Statistical field theory for neural networks

Moritz Helias1,2 and David Dahmen1

1Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
2Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany

(Dated: January 30, 2019)

Many qualitative features of the emerging collective dynamics in neuronal networks, such as correlated activity, stability, response to inputs, chaotic and regular behavior, can be understood in models that are accessible to a treatment in statistical mechanics, or, more precisely, statistical field theory. These notes attempt at a self-contained introduction into these methods, explained on the example of neural networks of rate units or binary spins. In particular we will focus on a relevant class of systems that have quenched (time independent) disorder, mostly arising from random synaptic couplings between neurons.

The presentation consists of three parts. First we introduce fundamental notions of probabilities, moments, cumulants, and their relation by the linked cluster theorem, of which Wick’s theorem is the most important special case. The graphical formulation of perturbation theory with the help of Feynman diagrams will be reviewed in the statistical setting. The second part extends these concepts to dynamics, in particular stochastic differential equations in the Ito-formulation, treated in the Martin-Siggia-Rose-De Dominicis-Janssen path integral formalism. Employing concepts from disordered systems, we will study networks with random connectivity and derive their self-consistent dynamic mean-field theory. We will employ this formalism to explain the statistics of the fluctuations in these networks and the emergence of different phases with regular and chaotic dynamics and also cover a recent extension of the model to stochastic units. The last part introduces as more advanced concepts the effective action, vertex functions, and the loopwise expansion. The use of these tools is illustrated in systematic derivations of self-consistency equations that are grounded on and going beyond the mean-field approximation. We will illustrate these methods on the example of the pairwise maximum entropy (Ising spin) model, including the recently-found diagrammatic derivation of the Thouless-Anderson-Palmer mean field theory.

PACS numbers: 87.19.lj, 64.60.an, 75.10.Nr, 05.40.-a
CONTENTS

I. Introduction 4

II. Probabilities, moments, cumulants
 A. Probabilities, observables, and moments 6
 B. Transformation of random variables 7
 C. Cumulants 8
 D. Connection between moments and cumulants 9

III. Gaussian distribution and Wick's theorem
 A. Gaussian distribution 11
 B. Moment and cumulant generating function of a Gaussian 11
 C. Wick's theorem 12
 D. Graphical representation: Feynman diagrams 12
 E. Appendix: Self-adjoint operators 13
 F. Appendix: Normalization of a Gaussian 13

IV. Perturbation expansion
 A. General case 14
 B. Special case of a Gaussian solvable theory 15
 C. Example: Example: “ϕ³ + ϕ⁴” theory 17
 D. External sources 18
 E. Cancellation of vacuum diagrams 18
 F. Equivalence of graphical rules for n-point correlation and n-th moment 20
 G. Example: “ϕ³ + ϕ⁴” theory 20

V. Linked cluster theorem
 A. General proof of the linked cluster theorem 21
 B. Dependence on j - external sources - two complimentary views 25
 C. Example: Connected diagrams of the “ϕ³ + ϕ⁴” theory 26

VI. Functional preliminaries
 A. Functional derivative
 1. Product rule 28
 2. Chain rule 28
 3. Special case of the chain rule: Fourier transform 29
 B. Functional Taylor series 29

VII. Functional formulation of stochastic differential equations
 A. Onsager-Machlup path integral* 31
 B. Martin-Siggia-Rose-De Dominicis-Janssen (MSRDJ) path integral 32
 C. Moment generating functional 33
 D. Response function in the MSRDJ formalism 34

VIII. Ornstein-Uhlenbeck process: The free Gaussian theory
 A. Definition 36
 B. Propagators in time domain 36
 C. Propagators in Fourier domain 37

IX. Perturbation theory for stochastic differential equations
 A. Vanishing moments of response fields 39
 B. Vanishing response loops 40
 C. Feynman rules for SDEs in time domain and frequency domain 41
 D. Diagrams with more than a single external leg 43
 E. Appendix: Unitary Fourier transform 45
X. Dynamic mean-field theory for random networks
 A. Definition of the model and generating functional
 B. Property of self-averaging
 C. Average over the quenched disorder
 D. Stationary statistics: Self-consistent autocorrelation of as motion of a particle in a potential
 E. Transition to chaos
 F. Assessing chaos by a pair of identical systems
 G. Schrödinger equation for the maximum Lyapunov exponent
 H. Condition for transition to chaos

XI. Vertex generating function
 A. Motivating example for the expansion around a non-vanishing mean value
 B. Legendre transform and definition of the vertex generating function Γ
 C. Perturbation expansion of Γ
 D. Generalized one-line irreducibility
 E. Example
 F. Vertex functions in the Gaussian case
 G. Example: Vertex functions of the $\phi^3 + \phi^4$-theory
 H. Appendix: Explicit cancellation until second order
 I. Appendix: Convexity of W
 J. Appendix: Legendre transform of a Gaussian

XII. Application: TAP approximation
 Inverse problem

XIII. Expansion of cumulants into tree diagrams of vertex functions
 A. Self-energy or mass operator Σ

XIV. Loopwise expansion of the effective action - Tree level
 A. Counting the number of loops
 B. Loopwise expansion of the effective action - Higher numbers of loops
 C. Example: $\phi^3 + \phi^4$-theory
 D. Appendix: Equivalence of loopwise expansion and infinite resummation
 E. Appendix: Interpretation of Γ as effective action
 F. Loopwise expansion of self-consistency equation

XV. Loopwise expansion in the MSRDJ formalism
 A. Intuitive approach
 B. Loopwise corrections to the effective equation of motion
 C. Corrections to the self-energy and self-consistency
 D. Self-energy correction to the full propagator
 E. Self-consistent one-loop
 F. Appendix: Solution by Fokker-Planck equation

XVI. Nomenclature

Acknowledgments

References
I. INTRODUCTION

The organization of the outer shell of the mammalian brain, the cerebral cortex, extends over a wide range of spatial scales, from fine-scale specificity of the connectivity between small assemblies of neurons [1] to hierarchically organized networks of entire cortical areas [2]. These neuronal networks share many features with interacting many particle systems in physics. While the single neuron dynamics is rather simple, interesting behavior of networks arises from the interaction of these many components. As a result, the activity in the electrically active tissue of the brain exhibits is correlated on a multitude of spatial and temporal scales.

Understanding the processes that take place in brain, we face a fundamental problem: We want to infer the behavior of these networks and identify the mechanisms that process information from the observation of a very limited number of measurements. In addition, each available measurement comes with its characteristic constraints. Recordings from single neurons have a high temporal resolution, but obviously enforce a serious sub-sampling. Today, it is possible to record from hundreds of neurons in parallel. Still this is only a tiny fraction of the number of cells believed to form the fundamental building blocks of the brain [3]. Alternatively, recordings of the local field potential measure a mesoscopic collective signal, the superposition of hundreds of thousands to millions of neurons [4]. But this signal has a moderate temporal resolution and it does not allow us to reconstruct the activities of individual neurons from which it is composed.

A way around this dilemma is to build models, constituted of the elementary building blocks, neurons connected and interacting by synapses. These models then enable us to bridge from the microscopic neuronal dynamics to the mesoscopic or macroscopic measurements and, in the optimal case, allow us to constrain the regimes of operation of these networks on the microscopic scale. It is a basic biophysical property that single cells receive on the order of thousands of synaptic inputs. This property may on the one hand seem daunting. On the other hand this superposition of many small input signals typically allows the application of the law of large numbers. If the connectivity in such networks is moreover homogeneous on a statistical level, a successful route to understanding the collective dynamics is by means of population equations [5].

Such descriptions are, however, only rarely formally justified from the underlying microscopic behavior. These phenomenological models present effective equations of motion for the dynamics on the macroscopic level of neuronal networks. Typically, intuitive “mean-field” considerations are employed, performing a coarse graining in space by collecting a set of neurons in a close vicinity into larger groups described in terms of their average activity. Often this spatial coarse graining is accompanied by a temporal coarse graining, replacing the pulsed coupling among neurons by a temporally smooth interaction (see e.g. Bressloff [3] for a recent review, esp. section 2 and Ermentrout and Terman [6]). The resulting descriptions are often referred to as “rate models”, sometimes also as “mean-field models”. The conceptual step from the microscopic dynamics to the effective macroscopic description is conceptually difficult. This step therefore often requires considerable intuition to include the important parts and there is little control as to which effects are captured and which are not. One might say this approach so far lacks systematics: It is not based on a classification scheme that allows us to identify which constituents of the original microscopic dynamics enter the approximate expressions and which have to be left out. The lack of systematics prohibits the assessment of their consistency: It is unclear if all terms of a certain order of approximation are contained in the coarse-grained description. While mean-field approaches in their simplest form neglect fluctuations, the latter are important to explain the in-vivo like irregular [7,10] and oscillating activity in cortex [11,13]. The attempt to include fluctuations into mean-field approaches has so far been performed in a semi-systematic manner, based on linear response theory around a mean-field solution [14,20].

To overcome the problems of current approaches based on mean-field theory or ad-hoc approximations, a natural choice for the formulation of a theory of fluctuating activity of cortical networks is in the language of classical stochastic fields, as pioneered by Buice and Cowan [21], Buice et al. [22]. Functional or path integral formulations are ubiquitously employed throughout many fields of physics, from particle physics to condensed matter [see e.g. 23], but are still rare in theoretical neuroscience [see 24,26 for recent reviews]. Such formulations not only provide compact representations of the physical content of a theory, for example in terms of Feynman diagrams or vertex functions, but also come with a rich set of systematic approximation schemes, such as perturbation theory and loop-wise expansion [23,27]. In combination with renormalization methods [28,29] and, more recently, the functional renormalization group (Wetterich [30], reviewed in Berges et al. [31], Gies [32], Metzner et al. [33]), the framework can tackle one of the hardest problems in physics, collective behavior that emerges from the interaction between phenomena on a multitude of scales spanning several orders of magnitude. It is likely that in an analogous way that multi-scale dynamics of neuronal networks can be treated, but corresponding developments are just about to start [34,35].

From the physics perspective, the research in theoretical solid state physics is often motivated by the development
and characterization of new materials, quantum states, and quantum devices. In these systems an important microscopic interaction that gives rise to a wealth of phenomena is the Coulomb interaction: It is reciprocal or symmetric, instantaneous, and continuously present over time. The interaction in neuronal systems, in contrast, is directed or asymmetric, delayed, and is mediated by temporally short pulses. In this view, a neuronal network can be considered as an exotic physical system, that promises phenomena hitherto unknown from solid state systems with Coulomb interaction. Formulating neuronal networks in the language of field theory, which has brought many insights into collective phenomena in solid state physics, therefore promises to open the exotic physical system of the brain to investigations on a similarly informative level.

Historically, the idea of a mean-field theory for neuronal networks was brought into the field by experts who had a background in disordered systems, such as spin glasses. In the physics literature the term mean-field approximation indeed refers to at least two slightly different approximations. Often it is understood in the sense of Curie-Weiss mean-field theory of ferromagnetism. Here it is a saddle point approximation in the local order parameters, each corresponding to one of the spins in the original system [27, i.p. section 4.3]. To lowest order, the so called tree level or mean-field approximation, fluctuations of the order parameter are neglected altogether. Corrections within this so-called loopwise expansion contain fluctuations of the order parameter around the mean. The other use of the term mean-field theory, to our knowledge, originates in the spin glass literature [36]: Their equation 2.17 for the magnetization \(m \) resembles the Curie-Weiss mean-field equation as described before. A crucial difference is, though, the presence of the Gaussian variable \(z \), which contains fluctuations. Hence the theory, termed "a novel kind of mean-field theory" by the authors, contains fluctuations. The reason for the difference formally results from a saddle point approximation performed on the auxiliary field \(q \) instead of the local spin-specific order parameter for each spin as in the Curie-Weiss mean field theory. The auxiliary field only appears in the partition function of the system after averaging over the quenched disorder, the frozen and disordered couplings \(J \) between spins.

In the same spirit, the work by Sompolinsky and Zippelius [37] obtained a mean-field equation that reduces the dynamics in a spin glass to the equation of a single spin embedded into a fluctuating field, whose statistics is determined self-consistently (see their equation 3.5). This saddle point approximation of the auxiliary field is sometimes also called "dynamic mean-field theory", because the statistics of the field is described by a time-lag-dependent autocorrelation function. By the seminal work of Sompolinsky et al. [38] on a deterministic network of nonlinear rate units (see their eqs. (3) and (4)), this technique entered neuroscience. The presentation of the latter work, however, spared many details of the actual derivation, so that the logical origin of this mean field theory is hard to see from the published work. The result, the reduction of the disordered network to an equation of motion of a single unit in the background of a Gaussian fluctuating field with self-consistently determined statistics, has since found entry into many subsequent studies. The seminal work by Amit and Brunel [10] presents the analogue approach for spiking neuron models, for which to date a more formal derivation as in the case of rate models is lacking. The counterpart for binary model neurons [8, 9] follows conceptually the same view.

Unfortunately, the formal origins of these very successful and influential approaches have only sparsely found entry into neuroscience until today. It is likely that part of the reason is the number of formal concepts that need to be introduced prior to making this approach comprehensible. Another reason is the lack of introductory texts into the topic and the unfortunate fact that seminal papers, such as [38], have appeared in journals with tight page constraints, so that the functional methods, by which the results were obtained, were necessarily skipped to cater for a broad audience. As a consequence, a whole stream of literature has used the outcome of the mean-field reduction as the very starting point without going back to the roots of the original work. Recently, an attempt has been made to re-derive the old results using the original functional methods [26]. A detailed version by the original authors of [38] just became available [39].

These notes present the formal developments of statistical field theory to an extent that puts the reader in the position to understand the aforementioned works and to extend them towards novel questions arising in theoretical neuroscience. Compared to most text books on statistical field theory, we here chose a different approach: We aim at separating the conceptual difficulties from the mathematical complications of infinite dimensions. For this reason the material is separated into two parts. The first part focuses on the introduction of the conceptually challenging topics of field theory. We start with a purely stochastic view point, introducing probability distributions and their respective descriptions in terms of moments, cumulants, and generating functions. We exemplify all methods on joint distributions of \(N \) scalar real valued random variables, instead of treating infinite-dimensional problems right from the beginning. One could call this the field theory of \(N \) numbers, or zero-dimensional fields. This step is, however, not only done for didactic purposes. Indeed, the pairwise maximum entropy model, or Ising spin system, can be treated within this framework. Didactically, this approach allows us to focus on the concepts, which are challenging enough, without the need of advanced mathematical tools: We only require elementary tools from analysis and algebra. Also standard methods that are the foundation of contemporary theoretical physics, such as diagrammatic
perturbation theory, loopwise or background-field expansions, and the effective action will be introduced within this framework. Within the first part we will throughout highlight the connection between the concepts of statistics, such as probabilities, moments, cumulants and the corresponding counterparts appearing in the literature of field theory, such as the action, green’s functions, connected Green’s functions.

After these conceptual steps, the second part focuses on time-dependent systems. We will here introduce the functional formalism of classical systems pioneered by Martin, Siggia and Rose [40] and further developed by De Dominicis [41, 42] and Janssen [43]. This development in the mid seventies arose from the observation that elaborated methods existed for quantum systems, which were unavailable to stochastic classical systems. Based on the ideas by De Dominicis and Peliti [42], we will then apply these methods to networks with random connectivity, making use of the randomness of their connectivity to introduce quenched averages of the moment generating functional and its treatment in the large N limit by auxiliary fields [44] to derive the seminal theory by [38], which provides the starting point for many current works. We will then present some examples of extensions of their work to current questions in theoretical neuroscience [45–48].

The material collected here arose from a lecture held at the RWTH university in Aachen in the winter terms 2016-2018. Parts of the material have been presented in different form at the aCNS summer school in Göttigen 2016 and the latter part, namely sections section §VII and section §X on the sparks workshop 2016 in Göttingen. In parts the material has been developed within the PhD theses of David Dahmen, Jannis Schücker, Sven Goedeke, and Tobias Kühn, to whom we are very grateful.

II. PROBABILITIES, MOMENTS, CUMULANTS

A. Probabilities, observables, and moments

Assume we want to describe some physical system. Let us further assume the state of the system is denoted as $x \in \mathbb{R}^N$. Imagine, for example, the activity of N neurons at a given time point. Or the activity of a single neuron at N different time points. We can make observations of the system that are functions of the state of the system.

Often we are repeating our measurements, either over different trials or we average the observable in a stationary material has been developed within the PhD theses of David Dahmen, Jannis Schücker, Sven Goedeke, and Tobias Kühn, to whom we are very grateful.

We hold that p is normalized in the sense

$$1 = \int p(x) \, dx. \quad (1)$$

Evaluating for the observable function f the expectation value $\langle f(x) \rangle$, we may use the Taylor representation of f to write

$$\langle f(x) \rangle := \int p(x) \, f(x) \, dx = \sum_{n_1, \ldots, n_N = 0}^{\infty} \frac{f^{(n_1, \ldots, n_N)}(0)}{n_1! \cdots n_N!} \langle x_1^{n_1} \cdots x_N^{n_N} \rangle$$

$$= \sum_{n=0}^{\infty} \sum_{i_1, \ldots, i_n=1}^{N} \frac{f^{(n)}(0)}{n!} \langle \prod_{i=1}^{n} x_{i_i} \rangle,$$

where we denoted by $f^{(n_1, \ldots, n_N)}(x) := \left(\frac{\partial}{\partial x_1} \right)^{n_1} \cdots \left(\frac{\partial}{\partial x_N} \right)^{n_N} f(x)$ the n_1-th to n_N-th derivative of f by its arguments; the alternative notation for the Taylor expansion denotes the n-th derivative by n (possibly) different x as $f^{(n)}_{i_1, \ldots, i_n}(x) :=$
\[\prod_{i=1}^{N} \frac{\partial}{\partial x_i} f(x). \] We here defined the \textbf{moments} as

\[
\langle x_1^{n_1} \cdots x_N^{n_N} \rangle := \int p(x) x_1^{n_1} \cdots x_N^{n_N} \, dx
\]
(2)
of the system’s state variables. Knowing only the latter, we are hence able to evaluate the expectation value of arbitrary observables that possess a Taylor expansion.

Alternatively, we may write our observable \(f \) in its Fourier representation \(f(x) = \mathcal{F}^{-1} [\hat{f}] (x) = \frac{1}{(2\pi)^N} \int \hat{f}(\omega) e^{i\omega^T x} \, d\omega \) so that we get for the expectation value

\[
\langle f(x) \rangle = \frac{1}{(2\pi)^N} \int \hat{f}(\omega) \int p(x) e^{i\omega^T x} \, dx \, d\omega
\]
\[
= \frac{1}{(2\pi)^N} \int \hat{f}(\omega) \langle e^{i\omega^T x} \rangle_x \, d\omega,
\]
(3)
where \(\omega^T x = \sum_{i=1}^{N} \omega_i x_i \) denotes the Euclidean scalar product.

We see that we may alternatively determine the functions \(\langle e^{i\omega^T x} \rangle_x \) for all \(\omega \) to characterize the distribution of \(x \), motivating the definition

\[
Z(j) := \langle e^{j^T x} \rangle_x = \int p(x) e^{j^T x} \, dx.
\]
(4)
Note that we can express \(Z \) as the Fourier transform of \(p \), so it is clear that it contains the same information as \(p \) (for distributions \(p \) for which a Fourier transform exists). The function \(Z \) is called the \textbf{characteristic function} or \textbf{moment generating function} \[19\] p. 32. The argument \(j \) of the function is sometimes called the “source”, because in the context of quantum field theory, these variables correspond to particle currents. We will adapt this customary name here, but without any physical implication. The moment generating function \(Z \) is identical to the partition function \(Z \) in statistical physics, apart from the lacking normalization of the latter. From the normalization \[1\] and the definition \[4\] follows that

\[
Z(0) = 1.
\]
(5)

We may wonder how the moments, defined in \[2\], relate to the characteristic function \[4\]. We see that we may obtain the moments by a simple differentiation of \(Z \) as

\[
\langle x_1^{n_1} \cdots x_N^{n_N} \rangle = \left. \left(\prod_{i=1}^{N} \frac{\partial^{n_i}}{\partial j_i^{n_i}} \right) Z(j) \right|_{j=0} ,
\]
(6)
where we introduced the short hand notation \(\partial_i^{n_i} = \frac{\partial^{n_i}}{\partial j_i^{n_i}} \) and set \(j = 0 \) after differentiation. Conversely, we may say that the moments are the Taylor coefficients of \(Z \), from which follows the identity

\[
Z(j) = \sum_{n_1,\ldots,n_N} \frac{\langle x_1^{n_1} \cdots x_N^{n_N} \rangle}{n_1! \cdots n_N!} j_1^{n_1} \cdots j_N^{n_N}.
\]

\[\text{B. Transformation of random variables} \]

Often one knows the statistics of some random variable \(x \) but would like to know the statistics of \(y \), a function of \(x \)

\[
y = f(x).
\]
The probability densities transform as

\[
p_y(y) = \int dx \, p_x(x) \, \delta(y - f(x)).
\]
It is obvious that the latter definition of \(p_y \) is properly normalized: integrating over all \(y \), the Dirac distribution reduces to a unit factor so that the normalization condition for \(p_x \) remains. What does the corresponding moment-generating function look like?

We obtain it directly from its definition \(\ref{eq:z_y} \) as

\[
Z_y(j) = \langle e^{j^T y} \rangle_y = \int dy \, p_y(y) \, e^{j^T y} = \int dy \left(\int dx \, p_x(x) \, \delta(y - f(x)) \right) e^{j^T y} = \int dx \, p_x(x) \, e^{j^T f(x)} = \langle e^{j^T f(x)} \rangle_x,
\]

where we swapped the order of the integrals in the third line and performed the integral over \(y \) by employing the property of the Dirac distribution. So we only need to replace the source term \(j^T x \rightarrow j^T f(x) \) to obtain the transformed moment generating function.

C. Cumulants

For a set of independent variables the probability density factorizes as \(p^{\text{indep.}}(x) = p_1(x_1)\cdots p_N(x_N) \). The characteristic function, defined by \(\ref{eq:w_j} \), then factorizes as well \(Z^{\text{indep.}}(j) = Z_1(j_1)\cdots Z_N(j_N) \). Hence the \(k \)-th (\(k \leq N \)) moment \(\langle x_1 \cdots x_k \rangle = \langle x_1 \rangle \cdots \langle x_k \rangle \) decomposes into a product of \(n \) first moments of the respective variable. We see in this example that the higher order moments contain information which is already contained in the lower order moments.

One can therefore ask if it is possible to define an object that only contains the dependence at a certain order and hence lead to the same cumulants. In statistical physics, this latter definition of \(\bar{Z}(j) \) corresponds to the free energy \(W \).

It is obvious that \(W(y) \) is properly normalized: integrating over all \(y \), the Dirac distribution reduces to a unit factor so that the normalization condition for \(W \) remains. What does the corresponding moment-generating function look like?

We obtain it directly from its definition \(\ref{eq:w_j} \) as

\[
Z_y(j) = \langle e^{j^T y} \rangle_y = \int dy \, p_y(y) \, e^{j^T y} = \int dy \left(\int dx \, p_x(x) \, \delta(y - f(x)) \right) e^{j^T y} = \int dx \, p_x(x) \, e^{j^T f(x)} = \langle e^{j^T f(x)} \rangle_x,
\]

The function \(W \) defined by \(\ref{eq:w_j} \) is called the cumulant generating function. We may conversely express it as a Taylor series

\[
W(j) = \ln Z(j) = \sum_{n_1, \ldots, n_N} \frac{\langle x_1^{n_1} \cdots x_N^{n_N} \rangle}{n_1! \cdots n_N!} j_1^{n_1} \cdots j_N^{n_N}
\]

where we introduced the notation \(f^{(n)} \) for the \(n \)-th derivative of the function. The cumulants are hence the Taylor coefficients of the cumulant-generating function. The normalization \(\ref{eq:z_0} \) of \(Z(0) = 1 \) implies

\[
W(0) = 0.
\]

For the cumulants this particular normalization is, however, not crucial, because a different normalization \(\tilde{Z}(j) = C \, Z(j) \) would give an inconsequential additive constant \(\tilde{W}(j) = \ln(C) + W(j) \), which therefore does not affect the cumulants, which contain at least one derivative. The definition \(W(j) := \ln Z(j) \) for a partition function \(Z \) would hence lead to the same cumulants. In statistical physics, this latter definition of \(W \) corresponds to the free energy \(\ref{eq:free_energy} \).
D. Connection between moments and cumulants

Since both, moments and cumulants, characterize a distribution one may wonder if and how these objects are related. The situation up to this point is this:

\[p(x) \xrightarrow{\langle e^{ix} \rangle} Z(j) \xrightarrow{\ln(\cdot)} W(j) \]

\[\langle x_1 \ldots x_N \rangle \leftrightarrow \langle x_1 \ldots x_N \rangle \]

We know how to obtain the moment generating function \(Z \) from the probability \(p \), and the cumulant generating function from \(Z \) by the logarithm. The moments and cumulants then follow as Taylor coefficients from their respective generating functions. Moreover, the moments can also directly be obtained by the definition of the expectation value. What is missing is a direct link between moments and cumulants. This link is what we want to find now.

To this end we here consider the case of \(N \) random variables \(x_1, \ldots, x_N \). At first we restrict ourselves to the special case of the \(k \)-point moment (\(1 \leq k \leq N \))

\[\langle x_1 \ldots x_k \rangle = \partial_1 \ldots \partial_k Z(j) \big|_{j=0}, \tag{10} \]

where individual variables only appear in single power.

It is sufficient to study this special case, because a power of \(x^n \) with \(n > 1 \) can be regarded by the left hand side of \(\text{(10)} \) as the \(n \)-fold repeated occurrence of the same index. We therefore obtain the expressions for repeated indices by first deriving the results for all indices assumed different and setting indices identical in the final result. We will come back to this procedure at the end of the section.

Without loss of generality, we are here only interested in \(k \)-point correlation functions with consecutive indices from 1 to \(k \), which can always be achieved by renaming the components \(x_i \). We express the moment generating function using \(\text{(7)} \) as

\[Z(j) = \exp(W(j)). \]

Taking derivative by \(j \) as in \(\text{(10)} \), we anticipate due to the exponential function that the term \(\exp(W(j)) \) will be reproduced, but certain pre-factors will be generated. We therefore define the function \(f_k(j) \) as the prefactor appearing in the \(k \)-fold derivative of \(Z(j) \) as

\[\partial_1 \ldots \partial_k Z(j) = \partial_1 \ldots \partial_k \exp(W(j)) \]
\[=: f_k(j) \exp(W(j)). \]

Obviously due to \(\text{(10)} \) and \(\exp(W(0)) = 1 \), the function evaluated at zero is the \(k \)-th moment

\[f_k(0) = \langle x_1 \ldots x_k \rangle. \]

We now want to obtain a recursion formula for \(f_k \) by applying the product rule as

\[\frac{\partial_k \left(f_{k-1}(j) \exp(W(j)) \right)}{\partial_1 \ldots \partial_{k-1} Z(j)} _{\text{product rule}} = \left(\frac{\partial_k f_{k-1} + f_{k-1} \partial_k W}{f_k} \right) \exp(W(j)), \]

from which we obtain

\[f_k = \partial_k f_{k-1} + f_{k-1} \partial_k W. \tag{11} \]

The explicit first three steps lead to (starting from \(f_1(j) \equiv \partial_1 W(j) \))

\[f_1 = \partial_1 W \]
\[f_2 = \partial_1 \partial_2 W + (\partial_1 W) (\partial_2 W) \]
\[f_3 = \partial_1 \partial_2 \partial_3 W + (\partial_1 \partial_2 W) (\partial_3 W) + (\partial_1 W) (\partial_2 \partial_3 W) \]
\[+ (\partial_1 \partial_2 W + (\partial_1 W) (\partial_2 W)) \partial_3 W \]
\[= \partial_1 \partial_2 \partial_3 W + (\partial_1 W) (\partial_2 \partial_3 W) + (\partial_2 W) (\partial_1 \partial_3 W) + (\partial_3 W) (\partial_1 \partial_2 W) + (\partial_1 W) (\partial_2 W) (\partial_3 W). \]
The structure shows that the moments are composed of all combinations of cumulants of all lower orders. More specifically, we see that

- the number of derivatives in each term is the same, here three
- the three derivatives are partitioned in all possible ways to act on W, from all derivatives acting on the same W (left most term in last line) to each acting on a separate W (right most term).

Figuratively, we can imagine these combinations to be created by having k places and counting all ways of forming n subgroups of sizes l_1, \ldots, l_n each, so that $l_1 + \ldots + l_n = k$. On the example $k=3$ we would have

\[
\langle 1\ 2\ 3 \rangle = \underbrace{\langle 1\ 2\ 3 \rangle}_{n=1\ l_1=3} + \underbrace{\langle 1\rangle \langle 2\rangle + \langle 2\rangle \langle 3\rangle + \langle 3\rangle \langle 1\rangle}_{n=2;\ l_1=1\ l_2=2} + \underbrace{\langle 1\rangle \langle 2\rangle}_{n=3;\ l_1=1\ l_2=1},
\]

We therefore suspect that the general form can be written as

\[
f_k = \sum_{n=1}^{k} \frac{1}{l_1 \ldots l_n} \sum_{\sum_i l_i = k} \sum_{\sigma \in P(\{l_i\},k)} \left(\partial_{\sigma(1)} \ldots \partial_{\sigma(l_1)} W \right) \ldots \left(\partial_{\sigma(k-l_n+1)} \ldots \partial_{\sigma(k)} W \right),
\]

where the sum over n goes over all numbers of subsets of the partition, the sum

\[
\sum_{\sum_i l_i = k} \sum_{\sum_i l_i = k} \sum_{\sigma \in P(\{l_i\},k)} \left(\partial_{\sigma(1)} \ldots \partial_{\sigma(l_1)} W \right) \ldots \left(\partial_{\sigma(k-l_n+1)} \ldots \partial_{\sigma(k)} W \right),
\]

goes over all sizes l_1, \ldots, l_n of each subgroup, which we can assume to be ordered by the size l_i, and $P(\{l_i\},k)$ is the set of all permutations of the numbers $1, \ldots, k$ that, for a given partition $\{1 \leq l_1 \leq \ldots \leq l_n \leq k\}$, lead to a different term: Obviously, the exchange of two indices within a subset does not cause a new term, because the differentiation may be performed in arbitrary order.

Setting all sources to zero $j_1 = \ldots = j_k = 0$ leads to the expression for the k-th moment by the $1, \ldots, k$-point cumulants

\[
\langle x_1 \cdots x_k \rangle = \sum_{n=1}^{k} \frac{1}{l_1 \ldots l_n} \sum_{\sum_i l_i = k} \sum_{\sigma \in P(\{l_i\},k)} \langle x_{\sigma(1)} \cdots x_{\sigma(l_1)} \rangle \cdots \langle x_{\sigma(k-l_n+1)} \cdots x_{\sigma(k)} \rangle.
\]

So the recipe to determine the k-th moment is: Draw a set of k points, partition them in all possible ways into disjoint subgroups (using every point only once). Now assign, in all possible ways that lead to a different composition of the subgroups one variable to each of the dots in each of these combinations. The i-th subgroup of size l_i corresponds to a cumulant of order l_i. The sum over all such partitions and all permutations yields the k-th moment expressed in terms of cumulants of order $\leq k$.

We can now return to the case of higher powers in the moments, the case that $m \geq 2$ of the x_i are identical. Since the appearance of two differentiations by the same variable in (10) is handled in exactly the same way as for k different variables, we see that the entire procedure remains the same: In the final result (14) we just have m identical variables to assign to different places. All different assignments of these variables to positions need to be counted separately.
III. GAUSSIAN DISTRIBUTION AND WICK’S THEOREM

We will now study a special case of a distribution that plays an essential role in all further development, the Gaussian distribution. In a way, field theory boils down to a clever reorganization of Gaussian integrals. In this section we will therefore derive fundamental properties of this distribution.

A. Gaussian distribution

A Gaussian distribution of \(N \) centered (mean value zero) variables \(x \) is defined for a positive definite symmetric matrix \(A \) as

\[
p(x) \propto \exp \left(-\frac{1}{2} x^T A x \right) .
\]

A more general formulation for symmetry is that \(A \) is self-adjoint with respect to the Euclidean scalar product (see section \(\S IIIE \)). As usual, positive definite means that the bilinear form \(x^T A x > 0 \ \forall \ x \neq 0 \). Positivity equivalently means that all eigenvalues \(\lambda_i \) of \(A \) are positive. The properly normalized distribution is

\[
p(x) = \frac{\det(A)^{\frac{1}{2}}}{(2\pi)^{\frac{N}{2}}} \exp \left(-\frac{1}{2} x^T A x \right) ;
\]

this normalization factor is derived in section \(\S IIIE \).

B. Moment and cumulant generating function of a Gaussian

The moment generating function \(Z(j) \) follows from the definition \([4] \) for the Gaussian distribution \([16] \) by the substitution \(y = x - A^{-1}j \), which is the \(N \)-dimensional version of the “completion of the square”. With the normalization \(C = \frac{\det(A)^{\frac{1}{2}}}{(2\pi)^{\frac{N}{2}}} \) we get

\[
Z(j) = \langle e^{j^T x} \rangle_x
\]

\[
= C \int \Pi_i dx_i \exp \left(-\frac{1}{2} x^T A x + j^T x \right)\left(A^{-1}j \right)^T y + \frac{1}{2} y^T A y\left(A^{-1}j \right)
\]

\[
= C \int \Pi_i dx_i \exp \left(-\frac{1}{2} (x - A^{-1}j)^T A (x - A^{-1}j) + \frac{1}{2} j^T A^{-1} j \right)
\]

\[
= C \int \Pi_i dy_i \exp \left(-\frac{1}{2} y^T A y \right) \exp \left(\frac{1}{2} j^T A^{-1} j \right)
\]

\[
= \exp \left(\frac{1}{2} j^T A^{-1} j \right).
\]

The integral measures do not change form the third to the fourth line, because we only shifted the integration variables. We used from the fourth to the fifth line that \(p \) is normalized, which is not affected by the shift, because the boundaries of the integral are infinite. The cumulant generating function \(W(j) \) defined by equation \([7] \) then is

\[
W(j) = \ln Z(j)
\]

\[
= \frac{1}{2} j^T A^{-1} j .
\]

Hence the second order cumulants are

\[
\langle x_i x_j \rangle = \partial_i \partial_j W |_{j=0}
\]

\[
= A_{ij}^{-1} ,
\]
where the factor $\frac{1}{2}$ is canceled, because by the product rule, the derivative first acts on the first and then on the second j in (18), both of which yield the same term due to the symmetry of $A^{-1T} = A^{-1}$ (The symmetry of A^{-1} follows from the symmetry of A, because $1 = A^{-1}A = A^TA^{-1T} = AA^{-1T}$; because the inverse of A is unique it follows that $A^{-1T} = A^{-1}$).

All cumulants other than the second order (19) vanish, because (18) is already the Taylor expansion of W, containing only second order terms and the Taylor expansion is unique. This property of the Gaussian distribution will give rise to the useful theorem by Wick in the following subsection.

Eq. (19) is or course the covariance matrix, the matrix of second cumulants. We therefore also write the Gaussian distribution as

$$x \sim \mathcal{N}(0, A^{-1}),$$

where the first argument 0 refers to the vanishing mean value.

C. Wick’s theorem

For the Gaussian distribution introduced in section IIIA, all moments can be expressed in terms of products of only second cumulants of the Gaussian distribution. This relation is known as Wick’s theorem [23][50].

Formally this result is a special case of the general relation between moments and cumulants (14): In the Gaussian case only second cumulants (19) are different from zero. The only term that remains in (14) is hence a single partition in which all subgroups have size two, i.e. $l_1 = \ldots = l_n = 2$; each such sub-group corresponds to a second cumulant. In particular it follows that all moments with odd power k of x vanish. For a given even k, the sum over all $\sigma \in P\{(2, \ldots, 2)\}(k)$ includes only those permutations σ that lead to different terms

$$\langle x_1 \cdots x_k \rangle_{x \sim \mathcal{N}(0, A^{-1})} = \sum_{\sigma \in P\{(2, \ldots, 2)\}(k)} \langle \prod_{j=1}^k x_{\sigma(j)} \rangle = \sum_{\sigma \in P\{(2, \ldots, 2)\}(k)} A^{-1}_{\sigma(1)\sigma(2)} \cdots A^{-1}_{\sigma(k-1)\sigma(k)}. \quad (20)$$

We can interpret the latter equation in a simple way: To calculate the k-th moment of a Gaussian distribution, we need to combine the k variables in all possible, distinct pairs and replace each pair (i, j) by the corresponding second cumulant $\langle x_i x_j \rangle = A^{-1}_{ij}$. Here “distinct pairs” means that we treat all k variables as different, even if they may in fact be the same variable, in accordance to the note at the end of section III I. In the case that a subset of n variables of the k are identical, this gives rise to a combinatorial factor. Figuratively, we may imagine the computation of the k-th moment as composed out of so called contractions: Each pair of variables is contracted by one Gaussian integral. This is often indicated by an angular bracket that connects the two elements that are contracted. In this graphical notation, the fourth moment $\langle x_1 x_2 x_3 x_4 \rangle$ of an N dimensional Gaussian can be written as

$$\langle x_1 x_2 x_3 x_4 \rangle_{x \sim \mathcal{N}(0, A^{-1})} = x_1 x_2 x_3 x_4 + x_1 x_2 x_3 x_4 + x_1 x_2 x_3 x_4$$

$$= \langle x_1 x_2 \rangle \langle x_3 x_4 \rangle + \langle x_1 x_3 \rangle \langle x_2 x_4 \rangle + \langle x_1 x_4 \rangle \langle x_2 x_3 \rangle$$

$$= A^{-1}_{12} A^{-1}_{34} + A^{-1}_{13} A^{-1}_{24} + A^{-1}_{14} A^{-1}_{23}. \quad (21)$$

To illustrate the appearance of a combinatorial factor, we may imagine the example that all $x_1 = x_2 = x_3 = x_4 = x$ in the previous example are identical. We see from equation (21) by setting all indices to the same value that we get the same term three times in this case, namely

$$\langle x^4 \rangle = 3 \langle x^2 \rangle^2.$$

D. Graphical representation: Feynman diagrams

An effective language to express contractions, such as equation (21) is the use of Feynman diagrams. The idea is simple: Each contraction of a centered Gaussian variable is denoted by a straight line that we define as

$$\langle x_i x_j \rangle_{x \sim \mathcal{N}(0, A^{-1})} = \langle x_i x_j \rangle = A^{-1}_{i j} = x_i x_j =: \begin{array}{c} i \end{array} \begin{array}{c} j \end{array},$$
in field theory also called the **bare propagator** between i and j. In the simple example of a multinomial Gaussian studied here, we do not need to assign any direction to the connection.

A fourth moment in this notation would read

$$
\langle x_1 x_2 x_3 x_4 \rangle_{x \sim N(0, A^{-1})} = \frac{1}{3} \frac{2}{4} + \frac{1}{2} \frac{3}{4} + \frac{1}{2} \frac{4}{3} = A_{12}^{-1} A_{34}^{-1} + A_{13}^{-1} A_{24}^{-1} + A_{14}^{-1} A_{23}^{-1}.
$$

If all x are identical, we can derive this combinatorial factor again in an intuitive manner: We fix one “leg” of the first contraction at one of the four available x. The second leg can then choose from the three different remaining x to be contracted. For the remaining two x there is only a single possibility left. So in total we have three different pairings. The choice of the initial leg among the four does not count as an additional factor, because for any of these four initial choices, the remaining choices would lead to the same set of pairings, so that we would count the same contractions four times. These four initial choices hence do not lead to different partitions of the set in equation (20).

The factor three from this graphical method of course agrees to the factor three we get by setting all indices equal in equation (21). Hence, we have just calculated the forth moment of a one-dimensional Gaussian with the result

$$
\langle x^4 \rangle_{x \sim N} = 3 \langle x^2 \rangle.
$$

E. Appendix: Self-adjoint operators

We denote as (x, y) a scalar product. We may think of the Euclidean scalar product $(x, y) = \sum_{i=1}^{N} x_i y_i$ as a concrete example. The condition for symmetry of A can more accurately be stated as the operator A being self-adjoint with respect to the scalar product, meaning that

$$(x, Ay) \overset{\text{def. of adjoint}}{=} (A^T x, y) \quad \forall x, y$$

$A^T = A$.

If a matrix A is self-adjoint with respect to the Euclidean scalar product (\cdot, \cdot), its diagonalizing matrix U has orthogonal column vectors with respect to the same scalar product, because from the general form of a basis change into the eigenbasis $\text{diag}(\lambda_i) = U^{-1} A U$ follows that $(U^{-1T}, A U) \overset{\text{def. of adjoint}}{=} (A^T U^{-1T}, U)$ symm. of (\cdot, \cdot) $(U, A^T U^{-1T}) \overset{\text{A self-adj.}}{=} (U, A U^{-1T})$. So the column vectors of U^{-1T} need to be parallel to the eigenvectors of A, which are the column vectors of U, because eigenvectors are unique up to normalization. If we assume them normalized we hence have $U^{-1T} = U$ or $U^{-1} = U^T$. It follows that $(Uv, Uw) = (v, U^T U w) = (v, w)$, the condition for the matrix U to be unitary with respect to (\cdot, \cdot), meaning its transformation conserves the scalar product.

F. Appendix: Normalization of a Gaussian

The equivalence between positivity and all eigenvalues being positive follows from diagonalizing A by an orthogonal transform U

$$\text{diag}(\lambda_i) = U^T A U,$$

where the columns of U are the eigenvectors of A (see section \square for details). The determinant of the orthogonal transform, due to $U^{-1} = U^T$ is $|\det(U)| = 1$, because $1 = \det(1) = \det(U^T U) = \det(U)^2$. The orthogonal transform therefore does not affect the integration measure. In the coordinates system of eigenvectors v we can then rewrite the normalization integral as
\[
\int_{-\infty}^{\infty} \Pi_i dx_i \exp\left(-\frac{1}{2} x^T A x\right)
\]

\[
x = U v \quad \Rightarrow \quad \int_{-\infty}^{\infty} \Pi_k dv_k \exp\left(-\frac{1}{2} v^T U^T A U v\right)
\]

\[
= \int_{-\infty}^{\infty} \Pi_k dv_k \exp\left(-\frac{1}{2} \sum_i \lambda_i v_i^2\right)
\]

\[
= \Pi_k \sqrt{\frac{2\pi}{\lambda_k}} = (2\pi)^{\frac{N}{2}} \det(A)^{-\frac{1}{2}},
\]

where we used in the last step that the determinant of a matrix equals the product of its eigenvalues.

IV. PERTURBATION EXPANSION

A. General case

Only few problems can be solved exactly. We therefore rely on perturbative methods to evaluate the quantities of physical interest. One such method follows the known avenue of a perturbation expansion: If a part of the problem is solvable exactly, we can try to obtain corrections in a perturbative manner, if the additional parts of the theory are small compared to the solvable part.

First, we introduce a new concept, which we call the action \(S(x) \). It is just another way to express the probability distribution. The main difference is that the notation using the action typically does not care about the proper normalization of \(p(x) \), because the two are related by

\[
p(x) \propto \exp(S(x)).
\]

We will see in the sequel, that the normalization can be taken care of diagrammatically. We saw an example of an action in the last section in (15): The action of the Gaussian is \(S(x) = -\frac{1}{2} x^T A x \).

Replacing \(p(x) \) by \(\exp(S(x)) \) in the definition of the moment generating function (4), we will call the latter \(Z(j) \). We therefore obtain the normalized moment generating function as

\[
Z(j) = \frac{Z(j)}{Z(0)},
\]

\[
Z(j) = \int dx \exp(S(x) + j^T x).
\]

We here denote as \(Z \) the unnormalized partition function, for which in general \(Z(0) \neq 1 \) and \(Z \) is the properly normalized moment generating function that obeys \(Z(0) = 1 \).

As initially motivated, let us assume that the problem can be decomposed into a part \(S_0(x) \), of which we are able to evaluate the partition function \(Z_0(j) \) exactly, and a perturbing part \(\epsilon V(x) \) as

\[
S(x) = S_0(x) + \epsilon V(x).
\]

We here introduced the small parameter \(\epsilon \) that will serve us to organize the perturbation expansion. Concretely, we assume that we are able to compute the integral

\[
Z_0(j) = \int dx \exp\left(S_0(x) + j^T x \right). \tag{23}
\]

As an example we may think of \(S_0(x) = -\frac{1}{2} x^T A x \), a Gaussian distribution \([15]\). We are, however, not restricted to perturbations around a Gaussian theory, although this will be the prominent application of the method presented here and in fact in most applications of field theory. Let us further assume that the entire partition function can be written as
where all terms of the action that are not part of the solvable theory are contained in the potential \(V(x) \), multiplied by a prefactor \(\epsilon \) that is assumed to be small. The name “potential” is here chosen in reminiscence of the origin of the term in interacting systems, where the pairwise potential, mediating the interaction between the individual particles, is often treated as a perturbation. For us, the \(V \) is just an arbitrary smooth function of the \(N \)-dimensional vector \(x \) of which we will assume that a Taylor expansion exists.

Now we will specifically study the Gaussian theory as an example, so we assume that \(Z_0 = Z_0 \) in equation (23) is of Gaussian form equation (17)

\[
Z_0(j) = \exp \left(\frac{1}{2} j^T A^{-1} j \right),
\]

because this special case is fundamental for the further developments. In calculating the moments that contribute to equation (25), we may hence employ Wick’s theorem (20). Let us first study the expression we get for the normalization factor \(Z \).

We get with the series representation \(\exp(\epsilon V(x)) = 1 + \epsilon V(x) + \frac{\epsilon^2}{2!} V^2(x) + O(\epsilon^3) \) the lowest order approximation \(Z_0(j) \) and correction terms \(Z_V(j) \) from equation (25) as

\[
Z(0) = Z_0(0) + Z_V(0)
\]

\[
Z_V(0) := (\epsilon V(x) + \frac{\epsilon^2}{2!} V^2(x) + \ldots) = 0.
\]

In deriving the formal expressions, our aim is to obtain graphical rules to perform the expansion. We therefore write the Taylor expansion of the potential \(V \) as

\[
V(x) = \sum_{n_1, \ldots, n_N} \frac{V^{(n_1, \ldots, n_N)}}{n_1! \ldots n_N!} x_1^{n_1} \cdots x_N^{n_N}
\]

\[
= \sum_{n=0}^{\infty} \sum_{i_1, \ldots, i_n=1}^N \frac{1}{n!} V^{(n)}_{i_1 \cdots i_n} \prod_{k=1}^n x_{i_k},
\]
where \(V'(n_1, \ldots, n_N) = \frac{\partial^n V(0)}{\partial x_1^{n_1} \cdots \partial x_n^{n_n}} \) are the derivatives of \(V \) evaluated at \(x = 0 \) and \(V^{(n)}_{i_1, \ldots, i_n} = \frac{\partial^n V(0)}{\partial x_{i_1}^{n_1} \cdots \partial x_{i_n}^{n_n}} \) is the derivative by \(n \) arbitrary arguments. We see that the two representations are identical, because each of the indices \(i_1, \ldots, i_n \) takes on any of the values \(1, \ldots, N \). Hence there are \(\binom{n}{n_k} \) combinations that yield a term \(x_k^{i_k} \), because this is the number of ways by which any of the \(n \) indices \(i_k \) may take on the particular value \(i_k = k \). So we get a combinatorial factor \(\frac{1}{n!} \binom{n}{n_k} = \frac{1}{(n-n_k)n_k!} \). Performing the same consideration for the remaining \(N-1 \) coordinates brings the second line of (27) into the first.

We now extend the graphical notation in terms of Feynman diagrams to denote the Taylor coefficients of the potential by interaction vertices

\[
\epsilon \frac{V^{(n)}_{i_1, \ldots, i_n}}{n!} \prod_{k=1}^{n} x_{i_k} = \epsilon \times_i \ldots .
\]

(28)

The corrections \(Z_V(0) \) require, to first order in \(\epsilon \), the calculation of the moments

\[
(x_{i_1} \cdots x_{i_n})_0,
\]

(29)

So with Wick’s theorem the first order correction terms are

\[
\epsilon \sum_{n=0}^{\infty} \sum_{i_1, \ldots, i_n=1}^{N} \frac{1}{n!} V^{(n)}_{i_1, \ldots, i_n} \prod_{k=1}^{n} x_{i_k} = \epsilon \sum_{n=0}^{\infty} \frac{1}{n!} V^{(n)}_{i_1, \ldots, i_n} \prod_{k=1}^{n} x_{i_k} \]

(30)

where \(\sigma \) are all permutations that lead to distinct pairings of the labels \(i_1, \ldots, i_n \).

Continuing the expansion up to second order in \(\epsilon \) we insert (27) into \(\exp(\epsilon V(x)) \) and using \(\exp \sum = \prod \exp \) to get

\[
\exp(\epsilon V(x)) = \exp \left(\epsilon \sum_{n=0}^{\infty} \sum_{i_1, \ldots, i_n=1}^{N} \frac{1}{n!} V^{(n)}_{i_1, \ldots, i_n} \prod_{k=1}^{n} x_{i_k} \right)
\]

(31)

\[
= 1 + \epsilon \sum_{n=0}^{\infty} \sum_{i_1, \ldots, i_n=1}^{N} \frac{V^{(n)}_{i_1, \ldots, i_n}}{n!} \prod_{k=1}^{n} x_{i_k} + \frac{\epsilon^2}{2!} \sum_{n,m=0}^{\infty} \left(\sum_{\text{all such pairs}} \frac{V^{(n)}_{i_1, \ldots, i_n}}{n!} \prod_{k=1}^{n} x_{i_k} \right) \prod_{l=1}^{m} x_{j_l} + \ldots
\]

The last line shows that we get a sum over each index \(i_k \). We see, analogous to the factor \(\epsilon^2/2! \), that a contribution with \(k \) vertices has an overall factor \(\epsilon^k/k! \). If the \(k \) vertices are all different, we get the same term multiple times due to the sums over the index tuples \(i_1, \ldots, i_n \). The additional factor corresponds to the number of ways to assign the \(k \) vertices to \(k \) places. So if the \(k \) vertices in total are made up of groups of \(r_i \) identical vertices each, with \(k = \sum_{i=1}^{\infty} r_i \), we get another factor \(\frac{k!}{r_1! \cdots r_n!} \).

We need to compute the expectation value \(\langle \cdots \rangle_0 \) of the latter expression, according to (26). For a Gaussian solvable part this task boils down to the application of Wick’s theorem. These expressions soon become unwieldy, but we can make use of the graphical language introduced above and derive the so called Feynman rules to compute the corrections in \(Z_V(0) \) at order \(k \) in \(\epsilon \):

- At order \(k \), which equals the number of interaction vertices, each term comes with a factor \(\frac{\epsilon^k}{k!} \).
- If vertices repeat \(r_i \) times the factor is \(\frac{\epsilon^k}{r_1! \cdots r_n!} \).
- A graph representing this correction consists of \(k \) interaction vertices (factor \(\frac{V^{(n)}_{i_1, \ldots, i_n}}{n!} \)); in each such vertex \(n \) lines cross.
- We need to consider all possible combinations of \(k \) such vertices that are generated by (31).
- The legs of the interaction vertices are joined in all possible ways into pairs; this is because we take the expectation value with regard to the Gaussian in (26) (due to the permutations \(\sum_{\sigma \in \mathfrak{S}(2,\ldots,2)} \langle \sigma \rangle_0 \)); every pair of joined legs is denoted by a connecting line from \(x_{i_1} \) to \(x_{j_1} \), which end on the corresponding legs of the interaction vertices; each such connection yields to a factor \(A^{-1}_{ij} \).
- We get a sum over each index \(i_k \).

We will exemplify these rules in the following example on a toy model.
C. Example: Example: “$\phi^3 + \phi^4$” theory

As an example let us study the system described by the action

$$S (x) = S_0 (x) + \epsilon V (x)$$

(32)

$$V (x) = \frac{\alpha}{3!} x^3 + \frac{\beta}{4!} x^4$$

$$S_0 (x) = -\frac{1}{2} K x^2 + \frac{1}{2} \ln \frac{K}{2\pi},$$

with $K > 0$. We note that the action is already in the form to extract the Taylor coefficients $V^{(3)} = \alpha$ and $V^{(4)} = \beta$. Here the solvable part of the theory, S_0, is a one-dimensional Gaussian. The constant term $\frac{1}{2} \ln \frac{K}{2\pi}$ is the normalization, which we could drop as well, since we will ultimately calculate the ratio \[\frac{Z}{Z_0}\], where this factor drops out. With this normalization, a contraction therefore corresponds to the Gaussian integral

$$\frac{x}{x} = \langle x x \rangle_0$$

$$= \sqrt{\frac{K}{2\pi}} \int x^2 \exp\left(-\frac{1}{2} K x^2\right) dx$$

$$= \langle x^2 \rangle_0 = K^{-1},$$

the variance of the unperturbed distribution, following from the general form \[\langle x^2 \rangle\] for the second cumulants of a Gaussian distribution for the one-dimensional case considered here. Alternatively, two-fold integration by parts yields the same result.

The first order correction to the denominator $Z (0)$ is therefore

$$Z_{V,1} (0) = \epsilon \left(\frac{\alpha}{3!} x^3 + \frac{\beta}{4!} x^4 \right)_0$$

$$= \epsilon \frac{\alpha}{3!} \langle x^3 \rangle_0 + \epsilon \frac{\beta}{4!} \langle x^4 \rangle_0$$

$$= 0 + 3 \cdot \left(\begin{array}{c} \alpha \\ \beta \end{array} \right) + 3 \cdot 3 \cdot 3 \cdot 3$$

$$= 0 + \epsilon \frac{\beta}{4!} 3 K^{-2},$$

where the first term $\propto x^3$ vanishes, because the Gaussian is centered (has zero mean). We here use the notation of the interaction vertex \[x\] as implying the prefactor ϵ, as defined in \[28\] and the factor $\frac{\beta}{4!}$, which is the Taylor coefficient of the potential. We have two connecting lines, hence the factor $(K^{-1})^2$. The factor 3 appearing in the third line can be seen in two ways: 1. By the combinations to contract the four lines of the vertex: We choose one of the four legs arbitrarily; we then have three choices (factor 3) to connect this leg to one of the three remaining ones; the remaining two legs can be combined in a single manner then (factor 1). Choosing any other of the four legs to begin with leads to the same combinations, so there is no additional factor 4 (would double-count combinations). 2. By the result $\langle x^4 \rangle_0 = 3!! = 3 \cdot 1 = 3$, valid for a unit variance Gaussian.

At second order we get

$$Z_{V,2} (0) = \frac{\epsilon^2}{2!} \left(\frac{\alpha}{3!} \frac{\alpha}{3!} \frac{\alpha}{3!} \frac{\alpha}{3!} \right)_0 + \frac{2!}{2!} \frac{\epsilon^2}{3!} \left(\frac{\alpha}{3!} \frac{\alpha}{3!} \frac{\beta}{4!} \frac{x^4}{3!} \right)_0 + \frac{2!}{2!} \frac{\epsilon^2}{4!} \left(\frac{\beta}{4!} \frac{\beta}{4!} \frac{\beta}{4!} \frac{\beta}{4!} \right)_0$$

$$= 3 \cdot 2 \cdot \left(\begin{array}{c} \alpha \\ \beta \end{array} \right) + 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$$

$$+ 4 \cdot 3 \cdot 2 \cdot \left(\frac{4}{2} \right) \cdot 2 \cdot 3 \cdot 3 \cdot 3 \cdot 3$$

$$= \frac{\epsilon^2}{2!} \left(\frac{\alpha}{3!} \right)^2 K^{-3} (3 \cdot 2 + 3 \cdot 3)$$

$$= 15 \cdot (6-1)!!$$

$$+ \frac{\epsilon^2}{2!} \left(\frac{\beta}{4!} \right)^2 K^{-4} (4 \cdot 3 \cdot 2 + \left(\frac{4}{2} \right)^2 \cdot 2 + 3 \cdot 3)$$

$$= 105 \cdot (8-1)!!$$
We dropped from the first to the second line the term with an uneven power in x, because we have a centered Gaussian. The combinatorial factors, such as $3 \cdot 2$ for the first diagram, correspond to the number of combinations by which the legs of the two vertices can be contracted in the given topology. The factor $\frac{2!}{\prod_{i=1}^{N} m!}$ is due to the number of ways in which the sum in (31) produces the same term. The expressions in the underbraces show that alternatively, we can obtain the results from the expression of the k-th moment of a Gaussian with variance K^{-1}, which is $(k - 1)!! K^{-\frac{3}{2}}$

D. External Sources

Now let us extend this reasoning to $Z(j)$, which is a function of j. Analogously as for the potential, we may expand the source term $j^T x$ into its Taylor series

$$\exp(j^T x) = \exp\left(\sum_{i=1}^{N} j_i x_i\right)$$

$$= \sum_{m=0}^{\infty} \frac{1}{m!} \sum_{l_1 \ldots l_m = 1}^{N} \prod_{k=1}^{m} j_{l_k} x_{l_k}. \tag{33}$$

So for $Z(j)$, instead of equation (29), we need to evaluate the moments

$$ \langle x_{1 \ldots n} x_{1 \ldots n} \rangle_0 \tag{34}$$

So in addition to the n single factors x from the interaction vertices, we get m additional factors due to the source terms $j_i x_i$. By Wick’s theorem, we need to pair all these x_i in all possible ways into pairs (expressed by sum over all distinct pairings $\sigma \in P(\{2, \ldots, 2\}, q + m)$, so the generalization of equation (30) at first order in ϵ (higher orders in ϵ are analogous to equation (34)) reads

$$\sum_{m=0}^{\infty} \frac{1}{m!} \sum_{l_1 \ldots l_m = 1}^{N} \sum_{n=0}^{\infty} \sum_{n_1 \ldots n_{m+n} = 1}^{N} \epsilon^{l_{i_1 \ldots i_n}} \frac{V^{(n)}}{n!} \sum_{\sigma \in P(\{2, \ldots, 2\}, m+n)} A_{\sigma(1)}^{-1} \sigma(2)^{-1} \ldots A_{\sigma(n+m-1)}^{-1} \sigma(n+m). \tag{35}$$

So the additional graphical rules are:

- In a way, the source term $j_i x_i$ act like a monopole interaction vertex; these terms are represented by a line ending in an external leg to which we assign the name j_i.

- We need to construct all graphs including those where lines end on an arbitrary number of external points j_i.

- A graph with r external lines contributes to the l-th moment, because after differentiating $Z(j) l$-times and setting $\epsilon = 0$ in the end, this is the only remaining term.

- For a graph with l external lines, we have an additional factor $\frac{1}{l!}$ in much the same way as interaction vertices.

By Wick’s theorem and equation (30), we need to treat each of these l_i factors j_i as distinct external legs to arrive at the right combinatorial factor. Each external leg j_i comes with a sum $\sum_{l_i=1}^{N}$.

These rules are summarized in table [I]. We will exemplify these rules in the example in [IV.C] but first reconsider the normalization factor appearing in equation (25) in the following section.

E. Cancellation of Vacuum Diagrams

To arrive at an expression for the perturbation expansion (44) of the normalized moment generating function $Z(j)$ (22), whose derivatives yield all moments, we need to divide by $Z(0)$, the partition function at source value $j = 0$. By the rules derived in the previous section, we see that the diagrams contributing to $Z(0)$ are so-called vacuum diagrams: Diagrams without external lines. An example appearing at first order in ϵ in a theory with a four point interaction vertex is:
But applying the same set of rules to the calculation of $\mathcal{Z}(j)$, we see that the expansion also generates exactly the same vacuum diagrams. This can be seen from equation (35). At given order k, among the pairings σ there are in particular those that decompose into two disjoint sets, such that all external lines are contracted with only a subset of k' interaction vertices. We could formally write these as

$$\sum_{\sigma \in P((2,\ldots,2),q) \times P((2,\ldots,2),r)} \sigma_{a} \in P((2,\ldots,2),q) \sigma_{b} \in P((2,\ldots,2),r).$$

The remaining $k-k'$ vertices are contracted only among one another, without any connection to the first cluster. An example at first order and with two external lines is:

![Diagram](attachment:image.png)

Let us now fix the latter part of the diagram, namely those vertices that are connected to external legs and let us assume it is composed of k' vertices. We want to investigate, to all orders in k, by which vacuum diagrams such a contribution is multiplied. At order $k = k'$ there cannot be any additional vertices in the left vacuum part; we get our diagram times 1 at this order; the factor 1 stems from (31). At order $k = k' + 1$, we get a multiplication with all vacuum diagrams that have a single vertex. At order $k = k' + k''$, we hence get a multiplicative factor of all vacuum diagrams with k'' vertices. So we see that our particular contribution is multiplied with all possible vacuum diagrams. To see that they exactly cancel with those from the denominator $\mathcal{Z}(0)$, we are left to check that they arise with the same combinatorial factor in both terms. The number of permutations in (36) is obviously the same as those in the computation of the vacuum part in the denominator, as explained in section IV.B

$$\mathcal{Z}(j) \mathcal{Z}(0) = \frac{(1 + \ldots) \times \ldots + \ldots}{(1 + \ldots + \ldots)}.$$

Also the powers $\epsilon^{k'} \cdot \epsilon^{k''} = \epsilon^{k}$ obviously add up to the right number. We still need to check the factor that takes care of multiple occurrences of vertices. In total we have k vertices. Let us assume a single type of vertex for simplicity. We have k such vertices in total (in the left and in the right part together). If $k' \leq k$ of these appear in the right part of the diagram, we have $\left(\frac{k}{k'}\right) = \prod_{j=1}^{k'} \frac{k!}{(k-j)!j!}$ ways of choosing this subset from all of them. Each of these choices will appear and will yield the same algebraic expression. So we get a combinatorial factor

$$\frac{1}{k!} \frac{k!}{(k-k')!k'} = \frac{1}{(k-k')!} \frac{1}{k'!}.$$

The first factor on the right hand side is just the factor that appears in the corresponding vacuum diagram in the denominator. The second factor is the one that appear in the part that is connected to the external lines.
We therefore conclude that each diagram with external legs is multiplied by all vacuum diagrams with precisely the same combinatorial factors as they appear in the normalization $Z(0)$. So all vacuum diagrams are canceled and what remains in Z_V are only diagrams that are connected to external lines:

$$Z(j) = \frac{Z(j)}{Z(0)} = Z_0(j) + Z_V(j)$$

$$Z_V(j) = \sum \text{graphs}(\Delta = A^{-1}, \epsilon V) \text{ with external legs ending on } j$$

$$Z_V^{(l_1, \ldots, l_N)}(j) \bigg|_{j=0} = (x^{l_1} \cdots x^{l_N})$$

$$= \sum \text{graphs}(\Delta = A^{-1}, \epsilon V) \text{ with } l_1 + \ldots + l_N \text{ external legs replaced by } j_i^{l_i} \rightarrow l_i!.$$

where the rules summarized in the table above apply to translate diagrams into their algebraic counterpart and the latter term $l_i!$ arises from the l_i derivatives acting on the external source j_i coming in the given power l_i.

F. Equivalence of graphical rules for n-point correlation and n-th moment

We here want to see that the graphical rules for computing the n-th moment of a single variable $\langle x^n \rangle$ are the same as those for the n-point correlation function $\langle x_1 \cdots x_n \rangle$ with n different variables. To see this, we express the moment generating function for the single variable $Z(j)$ as $Z(j_1, \ldots, j_n) = \int dx p(x) e^{x \sum_i j_i}$ so that the n-th moment can alternatively be expressed as

$$\partial_{j_1} \cdots \partial_{j_n} Z(j_1, \ldots, j_n) \bigg|_{j_i=0} = \langle x^n \rangle$$

$$= \partial^n Z(j) \bigg|_{j=0}. $$

This definition formally has n different sources, all coupling to the same x. The combinatorial factors constructed by the diagrams are the same as those obtained by the n-fold derivative: We have $n(n-1) \cdots 1 = n!$ ways of assigning the n different j_i to the external legs, all of which in this case yield the same result.

G. Example: “$\phi^3 + \phi^4$” theory

As an example let us study the system described by the action \mathcal{L}. At zeroth order, the moment generating function Z_0 therefore is

$$Z_0(j) = \exp \left(\frac{1}{2} K^{-1} j^2 \right).$$ (37)

At first order in ϵ we need all contributions with a single interaction vertex. If it is the three-point vertex, we only get a contribution that has a single external leg j that contributes, which corresponds to a so-called tadpole diagram, a diagram with a single external leg and the two remaining legs connected to a loop

$$ = \epsilon \frac{\alpha}{3!} j \left(\int x^3 \right)_0 \frac{x^{q=3}_{r=1}}{3(K^{-1})^2} = \epsilon \frac{\alpha}{3!} 3(K^{-1})^2 j = \epsilon \frac{\alpha}{2} (K^{-1})^2 j.$$ (38)

We may obtain the value of this contribution in two ways:

1. In the first way, corresponding to \mathcal{L}, we directly use the expansions coefficients of \mathcal{L} at the desired order in ϵ, here ϵ^1, and the coefficients of \mathcal{L} at the desired order, here ϵ^1, collect all factors x of the product (here x^4) and obtain their value under the Gaussian distribution by Wick’s theorem, corresponding to a direct evaluation of \mathcal{L}. So we here get $\langle x^4 \rangle_0 = 3(K^{-1})^2$, because there are 3 distinct pairings of the first x with the three remaining ones and then only one combination is left and we have one propagator line.
2. Alternatively, corresponding to (39), we may use the graphical rules derived in the previous section to get the same result: We have a factor $\epsilon^1 1!$, because we are at first order (one interaction vertex). The three-point vertex comes with a factor $\frac{\alpha}{4!}$. There is one external leg, so $\frac{j}{4!}$. The combinatorial factor 3 arises from the three choices of attaching the external source j to one of the three legs of the three point vertex. The remaining two legs of the three point vertex can then be contracted in only a single way.

Because the diagram has a single leg it contributes to the first moment. We see that the four point vertex does not contribute to the mean at this order, because it would give a contribution $\propto \langle x^5 \rangle_0 = 0$, which vanishes by Wick’s theorem.

Calculating corrections to the mean at second order in ϵ, we get four different non-vanishing contributions with one external leg. One of them is

$$\epsilon^2 \frac{\alpha \beta}{4!} \cdot \frac{3 \cdot 4 \cdot 3 \cdot j}{K^{-4} j} = \epsilon^2 \frac{\alpha \beta}{4} K^{-4} j.$$

The combinatorial factor arises as follows: The external leg j is connected to the three point vertex (3 possibilities). The remaining two legs of the three point vertex need to be connected to two of the legs of the four point vertex. We may choose one of the legs of the three point vertex arbitrarily and connect it to one of the four legs of the four point vertex (4 possibilities). The other leg then has 3 possibilities left. Had we chosen the other leg of the three point vertex, we would have gotten the same combinations, so no additional factor two. Since we have two different interaction vertices, we get a factor $\frac{\epsilon^2}{4!} \alpha \beta$ from the exponential function of the interaction potential V.

Diagrams with two external legs that contribute to the second moment are

$$j = \frac{j^2}{2!} K^{-1},$$

where the combinatorial factor is one, because there is a unique way to contract the pair of factors x attached to each j. This can also be seen from the explicit calculation as in point 1. above, as $\frac{\epsilon^2}{4!} \frac{j^2}{2!} \langle x^2 \rangle_0 = \frac{j^2}{2} K^{-1}$. The only contribution with one interaction vertex is

$$j = 4 \cdot \frac{\epsilon \beta}{4!} K^{-3} \frac{j^2}{2!} = \epsilon \frac{\beta}{4} K^{-3} j^2.$$

At moments higher than one, having two or more external legs, we may also get unconnected contributions that factorize. For example a second order contribution to the second moment is

$$j = 2 \cdot 3 \cdot \frac{\epsilon^2}{2} \left(\frac{\alpha}{3!} \right)^2 K^{-4} \frac{j^2}{2!} = \left(\frac{\epsilon}{2} \alpha \right)^2 K^{-4} \frac{j^2}{2!},$$

being one-half the square of (39) (Combinatorial factor: Two vertices to choose to attach the first leg times three legs to choose from and three legs to choose for attaching the other external leg). We recognize that this term is a contribution to the second moment stemming from the product of two contributions from the first moment. If we calculate the variance, the second cumulant, we know that exactly these terms will be subtracted. In a way, they do not carry any new information. We will see in the next section how these redundant terms are removed in the graphical language.

V. LINKED CLUSTER THEOREM

The relations of the different generating functions, the action, the moments, and cumulants up to this point can be summarized as follows:
We saw in the last section (in section §IV.E) that the topology of certain graphs allowed us to exclude them from the expansion of Z: the absence of external lines in the vacuum graphs lead to their cancellation by the normalization.

In the coming section we will derive a diagrammatic expansion of W and the cumulants and will investigate the topological features of the contributing graphs. Stated differently, we want to find direct links from the action S to the cumulant generating function S and to the cumulants.

In the preceding example we noticed that we obtained in step four a diagram combined of two unconnected diagrams, the first part of which already appeared at the lower order ϵ. Similarly, determining corrections $\propto j^2$, we would find that similar diagrams decompose into unconnected components that already appeared at linear order in j. It would be more efficient to only calculate each diagram exactly once.

We have already faced a similar problem in §II.C, when we determined the moment generating function of a factorizing density, a density of independent variables. The idea there was to obtain the Taylor expansion of $\ln Z$ instead of Z, because the logarithm converts a product into a sum. A Taylor expansion can therefore only contain mixed terms in different j_i and j_k if these are part of the same connected component, also called a linked cluster. We will explore the same idea here to see how this result comes out more formally in a moment.

A. General proof of the linked cluster theorem

The linked cluster theorem that we will derive here is fundamental to organize the perturbative treatment, because it drastically reduces the number of diagrams that need to be computed.

To proceed, we again assume we want to obtain a perturbation expansion of $W(j) = \ln Z_0(j)$ around a theory $W_0(j) = \ln Z_0(j)$. We here follow loosely the derivation of Zinn-Justin [23, p. 120ff].

We consider here the general (not necessarily Gaussian) case, where we know all cumulants of Z_0, we may expand the exponential function in its Taylor series and employ equation (14) to determine all appearing moments of x as products of cumulants. Using our result, equation (6), from section §II.A, we see that instead of writing the moments $\langle x_1 x_k \rangle_0$ as expectation values with respect to Z_0, we may as well write them as derivatives of the moment generating function: Each term $\langle x_1 x_k \rangle$ will hence be replaced by $\partial_j \partial_k$, so that in total we may write equation (24) as

$$
Z(j) = \int dx \exp(\epsilon V(x)) \exp(S_0(x) + j^T x) \sum \prod_{\sigma \in \langle 1 \ldots N \rangle} \langle x_1 x_k \rangle
$$

$$
= \exp(\epsilon V(\nabla_j)) \int dx \exp(S_0(x) + j^T x)
\left|_{Z_0(j)} \right.
= \exp(\epsilon V(\nabla_j)) Z_0(j)
= \exp(\epsilon V(\nabla_j)) \exp(W_0(j)) Z_0(0)
$$

where $\nabla_j = (\partial_1, \ldots, \partial_N)^T$ is the nabla operator, a vector containing the derivative by j_k, denoted as ∂_k, in the k-th entry. The latter expression is defined by the Taylor expansion of the exponential function.

The following proof of connectedness of all contributions, unlike the results presented in section §IV.B, does not rely on Z_0 being Gaussian. We here start from the general expression equation (43) to derive an expansion of $W(j)$,
using the definition equation (7) to write
\[
\exp(W(j)) = Z(j) = \frac{Z(j)}{Z(0)} = \exp(\epsilon V(\nabla j)) \exp(W_0(j)) \frac{Z_0(0)}{Z(0)}
\]
\[
W_V(j) := W(j) - W_0(j) = \ln\left(\exp(-W_0(j)) \exp(\epsilon V(\nabla j)) \exp(W_0(j)) \right) + \ln \frac{Z_0(0)}{Z(0)}
\]

where in the second step we multiplied by \(\exp(-W_0(j))\) and then took the ln. The latter term \(\ln \frac{Z_0(0)}{Z(0)}\) is just a constant making sure that \(W(0) = 0\). Since we are ultimately interested in the derivatives of \(W\), namely the cumulants, we may drop the constant and ensuring \(W(0) = 0\) dropping the zeroth order Taylor coefficient in the final result. The last expression shows that we obtain the full cumulant generating function as \(W_0\) plus an additive correction \(W_V\), which depends on \(V\). The aim is to derive diagrammatic rules to compute \(W_V\).

The idea is now to prove connectedness of all contributions by induction, dissecting the operator \(\exp(\epsilon V(\nabla j))\) into infinitesimal operators of slices \(\frac{1}{L}\) as
\[
\exp(\epsilon V(\nabla j)) = \lim_{L \to \infty} (1 + \frac{\epsilon}{L} V(\nabla j))^L.
\]
Each operator of the form \(1 + \frac{\epsilon}{L} V(\nabla j)\) only causes an infinitesimal perturbation provided that \(\frac{\epsilon}{L} \ll 1\). We formally keep the \(\epsilon\)-dependence here for later comparison with the results obtained in section §IVB.

We start the induction by noting that at order \(\epsilon^0\) we have \(W_V = 0\), so it contains no diagrams. In particular, there are no disconnected components.

To make the induction step, we assume that, for large \(L\) given and fixed, the assumption is true until some \(0 \leq l \leq L\), which is that \(W_l(j)\) is composed of only connected components, where
\[
\exp(W_l(j)) := (1 + \frac{\epsilon}{L} V(\nabla j))^l \exp(W_0(j)).
\]
We then get
\[
W = \lim_{L \to \infty} W_L.
\]
Hence we need to show that
\[
\exp(W_{l+1}(j)) = (1 + \frac{\epsilon}{L} V(\nabla j)) \exp(W_l(j))
\]
is still composed only out of connected components. To this end we again multiply by \(\exp(-W_l(j))\), take the logarithm and expand \(\ln(1 + \frac{\epsilon}{L} x) = \frac{\epsilon}{L} x + O((\frac{\epsilon}{L})^2)\) to get
\[
W_{l+1}(j) - W_l(j) = \frac{\epsilon}{L} \left(\exp(-W_l(j)) \exp(\epsilon V(\nabla j)) \exp(W_l(j)) \right) + O\left((\frac{\epsilon}{L})^2 \right).
\]
Expanding the potential into its Taylor representation (27), we need to treat individual terms of the form
\[
\frac{V_{l_1 \cdots l_n}^{(n)}}{n!} \exp(-W_l(j)) \partial_{l_1} \cdots \partial_{l_n} \exp(W_l(j)).
\]
Since the differential operator is multiplied by the respective Taylor coefficient \(\frac{V_{l_1 \cdots l_n}^{(n)}}{n!}\) from (27), and noting that the two exponential factors cancel each other after application of the differential operator to the latter one, what remains is a set of connected components of \(W_l(j)\) tied together by the vertex \(\frac{V_{l_1 \cdots l_n}^{(n)}}{n!}\). The \(j\)-dependence is ultimately within \(W_0\), so that the operation of the differential operator generates all kinds of derivatives of \(W_0\). We see that disconnected components cannot appear, because in each iteration step of the form (17) there is only a single interaction vertex. Each leg of such a vertex corresponds to the appearance of one \(\partial_{l_k}\), which, by acting on \(W_l(j)\) attaches to one such component.

As an example, consider a one-dimensional theory with the interaction \(\epsilon V(x) = \epsilon \frac{x^4}{4!}\). We use the symbol with superscript \(l(j)\) to denote \(W_l(j)\) as a function of \(j\) and the number of legs \(n\) as the number of derivatives taken
\[
W_l^{(n)}(j) =: \frac{\epsilon}{L} \frac{x^4}{4!}.
\]
In this notation, a single step produces the new diagrams

$$W_{t+1}(j) - W_t(j)$$

$$= \exp(-W_t(j)) \frac{\partial j}{\partial j} \frac{\partial j}{\partial j} \exp(W_t(j))$$

$$= \exp(-W_t(j)) \left[\frac{4}{2} \right]^{l(j)} + \left(\begin{array}{c} 4 \\ 2 \end{array}\right) \left(\begin{array}{c} l(j) \\ l(j) \end{array}\right) \exp(W_t(j)) \right] .$$

By construction, because every differential operator is attached to one leg of the interaction vertex, we do not produce any unconnected components. The combinatorial factors are the same as usual but can also be derived from the rules of differentiation: For the first term, each of the four differential operators needs to act on $W_t(j)$, so a factor 1; For the second term: There are $\left(\begin{array}{c} 4 \\ 2 \end{array}\right)$ ways of choosing two of the four derivatives that should act on $W_t(j)$ and two which remain to act on a new W_t from the exponential function. The other factors follow by analogous arguments. We see that only sums of connected components are produced, proving the assumption of connectedness by induction.

What remains to be shown is that the connected diagrams produced by the iterative application of equation (46) come with the same factor as those that are produced by the direct perturbation expansion in section §IVB, for the example of a Gaussian theory as the underlying exactly solvable model. We therefore rewrite the recursion step as

$$W_{t+1}(j) = 1 \cdot W_t(j) + \epsilon \cdot \sum_{n=1}^{\infty} \sum_{i_1, \ldots, i_n} \frac{V^{(n)}}{n!} \exp(-W_t(j)) \partial_{i_1} \cdots \partial_{i_n} \exp(W_t(j)) .$$

Here we can omit the constant term of V, so starting at $n = 1$, because the constant may be absorbed into the normalization constant. The latter expression shows that each step adds to $W_t(j)$ the set of diagrams from the term (47) on the right hand side to obtain $W_{t+1}(j)$. The additional diagrams, as argued above, combine the connected elements already contained in W_t with vertices from equation (27).

We now want to show that we only need to include those new diagrams that add exactly one vertex to each diagram already contained in W_t and that we do not need to consider situations where the additional vertex ties together two components that each have one or more interaction vertices. Stated differently, only one leg of the interaction vertex shown in (49) must attach to a component in W_t, while all remaining legs must be attached to W_0. To understand why this is, we need to consider the overall factor in front of a resulting diagram with k interaction vertices after L iterations of (51). Each step of (51), by the first term, copies all diagrams as they are and, by the second term, adds those formed by help of an additional interaction vertex. Following the modification of one component through the iteration, in each step we hence have the binary choice to either leave it as it is or to combine it with other components by help of an additional vertex.

We first consider the case that each of the k vertices is picked up in a different step (at different l) in the iteration. To formalize this idea, we need to distinguish the terms in W_t

$$W_t(j) = W_0(j) + W_{V,C}(j) = \begin{array}{c} 0(j) \end{array} + \begin{array}{c} V,(j) \end{array}$$

into those of the solvable theory W_0, which are independent of ϵ, and the corrections in $W_{V,C}$ that each contain at least one interaction vertex and hence at least one factor of ϵ. For the example shown in (49), this means that we need to insert $W_0 + W_{V,C}$ at each “leave”, multiply out and only keep those graphs that contain at most one contribution from $W_{V,C}$; all other contributions would add a diagram with more than one additional vertex and we would hence need less than k steps to arrive at a diagram of order k.

Each such step comes with a factor ϵL and there are $\binom{L}{k}$ ways to select k steps out of the L in which the second term rather than the first term of (51) acted on the component in question. So in total we get a factor

$$\left(\frac{\epsilon}{L}\right)^k \binom{L}{k} = \frac{\epsilon^k}{k!} \frac{L(L-1)\cdots(L-k+1)}{L^k} L \to \infty \frac{\epsilon^k}{k!}$$

which is independent of L.

Now consider the case that we pick up the k vertices along the iteration (51) such that in one step we combined two sub-components with each one or more vertices; a diagram where the vertex combines two or more components from $W_{V,l}$. Consequently, to arrive at k vertices in the end, we only need $k' < k$ iteration steps in which the latter rather than the first term of (51) acted on the component. The overall factor therefore is

$$\left(\frac{\epsilon}{L}\right)^k \binom{L}{k'} = \frac{\epsilon^k}{k'!} \frac{L(L-1)\cdots(L-k'+1)}{L^k} L \to \infty \frac{\epsilon^k}{k'!} \frac{1}{L^{k-k'}} L \to \infty 0.$$

In the limit that we are interested in we can hence neglect the latter option and conclude that we only need to consider in each step the addition of a single vertex to any previously existing component. The very same argument shows why the neglected terms of $O\left(\frac{\epsilon}{L}\right)^2$ that we dropped when expanding $\ln(1 + \frac{\epsilon}{L})$, do not contribute to the final result in the limit $L \to \infty$: Such terms would increase the order of the term in a single iteration step by two or more - consequently we would need $k' < k$ steps to arrive at an order k contribution - the combinatorial factor would hence be $\propto L^{k-k'}$, as shown above, so these terms do not contribute.

We see that after L steps all possible diagrams are produced, starting from those with $k = 0$ interaction vertices and ending with those that have $k = L$ interaction vertices and the overall factor for each diagram is as in the perturbation expansion derived in section §IV.B: the connected diagrams come with the same factor as in Z_V. The factor (52) also obviously follows from the series representation of the exponential function in equation (45). All other constituents of the diagram are, by construction, identical as well.

So to summarize, we have found the simple rule to calculate $W(j)$:

$$W(j) = \ln Z(j)$$

$$= W_0(j) + \sum_{\text{connected diagrams}} \epsilon Z_V(j),$$

where the same rules of construction apply for Z_V that are outlined in section §IV.B.

B. Dependence on j - external sources - two complimentary views

There are two different ways how one may interpret the iterative construction (51): We may either consider the $W_l(j)$ appearing on the right hand side as a function of j, or we may expand this function in powers of j. In the graphical representation above (49), we used the former view.

In the following, instead, we want to follow the latter view, exhibiting explicitly the j-dependence on the external legs. The two representations are, of course, equivalent.

Each element

$W_l^{(1)}(j) =$

that appears in the first term of (49) is a function of j. Note that the diagrams produced in (49) look like a vacuum diagrams. We will reconcile this apparent discrepancy now. Let us for concreteness imagine the first step of the iteration, so $l = 1$: Then all cumulants appearing in the last expression belong to the unperturbed theory, hence the first term of (49) takes the form

$$W_1(j) = \frac{0(j)}{0(j)} + \cdots$$

(55)
Now imagine we have the unperturbed theory represented in its cumulants and let us assume that only the first three cumulants are non-vanishing

\[
W_0(j) = \sum_{n=1}^{3} \frac{1}{n!} W_0^{(n)}(0) j^n
\]

\[
= j \begin{array}{c}
\text{0(0)} \\
\text{0(0)}
\end{array} + \frac{1}{2!} j \begin{array}{c}
\text{0(0)} \\
\text{0(0)}
\end{array} + \frac{1}{3!} j \begin{array}{c}
\text{0(0)} \\
\text{0(0)}
\end{array},
\]

(56)

where the superscript 0(0) is meant to indicate that the cumulants of the solvable theory are just numbers that are independent of \(j \) and the entire \(j \)-dependence of \(W_0(j) \) is explicit on the factors \(j \) on the legs in (56).

We may therefore make the \(j \)-dependence in (55) explicit by inserting the latter representation for each \(W_0^{(1)}(j) \), which we obtain by differentiating (56) once

\[
W_0^{(1)}(j) = \begin{array}{c}
\text{0(0)} \\
\text{0(0)}
\end{array} + \frac{1}{2!} j \begin{array}{c}
\text{0(0)} \\
\text{0(0)}
\end{array} + \frac{1}{3!} j \begin{array}{c}
\text{0(0)} \\
\text{0(0)}
\end{array},
\]

(57)

removing one \(j \) from each term and using the product rule. The tadpole diagram \(\begin{array}{c}
\text{0(0)}
\end{array} \) signifies the mean value of the solvable theory \(\langle x \rangle = W_0^{(1)}(0) \). These diagrams would of course vanish if \(W_0 \) was a centered Gaussian.

Making this replacement for each of the symbols for \(W_0^{(1)}(j) \) in (55) produces all diagrams, where all possible combinations of the above terms appear on the legs of the interaction vertex

where the factor 4 in the second term comes from the four possible legs of the interaction vertex to attach the \(j \)-dependence and the factor 4 in the third term comes for the same reason. The \(\frac{1}{2!} \) is the left-over of the factor \(\frac{3}{3!} \) of the third cumulant and a factor 3 due to the product rule from the application of the \(\partial_j \) to either of the three legs of the third cumulant.

This explicit view, having the \(j \)-dependence on the external legs, allows us to understand (54) as a rule to construct the cumulants of the theory directly, because differentiating amounts to the removal of the \(j \) on the corresponding leg. We can therefore directly construct the cumulants from all connected diagrams with a given number of external legs corresponding to the order of the cumulant

\[
W^{(l_1, \ldots, l_N)}(j) \big|_{j=0} = \langle x^{l_1} \cdots x^{l_N} \rangle = W_0^{(l_1, \ldots, l_N)}(j) \big|_{j=0} + \sum_{\text{connected diagrams}} \epsilon Z \nu(j) \text{ with } l_1 + \ldots + l_N \text{ external legs replaced by } j_i \rightarrow l_i!.
\]

We saw a similar example in [4] in the calculation of the expectation value, derived from diagrams with a single external leg.

C. Example: Connected diagrams of the \(\phi^3 + \phi^4 \) theory

As an example let us study the system described by the action (32). We want to determine the cumulant generating function until second order in the vertices. To lowest order we have with (37) \(W_0(j) = \frac{1}{2} K j^2 \). To first order, we need
to consider with (54) all connected diagrams with one vertex. We get one first order correction with one external leg
\[\gamma^2 = 3 \cdot K^{-2} j \frac{\alpha}{3!} = \epsilon \frac{\alpha}{2} K^{-2} j. \] (58)

The correction to the second cumulant is
\[\gamma^3 = 4 \cdot 3 \cdot \epsilon \frac{\beta}{4!} K^{-3} j^2 = \epsilon \frac{\beta}{4} K^{-3} j^2. \] (59)

In addition, we of course have the bare interaction vertices connected to external sources, i.e. a contribution to the third and fourth cumulants
\[\gamma^4 = 3 \cdot 2 \cdot 1 \cdot \epsilon \frac{\alpha}{3!} K^{-3} j^3 = \epsilon \frac{\alpha}{3!} K^{-3} j^3 \]
\[\gamma^5 = \epsilon \frac{\beta}{4!} K^{-4} j^4. \]

These are all corrections at first order.

At second order we have the contributions to the first cumulant
\[\gamma^6 = 4 \cdot 3 \cdot 2 \cdot \epsilon^2 \frac{\alpha}{1!!} \frac{\alpha}{3!} \frac{\beta}{4!} K^{-4} j \] (60)
\[\gamma^7 = 3 \cdot 4 \cdot 3 \epsilon^2 \frac{\alpha}{1!!} \frac{\beta}{3!} K^{-4} j \] (61)
\[\gamma^8 = 4 \cdot 3 \cdot 3 \epsilon^2 \frac{\alpha}{1!!} \frac{\beta}{3!} K^{-4} j. \] (62)

The corrections to the second cumulant are
\[\gamma^9 = 2 \cdot 3 \cdot 3 \cdot 2 \epsilon^2 \frac{\alpha}{1!!} \left(\frac{\alpha}{3!} \right)^2 K^{-4} j^2 \frac{\alpha}{2} \] (63)
\[\gamma^{10} = 2 \cdot 4 \cdot 3 \cdot 2 \epsilon^2 \frac{\beta}{2!} \left(\frac{\beta}{4!} \right)^2 K^{-5} j^2 \frac{\beta}{2} \] (64)
\[\gamma^{11} = 2 \cdot 3 \cdot 2 \cdot \epsilon^2 \frac{\alpha}{2!} \left(\frac{\alpha}{3!} \right)^2 K^{-4} j^2 \frac{\alpha}{2} \] (65)
\[\gamma^{12} = 2 \cdot 4 \cdot 3 \cdot 3 \cdot \epsilon^2 \frac{\beta}{2!} \left(\frac{\beta}{4!} \right)^2 K^{-5} j^2 \frac{\beta}{2} \] (66)
\[\gamma^{13} = 2 \cdot 4 \cdot 3 \cdot 3 \cdot \epsilon^2 \frac{\beta}{2!} \left(\frac{\beta}{4!} \right)^2 K^{-5} j^2 \frac{\beta}{2} \] (67)
Here the first factor 2 comes from the two identical vertices to choose from to attach the external legs. We could go on to the third and fourth cumulants, but stop here. We notice that there are some elements repeating, such as in equation (65), which is composed of a bare three-point interaction vertex and equation (58). Remembering the proof of the linked cluster theorem, this is what we should expect: Each order combines the bare interaction vertices with all diagrams that have already be generated up to this order. In section §XI we will see how we can constrain this proliferation of diagrams.

VI. FUNCTIONAL PRELIMINARIES

In this section we collect some basic rules of functional calculus that will be needed in the subsequent sections. In this section we assume that \(f : \mathcal{C} \mapsto \mathbb{R} \) is a functional that maps from the space of smooth functions \(\mathcal{C} \) to the real numbers.

A. Functional derivative

The derivative of a functional in the point \(x \) is defined as

\[
\frac{\delta f[x]}{\delta x(t)} := \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(f[x + \epsilon \delta(\circ - t)] - f[x] \right) \tag{68}
\]

\[
= \left. \frac{d}{d\epsilon} F(\epsilon) \right|_{\epsilon=0} \quad F(\epsilon) := f[x + \epsilon \delta(\circ - t)],
\]

where the second equal sign only holds if the limit exists. Linearity of the definition of the derivative is obvious. Note that one always differentiates with respect to one particular time \(t \). The functional derivative by \(x(t) \) therefore measures how sensitive the functional depends on the argument in the point \(x(t) \).

1. Product rule

Since the functional derivative can be traced back to the ordinary derivative, all known rules carry over. In particular, the product rule reads

\[
\frac{\delta}{\delta x(t)}(f[x]g[x]) = \frac{d}{d\epsilon} (F(\epsilon)G(\epsilon))
\]

\[
= F'(0)G(0) + F(0)G'(0) = \delta f[x]{\delta g[x]} + \frac{\delta f[x]}{\delta x(t)} g[x] + f[x] \frac{\delta g[x]}{\delta x(t)}. \tag{69}
\]

2. Chain rule

With \(g : \mathcal{C} \mapsto \mathcal{C} \), the chain rule follows from the \(n \)-dimensional chain rule by discretizing the \(t \)-axis in \(N \) bins of width \(h \) and applying the chain rule in \(\mathbb{R}^N \) and then taking the limit of the infinitesimal discretization.
\[
\frac{\delta}{\delta x(t)} f[g[x]] = \frac{d}{d\epsilon} f[g[x + \epsilon\delta(\circ - t)]]
\]

\[
= \lim_{h \to 0} \frac{d}{d\epsilon} f(g[x + \epsilon\delta(\circ - t)](h), \ldots, g[x + \epsilon\delta(\circ - t)](Nh))
\]

\[
= \lim_{h \to 0} \sum_{i=1}^{N} \partial f \partial g[x + \epsilon\delta(\circ - t)](ih) \frac{\delta g[x + \epsilon\delta(\circ - t)](\circ)}{\delta x(t)}
\]

\[
= \int ds \delta f[g] \frac{\delta g[x]}{\delta x(t)} ds.
\]

3. Special case of the chain rule: Fourier transform

In the case of a Fourier transform \(x(t) = \frac{1}{2\pi} \int e^{i\omega t} X(\omega) d\omega \), we may apply the chain rule to obtain the derivative of the functional \(\hat{f} \) defined on the Fourier transform \(X \) by

\[
\hat{f}[X] := f\left[\frac{1}{2\pi} \int e^{i\omega t} X(\omega) d\omega \right],
\]

where \(\circ \) is the argument of the function \(x(\circ) \) on which the functional \(f \) depends. We obtain by using

\[
\frac{\delta \hat{f}[X]}{\delta X(\omega)} = \frac{\delta}{\delta X(\omega)} f\left[\frac{1}{2\pi} \int e^{i\omega t} X(\omega) d\omega \right] = \int ds \frac{\delta f[g]}{\delta x(t)} \frac{\delta g[x]}{\delta x(t)} ds.
\]

So the relationship between a functional and the functional of the Fourier transform has the inverse transformation properties than a function, indicated by the opposite sign of \(\omega \) and the appearance of the factor \(1/2\pi \).

We will frequently encounter expressions of the form

\[
\int ds \frac{\delta \hat{f}[x]}{\delta x(s)} y(s) ds
\]

\[
= \int \frac{1}{2\pi} \int e^{i\omega s} Y(\omega) d\omega ds
\]

\[
= \int \frac{1}{2\pi} \int e^{i\omega s} \frac{\delta \hat{f}[x]}{\delta x(s)} ds Y(\omega) d\omega
\]

\[
= \frac{\delta \hat{f}}{\delta X(\omega)} Y(\omega) d\omega,
\]

which are hence invariant under Fourier transform. We will make use of this property when evaluating Feynman diagrams in Fourier domain.

B. Functional Taylor series

The perturbative methods we have met so far often require the form of the action to be an algebraic functional of the fields. We obtain such a form by functional Taylor expansion. Assume we have a functional \(f[x] \) of a field \(x(t) \).
We seek the analogue to the usual Taylor transform, which is a representation of the functional as the series
\[f[x] = \sum_{n=0}^{\infty} \int dt_1 \cdots \int dt_n a_n(t_1, \ldots, t_n) \prod_{i=1}^{n} x(t_i), \]
where we assume \(a_n \) to be symmetric with respect to permutations of its arguments. Taking the \(k \)-th functional derivative \(\frac{\delta}{\delta x(t)} \) we get by the product rule
\[\frac{\delta^{k}}{\delta x(s_1) \cdots \delta x(s_k)} f[x] \bigg|_{x=0} = \sum_{(i_1, \ldots, i_k) \in S(1, \ldots, k)} a_k(s_{i_1}, \ldots, s_{i_k}) \]
as only the term with \(n = k \) remains after setting \(x = 0 \) (\(S(1, \ldots, k) \) indicates the symmetric group, i.e. all permutations of \(1, \ldots, k \)). The application of the first derivative yields, by product rule, the factor \(k \) by applying the differentiation to any of the \(k \) factors, the second application yields \(k-1 \) and so on. We therefore need to identify \(k! a_k = \delta^{k} f/\delta x^{k} \) and obtain the form reminiscent of the usual \(n \)-dimensional Taylor expansion
\[f[x] = \sum_{n=0}^{\infty} \int dt_1 \cdots \int dt_n \frac{1}{n!} \frac{\delta^{n} f}{\delta x(t_1) \cdots \delta x(t_n)} \prod_{i=1}^{n} x(t_i). \]
(72)
The generalization to an expansion around another point than \(x = 0 \) follows by replacing \(x \to x - x^{0} \). The generalization to functional that depend on several fields follows by application of the functional Taylor expansion for each dependence.

VII. FUNCTIONAL FORMULATION OF STOCHASTIC DIFFERENTIAL EQUATIONS

We here follow Chow and Buice [52] to derive the Martin-Siggia-Rose-DeDominicis-Janssen [24, 40–43, 53] path integral representation of a stochastic differential equation and Wio et al. [54] to obtain the Onsager-Machlup path integral [55]. We generalize the notation to also include the Stratonovich convention [57]. Hertz et al. [56] also provide a pedagogical survey of the Martin-Siggia-Rose path integral formalism for the dynamics of stochastic and disordered systems. The material of this section has previously been made publicly available as [26].

The presented functional formulation of dynamics is advantageous in several respects. First, it recasts the dynamical equations into a path-integral, where the dynamic equations give rise to the definition of an “action”. In this way, the known tools from theoretical physics, such as perturbation expansions with the help of Feynman diagrams or the loopwise expansions to obtain a systematic treatment of fluctuations [23], can be applied. Within neuroscience, the recent review [24] illustrates the first, the work by [21] the latter approach. Moreover, this formulation will be essential for the treatment of disordered systems in Section XI following the spirit of the work by De Dominicis and Peliti [42] to obtain a generating functional that describes an average system belonging to an ensemble of systems with random parameters.

Many dynamic phenomena can be described by differential equations. Often, the presence of fluctuations is represented by an additional stochastic forcing. We therefore consider the stochastic differential equation (SDE)
\[dx(t) = f(x) \, dt + g(x) \, dW(t) \]
(73)
where \(a \) is the initial value and \(dW \) a stochastic increment. Stochastic differential equations are defined as the limit \(h \to 0 \) of a dynamics on a discrete time lattice of spacing \(h \). For discrete time \(t_l = lh, l = 0, \ldots, M \), the solution of the SDE consists of the discrete set of points \(x_l = x(t_l) \). For the discretization there are mainly two conventions used, the Ito and the Stratonovich convention [57]. In case of additive noise \((g(x) = \text{const.})\), where the stochastic increment in equation (73) does not depend on the state \(x \), the two conventions yield the same continuous-time limit [57]. However, as we will see, different discretization conventions of the drift term lead to different path integral representations. The Ito convention defines the symbolic notation of equation (73) to be interpreted as
\[x_{i} - x_{i-1} = f(x_{i-1}) \, h + a \delta_{i1} + g(x_{i-1}) \, \xi_{i}, \]
where \(\xi_{i} \) is a stochastic increment that follows a probabilistic law. A common choice for \(\xi_{i} \) is a normal distribution \(\rho(\xi_{i}) = N(0, hD) \), called a Wiener increment. Here the parameter \(D \) controls the variance of the noise. The term \(a \delta_{i1} \) ensures that, in the absence of noise \(\xi_{1} = 0 \) and assuming that \(x_{i=0} = 0 \), the solution obeys the stated initial condition.
\(x_1 = a\). If the variance of the increment is proportional to the time step \(h\), this amounts to a \(\delta\)-distribution in the autocorrelation of the noise \(\xi = \frac{dW}{dt} dt\). The Stratonovich convention, also called mid-point rule, instead interprets the SDE as

\[
x_i - x_{i-1} = f\left(\frac{x_i + x_{i-1}}{2}\right) h + a\delta_{i1} + g\left(\frac{x_i + x_{i-1}}{2}\right) \xi_i.
\]

(74)

Both conventions can be treated simultaneously by defining

\[
x_i - x_{i-1} = f(\alpha x_i + (1 - \alpha)x_{i-1}) h + a\delta_{i1} + g(\alpha x_i + (1 - \alpha)x_{i-1}) \xi_i
\]

(75)

\(\alpha \in [0,1]\).

Here \(\alpha = 0\) corresponds to the Ito convention and \(\alpha = \frac{1}{2}\) to Stratonovich.

In the following we will limit the treatment to so-called additive noise, where the function \(g(x) = 1\) is the identity. The two conventions, Ito and Stratonovich then converge to the same limit, but their representation still bears some differences. Both conventions appear in the literature. For this reason, we here keep the derivation general, keeping the value \(\alpha \in [0,1]\) arbitrary.

If the noise is drawn independently for each time step, which is the definition of the noise being white, the probability density of the points \(x_1, \ldots, x_M\) along the path \(x(t)\) can be written as

\[
p(x_1, \ldots, x_M|a) = \int \Pi_{i=1}^M d\xi_i \rho(\xi_i) \delta(x_i - y_i(\xi_i, x_{i-1})),
\]

(76)

where, by equation [75], \(y_i(\xi_i, x_{i-1})\) is understood as the solution of equation [75] at time point \(i\) given the noise realization \(\xi_i\) and the solution until the previous time point \(x_{i-1}\). The solution of the SDE starts at \(i = 0\) with \(x_0 = 0\) so that \(\xi_1\) and \(a\) together determine \(x_1\). In the next time step, \(\xi_2\) and \(x_1\) together determine \(x_2\), and so on. In the Ito-convention (\(\alpha = 0\)) we have an explicit solution \(y_i(\xi_i, x_{i-1}) = x_{i-1} + f(x_{i-1}) h + a\delta_{i1} + \xi_i\), while the Stratonovich convention yields an implicit equation, since \(x_i\) appears as an argument of \(f\) in equation [74]. We will see in equation [78] that the latter gives rise to a non-trivial normalization factor for \(p\), while for the former this factor is unity.

The notation \(y_i(\xi_i, x_{i-1})\) indicates that the solution only depends on the last time point \(x_i\), but not on the history longer ago. This property is called the Markov property of the process. The form of equation [76] also shows that the density is correctly normalized, because integrating over all paths

\[
\int dx_1 \cdots \int dx_M p(x_1, \ldots, x_M|a) = \int \Pi_{i=1}^M d\xi_i \rho(\xi_i) \left(\int dx_i \delta(x_i - y_i(\xi_i, x_{i-1})) \right) = 1
\]

(77)

yields the normalization condition of \(\rho(\xi_i), i = 1, \ldots, M\), the distribution of the stochastic increments.

In section Section VIIA we will look at the special case of Gaussian noise and derive the so called Onsager-Machlup path integral [55]. This path integral has a square in the action, originating from the Gaussian noise. For many applications, this square complicates the analysis of the system. The formulation presented in VIIIB removes this square on the expense of the introduction of an additional field, the so called response field. This formulation has the additional advantage that responses of the system to perturbations can be calculated in compact form, as we will see below.

A. Onsager-Machlup path integral*

Using equation [76] and the substitution \(\delta(y) dy = \delta(\phi(x_{i+1})) \phi' dx_{i+1}\) with \(y = \phi(x_i) = \xi_i(x_i)\) obtained by solving equation [75] for \(W_i\)

\[
W_i(x_i) = x_i - x_{i-1} - f(\alpha x_i + (1 - \alpha)x_{i-1}) h - a\delta_{i,1,0}
\]

\[
\frac{\partial W_i}{\partial x_i} = \phi' = 1 - \alpha f'h
\]

(78)
we obtain

$$p(x_1, \ldots, x_M | a) = \int \prod_{i=1}^M d\xi_i \rho(\xi_i) \times$$

$$\times \delta(\xi_i - x_i - x_{i-1} - f(\alpha x_i + (1 - \alpha) x_{i-1}) h - a\delta_{i-1,0} (1 - \alpha f')h).$$

$$= \prod_{i=1}^M \rho(x_i - x_{i-1} - f(\alpha x_i + (1 - \alpha) x_{i-1}) h - a\delta_{i-1,0}) (1 - \alpha h f' (\alpha x_i + (1 - \alpha) x_{i-1})).$$

For the case of a Gaussian noise \(\rho(\xi) = \mathcal{N}(0, D h) = \frac{1}{\sqrt{2\pi D h}} e^{-\frac{\xi^2}{2D h}} \) the variance of the increment is

$$\langle \xi_i \xi_j \rangle = \begin{cases} Dh & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

(80)

Using the Gaussian noise and then taking the limit \(M \to \infty \) of eq. equation (79) with \(1 - \alpha f' h \to \exp(-\alpha f') \) we obtain

$$p(x_1, \ldots, x_M | a) = \prod_{i=1}^M \rho(x_i - x_{i-1} - f(\alpha x_i + (1 - \alpha) x_{i-1}) h - a\delta_{i-1,0}) (1 - \alpha f')h + O(h^2)$$

$$= \prod_{i=1}^M \frac{1}{\sqrt{2\pi D h}} \exp\left[-\frac{1}{2D h}(x_i - x_{i-1} - f(\alpha x_i + (1 - \alpha) x_{i-1}) h - a\delta_{i-1,0})^2 - \alpha f' h \right] + O(h^2)$$

$$= \left(\frac{1}{\sqrt{2\pi D h}} \right)^M \exp\left[-\frac{1}{2D} \sum_{i=1}^M \left(\frac{x_i - x_{i-1}}{h} - f(\alpha x_i + (1 - \alpha) x_{i-1}) - \frac{a\delta_{i-1,0}}{h} \right)^2 - \alpha f' h \right] + O(h^2).$$

We will now define a symbolic notation by recognizing \(\lim_{h \to 0} \frac{x_i - x_{i-1}}{h} = \partial_t x(t) \) as well as \(\lim_{h \to 0} \frac{\delta_{i-1,0}}{h} = \delta(t) \) and \(\lim_{h \to 0} \sum_i f(hi) h = \int f(t) dt \)

$$p[x|x(0+) = a] D_{\sqrt{2\pi D h}} x = \exp\left(-\frac{1}{2D} \int_0^T (\partial_t x - f(x) - a\delta(t))^2 - \alpha f' dt \right) D_{\sqrt{2\pi D h}} x$$

(81)

where we defined the integral measure \(D_{\sqrt{2\pi D h}} x := \prod_{i=1}^M \frac{dx_i}{\sqrt{2\pi D h}} \) to obtain a normalized density \(1 = \int D_{\sqrt{2\pi D h}} x p[x|x(0+) = a] \).

B. Martin-Siggia-Rose-De Dominicis-Janssen (MSRDJ) path integral

The square in the action equation (81) sometimes has disadvantages for analytical reasons, for example if quenched averages are to be calculated, as we will do in Section X. To avoid the square we will here introduce an auxiliary field, the **response field** \(\tilde{x} \) (the name will become clear in Section VIII D). This field enters the probability functional equation (76) by representing the \(\delta \)-distribution by its Fourier integral

$$\delta(x) = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} d\tilde{x} e^{\tilde{x} x}.$$

(82)

Replacing the \(\delta \)-distribution at each time slice by an integral over \(\tilde{x}_i \) at the corresponding slice, equation (76) takes the form

$$p(x_1, \ldots, x_M | a) = \prod_{i=1}^M \left\{ \int d\xi_i \rho(\xi_i) \int_{-i\infty}^{i\infty} \frac{d\tilde{x}_i}{2\pi i} \exp(\tilde{x}_i (x_i - x_{i-1} - f(\alpha x_i + (1 - \alpha) x_{i-1}) h - \xi_i - a\delta_{i-1,0}) - \alpha f' h) \right\}$$

$$= \prod_{i=1}^M \left\{ \int_{-i\infty}^{i\infty} \frac{d\tilde{x}_i}{2\pi i} \exp(\tilde{x}_i (x_i - x_{i-1} - f(\alpha x_i + (1 - \alpha) x_{i-1}) h - a\delta_{i-1,0}) - \alpha f' h + W_\xi(-\tilde{x}_i)) \right\}$$

(83)

$$W_\xi(-\tilde{x}) = \ln \int d\xi_i \rho(\xi_i) e^{-\tilde{x}_i \xi_i} = \langle e^{-\tilde{x}_i \xi_i} \rangle_{\xi_i}.$$
Here $W_\xi(-\hat{x})$ is the cumulant generating function of the noise process (see Section II.A) evaluated at $-\hat{x}$. Note that the index i of the field \hat{x}_i is the same as the index of the noise variable ξ_i, which allows the identification of the definition of the cumulant generating function. The distribution of the noise therefore only appears in the probability density in the form of $W_\xi(-\hat{x})$. For Gaussian noise (80) the cumulant generating function is

$$W_\xi(-\hat{x}) = \frac{D\hbar}{2} \hat{x}^2. \quad (84)$$

C. Moment generating functional

The probability distribution equation (83) is a distribution for the random variables x_1, \ldots, x_M. We can alternatively describe the probability distribution by the moment-generating functional (see Section II.A) by adding the terms $\sum_{i=1}^M j_i x_i h$ to the action and integrating over all paths

$$Z(j_1, \ldots, j_M) := \Pi_{i=1}^M \left\{ \int_{-\infty}^{\infty} dx_i \exp \left(j_i x_i h \right) \right\} p(x_1, \ldots, x_M|a). \quad (85)$$

Moments of the path can be obtained by taking derivatives (writing $j = (j_1, \ldots, j_M)$)

$$\frac{\partial}{\partial (h j_k)} Z(j) \bigg|_{j=0} = \Pi_{i=1}^M \left\{ \int_{-\infty}^{\infty} dx_i \right\} p(x_1, \ldots, x_M|a) x_k = \langle x_k \rangle. \quad (86)$$

The generating functional takes the explicit form

$$Z(j) = \Pi_{i=1}^M \left\{ \int_{-\infty}^{\infty} dx_i \exp \left(j_i x_i h \right) \right\} \times \int_{-\infty}^{\infty} \frac{d\tilde{x}_i}{2\pi i} \times \exp \left(\sum_{i=1}^M \tilde{x}_i(x_i - x_{i-1} - f(\alpha x_i + (1 - \alpha)x_{i-1})h - a\delta_{i-1,0}) - \alpha f'h + W_\xi(-\tilde{x}_i) \right),$$

where we used $\Pi_{i=1}^M \exp(W_\xi(-\tilde{x}_i)) = \exp(\sum_{i=1}^M W_\xi(-\tilde{x}_i))$.

Letting $h \to 0$ we now define the path integral as the generating functional equation (87) and introduce the notations $\Pi_{i=1}^M \int_{-\infty}^{\infty} dx_i h \to \int \mathcal{D}x$ as well as $\Pi_{i=1}^M \int_{-\infty}^{\infty} d\tilde{x}_i h \to \int \mathcal{D}2\pi i \tilde{x}$. Note that the different integral boundaries are implicit in this notation, depending on whether we integrate over $x(t)$ or $\tilde{x}(t)$.

Introducing in addition the cumulant generating functional of the noise process as

$$W_\xi[-\tilde{x}] = \ln Z_\xi[-\tilde{x}] = \ln \left\{ \exp \left(- \int_{-\infty}^{\infty} \tilde{x}(t) dW(t) \right) \right\} dW$$

$$:= \lim_{h \to 0} \ln(\exp(\sum_{i=1}^M -\tilde{x}_i \xi_t)) \xi$$

$$= \lim_{h \to 0} \sum_{i=1}^M \ln(\exp(-\tilde{x}_i \xi_t)) \xi_t$$

we may write symbolically for the probability distribution equation (83)

$$p[x|x(0+) = a] = \int \mathcal{D}2\pi i \tilde{x} \exp \left(\int_{-\infty}^{\infty} \tilde{x}(t) (\partial_t x - f(x) - a \delta(t)) - \alpha f' dt + W_\xi[-\tilde{x}] \right)$$

$$= \int \mathcal{D}2\pi i \tilde{x} \exp \left(\tilde{x}^T (\partial_t x - f(x) - a \delta(t)) - \int_{-\infty}^{\infty} \alpha f' dt + W_\xi[-\tilde{x}] \right).$$

In the the second line we use the definition of the inner product on the space of functions

$$x^T y := \int_{-\infty}^{\infty} x(t) y(t) dt. \quad (89)$$

This vectorial notation also reminds us of the discrete origin of the path integral. Note that the lattice derivative appearing in equation (88) follows the definition $\partial_t x = \lim_{h \to 0} \frac{1}{\hbar} (x_{i+h} - x_{i-h})$. The convention is crucial for the
moment-generating function to be properly normalized, as shown in equation (77): Only the appearance of \(x_{t/h} \) alone within the Dirac \(\delta \) allows the path integral \(\int Dx \) to be performed to yield unity.

We compactly denote the generating functional equation (87) as

\[
Z[j] = \int D\tilde{x} \int D_{2\pi i} \tilde{x} \exp \left(\tilde{x}^T (\partial_t x - f(x) - a\delta(t)) + \frac{D}{2} \tilde{x}^T \tilde{x} + W_\xi[\tilde{x}] \right).
\]

For Gaussian white noise we have with equation (84) the moment generating functional \(W_\xi[\tilde{x}] = \frac{D}{2} \tilde{x}^T \tilde{x} \). If in addition, we adopt the Ito convention, i.e. setting \(\alpha = 0 \), we get

\[
Z[j] = \int D\tilde{x} \int D_{2\pi i} \tilde{x} \exp \left(\tilde{x}^T (\partial_t x - f(x) - a\delta(t)) + \frac{D}{2} \tilde{x}^T \tilde{x} + j^T \tilde{x} \right).
\]

For \(M \to \infty \) and \(h \to 0 \) the source term is \(\exp(\sum_{i=1}^M j_i / h) \to \exp(\int j(t) x(t) dt) \equiv \exp(j^T x) \). So the derivative on the left hand side of equation (86) turns into the functional derivative

\[
\frac{\partial}{\partial(h_{jk})} Z(j) \equiv \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(Z(j_1, \ldots, j_k + \epsilon / h, j_{k+1}, \ldots, j_M) - Z(j_1, \ldots, j_k, \ldots, j_M) \right) \to \delta_j Z[j],
\]

and the moment becomes \(\langle x(t) \rangle \) at time point \(t = hk \).

We can therefore express the \(n \)-th moment of the process by formally performing an \(n \)-fold functional derivative

\[
\langle x(t) \rangle = \sum_{n} \delta^n \frac{\partial^n}{\partial j_1 \partial j_2 \cdots \partial j_n} Z[j] \bigg|_{j=0}.
\]

D. Response function in the MSRDJ formalism

The path integral equation (83) can be used to determine the response of the system to an external perturbation. To this end we consider the stochastic differential equation equation (73) that is perturbed by a time-dependent drive \(\tilde{j}(t) \)

\[
dx(t) = (f(x(t)) - \tilde{j}(t)) \, dt + dW(t)
\]

\(x(0+) = a. \)

In the following we will only consider the Ito convention and set \(\alpha = 0 \). We perform the analogous calculation that leads from equation (73) to equation (87) with the additional term \(-j(t) \) due to the perturbation. In the sequel we will see that, instead of treating the perturbation explicitly, it can be expressed with the help of a second source term. The generating functional including the perturbation is

\[
Z(j, \tilde{j}) = \Pi_{i=1}^M \left\{ \int_{-\infty}^{\infty} dx_i \int_{-\infty}^{\infty} \frac{d\tilde{x}_i}{2\pi i} \right\} \times
\]

\[
\times \exp \left(\sum_{i=1}^M \tilde{x}_i(x_i - x_{i-1}) - f(x_{i-1})h - a\delta_{i-1,0} \right) + j_i x_i + \tilde{x}_{i+1} + W_\xi(-\tilde{x}_i) \right) \right) \right) \right)
\]

\[
= \int D\tilde{x} \int D_{2\pi i} \tilde{x} \exp \left(\int_{-\infty}^{\infty} \tilde{x}(t)(\partial_t x - f(x) - a\delta(t)) + j(t) x(t) + \tilde{j}(t) \tilde{x}(t) dt + W_\xi[-\tilde{x}] \right),
\]

where we moved the \(\tilde{j} \)-dependent term out of the parenthesis.

Note that the external field \(j_{i-1} \) couples to the field \(\tilde{x}_i \), because \(\tilde{j}(t) \) must be treated along the same lines as \(f(x(t)) \); in particular both terms' time argument must be delayed by a single time slice. As before, the moments of the process follow as functional derivatives equation (86) \(\delta^2_{j(t)} Z[j, \tilde{j}] \bigg|_{j=\tilde{j}=0} = \langle x(t) \rangle \). Higher order moments follow as higher derivatives, in complete analogy to equation (6).

The additional dependence on \(\tilde{j} \) allows us to investigate the response of arbitrary moments to a small perturbation localized in time, i.e. \(j(t) = -\delta(t - s) \). In particular, we characterize the average response of the first moment with respect to the unperturbed system by the response function \(\chi(t, s) \)
\[\chi(t, s) := \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left((x(t))_{j=-\epsilon} - (x(t))_{j=0} \right) \]
\[= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(\delta(j(t) \tilde{\epsilon}(t-s)) - Z[j, j] \right) \bigg|_{j=j=0} \]
\[= -\epsilon \frac{\delta}{\delta j(t)} \left(Z[j, j] \right) \bigg|_{j=j=0} \]
\[= -(x(t) \tilde{x}(s)), \]

where we used the definition of the functional derivative from the third to the fourth line.

So instead of treating a small perturbation explicitly, the response of the system to a perturbation can be obtained by a functional derivative with respect to \(j \): \(j \) couples to \(\tilde{x} \), \(j \) contains perturbations, therefore \(\tilde{x} \) measures the response and is the so-called response field. The response function \(\chi(t, s) \) can then be used as a kernel to obtain the mean response of the system to a small external perturbation of arbitrary temporal shape.

There is an important difference for the response function between the Ito and Stratonovich formulation, that is exposed in the time-discrete formulation. For the perturbation \(j(t) = -\epsilon \delta(t-s) \), we obtain the perturbed equation, where \(\tilde{\epsilon}_j \) denotes the discretized time point at which the perturbation is applied. The perturbing term must be treated analogously to \(f \), so

\[x_i - x_{i-1} = f(\alpha x_i + (1-\alpha)x_{i-1}) + \epsilon (\alpha\delta_i, \tilde{x}) + (1-\alpha)\delta_{i-1}, \tilde{x} \]

Consequently, the value of the response function \(\chi(s, s) \) at the time of the perturbation depends on the choice of \(\alpha \). We denote as \(x'_j \) the solution after application of the perturbation, as \(x^j \) the solution without; for \(i < j \) the two are identical and the equal-time response is

\[\chi(s, s) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(x^s - x^0 \right) \]
\[= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(f(\alpha x^s + (1-\alpha)x^s) - f(\alpha x^0 + (1-\alpha)x^0) \right) h + \alpha \delta(x^0, \tilde{x}) + (1-\alpha)\delta(x^0, \tilde{x}) \]

because the contribution of the deterministic evolution vanishes due to the factor \(h \). So for \(\alpha = 0 \) (Ito convention) we have \(\chi(s, s) = 0 \), for \(\alpha = \frac{1}{2} \) (Stratonovich) we have \(\chi(s, s) = \frac{1}{2} \). The Ito-convention is advantageous in this respect, because it leads to vanishing contributions in Feynman diagrams (see Section IX) with response functions at equal time points \[243\]. In equation (92), this property is reflected by the displacement of the indices in the term \(\tilde{x}_0[j-1] h \).

By the same argument follows that

\[\langle x(t) \tilde{x}(s) \rangle = \begin{cases} 0 \quad \forall t \leq s & \text{Ito} \\ 0 \quad \forall t < s & \text{Stratonovich} \\ \frac{1}{2} \quad t = s & \text{Stratonovich} \end{cases} \]

We also observe that the initial condition contributes a term \(-a \delta_{i,0}\). Consequently, the initial condition can alternatively be included by setting \(\alpha = 0 \) and instead calculate all moments from the generating functional \(Z[j, j - a \delta] \) instead of \(Z[j, j] \). In the following we will therefore skip the explicit term ensuring the proper initial condition as it can be inserted by choosing the proper value for the source \(j \). See also \[26 \] Sec. 5.5.

For the important special case of Gaussian white noise equation (80), the generating functional, including the source field \(j \) coupling to the response field, takes the form

\[Z[j, j'] = \int \mathcal{D}x \int \mathcal{D}_{2\pi} \tilde{x} \exp \left(\tilde{x}^T (\partial_t x - f(x)) + \frac{D}{2} \tilde{x}^T \tilde{x} + j^T x + j^T \tilde{x} \right), \]

where we again used the definition of the inner product equation (89).
A. Definition

We will here study a first example of application of the MSRDJ formalism to a linear stochastic differential equation, the Ornstein-Uhlenbeck process \[58\]. This example is fundamental to all further development, as it is the free Gaussian part of the theory, the dynamic counterpart of the Gaussian studied in section \[III A\]. The stochastic differential equation (73) in this case is

\[
dx = mx \, dt + dW, \tag{97}\]

\[x \in \mathbb{R}^N, \quad m \in \mathbb{R}^{N \times N},\]

\[(dW_i(t)dW_j(s)) = D_{ij} \delta_{t,s} \, dt,\]

where \(dW_i\) are Wiener increments that may be correlated with covariance matrix \(D_{ij}\). The generalization of the section \[VII\] to this set of \(N\) coupled stochastic differential equations is straightforward and left as an exercise. The result is the action

\[
S[x, \tilde{x}] = \int \tilde{x}^T(t) (\partial_t - m) x(t) + \tilde{x}^T(t) \frac{D}{2} \tilde{x}(t) \, dt \tag{98}\]

\[= \tilde{x}^T(t) (\partial_t - m) x + \tilde{x}^T D \frac{\tilde{x}}{2},\]

where the transposed \(T\) in the first line is mean with respect to the \(N\) different components and in the second line in addition for the time argument; as a consequence, we need to think about the matrix \(D\) in the second line as containing an additional \(\delta(t - s)\). We see that this notation considers different time points on the same footing as different components of \(x\).

We may write the action in a more symmetric form by introducing the compound field \(y(t) = \left(\begin{array}{c} x(t) \\ \tilde{x}(t) \end{array} \right)\) as

\[
S[y] = S[x, \tilde{x}] = -\frac{1}{2} y^T A y
\]

\[= -\frac{1}{2} \int \int y^T(t) A(t,s) y(s) \, dt \, ds,\]

\[A(t,s) = \begin{pmatrix} 0 & \partial_t + m^T \\ -\partial_t + m & -D \end{pmatrix} \delta(t - s), \tag{99}\]

where the transposed in the first line is meant as referring to the field index (i.e. distinguishing between \(x\) and \(\tilde{x}\)) as well as to the time argument. The minus sign in the upper right entry follows from integration by parts as

\[
\int \tilde{x}(t) (\partial_t - m) x(t) \, dt = \int x(t) (-\partial_t - m) \tilde{x}(t) \, dt,
\]

assuming that the boundary terms vanish.

B. Propagators in time domain

The moment generating functional \(Z[j, \tilde{j}]\), corresponding to equation (99) is

\[
Z[j, \tilde{j}] = \int \mathcal{D}x \int \mathcal{D}\tilde{x} \exp \left(S[x, \tilde{x}] + j^T x + \tilde{j}^T \tilde{x} \right)
\]

\[= \int \mathcal{D}y \exp \left(-\frac{1}{2} y^T A y + j^T y \right), \tag{100}\]

where we introduced \(j = \left(\begin{array}{c} j_x \\ \tilde{j} \end{array} \right)\). Following the derivation in section \[III A\], we need to determine the propagators \(\Delta\) in the sense

\[
\Delta = A^{-1}
\]

\[\int A(s,t) \Delta(t,u) \, dt = \text{diag}(\delta(s - u)), \tag{101}\]
which is the time-continuous analogue of equation \(\text{(17)} \). The diagonal matrix of Dirac \(\delta \) is the continuous version of the identity matrix with respect to the matrix multiplication \(\int f(t)g(t) \, dt \), the inner product on our function space.

The latter form also explains the name propagator of Green’s function: By its definition equation \((101)\), \(\Delta \) is the fundamental solution of the linear differential operator \(A \). This means given we want to solve the inhomogeneous problem

\[
\int A(t, s) y(s) \, ds = f(t).
\]

We see that the application of \(\int du \, A(t, u) \) from left on \(y(u) \), defined as

\[
y(u) = \int \Delta(u, s) f(s) \, ds,
\]

reproduces with the property equation \((101)\) the right hand side \(f(t) \) of equation \((102)\). So \(\Delta \) is indeed the Green’s function or fundamental solution to \(A \).

An analogous calculation as the completion of square (see exercises) then leads to

\[
Z[\bar{j}] = \exp \left(\frac{1}{2} \bar{j}^T \Delta \bar{j} \right).
\]

So we need to determine the four entries of the two-by-two matrix

\[
\Delta(t, u) = \begin{pmatrix} \Delta_{xx}(t, u) & \Delta_{x\bar{x}}(t, u) \\ \Delta_{x\bar{x}}(t, u) & \Delta_{\bar{x}\bar{x}}(t, u) \end{pmatrix} = \begin{pmatrix} \langle x(t) x(u) \rangle & \langle x(t) \bar{x}(u) \rangle \\ \langle \bar{x}(t) x(u) \rangle & \langle \bar{x}(t) \bar{x}(u) \rangle \end{pmatrix},
\]

where the latter equality follows from comparing the second derivatives of \((100)\) to those of \((103)\), setting \(\bar{j} = 0 \) in the end. The factor \(\frac{1}{2} \) in \((103)\) drops out, because the first differentiation, by product rule, needs to act on each of the two occurrences of \(\bar{j} \) in \((103)\) in turn for the diagonal element, and acting on each of the off-diagonal elements, producing two identical terms in either case. The elements are hence the correlation and response functions of the fields \(x \) and \(\bar{x} \).

C. Propagators in Fourier domain

The inversion of \((101)\) can easiest be done in frequency domain. The Fourier transforms as \(y(t) = \mathcal{F}^{-1}[Y](t) = \frac{1}{2\pi} \int e^{i\omega t} Y(\omega) \, d\omega \) is a unitary transform, hence does not affect the integration measures and moreover transforms scalar products

\[
x^T y := \int x(t) y(t) \, dt
\]

\[
= \iint \frac{d\omega}{2\pi} \frac{d\omega'}{2\pi} X(\omega) Y(\omega') \mathcal{F}^{-1} \left(e^{i(\omega+\omega')t} \right) dt
\]

\[
= \int \frac{d\omega}{2\pi} X(-\omega) Y(\omega) =: X^T Y,
\]

If we use the convention that every \(\int \omega = \int \frac{d\omega}{2\pi} \) comes with a factor \((2\pi)^{-1} \) we get for a linear differential operator \(A[\partial_t] \) that \(y^T A[\partial_t] y \rightarrow Y^T A[i\omega] Y \). We therefore obtain \((99)\) in Fourier domain with \(Y = \begin{pmatrix} X \\ \bar{X} \end{pmatrix} \) as

\[
S[X, \bar{X}] = -\frac{1}{2} Y^T A Y
\]

\[
A(\omega', \omega) = 2\pi \delta(\omega' - \omega) \begin{pmatrix} 0 & i\omega + m^T \\ -i\omega + m & -D \end{pmatrix}.
\]

We see that the form of \(A \) is self-adjoint with respect to the scalar product \((104)\), because bringing \(A \) to the left hand side, we need to transpose and transform \(\omega \rightarrow -\omega \), which leaves \(A \) invariant. Hence with the Fourier transformed sources \(\bar{J} \), we have a well-defined Gaussian integral

\[
Z[J] = \exp \left(-\frac{1}{2} Y^T A Y + \bar{J}^T Y \right).
\]
Since (105) is diagonal in frequency domain, we invert the two-by-two matrix separately at each frequency. The moment generating function in frequency domain (103) therefore follows by determining the inverse of \(A \) in the sense

\[
\int \frac{d\omega'}{2\pi} A(\omega, \omega') \Delta(\omega', \omega'') = 2\pi \delta(\omega - \omega''),
\]

because \(2\pi \delta \) is the identity with regard to our scalar product \(\int \frac{d\omega}{2\pi} \). So we obtain

\[
Z[\tilde{J}] = \exp \left(\frac{1}{2} \int \frac{d\omega}{\omega} J^T(-\omega) \Delta(\omega, \omega') \tilde{J}(\omega') \right) = \exp \left(\frac{1}{2} J^T \Delta \tilde{J} \right),
\]

(107)

\[
\Delta(\omega, \omega') = 2\pi \delta(\omega - \omega') \begin{pmatrix}
(-i\omega + m)^{-1} D (i\omega + m)^{-1} & (-i\omega + m)^{-1} \\
(i\omega + m)^{-1} & 0
\end{pmatrix},
\]

(106)

where the signs of the frequency arguments in the second last line are flipped with respect to the signs of the frequencies in \(J(\omega) \), because the source term is \(J^T Y \), involving the inverse of the sign. The additional factor \((2\pi)^{-2}\) in the forth line comes from the source terms \(J^T Y = \int \frac{d\omega}{2\pi} J^T(-\omega) Y(\omega) \), which yield a factor \((2\pi)^{-1}\) upon each differentiation. Overall, we see that for each contraction of a pair of \(X^\alpha, X^\beta \in \{X, \tilde{X}\} \) we get a term

\[
\langle X^\alpha(\omega') X^\beta(\omega) \rangle = (2\pi)^2 \frac{\delta^2 Z}{\delta J^\alpha(-\omega') \delta J^\beta(\omega)} = \Delta_{\alpha\beta}(\omega', \omega) \propto 2\pi \delta(\omega - \omega').
\]

The Fourier transform \(\mathcal{F}[f](\omega) \) is a linear functional of a function \(f \), so that the functional derivative follows as

\[
\frac{\delta}{\delta f(s)} \mathcal{F}[f](\omega) = \frac{\delta}{\delta f(s)} \int e^{-i\omega t} f(t) dt = e^{-i\omega s}.
\]

Assuming a one-dimensional process in the following, \(m < 0 \in \mathbb{R} \), we can apply the chain rule (70) to calculate the covariance function in time domain as

\[
\Delta_{xx}(t, s) \equiv \langle x(t)x(s) \rangle = \left. \frac{\delta^2 Z[j, \tilde{J}]}{\delta j(t) \delta \tilde{j}(s)} \right|_{j=j=0} = \int d\omega' d\omega \frac{e^{-i\omega't} e^{-i\omega s}}{Z[j, \tilde{J}]} \frac{\delta^2}{\delta J^\omega(\omega') \delta J^\omega(\omega)} \right|_{j=j=0} (2\pi)^2 \Delta_{xx}(-\omega', \omega) \propto (2\pi)^{-1} \delta(\omega + \omega')
\]

\[
\omega' = -\omega
\]

\[
= \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} dz e^{z(t-s)} (z + m)^{-1} D(z + m)^{-1} e^{-2m|t-s|}
\]

where we used the functional chain rule (70) in the third step, got a factor 2 two derivatives acting in the two possible orders of the \(J \) (canceled by \(\frac{1}{2} \) from the equation 107), and used the residue theorem in the last, closing the contour in the half plane with \(\Re(z) < 0 \) to ensure convergence. Note that \(m < 0 \) to ensure stability of (97), so that the covariance is positive as it should be. The minus sign arises from the winding number due to the form \((-z + m)^{-1} = -(z - m)^{-1}\) of the pole. For \(t < s \) it follows by symmetry that \(\Delta_{xx}(t, s) = \frac{D}{2m} e^{m|t-s|} \). In the last step we assumed a one-dimensional
dynamics, the penultimate line also holds for N dimensions. For N dimensions, we would need to transform into the
space of eigenvectors of the matrix and apply the residue theorem for each of these directions separately.

The response functions are

$$
\Delta_{\tilde{x}\tilde{z}}(t, s) = \langle x(t) \tilde{x}(s) \rangle = \Delta_{\tilde{x}\tilde{z}}(s - t)
\begin{align*}
&= \int \frac{d\omega'}{2\pi} e^{i\omega'(t-s)} \left(\int d\omega \frac{e^{-i\omega s}}{\delta^2(\omega') \delta^2(\omega)} \frac{\delta^2}{(2\pi)^2 \Delta_{\tilde{x}\tilde{z}}(-i\omega', \omega') \delta^2(\omega')} \right) \\
&= - \frac{1}{2\pi i} \int_{-\infty}^{\infty} e^{z(t-s)} (z - m)^{-1} dz \\
&= - H(t - s) e^{m(t-s)},
\end{align*}
$$

which is consistent with the interpretation of the response to a Dirac-δ perturbation considered in section §VII D.

We assumed a one-dimensional dynamics in the last step. The Heaviside function arises if $t < s$: One needs to close
the integration contour in the right half plane to get a vanishing contribution along the arc, but no pole is encircled,
because $m < 0$ for stability.

For the diagrammatic formulation, we follow the convention proposed in [39, p.136ff, Fig. 4.2]: We represent
the response function by a straight line with an arrow pointing in the direction of time propagation, a correlation
function as a line with two incoming arrows

$$
\Delta(t, s) = \begin{pmatrix}
\langle x(t) x(s) \rangle & \langle x(t) \tilde{x}(s) \rangle \\
\langle \tilde{x}(t) x(s) \rangle & \langle \tilde{x}(t) \tilde{x}(s) \rangle
\end{pmatrix}
= \begin{pmatrix}
x(t) & x(s) & \tilde{x}(t) & \tilde{x}(s) \\
\tilde{x}(t) & x(s) & 0 & 0
\end{pmatrix}.
$$

The propagators of the linear and hence Gaussian theory are also often called bare propagators. In contrast,
propagators including perturbative corrections are called full propagators. The arrows are chosen such that they
are consistent with the flow of time, reflected by the properties:

- Response functions are causal, i.e. $\langle x(t) \tilde{x}(s) \rangle = 0$ is $t \leq s$. For $t = s$ the vanishing response relies on the
 Ito-convention (see section §VII D).
- As a consequence, all loops formed by propagators connecting to a vertex at which $x(t)$ and $\tilde{x}(s)$ interact at
 identical time points (see also coming section) or in a causal fashion, i.e. $s \geq t$, vanish.
- Correlations between pairs of response fields vanish $\langle \tilde{x}(t) \tilde{x}(s) \rangle$.
- For zero external sources $j = \tilde{j} = 0$, the expectation values of the fields vanish $\langle x(t) \rangle = 0$, as well as for the
 response field $\langle \tilde{x}(t) \rangle = 0$, because the action equation ([100]) is a centered Gaussian.

IX. PERTURBATION THEORY FOR STOCHASTIC DIFFERENTIAL EQUATIONS

We now want to combine the perturbative method developed in section §IV with the functional representation
of stochastic differential equations introduced in section §VII. The Ornstein-Uhlenbeck process studied as a special
case in section §VII in this context plays the role of the solvable, Gaussian part of the theory. We here want to
show how to calculate perturbative corrections that arise from non-linearites in the stochastic differential equation,
corresponding to the non-Gaussian part of the action.

A. Vanishing moments of response fields

We now would like to extend the system from the previous section to the existence of a non-linearity in the stochastic
differential equation [97] of the form

$$
\frac{dx}{dt} = f(x) \frac{dt}{dt} + \tilde{j} dt + d\xi, \quad (111)
$$
where \(f(x) \) is some non-linear function of \(x \). We first want to show that, given the value of the source \(j = 0 \), all moments of the response field vanish. In the derivation of the path-integral representation of \(Z \) in section \(\S 7 \) we saw that \(Z \) belongs to a properly normalized density, as demonstrated by \(\left[77 \right] \), so \(Z[j = 0] = 1 \). The same normalization of course holds in the presence of an arbitrary value of \(\tilde{j} \) in equation \(\left[111 \right] \), because \(\tilde{j} \) corresponds to an additional term on the right hand side of the stochastic differential equation and our derivation of \(Z \) holds for any right hand side. As a consequence we must have

\[
Z[0, \tilde{j}] = 1 \quad \forall \tilde{j}.
\] (112)

We hence conclude that any derivative by \(\tilde{j} \) of \(\left[112 \right] \) must vanish, so that all moments of \(\tilde{x} \) vanish

\[
\frac{\delta^n}{\delta \tilde{j}(t_1) \cdots \delta \tilde{j}(t_n)} Z[0, \tilde{j}] = \langle \tilde{x}(t_1) \cdots \tilde{x}_n(t_n) \rangle = 0 \quad \forall \; n > 0.
\]

We note that the latter condition holds irrespective of the value of \(\tilde{j} \); we may also evaluate the moments of \(\tilde{x} \) at some non-zero \(\tilde{j} \), corresponding to a particular value of the inhomogeneity on the right hand side of \(\left[111 \right] \).

B. Vanishing response loops

We would like to treat the non-linear function \(f(x) \) in \(\left[111 \right] \) perturbatively, so we consider its Taylor expansion

\[
f(x(t)) = f^{(1)}(0) x(t) + \sum_{n=2}^{\infty} \frac{f^{(n)}(0)}{n!} x(t)^n.
\]

We here restrict the choice of \(f \) to functions with \(f(0) = 0 \), because an offset can be absorbed into a non-vanishing external source field \(\tilde{j} \neq 0 \). For clarity of notation we here treat the one-dimensional case, but the extension to \(N \) dimensions is straightforward. We may absorb the linear term in the propagator, setting \(m := f^{(1)}(0) \) as the linear case \(\left[98 \right] \). The remaining terms yield interaction vertices in the action

\[
S[x, \tilde{x}] = \tilde{x}^T(\partial_t - f^{(1)}(0)) x + \frac{\tilde{x}^T D \tilde{x}}{2} - \sum_{n=2}^{\infty} \frac{f^{(n)}(0)}{n!} \tilde{x}^T x^n, \quad S_0[x, \tilde{x}] = \tilde{x}^T \hat{D} \tilde{x}, \quad V[x, \tilde{x}]
\]

which are of the form

\[
V[x, \tilde{x}] = \sum_{n=2}^{\infty} \frac{f^{(n)}(0)}{n!} \tilde{x}^T x^n \quad \underbrace{\int_{\tilde{x}(t)} x^n(t) dt}_{\Uparrow} = \frac{\tilde{x}(t)}{\hat{D} \tilde{x}} \left(\frac{\tilde{x}(t)}{\hat{D} \tilde{x}} \right) , \quad (113)
\]

where the ellipses indicates the remaining legs attached to an \(x \), one leg for each power in \(x \).

We saw in the previous section that the response functions in the Gaussian case are causal, i.e. \(\langle x(t) \tilde{x}(s) \rangle = 0 \) for \(t \leq s \) and also that \(\langle \tilde{x}(t) \tilde{x}(s) \rangle = 0 \quad \forall t, s \). We will now show that this property is conserved in presence of an arbitrary non-linearity that mediates a causal coupling. To this end consider a perturbative correction to the response function with a single interaction vertex. Since the interaction vertices are of the form \(\left[113 \right] \), they couple only equal time arguments (see underbrace in equation \(\left[113 \right] \)). A contribution to a response function \(\langle x(t) \tilde{x}(s) \rangle \) requires a bare propagator \(\underbrace{\tilde{x}(s)} \) from \(\tilde{x}(s) \) to one of the three right legs of the vertex \(\left[113 \right] \) and one additional propagator \(\underbrace{x(t) x^n(t)} \) from the left leg of the vertex to one of the external \(x(t) \). The remaining \(x \)-legs of the vertex need to be contracted by the propagator \(\underbrace{\tilde{x}(t)} \). Since both propagators to the external legs mediate a causal interaction and the vertex forces the intermediate time points of both propagators to be identical, it implies that the correction is unequal zero only for \(t_i > s \) \(\forall i \). We also see from this argument, that a generalization of this argument to causal interactions is straight forward.

By the inductive nature of the proof of connectedness in section \(\S VA \) this argument holds for arbitrary orders in perturbation theory, since the connected diagrams with \(i + 1 \) vertices are formed from those with \(i \): If causality holds for response functions with \(i \) vertices, this property obviously transcends to order \(i + 1 \) by the above argument, hence it holds at arbitrary order.

The same line of arguments shows that all correlators of the form \(\langle \tilde{x}(t) \cdots \tilde{x}(s) \rangle = 0 \) vanish. We know this property already from the general derivation in section \(\S IX A \) which only required the normalization condition and of course holds for arbitrary non-linearities \(f \). Often one finds in the literature diagrammatic arguments for the vanishing moments, which we will show here for completeness.
Indeed, at lowest order, the form of (100) shows that second moments of \tilde{x} vanish. The first moment of \tilde{x}, by differentiating (103) by $\delta Z/\delta \tilde{x}(t)$, results in $\langle \tilde{x}(j) \rangle = \int \Delta_{\tilde{x}}(t,x(s),\tilde{x}(s)) ds$ as well vanishes for $j = 0$, which even holds for $j \neq 0$ due to the absence of $\Delta_{\tilde{x}} = 0$. The independence of \tilde{j} it is consistent with the possibility to absorb the source term \tilde{j} in the inhomogeneity of the differential equation.

In the non-linear case, corrections to the mean value would come from graphs with one external \tilde{j} leg. Such a leg must be connected by the response function \rightarrow to one of the x-legs of the vertex, so that again a free $\tilde{x}(t)$ leg of the vertex remains. Due to the vanishing mean \tilde{x}, we only have the option to connect this free leg to one of the $x(t)$-legs of the vertex by another response function. We still get a vanishing contribution, because response functions (in the inhomogeneity of the differential equation).

Due to the vanishing mean \tilde{x}, we only have the option to connect this free leg to one of the $x(t)$-legs of the vertex by another response function. We still get a vanishing contribution, because response functions (in the inhomogeneity of the differential equation).

The same argument holds for all higher moments of \tilde{x}, where for each external line \tilde{j} one propagator \rightarrow attaches to the corresponding x-legs of the vertex. The remaining single \tilde{x}-leg of the vertex again cannot be connected in a way that would lead to a non-vanishing contribution. The argument generalizes to higher order corrections, by replacing the bare propagators by the full propagators, which, by the argument given above, have the same causality properties.

Comparing this result to the literature [32 see p. 4914 after eq. (9)] and [43 see eq. (7)], a difference is that these works considered the Stratonovich convention. An additional term $-\frac{1}{2} f'(x)$ is present in the action (90), because the Stratonovich convention amounts to $\alpha = \frac{1}{2}$. The response function at zero time lag then is $\langle x(t) \tilde{x}(t) \rangle = \frac{1}{2}$ (see section §VIID). The contributions of loops closed by response functions $\langle \tilde{x}(t) x(t) \rangle$ that end on the same vertex of the form (113) are

$$n \frac{\partial}{\partial x} \frac{n!}{(n-1)!} x^{n-1},$$

where two of the n x-legs are shown explicitly. The combinatorial factor n in the first line stems from the n possible ways to attach the propagator to one of the n factors x of the vertex. The last line shows that the remaining term is the opposite of the contribution $-\frac{1}{2} f'(x)$ that comes from the functional determinant in (90). In conclusion, all contributions of closed loops of response functions on the same vertex are canceled in the Stratonovich convention in the same way as in the Ito convention.

C. Feynman rules for SDEs in time domain and frequency domain

An arbitrary given action first needs to be converted into algebraic form in the fields, typically by Taylor expansion. We then have a stochastic differential equation with a linear part on the left and some nonlinearity on the right, for example

$$dx(t) + x(t) dt - \frac{\alpha}{2!} x^2(t) dt = dW(t).$$

The action is therefore $S[x, \tilde{x}] = S_0[x, \tilde{x}] - \frac{\alpha}{2!} \tilde{x}^T x^2$, where $S_0[x, \tilde{x}] = \tilde{x}^T (\partial_t + 1) x + \frac{D}{2} \tilde{x}^T \tilde{x}$ is the Gaussian part. After having determined the propagators corresponding to the Gaussian part S_0 of the action, given in frequency domain by (107) with $m = -1$,

$$\Delta(t, s) = \frac{\langle x(t) x(s) \rangle}{\langle \tilde{x}(t) \tilde{x}(s) \rangle} = \frac{\langle x(t) x(s) \rangle}{\langle \tilde{x}(t) \tilde{x}(s) \rangle} = \left(\begin{array}{ccc} x(t) & x(s) & z(t) \\ \tilde{x}(t) & x(s) & z(t) \\ 0 & 0 & 0 \end{array} \right) = \left(\begin{array}{ccc} \frac{1}{2D} e^{-t-s} & H(t-s) e^{-(t-s)} \\ -H(t-s) e^{-(s-t)} & 0 \end{array} \right),$$

we need to evaluate the Feynman diagrams of corrections that contain the interaction vertex in (114).

$$\tilde{x}(t) = -\frac{\alpha}{2!} \tilde{x}^T x^2 = -\frac{\alpha}{2!} \int dt \tilde{x}(t) x^2(t).$$
A perturbation correction to the mean value at first order (one interaction vertex) is hence caused by the diagram
\[
\begin{align*}
 j(t) & \xrightarrow{\Delta_{xx}} \frac{\Delta_{xx}}{2!} \int dt' \Delta_{x\bar{x}}(t, t') \Delta_{xx}(t', t) \\
 & = -\frac{\alpha}{2!} \int dt' H(t - t') e^{-(t-t')/D} \\
 & = -\frac{\alpha}{2!} \int_0^\infty d\tau e^{-\tau/D} \\
 & = -\frac{\alpha D}{4}.
\end{align*}
\]

For problems that are time-translation invariant, often a formulation in Fourier domain leads to simpler expressions. By help of [811C] we transfer the Feynman rules from time to frequency domain. We first express the interaction vertex in terms of the Fourier transforms of the fields to get
\[
\begin{align*}
 \mathcal{X} \rightarrow \tilde{X}(\omega_1) & = -\frac{\alpha}{2!} \iint \frac{d\omega_1}{2\pi} \frac{d\omega_2}{2\pi} \frac{d\omega_3}{2\pi} \int dt e^{i(\omega_1 + \omega_2 + \omega_3)t} \tilde{X}(\omega_1) X(\omega_2) X(\omega_3) \\
 & = -\frac{\alpha}{2!} \iint \frac{d\omega_1}{2\pi} \frac{d\omega_2}{2\pi} \tilde{X}(\omega_1) X(\omega_2) X(-\omega_1 - \omega_2).
\end{align*}
\]

So we get from the Dirac-\(\delta\) that the frequencies at each vertex need to sum up to zero. We may moreover think of the frequency “flowing” through the vertex and obeying a conservation equation - the frequencies flowing into a vertex also must flow out. We note that we get one factor \((2\pi)^{-1}\) less than the number of legs of the vertex. The number of factors \((2\pi)^{-1}\) therefore equals the number of remaining momentum integrals.

Moreover, we see that every external leg comes with a factor \((2\pi)^{-1}\) from the integration over \(\omega\) and a factor \(2\pi\) from the connecting propagator, so that the overall number of such factors is not affected. Each propagator connecting an internal pair of \(X\) or \(\tilde{X}\) comes, by [107], with a factor \(2\pi\). Due to the conservation of the frequencies also at each propagator by the Dirac \(\delta\), in the final expression there are hence as many frequency integrals left as we have factors \((2\pi)^{-1}\). We may moreover also keep a single frequency dependence of the propagator and write the term \(2\pi\delta\) explicitly, hence defining
\[
2\pi\delta(\omega + \omega') \Delta(\omega) := \Delta(\omega, -\omega'),
\]

(116)
to get the matrix of propagators
\[
2\pi\delta(\omega + \omega') \Delta(\omega) = \begin{pmatrix} \langle X(\omega)X(\omega') \rangle & \langle X(\omega)\tilde{X}(\omega') \rangle \\ \langle \tilde{X}(\omega)X(\omega') \rangle & 0 \end{pmatrix} \\
= 2\pi\delta(\omega + \omega') \begin{pmatrix} (-i\omega - 1)^{-1} D(i\omega - 1)^{-1} & (-i\omega - 1)^{-1} \\ (-i\omega - 1)^{-1} & 0 \end{pmatrix}.
\]

(117)

As an example, the first order correction to the first moment then has the form
\[
\begin{align*}
 j(-\omega) & = \int \frac{d\omega}{2\pi} J(-\omega) \int \frac{d\omega}{2\pi} 2\pi\delta(\omega + \omega') \Delta_{x\bar{x}}(\omega) \iint \frac{d\omega_1}{2\pi} \frac{d\omega_2}{2\pi} \frac{-\alpha}{2!} 2\pi\delta(\omega' + \omega_1 + \omega_2) 2\pi\delta(\omega_1 + \omega_2) \Delta_{xx}(\omega_1) \\
 & = \int \frac{d\omega}{2\pi} J(-\omega) 2\pi\delta(\omega) \Delta_{x\bar{x}}(\omega) \frac{-\alpha}{2!} \iint \frac{d\omega_1}{2\pi} \Delta_{xx}(\omega_1) \\
 & = \int \frac{d\omega}{2\pi} J(-\omega) 2\pi\delta(\omega) (-i\omega + 1)^{-1} \frac{-\alpha}{2!} \int \frac{d\omega_1}{2\pi} (-i\omega_1 + 1)^{-1} D(i\omega_1 + 1)^{-1} \\
 & = J(0) \frac{-\alpha}{2!} \int \frac{d\omega_1}{2\pi} (-i\omega_1 + 1)^{-1} D(i\omega_1 + 1)^{-1},
\end{align*}
\]

(118)

where the connecting external line \((-i\omega + 1)^{-1}\) has the shown sign, because \(J(-\omega)\) couples to \(X(\omega)\), so we need to take the upper right element in (117). The last factor \(-\Delta_{xx}(\omega_1) = (-i\omega_1 - 1)^{-1} D(i\omega_1 - 1)^{-1}\) is the covariance function connecting the two \(X(\omega_1)\) and \(X(\omega_2)\) legs of the vertex.
Since originally each integral over \(\omega_i \) comes with \((2\pi)^{-1} \) and each conservation of sums of \(\omega \) in either a propagator or a vertex comes with \(2\pi \delta(\sum_i \omega_i) \), we have as many factors \((2\pi)^{-1} \) as we have independent momentum integrals. We summarize the rules as follows:

- An external leg ending on \(J(\omega) \) attaches to a variable \(X(-\omega) \) within the diagram and analogous for \(\hat{X}(-\omega) \).
- At each vertex, the sum of all \(\omega \) flowing into the vertex must sum up to zero, since we get a term \(\propto \delta(\sum_{i=1}^n \omega_i) \).
- The frequencies that enter a propagator line must also exit, since we get a term \(\propto \delta(\omega + \omega') \).
- We have as many factors \((2\pi)^{-1} \) as we have independent \(\omega \) integrals left after all constraints of \(\omega \)-conservation have been taken into account.
- The number of \(\omega \) integrals hence must correspond to the number of loops: all other frequencies are fixed by the external legs.

So we may infer the frequencies on each propagator line by rules analogous to Kirchhoff’s law: Treating the frequencies as if they were conserved currents.

Using these rules we could have written down the fourth line in equation (118) directly.

The above integral by

\[
\frac{1}{2\pi} \int d\omega_i \frac{1}{(i\omega_i + 1)^{-1}} D(i\omega_i + 1)^{-1} = \frac{1}{2\pi} \int d\gamma \frac{dz}{\omega - z} D(\omega - z + 1)^{-1} = \frac{D}{2},
\]

hence evaluates to \(\frac{D}{2} J(0) \). We here closed the path \(\gamma \) in the positive direction, which is the left half-plane (with \(\Re(z) < 0 \), we get a +1 from the winding number. We encircle the pole \(z = -1 \) from the right factor and need to replace \(z = -1 \) in the left term.

The result, being proportional to \(J(0) \), shows that the correction only affects the stationary expectation value at \(\omega = 0 \), which therefore is (by the functional chain rule)

\[
\langle x(t) \rangle = \frac{\delta \hat{W}}{\delta j(t)} \bigg|_{j=0} = \int e^{-i\omega t} \frac{\delta \hat{W}}{\delta j(\omega)} d\omega = \int e^{-i\omega t} \delta(-\omega) \frac{\alpha D}{4} d\omega = \frac{\alpha D}{4},
\]

which is valid to first order in \(\alpha \). We here used that due to the source being of the form \(J^\dagger X = \int \frac{d\omega}{2\pi} J(-\omega) X(\omega) \) that \(\frac{\delta \hat{W}}{\delta j(\omega)} = \frac{1}{2\pi} 2\pi \frac{\alpha D}{4} \delta(-\omega) \). This value is also naively expected, by noting that the variance in the unperturbed system is \(\langle x^2 \rangle = \frac{D}{2} \), so the expectation value of the non-linear term on the right hand side of (114) is \(\alpha \frac{D}{4} \).

D. Diagrams with more than a single external leg

In calculating diagrams with more that a single external leg, we remember that the \(n \)-fold repetition of an external leg must come from the factor

\[
\exp(j^T x) = \sum_n (j^T x)^n n!.\]

So a diagram with \(n \)-legs of identical type \(j \) comes with \(n \) time-integrals and a factor \(n!^{-1} \). This is completely analogous to the case of the \(n \)-fold repetition of an interaction vertex.

It is instructive to first derive the correction to \(W \) - hence we compute the \(j \)-dependent contribution - and only in a second step differentiate the result by \(j \) to obtain the correction to the cumulants.
For example, a diagram contributing to the correction of the variance of the process would come with a factor \(\frac{1}{2!} \int dt \, ds \, j(t) \, j(s) \) prior to taking the second derivative by \(j \). Concretely, let us consider the diagram

\[
\begin{align*}
2 \cdot 2 \cdot \Delta_{xx}^x & \quad \Delta_{xx}^x = \frac{1}{2!} \int dt \, ds \, j(t) \, j(s) \, 2 \cdot 2 \cdot \frac{1}{2!} \left(\frac{\alpha}{2!} \right)^2 \int dt' \, ds' \, \Delta_{xx}(t, t') \, \Delta_{xx}(t', s') \, \Delta_{xx}(s', s) \\
= & \frac{1}{2!} \int dt \, ds \, j(t) \, j(s) \, f(t, s).
\end{align*}
\]

The combinatorial factor arises from two possibilities of connecting the \(\Delta_{xx} \) propagator of the left external leg to either of the vertices and the two possibilities of choosing the incoming \(x \)-leg of the vertex to which we connect this external leg. Another factor two arises from the two possibilities of connecting the \(\Delta_{xx} \) propagator to either of the two \(x \)-legs of the right vertex. All other contractions are uniquely determined then; so in total we have a factor \(2 \cdot 2 \cdot 2 \).

In calculating the contribution to the covariance function \(\langle x(t) x(s) \rangle \), the second cumulant of the process, we need to take the second functional derivative. Because the factor \(j \) appears twice, we obtain by the application of the functional product rule the correction to \(\delta^2 W / \delta j(t) \, \delta j(s) \)

\[
\frac{1}{2!} \left(f(t, s) + f(s, t) \right),
\]

which is a manifestly symmetric contribution as it has to be for a covariance function. A single term \(f(t, s) \) is not necessarily symmetric, as seen from the appearance of the non-symmetric functions \(\Delta_{xx} \).

We may calculate the same contribution in frequency domain. To assign the frequencies to the legs we use that at each line the frequencies must have opposite sign on either end and the sums of all frequencies at a vertex must sum up to zero; the frequency of the left field of the propagator is the argument of the corresponding function \(\Delta(\omega) \), according to [116]. So we get

\[
\begin{align*}
I : &= 2 \cdot 2 \cdot 2 \cdot \Delta_{xx}^x \, (\omega - \omega') \Delta_{xx}^x (\omega - \omega') \\
&= \frac{1}{2!} \int \frac{d\omega}{2\pi} J(\omega) \int \frac{d\omega'}{2\pi} 2 \cdot 2 \cdot \frac{1}{2!} \left(\frac{\alpha}{2!} \right)^2 \Delta_{xx}(\omega) \Delta_{xx}(\omega + \omega') \Delta_{xx}(\omega') \Delta_{xx}(\omega) J(\omega) \\
&=: \frac{1}{2!} \int \frac{d\omega}{2\pi} J(\omega) \, F(\omega) \, J(\omega).
\end{align*}
\]

We observe that the contribution can be written as an integral over one frequency, the frequency within the loop \(\omega' \). Each of the sources is attached by a propagator to this loop integral. We will see in the following that the inner integral is an effective 1PI vertex.

The contribution to the variance therefore becomes with the functional chain rule and \(\delta J(\omega) / \delta j(t) = e^{-i\omega t} \)

\[
\frac{\delta^2 W}{\delta j(t) \, \delta j(s)} = \int d\omega \, d\omega' \, e^{-i\omega t} \, e^{-i\omega' s} \, \frac{\delta^2 W}{\delta J(\omega) \, \delta J(\omega')}.
\]

By the last line in (121) and the application of the product rule we see that \(\frac{\delta^2 I}{\delta j(t) \, \delta j(s)} \) so that

\[
\frac{\delta^2 I}{\delta j(t) \, \delta j(s)} = \int \frac{d\omega}{2\pi} e^{i\omega(s-t)} \frac{1}{2!} \left(F(\omega) + F(-\omega) \right).
\]

Again, the product rule causes a symmetric contribution of the diagram. The back transform can be calculated with the help of the residue theorem. Multiple poles of order \(n \) can be treated by Cauchy’s differential formula

\[
f^{(n)}(a) = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} \, dz.
\]
E. Appendix: Unitary Fourier transform

A unitary transform is defined as an isomorphism that preserves the inner product. In our example the space is the vector space of all functions and the inner (scalar) product is

\[(f,g) = \int_{-\infty}^{\infty} f^*(t) g(t) \, dt. \] (123)

The Fourier transform is a linear mapping of a function \(f(t) \) to \(F(\omega) \), which can be understood as the projection onto the orthogonal basis vectors \(u_\omega(t) := \frac{1}{\sqrt{2\pi}} e^{i\omega t} \). The basis is orthogonal because

\[(u_\omega, u_{\omega'}) = \int_{-\infty}^{\infty} e^{i(\omega'-\omega)t} \frac{\delta(\omega'-\omega)}{2\pi} \, dt. \] (124)

The Fourier transform is a unitary transformation, because it preserves the form of the scalar product on the two spaces

\[(f,g) := \int f^*(t) g(t) \, dt = \int d\omega \int d\omega' \int dt \frac{e^{i(-\omega+\omega')t}}{(2\pi)^2} F^*(\omega) G(\omega') \]

\[= \int \frac{d\omega}{2\pi} F^*(\omega) G(\omega) =: (F,G). \] (125)

So the scalar products in the two spaces have the same form.

Changing the path integral from \(\int Dx(t) \) to \(\int DX(\omega) \), each individual time integral can be expressed by all frequency integrals as

\[\int dx(t) = \int d\omega \frac{e^{i\omega t}}{2\pi} \int dX(\omega). \] (126)

The transform (126) is a multiplication with the (infinite dimensional) matrix \(U_{\omega} = \frac{e^{i\omega t}}{2\pi} \). This matrix \(U \equiv (u_{-\infty}, \ldots, u_{\infty}) \) has the property

\[(U^T U)_{\omega \omega'} = \frac{\delta(\omega - \omega')}{2\pi}, \] (124)

which is the infinite dimensional unit matrix, from which follows in particular that \(|\det(U)| = \text{const} \). Hence changing the path integral \(\int Dx(t) \) to \(\int DX(\omega) \) we only get a constant from the determinant. Since we are only interested in derivatives of generating functionals, this constant has no consequence. However, the integration boundaries change. The integral \(\int Dx(t) \) goes over all real-valued functions \(x(t) \). Hence the corresponding Fourier transforms \(X(\omega) \) have the property \(X(-\omega) = X(\omega)^* \).

The action in (129) instead of the standard scalar product on \(\mathbb{C} \) (123) employs the Euclidean scalar product between functions \(x \) and \(y \) of the form

\[x^T y = \int dt \, x(t) y(t). \]

As a consequence, in frequency domain we get

\[\int \frac{d\omega}{2\pi} X(-\omega) Y(\omega). \] (127)

X. DYNAMIC MEAN-FIELD THEORY FOR RANDOM NETWORKS

Systems with many interacting degrees of freedom present a central quest in physics. While disordered equilibrium systems show fascinating properties such as the spin-glass transition [60, 61], new collective phenomena arise in non-equilibrium systems: Large random networks of neuron-like units can exhibit chaotic dynamics [8, 38, 62] with important functional consequences. In particular, information processing capabilities show optimal performance close to the onset of chaos [63–65].
Until today, the seminal work by Sompolinsky et al. [38] has a lasting influence on the research field of random recurrent neural networks, presenting a solvable random network model with deterministic continuous-time dynamics that admits a calculation of the transition to a chaotic regime and a characterization of chaos by means of Lyapunov exponents. Many subsequent studies have built on top of this work [66–71].

The presentation in the original work [38], published in Physical Review Letters, summarizes the main steps of the derivations and the most important results. In this chapter we would like to show the formal calculations that reproduce the most important results. After communication with A. Crisanti we could confirm that the calculations by the original authors are indeed to large extent identical to the presentation here. The original authors recently published an extended version of their work [39].

Possible errors in this document should not be attributed to the original authors, but to the authors of this manuscript. In deriving the theory, we also present a recent extension of the model to stochastic dynamics due to additive uncorrelated Gaussian white noise [72]. The original results of [38] are obtained by setting the noise amplitude $D = 0$ in all expressions. The here presented material has previously been made publicly available as [26].

A. Definition of the model and generating functional

We study the coupled set of first order stochastic differential equations

$$dx(t) + x(t)\, dt = J\phi(x(t))\, dt + d\xi(t),$$

(128)

where

$$J_{ij} \sim \begin{cases} \mathcal{N}(0, \frac{\eta^2}{N}) \text{ i.i.d.} & \text{for } i \neq j \\ 0 & \text{for } i = j \end{cases}$$

(129)

are i.i.d. Gaussian random couplings, ϕ is a non-linear gain function applied element-wise, the dW_i are pairwise uncorrelated Wiener processes with $\langle d\xi_i(t) d\xi_j(s) \rangle = D \delta_{ij} \delta_{st} \, dt$. For concreteness we will use

$$\phi(x) = \tanh(x),$$

(130)

as in the original work [38].

We formulate the problem in terms of a generating functional from which we can derive all moments of the activity as well as response functions. Introducing the notation $\tilde{x}^T x = \sum_i \int \tilde{x}_i(t) x_i(t) \, dt$, we obtain the moment-generating functional as derived in Section VII

$$Z[j,j](J) = \int Dx \int Dx \exp\left(S_0[x, \tilde{x}] - \tilde{x}^T J \phi(x) + J^T x + \tilde{j}^T \tilde{x} \right)$$

with $S_0[x, \tilde{x}] = \tilde{x}^T (\partial_t + 1) x + \frac{D}{2} \tilde{x}^T \tilde{x}$,

(131)

where the measures are defined as $\int Dx = \lim_{M \to \infty} \Pi_{j=1}^N \Pi_{i=1}^M \int_{-\infty}^\infty dx_i^j$ and $\int D\tilde{x} = \lim_{M \to \infty} \Pi_{i=1}^N \Pi_{j=1}^M \int_{-\infty}^\infty d\tilde{x}_i^j$. Here the superscript k denotes the k-th time slice and we skip the subscript $D_{2\pi i}$, as introduced in [81] in Section VI-A in the measure of $D\tilde{x}$. The action S_0 is defined to contain all single unit properties, therefore excluding the coupling term $-\tilde{x}^T J \phi(x)$, which is written explicitly.

B. Property of self-averaging

We see from [131] that the term that couples the different neurons has a special form, namely

$$h_i(t) := \left[J \phi(x) \right]_i = \sum_j J_{ij} \phi(x_j(t)),$$

(132)

which is the sum of many contributions. In the first exercises (see Section II), we have calculated the distribution of the sum of independent random numbers. We found that the sum approaches a Gaussian if the terms are weakly
correlated, given the number of constituents is sufficiently large. In general, such results are called concentration of measure \[23\] i. p. section VII, because its probability distribution, in mathematics often called a measure, becomes very peaked around its mean value.

In the following derivation we are going to find a similar behavior for \(h_i\) due to the large number of synaptic inputs summed up in \[132\]. The latter statement is about the temporal statistics of \(h_i \sim \mathcal{N}(\mu_i, \sigma_i^2)\). We can try to make a conceptually analogous, but different statement about the statistics of \(h_i\) with respect to the randomness of \(J_{ij}\): The couplings \(J_{ij}\) are constant in time; they are therefore often referred to as frozen or quenched disorder. Observing that each \(h_i\) approaches a Gaussian the better the larger the \(N\), we may ask how much the parameters \(\mu_i\) and \(\sigma_i\) of this Gaussian vary from one realization of \(J_{ij}\) to another. If this variability becomes small, because \(i\) was chosen arbitrary, this implies that also the variability from one neuron \(i\) to another neuron \(k\) at one given, fixed \(J_{ij}\) must be small - this property is called self-averaging: The average over the disorder, over an ensemble of systems, is similar to the average over many units \(i\) in a single realization from the ensemble. As a result, we may hope to obtain a low-dimensional description of the statistics for one typical unit. This is what we will see in the following.

As a consequence of the statistics of \(h_i\) to converge to a well-defined distribution in the \(N \to \infty\) limit, we may hope that the entire moment generating functional \(Z[j](J)\), which, due to \(J\) is a random object, shows a concentration of measure as well. The latter must be understood in the sense that for most of the realizations of \(J\) the generating functional \(Z\) is close to its average \(\langle Z[j]|(J)\rangle_J\). We would expect such a behavior, because mean and variance of the \(h_i\) approach certain, fixed values, the more precise the larger the network size is. Such a statement makes an assertion about an ensemble of networks. In this case it is sufficient to calculate the latter. It follows that all quantities that can be calculated from \(Z[j]|(J)\) can then also be - approximately - obtained from \(\langle Z[j]|(J)\rangle_J\). Each network is obtained as one realization of the couplings \(J_{ij}\) following the given probabilistic law \[129\]. The goal of the mean-field description derived in the following is to find such constant behavior independent of the actual realization of the frozen disorder.

The assumption that quantities of interest are self-averaging is implicit in modeling approaches that approximate neuronal networks by networks with random connectivity; we expect to find that observables of interest, such as the rates, correlations, peaks in power spectra, are independent of the particular realization of the randomness. To see the concept of self-averaging more clearly, we may call the distribution of the activity in the network \(p[x](J)\) for one particular realization \(J\) of the connectivity. Equivalently, we may express it as its Fourier transform, the moment-generating functional \(Z[j]|(J)\). Typically we are interested in some experimental observables \(O[x]\). We may for example think of the population-averaged autocorrelation function

\[
\langle O_x[x]\rangle_{x(J)} = \frac{1}{N} \sum_{i=1}^N \langle x_i(t+\tau)x_i(t)\rangle_{x(J)},
\]

where the expectation value \(\langle\rangle_{x(J)}\) is over realizations of \(x\) for one given realization of \(J\). It is convenient to express the observable in its Fourier transform \(O[x] = \int D\hat{J} \hat{O}[j] \exp(j^T x)\) (with suitably defined \(\hat{O}\) and measure \(D\)) using \[3\]

\[
\langle \hat{O}[x]\rangle_{x(J)} = \int D\hat{J} \hat{O}[j] Z[j](J),
\]

where naturally the moment generating functional appears as \(Z[j](J) = \langle \exp(j^T x)\rangle_{x(J)}\). The mean observable averaged over all realizations of \(J\) can therefore be expressed as

\[
\langle \langle \hat{O}[x]\rangle_{x(J)}\rangle_J = \int D\hat{J} \hat{O}[j] \langle Z[j]|(J)\rangle_J,
\]

in terms of the generating functional that is averaged over the frozen disorder, as anticipated above.

We call a quantity self-averaging, if its variability with respect to the realization of \(J\) is small compared to a given bound \(\epsilon\). Here \(\epsilon\) may for example be determined by the measurement accuracy of an experiment. With the short hand \(\delta O[x] := O[x] - \langle \langle O[x]\rangle_{x(J)}\rangle_J\) we would like to have

\[
\langle [\delta O[x]^2](J)\rangle_J = \left(\int D\hat{x} p[x](J) \delta O[x]\right)^2 \ll \epsilon,
\]

a situation illustrated in Figure 1. Analogously to the mean, the variance of the observable can be expressed in terms of the average of the product of a pair of generating functionals

\[
Z_{ij}[j,j'] := \langle Z[j](J) Z[j'](J)\rangle_J
\]
Figure 1. **Self-averaging observable** O. The variability δO over different realizations of the random disorder is small, so that with high probability, the measured value in one realization is close to the expectation value $\langle O \rangle$ over realizations.

as

$$\langle \delta Q^2(J) \rangle_J = \int D\delta \delta \langle \hat{O}[j] \hat{O}[j'] \rangle Z_2[j,j'] .$$

(135)

Taking the average over products of generating functional is called the **replica method**: we replicate a system with identical parameters and average the product.

In the particular case that $Z_2[j,j']$ factorizes into a product of two functionals that individually depend on j and j', the variance of any observable vanishes. We will see in the following that to leading order in N, the number of neurons, this will be indeed the case for the model studied here.

C. Average over the quenched disorder

We now assume that the system (128) shows self-averaging behavior, independent of the particular realization of the couplings, as explained above. To capture these properties that are generic to the ensemble of the models, we introduce the averaged functional

$$\bar{Z}[j,\hat{j}] := \langle Z[j,\hat{j}](J) \rangle_J$$

$$= \int \Pi_{ij} dJ_{ij} N(0, g^2 N, J_{ij}) Z[j,\hat{j}](J).$$

(136)

We use that the coupling term $\exp(-\sum_{i\neq j} J_{ij} \int \tilde{x}_i(t) \phi(x_j(t)) dt)$ in equation (131) factorizes into $\Pi_{ij} \exp(-J_{ij} \int \tilde{x}_i(t) \phi(x_j(t)) dt)$ as does the distribution over the couplings (due to J_{ij} being independently distributed). We make use of the couplings appearing linearly in the action so that we may rewrite the term depending on the connectivity J_{ij} for $i \neq j$

$$\int dJ_{ij} N(0, g^2 N, J_{ij}) \exp(-J_{ij} y_{ij}) = \langle \exp(-J_{ij} y_{ij}) \rangle_{J_{ij} \sim N(0, g^2 N)}$$

with $y_{ij} := \int \tilde{x}_i(t) \phi(x_j(t)) dt$.

(137)

The form in the first line is that of the moment generating function (equation (4)) of the distribution of the J_{ij} evaluated at the point $-y_{ij}$. For a general distribution of i.i.d. variables J_{ij} with the n-th cumulant κ_n, we hence get
with \(g \)

\[
\langle \exp(-J_{ij}y_{ij}) \rangle_{\gamma_{ij}} = \exp \left(\sum_{n} \frac{\kappa_n}{n!} (-y_{ij})^n \right).
\]

For the Gaussian case studied here, where the only non-zero cumulant is \(\kappa_2 = \sigma^2 \), we hence get

\[
\langle \exp(-J_{ij}y_{ij}) \rangle_{\gamma_{ij} \sim N(0, \sigma^2)} = \exp \left(\frac{g^2}{2N} y_{ij}^2 \right) = \exp \left(\frac{g^2}{2N} \left(\int \tilde{x}_i(t) \phi(x_j(t)) dt \right)^2 \right).
\]

We reorganize the last term including the sum \(\sum_{i \neq j} \) as

\[
\frac{g^2}{2N} \sum_{i \neq j} \left(\int \tilde{x}_i(t) \phi(x_j(t)) dt \right)^2
= \frac{g^2}{2N} \sum_{i \neq j} \int \int \tilde{x}_i(t) \phi(x_j(t)) \tilde{x}_i(t') \phi(x_j(t')) dt dt'
= \frac{1}{2} \int \int \left(\sum_i \tilde{x}_i(t) \tilde{x}_i(t') \right) \left(\frac{g^2}{N} \sum_j \phi(x_j(t)) \phi(x_j(t')) \right) dt dt'
- \frac{g^2}{2N} \int \int \sum_i \tilde{x}_i(t) \tilde{x}_i(t') \phi(x_i(t)) \phi(x_i(t')) dt dt',
\]

where we used \((\int f(t) dt)^2 = \int \int f(t) f(t') dt dt' \) in the first step and \(\sum_{i \neq j} x_i y_j = \sum_i x_i \sum_j y_j \) in the second. The last term is the diagonal element that is to be taken out of the double sum. It is a correction of order \(N^{-1} \) and will be neglected in the following. The disorder-averaged generating functional \(\langle 136 \rangle \) therefore takes the form

\[
Z[\mathbf{j}, \mathbf{j}'] = \int \mathcal{D} \mathbf{x} \int \mathcal{D} \mathbf{\hat{x}} \exp \left(S_0[\mathbf{x}, \mathbf{\hat{x}}] + \mathbf{j}^T \mathbf{x} + \mathbf{j}'^T \mathbf{\hat{x}} \right) \times \exp \left(\frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\sum_i \tilde{x}_i(t) \tilde{x}_i(t') \right) \left(\frac{g^2}{N} \sum_j \phi(x_j(t)) \phi(x_j(t')) \right) dt dt' \right).
\]

The coupling term in the last line shows that both sums go over all indices, so the system has been reduced to a set of \(N \) identical systems coupled to one another in an identical manner. The coupling term contains quantities that depend on four fields. We now aim to decouple these terms into terms of products of pairs of fields. The aim is to make use of the central limit theorem, namely that the quantity \(Q_1 \) indicated by the curly braces in \(\langle 138 \rangle \) is a superposition of a large \((N) \) number of (weakly correlated) contributions, which will hence approach a Gaussian distribution. Introducing \(Q_1 \) as a new variable is therefore advantageous, because we know that the systematic fluctuation expansion is an expansion for the statistics close to a Gaussian. To lowest order, fluctuations are neglected altogether. The outcome of the saddle point or tree level approximation to this order is the replacement of \(Q_1 \) by its expectation value. To see this, let us define

\[
Q_1(t, s) := \frac{g^2}{N} \sum_j \phi(x_j(t)) \phi(x_j(s))
\]

and enforce this condition by inserting the Dirac-\(\delta \) functional

\[
\delta \left[\frac{N}{g^2} Q_1(s, t) + \sum_j \phi(x_j(s)) \phi(x_j(t)) \right]
= \int \mathcal{D} Q_2 \exp \left(\iint Q_2(s, t) \left[-\frac{N}{g^2} Q_1(s, t) + \sum_j \phi(x_j(s)) \phi(x_j(t)) \right] ds dt \right).
\]
This procedure corresponds to finding the point in the space mass depends on the value of the parameter Figure 2. The contribution to the overall probability mass depends on the value of the parameter \(Q \), i.e., we seek to maximize \(b(Q) := \int \mathcal{D}x \ p[x; Q] \) equation \(143 \). The point at which the maximum is attained is denoted as \(Q^* \), the value \(b(Q^*) \) is indicated by the hatched area.

We here note that as for the response field, the field \(Q_2 \in i\mathbb{R} \) is purely imaginary due to the Fourier representation \(82 \) of the \(\delta \). The enforcement of a constraint by such a conjugate auxiliary field is a common practice in large \(N \) field theory \(141 \).

We aim at a set of self-consistent equations for the auxiliary fields. We treat the theory as a field theory in the \(1, Q \) and \(Q_2 \) in their own right. We therefore introduce one source \(k, \tilde{k} \) for each of the fields to be determined and drop the source terms for \(x \) and \(\tilde{x} \); this just corresponds to a transformation of the random variables of interest (see Section II B). Extending our notation by defining \(Q_1^T Q_2 := \int Q_1(s, t) Q_2(s, t) \ ds \ dt \) and \(\tilde{x}^T Q_1 \tilde{x} := \int \tilde{x}(s) Q_1(s, t) \tilde{x}(t) \ ds \ dt \) we hence rewrite \(138 \) as

\[
\tilde{Z}_Q[k, \tilde{k}] := \int \mathcal{D}Q_1 \int \mathcal{D}Q_2 \exp \left(-\frac{N}{g^2} Q_1^T Q_2 + N \ln Z[Q_1, Q_2] + k^T Q_1 + \tilde{k}^T Q_2 \right)
\]

\[
Z[Q_1, Q_2] = \int \mathcal{D}x \int \mathcal{D}\tilde{x} \exp \left(S_0[x, \tilde{x}] + \frac{1}{2} \tilde{x}^T Q_1 \tilde{x} + \phi(x)^T Q_2 \phi(x) \right),
\]

where the integral measures \(\mathcal{D}Q_{1,2} \) must be defined suitably. In writing \(N \ln Z[Q_1, Q_2] \) we have used that the auxiliary fields couple only to sums of fields \(\sum_i \phi^2(x_i) \) and \(\sum_i \tilde{x}_i^2 \), so that the generating functional for the fields \(x \) and \(\tilde{x} \) factorizes into a product of \(N \) factors \(Z[Q_1, Q_2] \). The latter only contains functional integrals over the two scalar fields \(x, \tilde{x} \). This shows that we have reduced the problem of \(N \) interacting units to that of a single unit exposed to a set of external fields \(Q_1 \) and \(Q_2 \).

The remaining problem can be considered a field theory for the auxiliary fields \(Q_1 \) and \(Q_2 \). The form \(141 \) clearly exposes the \(N \) dependence of the action for these latter fields in \(144 \): It is of the form \(\int dQ \exp(N \int f(Q)) \ dQ \), which, for large \(N \), suggests a saddle point approximation.

In the saddle point approximation \(137 \) we seek the stationary point of the action determined by

\[
0 = \frac{\delta S[Q_1, Q_2]}{\delta Q_{(1,2)}} = \frac{\delta}{\delta Q_{(1,2)}} \left(-\frac{N}{g^2} Q_1^T Q_2 + N \ln Z[Q_1, Q_2] \right) = 0.
\]

This procedure corresponds to finding the point in the space \((Q_1, Q_2) \) which provides the dominant contribution to the probability mass. This can be seen by writing the probability functional as \(p[x] = \int \mathcal{D}Q_1 \mathcal{D}Q_2 \ p[x; Q_1, Q_2] \) with

\[
p[x; Q_1, Q_2] = \exp \left(-\frac{N}{g^2} Q_1^T Q_2 + \sum_i \int \mathcal{D}\tilde{x} \exp \left(S_0[x_i, \tilde{x}] + \frac{1}{2} \tilde{x}^T Q_1 \tilde{x} + \phi(x_i)^T Q_2 \phi(x_i) \right) \right)
\]

\[
b[Q_1, Q_2] := \int \mathcal{D}x \ p[x; Q_1, Q_2],
\]

where we defined \(b[Q_1, Q_2] \) as the contribution to the entire probability mass for a given value of the auxiliary fields \(Q_1, Q_2 \). Maximizing \(b \) therefore amounts to the condition \(142 \), illustrated in Figure 2. We here used the convexity of the exponential function.

A more formal argument to obtain \(142 \) proceeds by introducing the Legendre-Fenchel transform of \(\ln Z \) as

\[
\Gamma[Q_1^*, Q_2^*] := \sup_{k, \tilde{k}} k^T Q_1^* + \tilde{k}^T Q_2^* - \ln \tilde{Z}_Q[k, \tilde{k}],
\]
the vertex generating functional or effective action (see Section XI and [23, 27]). It holds that \(\frac{\delta \Gamma}{\delta q_i} = k \) and \(\frac{\delta \Gamma}{\delta \tilde{q}_j} = \tilde{k} \), the equations of state \((185) \). The tree-level or mean-field approximation amounts to the approximation \(\Gamma[Q_1^*, Q_2^*] \approx -S[q_1, q_2] \), as derived in [233]. The equations of state, for vanishing sources \(k = \tilde{k} = 0 \), therefore yield the saddle point equations

\[
\begin{align*}
0 &= k = \frac{\delta \Gamma}{\delta Q_1^*} = -\frac{\delta S}{\delta Q_1^*} \\
0 &= \tilde{k} = \frac{\delta \Gamma}{\delta Q_2^*} = -\frac{\delta S}{\delta Q_2^*},
\end{align*}
\]

identical to \((142) \). This more formal view has the advantage of being straightforwardly extendable to loopwise corrections (see Section XIV B).

The functional derivative in the stationarity condition \((142) \) applied to \(\ln Z[Q_1, Q_2] \) produces an expectation value with respect to the distribution \((143) \), the fields \(Q_1 \) and \(Q_2 \) here act as sources. This yields the set of two equations

\[
\begin{align*}
0 &= -\frac{N}{g^2} Q_1^*(s, t) + \frac{N}{Z} \frac{\delta Z[Q_1, Q_2]}{\delta Q_2(s, t)} \bigg|_{Q_s^*} \quad \Rightarrow Q_1^*(s, t) = g^2 \langle \phi(x(s))\phi(x(t)) \rangle_{Q_s^*} = g^2 C_{\phi(x)\phi(x)}(s, t) \quad (144) \\
0 &= -\frac{N}{g^2} Q_2^*(s, t) + \frac{N}{Z} \frac{\delta Z[Q_1, Q_2]}{\delta Q_1(s, t)} \bigg|_{Q_s^*} \quad \Rightarrow Q_2^*(s, t) = \frac{g^2}{2} \langle \tilde{x}(s) \tilde{x}(t) \rangle_{Q_s^*} = 0,
\end{align*}
\]

where we defined the average autocorrelation function \(C_{\phi(x)\phi(x)}(s, t) \) of the non-linearly transformed activity of the units. The second saddle point \(Q_2^* = 0 \) vanishes. This is because all expectation values of only \(\tilde{x} \) fields vanish, as shown in Section IX A. This is true in the system that is not averaged over the disorder and remains true in the averaged system, since the average is a linear operation, so expectation values become averages of their counterparts in the non-averaged system. If \(Q_2 \) was non-zero, it would alter the normalization of the generating functional through mixing of retarded and non-retarded time derivatives which then yield acausal response functions [37].

The expectation values \(\langle \cdot \rangle_{Q_s^*} \) appearing in equation \((144) \) must be computed self-consistently, since the values of the saddle points, by \((141) \), influence the statistics of the fields \(x \) and \(\tilde{x} \), which in turn determines the functions \(Q_1^* \) and \(Q_2^* \) by equation \((144) \).

Inserting the saddle point solution into the generating functional equation \((141) \) we get

\[
Z^* \propto \int \mathcal{D}x \int \mathcal{D}\tilde{x} \exp \left(S_0[x, \tilde{x}] + \frac{g^2}{2} \tilde{x}^T C_{\phi(x)\phi(x)} \tilde{x} \right). \tag{145}
\]

As the saddle points only couple to the sums of the fields, the action has the important property that it decomposes into a sum of actions for individual, non-interacting units that feel a common field with self-consistently determined statistics, characterized by its second cumulant \(C_{\phi(x)\phi(x)} \). Hence the saddle-point approximation reduces the network to \(N \) non-interacting units, or, equivalently, a single unit system. The step from \((138) \) to \((145) \) is therefore the replacement of the term \(Q_1 \), which depends on the very realization of the \(x \) by \(Q_1^* \), which is a given function, the form of which depends only on the statistics of the \(x \). This step allows the decoupling of the equations and again shows the self-averaging nature of the problem: the particular realization of the \(x \) is not important; it suffices to know their statistics that determines \(Q_1^* \) to get the dominant contribution to \(Z \).

The second term in \((145) \) is a Gaussian noise with a two point correlation function \(C_{\phi(x)\phi(x)}(s, t) \). The physical interpretation is the noisy signal each unit receives due to the input from the other \(N \) units. Its autocorrelation function is given by the summed autocorrelation functions of the output activities \(\phi(x_i(t)) \) weighted by \(g^2 N^{-1} \), which incorporates the Gaussian statistics of the couplings. This intuitive picture is shown in Figure 3.

The interpretation of the noise can be appreciated by explicitly considering the moment generating functional of a Gaussian noise with a given autocorrelation function \(C(t, t') \), which leads to the cumulant generating functional \(\ln Z_\xi[\tilde{x}] \) that appears in the exponent of equation \((145) \) and has the form

\[
\ln Z_\xi[\tilde{x}] = \ln(\exp \left(\int \tilde{x}(t) \zeta(t) dt \right)) = \frac{1}{2} \int_\infty^- \int_\infty^- \tilde{x}(t) C(t, t') \tilde{x}(t') dt dt' = \frac{1}{2} \tilde{x}^T C \tilde{x}.
\]
Note that the effective noise term only has a non-vanishing second cumulant. This means the effective noise is Gaussian, as the cumulant generating function is quadratic. It couples pairs of time points that are correlated.

Once (148) is solved, we know the covariance function \(\Delta \), which have Gaussian statistics with variance \(g^2 N^{-1} \).

\[
\begin{align*}
\left(\partial_s + 1 \right) \phi_x(x(t)) &= \eta(t) \quad (146) \\
\text{driven by a Gaussian noise } \eta = \zeta + \frac{d\zeta}{dt} \text{ with autocorrelation } \langle \eta(t)\eta(s) \rangle &= g^2 C_{\phi(x)\phi(x)}(t, s) + D\delta(t-s). \quad \text{In the cited paper the white noise term } \propto D \text{ is absent, though.}
\end{align*}
\]

We may either formally invert the operator \(-S^{(2)}\) corresponding to the action (145) to obtain the propagators of the system as in the case of the Ornstein-Uhlenbeck processes Section VIII. Since we only need the propagator \(\Delta_{\phi_x}(t, s) = \langle x(t)x(s) \rangle =: C_{\phi_x}(t, s) \) here, we may alternatively multiply the equation (146) for time points \(t \) and \(s \) and take the expectation value with respect to the noise \(\eta \) on both sides, which leads to

\[
\left(\partial_s + 1 \right) \left(\partial_s + 1 \right) C_{\phi_x}(t, s) = g^2 C_{\phi(x)\phi(x)}(t, s) + D\delta(t-s), \quad (147)
\]

where we defined the covariance function of the activities \(C_{\phi_x}(t, s) := \langle x(t)x(s) \rangle \). In the next section we will rewrite this equation into an equation of a particle in a potential.

D. Stationary statistics: Self-consistent autocorrelation of as motion of a particle in a potential

We are now interested in the stationary statistics of the system, i.e. \(C_{\phi_x}(t, s) =: c(t-s) \). The inhomogeneity in equation (147) is then also time-translation invariant, \(C_{\phi(x)\phi(x)}(t+\tau, t) \) is only a function of \(\tau \). Therefore the differential operator \(\left(\partial_s + 1 \right) \left(\partial_s + 1 \right) c(t-s) \), with \(\tau = t-s \), simplifies to \(-\partial^2_s + 1) c(\tau)\) so we get

\[
\left(-\partial^2_s + 1 \right) c(\tau) = g^2 C_{\phi(x)\phi(x)}(t+\tau, t) + D\delta(\tau). \quad (148)
\]

Once (148) is solved, we know the covariance function \(c(\tau) \) between two time points \(\tau \) apart as well as the variance \(c(0) =: c_0 \). Since by the saddle point approximation in Section IX the expression (145) is the generating functional of a Gaussian theory, the \(x \) are zero mean Gaussian random variables. We might call the field \(x(t) =: x_1 \) and \(x(t+\tau) =: x_2 \), which follow the distribution

\[
(x_1, x_2) \sim \mathcal{N}\left(0, \begin{pmatrix} c(0) & c(\tau) \\ c(\tau) & c(0) \end{pmatrix} \right).
\]

Consequently the second moment completely determines the distribution. We can therefore obtain \(C_{\phi(x)\phi(x)}(t, s) = g^2 f_\phi(c(\tau), c(0)) \) with

\[
\begin{align*}
f_u(c, c_0) &= \langle u(x_1) u(x_2) \rangle \\
&= \int \int u \left(\begin{pmatrix} c & c_0 \\ c_0 & c \end{pmatrix} \right) Dz_1 Dz_2.
\end{align*}
\]

\[
\begin{equation}
(150)
\end{equation}
\]
the Gaussian integration measure \(Dz = \exp(-z^2/2)/\sqrt{2\pi}dz \) and for a function \(u(x) \). Here, the two different arguments of \(u(x) \) are by construction Gaussian with zero mean, variance \(c(0) = c_0 \), and covariance \(c(\tau) \). Note that equation (149) reduces to one-dimensional integrals for \(f_u(c_0, c_0) = \langle u(x)^2 \rangle \) and \(f_u(0, c_0) = \langle u(x)^2 \rangle \), where \(x \) has zero mean and variance \(c_0 \).

We note that \(f_u(c(\tau), c_0) \) in (149) only depends on \(\tau \) through \(c(\tau) \). We can therefore obtain it from the “potential” \(g^2 f_{\Phi}(c(\tau), c_0) \) by

\[
C_{\phi(\tau)\phi(x)}(t + \tau, t) = \frac{\partial}{\partial c} g^2 f_{\Phi}(c(\tau), c_0)
\]

(151)

where \(\Phi \) is the integral of \(\phi \), i.e. \(\Phi(x) = f_0^{x} \phi(x) dx = \ln \cosh(x) \). The property \(\frac{\partial}{\partial c} f_{\Phi}(c, c_0) = f'_{\Phi}(c(\tau), c_0) \) is known as Price’s theorem [74]. Note that the representation in (149) differs from the one used in [25] eq. (7)). The expression used here is also valid for negative \(c(\tau) \) in contrast to the original formulation. We can therefore express the differential equation for the autocorrelation with the definition of the potential V

\[
V(c; c_0) := -\frac{1}{2} c^2 + g^2 f_{\Phi}(c(\tau), c_0) - g^2 f_{\Phi}(0, c_0),
\]

(152)

where the subtraction of the last constant term is an arbitrary choice that ensures that \(V(0; c_0) = 0 \). The equation of motion (148) therefore takes the form

\[
\frac{\partial^2}{\partial \tau^2} c(\tau) = -V'(c(\tau); c_0) - D\delta(\tau),
\]

(153)

so it describes the motion of a particle in a (self-consistent) potential \(V \) with derivative \(V' = \frac{\partial}{\partial c} V \). The \(\delta \)-distribution on the right hand side causes a jump in the velocity that changes from \(\frac{\partial}{\partial c} \) to \(-\frac{\partial}{\partial c} \) at \(\tau = 0 \), because \(c \) is symmetric \((c(\tau) = c(-\tau)) \) and hence \(\dot{c}(\tau) = -\dot{c}(-\tau) \) and moreover the term \(-V'(c(\tau); c_0)\) does not contribute to the kink. The equation must be solved self-consistently, as the initial value \(c_0 \) determines the effective potential \(V(c; c_0) \) via equation (152). The second argument \(c_0 \) indicates this dependence.

The gain function \(\phi(x) = \tanh(x) \) is shown in Figure 4, while Figure 4b shows the self-consistent potential for the noiseless case \(D = 0 \).

The potential is formed by the interplay of two opposing terms. The downward bend is due to \(-\frac{1}{2}c^2\). The term \(g^2 f_{\Phi}(c; c_0) \) is bent upwards. We get an estimate of this term from its derivative \(g^2 f'_{\Phi}(c; c_0) \). Since \(\phi(x) \) has unit slope at \(x = 0 \) (see Figure 4a), for small amplitudes \(c_0 \) the fluctuations are in the linear part of \(\phi \), so \(g^2 f_{\Phi}(c, c_0) \approx g^2 c \) for all \(c \leq c_0 \). Consequently, the potential \(g^2 f_{\Phi}(c, c_0) = \int_0^c g^2 f_{\Phi}(c', c_0) dc' \). For \(g < 1 \), the parabolic part dominates for all \(c_0 \), so that the potential is bent downwards and the only bounded solution in the noiseless case \(D = 0 \) of (153) is the vanishing solution \(c(t) \equiv 0 \).
For $D > 0$, the particle may start at some point $c_0 > 0$ and, due to its initial velocity, reach the point $c(\infty) = 0$. Any physically reasonable solution must be bounded. In this setting, the only possibility is a solution that starts at a position $c_0 > 0$ with the same initial energy $V(c_0; c_0) + E_{\text{kin}}^0$ as the final potential energy $V(0; c_0) = 0$ at $c = 0$. The initial kinetic energy is given by the initial velocity $\dot{c}(0^+) = -\frac{D}{2}$ as $E_{\text{kin}}^0 = \frac{1}{2} \dot{c}(0^+)^2 = \frac{D^2}{4}$. This condition ensures that the particle, starting at $\tau = 0$ at the value c_0 for $\tau \to \infty$ reaches the local maximum of the potential at $c = 0$; the covariance function decays from c_0 to zero.

For $g > 1$, the term $g^2 f_\phi(c; c_0)$ can start to dominate the curvature close to $c \approx 0$: the potential in Figure 4 is bent upwards for small c_0. For increasing c_0, the fluctuations successively reach the shallower parts of ϕ, hence the slope of $g^2 f_\phi(c, c_0)$ diminishes, as does the curvature of its integral, $g^2 f_\phi(c; c_0)$. With increasing c_0, the curvature of the potential at $c = 0$ therefore changes from positive to negative.

In the intermediate regime, the potential assumes a double well shape. Several solutions exist in this case. One can show that the only stable solution is the one that decays to 0 for $\tau \to \infty$ \cite{38, 39}. In the presence of noise $D > 0$ this assertion is clear due to the decorrelating effect of the noise, but it remains true also in the noiseless case.

By the argument of energy conservation, the corresponding value c_0 can be found numerically as the root of

$$V(c_0; c_0) + E_{\text{kin}}^0 \overset{!}{=} 0$$ \hfill (154)

$$E_{\text{kin}}^0 = \frac{D^2}{8},$$

for example with a simple bisectioning algorithm.

The corresponding shape of the autocovariance function then follows a straightforward integration of the differential equation (153). Rewriting the second order differential equation into a coupled set of first order equations, introducing $\partial_\tau c = y$, we get for $\tau > 0$

$$\partial_\tau \begin{pmatrix} y(\tau) \\ c(\tau) \end{pmatrix} = \begin{pmatrix} c - g^2 f_\phi(c, c_0) \\ y(\tau) \end{pmatrix}$$ \hfill (155)

with initial condition

$$\begin{pmatrix} y(0) \\ c(0) \end{pmatrix} = \begin{pmatrix} -\frac{D}{2} \\ c_0 \end{pmatrix}.$$

The solution of this equation in comparison to direct simulation is shown in Figure 5. Note that the covariance function of the input to a unit, $C_\phi(\tau) = g^2 f_\phi(c(\tau), c_0)$, bears strong similarities to the autocorrelation c, shown in Figure 5. The suppressive effect of the non-linear, saturating gain function is compensated by the variance of the connectivity $g^2 > 1$, so that a self-consistent solution is achieved.

E. Transition to chaos

In this section, we will derive the largest Lyapunov exponent of the system that allows us to assess the conditions under which the system undergoes a transition into the chaotic regime. We will see that we can also conclude from this calculation that the system, to leading order in N in the large N limit, is indeed self-averaging. We will here see that the dominant contribution to the moment-generating function of the replicated system \cite{134} indeed factorizes.

F. Assessing chaos by a pair of identical systems

We now aim to study whether the dynamics is chaotic or not. To this end, we consider a pair of identically prepared systems, in particular with identical coupling matrix J and, for $D > 0$, also the same realization of the Gaussian noise. We distinguish the dynamical variables x^α_i of the two systems by superscripts $\alpha \in \{1, 2\}$.

Let us briefly recall that the dynamical mean-field theory describes empirical population-averaged quantities for a single network realization (due to self-averaging). Hence, for large N we expect that

$$\frac{1}{N} \sum_{i=1}^{N} x_i^\alpha(t) x_i^\beta(s) \approx c^{\alpha\beta}(t, s)$$
Figure 5. **Self-consistent autocovariance function from dynamic mean-field theory in the noise-less case.** Random network of 5000 Gaussian coupled units with with $g = 2$ and vanishing noise $D = 0$. a Activity of the first 10 units as function of time. b Self-consistent solution of covariance $c(\tau)$ (black) and result from simulation (gray). The theoretical result is obtained by first solving (154) for the initial value c_0 and then integrating (155). c Self-consistent solution (black) as in b and $C_{\phi\phi}(\tau) = g^2 f_\phi(c(\tau), c_0)$ given by (151) (gray). Duration of simulation $T = 1000$ time steps with resolution $h = 0.1$ each. Integration of (128) by forward Euler method.

holds for most network realizations. To study the stability of the dynamics with respect to perturbations of the initial conditions we consider the population-averaged (mean-)squared distance between the trajectories of the two copies of the network:

$$
\frac{1}{N} ||x^1(t) - x^2(t)||^2 = \frac{1}{N} \sum_{i=1}^{N} \left(x^1_i(t) - x^2_i(t) \right)^2
$$

(156)

$$
= \frac{1}{N} \sum_{i=1}^{N} \left(x^1_i(t) \right)^2 + \frac{1}{N} \sum_{i=1}^{N} \left(x^2_i(t) \right)^2 - 2 \frac{1}{N} \sum_{i=1}^{N} x^1_i(t)x^2_i(t)
$$

$$
= c^{11}(t,t) + c^{22}(t,t) - 2c^{12}(t,t).
$$

This idea has also been employed in [75]. Therefore, we define the mean-field mean-squared distance between the two copies:

$$
d(t,s) := c^{11}(t,s) + c^{22}(t,s) - c^{12}(t,s) - c^{21}(t,s),
$$

(157)

which gives for equal time arguments the actual mean-squared distance $d(t) := d(t,t)$. Our goal is to find the temporal evolution of $d(t,s)$. The time evolution of a pair of systems in the chaotic regime with slightly different initial conditions is shown in Figure 6. Although the initial displacement between the two systems is drawn independently for each of the four shown trials, the divergence of $d(t)$ has a stereotypical form, which seems to be dominated by one largest Lyapunov exponent. The aim of the remainder of this section is to find this rate of divergence.

To derive an equation of motion for $d(t,s)$ it is again convenient to define a generating functional that captures the joint statistics of two systems and in addition allows averaging over the quenched disorder [see also 23 Appendix 23, last remark].
Figure 6. **Chaotic evolution.** a Dynamics of two systems starting at similar initial conditions for chaotic case with $g = 2$, $N = 5000$, $D = 0.01$. Trajectories of three units shown for the unperturbed (black) and the perturbed system (gray). b Absolute average squared distance $d(t)$ given by (156) of the two systems. c Difference $x_1 - x_2$ for the first three units. The second system is reset to the state of the first system plus a small random displacement as soon as $d(t) > 0.1$. Other parameters as in Figure 5.

The generating functional is defined in analogy to the single system equation (131)

$$
Z[\{j^\alpha, 3^\alpha\}_{\alpha \in \{1, 2\}}](J) = \Pi_{\alpha=1}^{2} \left\{ \int D\hat{x}^\alpha \int D\check{x}^\alpha \exp \left(\hat{x}^\alpha (\partial_t + 1) x^\alpha - \sum_j J^\alpha x^\alpha + J^\alpha T x^\alpha + \check{j}^\alpha T \check{x}^\alpha \right) \times \exp \left(\frac{D}{2} (\check{x}^1 + \check{x}^2)^T (\check{x}^1 + \check{x}^2) \right) \right\},
$$

where the last term is the moment generating functional due to the white noise that is common to both subsystems. We note that the coupling matrix J is the same in both subsystems as well. Using the notation analogous to equation (131) and collecting the terms that affect each individual subsystem in the first, the common term in the second line, we get

$$
Z[\{j^\alpha, 3^\alpha\}_{\alpha \in \{1, 2\}}](J) = \Pi_{\alpha=1}^{2} \left\{ \int D\hat{x}^\alpha \int D\check{x}^\alpha \exp \left(S_0[\hat{x}^\alpha, \check{x}^\alpha] - \check{x}^\alpha T J^\alpha T J^\alpha + \check{x}^\alpha T \check{x}^\alpha \right) \times \exp \left(D\hat{x}^1 T \hat{x}^2 \right) \right\}.
$$

Here the term in the last line appears due to the mixed product of the response fields in equation (158).

We will now perform the average over realizations in J, as in Section XC eq. equation (137). We therefore need to
evaluate the Gaussian integral

\begin{align*}
 \int dJ_{ij}N(0, \frac{g^2}{N}, J_{ij}) \exp \left(-J_{ij} \frac{2}{N} \sum_{\alpha=1}^{2} \bar{x}_i^{\alpha T} \phi(x_j^{\alpha}) \right) \\
 = \exp \left(\frac{g^2}{2N} \sum_{\alpha=1}^{2} \left(\bar{x}_i^{\alpha T} \phi(x_j^{\alpha}) \right)^2 \right) \\
 \times \exp \left(\frac{g^2}{N} \bar{x}_i^{1T} \phi(x_j^{1}) \bar{x}_i^{2T} \phi(x_j^{2}) \right).
\end{align*}

(160)

Similar as for the Gaussian integral over the common noises that gave rise to the coupling term between the two systems in the second line of equation (159), we here obtain a coupling term between the two systems, in addition to the terms that only include variables of a single subsystem in the second last line. Note that the two coupling terms are different in nature. The first, due to common noise, represents common temporal fluctuations injected into both systems. The second is static in its nature, as it arises from the two systems having the same coupling \(\mathbf{J} \) in each of their realizations that enter the expectation value. The terms that only affect a single subsystem are identical to those in (138). We treat these terms as before and here concentrate on the mixed terms, which we rewrite (including the \(\sum_{i,j} \) in (159) and using our definition \(\bar{x}_i^{\alpha T} \phi(x_j^{\alpha}) = \int dt \bar{x}_i^{\alpha T}(t) \phi(x_j^{\alpha}(t)) \, dt \)) as

\begin{align*}
 \exp \left(\frac{g^2}{N} \sum_{i,j} \bar{x}_i^{1T} \phi(x_j^{1}) \bar{x}_i^{2T} \phi(x_j^{2}) \right) \\
 = \exp \left(\iint_{s,t} x_i^{1}(s) x_i^{2}(t) \frac{g^2}{N} \sum_{j} \phi(x_j^{1}(s)) \phi(x_j^{2}(t)) \, ds \, dt \right) + O(N^{-1}), \\
 \tag{161}
\end{align*}

where we included the self coupling term \(i = j \), which is only a subleading correction of order \(N^{-1} \).

We now follow the steps in Section X.C and introduce three pairs of auxiliary variables. The pairs \(Q_1^{a}, Q_2^{a} \) are defined as before in (139) and (140), but for each subsystem, while the pair \(T_1, T_2 \) decouples the mixed term (161) by defining

\[T_1(s,t) := \frac{g^2}{N} \sum_{j} \phi(x_j^{1}(s)) \phi(x_j^{2}(t)), \]

as indicated by the curly brace in (161).

Taken together, we can therefore rewrite the generating functional (159) averaged over the couplings as

\begin{align*}
 \bar{Z}(\{J^{a}, \bar{J}^{\alpha}\}_{a\in(1,2)}) := \langle \bar{Z}(\{J^{a}, \bar{J}^{\alpha}\}_{a\in(1,2)}) | (J) \rangle |J \rangle \\
 = \Pi_{a=1}^{2} \left\{ \int DQ_1^{a} \int DQ_2^{a} \right\} \int DT_1 \int DT_2 \exp \left(\Omega(\{Q_1^{a}, Q_2^{a}\}_{a\in(1,2)}, T_1, T_2) \right) \\
 \Omega(\{Q_1^{a}, Q_2^{a}\}_{a\in(1,2)}, T_1, T_2) := - \frac{1}{2} \sum_{a=1}^{2} Q_1^{aT} Q_2^{a} - T_1^{T} T_2 + \ln Z^{12}(\{Q_1^{a}, Q_2^{a}\}_{a\in(1,2)}, T_1, T_2) \\
 Z^{12}(\{Q_1^{a}, Q_2^{a}\}_{a\in(1,2)}, T_1, T_2) = \Pi_{a=1}^{2} \left\{ \int Dx^{a} \int \bar{D}x^{\alpha} \exp \left(S_0[x^{a}, \bar{x}^{\alpha}] + J^{T} x^{a} + \bar{J}^{T} \bar{x}^{\alpha} + \frac{1}{2} \bar{x}^{\alpha T} Q_1^{a} \bar{x}^{\alpha} + \frac{g^2}{N} \phi(x^{a})^{T} Q_2^{a} \phi(x^{a}) \right) \right\} \\
 \times \exp \left(\bar{x}^{1T}(T_1 + D) x^{2} + \frac{g^2}{N} \phi(x^{1})^{T} T_2 \phi(x^{2}) \right).
\end{align*}

(162)

We now determine, for vanishing sources, the fields \(Q_1^{a}, Q_2^{a}, T_1, T_2 \) at which the contribution to the integral is maximal by requesting \(\frac{\delta \Omega}{\delta Q_1^{a}, T_1, T_2} = 0 \) for the exponent \(\Omega \) of equation (162). Here again the term \(\ln Z^{12} \) plays the role of a cumulant generating function and the fields \(Q_1^{a}, Q_2^{a}, T_1, T_2 \) play the role of sources, each bringing down the respective factor they multiply. We denote the expectation value with respect to this functional as \(\langle \phi \rangle_{Q^{a}, T^{a}} \) and obtain the
We make the following observations:

As for the single system, we can express the joint system by a pair of dynamic equations instead we employ a simpler approach: we multiply the equation equation (165) for motion equation (153). We could use the formal approach, writing the Gaussian action as a quadratic form and systems may increase, indicating chaotic dynamics.

The generating functional at the saddle point is therefore

\[
\tilde{Z}[(\mathbf{j}^\alpha,\mathbf{j}^\beta)_{\alpha\in\{1,2\}}] = \int \Pi_{\alpha=1}^2 \mathcal{D}x^\alpha \mathcal{D}\tilde{x}^\alpha \exp \left(\frac{2}{\alpha} \sum_s S_0[x^\alpha,\tilde{x}^\alpha] + \mathbf{j}^\alpha \mathbf{x}^\alpha + \tilde{\mathbf{j}}^\alpha \tilde{\mathbf{x}}^\alpha + \frac{1}{2} \tilde{\mathbf{x}}^\alpha T_1^+ \mathbf{x}^\alpha \right) \times \exp \left(\tilde{\mathbf{x}}^\alpha (T_1^+ + D) \tilde{\mathbf{x}}^\beta \right).
\]

(164)

We make the following observations:

1. The two subsystems \(\alpha = 1, 2 \) in the first line of (164) have the same form as in equation (145). This has been expected, because the absence of any physical coupling between the two systems implies that the marginal statistics of the activity in one system cannot be affected by the mere presence of the second, hence also their saddle points \(Q_1^+, Q_2^+ \) must be the same as in equation (145).

2. The entire action is symmetric with respect to interchange of any pair of unit indices. So we have reduced the system of \(2N \) units to a system of 2 units.

3. If the term in the second line of equation (164) was absent, the statistics in the two systems would be independent. Two sources, however, contribute to the correlations between the systems: The common Gaussian white noise that gave rise to the term \(\propto D \) and the non-white Gaussian noise due to a non-zero value of the auxiliary field \(T_1^+ (s,t) \).

4. Only products of pairs of fields appear in equation (164), so that the statistics of the \(x^\alpha \) is Gaussian.

As for the single system, we can express the joint system by a pair of dynamic equations

\[
(\partial_t + 1) x^\alpha (t) = \eta^\alpha (t) \quad \alpha \in \{1, 2\}
\]

(165)

together with a set of self-consistency equations for the statistics of the noises \(\eta^\alpha \) following from equation (163)

\[
\langle \eta^\alpha (s) \eta^\beta (t) \rangle = D \delta(t-s) + g^2 \langle \phi (x^\alpha (s)) \phi (x^\beta (t)) \rangle.
\]

(166)

Obviously, this set of equations equation (165) and equation (166) marginally for each subsystem admits the same solution as determined in Section X.D. Moreover, the joint system therefore also possesses the fixed point \(x^1(t) \equiv x^2(t) \), where the activities in the two subsystems are identical, i.e. characterized by \(c^{12} (t,s) = c^{11} (t,s) = c^{22} (t,s) \) and consequently \(d(t) \equiv 0 \forall t \) (157).

We will now investigate if this fixed point is stable. If it is, this implies that any perturbation of the system will relax such that the two subsystems are again perfectly correlated. If it is unstable, the distance between the two systems may increase, indicating chaotic dynamics.

We already know that the autocorrelation functions in the subsystems are stable and each obey the equation of motion equation (153). We could use the formal approach, writing the Gaussian action as a quadratic form and determine the correlation and response functions as the inverse, or Green’s function, of this bi-linear form. Here, instead we employ a simpler approach: we multiply the equation equation (165) for \(\alpha = 1 \) and \(\alpha = 2 \) and take the expectation value on both sides, which leads to

\[
(\partial_t + 1) (\partial_s + 1) \langle x^\alpha (t) x^\beta (s) \rangle = \langle \eta^\alpha (t) \eta^\beta (s) \rangle,
\]

so we get for \(\alpha, \beta \in \{1, 2\} \)

\[
(\partial_t + 1) (\partial_s + 1) c^{\alpha\beta} (t,s) = D \delta(t-s) + g^2 F_\phi (c^{\alpha\beta} (t,s), c^{\alpha\alpha} (t,t), c^{\beta\beta} (s,s)),
\]

(167)
where the function F_ϕ is defined as the Gaussian expectation value

$$F_\phi(c^{12}, c^1, c^2) := \langle \phi(x^1)\phi(x^2) \rangle$$

for the bi-variate Gaussian

$$\begin{pmatrix} x^1 \\ x^2 \end{pmatrix} \sim \mathcal{N}_2 \left(0, \begin{pmatrix} c^1 & c^{12} \\ c^{12} & c^2 \end{pmatrix} \right).$$

First, we observe that the equations for the autocorrelation functions $c^{\alpha\alpha}(t, s)$ decouple and can each be solved separately, leading to the same equation equation (153) as before. As noted earlier, this formal result could have been anticipated, because the marginal statistics of each subsystem cannot be affected by the mere presence of the respective other system. Their solutions

$$c^{11}(s, t) = c^{22}(s, t) = c(t-s)$$

then provide the “background”, i.e., the second and third argument of the function F_ϕ on the right-hand side, for the equation for the crosscorrelation function between the two copies. Hence it remains to determine the equation of motion for $c^{12}(t, s)$.

We first determine the stationary solution $c^{12}(t, s) = k(t-s)$. We see immediately that $k(\tau)$ obeys the same equation of motion as $c(\tau)$, so $k(\tau) = c(\tau)$. The distance equation (157) therefore vanishes. Let us now study the stability of this solution. We hence need to expand c^{12} around the stationary solution

$$c^{12}(t, s) = c(t-s) + \epsilon k^{(1)}(t, s), \quad \epsilon \ll 1.$$

We expand the right hand side of (167) into a Taylor series using Price’s theorem and equation (149)

$$F_\phi \left(c^{12}(t, s), c_0 \right) = f_\phi \left(c^{12}(t, s), c_0 \right) + \epsilon f_\phi \left(c(t-s), c_0 \right) k^{(1)}(t, s) + O(\epsilon^2).$$

Inserted into equation (167) and using that c solves the lowest order equation, we get the linear equation of motion for the first order deflection

$$(\partial_t + 1)(\partial_s + 1) k^{(1)}(t, s) = g^2 f_\phi \left(c(t-s), c_0 \right) k^{(1)}(t, s). \quad (168)$$

In the next section we will determine the growth rate of $k^{(1)}$ and hence, by equation (157)

$$d(t) = c^{11}(t,t) + c^{22}(s,s) - c^{12}(t,t) - c^{21}(t,t)$$

$$= -2\epsilon k^{(1)}(t,t) \quad (169)$$

the growth rate of the distance between the two subsystems. The negative sign makes sense, since we expect in the chaotic state that $c^{12}(t, s) \xrightarrow{t, s \to \infty} 0$, so $k^{(1)}$ must be of opposite sign than $c > 0$.

G. Schrödinger equation for the maximum Lyapunov exponent

We here want to reformulate the equation for the variation of the cross-system correlation (168) into a Schrödinger equation, as in the original work eq. 10.

First, noting that $C_{\phi'\phi}(t, s) = f_{\phi'}(c(t-s), c_0)$ is time translation invariant, it is advantageous to introduce the coordinates $T = t + s$ and $\tau = t - s$ and write the covariance $k^{(1)}(t, s)$ as $k(T, \tau)$ with $k^{(1)}(t, s) = k(t+s, t-s)$. The differential operator $(\partial_t + 1)(\partial_s + 1)$ with the chain rule $\partial_t \to \partial_T + \partial_\tau$ and $\partial_s \to \partial_T - \partial_\tau$ in the new coordinates is $(\partial_T + 1)^2 - \partial_\tau^2$. A separation ansatz $k(T, \tau) = e^{2\kappa T} \psi(\tau)$ then yields the eigenvalue equation

$$\left(\frac{\kappa}{2} + 1 \right)^2 \psi(\tau) - \partial_\tau^2 \psi(\tau) = g^2 f_{\phi'}(c(\tau), c_0) \psi(\tau)$$
for the growth rates κ of $d(t) = -2k^{(I)}(t, t) = -2k(2t, 0)$. We can express the right hand side by the second derivative of the potential $V(c(\tau); c_0)$ so that with
\[
V''(c(\tau); c_0) = -1 + g^2f_{\phi'}(c(\tau), c_0)
\] (170)
we get the time-independent Schrödinger equation
\[
\left(-\partial^2_\tau - V''(c(\tau); c_0)\right)\psi(\tau) = \left(1 - \left(\frac{\kappa}{2} + 1\right)^2\right)\psi(\tau).
\] (171)

The eigenvalues ("energies") E_n determine the exponential growth rates κ_n the solutions $k(2t, 0) = e^{\kappa_n t}\psi_n(0)$ at $\tau = 0$ with
\[
\kappa_n^\pm = 2\left(-1 \pm \sqrt{1 - E_n}\right).
\] (172)

We can therefore determine the growth rate of the mean-square distance of the two subsystems in Section XF by (169). The fastest growing mode of the distance is hence given by the ground state energy E_0 and the plus in (172). The deflection between the two subsystems therefore grow with the rate
\[
\lambda_{\text{max}} = \frac{1}{2}\kappa_0^+ = -1 + \sqrt{1 - E_0},
\] (173)
where the factor $1/2$ in the first line is due to d being the squared distance, hence the length \sqrt{d} growth with half the exponent as d.

Energy conservation (154) determines c_0 also in the case of non-zero noise $D \neq 0$, as shown in Figure 7b. The autocovariance function obtained from the solution of (155) agrees well to the direct simulation Figure 7b. The quantum potential appearing in (171) is shown in Figure 7c.

H. Condition for transition to chaos

We can construct an eigensolution of (171) from (153). First we note that for $D \neq 0$, c has a kink at $\tau = 0$. This can be seen by integrating (153) from $-\epsilon$ to ϵ, which yields
\[
\lim_{\epsilon \to 0} \int_{-\epsilon}^{\epsilon} \partial^2_\tau c_0 d\tau = \dot{c}(0^+) - \dot{c}(0^-) = D.
\]
Since $c(\tau) = c(-\tau)$ is an even function it follows that $\dot{c}(0^+) = -\dot{c}(0^-) = -\frac{D}{2}$. For $\tau \neq 0$ we can differentiate (153) with respect to time τ to obtain
\[
\partial_\tau \partial^2_\tau c(\tau) = \partial^2_\tau \dot{c}(\tau) = -\partial_\tau V'(c(\tau))\dot{c}(\tau).
\]
Comparing the right hand side expressions shows that $(\partial^2_\tau + V''(c(\tau)))\dot{c}(\tau) = 0$, so \dot{c} is an eigensolution for eigenvalue $E_n = 0$ of (171).

Let us first study the case of vanishing noise $D = 0$ as in [38]. The solution then \dot{c} exists for all τ. Since c is a symmetric function, $\Psi_0 = \dot{c}$ has single node. The single node of this solution implies there must be a state with zero nodes that has even lower energy, i.e. $E_0 < 0$. This, in turn, indicates a positive Lyapunov exponent Λ_{max} according to (173). This is the original argument in [38], showing that at $g = 1$ a transition from a silent to a chaotic state takes place.

Our aim is to find the parameter values for which the transition to the chaotic state takes place in the presence of noise. We know that the transition takes place if the eigenvalue of the ground state of the Schrödinger equation is zero. We can therefore explicitly try to find a solution of (171) for eigenenergy $E_n = 0$, i.e. we seek the homogeneous solution that satisfies all boundary conditions, i.e. continuity of the solution as well as its first and second derivative. We already know that $\dot{c}(\tau)$ is one homogeneous solution of (171) for positive and for negative τ. For $D \neq 0$, we can construct a continuous solution from the two branches by defining
Figure 7. **Dependence of the self-consistent solution on the noise level** D.

a Potential that determines the self-consistent solution of the autocorrelation function equation (152). Noise amplitude $D > 0$ corresponds to an initial kinetic energy $E_{\text{kin}} = \frac{D^2}{8}$. The initial value c_0 is determined by the condition $V(c_0; c_0) + E_{\text{kin}} = 0$, so that the “particle” starting at $c(0) = c_0$ has just enough energy to reach the peak of the potential at $c(\tau \to \infty) = 0$. In the noiseless case, the potential at the initial position $c(0) = c_0$ must be equal to the potential for $\tau \to \infty$, i.e. $V(c_0; c_0) = V(0) = 0$, indicated by horizontal dashed line and the corresponding potential (black).

b Resulting self-consistent autocorrelation functions given by (155). The kink at zero time lag $\dot{c}(-\tau) - \dot{c}(\tau) = D$ is indicated by the tangential dotted lines. In the noiseless case the slope vanishes (horizontal dotted line). Simulation results shown as light gray underlying curves.

c Quantum mechanical potential appearing in the Schrödinger equation (171) with dotted tangential lines at $\tau = \pm 0$. Horizontal dotted line indicates the vanishing slope in the noiseless case. Other parameters as in [Figure 4].

\[
y_1(\tau) = \begin{cases}
 \dot{c}(\tau) & \tau \geq 0 \\
 -\dot{c}(\tau) & \tau < 0
\end{cases}
\]
(174)

which is symmetric, consistent with the search for the ground state. In general, y_1 does not solve the Schrödinger equation, because the derivative at $\tau = 0$ is not necessarily continuous, since by equation (148) $\partial_\tau y_1(0+) - \partial_\tau y_1(0-) = \ddot{c}(0+) + \ddot{c}(0-) = 2(c_0 - g^2 f_\phi(c_0; c_0))$. Therefore y_1 is only an admissible solution, if the right hand side vanishes. The criterion for the transition to the chaotic state is hence

\[
0 = \partial_\tau^2 c(0\pm) = c_0 - g^2 f_\phi(c_0; c_0)
\]
(175)

The latter condition therefore shows that the curvature of the autocorrelation function vanishes at the transition. In the picture of the motion of the particle in the potential the vanishing acceleration at $\tau = 0$ amounts to a potential with a flat tangent at c_0.

A necessary condition is the minimum of the potential

\[
V''(c_0; c_0) < 0,
\]
because the ground state energy cannot be smaller than the potential, as it is the sum of potential energy and kinetic energy. With (170) the latter condition translates to

\[1 \leq g^2 \langle \phi'(x)^2 \rangle \]

It is equivalent to the spectral radius of the Jacobian \(J_{ij} \phi' \) of the dynamics (128) to be larger than one: the point where linear stability is lost.

The criterion for the transition can be understood intuitively. The additive noise increases the peak of the autocorrelation at \(\tau = 0 \). In the large noise limit, the autocorrelation decays as \(e^{-|\tau|} \), so the curvature is positive. The decay of the autocorrelation is a consequence of the uncorrelated external input. In contrast, in the noiseless case, the autocorrelation has a flat tangent at \(\tau = 0 \), so the curvature is negative. The only reason for its decay is the decorrelation due to the chaotic dynamics. The transition between these two forces of decorrelation hence takes place at the point at which the curvature changes sign, from dominance of the external sources to dominance of the intrinsically generated fluctuations. The phase diagram of the network is illustrated in Figure 8. For a more detailed discussion please see [72].

A closely related calculation shows that condition for the transition to chaos in the absence of noise is identical to the condition for a vanishing coupling between replicas. Therefore, in the chaotic regime the system is, to leading order in \(N \), also self-averaging. This argument can be extended to the case with noise \(D \neq 0 \). One finds that also here the only physically admissible solution for the field coupling the replicas is one that vanishes (see exercises).

XI. VERTEX GENERATING FUNCTION

We have seen in the previous sections that the statistics of a system can be either described by the moment generating function \(Z(j) \) or, more effectively, by the cumulant generating function \(W(j) = \ln Z(j) \). The decomposition of the action \(S \) into a quadratic part \(-\frac{1}{2}x^TAx \) and the remaining terms collected in \(V(x) \) allowed us to derive graphical rules in terms of Feynman diagrams to calculate the cumulants or moments of the variables in an effective way (see section [V]). We saw that the expansion of the cumulant generating function \(W(j) \) in the general case \(S_0(x) + \epsilon V(x) \) is composed of connected components only. In the particular case of a decomposition as \(S(x) = \frac{1}{2}x^TAx + \epsilon V(x) \), we implicitly assume a quadratic approximation around the value \(x = 0 \). If the interacting part \(V(x) \) and the external
source j is small compared to the free theory, this is the natural choice. We will here derive a method to systematically expand fluctuations around the true mean value in the case that the interaction is strong, so that the dominant point of activity is in general far away from zero. Let us begin with an example to illustrate the situation.

A. Motivating example for the expansion around a non-vanishing mean value

Let us study the fluctuating activity in a network of N neurons which obeys the set of coupled equations

\[x_i = \sum_j J_{ij} \phi(x_j) + \mu_i + \xi_i \quad (176) \]

\[\xi_i \sim \mathcal{N}(0, D_i), \quad \langle \xi_i \xi_j \rangle = \delta_{ij} D_i, \]

\[\phi(x) = \tanh(x - \theta). \]

Here the N units are coupled by the synaptic weights J_{ij} from unit j to unit i. We may think about x_i being the membrane potential of the neuron and $\phi(x_i)$ its firing rate, which is a non-linear function of the membrane potential. The non-linearity has to obey certain properties. For example, it should typically saturate at high rates, mimicking the inability of neurons to fire in rapid succession. The choice of $\phi(x) = \tanh(x)$ is common in the field of artificial neuronal networks. The term μ_i represents an additional input to the i-th neuron and ξ_i is a centered Gaussian noise causing fluctuations within the network.

We may be interested in the statistics of the activity that arises due to the interplay among the units. For illustrative purposes, let us for the moment assume a completely homogeneous setting, where $J_{ij} = \frac{J_0}{N}$ \forall i, j and $\mu_i = \mu$ as well as $D_i = D$ \forall i. Since the Gaussian fluctuations are centered, we may obtain a rough approximation by initially just ignoring its presence, leading us to a set of N identical equations

\[x_i = \frac{J_0}{N} \sum_{j=1}^{N} \phi(x_j) + \mu. \]

Due to the symmetry, we hence expect a homogeneous solution $x_i = x$ $\forall i$, which fulfills the equation

\[x^* = J_0 \phi(x^*) + \mu. \quad (177) \]

There may, of course, also be asymmetric solutions to this equation, those that break the symmetry of the problem.

We note that even though we assumed the synaptic couplings to diminish as N^{-1}, the input from the other units cannot be neglected compared to the mean input μ. So an approximation around the solution with vanishing mean $\langle x \rangle = 0$ seems inadequate. Rather we would like to approximate the statistics around the mean value x^* that is given by the self-consistent solution of (177), illustrated in figure 9.

To take fluctuations into account, which we assume to be small, we make the ansatz $x = x^* + \delta x$ and approximate

\[\phi(x) = \phi(x^*) + \phi'(x^*) \delta x, \]

which therefore satisfies the equation

\[\delta x = J_0 \phi'(x^*) \delta x + \xi, \quad (178) \]

\[\xi \sim \mathcal{N}(0, D). \]

Since equation (178) is linearly related to the noise, the statistics of δx is

\[\delta x \sim \mathcal{N}(0, \frac{D}{1 - J_0 \phi'(x^*)^2}). \quad (179) \]

We see that the denominator is only well-defined, if $J_0 \phi'(x^*) \neq 1$. Otherwise the fluctuations will diverge and we have a critical point. Moreover, we here assume that the graph of $J_0 \phi$ cuts the identity line with an angle smaller 45 degrees, so that the fluctuations of δx are positively correlated to those of ξ – they are related by a positive factor. If we had a time-dependent dynamics, the other case would correspond to an unstable fixed point.

Approximating the activity in this Gaussian manner, we see that we get a correction to the mean activity as well: Taking the expectation value on both sides of equation (176), and approximating the fluctuations of x by equation (179) by expanding the non-linearity to the next order we get
Figure 9. Self-consistent solution of the mean activity in a single population network. a Tree level approximation of the self-consistent activity given by intersection of left hand side of (177) (thin black line with unit slope) and the right hand side; different gray levels indicate thresholds $\theta \in [-3, 4]$ from black to light gray. Black dots mark the points of intersection, yielding the self-consistent tree-level or mean-field approximation neglecting fluctuations. b Self-consistent solution as function of the activation threshold θ. Black dotted curve: Exact numerical solution; mid gray: Tree level (mean field) approximation neglecting fluctuations, as illustrated in a and given by (177); light gray: one-loop correction given by (180), including fluctuation corrections. c Variance of x. Exact numerical value (black) and mean-field approximation given by (179). Parameters: Mean input $\mu = 1$, self-coupling $J_0 = -1$, variance of noise $D = 1$.

\[
x^* = x^* + \delta x = \mu + J_0 \phi(x^*) + J_0 \phi'(x^*) \langle \delta x \rangle + J_0 \frac{\phi''(x^*)}{2!} \langle \delta x^2 \rangle + O(\delta x^3),
\]

\[
x^* - J_0 \phi(x^*) - \mu = J_0 \frac{\phi''(x^*)}{2!} \frac{D}{[1 - J_0 \phi'(x^*)]^2} + O(\delta x^3).
\]

So the left hand side does not vanish anymore, as it did at lowest order; instead we get a fluctuation correction that depends on the point x^* around which we expanded. So solving the latter equation for x^*, we implicitly include the fluctuation corrections of the chosen order: Note that the variance of the fluctuations, by (179), depends on the point x^* around which we expand. We see from (180) that we get a correction to the mean with the same sign as the curvature ϕ'', as intuitively expected due to the asymmetric “deformation” of the fluctuations by ϕ. The different approximations (177) and (180) are illustrated in figure 9.

The analysis we performed here is ad hoc and limited to studying the Gaussian fluctuations around the fixed point. In the following we would like to generalize this approach to non-Gaussian corrections and to a diagrammatic treatment of the correction terms.

B. Legendre transform and definition of the vertex generating function Γ

In the previous example in section §XIA we aimed at a self-consistent expansion around the true mean value x^* to obtain corrections to the expectation value due to fluctuations. The strategy was to first perform an expansion around an arbitrarily chosen point x^*. Then to calculate fluctuation corrections and only as a final step we solve the resulting equation for the self-consistent value of x^* that is equal to the mean. We will follow exactly the same line of thoughts here, just formulating the problem with the help of an action, because we ultimately aim at a diagrammatic formulation of the procedure. Indeed, the problem from the last section can be formulated in terms of an action, as will be shown in section §XIV.Γ

We will here follow the development pioneered in statistical physics and field theory [76, 77] to define the effective action or vertex generating function (see also [78, chapter 5]).

We write the cumulant generating function in its integral representation

\[
\exp(W(j)) = Z(j) = Z(0)^{-1} \int dx \exp\left(S(x) + j^T x \right),
\]

(181)
to derive an equation that includes fluctuations. First we leave this point \(x^*\) arbitrary. This is sometimes called the **background field method** [50] Chapter 3.23.6], allowing us to treat fluctuations around some chosen reference field. We separate the fluctuations of \(\delta x = x - x^*\), insert this definition into equation \([181]\) and bring the terms independent of \(\delta x\) to the left hand side

\[
\exp \left(W(j) - j^T x^* \right) = Z(0)^{-1} \int d\delta x \exp \left(S(x^* + \delta x) + j^T \delta x \right). \tag{182}
\]

We now make a special choice of \(j\). For given \(x^*\), we choose \(j\) so that \(x^* = \langle x \rangle(j)\) becomes the mean. The fluctuations of \(\delta x\) then have vanishing mean value, because \(x^* = \langle x \rangle + \langle \delta x \rangle\). Stated differently, we demand

\[
0 = \langle \delta x \rangle = Z(0)^{-1} \int d\delta x \exp \left(S(x^* + \delta x) + j^T \delta x \right) \delta x
\]

\[
= Z(0)^{-1} \frac{d}{dj} \int d\delta x \exp \left(S(x^* + \delta x) + j^T \delta x \right)
\]

\[
= \frac{d}{dj} \exp \left(W(j) - j^T x^* \right),
\]

where we used equation \([182]\) in the last step. Since the exponential function has the property \(\exp(x)' > 0 \ \forall x\), the latter expression vanishes at the point where the exponent is stationary

\[
\frac{d}{dj} \left(W(j) - j^T x^* \right) = 0 \tag{183}
\]

\[
\langle x \rangle(j) = \frac{\partial W(j)}{\partial j} = x^*(j),
\]

which shows again that \(x^*(j) = \langle x \rangle(j)\) is the expectation value of \(x\) at a given value of the source \(j\).
The condition equation \(183\) has the form of a **Legendre transform** from the function \(W(j)\) to the new function, which we call the **vertex generating function** or **effective action**

\[
\Gamma(x^*) := \sup_j j^T x^* - W(j). \tag{184}
\]

The condition \(183\) implies that \(j\) is chosen such as to extremize \(\Gamma(x^*)\). We see that it must be the supremum, because \(W\) is a convex down function (see section §XI). It follows that \(-W\) is convex up and hence the supremum of \(j^T x^* - W(j)\) at given \(x^*\) is uniquely defined; the linear term does not affect the convexity of the function, since its curvature is zero.

The Legendre transform has the property

\[
\frac{d\Gamma}{dx^*}(x^*) = j^T + \frac{\partial j^T}{\partial x^*} x^* - \frac{\partial W^T}{\partial j} \frac{\partial j}{\partial x^*} = j, \tag{185}
\]

The latter equation is also called **equation of state**, as its solution for \(x^*\) allows us to determine the mean value for a given source \(j\), including all corrections due to fluctuations. In statistical physics this mean value is typically an order parameter, an observable that characterizes the state of the system.

The self-consistent solution if given by the equation of state equation \(185\). The equation of state can be interpreted as a particle in a classical potential \(\Gamma(x^*)\) and subject to a force \(j\). The equilibrium point of the particle, \(x^*\), is then given by the equilibrium of the two forces \(j\) and \(-\frac{d\Gamma}{dx^*}\equiv-\Gamma^{(1)}(x^*)\), which is identical to the equation of state equation \(185\)

\[
0 = j - \Gamma^{(1)}(x^*). \tag{186}
\]

Comparing equation \(183\) and equation \(185\) shows that the functions \(W^{(1)}\) and \(\Gamma^{(1)}\) are inverse functions of one another. It therefore follows by differentiation

\[
\Gamma^{(1)}(W^{(1)}(j)) = j
\]

\[
\Gamma^{(2)}(W^{(1)}(j)) W^{(2)}(j) = 1
\]

that their Hessians are inverse matrices of each other

\[
\Gamma^{(2)} = [W^{(2)}]^{-1}. \tag{187}
\]

From the convexity of \(W\) therefore follows with the last expression that also \(\Gamma\) is a convex down function. The solutions of the equation of state thus form convex regions. An example of the function \(\Gamma\) is shown in figure 10c.

One can see that the Legendre transform is involutive for convex functions: applied twice it is the identity. Convexity is important here, because the Legendre transform of any function is convex. In particular, applying it twice, we arrive back at a convex function. So we only get an involution for convex functions to start with. This given, we define

\[
w(j) := j^T x^* - \Gamma(x^*)
\]

\[
\text{with } \frac{d\Gamma(x^*)}{dx^*} = j
\]

it follows that

\[
\frac{dw(j)}{dj} = x^* + j^T \frac{\partial x^*}{\partial j} - \frac{\partial \Gamma^T}{\partial x^*} \frac{\partial x^*}{\partial j} = x^*(j) \tag{188}
\]

\[
= \langle x \rangle(j),
\]

where the equal sign in the last line follows from our choice equation \(183\) above. We hence conclude that \(w(j) = W(j) + c\) with some inconsequential constant \(c\).

In the following we will investigate which effect the transition from \(W(j)\) to its Legendre transform \(\Gamma(x^*)\) has in terms of Feynman diagrams. The relation between graphs contributing to \(W\) and those that form \(\Gamma\) will be exposed in section §XIII.
C. Perturbation expansion of Γ

We have seen that we may obtain a self-consistency equation for the mean value x^* from the equation of state (186). The strategy therefore is to obtain an approximation of Γ that includes fluctuation corrections and then use the equation of state to get an approximation for the true mean value including these very corrections. We will here obtain a perturbative procedure to calculate approximations of Γ and will find the graphical rules for doing so. To solve a problem perturbatively we decompose the action, as in section (41V) into $S(x) = S_0(x) + \epsilon V(x)$ with a part S_0 that can be solved exactly, i.e. for which we know the cumulant generating function $W_0(j)$, and the remaining terms collected in $\epsilon V(x)$. An example of a real world problem applying this technique is given in (XII). We here follow the presentation by (29).

To lowest order in perturbation theory, namely setting $\epsilon = 0$, we see that $W(j) = W_0(j)$; the corresponding leading order term in Γ is the Legendre transform

$$\Gamma_0(x^*) = \sup_j J^T x^* - W_0(j).$$

(189)

We now want to derive a recursive equation to obtain approximations of the form

$$\Gamma(x^*) = \Gamma_0(x^*) + \Gamma_V(x^*),$$

(190)

where we defined $\Gamma_V(x^*)$ to contain all correction terms due to the interaction potential V to some order ϵ^k of perturbation theory.

Let us first see why the decomposition into a sum in equation (190) is useful. To this end, we first rewrite equation (182), employing equation (185) to replace $j(x^*) = \Gamma^{(1)}(x^*)$ and by using $x = x^* + \delta x$ as

$$\exp(-\Gamma(x^*)) = \mathcal{Z}^{-1}(0) \int dx \exp(S(x) + \Gamma^{(1)T}(x^*)(x-x^*))$$

$$= \mathcal{Z}^{-1}(0) \int dx \exp(S_0(x) + \epsilon V(x) + \Gamma^{(1)T}(x^*)(x-x^*)),$$

(191)

where we used in the second line the actual form of the perturbative problem. Inserting the decomposition equation (190) of Γ into the solvable and the perturbing part we can express equation (191) as

$$\exp(-\Gamma_0(x^*) - \Gamma_V(x^*)) = \mathcal{Z}^{-1}(0) \int dx \exp(S_0(x) + \epsilon V(x) + (\Gamma_0^{(1)T}(x^*) + \Gamma_V^{(1)T}(x^*)))(x-x^*))$$

$$\exp(-\Gamma_0(x^*) + \Gamma_V^{(1)T}(x^*) x^* - \Gamma_V(x^*)) = \exp(\epsilon V(\partial_j) + \Gamma_V^{(1)T}(x^*)(\partial_j - x^*)) \mathcal{Z}^{-1}(0) \int dx \exp(S_0(x) + j^T x)) |_{j=\Gamma_0^{(1)}(x^*)}$$

$$\big|_{j=\Gamma_0^{(1)}(x^*)}$$

$$= \exp(\epsilon V(\partial_j) + \Gamma_V^{(1)T}(x^*)(\partial_j - x^*)) \exp(W_0(j)) |_{j=\Gamma_0^{(1)}(x^*)},$$

(192)

where we moved the perturbing part in front of the integral, making the replacement $x \to \partial_j$ as in equation (44) and we identified the unperturbed cumulant generating function $\exp(W_0(j)) |_{j=\Gamma_0^{(1)}(x^*)} = \mathcal{Z}^{-1}(0) \int dx \exp(S_0(x) + \Gamma_0^{(1)T}(x^*) x)$ from the second to the third line. Bringing the term $\Gamma_0^{(1)T}(x^*) x^*$ to the left hand side, we get $-\Gamma_0(x^*) + j^T x^* = W_0(j) |_{j=\Gamma_0^{(1)}(x^*)}$, which follows from the definition (189). Multiplying with $\exp(-W_0(j)) |_{j=\Gamma_0^{(1)}(x^*)}$ from left then leads to a recursive equation for Γ_V

$$\exp(-\Gamma_V(x^*)) = \exp(-W_0(j)) \exp(\epsilon V(\partial_j) + \Gamma_V^{(1)T}(x^*)(\partial_j - x^*)) \exp(W_0(j)) |_{j=\Gamma_0^{(1)}(x^*)},$$

(192)

which shows that our ansatz equation (190) was indeed justified: we may determine Γ_V recursively, since Γ_V appears again on the right hand side.

We want to solve the latter equation iteratively order by order in the number of interaction vertices k. We know that to lowest order equation (189) holds, so $\Gamma_{V,0} = 0$ in this case. The form of the terms on the right hand side of equation (192) is then identical to equation (44), so we know that the first order (ϵ^1) contribution are all connected diagrams with one vertex from ϵV and connections formed by the cumulants of $W_0(j)$, where finally we set $j = \Gamma_0^{(1)}(x^*)$. The latter step is crucial to be able to write down the terms explicitly. Because $\Gamma^{(1)}$ and $W^{(1)}$ are inverse functions
of one another (following from equation (183) and equation (185)), this step expresses all cumulants in \(W_0 \) in terms of the first cumulant:

\[
\langle x^n \rangle (x^*) = W_0^{(n)}(\Gamma_0^{(1)}(x^*))
\]

(193)

\(x^* = W_0^{(1)}(j_0) \Leftrightarrow j_0 = \Gamma_0^{(1)}(x^*) \)

The graphs then contain \(n \)-th cumulants of the unperturbed theory \(\langle x^n \rangle (x^*) \): To evaluate them, we need to determine \(x^* = W_0^{(1)}(j_0) \), invert this relation to obtain \(j_0(x^*) \), and insert it into all higher derivatives \(W_0^{(n)}(j_0(x^*)) \), giving us explicit functions of \(x^* \). The aforementioned graphs all come with a minus sign, due to the minus on the left hand side of equation (192).

We want to solve (192) iteratively order by order in the number of vertices \(k \), defining \(\Gamma_{V,k} \). Analogous to the proof of the linked cluster theorem, we arrive at a recursion by writing the exponential of the differential operator in equation (192) as a limit

\[
\exp\left(\epsilon V(\partial_j) + \Gamma_V^{(1)T}(x^*) (\partial_j - x^*)\right) = \lim_{L \to \infty} \left(1 + \frac{1}{L} \left(\epsilon V(\partial_j) + \Gamma_V^{(1)T}(x^*) (\partial_j - x^*)\right)\right)^L.
\]

(194)

Initially we assume \(L \) to be fixed but large and choose some \(0 \leq l \leq L \). We move the term \(\exp(-W_0(j)) \) to the left hand side of equation (192) and define \(g_l(j) \) as the result after application of \(l \) factors of the right hand side as

\[
\exp(W_0(j) + g_l(j)) := \left(1 + \frac{1}{L} \left(\epsilon V(\partial_j) + \Gamma_V^{(1)T}(x^*) (\partial_j - x^*)\right)\right)^l \exp(W_0(j)),
\]

(195)

where, due to the unit factor in the bracket \((1 + \ldots)^l \) we always get a factor \(\exp(W_0(j)) \), written explicitly. We obviously have the initial condition

\[
g_0 = 0.
\]

(196)

For \(l = L \to \infty \) this expression collects all additional graphs and we obtain the desired perturbative correction equation (190) of the effective action as the limit

\[
-\Gamma_V(x^*) = \lim_{L \to \infty} g_L(j) \bigg|_{j = \Gamma_0^{(1)}(x^*)}.
\]

(197)

It holds the trivial recursion \(\exp(W_0(j) + g_{l+1}(j)) = \left(1 + \frac{1}{L} \left(\epsilon V(\partial_j) + \Gamma_V^{(1)T}(x^*) (\partial_j - x^*)\right)\right)^l \exp(W_0(j) + g_l(j)) \) from which we get a recursion for \(g_l \)

\[
g_{l+1}(j) - g_l(j)
\]

\[
= \frac{\epsilon}{L} \exp(-W_0(j) - g_l(j)) V(\partial_j) \exp(W_0(j) + g_l(j))
\]

(198)

\[
+ \frac{1}{L} \exp(-W_0(j) - g_l(j)) \Gamma_V^{(1)}(x^*) (\partial_j - x^*) \exp(W_0(j) + g_l(j))
\]

(199)

\[
+ \mathcal{O}(L^{-2}),
\]

(200)

where we multiplied from left by \(\exp(-W_0(j) - g_l(j)) \), took the logarithm and used \(\ln(1 + \frac{1}{L} x) = \frac{1}{L} x + \mathcal{O}(L^{-2}) \). To obtain the final result equation (197), we need to express \(j = \Gamma_0^{(1)}(x^*) \) in \(G_l(j) \).

\[\textbf{D. Generalized one-line irreducibility}\]

We now want to investigate what the iteration (198) implies in terms of diagrams. We therefore need an additional definition of the topology of a particular class of graphs.
The term **one-line irreducibility** in the literature refers to the absence of diagrams that can be disconnected by cutting a single second order bare propagator (a line in the original language of Feynman diagrams). In the slightly generalized graphical notation introduced in section §V, these graphs have the form

![Diagram](image)

where two sub-graphs of k and k' vertices are joined by a bare second order cumulant g. We need to define **irreducibility of a graph** in a more general sense here so that we can extend the results also for perturbative expansions around non-Gaussian theories. We will call a graph reducible, if it can be decomposed into a pair of sub-graphs by disconnecting the end point of a single vertex. In the Gaussian case, this definition is identical to one-line reducibility, because all end points of vertices necessarily connect to a second order propagator. This is not necessarily the case if the bare theory has higher order cumulants. We may have components of graphs, such as

![Diagram](image)

where the three-point interaction connects to two third (or higher) order cumulants on either side. Disconnecting a single leg, either to the left or to the right, decomposes the diagram into two parts. We call such a diagram reducible and diagrams without this property irreducible here.

We employ the following graphical notation: Since $g_l = 0$ depends on j only indirectly by the j-dependence of the contained bare cumulants, we denote the derivative by attaching one leg, which is effectively attached to one of the cumulants of W_0 contained in g_l.

![Diagram](image)

where the three-point interaction connects to two third (or higher) order cumulants on either side. Disconnecting a single leg, either to the left or to the right, decomposes the diagram into two parts. We call such a diagram reducible and diagrams without this property irreducible here.

We first note that equation (198) generates two kinds of contributions to g_{l+1}, corresponding to the lines equation (199) and equation (200), respectively. The first line causes contributions that come from the vertices of $\epsilon V(\partial_j)$ alone. These are similar as in the linked cluster theorem equation (16). Determining the first order correction yields with $g_0 = 0$

\[
\frac{\partial}{\partial j} \left(\exp(-W_0(j)) V(\partial_j) \exp(W_0(j)) \right) = \frac{\epsilon}{L} \exp(-W_0(j)) V(\partial_j) \exp(W_0(j)) + O(L^{-2}),
\]

which contains all graphs with a single vertex from V and connections formed by cumulants of W_0. These graphs are trivially irreducible, because they only contain a single vertex.

The proof of the linked cluster theorem (see section §VA) shows how the construction proceeds recursively: correspondingly the $l + 1$st step equation (199) generates all connected graphs from components already contained in $W_0 + g_l$. These are tied together with a single additional vertex from $\epsilon V(x)$. In each step, we only need to keep those graphs where the new vertex in equation (199) joins at most one component from g_l to an arbitrary number of components of W_0, hence we maximally increase the number of vertices in each component by one. This is so, because comparing the combinatorial factors equation (52) and equation (53), contributions formed by adding more than one vertex (joining two or more components from g_l by the new vertex) in a single step are suppressed with at least L^{-1}, so they vanish in the limit (197).

The second term (200) is similar to (199) with two important differences:

- The single appearance of the differential operator ∂_j acts like a monopole vertex: the term therefore attaches an entire sub-diagram contained in $\Gamma^{(1)}_V$ by a single link to any diagram contained in g_l.

- The differential operator appears in the form $\partial_j - x^*$. As a consequence, when setting $j_0 = \Gamma^{(1)}_V(x^*)$ in the end in equation (197), all terms cancel where ∂_j acts directly on $W_0(j)$, because $W_0^{(1)}(j_0) = x^*$; non-vanishing contributions only arise if the ∂_j acts on a component contained in g_l. Since vertices and cumulants can be composed to a final graph in arbitrary order, the diagrams produced by $\partial_j - x^*$ acting on g_l are the same as
those in which \(\partial_j - x^* \) first acts on \(W_0 \) and in a subsequent step of the iteration another \(\partial_j \) acts on the produced \(W_0^{(1)} \). So to construct the set of all diagrams it is sufficient to think of \(\partial_j \) as acting on \(g_l \) alone; the reversed order of construction, where \(\partial_j \) first acts on \(W_0 \) and in subsequent steps of the iteration the remainder of the diagram is attached to the resulting \(W_0^{(1)} \), is contained in the combinatorics.

- These attached sub-diagrams from \(\Gamma_{\nu}^{(1)}(x^*) \) do not depend on \(j \); the \(j \)-dependence of all contained cumulants is fixed to the value \(j = \Gamma_{\nu}^{(1)}(x^*) \), as seen from equation (192). As a consequence, these sub-graphs cannot form connections to vertices in subsequent steps of the iteration.

From the last point follows in addition, that the differentiation in equation (200) with \(\Gamma_{\nu}^{(1)}(x^*) \equiv \partial_x \Gamma_{\nu}(x^*) \) produces an inner derivative \(\Gamma_0^{(2)} \) attached to a single leg of any component contained in \(g_l \). Defining the additional symbol

\[
\Gamma_0^{(2)}(x^*) =: \begin{array}{c}
\bigcirc
\end{array}
\]

allows us to write these contributions as

\[
\partial_x (g_l \circ \Gamma_{0}^{(1)}(x^*)) \equiv (g_l^{(1)} \circ \Gamma_{0}^{(1)}(x^*)) \Gamma_0^{(2)} = \begin{array}{c}
\bigcirc
\end{array}
\]

(203)

So in total at step \(l + 1 \), the line (200) contributes graphs of the form

\[
g_l^{(1)} \Gamma_0^{(2)} g_l^{(1)} = \begin{array}{c}
\bigcirc
\end{array}
\]

(204)

Since by their definition as a pair of Legendre transforms we have

\[
1 = \Gamma_0^{(2)} W_0^{(2)} = \begin{array}{c}
\bigcirc
\end{array}
\]

we notice that the subtraction of the graphs (204) may cancel certain connected graphs produced by the line equation (199). In the case of a Gaussian solvable theory \(W_0 \) this cancellation is the reason why only one-line irreducible contributions remain. We here obtain the general result, that these contributions cancel all reducible components, according to the definition above.

To see the cancellation, we note that a reducible graph by our definition has at least two components joined by a single leg of a vertex. Let us first consider the case of a diagram consisting of exactly two one-line irreducible sub-diagrams joined by a single leg. This leg may either belong to the part \(g_l^{(1)} \) or to \(g_l^{(1)} \) in equation (204), so either to the left or to the right sub-diagram. In both cases, there is a second cumulant \(W_0^{(2)} \) either left or right of \(\Gamma_0^{(2)} \). This is because if the two components are joined by a single leg, this particular leg must have terminated on a \(W_0^{(1)} \) prior to the formation of the compound graph; in either case this term generates \(W_0^{(1)} \).

The second point to check is the combinatorial factor of graphs of the form equation (204). To construct a graph of order \(k \), where the left component has \(k' \) bare vertices and the right has \(k - k' \), we can choose one of the \(L \) steps within the iteration in which we may pick up the left term by equation (200). The remaining \(k-k' \) vertices are picked up by equation (199), which are \(\binom{L-1}{k-k'} \) possibilities to choose \(k-k' \) steps from \(L-1 \) available ones. Every addition of a component to the graph comes with \(L^{-1} \). Any graph in \(\Gamma_{\nu} \) with \(k' \) vertices is \(\propto \frac{\epsilon^{k'}}{k'!} \), so together we get

\[
\frac{L}{k!} \epsilon^{k'} \binom{L-1}{k-k'} \left(\frac{L}{k-k'} \right)^{k-k'} \rightarrow \frac{\epsilon^k}{k!(k-k')!}.
\]

(205)

The symmetry factors \(s_1, s_2 \) of the two sub-graphs generated by equation (204) enter the symmetry factor \(s = s_1 \cdot s_2 \cdot c \) of the composed graph as a product, where \(c \) is the number of ways in which the two sub-graphs may be joined. But the factor \(s \), by construction, excludes those symmetries that interchange vertices between the two sub-graphs.

Assuming, without loss of generality, a single sort of interaction vertex, there are \(s' = \binom{k}{k'} \) ways of choosing \(k' \) of the \(k \) vertices to belong to the left part of the diagram. Therefore the symmetry factor \(s \) is smaller by the factor \(s' \) than the symmetry factor of the corresponding reducible diagram constructed by equation (199) alone, because the
latter exploits all symmetries, including those that mix vertices among the sub-diagrams. Combining the defect \(s' \) with the combinatorial factor equation (205) yields \(\frac{1}{k!(k-k')!}/s' = \frac{1}{k} \), which equals the combinatorial factor of the reducible graph.

Let us now study the general case of a diagram composed of an arbitrary number of sub-diagrams of which \(M \) are irreducible and connected to the remainder of the diagram by exactly one link. The structure of such a diagram is a (Cayley) tree and \(M \) is the number of “leaves”. We assume furthermore that the whole diagram has \(k \) vertices in total and a symmetry factor \(S \). We can replace \(r = 0, \ldots, M \) of the leaves by \(\Gamma^{(1)} \) diagrams. We want to show that the sum of these \(M+1 \) sub-diagrams vanishes. A diagram with \(r \) replaced leaves yields the contribution

\[
\frac{1}{k!} \prod_{i=1}^{r} \frac{1}{k_i!} \tilde{S} \cdot C,
\]

(206)

where \(\tilde{S} \) is the symmetry factor of the diagram with replaced leaves, \(C \) is some constant equal for all diagrams under consideration and \(k_i \) and \(k_t \) are the numbers of vertices in the “trunk” of the tree and in the \(i \)-th leaf, respectively, where \(k_t + \sum_i k_i = k \). Analogous to the case of two sub-diagrams, we can determine the relation of \(\tilde{S} \) to \(S \): We have

\[
\tilde{S} = S\left(\frac{k}{k_i, k_1, \ldots, k_r}\right) = S\left(\frac{k}{\prod i=1^r k_i, k_i}\right),
\]

because in the diagram without explicit sub-diagrams, we have \(\left(\frac{k}{k_i, k_1, \ldots, k_r}\right) \) possibilities to distribute the vertices in the respective areas. Therefore, the first two factors in equation (206) just give \(\frac{S}{k!} \), the prefactor of the original diagram. Now, we have \(\binom{M}{r} \) possibilities to choose \(r \) leaves to be replaced and each of these diagrams contributes with the sign \((-1)^r\). Summing up all contributions leads to

\[
\frac{S \cdot C}{n!} \sum_{r=0}^{M} \binom{M}{r} (-1)^r = \frac{S \cdot C}{n!} (1 - 1)^M = 0.
\]

In summary we conclude that all reducible graphs are canceled by equation (204).

But there is a second sort of graphs produced by equation (204) that does not exist in the Gaussian case: If the last equation or directly by using \(j_0 = \Gamma^{(1)}(x^*) \); express the occurrence of \(\Gamma^{(2)} \) by its explicit expression.

1. Calculate \(\Gamma_0(x^*) = \sup_j j^T x^* - W_0(j) \) explicitly by finding \(j_0 \) that extremizes the right hand side. At this order \(g_0 = 0 \).

2. At order \(k \) in the perturbation expansion:

 (a) add all irreducible graphs in the sense of the definition above that have \(k \) vertices;

 (b) add all graphs containing derivatives \(\Gamma_0^{(n)} \) as connecting elements that cannot be reduced to the form of a graph contained in the expansion of \(W_V(j_0) \); the graphs left out are the counterparts of the reducible ones in \(W_V(j_0) \). The topology and combinatorial factors of these non-standard contributions are generated iteratively by equation (198) from the previous order in perturbation theory; this iteration, by construction, only produces diagrams, where at least two legs of each \(\Gamma_0^{(n)} \) connect to a third or higher order cumulant.

 We can also directly leave out diagrams, in which a sub-diagram contained in \(W_V \) is connected to the remainder of the diagram by a single leg of an interaction vertex.

3. assign the factor \(\frac{k^j}{r_1^{r_1} \cdots r_{j+1}^{r_{j+1}}} \) to each diagram with \(r_i \)-fold repeated occurrence of vertex \(i \); assign the combinatorial factor that arises from the possibilities of joining the connecting elements as usual in Feynman diagrams (see examples below).

4. express the \(j \)-dependence of the \(n \)-th cumulant \(\langle x^n \rangle(x^*) \) in all terms by the first cumulant \(x^* = \langle x \rangle = W_0^{(1)}(j_0) \); this can be done, for example, by inverting the last equation or directly by using \(j_0 = \Gamma_0^{(1)}(x^*) \); express the occurrence of \(\Gamma_0^{(2)} \) by its explicit expression.
E. Example

As an example let us consider the case of a theory with up to third order cumulants and a three point interaction vertex:

\[\epsilon V(x) = \quad W_0(j) = \quad \]

the first order of \(g_1 \) is then

\[g_1 = \quad \]

and the second gives

\[g_2 - g_1 = \quad \]

We see that the diagrams which can be composed out of two sub-diagrams of lower order and are connected by a single line are cancelled. In addition we get contributions from the term (200), where \(\sim \sim \sim \) ties together two lower order components by attaching to a cumulant of order three or higher on both sides. Such contributions cannot arise from the term (199) and are therefore not canceled.

F. Vertex functions in the Gaussian case

When expanding around a Gaussian theory

\[S_0(x) = -\frac{1}{2} (x - x_0)^T A (x - x_0), \]

the Legendre transform \(\Gamma_0(x^*) \) is identical to minus this action, so we have (see section \(\S \) XI J for details)

\[\Gamma_0(x^*) = -S_0(x^*) = \frac{1}{2} (x^* - x_0)^T A (x^* - x_0). \] (207)

Hence writing the contributing diagrams to \(\Gamma_V(x^*) \), given by equation (192) we see that (with the symmetry of \(A \) and the product rule)

\[j_0(x^*) = \Gamma_0^{(1)}(x^*) = A(x^* - x_0) \] (208)
Here the step of expressing all cumulants by \(x^* \) using (208) is trivial: The cumulant generating function is
\[
W_0(j) = j x_0 + \frac{1}{2} j T A^{-1} j.
\]
The first cumulant \(W_0^{(1)}(j_0) = x_0 + A^{-1} j_0 = x_0 + A^{-1} A(x^* - x_0) = x^* \) is, by construction, identical to
\(x^* \) and the second \(\Delta = W^{(2)}(j) = A^{-1} \) is independent of \(j \) and hence independent of \(x^* \).

Applying the rules derived in section XIIC we see that all connections are made by \(\Delta = _______ \). Hence, all diagrams cancel which are connected of (at least) two components connected by a single line, because each leg of a vertex necessarily connects to a line. Also, there are no non-standard diagrams produced, because there are only second cumulants in \(W_0 \) and because \(\Gamma_0^{(2)} = [W_0^{(2)}]^{-1} = A \) is independent of \(x^* \), so derivatives by \(x^* \) cannot produce non-standard terms with \(\Gamma_0^{(2)} \).

The cancelled diagrams are called one-line reducible or one-particle-reducible. We therefore get the simple rule for the Gaussian case

\[
\Gamma_V(x^*) = - \sum_{\text{1PI}} \epsilon W_V(\Gamma_0^{(1)}(x^*)) = - \sum_{\text{1PI}} \epsilon W_V(j) \big|_{j = A(x^* - x_0)},
\]

where the subscript 1PI stands for only including the one line irreducible diagrams, those that cannot be disconnected by cutting a single line.

Given we have all connected 1PI graphs of \(W_V \), each external leg \(j \) is connected by a propagator \(\Delta = A^{-1} \) to a source \(j \), canceling the factor \(A \). Diagrammatically, we imagine that we set \(j = A(x^* - x_0) \) in every external line of a graph, so

\[
\ldots = \ldots \frac{\Delta A}{1}(x^* - x_0).
\]

We therefore obtain the diagrammatic rules for obtaining the vertex generating function for the perturbation expansion around a Gaussian:

- Determine all 1PI connected diagrams with any number of external legs.
- Remove all external legs including the connecting propagator \(\Delta = A^{-1} \).
- Replace the resulting uncontracted \(x \) on the vertex that was previously connected to the leg by \(x^* - x_0 \).
- For the expansion around a Gaussian theory, \(W_0^{(2)} = A^{-1} \) is independent of \(j_0 \); so \(x^* \) can only appear on an external leg.

The fact that the external legs including the propagators are removed is sometimes referred to as amputation. In the Gaussian case, by the rules above, the equation of state (185) amounts to calculating all 1PI diagrams with one external (amputated) leg. We use the notation

\[
\frac{\partial \Gamma(x^*)}{\partial x_k^*} = \begin{array}{c}
\vdots
\end{array}
\]

for such a derivative of \(\Gamma \) by \(x_k \), as introduced above. We can also see the amputation for the correction terms directly: Due to

\[
\frac{\partial \Gamma_V}{\partial x^*} = - \frac{\partial}{\partial x^*} \sum_{\text{1PI}} \epsilon W_V(\Gamma_0^{(1)}(x^*)) = - \sum_{\text{1PI}} \epsilon W_V(\Gamma_0^{(1)}(x^*)) \Gamma_0^{(2)}(x^*)
\]

each external leg is “amputated” by the inverse propagator \(\Gamma_0^{(2)} = (W^{(2)})^{-1} = A \) arising from the inner derivative.

G. Example: Vertex functions of the “\(\phi^3 + \phi^4 \)”-theory

As an example let us study the action (32) with \(K = 1 \). We have seen the connected diagrams that contribute to \(W \) in section XVC. With the results from section XIIC we may now determine \(\Gamma(x^*) \). To lowest order we have the
Legendre transform of $W_0(j) = \frac{1}{2} j^2$, which we determine explicitly as

$$\Gamma_0(x^*) = \sup_j x^* j - W_0(j),$$

$$\frac{\partial}{\partial j} (x^* j - W_0(j)) \bigg|_{x^* = j} = 0 \iff x^* = j,$$

$$\Gamma_0(x^*) = (x^*)^2 - W_0(x^*) = \frac{1}{2} (x^*)^2,$$ \hspace{0.5cm} (210)

So for a Gaussian theory, we have that $\Gamma_0(x^*) = -S(x^*)$. The loopwise expansion studied in section XIV will yield the same result. We will, however, see in XII that in the general case of a non-Gaussian solvable theory this is not so.

The corrections of first order are hence the connected diagrams with one interaction vertex (which are necessarily 1PI), where we need to replace, according to (208), $j = \Gamma_0^{(1)}(x^*) = x^*$ so we get from the diagrams with one external leg (compare section VC)

$$= 3 \cdot x^* \epsilon \frac{\alpha}{3!} = \epsilon \frac{\alpha}{2} x^*.$$

We here used the notation \bowtie for the amputated legs. From the correction with two external legs we get

$$= 4 \cdot 3 \cdot \frac{(x^*)^2}{2!} \epsilon \frac{\beta}{4!} = \epsilon \frac{\beta}{4} (x^*)^2.$$

Finally we have the contributions from the bare interaction vertices with three and four legs

$$3 \cdot 2 \sqrt{\frac{2}{x^*}} = 3 \cdot 2 \cdot \frac{(x^*)^3}{3!} \epsilon \frac{\alpha}{3!} = 4 \cdot 3 \cdot 2 \cdot \frac{(x^*)^4}{4!} \epsilon \frac{\beta}{4!}.$$

The latter two terms show that the effective action contains, as a subset, also the original vertices of the theory.

So in total we get the correction at first order to Γ

$$\Gamma_{V,1}(x^*) = -\epsilon \left(\frac{\alpha}{2} x^* + \frac{\beta}{4} (x^*)^2 + \frac{\alpha}{3!} (x^*)^3 + \frac{\beta}{4!} (x^*)^4 \right).$$ \hspace{0.5cm} (211)

The expansion of Γ including all corrections up to second order in ϵ will be content of the exercises.

H. Appendix: Explicit cancellation until second order

Alternative to the general proof given above, we may see order by order in k, that equation (209) holds. At lowest order $W_V \equiv 0$ and equation (189) holds, so the assumption is true. Taking into account the corrections that have one interaction vertex, we get the additional term $W_{V,1} (\Gamma^{(1)}(x^*)) = W_{V,1} (\Gamma_0^{(1)}(x^*)) + O(k^2)$. We have replaced here the dependence on $\Gamma^{(1)}(x^*)$ by the lowest order $\Gamma_0^{(1)}(x^*)$, because $W_{V,1}$ already contains one interaction vertex, so the correction would already be of second order. As there is only one interaction vertex, the contribution is also 1PI. In addition, we get a correction to $j = j_0 + j_{V,1}$, inserted into

$$\Gamma(x^*) = j^T x^* - W_0(j) - W_V(j) \bigg|_{j=\Gamma^{(1)}(x^*)}$$

$$W_V(j) = \ln \exp(-W_0(j)) \exp(\epsilon V(\nabla j)) \exp(W_0(j))$$ \hspace{0.5cm} (212)
leaves us with

\[-\Gamma(x^*) = -j_0^T x^* + W_0(j_0) + j_{V,1}^T \begin{pmatrix} W_0^{(1)}(j_0) - x^* \\ W_{V,1}(j_0) \end{pmatrix} + O(k^2),\]

\[-\Gamma_0(x^*) + W_{V,1}(j_0) \bigg|_{j_0=x_0^{(1)}(x^*)},\]

where the shift of \(j \) by \(j_{V,1} \) in the two terms making up \(\Gamma_0 \) cancel each other. To first order, the assumption is hence true. At second order we have

\[-\Gamma(x^*) = -j_0^T x^* + W_0(j_0) + (j_{V,1} + j_{V,2})^T \left(W_0^{(1)}(j_0) - x^* \right) + \frac{1}{2} j_1^T W_0^{(2)} j_1 + j_1^T W_{V,1}^{(1)} + W_{V,1}(j_0) + W_{V,2}(j_0) \bigg|_{j_0=x_0^{(1)}(x^*)} + O(k^3).\]

Using that \(j_1 = -W_{V,1}^{(1)}(\Gamma_0^{(1)}(x^*)) \Gamma_0^{(2)}(x^*) \), following from (213), we can combine the two underlined terms by using \(\Gamma_0^{(2)}(x^*) W_0^{(2)}(j_0) = 1 \) to obtain \(W_{V,1}^{(1)} \). We see that \(\Gamma_0^{(2)}(x^*) = \left(W_0^{(2)}(j_0) \right)^{-1} \) amputates the propagator of the external legs of \(W_{V,1}^{(1)} \). The latter factor \(W_{V,1}^{(1)} \) in any case has an external leg connected to the remaining graph, also if the solvable theory has non-vanishing mean \(W_0^{(1)}(0) \neq 0 \), because \(W \) by the linked cluster theorem (see section 4) only contains connected diagrams whose end points are either \(W^{(2)}(j) \) or \(W^{(1)}(j) \). In the first case, the derivative acting on \(W^{(2)} \) yields 0 (by the assumption \(W_0^{(2)} = 0 \), acting on \(j \) yields \(W^{(2)}(j) \)). In the second case, the derivative acts on the argument of \(W^{(1)}(j) \) and hence also produces a factor \(W^{(2)}(j) \). In all cases, the term hence consists of two 1PI components of first order connected by a single line. So in total we get

\[-\Gamma(x^*) = -\Gamma_0(x^*) + W_{V,1}(j_0) + W_{V,2}(j_0) - \frac{1}{2} W_{V,1}^{(1)}(j_0) \Gamma_0^{(2)}(x^*) W_{V,1}^{(1)}(j_0).\]

The last two terms together form the 1PI diagrams contained in \(W_{V,2}(j_0) \): All diagrams of second order that are connected by a single link (coming with a factor 1/2, because they have two interaction vertices, see section 4) are canceled by the last term, which produces all such contributions.

1. Appendix: Convexity of \(W \)

We first show that the Legendre transform of any function \(f(j) \) is convex. This is because for

\[g(x) := \sup_j j^T x - f(j) \]

we have with \(\alpha + \beta = 1 \)

\[g(\alpha x_a + \beta x_b) = \sup_j j^T (\alpha x_a + \beta x_b) - (\alpha + \beta) f(j) \]

\[\leq \sup_{j_a} \alpha (j_a^T x_a - f(j_a)) + \sup_{j_b} \beta (j_b^T x_b - f(j_b)) \]

\[= \alpha g(x_a) + \beta g(x_b), \]

which is the definition of a convex down function: the function is always below the connecting chord. Hence we can only come back to \(W \) after two Legendre transforms if \(W \) is convex to start with.

We now show that a differentiable \(W \) is convex. This is because \(W^{(2)} \) is the covariance matrix, it is symmetric and therefore has real eigenvalues. For covariance matrices these are in addition always positive semi-definite [23, p. 166]. This can be seen from the following argument. Let us define the bilinear form

\[f(\eta) := \eta^T W^{(2)} \eta. \]
A positive semi-definite bilinear form has the property \(f(\eta) \geq 0 \) \(\forall \eta \). Because \(W^{(2)} \) is symmetric, the left and right eigenvectors are identical. Therefore positive semi-definite also implies that all eigenvalues must be non-negative. With \(\delta x := x - \langle x \rangle \) we can express \(W^{(2)}_{kl} = \langle \delta x_k \delta x_l \rangle \), because it is the covariance, so we may explicitly write \(f(\eta) \) as

\[
f(\eta) = \sum_{k,l} \eta_k W^{(2)}_{kl} \eta_l = Z^{-1}(j) \eta^T \int dx \delta x \delta x^T \exp(S(x) + j^T x) \eta = Z^{-1}(j) \int dx \left(\eta^T \delta x \right)^2 \exp(S(x) + j^T x) \geq 0,
\]

where \(Z^{-1}(j) = \int dx \exp(S(x) + j^T x) \geq 0 \).

Therefore even if \(W(j) \) has vanishing Hessian on a particular segment (\(W \) has a linear segment), \(\sup_j j^T x^* - W(j) \) has a unique value for each given \(x^* \) and hence \(\Gamma(x^*) \) is well defined.

J. Appendix: Legendre transform of a Gaussian

For a Gaussian theory \(S_0(x) = -\frac{1}{2} (x - x_0)^T A (x - x_0) \) and \(\Delta = A^{-1} \) we have

\[
W_0(j) = j^T x_0 + \frac{1}{2} j^T \Delta j \\
\Gamma_0(x^*) = \sup_j j^T x^* - W_0(j).
\]

We find the extremum for \(j \) as

\[
0 = \partial_j \left(j^T x^* - W_0(j) \right) = \partial_j \left(j^T (x^* - x_0) - \frac{1}{2} j^T \Delta j \right) = x^* - x_0 - \Delta j \Rightarrow j = \Delta^{-1} (x^* - x_0).
\]

Inserted into the definition of \(\Gamma_0 \) this yields (with \(\Delta^{-1} = \Delta^{-1T} \))

\[
\Gamma_0(x^*) = (x^* - x_0)^T \Delta^{-1} (x^* - x_0) - \frac{1}{2} (x^* - x_0)^T \Delta^{-1} \Delta^{-1} \Delta^{-1} (x^* - x_0) \\
= \frac{1}{2} (x^* - x_0)^T A (x^* - x_0) \\
= -S_0(x^*).
\]

XII. Application: TAP approximation

Suppose we are recording the activity of \(N \) neurons. We bin the spike trains with a small bin size \(b \), so that the spike trains are converted into a sequence of binary numbers \(n_i \in \{0, 1\} \) in each time step for the neuron \(i \). We would like to describe the system by a joint probability distribution \(p(n_1, \ldots, n_N) \) which we choose to maximize the entropy, while obeying the constraints \(\langle n_i \rangle = m_i \) and \(\langle n_i n_j \rangle = c_{ij} \), where the mean activity \(m_i \) and the covariance \(c_{ij} \) is measured from data. The distribution is then of the Boltzmann type \([31]\) with an action

\[
S(n) = \frac{\epsilon}{2} n^T K n + j^T n \\
= \frac{\epsilon}{2} \sum_{k \neq l} n_k K_{kl} n_l + \sum_k j_k n_k, \underbrace{S_0}_{S_0}
\]

We here want to illustrate the presented methods by deriving the Thouless-Anderson-Palmer (TAP) \([31][32]\) mean-field theory of this pairwise model with with non-random couplings diagrammatically. The TAP approximation
plays an important role for spin glasses [59], but it is more recently also employed to efficiently train restricted Boltzmann machines [54]. This expansion has an interesting history. It has first been systematically derived by Vasiliev and Radzhabov [55] and was independently proposed by Thouless, Anderson, and Palmer [81], but without proof. Later Georges and Yedidia [86] found an iterative procedure to compute also higher order corrections, but a direct diagrammatic derivation has been sought for some time [87, p. 28]. The diagrammatic derivation here follows [79].

We want to treat the system perturbatively, where the part indicated as S_0 is the solvable part of the theory, in which the action decomposes into a sum of single-spin problems

$$S_0(j) = \sum_i \ln Z_0(j) - c$$

(ignoring the inconsequential constant c) of the solvable part.

The cumulant generating function correspondingly becomes a sum

$$W_0(j) = \sum_{i=1}^{N} \ln(1 + e^{j_i}) + c,$$

(216)

where the constant c arises from the normalization and is inconsequential. To lowest order we therefore get the contribution $\Gamma_0(m) = \sup_j j^Tm - W_0(j)$ to the effective action. We determine the point of the supremum as

$$\nabla_j (j^Tm - W_0(j)) = 0,$$

so

$$m_i(j_i) = \frac{e^{j_i}}{1 + e^{j_i}}, \quad e^{j_i(m_i)} = m_i \frac{1}{1 - m_i}.$$

So the explicit form of the lowest order contribution is

$$\Gamma_0(m) = \sum_{i=1}^{N} j_i(m_i) m_i - W_0(j(m))$$

(217)

$$= \sum_{i=1}^{N} \ln(m_i) m_i + \ln(1 - m_i)(1 - m_i),$$

which is the entropy of the independent distribution of binary variables with mean m_i. The reason is that one can construct the distribution $\exp(S_0(n))$ my maximizing the entropy for given mean value. The condition for the constraint maximization of the entropy has the form of a Legendre transform, which we are undoing here; the Legendre transform is involutive.

We see that

$$j_i = \Gamma_0^{(1)}(m) = \ln\left(\frac{m_i}{1 - m_i}\right)$$

and $W_0^{(1)}$ given by (218) below are indeed inverse functions of one another.

4. We now need to find the cumulants of the unperturbed system, required to evaluate all corrections in Γ_V up to second order in ϵ, i.e. $W_0^{(1)}(j)$ and $W_0^{(2)}(j)$; we will use the diagrammatic notation here.
5. According to the algorithm at the end of Section XI C, we then need to express the cumulants in terms of \(m \), by replacing \(j = j_0 = \Gamma_0^{(1)}(m) \), using the insight from point 3 above.

We obtain the cumulants of the free theory equation (216) as

\[
\begin{align*}
\partial_i W_0 &= \frac{e^{j_i}}{1 + e^{j_i}} = m_i(j_i), \\
\partial_i\partial_j W_0 &= \delta_{ij} \left(\frac{e^{j_i}}{1 + e^{j_i}} - \frac{e^{2j_i}}{(1 + e^{j_i})^2} \right) = \delta_{ij} \frac{e^{j_i}}{(1 + e^{j_i})^2} = \delta_{ij} \frac{m_i(1 - m_i)|_{m_i = m_i(j_i)}}{m_i}.
\end{align*}
\]

The first line is the first cumulant, the second line the second cumulant of the single binary variable.

6. Now we need to determine all diagrams up to second order in \(\epsilon \) that contribute to \(\Gamma(m) \). Here we only need to compute the diagrams with the features explained in Section XI C. This requires the knowledge of the cumulants \(W^{(n)}(\Gamma_0^{(1)}(m)) \) expressed in terms of \(m \), as obtained under point 5 above. In the perturbing part \(\epsilon V(n) \), we only have a single interaction vertex that is quadratic in the fields, namely \(\epsilon \frac{V^{(2)}}{2!} = \frac{\epsilon}{2} \sum_{i<j} K_{ij} = \). If we truncate the perturbation expansion of \(\Gamma(m) \) at second order in \(K_{ij} \), we need to consider all connected diagrams of at most two such vertices, connected by the propagators \(\epsilon \). The correction of first order in \(K_{ij} \) yields the single term

\[
-\frac{\epsilon}{2} \sum_{i<j} K_{ij} m_i m_j.
\]

We do not get any contribution from the second cumulant, because these only join elements with identical indices and \(K_{ii} = 0 \). The minus sign appears here from (199). We obtain the next order recursively from (199), dropping all graphs which are connected out of two sub-graphs via a second cumulant, such as

\[
\frac{\epsilon^2}{2!} \sum_{i<j} \sum_{j<k} \frac{1}{2} K_{ij} \frac{1}{2} K_{jk} m_i m_j (1 - m_j) m_k.
\]

The correction term of second order in \(K \) is

\[
-\frac{\epsilon}{2} \sum_{i<j} K_{ij} \sum_{k<l} K_{kl} \left(\delta_{ik} \delta_{j,l} (1 - m_i) m_j (1 - m_j) m_k + \delta_{ij} \delta_{kl} (1 - m_i) m_j (1 - m_j) m_k \right)
= -\frac{\epsilon^2}{4} \sum_{i<j} K_{ij}^2 m_i (1 - m_i) m_j (1 - m_j),
\]

where we get the combinatorial factor 2 from the two possible orientations of attaching the second interaction vertex, as indicated by the Kronecker \(\delta \) expressions. The contribution \(-\sum_{i<j} \sum_{k<l} K_{ij} K_{kl} m_i m_j m_k m_l \) does not appear, because the two interaction vertices are not connected in this contribution and four terms of the form \(-\sum_{i<j} \sum_{k<l} K_{ij} K_{kl} \delta_{ij} \delta_{kl} m_i (1 - m_i) m_j m_l \) disappear, because they are one particle reducible, since we may cut the single line formed by the second cumulant connecting the two interaction vertices.

The approximation of \(\Gamma \) up to second order of \(K_{ij} \) thus reads

\[
\Gamma(m) = \sum_{i=1}^{N} \ln(m_i)m_i + \ln(1 - m_i)(1 - m_i)
- \frac{\epsilon}{2} \sum_{i<j} K_{ij} m_i m_j
- \frac{\epsilon^2}{4} \sum_{i<j} K_{ij}^2 m_i (1 - m_i) m_j (1 - m_j) + O(\epsilon^3),
\]

where the first term is the entropy of \(N \) independent binary variables, the second yields Curie-Weiss mean-field theory and the last line is the Onsager reaction term.

7. We now determine the equation of state (185). This will give an expression for the parameters \(h_i \).
The equation of state therefore is

\[h_i = \frac{\partial \Gamma}{\partial m_i} = \ln\left(\frac{m_i}{1-m_i}\right) - \sum_j \epsilon K_{ij} m_j - \frac{\epsilon^2}{2} \sum_j K_{ij}^2 (1-2m_i)(1-2m_j) + O(\epsilon^3), \]

(220)

which can be solved numerically, for example by bisection. The result of this approximation is shown in Figure 11.

The approximation of \(Z \) up to second order will lead to a calculation of several pages to reach the same result. A summary of different mean-field methods can also be found in [87, 88]. The original works employed Ising spins \(s_i \in \{-1, 1\} \). We here instead use binary variables \(n_i \in \{0, 1\} \). Both models are mathematically identical, because all binary state representations are bijectively linked.

Inverse problem

Here we may use the approximation equation \((219)\) of \(\Gamma \) to solve the so-called inverse problem, which is finding the equations for the parameters \(h_i \) and \(J_{ij} \) for given mean activities \(m_i \) and covariances \(c_{ij} = W^{(2)}_{ij} \). This problem typically arises in data analysis: We want to construct a maximum entropy model that obeys the constraints given by the data. To solve the inverse problem, we can make use of \((187)\) and determine the inverse of the covariance matrix

\[(W^{(2)})^{-1} = \Gamma^{(2)}_{ij}. \]

To determine the \(J_{ij} \) it suffices to evaluate this expression on the off-diagonal \(i \neq j \)

\[i \neq j: \quad \Gamma^{(2)}_{ij} = \frac{\partial^2 \Gamma}{\partial m_i \partial m_j} = -\epsilon K_{ij} - \frac{\epsilon^2}{2} K_{ij}^2 (1-2m_i)(1-2m_j). \]

(221)

So given we know the covariance matrix \(c_{ij} = W^{(2)}_{ij} \) and the mean activities \(m_i \), we may determine \(K_{ij} \) from \((221) \) as

\[K_{ij}^+ = -\frac{1}{2\kappa_{ij}} \pm \sqrt{\frac{1}{4\kappa_{ij}^2} - \frac{[c^{-1}]_{ij}}{\kappa_{ij}}} \]

\[\kappa_{ij} = \frac{1}{2}(1-2m_i)(1-2m_j), \]

where the positive sign yields the correct result \(K_{ij}=0 \) for the case of vanishing correlations on the off-diagonal elements of \(c_{ij} \). We then obtain the biases \(h_i = 0 \) for the case of vanishing.

XIII. EXPANSION OF CUMULANTS INTO TREE DIAGRAMS OF VERTEX FUNCTIONS

In the previous section we have derived an iterative procedure to construct all contributions to the vertex generating function. In this section we will show that there is a simple set of graphical rules that connect the Feynman diagrams that contribute to \(\Gamma \) and those of the cumulants, that make up \(W \). Graphically, we can summarize the connection between \(Z, W, \) and \(\Gamma \) in figure 12.

In the same line as for the moment and cumulant generating function, we write \(\Gamma \) as a Taylor series, the coefficients of which we call vertex functions for reasons that will become clear in the end of this section. These vertex functions are defined as the \(n \)-th derivatives of the function \(\Gamma \)

\[\Gamma^{(n_1, \ldots, n_N)}(x^*) = \partial_1^{n_1} \cdots \partial_N^{n_N} \Gamma(x^*). \]

(222)

Conversely, we may of course write \(\Gamma \) in its Taylor representation with \(\delta x_i^* = x_i^* - x_{0,i} \)

\[\Gamma(x^*) = \sum_{n_1, \ldots, n_N} \frac{\Gamma^{(n_1, \ldots, n_N)}(x_0)}{n_1! \cdots n_N!} \delta x_1^{n_1} \cdots \delta x_N^{n_N}, \]

(223)
Figure 11. **Maximum entropy pairwise model and TAP mean-field theory.** $N = 10$ neurons. (a) Scatter plot of the given mean activity of the neurons m and the empirical estimate m_{emp} obtained by sampling of Glauber dynamics. Assigned mean activities are normally distributed with mean $\langle m_i \rangle = 0.2$ and standard deviation $(m_i^2) - \langle m_i \rangle^2 = 0.05$, clipped to $m_i \in [0.05, 0.95]$. (b) Scatter plot of covariance. Initial values chosen with correlation coefficients $k_{ij} = \frac{c_{ij}}{\sqrt{m_i(1-m_i)m_j(1-m_j)}}$ randomly drawn from a normal distribution with mean 0.05 and standard deviation 0.03, clipped to $k_{ij} \in [-1, 1]$. (c) States as a function of time step of the Glauber dynamics. Black: $n_i = 1$, white: $n_i = 0$. (d) Effective action $\Gamma(m)$ for the homogeneous model. From black to light gray: $N = 10, 20, N_C, 50, 100$. Red curve: Critical value $N_C \approx 32$ at which the approximation of Γ becomes non-convex. Empirical results were obtained from Glauber dynamics simulated for $T = 10^7$ time steps.

where x_0 is an arbitrary point around which to expand. We saw in the Gaussian case in section §XIF that the mean value of the unperturbed Gaussian appeared naturally in the expansion: the x^* dependence appeared only on the external legs of the diagrams in the form $x^* - x_0$.

We will now again use a graphical representation for the Taylor coefficients that appear in equation (222), where an additional derivative by x^*_i adds a leg with the corresponding index i to the vertex $\Gamma^{(n)}$ and similarly for the derivative of $W^{(n)}$. Without loss of generality, let us assume that we differentiate by each variable only once and that we can always rename the variables, so that we differentiate by the first k variables each once. The general case can be reconstructed from these rules by setting a certain number of variables equal, as in section §IID.

\[
\frac{\partial}{\partial x^*_1} \cdots \frac{\partial}{\partial x^*_k} \Gamma(x^*) = \Gamma^{(k)}_{1, \ldots, k} = k
\]

Analogously we use the graphical representation for the derivatives of W as

\[
\frac{\partial}{\partial j_{k+1}} k
\]
Figure 12. **Graphical summary of the connection between Z, W and Γ.** Here on the example of a perturbation expansion around a Gaussian theory with a three-point interaction. The rows correspond to different orders in the perturbation, the number of three-point vertices. By the linked cluster theorem, the step from \(Z(j) \) to \(W(j) \) removes all diagrams that are disconnected; \(W \) only contains the statistical dependence of the respective variables. Bottom row: In both cases we get tadpole diagrams appearing as sub-diagrams. These are perturbative corrections to the first moment, which is identical to the first cumulant and therefore appear for \(Z \) and \(W \) alike. The Legendre transform \(L \) from \(W(j) \) to \(Γ(x^*) \), which expresses all quantities in terms of the mean value \(x^* = \langle x(j) \rangle \), removes all diagrams that come about by perturbative corrections to the mean. This makes sense, because the mean is prescribed to be \(x^* \): In the Gaussian case, the one-line reducible diagrams are removed, because the sub-diagram connected with a single line also appears as a perturbative correction to the mean.

We already know the relationship of the second derivatives, namely that the **Hessians** of \(W \) and \(Γ \) are inverses of one another [186]

\[
\begin{align*}
\Gamma^{(2)}(x^*) W^{(2)}(\Gamma^{(1)}(x^*)) &= 1 \quad \forall x^* \\
\Gamma^{(2)}(W^{(1)}(j)) W^{(2)}(j) &= 1 \quad \forall j \\
\sum_k \Gamma^{(2)}_{ik} W^{(2)}_{kl} &= \delta_{kl}.
\end{align*}
\]

(224)

Graphically, the relation equation (224) can be expressed as:

\[
\text{loop} = 1,
\]

where the identity operation 1 must be chosen from the appropriate space corresponding to \(x \). For distributions of an \(N \) dimensional variable this would be the diagonal unit matrix.

In the following we will use subscripts to denote the variables with respect to which we differentiate, for example

\[
\partial_{j_k} W = W^{(1)}_{k}.
\]

Now let us obtain higher derivatives of equation (224) with respect to \(\partial_{j_a} \): acting on \(W^{(2)} \) we add a leg with index \(a \), acting on \(\Gamma^{(2)}_{ik} \), by the chain rule, we get

\[
\frac{\partial}{\partial_{j_a}} \Gamma^{(2)}_{ik}(W^{(1)}(j)) = \sum_m \Gamma^{(3)}_{ikm} W^{(2)}_{ma},
\]

and, by the product rule, the application to \(W^{(2)}_{kl} \) yields \(W^{(3)}_{kla} \), so in total

\[
0 = \sum_{k,m} \Gamma^{(3)}_{ikm} W^{(2)}_{ma} W^{(2)}_{kl} + \sum_k \Gamma^{(2)}_{ik} W^{(3)}_{kla},
\]

which has the graphical representation:
We may multiply the latter expression by $W^{(2)}_{ib}$ and sum over all i, using equation (224) to see that this operation effectively removes the $\Gamma^{(2)}$ in the second term to obtain

$$0 = \sum_{i,k,m} \Gamma^{(3)}_{ikm} W^{(2)}_{ma} W^{(2)}_{kl} W^{(2)}_{ib} + W^{(3)}_{bla}. \tag{225}$$

Graphically:

The latter expression shows that the third order cumulant $W^{(3)}$ can be expressed as a diagram that has so called tree structure, i.e. that does not contain any closed loops. This means that all closed loops that are contained in the Feynman diagrams of the third cumulant must be contained in the vertex function $\Gamma^{(3)}$ and in the lines connecting them, the $W^{(2)}$.

Applying the derivatives by j successively, we see that the left diagram gets one additional leg, while in the right diagram we can attach a leg to each of the three terms of $W^{(2)}$ and we can attach an additional leg to $\Gamma^{(3)}$ that again comes, by the chain rule, with a factor $W^{(2)}$, so that the tree level structure of this relation is preserved:
We may express the intermediate diagram in the last line by using the diagram for the three point cumulant

We here did not write the two permutations explicitly, there the derivative acts on the second cumulants with labels a and l. The complete expression of course contains these two additional terms. By induction we can show that the diagrams that express cumulants in terms of vertex functions all have tree structure. We will see a proof of this assertion in section §XIVE. This feature explains the name vertex functions: these functions effectively act as interaction vertices. We obtain the cumulants as combinations of these interaction vertices with the effective propagator $W^{(2)}$. The special property is that only tree diagrams contribute. We will see in the next section that this feature is related to the expression (182) in the previous section: Only the right hand side of the expression contains an integral over the fluctuations δx. These are therefore effectively contained in the function Γ on the left hand side. In the following section we will indeed see that fluctuations are related to the appearance of loops in the Feynman diagrams. The absence of loops in the Feynman diagrams of W expressed in terms of the vertex functions can therefore be interpreted as the vertex functions implicitly containing all these fluctuations. Technically this decomposition is therefore advantageous: We have seen that in momentum space, each loop corresponds to one frequency integral to be computed. Decomposing connected diagrams in terms of vertex functions hence extracts these integrals; they only need to be computed once.

A. Self-energy or mass operator Σ

The connection between the two-point correlation function $W^{(2)}$ and the two point vertex function $\Gamma^{(2)}$, given by the reciprocity relation (224), is special as it does not involve a minus sign, in contrast to all higher orders, such as for example (225). The Hessian $W^{(2)}(0)$ is the covariance matrix, or the full propagator (sometimes called “dressed” propagator, including perturbative corrections), of the system. It therefore quantifies the strength of the fluctuations in the system so it plays an important role. One may, for example, investigate for which parameters fluctuations
become large: If the Hessian $\Gamma^{(2)}$ has a vanishing eigenvalue in a particular direction, fluctuations in the system diverge in the corresponding direction. Critical phenomena, or second order phase transitions, are based on this phenomenon.

In the current section we consider the particular case that the solvable part of the theory is Gaussian or that fluctuations are approximated around a stationary point, as will be done in the next section in the loopwise approximation. In both cases, shown for the perturbation expansion in section §XIF and §XIG, the Gaussian part of the action also appears (with a minus sign) in the effective action [(211)], which decomposes as

$$\Gamma(x^*) = -S_0(x^*) + \Gamma_V(x).$$

So we may separate the leading order contribution to $\Gamma^{(2)}$ by writing

$$\Gamma^{(2)} = -S_0^{(2)} + \Gamma_V^{(2)}$$
$$= -S_0^{(2)} + \Sigma,$$

where we defined $\Sigma := \Gamma_V^{(2)}$ as the correction term to the Hessian. In the context of quantum field theory, Σ is called the self-energy or mass operator. The name self-energy stems from its physical interpretation that it provides a correction to the energy of a particle due to the interaction with the remaining system. The name “mass-operator” refers to the fact that these corrections affect the second derivative of the effective action, the constant (momentum-independent) part of which is the particle mass in a standard ϕ^4 theory.

From [(224)] then follows that

$$1 = \Gamma^{(2)} W^{(2)}$$
$$= (S_0^{(2)} + \Sigma) W^{(2)}.$$ \hspace{1cm} (227)

We see that hence $(W^{(2)})^{-1} = -S_0^{(2)} + \Sigma$, so the full propagator $W^{(2)}$ results from the inverse of the second derivative of the bare action plus the self-energy; this explains the interpretation of Σ as an additional mass term: in quantum field theory, the mass terms typically yield terms that are quadratic in the fields.

In matrix form and multiplied by the propagator $\Delta = (S_0^{(2)})^{-1}$ of the free theory from left we get

$$\Delta = \Delta\left(S_0^{(2)} + \Sigma\right) W^{(2)}$$
$$= (1 + \Delta\Sigma) W^{(2)},$$

so that multiplying from left by the inverse of the bracket we obtain

$$W^{(2)} = (1 + \Delta\Sigma)^{-1} \Delta$$
$$= \sum_{n=0}^{\infty} (-\Delta\Sigma)^n \Delta$$
$$= \Delta - \Delta\Sigma\Delta + \Delta\Sigma\Delta\Sigma\Sigma - \ldots,$$ \hspace{1cm} (228)

which is a so-called Dyson’s equation. These contributions to $W^{(2)}$ are all tree-level diagrams with two external legs. Since $W^{(2)}$ contains all connected graphs with two external legs, consequently the contributions to Σ all must contain two uncontracted variables and otherwise form connected diagrams which cannot be disconnected by cutting a single line.

It is interesting to note that if Σ has been determined to a certain order (in perturbation theory or in terms of loops, see below) that the terms in [(228)] become less and less important, since they are of increasing order.

The latter property follows from the decomposition in the last line of [(228)]. The expression corresponds to the sum of all possible graphs that are composed of sub-graphs which are interconnected by a single line Δ. Hence, these graphs can be disconnected by cutting a single line Δ. Since $W^{(2)}$ must contain all connected graphs with two external legs, and the sum already contains all possible such combinations. No separable components can reside in Σ. This follows from the proofs in section §XIC and section §XIV but can also be seen from the following argument:

$W^{(2)}$ is composed of all diagrams with two external legs. Any diagram can be decomposed into a set of components that are connected among each other by only single lines. This can be seen recursively, identifying a single line that would disconnect the entire diagram into two and then proceeding in the same manner with each of the two
sub-diagrams recursively. The remainders, which cannot be decomposed further, are 1PI by definition and must have
two connecting points. Writing any of the found connections explicitly as Δ, we see that we arrive at equation (228).

With the help of the Dyson equation equation (228), we can therefore write the tree-level decomposition of an
arbitrary cumulant in section §XIII by replacing the external connecting components, the full propagators
\(W^{(2)} \) by equation (228)

\[
W^{(2)} = \ldots \quad \Sigma \quad + \quad \Sigma \quad \Sigma \quad - \ldots .
\]

\[\text{Fig. 10a}
\]

In the case of the loopwise expansion, \(\Delta = (-S^{(2)}(x^*))^{-1} \) and \(\Sigma(x^*) \) are still functions of \(x^* \), the true mean value. We can therefore express all quantities appearing in section §XIII by explicit algebraic terms that all depend
on \(x^* \), the true mean value. In the presence of sources \(j \), the latter, in turn, follows from the solution of the equation of state (185).

\[\text{XIV. LOOPWISE EXPANSION OF THE EFFECTIVE ACTION - TREE LEVEL}\]

We saw in section §IV that perturbation theory produces a set of graphs with vertices \(V^{(n)} \) of the Taylor expansion
of \(V \) and propagators \(A^{-1} \). If the interaction vertices \(V^{(n)} \) are smaller than \(A \) by a small factor \(\epsilon \), this factor is a
natural parameter to organize the perturbation series. In many cases this is not the case and other arrangements of
the perturbation series may have better convergence properties. We will here study one such reorganization for the
case of a strong interaction that causes non-vanishing mean-values of the stochastic variables. This is a central tool
in quantum field theory and statistical field theory and will here be used to systematically calculate fluctuations in
classical systems. We here loosely follow [23, Sec. 6.4], [27, Sec. 2.5], and [50, Sec. 3.2.26].

To illustrate the situation, we again consider the example of the \(\phi^3 + \phi^4 \)-theory with the action

\[
S(x) = l \left(-\frac{1}{2} x^2 + \frac{\alpha}{3!} x^3 + \frac{\beta}{4!} x^4 \right)
\]

(299)

with \(\beta < 0 \), \(l > 0 \) and \(\alpha \) arbitrary. We now assume that there is no small parameter \(\epsilon \) scaling the non-Gaussian part.
Instead, we may assume that there is a parameter \(l \), multiplying the entire action. Figure 10a shows the probability
for different values of the source \(j \), with a maximum monotonically shifting as a function of \(j \). The mean value \(\langle x \rangle \)
may be quite far away from 0 so that we seek a method to expand around an arbitrary value \(x^* = \langle x \rangle \): The peak of the
distribution can always be approximated by a quadratic polynomial. One would guess that such an approximation
would be more accurate than the expansion around the Gaussian part \(-\frac{1}{2} x^2 \), if the peak far off zero.

In many cases, corrections by fluctuations may be small. We saw a concrete example in section §XIA. We will see
in the following that small fluctuations correspond to \(l \) being large. To see this, we express the cumulant generating
function in terms of an integral over the fluctuations of \(x \), as in equation (181)

\[
\exp(W(j) + \ln Z(0)) = \int dx \exp \left(S(x) + j^T x \right),
\]

(230)

where we moved the normalization as \(\exp(Z(0)) \) to the left hand side. We expect the dominant contribution to
the integral on the right of equation (230) from the local maxima of \(S(x) + j^T x \), i.e. the points \(x^*_S(j) \) at which
\(S^{(1)}(x^*_S) + j = 0 \) and \(S^{(2)}(x^*_S) < 0 \). At these points the action including the source term is stationary

\[
\frac{\partial}{\partial x} \left(S(x) + j^T x \right) \geq 0
\]

\[
S^{(1)}(x^*_S) + j = 0,
\]

(231)

which implicitly defines the function \(x^*_S(j) \). Inserted into the integral, we obtain the lowest order approximation

\[
W_0(j) + \ln Z(0) = S(x^*_S(j)) + j^T x^*_S(j),
\]

(232)

because the fluctuations of \(x \) will be close to \(x^*_S \). The normalization of this distribution will give a correction term,
which, however is \(\propto l^{-1} \) as we will see in the next section. So to lowest order we can neglect it here. In the limit
$l \to \infty$ the entire probability mass is concentrated at the point $x = x_0^*$. The accuracy of this approximation increases with l. It corresponds to our naive mean-field solution (176) in the problem of the recurrent activity.

Together with the condition (231), (232) has the form of a Legendre transform, but with a different sign convention than in equation (184) and with the inconsequential additive constant $W(0)$. So to lowest order in the fluctuations, the cumulant generating function is the Legendre transform of the action. Since we know that the Legendre transform is involutive for convex functions, meaning applied twice yields the identity, we conclude with the definition of Γ by equation (184) as the Legendre transform of W that to lowest order in l we have

$$\Gamma_0(x^*) - \ln Z(0) = -S(x^*) \propto O(l). \quad (233)$$

(More precisely: Γ_0 is the convex envelope of $-S$, because the Legendre transform of any function is convex, see section §XII. This approximation is called **tree-level approximation**, **mean-field approximation**, or **stationary phase approximation**: Only the original interaction vertices of $-S$ appear in Γ. The name “tree-level approximation” can be understood from the fact that only tree-diagrams contribute to the mean value of $\langle x(j) \rangle$, as shown in section §XIV.D We also see from (230) that we replaced the fluctuating x by a non-fluctuating mean value x_0, giving rise to the name “mean-field” approximation. In our example in section §XI.A the equation of state (185) is identical to this approximation that neglects all fluctuations, cf. (176).

In the following, we want to obtain a systematic inclusion of fluctuations. We will extend the principle of the previous sections to obtain a systematic expansion of the fluctuations in Gaussian and higher order terms around an arbitrary point x^*. In the context of field theory, this method is known as the background field expansion [50, section 3.2.26], the formal derivation of which we loosely follow here.

A. Counting the number of loops

Before deriving the systematic fluctuation expansion, we will here make the link between the strength of fluctuations and another topological feature of Feynman diagrams: their number of loops. For simplicity, let us first consider a problem with a Gaussian part $-\frac{1}{2}x^TAx$ and a perturbing potential $V(x)$ of order x^3 and higher. Let us further assume that A and V are both of the same order of magnitude. We introduce a parameter l to measure this scale.

For large l, fluctuations of x, measured by $\delta x = x - \langle x \rangle$, are small and we have $\delta x \propto 1/\sqrt{l}$. This is because for small δx, the quadratic part $-\frac{1}{2}x^TAx$ dominates over $V(x)$ which is of higher than second order in x; further, because the variance is $\langle \delta x^2 \rangle = A^{-1} \propto l^{-1}$. We here seek an expansion around these weak fluctuations of the integral

$$W(j) \propto \ln \int dx \exp \left(-\frac{1}{2} x^T A x + V(x) + j^T x \right)$$

$$= \ln \int dx \exp \left(-\frac{1}{2} x^T l a x + lv(x) + j^T x \right) \quad (234)$$

around $x = 0$, where we defined $a = A/l$ and $v = V/l$ to make the order of A and V explicit.

Let us first make a simple observation to see that the scale l penalizes contributions from contractions with a high power of x. Since the fluctuations are $\delta x \propto 1/\sqrt{l}$, the contribution of a diagram whose summed power of x in all vertices is x^n will be $\propto l^{-n/2}$ (for n even), because each contraction of a pair of x yields a factor l^{-1}. This can be seen from the substitution $\sqrt{l}x = y$ (neglecting the change of the determinant $l^{-\frac{n}{2}}$, which just yields an inconsequential additive correction to $W(j)$)

$$W(j) \propto \ln \int dy \exp \left(-\frac{1}{2} y^T a y + lv(y/l) + j^T y/\sqrt{l} \right)$$

and then considering the form of the contribution of one graph (assuming $j = 0$) of the form $\sum_{n_1, \ldots, n_k = l} \frac{1}{\sqrt{l}} \frac{1}{n_1!} \cdot \cdots \cdot \frac{1}{n_k!} \frac{y^{n_k}}{l^{n_k}} \propto l^{k-\frac{n}{2}}$. Since each contraction $(yy) \propto a^{-1} = O(1)$ corresponds to one propagator, i.e. one line in the graph, we can also say that the contribution is damped by l^{k-n_Δ}, where n_Δ is the number of lines in the graph and k is the number of vertices.

We can see this relation also directly on the level of the graphs, illustrated in figure [12]. The parameter l scales the propagators and the vertices in the Feynman graphs differently. The propagator is $\Delta = (la)^{-1} = \frac{1}{l}a^{-1} \propto l^{-1}$, a vertex $l^{v(n)} \propto l$.

To make the link to the topology of the graph, we construct a connected diagram with \(n_V \) vertices and \(n_j \) external legs. We first connect these legs to vertices, each yielding a contribution \(\propto \frac{1}{l} \) due to the connecting propagator. We now need to connect the \(n_V \) vertices among each other so that we have a single connected component. Otherwise the contribution to \(W \) would vanish. This requires at least \(n_{\Delta}^{\text{int}} = n_V - 1 \) internal lines, each coming with one factor \(l^{-1} \).

By construction, the formed graph so far has no loops, so \(n_L = 0 \). Now we need to contract all remaining legs of the vertices. Each such contraction requires an additional propagator, coming with a factor \(l^{-1} \) and necessarily produces one additional loop in the graph, because it connects to two vertices that are already connected. We therefore see that the number of loops equals

\[
n_L = n_{\Delta}^{\text{int}} - n_V + 1.
\]

The prefactor of a graph is hence

\[
\Gamma_{\text{int}}^{n_V-n_{\Delta}^{\text{int}}} l^{-n_L} = l^{1-n_{\Delta}^{\text{int}}-n_j}.
\]

This shows two things: First, noticing that the number of external legs equals the order of the cumulant, cumulants are damped by the factor \(l^{-n_j} \) in relation to their order; this term just stems from the \(n_j \) external legs, each of which being connected with a single propagator. Second, for a given order of the cumulant to be calculated, we can order the contributions by their importance; their contributions diminish with the number \(n_L \) of the loops in the corresponding graphs. The latter factor stems from the amputated part of the diagram – the part without external legs.

The loopwise approximation can be illustrated by a one-dimensional integral shown in figure 13 that is calculated in the exercises: The loop corrections converge towards the true value of the integral for \(l \gg 1 \). The two-loop approximation has a smaller error in the range \(l \gg 1 \) than the one-loop approximation.

B. Loopwise expansion of the effective action - Higher numbers of loops

In this section, we will use the loopwise expansion of section XIV A to systematically calculate the corrections to \(\Gamma \). To lowest order we already know from equation (233) that \(\Gamma_0(x^\ast) = -S(x^\ast) + \ln Z(0) \). With the general definition equation (184) of \(\Gamma \), equation (182) takes the form

\[
\exp(-\Gamma(x^\ast) + \ln Z(0)) = \int d\delta x \exp\left(S(x^\ast + \delta x) + j^T \delta x\right).
\]

To lowest order in the fluctuations, we set \(\delta x = 0 \), leading to the same result as (233). We now set out to derive an iterative equation to compute \(\Gamma \), where the iteration parameter is the number of loops in the diagrams. We use the equation of state equation (185) to replace \(j(x^\ast) \) in the latter equation to obtain

\[
\exp(-\Gamma(x^\ast) + \ln Z(0)) = \int d\delta x \exp\left(S(x^\ast + \delta x) + \Gamma^{(1)}(x^\ast) \delta x\right).
\]
Now let us expand the fluctuations of \(x \) around \(x^* \). We perform a Taylor expansion of the action around \(x^* \)

\[
S(x^* + \delta x) = S(x^*) + S^{(1)}(x^*) \delta x + \frac{1}{2} \delta x^T S^{(2)}(x^*) \delta x + R(x^*, \delta x).
\]

(237)

Here all terms in the expansion higher than order two are contained in the remainder term \(R(x^*, \delta x) \). Inserting equation (237) into equation (235), we get

\[
\exp \left(-\Gamma(x^*) - S(x^*) + \ln Z(0) \right) = \int d\delta x \exp \left(\left(S^{(1)}(x^*) + \Gamma^{(1)T}(x^*) \right) \delta x + \frac{1}{2} \delta x^T S^{(2)}(x^*) \delta x + R(x^*, \delta x) \right),
\]

(238)

where we sorted by powers of \(\delta x \) on the right side and moved the term \(S(x^*) \), which is independent of \(\delta x \), to the left.

Since by equation (233) to lowest order \(\Gamma_0 - \ln Z(0) = -S \) we now define the corrections due to fluctuations on the left hand side as

\[
\Gamma_B(x^*) := \Gamma(x^*) + S(x^*) - \ln Z(0).
\]

(239)

The first term on the right hand side of equation (238) can therefore be written as \(\frac{\partial}{\partial x^*} \left(S(x^*) + \Gamma(x^*) \right) \equiv \Gamma_B^{(1)}(x^*) \) (since \(\ln Z(0) \) is independent of \(x^* \), so that we obtain the final result

\[
\exp \left(-\Gamma_B(x^*) \right) = \int d\delta x \exp \left(\frac{1}{2} \delta x^T S^{(2)}(x^*) \delta x + R(x^*, \delta x) + \Gamma_B^{(1)T}(x^*) \delta x \right).
\]

(240)

The latter expression allows us to again use the reorganization of the loopwise expansion (section §XIVA) for the calculation of \(\Gamma \) by equation (240), sorting the different terms by their importance in contributing to the fluctuations.

Comparing equation (234) and equation (240), we identify the terms

\[
S^{(2)}(x^*) \equiv -A
\]

\[
R(x^*, \delta x) \equiv V(\delta x)
\]

\[
\frac{\partial \Gamma_B}{\partial x^*}(x^*) \equiv j.
\]

We can therefore think of equation (240) as an effective quadratic theory with free part \(A \) given by \(-S^{(2)}\), a small perturbing potential \(V \) given by \(R \) and a source \(j \) given by \(\frac{\partial \Gamma_B}{\partial x^*} \). From this identification by the linked cluster theorem (section §V A), all connected diagrams that are made up of the propagators (lines) \(\Delta = A^{-1} = \left(-S^{(2)}(x^*) \right)^{-1} \), vertices \(V(x) = R(x^*, x) \) and “external lines” \(j = \frac{\partial \Gamma_B}{\partial x^*}(x^*) \) contribute to \(\Gamma_B \); the latter are of course unlike the external lines appearing in \(W \), since \(\frac{\partial \Gamma_B}{\partial x^*} \) corresponds to \(s \) sub-diagram, as we will see below.
We now seek an approximation for the case that the integral is dominated by a narrow regime around the maximum of \(S \) close to \(x^* \) in the same spirit as in section \(\text{XIV A} \). This is precisely the case, if the exponent has a sharp maximum; formally we think of an intrinsic scale \(l \gg 1 \) present in the action. We will introduce this scale as a parameter \(l \) and rewrite equation (240) as

\[
- l \gamma^\text{\(l \)}(x^*) = \ln \int d\delta x \exp \left(\left(\frac{1}{2} \frac{\delta x^T s^{(2)}(x^*) \delta x + r(x^*, \delta x) + \gamma^{(1)^T}(x^*) \delta x} \right) \right),
\]

(241)

where we defined \(s^{(2)} := \frac{\partial^2}{\partial \delta x^2}, \gamma := l \gamma^\text{\(l \)} \). As before, we will use \(l \) as an expansion parameter. We remember from section \(\text{XIV A} \) that a diagram with \(n_L = n_\Delta - n_V + 1 \) loops has a prefactor \(l^{n_V - n_\Delta} = l^{1 - n_L} \). So the overall contribution to the integral diminishes with the number of loops.

Let us first imagine the term \(l^{\gamma^0_\text{\(l \)}}(x^*) \delta x \) was absent on the right hand side. The integral would then generate all connected Feynman diagrams with the propagator \(\frac{1}{2} \left[-s^{(2)} \right]^{-1} \) and the vertices in \(l r \). Due to the logarithm, by the linked cluster theorem, only connected diagrams contribute in which all legs of all vertices are contracted by propagators. The \(l \)-dependent factor of each such diagram would hence be \(l^{n_V - n_\Delta} = l^{1 - n_L} \), which counts the number of loops \(n_L \) of the diagram. Due to the prefactor \(l \) on the left hand side of equation (241), the contribution of a graph with \(n_L \) loops to \(\gamma^\text{\(l \)} \) comes with a factor \(l^{-n_L} \).

To find all contributing graphs, our reasoning will now proceed by induction in the number of loops and we successively compute

\[
\gamma^0_\text{\(l \)}, \gamma^1_\text{\(l \)}, \gamma^2_\text{\(l \)}, \ldots
\]

with the given number of loops in the superscript as \(\gamma^{n_L}_\text{\(l \)} \).

To zero-loop order, we already know that \(\Gamma - \ln Z(0) = -S \), so \(\gamma^0_\text{\(l \)} = 0 \). Proceeding to all one-loop contributions to \(\gamma^1_\text{\(l \)} \), we can therefore drop the term \(\gamma^{0}_\text{\(l \)} \). Since the vertices in \(R \), by construction, have three or more legs, they only yield connected diagrams with two or more loops. The only contribution we get is hence the integral over the Gaussian part of the action, i.e.

\[
\gamma^1_\text{\(l \)}(x^*) = - \frac{1}{l} \ln \int d\delta x \exp \left(\frac{1}{2} \frac{\delta x^T s^{(2)}(x^*) \delta x} \right)
\]

\[
= - \frac{1}{l} \ln \left((2\pi)^N \det(-S^{(2)}(x^*))^{-1} \right),
\]

\[
\Gamma^1_\text{\(l \)}(x^*) = l \gamma^1_\text{\(l \)}(x^*) = \frac{1}{2} \ln \left((2\pi)^{-N} \det(-S^{(2)}(x^*)) \right),
\]

(242)

where \(N \) is the dimension of \(x \) and the last step follows, because \(\det(A)^{-1} = \prod_i \lambda_i^{-1} = \det(A^{-1}) \). We now see that the one-loop correction grows as \(O(\ln(l)) \), which is smaller than \(O(l) \) of the zeroth order equation (233), a posteriori justifying our lowest order approximation.

In the context of quantum mechanics, the approximation to one-loop order is also called **semi-classical approximation**, because it contains the dominant quantum fluctuation corrections if the system is close to the classical limit; in this case \(\hbar \) plays the role of the expansion parameter \(l^{-1} \) [see also 23].

As in section \(\text{XIII} \) we denote the function \(\Gamma(x^*) \) by a hatched circle and each derivative adds one external leg to the symbol, so that the term \(\gamma^{(1)}_\text{\(l \)} = \partial x^* \gamma^\text{\(l \)} \) is denoted by:

\[
\partial x^* \gamma^\text{\(l \)} = \divideontimes \hbar \
\]

We will now make the iteration step. Assume we have calculated the contributions to \(\gamma^{n_L}_\text{\(l \)} \) up to loop-order \(n_L \).

The integral in equation (241) produces contributions at loop order \(n_L + 1 \) of two different types:

1. All vacuum diagrams (no external legs) made up of \(n_V \) vertices in \(l r \) and \(n_\Delta \) propagators \((-ls^{(2)})^{-1} \) with \(n_L + 1 = n_\Delta - n_V + 1 \).

2. All diagrams made of a subgraph of \(n_{L_1} \) loops composed of \(n_V \) vertices from \(l r \) and \(n_\Delta \) propagators \((-ls^{(2)})^{-1} \) with \(n_L = n_\Delta - n_V + 1 \) and the graphs of loop order \(n_{L_2} \leq n_L \) already contained in \(\gamma^{n_L}_\text{\(l \)} \), so that \(n_{L_1} + n_{L_2} = n_L + 1 \):

The term \(l \gamma^{(1)^T}_\text{\(l \)} \delta x = l \sum_{a=1} \gamma^{n_L}_\text{\(l \)} \delta x_a \) allows the contraction of the \(\delta x_a \) by the propagator to some other \(\delta x_b \) belonging to a vertex. For the example of \(n_{L_1} = 1 \) and \(n_{L_2} = n_L \) one such contribution would have the graphical representation:
Since the left portion of the diagram must have one or more loops and the factor l^{-1} from the connecting propagator $(−l s(2))^{-1}$ cancels with the factor l from $l γ^{(1)}_0$, we see that we only need diagrams with n_L or less loops on the right. So the iteration is indeed closed: We only need in the $n_L + 1$ step diagrams that we already calculated.

We see that a derivative $∂_a x^*$ attaches one leg with index a. The terms contained in $γ_0$ are diagrams, where the legs of all vertices are contracted by propagators. The derivative by x^* may act on two different components of such a diagram: a vertex $S^{(n)}(x^*) = l s^{(n)}(x^*)$, $n > 2$, or a propagator $Δ(x^*) = (−l s(2)(x^*))^{-1}$; this is because both depend on x^*. Note that the x^* dependence of these terms is the point around which the expansion is performed. The typical portion of such a diagram around a vertex $s^{(n)}$ therefore has the form

$$\ldots S^{(n)}_{1\ldots n}(x^*) \Pi_{i=1}^n Δ_{i,k_i}(x^*) \ldots,$$

where each of the legs $1, \ldots, n$ of the vertex $S^{(n)}$ are connected to a single propagator $Δ$. The other end of each of these propagators is denoted by the indices k_1, \ldots, k_n. Without loss of generality, we assume ascending indices of the first vertex. Applying the derivative $∂_a x^*$ to this diagram, the indicated portion [243] will lead to the contributions

$$\begin{align*}
\ldots ∂_a x^* & \left\{ S^{(n)}_{1\ldots n}(x^*) \Pi_{i=1}^n Δ_{i,k_i}(x^*) \right\} \ldots \\
& = \ldots S^{(n+1)}_{1\ldots n+1}(x^*) \Pi_{i=1}^n Δ_{i,k_i}(x^*) \ldots \\
& \quad + \ldots S^{(n)}_{1\ldots n}(x^*) \sum_{j=1}^n \{ Π_{i < j} Δ_{i,k_i}(x^*) \} ∂_a x^* Δ_{j,k_j}(x^*) \ldots
\end{align*}$$

The first term in the second last line adds one leg a to the vertex, therefore converting this vertex from an n-point to an $n + 1$ point vertex. To see the graphical representation of the last line, we rewrite the derivative $∂_a x^* Δ_{m,k_l}(x^*)$ by expressing the propagator $Δ = −(S(2))^{-1}$, differentiating $Δ S(2) = −1$ and treat $Δ$ as a matrix in its pair of indices. Differentiating the identity yields

$$\partial_a x^* \{ Δ S^{(2)} \} = 0$$

$$\left(∂_a x^* Δ \right) S^{(2)} + Δ ∂_a x^* S^{(2)} = 0$$

$$\partial_a x^* Δ_{kl} = (Δ S^{(3)}_{ab} Δ)^{kl},$$

showing that the derivative of the propagator is transformed into a three point vertex that has one leg labeled a and is, by the pair of propagators, connected to the remaining part of the diagram.

Thus the differentiation of the portion of the graph in equation [244], for the example of $n = 3$, takes on the diagrammatic representation
The meaning of the last expression is the conversion of the connecting line between \(m_j \) to \(k_j \) into a connecting line between \(m_j \) and \(k_j \) to one leg of the three-point vertex \(S^{(3)} \) that in addition has another leg \(a \).

We first note that the latter contribution comes with a minus sign, due to the minus sign on the left hand side of equation (241), while the vacuum diagrams produced by step \([1]\) comes with a plus sign. Second, we realize that the contributions of the terms \([2]\) have the property of being one-line reducible (also called one-particle reducible), which means that the diagram can be disconnected by cutting a single line, namely the line which connects the two subgraphs. Third, we see that the power in \(l \) of the latter contribution is \(l^{-(n_L+1)} \), because the factor \(l^{-1} \) in the connecting propagator and the factor \(l \) in \(l \partial_x \gamma_T \) cancel each other. So the power is the same as a \(n_L + 1 \) loop contribution constructed from step \([1]\). In conclusion we see, that the graphs constructed by step \([2]\) cancel all one-particle reducible contributions constructed by \([1]\) so that only one-line irreducible (or one-particle irreducible, 1PI) graphs remain in \(\gamma_H \).

Coming back to our initial goal, namely the expansion of the vertex generating function in terms of fluctuations centered around the mean value, we see again how the term \(l \partial_x \gamma_T \) successively includes the contribution of fluctuations to the effective value of the source \(j_H(x^*) = l \partial_x \gamma_T \) that is required to reach the desired mean value \(x^* = \langle x \rangle \) in the given approximation of \(\gamma_H \). In conclusion we have found

\[
\begin{align*}
\Gamma(x^*) - \ln Z(0) &= -S(x^*) + \Gamma_H(x^*), \\
\Gamma_H(x^*) &= -\frac{1}{2} \ln \left((2\pi)^{-N} \det(-S^{(2)}(x^*))\right) - \sum_{\text{vacuum graphs}(\Delta, R)} \sum_{\text{1PI}} \\
\Delta(x^*) &= -\left(S^{(2)}(x^*)\right)^{-1}.
\end{align*}
\]

where the contribution of a graph to \(\Gamma_H \) declines with the number of its loops.

If we are interested in the \(n \)-point vertex function, we may directly calculate it from the diagrams with \(n \) legs \(\ldots \). We see from the consideration above in equation (244) that the differentiation by \(x^* \) may attach a leg either at a vertex contained in \(R \) or it may insert a three-point vertex into a propagator.

The combinatorial factor of a diagram contributing to \(\Gamma^{(n)} \), with \(n \) external legs \(\ldots \), is the same as for the diagrams contributing to \(W^{(n)} \) with \(n \) external legs \(j \): Since an external line \(j \) in a contribution to \(W \) also connects to one leg of an interaction vertex, just via a propagator, the rules for the combinatorial factor must be identical. In the following example we will see how to practically perform the looopwise approximation for a concrete action.

C. Example: \(\phi^3 + \phi^4 \)-theory

Suppose we have the action

\[
S_l(x) = l \left(-\frac{1}{2} x^2 + \frac{\alpha}{3!} x^3 + \frac{\beta}{4!} x^4\right).
\]

with a parameter \(l > 0 \) and possibly \(l \gg 1 \), so that fluctuations are small.

We start with the zero loop contribution, which by equation (239), is

\[
\Gamma^0(x^*) - \ln Z(0) = -S_l(x^*) = l \left(\frac{1}{2} x^2 - \frac{\alpha}{3!} x^3 - \frac{\beta}{4!} x^4\right). \tag{245}
\]

To obtain the corrections due to fluctuations collected in \(\Gamma_H \) according to equation (240), we need to determine the effective propagator \(\left(-S_l^{(2)}\right)^{-1} \) as

\[
\begin{align*}
S_l^{(2)}(x^*) &= l \left(-1 + \alpha x^* + \frac{\beta}{2} x^{*2}\right) \\
\Delta(x^*) &= -\left(S_l^{(2)}(x^*)\right)^{-1} = \frac{1}{l \left(1 - \alpha x^* - \frac{\beta}{2} x^{*2}\right)}.
\end{align*}
\]
The one-loop correction is therefore given by the Gaussian integral appearing in equation, leading to
\[\Gamma^1_l(x^*) = \ln \left(\frac{-S^{(2)}_l(x^*)}{2\pi} \right) = \frac{1}{2} \ln \left(\frac{l(1 - \alpha x^* - \beta^2 x^{*2})}{2\pi} \right) \] \hspace{1cm} (247)

The interaction vertices are
\[\frac{1}{3!} S^{(3)}_l(x^*) = \frac{1}{3!} (\alpha l + \beta l x^*) \]
\[\frac{1}{4!} S^{(4)}_l = \frac{1}{4!} \beta l \]
\[S^{(4)} = 0. \] \hspace{1cm} (248)

Suppose we are only interested in the correction of the self-consistency equation for the average \(\langle x \rangle \), given by the solution to the equation of state (185), \(\partial \Gamma / \partial x^* = 0 \) in the absence of fields. We have two possibilities: Either we calculate the vertex function \(\Gamma^1_l \) to first order, given by (247) and then take the derivative. This approach yields
\[\frac{\partial \Gamma^1_l}{\partial x} = \frac{1}{2} \frac{1}{l(1 - \alpha x^* - \beta^2 x^{*2})}. \] \hspace{1cm} (249)

Alternatively, we may calculate the same contribution directly. We therefore only need to consider those 1PI diagrams that have one external leg (due to the derivative by \(x \)) and a single Gaussian integral (one loop). The only correction is therefore a tadpole diagram including the three-point vertex and the propagator, with the combinatorial factor is 3 (three legs to choose from the three point vertex to connect the external leg to and 1/3! stemming from the Taylor expansion of the action), which yields the same result as (249). Both corrections are of order \(\mathcal{O}(1) \) in \(l \). So in total we get at 1 loop order with \(-S^{(1)}_l(x^*) = l \left(x^* + \frac{\alpha}{2!} x^{*2} + \frac{\beta}{3!} x^{*3} \right) \) the mean value \(x^* \) as the solution of
\[j = \Gamma^{(1)} \text{ 1 loop order } \approx -S^{(1)}(x^*) + \Gamma^1_l(x^*) \]
\[= l \left(x^* - \frac{\alpha}{2!} x^{*2} - \frac{\beta}{3!} x^{*3} \right) + \frac{1}{2} \frac{\alpha + \beta x^*}{-1 + \alpha x^* + \frac{\beta}{2} x^{*2}}. \]

The tree level term is here \(\mathcal{O}(1) \), the one loop term \(\mathcal{O}(1) \). The two-loop corrections \(\mathcal{O}(l^{-1}) \) are calculated in the exercises. The resulting approximations of \(\Gamma \) are shown in figure 10.

D. Appendix: Equivalence of loopwise expansion and infinite resummation

To relate the loopwise approximation to the perturbation expansion, let us assume a setting where we expand around a Gaussian
\[S(x) = l \left(-\frac{1}{2} x^T A x + \epsilon V(x) \right). \] \hspace{1cm} (250)

To relate the two approximations, we now have both expansion parameters, \(l \) and \(\epsilon \). Here \(\epsilon \) just serves us to count the vertices, but we will perform an expansion in \(l \). For the tree-level approximation, the equation of state (185) takes the form
\[j \frac{\partial \Gamma_0(x^*)}{\partial x^*} = l (A x^* - \epsilon V^{(1)}(x^*)). \]
We may rewrite the last equation as \(x^* = A^{-1} j/l + A^{-1} \epsilon V^{(1)}(x^*) \) and solve it iteratively
\[
\begin{align*}
x_0^* &= A^{-1} j/l \\
x_1^* &= A^{-1} j/l + A^{-1} \epsilon V^{(1)}(A^{-1} j/l) \\
x_2^* &= A^{-1} j/l + A^{-1} \epsilon V^{(1)}(A^{-1} j/l + A^{-1} \epsilon V^{(1)}(A^{-1} j/l)) \\
\vdots
\end{align*}
\] (251)

Diagrammatically we have a tree structure, which for the example \((229)\) and setting \(\beta = 0 \) would have \(\epsilon V(x) = \frac{2}{3} x^3 \) so \(\epsilon V^{(1)}(x) = 3 \cdot \frac{2}{3} x^2 \), where the factor 3 can also be regarded as the combinatorial factor of attaching the left leg in the graphical notation of the above iteration.

\[
x^* = \frac{j/l}{3} + \frac{j/l}{3} + \frac{j/l}{3} + 2 \cdot \frac{j/l}{3} + \frac{j/l}{3} + \frac{j/l}{3} + \ldots,
\]

justifying the name “tree-level approximation”. We see that we effectively re-sum an infinite number of diagrams from ordinary perturbation theory. We may also regard \(x^* = W^{(1)} \) and hence conclude that \(W \) in this approximation corresponds to the shown graphs, where an additional \(j \) is attached to the left external line.

This property of resummation will persist at higher orders. It may be that such a resummation has better convergence properties than the original series.

We may perform an analogous computation for any higher order in the loopwise approximation. We will exemplify this here for the semi-classical approximation or one-loop corrections. To this end it is easiest to go back to the integral expression equation \((242)\) in the form
\[
\Gamma_l^1(x^*) = -\ln \int d\delta x \exp \left(\frac{1}{2} \delta x^T S^{(2)}(x^*) \delta x \right)
\] (252)

and assume an action of the form equation \((250)\). So we have \(S^{(2)}(x) = -lA + \epsilon V^{(2)}(x) \) and hence equation \((252)\) takes the form
\[
\Gamma_l^1(x^*) = -\ln \int d\delta x \exp \left(\frac{1}{2} \delta x^T lA \delta x + \frac{\epsilon}{2} \delta x^T lV^{(2)}(x^*) \delta x \right).
\]

We may consider \(\Delta = l^{-1} A^{-1} = \) as the propagator and the second quadratic term as the interaction \(\frac{\epsilon}{2} \delta x^T lV^{(2)}(x) \delta x = \) . Due to the logarithm we only get connected vacuum diagrams. A connected diagram with \(k \) vertices and all associated \(\delta x \) being contracted necessarily has a ring structure. Picking one of the vertices and one of its legs at random, we have \(k - 1 \) identical other vertices to choose from and a factor 2 to select one of its legs to connect to. In the next step we have \(2 (k - 2) \) choices to that we finally arrive at
\[
\begin{array}{c}
2^{k-1}(k-1)! \\
\hline
k=4 \\
\text{vertices}
\end{array}
\]

Since each vertex comes with \(\frac{\epsilon}{2} \) and we have an overall factor \(\frac{1}{2\pi i} \), we get
\[
\Gamma_l^1(x^*) = -\frac{1}{2} \ln ((2\pi)^N \det(lA)^{-1}) - \frac{1}{2} \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \epsilon^k \frac{\operatorname{tr} (A^{-1} V^{(2)}(x^*))^k}{k \text{ terms } V^{(2)}},
\] (253)
where the latter term is meant to read (on the example $k = 2$) \(\text{tr} \ A^{-1}V^{(2)} A^{-1}V^{(2)} = \sum_{i_{1}i_{2}i_{3}i_{4}} A_{i_{1}i_{2}}^{-1} V^{(2)}_{i_{2}i_{3}} A_{i_{3}i_{4}}^{-1} V^{(2)}_{i_{4}i_{1}} \) etc, because the propagator \(A_{ik}^{-1} \) contracts corresponding \(\delta x_{i} \) and \(\delta x_{k} \) associated with the terms \(\delta x_{i} V^{(2)}_{ik} \delta x_{k} \).

We make three observations:

- In each term, the vertices form a single loop.
- We get a resummation of infinitely many terms from perturbation theory, had we expanded the action around some non-vanishing \(x^{*} \).
- The latter term in (253) has the form of the power series of \(\ln(1 - x) = \sum_{n=1}^{\infty} \frac{x^{n}}{n} \), so we can formally see the result as \(\ln(-S^{(2)}) = \ln(lA - l\epsilon V^{(2)}) = \ln lA + \ln(1 - A^{-1}V^{(2)}) = \ln lA + \sum_{k=1}^{\infty} \frac{(A^{-1}V^{(2)})^{k}}{k} \). Further one can use that \(\det(-S^{(2)}) = \prod_{i} \lambda_{i} \) with \(\lambda_{i} \) the eigenvalues of \(-S^{(2)} \) and hence \(\ln \det(M) = \sum_{i} \ln \lambda_{i} = \text{tr} \ln(M) \), because the trace is invariant under the choice of the basis.
- The \(x^{*} \)-dependence in this case is only in the \(V^{(2)}(x^{*}) \). \(A \) instead is independent of \(x^{*} \). A correction to the equation of state would hence attach one additional leg to each term in these factors, converting \(V^{(2)} \rightarrow V^{(3)} \).

\[
W_{\Gamma}(j) := \int dx \exp \left(l \left(-\Gamma(x) + j^{T} x \right) \right), \tag{254}
\]

where we use the effective action \(\Gamma \) in place of the action \(S \). We also introduced an arbitrary parameter \(l \) to rescale the exponent. The quantity \(W_{\Gamma,l} \) does not have any physical meaning. We here introduce it merely to convince ourselves that \(\Gamma \) is composed of all one-line irreducible diagrams. As in section §XIVB, it will serve us to organize the generated diagrams in terms of the numbers of loops involved.

For large \(l \gg 1 \), we know from section §XIVB that the dominant contribution to the integral on the right side of equation (254) originates from the points at which

\[
\frac{\partial}{\partial x} \left(-\Gamma(x) + j^{T} x \right) = 0 \quad \frac{\partial \Gamma}{\partial x} = j,
\]

which is the equation of state (255) obtained earlier for the Legendre transform. In this limit, we obtain the approximation of equation (254) as

\[
W_{\Gamma,l \rightarrow \infty}(j) = \sup_{x} j^{T} x - \Gamma(x),
\]

which shows that \(W_{\Gamma,l} \) approaches the Legendre transform of \(\Gamma \). Since the Legendre transform is involutive (see section §XI), we conclude that \(W_{\Gamma,l \rightarrow \infty} \rightarrow W(j) \) becomes the cumulant generating function of our original theory. This view explains the name effective action, because we obtain the true solution containing all fluctuation corrections as the \(x \) that minimizes \(\Gamma \) in the same way as we obtain the equations of motion of a classical problem by finding the stationary points of the Lagrangian.

The property of one-line irreducibility now follows from section §XIVB that to lowest order in \(l \) only tree level diagrams contribute: The zero loop approximation of an ordinary action replaces \(\Gamma_{0}(x^{*}) = \ln Z(0) = -S(x^{*}) \), which

\[
\text{Appendix: Interpretation of } \Gamma \text{ as effective action}
\]

We can provide a formal reasoning, why \(\Gamma \) is called “effective action”. We here follow [89, section 16.2]. To this end let us define the cumulant generating function \(W_{\Gamma} \)

\[
\exp(lW_{\Gamma,l}(j)) := \int dx \exp \left(l \left(-\Gamma(x) + j^{T} x \right) \right),
\]

where we use the effective action \(\Gamma \) in place of the action \(S \). We also introduced an arbitrary parameter \(l \) to rescale the exponent. The quantity \(W_{\Gamma,l} \) does not have any physical meaning. We here introduce it merely to convince ourselves that \(\Gamma \) is composed of all one-line irreducible diagrams. As in section §XIVB, it will serve us to organize the generated diagrams in terms of the numbers of loops involved.

For large \(l \gg 1 \), we know from section §XIVB that the dominant contribution to the integral on the right side of equation (254) originates from the points at which

\[
\frac{\partial}{\partial x} \left(-\Gamma(x) + j^{T} x \right) = 0
\]

which is the equation of state (255) obtained earlier for the Legendre transform. In this limit, we obtain the approximation of equation (254) as

\[
W_{\Gamma,l \rightarrow \infty}(j) = \sup_{x} j^{T} x - \Gamma(x),
\]

which shows that \(W_{\Gamma,l} \) approaches the Legendre transform of \(\Gamma \). Since the Legendre transform is involutive (see section §XI), we conclude that \(W_{\Gamma,l \rightarrow \infty} \rightarrow W(j) \) becomes the cumulant generating function of our original theory. This view explains the name effective action, because we obtain the true solution containing all fluctuation corrections as the \(x \) that minimizes \(\Gamma \) in the same way as we obtain the equations of motion of a classical problem by finding the stationary points of the Lagrangian.

The property of one-line irreducibility now follows from section §XIVB that to lowest order in \(l \) only tree level diagrams contribute: The zero loop approximation of an ordinary action replaces \(\Gamma_{0}(x^{*}) = \ln Z(0) = -S(x^{*}) \), which
contains all vertices of the original theory. The equation of state, as shown in section XIV.D can be written as all possible tree-level diagrams without any loops.

Applied to the integral equation (254), which, at lowest order is the full theory including all connected diagrams with arbitrary numbers of loops, we see that all these contributions are generated by all possible tree level diagrams composed of the components of \(\Gamma \). Expanding \(\Gamma(x^*) \) around \(x_0 \) we get from the equation of state (185)

\[
j = \Gamma^{(2)}(x_0)(x^* - x_0) + \sum_{k=3}^{\infty} \frac{1}{(W^{(2)})^{-1}} \Gamma^{(k)}(x_0)(x^* - x_0)^{k-1}.
\]

We can therefore solve the equation of state in the same iterative manner as in (251) with \(\delta x := x^* - x_0 \)

\[
\begin{align*}
\delta x_1^0 &= W^{(2)}_{ik} j_k \\
\delta x_1^1 &= W^{(2)}_{ik} j_k + \frac{1}{2!} \Gamma^{(3)}_{ikl} W^{(2)}_{kn} W^{(2)}_{lm} j_n j_m \\
\vdots
\end{align*}
\]

The connections in these diagrams, in analogy to equation (240), are made by the effective propagator \((\Gamma^{(2)})^{-1} = W^{(2)} \) (following from equation (224)), which are lines corresponding to the full second cumulants of the theory. The vertices are the higher derivatives of \(\Gamma \), i.e. the vertex functions introduced in equation (222). This view is therefore completely in line with our graphical decomposition developed in section XIII and again shows the tree-level decomposition of \(W \) into vertex functions: Here we have the explicit expansion of \(\delta x = W^{(1)} \). This in turn means that the components of \(\Gamma \) can only be those diagrams that are one-line irreducible, i.e. that cannot be disconnected by cutting one such line, because otherwise the same diagram would be produced twice.

F. Loopwise expansion of self-consistency equation

We here come back to the example from section XI.A and want to obtain a loopwise approximation for the one-dimensional self-consistency equation

\[
x = J_0 \phi(x) + \mu + \xi.
\]

We need to construct the moment-generating function. We define a function \(f(x) = x - \psi(x) - \mu \) so that we may express \(x \) as a function of the noise realization \(x = f^{-1}(\xi) \). We can define the moment-generating function

\[
Z(j) = \langle \exp(j f^{-1}(\xi)) \rangle_{\xi} = \langle \int dx \delta(x - f^{-1}(\xi)) \exp(j x) \rangle_{\xi},
\]

where in the last step we introduced the variable \(x \) explicitly to get a usual source term.

Since the constraint is given by an implicit expression of the form \(f(x) = \xi \), with \(f(x) = x - \psi(x) \) we need to work out what \(\delta(f(x)) \) is, which follows from substitution as

\[
\int g(x) \delta(f(x)) dx = \int g(f^{-1}(y)) \frac{1}{dy} dy = \int g(f^{-1}(y)) \frac{1}{f'(f^{-1}(y))} dy = \frac{g(f^{-1}(0))}{f'(f^{-1}(0))}
\]

\[
\delta(f(x) - \xi) f'(x) \rightarrow \delta(x - f^{-1}(\xi)),
\]

We can therefore rewrite (256) as

\[
Z(j) \langle \int dx f'(x) \delta(f(x) - \xi) \exp(j x) \rangle_{\xi},
\]

(258)
which satisfies $Z(j) = 0$ as it should. We now resolve the Dirac δ constraint by the introduction of an auxiliary field \tilde{x} and represent the Dirac δ in Fourier domain as

$$\delta(x) = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} e^{\tilde{x}x} d\tilde{x}.$$

We get

$$Z(j) = \int_{-\infty}^{\infty} dx \int_{-i\infty}^{i\infty} \frac{d\tilde{x}}{2\pi i} (1 - \psi'(x)) \exp\left(\tilde{x} (x - \psi(x)) - \mu \tilde{x} + j x\right) \left(\exp(-\tilde{x}\xi)\right)_\xi,$$

where we identified the moment-generating function of the noise in the underbrace and inserted $f' = 1 - \psi'$. We notice that μ couples to \tilde{x} in a similar way as a source term. We can therefore as well introduce a source \tilde{j} and remove μ from the moment generating function

$$Z(j, \tilde{j}) := \int_{-\infty}^{\infty} dx \int_{-i\infty}^{i\infty} \frac{d\tilde{x}}{2\pi i} (1 - \psi'(x)) \exp(S(x, \tilde{x}) + jx + \tilde{j}\tilde{x})$$

$$S(x, \tilde{x}) := \tilde{x} (x - \psi(x)) + \frac{D}{2} \tilde{x}^2.$$

In determining the solution in the presence of μ, we need to ultimately set $\tilde{j} = -\mu$.

We hence conclude that there cannot be any diagrams in $W(j)$ with only external legs \tilde{j}.

To obtain the loopwise expansion of $\Gamma(x^*, \tilde{x}^*)$, we can start at the lowest order. To lowest order we have equation (233) and therefore get the pair of equations

$$j = -\frac{\partial S(x^*, \tilde{x}^*)}{\partial x} = -\tilde{x}^* \psi'(x^*)$$

$$\tilde{j} = -\frac{\partial S(x^*, \tilde{x}^*)}{\partial \tilde{x}} = x^* - \psi(x^*) + D \tilde{x}^*.$$

The first equation, for $j = 0$ allows the solution $\tilde{x}^* = \langle \tilde{x} \rangle = 0$, which we know to be the true one from the argument above. Inserted into the second equation, we get with $j = -\mu$

$$x^* = \psi(x^*) + \underbrace{j_0}_{\psi(0)}$$

which is in line with our naive solution (177).

To continue to higher orders, we need to determine the effective propagator from the negative inverse Hessian of S, which is

$$S^{(2)}(x^*, \tilde{x}^*) = \begin{pmatrix} -\tilde{x}^* \psi'(x^*) & 1 - \psi(1)(x^*) \\ 1 - \psi(1)(x^*) & D \end{pmatrix}.$$

From the general property that $\langle \tilde{x} \rangle = 0$, we know that the correct solution of the equation of state must expose the same property. So we may directly invert (263) at the point $\tilde{x}^* = \langle \tilde{x} \rangle = 0$, which is

$$\Delta(x^*, 0) = (-S^{(2)}(x^*, 0))^{-1} = \begin{pmatrix} D & \frac{1}{1 - \psi(1)(x^*)} \\ \frac{1}{1 - \psi(1)(x^*)} & 0 \end{pmatrix} =: \begin{pmatrix} \longleftarrow & \longrightarrow & \longrightarrow \\ \longleftarrow & 0 & \longrightarrow \end{pmatrix}.$$

We see that to lowest order hence $\langle \tilde{x}^2 \rangle = 0$, indicated by the vanishing lower right entry. In the graphical notation we chose the direction of the arrow to indicate the contraction with a variable x (incoming arrow) or a variable \tilde{x} (outgoing arrow).
We conclude from the argument that \(\langle \tilde{x}^2 \rangle = 0 \) that the correction to the self-energy has to vanish as well \(\Sigma_{xx} = 0 \). This can be seen by writing the second cumulant with (226) as

\[
W^{(2)} = (\Gamma^{(2)})^{-1} = (-S^{(2)} + \Sigma)^{-1}
\]

\[
= \left[- \begin{pmatrix} 0 & 1 - \psi^{(1)}(x^*) \\ 1 - \psi^{(1)}(x^*) & D \end{pmatrix} + \left(\begin{pmatrix} \Sigma_{xx} & \Sigma_{x\tilde{x}} \\ \Sigma_{\tilde{x}x} & \Sigma_{\tilde{x}\tilde{x}} \end{pmatrix} \right)^{-1} \right].
\]

In order for \(W^{(2)}_{jj} \) to vanish, we need a vanishing \(\Sigma_{xx} \), otherwise we would get an entry \(W^{(2)}_{jj} \propto \Sigma_{xx} \).

The interaction vertices, correspondingly, are the higher derivatives of \(S \). Due to the quadratic appearance of \(\tilde{x} \), we see that no vertices exist that have three or more derivatives by \(\tilde{x} \). Because \(\tilde{x}^* = 0 \), we see that all \(\tilde{x} \) must be gone by differentiation for the vertex to contribute. The only vertex at third order therefore is

\[
S^{(3)}_{\tilde{x}xx} = -\frac{1}{2!} \psi^{(2)}(x^*) = \tilde{x} \rightarrow x,
\]

where the factor \(1/2! \) stems from the Taylor expansion due to the second derivative of \(S^{(3)}_{\tilde{x}xx} \) by \(x \). We observe that at arbitrary order \(n \) we get

\[
S^{(n)}_{\tilde{x}xx} = -\frac{1}{n - 1!} \psi^{(n-1)}(x^*).
\]

We are therefore ready to apply the loopwise expansion of the equation of state.

We know from the general argument above that we do not need to calculate any loop corrections to (261), because we know that \(\tilde{x}^* \equiv 0 \). We obtain the one-loop correction to the equation of state (262) from the diagram with one external \(\tilde{x} \)-leg

\[
\frac{\partial \Gamma_{\tilde{x}}}{\partial \tilde{x}} = \frac{(-1)\left(-\frac{1}{2!} \psi^{(2)}(x^*)\right) D}{(1 - \psi'(x^*))^2 \left(-S(a)_{xx}\right)^{-1}} \frac{J_0 \phi^{(2)}(x^*)}{2 (1 - J_0 \phi^{(1)}(x^*))^2}.
\]

Note that there is no combinatorial factor 3 here, because there is only one variable \(\tilde{x} \) to choose for the external leg. So together with the lowest order (262) we arrive at the self-consistency equation for \(x^* \)

\[
\dot{z} = -\mu = -\frac{\partial S(x^*, \tilde{x}^*)}{\partial \tilde{x}} - \frac{D}{2} \frac{J_0 \phi^{(2)}(x^*)}{(1 - J_0 \phi^{(1)}(x^*))^2}.
\]

Comparing to (180), we see that we have recovered the same correction. But we now know that the additional term is the next to leading order systematic correction in terms of the fluctuations. Also, we may obtain arbitrary higher order corrections. Moreover, we are able to obtain corrections to other moments, such as the variance by calculating the self-energy (see exercises). From our remark further up we already know that \(\Sigma_{xx} \equiv 0 \), so that diagrams

\[
0 \equiv \tilde{x} \rightarrow x
\]

which have two external \(x \)-legs need to vanish and therefore do not need to be calculated.
XV. LOOPWISE EXPANSION IN THE MSRDJ FORMALISM

We now want to apply the loopwise expansion developed in section §XIV to a stochastic differential equation, formulated as an MSRDJ path integral. We remember from section §XIV that the loopwise expansion is a systematic perturbative technique, whose expansion parameter is the number of loops in the diagrams, which we showed to measure the fluctuations in the system.

A. Intuitive approach

Before embarking on this endeavor in a formal way, we would like to present the naive approach of obtaining an expansion for small fluctuations for a stochastic differential equation in the limit of weak noise, i.e. for weak variance of the driving noise $W_W(0) \ll 1$ in equation (90), where $W_W(j) = \ln Z_W(j)$ is the cumulant generating functional of the stochastic increments. We want to convince ourselves that to lowest order, the formal approach agrees to our intuition.

To illustrate the two approaches, we consider the stochastic differential equation

$$dx(t) = f(x(t)) \, dt + dW(t)$$

which has action in the general (possibly non-Gaussian noise) case

$$S[x, \tilde{x}] = \tilde{x}^T (\partial_t f - f(x)) + W_W(-\tilde{x}).$$

The naive way of approximating equation (266) for small noise is the replacement of the noise drive by its mean value $\langle dW(t) \rangle = \frac{\delta W_W(0)}{\delta j_W(t)} dt \equiv W_W^{(1)}(0) dt = : \bar{W}(t) \, dt$ (using that the derivative $W_W^{(1)}(0)$ is the mean stochastic increment at time t). This yields the ODE

$$\partial_t x = f(x(t)) + \bar{W}(t).$$

We will now check if the lowest order loopwise expansion yields the same result. To this end we use equation (233), i.e. $\Gamma_0[x, \tilde{x}] = -S[x, \tilde{x}]$ and obtain the pair of equations from the equation of state equation (185)

$$-\frac{\delta S[x, \tilde{x}]}{\delta x(t)} = \frac{\delta \Gamma_0[x, \tilde{x}]}{\delta x(t)} \equiv j(t),$$

$$-\frac{\delta S[x, \tilde{x}]}{\delta \tilde{x}(t)} = \frac{\delta \Gamma_0[x, \tilde{x}]}{\delta \tilde{x}(t)} \equiv \tilde{j}(t).$$

The explicit forms of these equations with equation (266) is

$$\left(\partial_t + f'(x^*(t)) \right) \tilde{x}^*(t) = j(t),$$

$$\partial_t x^*(t) - f(x^*(t)) - W_W^{(1)}(\tilde{x}^*) = -\tilde{j}(t),$$

where in the first line we used integration by parts to shift the temporal derivative to \tilde{x}^*, assuming negligible boundary terms at $t \to \pm \infty$. In the absence of external fields $j = \tilde{j} = 0$, the second equation is hence identical to the naive approach equation (267), if $\tilde{x}^* \equiv 0$. The first equation indeed admits this solution. Interestingly, the first equation has only unstable solutions if and only if the linearized dynamics for x (which is $(\partial_t - f'(x^*)) \delta x$ see below) is stable and vice versa. So the only finite solution of the first equation is the vanishing solution $\tilde{x}^* \equiv 0$.

We have anticipated the latter result from the perturbative arguments in section §XB to all orders the moments of \tilde{x} vanish for $j = 0$. We hence know from the reciprocity relationship equation (180) between $W_W^{(1)}[j, \tilde{j}] = (x^*, \tilde{x}^*)$ and $\Gamma^{(1)}[x^*, \tilde{x}^*] = (j, \tilde{j})$ that the minimum of $\Gamma[x, \tilde{x}]$ must be attained at $\tilde{x}^* = \langle \tilde{x} \rangle = 0$ for any value of $j(t)$. Solving the equations of state (268) with a non-zero $j(t)$, this property ceases to be valid, in line with equation (268). A vanishing source j, however, does not pose any constraint to the applicability to physical problems, since j does not have any physical meaning. The freedom to choose a non-zero j in equation (268), on the contrary, is useful, because it appears as the inhomogeneity of the system (see section §VII D) and hence allows us to determine the true mean value of the fields in the presence of an external drive to the system.

Continuing the naive approach to include fluctuations, we could linearize the equation (266) around the solution x^*, defining $\delta x(t) = x(t) - x^*(t)$ with the resulting SDE for the fluctuation δx

$$d\delta x(t) = f'(x^*(t)) \delta x(t) \, dt + dW(t) - \bar{W}(t) \, dt.$$
The equation is linear in δx and the driving noise $dW(t) - \tilde{W}(t) dt$, by construction, has zero mean. Taking the expectation value of the last equation therefore shows that, for stable dynamics, $\langle \delta x(t) \rangle$ decays to 0, so δx has zero mean (is a centered process). Its second moment is therefore identical to the second cumulant, for which equation \[269\]
yields the differential equation
\[
(\partial_t - f'(x^*(t)))(\partial_s - f'(x^*(s)))(\delta x(t) \delta x(s)) = \delta(t - s) W^{(2)}_{W,t},
\]
where we used that the centered increments $dW(t) - \tilde{W}(t)$ are uncorrelated between $t \neq s$ and hence have the covariance
\[
\delta(t - s) W^{(2)}_{W,t} dt ds.
\]
We now want to see if we get the same result by the formal approach. We may therefore determine the Hessian
\[
\Gamma^{(2)}_{0,t,s}[x^*, \tilde{x}] = \text{covariance W}^{(2)}
\]
leading to the set of four differential equations
\[
\delta(t - u) = (\partial_t + f'(x^*(t))) \langle \tilde{x}(t) x(u) \rangle
\]
\[
0 = -(\partial_t + f'(x^*(t))) \langle \tilde{x}(t) \tilde{x}(u) \rangle
\]
\[
0 = (\partial_t + f'(x^*(t))) \langle x(t) x(u) \rangle - W^{(2)}_{W,t}(0) \langle \tilde{x}(t) x(u) \rangle
\]
\[
\delta(t - u) = (\partial_t + f'(x^*(t))) \langle x(t) \tilde{x}(u) \rangle - W^{(2)}_{W,t}(0) \langle \tilde{x}(t) \tilde{x}(s) \rangle.
\]
For stable dynamics of x, the operator in the second equation is necessarily unstable, because the temporal derivative has opposite sign. The only admissible finite solution is therefore the trivial solution $\langle \tilde{x}(t) \tilde{x}(u) \rangle \equiv 0$. The last equation therefore rewrites as
\[
\delta(t - u) = (\partial_t + f'(x^*(t))) \langle x(t) \tilde{x}(u) \rangle.
\]
Applying the operator $(-\partial_u + f'(x^*(u)))$ to the third equation and using the last identity we get
\[
(\partial_t - f'(x^*(t)))(\partial_u - f'(x^*(u))) \langle x(t) x(u) \rangle = \delta(t - u) W^{(2)}_{W,t}(0),
\]
which is the same result as obtained by the intuitive approach in equation \[270\].

So to lowest order in the loopwise expansion, we see that the naive approach is identical to the systematic approach. Up to this point we have of course not gained anything by using the formal treatment. Going to higher orders in the loopwise expansion, however, we will obtain a systematic scheme to obtain corrections to the naive approach. The fluctuations of δx obviously could change the mean of the process. This is what will, by construction, be taken into account self-consistently.

B. Loopwise corrections to the effective equation of motion

In the following, we want to use the loopwise expansion to approximate the average value of the stochastic variable x. Let us assume that it fulfills the stochastic differential equation
\[
dx + x dt = J\phi(x) dt + dW(t),
\]
where $J\phi(x)$ is the drift term and $dW(t)$ is the Wiener process. The loopwise expansion involves expanding the function $\phi(x)$ in powers of x and then retaining terms up to a certain order. The leading term is the trivial solution $x(t) = 0$, which is obtained by setting $\phi(x) = 0$. The next term in the expansion is the first-order correction
\[
\delta x(t) = J\phi(x(t)) dt,
\]
and the higher-order corrections follow similarly.
where

$$\phi(x) = J \left(x - \alpha \frac{x^3}{3!} \right)$$

and dW is white noise with

$$\langle dW(t) \rangle = 0, \langle dW(t) \, dW(t') \rangle = D \delta_{tt'} \, dt.$$

The fix points of this ODE in the noiseless case (i.e. $D = 0$) are

$$x_0 := 0, \quad x_\pm := \sqrt{3! \frac{J-1}{\alpha J}}, \quad \text{for} \quad \frac{J-1}{\alpha J} > 0.$$

The trivial fix point x_0 is stable as long as $J < 1$ and the fix points x_\pm are stable for $J > 1$. For $\alpha < 0$ and $0 < J < 1$ or $\alpha > 0$ and $J < 1$, the nontrivial fix points exist, but are unstable. In other words: If $\alpha > 0$, the system becomes bistable if the level of excitation is high enough and if $\alpha < 0$, it explodes for too high excitation.

Due to the fluctuations, the average $\lim_{t \to \infty} \langle x \rangle(t)$ will deviate from x_0. We will determine this deviation in the following.

For this, we need the action of the stochastic ODE

$$S[x, \dot{x}] = \dot{x}^T \left[(\partial_t + 1 - J) x + \frac{\alpha J}{3!} x^3 \right] + \frac{D}{2} \dot{x}^2 \ddot{x}.$$

We now want to calculate the vertex-generating function successively in different orders of numbers of loops in the Feynman diagrams. To lowest order \cite{233}, we have

$$\Gamma_0[x^*, \dot{x}^*] = -S[x^*, \dot{x}^*]$$
We know from the general proof in section [IXA] and from the remarks in [XVA] that the true mean value of the response field needs to vanish \(\tilde{x}^* = 0 \). The true mean value \(x^* \) is, so far, unknown. We have to determine it by solving the equation of state

\[
\left(\frac{\partial}{\partial x^*} \right)^\dagger \Gamma [x^*, \tilde{x}^*] = \left(\frac{j}{j} \right).
\]

One of the equations will just lead to \(\tilde{x} = 0 \). To convince ourselves that this is indeed so, we here calculate this second equation as well:

\[
\frac{\partial \Gamma}{\partial x^*} [x^*, \tilde{x}^*] = -(-\partial_t + 1 - J) \tilde{x}^* (t) - \frac{\alpha J}{2} (x^* (t))^2 \tilde{x}^* (t) + \mathcal{O} \text{ (loop corrections)} = j
\]

\[
\frac{\partial \Gamma}{\partial \tilde{x}^*} [x^*, \tilde{x}^*] = -(-\partial_t + 1 - J) x^* (t) - \frac{\alpha J}{3!} (x^* (t))^3 - D\tilde{x} (t) + \mathcal{O} \text{ (loop corrections)} = \tilde{j}.
\]

Next, we will be concerned with the stationary solution and drop the time derivatives. This makes it much easier so determine the one-loop-contributions. They consist of a three-point-vertex at which are attached one external amputated line, \(x^* \) or \(\tilde{x}^* \), and two “normal” lines, associated with \(\delta x \) or \(\delta \tilde{x} \), which are contracted. The only nonzero three-point-vertices in our theory are

\[
\begin{align*}
\frac{1}{3!} \delta x (s) \delta x (t) \delta x (u) &= \frac{1}{3!} \delta (t-s) \delta (t-u) J \alpha \tilde{x}^* (t) \\
\frac{1}{2!} \delta x (s) \delta x (t) \delta x (u) &= \frac{1}{2!} \delta (t-s) \delta (t-u) J \alpha x^* (t).
\end{align*}
\] (272)

According to the rules derived in section [IXC] in Fourier domain these read

\[
\begin{align*}
\frac{1}{3!} \delta^3 S &= \frac{1}{2\pi 3!} \delta (\omega + \omega' + \omega'') J \alpha \tilde{x}^* \\
\frac{1}{2!} \delta^3 S &= \frac{1}{2\pi 2!} \delta (\omega + \omega' + \omega'') J \alpha x^*.
\end{align*}
\]

For the term \(\frac{\partial \Gamma}{\partial \tilde{x}^*} \), we have

\[
\begin{align*}
\frac{1}{3!} \delta x (s) \delta x (t) \delta x (u) &= \frac{1}{3!} \delta (t-s) \delta (t-u) J \alpha \tilde{x}^* (t) \\
\frac{1}{2!} \delta x (s) \delta x (t) \delta x (u) &= \frac{1}{2!} \delta (t-s) \delta (t-u) J \alpha x^* (t).
\end{align*}
\] (273)

For the term \(\frac{\partial \Gamma}{\partial x^*} \), this leads to the one-loop diagrams

\[
\begin{align*}
\int \delta x \\
\int \delta \tilde{x}.
\end{align*}
\] (274)

where the last diagram vanishes in the Ito-convention because it includes a response function starting and ending at the same vertex.

To determine the values of these diagrams, we need to know the propagator, which is the inverse of the second derivative of the action \(S^{(2)} \). Limiting ourselves first to the stationary case, this can be achieved by going into Fourier space. However, let us first note, how \(S^{(2)} \) looks like in the general case:

\[
S^{(2)}_{t,s} [x^*, \tilde{x}^*] = \left(\frac{\partial}{\partial s} + 1 - J + \frac{J \alpha}{2} (x^* (t))^2 \right) \delta (t-s).
\] (275)

With the abbreviations \(-m := 1 - J + \frac{J \alpha}{2} (x^*_0)^2 \) and \(\tilde{D} := J \alpha x^*_0 \tilde{x}^*_0 \), in Fourier domain, this becomes for \(\tilde{x}^* (t) = \tilde{x}^*_0 \), \(x^* (t) = x^*_0 \)
\[S_{\omega'}^{(2)}(x_0^*, \tilde{x}_0^*) = \begin{pmatrix} \tilde{D} & -i\omega - m \\ i\omega - m & D \end{pmatrix} \delta(\omega - \omega'). \]

The inverse of this matrix, the propagator then becomes

\[\Delta(x, \tilde{x}_0^*) (\omega', \omega) = \left(-S_{\omega'}^{(2)}[x_0^*, \tilde{x}_0^*]\right)^{-1} = -\frac{1}{DD - (\omega^2 + m^2)} \begin{pmatrix} D & i\omega + m \\ -i\omega + m & \tilde{D} \end{pmatrix} \delta(\omega - \omega'). \]

Let us assume that \(\tilde{x}_0^* = 0 \) - we will see later that this is a consistent assumption. Then \(\tilde{D} = 0 \), so the propagator is given by

\[\Delta(x_0^*, \tilde{x}_0^*) (\omega', \omega) = \begin{pmatrix} \frac{D}{i\omega + m} & \frac{1}{-i\omega + m} \\ \frac{1}{-i\omega + m} & 0 \end{pmatrix} \delta(\omega - \omega'). \]

Comparing to equation (107), we see that the propagator is, of course, of the same form as in the Gaussian case, since the loopwise approximation is an approximation around a local maximum. The back transform to time domain with equation (108) and equation (109) therefore reads

\[\Delta[x_0^*, \tilde{x}_0^*](t', t) = \begin{cases} -\frac{D}{2m} e^{m|t-t'|} & \Theta(t' - t) \exp(m(t' - t)) \\ \Theta(t' - t) \exp(m(t' - t)) & 0 \end{cases}. \] (276)

In other words: If \(\tilde{x}_0^* = 0 \), the response functions are (anti-)causal. That means that the contributions of the two last diagrams in equation (274) vanish.

With these results, we may evaluate the first diagram of equation (274). Due to the two Dirac \(\delta \) in the interaction vertex in time domain, this is easiest done in time domain. The diagram equation (273) results in

\[\frac{\delta x}{\delta x} \begin{array}{c} \tilde{x}_0^* \\ x_0^* \end{array} = \frac{1}{2!} \int ds du \delta(t - s)\delta(t - u) J\alpha x_0^* \frac{-D}{2m} e^{m|u-t|} = \frac{-J\alpha D}{4m} x_0^*. \]

The second diagram of equation (274) vanishes, because the response functions at equal time points vanish. The first diagrams, by the linear dependence of the interaction vertex equation (272) on \(\tilde{x}_0^* \) has the value

\[3 \cdot \frac{\delta x}{\delta x} \begin{array}{c} \tilde{x}_0^* \\ x_0^* \end{array} = \frac{3}{3!} \frac{-D}{2m} J\alpha \tilde{x}_0^* = \frac{-J\alpha D}{4m} \tilde{x}_0^*. \]

which vanishes as well for \(\tilde{x}_0^* = 0 \), showing that this value is a consistent solution for the loopwise correction.

Inserted into the equation of state this yields the self-consistency equation for the mean value \(x^* \)

\[(1 - J) x_0^* + \frac{\alpha J}{3!} (x_0^*)^3 + \frac{1}{4} J\alpha x_0^* D \frac{1}{1 - J + \frac{\alpha J}{4} (x_0^*)^2} = 0. \] (277)

We can check our result by solving the Fokker-Planck equation for the system, which gives a (numerically) exact solution for the fixpoints of equation (271). This is shown in figure 15.
C. Corrections to the self-energy and self-consistency

We may determine corrections to the self-energy by forming all 1PI diagrams with two external amputated legs. We can use these terms to obtain corrections to the second moments of the process by obtaining the inversion:
\[
(−S^{(2)}[x^*, \tilde{x}^*] + \Sigma) \Delta = 1.
\]
With (275) and \(\tilde{x} \equiv 0 \) we obtain the set of coupled differential equations
\[
\int dt' \begin{pmatrix}
0 & (\partial_t + m) \delta(t - t') + \Sigma_{xx}(t, t') \\
(\partial_t + m) \delta(t - t') + \Sigma_{\tilde{x}\tilde{x}}(t, t') & -D \delta(t - t') + \Sigma_{\tilde{x}\tilde{x}}(t, t')
\end{pmatrix}
\begin{pmatrix}
\Delta_{xx}(t', s) \\
\Delta_{\tilde{x}\tilde{x}}(t', s)
\end{pmatrix} = \text{diag}(\delta(t - s)).
\]
(278)

We may write (278) explicitly to get two linearly-independent equations
\[
(\partial_t + m) \Delta_{\tilde{x}\tilde{x}}(t, s) + \int_s^t dt' \Sigma_{\tilde{x}\tilde{x}}(t, t') \Delta_{\tilde{x}\tilde{x}}(t', s) = \delta(t - s),
\]
\[
(\partial_t + m) \Delta_{xx}(t, s) + \int_s^t dt' \Sigma_{xx}(t, t') \Delta_{xx}(t', s) - D \Delta_{xx}(t, s) + \int_s^\infty \Sigma_{\tilde{x}\tilde{x}}(t, t') \Delta_{\tilde{x}\tilde{x}}(t', s) = 0.
\]
(279)

Compared to (99), we may interpret (278) as describing a linear stochastic differential-convolution equation
\[
(\partial_t - m) y = \int dt' \Sigma_{xx}(t, t') y(t') + \eta(t),
\]
where the noise \(\eta \) is Gaussian and has variance
\[
\langle \eta(t) \eta(s) \rangle = D \delta(t - s) - \Sigma_{xx}(t, s).
\]
The self-energy terms therefore have the interpretation to define a linear process that has the same second order statistics as the full non-linear problem. This is consistent with the self-energy correcting the Gaussian part and therefore the propagator of the system.

D. Self-energy correction to the full propagator

Instead of calculating the perturbative corrections to the second cumulants directly, we may instead compute the self-energy first and obtain the corrections to the covariance function and the response function from Dyson’s equation, as explained in section §XIII A. This is possible, because we expand around a Gaussian solvable theory.

The bare propagator of the system is given by equation (276). We have Dyson’s equation (228) in the form
\[
W^{(2)} = \Delta - \Delta \Sigma \Delta + \Delta \Sigma \Delta \Sigma \Delta - \ldots.
\]
So we need to compute all 1PI diagrams that contribute to the self-energy \(\Sigma \). If we restrict ourselves to one-loop corrections. At this loop order, we get three diagrams with two amputated external legs
\[
-\Sigma_{\tilde{x}\tilde{x}}(t, s) = 2 \cdot \Delta_{xx} \quad \Sigma_{xx}(t, s)
\]
(280)
\[
= 2 \cdot \frac{1}{2!} (\frac{J_0 x^*}{2!})^2 (\Delta_{xx}(t, s))^2
\]
\[
-\Sigma_{\tilde{x}\tilde{x}}(t, s) = 2 \cdot 2 \cdot 2 \cdot \Delta_{xx} \quad \Sigma_{xx}(t, s)
\]
(281)
\[
= 2 \cdot \frac{1}{2!} (\frac{J_0 x^*}{2!})^2 \Delta_{xx}(t, s) \Delta_{\tilde{x}\tilde{x}}(t, s) + \delta(t - s) \frac{3}{3!} \Delta_{xx}(t, t)
\]
(The combinatorial factors are as follows. For $\Sigma_{\tilde{x}\tilde{x}}$: 2 2 possibilities to connect the inner lines of the diagram in the loop, directly or crossed. For $\Sigma_{x\tilde{x}}$: 2 vertices to choose from to connect the external \tilde{x}; 2 legs to choose from at the other vertex to connect the external x; 2 ways to connect the internal propagator to either of the two x-legs of the vertex. The latter factor 1/2! stems from the repeated appearance of the interaction vertex. The factor 3 in the last diagram comes from the 3 possibilities to select one of the three x-legs of the four-point interaction vertex. We cannot construct any non-zero correction to Σ_{xx} due to the causality of the response function $\Delta_{\tilde{x}\tilde{x}}$.

We may now use Dyson’s equation to compute the corrections to the covariance and the response function. We get

$$W^{(2)} = \Delta - \Delta \Sigma \Delta + \ldots$$

where we suppressed the combinatorial factors for clarity (they need to be taken into account, of course). Performing the matrix multiplication, we may, for example, obtain the perturbation correction to $W^{(2)}_{xx}$, the upper left element. We hence get the corrected covariance

$$W^{(2)}_{xx} = \ldots$$

We see that the contribution of the diagram equation (281) that is non-symmetric under exchange of $t \leftrightarrow s$ that contributes to $\Sigma_{\tilde{x}x}$ appears in a symmerized manner in the covariance, as it has to be. This result is, of course, in line with equation (122) above. The practical advantage of this procedure is obvious: We only need to compute the self-energy corrections once. To get the response functions $W^{(2)}_{\tilde{x}x}$, we would just have to evaluate the off-diagonal elements of the matrix equation (282).

E. Self-consistent one-loop

We may replace the bare propagators that we use to construct the self-energy diagrams by the solutions of (278). We then obtain a self-consistency equation for the propagator. Calculating the correction to the self-energy to first order in the interaction strength, we get the diagram

$$\tilde{x}(t) \xrightarrow{\gamma} x(s) = 3 \cdot \frac{\alpha J}{3!} \Delta_{xx}(t,t) \delta(t-s),$$

where we plugged in the full propagator $\Delta_{xx}(t,t)$, which, at equal time points, is just the variance of the process. In the interpretation given by the effective equation (279), this approximation hence corresponds to

$$(\partial_t - m) y = \frac{\alpha}{2} \Delta_{xx}(t,t) y(t) + \eta(t) = 3 \cdot \frac{\alpha}{3!} \langle y(t)y(t) \rangle y(t) + \eta(t).$$
The last line has the interpretation that two of the three factors y are contracted, giving 3 possible pairings. This approximation is known as the **Hartree-Fock approximation** or **self-consistent one-loop approximation**.

F. Appendix: Solution by Fokker-Planck equation

The Fokker-Planck equation corresponding to the stochastic differential equation (271) reads

$$
\tau \partial_t \rho(x,t) = -\partial_x \left(f(x) - \frac{D}{2} \partial_x \right) \rho(x,t),
$$

$$
f(x) = -x + J \left(x - \frac{\alpha}{3!} x^3 \right).
$$

As we are interested in the stationary case, we set the left hand side to 0. This leads to

$$
\left(f(x) - \frac{D}{2} \partial_x \right) \rho_0(x) = \varphi = \text{const.}
$$

(283)

Since the left hand side is the flux operator and since there are neither sinks nor sources, the flux φ must vanish in the entire domain, so the constants $\varphi \equiv 0$. The general solution of (283) can be constructed by variation of constants

$$
\partial_x \rho_0(x) = \frac{2}{D} f(x) \rho_0(x)
$$

$$
\rho_0(x) = \exp \left(\frac{2}{D} \int_0^x f(x') \, dx' \right)
$$

$$
= C \exp \left(\frac{2}{D} \left(\frac{(J-1)}{2} x^2 - J\frac{\alpha}{4!} x^4 \right) \right),
$$

where the choice of the lower boundary amounts to a multiplicative constant C that is fixed by the normalization condition

$$
1 = \int \rho_0(x) \, dx.
$$

Therefore, the full solution is given by

$$
\rho_0(x) = \frac{\exp \left(\frac{2}{D} \int_0^x f(x') \, dx' \right)}{\int_{-\infty}^{\infty} \exp \left(\frac{2}{D} \int_0^x f(x') \, dx' \right) \, dx}.
$$

XVI. NOMENCLATURE

We here adapt the nomenclature from the book by Kleinert on path integrals [50]. We denote as x our ordinary random variable or dynamical variable, depending on the system. Further we use

- $p(x)$ probability distribution
- $\langle x^n \rangle$ n-th moment
- $\llangle x \rrangle$ n-th cumulant
- $S(x) \propto \ln p(x)$ action
- $-\frac{1}{2} x^T A x$ quadratic action
- $S^{(n)}$ n-th derivative of action
- $\Delta = A^{-1}$ or $\Delta = (\mathcal{S}^{(2)})^{-1}$ inverse quadratic part of action, propagator
- $Z(j) = \langle \exp(j^T x) \rangle$ moment generating function[al] or partition function
\[W(j) = \ln Z(j) \text{ cumulant generating function}\]
\[\Gamma_j[y] = \sup_j j^T y - W[j] \text{ generating function of vertex function or one-particle irreducible diagrams} \]
\[\Gamma_0 = -S: \text{ zero loop approximation of } \Gamma \]
\[\Gamma_{ii}: \text{ fluctuation corrections to } \Gamma \]
\[\Sigma = \Gamma_{ii}^{(2)} \text{ self-energy} \]

We would like to thank Tobias Kühn, Janiss Schücker, and Sven Gödeke for contributions to the preparation of this collection of material and to Christian Keup and Sandra Nestler for typesetting many of the Feynman diagrams within these notes. This work was partly supported by the Helmholtz association: Helmholtz Young investigator’s group VH-NG-1028; HBP - The Human Brain Project SGA2 (2018-04-01 - 2020-03-30); Juelich Aachen Research Alliance (JARA); the ERS RWTH Seed fund “Dynamic phase transitions in cortical networks”.

[1] Y. Yoshimura and E. Callaway, Nat. Neurosci. 8, 1552 (2005).
[2] M. Schmidt, R. Bakker, M. Diesmann, and S. J. van Albada, arXiv preprint arXiv:1511.09364v3 (2016).
[3] V. B. Mountcastle, Brain 120, 701 (1997).
[4] P. L. Nunez and S. Ramesh, Electric fields of the brain: the neurophysics of EEG (Oxford University Press, 2006), ISBN 9780195050387.
[5] F. C. Bressloff, Journal of Physics A: Mathematical and Theoretical 45, 033001 (2012).
[6] G. B. Ermentrout and D. H. Terman, Mathematical foundations of neuroscience, vol. 35 (Springer Science & Business Media, 2010).
[7] W. R. Softky and C. Koch, J. Neurosci. 13, 334 (1993).
[8] C. van Vreeswijk and H. Sompolinsky, Science 274, 1724 (1996).
[9] C. van Vreeswijk and H. Sompolinsky, Neural Comput. 10, 1321 (1998).
[10] D. J. Amit and N. Brunel, Network: Comput. Neural Systems 8, 373 (1997).
[11] N. Brunel and V. Hakim, Neural Comput. 11, 1621 (1999).
[12] N. Brunel, J. Comput. Neurosci. 8, 183 (2000).
[13] N. Brunel and X.-J. Wang, J. Neurophysiol. 90, 415 (2003).
[14] I. Ginzburg and H. Sompolinsky, Phys. Rev. E 50, 3171 (1994).
[15] A. Renart, J. De La Rocha, P. Barthe, L. Hollender, N. Parga, A. Reyes, and K. D. Harris, Science 327, 587 (2010).
[16] V. Pernice, B. Staude, S. Cardanobile, and S. Rotter, PLOS Comput. Biol. 7, e1002059 (2011).
[17] V. Pernice, B. Staude, S. Cardanobile, and S. Rotter, Phys. Rev. E 85, 031916 (2012).
[18] J. Trousdale, Y. Hu, E. Shea-Brown, and K. Josic, PLOS Comput. Biol. 8, e1002408 (2012).
[19] T. Tetzlaff, M. Helias, G. T. Einevoll, and M. Diesmann, PLOS Comput. Biol. 8, e1002596 (2012).
[20] M. Helias, T. Tetzlaff, and M. Diesmann, New J. Phys. 15, 023002 (2013).
[21] M. A. Buice and J. D. Cowan, Phys. Rev. E 75, 051919 (2007).
[22] M. A. Buice, J. D. Cowan, and C. C. Chow, Neural Comput. 22, 377 (2010).
[23] J. Zinn-Justin, Quantum field theory and critical phenomena (Clarendon Press, Oxford, 1996).
[24] C. Chow and M. Buice, The Journal of Mathematical Neuroscience 5 (2015).
[25] J. A. Hertz, Y. Roudi, and P. Sollich, Journal of Physics A: Mathematical and Theoretical 50, 033001 (2017).
[26] J. Schuecker, S. Goedeke, D. Dahmen, and M. Helias, arXiv (2016), 1605.06758 [cond-mat.dis-nn].
[27] J. W. Negele and H. Orland, Quantum Many-Particle Systems (New York: Perseus Books, 1998).
[28] K. G. Wilson and J. Kogut, Physics Reports 12, 75 (1974), ISSN 0370-1573.
[29] K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).
[30] C. Wetterich, Physics Letters B 301, 90 (1993), ISSN 0370-2693.
[31] J. Berges, N. Tetradis, and C. Wetterich, Physics Reports 363, 223 (2002), ISSN 0370-1573, renormalization group theory in the new millennium. {IV}.
[32] H. Gies, arXiv pp. hep-ph/0611146 (2006).
[33] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K. Schönhammer, Rev. Mod. Phys. 84, 299 (2012).
[34] M. A. Buice, J. D. Cowan, and C. C. Chow, Neural Comput. 22, 377 (2010), ISSN 0899-7667.
[35] M. L. Steyn-Ross and D. A. Steyn-Ross, Phys. Rev. E 93, 022402 (2016).
[36] S. Kirkpatrick and D. Sherrington, Phys. Rev. B 17, 4384 (1978).
[37] H. Sompolinsky and A. Zippelius, Phys. Rev. B 25, 6860 (1982).
[38] H. Sompolinsky, A. Crisanti, and H. J. Sommers, Phys. Rev. Lett. 61, 259 (1988).
[39] A. Crisanti and H. Sompolinsky, Phys. Rev. E 98, 062120 (2018).
[40] P. Martin, E. Siggia, and H. Rose, Phys. Rev. A 8, 423 (1973).
[41] C. De Dominicis, J. Phys. Colloques 37, C1 (1976).
[42] C. De Dominicis and L. Peliti, Phys. Rev. B 18, 353 (1978).
[43] H.-K. Janssen, Zeitschrift für Physik B Condensed Matter 23, 377 (1976).
[44] M. Moshe and J. Zinn-Justin, Physics Reports 385, 69 (2003), ISSN 0370-1573.
[45] D. Dahmen, M. Diesmann, and M. Helias, arXiv (2016), 1605.04153 [cond-mat.dis-nn].
[46] J. Schuecker, S. Goedeke, and M. Helias, Phys. Rev. E 97, 062314 (2018).
[47] C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (Springer-Verlag, Berlin, 1985), 2nd ed., ISBN 3-540-61634-9, 3-540-15607-0.
[48] H. Kleinert, Gauge fields in condensed matter, Vol. I, SUPERFLOW AND VORTEX LINES Disorder Fields, Phase Transitions (World Scientific, 1989).
[49] J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. Newman, The Theory of Critical Phenomena: An Introduction to the Renormalization Group (Oxford University Press, Inc., New York, NY, USA, 1992), ISBN 0198513933, 9780198513933.
[50] L. Onsager and S. Machlup, 91, 1505 (1953).
[51] J. A. Hertz, Y. Roudi, and P. Sollich, arXiv preprint arXiv:1604.05775 (2016).
[52] C. Chow and M. Buice, arXiv p. 1009.5966v2 (2010).
[53] A. Georges and J. S. Yedidia, Journal of Physics A: Mathematical and General 24, 2173 (1991).
[54] A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, Inc., New York, 1991), 3rd ed.