ENTANGLED GRAPHS

HADI RAHIMINIA, MASSOUD AMINI

Abstract. In this paper we prove a separability criterion for mixed states in $\mathbb{C}^p \otimes \mathbb{C}^q$. We also show that the density matrix of a graph with only one entangled edge is entangled.

INTRODUCTION

One of the major problems in Quantum Mechanics is to characterize entangled states of a quantum system. There are several partial criteria for entanglement of mixed states [6], [8], [10], but there is not yet a general criterion. Entanglement is connected to the important concept of non-locality in Quantum Mechanics. Entangled states are also useful in quantum cryptography and other quantum information processing tasks [1],[9]. A mixed quantum state is separable (and entangled, otherwise) if it can be written as a convex combination of pure separable states. Solving the quantum separability problem simply means determining whether a given quantum state is entangled or separable.

Following [2], a class of states that are represented by the density matrices of graphs are considered. It is shown in [2] that certain classes of graphs always represent entangled (separable) states. Also they have shown that a number of considered states have an exactly fractional value of their concurrence, a measure of entanglement of formation in small quantum systems.

A graph $G = (V, E)$ is a pair of a non-empty and finite set V (or $V(G)$) whose elements are called vertices; and a non-empty set of unordered pairs of vertices E (or $E(G))$, whose elements are called edges. A loop is an edge of the form $\{v_i, v_i\}$, for some vertex v_i. We assume that $E(G)$ does not contain only loops [2]. Two distinct vertices v_i and v_j are adjacent if $\{v_i, v_j\} \in E(G)$. The adjacency matrix of a graph on n vertices G is an $n \times n$ matrix $M(G)$, having rows and columns labelled by the vertices of G, and ij-th entry defined to be 1 if v_i and v_j are adjacent; and 0, otherwise. The degree of a vertex v_i is the number $d_G(v_i)$ of edges adjacent to v_i. The degree of G is defined by $d_G = \sum_{i=1}^{n} d_G(v_i)$. Note that $d_G = 2|E(G)|$. The degree matrix of G is an $n \times n$ matrix $A(G)$, having ij-th entry $d_G(v_i)$ if $i = j$; and 0, otherwise. The Laplacian matrix of a graph G is the matrix $L(G) = A(G) - M(G)$. Note that $L(G)$ does not change if one adds loops to or deletes loops from G. The density matrix of a graph G is the matrix $\sigma(G) = \frac{1}{d_G} L(G)$. A graph G has k components, G_1, G_2, \ldots, G_k, if there

2000 Mathematics Subject Classification. 05C90.

Key words and phrases. laplacian of a graph, entanglement, quantum information.

The authors would like to thank Professor Braunstein and his graduate students for their kind help during the preparation of the original version of this paper.

©1997 American Mathematical Society
is an ordering of $V(G)$, such that $M(G) = \sum_{i=1}^{k} M(G_i)$. In this case we write $G = G_1 \oplus G \oplus \cdots \oplus G_k$. When no such decomposition exists except for $k = 1$, G is called connected. We refer the reader to [2] for examples and more details.

Let $tr(A)$ be the trace of a matrix A. A density matrix ρ is said to be pure if $tr(\rho^2) = 1$, and mixed, otherwise. [2, Theorem 2.4] gives a necessary and sufficient condition on a graph G for $\sigma(G)$ to be pure.

If A is an $n \times n$ matrix, decomposed into p^2 blocks:

$$A = \begin{bmatrix}
A_{1,1}^{1,1} & A_{1,1}^{1,2} & \cdots & A_{1,1}^{1,p} \\
A_{2,1}^{2,1} & A_{2,1}^{2,2} & \cdots & A_{2,1}^{2,p} \\
\vdots & \vdots & \ddots & \vdots \\
A_{p,1}^{p,1} & A_{p,1}^{p,2} & \cdots & A_{p,1}^{p,p}
\end{bmatrix},$$

where each A_{ij} is a $q \times q$ matrix and $n = pq$, then (p,q)-partial transpose A^{T_B} is given by:

$$A^{T_B} = \begin{bmatrix}
(A_{1,1}^{1,1})^T & (A_{1,2}^{1,2})^T & \cdots & (A_{1,p}^{1,p})^T \\
(A_{2,1}^{2,1})^T & (A_{2,2}^{2,2})^T & \cdots & (A_{2,p}^{2,p})^T \\
\vdots & \vdots & \ddots & \vdots \\
(A_{p,1}^{p,1})^T & (A_{p,2}^{p,2})^T & \cdots & (A_{p,p}^{p,p})^T
\end{bmatrix}.$$

RESULTS

Next two results positively answer two open problems raised in [2, Conjecture 6.5]. A more general result in this direction is obtained by Wu [11], but our method of proof is direct and gives a better intuition in this special case.

Theorem 1. Let G be a graph $(|V| = pq)$. If G has only one entangled edge, then $\sigma(G)$ is entangled.

Proof. Let $\{ij \mid | \sigma(ij) - |st)\}$ be the only entangled edge of G such that $1 \leq i, s \leq p$, $1 \leq j, t \leq q$ and let G have all the possible edges. We show that G is entangled. To prove this, we use the separability's necessary condition (If $\sigma(G)$ is separable, then $(\sigma(G))^{T_B} \geq 0$).

We look for a vector such that as X with $X^T \sigma(G)^{T_B} X < 0$. Consider the following

$$x = \left[\frac{1}{2} \frac{1}{2} \ldots \frac{1}{2} \frac{1}{2} \frac{p+q-1}{2} \ldots \frac{1}{2} \frac{p+q-1}{2} \frac{1}{2} \ldots \frac{1}{2} \right]^T,$$

Now if we compute $X^T \sigma(G)^{T_B} X$ then after simplification and using the fact that all the edges which are not connected to vertices x_{ij} and x_{st} in the sum $X^T \sigma(G)^{T_B} X$ arise to the terms in the form $x^2 + y^2 - 2xy(x = y = 1/2)$, which is equal to zero, and the sum of the other terms in $X^T \sigma(G)^{T_B} X$ for those edges that are connected with x_{ij} or x_{st} may be written as:

$$(p + q - 1)(x_{ij}^2 + x_{st}^2) + \sum_{k=1,k\neq j}^{q} x_{ik}^2 + \sum_{k=1,k\neq i}^{p} x_{kj}^2 + \sum_{k=1,k\neq i,j}^{q} x_{sk}^2 + \sum_{k=1,k\neq s,i}^{p} x_{kt}^2.$$
\[-2x_{ij} \left(\sum_{k=1, k \neq j}^q x_{ik} + \sum_{k=1, k \neq i}^p x_{kj} \right) - 2x_{st} \left(\sum_{k=1, k \neq t}^q x_{sk} + \sum_{k=1, k \neq s}^p x_{kt} \right). \]

Now since \(x_{ij} = x_{st} = \frac{p + q - 1}{2(p + q)} \) and the remaining \(x_{mn} \)s \(((m, n) \neq (i, j), (s, t)) \) are \(\frac{1}{2} \) after substituting we have:

\[
2(p + q - 1)\left(\frac{p + q - 1}{2(p + q)} \right)^2 + 2(p + q - 3) \frac{1}{4} - 4(p + q - 2)\left(\frac{p + q - 1}{4(p + q)} \right) = -\frac{p + q - 1}{2(p + q)^2},
\]

so \(\sigma(G)^{T_B} \) is not positive semi-definite, and therefore \(G \) is entangled.

Next we suppose that there is a separable edge such as \(P[\frac{1}{\sqrt{2}} (|kl| - |mn|)] \) that is not contained in \(G \). If one of vertices of mentioned edge is \(x_{ij} \) or \(x_{st} \), then, in the sum \(X^T \sigma(G)^{T_B} X \), the term \(x_{mn}^2 + x_{kl}^2 - 2x_{mn}x_{kl} \) appears that after substituting, we get

\[
\left(\frac{p + q - 1}{2(p + q)} \right)^2 + \frac{1}{4} - \frac{p + q - 1}{2(p + q)} = \frac{1}{4(p + q)^2},
\]

Now this expression is positive even if the edge is not in \(G \), and the proof goes as before. If the edge is not involving the vertices \(x_{ij} \) or \(x_{st} \), then

\[
x_{mn}^2 + x_{kl}^2 - 2x_{mn}x_{kl} = \frac{1}{4} + \frac{1}{4} - \frac{1}{2},
\]

and again we are done. To complete the proof we need to prove our claim also for the following simple cases:

1. If the graph is just one edge that is entangled, trivially it is entangled.
2. If all of separable edges of the graph are not connected with vertices \(x_{ij} \) and \(x_{st} \), then for the vector \(X \) above, in the sum \(X^T \sigma(G)^{T_B} X \), only the expression \(x_{ij}^2 + x_{st}^2 - 2x_{ij}x_{st} \) remains that after substitution, it becomes

\[
2(p + q - 1)\left(\frac{p + q - 1}{2(p + q)} \right)^2 - 2(p + q - 1)\left(\frac{1}{2} \right) = -\frac{p + q - 1}{2(p + q)^2} < 0.
\]

Therefore all of the possible cases are considered, and we are done.

\[\Box\]

Theorem 2. If all the entangled edges of graph \(G \) are incident to the same vertex, then \(G \) is entangled.

Proof. We use Theorem 1. Let \(G \) have all the possible separable edges and the edge \(P[\frac{1}{\sqrt{2}} (|ij| - |st|)] \) be one of the entangled edges and the vertex \(x_{ij} \), be the common vertex of the entangled edges. We prove that \(\sigma(G)^{T_B} \) is not positive semi-definite.

We omit all the entangled edges of graph \(G \) except \(P[\frac{1}{\sqrt{2}} (|ij| - |st|)] \) and call the resulting graph \(H \). We consider the vertex \(X \) as in Theorem 1.

From the proof of Theorem 1, the sum \(X^T \sigma(H)^{T_B} X \) is negative. Now if another edge of \(G \) such as \(P[\frac{1}{\sqrt{2}} (|ij| - |mn|)] \) is added to \(H \), the expression

\[
x_{ij}^2 + x_{mn}^2 - 2x_{ij}x_{mn},
\]

appears in the sum \(X^T \sigma(H)^{T_B} X \), which after substitution gives

\[
\left(\frac{p + q - 1}{2(p + q)} \right)^2 + \frac{1}{4} - \frac{1}{2} = -\frac{2(p + q) + 1}{4(p + q)^2} < 0.
\]
Since the above expression is negative, if all of the omitted entangled edges of G are added to H, the sum $X^T\sigma(H)^TbX$ remains negative and therefore G is entangled. Similar to the proof of Theorem 1, one can show that the hypothesis that G contains all the possible separable edges could be removed, and we are done. □

Definition 3. A matrix is line sum symmetric if the i-th column sum is equal to the i-th row sum for each i.

We may use our technique combined with results of [11] to give simpler proofs of some of the results proved in [2] with a different method. The next three results are of this kind. For the rest of the paper, p and q denote two arbitrary natural numbers.

Theorem 4. The density matrix of the tensor product of two graphs on p and q vertices is separable in $C^p \otimes C^q$.

Proof. Let G be a graph on p vertices and H be a graph on q vertices, with density matrices $\sigma(G)$ and $\sigma(H)$ respectively. By Theorem 8 of [11], it is enough to prove that matrices A^{ij} of $\sigma(G \otimes H)$ are line sum symmetric. Any matrix A^{ij} is symmetric and so is sum line symmetric. Clearly we need only to show that the matrices M^{ij} of $M(G \otimes H)$ are line sum symmetric, for $i \neq j$. Since $M(G \otimes H) = M(G) \otimes M(H)$, so each M^{ij} are equal to a multiplier of $M(H)$. Since $M(H)$ is symmetric, we are done. □

Next we can decide on separability of the density matrix of two special graphs, namely the complete graph K_n on n vertices, and the star graph $K_{1,n-1}$ (see [2] for details).

Proposition 5. (i) For $n = pq$, the density matrix $\sigma(K_n)$ is separable in $C^p \otimes C^q$.

(ii) The density matrix of the star graph $K_{1,n-1}$ on $n = pq \geq 4$ vertices is entangled in $C^p \otimes C^q$.

Proof. (i) Again note that for each of matrices A^{ij} of $\sigma(K_n)$, the l-th row sum is equal to the l-th column sum, for $l = 1, \ldots, n$. Indeed, since the graph K_n is complete, all elements in $\sigma(K_n)$, except for the diagonal elements, are equal to -1, and we are one.

(ii) Let $G = K_{1,n-1}$. It is obvious that in $\sigma(G)$, for $i, j = 2, \ldots, p, A^{ij}$ is equal to $I_q,$ if $i = j,$ and 0, otherwise. By Theorem 3 of [11], it is enough to show that there exists a row in $\sigma(G)^Tb$ with a nonzero row sum. Consider $(p - 1)q + 1$-th row. But this row sum is clearly the summation of the first row sums of matrices $(A^{pq})^T$, for $j = 1, \ldots, p$. This last sum is now easily seen to be equal to $-q + 1 < 0$, therefore, for $pq \geq 4$, $G = K_{1,n-1}$ is entangled in $C^p \otimes C^q$. □

Definition 6. An e-matching is a matching having all edges entangled [2]. Each vertex of an e-matching on $n = pq$ vertex can be labelled by an ordered pairs (i, j), where $1 \leq i \leq p$ and $i \leq j \leq q$. A pe-matching of a graph G is an e-matching spanning $V(G)$.

Theorem 7. Let G be a graph on $n = 2p$ vertices. If all the entangled edges of G belong to the same pe-matching, then $\sigma(G)$ is separable in $C^2 \otimes C^p$.

Proof. Let G be as above, we may divide G into two graphs, consisting of all separable edges and all entangled edges, respectively. Let’s call the second graph H. It is enough to show that H is separable.
The density matrix $\sigma(H)$ contains matrices $A^{11} = A^{22} = I_q$, A^{12} and A^{21}. Since the entangled edges of G form a pe-matching, so each row or column of matrices A^{12} and (A^{21}) has one -1 and all others zero. By Theorem 7 of [11], H is separable in $C^2 \otimes C^p$, and we are done. □

References

[1] S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, R. Schack, Phys. Rev. Lett. 83, 1054 (1999).
[2] S. L. Braunstein, S. Ghosh, S. Servini, quant-ph/0406165.
[3] S. L. Braunstein, S. Ghosh, S. Servini, T. Mansour, R.C. Wilson, quant-ph/0508020.
[4] G. Godsil, G. Royle, Algebraic graph theory, Graduate Texts in Mathematics 207, Springer-Verlag, N.Y., 2001.
[5] P. Horodecki and A. Ekert, quant-ph/0111064.
[6] P. Horodecki, Phys. Lett. A 232, 333 (1997).
[7] M. Horodecki and P. Horodecki, Phys. Rev. A 59, 4206 (1999).
[8] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A 223, 1 (1996).
[9] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000.
[10] A. Peres, Phys. Rev. Lett. 77, 1413 (1996).
[11] C. Wu, quant-ph/0508163.

Department of Mathematics, Tarbiat Modarres University, P.O.Box 14115-175, Tehran, Iran

E-mail address: rahiminia@modares.ac.ir, mamini@modares.ac.ir