RNA Aptamers Targeting the Cell Death Inhibitor CED-9 Induce Cell Killing in Caenorhabditis elegans*

Chonglin Yang‡§, Nieng Yan‡§, Jay Parish‡†, Xiaochen Wang‡§, Yigong Shi‡, and Ding Xue‡†§

From the ‡Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309 and §Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544

Bcl-2 family proteins include anti- and proapoptotic factors that play important roles in regulating apoptosis in diverse species. Identification of compounds that can modulate the activities of Bcl-2 family proteins will facilitate development of drugs for treatment of apoptosis-related human diseases. We used an in vitro selection method named systematic evolution of ligands by exponential enrichment (SELEX) to isolate RNA aptamers that bind the Caenorhabditis elegans Bcl-2 homolog CED-9 with high affinity and specificity and tested whether these aptamers modulate programmed cell death in C. elegans. Five CED-9 aptamers were isolated and classified into three groups based on their predicted secondary structures. Biochemical analyses indicated that two of these aptamers, R9-2 and R9-7, and EGL-1, an endogenous CED-9-binding proapoptotic protein, bound to distinct regions of CED-9. However, these two aptamers shared overlapping CED-9 binding sites with CED-4, another CED-9-binding proapoptotic factor. Importantly ectopic expression of these two aptamers in touch receptor neurons induced efficient killing of these neurons largely in a CED-3 caspase-dependent manner. These findings suggest that RNA aptamers can be used to modulate programmed cell death in vivo and can potentially be used to develop drugs to treat human diseases caused by abnormal apoptosis.

Apoptosis is an essential cellular process that is critical for tissue homeostasis and animal development in metazoa. Abnormal inactivation of apoptosis can result in uncontrolled cell growth, leading to development of cancer and autoimmune disorders. By contrast, inappropriate activation of apoptosis can cause too much cell death, leading to neurodegenerative diseases and immunodeficiency (1, 2). Development of effective therapeutic methods that can correct or reverse inappropriate apoptosis is thus a critical issue in clinical medicine.

Apoptosis is controlled and executed by an evolutionarily conserved cell death pathway (3, 4). At the center of this pathway is a family of conserved cell death regulators first defined by the human proto-oncogene bcl-2, which promotes cell survival and was identified by virtue of its overexpression in a number of B-cell lymphomas (5–8). Subsequently a family of Bcl-2-related proteins, characterized by the presence of at least one of four conserved Bcl-2 homology (BH)§ domains, has been discovered and found in organisms as distantly related as Caenorhabditis elegans and humans (8). Members of this family can be either antiapoptotic or proapoptotic and can form heterodimers with selected family members to affect apoptosis. The mechanisms by which Bcl-2 family proteins regulate cell death appear to be quite complicated but likely involve modulation of the mitochondrial permeability and the release of crucial apoptogenic factors such as cytochrome c, apoptosis-inducing factor, and endonuclease G, which promote activation of caspases, the cell death executors, and other cell death events such as chromosome fragmentation (8, 9). In addition to B-cell lymphomas, Bcl-2 family members are overexpressed in a wide variety of cancers, contributing to malignant growth of tumors as well as tumor resistance to chemotherapies (10). Thus Bcl-2 family proteins are ideal targets for pharmaceutical intervention in the treatment of cancer and other human diseases.

Genetic studies in C. elegans have identified a central cell killing pathway involving four genes (egl-1, ced-9, ced-4, and ced-3) that act in a negative regulatory cascade to control activation of programmed cell death (4). Biochemical studies indicate that EGL-1, a BH3-only proapoptotic protein, induces cell death by binding to and inhibiting the activity of CED-9, a cell death inhibitor and a homologue of human Bcl-2, leading to the disassociation of CED-4 from the CED-4/CED-9 complex tethered on the surface of mitochondria (4). CED-4, a homologue of the human apoptotic protease activating factor 1, then directly facilitates the activation of the CED-3 caspase and apoptosis (4, 11, 12). As in humans, misregulation of apoptosis in C. elegans can have detrimental outcomes. For example, loss-of-function mutations in the ced-9 gene cause embryonic lethality as a result of too much cell death (13, 14). Importantly key components of this cell death pathway are highly conserved from nematodes to humans (4), indicating that studies of apoptosis in C. elegans will be highly relevant to studies of apoptosis in humans.

Small RNA molecules play critical roles in regulating many important cellular events such as ribosome biogenesis, RNA splicing, gene silencing (RNA interference), and protein translation (microRNA) (15) and can potentially be used as therapeutic agents. In the early nineties, an in vitro selection method named systematic evolution of ligands by exponential enrichment (SELEX) was developed to isolate small RNA molecules (aptamers) that have high binding affinity and specificity to important biomolecules such as proteins and RNAs (16, 17). By binding specifically to a region or a domain of their targets, aptamers can directly modulate the biological activities of their targets at the protein level. Most attractively, aptamers have been used successfully to treat human diseases caused by misexpression or altered activity or function of their target proteins. For example, aptamers with high affinity for vascular endothelial growth factor are being clinically used to treat blindness caused by macular dysfunction (18, 19). Aptamers targeting blood coagulation factors VIIa and IXa are promising anticoagulants (20, 21). In addition, aptamers have also been developed to modulate the activities of other proteins critical for various biological processes, including tran-

* This work was supported by Department of Defense Army Breast Cancer Research Program Grant (DAMD17-01-1-0214), a Burroughs Welcome career award, and National Institutes of Health Grant R01GM66262 (to D. X.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† To whom correspondence should be addressed. Tel.: 303-492-0271; Fax: 303-492-7744; E-mail: ding.xue@colorado.edu.

§ The abbreviations used are: BH, Bcl-2 homology; SELEX, systematic evolution of ligands by exponential enrichment; GST, glutathione S-transferase; EMSA, electrophoretic mobility shift assay; PLM, posterior lateral microtubule.

© 2006 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A.
CED-9 Aptamers Induce Apoptosis

Table 1
CED-9 aptamers selected from the RNA library

Clone	Aptamer sequence*	Frequencyb
Group A		
9H-20	GGGTGTCGCTTATCCGACTGGCAGAAGTATGTCAGCTGCGAGATTA	30
9H-7	GGGTGTCGCTTATCCGACTGGCAGAAGTATGTCAGCTGCGAGATTA	30
9H-4	GGGTGTCGCTTATCCGACTGGCAGAAGTATGTCAGCTGCGAGATTA	30
Group B		
9H-2	GGGTGTCGCTTATCCGACTGGCAGAAGTATGTCAGCTGCGAGATTA	30
9H-8	GGGTGTCGCTTATCCGACTGGCAGAAGTATGTCAGCTGCGAGATTA	30
Group C		
9H-9	GGGTGTCGCTTATCCGACTGGCAGAAGTATGTCAGCTGCGAGATTA	30

* The aptamer sequences shown are cDNA sequences corresponding to the 49-nucleotide variable region of the RNA aptamers, which were selected from a random RNA library. All RNA molecules in this library contain the following sequence: (T7)AGGGAGGACGATGCGN49CAGACGACGGA. T7 indicates the T7 promoter sequence (AATAC-GACTCCTAG). N49 designates the 49 random nucleotides in the variable region of the RNA library.

+ Frequency indicates that the number of clones showing the same AciI digestion pattern among 30 randomly selected cDNA clones from the eighth or ninth rounds.

S...
RESULTS

Isolation and Characterization of CED-9 Aptamers—To identify RNA aptamers for CED-9, SELEX was carried out using a protocol described by Chen et al. (26). Briefly an RNA library was generated in vitro using an oligonucleotide library that contains a central region of 49 randomized nucleotides flanked at both ends by constant sequences and a bacterial T7 promoter for in vitro transcription (Table 1). For the first round of SELEX $\sim 10^{15}$ unique sequences were represented. Each round of SELEX consisted of the following steps. Radioactive labeled RNAs were incubated with purified recombinant CED-9 before the reaction mixtures were applied to a protein binding assay such as the EMSA or the filter binding assay. CED-9/RNA complexes that were isolated from the EMSA or retained by the filter (“Materials and Methods”) were recovered and reverse transcribed to cDNAs, which were

FIGURE 1. Characterization of CED-9 aptamers. A, a Coomassie Blue-stained gel showing the recombinant CED-9(1–251)-His$_6$ protein used for SELEX. B, binding of aptamers to CED-9. 32P-Labeled aptamer (~300 cpm) was incubated with increasing amounts of CED-9(1–250)-His$_6$, as indicated at 30 °C for 30 min and resolved on 7.5% native polyacrylamide gels. Arrows indicate unbound RNA and bound RNA. Arrowheads indicate nonspecific shifts of RNAs, which likely have different secondary structures from the major RNA aptamer species. C, predicted secondary structures of CED-9 aptamers.
then PCR-amplified to generate a new oligonucleotide library enriched in DNAs encoding RNAs with higher binding affinity for CED-9. After nine rounds of SELEX, we obtained a pool of RNA molecules that bound CED-9 with high affinity (see below).

To determine the sequences of isolated CED-9 aptamers, we cloned the corresponding cDNA molecules of aptamers obtained from the last two rounds of SELEX into a vector. We then checked these cloned cDNA molecules with restriction enzyme fingerprinting to determine the relative abundance of closely related aptamers in these pools ("Materials and Methods"). To do this, the RNA coding regions of 30 cDNA clones from each round of SELEX were PCR-amplified and digested with a frequent 4-base cutter, AciI. Clones with the same restriction digestion pattern were assumed to have identical or very close DNA sequences. Using this analysis, we identified seven different RNA species among the 30 cDNA clones selected from the ninth round RNA pool. From the last two rounds of SELEX, we identified a total of 12 different aptamers that bind CED-9. We further tested their binding affinities for CED-9 using EMSAs and chose the aptamers that bound CED-9 with the highest affinity for further analysis. Five aptamers obtained from these secondary selections are shown in Fig. 1 and Table 1.

Among the five aptamers, R8-20 was isolated from the round 8 SELEX, and the other four were isolated from round 9. Based on restriction enzyme fingerprinting analysis, these aptamers are likely the most abundant RNAs in the last two rounds of SELEX. Therefore further rounds of selection would not likely yield significantly different pools of aptamers. Two of the five aptamers, R8-20 and R9-7, differ by only 3 nucleotides (Table 1). Because these two aptamers were isolated from consecutive rounds of selection, our SELEX method appears to be able to enrich for specific binders of CED-9 as shown by increased frequency of their isolations (3 of 30 for R8-20 and 9 of 30 for R9-7, respectively; Table 1). EMSAs indicated that all these aptamers bound CED-9 very well (Fig. 1B). Interestingly R9-2 had slightly higher CED-9 binding affinity than the other aptamers, although the frequency of R9-2 isolation was not as high as those of other aptamers (Fig. 1B and Table 1). It is likely that R9-2 will be enriched with more rounds of selection.

To further characterize these CED-9 aptamers, we used the Mfold program to predict secondary structures of these aptamers. Based on the predictions, these five aptamers can be categorized into three groups. Group A includes R8-20, R9-7, and R9-4, which have very similar trifoliolate stem-loop structures. Group B has R9-2 and Group C includes R9-8, both of which contain rodlike stem-loop structures (Fig. 1C). The different predicted secondary structures of these aptamers suggest that they may have different CED-9 binding properties. Again the similarity of secondary structures within each aptamer group indicates that our SELEX enriched specific aptamers for CED-9. In the studies described below, we chose R9-7 from group A that is relatively more abundant and R9-2 from group B that has very good binding affinity to CED-9 for more detailed analyses.

CED-9 Aptamers Induce Apoptosis

FIGURE 2. Aptamers R9-2 and R9-7 compete with each other for binding to CED-9. A, approximately 8 nM 32P-labeled R9-2 was incubated with CED-9(1–250)-His6 (500 nM) in the presence of increasing concentrations (4, 8, 16, 32, 64, and 128 nM) of unlabeled R9-7 at 30 °C for 30 min and separated with a 7.5% native polyacrylamide gel. B, approximately 8 nM 32P-labeled R9-7 competes with increasing concentrations (4, 8, 16, 32, 64, and 128 nM) of unlabeled R9-2 for binding to CED-9.
CED-9/R9-2 complexes measured using this assay was \(\sim 4\) nM, whereas the \(K_d\) for R9-7/CED-9 complexes was \(\sim 16\) nM (data not shown). Based on the Mfold predictions, R9-2 and R9-7 have different secondary structures and may bind to different surface regions of CED-9. We therefore tested whether these two aptamers bind to the same surface regions of CED-9 by performing a modified competition EMSA in which unlabeled R9-7 was incubated with \(^{32}\)P-labeled R9-2/CED-9 complexes or vice versa. As shown in Fig. 2A, R9-7 could compete with R9-2 for binding to CED-9, although at least 4-fold excess of cold R9-7 was required for this competition. Similarly R9-2 could efficiently compete away the binding between R9-7 and CED-9, but much less cold R9-2 was needed for the competition (Fig. 2B). These results suggest that R9-2 and R9-7 may contact CED-9 at overlapping sites. However, it is also possible that the binding of one aptamer to another CED-9/aptamer complex could induce a conformational change in CED-9 that causes dissociation of the other aptamer. In such a scenario, the two aptamers could bind to different regions of CED-9 but still effectively compete with each other for CED-9 binding. To test this possibility, we performed limited proteolytic digestion of CED-9 or CED-9/aptamer complex with trypsin and monitored the digestion patterns using gel electrophoresis. The CED-9 trypsin digestion patterns were essentially the same with or without aptamers (data not shown), suggesting that no obvious CED-9 conformational change was induced by the binding of the aptamers. In contrast, binding of EGL-1 to CED-9 induces conformational changes of CED-9 (11) and results in a different trypsin proteolysis pattern of CED-9 (data not shown). Taken together, these observations suggest that these two aptamers bind to the same or overlapping regions on CED-9 despite having different predicted secondary structures.

The Effects of Aptamers on CED-9/EGL-1 and CED-9/CED-4 Complexes—In C. elegans, CED-9 functions as an antiapoptotic factor. It has been suggested that CED-9 inhibits cell death by binding to and tethering the proapoptotic protein CED-4 onto the surface of mitochondria (34–36). In cells that are doomed to die, the cell death initiator EGL-1 is transcriptionally up-regulated and then binds to CED-9, resulting in the release of CED-4 from the CED-9/CED-4 complex, which then promotes the activation of the CED-3 caspase (11, 12, 36, 37). To evaluate the potential effects of CED-9 aptamers on cell death, we tested whether CED-9 aptamers interfere with the interactions of CED-9 with EGL-1 and CED-4. Using EMSA, we found that EGL-1 alone did not interact with either of these aptamers, suggesting that EGL-1 and R9-2 (or R9-7) likely bind to different regions of CED-9. In contrast, recombinant CED-4 failed to supershift the CED-9/aptamer complexes (Fig. 3C), suggesting that CED-4 probably could not form higher order complexes with CED-9 and its aptamers.

Some CED-4-binding Surfaces on CED-9 Are Important for Aptamer Binding—Our results indicate that R9-2 and R9-7 can form ternary complexes with CED-9/EGL-1 but not with CED-9/CED-4. To identify the CED-9 surface areas important for the binding of these two aptamers, we tested their binding to several CED-9 mutant proteins that contained amino acid substitutions in various surface exposed residues (11). As shown in Fig. 4A, the majority of CED-9 mutations that affect the binding between CED-9 and R9-2 also likely bind to different regions of CED-9. In contrast, recombinant CED-4 failed to supershift the CED-9/aptamer complexes (Fig. 3C), suggesting that CED-4 probably could not form higher order complexes with CED-9 and its aptamers.

FIGURE 3. EGL-1 but not CED-4 forms a ternary complex with CED-9 and its aptamers. A, \(^{32}\)P-labeled R9-2 was incubated with CED-9(1–250)-His\(_6\) (500 nM) in the presence of increasing concentrations (0, 0.5, 1.0, and 1.5 \(\mu\)M, lanes 3–6) of GST-EGL-1. The reactions were resolved by EMSA. B, R9-7 forms a ternary complex with CED-9 and EGL-1 as assayed in A. C, R9-2 binding to CED-9 in the presence of increasing concentrations of CED-4 as assayed in A.

CED-9/R9-2 complexes measured using this assay was \(\sim 4\) nM, whereas the \(K_d\) for R9-7/CED-9 complexes was \(\sim 16\) nM (data not shown). Based on the Mfold predictions, R9-2 and R9-7 have different secondary structures and may bind to different surface regions of CED-9. We therefore tested whether these two aptamers bind to the same surface regions of CED-9 by performing a modified competition EMSA in which unlabeled R9-7 was incubated with \(^{32}\)P-labeled R9-2/CED-9 complexes or vice versa. As shown in Fig. 2A, R9-7 could compete with R9-2 for binding to CED-9, although at least 4-fold excess of cold R9-7 was required for this competition. Similarly R9-2 could efficiently compete away the binding between R9-7 and CED-9, but much less cold R9-2 was needed for the competition (Fig. 2B). These results suggest that R9-2 and R9-7 may contact CED-9 at overlapping sites. However, it is also possible that the binding of one aptamer to another CED-9/aptamer complex could induce a conformational change in CED-9 that causes dissociation of the other aptamer. In such a scenario, the two aptamers could bind to different regions of CED-9 but still effectively compete with each other for CED-9 binding. To test this possibility, we performed limited proteolytic digestion of CED-9 or CED-9/aptamer complex with trypsin and monitored the digestion patterns using gel electrophoresis. The CED-9 trypsin digestion patterns were essentially the same with or without aptamers (data not shown), suggesting that no obvious CED-9 conformational change was induced by the binding of the aptamers. In contrast, binding of EGL-1 to CED-9 induces conformational changes of CED-9 (11) and results in a different trypsin proteolysis pattern of CED-9 (data not shown). Taken together, these observations suggest that these two aptamers bind to the same or overlapping regions on CED-9 despite having different predicted secondary structures.

The Effects of Aptamers on CED-9/EGL-1 and CED-9/CED-4 Complexes—In C. elegans, CED-9 functions as an antiapoptotic factor. It has been suggested that CED-9 inhibits cell death by binding to and tethering the proapoptotic protein CED-4 onto the surface of mitochondria (34–36). In cells that are doomed to die, the cell death initiator EGL-1 is transcriptionally up-regulated and then binds to CED-9, resulting in the release of CED-4 from the CED-9/CED-4 complex, which then promotes the activation of the CED-3 caspase (11, 12, 36, 37). To evaluate the potential effects of CED-9 aptamers on cell death, we tested whether CED-9 aptamers interfere with the interactions of CED-9 with EGL-1 and CED-4. Using EMSA, we found that EGL-1 alone did not interact with either of these aptamers, suggesting that EGL-1 and R9-2 (or R9-7) likely bind to different regions of CED-9. In contrast, recombinant CED-4 failed to supershift the CED-9/aptamer complexes (Fig. 3C), suggesting that CED-4 probably could not form higher order complexes with CED-9 and its aptamers.

Some CED-4-binding Surfaces on CED-9 Are Important for Aptamer Binding—Our results indicate that R9-2 and R9-7 can form ternary complexes with CED-9/EGL-1 but not with CED-9/CED-4. To identify the CED-9 surface areas important for the binding of these two aptamers, we tested their binding to several CED-9 mutant proteins that contained amino acid substitutions in various surface exposed residues (11). As shown in Fig. 4A, the majority of CED-9 mutations that affect the binding between CED-9 and R9-2 also likely bind to different regions of CED-9. In contrast, recombinant CED-4 failed to supershift the CED-9/aptamer complexes (Fig. 3C), suggesting that CED-4 probably could not form higher order complexes with CED-9 and its aptamers.
CED-9 Aptamers Induce Apoptosis

A. Binding of R9-2 and R9-7 aptamers to CED-9 mutants. 25 μM wild-type or mutant GST-CE9 proteins were incubated with [35S]methionine-labeled EGL-1 and pulled down using glutathione-Sepharose beads as described previously (11) and viewed with a Phosphorimager. WT, wild type; EPR75.77RGE, E75R.P76G.R77E; PG103-104GE, P103G,G104E; SG107-108GK, S107G,G108K; EQ136-137KA, E136K,Q137A; NAQ158-160AGA, N158A,Q159G,Q160A; RN211-212EG, R211E,N212G.

B. Binding of CED-9 Aptamers to CED-9 Mutants

CED-9 mutations that altered the interaction with CED-4 were: R9-2 (K125E,K126E,H127A), R9-7 (E136K,Q137A), and CED-4 (Y201D). Using the glutathione-S-transferase (GST) fusion protein pull-down assay, we found that wild-type and mutant GST-CE9 proteins bound equally well to [35S]methionine-labeled EGL-1 proteins, indicating that the binding of this aptamer to the wild-type CED-9 protein. “+” indicates no obvious binding between an aptamer and a CED-9 mutant protein. “++” indicates the interactions between CED-9 mutants and CED-4 as described by Yan et al. (11), interactions between CED-9 mutants and EGL-1. Equal amounts of wild-type or mutant GST-CE9 proteins were incubated with [35S]methionine-labeled EGL-1 and pulled down using glutathione-Sepharose beads as described previously (11) and viewed with a Phosphorimager. WT, wild type; EPR75.77RGE, E75R.P76G.R77E; PG103-104GE, P103G,G104E; SG107-108GK, S107G,G108K; EQ136-137KA, E136K,Q137A; NAQ158-160AGA, N158A,Q159G,Q160A; RN211-212EG, R211E,N212G.

CED-9 Aptamers Induce Ectopic Cell Killing in C. elegans—Our in vivo studies indicated that two of the CED-9 aptamers, R9-2 and R9-7, bound to overlapping regions on CED-9 that appear to be different from the EGL-1 binding sites on CED-9. Furthermore our data indicated that these aptamers and CED-4 likely share some binding surfaces on CED-9, and the binding of aptamers to CED-9 may interfere with CED-4/CED-9 interaction. We thus tested whether these aptamers could promote cell killing in vivo by ectopically expressing CED-9 aptamers in touch receptor neurons under the control of the promoter of the mec-7 gene (38).

We first generated transgenic lines with low copy extrachromosomal arrays expressing aptamer R9-2 or R9-7. In these transgenic animals, R9-2 caused ~30% killing of the PLM touch receptor neurons (68 and 74% PLM survival in two different transgenic lines) (Table 2). Similarly R9-7 caused ~15% of PLM killing (83 and 85% survival). In contrast, a control aptamer that did not bind CED-9 had very low PLM killing activity (93 and 98% PLM survival) (Table 2 and data not shown). The difference between R9-2 and R9-7 in cell killing is consistent with the finding that R9-2 had a higher binding affinity to CED-9 than did R9-7 (Fig. 2).

In C. elegans, the expression levels of a protein from transgenes normally correlate with the numbers of copy of a gene present in transgenes (39). To test whether these two aptamers, R9-2 and R9-7, can kill cells in a concentration-dependent manner, we generated high copy number transgenes expressing these two aptamers and found that they both displayed greatly enhanced killing activity in touch receptor neurons, resulting in ~80% killing of the PLM neurons (Table 2). The PLM killing activities of these two aptamers were close to that of EGL-1 (92% killing) and they were also observed in mec-7 mutants (Table 2). In mec-7 mutants, the expression levels of a protein from transgenes normally correlate with the numbers of copy of a gene present in transgenes (39). To test whether these two aptamers, R9-2 and R9-7, can kill cells in a concentration-dependent manner, we generated high copy number transgenes expressing these two aptamers and found that they both displayed greatly enhanced killing activity in touch receptor neurons, resulting in ~80% killing of the PLM neurons (Table 2). The PLM killing activities of these two aptamers were close to that of EGL-1 (92% killing), which is a potent endogenous cell death inducer (Table 2).

The low percentage of PLM killing caused by the control aptamer was probably due to the toxicity resulting from the expression of high concentrations of RNA in these neurons.

To determine whether R9-2 and R9-7 killed PLM neurons through the C. elegans programmed cell death pathway, we crossed the high copy transgenes expressing R9-2 or R9-7 into the mec-3(n717) mutant animals, which are defective in almost all programmed cell death. As shown in Table 2, PLM deaths induced by either R9-2 or R9-7 were

| Table 2: Overexpression of CED-9 aptamers induces ectopic cell killing in PLM touch receptor neurons |
|---|----------------|----------------|
| Transgene | Low concentration (10 ng/μl) | High concentration (50 ng/μl) |
| Array | bzs18a | Array | bzs18a | ced-3(n717); bzs18b |
| None | 100 | 100 | 100 | 100 |
| P_len;R9-2 | 1 | 68 | 1 | 14 | 73 |
| P_len;R9-7 | 1 | 83 | 1 | 20 | 85 |
| Control aptamer | 2 | 85 | 2 | 19 | 75 |
| P_len;egl-1 | 1 | 98 | 1 | 83 | ND |
| P_len;egl-1 | 2 | 93 | 2 | 90 | ND |

a CED-9 aptamer expression constructs were injected into a C. elegans strain (bzs18a) together with a co-injection marker, PRF3 (50 μg/ml), which causes a Roller phenotype. b bs18a;egl-1 construct (25 μg/ml) was injected with P_len;glp-1 (5 μg/ml), which directs red fluorescent protein expression in a few head neurons.

Each numbered array represents an independent transgenic line. Thirty transgenic animals were scored for PLM survival (60 PLM neurons scored) using a fluorescent microscope. ND, not determined.

bzs18a is an integrated transgene containing a P_len;glp-1 construct, which directs green fluorescent protein expression in six C. elegans touch receptor neurons and allows scoring of the PLM neurons.

* N. Yan and Y. Shi, unpublished data.
significantly inhibited in *ced-3*(n717) animals, suggesting that the CED-3 caspase activity is important for the killing activities of these two aptamers. The residual killing observed in the *ced-3*(n717) mutant induced by CED-9 aptamers was comparable to the low level cell killing caused by the expression of the control aptamer, suggesting that the CED-3-independent death may be due to cell toxicity caused by high concentrations of RNA. However, we cannot rule out the possibility that CED-9 aptamers could cause some cell killing through a CED-3-independent mechanism (40). Nevertheless these results suggest that CED-9 aptamers induce ectopic PLM neuron deaths mainly through the CED-3 caspase and the *C. elegans* apoptotic program.

DISCUSSION

In an effort to isolate small molecular compounds that can modulate the activities of the Bcl-2 family proteins, we used the SELEX strategy to identify small RNA molecules that bind to the *C. elegans* Bcl-2 homologue CED-9 with high binding affinity and specificity. We isolated and characterized five RNA aptamers for CED-9 that can be categorized into three groups based on their secondary structures. Detailed biochemical analyses of two of these aptamers, R9-2 and R9-7, indicated that they can form ternary complexes with CED-9 and EGL-1, suggesting that these aptamers and EGL-1 bind to distinct surface areas on CED-9. In contrast, another proapoptotic protein, CED-4, could not form a ternary complex with CED-9 and its aptamers (Fig. 3C). Analyses of the interactions between R9-2 or R9-7 and several CED-9 mutants that are defective in binding to CED-4 revealed that these two aptamers and CED-4 share overlapping CED-9 binding sites (Fig. 4). Importantly overexpression of R9-2 or R9-7 induced robust ectopic cell killing that was largely dependent on the CED-3 caspase activity, suggesting that they are true small molecule cell death inducers. The cell killing effect of R9-2 or R9-7 is likely due to their interference with CED-9/CED-4 interaction *in vivo* that may antagonize the inhibitory activity of CED-9 on CED-4 and thus trigger apoptosis in those cells where the aptamers are expressed. The importance of the CED-3 caspase activity for the cell killing activity of CED-9 aptamers is consistent with this possibility and suggests that these aptamers act upstream of *ced-3* to induce cell killing.

Because *in vitro* selected RNA aptamers usually bind to specific domains of their target proteins with high affinity and specificity, they can often be used to probe the function of a specific protein domain or to discriminate the functions of highly homologous proteins. For example, an *in vitro* selected RNA aptamer was used to discriminate the roles of two highly homologous protein, cytohesin 1 and cytohesin 2, in regulating gene expression in response to serum stimulation (30). This aptamer binds to the N-terminal segment of cytohesin-2 specifically and can down-regulate expression of genes mediated though its serum response element and reduce mitogen-activated protein kinase activation in HeLa cells, suggesting a specific role of cytohesin-2 but not cytohesin-1 in serum-mediated transcriptional activation in nonimmune cells. In our study, two aptamers that we isolated specifically recognized potential CED-4 binding sites on CED-9 without interfering with the binding of EGL-1 to CED-9, providing further confirmation to the findings derived from the structural studies that CED-4 and EGL-1 bind to different surface pockets of CED-9 (11, 12). Thus these two aptamers and the other CED-9 aptamers yet to be characterized in detail can be very useful reagents for probing different or unknown functional domains of CED-9 in regulating programmed cell death in *C. elegans*. Our study further suggests that isolation of aptamers for other key cell death regulators in *C. elegans* will likely provide another powerful tool to facilitate the understanding of cell death activation in *C. elegans* and the characterization of poorly understood cell death regulators such as the proapoptotic protein CED-4. Compared with another RNA-based technique, RNA interference, which reduces or abolishes the activities of proteins of interest at the mRNA level, aptamers can achieve the same goal at the protein level but with higher resolution and specificity, especially for domain- or function-specific knock-out of proteins with multiple domains or functions.

Increasing evidence has shown that RNA aptamers are good lead compounds for developing diagnostic or therapeutic agents for treating human diseases (17). As a model experimental organism, *C. elegans* is being used to screen for compounds in drug development (41). The conservation of cell death pathways between nematodes and humans indicates that *C. elegans* can probably be used as an animal system to search for compounds that can modulate apoptosis *in vivo*. In both nematodes and humans, CED-9, Bcl-2, and Bcl-XL are the major cell death inhibitors and share similar protein structures (11, 42, 43). Furthermore Bcl-2 can partially substitute for the function of CED-9 in *C. elegans*, suggesting that they may interact with the same cell death regulators and share crucial functional domains (14, 44). Thus our successful isolation and characterization of potent CED-9 aptamers not only can provide important insights into how Bcl-2 proteins may interact with other cell death factors to control the activation of apoptosis but also suggest that a similar strategy can be applied to isolate aptamers for Bcl-2, Bcl-XL, and other Bcl-2 family proteins. Elevated expression of Bcl-2, Bcl-XL, and other Bcl-2 family proteins has been implicated in contributing to the development of a wide variety of human cancers and human diseases (10). Potent RNA aptamers specific for Bcl-2, Bcl-XL, or other Bcl-2 family proteins will be useful not only for studying how Bcl-2 family proteins regulate activation of apoptosis but also for developing new diagnostic reagents or therapeutic drugs to detect or treat those human diseases caused by abnormal apoptosis.

Acknowledgments—We thank Dennis Eastburn and Min Han for the SELEX library and Hiren Banjeree for helpful suggestions.

REFERENCES

1. Reed, J. C. (2002) *Nat. Rev. Drug Discov.* 1, 111–121
2. Thompson, C. B. (1995) *Science* 267, 1456–1462
3. Steller, H. (1995) *Science* 267, 1445–1449
4. Horvitz, H. R. (2003) *Biosci. Rep.* 23, 239–303
5. Tsujimoto, Y., Cosman, D., Jaffe, E., and Croce, C. M. (1985) *Science* 228, 1440–1443
6. Vaux, D. L., Cory, S., and Adams, J. M. (1988) *Nature* 335, 440–442
7. Gross, A., McDonnell, J. M., and Kormsayer, S. J. (1999) *Genes Dev.* 13, 1899–1911
8. Adams, J. M., and Cory, S. (1998) *Science* 281, 1322–1326
9. Wang, X. (2001) *Genes Dev.* 15, 2922–2933
10. Shangary, S., and Johnson, D. E. (2003) *Leukemia* 17, 1470–1481
11. Yan, N., Gu, L., Kokel, D., Chai, J., Li, W., Han, A., Chen, L., Xue, D., and Shi, Y. (2004) *Mol Cell* 15, 999–1006
12. Yan, N., Chai, J., Lee, E. S., Gu, L., Liu, Q., He, J., Wu, J. W., Kokel, D., Li, H., Hao, Q., Xue, D., and Shi, Y. (2005) *Nature* 437, 831–837
13. Hengartner, M. O., Ellis, R. E., and Horvitz, H. R. (1992) *Nature* 356, 494–499
14. Hengartner, M. O., and Horvitz, H. R. (1994) *Cell* 76, 665–676
15. Finnegan, E. J., and Matzke, M. A. (2003) *J Cell Sci.* 116, 4689–4693
16. Tuerk, C., and Gold, L. (1990) *Science* 249, 505–510
17. Nimjee, S. M., Rusconi, C. P., and Sullenger, B. A. (2005) *Annu. Rev. Med.* 56, 555–583
18. Eyetech Study Group (2003) *Ophthalmo* 110, 979–986
19. Eyetech Study Group (2002) *Retina* 22, 143–152
20. Rusconi, C. P., Scardino, E., Lazer, J., Pitoc, G. A., Ortel, T. L., Monroe, D., and Sullenger, B. A. (2002) *Nature* 419, 90–94
21. Rusconi, C. P., Roberts, J. D., Pitoc, G. A., Nimjee, S. M., White, R. R., Quick, G., Jr, Scardino, E., Fay, W. P., and Sullenger, B. A. (2004) *Nat. Biotechnol.* 22, 1423–1428
22. Ghosh, G., Huang, D. B., and Huxford, T. (2004) *Curr. Opin. Struct. Biol.* 14, 21–27
23. Lebrusa, L. I., and Mahler, L. J. III (1999) *Biochemistry* 38, 3168–3174
24. Cassidy, L. A., and Mahler, L. J. III (2001) *Biochemistry* 40, 2433–2438
25. Ishizaki, J., Nevins, J. R., and Sullenger, B. A. (1996) *Nat. Med.* 2, 1386–1389
26. Chen, C. H., Chernis, G. A., Hoang, V. Q., and Landgraf, R. (2003) *Proc. Natl. Acad. Sci.* 100, 11423–11428
CED-9 Aptamers Induce Apoptosis

Sci. U. S. A. 100, 9226–9231
27. Shi, H., Hoffman, B. E., and Lis, J. T. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 10033–10038
28. Shi, H., Hoffman, B. E., and Lis, J. T. (1997) Mol. Cell. Biol. 17, 2649–2657
29. Mayer, G., Blind, M., Nagel, W., Bohm, T., Knorr, T., Jackson, C. L., Kolanus, W., and Famulok, M. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 4961–4965
30. Theis, M. G., Knorre, A., Kellersch, B., Moelleken, J., Wieland, F., Kolanus, W., and Famulok, M. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 11221–11226
31. White, R. R., Shan, S., Rusconi, C. P., Shetty, G., Dewhirst, M. W., Kontos, C. D., and Sullenger, B. A. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 5028–5033
32. Fan, X., Shi, H., Adelman, K., and Lis, J. T. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 6934–6939
33. Zaker, M. (2003) Nucleic Acids Res. 31, 3406–3415
34. Chinnaiyan, A. M., O’Rourke, K., Lane, B. R., and Dixit, V. M. (1997) Science 275, 1122–1126
35. Wu, D., Wallen, H. D., and Nunez, G. (1997) Science 275, 1126–1129
36. Chen, F., Hersh, B. M., Conradt, B., Zhou, Z., Riemer, D., Gruenbaum, Y., and Horvitz, H. R. (2000) Science 287, 1485–1489
37. Parrish, J., Metters, H., Chen, L., and Xue, D. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 11916–11921
38. Savage, C., Hamelin, M., Culotti, J. G., Coulson, A., Albertson, D. G., and Chalfie, M. (1989) Genes Dev. 3, 870–881
39. Fire, A., and Waterston, R. H. (1989) EMBO J. 8, 3419–3428
40. Bloss, T. A., Witze, E. S., and Rothman, J. H. (2003) Nature 424, 1066–1071
41. Jones, A. K., Buckingham, S. D., and Sattelle, D. B. (2005) Nat. Rev. Drug Discov. 4, 321–330
42. Muchmore, S. W., Sattler, M., Liang, H., Meadows, R. P., Harlan, J. E., Yoon, H. S., Nettesheim, D., Chang, B. S., Thompson, C. B., Wong, S. I., Ng, S. L., and Fesik, S. W. (1996) Nature 381, 335–341
43. Sattler, M., Liang, H., Nettesheim, D., Meadows, R. P., Harlan, J. E., Eberstadt, M., Yoon, H. S., Shuker, S. B., Chang, B. S., Minn, A. J., Thompson, C. B., and Fesik, S. W. (1997) Science 275, 983–986
44. Xue, D., and Horvitz, H. R. (1997) Nature 390, 305–308