Association of alcohol drinking with incident type 2 diabetes and pre-diabetes: The Guangzhou Biobank Cohort Study

Mei Jiao Li | Jing Ren | Wei Sen Zhang | Chao Qiang Jiang | Ya Li Jin | Tai Hing Lam | Kar Keung Cheng | G. Neil Thomas | Lin Xu

Abstract

Aims: We examined associations of baseline alcohol drinking with incident type 2 diabetes (T2D) or impaired fasting glucose (IFG), and explore whether the associations were modified by genetic polymorphisms of aldehyde dehydrogenase-2 (ALDH2) and alcohol dehydrogenase-1B (ADH1B).

Materials and methods: All participants were aged 50+ (mean = 60.45; standard deviation = 6.88) years. Information of alcohol consumption was collected at baseline from 2003 to 2008. Incident T2D was defined as fasting glucose ≥7.0 mmol/L or post-load glucose ≥11.1 mmol/L at follow-up examination (2008–2012), self-reported T2D and/or initiation of hypoglycaemia medication or insulin during follow-up. Impaired fasting glucose was defined as fasting glucose ≥5.6 mmol/L and <7 mmol/L.

Results: Of 15,716 participants without diabetes and 11,232 participants without diabetes and IFG at baseline, 1624 (10.33%) developed incident T2D and 1004 (8.94%) developed incident IFG during an average 4 years of follow-up. After multivariable adjustments, compared with never drinking, occasional or moderate alcohol drinking was not associated with risk of incident hyperglycaemia (T2D + IFG) (odds ratio (OR) = 1.10, 95% confidence interval (CI) 0.95–1.27, and 0.90 (0.69–1.18), respectively), whereas heavy alcohol drinking was associated with a higher risk of incident hyperglycaemia (T2D + IFG) (OR = 1.82, 95% CI 1.24–2.68).

No interactions of sex, overweight/obesity and genetic polymorphisms of ADH1B/ALDH2 genes with alcohol drinking on incident T2D and/or IFG were found (P for interaction from 0.12 to 0.85).

Conclusions: Our results support a detrimental effect of heavy alcohol use on IFG and T2D. No protective effect was found for those carrying lower risk alleles for ADH1B/ALDH2 genes.

Abbreviations: ADH1B, Alcohol dehydrogenase-1; ALDH2, Aldehyde dehydrogenase-2; ATP, Adenosine triphosphate; BMI, Body mass index; CI, Confidence interval; DNA, Deoxyribonucleic acid; FPG, Fasting plasma glucose; GBCS, Guangzhou Biobank Cohort Study; GHHARE, Guangzhou Health and Happiness Association for the Respectable Elders; GLUT-4, Glucose transporter 4; IFG, Impaired fasting glucose; OGTT, Oral glucose tolerance test; OR, Odds ratio; PI3K, Phosphatidylinositol 3-kinase; ROS, Reactive oxygen species; SNP, Single-nucleotide polymorphism; T2D, Type 2 diabetes.

Mei Jiao Li and Jing Ren these authors contributed equally to this work and should be considered co-first authors
1 | INTRODUCTION

China has the highest number of people with diabetes mellitus in the world, with a prevalence of 10.9% in adults aged 20–79 years. The prevalence of diabetes and pre-diabetes in adults was 12.8% and 35.2%, respectively, in a cross-sectional study of a nationally representative sample in 2015–2017. Alcohol consumption has been associated with the risk of type 2 diabetes (T2D) mellitus in a J-shaped pattern among Asian men. For example, moderate alcohol drinking was associated with a lower risk, whereas heavy alcohol drinking tended to be associated with a higher risk of T2D, despite inconclusive results from three meta-analyses of prospective cohort studies. Two participants showed a positive association between heavy alcohol use and incident T2D but another showed no association for heavy alcohol consumption. Great heterogeneity of results and high variability in definitions of alcohol categories and T2D might lead to the discrepancies between these three meta-analyses. Notably, only one-fourth of the previous studies reported never and former drinkers separately. The risk of T2D attributable to heavy alcohol drinking would be underestimated in studies using a reference group combining never drinkers and less healthy former drinkers. In addition, about 40% of the previous studies defined incident T2D based on self-report, which might further underestimate the risk of T2D from heavy drinking. Asian populations have been considered to have higher genetic susceptibility to T2D and lower alcohol metabolism and clearance. Several genes related to alcohol and diabetes discovered through genome-wide association studies in white populations have been confirmed in Asians as well, despite significant interethnic differences in risk allele frequency. It has been shown that one of the alcohol metabolism-related genes, alcohol dehydrogenase 1C, can modify the effect of alcohol consumption on glycaemic metabolism through its function on ethanol oxidation. However, whether the results can be extended to other major polymorphisms related to alcohol metabolism (i.e., the polymorphisms of aldehyde dehydrogenase-2 (ALDH2) and alcohol dehydrogenase-1B (ADH1B)) is largely unknown.

To date, we found no study that addressed the association between alcohol use and incident diabetes accounting for effect modification by genetic susceptibility. Therefore, we examined the association of baseline alcohol drinking with incident T2D or impaired fasting glucose (IFG) in Guangzhou Biobank Cohort Study (GBCS), a large population-based cohort study of older Chinese in Guangzhou.

2 | METHODS

2.1 | Study population

Detailed information of GBCS has been reported elsewhere. Briefly, GBCS is a 3-way collaboration among Guangzhou 12th People’s Hospital and the Universities of Hong Kong, China and Birmingham, UK. Participants were recruited from an unofficial social and welfare organization that was affiliated with the local government: the “Guangzhou Health and Happiness Association for the Respectable Elders (GHHARE)”, whose membership was open to people aged >50 for a nominal monthly fee of 4 Renminbi (RMB) (US $1 = 7 RMB). The GHHARE had a city-wide network with more than 150 branches throughout Guangzhou, which included 7% of Guangzhou residents in this age group. It had more than 100,000 members of older Guangzhou permanent residents. The study was approved by the Guangzhou Medical Ethics Committee of the Chinese Medical Association in Guangzhou, China. All participants gave written, informed consent before participation.

Baseline examination was performed from September 2003 to January 2008, including face-to-face interview using a computer-assisted questionnaire including demographic characteristics, lifestyle and dietary factors, and disease history, and clinical and laboratory examinations including anthropometry, and fasting plasma glucose (FPG) and lipids. Physical activity was assessed using a validated Chinese version of the International Physical Activity Questionnaire. The first follow-up wave was from March 2008 to December 2012, and we conducted the interview and clinical and laboratory examinations as the baseline.

2.2 | Exposure

Alcohol drinking was classified as never, occasional, moderate and heavy, based on the frequency of alcohol drinking and the usual amount per occasion as described in our previous papers. The usual frequency and quantity of alcohol drinking were assessed. Never drinkers were those who did not drink any alcoholic beverage throughout their life. Occasional drinkers were those who drank less than once per week, or drank only on special occasions, such as wedding parties or festivals, in the past 12 months. Moderate drinkers were people who drank at least once per week with less than or equal to 140 g of ethanol for women and 210 g of ethanol for men. Heavy drinkers were those who weekly drank more than 140 g of ethanol in women and 210 g of ethanol in men. Participants who had abstained from alcohol for at least 1 year were treated as former drinkers.
2.3 | Genotyping

Details of deoxyribonucleic acid (DNA) extraction and genotyping have been published previously.17,20 Briefly, DNA was either extracted at baseline from fresh blood using a standard phenol-chloroform extraction procedure or was extracted from blood or buffy coat previously stored at minus 80°C using a standard magnetic bead extraction procedure. Single-nucleotide polymorphism analysis was performed using a Sequenom Mass-Array platform. Individuals with an active genotype (i.e., ADH2 AA/AG or ALDH2 GG) metabolise both ethanol and acetaldehyde quickly and have high acetic acid exposure on alcohol use.21

2.4 | Outcomes

Incident T2D was defined as fasting glucose ≥ 7.0 mmol/L or post-load glucose ≥ 11.1 mmol/L in 2-h oral glucose tolerance test at the follow-up examination during 2008–2012.22 Self-reported new physician diagnosis of diabetes, and/or initiation of hypoglycaemic medications during the follow-up period. Impaired fasting glucose was defined as fasting glucose ≥ 5.6 mmol/L and < 7 mmol/L,22,23 and normoglycaemia was defined as fasting glucose < 5.6 mmol/L and post-load glucose < 7.8 mmol/L.

2.5 | Potential confounders

Confounders were chosen based on previous studies,19,24,25 and possible confounding on the associations of interest, including age, education, occupation, personal annual income, smoking, physical activity, body mass index (BMI), waist/hip ratio, hypertension, health status and family history of diabetes. All potential confounders were adjusted in the full adjustment model. Education was categorised as primary or below, middle school and college or above. Occupation was categorised as manual (agricultural work, factory work, or sales and services), non-manual (administrative/managerial, professional/technical, or military/police) or others (housewife/husband or retired). Personal annual income was categorised as $< 10,000$, 10,000–15,000, $> 15,000$ RMB/year, and unknown. Smoking status was categorised as never, former, and current smokers. Physical activity was categorised as inactive, minimally active, and active. Health status was dichotomised as good or poor, with poor health status being defined as 1) regular use of medication for chronic diseases, such as hypercholesterolaemia or vascular diseases, 2) any hospital admission during the past 6 months, 3) self-reported cardiovascular disease history, or 4) self-reported cancer history.26 Hypertension was defined by self-reported hypertension, take of hypotensive medication, a systolic blood pressure of > 140 mmHg, and/or diastolic blood pressure > 90 mmHg. As the food frequency questionnaire (FFQ) was modified after September 2006 and information on daily energy intake was not available after that time, we conducted sensitivity analyses on 11,709 (65%) participants with adjustment for daily energy intake and diet quality (consumption of rice, meat, egg, vegetable, and fruit). Participants were asked their average frequency of consumption of different kinds of foods and beverages over the past 7 days based on a validated FFQ.27

2.6 | Statistical analysis

For comparison of baseline categorical variables by alcohol drinking status, we used Fisher’s exact probability test for groups with small number of participants and chi-squared test for larger groups. For comparison of continuous variables, we used one-way analysis of variance. We used generalised linear models to assess the association of alcohol drinking with fasting glucose at baseline or follow-up, as well as differences in glucose level between baseline and follow-up, reporting regression coefficient (β) and 95% confidence interval (CI). We also used logistic regression to calculate odds ratio (OR) and 95% CI for the development of T2D and IFG. Potential confounder adjusted included age, education, occupation, personal annual income, smoking, physical activity, BMI, waist/hip ratio, health status, and family history of diabetes mellitus. Besides, we also assessed interactions between alcohol drinking and genetic variants (ALDH2 (AA + AG vs. GG) and ADH1B (AA vs. AG + GG genotypes), sex, overweight/obesity (BMI ≥ 25 kg/m2) or health status because previous studies suggested that the associations of alcohol with T2D might vary by these risk factors.7,8 Interactions were tested by fitting models with and without the interaction term, with statistical significance determined by the likelihood ratio test of the difference between the two models on the relevant χ^2 distribution. Sensitivity analyses with adjustment for daily total energy intake were conducted. Data analysis was performed using Stata/SE 15.0 (Stata Corp LP, College Station, TX, USA). All tests were two-sided with $P < 0.05$ as statistically significant.

3 | RESULTS

As of 31 December 2012, of 18,104 (13,178 women and 4926 men) who returned for repeated examination, 269 were excluded because of incomplete information on fasting glucose or alcohol drinking, leaving 17,835 participants (4849 men and 12,986 women) with all variables of interest. Of these 17,835, 2119 (11.88%) with diabetes and 4484 (25.14%) with IFG at baseline were excluded from the analysis on incident T2D and IFG, respectively, leaving 15,716 participants without diabetes and 11,232 participants without diabetes and IFG at baseline. During an average of 4-year of follow-up, of 15,716 participants without baseline diabetes, 1624 (10.33%) participants developed incident T2D; while of 11,232 participants without diabetes and IFG at baseline, 1004 (8.94%) participants developed incident IFG and 1638 (14.6%) developed T2D + IFG.

Table 1 shows that, in both men and women, compared to occasional drinkers, heavy alcohol drinkers had lower socioeconomic position (lower education, manual occupation and lower personal...
Alcohol drinking status	Never	Occasional (<1/week)	Moderate (women <140 g/week; men <210 g/week)	Heavy (women ≥140 g/week; men ≥210 g/week)	Ex-drinkers	p value
Men						
Number (%)	2260 (52.96)	1045 (24.49)	494 (11.58)	233 (5.46)	235 (5.51)	
Age, years	63.41 (6.52)	61.73 (6.65)	63.55 (6.62)	62.79 (6.37)	63.25 (6.68)	<0.001
Education, N (%)						
Primary or below	581 (25.73)	229 (21.91)	164 (33.20)	96 (41.20)	80 (34.04)	<0.001
Middle school	1283 (56.82)	620 (59.33)	265 (53.64)	112 (48.07)	123 (52.34)	
College or above	394 (17.45)	196 (18.76)	65 (13.16)	25 (10.73)	32 (13.62)	
Occupation, N (%)						
Manual	1064 (47.31)	483 (46.71)	247 (50.20)	135 (58.19)	116 (49.36)	0.001
Non-manual	872 (38.77)	392 (37.91)	175 (35.57)	67 (28.88)	68 (28.94)	
Others	313 (13.92)	159 (15.38)	70 (14.23)	30 (12.93)	51 (21.70)	
Personal annual income, RMB/year, N (%)						
<10,000	485 (21.48)	234 (22.39)	109 (22.11)	70 (30.04)	61 (25.96)	0.001
10,000–15,000	905 (40.08)	358 (34.26)	203 (41.18)	79 (33.91)	100 (42.55)	
>15,000	732 (32.42)	398 (38.09)	153 (31.03)	73 (31.33)	59 (25.11)	
Unknown	136 (6.02)	55 (5.26)	28 (5.68)	11 (4.72)	15 (6.38)	
Smoking status, N (%)						
Never	1118 (49.53)	423 (40.48)	143 (28.95)	23 (9.87)	60 (25.53)	<0.001
Former	567 (25.12)	266 (25.45)	152 (30.77)	67 (28.76)	93 (39.57)	
Current	572 (25.34)	356 (34.07)	199 (40.28)	143 (61.37)	82 (34.89)	
Physical activity, N (%)						
Inactive	240 (10.62)	45 (4.31)	44 (8.91)	23 (9.87)	12 (5.11)	<0.001
Minimally active	990 (43.81)	393 (37.61)	215 (43.52)	96 (41.20)	114 (48.51)	
Active	1030 (45.58)	607 (58.09)	235 (47.57)	114 (48.93)	109 (46.38)	
BMI, kg/m²	23.34 (3.13)	23.55 (3.01)	23.45 (3.16)	23.46 (3.07)	23.69 (3.18)	0.28
Waist/hip ratio	0.89 (0.06)	0.89 (0.06)	0.90 (0.06)	0.91 (0.06)	0.91 (0.06)	<0.001
TABLE 1 (Continued)

Alcohol drinking status	Never	Occasional (<1/week)	Moderate (women <140 g/week; men <210 g/week)	Heavy (women ≥140 g/week; men ≥210 g/week)	Ex-drinkers	p value
Hypertension, yes, N (%)	946 (41.99)	409 (39.25)	212 (43.18)	110 (48.03)	117 (50.21)	0.01
Family history of diabetes, yes, N (%)	208 (9.20)	122 (11.67)	43 (8.70)	18 (7.73)	27 (11.49)	0.11
Health status, N (%)						
Good	1942 (85.93)	916 (87.66)	428 (86.64)	209 (89.70)	185 (78.72)	0.004
Poor	318 (14.07)	129 (12.34)	66 (13.36)	24 (10.30)	50 (21.28)	
Women						
Number (%)	8915 (77.87)	1910 (16.68)	302 (2.64)	16 (0.14)	306 (2.67)	
Age, years	59.78 (6.69)	58.04 (6.69)	60.87 (7.10)	61.88 (6.97)	59.11 (7.20)	<0.001
Education, N (%)						
Primary or below	3946 (44.27)	630 (32.98)	119 (39.40)	10 (62.50)	120 (39.22)	<0.001
Middle school	4431 (49.71)	1139 (59.63)	165 (54.64)	6 (37.50)	167 (54.58)	
College or above	536 (6.01)	141 (7.38)	18 (5.96)	0 (0.00)	19 (6.21)	
Occupation, N (%)						
Manual	5797 (65.31)	1178 (62.49)	196 (65.77)	12 (75.00)	201 (65.90)	0.37
Non-manual	1709 (19.25)	381 (20.21)	58 (19.46)	2 (12.50)	51 (16.72)	
Others	1370 (15.43)	326 (17.29)	44 (14.77)	2 (12.50)	53 (17.38)	
Personal annual income, RMB/year, N (%)						
<10,000	3385 (37.97)	483 (25.30)	102 (33.77)	8 (50.00)	88 (28.76)	<0.001
10,000–15,000	4018 (45.08)	1019 (53.38)	143 (47.35)	6 (37.50)	164 (53.59)	
>15,000	1102 (12.36)	347 (18.18)	50 (16.56)	1 (6.25)	45 (14.71)	
Unknown	409 (4.59)	60 (3.14)	7 (2.32)	1 (6.25)	9 (2.94)	
Smoking status, N (%)						
Never	8707 (97.67)	1854 (97.22)	282 (93.38)	10 (62.50)	289 (94.44)	<0.001
Former	97 (1.09)	31 (1.63)	8 (2.65)	3 (18.75)	7 (2.29)	
(Continues)						
Alcohol drinking status	Never	Occasional (<1/week)	Moderate (women <140 g/week; men <210 g/week)	Heavy (women ≥140 g/week; men ≥210 g/week)	Ex-drinkers	p value
-------------------------	-------	----------------------	---	---	-------------	---------
Current	111 (1.25)	22 (1.15)	12 (3.97)	3 (18.75)	10 (3.27)	
Physical activity, N (%)						
Inactive	891 (9.99)	36 (188)	12 (3.97)	1 (6.25)	7 (2.29)	<0.001
Minimally active	3681 (41.29)	470 (24.61)	93 (30.79)	6 (37.50)	97 (31.70)	
Active	4343 (48.72)	1404 (73.51)	197 (65.23)	9 (56.25)	202 (66.01)	
BMI, kg/m²	23.65 (3.29)	23.85 (3.09)	23.99 (3.13)	24.34 (3.17)	24.22 (3.37)	0.002
Waist/hip ratio	0.85 (0.06)	0.84 (0.06)	0.85 (0.06)	0.87 (0.06)	0.85 (0.07)	0.02
Hypertension, yes, N (%)	3.394 (38.23)	543 (28.50)	85 (28.43)	9 (56.25)	126 (41.58)	<0.001
Family history of diabetes, yes, N (%)	1008 (11.31)	295 (15.45)	26 (8.61)	1 (6.25)	30 (9.80)	<0.001
Health status, N (%)						
Good	7716 (86.55)	1699 (88.95)	258 (85.43)	16 (100.00)	272 (88.89)	0.02
Poor	1199 (13.45)	211 (11.05)	44 (14.57)	0 (0.00)	34 (11.11)	

Note: Data are means (standard deviation) unless otherwise indicated; p values were for differences among categories of alcohol drinking status. US $1 = 7 RMB. Abbreviations: BMI, body mass index N, number.
annual income), higher prevalence of unhealthy lifestyle (physical inactivity and smoking), hypertension and levels of waist/hip ratio, but better health status (P from 0.004 to 0.02). In men, no association between BMI and alcohol drinking status was observed (p = 0.28); whilst in women, heavy alcohol drinkers had the highest levels of BMI (p = 0.002).

Table 2 shows that, after adjusting for age, education, occupation, physical activity, smoking, BMI, waist/hip ratio, health status, hypertension and family history of diabetes, in men, heavy alcohol drinking (the median alcohol consumption 378 g/week) was associated with higher levels of fasting glucose at follow-up (adjusted β (95% CI) = 0.19 (0.06–0.32)). In women, no significant association of alcohol drinking with fasting glucose or changes in fasting glucose was found. As alcohol drinking and sex showed no interaction on FPG or changes in FPG (p values for interaction ranged 0.16–0.71), men and women were pooled. After adjusting for similar confounders above and sex, heavy alcohol drinking was association with FPG at follow-up, and greater increase in FPG at follow-up (adjusted β (95% CI) = 0.20 (0.08–0.32), and 0.13 (0.02–0.24), respectively).

As we found no interactions of alcohol drinking with sex, normal/obesity and health status (p values for interaction from 0.36 to 0.85), no subgroup analysis was done by these factors except for sex, as alcohol use was much less common in Chinese women. Table 3 shows that, in men, compared to never drinkers, heavy and former alcohol drinking was associated with a higher risk of T2D (adjusted OR (95% CI) = 1.67 (1.11–2.50) and 1.54 (1.03–2.28), respectively), whereas the negative association was non-significant (adjusted OR (95% CI) = 0.77 (0.54–1.12)) for moderate alcohol drinking. In women, we found no association of moderate and heavy alcohol drinking with T2D. In all participants, heavy alcohol drinking was significantly associated with a higher risk (adjusted OR (95% CI) = 1.54 (1.05–2.25), and moderate alcohol drinking was associated with a lower risk of incident T2D (adjusted OR (95% CI) = 0.71 (0.53–0.94)). However, non-significant associations of moderate and heavy alcohol drinking with incident IFG in men and women separately were found. In all participants, heavy alcohol drinking was associated with a higher risk of IFG (adjusted OR (95% CI) = 1.81 (1.14–2.87)). Furthermore, of participants without IFG and T2D at baseline, compared to never drinkers, heavy alcohol drinking was associated with a higher risk of T2D + IFG in men (adjusted OR (95% CI) = 1.72 (1.14–2.61)) and total participants (adjusted OR (95% CI) = 1.82 (1.24–2.68)). No association between moderate alcohol drinking and incident T2D + IFG was found (Table 3). Similarly, heavy alcohol drinking was significantly associated with higher risks of T2D + IFG (ESM Table 1).

Table 4 shows no interaction between ALDH2 or ADH1B polymorphism and alcohol drinking on incident T2D in all participants and in men (P for interaction from 0.12 to 0.79). In men, the adjusted OR of incident T2D for heavy alcohol drinking was 1.68 (95% CI 0.99–2.87) in those with ALDH2 GG genotype and 1.68 (95% CI 0.54–5.21) in those with AA/AG genotype. In men, the association appeared to be slightly stronger in those with ADH1B AA genotype (adjusted OR (95% CI) = 2.30 (1.27–4.17)) than those with ADH1B GG/AG genotype (adjusted OR (95% CI) = 1.29 (0.65–2.55)), although the 95% CIs overlapped. In all participants, the adjusted ORs were slightly attenuated, and became non-significant, except for the ADH1B AA genotype (adjusted OR (95% CI) = 2.15 (1.21–3.82)). Similarly, no significant interaction between alcohol drinking and ALDH2/ADH1B genotypes was found regarding the association with incident T2D + IFG (ESM Table 2).

4 DISCUSSION

In this large population-based prospective cohort study of older Chinese, we found that moderate alcohol drinking was associated with a lower risk of incident T2D, whereas heavy alcohol drinking was significantly associated with higher risks of incident T2D and IFG. The association did not vary by sex or genetic polymorphism related to alcohol metabolism, although the non-significant interactions could be due to the relatively small number of alcohol users in our study.

We found that moderate alcohol drinking was not associated with a lower risk of incident T2D + IFG, but showed suggestively protective effect on T2D, which are generally consistent with most previous prospective cohort studies. However, these apparently protective associations do not necessarily mean that moderate alcohol drinking per se is protective against T2D. For example, poor health might affect alcohol use (reverse causation), and systematic differences might exist between individuals with different drinking patterns that were not fully adjusted (residual confounding). Moreover, Mendelian randomisation study shows that the association between alcohol intake and T2D risk was likely causal and in a linear relationship. The lower risks of T2D and IFG in ours and previous studies may have reflected biases of reverse causation or confounding.

It is alarming that heavy alcohol drinkers (≥140 g/week in women and ≥210 g/week in men) had a 82% higher risk of incident T2D + IFG than never drinkers, which is consistent with two meta-analyses showing positive association between heavy alcohol use and incident T2D. Regarding the high prevalence of diabetes and a continuing increase in alcohol use, our findings add to the evidence on the harmful effects of heavy alcohol drinking, and further indicate no protection from low-risk alleles (i.e., ALDH2 G allele or ADH1B A allele), suggesting that more strict governmental alcohol control policies are urgently needed to tackle the rapid increase in alcohol consumption and diabetes epidemic.

Most of the previous studies in the West or Asia showed no association of heavy alcohol drinking with incident T2D, except one retrospective Korean cohort study showing that heavy drinking (ethanol intake ≥30 g/day) was associated with a higher risk of T2D or IFG obese men, and one prospective Chinese cohort study showing that heavy drinking (ethanol intake >60 g/day) was associated with a higher risk of T2D in men, and another prospective Japanese cohort study showing similarly positive association with incident T2D in lean, but not in overweight/obese men. It is unclear why BMI may modify
Alcohol drinking status	Moderate (women < 140 g/week; men < 210 g/week)	Heavy (women ≥ 140 g/week; men ≥ 210 g/week)	Ex-drinkers		
	Never	Occasional (<1/week)			
Baseline FPG					
Alcohol drinking status					
Never	2260	1045	494	233	235
Crude FPG (mmol/L)	5.36	5.30	5.33	5.41	5.34
Crude β (95% CI)	0.00	−0.05 (−0.10, −0.01)‡	−0.03 (−0.09, 0.03)	0.05 (−0.03, 0.14)	−0.02 (−0.10, 0.06)
Adjusted β (95% CI)	0.00	−0.05 (−0.09, −0.00)‡	−0.03 (−0.09, 0.03)	0.06 (−0.02, 0.14)	−0.03 (−0.11, 0.05)
Follow-up FPG					
Crude FPG (mmol/L)	5.29	5.26	5.28	5.55	5.30
Crude β (95% CI)	0.00	−0.03 (−0.10, 0.04)	−0.00 (−0.10, 0.09)	0.26 (0.13, 0.39)	0.01 (−0.12, 0.14)
Adjusted β (95% CI)	0.00	−0.04 (−0.11, 0.04)	−0.02 (−0.12, 0.07)	0.19 (0.06, 0.32)	−0.04 (−0.17, 0.09)
FPG changes during follow-up					
Crude β (95% CI)	0.00	0.03 (−0.04, 0.09)	0.02 (−0.06, 0.11)	0.21 (0.08, 0.33)	0.03 (−0.09, 0.15)
Adjusted β (95% CI)	0.00	0.01 (−0.06, 0.08)	0.01 (−0.08, 0.10)	0.13 (−0.00, 0.25)	−0.01 (−0.14, 0.11)
Women					
Number	8915	1910	302	16	306
Baseline FPG					
Alcohol drinking status					
Never					
Crude FPG (mmol/L)	5.29	5.31	5.36	5.28	5.37
Crude β (95% CI)	0.00	0.01 (−0.02, 0.04)	0.06 (−0.00, 0.13)	−0.02 (−0.31, 0.27)	0.07 (0.01, 0.14)‡
Adjusted β (95% CI)	0.00	−0.00 (−0.03, 0.03)	0.03 (−0.04, 0.09)	−0.09 (−0.36, 0.19)	0.05 (−0.02, 0.11)
Follow-up FPG					
Crude FPG (mmol/L)	5.26	5.28	5.23	5.31	5.31
Crude β (95% CI)	0.00	0.02 (−0.02, 0.07)	−0.03 (−0.14, 0.08)	0.05 (−0.40, 0.51)	0.05 (−0.05, 0.16)
Adjusted β (95% CI)	0.00	0.03 (−0.01, 0.08)	−0.03 (−0.14, 0.07)	0.00 (−0.44, 0.44)	0.04 (−0.07, 0.14)
FPG changes during follow-up					
Crude β (95% CI)	0.00	0.01 (−0.04, 0.05)	−0.09 (−0.19, 0.01)	0.07 (−0.35, 0.49)	−0.02 (−0.12, 0.08)
Adjusted β (95% CI)	0.00	0.03 (−0.01, 0.07)	−0.06 (−0.16, 0.04)	0.09 (−0.33, 0.51)	−0.01 (−0.11, 0.09)
Total					
Number	11,175	2,955	796	249	541
Baseline FPG					
Alcohol drinking status					
Never					
Crude FPG (mmol/L)	5.31	5.31	5.34	5.40	5.35
Crude β (95% CI)	0.00	0.00 (−0.02, 0.02)	0.03 (−0.01, 0.08)	0.09 (0.02, 0.17)‡	0.05 (−0.00, 0.10)
Adjusted β (95% CI)	0.00	−0.01 (−0.04, 0.01)	−0.00 (−0.04, 0.04)	0.07 (−0.01, 0.14)	0.02 (−0.03, 0.07)
Follow-up FPG					
Crude FPG (mmol/L)	5.26	5.27	5.26	5.53	5.31
Crude β (95% CI)	0.00	0.01 (−0.03, 0.05)	−0.00 (−0.07, 0.06)	0.27 (0.15, 0.38)	0.04 (−0.04, 0.12)
Adjusted β (95% CI)	0.00	0.01 (−0.03, 0.05)	−0.02 (−0.09, 0.05)	0.20 (0.08, 0.32)‡	0.01 (−0.07, 0.09)
the association between alcohol consumption and incident T2D. A possible explanation for this effect modification by overweight/obesity is that adiposity-induced insulin resistance is suppressed through moderate alcohol drinking.37 Prior studies examining effect modification by overweight/obesity showed inconsistent findings.34,36 Our study found no evidence that the association of alcohol drinking with incident T2D and/or IFG differed by overweight/obesity status. The effect modification by adiposity warrants further clarification, although scientifically we expect causal factors to be consistent.

We also found that heavy alcohol drinking was associated with higher risks of incident IFG. However, the association of alcohol use and incident IFG was inconclusive in previous studies.28,34,38 A prospective cohort study showed that moderate alcohol drinking (ethanol intake 23–46 g/day) was associated with lower risks of incident IFG and T2D on healthy Japanese men.28 Another prospective study showed that moderate alcohol drinking (20–36 g/day) was associated with a lower risk of incident T2D but not risk of incident hyperglycaemia (including both T2D and IFG).38 Furthermore, a study of obese men showed that both moderate (15–29 g/day) and high alcohol drinking (≥30 g/day) were associated with higher risks of incidence IFG and T2D.34 However, all studies above did not report the association between heavy alcohol drinking and incident IFG alone.28,34,38 Given the limited and inconsistent evidence available on the association of heavy alcohol drinking with incident T2D and IFG, our results add to the literature highlighting the potential detrimental effect of heavy alcohol use on hyperglycaemia.

We found no evidence for the sex difference in the association of moderate or heavy alcohol drinking with incident T2D, although a small non-significant sex-specific difference in moderate alcohol drinking was found. The sex differences in previous studies could be explained by the sex-specific categorisation of moderate and heavy alcohol drinking as well as varying T2D risk factors between men and women. A meta-analysis of clinical trials showed that moderate alcohol drinking was associated with reduced fasting insulin concentrations and improved insulin sensitivity in women but not men.39 As the results of this meta-analysis were based on five small interventional studies, the non-significant results could be due to the small size, heterogeneous designs and populations.40,41

Heavy alcohol drinking may have a direct toxic effect on the pancreas, irrespective of sex.32 Some rodent studies showed that excessive ethanol intake caused damage to islets and beta-cells by interfering insulin signalling, reducing beta-cell mass and subsequently leading to a decrease in insulin secretion and an increase in fasting glucose.43,44 Ethanol may also cause beta-cell apoptosis through mitochondrial dysfunction, manifested by an increased reactive oxygen species and decreased adenosine triphosphate production.45 Furthermore, ethanol could also inhibit the insulin-induced phosphatidylinositol 3-kinase activity and glucose transporter 4 expression in skeletal muscle and lead to insulin resistance.43 Our results supported that heavy alcohol drinking was associated with higher risks of incident diabetes. However, in our study, as only a small number of female participants were heavy alcohol drinkers (only 0.14% women were in the ≥140 g/week group), we had limited ability to examine associations in women.

As ADH1B and ALDH2 are major enzymes involved in alcohol metabolism,46,47 genetic variants in these genes may also be effect modifiers of the association between alcohol consumption and incident diabetes. The ALDH2 A allele is common in Asians but rare in Caucasians.46,48 Previous studies showed that up to 40% of East Asian populations were carrying the heterozygous ALDH2 A genotype, which has only about one-third the enzymatic activity to convert acetaldehyde into acetic acid as compared to those with the ALDH2 G genotype.49 After drinking alcohol, those carrying the less active ADH G variant develop high acetaldehyde concentration in blood, they become more prone to alcoholic complications such as headache, facial flushing or nausea and are less likely to drink or drink heavily. Previous studies showed that the ALDH2 genetic polymorphisms modified the effects of alcohol drinking on some diseases such as cardiovascular disease and liver cirrhosis.50-52 We found only one cross-sectional study showing that alcohol drinking (vs. non-drinking) was significantly associated with higher odds of

Alcohol drinking status	Never	Occasional (<1/week)	Moderate (women <140 g/week; men <210 g/week)	Heavy (women ≥140 g/week; men ≥210 g/week)	Ex-drinkers
FPG changes during follow-up					
Crude β (95% CI)	0.00	0.01 (−0.03, 0.04)	−0.03 (−0.10, 0.03)	0.17 (0.06, 0.28)a	−0.01 (−0.08, 0.07)
Adjusted β (95% CI)b	0.00	0.02 (−0.01, 0.06)	−0.02 (−0.08, 0.05)	0.13 (0.02, 0.24)a	−0.01 (−0.09, 0.06)

aadjusted for age education, occupation, personal annual income, smoking, physical activity, BMI, waist/hip ratio, health status, hypertension and family history of diabetes mellitus.

bAdditionally adjusted for sex.

p-value for sex-interaction was 0.16 for baseline FPG, 0.48 for follow up FPG and 0.71 for changes in FPG.

$^p < 0.05.$

$^p < 0.01.$

$^p < 0.001.$
Table 3: Odds ratios (ORs) for incident type 2 diabetes (T2D), impaired fasting glucose (IFG) and incident T2D + IFG by baseline alcohol consumption

Alcohol consumption	Never	Occasional (<1/week)	Moderate (women < 140 g/week; men < 210 g/week)	Heavy (women ≥ 140 g/week; men ≥ 210 g/week)	Ex-drinkers
Incident T2D					
Men					
Total number	2239	1037	492	232	234
Number of incident cases (%)	215 (9.60)	108 (10.41)	40 (8.13)	38 (16.38)	37 (15.81)
Crude OR	Reference (1.00)	1.09 (0.86, 1.40)	0.83 (0.59, 1.19)	1.84 (1.27, 2.68)e	1.77 (1.21, 2.58)e
Adjusted OR^a	Reference (1.00)	1.12 (0.87, 1.44)	0.77 (0.54, 1.12)	1.67 (1.11, 2.50)d	1.54 (1.03, 2.28)d
Women					
Total number	8842	1904	301	16	304
Number of incident cases (%)	949 (10.73)	174 (9.14)	22 (7.31)	2 (12.50)	39 (12.83)
Crude OR	Reference (1.00)	0.84 (0.71, 0.99)d	0.66 (0.42, 1.02)	1.19 (0.27, 5.24)	1.22 (0.87, 1.72)
Adjusted OR^a	Reference (1.00)	0.93 (0.78, 1.12)	0.66 (0.42, 1.05)	1.04 (0.22, 4.81)	1.18 (0.82, 1.68)
Total					
Total number	11,081	2941	793	248	538
Number of incident cases (%)	1164 (10.50)	282 (9.59)	62 (7.82)	40 (16.13)	76 (14.13)
Crude OR	Reference (1.00)	0.90 (0.79, 1.04)	0.72 (0.55, 0.94)d	1.64 (1.16, 2.31)e	1.40 (1.09, 1.80)e
Adjusted OR^a	Reference (1.00)	0.98 (0.85, 1.14)	0.71 (0.53, 0.94)d	1.54 (1.05, 2.25)d	1.30 (1.00, 1.69)
Incident IFG					
Men					
Total number	1450	720	319	139	145
Number of incident cases (%)	144 (9.93)	78 (10.83)	34 (10.66)	24 (17.27)	17 (11.72)
Crude OR	Reference (1.00)	1.10 (0.82, 1.47)	1.08 (0.73, 1.61)	1.89 (1.18, 3.04)e	1.20 (0.71, 2.05)
Adjusted OR^a	Reference (1.00)	1.04 (0.77, 1.41)	1.05 (0.70, 1.58)	1.61 (0.98, 2.65)	1.05 (0.61, 1.83)
Women					
Total number	6052	1321	209	11	203
Number of incident cases (%)	524 (8.66)	135 (10.22)	19 (9.09)	2 (18.18)	27 (13.30)
Crude OR	Reference (1.00)	1.20 (0.98, 1.47)	1.05 (0.65, 1.70)	2.34 (0.51, 10.88)	1.62 (1.07, 2.45)d
Adjusted OR^a	Reference (1.00)	1.25 (1.01, 1.54)d	1.09 (0.67, 1.77)	2.17 (0.46, 10.25)	1.56 (1.02, 2.39)d
Alcohol consumption	Never	Occasional (<1/week)	Moderate (women < 140 g/week; men < 210 g/week)	Heavy (women ≥ 140 g/week; men ≥ 210 g/week)	Ex-drinkers
---------------------	-------	----------------------	---	---	------------
Total^b					
Total number	7502	2041	528	150	348
Number of incident cases (%)	668 (8.90)	213 (10.44)	53 (10.04)	26 (17.33)	44 (12.64)
Crude OR	Reference (1.00)	1.19 (1.01, 1.40)^d	1.14 (0.85, 1.53)	2.15 (1.40, 3.30)^e	1.48 (1.07, 2.05)^d
Adjusted OR^a	Reference (1.00)	1.19 (1.00, 1.41)	1.09 (0.80, 1.49)	1.81 (1.14, 2.87)^d	1.35 (0.96, 1.89)

Incident T2D + IFG

Men

	Total number				
Number of incident cases (%)	222 (14.53)	116 (15.30)	50 (14.93)	39 (25.32)	37 (22.42)
Crude OR	Reference (1.00)	1.06 (0.83, 1.36)	1.03 (0.74, 1.44)	2.00 (1.35, 2.95)^e	1.70 (1.15, 2.52)^e
Adjusted OR^a	Reference (1.00)	1.03 (0.80, 1.33)	0.99 (0.70, 1.40)	1.72 (1.14, 2.61)^d	1.47 (0.97, 2.21)

Women

	Total number				
Number of incident cases (%)	909 (14.12)	202 (14.55)	23 (10.80)	3 (25.00)	37 (17.37)
Crude OR	Reference (1.00)	1.04 (0.88, 1.22)	0.74 (0.47, 1.14)	2.03 (0.55, 7.50)	1.28 (0.89, 1.83)
Adjusted OR^a	Reference (1.00)	1.13 (0.95, 1.35)	0.77 (0.49, 1.21)	2.04 (0.54, 7.74)	1.28 (0.88, 1.85)

Total^b

	Total number				
Number of incident cases (%)	1131 (14.20)	318 (14.82)	73 (13.32)	42 (25.30)	74 (19.58)
Crude OR	Reference (1.00)	1.05 (0.92, 1.20)	0.93 (0.72, 1.20)	2.05 (1.43, 2.92)^f	1.47 (1.13, 1.91)^e
Adjusted OR^a	Reference (1.00)	1.10 (0.95, 1.27)	0.90 (0.69, 1.18)	1.82 (1.24, 2.68)^e	1.36 (1.03, 1.78)^d

^aAdjusted for age, education, occupation, personal annual income, smoking, physical activity, body mass index, waist/hip ratio, health status, hypertension and family history of diabetes mellitus.

^bAdditionally adjusted for sex.

^cP-value for sex-interaction from 0.55 to 0.85 for incident T2D, IFG and T2D+IFG.

^dP < 0.05.

^eP < 0.01.

^fP < 0.001.
Alcohol consumption	Never	Occasional (<1/week)	Moderate (women <140 g/week; men <210 g/week)	Heavy (women ≥140 g/week; men ≥210 g/week)	Ex-drinkers
ALDH2 (rs671) GG genotype					
Men					
Total number	701	443	277	172	120
Number of incident cases (%)	64 (9.13)	42 (9.48)	25 (9.03)	28 (16.28)	15 (12.50)
Crude OR	Reference (1.00)	1.04 (0.69, 1.57)	0.99 (0.61, 1.60)	1.94 (1.20, 3.13)*	1.42 (0.78, 2.59)
Adjusted OR	Reference (1.00)	1.04 (0.68, 1.60)	0.91 (0.55, 1.52)	1.68 (0.99, 2.87)	1.20 (0.64, 2.26)
Total	1,591	816	333	178	187
Number of incident cases (%)	161 (10.12)	69 (8.46)	28 (8.41)	28 (15.73)	22 (11.76)
Crude OR	Reference (1.00)	0.82 (0.61, 1.10)	0.82 (0.54, 1.24)	1.66 (1.07, 2.56)	1.18 (0.74, 1.90)
Adjusted OR	Reference (1.00)	0.86 (0.63, 1.19)	0.77 (0.49, 1.21)	1.45 (0.88, 2.38)	1.01 (0.61, 1.66)
ALDH2 (rs671) AA/AG genotype					
Men					
Total number	1,108	422	116	29	80
Number of incident cases (%)	97 (8.75)	47 (11.14)	7 (6.03)	4 (13.79)	13 (16.25)
Crude OR	Reference (1.00)	1.31 (0.90, 1.89)	0.67 (0.30, 1.48)	1.67 (0.57, 4.89)	2.02 (1.08, 3.80)
Adjusted OR	Reference (1.00)	1.27 (0.86, 1.88)	0.64 (0.29, 1.44)	1.68 (0.54, 5.21)	1.64 (0.84, 3.19)
Total	2,057	721	141	30	114
Number of incident cases (%)	192 (9.33)	74 (10.26)	7 (4.96)	4 (13.33)	17 (14.91)
Crude OR	Reference (1.00)	1.11 (0.84, 1.47)	0.51 (0.23, 1.10)	1.49 (0.52, 4.33)	1.70 (1.00, 2.91)
Adjusted OR	Reference (1.00)	1.18 (0.87, 1.59)	0.51 (0.23, 1.13)	1.50 (0.49, 4.63)	1.51 (0.86, 2.66)
Alcohol consumption	Never	Occasional (<1/week)	Moderate (women <140 g/week; /men <210 g/week)	Heavy (women ≥140 g/week; men ≥210 g/week)	Ex-drinkers
---------------------	-------	----------------------	---	---	-------------
ADH1B (rs1229984) GG/AG genotype					
Men					
Total number	825	400	193	102	91
Number of incident cases (%)	77 (9.33)	43 (10.75)	16 (8.29)	13 (12.75)	19 (20.88)
Crude OR	Reference (1.00)	1.17 (0.79, 1.73)	0.88 (0.50, 1.54)	1.42 (0.76, 2.66)	2.56 (1.47, 4.48)*
Adjusted OR	Reference (1.00)	1.14 (0.75, 1.73)	0.83 (0.46, 1.50)	1.29 (0.65, 2.55)	2.00 (1.09, 3.64)d
Total	1668	709	237	106	139
Number of incident cases (%)	172 (10.31)	68 (9.59)	17 (7.17)	13 (12.26)	23 (16.55)
Crude OR	Reference (1.00)	0.92 (0.69, 1.24)	0.67 (0.40, 1.13)	1.22 (0.67, 2.22)	1.72 (1.07, 2.77)d
Adjusted OR	Reference (1.00)	0.94 (0.69, 1.29)	0.63 (0.36, 1.08)	1.07 (0.56, 2.07)	1.34 (0.81, 2.23)
ADH1B (rs1229984) AA genotype					
Men					
Total number	984	465	200	99	109
Number of incident cases (%)	84 (8.54)	46 (9.89)	16 (8.00)	19 (19.19)	9 (8.26)
Crude OR	Reference (1.00)	1.18 (0.81, 1.72)	0.93 (0.53, 1.63)	2.54 (1.47, 4.40)*	0.96 (0.47, 1.98)
Adjusted OR	Reference (1.00)	1.26 (0.84, 1.88)	0.92 (0.52, 1.64)	2.30 (1.27, 4.17)*	0.85 (0.41, 1.79)
Total	1980	828	237	102	162
Number of incident cases (%)	181 (9.14)	75 (9.06)	18 (7.59)	19 (18.63)	16 (9.88)
Crude OR	Reference (1.00)	0.99 (0.75, 1.31)	0.82 (0.49, 1.35)	2.28 (1.35, 3.83)*	1.09 (0.64, 1.87)
Adjusted OR	Reference (1.00)	1.09 (0.81, 1.47)	0.86 (0.50, 1.45)	2.15 (1.21, 3.82)*	1.04 (0.59, 1.82)

*aAdjusted for age, education, occupation, personal annual income, smoking, physical activity, BMI, waist/hip ratio, health status, hypertension and family history of diabetes mellitus.

*bAdditionally adjusted for sex.

*p-values for alcohol-interaction from 0.12 to 0.79 in men.

*p < 0.05.

*p < 0.01.
T2D in those with ADH1B AA genotype, but not in those with ADH1B GG genotype. However, no results on interaction tests were reported in this study. Our study consistently showed that those with ADH1B AA genotype appeared to have higher risk of incident T2D than those carrying ADH1B AG/GG genotypes despite a non-significant interaction.

The strengths of this study included a large sample size with an adequate follow-up period, repeated objective assessment of T2D, and comprehensive measurement of alcohol drinking. In addition, we also tested for interactions between genetic polymorphisms and alcohol drinking. However, there were several limitations in our study. Firstly, drinking pattern may affect the association of alcohol and diabetes. Because of the limited range of alcohol consumption in our sample, we could not examine the effect of binge drinking on the risk of T2D or IFG. Secondly, GBCS participants represented a relatively healthy group of older people in Guangzhou, given the recruitment from the GHHARE. However, representativeness only affects the generalisability of results, and we have no evidence to support or refute the influence of participation on the results although it is biologically quite unlikely.

Thirdly, alcohol drinking was assessed based on self-report and might be affected by social desirability bias, leading to a underreporting of alcohol drinking, especially in excessive drinkers and women. Additionally, as glycated haemoglobin A_1C (HbA_1C) was not measured, the incident of T2D or IFG could be underestimated. Thus, the strength of the association of heavy alcohol on incident T2D or IFG could be underestimated. Fourthly, as the sample size was moderate, especially for subgroup analysis by genotypes or sex, interpretation of the results needs caution. Fifthly, as this is an observational study, residual confounding (i.e., due to the lack of data on body composition or adipose tissue distribution) could not be ruled out. Finally, Chinese people may differ from westerners genetically in terms of insulin sensitivity and beta-cell function. Further, large prospective studies in other ethnic populations or in Chinese populations with younger age are warranted.

In conclusion, we found that heavy alcohol drinking was associated with higher risk of incident T2D and IFG. No protective effect was found for those carrying lower risk alleles for ADH1B and ALDH2 genes.

AUTHOR CONTRIBUTIONS
Lin Xu, Tai Hing Lam, Chao Qiang Jiang, Wei Sen Zhang, Ya Li Jin, G. Neil Thomas and Kar Keung Cheng have substantial contributions to conception and design, acquisition of funding, data and interpretation of data; Lin Xu, Mei Jiao Li and Jing Ren analysed the data, Mei Jiao Li and Jing Ren drafted the article, Lin Xu, Tai Hing Lam, G. Neil Thomas and Kar Keung Cheng revised it critically for important intellectual content and all authors contributed to final approval of the paper.

ACKNOWLEDGEMENTS
Guangzhou Biobank Cohort Study investigators include: Guangzhou No. 12 Hospital: Wei Sen Zhang, M Cao, T Zhu, B Liu, Chao Qiang Jiang (Co-PI); The University of Hong Kong: C. Mary Schooling, Sarah M. McGhee, Gabriel M. Leung, R Fielding, Tai Hing Lam (Co-PI); The University of Birmingham: P Adab, G. Neil Thomas, Kar Keung Cheng (Co-PI). This work was funded by the Natural Science Foundation of China (No. 81941019), Natural Science Foundation of Guangdong (2018A030313140). Guangzhou Biobank Cohort Study was funded by The University of Hong Kong Foundation for Educational Development and Research (SN/1f/HKUF-DC; C20400.28505200), the Health Medical Research Fund (Grant number: HMRF/13143241) in Hong Kong; Guangzhou Public Health Bureau (201102A211004011) and the University of Birmingham, UK.

CONFLICT OF INTEREST
The authors declare that there are no relationships or activities that might bias, or be perceived to bias, their work.

ETHICS STATEMENT
The study was approved by the Guangzhou Medical Ethics Committee of the Chinese Medical Association in Guangzhou, China. All participants gave written, informed consent before participation.

DATA AVAILABILITY STATEMENT
Due to ethical restrictions protecting patient privacy, data are available on request from the GBCS Data Access Committee. Please contact us at gbcsdata@hku.hk for fielding data accession requests.

PEER REVIEW
The peer review history for this article is available at https://publons.com/publon/10.1002/dmrr.3548.

REFERENCES
1. International Diabetes Federation. IDF Diabetes Atlas. 9th ed. 2019.
2. Li Y, Teng D, Shi X, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study. BMJ. 2020;399:m997.
3. Han M. The dose-response relationship between alcohol consumption and the risk of type 2 diabetes among Asian men: a systematic review and meta-analysis of prospective cohort studies. J Diabetes Res. 2020;2020:1-8.
4. Davies MJ, Baer DJ, Judd JT, Brown ED, Campbell WS, Taylor PR. Effects of moderate alcohol intake on fasting insulin and glucose concentrations and insulin sensitivity in postmenopausal women: a randomized controlled trial. JAMA. 2002;287(19):2559-2562.
5. Sierksma A, Patel H, Ouchi N, et al. Effect of moderate alcohol consumption on adiponectin, tumor necrosis factor-alpha, and insulin sensitivity. Diabetes Care. 2004;27(1):184-189.
6. Joosten MM, Beulens JW, Kersten S, Hendriks HF. Moderate alcohol consumption increases insulin sensitivity and ADIPOQ expression in postmenopausal women: a randomised, crossover trial. Diabetologia. 2008;51(8):1375-1381.
7. Li XH, Yu FF, Zhou YH, He J. Association between alcohol consumption and the risk of incident type 2 diabetes: a systematic review and dose-response meta-analysis. Am J Clin Nutr. 2016;103(3):818-829.
8. Knott C, Bell S, Britton A. Alcohol consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of more than 1.9 million individuals from 38 observational studies. Diabetes Care. 2015;38:1804-1812.
9. Edenberg HJ. The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res Health. 2007;30(3):5-14.

10. Cho YS, Lee JY, Park KS, Nho CW. Genetics of type 2 diabetes in East Asian populations. Curr Diabetes Rep. 2012;12(6):686-696.

11. Goede H, Agarwal D, Fritze G, et al. Distribution of ADH 2 and ALDH2 genotypes in different populations. Hum Genet. 1992;88(3):344-346.

12. Chang YC, Chang TJ, Jiang YD, et al. Association study of the genetic polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene and type 2 diabetes in the Chinese population. Diabetes. 2007;56(10):2631-2637.

13. Ren Q, Han XY, Wang F, et al. Exon sequencing and association analysis of polymorphisms in TCF7L2 with type 2 diabetes in a Chinese population. Diabetologia. 2008;51(7):1146-1152.

14. Beulens JWJ, Rimm EB, Hendriks HFJ, et al. Alcohol consumption and type 2 diabetes: influence of genetic variation in alcohol dehydrogenase. Diabetes. 2007;56(9):2388-2394.

15. Jiang C, Thomas GN, Lam TH, et al. Cohort profile: the Guangzhou Biobank cohort study, a Guangzhou–Hong Kong–Birmingham collaboration. Int J Epidemiol. 2006;35(4):844-852.

16. Deng HB, Macfarlane DJ, Thomas GN, et al. Reliability and validity of the IAPA-Chinese. Med Sci Sports Exerc. 2008;40(2):303-307.

17. Xu L, Jiang CQ, Cheng KK, et al. Alcohol use and gamma-glutamyltransferase using a mendelian randomization design in the Guangzhou Biobank cohort study. PLoS ONE. 2015;10(9):e0137790.

18. Jiang CQ, Xu L, Lam TH, et al. Alcohol consumption and aortic arch calcification in an older Chinese sample: the Guangzhou Biobank Cohort Study. Int J Cardiol. 2013;164(3):349-354.

19. Schoorling CM, Jiang CQ, Lam TH, Zhang WS, Cheng KK, Leung GM. Alcohol use and fasting glucose in a developing Chinese population: the Guangzhou Biobank Cohort Study. J Epidemiol Community Health. 2009;63(2):121-127.

20. Au Yeung SL, Jiang C, Long M, et al. Evaluation of moderate alcohol use with QT interval and heart rate using mendelian randomization analysis among older southern Chinese men in the Guangzhou Biobank study. Am J Epidemiol. 2015;182(4):320-327.

21. Zhang WS, Xu L, Schoorling CM, et al. Effect of alcohol and aldehyde dehydrogenase gene polymorphisms on alcohol-associated hypertension: the Guangzhou Biobank Cohort Study. Hypertens Res. 2013;36(8):741-746.

22. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2020. Diabetes Care. 2020;43(Suppl 1):S1-84.

23. Lam KB, Jiang CQ, Thomas GN, et al. Napping is associated with increased risk of type 2 diabetes: the Guangzhou Biobank Cohort Study. Sleep. 2010;33(3):402-407.

24. Lai Y-J, Hu H-Y, Lee Y-L, et al. Frequency of alcohol consumption and risk of type 2 diabetes mellitus: a nationwide cohort study. Clin Nutr. 2018;38(3):1368-1372.

25. Qin L, Corpeleijn E, Jiang C, et al. Physical activity, adiposity, and diabetes risk in middle-aged and older Chinese population: the Guangzhou Biobank cohort study. Diabetes Care. 2010;33(11):2342-2348.

26. Xu L, Jiang CQ, Lam TH, et al. Sleep duration and memory in the elderly Chinese: longitudinal analysis of the Guangzhou Biobank cohort study. Sleep. 2014;37(11):1737-1744.

27. Woo J, Leung SSF, Ho SC, Lam TH, Janus ED. A food frequency questionnaire for use in the Chinese population in Hong Kong: description and examination of validity. Nutr Res. 1997;17(11):1633-1641.

28. Nakanishi N, Suzuki K, Tatara K. Alcohol consumption and risk for development of impaired fasting glucose or type 2 diabetes in middle-aged Japanese men. Diabetes Care. 2003;26(1):48-54.

29. Cullmann M, Hilding A, Östenson CG. Alcohol consumption and risk of pre-diabetes and type 2 diabetes development in a Swedish population. Diabet Med J British Diabetic Association. 2012;29(4):441-452.

30. Peng M, Zhang J, Zeng T, et al. Alcohol consumption and diabetes risk in a Chinese population: a Mendelian randomization analysis. Addiction. 2019;114(3):436-449.

31. Shi L, Shu XO, Li H, et al. Physical activity, smoking, and alcohol consumption in association with incidence of type 2 diabetes among middle-aged and elderly Chinese men. PLoS ONE. 2013;8(11):e77919.

32. Teratani T, Morimoto H, Sakata K, et al. Dose-Cresponese relationship between tobacco or alcohol consumption and the development of diabetes mellitus in Japanese male workers. Drug Alcohol Depend. 2012;125(3):276-282.

33. Selke N, Noda M, Kadowaki T. Alcohol consumption and risk of type 2 diabetes mellitus in Japanese: a systematic review. Asia Pac J Clin Nutr. 2008;17(4):545-551.

34. Roh W-G, Shin H-C, Choi J-H, Lee YJ, Kim K. Alcohol consumption and higher incidence of impaired fasting glucose or type 2 diabetes in obese Korean men. Alcohol. 2009;43(8):643-648.

35. Wu X, Liu X, Liao W, et al. Prevalence and characteristics of alcohol consumption and risk of type 2 diabetes mellitus in rural China. BMC Public Health. 2021;21(1):1644.

36. Tsumura K, Hayashi T, Suetsumu C, Endo G, Fujii S, Okada K. Daily alcohol consumption and the risk of type 2 diabetes in Japanese men. Diabetes Care. 1999;22:1432-1437.

37. Wakabayashi I. Light-to-moderate alcohol drinking reduces the impact of obesity on the risk of diabetes mellitus. J Stud Alcohol Drugs. 2014;75(6):1023-1038.

38. Marques-Vidal P, Vollenweider P, Waeber G. Alcohol consumption and incidence of type 2 diabetes. Results from the CoLaus study. Nutr Metabol Cardiovasc Dis. 2015;25(1):75-84.

39. Ilse CS, Annelijn LJH, Henk FJH, Kenneth JM, Beulens JWJ. The effect of alcohol consumption on insulin sensitivity and glycemic status: a systematic review and meta-analysis of intervention studies. Diabetes Care. 2013;36:732-733.

40. Joosten MM, vanErk MJ, Pellis L, Witkamp RF, Hendriks HFJ. Moderate alcohol consumption alters both leucocyte gene expression profiles and circulating proteins related to immune response and lipid metabolism in men. Br J Nutr. 2012;108(4):620-627.

41. Contaldo F, D’Amargo E, Carandente V, et al. Short-term effects of moderate alcohol consumption on lipid metabolism and energy balance in normal men. Metabolism. 1989;38(2):166-171.

42. Federico A, Cotticelli G, Festi D, et al. The effects of alcohol on gastrointestinal tract, liver and pancreas: evidence-based suggestions for clinical management. Eur Rev Med Pharmacol Sci. 2015;19(10):1922-1940.

43. Zhao L, Hao L, Yang C, Yu D, Sun X. The diabetogenic effects of excessive ethanol: reducing β-cell mass, decreasing phosphatidylinositol 3-kinase activity and GLUT-4 expression in rats. Br J Nutr. 2009;101(10):1467.

44. Wang S, Luo Y, Feng A, et al. Ethanol induced impairment of glucose metabolism involves alterations of GABAergic signaling in pancreatic β-cells. Toxicology. 2014;326:44-52.

45. Dembele K, Nguyen KH, Hernandez TA, Nyombala BLG. Effects of alcohol consumption on pancreatic beta-cell death: interaction with glucose and fatty acids. Cell Biol Toxicol. 2009;25(2):141-152.

46. Eng MY, Lyczek SE, Wall TL. ALDH2, and ADH1C genotypes in Asians: a literature review. Alcohol Res Health. 2007;30(1):22-27.

47. Higuchi S, Matsushita S, Muramatsu T, Murayama M, Hayashida M. Alcohol and aldehyde dehydrogenase genotypes and drinking behavior in Japanese. Alcohol Clin Exp Res. 1996;20(3):493-497.
48. Yoshida A, Huang IY, Ikawa M. Molecular abnormality of an inactive aldehyde dehydrogenase variant commonly found in Orientals. *Proc Natl Acad Sci U. S. A.* 1984;81(1):258-261.

49. Pang JJ, Barton LA, Chen YG, Ren J. Mitochondrial aldehyde dehydrogenase in myocardial ischemia-reperfusion injury: from bench to bedside. *Sheng Li Xue Bao*. 2015;67(6):535-544.

50. Chen YC, Peng GS, Tsao TP, Wang MF, Lu RB, Yin SJ. Pharmacokinetic and pharmacodynamic basis for overcoming acetaldehyde-induced adverse reaction in Asian alcoholics, heterozygous for the variant ALDH2*2 gene allele. *Pharmacogenet Genomics*. 2009;19(8):588-599.

51. Bian Y, Chen YG, Xu F, Xue L, Ji WQ, Zhang Y. The polymorphism in aldehyde dehydrogenase-2 gene is associated with elevated plasma levels of high-sensitivity C-reactive protein in the early phase of myocardial infarction. *Tohoku J Exp Med*. 2010;221(2):107-112.

52. Yokoyama A, Mizukami T, Matsui T, et al. Genetic polymorphisms of alcohol dehydrogenase-1B and aldehyde dehydrogenase-2 and liver cirrhosis, chronic calcific pancreatitis, diabetes mellitus, and hypertension among Japanese alcoholic men. *Alcohol Clin Exp Res.* 2013;37(8):1391-1401.

53. Yin G, Ohnaka K, Morita M, Tabata S, Tajima O, Kono S. Genetic polymorphisms of alcohol dehydrogenase and aldehyde dehydrogenase: alcohol use and type 2 diabetes in Japanese men. *Epidemiol Res Int*. 2011;2011:1-8.

54. Rothman KJ, Gallacher JE, Hatch EE. Why representativeness should be avoided. *Int J Epidemiol*. 2013;42(4):1012-1014.

55. Ambady R, Ronald Ching Wan M, Snehalatha C. Diabetes in Asia. *Lancet*. 2010;375:408-418.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Li MJ, Ren J, Zhang WS, et al. Association of alcohol drinking with incident type 2 diabetes and pre-diabetes: the Guangzhou Biobank Cohort Study. *Diabetes Metab Res Rev*. 2022;38(6):e3548. https://doi.org/10.1002/dmrr.3548