Supplementary Material

Identification and Expression Analysis of the Complete Family of Zebrasish *pkd* Genes

Samantha J. England, Paul C. Campbell, Santanu Banerjee, Annika J. Swanson, and Katharine E. Lewis*

Correspondence: Professor K. E. Lewis. Email: kelewi02@syr.edu
1 Supplementary Figures and Tables

1.1 Supplementary Figures

Supplementary Figure 1: Alignment of polycystin-cation-channel domain from different vertebrate PKD1-like proteins.

Comparison of the amino acid sequences for the polycystin-cation-channel domains of human (Homo sapiens, hsa), mouse (Mus musculus, mmu), zebrafish (Danio rerio, dre), medaka (Oryzias latipes, ola), green spotted pufferfish (Tetraodon nigroviridis, tni), stickleback (Gasterosteus aculeatus, gac), spotted gar (Lepisosteus oculatus, loc) and elephant shark (Callorhinchus milii, cmi) PKD1-like proteins using Clustal Omega (version 1.2.3). This figure shows the region of the polycystin-cation-channel domain that is present in all of the proteins and was used to construct the phylogenetic tree in Fig. 3A. Different families of PKD1-like proteins are color-coded with the same color. This same color-coding is used in Figure 3. Numbers on either side of each sequence, indicate amino acid positions in the full-length sequences of each protein.
Supplementary Figure 2: Alignment of polycystin-cation-channel domain from different PKD2-like proteins.

Comparison of the amino acid sequences for the polycystin-cation-channel domains of human (Homo sapiens, hsa), mouse (Mus musculus, mmu), zebrafish (Danio rerio, dre), medaka (Oryzias latipes, ola), green spotted pufferfish (Tetraodon nigroviridis, tni), stickleback (Gasterosteus aculeatus, loc), spotted gar (Lepisosteus oculatus, loc), elephant shark (Callorhinchus milii, cmi) and Drosophila melanogaster (dme) PKD2-like proteins using Clustal Omega (version 1.2.3). This figure shows the region of the polycystin-cation-channel domain that is present in all of the proteins and was used to construct the phylogenetic tree in Fig. 3B. Different families of PKD2-like proteins are color-coded with the same color. This same color-coding is used in Figure 3B. Numbers on either side of each sequence, indicate amino acid positions in the full-length sequences of each protein.
Supplementary Figure 3: Spinal cord expression of zebrafish *pkd* genes

Lateral views of additional stages of *pkd* spinal cord expression not included in other figures. Rostral left, dorsal up. By 36 h, *pkd1b* is expressed in two ventral rows of cells in the spinal cord (A). This expression persists at 4 dpf (B). *pkd1l2a* and *pkd2l1* are co-expressed in KA cells (C-F) and occasional weak more dorsal cells (asterisks D & E). *pkd1, pkd1l1, pkd1l2b* and *pkd2* are not expressed in spinal cord (G-Z). Scale bar (A) = 50 µm.
Supplementary Tables

Primer Name	Forward Primer Sequence	Reverse Primer Sequence	Annealing Temperature \(^\circ\text{C}\)	PCR Extension Time (Seconds)	Transcript Exons Mapped
pkd1_Map_ Nested Set 1	GTGCAGCACCAACTCTGAG	CATGAAAAACACTTGAGTGCAC	62.0	100	1-595 bp of transcript\(\wedge\)
pkd1_Map_ Nested Set 2	CACCAACTCTGAGCCCAATCAC	GAGGACGAGAAGATGACCAGC	68.0	100	1-595 bp of transcript\(\wedge\)
pkd1_Map_ Set 3	AGGAGCTAGATCTGAGCAACAAC	CTCCTCTGCCATCCTTACTGAC	66.0	60	527-1143 bp of transcript\(\wedge\)
pkd1_Map_ Set 4	ACGTGTGTGTGTCCTCGAC	GGATCCATTAACCTCCTAAGGGAAC TGTACTCTGGTATTTGTGC	61.0	60	1575-2154 bp of transcript\(\wedge\)
pkd1_Map_ Set 5	ATTCAGAAAGGGCTCAACTGAC	CAGAGATTGTGAGGATTGTGAC	69.0	60	2122-2920 bp of transcript\(\wedge\)
pkd1_Map_ Set 6	AAGGAGCAAGAAAGGAAGAAAG	CAAACGGGACTTCATGAGATCTG	67.0	60	13121-14065 bp of transcript\(\wedge\)
pkd1_Map_ Set 7	CAATCCTCATGAAGTCCCCCTTGG	CTGACATACAATCGCCACAGAAC	68.0	60	14102-15014 bp of transcript\(\wedge\)
pkd1_Map_ Set 8	TATCTGTGGGGCTGTCTGATG	GTGACTCTACTACAACACAACCTC	66.0	60	15527-16413 bp of transcript\(\wedge\)
pkd1_Map_ Set 9	GTGCAGTGATCGACTAGTATGC	TTCTGAGGAAGCACAAGCTCTC	65.0	60	17453-18305 bp of transcript\(\wedge\)
pkd1_Map_ Set 10	GTCTGTGAATGCGATGCACTTC	CTAAGAGCCGGCCACGACTCAACC	69.0	60	pkd1_Map_ Set 10
pkd1_Map_ Set 11	CTCTGTTGTTGCTGTTTCTGATG	GTGACTCTACTACAACACAACCTC	66.0	60	pkd1_Map_ Set 11
pkd1_Map_ Set 12	GCTGATCATAATGCTACGCTTC	CATCATCTGGTGTGTTCTGGAG	69.0	60	pkd1_Map_ Set 12
pkd1_Map_ Set 13	TCTGAATGAGGCTGAGGCAG	CTGACTTTCGCTGATGACAGGCAC	67.0	100	pkd1_Map_ Set 13
pkd1_Map_ Set 14	GTCTGCTATGAGTTGCTGAGTGC	CTGACTTTCGCTGATGACAGGCAC	67.0	100	pkd1_Map_ Set 14
Supplementary Table 1. PCR Primers for mapping *pkd1, pkd1l2a* and *pkd1l2b* mRNA transcripts

PCR primers and conditions used to amplify and sequence overlapping fragments of zebrafish *pkd1, pkd1l2a* and *pkd1l2b* transcripts (genes for which annotations in Ensembl are incomplete). Column 1 lists names given to each primer set. Columns 2 and 3 list PCR primers used to map transcript region indicated in column 6. Columns 4 and 5 list annealing temperatures and extension times of PCR protocols used in each case. The rest of the protocol is provided in materials and methods. *These primers were used on a circularized cDNA product following inverse PCR to generate 5’ sequence. *These primers were used in a series of nested PCR reactions. Nested Set 1 primers were used on a circularized cDNA product following inverse PCR to generate 5’ sequence. Nested Set 2 primers were used in reactions seeded with the Nested Set 1 PCR product. See materials and methods for details. § These reverse primers contain sequence for T3 RNA Polymerase.

Primer Set	PCR forward primer	PCR reverse primer	Annealing Temp	Extension Time
pkd1l2a _Map_ Set 7	CAAATGAAAGAGGACAGCAGCTC	AAAGAACATCAGAGCCCAGAGAG	68.0	60
pkd1l2a _Map_ Set 8	TGTAACGCTCCCTATCCTTCTTC	AATTAACCCTCCTAAAGGGAGCGCCTA	67.0	100
pkd1l2a _Map_ Set 9	CTTCAGCAGCTGTGATCAAC	GAGTACAAGAGCAAGAAGCTGC	65.0	100
pkd1l2a _Map_ Set 10	GTCAAGGGCACATGAAAGAAGAG	AATTAACCCTCACTAAAGGGAGCACCCTC	68.0	60
pkd1l2a _Map_ Set 11	TTATGTGCAGATTCCTCGGATGC	TTTCCACTCAGAAAAGCTGACA	67.0	100
pkd1l2b _Map_ Nested Set 1	ATCCAGAATGTGAAACCACGC	CACGGTCACAAACTCATAGCAG	68.0	100
pkd1l2b _Map_ Nested Set 2	GGACTGGTGAGTTGGACTTGTG	CAAAAGACTGCTGGTTCTCTGTG	68.0	100
pkd1l2b _Map_ Set 3	ATCCAGAATGTGAAACCACGC	CACGGTCACAAACTCATAGCAG	66.0	60
pkd1l2b _Map_ Set 4	TGAGCAAAAGATGAGGAGGAGGTC	AACCGTGTGAAGTGAGGATC	70.0	100
pkd1l2b _Map_ Set 5	TCCATATGTTACCCAGTGTGCTTG	TGAGGAGGCTGCACTTCTCTC	66.0	60
pkd1l2b _Map_ Set 6	TGGTGCTCTGCTGCTATGTTGAC	ACTTCTTCATCTCGCTGTCAAC	68.0	60
pkd1l2b _Map_ Set 7	CTTCAACGGACTGTGAAATGTCGATC	CACGTCAATGACCCGGATTATG	69.0	60
promoter at their 5’ end, since they were also used to generate in situ hybridization riboprobes (see Supplementary Table 3 for riboprobe primers). Since some of our mapped sequence data is not present in the current Ensembl chromosome 1 genomic sequence (GRCz10), we cannot map all exon boundaries for *pkd1* and so instead we show the base pair locations within the mapped mRNA transcript that were amplified and sequenced by these primers (see Figure 1 text for further information).

Gene-Specific Primer	Primer Sequence
pkd1	CGGCACCTCCTCATGACGAG
pkd1l2a	CTGTGGAGATGTTTGTGAAGGAG
pkd1l2b	GTCCAAGATGCGATTGTACGATG

Supplementary Table 2. PCR Primers for Inverse PCR

Sequences of gene-specific reverse primers used in first strand cDNA synthesis during inverse PCR for *pkd1*, *pkd1l2a* and *pkd1l2b* transcripts (see materials and methods for further details).
Gene Name	Forward Primer Sequence	Reverse Primer Sequence	PCR Product Size (bp)
pkd1 – Set 1	ACGTGTGTGTGTCTCTGGAC	GGATCCATTAACCCCTCACTAAAGGGA	580
pkd1 – Set 2	CTCCAGCTACATATCATGGGAC	AATTTAACCCCTCACTAAAGGGAATCTAGAACCAGCTCTCGTTAC	1007
pkd1b	GTTCTTTGGACGTGACATTTGTC	AATTTAACCCCTCACTAAAGGGAATCATGGAAGGTCATGCAAAAGAGTCAC	963
pkd1l1 – Set 1	GCGTGTCCTCTGTCTTTACATG	AATTTAACCCCTCACTAAAGGGAATCAGTCCAGTCCAACCAATCATCATG	604
pkd1l1 – Set 2	GTGATCTTCCATTTGTGCTCTGTAC	AATTTAACCCCTCACTAAAGGGAATTCACAACATGCAAAAGAGGTG	447
pkd1l2a – Set 1	GTCAGGGCCAGTGAAAAGGAAG	AATTTAACCCCTCACTAAAGGGAATCAGCCTACTTGGATATTTGAAC	1136
pkd1l2a – Set 2	GCTGACTGCCCAAATATAC	AATTTAACCCCTCACTAAAGGGAATCAGCCTACTTGGATATTTGAAC	501
pkd1l2b	CTGTGTCCTCTGTCTTTACATG	AATTTAACCCCTCACTAAAGGGAATCAGCCTACTTGGATATTTGAAC	982
pkd2	CTACTTCAGGGAAGCTGAC	AATTTAACCCCTCACTAAAGGGAATCAGCCTACTTGGATATTTGAAC	878
pkd2l1	CAGAGGCTGTGTTCCAAAGGTC	AATTTAACCCCTCACTAAAGGGAATCAGCCTACTTGGATATTTGAAC	553

Supplementary Table 3. PCR primers for creating in situ hybridization riboprobes

Primer sequences used to generate riboprobes for *in situ* hybridization. Expected PCR product sizes (in base pairs) are indicated in column 4. * indicates primers published in Coxam *et al.*, (2014). All other riboprobe primers were designed during this study. T3 RNA polymerase promoter sequence at 5’ end of each reverse primer is bold and underlined. *pkd1* – Set 1, *pkd1l1* – Set 1 and *pkd1l2a* – Set 1 primers generated riboprobes that gave the strongest expression in our assays and so were used exclusively in this study. See materials and methods for further information.
Species	Percentage Amino Acid Identity to Full-Length Mouse PKD1L3 Protein
Zebrafish	aa 976-1120 (29%), 1148-1236 (37%), 1258-1316 (39%) and 1529-1601 (38%)
Green Spotted Pufferfish	aa 1004-1127 (34%), 1108-1208 (40%), 1209-1312 (38%) and 1539-1595 (46%)
Medaka	aa 976-1044 (31%), 1037-1116 (40%), 1148-1209 (55%) and 1209-1312 (30%)
Stickleback	aa 1037-1168 (35%), 1113-1209 (33%), 1206-1257 (38%), 1255-1312 (46%) and 1529-1594 (43%)

Supplementary Table 4. Percentage Amino Acid Identity Between Full-Length Mouse PKD1L3 Protein and Teleost Putative pkd1l3 Orthologs

Results obtained from blasting full-length mouse PKD1L3 against teleost genomes. Regions of the mouse query sequence that have identity with sequences in respective teleost genomes are indicated by amino acid (aa) numbers and percentage amino acid sequence identity is indicated in parentheses. Numbers in bold correspond to regions of the mouse PKD1L3 query sequence that contain at least part of the GPS motif (amino acids 1020-1058) or PLAT/LH2 domain (amino acids 1131-1245).
Supplementary Material

Species	Current Ensembl Gene Name	Ensembl Gene ID	Chromosome Location	Supporting Evidence
pkd1				
Spotted gar	*pkd1*	ENSLOCG00000002998	LG13(=): 4728181-4832181	Shares synteny with teleost and mammalian *pkd1* genes (data not shown). Phylogeny (Fig. 3A).
Elephant shark	*pkd1* (two *pkd1* genes in genome)	SINCAMG0000009812	Scaffold_312(=): 34635-113581	Shares synteny with teleost and mammalian *pkd1* genes (data not shown). Phylogeny (Fig. 3A).
pkd1b				
Spotted gar	*pkd1b*	ENSLOCG00000010726	LG10(=): 27484014-27547534	Shares synteny with green spotted pufferfish and stickleback *pkd1b* genes (data not shown). Phylogeny (Fig. 3A).
Elephant shark	*pkd1* (two *pkd1* genes in genome)	SINCAMG000001332	Scaffold_10(=): 2273648-2326286	Does not share synteny with teleost *pkd1b* genes (data not shown). Formerly called *pkd1* but phylogeny suggests that this gene is *pkd1b* (Fig. 3A).
pkd1l1				
Spotted gar	Novel	ENSLOCG0000013313	LG9(=): 50517659-50554155	Shares synteny with zebrafish *pkd1l1* gene (data not shown). Shares homology with amino acids 205-642, 859-908, 1303-1400 and 1495-1607 of mouse PKD1L1 protein. Phylogeny (Fig. 3A).
Elephant shark	*pkd1l1*	SINCAMG000004987	Scaffold_55(=): 2766931-2840140	Shares synteny with amniote *PKD1L1* genes (data not shown). Phylogeny (Fig. 3A).
pkd1l2				
Spotted gar	Novel	ENSLOCG000003938	LG23(=): 6943671-6977736	Shares synteny with all teleost *pkd1l2a* genes (data not shown). Shares homology with amino acids 4-525, 1239-1667 and 1804-2410 of mouse PKD1L2 protein. Phylogeny (Fig. 3A).
Elephant shark	*pkd1l2*	SINCAMG000003573	Scaffold_12(=): 2515744-2542623	Shares synteny with amniote *PKD1L2* genes (data not shown). Phylogeny (Fig. 3A).
pkdl3

	Species	ENSLOC0G00000016654	LG8(+)	Phylogeny (Fig. 3A).
Spotted gar	pkdl3	ENSLOC0G000000143071 LG23(+)	8258413-8268971	Shares homology with amino acids 1037-1333 and 1525-1594 of mouse PKD1L3 protein (containing the GPS and PLAT/LH2 domains). Shares synteny with mammalian and teleost PKD1L3 genes (data not shown).
Elephant shark				

pkdrez

	Species	ENSLOC0G00000016654	LG8(+): 40852661-40859002	Phylogeny (Fig. 3A).
Spotted gar	pkdrez	ENSLOC0G00000016654 Scaffold_35(-): 5337490-5343965	5337490-5343965	Shares synteny with mammalian PKDREJ genes (data not shown). Phylogeny (Fig. 3A).
Elephant shark				

pkd2

	Species	ENSLOC0G00000013447	LG4(-): 66726806-66740815	Phylogeny (Fig. 3B).
Spotted gar	pkd2	ENSLOC0G00000013447 Scaffold_21(-): 1937754-1973648	1937754-1973648	Shares synteny with green spotted pufferfish, stickleback and medaka pkd2 genes (data not shown). Phylogeny (Fig. 3B).
Elephant shark				

pkd2l1

	Species	ENSLOC0G00000011334	LG5(+): 28795999-28813061	Phylogeny (Fig. 3B).
Spotted gar	pkd2l1	ENSLOC0G00000011334 Scaffold_3(+): 6986034-6999417	6986034-6999417	Shares synteny with all teleost pkd2l1 genes examined (data not shown). Phylogeny (Fig. 3B).
Elephant shark				

pkd2l2

	Species	ENSLOC0G00000011380	LG6(-): 32405994-32414168	Phylogeny (Fig. 3B).
Spotted gar	pkd2l2	ENSLOC0G00000011380		Shares synteny with all teleost pkd2l1 genes examined (data not shown). Phylogeny (Fig. 3B).
Elephant shark				
pkd2l2

| Elephant shark | polycystic kidney disease 2 | SINCAMG0000005264 Scaffold_87(+) 2858280-2865700 | Shares no synteny with mammalian and teleost PKD2 genes. Does share synteny with mammalian PKD2L2 genes (data not shown). Phylogeny (Fig. 3B). |

Supplementary Table 5. Characterization of pkd genes in the genomes of holostei and cartilaginous fish.

Column one indicates the species. Column 2 lists gene name used in current Ensembl genome assembly (see materials and methods). Column 3 lists Ensembl gene ID. Column 4 shows position in current version of appropriate genome. Column 5 lists data that support the annotations shown here (see results for more info). *pkd* genes were first identified by performing textual searches of the appropriate genome assembly and their synteny and phylogeny examined (data not shown, Fig. 3A-B). We then searched for additional *pkd* genes that are present in either mammalian or teleost genomes, but had not been identified by our previous searches, by performing Tblastn analyses with the polycystin-cation-channel domain of the zebrafish Pkd protein, or the full-length sequence of the mouse PKD protein in question.
2 Supplementary References

Coxam, B., Sabine, A., Bower, N. I., Smith, K. A., Pichol-Thievend, C., Skoczylas, R., et al., (2014). Pkd1 regulates lymphatic vascular morphogenesis during development. *Cell Rep.* 7, 623-633. doi: 10.1016/j.celrep.2014.03.063