Magnetic properties of Nd$_x$Er$_{1-x}$Mn$_6$Sn$_6$ alloys

T Hori1, K Koyama2, H Shiraishi1 and K Watanabe2

1 Shibaura Institute of Technology, Saitama-city, 337-8570, Japan
2 Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai, 980-8577, Japan
E-mail: hori@se.shibaura-it.ac.jp

Abstract. We have conducted low- and high-field magnetization measurements and neutron diffraction experiments on Nd$_x$Er$_{1-x}$Mn$_6$Sn$_6$ alloys (0 \leq x \leq 0.5) with hexagonal MgFe$_6$Ge$_6$ type structure. The alloy with x = 0.1 shows a complex helical antiferromagnetism with the magnetic moments rotating in the c plane below the Curie temperature T_C = 340 K, and a ferrimagnetism below the temperature T_I = 100 K. In the ferrimagnetic state, the magnetic moments μ_{Mn} and μ_{Nd} are parallel to each other, and antiparallel to μ_{Er}. The alloy with x = 0.4 shows also a similar ferrimagnetic structure below the Curie temperature T_C = 360 K. It is likely that the each magnetic moments are a keep constant values of μ_{Mn} = 2.3 μ_B/Mn atom, μ_{Nd} = 3 μ_B/Nd atom and μ_{Er} = 9 μ_B/Nd atom at 10 K in the whole composition (0 $< x \leq$ 0.5). The ferrimagnetic arrangements for the alloys with 0.2 $\leq x \leq$ 0.5 are not almost disturbed by magnetic field up to 26 T at 4.2 K.

1. Introduction

Ternary RMn$_6$Sn$_6$ (R = Y, Tb, Dy and Er) alloys have the hp13 type (MgFe$_6$Ge$_6$ type) layer structure. It should be noted that Mn atom layers on 6i ($\frac{1}{2}$, 0, z$_2$) and ($\frac{1}{2}$, 0, \pmz$_1$) are well separated by Sn atom layers on 2c ($\frac{1}{2}$, $\frac{3}{2}$, 0) and 2e (0, 0, \pmz$_1$), and by Sn atom layers on 2d ($\frac{1}{2}$, $\frac{3}{2}$, $\frac{1}{2}$) and R atom layer on 1a (0, 0, $\frac{1}{2}$), where z$_1$ and z$_2$ are nearly equal to 0.16 (\sim $\frac{1}{6}$) and 0.25 (\sim $\frac{1}{3}$), respectively. The YMn$_6$Sn$_6$ alloy shows an inhomogeneous helical antiferromagnetism with the Néel temperature T_N = 333 K and the paramagnetic Curie temperature θ_P = 394 K [1, 2]. We have made magnetization measurements for the YMn$_6$Sn$_6$ alloy, and obtained interesting results; the magnetization approaches saturation around 11 T at 77 K, and the saturated magnetization corresponds to the magnetic moment of 2.0 μ_B/Mn atom [3]. The isotypic Tb$_x$Y$_{1-x}$Mn$_6$Sn$_6$ alloy with x = 0.2 shows a helical arrangement with propagation vector \mathbf{q} = (0.133 0 0) at 10 K [3]. Recently, we have reported that the isotypic Dy$_x$Y$_{1-x}$Mn$_6$Sn$_6$ alloy with x = 0.5 shows a ferrimagnetic structure which the magnetic moments of Mn, μ_{Mn} = (2.3 μ_B/Mn atom), are parallel to each other, and antiparallel to the magnetic moments of Dy atom, μ_{Dy} = (10 μ_B/Dy atom) [4], as similar to the magnetic structure of the DyMn$_6$Sn$_6$ alloy at low temperature [5]. More recently, we have also reported the isotypic Nd$_x$Y$_{1-x}$Mn$_6$Sn$_6$ alloy with x = 0.2 shows a helical antiferromagnetism with propagation vector \mathbf{q} = (0, 0, $\frac{1}{2}$) at 10 K [6]. On the other hand, the ErMn$_6$Sn$_6$ alloy shows a complex helical antiferromagnetism with the Néel temperature T_N = 352 K, and a ferrimagnetsim below the temperature T_I = 75 K [5]. It should be noted that a metamagnetic transition is observed for the ErMn$_6$Sn$_6$ alloy in a field higher than around 20 T at 4.2 K [7]. We have found that Nd$_x$Er$_{1-x}$Mn$_6$Sn$_6$ alloys have the hp13-type structure in the composition range of 0 \leq x \leq 0.5. The present paper reports on
the results of low- and high-field magnetization measurements, X-ray and neutron diffraction experiments for the pseudo ternary Nd$_{x}$Er$_{1-x}$Mn$_6$Sn$_6$ alloy system.

2. Sample preparation and experimental procedure
The method of sample preparation was described in our earlier paper [3]. Magnetizations were measured by a vibrating sample magnetometer (VSM) in a field up to 2 T, a VSM up to 13 T at IMR and an extraction method up to 26 T produced by a hybrid magnet 28T-HM at the High Field Laboratory of Tohoku University. X-ray diffraction experiments were made using a conventional diffractometer with a copper target. Neutron diffraction experiments were made for powder samples using HERMES of IMR installed in the JRR-3M reactor at JAERI.

3. Experimental Results and Discussion
The lattice constants a and c increase slightly with increasing x; for example, $a = 5.516$ Å and $c = 8.999$ Å for $x = 0.0$ and $a = 5.541$ Å and $c = 9.019$ Å for $x = 0.5$ at 293 K.

Figure 1 shows the magnetization versus temperature curves in various fields up to 2.0 T for the Nd$_{0.1}$Er$_{0.9}$Mn$_6$Sn$_6$ alloy. The curve in a field of 1.0×10^{-2} T shows anomalies at temperatures $T_t (= 100 \text{ K})$ and $T_N (= 340 \text{ K})$ as shown by the arrows in Fig. 1. We assumed that T_t and T_N are magnetic structure changes from a ferrimagnetism to a helical antiferromagnetism and the Néel temperature, respectively. The transition temperature T_t increases with increasing field up to 0.6 T. It is likely that a ferrimagnetic arrangement only appears in fields higher than 1.0 T below the Curie temperature T_C. Figure 2 shows the results for the Nd$_{0.4}$Er$_{0.6}$Mn$_6$Sn$_6$ alloy. We also determined $T_C (= 360 \text{ K})$ from the curve in a field of 1.0×10^{-2} T. The temperatures of T_N or T_C slightly increase with increasing x from 352 K for $x = 0.0$ to 364 K for $x = 0.5$.

Figure 3 shows neutron diffraction pattern for the Nd$_{0.1}$Er$_{0.9}$Mn$_6$Sn$_6$ alloy at 10 K. There are strong magnetic 001 reflection in addition to the nuclear reflections. Since Nd concentration in this alloy was poor, we assumed a fictional atom with average neutron scattering amplitude of Nd and Er atoms on the 1a site and the magnetic moment of its atom, μ_{1a}, with average magnetic moment of Nd and Er atoms, μ_{Nd} and μ_{Er}, and performed an analysis. The results are as follows; the hexagonal lattice constants are $a = 5.487$ Å and $c = 8.963$ Å, the 2c, 2d and 2e sites are entirely occupied by Sn atoms, the 6i site is occupied by Mn atoms, and the 1a site is randomly occupied by Nd and Er atoms, the magnetic moments of Mn atom $\mu_{Mn}(= 2.3 \mu_B / \text{Mn atom})$ and $\mu_{1a}(= 8 \mu_B / \text{Nd or Er atom})$ lay in the c plane, and are antiparallel to each other.
Figure 3. Neutron diffraction pattern for Nd$_{0.1}$Er$_{0.9}$Mn$_6$Sn$_6$ alloy at 10 K.

Figure 4. Neutron diffraction pattern for Nd$_{0.1}$Er$_{0.9}$Mn$_6$Sn$_6$ alloy at 130 K.

Figure 5. Neutron diffraction pattern for Nd$_{0.4}$Er$_{0.6}$Mn$_6$Sn$_6$ alloy at 10 K.

Figure 4 also shows neutron diffraction pattern for the Nd$_{0.1}$Er$_{0.9}$Mn$_6$Sn$_6$ alloy at 130 K. It should be noted that a satellite reflection, 001-δ, appears, but the 001 and 001+δ reflections are almost absent in the pattern, suggesting a complex helical magnetic structure. A detailed analysis is now in progress. Figure 5 shows neutron diffraction pattern for the Nd$_{0.4}$Er$_{0.6}$Mn$_6$Sn$_6$ alloy at 10 K. This pattern is similar to the one for the alloy with $x = 0.1$ at 10 K. We also determined that the Mn, Nd and Er atoms occupy on the ordinary sites as case of the alloy with $x = 0.1$, and the magnetic moments, $\mu_{\text{Mn}} = 2.3\, \mu_B$/Mn atom and $\mu_{\text{1a}} = 4\, \mu_B$/Nd or Er atom, lay in the c plane, and are antiparallel to each other.

If Nd and Er atoms obey Hund’s rule, and μ_{Nd} and μ_{Er} are antiparallel to each other, we obtained the calculated magnetic moments $\mu_{\text{Nd}}^c = 3.27\, \mu_B$/Nd atom, $\mu_{\text{Er}}^c = 9.0\, \mu_B$/Er atom, $\mu_{\text{1a}}^c = 7.87\, \mu_B$/Nd or Er atom for alloy with $x = 0.1$, and $\mu_{\text{1a}}^c = 4.08\, \mu_B$/Nd or Er atom for alloy with $x = 0.4$. The values of calculated and observed magnetic moments, μ_{1a}^c and μ_{1a}, are not so different in respective alloys. So we conclude that the magnetic moments of Mn, Nd and Er atoms keep constant values of $\mu_{\text{Mn}} = 2.3\, \mu_B$/Mn atom, $\mu_{\text{Nd}} = 3\, \mu_B$/Nd atom and $\mu_{\text{Er}} = 9\, \mu_B$/Er atom in the whole composition $0 < x \leq 0.5$ at 10 K. On the other hand, the high field magnetization measurements for the ErMn$_6$Sn$_6$ alloy using a single crystal have been made by T. Suga et al; in part of the lower field, the magnetization saturates around $4\, \mu_B$/f.u. when the magnetic field is applied parallel to the b axis [7]. If the saturation magnetization is $\mu_F = 4\, \mu_B$/f.u. and $\mu_{\text{Er}} = 9\, \mu_B$/Er atom, we can estimate $\mu_{\text{Mn}} = 2.17\, \mu_B$/Mn atom.

Figure 6 shows the field dependence of the magnetic moment μ (f.u.) for the Nd$_x$Er$_{1-x}$Mn$_6$Sn$_6$ alloys with $x = 0.1$, 0.3 and 0.5 obtained by using a VSM in fields up to 13 T at 4.2 K at IMR. Magnetization reaches saturation in a field of several Tesla. After saturation, magnetization slightly increases with the increasing field. The magnetizations in a field of 13 T are also shown.
in Fig. 1 and 2 as closed circles at 4.2 K and 77 K. The magnetization in a high-field increases with increasing temperature; this suggests that the magnetic moment μ_{Er} rapidly decreases with increasing temperature in ferrimagnetic structure. The concentration x dependence of the magnetization μ (f.u.) in a field of 13 T is also shown in Fig. 7 as closed circle. The magnetizations in a field of 13 T linearly increase with increasing x. We have also made high-field magnetization measurements up to a field of 26 T using a hybrid magnet 28T-HM. After saturation, the magnetization slightly increases with increasing magnetic fields up to a field of 26 T at 4.2 K. The magnetizations in a field of 26 T are also shown in Fig. 7 as symbol ⊙. We observed no such metamagnetic transition as seen in the ErMn$_6$Sn$_6$ alloy. It can be concluded that a metamagnetic transition field increases with increasing x.

4. Conclusion
We have concluded that the Nd$_x$Er$_{1-x}$Mn$_6$Sn$_6$ alloys (0 \leq x \leq 0.5) show a ferrimagnetic structure at low temperature. The magnetic moments μ_{Mn}, μ_{Nd} and μ_{Er} lay in the c plane, μ_{Mn} and μ_{Nd} are parallel to each other, and antiparallel to μ_{Er}, and μ_{Mn}= 2.3μ_B/Mn atom), μ_{Nd}= 3μ_B/Nd atom) and μ_{Er}= 9μ_B/Er atom) are kept at constant values in the whole composition at 10 K. We also concluded that the ferrimagnetic arrangements for the alloys with 0.2 \leq x \leq 0.5 are kept in a magnetic field up to 26 T at 4.2 K.

We gratefully acknowledge Dr. K. Ohoyama and Mr. K. Nemoto of IMR of Tohoku University for their support in the neutron diffraction experiments and useful discussions.

References
[1] Venturini G, Chafik E I Idrissi B, Malaman B 1991 J. Magn. Magn. Mater. 94 35
[2] Venturini G, Fruchart D, Malaman B 1996 J. Alloys Compounds 236 102
[3] Shigeno Y, Kaneko K, Hori T, Iguchi Y, Yamaguchi Y, Sakon T, Motokawa M 2001 J. Magn. Magn. Mater. 226-230 1153
[4] Hori T, Shiraishi H, Indoh K, Ohoyama K, Tobo A, Yamaguchi Y, Sakon T and Motokawa M 2004 J. Magn. Magn. Mater. 272-276 e433
[5] Malaman B, Venturini G, Welter R, Sanchez J P, Vulliet P, Ressouche E 1999 J. Magn. Magn. Mater. 202 519
[6] Hori T, Shiraishi H, Ohyama K, Nishi M, Koyoma K and Watanabe K, Physica B (in press)
[7] Suga K, Kindo K, Zhang L, Brück E, Buschow K H J, de Boer F R, Lefèvre C and Venturini G 2006 J. Alloys and Compounds 408-412 158