Evolution of Trefoil Factor(s): Genetic and Spatio-Temporal Expression of Trefoil Factor 2 in the Chicken (Gallus Gallus Domesticus)

Zhengyu Jiang1, Amy C. Lossie1,2, Todd J. Applegate1*

1 Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America, 2 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America

Abstract

Trefoil factors are essential healing initiators participating in mucosal reconstitution and tissue morphogenesis, especially on the surfaces of the gastrointestinal tract. This family has been cloned and characterized predominantly from mammals and amphibians. Avian species ingest stone and grit to help digest food, which may expose their gut to severe physical conditions. To further the understanding of the function of the TFF gene family across species, we undertook this research to clone, sequence, and characterize the spatio-temporal expression patterns of chicken TFF2 (ChTFF2) cDNA. Bioinformatics analysis of the promoter region and deduced amino acid sequence demonstrated that ChTFF2 contained unique characteristics; specifically the chicken promoter has multiple start sites and the protein contains a series of Lys-Lys-Val repeats. Unlike mammals, where TFF2 is detected primarily in the stomach, and occasionally in the proximal duodenum, chicken TFF2 transcripts are found throughout the gastrointestinal tract, with major expression sites in the glandular and muscular stomach as well as evident expression in the colon, small intestine, cecal tonsil and crop. Temporal analysis of intestinal ChTFF2 transcripts by quantitative RT-PCR showed high levels in embryos and a trend of constant expression during embryonic and post-hatch development, with a reduction occurring around hatch. Phylogenetic analysis highlighted the conservation of TFF proteins and functional divergence of trefoil domains, which suggest a transitional role in the bird during evolution.

Introduction

The trefoil factors (TFFs) are a family of small (7–12 kDa in mammals) secretory protease-resistant peptides discovered in the 1980’s [1]. These proteins have a unique trefoil-like structure, and are crucial for epithelial restitution and wound healing, especially on mucosal surfaces (reviewed by [2][3][4][5][6]). Moreover, TFFs hold tremendous therapeutic potential for preventing and treating various gastrointestinal diseases in humans [7][8]. Named from their “three-leaf” structure, the TFF cluster molecules share a common cysteine-rich trefoil motif [2][9]. The highly-conserved trefoil motif [also known as the P-domain] consists of the following sequence: CX3–4CX3CCX11–13C (where C represents cysteine and X represents any other amino acid), which forms three disulfide bonds in a unique 1–5, 2–4 and 3–6 of Cys-Cys linkage structure [2]. Notably, this configuration differs from other similar protein domains such as the EGF-repeat family, which forms 1–3, 2–4 and 5–6 Cys-Cys bonds, and may allow TFFs to use distinct signaling cascades for their cellular functions, which include promoting cell migration [6].

In mammals, three members of the TFF family have been annotated: TFF1 or pS2, TFF2 or spasmolytic peptide, and TFF3 or intestinal trefoil factor (ITF) [2][9][10]. Structurally, TFF1 and TFF3 contain one trefoil motif with six cysteines as well as a seventh unpaired cysteine, which has been suggested to help with dimerization [2][10]; TFF2 contains two trefoil motifs, both of which are believed to be important for proper function. In vitro recombinants of truncated frog TFF2 bearing one single trefoil domain lose anti-apoptotic function but still promote cell migration [11]. In addition, peptides containing four or more trefoil domains have been identified from frog stomach; these peptides are co-expressed with mucogenic cells and are proposed to possess similar functions as mammalian TFFs [12].

The genes encoding TFFs have been characterized from multiple mammals such as human, mouse, rat, dog, cat, cow, wolf, rhesus monkey, short-tailed opossum, sheep, chimpanzee, and pig, as well as frog and toad [5][9][13][14]. Mammalian TFFs are predominantly and profoundly expressed in the gastrointestinal tract, where the expression of each gene and peptide is explicitly regulated in a tissue-specific and also topographically complementary manner [15][16]. For example, Tff3, which is predominantly expressed in the lower intestine, was dramatically upregulated (40-fold) in the gastric antrum and Brunner’s gland [a major site of Tff2 and Tff1 expression] in Tff2-deficient mice [17], while Tff1-deficient mice demonstrated increased levels of Tff3, and a complete loss of Tff2, mRNA in the stomach [18]. These
findings coupled with the structural similarity among the family members, are consistent with a high degree of functional redundancy among the TFF paralogs.

However, the mechanism(s) controlling TFF gene expression remain unclear. The spatial localization of TFF2 in the gastrointestinal tract varies among different species. In pigs, pTFF2 peptide has been localized to acinar cells of the pancreas [19], mucous cells of stomach and throughout the small intestine [20]. In rodents and humans, TFF2 is abundant in gastric, pyloric and Brunner’s glands, but markedly lower in small intestine and colon [3][21]. These species-specific expression patterns highlight the potential functional diversity of TFF genes across species.

Most of the understanding of the function of TFFs stems from studies in rodents, humans and amphibians [12][13]; little information is available from avian species, although a potential role for TFFs in cellular architecture assembly was recently speculated in chicken gizzard [22]. In the present study, chicken TFF2 cDNA was cloned, sequenced and the spatio-temporal expression patterns characterized. Analysis of TFF genes in non-mammalian model systems provides important contributions to better understand the functional importance of the TFF genes in wound healing in the gut, and deepens the evolutionary understanding of the biological function of TFF proteins in animal and human health.

Figure 1. Sequence and analysis of ChTFF2. A: Strategy of amplying and sequencing full length ChTFF2 cDNA. B: RLM-RACE products were electrophoresed in a 2% agarose gel. Lane 1: 3’ RACE product; lane 2: water control; lane 3: 5’ RACE product; lane 4: water control. D: Intron-exon localization of ChTFF2 at chromosome. C: Representative electrophoresis result from EcoRI digestion of purified plasmids inserted with 5’ RACE product indicates alternative start site with shorter product in lane 2 as compared with lane 1 and 3; alternative transcription starting site was confirmed by sequencing determination. The ORFs are gray. E: Potential regulatory sequences in the promoter of the ChTFF2 as compared with human; nucleotides are numbered with +1 being the A of the ATG initiation codon; target sequences for the underlined transcription factors (motif) are in bold. F: Full-length ChTFF2 cDNA sequence and deduced amino acids.

doi:10.1371/journal.pone.0022691.g001
Cloning and analysis of the full-length ChTFF2 cDNA

The ChTFF2 cDNA spans 4.3 kb on chicken chromosome 1 (112,805,710 to 112,810,087, WUGSC 2.1/galGal3; Genome Bioinformatics Group at UC Santa Cruz [http://genome.ucsc.edu/]; Figure 1 D). Chicken TFF2 shares 49.1% identity to human and mouse cDNAs (Figure 2 A). An alternative transcriptional start site (TSS) at +32 nucleotides (Figure 1 F) was identified. This resulted in the TSS mapping from upstream to 26 bp downstream of the TATA-box, which is the location of the annotated TSS in humans. A T450C single nucleotide polymorphism within the chicken cDNA was identified, implying heterogeneity within the genetic line. Alignment with the human sequence using Transcription Element Search System (TESS) indicates that possible cis-acting elements include TBP, GATA [23] and HNF3/FKH [24].

Deduced amino acid sequences of chicken, turkey and duck TFF2

The deduced amino acid sequence of ChTFF2 precursor predicts a 13.7-kDa, 122 residue protein that includes signal peptides, trefoil domains (TD), an inter-TD domain and terminus (Figure 2 B). Since the genomes of other avian species are less-well characterized, the deduced chicken TFF2 amino acid sequences were used in BLAST to scan the Ensembl and/or pre-Ensembl genome databases for Meleagris gallopavo (turkey, Ensembl), Anas platyrhynchos (duck, Ensembl) and Taeniopygia guttata (zebra finch, pre-Ensembl). Alignment results showed that the degree of homology of TFF2 proteins among avian species (83% identity) is greater than that when aligned with human and mouse proteins (61.9%, Figure 2 B), and avian TFF2 is presumed to be the mammalian ortholog of TFF2.

Several amino acids are highly conserved among aves, mouse and human; The 13 Cys residues that comprise the trefoil domains and the sequences surrounding the second, fifth and sixth Cys within each trefoil domain are highly conserved [25]. Sequence comparisons indicate that the TFF2 trefoil domain consensus sequence is $\text{C}_{\text{x}_0-7}\text{RXNGXPGLh}_{\text{x}_0}\text{CX}_{\text{x}}\text{GCGFX}_{\text{x}}\text{VPWG}$. This highly conserved region suggests functional importance of these residues for trefoil factors and their structural formation, likely through disulfide bond formation, protection from protease attack, and/or receptor binding. The sequence positions of secondary structures (α-helixes and β-sheets) and loops within the ChTFF2 TD are predicted from the human sequence (Figure 2 B) [25].

Table 1. Primer sequences for RT-PCR, RACE and qRT-PCR.

Primer	Primer sequence (5' to 3')
TFF2	
RT-PCR1 Forward	CCA GAG CAA TGG ATC TGA AGG
Reverse	CAT CTC CTG CTT ATG CAC TCC TTA
RT-PCR2 Forward	AAG TTA AGA AAG TGT GCC CTG CT
Reverse	CCT ACT GAG AGA ACA AAA GTT GTG G
3′ GSP Forward	CCT GGT GCT TCA CTG CTA AAG CAA AG
Reverse	CAG CAG GAT GTG CCC GGA AG
5′ GSP Reverse	TAG ACA CAA CCA GAT TGA GCA ACA AT
qRT-PCR Forward	CTG AAG ACAT AAC AAC CAC CC
Reverse	TAA TCC CCA CAG AGA CCA CA
18S Forward	GCC ACC CGA GAT TGA GCA ATA ACA
Reverse	TAG ACA CAA CCA GAT GCA GTC AGT
Figure A: Graph showing TFF2 and 18S RNA levels across different cycles. TFF2 levels increase with cycle number, while 18S RNA levels remain relatively constant.

Figure B: Graph showing control RNA levels across different cycles. Control RNA levels remain relatively constant with cycle number.

Figure C: Bar graph showing log transcripts/100 ng RNA input for different time points (E14.5, E16.5, E18.5, E21.5, H1, H3, H5). Slight variations are observed across the different time points.

Figure D: Similar to Figure C, showing measurements for a different set of time points.

Figure E: Bar graph illustrating log transcripts/100 ng RNA input for different regions (E14.5, E16.5, E18.5, E21.5, H1, H3, H5). Region-wise analysis reveals significant differences, with Region: P = 0.010, Age: P < 0.001, Region×age: P < 0.001.

Figure F: Gel electrophoresis showing expression levels of TFF2 across different tissues (Spleen, Liver, Brain, Crop, Gizzard, Duodenum, Jejunum, Ileum, Colon, Cecal tonsil). M indicates the molecular weight markers.

Figure G: Similar gel electrophoresis as Figure F, showing further expression analysis for the same samples.
3 Spatio-temporal expression pattern of chicken TFF2

Distribution of ChTFF2 mRNA was performed with tissues obtained from 3 adult hens using the forward RT-PCR1 primer paired with the reverse RT-PCR2 primer (Table 1, Figure 3. F and G). ChTFF2 transcripts were detected along the gastrointestinal tract of the bird. A markedly high expression of ChTFF2 mRNA was observed in the proventriculus (glandular stomach) and gizzard (muscular stomach). Intermediate to low levels were found in colon, crop, small intestine (duodenum, jejunum and ileum) and cecal tonsil. ChTFF2 mRNA was not detected in spleen, liver, brain (Figure 2. F) and heart (data not shown).

Quantitative expression of ChTFF2 mRNA in the small intestine during late embryonic and early post-hatch stages is shown (Figure 2 C, D, and E). We observed a relatively high abundance of ChTff2 mRNA in duodenal and jejunal tissues from E14.5 to E18.5, with a slight decrease in expression from E21.5 to H1. This marks the transition to lower post-hatch expression levels. In the ileum, ChTFF2 mRNA levels remain relatively constant, except for a sharp reduction at hatch. Gene expression differences in the small intestine were statistically significant for age (P <0.05). The significant region by age interaction (P<0.001) reflected a greater embryonic expression in duodenum than jejunum or ileum, with a higher post-hatch expression in ileum than duodenum and jejunum.

4 Phylogenetic tree of TFF2

To explore the evolutionary relationship of chicken TFF2 homologues, phylogenetic analyses of TFF2 were performed in a variety of vertebrate and invertebrate species (Figure 4, see Figure S1 for information on distance and sequence alignment). Protein sequences were retrieved from the NCBI, Ensembl and pre-ensembl databases. Since the genomes of some species were poorly characterized, their TFF2 homologues were obtained by genome-wide scans with known TFF2 proteins from closely related species. To further investigate the functional divergence of TFF2, functional domains of TFF2 sequences were phylogenetically analyzed separately. All two trefoil domain (TD) extracted from TFF2 proteins were used in the phylogenetic studies and gave rise to a tree similar in topology for each TFF2 TD to that of TFF2 in Figure 4 (Figure 5).

Discussion

1 Sequence analysis and structure prediction of ChTFF2

Results confirm that computational annotation correctly predicted the putative chicken TFF2 nucleotide sequence, with the exception of identifying additional 3’ and 5’ UTR sequences. Despite scanning the chicken genome and other chicken cDNA clones with TFF sequences from the Pfam trefoil motif in human, mouse and other species with Genewise (http://www.ebi.ac.uk/Tools/Wise2/), no other chicken TFF candidate genes were detected. However, in mammals, there are three TFF members. All three genes map to a single chromosome and reside near each other in the following tandem orientation: 5’-TFF1-TFF2-TFF3-3’. It has been suggested that this region is a consequence of gene duplication and exon-shuffling events during evolution [26][27].

The TFF2 promoter contains a complex enhancer region. Comparison of the chicken TFF2 promoter sequences with the human homologue revealed several conserved regions (Figure 1 E). Previous studies of the human TFF2 promoters demonstrated that the HNF3 cis-acting element is located between −10 and −16 upstream of the TATAA box that is accessed during the acute-phase response of TFF2 peptide [24]. Here, we document a similar HNF3 binding motif (TAAACAT) within the chicken gene. The predicted GATA enhancer element also is conserved between chicken and human. However, the presence of the specific SPRE cis-acting element that has been reported to be responsible for TFF2 autoinduction [28] in chicken is uncertain based on promoter sequence alignment.

The fact that trefoil loops are highly conserved during evolution, particularly the amino acids surrounding the Cys residues, indicates that these structures are important for the functionality of this protein family. Comparison of human trefoil factors via H nuclear magnetic resonance (NMR) showed distinct structural and electrostatic properties of the loop2 and loop3 regions, and as the authors suggested, it is possible that the functional diversity can be increased by the interactions of each loop with different substrates [25]. In aves, the trefoil motifs are highly conserved, with 8 to 9 residues more of intraspecific consensus compared to mammals. This unique preserved region among avian species may indicate species-specific structural or functional characteristics. For example, the avian inter-TD domain is rich in negatively charged Lys, and contains Lys-Lys-Val repeats that are not present in mouse or human. This Lys-Lys-Val structure, which lies near secondary structure elements, could protect these regions from proteolytic processing [29].

Even though careful scrutiny of the available genome resources failed to detect multiple TFF genes in chicken, it is possible that other chicken TFF(s) exist in gaps that have yet to be sequenced or in unmapped regions of the genome. Also, it is possible that the avian counterpart(s) may have fewer member(s) or additional or even distinct functional domains that differ significantly from their mammalian counterparts. For example, in vitro studies in the toad (Bufo marinus) have shown a 2-fold cell motility-inducing ability at 100-fold lower concentration than that of human TFF2 [11]. Despite the fact that TFF are highly conserved among species, it is probable that non-mammalian homologues may have additional or even distinct functional characteristics from mammalian TFF proteins.

2 Spatio-temporal ChTFF2 transcription – different expression pattern from mammals

RT-PCR results demonstrated that the major sites of ChTFF2 expression are located within the glandular and muscular stomach, which is equivalent to the expression pattern observed in the mammalian stomach [30][21]. The colon, as well as small intestine and crop, show intermediate levels of ChTFF2. However, both mice and humans lack detectable TFF2 expression in the small intestine at both the mRNA and protein levels, whereas TFF3 is...
observed at relative high abundance in the small intestine [2][3]. In rodents, the gastric antrum and Brunner’s gland, but not the lower intestine, are the two major sites of Tff2 expression under physiological conditions [17]. However, a relatively lower level ChTFF2 detected in duodenum is likely because avian species lack the Brunner’s gland in the duodenum [31]. The ChTFF2 expression pattern may be similar to pigs, where immunoactive pTFF2 were detected throughout the intestine [20]. However, the duodenal ChTFF2 mRNA transcripts detected at embryonic day 14 are 1 to 2 logs higher than other segments of the small intestine.

In the mouse, TFFs are detected by embryonic day 13 [32]. During this stage, patterning and organogenesis has already occurred. Organs at this stage may require protective mechanisms similar to those necessary in adulthood. Indeed, upregulation of Tff was observed in the embryological gut following physical wounding, suggesting a healing role of Tff prior to birth. In addition, recent reports showed that human milk is rich in intact TFF. These studies propose that TFFs are associated with the development of the fetal gut and protection against various diseases [33].

Unlike mammals, which receive bioactive peptides, including TFF, from a maternal supply, avian species may require significantly higher expression levels and storage of TFF(s) during embryonic stages for adequate embryonic gut development and post-hatch protection of the gut against potential stressors. The present study examined the expression pattern of ChTFF2 transcripts during late embryogenesis and early after hatching by quantitative RT-PCR. The small intestine was a primary focus because in chickens, TFF2 is expressed in the small intestine at a relatively high level; in humans and rodents, TFF2 is normally absent in the small intestine, indicating that there may be different functional properties of TFF2 in chickens compared to mammals. Whole mount in situ hybridization studies demonstrated that the mouse Tff2 gene was confined to the stomach and Brunner’s glands during embryonic development, with stochastic expression detected in predominate small intestine and caecum at embryonic day 17.5 [32]. qRT-PCR data from this study reveal a punctuate increasing pattern of TFF2 mRNA expression following embryonic and post-hatch development. This differs from developmental expression of rat Tff3, the intestinal trefoil factor, where the expression of TFF3 commences late in gestation and increases.

Figure 4. Phylogenetic tree of TFF2. Forty five TFF2 proteins and related structure were aligned by using ClustalW, and the neighbor-joining tree derived by the same program was shown. A. carolinensis: anole lizard. G. gallus: chicken. P. hamadryas: baboon. A. melanoleuca: giant panda. G. gorilla: gorilla. P. pygmaeus: orangutan. A. platyrhynchos: duck. H. sapiens: human. P. troglodytes: chimpanzee. B. maxima: toad. L. africana: elephant. P. vampyrus: megabat. B. Taurus: cow. M. domestica: opossum. R. norvegicus: rat. C. intestinalis: vase tunicate. M. eugenii: wallaby. S. scrofa: pig. C. porcellus: guinea pig. M. mulatta: macaque. T. guttata: zebra finch. D. ordii: kangaroo rat. M. murinus: mouse. T. syrichta: tarsier. E. caballus: horse. O. aries: sheep. T. truncatus: dolphin. E. telfairi: lesser hedgehog tenrec. O. garnettii: bushbaby. X. laevis: African clawed frog. F. catus: cat. O. princeps: pika.
post-natally until adulthood [34]. In the chicken, relatively higher expression of ChTFF2 in the duodenum is greater in embryos than after hatch; whereas the ileum (distal small intestine) is higher post-hatch. This expression shift suggests a spatial transition of expression abundance from upper intestine to lower intestine as the gut matures.

3 Role of aves in phylogeny of TFF2

The phylogenetic analysis helps to understand the role of TFF2 homologues in the conservation and divergence among different animal species, particularly the transitional position of chicken TFF2 during the evolutionary timeline. Avian TFF2 orthologs are phylogenetically closer to reptiles than other species, and their divergence occurred before mammals. This relationship is even more evident when analyzing functional domains (TD). Interestingly, the similarity among functional TD domains is greater within avian species, which share a uniform relatively high TD identity (50%) than that from most of other species. Inferred neighbor-joining tree of TFF2 domains suggests that the two functional domains (TD1 and TD2) are not evolutionarily distinct and may be generated by domain duplication.

To further investigate whether amino acid substitutions between species and functional domains could have caused functional diversification, Type-1 functional divergence between species clusters and TD domain clusters were estimated by posterior analysis using the DIVERGE program algorithms [35][36] (Table 2). This allows evaluation of the shifted evolutionary rate at each sequence position and defines important
Table 2. Functional divergence estimated in TFF2 gene and domains.

Comparison	Sites	0 (SE)	0.5 (SE)	0.67 (SE)	N(0.5)	N(0.67)
TFF2						
Mammal vs. Aves	78	0.25	0.22	0.23	2	1
Mammal vs. Amphibian	78	0.67	0.41	0.67	77	28
Aves vs. Amphibian	78	0.87	0.45	0.85	78	78
TD1 vs. TD2						
Mammal	29	0.40	0.18	10.61	6	4
Aves	42	0.59	0.36	5.30	36	12

1Sites: the total number of amino acid residues.
2h is the coefficient of type I functional divergence; 0 suggests altered functional constraints occurred.
3SE: standard error.
4LRT is a likelihood ratio test.
5N(0.5) and N(0.6) means the numbers of divergent residues when the cut-off value is 0.5 and 0.67, respectively.

Amino acid residues responsible for altered functional constraints. Significant site-specific altered selective constraints between different animal species were observed (θ > 0), especially between aves and amphibians (N = 78 when cut-off value is 0.67). The coefficient of functional divergence between TD1 and TD2 as well as the predicted number of divergent amino acid residues are greater in aves versus mammals, suggesting a higher degree of altered functional divergence between the two functional domains. This is consistent with the hypothesis that there is a higher likelihood that each domain of TFF2 confers a specific protein function.

Overall, this study characterized encoding sequence and spatio-temporal expression patterns of the chicken TFF2, and analyzed deduced amino acid sequences, structures and sequence homologies among different species. Knowledge of sequence, phylogenetic and expression information will allow further experiments to investigate its functionality and potential implications for wound healing in the gastrointestinal tract.

Materials and Methods

Tissue sampling

All procedures and protocols were approved by Purdue University Animal Care and Use Committee. Fertile chicken eggs (n = 720) were obtained and incubated (Jamestown Incubator Company Inc., Cambridge, Ontario, Canada). Since intestinal segments can be identified by embryonic day 14.5, embryonic intestinal tracts were dissected (from day 14.5 to days 16.5, 18.5, and 21.5) and on post-hatch chickens (days 1, 3, 5). At each stage, 5 to 8 animals per age group were assessed. We dissected the following intestinal regions: duodenum (from the ventriculus to the end of the pancreatic loop), jejunum (from the duodenum to the yolk sac), and ileum (from the jejunum to the ileal-cecal junction). Each segment was placed in RNALater (Ambion Inc., Austin, TX) and snap-frozen.

To examine temporal expression of ChTFF2 mRNA transcripts, approximately 50 mg of mid-length of duodenum, jejunum and ileum were used for RNA isolation. 35 week-old adult White Leghorn hens were euthanized by over-dose of carbon dioxide. Tissue samples were collected and immediately frozen in liquid nitrogen for subsequent RNA isolation.

RNA isolation and reverse transcription

RNA isolation was performed using TRIzol® reagent (Invitrogen Inc., Carlsbad, CA) followed by RNA purification with the DNA-free™ DNase Treatment and Removal Kit (Ambion Inc., Austin, TX). Purified RNA was quantified by Nanodrop and aliquoted. RNA integrity was verified by electrophoresis on a 1% agarose gel. For RT-PCR, complementary DNA (cDNA) was synthesized and diluted as described [37].

Full length cDNA amplification with RNA-ligase-mediated rapid amplification of cDNA ends (RLM-RACE)

RLM-RACE was performed using the GeneRacer™ RLM-RACE kit (Invitrogen Inc., Carlsbad, CA) according to the manufacturer’s instructions. Briefly, full-length capped mRNA was obtained by treating purified total RNA with calf intestinal phosphatase (CIP), which removes fragmented mRNA and non-mRNA. The protective 5’ cap structure from full-length mRNA was then dephosphorylated with tobacco acid pyrophosphatase (TAP) to allow subsequent ligation of an RNA oligo to the 5’ end by T4 RNA ligase. Ligated mRNA was reverse transcribed using SuperScript® III RT and GeneRacer™ Oligo dT primers. To obtain the 3’ end of the ChTFF2 transcript, first strand cDNA was amplified with Advantage® 2 system (Clontech Laboratories, Inc., Mountain View, CA) using the 3’ anchor GeneRacer™ primer and a forward gene specific 3’ primer (GSP). To amplify the 5’ end of ChTFF2, a reverse complement 5’-GSP was used with the anchor 5’ GeneRacer™ primer. GSPs were designed from initial resultant sequencing contig of cDNA amplicons produced by two internal primer pairs (Figure 1. A).

Cloning and sequencing

All products were cloned into the pCR-4 TOPO vector and chemically transformed into TOP10 E. coli cells (Invitrogen Inc., Carlsbad, CA). Ten to twenty clones from each transformation were grown in LB broth overnight. Plasmids from each clone were prepared and purified using a QuickLyse Miniprep kit (Qiagen Inc., Valencia, CA) and digested with EcoRI. Digested fragments were resolved by gel electrophoresis on 1.5% agarose, 0.5 x TBE gels. Three separate clones were sequenced bidirectionally using Big Dye 3.1 (ABI, Life Technologies). The resultant sequences were aligned using Sequencher™ Software (Gene Codes Corp., Ann Arbor, MI).

Sequence analysis and phylogenetic tree

The full length chicken TFF2 coding sequence was translated using an online Open Reading Frame Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html). The amino acid sequence was compared to sequences from other species available in GenBank (http://www.ncbi.nlm.nih.gov/genbank/). Ensembl (http://pre.ensembl.org/index.html) and Pre Ensembl (http://useast.ensembl.org/index.html). All the sequences were aligned using ClustalW (http://www.ebi.ac.uk/Tools/msa/clustalw2/). A phylogenetic tree was constructed using neighbor-joining method based on sequence distance matrix, and displayed using Geneious™ Software (Biomatters Ltd, Auckland, New Zealand). The search for potential transcriptional binding sites was performed using an online Transcription Element Search System (TESS, http://www.cbil.upenn.edu/cgi-bin/tess). Published human cis-acting elements for TFF2 were compared as a reference.

Quantitative RT-PCR

 Primer pairs for qRT-PCR analysis were optimized, and PCR products were cloned (into the pCR-4TOPO vector) and
sequenced for confirmation. Assays were carried out in 15 μL reactions using iQ SYBR Green Supermix (Bio-Rad Laboratory, Hercules, CA) with diluted first-strand cDNA. qRT-PCR programs for ChTFF2 and 18S RvN were designed as: 5 min at 95 °C, 40 cycles of 95 °C for 15 sec, 56 °C or 57 °C for 15 sec, 72 °C for 15 sec and 82 °C or 83 °C for 15 sec data collection, followed by 80 cycles for melting curve analysis. All cDNA samples calculated from 100 ng of total RNA per reaction were assayed in duplicate. Quantification standards were comprised of four 100-fold dilutions of purified plasmid DNA (10^8 to 10^2 or 10^7 to 10^1 molecules) and assayed in triplicate in each plate with R square values of 0.99 or above. Standards were used to calculate a linear regression model for threshold cycle (Ct) relative to transcript abundance in each sample. The log value of ChTFF2 transcript starting abundance was calculated from the Ct values corrected by a factor calculated from 18S RvN as previously described [37].

Statistics for quantitative PCR

Log values for transcript abundance from each sample duplicate were subjected to ANOVA using the MIXED procedure of SAS for intestinal region and age effects, as well as the region x age interaction. Random effect was defined as animal nested within region x age. An alpha of 0.05 was used for all PCR analysis.

Supporting Information

Figure S1 Evolutionary tree and sequence alignment of TFF2.

(TIF)

Author Contributions

Conceived and designed the experiments: ZJ ACL TJJA. Performed the experiments: ZJ. Analyzed the data: ZJ ACL TJJA. Contributed reagents/materials/analysis tools: ACL TJJA. Wrote the paper: ZJ ACL TJJA.

References

1. Thim L, Jørgensen KH, Jørgensen K (1982) Pancreatic spasmolytic polypeptide (PSP): II. Radioimmunological determination of PSP in porcine tissues, plasma and pancreatic juice. Regul Pept 3: 221–300.

2. Thim L (1997) Trefoil peptides: from structure to function. Cellular and Molecular Life Sciences 33: 808–903. Available: http://www.ncbi.nlm.nih.gov/pubmed/9447240. Accessed 2010 Oct 10.

3. Wong WM, Pouloou M, Wright N (1999) Trefoil peptides. Gut 44: 890–895. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC296319/. Accessed 10 Oct 2010.

4. Thim L, May F (2005) Structure of mammalian trefoil factors and functional insights. Cellular and Molecular Life Sciences 62: 2956. Available: http://www.ncbi.nlm.nih.gov/published/16374308. Accessed 10 Oct 2010.

5. Kjellén S (2009) The trefoil factor family – small peptides with multiple functionalities. Cellular and Molecular Life Sciences 66: 1350–1360. doi:10.1007/s00018-008-8646-5.

6. Taupin D, Podolsky DK (2003) Trefoil factors: initiators of mucosal healing. Nature Reviews Molecular Cell Biology 4: 721–732. Available: http://www.nature.com/nrm/journal/v4/n9/abs/nrm1203.html. Accessed 10 Oct 2010.

7. Thim L, Cook GA, Yeoamans ND, Thin L, Giraud AS (1999) Trefoil peptide TFF2 (spasmolytic polypeptide) potently accelerates healing and reduces inflammation in a rat model of colitis. Gut 44: 636–642. Available: http://gut.bmj.com/cgi/doi/10.1136/gut.44.5.636. Accessed 2010 Oct 2010.

8. Babinsky MW, DeBeaumont M, Thin L, Podolsky DK (1996) Oral trefoil peptides protect against ethanol- and indomethacin-induced gastric injury in rats. Gastroenterology 110: 489–497. Available: http://www.ncbi.nlm.nih.gov/pubmed/8565936. Accessed 2010 Oct 10.

9. Thim L, Jørgensen KH, Jørgensen K (1982) Pancreatic spasmolytic polypeptide (PSP): I. Preparation and initial chemical characterization of a new polypeptide from porcine pancreas. Regulatory peptides 3: 207–210. Available: http://www.ncbi.nlm.nih.gov/pubmed/6806240. Accessed 2010 Oct 10.

10. Rasmussen T, Raaberg I, Pouloou S, Thim L, Holst J (1992) Immunohistochemical localization of pancreatic spasmolytic polypeptide (PSP) in the pig. Histochemistry and Cell Biology 98: 113–119. Available: http://www.springerlink.com/index/W66R831K62107M11.pdf. Accessed 9 Jan 2011.

11. Madisen J, Nielsen O, Torono I, Thin L, Holmskov U (2007) Tissue localization of human trefoil factor 1, 2, and 3. The Journal of Histochemistry and Cytochemistry 55: 365–378. Available: http://www.ncbi.nlm.nih.gov/pubmed/17242463. Accessed 26 Oct 2010.

12. Hui K, Notarimcola G, Santa Barbara Pde, Hugon G, Rivier F, et al. (2008) Biochemical properties of gastrokine-1 purified from chicken gizzard smooth muscle. Peptides 29: e3054. Available: http://www.pubmedcentral.nih.gov/articles/abstract.fcgi?artid=2583339&tool=pmcentrez&rendertype=abstract. Accessed 10 Oct 2010.

13. Alazzeh ED, Federt P, Blin N, Gött P (2000) Transcription factor GATA-6 implicates it in late-stage repair processes. Journal of Gastroenterology and Hepatology. pp 506–512.

14. Zhang J, Zhang Y, Wan S-G, Wei S-S, Lee W-H, et al. (2005) Bm-TFF2, a highly conserved molecules with some unique characteristics. Research in Veterinary Science 85: 68–73. Available: http://www.ncbi.nlm.nih.gov/published/17910967. Accessed 10 Oct 2010.

15. Lecombrinier X, Mestriner V, Chevesse D, McNab TD, Thin L, et al. (2001) High-resolution solution structure of human intestinal trefoil factor and functional insights from detailed structural comparisons with the other members of the trefoil family of mammalian cell motility factors. Biochemistry 40: 9552–9561. Available: http://www.ncbi.nlm.nih.gov/pubmed/11583514. Accessed 2010 Oct 10.

16. Ribiers S, Lefèvre O, Tomasetto C, Rio MC (2001) Mouse Trefoil factor genes: genomic organization, sequences and methylation analyses. Gene 266: 67–75. Available: http://www.ncbi.nlm.nih.gov/pubmed/11290420. Accessed 2010 Oct 10.

17. Gött P, Beck S, Machado J, Carneiro F, Schmitt H, et al. (1996) Human trefoil peptides: genomic structure in 21g22.3 and coordinated expression. Eur J Hum Genet 4: 308–322.

18. Bulitta CJ, Fleming JV, Raychowdhury R, Taquin D, Rosenberg I, et al. (2002) Autoinduction of the trefoil factor 2 (TFF2) promoter requires an upstream cis-acting element. Biochemical and biological research communications 293: 366–374. Available: http://www.ncbi.nlm.nih.gov/pubmed/12054690. Accessed 2010 Oct 10.
29. Jornvall H, Persson B (1983) Amino acid sequence restriction in relation to proteolysis. Bioscience Reports 3: 225–232. Available: http://dx.doi.org/10.1007/BF01122454 DO - 10.1007/BF01122454. Accessed 2010 Oct 10.

30. Lefebvre O, Wolf C, Kédinger M, Chenard MP, Tomasetto C, et al. (1993) The mouse one P-domain (pS2) and two P-domain (mSP) genes exhibit distinct patterns of expression. The Journal of Cell Biology. pp 122–191. Available: http://jcb.rupress.org/content/122/1/191.abstract. Accessed 10 Oct 2010.

31. Kokas E, Phillips JL, Brunson WD (1967) The secretory activity of the duodenum in chickens. Comparative Biochemistry and Physiology 22: 81–90. Available: http://www.ncbi.nlm.nih.gov/pubmed/6050002. Accessed 2010 Oct 10.

32. Otto WR, Patel K (1999) Trefoil factor family (TFF)-domain peptides in the mouse: embryonic gastrointestinal expression and wounding response. Anatomy and embryology 199: 499–506. Available: http://www.ncbi.nlm.nih.gov/pubmed/10350130. Accessed 2010 Oct 10.

33. Vestergaarda EM, Nexob A, Wendt A, Guthmann F (2008) Trefoil factors in human milk. Early Human Development 84: 631–635.

34. Lin J, Holzman BR, Jiang P, Bhabakshy MW (1999) Expression of intestinal trefoil factor in developing rat intestine. Biology of the Neonate 76: 92–99. Available: http://www.ncbi.nlm.nih.gov/pubmed/10399993. Accessed 2010 Oct 10.

35. Gu X (1999) Statistical methods for testing functional divergence after gene duplication. Molecular biology and evolution 16: 1664–74. Available: http://www.ncbi.nlm.nih.gov/pubmed/10605199. Accessed 2010 Oct 10.

36. Gu X (2003) Functional divergence in protein (family) sequence evolution. Genetica 118: 133–41. Available: http://www.ncbi.nlm.nih.gov/pubmed/12069604. Accessed 2010 Oct 10.

37. Karcher DM, Fleming-Widdell JN, Applegate TJ (2009) Developmental changes in insulin-like growth factor (IGF)-I and -II mRNA abundance in extra-embryonic membranes and small intestine of avian embryos. Growth Horm IGF Res 19: 60–66.