Exchange bias and training effects in antiferromagnetically coupled La$_{0.7}$Sr$_{0.3}$MnO$_3$/SrRuO$_3$ superlattices

S. Narayana Jammalamadaka$^{(a)}$, J. Vanacke and V. V. Moshchalkov

INPAC - Institute for Nanoscale Physics and Chemistry, KU Leuven - Celestijnenlaan 200D, B-3001 Leuven, Belgium, EU

received 3 November 2011; accepted in final form 28 February 2012
published online 4 April 2012

PACS 75.70.Cn – Magnetic properties of interfaces (multilayers, superlattices, heterostructures)
PACS 75.60.Ej – Magnetization curves, hysteresis, Barkhausen and related effects
PACS 75.75.-c – Magnetic properties of nanostructures

Abstract – Exchange bias (EB) and the training effects (TE) in an antiferromagnetically coupled La$_{0.7}$Sr$_{0.3}$MnO$_3$/SrRuO$_3$ superlattices were studied in the temperature range 1.8–150 K. Strong antiferromagnetic (AFM) interlayer coupling is evidenced from AC-susceptibility measurements. Below 100 K, vertical magnetizations shifts are present due to the two remanent states corresponding to the two ferromagnetic (FM) layers at FM and AFM coupling condition. After field cooling (FC), significant decrease in the exchange bias field (H_{EB}) is observed when cycling the system through several consecutive hysteresis loops. Quantitative analysis for the variation of H_{EB} vs. number of field cycles (n) indicates an excellent agreement between the theory, based on triggered relaxation phenomena, and our experimental observations. Nevertheless, the crucial fitting parameter K indicates smooth training effect upon repeated field cycling, in accordance with our observation.

Copyright © EPLA, 2012

The interfacial interactions in magnetic multilayers are crucial, as they can dramatically change the magnetic response of the overall structure. These interactions can be controlled by external parameters such as magnetic field and temperature. Shift in the magnetic hysteresis loop along the magnetic-field axis would be evident upon tuning the external parameters and this “shift” has been termed as “exchange bias (EB) effect” [1–3]. EB effects have extensively been studied in magnetic systems consisting of ferromagnetic (FM)-antiferromagnetic (AFM) [1], FM-spin glass [4], AFM-ferrimagnetic [5] and FM-FM bilayers [6]. Among these, FM-FM bilayer systems are important in understanding core issues related to exchange bias such as the possible origins of the hysteresis loop asymmetry and training effects [7]. From the minor loop measurements, EB effects have also been observed in bilayers composed of FM layers with different magnitudes of magnetic anisotropy [7,8]. The reduction in H_{EB} upon repeated field cycling is termed as training effect of the EB system and is manifested as H_{EB} vs. n, where n is the number of field cycles after FC process [8,9]. EB and training effects are important for potential applications in ultrahigh-density magnetic recording, giant magnetoresistance, and spin valve devices [10,11].

La$_{0.7}$Sr$_{0.3}$MnO$_3$ (LSM)/SrRuO$_3$ (SR) superlattices have gained much attention due to the antiferromagnetic interlayer coupling which depends sensitively on the magnetocrystalline anisotropy and interfacial intermixing [12]. La$_{0.7}$Sr$_{0.3}$MnO$_3$ (LSM) [13] and SrRuO$_3$ (SR) [14] have bulk ferromagnetic Curie temperatures of 370 K and 160 K, respectively. One can grow these superlattices epitaxially and can change magnetic properties by cation substitution [15]. In these superlattices, the soft layer La$_{0.7}$Sr$_{0.3}$MnO$_3$ is antiferromagnetically coupled with the hard SrRuO$_3$ pinning layer below 150 K. As the hard layer, SrRuO$_3$ is a FM, it gives the unique opportunity to change its magnetization state with the magnetic field and, in turn, will allow studying the exchange bias and training effects based on the pinning layer magnetization configuration. Nevertheless, exchange bias effects in this interlayer coupled La$_{0.7}$Sr$_{0.3}$MnO$_3$/SrRuO$_3$ superlattices have yet to be established. To understand the temperature dependence of EB and its thermal cycling effects, further sensitive experimental verification is required, in particular to validate possible spin-based applications. Hence, in this paper we study the exchange bias and
training effects in the temperature range 1.8–150 K of La$_{0.7}$Sr$_{0.3}$MnO$_3$/SrRuO$_3$ superlattices. The intriguing observations that we would like to emphasize are vertical and horizontal loop shifts in the entire temperature range of investigation. This paper also describes the quantification of the training effect with the existing theoretical models.

The superlattice of La$_{0.7}$Sr$_{0.3}$MnO$_3$/SrRuO$_3$ was fabricated by pulsed-laser deposition employing a KrF* excimer laser. Substrate temperature and oxygen partial pressure were 650$^\circ$C and 0.14 mbar, respectively. SrTiO$_3$(001) substrate with a miscut angle of about 0.1$^\circ$ was used. A total of 30 layers of La$_{0.7}$Sr$_{0.3}$MnO$_3$ and SrRuO$_3$ with thicknesses of 2.3 nm and 3.3 nm, respectively, were grown. The microstructure of the superlattice was investigated by X-ray diffraction, atomic force microscopy, high resolution transmission electron microscope and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) [15]. Figure 1 shows a HAADF-STEM micrograph of the La$_{0.7}$Sr$_{0.3}$MnO$_3$/SrRuO$_3$ superlattice. The interfaces between the La$_{0.7}$Sr$_{0.3}$MnO$_3$ and SrRuO$_3$ layers are free of misfit dislocations. However, the interfacial atomic layers were affected by intermixing; both A-site (La/Sr) and B-site (Mn/Ru) cations intermix in 1–2 unit cells across the interface, as marked by the rectangles in fig 1. Magnetic properties were measured using a vibrating sample magnetometer (Oxford instruments). AC-susceptibility studies were carried out using a Physical Property Measurement System (PPMS, Quantum design) in the temperature range of 1.8–300 K.

In order to elucidate the existence of the crossing of hysteresis loops, initially we show isothermal magnetization behavior at 5 K in fig. 2(a). The data were collected while sweeping the magnetic field at a rate of 3 kOe/min.
Starting at high fields, magnetization decreases gradually with magnetic field, and below 15 kOe, crossing of the central part of the loop is observed, [16] which can be explained as a result of AFM coupling and giant exchange bias. Figure 2(b) shows the AC-susceptibility measurements on the La$_{0.7}$Sr$_{0.3}$MnO$_3$/SrRuO$_3$ superlattices at various frequencies 333, 733, 1033 and 1333 Hz, respectively, in an alternating field of 1 Oe. Measurements were carried out with the field applied parallel to the superlattice surface (in-plane) and were performed after ZFC of the specimen from 300 K. Around 300 K, the low value of susceptibility is almost constant as though there is a ferromagnetic transition at high temperature due to the La$_{0.7}$Sr$_{0.3}$MnO$_3$ layers [17]. Below 150 K, a decrease in the susceptibility is apparent, indicating a strong AFM interlayer coupling. The fact that the magnetic ordering does not arise from spin-glass freezing is evidenced by the observation that the peak in χ' is found to be frequency independent. At 62 K, a compensation point (T_{comp}) is clearly seen from AC-susceptibility; however, this compensation point is absent in the DC magnetization graphs [16].

A detailed study of the minor loops was performed to explore the exchange bias phenomenon and vertical loop shifts using the following protocol: Hysteresis loops were measured from -15 to 15 kOe at different temperatures 5, 25, 50, 75, 100, 125 and 150 K in ZFC and FC conditions (fig. 3). For each FC measurement, the sample was warmed up to 300 K and cooled to the desired temperature in the presence of 10 kOe. The low field response of these minor loops is dominated by magnetization reversal of the La$_{0.7}$Sr$_{0.3}$MnO$_3$. The hysteresis-loop midpoints of the ZFC and FC curves differ; as the vertical midpoint shift along the field axis is indicated by the dotted lines for the 5 K data (for clarity dotted lines are not shown for the other temperatures). The origin of this shift could be that below 150 K, ferromagnetic hard layer SrRuO$_3$ pins the magnetically soft layer, La$_{0.7}$Sr$_{0.3}$MnO$_3$ and shifts the hysteresis loops along the magnetic-field axis. This shift can be quantified as H_{EB}.

Figure 4 shows the H_{EB} and coercivity (H_C) as a function of temperature. H_{EB} decreases approximately linearly with increasing temperature in the low-temperature region and gradually disappears around the blocking temperature $T_B \sim 100$ K. Further, H_C increases with temperature and M of the minor loop is dominated by magnetization reversal of the La$_{0.7}$Sr$_{0.3}$MnO$_3$. The hysteresis-loop midpoints of the ZFC and FC curves are different; the vertical shift along the field axis is indicated by the dotted lines for the 5 K data (for clarity dotted lines are not shown for the other temperatures). The origin of this shift could be that below 150 K, ferromagnetic hard layer SrRuO$_3$ pins the magnetically soft layer, La$_{0.7}$Sr$_{0.3}$MnO$_3$ and shifts the hysteresis loops along the magnetic-field axis. This shift can be quantified as H_{EB}.

Figures 5(a), (b) illustrate the H_{EB} and normalized remanent magnetization as a function of cooling field. With the cooling field, below 10 kOe, the increase in
remnant magnetization (M_r) is apparent, suggesting that the sample’s magnetization is higher for higher cooling field because of the presence of two remnant magnetic states. Concurrently, the increase in H_{EB} also evident with the cooling field, as the effective Zeeman energy increases, and this can make more and more spins align until all spins are parallel to the external field, which results in increase in the H_{EB}. At higher fields (≥ 10 kOe), the pinning mechanism that exists between La$_{0.7}$Sr$_{0.3}$MnO$_3$ and SrRuO$_3$ vanishes and hence the decrease in H_{EB} is evident as shown in fig. 5(a). Below 10 kOe, the Zeeman coupling is not strong enough to compete with the antiferromagnetic coupling which exists between La$_{0.7}$Sr$_{0.3}$MnO$_3$ and SrRuO$_3$. Hence 10 kOe can be considered as an effective de-pinning threshold field above which the magnetic interactions are overcome by the Zeeman coupling. Above this field, due to strong Zeeman coupling, the La$_{0.7}$Sr$_{0.3}$MnO$_3$ and SrRuO$_3$ layers are less strongly coupled and thus exert a weaker pinning, resulting in a decrease in the H_{EB} and remnant magnetization.

Training effects are interesting characteristics of EB phenomena and are caused by the non-equilibrium nature of the spin structure in the pinning layer. The training effect, which is manifested as the gradual decrease in H_{EB} when cycling the system through several consecutive hysteresis loops, is a clear indication of rearrangements in the pinning layer spin structure towards an equilibrium configuration [8,18,19]. In order to investigate the training effect of the exchange bias, a series of hysteresis loops were consecutively measured at 5 K after FC. The ZFC, first, second and third FC loops are the shown in the mainframe of fig. 6. The inset of fig. 6 shows the H_{EB} vs. n. Upon closer observation, the training effect is very strong for low n values and becomes less pronounced for higher n, which indicates that the related relaxation processes in biasing the hard layer occur predominantly during the first few reversals, while subsequent loops produce only minor changes; nevertheless, training effect in the present system indicates a smooth variation.

Discretized dynamical Landau-Khalatnikov equation is used in order to address the training effects in La$_{0.7}$Sr$_{0.3}$MnO$_3$/SrRuO$_3$ superlattices [19,20]. Basically this approach has been proposed to calculate the training
The explicit function in eq. (1) can be written as

\[H_{EB}(n) = (K + 1)^{n-1} \left\{ H_{EB}(1) - KH_{EB}^e \left[\frac{(K + 1)^{n+1} - 1}{K(K + 1)^{n-1} - (K + 2)} \right] \right\}, \tag{1} \]

where \(K \) is the crucial fitting parameter quantifying the rate of change in \(H_{EB}(n) \), where \(n \) is number of field cycles. The parameter, \(H_{EB}(1) \) is the first point in the \(H_{EB} \) vs. \(n \) data and \(H_{EB}^e \) is the equilibrium bias field which indicates the \(H_{EB} \) value when \(n \) approaches \(\infty \). \(K \) and \(H_{EB}^e \) enter the above equation as fitting parameters and \(H_{EB}(n = 1) \) is a fixed value. The bottom inset of fig. 6 shows the variation of \(H_{EB} \) vs. \(n \). The scattered points correspond to the experimental data and the solid red line shows the result of least square fitting of eq. (1). There is an excellent agreement between the theory and the experimental data, indicating that the origin of the training effects in an antiferromagnetically coupled \(\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_3/\text{SrRuO}_3 \) superlattices. The remanent states corresponding to the two FM layers at the parallel and anti-parallel coupling condition below 100K are responsible for the observed vertical loop shifts. The reduction in \(H_{EB} \) is observed upon repeated field cycling. These training effects have been explained by using a theoretical approach based on the discretized dynamical Landau-Khalatnikov equation. Quantitatively, there is an excellent agreement between the theory and the experimental data, indicating that the origin of the training effect is related to the relaxation mechanism of a pinning layer spin structure towards an equilibrium configuration. The value of \(K \) is \(-0.59\), which indicates a smooth training effect upon repeated field cycling.

SNJ would like to thank KU Leuven, for research fellowship. This work is supported by the KU Leuven Excellence financing (INPAC), by the Flemish Methusalem financing and by the IAP network of the Belgian Government. SNJ would also like to thank Dr Ionela Vrejoiu and Dr Eckhard Pippel from Max-Planck-Institut für Mikrostrukturphysik (MPI) - Halle for the sample and STEM investigation of the sample.

REFERENCES

[1] Meiklejohn W. H. and Bean C. P., Phys. Rev. Lett., 105 (1957) 904.
[2] Nogues J., Lederman D., Morton T. J. and Schuller I. K., Phys. Rev. Lett., 76 (1996) 4624.
[3] Mangin S., Montaigne F. and Schull A., Phys. Rev. B, 68 (2003) 140404(R); Padhan P., Prellier W. and Budiiani R. C., Appl. Phys. Lett., 88 (2006) 192508.
[4] Ali Mannan, Adie Patrick, Marrows Christopher H., Gregg Denis, Hickey Bryan J. and Stamps Robert L., Nat. Mater., 6 (2007) 70.
[5] Magnin S., Marchal G. and Barbara B., Phys. Rev. Lett., 82 (1999) 4336.
[6] Guo Z. J., Jiang J. S., Pearson J. E. and Bader S. D., Appl. Phys. Lett., 81 (2002) 2029.
[7] Hovorka O., Berger A. and Friedman G., Appl. Phys. Lett., 89 (2006) 142513; Hovorka O., Berger A. and Friedman G., J. Appl. Phys., 101 (2007) 09E515; Zhu M., Wilson M. J., Sheu B. L., Mitra P., Schiff P. and Samarth N., Appl. Phys. Lett., 91 (2007) 192503.
[8] Binek Ch., Polisetty S., He Xi and Berger A., Phys. Rev. Lett., 96 (2006) 067201.
[9] Hoffmann A., Phys. Rev. Lett., 93 (2004) 097203.
[10] Stamps R. L., J. Phys. D, 33 (2000) R247.
[11] Dagotto E., Science, 309 (2005) 257.
[12] Ziese M., Vrejoiu I., Pippel E., Esquinazi P., Hesse D., Etz E., Henk J., Ernst A., Maznichenko I. V., Hergert W. and Merting I., Phys. Rev. Lett., 104 (2010) 167203.
[13] Martin Michael C., Shirane G., Endoh Y., Hirota K., Morimoto Y. and Tokura Y., Phys. Rev. B, 53 (1996) 14285.
[14] Hamlin J. J., Deemyad S., Schilling J. J., Jacobsen M. K., Kumar R. S., Cornelius A. L., Cao G. and Neumeier J. J., Phys. Rev. B, 76 (2007) 014432.
[15] Hillebrand R., Pippel E. and Hesse D., Phys. Status Solidi (a), 208 (2011) 2144.
[16] Ziese M., Vrejoiu I. and Hesse D., Appl. Phys. Lett., 97 (2010) 052504.
[17] Prüfer S. and Ziese M., Phys. Status Solidi (b), 245 (2008) 1661.
[18] Polisetty S., Sahoo S., Berger A. and Binek Ch., Phys. Rev. B, 78 (2008) 184426.
[19] Binek Ch., Phys. Rev. B, 70 (2004) 014421.
[20] Vizdrik G., Ducharme S., Fridkin V. M. and Yudin G., Phys. Rev. B, 68 (2003) 094113.