We verified the off-axis jet model of X-ray flashes (XRFs) and examined a discovery of off-axis orphan gamma-ray burst (GRB) afterglows. The XRF sample was selected on the basis of the following three factors: (1) a constraint on the lower peak energy of the prompt spectrum E_{peak}, (2) redshift measurements, and (3) multicolor observations of an earlier (or brightening) phase. XRF 020903 was the only sample selected on the basis of these criteria. A complete optical multicolor afterglow light curve of XRF 020903 obtained from archived data and photometric results in the literature showed an achromatic brightening around 0.7 days. An off-axis jet model with a large observing angle ($\theta_{\text{obs}} > 0.21 \text{ rad}$) is twice the jet opening half-angle, θ_{jet}, can naturally describe the achromatic brightening and the prompt X-ray spectral properties. This result indicates the existence of off-axis GRB afterglow light curves. Events with a larger viewing angle ($> \sim \theta_{\text{jet}}$) could be discovered using an 8 m class telescope with wide-field imagers such as the Subaru Hyper-Suprime-Cam and the Large Synoptic Survey Telescope.

Key words: stars: flare – gamma-ray burst: general – supernovae: general

1. INTRODUCTION

Long gamma-ray bursts (GRBs) are believed to occur when a very massive star dies in a highly energetic supernova (SN), forming a black hole and producing a relativistic jet. Because of the release of a large amount of isotropic equivalent energy ($E_{\text{iso}} \sim 10^{52–55}$ erg) in the short prompt gamma-ray phase (typically ranging from several seconds to several tens of seconds), the consideration of GRB jet collimation is necessary to explain the radiation mechanism from compact sources (e.g., massive stars and/or mergers). This necessity is supported by achromatic temporal breaks (also known as jet breaks) in the afterglow light curves of GRBs. Ultra-relativistic collimation and a jet structure are required to explain the light curve temporal breaks (e.g., Sari et al. 1999). However, no direct observational evidence exists for this jet collimation.

Off-axis orphan GRB afterglows are produced as a natural consequence of GRB jet production (Rhoads 1999). The production of these afterglows is as follows: GRBs are collimated with rather narrow opening angles, and the afterglow that follows can be observed over a wider angular range. While the GRB and the early afterglow are collimated to within the original jet opening angle, the afterglow in the late phase can still be observed by an off-axis observer after the jet break. The Lorentz factor, Γ, is rapidly decreasing as function of time. This means that an observer at θ_{obs} cannot see the prompt gamma-ray emissions when $\theta_{\text{obs}} > \theta_{\text{jet}}$ but can detect an afterglow once Γ^{-1} equals θ_{obs}. Here, θ_{jet} is the jet opening half-angle. As the typical emission frequency and flux decrease with time (while the jet opening half-angle θ_{jet} increases with time), observers at larger viewing angles will detect fainter afterglows at longer wavelengths (e.g., optical and radio). Hence, the expected properties of GRB orphan afterglows are as follows: (1) prompt emissions in the high-energy band are absent, (2) their brightness is fainter than that of on-axis GRB optical afterglows, (3) they have the same optical color as on-axis afterglows, and (4) they show host galaxy properties similar to those of on-axis GRBs. The afterglows are characterized by three-component light curves with rising, peaking, and rapidly decaying phases. In this case, events intermediate between classical hard GRBs and off-axis orphan GRB afterglows should exist.

A candidate for the intermediate events is X-ray flashes (XRFs) as Yamazaki et al. (2002, 2003) described in their off-axis jet model for explaining their nature. XRFs were recognized by the Wide Field Cameras (WFC, 2–28 keV; Jager et al. 1997) on board the BeppoSAX satellite (Heise et al. 2001). The observed X-ray temporal and spectral properties of XRFs in the prompt phase do not show any differences relative to those of GRBs, except for the considerably lower energy values of the peak of the νF_{ν} spectrum in the observer’s frame. A large number of XRF samples were provided by BeppoSAX and the High Energy Transient Explorer 2 (HETE-2), both of which employed wide-field X-ray cameras—the WFC on board BeppoSAX and the Wide-field X-ray Monitor (25–25 keV Shirasaki et al. 2003) on board HETE-2. The majority of HETE-2 samples (9 out of 16 XRFs) show a low energy of spectral peak energy $E_{\text{peak}} < 20$ keV (Sakamoto et al. 2005). The number of XRFs detected by HETE-2 was comparable and relatively larger than that of GRBs, indicating that XRFs represent a large portion of the entire GRB population (Sakamoto et al. 2005). The observational properties of XRFs can be interpreted as being associated with the same phenomenon as classical hard GRBs and as being representative of the extension of the GRB population to low peak-energy events (Kippen et al. 2001; Sakamoto et al. 2005). To explain the aforementioned prompt observational properties, three models have been proposed for XRFs: a high-redshift origin (Heise 2003); the off-axis jet model (Yamazaki et al. 2002, 2003; Zhang et al. 2004; Lamb et al. 2005), which is equivalent to the unification scenario of AGN galaxies; and intrinsic properties (e.g., a subenergetic or inefficient fireball), which...
may also produce on-axis orphan afterglows (Huang et al. 2002).

The Swift satellite has also been detecting many X-ray rich GRBs (XRRs) and XRF samples (Sakamoto et al. 2008). However, the XRF samples tend to be at the high end of the $E_{\text{peak}}^{\text{obs}}$ distribution of BeppoSAX and HETE-2. This is because of the relatively higher energy coverage of the Burst Alert Telescope (BAT, 15–150 keV; Barthelmy et al. 2005) on board Swift. Although the Monitoring of All-sky X-ray Image (Matsuoka et al. 2009) attached to the International Space Station has been detecting XRFs (Serino et al. 2014), there have been no appropriate follow-ups because of poor position determination. Hence, XRF studies have stagnated because of the lack of soft-X-ray monitoring instruments and intensive multwave length follow-up observations.

In this paper, we investigated the characteristics of XRFs on the basis of redshift measurements, multifrequency afterglow monitoring, and spectral peak measurements $E_{\text{peak}}^{\text{src}}$. The main objective was to verify the off-axis jet model and to provide feedback to ongoing and planned optical untargeted time-domain surveys by using Subaru Hyper-Suprime-Cam (HSC) (Miyazaki et al. 2012) and the Large Synoptic Survey Telescope (LSST), which have considerable potential for detecting off-axis orphan GRB afterglows (e.g., Ghirlanda et al. 2015).

2. SAMPLES OF X-RAY FLASH

We considered possible XRFs for our study and quickly realized that XRF 020903 was the only event that has (1) either a measurement or an upper bound on the peak energy of the prompt spectrum $E_{\text{peak}}^{\text{src}}$, (2) a measured redshift, and (3) multicolor afterglow observations adequately covering the early afterglow phase when achromatic brightening of the afterglow might occur. This was one of the XRFs detected by HETE-2 and one of the first events for which an optical afterglow was detected and a spectroscopic redshift ($z = 0.251$) was determined (Soderberg et al. 2004). Furthermore, the SN1998bw-like supernova association was confirmed using optical spectroscopy at ~25 days (Soderberg et al. 2005). The prompt emission had the lowest intrinsic spectral peak energy $E_{\text{peak}}^{\text{src}}$ of 3.3$^{+1.8}_{-1.0}$ keV among all the XRF samples. Here, we employed the value estimated by the constrained Band function with a 90% confident level (Sakamoto et al. 2004). In accordance with the report of Sakamoto et al. (2004), the light curve in the prompt phase exhibited a double-peak structure and a lack of signals above 10 keV. Figure 1 shows histograms of the spectral peak energy in the observer frames $E_{\text{peak}}^{\text{obs}}$ detected by Swift/BAT (A. Lien et al. 2015, in preparation), HETE-2 (Sakamoto et al. 2005), the Burst and Transient Source Experiment (BATSE; Kaneko et al. 2006), the Fermi Gamma-ray Burst Monitor (Fermi/GBM; von Kienlin et al. 2014), and the Suzaku Wide-band All-sky Monitor (WAM). The WAM $E_{\text{peak}}^{\text{obs}}$ distribution is produced using values that are available in GCN circulars up to 2014 December.\footnote{http://www.astro.isas.jaxa.jp/suzaku/HXD-WAM/WAM-GRB/results/gcn.html} The standard analysis procedure of WAM data (Yamaoka et al. 2009) is described in the literature (e.g., Ohno et al. 2008; Urata et al. 2012a). For comparison with a large volume of data, we used $E_{\text{peak}}^{\text{obs}}$ instead of intrinsic spectral peak energies. The lowest intrinsic spectral peak energy determined from the relation $E_{\text{peak}}^{\text{src}} = (1 + z)E_{\text{peak}}^{\text{obs}}$ of XRF 020903 stands out from all GRB populations. The X-ray to the γ-ray fluence ratio of 5.6 qualified this burst as an XRF. Here, we used the XRF definition by Sakamoto et al. (2005) for HETE-2 events.

Effective follow-up observations in the optical band were made using wider field-of-view (FOV) instruments reported by Soderberg et al. (2004) and Bersier et al. (2006). Because of a delay in the position alert and a large position error, the light curve sampling was sparse around the possible rebrightening epoch reported by Bersier et al. (2006). To describe the rebrightening epoch by using multicolor data, we added Subaru archive data, as described in Section 3.

3. OBSERVATIONS AND DATA COLLECTION

We collected data for the XRF 020903 afterglow by using Subaru archive data and photometric results obtained from the literature (Bersier et al. 2006; Soderberg et al. 2004). To perform accurate optical photometry by removing contamination from the host galaxy, we also employed Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1).
data. The individual data collections are summarized in the following subsections.

3.1. Subaru Suprime-Cam

The entire HETE-2 position error region was imaged by Suprime-Cam attached to the 8.2 m Subaru telescope. The Suprime-Cam camera consists of 10 high-sensitivity 2k × 4k CCDs and covers a FOV of 34′ × 27′ (Miyazaki et al. 2002). The first epoch of observation on 2002 September 3 (0.16 days after the burst) involved an RC-band filter. Although the observation was performed under marginal airmass conditions (from 2.55 to 2.75), the wide-field imager with the 8 m class telescope provided the deep RC-band images with three sets of 180 s exposure. Subsequently, three color observations were made on the night of 2002 September 4 by using RC-, Ic-, and z′-band filters. During the night observation, two epochs of Ic- and z′-band imaging and three epochs of RC-band monitoring were also conducted to check the short-term variability of the afterglow. The Ic- and z′-band observations were made under the reasonable observing condition (e.g., in the airmass range from 1.34 to 1.97). The second epoch of RC-band imaging was also performed under reasonable observing conditions (e.g., for an airmass of 1.32). By contrast, the first and third epochs of RC-band observations were conducted under marginal airmass conditions (2.65–2.22 for the first epoch and 1.97–2.27 for the third epoch). These observations were performed using appropriate dithering techniques to fill up the chip gaps in the camera.

The Subaru-XMM Deep Survey team attempted to obtain deeper reference images with the RC-band filter on the night of October 9 and 10. However, the results were marginal because of poor weather conditions and only two set of images taken with 180 s exposure on 2002 October 9 were available for scientific analysis. Table 1 shows the log of observations for the available images. Because of the limited data set, searching for a counterpart by using only the Suprime-Cam data was difficult. All raw images and related calibration data are available on the Subaru Mitaka Okayama Kiso Archive (SMOKA) system (Baba et al. 2002).

Table 1: Log of Subaru Follow-up Observations

Delay (Days)	Filter	Flux Density (μJy)
0.8991	Ic	49.21 ± 1.82
1.0436	Ic	41.08 ± 1.67
0.8609	Rc	21.22 ± 1.09
1.0087	Rc	34.87 ± 1.38
1.1378	Rc	35.00 ± 1.39
35.78945	Rc	29.57 ± 1.28
0.9569	z	55.67 ± 2.06
1.0955	z	54.10 ± 1.96

3.2. CTIO

We obtained R and I images taken by the wide-field MOSAIC II camera on the Cerro Tololo Inter-American Observatory (CTIO) Blanco 4 m telescope from the NOAO archive system. These data were taken on 2004 September 18 with 1800 s exposure (360 s × 5) for the R-band, and on 2004 September 9 with 1800 s exposure (450 s × 4) for the I-band, when was sufficiently late to estimate the host galaxy contribution on the Subaru images. The data were processed using the pipeline of the NOAO archive system (Pierfederici et al. 2004; Pierfederici 2006). These two stacked images were also used to remove the host galaxy contamination for describing the late phase afterglow temporal evolution presented by Bersier et al. (2006). We also attempted to obtain B, R, and I images taken by Bersier et al. (2006) on 2002 September 4 and 9 (~0.66 and 5.7 days after the burst, respectively). However, these imaging data were unavailable because of a limitation of the tape reader device on the NOAO archive system.

3.3. Pan-STARRS1 z′-band Image

Pan-STARRS1 (PS1) z′-band images were also obtained to determine the host galaxy contamination on the Subaru z-band images taken in 2002 September 4. The PS1 telescope has a 1.8 m diameter primary mirror, and it is located at the summit of Mt. Haleakala on Maui. The site and optics deliver a point-spread function (PSF) with an FWHM of about 1 arcsec, over a seven square degree FOV. The PS1 was used to conduct a 3π survey of the entire sky north of −30° in g′, r′, i′, z′- and y-bands (Schlafly et al. 2012; Tonry et al. 2012; Magnier et al. 2013). Because of the PS1 3π surveys strategy, the XRF 020903 field was covered during the 3.5 yr of survey starting from 2010. The images were processed by the Image Processing Pipeline (Magnier 2006), and a deeper stacked z′-band image was generated by the SWarp software (Bertin et al. 2002). The PS1 3π catalogs were also used to perform photometric calibration for the z-band images taken by Subaru.

3.4. Late Phase Optical Observations

Late optical afterglow in the R-band was also monitored by the 1.82 m Copernicus telescope at Mount Ekar (Asiago, Italy) on 2002 September 29 (26.5 days), and by the 3.5 m Telescopio Nazionale Galileo at La Palma with V-, R-, and I-band filters on 2002 October 2 (29.5 days). Additional BVRI images were obtained with the Danish 1.5 m telescope at the La Silla Observatory between 2002 October 10 (36.8 days) and 14 (40.7 days) and then on October 26 (52.6 days). Differential images without host galaxy contamination were produced from late time images taken in 2004 through image convolution and by using subtraction methods of Alard & Lupton (1998). These photometric results for the optical afterglow against with the secondary standard stars from the list of Henden (2002) were reported by Bersier et al. (2006).

3.5. Radio Observations

Very Large Array (VLA) observations were performed at 8.5 GHz on 2002 September 27 22 UT, and radio afterglow was detected. Further monitoring observations were made with the VLA over 370 days at frequencies of 1.5, 4.9, 8.5, and 22.5 GHz (Soderberg et al. 2004). The Very Long Baseline Array also observed the radio afterglow and determined the position accurately, as α2000 = 22h48m42.39s ± 0.00003, δ2000 = −20°46′08″945 ± 0′′0005 (Soderberg et al. 2004).
4. DATA ANALYSIS AND RESULTS

4.1. Reduction

The basic reduction of the Suprime-Cam data was performed using the SDFRED package (Ouchi et al. 2004). This entailed bias subtraction and flat-fielding in the Rc-, Ic-, and z'-band by using a sky flat constructed from the median of the dithered science frames. After performing distortion correction for each object frame, we stacked the frames for each epoch and for each band path filter by considering the median. We performed astrometric calibration for the stacked images against the 3π catalog of PS1.

For other data, we used the reduced data as previously summarized, except photometric calibration. The absolute photometric calibration for R and Ic was performed using standard stars from the list of Henden (2002). For the photometric calibration of z-band images, we used the PS1 3π catalog and selected unsaturated stars around the afterglow location.

4.2. Afterglow Light Curves

As Bersier et al. (2006) reported, the host galaxy of XRF 020903 is dominated and contaminated in afterglow measurements. Hence, to remove the galaxy contamination, we generated differential images using the HOTPANTS software, which employs an algorithm presented by in Alard & Lupton (1998). We also used special-purpose software based on the same algorithm and tuned to the Subaru/Suprime-Cam data (Urata et al. 2012b) to check the consistency. For Rc- and Ic-band data of Subaru/Suprime-Cam, we used the R- and I-band images taken by CTIO in 2004. The depth of these images was comparable to that of Suprime-Cam images. For the z-band, the reference image generated using the PS1 3π data was shallower than that of the Subaru image. However, there were the significant signals at the GRB afterglow position in the generated image (Figure 2). Hence, we also generated the differential images by using the same code. As shown in Figure 2, the quality of the differential images is appropriate for estimating the brightness of an afterglow component by the standard aperture photometry. There are appreciable differences between the transmission curves of the Suprime-Cam Rc and CTIO R bands. Figure 3 shows the transmission curves for the Suprime-Cam (Rc and Ic) and CTIO (R and I) filters. This transmission difference causes a systematic difference of 17% in the magnitudes for an object with a power-law spectrum of index −1.

Figure 4 shows the optical light curves for our Subaru data and photometric results reported by Bersier et al. (2006); the radio afterglow light curve at 8.5 GHz (Soderberg et al. 2004) is also shown. There is a significant signal at 0.165 days after the burst. The use of only one epoch and single-color observations make it difficult to describe the afterglow temporal evolution. When we consider a simple direct connection to the first epoch of R-band photometry (0.660 days) made by CTIO, the Rc/R-band light curve is flat. The Rc/R- and Ic/I-band light curves show a clear rapid rebrightening between 0.7 and 0.9 days. The equivalent rising power-law index $\alpha \sim 2.6$ in the Rc/R and ~ 2.3 in the Ic/I band. The multipeak observations of the Subaru on 2002 September 4 show a flatter and decaying light curve for all three bands. The Rc/R-band light curve shows continuous decay up to ~7 days. This indicates that the rebrightening peak was around 0.8 ~ 0.9 days after the burst. As Soderberg et al. (2005) and Bersier et al. (2006) demonstrated, there is another late-phase rebrightening peaking at ~20 days in the R-band light curve, which was interpreted as the associated SN component. The late-phase Rc-band image taken by Subaru on 2002 October 9 also detected this SN component in the differential image, and this component is consistent with that observed in the R-band within the systematic error.

4.3. Spectral Flux Distributions

The multiband observations of XRF 020903 were used to determine the spectral flux distribution (SED) at 0.7 and 0.9 days after the burst. To remove the effects of the Galactic interstellar extinction, we used the reddening map of Schlafly & Finkbeiner (2011). Because not all multiband observations were performed exactly at the same epoch, their corresponding fluxes were rescaled to assume a power-law function ($F_\nu \propto \nu^{-\beta}$). In particular, the brightness phase around 0.7 days was substantially affected. To determine the spectral energy distribution (SED) at 0.7 days, we fixed the time at the epoch of the B-band observation (0.695 days) because the Rc/R- and Ic/I-band observations were made earlier than the B-band observations, and the brightening index for Rc/R and Ic/I were estimated as previously described (Section 4.2). In Figure 5, we plot the SED obtained on the basis of the photometric results for BRI bands provided by the CTIO observations. The SED is well fitted by the power-law function as $f(\nu) \propto \nu^{-\beta}$, where $f(\nu)$ is the flux density at frequency ν, and β is the spectral index. We have obtained the β at 0.695 days as 1.48 ± 0.06. Similarly, we generated the SED at 0.899 days on basis of the Rc-Ic-, and z'-band results and obtained a β value of 1.43 ± 0.08, which is consistent with the value for 0.695 days. These results imply that the rebrightening is achromatic.

5. DISCUSSION

On the basis of the results for XRF 020903 described in the preceding section, we discuss the off-axis jet model in the following sections because this model provides a reasonable explanation for this particularly soft XRF. Furthermore, this model can explain both the extremely soft prompt emission features and achromatic light curve brightening altogether.

5.1. Off-axis Modeling of Afterglow Light Curves

To perform light curve and SED modeling for XRF 020903, we employed the boxfit code (van Eerten et al. 2012) that involves two-dimensional relativistic hydrodynamical jet simulations for determining the burst explosion parameters, including the off-axis viewing angle and the synchrotron radiation parameters for a homogeneous circumburst medium.

In the modeling, we added 17% of the systematic errors to the R-band light curve because of the large transmission differences, as shown in Figure 3. To perform light curve modeling, we focused on the data between 0.6 and 8 days because the observed optical light curve showed achromatic brightening between 0.7 and 0.8 days after the burst, which is unusual among the well-observed afterglows. The later phase (from ~20 days) was excluded in the modeling because of the SN component (Soderberg et al. 2005; Bersier et al. 2006). We also excluded the single data point at 0.16 days because the sparse monitoring and single detection at 0.16 days make it
difficult to decode the light curve between 0.16 and 0.7 days. The consideration of different components (one component faded away before 0.6 days and the other was rebrightening) was reasonable because connecting the light curve between 0.16 and 0.7 days smoothly produced a flat evolution, indicating long lasting (∼0.6 days) energy injection. Using multicolor optical data between 0.6 days and 8 days and the radio 8.5 GHz radio data, we performed light curve modeling. We examined the light curves for various values of jet q_{jet} and q_{obs}. The range of q_{jet} covered most of the estimated values for classical GRBs (from 0.04 rad to 0.5 rad), while q_{obs} varied from 0.0 rad to 1.5 rad when an at-least-three-fold enhancement of q_{jet} was examined. Figure 4 shows the best-fit model functions that describe the achromatic rebrightening, R/R_c-band temporal evolution, and radio brightness. The derived burst parameters are also presented in Table 2. There are two notable features. The first is the jet opening half-angle q_{jet} of 0.1 rad, which is consistent with those of classical hard GRBs (see Figure 6 in Fong et al. 2012). The second is the large observing angle ($q_{\text{obs}} \sim 0.21$ rad), which corresponds to $q_{\text{obs}} \sim 2q_{\text{jet}}$.

To compare with other samples such as an off-axis origin XRF candidate, and classical hard GRB, XRR, and the on-axis orphan GRB candidates, we considered 080330, 990510, 120326 A, 131030 A, and PTF11agg (Table 2). The burst
parameters for these bursts, except 080330, were also determined by using the same box fit code on the basis of multifrequency afterglow observations (van Eerten et al. 2012; Urata et al. 2014; Y. Urata et al., in preparation; Cenko et al. 2013). To compare the burst parameters of XRF 080330 with those of XRF 020903 and others, we also performed the multiband light curve modeling with the same code by using available multiband photometric results (Guidorzi et al. 2009). XRF 080330 was detected by Swift and an afterglow in optical and IR bands showed the achromatic broadening phase that could be interpreted using the off-axis jet model (Guidorzi et al. 2009). However, E_{peak} was not well characterized, as being less than 88 keV (Guidorzi et al. 2009) because of the relatively high and narrow energy band of Swift/BAT. In addition, the large uncertainties in the fluence ratio of the prompt emission ($1.5^{+0.7}_{-0.3}$) were still compatible with an XRR category based on the modified XRF/XRR definition for Swift/BAT (Sakamoto et al. 2008). As shown in Figure 6, the achromatic broadening light curves were well modeled, and the derived burst parameters are presented in Table 2. One of the key features was θ_{obs} (= 0.12 rad), which was equal to θ_{jet}(0.12 rad). Thus, the achromatic broadening is explained by the off-axis jet model. However, our viewing angle (θ_{obs} \sim θ_{jet}) was not larger as estimated by Guidorzi et al. (2009) (θ_{obs} \sim 1.5 – 2 \times θ_{jet}).

This enables a comparison of the burst parameters, which are presented in Table 2. We also list the observed features of the prompt emission. The observed values are widely distributed to represent the variety of GRB classes. By contrast, the parameters obtained through the afterglow modeling are comparable to each other, except for θ_{obs}. Thus, the off-axis jet model is suitable for explaining the diverse afterglow light curves and the GRB category.

5.2. Small Values of $E_{\text{peak}}^{\text{src}}$ and E_{iso} with the Off-Axis Model

Using the values of θ_{jet} and θ_{obs} obtained by fitting afterglow light curves (Table 2), we discuss the observed small values of $E_{\text{peak}}^{\text{src}}$ and E_{iso} to verify the off-axis jet model. We adopted a simple model with a top-hat profile of the prompt emission of relativistic jet (Granot et al. 1999; Woods & Loeb 1999; Ioka & Nakamura 2001; Yamazaki et al. 2002). Following the formalism derived by Graziani et al. (2006) and Donaghy (2006), the peak energy $E_{\text{peak}}^{\text{src}}(\theta_{\text{obs}})$ and the isotropic energy $E_{\text{iso}}(\theta_{\text{obs}})$ were analytically derived as functions of θ_{obs}, θ_{jet}, and the Lorentz factor of the jet $\gamma = (1 - \beta^2)^{-1/2}$. We defined the ratios R_1 and R_2 as

\begin{align*}
R_1 &= \frac{E_{\text{peak}}^{\text{src}}(\theta_{\text{obs}})}{E_{\text{peak}}^{\text{src}}(0)} \\
&= \frac{2(1 - \beta)(1 - \beta \cos \theta_{\text{jet}})}{2 - \beta (1 + \cos \theta_{\text{jet}})} \\
&\quad \times \frac{f(\beta - \cos \theta_{\text{obs}}) - f(\beta \cos \theta_{\text{jet}} - \cos \theta_{\text{obs}})}{g(\beta - \cos \theta_{\text{obs}}) - g(\beta \cos \theta_{\text{jet}} - \cos \theta_{\text{obs}})},
\end{align*}

and

\begin{align*}
R_2 &= \frac{E_{\text{iso}}(\theta_{\text{obs}})}{E_{\text{iso}}(0)} \\
&= \frac{(1 - \beta)^2(1 - \beta \cos \theta_{\text{jet}})^2}{\beta(1 - \cos \theta_{\text{jet}})[2 - \beta (1 + \cos \theta_{\text{jet}})]} \\
&\quad \times \frac{f(\beta - \cos \theta_{\text{obs}}) - f(\beta \cos \theta_{\text{jet}} - \cos \theta_{\text{obs}})}{g(\beta - \cos \theta_{\text{obs}}) - g(\beta \cos \theta_{\text{jet}} - \cos \theta_{\text{obs}})},
\end{align*}

where

\begin{align*}
f(z) &= \gamma^2(2\gamma^2 - 1)z^3 + (3\gamma^2 \sin^2 \theta_{\text{obs}} - 1)z + 2 \cos \theta_{\text{obs}} \sin^2 \theta_{\text{obs}} \\
g(z) &= \frac{2\gamma^2 z + 2 \cos \theta_{\text{obs}}}{|z^2 + \gamma^{-2} \sin^2 \theta_{\text{obs}}|^{1/2}}.
\end{align*}

For fixed θ_{jet} and γ, it can be seen that for $\theta_{\text{obs}} > \theta_{\text{jet}}$ (see Figure 2 of Donaghy 2006), both $E_{\text{peak}}^{\text{src}}$ and E_{iso} decrease with an increase in θ_{obs} because of the relativistic beaming effect.

We consider the case of XRF 020903. In the following, we fix $\theta_{\text{obs}} = 0.21$ rad and $\theta_{\text{jet}} = 0.1$ rad. Subsequently, ratios R_1 and R_2 are.
and R_2 are calculated for given γ. For example, we find $R_1 = 3.45 \times 10^{-3}$ and $R_2 = 1.23 \times 10^{-6}$ if $\gamma = 100$. Classical hard GRBs typically have $E_{\text{peak}} = 500$ keV (Nava et al. 2012), and therefore we first assume $E_{\text{peak}}^\text{src} = 500$ keV. We then find that $E_{\text{peak}}^\text{src} (\theta_{\text{obs}} = 0.21) = 4.2$ keV, which is close to the observed result for XRF 020903. Furthermore, for the observed value of E_{iso}, we consider $E_{\text{iso}} (\theta_{\text{obs}} = 0.21) = 1.4 \times 10^{53}$ erg, resulting in $E_{\text{iso}}^\text{src} (\theta_{\text{obs}} = 0) = 1.9 \times 10^{54}$ erg. In summary, if a jet with $\theta_{\text{jet}} = 0.1$ and $\gamma = 100$ is seen on-axis (though $\theta_{\text{obs}} = 0$), we would have $E_{\text{peak}}^\text{src} = 500$ keV and $E_{\text{iso}}^\text{src} = 1.9 \times 10^{54}$ erg, which is almost consistent with the $E_{\text{peak}} - E_{\text{iso}}$ relation (Amati 2002; Nava et al. 2012). The empirical relation could be an indicator of GRB category, although the background physics are not yet fully understood. In fact, classical hard GRBs show the relation, but short GRBs do not exhibit it. Hence, the observed small values of $E_{\text{peak}}^\text{src}$ and E_{iso} for XRF 020903 are naturally explained by the off-axis jet model.

We also discuss parameter dependence. In the following, we fix $\theta_{\text{obs}} = 0.21$ rad, $\theta_{\text{jet}} = 0.1$ rad, and $E_{\text{iso}} (\theta_{\text{obs}}) = 1.4 \times 10^{49}$ erg. The observed best-fit value $E_{\text{peak}}^\text{src} (\theta_{\text{obs}} = 0.21) = 3.3$ keV is reproduced for $\gamma = 112$ and $E_{\text{peak}}^\text{src} (0) = 500$ keV, and we obtain $E_{\text{iso}} (0) = 3.0 \times 10^{46}$ erg. For $E_{\text{peak}}^\text{src} (0) = 250$ keV, we need a smaller γ value (79) to obtain $E_{\text{peak}}^\text{src} (\theta_{\text{obs}} = 0.21) = 3.3$ keV, and we find $E_{\text{iso}} (0) = 7.6 \times 10^{53}$ erg. Similarly, when we consider $E_{\text{peak}}^\text{src} (0) = 1$ MeV, we have $\gamma = 160$ and $E_{\text{iso}} (0) = 1.3 \times 10^{55}$ erg. For these cases, the on-axis values, $E_{\text{peak}}^\text{src} (0)$ and $E_{\text{iso}} (0)$ remain within the 3σ scatter of the $E_{\text{peak}} - E_{\text{iso}}$ relation. These values of γ are consistent with those measured using the onset of optical afterglows. Liang et al. (2010) reported γ measurements that were distributed from ~ 90 to ~ 600 as well as a significant proportion of events that exhibited values below 200. However, the values are lower than the prediction ($\gamma > 300$ for all GRBs) made by Donaghy (2006) for reducing the number of unseen events away from the observed $E_{\text{peak}} - E_{\text{iso}}$ and $E_{\text{peak}} - E_{\gamma}$ (Ghirlanda et al. 2004a) relations. Here, E_{γ} is the jet collimation-corrected energy. The simplest off-axis jet models for XRFs (Yamazaki et al. 2002, 2003) adopt low values of γ (~ 100) and predict a large number of events away from these relations that are not observed (see Figures 4–9 in Donaghy 2006). Therefore more complicated procedures must be required. For one of examples, Donaghy (2006) described that an inverse correlation between γ and the opening solid angle of the GRB jet have the effect of greatly reducing the visibility of off-axis events. Another possibility is to consider a more complicated jet structure (e.g., Salafia et al. 2015).

The spectral peak energy of XRF 020903 is conservatively determined by only the upper limit, reported by Sakamoto et al. (2004). Although XRF 020903 also followed the $E_{\text{peak}} - E_{\text{iso}}$ relation when we employed the value estimated by the constrained Band function with the 90% confident level, four of the five HETE-2 XRFs (including XRF 020903) with the lowest upper limits on $E_{\text{obs}}^\text{peak}$ were potential outlier events of the $E_{\text{peak}} - E_{\text{iso}}$ and the $L_{\text{iso}} - E_{\text{peak}}$ relations because these events are outliers in the $E_{\text{peak}} - F_{\gamma}$ (Figure 1 in Sakamoto et al. 2005 and Figure 9 in Lamb et al. 2005) and the $E_{\text{peak}}^\text{src} - S_E$ planes (Figure 2 in Donaghy 2006). Here, F_{γ} and S_E denote the peak photon number flux of the burst and the energy fluence.
respectively. These results indicate that the nature of these four XRFs—and therefore the nature of XRFs in general—might differ considerably from those of the rest of the XRFs, XRRs, and GRBs. However, our result on one of the four outlier events contradicts this suggestion. Hence, we may be able to explain the remaining three lowest $E_{\text{peak}}^{\text{obs}}$ events in an identical manner, although additional adjustments on the jet geometry or the initial Lorentz factor could be required.

5.3. Prospect with Optical Surveys

Finding off-axis orphan afterglows through untargeted optical surveys is also a crucial method for establishing a unified picture of GRBs. Several optical time-domain surveys performed using telescopes with diameters in the range of 1–2 m (e.g., iPTF, Pan-STARRS1) have reported intriguing new discoveries related to stellar explosions. However, the sensitivities of these surveys were insufficient for detecting faint off-axis orphan afterglows. Hence, off-axis orphan GRB afterglows are yet to be observationally confirmed. However, a new wide-FOV camera—HSC—attached to the Subaru telescope and the planned LSST have considerable capabilities to detect the first off-axis orphan GRB afterglow in untargeted time-domain surveys.

One of the challenges in generic transient types of optical transients because the occurrence of GRB orphan afterglows is rarer compared with that of known types of SN. These candidate selections can be performed using optical photometric survey data and a proper photometric transient classification. The photometric classification involves seven steps: (1) finding transient candidates by generating differential images, (2) generating light curves for transient components, (3) identifying host galaxies, (4) determining a transient location in their hosts, (5) matching the candidates with known sources in various catalogs, (6) matching light curves and color evolution, and (7) estimating the photometric redshift of hosts. For steps (1) and (2), we can employ the algorithm (Alard & Lupton 1998) as described in Section 4 and Urata et al. (2012b). For steps (3), (4), and (7), a considerable number of GRB host galaxy observations have been performed in the optical and near-infrared range. Systematic unbiased observations have also been performed using VLT (Hjorth et al. 2012). The brightness range of host galaxies for GRBs $z < 2$ is 23.0–26.5 mag (e.g., Berger 2010). Since the redshift range of a considerable number of orphan GRB afterglows with HSC surveys extends up to $z \approx 2$, HSC images (e.g., reference images for PSF matched subtraction) are sufficiently deep to detect these host galaxies. Thus, we can also perform the photometric redshift for the host galaxies. The photometric redshift for GRB host galaxies is also effective (e.g., Christensen et al. 2004). Hence, the light curve expectations based on the off-axis jet origin of XRFs are crucial to establish effective candidate searches.

Figure 7 shows the expected off-axis afterglow light curves at $z = 1$ along with various observing angles ($\theta_{\text{obs}} = \theta_{\text{jet}}$, $2\theta_{\text{jet}}$, and $3\theta_{\text{jet}}$) in the optical r'-band, ALMA Band3, and JVLA 8.5 GHz, obtained from the light curve modeling of XRF 020903. The orange dashed lines in Figure 7 indicate the sensitivity limit for one-hour exposure for each instrument. Hence, off-axis orphan GRB afterglows (up to $\sim 3\theta_{\text{jet}}$) can be detected in optical time-domain surveys by using 8 m class telescopes. Follow-up radio observations are also crucial for confirmation of orphan afterglows and identification of constraints on their physical parameters, as shown in Figure 7. Because radio temporal evolution is substantially slower than that of optical temporal evolution, long-term monitoring by using ALMA and/or JVLA with reasonable exposure (~ 1 hr) requires the confirmation of the optical candidates. In addition, the future planned Square Kilometre Array (SKA) enables an independent search of these radio afterglows (Burlon et al. 2015; Ghirlanda et al. 2014).
6. CONCLUSION

We studied XRFs on the basis of redshift measurements, multifeature afterglow modeling, and spectral peak measurements (E_{peak}) to verify the off-axis jet model and to provide feedback to ongoing and planned optical time-domain surveys, which have considerable potential for detecting off-axis orphan GRB afterglows. Because off-axis orphan GRB afterglows are produced as a natural consequence of GRB jets production, the confirmation of the off-axis origin of XRFs is necessary to conduct off-axis orphan GRB afterglow surveys.

To verify the off-axis jet model, we selected XRF 020903 by considering the three aforementioned sample selection factors. For this event, we reduced the archived data of Subaru to describe the optical light curves, and found achromatic rebrightening at ~ 0.7 days. Using these optical results and radio data obtained from literature, we performed afterglow light curve modeling with the boxfit code and found that the off-axis jet model ($\theta_{\text{obs}} \sim 2\theta_{\text{jet}}$) could explain the achromatic rebrightening, R/R_c-band temporal evolution, and radio brightness.

We also compared the burst parameters of XRF 020903 with those of other categories of events, such as a classical hard GRB, an XRR, and an on-axis orphan GRB candidate. For XRF 080330, we performed light curve modeling in a manner similar to that used for XRF 020903 by using optical data from the literature, and we confirmed that the off-axis jet model ($\theta_{\text{obs}} \sim 2\theta_{\text{jet}}$) could describe the optical afterglow light curves. We also listed the observed features of the prompt emission for each event. The observed values were too widely distributed to represent the classical hard GRB, XRR, and XRF. By contrast, the parameters obtained from the afterglow modeling were comparable to each other, except for θ_{obs}. Thus, the off-axis jet model was found to be suitable for explaining the diverse afterglow light curves and the GRB category.

We also verified the observed small values of E_{peak} and E_{iso} by adopting a simple model with a top-hat profile of the prompt emission of a relativistic jet. The parameters E_{peak} (θ_{obs}) and E_{iso} (θ_{obs}) were analytically derived as functions of θ_{obs}, θ_{jet}, and $\gamma = \left(1 - \beta^2\right)^{-1/2}$. By fixing θ_{obs} and θ_{jet} as 0.21 and 0.1 rad, respectively, we evaluated γ, E_{peak} and E_{iso} observed from the off-axis of the jet ($E_{\text{peak}}(0)$ and $E_{\text{iso}}(0)$). These expected values were consistent with those of classical hard GRBs, and the observed small values of E_{peak} and E_{iso} of XRF 020903 could be naturally explained by the off-axis jet model.

Finally, we expected off-axis orphan GRB afterglow light curves at $z = 1$ along with three viewing angles on the basis of the XRF afterglow light curve modeling. To detect these light curves, especially afterglows with a larger viewing angle ($\theta_{\text{obs}} > 2\theta_{\text{jet}}$), an 8 m class telescope with wide-field imagers, such as LSST and Subaru/HSC, is required. Off-axis orphan GRB afterglows up to $\sim 3\theta_{\text{jet}}$ can be discovered by performing time-domain surveys with an 8 m class telescope. Because such optical time-domain surveys also detect numerous other optical transients, we presented expected radio afterglow light curves for the confirmation and determination of burst parameters. Radio light curves can be monitored using ALMA and JVLA with reasonable exposure.

This work was supported in part by Grant-in-Aid for scientific research from the Ministry of Education, Science, Sports, and Culture (MEXT), Japan, No. 15K05088 (R.Y.) and No. 25400234 (T.S.). This work is partly supported by the Ministry of Science and Technology of Taiwan grants NSC 100-2112-M-008-007-MY3 and MOST103-2112-M-008-0211(YU). Subaru Suprime-Cam data were acquired through SOKI, which is operated by the Astronomy Data Center, National Astronomical Observatory of Japan. The PS1 Surveys have been made possible through contributions of the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, Queen’s University Belfast, the Harvard-Smithsonian Center for Astrophysics, and the Las Cumbres Observatory Global Telescope Network, Incorporated, the National Central University of Taiwan, and the National Aeronautics and Space Administration under grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate.

REFERENCES

Alard, C., & Lupton, R. H. 1998, ApJ, 503, 325
Amati, L. 2002, A&A, 390, 81
Baba, H., Yasuda, N., Ichikawa, S.-I., et al. 2002, in ASP Conf. Proc. 281, Astronomical Data Analysis Software and Systems XI, ed. D. A. Bohleider, D. Durand, & T. H. Handley (San Francisco, CA: ASP), 298
Band, D. 1993, ApJ, 413, 281
Barthelmy, S. D., Barbier, L. M., Cummings, J. R., et al. 2005, SSRv, 120, 143
Berger, A. 2010, ApJ, 722, 1946
Bersier, D., Fruchter, A. S., Strolger, L.-G., et al. 2006, ApJ, 643, 284
Berti, E., Mellier, Y., Radovitch, M., et al. 2002, adass XI, 281, 228
Burlon, D., Ghirlanda, G., van der Horst, A., et al. 2014, in Advancing Astrophysics with the Square Kilometre Array, ed. T. L. Bourke et al., p. 52, http://pos.sissa.it/cgi-bin/reader/conf.cgi?id=conf-215
Cenko, S. B., Kulkarni, S. R., Hores, A., et al. 2013, ApJ, 769, 130
Christensen, L., Jhoo, J., & Gorosabel, J. 2004, A&A, 425, 913
Donaghy, T. Q. 2006, ApJ, 645, 436
Fong, W., Berger, E., Margutti, R., et al. 2012, ApJ, 756, 189
Ghirlanda, G., Burlon, D., Ghisellini, G., et al. 2014, ApJ, 80, 21
Ghirlanda, G., Ghisellini, G., & Lazzati, D. 2004a, ApJ, 616, 331
Ghirlanda, G., Salvaterra, R., Campina, S., et al. 2015, arXiv:1504.02096
Granot, J., Piran, T., & Sari, R. 1999, ApJ, 513, 679
Graziani, C., Lamb, D. Q., & Donaghy, T. 2006, in AIP Conf. Proc. 836, Gamma-Ray Bursts in the Swift Era, ed. S. S. Holt et al. (Melville, NY: AIP), 117
Guidorzi, C., Clemens, C., Kobayashi, S., et al. 2009, A&A, 499, 439
Heise, J. 2003, in AIP Conf. Proc. 662, Gamma-Ray Burst and Afterglow Astronomy 2001: A Workshop Celebrating the First Year of the HETE Mission, ed. G. R. Ricker & R. K. Vanderspek (Melville, NY: AIP), 229
Heise, J., Zand, J. L., Kippen, R. M., & Woods, P. M. 2001, in Gamma-ray Bursts in the Afterglow Era, ed. E. Costa, F. Frontera, & J. Hjorth (Berlin: Springer), 7
Henden, A. 2002, GCN, 1571, 1
Hjorth, J., Malesani, D., Jakobsson, P., et al. 2012, ApJ, 756, 187
Huang, Y. F., Dai, Z. G., & Lu, T. 2002, MNRAS, 332, 735
Ioka, K., & Nakamura, T. 2001, ApJL, 554, L163
Jager, R., Mels, W. A., Briantmann, A. C., et al. 1997, A&AS, 125, 557
Kaneko, Y., Preece, R. D., Briggs, M. S., et al. 2006, ApJ, 646, 298
Kippen, R. M., Woods, P. M., Heise, J., et al. 2001, Gamma-Ray Bursts in the Afterglow Era, ed. E. Costa, F. Frontera, & J. Hjorth (Berlin: Springer), 22
Lamb, D. Q., Donaghy, T. Q., & Graziani, C. 2005, ApJ, 620, 355
Liang, E.-W., Yi, S.-X., Zhang, J., et al. 2010, ApJ, 725, 2209
Magnier, E. 2006, in The Advanced Maui Optical and Space Surveillance Technologies Conf., ed. S. Ryan (Maui, HI: Maui Economic Development Board), E50
Magnier, E. A., Schlafly, E., Finkbeiner, D., et al. 2013, ApJS, 205, 20
Matsuoka, M., Kawasaki, K., Ueno, S., et al. 2009, PASJ, 61, 999
Miyazaki, S., Komiyama, Y., Nakaya, H., et al. 2012, Proc. SPIE, 8446, 84460Z
Miyazaki, S., Komiyama, Y., Sekiguchi, M., et al. 2002, PASJ, 54, 833
Nava, L., Salvaterra, R., Ghirlanda, G., et al. 2012, MNRAS, 421, 1256
Ohno, M., Fukazawa, Y., Takahashi, T., et al. 2008, PASJ, 60, 361
Ouchi, M., Shimassa, K., Okamura, S., et al. 2004, ApJ, 611, 660
Pierfederici, F. 2006, adass XV, 351, 433
Pierfederici, F., Valdes, F., Smith, C., Hiriart, R., & Miller, M. 2004, adass XIII, 314, 476
Rhoads, J. E. 1999, ApJ, 525, 737
Sakamoto, T., Hullinger, D., Sato, G., et al. 2008, ApJ, 679, 570
Sakamoto, T., Lamb, D. Q., Graziani, C., et al. 2004, ApJ, 602, 875
Sakamoto, T., Lamb, D. Q., Kawai, N., et al. 2005, ApJL, 629, 311
Sakai, O. S., Ghisellini, G., Pescalli, A., Ghirlanda, G., & Nappo, F. 2015, arXiv:1502.06608
Sari, R., Piran, T., & Halpern, J. P. 1999, ApJL, 519, L17
Schlaufy, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103
Schlaufy, E. F., Finkbeiner, D. P., Jurić, M., et al. 2012, ApJ, 756, 158
Serino, M., Sakamoto, T., Kawai, N., et al. 2014, PASJ, 66, 87
Shirasaki, Y., Kawai, N., Yoshida, A., et al. 2003, PASJ, 55, 1033
Soderberg, A. M., Kulkarni, S. R., Berger, E., et al. 2004, ApJ, 606, 994
Soderberg, A. M., Kulkarni, S. R., Fox, D. B., et al. 2005, ApJ, 627, 877
Tonry, J. L., Stubbs, C. W., Lykke, K. R., et al. 2012, ApJ, 750, 99
Urata, Y., Huang, K., Takahashi, S., et al. 2014, ApJ, 789, 146
Urata, Y., Huang, K., Yamaoka, K., Tsai, P. P., & Tashiro, M. S. 2012a, ApJL, 748, L4
Urata, Y., Tsai, P. P., Huang, K., et al. 2012b, ApJL, 760, L11
van Eerten, H., van der Horst, A., & MacFadyen, A. 2012, ApJ, 749, 44
von Kienlin, A., Meegan, C. A., Paciesas, W. S., et al. 2014, ApJS, 211, 13
Woods, E., & Loeb, A. 1999, ApJ, 523, 187
Yamaoka, K., Endo, A., Enoto, T., et al. 2009, PASJ, 61, S35
Yamazaki, R., Ioka, K., & Nakamura, T. 2002, ApJL, 571, L31
Yamazaki, R., Ioka, K., & Nakamura, T. 2003, ApJ, 593, 941
Zhang, B., Dai, X., Lloyd-Ronning, N. M., & Mészáros, P. 2004, ApJL, 601, L119

The Astrophysical Journal, 806:222 (10pp), 2015 June 20

Urata et al.