B Baryons at CDF

S. Donati
University and INFN Pisa, Largo B. Pontecorvo, 3 - 56127 Pisa, Italy
E-mail: simone.donati@pi.infn.it

In this paper we review the most recent results concerning B Baryons at CDF, including the study of the Ω_b^-, Ξ_b^-, and $\Sigma_b^{\pm(0)}$ observation and properties, and a new measurement of the Λ_b^0 lifetime and the observation of new Λ_b^0 decay modes.

The Ω_b^- baryon is observed through the decay chain $\Omega_b^- \rightarrow J/\psi \Omega^-$, where $J/\psi \rightarrow \mu^+\mu^-$, $\Omega^- \rightarrow \Lambda K^-$, and $\Lambda \rightarrow p K^-$, using 4.2 fb$^{-1}$ of data. The Ω_b^- mass is measured to be $6054.4_{-6.8}^{+7.0}\text{(stat.)} \pm 0.9 \text{(syst.)}$ MeV/c2, and the lifetime $1.13_{-0.40}^{+0.53}\text{(stat.)} \pm 0.02 \text{(syst.)}$ ps.

For the Ξ_b^- the mass is measured $5790.9_{-2.6}^{+2.7}\text{(stat.)} \pm 0.8 \text{(syst.)}$ MeV/c2 and the lifetime $1.56_{-0.25}^{+0.27}\text{(stat.)} \pm 0.02 \text{(syst.)}$ ps.

The four new states $\Sigma_b^+, \Sigma_b^-, \Sigma_b^{*+}$, and Σ_b^{*-} have been observed in 1.1 fb$^{-1}$ of data, and the masses have been determined, $m(\Sigma_b^+) = 5807.8_{-2.2}^{+2.0}\text{(stat.)} \pm 1.7 \text{(syst.)}$, $m(\Sigma_b^-) = 5815.2_{-1.8}^{+1.6}\text{(stat.)} \pm 1.7 \text{(syst.)}$, and $m(\Sigma_b^{*+}) = 5829.0_{-1.7}^{+1.6}\text{(stat.)} \pm 1.7 \text{(syst.)}$.

CDF has performed a new measurement of the Λ_b^0 lifetime using 1.1 fb$^{-1}$ of data collected by the displaced vertex trigger $1.401_{-0.035}^{+0.046}\text{(stat.)} \pm 0.02\text{(syst.)}$ ps, where the main systematic error is due to the uncertainty on the trigger model.

The $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^- \pi^+ \pi^-$ decay mode has been observed in 2.4 fb$^{-1}$ of data, with the resonant decay modes $\Lambda_b^0 \rightarrow \Lambda_c(2595)^+ \pi^- \rightarrow \Lambda_c^+ \pi^- \pi^+ \pi^-$, $\Lambda_b^0 \rightarrow \Lambda_c(2625)^+ \pi^- \rightarrow \Lambda_c^+ \pi^- \pi^+ \pi^-$, $\Lambda_b^0 \rightarrow \Sigma_c(2455)^+ \pi^- \rightarrow \Lambda_c^+ \pi^- \pi^+ \pi^-$, and $\Lambda_b^0 \rightarrow \Sigma_c(2455)^0 \pi^- \pi^+ \pi^- \rightarrow \Lambda_c^+ \pi^- \pi^+ \pi^-$.

Beauty 2009 - 12th International Conference on B-Physics at Hadron Machines
September 7 - 11, 2009
Heidelberg, Germany

*Speaker.
†for the CDF Collaboration

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/
1. Introduction

B hadrons are abundantly produced at the Tevatron Collider, where the measured b production cross section is $\sigma(B^+) = 2.78 \pm 0.24 \, \mu b$ for $p_T(B^+) \geq 6 \, \text{GeV}/c$ and $|y| \leq 1$ ([1]), and the available energy allows the production of the heavier $\Lambda_b, \Sigma_b, \Xi_b$ and Ω_b hadrons. The challenge is extracting signals from background which are orders of magnitude higher at production. This is achieved with dedicated detectors and triggers.

The CDF II tracker is made of three silicon detectors ([3]) and a drift chamber ([4]) located within a solenoidal magnetic field. Particle identification is performed with the measurement of the specific ionisation in the drift chamber and of the time of flight in a specific detector ([5]). Segmented electromagnetic and hadronic calorimeters surround the tracking system ([6]). The muon detectors ([7]) are located outside the central hadron calorimeter. CDF II uses a three-level trigger system. The heart of the L1 trigger is the eXtremely Fast Tracker ([8]), the trigger track processor that identifies charged tracks in the drift chamber. The L1 tracks are extrapolated to the calorimeter and to the muon chambers to generate electron and muon trigger candidates. The Online Silicon Vertex Tracker ([9]) is part of the L2 trigger. It receives the L1 tracks and the digitised pulse heights on the axial layers of the silicon vertex detector. It links the L1 tracks to the silicon hits and reconstructs tracks with offline-like quality, used to select online the secondary vertices characteristic of the b events in specific triggers. L3 trigger uses a CPU farm which allows to perform an almost offline-quality reconstruction.

2. Observation and properties of the Ω_b^- and Ξ_b^- baryons

The Ω_b^- observation is made through the decay chain $\Omega_b^- \to J/\psi \Omega^-$, where $J/\psi \to \mu^+\mu^-$, $\Omega^- \to \Lambda K^-$, and $\Lambda \to p\pi^-$ [10] in a data sample corresponding to an integrated luminosity of 4.2 fb$^{-1}$. The Ξ_b^- is reconstructed through the similar decay mode $\Xi_b^- \to J/\psi \Xi^-$, where $J/\psi \to \mu^+\mu^-$, $\Xi^- \to \Lambda \pi^-$, and $\Lambda^- \to p\pi^-$. The analysis selects well-measured $J/\psi \to \mu^+\mu^-$ candidates, where the two-muon invariant mass is required within 80 MeV/c2 of the world-average J/ψ mass. Λ candidates use all opposite charge track pairs with $p_T > 0.4 \, \text{GeV}/c$ found in the chamber. The proton (pion) mass is assigned to the track with the higher (lower) momentum, which is correct for the Λ candidates used in this analysis for the kinematics of the Λ decay and the lower limit in the transverse momentum acceptance of the tracking system. The additional tracks are assigned the pion or kaon mass, and $\Lambda \pi^-$ and ΛK^- combinations are identified that are consistent with the decay process $\Xi^- \to \Lambda \pi^-$ or $\Omega^- \to \Lambda K^-$. The charged hyperon candidates have an additional fit performed with the three tracks that simultaneously constrains both the Λ and Ξ^- or Ω^- masses of the appropriate track combinations and provides the best possible estimate of the hyperon momentum and decay position. A significant background reduction is achieved by requiring the charged hyperon candidates have track measurements in at least one layer of the silicon detector. The shorter lifetime of the Ω^- makes the silicon selection not efficient in compete to the Ξ^-. For this reason silicon detector information on the hyperon track is used when it is available, but it is not imposed as a requirement for the Ω^- selection. The hyperon candidates are combined with the J/ψ candidates by fitting the five-track state with constraints appropriate for each decay topology and intermediate hadron state. The $\mu^+\mu^-$ mass is constrained to the nominal J/ψ mass, and the
hyperon candidate is constrained to originate from the J/ψ decay vertex. The fits that include the charged hyperons constrain the Λ candidate tracks to the nominal Λ mass, and the Ξ^- and Ω^- candidates to the respective nominal masses. b-hadron candidates are required to have $p_T > 6.0$ GeV/c and the hyperon to have $p_T > 2.0$ GeV/c. Figure 1 shows the reconstructed Ξ_b^- and Ω_b^- mass distributions.

The Ξ_b^- mass is measured to be 5790.9 ± 2.6 (stat.) ± 0.8 (syst.) MeV/c2 and the Ω_b^- is measured to be 6054.4 ± 6.8 (stat.) ± 0.9 (syst.) MeV/c2. The systematic errors are due to the uncertainty on the mass scale of the baryons measured with the hyperons in the final state, estimated as the mass difference between the B^0 as measured in the $J/\psi K^0_s$ and the nominal B^0 mass and rescaled for the different energy measured by the tracking system in the two decay modes. A systematic error is due to the dependence of the measured on the alternative assumption to have a constant or an event-by-event mass resolution in the fit. A further systematic is due to the uncertainty on the Ω^- mass. The Ξ_b^- lifetime is measured to be $1.56^{+0.27}_{-0.25}$ (stat.) ± 0.02 (syst.) ps and the lifetime of the Ω_b^- to be $1.13^{+0.53}_{-0.40}$ (stat.) ± 0.02 (syst.) ps. The systematic errors are due to the treatment of the resolution on the proper decay length in the fit (2 μm), to the detector mis-alignment (1 μm).

The productions of the Ξ_b^- and of the Ω_b^- relative to the Λ_b^0 are found to be $\sigma(\Xi_b^-)/BR(\Xi_b^-) = 0.167^{+0.037}_{-0.025}$ (stat.) ± 0.012 (syst.) and $\sigma(\Omega_b^-)/BR(\Omega_b^-) = 0.045^{+0.017}_{-0.012}$ (stat.) ± 0.004 (syst.). The acceptance and reconstruction efficiency, determined from Monte Carlo, depends on the p_T distribution at production of the Ξ_b^- and Ω_b^-. The analysis assumes that the Ξ_b^- and Ω_b^- are produced with the same p_T distribution as the Λ_b^0. The uncertainty on the efficiencies contains contributions due to $f_{\Lambda_b^0}$, to the Monte Carlo samples size, to the simulation of the tracking system, to the Ξ^- and Ω^- branching fractions, to the uncertainty on the Λ_b^0 yield.

Figure 1: (Left plot) The invariant mass distributions of (a) $J/\psi \Xi^-$ and (b) $J/\psi \Omega^-$ combinations for candidates with $ct > 100 \mu$m. The projections of the unbinned mass fit are indicated by the blue line; (Right plot) The solid histograms represent the number of (a) $\Xi_b^- \rightarrow J/\psi \Xi^-$ and (b) $\Omega_b^- \rightarrow J/\psi \Omega^-$ candidates found in each ct bin. The dashed histogram is the fit value. (Right plot) Λ_b^0 lifetime fit performed on the data.
3. Observation of Σ_b and Σ_b^{*}

The Σ_b and Σ_b^{*} states are searched as resonances in the $\Lambda_b^0\pi^\pm$ mass distributions, where $\Lambda_b^0 \to \Lambda_c^+\pi^-$ and $\Lambda_c^+ \to pK^-\pi^+$, using 1.1 fb$^{-1}$ of data [11]. The $\Lambda_b^0\pi^\pm$ states are interpreted as the lowest-lying charged Σ_b baryons and will be labeled $\Sigma_b^{(*)}$. In reconstructing the decays $\Lambda_b^0 \to \Lambda_c^+\pi^-$ and $\Lambda_c^+ \to pK^-\pi^+$, the proton from the Λ_c^+ decay and the π^- from the Λ_b^0 decay must have $p_T > 0.5$ GeV/c. Λ_c^+ combinatorial background is also suppressed by requiring $p_T(p) > p_T(\pi^+)$. The Λ_c^+ daughter tracks are 3-D constrained to originate from a single point and the Λ_c^+ candidate is constrained to the known Λ_c^+ mass, and the Λ_c^+ momentum is extrapolated to intersect the π^- momentum vector to form the Λ_b^0 vertex. The Λ_c^+ and Λ_b^0 must have p_T above 4.5 GeV/c and 6.0 GeV/c respectively. It is also requested $ct(\Lambda_b^0) > 250$ μm and the significance $ct(\Lambda_b^0)/\sigma_t > 10$, and the impact parameter of the Λ_b^0 candidate $|d_0(\Lambda_b^0)| < 80$ μm. The reconstruction of $\Sigma_b^{(*)}$ proceeds by combining Λ_b^0 candidates in the Λ_b^0 signal region with all remaining high quality tracks, with the pion mass hypothesis used when computing the invariant mass of the $\Sigma_b^{(*)}$ candidate. Narrow resonances are searched in the mass difference distribution of $Q = m(\Lambda_b^0\pi) - m(\Lambda_b^0)$. Selection cuts are optimised to maximise the sensitivity of the search. Figure 2 reports the Q distributions reconstructed in data. The main source of background is the combination of prompt Λ_b^0 baryons, or B mesons reconstructed as Λ_b^0 baryons, with extra tracks produced in the hadronization of the B quark. An unbinned maximum likelihood fit determines the mass of the $\Sigma_b^{+} = 5587.8^{+2.0}_{-2.2}$ (stat.)± 1.7 (syst.), the mass of the $\Sigma_b^{-} = 5815.2^{+1.0}_{-1.0}$ (stat.)± 1.7 (syst.), the mass of the $\Sigma_b^{*+} = 5829.0^{+1.7}_{-1.9}$, and the mass of the $\Sigma_b^{*-} = 5836.4^{+2.0}_{-2.1}$ (stat.)± 1.9 (syst.). The systematic errors are due to the uncertainty on the mass scale, to the $\Sigma_b^{(*)}$ background model and to the $\Sigma_b^{(*)}$ signal parameterisation.

![Figure 2](image-url)

Figure 2: (Left plot) The $\Sigma_b^{(*)}$ fit to the $\Lambda_b^0\pi^+$ and $\Lambda_b^0\pi^-$ subsamples. The top plots shows the $\Lambda_b^0\pi^+$ subsample, which contains $\Sigma_b^{(*)+}$, while the bottom plots shows the $\Lambda_b^0\pi^-$ subsample, which contains $\Sigma_b^{(*)-}$. The insets show the expected background plotted on the data for $0 < Q < 500$ MeV/c2, while the signal fit is shown on a reduced range range of $0 < Q < 200$ MeV/c2. (Right plot) Λ_b^0 lifetime fit, decay length ($ct(\Lambda_b^0)$) distribution of the $\Lambda_b^0 \to \Lambda_c^+\pi^-$ candidates.

4. Lifetime measurement in the $\Lambda_b^0 \to \Lambda_c^+\pi^-$ decay mode

CDF has performed a new Λ_b^0 lifetime measurement using 1.1 fb$^{-1}$ of data collected by the displaced vertex trigger [12]. A signal of 2905 ± 58 $\Lambda_b^0 \to \Lambda_c^+\pi^-$ candidates with $\Lambda_c^+ \to pK^-\pi^+$...
Table 1: Measured relative Branching Fractions of the resonant $Λ_b^0 → Λ_c^+ π^− π^+ π^−$ decay modes.

Decay Mode	BR (stat)	BR (syst)
$Λ_b^0 → Λ_c^+ π^− π^+ π^−$	$2.5 ± 0.6(stat) ± 0.5(syst) · 10^{-2}$	
$Λ_b^0 → Λ_c^+ π^− π^+ π^−$	$6.2 ± 1.0(stat) ± 1.0(syst) · 10^{-2}$	
$Λ_b^0 → Λ_c^+ π^− π^+$	$5.2 ± 1.1(stat) ± 0.8(syst) · 10^{-2}$	
$Λ_b^0 → Λ_c^+ π^+ π^−$	$8.9 ± 2.1(stat) ± 1.2(syst) · 10^{-2}$	
$Λ_b^0 → Λ_c^+ π^+ π^−$	$77.3 ± 3.1(stat) ± 3.0(syst) · 10^{-2}$	

5. Observation of the resonant structure of the $Λ_b^0 → Λ_c^+ π^− π^+ π^−$ decay mode

CDF reconstructed a signal of $848 ± 93 Λ_b^0 → Λ_c^+ π^− π^+ π^−$ candidates with $Λ_c^+ → pK^− π^+$ in 2.4 fb$^{-1}$ of data (Figure 3). In the $Λ_b^0 → Λ_c^+ π^− π^+ π^−$ sample we reconstructed the resonant decay modes: $Λ_b^0 → Λ_c(2595)^+ π^−$ (46.6 ± 9.7 candidates), $Λ_b^0 → Λ_c(2625)^+ π^−$ (114 ± 13 candidates), $Λ_b^0 → Λ_c(2455)^+ π^+ π^−$ (81 ± 15 candidates), and $Λ_b^0 → Λ_c(2455)^0 π^+ π^−$ (41.5 ± 9.3 candidates) (Figure 3). We measured the relative branching fractions of the resonant $Λ_b^0$ decay modes (Table 1), by using the signal yields estimated by perfoming fits of the mass distributions (Figure 3) and relative efficiency factors estimated with Monte Carlo. The main sources of systematic errors derive from the uncertainties on fits of the data and from the uncertainties on relative efficiencies estimated with the Monte Carlo simulation. The main uncertainties on the fits of the data derive from the uncertainties of the background models and from the resolution model used in the model of the resonant signals, and from the uncertainty on the contributions of the Cabibbo suppressed decay modes. The main uncertainties due to the relative efficiencies derive from the uncertainties on the $Λ_c^+$, $Λ_c(2595)^+$, and $Λ_c(2625)^+$ resonant structure, from the average of the relative efficiency for the $Λ_b^0 → Λ_c^+ p^0 π^−$ and $Λ_b^0 → Λ_c^+ π^+ π^−$ decay modes, which are not separated in this analysis, from the unknown $Λ_b^0$ and $Λ_c^+$ polarisations, from the uncertainty on the $Λ_b^0$ production transverse momentum distribution, and from the uncertainty on the $Λ_b^0$ and $Λ_c^+$ lifetimes.

6. Conclusions

In this paper we reviewed the most recent results in the field of B baryons at CDF. These include the observation of the $Ω_b^0$, $Ξ_b^0$, $Σ_b$ and $Σ_b^0$, and new measurement of the $Λ_b^0$ properties, including the lifetime and the observation of the $Λ_b^0 → Λ_c^+ π^− π^+ π^−$ decay mode.
Figure 3: (Top row, first from left) $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^- \pi^+ \pi^-$ candidates mass distribution; (Top row, second from left) $\Lambda_b^0 \rightarrow \Lambda_c(2595)^+ \pi^-$ and $\Lambda_b^0 \rightarrow \Lambda_c(2625)^+ \pi^-$ candidates in a $\pm 3\sigma$ Λ_b^0 mass window ($\sigma = 16$ MeV/c2); (Top row, third from left) $\Lambda_b^0 \rightarrow \Sigma_c(2455)^+ \pi^- \pi^-$ candidates in a $\pm 3\sigma$ Λ_b^0 mass window; (Top row, fourth from left) $\Lambda_b^0 \rightarrow \Sigma_c(2455)^0 \pi^+ \pi^-$ candidates in a $\pm 3\sigma$ Λ_b^0 mass window; (Bottom row, first from left) $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^- \pi^+ \pi^-$ candidates mass distribution with a veto on the charm baryon resonant decay modes; (Bottom row, second from left) $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^- \pi^+ \pi^-$ candidates mass distribution in the $\Lambda_c(2595)^+$ and $\Lambda_c(2625)^+$ mass window; (Bottom row, third from left) $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^- \pi^+ \pi^-$ candidates mass distribution in the $\Sigma_c(2455)^+$ mass window; (Bottom row, fourth from left) $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^- \pi^+ \pi^-$ candidates mass distribution in the $\Sigma_c(2455)^0$ mass window.

References

[1] D. Acosta et al., the CDF Collaboration, Phys. Rev. D 75, 012010 (2007); T. Aaltonen et al., the CDF Collaboration, Phys. Rev. D 79, 092003 (2009).
[2] T. Aaltonen et al., the CDF Collaboration, Phys. Rev. D 79, 092003 (2009).
[3] A. Sill et al., Nucl. Instrum. Meth. A530:1 (2004).
[4] T. Affolder et al., Nucl. Instrum. Meth. A526:249 (2004).
[5] D. Acosta et al., Nucl. Instrum. Meth. A518:605 (2004).
[6] L. Balka et al., Nucl. Instrum. Meth. A267:272 (1988).
[7] G. Ascoli et al., Nucl. Instrum. Meth. A268:33 (1988).
[8] E. J. Thomson et al., IEEE Trans. on Nucl. Sc. vol. 49, n. 3 (2002).
[9] W. Ashmanskas et al., Nucl. Instrum. Meth. A518: 532, (2004)
[10] T. Aaltonen et al., Phys. Rev. D80, 072003 (2009).
[11] T. Aaltonen et al., Phys. Rev. Lett. 9, 202001 (2007).
[12] The CDF B Group Public web page, http://www-cdf.fnal.gov/physics/new/bottom/090416.blessed-lblcpi-ct/