Invariant description of solutions of hydrodynamic type systems in hodograph space: hydrodynamic surfaces

Ferapontov E.V.
Department of Mathematical Sciences
Loughborough University
Loughborough, Leicestershire LE11 3TU
United Kingdom
e-mail: E.V.Ferapontov@lboro.ac.uk

Abstract

Hydrodynamic surfaces are solutions of hydrodynamic type systems viewed as non-parametrized submanifolds of the hodograph space. We propose an invariant differential-geometric characterization of hydrodynamic surfaces by expressing the curvature form of the characteristic web in terms of the reciprocal invariants.

Subj. Class.: Differential Geometry, Partial Differential Equations.
1991 MSC: 35L40.
Keywords: systems of hydrodynamic type, reciprocal transformations.

1 Introduction

Equations of hydrodynamic type

\[u_i^t = v_j^i(u)u_j^t, \quad i, j = 1, ..., n \] (1)

naturally arise in applications in gas dynamics, hydrodynamics, chemical kinetics, the Whitham averaging procedure, differential geometry and topological field theory. We refer to [13] and [4] for their geometric theory. Any solution \(u^i(x, t) \) of system (1) defines a surface in the hodograph space \(u_1, ..., u_n \) parametrized by the independent variables \(x \) and \(t \). Representing this surface explicitly in the form \(u_3 = u_3(u_1, u_2), ..., u_n = u_n(u_1, u_2) \), one can readily rewrite (1) as a system of PDEs for \(u_3, ..., u_n \) viewed as functions of \(u_1, u_2 \). For \(n = 3 \) this will be a third order quasilinear PDE for \(u_3(u_1, u_2) \), known as the equation of a hydrodynamic surface (by the term hydrodynamic surfaces we mean solutions of (1) viewed as non-parametrized submanifolds of the hodograph space). This equation was derived by Yanenko [14] and subsequently discussed in [12] in the case of 1-dimensional polytropic gas dynamics (see Example 4 below). For 3-component systems in Riemann invariants, the derivation of this equation is given in the Appendix. Although, technically, this derivation does not cause any problems, the result is usually a rather complicated PDE. This is not surprising since the choice of, say, \(u_3 \) as a function of \(u_1, u_2 \) introduces an asymmetry in our
approach from the very beginning. Thus, it is desirable to have an invariant coordinate-
free description of hydrodynamic surfaces. In order to provide such a description (in
what follows we concentrate on the case $n = 3$), we first have to supply the hodograph
space with certain differential-geometric objects. These objects, known as the
reciprocal invariants, are introduced in section 3. Reciprocal invariants induce further geometric
structure on any hydrodynamic surface (see section 4), the characteristic 3-web being part
of it. Calculating the curvature of the characteristic 3-web in terms of the reciprocal
invariants, we obtain a simple invariant description of hydrodynamic surfaces (Theorem
1). We apply our results to linearly degenerate semi-Hamiltonian systems in Riemann
invariants (section 5) and the equations of associativity of 2-dimensional topological field
theory (section 6). In both cases the characteristic 3-web proves to be hexagonal, thereby
providing a simple coordinate-free description of hydrodynamic surfaces. We illustrate the
concept of a hydrodynamic surface by concluding this introduction with a list of examples.

Example 1. The general solution of the linear system

$$ R_1^t = 0, \quad R_2^x = 0, \quad R_3^t = R_3^x $$

(2)

is given by $R_1^t = g^1(x)$, $R_2^x = g^2(t)$, $R_3^t = g^3(x+t)$ where g^i are arbitrary functions of their
arguments. These formulae can be rewritten as $x = f^1(R_1^t)$, $t = f^2(R_2^x)$, $-x - t = f^3(R_3^t)$
where the functions f^i are determined by g^i. Adding these equations, we arrive at the
hydrodynamic surfaces

$$ f^1(R_1^t) + f^2(R_2^x) + f^3(R_3^t) = 0 $$

(3)
in the hodograph space R_1^t, R_2^x, R_3^t. Notice that surfaces (3) solve the third order PDE

$$ \left(\ln \frac{R_1^t}{R_2^x} \right)_{12} = 0, $$

(4)

which is thus the equation of a hydrodynamic surface. Here subscripts denote differentiation
with respect to R_1^t and R_2^x.

Example 2. Let us consider the system

$$ R_1^t = (R_2^t + R_3^t)R_1^t, \quad R_2^x = (R_1^t + R_3^t)R_2^x, \quad R_3^t = (R_1^t + R_2^t)R_3^x $$

(5)

which, upon the introduction of the new independent variables X and T,

$$ dX = \frac{dx + (R_2^t + R_3^t)dt}{(R_1^t - R_2^t)(R_1^t - R_3^t)}, \quad dT = \frac{dx + (R_1^t + R_3^t)dt}{(R_2^t - R_1^t)(R_2^t - R_3^t)}, $$

(6)

(notice that these 1-forms are closed by virtue of (5)), takes the linear form (2). Trans-
formations of this type are called reciprocal. Since any reciprocal transformation is just a
reparametrization of solutions, hydrodynamic surfaces of both equations (4) and (5) are
the same, defined by the PDE (4). This example is generalized in section 5 to arbitrary
three-component linearly degenerate semi-Hamiltonian systems in Riemann invariants,
which are all reciprocally related to (2) and, thus, have the same hydrodynamic surfaces.

Example 2 shows that the equation governing hydrodynamic surfaces must be express-
ible in terms of reciprocal invariants, differential-geometric objects in the hodograph space
which do not change under reciprocal transformations.
Example 3. The equation of associativity of 2-dimensional topological field theory

\[f_{ttt} = f_{xxt}^2 - f_{xxx} f_{xtt}, \quad \text{(7)} \]

rewritten in the variables \(a = f_{xxx}, \ b = f_{xxt}, \ c = f_{xtt} \), takes the form of a three-component system of hydrodynamic type

\[a_t = b_x, \quad b_t = c_x, \quad c_t = (b^2 - ac)_x. \quad \text{(8)} \]

Here we list the hydrodynamic surfaces (in the hodograph space \(a, b, c \)) corresponding to some explicit solutions of equation (7) as found in [3].

solution of (7)	hydrodynamic surface in the hodograph space \(a, b, c \)
\(f = \frac{x^2t^2}{4} + \frac{t^6}{60} \)	plane \(a = 0 \)
\(f = xe^t - \frac{x^2}{2t} \)	plane \(b = 0 \)
\(f = \frac{x^2t^4}{4} + \frac{e^{2t}}{32} - \frac{x^4}{48} \)	quadric \(2ab + c = 0 \)
\(f = \frac{t^2 \ln x}{2} + \frac{3t^2}{4} \)	quadric \(b^2 - ac = 0 \)
\(f = \frac{x^3t}{6} + \frac{x^2t^3}{6} + \frac{t^2}{210} \)	Cayley cubic \(c - 2ab + 2a^2 = 0 \)
\(f = \frac{x^3t^2}{6} + \frac{x^2t^5}{20} + \frac{t^{11}}{3960} \)	quartic \(4ac - 4a^2(b - a^2/2) = (b - a^2/2)^2 \)

It would be interesting to classify the solutions of (7) whose hydrodynamic surfaces are algebraic. A differential-geometric characterization of hydrodynamic surfaces of the system (8) is given in section 6.

Example 4. In Lagrangian coordinates, the equations of one-dimensional polytropic gas dynamics take the form

\[u_t + p_q = 0, \quad \psi p^{-\kappa} p_t + u_q = 0, \quad \psi_t = 0, \quad \kappa = \frac{\gamma + 1}{\gamma}. \]

The equation governing hydrodynamic surfaces \(\psi = \psi(p, u) \) was derived in [12]. After being integrated once, it reduces to the second order quasilinear PDE

\[(\psi p^{-\kappa} \psi_u)_u - \psi_{pp} = f(\psi)(\psi_p^2 - \psi p^{-\kappa} \psi_u^2) \]

where \(f \) is an arbitrary function of \(\psi \).

2 **Exterior representation of hydrodynamic type systems**

Let \(\nu^i \) be the eigenvalues of the matrix \(v^i_j \), called the characteristic velocities of system (11), which we assume to be real and pairwise distinct. Let \(l^i = (l^i_1(u), ..., l^i_n(u)) \) be the
corresponding left eigenvectors, \(l_i^j v^i_j = v^i l_i^j \). With the eigenforms \(\omega^i = l_i^j dv^j \), the system (1) is readily rewritten in the exterior form,

\[
\omega^i \wedge (dx + v^i dt) = 0, \quad i = 1, \ldots, n. \tag{9}
\]

Differentiation of \(\omega^i \) and \(v^i \) gives the structure equations

\[
d\omega^i = -c^i_{jk} \omega^j \wedge \omega^k, \quad (c^i_{jk} = -c^i_{kj}), \quad dv^i = v^i_j \omega^j, \tag{10}
\]

containing all the necessary information about the system under study. For diagonalizable systems we have \(c^i_{jk} = 0 \), so that \(\omega^i = dR^i \), where the variables \(R^i \) are called the Riemann invariants of system (1). In Riemann invariants, equations (9) take a diagonal form,

\[
R^i_t = v^i_j(R) R^j_x, \quad i = 1, \ldots, n. \tag{11}
\]

In this case \(v^i_j = \partial v^i / \partial R^j \).

3 Reciprocal transformations and reciprocal invariants

We recall the necessary information about reciprocal transformations of hydrodynamic type systems. Let \(B(u)dx + A(u)dt \) and \(N(u)dx + M(u)dt \) be two conservation laws of system (1), understood as the one-forms which are closed by virtue of (1). In the new independent variables \(X, T \) defined by

\[
\begin{align*}
dX &= B(u)dx + A(u)dt, \\
dT &= N(u)dx + M(u)dt,
\end{align*} \tag{12}
\]

the system (1) takes the form

\[
u^i_T = V^i_j(u) u^j_X,
\]

where \(V = (Bv - AE)(ME - Nv)^{-1}, \quad E = id \). The new characteristic velocities \(V^i \) are

\[
V^i = \frac{v^i B - A}{M - v^i N}, \tag{14}
\]

while the eigenforms \(\omega^i \) remain the same. Transformations (12) are called reciprocal. We refer to [11] for the discussion of their applications in gas dynamics, hydrodynamics and soliton theory. In [11] and [12] the author introduced a number of objects in the hodograph space which prove to be reciprocally invariant. In the 3-component case these are

1. Three 2-dimensional characteristic distributions

\[
\omega^i = 0, \quad i = 1, 2, 3. \tag{15}
\]

Notice that the eigenforms \(\omega^i \) are only defined up to a nonzero multiple \((\omega^i \rightarrow p^i \omega^i) \), so that only these distributions make an invariant sense. It is natural to call these distributions characteristic since, by virtue of (11), characteristic directions are the intersections of a tangent plane to a hydrodynamic surface with the distributions (15).

2. The 1-forms

\[
\begin{align*}
\Omega^1 &= \frac{\epsilon_1^1(\epsilon_2^3 - \epsilon_3^3)}{(\epsilon_1^3 - \epsilon_2^3)(\epsilon_1^3 - \epsilon_3^3)} \omega^1, \\
\Omega^2 &= \frac{\epsilon_2^2(\epsilon_3^3 - \epsilon_1^3)}{(\epsilon_2^3 - \epsilon_1^3)(\epsilon_2^3 - \epsilon_3^3)} \omega^2, \\
\Omega^3 &= \frac{\epsilon_3^3(\epsilon_1^1 - \epsilon_2^1)}{(\epsilon_3^1 - \epsilon_2^1)(\epsilon_3^1 - \epsilon_1^2)} \omega^3. \tag{16}
\end{align*}
\]
In the case $v^i_j \neq 0$ these 1-forms contain the information about the distributions (15). We really need (15) only when some of the v^i_j are zero.

3. The differential $d\Omega$ of the 1-form

$$
\Omega = \left(\frac{v^2_1 - v^2_2}{v^1_2 - v^1_3} + \frac{v^2_3 - v^2_1}{v^1_3 - v^1_2} \right) \omega^1 + \left(\frac{v^3_1 - v^3_2}{v^2_1 - v^2_3} + \frac{v^3_2 - v^3_1}{v^2_3 - v^2_1} \right) \omega^2 + \left(\frac{v^1_3 - v^1_2}{v^1_2 - v^1_3} + \frac{v^1_2 - v^1_3}{v^1_3 - v^1_2} \right) \omega^3 \quad (17)
$$

(notice that Ω itself is not reciprocally invariant).

Remark. To prove the reciprocal invariance of these objects, it is sufficient to consider reciprocal transformations of the two simpler types, namely

(a) The interchange of the independent variables x and t ($A = N = 1$, $B = M = 0$ in (12), implying $V^i = 1/v^i$).

(b) Transformations which preserve the variable t ($N = 0$, $M = 1$ implying $V^i = v^i B - A$).

In both cases the invariance of (16) and (17) is a result of a simple calculation. In the case (b) one has to use the identities $A_i = v^i B_i$ (no summation!) which characterize conservation laws of hydrodynamic type systems. Here A_i and B_i are defined by the expansions $dA = A_i \omega^i$, $dB = B_i \omega^i$. Since an arbitrary reciprocal transformation is a superposition of transformations (a) and (b), the statement follows.

Although the set of reciprocal invariants (16) and (17) is complete [6], [8], further invariants can be easily constructed. For instance, the pseudo-Riemannian metric

$$
\Omega^1 \Omega^2 + \Omega^1 \Omega^3 + \Omega^2 \Omega^3 = \frac{v^1_1 v^2_2}{(v^1_1 - v^1_2)^2} \omega^1 \omega^2 + \frac{v^1_1 v^3_3}{(v^1_3 - v^1_2)^2} \omega^1 \omega^3 + \frac{v^2_2 v^3_3}{(v^2_3 - v^2_1)^2} \omega^2 \omega^3
$$

also is reciprocally invariant. The Lie-geometric interpretation of reciprocal invariants was proposed in (10). Notice that for *linearly degenerate* systems (that is, for systems with $v^i_j = 0$ for any i), some of the reciprocal invariants vanish. The only that survive are the 2-form $d\Omega$ and the characteristic distributions (which are not involutive unless the system possesses Riemann invariants). Reciprocal transformations are known to preserve the linear degeneracy.

4 Geometry of hydrodynamic surfaces

The following objects are naturally induced on hydrodynamic surfaces of 3-component systems of hydrodynamic type.

The characteristic 3-web is a collection of three 1-parameter families of curves defined by the equations $\omega^i = 0$. Geometrically, characteristic directions are intersections of the tangent plane of a hydrodynamic surface with the 2-dimensional characteristic distributions $\omega^i = 0$ in the hodograph space. For a 3-web on a surface, let ϕ^1 and ϕ^2 be the 1-forms such that the curves of the first, second and third families are defined by the equations $\phi^1 = 0$, $\phi^2 = 0$ and $\phi^1 = \phi^2$, respectively (actually, ϕ^1 and ϕ^2 are the properly normalized ω^1 and ω^2; their choice is obviously non-unique since they can be multiplied by a common factor). The connection form ϕ of a 3-web is uniquely determined by the exterior equations

$$
d\phi^1 = \phi \wedge \phi^1, \quad d\phi^2 = \phi \wedge \phi^2.
$$

Finally, the curvature 2-form C equals $d\phi$. It has an invariant meaning and does not depend on the particular normalization of ϕ^1 and ϕ^2. For instance, in the case of 3-component systems (11) in Riemann invariants we have $\omega^i = dR^i$ so that the characteristics
are defined by $dR_1 = 0$, $dR_2 = 0$ and $dR_3 = R_1^3 dR_1 + R_2^3 dR_2 = 0$ (the hydrodynamic surface is parametrized in the form $R^3(R_1^1, R_2^2)$). Clearly, one can choose $\phi^1 = R_1^3 dR_1$ and $\phi^2 = -R_2^3 dR_2$, implying that the connection form is

$$\phi = (\ln R_1^1) dR_2^2 + (\ln R_2^2) dR_1^1.$$

The corresponding curvature 2-form is

$$C = d\phi = (\ln R_1^3 - \ln R_2^3) dR_1^1 \wedge dR_2^2.$$

We will use this expression when deriving the equation of hydrodynamic surfaces in the Appendix. Recall that the zero curvature webs are called hexagonal [2].

The form $d\Omega$ is just the restriction of the reciprocal invariant $d\Omega$ to a hydrodynamic surface.

The forms $\ast \Omega^i$ are defined as follows. Take, say, the reciprocally invariant form Ω^1 and restrict it to a hydrodynamic surface. On the same hydrodynamic surface, choose the metric $2dR_2^2 dR_3^3$ with the volume form $dR_2^2 \wedge dR_3^3$ (notice the important order of indices 2 and 3 in the expressions for Ω^1 and the volume form). Construct the vector which is dual to the 1-form Ω^1 with respect to the metric choosen. Finally, evaluate the volume form on this vector. The result will be a 1-form which is usually denoted by $\ast \Omega^1$. Notice that in two dimensions the \ast-operator is conformally invariant, so that only the conformal class of the metric $2dR_2^2 dR_3^3$ matters. The ambiguity in the choice of the order of indices 2 and 3 in the expression for Ω^1, combined with the ambiguity in choosing the sign (orientation) of the volume form, gives a well-defined answer for $\ast \Omega^1$. In general, for the 1-form

$$\Omega^i = \frac{v_i^j (v^j - v^k)}{(v^i - v^j)(v^i - v^k)} dR^i,$$

the 1-form $\ast \Omega^i$ is defined by choosing the metric $2dR^j dR^k$ with the volume form $dR^j \wedge dR^k$. The \ast-operator is invariant and can be applied in any convenient coordinate system leading to one and the same result. The relevant computation is shown below in the proof of Theorem 1.

Now we are in order to formulate the main result of this paper.

Theorem 1 The curvature 2-form C of the characteristic 3-web is given by the formula

$$C = -d\Omega - \frac{1}{2} d(\ast \Omega^1 + \ast \Omega^2 + \ast \Omega^3).$$ \hspace{1cm} (18)

Written down in any suitable coordinate system in the hodograph space, equation (18) reduces to a third order PDE for hydrodynamic surfaces.

Proof:

Notice that equation (18) is manifestly coordinate-free. Thus, it sufficies to establish (18) in any local parametrization of a hydrodynamic surface. We will work directly in the
coordinates x, t. For simplicity, we assume that the system in question possesses Riemann invariants. This assumption is not important and the general proof is literally the same. Introducing the 1-forms

$$\phi^1 = (v^2 - v^3)(dx + v^1 dt) \quad \text{and} \quad \phi^2 = (v^1 - v^3)(dx + v^2 dt),$$

we readily see that the characteristics of the first, second and third families are defined by the equations $\phi^1 = 0$, $\phi^2 = 0$ and $\phi^3 = \phi^2$, respectively. The connection form ϕ of the 3-web is uniquely determined by the exterior equations

$$d\phi^1 = \phi \wedge \phi^1, \quad d\phi^2 = \phi \wedge \phi^2. \quad (19)$$

With $\phi = adx + bdt$, the equation $[\Omega]_1$ gives

$$b - av^1 = -v_1 R_x^1 + \left((v^2 - v^1)\frac{v_2^2 - v_3^2}{v^2 - v^3} - v_1 \right) R_x^2 + \left((v^3 - v^1)\frac{v_3^2 - v_3^3}{v^2 - v^3} - v_1 \right) R_x^3.$$

Similarly, the equation $[\Omega]_2$ implies

$$b - av^2 = -v_2 R_x^2 + \left((v^1 - v^2)\frac{v_1^3 - v_3^3}{v^1 - v^3} - v_2 \right) R_x^1 + \left((v^3 - v^2)\frac{v_3^3 - v_3^3}{v^1 - v^3} - v_2 \right) R_x^3.$$

Solving for a and b, we obtain

$$a = \left(\frac{v^2 - v^1}{v^2 - v^3} + \frac{v^3 - v_1^2}{v^2 - v^3} \right) R_x^1 + \left(\frac{v^1 - v^2}{v^2 - v^3} + \frac{v^3 - v_2^2}{v^2 - v^3} \right) R_x^2 + \left(\frac{v^1 - v^3}{v^2 - v^3} + \frac{v^2 - v_3^2}{v^2 - v^3} \right) R_x^3,$$

$$b = \left(\frac{v^1 v_2^3 - v^3 v^1}{v^2 - v^3} + v^3 \frac{v_3^3 - v_3^3}{v^2 - v^3} \right) R_x^1 + \left(\frac{v^2 v^1 - v^1 v_2^2}{v^2 - v^3} + v^2 \frac{v_3^3 - v_2^2}{v^2 - v^3} \right) R_x^2 + \left(\frac{v^3 v_1^3 - v_1^3}{v^2 - v^3} + v^3 \frac{v_2^3 - v_3^3}{v^2 - v^3} - v_3 \right) R_x^3.$$

Using the identities $dR^i = R^i_j(dx + v^j dt)$, it is now a direct algebraic calculation to verify that

$$adx + bdt = -\Omega + \frac{1}{2}v_1^1 \left(\frac{dR^1}{v^2 - v^3} + \frac{dR^1}{v^1 - v^3} - 2R^1_x dt \right) + \frac{1}{2}v_2^2 \left(\frac{dR^2}{v^2 - v^3} + \frac{dR^2}{v^2 - v^3} - 2R^2_x dt \right) + \frac{1}{2}v_3^3 \left(\frac{dR^3}{v^2 - v^3} + \frac{dR^3}{v^2 - v^3} - 2R^3_x dt \right), \quad (20)$$

where the last three terms are nothing but $-\frac{1}{2}((\ast \Omega^1))$, $-\frac{1}{2}((\ast \Omega^2)$ and $-\frac{1}{2}((\ast \Omega^3)$, respectively. Indeed, let us calculate $\ast \Omega^1$. In coordinates x, t the 1-form $\Omega^1 = v_1^1(v^2 - v^3)dR^1/(v^1 - v^2)(v^1 - v^3)$ has components

$$\mu R^1_x, \quad \mu v^1 R^1_x \quad (21)$$

where $\mu = v_1^1(v^2 - v^3)/(v^1 - v^2)(v^1 - v^3)$. The metric used to define the \ast-operator is

$$2dR^2 dR^3 = 2R^2_x R^3_x (dx^2 + (v^2 + v^3)dxdt + v^2 v^3 dt^2)$$

or, in matrix form,

$$R^2_x R^3_x \left(\begin{array}{ccc} 2 & v^2 + v^3 \\ v^2 + v^3 & 2v^2 v^3 \end{array} \right), \quad (22)$$
with the inverse
\[
\frac{1}{R_x^2 R_z^3 (v^3 - v^2)^2} \begin{pmatrix}
-2v^2 v^3 & v^2 + v^3 \\
v^2 + v^3 & -2
\end{pmatrix}.
\] (23)

The corresponding volume 2-form is
\[
dR_x^2 \wedge dR_z^3 = R_x^2 R_z^3 (v^3 - v^2) dx \wedge dt.
\] (24)

Multiplying (21) by (23), we obtain the vector (the dual of \(\Omega^1\))
\[
\mu R_x^1 \begin{pmatrix}
R_x^1 & R_x^2 x (v^3 - v^2)
\end{pmatrix} (v^3 - v^2)^2 (v^1 (v^2 + v^3) - 2v^2 v^3, v^2 + v^3 - 2v^1).
\] (25)

Finally, evaluating the volume 2-form (24) on the vector (25), we obtain the 1-form
\[
\ast \Omega^1 = \frac{\mu R_x^1}{v^3 - v^2} \left((v^1 (v^2 + v^3) - 2v^2 v^3) dt - (v^2 + v^3 - 2v^1) dx \right),
\]
which, after a simple rearrangement of terms, can be rewritten as
\[
\ast \Omega^1 = v^1 \left(2R_x^1 dt - \frac{dR_x^1}{v^1 - v^2} - \frac{dR_x^1}{v^2 - v^3} \right).
\]

Comparison with (20) and the exterior differentiation complete the proof.

In the nondiagonalizable case the proof is essentially the same. The only difference is that we have to write \(\omega^i = p^i(dx + v^i dt)\) instead of \(dR_x^i = R_x^i (dx + v^i dt)\) and to replace \(R_x^i\) by \(p^i\) in all places where they appear. Another proof (which is more constructive, although only applies to systems in Riemann invariants), is given in the Appendix.

5 Linearly degenerate semi-Hamiltonian systems in Riemann invariants

A system of hydrodynamic type in Riemann invariants,
\[
R_x^i = v^i (R) R_x^j,
\]
is called linearly degenerate if \(v^i_j = 0\) for any \(i\). It is called semi-Hamiltonian if
\[
\left(\frac{v^i_j}{v^j - v^i} \right)_k = \left(\frac{v^i_k}{v^k - v^i} \right)_j
\]
for any \(i \neq j \neq k\). The last condition is equivalent to the existence of an infinity of conservation laws and hydrodynamic symmetries and the integrability of the system under study by the generalized hodograph transform [13]. One can readily verify that the reciprocal invariants \(d\Omega\) and \(\Omega^1, \Omega^2, \Omega^3\) of three-component linearly degenerate semi-Hamiltonian systems (the example of which is [5]) are zero. All such systems can be linearised by a reciprocal transformation, and hydrodynamic surfaces thereof are governed by one and the same PDE (4). Geometrically, hydrodynamic surfaces are uniquely characterized as the surfaces in the hodograph space \(R^1, R^2, R^3\) on which the 3-web, cut by the coordinate planes \(R^i = \text{const.}\), is hexagonal. We refer to [5] and [7] for a further discussion of the geometry of characteristic webs on solutions of linearly degenerate semi-Hamiltonian systems.
6 Equations of associativity

It was demonstrated in [9] that system (8) can be transformed by a reciprocal transformation to a system with constant characteristic velocities. Since for systems with constant characteristic velocities the objects $\Omega^1, \Omega^2, \Omega^3$ and Ω are automatically zero, they are zero for system (8) as well (in view of their reciprocal invariance). Thus, Theorem 1 implies that hydrodynamic surfaces of (8) are uniquely characterized as surfaces on which the characteristic 3-web (cut by the characteristic distributions (15)) is hexagonal. These distributions have a simple algebro-geometric description which we briefly discuss below (see also [1]).

In the hodograph space a, b, c consider the twisted cubic γ,

$$a = -3t, \ b = -3t^2/2, \ c = -t^3.$$

For any point p in the hodograph space, there are exactly three osculating planes of γ containing p. In each of these planes, draw a line through p parallel to the tangential direction to γ in the point where this plane osculates γ. Thus, one obtains three lines through each point p in the hodograph space. These lines are the rarefaction curves of system (8). The three 2-dimensional characteristic distributions in question are spanned by each pair thereof.

This construction can be reformulated in a projectively invariant way as follows. Consider a twisted cubic γ in the projective space P^3 and fix the plane Λ which osculates γ (in the construction above this was the plane at infinity). Take any other plane π which osculates γ in a point p. The tangent line to γ in the point p cuts Λ in the point $A(p)$ (as p varies, the collection of points $A(p)$ is a conic in Λ). Finally, consider a pencil of lines in the plane π with the vertex in $A(p)$. As p varies, this gives a 2-parameter family, or a congruence of lines in P^3, which is of the order 3 (that is, there are precisely 3 lines of the congruence through a generic point of P^3). The three 2-dimensional distributions are spanned by each pair thereof. In the case when Λ is the plane at infinity, this construction reduces to that described above. Hydrodynamic surfaces in question are the ones on which these 2-dimensional distributions cut a hexagonal 3-web. These considerations and the Example 3 clearly indicate that it is of interest to classify hydrodynamic surfaces which are algebraic.

Notice that this problem makes sense for arbitrary congruences of the order 3 in P^3, since any such congruence induces a 3-web on a surface.

7 Appendix: another proof of Theorem 1

We will derive the equation of a hydrodynamic surface for three-component systems in Riemann invariants assuming $R^3 = R^3(R^1, R^2)$. We use the notation R^3_1, R^3_2 for partial derivatives of R^3 with respect to R^1 and R^2 which are now viewed as independent variables. By virtue of (11), one has

$$dR^1 = p^1(dx + v^1 dt), \quad dR^2 = p^2(dx + v^2 dt), \quad dR^3 = p^3(dx + v^3 dt) \quad (26)$$

(here $p^i = R^i_n$). On the other hand,

$$dR^3 = R^3_1 dR^1 + R^3_2 dR^2 = R^3_1 p^1(dx + v^1 dt) + R^3_2 p^2(dx + v^2 dt),$$
implying
\[R_1^3 p^1 + R_2^3 p^2 = p^3, \quad R_1^3 p^1 v^1 + R_2^3 p^2 v^2 = p^3 v^3 \]
so that
\[p^1 = \frac{v^2 - v^3}{v^2 - v^1} R_1^3, \quad p^2 = \frac{v^1 - v^3}{v^1 - v^2} R_2^3. \]
Substituting these expressions into the first two equations (26), we obtain
\[dx + v^1 dt = \frac{v^2 - v^1}{v^2 - v^3} R_3^3 dR^1, \quad dx + v^2 dt = \frac{v^1 - v^2}{v^1 - v^3} R_3^3 dR^2 \]
so that
\[dt = \frac{R_1^3}{v^3 - v^2} \frac{1}{p^3} dR^1 + \frac{R_2^3}{v^3 - v^1} \frac{1}{p^3} dR^2, \quad dx = \frac{R_1^3}{v^2 - v^3} \frac{v^2}{p^3} dR^1 + \frac{R_2^3}{v^1 - v^3} \frac{v^1}{p^3} dR^2. \]
Introducing \(g \) by the formula \(1/p^3 = e^g (v^3 - v^1)(v^3 - v^2) \), we ultimately have
\[dt = e^g (R_1^3(v^3 - v^1) dR^1 + R_2^3(v^3 - v^2) dR^2), \]
\[dx = e^g (R_1^3(v^1 - v^3) v^2 dR^1 + R_2^3(v^2 - v^3) v^1 dR^2). \]
With \(dg = g_1 dR^1 + g_2 dR^2 \) the differentiation of (27) \(1 \) implies
\[g_1 R_2^3(v^3 - v^2) - g_2 R_1^3(v^3 - v^1) + R_1^3(v^1 - v^2) + \]
\[R_3^3(v^1 - v^3) - R_3^3(v^2 - v_1^2) + R_1^3 R_2^3(v^1 - v^3) = 0. \]
Similarly, the differentiation of (27) \(2 \) gives
\[g_1 R_2^3(v^3 - v^2) v^1 - g_2 R_1^3(v^3 - v^1) v^2 + R_1^3(v^1 - v^2) v^3 + \]
\[R_3^3(v^1 - v^3) + v^1(v^3 - v^2)) - R_3^3(v^2(v^2 - v_1^2) + v^2(v^3 - v^1)) + \]
\[R_1^3 R_2^3(v^3 - v^3) + (v^1 - v^2) v_3^3) = 0. \]
Solving these equations for \(g_1 \) and \(g_2 \), one readily obtains
\[-g_1 = \frac{R_3^3}{R_2^3} + \frac{v_1^2}{v_1^2 - v^2} + \frac{v_1^3 - v_2}{v_1^3 - v^2} + \]
\[\frac{R_3^3}{R_2^3} \frac{v_2(v^1 - v^3)}{(v^1 - v^2)(v^2 - v^3)} + \frac{R_1^3}{R_2^3} \left(\frac{v_3^2}{v_3^2 - v^2} + \frac{v_3^1 - v_2}{v_3^1 - v^2} \right) \]
and
\[-g_2 = \frac{R_3^3}{R_1^3} + \frac{v_2^2}{v_2^2 - v^1} + \frac{v_2^3 - v_1}{v_2^3 - v^1} + \]
\[\frac{R_3^3}{R_1^3} \frac{v_1(v^2 - v^3)}{(v^2 - v^1)(v^1 - v^3)} + \frac{R_2^3}{R_1^3} \left(\frac{v_3^2}{v_3^2 - v^1} + \frac{v_3^1 - v_2}{v_3^1 - v^1} \right), \]
or, in differential form,

\[-dg = \frac{R_3^1}{R_2^2} dR_1^1 + \frac{R_3^3}{R_2^2} dR_1^2 + \frac{v_1^1}{v^3} dR_1^1 + \frac{v_2^2}{v^3} dR_1^2 + \]

\[\frac{v_1^1 - v_2^2}{v^3} dR_1^1 + \frac{v_1^3 - v_2^1}{v^3} dR_1^2 + \frac{v_1^3 - v_2^3}{v^3} dR_1^3 + \]

\[\frac{R_3^3}{R_2^2} \frac{v_2^3}{(v^2 - v^1)(v^3 - v^2)} dR_1^1 + \frac{R_3^3}{R_1^1} \frac{v_2^1 (v^2 - v^3)}{(v^2 - v^1)(v^3 - v^2)} dR_1^2 + \]

\[\frac{R_3^3}{R_1^1} \frac{v_2^3}{v^3 - v^2} dR_1^1 + \frac{R_3^3}{R_2^1} \frac{v_2^3}{v^3 - v^2} dR_1^2. \]

It is now a direct algebraic calculation to verify that terms in the last equation can be rearranged in such a way that it becomes

\[-dg - d\ln(v^1 - v^2)(v^1 - v^3)(v^2 - v^3) = \frac{R_3^1}{R_2^2} dR_1^1 + \frac{R_3^3}{R_2^2} dR_1^2 + \Omega + \]

\[\frac{v_1^1 (v^2 - v^3)}{(v^1 - v^2)(v^1 - v^3)} \left(\frac{1}{2} dR_1^1 + \frac{R_2^1}{R_1^1} dR_1^2 \right) + \frac{v_2^2 (v^1 - v^3)}{(v^2 - v^1)(v^2 - v^3)} \left(\frac{1}{2} dR_1^2 + \frac{R_3^3}{R_2^2} dR_1^1 \right) + \]

\[\frac{1}{2} \frac{v_2^3 (v^1 - v^2)}{(v^2 - v^1)(v^3 - v^2)} (R_3^2 dR_2^2 - R_1^2 dR_1^1). \]

Now, the first term on the right,

\[\frac{R_3^3}{R_2^2} dR_1^1 + \frac{R_3^3}{R_1^1} dR_1^2, \]

is the connection form of the characteristic three-web; its differential is the curvature form of the web. The form \(\Omega \) is defined in section 3 (recall that its differential is reciprocally invariant). The last three forms on the right are nothing but \(\ast \Omega^1/2, \ast \Omega^2/2 \) and \(\ast \Omega^3/2 \), respectively. Finally, the differentiation of (28) completes the proof.

Notice that this proof is constructive: once a hydrodynamic surface is given, it can be parametrized by the independent variables \(t, x \) according to the formulae (27), where \(g \) can be given by (28). This parametrization is unique up to the obvious symmetries \(x \to cx + a, \ t \to ct + b \) where \(a, b \) and \(c \) are constants.

8 Acknowledgements

This research was supported by the EPSRC grant No Gr/N30941.

References

[1] S. I. Agafonov and E. V. Ferapontov, Systems of conservation laws from the point of view of the projective theory of congruences, Izv. RAN, ser. mat. 60 (1996) N.6, 3-30.

[2] W. Blaschke, Einführung in die Geometrie der Waben, Birkhäuser-Verlag, Basel-Stuttgart, 1955, 108 pp.
[3] B. A. Dubrovin, Geometry of 2D topological field theories, Lecture Notes in Mathematics, V.1620, Berlin, Springer, 120-348.

[4] B. A. Dubrovin and S. P. Novikov, Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory, Uspekhi Mat. Nauk 44 (1989) N6, 29-98.

[5] E. V. Ferapontov, Systems of three differential equations of hydrodynamic type with hexagonal 3-web of characteristics on the solutions, Funct. Analiz i ego Pril., 23, N.2 (1989) 79-80.

[6] E. V. Ferapontov, Reciprocal transformations and their invariants, Diff. Uravnen., 25, N.7 (1989) 1256-1265; (English transl. in Diff. Equations, 25, N.7 (1989) 898-905).

[7] E. V. Ferapontov, Integration of weakly nonlinear semi-Hamiltonian systems of hydrodynamic type by methods of the theory of webs, Mat. Sbornik, 181, N.9 (1990) 1220-1235.

[8] E. V. Ferapontov, Reciprocal autotransformations and hydrodynamic symmetries, Diff. Uravnen., 27, N.7 (1991) 1250-1263; (English transl. in Diff. Equations, 27, N.7 (1991) 885-895).

[9] E. V. Ferapontov and O. I. Mokhov, Equations of associativity of two-dimensional topological field theory as integrable Hamiltonian nondiagonalisable systems of hydrodynamic type, Funkt. Anal. and it’s Appl., 30, N3 (1996) 62-72.

[10] E. V. Ferapontov, Lie sphere geometry and integrable systems, Tohoku Math. J. 52 (2000) 199-233.

[11] C. Rogers and W. F. Shadwick, Bäcklund Transformations and their Applications, Academic Press, N.Y., 1982.

[12] A. F. Sidorov, V. P. Shapeev and N. N. Yanenko, The method of differential constraints and its applications in gas dynamics, Nauka, Novosibirsk, 1984.

[13] S. P. Tsarev, The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph transform, Math. USSR Izv. 37 (1991) 397-419.

[14] N. N. Yanenko, Reduction of a system of quasilinear equations to a quasilinear equation, Usp. Mat. Nauk 10 (1955), no 3 (65), 173-178.