Prevention of Pressure Ulcers in a Pediatric Cardiac Intensive Care Unit

Janet M. Simsic, MD;*† Kevin Dolan, BS†; Sarah Howitz, RN, BSN†; Stephanie Peters, RN, MS, CPNP AC/PC†; Robert Gajarski, MD, MHSA†

Abstract

Background: Pressure ulcer (PU) is an injury to skin or underlying tissue as a result of pressure or pressure with shear stress. We classify PUs by the level of tissue injury: stage I–IV, unstageable, suspected deep tissue injury. This quality project was aimed to reduce the incidence of PUs > stage II in the cardiothoracic intensive care unit. Methods: We reviewed PUs > stage II from March 2010 to December 2017. Interventions included: PU bundle (April 2010, revised January 2013); multidisciplinary huddles for PUs > stage II (October 2011); multidisciplinary weekly skin rounds (March 2010, revised August 2012); unit specific workgroup (October 2012); caregiver input form (December 2012). The PU bundle included diaper barrier cream, pulse oximeter probe rotation, turning schedule, pressure reduction surfaces, heel pressure release, head of the bed elevation. Results: Between 2010 and 2014, PUs decreased from 15.7 events per 1,000 patient days to a new baseline of 2.9 events per 1,000 patient days. We have sustained this rate for 3 years. PUs related to immobility decreased from 35 in 2010–2011 to 4 in 2016–2017. PU related to medical devices decreased from 34 in 2010–2011 to 15 in 2016–2017. Conclusions: Institution of PU bundle, multidisciplinary weekly skin rounds, and huddles for PUs > stage II reduced PUs related to immobility, allowed for earlier identification of stage II PUs and reduced stage III PUs. Challenges remain in reducing PUs related to medical devices. Importantly, we sustained this improvement over the past 3 years. (Pediatr Qual Saf 2019;2:e162; doi: 10.1097/pq9.0000000000000162; Published online April 2, 2019.)

INTRODUCTION

A pressure injury or ulcer is defined by the National Pressure Ulcer Advisory Panel (NPUAP) as localized damage to the skin and underlying soft tissue usually over a bony prominence or injury related to medical or other devices. The injury occurs as a result of intense and/or prolonged pressure or pressure in combination with shear stress. The NPUAP has defined pressure ulcers based on the level of tissue injury using a staging system with uniform terminology for consistency in reporting. NPUAP defines a stage I injury as nonblanchable erythema of intact skin; stage II is partial-thickness skin loss; stage III is full-thickness skin loss; stage IV is full-thickness skin and tissue loss; and a deep tissue injury is persistent nonblanchable deep red, maroon, or purple discoloration. NPUAP defines an unstageable as obscured full-thickness skin and tissue loss. The prevalence of pressure ulcers in critically ill children widely varies and is reported at 0.8% to 27%. The prevalence of pressure ulcers in critically ill children varies and is reported at 0.8% to 27%. Schindler et al2 reported pressure ulcer incidence per 1,000 patient days from 9 pediatric intensive care units ranging from 2.47 to 57.1. Patients at the greatest risk are those requiring mechanical ventilation or inotropic support; those who suffer a cardiac arrest following cardiac surgery; neonates requiring extracorporeal membrane oxygenation; those with nutritional deficits, weight loss, or anasarca; and patients with longer hospital lengths of stay. The prevalence of pressure ulcers in critically ill children widely varies and is reported at 0.8% to 27%. Medical device–associated pressure ulcers are frequent among pediatric patients with reported prevalence rates ranging from 50% to 69%. This quality project aimed to reduce the incidence of pressure ulcers > stage II in the cardiothoracic intensive care unit (CTICU) and, more importantly, sustain the reduction over time.

METHODS

Ethical Issues

This quasi-experimental quality improvement work involved the development of a process to reduce pressure...
ulcers. No interventions involved a comparison of multiple devices or therapies, and patients were not subject to randomization. Medical records were accessed by health care staff and quality improvement team members as part of their normal responsibilities. Per policy, this project does not meet the definition of human subjects’ research. Therefore, institutional review board review was not required.

Setting
Nationwide Children’s Hospital is an academic, nonprofit, freestanding children’s hospital located in Columbus, Ohio. The CTICU is a 20-bed unit with over 600 admissions per year. The top 5 most common admission diagnoses are postoperative ventricular septal defect repair, hybrid palliation stage I, hybrid palliation comprehensive stage II, pulmonary valve replacement, and Fontan procedure. Approximately, 10% of our admissions are newborns, defined as less than 30 days of age. The CTICU staff includes a multidisciplinary team of critical care and cardiology physicians (n = 8), advanced nurse practitioners (n = 10), a dedicated clinical pharmacist (n = 1), registered nurses (n = 61), respiratory therapists (n = 14), cardiology and critical care physicians in fellowship training, clinical dieticians (n = 3), physical and occupational therapists, child life specialist, and social worker.

Planning the Intervention
We recruited a multidisciplinary team to develop and implement standardized surveillance of pressure ulcers in the pediatric CTICU. The team included physicians, advanced nurse practitioners, nursing, respiratory therapists, and quality team representatives. We began by creating a SMART (specific, measurable, achievable, realistic, timely) aim statement and key driver diagram.21 We identified patient factors, staff and family education, staff accountability, communication, and collaboration among the key stakeholders, standardized guidelines, specific documentation and follow-up, data/compliance analysis, and measurable outcomes as the relevant key drivers.

Interventions
In March 2010, the hospital instituted multidisciplinary weekly skin rounds attended by the bedside nurse, unit specific pressure ulcer nurse champion, respiratory therapist, wound ostomy nurse, and quality improvement representative. Subsequently, hospital leadership implemented a hospital-wide pressure ulcer bundle in April 2010. Pressure ulcers hospital-wide are staged by the wound team. The pressure ulcer bundle included: (1) barrier cream use for diapered patients; (2) pulse oximeter probe rotation every 8 hours; (3) patient turning schedule every 2 hours; (4) use of pressure reduction surfaces; (5) heel pressure relief; (6) elevation of head of the bed; and (7) wound ostomy nurse consult for all pressure ulcers > stage II. A multidisciplinary team reviewed all pressure ulcers > stage II identified during huddles beginning in October 2011. Huddle team members included a representative from each of the following: physician, advanced nurse practitioner, pharmacist, clinical nurse leader, bedside nurse, respiratory therapist, and quality project manager. This group collaborated to review events and suggest interventions in a factual, blameless, nonthreatening environment. It was beneficial to have multiple disciplines involved in the review process, as each discipline looked at the event from their unique perspective. Huddles are organized by the clinical nurse leader with the goal to occur within 2 weeks of the event. The huddle process starts with a chart review of events leading to the pressure ulcer and caregiver input regarding attributable clinical or situational factors. The goal of each huddle was to identify factors that may have contributed to the pressure ulcer and interventions aimed at preventing event recurrence with consensus agreement of the huddle participants. Representatives from the huddle would then communicate and discuss their findings and proposed interventions with the CTICU staff via email and staff meetings. The CTICU quality committee created in spring 2010, with accountability for guiding improvement and quality process education, would assist the staff in the implementation of the interventions as appropriate. Also, the CTICU quality committee periodically updates a bulletin board with actual photographs of pressure ulcers in our patients (with parental approval) in the CTICU staff-only area as a visual tool to raise staff awareness and engagement.

The first Plan-Do-Study-Act Cycle (August 2012) aimed to increase participation in the multidisciplinary weekly skin rounds. The day and time of skin rounds were changed to accommodate the multidisciplinary staff members. A nurse and advanced nurse practitioner champion receive dedicated nonpatient care hours to work on pressure ulcer prevention. Therefore, they are always available to participate in weekly skin rounds and pressure ulcer huddles and represent the unit at the institutional pressure ulcer meetings. They also participate in the creation, education, and monitoring of action plan compliance, and coaching, mentoring, and collaborating with other stakeholders.

The second Plan-Do-Study-Act Cycle (October 2012–December 2012) includes the creation of a multidisciplinary (physician, bedside nurse, advanced nurse practitioner, respiratory therapist, and quality representative) unit specific pressure ulcer work group to discuss leadership involvement, bedside accountability, and develop patient-specific interventions. This group developed the caregiver input form (Fig. 1) that allows all caregivers to provide input on the cause and potential prevention of each pressure ulcer.

After review of our pressure ulcers from 2012, the third Plan-Do-Study-Act Cycle (January 2013) was a revision of the pressure ulcer bundle. Secondary to the increased incidence of medical device–related pressure ulcers, the following interventions were added: (1) a head-to-toe skin assessment every 12 hours; (2) removal of each
respiratory device every 4 hours to monitor for pressure injury or skin breakdown; and (3) skin inspection around each medical device including all lines, tubes, and drains every 12 hours.

Method of Evaluation and Analysis

Random monthly nursing audits tracked pressure ulcer bundle compliance. Each component of the bundle is tracked for appropriate documentation in the electronic medical record.

RESULTS

Between 2010 and 2014, pressure ulcers > stage II in the CTICU decreased from 15.7 events per 1,000 patient days to a new baseline of 2.9 events per 1,000 patient days. We sustained this new rate for 3 years (Fig. 2). The severity of pressure injury events also reduced over time with only one stage III pressure ulcer in 3 years (Fig. 3). Pressure ulcers related to immobility decreased. Pressure ulcers related to medical devices also decreased but not as markedly (Fig. 4).

Compliance

Figure 5 depicts the overall compliance with the pressure ulcer bundle elements. Compliance with the following individual components of the pressure ulcer bundle are consistently greater than 90% and near 100% for 2017: wound ostomy nurse consult, skin inspection, pressure reduction surface usage, heel pressure relief, head-to-toe assessment, and barrier cream use. Notably, removal of respiratory devices every 4 hours for pressure-related skin breakdown assessment is the least compliant bundle element followed by scheduled turning and pulse oximeter rotation. These 3 components of the pressure ulcer bundle consistently have suboptimal compliance with only minimal improvement over the years as shown in Figure 6.

DISCUSSION

Using quality methodology we were successful in reducing pressure ulcers > stage II causing patient harm and have sustained the reduction for 3 years. “Zero Hero” is our previously published institutional goal of striving for zero preventable harm events. The philosophy is the belief that system failures require corrective action plans including an “owner,” timeline, and a monitoring plan. The hospital leadership valuing quality improvement, transparency, and individual unit accountability was the foundation for this hospital-wide quality initiative. Hospital-wide multidisciplinary quality process education was mandatory for all staff. Hospital-wide behavioral
Fig. 2. Annotated run chart demonstrating an initial reduction in the incidence of pressure ulcers > stage II with a sustained reduction over the past 3 years. PDSA, Plan-Do-Study-Act.

Fig. 3. The severity of pressure ulcer events. DTI, deep tissue injury.
expectations included making a personal commitment to safety, accountability for clear, complete communication, and supporting a questioning attitude.22

The CTICU pressure ulcer bundle complies with the Children’s Hospital’s Solutions for Patient Safety pressure ulcer prevention bundle recommendations.23 In addition to the Solutions for Patient Safety bundle elements, the CTICU has unit specific interventions. An early unit specific intervention was the creation of a multidisciplinary CTICU quality committee with unit champions that enabled all CTICU staff members to become accountable and active participants in the quality improvement process. A work group from this committee is responsible for the evaluation and reduction of pressure ulcers resulting

Fig. 4. Pressure ulcers due to immobility and medical devices.

Fig. 5. Overall compliance with the pressure ulcer bundle.
in patient harm in the CTICU. Institutional quality improvement measures posted on the intranet are markers of internal and external transparency. Unit-based quality improvement measures appear on bulletin boards in prominent public places in every unit.

Perpetual education cycles, continual real-time feedback during weekly skin rounds, transparency with quality process measures, and accountability are imperative for sustainable success. The nonpunitive huddle process and the bulletin board with actual photographs of pressure ulcers in our patients as a visual tool are effective in raising staff awareness and engagement. Review of pressure ulcers resulting in patient harm in the first several months following the first set of interventions resulted in robust discussions of the situation surrounding the pressure ulcer, possible confounding factors, and additional potential interventions.

Pressure ulcer bundle compliance for the individual components that were already a part of routine charting (ie, no additional charting was required) was better compared with those elements that require additional charting. The bundle elements part of routine charting included: skin inspection, pressure reduction surface, head-to-toe assessment, and barrier cream use. Heel pressure relief was utilized only in muscle-relaxed patients who comprised only a very small number of patients. The bundle elements that require additional charting include turning schedule, respiratory devices, and pulse oximeter probe rotation. Secondary to the reduction of pressure ulcers in the CTICU, we speculate that compliance with these bundle elements occur more frequently than the audits would suggest. We believe that failure to appropriately chart these elements contributed more to the poor compliance issue rather than bundle element execution.

These interventions were successful in reducing pressure ulcers secondary to immobilization; however, pressure ulcers secondary to medical devices remain challenging. To address this ongoing problem, we recently adopted the practice of utilizing a thin layer of Mepelex (Mölnlycke Health Care, Norcross, Ga.) as a barrier between the respiratory device (CPAP or BiPAP mask) and the patient’s skin as well as removing the mask for detailed skin assessment every 4 hours. At this time if there is evidence of pressure injury, the clinical team discusses the utilization of a different mask type.

LIMITATIONS
This work was done using quality improvement methodology, and therefore no control group. Multiple interventions were undertaken simultaneously with no attempt made to ascertain which intervention was most or least effective. This quality initiative performed in a single unit utilizing specific interventions designed to address specific areas of weakness. Therefore, this may not be fully generalizable to other units. However, the quality improvement methodology utilized is valuable to all.

CONCLUSIONS
Education and process improvement strategies directed specifically at reducing pressure ulcers and staff
engagement were successful in reducing pressure ulcers causing patient harm. We sustained the reduction in pressure ulcers for 3 years. Further steps include continued vigilance with reporting of pressure ulcer events, interventions aimed at the reduction of pressure ulcers caused by medical devices and huddles to strive for “Zero” patient harm events.

ACKNOWLEDGMENTS

We acknowledge Dr. Richard McClead for his guidance and support of this quality project, and for critically reviewing the manuscript.

DISCLOSURE

The authors have no financial interest to declare in relation to the content of this article.

REFERENCES

1. National Pressure Ulcer Advisory Panel. NPUAP Pressure Injury Stages. Available at: http://www.npuap.org/resources/educational-and-clinical-resources/npuap-pressure-injury-stages/. Accessed April 13, 2017.
2. Schindler CA, Mikhailov TA, Kuhn EM, et al. Protecting fragile skin: nursing interventions to decrease development of pressure ulcers in pediatric intensive care. Am J Crit Care. 2011;20:26–34; quiz 35.
3. Curley MA, Quigley SM, Lin M. Pressure ulcers in pediatric intensive care: incidence and associated factors. Pediatr Crit Care Med. 2003;4:284–290.
4. Schindler CA, Mikhailov TA, Fischer K, et al. Skin integrity in critically ill and injured children. Am J Crit Care. 2007;16:568–574.
5. McCord S, McElvain V, Sachdeva R, et al. Risk factors associated with pressure ulcers in the pediatric intensive care unit. J Wound Ostomy Continence Nurs. 2004;31:179–183.
6. Neidig JR, Kleiber C, Oppliger RA. Risk factors associated with pressure ulcers in the pediatric patient following open–heart surgery. Prog Cardiovasc Nurs. 1989;4:99–106.
7. Schmidt JE, Berens RJ, Zollo MB, et al. Skin breakdown in children and high-frequency oscillatory ventilation. Arch Phys Med Rehabil. 1998;79:1565–1569.
8. Zollo MB, Gostisha ML, Berens RJ, et al. Altered skin integrity in children admitted to a pediatric intensive care unit. J Nurs Care Qual. 1996;11:62–67.
9. Visscher M, King A, Nie AM, et al. A quality-improvement collaborative project to reduce pressure ulcers in PICUs. Pediatrics. 2013;131:e1950–e1960.
10. Waterlow JA. Pressure sore risk assessment in children. Paediatr Nurs. 1997;9:21–24.
11. Willock J, Hughes J, Tickle S, et al. Pressure sores in children–the acute hospital perspective. J Tissue Viability. 2000;10:59–62.
12. Boesch RP, Myers C, Garrett T, et al. Prevention of tracheostomy-related pressure ulcers in children. Pediatrics. 2012;129:e792–e797.
13. Kilo CM. Improving care through collaboration. Pediatrics. 1999;103(1 suppl E):384–393.
14. Langley GJ, Moen R, Nolan KM, et al. The Improvement Guide: A Practical Approach to Enhancing Organizational Performance. 2nd ed. San Francisco, Calif.: Jossey-Bass; 2009.
15. Langley GJ, Nolan K, Nolan M, et al. The Improvement Guide: A Practical Approach to Enhancing Organizational Performance. San Francisco, Calif.: Jossey-Bass; 1996.
16. Curley MA, Razzmus IS, Roberts KE, et al. Predicting pressure ulcer risk in pediatric patients: the Braden Q Scale. Nurs Res. 2003;52:22–33.
17. Berlowitz D, Lukas CV, Parker V, et al. Preventing Pressure Ulcer in Hospitals: A Toolkit for Improving Quality of Care. 2011. Available at: www.ahrq.gov/research/ltc/pressureulcertoolkit. Accessed August 28, 2018.
18. Amin SG. Control charts 101: a guide to health care applications. Qual Manag Health Care. 2001;9:1–27.
19. Benneyan JC, Lloyd RC, Plsek PE. Statistical process control as a tool for research and healthcare improvement. Qual Saf Health Care. 2003;12:458–464.
20. Moen RD, Nolan TW, Provost LP. Quality Improvement Through Planned Experimentation. 2nd ed. New York, N.Y.: McGraw-Hill; 1999.
21. Willock J, Harris C, Harrison J, et al. Identifying the characteristics of children with pressure ulcers. Nurs Times. 2005;101:40–43.
22. Brilli RJ, McClead RE Jr, Crandall WV, et al. A comprehensive patient safety program can significantly reduce preventable harm, associated costs, and hospital mortality. J Pediatr. 2013;163:1638–1645.
23. Children’s Hospital’s Solutions for Patient Safety. SPS Prevention Bundles. Available at: http://www.solutionsforpatientsafety.org/wp-content/uploads/SPS-Prevention-Bundles.pdf. Accessed February 1, 2019.