ZERO CYCLES ON GENERIC HYPERSURFACES OF LARGE DEGREE

NAJMUDDIN FAKHRUDDIN

Abstract. We show that given a smooth projective variety X over \mathbb{C} with $\dim(X) \geq 3$, an ample line bundle $\mathcal{O}(1)$ on X and an integer $n > 1$, any n distinct points on a generic hypersurface of degree d are linearly independent in $CH_0(X)$ if $d > 0$. This generalizes a result of C. Voisin.

Let X be a smooth projective algebraic variety over \mathbb{C} of dimension $r + 1 \geq 3$. Let \mathcal{L} be an ample line bundle on X. Let $S^d = H^0(X, \mathcal{L}^d)$ and for a point $x \in X$, let $S^d_x = H^0(X, \mathcal{L}^d \otimes \mathcal{I}_x)$, where \mathcal{I}_x is the ideal sheaf of x. Let $R = \oplus_{d \geq 0} S^d$.

Lemma 1. There exists an integer $m > 0$ such that, for all $d > 0$, the following holds:

(i) The natural map $S^d \otimes S^m \rightarrow S^{d+m}$ is surjective.
(ii) The natural map $S^d \otimes S^m_x \rightarrow S^{d+m}_x$ is surjective.

Proof. Let the ring R be generated in degrees $\leq t$. Let $m_1 = t!$. It is easy to see that $a \cdot m_1$ satisfies condition (i) of the lemma for $d > a \cdot t! \cdot t(t + 1)/2$, for any positive integer a. Let d' be a positive integer so that $\mathcal{L}^{d'}$ is generated by its global sections. There exists m, a positive multiple of m_1, such that the maps $S^{d'} \otimes S^m_x \rightarrow S^{d'+m}_x$ are surjective for all $x \in X$. For $d > 0$, both the maps $S^{d-d'} \otimes S^d \rightarrow S^d$ and $S^{d-d'} \otimes S^m_x \rightarrow S^{d+m}_x$ are surjective since \mathcal{L} is ample, hence the map $S^{d-d'} \otimes S^d \otimes S^m_x \rightarrow S^{d+m}_x$ is also surjective. The following commutative diagram then shows that the map $S^d \otimes S^m_x \rightarrow S^{d+m}_x$ is surjective.

Let $\mathcal{X} \subset X \times S^d$ be the universal hyperplane section. For $s \in S^d$ we denote the fibre $p_2^*(s)$ by X_s, which we shall assume to be smooth. For a vector bundle \mathcal{V} on X, by $\mathcal{V}(b)$ we shall mean $\mathcal{V} \otimes L^b$.

Proposition 1. For $d > 0$, the bundle $T\mathcal{X}(m)|_{X_s}$ is generated by its global sections.

Proof. The proof, given the previous lemma, is identical to Proposition 1.1 of [1] and is hence omitted.

Corollary 1. There exists a linear function $d(n)$ of n, such that for all $d \geq d(n)$, the vector bundle $\Omega^{d\dim S^d}_\mathcal{X}|_{X_s}$ separates any n distinct points of X_s i.e. the global
sections of the bundle surject onto the global sections of the bundle restricted to any subscheme consisting of \(n \) distinct reduced points.

Proof. \(\Omega^{\dim S_d}|_{X_s} \cong \Omega^r_{X_s} \otimes K_{X_s} \cong \wedge^r T X_s \otimes K_{X_s} \cong \wedge^r T X_s \otimes K_{X_s} \) is generated by global sections if \(d \gg 0 \). Since \(\mathcal{L} \) is ample, there exists a linear function \(d(n) \) such that \(K_X(d - r \cdot m)|_{X_s} \) separates \(n \) points if \(d \geq d(n) \). It follows that the tensor product also separates \(n \) distinct points.

Theorem 1. Let \(X \) be a smooth projective variety of dimension \(r + 1 \geq 3 \) and let \(\mathcal{L} \) be an ample line bundle on \(X \). Then there exists a linear function \(d(n) \) such that for all \(d \geq d(n) \), any \(n \) distinct points of a generic hypersurface \(X_s, s \in S^d \), are linearly independent in \(CH^r(X_s) \).

Proof. Suppose not. Then there exists an etale map \(S \to S^d \) and \(n \) distinct sections \(\sigma_1, ..., \sigma_n \) of \(X_S \) such that the classes of these sections in \(CH^r(X_S) \) are linearly dependent. We may assume that \(S \) is affine and that all the fibres are smooth. Consider the classes of these cycles, \([\sigma_i] \), in the Hodge cohomology group \(H^r(X_S, \Omega^{\dim S_d}_{X_S}) \). By the Grothendieck-Serre duality, it is easy to see that as an element of \(Hom(H^0(X_S, \Omega^{\dim S_d}_{X_S}), H^0(S, \Omega^{\dim S_d}_{X_S})) \), \([\sigma_i] \) is nothing but the restriction map \(\sigma^*_i \) on differential forms. By the previous corollary we see that all the \(\sigma^*_i \) are linearly independent, which is a contradiction.

Corollary 2. Let \(X, \mathcal{L} \) be as above. There exists a linear function \(d'(n) \) such that for all \(d \geq d'(n) \), the generic hypersurface \(X_s, s \in S^d \), does not contain any (possibly singular) \(n \)-gonal curves.

Proof. Follows easily from the theorem by considering two distinct elements in the linear system corresponding to a degree \(n \) map from the normalisation of the curve to \(\mathbb{P}^1 \).

Acknowledgements. This note was written while the author was partially supported by an N.S.F. grant at the Institute for Advanced Study, Princeton, during the year 1995-1996.

REFERENCES

[1] C. Voisin, *On a conjecture of Clemens on rational curves on hypersurfaces*, J. Differential Geom., 44 (1996), pp. 200–213.

SCHOOL OF MATHEMATICS, TATA INSTITUTE OF FUNDAMENTAL RESEARCH, HOMI BHABHA ROAD, MUMBAI 400005, INDIA

E-mail address: naf@math.tifr.res.in