Primary and secondary agonists can use P2X₁ receptors as a major pathway to increase intracellular Ca²⁺ in the human platelet

C. Y. E. FUNG,* C. CENDANA,* R. W. FARNDALE† and M. P. MAHAUT-SMITH*‡

*Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge; †Department of Biochemistry, University of Cambridge, Cambridge; and ‡Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK

To cite this article: Fung CYE, Cendana C, Farndale RW, Mahaut-Smith MP. Primary and secondary agonists can use P2X₁ receptors as a major pathway to increase intracellular Ca²⁺ in the human platelet. J Thromb Haemost 2007; 5: 910–7.

See also Nurden AT. Does ATP act through P2X₁ receptors to regulate platelet activation and thrombus formation? This issue, pp 907–9.

Summary. In the platelet, it is well established that many G-protein- and tyrosine kinase-coupled receptors stimulate phospholipase-C-dependent Ca²⁺ mobilization; however, the extent to which secondary activation of adenosine 5'-triphosphate (ATP)-gated P2X₁ receptors contributes to intracellular Ca²⁺ responses remains unclear. We now show that selective inhibition of P2X₁ receptors substantially reduces the [Ca²⁺] increase evoked by several important agonists in human platelets; for collagen, thromboxane A₂, thrombin, and adenosine 5'-diphosphate (ADP) the maximal effect was a reduction to 18%, 34%, 52%, and 69% of control, respectively. The direct contribution of P2X₁ to the secondary Ca²⁺ response was far greater than that of either P2Y receptors activated by co-released ADP, or via synergistic P2X₁:P2Y interactions. The relative contribution of P2X₁ to the peak Ca²⁺ response was far greater than that of either P2Y receptors activated by co-released ADP, or via synergistic P2X₁:P2Y interactions. ATP release was detected by soluble luciferin:luciferase in response to all agonists that stimulated secondary P2X₁ receptor activation. However, P2X₁ receptors were stimulated earlier and to a greater extent than predicted from the average ATP release, which can be accounted for by a predominantly autocrine mechanism of activation. Given the central role of [Ca²⁺], increases in platelet activation, these studies indicate that ATP should be considered alongside ADP and thromboxane A₂ as a significant secondary platelet agonist.

Keywords: ATP, Ca²⁺, collagen, P2X₁, thrombin, thromboxane A₂.

Introduction

Platelets express three receptors gated by extracellular nucleotides: P2X₁, P2Y₁, and P2Y₁₂ [1,2]. P2X receptors are Ca²⁺-permeable ligand-gated non-selective cation channels, whereas P2Y receptors are seven transmembrane domain receptors that couple to cellular responses via the activation of heterotrimeric G-proteins [3]. Although adenosine 5'-diphosphate (ADP) was initially believed to act at all three human platelet P2 receptors, it is now clear that ADP and adenosine 5'-triphosphate (ATP) are selective physiological agonists at the platelet P2Y and P2X₁ receptors, respectively [4]. The important role that P2Y₁ and P2Y₁₂ receptors play during hemostasis and thrombosis is well established [5,6]. In contrast, the relevance of P2X₁ receptors to platelet function has been questioned because they rapidly desensitize [4] and their selective activation in vitro evokes a transient shape change without significant aggregation [7]. However, murine models demonstrate an important contribution of this ATP-gated non-selective cation channel to thrombosis, particularly in small arteries [8,9]. One explanation for the major contribution of P2X₁ to platelet activation in vivo is that ATP released from dense granules contributes to signaling events following initial stimulation by other agonists. In
support of this, human and murine studies have shown a role for P2X$_1$ in the aggregation responses to low doses of collagen and thrombin [8,10,11]. Whilst much work has been conducted to characterize P2X$_1$ involvement in downstream platelet function, the extent to which P2X$_1$ acts independently or in synergy with other secondary mediators during the early stages of platelet activation remains unclear. In the present study, we have used measurements of the key platelet second messenger, intracellular Ca$^{2+}$ ([Ca$^{2+}$]), to examine the relative importance of P2X$_1$ receptors alone and in combination with P2Y receptors in the initial responses to a number of major agonists.

Methods

Preparation of platelet suspensions

Fura-2-loaded washed suspensions of human platelets from informed, consenting donors were prepared using acid citrate dextrose anticoagulant and treated with aspirin (100 μm) and type VII apyrase (0.32 U mL$^{-1}$) as described elsewhere [7]. The study was approved by the University of Cambridge Human Biology Research Ethics Committee. Platelets were resuspended in nominally Ca$^{2+}$-free saline (in mM: 145 NaCl, 5 KCl, 1 MgCl$_2$, 10 HEPES, 10 glucose, titrated to pH 7.35 with NaOH) with type VII apyrase (0.32 U mL$^{-1}$). 2 mM CaCl$_2$ or 2 mM MgCl$_2$ was added to the cuvette 30 s prior to the agonist for studies in the presence and absence of external Ca$^{2+}$, respectively.

[Ca$^{2+}$], measurements

Fura-2 ratiometric fluorescence measurements were conducted at 37 °C in a Cairn spectrotomflorimeter system (Cairn Research Limited, Faversham, Kent, UK) and converted to [Ca$^{2+}$], as described elsewhere using a dissociation constant for Ca$^{2+}$ of 224 nm [7].

Reagents

Collagen type I, as a suspension of native fibers from bovine tendon, was the gift of Ethicon Corporation (Somerville, NJ, USA). Collagen-related peptide (CRP) with the sequence H–urbation of P2 receptor subtypes

To assess the relative contribution of the three platelet P2 receptors to [Ca$^{2+}$] responses, we first derived conditions that provide maximal block, but with strict limits on selectivity. Thus, whilst 3 μm was the minimum concentration of the suramin derivative NF449 [14] required to completely block P2X$_1$ receptor-evoked Ca$^{2+}$ influx, it also significantly reduced the ADP (1 μM)-evoked Ca$^{2+}$ release via P2Y receptors to 83 ± 4% of control (Fig. 1). However, 1 μM NF449 had no significant effect on ADP-evoked Ca$^{2+}$ release, yet still reduced the peak response via P2X$_1$ receptors to 11 ± 2% of control (Fig. 1B,D). In comparison, P2Y responses to 10 μM ADP were reduced to negligible levels (0.3 ± 0.2%) by 30 μM MRS2179 (Fig. 1C,D), a concentration which has no effect on P2Y$_1$ receptors as maximal local extracellular concentrations of ADP are likely to be in the range 10–20 μM. This estimation is based upon the surface-attached luciferase measurements of ATP by Beigi et al. [16], and the fact that ATP and ADP are stored at equal concentrations in the dense granules of human platelets [17]. Because 1 μM cangrelor also had no significant effect on P2X$_1$ (Fig. 1B), but maximally inhibits P2Y$_1$ receptor responses [18] without affecting P2Y$_1$ receptors [19], these results establish that 1 μM NF449, 1 μM cangrelor and 30 μM MRS2179 provide maximal, selective antagonism of P2X$_1$.

Luminescence measurement of ATP secretion

ATP secretion from washed platelet suspensions was measured in a Model 400 lumi-aggregometer as above, following the kit manufacturer’s guidelines. The luminescence channel output was amplified tenfold before acquisition to computer. Platelets used in luminescence studies were loaded with fura-2 to provide parallel measurements of ATP secretion and [Ca$^{2+}$], under closely matched conditions. 600 nM αβ-meATP did not interfere with the luciferin-luciferase assay for ATP (Chen, Fung, and Mahaut-Smith, unpublished observations).

Analysis

Sample records of [Ca$^{2+}$], are representative of experiments from ≥ four separate donors. The magnitude of Ca$^{2+}$ responses was assessed from the peak increase above prestimulus level. Average values represent the mean ± SEM, with statistical analysis performed using Student’s paired t-test. Significance is indicated at levels of 0.05 (*), 0.01 (**), 0.005 (***) and 0.001 (****).

Results

Conditions for maximal, selective inhibition of individual platelet P2 receptor subtypes

Sample records of [Ca$^{2+}$] were employed in combination with P2Y receptors to [Ca$^{2+}$] responses, we first derived conditions that provide maximal block, but with strict limits on selectivity. Thus, whilst 3 μM was the minimum concentration of the suramin derivative NF449 [14] required to completely block P2X$_1$ receptor-evoked Ca$^{2+}$ influx, it also significantly reduced the ADP (1 μM)-evoked Ca$^{2+}$ release via P2Y receptors to 83 ± 4% of control (Fig. 1). However, 1 μM NF449 had no significant effect on ADP-evoked Ca$^{2+}$ release, yet still reduced the peak response via P2X$_1$ receptors to 11 ± 2% of control (Fig. 1B,D). In comparison, P2Y responses to 10 μM ADP were reduced to negligible levels (0.3 ± 0.2%) by 30 μM MRS2179 (Fig. 1C,D), a concentration which has no effect on P2Y$_1$ receptors as maximal local extracellular concentrations of ADP are likely to be in the range 10–20 μM. This estimation is based upon the surface-attached luciferase measurements of ATP by Beigi et al. [16], and the fact that ATP and ADP are stored at equal concentrations in the dense granules of human platelets [17]. Because 1 μM cangrelor also had no significant effect on P2X$_1$ (Fig. 1B), but maximally inhibits P2Y$_1$ receptor responses [18] without affecting P2Y$_1$ receptors [19], these results establish that 1 μM NF449, 1 μM cangrelor and 30 μM MRS2179 provide maximal, selective antagonism of P2X$_1$,
P2Y₁₂ and P2Y₁ receptors, respectively. An additional means to selectively inhibit P2X₁ receptor Ca²⁺ influx is desensitization in Ca²⁺-free medium with α,β-meATP [10,20], which at 600 nM completely abolished P2X₁ receptor-evoked Ca²⁺ increases without influencing ADP-evoked Ca²⁺ responses (Fig. 1B,D).

The major role of P2X₁ receptors in collagen-evoked Ca²⁺ increases does not require co-activation of P2Y receptors and principally involves glycoprotein VI

Selective inhibition of P2X₁ receptors with 1 µM NF449 caused a large reduction of the Ca²⁺ responses stimulated by a low dose of collagen (0.5 µg mL^{−1}; Fig. 2A). The peak was reduced to 18 ± 2% (*P < 0.05*) of control, similar to the effect of P2X₁ desensitization with 600 nM α,β-meATP (reduction to 25 ± 9% of control; Fig. 2E). Importantly, this confirms that α,β-meATP predesensitization has equivalent effects to simple direct blockade with NF449, and desensitization was used as a preferred tool as it permitted greater selective reduction of P2X₁ receptor signals. The

Fig. 1. Conditions for maximal, selective inhibition of P2X₁ receptors. Effect of different P2 receptor antagonists or pre-addition of α,β-meATP on [Ca²⁺] responses via P2X₁ receptors (A,B, 10 µM α,β-meATP in saline with 2 mM Ca²⁺) or P2Y receptors (C,D, hexokinase-treated ADP in nominally Ca²⁺-free saline; 10 µM ADP for MRS 2179, 1 µM ADP for other compounds). (A), (C) Representative recordings. (B), (D) Average peak responses, as percentage of paired controls. 600 nM α,β-meATP was added 90 s prior to the test agonist. In all figures, the asterisks above each bar indicate the ‘P-value’ relative to the paired control; ns, not significant; α,β, α,β-meATP; MRS, MRS 2179; CNG, cangrelor.

Fig. 2. The major role of P2X₁ in collagen-evoked Ca²⁺ signaling via glycoprotein (GP) VI does not rely upon co-activation of P2Y receptors. Representative (A–D, F) and average (E, G) [Ca²⁺] responses to collagen (0.5 µg mL^{−1}, A–E) or collagen-related peptide (CRP; 25 or 250 ng mL^{−1}; F, G). Average responses are shown as the percentage of a paired control. Responses were studied in the presence and absence of α,β-meATP (600 nM, added 90 s prior to agonist), NF449 (1 µM), MRS 2179 (MRS, 30 µM) and cangrelor (CNG, 1 µM), or a combination of these blockers as shown, all added 60 s before agonist. All experiments were conducted in the presence of external Ca²⁺ (2 mM).
contribution of P2X1 receptors to collagen-evoked Ca\(^{2+}\) responses was far greater than that of P2Y receptors, as the response was reduced to only 78 ± 3%, 88 ± 10% and 80 ± 4%, respectively, for MRS2179, cangrelor and these two inhibitors combined. Combined blockade of P2X1 and either P2Y1 or both P2Y1 and P2Y12 receptors was not significantly different from block/desensitization of P2X1 alone (P > 0.05; Fig. 2E). Thus, we were unable to further explore possible synergy between P2X1 and P2Y receptors, as reported previously in the platelet [21]. However, this synergy may account for the lack of effect of MRS2179 on top of α,β-meATP despite a small but significant effect of MRS2179 on its own.

Selective stimulation of glycoprotein (GP) VI with 25 ng mL\(^{-1}\) CRP [22] evoked a [Ca\(^{2+}\)]i response comparable to 0.5 μg mL\(^{-1}\) collagen, which was reduced to 24 ± 5% of control by α,β-meATP pre-addition (Fig. 2F), similar to the effect of P2X1 inhibition on low collagen concentrations. As observed for collagen [20], the percentage contribution of P2X1 to GPVI-dependent signals was less at higher concentrations of CRP (for example α,β-meATP reduced the response to 200 ng mL\(^{-1}\) CRP to only 68 ± 4% of control; Fig. 2G). Together these data suggest that GPVI represents the receptor by which collagen stimulates secondary activation of P2X1 receptors.

P2X1 receptor inhibition by NF449, or desensitization by α,β-meATP, does not block other platelet Ca\(^{2+}\) entry pathways

Platelet G-protein-coupled or tyrosine kinase-linked receptors have been previously proposed to stimulate Ca\(^{2+}\) influx via store-dependent and store-independent pathways [23,24]. We have recently shown that NF449 and α,β-meATP do not affect platelet store-independent cation currents using direct electrophysiological measurements in the megakaryocyte [13]. To assess effects on store-dependent Ca\(^{2+}\) influx, intracellular Ca\(^{2+}\) stores were depleted for 5 min with 1 μM thapsigargin in Ca\(^{2+}\)-free medium followed by addition of external Ca\(^{2+}\) (Fig. 3). Neither 600 nM α,β-meATP nor 1 μM NF449 had any significant effect on store-dependent Ca\(^{2+}\) influx as the time to reach [Ca\(^{2+}\)]i levels of 500 or 1000 nM Ca\(^{2+}\) re-addition were unaffected (Fig. 3A–D). The lack of effect of NF449 or α,β-meATP on the initial thapsigargin-evoked Ca\(^{2+}\) influx also confirms that these P2X1-inhibiting reagents do not substantially alter the platelet membrane potential. However, the later phase of the Ca\(^{2+}\) increase in these re-addition experiments was slightly attenuated or delayed by P2X1 receptor inhibition, although this was only significant for the peak response for α,β-meATP pre-addition (decrease to 89 ± 2% of control; P < 0.001) and the time to peak for 1 μM NF449 (increase to 167 ± 18% of control; P < 0.05). A reasonable explanation for these effects is that high levels of Ca\(^{2+}\) lead to ATP secretion [25], which amplifies/accelerates the peak Ca\(^{2+}\) response through P2X1 receptor activation in parallel to store-mediated Ca\(^{2+}\) entry.

Role of P2X1 receptors in thrombin-evoked Ca\(^{2+}\)-responses

We next assessed the importance of P2X1 receptors during responses to thrombin, the most potent known Ca\(^{2+}\)-mobilizing platelet agonist. The concentration–response curve for thrombin (0.001–4.0 U mL\(^{-1}\)) in our platelet preparation is shown in Fig. 4A. Desensitization of P2X1 receptors reduced the peak response to thrombin in a concentration-dependent manner, which was maximal at low to mid-range thrombin concentrations (0.01–0.03 U mL\(^{-1}\)), see concentration–response relationship in Fig. 4B and sample records at 0.03 U mL\(^{-1}\) in Fig. 4C). In the absence of external Ca\(^{2+}\), α,β-meATP had no effect on the peak [Ca\(^{2+}\)]i increase evoked by 0.03 U mL\(^{-1}\) thrombin (97 ± 2% of the control response;
Fig. 4. P2X1 contributes to thrombin-evoked Ca2+ responses, particularly at low–mid-range levels of PAR receptor stimulation. (A) Dose-response curve for the peak thrombin-evoked Ca2+ increase; the data were fit by a logistic curve with an EC\textsubscript{50} of 0.032 ± 0.009 U mL–1 and average (F) responses (as a percentage of a paired control) to thrombin across a range of thrombin concentrations. (C)–(F) Representative (C–E) paired traces with and without 600 nM α,β-meATP (+ α,β-meATP) on the peak thrombin-evoked Ca2+ increase across a range of thrombin concentrations. (C) and (D) show average peak [Ca2+]i responses (as a percentage of a paired control) to 0.03 U mL–1 thrombin following treatment with 600 nM α,β-meATP, 1.0 µM U46619, 30 µM MRS2179 (MRS) and 1.0 µM cangrelor (CNG), individually or in combination. All experiments were conducted in the presence of external Ca2+ (2 mM).

P > 0.05; data not shown), thus this nucleotide does not affect stored Ca2+ levels or thrombin receptors.

At a thrombin concentration close to the EC\textsubscript{50} (0.03 U mL–1), no significant effect was observed for MRS2179 or cangrelor on the peak thrombin-evoked Ca2+ increase (96 ± 5% and 110 ± 10% of control, respectively; **P** > 0.05; Fig. 4D–F). This compares with reductions in peak Ca2+ responses to 52 ± 1% and 58 ± 10% of control with α,β-meATP and NF449, respectively. Furthermore, this contribution of P2X1 was not dependent upon interactions with P2Y receptors as α,β-meATP reduced thrombin-evoked Ca2+ increases to the same extent in the presence or absence of both MRS 2179 and cangrelor (**P** > 0.05; Fig. 4F). The receptor through which thrombin achieved P2X1 stimulation was mainly PAR-1 as the response to an EC\textsubscript{50} concentration of TRAP specific for PAR-1 (10 µM) was reduced to 50 ± 6% of the control response by α,β-meATP (not shown), which is not significantly different to the effect of losing P2X1 receptor function during stimulation with 0.03 U mL–1 thrombin (**P** > 0.05).

Role of P2X1 during activation by the secondary agonists ADP and thromboxane A\textsubscript{2}

We also examined the role of P2X1 receptors in response to direct stimulation by thromboxane A\textsubscript{2} and ADP, two further platelet agonists with important roles in hemostasis and thrombosis. The stable thromboxane A\textsubscript{2} analogue, U46619, activated its full range of [Ca2+] responses over only a narrow range of concentrations; consequently, small and large responses could be achieved with 0.5 and 1.0 µM U46619, respectively. Inhibition of P2X1 receptors caused a marked decrease in the peak [Ca2+] increase at both these concentrations, which was also observed following treatment with the antagonist P2X1 receptor inhibitor, MRS2179 and cangrelor (**P** > 0.05; Fig. 4). The receptor through which thrombin achieved P2X1 stimulation was mainly PAR-1 as the response to an EC\textsubscript{50} concentration of TRAP specific for PAR-1 (10 µM) was reduced to 50 ± 6% of the control response by α,β-meATP (not shown), which is not significantly different to the effect of losing P2X1 receptor function during stimulation with 0.03 U mL–1 thrombin (**P** > 0.05).
concentrations; peak responses to 1 and 0.5 μM U46619 were reduced to 42 ± 11% and 38 ± 4%, respectively, by 1 μM NF449 and 34 ± 7% and 35 ± 3%, respectively, after αβ-meATP (Fig. 5C,D). Block of P2Y receptors had only small effects on [Ca2+]i responses to 1 or 30 μM ADP (hexokinase-treated) in the presence or absence of 600 nM αβ-meATP (Fig. 6A). Effect of P2X1 desensitization on peak ADP-evoked [Ca2+]i responses as a percentage of a paired control. All experiments were conducted in the presence of external Ca2+ (2 mM).

The role of P2X1 receptors in ADP-evoked responses is difficult to study because of contamination of commercial samples with ATP [26]; however, hexokinase treatment reduces the level of ATP to negligible levels (Fig. 6A). Desensitization of P2X1 receptors had no effect on the Ca2+ response to low concentrations of ATP-free ADP (1 μM, P > 0.05; Fig. 6B,D). However, maximal stimulation of P2X2 receptors with 30 μM hexokinase-treated ADP generated a noticeable secondary phase of [Ca2+]i increase, which was abolished by αβ-meATP pre-addition (Fig. 6C). The secondary Ca2+ spike was variable between donors, and overall the average peak ADP-evoked Ca2+ increase was reduced to 69 ± 7% (P < 0.01). The secondary Ca2+ spike was not a result of direct activation of P2X1 receptors by contaminating ATP for two reasons. First, we estimate that the concentration of ATP in 30 μM hexokinase-treated ADP is less than 1 nM, a level that is unable to activate P2X1 receptors. Secondly, any direct P2X1 receptor activation would be rapid; yet the amplitude and rate of initial ADP-evoked Ca2+ increase was not altered by αβ-meATP pre-addition (Fig. 6C). Therefore, it is likely that 30 μM ADP stimulates P2X1 via release of ATP (see below).

Early dense granule secretion generates only nanomolar levels of bulk phase ATP

To examine the relationship between ATP release and the time course of secondary P2X1 receptor activation, total ATP levels were measured using luciferin/luciferase added to washed platelet suspensions. Early ATP release was detected in response to 30 μM ADP but not in response to 1 μM ADP (Fig. 7A), which together with the data in Fig. 6 is consistent with a requirement for ATP release for P2X1 activation. Furthermore, early ATP release was observed in response to collagen, thrombin and U46619 at concentrations of these agonists that induce substantial P2X1 receptor activation.
(Fig. 7A). However, in all cases the early peak ATP increase was only 10–30 nm during the first 30 s, when P2X₁ receptors played a major role in the [Ca²⁺]ᵢ increase. To examine the temporal relationship between secretion and Ca²⁺-mobilization, the P2X₁-dependent Ca²⁺ response to 0.5 µg mL⁻¹ collagen was derived from recordings in the presence and absence of αβ-meATP and compared to the percentage P2X₁ receptor activation. The latter was calculated from the ATP concentration-reaction relationship of P2X₁ receptors following complete inhibition of G-protein-coupled receptor Ca²⁺ responses with a prostacyclin concentration that has no effect on P2X₁ receptors (Fung and Mahaut-Smith, unpublished observations; Fig. 7B). This temporal comparison shows that the average extracellular ATP concentration increases with a delayed time course relative to the P2X₁-dependent Ca²⁺ increase. This difference can be accounted for by a predominantly autocrine mechanism of P2X₁ receptor activation as ATP increases near the sites of granule release will be larger and more rapid than in the bulk phase.

Discussion

An increase in [Ca²⁺]ᵢ is used by a wide range of platelet agonists as a key signal to activate downstream events. On its own, [Ca²⁺]ᵢ increases within the physiological range can activate most functional responses in the platelet including shape change, aggregation, secretion and procoagulant activity, although Ca²⁺-mobilization normally operates in tandem with other signaling pathways such as tyrosine kinases, PI 3-kinase and inhibition of cAMP production [25,27]. The central role of Ca²⁺ in hemostasis and thrombosis is demonstrated by the ability of cytosolic BAPTA (a Ca²⁺ chelator) to block or markedly inhibit a number of mainstream platelet responses such as inside-out activation of α₂β₃, procoagulant activity and arachidonate production [28–30]. The present study shows, for the first time, that secondary activation of P2X₁ receptors represents a major means by which both G-protein-coupled and tyrosine kinase-coupled receptors elevate [Ca²⁺]ᵢ, independently of ADP-activated P2Y receptors. This enhancement of the initial Ca²⁺ responses may explain the previously reported ability of P2X₁ receptors to potentiate aggregation at low levels of collagen and thrombin [8,10,11]. This general role of P2X₁ receptors as a secondary Ca²⁺ influx pathway could also help explain the resistance to thrombosis displayed by P2X₁⁻/⁻ mice [8] and the enhanced thrombotic phenotype of mice overexpressing human P2X₁ receptors [9].

Platelet receptors coupled to phospholipase-C activation mobilize Ca²⁺ by a combination of IP₃-dependent store release and influx across the plasma membrane [25]. The current view is that these influx pathways consist of ion channels activated by either intracellular Ca²⁺ store depletion (store-operated Ca²⁺ influx) or the products of PLC such as diacylglycerol (termed store-independent Ca²⁺ influx) [13,23,24]. We now show that P2X₁ receptors should be considered as a significant additional contributor to early Ca²⁺ influx in the platelet following stimulation by agonists acting via G-protein-coupled receptors and tyrosine-kinase-coupled receptors.

We have previously shown that P2X₁ is able to potentiate the non-selective cation channel coupled to P2Y receptors in murine megakaryocytes and to accelerate and amplify the P2Y-evoked Ca²⁺ mobilization in suspensions of human platelets [21]. Although such synergy may exist when both P2X₁ and P2Y receptors are active, the present study shows that P2X₁ does not rely upon interactions with co-activated P2Y receptors to contribute as a secondary Ca²⁺-elevating pathway in the platelet. Serotonin release from dense granules also has little or no role in the Ca²⁺ responses in these experiments as a maximal concentration of serotonin (1 µM) evoked a Ca²⁺ increase of < 15 nm, and 100 nm methiothepin (a concentration that blocked responses to 1 µM serotonin) had no significant effect on the Ca²⁺ increase evoked by 1 µM U46619 (109.5 ± 13.2% of control; P > 0.05). A likely explanation for the important independent role of P2X₁ is that the primary agonist already stimulates the phospholipase-C-dependent Ca²⁺ fluxes subsequently targeted by released ADP via P2Y receptors, whereas P2X₁ receptor-cation channels represent a separate route for elevating Ca²⁺. In addition, we show that P2X₁ receptors can be activated only when small total amounts of ATP are released, thus allowing this pathway to contribute at low levels of dense granule secretion. Moreover, our experiments were conducted in the presence of apyrase, indicating the ability of ATP to activate P2X₁ receptors even in the presence of significant levels of ectonucleotidase activity. The rapid kinetics of P2X₁ activation by its ligand [4] most likely account for its efficient activation even in the presence of ectonucleotides. However, this role for ATP should not reduce the well-established importance of other released compounds such as ADP and thromboxane A₂. In particular, because P2X₁ causes elevation of only Ca²⁺ (and Na⁺), stimulation of complementary signaling pathways by P2Y₁₂ receptors remains crucial for collagen and thromboxaneA₂ receptor-evoked aggregation [1,2].

Two pieces of evidence suggest that secondary activation of P2X₁ receptors occurs via an autocrine rather than a paracrine manner. First, the bulk phase ATP level when P2X₁ maximally contributes is sufficient to activate less than 10% of P2X₁ receptors (Fig. 7B). Secondly, P2X₁ receptors contribute to the collagen-evoked Ca²⁺ increase earlier than the average extracellular ATP increases (Fig. 7B). These observations can be explained when it is considered that, following secretion, the extracellular ATP concentration at the plasma membrane surface will increase earlier, and be far greater in magnitude compared to the average level measured by soluble luciferin-luciferase. Localization of P2X₁ receptors at sites of secretion may also explain how ATP release can so efficiently activate P2X₁ receptors. Although there is no direct evidence for such localization at present, lipid rafts may play an important role as these microdomains in platelets contain both P2X₁ receptors and SNARE proteins, and raft disruption leads to inhibition of P2X₁ responses and exocytosis [31,32].

In conclusion, we show that P2X₁ receptors can represent a significant pathway for early Ca²⁺-mobilization following
activation of a variety of major receptors linked through both G-proteins and tyrosine kinases in the platelet. Thus, P2X1 receptors should be considered alongside store-operated and store-independent channels as an important route for Ca2+ influx, and therefore to be a more significant potential antithrombotic target than previously recognized.

Acknowledgements
This work was funded by the British Heart Foundation (PG/05/0144). C. Cendana was funded by the National Center for Minority Health and Health Disparities, National Institutes of Health (grant number 5T37MD001368-09). C.Y.E. Fung was funded in part by a bursary from the Cambridge Overseas Trust.

Disclosure of Conflict of Interests
The authors state that they have no conflict of interest.

References
1 Murugappa S, Kunapuli SP. The role of ADP receptors in platelet function. Front Biosci 2006; 11: 1977–86.
2 Gachet C. The platelet P2 receptors as molecular targets for old and new antiplatelet drugs. Pharmacol Ther 2005; 108: 180–92.
3 Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev 1998; 50: 413–92.
4 Mahaut-Smith MP, Tolhurst G, Evans RJ. Emerging roles for P2X1 receptors in platelet activation. Platelets 2004; 15: 131–44.
5 Andre P, Delaney SM, LaRocca T, Vincent D, Deguzman F, Jurek M, Koller B, Phillips DR, Conley PB. P2Y12 regulates platelet adhesion/activation, thrombus growth, and thrombus stability in injured arteries. J Clin Invest 2003; 112: 398–406.
6 Leon C, Hechtler B, Freund M, Eckly A, Vial C, Ohlmann P, Dierich MF. The ATP-gated P2X1 ion channel acts as a positive regulator of platelet responses to collagen.
7 Rolf MG, Mahaut-Smith MP. Effects of enhanced P2X1 receptor Ca2+ influx on functional responses in human platelets. Thromb Haemost 2002; 88: 495–502.
8 Hechtler B, Niran N, Marchese P, Vial C, Heim V, Freund M, Cazenave JP, Cattaneo M, Ruggeri ZM, Evans R, Gachet C. A role of the fast ATP-gated P2X1 cation channel in thrombosis of small arteries in vivo. J Exp Med 2003; 198: 661–7.
9 Oury C, Kuijpers MJ, Toth-Zsamboki E, Bonnefoy A, Danloy S, Vreys, I, Feige MA, De Vos R, Vermelen J, Heemskerk JW, Holyaerts MF. Overexpression of the platelet P2X1 ion channel in transgenic mice generates a novel prothrombotic phenotype. Blood 2003; 101: 3969–76.
10 Oury C, Toth-Zsamboki E, Thys C, Tytgat J, Vermelen J, Holyaerts MF. The ATP-gated P2X1 ion channel acts as a positive regulator of platelet responses to collagen. Thromb Haemost 2001; 86: 1264–71.
11 Erhardt JA, Toomey JR, Douglas SA, Johns DG. P2X1 stimulation promotes thrombin receptor-mediated platelet aggregation. J Thromb Haemost 2006; 4: 882–90.
12 Morton LF, Hargreaves PG, Farndale RW, Young RD, Barnes MJ. Integrin αβ3-dependent activation of platelets by simple collagen-like peptides: collagen tertiary (triple-helical) and quaternary (polymeric) structures are sufficient alone for αβ3 integrin-dependent platelet reactivity. Biochem J 1995; 306: 337–44.
13 Tolhurst G, Vial C, Leon C, Gachet C, Evans RJ, Mahaut-Smith MP. Interplay between P2Y1, P2Y12, and P2X1 receptors in the activation of megakaryocyte cation influx currents by ADP: evidence that the primary megakaryocyte represents a fully functional model of platelet P2Y1 receptor signaling. Blood 2005; 106: 1644–51.
14 Horner S, Menke K, Hildebrandt C, Kassack MU, Nickel P, Ullmann H, Mahaut-Smith MP, Lambrecht G. The novel suramin analogue NF684 selectively blocks P2X1 receptors in human platelets with potency in the low nanomolar range. Naunyn Schmiedebergs Arch Pharmacol 2005; 372: 1–13.
15 Savi P, Labouret C, Delesque N, Guette F, Lupker J, Herbert JM. P2Y12, a new platelet ADP receptor, target of clopidogrel. Biochem Biophys Res Commun 2001; 283: 379–83.
16 Beigl R, Kobatake E, Aizawa M, Dubyak GR. Detection of local ATP release from activated platelets using cell surface-attached firefly luciferase. Am J Physiol 1999; 276: C267–78.
17 Holmens H, Weiss HJ. Secretable storage pools in platelets. Annu Rev Med 1979; 30: 119–34.
18 Takasaki J, Kamohara M, Saito T, Matsumoto M, Matsumoto S, Ohiishi T, Soga T, Matsushima H, Furuiuchi K. Molecular cloning of the platelet P2X1c ADP receptor: pharmacological comparison with another ADP receptor, the P2Y1 receptor. Mol Pharmacol 2001; 60: 432–9.
19 Hardy AR, Jones ML, Mundell SJ, Poole AW. Reciprocal cross-talk between P2Y1 and P2Y12 receptors at the level of calcium signaling in human platelets. Blood 2004; 104: 1745–52.
20 Fung CY, Brearley CA, Farndale RW, Mahaut-Smith MP. A major role for P2X1 receptors in the early collagen-evoked intracellular Ca2+ responses of human platelets. Thromb Haemost 2005; 94: 37–40.
21 Vial C, Rolf MG, Mahaut-Smith MP, Evans RJ. A study of P2X1 receptor function in murine megakaryocytes and human platelets reveals synergy with P2Y receptors. Br J Pharmacol 2002; 135: 363–72.
22 Gibbins JM, Okuma M, Farndale R, Barnes M, Watson SP. Glycoprotein VI is the collagen receptor in platelets which underlies tyrosine phosphorylation of the Fc receptor gamma-chain. FEBS Lett 1997; 413: 255–9.
23 Hassock SR, Zhu MX, Trost C, Flockerzi V, Authi KS. Expression and role of TRPC proteins in human platelets: evidence that TRPC6 forms the store-independent calcium entry channel. Blood 2002; 100: 2801–11.
24 Rosado JA, Sage SO. The actin cytoskeleton in store-mediated calcium entry. J Physiol 2000; 526: 221–9.
25 Siess W. Molecular mechanisms of platelet activation. Physiol Rev 1999; 69: 58–178.
26 Mahaut-Smith MP, Ennion SJ, Rolf MG, Evans RJ. ADP is not an agonist at P2X1 receptors: evidence for separate receptors stimulated by ATP and ADP on human platelets. Br J Pharmacol 2000; 131: 108–14.
27 Jackson SP, Nesbitt WS, Kulkarni S. Signaling events underlying thrombus formation. J Thromb Haemost 2003; 1: 1602–12.
28 Atkinson BT, Stafford MJ, Pears CJ, Watson SP. Signalling events underlying platelet aggregation induced by the glycoprotein VI agonist convulxin. Eur J Biochem 2001; 268: 5242–8.
29 Heemskerk JW, Vuist WM, Feige MA, Reutelingsperger CP, Lindhout T. Collagen but not fibrinogen surfaces induce bleb formation, exposure of phosphatidylserine, and procoagulant activity of adherent human platelets. J Thromb Haemost 2005; 3: 2065–76.
30 Vial C, Fung CY, Goodall AH, Mahaut-Smith MP, Evans RJ. Differential sensitivity of human platelet P2X1 and P2Y1 receptors to disruption of lipid rafts. Biochem Biophys Res Commun 2006; 343: 415–9.
31 Saha C, James DJ, Chamberlain LH. Lipid rafts and the regulation of exocytosis. Traffic 2004; 5: 255–64.