Carbon nitride quantum dots modified TiO$_2$ inverse opal photonic crystal for solving indoor VOCs pollution

Jie Yu1,2, Angel Caravaca2, Chantal Guillard2, Philippe Vernoux2, Liang Zhou1,3, Lingzhi Wang4, Juying Lei1,3,5,*, Jinlong Zhang4, Yongdi Liu1,3,5,*

1 National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China

2 Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France

3 State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, P. R. China.

4 Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai, P. R. China.

5 Shanghai Institute of Pollution Control and Ecological Security, Shanghai, P.R. China.

*E-mail: leijuying@ecust.edu.cn, ydliu@ecust.edu.cn
Figure S1. SEM image of (a) PS template (b) TiO₂ IO

Table S1. The comparison of the photocatalytic degradation efficiencies of toluene into CO₂ (ηₜ, toluene) over different samples

Concentration (ppm)	TCN IO	TiO₂ IO	P25	bulk-TiO₂
Initial CO₂	498	487	513	440
Final CO₂	4675	4223	2156	3131
Generated CO₂	4177	3736	1643	2691
Photodegraded toluene	597	534	235	384
Initial toluene	643	649	636	639
ηₜ, toluene (%)	93	82	37	60

Figure S2. X-ray diffraction (XRD) of TCN IO
Figure S3. Reactor device