Supplement of Temporally resolved coastal hypoxia forecasting and uncertainty assessment via Bayesian mechanistic modeling

Alexey Katin et al.

Correspondence to: Alexey Katin (akatin@ncsu.edu)

The copyright of individual parts of the supplement might differ from the article licence.
Supporting information

Contents

S1 DMO20 model description... 2
S2 Bias adjustment for model predictions in June ... 4
S3 Regressions for predicting summer Mississippi and Atchafalaya River flow and loading 6
S4 Forecast skill and variance assessment .. 12
S5 HA pseudo-forecast for west and east sections of the shelf................................ 13
S6 Total HA pseudo-forecast ... 24

References .. 32
S1 DMO20 model description

DMO20 model, fully described in Del Giudice et al. (2020), is based on a steady-state solution to mass balance
differential equations presented in Obenour et al. (2015). Using time-varying inputs, DMO20 predicts daily BWDO \((O_b) \) concentration (mg/L) from 1 June to 30 September of each year:

\[
O_b = \frac{(k_a O_b - D_w)}{k_a - D_s/O_f} - 1 \tag{S1.1}
\]

where \(k_a \) is the reaeration rate (m/d), \(D_w \) is the water column oxygen demand (WCOD), and \(D_s \) is the sediment oxygen demand (SOD) at \(O_f \), a reference oxygen concentration set to 3 mg/L.

The net WCOD (g/m²/d) of each lower compartment is represented as:

\[
D_w = J \gamma \omega = \left(\frac{L_r + L_u}{Q_r + Q_u + Q_g + \gamma + A} \right) \gamma \omega . \tag{S1.2}
\]

Here, \(J \) is the downward carbon flux (g/m²/d), \(\gamma \) is the mass ratio of oxygen demand to organic carbon set to 3.5, \(\lambda \) is the ratio of organic carbon to nitrogen set to 5.68, \(A \) is the area of the shelf section (Gm²), \(\omega \) is an oxygen demand adjustment factor (accounting for photosynthesis, off-shelf losses, etc.), and \(\nu \) is the effective settling velocity (m/d), which incorporates both the production and sinking of organic matter. The variables \(Q \) and \(L \) represent the near-term flows (Gm³/d) and N loads (Gg/d) entering the surface-layer model compartments, respectively. Subscripts \(r \), \(u \), and \(g \) denote the origin of these fluxes: Mississippi and Atchafalaya Rivers, upstream (i.e., eastern) shelf section, and the greater Gulf of Mexico. \(Q_g \) is approximated as a dilution factor (3.2, derived from surface salinity data) multiplied by mean Mississippi River discharge (1.6 Gm³/d).

The reaeration rate for each section is determined as a function of wind stress (representing shear-induced
turbulence) and freshwater flow (representing buoyancy):

\[
k_a = \beta_0 + \beta_1 \frac{U^2}{Q_s} \frac{A}{10000} \tag{S1.3}
\]

where \(U \) is the 14-day weighted mean wind speed for the shelf section (m/s), \(Q_s \) is the river discharge entering the section (Gm³/d), and \(\beta_0 \) and \(\beta_1 \) are calibration parameters.

Partitioning of riverine inputs is computed through:

\[
F_W = 0.5 - \beta_e v_e \tag{S1.4}
\]
where F_w is the fraction of abovementioned flows and loads transported westward over the shelf, v_e is the mean eastward wind velocity (m/s), and β_e is a calibration parameter. The 0.5 indicates that, in absence of wind, inputs from both rivers would equally partition westward and eastward.

SOD is represented as:

$$D_s = B \sqrt{\frac{L}{L}} \theta^{T-\bar{T}}.$$ \hspace{1cm} (S1.5)

where L (Mg/mo) is the combined nutrient loading from the Mississippi and Atchafalaya Rivers, averaged November-March. We normalize these pre-spring loads relative to their long-term average (\bar{L}) for the study period. SOD is temperature dependent and is based on the Arrhenius model with $\theta = 1.07$. Rates are corrected when temperatures deviate from \bar{T}, the summertime average. Here, T is the monthly mean temperature.

A quadratic polynomial function g is used to transform modelled bottom water dissolved oxygen (mg/L) into hypoxic area (km2). For each section of the shelf, west and east, g is:

$$HA_{West} = g(BWDO_{West}) = 62628 - 21353 \times BWDO_{West} + 1839 \times BWDO^2_{West}$$ \hspace{1cm} (S1.6)

$$HA_{East} = g(BWDO_{East}) = 17436 - 5945 \times BWDO_{East} + 507 \times BWDO^2_{East}$$ \hspace{1cm} (S1.7)

For Eq. S6 the $R^2 = 0.98$ and the residual standard deviation is 706 km2, while for Eq. S7 the $R^2 = 0.99$ and the residual standard deviation is 216 km2.

Table S1: Summary of the DMO20 model parameters estimated through Bayesian inference, including mean and 95% credible interval of each parameter.

Parameter	Units	Description	2.5%	Mean	97.5%
v	m/d	effective settling velocity	0.105	0.218	0.360
ω	—	oxygen demand adjustment factor	0.074	0.184	0.368
β_0	m/d	reaeration parameter	0.108	0.168	0.246
β_1	—	reaeration parameter	0.228	0.342	0.468
B	g/m2/d	average sediment respiration rate	0.225	0.335	0.446
β_e	m/m	east-west advection coefficient	0.152	0.177	0.197
$\sigma_{m,w}$	mg/L	model error, west	0.289	0.375	0.460
$\sigma_{m,e}$	mg/L	model error, east	0.274	0.342	0.421
S2 Bias adjustment for model predictions in June

Preliminary analysis indicated that hindcasted BWDO was somewhat lower than observations for the west section of the shelf in June. This bias remained after conversion of BWDO to HA. A linear regression with zero intercept and a sequence of numbers 29 to 0 representing period from June 1 to June 30 as the predictor was used to estimate a bias adjustment, defined as difference between average observed and hindcasted BWDO divided by hindcasted BWDO. The resulting regression indicates a gradual decline in bias from the beginning of June (Fig. S2.1). The bias adjustment increases the R^2 of relationship between observed and hindcasted BWDO from –0.15 to 0.36 (Fig. S2.2), and between observed and hindcasted HA from –0.14 to 0.45 (Fig. S2.3).

![Figure S2.1](image)

Figure S2.1: Bias adjustment factor vs day number (before 1 July) for the west section with red line showing the regression fit with slope mean and standard error of 0.007 and 0.001, respectively. The adjusted R^2 of this regression is 0.20.
Figure S2.2: Month by month comparison of observed with hindcasted (black) and bias-adjusted hindcasted (red) averaged BWDO in the west and east sections. Diagonal lines represent perfect prediction.

Figure S2.3: Month by month comparison of observed with hindcasted (black) and bias-adjusted hindcasted (red) averaged HA in the west and east sections. Diagonal lines represent perfect prediction.
S3 Regressions for predicting summer Mississippi and Atchafalaya River flow and loading

Figure S3.2: Observed versus predicted by regressions square-root transformed Atchafalaya River monthly average discharge. Subscript numbers indicate months (June-September).
Figure S3.3: Observed versus predicted by regressions square-root transformed Atchafalaya River monthly average nitrogen loading. Subscript numbers indicate months (June-September).
Figure S3.4: Observed versus predicted by regressions square-root transformed Mississippi River monthly average discharge. Subscript numbers indicate months (June-September).
Figure S3.5: Observed versus predicted by regressions square-root transformed Mississippi River monthly average nitrogen loading. Subscript numbers indicate months (June-September).
Year	Jun (m³/s)	Jul (m³/s)	Aug (m³/s)	Sep (m³/s)	Jun (t/mo)	Jul (t/mo)	Aug (t/mo)	Sep (t/mo)
1980	6267	5860	4719	4130	3429	3270	3466	3410
1981	7743	8970	5517	6360	3872	4870	2699	3390
1982	8692	8820	7035	6220	4148	4270	3805	4030
1983	13167	15200	6754	6100	5385	3450	3088	1880
1984	8963	9990	5293	6010	4229	3740	3273	2050
1985	5756	5670	4409	3980	3270	2860	3630	3270
1986	6284	7650	4550	5070	3434	3010	2756	2570
1987	6180	4710	5014	3820	3401	2520	2725	2460
1988	3175	2130	2972	1480	2406	1540	3427	1530
1989	6758	8310	5372	8520	3579	3560	3340	3960
1990	10735	13500	8260	6890	4724	4310	2673	3690
1991	11184	9240	7418	4590	4849	2840	2874	2510
1992	3628	4920	3084	4780	2568	5900	2587	3500
1993	9887	9120	5878	8220	4490	9690	3639	6560
1994	6458	5220	4147	4740	3489	3480	3436	2810
1995	12495	13300	8971	7610	5202	4750	3146	2960
1996	9797	11700	6038	5810	4463	4790	3692	3290
1997	7001	9140	5553	6520	3653	3530	3401	2770
1998	6777	7330	4941	8150	3586	4760	2902	2730
1999	8043	6930	6262	6220	3961	3430	2829	2150
2000	5037	5080	4519	5980	3040	3090	2705	2220
2001	6556	8080	5494	4720	3517	3370	3269	2690
2002	8433	9680	5380	3940	4075	2870	3128	2700
2003	8552	8800	5918	5370	4108	4260	3272	3760
2004	8394	9440	6616	7750	4062	3870	3053	4090
2005	4412	4400	4324	3540	2835	2270	2904	2940
2006	4285	3650	3887	2770	2793	2140	2601	2270
2007	7123	4880	5863	5830	3689	3620	3205	5350
2008	11507	9760	7449	8550	4937	5010	3460	5560
2009	9380	11200	5754	5670	4347	4800	3232	3910
2010	9360	8380	6209	7240	4339	5640	3325	3940
2011	14625	12700	8231	7390	5770	4610	3474	3670
2012	4256	2790	4230	2130	2783	1800	2303	1870
2013	10871	9810	7915	7710	4762	4550	3486	2730
2014	6012	7090	4552	6010	3350	3550	3821	3940
2015	13207	10500	9104	12700	5393	8150	3180	2820
2016	7966	7280	6164	4790	3939	5070	2682	4280

Table S3.1: Predicted by the regressions (pre) and observed (obs) monthly Atchafalaya River discharge and nitrogen loading.
Year	Mississippi River	Loading (t/mo)												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
1980	14630	13600	11343	9490	8135	7860	8274	8010	63302	65152	47753	41706	26594	28307
1987	14341	12726	11082	9260	7762	7550	8034	7330	63122	57531	46965	32609	26875	19074
1991	14582	17700	11759	11800	8115	7530	6669	6360	80192	112690	59026	63614	32276	28958
1996	15749	20120	12198	19900	8475	8400	7990	9310	60823	60366	47985	48845	25237	15385
2000	14581	22070	17243	15050	11552	6667	9367	6260	137626	126306	95863	50828	51343	24382
2004	15744	19200	12198	19900	8475	8400	7990	9310	60823	60366	47985	48845	25237	15385
2008	15744	19200	12198	19900	8475	8400	7990	9310	60823	60366	47985	48845	25237	15385
2012	15744	19200	12198	19900	8475	8400	7990	9310	60823	60366	47985	48845	25237	15385

Table S3.2: Predicted by the regressions (pre) and observed (obs) monthly Mississippi River discharge and nitrogen loading
S4 Forecast skill and variance assessment

Figure S4.1: Daily hindcasted HA and observed HA versus pseudo-forecasted HA for the west and east sections. Diagonal line represents perfect prediction.

Figure S4.2: Averaged daily variance of total HA due to different sources of uncertainty. In this case, the “residual error” variance includes transformation and bias uncertainties, in addition to the DMO20 residuals. Note that the relative magnitudes of the variance components are somewhat different from the magnitudes of the IQR components (e.g., Fig. 5) because variance has squared units.
Figure S5.1: Daily pseudo-forecasts of HA for the west and east sections in 1985 (top) and 1986 (bottom), including 95% IQR of the predictive distribution, distinguishing between i) parameter, ii) hydrometeorological inputs, iii) mechanistic model error, and iv) regressions related to transformation of BWDO to HA and bias adjustment uncertainties (shades of gray from lightest to darkest). Yellow dashed line is hindcasted estimate, black dashed line is the 32-year average hindcast, orange points and error bars represent the mean and associated 95% confidence interval of the (geostatistically estimated) hypoxia observations.
Figure S5.2: Pseudo-forecast as in Fig. S5.1 but for different years.
Figure S5.3: Pseudo-forecast as in Fig. S5.1 but for different years.
Figure S5.4: Pseudo-forecast as in Fig. S5.1 but for different years.
Figure S5.5: Pseudo-forecast as in Fig. S5.1 but for different years.
Figure S5.6: Pseudo-forecast as in Fig. S5.1 but for different years.
Figure S5.7: Pseudo-forecast as in Fig. S5.1 but for different years.
Figure S5.8: Pseudo-forecast as in Fig. S5.1 but for different years.
Figure S5.9: Pseudo-forecast as in Fig. S5.1 but for different years.
Figure S5.10: Pseudo-forecast as in Fig. S5.1 but for different years.
Figure S5.11: Pseudo-forecast as in Fig. S5.1 but for different years.
Figure S6.1: Daily pseudo-forecasts of total HA, including 95% IQR of the predictive distribution (1985-1988), distinguishing between i) parameter, ii) hydrometeorological inputs, iii) mechanistic model error and iv) regressions related to transformation of BWDO to HA and bias adjustment uncertainties (shades of gray from lightest to darkest). Yellow dashed line is hindcasted estimate, black dashed line is the 32-year average hindcast, orange points and error bars represent the mean and associated 95% confidence interval of the (geostatistically estimated) hypoxia observations.
Figure S6.2: Pseudo-forecast as in Fig. S6.1 but for different years.
Figure S6.3: Pseudo-forecast as in Fig. S6.1 but for different years.
Figure S6.4: Pseudo-forecast as in Fig. S6.1 but for different years.
Figure S6.5: Pseudo-forecast as in Fig. S6.1 but for different years.
Figure S6.6: Pseudo-forecast as in Fig. S6.1 but for different years.
Figure S6.7: Pseudo-forecast as in Fig. S6.1 but for different years.
Figure S6.8: Pseudo-forecast as in Fig. S6.1 but for different years.
References

Del Giudice, D., Matli, V. R. R. and Obenour, D. R.: Bayesian mechanistic modeling characterizes Gulf of Mexico hypoxia: 1968–2016 and future scenarios, Ecol. Appl., 30(2), eap.2032, doi:10.1002/eap.2032, 2020.

Obenour, D. R., Michalak, A. M. and Seavia, D.: Assessing biophysical controls on Gulf of Mexico hypoxia through probabilistic modeling, Ecol. Appl., 25(2), 492–505, doi:10.1890/13-2257.1, 2015.