The effect of osteoporosis treatments on fatigue properties of cortical bone tissue

Garry R. Brock, Julia T. Chen, Anthony R. Ingraffea, Jennifer MacLeay, G. Elizabeth Pluhar, Adele L. Boskey, Marjolein C.H. van der Meulen

1. Introduction

Osteoporotic fractures are a substantial public health concern with total fractures and associated costs estimated to continue to rise through 2025 (Burge et al., 2007). Bisphosphonates are commonly prescribed for treatment of osteoporosis. Long-term use of bisphosphonates has been correlated to atypical femoral fractures (AFFs). AFFs arise from fatigue damage to bone tissue that cannot be repaired due to pharmacologic treatments. Despite fatigue being the primary damage mechanism of AFFs, the effects of osteoporosis treatments on fatigue properties of cortical bone are unknown. To examine if fatigue-life differences occur in bone tissue after different pharmacologic treatments for osteoporosis, we tested bone tissue from the femurs of sheep given a metabolic acidosis diet to induce osteoporosis, followed by treatment with a selective estrogen receptor modulator (raloxifene), a bisphosphonate (alendronate or zoledronate), or parathyroid hormone (teriparatide, PTH). Beams of cortical bone tissue were created and tested in four-point bending to failure. Tissue treated with alendronate had reduced fatigue life and less modulus loss at failure compared with other treatments, while tissue treated with PTH had a prolonged fatigue life. No loss of fatigue life occurred with zoledronate treatment despite its greater binding affinity and potency compared with alendronate. Tissue mineralization measured by microCT did not explain the differences seen in fatigue behavior. Increased fatigue life with PTH suggests that current treatment methods for AFF could have beneficial effects for restoring fatigue life. These results indicate that fatigue life differs with each type of osteoporosis treatment.

© 2014 Elsevier Inc. All rights reserved.
and Hayes, 1976; Carter et al., 1976). Studies examining fatigue of osteoporotic and treated tissue have focused on microdamage accumulation rather than the material properties of the tissue (Allen and Burr, 2011).

Bisphosphonates act through osteoclast inhibition, which leads to reduced bone turnover, increased bone mass and increased mineralization (Reszka and Rodan, 2003). However, injury within the tissue cannot be remodeled leading to an accumulation of microdamage (Mashiba et al., 2000, 2001; Yamagami et al., 2013; Allen and Burr, 2007). Reduced bone turnover with bisphosphonate treatment increases mineralization and collagen maturity in bone tissue as measured by Fourier transform infrared spectroscopy (FTIR) (Gourion-Arsiquaud et al., 2010). Tests on whole bones after bisphosphonate therapy indicate an increase in monotonic strength and stiffness at corticocancellous sites without concomitant changes to the tissue-level modulus or ultimate strength (Allen and Burr, 2007, 2011). A loss of toughness and energy dissipation in cortical and cancellous tissue has been found with bisphosphonate treatment (Allen and Burr, 2011). Fatigue properties are likely altered with bisphosphonate treatment; however, minimal data regarding these properties have been published (Allen and Burr, 2011). Increased microdamage in both cortical and cancellous tissue with bisphosphonate treatment may reflect an inability to repair damage within the tissue (Mashiba et al., 2000, 2001; Yamagami et al., 2013; Allen and Burr, 2007). Alendronate reduced the fatigue life in beams created from rib bones from healthy canines; however, the dosing was supraphysiological and osteoporosis was not induced prior to treatment (Bajaj et al., 2014).

Fig. 1. Comparison of monotonic and fatigue loading. In monotonic loaded samples, force is increased until the sample fails. In fatigue, a repetitive sub-failure load is applied creating damage that eventually coalesces to cause failure.

Bisphosphonates are the most common therapy prescribed for osteoporosis treatment, but other treatments exist. Selective estrogen receptor modulators (SERMs) reduce osteoporotic vertebral fracture risk by 30–50% (Ettinger et al., 1999). SERMs bind to the estrogen receptors with an affinity similar to estradiol (Rey et al., 2009). Teriparatide (PTH) has been beneficial in patients who experience AFFs by inducing increased bone remodeling, removal of older more fully mineralized tissue and replacement with new less fully mineralized tissue (Chiang et al., 2013). Mechanical property data for SERM and PTH treatments of bone have focused on monotonic failure properties and have not included fatigue.

The purpose of this study was to examine the fatigue and fracture properties of bone tissue after different osteoporosis treatments using a sheep model of osteopenia to determine if a correlation exists between fatigue life and treatment type. Osteopenia was induced in sheep and followed by an osteoporosis treatment or vehicle. Beams of known geometry created from the femoral diaphysis of these sheep were loaded in four-point bending fatigue to failure. Given the inhibition of remodeling, and increased mineralization and collagen maturity reported with bisphosphonate treatment, we theorized that a shorter fatigue life will occur with bisphosphonate treatment.

2. Materials and methods

2.1. Animal model

(Table 1) samples used in this study were from remaining femur tissue from previously published and in progress studies (Burket et al., 2013). For all studies we fed a metabolic acidosis (MA) diet to skeletally mature sheep to induce osteopenia (MacLeay et al., 2004a). In the first study, sheep fed a normal diet served as healthy controls for the experiment (C, n = 6). In the second study, sheep were fed the MA diet for 12 months and given alendronate (ALN; n = 2), raloxifene (RAL; n = 2) or a vehicle (MA1; n = 3) treatment during months 7–12. The low sample sizes were not planned and reflect factors beyond our control in the experiment. To further examine bisphosphonate treatment, a third
experiment was performed with sheep fed a MA diet for 8 months followed by 6 months of treatment with zoledronate (Reclast, ZOL; n = 6) or vehicle (MA2; n = 6) while continuing the MA diet. The longer initial MA term in experiment three was due to a delay in procuring the zoledronate. In the second study, alendronate (0.15 mg/kg) and raloxifene (0.8 mg/kg) were administered daily via a cannula placed into the duodenum, whereas zoledronate (5 mg/sheep) was administered as a single intravenous injection. This schedule replicates the clinical dosing in which alendronate is taken orally daily or weekly and zoledronate is administered intravenously once a year (Bone et al., 2000; Black et al., 2007). All animal procedures were reviewed and approved by the Colorado State University IACUC and the Hospital for Special Surgery IACUC.

A fourth set of skeletally mature sheep were fed an MA diet for one year after ovarioectomy, which has been shown to induce osteopenia (Macleay et al., 2004b). The sheep were then maintained on the MA diet and were administered teriparatide (PTH, n = 6) or vehicle (MA3 + OVX, n = 6) for one year. Treatment was administered daily via subcutaneous injection (5 mcg/kg). All animal procedures were reviewed and approved by the University of Minnesota IACUC and the Hospital for Special Surgery IACUC.

2.2. Sample preparation

Sheep were euthanized at the end of the specified treatment period. Femurs were removed and stored at −20 °C in saline-soaked gauze until the time of sample preparation. Beams were cut out of the medial diaphysis of the femurs using a low speed diamond saw (Buehler Isomet, Lake Bluff, IL, USA). Beams were then polished using 15, 5 and 1 μm lapping films with ethylene glycol used as a lubricant to prevent mineral leaching (Donnelly et al., 2006; Brock et al., 2013). The samples were polished to a final size of 2 × 2 × 25 mm. After polishing, the samples were stored at −20 °C in hydroxyapatite-buffered saline-soaked gauze until testing.

2.3. Fatigue testing

Beams were tested in four-point bending fatigue (Boyce et al., 1998; Diab and Vashishth, 2005) (Bose Electroforce LM-1, Eden Prairie, Minnesota, USA). The bottom supports were placed 20 mm apart, and the top loading points were placed 5 mm apart (Fig. 2). These positions created a constant bending moment between the loading points and limited the effects of crushing at the load points (Zhai et al., 1999). Preconditioning was completed by 20 cycles of loading from 2 to 20 N. These values were chosen through preliminary testing that demonstrated that these loads induced normal surface strains below the 2500 με necessary to create microdamage and alter fatigue life (Pattin et al., 1996). The initial flexural modulus was measured from the 10th cycle and calculated using the assumptions of linear elastic beam theory. Initial modulus values were used to calculate the force necessary to achieve desired values of strain of 400 to 4000 με on the tensile and compressive surfaces. The samples were loaded in force control from 400 to 4000 με (R = 0.1) to failure with peak-to-peak force and displacement measured at each cycle. Cycles-to-failure, Nf, was defined as the number of cycles experienced before the sample broke. Modulus loss at failure was defined as the percent change in modulus from the 10th cycle to Nf, and was calculated with linear elastic beam theory (Beer et al., 1996). All testing was completed at physiologic temperature (37 °C) in hydroxyapatite-buffered PBS (1 g HA added per 1 L PBS and allowed to sit overnight until solution was supersaturated) with temperature monitored continuously.

2.4. Microcomputed tomography (microCT)

Tissue mineral density (TMD) was measured with microCT at a 50 μm voxel size (xPlore CT 120, GE Healthcare, Waukesha, WI, USA). A mineral phantom was used for calibration with analysis completed in Microview (version ABA 2.2, GE Healthcare, Waukesha, WI, USA).

2.5. Statistical analysis

The purpose of the experiment was to determine differences in Nf among the different treatment groups and correlate the differences to TMD data. A standard least squares analysis was used to compare each group to the grand mean of the data. The four separate experiments

Month	n1	n2	n3	n4
Control	6	MA diet	MA + vehicle	MA + vehicle
MA1	3	MA diet	MA + vehicle	MA + vehicle
ALN	2	MA diet	MA + alendronate	MA + vehicle
RAL	2	MA diet	MA + raloxifene	MA + vehicle
MA2	6	MA diet	MA + vehicle	MA + vehicle
ZOL	6	MA diet	MA + zoleodonate	MA + vehicle
MA3 + OVX	6	MA diet + OVX	MA + OVX + vehicle	MA + OVX + vehicle
PTH	6	MA diet + OVX	MA + OVX + PTH	MA + OVX + PTH

Table 1

Samples used were from four different studies: [1] age-matched control sheep fed a normal diet (control); [2] sheep fed a metabolic acidosis (MA) diet for six months followed by the MA diet and treated by vehicle (MA1), raloxifene (RAL) or alendronate (ALN); [3] sheep fed an MA diet for eight months followed by six months of the MA diet combined with vehicle (MA2) or zoledronate (ZOL); [4] sheep subjected to ovarioectomy and fed an MA diet for a year, followed by a year of the MA diet and vehicle (MA3 + OVX) or parathyroid hormone (PTH). Control, MA1, RAL and ALN were euthanized after 12 months, MA2 and ZOL at 14 months and MA3 + OVX and PTH at 24 months.
limited the ability to compare data across experiments. A log transform was performed on the cycles-to-failure data to meet the assumption of equal variance between groups.

Different treatments and durations of MA controls can influence the results. Low sample sizes also limited comparisons among groups. For comparison of the MA1, raloxifene and alendronate groups, a Student’s t-test was used to compare each group with a Bonferroni post hoc correction applied. A Student’s t-test was completed also for the MA2 and zoledronate data, MA3 + OVX data and PTH. The Bonferroni correction and t-test comparisons were necessary due to low sample sizes and not meeting the assumptions for an ANOVA.

3. Results

An increase in the initial flexural modulus was seen in the MA3 + OVX and PTH groups as compared with the grand mean of all groups (Fig. 3). The samples treated with alendronate had a significantly lower Nf compared with the grand mean of all groups (p < 0.01), while the PTH samples had significantly greater Nf compared with the grand mean (p < 0.01; Fig. 4). A loss of fatigue life occurred between alendronate (ALN) and its metabolic acidosis control (MA1; p < 0.01). Modulus loss at failure was significantly lower in the alendronate-treated group compared with the grand mean (p < 0.05; Fig. 5).

Mineralization measures (TMD) did not account for the differences in fatigue behavior. Control samples had a lower TMD compared with the grand mean, while raloxifene raised the TMD above the grand mean (p < 0.05; Fig. 6).

4. Discussion and conclusions

Fatigue properties were examined in cortical bone tissue from sheep treated by anti-resorptive drugs after induction of osteoporosis. Four-point bending fatigue testing to failure was completed at physiologic temperature on bone beams created from the femoral diaphysis. Osteoporosis treatments had differing effects on the fatigue life of cortical bone tissue. Alendronate treatment caused a significant loss in fatigue life as compared with the grand mean and its MA control; however, zoledronate-treated specimens did not experience any change in fatigue life from the grand mean or MA control. Greater changes might be expected with zoledronate than alendronate given zoledronate’s greater binding affinity and potency (Russell et al., 2008). Alendronate has a relative potency of $1 - 2 \times 10^3$, whereas zoledronate has a relative potency of 10^4 compared with etidronate (Shaw and Bishop, 2005). Raloxifene did not change the fatigue life of the tissue while PTH increased the fatigue life over the grand mean of the data. Differences in the fatigue life indicate material property changes caused by binding affinity, dosing, chemical structure or collagen changes.

Differences in the administration of the bisphosphonates may contribute to the altered fatigue properties. Alendronate was administered daily via cannula while zoledronate was given once over the course of the experiment via intravenous injection following clinical dosing regimens (Bone et al., 2000; Black et al., 2007). With daily dosing of alendronate the bisphosphonate is present in the serum continuously affecting biomarkers of bone turnover, whereas a single dose of zoledronate may allow the serum biomarker levels to return to pretreatment homeostasis. Serum CTX is known to be reduced with bisphosphonate dosing and increase with time since last administration (Rosen et al., 2000; Marx et al., 2007). Increased collagen maturity occurs with bisphosphonate treatment, and suppression of serum biomarkers such as CTX may indicate differences between the two bisphosphonate types.

Bisphosphonate molecular structure and distribution throughout the tissue are also theorized to have an effect on the tissue properties. Regions of higher mineralization were surface-based on trabeculae...
with zoledronate treatment (Burket et al., 2013), which supports the idea that zoledronate has a more surface-based effect. The distribution of bisphosphonates throughout cortical bone tissue has only been reported with the use of ibandronate and differences in the distribution between proximal and distal cortices were noted (Smith et al., 2003). Higher-affinity bisphosphonates have less diffusion into bone, which could cause differences between alendronate and zoledronate (Nancollas et al., 2006).

Alendronate-treated samples had lower modulus loss at failure indicating a more brittle material. Microdamage quantities in these samples (Nancollas et al., 2006), which could cause differences between alendronate and zoledronate (Nancollas et al., 2006).

In this study, applied loads created maximum normal strains from 400 to 4000 με. In laboratory fatigue conditions in bending, damage creation starts at 2500 με in regions under tension; however, greater than 4000 με is necessary in the regions under compression (Pattin et al., 1996). The 4000 με applied in our study would, therefore, create damage in the tensile region with the compressive region receiving little damage. Greater damage in the tensile region is similar to AFF progression, in which the stress fracture develops from the lateral cortex that is under tension during normal weight-bearing activities.

The results of this study are limited by several factors including the underpowered sample sizes for both alendronate and raloxifene treatments. As previously stated, small sample sizes were unplanned and due to factors beyond our control in the experiment; however, recent studies in a different animal model have also demonstrated a reduction in fatigue life with alendronate treatment (Bajaj et al., 2014). The lack of fatigue life change with raloxifene treatment may indicate fatigue life preservation; however, this result may be due to a lack of power from a small sample size. ERα therapies also have the side effect of increased risk of thromboembolic problems (Gennari et al., 2007) indicating that increased fatigue life alone may not make this therapy more appropriate. Four-point bending fatigue is not a typical method for fatigue measurements. Tensile and compressive fatigue are more commonly used for material characterization (Pattin et al., 1996; Carter and Hayes, 1976); however, limited tissue from repurposed samples prevented the possibility of analyzing tissues by this method. Finally, although having samples from four separate studies enhanced our ability to make comparisons, this situation was less than ideal as sheep are known to experience seasonal differences in BMD (Arens et al., 2007). Nevertheless, we did include untreated control samples to compare with treatment group samples.

In this study fatigue life differences with osteoporosis treatments depended on both the class of treatment, type of drug, and mode of delivery. Alendronate caused a reduction in bone tissue fatigue life while PTH caused an increase in fatigue life. Raloxifene and zoledronate did not change fatigue life. Material property alterations may be due to differences in chemical structure, mechanisms of actions of these drugs, or dosing regimens by which the drugs are administered. Under the confines of this study, drug uptake or the effect of dosing regimen were not possible to examine; however, these variables are avenues for future research that may help explain the occurrence of AFF.

Acknowledgments

Funding provided by NIH AR053571, NIH AR041325, NIH EB004321, and the NSF GRFP. We thank Laura Nielsen for her help preparing the PTH samples.

Author’s roles: study design: GRB, JM, ARI, ALB, MCV; study conduct: GRB, TC, JM, GEP; data collection: GRB, TC; data analysis: GRB, TC; data interpretation: GB, ALB, MCV; drafting of manuscript content: GRB; approving final version of manuscript: GRB, TC, ARI, JM, GEP, ALB, MCV. GRB, MCV take responsibility for the integrity of the data analysis.

References

Allen, M.R., Burr, D.B., 2007. Microdamage, microdamage, and matrix: how bisphosphonates influence material properties of bone. BoneKEy-Osteovision 4 (2), 49–60.
Allen, M.R., Burr, D.B., 2011. Bisphosphonate effects on bone turnover, microdamage, and mechanical properties: what we think we know and what we know that we don’t know. Bone 49 (1), 56–65 (Elsevier Inc.; Jul).
Arens, D., Sigrist, I., Alimi, M.,Schwalduler, P., Schneider, E., Egermann, M., 2007. Seasonal changes in bone metabolism in sheep. Vet. J. 174 (3), 585–591 (Nov).
Bajaj, D., Geisser, J.R., Allen, M.R., Burr, D.B., Fritton, J.C., 2014. The resistance of cortical bone tissue to failure under cyclic loading is reduced with alendronate. Bone 64, 57–64 (Elsevier Inc.; Apr 1).
Bala, Y., Depalle, B., Farlay, D., Diouris, T., Meille, S., Follot, H., Chaperlat, R., Chevalier, J., Boivin, G., 2012. Bone micromechanical properties are compromised during long-term alendronate therapy independently of mineralization. J. Bone Miner. Res. 27 (4), 825–834 (Apr).
Beer, F.P., Johnston, E.R., DeWolf, J.T., 1996. Mechanics of Materials (4th ed). McGraw Hill, New York, NY, pp. 308–363.
Black, D.M., Delmas, P.D., Eastell, R., Reid, J.R., Boonen, S., Cauley, J.A., Cosman, F., Lakatos, P., Leung, P.C., Man, Z., Maalatul, C., Menenehrikk, P., Hu, H., Caminis, J., Tong, K., Rosario-jansen, T., F.-C., Knaus, J., Huang, F.-S., Sellmeyer, D., Eriksen, E.F., Sc. D.M., Cunnanng, S.R., 2007. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N. Engl. J. Med. 356 (18), 1809–1822.
Bone, H.G., Adams, S., Rizoli, K., Favus, M., Ross, P.D., Santora, A., Prakalada, S., Dalfoz, A., Orloff, J., Yates, J., 2000. Weekly administration of alendronate: rationale and plan for clinical assessment. Clin Ther. 22 (1), 15–28.
Boyce, T.M., Fyhrie, D.P., Glocikowski, M.C., Radin, E.L., Schaffer, M.B., 1998. Damage type and strain mode associations in human compact bone bending fatigue. J. Orthop. Res. 16 (3), 322–329 (May).
Brock, G.R., Kim, G., Ingraffea, A.R., Andrews, J.C., Panetta, P., van der Meulen, M.C.H., 2013. Nanoscale examination of microdamage in sheep cortical bone using synchrotron radiation transmission X-ray microscopy. Plos One 8 (3), e57942 (Jan).
Burke, R., Dawson-Hughes, B., Solomon, D.H., Wong, J.B., King, A., Tosteson, A., 2007. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J. Bone Miner. Res. 22 (3), 465–475.
Burket, J.C., Brooks, D.J., Macleay, J.M., Baker, S.P., Roskey, A.L., van der Meulen, M.C.H., 2013. Variations in nanomechanical properties and tissue composition within trabeculae from an ovine model of osteoporosis and treatment. Bone 52 (1), 326–336 (Elsevier Inc.; Jan).
Carter, D.R., Hayes, W.C., 1976. Fatigue life of compact bone: effects of stress amplitude, temperature and density. J. Biomech. 9 (1), 27–34 (Jan).
Carter, D.R., Hayes, W.C., Schurman, D.J., 1976. Fatigue life of compact bone-II. Effects of microstructure and density. J. Biomech. Eng. 9, 211–218.
Chang, C.Y., Zohab, K.M., Glaisner-Zedeh, A., Iuliano-Burns, S., Hardidge, A., Seeman, E., 2013. Teriparatide improves bone quality and healing of atypical femoral fractures associated with bisphosphonate therapy. Bone 51 (1), 360–365 (Elsevier B.V.; Jan).
Cummings, S.R., Karpf, D.H., Harris, F., Genant, H.K., Ensrud, K., LaCroix, A.Z., Black, D.M., 2002. Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am. J. Med. 112, 281–289 (Mar).
Dub, T., Vashishth, D., 2005. Effects of damage morphology on cortical bone fragility. Bone 37 (1), 96–102 (Jul).
Donnelly, E., Baker, S.P., Boskey, A.L., van de Meulen, M.C.H., 2006. Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation. J. Biomed. Mater. Res. 77A (2), 426–435 (May).

Donnelly, E., Meredith, D.S., Nguyen, J.T., Gladnick, B.P., Rebolledo, B.J., Shaffer, A.D., Lorich, D.G., Lane, J.M., Boskey, A.L., 2012. Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric and subtrochanteric fractures. J. Bone Miner. Res. 27 (3), 672–678 (Mar).

Ettinger, B., Black, D.M., Mitlak, B.H., Knickerbocker, R.K., Nickelsen, T., Genant, H.K., Christiansen, C., Stakkestad, J., Gliu, C.C., Krueger, K., Cohen, F.J., Eckert, S., Avioli, L.V., 1999. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene results from a 3-year randomized clinical trial. J. Am. Geriatr. Soc. 282 [7], 637–645.

Gennari, L., Merloti, D., Valleggi, F., Martini, G., Nuti, R., 2007. Selective estrogen receptor modulators for postmenopausal osteoporosis: current state of development. Drugs Aging 24 (5), 361–379 (Jan).

Gourion-Arsiquaud, S., Allen, M.R., Burr, D.B., Vashishth, D., Tang, S.Y., Boskey, A.L., 2010. The role of in vivo collagen fiber structure and mineralization in the mechanical behavior of bone. Bone 46 (3), 666–672 (Elsevier Inc., Mar).

Isaacs, J.D., Shidiak, L., Harris, I.A., Szomor, Z.L., 2010. Femoral insufficiency fractures associated with prolonged bisphosphonate therapy. Clin. Orthop. Relat. Res. 468 (12), 3384–3392 (Dec).

Lammers, F.M., Bouman, A.R., Rimmac, C.M., Hernandez, C.J., 2013. Microdamage caused by fatigue loading in human cancellous bone: relationship to reductions in bone biomechanical performance. PLoS One 8 (12), e83662 (Jan).

Liberman, U.A., Weiss, S.R., Broul, J., Minne, H.W., Quinn, H., Bell, N.H., Rodriguez-portales, J.A., Downs, R.W., Dequaire, J., Favalu, M.J., Seeman, E., Recker, R.R., Capuzzo, T., Santora, A.C., Lombardi, A., Shah, R.V., Hirsch, L.J., Karab, D.P., 1995. Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. N. Engl. J. Med. 333 (22), 1437–1443.

Lo, J.C., Huang, S.Y., Lee, G., Khandelwal, S., Grabowicz, J., Ettinger, B., Gonzalez, R.J., Hui, R.L., Grimsrud, C.D., 2012. Clinical correlates of atypical femoral fracture. Bone 51 (1), 181–184 (Elsevier Inc. Jul).

Macleay, J.M., Olson, J.D., Enns, R.M., Les, C.M., Toth, C.A., Wheeler, D.L., Turner, A.S., 2004a. Dietary-induced metabolic acidosis decreases bone mineral density in ovariecetomized ewes. Calcif. Tissue Int. 75, 431–435 (May).

Macleay, J.M., Olson, J.D., Turner, A.S., 2004b. Effect of dietary-induced metabolic acidosis and ovariectomy on bone mineral density and markers of bone turnover. J. Bone Miner. Metab. 22 (6), 561–568 (Jan).

Mark, R.E., Cillo, J.E., Uluoa, J.J., 2007. Oral bisphosphonate-induced osteonecrosis: risk factors, prediction of risk using serum CTX testing, prevention, and treatment. J. Oral Maxillofac. Surg. 65 (12), 2397–2410 (Dec).

Mashiba, T., Hirano, T., Turner, C.H., Forewood, M.R., Johnston, C.C., Burr, D.B., 2000. Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J. Bone Miner. Res. 15 (4), 613–620 (Apr).

Mashiba, T., Turner, C.H., Hirano, T., Forewood, M.R., Johnston, C.C., Burr, D.B., 2001. Effects of suppressed bone turnover by bisphosphonates on microdamage accumulation and biomechanical properties in clinically relevant skeletal sites in beagles. Bone 28 (5), 524–531 (May).

Nancollas, C.H., Tang, R., Phipps, R.J., Henneman, Z., Guilde, S., Wu, W., Mangood, A., Russell, R.G.G., Ebetino, F.H., 2006. Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone 38 (5), 617–627 (May).