Sex Bias in Basic and Preclinical Noise-Induced Hearing Loss Research

Amanda Marie Lauer, Katrina Marie Schrode
Department of Otolaryngology-HNS and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, United States

Abstract

Introduction: Sex differences in brain biochemistry, physiology, structure, and function have been gaining increasing attention in the scientific community. Males and females can have different responses to medications, diseases, and environmental variables. A small number of the approximately 7500 studies of noise-induced hearing loss (NIHL) have identified sex differences, but the mechanisms and characterization of these differences have not been thoroughly studied. The National Institutes of Health (NIH) issued a mandate in 2015 to include sex as a biological variable in all NIH-funded research beginning in January 2016. Materials and Methods: In the present study, the representation of sex as a biological variable in preclinical and basic studies of NIHL was quantified for a 5-year period from January 2011 to December 2015 prior to the implementation of the NIH mandate. Results: The analysis of 210 basic and preclinical studies showed that when sex is specified, experiments are predominantly performed on male animals. Discussion: This bias is present in studies completed in the United States and foreign institutions, and the proportion of studies using only male participants has actually increased over the 5-year period examined. Conclusion: These results underscore the need to invest resources in studying NIHL in both sexes to better understand how sex shapes the outcomes and to optimize treatment and prevention strategies.

Keywords: Basic research, noise-induced hearing loss, preclinical research, sex bias

INTRODUCTION

Approximately 26 million Americans aged 20–69 have noise-induced hearing loss (NIHL) (Centers for Disease Control and Prevention). The factors contributing to individual differences in susceptibility to noise exposure and in the perceptual and emotional consequences of NIHL have long been of interest to the research community. Many studies in animal models have explored the genetic basis for susceptibility to NIHL, but the effects of other biological variables such as sex and gender have received less attention. The existence of sex differences in brain biochemistry, physiology, structure, and function is broadly accepted. Men and women have different responses to medications, diseases, and environmental variables such as stress and nutrition.

With regard to the auditory system, men show longer delays in auditory brainstem responses and distortion product otoacoustic emissions than women, a phenomenon typically attributed to the slightly longer length of the male cochlea. The existence of these differences has implications for the function of the auditory system and its susceptibility to NIHL. It is important to understand how sex shapes the outcomes of damaging noise exposure to optimize treatment and prevention strategies for individual patients.

Despite the growing realization that sex often modulates the clinical responses of patients, only a few studies have investigated sex differences in susceptibility to NIHL in humans. The studies of permanent hearing loss, generally caused by long-term occupational exposure, tend to indicate that men are more susceptible than women to hearing loss across all frequencies. However, there is still some question about whether the sex differences typically observed in hearing loss are in fact due mostly to differences in the noise exposure experienced by men and women.

Address for correspondence: Dr. Amanda M. Lauer, 515 Traylor Building, 720 Rutland Ave Baltimore, MD 21205, United States. E-mail: alauer2@jhmi.edu

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work noncommercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Lauer AM, Schrode KM. Sex Bias in Basic and Preclinical Noise-Induced Hearing Loss Research. Noise Health 2017;19:207-12.
The question of sex-specific effects of noise exposure is most likely to be resolved by studies in animals, where noise exposure can be precisely controlled. In chinchillas exposed to loud noise, males exhibited larger threshold shifts at lower frequencies, whereas females exhibited larger threshold shifts at higher frequencies. Other studies in mice have shown sex differences in hearing outcomes after exposure to an augmented acoustic environment (moderate level background sounds) intended to prevent hearing loss. These few studies are just a small fraction of the approximately 8000 NIHL studies referenced in the PubMed database. In 2015, the National Institutes of Health (NIH) issued a mandate to include sex as a biological variable in all NIH-funded research beginning in January 2016. Clinical trials funded by NIH have been required to include women since 1993 when Congress passed the Revitalization Act. Sex bias has been identified in basic and preclinical surgical, neuroscience and biomedical research. In the present study, the representation of sex as a biological variable in preclinical and basic studies of NIHL was quantified for a 5-year period from January 2011 to December 2015 to determine the representation of this variable prior to the implementation of the NIH mandate and to better understand the extent of investigation in to the sex-specific effects of noise exposure.

Materials and Methods

Literature search

Publications indexed in PubMed were reviewed from the 5-year period between January 1, 2011 and December 31, 2015. The search term “noise induced hearing loss” yielded 1209 results from this time period. When filters were applied to include publications written in English, with an abstract available, performed on other animals (nonhuman), and within the stated publication dates, the search yielded 366 results. The search records were exported to a data file and manually reviewed in Microsoft Excel spreadsheet. Further criteria for exclusion from the study included: not performed in animals, no full text was available online via PubMed or Johns Hopkins Libraries, the study included ototoxicity experiments with no acoustic exposure conditions, reviews (not original research), inclusion of marine mammals or nonmammals. The final dataset included a total of 210 manuscripts.

Variables coded

The final PubMed search results were manually reviewed for the statement of sex in methods or results sections. Variables coded included: year of publication, international or United States (US) study site, total number of subjects included, sex of subjects (male, female, both, not specified), total number of male and female subjects, data reported separately by sex, effects of ovarian hormones or cycles, sex-specific data reported when both sexes were tested. No studies were found to include the effects of ovarian hormones or cycles, so this variable is not discussed further. Only two studies reported sex-specific results, so this variable was not analyzed further.

Data analysis

Data were summarized as frequencies and percentages and were calculated using Microsoft Excel spreadsheet. Calculations included the total number and percentage of foreign and US studies, the total number and percentage of studies reporting the total number of animals used, the total number and percentage of studies reporting the sex of the animals, the total number and percentage of studies using both sexes, the total number of studies reporting using only males or females, and the total number and percentage of male and female participants from studies reporting the sex of the animals and the number of each sex used. Reporting and the use of sex were compared for international and US study sites. The use of males, females, or both sexes over time was also considered.

Statistical analysis

Chi-square tests were performed to test for significant differences in the proportions of observations across groups, with a $P < 0.05$ significance criterion. A two-way analysis of variance was performed on the data for sex bias over time. Power calculations for main effects were performed with an alpha criterion of 0.05.

Results

Overall sex bias

Out of 210 manuscripts, 140 (67%) reported the total number of animals included in the study, while 70 (33%) manuscripts did not [Figure 1A]. One hundred and fifty-four studies (73%) stated the sex of the animals used, whereas 56 (27%) did not [Figure 1B]. Of the 154 studies reporting sex, 94 (61%) studies used only males, 22 (14%) studies used only females, and 38 (25%) used both sexes [Figure 1C]. The proportion of studies using only males, only females, or both sexes was significantly different across groups ($\chi^2(2)=114.94, P < 0.001$). In all cases using both sexes, the number of male and female participants was equal or nearly equal when reported, but this information was only available for five studies. The total number of male or female subjects was reported in 81 studies, including 67 studies reporting the total number of males and 14 studies reporting the total number of females. In those studies, a total of 4241 subjects were used, with 3436 (81%) males and 805 (19%) females [Figure 1D].

The proportion of male participants was significantly different than the proportion of female participants ($\chi^2(2)=1632.20, P < 0.001$).

Sex bias in international and United States studies

Of the final 210 manuscripts, 130 (62%) were performed at international sites and 80 (38%) were performed at US sites.
Ninety-two (60%) of the 154 studies reporting sex were performed at international sites, and 62 (40%) were performed at US sites. The proportions of studies reporting sex were not different in international and US studies ($\chi^2(2) = 0.829, P = 0.363$).

Fifty-nine (64%) of the international studies reported using only males, 13 (14%) reported using only females, and 20 (22%) reported using both sexes. Thirty-five (56%) of the US studies reported using only males, 9 (15%) reported using only females, and 18 (29%) reported using both sexes. The proportions of studies using only males, only females, or both sexes were not significantly different between international and US sites ($\chi^2(2) = 1.160, P = 0.560$).

Sex bias over time

The total number of basic and preclinical NIHL studies was highest in 2011, dropped in 2012, increased in 2013 and 2014, and then dropped slightly again in 2015 [Figure 3]. The total number of studies reporting use of only male participants followed a similar pattern, and the percentage of male-only studies actually increased from 2011 (37%) to 2015 (56%). The total number of studies reporting the use of only females or both sexes remained at 11 or fewer in all years examined, in contrast to the 31–54 studies reporting the use of only males. The total number and percentage of female-only studies remained relatively stable from 2011 (13%) to 2015 (15%). The total number and percentage of studies reporting the use of both sexes dropped in half from 2011 (20%) to 2015 (10%). The main effect of publication year was not statistically significant ($F(4) = 1.495$, $P = 0.291$, power = 0.116), but the main effect of sex included in the studies (male, female, or both) was significant ($F(2) = 20.33$, $P < 0.001$, power = 0.997).

DISCUSSION

The present study finds evidence of sex bias in preclinical and basic research on NIHL in research published from 2011
through 2015. Nearly one-third of the studies examined did not report the sex of animals used in the research. In addition, one-third of the studies did not report the total number of animals used in the studies. Of those studies that did report the sex of the animals, over four times as many studies used only male participants compared to those using only female participants. Both sexes were used in only one quarter of the studies. Similarly, approximately four times as many male participants were used compared to the female participants in those studies reporting the number of participants of each sex used.

Nearly two-thirds of the manuscripts reviewed were performed at international study sites outside the US, and a proportional number of international and US studies reported the sex of the animals used. The pattern of studies using only males, only females, or both sexes was similar for international and US sites. Male-only studies were the most prevalent type in both international and US sites, with a somewhat higher proportion in international studies.

Interestingly, the overall number of NIHL studies published was highest in 2011. The number of studies fell by over 40% in 2012, then recovered to near 2011 levels over the following 2 years. A reduction in the total number of studies was again observed in 2015. This general pattern was also observed in studies using only male participants,
and the relative percentage of studies using only male participants increased by nearly 20% from 2011 to 2015. The overall number and percentage of studies using only females did not change substantially between 2011 and 2015. A decrease followed by a recovery in the number of female-only studies was observed between 2012 and 2014. Interestingly, the number of studies using both sexes decreased each year from 2011 to 2015. Consequently, the proportion of studies using only male participants compared to only females of both sexes was larger in 2014 and 2015 compared to the earlier years. The proportion of studies using only males, only females, or both sexes was most similar in 2012, the year with the fewest published studies. These data indicate that sex bias in basic and preclinical research worsened in the years prior to the NIH mandate to consider sex as a biological variable.

Sex bias has been reported in preclinical and basic surgical research,[28] biological research,[29] and general biomedical research.[27] Consistent with the present study, these studies showed a predominant use of male participants and also a low rate of reporting the results by sex. Of 10 biological fields investigated, sex bias was most prominent in neuroscience,[29] of which auditory neuroscience can be considered a subfield. Beery and Zuker,[29] actually reported increased male bias in neuroscience and biomedical research over a 50-year period. The present results are in line with trends observed in neuroscience research.

A common argument for the preferential use of male participants in basic and preclinical research is that female participants are more variable than males due to hormonal fluctuations occurring during different phases of the reproductive cycle. A recent meta-analysis found that female rats were not more variable at any stage of the estrous cycle than male participants in neuroscience research, even when sex differences in the outcome measures were observed.[32] However, male rats of different strains showed different levels of variability.[32] Gene expression also shows similar levels of variability in male and female mice and humans.[33]

Future studies considering sex as a biological variable will be useful for basic and preclinical NIHL research and neuroscience research as a whole.[34-36] Inclusion of both male and female participants has been required for NIH-funded clinical trials for over 20 years. Improving the translation of basic and preclinical research to benefit human hearing health requires a more complete understanding of the sex differences and similarities in the effects of variables affecting hearing status. This objective can be achieved through the use of several research designs,[37] and McCarthy et al. have developed a framework for interpreting sex differences.[6,38] Additional variables that may differ between sexes, such as body weight, should also be taken into account when interpreting sex-specific pharmaceutical effects.[39] Consideration of sex as a biological variable in basic and preclinical NIHL research at the molecular, cellular, and systems levels will inform future research and increase rigor and reproducibility as currently mandated for NIH-funded studies.[35,40-42]

Financial support and sponsorship
This work was supported by NIH grants DC000023, DC012352, and the David M. Rubenstein Fund for Research.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Humes LE. Noise-induced hearing loss as influenced by other agents and by some physical characteristics of the individual. J Acoust Soc Am 1984;76:1318-29.
2. Henderson D, Subramaniam M, Boetcher FA. Individual susceptibility to noise-induced hearing loss: An old topic revisited. Ear Hear 1993;14:152-68.
3. Toppila E, Pyykko II, Starck J, Kaksonen R, Ishizaki H. Individual risk factors in the development of noise-induced hearing loss. Noise Health 2000;2:59-70.
4. Konings A, Van Laer L, Van Camp G. Genetic studies on noise-induced hearing loss: A review. Ear Hear 2009;30:151-9.
5. Becker JB, Arnold AP, Berkley KJ, Blaustein JD, Eckel LA, Hampson E, et al. Strategies and methods for research on sex differences in brain and behavior. Endocrinology 2005;146:1650-73.
6. McCarthy MM, Arnold AP, Ball GF, Blaustein JD, De Vries GJ. Sex differences in the brain: The not so inconvenient truth. J Neurosci 2012;32:2241-7.
7. Bangasser DA, Dong H, Carroll J, Plona Z, Ding H, Rodriguez L, et al. Corticotropin-releasing factor overexpression gives rise to sex differences in Alzheimer’s disease-related signaling. Mol Psychiatry 2017;22:1126-33.
8. Panzica G, Melcangi RC. Structural and molecular brain sexual differences: A tool to understand sex differences in health and disease. Neurosci Biobehav Rev 2016;67:2-8.
9. Bangasser DA, Wiersielis KR, Khantis S. Sex differences in the locus coeruleus-norepinephrine system and its regulation by stress. Brain Res 2016;1641:177-88.
10. Oertelt-Prigione S, Regitz-Zagrosek V. Sex and Gender Aspects in Clinical Medicine. Springer Science & Business Media; 2011.
11. Bowman D, Brown D, Kimberley B. An examination of gender differences in DPOAE phase delay measurements in normal-hearing human adults. Hear Res 2000;142:1-11.
12. Don M, Ponton CW, Eggermont JJ, Masuda A. Gender differences in cochlear response time: An explanation for gender amplitude differences in the unmasked auditory brain-stem response. J Acoust Soc Am 1993;94:2135-48.
13. Kimberley BP, Brown DK, Eggermont JJ. Measuring human cochlear traveling wave delay using distortion product emission phase responses. J Acoust Soc Am 1993;94:1343-50.
14. Moulin A, Kemp DT. Multicomponent acoustic distortion product otoacoustic emission phase in humans. II. Implications for distortion product otoacoustic emissions generation. J Acoust Soc Am 1996;100:1640-62.
15. Sato H, Sando I, Takahashi H. Sexual dimorphism and development of the human cochlea: Computer 3-D measurement. Acta Otolaryngol 1991;111:1037-40.
16. Miller ID. Sex differences in the length of the organ of Corti in humans. J Acoust Soc Am 2007;121:E L151-5.
17. Berger E, Royster L, Thomas W. Presumed noise-induced permanent threshold shift resulting from exposure to an A-weighted Leq of 89 dB. J Acoust Soc Am 1978;64:192-7.
18. Gallo R, Glorig A. Permanent threshold shift changes produced by noise exposure and aging. Am Ind Hyg Assoc J 1964;25:237-45.
19. McFadden SL, Zheng X, Ding D. Conditioning-induced protection from impulse noise in female and male chinchillas. J Acoust Soc Am 2000;107:2162-8.
20. McFadden SL, Henselman LW, Zheng X. Sex differences in auditory sensitivity of chinchillas before and after exposure to impulse noise. Ear Hear 1999;20:164-74.
21. Ward WD. Temporary threshold shift in males and females. J Acoust Soc Am 1966;40:478-85.
22. Dengerink JE, Dengerink H, Swanson S, Thompson P, Chermak G. Gender and oral contraceptive effects on temporary auditory effects of noise. Audiology 1984;23:411-25.
23. Tams K, Hoffman HJ, Borchgrevink HM, Holmen J, Engdahl B. Hearing loss induced by occupational and impulse noise: Results on threshold shifts by frequencies, age and gender from the Nord-Trøndelag Hearing Loss Study. Int J Audiol 2006;45:309-17.
24. Szanto C, Ionescu M. Influence of age and sex on hearing threshold levels in workers exposed to different intensity levels of occupational noise. Audiology 1983;22:339-56.
25. Willett JF, Bross L. Effects of prolonged exposure to an augmented acoustic environment on the auditory system of middle-aged C57BL/6J mice: Cochlear and central histology and sex differences. J Comp Neurol 2004;472:358-70.
26. Turner JG, Parrish JL, Zuiderveld L, Darr S, Hughes LF, Caspary DM, et al. Auditory experience alters the aged auditory system. Ear Hear 2013;34:151-9.
27. Flořez-Vargas O, Brass A, Karystianis G, Bramhall M, Stevens R, Cruickshank S, et al. Bias in the reporting of sex and age in biomedical research on mouse models. Elife 2016; 5. doi: 10.7554/ elife.13615
28. Yoon DY, Mansukhani NA, Stubbs VC, Helenowski IB, Woodruff TK, Kibbe MR. Sex bias exists in basic science and translational surgical research. Surgery 2014;156:508-16.
29. Beery AK, Zucker I. Sex bias in neuroscience and biomedical research. Neurosci Biobehav Rev 2011;35:565-72.
30. Fechter LD, Fisher JW, Chapman GD, Mokashi VP, Ortiz PA, Rebourje ET, et al. Subchronic JP-8 jet fuel exposure enhances vulnerability to noise-induced hearing loss in rats. J Toxicol Environ Health A 2012;75:299-317.
31. Bao J, Hungerford M, Luxmore R, Ding D, Qiu Z, Lei D, et al. Prophylactic and therapeutic functions of drug combinations against noise-induced hearing loss. Hear Res 2013;304:33-48.
32. Becker JB, Prendergast BJ, Liang JW, Female rats are not more variable than male rats: A meta-analysis of neuroscience studies. Biol Sex Differ 2016;7:34.
33. Itoh Y, Arnold AP. Are females more variable than males in gene expression? Meta-analysis of microarray datasets. Biol Sex Differ 2015;6:18.
34. Mazure CM. Our evolving science: Studying the influence of sex in preclinical research. Biol Sex Differ 2016;7:15.
35. Shansky RM, Woolley CS. Considering sex as a biological variable will be valuable for neuroscience research. J Neurosci 2016;36:11817-22.
36. Zakimiaeiz Y, Cosgrove KP, Potenza MN, Mazure CM. Focus: Sex and gender health: Balance of the sexes: Addressing sex differences in preclinical research. Yale J Biol Med 2016;89:255.
37. Clayton JA. Studying both sexes: A guiding principle for biomedical. FASEB J 2016;30:519-24.
38. Joel D, McCarthy MM. Incorporating sex as a biological variable in neuropsychiatric research: Where are we now and where should we be? Neuropsychopharmacology 2017;42:379-85.
39. Richardson SS, Reiches M, Shattuck-Heidorn H, LaBonte ML, Consoli T. Opinion: Focus on preclinical sex differences will not address women’s and men’s health disparities. Proc Natl Acad Sci USA 2015;112:13419-20.
40. McCullough LD, De Vries GJ, Miller VM, Becker JB, Sandberg K, McCarthy MM. NIH initiative to balance sex of animals in preclinical studies: Generative questions to guide policy, implementation, and metrics. Biol Sex Differ 2014;5:15.
41. Klei SL, Sbiehinger L, Stefanick ML, Cahill L, Danska J, de Vries GJ, et al. Opinion: Sex inclusion in basic research drives discovery, Proc Natl Acad Sci USA 2015;112:5257-8.
42. Prendergast BJ, Onishi KG, Zucker I. Female mice liberated for inclusion in neuroscience and biomedical research. Neurosci Biobehav Rev 2014;40:1-5.