Microwave-assisted synthesis and evaluation of N-substituted thiazolidine-2,4-dione derivatives as antimicrobial agents

Santosh L. Gaonkar1,2*, Namratha B1, Nitinkumar S. Shetty1 and Hiroki Shimizu2

1Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal, 576014, Karnataka, India.
2Molecular and Biological Technology Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Hokkaido, Japan.

*Correspondence: gaonkarslg@rediffmail.com

Abstract
A series of N-substituted thiazolidine-2,4-dione derivatives bearing potentially bioactive substituents were synthesized by microwave irradiation method. Structural elucidation was accomplished by 1H NMR, 13C NMR, IR, Mass and elemental analyses. The synthesized compounds were evaluated for antimicrobial activities. Among the compounds studied, compounds 4i and 4d showed potent antimicrobial activities.

Keywords: Thiazolidine-2,4-dione, antimicrobial activities, microwave irradiation, N-substituted thiazolidine-2,4-dione

Introduction
Sulfonylureas and metformin are the most common antidiabetic agents that induce severe hypoglycemia and weight gain [1]. In addition, there are increased rates of both primary and secondary failures associated with them [2]. Hence, there is a need for developing insulin resistance upgrading drugs for type 2 diabetes. Troglitazone 50 [3], the first drug on the market failed to survive due to liver toxicity. 2,4-thiazolidinedione class agents, pioglitazone 48 [4] and rosiglitazone 51 [5] are currently in clinical use. Ciglitazone 47 [6] has antihyperglycemic activity in insulin resistant animal models. But, anaemia, edema and body weight gain [7] are associated with 2,4-thiazolidinediones drugs. Drugs with more advanced profile are the focus of attention. Besides, thiazolidine derivatives show anticancer [8], antiinflammatory [9], antiobesity [10], antifungal [11], antiobesity [12], cardiotonic [13] and anticonvulsant [14] activities. Multiplicity of biological activities along with antidiabetes has made the study of 2,4-thiazolidinediones interesting.

Pharmaceutical industry requires quick production of novel chemical entities. This short reaction time is offered by microwave-assisted synthesis. Therefore, we utilized the microwave irradiation technique to promote the synthesis of bioactive 2,4-thiazolidinedione derivatives. In continuance to our work on the synthesis of biologically-active heterocycles [15-16], herein we report an efficient microwave-assisted synthesis and antimicrobial activities of a novel series of N-substituted thiazolidine-2,4-dione derivatives using CEM Discover microwave synthesizer.

Experimental
Melting points were determined on Thomas Hoover melting point apparatus and were uncorrected. 1H NMR and 13C NMR spectra were recorded on a Bruker AM 400 spectrometer using CDCl3 as solvent. The chemical shifts were expressed in parts per million downfield shifts using tetramethylsilane as internal standard. Infrared (IR) spectra were recorded on Shimadzu 8300 IR spectrometer. Mass spectra were recorded on Shimadzu 2010A LCMS system. Elemental analyses were obtained on a Vario-EL instrument. Thin layer chromatography (TLC) was done with pre-coated silica gel G plates using Toluene-Ethylacetate (7:3) as eluent. All the Microwave irradiation experiments were performed in CEM Discover microwave system.

Thiazolidine-2,4-dione (2)
A mixture of monochloroacetic acid (1.00 g, 10.58 mmol) and thiourea (0.81 g, 10.6 mmol) in water (2 mL) were introduced into CEM Discover microwave reaction vessel. The vessel was sealed and stirred for 1 hour at room temperature. The resulting 2-imino-thiazolidin-4-one 1 was irradiated by 200 Watt microwave at 140°C for 10 min. The mixture was cooled to room temperature and stirred for 1 hr. The formed solid was filtered and recrystallized from hot water to yield 1.10g (90%), m.p. 124-125°C. 1H NMR CDCl3: δ 4.2 (s, 2H, CH 2), 9.1 (bs, 1H, NH). 13C NMR CDCl3: δ 35.9, 168.5, 169.2. IR (KBr pellet, cm-1): n 1421 (-C-N), 1492 (-CH 2), 1666, 1738 (ring –C=O), 3121 (-NH).

3-(2-Bromo-4, 5-dimethoxy-benzyl) thiazolidine-2, 4-dione (4a): typical procedure
A mixture of thiazolidine-2,4-dione (1.00 g, 8.54 mmol), anhy. K2CO3 (1.41 g, 10.21 mmol), 1-bromo-2-bromomethyl-4,5
dimethoxy-benzene (2.65 g, 8.54 mmol) and dimethylformamide (3 mL) were charged into CEM Discover microwave reaction vessel. The vessel was sealed and inserted into CEM discover microwave instrument and irradiated at 200 Watt for 10 min. After completion of the reaction (TLC tolune-ethylacetate; 7:3), the reaction mass was diluted with 25 mL water and the product was extracted with dichloromethane (25 mL). The extract was washed with water (10 mL) and then dried (Na₂SO₄). The solvent was evaporated and the remaining pale yellow oil was crystallized from ethanol to give 2.48 g as a pale yellow solid with a yield of 84%, m.p. 146-148°C.

1H NMR CDCl₃: δ 3.53 (s, 6H, -OCH₃), 3.92 (s, 2H, -CH₂), 4.89 (s, 2H, -CH₂), 7.42 (d, 2H, ArH), 8.01 (d, 2H, ArH). 13C NMR CDCl₃: δ 37.5, 52.0, 128.2, 128.5, 131.4, 134.0, 139.7, 140.6, 161.8, 169.1, 169.5. IR (KBr pellet, cm⁻¹): n 1211 (-C-N), 1454 (-CH₂), 1488 (-NO₂), 1566 (Aromatic –C=C), 1638, 1761 (ring –C=O), 1780 (Acyl –C=O). Anal. Calcd for C₁₂H₁₀BrNO₄S: C, 41.71, H, 3.49, N, 4.05%. Found: C, 41.71%, H, 3.50, N, 4.03%. The above procedure was used in all cases.

3-Benzyl-thiazolidine-2,4-dione (4b)

It was obtained from thiazolidine-2,4-dione (1.00 g, 8.54 mmol), anhy. K₂CO₃ (1.41 g, 10.21 mmol) and benzyl bromide (1.46 g, 8.54 mmol) as a pale yellow crystalline solid with a yield of 85%, m.p. 194-195°C.

1H NMR CDCl₃: δ 3.88 (s, 2H, -CH₂), 4.88 (s, 2H, -CH₂), 7.1-7.22 (m, 5H, ArH). 13C NMR CDCl₃: δ 39.2, 42.3, 59.1, 119.4, 127.3, 141.1, 145.2, 148.6, 149.8, 169.4. IR (KBr pellet, cm⁻¹): n 521 (C-Br), 1180 (-C-N), 1451 (-CH₂), 1771 (ring –C=O). Anal. Calcd for C₁₀H₉NO₂S: C, 57.95, H, 4.38, N, 7.30%. Found: C, 57.90, H, 4.31, N, 7.67%.

3-(2-Oxo-2-phenyl-ethyl)-thiazolidine-2,4-dione (4c)

It was obtained from thiazolidine-2,4-dione (1.00 g, 8.54 mmol), anhy. K₂CO₃ (1.41 g, 10.21 mmol) and phenacyl bromide (1.46 g, 8.54 mmol) as a pale yellow crystalline solid with a yield of 80%, m.p. 198-200°C.

1H NMR CDCl₃: δ 3.42 (s, 3H, -OCH₃), 3.89 (s, 2H, -CH₂), 4.89 (s, 2H, -CH₂), 7.19 (d, 2H, ArH), 7.94-7.61 (m, 4H, ArH), 7.95 (d, 2H, ArH). 13C NMR CDCl₃: δ 37.5, 50.0, 53.8, 127.2, 127.4, 127.9, 128.8, 130.2, 131, 134.5, 134.8, 139.9, 140.6, 161.8, 169.1, 169.5. IR (KBr pellet, cm⁻¹): n 1211 (-C-N), 1454 (-CH₂), 1509 (Aromatic –C=C), 1645, 1742 (ring –C=O), 1780 (Ketone –C=O), 2833 (Ketone –CH). Anal. Calcd for C₁₈H₁₅NO₅S: C, 53.33, H, 4.43, N, 4.10%. Found: C, 53.62, H, 4.34, N, 4.01%.

3-(6-Methylbenzo[1,3]dioxo-5-yl-methyl)thiazolidine-2,4-dione (4d)

It was obtained from thiazolidine-2,4-dione (1.00 g, 8.54 mmol), anhy. K₂CO₃ (1.41 g, 10.21 mmol) and 5-choromethyl-6-methyl-benzoylbenzoic acid methyl ester (2.61 g, 8.54 mmol) as a pale yellow crystalline solid with a yield of 2.36 g (81%), m.p. 198-200°C.

1H NMR CDCl₃: δ 3.42 (s, 3H, -OCH₃), 3.89 (s, 2H, -CH₂), 4.89 (s, 2H, -CH₂), 7.19 (d, 2H, ArH), 7.41-7.61 (m, 4H, ArH), 7.95 (d, 2H, ArH). 13C NMR CDCl₃: δ 37.5, 50.0, 53.8, 127.2, 127.4, 127.9, 128.8, 130.2, 131, 134.5, 134.8, 139.9, 140.6, 161.8, 169.1, 169.5. IR (KBr pellet, cm⁻¹): n 1211 (-C-N), 1454 (-CH₂), 1509 (Aromatic –C=C), 1645, 1742 (ring –C=O), 1780 (Ketone –C=O), 2833 (Ketone –CH). Anal. Calcd for C₁₈H₁₅NO₅S: C, 63.33, H, 4.43, N, 4.10%. Found: C, 63.22, H, 4.34, N, 4.01%.
Antibacterial activity

The synthesized compounds 4(a-i) were screened for their antibacterial activity against Escherichia coli (ATTC-25922), Staphylococcus aureus (ATTC-27853) and Klebsiella pneumoniae (ATTC-25922), Pseudomonas aeruginosa (ATTC-27853) and Candida albicans (ATTC-29233). The Petri dishes were prepared in triplicates and maintained for lawning. A loopful of particular fungal strain was transferred to 3 mL saline to get a suspension of corresponding species. Agar medium of 20 mL was poured into each Petri dish. Excess suspension was decanted and the plates were dried by placing in an incubator at 37°C for 1 h. Using an agar punch, wells were made on the seeded agar plates and <10 mg/mL and >10 mg/mL of the test compounds in N,N-dimethyl formamide were added into each labeled well. A control was also prepared for the plates in the same way using solvent DMF. The Petri dishes were prepared in triplicates and maintained at 37°C for 3 to 4 days. Antifungal activity was determined by measuring the diameter of the inhibition zone. Activity of each compound was compared with Ciclopir oxolamine in DMF as standard. Results of screening studies are given in (Table 2).

Table 1. Antibacterial activity data of compounds 4(a-i).

Compound	S. aureus (mm)	E. coli (mm)	P. aeruginosa (mm)	K. pneumoniae (mm)
4a	6	8	12	9
4b	4	3	2	4
4c	8	7	6	6
4d	15	19	20	16
4e	4	5	4	5
4f	13	15	18	14
4g	2	--	--	3
4h	7	5	6	5
4i	17	18	21	15
Ciprofloxacin	19	20	25	18

Inhibitory zone (diameter) mm of synthesized compounds against tested bacterial strains by disk diffusion method.

Antifungal activity

All the synthesized compounds 4(a-i) were screened for their antifungal activity against Candida albicans (NICM No. 300), Aspergillus fumigatus (NICM No. 902), Aspergillus flavus (NICM No. 524) and Penicillium marneffei in DMF by agar plate disc diffusion method [18]. Sabouraud agar medium was prepared by dissolving peptone (1 g), D-glucose (4 g) and agar (2 g) in distilled water (100 mL) and adjusting the pH to 5.7. Normal saline was used to make suspension of the spore of fungal strain for lawning. A loopful of particular fungal strain was transferred to 3 mL saline to get a suspension of corresponding species. Agar medium of 20 mL was poured into each Petri dish. Excess suspension was decanted and the plates were dried by placing in an incubator at 37°C for 1 h. Using an agar punch, wells were made on the seeded agar plates and <10 mg/mL and >10 mg/mL of the test compounds in N,N-dimethyl formamide were added into each labeled well. A control was also prepared for the plates in the same way using solvent DMF. The Petri dishes were prepared in triplicates and maintained at 37°C for 3 to 4 days. Antifungal activity was determined by measuring the diameter of the inhibition zone. Activity of each compound was compared with Ciclopir oxolamine in DMF as standard. Results of screening studies are given in (Table 2).

Table 2. Antifungal activity data of compounds 4(a-i).

Compound	A. fumigatus (mm)	A. flavus (mm)	P. Marneffei (mm)	C. albicans (mm)
4a	10	13	13	11
4b	3	4	2	6
4c	10	12	11	10
4d	18	15	17	19
4e	10	13	12	11
4f	17	15	17	15
4g	4	3	3	3
4h	10	12	11	10
4i	19	16	17	18
Ciclopir oxolamine	22	18	20	20

Inhibitory zone (diameter) mm of synthesized compounds against tested fungal strains by disk diffusion method.

Results and discussion

The synthetic pathway starts with the synthesis of thiazolidine-2,4-dione 2, an important bioactive intermediate in the synthesis. The reaction is completed with microwave irradiation at 140°C for 10 min with 90% yield. In contrast, conventional method needs 12-15 h heating affording about 80% yield. Microwave assisted condensation reaction of thiazolidine-2,4-dione with different alkyl halides and acyl halides afforded N-substituted thiazolidine-2,4-dione derivatives 4(a-i) at 200 Watt in 10 min. Yields varied from 84% to 90%. The schematic diagram of the reaction pathway is depicted in Scheme 1.
The synthesized compounds were characterized by IR, 1H NMR, 13C NMR, mass and elemental analyses. The infra red spectra of condensed products showed the disappearance of the peak at 3121 cm$^{-1}$ and this was due to –NH group of thiazolidine-2,4-dione. 1H NMR spectrum of this key intermediate showed a broad singlet at δ 9.1 due to -NH group. Disappearance of this signal in the condensed products confirms their formation. All other substituents were observed in the expected regions. The investigation of the antibacterial and antifungal screening studies revealed that all the tested compounds 4a-i showed moderate to good inhibition in DMF. Compounds 4i with para-fluorobenzyl group and 4d with para-nitrobenzyl group showed moderate activity, due to the presence of fluoro group and nitro group respectively at para positions of benzene ring. Compound 4f showed moderate activity, due to the presence of methyl carboxylate group on biphenyl ring. Compounds 4a, 4b, 4c, 4e, 4g, and 4h showed weak antibacterial activity. Compounds 4d, 4i and 4f showed good inhibition against all the tested fungal strains. Compounds 4a, 4c, 4e, 4h showed moderate activity while 4b and 4g showed weak antifungal activity.

Conclusions

In conclusion, thiazolidine-2,4-dione and some new derivatives were synthesized and characterized based on their physical and spectral data. Compounds were isolated in good yields and they did not require chromatographic separation owing to microwave irradiation method. Antimicrobial activities of the novel series have been evaluated by disc diffusion method. Compounds 4i and 4d exhibited potent antimicrobial activities. Further research to improve the potency of this series is under progress in our laboratories.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Authors’ contributions	SLG	NB	NSS	HS
Research concept and design	✓	--	--	--
Collection and/or assembly of data	✓	--	--	--
Data analysis and interpretation	✓	--	--	--
Writing the article	✓	--	--	--
Critical revision of the article	✓	--	--	--
Final approval of article	✓	--	--	--
Statistical analysis	✓	--	--	--

Acknowledgement

The postdoctoral research grant to SLG by Manipal Institute of Technology, Manipal and also its providing the necessary laboratory facilities to accomplish the research work have been gratefully acknowledged.

Publication history

Editors: Derong Ding, University of Notre Dame, USA.
Monica Butnariu, Banat’s University of Agricultural Sciences and Veterinary Medicine, Romania.
Received: 21-Jan-2014 Final Revised: 17-Feb-2014
Accepted: 19-Feb-2014 Published: 24-Mar-2014

References

1. Holman RR and Turner RC. *Textbook of Diabetes*. Pickup JC and Williams G (Eds). Blackwell Scientific Publications. London, UK. 1991; 462–76.
2. Harrower AD. Comparison of efficacy, secondary failure rate, and complications of sulfonylureas. *Diabetes Complications*. 1994; 8:201-3.
3. Yoshioka T, Fujita T, Kanai T, Aizawa Y, Kurumada T, Hasegawa K and Horikoshi H. Studies on hindered phenols and analogues. 1. Hypolipidemic and hypoglycemic agents with ability to inhibit lipid peroxidation. *J Med Chem*. 1989; 32:421-8. [Article] [PubMed]
4. Sohda T, Momose Y, Meguro K, Kawamatsu Y, Sugiyama Y and Ikeeda H. Studies on antidiabetic agents. Synthesis and hypoglycemic activity of 5-[4-(pyridylalkoxy)benzyl]-2,4-thiazolidinediones. *Arzneimittelforschung*. 1990; 40:37-42. [Article] [PubMed]
5. Cantello BC, Cawthorne MA, Cottam GP, Duff PT, Haigh D, Hindley RM, Lister CA, Smith SA and Thurlby PL. [(omega-(Heterocyclylamino)alkoxy)benzyl]-2,4-thiazolidinediones as potent antihyperglycemic agents. *J Med Chem*. 1994; 37:3977-85. [Article] [PubMed]
6. Sohda T, Mizuno K, Imamiya E, Sugiyama Y, Fujita T and Kawamatsu Y. Studies on antidiabetic agents. II. Synthesis of 5-[4-(1-methylcyclohexylmethoxy)benzyl]thiazolidine-2,4-dione (ADD-3878) and its derivatives. *Chem Pharm Bull (Tokyo)*. 1982; 30:3580-600. [PubMed]
7. Rakowitz D, Maccari R, Ottana R and Vigorita MG. In vitro aldose reductase inhibitory activity of 5-benzyl-2,4-thiazolidinediones. *Bioorg Med Chem*. 2006; 14:567-74. [Article] [PubMed]
8. Patil V, Tilekar K, Mehendale-Munj S, Mohan R and Ramaa CS. Synthesis and primary cytotoxicity evaluation of new 5-benzylidene-2,4-thiazolidinedione derivatives. *Eur J Med Chem*. 2010; 45:4539-44. [PubMed]
9. Nastasa C, Tiperciuc B, Parvu A, Duma M, Ionut I and Oniga O. Synthesis of new N-substituted 5-arylidene-2,4-thiazolidinediones as anti-inflammatory and antimicrobial agents. Arch Pharm (Weinheim). 2013; 346:481-90. | Article | PubMed

10. Bhattarai BR, Kafle B, Hwang JS, Ham SW, Lee KH, Park H, Han IO and Cho H. Novel thiazolidinedione derivatives with anti-obesity effects: dual action as PTP1B inhibitors and PPAR-gamma activators. Bioorg Med Chem Lett. 2010; 20:6758-63. | Article | PubMed

11. Lima MC, Costa DL, Goes AJ, Galdino SL, Pitta IR and Luu-Duc C. [Synthesis and antimicrobial activity of chlorobenzyl benzylidene imidazolidinedione derivatives and substituted thiazolidinediones]. Pharmazie. 1992; 47:182-4. | Article | PubMed

12. Maccari R, Ciurleo R, Giglio M, Cappiello M, Moschini R, Corso AD, Mura U and Ottana R. Identification of new non-carboxylic acid containing inhibitors of aldose reductase. Bioorg Med Chem. 2010; 18:4049-55. | Article | PubMed

13. Andreani A, Rambaldi M, Locatelli A, Leoni R, Bossa M, Chiericozzi I, Galatulas G and Salvatore A. Synthesis of lactams with potential cardiotoxic activity. Eur J Med Chem. 1993; 28:825-9. | Article

14. el-Feky SA. Synthesis and anticonvulsant properties of some novel quinazolinone thiazolidine and 4-thiazolidone derivatives. Pharmazie. 1993; 48:894-6. | Article | PubMed

15. Gaonkar SL and Shimizu H. Microwave assisted synthesis of the antihyperglycemic drug rosiglitazone. Tetrahedron. 2010; 66:3314-17. | Article

16. Kavitha CV, Gaonkar SL, Narendra Sharath Chandra JN, Sadashiva CT and Rangappa KS. Synthesis and screening for acetylcholinesterase inhibitor activity of some novel 2-butyl-1,3-diaza-spiro[4,4]non-1-en-4-ones: derivatives of irbesartan key intermediate. Bioorg Med Chem. 2007; 15:7391-8. | Article | PubMed

17. Kumar A, D’Souza SS, Nagaraj SR, Gaonkar SL, Salimath BP and Rai KM. Antiangiogenic and antiproliferative effects of substituted-1,3,4-oxadiazole derivatives is mediated by down regulation of VEGF and inhibition of translocation of HIF-1alpha in Ehrlich ascites tumor cells. Cancer Chemother Pharmacol. 2009; 64:1221-33. | Article | PubMed

18. Lemriss S, Marquet B, Ginstet H, Lefeuvre L, Fassouane A and Boiron P. Screening of new antifungal compounds in a collection of chemical products. J Mycol Med. 2003; 13:189-92.

Citation:
Gaonkar SL, B N, Shetty NS and Shimizu H. Microwave-assisted synthesis and evaluation of N-substituted thiazolidine-2,4-dione derivatives as antimicrobial agents. Interact Med Chem. 2014; 2:2. http://dx.doi.org/10.7243/2053-7107-2-2