Global effect of COVID-19 pandemic on the rate of acute coronary syndrome admissions: a comprehensive review of published literature

Ayman Helal,1,2 Lamis Shahin,3 Mahmoud Abdelsalam,4 Mokhtar Ibrahim 5,6

ABSTRACT

Background The COVID-19 pandemic has disrupted healthcare systems across the world. The rate of acute coronary syndrome (ACS) admissions during the pandemic has varied significantly.

Objectives The purpose of this study is to investigate the effect of the pandemic on ACS hospital admissions and to determine whether this is related to the number of COVID-19 cases in each country.

Method Search engines including PubMed, Embase, Ovid and Google Scholar were searched from December 2019 to the 15 September 2020 to identify studies reporting ACS admission data during COVID-19 pandemic months in 2020 compared with 2019 admissions.

Results A total of 40 studies were included in this multistudy analysis. They demonstrated a 28.1% reduction in the rate of admission with ACS during the COVID-19 pandemic period compared with the same period in 2019 (total of 28 613 patients in 2020 vs 39 225 in 2019). There was a significant correlation between the absolute risk reduction in the total number of ACS cases and the number of COVID-19 cases per 100 000 population (Pearson correlation=0.361 (p=0.028)). However, the correlation was not significant for each of the ACS subgroups: non-ST-elevation myocardial infarction (STEMI) (p=0.508), STEMI (p=0.883) and unstable angina (p=0.175).

Conclusion There was a significant reduction in the rate of ACS admission during the COVID-19 pandemic period compared with the same period in 2019 with a significant correlation with COVID-19 prevalence.

INTRODUCTION

The SARS-CoV2 viral pandemic has disrupted healthcare systems across the world, forcing them to efficiently adapt to the overwhelming increase in acutely and devastatingly ill patients diagnosed with COVID-19.13 During this period, acute coronary syndrome (ACS) admissions have been lower than the pre-pandemic admission rates.3 This phenomenon has been observed worldwide and has been attributed to the increased patient concern of presenting to the hospital, improved medication compliance and less physical strain, and decreased levels of pollution and smoke exposure due to quarantine measures.3

The purpose of this multistudy analysis was to investigate the impact of COVID-19 pandemic on hospital admissions for ACS and study the relation to published numbers of COVID-19 infections per 100 000 of the population in each country.

METHODOLOGY

Preferred Reporting Items for Systemic Reviews and Meta-Analyses statement was followed for the conduct and reporting of this meta-analysis.6

Data source, search strategy and inclusion

To identify all the studies demonstrating the impact of the COVID-19 pandemic on the number of hospital admissions for patients with ACS, PubMed, Embase, Ovid and Google Scholar were carefully searched for any
published data from December 2019 to the 15 September 2020.

The following search keywords were used alone or in combination: ‘novel coronavirus’, ‘SARS-CoV2’, ‘COVID-19’, ‘ACS’, ‘cardiovascular disease’, ‘cardiac injury’, ‘STEMI’, ‘non-STEMI’ and ‘unstable angina.

Inclusion criteria for this multistudy analysis were any comparative study published in English or has a published English translation reporting ACS admission data during COVID-19 pandemic months and comparing it to 2019 admission data. The pandemic month was identified by the detection of the first case of COVID-19 according to the study original country. Studies without adequate admission data or no comparison to 2019 were excluded. (figure 1)

Data extraction and study quality assessment
According to the study, any reported data for ACS, non-ST-elevation myocardial infarction (STEMI), STEMI or unstable angina (UA) admission numbers in 2019 and 2020 were extracted. In addition to the date of the first recognised case of COVID-19. The primary outcome measure was to compare the number of admissions in both years. Newcastle-Ottawa scale was used to assess the quality of the studies.

Data synthesis and statistical analysis
The data are described as mean±±SD, median, range and IQR or frequencies (number of cases) and percentages when appropriate. Absolute risk reduction (reduction in the number of COVID-19 cases, ARR) between 2019 and 2020 was calculated for each of the included studies. Correlation between ARR and number of COVID-19 cases/100 000 population was evaluated using Pearson moment correlation equation. Statistical calculations were performed using SPSS V.22 (IBM).

RESULTS
A total of 40 studies were included in this analysis. They demonstrated a reduction of 28.1% in rates of admission in patients with ACS during the COVID-19 pandemic period compared with the same period in 2019 (total of 28 613 patients in 2020 vs 39 225 patients in 2019) (table 1) figure 2. figure 3)

Only 16 studies provided a subgroup analysis for ACS which in total demonstrated a reduction in cases admitted in 2020 compared with that of 2019 with a 21.9% reduction in STEMI cases (9374 vs 11 839 patients, respectively), 27% reduction in NSTEMI (10 855 vs 14 671 patients, respectively) and 48.1% reduction in the number of patients admitted with UA (343 vs 545 patients, respectively) (figure 4).

There was a positive correlation between the ARR in the total number of ACS cases and the number of COVID-19 cases per 100 000 population in published
each country (Pearson correlation=0.361* (p=0.028)) (figure 5).

However, the correlation was not significant for each of the ACS subgroups: non-STEMI (p=0.508), STEMI (p=0.883), and UA (p=0.175).

DISCUSSION

The emergence of Coronavirus SARS-CoV-2 in Wuhan, China in December 2019 has led to global healthcare system changes. One of which is the number of patients admitted in hospitals including ACS cases. How COVID-19

Table 1 Details of the enrolled studies showing the number of ACS cases admitted during 2019 and 2020

Study	Country	Observation period	2019	2020	2019	2020	2019	2020
Zitelny et al	USA	1/1 to 31/3	104	104	103	103		
Solomon et al	USA	1/1 to 14/4	1635		1504			
Braith et al	USA	1/3 and 30/4	113	28	85	67	23	44
Garcia et al	USA	1/1 to 31/3	611	611	550	550		
Gluckman et al	USA	30/12 to 16/5	2664		2506			
Lotfi et al	USA		1092		1038			
Coughlan et al	Ireland	1/1 to 17/4	14	14	9	9		
Wilson et al	UK	19/2 to 14/4	388	388	199	199		
Griffin et al	UK	15/2 to 31/3	1888	621	1267	1210	477	733
Matham et al	UK	1/1 to 24/5	39 225		28 613			
Papafalakis et al	Greece	1/1 to 12/4	1077	327	479	271	771	247
Oikonomou et al	Greece	9/3 to 12/4	141	45	96	60	21	39
Piccolo et al	Italy	30/1 to 26/3	1621	724	897	1093	489	604
De Filippo et al	Italy	1/1 to 31/3	765		547			
De Rosa et al	Italy	1/3 to 19/3	618	268	350	319	197	122
Di Liberto et al	Italy	1/3 to 25/4	46	46	26	26		
Secco et al	Italy	1/3 to 31/3	162	66	93	3	84	49
Toniolo et al	Italy	1/3 to 31/3	71	21	32	34	10	6
Trabattoni et al	Italy	8/3 to 10/4	19	10	9	68	46	22
Vecchio et al	Italy	9/3 to 9/4	49	49	31	31		
Cammallieri et al	Italy	1/3 to 31/3	35	35	13	13		
Kessler et al	Germany	1/3 to 30/4	3411	677	2584	2509	510	1911
Schwarz et al	Germany	1/1 to 19/4	180	50	64	69	101	34
Gitt et al	Germany	1/1 to 21/4	502	103	197	202	425	118
Scholz et al	Germany	1/1 to 31/3	443	443	387	387		
Seifert et al	Germany	1/1 to 31/5	11 032	3350	7682	9458	2940	6518
Claes et al	Belgium	13/3 to 3/4	260	260	188	188		
Daoulah et al	Saudi Arabia	1/1 to 30/4	635	635	500	500		
Félix-Oliveira et al	Portugal	1/3 to 31/3	28	28	12	12		
Gaspior et al	Poland	9/3 to 16/4	2524		1424			
Hauguet-Moreau et al	France	17/2 to 26/4	107	63	44	37	16	21
Lantelme et al	France	1/1 to 5/4	142		98			
Rangé et al	France	1/1 to 14/4	693	693	615	615		
Romaguera et al	Spain	1/1 to 19/4	524		395			
Tam et al	China	17/2 to 26/4	107	63	44	37	16	21
Toner et al	Australia	16/3 to 15/4	102		20	3	17	
Li et al	Taiwan	1/2 to 30/4	1092	1092	1038	1038		
Sharif Khan et al	Pakistan	23/3 to 7/5	621	621	748	386	386	207
Khalil et al	Turkey	10/3 to 30/4	404	404	121	121		
Butt et al	Qatar	1/3 to 31/3	171		114			

ACS, acute coronary syndrome; NSTEMI, non-ST-elevation myocardial infarction; UA, unstable angina.
is affecting admissions and management of myocardial infarction is a matter of concern, as medical resources have been massively reorientated, and the population has been in lockdown.

Nearly all studies reported a decrease in ACS cases except for two studies undertaken in Australia and Taiwan where early measures were taken to limit the virus spread.7 8 However, in Greece where similar early precautions were implemented, there was still a significant reduction in admissions recorded as well.9 10

Some viral illness, like SARS-CoV and MERS-CoV, was noted to increase in acute cardiovascular events rate in infected patients. Similar effect was expected in patients with SARS-CoV-2 infections who also develop general proinflammatory and hypercoagulative status, explaining the frequent in-hospital acute coronary events observed.11 The paradoxical phenomenon of decline...
was observed after the first disease outbreak news from the WHO had been issued 5 January, 2020 and by the beginning of nationwide lockdowns, suspension of elective procedures and precautionary stay at home measures following declaration of COVID-19. These measures, however, helpful in reducing the diffusion of SARS-CoV-2 infection, significantly modified patients’ responses to non-SARS-CoV-2 medical conditions, including ACS. Whether this decrease was due to the lockdown measures implemented, fear of Hospital transmission or decrease in stressors and environmental pollution and triggers for ACS remains to be investigated.

There have been suggested reasons for the decline of ACS admissions; however we do not have any data to say which were more important. Avoidance of hospitals and adherence to social distancing recommendations might be one of the important causes since the highest decline was observed mainly in the early weeks of the pandemic in most countries as well as the positive correlation we identified between the burden of COVID-19 cases and the absolute reduction in ACS cases. Even though the reduction was still found in countries spared by COVID-19 infection or where the infection was minimal, the inability to find transportation to hospitals and the overwhelming

Figure 4 Comparison between the number of admissions with STEMI, NSTEMI and UA in 2019 and 2020. NSTEMI, non-ST-elevation myocardial infarction.

Figure 5 The correlation between Absolute risk reduction (ARR) of acute coronary syndrome admissions and the published number of COVID-19 cases in each study.
of healthcare systems remains a vital reason in most countries.

Globally, minimising symptoms, reluctance and fear of reaching out to hospitals expressed by delays in symptom to hospital times for fear of infection is probably the cause in many cases; driven by overwhelming messages from authorities and the media about COVID-19, especially that the reduction for ACS types with less severe clinical presentation/symptoms (ie, NSTEMI and UA) was more pronounced. Although an increase in out of hospital cardiac arrest, mortality, complications and more frequent left ventricle systolic impairment were observed, no correlation has been established so far and this link was denied in some countries and the correlation might be hard to establish.

However, a reason which causes worry might be misdiagnosis and underdiagnosis by doctors who are COVID-19 minded along with overstretched healthcare system since it was emphasised from the very beginning that dyspnoea and chest discomfort were the dominant symptoms of the viral infection, which obviously could be misleading for many patients with ACS.

In Belgium, a decrease in pollution and lower levels of NO2 was found have contributed to a true decrease in ACS cases. Other factors suggested are the decrease in physical strain, sympathetic activity and change in sleep time and reduced common stressors known to cause in many cases; driven by overwhelming messages to hospital times for fear of infection is probably the overall reduction for ACS types with less severe clinical presentation/symptoms (ie, NSTEMI and UA)

The consequences of this decline of ASC admissions could have a detrimental impact on ACS outcome in terms of increased myocardial impairment, mortality and morbidity. The later can represent a challenge to the cardiology community after the marked reduction in ACS complications in the past decade.

CONCLUSION

A total of 40 studies from different countries all over the world have shown a reduction in rates of admission in patients with ACS during the COVID-19 pandemic period compared with the same period in 2019, with a positive correlation with the published figure of COVID-19 infection.

Contributors All authors have contributed equally to this work.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available in a public, open access repository. All data included are published in previous manuscripts, included in the references.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD

Mokhtar Ibrahim http://orcid.org/0000-0002-0107-4146

REFERENCES

1. Spinelli A, Pelling G. COVID-19 pandemic: perspectives on an unfolding crisis. Br J Surg 2020;107:785–7.
2. Saglietto A, D’Ascenzo F, Zoccal GB, et al. COVID-19 in Europe: the Italian lesson. J Am Coll Cardiol 2020;75:178–90.
3. Grasselli G, Pesenti A, Cecconi M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: early experience and forecast during an emergency response. JAMA 2020;323:1545–1546.
4. Metzler B, Siostronzek P, Binder RK, et al. Decline of acute coronary syndrome admissions in Austria since the outbreak of COVID-19: the pandemic response causes cardiac collateral damage. Eur Heart J 2020;41:1852–3.
5. Wood S. The mystery of the missing STEMls during the COVID-19 pandemic, 2020. Available: https://www.tctmd.com/news/mystery-missing-stems-during-covid-19-pandemic
6. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Plos Med 2009;6:e1000097.
7. Toner L, Koshy AN, Hamilton GW, et al. Acute coronary syndromes undergoing percutaneous coronary intervention in the COVID-19 era: comparable case volumes but delayed symptom onset to hospital presentation. Eur Heart J Qual Care Clin Outcomes 2020:6:225–6.
8. Li Y-H, Huang W-C, Hwang J-J, et al. No reduction of ST-segment elevation myocardial infarction admission in Taiwan during coronavirus pandemic. Am J Cardiol 2020;131:133–4.
9. Papafaklis MI, Katsouras CS, Tsigkas G, et al. "Missing" acute coronary syndrome hospitalizations during the COVID-19 era in Greece: Medical care avoidance combined with a true reduction in incidence? Clin Cardiol 2020;43:1112–9.
10. Okonomou E, Aznavouridis K, Barbetseas J, et al. Hospital attendance and admission trends for cardiac diseases during the COVID-19 outbreak and lockdown in Greece. Public Health 2020;187:115–9.
11. Secco GG, Zocchi C, Parisi R, et al. Decrease and delay in hospitalization for acute coronary syndromes during the 2020 SARS-CoV-2 pandemic. Can J Cardiol 2020;36:1152–5.
12. Ziteńy E, Newman N, Zhao D. STEMI during the COVID-19 pandemic - an evaluation of incidence. Cardiovasc Pathol 2020;48:107232.
13. Gisiori M, Gierlotka M, Tycińska A, et al. Effects of the coronavirus disease 2019 pandemic on the number of hospitalizations for myocardial infarction: regional differences, population analysis of 7 million people. Kardiol Pol 2020;78:1039–42.
14. De Filippo O, D’Ascenzo F, Angelini F, et al. Reduced rate of hospital admissions for ACS during Covid-19 outbreak in northern Italy. N Engl J Med 2020;383:88–9.
15. Félix-Oliveira A, de Sousa Almeida M, Ferreira J, et al. Caring for cardiac patients amidst the SARS-CoV-2 pandemic: the scrambled pieces of the puzzle. Rev Port Cardiol 2020;39:299–301.
16. Toniole M, Negri F, Antonutti M, et al. Unpredictable fall of severe emergent cardiovascular diseases hospital admissions during the COVID-19 pandemic: experience of a single large center in northern Italy. J Am Heart Assoc 2020;9:e017122.
17. Kessler T, Graf T, Hilgenfeldt I, et al. Hospital admissions with acute coronary syndromes during the COVID-19 pandemic in German cardiac care units. Cardiovasc Rev 2020;116:1800–1.
18. Claeys MJ, Argacha J-F, Collart P, et al. Impact of COVID-19-related public containment measures on the ST elevation myocardial infarction epidemic in Belgium: a nationwide, serial, cross-sectional study. Acta Cardiol 2020:1–7.
19. García S, Albaghdadi MS, Meraj PM, et al. Reduction in ST-segment elevation myocardial catheterization laboratory activations in the United States during COVID-19 pandemic. J Am Coll Cardiol 2020;75:2871–2.
Meta-analysis

20 Seiffert M, Brunner FJ, Remmel M, et al. Temporal trends in the presentation of cardiovascular and cerebrovascular emergencies during the COVID-19 pandemic in Germany: an analysis of health insurance claims. Clin Res Cardiol 2020;109:1540–8.
21 Trabattoni D, Montorsi P, Merlino L. Late STEMI and NSTEMI patients’ emergency calling in COVID-19 outbreak. Can J Cardiol 2020;36:1161.e7–1161.e8.
22 Solomon MD, McNulty EJ, Rana JS, et al. The Covid-19 pandemic and the incidence of acute myocardial infarction. N Engl J Med Overseas Ed 2020;383:691–3.
23 Braith N, Rahman WJ, Alom M, et al. Decrease in acute coronary syndrome presentations during the COVID-19 pandemic in upstate New York. Am Heart J 2020;226:147–51.
24 Gluckman TJ, Wilson MA, Chiu S-T, et al. Case rates, treatment approaches, and outcomes in acute myocardial infarction during the coronavirus disease 2019 pandemic. JAMA Cardiol 2020;5:1419.
25 Lotfi AS, Capatina A, Kugelmass AD. Assessment of ST-segment elevation myocardial infarction volume trends during the COVID-19 pandemic. Am J Cardiol 2020;131:132–3.
26 Coughlan JJ, Chongprasertpon N, Arockiam S, et al. COVID-19 and STEMI: a snapshot analysis of presentation patterns during a pandemic. Int J Cardiol Heart Vasc 2020;30:100546.
27 Wilson SJ, Connolly MJ, Elghamry Z, et al. Effect of the COVID-19 pandemic on ST-segment-elevation myocardial infarction presentations and in-hospital outcomes. Circ Cardiovasc Interv 2020;13:1–3.
28 Griffin S. Covid-19: data show 5000 fewer hospital admissions for acute coronary syndrome during pandemic. BMJ 2020;370:m2852.
29 Matham MM, Spata E, Goldacre R, et al. COVID-19 pandemic and admission rates, length of stay, and in-hospital mortality for common cardiovascular admissions before and after COVID-19 outbreak. Circulation 2020;141:2035–7.
30 Piccolo R, Bruzzese D, Mauro C, et al. Population trends in rates of percutaneous coronary revascularization for acute coronary syndromes associated with the COVID-19 outbreak. Circulation 2020;141:2035–7.
31 De Rosa S, Spaccarotella C, Basso C, et al. Reduction of hospitalizations for myocardial infarction in Italy in the COVID-19 era. Eur Heart J 2020;41:2083–8.
32 Di Liberto IA, Pilato G, Geraci S, et al. Impact on hospital admission of ST-elevation myocardial infarction patients during coronavirus disease 2019 pandemic in an Italian Hospital. J Cardiovasc Med 2020;21:722–4.
33 Vecchio S, Fileti L, Reggi A. Impatto DELLA pandemia COVID-19 sui ricoveri per sindrome coronarica acuta: revisione DELLA letteratura ED esperienza monocentrica. Giornale italiano di cardiologia2020.
34 Cammalleri V, Muscoli S, Benedetto D, et al. Who has seen patients with ST-segment-elevation myocardial infarction? first results from Italian real-world coronavirus disease 2019. J Am Heart Assoc 2020;9:e017126.
35 Schwarz V, Mahfoud F, Lauder L, et al. Decline of emergency admissions for cardiovascular and cerebrovascular events after the outbreak of COVID-19. Clin Res Cardiol 2020;109:1500–6.
36 Gitt AK, Karcher AK, Zahn R, et al. Collateral damage of COVID-19-lockdown in Germany: decline of NSTEMI-ACS admissions. Clin Res Cardiol 2020;109:1585–7.
37 Scholz KH, Lengerfelder B, Thilo C, et al. Impact of COVID-19 outbreak on regional STEMI care in Germany. Clin Res Cardiol 2020;109:1501–11.
38 Daoula AH, Henji AS, Al-Fafi SM, et al. STEMI and COVID-19 pandemic in Saudi Arabia. Curr Probl Cardiol 2021;46:100656.
39 Hauguel-Moreau M, Pillière R, Prati G, et al. Impact of coronavirus disease 2019 outbreak on acute coronary syndrome admissions: four weeks to reverse the trend. J Thromb Thrombolysis 2021;51:1–2.
40 Lantelme P, Couray Targe S, Metral P, et al. Worrying decrease in hospital admissions for myocardial infarction during the COVID-19 pandemic. Arch Cardiovasc Dis 2020;113:443–7.
41 Rangé G, Hakim R, Motreff P. Where have the ST-segment elevation myocardial infarctions gone during COVID-19 lockdown? Eur Heart J Qual Care Clin Outcomes 2020;6:223–4.
42 Romaguera R, Ribera A, Güell-Viapiana F. Decrease in ST-segment elevation myocardial infarction admissions in Catalonia during the COVID-19 pandemic. Revista Española de Cardiología 2020;73:778–80.
43 Tam C-C, Cheung K-S, Lam S, et al. Impact of coronavirus disease 2019 (COVID-19) outbreak on ST-segment-elevation myocardial infarction care in Hong Kong, China. Circ Cardiovasc Qual Outcomes 2020;13:e006631.
44 Sharif Khan H, Mohsin M, Saif M. Impact of covid-19 pandemic associated lockdown on admissions secondary to cardiac ailments in a tertiary cardiac centre of Pakistan. Pak Armed Forces Med J 2020;19:342–6 https://www.pafmj.org/index.php/PAFMJ/article/view/4930
45 Khalil E, Univesities O, Özcan S. Comparison of the number of cardiovascular admissions before and after COVID-19: experience from turkey, 2020. Available: https://www.researchgate.net/publication/342611022
46 Butt AA, Kartha AB, Masoodi NA, hamadqa B, et al. Hospital admission rates, length of stay, and in-hospital mortality for common acute care conditions in COVID-19 vs. pre-COVID-19 era. Public Health 2020;189:6–11.