1. Introduction

Since the discovery of the magnetocaloric effect (MCE) and colossal magnetoresistance (CMR) in perovskite-type oxide materials, the correlation between structure, magnetic, electrical, and transport properties has become a hotspot in today’s research.\(^1\)\(^–\)\(^6\)

The MCE is the tendency of certain materials, to heat up or cool down during the application or removal of an external magnetic field. This phenomenon is an intrinsic property of magnetic materials and occurs due to the change in the alignment of the magnetic moments under an applied magnetic field. Commonly, the MCE is considered as the entropy change of the system in an isothermal process on applying a magnetic field. Traditionally, the double-exchange (DE) model\(^7\) was suggested to understand the CMR behavior observed in these materials. In this model, a ferromagnetic (FM) interaction between the localized \(t_{2g}\) spins resulted from the hopping of itinerant \(e_g\) spins between adjacent Mn atoms subject to strong intra-site Hund’s rule coupling. However, it has been found that the (DE) and the super-exchange (SE) mechanism are known to be sensitive to variation in the Mn–O–Mn bond angle and Mn–O bond length, both controlled by the average size of the A- or the B-site ions whereas the density of charge carriers is controlled by the Mn\(^{3+}\)/Mn\(^{4+}\) ratio.\(^8\)\(^–\)\(^10\)

Most of these materials with general formula \(R_{1−x}A_x\)MnO\(_3\) (where \(R\) is the rare-earth element, \(A\) is the divalent metal element and \(x\) is the doping level) have recently attracted considerable research interest in view of their fascinating fundamental properties such as magneto-resistance, magnetocaloric, charge ordering, phase separation, spin ordering, etc., leading to potential application in magnetic, magneto-electronic, photonic devices, infrared detector, as well as spintronics technology.\(^11\)

Experimentally, manganese oxides, especially, the La–Sr based manganite (La\(_{0.7}\)Sr\(_{0.3}\)MnO\(_3\)) are very familiar system. It exhibits a metal–semiconductor transition accompanied by a ferromagnetic–paramagnetic transition near the Curie temperature \(T_C\). There are several reports on the magnetocaloric...
properties of that compound where the large magnetic entropy change with a narrow range of working temperatures was reported at the vicinity of the transition temperature.12-14 The range of working temperature, as well as the transition temperature were modified by suitable substitutions of Sr and/or Mn ions by other ions.15,16 In addition, low-level substitution of Mn by Ni (2\%) in La\textsubscript{0.7}Sr\textsubscript{0.3}Mn\textsubscript{0.9}In\textsubscript{0.1}O\textsubscript{3} was found to enhance the magnetic entropy change (6.52 J kg-1 K-1 at an applied field of 5 T) and shift the transition temperature to above room temperature (350 K).17

More recently, a close interplay between magnetic structure and transport properties of these compounds has been explained by means of the (SE) and (DE) interactions, which are accompanied by the strong Jahn–Teller (JT) distortion and electron–phonon interaction arising from the deformation of the Mn3+O\textsubscript{6} octahedral.18 According to (JT) distortion, the structure will distort by removing the degeneracy of the eg orbitals, to stabilize the 3d\textsubscript{xz}–3d\textsubscript{yz} with respect to the 3d\textsubscript{x2}–3d\textsubscript{y2} orbitals.19 In this context, Xiong \textit{et al.} also found a strong correlation between resistivity and magnetic-entropy change (ΔS\textsubscript{M}).20 So, we can calculate ΔS\textsubscript{M} based on the electrical measurement.

In a recent publication,21-24 there have been few models that can explain the conductive mechanism in our materials. Among those models, we point out the Mott’s variable range hopping (VRH) and small polaron hopping (SPH) model in the semi-conducting region and electron–electron, electron–phonon processes in the metallic region. To the best of our knowledge, no studies have been done on the mathematical model which can describe the carrier transport behavior of manganite as a function of temperature around the electrical phase transition and the relation between electrical and magnetic properties is a subject which is not much treated.

In this contribution, the first objective of this work is to determine the correlation between electrical and magnetic properties. The second objective is to develop a mathematical model to quantitatively analyze the temperature-dependent resistivity.

2. Experimental details

La\textsubscript{0.7}Bi\textsubscript{0.05}Sr\textsubscript{0.15}Ca\textsubscript{0.6}Mn\textsubscript{1–x}In\textsubscript{x}O\textsubscript{3} (0 ≤ x ≤ 0.3) compounds were synthesized by the Pechini sol–gel method24 using stoichiometric amounts of La(NO\textsubscript{3})\textsubscript{3}·6H\textsubscript{2}O, Bi(NO\textsubscript{3})\textsubscript{3}·5H\textsubscript{2}O, In(NO\textsubscript{3})\textsubscript{3}·xH\textsubscript{2}O, Sr(NO\textsubscript{3})\textsubscript{2}, Ca(NO\textsubscript{3})\textsubscript{2}, Mn(NO\textsubscript{3})\textsubscript{2}·4H\textsubscript{2}O (having a purity of more than 99.9\% for each of them). Firstly, the reagents were dissolved in distilled water to obtain a mixed solution. Subsequently, when the nitrates were completely dissolved in the solution, citric acid (CA) and ethylene glycol (EG) were added in the required stoichiometric ratio. The process was heated first at 340–380 K with a vigorous stirring to evaporate water, increase viscosity and accelerate the poly-esterification reaction between CA and EG. Then the temperature was raised up to 450 K forming a dark viscous gel which slowly turned into a dark resin at 500 K. This resin was easily powdered in an agate mortar and was calcined at 870 K for 6 h in oxygen atmosphere to eliminate the carbons gases and the other organic compounds. Finally, at 1075 K for 10 h in following air synthesis the resulting powders were uniaxial pressed at 105 Pa into circular pellets with a thickness of 2 mm and diameter of 8 mm. The obtained black pellets were then sintered in an oxygen atmosphere at 1273 K for 48 h.

The structure, the crystallinity and phase purity of the sample were checked by powder X-ray diffraction (XRD) measurements made at room temperature using “PANalytical X’Pert Pro” diffractometer with CuK\textalpha{} radiation (\(\lambda{} = 1.5406 \text{ Å}\)). Data acquisition was done in the range of 2θ from 10 to 100° with a step size of 0.017° and a counting time of 18 s per step.

Structural analysis was carried out by the standard Rietveld method25 using the FULLPROF program.26 Magnetization vs. temperature (5–450 K) was measured in an applied magnetic field of 0.05 T, using BS1 and BS2 magnetometers developed in Louis Neel Laboratory of Grenoble. The resistivity of these samples was carried out by using the standard four probe method in the temperature range 5–600 K.

3. Results and discussion

3.1. XRD analysis

Fig. 1 shows the X-ray diffraction patterns for the La\textsubscript{0.7}Bi\textsubscript{0.05}Sr\textsubscript{0.15}Ca\textsubscript{0.6}Mn\textsubscript{1–x}In\textsubscript{x}O\textsubscript{3} (x = 0.1, 0.2) compounds. No impurity peaks are observed in the pattern, indicating a single-phase formation of all samples. For all the samples, all peaks are satisfactorily indexed in the rhombohedral structure with space group R\textit{3}c, hexagonal setting (\(Z = 6\)), in which the La/Bi/In/Sr/Ca atoms are at 6a (0, 0, \(\frac{1}{2}\), Mn/In at 6b (0, 0, 0) and O at 18e (x, 0, \(\frac{1}{2}\)) positions. This profile has reasonable R-factors and excellent fits between calculated and observed patterns. We have listed the lattice parameters, unit cell volume, and fitting parameters in Table 1. It is seen that the lattice parameters and unit cell volume gradually increase with increasing In concentration. This can be attributed to the average ionic radius of the B-site (\(r_{B}\)) which increases systematically as smaller Mn3+ ions (0.645) are replaced by larger In3+ ions (0.8).27

The stability of perovskite sample is usually described in terms of Goldschmidt’s tolerance factor (\(t\)), which can be calculated using the expression28

\[
t = \frac{\langle r_{La/Bi/In/Sr} \rangle + \langle r_{O} \rangle}{\sqrt{2(\langle r_{Mn/In} \rangle + \langle r_{O} \rangle)}}
\]

where \(\langle r_{La/Bi/In/Sr} \rangle\) and \(\langle r_{O} \rangle\) are the average ionic radii of the A-site, B-site and O ions, respectively.

Most materials that are stable in the perovskite structure have \(t\) between 0.75 and 1.05. For all samples, \(t\) is well below 1 and implies a tendency toward tilting or rotation of distorted MnO\textsubscript{6} octahedral framework of AMnO\textsubscript{3} (A = La, Sr, Ca, Bi). With increasing In concentration, \(t\) decreases (from 0.968 to 0.947) due to the increase in the average ionic radius of the B-site cation, which compresses the Mn–O–Mn bond angle and increases the Mn–O bond length29 (Table 1).

3.2. Magnetic properties

Fig. 2 shows the temperature dependence of magnetization with field-cooled (FC) and zero field-cooled (ZFC) under a magnetic applied field of 0.05 T from \(x = 0\) to \(x = 0.3\).
All these samples exhibit a paramagnetic to ferromagnetic transition at the Curie temperature T_C. This temperature has been determined by differentiating the M–T curves and is defined as the inflection point of the function dM/dT. With increases of In doping, the Curie temperature T_C decreases from 330 K for $x = 0$ to 268 K for $x = 0.3$. This temperature reveals the long-range ferromagnetic ordering, indicating strong ferromagnetic exchange coupling between Mn and In sublattice. In the low temperature region, FC and ZFC curves diverge significantly in all samples at the so-called irreversibility temperature (T^*). This temperature is defined as the temperature below which M_{ZFC} departs from M_{FC} and large bifurcation starts to occur. We observe here that T^* shifts to a lower temperature with an increase in In substitution and it is found to be 294 K, 266 K, 255 K, 245 K and 236 K for $x = 0$, $x = 0.1$, $x = 0.15$, $x = 0.2$ and $x = 0.3$, respectively. This splitting has been attributed to the magnetic frustration arising from a coexistence of insulating antiferromagnetic and metallic ferromagnetic phases, or from the competition between antiferromagnetic and ferromagnetic interactions. Moreover, the irreversibility for these samples demonstrates the signature of strong anisotropy field generated from ferromagnetic (FM) clusters in the system. The
magnetic moment gradually diminishes and prominent bifurcation between ZFC and FC curves become more and more obvious with increasing In concentration. This phenomenon is observed in many magnetic materials.

Furthermore, it is interesting to see which theoretical expression describes the temperature dependence of magnetization. According to Bloch’s \(T^{3/2} \) law, at a low temperature, the zero field magnetization \(M(T,\mu_0H) \) should have a temperature dependence:

\[
M(T,\mu_0H)/M(0,\mu_0H) = 1 - BT^{3/2}
\]

where \(M(0,\mu_0H) \) and \(M(T,\mu_0H) \) are the spontaneous magnetizations at \(T = 0 \) K and at finite temperature, respectively. The prefactor \(B \) is a constant characteristic of the spin waves at low temperature, which can be defined as:

\[
B = 2.612 \left(\frac{g\mu_B}{M(0)} \right) \left(\frac{k_B}{4\pi D} \right)^{3/2}
\]

where \(g = 2 \) is the gyromagnetic ratio for electron, \(k_B \) is the Boltzmann constant and \(\mu_B \) is the Bohr magneton. Here \(D \) is the spin wave stiffness constant, which is defined by spin wave dispersion relation:

\[
E(q) = \Delta + Dq^2
\]

Table 1 Structural parameters determined from XRD data at room temperature for La\(_{0.7}\)Bi\(_{0.05}\)Sr\(_{0.15}\)Ca\(_{0.1}\)Mn\(_{1-x}\)In\(_x\)O\(_3\) samples

\(x \)	\(a (\text{Å}) \)	\(c (\text{Å}) \)	\(V (\text{Å}^3) \)	\(R^2 \)	Bond lengths and bond angles
	\(a \)	\(c \)	\(V \)		\(d_{\text{Mn-O}} \)
	\(b_{\text{Mn-O}}-\text{Mn} \)				
\(x = 0 \)	5.6318 (2)	13.7733 (5)	378.33 (3)	0.25	1.955 (7)
\(x = 0.1 \)	5.6434 (1)	13.7866 (2)	380.25 (4)	0.25	1.967 (9)
\(x = 0.15 \)	5.6536 (4)	13.7954 (3)	381.87 (1)	0.25	1.971 (9)
\(x = 0.2 \)	5.6576 (2)	13.8239 (2)	383.20 (2)	0.25	1.973 (4)
\(x = 0.3 \)	5.6621 (1)	13.8704 (1)	385.10 (1)	0.25	1.984 (7)

Fig. 2 Temperature dependence of magnetization under ZFC and FC curves at a field of 0.05 T for La\(_{0.7}\)Bi\(_{0.05}\)Sr\(_{0.15}\)Ca\(_{0.1}\)Mn\(_{1-x}\)In\(_x\)O\(_3\).
and \(q \) is the momentum wave vector. It should be noted that for an FM of Heisenberg, \(M(T) \) follows the law of Bloch \(T^{3/2} \) generally in zero magnetic field. Under an external magnetic field, the variation of the magnetization with the applied field is more complex, as is observed in the dispersion spectra of spin waves which show the presence of a gap proportional to the applied magnetic field or anisotropy. However, Smolyaninova et al.\(^{30} \) showed that the effect of the applied magnetic field is very low on the magnetization at low temperature. So we assume that \(\Delta = 0 \). In the inset (a) of Fig. 3, we show the curve \(\ln(1 - (M(T,\mu_0H)/M(0,\mu_0H))) \) versus \(\ln(T) \) for \(x = 0.1 \) for example, which is used to show that our samples obey Block’s \(T^{3/2} \) law. We have found that the slopes of all samples are closer to 1.4 (Table 2). It is predicted that the slope of the linear fit of these data must be close to 3/2. From eqn (2), the constant \(B \) represents the slope of the linear fit to the data of the \(M(T,\mu_0H)/M(0,\mu_0H) \) vs. \(T^{3/2} \) curve (shown in Fig. 3) and the values of \(D \) were determined. These curves show that our compounds approximately obey Bloch’s \(T^{3/2} \) law within range of low temperatures \((T \leq 100 \text{ K}) \). The values of \(B \) and \(D \) of all the samples are summarized in Table 2. This result shows that there is a spin wave excitation in our samples. The estimated \(D \) values are in good agreement with the previously reported result.\(^{41-43} \)

We assume that the magnetic moment at temperature \(T \) and magnetic field \(\mu_0H \) is given by

\[
M(T,\mu_0H) = M_{S\theta}(T) + \chi \mu_0H \quad (5)
\]

The spontaneous magnetic moment of the sample can be obtained by fitting the linear part of magnetization at high magnetic field. The evolution of the spontaneous magnetization \(M_{S\theta} \) and the susceptibility as a function of temperature, deduced from \(M(\mu_0H) \) measurements, can be shown in the inset (b) of Fig. 3 for \(x = 0.1 \) for example. The \(M_{S\theta}(T) \) curve drops rapidly near \(T_C = 310 \text{ K} \), \(T_C = 298 \text{ K} \), \(T_C = 275 \text{ K} \) and \(T_C = 268 \text{ K} \) for \(x = 0 \), \(x = 0.15 \), \(x = 0.2 \) and \(x = 0.3 \), respectively showing a well-defined Curie temperature.

3.3. Magnetocaloric effect

The scope of this paper concerns the study of magnetocaloric effect (MCE), which is an intrinsic property of magnetic materials. It is the heating or cooling of materials when subjected to magnetic field variation, which is maximized when the material is near its magnetic ordering temperature.

Fig. 4 shows the magnetic-field dependences of the magnetization measured at different temperatures around \(T_C \) for \(x = 0 \) and \(x = 0.15 \) compounds for example. The magnetization was found to increase with decreasing temperature, where thermal fluctuations of spins decrease with decreasing temperature.

![Fig. 3](image3.png)
Fig. 3 Plots of \(M(T,\mu_0H)/M(0,0) \) vs. \(T^{3/2} \). The inset (a) shows the \(\ln(1 - (M(T,\mu_0H)/M(0,0))) \) variation vs. \(\ln(T) \) for \(x = 0.1 \). The inset (b): spontaneous magnetization \(M_{S\theta} \) and the inverse susceptibility as a function of temperature for \(x = 0.1 \).

![Fig. 4](image4.png)
Fig. 4 Isothermal magnetization measured at different temperatures around \(T_C \). The inset shows the Arrott plots for \(x = 0 \) and \(x = 0.15 \).

\(x \)	\(x = 0 \)	\(x = 0.1 \)	\(x = 0.15 \)	\(x = 0.2 \)	\(x = 0.3 \)
Slope	1.43	1.38	1.46	1.40	1.51
\(B \) (\(10^{-3} \text{ K}^{-2/3} \))	2.91	2.70	2.03	1.85	1.69
\(D \) (meV Å\(^2\))	97.76	112.56	143.38	156.83	181.75
Therefore, in order to understand the nature of the magnetic phase transition, we can use the Banerjee criterion. According to this law, the sign of slopes of the M^2 vs. $\mu_0 H/M$ curves (Arrrott plots) indicates the nature of the PM–FM transition; meaning that if a slope is negative, the transition is of first order (FOMT) while when it is positive, the transition is of second order (SOMT). The Arrrott plots shown in inset of Fig. 4 clearly indicate a positive slope in the complete M^2 range, confirming the SOMT.

The MCE properties have been evaluated by calculating two factors:

(i) Magnetic entropy change (ΔS_M), which can be determined from the magnetization curves with the help of the Maxwell’s relation given as:

$$\Delta S_M(T, \mu_0 H) = \int_0^{\mu_0 H} \left(\frac{\partial M(T, \mu_0 H)}{\partial T} \right) d(\mu_0 H)$$

(ii) and Relative Cooling Power (RCP), which is the most meaningful parameter that provides a measure of the amount of heat transfer between hot and cold sinks during one ideal refrigeration cycle. It is defined as:

$$RCP = -\Delta S_M^{\text{max}} \times \delta T_{\text{FWHM}}$$

where ΔS_M^{max} is the maximum entropy and δT_{FWHM} is a full width at half maximum and is defined as:

$$\delta T_{\text{FWHM}} = T_2 - T_1$$

where T_1 and T_2 are the cold and hot temperatures.

In Fig. 5, we represent the temperature dependence of (ΔS_M) curve at different magnetic fields ranging from 1 to 5 T of $x = 0$ for example.

It is clear from this figure that the sign of the (ΔS_M) is negative, which means that heat is liberated when ($\mu_0 H$) is changed adiabatically. The value of (ΔS_M) grows up to a maximum value (ΔS_M^{max}) where the temperature approaches T_C and then decreases with increasing temperature. The obtained value of $x = 0$ for 5 T is about 62% of that presented by gadolinium metal (Gd). Gd, the reference for magnetocaloric materials, exhibits an isothermal entropy change of 5 J kg$^{-1}$ K$^{-1}$ and 9.8 J kg$^{-1}$ K$^{-1}$ for field changes of 2 T and 5 T, respectively.

The evolution of (ΔS_M^{max}) with In$^{3+}$ concentration is shown more clearly in the inset (a) of Fig. 5. We observed that (ΔS_M^{max}) drops with increasing substitution x, and exhibits values equal to 6.14 to 3.06 J kg$^{-1}$ K$^{-1}$ for $x = 0$ to 0.3 for 5 T.

An $\mu_0 H$ increase enhances (ΔS_M^{max}) and shifts the (ΔS_M^{max}) point gradually towards higher temperatures, which is indicative of a much larger entropy change being expected at higher magnetic fields (the inset (b) of Fig. 5).

The obtained RCP values of all samples are reported in Table 3, from which it can be clearly deduced that the substitution x decreases the value of the (RCP) factor from 281 J kg$^{-1}$ for $x = 0$ to 114 J kg$^{-1}$ for $x = 0.3$ at 5 T. These values are comparable with those reported in literature.

The evolution of (ΔS_M^{max}) with In$^{3+}$ concentration is shown more clearly in the inset (a) of Fig. 5. We observed that (ΔS_M^{max}) drops with increasing substitution x, and exhibits values equal to 6.14 to 3.06 J kg$^{-1}$ K$^{-1}$ for $x = 0$ to 0.3 for 5 T.

The evolution of (ΔS_M^{max}) with In$^{3+}$ concentration is shown more clearly in the inset (a) of Fig. 5. We observed that (ΔS_M^{max}) drops with increasing substitution x, and exhibits values equal to 6.14 to 3.06 J kg$^{-1}$ K$^{-1}$ for $x = 0$ to 0.3 for 5 T. An $\mu_0 H$ increase enhances (ΔS_M^{max}) and shifts the (ΔS_M^{max}) point gradually towards higher temperatures, which is indicative of a much larger entropy change being expected at higher magnetic fields (the inset (b) of Fig. 5).

The obtained RCP values of all samples are reported in Table 3, from which it can be clearly deduced that the substitution x decreases the value of the (RCP) factor from 281 J kg$^{-1}$ for $x = 0$ to 114 J kg$^{-1}$ for $x = 0.3$ at 5 T. These values are comparable with those reported in literature.

From the inset (b) of Fig. 5, we observe that the RCP values exhibit a nearly linear dependence on the applied magnetic field.

3.4. Correlation between electrical and magnetic properties

It is well known that a strong correlation between the magnetic and electrical properties has been observed earlier. In manganites, the CMR and MCE are usually observed around a magnetic transition, which can be determined by the Banerjee criterion.

In Fig. 6, we show the variation of ($\Delta S_M(T, \mu_0 H)$) with T for different magnetic fields (the inset (b) of Fig. 5).

In Fig. 5, we represent the temperature dependence of (ΔS_M) curve at different magnetic fields ranging from 1 to 5 T of $x = 0$ for example.

(a) and (b) respectively.

In Fig. 6, we can observe the variation of M, M^2 and M^2/T versus $\ln(\text{resistivity})$ around T_C for sample $x = 0.15$ under a magnetic field of 2 and 5 T for example.

On the other hand, Fig. 6 shows that the resistivity strongly depends on M which indicates that the relation (9) is very suitable to describe the relationship between electrical and magnetic properties of sample.
magnetic properties for all samples. On the other hand, we have found that the slope of the fitting data remains practically the same \(\alpha = 22.56 \text{ emu g}^{-1} \) even in different magnetic applied field for \(x = 0.15 \). Similar behavior was observed in all our samples.

Once the value of \(\alpha \) was determined, we calculated magnetic entropy change around FM–PM transition for all samples, using the resistivity measurements as a function of magnetic applied field at several temperatures (Fig. 6).

Fig. 7 represents the variation of entropy change found from electrical and magnetic data as a function of temperatures at 5 T for sample \(x = 0.15 \). We can notice that the estimated values determined from \(\rho \) are found to agree with the experimental ones.

3.5. Prediction of electrical resistivity

The resistivity of manganite is determined by several parameters such as temperature, composition, the applied magnetic field, and so on. The effects of both applied magnetic field and temperature on the resistivity of our sample \((x = 0) \) are shown in Fig. 8. All the samples display a clear metal–semiconducting (M–Sc) transition at a temperature \(T_{\text{M-Sc}} \) which is obtained from the inflection point of \(d\rho/dT \) plots. The tacit way to understand these properties of the samples based on the mathematical relationship between the resistivity and the temperature or the magnetic field is to fit these curves. This prediction of the electrical resistivity was reported by chang-shi.\(^4\) According to their suggestion, the Gauss function which is a typical numerical method with a nonlinear curve fitting for the quantitative analysis, offers such an opportunity. The Gauss function is given by

\[
\rho(T) = \rho(T_a) + \frac{A}{w \sqrt{\pi/2}} \exp\left(-2(T - T_d)^2/w^2\right)
\]

where \(\rho(T_a), A, T_d, \) and \(w \) are constants obtained from the fitting process.

If the Gauss function is available for predicting electrical resistivity \((\rho) \) in all the temperature ranges for LBSCMO, the minimum value of \(\rho \) is given by \(\rho(T \rightarrow \infty) \). Therefore, the physical significance of parameter \(\rho(T_a) \) is the electrical resistivity of manganite materials at high temperatures. The maximum value for \(\rho \) is given in the following equation

\[
\rho_{\text{max}} = \rho \bigg|_{T \rightarrow \infty} + \frac{A}{w \sqrt{\pi/2}}
\]

So, eqn (12) will be rewrite as:

\[
\rho(T) = \rho_{\text{min}} + \frac{A}{w \sqrt{\pi/2}} \exp\left(-2(T - T_d)^2/w^2\right) \quad (14)
\]

Then, the experimental data, have been simulated using eqn (14) which, are shown in the inset of Fig. 8 for \(x = 0 \) for example and the results are presented in table in ESL\(^†\).

To verify the accuracy of this simulation, the correlation coefficient \((R^2) \) of the simulated with experimental data is given in table in ESL\(^†\). The correlation coefficient, which was close to 1, showed a satisfactory agreement between experimental and the modeled data. The comparison between the peaks of the experimental data and the best-fitted value of \(T_{\text{d}} \), calculated from Gauss function, demonstrated that parameter \(T_{\text{d}} \) corresponds to the metal–semiconducting transition temperature, \(T_{\text{M-Sc}} \).

Therefore, \(T_{\text{M-Sc}} \) can be confirmed more precisely by the appropriate Gauss function simulation for other magnetic fields.

Fig. 9 shows the dependency of \(\rho_{\text{max}} \) on the applied magnetic field for \(x = 0 \) for example. The best fitted results demonstrate that the logistic equation could properly give a quantitative relationship between \(\rho_{\text{max}} \) and \((\mu_0 H) \) using the non-linear curve fitting, and the logistic relation is defined as

\[
\rho_{\text{max}}(\mu_0 H) = A + \frac{B - A}{1 + \left(\frac{\mu_0 H}{C}\right)^P}
\]

where \(A, B, C \) and \(P \) are constant and will be determined from the fitting of the experimental data (Table 4).

This logistic function successfully describes the experimental behavior of the maximum electrical resistivity of all samples. According to this model, it can be observed that the maximum resistivity decreases with an increasing magnetic field. This phenomenon implies that the density of charge carriers increases with the increasing of the applied magnetic field. Therefore, it is important to use this model for predicting
the maximum electrical resistivity, before applying the magnetic field.

From Fig. 8, it has been seen that when μ_0H increases, T_{M-Sc} of all samples shifts toward higher temperatures, which can confirm that T_{M-Sc} is related to the applied magnetic field.

$$T_{M-Sc}(\mu_0H) = S \times (\mu_0H) + I$$ \hspace{1cm} (16)$$

The obtained constants are illustrated in Table 4.

Impressively, it seems that the theoretical results for T_{M-Sc} derived by eqn (16) were proportional to the experimental results. Therefore, it can be concluded that μ_0H is correlative with T_{M-Sc}. Also, it is feasible that eqn (16) is used to investigate the potential shifts of T_{M-Sc} by applying magnetic field. The shifts of the T_{M-Sc} to the high-temperature range with the application of the magnetic field may occur because of the
transition from paramagnetic to ferromagnetic phase at temperature arising in the ZFC process and showing a sharp by the presence of the spin glass state in all samples in low

\[T_{M-Sc} \]

value of (\(T_{M-Sc} \)) for La0.7Bi0.05Sr0.15Ca0.1MnO3 compound.

Table 4 The obtained constants determined fitting the experimental data using eqn (15) and (16)

A	B	C	P	S	I
x = 0	0.101	1.489	1.912	1.857	291.524
x = 0.1	0.161	1.230	2.241	2.086	278.285
x = 0.15	0.121	1.578	1.594	1.771	263.904
x = 0.2	0.202	1.112	1.878	1.771	257.904
x = 0.3	0.196	1.134	1.845	3.210	247.333

reduction in the charge carriers delocalization caused by applied magnetic field, which could result in reducing the resistivity. This field also uniformly caused a local spin ordering and due to this ordering, the ferromagnetic metallic state could overcome the semiconducting regime. Consequently, the conduction electrons (e1g) are completely polarized within the magnetic domains and could easily be transferred between the pairs of Mn3+(t3g2e2g; S = 2) and Mn4+(t3g2e2g; S = 3/2) via oxygen. So, \(T_{M-Sc} \) shift to higher temperatures.

4. Conclusion

In conclusion, we have mainly studied the magnetic and magnetocaloric properties of La0.7Bi0.05Sr0.15Ca0.1Mn1-xIn0.3O3 with x = 0–0.3. The magnetization vs. temperature curve is explained by the presence of the spin glass state in all samples in low temperature arising in the ZFC process and showing a sharp transition from paramagnetic to ferromagnetic phase at \(T_{C} \). According to the Arrott plots, we have found that all our samples have a second order magnetic phase transition. The (MCE) can be determined by direct and indirect methods. First, based on the magnetic measurement at applied field of \(H = 5 \) T, La0.7Bi0.05Sr0.15Ca0.1Mn1-xIn0.3O3 samples exhibit a maximum value of (\(\Delta S_{m} \)) which decreases from 6.14 J kg\(^{-1}\) K\(^{-1}\) for x = 0 to 3.06 J kg\(^{-1}\) K\(^{-1}\) for x = 0.3 with increasing In content and thus the RCP values also decrease. The large MCE, found in these samples, suggests that its can be considered as a promising potential candidate for magnetic refrigeration application. Second, from the temperature dependence of resistivity, we have succeeded to evaluate the (\(\Delta S_{m} \)). On the other hand, the resistivity was fitted using the mathematical model (Gauss function). The perfect agreement between the theoretical and the experimental values of \(T_{M-Sc} \) and \(\rho_{max} \) is obtained.

References

1. R. N. Mahato, K. Sethupathi, V. Sankaranarayanan and R. Nirmala, J. Appl. Phys., 2010, 107, 09A943.
2. H. Choi, E. Y. Kim and C. M. Whang, Electron. Mater. Lett., 2011, 7, 231.
3. M. S. Anwar, S. Kumar, F. Ahmed, S. N. Heo, G. W. Kim and B. H. Koo, J. Electroceram., 2013, 30, 46.
4. R. P. Pawar, R. N. Jadhav and V. Puri, Electron. Mater. Lett., 2012, 8, 321.
5. M. S. Anwar, S. Kumar, F. Ahmed, N. Arshi and B. H. Koo, Mater. Res. Bull., 2012, 47, 2977.
6. H. E. Kim, K. H. Choi, M. W. Park and J. S. Lee, Electron. Mater. Lett., 2011, 7, 319.
7. C. Zener, Phys. Rev., 1951, 82, 403.
8. S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh and C. H. Chen, Science, 1994, 264, 413.
9. R. V. Holmolt, J. Wocker, B. Holzapfel, S. Schultz and K. Samwer, Phys. Rev. Lett., 1993, 71, 2331.
10. A. P. Ramirez, J. Phys.: Condens. Matter, 1997, 9, 8171.
11. Y. Tokura, Rep. Prog. Phys., 2006, 69, 797.
12. A. Dinesen and T. Tejada, J. Phys.: Condens. Matter, 2005, 17, 6257–6269.
13. D. N. H. Nam, N. V. Dai, L. V. Hong, N. X. Phuc, S. C. Yu, M. Tachibana and E. Takayama-Muromachi, J. Appl. Phys., 2008, 103, 043905.
14. N. Chau, P. Q. Niem, H. N. Nhat, H. N. Luong and N. D. Tho, Phys. B, 2003, 327, 214.
15. M. Phan, S. Tian, D. Hoang, S. Yu, C. Nguyen and A. Ulyanov, J. Magn. Magn. Mater., 2003, 258, 309–311.
16. M.-H. Phan and S.-C. Yu, J. Magn. Magn. Mater., 2007, 308, 325–340.
17. M.-H. Phan, N. D. Tho, N. Chau, S.-C. Yu and M. Kurijsu, J. Appl. Phys., 2005, 97, 103901.
18. A. P. Ramirez, J. Phys.: Condens. Matter, 1997, 9, 8171.
19. D. Louca, T. Egami, E. L. Brosha, H. Röder and A. R. Bishop, Phys. Rev. B: Condens. Matter Mater. Phys., 1997, 56, R8475(R).
20. C. M. Xiong, J. R. Sun, Y. F. Chen, B. G. Shen, J. Du and Y. X. Li, IEEE Trans. Magn., 2005, 41, 122–124.
21. N. Zaidi, S. Mnefgui, J. Dhahri and E. K. Hlil, J. Magn. Magn. Mater., 2016, 42, 17687–17692.
22. A. Zaidi, T. Alharbi, J. Dhahri, S. Alzobaidi, M. A. Zaidi and E. K. Hlil, Appl. Phys. A, 2017, 123, 94.
23. V. Punith Kumar, R. L. Hadimani, D. Paladhi, T. K. Nath, D. C. Jiles and V. Dayal, Mater. Sci. Eng., B, 2016, 209, 75–86.
24. M. Pechini, US Pat. no. 3330697, 1967.
25. H. M. Rietveld, J. Appl. Crystallogr., 1969, 2, 65.
26. T. Roisnel and J. Rodriguez-Carvajal, Computer Program FULLPROF, LLB-LCSIM, May, 2003.

27. R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diff. Theor. Gen. Crystallogr., 1976, 32, 751–767.

28. V. M. Goldschmidt, Geochemistry, Oxford University Press, Oxford, 1958, p. 730.

29. N. Moutis, I. Panagiotopoulos, M. Pissas and D. Niarchos, Phys. Rev. B: Condens. Matter Mater. Phys., 1999, 59, 1129.

30. V. Markovich, I. Fita, R. Puzniak, A. Wisniewski, K. Suzuki, J. W. Cochrane, Y. Yuzhelevskii, Y. M. Mukovskii and G. Gorodetsky, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, 71, 224409.

31. J. Kuo and G. Sheng-Kai, Chin. Phys. B, 2009, 18, 3035.

32. A. K. Pramanik and A. Banerjee, Phys. Rev. B: Condens. Matter Mater. Phys., 2009, 79, 214426.

33. J. Mira, J. Rivsa, F. Rivadulla, C. V. Vazquez and C. V. Vazquez and M. A. L. Quintela, Phys. Rev. B: Condens. Matter Mater. Phys., 1999, 60, 4189.

34. D. N. H. Nam, K. Jonason, P. Nordblad, N. V. Khiem and N. X. Phuc, Phys. Rev. B: Condens. Matter Mater. Phys., 2000, 62, 1027.

35. M. Itoh, T. Natori, S. Kubota and K. Motoya, J. Phys. Soc. Jpn., 1994, 63, 1486.

36. B. Padmanabhan, S. Elizabeth, H. L. Bhat, S. RoBler, K. Dorr and K. H. Muller, J. Magn. Magn. Mater., 2006, 307, 288–294.

37. F. E. Luborsky, Ferromagnetic Materials, Elsevier, Amsterdam, 1979.

38. C. Kittel, Quantum Theory Solids, Wiley, New York, 1993.

39. V. N. Smolyaninova, J. J. Hamilton, R. L. Greene, Y. M. Mukovskii, S. G. Karabashev and A. M. Balbashov, Phys. Rev. B: Condens. Matter Mater. Phys., 1997, 55, 5640.

40. P. Dai, A. Fernandez-Baca, E. W. Plummer, Y. Tomioka and Y. Tokura, Phys. Rev. B: Condens. Matter Mater. Phys., 2001, 64, 224429–224434.

41. B. Padmanabhan, S. Elizabeth, H. L. Bhat, S. Rossler, K. Dorr and K. H. Muller, J. Magn. Magn. Mater., 2006, 307, 288–294.

42. A. Tozri, E. Dhahri and E. K. Hill, J. Magn. Magn. Mater., 2010, 322, 2516–2524.

43. B. K. Banerjee, et al., Phys. Lett., 1964, 12, 16–17.

44. V. K. Pecharsky and K. A. Gschneidner Jr, J. Magn. Magn. Mater., 1997, 167, L179.

45. K. A. Gschneidner Jr, V. K. Pecharsky and A. O. Tsokol, Rep. Prog. Phys., 2005, 68, 1479.

46. A. Dhahri, M. Jemmal, E. Dhahri and M. A. Valente, J. Alloys Compd., 2015, 638, 221–227.

47. S. E. Kossi, S. Ghodhibane, S. Mnefgui, J. Dhahri and E. K. Hill, J. Magn. Magn. Mater., 2015, 395, 134–142.

48. M. A. Gdaiem, A. Dhahri, J. Dhahri and E. K. Hill, Mater. Res. Bull., 2017, 88, 91–97.

49. J. O'Donnell, M. Onellion, M. S. Rzchowski, J. N. Eckstein and I. Bozovic, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, 54, 6841.

50. B. Chen, C. Uher, D. T. Orelli, J. V. Mantese, A. M. Mance and A. L. Micheli, Phys. Rev. B: Condens. Matter Mater. Phys., 1995, 53, 5094.

51. C. M. Xiong, J. R. Sun, Y. F. Chen, B. G. Shen, J. Du and Y. X. Li, IEEE Trans. Magn., 2005, 41, 122.

52. B. Chen, C. Uher, D. T. Orelli, J. V. Mantese, A. M. Mance and A. L. Micheli, Phys. Rev. B: Condens. Matter Mater. Phys., 1995, 53, 5094.

53. L. Changshi, J. Chem. Eng. Data, 2011, 56, 2.