Viral Trigger for Type 1 Diabetes
Pros and Cons

Christophe M. Filippi and Matthias G. von Herrath

The most popular hypothesis circulating within and beyond the scientific community is that viral infections enhance or elicit autoimmune disorders such as type 1 diabetes. Indeed, viruses can injure \(\beta \)-cells and have been isolated in pancreatic tissues from diabetic patients. However, accumulating evidence suggests that the opposite scenario, which is prevention or amelioration of type 1 diabetes, might be as common an outcome of viral infection. Here, we discuss epidemiological and experimental evidence for the main mechanisms accounting for the role of viruses in type 1 diabetes to better understand the complex relationship between viral infections and autoimmune diabetes.

INSIGHT FROM EPIDEMIOLOGY AND CLINICAL INVESTIGATIONS

The influence of the environment. Type 1 diabetes is a genetic autoimmune disorder caused by autoreactive CD4\(^+\) and CD8\(^+\) T-cells that recognize pancreatic antigens such as insulin or GAD and subsequently destroy insulin-producing \(\beta \)-cells. The subject of very active research is the question of how endogenous \(\beta \)-cell antigens become immunogenic. Infiltration of the islets of Langerhans, where \(\beta \)-cells reside, by activated autoreactive T-cells is considered to be the major driving force in type 1 diabetes progression. The islet infiltrate in humans consists primarily of CD8\(^+\) T-cells and B-cells, followed by macrophages and dendritic cells of different subtypes (1). Interestingly, significantly fewer T-cells are found in human islets compared with islets from nonobese diabetic (NOD) mice. The reduced numbers of T-cells, and in this way a limited autoreactive component in human islets, leads one to consider whether other contributing factors may be involved in disease development. Otherwise, sufficient insulitic infiltrate to destroy islet \(\beta \)-cells might not be easily maintained in humans. Further supporting a role for nongenetic factors in the control of type 1 diabetes is the observation that disease concordance among monozygotic twins is below 50% (2). Migrant studies also suggest the involvement of an environmental factor in type 1 diabetes, since disease incidence in migrating populations appears to conform to the incidence of the region to which there is migration (3). There is an ever-increasing body of literature suggesting that the significant environmental component to type 1 diabetes development and progression is a viral infection. However, this has not been clearly demonstrated. In fact, viral infections appear to have both detrimental and protective effects on type 1 diabetes development, which might be contingent upon the nature of the virus, but also the immune status of the host and thus the timing of infection.

Certain viruses might promote autoimmunity. A significant number of viruses have been associated with type 1 diabetes, including enteroviruses such as Coxackievirus B (CVB) (4), but also rotavirus (5,6), mumps virus (7), and cytomegalovirus (8). Rubella virus has been suggested to cause type 1 diabetes, but so far only congenital rubella syndrome has conclusively been associated with the disease (9–11). The prime viral candidates for causing type 1 diabetes in humans are enteroviruses. Enterovirus infections are more frequent in siblings developing type 1 diabetes compared with nondiabetic siblings, and enterovirus antibodies are elevated in pregnant mothers whose children later develop type 1 diabetes (12). Interestingly, studies in the Finnish population demonstrated that appearance of autoantibodies in genetically susceptible children paralleled the seasonal pattern of enterovirus infections (13). More specifically, a temporal association has been observed between the appearance of the first autoantibodies and signs of enterovirus infection both among siblings of affected children and among children with increased HLA-conferred diabetes susceptibility (14).

CVB4 is the most common enteroviral strain found in pre-diabetic and diabetic individuals. CVB RNA has been detected in blood from patients at the onset or during the course of type 1 diabetes (15,16). Furthermore, cellular immune responses to CVB antigens were found to be enhanced in type 1 diabetic patients after the onset of the disease (17). One CVB4 strain was isolated from the pancreas of a deceased diabetic child, passaged through murine \(\beta \)-cells, and found to induce diabetes after inoculation in mice (18). Recently, Dotta et al. (19) also detected CVB4 in pancreatic tissue specimens from three of six type 1 diabetic patients. Elshebani et al. (20) recently found that enterovirus isolates obtained from newly diagnosed type 1 diabetic patients could infect and induce destruction of human islet cells in vitro. Recently, Oikarinen et al. (21) have isolated enteroviruses from intestinal biopsy samples in 75% of type 1 diabetes cases versus 10% of control patients, possibly reflecting persistent enterovirus infection of gut mucosa in type 1 diabetic patients. In sum, isolation of enteroviral antigens from diabetic individuals, particularly after recent onset, is becoming a fairly reproducible finding, supporting a role for these viruses in disease development. However, it is still unclear whether this phenomenon is indeed a common etiology for the majority of patients diagnosed with type 1 diabetes, or whether it can be found only in a particular subgroup.
of individuals with perhaps higher genetic susceptibility to infection.

The molecular means by which enteroviruses could enhance type 1 diabetes is a topic of significant inquiry. Virus infections activate strong immune responses. CVB4 infection of islet cells was indeed reported to induce strong inflammation mediated by natural killer (NK) cells within the islets (19). If the virus can, in addition, promote direct cytolysis of β-cells, autoantigens are introduced in a context of heightened immune response and inflammation. This might be the case after direct infection of β-cells by the virus. Enteroviruses might target β-cells via surface molecules such as the poliovirus receptor and integrin αvβ3. Both of these molecules are expressed on human β-cells and can act as enterovirus receptors in established cell lines (22). Infections by viruses that target β-cells and promote strong inflammation within the islets may thus represent the initial step in the induction of autoimmunity. However, studies on human pancreata or cultured islets have shown that there are considerable variations in the adverse effects of enteroviruses on β-cells, not only between various viral serotypes, but also between strains of the same serotype (23–25). While the mechanism by which viruses might induce autoimmunity is not understood, viral infections might be capable of “unmasking” β-cells for recognition by CD8+ T-cells by promoting interferon production and upregulation of major histocompatibility complex (MHC) class I molecules on β-cells. These events combined may be sufficient to condition the pancreatic islets for autoimmune attack. In this respect, Foulis et al. (26) described MHC class I upregulation and interferon induction in noninfected islets obtained from presumably pre-diabetic individuals. Although this may possibly be a postmortem artifact, such findings should prompt larger-scale investigations, for example, on freshly obtained tissues via nPOD (Network for Pancreatic Organ Donors with Diabetes; www.jdrfnpod.org). Access to fresh pre-diabetic pancreata is needed to conduct valid viral studies.

Viruses may be wrongly accused. The possibility that enteroviruses promote autoimmunity suggests that vaccination, which will impair viral infection of the islets, may provide protection against type 1 diabetes. Accordingly, an earlier report suggested that lower type 1 diabetes incidence in Estonia compared with Finland may be associated with polio vaccination schedule, resulting in stronger immunity to diabetogenic enterovirus infections (27). Similarly, while a significant increase in the number of type 1 diabetes cases was observed in Finland 2–4 years after a mumps epidemic (7), the incidence of type 1 diabetes reached a plateau 6 years after introduction of the mumps-measles-rubella vaccine (28). However, there is significant epidemiological data contradicting the involvement of viruses as causative agents in type 1 diabetes. There exists a geographical north-south gradient indicative of an inverse correlation between “hygiene” and incidence of autoimmune disease (as well as allergy). Countries such as Finland versus Venezuela/China, or wider regions such as Northern versus Southern Europe (with the exception of Sardinia), represent areas where socioeconomics correlate closely with type 1 diabetes prevalence. Reduced type 1 diabetes incidence is observed in countries of lower socioeconomic status, which is associated with a higher rate of infection. This phenomenon may also be related to the use of particular vaccine strategies in countries exhibiting different sanitary standards. It is also interesting to note that many type 1 diabetic patients are first born of large families, possibly indicative of lower exposure to infections. In addition, while congenital infections have been proposed to account for type 1 diabetes development in the offspring, the use of antimicrobials by mothers before pregnancy and subsequently by the child was suggested to be associated with higher risk for type 1 diabetes (29). Increased diabetes incidence in the Western world may thus be reflective of the “ultra-clean living” phenomenon. In the “hygiene hypothesis,” reduced rates of infection contribute to increased type 1 diabetes incidence, not supporting a disease-inductive role for viruses. Alternatively, it has been argued that reduced frequencies of infection may result in increased susceptibility to the effect of diabetogenic viruses (30,31). Regardless, although there is significant evidence for viral penetration of pancreatic tissue from type 1 diabetic patients, exposure to viruses does not appear to be necessarily causative of type 1 diabetes and may in fact be beneficial in some cases. This could be an indication that the immune system can be educated to better deal with inflammatory disorders by being frequently exposed to inflammatory events over life.

INSIGHT FROM EXPERIMENTAL WORK

While epidemiological studies have shed important insight into the association between viral infections and autoimmune diabetes in humans, a significant body of evidence is derived from investigations using animal models for type 1 diabetes. Notably, NOD mice are susceptible to spontaneous type 1 diabetes that develops slowly over several weeks and mimics most aspects of human type 1 diabetes (32). In NOD mice, nondestructive insulitis develops in the pancreas during the pre-diabetic phase and, although this period is variable, most mice go on to develop T-cell-mediated destruction of β-cells leading to overt diabetes. NOD mice thus constitute a critical tool to address how exposure to viral infection during the pre-diabetic phase will affect subsequent disease development. In humans, the prime candidates for infectious causes of type 1 diabetes are enteroviruses such as CVB. In mice, and most notably in NOD mice, CVB also appears associated with the development of autoimmunity. Early studies have shown that infection of normal mice with CVB4 causes a diabetic state associated with low insulin levels consistent with islet cell destruction (33). CVB4 has since been shown to be tightly associated with the initiation of type 1 diabetes in the NOD mouse. However, the influence of the virus appears to be contingent upon the precise point in time at which infection occurs (34). The B3 strain of CVB3, in contrast, mediates significant protection against type 1 diabetes development in NOD mice regardless of the time of infection (35). However, as discussed below, CVB3 and CVB4 differ regarding tropism for pancreatic tissue, which may account for the differential effect of these two strains in autoimmune diabetes. Importantly in that respect, there might be fundamental difference between rodents and humans regarding tropism of enteroviruses for pancreatic β-cells. One should thus be cautious when extrapolating rodent data to human type 1 diabetes in the context of enterovirus infections. Interestingly, other viruses that are also thought to be associated with the pathogenesis of type 1 diabetes in animals have been shown to mediate protective effects in some instances. For example, the D variant of encephalomyocarditis virus (EMC-DV) was found to induce β-cell destruction and subsequent type 1...
that congenic B10.H2g7 mice, which carry the NOD MHC predisposed humans. However, Horwitz et al. (44) found capacity of CVB4 to induce type 1 diabetes in genetically susceptibility MHC allele (43). Cross-reactivity between reactive T-cells only in the context of a NOD diabetes two proteins is immunodominant and presented to cross-assessed using the NOD mouse model for type 1 diabetes, (42). Cross-reactivity between GAD and P2-C was further antibodies present in GAD-positive sera from patients with also respond to a Coxsackie viral peptide (41). However, sponded to this particular GAD determinant were found to type 1 diabetes were found to recognize a GAD determi-
tion of autoimmunity by viruses might be played by the proinflammatory/inflammatory mediators produced upon infection. Hence, bystander activation of autoreactive T-cells could occur during a viral infection with heterolo-
gous antigenic specificity and result in autoimmune disease. This might be the consequence of inflammation inducing tissue damage and release of sequestered islet antigens, leading to enhanced autoantigen presentation by APCs. Accordingly, CVB4-induced type 1 diabetes was found to be associated with initial phagocytosis of CVB4-infected β-cells by macrophages, leading to increased presentation of islet antigens, which promoted type 1 diabetes (51). Limited injury to β-cells using the islet-damaging agent streptozotocin was found to induce type 1 diabetes in BDC2.5 mice similar to CVB4 infection, as a consequence of release of β-cell antigens followed by their presentation by macrophages (52). Of note, injection of insulin along with poly-IC (polynosinic-polycytidylic acid), which mimics double-stranded viral RNA, was found to induce anti-islet autoimmunity (53). Thus, virally induced release of β-cell antigen under inflammatory condi-
tions might promote type 1 diabetes through activation of APCs such as macrophages, which have been shown to play a crucial role in the development of spontaneous diabetes (54,55). In particular, APCs themselves can re-
lease inflammatory and proinflammatory mediators as a result of viral infection. Likewise in the RIP-LCMV model, in the absence of infection, the glycoprotein/nucleoprotein protein is not expressed by costimulation-competent APCs, and the autoimmune process is only initiated when sufficient numbers of activated autoreactive T-cells are generated, after activation of APCs in the pancreas (56,57). Interestingly, activated T-cells from BDC2.5 mice are unable to induce diabetes in the mouse in the absence of CVB4 infection, which supports the possibility that by-
stander activation of APCs through virally mediated in-
fammation is necessary for efficient activation of autoreactive T-cells (44). Accordingly, we reported that type 1 diabetes develops in the absence of infection in the RIP-LCMV system when APCs are rendered costimulation-competent through transgenic expression of the B7–1 (CD80) costimulatory molecule (58). Importantly, in the RIP-LCMV system, APCs presenting self-antigens not only mediate priming of autoreactive T-cells, but also help maintain a peripheral immune response in the pancreatic islets (59). Thus, antigen presentation appears to play a
crucial role not only in inducing but also sustaining the diabetogenic response.

Viral infection and local β-cell injury. Initial damage to β-cells and uptake of autoantigen by APCs appear crucial in the initiation of autoimmunity upon viral infection. If a particular virus is highly lytic for β-cells, insulin deficiency and type 1 diabetes will result when more than 90% of β-cells are destroyed (60,61). This scenario can notably be observed after high-dose infection with EMC-DV, in which case type 1 diabetes is nonautoimmune in nature (62,63). However, limited injury to β-cells, caused by the virus or antiviral mechanisms, can lead to initial release of sequestered self-antigens and ultimately their presentation by APCs, which in turn promote further β-cell damage by activating autoreactive T-cells. Inflammatory cytokines produced during viral infection may play a crucial role in initial destruction of β-cells. Using the RIP-LCMV model, we found that upon viral infection, systemic production of interferon (IFN)-γ can directly cause β-cell destruction in the islets (64). Furthermore, inflammatory cytokines such as type I and II interferons may indirectly contribute to β-cell death by inducing upregulation of MHC class I by these cells, thereby “unmasking” them for recognition by autoreactive T-cells. It was reported that immunization with an LCMV-derived peptide does not induce type 1 diabetes in RIP-LCMV mice in the absence of IFN-α production and MHC class I upregulation in the islets (65). Furthermore, our work has shown that upregulation of MHC class II and activation of APCs within the pancreatic islets is required for β-cell destruction by activated autoreactive T-cells (56). Thus, cytokines produced upon infection by viruses exhibiting pancreatic tropism might be capable of preconditioning the islets for initial autoimmune attack of β-cells, similar to the possible scenario in humans.

Studies in the mouse further indicate that activation of Toll-like receptor (TLR) signaling might play a crucial part in the process. TLR ligation was shown to induce type 1 diabetes by increasing IFN-α and MHC class I expression in the islets of RIP-LCMV mice immunized with an LCMV-derived peptide (65). Similarly, in the BB-DR rat, initiation of autoimmune diabetes by Kilham’s rat virus was found to be enhanced through activation of TLR signaling and induction of inflammatory cytokine production by APCs (66,67). More recently, Kim et al. (68) reported that activation of the TLR2 signaling pathway by secondary apoptotic β-cells might participate in the initiation of type 1 diabetes by inducing tumor necrosis factor-α (TNF-α) production by macrophages. However, TLR2 signaling was also recently suggested to enhance immune regulation (69), and it was previously reported that limited apoptosis of β-cells decreases diabetes incidence in NOD mice (70). In addition, as discussed below, TNF-α may have a protective function in type 1 diabetes depending on the time of action. Yet, regardless of the underlying mechanism, the observation by Kim et al. suggests that the mode by which initial injury to β-cells occurs is a crucial determinant in the induction of autoimmunity. Therefore, direct viral tropism for β-cells could play a major role in the capacity of viruses to mediate type 1 diabetes. Of note, CVB4 has a direct tropism for β-cells and exhibits a differential effect in type 1 diabetes depending on the time of infection, whereas CVB3 infects the acinar cells of the exocrine pancreas and prevents disease regardless of the time of infection (34,35). Although CVB4 infection of β-cells may not directly cause their demise (51), CVB3 and CVB4 do not mediate similar injury to these cells, which may account for their differential role in type 1 diabetes (68). Modulation of autoimmune diabetes by viruses may thus depend in part on their capacity to influence the mode and extent of β-cell death, which both appear as crucial factors influencing the course of the disease (71).

The importance of timing. Another major component determining virally mediated modulation of autoimmunity appears to be the time at which infection occurs during the pre-diabetic phase. Whereas type 1 diabetes is enhanced in 8-week-old NOD mice infected with CVB4, infection of younger mice has no effect on disease outcome (34). This suggests that the status of autoimmune progression is a crucial determinant in the diabetogenic potency of the virus. Importantly, just like viral infections, inflammatory cytokines appear to play a dual role in autoimmune diabetes. Previous work has shown that expression or neutralization of cytokines commonly produced during viral infections has opposing effects on type 1 diabetes outcome depending on the time of expression. For instance, we found that early neutralization of TNF-α abrogates type 1 diabetes in RIP-LCMV mice, while at later time points, this cytokine appears to play a beneficial role by diminishing the number and activity of autoreactive T-cells (72,73). Thus, the capacity of particular viral infections to modulate autoimmunity at a certain point in time might be the direct consequence of their ability to promote inflammation during the pre-diabetic process beyond a particular autoimmune threshold. Accordingly, it was reported that enhancement of diabetes by CVB4 infection occurs only after a critical mass of activated autoreactive T-cells has accumulated in the islets (74). However, CVB3 was reported to prevent disease in both young and older mice (35). This suggests that while timing is important, the state of advancement of autoimmunity at the time of infection is not the sole explanation for the dual role of viruses in type 1 diabetes.

Impairment of autoimmunity may occur through bystander effects. APC activation and associated inflammation, whether or not induced by viral infection, may not always have detrimental consequences in autoimmune diabetes. As discussed above, epidemiological studies provide evidence that infectious events occurring during early childhood might have the ability to prevent or delay type 1 diabetes development (75). The ability of viral infections to abrogate autoimmune diabetes was also reported in different animal models using not only CVB3 (35), but also LCMV (46,76,77), EMC-DV (38), mouse hepatitis virus (78), and lactate dehydrogenase virus (79). Interestingly, both acute and persistent viral infections appear capable of modulating the immune system in a diabetes-preventive fashion. While the mechanisms accounting for the beneficial effect of viruses on the immune system are poorly understood and may vary from one individual to the next (or one mouse model to the next), a feature common to viral infections is their paradoxical capacity to induce inflammation. This is also the case for a number of nonviral infections, vaccines, or treatments reported to protect NOD mice against diabetes (80–89). In fact, in some cases, type 1 diabetes can be inhibited by direct treatment of pre-diabetic mice with proinflammatory or inflammatory cytokines such as type I interferons, IFN-γ, or interleukin-2 (81,90–93), or by inducing the production of similar factors via stimulation of innate immunity (81,82,85,94). In the RIP-LCMV system, although viral infection represents the event initiating autoimmu-
nity and diabetes, we have shown that inflammation mediated upon viral challenge can prevent type 1 diabetes. Our results indicate that secondary infection of RIP-nucleoprotein mice with a different strain of LCMV during the pre-diabetic phase completely abrogates diabetes development (95). This phenomenon is dependent on IFN-γ and TNF-α production and results from the recruitment of activated T-cells away from the islet infiltrate toward the pancreatic draining lymph node, as a consequence of selective expression of the chemokine IP-10 (CXCL10). In these studies, the LCMV strain used to prevent diabetes shares a homologous nucleoprotein sequence with that used to initiate diabetes, and thus the two infections activate comparable T-cell responses. Therefore, inflammatory cytokines and chemokines produced during viral infection might play a crucial part in controlling the location of virally activated autoreactive T-cells and their subsequent capacity to infiltrate pancreatic islets.

Antiviral T-cell memory and autoimmune diabetes. Previous reports suggest that part of the T-cells activated during viral infection can cross-react with new infectious agents or allo-antigens and modulate immunity to unrelated antigens (96–98). Consequently, such heterologous immunity might result in the accumulation of memory T-cells of specificity unrelated to the original viral agent (99). It is thus possible that the memory T-cell pool generated during life comprises autoreactive/cross-reactive T-cells induced nonspecifically as a consequence of cumulative or chronic viral infections. Since stimulated memory T-cells respond to antigen more rapidly and efficiently than naive cells, repeated or sustained antiviral immunity during life may eventually favor autoimmunity. While in most cases, this phenomenon will not result in autoimmune disease, it might be a prerequisite for overt diabetes in genetically predisposed individuals. As discussed above, in different mouse models, initiation of diabetes by viral infection requires a critical mass of autoreactive T-cells along with activated APCs (34,56–58,100), and it is possible that, in humans, such a mass is provided progressively over life by repeated or sustained viral infections. In other words, autoimmunity might not be induced de novo at type 1 diabetes onset, and the autoreactive T-cell pool is likely comprised of cells that have already responded to antigenic stimulation during viral infection in the past. On the other hand, previous work suggests that repeated or sustained encounters with viral antigen during chronic infection is associated with protection against type 1 diabetes (46,77). This may be due in part to exhaustion of T-cell immunity, which is commonly found in chronic viral infection and was notably reported in protracted LCMV infection (101). Alternatively, or in addition, diabetes abrogation during chronic viral infection may be the consequence of virally induced regulatory mechanisms suppressing antiviral immunity and possibly autoimmunity as well (102,103). In this respect, a number of chronic as well as acute infections have been reported to induce the activation of regulatory T-cells (Tregs), in particular naturally occurring Tregs (CD4⁺CD25⁺ Tregs), which are known to play a crucial role in the control of autoimmunity (104–108). Thus, repeated exposure to viral antigen during life may not necessarily be pathogenic in autoimmunity. Non-specific activation of autoreactive T-cells as a consequence of repeated or protracted viral infections may even be beneficial in some cases. Notably, CD4⁺CD25⁺ Tregs, which are selected in the thymus and thought to react to self-antigens in the periphery (109,110), can in essence be considered “autoreactive” and may thus be beneficially activated in heterologous immunity. In fact, we found that CD4⁺CD25⁺ Tregs are modulated during viral infection and become capable of halting the course of type 1 diabetes (C.M.F., unpublished data). In addition, our results suggest that resemblance between viral and β-cell antigens can, in some cases, promote activation of diabetes-preventive CD4⁺CD25⁺ Tregs.

CLINICAL IMPLICATIONS: DO VIRAL INFECTIONS INDUCE OR PREVENT TYPE 1 DIABETES? A number of epidemiological studies support the hypothesis that viral infections play a causative role in type 1 diabetes. However, systematic review of control studies published between 1966 and 2002 has shown no convincing evidence for or against an association between type 1 diabetes and the prime candidate for infectious cause, CVB (111). In animal models for type 1 diabetes, solid evidence supporting an inductive role for viruses is faced with just as solid evidence supporting a protective effect of viral infections. Based on mouse studies alone, there is no doubt that association between viruses and type 1 diabetes is extremely complex: while belonging to the same entroviral group, CVB3 and CVB4 have opposing effects on type 1 diabetes in the same mouse model; LCMV initiates diabetes in the RIP-LCMV model but prevents disease in the NOD model; and to make matters more complicated, CVB4 and LCMV are capable of both inducing and preventing diabetes in the same mouse model depending on the time of infection. Thus, the reason for current failure to associate a particular virus with induction of autoimmunity diabetes likely is that such an association might be impossible to make. Certain viruses might be capable of inducing diabetes and others of preventing diabetes, and type 1 diabetes inducers might be capable of preventing disease under certain conditions. This will depend of course on the nature of the considered virus (resemblance with β-cell antigens; tropism for β-cells; induction of a chronic infection), but also on the state of advancement of autoimmunity at the time of infection (generation of sufficient numbers of autoreactive T-cells; nature of the cytokine milieu systemically and in the islets). A given viral infection could thus be an essential disease precipitator once required predisposing events have occurred, but could on the other hand disrupt accumulation of these events.

Most important is the indication from animal studies that modulation of autoimmunity during viral infection does not depend merely on inherent properties of the virus, but also significantly on intrinsic factors of the host. The close interplay between the two will dictate whether enhancement or abrogation of autoimmune diabetes occurs. While molecular mimicry might activate autoreactive T-cells, it could also segregate these cells away from the islets and/or induce the activation of protective Tregs. While inflammatory cytokines might promote bystander activation of APCs and autoreactive T-cells, infection could occur at a time where inflammation will induce the relocation or demise of these cells. Whereas β-cell lysis and presentation of islet antigen might promote activation of autoreactive T-cells, it could also suppress the function of these cells by promoting Treg activity. Whereas repeated/sustained...
infections might lead to the accumulation of autoreactive T-cells within the memory pool, they could also induce suppressor mechanisms that will hinder autoimmunity. These possibilities are illustrated in Fig. 1.

Based on current evidence, it thus appears impossible to assess the capacity of viruses to modulate type 1 diabetes without knowledge of the state of advancement of autoimmunity and infection history of affected individuals. This is no easy task, but tremendous effort is currently being made in the U.S. and Europe to closely monitor exposure to infections in individuals at risk for type 1 diabetes. In particular, the TEDDY (The Environmental Determinants of Diabetes in the Young) study is currently assessing the influence of environmental factors, among which are viral infections, on the development of autoimmune diabetes. In this study, blood from children with increased genetic risk for type 1 diabetes is assessed for viral exposure every 3 months for the first 4 years of life, and then every 6 months until the age of 15 years. Stool samples are also assessed for viral exposure at monthly intervals for the first 4 years of life and then biannually until the age of 15. Importantly, as the period of time between a particular viral infection and the initiation of autoimmunity appears variable, occurrence of a possibly critical infectious event might be extremely hard to detect. It thus appears crucial that children with increased genetic risk for type 1 diabetes are monitored not only at regular intervals, but also whenever they are undergoing a viral infection. Closer monitoring of individuals with high risk for type 1 diabetes should give us more convincing evidence for the contribution of an infectious agent to progression toward autoimmunity. In addition, newly obtained mechanisms from experimental investigations will be useful for the development of novel immunotherapy for type 1 diabetes.

ACKNOWLEDGMENTS
The authors acknowledge support from the Brehm Coalition.

REFERENCES
1. In’t Veld P, Lievens D, De Grijse J, Ling Z, Van der Auwera B, Pipeleers-Marichal M, Gorus F, Pipeleers D: Screening for insulitis in adult autoantibody-positive organ donors. Diabetes 56:2400–2404, 2007
2. Redondo MJ, Rewers M, Yu L, Garg S, Pichler CC, Elliott RB, Eisenbarth GS: Genetic determination of islet cell autoimmunity in monozygotic twin, dizygotic twin, and non-twin siblings of patients with type 1 diabetes: prospective twin study. BMJ 318:698–702, 1999
3. Bodansky HJ, Staines A, Stephenson C, Haigh D, Cartwright R: Evidence for an environmental effect in the aetiology of insulin dependent diabetes in a transmigratory population. BMJ 304:1020–1022, 1992
4. Hyoty H, Taylor KW: The role of viruses in human diabetes. Diabetologia 45:1353–1361, 2002
5. Honeyman MC, Stone NL, Harrison LC: T-cell epitopes in type 1 diabetes autoantigen tyrosine phosphatase IA-2: potential for mimicry with rotavirus and other environmental agents. Mol Med 4:231–239, 1998
6. Honeyman MC, Coulson BS, Stone NL, Gellert SA, Goldwater PN, Steele CE, Cooper JJ, Tait BD, Colman PG, Harrison LC: Association between rotavirus infection and pancreatic islet autoimmunity in children at risk of developing type 1 diabetes. Diabetes 49:1319–1324, 2000
7. Hyoty H, Leinikki P, Reunanen A, Ionen J, Surcel HM, Rilva A, Kaar ML, Huupponen T, Hakulinen A, Makela AL, et al.: Mumps infections in the etiology of type 1 (insulin-dependent) diabetes. Diabetes Res 9:111–116, 1988
8. Pak CY, Eun HM, McArthur RG, Yoon JW: Association of cytomegalovirus infection with autoimmune type 1 diabetes. Lancet 2:1–4, 1988
9. Forrest JM, Menser MA, Burgess JA: High frequency of diabetes mellitus in young adults with congenital rubella. Lancet 2:332–334, 1971
10. Menser MA, Forrest JM, Bransby RD: Rubella infection and diabetes mellitus. Lancet 1:57–60, 1978
11. Devendra D, Liu E, Eisenbarth GS: Type 1 diabetes: recent developments. BMJ 328:750–754, 2004
12. Hyoty H, Hiltunen M, Knip M, Laaksonen M, Vahasaalo P, Karjalainen J, Koskela P, Rovainen M, Leinikki P, Hovi T, et al.: A prospective study of the role of coxsackie B and other enterovirus infections in the pathogen-
esis of IDDM: Childhood Diabetes in Finland (DiMe) Study Group. Diabetes 44:652–657, 1995
13. Kimminki T, Kupila A, Hamalainen AM, Kukko M, Kulmala P, Savolak K, Simell T, Keskinen P, Ilonen J, Simell O, Knip M: The first signs of beta-cell autoimmunity appear in infancy in genetically susceptible children from the general population: the Finnish Type 1 Diabetes Prediction and Prevention Study. J Clin Endocrinol Metab 86:4782–4788, 2001
14. Lonrov M, Korpela K, Knip M, Ilonen J, Simell O, Korhonen S, Savolak K, Muona P, Simell T, Koskelo P, Hytöy H: Enterovirus infection as a risk factor for beta-cell autoimmunity in a prospectively observed birth cohort. The Finnish Diabetes Prediction and Prevention Study. Diabetes 49:1314–1318, 2000
15. Clements GB, Galbraith DN, Taylor KW: Coxsackie B virus infection and onset of childhood diabetes. Lancet 346:221–223, 1995
16. Andreotti L, Hofer D, Hober-Vandenbergh C, Belaich S, Vantagh YM, Lefebvre J, Wattré P: Detection of coxsackie B virus RNA sequences in whole blood samples from adult patients at the onset of type I diabetes mellitus. J Med Virol 52:121–127, 1997
17. Juhela S, Hytöy H, Roivainen M, Harkonen T, Puttonauk P, Simell O, Ilonen J: T-cell responses to enterovirus antigens in children with type 1 diabetes. Diabetes 49:1308–1313, 2000
18. Yoon JW, Austin M, Onodera T, Noktins AL: Isolation of a virus from the pancreas of a child with diabetic ketoadiposis. N Engl J Med 300:1173–1179, 1979
19. Dotta F, Censini S, van Halteren AG, Marselli L, Masini M, Dionisi S, Foulis AK, Jackson R, Farquharson MA: The pancreas in idiopathic diabetes: Childhood Diabetes in Finland Study Group. Diabetes 49:693–702, 2000
20. Roivainen M, Tauriainen S, Honkanen T, Oikarinen S, Vuori K, Kaukinen E, Ylipaasto P, Klingel K, Lindberg AM, Otonkoski T, Kandolf R, Hovi T, Sorsa M, Simonila P, Kallings L, Malinovska R, Reunanen A: Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells. Diabetologia 47:225–239, 2004
21. Roivainen M, Rasilaen M, Ylipaasto P, Nissinen R, Ustinv O, Bouwens L, Ezirik DL, Hovi T, Otonkoski T: Mechanisms of coxsackievirus-induced damage to human pancreatic beta-cells. J Clin Endocrinol Metab 85:432–440, 2000
22. Roivainen M, Ylipaasto P, Savolainen C, Galama J, Hovi T, Otonkoski T: Functional impairment and killing of human beta cells by enteroviruses: the capacity is shared by a wide range of serotypes, but the extent is a characteristic of individual virus strains. Diabetologia 45:693–702, 2002
23. Roivainen M: Enteroviruses: new findings on the role of enteroviruses in the onset of type 1 diabetes. Int J Biochem Cell Biol 38:721–725, 2006
24. Fouquet L, Melchers F, Paragunahon MA: The pancreas in idiopathic Addison’s disease: a case for a prediabetic pancreas. Histopathology 41:188–401, 1988
25. Juhela S, Hytöy H, Hinkkanka A, Elliott JF, Covacci A, Rappuoli R, Roep BO, Marchetti P: Coxsackie B4 virus infection of beta cells and damage to human pancreatic beta-cells. J Clin Endocrinol Metab 440, 2000
26. Knip M, Hytöy H, Raitio M, Raitio J: The first signs of type 1 diabetes in a population-based mother-child cohort. Diabetologia 49:66–70, 2006
27. Kimminki T, Ludvigsson J, Uibo R, Salur L, Marciluoniyte D, Hermann R, Söltzs G, Fuchtenbusch M, Ziegler AG, Konstandraova A, Romanov A, Kaplan B, Laron Z, Koskelo P, Vesikari T, Huhtala H, Knip M, Hytöy H: Relationship between the incidence of type 1 diabetes in a population-based birth cohort. Diabetologia 49:66–70, 2006
28. Vinck T, Thomas VA, Rossini AA, Wallace JE, Welsh RM: Induction of type I diabetes by Kilham’s rat virus in diabetes-resistant BB/Wor rats. Science 254:1010–1013, 1991
29. Coleman TJ, Gamble DR, Taylor KW: Diabetes in mice after Coxsackie B virus infection. Br Med J 3:25–27, 1973
30. Serreze DV, Ottendorfer EW, Ellis TM, Gauntt CJ, Atkinson MA: Acceleration of type 1 diabetes by a coxsackievirus infection requires a preexisting critical mass of autoreactive T-cells in pancreatic islets. Diabetes 49:708–711, 2000
31. Tracy S, Droscher KM, Chapman NM, Kim KS, Carson SD, Pirruccello S, Lane PH, Romero JR, Leser JS: Toward testing the hypothesis that group B coxsackieviruses (CVB) trigger insulin-dependent diabetes: inoculating nonobese diabetic mice with CVB markedly lowers diabetes incidence. J Virol 76:12097–12111, 2002
32. Craighead JE, McLane MF: Diabetes mellitus: induction in mice by enterophagyomarcovirus. Science 162:913–914, 1968
33. Yoon JW, McClintock PR, Bachurski CJ, Longstreth JD, Noktins AL: Virus-induced diabetes mellitus: no evidence for immune mechanisms in the destruction of beta cells by the D-variant of enterophagyomarcovirus. Diabetes 35:922–925, 1986
34. Hermitte L, Vlaetelles B, Naquet P, Atlan C, Payan MJ, Vague P: Paradox- cal lesioning of autoimmune processes in non-obese diabetic mice after infection with the diabetogenic variant of enterophagyomarcovirus. Eur J Immunol 20:1297–1303, 1990
35. Guberski DL, Thomas VA, Skeh WR, Like AA, Handler ES, Rossini AA, Wallace JE, Welsh RM: Induction of type I diabetes by Kilham’s rat virus in diabetes-resistant BB/Wor rats. Science 254:1010–1013, 1991
36. Kaufman DL, Erlander MG, Clare-Salzler M, Atkinson MA, Maclearen NK, Tobin AJ: Autoimmunity to two forms of glutamate decarboxylase in insulin-dependent diabetes mellitus. J Clin Invest 90:283–292, 1992
37. Atkinson MA, Bowman MA, Campbell L, Darrow BL, Kaufman DL, Maclearen NK: Cellular immunity to a determinant common to glutamate decarboxylase and coxsackievirus in insulin-dependent diabetes. J Clin Invest 94:2125–2129, 1994
38. Richter W, Mertens T, Trinchet J, Hoebel B, Mui P, Ritzkowsky A, Scherbaum WA, Boehm BO: Sequence homology of the diabetes-associated autoantigen glutamate decarboxylase 4C with coxsackievirus B4–2C protein and heat shock protein 60 mediates no molecular mimicry of autoantibodies. J Exp Med 180:721–726, 1994
39. Talen J, Lehmaho PV, Kaufman DL: T cell cross-reactivity between coxsackievirus and glutamate decarboxylase is associated with a murine diabetes susceptibility allele. J Exp Med 180:1970–1984, 1994
40. Horwitz MS, Bradley LM, Herbertson J, Krabli T, Lee J, Sarvetnick N: Diabetes induced by coxsackievirus: initiation by bystander damage and not molecular mimicry. Nat Med 4:781–785, 1998
41. Ohashi PS, Oehn S, Buerki K, Pircher H, Ohashi CT, Odermatt B, Malissen B, Zinkernagel RM, Hengartner H: Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65:305–317, 1991
42. Oldstone MB, Nerenberg M, Southern P, Price J, Lewicki H: Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell 65:319–331, 1991
43. von Herrath MG, Dockter J, Oldstone MB: How virus induces a rapid or slow onset insulin-dependent diabetes mellitus in a transgenic model. Immunity 1:231–242, 1994
44. Sevilla N, Homann D, von Herrath M, Rodriguez F, Harkins S, Whitton JL, Oldstone MB: Virus-induced diabetes in a transgenic model: role of cross-reacting viruses and quantitation of effector T cells needed to cause diabetes. J Virol 76:3284–3292, 2000
45. Christen U, Edelmann KH, Mcgavern DB, Wolfe T, Coon B, Teague MK, Miller SD, Oldstone MB, von Herrath MG: A viral epitope that mimics a self antigen can accelerate but not initiate autoimmune diabetes. J Clin Invest 114:1290–1298, 2005
46. von Herrath MG, Fujimani RS, Whitton JL: Microorganisms and autoimmunity: making the barren field fertile? Immunol Res 36:1303–1308, 1993
47. C.M. FILIPPI AND M.G. VON HERRATH
with a viral mimic (polysinosinic-polycytidylic acid) and an insulin self-peptide. Proc Natl Acad Sci U S A 99:5539–5544, 2002
54. Hutchings P, Rosen H, O'Reilly L, Simpson E, Gordon S, Cooke A: Transfer of diabetes in mice prevented by blockade of adhesion-promoting
receptor on macrophages. Nature 348:639–642, 1990
55. Jun HS, Yoon CS, Zbytnuik L, van Rooijen N, Yoon JW: The role of
macrophages in T-cell-mediated autoimmune diabetes in nonobese diabetic mice. J Exp Med 189:347–358, 1999
56. von Herrath M, Holz A: Pathological changes in the islet milieu precede
infiltration of islets and destruction of beta-cells by autoreactive lymphocytes
in a transgenic model of virus-induced IDDM. J Autoimmun 10:231–238, 1997
57. Garza KM, Chan SM, Suri R, Nguyen LT, Odermatt B, Schoenberger SP,
Oldstone MB, Southern P, Rodriquez M, Lampert P: Virus persists in beta
cells of islets of Langerhans and is associated with chemical manifestations
of diabetes. Science 224:1440–1443, 1984
58. Rodriguez M, Garrett RS, Raitt M, Lampert PW, Oldstone MB: Virus
persists in beta cells of islets of Langerhans and is associated with chemical manifestations of diabetes. II. Morphologic observations.
Ann J Pathol 121:427–444, 1985
59. Yoon JW, Morishima T, McClintock PR, Austin M, Notkins AL: Virus-
induced diabetes mellitus: mengovirus infects pancreatic beta cells in
strains of mice resistant to the diabetogenic effect of encephalomyocarditis
virus. J Virol 50:684–690, 1984
60. Yoon JW, Jun HS: Viruses cause type 1 diabetes in animals. Ann N Y Acad
Sci 1079:145–148, 2006
61. Seewaldt S, Thomas HE, Ejrnaes M, Christen U, Wolfe T, Rodrigo E, Coon
B, Bethune B, Karzai W, von Herrath M: Virus-induced autoimmune diabetes: most beta-cells die through inflammatory cytokines and not
perform from autoreactive (anti-viral) cytotoxic T-lymphocytes. Diabetes
49:1801–1809, 2000
62. Lang RS, Recher M, Junt T, Navarini AA, Harris NL, Freiagin S, Odermatt
B, Conrad C, Ittner LM, Bauer S, Luther SA, Uematsu S, Akira S, Hengartner H, Zinkernagel RM: Toll-like receptor engagement converts
T-cell autoimmunity into overt autoimmune disease. Nat Med 11:138–145,
2005
63. Zipris D, Lion E, Nair A, Xie JX, Greiner DL, Mordes JP, Rossini AA:
TLR9-signaling pathways are involved in Kilham rat virus-induced auto-
immune diabetes in the biobreeding diabetes-resistant rat. J Immunol
179:693–701, 2007
64. Zipris D, Lien E, Xie JX, Greiner DL, Mordes JP, Rossini AA: TLR activation synergizes with Kilham rat virus infection to induce diabetes in
BBDR rats. J Immunol 174:141–142, 2005
65. Kim HS, Han MS, Chung KW, Kim S, Kim E, Kim MJ, Jang E, Lee HA, Yoon
J, Akira S, Lee MS: Toll-like receptor 2 senses beta-cell death and
contributes to the initiation of autoimmune diabetes. Immunity 27:321–
333, 2007
66. Zanin-Zhorov A, Cahalon L, Tal G, Margalit R, Lider O, Cohen IR: Heat
shock protein 60 enhances CD4+ CD25+ regulatory T cell function via
innate TLR2 signaling. J Clin Invest 116:2022–2032, 2006
67. Hugues S, Mougenou E, Ferlin W, Jeske D, Hofman P, Homann D, Beaudoin L, Schirke C, Von Herrath M, Lehuen A, Glaienhauen N:
Tolerance to islet antigens and prevention from diabetes induced by
limited apoptosis of pancreatic beta cells. Immunity 16:169–181, 2002
68. Filippa CM, von Herrath MG: Islet-beta cell death: fuel to sustain auto-
immunity? Immunity 27:183–195, 2007
69. Christen U, Wolfe T, Mohule R, Hughes AC, Rodrigo E, Green EA, Flavell
RA, von Herrath MG: A dual role for TGF-alpha in type 1 diabetes:
islet-specific expression abrogates the ongoing autoimmune process when
induced late but not early during pathogenesis. J Immunol 166:
7023–7032, 2001
70. Yang XD, McDevitt HO: Role of TGF-alpha in the development of auto-
immune diabetes and the pathogenesis of insulin-dependent diabetes mellitus
in NOD mice. Cire Shock 43:198–201, 1994
71. Serreze DV, Wasserfall C, Ottendorfer E, Stalvey M, Pierce MA, Karzai W,
Yamagata T, Saruta T, Ishii T: Suppression of development of diabetes in NOD mice by lactate dehydrogenase virus infection. J Autoimmun
5:656–673, 1992
72. McInerney MF, Pek SB, Thomas DM: Prevention of diabetes and insulin
dabetes onset by treatment with complete Freund’s adjuvant in NOD mice.
Diabetes 40:715–725, 1991
73. Serreze DV, Hamaguchi K, Leiter EH: Immunostimulation circumvents
diabetes in NOD/Lt mice. J Autoimmun 2:759–776, 1989
74. Quintana FJ, Rotem A, Carmi P, Cohen IB: Vaccination with empty plasmid
DNA or CpG oligonucleotide inhibits diabetes in nonobese diabetic mice:
modulation of spontaneous 60-Kda heat shock protein autoimmunity. J Immunol 165:6148–6155, 2000
75. Shehadeh N, Calcinaro F, Bradley BJ, Bruchim I, Vardi P, Lafferty KJ:
Effect of adjuvant therapy on development of diabetes in mouse and man.
Lancet 343:706–707, 1994
76. Kim HJ, Cho SH, Kim YW, Jang EC, Park SY, Kim EJ, Lee SK: Effects of
BCG, lymphoixin and bee venom on insulinis and development of IDDM in
non-obese diabetic mice. J Korean Med Sci 14:648–652, 1999
77. Iguchi M, Inagawa H, Nishizawa T, Okutomi T, Morikawa A, Soma GI,
Mizuno D: Homeostasis as regulated by activated macrophage. V. Sup-
pression of diabetes mellitus in non-obese diabetic mice by LPSw (a lipopolysaccharide from wheat flour). Chem Pharm Bull (Tokyo) 40:
1001–1006, 1992
78. Qin HY, Sadelain MW, Hitchon C, Lannon J, Singh B: Complete Freund’s
adjuvant-induced T cells prevent the development and adoptive transfer
diabetes in nonobese diabetic mice. J Immunol 150:2072–2080, 1993
79. Bras A, Aguas AP: Diabetes-prone NOD mice are resistant to Mycobac-
terium avium and the infection prevents autoimmune disease. Immunol-
ogy 88:20–25, 1996
80. Toyota T, Satoh J, Oya K, Shiintani S, Okano T: Streptococcal preparation
(OR-432) inhibits development of type 1 diabetes in NOD mice. Diabetes
35:496–499, 1986
81. Sobel DO, Yankelevich B, Goyal D, Nelson D, Mazumder A: The B-subunit
of cholera toxin induces immunoregulatory cells and prevents diabetes in
the NOD mouse. Diabetes 47:186–191, 1998
82. Tanaka-Kataoka M, Kunikata T, Takayama S, Fujii K, Ohashi K, Ikeda M,
Kurimoto M: Oral use of interferon-alpha delays the onset of insulin-dependent diabetes mellitus in nonobese diabetic mice. J Interferon
Cytokine Res 19:877–879, 1999
83. Brod SA, Malone M, Darcan S, Papolla M, Nelson L: Induced interferon-alpha suppresses type 1 diabetes in non-obese diabetic mice. Diabetologia
41:1227–1232, 1998
84. Sobel DO, Ahvazi B: Alpha-interferon inhibits the development of diabe-
tes in NOD mice. Diabetes 47:1867–1872, 1998
85. Sobel DO, Han J, Williams J, Yoon JW, Jun HS, Ahvazi B: Gamma interferon paradoxically inhibits the development of diabetes in the NOD mouse.
J Autoimmun 19:129–137, 2002
86. Hong S, Wilson MR, Serizawa I, Wu L, Singh N, Naidenko OV, Miura T,
Haba T, Scherer DC, Wei J, Kronenberg M, Kozukua Y, Van Kaer L: The
natural killer T-cell ligand alpha-galactosylceramide prevents autoim-
une diabetes in non-obese diabetic mice. Nat Med 7:1052–1056, 2001
87. Christen U, Benke D, Wolfe T, Rodrigo E, Rhode A, Hughes AC, Oldstone
MB, von Herrath MG: Cure of prediabetic mice by viral infections involves
lymphocyte recruitment along an IP-10 gradient. J Clin Invest 113:74–84,
2004
88. Nahill SR, Welsh RM: High frequency of cross-reactive cytotoxic T
lymphocytes elicited during the virus-induced polyclonal cytotoxic T
lymphocyte response. J Exp Med 173:317–327, 1993
89. Selin LK, Nahill SR, Welsh RM: Cross-reactivities in memory cytotoxic T
lymphocyte recognition of heterologous viruses. J Exp Med 176:1933–
1943, 1994
90. Selin LK, Lin MY, Kraemer KA, Pardoll DM, Schneck JP, Varga SM,
Santolucito PA, Pinto AK, Welsh RM: Attrition of T cell memory: selective loss of LCMV epitope-specific memory CD8 T cells following infections with heterologous viruses. *Immunity* 11:733–742, 1999

99. Selin LK, Brehm MA, Naumov YN, Cornberg M, Kim SK, Clute SC, Welsh RM: Memory of mice and men: CD8+ T-cell cross-reactivity and heterologous immunity. *Immuno Rev* 211:164–181, 2006

100. Ohashi PS, Oehen S, Aichele P, Pircher H, Odermatt B, Herrera P, Higuchi Y, Buerki K, Hengartner H, Zinkernagel RM: Induction of diabetes is influenced by the infectious virus and local expression of MHC class I and tumor necrosis factor-alpha. *J Immunol* 150:5185–5194, 1993

101. Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD, Ahmed R: Viral immune evasion due to persistence of activated T cells without effector function. *J Exp Med* 188:2205–2213, 1998

102. Brooks DG, Trifilo MJ, Edelmann KH, Teyton L, McGavern DB, Oldstone MB: Interleukin-10 determines viral clearance or persistence in vivo. *Nat Med* 12:1301–1309, 2006

103. Ejrnaes M, Filippi CM, Martinic MM, Ling EM, Togher LM, Crotty S, von Herrath MG: Resolution of a chronic viral infection after interleukin-10 receptor blockade. *J Exp Med* 203:2461–2472, 2006

104. Sakaguchi S, Fukuma K, Kuribayashi K, Masuda T: Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance: deficit of a T cell subset as a possible cause of autoimmune disease. *J Exp Med* 161:72–87, 1985

105. Sivas S, Azkur AK, Kim BS, Kumaraguru U, Rouse BT: CD4+CD25+ regulatory T cells control the severity of viral immunoinflammatory lesions. *J Immunol* 172:4123–4132, 2004

106. Iwashiro M, Messer RJ, Peterson KE, Stromnes IM, Sugie T, Hasenkrag KJ: Immunosuppression by CD4+ regulatory T cells induced by chronic retroviral infection. *Proc Natl Acad Sci U S A* 98:9226–9230, 2001

107. MacDonald AJ, Duffy M, Brady MT, McKiernan S, Hall W, Hegarty J, Curry M, Mills KH: CD4 T helper type 1 and regulatory T cells induced against the same epitopes on the core protein in hepatitis C virus-infected persons. *J Infect Dis* 185:720–727, 2002

108. Robertson SJ, Messer RJ, Carmody AB, Hasenkrag KJ: In Vitro Suppression of CD8+ T Cell Function by Friend Virus-Induced Regulatory T Cells. *J Immunol* 176:3342–3349, 2006

109. Apostolou I, Sarukhan A, Klein L, von Boehmer H: Origin of regulatory T cells with known specificity for antigen. *Nat Immunol* 3:756–763, 2002

110. Shevach EM, McHugh RS, Piccirillo CA, Thornton AM: Control of T-cell activation by CD4+CD25+ suppressor T cells. *Immunol Rev* 182:58–67, 2001

111. Green J, Casabonne D, Newton R: Coxsackie B virus serology and type 1 diabetes mellitus: a systematic review of published case-control studies. *Diabet Med* 21:507–514, 2004