Post-Quantum Cryptography: A Zero-Knowledge Authentication Protocol

J.P. Hecht

1Universidad de Buenos Aires, Facultades de Ciencias Económicas, Ciencias Exactas y Naturales e Ingeniería, Maestría en Seguridad Informática, Buenos Aires, Argentina

Keywords Post-Quantum Cryptography, PQC, ZKP, Zero-Knowledge authentication, Finite fields, Public-Key Cryptography

Abstract- In this paper, we present a simple bare-bones solution of a Zero-Knowledge authentication protocol which uses non-commutative algebra and a variation of the generalized symmetric decomposition problem (GSDP) as a one-way function. The cryptographic security is assured as long the GSDP problem is computationally hard to solve in non-commutative algebraic structures and belongs currently to the PQC category as no quantum computer attack is likely to exists.

I. INTRODUCTION

Post-quantum cryptography (PQC) has achieved an official NIST (USA) status [1][2] and its principal purpose is to find cryptographic protocols that resist quantum attacks like Shor’s algorithm [3], which theoretically solves some one-way trap functions in polynomial time like the integer factorization problem (IFP) and the discrete logarithm problem (DLP) in numerical fields. But this is not the only reason behind the development of this new kind of solutions, they pretend to defend against recent developments of quasi-polynomial algorithms for solving the low characteristic discrete logarithm problem [4] and to prevent attacks against pseudorandom bit generators [5], vastly used by current numeric field based algorithms of asymmetric cryptography.

Since the beginning of the past decade, a great number of post-quantum proposals were formulated [6]. Among them, many non-commutative and non-associative algebraic solutions stand out [7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24].

Zero-Knowledge authentication is fully described in references like [25][26][27][28][29][30], and no attempt is made here to explain such details. Our purpose is simply to present a plain sketch of a potential PQC solution.

II. GENERAL DESCRIPTION

The protocol works with the general linear group [31] $GL(d, F_p)$, where $d \in \mathbb{Z}$ and p is a prime. Being a non-commutative group, it is mandatory to find commutative substructures inside to develop asymmetric protocols. There are, beside others, three simple ways to achieve it [32].

We use here the second way, that is the fact that two matrices commute if/they share the same orthogonal basis [33].

Suppose we start with two full ranked diagonal matrices and conjugate both with any non-singular same order square matrix; then those similar matrices commute.

As an example, we choose $d=8$ and F_{251} operations. An extensive description of $GL(8, F_{251})$ is given in [32].

III. GSDP PROBLEM

The Generalized Symmetric Decomposition Problem (GSDP) could be stated [13] as

Given G a non-commutative group and S a (hidden) commutative subgroup, knowing $(x, y) \in G$ and $(m, n) \in \mathbb{Z}^2$, find $z \in S$ where $y = z^m x z^n$

(1)

Neither a polynomial-time solution for (1) is currently known nor any quantum computing based attack seems feasible is likely to exist. Of course, this statement is only a conjecture and is far from being proved. On the other side, no currently proposed and accepted PQC solution [1], has attained today a mathematical proved status.

IV. ZKP PROTOCOL

STEP 0 – AGREEMENT

A community of entities (individually called provers and verifiers, where roles could be changed at will) agrees over the use the general linear group $GL(8, F_{251})$. Definitions of M_9, P_8 and other symbols are stated in [32].

Besides they agree about the following public parameters:

$$(P, G) \in_R M_9^2$$

$(m, n) \in_R \mathbb{Z}^+^2$

(2)

A reasonable upper limit for random integers in that space $(d=8, p=251)$ could be 65536. It is of interest that each selected random matrix should have a high multiplicative order, a feature associated with the irreducibility (or better primitivity) of the characteristic polynomial in the simple algebraic extension $F_{251}[x]$ [31].
STEP 1 – PRIVATE AND PUBLIC KEYS
Each entity (Alice, Bob, ...) should define a private key generating a random diagonal matrix with non-repeating values chosen in \mathbb{Z}_{251}.

Select unique valued set $(\lambda_1, ..., \lambda_b) \in \mathbb{Z}_{251}$ (3)

And with each diagonal matrix obtained $(D_a, D_b, ...)$ generate the private key:

$$(A, B, ...) \text{ private keys } \in P_b$$
$$A = PD_1B^{-1}, B = PD_2B^{-1}, ...$$ (4)

Clearly private keys and their powers commute. Now, using one-way GSDP the corresponding public keys are derived:

$$(G_a, G_b, ...) \text{ public keys } \in M_b$$
$$G_A = A^m G^A, G_B = B^m G^B, ...$$ (5)

STEP 2 – WITNESS (Alice as prover, Bob as verifier)
Alice generates the witness S and sends it to Bob.

$$k \in R \mathbb{Z}^+$$
$$S = A^k G^B A^{-m} \implies$$ (6)

STEP 3 – CHALLENGE
Bob generates challenge bit b and question Q, and send both to Alice.

if $b = 0$ then $R \in M_b$ and $Q = B^m H^B$ (7)
if $b = 1$ then $Q = B^m S G_A B^{-n}$ (7)

STEP 4 – RESPONSE
Alice generates response R and sends it to Bob.

if $b = 0$ then $R = S^{-m} Q$ S^{-n} (8)
if $b = 1$ then $R = A^{-k} Q A^{-m}$ (8)

STEP 5 – IDENTIFICATION VALIDATION
Bob verifies response R and accepts or rejects Alice identity.

if $b = 0$ accept if $Q = S^m R$ S^n
if $b = 1$ accept if $G_A G = B^{-m} R B^{-n}$ (9)

If rejection occurs in the last step, Bob forces the repetition of steps 2 to 5 until he is fully satisfied with Alice’s identity. Else he rejects the prover’s identity. Observe that no secret keys are revealed unless GSDP is solved. Validation is justified according to

if $b = 0$ then $S^m R$ $S^n = S^m S^{-m} Q$ S^{-n} (10)
if $b = 1$ then $B^{-m} R$ $B^{-n} = B^{-m} A^{-k} Q A^{-m} B^{-n}$

If $b=0$, to impersonate Alice no private key is needed, as the fake Alice forges any S^* that Bob validates. But if $b=1$, it is mandatory to use the private key of Alice to be validated. It would be a bad strategy for Bob to replace a random bit with $b=1$ in any round, as any entity could consistently impersonate Alice using a slight variation of the simulator algorithm [25][28], which is explained in the next section.

V. ZKP CONDITION

An interactive authentication protocol fulfills ZKP condition iff it complies with three properties: Completeness, Soundness and Zero-Knowledge [25][28].

The first condition could be proven considering that any entity possessing Alice’s private key could be verified by Bob, whatever challenges he receives. So, any honest verifier will accept Alice’s identity. Of course, only the true Alice would be in condition of always providing right answers.

The second condition implies that a dishonest prover and an honest verifier will fail in half of the rounds, specifically when he receives a $b=1$ challenge. Suppose Mallory is such an entity, he invents a random private key A^* belonging to P_k. If he receives $b=0$ as a challenge, it suffices to generate a random S^* witness, as said before. But if $b=1$ is the challenge, he works out a fake witness and responses $S^* = A^* G^B A^{-m}$ and $R^* = A^* k Q A^{-m}$.

If $b=0$, to impersonate Alice no private key is needed, as the fake Alice forges any S^* that Bob validates. But if $b=1$, it is mandatory to use the private key of Alice to be validated. It would be a bad strategy for Bob to replace a random bit with $b=1$ in any round, as any entity could consistently impersonate Alice using a slight variation of the simulator algorithm [25][28], which is explained in the next section.

Clearly the public key of Alice does not match or simplify the faked private key of Mallory.

The third condition states that the protocol has the ZKP property iff there exists a simulator algorithm [25][28] that mimics valid session reports with faked values, fully undistinguishable from the true ones. A simulator algorithm is presented here.

1. SELECT CHALLENGE BIT AND GENERATE A WITNESS
Make random bit $b \in \{0, 1\}$
if $b=0$ Generate random witness $S^* G_A M_S$
if $b=1$ Generate witness $S^* G_A G_1$

2. RECEIVE CHALLENGE
if $b=0$ Generate random $*Q \in \mathbb{E}_K M_S$
if $b=1$ $Q = B^m S G_B B^{-n} = B^m G^B G(G_1 G_0 B^{-n} = B^m G^B G_B S^* G_A G_1 G_0 B^{-n} = G_A A^{-m} A^m G^B A^{-n} B^{-n}$

Clearly the public key of Alice does not match or simplify the faked private key of Mallory.

The third condition states that the protocol has the ZKP property iff there exists a simulator algorithm [25][28] that mimics valid session reports with faked values, fully undistinguishable from the true ones. A simulator algorithm is presented here.

1. SELECT CHALLENGE BIT AND GENERATE A WITNESS
Make random bit $b \in \{0, 1\}$
if $b=0$ Generate random witness $S^* G_A M_S$
if $b=1$ Generate witness $S^* G_A G_1$

2. RECEIVE CHALLENGE
if $b=0$ Generate random $*Q \in \mathbb{E}_K M_S$
if $b=1$ $Q = B^m S G_B B^{-n} = B^m G^B G(G_1 G_0 B^{-n} = B^m G^B G_B S^* G_A G_1 G_0 B^{-n} = G_A A^{-m} A^m G^B A^{-n} B^{-n}$

3. GIVE RESPONSE
if $b=0$ $*R = S^* G_B G^B G_A G_1 G_0 B^{-n}$
if $b=1$ $R = Q$

4. VERIFY AND REGISTER SESSION
if $b=0$ $*S^* G_B G^B G_A G_1 G_0 B^{-n}$
if $b=1$ $B^m R B^{-n} = (B^m B^{-n}) G^B G(B^m B^{-n}) = G^B G$

Append in order the 4-tuple (S, Q, b, R) to the sesión log.

5. ITERATE 1 TO 4 MANY TIMES

Clearly no verifier would accept the identity extracted from the simulation protocol as he does not generate the random challenge and otherwise it would verify only half of the round sessions.
Because public keys, witness, challenge question and response are GSIPD strongly protected, a natural way to defeat this protocol would be a brute-force attack over the private keys space. The cardinal involved is:

\[|P_8| = 249,248,247,246,245,244,243,242 = 1319048178699144320 \approx 10^{19} \approx 2^{64} \]
(12)

This implies for \(d=8, p=251 \) a security of 64 bits, and this level could be easily increased using higher dimensions. For example, \(d=16, p=251 \) provides a security of 127 bits. Other details could be found at [29][30][32].

VII. CONCLUSION

It is presented here a sketch of a ZKP protocol using a non-commutative algebraic structure and \(Z_{251} \) arithmetic. In the presented protocol, the security and the hiding of the private elements rely on the GSIPD one way function, which belongs, as conjectured, to the PQC family.

REFERENCES

[1] L. Chen et al, NISTIR 8105, Report on Post-Quantum Cryptography, NIST, 2006. http://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf (consulted February10, 2017)
[2] D. Moody, Update on the NIST Post-Quantum Cryptography Project, 2016. http://csrc.nist.gov/groups/SMA/ispah/ (consulted February10, 2017)
[3] P. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer”, SIAM J. Comput., no. 5, pp. 1484-1509, 1997.
[4] R. Barbulescu, A Heuristic Quasi-Polynomial Algorithm for Discrete Logarithm in Finite Fields of Small Characteristic, 2016. https://www.researchgate.net/publication/239524620_A_Heuristic_Quasi-Polynomial_Algorithm_for_Discrete_Logarithm_in_Finite_Fields_of_Small_Characteristic (consulted February10, 2017)
[5] B. Schneier, The Strange Story of Dual_EC_DRBG, 2007 https://www.schneier.com/blog/archives/2007/11/the_strange_sto.html (consulted February10, 2017)
[6] P. Barreto, “Introdução à criptografia pós-quântica”, Minicursos do XIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2013, Cap 2, 2013.
[7] Mahalanobis A., The Diffie-Hellman key exchange protocol and non-abelian groups, Preprint arXiv/math.gr, 0602282v3 (2007)
[8] Shpilrain V., Zapata G.: Combinatorial group theory and public-key cryptography, Preprint arXiv/math.gr, 0410058 (2004)
[9] L. Gerritzen et al (Editors), Algebraic Methods in Cryptography, Preprint arXiv/math.gr, 0410068 (2004). (consulted February10, 2017)
[10] V. Shpilrain and G. Zapata, “Combinatorial group theory and public-key cryptography”, Preprint arXiv/math.gr, no. 0410068, 2004. (consulted February10, 2017)
[11] K. Mahlburg, “An overview of braid group cryptography”, www.math.wisc.edu—boston/mahlburg.pdf, 2004. (consulted February10, 2017)
[12] E. Lee, “Braid groups in cryptography”, IEICE Trans. Fund., vol. E87-A, no.5, pp. 986-992, 2004.
[13] B. Eick and D. Kahrobaei, “Polycyclic groups: a new platform for cryptography”, Preprint arXiv/math.gr, no. 0411077, 2004. (consulted February10, 2017)
[14] A. Mahalanobis, “The Diffie-Hellman key exchange protocol and non-abelian nilpotent groups”, Preprint arXiv/math.gr, no. 0602282v3, 2007. (consulted February10, 2017)
[15] V.A. Shecherbacov, Quasigroups in cryptography, Computer Science Journal of Moldova, 17:2, 50, 2009.
[16] S. Maglaveras, D. Stinson and T. van Trung, “New approaches to designing public key cryptosystems using one-way functions and trapdoors in finite groups”, Technical Report CORR, pp. 2000-2049, 2000.
[17] U. Feige, A. Fiat and A. Shamir, “Zero Knowledge proofs of identity”, Proceedings 19th annual ACM symposium on theory of computing, pp. 210-217, 1987.
[18] O. Goldreich, “Modern cryptography, probabilistic proofs and pseudorandomness”, Springer Verlag, 1999
[19] T. Thomas and A. Lal, “A Zero-Knowledge undeniable signature scheme in non-abelian group setting”, International Journal of Network Security, vol. 6, 3, pp. 265-269, 2008.
[20] G. Simari, “A primer on zero knowledge protocols”, Universidad Nacional del Sur, vol. 6, no. 27, pp. 1-12, 2002.
[21] P. Hecht, A Zero-Knowledge authentication protocol using non-commutative groups, Actas del VI Congreso Iberoamericano de Seguridad Informática CIBSI’11, 96-102, 2011.
[22] P. Hecht, Zero-Knowledge Proof Authentication using Left Self Distributive Systems: a Post-Quantum Approach, Actas del VIII Congreso Iberoamericano de Seguridad Informática CIBSI’15, 113-116, 2015.
[23] R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, Cambridge, 1997.
[24] P. Hecht, Post-Quantum Cryptography(PQC): Generalized ElGamal Cipher over GF(251^8), Preprint, http://arxiv.org/abs/1702.03587, 6pp, 2017.
[25] T. Beth et al., “Encyclopedia of Mathematics and its Applications”, Vol 69: “Design Theory”, 2nd. Ed, Cambridge University Press, 1999

Pedro Hecht received an MSci in Information Technology at Escuela Superior de Investigación Operativa and an PhD degree from Universidad de Buenos Aires (UBA). Currently, he is full professor of cryptography at Information Security Graduate School at UBA, EST (Army Engineering School) and IUPFA (Federal Police University), he is research fellow UBACyT and Director of EUDEBA editorial board of UBA.