High-gain PDMS-magnetite zero refractive index metamaterial antenna for Vehicle-to-Vehicle communications

Noorlindawaty Md. Jizat¹, Nazihah Ahmad², Zubaida Yusoff³, Mohd Faizal Jamlos⁴
¹,²,³Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100, Cyberjaya, Selangor, Malaysia
⁴Advanced Communication Engineering Centre (ACE), School of Computer and Communication Engineering, Universiti Malaysia Perlis, Malaysia

Article Info

Article history:
Received Oct 12, 2018
Revised Nov 19, 2018
Accepted Dec 10, 2018

Keywords:
DSRC
High-gain
Metamaterial
V2V
Zero refractive index

ABSTRACT

This paper presents the simulation design of a high-gain antenna using zero refractive index fishnet metamaterial (MTM) perforated on PDMS-Magnetite substrate for Vehicle-to-Vehicle (V2V) communications. In order to design the MTM, magnetite nanoparticles, 10-nm iron oxide (Fe₃O₄) are dispersed into polydimethylsiloxane (PDMS) matrix. Subsequently, the unit cell is designed by removing the circular hole with radius of 3.69 mm on the PDMS-Magnetite substrate layer and arranged in 5x5 array fishnet configuration. This optimized MTM is inserted between the antenna design and pure PDMS substrate to improve the gain. The characteristic of the respective unit-cell is investigated to operate at 5.9 GHz and the effectiveness of MTM is performed by comparing the antenna performance with and without MTM. The unique characteristics of zero refractive index transform the diverging wave into plane wave for perfectly parallel wave impact on the design to improve the directivity and gain of the antenna. The proposed MTM into design improves the antenna gain to 7.36 dB without having to compromise other antenna parameters of return loss, Voltage Standing Wave Ratio (VSWR), gain, directivity, efficiency, current distribution, radiation pattern and bandwidth. These advantages has made proposed antenna as a suitable candidate for V2V in Dedicated Short Range Communication (DSRC) application since high-gain directional antenna is required to increase the sensitivity towards signals coming from certain direction.

Copyright © 2019 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:
Noorlindawaty Md Jizat,
Faculty of Engineering, Multimedia University,
Persiaran Multimedia, 63100, Cyberjaya, Selangor, Malaysia.
Email: noorlindawaty.jizat@mmu.edu.my

1. INTRODUCTION

Vehicle-to-Vehicle (V2V) Communication is a wireless system based on IEEE 802.11p protocol where few information exchanges between host and neighboring vehicles within Dedicated Short Range Communication system (DSRC) frequency of 5.875–5.925 GHz. Previously, extensive research has been explored on antenna design for vehicle to vehicle at DSRC application [1-3]. However, most of this antenna has constraint in the gain and directivity which limit the application. In order to overcome this limitation, MTM is identified as one of the breakthrough technology to improve the RF performance [4-8].

Advent of MTM opens new possibility for the researcher to create a new frontier of structure with artificial properties based on permittivity, permeability and refractive index value by modifying the shape, size, and configurations of the unit cells. The idea of MTM is initiated by Russian theorist Veselago [9] when he proposed artificial material with negative index refraction. Since then many researchers have been developing and investigating this unique MTM characteristic including Smith who performs microwave...
High-gain PDMS-magnetite zero refractive index metamaterial antenna... (Noorlindawaty)
The unit cell is analyzed using computer simulation technology (CST) software. This value is then inserted in the Nicholson Ross Weir (NRW) programming and simulated using Matlab algorithm. Optimizing circular hole of the proposed MTM and configuration between the antenna layers that produce zero refractive index, permittivity and permeability at 5.9 GHz is demonstrated in Figure 2(a)-(c).

![Figure 1. Front view (a) unit cell and (b) metamaterial cells](image)

![Table 1. Design parameters of the metamaterial unit cell](table)

Parameters	Length (mm)
W	59.70
L	74.64
W1	12.90
L1	14.00
t	1.00
r	3.69
S	12.29

![Figure 2. Unit cell response in z-axis wave propagation for (a) refractive index (b) permittivity index (c) permeability index](chart)

3. MICROSTRIP PATCH ANTENNA

The proposed MTM is inserted between pure PDMS substrate, patch antenna and ground as shown in Figure 3. The pure PDMS has thickness of 0.5 mm and dielectric constant of 2.7 while ground is made from copper with thickness of 0.035mm. The dimension of the patch is optimized to 40 mm× 37.5 mm in
size while ground plane, PDMS substrate and PDMS-Magnetite substrate having same dimension of 59.7 mm × 74.64 mm. A 50 Ω coaxial probe used to feed the antenna with the dimension of 7.5 mm×20 mm. The optimized configuration of the proposed antenna with the MTM is performed to obtain highest gain in the z-direction.

Figure 3. Architecture of the proposed MTM antenna

4. RESULTS AND DISCUSSION

The antenna’s performance in terms of return loss indicate good reflection coefficient of -13.52 dB at 5.9 GHz as shown in Figure 4. Computer Simulation Technology (CST) was used to simulate the antenna performances and detailed data are tabulated in Table 2. The proposed antenna demonstrates 10-dB impedance bandwidth of 170 MHz which fulfill the DSRC requirement bandwidth (5.875–5.925 GHz). The proposed antenna impedance matched with the transmission line and effectively delivering the energy indicated with the Voltage Standing Wave Ratio, VSWR of 1.53.

Table 2. Proposed antenna simulation performances

Antenna Performance	With MTM	Without MTM
S11(dB)	-13.52	-11.43
VSWR	1.53	1.73
Gain(dB)	7.36	4.28
Directivity(dB)	7.35	4.28
Efficiency (%)	95	95

Figure 4. Return loss, S11

The simulated current distribution agrees well with the 2D and 3D radiation pattern as illustrated in Figure 5 and Figure 6. As such, both values denote high gain of 7.36 dB, high directivity value of 7.35 dB and 95% radiation efficiency. The radiation pattern is illustrated for both E-plane and H plane correspondingly with the adjusted cross sectional of φ=90° and θ=90°. The maximum gain results for the patch antenna with the inclusion of proposed MTM improved to 7.36 dB making it a suitable candidate for high gain and high directivity that is compatible to be used for vehicle to vehicle Dedicated Short Range Communication system (DSRC) application.
Surface current distribution in Figure 7 illustrates that the flowing current over the PDMS-Magnetite metamaterial unit cell surface is stronger along the circular hole of PDMS-magnetite fishnet metamaterial. The highest intensity (red) corresponds to 35.5 A/m and the lowest intensity (blue) corresponds to 0 A/m.
5. CONCLUSION
In conclusion, 5×5 circular hole PDMS-Magnetite MTM has been designed as zero refractive index and inserted as substrate between the antenna designs to produce high-gain and directional performance. While existing antenna has limited performance, artificial polymeric magnetic MTM is introduced to create highly profile high-gain antenna to increase the signal strength. The refractive index of the unit cell at 5.9 GHz has zero refractive index, whereby the wave passing through the proposed medium will be orthogonal to the surface and significantly improve the antenna’s gain. The promising performance of the proposed antenna design is to be integrated for vehicle-to-vehicle communication system in DSRC application since high-gain directional antenna is required to increase the sensitivity towards signals coming from certain direction.

ACKNOWLEDGEMENTS
The authors wish to acknowledge for the MMU Research Management Centre (GAMS ID MUI160072), Faculty of Engineering, FOE MMU Cyberjaya and Universiti Malaysia Perlis for the support.

REFERENCES
[1] H. Honggang, et al., “Design of hexagon microstrip antenna for vehicle to vehicle communication,” The Journal of China Universities of Posts and Telecommunications, vol. 23, no.4, pp. 69-76, 2016.
[2] Ankang Liu, et al., “Low profile patch antennas with enhanced horizontal omnidirectional gain for DSRC application,” IET Microwave, Antennas & Propagation, vol 12, no. 2, pp.246-253, 2018.
[3] Chen H M, et al., “Miniature folded patch GPS antenna for vehicle communication devices,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 5, pp. 1891-1898, 2015.
[4] Li, B., et al., “Study on high gain circular waveguide array antenna with metamaterial structure,” Progress In Electromagnetics Research, PIER, vol. 60, pp. 207–219, 2006.
[5] NM Jizat, et al., “Exploitation of the electromagnetic band gap (EBG) in 3-dB multi-layer branch-line coupler,” IEEE 12th Malaysia International Conference on Communications (MICC), 2015, pp. 264-269.
[6] Gao Xi, Cai T, Zhu L, “Enhancement of gain and directivity for microstrip antenna using negative permeability metamaterial,” AEU – Int J Electron Commun., vol.70, no. 7, pp. 880–885, 2016.
[7] Arora C, et al., “Performance enhancement of patch antenna array for 5.8 GHz WI-MAX applications using metamaterial inspired technique,” AEU - Int J Electron Commun, vol.79,pp. 124–131, 2017.
[8] N. M. Jizat, et al., “Enhanced Performance of 3dB Branch-Line Coupler with Diamond Shaped Negative Permittivity Metamaterial,” 8th International Conference on Metamaterials, Photonic Crystals and Plasmonics (META’17), 2017, P37.
[9] V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of "ε, and μ", Sov. Phys. Usp, vol. 47, pp.509–514, Jan.–Feb, 1968.
[10] D.R. Smith, et al., “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys.Rev. Lett., vol. 84, pp. 4184, 2000.
[11] Moitra, P. et al. Realization of an all-dielectric zero-index optical metamaterial,” Nature Photonics, vol. 7, pp. 791–795, 2013.
[12] S. K. Patel, et al., “Broadband compact microstrip patch antenna design loaded by multiple split ring resonator superstrate and substrate,” Waves in Random and Complex Media, vol. 27, pp. 92-102, 2017.
[13] A. S. M. Alqadami, M. F. Jamlos, “Compact and conformal multilayer antenna based on polymer nanocomposite substrate”, RF and Microwave Conference (RFM) 2015 IEEE International, pp. 180-182.
[14] ASM Alqadami, et al., “Bandwidth enhancement of a microstrip antenna array using magneto-dielectric polymer substrate (PDMS-Fc304), IEEE Symposium on Wireless Technology and Applications (ISWTA), 2014, pp. 152-155.
[15] J.M.Woo, et al., “Low loss flexible bilayer metamaterials in THz regime,” Opt Express, vol. no.3, pp. 2289-2298, 2014.
[16] Toal B, et al., “Tunable magneto-optical metamaterials based on photonic resonance in nickel nanorod arrays,” Materials Research Express, 2014, no.1, pp. 1-11.
[17] Morales, et al., “Tunable magneto-dielectric polymer nanocomposites for microwave applications,” IEEE Trans. Microw. Theory Tech, vol.59, no.2, pp. 302-310, 2011.
[18] P. Y. Chen, et al., “Synthesis design of artificial magnetic metamaterials using a genetic algorithm,” Optics Express, vol. 16, no. 17, pp. 12806–12818, 2008.
[19] M. T. Islam, et al., “A New MetasurfaceSuperstrate Structure for Antenna Performance Enhancement,”Materials 6, pp.3226-3240, 2013.
[20] Nicolson, A. M. and G. F. Ross, “Measurement of the intrinsic properties of materials by timedomain techniques,” IEEE Trans. Instrum. Meas., vol. 19, no. 4, pp. 377–382, 1970.
[21] Weir, W. B., “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE, 1974, vol. 62, no. 1, pp. 33–36.

High-gain PDMS-magnetite zero refractive index metamaterial antenna... (Noorlindawaty)
BIOGRAPHIES OF AUTHORS

Noorlindawaty Md. Jizat obtained her Bachelor of Electrical Engineering (Telecommunication) degree from Universiti Teknologi Malaysia in 2008. She then received her Master from Universiti Teknologi Malaysia. She worked as an R & D Engineer at Panasonic System Network Malaysia till 2012. Her research interests cover the field of Beamforming network, Smart Antenna, Switching Network. She is currently working as a Lecturer at Faculty of Engineering, Multimedia University (MMU), Cyberjaya, Malaysia.

Nazihah Ahmad graduated with bachelor degree in Mechatronics Engineering (Hons) from International Islamic University in 2007. She was awarded a master in Biomedical Engineering in 2012. Her research interests are various fields of Biomedical engineering and social science. She is currently working as a Lecturer at the Faculty of Engineering, Multimedia University, Cyberjaya, Malaysia.

Zubaida Yusoff received her B.Sc. in Electrical and Computer Engineering (cum laude with distinction) and M.Sc. in Electrical Engineering from The Ohio State University, USA in 2000 and 2002 respectively. She worked with Telekom Malaysia International Network Operation in 2002 before she joined Multimedia University, Malaysia as a Lecturer in 2004. She continued her studies at Cardiff University, Wales, UK in 2008 and received Ph.D degree in 2012. She is currently resumes her job as a Senior Lecturer at Multimedia University. Her current research interest is in the area of Analog/Mixed Signal Circuit Design and RF Power Amplifier System.

Mohd Faizal Jamlos receives his Ph.D in Electrical Engineering, UTM, M.Eng (Electrical-Electronic), Adelaide University and B.Eng (Computer Engineering) from UniMAP. His research interest in Antenna design, Microwave Security System, Intelligent Microwave Transportation System, Microwave Biomedical Instrumentations. He is currently Associate Professor in School of Computer and Communication Engineering University Malaysia Perlis, Malaysia.