A probabilistic way to discover the rainbow

JOSCHA PROCHNO and MICHAEL SCHMITZ

1. Introduction

A slogan that you find on the back of a pack of Skittles candy says ‘No two rainbows are the same. Neither are two packs of Skittles. Enjoy an odd mix.’ An online blog [1] describes how the blogger found two identical packs of Skittles, among 468 packs with a total of 27,740 Skittles. Meticulously collecting the data for this experiment was apparently triggered by some earlier calculations. More precisely, the blogger writes:

‘A few months ago, we did some calculations on a cocktail napkin, so to speak, predicting that we should be able to find a pair of identical packs of Skittles with a reasonably – and perhaps surprisingly – small amount of effort.’

Whether performing this admittedly yummy experiment really only requires a ‘small amount of effort’ or not, we chose to write this Article as intellectual candy for the mathematically inclined reader and model this experiment as a probabilistic one. This allows to quantify the probability that two randomly selected packs of Skittles candy are identical and then to estimate the expected number of packs one has to purchase until the first match. The approach requires merely elementary probability theory and, as is typical for such a discrete problem, some combinatorial considerations.

We also believe this problem to be appealing for middle and high school students as such an experiment can be repeated and subsequently be analysed by probabilistic tools. Here, an adaptation in the precision of arguments creates a certain variability in the level of requirements. In concluding the Article more sophisticated tools, such as generating functions, are employed, which certainly exceed middle or high school level but are suitable for using with undergraduate university students.

In order to approach this question mathematically, we need to start with a suitable model. Let us assume that each pack of Skittles contains the exact same number \(n \in \mathbb{N} \) of Skittles (for brevity we sometimes say \(n \)-packs of Skittles) and that there are \(d \in \mathbb{N} \) different colours.* When filling a pack of Skittles we assume that we do it randomly and with a uniform distribution over the \(d \) colours, i.e. for each colour \(k \in \{1, \ldots, d\} \) and each Skittle entering a pack, the probability that it has the colour \(k \) is given by \(\frac{1}{d} \). We shall say that two packs of Skittles are identical if for each colour they contain the same number of Skittles.

2. Two colours

A key to solving the Skittles problem elegantly will be a reinterpretation that can be best understood when considering only \(d = 2 \) colours for the time being, and generalise the idea to an arbitrary number \(d \leq n \) of colours.

* Actually the number varies from pack to pack, in [1] it says that most studies suggest an average of about 60 candies per pack. There are five different colours or flavours.
We consider the filling process of a pack of \(n \) Skittles with two possible colours, say red and green, and imagine it to be constructed by a planar random walk from the origin (since we start with an empty pack) on the integer lattice in the plane, where a step right adds a red sweet, and a step up adds a green sweet; each of the two possibilities being equally likely, having probability \(\frac{1}{2} \), while the steps are independent. The pack is full on the line \(x + y = n \), and the finishing point on that line corresponds to a pack of \(x \) reds and \(y \) greens. The following picture shows two lattice paths (dashed/solid) that both correspond to a pack of eleven Skittles with six reds and five greens.

![Figure 1: Lattice paths represent Skittles packs](image)

There are \(\binom{n}{x} = \binom{n}{y} \) paths from the origin to a given point \((x, y)\) with \(x + y = n \), as we can choose any of the \(n \) total steps to be the \(x \) steps to the right (or the \(y \) steps up). Note that since \(x + y = n \), indeed

\[
\binom{n}{x} = \binom{n}{n-y} = \binom{n}{y},
\]

where we used the identity \(\binom{n}{k} = \binom{n}{n-k} \), which holds for all \(n \in \mathbb{N} \) and \(k \in \{0, 1, \ldots, n\} \). Clearly each path with \(n \) steps has the probability \(\frac{1}{2^n} \) and therefore such a random walk ends at \((x, y)\) with probability \(\frac{1}{2^n} \binom{n}{x} \).

Thus two independent random walks both end at a given point \((x, y)\) with probability \(\frac{1}{2^n} \binom{n}{x} ^2 \). Summing over all possible \(x \in \{0, 1, \ldots, n\} \) gives the probability of the event \(E_n^2 \) that two independent random walks end at a mutual point with step distance \(n \) from the origin, namely

\[
\mathbb{P}[E_n^2] = \frac{1}{2^{2n}} \sum_{x=0}^{n} \binom{n}{x} ^2.
\]
Note that we have hereby solved the problem at hand, because $\Pr[E^2_n]$ equals the probability that two independently chosen n-packs of Skittles with two possible colours are identical, although the cardinality of the event E^2_n is not the number of pairs of identical n-packs with two possible colours. The trick is that we chose a model that takes order into account (by considering paths—each step represents a sweet entering a pack), although there is clearly no order in a pack of Skittles.

We can use a reinterpretation to simplify (1). To this end we consider the same kind of random walks with $2n$ instead of n steps. The probability that such a walk ends at (n, n) equals $\frac{1}{2^{2n}} \binom{2n}{n}$, as n steps to the right have to be chosen out of $2n$ steps. On the other hand, such a walk has to pass the line $x + y = n$ at some point (x, y). This means that amongst the first n steps x steps to the right have been made. Then, in order to end at (n, n), amongst the remaining n steps $n - x$ steps to the right have to be made (see Figure 2).

\[\sum_{x=0}^{n} \binom{n}{x}^2 \] walks of step length $2n$ that end at (n, n), and we obtain

\[\Pr[E^2_n] = \frac{1}{2^{2n}} \sum_{x=0}^{n} \binom{n}{x}^2 = \frac{1}{2^{2n}} \binom{2n}{n}.\]

\[\text{Figure 2: A walk with } 2n \text{ steps passes a point } (x, y) \text{ with } x + y = n\]

\[\text{Therefore there are } \binom{n}{x} \cdot \binom{n}{n-x} = \binom{n}{x}^2 \text{ paths that end at } (n, n) \text{ and pass through the point } (x, y). \text{ Summing over all } x \text{ tells us that there are } \sum_{x=0}^{n} \binom{n}{x}^2 \text{ walks of step length } 2n \text{ that end at } (n, n),^* \text{ and we obtain} \]

\[\Pr[E^2_n] = \frac{1}{2^{2n}} \sum_{x=0}^{n} \binom{n}{x}^2 = \frac{1}{2^{2n}} \binom{2n}{n}.\]

\[^* \text{ What we did here is essentially the combinatorial proof of the Vandermonde identity } \binom{m_1 + m_2}{n} = \sum_{k=0}^{n} \binom{m_1}{k} \binom{m_2}{n-k} \text{ for the case } m_1 = m_2 = n.\]
3. Three and more colours

Now we consider \(n \)-packs of Skittles with \(d \) possible colours, and start to generalise our approach by tackling the case \(d = 3 \). Consider a spatial random walk from the origin on the integer lattice in 3-dimensional space, where a step right adds a red sweet, a step forward adds a green sweet, and a step up adds a blue sweet. The pack is full on the plane \(x + y + z = n \). Analogously to the above we denote the event that two independently performed \(n \)-step random walks end at a mutual point by \(E_n^3 \) (or \(E_n^d \) in general).

![Figure 3: A 7-step spatial random walk and its orthogonal projection from above](image)

For a walk to end at a given point \((x, y, z) \) with \(x + y + z = n \), there have to be made \(z \) steps up and we have \(x + y = n - z \). This means that if we look at the situation directly from above (i.e. consider an orthogonal projection on the \(xy \)-plane), we have a random walk with \(n - z \) steps in the plane that ends at the point \((x, y) \), so we are back in the situation considered earlier (see Figure 3). Thus the number of pairs of walks that both perform exactly \(z \) steps up and have the same endpoint equals \(\binom{n}{z} |E_{n-z}^2| \), and summing over all possible \(z \in \{0, 1, \ldots, n\} \) yields

\[
|E_n^3| = \sum_{z=0}^{n} \binom{n}{z}^2 |E_{n-z}^2|.
\]

(2)

As each path has probability \((\frac{1}{3})^n\), we obtain \(\mathbb{P}[E_n^3] = [E_n^3]/3^{2n} \). Equation (2) is a nice recursion, but, if we pause for a moment, we see that the same considerations also provide a non-recursive expression. For a walk to end at \((x, y, z) \) we have \(\binom{n}{z} \) choices for when to make the \(z \) steps up, and out of the remaining \(n - z \) steps we have \(\binom{n-z}{x} \) choices for when to make the \(x \) steps to the right. Therefore there are \(\binom{n}{z}^2 \binom{n-z}{x} \) pairs of walks with \(z \)
steps up and x steps to the right (and consequently y steps forward). Summing over all possible x, y, z now yields

$$|E_n^3| = \sum_{x+y+z=n, x,y,z \in \{0,1,\ldots,n\}} \binom{n}{x,y,z}^2.$$

Keeping the assumption $n - z - x = y$ in mind, we observe that

$$\binom{n}{x,y,z} = \frac{n!}{(n-z)!z!} \cdot \frac{(n-z)!}{(n-z-x)!x!} = \frac{n!}{z!x!y!},$$

and recognise the multinomial coefficient* $\binom{n}{x,y,z} = \frac{n!}{z!x!y!}$. Therefore we may rewrite

$$|E_n^3| = \sum_{x+y+z=n, x,y,z \in \{0,1,\ldots,n\}} \binom{n}{x,y,z}^2.$$

It is now not so hard to generalise these ideas to n-packs of Skittles with an arbitrary number d of possible colours. Filling a pack can be thought of as a spatial random walk from the origin on the integer lattice in d-dimensional space, where a step in x_1-direction adds a sweet of colour 1, a step in x_2-direction adds a sweet of colour 2, and so on. The considerations for both the recursive and for the non-recursive formula are pretty much as above.

For the recursion we fix a number k of steps that are made in direction x_1. There are $\binom{n}{k}$ possible choices for these k steps. The remaining $n-k$ steps have to be carried out in $d-1$ dimensions, so there are $\binom{n}{k} - 1$ pairs of walks that perform exactly k steps in direction x_1 and end at a mutual point. Again we sum over all k and we obtain

$$|E_n^d| = \sum_{k=0}^{n} \binom{n}{k}^2 |E_{n-k}^{d-1}|. \quad (3)$$

The non-recursive formula is also generalised in a straightforward manner. For a random walk to end at a given point (k_1,k_2,\ldots,k_d) in d-dimensional space with $k_1 + k_2 + \ldots + k_d = n$, we have to choose k_1 steps in x_1-direction, k_2 steps in x_2-direction, and so on.

* The general definition is $\binom{n}{x_1,\ldots,x_d} = \frac{n!}{x_1!\ldots x_d!}$. A well-known and nice interpretation of the multinomial coefficient is the number of distinct permutations of a word of length n in which d different letters occur and each letter i occurs x_i times. For instance, there are $\frac{8}{2,2,1,1,1,1}$ different permutations of the Word SKITTLES.
steps in x_2-direction, and so on. There are \(\binom{n}{k_1} \) possible choices for the k_1 steps in x_1-direction. From the remaining $n - k_1$ steps we have \(\binom{n - k_1}{k_2} \) possibilities to choose k_2 steps in x_2-direction, and so on. Therefore there are

\[
\binom{n}{k_1} \cdot \binom{n - k_1}{k_2} \cdot \cdots \cdot \binom{n - [k_1 + \ldots + k_{d-1}]}{k_d} = \binom{n}{k_1, k_2, \ldots, k_d}
\]

paths with n steps that end at (k_1, k_2, \ldots, k_d). Summing over all possible k_1, k_2, \ldots, k_d yields

\[
|E_n^d| = \sum_{k_1 + \ldots + k_d = n} \left(\binom{n}{k_1, k_2, \ldots, k_d} \right)^2.
\]

As each path occurs with probability $1/d^n$, we obtain $\mathbb{P}[E_n^d] = |E_n^d|/d^{2n}$.

4. Crunching some numbers

Let us use our formulas to compute some values and see why it is nice to have both closed and recursive expressions. By (4) we have

\[
|E_2^2| = \sum_{k_1 + k_2 = 2} \left(\binom{2}{k_1, k_2} \right)^2 = \binom{2}{0, 2}^2 + \binom{2}{1, 1}^2 + \binom{2}{2, 0}^2 = 6.
\]

That was easy, so we could try dealing with slightly larger numbers in another example, e.g.

\[
|E_3^3| = \sum_{k_1 + k_2 + k_3 = 3} \left(\binom{3}{k_1, k_2, k_3} \right)^2.
\]

We can arrange the sum $3 = 0 + 0 + 3$ in three and $3 = 0 + 1 + 2$ in six possible orders, while $3 = 1 + 1 + 1$ has only one possible order. From these we obtain

\[
|E_3^3| = 3 \left(\binom{3}{0, 0, 3} \right)^2 + 6 \left(\binom{3}{0, 1, 2} \right)^2 + \left(\binom{3}{1, 1, 1} \right)^2 = 3 + 6 \cdot 9 + 36 = 93.
\]

Considering this (for $n = 3$ and $d = 3$ the sum already consists of ten summands!) we are lucky to have a recursion for determining (e.g. by means of a computer) the numbers $|E_n^d|$ for larger n and d. Tables 1 and 2 show the values for $|E_n^d|$ and $\mathbb{P}[E_n^d]$ (rounded to four decimal places) for $1 \leq n, d \leq 5$.
A PROBABILISTIC WAY TO DISCOVER THE RAINBOW

$n \backslash d$	1	2	3	4	5
1	1	2	3	4	5
2	1	6	15	28	45
3	1	20	93	256	545
4	1	70	639	2716	7885
5	1	252	4653	31504	127905

TABLE 1: $|E_n^d|$ for $1 \leq n, d \leq 5$

$n \backslash d$	1	2	3	4	5
1	1	0.5	0.3333	0.25	0.2
2	1	0.375	0.1825	0.1904	0.072
3	1	0.3125	0.1276	0.0625	0.0349
4	1	0.2734	0.0974	0.0414	0.0202
5	1	0.2461	0.0788	0.0300	0.0131

TABLE 2: $\mathbb{P}\left[E_n^d\right]$ for $1 \leq n, d \leq 5$

Of course, we also want to know the probability that two randomly purchased packs of Skittles are identical assuming the realistic values of $d = 5$ colours and $n = 60$ sweets in each pack. This is $\mathbb{P}\left[E_{60}^5\right] = 0.00009752\ldots \approx 0.01\%$.

So while it is obviously not true that no two packs of Skittles are the same (as the slogan claims) it is at least very unlikely (in particular, because not all packs contain the same number of Skittles) which decreases the probability even further!

5. **Expected number of packs needed for a match**

We now imagine that somebody purchases a pack of Skittles candy each day and compares it to any of the previously bought packs to see if it is identical to one of them (as said above, there are actually people who do such things). We ask the following question:

‘How many packs must be bought on average until the first match appears, i.e. what is the expected value of purchased packs in this experiment?’

First, we present a plausible, yet faulty approach, and then discuss where the error happened, why the question is not so easy to answer precisely, and how to get at least a good estimate for the desired expected value. We know that two independent n-step random walks W, W' represent
identical n-packs of Skittles if, and only if, they have the same endpoint. In
this case let us say that they are \textit{equivalent} and write $W \sim W'$. In order to
tackle the problem, we switch from considering two walks to considering a
sequence of independent n-step random walks. In other words, W is the n-step random walk in \mathbb{R}^d that ends at some point on the
hyperplane $H = \{(x_1, \ldots, x_d) \in \mathbb{N}_0^d \mid x_1 + \ldots + x_d = n\}$ considered
above, and W_1, W_2, \ldots are independent, identically distributed copies of W. As we are only interested in whether the random walks have the same
endpoint or not, we can switch to considering random variables X_1, X_2, \ldots
with values in H, where $X_i = (k_1, \ldots, k_d)$ if, and only if, W_i ends in
(k_1, \ldots, k_d). From our considerations above, we know that

\[P[X_i = (k_1, \ldots, k_d)] = \binom{n}{k_1, \ldots, k_d} \frac{1}{d^n} \]

for every $i \in \mathbb{N}$.

Moreover, we consider a random variable Z that shall return the number of
purchases until the first match, i.e. Z takes the value $\ell \geq 2$ if, and only
if, $W_1, W_2, \ldots, W_{\ell-1}$ are pairwise non-equivalent and $W_\ell \sim W_i$ for some
$i \in \{1, \ldots, \ell - 1\}$. In other words, $P[Z = \ell]$ is given by

\[P[X_1, \ldots, X_{\ell-1} \text{ p.d.}] \cdot P[X_\ell = X_i, \text{ for some } i < \ell \mid X_1, \ldots, X_{\ell-1} \text{ p.d.}], \]

where we abbreviated ‘pairwise different’ by ‘p.d.’ and the latter factor
denotes a conditional probability. Now comes the plausible, yet incorrect
argument: for $i \neq j$ let $p = P[X_i = X_j] = P[E_{ij}^d]$ be the probability that
two arbitrary random walks have the same endpoint. In other words, p is the probability that two randomly purchased n-packs of Skittles with d
possible flavours are identical. Among $\ell - 1$ packs of Skittles (or random walks)
there are $\binom{\ell - 1}{2}$ different pairs, and each pair consists of different packs
with probability $1 - p$. Thus,

\[P[X_1, \ldots, X_{\ell-1} \text{ p.d.}] = (1 - p)^{\binom{\ell - 1}{2}}. \]

Moreover, given that $X_1, \ldots, X_{\ell-1}$ are pairwise different, the
probability that X_ℓ matches with at least one of the previous $X_i, i < \ell,$
equals $(\ell - 1)p$. Hence,

\[P[Z = \ell] = (1 - p)^{\binom{\ell - 1}{2}} \cdot (\ell - 1)p. \]

What did we do wrong? One point is that

\[P[X_\ell - X_i, \text{ for some } i < \ell \mid X_1, \ldots, X_{\ell-1} \text{ p.d.}] \leq 1, \]

but $(\ell - 1)p$ clearly does exceed 1 for large ℓ. This could be easily taken
into account by replacing the factor $(\ell - 1)p$ by $\min\{1, (\ell - 1)p\}$, but we
made another, more critical mistake: the events of having identical packs of
Skittles are clearly not independent. For example, the probability that X_3 is
identical to X_1 or X_2 depends on whether X_1 and X_2 are identical or not. One
might think that $(1 - p)^{k/2}$ should at least serve as an upper bound for
$\mathbb{P}[X_1, \ldots, X_k \text{ p.d.}]$, but even this turns out to be not true in general. We
want to explain more precisely why the suggested upper bound seems
plausible at first and what we mean by ‘not true in general’. We are
considering a series of i.i.d copies of $X : \Omega \to H$. Let us denote
$q_x = \mathbb{P}[X = x]$ for each $x = (x_1, \ldots, x_d) \in H$. Then, we have
$q_x \in [0, 1]$ for each x and $\sum_{x \in H} q_x = 1$. If X was uniformly distributed, i.e.
$q_x = 1/m$ for each x, where we let $m = |H|$, we would have
\[
\mathbb{P}[X_1, \ldots, X_k \text{ p.d.}] = \frac{\prod_{i=0}^{k-1} (m - i)}{m^k}.
\]
Note that for $m = 365$ this is nothing but the classical birthday problem
(see, e.g. [2]). Here, it holds $p = 1/m$, and it can be shown without much
effort that $(1 - 1/m)^{k/2}$ is indeed an upper bound and a good estimate for
the probability that X_1, \ldots, X_k are pairwise different (see, e.g. [3, 4]). For
example, with $m = 365$ and $k = 23$, it holds
\[
\frac{\prod_{i=0}^{k-1} (m - i)}{m^k} = 0.4927\ldots \text{ and } \left(1 - \frac{1}{m}\right)^{k/2} = 0.4995\ldots .
\]
The fact that for a uniform distribution the faulty, dependence-ignoring
approach yields an upper bound and a good approximation makes it
plausible that this could also be true for arbitrary distributions, but the
following counterexample† shows that this not the case. Let $X : \Omega \to \{1, 2, 3\}$
with $\mathbb{P}[X = 1] = 0.8$ and $\mathbb{P}[X = 2] = \mathbb{P}[X = 3] = 0.1$. Then the probability that three copies of X are
pairwise different equals $6 \times 0.8 \times 0.1^2 = 0.048$. On the other hand, the probability p that two
arbitrary copies of X coincide is given by $p = 0.8^2 + 0.1^2 + 0.1^2$, and
therefore the would-be upper bound equals $(1 - p)^{3/2} = 0.039\ldots .$

Another interesting fact is that the probability that k copies of X are
pairwise different is maximized by the uniform distribution. This is not so
hard to show (see, e.g. [6, 7, 8]) and, at first glance, seems promising to
allow a simple approach to get an upper bound for the desired expected
value. But on second thoughts, this idea is futile, as $\mathbb{P}[Z = \ell]$ is given by
$\mathbb{P}[X_1, \ldots, X_{\ell-1} \text{ p.d.}] \cdot \mathbb{P}[X_\ell = X_i, \text{ for some } i < \ell \mid X_1, \ldots, X_{\ell-1} \text{ p.d.}]$, and the uniform distribution yields an upper bound for the first factor, but a

† This is the famous fact that among 23 people the chances that at least two of them
have the same birthday (day and month) are more than even (assumed that
birthdays are uniformly distributed throughout the year).

‡ This counterexample was delivered by Will Perkins and pointed out on [5].
lower bound for the second factor. Fortunately, there are other techniques that solve the problem. In [9] it is shown that
\[\mathbb{P}[X_1, \ldots, X_{\ell-1} \text{ p.d.}] \leq (1 - \sqrt{p})^{k-1} (1 + \sqrt{p} (k - 1)), \]
and
\[\sqrt{\frac{\pi}{2p}} - \frac{2}{5} < \mathbb{E}[Z] \leq \frac{2}{\sqrt{p}}. \]
For the proofs of these inequalities we refer the interested reader to [9].

Here, we are content to compare the expected value that would result from our intuitively reasonable, yet faulty first approach with a correct estimate for \(n = 60, \ d = 5 \). From \(\mathbb{P}[Z = \ell] = (1 - p)^{\binom{\ell}{2}} \cdot \min\{1, (\ell - 1)p\} \) it would follow that \(\mathbb{E}[Z] \approx 129 \), and Wiener's result in [9] yields
\[126.9\ldots < \mathbb{E}[Z] \leq 202.5\ldots. \]
We see that the incorrect approach yields a plausible result. It would be interesting to examine whether this approach can be adapted suitably to obtain a correct estimate in our case, that is, the case of a series of multinomial distributed random variables. Note that the correct upper bound derived from Wiener's results is much smaller than the result of the experiment in the blog [1]. And in fact it should be, considering that actually the packs of Skittles may contain different numbers of candies, which clearly reduces the probability of a match and therefore increases the expected value.

6. Comparison with other results

In the internet blog mentioned above a generating function for the numbers \(\mathbb{P}[E^d_n] \) is presented. In particular, it says that
\[\mathbb{P}[E^d_n] = \frac{1}{d^{2n}} \left[\frac{x^{2n}}{(n!)^2} \right] \sum_{k \geq 0} \frac{\binom{x^k}{k!}^2}{d}, \quad (d, n \in \mathbb{N}, d \leq n) \]
which means that \(|E^d_n| = d^{2n} \mathbb{P}[E^d_n] \) is the coefficient of \(x^{2n} / (n!)^2 \) in the \(d \)th power of the series \(\sum_{k \geq 0} \frac{x^k}{k!}^2 \). We want to see that this corresponds exactly to our result. We recall from (4)
\[|E^d_n| = \sum_{k_1 + \ldots + k_d = n} \frac{(n!)^2}{(k_1! \cdot k_2! \cdot \ldots \cdot k_d!)^2}. \]
Thus it remains to show that the coefficient of \(x^{2n} \) in the \(d \)th power of the series \(\sum_{k \geq 0} \frac{x^k}{k!}^2 \) equals
\[\sum_{k_1 + \ldots + k_d = n, k_i \in \{0, \ldots, n\}} (k_1! \cdot k_2! \cdot \ldots \cdot k_d!)^{-2}. \]
To this end we consider the dth power of the series, i.e.,

$$
\left(1 + \frac{x^2 \times 1}{(1!)^2} + \frac{x^2 \times 2}{(2!)^2} + \frac{x^2 \times 3}{(3!)^2} + \ldots \right)^d
$$

To understand how to expand this expression imagine the d brackets written out as a product. We have to pick exactly one factor from each of the d brackets, multiply these d factors, and sum over all possible choices. In this way each of the chosen factors has the form $\frac{x^{2k}}{(k!)^2}$, and if we multiply d such factors, say $\frac{x^{2k_1}}{(k_1!)^2}, \frac{x^{2k_2}}{(k_2!)^2}, \ldots, \frac{x^{2k_d}}{(k_d!)^2}$, we get

$$\frac{x^{2(k_1 + k_2 + \ldots + k_d)}}{(k_1! \cdot k_2! \cdot \ldots \cdot k_d!)^2}.$$

Now we see that the exponent of x equals $2n$ if, and only if, $k_1 + k_2 + \ldots + k_d = n$, so we have to sum over all choices of $k_1, \ldots, k_d \in \{0, \ldots, n\}$ satisfying this condition and find that the coefficient of x^{2n} is given by

$$\sum_{\substack{k_1 + \ldots + k_d = n \\ k_i \in \{0, \ldots, n\}}} \frac{1}{(k_1! \cdot k_2! \cdot \ldots \cdot k_d!)^2}$$

as desired.

7. Concluding remarks and pitfalls

We have assumed that all packs of Skittles contain the same number n of candies, which is actually not the case. In [1] it is pointed out that, assuming the number n of Skittles in a pack is independently distributed with probability density function f, the probability that two randomly purchased packs are identical is given by

$$\sum_{n=1}^{\infty} f(n)^2 \mathbb{P}[E_n^d].$$

Moreover, the bloggers say that they guessed $f(n)$ based on similar past studies and thereby obtained an expected value of 400-500 packs until the first match, depending on the assumptions for the density f.

Concluding this Article we want to point out a possible pitfall. It is relatively easy to determine the number of different packs of Skittles if each pack contains n Skittles and d colours are available, and one obtains

$$\left(\begin{array}{c} n + d - 1 \\ d - 1 \end{array} \right)$$

possibilities*. For instance, if $n = 60$ and $d = 5$ this gives

$$\left(\begin{array}{c} 64 \\ 4 \end{array} \right) = 635376$$

* Note that $\left(\begin{array}{c} n + d - 1 \\ d - 1 \end{array} \right)$ is the cardinality m of the hyperplane H considered in Section 5.
different packs. Concluding from this that the probability for two randomly purchased packs of Skittles to be identical equals \(1/635376\) would be wrong, because the different types of make-up are not equally likely to be selected. For instance, a pack with only red Skittles is less likely than a pack with twelve Skittles of each colour.

8. Behind the curtain - the formal set-up

In this Article we computed probabilities in an intuitive manner, and we want to specify this here by stating the corresponding probability spaces precisely. For the 2-dimensional random walks with \(n\) steps considered in section 2, which represent the filling processes of an \(n\)-pack of Skittles with only two possible colours, we use

\[\Omega = \{(x_1, \ldots, x_n) : x_1, \ldots, x_n \in \{r, u\}\}, \]

where \(x_i = r\) means that step \(i\) is a step to the right, and \(x_i = u\) indicates that the \(i\)th step is a step up. Then we have \(|\Omega| = 2^n\) and \(\mathbb{P}[A] = |A|/2^n\) for each \(A \subseteq \Omega\), as used intuitively above.

For the 3-dimensional case corresponding to \(d = 3\) colours we use

\[\Omega = \{(x_1, \ldots, x_n) : x_1, \ldots, x_n \in \{r, f, u\}\} \]

with the obvious meanings of \(x_i = r, f, u\) for each \(i\), since \(x_i = r, f, u\) for each \(i\). For the general case, we let

\[\Omega = \{(x_1, \ldots, x_n) : x_1, \ldots, x_n \in \{1, \ldots, d\}\}, \]

where \(x_i = k\) means that the \(i\)th step is a step in direction \(x_k\) for each \(k \in \{1, \ldots, d\}\). Clearly we then have \(|\Omega| = d^n\).

When asking ourselves with which probability two randomly and independently chosen \(n\)-packs of Skittles are identical (i.e. two \(n\)-step random walks have the same endpoint) we formally consider the sample space \(\Omega^2\) of all pairs \((W_1, W_2)\) of random walks \(W_1, W_2\). The probability measure is then the product measure given by \(\mathbb{P}[A_1 \times A_2] = |A_1| \cdot |A_2| / \Omega^2\). In the general case (\(d\) possible colours and \(d\)-dimensional space) this means \(\mathbb{P}[A_{ij}] = |A_{ij}| / \Omega^2\), as we have already used intuitively above.

When considering sequences of random walks as in Section 5, we formally deal with the product sample space \(\Omega^N\). The random variable \(Z\) considered there is precisely defined by

\[Z : \Omega^N \rightarrow \mathbb{N}, \quad (W_i)_{i \in \mathbb{N}} \rightarrow \min\{n \in \mathbb{N} : W_n - W_i \text{ for some } i < n\}. \]

To estimate \(\mathbb{P}[X = \ell]\), for fixed \(n, d \in \mathbb{N}\) and \(\ell \geq 2\), we consider the events \(A_{ij} = \{(W_k)_{k \in \mathbb{N}} : W_i - W_j\}\) and let \(p = \mathbb{P}[A_{ij}] = \mathbb{P}[E_{ij}^d]\) for \(i \neq j\). Then, we have

\[\mathbb{P}[Z = \ell] = \mathbb{P}\left[\bigcap_{i < j} A_{ij}^c \right] \cdot \mathbb{P}\left[\bigcap_{i=1}^{\ell - 1} A_{ij} \bigcap_{i < j} A_{ij}^c \right], \]

where \(A_{ij}^c\) denotes the complement of \(A_{ij}\). Here we clearly see that independence of the events \(A_{ij}\) would be necessary to work as in the first presented plausible, yet incorrect approach.
Acknowledgement

Joscha Prochno is supported by the Austrian Science Fund (FWF) with the Project P32405 ‘Asymptotic Geometric Analysis and Applications’. We thank the anonymous referee for helpful suggestions that improved the presentation of this paper. We thank Michael’s brother-in-law Friedrich Delgado for pointing out the internet blog [1] to him. We also thank Gunther Leobacher of Graz for reading a preliminary version of this Article and his helpful comments and suggestions.

References

1. PossiblyWrong. Follow-up: I found two identical packs of Skittles, among 468 packs with a total of 27,740 Skittles, accessed 06/12/2021 at https://possiblywrong.wordpress.com/2019/04/06/follow-up-i-found-two-identical-packs-of-skittles-among-468-packs-with-a-total-of-27740-skittles/
2. W. Feller, An Introduction to Probability Theory and Its Applications (Vol. 1, 3rd edn.), New York: John Wiley (1968).
3. W. Schwarz, Approximating the Birthday Problem, The American Statistician, 42 (3) (August 1988) pp. 195-196.
4. W. Perkins, Birthday Inequalities, Repulsion, and hard Spheres, Proc. Amer. Math. Soc. 144 (2016) pp. 2635-2649.
5. Mathoverflow, Birthday inequality for non-uniform distributions for fixed collision probability, accessed on 06/12/2021. https://mathoverflow.net/questions/257027/birthday-inequality-for-non-uniform-distributions-for-fixed-collision-probabilit
6. D. M. Bloom, A Birthday Problem, American Mathematical Monthly, 80 (1973) pp. 1141-1142.
7. A. G. Munford, A Note on the Uniformity Assumption in the Birthday Problem, The American Statistician, 31 (3) (August 1977) p. 119.
8. T. S. Nunnikhoven, A Birthday Problem Solution for Nonuniform Birth Frequencies, The American Statistician, 46 (4) (November 1992) pp. 270-274.
9. M. J. Wiener, Bounds on Birthday Attack Times, IACR Eprint archive, http://eprint.iacr.org/2005/318 (2005).