ABSTRACT

The article provides information from the literature on the harvesting, sorting and placement of dried peach varieties in the drying area and methods of their drying. On this basis, the country can further develop exports of dry products and achieve positive results in agriculture.

KEYWORDS

Agriculture, peach variety, dry product, sugar content, acid content, peach peel.

INTRODUCTION

Drying peaches. Its varieties are dried – “Luchchak peach”, “Obilnyy”, “Yellow luchchak”, hairy peaches – “Elberta”, “Samarkand”, “Snezhny”, “Standard”, “Farhod” and other varieties. Peaches have their maximum navigable, shape-specific maximum dry matter, are enlarged and cut when they enter color, in which case the flesh of the fruit should be dense, ready to ripen and
dry, but such fruits should be ripened while standing in the raw material storage area.

In preparing the crop for drying, it is important to sort it according to its size. When the raw material is separated, the same product of the same type and color is obtained. The obtained fruits are cleaned in different order depending on their size, in addition, they are cooked in boiling water.

Wiping the skin is an important job in drying the hairy peach. This work is done chemically or thermally. Chemically, the peel of peaches is almost completely cleaned. Peaches cut in half are immersed in a solution of caustic soda in boiling water. The raw material is kept in a 5% boiling solution of caustic soda for 30-35 seconds. These fruit peels are washed immediately; the peel of the peach quickly separates. After washing, the remaining peels are removed with a knife.

Peach slices, rinsed in cold water, are rolled up on wooden boards and smoked with sulfur. Smoked dried peel retains the natural color of peach and can be stored for a long time. Smoked for 1.5 hours, consuming 2–2.5 g of sulfur per 1 kg of fruit. To do this, use special smoking chambers or baked boxes made of plywood.

Smoked fruit is placed on trays in the drying area along with trays. After 2–3 days, peach peels are rolled out. After 3/3–4/3 of the moisture has escaped, the trays are stacked on top of each other in the shade. The readiness of the product is determined by hand. The flesh of a well-dried stalk is dense, firm, pliable, but unbreakable.
Storage of dried fruits. When storing dried fruits, their color changes and the color of brightly colored products darkens. Their color can vary from white to yellow to brown. At the same time, the taste, smell and texture of the product deteriorate, the cooking time increases, the amount of vitamins decreases. One of the main indicators of deterioration in the storage of dried fruits is the darkening as a result of enzymatic reactions. One of the main factors influencing the preservation of quality indicators in the storage of dried fruits is the chemical composition of raw materials used in drying, the order of preparation for drying, drying mode, moisture content of the finished product and storage conditions.

To increase the shelf life of the finished product, the raw materials brought for processing must be technical, healthy, undamaged and undamaged. One of the factors influencing the long-term storage of the finished product from processing processes is the correct blanching of raw materials.

Blanching prevents oxidation of enzymes in the raw material and helps to keep the finished product well. Sulfitation, on the other hand, improves the color of the finished product while maintaining the amount of C and other vitamins in the raw material. Lack of air access during storage, low humidity of the product and low storage temperature limit the possibility of spoilage during storage of the product. Therefore, dried fruits intended for long-term storage are prepared with very low humidity (4-8%) and packed in airtight containers.

When the storage temperature of dried products is up to 100oS, the shelf life is extended, and when the storage temperature is 200oS and the moisture content of the product is 25-28% in fruits, their spoilage is accelerated. Therefore, it was accepted that the storage temperature of dried fruits should be as high as possible at 200oS. Shelf life of dried fruits in unmanaged warehouses.

CONCLUSION

The quality of stored dried products can also be degraded by microorganisms and nutrients. The relative humidity of the air in the storage warehouse also plays an important role in the storage of the product. Because dried fruits are a highly hygroscopic product, they absorb moisture from the air during storage when the opportunity arises, and once they have the
moisture necessary for the onset of spoilage, they begin to react negatively to bacteria, yeasts and molds. However, given that dried fruits can change their color under the influence of sunlight, the products are stored in dark places or in opaque containers.

Storage regimes of dried fruits are characterized by two parameters: the temperature and relative humidity of the air in the storage warehouse.

Storage warehouses themselves, on the other hand, are distinguished by the controlled and uncontrolled states of storage modes. Warehouses where storage modes are controlled include warehouses or refrigerators equipped with equipment that provides a set temperature and relative humidity. Special thermometers and psychometers are used in warehouses to monitor temperature and relative humidity. They are placed in different parts of the warehouse at a height of 1.5 meters from the floor, and the instrument readings are taken twice a day (at 8:00 and 17:00) and recorded in a special log.

REFERENCES

1. A.K. Baturin. (2003) Chemical composition and energy value of food products. – Saint Petersburg: Profiks. (Батурин А.К. Химический состав и энергетическая ценность пищевых продуктов. СПб.: Профикс, 2003.)

2. Buriev X., Rizaev R. (1996) Biochemistry and technology of fruit and grape products. – Tashkent: Mehnat. (Бурьев Х., Ризаев Р. Мева-узум мақсулотлари биохимияси ва технологияси. – Т.: Мехран, 1996.)

3. Qayumova L. (1996) Chemical composition of food raw materials and products. – Tashkent: Uzbekistan. (Қаюмова Л. ʻУзбекистонда пишувчилар қимёий таркиби. – Т.: ʻУзбекистон, 1996.)

4. Stele R. (2006) Shelf life of food products: calculation and nutrition. - Saint Petersburg: Profiks. (Стеле Р. Срок годности пищевых продуктов: расчет и испытание. СПб.: Профикс, 2006.)

5. R.Oripov, I.Sulaymonov, E.Umurzaqov. (1991) “Technology of storage and processing of agricultural products”. – Tashkent: “Mehnat”. (Р.Орипов, И.Сулаймонов, Э.Умурзақов “Қишлоқ хўжалик мақсулотларини саклаш ва қайта ишлаш технологияси”. Тошкент, “Мехнат”, 1991.)

6. M.M. Mirzaev, V.V. Kuznetsov. (1983) “Pomology of Uzbekistan”. Uzbekistan. (М.М.Мирзаев, В.В.Кузнецов “Помология Узбекистана”. Узбекистан, 1983.)

7. X.Bo’riev, R.Rizaev. (1966) Biochemistry and technology of fruit and grape products. – Tashkent. (Х.Бўриев, Р.Ризаев. “Мева-узум мақсулотлари биохимияси ва технологияси”. Тошкент, 1966.)

8. X. Boriev, R. Joraev, O. Alimov. (2002) Storage and primary processing of fruits and vegetables. – Tashkent. (X. Бўриев, Р. Жўраев, О. Алимов “Мева сабзавотлари саклаш ва ularga дастлабки ишлов бериш”. Тошкент, 2002.)