Recomendations for stereotactic body radiation therapy for spine and non-spine bone metastases. A GETUG (French society of urological radiation oncologists) consensus using a national two-round modified Delphi survey

F. Vilotte¹, D. Pasquier², P. Blanchard³, S. Supiot⁴, J. Khalifa⁵, U. Schick⁶, T. Lacornerie⁷, L. Vieillevigne⁸, D. Marre¹, O. Chapet¹, I. Latorzefk, N. Magne¹, E. Meyer₇, M. Cao₇, Y. Belkacemi⁰, J.E. Biault⁹, M. Berge-Lefranc⁴, J.C. Faivre⁶, K. Gneq, V. Guimas, A. Hasbini, J. Langrand-Escure, C. Hennquin, P. Graff.

¹ Department of Radiation Oncology, Institut Bergonie, 229 Cours de l’Argonne, 33076 Bordeaux, France
² Department of Radiation Oncology, Centre Oscar Lambret, 3 Rue Frédéric Combesvale, 95000 Lille, France
³ Department of Radiation Oncology, Institut Gustave Roussy, 114 Rue Edouard Vaillant, 94805 Villejuif, France
⁴ Department of Radiation Oncology, Université de L’Ouest, Boulevard Professor Jacques Monod, 44800 Saint Herblain, France
⁵ Department of Radiation Oncology, Université de Toulouse Oncopole, 1 AV Irène Joliot Curie, 31059 Toulouse, France
⁶ Department of Radiation Oncology, CHU de Brest, Hospital Morvan, avenue Foch, 29200 Brest, France
⁷ Department of Radiation Oncology, Groupe ORC Caron, Clinique Pasteur, Bât Aérium, 1 rue de la petite vitesse, 31300 Toulouse, France
⁸ Department of Radiation Oncology, CH Lyon Sud 165 Chemin Du Grand Revoyet, 69310 Pierre-bénite, France
⁹ Department of Radiation Oncology, Groupe ORC Caron, Clinique Pasteur, Bât Aérium, 1 rue de la petite vitesse, 31300 Toulouse, France

* Corresponding author.
E-mail addresses: pierre.graff@curie.fr (P. Graff).

https://doi.org/10.1016/j.ctro.2022.08.006
Received 26 July 2022; Accepted 6 August 2022
Available online 8 August 2022

BACKGROUND AND PURPOSE: The relevance of metastasis-directed stereotactic body radiation therapy (SBRT) remains to be demonstrated through phase III trials. Multiple SBRT procedures have been published potentially resulting in a disparity of practices. Therefore, the French society of urological radiation oncologists (GETUG) recognized the need for joint expert consensus guidelines for metastasis-directed SBRT in order to standardize practice in trials carried out by the group.

MATERIALS AND METHODS: After a comprehensive literature review, 97 recommendation statements were created regarding planning and delivery of spine bone (SBM) and non-spine bone metastases (NSBM) SBRT. These statements were then submitted to a national online two-round modified Delphi survey among main GETUG investigators. Consensus was achieved if a statement received ≥ 75 % agreements, a trend to consensus being defined as 65–74 % agreements. Any statement without consensus at round one was re-submitted in round two.
Introduction

The prevalent use of functional imaging for disease assessment and the improvement of life expectancy driven by recent therapeutic advances make urological cancer patients more likely to be in an oligometastatic state at the time of diagnosis (synchronous) or recurrence (metachronous).[1,2] The relevance of metastasis-directed stereotactic body radiation therapy (SBRT) has been prospectively assessed in phase II randomized studies.[3-5] Aside from excellent local control with limited toxicity, the level of evidence for oncological benefits remains low.[6,7]

SBRT is often proposed to target oligometastases in the field of castration-sensitive prostate cancer or to treat metastases from renal cell carcinoma in order to postpone initiation or change of systemic therapies.[3,4,8] By inducing presentation of cancer antigens to the immune system, SBRT is also believed to stimulate a tumor-targeted immune response (bystander and abscopal effects) and to improve the therapeutic efficiency of immunotherapies (STAR effect).[9-11] In addition, a new era of therapeutic indications proposes the use of SBRT for pain relief for multimeetastatic patients, as opposed to standard palliative irradiation.[12] Nevertheless, inclusion of patients in large phase III trials is still warranted to better understand the true benefits of metastasis-directed SBRT.

A large number of SBRT procedures has been published with significant differences in terms of delineation, dose prescription, fractionation and dose objectives, potentially resulting in a disparity of practices.[13] As approximately-one-third of cancer patients will develop bone metastases, of which 70 % will experience spinal metastases[14], the French society of urological radiation oncologists (GETUG) recognized the need for joint expert consensus guidelines for metastasis-directed SBRT in order to guarantee a consistent practice in ongoing and further clinical trials carried out by the group.

Using a modified Delphi approach,[15] a representative panel of GETUG experts was interviewed to assess the level of consensus regarding recommendations for all aspects of SBRT in spine bone metastases (SBM) and non-spine bone metastases (NSBM).

Materials and methods

Building of a first proposal of statements by a GETUG task force

A GETUG task force of six radiation oncologists and four medical physicists specialized in the treatment of urological malignancies and SBRT was created. Three members of the task force (FV, PG, DP) conducted a PubMed search for relevant English-language articles, published within the last 10 years and providing practical recommendations for treatment planning and delivery of bone metastasis-directed SBRT. Other members of the task force were asked to add to the list of publications as they deemed necessary. Following article selection, the task force conducted a literature review session to decide the main steps for planning bone metastasis-directed SBRT. Conclusions were summarized in a written document and a list of 97 recommendation statements was edited to be submitted to GETUG investigators through a two-round modified Delphi survey. These statements were structured around seven main topics: patient selection, treatment preparation (patient immobilization and imaging modalities), target volume delineation, dose and fractionation, modality of prescription and dose objectives, organs at risk, image guided radiation therapy (IGRT).

Results: Twenty-one out of 29 (72.4 %) surveyed experts responded to both rounds. Seventy-five statements achieved consensus at round one leaving 22 statements needing a revote of which 16 achieved consensus and 5 a trend to consensus. The final rate of consensus was 91/97 (93.8%). Statements with no consensus concerned patient selection (3/19), dose and fractionation (1/11), prescription and dose objectives (1/9) and organs at risk delineation (1/15). The voting resulted in the writing of step-by-step consensus guidelines.

Conclusion: Consensus guidelines for SBM and NSBM SBRT were agreed upon using a validated modified Delphi approach. These guidelines will be used as per-protocol recommendations in ongoing and further GETUG clinical trials.

Respondents

The main active investigators of GETUG clinical trials were contacted by e-mail to answer the survey. If the participants felt it appropriate, they could forward the survey to the member of their department with a higher expertise in SBRT. Respondents were encouraged to answer the survey in collaboration with a physicist. Physicians who accepted to respond to the first round were invited to the second round and were offered authorship.

Two-round modified Delphi survey

To assess the consensus level for each of the 97 statements, an online questionnaire was generated using the Google Form platform (Google, Alphabete Inc, Mountain View, USA) and was used to conduct a two-round survey through a modified Delphi approach.[15] Prior to the first round, the document summarizing the task force literature review was sent to all respondents.

In round one, respondents were asked to rate their degree of agreement for each statement using a 7-point Likert scale. Answers were grouped as follow: disagreement including answers “strongly disagree” and “disagree” (votes 1-2), neutral (votes 3-5), agreement including answers “agree” and “strongly agree” (votes 6-7). Participants were encouraged to explain their disagreement in a free text box. Statements with 75 % agreement (votes 6-7) were considered to have met consensus and those statements were not redistributed for ranking in a second round.[15]

In round two, the results from the first round were shared. Respondents were then asked to reevaluate each statement that had not achieved consensus in round one. At this point, to ensure a consistent interpretation of the statements, any statement that had been identified as unclear was slightly reworked and accompanied by an explanation. For a limited number of statements, the Likert scale was replaced by close-ended response options.

At the end of round two, statements with < 75 % agreement were considered to have failed to achieve consensus. Nevertheless, statements with 65-74 % agreement were considered to have achieved a trend to consensus.

Results

Twenty-nine radiation oncologists were asked to participate. Twenty-one (72.4 %) completed the first round survey. The same 21 also completed the second round. The invitation to round one was sent April 5th, 2021 and votes for round two closed October 10th, 2021.

Of the 97 recommendation statements submitted to vote, 75 achieved consensus at round one. The 22 remaining statements were submitted to revote and 16 of them achieved consensus at round two making a total rate of consensus of 94 % (91/97). Among the 6 remaining statements that failed to achieve consensus, 5 achieved a trend to consensus (statements 12, 19, 53, 71, 79) and 1 lacked any sort
of consensus (statement 7).

Content of each statement and the corresponding voting from the two-round survey are presented in Table 1. Statements that achieved consensus are in bold. Organs at risk dose constraints put to vote are presented in Table 2. The voting resulted in creation of step-by-step consensus guidelines for SBM and NSBM SBRT that can be found in Supplementary Material 1.

Discussion

We used a two-round survey through a modified Delphi approach to develop consensus guidelines regarding SBRT for treatment of SBM and NSBM [15]. A high rate of consensus allowed for the creation of a comprehensive list of recommendations from patient selection to treatment planning and delivery. These guidelines will be used as per-protocol recommendations to ensure a consistent approach for investigators’ practice in ongoing and further GETUG trials, the final objectives being to encourage adoption of trials protocols, improve inclusion rates and limit major deviations.

Interestingly, among the six statements that did not achieve consensus, half were related to patient selection. Agreement was notable for defining the oligometastatic state as a maximum of five metastases - eventhough 24% of experts would lower the limit to three - and for offering metastasis-directed ablative therapies to metachronous oligometastatic patients. On the contrary, a majority of experts considered that current knowledge does not allow for routinely offering that option to synchronous oligometastatic patients. These results underscore variations in the interpretation of the oligometastatic status that can be perceived through different perspectives. First, a biological perspective that makes the oligometastatic status an intermediate position between a localized and fully disseminated disease, hopefully still accessible to cure if treated early and aggressively to avoid wider spread.[16] Second, a pragmatic clinical perspective that seeks less ambitious but still major improvements in patient outcomes including time to disease progression, time before initiation or change of systemic treatments, avoidance of adverse symptoms related to local progression and improvement in quality of life.[3,4]. Third, a rigorist approach based on the benefit-risk equation that promotes decision founded only on a high-level of scientific evidence.

Actually, the relevance of metastasis-directed ablative therapies remains to be demonstrated. SBRT has been mainly reported through retrospective series, as well as a limited number of small phase II randomized studies.[3–5] Aside from excellent local control and good tolerance, it appears that overall survival could be improved and the need for starting a new systemic treatment postponed.[6,7] Nevertheless, inclusion of patients in large phase III trials is still highly warranted. Moreover, the oligometastatic state encompasses a vast variety of clinical situations. The “de novo” oligometastatic disease can be synchronous or metachronous depending if it is diagnosed at the time or long after the primary cancer diagnosis. The “repeat” oligometastatic disease happens after prior history of oligometastatic disease. The “induced” oligometastatic disease is a polymetastatic disease that was once controlled for a varying length of time under systemic therapies and finally progresses in a limited number of sites.[1,2] All these situations should be separately assessed in clinical trials.

Experts reached consensus on the need for a 3 mm minimum GTV-to-spinal cord distance to allow adequate dose fall off. If this distance is too short, agreement for proposing an inaugural mini-invasive spinal cord separation surgery before SBRT achieved a trend to consensus making it a validated option.[17] Obviously, access to such a highly specialised approach is limited due to its techivity and should be considered with caution in the view of the benefit-risk balance when treating asymptomatic metastatic patients.

Delivering SBRT after stabilisation surgery or kyphoplasty appeared consensual for SBM. Responses were indeed more disparate regarding the acceptance of delivering SBRT to NSBM after osteosynthesis. This is explained by the lack of evidence for the safety of that approach with concern regarding potential cancer cells spread in the medullary space of a tubular bone.

Statements for treatment preparation were consensual especially for the need to provide setup intrafraction accuracy ≤ 1 mm/° for SBM and ≤ 3 mm/° for NSBM. Thus, a customized immobilization device is mandatory except if an image-guided tracking robotic system that provides minimal residual intra-fraction error is used. Of note, after round two, experts agreed on the use of a diagnostic MRI (as opposed to a dedicated MRI acquired in the treatment position) for treatment planning as long as it is <3-week-old. This is a practical approach reflecting the fact that most departments still don’t have dedicated access to MRI. In rare cases, when the patient has a contraindication to MRI and on the condition that the spine metastasis does not reach the edges of the spinal canal, it seems acceptable to use the spinal canal as a surrogate for planning organ at risk volume (PRV) of the spinal cord or the cauda equina.

Experts agreed on relying on edited consensus contouring guidelines regarding target volume delineation for SBM SBRT.[18–20] Notably, the irradiation should not be restricted to the macroscopic disease but should include full vertebra segments to account for microscopic spread. Such recommendations were so far only based on experts opinions but were recently reinforced by the report by Chen et al. of an improvement in local control.[21] As a counterpart for NSBM, GETUG experts proposed to apply a 3–5 mm margin around the gross target volume (GTV) while keeping that extension outside the cortical bone (unless the tumor extends into surrounding soft tissues). This proposal is in accordance with recently published recommendations by Nguyen et al.[22]

Regarding SBM SBRT, a highly anticipated challenge arises due to the close vicinity of the clinical target volume (CTV) and some organs at risk (OARs) such as the spinal cord and the oesophagus for instance. This is even more challenging when margins are applied to create the corresponding PTV and PRVs that can then overlap. Drawing on SABR UK guidelines[23], the GETUG experts agreed on the generation of an intermediate target volume called “restricted PTV” (labelled PTV!) defined as the PTV minus the spinal canal and any area of PTV/PRVs overlap. The final treatment planning approval will then rely on the adequate coverage of PTV! by the prescription isodose. This coerces the planning system to lower dose distribution in specific areas of PTV! consented limited areas of local underdosage - with sharp dose gradient to adequately avoid major OARs. Nevertheless, in respect with ICRU guidelines, the final dose reporting will provide an information on the dose actually delivered to PTV.

A broad spectrum of dose fractionation schedules have been published[13] GETUG experts agreed on the following in order of priority: 30 Gy in 3 fractions of 10 Gy, 27 Gy in 3 fractions of 9 Gy, 35 Gy in 5 fractions of 7 Gy and 30 Gy in 5 fractions of 6 Gy for both NSBM and SBM including after prior surgery. A single dose of 24 Gy reached a trend to consensus for treating SBM from primary renal cell carcinoma with respect to its radiodistant status and the richness of its neovascularization. Ultrahigh-dose single-fraction irradiation has been shown to cause the translocation of acid sphingomyelinase (ASMase) from intracellular compartments to the plasma membrane where it hydrolyses sphingomyelin, generating ceramide, a proapoptotic messenger. As ASMase is abundant in endothelial cells, the tumor neovascularization is particularly responsive to ultrahigh-dose single-fraction.[24–26]

Recently, a phase III trial established a better local control after metastasis-directed SBRT (mainly bone metastases) using a single fraction of 24 Gy versus 27 Gy in 3 fractions, resulting in less distant metastatic progressions with no increase in toxicity.[27] Although exciting, these results should not yet be broadly applied as they were achieved in a highly selected population treated in a center of excellence with limited follow-up and as ultrahigh-dose single-fraction SBRT might cause serious long-term side effects.[28]

In order to allow for the generation of a sharp dose gradient, GETUG
Table 1
Results of the two-round survey (statements that achieved consensus are bolded).

Statements	n	Round	Agree	Neutral	Disagree	Consensus
1. To offer SBRT to an oligometastatic patient, his life expectancy must be ≥ 6 months	21	1	80.9%	19.1%	0%	Yes
2. To offer SBRT to an oligometastatic patient, his WHO performance status must be ≤ 2	21	1	85.7%	14.3%	0%	Yes
3. For PET-avid primary tumors (prostate adenocarcinoma, urothelial carcinoma), the oligometastatic state must be attested by PET-CT and not only using conventional imaging (CT-scan, bone scan)	21	1	85.7%	14.3%	0%	Yes
4. The oligometastatic state is defined by a maximum of 5 metastases total	21	1	76.2%	0%	23.8%	Yes
5. The oligometastatic state is defined by a maximum of 3 metastases total	21	1	23.8%	0%	76.2%	No
6. Published data support the use of SBRT for treatment of oligometastatic oligometastases	21	1	71.4%	23.8%	4.8%	No
7. Published data support the use of SBRT for treatment of synchronous oligometastases	21	1	38.1%	23.8%	38.1%	No
8. Published data support the use of SBRT for pain relief for multimeastatic patients in the field of palliative care	21	1	38.1%	38.1%	23.8%	No
9. For SBM, GTV must be ≤ 5 cm	21	1	85.7%	9.5%	4.8%	Yes
10. For SBM, a Mirels score ≥ 9 requires orthopedic advise for bone stabilization surgery	21	1	69.0%	31.0%	0%	No
11. For SBM, the GTV-to-spinal-cord distance must be ≥ 3 mm in order to allow adequate dose fall off	21	1	66.7%	33.3%	0%	No
12. If the GTV-to-spinal cord distance is not sufficient, a spinal cord separation surgery (i.e. the epidural part of the tumor is resected without significant vertebral body resection) can be proposed before SBM SBRT	21	1	95.2%	0%	4.8%	Yes
13. The Spinal Instability Neoplastic Score (SINS) scoring system must be evaluated to use vertebral mechanical instability before SBM SBRT.	21	1	90.5%	9.5%	0%	Yes
14. A SINS score > 7 requires a neurosurgical advice to discuss pre-SBRT vertebral stabilization	21	1	85.7%	14.3%	0%	Yes
15. SBM SBRT after kyphoplasty or vertebral osteosynthesis is safe	21	1	66.7%	33.3%	0%	No
16. For NSBM, the Mirels scoring system should be used to assess the risk of post-SBRT fracture	21	1	90.5%	9.5%	0%	Yes
17. For NSBM, a Mirels score ≥ 9 requires orthopedic advise for bone stabilization surgery	21	1	76.2%	23.8%	4.8%	No
18. For NSBM, ≥ 30 % circumferential cortical infiltration requires orthopedic advise for bone stabilization surgery	21	1	90%	9%	0%	Yes
19. Treatment preparation (immobilization and imaging modalities)	21	1	58.5%	41.5%	0%	Yes
20. A customized immobilization device is mandatory (except if an image-guided tracking robotic system that provides minimal residual intra-fraction error is used)	21	1	95.5%	0%	4.8%	Yes
21. The treatment planning will be performed on a planning CT-scan (≤2mm slice thickness) without contrast	21	1	85.6%	9.5%	4.8%	Yes
22. For SBM, accuracy of ≤ 1 mm translational and ≤ 1° rotational setup errors must be ensured	21	1	95.2%	4.8%	0%	Yes
23. For SBM, the planning CT-scan should cover at least 2 vertebrae above and below PTV	21	1	95.5%	4.8%	0%	Yes
24. For SBM, the imaging modalities used for the treatment planning must include a spine MRI (≤3mm slice thickness) with contrast	21	1	90.5%	9.5%	0%	Yes
25. For SBM, the MRI should at least include axial T2-weighted (for spinal cord identification) and gadolinium-enhanced T1-weighted (for GTV localization) sequences	21	1	76.2%	23.8%	0%	Yes
26. For SBM, an automatic planning-CT/MRI rigid registration (focused on the region of interest) must be performed followed by a careful medical validation before starting volumes delineation	21	1	85.6%	9.5%	4.8%	Yes
27. For SBM, it is highly recommended but not mandatory for the spine MRI to be acquired in the treatment position using the patient's customized immobilization device	21	1	61.9%	33.3%	4.8%	Yes
28. For SBM, as an option, a diagnostic spine MRI (i.e. not acquired with the patient's customized immobilization device) can be used but must be ≤3-week-old	21	2	80.9%	14.3%	4.8%	Yes
29. For NSBM, accuracy of ≤ 3 mm translational and ≤ 2° rotational setup errors must be ensured	21	1	90.4%	9.6%	0%	Yes
30. For NSBM, the planning CT-scan should cover at least 10 cm above and below PTV and include the metastatic bone in its entirety	21	1	85.7%	14.3%	0%	Yes
31. For mobile targets (eg, ribs), a 4D-planning CT-scan must be performed	21	1	90.5%	9.5%	0%	Yes
32. For NSBM, a bone MRI and/or a PET-CT can be registered (optional) to the planning-CT to help for the delineation of GTV	21	1	90.5%	9.5%	0%	Yes
33. For NSBM, if a planning-CT/MRI registration is performed, a diagnostic MRI (i.e. not acquired with the patient's customized immobilization device) can be used if≤3-week-old Target volume delineation	21	1	90.5%	9.5%	0%	Yes
34. For SBM, GTV = macroscopic disease as assessed on planning (CT) and diagnostic (MRI+/− PET) imaging	21	1	100%	0%	0%	Yes
35. For SBM, GTV must include epidural and paraspinal tumor expansion	21	1	90.4%	9.6%	0%	Yes
36. For SBM, after debulking surgery: GTV = residual macroscopic disease only	21	1	80.9%	9.6%	9%	Yes
37. For SBM, GTV = GTV + anatomic sections of the vertebra at risk for microscopic spread	21	1	95.2%	4.8%	0%	Yes
38. For SBM, CTV delineation should follow guidelines for vertebral [Cox et al. IJROBP 2012;83(5):e597-605] and sacral [Dunne et al. Radiother Oncol. 2020;145(21):21-91] metastases	21	1	95.2%	4.8%	0%	Yes
39. For SBM, CTV with a “donut” shape should be avoided	21	1	68.4%	31.6%	0%	No
40. For SBM, after debulking surgery: CTV = residual GTV + preoperative bony and epidural extent of the disease + adjacent sections of the vertebra at risk for microscopic spread [Redmond et al. IJROBP 2017;97(1):64-74].	21	1	95.2%	4.8%	0%	Yes
41. For SBM, after debulking surgery, a preoperative-MRI/postoperative-planning-CT registration is highly recommended to help for the delineation of CTV.

42. For SBM, PTV = CTV + 1–2 mm (institution-dependant)

43. For SBM, PTV will be partially amputated to create a volume called “restricted PTV” (labelled PTV1) in order to coerce the inverse planning system into decreasing the dose distribution in areas of close vicinity between PTV and major OARs (e.g. PTV = PTV minus the spinal canal and any area of PTV/PRVs overlap)

44. For SBM, the final treatment planning approval (dose objectives achievement) must rely on the adequate coverage of PTV! – following SABR UK guidelines

45. For SBM, PTV (and not PTV) must be used for dose reporting – following ICRU guidelines

46. For NSBM, GTV = macroscopic disease as assessed on planning (CT) and diagnostic (MRI/+/ PET) imaging

47. For NSBM, GTV must include extra- and intra-ovarian tumors expansion

48. For mobile targets: ITV = sum of each GTV from the different phases of a 4D planning CT

49. For NSBM, CTV = GTV (or ITV) + 3–5 mm

50. For NSBM, CTV must be manually adjusted to be kept inside the cortical bone (unless the tumor

expanses in surrounding soft tissues)

51. For NSBM, PTV = CTV + 3–5 mm (institution-dependant)

52. For SBM, multiple fractions should be favored over ultrahigh-dose single-fraction

53. For NSBM, CTV and PTV should be regulated based on the prescription scheme

54. For SBM from primaries other than renal cell carcinoma, multiple fractions should be favored

55. For SBM, 30 Gy in 3 fractions (10 Gy/fraction) is a valid prescription scheme

56. For SBM, 27 Gy in 3 fractions (9 Gy/fraction) is a valid prescription scheme

57. For SBM, 35 Gy in 5 fractions (7 Gy/fraction) is a valid prescription scheme

58. For SBM, 30 Gy in 5 fractions (6 Gy/fraction) is a valid prescription scheme

59. For SBM, after debulking surgery the same prescription schemes as the ones mentioned above should be used

60. For NSBM, multiple fractions should be favored over ultrahigh-dose single-fraction

61. For NSBM, the same prescription schemes as the ones used for SBM can be used

62. For NSBM, it is possible (option) to deliver the treatment every day instead of every other day as long as a gap of 24 h between two fractions is provided.

63. The “prescription dose” is defined as the dose deemed to enclose an optimal percentage of the volume of PTV (ideally 95% of PTV)

64. The treatment planning should promote a significant dose heterogeneity within PTV with an increase in dose beyond 107% of the prescription dose

65. The maximum dose can reach up to:

- 107% of the prescription dose
- 130% of the prescription dose
- 140% of the prescription dose
- 150% of the prescription dose
- 160% of the prescription dose

66. As an option, a simultaneous integrated boost technique can be used to confine the maximal dose inside GTV

67. For SBM, main dose objective for PTV is as follow: ≥95% PTV should receive ≥100% of the prescription dose

68. For SBM, if required for the respect of OARs dose constraints, PTV dose objective can be lowered to ≥90% PTV should receive ≥100% of the prescription dose, provided that ≥98% GTV receives ≥21 Gy in 3 fractions or ≥23 Gy in 5 fractions [Bishop et al. IJROBP 2015;92(5):1016–26.]

69. For SBM from primary renal cell carcinoma (radioreistant), it is mandated that ≥98% GTV receives ≥18 Gy in 1 fraction, 24 Gy in 3 fractions or 30 Gy in 5 fractions [Wang et al. IJROBP 2017:98 (1):91–100]

70. For NSBM, main dose objective for PTV is as follow: ≥95% PTV should receive ≥100% of the prescription dose

71. For NSBM, PTV dose objective should not be lowered (motive: GTV to PTV distance is narrow)

72. Neurological OARs (brainstem, spinal cord, cauna equida, plexus) are delineated using the axial T2-weighted MRI sequence

73. For neurological OARs (brainstem, spinal cord, cauna equida, plexus), dose constraints will be applied to a PRV

74. The same margin as the one used from CTV to PTV is applied around neurological OARs (brainstem, spinal cord, cauna equida, plexus) to create their corresponding PRV

75. The thecal sac as assessed on MRI can be used as a surrogate for spinal cord PRV or cauda equina PRV

76. In rare cases, when the patient has MRI contraindication and on the condition GTV does not reach the edges of the spinal canal, it is acceptable to use the spinal canal as a surrogate for spinal cord or cauna equida PRV

(continued on next page)
accordance with Bishop et al. recommendations, GETUG experts agreed that the prescription dose should be prescribed on the planning organ at risk volume (PRV). That root will be delineated as part of the corresponding plexus and PRV underdosage will be allowed to provide the respect of the same dose constraints as for the plexus.

That root will be delineated as a single volume in order to avoid the maximal dose to be delivered in that area but without compromising adequate dose delivery to PTV (no underdosage).

Dose constraints must be applied to the planning organ at risk volume (PRV). Image Guided Radiation Therapy (IGRT)

The use of IGRT with online correction is required for every fraction.

Orthogonal kV images provide adequate positioning precision only if using the Cyberknife® image guided tracking system or the Exactrac® system.

For SBM SBRT, the ability to correct any displacement with a 6-degree of freedom couch is required (does not apply to Cyberknife®).

In the case of coplanar beam plans, the use of kiloVoltcage cone beam CT (kV-CBCT) provides enough precision for patient positioning. The use of the Exactrac® system is optional (does not apply to Cyberknife®).

In the case of non-coplanar beam plans, the use of kiloVoltcage cone beam CT (kV-CBCT) is not possible, patient positioning must be checked using adequate on-board imaging such as the Exactrac® system (does not apply to Cyberknife®).

Patient positioning control must be repeated after any couch displacement.

Intrafraction patient positioning controls are not mandatory if the treatment is fast (<2 min).

Post-fraction kV-CBCT is optional.

Couch shifts must be applied in case of >1 mm translational or >1° rotational setup error for SBM SBRT.

Couch shifts must be applied in case of >1 mm translational or >1° rotational setup error for NSBM SBRT.

SBRT: stereotactic body radiation therapy; SBM: spine bone metastases; NSBM: non-spine bone metastases.

* Third option added at the time of the second round.

Organs at Risk	1 fraction	3 fractions	5 fractions
Brainstem	D0.035 cc < 15 Gy	D0.035 cc < 21.3 Gy	D0.035 cc < 31 Gy
D1 cc < 10 Gy	D1 cc < 18 Gy	D1 cc < 26 Gy	
Spinal Cord	D0.035 cc < 14 Gy	D0.035 cc < 21.9 Gy	D0.035 cc < 30 Gy
D1.2 cc < 7 Gy	D1.2 cc < 12.3 Gy	D1.2 cc < 14.5 Gy	
Cauda Equina	D0.035 cc < 16 Gy	D0.035 cc < 24 Gy	D0.035 cc < 32 Gy
D5 cc < 14 Gy	D5 cc < 21.9 Gy	D5 cc < 29 Gy	
Plexus	D0.035 cc < 17.5 Gy	D0.035 cc < 24 Gy	D0.035 cc < 32 Gy
D3 cc < 14 Gy	D3 cc < 22.5 Gy		
Esophagus	D0.035 cc < 16 Gy	D0.035 cc < 25.2 Gy	D0.035 cc < 34 Gy
Large Vessels	D0.035 cc < 19.9 Gy	D0.035 cc < 27.9 Gy	
D1 cc < 31 Gy	D1 cc < 39 Gy	D1 cc < 47 Gy	
Skin	D0.035 cc < 26 Gy	D0.035 cc < 33 Gy	D0.035 cc < 39.5 Gy
D1 cc < 33 Gy	D1 cc < 30 Gy	D1 cc < 36.5 Gy	

Table 2

Organs at risk dose constraints.

Experts agreed that the prescription dose should be prescribed on the isodoseline that encompasses ≥95 % of PTV and that the dose distribution inside PTV should be kept heterogeneous beyond 107 % and up to 140 % of the prescription dose. As an option, a simultaneous integrated boost technique can be used to keep the maximal dose inside GTV. Anticipating the need for acceptance of minor deviations and in accordance with Bishop et al. recommendations, GETUG experts agreed that, if required for the respect of OARs dose constraints, when delivering SBM SBRT the dose objectives can be lowered to ≥90 % PTV receives ≥100 % of the prescription dose providing that ≥98 % GTV receives ≥21 Gy in 3 fractions or ≥23 Gy in 5 fractions.

In the case of PTV, the use of SBM SBRT the dose objectives can be lowered to ≥100 % of the prescription dose if the prescription dose is ≥90 % and the dose distribution inside PTV is kept heterogeneous beyond 10 % and up to 140 % of the prescription dose. As an option, a simultaneous integrated boost technique can be used to keep the maximal dose inside GTV. Anticipating the need for acceptance of minor deviations and in accordance with Bishop et al. recommendations, GETUG experts agreed that, if required for the respect of OARs dose constraints, when delivering SBM SBRT the dose objectives can be lowered to ≥90 % PTV receives ≥100 % of the prescription dose providing that ≥98 % GTV receives ≥21 Gy in 3 fractions or ≥23 Gy in 5 fractions.
validated. A trend to agreement was observed for delineating the roots of single volumes and to avoid delivering hot spots (maximal dose) to them without compromising the adequate coverage of PTV.

GETUG experts agreed that the use of daily image-guided radiation therapy with online setup correction is required. High precision orthogonal 2D kV images such as Cyberknife® image guided tracking robotic system or ExacTrac® system are considered adequate for pre-treatment and intra-fraction positioning control.[34,35] In case of coplanar fields, the use of kiloVoltage cone-beam CT (kV-CBCT) provides enough precision for pre-treatment positioning as well. Aware that the risk of significant intra-fraction movements increases with treatment duration, experts agreed that pausing treatment for intra-fraction kV-CBCT re-assessment is not mandatory as long as the fraction lasts <2 min.[36] Post-treatment kV-CBCT is optional.

GETUG experts call for couch shifts to be applied for any > 1 mm translational or > 1° rotational setup error for both SBM or NSBM. The ability to acquire a 6-degree of freedom (DOF) positioning verification and to correct any displacement with a 6-DOF couch is required for SBM SRBT.

Current indications of metastasis-directed SBRT remain limited to selected oligometastatic patients.[37] Ongoing clinical trials are likely to enhance those indications in the future[38-40] and recent developments tend to position SBRT as a more palliative treatment as well. Sahgal et al. proposed to extend indications to the setting of pain relief in SBM, irrespective of the total tumor burden unless patient life expectancy is >3 months. Complete pain response was improving using SBRT compared to conventional radiotherapy.[12] Whilst not yet considered practice-changing, these results pave the way for an exponential increment in therapeutic applications raising the question of risk-taking in generalizing a treatment that is anything but trivial.[41]

As more accidental exposures are expected, the radiation oncology community faces the great challenge of generalizing a highly precise technique without compromising patients’ safety.[42] We therefore believe that providing expert group consensus guidelines using a rigorous methodology is of major interest. However, the main limitation remains the low level of evidence available in the literature, many of the studies being retrospective with limited population. Thus, many of the statements remain at the expert opinion level.

Conclusion
Consensus guidelines covering the main aspects of planning and delivery of SBRT for the treatment SBM and NSBM were provided using a validated two-round survey modified Delphi approach. These guidelines will be used as per-protocol recommendations to standardize investigators’ practice in ongoing and further clinical trials carried out by the GETUG.

Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.ctro.2022.08.006.

References
[1] Lievens Y, et al. Defining oligometastatic disease from a radiation oncology perspective: An ESTRO-ASTRO consensus document. Radiother Oncol J Eur Soc Ther Radiol Oncol 2020;148:157–66.
[2] Guckenberger M, Lievens Y, Bouma AR, Collette L, Dekker A, de Souza NM, et al. Characterisation and classification of oligometastatic disease: a European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus recommendation. Lancet Oncol 2020;21(1):e18–28.
[3] Ort P, et al. Surveillance or Metastasis-Directed Therapy for Oligometastatic Prostate Cancer Recurrence: A Prospective, Randomized, Multicenter Phase II Trial. J Clin Oncol Off J Am Soc Clin Oncol 2018;36:446–53.
[4] Palma DA, et al. Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2, open-label trial. Lancet Lond Engl 2019;393:2051–8.
[5] Phillips R, et al. Outcomes of Observation vs Stereotactic Ablative Radiation for Oligometastatic Prostate Cancer: The ORIOLE Phase 2 Randomized Clinical Trial. JAMA Oncol 2020;6:650–9.
[6] Zaorsky NG, et al. Oligorecurrent Prostate Cancer and Stereotactic Body Radiotherapy: Where Are We Now? A Systematic Review and Meta-analysis of Prospective Studies. Eur Urol Open Sci 2021;2:19–28.
[7] Schoenbach JL, et al. Stereotactic Ablative Radiation Therapy for Oligoprogressive Renal Cell Carcinoma. Adv Radiat Oncol 2021;6:100692.
[8] Tubin S, Ashdown M, Jeremic B. Time-synchronized immunne-guided SBRT partial bulk tumor irradiation targeting hypoxic segment while sparing the peritumoral immune microenvironment. Radiat Oncol Lond Engl 2019;14:220.
[9] Solanki A, et al. Combining Immunotherapy with Radiotherapy for the Treatment of Génuirarylnaginal Metastases. Eur Urol Oncol 2019;2:79–87.
[10] Torok JA, Salama JR. Combining immunotherapy and radiotherapy for the STAR treatment. Nat Rev Clin Oncol 2019;16:666–7.
[11] Sahgal A, et al. Stereotactic body radiotherapy versus conventional external beam radiotherapy in patients with painful spinal metastases: an open-label, multicentre, randomised, controlled, phase 2/3 trial. Lancet Oncol 2021;22:1023–32.
[12] Salgra SG, et al. Stereotactic Body Radiation Therapy for Spinal Metastases: Tumor Control Probability Analyses and Recommended Reporting Standards. Int J Radiat Oncol Biol Phys 2021;110:112–23.
[13] De Bari B, et al. Spinal metastases: Is stereotactic body radiotherapy supported by evidence? Crit Rev Oncol Hematol 2016;96:147–58.
[14] Loblaw DA, Prestrud AA, Sommerfield MR, Oliver TK, Brouwers MC, Nam RK, et al. American Society of Clinical Oncology Clinical Practice Guidelines: formal systematic review-based consensus methodology. J Clin Oncol Off J Am Soc Clin Oncol 2013;30(20):3136–40.
[15] Weichselbaum RR, Hellman S. Oligometastases revisited. Nat Rev Clin Oncol 2011;8(6):378–82.
[16] Rothrock R, Pennington Z, Ehresman J, Bilsky MH, Barzilai O, Szerlip NJ, et al. Hybrid Therapy for Spinal Metastases. Neuroradiol Clin N Am 2020(3):191–200.
[17] Cox BW, et al. International Spine Radiosurgery Consortium consensus guidelines for target volume definition in spinal stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 2020;106(1):93–16.
[18] Dunne EM, et al. International consensus recommendations for target volume delineation specific to sacral metastases and spinal stereotactic body radiotherapy (SBRT). Radiother Oncol 2020;145:21–9.
[19] Redmond KJ, et al. Consensus Contouring Guidelines for Postoperative Stereotactic Body Radiation Therapy for Metastatic Solid Tumor Malignancies to the Spine. Int J Radiat Oncol Biol Phys 2017;97:64–74.
[20] Chen X, LeCompte MC, Kleinberg LR, Ryan DM, Lo L, Sciubba DM, et al. Deviation From Consensus Contouring Guidelines Predicts Inferior Local Control After Spine Stereotactic Body Radiotherapy. Int J Radiat Oncol Biol Phys 2021;111(3):S101.
[21] Nguyen TK, et al. Stereotactic Body Radiation Therapy for Nonspine Bone Metastases: International Practice Patterns to Guide Treatment Planning. Pract Radiat Oncol 2020;10:e455–60.
[22] Home, SABR Consortium https://www.sabr.org.uk/.
[23] Qin B, Aili A, Xue L, Jiang P, Wang J. Advances in Radiobiology of Stereotactic Ablative Radiotherapy. Front Oncol 2020;10:1165.
[24] Song CW, et al. Biological Principles of Stereotactic Body Radiation Therapy (SBRT) and Stereotactic Radiation Surgery (SRS): Indirect Cell Death. Int J Radiat Oncol Biol Phys 2019;101:208–19.
[25] Withers HB. The Four R’s of Radiotherapy. In: Lett JT, Adler H, editors. Advances in Radiation Biology. Elsevier, 1975, p. 241–71.
[26] Zelenkofske MJ, et al. Phase 3 Multi-Center, Prospective, Randomized Trial Comparing Single-Dose 24 Gy Radiation Therapy to a 3-Fraction SBRT Regimen in the Treatment of Oligometastatic Cancer. Int J Radiat Oncol Biol Phys 2021;110:672–79.
[27] Biswas T, Spratt DE. Dose Escalation for Oligometastatic Disease: Is More Better? Int J Radiat Oncol Biol Phys 2021;110:680–1.
[28] Bishop AJ, et al. Outcomes for Spine Stereotactic Body Radiation Therapy and an Analysis of Predictors of Local Recurrence. Int J Radiat Oncol Biol Phys 2015;92:1016–26.
[29] Wang CJ, et al. Dosimetric Effect of Translational and Rotational Errors for Patients Undergoing Image-Guided Stereotactic Body Radiotherapy for Spinal Metastases. Int J Radiat Oncol Biol Phys 2008;71:1261–71.
[30] Sahgal A, et al. Spinal Cord Dose Tolerance to Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys 2021;110:124–36.

Clinical and Translational Radiation Oncology 37 (2022) 33–40
[34] Ho AK, Fu D, Cotrutz C, Hancock SL, Chang SD, Gibbs IC, et al. A study of the accuracy of cyberknife spinal radiosurgery using skeletal structure tracking. Neurosurgery 2007;60(2):147–56.

[35] Yang J, Wang X, Zhao Z, Brown P. SU-E-T-410: Spine Radiosurgery Imaging Guidance Using ExacTrac and CT on rails. Med Phys 2012;39:3799.

[36] Wu J, et al. Frequency of Large Intrafractional Target Motions During Spine Stereotactic Body Radiation Therapy. Pract Radiat Oncol 2020;10:e45–9.

[37] Palma DA, et al. Stereotactic Ablative Radiotherapy for the Comprehensive Treatment of Oligometastatic Cancers: Long-Term Results of the SABR-COMET Phase II Randomized Trial. J Clin Oncol Off J Am Soc Clin Oncol 2020;38:2830–8.

[38] Palma, D. A Randomized Phase III Trial of Stereotactic Ablative Radiotherapy for the Comprehensive Treatment of 4-10 Oligometastatic Tumors (SABR-COMET 10). https://clinicaltrials.gov/ct2/show/NCT03721341 (2021).

[39] Olson, R. Phase III Randomized Controlled Trial and Economic Evaluation of Stereotactic Ablative Radiotherapy for Comprehensive Treatment of Oligometastatic (1-3 Metastases) Cancer (SABR-COMET-3). https://clinicaltrials.gov/ct2/show/NCT03862911 (2021).

[40] European Organisation for Research and Treatment of Cancer - EORTC. Stereotactic Body Radiotherapy in Addition to Standard of Care Treatment in Patients With Rare Oligometastatic Cancers (OligoRARE): a Randomised, Phase 3, Open-label Trial. https://clinicaltrials.gov/ct2/show/NCT04498767 (2021).

[41] van der Velden JM, van der Linden YM. Spinal stereotactic radiotherapy for painful spinal metastasis. Lancet Oncol 2021;21:1017–2045(21):00268. https://doi.org/10.1016/S1470-2045(21)90268-0.

[42] Ortiz López P, et al. ICRP publication 112. A report of preventing accidental exposures from new external beam radiation therapy technologies. Ann ICRP 2009; 39:1–86.