The nucleon mass and pion-nucleon sigma term from a chiral analysis of lattice QCD world data

L. Alvarez-Ruso,1,‡ T. Ledwig,2,§ J. Martin Camalich,3,† and M. J. Vicente-Vacas2,∗

1Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia-CSIC, E-46071 Valencia, Spain
2Department of Physics and Astronomy, University of Sussex, BN1 9QH, Brighton, UK
3Department of Physics, University of Salamanca, 37008 Salamanca, Spain

The nucleon mass M_N is one of the fundamental observables in nature. It arises from the complex and not well understood quark-gluon dynamics in the non-perturbative regime of quantum chromodynamics (QCD). Nevertheless, important progress arises from the interplay of Chiral Perturbation Theory (χPT), the effective theory of QCD at low energies [1–4] and lattice QCD (lQCD) [5], in spite of the technical difficulties to perform lQCD simulation for light-quark masses close to the physical values. This strategy allows to extract some of the parameters of low energies [1–4] and lattice QCD (lQCD) [5], in spite of the technical difficulties to perform lQCD simulation for

I. INTRODUCTION

The nucleon mass M_N is one of the fundamental observables in nature. It arises from the complex and not well understood quark-gluon dynamics in the non-perturbative regime of quantum chromodynamics (QCD). Nevertheless, important progress arises from the interplay of Chiral Perturbation Theory (χPT), the effective theory of QCD at low energies [1–4] and lattice QCD (lQCD) [5], in spite of the technical difficulties to perform lQCD simulation for light-quark masses close to the physical values. This strategy allows to extract some of the parameters of low energies [1–4] and lattice QCD (lQCD) [5], in spite of the technical difficulties to perform lQCD simulation for

$$\sigma_{\pi N} = \frac{m^2}{2} \left(N \bar{u} d | N \right) ,$$

in the isospin limit $m_u = m_d = m \approx 4$ MeV. Using the Hellmann-Feynman (HF) theorem, $\sigma_{\pi N}$ can be related to M_N [5–10]

$$\sigma_{\pi N} = \frac{m}{2} \frac{\partial}{\partial m} M_N (m) .$$

Additionally, $\sigma_{\pi N}$ is the nucleon scalar form factor coming from light quarks at zero four-momentum transfer squared. As such, it enters quadratically in the scattering cross section of supersymmetric dark-matter particles with nucleons. Uncertainties in the determination of sigma-terms, including $\sigma_{\pi N}$, currently represent the largest source of error in direct dark-matter searches [11–13].

Traditionally, the pion-nucleon sigma term has been isolated by extrapolating πN-scattering data to the (unphysical) Cheng-Dashen point $(t = 2M^2_\pi)$, where s, t and u are the standard Mandelstam variables [14] using dispersive techniques. The results over the past three decades, $\sigma_{\pi N} = 49 \pm 8$ [15], $\simeq 45$ [16], 56 ± 9 [17], 64 ± 7 [18], 66 ± 6 [19], 43 ± 12 MeV [20], depend on the data used as input and on the extrapolation procedure. The lack of

1. Electronic address: alvarez@ific.uv.es
2. Electronic address: ledwig@ific.uv.es
3. Electronic address: j.camalich@sussex.ac.uk
4. Electronic address: convinced@ific.uv.es
5. Electronic address: vicente@ific.uv.es
6. In the case of Refs. [16, 17, 19], from the published value of the sigma-term at the Cheng-Dashen point $\sigma_{\pi N}(t = 2M^2_\pi)$ we have subtracted $\Delta_{\pi N} = \sigma_{\pi N}(t = 2M^2_\pi) - \sigma_{\pi N} = 15.2 \pm 0.4$ according to the dispersive analysis of Ref. [21]. Additionally, see Ref. [22] for the $\sigma_{\pi N}$-status before 1981.
consistency among the data sets as well as discrepancies between the parametrizations of the experimental data are a sizable source of systematic uncertainties.

In order to sort the systematic effects out, much effort has been made in the context of baryon χPT (BχPT). At a given order in the chiral expansion, BχPT allows to express both the nucleon mass (and $\sigma_{\pi N}$) and the πN-scattering amplitude in terms of the same unknown low-energy constants (LECs). The available experimental information on πN-scattering can be used to obtain these LECs. Such a program has encountered a number of difficulties. Unlike in the meson sector, in BχPT the power counting (PC) is violated by the presence of M_N as a heavy scale that does not vanish in the chiral limit. As a consequence, the loop diagrams do not fulfill the naive chiral order dictated by their topology \cite{31}. The solution to this problem flows from noticing that the genuine non-analytic chiral corrections indeed verify the PC, while the breaking pieces are analytic and can be renormalized into the LECs. Different approaches have been developed, including non-relativistic heavy-baryon (HB) \cite{32}, and the fully covariant infrared (IR) \cite{24} and extended-on-mass-shell (EOMS) \cite{24,26} schemes. In HBχPT, it was found that the convergence problems in some kinematic regions render the fits insensitive to the leading-order contribution to $\sigma_{\pi N}$. The poor convergence can be traced back to the fact that the HB limit modifies the analytic structure of the πN amplitude \cite{31}. To overcome the problems of HBχPT, the covariant formulations were developed. In the IR approach, loop functions are split into an infrared singular part which fulfills the PC and a regular part, containing the PC-breaking terms and higher order ones, which is dropped. An important drawback is that the IR scheme introduces unphysical cuts \cite{24} which can have disruptive effects in low-energy phenomenology \cite{27,28}. After applying this method to $\mathcal{O}(p^4)$, Becher and Leutwyler concluded that the IR chiral representation of the πN-scattering amplitude is a good approximation only in the subthreshold region so that no reliable determination of the sigma term could be performed from data in the physical region \cite{24}. In the EOMS, the PC is restored by renormalizing the finite number of PC-breaking terms. In this way, the analytic structure of the theory is preserved. Two recent EOMS studies of πN scattering at order p^3 \cite{30} and p^4 \cite{31} have achieved a good description of the data and improved convergence.

A different complication concerns the treatment of the $\Delta(1232) 3/2^+$ resonance which is only ~ 300 MeV heavier than the nucleon and couples strongly to the πN system. In χPT, the $\Delta(1232)$ is often treated as a heavy state whose influence in the observables is encoded in some of the LECs but, aiming at a more realistic description, it has often been taken explicitly into account. In order to include the $\Delta(1232)$ as a degree of freedom one needs to define a suitable PC for the new scale $\Delta = M_\Delta - M_N$ \cite{32,33}, and to treat the so-called consistency problem afflicting interacting spin-3/2 fields \cite{36,37} and references therein). The importance of explicitly including the $\Delta(1232)$ in BχPT has been stressed by a recent analysis of the πN-scattering amplitude performed in the EOMS scheme \cite{30,31,34}. It was shown that the inclusion of the Δ resonance in a covariant framework is essential for a reliable extrapolation to the Cheng-Dashen point \cite{36}. The resulting values of $\sigma_{\pi N}$ are in the 40-60 MeV interval, depending on the partial-wave analysis used as input and in agreement with those obtained by dispersive techniques \cite{35}. Although a value of $\sigma_{\pi N} = 59 \pm 7$ MeV \cite{35} becomes eventually favored on the grounds of consistency with πN phenomenology, an important conclusion of these works is that further efforts are required to understand the possible systematic errors in the πN scattering data.

Another way towards the determination of the πN sigma term is provided by IQCD studies. Two different procedures have been used. In the first one, the matrix element in Eq. \ref{eq:1} is directly obtained and extrapolated to the physical values of the quark masses. The second procedure consists of using Eq. \ref{eq:2}, after a suitable extrapolation of IQCD results for M_N down to the chiral limit. The latter has been favored because of the technical difficulties that arise in the direct determination of disconnected contributions to $\sigma_{\pi N}$.

The last decade has witnessed an impressive development of IQCD simulations. Results with two fully dynamical light (as light as possible) degenerate fermions ($N_f = 2$) or with two degenerate light and one heavy (close to the physical strange-quark mass) flavor ($N_f = 2 + 1 + 1$) (including dynamical c-quarks) has been reported \cite{36}. Baryon χPT provides a natural framework to extrapolate lattice data for M_N with heavy quarks down to the physical and chiral limits, provided that the quark masses are small enough to warrant its applicability. In the context of HBχPT with a cut-off regularization it was already realized that non-analytic terms were important \cite{38,39}. The quark-mass dependence of M_N has also been investigated with $SU(2)$ χPT to $\mathcal{O}(p^4)$ without explicit Δ \cite{40} using phenomenological information to constrain the input parameters. Baryon χPT also allows to take finite lattice-volume corrections into account, as it was done for M_N in Ref. \cite{41}. A more complete $\mathcal{O}(p^4)$ χPT study \cite{42} included the leading $\mathcal{O}(p^4)$ contribution of the Δ resonance with the small-scale expansion and HB approximation. According to this work, the introduction of $\Delta(1232)$ as a propagating degree of freedom is not crucial for M_N. This is in contrast with the findings of Ref. \cite{43} made with the EOMS scheme up to $\mathcal{O}(p^4)$.

More recently, the M_N dependence of new $N_f = 2$ IQCD data for M_N has been investigated with HBχPT \cite{44} and χPT without explicit Δ degrees of freedom \cite{45,50}. The results for $\sigma_{\pi N}$ range from 37 to 67 MeV. In the case of Ref. \cite{44}, a direct measurement of $\sigma_{\pi N}$ \cite{51} was incorporated to the fit, which allowed to increase the precision. Furthermore, three new direct determinations of $\sigma_{\pi N}$ have also been performed applying noise reduction techniques
for a better determination of the disconnected contribution [52].

Several collaborations have pursued lQCD simulations of the masses and \(\sigma_{\pi N} \) using \(N_f = 2 + 1 \) configurations [53, 54]. The extrapolation to the physical point allows to determine \(\sigma_{\pi N} \) together with other sigma terms and strangeness content of baryons. The difficulties encountered in HB\(\chi \)PT [55, 65] to accomplish this program were overcome applying cut-off regularization schemes [66, 67], using covariant formalisms up to \(O(p^4) \) [68, 70] and \(O(p^4) \) [71, 72], or complementing HB\(\chi \)PT with an expansion in the inverse number of colors (large-\(N_c \)) [73, 74, 77]. Although SU(3)-flavor calculations have reached a considerable degree of maturity, the large number of unknown LECs at \(O(p^4) \) and the size of the current lQCD data set limits, at present, on the accuracy attainable in the sigma terms.

Alternatively, SU(2) B\(\chi \)PT can be used to perform extrapolations of \(M_N \) and \(\sigma_{\pi N} \) in the light-quark masses with the implicit assumption that the influence of the strange quark is embedded in the LECs and that its mass in the simulations is close enough to the physical one. The chiral expansion is expected to converge faster than in SU(3) B\(\chi \)PT and the different LECs appearing at \(O(p^4) \) can be independently determined using \(\pi N \) scattering. On the other hand, in comparison with the \(N_f = 2 \) simulations in which the strange quark is quenched, the extrapolated quantities from \(N_f = 2 + 1 \) should be closer to those in the physical world. Analyses of \(N_f = 2 + 1 \) simulations with SU(2)-HB\(\chi \)PT ansatzes at \(O(p^4) \) and without \(\Delta(1232) \) have become standard [63, 78]. In particular, with HB\(\chi \)PT up to \(O(p^4) \) it was found that \(\sigma_{\pi N} = 84 \pm 17 \pm 20 \) MeV with explicit inclusion of the \(\Delta \) resonance, and \(\sigma_{\pi N} = 42 \pm 14 \pm 9 \) MeV without it [77]. While the inclusion of the \(\Delta \) had little impact on the value of nucleon mass in the chiral limit, the central value of the sigma term changed by a factor of 2. It was also pointed out that the lattice data exhibited a surprisingly linear dependence on \(M_\pi \) for a graph with \(L \) loops, \(N_\pi \) internal pions, \(N_N \) internal nucleons, \(N_\Delta \) internal \(\Delta \)-isobars and \(V_k \) vertices from a \(\mathcal{L}^{(k)} \) Lagrangian. In Fig. 4 we collect all one-particle irreducible diagrams that fulfill, after a suitable renormalization, Eq.

\[n = 4L - 2N_\pi - N_N - N_\Delta + \sum_k kV_k \]

\[(3) \]

2 The constant \(B \) is proportional to the chiral quark condensate.
up to $n = 4$ [$O(p^4)$] and list in App. A all relevant χPT Lagrangians. Among the Δ-isobar contributions, the graphs $\Sigma_{N\Delta a}$ and $\Sigma_{N\Delta b}$ originate from the $L_{\pi N \Delta}^{(2)}$ Lagrangian [31]. It was shown in Ref. [31] for the $B\chi$PT case that these couplings are redundant and can be absorbed in the LECs of $L_{\pi N}^{(2)}$ and $L_{\pi \pi N \Delta}^{(1)}$. The $B\chi$PT expressions are the leading order contributions to covariant $B\chi$PT results which implies that these two diagrams start to contribute at $O(p^4)$. We do not include them in our $O(p^4)$ calculation. Additionally, the πN scattering analysis [31] performed explicitly fits with and without these terms and found strong arguments to support that these redundancies also carry over to the covariant case.

To calculate the remaining diagrams we apply the EOMS renormalization-scheme [24, 25] which uses the analyticity of the power-counting breaking terms to overcome the power-counting problem found in [3]. Explicitly, we calculate these diagrams in the dimensional regularization for $D = 4 - 2\varepsilon$ dimensions and renormalize terms proportional to $L = -\frac{\varepsilon}{2\varepsilon} + \gamma_E - \ln 4\pi$ (MS-scheme). Subsequently, we renormalize the appearing LECs in such a way that power-counting breaking terms are canceled.

A. Nucleon self-energy and the perturbative nucleon mass

The nucleon physical mass M_N is defined by the pole position at $\hat{p} = M_N$ of its full propagator

$$\frac{1}{\hat{p} - M_0 - \Sigma(\hat{p})} \ , \quad (4)$$

where $\Sigma(\hat{p})$ and M_0 are the nucleon self-energy and the (chiral limit) bare mass. In order to define a perturbative nucleon mass, we expand $\Sigma(\hat{p})$ around $\hat{p} = M_0$:

$$\Sigma(\hat{p}) = \Sigma(M_0) + (\hat{p} - M_0) \left. \frac{\partial}{\partial \hat{p}} \right|_{\hat{p} = M_0} \Sigma(\hat{p}) + \frac{1}{2} (\hat{p} - M_0)^2 \left. \frac{\partial^2}{\partial \hat{p}^2} \right|_{\hat{p} = M_0} \Sigma(\hat{p}) + ... \quad (5)$$

and write the propagator as

$$\frac{1}{\hat{p} - M_0 - \Sigma(\hat{p})} = \frac{1}{\hat{p} - M_0 - \Sigma(M_0)} \left. \frac{\Sigma(\hat{p})}{1 - \Sigma'(M_0)} \right|_{\hat{p} = M_0} \frac{1}{1 - \Sigma'(M_0)} \quad . \quad (7)$$

Equation (7) defines now the nucleon mass by the pole at $\hat{p} = M_N$

$$M_N = M_0 + Z \Sigma(M_0) + Z R(M_N) \ , \quad (8)$$

together with its residue

$$Z = \frac{1}{1 - \Sigma'(M_0)} \ . \quad (9)$$

Using the $B\chi$PT self-energies up to order p^4 of App. B gives:

$$\Sigma_{p^4}(\hat{p}) = \Sigma^{(2)}(\hat{p}) + \Sigma^{(3)}(\hat{p}) + \Sigma^{(4)}(\hat{p}) \quad (10)$$

$$= \Sigma^{(2)}(\hat{p}) + \Sigma^{(3)}(M_0) + \Sigma^{(4)}(M_0) + (\hat{p} - M_0) \left[\Sigma^{(3)'}(M_0) + \Sigma^{(4)'}(M_0) \right] + R(\hat{p}) \ , \quad (11)$$

$$Z = 1 + \Sigma^{(3)'}(M_0) + O(p^3) \ , \quad (12)$$

Figure 1: One-particle irreducible contributions to the nucleon self-energy up to $O(p^4)$. Single solid lines denote nucleons, double solid lines, Δ-isobars and dashed lines, pions. Boxes represent the pion-nucleon and contact vertices where the number specifies the chiral order.
where the upper indices denote the chiral order. Only the contact term $\Sigma_{C2} = -4c_1m^2_\pi$ enters in $\Sigma^{(2)}$ so it does not depend on \hat{p}. Inserting Eq. (11) in Eq. (8) one gets the nucleon mass up to order p^3:

$$M_N^{(4)}(m^2_\pi) = M_0 + \Sigma_{C2}(m^2_\pi) + \Sigma_{N3}(m^2_\pi) + \Sigma_{N\Delta3}(m^2_\pi) + \Sigma_{N4}(m^2_\pi) + \Sigma_{T4}(m^2_\pi) + \Sigma_{C4}(m^2_\pi) + \Sigma_{C2}(m^2_\pi) \Sigma'_{N3}(m^2_\pi) + \Sigma_{N\Delta4}(m^2_\pi) + \Sigma_{C2}(m^2_\pi) \Sigma'_{N\Delta3}(m^2_\pi) + O(p^5) ,$$

where all loops are evaluated at $\hat{p} = M_0$. The term $R(M_N)$ contributes only at $O(p^5)$. The first line of Eq. (13) corresponds to the p^3 nucleon mass while the second and third lines are the additional p^4 contributions; the notation of the different terms matches the one of the diagrams in Fig. 1. All Σ_i are obtained from the Lagrangians in App. A and are explicitly given in App. B. There are 10 low energy constants, namely, $f_{\pi0}, g_{A0}, c_1, c_2, c_3, h_{A0}, M_0, M_{\Delta0}, c_{\Delta}, \alpha$. Most of them are constrained by experimental data. More details about their treatment are given below.

B. Nucleon mass, $\sigma_{\pi N}$-term and fit formula

Applying the HF theorem

$$\sigma_{\pi N}(m^2_\pi) = m^2_\pi \frac{\partial}{\partial m^2_\pi} M_N(m^2_\pi) = m^2_\pi \frac{\partial}{\partial m^2_\pi} M_N(m^2_\pi) (14)$$

to Eq. (13) one obtains,

$$M_N^{(4)}(m^2_\pi) = M_0 - c_1 4m^2_\pi + \frac{1}{2} a m^4_\pi + \Sigma_{\text{loops}}^{(3)+ (4)}(m^2_\pi, M_0, M_{\Delta0}, f_{\pi0}, g_{A0}, h_{A0}, c_i),$$

$$\sigma_{\pi N}^{(4)}(m^2_\pi) = -4c_1 m^2_\pi + a m^4_\pi + \frac{1}{2} a m^4_\pi \frac{\partial}{\partial m^2_\pi} \Sigma_{\text{loops}}^{(3)+ (4)}(m^2_\pi, M_0, M_{\Delta0}, f_{\pi0}, g_{A0}, h_{A0}, c_i),$$

with $c_i = c_1, c_2, c_3, c_{\Delta}$. The $\sigma_{\pi N}^{(4)}$ can also be obtained from a direct calculation of the nucleon scalar form factor Eq. (9) at zero four-momentum transfer squared. We have checked that Eq. (14) can be mapped term by term to such a calculation, i.e. that our formulas with full, non-expanded loops fulfill the HF theorem.

To apply Eqs. (15, 16) with a p^3 accuracy, we cannot identify the physical (or lattice) pion mass M_π with the lowest order m_π ($M^2_\pi = m^2_\pi = 2BM\pi$) but must take the next order into account. According to the well known expansion (2),

$$M^2_\pi(m^2_\pi) = m^2_\pi + \frac{2l_3^{(2)}(A^2)}{f^2_{\pi0}} m^4_\pi + \frac{1}{32\pi^2 f^2_{\pi0}} M^2_\pi \ln m^2_\pi \frac{L^2}{A^2} + O(p^6),$$

where $l_3^{(2)}(A^2)$ is a renormalized scale-dependent LEC coming from the meson χPT Lagrangian. Therefore

$$M_N^{(4)}(M^2_\pi) = M_0 - c_1 4M^2_\pi + \frac{1}{2} a M^4_\pi + \frac{c_1}{8\pi^2 f^2_{\pi0}} M^4_\pi \ln \frac{M^2_\pi}{M^2_0} + \Sigma_{\text{loops}}^{(3)+ (4)}(M^2_\pi, M_0, M_{\Delta0}, f_\pi, g_A, h_A, c_i) + O(p^5),$$

$$\sigma_{\pi N}^{(4)}(M^2_\pi) = -4c_1 M^2_\pi + a M^4_\pi - \frac{c_1}{8\pi^2 f^2_{\pi0}} M^4_\pi \ln \frac{M^2_\pi}{M^2_0} + \frac{1}{32\pi^2 f^2_{\pi0}} M^2_\pi \ln \frac{M^2_\pi}{M^2_0} + \frac{1}{2} a M^4_\pi \frac{\partial}{\partial \Lambda^2} \Sigma_{\text{loops}}^{(3)+ (4)}(M^2_\pi, M_0, M_{\Delta0}, f_{\pi0}, g_A, h_A, c_i) + O(p^5),$$

with

$$\Lambda = \alpha c_1 \frac{16\pi^2}{f^2_{\pi0}} l_3^{(2)}(M^2_0).$$

Equation (18) is our final formula for $O(p^3)$ χPT fits to πQCD data. The effect of Eq. (17) is an additional $O(p^4)$ term proportional to c_1 and a redefinition of $\alpha \rightarrow \bar{\alpha}$ which will be a fit parameter. Furthermore, we adopt the physical values of $f_\pi = 92.4$ MeV and $g_A = 1.267$ instead of the chiral limit ones and set the renormalization scale to $\Lambda = M_0$. The differences between the chiral limit and physical values are of order p^2 so that they start to contribute at $O(p^5)$. In the case of $\sigma_{\pi N}^{(4)}(M^2_\pi)$ we cannot absorb all terms proportional to $l_3^{(2)}(M^2_\pi)$ in the LECs and shall need a numerical value for it. From the latest estimate of $l_3(M_\pi) = \ln \frac{M^2_\pi}{M^2_\pi}$ at the physical point $l_3(139 \text{ MeV}) = 3.2(8)$ (2) we has:

$$l_3^{(2)}(A^2) = \frac{1}{64\pi^2} \left(l_3(M_\pi) + \ln \frac{M^2_\pi}{A^2} \right) = \frac{1}{64\pi^2} \left(3.2(8) + \ln \frac{M^2_{\pi (\text{phys})}}{A^2} \right),$$

where we set $M_{\pi (\text{phys})} = 139$ MeV.
After fixing \(f_\pi \) and \(g_{A0} \), we discuss our treatment of the remaining eight LECs, \(c_1, c_2, c_3, M_0, \bar{\pi}, M_{A0}, h_{A0}, \) and \(c_{1\Delta} \). Generally, our fits depend very mildly on variations in \(c_2, c_3, M_{\Delta0}, h_{A0}, \) and \(c_{1\Delta} \). Furthermore, we observe that changes in \(c_{1\Delta} \) are compensated by changes in \(\pi \). Our strategy is, therefore, to fit \(M_0, c_1, \bar{\pi} \) while keeping \(c_2, c_3, M_{\Delta0}, h_{A0}, \) and \(c_{1\Delta} \) fixed. The nucleon-related LECs \(c_2 \) and \(c_3 \) are taken from the \(\pi N \)-scattering analysis of Ref. [58], performed with the same BχPT framework employed here. More specifically, we take as central values the average of the results of fits to the phase shifts from the Karlsruhe-Helsinki group (KA85) and the George Washington University group (WI08), accepting errors defined by their uncertainties and also by the result of the fit to Matsinos phase shifts (EM06) (see Tables 1 and 2 of Ref. [30]) \(^3\). The specific figures for both the \(\Delta \)-BχPT and \(\Delta \)-BχPT cases are given in Table I.

In order to fix the \(\Delta \)-related LECs, \(M_{\Delta0}, c_{1\Delta} \) and \(h_A \), we consider the pion-mass dependence of the \(\Delta \)-isobar mass. Up to \(\mathcal{O}(p^3) \) it reads [46]

\[
M_{\Delta}^{(3)}(\pi) = M_{\Delta0} - 4 c_1 M_0^3 + \Sigma_{\Delta N3}(M_\pi; h_A, f_\pi, M_N, M_{\Delta0}) + \Sigma_{\Delta\Delta3}(M_\pi; H_A, f_\pi, M_{\Delta}) ,
\]

(22)

where the loop contributions \(\Sigma_{\Delta N3} \) and \(\Sigma_{\Delta\Delta3} \) stand for diagrams like \(\Sigma_{N3} \) and \(\Sigma_{\Delta N3} \) in Fig [1] but with external nucleon lines replaced by \(\Delta(1232) \) ones. The explicit expressions are given in App. B. As stated above, we are allowed to take phenomenological values for the LECs in these loops. In this way, one uses the phenomenological value of the \(\Delta \)-isobar width \(\Gamma_{\Delta\to N\pi} = -2 \text{Im}\Sigma_{\Delta N3} = 115 \text{MeV} \) to fix \(h_A = 2.87 \). Furthermore, we adopt \(H_A = \frac{3}{2}g_A \) obtained in the large-\(N_c \) limit. Finally, we use lQCD data for the \(\Delta(1232) \) \([58, 54, 53]\) mass to determine the remaining two LECs \(M_{\Delta0} \) and \(c_{1\Delta} \). As the available lattice results are rather scattered, we do not perform a rigorous fit to them but, instead, adopt the conservative attitude of setting a band that englobes all the lQCD points with their errorbars (see Fig. 2). The central values for the parameters result from the average of those defining the band’s boundaries and are listed in Table II.

We now turn to two discretization artifacts: finite volume (FV) and finite spacing effects, appearing in lQCD studies, as a consequence of the finite grid with volume \(L^3 \) and spacing \(a \) in which simulations are performed.

All loop graphs of Fig. [1] are subject to FV corrections. We calculate them in App. [33] applying the standard techniques of Ref. [44]. The FV corrections to \(\Sigma_{N3} \) and \(\Sigma_{T4} \) are equivalent to those in Ref. [44]. In addition, we correct the combination \(\Sigma_{N4} + \Sigma_{c2} \Sigma'_{N3} \), the \(\Delta \)-isobar graphs \(\Sigma_{N4}, \Sigma_{N43} \) and \(\Sigma_{c2} \Sigma'_{N43} \) which contribute at order \(p^4 \) in the continuum \([24, 25]\) in the EOMS renormalization scheme. Reference [44] employs IR, for which the combination of \(\Sigma_{N4} + \Sigma_{c2} \Sigma'_{N3} \) appears only at order \(p^6 \). Our FV corrections are therefore:

\[
\Sigma_p^4(M^2_\pi, L) = \Sigma_{N3}(M_0^2, L) + \Sigma_{N\Delta3}(M_0^2, L) + \Sigma_{N4}(M_0^2, L) + \Sigma_{T4}(M_0^2, L)
+ \Sigma_{c2}(M_0^2) \Sigma'_{N3}(M_0^2, L) \quad \text{and} \quad \Sigma_{c2}(M_0^2) \Sigma'_{N\Delta3}(M_0^2, L) \quad \text{.}
\]

(23)

All these terms are given in App. [33]. In Fig. [2] we test our FV correction against lQCD data with approximately the same pion mass but different \(L \). We found four points from the QCDSF Collaboration [49], four points from the NPLQCD Collaboration [62] and two points from the ETM Collaboration [84] at pion masses approximately of 265, 300, 390 and 440 MeV, respectively. Reasonable values of the LECs \(M_0 = 890 \text{MeV} \) and \(c_1 = c_{1\Delta} = -0.9 \text{GeV}^{-1} \) have been chosen for this exercise. We observe that our FV corrections describe very well the \(L \) dependence for lattice sizes larger than \(\sim 2.2 \text{ fm} \) and that they have a size of up to 45 MeV. In our fits we shall include only data points with \(LM_\pi > 3.8 \) for all of which \(L > 2.2 \text{ fm} \).

In general, we will use lQCD data that are not extrapolated to the continuum limit \(a \to 0 \). Originally, discretized QCD actions break chiral symmetry even in the chiral limit by terms proportional to \(a \) \([53, 52]\) but modern lattice

\[\text{Table I: Values of the LECs appearing in the } p^3 \text{ nucleon mass. For the LECs } f_{\rho0} \text{ and } g_{A0} \text{ we take their physical values } f_\rho = 92.4 \text{ MeV and } g_A = 1.267.}\]

LEC	\(c_2 \) [GeV\(^{-1}\)]	\(c_3 \) [GeV\(^{-1}\)]	\(c_{1\Delta} \) [GeV\(^{-1}\)]	\(h_A \)	\(M_{\Delta0} \) [MeV]
\(\Delta-B\chi \text{PT} \)	\(3.9 \pm 0.4 \)	\(-6.7 \pm 0.4 \)	\(-0.90 \pm 40 \)	\(2.87 \)	\(1170 \pm 30 \)
\(\Delta-B\chi \text{PT} \)	\(1.4^{+0.2}_{-0.5} \)	\(-3.0^{+0.6}_{-0.1} \)	\(-0.90 \pm 40 \)	\(2.87 \)	\(1170 \pm 30 \)

\[^3\text{Further justification for this choice is given in the Results Section.}\]
Figure 2: Pion mass dependence of the Δ-isobar mass. Green squares are from [53, 54], black right-triangles are quenched data from [83] and red diamonds are unquenched data from [83]. The blue circle is the physical point. The band defines the uncertainty range adopted (see the text) while the blue line is the preferred result.

Figure 3: Finite volume corrections $\Delta M_N = M_N(L) - M_N(L \to \infty)$ as a function of the lattice size for pion masses of 265, 300, 390 and 440 MeV. Lattice data from Refs. [49] (triangles), [62] (red diamonds) and [84] (squares) with approximately the same pion masses are also displayed. We normalize each curve to the point with the largest volume and shifted them by multiples of 50 MeV to avoid overlaps. At $L=4.0$ fm $\Delta M_N \approx 0$ for all curves.

calculations use $O(\alpha)$ improved actions for which discretization effects in baryon masses start at order α^2. However, there exists a whole variety of lQCD-actions, each with its own discretization effects. For the specific Symanzik lQCD action an effective field theory investigation has been performed in Ref. [88] on a HBχPT basis but a general approach, similar to the treatment of FV corrections, does not exist. Therefore, we parametrize this effect for each action individually by writing the nucleon mass in an a-expansion to the lowest order as

$$M_N = M_{a=0} + c_a a^2 + O\left(a^3, a^2 m_\pi^2\right),$$

with an action-specific constant c_a. By using the ETMC points at $M_\pi = 260$ and 262 MeV, and QCDSF points at $r_0 M_\pi = 0.658$ and 0.660 [19, 54] we can roughly estimate the size of this effect. By taking the linear a^2-extrapolation of Eq. (24) we obtain $c_{ETMC} = 0.17$ GeV3 and $c_{QCDSF} = 0.33$ GeV3, which correspond to nucleon-mass shifts of $10 - 50$ MeV. We obtain that lattice spacing corrections can have similar sizes to the FV ones. Therefore, we incorporate this effect in specific fits by including the $c_a a^2$ term in the χ^2 for each collaboration/action reporting results for different values of a.

III. RESULTS

We study the pion mass dependence of the nucleon mass by using the covariant BχPT expression of Eqs. (13) and (18), which is accurate up to the chiral order p^4 and includes explicit Δ-isobar degrees of freedom. We perform global fits to lQCD ensembles for $N_f = 2$ and $N_f = 2 + 1$ numbers of flavors. Generally, lQCD uses a discretized QCD-action to simulate the quark-gluon interaction in a finite box of size $L^3 \times T$ with finite spatial and time spacings of a and a_t. The nucleon mass data are given in terms of the dimensionless quantities $a M_\pi$ and $a M_N$ with uncertainties in a, $a M_\pi$ and $a M_N$. An actual value of a sets the overall scale to convert the lQCD data into physical units. No universal scale-setting method exists and different collaborations use different approaches. Furthermore, the statistical uncertainty in a turns into a normalization uncertainty in M_N for data points belonging to the same a-set. It is therefore preferable to fit the $(a M_\pi, a M_N)$ data directly whenever this is possible or, otherwise, to include these correlated uncertainties in the fit. As explained below, we are able to perform the former in the case of the $N_f = 2$ ensembles and rely on the latter for the $N_f = 2 + 1$ ones. We also include FV corrections and lattice spacing effects as described in the previous section. We fit the LECs M_0, c_1 and $\pi\pi$ while keeping c_2, c_3, $c_1 \Delta$, h_A and $M_{\Delta 0}$ fixed to the values listed in Tab. [4]. Afterwards, we quantify the effect of varying the fixed LECs within their ranges. The fit uncertainties are determined at a 68% confidence level.
For $N_f = 2$ we include data from the BGR [89], ETMC [84], Mainz [90] and QCDSF [49] collaborations, and for $N_f = 2 + 1$ from the BMW [71], HSC [59], LHPC [52], MILC [21], NPLQCD [62], PACS [57] and RBCUK-QCD [64] collaborations. In both cases we extract the LECs and obtain the $\sigma_{\pi N}$ value by using the HF theorem.

A. Nucleon mass up to order $O(p^4)$: fits to $N_f = 2$ lattice QCD data

We use Eq. (15) to fit the lQCD data for the $N_f = 2$ ensembles of the BGR, ETMC, Mainz and QCDSF collaborations [49, 84, 89, 90]. The lQCD data are given in terms of the dimensionless products aM_π and aM_N where the scale is fixed in different ways: with the experimental Ω^- mass in Ref. [90] and with HBχPT or IR-χPT chiral extrapolations of M_N in Refs. [49, 84]. The available information for these data sets is such that we can perform our own scale setting. By doing this we compensate for the different scales of the various sets and avoid manipulating them with two different $B\chi$PT versions.

Explicitly, we fit the lQCD data in terms of $(r_0 M_\pi, r_0 M_N)$ by using the Sommer-scale r_0 [92] and the ratios r_0/a in the chiral limit, as reported by each Collaboration. The uncertainties in aM_π, aM_N and r_0/a are assumed to be uncorrelated. The value of r_0 is a priori unknown and we determine it recursively inside the fit. This is the same strategy used in Ref. [49], now employed to analyze $N_f = 2$ data globally. The χ^2 function that we minimize is

$$\chi^2 = \sum_i \frac{\left[\bar{M}_N^{(i)} \left(\bar{M}_\pi^2 \right) + \Sigma^{(i)}_N \left(\bar{M}_\pi^2, L \right) + \tilde{c}_a \bar{a}^2 - d_i \left(\bar{M}_\pi^2, L \right) \right]^2}{\sigma_i^2},$$

(25)

where $d_i \left(\bar{M}_\pi^2, L \right)$ are the lQCD data points with uncertainties σ_i, each of them generated in a lattice of size L and spacing a. The continuum expressions $M_N^{(i)} \left(\bar{M}_\pi^2 \right)$ and the finite volume corrections $\Sigma^{(i)} \left(\bar{M}_\pi^2, L \right)$ for the chiral-order n are listed in App. [14]. As discussed above, the terms $\tilde{c}_a \bar{a}^2 = r_0^3 c_a (a/r_0)^2$ parametrize discretization effects, with c_a being common constants for points obtained by the same lQCD Collaboration/action. The Sommer-scale is calculated in each minimization step recursively using the constraint imposed by the experimental value of the nucleon mass at the physical point:

$$r_0^k = \frac{\bar{M}_N^{(i)} \left(r_0^{k-1} \cdot M_\pi(p_{phys}) \right)}{\bar{M}_N(p_{phys})} \quad \text{until} \quad |r_0^k - r_0^{k-1}| < 0.001 \text{ fm}.$$

(27)

The explicit fit parameters in Eq. (25) are M_0, c_1, \bar{a} and two c_a constants, one for the ETMC Collaboration and one for both Mainz and QCDSF which employ the same action. The single data point of BGR does not allow to perform any lattice spacing correction. As the term $\tilde{c}_a \bar{a}^2$ does not stand on the same firm ground, from the perspective of effective field theory, as the rest of our mass formula, we perform fit with and without it and treat the differences as systematic errors. We restrict the data sets by imposing the following conditions: $r_0 M_\pi < 1.11$, $M_\pi L > 3.8$, which englobe points of $M_\pi < (429, 476)$ MeV for Sommer-scale values in the range $r_0 = (0.51, 0.46)$ fm. We then consider the following data sets

- **BGR [89]**: A Sommer-scale of $r_0 = 0.48$ fm is assumed and three data points are provided, only one below $r_0 M_N = 1.11$.

- **ETMC [84]**: Eleven data points are provided in the form (aM_π, aM_N); for each setting a value of r_0/a is computed. After converting (aM_π, aM_N) into $(r_0 M_\pi, r_0 M_N)$ we find that seven data points fulfill our conditions and enter the fit.

- **Mainz [90]**: Eleven data points are provided in the form (aM_π, aM_N). The lattice spacings as well as the ratios r_0/a are determined by the Ω^- mass [94, 55]. We convert (aM_π, aM_N) to $(r_0 M_\pi, r_0 M_N)$ and six data points enter the fit.

- **QCDSF [49]**: This work provides 27 data points, directly in terms of $(r_0 M_\pi, r_0 M_N)$, but only two of them fulfill our restrictions. In addition, there is a single data point for the $\sigma_{\pi N}$ obtained by direct determination at $M_\pi \sim 285$ MeV [51].

We study the following variations of the fits:

1. $M_N(M_\pi)$ to order p^2, p^3 and p^4 in the chiral expansion
Table II: Results for $B_{\pi N}$ excluding $\sigma_{\pi N}$ (285 MeV)

M_h [MeV]	c_1 [GeV$^{-1}$]	σ_{π} [GeV$^{-3}$]	χ^2/dof	r_0 [fm]	σ_N [MeV]
p^2 906 (11)	-0.43 (2)	-0.33 (1)	6.3	0.539	26 (1)
p^3 880 (13)	-0.93 (3)	-0.78 (1)	8.5	0.527	41 (1)
p^4 863 (16)	-1.19 (4)	-1.00 (1)	9.5	0.517	52 (1)
p^5 866 (40)	-1.18 (14)	-0.91 (4)	2.9	0.507	41 (3)
p^6 893 (29)	-0.77 (9)	-0.80 (1)	2.5	0.489	41 (2)

Table II: Results for $B_{\pi N}$ including $\sigma_{\pi N}$ (285 MeV)

M_h [MeV]	c_1 [GeV$^{-1}$]	σ_{π} [GeV$^{-3}$]	χ^2/dof	r_0 [fm]	σ_N [MeV]
p^2 913 (6)	-0.33 (1)	6.3	0.539	26 (1)	
p^3 892 (6)	-0.78 (1)	8.5	0.527	41 (1)	
p^4 878 (5)	-1.00 (1)	9.5	0.517	52 (1)	
p^5 888 (9)	-0.91 (4)	2.9	0.507	41 (3)	
p^6 899 (7)	-0.80 (1)	2.5	0.489	41 (2)	

Table II: Results for $B_{\pi N}$ excluding $\sigma_{\pi N}$ (285 MeV)

M_h [MeV]	c_1 [GeV$^{-1}$]	σ_{π} [GeV$^{-3}$]	χ^2/dof	r_0 [fm]	σ_N [MeV]
p^2 906 (11)	-0.43 (2)	-0.33 (1)	6.3	0.539	26 (1)
p^3 880 (13)	-0.93 (3)	-0.78 (1)	8.5	0.527	41 (1)
p^4 863 (16)	-1.19 (4)	-1.00 (1)	9.5	0.517	52 (1)
p^5 866 (40)	-1.18 (14)	-0.91 (4)	2.9	0.507	41 (3)
p^6 893 (29)	-0.77 (9)	-0.80 (1)	2.5	0.489	41 (2)

Table II: Results for $B_{\pi N}$ including $\sigma_{\pi N}$ (285 MeV)

M_h [MeV]	c_1 [GeV$^{-1}$]	σ_{π} [GeV$^{-3}$]	χ^2/dof	r_0 [fm]	σ_N [MeV]
p^2 913 (6)	-0.33 (1)	6.3	0.539	26 (1)	
p^3 892 (6)	-0.78 (1)	8.5	0.527	41 (1)	
p^4 878 (5)	-1.00 (1)	9.5	0.517	52 (1)	
p^5 888 (9)	-0.91 (4)	2.9	0.507	41 (3)	
p^6 899 (7)	-0.80 (1)	2.5	0.489	41 (2)	

The left-panel results come from a fit of solely nucleon-mass data while in the right panel the Δ index denotes the inclusion of explicit Δ-isobar ($\Delta B_{\chi PT}$), while its omission corresponds to $\Delta B_{\chi PT}$; FV corrections are included but finite-spacing effects are excluded. The left-panel results come from a fit of solely nucleon-mass data while in the right panel the $\sigma_{\pi N}$ point at $M_\pi = 285$ MeV of Ref. [51] was also taken into account.

Figure 4: Fits to the $N_f = 2$ nucleon mass data from Refs. [49, 84, 88, 90]. The ‘Δ’ index denotes the inclusion of explicit Δ-isobar ($\Delta B_{\chi PT}$), while its omission corresponds to $\Delta B_{\chi PT}$; FV corrections are included but finite-spacing effects are excluded. The left-panel results come from a fit of solely nucleon-mass data while in the right panel the $\sigma_{\pi N}$ point at $M_\pi = 285$ MeV of Ref. [51] was also taken into account.

2. without ($\Delta B_{\chi PT}$) and with ($\Delta B_{\chi PT}$) Δ-isobar

3. including and excluding the single direct $\sigma_{\pi N}$ measurement of Ref. [51]

4. without and with lattice spacing corrections ($c_\sigma a^2$ term)

5. variations of the input LECs according to the errors quoted in Table II

Finite volume corrections are always included.

The output of our fits for cases 1-3, with the LECs fixed to the values in Table II and without lattice-spacing corrections are presented in Table III and Fig. 4. Bear in mind that changes in the fit conditions 1 and 2 yield different r_0 (see Table II) so lQCD data are scaled differently. From Table II we observe that the inclusion of $O(p^3)$ does not lead to a better description of present nucleon mass data than the $O(p^3)$ one. However, for fits including the $\sigma_{\pi N}$ (285) point, a good χ^2/dof emerges only at $O(p^3)$. In this situation, $\Delta B_{\chi PT}$ gives a slightly better χ^2/dof than $\Delta B_{\chi PT}$ but both approaches give the same $\sigma_{\pi N}$ value. The overall rather high χ^2/dof is caused by two points from the Mainz Collaboration. By excluding them we obtain χ^2/dof ~ 1.6 but the results change only within the quoted uncertainties. The FV corrections shift the data points by $(\sim 6) - (\sim 50)$ MeV. In contrast to the $\Delta B_{\chi PT}$ case, the $\Delta B_{\chi PT}$ p^4-results are not significantly altered by the inclusion of $\sigma_{\pi N}$ (285) in the fits and exhibit a softer M_π dependence. This might be interpreted as an indication that the theory with explicit $\Delta(1232)$ is more realistic.

Figure 5 shows the relative contributions, $[p^2/p^3]$ and $[p^3/p^4]$, of different chiral orders to the nucleon mass for fits including $\sigma_{\pi N}$ (285). One observes that the $O(p^3)$ term has a relatively small contribution over a large M_π range. The same is true for the $\Delta B_{\chi PT} O(p^3)$ term. In the $\Delta B_{\chi PT}$ case, however, the relative impact of the $O(p^3)$ contribution
is at the upper border of the Δ fits under consideration. However, one should note that we obtain uncertainty is statistical and can be taken, as a first approximation, to be 3 MeV, which is the largest error from the underestimated uncertainties in the data. To correct for this, we repeat the fits multiplying the statistical errors by the Δ.

Finite-lattice spacing corrections so that the results are close to the former ones. A more elaborated EFT background is required to calculate and interpret finite-lattice spacing corrections more reliably.

Table III: Results for $p^4 - \Delta \chi PT$ fits to $N_f = 2$ nucleon mass data from Refs. \cite{49, 84, 90} with lattice spacing effects accounted by the $c_E a^2$ and $cMQ a^2$ terms for the ETMC and Mainz/QCDSF data respectively.

p_Δ^4	M_π [MeV]	c_1 [GeV$^{-1}$]	$\pi\pi$ [GeV$^{-3}$]	c_E [GeV$^{-3}$]	cMQ [GeV$^{-3}$]	π/ρ_0 [fm]	σ_2 [MeV]
excluding $\sigma_{\pi N}$ (285 MeV)	894 (28)	-0.76 (10)	36 (5)	-0.06 (7)	-0.05 (13)	2.8	0.501
including $\sigma_{\pi N}$ (285 MeV)	892 (21)	-0.79 (2)	34 (3)	-0.08 (6)	-0.08 (12)	2.8	0.499

Table III: Results for $p^4 - \Delta \chi PT$ fits to $N_f = 2$ nucleon mass data from Refs. \cite{49, 84, 90} with lattice spacing effects accounted by the $c_E a^2$ and $cMQ a^2$ terms for the ETMC and Mainz/QCDSF data respectively.

steadily rises, becoming more than 80% of the p^2 one at $M_\pi > 450$ MeV. From this we deduce that $M_\pi \sim 450$ MeV is at the upper border of the $\Delta \chi PT$ applicability. We have also performed fits with relaxed conditions $LM_\pi \geq 3.5$ and $r_0 M_\pi \leq 1.00$ which, however, yield equivalent results to those already presented in Table III. The present data do not allow us to go below $r_0 M_\pi \leq 1.00$.

In Table III we summarize our results including finite-lattice spacing corrections in the fit, namely the $c_E a^2$ and $cMQ a^2$ terms for ETMC and Mainz/QCDSF respectively. We obtain corrections of $(+6) - (+20)$ MeV, which have an opposite sign with respect to the FV corrections. By comparing to Table III we notice that all changes are within the already given uncertainties. A noticeable qualitative effect is that changes in the Sommer-scale counterbalance between the finite-lattice spacing corrections so that the results are close to the former ones. A more elaborated EFT background is required to calculate and interpret finite-lattice spacing corrections more reliably.

We have tested the fits for variations of c_Δ, c_3 within the errors given in Table III. In all cases the results are compatible within uncertainties with those of Table III. We conclude that the $p^4 \chi PT$ fits are not able to constrain these LECs effectively.

Furthermore, by varying $c_{1\Delta}$ we find it to be correlated with π. The inclusion of $c_{1\Delta}$ as a free parameter does not produce sensible fits unless the $\sigma_{\pi N}$ (285) point is taken into account. The fit is driven to unreasonable high $c_{1\Delta}$ with rather large π values. However, in fits including the $\sigma_{\pi N}$ (285) point we recover $c_{1\Delta} = -0.87 (16)$ GeV$^{-1}$ together with results compatible with those in Table III. A scan over a range of $c_{1\Delta}$ shows that reasonable fits can only be obtained for the interval $c_{1\Delta} = (-0.8) - (-1.0)$ GeV$^{-1}$, resulting in $\sigma_{\pi N}$ values in the range 37-45 MeV. We observe that the correlation between $c_{1\Delta}$ and π is relaxed by the addition of the $\sigma_{\pi N}$ (285) point.

As a final $\sigma_{\pi N}$-value for the $N_f = 2$ IQCD fits we quote

$$\sigma_{\pi N} = 41 (5) (4) \text{ MeV},$$

which corresponds to our $p^4 \Delta$ and $\Delta\chi PT$ fits of Table III including $\sigma_{\pi N}$ (285) and FV corrections. The first uncertainty is statistical and can be taken, as a first approximation, to be 3 MeV, which is the largest error from the fits under consideration. However, one should note that we obtain $\chi^2/d.o.f. > 1$, that we interpret as an indication of underestimated uncertainties in the data. To correct for this, we repeat the fits multiplying the statistical errors.
of all points by \(\sqrt{x^2/\text{d.o.f.}} \), in analogy to the procedure adopted by the Particle Data Group \cite{PDG} for unconstrained averages. The new error of 5 MeV is the largest one, corresponding to the \(\Delta B_{\chi PT} \) case. The systematic uncertainty, second figure, is determined by adding in quadratures the variation induced by changes in \(c_{1\Delta} \) in the range given above to the finite spacing effects (Table III). In an attempt to identify any additional bias in the data samples, we have performed new fits using the delete-1 jackknife technique. The resulting fit values and errors did not differ significantly from the quoted ones. Note that the single \(\sigma_{\pi N} \) (285) measurement has a strong influence on our \(N_f = 2 \) result. Indeed by excluding this point and averaging over the \(\Delta B_{\chi PT} \) and \(\Delta B_{\chi PT} \) results we get a \(\sigma_{\pi N} = 52 (13) (11) \) MeV, albeit with large errors. In view of this, new direct \(\sigma_{\pi N} \) measurements at low pion masses will be important to establish the actual value of this quantity.

Figure 6 summarizes our results for the pion mass dependence of the \(\sigma_{\pi N} \)-term. The results for the \(\Delta B_{\chi PT} \) and \(\Delta B_{\chi PT} \) fits are compatible within errors but exhibit a different \(M_\pi \) dependence.

For our final values of the LECs \(M_0, c_1 \) and \(\sigma \) we quote those of the \(p^4-\Delta B_{\chi PT} \) fit of Tab. 1 including \(\sigma(285) \). In particular, in the present work we set the Sommer-scale to \(r_0 = 0.493(23) \) fm, which is the average of all our \(p^4 \) results and where the uncertainty is chosen such as to cover all our \(p^4 \) fits.

B. Nucleon mass up to order \(O(p^4) \): fits to \(N_f = 2 + 1 \) lattice QCD data

We use our \(B_{\chi PT} \) nucleon mass formula of Eq. (18) to fit the IQCD data for the \(N_f = 2 + 1 \) ensembles of different collaborations with \(M_L > 3.8 \) and \(M_\pi \leq 415 \) MeV. Thus, we include 9 points from the BMW collaboration \cite{BM}, 1 point from HSC \cite{HSC}, 1 from LHPC \cite{LHPC}, 4 fine and 4 super-fine from MILC \cite{MILC}, 3 from NPLQCD \cite{NPLQCD}, 2 from PACS-CS \cite{PACS-CS} and 6 from RBC-UKQCD \cite{RBC-UKQCD}. The selected data have already been corrected to the physical strange quark mass (BMW) or come from configurations for which the strange quark mass (in the \(\overline{MS} \) scheme at 2 GeV) has been reported to be close enough to the physical limit, to make the corresponding correction negligible.

The approach of the QCDSF-UKQCD collaboration \cite{QCDSF-UKQCD} is conceptually different as it generates points along the \(SU(3) \) singlet line, \(2m_\pi + m_s = \text{const} \). Therefore in these simulations both the light and strange quark masses remain unphysical, making our \(SU(2) \) approach not applicable.

Most of the data are provided in terms of \((aM_\pi, aM_N) \), together with the individual lattice spacings \(a \) and the statistical uncertainties for all the three quantities. Unlike the \(N_f = 2 \) case, the available information does not allow us to perform our own scale setting. Therefore, we treat the \(a \)-uncertainties as correlated normalization errors for all \(M_N \) points from the same set. Our treatment of normalization uncertainties follows from Ref. \cite{MS}. We perform three types of fits: 1) neglecting correlated normalization errors, 2) including the normalization error in scale factors \(f_i \), 3) including the normalization uncertainty in a correlation matrix \(V \). For the case 3) we also consider lattice spacing effects. The \(\chi^2 \) functions for type 2 and 3 fits read

\[
\chi^2_2 = \sum_i \left[\frac{M_N^{(n)}(M_\pi^2) + \Sigma_N^{(n)}(M_\pi^2, L) - f_i d_i (M_\pi^2, L)}{\sigma_i} \right]^2 + \frac{(f_i - 1)^2}{\sigma_i^2},
\]

\[
\chi^2_3 = \Delta^2 V^{-1} \Delta \quad \text{with} \quad \Delta_i = \left[M_N^{(n)}(M_\pi^2, i) + c_i a_i^2 + \Sigma_N^{(n)}(M_\pi^2, i, L_i) - d_i (M_\pi^2, L_i) \right],
\]

where \(M_N^{(n)}(M_\pi^2) \) and \(\Sigma_N^{(n)}(M_\pi^2, L) \) are the \(B_{\chi PT} \) continuum and finite volume expressions given in App. B.3 \(f_i \) and \(d_i \) are the IQCD data, each point for a given lattice size \(L \) and spacing \(a \). We denote the statistical uncertainty for \(M_N \) coming from a \(aM_N \) as \(\sigma_i \) and the normalization uncertainty coming from \(a \) as \(\sigma_{a_i} \). Case 1) is recovered from Eq. (28) by taking all \(f_i = 1 \) and replacing \(\sigma_i \rightarrow \sqrt{\sigma_i^2 + \sigma_{a_i}^2} \) corresponding to the assumption that \(\sigma_i \) and \(\sigma_{a_i} \) are uncorrelated errors. In case 2) the \(f_i \) are additional fit parameters; \(\sigma_i \) and \(\sigma_{a_i} \) are treated separately. In case 3) \(\sigma_i \) and \(\sigma_{a_i} \) are incorporated in the correlation matrix \(V \). The BMW collaboration \cite{BM} does not provide enough information to disentangle the uncertainties from \(aM_N \) and \(a \) so that we always include this data set with uncorrelated uncertainties.

In our fits, the LECs \(c_2, c_3 \) and \(c_1\Delta \) are fixed to the values given in Table I. There are two points with \(M_\pi \sim 390 \) MeV from Refs. \cite{BM,NPLQCD} with very small reported \(\sigma_i \) and slightly smaller \(M_N \) values compared to the neighboring points (see Fig. 8). The inclusion of these points shifts the results to lower masses, yielding a slightly worse \(\chi^2/\text{dof} \). Although these points were obtained by different NPLQCD and HSC Collaborations, they are not entirely independent, because NPLQCD uses the scale of the HSC Collaboration, which actually expresses some concern about the quality

\[\text{Notice that the small strange quark mass found in Ref. \cite{PLQCD}, } m_s^{\overline{MS}} \sim 72 \text{ MeV, has been attributed to the perturbative approach employed in that paper to relate lattice- and the } \overline{MS}\text{-renormalized values.} \]
Table IV: Combined fits to the $N_f = 2 + 1$ ensembles \[\{ \text{LMC} \} \] for pion masses $M_{\pi} \leq 415$ MeV. The LECs c_2, c_3 and $c_{1\Delta}$ are set to the central values given in Table IV. \[\{ \text{LMC} \} \] for pion masses $M_{\pi} \leq 415$ MeV. The LECs c_2, c_3 and $c_{1\Delta}$ are set to the central values given in Table IV. FV effects are included while a^2 effects are excluded. The last two rows correspond to fits of type 1) neglecting correlated normalization errors. The fit of the last row takes into account the two points of Refs. \[\{ \text{LMC} \} \] with $M_{\pi} \sim 390$ MeV, excluded from the main fits as discussed in the text.

![Figure 7](image)

Figure 7: Combined fits to IQCD data of the $N_f = 2 + 1$ ensembles \[\{ \text{LMC} \} \] for pion masses $M_{\pi} \leq 415$ MeV. The blue solid (green dashed) line shows the $O(p^3)$ $\Delta B\chi$PT ($\Delta B\chi$PT) fit of type 3). The red dotted line is also for $O(p^3)$ $\Delta B\chi$PT but including the two points of $M_{\pi} \sim 390$ MeV, excluded from the main fits as discussed in the text. Filled (open) symbols represent points included in (excluded from) the fits. Right: Decomposition of the fit results in their chiral order contributions. The blue solid line corresponds to the $|p^3/p^2|$ ratio and the purple-dashed one to $|p^4/p^3|$, both for $\Delta B\chi$PT. The red dashed-dotted and orange-dotted are the $|p^3/p^2|$ and $|p^4/p^3|$ results obtained with $\Delta B\chi$PT.

Table IV: Combined fits to the $N_f = 2 + 1$ IQCD ensembles \[\{ \text{LMC} \} \] for pion masses $M_{\pi} \leq 415$ MeV. The LECs c_2, c_3 and $c_{1\Delta}$ are set to the central values given in Table IV. FV effects are included while a^2 effects are excluded. The last two rows correspond to fits of type 1) neglecting correlated normalization errors. The fit of the last row takes into account the two points of Refs. \[\{ \text{LMC} \} \] with $M_{\pi} \sim 390$ MeV, excluded from the main fits as discussed in the text.
by several MeV. The uncertainties for the constants $c_M a^2$ and $c_R a^2$ are now slightly smaller than in the 2 flavor case although all values of Tables III and V agree within the individual errors.

We tested our results for changes by varying c_2, c_3 and $c_{1\Delta}$ within the errors quoted in Table II. All changes are within the above quoted uncertainties. In particular, changes in $c_{1\Delta}$ are compensated by changes in ΔPT and reasonable results are only obtained for the range of $c_{1\Delta} = (-0.5) - (-1.3)$ GeV$^{-1}$ estimated above.

As a final value for $\sigma_{\pi N}$ in the $N_f = 2 + 1$ case we give

$$\sigma_{\pi N} = 52 (3) (8) \text{ MeV}$$

obtained in the following way. The central value is the average of the four $O(p^4)$ ΔBχPT and ΔBχPT results without (Table IV) and with (Table V) lattice spacing corrections, all including correlated normalization uncertainties. The first error corresponds to the largest statistical uncertainty of the values under consideration and the second is the largest difference among them.

Further conclusions can be extracted from Fig. 8 where the pion mass dependence of M_N and $\sigma_{\pi N}$ given by different $O(p^4)$ BχPT fits to $N_f = 2 + 1$ data. The blue solid and green dashed lines stand for ΔBχPT and ΔBχPT. The red dotted line is the ΔBχPT solution with data points only up to 360 MeV. The black dashed-dotted line does not take correlated normalization uncertainties into account. The blue circle is the phenomenological nucleon mass and the red square is our $\sigma_{\pi N}$ result at the physical point.

Figure 8: Pion mass dependence of M_N and $\sigma_{\pi N}$ given by different $O(p^4)$ BχPT fits to $N_f = 2 + 1$ data. The blue solid and green dashed lines stand for ΔBχPT and ΔBχPT. The red dotted line is the ΔBχPT solution with data points only up to 360 MeV. The black dashed-dotted line does not take correlated normalization uncertainties into account. The blue circle is the phenomenological nucleon mass and the red square is our $\sigma_{\pi N}$ result at the physical point.

Table V: Combined fits to the $N_f = 2 + 1$ QCD ensembles [60, 64, 92] including $c_M a^2$ corrections for the MILC (c_M) and RBCUK (c_R) Collaborations. The LECs c_2, c_3 and $c_{1\Delta}$ are set to the central values in Table I.

Mode	M_0 [MeV]	c_2 [GeV$^{-1}$]	c_3 [GeV$^{-1}$]	c_M [GeV$^{-1}$]	c_R [GeV$^{-1}$]	$\sigma_{\pi N}$ [MeV]	
ΔBχPT	873 (4)	-1.10 (5)	27 (3)	0.18 (8)	0.03 (2)	1.2	55 (3)
ΔBχPT	887 (3)	-0.84 (4)	29 (3)	0.21 (8)	0.04 (2)	1.2	44 (3)
The different sources of uncertainties in the input data. This study is the first application of the lQCD data normalization via the Sommer-scale and to establish the value of ΔB. Included finite volume corrections and also discussed finite spacing effects. In the available low M points for both $N_f = 2$ and $N_f = 2 + 1$ data sets. In the following we summarize our findings. The errorbands for our fit results have been removed for the sake of clarity.

ΔB results become consistent once finite spacing corrections are considered. However, while the differences between Δ and ΔB disappear in $N_f = 2$ after the $\sigma_{\pi N}(285)$ point is included in the fits, they remain in the $N_f = 2 + 1$ case, where such a direct measurement is not available. Future direct determinations of $\sigma_{\pi N}$ at low pion masses for both $N_f = 2$ or $2 + 1$ data will be crucial to discriminate between different theoretical descriptions and to establish the value of $\sigma_{\pi N}$ at the physical point with high precision. Finally, we cannot exclude that part of the observed discrepancy arises from the different role played by strange quarks in $N_f = 2$ simulations where they are quenched, and in $N_f = 2 + 1$ ones, where they are dynamical and more realistic. In conclusion, we think our analysis exploits the considerable size of the current data set on M_N in a way that it is possible to become sensitive to unexpected systematic effects. However, more lQCD data will be required to settle this issue and interpret possible discrepancies of this type.

IV. SUMMARY AND CONCLUSION

We have studied the nucleon mass and the $\sigma_{\pi N}$-term in the SU (2) covariant BχPT up to the chiral order p^4. We have performed fits, using BχPT with and without explicit Δ-isobar degrees of freedom, to combined lQCD data from various Collaborations for $N_f = 2$ and $N_f = 2 + 1$ numbers of flavors. Special attention has been payed to the different sources of uncertainties in the input data. This study is the first application of the p^4 SU (2) covariant BχPT with the EOMS renormalization scheme and consistent treatment of the Δ-isobar to lQCD data. We have included finite volume corrections and also discussed finite spacing effects. In the $N_f = 2$ case we were able to set the lQCD data normalization via the Sommer-scale r_0 and also performed simultaneous fits to nucleon mass data and one available low $M_\pi, \sigma_{\pi N}$ data point. In the $N_f = 2 + 1$ case we took into account correlated normalization uncertainties for points belonging to the same data set. In the following we summarize our findings.

- Our formula for the nucleon mass depends on several low energy constants, some of which have been fitted to the lQCD data. Explicitly, the LECs are $M_0, c_1, c_2, c_3, c_{1\Delta}, M_{\Delta 0}, g_A, f_\pi, h_A$ and $\overline{\sigma}$; the latter is a linear combination of several couplings that appear in the chiral Lagrangian at $O(p^4)$. We adopted the phenomenological values for g_A, f_π and h_A. Our fits are insensitive to the chosen values of $c_2, c_3, c_{1\Delta}$ and $M_{\Delta 0}$ so that we are not able to constrain c_2 and c_3 and fix them to phenomenological values extracted from πN-scattering. Furthermore, we observe that $c_{1\Delta}$ and $\overline{\sigma}$ are correlated, which hinders a better determination of $c_{1\Delta}$ than the range $c_{1\Delta} = (-0.5) - (-1.3)$ GeV$^{-1}$ based on rather scarce lQCD data for the $\Delta(1232)$ mass. The LECs M_0, c_1 and $\overline{\sigma}$ are better determined, and their values are listed in Tables III and IV for the $N_f = 2$ and $N_f = 2 + 1$ fits. For the $N_f = 2$ ensembles we were able to extract the Sommer-scale, finding $r_0 = 0.493 (23)$ fm. By performing fits to nucleon mass data alone as well as including a $\sigma_{\pi N}$ lQCD data point at $M_\pi = 285$ MeV from the QCDSF Collaboration we have obtained that the inclusion of the p^4 order improves the quality of the simultaneous fits.

- For both $N_f = 2$ and $2 + 1$ ensembles we have investigated the effects coming from finite lattice spacings a
and volumes employed in lQCD. We parametrized lattice-spacing effects by linear a^2 terms and applied the standard BχPT FV corrections. We have obtained that both effects yield comparable numerical corrections to the nucleon mass. However, we also found that the simple parametrization of the finite lattice spacing effects does not allow to disentangle it in a quantitative manner from other effects. Fit results with and without finite a^2-effects are compatible within the statistical uncertainty. In contrast to the a^2-effects, the FV corrections are much better under control due to the established BχPT techniques for the presently available lQCD volumes.

- We have extracted the $\sigma_{\pi N}$-term for the $N_f = 2$ and $N_f = 2+1$ lQCD ensembles obtaining $\sigma_{\pi N} = 41(5)(4)$ MeV and $\sigma_{\pi N} = 52(3)(8)$, respectively. The inclusion of the $N_f = 2$ $\sigma_{\pi N}$ data point greatly reduces the $\sigma_{\pi N}$ uncertainty as well as brings the two approaches, $\Delta B\chi$PT and $\Delta B\chi$PT, closer. In the case of the $N_f = 2+1$ ensembles, where we fitted solely nucleon mass data, the two approaches give $\sigma_{\pi N}$-values that differ by 9 MeV. This is a novel feature with respect to HBχPT fits where the inclusion of the Δ-isobar alters the result by more than 40 MeV. The inclusion of finite lattice spacing correction to the $N_f = 2+1$ data tends to reduce $\sigma_{\pi N}$. Furthermore, we want to call the attention to the fact that our result in $N_f = 2$ is only compatible with the experimental determination based on the KA85 πN scattering partial wave analyses of Refs [10, 55]. Our $N_f = 2+1$ value is also compatible with the latest determination from the WI08 and EM06 analyses, $\sigma_{\pi N} = 59(7)$, which is phenomenologically favored on the grounds of consistency with πN phenomenology [55]. Finally, this $N_f = 2+1$ result would lead, according to the traditional arguments linking sigma terms to the baryon-octet mass splittings [6, 10], to a large strangeness content in the nucleon. However, the uncertainties in these arguments have been recently revisited [95] with the conclusion that a $\sigma_{\pi N}$ of this size is not at odds with, but favored by a negligible strangeness in the nucleon.

- With both the $\Delta B\chi$PT and $\Delta B\chi$PT approaches we obtain consistent descriptions of the pion mass dependence of the nucleon mass, as can be seen in Figs. 5 and 6. Moreover, for the current lQCD data, all our results are compatible within uncertainties and exhibit only small slope variations. However, these small variations translate into differences in the value of $\sigma_{\pi N}$ at the physical point. For the 2 and 2+1 flavor ensembles the M_π distribution of the data points is different. To further reduce the uncertainty in the $\sigma_{\pi N}$ value, lQCD data points with smaller uncertainties and less spread would be required. In the $N_f = 2+1$ case a considerable improvement could be achieved with a direct measurement of $\sigma_{\pi N}$ for $M_\pi < 300$ MeV. It will be interesting to see how the $N_f = 2$ and $N_f = 2+1$ values for $\sigma_{\pi N}$ will change when both data sets become more homogeneous.

Acknowledgments

We thank Doug Toussaint for making the new MILC data available to us. We are also grateful to José M. Alarcón, Michele Della Morte, Jambul Gegelia, Juan Nieves and Vladimir Pascalutsa for useful discussions. The work by LAR, TL and MVV has been supported by the Spanish Ministerio de Economía y Competitividad and European FEDER funds under Contracts FIS2011-28853-C02-01 and FIS2011-28853-C02-02, Generalitat Valenciana under contract PROMETEO/2009/0090 and the EU Hadron-Physics3 project, Grant No. 283286. JMC acknowledges support from the Science Technology and Facilities Council (STFC) under grant ST/J000477/1, the Spanish Government and FEDER funds under contract FIS2011-28853-C02-01 and the grants FPA2010-17806 and Fundación Séneca 11871/PI/09.

Appendix A: BχPT Lagrangians

The counting scheme of Eq. (3) defines the nucleon p^4 self-energy by the sum of the graphs shown in Figs. 1. The relevant $SU(2)$ covariant BχPT Lagrangians with explicit Δ-isobar degrees of freedom are:

\begin{align}
\mathcal{L}_N &= \mathcal{L}^{(1)}_{N\pi} + \mathcal{L}^{(2)}_{N\Delta\pi} + \mathcal{L}^{(2)}_{N\pi} + \mathcal{L}^{(2)}_{N\Delta} + \mathcal{L}^{(4)}_{N\pi}, \\
\mathcal{L}_\Delta &= \mathcal{L}^{(1)}_{\Delta\pi} + \mathcal{L}^{(2)}_{N\Delta\pi} + \mathcal{L}^{(2)}_{\Delta\pi},
\end{align}

where the upper indices denote the chiral order. Explicitly, the individual isospin symmetric Lagrangians in absence of external fields and expanded in pion fields π are:

\begin{align}
\mathcal{L}^{(1)}_{N\pi} &= N \left[i\partial - M_0 + \frac{1}{4f_{\pi 0}}\epsilon^{abc} (\partial_\mu \pi^a) \pi^b \gamma^c - \frac{g_A}{2f_{\pi 0}} \gamma^\mu \gamma^5 (\partial_\mu \pi^a) \pi^a \right] N, \\
\mathcal{L}^{(1)}_{\Delta\pi} &= \mathcal{M}_\mu (\gamma^{\mu \alpha} i\partial_\alpha - M_{\Delta 0} \gamma^\alpha) \Delta_\nu + \frac{H_A}{2f_{\pi 0} M_{\Delta 0}} \epsilon^{\mu \nu \alpha \beta} \mathcal{M}_{\mu} T^a (\partial_\alpha \Delta_\nu) \partial_\lambda \pi^a,
\end{align}
The individual unregularized self-energies read:

\[\Sigma^{(1)}_{N\pi} = i \frac{h_A}{2f_{\pi 0}M_{\Delta 0}} N \gamma^\mu \gamma^\nu \partial_\mu \pi^a \partial_\nu \pi^a + \text{H.c.}, \]

\[\Sigma^{(2)}_{N\pi} = \frac{1}{2} (\partial_\mu \pi^a) (\partial_\nu \pi^a) - \frac{1}{2} M^2 \pi^a \pi^a, \]

\[\Sigma^{(2)}_{N\pi} = c_1 m^2 \left[2 - \frac{1}{f_{\pi 0}} \pi^a \pi^a \right] \frac{NN}{c_2 M_{\Delta 0} f_{\pi 0}} (\partial_\mu \pi^a) (\partial_\nu \pi^a) \partial^\mu \partial^\nu N, \]

\[\Sigma^{(2)}_{N\pi} = \frac{c_3}{f_{\pi 0}} (\partial_\mu \pi^a) (\partial_\nu \pi^a) \frac{NN}{c_4 4f_{\pi 0}} \pi^a \pi^a \partial_\mu \partial_\nu \pi^a \partial^\nu \pi^a N + c_5 m^2 \frac{NN}{c_4 f_{\pi 0}} \pi^a \pi^a - (\pi^a \pi^a)^2 N, \]

\[\Sigma^{(2)}_{N\pi} = 4c_1 M_{\Delta 0} m^2 \pi \gamma^\mu \gamma^\nu \Delta_\mu, \]

\[\Sigma^{(4)}_{N\pi} = -\frac{1}{2} \alpha m^2 \pi NN, \]

where \(m^2 \pi \) is the \(O(p^2) \) pion mass \(m^2 \pi = 2Bm^2 \) proportional to the chiral condensate \(B \) and the current-quark mass average \(m \). The Lagrangians \(L^{(1,2,4)}_{N\pi} \) for the nucleon field \(N \) are those of \[104 \] with \(\alpha = -4 \) \[8c_{38} + e_{115} + e_{116} \] a combination of \(L^{(1)}_{N\pi} \) low energy constants; the \(L^{(3)}_{N\pi} \) does not produce any nucleon self-energy vertices. The couplings of the \(\Delta \)-isobar are chosen to be consistent with the covariant construct of the free Rarita-Schwinger theory and hence do not contain the unphysical degrees of freedom of vector-spinor fields. The \(\Delta \)-isobar Lagrangians and further details can be found in \[35, 37, 46, 101 \]. There are 13 low energy constants \(f_{\pi 0}, g_{A0}, c_1, c_2, c_3, c_4, c_5, H_{A0}, h_{A0}, M_0, M_{\Delta 0}, c_1 \alpha \) where \(c_4 \) and \(c_5 \) do not contribute to the nucleon mass.

The loop graphs in Fig. are divergent in 4 dimensions and need to be regularized. For that we use the dimensional regularization with \(D = 4 - 2\epsilon \) dimensions and renormalize contributions proportional to:

\[L = -\frac{1}{\epsilon} + \gamma_E - \ln 4\pi. \]

For the \(D \)-dimensional spin-3/2 propagator we use:

\[S^\alpha_\Delta (p) = \frac{p + M_\Delta}{p^2 - M_\Delta^2 + i\epsilon} \left[-g^{\alpha\beta} + \frac{1}{D-1} \gamma^\alpha \gamma^\beta + \frac{1}{(D-1)M_\Delta} (\gamma^\alpha p^\beta - \gamma^\beta p^\alpha) + \frac{D-2}{(D-1)M_\Delta^2} p^\alpha p^\beta \right]. \]

The appearing totally anti-symmetric \(\gamma \)-matrices are:

\[\gamma^{\mu\nu} = \frac{1}{2} [\gamma^\mu, \gamma^\nu], \]

\[\gamma^{\mu\nu\rho} = \frac{1}{2} \{\gamma^\mu, \gamma^\nu, \gamma^\rho\} = i\epsilon^{\mu\nu\rho\sigma} \gamma_5 \gamma_\sigma = \gamma^{\mu\rho\sigma} \gamma_\sigma, \]

\[\gamma^{\mu\nu\rho\sigma} = \frac{1}{2} [\gamma^{\mu\rho}, \gamma^{\nu\sigma}] = i\epsilon^{\mu\nu\rho\sigma} \gamma_5. \]

Appendix B: Self-energy formulas

1. Nucleon self-energies

For the nucleon mass we need the self-energy expressions corresponding to the Feynman-graphs in Fig. The contributions listed in increasing chiral order are:

\[\Sigma^{(2)} (m^2 \pi) = \Sigma_{C2} (m^2 \pi), \]

\[\Sigma^{(3)} (m^2 \pi, \tilde{p}) = \Sigma_{N3} (m^2 \pi, \tilde{p}) + \Sigma_{N\Delta 3} (m^2 \pi, \tilde{p}), \]

\[\Sigma^{(4)} (m^2 \pi, \tilde{p}) = \Sigma_{N4} (m^2 \pi, \tilde{p}) + \Sigma_{T4} (m^2 \pi) + \Sigma_{C4} (m^2 \pi) + \Sigma_{N\Delta 4} (m^2 \pi, \tilde{p}), \]

where we keep the \(\tilde{p} \) dependence explicit and a ‘\(\Delta \)’ in the index denotes contributions from loop-internal \(\Delta \)-isobars. The individual unregularized self-energies read:
\[\Sigma_{C2} (m_{\pi}^2) = -c_1 m_{\pi}^2 \]
\[\Sigma_{N3} (m_{\pi}^2, \rho) = 3 \left[\frac{g_{A0}}{8 F_{\pi}} \right]^2 \int_0^1 dz \left\{ (z\rho - M_0 - 2\rho) M_{\Delta N}^2 + (1 - z)^2 (\rho^2 - M_0) \left[L + \ln \frac{M_{\Delta N}^2}{\Lambda^2} \right] \right\} \]
\[\Sigma_{N4} (m_{\pi}^2, \rho) = -c_1 m_{\pi}^2 \frac{\partial}{\partial M_0} \Sigma_{N3} (m_{\pi}^2, \rho) \]
\[\Sigma_T (m_{\pi}^2) = \frac{3}{4 F_{\pi}^2 (4\pi)^2} (8c_1 - c_2 - 4c_3) \left[L - 1 + \ln \frac{m_{\pi}^2}{\Lambda^2} \right] m_{\pi}^4 + c_2 \frac{3}{8 F_{\pi}^2 (4\pi)^2} m_{\pi}^4 \]
\[\Sigma_{C4} (m_{\pi}^2) = \frac{1}{2} \frac{m_{\pi}^4}{z_{\pi}} \]
\[\Sigma_{N\Delta 3} (m_{\pi}^2, \rho) = \left[\frac{h_{A0}}{8 F_{\pi} M_{\Delta 0}} \right]^2 \int_0^1 dz (z\rho + M_{\Delta 0}) \rho^2 \left\{ -2 M_{\Delta 3} - 2 M_{\Delta 3}^2 - L + 1 + \ln \frac{M_{\Delta 3}^2}{\Lambda^2} \right\} \]
\[\Sigma_{N\Delta 4} (m_{\pi}^2) = c_{12} 8 m_{\pi}^2 \left[\frac{h_{A0}}{8 F_{\pi} M_{\Delta 0}} \right]^2 \int_0^1 dz (1 - z) M_{\Delta 3}^2 \left\{ 3 M_{\Delta 3}^2 - 4 M_{\Delta 3}^2 + L + 1 + \ln \frac{M_{\Delta 3}^2}{\Lambda^2} \right\} + 4 M_{\Delta 3}^2 \]
with the expression
\[M_{\Delta}^3 (m_{\pi}^2) = M_{\Delta 0} + \Sigma_{\Delta 2} (m_{\pi}^2) + \Sigma_{\Delta 3 1} (m_{\pi}^2) + \Sigma_{\Delta 3} (m_{\pi}^2) \]
\[M_{\Delta 3} = z m_{\pi}^2 - z (1 - z) \rho^2 + (1 - z) M_0^2, \]
\[M_{\Delta 3}^2 = z m_{\pi}^2 - z (1 - z) \rho^2 + (1 - z) M_0^2. \]

2. \(\Delta (1232) \) self-energies

In Sec. [11] we use the pion mass dependence of the \(\Delta \)-isobar to constrain the LEC \(c_1 \). The \(\Delta \)-isobar mass to order \(\rho^3 \) is
\[M_{\Delta}^{(3)} (m_{\pi}^2) = M_{\Delta 0} + \Sigma_{\Delta 2} (m_{\pi}^2) + \Sigma_{\Delta 3 1} (m_{\pi}^2) + \Sigma_{\Delta 3} (m_{\pi}^2), \]
where the self-energies are defined as
\[\Sigma_{\Delta}^{\alpha \beta} (\rho) = -g^{\alpha \beta} \left[\rho \Sigma_{\Delta}^A (M_{\Delta 0}) + \Sigma_{\Delta}^B (M_{\Delta 0}) \right] \]
with the unregularized expressions
\[\Sigma_{C2} (m_{\pi}^2) = -c_1 M_{\pi}^2, \]
\[\Sigma_{\Delta 3 1} (m_{\pi}^2) = -\frac{1}{2} \frac{h_{A0}}{8 F_{\pi} M_{\Delta 0}} \int_0^1 dz \left\{ (z M_{\Delta 0} + M_{\Delta 0}) M_{\Delta N}^2 \left[L - 1 + \ln \frac{M_{\Delta N}^2}{\Lambda^2} \right] + 4 (z M_{\Delta 0} + M_{\Delta 0}) M_{\Delta N}^2 \right\} \]
\[M_{\Delta N}^2 = z m_{\pi}^2 - z (1 - z) M_{\Delta 0}^2 + (1 - z) M_0^2, \]
\[\Sigma_{\Delta 3} (m_{\pi}^2) = -\frac{5}{3} \frac{h_{A0}}{8 F_{\pi} M_{\Delta 0}} \int_0^1 dz \left\{ \frac{5}{6} M_{\Delta 0} (1 + z) M_{\Delta \Delta}^2 \left[L - 1 + \ln \frac{M_{\Delta \Delta}^2}{\Lambda^2} \right] + \frac{13}{9} M_{\Delta 0} (1 + z) M_{\Delta \Delta}^2 \right\}, \]
\[M_{\Delta \Delta}^2 = z m_{\pi}^2 - z (1 - z) M_{\Delta 0}^2 + (1 - z) M_{\Delta 0}^2. \]
These contributions are the Δ-isobar versions of the nucleon graphs \(\Sigma_{C2} \), \(\Sigma_{N3} \) and \(\Sigma_{N3\Delta3} \) of Fig. 4. The \(\Sigma_{C\Delta2} \) is the Δ-isobar contact graph and the \(\Sigma_{\Delta N3} \) and \(\Sigma_{\Delta3\Delta3} \) are \(p^3 \) loop with external Δ-isobars and an internal nucleon and Δ-isobar, respectively.

3. Finite volume corrections to the nucleon self-energies

The loop graphs \(\Sigma_{N3} \), \(\Sigma_{N4} \), \(\Sigma_{T4} \) and \(\Sigma_{N3\Delta3} \), \(\Sigma_{N4\Delta4} \) of Fig. 4 are subject to finite volume (FV) effects when the nucleon is placed in a discretized box. We calculate these effects by the standard techniques of [14]. In the following we summarize the calculation of the loop-integral with a single propagator and list afterwards all appearing FV corrections for the nucleon mass to order \(p^4 \).

For the FV calculation we chose the nucleon rest-frame \(\hat{p} = \gamma_0 p_0 = \gamma_0 M_N \). As a consequence all appearing loop-integrals can be brought into the form of

\[
\int \frac{d^4l}{(2\pi)^4} \frac{l.A.l.B \cdots}{l^2 - m^2} \rightarrow \int \frac{d^4l}{(2\pi)^4} \frac{l_0^2}{l^2 - m^2},
\]

where no Lorentz-decomposition has to be used, \(A \) and \(B \) are given 4-vectors and \(a \) a power of the 0th-loop momentum component. The loop-momentum \(l \) is now discretized with respect to the box size \(L \) by

\[
\int \frac{d^4l}{(4\pi)^2} = \int \frac{dl_0}{2\pi} \frac{dl}{(2\pi)^3} \rightarrow \int \frac{dl_0}{2\pi} \frac{L^3}{L^3} \sum_{\vec{n}} \text{with } \vec{l} = \frac{2\pi}{L} \vec{n}, \vec{n} \in \mathbb{Z}^3,
\]

such that after Wick-rotating and the use of Poisson’s formula we get:

\[
\int \frac{dl_0}{2\pi} \frac{L^3}{L^3} \sum_{\vec{n}} \frac{l_0^a}{l_0^2 - \frac{4\pi}{L} \vec{n}^2 - m^2} = -i^{\alpha+1} \int_{-\infty}^{\infty} \frac{dl_4}{2\pi} \int_{-\infty}^{\infty} \frac{dl}{(2\pi)^3} \frac{l_4^a}{l_4^2 + l^2 + m^2} \frac{(2\pi)^3}{L^3} \sum_{\vec{n}} \delta^{(3)}(\vec{l} - \frac{2\pi}{L} \vec{n}) (B20)
\]

\[
\int \frac{dl_0}{2\pi} \frac{L^3}{L^3} \sum_{\vec{n}} \frac{l_0^a}{l_0^2 - \frac{4\pi}{L} \vec{n}^2 - m^2} = -i^{\alpha+1} \int_{-\infty}^{\infty} \frac{dl_4}{2\pi} \int_{-\infty}^{\infty} \frac{dl}{(2\pi)^3} \frac{l_4^a}{l_4^2 + l^2 + m^2} \sum_{j=0} \gamma_{l_4} l_{j} \vec{l}, (B21)
\]

with \(\vec{j} \in \mathbb{Z}^3 \). The case \(\vec{j} = 0 \) corresponds to the usual continuum result whereas the cases \(\vec{j} \neq 0 \) are the finite volume corrections. All remaining integrals can be solved analytically. For our nucleon mass expression we need the following solutions:

\[
\int \frac{d^4l}{(2\pi)^4} \frac{1}{l^2 - m^2} = -i \frac{1}{(4\pi)^2} \sum_{j \neq 0} 4 \sqrt{m^2} L_j K_1(F), \quad \int \frac{d^4l}{(2\pi)^4} \frac{l_0^2}{l^2 - m^2} = -i \frac{1}{(4\pi)^2} \sum_{j \neq 0} \frac{(-4) m^2}{(L_j)^2} K_2(F), (B22)
\]

\[
\int \frac{d^4l}{(2\pi)^4} \frac{1}{[l^2 - m^2]^2} = -i \frac{1}{(4\pi)^2} \sum_{j \neq 0} (-2) K_0(F), \quad \int \frac{d^4l}{(2\pi)^4} \frac{l_0^2}{[l^2 - m^2]^2} = -i \frac{1}{(4\pi)^2} \sum_{j \neq 0} \frac{2 \sqrt{m^2}}{L_j} K_1(F), (B23)
\]

\[
\int \frac{d^4l}{(2\pi)^4} \frac{1}{[l^2 - m^2]^2} = -i \frac{1}{(4\pi)^2} \sum_{j \neq 0} \frac{L_j}{2 \sqrt{m^2}} K_1(F), \quad \int \frac{d^4l}{(2\pi)^4} \frac{l_0^2}{[l^2 - m^2]^2} = -i \frac{1}{(4\pi)^2} \sum_{j \neq 0} \left(-\frac{1}{2}\right) K_0(F), (B24)
\]

where the \(K_\nu(x) \) are modified Bessel-functions of the second kind with \(F = Lj \sqrt{m^2} \) and \(j = \sqrt{j_x + j_y + j_z} \) with \(j \in \mathbb{Z} \).

To collect our final results we use the notations:

\[
F_N = Lj \sqrt{M_N^2}, \quad \Sigma_{N3} (m_N^2, L) = \frac{\partial}{\partial p_0} \Sigma_{N3} (p_0, m_N^2, L) \bigg|_{p_0=M_0}, (B25)
\]

\[
F_\Delta = Lj \sqrt{M_\Delta^2}, \quad \Sigma_{N\Delta3} (m_\Delta^2, L) = \frac{\partial}{\partial p_0} \Sigma_{N\Delta3} (p_0, m_\Delta^2, L) \bigg|_{p_0=M_0}, (B26)
\]

where the arguments of the self-energies distinguish them from their continuum counterparts.
The individual finite volume contributions corresponding to the loop-graphs in Fig. 1 are:

\[\Sigma_{N3} (m^2, L) = 3 \left[\frac{g_A}{8f_\pi \pi} \right]^2 \sum_{j \neq 0} \int_0^1 dz 2M_0 \left\{ (1 - z)^3 M_0^2 + (3 - z) M^2 \right\} K_0(F_N) + (4z - 6) \frac{M^2}{L_j} K_1(F_N) \] (B27)

\[\Sigma'_{N3} (m^2, L) = 3 \left[\frac{g_A}{8f_\pi \pi} \right]^2 \sum_{j \neq 0} \int_0^1 dz 4 \left\{ (1 - z)^3 M_0^2 + (3 - z) M^2 \right\} K_0(F_N) \] (B28)

\[\Sigma_{N4} (m^2, L) = -c_4 m^2 \left[\frac{g_A}{8f_\pi \pi} \right]^2 \int_0^1 dz \sum_{j \neq 0} \left\{ 2 \left(M_N^2 + (1 - z)^2 M_0^2 - 2z (1 - z) M_0^2 - 4 (1 - z) (3z - 2) M_0^2 \right) K_0(F_N) \right\} (B29)

\right\} K_1(F_N) - 4 \frac{M^2}{L_j} K_1(F_N) \] (B30)

\[\Sigma_{N\Delta3} (m^2, L) = \frac{4}{3} \left[\frac{h_A}{8f_\pi \pi \Delta_0} \right]^2 \int_0^1 dz (z M_0 + M_\Delta 0) 2M^2 \left\{ 2z (1 - z) M_0^3 (z M_0 + M_\Delta 0) \Delta_0 - L_j \sqrt{M_\Delta^2} K_1(F_\Delta) \right\} \] (B31)

\[\Sigma'_{N\Delta3} (m^2, L) = \frac{4}{3} \left[\frac{h_A}{8f_\pi \pi \Delta_0} \right]^2 \int_0^1 dz \left\{ 2 \left(M_0^3 (z M_0 + M_\Delta 0) \Delta_0 - L_j \sqrt{M_\Delta^2} K_1(F_\Delta) \right) \right\} \] (B32)

\[\Sigma_{N\Delta4} (m^2, L) = c_1 A m^2 \left[\frac{h_A}{8f_\pi \pi \Delta_0} \right]^2 \int_0^1 dz 2(1 - z) \frac{1}{3} M^2 \left\{ -2M_0 (3z M_0 + 2M_\Delta 0) \sqrt{M_\Delta^2} K_1(F_\Delta) \right\} \] (B33)

\[+ \left(-6z (1 - z) M_0^3 (z M_0 + M_\Delta 0) + 2M_0 (3z M_0 + 2M_\Delta 0) \Delta_0 \right) K_0(F_\Delta) \] (B34)

\[+ \left(-3z^2 M_0^2 + 3M_\Delta 0 + 6z M_0 M_\Delta 0 + 7M_\Delta^2 \right) K_0(F_\Delta) \] (B35)

4. Fit formulas

In Secs. IIIA and IIIB we use in the \(\chi^2 \) fits the following nucleon mass expressions:

\[M_N^{(3)} (M^2) = M_0 + \Sigma_{C2} (M^2) \] (B34)

\[M_N^{(3)} (M^2) = M_0 + \Sigma_{C2} (M^2) + \Sigma_{N3} (M^2) \] (B35)
where all loops are evaluated at $\hat{p} = M_0$. The additional terms proportional to c_1, as compared to Eq. 18, come from the discussion in Sec. In the case of fits with finite volume corrections, we add the following expressions:

$$M_N^{(3\Delta)} (M^2_x) = M_0 + \Sigma_{C2} (M^2_x) + \Sigma_{N3} (M^2_x) + \Sigma_{N\Delta3} (M^2_x),$$

$$M_N^{(4\Delta)} (M^2_x) = M_0 + \Sigma_{C2} (M^2_x) + \Sigma_{N3} (M^2_x) + \Sigma_{N4} (M^2_x) + \Sigma_{T4} (M^2_x) + \frac{1}{2}\pi M^2_\pi + \Sigma_{C2} (M^2_x) \Sigma_{N3} (M^2_x) + \frac{c_1}{8\pi^2 f^2_\pi} M^2_\pi \ln \frac{M^2_\pi}{M^2_K},$$

$$M_N^{(4\Delta)} (M^2_x) = M_0 + \Sigma_{C2} (M^2_x) + \Sigma_{N3} (M^2_x) + \Sigma_{N4} (M^2_x) + \Sigma_{T4} (M^2_x) + \frac{1}{2}\pi M^2_\pi + \Sigma_{C2} (M^2_x) \Sigma_{N3} (M^2_x) + \frac{c_1}{8\pi^2 f^2_\pi} M^2_\pi \ln \frac{M^2_\pi}{M^2_K} + \Sigma_{N\Delta3} (M^2_x) + \Sigma_{N\Delta4} (M^2_x) + \Sigma_{C2} (M^2_x) \Sigma_{N\Delta3} (M^2_x).$$

References:

[1] S. Weinberg, Physica A96, 327 (1979).
[2] J. Gasser and H. Leutwyler, Annals Phys. 158, 142 (1984).
[3] J. Gasser, M. Sainio, and A. Scarc, Nucl.Phys. B307, 779 (1988).
[4] H. Leutwyler, Ann. Phys. 235, 165 (1994), hep-ph/9312174.
[5] Z. Fodor and C. Hoelbling, Rev.Mod.Phys. 84, 449 (2012), 1203.4789.
[6] E. E. Jenkins and A. V. Manohar, Phys.Lett. B255, 558 (1991).
[7] B. Borasoy and U.-G. Meissner, Annals Phys. 254, 192 (1997), hep-ph/9607432.
[8] H. Hellmann, Z.Phys.A 85, 180 (1933).
[9] R. P. Feynman, Phys. Rev. 56, 340 (1939).
[10] J. Gasser, Annals Phys. 136, 62 (1981).
[11] A. Bottino, F. Donato, C. Fornengo, and S. Scarp, Astropart.Phys. 18, 805 (2002), hep-ph/0112229.
[12] A. Bottino, F. Donato, N. Fornengo, and S. Scarp, Phys.Rev. D78, 083520 (2008), 0806.4099.
[13] J. R. Ellis, K. A. Olive, and C. Savage, Phys.Rev. D77, 065026 (2008), 0801.3656.
[14] T. Cheng and R. F. Dashen, Phys.Rev.Lett. 26, 594 (1971).
[15] R. Koch, Z.Phys. C15, 161 (1982).
[16] J. Gasser, H. Leutwyler, and M. Sainio, Phys.Lett. B253, 252 (1991).
[17] M. Olsson, Phys.Lett. B452, 50 (2000), hep-ph/0001203.
[18] M. Pavan, I. Strakovsky, R. Workman, and R. Arndt, PiN Newslett. 16, 110 (2002), hep-ph/0111066.
[19] G. E. Hite, W. B. Kaufmann, and R. J. Jacob, Phys.Rev. C71, 065201 (2005).
[20] J. Staloh, H. Clement, and G. Wagner (2012), 1211.1148.
[21] J. Gasser, H. Leutwyler, and M. Sainio, Phys.Lett. B253, 260 (1991).
[22] C. Dominguez and F. Langacker, Phys.Rev. D24, 1905 (1981).
[23] T. Becher and H. Leutwyler, Eur.Phys.J. C9, 643 (1999), hep-ph/9901384.
[24] J. Goglia and G. Japaridze, Phys.Rev. D60, 114038 (1999), hep-ph/9908377.
[25] T. Fuchs, J. Goglia, G. Japaridze, and S. Scherer, Phys.Rev. D68, 056005 (2003), hep-ph/0302117.
[26] P. Buettiker and U.-G. Meissner, Nucl.Phys. A668, 97 (2000), hep-ph/9908247.
[27] B. R. Holstein, V. Pascualutsa, and V. Vanderhaeghen, Phys.Rev. D72, 094014 (2005), hep-ph/0507016.
[28] L. Geng, J. Martin Camalchi, L. Alvarez-Ruso, and M. Vicente Vacas, Phys.Rev.Lett. 101, 222002 (2008), 0805.1419.
[29] T. Becher and H. Leutwyler, JHEP 0106, 017 (2001), hep-ph/0103263.
[30] J. Alarcon, J. M. Camalchi, and J. Oller (2012), 1210.4450.
[31] Y.-H. Chen, D.-L. Yao, and H. Zheng (2012), 1212.1893.
[32] T. R. Hemmert, B. R. Holstein, and J. Kambor, Phys.Lett. B395, 89 (1997), hep-ph/9606456.
[33] T. R. Hemmert, B. R. Holstein, and J. Kambor, J.Phys. G24, 1831 (1998), hep-ph/9712496.
[34] V. Pascualutsa and D. R. Phillips, Phys.Rev. C67, 055202 (2003), nucl-th/0212024.
[96] J. Beringer et al. (Particle Data Group), Phys.Rev. D86, 010001 (2012).
[97] S. Aoki et al. (PACS-CS Collaboration), Phys.Rev. D81, 074503 (2010), 0911.2561.
[98] G. D’Agostini (1995), hep-ph/9512295.
[99] J. Alarcon, L. Geng, J. M. Camalich, and J. Oller (2012), 1209.2870.
[100] N. Fettes, U.-G. Meissner, M. Mojzis, and S. Steininger, Annals Phys. 283, 273 (2000), hep-ph/0001308.
[101] V. Pascalutsa, Phys.Rev. D58, 096002 (1998), hep-ph/9802288.