TORIC INITIAL IDEALS OF Δ-NORMAL CONFIGURATIONS: COHEN-MACAULAYNESS AND DEGREE BOUNDS

EDWIN O’SHEA AND REKHA R. THOMAS

Abstract. A normal (respectively, graded normal) vector configuration A defines the toric ideal I_A of a normal (respectively, projectively normal) toric variety. These ideals are Cohen-Macaulay, and when A is normal and graded, I_A is generated in degree at most the dimension of I_A. Based on this, Sturmfels asked if these properties extend to initial ideals — when A is normal, is there an initial ideal of I_A that is Cohen-Macaulay, and when A is normal and graded, does I_A have a Gröbner basis generated in degree at most $\dim(I_A)$?

In this paper, we answer both questions positively for Δ-normal configurations. These are normal configurations that admit a regular triangulation Δ with the property that the subconfiguration in each cell of the triangulation is again normal. Such configurations properly contain among them all vector configurations that admit a regular unimodular triangulation. We construct non-trivial families of both Δ-normal and non-Δ-normal configurations.

1. Introduction

A finite vector configuration $A = \{a_i : i = 1, \ldots, n\} \subset \mathbb{Z}^d$ defines the toric ideal $I_A := \langle x^u - x^v : u, v \in \mathbb{N}^n, \sum_{i=1}^n a_i u_i = \sum_{i=1}^n a_i v_i \rangle$ in the polynomial ring $R := \mathbb{K}[x_1, \ldots, x_n] = \mathbb{K}[x]$ where \mathbb{K} is a field. Let $\text{cone}(A)$, $\mathbb{Z}A$ and $\mathbb{N}A$ denote the cone, lattice and semigroup spanned by the $\mathbb{R}_{\geq 0}$, \mathbb{Z} and \mathbb{N}-linear combinations of A where \mathbb{N} is the set of non-negative integers. Let $\dim(A)$ be the Krull dimension of R/I_A which equals the rank of $\mathbb{Z}A$. Assume $\dim(A) = d$. The configuration A is normal if $\mathbb{N}A = \text{cone}(A) \cap \mathbb{Z}A$ and graded if A spans an affine hyperplane in \mathbb{R}^d. A finite set $B \subset \mathbb{Z}^d$ such that $\mathbb{N}B = \text{cone}(A) \cap \mathbb{Z}A$ is called a Hilbert basis of the semigroup $\text{cone}(A) \cap \mathbb{Z}A$. If A is normal, the zero set of I_A is a normal toric variety in $\mathbb{P}^{\text{dim}(A)}_{\mathbb{K}}$ of dimension $d - 1$. See [10] for details on toric ideals. A survey of recent results and open questions on normal configurations can be found in [2].

It is well known that initial ideals of a polynomial ideal inherit important invariants of the ideal such as dimension, degree and Hilbert function. Thus it is natural to ask if certain initial ideals inherit further properties of the ideal such as Cohen-Macaulayness, Betti numbers or reducedness (of the corresponding scheme). A result of Hochster [9] shows that when A is normal, I_A is Cohen-Macaulay. If A is also graded, then I_A is generated by homogeneous binomials of degree at most d [10] Thm. 13.14. Motivated by this, Sturmfels asked and conjectured the following.

Question 1.1. If A is normal (more generally, if I_A is Cohen-Macaulay), is there a monomial initial ideal in $\omega(I_A)$ of the toric ideal I_A that is Cohen-Macaulay?
Conjecture 1.2. \[\text{[17]}\] Conjecture 2.8] If \(A\) is a graded, normal configuration then \(I_A\) has a Gröbner basis whose elements have degree at most \(d = \dim(A)\).

In this paper, we show that Question 1.1 has a positive answer and Conjecture 1.2 is true when \(A\) is \(\Delta\)-normal. These configurations were defined by Hoşten and Thomas in \[11\]. We recall the definition. Let \(\Delta\) be a pure \((d - 1)\)-dimensional simplicial complex with vertex set \([n] := \{1, \ldots, n\}\). We denote the set of facets \((d\text{-element faces})\) of \(\Delta\) by \(\operatorname{max}\Delta\). For a set \(\tau \subseteq [n]\), let \(A_\tau := \{a_i \in A : i \in \tau\}\). We say that \(\Delta\) is a triangulation of \(A\) if \(\operatorname{cone}(A) = \bigcup_{\sigma \in \operatorname{max}\Delta} \operatorname{cone}(A_\sigma)\) and \(\operatorname{cone}(A_\sigma) \cap \operatorname{cone}(A_j) = \operatorname{cone}(A_{\sigma \cap j})\) for all \(\sigma, j \in \operatorname{max}\Delta\). The Stanley-Reisner ideal of \(\Delta\) is the squarefree monomial ideal \(\langle \prod_{i \in \tau} x_i : \tau \not\in \Delta \rangle \subseteq R\). A cornerstone in the combinatorics of toric initial ideals is the result by Sturmfels that the radical \(\langle \cdot \rangle \) of a triangulation \(\Delta\) of \(A\) is the Stanley-Reisner ideal of \(\Delta\). Triangulations supporting initial ideals of \(A\) are the regular triangulations of \(A\). A triangulation \(T\) of \(A\) is unimodular if for each \(\sigma \in \operatorname{max}T\), \(\mathbb{Z}A_\sigma = \mathbb{Z}A\).

Definition 1.3. A configuration \(A\) is \(\Delta\)-normal if it has a regular triangulation \(\Delta\) such that for each \(\sigma \in \operatorname{max}\Delta\), \(A \cap \operatorname{cone}(A_\sigma)\) is a Hilbert basis of \(\operatorname{cone}(A_\sigma) \cap \mathbb{Z}A\).

Note that \(\mathbb{Z}A\) is used in the semigroups of Definition 1.3. All \(\Delta\)-normal configurations are normal. In Sections 3 and 4 we prove our main results.

Theorem 3.20. Let \(A\) be a \(\Delta\)-normal configuration. Then there exists a term order \(\succ\) such that \(\Delta = \Delta_A\) and \(\text{in}_{\succ}(I_A)\) is Cohen-Macaulay.

Theorem 4.1. Let \(A\) be a graded \(\Delta\)-normal configuration. Then there exists a term order \(\succ\) such that \(\Delta = \Delta_A\) and the Gröbner basis of \(I_A\) with respect to \(\succ\) consists of binomials of degree at most \(d = \dim(A)\).

It was shown in \[11\] that if \(A\) is \(\Delta\)-normal then \(I_A\) has a monomial initial ideal that is free of embedded primes. In Section 2 we recall the main features of this initial ideal. Theorems 3.20 and 4.1 are proved by showing that this same initial ideal is Cohen-Macaulay and, when \(A\) is graded, generated in degree at most \(d\). Our proofs are combinatorial and rely heavily on the structure of this initial ideal.

The set of \(\Delta\)-normal configurations is a proper subset of the set of normal configurations. They occur naturally in two ways. If \(A\) has a regular unimodular triangulation \(\Delta\), then \(A\) is \(\Delta\)-normal. If \(\operatorname{cone}(A)\) is simplicial and we assume that its extreme rays are generated by \(a_1, \ldots, a_t\), then \(A\) is \(\Delta\)-normal with respect to the coarsest regular triangulation \(\Delta\) consisting of the unique facet \(\sigma = \{1, \ldots, d\}\). These were the only examples known so far. Specific instances of normal configurations that are not \(\Delta\)-normal for any \(\Delta\) are also known \[11\]. In Section 5 we construct non-trivial families of both \(\Delta\)-normal and non-\(\Delta\)-normal configurations.

Theorem 5.4. There are families of \(\Delta\)-normal configurations \(\{A^d \subseteq \mathbb{Z}^d, d \geq 5\}\) where \(\operatorname{cone}(A^d)\) is non-simplicial and \(A^d\) has no regular unimodular triangulations.

Theorem 5.7. There is a family of normal, graded configurations \(\{A^d \subseteq \mathbb{Z}^d, d \geq 11\}\), that are not \(\Delta\)-normal for any regular triangulation \(\Delta\).

2. Background: An initial ideal without embedded primes

We now recall from \[11\] the initial ideal of \(I_A\) without embedded primes when \(A\) is \(\Delta\)-normal. The construction uses the standard pair decomposition of a monomial
ideal M which carries detailed information about $\text{Ass}(M)$, the set of associated primes of M. Recall that every monomial prime ideal of R is of the form $P_\tau := \langle x_j : j \notin \tau \rangle$ for some $\tau \subseteq [n]$. The monomials of R that do not lie in M are the standard monomials of M. The support of a monomial x^ν is defined to be the support of its exponent vector ν — i.e., $\text{supp}(x^\nu) = \{ i \in [n] : v_i \neq 0 \}$.

Definition 2.1. Let $M \subseteq R$ be a monomial ideal. For a standard monomial x^u of M and a set $\sigma \subseteq [n]$, (x^u, τ) is a pair of M if all monomials in $x^u \cdot \mathbb{K}[x_j : j \in \tau]$ are standard monomials of M. We call (x^u, τ) a standard pair of M if:

1. (x^u, τ) is a pair of M,
2. $\tau \cap \text{supp}(x^u) = \emptyset$, and
3. the set of monomials in $x^u \cdot \mathbb{K}[x_j : j \in \tau]$ is not properly contained in the set of monomials in $x^\nu \cdot \mathbb{K}[x_j : j \in \tau']$ for any (x^ν, τ') satisfying (1) and (2).

The set of standard pairs of M is unique and is called the standard pair decomposition of M since this set provides a decomposition of the standard monomials of M. If x^ν is a standard monomial of M then there is a standard pair (x^ν, τ) of M such that x^u divides x^ν and $\text{supp}(x^{\nu-u}) \subseteq \tau$. In this case we say that x^ν is covered by (x^u, τ). We also use (x^u, τ) to denote the set of all standard monomials covered by it.

Theorem 2.2. (A) Let M be a monomial ideal in R. Then,

1. $P_\tau \in \text{Ass}(M)$ if and only if M has a standard pair of the form (\ast, τ).
2. P_τ is a minimal prime of M if and only if $(1, \tau)$ is a standard pair of M.

(B) Let $M = \text{in}_\omega(I_A)$ be a monomial initial ideal of the toric ideal I_A. Then,

1. if $P_\tau \in \text{Ass}(M)$ then τ is a face of the regular triangulation Δ_ω of A,
2. P_σ is a minimal prime of M if and only if $\sigma \in \text{max} \Delta_\omega$, and
3. the number of standard pairs of M of the form (\ast, σ) is $\text{vol}(\sigma)$, the normalized volume of σ in Δ_ω.

We call x^u and τ the root and face of the standard pair (x^u, τ). Let A (respectively, A_σ) be the matrix whose set of columns is A (respectively, A_σ). The normalized volume of $\sigma \in \text{max} \Delta_\omega$ is the absolute value of the determinant of A_σ divided by the g.c.d. of the non-zero maximal minors of A.

Theorem 2.3. [11] Thm. 4.7 Let A be a Δ-normal configuration. Then there exists a term order \succ such that $\Delta = \Delta_\succ$ and $\text{in}_\omega(I_A)$ is free of embedded primes.

The term order \succ needed in Theorem [12] is described in [11] and is not directly used in this paper. The ideal $\text{in}_\omega(I_A)$ is shown to be free of embedded primes via an explicit description of its standard pairs. This structure is crucial for this paper and hence we recall it now. Assume without loss of generality that $\mathbb{Z}A = \mathbb{Z}^d$. For $\sigma \in \text{max} \Delta_\succ$, let $FP_\sigma := \{ \sum_{i \in \sigma} \lambda_i a_i : 0 \leq \lambda_i < 1 \}$ be the half open fundamental parallelopiped of $\text{cone}(A_\sigma)$. Then $FP_\sigma \cap \mathbb{Z}^d$ has $\text{vol}(\sigma)$ elements including the origin. For $\gamma \in FP_\sigma \cap \mathbb{Z}^d$, let x^{u_γ} be the cheapest monomial with respect to \succ among all $x^u \in R$ with $Au = \gamma$. It was shown in [11] that $\text{supp}(x^{u_\gamma}) \subseteq \sigma_{in} := \{ i : a_i \in \text{cone}(A_\gamma), i \notin \sigma \}$.

The standard pairs of the ideal initial $\text{in}_\omega(I_A)$ in Theorem [12] are precisely the pairs (x^{u_γ}, σ) as γ varies in $FP_\sigma \cap \mathbb{Z}^d$ for each $\sigma \in \text{max} \Delta_\succ$. By Theorem [12], $\text{in}_\omega(I_A)$ is thus free of embedded primes.

For the remainder of this paper we will denote the toric initial ideal $\text{in}_\omega(I_A)$ of Theorem [12] by J and its set of standard pairs by $S(J)$.

\[\Delta \text{-NORMAL CONFIGURATIONS} \quad 3 \]
Example 2.4. Let A be the vector configuration consisting of the 13 columns of
\[
A = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3
\end{pmatrix}.
\]
Then A is a graded supernormal configuration \cite{10} which means that it is Δ-normal with respect to every regular triangulation. Consider the regular triangulation
\[
\Delta = \{\{1, 4, 13\}, \{4, 11, 12\}, \{4, 11, 13\}, \{11, 12, 13\}\}.
\]
The configuration A and its regular triangulation Δ are shown in Figure 1. The toric ideal I_A lives in $R = K[a, \ldots, m]$. In Figure 1 we have labeled the points of A by the variables a, \ldots, m corresponding to the columns of A, instead of by $1, \ldots, 13$. The term order \succ in Theorem 2.3 can be induced via the weight vector
\[
(7, 5, 3, 1, 5, 3, 1, 0, 1, 5, 3, 1, 1, 3, 1, 0, 1, 1)
\]
refined by the reverse lexicographic order with $b > e > c > d > m > l > k$. The initial ideal (computed using Macaulay 2 \cite{7}) is
\[
J = \langle j_l, g_l, h_m, h^2, j^2, g, i, f, il, jf, cl, gh, ih, ch, ij, fj, ig, ek, el, bl, fh, g^2, ck, bh, cg, cj, i^2, fi, c^2, af, ci, eg, al, eh, fg, cj, bk, ha, cf, bg, ei, bi, ef, bf, ec, be, e^2, be, b^2, d^2m^2l^2 \rangle \subset R.
\]
Its standard pairs, grouped by the facets of Δ are:

faces	roots
$\{1, 4, 13\}$	$1, b, c, e, f, g, i, j, bj$
$\{4, 11, 13\}$	$1, g, j$
$\{11, 12, 13\}$	1
$\{4, 11, 12\}$	$1, h$

For $\sigma = \{1, 4, 13\}$, FP_σ consists of nine lattice points — Au for each exponent vector u of the roots $1, b, c, e, f, g, i, j, bj$. The last of these is $(2, 2, 2)^t$. The monomials x^u of R such that $Au = (2, 2, 2)^t$ in increasing order with respect to \succ are:

bj, eg, ci, f^2, ak. Thus, $(bj, \{1, 4, 13\}) \in S(J)$.

3. Cohen-Macaulayness

In this section we prove that the initial ideal J of Theorem \cite{12} is Cohen-Macaulay. This is done by showing that J has a particular Stanley filtration \cite{12} which implies Cohen-Macaulayness \cite{14, 12}. Stanley filtrations are special Stanley decompositions.

Definition 3.1. Let $M \subseteq R$ be a monomial ideal. A Stanley decomposition of M is a set of pairs of M, $\{\langle x^u, \tau \rangle \}$, that partition the standard monomials of M.

Remark 3.2. Every monomial ideal M has the trivial Stanley decomposition $\{(x^u, \emptyset) : x^u \not\in M \}$. There can be many Stanley decompositions of a monomial.
ideal. The standard pair decomposition of \(M \) is usually not a partition of the standard monomials of \(M \).

We will show that the standard pair decomposition \(S(J) \) of \(J \) can be modified first to a Stanley decomposition and then to a Stanley filtration of the needed form. For \(\tau \subseteq [n] \) let \(\pi_\tau : R \to R_{\tau} := \mathbb{K}[x_i : i \notin \tau] \) be the projection map where \(\pi_\tau(x_i) = x_i \) if \(i \notin \tau \) and \(\pi_\tau(x_i) = 1 \) if \(i \in \tau \). The following is a well known fact.

Theorem 3.3. [10 §12.D] If \(\sigma \in \max \Delta_\omega \) for a regular triangulation \(\Delta_\omega \) of \(A \), then \(\pi_\tau(\in_\omega(I_A)) \) is an artinian monomial ideal in \(R_{\tau} \) with \(\vol(\sigma) \)-many standard monomials which are precisely the roots of the standard pairs \((*,\sigma)\) of \(\in_\omega(I_A) \).

Corollary 3.4. If \((x^u,\sigma)\) is a standard pair in \(S(J) \), then every divisor of \(x^u \) is also the root of a standard pair in \(S(J) \).

Lemma 3.5. Let \((x^u,\sigma)\) and \((x^v,\tau)\) be two standard pairs in \(S(J) \). If \(x^u \neq x^v \) then \((x^u,\sigma) \cap (x^v,\tau) = \emptyset \).

Proof: Suppose \(x^m \in (x^u,\sigma) \cap (x^v,\tau) \). Then \(x^m = x^ux^m_\tau = x^vx^m_\tau \) with \(\supp(x^m_\tau) \subseteq \sigma \), \(\supp(x^m_\tau) \subseteq \tau \) and \(\supp(x^u), \supp(x^v) \) outside the vertices of \(\Delta_\omega \) and thus in particular, outside \(\sigma \cup \tau \). Hence, \(x^u = x^v \). \(\square \)

Corollary 3.6. If \(A \) is normal, \(\cone(A) \) is simplicial (generated without loss of generality by \(a_1, \ldots, a_d \)), and \(J \) is the special initial ideal of Theorem 2 supported on \(\Delta_\omega = \{1, \ldots, d\} \), then \(S(J) \) is a Stanley decomposition.

Proof: Here \(A \) is \(\Delta_\omega \)-normal. All standard pairs in \(S(J) \) have face \([d] \) and roots the standard monomials of \(\pi_{[d]}(J) \). Thus no two standard pairs of \(S(J) \) have the same root and by Lemma 3.5 no two standard pairs intersect. \(\square \)

However, if \(|\max \Delta_\omega| > 1 \), then it is precisely the standard pairs in \(S(J) \) with a common root that stop \(S(J) \) from being a partition. Such pairs always exist when \(|\max \Delta_\omega| > 1 \) — for instance, \((1,\sigma)\) is in \(S(J) \) for all \(\sigma \in \max \Delta_\omega \). We will use the combinatorial notion of shellings to create new pairs that partition the standard monomials covered by each set of standard pairs with a common root. In Section 2 we defined \(\sigma_{in} = \{i : a_i \in \cone(A_\omega), i \notin \sigma\} \). The following lemma identifies the faces in all standard pairs that share a root.

Lemma 3.7. If \(x^u \) is a root of a standard pair in \(S(J) \), then \(\{\sigma \in \max \Delta_\omega : (x^u,\sigma) \in S(J)\} = \{\sigma \in \max \Delta_\omega : \supp(x^u) \subseteq \sigma_{in}\} \).

Proof: Recall from Section 2 that if \((x^u,\sigma) \in S(J) \), then \(\supp(x^u) \subseteq \sigma_{in} \). Conversely, suppose \((x^u,\tau) \) is a standard pair in \(S(J) \) and \(\supp(x^u) \subseteq \sigma_{in} \) for some \(\sigma \neq \tau \) in \(\max \Delta_\omega \). Then \(\supp(x^u) \subseteq \tau_{in} \cap \sigma_{in} = (\tau \cap \sigma)_{in} \). Then \(Au \in \cone(A_{\omega \cap \tau}) \). Since \(Au \in FP_{\omega \cap \tau} \cap \mathbb{Z}^d \cap \cone(A_{\omega \cap \tau}) \), it is also in \(FP_{\omega \cap \tau} \cap \mathbb{Z}^d \). Further, \(x^u \) is the cheapest monomial with respect to \(\triangleright_\omega \) among all monomials \(x^v \) in \(R \) with \(Au = Av \). This implies that \((x^u,\sigma) \) is also a standard pair of \(J \). \(\square \)

Definition 3.8. [10 Chapter 3, Definition 2.1] Let \(C \) be a pure simplicial complex. A shelling of \(C \) is a linear ordering \(F_1, \ldots, F_s \) of the facets of \(C \) such that for each \(j, 1 < j \leq s \), the subcomplex supported in \((F_1 \cup \cdots \cup F_{j}) \setminus (F_1 \cup \cdots \cup F_{j-1}) \) has a unique minimal face. A simplicial complex \(C \) is shelling if it has a shelling.
Let F be a face of a simplicial complex C. Then \(\text{star}(F, C) := \{ G \in C : F \cup G \in C \} \) is the simplicial complex generated by all $G \in C$ containing F. We sometimes write $\text{star}(F)$ for $\text{star}(F, C)$ when C is obvious. The following is a mild generalization of Lemma 3.7 in [19].

Lemma 3.9. Let C be a pure shellable simplicial complex with shelling order F_1, \ldots, F_t. If F is any face of C then the restriction of the global shelling order to $\text{star}(F, C)$ yields a shelling of $\text{star}(F, C)$.

Definition 3.10. For a root x^u in $S(J)$, let $\delta(x^u) := \bigcap \{ \sigma : (x^u, \sigma) \in S(J) \}$.

In the following arguments we fix a root x^u of a standard pair in $S(J)$. By Lemma 3.7 $\delta(x^u) = \bigcap \{ \sigma \in \max \Delta_{\sigma} : \text{supp}(x^u) \subseteq \sigma_{in} \}$ and the set of facets

$\max \{ \delta(x^u), \Delta_{\sigma} \} = \{ \sigma : (x^u, \sigma) \in S(J) \} = \{ \sigma \in \max \Delta_{\sigma} : \text{supp}(x^u) \subseteq \sigma_{in} \}$.

If x^u divides x^v, then $\text{star}(\delta(x^u)) \subseteq \text{star}(\delta(x^v))$. The regular triangulation Δ_{σ} is shellable [19]. In the rest of this section, we fix a shelling of Δ_{σ}. By Lemma 3.9 this induces a shelling of $\text{star}(\delta(x^u))$. Let us assume without loss of generality that $\sigma_1, \sigma_2, \ldots, \sigma_t$ is the induced shelling order of the facets of $\max \{ \delta(x^u), \Delta_{\sigma} \}$. For $\sigma_j \in \max \text{star}(\delta(x^u))$, let Q^j_u be the unique minimal face described in Definition 3.8. It is known that $Q^j_u := \{ v : \sigma_j \subseteq v \subseteq \sigma_l \text{ for some } l < j \}$.

Example 2.3 continued. Consider the root g of $S(J)$ and the shelling order $\sigma_1 = \{4, 11, 12\}, \sigma_2 = \{11, 12, 13\}, \sigma_3 = \{4, 11, 13\}$ and $\sigma_4 = \{1, 4, 13\}$ on Δ_{σ}. Then σ_3, σ_4 is the induced shelling order of $\text{star}(\delta(g))$. From this we obtain the sets $Q^3_g = \emptyset$ and $Q^4_g = \{1\}$.

Consider the interval $I^j_u := \{ F : Q^j_u \subseteq F \subseteq \sigma_j \}$.

Lemma 3.11. [19] pp. 247] The simplicial complex $\text{star}(\delta(x^u))$ is the disjoint union of the intervals I^j_u, $j = 1, \ldots, t$.

Remark 3.12. Note that by construction, the partial union $I^1_u \cup I^2_u \cup \cdots \cup I^t_u$ is a partition of the subcomplex with maximal faces $\sigma_1, \sigma_2, \ldots, \sigma_t$ and that Q^j_u is not contained in this partial union for any $j > l$.

Definition 3.13. For a root x^u in $S(J)$ and a facet $\sigma \in \max \Delta_{\sigma}$ define the monomial $m^u_\sigma := \begin{cases} 1 & \text{if } \sigma \in \text{star}(\delta(x^u)), \ Q^j_u = \emptyset \\ \prod_{t \in Q^j_u} x_t & \text{if } \sigma \in \text{star}(\delta(x^u)), \ Q^j_u \neq \emptyset \\ 1 & \text{otherwise.} \end{cases}$

Recall that we have fixed a shelling of Δ_{σ} and thus, by Lemma 3.11, a shelling of $\text{star}(\delta(x^u))$ for each root $x^u \in S(J)$. Therefore, if $\sigma \in \max \text{star}(\delta(x^u)), Q^j_u$ is uniquely defined. We return to the fixed root x^u and the shelling $\sigma_1, \ldots, \sigma_t$ of $\text{star}(\delta(x^u))$.

Lemma 3.14. The standard monomials of J in $\bigcup_{j=1}^t (x^u, \sigma_j)$ are partitioned by the pairs $(x^u \cdot m^j_u, \sigma_j)$, $j = 1, \ldots, t$.

Proof: By Lemma 3.11 $I^1_u \cup I^2_u \cup \cdots \cup I^t_u$ is a partition of $\text{star}(\delta(x^u))$. Hence, if $x^v \in \bigcup_{j=1}^t (x^u, \sigma_j)$ then $\text{supp}(x^v - x^u) \subseteq I^j_u$ for a unique I^j_u. By construction, $I^j_u = \{ F : \text{supp}(m^j_u) \subseteq F \subseteq \sigma_j \}$ and so $x^v = x^u \cdot (x^v - x^u) \in (x^u \cdot m^j_u, \sigma_j)$. This implies that $\bigcup_{j=1}^t (x^u, \sigma_j) = \bigcup_{j=1}^t (x^u \cdot m^j_u, \sigma_j)$ where the inclusion \subseteq follows from the previous line and \supseteq from the fact that $(x^u \cdot m^j_u, \sigma_j) \subseteq (x^u, \sigma_j)$ for each $j = 1, \ldots, t$. To see
that $\bigcup_{j=1}^{l} (x^u \cdot m_{\sigma_i}^j, \sigma_j)$ is a partition, suppose $x^v \in (x^u \cdot m_{\sigma_i}^j, \sigma_j) \cap (x^u \cdot m_{\sigma_i}^j, \sigma_j)$ where $i < j$. Then $x^v - x^u$ has support in $I_\sigma^j \cap I_\sigma^i = \emptyset$ which implies that $x^v = x^u$. However, for $j > 1$, $m_{\sigma_i}^j \neq 1$ as $Q_{I_\sigma}^j \neq \emptyset$ which means that x^u lies only in (x^u, σ_1).

Example 2.4 continued. As before, the monomial g is a root of $S(J)$ with the shelling order induced on $\text{star}(\delta(g))$ as above. We obtain the monomials $m_{\sigma_3}^g = 1$ and $m_{\sigma_4}^g = a$ from $Q_{\sigma_3}^g = \emptyset$ and $Q_{\sigma_4}^g = \{1\}$. Then $(g, \{4, 11, 13\}) \cup (g, \{1, 4, 1\}) = (g, \{4, 11, 13\}) \cup (g \cdot a, \{1, 4, 13\})$ with the latter union being disjoint.

Theorem 3.15. Let $\sigma_1, \ldots, \sigma_s$ be the fixed shelling of Δ_φ. Then

$$\bigcup_{i=1}^{s} (x^u \cdot m_{\sigma_i}^1, \sigma_i)$$

(is a Stanley decomposition of J.

Proof: Lemma 3.14 showed how to make the union of the standard pairs of $S(J)$ with a common root a disjoint union of pairs of J. By Lemma 3.5 \cite{14}, the union of these disjoint unions is a Stanley decomposition of J.

The above Stanley decomposition can be organized to have more structure.

Definition 3.16. Let $M \subseteq R$ be a monomial ideal. A Stanley filtration of M is a Stanley decomposition of M with an ordering of the pairs $\{(x^v, \tau_1) : 1 \leq i \leq r\}$ such that for all $1 \leq j \leq r$ the set $\{(x^v, \tau_1) : 1 \leq i \leq j\}$ is a Stanley decomposition of $M_j := M + \langle x^v_{j+1}, x^v_{j+2}, \ldots, x^v_r \rangle$. Equivalently, the ordered set $\{(x^v, \tau_1) : 1 \leq i \leq r\}$ is a Stanley filtration provided the modules R/M_j form a filtration $K = R/M_0 \subseteq R/M_1 \subseteq R/M_2 \subseteq \cdots \subseteq R/M_r = R/M$ with $R/M_j \cong K[x_i : i \in \tau_j]$.

Example 3.17. (from \cite{12}) Let $M = \langle x_1 x_2 x_3 \rangle \subset K[x_1, x_2, x_3]$. Then

$$\{(1, \emptyset), (x_1, \{1, 2\}), (x_2, \{2, 3\}), (x_3, \{1, 3\})\}$$

is a Stanley decomposition of M but no ordering of these pairs is a Stanley filtration of M. Alternatively, the ordered pairs $(1, \{1, 3\}), (x_2, \{2, 3\}), (x_1 x_2, \{1, 2\})$ form a Stanley filtration of M.

We now show that the pairs in $\{1\}$ can be ordered to yield a Stanley filtration of J. The significance of this for us comes from a result of Simon \cite{14}, interpreted as follows by Maclagan and Smith \cite{12}.

Theorem 3.18. If $M \subseteq R$ is a monomial ideal with a Stanley filtration such that for each face τ of a pair in the filtration, the prime ideal P_τ is a minimal prime of M, then M is Cohen-Macaulay.

The faces of pairs in $\{1\}$ already index minimal primes of J. Thus to show that J is Cohen-Macaulay all we need to do is to order the pairs in $\{1\}$ so that the ordered decomposition is a Stanley filtration. We do this using the following algorithm.

Algorithm 3.19. Input: The Stanley decomposition $\{1\}$ of J.

Output: A Stanley filtration of J with the same faces as those in $\{1\}$.

1: (Local Lists) For each σ_i, $1 \leq i \leq s$, order the pairs in $\{1\}$ with face σ_i in any way such that if $(x^u \cdot m_{\sigma_i}^1, \sigma_i)$ precedes $(x^v \cdot m_{\sigma_i}^1, \sigma_i)$ then x^v does not divide x^u. Call this list L_i.
Theorem 3.20. Let \(A \) be a \(\Delta \)-normal configuration. Then there exists a term order \(\succ \) such that \(\Delta = \Delta_\succ \) and \(\in_\succ (I_A) \) is Cohen-Macaulay.

Proof: Algorithm 3.19 shows that the initial ideal \(J \) of Theorem 3.21 has a Stanley filtration that satisfies the conditions of Theorem 3.18. This theorem guarantees that \(J \) is Cohen-Macaulay.

Remark 3.21. We remark that even when \(A \) is \(\Delta \)-normal it is not true that all initial ideals of \(I_A \) without embedded primes are Cohen-Macaulay. Take \(A \) to be the columns of

\[
A = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 7 & 4 & 3 & 2 & 5 & 4 \\
0 & 1 & 5 & 7 & 5 & 4 & 5 & 4 \\
0 & 0 & 6 & 6 & 4 & 3 & 5 & 4
\end{pmatrix}
\]
Then \(\mathcal{A} \) admits a unimodular regular triangulation and is hence \(\Delta \)-normal. The toric ideal \(I_{\mathcal{A}} \subset \mathbb{K}[a, \ldots, h] \) has codimension four and has 46 initial ideals without embedded primes. Among them, the following two have projective dimension five.

\[
\begin{align*}
(1) & \quad (acd, adg, afg, ae, ag^2, ce, cf, eh, f^2, bc^2d, fgh) \\
(2) & \quad (acd, adg, afg, ae, ag^2, ce, cf, eh, f^2, fgh, g^2h^2)
\end{align*}
\]

The initial ideals of \(I_{\mathcal{A}} \) were computed using the software package CaTS \([6]\) and then checked for embedded primes and Cohen-Macaulayness using Macaulay 2.

We remark that the first example of a monomial toric initial ideal without embedded primes that is not Cohen-Macaulay was found by Laura Matusevich \([13]\). In that example, \(I_{\mathcal{A}} \) is not Cohen-Macaulay and thus \(\mathcal{A} \) is not normal.

4. Degree Bounds

Theorem 4.1. If \(\mathcal{A} \) is a graded \(\Delta \)-normal configuration, then there exists a term order \(\succ \) such that \(\Delta = \Delta_\succ \) and the Gröbner basis of \(I_{\mathcal{A}} \) with respect to \(\succ \) consists of binomials of degree at most \(d = \dim(\mathcal{A}) \).

Theorem 4.1 settles Conjecture 1.2 for the subset of normal configurations that are \(\Delta \)-normal. Since \(\mathcal{A} \) is graded, \(I_{\mathcal{A}} \) is homogeneous with respect to the usual grading of \(R \) where \(\deg(x_i) = 1 \) for \(i = 1, \ldots, n \). Hence it suffices to show that \(I_{\mathcal{A}} \) has an initial ideal of degree at most \(d \). We will show that the initial ideal \(J \) from Theorem 2.3 satisfies this degree bound when \(\mathcal{A} \) is graded. Proposition 13.15 in \([16]\) shows that Conjecture 1.2 is true whenever \(\mathcal{A} \) admits a regular unimodular triangulation. (See also Proposition 13.18 in \([16]\).) Such configurations form a proper subset of the set of \(\Delta \)-normal configurations. If we are allowed to replace a graded normal \(\mathcal{A} \) by all the lattice points in a “big enough” multiple of the convex hull of \(\mathcal{A} \), then it is known that this new configuration admits regular unimodular triangulations and thus has a Gröbner basis of degree at most \(d \). See \([1]\) and \([2]\) for many such results.

Conjecture 1.2 requires that \(\mathcal{A} \) be both graded and normal.

Example 4.2. Graded, but not normal: When \(\mathcal{A} = \{(1, 0), (1, p), (1, q)\} \) with \(0 < p < q, q > 2 \) and \(\text{g.c.d}(p, q) = 1 \), then \(I_{\mathcal{A}} = \langle x_1^{q-p}x_3^p - x_2^q \rangle \). Its two initial ideals are therefore generated in degree \(q > 2 = d \).

Normal, but not graded: The normal configuration \(\mathcal{A} = \{(1, 0), (1, 1), (p, p + 1)\} \) where \(p \geq 2 \) has the toric ideal \(I_{\mathcal{A}} = \langle x_1x_3 - x_2^{p+1} \rangle \). Hence \(x_1x_3 - x_2^{p+1} \) is the unique element in both its reduced Gröbner bases.

Remark 4.3. (16) Chapter 13) The bound in Conjecture 1.2 is best possible. Consider the graded \(\Delta \)-normal configuration \(\mathcal{A} = \{de_1, de_2, \ldots, de_d, e_1 + e_2 + \cdots + e_d\} \) where \(d \in \mathbb{N} \). (Note that \(\text{cone}(\mathcal{A}) \) simplicial.) Then \(I_{\mathcal{A}} = \langle x_1x_2 \cdots x_d - x_{d+1} \rangle \).

Consider the initial ideal \(J \) from Theorem 2.3 for a graded \(\Delta_\succ \)-normal \(\mathcal{A} \). Since \(\mathcal{A} \) is graded, we may assume without loss of generality that \(a_i = (1, a'_i) \in \mathbb{Z}^d \) for \(i = 1, \ldots, n \). We will show that \(J \) is generated in degree at most \(d \).

For a \(\sigma \in \text{max} \Delta_\succ \), recall that \(\sigma_{\text{in}} := \{i : a_i \in \text{cone}(\mathcal{A}_\sigma), i \notin \sigma\} \). Define \(\sigma_{\text{out}} := \{i : a_i \notin \text{cone}(\mathcal{A}_\sigma)\} \). Then \(\sigma \cup \sigma_{\text{in}} \cup \sigma_{\text{out}} \) is a partition of \([n]\). Let \(J^\sigma := \pi_{\sigma}(J) \) be the artinian ideal in \(R_\sigma = \mathbb{K}[x_j : j \in \sigma_{\text{in}} \cup \sigma_{\text{out}}] \) from Theorem 3.3. Recall that the standard monomials of \(J^\sigma \) are the roots of standard pairs in \(S(J) \) with face \(\sigma \). Since the supports of these roots lie in \(\sigma_{\text{in}} \), \(J^\sigma \cap \mathbb{K}[x_i : i \in \sigma_{\text{in}}] \) is a
monomial ideal $N^\sigma = \langle x^{v_1}, x^{v_2}, \ldots, x^{v_\sigma} \rangle$ with $\text{supp}(x^{v_i}) \subseteq \sigma_{in}$, and
\[J^\sigma = \langle x_j : j \in \sigma_{out} \rangle + N^\sigma. \]

Lemma 4.4. Each minimal generator x^{v_i} of N^σ is a minimal generator of J of degree at most d.

Proof: A minimal generator x^{v_i} of N^σ is the projection via π_σ of a minimal generator $x^{v_i}x^{m_i}$ of J where $\text{supp}(x^{m_i}) \subseteq \sigma$. Suppose $\text{supp}(x^{m_i}) \neq \emptyset$. Then x^{v_i} is a standard monomial of J with $\text{supp}(x^{v_i}) \subseteq \sigma_{in}$. Hence x^{v_i} is covered by a standard pair (x^{u_i}, σ) of J. This implies that all monomials of the form $x^{v_i}x^{m_i}$ as p varies are standard monomials of J which contradicts that $x^{v_i}x^{m_i}$ is in J. Thus $\text{supp}(x^{m_i}) = \emptyset$ which implies that x^{v_i} is a minimal generator of J.

Since $a_i = (1, a'_i) \in \mathbb{Z}^d$ for $i \in [n]$, each lattice point in the half open fundamental parallelipiped FP_σ of $\text{cone}(A_\sigma)$ lies on one of the d hyperplanes $x_1 = 0, \ldots, x_1 = d - 1$ in \mathbb{R}^d. Therefore, if $\gamma \in FP_\sigma \cap \mathbb{Z}^d$, then the 1-norm of u_γ equals the first co-ordinate of (Au_γ) which equals γ_1 at most $d - 1$. This implies that $\text{deg}(x^{v_i}) \leq d - 1$. Thus all standard monomials of the artinian ideal J^σ have degree at most $d - 1$ which implies that the minimal generators of J^σ (and N^σ) have degree at most d. \(\square\)

Example 2.4 continued. For $\sigma = \{1, 4, 13\}$, $J^\sigma = \langle h, k, l \rangle \cap (N^\sigma = \langle j^2, gj, i, fj, ig, g^2, cg, ej, i^2, fi, c^2, f^2, ci, eg, f, cg, ej, cf, bg, ci, bi, ef, bf, ce, ec, c^2, be, b^2 \rangle)$. Note that all minimal generators of N^σ are minimal generators of J of degree at most three.

Theorem 4.5. If A is a graded normal configuration with $\text{cone}(A)$ simplicial then I_A has a Gröbner basis consisting of binomials of degree at most d.

Proof: Assuming that $\text{cone}(A)$ is generated by a_1, \ldots, a_d, A is Δ_σ-normal where Δ_σ is the regular triangulation of A with the unique facet $\sigma = [d]$. Here $\sigma_{out} = \emptyset$.

We argue that all minimal generators of J have support in $\sigma_{in} = \{d + 1, \ldots, n\}$. Suppose x^α is a minimal generator of J with $\text{supp}(x^\alpha) \cap [d] = \emptyset$. Let $G = \text{supp}(x^\alpha)[d]$. Then $G \neq \emptyset$ since otherwise x^α would lie on the standard pair $(1, [d])$ of J which is a contradiction. Write $x^\alpha = x^{\alpha_F}x^{\alpha_G}$ where $\text{supp}(\alpha_F) \subseteq F$ and $\text{supp}(\alpha_G) \subseteq G$. Since $G, F \neq \emptyset$, x^{α_G} is a standard monomial of J which implies that x^α is also a standard monomial of J as x^{α_G} lies on some standard pair with face $[d]$. This is a contradiction and so $F = \emptyset$.

The above argument shows that J and N^σ have the same minimal generators. The degree bound then follows from the proof of Lemma 4.4. \(\square\)

Theorem 4.5 proves Theorem 4.1 in the case where $\text{cone}(A)$ is simplicial. When $\text{cone}(A)$ is not simplicial, J may have minimal generators that are not pre-images under π_σ of the minimal generators of N^σ (or even J^σ) as σ varies in $\text{max}(\Delta_\sigma)$. Our next step is to show that for a $\sigma \in \text{max}(\Delta_\sigma)$, the minimal generators of J that project under π_σ to the minimal generators $x_j \in \sigma_{out}$ of J^σ have degree at most d. We need a preliminary lemma.

Let Q be a $(d - 1)$-polytope in $\{x \in \mathbb{R}^d : x_1 = 0\}$ and let C be the cone over Q. Then there exists a matrix $S \in \mathbb{R}^{F \times d}$ such that $C = \{x \in \mathbb{R}^d : Sx \geq 0\}$ where each row of S is the normal to a facet of C. Hence $Q = \{x \in \mathbb{R}^d : x_1 = 1, Sx \geq 0\}$. Let Q_{rev} be the system obtained by reversing all the inequalities in Q: $Q_{rev} = \{x \in \mathbb{R}^d : x_1 \leq 1, -x_1 \leq -1, Sx \leq 0\}$.

10 EDWIN O’SHEA AND REKHA R. THOMAS
Lemma 4.6. The polyhedron defined by Q_{rev} is empty.

Proof: We may assume that Q has been translated so that the unit vector $e_1 \in \mathbb{R}^d$ lies in the relative interior of Q. If $x \in C$ then by our assumption, $x_1 \geq 0$ which implies that $e_1 \cdot x(= x_1) \geq 0$. This implies that $e_1 \in C^* = \{yS : y \geq 0\}$ where C^* is the dual cone to C. (Recall $C^* := \{v \in \mathbb{R}^d : v \cdot x \geq 0, \forall x \in C\}$. Thus there exists some $y \geq 0, y \neq 0$ such that $yS = e_1$. Therefore, if we choose $v \in \mathbb{R}^{2d}$ such that $v = (0, 1, y)$ then $v \geq 0, v \neq 0$ and

$$
\begin{pmatrix}
1 & 0 & \cdots & 0 \\
-1 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\text{s}_{s1} & \text{s}_{s2} & \cdots & \text{s}_{sd} \\
\text{s}_{f1} & \text{s}_{f2} & \cdots & \text{s}_{fd}
\end{pmatrix}
$$

$= 0.$

Let $z = (1, -1, 0, \ldots, 0)$ be the right hand side vector in the description of Q_{rev}. Then $v \cdot z = 1(-1) = -1 < 0$ and by Farkas lemma, $Q_{rev} = \emptyset$. □

Lemma 4.7. Let σ be a facet of Δ_\ast. Then for a $j \in \sigma_{out}$, the minimal generators of J that are preimages of the minimal generator x_j of J^\ast under the map π_σ are squarefree monomials of degree at most d.

Proof: Let $\sigma = \max \Delta_\ast, j \in \sigma_{out}$ and $P := x_j x_m^\ast$ be a minimal generator of J with $Y := supp(x_m^\ast) \subseteq \sigma$. All minimal generators of J that project to x_j under π_σ look like P. If $Y = \emptyset$, then x_j is the only minimal generator of J that projects to x_j and we are done. Therefore, we consider the case where $Y \neq \emptyset$.

Suppose P is not squarefree. Then there exists an $i \in \sigma$ such that $m_i > 1$ where m_i is the i-th co-ordinate of m. Since P is a minimal generator of J, P/x_i is a standard monomial of J with $supp(P/x_i) = supp(P) = \{j\} \cup Y$. Hence there exists $\tau \in \max \Delta_\ast$ such that a standard pair with face τ covers P/x_i. This implies that $supp(P/x_i) = \{j\} \cup Y \subseteq \tau_m \cup \tau$. Since $Y \subseteq \sigma, Y \cap \tau_m = \emptyset$ and thus, $Y \subseteq \tau \cap \sigma$. If $j \in \tau$, then P is covered by the standard pair $(1, \tau)$ which contradicts that P is in J. If $j \in \tau_m$, then a_j lies in $cone(A_\ast)$. Since A lies on the hyperplane $\{x \in \mathbb{R}^d : x_1 = 1\}, a_j$ is in fact in the minimal Hilbert basis of both $cone(A_\ast)$ and $cone(A)$ and hence e_j is the unique vector in \mathbb{N}^n that satisfies $Ax = a_j$. Consequently (x_j, τ) is a standard pair of J. But this implies that P lies on this standard pair which is again a contradiction. Therefore, P is squarefree.

To argue that $deg(P) \leq d$, it therefore suffices to prove that $Y \subseteq \sigma$. Suppose $\sigma = [d], x_{[d]} := \prod_{i \in \sigma} x_i$ and $P = x_j x_{[d]}$. Then for each $i \in [d], P/x_i$ is a standard monomial of J and is therefore covered by a standard pair (s, τ_i) of J. The face τ^i does not contain i since otherwise P would be a standard monomial of J. In particular, $\tau^i \neq [d]$ for any $i \in [d]$. Also, $j \in \tau^i \cap \tau^i_{in}$ for each $i \in [d]$. We now show that we may assume $\tau^i \cap [d] = [d] \setminus \{i\}$ for all $i \in [d]$. Clearly, $\tau^i \cap [d] \subseteq [d] \setminus \{i\}$ since $i \notin \tau^i$. Suppose a monomial in $P/x_i \cdot \mathbb{K}[x_i : l \in [d] \setminus \{i\}]$ lies in J. Then it is divisible by a minimal generator of J that projects to x_j under π_σ, all of which are squarefree. Such a minimal generator would properly divide P which contradicts that P is a minimal generator of J. Hence $(P/x_i, [d] \setminus \{i\})$ is a pair of J and therefore, contained in a standard pair of J. We may assume that τ^i is the face of this standard pair. Thus $[d] \setminus \{i\} \subset \tau^i$ and $\tau^i \cap [d] = [d] \setminus \{i\}$ as claimed.
Since \(A \) is graded, \(\tau^1, \ldots, \tau^d \) index \((d - 1)\)-simplices in a regular triangulation of \(conv(A) \), the convex hull of \(A \). The simplex indexed by \([d]\) is geometrically \(Q[d] = \{ x \in \mathbb{R}^d : s_i \cdot x \geq 0, x_1 = 1, i = 1, 2, \ldots, d \} \) where \(s_i \cdot a_i = 0 \) for all \(l \in [d] \setminus \{i\} \) and \(s_i \cdot a_i > 0 \). Now \(j \in \tau^i \cup \tau^i_{\text{in}} \cap \sigma_{\text{out}} \) for each \(i \in [d] \) implies that \(a_j \in Q[d]_{\text{reg}} \) where \(Q[d]_{\text{reg}} = \{ x \in \mathbb{R}^d : s_i \cdot x \leq 0, x_1 = 1, i = 1, 2, \ldots, d \} \). But by Lemma 4.6 \(Q[d]_{\text{reg}} = \emptyset \) which creates a contradiction. Therefore, \(x_j x_{[d]} \) is not a minimal generator of \(J \) and all preimages \(P \) of \(x_j \) have degree at most \(d \). □

Example 2.3 continued. For \(\sigma = \{1, 4, 13\} \), \(\sigma_{\text{out}} = \{8, 11, 12\} \) which index the variables \(h, k, l \). The minimal generators of \(J \) that map to these variables under \(\pi_\sigma \) are \(hk, ak, al, ha, dml \).

Finally we consider the minimal generators of \(J \) that do not project under \(\pi_\sigma \) to minimal generators of \(J^\sigma \) for any \(\sigma \in \text{max } \Delta_\sigma \). Such generators may exist.

Example 2.3 continued. Consider the minimal generator \(gh \) of \(J \). Then \(gh = \pi_{\{1,4,13\}}(gh) = \pi_{\{11,12,13\}}(gh) = \pi_{\{11,12,13\}}(gh) \) is not a minimal generator of \(J^\sigma \) for any of the four facets \(\sigma \) of \(\Delta_\sigma \).

Lemma 4.8. Let \(x^m \) be a minimal generator of \(J \) whose image under \(\pi_\sigma \) is not a minimal generator of \(J^\sigma \) for any facet \(\sigma \) of \(\Delta_\sigma \). Then \(x^m \) is a quadratic squarefree monomial.

Proof: Let \(\tau \) and \(\tau' \) be facets of \(\Delta_\sigma \) and let \(i \in \tau_{\text{in}}, j \in \tau'_{\text{in}} \) with \(i, j \notin \tau_{\text{in}} \cap \tau'_{\text{in}} \). Then \(x_i x_j \) is not covered by any standard pair of \(J \) and hence lies in \(J \). Since \(A \) is graded, \((x_i, \tau) \) and \((x_j, \tau') \) are standard pairs of \(J \) which implies that \(x_i x_j \) is a minimal generator of \(J \). Further, \(\pi_\sigma(x_i x_j) \) is not a minimal generator of \(J^\sigma \) for any \(\sigma \in \text{max } \Delta_\sigma \). We will prove that \(L := \{ x_i x_j : i \in \tau_{\text{in}}, j \in \tau'_{\text{in}} \text{ and } i, j \notin \tau_{\text{in}} \cap \tau'_{\text{in}} \} \) is precisely the set of minimal generators of \(J \) that do not project under \(\pi_\sigma \) to a minimal generator of \(J^\sigma \) for a \(\sigma \in \text{max } \Delta_\sigma \). This will prove the lemma.

Suppose \(x^m \) is a minimal generator of \(J \) such that \(\pi_\sigma(x^m) \) is not a minimal generator of \(J^\sigma \) for any \(\sigma \in \text{max } \Delta_\sigma \). Let \(Y := \text{supp}(x^m) \).

Case (i) \(Y \subseteq \sigma_{\text{in}} \) for some \(\sigma \in \text{max } \Delta_\sigma \): Then \(x^m \in N^\sigma = J^\sigma \cap \mathbb{K}[x_j : j \in \sigma_{\text{in}}] \).

Since \(x^m \) is not a minimal generator of \(J^\sigma \) (and hence \(N^\sigma \)), some minimal generator of \(N^\sigma \) properly divides \(x^m \). By Lemma 4.3 every minimal generator of \(N^\sigma \) is a minimal generator of \(J \) which contradicts that \(x^m \) is a minimal generator of \(J \).

Case (ii) \(Y \subseteq \sigma \) for some \(\sigma \in \text{max } \Delta_\sigma \): Then \(x^m \) is covered by the standard pair \((1, \sigma)\) which contradicts that \(x^m \in J \).

Case (iii) \(Y \subseteq \sigma \cup \sigma_{\text{in}} \) for some \(\sigma \in \text{max } \Delta_\sigma \), with \(Y \cap \sigma \neq \emptyset \) and \(Y \cap \sigma_{\text{in}} \neq \emptyset \): Write \(x^m = x^{m''} x^{m'''} \) where \(\emptyset \neq \text{supp}(x^{m''}) \subseteq \sigma \) and \(\emptyset \neq \text{supp}(x^{m''''}) \subseteq \sigma_{\text{in}} \). Then \(x^{m''''} \in N^\sigma \) all of whose minimal generators are minimal generators of \(J \). This implies that a divisor of \(x^{m''''} \) is a minimal generator of \(J \). Therefore, \(x^m \) is not a minimal generator of \(J \), a contradiction.

The above cases have shown that there is no single \(\sigma \in \text{max } \Delta_\sigma \) such that \(Y \subseteq \sigma \cup \sigma_{\text{in}} \). Therefore, there exists two distinct \(\sigma, \tau \in \text{max } \Delta_\sigma \) and two indices \(i, j \in \tau \) such that \(i \in \sigma \cup \sigma_{\text{in}} \cap \sigma_{\text{out}} \) and \(j \in \tau \cup \tau_{\text{in}} \cap \sigma_{\text{out}} \).

Case (i) \(i \in \sigma \): Since \(j \in \sigma_{\text{out}} \), \(x_i x_j \) is not covered by any standard pair of \(J \) and so lies in \(J \). Since \(x_i x_j \) divides \(x^m \) and \(x^m \) is a minimal generator of \(J \) it must be that \(x^m = x_i x_j \). But then \(\pi_\sigma(x^m) = x_j \), \(j \in \sigma_{\text{out}} \) is a minimal generator of \(J^\sigma \) which contradicts our choice of \(x^m \). Therefore this case cannot arise.
Case (b) \(j \in \tau \): By a symmetric argument to the previous, this cannot happen.

Therefore, the only possibility is that \(i \in \sigma_{\text{in}} \) and \(j \in \tau_{\text{in}} \). Since \(i \in \tau_{\text{out}} \) and \(j \in \sigma_{\text{out}} \), \(i, j \not\in \sigma_{\text{in}} \cap \tau_{\text{in}} \). By the argument in the beginning of the proof, \(x_i x_j \) is a minimal generator of \(J \) and so \(x^m = x_i x_j \). Thus \(x^m \) lies in the set \(L \) as claimed. □

Proof of Theorem 4.1: Lemmas 4.4, 4.7, and 4.8 account for all minimal generators of the initial ideal \(J \) and show that they all have degree at most \(d \). Since \(\mathcal{A} \) is graded, the reduced Gröbner basis of \(I_{\mathcal{A}} \) with initial \(J \) consists of homogeneous binomials. Hence these binomials have degree at most \(d \). □

5. \(\Delta \)-NORMAL AND NON-\(\Delta \)-NORMAL FAMILIES

In this last section we construct non-trivial families of both \(\Delta \)-normal and non-\(\Delta \)-normal configurations. Recall that any configuration \(\mathcal{A} \) is always \(\Delta \)-normal with respect to all its regular unimodular triangulations \(\Delta \). Also, a configuration \(\mathcal{A} = \{a_1, \ldots, a_n\} \subset \mathbb{Z}^d \) for which \(\text{cone}(\mathcal{A}) \) is simplicial is \(\Delta \)-normal with respect to its coarsest (regular) triangulation \(\Delta = \{\{1, \ldots, d\}\} \) if we assume that \(\text{cone}(\mathcal{A}) = \text{cone}(\{a_1, \ldots, a_4\}) \). Call \(\mathcal{A} \) simplicial if \(\text{cone}(\mathcal{A}) \) is simplicial. We construct families of \(\Delta \)-normal configurations that are not simplicial and do not admit regular unimodular triangulations. By computer search, Firla and Ziegler [4] found hundreds of normal simplicial configurations \(\mathcal{A} \) in \(\mathbb{N}^4 \) and \(\mathbb{N}^5 \) (in the course of writing [5]) that admit no unimodular triangulations. Our first result in this section is a construction that extends a Firla-Ziegler configuration to a family of non-simplicial \(\Delta \)-normal configurations — one in \(\mathbb{Z}^d \) for each \(d \geq 5 \) — without unimodular triangulations. In the second part of this section we construct a family of normal configurations (an \(\mathcal{A} \subset \mathbb{Z}^d \) for each \(d \geq 11 \)) that are not \(\Delta \)-normal for any regular triangulation \(\Delta \).

5.1. \(\Delta \)-normal families from Firla-Ziegler configurations: Each Firla-Ziegler normal simplicial \(\mathcal{A} \subset \mathbb{N}^4 \) without unimodular triangulations is the Hilbert basis of the cone generated by \(e_1, e_2, e_3 \), the first three unit vectors in \(\mathbb{R}^4 \), and a vector \(\mathbf{v} \in \mathbb{N}^4 \) of the form \(\mathbf{v} := (a, b, c, d)^t \) with \(0 < a < b < c < d \). In this subsection we let \(\mathcal{A} \) denote such a Firla-Ziegler configuration and let \(\mathcal{A}_{\text{ext}} = \{e_1, e_2, e_3, \mathbf{v}\} \) be the extreme rays of \(\text{cone}(\mathcal{A}) \). By definition, \(\mathcal{A} \) is the unique minimal generating set of the semigroup \(\text{cone}(\mathcal{A}_{\text{ext}}) \cap \mathbb{Z}^4 \) and \(\text{cone}(\mathcal{A}) \subset \mathbb{R}_{\geq 0}^4 \).

Lemma 5.1. The vector \(\mathbf{1} := (1, 1, 1)^t \) is contained in \(\mathcal{A} \).

Proof: Since \(\mathbf{1} = \frac{1}{d} \mathbf{v} + \frac{b}{d-a} \mathbf{e}_3 + \frac{c-b}{d-a} \mathbf{e}_2 + \frac{d-c}{d-a} \mathbf{e}_1 \) and \(a < b < c < d \), \(\mathbf{1} \in \text{cone}(\mathcal{A}_{\text{ext}}) \cap \mathbb{Z}^4 = \mathbb{N} \mathcal{A} \). For every \(\mathbf{p} = (p_1, p_2, p_3, p_4) \in \text{cone}(\mathcal{A}_{\text{ext}}) = \text{cone}(\mathcal{A}) \) with \(p_4 > 0, p_i > 0 \) for \(i = 1, \ldots, 4 \) since the \(\mathbb{R}_{\geq 0}^4 \)-linear combination of elements in \(\mathcal{A}_{\text{ext}} \) that expresses \(\mathbf{p} \) as an element of \(\text{cone}(\mathcal{A}_{\text{ext}}) \) must involve a positive multiple of \(\mathbf{v} \). On the other hand, the \(\mathbb{N} \)-linear combination of elements in \(\mathcal{A} \) that expresses \(\mathbf{1} \) as an element of \(\mathbb{N} \mathcal{A} \) is the sum of distinct vectors in \(\mathcal{A} \cap \{0, 1\}^4 \). At least one of these \(0-1 \) vectors — say \(\mathbf{w} \) — has a positive last co-ordinate which implies that \(\mathbf{w} = \mathbf{1} \). Therefore, \(\mathbf{1} \) is in \(\mathcal{A} \), the minimal Hilbert basis of \(\text{cone}(\mathcal{A}_{\text{ext}}) \cap \mathbb{Z}^4 \). □
Example 5.2. The first Firla-Ziegler A in \mathbb{N}^4 has $v = (1, 2, 3, 5)$ and A consists of the columns of the matrix

$$A = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 2 & 1 & 1 & 2 \\ 0 & 0 & 1 & 3 & 1 & 2 & 3 \\ 0 & 0 & 0 & 5 & 1 & 2 & 3 \end{pmatrix}.$$

The Hilbert basis of any rational polyhedral cone can be computed using the software package Normaliz [3].

From a Firla-Ziegler A we will now recursively construct configurations A^d for each $d \geq 5$ such that $A^d \subseteq \mathbb{N}^d$ is Δ-normal, cone(A^d) is not simplicial and A^d has no unimodular triangulations. For each $d \geq 5$ let $p_d = e_1 + \cdots + e_d \in \mathbb{Z}^d$, $p_d^+ = p_d + e_d \in \mathbb{Z}^d$ and $p_d^- = p_d - e_d \in \mathbb{Z}^d$. Here e_d is the d-th unit vector in \mathbb{R}^d. Letting $A^1 := A$ (a Firla-Ziegler configuration in \mathbb{N}^4) and $A^d_{\text{ext}} := A_{\text{ext}}$, recursively define $A^{d-1}' := \{(a,0) : a \in A^{d-1}\}$, $A_{\text{ext}}^{d-1}' := \{(a,0) : a \in A_{\text{ext}}^{d-1}\}$ and $A^d := \{p_d^+, p_d^-\} \cup A^{d-1}'$. We assume that p_d^+ and p_d^- are always the first and second elements of A^d and that σ is the index set of A_{ext}^{d-1}' in A^d. Let $\sigma_1 = \{1\} \cup \sigma$ and $\sigma_2 = \{2\} \cup \sigma$. Consider the triangulation Δ^5 of cone(A^d) consisting of the maximal subcones $K_1 = \text{cone}(A^{d}_{\sigma_1})$ and $K_2 = \text{cone}(A^{d}_{\sigma_2})$.

Lemma 5.3. The configuration A^5 has the following properties:

1. $\mathbb{Z}(A^5 \cap K_1) = \mathbb{Z}(A^5 \cap K_2) = \mathbb{Z}^5$,
2. A^5 is non-simplicial,
3. A^5 is Δ^5-normal, and
4. A^5 admits no unimodular triangulations.

Proof:

1. Since $p_5 = (1, 1, 1, 1, 0)$, $p_5^+ = (1, 1, 1, 1, 1)$ and the first three unit vectors of \mathbb{R}^5 belong to $A^5 \cap K_1$, it follows that all unit vectors of \mathbb{R}^5 lie in $\mathbb{Z}(A^5 \cap K_1)$ which gives the result. Similarly, $\mathbb{Z}(A^5 \cap K_2) = \mathbb{Z}^5$.
2. Since p_5 lies in the interior of cone(A^5), the vectors p_5^+ and p_5^- do not lie on a common facet of the cone. Hence cone(A^5) is a bipyramidal cone over cone(A^4) with six extreme rays and is hence non-simplicial.
3. The triangulation Δ^5 is the regular triangulation of A^5 with respect to the weight vector $w = e_1 + e_2$. We first argue that $A^5 \cap K_1$ is a minimal generating set of the semigroup $K_1 \cap \mathbb{Z}(A^5 \cap K_1) \stackrel{(1)}{=} K_1 \cap \mathbb{Z}^5$. Suppose $q = (q_1, \ldots, q_5) \in K_1 \cap \mathbb{Z}^5$. Since p_5^+ is the unique generator of K_1 with a positive fifth co-ordinate, $q = q_5 p_5^+ + q'$ where $q = (q_1 - q_5, q_2 - q_5, q_3 - q_5, q_4 - q_5, 0)^t$ is the unique expression of q as an $\mathbb{R}_{\geq 0}$-combination of p_5^+ and the other extreme rays of K_1. Since $q_5 = 0$, in fact, $q' \in \text{cone}(A^4) \cap \mathbb{Z}^4 \subseteq \mathbb{N}A^4 \subseteq \mathbb{N}(K_1 \cap A^4)$ where the equality $(*)$ follows from the normality of A^4. This in turn implies that $q = q_5 p_5^+ + q' \in \mathbb{N}(K_1 \cap A^5)$. (Note that $q_5 \in \mathbb{N}$.) Similarly, $A^5 \cap K_2$ is its own Hilbert basis. Thus, A^5 is Δ^5-normal.
Consider the graph 5.2.

In particular triangulations in every dimension beyond four, starting with a Firla-Ziegler Theorem 5.4. This theorem is proved by induction using Lemma 5.3 as the base step.

Proof: We have thus produced non-simplicial ∆-normal configurations with out unimodular triangulations. The rest of the argument is also a straight generalization of the arguments in Lemma 5.3.

Theorem 5.4. For each \(d \geq 5 \), the configuration \(A_d \) has the following properties:

1. \(\mathbb{Z}(A^d \cap K_1) = \mathbb{Z}(A^d \cap K_2) = \mathbb{Z}^d \).
2. \(A_d \) is non-simplicial.
3. \(A_d \) is \(\Delta^d \)-normal, and
4. \(A_d \) admits no unimodular triangulations.

Proof: This theorem is proved by induction using Lemma 5.3 as the base step.

1. Suppose the result is true for \(k = d-1 \). Then it follows that \(\mathbb{Z}A^{d-1} \) contains the first \(d-1 \) unit vectors of \(\mathbb{Z}^d \) which are therefore also in \(\mathbb{Z}(A^d \cap K_1) \) and \(\mathbb{Z}(A^d \cap K_2) \). Since \(p^+_d \in K_1 \cap A^d \) (and \(p^-_d \in K_2 \cap A^d \)), we also get that \(e_d = p^-_d - p^+_d \in \mathbb{Z}(A^d \cap K_1) \) (and \(e_d \in \mathbb{Z}(A^d \cap K_2) \)). Hence \(\mathbb{Z}(A^d \cap K_1) = \mathbb{Z}(A^d \cap K_2) = \mathbb{Z}^d \).

2. Assume by induction that \(A^{d-1} \) is non-simplicial and that \(p_{d-1} \) lies in the interior of \(\text{cone}(A^{d-1}) \). Then, \(p_d \) lies in the interior of \(\text{cone}(A^d) \) and hence \(p_d^+ \) and \(p_d^- \) do not lie on a common facet of \(\text{cone}(A^d) \). This implies that \(\text{cone}(A^d) \subset \mathbb{R}^d \) has exactly two more extreme rays than \(\text{cone}(A^{d-1}) \subset \mathbb{R}^{d-1} \) and hence is non-simplicial.

3. As in Lemma 5.3 \(\Delta^d \) can be induced as the regular triangulation of \(A^d \) with respect to the weight vector \(w = e_1 + e_2 \) for each \(d \geq 5 \). We assume by induction that \(A^{d-1} \) is \(\Delta^{d-1} \)-normal and hence normal. The arguments that \(A^d \cap K_1 \) and \(A^d \cap K_2 \) are minimal generating sets for \(K_1 \cap \mathbb{Z}^d \) and \(K_2 \cap \mathbb{Z}^d \) respectively follow from a straight generalization of the arguments in Lemma 5.3.

4. Again we assume by induction that \(A^{d-1} \) admits no unimodular triangulations. The rest of the argument is also a straight generalization of the arguments in Lemma 5.3 (4).

We have thus produced non-simplicial \(\Delta \)-normal configurations without unimodular triangulations in every dimension beyond four, starting with a Firla-Ziegler \(\mathcal{A} \) in \(\mathbb{N}^4 \). The construction applies to all such Firla-Ziegler configurations.

5.2. Non \(\Delta \)-normal configurations from an example of Hibi and Ohsugi:

Consider the graph \(G_{HO} \) shown in Figure 2. In [8] Hibi and Ohsugi showed that
Figure 2. The graph giving the Hibi-Ohsugi configuration

The graph giving the Hibi-Ohsugi configuration

admits no regular unimodular triangulations, although it does have non-regular unimodular triangulations. Further, the 15 points in A_{HO} are all extreme points of $\text{conv}(A_{HO})$. The $(0,1)$-polytope $\text{conv}(A_{HO}) \subset \{x \in \mathbb{R}^{10} : x_1 = 1\}$ is empty which means that it has no lattice points other than its vertices. Thus $\text{cone}(A_{HO})$ which is a cone over $\text{conv}(A_{HO})$ has 15 extreme rays and is therefore non-simplicial.

Lemma 5.5. Let $A \subset \mathbb{Z}^d$ be a normal graded non-simplicial configuration in $\{x \in \mathbb{R}^d : x_1 = 1\}$ such that $\text{conv}(A)$ is empty. If A does not have a regular unimodular triangulation then A is not Δ-normal for any regular triangulation Δ.

Proof: Without loss of generality, we can assume that $\mathbb{Z}A = \mathbb{Z}^d$. By the hypothesis, every regular triangulation Δ of A has a maximal face σ such that $|\det(A_\sigma)| \geq 2$. Thus the Hilbert basis of $\text{cone}(A_\sigma)$ contains at least one vector $q \in \mathbb{Z}^d$ not in A_σ. Since all vectors in A are extreme rays of $\text{cone}(A)$, none of them lie in $\text{cone}(A_\sigma)$ unless they are in A_σ. This implies that $A_\sigma = \text{cone}(A_\sigma) \cap \mathbb{Z}^d$ is not normal and hence A is not Δ-normal. \square

Corollary 5.6. The Hibi-Ohsugi configuration A_{HO} is not Δ-normal for any regular triangulation Δ.

From A_{HO} we now recursively construct configurations A^d for each $d \geq 11$ such that A^d is normal and graded but not Δ-normal for any regular triangulation Δ. For each $d \geq 11$ let $p_d = e_1 + e_d \in \mathbb{Z}^d$. Letting $A^{10} := A$, recursively define

$$A^{d-1'} := \left\{ \begin{pmatrix} a \\ 0 \end{pmatrix} : a \in A^{d-1} \right\}$$

and $A^d := \{p_d\} \cup A^{d-1'}$.

Theorem 5.7. For each $d \geq 11$, the configuration A^d is normal and graded but not Δ-normal for any regular triangulation Δ.

Proof: It suffices to show that A^d satisfies the conditions of Lemma 5.5 for each d. For a given d, A^d is graded since it lies in $\{x \in \mathbb{R}^d : x_1 = 1\}$ and $\text{conv}(A^{d})$ is a $(0,1)$-polytope and hence empty. Further, $\text{cone}(A^d)$ is non-simplicial as $\text{cone}(A^{d-1})$ is non-simplicial for all $d \geq 11$.

The configuration A^{11} is normal. To see this let $q := (q_1, \cdots, q_{11})^t \in \text{cone}(A^{11}) \cap \mathbb{Z}A^{11}$. Since the only extreme ray of $\text{cone}(A^{11})$ with non-zero eleventh co-ordinate
is \(p_{11}, q_{11} \leq q_1 \). Further, \(q = q_{11}p_{11} + q' \) where \(q' = (q_1 - q_{11}, q_2, \ldots, q_{10}, 0)^t \) is the unique expression of \(q \) as an \(\mathbb{R}_{\geq 0} \)-combination of the extreme rays of \(\text{cone}(A^{11}) \). The integral vector \(q' \) lies in \(\mathbb{N}A^{10}_{10} \) since \(A^{10} \) is normal and hence it lies in \(\mathbb{N}A^{11} \). Thus \(q \in \mathbb{N}A^{11} \). By induction, it follows that \(A^d \) is normal for all \(d \geq 11 \).

Suppose \(A^{11} \) had a regular unimodular triangulation. Then \(p_{11} \) would be a vertex in every maximal face of this regular unimodular triangulation of \(\text{conv}(A) \). This in turn induces a regular unimodular triangulation in \(A^d \) and hence in \(A^{10} \), a contradiction. Again, a straightforward inductive argument shows that \(A^d \) has no regular unimodular triangulation for all \(d \geq 11 \). □

Acknowledgments

We thank Diane Maclagan for alerting us to the interpretation of Simon’s condition for a monomial ideal to be Cohen-Macaulay in her paper [12] with Greg Smith. We also thank Winfried Bruns, Joseph Gubeladze, Serkan Hoşten, Francisco Santos and Günter Ziegler for discussions on constructing \(\Delta \)-normal configurations.

References

[1] W. Bruns, J. Gubeladze and N.V. Trung, Normal polytopes, triangulations, and Koszul algebras, J. Reine Angew. Math. 485, (1997), 123–160.
[2] W. Bruns, J. Gubeladze and N.V. Trung, Problems and algorithms for affine semigroups, Semigroup Forum 64, (2002), no. 2, 180–212.
[3] W. Bruns and R. Koch, Computing the integral closure of an affine semigroup, Effective methods in algebraic and analytic geometry, 2000 (Krakow). Univ. Iagel. Acta Math. 39, (2001), 59–70.

Software: Normaliz, ftp.mathematik.Uni-Osnabrueck.DE/pub/osm/kommalg/software.
[4] R.T. Firla, private correspondence.
[5] R.T. Firla and G.M. Ziegler, Hilbert bases, unimodular triangulations, and binary covers of rational polyhedral cones, Discrete Comp. Geom. 21, (1999), 205–216.
[6] A. Jensen, CaTS, a software package for computing state polytopes of toric ideals, available from http://www.daimi.au.dk/~u950710/speciale.html
[7] D. Grayson and M. Stillman, Macaulay 2, a software system for research in algebraic geometry, available from http://www.math.uiuc.edu/Macaulay2/
[8] T. Hibi and H. Ohsugi, A normal (0, 1)-polytope none of whose regular triangulations are unimodular, Discrete Comp. Geom. 21, (1999), 201–204.
[9] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. Math. 96, (1972), 318–337.
[10] S. Hoşten, D. Maclagan and B. Sturmfels, Supernormal vector configurations, to appear in J. of Algebraic Combinatorics, [math.CO/0105036](http://arxiv.org/abs/math.CO/0105036).
[11] S. Hoşten and R.R. Thomas, Combinatorial Integer Programs, Math. Programming Series B 96, (2003), 271–292.
[12] D. Maclagan and G. G. Smith, Uniform Bounds on Multigraded Regularity, [math.AG/0305215](http://arxiv.org/abs/math.AG/0305215).
[13] L. Matushevich, private correspondence.
[14] R. S. Simon, Combinatorial Properties of “cleanness”, Journal of Algebra 167, (1994), 361–368.
[15] R. Stanley, Combinatorics and commutative algebra (Second edition), Progress in Mathematics 41, Birkhäuser Boston, Inc., Boston, MA, 1996.
[16] B. Sturmfels, Gröbner Bases and Convex Polytopes, University Lecture Series 8, American Mathematical Society, Providence, RI, 1996.
[17] B. Sturmfels, Equations defining toric varieties, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math. 62, Part 2, 437–449. Amer. Math. Soc., Providence, RI, 1997.
[18] B. Sturmfels, N.V. Trung and W. Vogel, Bounds on projective schemes, Mathematische Annalen 302, (1995), 417–432.
[19] G. M. Ziegler, *Lectures on Polytopes*, Graduate Texts in Mathematics 152, Springer-Verlag, New York, 1995.

Department of Mathematics, University of Washington, Seattle, WA 98195-4350
E-mail address: [oshea,thomas]@math.washington.edu