Few-cycle mid-infrared pulses from BaGa$_2$GeSe$_6$

UGAITZ ELU1, LUKE MAIDMENT1*, LENARD VAMOS1, TOBIAS STEINLE1, FLORIAN HABERSTROH1, VALENTIN PETROV2, VALERIY BADIKOV3, DMITRII BADIKOV3, AND JENS BIEGERT1,4

1ICFO - Institució de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
2Max-Born-Institute for Nonlinear Optics and Ultrafast Spectroscopy, 2A Max-Born-Str., D-12489 Berlin, Germany.
3High Technologies Laboratory, Kuban State University, Stavropol'skaya Str. 149, 350040 Krasnodar, Russia
4ICREA - Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain.
*Corresponding author: luke.maidment@icfo.eu

BaGa$_2$GeSe$_6$ (BGGSe) is a newly developed nonlinear material which is attractive for ultrabroad frequency mixing and ultrashort pulse generation due to its comparably low dispersion and high damage threshold. A numerical study shows the material’s capacity for octave spanning mid-infrared pulse generation up to 18 µm. In a first experiment, we show that a long crystal length of 2.6 mm yields a pulse energy of 21 pJ at 100 MHz and with a spectral bandwidth covering 5.8 to 8.5 µm. The electric field of the carrier-envelope-phase stable pulse is directly measured with electro optical sampling and reveals a pulse duration of 91 fs which corresponds to sub-4 optical cycles, thus confirming some of the prospects of the material for ultra short pulse generation and mid-IR spectroscopy.

© 2020 Optical Society of America

Compact and high repetition rate sources of ultrabroadband pulses in the mid-infrared offer many prospects for applications in spectroscopy and remote sensing [1,2]. At the same time, they enable new investigations in such different fields as lightwave electronics, nanoplasmonics, and strong field physics [3]. For all of these fields, particularly enticing are carrier-to-envelope phase (CEP) stable sources since they can provide enhanced sensitivity through field-resolved measurements directly in the time domain. Important for the realization of such sources are nonlinear media amongst which the newly developed BaGa$_2$GeSe$_6$ (BGGSe) crystal is particularly attractive due to its high nonlinearity, favorable dispersion and high damage threshold. BGGSe transmits up to 18 µm and is chemically stable showing no surface aging effects [4]. It can be cleaved in arbitrary directions to the crystal axis and can be antireflection (AR) coated. BGGSe possesses simple trigonal (point group 3) symmetry (uniaxial) and recent characterization of the nonlinear susceptibility tensors shows that the effective nonlinear coefficient that can be used is comparable to AGSe [5]. These properties, coupled with favorably low dispersion between 1.5 - 2.0 µm, make BGGSe a promising candidate for producing high energy, few cycle mid-infrared pulses. For instance, difference frequency generation (DFG) with input wavelengths between 1.7 and 2.6 µm resulted in tunable mid-infrared radiation from 5 to 10 µm [6], and optical parametric amplification yielded pulse energies up to 1.05 µJ at 100 kHz, tunable from 3.9 to 12 µm [7].

Here, we demonstrate the generation of intrinsically CEP-stable sub-4-cycle waveforms at 100 MHz repetition rate and 21 pJ pulse energy from DFG in BGGSe, and we directly measure the electric field waveform of the ultrashort mid-infrared pulse with electro-optical sampling (EOS). To investigate the prospects of ultrashort pulse generation and its wavelength range, we calculate the matched signal and idler wavelengths for a pump wavelength of 1.56 µm. Figure 1(a) shows the result, indicating that phase matching exists across a broad range in the mid-infrared by varying θ between 24 and 30 degrees. As BGGSe is a positive uniaxial crystal the polarizations follow the relation: $e(1.56) \rightarrow e(2.0) + e(7.1)$. Equally important for ultrashort pulse generation and efficient DFG, Fig. 1(b) shows the pulse splitting length and gain bandwidth for a pump pulse duration of 60 fs. The comparison with GaSe clearly shows the favorable aspects of BGGSe since the medium allows the use of a longer crystal than GaSe before temporal walkoff becomes a limiting factor. At the same time, it provides a larger gain bandwidth.

For the experiment, we use a 100-MHz multi-arm, multi-wavelength master oscillator power amplifier (MOPA) system from Menlo Systems. The MOPA system features a common modelocked Er:fiber oscillator at 100 MHz after which the output is split into several arms. One of these arms further amplifies the at 1.56 µm radiation to 0.5 W and compresses to 59 fs. Another arm incorporates a highly nonlinear fiber whose Raman soliton is shifted to 2.0 µm and further amplified in Tm:Ho fiber. The 2.0-µm output is compressed in a grating compressor to 215 fs and then overlapped with the 1.56-µm pulses using a dichroic mirror. The spectral and temporal profiles of the two near-infrared pulses are measured using second harmonic generation frequency resolved optical gating (SH FROG). Figure 2 shows a sketch of the setup together with the electro optical sampling (EOS) diagnostics. We recombined the two-color output from the MOPA system inside the BGGSe crystal for difference frequency generation of CEP-stable mid-infrared pulses.
The bandwidth of the BGGSe spectrum is wider, despite the angle being optimized for phase matching (12.6° internal angle). Long uncoated gallium selenide crystal with the same input beam parameters (all polarizations are reversed as GaSe is a negative uniaxial crystal) shown in red. Similar careful optimization was carried out to maximize the output power and spectral bandwidth, though the angle is optimized for phase matching (12.6° internal angle). The bandwidth of the BGGSe spectrum is wider, despite using a longer crystal. Additionally, only 5 pJ could be generated with GaSe, compared to 21 pJ with BGGSe. The difference is due to the Fresnel reflection losses on both surfaces, as well as the longer interaction length in BGGSe. Despite its greater length, the crystal angle tolerance for the 2.6 mm BGGSe is 1.14 mrad, larger than the tolerance of 0.93 mrad for GaSe.

The BGGSe crystal used has an aperture of 6.48 mm x 5.62 mm, a length of 2.60 mm and is cut at θ = 25°, ψ = 30°, close to the optimum phase matching angle for type 1 collinear DFG. It has a broadband AR coating for mid-infrared wavelengths. A range of lenses (25, 50 and 75-mm focal length) are used to focus the 1.56- and 2.0-μm beams to different sizes in the BGGSe crystal. In each case the beam size at the focal point was measured using a scanning slit beam profiler. From these measurements the 1.56-μm peak intensity was calculated as 4.2, 2.9 and 0.9 GW-cm⁻² respectively. The Rayleigh length in BGGSe for 1.56 μm in each case is also determined to be 1.4, 2.1 and 6.2 mm respectively. The mid-infrared difference frequency (idler) beam is collimated with a 25-mm focal length gold off-axis parabolic (OAP) mirror and a dichroic beam splitter is used to separate it from the near infrared seed beams.

The maximum DFG efficiency is achieved using the 50-mm lens producing a pulse energy of 21 pJ (2.1 mW average power). Figure 3(a) shows the spectrum in blue, spanning 2400 nm at a -20 dB level, which has a transform limited duration of 67 fs (3 optical cycles). We also have measured the spectrum generated in a 1-mm long uncoated gallium selenide crystal with the same input beam parameters (all polarizations are reversed as GaSe is a negative uniaxial crystal) shown in red. Similar careful optimization was carried out to maximize the output power and spectral bandwidth, though the angle is optimized for phase matching (12.6° internal angle). The bandwidth of the BGGSe spectrum is wider, despite using a longer crystal. Additionally, only 5 pJ could be generated with GaSe, compared to 21 pJ with BGGSe. The difference is due to the Fresnel reflection losses on both surfaces, as well as the longer interaction length in BGGSe. Despite its greater length, the crystal angle tolerance for the 2.6 mm BGGSe is 1.14 mrad, larger than the tolerance of 0.93 mrad for GaSe.

In addition to the experimental results, we simulate the processes with the SISYFOS code [9] based on experimental input parameters such as spectra, energies, and pulse durations. Figure 3(a) shows very good match with the experiment. To further investigate the potential application of BGGSe at wavelengths beyond 12 μm, we also simulated mixing of the 1.56 μm, 59 fs pulses with spectrally broad 30 fs pulses with 2.0 μm center wavelength. The results at the angle of maximum conversion efficiency at 12 μm for 2.6 mm BGGSe and 1.0 mm GaSe are shown in Fig. 3(b). As expected for BGGSe, despite a longer interaction length of 2.6 mm, the output spectrum is as wide as for a 1 mm GeSe, but BGGSe provides higher gain and thus higher conversion efficiency.

We now turn to the temporal characterization of the output from BGGSe and Fig. 2 shows the EOS measurement setup. After transmission through the AR coated BGGSe crystal, the 1.56-μm was coupled into a 22-cm-long, 2.1-μm core highly nonlinear all normal dispersion photonic crystal fiber to generate a 19.0-mW output supercontinuum (not possible with the uncoated GaSe due to the high reflection losses). Fused silica wedges compress the pulses to 20-fs duration (measured with SHG FROG). After the uncoated Ge combiner window, 400 μW (4 pJ) of mid-infrared and 4 mW (40 pJ) of 1.5 μm are spatially overlapped and focused into a 30-μm-thick GaSe crystal angled at 47° (~15.7° internal angle) for type 2 sum-frequency generation (SFG). The mid-infrared beam fills the aperture of the f = 15 mm parabolic mirror to focus as tightly as possible. A nanometer-precise delay stage (SmarAct GmbH) is used for scanning the temporal delay. Interference between the SFG and the sampling pulse results in a polarization rotation for the overlapping spectral components, which is linearly proportional with the mid-infrared electric field [10], and detected by measuring ellipsometry using the combination of waveplates, Wollaston prism and balanced InGaAs detector (Thorlabs PDB210C). We chop the signal at 1 kHz for lock-in detection of the detected signal. Although the 7-μm carrier wavelength with 23-fs cycle duration requires a
sample pulse duration below 10 fs, spectral filtering of wavelengths above the generated sum-frequency spectra (1450 nm in this case) increases the temporal resolution by a factor of two, allowing sampling by 20 fs pulses and additionally it improves the SNR by reducing the shot noise [10,11]. To the best of our knowledge this is the lowest energy sample pulse (40 pJ) used for EOS detection, successfully sampling the field of few-pl mid-infrared pulses.

These aspects, combined with the possibility to grow larger aperture crystals, feature BGGSe as a promising new material for high energy and short pulse generation in the mid-infrared spectral region.

Acknowledgements

We acknowledge financial support from the European Research Council for ERC Advanced Grant “TRANSFORMER” (788218), ERC Proof of Concept Grant “miniX” (840010), FET-OPEN “PETACom” (829153), FET-OPEN “OPTOlogic” (899794), Laserlab-Europe (654148), Marie Skłodowska-Curie ITN “smart-X” (860553), MINECO for Plan Nacional FIS2017-89536-P; AGAUR for 2017 SGR 1639, MINECO for “Severo Ochoa” (SEV-2015-0522), Fundació Cèllex Barcelona, the CERCA Programme / Generalitat de Catalunya, Army Research Laboratory (W911NF-17-1-0565) and the Alexander von Humboldt Foundation for the Friedrich Wilhelm Bessel Prize.

References

1. A. S. Kowligy, H. Timmers, A. Lind, U. Elu, F. C. Cruz, P. G. Schunemann, J. Biegert, and S. A. Diddams, Sci. Adv. 5, eaaw8794 (2019).
2. I. Pueza, M. Huber, M. Trubetskov, W. Schweinbecker, S. A. Hussain, C. Hofer, K. Fritsch, M. Poetzberger, L. Vamos, E. Fil, T. Amothkina, K. V. Kepesidis, A. Apolonski, N. Karpowicz, V. Pervak, O. Pronin, F. Fleischmann, A. Azzeer, M. Žigan, and F. Krausz, Nature 577, 52 (2020).
3. F. Langer, C. P. Schmid, S. Sladkouer, M. Gmitra, J. Fabian, P. Nagler, C. Schüller, T. Korn, P. G. Hawkins, J. T. Steiner, U. Huttner, S. W. Koch, M. Kira, and R. Huber, Nature 557, 76 (2018).
4. V. V. Badikov, D. V. Badikov, V. B. Laptev, K. V. Mitin, G. S. Shevyrdyaeva, N. I. Shchebetova, and V. Petrov, Opt. Mater. Express 6, 2933 (2016).
5. K. Kato, V. V. Badikov, L. Wang, V. L. Panyutin, K. V. Mitin, K. Miyata, and V. Petrov, Opt. Lett. 45, 2136 (2020).
6. G. Stibenz, M. Beutler, I. Rimke, V. Badikov, D. Badikov, and V. Petrov, in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper STu4F.5.
7. M. Baudisch, M. Beutler, M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, R. Herda, V. Badikov, D. Badikov, V. Petrov, A. Zach, J. Limpert, and I. Rimke, presented at XXI International Conference on Ultrafast Phenomena, Hamburg, Germany, July 15-20, 2018, paper WED3B.8.
8. K. Kato, K. Miyata, V. V. Badikov, and V. Petrov, Appl. Opt. 57, 7440 (2018).
9. G. Arisiloh, J. Opt. Soc. Am. B 14, 2534 (1997).
10. M. Porter, J.-M. Ménard, and R. Huber, Opt. Lett. 39, 2435 (2014).
11. S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskoi, V. Pervak, F. Krausz, and N. Karpowicz, Nat. Photonics 10, 159 (2016).
12. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. H. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, L. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtsova, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkin, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 130, 4 (2013).
13. T. P. Butler, D. Gerz, C. Hofer, J. Xu, C. Gaida, T. Heuermann, M. Gebhardt, L. Vamos, W. Schweinbecker, J. A. Gessner, T. Siefke, M. Heusinger, U. Zeitner, A. Apolonski, N. Karpowicz, J. Limpert, F. Krausz, and I. Pueza, Opt. Lett. 44, 1730 (2019).
14. W. Schweinbecker, L. Vamos, J. Xu, S. A. Hussain, C. Baune, S. Rode, and I. Pueza, Opt. Express 27, 4789 (2019).
1. A. S. Kowligy, H. Timmers, A. Lind, U. Elu, F. C. Cruz, P. G. Schunemann, J. Biegert, and S. A. Diddams, "Infrared electric-field sampled frequency comb spectroscopy," Sci. Adv. 5, eaaw8794 (2019).

2. I. Pupeza, M. Huber, M. Trubetskow, W. Schweinberger, S. A. Hussain, C. Hofer, K. Fritsch, M. Poetzlberger, L. Vamos, E. Fill, T. Amotchkin, K. V. Kepesidis, A. Apolonski, N. Karpowicz, V. Pervak, O. Pronin, F. Fleischmann, A. Azzeer, M. Żigman, and F. Krausz, "Field-resolved infrared spectroscopy of biological systems," Nature 577, 52–59 (2020).

3. F. Langer, C. P. Schmid, S. Schlauderer, M. Gmitra, J. Fabian, P. Nagler, C. Schüller, T. Korn, P. G. Hawkins, J. T. Steiner, U. Huttner, S. W. Koch, M. Kira, and R. Huber, "Lightwave valleytronics in a monolayer of tungsten diselenide," Nature 557, 76–80 (2018).

4. V. V. Badikov, D. V. Badikov, V. B. Laptev, K. V. Mitin, G. S. Shevyrdyaeva, N. I. Shchebetova, and V. Petrov, "Crystal growth and characterization of new quaternary chalcogenide nonlinear crystals for the mid-IR: BaGa$_2$Ge$_5$$_6$ and BaGa$_2$GeSe$_6$," Opt. Mater. Express 6, 2933 (2016).

5. K. Kato, V. V. Badikov, L. Wang, V. L. Panyutin, K. V. Mitin, K. Miyata, and V. Petrov, "Effective nonlinearity of the new quaternary chalcogenide crystal BaGa2GeSe6," Opt. Lett. 45, 2136–2139 (2020).

6. G. Stibenz, M. Beutler, I. Rimke, V. Badikov, D. Badikov, and V. Petrov, "Femtosecond mid-IR difference-frequency generation in BaGa2GeSe6 from a 40 MHz optical parametric oscillator pumped at 1035 nm," CLEO 2018 STh4F.5, (2018).

7. M. Baudisch, M. Beutler, M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, R. Herda, V. Badikov, D. Badikov, V. Petrov, A. Zach, J. Limpert, and I. Rimke, "Sub-8 optical cycle, 4-12 μm tunable, μJ-level pulse generation via a BaGa 2 GeSe 6-based, 1.96 μm pumped OPA at 100 kHz," Opt. Express 27, 8-9 (n.d.).

8. K. Kato, K. Miyata, V. V. Badikov, and V. Petrov, "Phase-matching properties of BaGa 2 GeSe 6 for three-wave interactions in the 0.77–10.59 μm spectral range," Appl. Opt. 57, 7440 (2018).

9. G. Arisholm, "Second-Order Nonlinear Interactions in Birefringent Media," J. Opt. Soc. Am. B 14, 2543–2549 (1997).

10. M. Porer, J.-M. Ménard, and R. Huber, "Shot noise reduced terahertz detection via spectrally postfiltered electro-optic sampling," Opt. Lett. 39, 2435 (2014).

11. S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskow, V. Pervak, F. Krausz, and N. Karpowicz, "Electro-optic sampling of near-infrared waves," Nat. Photonics 10, 159 (2016).

12. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birn, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Joly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulina, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkin, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, "The HITRAN2012 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

13. T. P. Butler, D. Gerz, C. Hofer, J. Xu, C. Gaida, T. Heumann, M. Gebhardt, L. Vamos, W. Schweinberger, J. A. Gessner, T. Siefer, M. Heusinger, U. Zeitner, A. Apolonski, N. Karpowicz, J. Limpert, F. Krausz, and I. Pupeza, "Watt-scale 50-MHz source of single-cycle waveform-stable pulses in the molecular fingerprint region," Opt. Lett. 44, 1730 (2019).

14. W. Schweinberger, L. Vamos, J. Xu, S. A. Hussain, C. Baune, S. Rode, and I. Pupeza, "Interferometric delay tracking for low-noise Mach-Zehnder-type scanning measurements," Opt. Express 27, 4789 (2019).