Patients with cancer have higher COVID-19 morbidity and mortality. Here we present the prospective CAPTURE study, integrating longitudinal immune profiling with clinical annotation. Of 357 patients with cancer, 118 were SARS-CoV-2 positive, 94 were symptomatic and 2 died of COVID-19. In this cohort, 83% patients had S1-reactive antibodies and 82% had neutralizing antibodies against wild type SARS-CoV-2, whereas neutralizing antibody titers against the Alpha, Beta and Delta variants were substantially reduced. S1-reactive antibody levels decreased in 13% of patients, whereas neutralizing antibody titers remained stable for up to 329 days. Patients also had detectable SARS-CoV-2-specific T cells and CD4+ responses correlating with S1-reactive antibody levels, although patients with hematological malignancies had impaired immune responses that were disease and treatment specific, but presented compensatory cellular responses, further supported by clinical recovery in all but one patient. Overall, these findings advance the understanding of the nature and duration of the immune response to SARS-CoV-2 in patients with cancer.
Previous studies established the features of the acute immune response to SARS-CoV-2 in patients with cancer: (1) patients with solid tumors show high seroconversion rates; (2) patients with hematological cancer show impaired humoral immunity, especially those on anti-CD20 therapy; and (3) higher CD8+ T cell counts in patients with hematological malignancies are associated with improved survival. In contrast to the studies above, our cohort consisted mainly of convalescent patients with a range of COVID-19 presentations, from asymptomatic to severe disease. Furthermore, we present an integrated analysis of functional immune response, including SARS-CoV-2-specific T cells and neutralizing antibodies, and cross-protection against emerging variants of concern (VOCs).

CAPTURE (COVID-19 antiviral response in a pan-tumor immune monitoring study) is a prospective, longitudinal cohort study initiated in response to the global SARS-CoV-2 pandemic and its impact on patients with cancer. The study aims were to evaluate the impact of cancer and cancer therapies on the immune response to SARS-CoV-2 infection and COVID-19 vaccination. Here, we report findings from the SARS-CoV-2 infection cohort of the CAPTURE study.

Results
Patient demographics and baseline characteristics. Between 4 May 2020 and 31 March 2021 (database lock), 357 unvaccinated patients with cancer were evaluable with a median followup of 154 d (interquartile range (IQR), 63–273 d). Their median age was 59 years, 54% were male, 89% had a diagnosis of solid malignancy, and the majority (64%) had advanced disease (Table 1). Overall, 118 patients (33%; 97 with solid cancers and 21 with hematological malignancies) were classified as SARS-CoV-2 positive according to our case definition (positive SARS-CoV-2 RT–PCR (PCR with reverse transcription) and/or ELISA (enzyme-linked immunosorbent assay) for S1-reactive antibodies at or before study enrollment) and were included in the analysis (Fig. 1a,b; Methods). Distinct from a population screening program, the intentional recruitment of patients with suspected or confirmed SARS-CoV-2 infection within the study framework (Methods) led to a higher proportion of infected patients than the community prevalence in the United Kingdom within the same time frame. The most common comorbidities were hypertension (27%), obesity (21%) and diabetes mellitus (11%); no significant baseline differences were observed between patients with solid malignancies and those with hematological malignancies (Table 2 and Supplementary Table 1). Overall, 88% of patients received systemic anti-cancer therapy (SACT) in the 12 weeks before infection (51% chemotherapy, 21% targeted therapy, 12% immune-checkpoint inhibitors (CPIs) and 5% anti-CD20), and 10% had radiotherapy and 13% underwent surgery in the 12 weeks before infection. Response to the most recent anti-cancer intervention is shown in Table 2.

Viral shedding and lineage. SARS-CoV-2 infection was confirmed by SARS-CoV-2 RT–PCR in 95 of 118 patients (81%). Repeat testing was not mandated by study protocol, but 40% of the patients (47 of 118) had longitudinal swabs during the course of routine clinical care. Within this group, the estimated median duration of viral shedding (Methods) was 12 d (range, 6–80 d) (Fig. 1c and Table 3), with evidence of prolonged shedding in patients with hematological malignancies (median 21 d, versus 12 d in patients with solid cancers) (Extended Data Fig. 1a). Duration of viral shedding did not correlate with COVID-19 severity (r = 0.04, P = 0.7). We performed viral sequencing in 52 RT–PCR-positive samples with Ct <32 (Methods), of which 44 of 52 passed sequencing quality control. The Alpha VOC accounted for the majority of infections in our cohort between December 2020 and March 2021, consistent with community prevalence in the United Kingdom at that time (Extended Data Fig. 1b).

Clinical correlates of COVID-19 severity in patients with cancer. Overall, 94 patients (80%) were symptomatic, of whom 52 (44%) had mild illness, 36 (31%) had moderate illness and 6 (5%) had severe illness (as per the World Health Organization (WHO) defined criteria). Among those with symptomatic disease, 40% had received systemic anti-cancer therapy (SACT) in the 12 weeks before infection (51% chemotherapy, 21% targeted therapy, 12% immune-checkpoint inhibitors (CPIs) and 5% anti-CD20), whereas 10% had radiotherapy and 13% underwent surgery in the 12 weeks before infection. Data for the most recent anti-cancer intervention are shown in Table 2.

Table 1 | CAPTURE cohort overview

Cohort characteristics	Cohort	SARS-CoV-2 infection	No SARS-CoV-2 infection
Age, years (median, range)	59 (18–87)	60 (18–87)	60 (26–82)
Male, n (%)	192 (54)	64 (54)	128 (54)
Cancer diagnosis, n (%)			
Skin	79 (22)	10 (8)	69 (29)
Gastrointestinal	71 (20)	30 (25)	39 (16)
Urology	62 (17)	15 (12)	48 (20)
Lung	41 (11)	8 (7)	33 (14)
Hematological	39 (11)	21 (17)	17 (7)
Breast	31 (9)	16 (13)	16 (7)
Gynecological	22 (6)	9 (7)	13 (5)
Sarcoma	12 (3)	4 (3)	8 (3)
Head and neck	6 (2)	5 (4)	1 (0)
Other	4 (1)	4 (3)	0 (0)
Cancer stage, n (%)			
Stage I–II	20 (6)	7 (6)	13 (5)
Stage III	72 (20)	22 (18)	50 (22)
Stage IV	229 (64)	70 (58)	159 (67)
Hematological	39 (11)	21 (17)	17 (7)
Days of follow-up, median (IQR)	154 (63–273)	110 (58–274)	164 (63–274)

Extended Data Figs 1-3.
severity scale; Table 3); 24 patients (20%) were asymptomatic (WHO score 1). Among all patients (n = 118), fever (47%), cough (42%), dyspnea (31%) and gastrointestinal symptoms (12%) were the most common presenting symptoms (Fig. 1d), with a median of 2 symptoms reported (range, 0–7). In patients with a clear date of symptom resolution (n = 77), median duration of symptoms was
Three patients met the criteria of long COVID (symptomatic >90 d since presentation of disease (POD)), all following severe COVID-19 requiring care in an intensive therapy unit. Thirty-three patients (28%) were hospitalized due to COVID-19, with a median duration of inpatient stay of 9 d (range, 1–120 d); twenty-seven (23%) required supplemental oxygen, and seven (6%) were admitted to an intensive care unit, with one (1%) requiring mechanical ventilation and inotropic support (Table 3). Thirteen patients (11%) were treated with corticosteroids (>10 mg prednisolone equivalent), and three patients (3%) received treatment with a monoclonal antibody to IL-6. Nine patients (8%) had a thromboembolic
complication. At database lock, eleven SARS-CoV-2-positive patients (9%) died of progressive cancer, and two patients (2%) died due to recognized complications of COVID-19 (Table 3).

The risk of moderate and severe COVID-19 was associated with hematological malignancies, whereas the risk of severe COVID-19 in solid malignancies was associated with progressive disease under SACT (Supplementary Table 2), in line with previous reports. We found no association between COVID-19 severity, cancer stage, performance status, sex, age, obesity, smoking status or comorbidities across the whole cohort, in contrast to reports from cancer registries, which largely reflected patients who were hospitalized with COVID-19 (refs. 46,48,49) and the general population. Furthermore, our relatively small cohort size probably also contributed to the lack of association with these factors.

Cytokine profiles and disease severity during infection. Owing to our study design (Fig. 1a), recruitment was biased toward patients within the convalescent stage of SARS-CoV-2 infection. Only 27 patients (23%) were recruited while still SARS-CoV-2 RT–PCR positive, and 3 (3%) became SARS-CoV-2 RT–PCR positive after recruitment to CAPTURE. Cytokine/chemokine profiling indicated only a non-significant increase in cytokine concentrations in SARS-CoV-2-infected patients (eight with solid tumors and six with hematological malignancies) relative to that in uninfected patients with cancer (n = 5) (Extended Data Figure 1c,d; Methods). Notably, the concentrations of interferon (IFN)-γ, interleukin (IL)-18, IL-6, IL-8, IL-9, IP-10 and macrophage inflammatory protein (MIP)-1β correlated with severe disease (Extended Data Fig. 1e,f). The concentration of IFN-γ and IL-18 in serum was significantly higher in patients with hematological malignancies than in those with solid cancer during acute infection (Extended Data Fig. 1g).

S1-reactive SARS-CoV-2 antibody response in patients with cancer. We evaluated total S1-reactive antibody titers by ELISA at multiple time points during follow-up (with two median samples per patient (range, 1–11) in 112 patients; 6 patients (5%) were excluded, as blood samples were unavailable or were obtained after COVID-19 vaccination. In total, 93 of 112 patients (83%) had detectable antibodies. S1 antibodies were detectable in 74 of 89 symptomatic patients (83%) and in 19 of 23 asymptomatic patients (83%). S1-reactive antibody titers were associated with COVID-19 severity (P = 0.074) (Fig. 2a).

Nineteen patients (17%), with median follow up of 22 d (range, 0–301 d), had no evidence of S1-reactive antibodies following a positive SARS-CoV-2 RT-PCR. Lack of seroconversion was significantly associated with hematological malignancies: 9 of 20 patients (45%) with hematological malignancies versus 10 of 92 patients (11%) with solid malignancies did not seroconvert (chi-squared test, P = 0.0002). In addition, S1-reactive antibody titers were significantly lower in patients with hematological malignancies than in those with solid malignancies (Fig. 2b). Two patients with long COVID had no evidence of seroconversion at any point during follow-up (followed for 222 d and 235 d after disease onset, respectively).

We conducted a sensitive flow cytometric assay on serum from a subset of patients with S1-reactive antibodies (n = 40; Extended Data Figs. 2a and 3) and detected S-specific IgG in 38 of 40 patients (95%) (Extended Data Fig. 2b) and IgM in 23 of 40 patients (58%) (Extended Data Fig. 2c). IgG and IgM levels significantly correlated with S1-reactive antibody titers (P < 0.0001) (Extended Data Fig. 2e,f). S-reactive IgA was detected in only four convalescent patients (10%) (Extended Data Fig. 2d), consistent with its role in the early response to SARS-CoV-2 infection.

Finally, we evaluated matched pre-pandemic serum samples from 47 patients: 10 with and 37 without evidence of S1-reactive antibodies in post-pandemic serum. We found no evidence of S1-reactive antibodies in the pre-pandemic serum of any patient (Extended Data Fig. 2g). However, S-reactive IgG or IgM was detected in serum in 18 patients without confirmed SARS-CoV-2 infection, indicating cross-reactivity to seasonal human coronaviruses, with more frequent cross-recognition of the S domain than of the more conserved S1 domain, as reported in individuals without cancer.

NAbs against SARS-CoV-2 VOCs in patients with cancer. We assessed neutralizing antibodies (NAbs) in all patients using a high-throughput a live-virus neutralization assay (Methods), against wild-type (WT) SARS-CoV-2 and the Alpha (B.1.1.7), Beta (B.1.351) and Delta (B.1.617.2) VOCs, and results are presented as titers (the reciprocal of serum required to inhibit 50% of viral replication (IC50)). NAB titers below 40 were considered undetectable (Methods).

We detected NAbs against WT SARS-CoV-2 in 88 of 93 patients (95%) with S1-reactive antibodies (in 77 of 82 (94%) with solid tumors and in 11 of 11 (100%) with hematological malignancy). NAbs were detected in 4 of 19 RT-PCR-positive patients without S1-reactive antibodies (21%) (in 2 of 10 (20%) with solid cancer and in 2 of 9 (22%) with hematological malignancy). NAB titers were significantly associated with COVID-19 severity (Fig. 2c).

In a binary logistic regression model including all patients with cancer (n = 112), presence of hematological malignancy, but not comorbidities, age, sex or COVID-19 severity, was associated with undetectable NAbs (Fig. 2e). Accordingly, median NAB titers against WT SARS-CoV-2 were lower in patients with hematological malignancies than in those with solid cancer (Fig. 2d).

In patients with solid cancer (n = 92), cancer type, stage, progressive disease and cancer therapy (Fig. 2f,g) were not associated.
with undetectable NAbS. Due to limited sample size, patients with hematological malignancies (n = 20) could not be evaluated by a multivariate model.

In patients infected with WT SARS-CoV-2 (n = 85) or the Alpha VOC (n = 27), the proportion of patients with detectable NAbS against VOCs was significantly lower than those with detectable
Fig. 3 | T cell response in patients with cancer. a, b, Representative plots of CD4⁺CD137⁺OX40⁺ (CD4⁺) and CD8⁺CD137⁺CD69⁺ (CD8⁺) T cells in a patient with confirmed COVID-19 and a cancer patient without COVID-19 after in vitro stimulation with S, M and N peptide pools, positive control Staphylococcal enterotoxin B (SEB) or negative control (NC). c, d, Frequency of SARS-CoV-2-specific CD4⁺ (c) and CD8⁺ (d) T cells in patients with solid malignancies (n=83). e, f, Frequency of SARS-CoV-2-specific CD4⁺ (e) and CD8⁺ (f) T cells in patients with hematological malignancies (n=21). The stimulation index was calculated by dividing the percentage of positive cells in the stimulated sample by the percentage of positive cells in NC. To obtain the total number of SsT cells, the sum of cells activated by S, M and N was calculated (SMN). Boxes indicate the 25th and 75th percentiles, the line indicates the median and whiskers indicate 1.5 x IQR. Dots represent individual samples. Dotted lines and gray boxes denote the limit of detection.

NAbs against WT SARS-CoV-2 (WT, 92 of 112 (82%); Alpha, 89 of 112 (79%); Beta, 77 of 112 (69%); Delta, 73 of 112 (65%); chi-squared test, P = 0.009), and the median NAb titers against Beta and Delta were significantly lower than those against WT and Alpha (Fig. 2h). The proportion of patients with detectable NAbs against all variants was significantly lower in patients with hematological malignancies than in those with solid cancer (WT, 86% versus 65%, chi-squared test, P = 0.03; Alpha, 84% versus 60%, chi-squared test,
Articles Nature Cancer

15). Significance was tested by two-sided Wilcoxon–mann–Whitney test, where $P<0.0001$ (Extended Data Fig. 2h). However, the proportion of patients with detectable S1-reactive antibodies without detectable NAbs was greater for the VOCs than for WT SARS-CoV-2 (WT, 5 of 93 (5%); Alpha, 7 of 93 (8%); Beta, 17 of 93 (18%); Delta, 20 of 93 (22%); chi-squared test, $P=0.002$).

SARS-CoV-2 antibody response lasts up to 11 months. Next, we assessed antibody kinetics in 59 of 97 patients ($n=45$ with solid cancer and $n=14$ with hematological malignancy) with detectable S1-reactive antibodies in whom the time of disease onset was known (median of two time points per patient (range, 2–10); median length of follow-up, 181 d (range, 8–336 d)). Five patients were followed for more than 300 d. Follow-up samples collected after COVID-19 vaccination were excluded.

Thirty-three (56%) had S1-reactive antibodies at the time of enrollment (median of 69 d post onset of disease (POD) (range, 3–217 d); Fig. 2i), and a further five (8%) seroconverted within 13–117 d POD. S1-reactive antibody titers showed a weak declining trend, and 14 of 59 patients (24%) became seronegative 24–313 d POD (including 2 of 5 patients with delayed seroconversion). Most of those (12 of 14) had solid cancer and no clinical features that could conceivably account for the short-lived antibody response. Two patients with hematological malignancy who did not seroconvert included one with a diagnosis of T cell acute lymphoblastic leukemia who had a stem cell transplant complicated by chronic graft-versus-host disease after recovering from COVID-19, and one patient with plasmablastic lymphoma treated with anti-CD20 prior to SARS-CoV-2 infection.

NAbs against all variants were detected as early as day 1 in the 59 patients (Fig. 2i and Extended Data Fig. 4a–c) and as late as day 217 POD, and NAbs titers remained stable overall up to 336 d. In the group of patients who sero-reverted (S1 antibodies became undetectable during follow-up), NAbs against WT SARS-CoV-2 remained detectable in 10 of 14 (71%) (Alpha, 9 of 14 (64%); Beta, 2 of 14 (14%); Delta, 2 of 14 (14%)).

SARS-CoV-2-specific T cells are detected in patients with cancer. Peripheral blood mononuclear cell (PBMC)-stimulation assays (Methods) were performed in 110 of 112 patients who were SARS-CoV positive (81 with solid cancer and 19 with hematological malignancy; Extended Data Fig. 3b); 12 of 112 samples were excluded (for lack of PBMC collection, low viability, or no detection of CD3$^+$ cells in activation-induced marker). SARS-CoV-2-specific CD4$^+$ and CD8$^+$ T cells (SsT cells; identified by activation-induced markers OX40, CD137 and CD69) were quantified at the first time point after seroconversion, at a median of 59 d POD (range, 1–292 d) (Fig. 3a,b). We detected SARS-CoV-2-specific CD4$^+$ T cells in 77 of 100 patients (77%) and CD8$^+$ T cells in 49 of 100 patients (49%) (Fig. 3c–f). CD8$^+$ T cell levels were consistently lower than CD4$^+$ T cell levels (Extended Data Fig. 5a), a result also noted in participants without cancer$^{20–22}$, possibly reflecting our use of 15-mer peptide pools for stimulation, which could favor detection of CD4 responses over that of CD8 responses.

CD4$^+$ T cells were detected in 81% of patients with solid malignancies and in 58% of patients with hematological malignancies (Fig. 3c,e). CD8$^+$ T cells were detected in similar proportions of patients with solid malignancies and those with hematological malignancies (51% and 42%, respectively) (Fig. 3d,f).

Consistent with functional activation of SsT cells, after in vitro stimulation of PBMCs, we detected increased levels of IFN-γ in culture supernatants, which correlated with the number of SsT cells (Extended Data Fig. 5b). IFN-γ levels did not differ between patients with solid cancers versus those with hematological malignancies (Extended Data Fig. 5c).

Finally, to account for the lack of matched pre-infection samples in our cohort, and given reports of cross-reactive T cell responses to other human coronaviruses in healthy individuals16,23, we extended the T cell assay to 12 patients with cancer without confirmed SARS-CoV-2 infection. Cross-reactive CD4$^+$ T cells were detected in 7 of 12 participants and CD8$^+$ T cells were detected in 3 of 12 participants, but the overall level SsT cells was significantly lower in uninfected patients than in patients with confirmed SARS-CoV-2 infection ($P<0.05$) (Extended Data Fig. 5d,e).

SsT cell compensation in patients without humoral response. Patients with hematological malignancies had a wide range of S1, NA and SsT cell responses (Fig. 4a,b,c). Among patients with leukemia, NAbs were detected in 9 of 11 and SsT cells were detected in 5 of 10 evaluable patients (2 had both CD4$^+$ and CD8$^+$ responses; 2 had CD4$^+$ only responses; and 1 had a CD8$^+$ only response). Among patients with myeloma, two of three had NAbs, and two of three had detectable SsT cells (CD4$^+$ and CD8$^+$). Finally, two of six patients with lymphoma had detectable NAbs, whereas SsT cells were detected in five of six (three had both CD4$^+$ and CD8$^+$ responses; one had a CD4$^+$ only response; and one had a CD8$^+$ only response). Overall, SsT cell levels were higher in patients with lymphoma than in those with leukemia (Fig. 4c). Four of five patients with lymphoma given anti-CD20 treatment had no NAb response (Fig. 4d,e). The fifth patient with plasmablastic lymphoma had detectable NAbs titers against WT SARS-CoV-2 and the Alpha VOC. In contrast, NAb titers against Beta and Delta S1-reactive antibody titers were detected at only one time point before the patient sero-reverted at 37 d POD. One additional patient with a diagnosis of acute myeloid leukemia, with a history of allogeneic stem-cell transplant and treatment with anti-CD20, had no NAbs, and SsT cells could not be evaluated. Four of five patients with lymphoma given anti-CD20 treatment had detectable SsT cells, and their levels of SsT cells were not lower than those in patients not treated with anti-CD20 (Fig. 4f). In patients with solid malignancies, the levels of NAbs and SsT cells did not differ significantly by tumor type (Figs. 2f and 4g, respectively).

Fig. 4 | Comparison of antibody and T cell responses in patients with cancer. a, S1-reactive antibody titers in patients with leukemia ($n=11$), myeloma ($n=4$) and lymphoma ($n=6$). b, NAb titers in patients with leukemia ($n=10$), myeloma ($n=4$) and lymphoma ($n=6$). c, CD4$^+$ and CD8$^+$ T cells in patients with leukemia ($n=10$), myeloma ($n=4$) and lymphoma ($n=6$). The stimulation index was calculated by dividing the percentage of CD4$^+$CD137$^+$OX40$^+$‘s CD4$^+$ and CD8$^+$CD137$^+$CD69$^+$ (CD8$^+$) T cells in the stimulated sample by the percentage of positive cells in the NC. Significance was tested by Kruskal–Wallis test, where $P<0.05$ was considered significant. d, S1-reactive antibody titers in patients with hematological malignancy receiving anti-CD20 treatment ($n=6$) versus other SACT ($n=15$). e, NAb titers in patients with hematological malignancy receiving anti-CD20 treatment ($n=6$) versus other SACT ($n=15$). Significance was tested by two-sided Wilcoxon–Mann–Whitney U-test, where $P<0.05$ was considered significant. f, Comparison of CD4$^+$/CD8$^+$ T cells between patients with hematological malignancies on anti-CD20 therapy ($n=5$, administered within 6 months) and not on anti-CD20 therapy ($n=15$). Significance was tested by two-sided Wilcoxon–Mann–Whitney U-test, where $P<0.05$ was considered significant. g, CD4$^+$ and CD8$^+$ T cells in patients with solid malignancies ($n=81$) by cancer subtype. Boxes indicate 25th and 75th percentiles, the line indicates the median and whiskers indicate 1.5×IQR. Dots represent individual patient samples. Dotted lines and gray boxes denote the limit of detection. Significance was tested by Kruskal–Wallis test, where $P<0.05$ was considered significant.
Overall, we observed a discordance between antibody responses and T cell responses among patients with hematological malignancy. First, a greater proportion of patients with detectable NAb titers had detectable CD4+ T cells than that of patients without detectable NAb titers (among NAb-positive patients, 9 of 13 (69%); among NAb-negative patients, 2 of 6 (33%)), and we observed no correlation
of S-reactive CD4+ T cell levels and NAb titers (Extended Data Fig. 5g). Second, 2 of 6 patients with undetectable NAb titers (33%) still had detectable CD8+ T cells, compared with 7 of 13 patients with detectable NAb titers (54%) (Supplementary Table 3).

Among patients with solid cancer, the proportion of patients with detectable CD4+ T cells or detectable CD8+ T cells was lower for those with undetectable NAb titers (CD4+, 8 of 12 (67%); CD8+, 2 of 12 (17%)) than for those with detectable NAb titers (CD4+, 58 of 69 (84%); CD8+, 39 of 69 (57%)) (Supplementary Table 3). We further observed a significant correlation of S-reactive CD4+ T cell levels and NAb titers against WT SARS-CoV-2 (Extended Data Fig. 5f).

Finally, following stimulation with S and N pools, we observed that patients with hematological malignancy exhibited higher levels of N-reactive CD8+ T cells than S-reactive CD8+ T cells (Fig. 5c), and in a binary logistic regression model, lack of SARS-CoV-2-reactive CD4+ T cells (but not CD8+) T cells was associated with CPI therapy within 3 months of SARS-CoV-2 infection (Fig. 5d,e).

T cell responses are impacted in CPI-treated patients. Next, we evaluated features associated with impaired T cell responses to SARS-CoV-2 in patients with cancer. We found no association between lack of SsT cells and the presence of solid or hematological malignancies, or the number of comorbidities, age, sex or COVID-19 severity (Fig. 5a,b). In patients with solid malignancies, those on CPIs (n=13) had significantly reduced levels of SARS-CoV-2-reactive CD4+ T cells (Fig. 5c), and in a binary logistic regression model, lack of SARS-CoV-2-reactive CD4+ (but not CD8+) T cells was associated with CPI therapy within 3 months of SARS-CoV-2 infection (Fig. 5d,e).

Immune responses are lower than in those without cancer. We compared S1-reactive and NAb responses in patients with cancer with those of a control cohort of 21 healthy workers (HCWs) with SARS-CoV-2 infection who were recruited to CAPTURE. We applied the same case definition as that for patients with cancer (positive SARS-CoV-2 RT–PCR and/or ELISA for S1-reactive antibodies at or prior to study enrolment). Of note, HCWs were not matched to patients with cancer by age, and they represented an overall younger cohort, with a median age of 43 years (IQR, 40–52 years). Seven HCWs (33%) were asymptomatic, and fourteen HCWs (67%) reported mild symptoms, among whom eight (38%) had SARS-CoV-2 infection confirmed by RT-PCR; none were hospitalized. Twenty-one HCWs (100%) had detectable S1-reactive antibodies, and twelve (57%) had detectable NAb against WT SARS-CoV-2, a lower proportion than that of patients with cancer. S1-reactive antibody titers and NAb titers against WT SARS-CoV-2 were numerically lower in HCWs than in patients with solid malignancies but higher than in patients with hematological malignancies (Extended Data Fig. 6a,b).

We also evaluated SARS-CoV-2-reactive CD4+ and CD8+ T cell levels in the same cohort of HCWs (CD4+ T cells, 16 of 19 (84%); CD8+ T cells, 10 of 19 (53%)). We observed a similar proportion of HCWs with detectable SsT cells as noted for patients with solid cancer. The median SsT cell levels were numerically higher in HCWs than in patients with cancer (Extended Data Fig. 6c,d).

Discussion

Results from this prospective, longitudinal study of 118 patients with cancer and SARS-CoV-2 infection indicated that most patients with solid tumors developed a functional and probably durable (up to 11 months) humoral immune response to SARS-CoV-2 infection, as well as an anti-SARS-CoV-2-specific T cell response. Patients with hematological malignancies had significantly lower seroconversion rates, and impaired immune responses that were related to both disease and treatment (anti-CD20), although with evidence of compensation, consistent with prior reports.

Our findings largely relate to patients with a diagnosis of solid cancer (82% of the cohort), the majority of whom had evidence of seroconversion (89%). Absence of or a delay in seroconversion was observed in 10% of patients with solid tumors, in line with data reported from smaller prospective studies from the United Kingdom (95%, n=22) and Italy (88%, n=28) and comparable to results in individuals without cancer. We did not observe an obvious impact of solid cancer characteristics on the likelihood of seroconversion. Recent studies of people without cancer demonstrated a clear relationship between neutralizing responses and recovery from infection, as well as vaccine efficacy. In our cohort, 94% of seroconverted patients with solid tumors also had detectable NAbs to WT SARS-CoV-2 or the Alpha VOC, consistent with the causative variant. Notably, although we observed a weak decline in S1-reactive antibody titers, NAb titers were stable for at least 7 months and in some cases up to 11 months of follow-up. Discordance was specifically observed in 14 patients with declining S1-reactive antibodies, indicating that these patients had persistent NAbs that were not detected by the S1 ELISA.

Longer follow-up was limited by COVID-19 vaccination, which commenced in the United Kingdom in December 2020 (ref. 29). In individuals without cancer, the reported durability of both SARS-CoV-2-specific IgG and NAb varies substantially22,24,28,29, and direct comparison of our data to those reports is challenging.

We compared antibody and cellular responses in patients with cancer with those of 21 HCWs with SARS-CoV-2 infection. Antibody and cellular responses in patients with hematological malignancies were all lower than those of HCWs. We note that the HCWs all had asymptomatic or mild COVID-19. The association of antibody responses with COVID-19 severity in this cohort and in healthy individuals44 may explain why we observed numerically higher S1-reactive antibody and NAb titers in patients with solid cancer than in HCWs. We found that SsT cell levels were numerically lower in patients with cancer; cellular responses in healthy individuals show an inverse association with age and disease severity21. In summary, the comparison with HCWs confirmed that patients with hematological malignancies had impaired immune responses, while the majority of patients with solid cancer had responses comparable to those of healthy individuals.

In line with data for SARS-CoV-2 convalescent patients without cancer31, we found that neutralizing activity against the Alpha, Beta, and Delta VOCs was decreased. Of note, we showed that 35% of patients with cancer previously infected with WT or Alpha SARS-CoV-2 lacked NAb against Delta. In patients who...
sero-reverted, NAbs against WT SARS-CoV-2 were still detected, while NAb titers against Delta, if present, declined over time. This raises concerns about considering a history of prior infection with one variant as evidence of functional immunity against VOCs. Finally, given that the majority of patients with cancer have generally been prioritized for COVID-19 vaccines, protection against
evolving variants is critically relevant in the context of COVID-19-vaccine-induced immunity.

During acute SARS-CoV-2 infection, patients with cancer were previously shown to have depleted T cells that showed markers of activation and exhaustion and correlated with COVID-19 severity, but SsT cells were not evaluated. In our cohort, at a median of 54 d POD, SsT cells (including functional IFN-γ-secreting SsT cells) were present in the majority of evaluated patients with solid malignancies (76%) or hematological malignancies (52%). In both the acute phase and the convalescent phase of SARS-CoV-2 infection, a substantial proportion of SARS-CoV-2-specific CD4+ T cells are follicular helper T cells, which are required for IgG and neutralizing responses by B cells. Accordingly, in our study, the level of CD4+ T cells was significantly correlated with S1-reactive antibody titers in patients with solid tumors, which probably reflected activation of B cells following a follicular helper T cell response. Lack of detectable T cell responses to SARS-CoV-2 was not associated with any cancer-specific factors other than treatment with CPI within 3 months of SARS-CoV-2 infection (in solid tumors). We found that CPI treatment was associated with a lower level of SARS-CoV-2-specific CD4+ T cells but not that of CD8+ T cells. It was previously shown that PD-1 blockade during acute viral infection can increase viral clearance by promoting CD8+ T cell proliferation but can also impair CD8+ T cell memory differentiation, thereby impairing long-term immunity. Although the impact of PD-1 blockade on the CD4+ T cell response to acute infection is less well understood, PD-1 signaling regulates the expansion of CD4+ T cells after an immunogenic stimulus, which offers a potential explanation for our finding of lower CD4+ T cell levels. Overall, this finding warrants validation in larger datasets, but this is unlikely to be clinically important, given the lack of consistent association between CPIs and COVID-19 outcomes.

We found an inverse relationship between antibody responses and SsT cell responses in patients with hematological malignancies, whereby patients with leukemia had more pronounced antibody responses but impaired SsT cell responses, and the opposite was true for patients with lymphoma. Furthermore, we found SsT cells in four of five evaluable patients on anti-CD20 treatment, none of whom had detectable humoral responses. In total, all but one patient with hematological malignancy had mild or moderate COVID-19 disease from which they recovered. This suggests that SsT cell responses, specifically CD8+T cells and non–spike-specific SsT cells, can at least partially compensate for defective humoral responses. In a recent study, 10 of 13 patients with hematological malignancy and COVID-19 had detectable SsT cells, the levels of which were associated with improved survival (including in those on anti-CD20 therapy). T cells have been shown to play a crucial role in the clearance of acute SARS-CoV infection in preclinical animal models, and early induction of functional SsT cells are associated with rapid viral clearance and mild COVID-19 disease in patients without cancer. VOCs are not suspected to escape SsT cell responses, due to their highly multi-antigenic properties. The emerging data from our study and that of others suggest that T cell responses are probably important in those with hematological malignancies and may offer protection from severe COVID-19 in the absence of humoral responses. Notably, SsT cells were shown to be induced by COVID-19 vaccines in both populations without cancer, and to have activity against VOCs. Overall, our data on natural immunity also bear relevance to vaccination approaches in this population, especially the context of heterologous vaccination that aims to optimally boost humoral and cellular responses.

This report has several limitations. First, the lack of a broader matched control group without cancer prevents direct comparisons between populations with cancer and those without cancer. Second, as recruitment to CAPTURE commenced in May 2020, which marked the end of the first wave of SARS-CoV-2 infections in the United Kingdom, most of the participants initially recruited were infected prior to study enrollment and were evaluated in the convalescent phase. The fact that we recorded only two COVID-19-related deaths may reflect this, as well as the relatively low proportion of lung and hematological malignancies, which are the two cancer groups with increased COVID-19-related mortality. Furthermore, all but 1 patient with hematological malignancy in our cohort recovered, whereas 11 of 18 patients with blood cancer died due to COVID-19 at our institution before enrollment into CAPTURE commenced. Thus, it is possible that the patients with hematological malignancy in our analysis are not entirely representative of this population. Nevertheless, the cohort as a whole provides a broader representation of all patients with cancer than do those of other studies. Another limitation pertains to our SsT cell evaluation, which was performed at a single time point, and therefore the proportion of patients with a T cell response may be underestimated. Also, although we did not assay against viral peptide pools for other human viruses (such as EBV or CMV), reports suggest that specific patterns of activation markers can be detected on SARS-CoV-2-specific T cells. Finally, our analyses are probably underpowered for robust detection of differences in immune responses between cancer subtypes.

In summary, our data suggest that patients with solid malignancies develop humoral and cellular immunity to SARS-CoV-2, with NAbS detectable for up to 11 months. In line with other reports, we found that patients with hematological malignancies had impaired humoral responses, and this was associated with disease subtype and anti-CD20 treatment. However, such patients frequently had detectable SsT cell responses. Finally, we found that neutralizing activity against VOCs was reduced in patients infected with WT SARS-CoV-2, which raises concerns about the protection afforded by natural immunity to new SARS-CoV-2 VOCs. Whether such responses can be boosted by COVID-19 vaccines remains under investigation in the vaccine cohort of our study, which includes the currently predominant Delta VOC.

Methods

Study design. CAPTURE (NCT03226886) is a prospective, longitudinal cohort study that commenced recruitment in May 2020 at the Royal Marsden NHS Foundation Trust. The study design has been previously published. In brief, adult patients with current or history of invasive cancer are eligible for enrollment (Fig. 1). Inclusion criteria are intentionally broad and patients are approached irrespective of cancer type, stage or treatment. Patients with confirmed or suspected SARS-CoV-2 infection are targeted with broader recruitment in the course of routine clinical care (asymptomatic cases). Patients are screened at each study visit and classified as SARS-CoV-2-negative or SARS-CoV-2-positive on the basis of a laboratory case definition of RT-PCR-positive result and/or S1-reactive antibodies (details below). The primary end point is to describe the population characteristics of patients with cancer who are positive and negative for SARS-CoV-2. The secondary end points include the impact of COVID-19 on long-term survival and intensive care unit admission rates. Exploratory end points pertain to characterizing clinical and immunological determinants of COVID-19 in patients with cancer.

CAPTURE was approved as a sub-study of TRACERx Renal (NCT03226886). TRACERx Renal was initially approved by the NRES Committee London on 17 January 2012. The TRACERx Renal sub-study CAPTURE was submitted as part of Substantial Amendment 9 and approved by the Health Research Authority on 30 April 2020 and the NRES Committee London on 1 May 2020. CAPTURE is being conducted in accordance with the ethical principles of the Declaration of Helsinki, Good Clinical Practice and applicable regulatory requirements. All patients provided written informed consent to participate.

Study schedule and follow-up. Clinical data and sample collection for participating patients with cancer is performed at baseline and at clinical visits per standard-of-care management during the first year of follow-up; frequency varies depending on in- or outpatient status and systemic anticancer treatment regimens. For inpatients, study assessments are repeated every 2–14 d. For outpatients, the follow-up study assessments are aligned with clinically indicated hospital attendances. The frequency of study assessments in the first year for patients on anticancer therapies are as follows: every cycle for CPIs or targeted therapies; every second cycle for chemotherapy; every outpatient appointment (maximum

1332 NATURE CANCER | VOL 2 | DECEMBER 2021 | 1321-1337 | www.nature.com/natcancer
was performed either on Illumina or on Oxford Nanopore Technologies instruments. Oxford Nanopore libraries were prepared following the ARTIC nCoV-2019 sequencing protocol v3 (LoCost) (https://protocols.io/view/nucov-2019-sequencing-protocol-v3/LoCost-hk2/8ly) and then sequenced in 2020 on a MiniION flowcell on a GridION instrument. The nccov-2019-artic-nf pipeline (v.1.1.1; https://github.com/connor-lab/nccov-2019-artic-nf) written in the Nextflow domain specific language (v.20.10.0) was used to perform quality control, variant calling and consensus sequence generation for the samples. The full command used was nccov-2019-artic-nf --nanopolish-prefix $PROFILEX--basecalled_fastq_fastq_pass/fastq_pass/fastq_pass/--passing_summary_sequence_summary_summary.summary_tax=schemeVersion V3--minReadsPerBarcode 1--minReadsArticGuppyPlex 1 --with-singularity artic-nccov-2019-nanopore.img -profile singularity,slurm -r v1.1.1. Illumina libraries were prepared following the CoronavirusIT protocol with minor modifications5, were pooled, and then were sequenced at 100 bp by paired ends on HiSeq 4000. The nccrviralrecon pipeline (v.1.1.0) was used to perform quality control, variant calling and consensus sequence generation for the samples. The full command used was nccov-2019-artic.V3.bed-protocol ‘amplicon’–callers ivar–skip_markduplicates–skip_fastqc–skip_picard_metrics–save_align_intermeds–profile crick -r 1.1.0. Overall, 44 of 52 passed quality control (>50% consensus sequence) and the lineage was obtained using PANGOLIN (https://github.com/cov-lineages/pangolin). In the absence of sequencing data to confirm the causative SARS-CoV-2 variant, all patients tested with Thermo Fisher TaqPath RT–PCR kit that reported S-dropout were considered to be infected with the Alpha VOC.

Viral shedding. Duration of viral shedding was estimated from research and opportunistic and swabs and was defined as the time from first positive swab to the last positive swab (preceded by at least one negative swab).

Handling of whole blood samples. All blood samples and isolated products were handled in a CL2 laboratory inside a biosafety cabinet using appropriate personal protective equipment and safety measures in accordance with a risk assessment and standard operating procedure approved by the safety, health and sustainability committee of the Francis Crick Institute. For indicated experiments, serum or plasma samples were heat-inactivated at 56 °C for 30 min before use, after which they were used in a CL1 laboratory.

Plasma and PBMC isolation. Whole blood was collected in EDTA tubes (VWR) and stored at 4 °C until processing. All samples were processed within 24 h. Time of blood draw, processing and freezing was recorded for each sample. Before processing, tubes were brought to room temperature. PBMCs and plasma were isolated by density-gradient centrifugation using pre-filled centrifugation tubes (plusSelect). Up to 30 ml of undiluted blood was added on top of the sponge and centrifuged for 30 min at 1,000 g at room temperature. Plasma was carefully removed then centrifuged for 10 min at 4,000 g to remove debris, then aliquoted and stored at −80 °C. The cell layer was then collected and washed twice in PBS by centifugation at 10 min at 300 × g at 4 °C. PBMCs were resuspended in Recovery cell culture freezing medium (Thermo Fisher Scientific) containing 10% dimethylsulfoxide, placed overnight in CoolCell freezing containers (Corning) at −80 °C and then stored at −80 °C.

Serum isolation. Whole blood was collected in serum coagulation tubes (Vacutette CAT tubes, Greiner) for serum isolation and stored at 4 °C until processing. All samples were processed within 24 h. Time of blood draw, processing and freezing was recorded for each sample. Tubes were centrifuged for 10 min at 2,000 g at 4 °C. Serum was separated from the clotted portion, aliquoted and stored at −80 °C.

S1-reactive IgG ELISA. Ninety-six-well MaxiSorp plates (Thermo Fisher Scientific) were coated overnight at 4 °C with purified S1 protein in PBS (3 μg/ml per well in 50 μl) and blocked for 1 h in blocking buffer (PBS, 5% milk, 0.05% Tween 20 and 0.01% sodium azide). Sera were diluted in blocking buffer (1:50 dilution). Fifty microliters of serum were added to the wells and incubated for 2 h at room temperature. After washing four times with PBS-T (PBS and 0.05% Tween 20), plates were incubated with alkaline phosphatase-conjugated goat anti-human IgG (1:1,000 dilution, Jackson ImmunoResearch) for 1 h. Plates were developed after six washes with PBS-T. Optical densities were measured at 405 nm on a microplate reader (Tecan). CR3022 (Absolute Antibodies) was used as a positive control. The cutoff for a positive response was defined as the mean negative value × (0.35 × mean positive value).

Flow cytometry for spike-reactive IgG, IgM and IgA. SUP-T1 cells were counted and stained with propidium iodide and control SUP-T1 cells were mixed in a 1:1 ratio. The cell mix was transferred into V-bottom 96-well plates at 20,000 cells per well. Cells were incubated with heat-inactivated serum diluted 1:50 in PBS for 30 min, washed with FACS buffer (PBS, 5% BSA and 0.05% sodium azide) and stained with FITC anti-IgG (clone HPE617, BioLegend), APC anti-IgM (clone MHM-88, BioLegend) and PE anti-IgA (clone 1D11-8E10, Miltenyi Biotec)
MFI of both populations was measured. MFI in control SUP-T1 cells was subtracted from MFI in spike-expressing SUP-T1 cells and resulting values were divided by MFI in control SUP-T1 cells to calculate the specific increase in MFI. Values >2 were considered positive.

Neutralizing antibody assay against SARS-CoV-2. Confluent monolayers of Vero E6 cells were incubated with SARS-CoV-2 WT or Alpha virus and twofold serial dilutions of heat-treated serum or plasma samples starting at 1:40 for 4 h at 37°C, 5% CO₂, in duplicate. The inoculum was then removed and cells were overlaid with v/v FBS. CPE was monitored daily for 5 days post infection, cells were fixed in 4% paraformaldehyde and permeabilized with 0.2% Triton-X-100/PBS. Virus plaques were visualized by immunostaining, as described previously for neutralization of influenza viruses using a rabbit polyclonal anti-NSP8 antibody used at 1:1,000 dilution and anti-rabbit-HRP conjugated antibody at 1:1,000 dilution and detected by action of horseradish peroxidase (HRP) on a tetramethyl benzidine-based substrate. PBMC supernatants were quantified and half-maximum infective dose was calculated.

High-throughput live virus microneutralization assay. High-throughput live virus microneutralization assays were performed as described previously. Briefly, Vero E6 cells (Institute Pasteur) or Vero E6 cells expressing ACE2 and TMRPSS2 (VAT-1) (Centre for Research) at 90–100% confluency in a 384-well format were first titrated with varying multiplicities of infection of each SARS-CoV-2 variant and varied volume of a control neutralizing antibody. For each dilution, only 2 wells of a control neutralizing antibody can be used in each experiment, otherwise, a balance of confidence intervals can be used to adjust the dilution and avoid possible replicate differences between variants and select conditions equivalent to WT virus. Following this calibration, cells were infected in the presence of serial dilutions of patient serum samples. After infection (24 h Vero E6 Pasteur, 16 h VAT-1), cells were fixed with 4% formaldehyde, permeabilized with 0% Triton-X-100 and 3% BSA in PBS (v/v) and stained for SARS-CoV-2 N protein using Alexa488-labeled-CR3009 antibody produced in-house and cellular DNA using DAPI. Whole-cell imaging at 5x was carried out using an Opera Phenix (PerkinElmer) and fluorescent areas and intensity calculated using the Phenix-associated software Harmony 9 (PerkinElmer). Inhibition was estimated from the measured area of infected cells/total area occupied by all cells. The inhibitory profile of each serum sample was estimated by fitting a four-parameter dose–response curve executed in SciPy. Neutralizing antibody titers are reported as the fold-dilution of serum required to inhibit 50% of viral replication (IC₅₀) and are further annotated if they lie above the quantitative (complete inhibition) range, below the quantitative range but still within the qualitative range (partial inhibition) or below the measurable range but still within the qualitative range (no inhibition).

PBMC stimulation assay. PBMCs for in vitro stimulation were thawed at 37°C and resuspended in 10 mL of warm complete medium (RPMI and 5% human AB serum) containing 0.02% benzamide. Viable cells were counted and 1 × 10⁷ to 2 × 10⁷ cells were seeded in 200 µL complete medium per well of a 96-well plate. Cells were stimulated with 4 µL per well of Pептивar SARS-CoV-2 spike (S), membrane (M) or nucleocapsid (N) pools (synthetic SARS-CoV-2 peptide pools, consisting of 15-mer sequences with 11 amino acid overlap covering the immunodominant parts of the S protein and the complete sequence of the N and membrane M proteins), representing 1 µg/ml final concentration per peptide (Millenium, Biotech). SCF; SDF-1; IL-2; IL-7; IL-8; IL-9; IP-10; I-TAC; LIF; MCP-1; MDC; MIP-1α; MIP-1β; MIP-2α; MIP-3α; MIP-3β; MIP-2; NGF; TNF-α; TNF-β; TNF-γ; IFN-α; IFN-β; IL-12; IFN-α; IFN-β; IL-7; IL-8; IL-9; IL-10; IL-12p70; IL-13; IL-15; IL-16; IL-17A; IL-1β; IL-1β; IL-1β; IL-2; IL-20; IL-21; IL-22; IL-23; IL-27; IL-2R; IL-3; IL-4; IL-5; IL-6; IL-7; IL-8; IL-9; IP-10; I-TAC; LIF; MCP-1; MCP-2; MCP-3; M-CSF; GM-CSF; GRO-α; HGF; IFN-α; IFN-γ; IL-10; IL-12p70; IL-13; IL-15; IL-16; IL-17A; IL-1β; IL-1β; IL-1β; IL-2; IL-20; IL-21; IL-22; IL-23; IL-27; IL-2R; IL-3; IL-4; IL-5; IL-6; IL-7; IL-8; IL-9; IP-10; I-TAC; LIF; MCP-1; MCP-2; MCP-3; M-CSF; MDC; MIP; MIG; MIP-1α; MIP-1β; MIP-3α; MIP-1β; NGF; SCF; SDF-1α; TNF-β; TNF-α; TNF-β; TRAIL; TRAIL; TWEAK; VEGF-A. All assays were conducted as per the manufacturer’s recommendations.

Statistics and reproducibility. No statistical method was used to predetermine sample size but as many patients with SARS-CoV-2 infection were recruited as possible, including patients with no history of infection to identify patients in routine care with asymptomatic infection. The experiments were not randomized. The investigators were not blinded to allocation during experiments and outcome assessment.

Data and statistical analysis were performed using FlowJo and R v.3.6.1 in R studio v.1.2.1355. Gaussian distribution of baseline characteristics was tested by Kolmogorov–Smirnov test, and differences in patient groups were compared using chi-squared test, Mann–Whitney test or Kruskal–Wallis test, as appropriate. Statistical methods for each experiment are provided in the figure legends. Gaussian distribution was tested by Kolmogorov–Smirnov test. Mann–Whitney, Wilcoxon, Kruskal–Wallis, chi-squared, Fisher’s exact test and Friedman tests were performed for categorical significance. A P value <0.05 was considered significant. The ggpplot2 package in R was used for data visualization and illustrative figures were created using BioRender.com. Data were usually plotted as single data points and box plots on a logarithmic scale. For box plots, boxes represent upper and lower quartiles, the line represents the median and whiskers represent ±1.5 × IQR. Notches represent confidence intervals of the median. For correlation matrix analysis, Spearman rank correlation coefficients were calculated between all parameter pairs using the corplot package in R without clustering. For pairwise correlation, Spearman rank correlation coefficients were calculated. Multivariate binary logistic regression analysis was performed using the glm function with the stats package in R.

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
All requests for raw and analyzed data and CAPTURE study protocol will be reviewed by the CAPTURE Trial Management Team, Skin and Renal Clinical Trials Unit, the Royal Marsden NHS Foundation Trust (CAPTURE@rmh.nhs.uk) to determine if the request is subject to confidentiality, data protection and other obligations. Materials used in this study will be made available upon request. There are restrictions to the availability based on limited quantities. Response to any request for data and/or materials will be given within a 28-d period. Data and materials that can be shared would then be released upon completion of a material transfer agreement. Source data are provided with this paper.

Code availability
No unpublished code was used in this study.
References

1. Saini, K. S. et al. Mortality in patients with cancer and coronavirus disease 2019: a systematic review and pooled analysis of 52 studies. *Eur. J. Cancer* 139, 1–50 (2020).

2. Williamson, E. J. et al. Factors associated with COVID-19-related death using OpenSAFELY. *Nature* 584, 430–436 (2020).

3. García-Suárez, J. et al. Impact of hematologic malignancy and type of cancer therapy on COVID-19 severity and mortality: lessons from a large population-based registry study. *J. Hematol. Oncol.* 13, 133 (2020).

4. Garassino, M. C. et al. COVID-19 in patients with thoracic malignancies (TERVATOL): first results of an international, registry-based, cohort study. *Lancet Oncol.* 21, 914–922 (2020).

5. Lee, L. Y. et al. COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: a prospective cohort study. *Lancet* 395, 1919–1926 (2020).

6. Kuderer, N. M. et al. Clinical impact of COVID-19 on patients with cancer (CICC19): a cohort study. *Lancet* 395, 1907–1918 (2020).

7. Grivas, P. et al. Association of clinical factors and recent anticancer therapy with COVID-19 severity among patients with cancer: a report from the COVID-19 and Cancer Consortium. *Ann. Oncol.* 32, 787–800 (2020).

8. Lee, L. Y. W. et al. COVID-19 prevalence and mortality in patients with cancer and the effect of primary tumour subtype and patient demographics: a prospective cohort study. *Lancet Oncol.* 21, 1309–1316 (2020).

9. Cropley, V. E. et al. COVID-19 in cancer patients on systemic anti-cancer therapies: outcomes from the CAPTOL (COVID-19 Cancer Patient Outcomes in North London) cohort study. *Ther. Adv. Med. Oncol.* 12, 175885920971147 (2020).

10. Robilotti, E. V. et al. Determinants of COVID-19 disease severity in patients with cancer. *Nat. Med.* 26, 1218–1223 (2020).

11. Bange, E. M. et al. CD8+ T cells contribute to survival in patients with COVID-19 and hematologic cancer. *Nat. Med.* 27, 1280–1289 (2021).

12. Abdul-Jawad, S. et al. Acute immune signatures and their legacies in severe acute respiratory syndrome coronavirus-2 infected cancer patients. *Cancer Cell* 39, 257–275.e256 (2021).

13. Thakkar, A. et al. Seroconversion rates following COVID-19 vaccination among patients with cancer. *Cancer Cell* 39, 1081–1090.e2 (2021).

14. Au, L. et al. Cancer, COVID-19, and antiviral immunity: the CAPTURE study. *Cell* 183, 4–10 (2020).

15. Marshall, J. C. et al. A minimal common outcome measure set for COVID-19 clinical research. *Lancet Infect. Dis.* 20, e192–e197 (2020).

16. Lowe, K. E., Zein, J., Hatipoğlu, U. & Attaway, A. Association of smoking and cumulative pack-year exposure with COVID-19 outcomes in the Cleveland Clinic COVID-19 registry. *JAMA Intern. Med.* 181, 709–711 (2021).

17. Rosenthal, N., Cao, Z., Gundrum, J., Sianis, J. & Safo, S. Risk factors associated with in-hospital mortality in a US national sample of patients with COVID-19. *JAMA Netw. Open* 3, e2029588 (2020).

18. Sterlin, D. et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. *Sci. Transl. Med.* 13, eabd2223 (2021).

19. Grifoni, A. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. *Cell*. https://doi.org/10.1016/j.cell.2020.05.015 (2020).

20. Dan, J. M. et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. *Science* 371, eabf4063 (2021).

21. Moderbacher, C. R. et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. *Cell*. https://doi.org/10.1016/j.cell.2020.09.038 (2020).

22. Weiskopf, D. G. et al. Characterization and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. *Sci. Immunol.* 6, eabd2071 (2021).

23. Mateus, J. et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. *Science*. https://doi.org/10.1126/science.abd3871 (2020).

24. Marra, A. et al. Seroconversion in patients with cancer and oncology health care workers infected by SARS-CoV-2. *Ann. Oncol.* 32, 113–119 (2021).

25. Dispinseri, S. et al. Neutralizing antibody responses to SARS-CoV-2 in asymptomatic COVID-19 is persistent and critical for survival. *Nat. Commun.* 12, 2670 (2021).

26. Earle, K. A. et al. Evidence for antibody as a protective correlate for COVID-19 vaccines. *Vac.ine* 39, 4423–4428 (2021).

27. Khoury, D. S. et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. *Nat. Med.* 27, 1205–1211 (2021).

28. Ju, B. et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. *Nature* 584, 115–119 (2020).
Articles Nature Cancer

E.N., A.-S., J.I.M., J.N., F.G., R.L.S., C.M., D.C., I.C., N.S., N.T., L.W., N.v.A., R.L.J., J.D., and S.T.C.S.; A.F., L.A., S.T.C.S., F.B., M.C., L.A.B., K.R., W.G., B.S., C.L.G., B.W., W.X., N.J.-H., G.H.C., M.P., L.M., K.W.N., E.C., K.E., L.D.R., S.S., K.L., J.K., M.M., L.H., H.A., R.S., C.G., H.R.F., A.D., P.H., S.C., M.H., W.R., G.M., L.C., H.R., K.M., A.M., P.R., K.C., E.A., A.O., A. Reid, K.Y., J.S.F.E., S. Gamblin, C. Swanton, E.N., S.K., K.A.W., A.S., R.G., and K.J.R. and S.T. were responsible for reviewing the manuscript. The final version of the manuscript was approved by all authors.

L.A. Supervision was conducted by S.T. Trial conduct was overseen by S.T., L.A., S.T.C.S., E.C., L.R., K.E., L.A.B., J.L., N.Y., A.R., E.N. and S.K.

Competing interests
S.T. has received speaking fees from Roche, AstraZeneca, Novartis and Ipsen. S.T. has the following financial interests filed: Indel mutations as a therapeutic target and predictive biomarker PCTGB2018/051892 and PCTGB2018/051893 and Clear Cell Renal Cell Carcinoma Biomarkers P113326GB. N.Y. has received conference support from Celgene. A.R. received speaker’s fees from Janssen and AstraZeneca; travel support from Janssen and Astellas, and consultancy fees from AstraZeneca. D.C. received funding from MedImmune, AstraZeneca, Eli Lilly, 4SC, Bayer, Celgene and Roche, and is on the advisory board of OVIIBO. I.L. has received research funding from Bristol-Myers Squibb, Merck, Novartis, Pfizer, Achilles Therapeutics, Roche, Nektar Therapeutics, Covance, Immunocore, Pharmacometrics and Areo, and served as a consultant to AstraZeneca, Boston Biomedical, Bristol-Myers Squibb, Eisai, Ushinova Pharma, GlaxoSmithKline, Ipsen, Immune, Incyte, Oncodera, Kymab, Merck Serono, Nektar, Novartis, Pfizer, Fabre, Roche, Genentech, Secarna and Vitacess. I.C. has served as a consultant to Eli Lilly, Bristol Meyers Squibb, MSD, Bayer, Roche, Merck Serono, Five Prime Therapeutics, Astra Zeneca, OncXerna, Pierre Fabre, Boehringer-Ingelheim, Incyte, Astella, GSK, Sotio and, Eisai; has received research funding from Eli Lilly & Janssen-Cilag; and has received honorarium from Eli Lilly, Eisai, Servier. A.O. acknowledges receipt of research funding from Pfizer and Roche; speakers fees from Pfizer, Seagen and Astra Zeneca; is an advisory board member of Roche, Seagen and Astra Zeneca; and has received conference support from Leo Pharmaceuticals, Astra Zeneca/Diachi-Sanky and Lilly. C. Swanton acknowledges grant support from Pfizer, Astra Zeneca, Bristol-Myers Squibb, Roche, Ventana, Boehringer-Ingelheim, AstraZeneca (collaboration in clinical disease sequencing technologies and Oncology Pharmaceutical); is an Astra Zeneca Advisory Board member and Chief Investigator for the MeRmaid1 clinical trial; has consulted for AstraZeneca, Pfizer, Novartis, GlaxoSmithKline, MSD, Bristol-Myers Squibb, Celgene, Astra Zeneca, Illumina, Genentech, Roche-Ventana, GRAIL, Medici, Metabomed, Bicycle Therapeutics and the Sarah Cannon Research Institute; has stock options in Apogen Biotechnologies, Epic Bioscience, GRAIL and has stock options; and is co-founder of Articulate Therapeutics. C. Swanton holds European patents relating to assay technology to detect tumor recurrence (PCT/GB2017/035289); to targeting neoantigens (PCT/EP2016/059401), identifying immune response to immune-checkpoint blockade (PCT/EP2016/071471), determining HLA LOH (human leukocyte antigen loss of heterozygosity) (PCT/GB2018/020401), predicting survival rates of patients with cancer (PCT/GB2019/015912); is consultant to detecting patients who respond to cancer treatment (PCT/GB2018/051912), a US patent relating to detecting tumor mutations (PCT/US2017/28013) and both a European and US patent related to identifying insertion/deletion mutation targets (PCT/GB2018/051982). I.P. has received research funding from Pierre Fabre and honoraria from Pfizer. Ipsen, Bristol-Myers Squibb and EUSA Pharma. S.B. has received institutional research funding from AstraZeneca, Tesaro, GSK; speakers fees from Amgen, Pfizer, Astra Zeneca, Tesaro, GSK, Clovis, Takeda, Immunogen and Mersana; and has an advisory role for Agen, AstraZeneca, Epiolgen, Genmab, Immunogen, Mersana, Merck Sharp & Dohme, Merck Serono, Oncxera, Pfizer and Roche. N.T. has received advisory board honoraria from AstraZeneca, Bristol-Myers Squibb, Lilly, Merck Sharpe and Dohme, Pfizer, Roche,Genentech, GlaxoSmithKline, Zentaris Pharmaceuticals, Repare Therapeutics and Arvinas; and research funding from AstraZeneca, BioRad, Pfizer, Roche/Genentech, Merck Sharpe & Dohme, Guardant Health, Invitae, Invitasa, Personalis and Natera. M.O.B. is on advisory boards for Agen, Pierre Fabre, Pharmamaur, Puma, MSD and Roche. A.M.S. received and educational grant from Janssen-Cilag. N.S. received travel grants from AstraZeneca, BMS, Eli Lilly, Merck, Roche and MSD Oncology; received honoraria from Eli Lilly, Merck Serono, MSD Oncology, Pfizer, Servier, GSK and Amgen; and is on the advisory board for Pfizer, AstraZeneca, Servier and MSD. N.S. received funding from AstraZeneca, BMS, Pfizer, NIHR EMER, RMCC and RM/ICR BCR. R.I.J. received research support from MedImmune Sharp & Dohme; and received consultation fees from Adaptimmune, Astex, Athenex, Bayer, Boehringer Ingeheim, Blueprint, Cogeni, Eisai, Eptapyme, Daichii, Deuncherche, Immunomed, Immunicum, Karma Oncology, Lilly, Merck, Mundipharma, Pharmamar, Springworks, Syno, Tacon, Up Shot and Merck & Sharp & Dohme. A.F., L.A., S.T.C.S., B.S., M.C., L.A.B., K.R., W.G., B.S., C.L.G., B.W., W.X., N.J.-H., G.H.C., M.P., L.M., K.W.N., E.C., K.E., L.D.R., S.S., K.L., M.M., L.H., E.A., R.S., C.G., H.R.F., A.A-D., P.H., S.C., M.H., W.R., G.M., L.C., H.R., K.M., A.M., P.R., K.C., E.A., A.O., A. Reid, K.Y., J.S.F.E., S. Gamblin, C. Swanton, E.N., S.K., K.A.W., A.S., R.G., and K.J.R. declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s43018-021-00275-9. Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s43018-021-00275-9.

Correspondence and requests for materials should be addressed to Sarah Tarujić.

Peer review information Nature Cancer thanks Ailong Huang, Sean Lim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.
The Crick COVID-19 Consortium

Helen R. Flynn1, Simon Caidan11, Michael Howell12, Mary Wu12, Robert Goldstone13, Margaret Crawford13, Laura Cubitt13, James I. MacRae16, Jerome Nicod13, Sonia Gandhi17,38, Steve Gamblin39, Charles Swanton40,41 and George Kassiotis5

A full list of members appears in the Supplementary Information.

The CAPTURE consortium

Annika Fendler1,45, Lewis Au1,2,45, Scott T. C. Shepherd1,2,45, Fiona Byrne1, Laura Amanda Boos2, Benjamin Shum1-2, Camille L. Gerard1, Andreas M. Schmitt2, Christina Messiou19, David Cunningham20, Ian Chau20, Maureen Starling20, Nicholas Turner21,22, Liam Welsh23, Robin L. Jones25, Joanne Droney26, Susana Banerjee27, Kate C. Tatham28,29, Shaman Jhanji28, Kevin Harrington31,32, Alicia Okines21,34, Alison Reid36, Kate Young2, Andrew J. S. Furness2, Lisa Pickering2, Emma Nicholson33, Sacheen Kumar20, Nadia Yousaf30,34, Katalin A. Wilkinson3,42, Anthony Swerdlow43, George Kassiotis5, James Larkin2, Robert J. Wilkinson3,4,42 and Samra Turajlic1,2

A full list of members appears in the Supplementary Information.
Extended Data Fig. 1 | See next page for caption.
Extended Data Fig. 1 | Duration of viral shedding and SARS-CoV-2 viral strain incidence in the CAPTURE cohort, and cyto/chemokine correlations with COVID-19 severity. a) Duration to final positive swab in patients with solid (n = 32) vs haematological malignancies (n = 11). Boxes indicate the 25 and 75 percentiles, line indicates the median, and whiskers indicate the 10 and 90 percentiles. Dots represent individual samples. Significance was tested by two-sided Wilcoxon Mann-Whitney U test, p < 0.05 was considered significant. b) Change over time in the dominant SARS-CoV-2 strain as assessed in 44 patients with cancer with viral sequencing data. Cytokine levels related to c) T-cell and d) macrophage responses were measured in patients with cancer with acute SARS-CoV infection (blue bar, n = 13) using the human immune monitoring 65-plex ProcartaPlex immunoassay in serum samples. Samples were measured in duplicates. Control samples are sera from non-matched patients with cancer (pink bar, n = 5) without SARS-CoV-2 infection. Data are presented as the log10 of the concentration in pg ml⁻¹. Correlation of cyto/chemokines related to e) T cells and f) macrophages with COVID-19 WHO severity score. g) Comparisons of cytokine levels between patients with haematological (orange, n = 8) and solid malignancies (aqua, n = 5). Boxes indicate the 25th and 75th percentiles, line indicates the median, and whiskers indicate the 10 and 90 percentiles. Dots represent individual samples. Significance was tested by Wilcoxon-Mann-Whitney U test, p-values are denoted in the graph.
Extended Data Fig. 2 | See next page for caption.
Extended Data Fig. 2 | Spike-reactive and neutralising antibody titers. a) Flow cytometric assays to quantify S-reactive IgG and IgM and IgA levels in sera of patients (n = 109 for IgG and IgM, n = 51 for IgA) with S-reactive antibodies. b) S-reactive IgG, c) IgM, and d) IgA in SARS-CoV-2 positive compared with infection-naive patients (n = 40). Boxes indicate the 25 and 75 percentiles, line indicates the median, and whiskers indicate the 10th and 90th percentiles. e) Correlation between S1-reactive IgG and S1-reactive AbT in 40 patients and f) Correlation between S1-reactive IgM and S1-reactive AbT in 40 patients. Blue line denotes linear regression line with grey areas marking the 95% confidence band. Regression coefficient and p-values were computed by two-sided spearman regression, p < 0.05 was considered significant. g) S1-reactive antibodies in pre-pandemic sera of patients (n = 77). Boxes indicate the 25 and 75 percentiles, line indicates the median, and whiskers indicate the 10th and 90th percentiles. h) Correlation between NAbT against WT, Alpha, Beta, Delta and S1-reactive AbT in 112 patients. Blue line denotes linear regression line with grey areas marking the 95% confidence band. Regression coefficient and p-values were computed by two-sided spearman regression, p < 0.05 was considered significant.
Extended Data Fig. 3 | Gating strategy. Gating strategy for flow analysis of a) S-reactive IgG, IgG, IgA and b) AIM assay.
Extended Data Fig. 4 | Longitudinal assessment of NAb against VOCs. NAbT against a) Alpha, b) Beta, c) Delta over time POD. Black dots denote patients with only one sample, coloured dots denote patients with serial samples. Samples from individual patients are connected. Loess regression was performed and is displayed as a blue line with 95% confidence bands as grey area. Dotted lines and grey areas at graph bottom indicate limit of detection. POD, post onset of disease.
Extended Data Fig. 5 | See next page for caption.
Extended Data Fig. 5 | T-cell response in patients with cancer. a) Comparison between SARS-CoV-2 reactive CD4+ and CD8+ T cells evaluated in 100 patients with cancer. Boxes indicate the 25th and 75th percentiles, the median is shown, and whiskers indicate the 10th and 90th percentiles. Dots represent individual samples, connected dots are from the same sample. Significance as tested by two-sided Wilcoxon Mann Whitney U-test, p-values < 0.05 was considered significant. b) Pairwise spearman correlation of CD4+ and CD8+ T cells and IFN-γ concentration (pg/ml) in supernatants after stimulation of PBMCs (n = 82). Correlation is shown by color gradient. p-values for each correlation were calculated by two-sided t-test and were adjusted for multiple testing by Benjamini-Hochberg correction. P-value is denoted by size, in addition p-values < 0.05 are denoted by asterisk. *, p < 0.05. c) Comparison of IFN-γ concentration (pg/ml) in patients with solid (n = 41) and haematological malignancies (n = 8). Only patients in which SsT cells were detected were included. Significance as tested by two-sided Wilcoxon Mann Whitney U-test, p-values < 0.05 was considered significant. d) CD4+ T cells in 12 patients with cancer without confirmed SARS-CoV-2 infection. e) CD8+ T cells in 12 patients with cancer without confirmed SARS-CoV-2 infection. Boxes indicate the 25 and 75 percentiles, line indicates the median, and whiskers indicate the 10 and 90 percentiles. Dots represent individual samples. Correlation of S1-reactive AbT and SARS-CoV-2-specific CD4+ T cells in patients with f) solid (n = 81) and g) haematological malignancies (n = 19). Blue line denotes linear regression line with grey areas marking the 95% confidence band. Regression coefficient and p-values were computed by two-sided spearman regression, p < 0.05 was considered significant. NC, negative control, SEB, Staphylococcal enterotoxin B, IFN, IFN-γ.
Extended Data Fig. 6 | Comparison of antibody and T-cell responses to individuals without cancer. Comparison of a) S1-reactive AbT and b) NAb against WT in HCW (n = 21), patients with solid malignancies (n = 92), and haematological malignancies (n = 20). Comparison of SARS-CoV-specific c) CD4+ and d) CD8+ T cells in HCW (n = 19), patients with solid malignancies (n = 81), and haematological malignancies (n = 19). Boxes indicate the 25 and 75 percentiles, line indicates the median, and whiskers indicate the 10 and 90 percentiles. Dots represent individual samples. Significance was tested by Kruskal Wallis test, p < 0.05 was considered significant, post-hoc test with Bonferroni correction was used for pairwise comparisons.
Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

☐ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

☐ A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

☐ The statistical test(s) used AND whether they are one- or two-sided

□ Only common tests should be described solely by name; describe more complex techniques in the Methods section.

☐ A description of all covariates tested

☐ A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

☐ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

☐ For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted

□ Give P values as exact values whenever suitable.

□ For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

☐ For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

☐ Estimation of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Data collection was conducted in Microsoft Excel for Mac Version 16.50

Data analysis Data and statistical analysis were done in FlowJo 10.7.1 and R v3.6.1 in R studio v1.2.1335, Bio-Rad Everest software v2.4, Harmony 9, SciPy.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All requests for raw and analysed data, and CAPTURE study protocol will be reviewed by the CAPTURE Trial Management Team, Skin and Renal Clinical Trials Unit, The Royal Marsden NHS Foundation Trust (CAPTURE@mnh.nhs.uk) to determine if the request is subject to confidentiality and data protection obligations. Materials used in this study will be made available upon request. There are restrictions to the availability based on limited quantities. Response to any request for data and/or materials will be given within a 28 day period. Data and materials that can be shared would then be released upon completion of a material transfer agreement.
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

☑ Life sciences ☐ Behavioural & social sciences ☐ Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-list.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size
The recruitment was conducted over approximately 9 months period at a national cancer centre thus representing a broad and realistic cancer patient population (adult patients). Recruitment to the infection cohort ceased once patients began receiving COVID-19 vaccination. The recruitment period was highly subject to changes given the dynamic situation of the pandemic and community infection rates and as the primary endpoint is descriptive so no power calculation was required. For each patient, all available samples were included in longitudinal analyses.

Data exclusions
No patients were excluded.

Replication
For correlative measures, all human specimens underwent quality control (QC) assessments. Only those that passed QC were further analyzed. Inter-assay variation of the high-throughput neutralisation assay has been reported in Wall et al. Lancet 2021. Nanobodies were measured on each plate to normalise for replicative differences between variants and validation is performed regularly. SI-reactive IgG was measured in duplicates, positive controls were run in quadruplicates to account for inter-assay variation. 1 Million viable cells were gated in flow assay. Positive and negative controls were included for each sample.

Randomization
There is no randomisation. This is an observational cohort study.

Blinding
Blinding was not performed. This is an observational cohort study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a	Involved in the study
☑	Antibodies
☑	Eukaryotic cell lines
☑	Palaeontology and archaeology
☑	Animals and other organisms
☑	Human research participants
☑	Clinical data
☑	Dual use research of concern

Methods

n/a	Involved in the study
☑	ChiP-seq
☑	Flow cytometry
☑	MRT-based neuroimaging

Antibodies

Antibodies used
Antibody (Fluochrom, Clone, Manufacturer, Catalogue No.): CD14 (V500, M5E2, BD, Catalogue No.: 561391), CD19 (V500, HIB19, BD, Catalogue No.: 561121), CD4 (BV605, OKT4, Biologend, Catalogue No.: 317438), CD8 (BV650, RPA-T8, Biologend: Catalogue No.: 301042), CD69 (PE-CFS594, FN50, BD, Catalogue No.: 562617), CX40 (PE-CF7, Ber-ACT35, Biologend, Catalogue No.: 350012), CD137 (APC, 4B4-1, Biologend, Catalogue No.: 309810), CD3 (AF700, OKT3, Biologend, Catalogue No.: 317340) NSP8 (unconjugated, polyclonal, Antibodies online, Catalog No. ABIN233792), Goat Anti-Rabbit IgG (HRP Conjugate, polyclonal, Biorad, Cat No. 64371828), Alexa488-labelled CR3009 antibody produced in house, CR3022 anti- SARS-CoV-2 Ab (unconjugated, CR3022, Absolute Antibodies, Catalogue No.: Ab01680-10.0)

Validation
Antibodies for AIM assay were chosen on the basis of previous publication of the assay [Grifoni et al. Targets of T Cell Responses to SARS-CoV-2 in Humans with COVID-19 Disease and Unexposed Individuals. Cell, 2020] References with validation of other primary antibodies used are as follows: Neutralising antibodies (NSP8 and anti-rabbit IgG - Wrobel et al. Antibody mediated disruption of the SARS-CoV-2 spike glycoprotein. Nat Comm, 2020], Alexa488-labelled CR3009 antibody [Wall et al. Neutralising antibody activity against SARS-CoV-2 V0Cs 8.1.1.17.2 and 8.1.3.5.1 by bNT162b2 vaccination, Lancet, 2021], CR3022 [Ng et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science, 2020].
Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)
VERO-E6 cells were from the National Institute for Biological Standards and Control, UK. The SARS-CoV-2 isolate hCoV-19/England/02/2020 was obtained from the Respiratory Virus Unit, Public Health England, UK, and propagated in Vero E6 cells.

Authentication
We authenticated the VERO-E6 cells using a species ID Molecular test using AGM specific primers and the cell line gives a match with our controls for African Green monkey. We further tested the cell line with Human STR Authentication to prove that there was no evidence of cross contamination with human lines and Veros gave a distinct pattern of peaks on Human STR.

Mycoplasma contamination
Lines were screened for mycoplasma contamination.

Commonly misidentified lines (See ICLAC register)
N/A

Human research participants

Policy information about studies involving human research participants

Population characteristics
Adult patients with current or history of invasive cancer were eligible for enrolment. Inclusion criteria for CAPTURE are intentionally broad, and patients are recruited irrespective of cancer type, stage, or treatment. 357 unvaccinated cancer patients were evaluable and followed-up for a median of 354 days (IQR: 63 - 273). Median age was 60 years, 54% were male, 89% had solid malignancy, and the majority [64%] had advanced disease (Table 1). Overall, 118 patients [33%] were SARS-CoV-2-positive confirmed by positive SARS-CoV-2 RT-PCR or ELISA for S1-reactive antibodies (laboratory case definition), including 97 patients with solid cancers and 21 with haematological malignancies (Figure 1A). The most common comorbidities were hypertension (27%), obesity (21%) and diabetes mellitus (11%), and no significant differences were observed in baseline demographics between patients with solid and haematological malignancies.

Recruitment
CAPTURE study (NCT03226886) inclusion criteria are intentionally broad, and patients were approached irrespective of cancer type, stage, or treatment. CAPTURE included targeted recruitment arms to include both patients with clinically suspected/confirmed SARS-CoV-2 infection (Group A); key point of recruitment was a dedicated clinical assessment unit for patients with symptoms suggestive of COVID-19 irrespective of severity) and patients with no symptoms suggestive of SARS-CoV-2 infection in the course of their cancer care (Group B; key point of recruitment were outpatient clinics).

Distinct from a population screening program, this approach led to a higher proportion of SARS-CoV-2 infected patients (around 30% of patients recruited) relative to expected population prevalence, but nevertheless representative of the broad range of COVID-19 presentations due to the recruitment of all-comers in Arm B.

Ethics oversight
CAPTURE was approved as a sub-study of TRACERx Renal (NCT03226886). TRACERx Renal was initially approved by the NRES Committee London - Fulham on January 17, 2012. The TRACERx Renal sub-study CAPTURE was submitted as part of Substantial Amendment 9 and approved by the Health Research Authority on April 30, 2020 and the NRES Committee London - Fulham on May 1, 2020. CAPTURE is conducted in accordance with the ethical principles of the Declaration of Helsinki, Good Clinical Practice and applicable regulatory requirements. All participants required written informed consent to participate.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration
CAPTURE study (NCT03226886)

Study protocol
Request for protocols should be directed to CAPTURE trials unit via CAPTURE@mhr.nhs.uk

Data collection
Data from between May 4, 2020 and March 31st 2021 (database lock) was collected at Royal Marsden hospital hospital, by extract from clinical records approved as per protocol.

Outcomes
Primary endpoint of study is description of population characteristics between SARS-CoV-2 positive and negative cancer patients - as this is a planned interim analysis the primary endpoint has not yet been assessed. Secondary endpoints and exploratory endpoints are differences in overall survival, intensive treatment unit admission rate, anti-cancer treatment received, and characterising clinical and immunological determinants of COVID-19 severity in cancer patients. This planned interim analysis pertains to characterising clinical and immunological determinants of COVID-19 severity in cancer patients; humoral and cellular components of the immune response are quantified and then associations with patient, cancer and treatment specific factors are assessed in a multivariate model [see methods].
Flow Cytometry

Plots

Confirm that:

- The axis labels state the marker and fluorochrome used (e.g., CD4-FITC).
- The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a ‘group’ is an analysis of identical markers).
- All plots are contour plots with outliers or pseudocolor plots.
- A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation
Whole blood was collected in EDTA tubes (VWR) and stored at 4°C until processing. All samples were processed within 24 hours. Time of blood draw, processing, and freezing was recorded for each sample. Prior to processing tubes were brought to room temperature (RT). PBMC and plasma were isolated by density-gradient centrifugation using pre-filled centrifugation tubes (pluriSelect). Up to 30 ml of undiluted blood was added on top of the sponge and centrifuged for 30 minutes at 1000 x g at RT. Plasma was carefully removed then centrifuged for 10 minutes at 4000 x g to remove debris, aliquoted and stored in liquid nitrogen. The cell layer was then collected and washed twice in PBS by centrifugation for 10 minutes at 300 x g at RT. PBMC were resuspended in Recovery cell culture freezing medium (Fisher Scientific) containing 10% DMSO.

Instrument
All experiments were run on a Bio-Rad Ze5 flow cytometer running Bio-Rad Everest software v2.4

Software
Data were analysed using FlowJo 10.7.1

Cell population abundance
Cells were not sorted in this study

Gating strategy
Lymphocytes were gated in FSC-A/SSC-A plot, followed by gating for singlets by plotting FSC-A vs. FSC-H. Viable CD3+ cells were identified by plotting CD3 vs. CD14, CD39, and viability dye. Next CD4+ and CD4+ cells were gated and finally CD137+OX40+ cells were identified in the CD4+ population and CD137+CD69+ in the CD8+ population.

☐ Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.