BOCKSTEIN BASIS AND RESOLUTION THEOREMS IN EXTENSION THEORY

VERA TONIĆ

Abstract. We prove a generalization of the Edwards-Walsh Resolution Theorem:

Theorem: Let G be an abelian group with $P_G = \mathbb{P}$, where $P_G = \{ p \in \mathbb{P} : \mathbb{Z}(p) \in \text{Bockstein Basis } \sigma(G) \}$. Let $n \in \mathbb{N}$ and let K be a connected CW-complex with $\pi_n(K) \cong G$, $\pi_k(K) \cong 0$ for $0 \leq k < n$. Then for every compact metrizable space X with $X \tau K$ (i.e., with K an absolute extensor for X), there exists a compact metrizable space Z and a surjective map $\pi : Z \rightarrow X$ such that

(a) π is cell-like,
(b) $\dim Z \leq n$, and
(c) $Z \tau K$.

1. Introduction

The objective of this paper will be to prove the following resolution theorem:

Theorem 1.1. Let G be an abelian group with $P_G = \mathbb{P}$, where $P_G = \{ p \in \mathbb{P} : \mathbb{Z}(p) \in \text{Bockstein Basis } \sigma(G) \}$. Let $n \in \mathbb{N}$ and let K be a connected CW-complex with $\pi_n(K) \cong G$, $\pi_k(K) \cong 0$ for $0 \leq k < n$. Then for every compact metrizable space X with $X \tau K$ (i.e., with K an absolute extensor for X), there exists a compact metrizable space Z and a surjective map $\pi : Z \rightarrow X$ such that

(a) π is cell-like,
(b) $\dim Z \leq n$, and
(c) $Z \tau K$.

The word resolution refers to a map between topological spaces where the domain is in some way better than the range, and the fibers (point preimages) meet certain requirements.

Let us look at some examples of resolution theorems. Here is the cell-like resolution theorem, first stated by R. Edwards ([Ed]), and later proven by J. Walsh in [Wa]:

Theorem 1.2. (R. Edwards - J. Walsh, 1981) [Wa]: For every compact metrizable space X with $\dim \mathbb{Z}X \leq n$, there exists a compact metrizable space Z and a surjective map $\pi : Z \rightarrow X$ such that π is cell-like, and $\dim Z \leq n$. □

If $n \in \mathbb{N}$, then a subset $Y \subset \mathbb{R}^n$ is called cellular if Y can be written as the intersection of a nested collection of n-cells in \mathbb{R}^n. A space Y is called cell-like if for some $n \in \mathbb{N}$, there is an embedding $F : Y \rightarrow \mathbb{R}^n$ so that $F(Y)$ is cellular. A map $\pi : Z \rightarrow X$ is called cell-like if for each $x \in X$, $\pi^{-1}(x)$ is cell-like. Whenever X is a finite-dimensional compact metrizable space, then X is cell-like if and only if X has the shape of a point. To detect that a compact metrizable space has the shape of a point, it is sufficient to prove that there is an inverse sequence (Z_i, p_i^{i+1}) of compact metrizable spaces Z_i whose limit is homeomorphic to X and

Date: 2 July 2009.

1991 Mathematics Subject Classification. Primary 54F45, 55M10, Secondary 55P20, 54C20.

Key words and phrases. Bockstein basis, cell-like map, cohomological dimension, CW-complex, dimension, Edwards-Walsh resolution, Eilenberg-MacLane complex, G-acyclic map, extension theory, inverse sequence, simplicial complex.

1
such that for each \(i \in \mathbb{N} \), \(p_i^{	ext{i}+1} : Z_i+1 \rightarrow Z_i \) is null-homotopic. It is also sufficient to show that every map of \(X \) to a CW-complex is null-homotopic.

The Edwards-Walsh Theorem has been generalized to the class of arbitrary metrizable spaces by L. Rubin and P. Schapiro (\([RS1]\)), and to the class of arbitrary compact Hausdorff spaces by S. Mardesić and L. Rubin (\([MR]\)).

A similar statement to the Edwards-Walsh Theorem was proven by A. Dranishnikov, for the group \(\mathbb{Z}/p \), where \(p \) is an arbitrary prime number:

Theorem 1.3. (A. Dranishnikov, 1988) \([Dr2]\): For every compact metrizable space \(X \) with \(\dim_{\mathbb{Z}/p} X \leq n \), there exists a compact metrizable space \(Z \) and a surjective map \(\pi : Z \rightarrow X \) such that \(\pi \) is \(\mathbb{Z}/p \)-acyclic, and \(\dim Z \leq n \). □

A map \(\pi : Z \rightarrow X \) between topological spaces is called \(G \)-acyclic if all its fibers \(\pi^{-1}(x) \) have trivial reduced Čech cohomology with respect to the group \(G \), or, equivalently, every map \(f : \pi^{-1}(x) \rightarrow K(G, n) \) is nullhomotopic. Note that a map \(\pi : Z \rightarrow X \) being cell-like implies that \(\pi \) is also \(G \)-acyclic.

Akira Koyama and Katsuya Yokoi (\([KY1]\)) were able to obtain this \(\mathbb{Z}/p \)-resolution theorem of Dranishnikov both for the class of metrizable spaces and for the class of compact Hausdorff spaces. Dranishnikov proved a statement similar to Theorem 1.3 for the group \(\mathbb{Q} \) (\([Dr4]\)), but he could only obtain \(\dim Z \leq n+1 \), and if \(n \geq 2 \), then additionally \(\dim_{\mathbb{Q}} Z \leq n \).

This result was later improved by M. Levin:

Theorem 1.4. (M. Levin, 2005) \([Le2]\): Let \(n \in \mathbb{N}_{\geq 2} \). Then for every compact metrizable space \(X \) with \(\dim_{\mathbb{Q}} X \leq n \), there exists a compact metrizable space \(Z \) and a surjective map \(\pi : Z \rightarrow X \) such that \(\pi \) is \(\mathbb{Q} \)-acyclic, and \(\dim Z \leq n \). □

The obvious question was whether a theorem similar to Theorem 1.3 could be stated for compact metrizable spaces and arbitrary abelian groups. In their work \([KY2]\), Koyama and Yokoi made a substantial amount of progress in answering this question. Their method relied heavily on the existence of Edwards-Walsh complexes, which have been studied by J. Dydak and J. Walsh in \([DW]\), and which had been applied originally, in a rudimentary form, in \([Wa]\). However, using a different approach from the one in \([KY2]\), M. Levin has proved a very strong generalization for Theorems 1.2 and 1.3 concerning compact metrizable spaces and arbitrary abelian groups:

Theorem 1.5. (M. Levin, 2003) \([Le1]\): Let \(G \) be an abelian group and let \(n \in \mathbb{N}_{\geq 2} \). Then for every compact metrizable space \(X \) with \(\dim_{\mathbb{Q}} X \leq n \), there exists a compact metrizable space \(Z \) and a surjective map \(\pi : Z \rightarrow X \) such that:

\((a) \) \(\pi \) is \(G \)-acyclic,
\((b) \) \(\dim Z \leq n+1 \), and
\((c) \) \(\dim_{G} Z \leq n \). □

The requirement of \(n \in \mathbb{N}_{\geq 2} \) in Levin’s Theorem cannot be improved because there is a counterexample for \(n = 1 \) (\(G = \mathbb{Q} \), \([Le1]\)). The requirement that \(\dim Z \leq n+1 \) cannot be improved either – there is a counterexample for \(\dim Z \leq n \) (\(G = \mathbb{Z}/p^{\infty} \), \([KY2]\)). The part that may be improved is \(\dim_{G} X \leq n \), using the characterization of cohomological dimension by extension of maps. Namely, for any paracompact Hausdorff space \(X \), any abelian group \(G \) and \(n \in \mathbb{N} \), \(\dim_{G} X \leq n \) if and only if every map of a closed subspace of \(X \) to \(K(G, n) \) can be extended to a map of \(X \) to \(K(G, n) \). By \(K(G, n) \) we will always mean an Eilenberg-MacLane CW-complex of type \((G, n) \), and such is characterized (up to homotopy equivalence) by having \(\pi_{n} \cong G \) and \(\pi_{k} \) trivial for all other \(k \).
This fact about extending maps from any closed subspace of X to a $K(G,n)$ can be written as $K(G,n) \in AE(X)$ ($K(G,n)$ is an absolute extensor for X). Another notation, and the one we will be using, is $X\tau K(G,n)$. In fact, for any two topological spaces X and Y, $X\tau Y$ will mean that every map from a closed subspace of X to Y can be extended continuously over X.

So, in order to generalize the requirement $\dim_G X \leq n$ from Theorem 1.5, note that $\dim_G X \leq n \iff X\tau K(G,n)$, and replace a $K(G,n)$ with a CW-complex upon which the demands will be less strict. Here is a theorem generalizing Theorem 1.5 for some abelian groups.

Theorem 1.6. (L. Rubin - P. Schapiro, 2005) [RS2]: Let G be an abelian group with $P_G \neq \mathbb{P}$, where $P_G = \{ p \in \mathbb{P} : \mathbb{Z}_{(p)} \in \text{Bockstein basis } \sigma(G) \}$. Let $n \in \mathbb{N}_{\geq 2}$, and let K be a connected CW-complex with $\pi_n(K) \cong G$, $\pi_k(K) \cong 0$ for $0 \leq k < n$. Then for every compact metrizable space X with $X\tau K$, there exists a compact metrizable space Z and a surjective map $\pi : Z \to X$ such that:

(a) π is G-acyclic,
(b) $\dim Z \leq n + 1$, and
(c) $Z\tau K$.

Note that the statement of Theorem 1.6 does not cover the case when $P_G = \mathbb{P}$. In fact, the statement of this theorem will be true when $P_G = \mathbb{P}$, but in this case the statement can be improved, as shown in Theorem 1.1. Before we proceed, though, let us review some basic facts from Bockstein theory.

2. **Bockstein Theory**

The cohomological dimension of a given compact metrizable space depends on the coefficient group, which can be any abelian group and there are uncountably many of them. It turns out that in the case of compact metrizable spaces, it suffices to consider only countably many groups. M. F. Bockstein found an algorithm for computation of the cohomological dimension with respect to a given abelian group G by means of cohomological dimensions with coefficients taken from a countable family of abelian groups $\sigma(G)$. His definition of $\sigma(G)$ was also used by V. I. Kuz’minov ([Ku]), and later adapted by E. Dyer ([Dy]), and then by A. Dranishnikov ([Dr3]).

Thus there are three different definitions of a Bockstein basis $\sigma(G)$, which are not equivalent in general, but which are equivalent from the point of view of cohomological dimension. This can be shown using the Bockstein Theorem and Bockstein Inequalities, which will be stated in this section.

Notation:

1. \mathbb{P} stands for the set of all prime numbers,
2. $\mathbb{Z}_{(p)} = \{ \frac{m}{n} \in \mathbb{Q} : n \text{ is not divisible by } p \}$ is called the p-localization of the integers, and
3. $\mathbb{Z}/p^\infty = \{ \frac{m}{n} \in \mathbb{Q}/\mathbb{Z} : n = p^k \text{ for some } k \geq 0 \}$ is called the quasi-cyclic p-group.

For an abelian group G, we say that an element $g \in G$ is divisible by $n \in \mathbb{Z} \setminus \{ 0 \}$ if the equation $nx = g$ has a solution in G, G is divisible by n if all of its elements are divisible by n, and G is a divisible group if G is divisible by all $n \in \mathbb{Z} \setminus \{ 0 \}$.

For an abelian group G, Tor_G is the subgroup of all elements of G of finite order, and p–Tor G is the subgroup of all elements whose order is a power of p, that is, p–Tor $G = \{ g \in G : p^k g = 0 \text{ for some } k \geq 1 \}$.

Here is the definition of a Bockstein basis $\sigma(G)$ that we will use, adapted from the original one by E. Dyer ([Dy]).

Definition 2.1. Let G be an abelian group, $G \neq 0$. Then $\sigma(G)$ is the subset of $\{\mathbb{Q}\} \cup \{\mathbb{Z}/p, \mathbb{Z}/p^\infty, \mathbb{Z}(p) : p \in \mathbb{P}\}$ defined by:

(I) $\mathbb{Q} \in \sigma(G) \iff G$ contains an element of infinite order
$\iff G/\text{Tor} \neq 0$

(II) $\mathbb{Z}(p) \in \sigma(G) \iff G$ satisfies the following: $\exists g \in G$ such that $\forall k \in \mathbb{Z}_{\geq 0}$,
p^kg is not divisible by p^{k+1}
$\iff G/\text{Tor} G$ is not divisible by p

(III) $\mathbb{Z}/p \in \sigma(G) \iff G$ contains an element of order p^k, for some $k \in \mathbb{N}$,
which is not divisible by p
$\iff p-\text{Tor} G$ is not divisible by p

(IV) $\mathbb{Z}/p^\infty \in \sigma(G) \iff p-\text{Tor} G \neq 0$ and $p-\text{Tor} G$ is divisible by p.

Theorem 2.2 (Bockstein Inequalities). [Dr3]: For any compact metrizable space X the following inequalities hold:

(BI1) $\dim_{\mathbb{Z}/p^\infty} X \leq \dim_{\mathbb{Z}/p} X$,

(BI2) $\dim_{\mathbb{Z}/p} X \leq \dim_{\mathbb{Z}/p^\infty} X + 1$,

(BI3) $\dim_{\mathbb{Z}/p} X \leq \dim_{\mathbb{Z}(p)} X$,

(BI4) $\dim_{\mathbb{Q}} X \leq \dim_{\mathbb{Z}(p)} X$,

(BI5) $\dim_{\mathbb{Z}(p)} X \leq \max\{\dim_{\mathbb{Q}} X, \dim_{\mathbb{Z}/p^\infty} X + 1\}$,

(BI6) $\dim_{\mathbb{Z}/p^\infty} X \leq \max\{\dim_{\mathbb{Q}} X, \dim_{\mathbb{Z}(p)} X - 1\}$. \square

Theorem 2.3 (Bockstein Theorem). [Dy]: If G is an abelian group and X is a locally compact space, then $\dim_G X = \sup_{H \in \sigma(G)} \dim_H X$. \square

Now let $P_G := \{p \in \mathbb{P} : \mathbb{Z}(p) \in \sigma(G)\}$.

Lemma 2.4. If G is an abelian group such that $P_G = \mathbb{P}$, then for any compact metrizable space X, $\dim_G X = \dim X$.

Proof: $P_G = \mathbb{P}$ means that for each $p \in \mathbb{P}$, $\mathbb{Z}(p) \in \sigma(G)$. By the Bockstein Inequalities (BI4), (BI3) and (BI1), the supremum $\sup_{H \in \sigma(G)} \dim_H X$ has to be achieved at $\sup_{p \in \mathbb{P}} \dim_{\mathbb{Z}(p)} X$.

Since $\sigma(\mathbb{Z}) = \{\mathbb{Q}\} \cup \{\mathbb{Z}(p) : p \in \mathbb{P}\}$,

$$\sup_{H \in \sigma(G)} \dim_H X =\sup_{H \in \sigma(\mathbb{Z})} \dim_H X. \square$$

3. **EDWARDS TYPE THEOREM AND WALSH TECHNICAL LEMMA**

This will be a statement needed to produce a resolution $\pi : Z \rightarrow X$, based on [Wa].

Notation: $B_r(x)$ stands for the closed ball with radius r, centered at x.

Lemma 3.1 (Generalized Walsh Lemma). Let $X = (P_i, f_i^{i+1})$ be an inverse sequence of compact metric polyhedra (P_i, d_i) of diameter less than 1 with surjective bonding maps,
$Z = (M_i, g_i^{i+1})$ an inverse sequence of Hausdorff compacta, $X = \lim X$ and $Z = \lim Z$. Assume also that we have maps $\phi_i : M_i \rightarrow P_i$, and, for each $i \in \mathbb{N}$ we have numbers $0 < \varepsilon(i) < \frac{\varepsilon(i)}{3} < 1$, satisfying:

(I) for $i \geq 2$, $\phi_{i-1} \circ g_{i-1}$ and $f_{i-1} \circ \phi_i$ are $\frac{\varepsilon(i-1)}{3}$ - close,
Then there is a map $\pi : Z \to X$ with fibers

(IV) $\pi^{-1}(x) = \pi^{-1}((x_i)) = \lim (\phi_i^{-1}(B_{\delta(i)}(x_i)), g_i^{j+1}) = \lim (\phi_i^{-1}(B_{\varepsilon(i)}(x_i)), g_i^{j+1})$

(here g_i^{j+1} stands for the appropriate restriction).

If, in addition, we have that:

(V) for all $x = (x_i) \in X$ and for all i, $\phi^{-1}_i(B_{\varepsilon(i)}(x_i)) \neq \emptyset$,
then $\pi^{-1}(x) \neq \emptyset$, so the map π will be surjective.

Proof: The following diagram will help in visualizing the steps of this proof.

\[
\begin{array}{ccc}
& & Z \\
& M_i \xleftarrow{g_i^{j+1}} M_{i+1} \xrightarrow{\phi_i} M_i & & \\
\phi_i & & \phi_{i+1} \\
& P_i \xleftarrow{f_i^{j+1}} P_{i+1} \xrightarrow{\phi_{i+1}} P_i & & \\
& & X
\end{array}
\]

Let $z = (z_i)$ be an element of $Z \subset \prod_{i=1}^{\infty} M_i$; so $g_i^{j+1}(z_{i+1}) = z_i$ and $\phi_i(z_i) \in P_i$, for all $i \in \mathbb{N}$. Define a sequence in $\prod_{i=1}^{\infty} P_i$ as follows:

\[
x^1 = (\phi_1(z_1), \phi_2(z_2), \phi_3(z_3), \phi_4(z_4), \ldots)
\]
\[
x^2 = (f_1^2(\phi_2(z_2)), \phi_2(z_2), \phi_3(z_3), \phi_4(z_4), \ldots)
\]
\[
x^3 = (f_1^3(\phi_3(z_3)), f_2^3(\phi_3(z_3)), \phi_3(z_3), \phi_4(z_4), \ldots)
\]
\[\vdots
\]
\[
x^j = (f_1^j(\phi_j(z_j)), f_2^j(\phi_j(z_j)), \ldots, f_{j-1}^j(\phi_j(z_j)), \phi_j(z_j), \phi_{j+1}(z_{j+1}), \ldots)
\]
\[
x^{j+1} = (f_1^{j+1}(\phi_{j+1}(z_{j+1})), f_2^{j+1}(\phi_{j+1}(z_{j+1})), \ldots, f_{j}^{j+1}(\phi_{j+1}(z_{j+1})), \phi_{j+1}(z_{j+1}), \phi_{j+2}(z_{j+2}), \ldots)
\]
\[\vdots
\]

Let $\pi_j : Z \to \prod_{i=1}^{\infty} P_i$ be defined by $\pi_j(z) := x^j$. We would like to show that $(\pi_j(z))_{j \in \mathbb{N}}$ is a Cauchy sequence in $\prod_{i=1}^{\infty} P_i$. Properties we will need are:

(1) for $j \geq 2$, $f_{j-1}^{j-1}(\phi_j(z_j))$ and $\phi_{j-1}(z_{j-1}) = \phi_{j-1}(g_{j-1}^{j-1}(z_j)) = \varepsilon(j-1)$-close, and

(2) for $i > j$, $f_{j+1}^{j+1}(\phi_{i+1}(z_{i+1}))$ and $f_{j}^{j+1}(\phi_{i}(z_{i}))$ are $\varepsilon(j)$-close.

Property (1) follows from (I). Property (2) is true because: by (1), $f_{j+1}^{j+1}(\phi_{i+1}(z_{i+1}))$ and $\phi_{i}(z_{i})$ are $\varepsilon(i)$-close, so $f_{j+1}^{j+1}(\phi_{i+1}(z_{i+1})) \in B_{\varepsilon(i)}(\phi_{i}(z_{i}))$. Therefore $f_{j}^{j+1}(\phi_{i+1}(z_{i+1})) = f_{j}^j(f_{j}^{j+1}(\phi_{i+1}(z_{i+1}))), f_{j}^j(B_{\varepsilon(i)}(\phi_{i}(z_{i}))),$ and $\phi_{i}(z_{i}) < \varepsilon(j)$, by (III). So $f_{j+1}^{j+1}(\phi_{i+1}(z_{i+1}))$ and $f_{j}^{j+1}(\phi_{i}(z_{i})))$ are $\varepsilon(j)$-close.

We shall employ the metric d on $\prod_{i=1}^{\infty} P_i$ given by

\[
d((s_i), (r_i)) := \sum_{i=1}^{\infty} \frac{d_i(s_i, r_i)}{2^i}.
\]
Note that by (2)_{j>q} and (1)_{j+1},
\[d(\pi_j(z), \pi_{j+1}(z)) = \left(\sum_{q=1}^{j-1} \frac{d_q(f_j^q(\phi_j(z)), f_j^{q+1}(\phi_{j+1}(z_{j+1})))}{2^q} \right) + \frac{d_j(\phi_j(z), f_j^{j+1}(\phi_{j+1}(z_{j+1})))}{2^j} \]
\[< \left(\sum_{q=1}^{j-1} \frac{\varepsilon(q)}{2^q} \right) + \frac{\varepsilon(j)}{2^j} < \frac{1}{2^j} \left(\sum_{q=1}^{j-1} \frac{1}{2^q} \right) + \frac{1}{2^j} \]
\[< \frac{1}{2^j-1} \left(\sum_{q=1}^{\infty} \frac{1}{2^q} \right) + 1 = \frac{1}{2^j-1}. \]

Therefore, for the indexes \(j \) and \(j+k \) we get:
\[d(\pi_j(z), \pi_{j+k}(z)) \leq d(\pi_j(z), \pi_{j+1}(z)) + d(\pi_{j+1}(z), \pi_{j+2}(z)) + \ldots + d(\pi_{j+k-1}(z), \pi_{j+k}(z)) \]
\[< \frac{1}{2^j-1} + \frac{1}{2^j} + \ldots + \frac{1}{2^{j+k-2}} < \frac{1}{2^j-2} \sum_{i=1}^{\infty} \frac{1}{2^i} = \frac{1}{2^j-2}. \]

Thus \((\pi_j(z))_{j\in\mathbb{N}} \) is a Cauchy sequence in the compact metric space \(\prod_{i=1}^{\infty} P_i \), and therefore it is convergent. Define \(\pi(z) := \lim_{j\to\infty} \pi_j(z) \).

Notice that for any \(k \in \mathbb{N} \), and for any \(z \in Z \),
\[d(\pi_k(z), \pi(z)) \leq \sum_{j=k}^{\infty} d(\pi_j(z), \pi_{j+1}(z)) < \sum_{j=k}^{\infty} \frac{1}{2^j-1} = \frac{1}{2^k-2}. \]

So the sequence \((\pi_j)_{j\in\mathbb{N}} \) converges uniformly to \(\pi \). Therefore \(\pi : Z \to \prod_{i=1}^{\infty} P_i \) is a continuous function.

We would like to see that \(\pi(Z) \subset X \). If \(y_j \) is \(j \)-th coordinate of \(\pi(z) \) for some \(z \in Z \), then \(y_j = \lim_{i\to\infty} f^j_i(\phi_i(z_i)) \). Therefore if \(j > 1 \),
\[f^j_{j-1}(y_j) = f^j_{j-1}(\lim_{i\to\infty} f^j_i(\phi_i(z_i))) = \lim_{i\to\infty} (f^j_{j-1}(f^j_i(\phi_i(z_i)))) \]
\[= \lim_{i\to\infty} (f^j_{j-1}(\phi_i(z_i))) = \lim_{i\to\infty} (f^j_{j-1}(\phi_i(z_i))) = y_{j-1}. \]

So \(\pi(z) \in X \), i.e., \(\pi(Z) \subset X \).

Now that we have a map \(\pi : Z \to X \), we need to see what its fibers are. Take any \(x = (x_i) \in X \). From (II)_i and (I)_i, we will get that
\[(3) \quad g^{-1}_i(\phi^{-1}_i(B_{\varepsilon(i)}(x_i))) \subset \phi^{-1}_i(B_{\varepsilon(i-1)}(x_i-1)). \]

Here is why: take any \(y \in \phi^{-1}_i(B_{\varepsilon(i)}(x_i)) \), i.e., \(\phi_i(y) \in B_{\varepsilon(i)}(x_i) \). Note that (II)_i:
\[\text{diam } (f^i_{i-1}(B_{\varepsilon(i)}(x_i))) < \frac{\varepsilon(i-1)}{2} \] i.e., \(d_{i-1}(f^i_{i-1}(\phi_i(y)), x_{i-1}) < \frac{\varepsilon(i-1)}{3} \). By (I)_i: \(d_{i-1}(\phi_{i-1}(g^i_{i-1}(y)), f^i_{i-1}(\phi_i(y))) < \frac{\varepsilon(i-1)}{3} \), and therefore
\[d_{i-1}(x_{i-1}, \phi_{i-1}(g^i_{i-1}(y))) \leq d_{i-1}(x_{i-1}, f^i_{i-1}(\phi_i(y))) + d_{i-1}(f^i_{i-1}(\phi_i(y)), \phi_{i-1}(g^i_{i-1}(y))) \]
\[< \frac{2\varepsilon(i-1)}{3} < \varepsilon(i-1). \]

So \(\phi_{i-1}(g^i_{i-1}(y)) \in B_{\varepsilon(i-1)}(x_{i-1}) \), and therefore \(g^i_{i-1}(y) \in \phi^{-1}_i(B_{\varepsilon(i-1)}(x_{i-1})) \), so (3) is true.
Thus, the map \(\pi \) and since the left and right side of this statement are equal, then (IV) is true.

Lemma 3.2

(That is, the \(\pi \)jective bonding maps, and let \(\delta \) the inverse sequence of subpolyhedra

\[\lim_{i \to j} \phi_i(z_i) = x, \]
so \(z \in \pi^{-1}(x) \).

We will show that \(\lim_{i \to j} \phi_i(z_i) \) is the inverse limit of an inverse sequence of compact nonempty spaces, then, according to Theorem 2.4 from Appendix II of [Dr], \(\pi^{-1}(x) \neq \emptyset \). Thus, the map \(\pi : Z \to X \) is surjective. \(\square \)

Lemma 3.2 (Special version of Walsh Lemma). Let \(X = (P_i, f_i^{i+1}) \) be an inverse sequence of compact metric polyhedra \((P, d_i)\) with diameter less than 1 and with surjective bonding maps, and let \(L_i \) be triangulations of \(P_i \). Suppose that we have maps \(g_i^{i+1} : |L_i^{(n+1)}| \to |L_i^{(n+1)}| \) such that \(g_i^{i+1}(|L_i^{(n)}|) \subset |L_i^{(n)}| \), and let \(Z = (|L_i^{(n)}|, g_i^{i+1}) \) be the inverse sequence of subpolyhedra \(|L_i^{(n)}| \subset P_i \), where each \(g_i^{i+1} \) stands for the appropriate restriction. Let \(X = \lim X, Z = \lim Z \). Assume that for each \(i \in \mathbb{N} \) we have numbers

\[0 < \varepsilon(i) < \frac{\delta(i)}{3} < 1, \]
satisfying:

(I) for \(i \geq 2 \), \(g_i^{i-1} \) and \(f_i^{i-1} |_{|L_i^{(n)}|} \) are \(\frac{\varepsilon(i-1)}{a} \) close,

(II) for \(i \geq 2 \) and for any \(y \in P_i \), diam \((f_i^{i-1}(B_{\delta(i)}(y))) < \frac{\varepsilon(i-1)}{3} \), and

(III) for \(i > j \) and for any \(y \in P_i \), diam \((f_j^{i}(B_{\varepsilon(i)}(y))) < \frac{\varepsilon(j)}{2^r} \).
Then there is a map $\pi : Z \to X$ with fibers $\pi^{-1}(x) = \pi^{-1}((x_i)) = \lim (B_{\delta(i)}(x_i) \cap |L_i^{(n)}|, g_i^{i+1}) = \lim (B_{\varepsilon(i)}(x_i) \cap |L_i^{(n)}|, g_i^{i+1})$

(here g_i^{i+1} stands for the appropriate restriction).

If, in addition, we have that:

(IV) mesh $L_i < \varepsilon(i)$, for all i,
then for all $x \in X$ we have $\pi^{-1}(x) \neq \emptyset$, so the map π will be surjective.

If we also have

(V) for $i \geq 1$ and for any $y \in P_i$, $B_{\varepsilon(i)}(y) \subset P_{y,i} \subset B_{\delta(i)}(y)$, where $P_{y,i}$ is a contractible subpolyhedron of $|L_i|$, and

(VI) for $i \geq 2$, $g_{i-1}^i(|L_i^{(n+1)}|) \subset |L_i^{(n)}|$, then the map π is cell-like.

Proof: The following diagram will be useful.

\[\cdots \longrightarrow |L_i^{(n)}| \xrightarrow{g_i^{i+1}} |L_{i+1}^{(n)}| \longrightarrow |L_{i+1}^{(n)}| \longrightarrow \cdots \]

The existence of $\pi : Z \to X$ with the required properties of fibers follows from Lemma 3.1 when $P_i = |L_i|$, $M_i = |L_i^{(n)}|$ and $\phi_i = i : |L_i^{(n)}| \hookrightarrow |L_i|$ is the inclusion.

Note that $\phi_i^{-1}(B_{\delta(i)}(x_i)) = B_{\delta(i)}(x_i) \cap |L_i^{(n)}|$, so (IV) of Lemma 3.1 becomes:

(IV*) $\pi^{-1}(x) = \pi^{-1}((x_i)) = \lim (B_{\delta(i)}(x_i) \cap |L_i^{(n)}|, g_i^{i+1}) = \lim (B_{\varepsilon(i)}(x_i) \cap |L_i^{(n)}|, g_i^{i+1})$.

Property (IV) will guarantee that, for any $x \in X$, $\pi^{-1}(x) \neq \emptyset$. This is true because, if we take any $x = (x_i) \in Y$, $x_i \in P_i = |L_i|$ implies that there is a simplex $\sigma \in L_i$ such that $x_i \in \sigma$. Since mesh $L_i < \varepsilon(i)$, we get that diam $\sigma < \varepsilon(i)$, so $\sigma \subset B_{\varepsilon(i)}(x_i)$. Therefore $\sigma^{(n)} \subset B_{\varepsilon(i)}(x_i) \cap |L_i^{(n)}|$, so

$\emptyset \neq B_{\varepsilon(i)}(x_i) \cap |L_i^{(n)}| \subset B_{\delta(i)}(x_i) \cap |L_i^{(n)}| \supset \phi_i^{-1}(B_{\delta(i)}(x_i))$.

By (V) of Lemma 3.1, $\pi : Z \to X$ is surjective.

It remains to show that properties (V) and (VI) imply that π is cell-like. Note that from (V) and (IV*) we get that $\pi^{-1}(x) = \lim (P_{x,i} \cap |L_i^{(n)}|, g_i^{i+1})$, where g_i^{i+1} stands for the appropriate restriction. It will be sufficient to show that the maps $g_i^{i+1} : P_{x,i+1,i+1} \cap |L_i^{(n)}| \to P_{x,i} \cap |L_i^{(n)}|$ are null-homotopic.

First note that $P_{x,i+1,i+1}$ being contractible implies that the inclusion map $i : P_{x,i+1,i+1} \cap |L_i^{(n)}| \to P_{x,i+1,i+1}$ is null-homotopic. Since dim $P_{x,i+1,i+1} \cap |L_i^{(n+1)}| \leq n$, i is null-homotopic as a map into $P_{x,i+1,i+1} \cap |L_i^{(n+1)}|$, that is, this homotopy happens within the $(n+1)$-skeleton of L_{i+1}. Composing such a null-homotopy with $g_i^{i+1} |_{L_{i+1}^{(n+1)}} : |L_{i+1}^{(n+1)}| \to |L_i^{(n)}|$ yields the sought after null-homotopy for the restriction $g_i^{i+1} |_{P_{x,i+1,i+1} \cap |L_i^{(n)}|}$.

The following Lemma will be useful in the proof of the new version of Edwards’ Theorem.
Lemma 3.3. For any finite simplicial complex C, there is a map $r : |C| \to |C|$ and an open cover $\mathcal{V} = \{V_\sigma : \sigma \in C\}$ of $|C|$ such that for all $\sigma, \tau \in C$:

(i) $\hat{\sigma} \subset V_\sigma$,
(ii) if $\sigma \neq \tau$ and $\dim \sigma = \dim \tau$, V_σ and V_τ are disjoint,
(iii) if $y \in \hat{\tau}$, $\dim \sigma \geq \dim \tau$ and $\sigma \neq \tau$, then $y \notin V_\sigma$,
(iv) if $y \in \hat{\tau} \cap V_\tau$, where $\dim(\sigma) < \dim(\tau)$, then σ is a face of τ, and
(v) $r(V_\sigma) \subset \sigma$.

Proof: Since C is finite, let us suppose that $\dim C = q$. Note that the simplicial complex C has the property that for each k, there is an open neighborhood U_k of $|C^{(k)}|$ in $|C|$, and a surjective map $r_k : |C| \to |C|$ so that

1. $r_k|_{|C^{(k)}|} = id_{|C^{(k)}|}$,
2. r_k preserves simplexes, i.e., for any $\tau \in C$, $r_k(\tau) \subset \tau$, and
3. $r_k(U_k) \subset |C^{(k)}|$.

Also note that for vertices $v \in C^{(0)}$ we have that $\hat{\hat{v}} = v$.

Here is how we will define the open cover $\mathcal{V} = \{V_\sigma : \sigma \in C\}$ for $|C|$:

4. for each k-simplex σ of C, where $k = 0, \ldots, q - 1$, put $V_\sigma := (r_k \circ r_{k+1} \circ \cdots \circ r_{q-1})^{-1}(\hat{\sigma})$ into \mathcal{V}, and
5. for each q-simplex σ of C, put $V_\sigma := \hat{\sigma}$ into \mathcal{V}.

Note that all elements of \mathcal{V} are open sets: in (5) that is clear, and in (4), $(r_k \circ r_{k+1} \circ \cdots \circ r_{q-1})^{-1}(\hat{\sigma}) = r_q^{-1}(r_{q-1}^{-1}(\hat{\sigma}))$, and $r_q^{-1}(\hat{\sigma})$ is open because $r_k|_{U_k} : U_k \to |C^{(k)}|$ is continuous, and $\hat{\sigma}$ is open in $|C^{(k)}|$.

Let us check that (i) is true: $\hat{\hat{\sigma}} \subset V_\sigma$ is clear for case (5), and, for case (4), since $r_k, r_{k+1}, \ldots, r_{q-1}$ are all the identity on $|C^{(k)}|$ and $\hat{\sigma} \subset |C^{(k)}|$, then $\hat{\hat{\sigma}} \subset V_\sigma$. Hence \mathcal{V} is a cover for $|C|$ because of (i).

If σ and τ are two different simplexes of the same dimension, then $\hat{\sigma}$ and $\hat{\tau}$ are disjoint. If $\dim \sigma = \dim \tau = q$, (ii) is clear. If $\dim \sigma = \dim \tau < q$, then (4) implies that V_σ and V_τ are disjoint, i.e., (ii) is true.

Let us prove property (iii). (We know that $y \in \hat{\tau} \subset V_\tau$. If τ and σ are of the same dimension, then (ii) implies $y \notin V_\sigma$. If $\dim \tau < \dim \sigma \leq q - 1$, then $V_\sigma := (r_{\dim \sigma} \circ \cdots \circ r_{q-1})^{-1}(\hat{\sigma})$, so if y would be in V_σ, then $r_{\dim \sigma} \circ \cdots \circ r_{q-1}(y) = y \in \hat{\sigma}$. But $r_{\dim \sigma} \circ \cdots \circ r_{q-1}$ are the identity on $|C^{(\dim \tau)}| \supset \tau$, so $r_{\dim \sigma} \circ \cdots \circ r_{q-1}(y) = y \in \hat{\sigma}$, which is in contradiction with $y \in \hat{\tau}$. Thus $y \notin V_\sigma$. If $\dim \tau < \dim \sigma = q$, then $V_\sigma = \hat{\sigma}$, so $y \in \hat{\tau}$ and $\tau \neq \sigma$ imply that $y \notin V_\sigma$.)

To prove (iv), suppose that $y \in V_\sigma$ for some $\sigma \in C$ with $\dim \sigma < \dim \tau$. Then $V_\sigma := (r_{\dim \sigma} \circ \cdots \circ r_{q-1})^{-1}(\hat{\sigma})$, so $r_{\dim \sigma} \circ \cdots \circ r_{q-1}(y) = y \in \hat{\sigma}$. Notice that $r_{\dim \tau}, r_{\dim \tau+1}, \ldots, r_{q-1}$ are the identity on τ, so $r_{\dim \sigma} \circ \cdots \circ r_{q-1}(y) = r_{\dim \sigma} \circ \cdots \circ r_{q-1}(y) = y \in \hat{\sigma}$. The maps $r_{\dim \sigma}, \ldots, r_{\dim \tau-1}$ preserve simplexes, by (2), so $y \in \hat{\tau}$ implies that $r_{\dim \sigma} \circ \cdots \circ r_{\dim \tau-1}(y) \in \tau$. Thus $\tau \cap \hat{\sigma} \neq \emptyset$, so σ must be a face of τ.

It remains to define the map r and prove the property (v). Define $r := r_0 \circ r_1 \circ \cdots \circ r_{q-1} : |C| \to |C|$. For any k-simplex σ of C where $k = 1, \ldots, q - 1$, by (4) we get that

$$r(V_\sigma) = r_0 \circ r_1 \circ \cdots \circ r_{q-1}((r_k \circ r_{k+1} \circ \cdots \circ r_{q-1})^{-1}(\hat{\sigma})) = r_0 \circ r_1 \circ \cdots \circ r_{k-1}(\hat{\sigma}),$$

since all r_i are surjective. Also, by (2), $r(V_\sigma) = r_0 \circ r_1 \circ \cdots \circ r_{k-1}(\hat{\sigma}) \subset \sigma$.

Bockstein Basis and Resolution Theorems in Extension Theory
Also, for any q-simplex σ of C, we get $r(V_\sigma) = r(\bar{\sigma}) \subset \sigma$ for the same reason. For vertices $v \in C(0)$, $r(V_v) = r \circ r^{-1}(v) = v$. So we conclude that (v) is true. □

A version of Theorem 4.2 from [Wa], adapted for our situation follows:

Theorem 3.4 (New statement of Edwards Theorem). Let $n \in \mathbb{N}$ and let Y be a compact metrizable space such that $Y = \lim (|L_i|, |f_i^{i+1}|)$, where $|L_i|$ are compact polyhedra with $\dim L_i \leq n + 1$, and f_i^{i+1} are surjections. Then $\dim Y \leq n$ implies that there exists an $s \in \mathbb{N}$, $s > 1$, and there exists a map $g_s^i : |L_s| \to |L_1^{(n)}|$ which is an L_1-modification of $f_i^*|L_s|$, i.e., for any $z \in |L_s|$, if $f_i^*(z) \in \partial \sigma$ for some simplex $\sigma \in L_1$, then $g_s^i(z) \in \sigma$.

$$
\begin{array}{c}
|L_1^{(n)}| \\
\downarrow \\
|L_1| \\
\downarrow f_i^* \\
|L_s| \leftarrow \cdots \\
\end{array}
\quad Y
$$

Proof: There will be two separate parts of this proof, for $n \geq 2$ and for $n = 1$.

Let us start with $n \geq 2$. We will build an Edwards-Walsh complex \widehat{L}_1 above $L_1^{(n)}$. Since $\dim L_1 \leq n + 1$ and L_1 is finite, L_1 has to have finitely many $(n + 1)$-simplices, say, $\sigma_1, \ldots, \sigma_m$. Focus on $L_1^{(n)}$, and above each of $\sigma_i^{(n)} = \partial \sigma_i \approx S^n$, build a $K(Z, n)$ by attaching cells of dimension $(n + 2)$ and higher. Name the CW-complex that we get in this fashion \widehat{L}_1. Notice that we can write $\widehat{L}_1 = L_1^{(n)} \cup K(\sigma_1) \cup K(\sigma_2) \cup \ldots \cup K(\sigma_m)$, where each $K(\sigma_i)$ is a $K(Z, n)$ attached to $\partial \sigma_i$. Also notice that we can make the attaching maps piecewise linear, so that we will be able to triangulate \widehat{L}_1 keeping $L_1^{(n)}$ as a subcomplex.

Let $\theta : \widehat{L}_1 \to |L_1|$ be a map such that $\theta|L_1^{(n)}| = \text{id}_{|L_1^{(n)}|}$ and $\theta(K(\sigma_i)) \subset \sigma_i$. This θ can be constructed as follows: first, define $\theta|L_1^{(n)}| := \text{id}_{|L_1^{(n)}|}$. Since each σ_i is contractible, it is an absolute extensor for CW-complexes. Therefore the inclusion map $j : \sigma_i^{(n)} \to \sigma_i$ can be extended over $K(\sigma_i)$. Call this extension $\theta|K(\sigma_i)|$. Gluing together all of the extensions $\theta|K(\sigma_i)|$ for $i = 1, \ldots, m$ with $\theta|L_1^{(n)}|$ will produce the map θ.

Let $f_1 : Y \to |L_1|$ be the projection map from the inverse sequence. The map f_1 is surjective since all f_i^{i+1} are surjective. Extend $f_1|f_1^{-1}(|L_1^{(n)}|) : f_1^{-1}(|L_1^{(n)}|) \to |L_1^{(n)}|$ to a map $h : Y \to \widehat{L}_1$ such that

(a) $h(f_1^{-1}(\sigma_i)) \subset \theta^{-1}(\sigma_i) = K(\sigma_i)$, for $i = 1, \ldots, m$.

This can be done using $\dim Y \leq n \Leftrightarrow Y \tau K(Z, n)$: for any $(n + 1)$-dimensional σ_i, take $f_1|f_1^{-1}(\sigma_i^{(n)}) : f_1^{-1}(\sigma_i^{(n)}) \to \sigma_i^{(n)}$ and compose it with the inclusion $i : \sigma_i^{(n)} \hookrightarrow K(\sigma_i) = K(Z, n)$. Now $Y \tau K(Z, n)$ implies $f_1^{-1}(\sigma_i) \tau K(Z, n)$, so the map $i \circ f_1|f_1^{-1}(\sigma_i^{(n)}) : f_1^{-1}(\sigma_i^{(n)}) \to K(\sigma_i)$ can be extended over $f_1^{-1}(\sigma_i)$. Call this extension $h|f_1^{-1}(\sigma_i)$. So we get the map h that we need by gluing together all of the extensions $h|f_1^{-1}(\sigma_i)$, for $i = 1, \ldots, m$, with $h|f_1^{-1}(\sigma_i^{(n)}) = f_1|f_1^{-1}(\sigma_i^{(n)})$.

Note that our inverse sequence $(|L_i|, f_i^{i+1})$ is a compact resolution for Y, so, in particular, it has the resolution property (R1): if we choose an open cover \mathcal{V} for the minimum and hence finite subcomplex C in \widehat{L}_1 such that $h(Y) \subset C$, then we can find an $s > 1$ and a map $h_s^i : |L_s| \to \widehat{C}$ such that h and $h_s^i \circ f_s$ are \mathcal{V}-close.
Let us make a wise choice for \(\mathcal{V} \). Start by triangulating \(\hat{C} \): let \(C \) denote a finite simplicial complex which is a triangulation of \(\hat{C} \) whose restriction to \(|L_1^{(n)}| \) is a subcomplex. So \(|C| = \hat{C} \). Since \(C \) is finite, let us suppose that \(\dim C = q \).

Define an open cover \(\mathcal{V} \) for \(|C| \), and a map \(r : |C| \to |C| \) as in Lemma 3.3. For this cover \(\mathcal{V} \) for \(|C| \), we may apply resolution property (R1): we can find an \(s > 1 \) and a map \(h^s_1 : |L_s| \to |C| \) such that \(h \) and \(h^s_1 \circ f_s \) are \(\mathcal{V} \)-close. Define \(h_s := r \circ h^s_1 : |L_s| \to |C| \). Because of our choices, we get that

\[(b) \ \text{whenever} \ \hat{h}(y) \in \hat{\tau} \ \text{for some} \ \tau \in C, \ \text{then} \ h_s \circ f_s(y) \in \tau.\]

This is true because, by (i), (iii) and (iv) of Lemma 3.3, \(h(y) \in \hat{\tau} \) implies that \(h(y) \in V_\tau \), and possibly also \(h(y) \in V_\sigma \) for some \(\sigma \) which is a face of \(\tau \), but \(h(y) \) is in no other elements of \(\mathcal{V} \). Since \(h_1^s \circ f_s \) is \(\mathcal{V} \)-close to \(h \), we have that either \(h_1^s \circ f_s(y) \in V_\tau \), or \(h_1^s \circ f_s(y) \in V_\sigma \), for some face \(\sigma \) of \(\tau \). But by (v) of Lemma 3.3, \(r(V_\tau) \subset \tau \) and \(r(V_\sigma) \subset \sigma \subset \tau \). Thus \(h_1^s \circ f_s(y) = r \circ h_1^s \circ f_s(y) \in \tau \).

If \(f_1(y) \in \sigma_i \) for some \((n+1)\)-simplex \(\sigma_i \) of \(L_1 \), then, by (a), \(h(y) \in K(\sigma_i) \), so \(h(y) \in \hat{\tau} \) for some \(\tau \in C \) and \(\tau \subset K(\sigma_i) \). By (b), \(h_s(f_s(y)) \in \tau \). So we can conclude that

\[(c) \ \text{if} \ f_1(y) \in \sigma_i, \ \text{for some} \ (n+1)\text{-simplex} \ \sigma_i \text{ of} \ L_1, \ \text{then both} \ h(y) \text{ and} \ h_s \circ f_s(y) \ \text{land in} \ K(\sigma_i).\]

Now we will construct a map \(g^s_1 : |L_s| \to |L_1^{(n)}| \) such that:

\[(d) \ g^s_1|_{h_1^{-1}(L_1^{(n)})}) = h_s|_{h_1^{-1}(L_1^{(n)})}, \text{ and}\]

\[(e) \ \text{whenever} \ h_s(z) \in K(\sigma_i) \ \text{for some} \ (n+1)\text{-simplex} \ \sigma_i \ \text{of} \ L_1, \ \text{then} \ g^s_1(z) \in \sigma_i.\]

In fact, \(g^s_1 \) will be the stability theory version of \(h_s \). We know that \(h_s : |L_s| \to |C| = \hat{C} \), where \(C \) is a triangulation of the finite CW-subcomplex \(\hat{C} \) of \(L_1 \). Since \(\hat{C} \) is finite, we can pick a cell \(\gamma \) of maximal possible dimension \(\dim \gamma = q \) (we have assumed that \(\dim C = q \), so \(\dim \hat{C} = q \)). It is safe to assume that \(q \geq n + 2 \).

Pick a point \(w \) in \(\hat{\gamma} \) with an open neighborhood \(W \subset \hat{\gamma} \). Since \(\dim |L_s| \leq n + 1 \) and \(\dim \gamma > n + 1 \), the point \(w \) we picked is an unstable value for \(h_s \). Therefore we can construct a new map \(g^s_{1,\gamma} : |L_s| \to \hat{C} \setminus \{w\} \) that agrees with \(h_s \) on \(h_s^{-1}(\hat{C} \setminus W) \), and
\(g_1^{-1}(h_s^{-1}(\gamma)) \subset \gamma \setminus \{w\} \). Retract \(\gamma \setminus \{w\} \) to \(\partial \gamma \) by a retraction \(\tilde{r} : \tilde{C} \setminus \{w\} \to \tilde{C} \setminus \tilde{\gamma} \), such that \(\tilde{r} \mid _{\tilde{C} \setminus \tilde{\gamma}} = id \). Replace \(h_s \) with \(\tilde{r} \circ g_1^{-1}(\gamma) : |L_s| \to \tilde{C} \setminus \tilde{\gamma} \).

We will repeat this process, starting with \(\tilde{C} \setminus \tilde{\gamma} \) and the map \(\tilde{r} \circ g_1^{-1}(\gamma) \) instead of \(\tilde{C} \) and \(h_s \): pick a cell of maximal dimension in \(\tilde{C} \setminus \tilde{\gamma} \), etc. This is done one cell at a time, until we get rid of all cells in \(\tilde{C} \) with dimension \(\geq n + 2 \). The map we end up with will be \(g_1^n : |L_s| \to \tilde{C}^{(n+1)} \), where \(\tilde{C}^{(n+1)} \) stands for the CW-skeleton of dimension \(n + 1 \) for \(\tilde{C} \).

Notice that \(\tilde{C}^{(n+1)} \subset \tilde{L}_1^{(n+1)} \), but the CW-skeleton of dimension \(n + 1 \) for \(\tilde{L}_1 \) is equal to the CW-skeleton of dimension \(n \) for \(\tilde{L}_1 \), since we have built \(\tilde{L}_1 \) by attaching cells of dimension \(n + 2 \) and higher to \(L_1^{(n)} \). Thus \(\tilde{L}_1^{(n+1)} = \tilde{L}_1^{(n)} = |L_1^{(n)}| \), where \(L_1^{(n)} \) is the simplicial \(n \)-skeleton of \(L_1 \). So in fact, \(g_1^n : |L_s| \to |L_1^{(n)}| \).

By our construction, \(g_1^n \) agrees with \(h_s \) on \(h_s^{-1}(|L_1^{(n)}|) \), so (d) is true. To prove property (e), let \(h_s(z) \in K(\sigma_i) \). Then \(h_s(z) \in \gamma \), for some cell \(\gamma \) of \(K(\sigma_i) \). So \(\tilde{r} \circ g_1^{-1}(\gamma) \in \partial \gamma \subset K(\sigma_i) \).

As we go on with our construction, we get \(g_1^n(z) \in (K(\sigma_i))^{(n+1)} = \partial \sigma_i \subset \sigma_i \).

Finally, for any \(z \in |L_s| \) we have that either \(f_1^n(z) \in \tilde{\tau} \), for some \(\tau \in L_1^{(n)} \), or \(f_1^n(z) \in \tilde{\sigma}_i \), for some \((n+1) \)-simplex \(\sigma_i \) of \(L_1 \). Since \(f_s \) is surjective, there is a \(y \in Y \) such that \(f_s(y) = z \).

So, if \(f_1^n(z) \in \tilde{\tau} \), then \(f_1(y) = f_1^n(f_s(y)) = f_1^n(z) \in \tilde{\tau} \subset |L_1^{(n)}| \).

Recall that on \(f_1^{-1}(|L_1^{(n)}|) \), \(f_1 \) and \(h \) coincide. Thus \(f_1(y) = h(y) \in \tilde{\tau} \). There is a simplex \(\tau' \subset C \setminus |L_1^{(n)}| \) such that \(\tau' \subset \tau \), and \(f_1(y) = h(y) \in \tilde{\tau}' \). By (b) we get that \(h_s \circ f_s(y) \in \tau' \subset \tau \), i.e., \(h_s(z) \in \tau \in L_1^{(n)} \), so by (d), \(g_1^n(z) = h_s(z) \in \sigma_i \).

On the other hand, if \(f_1^n(z) \in \tilde{\sigma}_i \), for some \((n+1) \)-simplex \(\sigma_i \) of \(L_1 \), then \(f_1(y) = f_1^n(f_s(y)) = f_1^n(z) \in \tilde{\sigma}_i \). By (c), \(h_s \circ f_s(y) \in K(\sigma_i) \), i.e., \(h_s(z) \in K(\sigma_i) \). Property (e) implies that \(g_1^n(z) \in \sigma_i \).

So \(g_1^n \) is an \(L_1 \)-modification of \(f_1^n \).

It remains to prove this theorem for \(n = 1 \). First note that \(\dim Y \leq 1 \) implies that \(\dim Y \leq 1 \). We will not need to construct an Edwards-Walsh complex \(\tilde{L}_1 \) here. Instead, look at the map \(f_1 : Y \to |L_1| \). Let \(g_1 : Y \to |L_1^{(1)}| \) be a stability theory version of \(f_1 \). We construct \(g_1 \) as before: since we know that \(\dim L_1 \leq 2 \), pick any \(2 \)-simplex \(\sigma \) of \(L_1 \). We can pick a point \(w \in \tilde{\sigma} \) with an open neighborhood \(W \subset \tilde{\sigma} \), and since \(\dim \sigma = 2 \), the point \(w \) is an unstable value for \(f_1 \). So there exists a map \(g_1, \sigma : Y \to |L_1| \setminus \{w\} \) which agrees with \(f_1 \) on \(f_1^{-1}(|L_1 \setminus W|) \), such that \(g_1, \sigma (f_1^{-1}(\sigma)) \subset \sigma \setminus \{w\} \). Now retract \(\sigma \setminus \{w\} \) to \(\partial \sigma \) by a retraction \(\tilde{r} \) which is the identity on \(|L_1| \setminus \tilde{\sigma} \). Finally, replace \(f_1 \) by \(\tilde{r} \circ g_1, \sigma : Y \to |L_1| \setminus \tilde{\sigma} \).

Continue the process with one \(2 \)-simplex at a time. Since \(L_1 \) is finite, in finitely many steps we will reach the needed map \(g_1 : Y \to |L_1^{(1)}| \). From the construction of \(g_1 \), we get

\[(f) \quad g_1 |_{f_1^{-1}(|L_1^{(1)}|)} = f_1 |_{f_1^{-1}(|L_1^{(1)}|)}, \quad \text{and for every } 2 \text{-simplex } \sigma \text{ of } L_1, \quad g_1(f_1^{-1}(\sigma)) \subset \partial \sigma.
\]

Let us choose an open cover \(V \) of \(L_1^{(1)} \) as before: apply Lemma 3.3 to \(C = L_1^{(1)} \). Note that \(q = 1 \), so the map \(r = r_0 : |L_1^{(1)}| \to |L_1^{(1)}| \).
Now we can use resolution property (R1): there is an index \(s > 1 \) and a map \(\tilde{g}_1^s : |L_s| \to |L_1^{(1)}| \) such that \(\tilde{g}_1^s \circ f_s \) and \(g_1 \) are \(V \)-close. Define \(g_1^s := r_0 \circ \tilde{g}_1^s : |L_s| \to |L_1^{(1)}| \).

Notice that for any \(y \in Y \), if \(g_1(y) \in \partial \) for some \(\tau \in L_1^{(1)} \) (vertices included), then \(g_1(y) \in \partial \), and possibly also \(g_1(y) \in \partial \), where \(v \) is a vertex of \(\tau \). Then either \(\tilde{g}_1^s \circ f_s(y) \in \partial \), or \(\tilde{g}_1^s \circ f_s(y) \in \partial \). In any case, \(r_0 \circ \tilde{g}_1^s \circ f_s(y) \in \partial \). Hence,

\[
(g) \text{ for any } y \in Y, \ g_1(y) \in \partial \text{ for some } \tau \in L_1^{(1)}, \text{ implies that } g_1^s(f_s(y)) \in \partial.
\]

Finally, for any \(z \in |L_s| \), \(f_s \) is surjective implies that there is a \(y \in Y \) such that \(f_s(y) = z \). Then \(f_1^s(z) = f_1^s(f_s(y)) = f_1(y) \). Now \(f_1^s(z) \) is either in \(\partial \) for some 2-simplex \(\sigma \) in \(L_1 \), or in \(\partial \) for some \(\tau \in L_1^{(1)} \).

If \(f_1^s(z) \in \partial \), that is \(f_1(y) \in \partial \) for some 2-simplex \(\sigma \), by (f) we get that \(g_1(y) \in \partial \sigma \). Then by (g), \(g_1^s(f_s(y)) \in \partial \sigma \), i.e., \(g_1^s(z) \in \sigma \).

If \(f_1^s(z) = f_1(y) \in \partial \) for some \(\tau \in L_1^{(1)} \), then (f) implies that \(g_1(y) = f_1(y) \in \partial \), so by (g), \(g_1^s(f_s(y)) \in \tau \), i.e., \(g_1^s(z) \in \tau \).

Therefore, \(g_1^s \) is indeed an \(L_1 \)-modification of \(f_1^s \). \(\square \)

Lemma 3.5. Let \(n \in \mathbb{N} \), \(G \) be an abelian group and \(K \) be a connected CW-complex with \(\pi_n(K) \cong G \), \(\pi_k(K) \cong 0 \) for \(0 \leq k < n \). If \(Y \) is a compact metrizable space with \(\dim Y \leq n + 1 \), then \(Y \tau K \iff \dim G \leq n \).

Proof: Build a \(K(G, n) \) by attaching cells of dimension \(n+2 \) and higher to our CW-complex \(K \).

First, assume that \(Y \tau K \), and let us show \(\dim G \leq n \). If we look at any closed set \(A \subset Y \) and any map \(f : A \to K(G, n) \), we have that \(\dim A \leq \dim Y \leq n + 1 \), so we can homotope \(f \) into \(K(G, n)^{(n+1)} = K^{(n+1)} \subset K \), i.e., there is a map \(\tilde{f} : A \to K \) which is homotopic to \(f \). Now \(Y \tau K \) implies the existence of a map \(g : Y \to K \) which extends \(\tilde{f} \). Therefore, by the homotopy extension theorem, \(f \) can be extended continuously over \(Y \), so we get that \(Y \tau K \Rightarrow Y \tau K(G, n) \Rightarrow \dim G \leq n \).

Second, assume that \(\dim G \leq n \), and let us show \(Y \tau K \). Look at any closed set \(A \subset Y \) and any map \(f : A \to K \). Let \(i : K \hookrightarrow K(G, n) \) be the inclusion map. Then \(Y \tau K(G, n) \) implies that there is a map \(\hat{f} : Y \to K(G, n) \) extending \(i \circ f : A \to K(G, n) \), i.e., \(\hat{f} |_A = i \circ f \).

Since \(Y \) is compact, \(\hat{f}(Y) \) is contained in a finite subcomplex \(\tilde{C} \) of \(K(G, n) \). There are finitely many cells in \(\tilde{C} \setminus K \), and all of them have dimension \(\geq n+2 \). Pick a cell of maximal dimension \(\gamma \in \tilde{C} \setminus K \), and a point \(w \in \partial \) with an open neighborhood \(W \subset \partial \). Since \(\dim Y \leq n+1 \) and \(\dim \gamma \geq n+2 \), by stability theory the point \(w \) is an unstable value of the map \(\hat{f} \), so there is a map \(g_\gamma : Y \to \tilde{C} \setminus \{w\} \) which agrees with \(\hat{f} \) on \(\hat{f}^{-1}(\tilde{C} \setminus W) \), and such that \(g_\gamma(\hat{f}^{-1}(\gamma)) \subset \partial \setminus \{w\} \). Retract \(\gamma \setminus \{w\} \) to \(\partial \gamma \) by a retraction \(\tilde{r} : \tilde{C} \setminus \{w\} \to \tilde{C} \setminus \partial \), such that \(\tilde{r} |_{\tilde{C} \setminus \partial} = id \). Replace \(\hat{f} \) with \(\tilde{r} \circ g_\gamma : Y \to \tilde{C} \setminus \partial \). Repeat this process one cell at a time until all cells of \(\tilde{C} \setminus K \) are exhausted. The map we end up with will be \(g : Y \to K \) such that \(g_{|\tilde{f}^{-1}(K')} = \hat{f} |_{\hat{f}^{-1}(K')} \). Since \(\hat{f}(A) = f(A) \subset K \), that is, \(A \subset \hat{f}^{-1}(K) \), we get \(g |_A = \hat{f} |_A \).

Therefore \(Y \tau K \). \(\square \)

4. LEMMAS FOR INVERSE SEQUENCES

The proof of the main result will require certain manipulations of inverse sequences of metric compacta. This section will contain the needed results, taken from Section 3 of [RS2]. The next lemma follows from Corollary 1 of [MS2].
Lemma 4.1. Let \(X = (X_i, p_i^{i+1}) \) be an inverse sequence of metric compacta \((X_i, d_i)\). Then there exists a sequence \((\gamma_i)\) of positive numbers such that if \(Y = (X_i, q_i^{i+1}) \) is an inverse sequence and \(d_i(q_i^{i+1}, p_i^{i+1}) < \gamma_i \) for each \(i \), then \(\lim Y = \lim X \). □

We shall call such \((\gamma_i)\) a sequence of stability for \(X \).

Let \(K \) be a simplicial complex, \(X \) a space, and \(f : X \to |K| \) a map. Recall that a map \(g : X \to |K| \) is called a \(K \)-modification of \(f \) if whenever \(x \in X \) and \(f(x) \in \sigma \), for some \(\sigma \in K \), then \(g(x) \in \sigma \). This is equivalent to the following: whenever \(x \in X \) and \(f(x) \in \bar{\sigma} \), for some \(\sigma \in K \), then \(g(x) \in \sigma \).

One calls \(f \) a \(K \)-irreducible map if each \(K \)-modification \(g \) of \(f \) is surjective. Note that, in this case, \(f \) is surjective and for any subdivision \(M \) of \(K \), \(f \) is \(M \)-irreducible.

Lemma 4.2. If \(f : X \to |K| \) is a \(K \)-irreducible map, and \(g : X \to |K| \) is a \(K \)-modification of \(f \), then \(g \) is \(K \)-irreducible. □

From Theorem 3.11 of [JR] we may deduce the following.

Lemma 4.3. Let \(X \) be a compact metrizable space. Then we may write \(X \) as the inverse limit of an inverse sequence \(Q = (|Q_\iota|, q_\iota^{i+1}) \) of compact metric polyhedra, where each bonding map \(q_i^{i+1} \) is a \(Q_\iota \)-irreducible surjection. □

Lemma 4.4. Let \(X \) be a compact metrizable space. Then there exists an inverse sequence \(K = (|K_\iota|, p_\iota^{i+1}) \) of compact metric polyhedra \((|K_\iota|, d_\iota)\) along with a sequence of stability \((\gamma_i)\) for \(K \) such that \(\lim K = X \), and for each \(i \in \mathbb{N} \), mesh \(K_\iota \) is less than \(\gamma_i \). We may also specify that for some \(m \in \mathbb{N} \), whenever \(i \geq m \), then \(p_\iota^{i+1} : |K_{\iota i+1}| \to |K_\iota| \) is a \(K_\iota \)-irreducible simplicial map.

Proof: Write \(X = \lim Q \), where \(Q = (|Q_\iota|, q_\iota^{i+1}) \) is an inverse sequence of compact metric polyhedra \((|Q_\iota|, d_\iota)\) as in Lemma 4.3. By Lemma 4.1 we know that there is a sequence of stability \((\rho_i)\) for \(Q \). For each \(i \), put \(\gamma_i = \rho_i / 2 \). Note that \((\gamma_i)\) is also a sequence of stability for \(Q \).

Let \(K_\iota \) be a subdivision of \(Q_\iota \) with mesh \(K_\iota \) is less than \(\gamma_\iota \). Suppose that \(i \in \mathbb{N} \) and for each \(1 \leq j \leq i \), we have chosen a subdivision \(K_j \) of \(Q_\iota \) with mesh \(K_j \) is less than \(\gamma_j \) and, when \(1 < j \), a map \(p_{j-1}^{j+1} : |K_j| \to |K_{j-1}| \) which is a simplicial approximation to \(q_{j-1}^{j+1} \). Then select a subdivision \(K_{i+1} \) of \(Q_{i+1} \) with mesh \(K_{i+1} \) is less than \(\gamma_{i+1} \), and which supports a simplicial approximation \(p_i^{i+1} : |K_{i+1}| \to |K_i| \) of \(q_i^{i+1} \). Note that \(d_i(q_i^{i+1}, p_i^{i+1}) < \gamma_i \), so \(q_i^{i+1} \) being \(Q_\iota \)-irreducible implies that each \(p_i^{i+1} \) is surjective.

Let us check that \(K := (|K_\iota|, p_\iota^{i+1}) \) and \(m = 1 \) satisfy all of the requirements. Clearly \(X = \lim K \), since \((\gamma_i)\) is a sequence of stability for \(Q \). It remains to show that the new bonding maps \(p_\iota^{i+1} \) are \(K_\iota \)-irreducible. First, note that \(q_i^{i+1} \) being \(Q_\iota \)-irreducible implies that \(q_i^{i+1} \) is also \(K_\iota \)-irreducible. Since \(p_i^{i+1} \) is a simplicial approximation of \(q_i^{i+1} \), \(p_i^{i+1} \) is a \(K_\iota \)-modification of \(q_i^{i+1} \). By Lemma 4.2, \(p_i^{i+1} \) is \(K_\iota \)-irreducible too. □

Definition 4.5. Whenever \(X \) is a compact metrizable space, then we shall refer to an inverse sequence \(K \) of metric polyhedra \((|K_\iota|, d_\iota)\) which admits a sequence \((\gamma_i)\) of positive numbers and \(m \in \mathbb{N} \) so that the properties of Lemma 4.4 are satisfied as a representation of \(X \) which is stable and simplicially irreducible from index \(m \) with associated sequence of stability \((\gamma_i)\).

Of course, Lemma 4.1 and its proof show that every compact metrizable space \(X \) has a representation \(K \) which is stable and simplicially irreducible from index \(m = 1 \).
Next, we want to define a certain type of move which when applied to such $K = K_0$ as in Definition 4.5 results in a K_1 which is also a stable and simplicially irreducible (from some index m) representation of X. We will then show that if this procedure is repeated recursively in a controlled manner, resulting in a sequence K_1, K_2, \ldots, then there will be a limit $K_\infty = \lim_{j \to \infty} (K_j)$ which also will be a representation of X.

Lemma 4.6. Let (ε_i) be a sequence of positive numbers. Let X be a compact metrizable space, let $K = (|K_i|, p_i^{m+1})$ be a representation of X which is stable and simplicially irreducible from index m_1 with an associated sequence of stability (γ_i), and let $m \in \mathbb{N}_{\geq m_1}$. Define $\gamma_i' = \gamma_i$ if $1 \leq i < m$, $\gamma_i' = \frac{1}{2}[\gamma_i - \text{mesh } K_m]$, and $\gamma_i' = \gamma_i/2$ if $i > m$. Let Σ be a subdivision of K_0 with mesh $\Sigma < \min\{\varepsilon_i, \gamma_i\}$. Then there exists an inverse sequence $\mathbf{L} = (|L_i|, l_i^{m+1})$ as follows:

(a) in case $1 \leq i < m$, then $L_i = K_i$ and $l_i^{m+1} = p_i^{m+1}$,
(b) $L_m = \Sigma$,
(c) for each $i \geq m + 1$, L_i is a subdivision of K_i with mesh $L_i < \min\{\varepsilon_i, \gamma_i'\}$, and
(d) if $i \geq m + 1$, $l_i^{m+1} : |L_i| \rightarrow |L_{i-1}|$ is a simplicial approximation to the map p_i^{m+1}.

Definition 4.7. We shall call a pair $(\mathbf{L}, (\gamma_i'))$ as in Lemma 4.6 an m-shift of $(\mathbf{K}, (\gamma_i))$ from Σ.

Observe that $d_m(p^{m+1}, p^{m+1}) \leq \text{mesh } \Sigma < \frac{1}{2}[\gamma_m - \text{mesh } K_m] = \gamma_m$. Hence if $g : |L_{m+1}| \rightarrow |L_m|$ is a map and $d_m(g, l^{m+1}) < \gamma_m$, we may conclude that $d_m(g, p^{m+1}) < \gamma_m$. Indeed, the following is true:

(e) for each i, if $g : |L_{i+1}| \rightarrow |L_i|$ is a map and $d_i(g, l_i^{m+1}) < \gamma_i$, then $d_i(g, p_i^{m+1}) < \gamma_i$.

Therefore we conclude:

Lemma 4.8. Whenever $(\mathbf{L}, (\gamma_i'))$ is an m-shift of $(\mathbf{K}, (\gamma_i))$ from Σ, then \mathbf{L} is a stable and simplicially irreducible representation of X from index m with associated sequence of stability (γ_i'). \square

By exercising some additional care in the construction of \mathbf{L}, we may guarantee that for all i, $d_i(p_i^{m+1}, l_i^{m+1}) < \varepsilon_i$ (of course, $p_i^{m+1} = l_i^{m+1}$ if $i < m$).

It is routine to check that the next lemma holds true.

Lemma 4.9. Let X be a compact metrizable space, and let K_0 be a representation of X which is stable and simplicially irreducible from index m_1, with $(\gamma(0), i)$ a sequence of stability. For every m_1-shift $(K_1, (\gamma(1), i))$ of $(K_0, (\gamma(0), i))$ from Σ_1 (an appropriate subdivision of the triangulation of the m_1-term of K_0), K_1 is a representation of X which is stable and simplicially irreducible from index m_1, with $(\gamma(1), i)$ an associated sequence of stability. It satisfies property (e) with $(\gamma_i') = (\gamma(1), i)$ and $(\gamma_i) = (\gamma(0), i)$. The terms (as metric spaces) in K_0 and K_1 are equal. For $i < m_1$, $\gamma(1), i = \gamma(0), i$, the terms with index i have the same triangulations in K_0 and K_1, and the bonding maps in K_0 and K_1 with subscript i are equal. For $i \geq m_1$, $\gamma(1), i$ need not equal $\gamma(0), i$, the triangulation of the term in K_1 with index i is a subdivision of that in K_0 with the same index, and the bonding map with subscript i in K_1 may differ from that in K_0 with subscript i.

If $i_0 \in \mathbb{N}$, $m_1 < \ldots < m_i$ is a finite sequence in \mathbb{N}, and successively we have chosen $(K_j, (\gamma(j), i))$ an m_j-shift of $(K_{j-1}, (\gamma(j-1), i))$ from Σ_j (an appropriate subdivision of the m_j-term of K_{j-1}), $1 \leq j \leq i_0$, then we may conclude that K_{i_0} is a representation of X which is stable and simplicially irreducible from index m_{i_0}, with $(\gamma(i_0), i)$ an associated sequence of stability; it satisfies property (e) with $(\gamma_i') = (\gamma(i_0), i)$ and $(\gamma_i) = (\gamma(i_0-1), i)$. The terms (as metric spaces) in K_0 and K_{i_0} are equal. For $i < m_{i_0}$, $\gamma(i_0), i = \gamma(i_{i_0-1}), i$, the terms with index
Lemma 4.11. Here, $i < r$ changed in every step of the construction from step 0 to (i). The term in K_{i_0} with index i is a subdivision of that in K_{i_0-1} with the same index, and the bonding map with subscript i in K_{i_0} may differ from that in K_{i_0-1} with subscript i. □

Henceforth we typically shall write $([K_j], i, p_{j+1}^{i+1})$ to denote such a representation K_j, $0 \leq j \leq i_0$. One should note that, whenever $i_0 \geq j_0 \geq j \geq 1$, then $K(j,m) = K(j),m = \Sigma_j$ when this occurs from the procedure in Lemma 4.9.

Definition 4.10. Let X be a compact metrizable space and let $r : \mathbb{N} \to \mathbb{N}$ be an increasing function. Let K_0 be a representation of X which is stable and simplicially irreducible from index $r(1)$, with $(\gamma(0), i)$ a sequence of stability. Suppose that $(K_j, (\gamma(j), i)), j \in \mathbb{N}$, is a sequence such that for each j, $(K_j, (\gamma(j), i))$ is an $r(j)$-shift of $(K_{j-1}, (\gamma(j-1), i))$ from Σ_j.

Then for each $k \in \mathbb{N}$, if m, l, and i are chosen so that $m \geq l \geq r(k) > i$, one sees that $p_l^{i+1} = p_m^{i+1}$ and $\gamma(l), i = \gamma(m), i$. So for each i, the sequences $(\gamma(j), i), j \in \mathbb{N}$ and $(p_j^{i+1}, j \in \mathbb{N}$ are eventually constant. Hence, in an obvious way, we may define an inverse sequence $K_\infty = ((K_\infty), i), (p_\infty^{i+1}) = \lim_{j \to \infty} K_j$ and a sequence $(\gamma(\infty), i) = \lim_{j \to \infty} (\gamma(j), i)$ of positive numbers. Here, $K(\infty), i = \lim_{j \to \infty} K(j), i$ and $p_\infty^{i+1} = \lim_{j \to \infty} p_j^{i+1}, i$.

From our construction and this definition, we can deduce the following:

Lemma 4.11. Assume the notation of Definition 4.10. Then K_∞ is a representation of X. If $i \in \mathbb{N}$, $g : |K_\infty, i, i+1| \to |K_\infty, i, i|$ is a map, and $d_i(g, p_\infty^{i+1}) < \gamma(\infty), i$, then $d_i(g, p_0^{i+1}) < \gamma(0), i$ and hence $(\gamma(\infty), i)$ is a sequence of stability for K_∞.

Proof: To show that K_∞ is a representation of X, it is enough to check that for all $i \in \mathbb{N}$, $d_i(p_\infty^{i+1}, p_0^{i+1}) < \gamma(0), i$.

Take an $i \in \mathbb{N}$. If $i < r(1)$, then $p_\infty^{i+1} = p_0^{i+1}$ and $\gamma(\infty), i = \gamma(0), i$. Hence the statement $d_i(g, p_\infty^{i+1}) < \gamma(\infty), i$ implies that $d_i(g, p_0^{i+1}) < \gamma(0), i$.

If $i \geq r(1)$, then we know that $r(k-1) \leq i < r(k)$ for some $k \in \mathbb{N}$. The fact that $i < r(k)$ implies that $p_\infty^{i+1} = p_0^{i+1}$. On the other hand, $r(k-1) \leq i$ implies that $\gamma(j), i$ has changed in every step of the construction from step 0 to $(k-1)$. That is, $\gamma(j), i \leq \frac{1}{2k-1}, i$, for all $1 \leq j \leq k-1$, so $\gamma(j), i \leq \frac{1}{2k}, i$. Therefore

$$d_i(p_\infty^{i+1}, p_0^{i+1}) = d_i(p_{k-1}^{i+1}, p_0^{i+1}) \leq d_i(p_{k-1}^{i+1}, p_{k-2}^{i+1}) + \ldots + d_i(p_1^{i+1}, p_0^{i+1}) < \gamma(k-1), i + \ldots + \gamma(1), i \leq \frac{\gamma(0), i}{2k-1} + \ldots + \frac{\gamma(0), i}{2} < \gamma(0), i \cdot \sum_{k=1}^{\infty} \frac{1}{2k} = \gamma(0), i$$

By Lemma 4.11, $\lim K_\infty = X$.

It remains to show that $d_i(g, p_\infty^{i+1}) < \gamma(\infty), i$ implies $d_i(g, p_0^{i+1}) < \gamma(0), i$. The fact that $i < r(k)$ implies that $\gamma(\infty), i = \gamma(k-1), i$. So $d_i(g, p_\infty^{i+1}) = d_i(g, p_\infty^{i+1}) < \gamma(k-1), i$. Therefore

$$d_i(p_\infty^{i+1}, g) \leq d_i(p_0^{i+1}, g) + d_i(p_1^{i+1}, p_2^{i+1}) + \ldots + d_i(p_{k-1}^{i+1}, p_k^{i+1}) + d_i(p_k^{i+1}, g) < (\gamma(1), i + \gamma(2), i + \ldots + \gamma(k-1), i) + \gamma(k-1), i$$

$$\leq \gamma(0), i \cdot \left(\frac{1}{2} + \frac{1}{2^2} + \ldots + \frac{1}{2^{k-1}}\right) + \frac{1}{2^{k-1}} = \gamma(0), i$$. □
5. PROOF OF THE MAIN THEOREM

Let us now prove Theorem [1.1].

Proof: We will construct, using induction:

- an increasing function \(r : \mathbb{N} \to \mathbb{N}\),
- sequences of numbers \((\varepsilon(i))_{i \in \mathbb{N}}\) and \((\delta(i))_{i \in \mathbb{N}}\) such that \(0 < \varepsilon(i) < \frac{\delta(i)}{3} < 1\), for all \(i\),
- a sequence of inverse sequences \(K_j = ([K(j)_1], P^{j+1}_{(j)_1})\), for \(j \in \mathbb{Z}_{\geq 0}\), as described in Lemma [4.9],

with terms that are compact polyhedra and with surjective bonding maps, and with \(\lim K_j = X\) (in fact, these sequences are representations for \(X\) that are stable and simplicially irreducible from index \(1\)).

Proof: We will construct, using induction:

\[
\begin{align*}
&\text{(I)} \quad g^{r(i)}_{r(i-1)} \quad \text{and} \quad p^{r(i)}_{r(i-1), r(i-1)} \mid_{[\Sigma_{i}^{(n+1)}]} \quad \text{are close}, \\
&\text{(II)} \quad \text{for any } y \in [K_{(i-1), r(i-1)}] = [\Sigma_i], \quad \text{diam}_r(p^{r(i)}_{r(i-1), r(i-1)}(B_{\delta(i)}(y))) < \frac{\varepsilon(i-1)}{3}, \\
&\text{(III)} \quad \text{for } i > j \text{ and for any } y \in [K_{(i-1), r(i-1)}] = [\Sigma_i], \quad \text{diam}_r(p^{r(i)}_{r(j), r(j)}(B_{\varepsilon(i)}(y))) < \frac{\varepsilon(j)}{2}, \\
&\text{(IV)} \quad \text{mesh } \Sigma_i < \min \left\{ \frac{\varepsilon(i)}{3}, \gamma_{(i-1), r(i-1)} \right\}, \quad \text{so mesh } \Sigma_i < \varepsilon(i), \quad \text{and} \\
&\text{(V)} \quad \text{for any } y \in [K_{(i-1), r(i-1)}] = [\Sigma_i], \quad B_{\varepsilon(i)}(y) \subset P_{y,i} \subset B_{\delta(i)}(y), \quad \text{where } P_{y,i} \text{ is a contractible subpolyhedron of } [\Sigma_i].
\end{align*}
\]

In fact, this will prepare us to use Walsh’s Lemma [3.2] with

\[
X = ([K_{(0), r(i)}], P^{r(i)}_{(0), r(i)}), \quad Z = ([\Sigma_i^{(n)}], g^{r(i)}_{r(i-1)} \mid_{[\Sigma_i^{(n)}]}).
\]

Let us start the construction by taking a representation for \(X\) which is stable and simplicially irreducible from index 1: \(K_0 = ([K_{(0), i}], p^{+1}_{(0), i})\), \(\lim K_0 = X\), with stability sequence \((\gamma_{(0), i})\).

Define \(r(1) := 1\).

We will choose \(0 < \delta(1) < 1\) any way we want. Next, we pick an intermediate subdivision \(\tilde{\Sigma}_1\) of \(K_{(0), 1}\) so that for any \(y \in [K_{(0), 1}]\), any closed \(\tilde{\Sigma}_1\)-vertex star containing \(y\) is contained in the closed \(\delta(1)\)-ball \(B_{\delta(1)}(y)\). (It is enough to make mesh \(\tilde{\Sigma}_1 < \frac{\delta(1)}{2}\), so diam(\(\tilde{st}(w, \tilde{\Sigma}_1)\)) \(\leq 2\text{mesh }\tilde{\Sigma}_1 < \delta(1)\).

Now choose an \(\varepsilon(1)\) so that \(0 < \varepsilon(1) < \frac{\delta(1)}{3}\), and for any \(y \in [K_{(0), 1}]\), the closed \(\varepsilon(1)\)-ball \(B_{\varepsilon(1)}(y)\) sits inside an open vertex star with respect to \(\tilde{\Sigma}_1\). (This can be done as follows: form the open cover for \([K_{(0), 1}]\) consisting of the open stars \(\tilde{st}(w, \tilde{\Sigma}_1)\). There is a Lebesgue number \(\lambda\) for this cover, so make your \(\varepsilon(1) < \frac{\lambda}{2}\). Then for any \(y \in [K_{(0), 1}]\), diam \(B_{\varepsilon(1)}(y) < \lambda \Rightarrow B_{\varepsilon(1)}(y) \subset \tilde{st}(w_0, \tilde{\Sigma}_1)\), for some \(w_0 \in \tilde{\Sigma}_1\). Fix such \(w_0\) for each \(y\).)

Note that for any \(y \in [K_{(0), 1}]\), \(B_{\varepsilon(1)}(y) \subset \tilde{st}(w_0, \tilde{\Sigma}_1) \subset B_{\delta(1)}(y)\). Define \(P_{y, 1} := \tilde{st}(w_0, \tilde{\Sigma}_1)\), which is a contractible subpolyhedron of \([K_{(0), 1}]\), so \(V_1\) is satisfied.

Choose a subdivision \(\Sigma_1\) of \(\tilde{\Sigma}_1\) with mesh \(\Sigma_1 < \min \left\{ \frac{\varepsilon(1)}{3}, \gamma_{(0), 1}\right\}\), which implies \((IV)_1\).

Let \((K_1, (\gamma_{(1), i}))\) be a 1-shift of \((K_0, (\gamma_{(0), i}))\) from \(\Sigma_1\), i.e., \(K_1 = ([K_{(1), i}], p^{+1}_{(1), i})\) is an inverse sequence with \(K_{(1), 1} = \Sigma_1\), limit equal \(X\), and stability sequence \((\gamma_{(1), i})\). Note that
at this point, all bonding maps in K_1 are simplicial because K_1 is simplicially irreducible from index 1. This concludes the basis of induction.

Step of induction. Let $k \in \mathbb{N}_{\geq 2}$. Suppose that we have chosen, as required above,

- for $j = 1, \ldots, k - 1$, the numbers $r(j)$, $\delta(j)$, $\varepsilon(j)$,
- for $j = 0, \ldots, k - 1$, the inverse sequences $K_j = (\langle K(j), i \rangle, p^{j+1}_{(k-1), i})$, which are stable and simplicially irreducible from index $r(j)$, with stability sequences $(\gamma(j), i)$,
- for $j = 1, \ldots, k - 1$, subdivisions Σ_j of $K(j, r(j))$, and
- for $j = 2, \ldots, k - 1$, maps $g_{r(j-1)}^{r(j)} : |\Sigma^{(n+1)}_j| \to |\Sigma^{(n)}_{j-1}|$

so that the properties $(I)_j$ are satisfied for each $j = 1, \ldots, k - 1$ for which they make sense.

Focus on the inverse sequence $K_{k-1} = (\langle K_{k-1}, i \rangle, p^{i+1}_{(k-1), i})$. For $i \geq r(k-1)$, the bonding maps $p^{i+1}_{(k-1), i}$ are simplicial. Recall that $\lim K_{k-1} = X$, and notice that $|K_{k-1}, r(k-1)\rangle = \Sigma_{k-1}$. Let

$$Y_{k-1} := (\langle K^{(n+1)}_{(k-1), i} \rangle, p^{i+1}_{(k-1), i} | \langle K^{(n+1)}_{(k-1), i+1} \rangle, i \geq r(k-1)$$

be the inverse sequence of the $(n+1)$-skeleton of the polyhedron in K_{k-1}, starting with the $(r(k-1))$-th polyhedron outward, where the bonding maps are the restrictions of the original bonding maps. Notice that every $p^{i+1}_{(k-1), i} | K^{(n+1)}_{(k-1), i+1} : |K^{(n+1)}_{(k-1), i+1}| \to |K^{(n+1)}_{(k-1), i}|$ is still simplicial and surjective: since $p^{i+1}_{(k-1), i}$ is simplicial and surjective, for every simplex $r(k-1)$, there exists a simplex $\tau \in K_{k-1}, i+1$ such that $\dim \tau \geq k$ and $p^{i+1}_{(k-1), i} (\tau) = \sigma$. So there must be a k-face of τ which is mapped by $p^{i+1}_{(k-1), i}$ onto σ. In particular, for every $(n+1)$-dimensional $\sigma \in K^{(n+1)}_{(k-1), i}$, there exists an $(n+1)$-simplex in $K_{k-1}, i+1$ that is mapped onto σ by $p^{i+1}_{(k-1), i}$.

Now let $Y_{k-1} = \lim Y_{k-1}$. Then $\dim Y_{k-1} \leq n + 1$, and $X \tau K$ implies $Y_{k-1} \tau K$. So by Lemma 3.5, we get $\dim G Y_{k-1} \leq n$. Since $P_G = \mathbb{P}$, Lemma 2.4 implies $\dim \Sigma Y_{k-1} = \dim \Sigma Y_{k-1} \leq n$, so we can apply Edwards’ Theorem 3.4 to Y_{k-1}, noticing that the first entry in Y_{k-1} has index $r(k-1)$.

So there exists an $s \in \mathbb{N}$, $s > r(k-1)$ and a map $\widehat{g}^{r(k)}_{\tau} : |K^{(n+1)}_{(k-1), s}| \to |K^{(n)}_{(k-1), r(k-1)}|$ so that if $z \in |K^{(n+1)}_{(k-1), s}|$, and $p^{a}_{(k-1), r(k-1)}(z)$ lands in the combinatorial interior δ of a simplex σ of $K^{(n+1)}_{(k-1), r(k-1)}$, then $\widehat{g}^{a}_{\tau(r(k-1))}(z)$ lands in σ. This will help us get the property $(I)_k$.

Define $r(k) := s$. Using the uniform continuity of the map $p^{r(k)}_{(k-1), r(k-1)}$, choose $0 < \delta(k) < 1$ so that $(II)_k$ is true:

$$\forall y \in |K_{(k-1), r(k)}|, \quad \text{diam}(p^{r(k)}_{(k-1), r(k-1)}(B_{\delta(k)}(y))) < \frac{\varepsilon(k-1)}{3}.$$

Pick an intermediate subdivision $\tilde{\Sigma}_k$ of $K_{(k-1), r(k)}$ so that for any $y \in |K_{(k-1), r(k)}|$, any closed $\tilde{\Sigma}_k$-vertex star containing y is contained in $B_{\delta(k)}(y)$.

Now choose an $\varepsilon(k)$ so that $0 < \varepsilon(k) < \frac{\delta(k)}{3}$, and so that $(III)_k$ and $(V)_k$ will be true. First make sure that for all $y \in |K_{k-1,r(k)}|$, the closed $\varepsilon(k)$-ball centered at y sits inside an open Σ_k-vertex star, i.e., $B_{\varepsilon(k)}(y) \subset \text{st}(w_0, \Sigma_k)$, for some $w_0 \in \Sigma_k^{(0)}$. Therefore $B_{\varepsilon(k)}(y) \subset |\text{st}(w_0, \Sigma_k)| \subset B_{\delta(k)}(y)$. Define $P_{y,k} := |\text{st}(w_0, \Sigma_k)|$, which is a contractible subpolyhedron of $|K_{k-1,r(k)}|$. So $(V)_k$ is satisfied. Next, we know that for all $j < k$, the maps $p^{r(k)}_{(j),r(j)}$ are uniformly continuous. We also know that, in our notation, $j < k$ implies that $p^{r(k)}_{(j),r(j)} = p^{r(k)}_{(k-1),r(k)}$. So we can make a choice of $\varepsilon(k)$ so that we have: for any $y \in |K_{k-1,r(k)}|$,

$$
\text{diam} \left(p^{r(k)}_{(1),r(1)}(B_{\varepsilon(k)}(y)) \right) < \frac{\varepsilon(1)}{2^k},
$$

$$
\text{diam} \left(p^{r(k)}_{(2),r(2)}(B_{\varepsilon(k)}(y)) \right) < \frac{\varepsilon(2)}{2^k},
$$

$$
\vdots
$$

$$
\text{diam} \left(p^{r(k)}_{(k-1),r(k-1)}(B_{\varepsilon(k)}(y)) \right) < \frac{\varepsilon(k-1)}{2^k}.
$$

So $(III)_k$ is true.

Choose a subdivision Σ_k of Σ_k with mesh $\Sigma_k < \gamma(k-1,r(k))$, where $\gamma(k-1,r(k))$ is from the stability sequence $(\gamma(k-1),i)$ for K_{k-1}. Also make sure that mesh $\Sigma_k < \frac{\varepsilon(k)}{3}$, which implies $(IV)_k$. Note that Σ_k is a subdivision of $K_{k-1,r(k)}$.

\[
K_{k-1} : \quad \cdots \quad \xrightarrow{\text{id}} \quad |K_{k-1,r(k)}| \quad \xrightarrow{p^{r(k)}_{(k-1),r(k)}} \quad \cdots
\]

\[
K_k : \quad \cdots \quad |\Sigma_k| = |K_{k,r(k)}| \quad \xrightarrow{p^{r(k)}_{(k),r(k)}} \quad |K_{k,r(k)+1}| \quad \cdots \quad X
\]

\[
Y_k : \quad |\Sigma_k^{(n+1)}| = |K_{k,r(k)}^{(n+1)}| \quad \xrightarrow{p^{r(k)}_{(k),r(k)}} \quad |K_{k,r(k)+1}^{(n+1)}| \quad \cdots \quad Y_k
\]

Now we can build $K_k = (|K_{k,i}|, p^{(k+1)}_{(k),i})$ as an $r(k)$-shift of $(K_{k-1}, (\gamma(k-1),i))$ from Σ_k, i.e., $K_k = (|K_{k,i}|, p^{(k+1)}_{(k),i})$ has an inverse sequence with $K_{k,r(k)} = \Sigma_k$ and limit X, and stability sequence $(\gamma(k),i)$. For index $i \geq r(k)$, the bonding maps $p^{(k+1)}_{(k),i}$ are simplicial.

Let $j : |\Sigma_k| \rightarrow |K_{k-1,r(k)}|$ be a simplicial approximation to the identity map. Since j is simplicial, $j(|\Sigma_k^{(n+1)}|) \subset |K_{k-1,r(k)}^{(n+1)}|$, so treat $j|_{|\Sigma_k^{(n+1)}|} : |\Sigma_k^{(n+1)}| \rightarrow |K_{k-1,r(k)}^{(n+1)}|$. Define $g_f^{r(k)}_{(k-1)} := g_{r(k)}^{r(k)}|_{\Sigma_k^{(n+1)}} : |\Sigma_k^{(n+1)}| \rightarrow |K_{k-1,r(k)}^{(n+1)}|$. For any $y \in |\Sigma_k^{(n+1)}|$, y and $j(y)$ have to be contained in the same simplex of $K_{k-1,r(k)}$. Since $p^{r(k)}_{(k),r(k)} : |K_{k-1,r(k)}| \rightarrow |K_{k-1,r(k)+1}|$ is simplicial, $p^{r(k)}_{(k),r(k)}(y)$ and $p^{r(k)}_{(k),r(k)}(j(y))$ land in the same simplex τ of $K_{k-1,r(k)+1} = \Sigma_k$. On the other hand, because of our choice of $g_f^{r(k)}_{(k-1)}$, if $p^{r(k)}_{(k-1),r(k-1)}(j(y))$ lands in $\bar{\sigma}$, for some simplex σ of $K_{k-1,r(k-1)}$ which is a face of τ, then $g_{r(k)}^{r(k)}(j(y))$ lands in σ, too. Therefore

$$
d_{k-1}(p^{r(k)}_{(k-1),r(k-1)}(y), g_{r(k)}^{r(k)}(j(y))) \leq \text{mesh} K_{k-1,r(k-1)} = \text{mesh} \Sigma_{k-1} < \frac{\varepsilon(k-1)}{3}.
$$
Hence $g_{r(k)}^{r(k)}(k-1)$ and $p_{r(k),r(k-1)}^{r(k)}[\Sigma^{n+1}_k]$ are $\varepsilon(k-1,3)$-close, so (I) is true. This concludes the inductive step. The following diagram summarizes the preceding construction.

$$
\begin{array}{cccc}
|\Sigma^{(n)}_{k-1}| &=& |K_{(k-1),r(k-1)}^{(n)}| & \xleftarrow{\gamma^{(k)}_{r(k-1)}} \xrightarrow{\phi^{(k)}_{r(k-1)}} |\Sigma^{(n+1)}_{k-1}| \\
|\Sigma^{(n+1)}_{k-1}| &=& |K_{(k-1),r(k-1)}^{(n+1)}| & \xleftarrow{\phi^{(k)}_{r(k-1),r(k-1)}} |K_{(k-1),r(k)}^{(n+1)}| \\
|\Sigma_{k-1}| &=& |K_{(k-1),r(k-1)}^{(n)}| & \xleftarrow{\phi^{(k)}_{r(k-1),r(k-1)}} |K_{(k-1),r(k)}^{(n)}| \\
\end{array}
$$

Notice that the inverse sequence

$$
X := (|K(0,1)|, p_{r(i),r(i)}^{r(i+1)} = (|K(i,1)|, p_{r(i),r(i)}^{r(i+1)} = (|\Sigma_i|, p_{r(i),r(i)}^{r(i+1)})
$$

is a subsequence of $K_\infty = (|K_\infty|, p_{r(i),r(i)}^{r(i)}) = (|K(0,1)|, p_{r(i)})$. By Lemma 4.11, $\lim K_\infty = X$, so $\lim X$ is homeomorphic to X. Without loss of generality, assume that $\lim X = X$.

Let $Z := (|\Sigma_i|, g_{r(i)}^{r(i+1)}|\Sigma^{(n)}_{k-1}|)$. Since $|\Sigma_i|^{(n)}$ are metrizable, compact and nonempty, $\lim Z = Z$ is a nonempty compact metrizable space. Clearly, $\dim Z \leq n$, which also implies that $\dim_G Z \leq n$. Now $\dim Z$ follows from Lemma 3.5.

Apply Walsh's Lemma 3.2 to these X and Z: since the requirements (I)-(VI) of Lemma 3.2 are satisfied, there is a cell-like surjective map $\pi : Z \to X$. □

Corollary 5.1. Let G be an abelian group with $P_G = \mathbb{P}$. Let K be a connected CW-complex with $\pi_1(K) \cong G$. Then every compact metrizable space X with $X \tau K$ has to have $\dim X \leq 1$.

Proof: Theorem 4.11 is true for $n = 1$, so for any compact metrizable space X with $X \tau K$, we can find a compact metrizable space Z with $\dim Z \leq 1$, $Z \tau K$ and a surjective cell-like map $\pi : Z \to X$. Cell-like maps are G-acyclic, so in particular, π is a \mathbb{Z}-acyclic map.

The Vietoris-Begle Theorem implies that a G-acyclic map cannot raise $\dim G$-dimension. Since $\dim Z \leq 1$ implies that $\dim \mathbb{Z} Z \leq 1$, and since π is a \mathbb{Z}-acyclic map, we have that $\dim \mathbb{Z} X \leq 1$, too. Recall that $\dim \mathbb{Z} X \leq 1 \iff \dim X \leq 1$. □

References

[AJR] S. Ageev, R. Jiménez and L. Rubin, Cell-like resolutions in the strongly countable \mathbb{Z}-dimensional case, Topology and its Appls. 140 (2004), 5-14.

[ARS] S. Ageev, D. Repovš, E. Shchepin, On the softness of the Dranishnikov resolution, Proc. Steklov Inst. Math. 212 (1996), 3-27.

[Al] P. S. Aleksandrov, Einige Problemstellungen in der mengentheoretischen Topologie, Mat. Sb. 43 (1936), 619-634.

[Bi] R. H. Bing, The cartesian product of a certain nonmanifold and a line is E^4, Ann. of Math. 70 (1959), 399-412.

[Da] R. Davenport, Detecting the disjoint disks property, Pacific J. Math. 93 (1981), 277-298.

[Dmr1] A. Dranishnikov, On P.S. Aleksandrov's problem, Mat. Sb. 135 (4) (1988), 551-557.

[Dmr2] A. Dranishnikov, On homological dimension modulo p, Math. USSR Sb. 60 (2) (1988), 413-425.

[Dmr3] A. Dranishnikov, Cohomological dimension theory of compact metric spaces, Topology Atlas Invited Contributions, http://at.yorku.ca/t/a/i/c/43.pdf
Bockstein Basis and Resolution Theorems in Extension Theory

[Dr4] A. Dranishnikov, *Rational homology manifolds and rational resolutions*, Topology and its Applns. 94 (1999), 75-86.

[Du] J. Dugundji, *Topology*, Allyn and Bacon, Boston, 1966.

[Dy1] J. Dydak, *Cohomological dimension and metrizable spaces*, Trans. Amer. Math. Soc. 337 (1993), 219-234.

[DW] J. Dydak and J. Walsh, *Complexes that arise in cohomological dimension theory: a unified approach*, J. London Math. Soc. (2) 48, no. 2 (1993), 329-347.

[Dy] E. Dyer, *On the dimension of products*, Fund. Math. 47 (1959), 141-160.

[Ed] R. D. Edwards, *A theorem and a question related to cohomological dimension and cell-like maps*, Notices Amer. Math. Soc. 25 (1978), A-259.

[En] R. Engelking, *General Topology*, Heldermann Verlag, Berlin, 1989.

[Ha] A. Hatcher, *Algebraic Topology*, Cambridge University Press, 2002.

[IR] I. Ivanˇ si´ c and L. Rubin, *The extension dimension of universal spaces*, Glas. Mat. 38 (58) (2003), 121-127.

[JR] R. Jiménez and L. Rubin, *An addition theorem for n-fundamental dimension in metric compacta*, Topology and its Applns. 62 (1995), 281-297.

[Ku] V. I. Kuz’mínov, *Homological dimension theory*, Russian Math. Surveys 23 (1968), 1-45.

[KY1] A. Koyama and K. Yokoi, *A unified approach of characterizations and resolutions for cohomological dimension modulo p*, Tsukuba J. Math. 18 (2) (1994), 247-282.

[KY2] A. Koyama and K. Yokoi, *Cohomological dimension and acyclic resolutions*, Topology and its Applns. 120 (2002), 175-204.

[Le1] M. Levin, *Acyclic resolutions for arbitrary groups*, Isr. J. Math. 135 (2003), 193-204.

[Le2] M. Levin, *Rational acyclic resolutions*, Algebraic and Geometric Topology 5 (2005), 219-235.

[MR] S. Mardeˇ si´ c and L. Rubin, *Cell-like mappings and nonmetrizable compacta of finite cohomological dimension*, Trans. Amer. Math. Soc. 313 (1989), 53-79.

[MS1] S. Mardeˇ si´ c and J. Segal, *Shape theory*, North-Holland, Amsterdam, 1982.

[MS2] S. Mardeˇ si´ c and J. Segal, *Stability of almost commutative inverse systems of compacta*, Topology and its Applns. 31 (1989), 285-299.

[Mu] J. Munkres, *Topology*, Prentice Hall, Upper Saddle River, New Jersey, 1975.

[RS1] L. Rubin and P. Schapiro, *Cell-like maps onto non-compact spaces of finite cohomological dimension*, Topology and its Applns. 27 (1987), 221-244.

[RS2] L. Rubin and P. Schapiro, *Resolutions for metrizable compacta in extension theory*, Trans. Amer. Math. Soc. 358 (2005), 2507-2536.

[Sp] E. Spanier, *Algebraic Topology*, McGraw-Hill, New York, 1966.

[Wa] J. Walsh, *Dimension, cohomological dimension, and cell-like mappings*, Shape Theory and Geometric Topology, Lecture Notes in Mathematics, volume 870, Springer Verlag, Berlin, 1981, pp. 105-118.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OKLAHOMA, 601 ELM AVE, ROOM 423, NORMAN, OKLAHOMA 73019, USA

E-mail address: vtonic@ou.edu