Relationship between In vivo, In vitro Parameters and Chemical Composition to Predict the Nutritive Value of Some Legume Forages

A. Aïssa¹, C. Ben Mustapha², M.R. Alvir³, M. Hadj Ayed¹, I.E.A. Znaïdi¹, N. Moujahed¹, K. Kraïem¹

ABSTRACT

Background: Many in vivo and laboratory methods have been used to evaluate ruminant feeds. The objective of this experiment was to determine feed intake, digestibility, kinetics of gas production, in vitro organic matter digestibility (OMDv) and metabolizable energy (ME) of Trifolium alexandrinum (T. alexandrinum) and Medicago sativa (M. sativa) at different maturity stages through in vivo and in vitro methods to elaborate predictive equations from chemical constituents.

Methods: In vivo assay was carried out with two groups of five rams male kipped in metabolism cage. Samples of forage, refusal and feces were collected and processed for chemical analysis. In vitro gas production technique was performed on forage samples.

Result: The bud and early bloom stage of M. sativa recorded the highest digestibility values of the chemical component (P<0.05). The OMDv of M. sativa was 60.65 and 68.26% (P<0.01) for early bloom stage and bud stage, respectively. Crude protein digestibility (CPD) was positively correlated with crude protein rate (R²=0.83, P<0.05). The gas production from the insoluble fraction “b” fraction showed a positive correlation with acid detergent fiber (ADF) (R²=0.999, P<0.001). However, cumulative gas production at 24h and 48h of incubation were negatively correlated (P<0.05) with the ADF rate (R²= -0.98 and -0.97, respectively).

Key words: Chemical composition, Digestibility, Green forages, Gas production, Maturity stage, Prediction equations.

INTRODUCTION

Chemical analysis allows to determine fodder chemical constituents which are used to evaluate the nutritive value of forages. But, this is not sufficient or accurate enough. To ensure the evaluation of digestibility of forages and to predict the nutritive value of feeds, in vivo and in vitro techniques were made available to livestock (Karabulut et al., 2007).

Trifolium alexandrinum L. (T. alexandrinum) and Medicago sativa (M. sativa) are popular among livestock farmers as “King and queen of Fodder Crops” and are cultivated on all the continents (Elf and Veysel, 2016; Singh et al., 2020). They provide a large amount of soluble protein and enrich the soil by fixing atmospheric nitrogen (Elf and Veysel, 2017). So, they allow an improvement of the productivity and the quality of final products.

The aim of this study was to determine (i) chemical parameters and nutritive value of Tunisian green chopped legume forages (T. alexandrinum, M. sativa) at different maturity stages, through in vivo and in vitro methods and (ii) to establish predictive equations of nutritive value parameters using chemical components.

MATERIALS AND METHODS

Forage samples

Trifolium alexandrinum L. (variety Meskaoui) and Medicago sativa L. (variety of Gabes) were cultivated on small plots of 1000 m² in the experimental station of the Agronomic Higher Institute of Chott-Mariem (35°56’17”N, 10°33’18”E) during winter and spring 2015.

¹Département de Ressources Animales, Agroalimentaires et Développement Rural, Institut Supérieur Agronomique de Chott-Mariem, BP 47, 4042 Chott-Mariem, Université de Sousse, Tunisie.
²Département des Sciences Animales, Institute National Agronomique de Tunisie, 43 Avenue Charles Nicolle, Tunis 1082. Université de Carthage, Tunisie.
³Departamento de Produccion Animal E.T.S.I.A Universidad Politécnica de Madrid 28040, Madrid (Espagne).

How to cite this article: Aïssa, A., Mustapha, C.B., Alvir, M.R., Ayed, M.H., Znaïdi, I.E.A., Moujahed, N. and Kraïem, K. (2021). Relationship between In vivo, In vitro Parameters and Chemical Composition to Predict the Nutritive Value of Some Legume Forages. Agricultural Science Digest. 10.18805/ag.D-252

These forages were hand-harvested at different maturity stages: Bloom for T. alexandrinum and bud, early bloom and seed for M. sativa.

In vivo assay

For each trial, two groups of five rams male Black of Thibar with an average age of nine months and an average initial body weight of 33.2 ± 1.62 kg were kept in metabolism cage. The digestibility test includes a seven day adaptation period
a seven day preliminary period during which ingestion where the animals were fed ad libitum and a seven day collection period.

Intake was evaluated daily. Samples of the offered forage, the refusals and feces were collected in plastic bags and were stored at -20°C for further analysis. At the end of each period, those samples were combined homogeneously to determine their chemical composition and to evaluate feed intake and digestibility of dietary nutrients. Urine is collected for each animal in a 10 L plastic container containing 200 mL of a 10% solution of H₂SO₄. At the end of the collection period, the total amount of urine was measured and 20% of the total volume was stored in plastic bottles. At the beginning and at the end of each test, the animals are weighted.

Chemical analysis

Representative samples of forage, refusal and feces were dried at 60°C for 72 h and then grounded at 1 mm screen for chemical analysis composition. Ash, crude protein (CP) and crude fiber (CF) contents were quantified according to AOAC (2000) and acid detergent fiber (ADF), neutral detergent fiber (NDF) and acid detergent lignin (ADL) were analysed following the procedures described by Van Soest et al. (1991). In vitro gas production was carried out using the method described by Menke and Steingass (1988). Rumen fluid was collected from four fistulated Black of Thibar sheep, combined, homogenized, filtered four layers of cheese-cloth and purged with CO₂. The artificial saliva was prepared (Table 1). The inoculum fluid was prepared of rumen fluid and artificial saliva (1:2 v/v). This mixture (pH = 6.9± 0.1) was then kept under CO₂ at 39°C water bath and stirred using a magnetic stirrer.

200 mg of air-dry feedstuffs are incubated in 4 graduated glass syringes, preheated to 39°C, with 30 ml of the prepared mixture. The syringes are closed and the starting volume (V₀) is recorded at time t₀. Then, they were placed in the incubator. The syringes were gently shaken every 30 minutes during the first 8 to 10 hours of incubation. The volume of gas was recorded after 2, 4, 6, 12, 24, 36, 48, 72 and 96 hours of incubation. Three control syringes in blanks.

Total gas values were corrected for the blank incubation. Cumulative gas production data were fitted to the model of Ørskov and McDonald (1979):

\[y = a + b \cdot (1-e^{-bt}) \]

Where

- \(y \) = gas produced at the time “t”.
- \(a \) = the gas production from the immediately soluble fraction (ml).
- \(b \) = the gas production from the insoluble fraction (ml).
- \(c \) = the gas production rate constant for the insoluble fraction (h).

\(a+b \) = the potential gas production (ml).

\(t \) = incubation time (h).

Menke and Steingass (1988) have developed equations to calculate the in vitro digestibility of organic matter (OMDv) and the metabolizable energy (ME) of greens:

\[\text{OMDv} = 14.51 + 0.8490 \times \text{GP} + 0.0653 \times \text{CP} + 0.0686 \times \text{Ash} \]

\[\text{ME} = 24 \times \text{net gas production (ml/200 mg)} \]

Where

\[\text{GP} = \text{24 h net gas production (ml/200 mg)} \]

\[\text{ME (kcal)} = (1.14 + 0.1439 \times \text{OMDv} - 0.0134 \times \text{Ash}) \times (1000/4.18) \]

Statistical analysis

The data were analyzed according to the General linear Model (GLM) procedure of the SAS software (2002) studying the effect of a one factor: maturity stage. Significance between individual means was identified using the Student test. Correlations between the in vivo, in vitro parameters and the chemical composition components were established then the Stepwise procedure was used to establish prediction equations.

RESULTS AND DISCUSSION

Chemical composition

The chemical composition of legume forages is shown in Table 2. The CP and CF of T. alexandrinum were founded to be 14.22% DM and 21.52% DM, respectively. Its CF content was higher but its CP content was lower than the values founded by Nefzaoui and Chermiti (1989).

The DM and CF content showed a gradual increase throughout the evolution of the maturity stage; the highest value is recorded at the final stage (P<0.01). However, the CP content noted a gradual decrease (P<0.001). Indeed, the highest CP content was founded at bud stage. The budding stage CP content was higher but its CF content was lower than the values reported by Nefzaoui and Chermiti (1989) and the tables of INRA (2007). Early bloom stage showed the highest NDF content (P<0.05). Its CF rate was lower than that founded by Nefzaoui and Chermiti (1989) and the tables of INRA (2007). The NDF and ADF contents were relatively lower for the legume forages of the maturity stage; the highest value was recorded at the final stage (P<0.01). Indeed, the highest CP content was founded at bud stage.
identical with the values of the INRA (2007) and lower than that reported by Hollis et al. (2020).

Feed intake, nitrogen balance and nutrient digestibility

Trifolium alexandrinum exhibited the highest value of DM intake, OM intake and intake/W0.75 (P<0.001) amounts (Table 3). These results were confirmed by Minson (1990) who mentioned that temperate legumes are ingested in large quantities because they offer less resistance to their reduction. *M. sativa* showed a decrease in DM intake, OM intake and intake/W0.75 between the bud and early bloom stage but at the pod stage the situation reversed.

The maturity stage had an effect on the N intake, N balance and retained N (P <0.001). The highest amount of N intake, N balance and retained N has been registered at bud stage of *M. sativa*.

The *in vivo* digestibility of DM, OM, CF, ADF (P <0.05) and CF (P <0.05) were affected by the maturity stage. Indeed, the highest digestibility values of the chemical component were recorded at bud and early bloom stage (Table 3).

The *M. sativa* CPD value was higher than the value reported in the INRA tables (2007). The results of the nitrogen balance followed the same trend as the digestibility of CPD. At the bud stage, the INRA tables (2007) reported values around 52% and 50% for the CFD and ADFD, respectively. The maturity stage has a very sensitive effect on the *in vivo* digestibility of the different chemical components, so the youngest maturity stage is the most digestible. During the plant aging, the cell walls thicken and become encrusted with lignin. This is not only indigestible, but it also constitutes a barrier to the walls digestion of the forage by the rumen microbes. This is confirmed by the low digestibility of forage fibers in the last maturity stage, which reflects a significant degree of lignification (Jarrige, 1988).

Kinetics of gas production

The Kinetics of gas production of *T. alexandrinum* and *M. sativa*, corrected with blanks are showed in Fig 1. The cumulative gas production profiles of legume forages increased during incubation period. A constant level of gas production was almost reached around 48 h and 72 h of incubation.

The *M. sativa* gas production kinetics curves for the three maturity stages were very close to each other with a slight superiority of the bud stage. At 72 h of incubation, the three curves were intertwined. The GP48 was slightly lower than those reported by Lantcheva et al. (1999) and similar to those reported by Karabulut et al. (2007).

The GP48 of *T. alexandrinum* was higher than that reported by Sallam et al., 2007 and Nasser et al., 2009.

Table 2: Chemical composition of legume forages.

	DM %	Ash %	CP %	CF %	NDF %	ADF %	ADL %
Trifolium alexandrinum							
Bloom	20.81c	10.30	14.22c	21.52c	51.02ab	27.70c	6.00
Medicago sativa							
Bud	16.02c	12.90	25.18c	25.86c	48.50b	31.80b	7.28
Early bloom	19.48bc	10.90	18.41bc	33.45a	53.80a	37.60a	7.14
Seed	24.87c	18.00c	16.80c	35.41c	49.50b	31.60c	6.31
SEM	1.15	1.12	1.16	3.26	3.33	2.12	0.55
P value	0.004	0.446	<0.001	<0.001	0.050	0.002	0.83

Table 3: Feed intake, nitrogen balance, retained nitrogen and nutrient digestibility of legume forages.

	DM intake g/d	OM intake g/d	N intake g/d	N Balance g/d	Intake/W0.75 g/d	Retained N g	DMD %	OMD %	CPD %	CFD %	ADFD %	ADL %
Trifolium alexandrinum												
Bloom	1342.80c	1211.70c	204.70c	23.70c	96.70c	0.72c	65.41c	68.76bc	74.74c	55.86c	54.26c	
Medicago sativa												
Bud	1075.10c	936.20c	277.50c	38.19c	79.70c	0.86c	78.95c	79.37c	87.66c	67.56c	70.47c	
Early bloom	842.70c	749.70c	167.20c	20.97c	63.40c	0.78c	75.64c	75.78c	82.69c	65.54c	68.33c	
Seed	973.90c	866.70c	116.10c	19.03c	71.50c	0.72c	66.71c	67.32c	74.98c	59.27c	51.75c	
SEM	13.95	12.44	3.03	0.895	2.43	0.022	2.47	2.33	2.02	3.27	3.49	
P value	<0.001	<0.001	<0.001	<0.001	<0.001	0.006	0.011	0.019	0.005	0.011	0.011	

DM - Dry matter; CP - Crude protein; CF - Crude fiber; NDF - Neutral detergent fiber; ADF - Acid detergent fiber; ADL - Acid detergent lignin; SEM - Standard error of the mean; a, b, c - Means in the row with different superscripts differ significantly (P<0.05).
Relationship between *In vivo*, *In vitro* Parameters and Chemical Composition to Predict the Nutritive Value of Some Legume Forages

![Kinetics of gas production of legume forages.](image)

Table 4: Estimated kinetic parameters model, *in vitro* organic matter digestibility and energy content of legume forages.

	a (ml)	b (ml)	c (ml/h)	a+b (ml)	OMDv (%)	ME (kcal/kg MS)
Trifolium alexandrinum						
Bloom	2.18a	63.50a	0.073b	65.68b	61.62b	2063.90b
Medicago sativa						
Bud	-3.58b	61.83a	0.11a	58.24a	68.26a	2209.25a
Early bloom	-4.47b	59.02a	0.09b	54.55a	60.65b	2011.39b
Seed	-5.50b	61.71a	0.11b	56.21b	61.43b	2041.26b

SEM - Standard error of the mean; a - the gas production from the immediately soluble fraction; b - the gas production from the insoluble fraction; c - the gas production rate constant for the insoluble fraction; a+b - potential gas production; OMDv - *in vitro* digestibility of organic matter; ME - metabolizable energy. a, b - Means in the row with different superscripts differ significantly (P<0.05).

Estimated kinetic parameters model, *in vitro* organic matter digestibility and energy content

- «a» of *T. alexandrinum* showed an average value of 2.18 mL. It was higher than the values reported by Borba et al. (2001) and Nasser et al. (2009). All *M. sativa* “a” values were negative (P<0.05) (Table 4). Karabulut et al. (2007) reported a positive value of «a». The absence of production means the incapacity of microorganism to develop in the medium (Rakotoarison, 2005) so there is a lag time preceding the start of the fermentations (Sallam et al., 2007; Elf and Veyes, 2017).

- «b» ranged from 59.02 to 63.50 (P>0.05). «a+b» ranged from 54.55 to 65.68 and followed almost the same trend of «b» (Table 4). The «b» value of *T. alexandrinum* was higher than the values reported by Borba et al. (2001) and by Nasser et al. (2009). The «b» and the «a+b» of *M. sativa* was lower than the value reported by Karabulut et al. (2007).

- «c» of *T. alexandrinum* was equivalent to 0.073 mL/h (P<0.05) and was lower than values reported by Borba et al. (2001) and Nasser et al. (2009). The rate of gas production was similar between the three maturity stages of *M. sativa*. It was higher than that founded by Borba et al. (2001) but lower than that noted by Karabulut et al. (2007). The high and fast gas production recorded for these legume forages means the presence of immediately and easily fermentable substances in this forage.

The OMDv showed the highest value (P<0.01) at the earliest maturity stage (Bud stage of *M. sativa*) (Table 4). For the calculated ME, the same trend was observed than that of OMDv (P<0.05).The OMDv of *M. sativa* was lower than that reported by Karabulut et al. (2007). The OMDv of *T. alexandrinum* was higher than that reported by Nasser et al. (2009) and Sallam et al. (2007). The ME of *M. sativa* was lower than that founded by Kamalak et al. (2005b) and Karabulut et al. (2007).

Correlation among *in vivo*, *in vitro* parameters and chemical composition

Only, CPD was positively correlated with CP rate (P<0.05) (Table 5). It was also predicted by CP content in the French system but with better precision (Andrew et al., 1979).

A few *in vitro* parameters have been found to have high and significant correlations with ADF content. “b” was positively correlated with ADF (P<0.001). GP24 and GP48 were negatively correlated (P<0.05) with the ADF rate. OMDv and ME were positively correlated with CP and negatively correlated with fiber content (Table 5). This result is consistent with the findings of Parisi et al. (2005), Kamalak et al. (2005a) and Karabulut et al. (2007).
Prediction of in vivo and in vitro parameters among chemical composition

The best prediction of CPD was obtained with CP (R²=0.69, P<0.01). The ADF was the best variable predictor since its R² varies from 0.96 (P<0.05) for GP24 to 0.999 (P<0.001) for "b" (Table 6). This result is in agreement with the findings of Karabulut et al. (2007).

Table 5: Correlation coefficient among feed intake, nutrient digestibility, estimated kinetic parameters, cumulative gas production, in vitro organic matter digestibility, metabolizable energy and chemical constituents of legume forages.

Parameter	CP	CF	NDF	ADF
DM intake	0.23	-0.43	0.15	-0.43
Intake/W.0.75	0.27	-0.44	0.15	-0.42
DMD	0.34	0.33	0.29	0.63
OMD	0.11	0.14	0.12	0.44
CPD	0.83*	0.23	0.42	0.59
CPF	0.13	0.39	0.20	0.59
ADFD	0.32	0.11	0.18	0.53
a	-0.47	-0.89	-0.03	-0.70
b	-0.23	-0.70	-0.69	0.999***
c	0.65	0.63	-0.46	0.30
a+b	-0.42	-0.89	-0.28	-0.87
GP24	-0.41	-0.75	-0.51	-0.98*
GP48	-0.30	-0.84	-0.53	-0.97*
GP96	-0.47	-0.82	-0.34	-0.92
OMDv	0.89	-0.39	-0.70	-0.19
ME	0.82	-0.49	-0.75	-0.32

CP - Crude protein; CF - Crude fiber; NDF - Neutral detergent fiber; ADF - Acid detergent fiber; DMD - Dry matter digestibility; OMD - Organic matter digestibility; CPD - Crude protein digestibility; CFD - Crude fiber digestibility; ADFD - Acid detergent fiber digestibility; a - the gas production from the immediately soluble fraction; b - the gas production from the insoluble fraction; c - the gas production rate constant for the insoluble fraction; a+b - potential gas production; GP24 - cumulative gas production after 24h of incubation; GP48 - cumulative gas production after 48h of incubation; GP96 - cumulative gas production after 96h of incubation; OMDv - in vitro digestibility of organic matter; ME - metabolizable energy; * p<0.05; *** p<0.001.

Table 6: In vivo and in vitro parameter prediction equations based on chemical composition.

Parameter	Equation	R²
CPD	0.675 + 0.709 × CP	0.69**
b	76.131 - 44.967 × ADF	0.99***
GP24	48.991 - 47.088 × ADF	0.96*
GP48	52.221 - 61.020 × ADF	0.94*

CP - Crude protein; ADF - Acid detergent fiber; CPD - Crude protein digestibility; b - the gas production from the insoluble fraction; GP24 - cumulative gas production after 24h of incubation; GP48 - cumulative gas production after 48h of incubation; * p<0.05; *** p<0.001.

CONCLUSION

It may be concluded that the maturity stage affected DM, CP, CF, NDF, ADF content, feed intake, in vivo digestibility, estimated parameters such as "a", "c" fractions, OMDv and the ME. The ADF content had a determinant effect on the prediction of some gas production parameters. Therefore, further studies are needed to evaluate the nutritive value of other Tunisian green forages, hays and by-products to be more informative about ruminant nutrition.

REFERENCES

Andrieu, J., Demarquilly, C., Wegat-litre E. (1979). Prévision de la valeur nutritive des aliments des ruminants. Tables de prévision de la valeur alimentaire des fourrages. Centre de Recherches Zootecnostes et Vétérinaires de Theix.

AOAC (2000). Official Methods of Analysis of the Association of Official Analytical Chemist, 17th ed. Association of Official Analytical Chemist. Washington, USA.

Borba, A.E.S., Correia, P.J.A., Fernandes, J.M.M., Borba, A,F.R.S. (2001). Comparison of three sources of inocula for predicting apparent digestibility of ruminant feed stuffs. Animal Research. 50: 265-273.

Elif K., Veyesel A. (2016). Investigation of feed value of alfalfa (Medicago sativa L.) harvested at different maturity stages. Legume Research. 39(2): 237-247.

Elif K., Veyesel A. (2017). Determination of degradation in the rumen for dry matter, organic matter and crude protein of alfalfa (Medicago sativa L.) harvested at different maturity stages using the in situ nylon bag method. Indian Journal Animal Research. 51(5): 875-880.

Hollis, M.E., Pate, R.T., Sulzberger, S., Pineda, A., Khidoyatov, Y., Murphy, M.R., Cardoso, F.C. (2020). Improvements of in situ degradability of grass hay, wet brewer’s grains and soybean meal with addition of clay in the diet of Holstein cows. Animal Feed Science and Technology. 259: 114331.

Tables Inra. (2007). Alimentation des bovins, ovins et caprins. Besoins des animaux - Valeurs des aliments. Editions Quae INRA (eds), Paris, France.

Jarrige, R. (1988). Alimentation des bovins, ovins et caprins. INRA, Paris. 476pp.

Kamalak, A., Canbolat, O., Erol, A., Kilinc, C., Kizilsimsek, M., Ozkan, C.O., Ozkose, E. (2005a). Effect of variety on chemical composition, in vitro gas production, metabolizable energy and organic matter digestibility of alfalfa hays. Livestock Research for Rural Development. 17: 77.

Kamalak, A., Canbolat, O., Gurbuz, Y., Erol, A., Ozay, O. (2005b). Effect of maturity stage on chemical composition, in vitro and in situ dry matter degradation of tumbleweed hay (Gundelia tournefortii L.). Small Ruminant Research. 58: 149-156.

Karabulut, A., Canbola, T.O., Kalkan, H., Gurbuzol1, F., Sucu, E., Filya, I. (2007). Comparison of In vitro gas production, metabolizable energy, organic matter digestibility and microbialprotein production of some legume hays. Asian-Australasian Journal of Animal Sciences. 20(4): 517-522.

Lantcheva, N., Steingass, H., Todrorov, N., Pavlov, D. (1999). A
comparison of \textit{in vitro} rumen fluid and enzymatic methods to predict digestibility and energy value of grass and alfalfa hay. Animal Feed Science and Technology. 81: 333-344.

Menke, K.H., Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and \textit{in vitro} gas production using rumen fluid. Animal Research and Development. 28: 7-55.

Minson, D.J. (1990). Forage in Ruminant Nutrition. San Diego, California 92101: Academic Press, Inc. (Eds).

Nasser, M.E.A., El-Waziry, A.M., Sallam, S.M.A. (2009). \textit{In vitro} gas production measurements and estimated energy value and microbial protein to investigate associative effects of untreated or biological treated linen straw and berseem hay. Options Méditerranéennes, Nutritional and Foraging Ecology of Sheep and Goats. 85: 261-266.

Nefzaoui, A., Chermiti, A. (1989). Composition chimique et valeur nutritive pour les ruminants des fourrages et concentrés d’origine Tunisienne. Annales de l’institut national dela recherche agronomique de Tunisie (eds). Tunis, Tunisie.

Ørskov, E.R., McDonald, I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighed according to rate of passage. The Journal of Agricultural Science. 92: 499-503.

Parissi, Z.M., Papachristou, T.G., Nastis, A.S. (2005). Effect of drying method on estimated nutritive value of browse species using an \textit{in vitro} gas production technique. Animal Feed Science and Technology. 30: 119-128.

Rakotomarison, B.R. (2005). Etude de la valeur nutritive de Desmodium uncinatum, Hedychium coronarium et Musa Paradisiaca pour une meilleure valorisation des ressources fourragères des hautes terres Malagaches. Thèse de doctorat. Université d’Antananarivo. Ecole Supérieure des Sciences Agronomiques. pp141.

Sallam, S.M.A., Nasser, M.E.A., El-Waziry, A.M., Bueno, I.C.S. Abdalla, A.L. (2007). Use of an \textit{in vitro} rumen gas production technique to evaluate some ruminant feedstuffs. Journal of Applied Sciences Research. 3(1): 34-41.

Singh, S., Singh, K., Kaur, T. (2020). Effect of different sowing dates and timings of last cut on yield attributes and seed yield of berseem (\textit{Trifolium alexandrinum} L.). Legume Research. DOI: 10.18805/LR-4235.

Van Soest, P.J., Robertson, J.B., Lewis, B.A. (1991). Methods for dietary fiber, neutral detergent fibre and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science. 74: 3583-3597