} \to \mathcal{H}$ is a self-adjoint operator with eigenvalues $\lambda_n = s^{-n+1}$ for $n \in \mathbb{N} \cup \{\infty\}$.

(ii). The null space of Y, which I denote by \mathcal{H}_∞, is infinite dimensional. For $2 \leq n < \infty$, the eigenspace \mathcal{H}_n corresponding to the eigenvalue λ_n has dimension $(bs)^{n-1}(b-1)$. The eigenspace corresponding to $\lambda_0 = 1$ has dimension b, which I decompose into the one-dimensional space of constant functions, \mathcal{H}_0, and an orthogonal complement, \mathcal{H}_1.

(iii). For $1 \leq n < \infty$ the space \mathcal{H}_n has an orthogonal basis $f_{(e,\ell)}$ labeled by $(e, \ell) \in E^{b,s}_{n-1} \times \{1, \cdots, b-1\}$, where the function $f_{(e,\ell)}$ is supported on $e \subset D^{b,s}$.

(iv). $YY^* : L^2(\Gamma^{b,s}, \mu) \to L^2(\Gamma^{b,s}, \mu)$ is a self-adjoint operator with eigenvalues $\tilde{\lambda}_n = s^{-n+1}$ for $n \in \mathbb{N} \cup \{\infty\}$ with eigenspaces having dimension b for $n = 1$ and $(bs)^{n-1}(b-1)$ for $n \geq 2$. Hence YY^* has Hilbert-Schmidt norm $\|YY^*\|_{HS} = (b^{n-1}+1)^{1/2}$ but is not traceclass.

Remark 1.18. $\oplus_{k=0}^{\infty} \mathcal{H}_k$ is the orthogonal complement to the space of all $\psi \in \mathcal{H} = L^2(D^{b,s}, \nu)$ such that $\int_0^1 \psi(p(r)) \, dr$ is zero for every path $p \in \Gamma^{b,s}$.

Definition 1.19. Define $Y^{(n)} : \mathcal{H} \to L^2(\Gamma^{b,s}, \mu)$ to act as $Y^{(n)} \psi = E[Y \psi \mid F_n]$, where F_n is the σ-algebra on $\Gamma^{b,s}$ generated the map $p \mapsto [p]_n$.

Remark 1.20. $Y^{(n)}$ can also be written in the following forms:

- $(Y^{(n)} \psi)(p) = \int_{\tilde{p} \in [p]_n} (Y \psi)(\tilde{p}) \mu(d\tilde{p})$, in other terms, the average of $(Y \psi)(\tilde{p})$ over all $\tilde{p} \in \Gamma^{b,s}$ in the same generation-n equivalence class of p.

6
• \((Y^{(n)} \psi)(p) = \langle Y_p^{(n)}, \psi \rangle \) for \(Y_p^{(n)} \in H \) defined as \(Y_p^{(n)} := \chi_{T_p^{(n)}} / \nu(T_p^{(n)}) \), where \(T_p^{(n)} = \cup_{k=1}^n [p]_n(k) \), i.e., the generation-\(n \) course-grained trace of the path \(p \) through the space \(D^{b,s} \).

Proposition 1.21. The maps \(Y^{(n)} : H \rightarrow L^2(\Gamma^{b,s}, \mu) \) satisfy the properties below.

(i). Let \(P_n : H \rightarrow H \) be the orthogonal projection onto \(\oplus_{k=0}^n \mathcal{H}_k \) for \(\mathcal{H}_k \) defined as in part (ii) of Proposition 1.17. For any \(\psi \in H \),

\[
Y^{(n)} \psi = Y P_n \psi.
\]

(ii). As \(n \rightarrow \infty \), the map \(Y^{(n)} \) converges in operator norm to \(Y \).

(iii). As \(n \rightarrow \infty \), \(Y^{(n)}(Y^{(n)})^* \) converges in Hilbert-Schmidt norm to \(YY^* \), which has integral kernel \(K_\Gamma(p,q) = T_{p,q} \), i.e., the intersection time of the paths.

(iv). For any \(k \in \mathbb{N} \) and \(p \in \Gamma^{b,s} \), \(Y_p^{(k)} - Y_p^{(k-1)} \in \mathcal{H}_k \). In particular, the following sequence of vectors in \(H \) are orthogonal:

\[
Y_p^{(0)}, Y_p^{(1)} - Y_p^{(0)}, Y_p^{(2)} - Y_p^{(1)}, \ldots
\]

Proposition 1.22. Define \(\mathcal{F}_n \) to be the \(\sigma \)-algebra on \(\Omega \) generated by the field variables \(\langle W, \psi \rangle \) for \(\psi \in \oplus_{k=0}^n \mathcal{H}_k \). Let \(M^{(n)}_\beta \) be the GMC measure over the finite-dimensional field \((W, \beta Y^{(n)}) \), i.e., with Radon-Nikodym derivative

\[
\frac{dM^{(n)}_\beta}{d\mu} = \exp \left\{ \beta \langle W, Y^{(n)} \rangle - \frac{\beta^2}{2} \| Y^{(n)} \|^2_{L^2} \right\}.
\]

The sequence of measures \(\{M^{(n)}_\beta\}_{n \in \mathbb{N}} \) forms a martingale with respect to the filtration \(\mathcal{F}_n \) and a.s. converges vaguely to the GMC measure \(M_\beta \).

(F). Chaos expansion construction of the GMC measure

The Gaussian multiplicative chaos \(M_\beta \) can also be constructed through chaos expansions analogous to those in [3]. The chaos decomposition generated by the field \(W \) is

\[
L^2(\Omega, \mathcal{F}(W), \mathbb{P}) = \bigoplus_{k=0}^\infty \mathcal{H}_W^{(k)},
\]

where \(\mathcal{H}_W^{(k)} \) is the orthogonal complement of the set \(\overline{P}_{k-1}(H) \) within \(\overline{P}_k(H) \) for

\[
\mathcal{P}_k(H) := \{ p(\langle W, \psi_1 \rangle, \ldots, \langle W, \psi_k \rangle) \mid p : \mathbb{R}^k \rightarrow \mathbb{R} \text{ is a degree-}k \text{ polynomial and } \psi_1, \ldots, \psi_k \in \mathcal{H} \}.
\]

There is a canonical isometry between \(\mathcal{H}_W^{(k)} \) and the \(k \)-fold symmetric tensor, \(\mathcal{H}^{\otimes k} \), of \(H \). This isometry can be expressed as a map from symmetric functions \(f(x_1, \ldots, x_k) \) in \(L^2((D^{b,s})^k, 1/m^k) \) to elements of \(\mathcal{H}_W^{(k)} \) expressed as stochastic integrals:

\[
\frac{1}{k!} \int_{(D^{b,s})^k} f(x_1, \ldots, x_k) W(x_1) \cdots W(x_k) \nu(dx_1) \cdots \nu(dx_k).
\]

Intuitively, the integral above is to be understood as over points \((x_1, \ldots, x_k) \in (D^{b,s})^k \) for which the components \(x_j \) are distinct. See [19] Section 7.2 for the general theory of stochastic integrals.

Let \(S \) be a finite subset of \(E^{b,s} \) and define \(\Gamma^{b,s}_S \) as the collection of paths \(p \in \Gamma^{b,s} \) such that \(S \subset \text{Range}(p) \). If \(\Gamma^{b,s}_S \) is nonempty, define \(\mu_S \) as the probability measure uniformly distributed over paths in \(\Gamma^{b,s}_S \) (and thus supported on \(\Gamma^{b,s}_S \)). If \(\Gamma^{b,s}_S = \emptyset \), i.e., there is no path containing all the points in \(S \), then \(\mu_S \) is defined as zero.
Definition 1.23. For a Borel set $A \subset \Gamma^{b,s}$, define $\rho_n(x_1, \ldots, x_k; A)$ as a map from $(D^{b,s})^k$ to $[0, \infty)$ with

$$
\rho_n(x_1, \ldots, x_k; A) := \begin{cases}
\beta^n(x_1, \ldots, x_k) \mu_{\{x_1, \ldots, x_k\}}(A) & x_1, \ldots, x_k \in E^{b,s} \\
0 & \text{otherwise,}
\end{cases}
$$

where $\gamma(S)$ is defined for a finite subset of $E^{b,s}$ as

$$
\gamma(S) := \sum_{k=0}^{\infty} \left(|S| - \left| \{e \in E^{b,s}_k \mid e \cap S \neq \emptyset \} \right| \right).
$$

In the above formula for $\gamma(S)$, elements of $E^{b,s}_k$ are to be understood as subsets of $E^{b,s}$, and the $k = 0$ term of the sum is always interpreted as $|S| - 1$.

Remark 1.24. The term $\left| \{e \in E^{b,s}_k \mid e \cap S \neq \emptyset \} \right|$ counts the number of distinct equivalence classes from $E^{b,s}_k$ corresponding to elements in S.

Theorem 1.25. For any Borel set $A \subset D^{b,s}$, the random variable $M_\beta(W, A)$ is equal to the chaos expansion

$$
\mu(A) + \sum_{k=1}^{\infty} \frac{\beta^{n_k}}{k!} \int_{(D^{b,s})^k} \rho_k(x_1, \ldots, x_k; A) W(x_1) \cdots W(x_k) \nu(dx_1) \cdots \nu(dx_k).
$$

The sequence of symmetric functions $\{\rho_k(x_1, \ldots, x_k; A)\}_{k \in \mathbb{N}}$ satisfy

(i). $\int_{D^{b,s}} \rho_k(x_1, \ldots, x_k; A) \nu(dx_k) = \rho_{k-1}(x_1, \ldots, x_{k-1}; A)$ and

(ii). $\int_{(D^{b,s})^k} \rho_k(x_1, \ldots, x_k; A) \nu(dx_1) \cdots \nu(dx_k) = \mu(A)$.

(G). Scaling limits from non Gaussian variables

For each $n \in \mathbb{N}$ let $\{\omega^{(n)}_a\}_{a \in E^{b,s}_n}$ be a family of i.i.d. random variables indexed by the edge set of the diamond lattice $D^{b,s}$. Assume that the variables have mean zero, variance one, and finite exponential moments: $E[\exp(\beta \omega^{(n)}_a)] < \infty$ for $\beta \in \mathbb{R}$. Define a random measure $M^{(n)}_{\beta}$ on $\Gamma^{b,s}_n$ as follows:

$$
M^{(n)}_{\beta}(A) = \frac{1}{|\Gamma_n^{b,s}|} \sum_{p \in A} \prod_{k=1}^{s^n} \left[\frac{\exp \left\{ \beta \omega^{(n)}_{p(k)} \right\}}{\exp \left\{ \beta \omega^{(n)}_{p(k)} \right\}} \right] \quad \text{for } A \subset \Gamma^{b,s}_n. \tag{1.10}
$$

The theorem below follows as a consequence of Theorem 4.6 of [1].

Theorem 1.26. Fix $N \in \mathbb{N}$ and let subsets of $\Gamma_N^{b,s}$ be identified with the canonically corresponding subsets of $\Gamma^{b,s}$ and of $\Gamma_N^{b,s}$ for $n > N$. For $\beta := (\beta(b/s))^{n/2}$, the family of random variables $M^{(n)}_{\beta_n}(A)$ labeled by $A \subset \Gamma^{b,s}_N$ has joint convergence in law as $n \to \infty$ given by

$$
\{M^{(n)}_{\beta_n}(A)\}_{A \subset \Gamma^{b,s}_N} \Rightarrow \{M_\beta(A)\}_{A \subset \Gamma^{b,s}_N}. \tag{1.11}
$$

2 Diamond hierarchical lattice

In this section I will provide a path-based construction of the diamond hierarchical lattice as a compact metric space. The proofs of propositions in this section are in the appendix.
2.1 Construction of the diamond lattice as a metric space

The hierarchical formulation of the diamond graph $D_{b,s}^n$ in terms of $b \cdot s$ embedded copies of $D_{n-1}^{b,s}$ carries with it a canonical one-to-one correspondence between $\{\{1, \cdots, b\} \times \{1, \cdots, s\}\}^n$ and the set of bonds, $E_{n}^{b,s}$. I will construct the diamond hierarchical lattice, $D_{b,s}^n$, as an equivalence class on the set of sequences $D_{b,s}^n := \{\{1, \cdots, b\} \times \{1, \cdots, s\}\}^\infty$ determined by a semi-metric $d_D : D_{b,s}^n \times D_{b,s}^n \rightarrow [0,1]$ defined below.

Let $\tilde{\pi} : D_{b,s}^n \rightarrow [0,1]$ be the “projective” map sending a sequence $x = \{(b_{k}^{x}, s_{k}^{x})\}_{k \in \mathbb{N}}$ to

$$\tilde{\pi}(x) := \sum_{k=1}^{\infty} \frac{s_{k}^{x} - 1}{s_{k}^{x}}.$$

Of course, the right side above is the base s generalized decimal expansion of the number $\tilde{\pi}(x) \in [0,1]$ having k^{th} digit $s_{k}^{x} - 1$. The root vertices of the continuum lattice will be identified with the sets $A := \{x \in D_{b,s}^n | \tilde{\pi}(x) = 0\}$ and $B := \{x \in D_{b,s}^n | \tilde{\pi}(x) = 1\}$.

For two points $x = \{(b_{k}^{x}, s_{k}^{x})\}_{k \in \mathbb{N}}$ and $y = \{(b_{k}^{y}, s_{k}^{y})\}_{k \in \mathbb{N}}$ in $D_{b,s}^n$, I write $x \downarrow y$ if x or y is contained in $A \cup B$ or for some $n \in \mathbb{N}$

$$(b_{k}^{x}, s_{k}^{x}) = (b_{k}^{y}, s_{k}^{y}) \quad \text{for} \quad 1 \leq k < n-1 \quad \text{and} \quad b_{n}^{x} = b_{n}^{y} \quad \text{but} \quad s_{n}^{x} \neq s_{n}^{y}.$$

In other terms the sequence of pairs defining x and y disagree for the first time at an s-component value. Intuitively, this means that there exists a directed path going through both x and y. We then define the semi-metric d_D on $D_{b,s}^n$ as the traveling distance

$$d_D(x,y) := \begin{cases} |\tilde{\pi}(x) - \tilde{\pi}(y)| & \text{if } x \downarrow y, \\ \inf_{z \in D_{b,s}^n, z \downarrow x, z \downarrow y} (d_D(x,z) + d_D(z,y)) & \text{otherwise}. \end{cases}$$

The semi-metric is bounded by 1 since by choosing appropriate $z \in A$ or $z \in B$ in the infimum above, I can conclude that $d_D(x,y) \leq \min (\tilde{\pi}(x) + \tilde{\pi}(y), 2 - \tilde{\pi}(x) - \tilde{\pi}(y)).$

Definition 2.1. The diamond hierarchical lattice is defined as $$D_{b,s}^n := D_{b,s}^n / \{(x,y) \in D_{b,s}^n | d_D(x,y) = 0\}.$$

In future, I will treat the metric $d_D(x,y)$ and the map $\tilde{\pi}$ as acting on $D_{b,s}^n$.

Remark 2.2. The vertex set, $V_{b,s}^n$, on the diamond graph $D_{b,s}^n$ is canonically embedded on $D_{b,s}^n$; see Appendix A. The representation of elements in $D_{b,s}^n$ by sequences $\{(b_{j}, s_{j})\}_{j \in \mathbb{N}}$ is unique except for the countable collection of vertices $V_{b,s}^n := \bigcup_{n} V_{b,s}^n$.

Remark 2.3. The self-similar structure of the fractal $D_{b,s}^n$ can be understood through a family of contractive shift maps $S_{i,j} : D_{b,s}^n \rightarrow D_{b,s}^n$ for $(i,j) \in \{1, \cdots, b\} \times \{1, \cdots, s\}$ that send $x = \{(b_{k}^{x}, s_{k}^{x})\}_{k \in \mathbb{N}}$ to $S_{i,j}(x) = y = \{(b_{k}^{y}, s_{k}^{y})\}_{k \in \mathbb{N}}$ with $(b_{k}^{y}, s_{k}^{y}) = (i,j)$ and $(b_{k}^{y}, s_{k}^{y}) = (b_{k-1}, s_{k-1})$ for $k \geq 2$. The $S_{i,j}$’s are well-defined as functions on $D_{b,s}^n$, and map $D_{b,s}^n$ onto the shrunken subcopies $D_{b,s}^{n}$ with

$$d_D(S_{i,j}(x), S_{i,j}(y)) = \frac{1}{s} d_D(x,y), \quad x,y \in D_{b,s}^n.$$

Proposition 2.4. $(D_{b,s}^n, d_D)$ is a compact metric space with Hausdorff dimension $1 + \frac{\log b}{\log s}$. The vertex set $V_{b,s}^n$ is dense in $D_{b,s}^n$.

The import of the next proposition is that a probability measure ν can be placed on $D_{b,s}^n$ such that subsets identifiable with elements of $E_{b,s}^n$ are assigned measure $(bs)^{-n}$.

9
Proposition 2.5. Let \mathcal{B}_D be the Borel σ-algebra on $\mathbb{D}^{b,s}$ generated by the metric d_D. There is a unique measure ν on $(\mathbb{D}^{b,s}, \mathcal{B}_D)$ such that $\nu(\mathbb{D}^{b,s}) = 0$ and for $(b_j, s_j) \in \{1, \ldots, b\} \times \{1, \ldots, s\}$ the cylinder sets
\[
C(b_1, s_1) \times \cdots \times (b_n, s_n) := \left\{ x \in \mathbb{D}^{b,s} \mid x = \{(b_j^x, s_j^x)\}_{j \in \mathbb{N}} \text{ with } b_j^x = b_j \text{ and } s_j^x = s_j \text{ for } 1 \leq j \leq n \right\}
\]
(identified with elements in $\mathbb{D}^{b,s}_n$) have measure $\nu(C(b_1, s_1) \times \cdots \times (b_n, s_n)) = |\mathbb{D}^{b,s}_n|^{-1} = (bs)^{-n}$.

2.2 Directed paths on the diamond hierarchical lattice

I define a directed path on $\mathbb{D}^{b,s}$ to be a continuous function $p : [0, 1] \to \mathbb{D}^{b,s}$ such that $\hat{\pi}(p(r)) = r$ for all $r \in [0, 1]$. I will use the uniform metric on the set of directed paths:

\[
d_F(p_1, p_2) = \max_{0 \leq r \leq 1} d_D(p_1(r), p_2(r)) \quad p_1, p_2 \in \mathbb{D}^{b,s}.
\]

Remark 2.6. Note that $d_F(p_1, p_2) = s^{-(n-1)}$, where $n \in \mathbb{N}$ is the first generation such that there is a vertex $v \in V^{b,s}_n$ in the range of p_1 but not of p_2.

Remark 2.7. $\mathbb{D}^{b,s}_n$ is canonically identified with an equivalence relation of $\mathbb{D}^{b,s}$ in which $q \equiv_n p$ iff $[p]_n = [q]_n$, or, equivalently, $d_F(p, q) \leq s^{-n}$.

Remark 2.8. The metric d_D on $\mathbb{D}^{b,s}$ can be reformulated in terms of the space of directed paths, $\mathbb{D}^{b,s}$, as

\[
d_D(x, y) = \inf_{p, q \in \mathbb{D}^{b,s}, x \in \mathbb{D}^{b,s}, z \in \text{Range}(p) \cap \text{Range}(q)} \left(|\hat{\pi}(x) - \hat{\pi}(z)| + |\hat{\pi}(z) - \hat{\pi}(y)| \right).
\]

The uniform measure on $\mathbb{D}^{b,s}$ refers to the triple $(\mathbb{D}^{b,s}, \mathcal{B}_\mathbb{D}, \mu)$ in the proposition below.

Proposition 2.9. Let $\mathcal{B}_\mathbb{D}$ be the Borel σ-algebra generated by the metric d_F. There is a unique measure μ on $(\mathbb{D}^{b,s}, \mathcal{B}_\mathbb{D})$ satisfying $\mu([p]_n) = |\mathbb{D}^{b,s}_n|^{-1} = b^{-\sum_{j=1}^{n} s_j} - 1$ for all $n \in \mathbb{N}$ and $p \in \mathbb{D}^{b,s}_n$.

Remark 2.10. One relationship between μ and ν is that for any $R \in \mathcal{B}_\mathbb{D}$

\[
\nu(R) = \int_{\mathbb{D}^{b,s}} \int_{[0,1]} 1_{p(r) \in R} \, d\mu(dp).
\]

3 Proofs

3.1 Intersection time between random directed paths

The intersections between randomly chosen paths $p, q \in \mathbb{D}^{b,s}$ can be encoded into realizations of a discrete-time branching process that begins with a single node and for which each generation n node has exactly s children independently with probability $1/b$, or has no children at all.

Given $p, q \in \mathbb{D}^{b,s}$ recall that $N^{(n)}_{p, q}$ is the number of bonds shared by the course-grained paths $[p]_n, [q]_n \in \mathbb{D}^{b,s}_n$. For $q \in \mathbb{D}^{b,s}$ chosen at random (i.e., according to μ), let $F^{(q)}_n$ be the σ-algebra of subsets of $\mathbb{D}^{b,s}$ generated by $[q]_n$.

Proof of Proposition 2.6. We can write $I_{p,q}$ as

\[
I_{p,q} = \bigcap_{n=1}^{\infty} I_{p,q}^{(n)} \text{ for } I_{p,q}^{(n)} = [0, 1] - \bigcup_{1 \leq k \leq s^n, [p]_n(k) \neq [q]_n(k)} \left(\frac{k-1}{s^n}, \frac{k}{s^n} \right).
\]
Let $p_{b,s}^{(n)}$ be the probability that the number, $N_{p,q}^{(n)}$, of bonds shared by $[p]_n$ and $[q]_n$ is not zero. Then the probability that $N_{p,q}^{(n)}$ never becomes zero is the limit $p_{b,s}^{(n)} \wedge p_{b,s}$. The probabilities $p_{b,s}^{(n)}$ satisfy the recursive relation
\[
p_{b,s}^{(n+1)} = G_{b,s}(p_{b,s}^{(n)}) \quad \text{for} \quad G_{b,s}(x) := \frac{1}{b} \left[1 - (1 - x)^{s} \right]
\]
and have initial value $p_{b,s}^{(0)} = 1$. When s is larger than b, the probability $p_{b,s} \in (0, 1)$ is the unique attractive fixed point of the map $G_{b,s} : [0, 1] \to [0, 1]$.

Part (i): The variables $m_n := (\frac{1}{s})^n N_{p,q}^{(n)}$ form a nonzero, mean-one martingale with respect to the filtration, $F_n^{(q)}$, generated by $[q]_n$. Hence, there is an a.s. limit $m_{\infty} = \lim_{n \to \infty} m_n$. The moment generating functions $\varphi_n(t) := \mathbb{E}[e^{tm_n}]$ satisfy the recursive relation
\[
\varphi_{n+1}^{b,s}(t) = \frac{b - 1}{b} + \frac{1}{b} \left(\varphi_{n}^{b,s}(\frac{b}{s} t) \right)^s \quad \text{with} \quad \varphi_0^{b,s}(t) = e^t. \quad (3.1)
\]
The sequence $\varphi_{n}^{b,s}(t)$ converges pointwise to a nontrivial limit $\varphi_{\infty}^{b,s}(t)$, which is the moment generating function of m_{∞}, satisfying $\varphi_{\infty}^{b,s}(t) = \frac{b - 1}{b} + \frac{1}{b} (\varphi_{\infty}^{b,s}(\frac{b}{s} t))^s$. Note that the limit of $\varphi_{\infty}^{b,s}(t)$ as $t \to -\infty$ solves $x = \frac{b - 1}{b} + \frac{1}{b} x^s$, and thus $\mathbb{P}[m_{\infty} = 0] = 1 - p_{b,s}$.

Parts (ii) and (iii): In the event that $N_{p,q}^{(n)}$ is zero for some $n \in \mathbb{N}$, $\mathcal{I}_{p,q}$ is finite and $p(t) = q(t) \in V^{b,s}$ for $t \in \mathcal{I}_{p,q}$. Conversely, I will show below that if $N_{p,q}^{(n)}$ is never zero, then the set $\mathcal{I}_{p,q}$ is a.s. infinite since its dimension-h Hausdorff measure is infinite for any $0 < h < \mathfrak{h}$. This would suffice to prove the proposition since the above remarks show that $N_{p,q}^{(n)}$ becomes zero for large enough $n \in \mathbb{N}$ with probability $1 - p_{b,s}$.

I will split up the analysis between proving $\dim_H(\mathcal{I}_{p,q}) \leq \mathfrak{h}$ and $\dim_H(\mathcal{I}_{p,q}) \geq \mathfrak{h}$. To show that $\dim_H(\mathcal{I}_{p,q}) \leq \mathfrak{h}$, I will argue that the Hausdorff measure $H_\mathfrak{h}(\mathcal{I}_{p,q})$ is a.s. finite. For a given $\delta > 0$ pick n with $(\frac{1}{s})^n < \delta$. Since $\mathcal{I}_{p,q} \subset \mathcal{I}_{p,q}^{(n)}$ and $\mathcal{I}_{p,q}^{(n)}$ is covered by $N_{p,q}^{(n)}$ intervals of length $1/s^n$
\[
H_{\mathfrak{h},\delta}(\mathcal{I}_{p,q}) = \inf_{\mathcal{I}_{p,q} \subset \bigcup_k \mathcal{I}_k, |I_k| \leq \delta} \sum_k |I_k|^\mathfrak{h} \leq N_{p,q}^{(n)} \left(\frac{1}{s^n} \right)^{b_n} = m_n.
\]
Thus,
\[
H_\mathfrak{h}(\mathcal{I}_{p,q}) = \lim_{\delta \to 0} H_{\mathfrak{h},\delta}(\mathcal{I}_{p,q}) \leq \lim_{n \to \infty} m_n = m_{\infty}.
\]
Therefore $H_\mathfrak{h}(\mathcal{I}_{p,q})$ is a.s. finite and $\dim_H(\mathcal{I}_{p,q}) \leq \mathfrak{h}$.

Next I will condition on the event that $N_{p,q}^{(n)}$ is not zero for any $n \in \mathbb{N}$ and show that $\dim_H(\mathcal{I}_{p,q}) \geq \mathfrak{h}$ almost surely. It suffices to show that $H_\mathfrak{h}(\mathcal{I}_{p,q}) > 0$ for any $0 < h < \mathfrak{h}$. Let $\mathcal{S}_{p,q}^{(n)}$ be the collection of intervals $[\frac{k-1}{s^n}, \frac{k}{s^n}] \subset \mathcal{I}_{p,q}$ such that $[\frac{k-1}{s^n}, \frac{k}{s^n}] \cap \mathcal{I}_{p,q}^{(N)}$ is not finite for any $N > n$ (in other terms, ancestors of the interval do not go extinct). For a Borel set $A \subset [0, 1]$, let $\mathcal{C}(A)$ be the collection of coverings of A by elements in $\bigcup_{n=1}^{\infty} \mathcal{S}_{p,q}^{(n)}$. Define the Hausdorff-like measure $H_\mathfrak{h}$ as
\[
\tilde{H}_\mathfrak{h}(A) = \lim_{n \to \infty} \tilde{H}_\mathfrak{h}^{\frac{1}{s^n}}(A) \quad \text{for} \quad \tilde{H}_\mathfrak{h}^{\frac{1}{s^n}}(A) = \inf_{\{I_k\} \in \mathcal{C}(A)} \sum_k |I_k|^\mathfrak{h}. \quad (3.2)
\]
For any Borel $A \subset [0, 1]$ we have that
\[
\frac{1}{2s^n} \tilde{H}_\mathfrak{h}(A) \leq H_\mathfrak{h}(A) \leq \tilde{H}_\mathfrak{h}(A). \quad (3.3)
\]
The second inequality above holds since \(\tilde{H}_{h,1/s^n}(A) \) is defined as an infimum over a smaller collection of coverings than \(H_{h,1/s^n}(A) \). The first inequality holds since any interval \(I \subset [0,1] \) is covered by two adjacent intervals of the form \(\left[\frac{k-1}{s^n}, \frac{k}{s^n} \right] \) for \(n := \lfloor \log_{1/s} |I| \rfloor \). Thus if \(\tilde{H}_{h,1}(I_{p,q}) > 0 \) almost surely then \(H_{h}(I_{p,q}) > 0 \) almost surely.

Let \(\tilde{N}_{p,q}^{(n)} \) be the number elements in \(S_{p,q}^{(n)} \). Conditioned on the event that \(N_{p,q}^{(n)} \) is never zero, \(\tilde{N}_{p,q}^{(n)} \) forms a Markov chain taking values in \(\mathbb{N} \) with initial value \(\tilde{N}_{p,q}^{(0)} = 1 \) and satisfying the distributional equality

\[
\tilde{N}_{p,q}^{(n+1)} \overset{d}{=} \sum_{j=1}^{\tilde{N}_{p,q}^{(n)}} n_j \quad \text{for i.i.d. variables } n_j \in \{1, \cdots, s\} \text{ with } \mathbb{P}[n_j = \ell] = \left(\frac{s}{\ell} \right) \frac{p_{b,s}^{\ell}(1-p_{b,s})^{s-\ell}}{1-(1-p_{b,s})^{s}}.
\]

Fix some \(0 < h < \hbar \). Define the variables

\[
L_{p,q,n} := \inf_{\{I_k\} \in C(I_{p,q})} \sum_{k} |I_k|^h,
\]

which have the a.s. convergence \(L_{p,q,n} \searrow L_{p,q,\infty} := \tilde{H}_{h,1}(I_{p,q}) \). The hierarchical symmetry of the model implies that the \(L_{p,q,n} \)'s satisfy the distributional recursion relation

\[
L_{p,q,n+1} \overset{d}{=} \min \left(1, \sum_{j=1}^{n} \left(\frac{1}{s} \right)^h L_{p,q,n}^{(j)} \right),
\]

where the \(L_{p,q,n}^{(j)} \)'s are independent copies of \(L_{p,q,n} \) and \(n \in \{1, \cdots, s\} \) is independent of the \(L_{p,q,n}^{(j)} \)'s with \(\mathbb{P}[n = \ell] = \left(\frac{s}{\ell} \right) \frac{p_{b,s}^{\ell}(1-p_{b,s})^{s-\ell}}{1-(1-p_{b,s})^{s}} \). The distribution of \(L_{p,q,\infty} \) is a fixed point of (3.5). The probability \(x = \mathbb{P}[L_{p,q,\infty} = 0] \) satisfies

\[
x = \frac{(xp_{b,s} + 1 - p_{b,s})^s - (1-p_{b,s})^s}{1-(1-p_{b,s})^s},
\]

which has solutions only for \(x = 0 \) and \(x = 1 \). However, \(x = 1 \) is not possible since a.s. convergence \(L_{p,q,n} \searrow 0 \) as \(n \to \infty \) contradicts (3.5). To see the rough idea for this, notice that if \(0 < L_{p,q,n} \ll 1 \) with high probability when \(n \gg 1 \) then the expectation of (3.5) yields

\[
\mathbb{E}[L_{p,q,n+1}] \approx \mathbb{E} \left[\sum_{j=1}^{n} \left(\frac{1}{s} \right)^h L_{p,q,n}^{(j)} \right] = \left(\frac{1}{s} \right)^h \mathbb{E}[n] \mathbb{E}[L_{p,q,n}] = s^{h-h} \mathbb{E}[L_{p,q,n}]
\]

because \(\mathbb{E}[n] = \frac{s}{b} = s^h \). The above shows that the expectations of \(\mathbb{E}[L_{p,q,n}] \) will contract away from 0 since \(h-h > 0 \).

\[
\square
\]

3.2 The compact operator \(Y \)

In this section I will prove Propositions 1.17 and 1.21.

Definition 3.1. For \(\ell \in \{1, \cdots, b\} \), let \(v^{(\ell)} = (v_1^{(\ell)}, \cdots, v_b^{(\ell)}) \) be orthonormal vectors in \(\mathbb{R}^b \) where \(v^{(1)} = \frac{1}{\sqrt{b}}(1, \cdots, 1) \). Let \(p_1, \cdots, p_b \) be an enumeration of the elements in \(\Gamma_1^{b,s} \), i.e., the branches of \(D_1^{b,s} \).

- Define \(f^{(\ell)} \in \mathcal{H} \) and \(\hat{f}^{(\ell)} \in L^2(\Gamma_1^{b,s}, \mu) \) for \(\ell \in \{1, \cdots, b\} \) as

\[
f^{(\ell)}(x) = \sqrt{b} \sum_{i=1}^{b} v_i^{(\ell)} \chi_{\cup_{k=1}^{b}[p_i](k)}(x) \quad \text{and} \quad \hat{f}^{(\ell)}(p) = \sqrt{b} \sum_{i=1}^{b} v_i^{(\ell)} \chi_{p_i}(p).
\]

12
For \((e, \ell) \in \cup_{n=0}^{\infty} E_n^{b,s} \times \{1, \ldots, b\}\), define \(f_{(e, \ell)} \in \mathcal{H}\) as
\[
 f_{(e, \ell)}(x) = (sb)^{\frac{n}{2}} \chi_e(x) f^{(\ell)}(x_e),
\]
where for \(x \in e\) the point \(x_e \in D^{b,s}\) refers to the position of \(x\) in the shrunken copy of \(D^{b,s}\) corresponding to \(e\).

For \((e, \ell) \in \cup_{n=0}^{\infty} E_n^{b,s} \times \{1, \ldots, b\}\), define \(\tilde{f}_{(e, \ell)} \in L^2(\Gamma^{b,s}, \mu)\) as
\[
 \tilde{f}_{(e, \ell)}(p) = b^{\frac{n}{2}} \chi_{e \cap \text{Range}(p) \neq \emptyset} f^{(\ell)}(p_e),
\]
where if \(e \cap \text{Range}(p) \neq \emptyset\) the path \(p_e \in \Gamma^{b,s}\) refers to a magnification of the portion of the path \(p\) in the shrunken copy of \(D^{b,s}\) corresponding to \(e\).

Proof of Proposition 1.17 It suffices to show that the operator \(Y : \mathcal{H} \to L^2(\Gamma^{b,s}, \mu)\) has the form
\[
 Y = |\tilde{f}_{(D^{b,s}, 1)}\rangle \langle \tilde{f}_{(D^{b,s}, 1)}| + \sum_{k=0}^{\infty} \sum_{e \in E_k^{b,s}} \sum_{\ell \in \{2, \ldots, b\}} s^{-\frac{k}{2}} |\tilde{f}_{(e, \ell)}\rangle \langle f_{(e, \ell)}|.
\] (3.6)

Clearly \(Y\) maps \(f_{(D^{b,s}, 1)} = 1_{D^{b,s}}\) to \(\tilde{f}_{(D^{b,s}, 1)} = 1_{\Gamma^{b,s}}\). Pick \(e \in E_k^{b,s}\) and \(\ell \in \{2, \ldots, b\}\). For \(p \in \Gamma^{b,s}\),
\[
 (Y f_{(e, \ell)})(p) = \int_0^1 f_{(e, \ell)}(p(r)) dr = \int_0^1 (sb)^{\frac{k}{2}} \chi_e(p(r)) f^{(\ell)}((p(r))_e) dr = \frac{1}{s^k} (sb)^{\frac{k}{2}} \chi_{e \cap \text{Range}(p) \neq \emptyset} f^{(\ell)}(p_e) = s^{-\frac{k}{2}} \tilde{f}_{(e, \ell)}(p).
\]
The third equality holds since the path \(p(r)\) is in \(e\) for a time interval of length \(1/s^k\) in the event that \(e \cap \text{Range}(p)\) is nonempty.

The orthogonal complement in \(\mathcal{H}\) of the space spanned by the vectors \(\tilde{f}_{(D^{b,s}, 1)}\) and \(f_{(e, \ell)}\) with \((e, \ell) \in E_k^{b,s} \times \{2, \ldots, b\}\) is comprised of all vectors \(\psi\) for which \(0 = \int_0^1 \psi(p(r)) dr\) for all \(p \in \Gamma^{b,s}\), which is, by definition, the null space of \(Y\).

Proof of Proposition 1.21 Part (i): The conditional expectation \(E[\cdot \mid F_n]\) satisfies
\[
 E[\tilde{f}_{(e, \ell)} \mid F_n] = \begin{cases}
 \tilde{f}_{(e, \ell)} & e \in \bigcup_{k=0}^{n-1} E_k^{b,s}, \\
 0 & e \in \bigcup_{k=n}^{\infty} E_k^{b,s} \text{ and } \ell \in \{2, \ldots, b\}.
\end{cases}
\]
The result then follows from the form (3.6) of \(Y\) since \(Y^{(n)}\) has the form
\[
 Y^{(n)} = |\tilde{f}_{(D^{b,s}, 1)}\rangle \langle f_{(D^{b,s}, 1)}| + \sum_{k=0}^{n-1} \sum_{e \in E_k^{b,s}} \sum_{\ell \in \{2, \ldots, b\}} s^{-\frac{k}{2}} |\tilde{f}_{(e, \ell)}\rangle \langle f_{(e, \ell)}| = Y P_n.
\]

Part (ii): As a consequence of (i), the operator norm of the difference between \(Y^{(n)}\) and \(Y\) has the form \(\|Y^{(n)} - Y\|_\infty = s^{-n/2}\).
Part (iii): The vectors $Y^{(n)}(Y^{(n)})^*$ can be written in the form

$$ Y^{(n)}(Y^{(n)})^* = |\hat{f}_{(D^{b,s},1)}(\hat{f}_{(D^{b,s},1)})| + \sum_{k=0}^{n-1} \sum_{e \in \mathcal{E}^{b,s}} s^{-k}|\hat{f}_{e,\ell}|^2 \hat{f}_{e,\ell} \rangle \langle \hat{f}_{e,\ell} |. $$

It follows that the Hilbert-Schmidt norm of the difference between $Y^{(n)}(Y^{(n)})^*$ and YY^* is $(\frac{k}{2})^{n/2} \sqrt{s^{-1} b}$. Thus, we can write YY^* has integral kernel $T(p,q)$. The map $(Y^{(n)})^*: L^2(\Gamma^{b,s}, \mu) \to \mathcal{H}$ sends $f \in L^2(\Gamma^{b,s}, \mu)$ to

$$(Y^{(n)})^* f = \int_{\Gamma^{b,s}} f(p)Y^{(n)}_p(p) \, dp = b^n \int_{\Gamma^{b,s}} f(p)\chi_{T^{(n)}}(dp).$$

Thus, $Y^{(n)}(Y^{(n)})^*: L^2(\Gamma^{b,s}, \mu) \to L^2(\Gamma^{b,s}, \mu)$ has kernel $K^{(n)}(p,q)$

$$K^{(n)}(p,q) = \langle Y^{(n)}_p, Y^{(n)}_q \rangle = \frac{b^n}{s^n} \sum_{k=1}^{s^n} 1_{[p,q]}(k)=q|n(k) := m_n.$$

However, $m_n \equiv m_n(p,q)$ converges to $m_\infty(p,q) = T_{p,q}$ in $L^2(\Gamma^{b,s} \times \Gamma^{b,s}, \mu \times \mu)$ by part (i) of Proposition 1.6

Part (iv): The vectors $Y^{(n)}_p \in \mathcal{H}$ satisfy $Y^{(k)}_p = P_k Y^{(n)}_p$ for $k \leq n$. Thus

$$Y^{(n)}_p - Y^{(n-1)}_p = (P_n - P_{n-1})Y^{(n)}_p \in \mathcal{H}_n. \square$$

3.3 Existence and uniqueness of the GMC measure for the CDRP

3.3.1 GMC martingale

Proposition 3.2. Define \mathcal{F}_n to be the σ-algebra on Ω generated by variables (W, ψ) for $\psi \in \oplus_{k=0}^{n} \mathcal{H}_k$ where \mathcal{H}_k is defined as in part (ii) of Proposition 1.17

(i). The sequence of random variables $\{e^{\beta (W,Y^{(n)}_p) - \frac{\beta^2}{2} ||Y^{(n)}_p||^2_{\mathcal{H}}}\}_{n \in \mathbb{N}}$ forms a mean-one martingale with respect to \mathcal{F}_n.

(ii). For any Borel set $A \subset \Gamma^{b,s}$, the sequence of random variables $\left\{ \int_A e^{\beta (W,Y^{(n)}_p) - \frac{\beta^2}{2} ||Y^{(n)}_p||^2_{\mathcal{H}}} \mu(dp) \right\}_{n \in \mathbb{N}}$ is a mean-$\mu(A)$, square-integrable martingale with respect to \mathcal{F}_n that converges a.s. to a nonzero limit.

Proof. Part (i): If $N > n$, then $\langle W, Y^{(N)}_p - Y^{(n)}_p \rangle$ and $\langle W, Y^{(n)}_p \rangle$ are independent random normal variables since $Y^{(N)}_p - Y^{(n)}_p$ and $Y^{(n)}_p$ are orthogonal elements in \mathcal{H} by part (iv) of Proposition 1.21. Thus, we can write

$$e^{\beta (W,Y^{(N)}_p) - \frac{\beta^2}{2} ||Y^{(n)}_p||^2_{\mathcal{H}}} = e^{\beta (W,Y^{(N)}_p - Y^{(n)}_p) - \frac{\beta^2}{2} ||Y^{(n)}_p - Y^{(n)}_p||^2_{\mathcal{H}}} e^{\beta (W,Y^{(n)}_p) - \frac{\beta^2}{2} ||Y^{(n)}_p||^2_{\mathcal{H}}}.$$

The conditional expectation with respect to \mathcal{F}_n is $e^{\beta (W,Y^{(n)}_p) - \frac{\beta^2}{2} ||Y^{(n)}_p||^2_{\mathcal{H}}}.$

Part (ii): The sequence $\left\{ \int_A e^{\beta (W,Y^{(n)}_p) - \frac{\beta^2}{2} ||Y^{(n)}_p||^2_{\mathcal{H}}} \mu(dp) \right\}_{n \in \mathbb{N}}$ is a mean-$\mu(A)$ martingale. We can write

$$\int_A e^{\beta (W,Y^{(n)}_p) - \frac{\beta^2}{2} ||Y^{(n)}_p||^2_{\mathcal{H}}} \mu(dp) = \int_A \prod_{k=1}^{n} e^{\beta (W,Y^{(n)}_p) - \frac{\beta^2}{2} ||Y^{(n)}_p||^2_{\mathcal{H}}} \mu(dp)$$

14
Since the $(\mathbf{W}, b^n X_{[p,n,κ(k)]})$’s are independent, centered normal variables with variance $(b/s)^n$, the second moment of the above is equal to

\[
\int_{A \times A} e^{\beta T_{p}^n \psi_{p}} \mu(dp) \mu(dq), \tag{3.7}
\]

where $N_{p,q}^{(n)}$ is the number of bonds shared by the course-grained paths $[p]_n$ and $[q]_n$. By part (i) of Proposition 1.6, the sequence $(\frac{1}{n} N_{p,q}^{(n)})$ converges $\mu \times \mu$-a.e. as $n \to \infty$ to the intersection time $T_{p,q}$, and when $A = \Gamma^{b,s}$ the expression (3.7) converges to the moment generating function, $\mathbb{E}[\exp(\beta T_{p,q})]$. It follows that (3.7) converges to $\int_{A \times A} e^{\beta T_{p}^n \psi_{p}} \mu(dp) \mu(dq)$ for an arbitrary Borel set $A \in \mathcal{B}_\Gamma$.

\[\square\]

3.3.2 Martingale limit construction of the GMC measure

Proof of Propositions 1.9 and 1.22 Recall that $M_{\beta}^{(n)}$ is defined as the GMC measure on $(\Gamma^{b,s}, \mu)$ over the finite-dimensional field $(\mathbf{W}, \beta Y^{(n)})$:

\[
M_{\beta}^{(n)}(A) = \int_A e^{\beta (\mathbf{W}, Y^{(n)}_{p}) - \frac{\beta^2}{2} \|Y^{(n)}_{p}\|^2} \mu(dp), \quad A \in \mathcal{B}_\Gamma. \tag{3.8}
\]

The space $\mathcal{H}_\mu = \oplus_{k=0}^\infty \mathcal{H}_k$ is the orthogonal complement of the null space of μ. Define \mathcal{F}_∞ as the σ-algebra generated by the variables $\langle \mathbf{W}, \psi \rangle$ for $\psi \in \mathcal{H}_\mu$.

Existence: Let D be a countable subcollection of continuous functions on $\Gamma^{b,s}$ that are dense with respect to the norm d_Γ. For each $\psi \in D$, the sequence $\{ \int_{\Gamma^{b,s}} \psi(p) M_{\beta}^{(n)}(dp) \}_{n \in \mathbb{N}}$ is a martingale w.r.t. the filtration \mathcal{F}_n having uniformly bounded second moments as a consequence of Proposition 3.2. Consequently, $\{ \int_{\Gamma^{b,s}} \psi(p) M_{\beta}^{(n)}(dp) \}_{n \in \mathbb{N}}$ converges a.s. to a limit in $L^2(\Omega, \mathcal{F}, \mathbb{P})$. Thus the measures $M_{\beta}^{(n)}$ a.s. converge vaguely to a limit measure M_{β} adapted to the field \mathbf{W}, i.e., $M_{\beta} \equiv M_{\beta}(\mathbf{W})$.

Properties (I)-(III) follow easily from this construction. For instance, to verify property (III) fix some $\phi \in \bigcup_{N=1}^\infty \oplus_{k=0}^N \mathcal{H}_k$. Notice that since $M_{\beta}^{(n)}(\mathbf{W}, dp)$ a.s. converges vaguely to $M_{\beta}(\mathbf{W}, dp)$, I have the a.s. equality

\[
M_{\beta}(\mathbf{W} + \phi, dp) = \lim_{n \to \infty} M_{\beta}^{(n)}(\mathbf{W} + \phi, dp)
= \lim_{n \to \infty} e^{\beta \langle Y^{(n)}_{p}, \phi \rangle} M_{\beta}^{(n)}(\mathbf{W}, dp).
\]

However, since $\psi \in \oplus_{k=0}^N \mathcal{H}_k$ for some N, I have $\langle Y^{(n)}_{p}, \phi \rangle = \langle Y_{p}, \phi \rangle$ when $n \geq N$, and thus

\[
e^{\beta \langle Y_{p}, \phi \rangle} \lim_{n \to \infty} M_{\beta}^{(n)}(\mathbf{W}, dp)
= e^{\beta \langle Y_{p}, \phi \rangle} M_{\beta}(\mathbf{W}, dp). \tag{3.9}
\]

The space $\bigcup_{N=1}^\infty \oplus_{k=0}^N \mathcal{H}_k$ is dense in the complement of the null space of \mathcal{H}, and it follows that the above extends to all values in \mathcal{H}.

Uniqueness: Next I argue that M_{β} is the unique GMC measure over the field $(\mathbf{W}, \beta Y)$. I will reduce the uniqueness of M_{β} to the uniqueness of the the GMC measures $M_{\beta}^{(n)}$ over the finite-dimensional fields $(\mathbf{W}, \beta Y^{(n)})$. Let M_{β} be a random measure satisfying (I)-(III), and define $\tilde{M}_{\beta}^{(n)}$ as the conditional expectation of M_{β} w.r.t. \mathcal{F}_n

\[
\tilde{M}_{\beta}^{(n)}(\mathbf{W}^{(n)}, A) = \mathbb{E}[\tilde{M}_{\beta}(\mathbf{W}, A) | \mathcal{F}_n], \tag{3.10}
\]
where \(W^{(n)} \) refers to the finite-dimensional field of variables \(\langle W, \psi \rangle \) for \(\psi \in \otimes_{k=0}^n \mathcal{H}_k \). Since \(\mathcal{H} = \oplus_{k=0}^\infty \mathcal{H}_k \), the random variable \(\tilde{M}_\beta(W, A) \) is recovered as the a.s. limit

\[
\tilde{M}_\beta(W, A) = \lim_{n \to \infty} \mathbb{E}[\tilde{M}_\beta(W, A) | F_n].
\]

(3.11)

Obviously \((3.10) \) implies that \(\mathbb{E}[\tilde{M}_\beta^{(n)}] = \mathbb{E}[\tilde{M}\beta] = \mu \). For \(\phi \in \otimes_{k=0}^n \mathcal{H}_k \),

\[
\tilde{M}_\beta^{(n)}(W^{(n)} + \phi, A) = \mathbb{E}[\tilde{M}_\beta(W + \phi, A) | F_n] = e^{\beta Y_{p,\phi}} \mathbb{E}[\tilde{M}_\beta(W, A) | F_n] = e^{\beta Y_{p,\phi}} \tilde{M}_\beta^{(n)}(W^{(n)}, A).
\]

If \(\tilde{M}_\beta^{(n)} = \tilde{M}_\beta^{(n)}(W) \) is viewed as a function of the entire field \(W \), then

\[
\tilde{M}_\beta^{(n)}(W + \phi, dp) = e^{\beta Y_{p,\phi}} \tilde{M}_\beta^{(n)}(W, dp)
\]

since \(Y_{p}^{(n)} = P_n Y_{p} \) for the projection \(P_n : \mathcal{H} \to \oplus_{k=0}^n \mathcal{H}_k \). Thus \(\tilde{M}_\beta^{(n)} \) is a GMC measure over the trivial field \((W, \beta Y^{(n)}) \) and must be equal to \(M_\beta^{(n)} \). From the construction analysis above, \(M_\beta^{(n)} \) a.s. converges vaguely to a GMC measure \(M_\beta \) over the field \((W, \beta Y) \). From \((3.11) \) it follows that \(M_\beta = \tilde{M}_\beta \).

\[\square \]

3.4 Properties of the GMC measure

In this section I will prove Theorem 1.13

Proof of Theorem 1.13 Part (i): First I will show that for \(\beta > 0 \) the GMC measure \(M_\beta \) is mutually

singular to \(\mu \) with probability 0 or 1. Let \(M_\beta^{(c)} \) and \(M_\beta^{(s)} \) be the continuous and singular components in the Hahn decomposition of \(M_\beta \) w.r.t. \(\mu \). Since the law of the random measure \(M_\beta \) is uniform over the path space \(\Gamma_{b,s} \), \(\mathbb{E}[M_\beta^{(c)}] = \lambda \mu \) and \(\mathbb{E}[M_\beta^{(s)}] = (1 - \lambda)\mu \) for some value \(\lambda \in [0, 1] \). However, if \(\lambda \in (0, 1) \) then the random measures \(\lambda^{-1}M_\beta^{(c)} \) and \((1 - \lambda)^{-1}M_\beta^{(s)} \) must both be GMC measures

satisfying property (I)-(III) of Proposition 1.9. This, however, contradicts uniqueness of that GMC measure. Therefore, \(\lambda \in \{0, 1\} \). Suppose to reach a contradiction that \(\lambda = 1 \), i.e., \(M_\beta = M_\beta^{(c)} \). Let \(G_\beta(W, p) \) be the Radon-Nikodým derivative of \(M_\beta \) with respect to \(\mu \). For almost every \(p \), \(G_\beta(W, p) \) is a random variable with finite second moment and for all \(\phi \in \mathcal{H} \)

\[
G_\beta(W + \phi, p) = e^{\beta \langle Y(p), \phi \rangle} G_\beta(W, p).
\]

(3.12)

However, the above is only possible if \(Y(p) \in \mathcal{H} \), which is a contradiction.

Part (ii): The intersection time, \(T_{p,q} \), of two random paths \(p, q \in \Gamma_{b,s} \) chosen independently according to the measure \(M_\beta \) has moment generating function \(\int_{\Gamma_{b,s} \times \Gamma_{b,s}} e^{\alpha T_{p,q}} M_\beta(dp) M_\beta(dq) \), which has expectation

\[
\mathbb{E} \left[\int_{\Gamma_{b,s} \times \Gamma_{b,s}} e^{\alpha T_{p,q}} M_\beta(dp) M_\beta(dq) \right] = \int_{\Gamma_{b,s} \times \Gamma_{b,s}} e^{(\alpha + \beta^2/2)} \mu(dp) \mu(dq) = \varphi^{b,s}(\alpha + \beta^2/2) < \infty.
\]

(3.13)

It follows that the set of pairs \((p, q) \) for which the intersection set \(I_{p,q} \) has Hausdorff dimension > \(h \), and thus for which \(T_{p,q} = \infty \), is almost surely of measure zero with respect to \(M_\beta \times M_\beta \). The set of pairs \((p, q) \) for which the intersection set \(I_{p,q} \) has Hausdorff dimension < \(h \) satisfy \(T_{p,q} = 0 \), and

\[
\lim_{\alpha \to -\infty} \int_{\Gamma_{b,s} \times \Gamma_{b,s}} e^{\alpha T_{p,q}} M_\beta(dp) M_\beta(dq) = M_\beta \times M_\beta \left(\left\{ (p, q) \mid T_{p,q} = 0 \right\} \right).
\]
Taking the expectation
\[
\mathbb{E}\left[M_\beta \times M_\beta \left(\{(p, q) \mid T_{p,q} = 0 \} \right) \right] = \lim_{\gamma \to -\infty} \varphi^{b,s}_\gamma = p_{b,s}. \tag{3.14}
\]
However, \(\{(p, q) \mid T_{p,q} = 0 \} \) contains the set of pairs such that the intersection set \(I_{p,q} \) is finite and
\[
\mathbb{E}\left[M_\beta \times M_\beta \left(\{(p, q) \mid |I_{p,q}| < \infty \} \right) \right] = \mu \times \mu \left(\{(p, q) \mid |I_{p,q}| < \infty \} \right) = p_{b,s}. \tag{3.15}
\]
The second equality above holds by part (ii) of Proposition 1.6. To see the first equality in (3.15), notice that \(\{(p, q) \mid |I_{p,q}| < \infty \} \) can be written as the limit as the \(n \to \infty \) limit
\[
\bigcup_{p,q \in \Gamma^{b,s}_n, \forall (k) p(k) \neq q(k)} p \times q \supset \{(p, q) \mid |I_{p,q}| < \infty \}.
\]
Moreover the random measure \(M_\beta \) is independent over sets \(p, q \in \Gamma^{b,s}_n \) for which \(p(k) \neq q(k) \) for \(1 \leq k \leq s^n \).

It follows from (3.14) and (3.15) that
\[
\mathbb{E}\left[M_\beta \times M_\beta \left(\{(p, q) \mid T_{p,q} = 0 \text{ and } |I_{p,q}| = \infty \} \right) \right] = 0. \tag{3.16}
\]
Therefore, \(M_\beta \times M_\beta \) is supported on pairs \((p, q) \) for which either \(I_{p,q} \) is finite or has Hausdorff dimension \(b \).

Part (iii): Let \(M^{(i,j)}_\beta \) be measurable with respect to independent copies \(W^{(i,j)} \) of the field \(W \), and define the field \(\hat{W} \) such that
\[
\langle \hat{W}, \phi \rangle := \frac{1}{\sqrt{bs}} \sum_{i=1}^b \sum_{j=1}^s \langle W^{(i,j)}, \phi^{(i,j)} \rangle \quad \text{for} \quad \phi \in \hat{H} = \bigoplus_{i=1}^b \bigoplus_{j=1}^s \mathcal{H}^{(i,j)},
\]
where \(\mathcal{H}^{(i,j)} \) are copies of the Hilbert space \(\mathcal{H} = L^2(D^{b,s}, \mathcal{B}_D, \nu) \). Define \((\hat{\Gamma}^{b,s}, \hat{\mu}) \) for
\[
\hat{\Gamma}^{b,s} := \bigcup_{i=1}^b \bigtimes_{j=1}^s \Gamma^{b,s}_{i,j} \quad \text{and} \quad \hat{\mu} := \frac{1}{b} \sum_{i=1}^b \prod_{j=1}^s \mu^{(i,j)}. \tag{3.17}
\]
Finally, define \(\hat{Y} : \mathcal{H} \to L^2(\hat{\Gamma}^{b,s}, \hat{\mu}) \) as
\[
\langle \hat{Y}, \phi \rangle (p) = \frac{1}{s} \sum_{i=1}^b \chi \left(p \in \times_{j=1}^s \Gamma^{b,s}_{i,j} \right) \sum_{j=1}^s \langle Y^{(i,j)}, \phi^{(i,j)} \rangle \left(p^{(j)} \right).
\]
In the above \(p_j \in \Gamma^{b,s}_{i,j} \) are components of \(p \in \times_{j=1}^s \Gamma^{b,s}_{i,j} \).

The computation below shows that \(\hat{M} = \frac{1}{b} \sum_{i=1}^b \Pi_{j=1}^s M^{(i,j)}_\beta \) defines a GMC measure over the field \((\hat{W}, \sqrt{\hat{\mu}} \hat{Y}) \):
\[
\hat{M}(\hat{W} + \phi, dp) = \frac{1}{b} \sum_{i=1}^b \chi \left(p \in \times_{j=1}^s \Gamma^{b,s}_{i,j} \right) \prod_{j=1}^s M^{(i,j)}_\beta \left(W^{(i,j)} + \frac{\phi^{(i,j)}}{\sqrt{bs}}, dp^{(j)} \right)
\]
\[
= \frac{1}{b} \sum_{i=1}^b \chi \left(p \in \times_{j=1}^s \Gamma^{b,s}_{i,j} \right) e^{\beta \frac{1}{\sqrt{bs}} \sum_{j=1}^s \langle Y^{(i,j)}, \phi^{(i,j)} \rangle \left(p^{(j)} \right)} \prod_{j=1}^s M^{(i,j)}_\beta \left(W^{(i,j)}, dp^{(j)} \right)
\]
\[
= \frac{1}{b} \sum_{i=1}^b \chi \left(p \in \times_{j=1}^s \Gamma^{b,s}_{i,j} \right) e^{b \beta \langle \hat{Y}, \phi \rangle (p)} \prod_{j=1}^s M^{(i,j)}_\beta \left(W^{(i,j)}, dp^{(j)} \right)
\]
\[
= e^{b \beta \langle \hat{Y}, \phi \rangle (p)} \hat{M}(\hat{W}, dp)
\]
Since the terms \(P \) the analysis below shows that there exist \(c, C > 0 \) such that for all \(\beta > 1 \)

\[
P \left[\frac{\nu_\beta(W, p)}{\nu_\beta(W, q)} \in (\lambda^{-1}, \lambda) \right] \leq \min_{|m| \leq c \log(\beta)} C \sqrt{P \left[\frac{\nu_\beta(W, p)}{\nu_\beta(W, q)} \in (\lambda^{2m-1}, \lambda^{2m+1}) \right]}. \tag{3.20}
\]

Since the terms \(P \left[\frac{\nu_\beta(W, p)}{\nu_\beta(W, q)} \in (\lambda^{2m-1}, \lambda^{2m+1}) \right] \) sum to 1 over \(m \in \mathbb{Z} \), the above must be smaller than \(C(1/|c \log \beta|)^{\frac{1}{2}} \), thus implying (3.19).

\[\square \]

3.5 Strong disorder behavior as \(\beta \to \infty \)

In this section I will prove Theorem 1.15. The proof below that \(M_\beta(W, \Gamma^{b,s}) \) converges in probability to zero is a straightforward adaption of the argument of Lacoin and Moreno for discrete polymers on diamond lattices in [23].

Proof of part (i) of Theorem 1.15. It suffices to show that the fractional moment \(E\left[\sqrt{M_\beta(W, \Gamma^{b,s})} \right] \) converges to zero as \(n \to \infty \).

Let \(h : D^{b,s} \to \mathbb{R} \) be the constant function \(h(x) = \lambda \) for some \(\lambda \in \mathbb{R} \), and \(\tilde{P}_\lambda \) be the measure on \(W \) with derivative

\[
\frac{d\tilde{P}_\lambda}{dP} = e^{(W, h) - \frac{1}{2} \|h\|^2} = e^{\lambda W(D^{b,s}) - \frac{1}{2} \lambda^2}.
\]

Let \(\tilde{E}_\lambda \) denotes the expectation with respect to \(\tilde{P}_\lambda \). The Cauchy-Schwarz inequality yields that

\[
E \left[\left(M_\beta(W, \Gamma^{b,s}) \right)^\frac{1}{2} \right]^2 = \tilde{E}_\lambda \left[\left(M_\beta(W, \Gamma^{b,s}) \right)^\frac{1}{2} e^{-\frac{1}{2} \lambda W(D^{b,s}) + \frac{1}{2} \lambda^2} \right] \leq \tilde{E}_\lambda \left(M_\beta(W, \Gamma^{b,s}) \right)^\frac{1}{2} \tilde{E} \left[e^{-\frac{1}{2} \lambda W(D^{b,s}) + \frac{1}{2} \lambda^2} \right]^{\frac{1}{2}}.
\]

Since \(\tilde{E}_\lambda[F(W)] = E[F(W + h)] \) for any integrable function \(F \) of the field and \(M_\beta(W + h, d\nu) = e^{\beta(Y_h|\nu)} M_\beta(W, d\nu) \) where \(\langle Y_h | \nu \rangle = \lambda \), the above is equal to

\[
= E \left[e^{\beta Y_h} M_\beta(W, \Gamma^{b,s}) \right]^{\frac{1}{2}} E \left[e^{-\frac{1}{2} \lambda W(D^{b,s}) + \frac{1}{2} \lambda^2} \right]^{\frac{1}{2}}
\]

\[
= e^{\frac{1}{2} \lambda \beta + \frac{1}{2} \lambda^2}. \tag{3.18}
\]

The above is minimized as \(\exp\left\{ -\frac{1}{8} \beta^2 \right\} \) when \(\lambda = -\frac{1}{2} \beta \), and thus tends to zero as \(\beta \) grows.

\[\square \]

The proof below also borrows ideas from [23].

Proof of part (ii) of Theorem 1.15. Fix \(n \in \mathbb{N}, q, p \in \Gamma_n^{b,s} \) with \(q \neq p \), and \(\alpha > 1 \). It suffices to show that as \(n \to \infty \)

\[
P \left[\frac{\nu_\beta(W, p)}{\nu_\beta(W, q)} \in (\lambda^{-1}, \lambda) \right] \to 0. \tag{3.19}
\]

The analysis below shows that there exist \(c, C > 0 \) such that for all \(\beta > 1 \)

\[
P \left[\frac{\nu_\beta(W, p)}{\nu_\beta(W, q)} \in (\lambda^{-1}, \lambda) \right] \leq \min_{|m| \leq c \log(\beta)} C \sqrt{P \left[\frac{\nu_\beta(W, p)}{\nu_\beta(W, q)} \in (\lambda^{2m-1}, \lambda^{2m+1}) \right]}. \tag{3.20}
\]
Next I will show (3.20). Define \(h \in L^2(D^{b,s}, \nu) \) as
\[
h = \alpha \chi(\cup_{p(k) \neq q(k)} P(k)) - \alpha \chi(\cup_{p(k) \neq q(k)} Q(k))
\]
for a parameter \(\alpha \in [-1, 1] \). Then for any \(p \in \mathfrak{p} \) and \(q \in \mathfrak{p} \)
\[
\langle h, Y_p \rangle = \frac{\alpha n}{s^n} \quad \text{and} \quad \langle h, Y_q \rangle = -\frac{\alpha n}{s^n},
\]
where \(1 \leq n < s^n \) is the number of edges not shared by the paths \(p, q \in \Gamma_{n}^{b,s} \). Notice that
\[
\frac{\nu_\beta(W+h,p)}{\nu_\beta(W+h,q)} = \frac{M_\beta(W+h,p)}{M_\beta(W+h,q)} = e^{\beta(h,Y_p)-\beta(h,Y_q)} \frac{M_\beta(W,p)}{M_\beta(W,q)} = e^{2\beta \alpha n} \frac{\nu_\beta(W,p)}{\nu_\beta(W,q)}.
\]
Define \(\hat{P} \) to have derivative \(\frac{d\hat{P}}{dx} = \exp\{\langle W, h \rangle - \frac{1}{2} \|h\|_h^2 \} \). Applying the Cauchy-Schwarz inequaly,
\[
P\left[\frac{\nu_\beta(W,p)}{\nu_\beta(W,q)} \in [\lambda^{-1}, \lambda] \right] = \hat{P}\left[e^{-(\langle W, h \rangle + \frac{1}{2} \|h\|_h^2)} \chi\left(\frac{\nu_\beta(W,p)}{\nu_\beta(W,q)} \in [\lambda^{-1}, \lambda] \right) \right]
\leq \hat{P}\left[(e^{-(\langle W, h \rangle + \frac{1}{2} \|h\|_h^2)} \right)^{\frac{1}{2}} P\left[\frac{\nu_\beta(W,p)}{\nu_\beta(W,q)} \in [\lambda^{-1}, \lambda] \right]^{\frac{1}{2}}.
\]
Since the law \(\hat{P} \) is a shift of \(P \) by \(h \), the above is equal to
\[
= e^{\frac{1}{2} \|h\|_h^2} P\left[\frac{\nu_\beta(W+h,p)}{\nu_\beta(W+h,q)} \in [\lambda^{-1}, \lambda] \right]^{\frac{1}{2}}
\leq e^{\alpha^2 n} P\left[e^{2\beta \alpha n} \frac{\nu_\beta(W,p)}{\nu_\beta(W,q)} \in [\lambda^{-1}, \lambda] \right]^{\frac{1}{2}},
\]
where the second inequality is by (3.22). With \(\alpha \) ranging over \([-1, 1]\), the above implies (3.20) with \(C := \exp\{1/b^3\} \) and \(c := \log(2n)/\log(\lambda) \).

\[
\square
\]

3.6 Chaos expansion

The proof of the proposition below is in the Appendix.

Proposition 3.3. Let \(S \subset E^{b,s} \) be finite and \(\Gamma_{S}^{b,s} \) be nonempty. Define the measure \(\mu_S^{(n)} \) such that
\[
\mu_S^{(n)}(A) = \frac{\mu(A \cap G_S^{(n)})}{\mu(G_S^{(n)})},
\]
where \(G_S^{(n)} \) is the set of \(p \in \Gamma_{S}^{b,s} \) such that \(S \subset \cup_{k=1}^{s^n} [p]_n(k) \). Then the sequence \(\{\mu_S^{(n)}\}_{n \in \mathbb{N}} \) converges vaguely to a limiting probability measure \(\mu_S \).

The following defines a generalization of the measure \(\rho_k(x_1, \cdots, x_k; dp) \) on \(\Gamma_{b,s} \); see Definition 1.23.

Definition 3.4. Let \(x_1, \cdots, x_k \) be distinct elements in \(E^{b,s} \). If \(\Gamma_{x_1,\cdots,x_k}^{b,s} \) is nonempty, define the measure \(\rho_k^{(n)}(x_1, \cdots, x_k; ds) \) such that for a Borel set \(A \subset \Gamma_{x_1,\cdots,x_k}^{b,s} \)
\[
\rho_k^{(n)}(x_1, \cdots, x_k; A) = b^{(n)}(\{x_1, \cdots, x_k\}) \mu_k^{(n)}(x_1, \cdots, x_k; A),
\]
where \(\gamma^{(n)}(S) \) is defined for \(n \in \mathbb{N} \) and a finite set \(S \subset E^{b,s} \)
\[
\gamma^{(n)}(S) = \sum_{k=0}^{n-1} \left(|S| - |\{e \in E^{b,s}_k \mid e \cap S \neq \emptyset\}| \right).
\]
If \(\Gamma_{x_1,\cdots,x_k}^{b,s} \) is empty, I define \(\rho_k^{(n)}(x_1, \cdots, x_k; dp) = 0 \).
Corollary 3.5. For fixed, distinct \(x_1, \ldots, x_k \in E^{b,s} \), the sequence of measures \(\{\rho_k^{(n)}(x_1, \ldots, x_k; dp)\}_{n \in \mathbb{N}} \) converges vaguely to \(\rho_k(x_1, \ldots, x_k; dp) \). Moreover, if \(A \subset \Gamma^{b,s} \), then \(\rho_k^{(n)}(x_1, \ldots, x_k; p) = \rho_k(x_1, \ldots, x_k; p) \) for all \(n > N \).

Remark 3.6. I drop superscripts and subscripts in the following cases: \(\gamma \equiv \gamma(\infty), \rho_k \equiv \rho_k(\infty) \), and \(\rho_k(x_1, \ldots, x_k) \equiv \rho_k(x_1, \ldots, x_k; \Gamma^{b,s}) \).

Remark 3.7. The measure \(\rho_k^{(n)}(x_1, \ldots, x_k; dp) \) is equal to \(\tau_k^{(n)}(x_1, \ldots, x_k; p) \mu(dp) \) where the density can be written as

\[
\tau_k^{(n)}(x_1, \ldots, x_k; p) = b^{n^2} \frac{\chi_{G_{(x_1, \ldots, x_k)}^{(n)}}(p)}{\mu(G_{(x_1, \ldots, x_k)}^{(n)})} = b^{nk} \chi\left\{ x_1, \ldots, x_k \right\} \subset \sum_{\ell=1}^{b^n} [p]_n(\ell) = \prod_{\ell=1}^{k} Y_p^{(n)}(x_\ell).
\]

Proposition 3.8. Let \(M_{(n)}^{(n)}(x_1, \ldots, x_k; A) \) be the GMC measure over the field \(\left(W, \beta Y^((n)) \right) \). For a Borel set \(A \subset \Gamma^{b,s} \), the random variable \(M_{\beta}^{(n)}(A) \) has the chaos expansion

\[
\mu(A) + \sum_{k=1}^{\infty} \frac{\beta_k}{k!} \int_{(D^{b,s})^k} \rho_k^{(n)}(x_1, \ldots, x_k; A) W(x_1) \cdots W(x_k) \nu(dx_1) \cdots \nu(dx_k). \tag{3.25}
\]

The hierarchy of functions \(\{\rho_k^{(n)}(x_1, \ldots, x_k; A)\}_{k \in \mathbb{N}} \) satisfies

(I). \(\int_{D^{b,s}} \rho_k^{(n)}(x_1, \ldots, x_k; A) \nu(dx_k) = \rho_k^{(n)}(A) \) and

(II). \(\int_{(D^{b,s})^k} \rho_k^{(n)}(x_1, \ldots, x_k; A) \nu(dx_1) \cdots \nu(dx_k) = \mu(A) \).

Proof. Recall that

\[
M_{\beta}^{(n)}(A) = \int_{A} e^{\beta(W, Y_p^{(n)} - \frac{\beta}{2} \|Y_p^{(n)}\|_H^2)} \mu(dp), \tag{3.26}
\]

where \(Y_p^{(n)} \in \mathcal{H} \) is equal to \(Y_p^{(n)} = b^n \chi(\bigcup_{k=1}^{b^n} [p]_n(k)) \). The integrand above has the chaos expansion

\[
e^{\beta(W, Y_p^{(n)} - \frac{\beta}{2} \|Y_p^{(n)}\|_H^2)} = 1 + \sum_{k=1}^{\infty} \frac{\beta_k}{k!} \int_{(D^{b,s})^k} \prod_{\ell=1}^{k} Y_p^{(n)}(x_\ell) W(x_1) \cdots W(x_k) \nu(dx_1) \cdots \nu(dx_k).
\]

By Remark 3.7, \(\prod_{\ell=1}^{k} Y_p^{(n)}(x_\ell) \) is equal to the density, \(\tau_k^{(n)}(x_1, \ldots, x_k; p) \), of the measure \(\rho_k^{(n)}(x_1, \ldots, x_k; dp) \). Thus the expressions (3.25) and (3.26) are equal.

The equalities (I) and (II) also follow from Remark 3.7 since, for instance,

\[
\int_{D^{b,s}} \rho_k^{(n)}(x_1, \ldots, x_k; A) \nu(dx_k) = \int_{D^{b,s}} \int_{A} \tau_k^{(n)}(x_1, \ldots, x_k; p) \mu(dp) \nu(dx_k)
\]

\[
= \int_{D^{b,s}} \int_{A} \prod_{\ell=1}^{k} Y_p^{(n)}(x_\ell) \mu(dp) \nu(dx_k),
\]

and switching the order of integration and using that \(\int_{D^{b,s}} Y_p^{(n)}(x) \nu(dx) = 1 \) yields

\[
= \int_{A} \prod_{\ell=1}^{k-1} Y_p^{(n)}(x_\ell) \mu(dp) = \rho_k^{(n)}(x_1, \ldots, x_{k-1}; A).
\]

\(\square \)
Proof of Theorem 1.25. By Proposition 3.2 the sequence \(\{M_\beta^{(n)}(A)\}_{n \in \mathbb{N}} \) converges in \(L^2(\Gamma^{b,s}, \mathcal{B}_\Gamma, \mu) \) to \(M_\beta(A) \). Thus

\[
\langle \rho_k^{(n)}(\cdot, A) \rangle \equiv (\mu(A), \rho_1^{(n)}(x_1; A), \rho_2^{(n)}(x_1, x_2; A), \cdots),
\]

viewed as an element of

\[
L^2\left(\bigcup_{k=0}^{\infty} \left((D_{b,s}^k)^k, \bigoplus_{k=0}^{\infty} B_D^{k, k}, \bigoplus_{k=0}^{\infty} \frac{\beta^{2k}}{k!} \nu^k \right) \right),
\]

converges as \(n \to \infty \) to a limit \(\langle \tilde{\rho}_k(\cdot, A) \rangle \). However, if \(A \in \mathcal{B}_\Gamma^{(n)} := \mathcal{P}(\Gamma^{b,s}_n) \), Corollary 3.5 implies that \(\langle \tilde{\rho}_k(\cdot, A) \rangle = \langle \rho_k(\cdot, A) \rangle \)

\[\square \]

A Further discussion of the diamond hierarchical lattice

A.1 The vertex set

I will show how the set of vertices, \(V^{b,s}_n \), on the graph \(D^{b,s}_n \) are embedded in \(D^{b,s} \). For \(n \in \mathbb{N} \), I can label elements in \(V^{b,s}_n \setminus V^{b,s}_{n-1} \) by

\[
V^{b,s}_n \setminus V^{b,s}_{n-1} \equiv \left(\{1, \cdots, b\} \times \{1, \cdots, s\} \right)^{n-1} \times \left(\{1, \cdots, b\} \times \{1, \cdots, s-1\} \right).
\]

Given an element \(v = (b_1, s_1) \times \cdots \times (b_n, s_n) \in V^{b,s}_n \setminus V^{b,s}_{n-1} \), define \(U_v = L_v \cup R_v \subset D^{b,s} \) for

\[
L_v := \left\{ (b_1, s_1) \times \cdots \times (b_n, s_n) \times \prod_{j=1}^{\infty} (\hat{b}_j, s) \left| \hat{b}_j \in \{1, \cdots, b\} \right\} \subset D^{b,s}
\]

and

\[
R_v := \left\{ (b_1, s_1) \times \cdots \times (b_n, s_n + 1) \times \prod_{j=1}^{\infty} (\hat{b}_j, 1) \left| \hat{b}_j \in \{1, \cdots, b\} \right\} \subset D^{b,s}.
\]

Pairs \(x, y \in U_v \) satisfy \(d_D(x, y) = 0 \), and \(U_v \) is the maximal equivalence class with that property. Thus \(v \) is canonically identified with an element in \(D^{b,s} \). The root vertices \(V^{b,s}_0 = \{A, B\} \) of the graph are identified with the subsets of \(D^{b,s} \) given by

\[
A := \left\{ \prod_{j=1}^{\infty} (\hat{b}_j, 1) \left| \hat{b}_j \in \{1, \cdots, b\} \right\} \quad \text{and} \quad B := \left\{ \prod_{j=1}^{\infty} (\hat{b}_j, s) \left| \hat{b}_j \in \{1, \cdots, b\} \right\} \right.
\]

A.2 The metric space \(D^{b,s} \)

Next I prove the points in Proposition 2.4. Note that each element of \(E^{b,s}_n \) is equivalent to a nested sequence \(e_n \in E^{b,s}_n \).

Completeness: Let \(\{x_k\}_{k \in \mathbb{N}} \) be a Cauchy sequence in \(D^{b,s} \). The sequence \(\bar{\pi}(x_k) \in [0, 1] \) must be Cauchy and thus convergent to a limit \(\lambda \in [0, 1] \).

If \(\lambda \) is a multiple of \(b^{-N} \) for some nonnegative integer \(N \in \{0, 1, 2, \cdots\} \), let \(N \) be the smallest value. For large \(k \), the terms \(x_k \) must become arbitrarily close to generation \(N \) vertices. Since the generation \(N \) vertices are at least a distance \(1/s^N \) apart, the terms must be close to the same generation vertex and thus convergent.
If \(\lambda \) is not a multiple of \(b^{-N} \) for any \(N \in \mathbb{N} \), then there must exist a nested sequence of edge sets \(e_n \in E_n^{b,s} \) such that each closure \(\bar{e}_n \) contains a tail of the sequence \(\{x_k\}_{k \in \mathbb{N}} \). The sequence \(\{x_k\}_{k \in \mathbb{N}} \) converges to the unique element in \(\cap_{n=1}^{\infty} \bar{e}_n \).

Compactness: Let \(\{x_k\}_{k \in \mathbb{N}} \) be a sequence in \(D^{b,s} \). Since \(D^{b,s} \) is covered by sets \(\bar{e} \) for \(e \in E_n^{b,s} \), the pigeonhole principle implies that there must exist a nested sequence of edge sets \(e_n \in E_n^{b,s} \) such that each \(\bar{e}_n \) contains \(x_k \) for infinitely many \(k \in \mathbb{N} \). Thus there is a subsequence of \(\{x_k\}_{k \in \mathbb{N}} \) converging to the unique element in \(\cap_{n=1}^{\infty} \bar{e}_n \).

Hausdorff Dimension: The contractive maps \(S_{i,j} \)’s defined in Remark 2.3 are the similitudes of the fractal \(D^{b,s} \). The open set \(O := D^{b,s} \setminus \{A, B\} \) is a separating set since
\[
\bigcup_{i,j} S_{i,j}(O) \subset O \quad \text{and} \quad S_{i,j}(O) \cap S_{k,l}(O) = \emptyset
\]
for \((i, j) \neq (k, l) \). Since the \(S_{i,j} \)’s have contraction constant \(1/s \) and there are \(bs \) maps, the Hausdorff dimension of \(D^{b,s} \) is \(\log(bs)/\log s \).

A.3 The measures

Finally, I prove Propositions 2.5, 2.9, and 3.3.

Uniform measure on the diamond lattice: Let \(\mathcal{B}_E := \{A \cap E_n^{b,s} : |A| \in \mathcal{B}_D\} \) be the restriction of \(\mathcal{B}_D \) to \(E_n^{b,s} = D^{b,s} \setminus V^{b,s} \). Every element \(A \in \mathcal{B}_D \) can be decomposed as \(A = A_1 \cup A_2 \) for \(A_1 \subset V^{b,s} \) and \(A_2 \in \mathcal{B}_E \). I define \(\nu \) as zero on \(V^{b,s} \), and it remains to define \(\nu \) on \(\mathcal{B}_E \). The Borel \(\sigma \)-algebra \(\mathcal{B}_E \) is generated by the semi-algebra, \(\mathcal{C}_E = \cup_{n=0}^{\infty} E_n^{b,s} \), i.e., the collection of cylinder sets \(C((b_1,s_1) \times \cdots \times (b_n,s_n)) \). This follows since for any open set \(O \subset D^{b,s} \) we can write
\[
O \setminus V^{b,s} = \bigcup_{x \in O \setminus V^{b,s}} e_x,
\]
where \(e_x \in \mathcal{C}_E \) is the biggest set in \(\mathcal{C}_E \) satisfying \(x \in e_x \subset O \). A premeasure \(\hat{\nu} \) can be placed on \(\mathcal{C}_E \) by assigning \(\hat{\nu}(e) = |E_n^{b,s}|^{-1} = ((bs)^{-n} \) to each \(e \in E_n^{b,s} \). The finite premeasure \((E^{b,s}, \mathcal{C}_E, \hat{\nu}) \) extends uniquely to a measure \((\Gamma^{b,s}, \mathcal{B}_E, \nu) \) through the Carathéodory procedure.

Uniform measure on paths: Consider the semi-algebra \(\mathcal{C}_\Gamma := \cup_{n=0}^{\infty} \Gamma_n^{b,s} \) of subsets of \(\Gamma^{b,s} \). An arbitrary open set \(O \subset \Gamma^{b,s} \) be written as a disjoint union of elements in \(\mathcal{C}_\Gamma \) in analogy to \(\cup_{A \in \mathcal{B}_D} A \). Indeed, each element in \(\mathcal{C}_\Gamma \) is an open ball with respect to the metric \(d_\Gamma \). A finite premeasure \(\hat{\mu} \) is defined on \(\mathcal{C}_\Gamma \) by assigning each \(q \in \Gamma_n^{b,s} \) the value \(\hat{\mu}(q) = |\Gamma_n^{b,s}|^{-1} \). Again, by Carathéodory’s technique, the measure \(\hat{\mu} \) extends to a measure \((\Gamma^{b,s}, \mathcal{B}_\Gamma, \mu) \).

Uniform measure on paths through a finite subset of \(\Gamma^{b,s} \): Let \(S \subset E_n^{b,s} \) be finite and \(\Gamma_n^{b,s} \) be nonempty. There exists an \(N \in \mathbb{N} \) such that no two elements in \(S \) fall into the same equivalence class \(e \in E_N^{b,s} \). For \(n > N \),
\[
\frac{d\mu_S^{(n)}}{d\mu} = J_S^{(n)} \quad \text{where} \quad J_S^{(n)}(p) := b^n|S|^{-\gamma(S)} \chi([p]_n \cap \Gamma_n^{b,s} \neq \emptyset).
\]
Moreover, \(J_S^{(n)} \) forms a nonnegative, mean-one martingale with respect to the filtration \(F_n = \Gamma_n^{b,s} \). If \(g : \Gamma^{b,s} \to \mathbb{R} \) is measurable with respect to \(F_m \) for some \(m \in \mathbb{N} \), then the sequence \(\int_{\Gamma_n^{b,s}} g(p) \mu^{(n)}(dp) \) is constant for \(n \geq m \) and thus convergent. A continuous function \(h : \Gamma^{b,s} \to \mathbb{R} \) must be uniformly
continuous since $\Gamma^{b,s}$ is a compact metric space. Thus given $\epsilon > 0$, there exists an $n \in \mathbb{N}$ such that $|g(p) - g(q)| < \epsilon$ when $[p]_n = [q]_n$. It follows that $Y_n g = \int_{\Gamma^{b,s}} g(p) \mu^{(n)}(dp)$ converges to a limit $Y_\infty g$ as $n \to \infty$. Thus $\mu^{(n)}_S$ converges vaguely to a limiting probability measure μ_S on $\Gamma^{b,s}$.

B Random Shift

The following argument from [28] shows that βY defines a random shift.

Proof of Theorem 1.12. Let \mathbb{E}_β refer to the expectation with respect to \widetilde{P}_β. The calculation below shows that $\mathbb{E}_\beta [e^{\langle W, \psi \rangle}] = \mathbb{E}_\beta [M_\beta (W, \Gamma^{b,s}) e^{\langle W, \psi \rangle}]$ for any $\psi \in H$, and thus that $M_\beta (W, \Gamma^{b,s})$ is the Radon-Nikodym derivative of \widetilde{P}_β with respect to P.

\[
\mathbb{E}_\beta [e^{\langle W, \psi \rangle}] := \int_{\Gamma^{b,s}} \mathbb{E} [e^{\langle W + \beta Y_p, \psi \rangle}] \mu(dp) \\
= \mathbb{E} [e^{\langle W, \psi \rangle}] \int_{\Gamma^{b,s}} e^{\beta \langle Y_p, \psi \rangle} \mu(dp).
\]

Since Y_n converges strongly to Y by part (i) of Proposition 1.21, the above is equal to

\[
e^{\frac{1}{2} \|\psi\|_H^2} \lim_{n \to \infty} \int_{\Gamma^{b,s}} e^{\beta \langle Y_p^{(n)}, \psi \rangle} \mu(dp) = \lim_{n \to \infty} \int_{\Gamma^{b,s}} e^{\frac{1}{2} \|\psi + \beta Y_p^{(n)}\|_H^2 - \frac{\beta^2}{2} \|Y_p^{(n)}\|_H^2} \mu(dp).
\]

Since $\mathbb{E} [\exp \{ \langle W, \phi \rangle \}] = \exp \{ \frac{1}{2} \|\phi\|_H^2 \}$, the above is equal to

\[
= \lim_{n \to \infty} \int_{\Gamma^{b,s}} \mathbb{E} [e^{\langle W, \psi + \beta Y_p^{(n)} \rangle} - \frac{\beta^2}{2} \|Y_p^{(n)}\|_H^2 \mu(dp)] \\
= \lim_{n \to \infty} \mathbb{E} \left[\mathbb{E} \left[e^{\langle W + \beta Y_p^{(n)} - \frac{\beta^2}{2} \|Y_p^{(n)}\|_H^2, \psi \rangle} \right] \right] = \lim_{n \to \infty} \mathbb{E} \left[M_\beta^{(n)} (W, \Gamma^{b,s}) e^{\langle W, \psi \rangle} \right].
\]

Finally, the limit can be brought inside the expectation as a consequence of part (ii) of Proposition 3.2

\[
= \mathbb{E} \left[M_\beta (W, \Gamma^{b,s}) e^{\langle W, \psi \rangle} \right].
\]

References

[1] T. Alberts, J. Clark, S. Kocic: The intermediate disorder regime for a directed polymer model on a hierarchical lattice, Stoch. Process. Appl. 127, 3291-3330 (2017).

[2] T. Alberts, K. Khanin, J. Quastel: The intermediate disorder regime for directed polymers in dimension $1 + 1$, Ann. Probab. 42, No. 3, 1212-1256 (2014).

[3] T. Alberts, K. Khanin, J. Quastel: The continuum directed random polymer, J. Stat. Phys. 154, No. 1-2, 305-326 (2014).

[4] J. Barral, A. Kupiainen, M. Nikula, E. Saksman, C. Webb: Basic properties of critical lognormal multiplicative chaos, Ann. Probab. 43, 2205-2249 (2015).
[5] N. Berestycki: *An elementary approach to Gaussian multiplicative chaos*, Electronic Journal of Probability **22**, paper no. 27, 22 pp (2017).

[6] J. Clark: *High-temperature scaling limit for directed polymers on a hierarchical lattice with bond disorder*, preprint, arXiv:1709.01181.

[7] F. Caravenna, R. Sun, and N. Zygouras: *Polynomial chaos and scaling limits of disordered systems*, J. Eur. Math. Soc. **19**, 1-65 (2017).

[8] F. Caravenna, R. Sun, and N. Zygouras: *Universality in marginally relevant disordered systems*, preprint, arXiv:1510.06287.

[9] B. Derrida, G. Giacomin, H. Lacoin, F.L. Toninelli: *Fractional moment bounds and disorder relevance for pinning models*, Commun. Math. Phys. **287**, 867-887 (2009).

[10] B. Derrida, R.B. Griffith: *Directed polymers on disordered hierarchical lattices*, Europhys. Lett. **8**, No. 2, 111-116 (1989).

[11] B. Duplantier, S. Sheffield: *Liouville quantum gravity and KPZ*, Invent. Math. **185**, no. 2, 222-393 (2011).

[12] B. Duplantier, R. Rhodes, S. Sheffield, V. Vargas: *Renormalization of critical Gaussian multiplicative chaos and KPZ relation*, Comm. Math. Phys. **330**, no. 1, 283-3330 (2014).

[13] T. Garel, C. Monthus: *Critical points of quadratic renormalizations of random variables and phase transitions of disordered polymer models on diamond lattices*, Phys. Rev. E **77**, 021132 (2008).

[14] G. Giacomin, H. Lacoin, F.L. Toninelli: *Hierarchical pinning models, quadratic maps, and quenched disorder*, Probab. Theor. Rel. Fields **145**, (2009).

[15] L. Goldstein: *Normal approximation for hierarchical structures*, Ann. Appl. Prob. **14**, 1950-1969 (2004).

[16] R.B. Griffith, M. Kaufman: *Spin systems on hierarchical lattices. Introduction and thermodynamical limit*, Phys. Rev. B, **3** 26, no. 9, 5022-5032 (1982).

[17] B.M. Hambly, J.H. Jordan: *A random hierarchical lattice: the series-parallel graph and its properties*, Adv. Appl. Prob., **36**, 824-838 (2004).

[18] B.M. Hambly, T. Kumagai: *Diffusion on the scaling limit of the critical percolation cluster in the diamond hierarchical lattice*, Adv. Appl. Prob., **36**, 824-838 (2004).

[19] S. Janson: *Gaussian Hilbert spaces*, Cambridge University Press, 1997.

[20] J. Junnila, E. Saksman: *The uniqueness of the Gaussian multiplicative chaos revisited*, Electron. J. Probab. **22**, 1-31 (2017).

[21] J.P. Kahane: *Sur le chaos multiplicatif*, Annales des sciences mathématiques due Québec **9**, No. 2, 105-150 (1985).

[22] H. Lacoin: *Hierarchical pinning model with site disorder: disorder is marginally relevant*, Probab. Theor. Rel. Fields **148**, No. 1-2, 159-175 (2010).

[23] H. Lacoin, G. Moreno: *Directed Polymers on hierarchical lattices with site disorder*, Stoch. Proc. Appl. **120**, No. 4, 467-493 (2010).

24
[24] H. Lacoin, R. Rhodes, V. Vargas: *Complex Gaussian multiplicative chaos*, Comm. Math. Phys. **337**, No. 2, 569-632 (2015).

[25] R. Rhodes, V. Vargas: *Gaussian multiplicative chaos and applications: a review*, Probab. Surv. **11**, 315-392 (2014).

[26] P. A. Ruiz: *Explicit formulas for heat kernels on diamond fractals*, (preprint) arXiv:1712.00385.

[27] E. Saksman, C. Webb: *The Riemann zeta function and Gaussian multiplicative chaos: statistics on the critical line*, (preprint) arXiv: 1609.00026.

[28] A. Shamov: *On Gaussian multiplicative chaos*, J. Funct. Anal. **270**, 3224-3261 (2016).

[29] C. Webb: *The characteristic polynomial of random unitary matrix and Gaussian multiplicative chaos*, Electron. J. Probab. **20**, paper no. 104, 21 pp (2015)