REVIEW

Individuality, phenotypic differentiation, dormancy and ‘persistence’ in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology [version 1; peer review: 1 approved, 1 approved with reservations]

Douglas Kell¹, Marnie Potgieter², Etheresia Pretorius²

¹School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
²Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa

Abstract

For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically ‘non-culturable’ on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as ‘persisters’. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one’s bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This

Open Peer Review

Approval Status

1	2	3
?	✔	?

version 2
(revision)
07 Sep 2015

version 1
01 Jul 2015

1. Michael R Barer, University of Leicester, Leicester, UK
2. Vanya Gant, University College London Hospitals NHS Foundation Trust, London, UK
3. Gerald Domingue, Tulane University, New Orleans, USA

Any reports and responses or comments on the article can be found at the end of the article.
implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.

Keywords
Dormancy, persisters, sepsis, microbiome, inflammation, culturability, iron dysregulation

Corresponding authors: Douglas Kell (dbk@manchester.ac.uk), Etheresia Pretorius (Resia.Pretorius@up.ac.za)

Competing interests: No competing interests were disclosed.

Grant information: We thank the Biotechnology and Biological Sciences Research Council (grant BB/L025752/1) as well as the National Research Foundation (NRF) of South Africa for supporting this collaboration. This is also a contribution from the Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) (BBSRC grant BB/M017702/1).

Copyright: © 2015 Kell D et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Kell D, Potgieter M and Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology [version 1; peer review: 1 approved, 1 approved with reservations] F1000Research 2015, 4:179 https://doi.org/10.12688/f1000research.6709.1

First published: 01 Jul 2015, 4:179 https://doi.org/10.12688/f1000research.6709.1
Introduction

“It is now well established that some micro-organisms can, under certain conditions, be deprived of all visible signs of life and yet these organisms are not dead, for, when their original conditions are restored, they can return to normal life and activity.”

“Bacterial populations in both batch and continuous culture are much more heterogeneous than is normally assumed, and such cultures may consist of several types of subpopulations simultaneously differing in viability, activity and integrity of the cells.”

Consider a typical axenic flask or broth culture of bacteria (Figure 1), arguably the staple of modern laboratory microbiology. We seed a suitable growth medium with an appropriate inoculum of cells known to be capable of replicating in that growth medium. After a lag phase the number of culturable cells (the ‘viable count’), as judged by plate counts of the number of colony-forming units observable on the same medium solidified by agar or a similar material) is observed to increase, typically exponentially, for a number of generations (the growth phase or exponential phase). Apart from the changes in nutrient concentration, and for non-synchronised cultures, it is generally taken that cells pass smoothly through their cell cycles en route to doubling their numbers by binary fission. The population distribution of organisms in different parts of their cell cycle during the exponential phase is thereby unchanged and thus in a steady state (from which the cell cycle parameters can even be inferred). In time this increase in cell numbers ceases, usually because of the exhaustion of a nutrient in a closed system, or sometimes in part or whole because of the build-up of toxins. Again, after a further period, the viable or colony count decreases (often to quite low levels if such starvation is carried out for extended periods). Inoculation of a new broth culture with a similar number of viable cells from this culture usually provides a simple repeat of the previous culture, and in the absence of mutation may reasonably be anticipated, for organisms proliferating asexually, to be played out indefinitely.

The development of continuous, nutrient-limited (‘chemostat”) or feedback-controlled (‘turbidostat”) cultures was and is entirely consistent with this view of steady-state microbial doubling via homogeneous cell cycles that are common, within statistical fluctuations, to each cell. The same is true for cultures undergoing serial transfer (where there is slightly more of a focus on selection for genotypic variants that grow faster – see e.g. 12–14).

There should be nothing controversial in the above passage, but in fact it hides a variety of assumptions that themselves conceal a considerable feast of very interesting physiology. The chief one here is that – given that all cells in the culture are genetically homogeneous and see the same ’environment’, and modulo where they are in their cell cycles – all such cells are indeed supposed to represent a single population (as per Figure 2). If they do not, and as we shall see they never do15–18, we are dealing with differentiated systems. It turns out that a particular subset of typical cell cultures – a phenotypically dormant or non-growing sub-population, occurring even in non-spore-bearing bacteria – is widespread to the point of ubiquity. This leads to an exceptionally important biology with significant consequences both for our understanding of microorganisms and our ability to harness and domesticate them. Although the relevant literatures rarely cite each other or overlap, it is clear that similar phenomena are common to bacterial behaviour in the natural environment, the laboratory, and in a variety of samples of clinical interest. This theory or hypothesis that we develop here comes about from the synthesis of a large amount of data, and is summarised in Figure 3 and Figure 4.

Phenotypic differentiation to dormancy – some early indications

While dormancy and resuscitation of rotifers had been observed by Leeuwenhoek himself in 1702, some of the earliest modern indications for a physiologically significant phenotypic differentiation of microbial cultures came in the 1940s. In a conceptually simple

![Figure 1. A typical laboratory bacterial culture.](image)

After the end of stationary phase the viable count decreases over time, but very rarely to precisely zero. Some authors recognise an extended "period of prolonged decrease" during which some of the survivors undergo significant dynamics, and in which mutants are selected. Our interest here is largely in cells that have not mutated.

![Figure 2. To clarify the general concept of a population as used here, a population of individuals involves those who share certain properties (between stated values).](image)

One main population is shown. A second, smaller population is also shown; these might represent dormant cells.
Figure 3. Infographic summary of the review. (1) A bacterial system contains distinct subpopulations, that we classify as culturable, dormant and ‘non-culturable’ (2). Specific attention is given to persister cells (3), and the inter-relationship (4) between the subpopulations. Subpopulations within environmental biology are discussed (5), followed by subpopulations within laboratory cultures (6). Particular emphasis is placed on phenotypic switching between the culturable and dormant subpopulation of laboratory cultures (7). Generalized detection techniques typically fail to detect dormant cells, and we review the various reasons for this failure and discuss alternatives (8). Resuscitation of and endotoxin production by such dormant cells underpins many diseases not normally seen as having a microbial component.

Figure 4. Summary of the review in the form of a ‘mind map’ of the article.
experiment (illustrated in Figure 5), Bigger29 exposed staphylococcal cultures to concentrations of penicillin that would normally be sufficient to kill them completely (and they did kill all but 1 in a million). However, these (106) survivors, that Bigger28 and McDermott22 (and many modern commentators have) referred to as ‘persisters’, were not genetic mutations selected for resistance to penicillin, since when they were inoculated into fresh broth they were just as susceptible as were those in the first culture. Bigger recognised (correctly) that the only explanation that made any kind of sense was that despite being exposed to nominally the same conditions, these cells were operationally dormant (even if metabolically active22,23) and thus phenotypically resistant to the penicillin (that anyway kills only dividing cells24,25). Similarly, Luria and Latarjet6 noted that approximately 1% of the cells in a culture of Escherichia coli displayed a phenotypic resistance to normally sterilising doses of ultraviolet irradiation. Many similar experiments since (e.g. 27–29), discussed in more detail below, have recapitulated this basic phenomenon. (We note here that high-frequency antigenic ‘phase’ variation can occur due e.g. to changes in microsatellite DNA31; detailed discussions of such genotypic changes31, including those that can affect the extent of dormancy in persistent bacteria32, are outwith the scope of the present, purely phenotypic analyses.)

Dormancy as an operational property

For the avoidance of doubt, and in accordance with Keilin’s description with which we opened, we shall define dormancy as:

“a reversible state of {often} low metabolic activity, in which cells can persist for extended periods without division; we shall see that this often corresponds to a state in which cells are not ‘alive’ in the sense of being able to form a colony when plated on a suitable solid medium, but one in which they are not ‘dead’ in that when conditions are more favourable they can revert to a state of ‘aliveness’ as so defined”33.

We thus stress33 the recognition that dormancy is not solely an innate property of a bacterial cell; it is a property assessed by one or more experiments, so whether a cell appears to be dormant depends on both the cell and the experiment used to assess that dormancy. (This principle shares a similar philosophical foundation to the independence from any specific experiment, or otherwise, of the perceived state of objects within the quantum theory33–35.) As do Postgate36,37 and Barer38–41, we take the hallmark of a viable or living bacterial cell to be its ability to replicate or its ‘culturability’. This means that we cannot tell via culturability that a cell is alive, only (after a cell division) that it was alive41,42. Dormant cells – even if ‘not immediately culturable’ – must by definition be resuscitable to form culturable cells. Although the term ‘nonculturable’ is quite commonly used to describe not-immediately-culturable cells it is best avoided, as we cannot try every possible combination42 of incubation conditions that might serve to resuscitate a cell in a sample. ‘Non-cultured’, ‘as-yet-uncultured’ or ‘operationally nonculurable’ are better terms. Culturable, (operationally) non-culturable and (operationally) dormant bacteria in the differentiated bacterial (cellular) system can therefore be seen as distinct subpopulations of the system, and culturable and dormant bacteria as reversible states of the same population. The relationships between such subpopulations of the bacteria within a differentiated cellular system are shown in Figure 6.

On methods for detecting microbial presence, ‘viability’ and culturability

Given our operational definition of dormancy as including reversible culturability, we note that different kinds of assays for the presence or activity of bacteria necessarily reflect cells in different kinds of physiological states (and can thereby be used to discriminate them). Thus direct counts with stains such as acridine orange (a list of these and other methods is given in Table 1 of 33) do not determine culturability, only presence or activity. Similarly, macro-molecular sequencing methods such as those based on rDNA and its amplification (e.g. 44–49) almost certainly reflect mainly dormant cells plus any actively dividing ones (in that ‘naked’ DNA is usually degraded fairly rapidly in serum or the environment).

Figure 5. Assessment of phenotypic differentiation of a dormant subpopulation via antibiotic challenge. This kind of protocol can be used to determine if the resistant subpopulation has accumulated genetic mutations that encoded resistance or whether, as focused on here, the resistance is purely phenotypic. A detailed analysis of the shape of the time-survivor curves may also be informative83.

Figure 6. The relationships between culturable, dormant and operationally non-culturable bacteria within a differentiated cellular system.
The difference between culturable counts and total sequence-based counts probably provides one of the best methods for detecting and enumerating dormant cells when they cannot yet be brought back into culture. It is particularly noteworthy (and see also 50 and below) that the amount of prokaryotic DNA in whole blood exceeds by 10–100-fold that detectable in serum,[51], implying adsorption onto or sequestration within blood cells.

We shall return to clinical and laboratory microbiology later, but it is to environmental microbiology that we now turn to discuss the culturability of typical microbes. While the same general truths undoubtedly pertain in viruses (e.g. 52,53), and in yeasts, fungi, archaea, mycoplasmas and other unicellular organisms, our focus will be on prokaryotes.

Bacterial culturability and dormancy in environmental microbiology

It has long been known that the number of bacteria observable microscopically exceeds, typically 100-fold, those that can readily be grown axenically in standard isolation media (i.e. to proliferate in liquid culture or to form colonies on solid media). The latter has been referred to as ‘the great plate count anomaly’,[64], and has been amply confirmed by more modern, culture-independent sequencing methods. A selection of papers and reviews serve to document both the numerical anomaly and the much greater biodiversity detectable by sequencing (e.g. 55–73). It is thus useful to discriminate (1) bacteria that have been cultured, that are typically available in culture collections, and whose growth requirements are known, from (2) bacteria that may be recognised as novel via macromolecular sequencing (typically of ribosomal DNA[64,74–77]) but that have not yet been cultured and whose growth requirements may not yet even be known. Much (sequencing) evidence indicates that the bulk of the ‘missing microbes’ or ‘dark matter’[78,79] in natural ecosystems falls into this second category,[80], and that ‘single cell’ methods may be required to culture them.[81].

Not-yet-cultured bacteria may have more-or-less fastidious growth requirements

It is an elementary observation in microbiology, and the basis for selective isolation media, that not all bacteria grow on all media and in all conditions. Leaving aside truly syntrophic bacteria (that for thermodynamic or unknown nutritional reasons require another organism for growth (e.g. 82–88)), some organisms may have quite fastidious growth requirements. A number of bacteria determined as causative of disease, whose role had originally been inferred only through microscopic observation, were later cultured and could be shown to fulfill Koch’s postulates. These include *Helicobacter pylori*,[89,90] (with an unusually high requirement for urea to fuel its alkaline urease activity[89]) and *Legionella pneumophila*,[92–95] (with an unusually high requirement for cysteine). Note that even the supposedly rich LB medium,[96] (Lysogeny Broth, often erroneously called Luria-Bertani medium, see http://schaechter.asmblog.org/schaechter/2009/11/the-limitations-of-lb-medium.html) is not in fact a particularly rich medium[97–99]. An especially nice example[100,101] is provided by *Tropheryma whippeli*, the causative organism of Whipple’s disease[102,103]. It resisted attempts (over many decades) to bring it into axenic culture until systematic genome sequencing[104,105] showed its requirements for a variety of common amino acids that it was unable to synthesise itself, the provision of which permitted its growth. The MetaGrowth database[106] is now available for similar purposes. Another good example is *Coxiella burnetii*, the causative agent of Q fever, for which a genome-derived growth medium (‘acidified citrate cysteine medium’) permitting axenic culture has now been developed[107,108]. Other examples are given by Stewart[109] and by Singh and colleagues[110], and include marine bacteria of the highly common SAR11 clade[111,112,113]. Of course these kinds of phenomena are not absolute; much evidence indicates that host stress hormones may act as growth or virulence factors for a variety of Gram-negative organisms, representing a kind of ‘microbial endocrinology’ (e.g. 112–114).

Not-yet-cultured bacteria may even be killed by our isolation media

Organisms in nature are often living in low-nutrient conditions[115–119]. It is thus reasonable (and unsurprising) that the isolation of microbes from starved, oligotrophic environments benefits from the use of

Organism	Comments	Selected References
Bartonella spp.	Persists inside erythrocytes	330–333
Brucella spp.	Environmental and intracellular persistence and immune evasion	334–337
Listeria monocytogenes	Well-established low-GC Gram-positive intracellular saprophyte and non-sporulating persister	338,339
Mycobacterium tuberculosis	The ‘classical’ dormant bacterium, a high-GC Gram-positive; probably one third of humans carry it in a dormant state	340–348
Salmonella typhimurium	Gram-negative; non-replicating forms common in macrophages and elsewhere	349–352
Staphylococcus aureus	Low-GC Gram-positive; can escape antibiotics by hiding inside various phagocytes	353–356

Table 1. Some bacterial infections for which an intracellular, reversibly non-replicating, persistent or dormant state is well established as part of the cells’ lifestyle. Examples are given for both low- and high-GC Gram positives, as well as a number of Gram-negative organisms.
low-nutrient conditions; some manifest this ‘starvation’ through their size, as ‘ultramicrobacteria’ (see e.g. 123–129). In a similar vein, taking cells from low-nutrient natural environments directly onto, say, a highly aerobic agar plate may produce stresses that effectively kill them, so that afterwards they would not even grow on the kinds of media (as in the previous section) that would support their growth. Thus, Tanaka and colleagues showed interactions between phosphate and agar when autoclaved together that led to the production of compounds inimical to bacterial growth. Gellain may be a better solidifying agent here. However, we recognise that it may be hard to discriminate cells that we kill in the act of trying to isolate and grow them from ‘already dead’ bacteria.

Not-yet-cultured bacteria may simply be dead and thus incapable of resuscitation

While this possibility certainly exists, and is included for completeness, it is actually the least likely for a number of conceptual and empirical reasons. The first is that if an organism is present in a particular environment it must have been able to grow and divide in it at some point in the more or less recent past, even if the result of such growth was its utilisation of a finite amount of necessary nutrients or growth factors whose exhaustion caused replication to cease. Interestingly, in soil it seems that sequestration, rather than complete exhaustion, of nutrients is the more significant phenomenon. Secondly, it is highly unlikely that evolution could select for unidirectional growth. Thirdly, environmental organisms can be shown to metabolise even when they cannot be shown to divide (e.g. in the ‘Direct Viable Count’ method and in any number of other tests that detect metabolic activity). And finally, as we shall see in the next section, careful methods of resuscitation/cultivation do indeed allow a very significant fraction of organisms that can be isolated from a variety of environments (e.g. the gut) to be resuscitated and to grow very effectively.

Not-yet-cultured bacteria are mainly dormant and thus resuscitable

As indicated in the introduction, it is now well established that even laboratory cultures, that from a macroscopic point of view are growing exponentially, contain subpopulations of non-growing cells. These cells are dormant by definition, because they may later be resuscitated and grow. It is easy to ascribe an evolutionary advantage of this culture differentiation from the perspective of the benefits of having a sub-population that by not growing is more resistant to environmental stresses (e.g. 140–142). Indeed, this general kind of phenotypic differentiation strategy, in which the variance in reproductive rate is traded off at the expense of the mean, has been referred to as bet hedging and is actually adaptive. An important point here is that in many natural environments, asexually reproducing organisms such as bacteria are likely to be (spatially) close to their ancestors and descendants, such that inclusive fitness theory implies that it is entirely reasonable for them to behave altruistically, e.g. by ‘bet hedging’. This is also discussed further below.

It is also reasonable that in isolated (closed) natural environments, nutrients and thus sources of energy must be exhausted at some point, and thus for simple energetic reasons multiplication becomes impossible and a dormant state likely (if later resuscitation proves it to be so). Similarly, it is likely that in the absence of energy, nutrients and/or signalling molecules, and based on more ecological or community considerations (e.g. 157–159), it is necessary to add any or each of them to ‘prime’ bacteria to resuscitate. This has indeed been shown, including for sources of energy, iron-acquiring compounds, siderophores, cell wall muropeptides, and various signalling molecules (especially pheromones) that exist in natural environments. We note too that ‘kick starting’ dormant cells may require the synthesis of transporters necessary for the uptake of all kinds of molecules. Overall, the idea that most bacteria that may be observed in the natural environment are ‘unculturable’ is incorrect.

Finally here, and though this is obvious it is well worth rehearsing, the simple fact that we can store non-growing microbes under desiccated or frozen conditions or as agar ‘stabs’ in culture collections for extended periods means that most microbes are certainly well adapted to entering and leaving dormancy.

Pheromonal proteins

A related and unexpected discovery came from analyses of starved laboratory cultures of the actinobacterium *Micrococcus luteus*, in which almost all cells lost culturability. However, they were not dead but dormant, as they could be resuscitated by using a combination of weak nutrient media and a signalling molecule found in spent culture supernatants. The original studies used flow cytometry to discriminate the physiological state of individual cells (see also). By using another ‘single cell’ assay based on dilution to extinction (that avoids artefacts connected with the regrowth of ‘initially viable’ bacteria), we were able to purify the signalling molecule. It turned out to be a protein, named Rpf (for ‘resuscitation-promoting factor’). In *M. luteus* there is only one homologue, and the gene (product) is essential for both resuscitation and multiplication. Rpf contains a highly conserved 70 amino acid ‘Rpf domain’ and is widely (and probably ubiquitously) distributed throughout the actinobacteria, but with examples elsewhere. Most organisms that have a homologue have more than one. Thus *M. tuberculosis* has five homologues. Rpfs can have peptidoglycanase and muralytic activity and known crystal structures are consistent with this. These activities can certainly account for at least some of the resuscitation-promoting properties. As an extracellular protein that may be required for growth, and with a high level of immunogenicity, it is obviously an excellent candidate target for inclusion in appropriate vaccines against pathogenic actinobacteria. It is also more directly of potential utility in stimulating bacterial communication and resuscitation in a variety of cultures in both samples taken from nature and in the laboratory.

Culturability, dormancy and persistence in laboratory cultures of non-fastidious bacteria

Having established the frequency of occurrence of microbial dormancy in the natural environment, it is of interest to understand better the mechanisms by which microbes might effect this dormancy and potential resuscitation. Unsurprisingly, microbiologists have turned to *E. coli*, and considerable progress has been made.
The starting position is as in Figure 1 and Figure 6, to the effect that at any given moment in a typical culture a small fraction of the population is dormant. Since clearly the same fraction cannot (or is wise not to) remain in dormancy indefinitely in the presence of suitable nutrients that permit the growth of its siblings, we must invoke at least one mechanism that can cause the bacteria to ‘oscillate’ between growing and dormant states. Many simple gene expression network topologies admit this behaviour,23,24,25 including a simple feedback loop with delay,28,29, and we note that even whole cultures can exhibit oscillations and deterministic chaos.210 While flow cytometric observations (e.g. 192,271) show that even ‘homogeneous’ laboratory cultures show highly heterogeneous distributions in cellular volume (not just between X and 2X) and expression profiles (and see 272), our particular focus will be on ‘binary’ or ‘ bistable’ systems in which individual cells either are or are not operationally culturable.

Experimentally, it is also common to assess the phenotypic ability of subpopulations of cells to tolerate normally inhibitory concentrations of bactericidal drugs,273,274, this being a marker for that fraction of cells that is dormant at the stage in question. Note that the persistence phenotype is not induced by the drugs.248 Changes or transitions in the state of a particular cell in a population between the various phenotypic states is a phenomenon that may be (and is commonly) referred to as ‘phenotypic switching’.

‘Phenotypic switching’ in experimental laboratory cultures

A particularly well-developed example of this ‘bet hedging’ or phenotypic switching between physiologically dormant and growing states may be observed in laboratory cultures of organisms such as *E. coli* demonstrating ‘persistence’.249-251,252 In general, any scheme in which both a first gene product inhibits cellular proliferation and in which this first gene product may be titrated out potently by a second gene product that thereby undoes the inhibition of proliferation, can have the effect of phenotypically switching cells between growth and dormancy. This seems to be precisely what is going on, and such pairs of gene products have been referred to (somewhat misleadingly)253 as toxin-antitoxin (TA) pairs254-258. One such involves the well-known ppGppGpp system of DNA gyrase259,260, and points to the fact that in these circumstances, persisters may be quite metabolically active22,23,292,293, even if transiently incapable of reproduction. Another phenotype switching mechanism, underlying colony phenotype switching, comes from metabolic bifurcations driven by the levels of a particular metabolite.261

Any mechanisms that permit cells to communicate with each other can amplify switching effects by cell synchronisation, and by definition such ‘social’ signals act as pheromones, whose apparent ‘altruism’ can be explained on the basis of kin selection theory.255 There is considerable interest, largely outwith our scope here, in these evolutionary aspects (e.g. 297–304). Such systems are common, but far too broadly relative to the term’s origin,262 referred to as ‘quorum-sensing’. However, they do offer opportunities for limiting bacterial virulence (e.g. 306–313).

Classical clinical microbiology of culturable organisms

Until relatively recently, almost all of clinical microbiology was based on rather classical methods of plate counting263, coupled to assessment of antibiotic sensitivity. Various means of automated blood culture that assess metabolism exist (although they require typically 48–72h to show a ‘positive’).265 Positive tests, often implicitly involving culture (and not just metabolism) within the assay, would be followed by other tests seeking to identify the organisms detected, nowadays typically by nucleic acid sequence-based methods.266,267,268,269 However, these and other tests for the presence of antigens or even antibodies cannot speak to the question of culturability (and of course antigens such as lipopolysaccharide (LPS) are shed by dying cells).

The existence of bacterial DNA in even ‘healthy’ blood has long been known,272, and since naked DNA would be degraded and living cells would soon kill the host, the (seemingly) obvious conclusion that the prokaryotic DNA must reflect dormant cells seems neither to have been drawn nor acted upon.

Some well-established cases of dormancy in clinical microbiology

The idea that (typically intracellular) dormancy is a major component in some infectious diseases (including in the absence of antibiotics that may serve to light up ‘persisters’) is of course well-established, and the main purpose of this brief section is simply to remind readers of this. Such a reminder serves as a prelude to a longer discussion of the very many clinical circumstances where we consider that the role of dormant microbes is not widely appreciated, and where they are not really considered to involve a communicable or microbial component at all. Thus Table 1 shows a few organisms (and references) for which we consider that most readers would regard the idea of and evidence for dormancy as more or less uncontroversial. We do not include disease-causing infectious agents where they are better known for their ability to persist in the natural environment. Organisms such as *Legionella pneumophila* that represent significant public health issues, fall into this category, and *Legionella* and other persisters (in environments such as water system biofilms) are indeed well known (e.g. 324–328), although they too have special adaptations to an intracellular lifestyle (e.g. 329).

Generalised failure of classical techniques to detect dormant bacteria in clinical microbiology

As noted above for environmental microbiology, dormant bacteria can represent as much as 99% of the organisms that may be observed microscopically or by macromolecular sequencing, but classically (and by definition) they are not enumerated by culture-based methods that determine ‘immediate culturability’.275Such culture-based methods are also widely used in clinical microbiology. However, if we were to plate out 100 μL of a culture containing 200 bacteria/mL, of which 99% were dormant at any instant, we would expect (based on a Poisson distribution) to see fewer than 1 propagule or colony-forming unit per sample. We have noted above that it can be determined by sequencing that many of the non-cultured environmental organisms largely differ from those in standard culture collections. Certainly the examples given above in clinical microbiology, such as *Tropheryma whipplei*, were both observed microscopically and were sequenced prior to being brought into axenic culture.

The PCR method is exquisitely sensitive (down to one cell or propagule per sample), and we note that contamination artefacts
from the PCR reagents represent a real issue that must always be checked (e.g. 357–361), albeit this is no less true of blood cultures. We have rehearsed elsewhere five classes of argument that collectively make it implausible that these are all contamination artefacts; probably the most persuasive is simply the sheer number of prokaryotic DNA molecules that can be measured in blood and serum (e.g. 363–365). While some of the most recent nucleic acid sequencing methods (e.g. 366–371) do operate on single molecules, the analysis of prokaryotes usually used a broad-range PCR step to amplify small-subunit rDNA to assess their presence, whether in environmental or clinical samples. Using this, and while these methods alone cannot tell whether they were operationally dormant or dead, a very considerable number of studies have been performed in which ‘culture-negative’ clinical samples showed the presence of prokaryotes (at least as judged by sequence-based methods). This has some profound consequences.

Broad-range PCR methods indicate the widespread presence of prokaryotic DNA in culture-negative clinical samples

While PCR-based methods have long been used to assess the species involved in culture-positive samples, e.g. from blood, our interest here is in samples that are culture-negative that may yet (and indeed likely do) contain dormant cells. Among the first such indications of this was the study by Relman’s group, who showed that the blood of even healthy controls contained significant amounts of prokaryotic DNA. Table 2 lists some studies in which broad-range PCR has been used to amplify and detect prokaryotic rDNA in culture-negative samples.

In environmental microbiology, as mentioned above, there were many early indications (as observed microscopically or flow cytometrically) for the presence of bacteria that did not (or not easily) prove resuscitable or culturable. In a similar vein, many studies have shown microscopically observable organisms in culture-negative but disease-positive samples. This is true both for diseases considered to be due to microbial pathogens and, in fact, for many others normally considered non-communicable.

Microscopically observable and potentially dormant bacteria in clinical disease

Microscopic observations in tissues have been a major part of the discovery process by which certain bacteria were indeed identified as the cause of various diseases. Billings, Price, Dominguez, Mattman, Ewald and Onwuamaegbu and colleagues review

Aims	Culture-negative but PCR-positive	References
Assessment of endocarditis	6 out of 29	390
Development of broad-range PCR	71 out of 382	386
Development of broad-range PCR; limit of detection 5000 cfu/mL-1	10 out of 103	391
Improved broad-range PCR method	20 out of 24	44
Review	Many examples	392
Interstitial cystitis	14 out of 14	393
Endocarditis	270 (36.5%) of 740	394 (and see 395)
Endophthalmitis	116 out of 116 (selected)	396
General study	18 out of 394 (271 also culture-positive, PCR-positive)	397
Bacteraemia in intensive care	48 out of 197 45 out of 94	398 399
Sepsis/SIRS	29 out of 59 38 out of 72 culture-positive 14.6% vs 10.3% (no antibiotics) 123 vs 95	400 401 402 403
Osteoarticular samples	141 out of 1667	404
Review	Many examples	405
Various, including antibiotic-treated	34 out of 240	406
Meningitis	26 out of 274 19 out of 21	407 408
Orthopaedic samples	9% out of 125	378
Thoracic empyema	14 out of 22	409
Trauma	28 out of 35	410
the extensive and largely forgotten early literature. Domingue and Schlegel also mentioned that they could recover culturable bacteria, probably mainly from L forms (see 50,416,420), from lysates of normal and diseased blood. It was to be assumed that these cells were not replicating at significant rates in the blood itself. However, we can find no evidence that this was ever followed up. Our own work, summarised in 50, showed that both bacillary and coccoid cells could be found attached to and within the erythrocytes of patients with Parkinson’s disease and Alzheimer’s disease, at rather greater concentrations than in samples taken from nominally healthy controls.

In a similar way, our preliminary data show that bacteria are visible in plasma, as well as in whole blood smears in various inflammatory conditions. Here we show bacteria in platelet-rich plasma (PRP) taken from a patient with systemic lupus erythematosus and smeared onto a glass cover slip (Figure 7A and Figure 7B). We also show the same from patients with hereditary hemochromatosis (Figure 7C) and type 2 diabetes (Figure 7D). We also noted microbiota associated with erythrocytes in thromboembolic ischemic stroke (Figure 8A and Figure 8B). (Our microscopy methods are as published previously (e.g. 422–431), but fuller publications will appear elsewhere.) The ultramicroscopic evidence that these are indeed small bacteria and not say, cellular debris or microparticles (see 432) is presently mainly morphological, though we note the considerable evidence for the presence of bacterial DNA in blood (see previous sections and e.g. 51,323,433).

It is worth rehearsing the very great significance of this. With erythrocytes being present at some $5 \times 10^9 \text{mL}^{-1}$ in human blood, even if only one erythrocyte in a thousand harboured just a single dormant bacterium (that would be hard to detect microscopically, but see 433–437), the dormant bacterial load would still be $5,10^6 \text{mL}^{-1}$. This is both far from negligible, and serves to exclude the (always potentially worrisome) claim that ‘it is all contaminants’.

Figure 7. A and B) Platelet rich plasma (PRP) from a patient with systemic lupus erythematosus (SLE). A) Platelet with bacteria visible in the surrounding smear (pink arrows); B) areas in smear with bacteria (pink arrows); C) Erythrocyte with associated bacteria from patient with confirmed hereditary hemochromatosis; D) Erythrocytes with bacteria from patients with diagnosed type II diabetes. A–C Scale bar: 1 μm and D 400 nm.

Figure 8. Bacteria in whole blood from a patient with thromboembolic ischemic stroke A) Microbiota in whole blood; scale bar: 200 nm. B) Erythrocyte with bacteria; scale bar: 1 μm.
A culturable blood microbiome

A recent and highly significant paper by Damgaard and colleagues bears discussion. These workers note that while bacterial growth can normally be elicited during sterility testing in vitro from fewer than 1 in a 1000 blood units, transfusion-transmitted infections occur with a very much higher frequency (more like 10–12%).

Evidence for a microbial component in a very large variety of ‘non-communicable’ diseases

We have surveyed the literature for evidence in which a microbial component has been observed to be an accompaniment of, and probably a major contributory factor to, a variety of (typically inflammatory) diseases that are normally considered ‘non-communicable’. Rarely has the physiological state of these microbes been considered, but since it would be obvious if they were growing, it is most likely that they are indeed dormant. Table 3 summarises these highly extensive associations. While some are just associations, and we could have extended this table considerably, some studies (e.g. 450) contain very detailed aetiological arguments that leave little room for doubt. Overall, the sheer size of the Table does strongly indicate the commonality of many of the microbially based mechanisms underpinning or accompanying various autoimmune and inflammatory diseases. In conditions such as atherosclerosis, transient ischemic attacks (TIAs), and stroke, it is very easy to conceive how resuscitating bacteria might serve to block the flow of blood, for instance. At all events, our main point here is that the evidence for a microbial contribution to many diseases supposedly lacking a microbial component is both multi-factorial and very considerable. Indeed, the purpose of a synthetic review such as this is to provide such pointers for more detailed studies in individual cases. Our specific interest is with the chief mechanisms by which these supposedly dormant bacteria might resuscitate and act as triggers of disease.

Relation between iron dysregulation, sepsis and other comorbidities

Many of the diseases in Table 3 are precisely those inflammatory diseases that we have listed before as coupled to iron dysregulation. A consequence of our analysis is that iron dysregulation and sepsis (as judged either by genuine infection by culturable bacteria or their inflammatory products such as LPS) should be associated causally with these various other diseases.

This leads to a variety of predictions and postdictions that we rehearse. A purposely simple (and simplistic) indication of a plausible chain of events (for which each step is underpinned by substantial evidence) is given in Figure 9, both in general terms (for unspecified diseases) and for a couple of steps to type 2 diabetes. Figure 9 aims specifically to highlight the relationship between the ability of available iron to stimulate bacterial growth and the potential disease sequelae thereof.

Iron and sepsis

First of all, it is well established that free iron may be raised in sepsis and related conditions as may serum ferritin (that has mainly dumped its iron). We have here argued that this is likely to be a significant contributor to the relationship between overt or cryptic infection and the many iron-related inflammatory diseases discussed here and elsewhere. Note that patients suffering from iron overload diseases such as hereditary haemochromatosis are especially susceptible to infection (see e.g. 728–730 and Table 3). Certainly the idea that iron-related metabolism and siderophores are virulence factors (e.g. 731–743) is established unequivocally. In many diseases (e.g. lupus, type 1 diabetes) it is considered that patients with the disease are more prone to sepsis, but we suggest here that (as with stroke) it may more likely be the converse that is true: patients suffering from latent infections are in fact more prone to acquiring, having, or exacerbating the state of these other conditions, in a vicious cycle (see Figure 9).

Role of iron chelation in preventing sepsis

This was discussed at considerable length previously, and that discussion is not repeated here (though a few more recent and pertinent references include 736–789). However, while (shockingly, given the evidence) it does not even appear in the guidelines, there is considerable evidence that iron chelation slows, inhibits or overcomes sepsis. On this basis, iron chelation may be a suitable alternative to antibiotics in preventing multiple inflammatory diseases (such chelation may be nutritional rather than pharmacological in nature, e.g. 167). However, it is clear that we also need to learn to kill ‘dormant’ bacteria, and this usually requires that they are growing.

Utility of antibiotics in treating non-communicable diseases

It is well established that the re-use of protein motifs in natural (and directed) evolution means that most drugs, especially the more lipophilic ones, are promiscuous in the sense that they bind to multiple targets (on average six known ones for marketed drugs). This said (and while we are very far from wishing to encourage the unnecessary use of antibiotics), the prediction here is that appropriate antibiotics will prove to have clinical benefit in diseases commonly seen as non-communicable. This is certainly known to be the case for a number of autoimmune diseases such as rheumatoid arthritis, multiple sclerosis and psoriasis. Vaccination may prove equally effective.
We purposely largely confine ourselves to bacteria here, but include the occasional parasite, fungus, mycoplasma and virus. While obesity is usually seen as a cause of other diseases, rather than a disease itself, we note the influence of endotoxaemia on obesity451–456. We note too the extensive evidence for the role of LPS in inflammation457–459, and the experimental models (e.g. for Parkinson’s460) where it can induce disease directly. We do not much discuss diseases such as Crohn’s disease where the extensive uncertainty over the extent of involvement of mycobacteria (e.g.461–463) needs no extra rehearsal (albeit it serves to illustrate the difficulties of identifying the role of hard-to-cultivate bacteria in chronic diseases). Further, while similar phenomena may be observed in a variety of cancers (e.g.464–469), for reasons of space we have determined that this must be the subject of a separate work.

Table 3. Evidence for infectious agents in non-communicable diseases

Disease	Effect of bacterial involvement	Class of bacteria	Nature of the evidence	Selected References
AUTOIMMUNE DISEASES				
Ankylosing spondylitis	Blood brain barrier permeability and oligodendrocyte cell death in the absence of an adaptive immune filtrate correlate with the mechanistic action of Epsilon toxin (ETX).	*Clostridium perfringens* type B, an epsilon toxin-secreting bacillus	Immunoactivity to ETX, fecal culture and PCR analysis, lysogenic bacteriophage footprint analysis (to exclude the possibility of laboratory contamination), sequencing of the patient-derived ETX gene	474
Multiple sclerosis		*Chlamydia (Chlamyphilia) pneumoniae*	PCR, Serology	475–481
Rheumatoid arthritis (RA)/osteoarthritis/ reactive arthritis	Mostly antigens against these infections	*Porphyromonas gingivalis*	Anaerobic cultures (from subgingival samples), PCR, ELISA	482–486
		Proteus mirabilis, Escherichia coli	ELISA and other evidence	450,487–495
		Epstein-Barr virus cytomegalovirus	PCR, ELISA, in situ/hybridization, immunohistochemistry	496–499
		Mycoplasma (arthritidis mitogen, hominis and fermentans)	PCR, Western Blot	500–502
		Staphylococcus aureus	Microbiology reports from patient records	503,504
		Salmonella		
		Shigella		
		Yersinia		
		Campylobacter		
		Clostridium difficile		
		Propionibacterium acnes	Culture	506
		Chlamydia trachomatis	Tissue culture inoculation Role of antibiotics	507 508
Systemic Lupus Erythematosus	Unusual case of inflammatory monoarthritis and subsequent diagnosis of RA	*Streptococcus pneumonia, Haemophilus influenza, Mycobacterium tuberculosis, Listeria monocytogenes, Klebsiella pneumonia, Staphylococcus aureus; Cryptococcus neoformans, Aspergillus fumigatus	Blood & tissue culture, patient records	510–514
		Propionibacterium acnes	Culture	506
		Chlamydia trachomatis	Tissue culture inoculation Role of antibiotics	507 508
		Cell wall-deficient form	Microscopy	509
		*Streptococcus pneumonia, Haemophilus influenza, Mycobacterium tuberculosis, Listeria monocytogenes, Klebsiella pneumonia, Staphylococcus aureus; Cryptococcus neoformans, Aspergillus fumigatus	Blood & tissue culture, patient records	510–514
		Hypocomplementaemia and infection with encapsulated bacteria: patients are very susceptible to infections		
		Propionibacterium acnes	Culture	506
		*Streptococcus pneumonia, Haemophilus influenza, Mycobacterium tuberculosis, Listeria monocytogenes, Klebsiella pneumonia, Staphylococcus aureus; Cryptococcus neoformans, Aspergillus fumigatus	Blood & tissue culture, patient records	510–514
		Cell wall-deficient form	Microscopy	509
		*Streptococcus pneumonia, Haemophilus influenza, Mycobacterium tuberculosis, Listeria monocytogenes, Klebsiella pneumonia, Staphylococcus aureus; Cryptococcus neoformans, Aspergillus fumigatus	Blood & tissue culture, patient records	510–514
Vascularitis	Various reviews	Possibly mainly viral, but bacteria include *Staphylococcus aureus, Treponema pallidum, Rickettsiaceae, Borrelia burgdorferi, M. tuberculosis*		515–521
Disease	Effect of bacterial involvement	Class of bacteria	Nature of the evidence	Selected References
----------------------------------	---------------------------------	------------------------------------	------------------------	---------------------
CARDIOVASCULAR DISEASES				
Atherosclerosis		Aggregatibacter actinomycetemcomitans	Antibiotics, Antigens, PCR	524
		Chlamydia (Chlamydophila) pneumoniae		525–529
		Helicobacter cinaedi		530
		Helicobacter pylori		527
		Porphyromonas gingivalis	PCR	531–536
		Prevotella intermedia	PCR	532
		Streptococcus pneumoniae	Inoculated animals	537
		Toxoplasma gondii		538
		Treponema denticola	PCR	532
Endocarditis	Many cell-wall-deficient forms		Microscopy, PCR	539, See Table 2
			Benefit of antibiotic prophylaxis	540
Hereditary haemochromatosis		Chryseomonas, Veillonella, Streptococcus	qPCR	541
		Gemella haemolysans	Blood culture (Gram stain, catalase activity and biochemical characteristics)	542
		Listeria monocytogenes		543,544
		Plesiomonas shigelloides	Blood culture; API20E system	545
		Vibrio vulnificus		546,547
		Vibrio cholerae	Blood culture; PASCO and API20E	548
		Yersinia enterocolitica	Microbial cultures, serotype O:3, serotype 9	549–552
		Yersinia pseudotuberculosis	Mobility test and API	553,554
Hypertension	Strong positive association between periodontal infection and prevalent hypertension	Periodontal infection with A. actinomycetemcomitans, P. gingivalis, T. forsythia, and T. denticola	DNA-DNA hybridization	555,556
Myocardial infarction	Association between dental chronic inflammatory diseases and the occurrence of acute myocardial infarction was studied	Chronic dental infection correlated positively with MI		557–559
		Chlamydia pneumoniae, Helicobacter pylori	ELISA to IgG; anti-infectives	560,561
		Enterobacteria & influenza-like illness	Immunohistochemistry	562
		Influenza was associated with an increase in MI-associated deaths	Poissonian regression models to study the relationship between influenza and MI	563
		Streptococcus pneumoniae	Immunofluorescence imaging	564
Disease	Effect of bacterial involvement	Class of bacteria	Nature of the evidence	Selected References
---	--	---	--	---------------------
Stroke	84 different species detected in 77 patients	Community-acquired bacteremia	Population-based cohort study	565–574
Observational cross-sectional study	Bacterial endocarditis (Organisms found included S. pneumoniae, N. meningitides and other)	575, 576	577	
Borrelia burgdorferi	ELISA	579		
TIA	Brucella spp.	Brucella agglutination and Coombs' tests in blood		580
Chlamydia pneumoniae	Serology	581–583		
Haemophilus influenzae	Multivariate time series analysis to assess an association between infections and stroke using the established ‘3h-algorithm’	584		
Mycobacterium tuberculosis	Cox proportional hazard regressions	585		
Neisseria meningitidis	Latex agglutination test and counterimmunoelectrophoresis	589		
Staphylococcus aureus	Prospective observational cohort study; retrospective review;	590, 591		
Streptococcus bovis	Blood culture	592		
Streptococcus mutans	PCR	593		
Streptococcus pneumonia	Cox proportional hazard model	594		
Streptococcus viridans	Blood culture	595		
Neurosyphilis also present	Treponema pallidum	Serology and Treponema pallidum haem agglutination test; rapid plasma reagin test, and fluorescent treponemal antibody-absorption test	596, 597	
Vascular disease (aneurysmal and lesions and atherosclerotic plaques)	Numerous ‘uncultivable’ bacterial species found in atheromas	598		

DERMATOLOGICAL DISEASES

Disease	Class of bacteria	Nature of the evidence	Selected References
Psoriasis	Streptococcus haemolyticus group A, Staphylococcus aureus, Haemophilus influenzae, Klebsiella oxytoca, Moraxella catarrhalis, Escherichia coli	Culture from nasal/pharyngeal swab	599
Psoriasis	Escherichia coli	600	
Psoriasis	Streptococcus pyogenes, Staphylococcus aureus	601–603	

ENDOCRINE DISEASES

Disease	Class of bacteria	Nature of the evidence	Selected References
Diabetes	Pseudomonads, Stenotrophomonas maltophilia and Ps. aeruginosa	PCR and antibodies	604, 605

Blood

Disease	Class of bacteria	Nature of the evidence	Selected References	
Diabetes	Pseudomonads, Stenotrophomonas maltophilia and Ps. aeruginosa	PCR and antibodies	604, 605	
Disease	Effect of bacterial involvement	Class of bacteria	Nature of the evidence	Selected References
---------	---------------------------------	-------------------	------------------------	---------------------
Type 1	Urinary tract infection	*E. coli*, *Candida albicans*, enterovirus	Urine and blood culture	607-609
		Various proteobacteria	PCR	610
		Decreased bacteroidetes		611
Type 2	Systemic antibiotics improved diabetes control	Various proteobacteria	Measured as a reduction in glycated hemoglobin or reduction in insulin requirements	612
		Many Gram-positives	qPCR	613

NEUROLOGICAL DISORDERS

Disease	Effect of bacterial involvement	Class of bacteria	Nature of the evidence	Selected References	
Alzheimer’s Disease		Porphyromonas gingivalis	Immunolabeling and immunoblotting of brain tissue for the presence of LPS from *P. gingivalis*	619	
		Chlamydia pneumoniae	Immunohistochemistry, Statistical correlation of a meta-analysis	620–633	
		Spirochetal bacteria			
		Helicobacter pylori	Histology, direct experiment	634–636	
		Actinomyces naeslundii	Antibodies	637	
Amyotrophic Lateral Sclerosis		Mycoplasma infections (M. fermentas, M. genitalium, M. penetrans, M. fermentans, M. hominis, M. pneumoniae), Chlamydia pneumoniae, Borrelia burgdorferi	PCR, serology, microscopic observation	416,638–640	
Autism spectrum disorders	Mycoplasmal infections (M. fermentas, M. genitalium, M. penetrans, M. fermentans, M. hominis, M. pneumonia)		PCR	641	
	Chlamydia pneumoniae (co-infection with mycoplasma and human herpes virus-6), or wall-less bacteria		PCR	642,643	
	Maternal viral infection in first trimester and maternal bacterial infection in second trimester were found to be associated with ASD		Cox proportional hazards regression	644	
Chronic depression	Numerous Gram-negatives from gut, e.g. *Hafnia alvei*, *Pseudomonas aeruginosa*, *Morganella morganii*, *Pseudomonas putida*, *Citrobacter koseri*, *Klebsiella pneumoniae*			645	
Parkinson’s Disease	*Helicobacter pylori*	¹³C urea breath test, odd ratios for the association between treatment for HP and risk of PD using logistic regression	646–649		
	Toxoplasma gondii	Serology, ELISA	650		
	Helicobacter suis	DNA evidence	651		
Schizophrenia	A correlation between contact with house cats in early life and the development of schizophrenia exist	Toxoplasma gondii and Herpes simplex virus type 2	Prospective association study	652–656	
	Prenatal exposure to bacterial infection in the first trimester increased risk of schizophrenia in the offspring			657	
Disease	Effect of bacterial involvement	Class of bacteria	Nature of the evidence	Selected References	
---------	---------------------------------	-------------------	------------------------	---------------------	
Asthma	Review			660	
		Branhamella catarrhalis, *Haemophilus influenzae,* *Streptococcus pneumonia*		661	
	Increased mast cell numbers in airways	Atypical bacteria *Mycoplasma pneumoniae* and *Chlamydia pneumoniae*		662	
	A significant association exists between bacterial infections and acute wheezy episodes in young children, independent of viral infection	*Streptococcus pneumoniae,* *Haemophilus influenzae,* *Moraxella catarrhalis*		663,664	
	Lower airway infection	*Haemophilus influenzae,* *Streptococcus pneumoniae*		665	
				666–668	
Chronic Obstructive Pulmonary Disease (COPD)	Haemophilus influenzae, *Streptococcus pneumoniae,* *Moraxella catarrhalis,* *Staphylococcus aureus,* *Pseudomonas aeruginosa,* *Enterobacter* spp.				
OTHER INFLAMMATORY CONDITIONS	Preeclampsia	Acute atherosis	*Tannerella forsythensis,* *Porphyromonas gingivalis,* *Actinobacillus actinomycetemcomitans,* *Prevotella intermedia,* *Fusobacterium nucleatum* *Treponema denticola*	PCR	669
	Significantly lowered risk following antibiotic treatment	*Chlamydia pneumonia*	ELISA and qPCR of genomic DNA	45,671–674	
	Significant association with periodontal disease and UTI	*Chlamydia trachomatis*	Serology	677	
		Helicobacter pylori	Serology	678,679	
Chronic fatigue syndrome	LPS a culprit	*Hafnia alvei,* *Pseudomonas aeruginosa,* *Morganella morganii,* *Proteus mirabilis,* *Pseudomonas putida,* *Citrobacter koseri,* *Klebsiella pneumoniae*	Serology	680–683	
	Mycoplasmal infections (*M. pneumonia,* *M. fermentans,* *M. honinis,* *M. penetrans*), *Chlamydia pneumonia,* *Human herpes virus-6*		PCR	684	
	Various enterbacteria and others	*Cell wall deficient bacteria*		685	
Vitamin D receptor (VDR) dysregulation	Evade immune destruction by invading nucleated cells where they persist in the cytoplasm. From here they down-regulated the VDR	*Multiple organisms, including mycobacteria, Borrelia.*		685	
Disease	Effect of bacterial involvement	Class of bacteria	Nature of the evidence	Selected References	
--------------------------------	---------------------------------	--	---	---------------------	
Antiphospholipid syndrome		*S. aureus* cross-reacting antibodies		687	
		Various viral and bacterial triggers		688–690	
		Toxoplasma		691	
Sudden Infant Death Syndrome	Review	*S. aureus* most common	Seasonality, bacteriology	692–694	
			Inflammatory markers	695,696	
			Toxaemic shock indicators in serum	697,698	
Other Inflammatory Bowel Diseases	Many examples of dysbiosis of gut microbiota			699–707	
Sarcoidosis		*P. acnes* antibodies and antigens		708–710	
Migraine		*H. pylori*		711,712	

Figure 9. An elementary systems biology model of how iron dysregulation can stimulate dormant bacterial growth that can in turn lead to antigen production (e.g. of LPS) that can then trigger inflammation leading to cell death and to a variety of diseases. While it is recognised that this simple diagram is very far from capturing the richness of these phenomena, there is abundant evidence for each of these steps, but sample references for the numbered interactions are (1) 828–831 (especially including the release of free iron from ferritin), (2) 832–834, (3) 268, 453, 455, 835–842, (4) 456, 713, 843–846, (5) 717, 116, 847, (6) 848, 849–855, (7) 856–859, (8) 860–861.
Concluding comments: on the systems properties of dormancy and virulence

We have here brought together some of the relevant elements of environmental, laboratory, and clinical microbiology. We have argued that while their languages may differ (e.g. ‘dormancy’ vs ‘persistence’), very similar phenomena have been observed in each of these spheres (plausibly underlining a commonality of mechanism). Certainly the ability to culture microbes, and not merely to observe them (whether microscopically or via their macromolecular sequences or chemical products), remains an important goal of basic microbiology. This is likely to have significant payoffs in bioprospecting (e.g. 163,783). However, we are sure that improved methods of detecting and identifying these dormant bacteria, whether this is done via chemical imaging, through macromolecular amplification and/or sequencing, or through resuscitation and culturing, will have a major role to play in increasing the awareness of their existence and importance.

Clearly dormant, persistent bacteria are likely to be relatively avirulent when they are in such dormant states, and able to bypass the attentions of the innate immune system (albeit the production of superantigens by at least some microorganisms764,795 may be what triggers autoimmune diseases). This ‘stealth’ antigenicity is probably why they have been largely unnoticed by us too786, and their routine estimation via molecular methods37 seems highly desirable. Indeed, virulence varies widely between individual strains (e.g. 788,789). Modern molecular microbiology places much emphasis on the virulence of the pathogen, with concepts such as ‘pathogenicity islands’790–795, ‘virulence genes’796,797, and the ‘virulome’798 being commonplace. However, if dormant microbes resuscitate (or are to be resuscitated) in vivo we shall need to pay much more attention to the environmental triggers that cause this to happen than we probably have so far799 (given that the pathogen genotype is fixed800,801). In other words, virulence, like dormancy, is a phenotypic as well as a genotypic property. We remain largely ignorant of the means by which an optimal immune system has been selected for (or against) by longer-term evolution on the basis of microbial exposures in early life, and how this may have changed with more recent changes in human lifestyle802–805. Nor do we understand how such microbes might enter and exit blood cells (and see 50,330,806–810) (albeit the known endosymbiotic origins811,812 of eukaryotic organelles must have presaged such mechanisms). Similarly, we do not yet know what may cause these dormant microbes to resuscitate (and/or to exit their intracellular niches). However, the potential for iron-associated replication and (e.g.) LPS production and shedding does provide a very straightforward explanation for the continuing low- or medium-grade inflammation characteristic of the many inflammatory diseases we have considered here and elsewhere167,168,429,432,717 (Figure 9).

One approach to Science is based on varying independently something considered a cause and observing its predicted effects (e.g. 178,813,814). To assess causality in microbiology it is usual (e.g. 792,815–817) to invoke what are (variously818) referred to the Henle-Koch or Koch’s postulates. These are based on the nature and presence, but not the physiological state, of an agent that might be believed to ‘cause’ (or at least contribute to) an infectious disease. Consequently, dormancy poses something of a challenge to the full completion of the required tests. Indeed a number of authors417,792,816–821 have recognised that these tests may need revision in the light of the ability to identify disease-causing microbes by sequence alone. We suspect that a key element here will be the ability to resuscitate dormant organisms in vivo and to see the effects of that on clinical disease.

As phrased by Silvers822, “Several of our contributors showed how discoveries and insights could emerge with what seemed great promise, and yet be pushed aside, discarded, and forgotten – only to re-emerge once again, sometimes many years later, and become, in their new formulation, accepted as important”. In this sense, and as presaged in the opening quotation, it seems that ideas, as well as bacteria, can remain dormant for extended periods823,824.

Author contributions
This review originated as part of a discussion between the corresponding authors, who have a funded collaboration as outlined under ‘grant information’, and was partly written during a visit of EP and MP to Manchester. All authors contributed to the writing of the manuscript and have agreed to its final content.

Competing interests
No competing interests were disclosed.

Grant information
We thank the Biotechnology and Biological Sciences Research Council (grant BB/L025752/1) as well as the National Research Foundation (NRF) of South Africa for supporting this collaboration. This is also a contribution from the Manchester Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM) (BBSRC grant BB/M017702/1).
References

1. Kelin D: The problem of anabiosis or latent life: history and current concept. Proc R Soc Lond B Biol Sci. 1959; 150(939): 149–91. PubMed Abstract | Publisher Full Text

2. Kaprelyants AS, Gottschal JC, Kel DB: Dormancy in non-sporulating bacteria. FEMS Microbiol Rev. 1993; 104(3-4): 271–86. Publisher Full Text

3. Postgate JR: Viability measurements and the survival of microbes under minimum stress. Adv Microb Physiol. 1967; 1: 1–23. Publisher Full Text

4. Postgate JR: Viable counts and viability. Meth Microbiol. 1969; 1: 611–28. Publisher Full Text

5. Bugeja VC, Saunders PT, Bazin MJ: Estimating the mode of growth of individual microbial cells from cell volume distributions. Biosystems. 1985; 18(1): 47–63. PubMed Abstract | Publisher Full Text

6. Kel DB, Sonnelette B: GMP - Good Modelling Practice: an essential component of good manufacturing practice. Trends Biotechnol. 1995; 13(11): 481–92. Publisher Full Text

7. Pet SJ: Principles of microbe and cell cultivation. London: Wiley; 1975. 260–268. Reference Source

8. Tempest DW: The continuous cultivation of microorganisms. I. Theory of the chemostat. In: Norris JR, Ribbons DW, editors. Methods in Microbiology. 1970; 2: 259–276. Publisher Full Text

9. Munson RJ: Turbidostats. In: Norris JR, Ribbons DW, editors. Methods in Microbiology. Academic Press; 1970. 349–376. Publisher Full Text

10. Watson TG: The Present Status and Future Prospects of the Turbidostat. J Appl Chem Biotechnol. 1972; 22(2): 229–43. Publisher Full Text

11. Marks GH, Davey CL, Kel DB, et al.: The permittatist: a novel type of turbidostat. J Gen Microbiol. 1991; 137(4): 735–43. Publisher Full Text

12. Cooper VS, Bennett AF, Lenski RE: Microbial cell individuality and the underlying sources of heterogeneity. Nat Rev Microbiol. 2006; 4(8): 577–87. PubMed Abstract | Publisher Full Text | Free Full Text

13. Lindad TM, Lewis JP, Palsson BO: Microbial laboratory evolution in the era of genome-scale science. Mol Syst Biol. 2011; 7(1): 509. Publisher Abstract | Publisher Full Text | Free Full Text

14. Lennern RM, Hermgård MJ: Combinatorial strategies for improving multiple-stress resistance in industrially relevant Escherichia coli strains. Appl Environ Microbiol. 2014; 80(19): 6223–42. Publisher Abstract | Publisher Full Text | Free Full Text

15. Koch AL: The variability and individuality of the bacterium. In Neishardt FC, Low KB, Magasanik B, Schaechter M, Umbarger HE, editors. Escherichia coli and Salmonella typhimurium: cellular and molecular biology. Washington: American Society for Microbiology; 1987. 1606–14. Publisher Full Text

16. Avery SV: Microbial cell individuality and the underlying sources of heterogeneity. J Med Microbiol. 1947; 2: 95–123. Publisher Full Text

17. Davidson CJ, Surette MG: Individuality in bacteria. Annu Rev Genet. 2008; 42: 253–68. Publisher Abstract | Publisher Full Text | Free Full Text

18. Ackermann M: Microbial individuality in the natural environment. ISME J. 2013; 7(3): 465–7. PubMed Abstract | Publisher Full Text | Free Full Text

19. Bell DB: Publishing: Reviews turn facts into understanding. Nature. 2012; 490(7418): 37. PubMed Abstract | Publisher Full Text | Free Full Text

20. Bigger JW: Treatment of staphylococcal infections with penicillin - by intermittent sterilisation. Lancet. 1944; 244(6320): 497–500. Publisher Full Text

21. McDermott W: Microbial persistence. Yale J Biol Med. 1958; 30(4): 257–91. PubMed Abstract | Publisher Full Text | Free Full Text

22. Osman MA, Brynildsen MP: Dormancy is not necessary or sufficient for bacterial persistence. Antimicrob Agents Chemother. 2013; 57(7): 3230–9. PubMed Abstract | Publisher Full Text | Free Full Text

23. Amato SM, Fazen CH, Henry TC, et al.: The role of metabolism in bacterial persistence. Front Microbiol. 2014; 5: 70. PubMed Abstract | Publisher Full Text | Free Full Text

24. Tsuomanen E, Cozens R, Tosch W, et al.: The rate of killing of Escherichia coli by beta-lactam antibiotics is strictly proportional to the rate of bacterial growth. J Gen Microbiol. 1986; 132(5): 1297–304. PubMed Abstract | Publisher Full Text | Free Full Text

25. Roostalu J, Järs A, Luidalep H, et al.: Cell division in Escherichia coli cultures monitored at single cell resolution. BMC Microbiol. 2008; 8: 68. PubMed Abstract | Publisher Full Text | Free Full Text

26. Luria SE, Latarjet R: Ultraviolet irradiation of bacteriophage during intracellular growth. J Bacteriol. 1947; 53(2): 149–63. PubMed Abstract | Free Full Text

27. Wulf G, Zappola RM, Regev RR, et al.: Phenotypic tolerance: antibiotic enrichment of noninherited resistance in bacterial populations. Antimicrob Agents Chemother. 2005; 49(4): 1483–94. PubMed Abstract | Publisher Full Text | Free Full Text

28. Cohen NR, Lubitza MA, Collins JJ: Microbial persistence and the road to drug resistance. Cell Host Microbe. 2013; 13(6): 632–42. PubMed Abstract | Publisher Full Text | Free Full Text

29. Levin BR, Concepción-Acevedo J, Udeku KO: Persistence: a copacetic and parsimonious hypothesis for the existence of non-inherited resistance to antibiotics. Curr Opin Microbiol. 2014; 21: 18–21. PubMed Abstract | Publisher Full Text | Free Full Text

30. De Boile X, Bayless CD, Field D, et al.: The length of a tetrancleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to type III DNA methyltransferases. Mol Microbiol. 2000; 36(1): 211–22. PubMed Abstract | Publisher Full Text

31. Wisniewski-Dyś F, Vial L: Phase and antigenic variation mediated by genome modifications. Antoniu Van Leeuwenhoek. 2008; 94(4): 493–515. PubMed Abstract | Publisher Full Text | Free Full Text

32. Girgis HS, Harris K, Tavazoie S: Large mutational target size for rapid emergence of bacterial persistence. Proc Natl Acad Sci U S A. 2012; 109(31): 12740–5. PubMed Abstract | Publisher Full Text | Free Full Text

33. Kel DB, Kaprelyants AS, Weichart DH, et al.: Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antone van Leeuwenhoek. 1998; 73(2): 169–87. PubMed Abstract | Publisher Full Text | Free Full Text

34. Primas H: Chemistry, Quantum Mechanics and Reductionism. Berlin: Springer; 1981.

35. Gribbin JR: In search of Schrödinger’s cat: quantum physics and reality. London: Bantam Books; 1985.

36. Postgate JR: Death in microbes and macrobces. In: Gray TRG, Postgate JR, editors. In: The Survival of Vegetative Microbes. Cambridge: Cambridge University Press; 1976. 1–19.

37. Barer MR, Gribbon LT, Hanwood CR, et al.: The viable but non-culturable hypothesis and medical bacteriology. Rev Med Microbiol. 1993; 4(4): 183–91. Publisher Full Text

38. Barer MR: Viable but non-culturable and dormant bacteria: time to resolve an oxymoron and a misnomer? J Med Microbiol. 1997; 46(8): 629–31. Publisher Full Text

39. Barer MR, Kaprelyants AS, Weichart DH, et al.: Microbial stress and culturability: conceptual and operational domains. Microbiology. 1998; 144(8): 2009–10. Publisher Full Text

40. Barer MR, Hanwood CR: Bacterial viability and culturability. Adv Microb Physiol. 1999; 41: 93–137. Publisher Full Text

41. Barer MR, Bogosian G: The viable but nonculturable concept, bacteria in urine samples, and Oocam’s razor. J Clin Microbiol. 2004; 42(11): 5434. PubMed Abstract | Publisher Full Text | Free Full Text

42. Bogosian G, Bourneuf EV: A matter of bacterial life and death. EMBO Rep; 2001; 2(9): 770–4. PubMed Abstract | Publisher Full Text | Free Full Text

43. Kel DB: Scientific discovery as a combinatorial optimisation problem: how best to navigate the landscape of possible experiments? Biosci Trends. 2012; 34(3): 236–44. PubMed Abstract | Publisher Full Text | Free Full Text

44. Cherkasova A, Emonts S, Ceroni D, et al.: Development and validation of a modified broad-range 16S rDNA PCR for diagnostic purposes in clinical microbiology. J Microbiol Methods. 2009; 78(2): 227–31. PubMed Abstract | Publisher Full Text | Free Full Text

45. Panahiyawena NB, Jin LJ, Leung WK, et al.: Microbiology of odontogenic bacteremia: beyond endocarditis. Clin Microbiol Rev. 2009; 22(1): 46–64. PubMed Abstract | Publisher Full Text | Free Full Text

46. Tlaskatová-Hogenová H, Štěpánková R, Kozákova H, et al.: The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol. 2011; 8(2): 113–20. PubMed Abstract | Publisher Full Text | Free Full Text

47. Bacconi A, Richmond GS, Baroldi MA, et al.: Improved sensitivity for molecular detection of bacterial and Candida infections in blood. J Clin Microbiol. 2014; 52(9): 3164–74. PubMed Abstract | Publisher Full Text | Free Full Text

48. Valencia-Shelton F, Loeffelholz M: Nonculture techniques for the detection of
bacteremia and fungemia. *Future Microbiol.* 2014; 9(4): 543–59.

50. Potgieter M, Bester J, Keil DB, et al.: The dormant blood microbiome in chronic, inflammatory diseases. *FEMS Microbiol Rev.* 2015.

51. Gabiyan P, Marcinord M, Bua G, et al.: Development of a broad-range 23S rDNA real-time PCR assay for the detection and quantification of pathogenic bacteria in human whole blood and plasma specimens. *Biomed Res Int.* 2013; 2013: 294653.

52. Itzhaki RF, Wozniak MA: *Escherichia coli* and *Salmonella typhimurium*: access to unculturable microbes in the environment. *BioTechnol J.* 2013; 11(2): 143–69.

53. Itzhaki RF: *Escherichia coli* and *Salmonella typhimurium*: access to unculturable microbes in the environment. *Microbiol Rev.* 1995; 59(4): 1220–40.

54. Den Besten J, de Vos WM, van den Ende M, et al.: *Salmonella* serovar *typhi*: evidence for a major role of the virus. *Front Aging Neurosci.* 2014; 6: 202.

55. Mason CA, Hamer G, Bryers JD: The death and lysis of microorganisms in environmental processes. *FEMS Microbiol Rev.* 1986; 2(4): 373–401.

56. Elers H, Preferhauer J, Gloeckner FO, et al.: Culturability and in situ abundance of pelagic bacteria from the North Sea. *Appl Environ Microbiol.* 2000; 66(7): 3044–51.

57. Hugenholtz P: Exploring prokaryotic diversity in the genomic era. *Genome Biol.* 2002; 3(2): reviews0003.1–reviews0003.8.

58. Keller M, Zengler K: Tapping into microbial diversity. *Nat Rev Microbiol.* 2004; 2(4): 141–50.

59. Lennon JT, Konopka A: Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. *Annu Rev Microbiol.* 1985; 39: 321–46.

60. Miller MA, Parks BW, Crammer KL, et al.: Polymicrobial interactions: impact on polymicrobial interactions: impact on diet and human disease: Part 1: A path of scientific and clinical potential. *Annu Rev Microbiol.* 2012; 66: 429–52.

61. Langille MG, Zaneveld J, Caporaso JG, et al.: Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. *Nucleic Acids Res.* 2013; 41(11): 5412–22.

62. Nakamura T, Kamada Y, Kusuda Y, et al.: Polymicrobial interactions: impact on diet and human disease: Part 1: A path of scientific and clinical potential. *Annu Rev Microbiol.* 2012; 66: 429–52.

63. Miller MA, Parks BW, Crammer KL, et al.: Polymicrobial interactions: impact on diet and human disease: Part 1: A path of scientific and clinical potential. *Annu Rev Microbiol.* 2012; 66: 429–52.
of microbial viability using flow cytometry. In: Robinson JP, editor. Current Protocols in Cytometry: Volume 11. Wiley-Interscience; 1999:11.3.1–11.3.20. Reference Source

194. Sachidanandam R, Giri KY: Flow cytometric analysis of prolonged stress-dependent heterogeneity in bacterial cells. FEMS Microbiol Lett. 2009; 290(2):143–8. Published Abstract | Publisher Full Text

195. Sachidanandam R, Yew-Hoong Gin K: A dormancy state in nonspore-forming bacteria. Appl Microbiol Biotechnol. 2009; 81(5):927–41. Published Abstract | Publisher Full Text

196. Mukamolova GV, Kaprelyants AS, Young M, et al.: A bacterial cytokine. Proc Natl Acad Sci U S A. 1998; 95:8916–21. Published Abstract | Free Full Text

197. Young M, Artsibasova V, Beller HR, et al.: Genome sequence of the Fleming strain of Micrococcus luteus, a simple free-living actinobacteria. J Bacteriol. 2010; 192(3):841–60. Published Abstract | Publisher Full Text | Free Full Text

198. Mukamolova GV, Turapov OA, Kazarian K, et al.: The rpf gene of Micrococcus luteus encodes an essential secreted growth factor. Mol Microbiol. 2002; 46(3):611–21. Published Abstract | Publisher Full Text

199. Kaprelyants AS, Mukamolova GV, Kormer SS, et al.: Structural changes and cellular localization of resuscitation-promoting factor in environmental isolates of Micrococcus luteus. Microb Ecol. 2010; 59(2):296–310. Published Abstract | Publisher Full Text

200. Gupta RK, Sinha V: Resuscitation promoting factors: a family of microbial proteins in survival and resuscitation of dormant mycobacteria. Indian J Microbiol. 2012; 52(2):114–21. Published Abstract | Publisher Full Text | Free Full Text

201. Commichau FM, Halbedel S: The resuscitation promotion concept extends to firmicutes. Microbiology. 2013; 159(Pt 7):1298–300. Published Abstract | Publisher Full Text

202. Downey KJ, McPherson DJ, Young DJ, et al.: Global expression profiling of strains harbouring null mutations reveals that the five rpf-like genes of Mycobacterium tuberculosis show functional redundancy. Tuberculosis (Edinb). 2004; 84(3–4):167–79. Published Abstract | Publisher Full Text

203. Downey KJ, McPherson DJ, Young DJ, et al.: Expression, purification, crystallization and preliminary X-ray crystallographic analysis of a major fragment of the resuscitation-promoting factor RpfB from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011; 67(Pt 1):164–8. Published Abstract | Publisher Full Text | Free Full Text

204. Ruggiero A, Spurling F, Prone L, et al.: Resuscitation, purification, crystallization and preliminary X-ray crystallographic analysis of a major fragment of the resuscitation-promoting factor RpfB from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011; 67(Pt 1):164–8. Published Abstract | Publisher Full Text | Free Full Text

205. Ruggiero A, Spurling F, Prone L, et al.: Resuscitation-promoting factors as antigens in novel tuberculosis sub-unit vaccines. Vaccine. 2012; 30(4):327–32. Published Abstract | Publisher Full Text | Free Full Text

206. Romano M, Aran Y, Korf H, et al.: Potential of Mycobacterium tuberculosis resuscitation-promoting factors as antigens in novel tuberculosis sub-unit vaccines. Microbes Infect. 2012; 14(1):86–95. Published Abstract | Publisher Full Text

207. Kondratieva T, Rubakova E, Kana BD, et al.: Prototypal Mycobacterium tuberculosis Rpf double-knockout strain exhibits profound defects in reactivation from chronic tuberculosis and innate immunity phenotypes. Infect Immun. 2008; 76(9):4269–81. Published Abstract | Publisher Full Text | Free Full Text

208. Faiz A, Jan W, Shi C, et al.: Production and characterization of mononuclear antibody against Mycobacterium tuberculosis RpfB domain. Hybridoma (Larchmt). 2010; 29(4):297–303. Published Abstract | Publisher Full Text | Free Full Text

209. Kim JS, Kim WD, Choi HG, et al.: Mycobacterium tuberculosis rpfB drives Th1-type T cell immunity via a TLR4-dependent activation of dendritic cells. J Leukoc Biol. 2013; 94(3):733–40. Published Abstract | Publisher Full Text | Free Full Text

210. Kim JS, Kim JD, Lee JI, et al.: Immunization of Mycobacterium tuberculosis resuscitation-promoting factor B elicits polyclonal CD8+ T cell responses. Clin Exp Immunol. 2013; (2):235–43. Published Abstract | Publisher Full Text | Free Full Text

211. Zhao S, Song X, Zhao Y, et al.: Protective and therapeutic effects of the resuscitation-promoting factor domain and its mutants against Mycobacterium tuberculosis in mice. Pathog Dis. 2015; 73(3):piu025. Published Abstract | Publisher Full Text | Free Full Text

212. Davies AP, Dhillon AP, Young M, et al.: Resuscitation-promoting factors are expressed in Mycobacterium tuberculosis-infected human tissue. Tuberculosis (Edinb). 2008; 88(5):460–8. Published Abstract | Publisher Full Text | Free Full Text

213. Kesavan AK, Brooks M, Tufariello J, et al.: Identification of human T-cell responses to Mycobacterium tuberculosis resuscitation-promoting factors in long-term latently infected individuals. Clin Vaccine Immunol. 2011; 18(4):676–83. Published Abstract | Publisher Full Text | Free Full Text

214. Dewi Puspita I, Uehara M, Katayama T, et al.: Resuscitation promoting factor...
Promoting factors of nonculturable bacteria: programmed survival forms or cells at death's door? Bioseis. 2015; 28(1): 58–64. Published Abstract | Publisher Full Text | Free Full Text

Su X, Shen H, Yao X, et al.: A novel approach to stimulate the biphenyldegrading potential of bacterial community from PCBs-contaminated soil of e-waste recycling sites. Bioreour Technol. 2013; 146: 27–34. Published Abstract | Publisher Full Text

Su X, Zhang Q, Hu J.: Enhanced degradation of biphenyl from PCBcontaminated sediments by the isolate of extracellular organic matter from Micrococcus luteus. Appl Microbiol Technol. 2015; 99(4): 1989–2000. Published Abstract | Publisher Full Text

Shleeva M, Kondratieva T, Rubakova E, et al.: Reactivation of dormant “nonculturable” Mycobacterium tuberculosis developed in vitro after injection in mice: both the dormancy depth and host genetics influence the outcome. Microb Pathog. 2015; 78: 63–6. Published Abstract | Publisher Full Text

Su X, Shen H, Yao X, et al.: Promoting factors of nonculturable Mycobacterium tuberculosis and their regeneration. Microbiologia. 2003; 72(1): 76–83. Published Abstract

Chen H, Liu H, Gao H, et al.: The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiol Rev. 2011; 35(6): 933–56. Published Abstract | Publisher Full Text | Free Full Text

Keren I, Shah D, Spoering A, et al.: Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol. 2004; 186(24): 8172–80. Published Abstract | Publisher Full Text | Free Full Text

Shah D, Zhang Z, Khodursky A, et al.: Persisters: a distinct physiological state of E. coli. BMC Microbiol. 2006; 6: 53. Published Abstract | Publisher Full Text | Free Full Text

Keren I, Kaldalu N, Spoering A, et al.: Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett. 2004; 230(1): 13–8. Published Abstract | Publisher Full Text | Free Full Text

Jöres A, Kaldalu N, Tenson T: The frequency of persisters in Escherichia coli reflects the kinetics of awakening from dormancy. J Bacteriol. 2010; 192(3): 377–84. Published Abstract | Publisher Full Text | Free Full Text

Ludallep H, Jöres A, Kaldalu N, et al.: Age of inoculum strongly influences persister frequency and drug tolerance: epistasis implicated in altered persistence. J Bacterial. 2011; 193(4): 3586–605. Published Abstract | Publisher Full Text | Free Full Text

Kester JC, Fortune SM: Persisters and beyond: mechanisms of phenotypic drug resistance and tolerant drug action in bacteria. Crit Rev Biochem Mol Biol. 2014; 49(2): 91–101. Published Abstract | Publisher Full Text | Free Full Text

Tyson JJ, Chen KC, Novak B: Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol. 2003; 15(2): 221–31. Published Abstract | Publisher Full Text | Free Full Text

Russell E, Kistryn R, Baban AO, et al.: Bacterial persistence: a model of survival in changing environments. Genetics. 2005; 169(4): 1807–14. Published Abstract | Publisher Full Text | Free Full Text

Dubnau D, Losick R: The two-cell paradigm: From benzoyl penicillin to DNA repair. Cell. 2006; 124(1): 107–16. Published Abstract | Publisher Full Text | Free Full Text

Smits W, Kuipers OP, Veening JW: Phenotypic variation in bacteria: the role of feedback regulation. Nat Rev Microbiol. 2006; 4(4): 259–71. Published Abstract | Publisher Full Text | Free Full Text

Casadesus J, Low DA: Programmed heterogeneity: epigenetic mechanisms in bacteria. J Biol Chem. 2013; 288(20): 23929–35. Published Abstract | Publisher Full Text | Free Full Text

Nelson DE, Ihekwaba AE, Elliott M, et al.: Oscillations in NF-κappaB signalling control the dynamics of gene expression. Science. 2004; 306(5696): 704–8. Published Abstract | Publisher Full Text | Free Full Text

Kei DB: Thewodor Bücher Lecture. Metabolomics, modelling and machine learning in systems biology - towards an understanding of the languages of cells. Delivered on 3 July 2005 at the 30th FEBS Congress and the 9th UMBMB conference in Budapest. FEBS J. 2006; 273(8): 873–94. Published Abstract | Publisher Full Text | Free Full Text

Davey HM, Davey CL, Woodward AM, et al.: Oscillatory, stochastic and chaotic growth rate fluctuations in permissitastically controlled yeast cultures. Biosystems. 1996; 39(1): 43–61. Published Abstract | Publisher Full Text | Free Full Text

Ghazemaghami S, Huh WK, Bower K, et al.: Global analysis of protein expression in yeast. Nature. 2003; 425(6959): 737–41. Published Abstract | Publisher Full Text | Free Full Text

Raser JM, O’Shea EK: Noise in gene expression: origins, consequences, and control. Science. 2005; 309(5743): 2010–3. Published Abstract | Publisher Full Text | Free Full Text

Cogan NG, Brown J, Davies K, et al.: Optimal control strategies for disinfection of bacterial populations with persistor and susceptible dynamics. Antimicrob Agents Chemother. 2012; 56(9): 4816–26. Published Abstract | Publisher Full Text | Free Full Text

Orman MA, Brynildsen MP: Establishment of a method to rapidly assay bacterial persister metabolism. Antimicrob Agents Chemother. 2013; 57(9): 4398–409. Published Abstract | Publisher Full Text | Free Full Text

Balaban NB, Merrin J, Chait R, et al.: Bacterial persistence as a phenotypic switch. Science. 2004; 305(5696): 1882–6. Published Abstract | Publisher Full Text | Free Full Text

Gefen O, Balaban NO: The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiol Rev. 2009; 33(4): 704–17. Published Abstract | Publisher Full Text | Free Full Text

Lewis K: Persister cells. Annu Rev Microbiol. 2010; 64: 357–72. Published Abstract | Publisher Full Text | Free Full Text

Rainey PB, Beaumont HF, Ferguson GG, et al.: The evolutionary emergence of stochastic phenotype switching in bacteria. Microb Cell Fact. 2011; 10(Suppl 1): S14. Published Abstract | Publisher Full Text | Free Full Text

Balaban NB, Gerdes K, Lewis K, et al.: A problem of persistence: still more...
questions than answers? Nat Rev Microbiol. 2013; 11(8): 587–91.

280. Zhang Y: Persisters, persistent infections and the Yin-Yang model. Emerg Microbes Infec. 2014; 3(1):e3.

281. Putniņš K, Krogmann K, Lukk E, et al.: Phenotypic heterogeneity enables opportunophilic Escherichia coli to evade killing by antibiotics and serum complement. Infect Immun. 2015; 83(5): 1056-67.

282. Rotem E, Loinger A, Ronin I, et al.: Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. Proc Natl Acad Sci U S A. 2010; 107(28): 12541–6.

283. Lewis K: Persister cells and the riddle of biofilm survival. Biochemistry (Mosk). 2005; 70(2): 267–74.

284. Vázquez-Laslop N, Lee H, Neyfakh AA: Persistence. Proc Natl Acad Sci U S A. 2014; 111(11): 4280–4.

285. Popat R, Comforth DM, McNally L, et al.: Collective sensing and collective responses in quorum-sensing bacteria. J R Soc Interface. 2015; 12(103): pii: 20140882.

286. Fuqua WC, Winans SC, Greenberg EP: Quorum sensing in bacteria: the LuxR-LuxI family of cell-density-responsive transcriptional regulators. J Bacteriol. 1994; 176(2): 269–75.

287. Lowery CT, Salamanda NT, Sawada D, et al.: Mechanical chemistry as a conduit for the modulation of quorum sensing. J Med Chem. 2010; 53(21): 7467–89.

288. Galloway WR, Hodgkinson JT,Bowden S, et al.: Applications of small molecule activators and inhibitors of quorum sensing in Gram-negative bacteria. Trends Microbiol. 2012; 20(9): 449–58.

289. Carpenter AB, Mukamolova GV, Ruggiero A, et al.: Resuscitation-promoting factors (Rpf): in search of inhibitors. Protein Pep Lett. 2012; 19(10): 1026–34.

290. Rutherford ST, Bassler BL: Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med. 2012; 2(11): pii: a002477.

291. Wang Y, Ma S: Small molecules modulating AHL-based quorum sensing to attenuate bacteria virulence and biofilms as promising antimicrobial drugs. Curr Med Chem. 2014; 21(2): 296–311.

292. Kalia VC: Quorum sensing inhibitors: an overview. Biotechnol Adv. 2013; 31(2): 224–45.

293. Kalia VC, Wood TK, Kumar P: Evolution of resistance to quorum-sensing inhibitors. Microb Ecol. 2014; 68(1): 13–23.

294. Title PM: Bailey & Scott's Diagnostic Microbiology. St Louis: Elsevier Mosby. 2014. Reference Source

295. Bennett JE, Dolin R, Blaser MJ: Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, 8th Edition. Philadelphia: Saunders Elsevier. 2015. Reference Source

296. Murray PR: The clinician and the microbiology laboratory. In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases. 8th Edition. Philadelphia: Saunders Elsevier. 2015: 191–223. Reference Source

297. Petti CA, Westen M, Carroll KC: Systems for detection and identification of bacteria and yeasts. In: Versalovic J, Carroll KC, Funkie G, Jorgensen JH, Landry ML, Wamock DW, editors. Manual of Clinical Microbiology. 10th Edition. Washington: American Society of Microbiology. 2011: 15–26. Publisher Full Text

298. Nolte FS, Caliendo AM: Molecular microbiology. In: Versalovic J, Carroll KC, Funkie G, Jorgensen JH, Landry ML, Wamock DW, editors. Manual of Clinical Microbiology. 10th Edition. Washington: American Society of Microbiology. 2011: 27–59. Publisher Full Text

299. Persing DH, Tenover FC, Tang YW, et al.: Molecular Microbiology: Diagnostic Principles and Practice. 2nd Ed. Washington, DC: American Society for Microbiology. 2011. Reference Source

300. Zmiria A, Gant V, Bates M, et al.: Rapid diagnostics urgently needed for killer infections. Lancet Respir Med. 2013; 1(4): 284–9.

301. Zmiria A, Al-Tawfiq JA, Enne VI, et al.: Rapid point of care diagnostic tests for viral and bacterial respiratory tract infections—needs, advances, and future prospects. Lancet Infect Dis. 2014; 14(11): 1123-35. Publisher Full Text

302. Carpenter AB: Immunosassays for the diagnosis of infectious diseases. In: Versalovic J, Carroll KC, Funkie G, Jorgensen JH, Landry ML, Wamock DW, editors. Manual of Clinical Microbiology. 10th Edition. Washington: American Society of Microbiology. 2011: 60–72. Publisher Full Text

303. Nikkari S, McLaughlin LJ, Br W, et al.: Does blood of healthy subjects contain bacterial ribosomal DNA? J Clin Microbiol. 2001; 39(5): 1956–9.

304. Garcia-Nuñez M, Sopana N, Ragul S, et al.: Persistence of Legionella in hospital water supplies and nosocomial Legorniares' disease. FEMS Immunol Med Microbiol. 2008; 52(2): 202–6. Publisher Full Text

305. Declercq P: Biofilms: the environmental playground of Legionella pneumophila.
Salmonella carriage. Infect Immun. 2013; 81(8): 2920–30.

350. Claud B, Sprête P, Chirikova A, et al.: Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell. 2014; 158(4): 722–33.

351. Helaine S, Cheverton AM, Watson KG, et al.: Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science. 2004; 343(6167): 204–8.

352. Holden DW: Microbiology. Persisters unmasked. Science. 2015; 347(6217): 30–2.

353. Prapin TK, Hamilton RG, Garcia-Lara J, et al.: A privileged intraphagocyte niche is responsible for disseminated infection of Staphylococcus aureus in a zebrafish model. Cell Microbiol. 2012; 14(10): 1600–19.

354. Proctor RA, Kriegeskorte A, Kahl BC, et al.: Staphylococcus aureus Small Colony Variants (SCVs): a road map for the metabolic pathways involved in persistent infections. Front Cell Infect Microbiol. 2014; 4: 89.

355. Kahl BC: Small colony variants (SCVs) of Staphylococcus aureus—a bacterial survival strategy. Infect Genet Evol. 2014; 21: 515–22.

356. Fredricks DN, Relman DA: Improved amplification of microbial DNA from blood cultures by removal of the PCR inhibitor sodium polyanetholesulfonate. J Clin Microbiol. 1998; 36(10): 2810–6.

357. Tanner MA, Goebel BM, Dojka MA, et al.: Specific ribosomal DNA sequences from diverse environmental settings correlate with experimental contaminants. Appl Environ Microbiol. 1998; 64(8): 3110–3.

358. Milar BC, Xu J, Moore J: Risk assessment models and community management: implications for broad-range ribosomal DNA PCR as a diagnostic tool in medical bacteriology. J Clin Microbiol. 2002; 40(5): 1575–80.

359. Schroeter J, Wilkemeyer I, Schiller RA, et al.: Validation of the Microbiological Testing of Tissue Preparations Using the BACTEC® Blood Culture System. Transfus Med Hemother. 2012; 39(6): 387–90.

360. Saltier SJ, Cox MJ, Turek EM, et al.: Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014; 12(1): 87.

361. Mylotis JM, Tayara A: Blood cultures: clinical aspects and controversies. Eur J Clin Microbiol Infect Dis. 2000; 19(3): 157–63.

362. Bribaut S, Fauroc A, Gravel E, et al.: Detection of bacteria in red blood cell concentrates by the Scansystem method. J Clin Microbiol. 2005; 43(9): 2251–5.

363. Amar J, Serino M, Lange C: Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia. 2011; 54(12): 3055–61.

364. Didenko L, Bowden R, Wilson DJ, et al.: Transforming clinical microbiology with bacterial genome sequencing. Nat Rev Genet. 2012; 13(9): 601–12.

365. Loman NJ, Constantinou C, Chan JZ, et al.: High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat Rev Microbiol. 2012; 10(9): 599–606.

366. Shendure J, Lieberman Aiden E: The expanding scope of DNA sequencing. Nat Biotechnol. 2012; 30(11): 1084–94.

367. Fichot EB, Norman RS: Microbial phylogenetic profiling with the Pacific Biosciences sequencing platform. Microbiome. 2013; 1(1): 10.

368. Padmanaban R, Mishra AK, Rasool D, et al.: Genomics and metagenomics in medical microbiology. J Microbiol Methods. 2013; 93(3): 415–24.

369. Frcke WF, Rasko DA: Bacterial genome sequencing in the clinic: bioinformatic challenges and solutions. Nat Rev Genet. 2014; 15(1): 49–55.

370. Ryu H, Henson M, Eik M, et al.: Development of quantitative PCR assays targeting the 16S RNA genes of Enterococcus spp. and their application to the identification of Enterococcus species in environmental samples. Appl Environ Microbiol. 2010; 76(12): 4157–63.

371. Bondoc EI, Hogg NJ, Williams PA, et al.: Multi-locus sequence typing of Enterococcus faecalis isolates from poultry by-products. J Appl Microbiol. 2013; 114(3): 470–80.

372. Proctor RA, Kriegeskorte A, Kahl BC, et al.: Staphylococcus aureus Small Colony Variants (SCVs): a road map for the metabolic pathways involved in persistent infections. Front Cell Infect Microbiol. 2014; 4: 89.

373. Kahl BC: Small colony variants (SCVs) of Staphylococcus aureus—a bacterial survival strategy. Infect Genet Evol. 2014; 21: 515–22.

374. Fredricks DN, Relman DA: Improved amplification of microbial DNA from blood cultures by removal of the PCR inhibitor sodium polyanetholesulfonate. J Clin Microbiol. 1998; 36(10): 2810–6.

375. Tanner MA, Goebel BM, Dojka MA, et al.: Specific ribosomal DNA sequences from diverse environmental settings correlate with experimental contaminants. Appl Environ Microbiol. 1998; 64(8): 3110–3.

376. Saltier SJ, Cox MJ, Turek EM, et al.: Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014; 12(1): 87.

377. Mylotis JM, Tayara A: Blood cultures: clinical aspects and controversies. Eur J Clin Microbiol Infect Dis. 2000; 19(3): 157–63.

378. Bribaut S, Fauroc A, Gravel E, et al.: Detection of bacteria in red blood cell concentrates by the Scansystem method. J Clin Microbiol. 2005; 43(9): 2251–5.

379. Amar J, Serino M, Lange C: Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia. 2011; 54(12): 3055–61.

380. Didenko L, Bowden R, Wilson DJ, et al.: Transforming clinical microbiology with bacterial genome sequencing. Nat Rev Genet. 2012; 13(9): 601–12.

381. Loman NJ, Constantinou C, Chan JZ, et al.: High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat Rev Microbiol. 2012; 10(9): 599–606.
Environ Microbiol. 2013; 79(1): 196–204.

373. Clarridge JE 3rd: Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev. 2004; 17(4): 609–26.

374. Peti CA, Polgar CE, Schreckenberger P: The role of 16S rRNA gene sequencing in identification of microorganisms misidentified by conventional methods. J Clin Microbiol. 2005; 43(12): 6123–6.

375. Dreier J, Stömer M, Kiesiek K: Real-time polymerase chain reaction in transfusion medicine: applications for detection of bacterial contamination in blood products. Transfus Med Rev. 2007; 21(3): 237–54.

376. Jiang W, Ledeboer NA: Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection. J Infect Dis. 2006; 199(6): 1177–85.

377. Varani S, Stanzani M, Paolucci M, et al.: Diagnosis of bloodstream infections in immunocompromised patients by real-time PCR. J Infect. 2009; 58(3): 346–51.

378. Girf K, Kelle I, Prodinger WM, et al.: Improvement of detection of bacterial pathogens in normally sterile body sites with a focus on orthogonal samples by use of a commercial 16S rRNA broad-range PCR and sequence analysis. J Clin Microbiol. 2012; 50(7): 2250–4.

379. Girf K, File M, Wógrzyn R, et al.: Rapid detection of bloodstream pathogens by real-time PCR in patients with sepsis. Wien Klin Wochenschr. 2012; 124(7–8): 266–70.

380. Perone MA, McElraine Tekippe E, Burnham CA: Diagnostic assays for identification of microorganisms and antimicrobial resistance determinants directly from positive blood culture broth. Clin Lab Med. 2013; 33(3): 651–84.

381. Riedel S, Carroll KC: Laboratory detection of sepsis: biomarkers and molecular approaches. Clin Lab Med. 2013; 33(3): 413–37.

382. Salipante SJ, Sengupta DJ, Rosenthal C, et al.: Molecular broad-range diagnosis of culture-negative bacterial infections. J Clin Microbiol. 2010; 48(8): 3005–11.

383. Clarridge JE 3rd: The role of 16S rRNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology. J Clin Microbiol. 2014; 52(8): 234–46.

384. Ewald PW: Bacterial persistence and expression of disease. FEMS Microbiol Lett. 2014; 354(2): 153–60.

385. Lucignano B, Rannos S, Liesenfeld O, et al.: Multiplex PCR allows rapid and accurate diagnosis of bloodstream infections in newborns and children with suspected sepsis. J Clin Microbiol. 2011; 49(6): 2252–8.

386. Liu CL, AI HW, Wang WP, et al.: Comparison of 16S rRNA gene PCR and blood culture for diagnosis of neonatal sepsis. Arch Pediatr. 2014; 21(2): 162–9.

387. Levy PY, Fourrier PE, Fenollar F, et al.: Systematic PCR detection in culture-negative osteoarticular infections. Am J Med. 2013; 126(12): 1143.e25–33.

388. Renvois A, Brossier F, Sougakoff W, et al.: Broad-range PCR: past, present, or future of bacteriology? Med Mal Infect. 2013; 43(8): 322–30.

389. Lucignano B, Rannos S, Liesenfeld O, et al.: Multiplex PCR allows rapid and accurate diagnosis of bloodstream infections in newborns and children with suspected sepsis. J Clin Microbiol. 2011; 49(6): 2252–8.

390. Tran NK, Winer DH, Albertson TE, et al.: Multiplex polymerase chain reaction pathogen detection in patients with suspected sepsis. Arch Dis Child. 2005; 90(1): 70–3.

391. Miller FS: Focal infection. New York: Appleton, 1915.

392. Price WA: Dental infections oral and systemic, being a contribution to the pathology of dental infections, focal infections and the degenerative diseases, Parts I and II. Cleveland: Penton Press, 1923.

393. Dominque GJ: Broad-range 16S rDNA PCR for pathogen detection. Arch Dis Child. 2005; 90(1): 70–3.

394. Willinger O, Dettbarn MC, et al.: Molecular Diagnostics. Clinical Microbiology. J Clin Microbiol. 2005; 43(4): 1177–85.

395. Tettelin P, Watt G, Revest M, et al.: Update on blood culture-negative endocarditis. Med Mal Infect. 2015; 45(1): 1–8.

396. Aarthi P, Harini R, Sowmiya M, et al.: Identification of bacteria in culture negative and polymerase chain reaction (PCR) positive intravascular specimen from patients with infectious endophthalmitis. J Microbiol Methods. 2011; 85(1): 47–52.

397. Rampini SK, Bloemberg GV, Keller PM, et al.: Broad-range 16S rRNA gene polymerase chain reaction for diagnosis of culture-negative bacterial infections. J Infect Dis. 2011; 53(12): 1245–51.

398. Sleigh J, Cursons R, La Pine M: Detection of bacteraeemia in critically ill patients using 16S rDNA polymerase chain reaction and DNA sequencing. Intensive Care Med. 2001; 27(6): 1269–73.

399. Brios F, Sachse S, Kortgen A, et al.: Evaluation of a polymerase chain reaction assay for pathogen detection in septic patients under routine condition: an observational study. PLoS One. 2012; 7(9): e46003.

400. Lodes U, Bohmeier B, Lippert H, et al.: PCR-based rapid sepsis diagnosis effectively guides clinical treatment in patients with new onset of SIRS. Langenbeck Arch Surg. 2012; 397(3): 447–55.

401. Liu CL, AI HW, Wang WP, et al.: Comparison of 16S rRNA gene PCR and blood culture for diagnosis of neonatal sepsis. Arch Pediatr. 2014; 21(2): 162–9.

402. Levy PY, Fourrier PE, Fenollar F, et al.: Systematic PCR detection in culture-negative osteoarticular infections. Am J Med. 2013; 126(12): 1143.e25–33.

403. Renvois A, Brossier F, Sougakoff W, et al.: Broad-range PCR: past, present, or future of bacteriology? Med Mal Infect. 2013; 43(8): 322–30.

404. Lucignano B, Rannos S, Liesenfeld O, et al.: Multiplex PCR allows rapid and accurate diagnosis of bloodstream infections in newborns and children with suspected sepsis. J Clin Microbiol. 2011; 49(6): 2252–8.

405. Tran NK, Winer DH, Albertson TE, et al.: Multiplex polymerase chain reaction pathogen detection in patients with suspected sepsis. Arch Dis Child. 2005; 90(1): 70–3.

406. Miller FS: Focal infection. New York: Appleton, 1915.

407. Price WA: Dental infections oral and systemic, being a contribution to the pathology of dental infections, focal infections and the degenerative diseases, Parts I and II. Cleveland: Penton Press, 1923.

408. Dominque GJ: Broad-range 16S rDNA PCR for pathogen detection. Arch Dis Child. 2005; 90(1): 70–3.

409. Mattman L: Cell Wall Deficient Forms, Third Edition: Stealth Pathogens. Boca Raton: CRC Press, 2001.

410. Ewald PW: Fungal disease: the new germ theory of disease. New York: Anchor
reactions by blood components. Clin Chem Lab Med. 2008; 46(7): 919–25. PubMed Abstract | Publisher Full Text

441. Montag T: Strategies of bacteria screening in cellular blood components. Clin Chem Lab Med. 2008; 46(7): 926–32. PubMed Abstract | Publisher Full Text

442. Rohde JM, Dinschell DE, Blumberg N, et al.: Health care-associated infection after red blood cell transfusion: a systematic review and meta-analysis. JAMA. 2014; 311(13): 1317–26. PubMed Abstract | Publisher Full Text | Free Full Text

443. Carson JL: Blood transfusion and risk of infection: new convincing evidence. JAMA. 2014; 311(13): 1293–4; discussion 716–7. PubMed Abstract | Publisher Full Text

444. Otho P, Pj, Moore EE, Bill WL, et al.: Increased rate of infection associated with transfusion of old blood after severe injury. Arch Surg. 2002; 137(6): 711–6; discussion 716–7. PubMed Abstract | Publisher Full Text

445. Perez P, Salmi LR, Foliga G, et al.: Determinants of transfusion-associated bacterial contamination: results of the French BACTHEM Case-Control Study. Transfusion. 2001; 41(7): 862–72. PubMed Abstract | Publisher Full Text

446. Vasconcelos E, Seghalthian J: Bacterial contamination in blood components and preventative strategies: an overview. Transfus Apher Sci. 2004; 31(2): 155–62. PubMed Abstract | Publisher Full Text

447. Klauses S, Hervig T, Seghalthian J, et al.: Bacterial contamination of blood components: Norwegian strategies in identifying donors with higher risk of inducing septic transfusion reactions in recipients. Transfus Apher Sci. 2014; 51(2): 97–102. PubMed Abstract | Publisher Full Text

448. Nelson RA Jr: The immune-adherence phenomenon: an immunologically specific reaction between microorganisms and erythrocytes leading to enhanced phagocytosis. Science. 1953; 118(3077): 733–7. PubMed Abstract | Publisher Full Text

449. Bleiostrom D, Holmstrup P, Damaaara G, et al.: The atherogenic bacterium Porphyromonas gingivalis evades circulating phagocytes by adhering to erythrocytes. Infect Immun. 2011; 79(4): 1559–65. PubMed Abstract | Publisher Full Text | Free Full Text

450. Ebringer A, Rashid T, Wilson C: Rheumatoid arthritis, Proteus, anti-CCP antibodies and Kali Popper. Autoimmun Rev. 2010; 9(6): 216–23. PubMed Abstract | Publisher Full Text

451. Caru PA, Amara J, Iglissas MA, et al.: Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007; 56(7): 1761–72. PubMed Abstract | Publisher Full Text

452. Manco M, Pigliana L, Bottazzo GF: Gut microbiota, lipopolysaccharides, and innate immunity in the pathogenesis of obesity and cardiovascular risk. Endocr Rev. 2010; 31(6): 817–44. PubMed Abstract | Publisher Full Text

453. Lawrence CB, Brough D, Knight EM: Obese mice exhibit an altered behavioural and inflammatory response to lipopolysaccharide. Dis Model Mech. 2012; 5(6): 649–59. PubMed Abstract | Publisher Full Text

454. Jin C, Flavell RA: Innate sensors of pattern and stress: linking inflammation to obesity. J Allergy Clin Immunol. 2013; 132(2): 287–94. PubMed Abstract | Publisher Full Text

455. Jin C, Hennou-Meja J, Flavell RA: Innate immune receptors: key regulators of metabolic disease progression. Cell Metab. 2013; 17(6): 873–82. PubMed Abstract | Publisher Full Text

456. Zhao L: The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol. 2013; 11(9): 639–47. PubMed Abstract | Publisher Full Text

457. Cunningham C, Wilcockson DC, Campion S, et al.: Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci. 2005; 25(46): 9275–84. PubMed Abstract | Publisher Full Text

458. Heneka MT, Kummer MP, Latz E: Innate immune activation in neurodegenerative disease. Nat Rev Immunol. 2014; 14(7): 463–77. PubMed Abstract | Publisher Full Text

459. Heneka MT, Carson MJ, Khoury JE, et al.: Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015; 14(4): 388–405. PubMed Abstract | Publisher Full Text

460. Tufekci KU, Genc S, Genc K: The endotoxin-induced neuroinflammation model of Parkinson’s disease. Parkinsons Dis. 2011; 2011: 47450. PubMed Abstract | Publisher Full Text | Free Full Text

461. Naser SA, Ghornial G, Romero C, et al.: Culture of Mycobacterium avium subspecies paratuberculosis from the blood of patients with Crohn’s disease. Lancet. 2004; 364(9439): 1039–44. PubMed Abstract | Publisher Full Text

462. Feller M, Huwiler K, Stephan R, et al.: Mycobacterium avium subspecies paratuberculosis and Crohn’s disease: a systematic review and meta-analysis. Lancet Infect Dis. 2007; 7(9): 607–13. PubMed Abstract | Publisher Full Text

463. Hermann-Taylor J: Mycobacterium avium subspecies paratuberculosis, Crohn’s
arthritis patients: a cross-sectional clinical, microbiological and serological study. Arthritis Res Ther. 2012; 14(5): R222

487. Ebinger R, Khalafpour S, Wilson C: Rheumatoid arthritis and Proteus: a possible aetiologial association. Rheumatol Int. 1989; 9(3–5): 223–8. PubMed Abstract

488. Kjeldsen-Kragh J, Rashid T, Dybwad A, et al.: Decrease in anti-Proteus mirabilis but not anti-Escherichia coli antibody levels in rheumatoid arthritis patients treated with fasting and a one year vegetarian diet. Ann Rheum Dis. 1995; 54(3): 221–4. PubMed Abstract

489. Rashid T, Twanna H, Wilson C, et al.: Rheumatoid arthritis as an autoimmune disease caused by Proteus urinary tract infections: a proposal for a therapeutic protocol. Isr Med Assoc J. 2001; 3(9): 675–80. PubMed Abstract

490. Neerik MM, Goldbach-Mansky R, Senior BW, et al.: Elevated levels of IgM and IgA antibodies to Proteus mirabilis and IgM antibodies to Escherichia coli are associated with early rheumatoid factor (RF)-positive rheumatoid arthritis. Rheumatology (Oxford). 2005; 44(1): 1433–41. PubMed Abstract

491. Rashid T, Jayakumar KB, Binder A, et al.: Rheumatoid arthritis patients have elevated antibodies to cross-reactive and non cross-reactive antigens from Proteus microbes. Clin Exp Rheumatol. 2007; 25(2): 259–67. PubMed Abstract

492. Ebinger T, Ebinger R: A rheumatoid arthritis is linked to Proteus - the evidence. Clin Rheumatol. 2007; 26(7): 1036–43. PubMed Abstract

493. Ebinger A, Rashid T: Rheumatoid arthritis is caused by Proteus: the molecular mimicry theory and Karl Popper. Front Biosci (Elite Ed). 2009; 1: 577–86. PubMed Abstract

494. Arabski M, Fudala R, Koza A, et al.: The presence of anti-LPS antibodies and human serum activity against Proteus mirabilis S/R forms in correlation with TLR4 (Thr399Ile) gene polymorphism in rheumatoid arthritis. Clin Biochem. 2012; 45(16–17): 1374–82. PubMed Abstract

495. Ebinger T, Rashid T: Rheumatoid arthritis is caused by a Proteus urinary tract infection. APMIS. 2014; 122(5): 363–8. PubMed Abstract

496. Neerik MM, Duffy WKN, Leclerc J, et al.: Detection of cytomegalovirus, Epstein-Barr virus and herpes virus-6 in patients with rheumatoid arthritis with or without Sjögren’s syndrome. Br J Rheumatol. 1994; 33(4): 317–22. PubMed Abstract

497. Takeda T, Mizugaki Y, Matsuura L, et al.: Lytic Epstein-Barr virus infection in the synovial tissue of patients with rheumatoid arthritis. Arthritis Rheum. 2000; 43(3): 1218–25. PubMed Abstract

498. Balandraud N, Meynard JB, Auger I, et al.: Epstein-Barr virus load in the peripheral blood of patients with rheumatoid arthritis: accurate quantification using real-time polymerase chain reaction. Arthritis Rheum. 2003; 48(5): 1223–8. PubMed Abstract

499. Croia C, Serafini B, Bombardieri M, et al.: Epstein-Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Ann Rheum Dis. 2013; 72(9): 1569–68. PubMed Abstract

500. Schaeverbeke T, Renaudin H, Clerc M, et al.: Systematic detection of mycoplasmas by culture and polymerase chain reaction (PCR) procedures in 209 synovial fluid samples. Br J Rheumatol. 1997; 36(3): 310–4. PubMed Abstract

501. Sawitzke A, Joyner D, Knudtson K, et al.: Anti-MAM antibodies in rheumatic disease: evidence for a MAM-like superantigen in rheumatoid arthritis? J Rheumatol. 2000; 27(2): 358–64. PubMed Abstract

502. da Rocha Sobrinho HM, Jarach R, da Silva NA, et al.: Mycoplasmal lipid-associated membrane proteins and Mycoplasmal arthritis mitogen recognition by serum antibodies from patients with rheumatoid arthritis. Rheumatol Int. 2011; 31(7): 951–7. PubMed Abstract

503. Leirisalo-Repo M: Early arthritis and infection. Curr Opin Rheumatol. 2005; 17(4): 433–9. PubMed Abstract

504. Schrama JC, Lutro O, Langvath H, et al.: Biological findings in infected hip joint replacements in patients with rheumatoid arthritis and osteoarthritis: a study of 318 revisions for infection reported to the Norwegian arthroplasty register. ISRN Orthop. 2012; 2012: 437862. PubMed Abstract

505. Hill Gaston JS, Lillcrap MS: Arthritis associated with enteric infection. Best Pract Res Clin Rheumatol. 2003; 17(2): 219–39. PubMed Abstract

506. Levy O, Iyer S, Atoun E, et al.: Propionibacterium acne: an underestimated etiology in the pathogenesis of osteoarthritis? J Shoulder Elbow Surg. 2013; 22(4): 505–11. PubMed Abstract

Page 29 of 50
Chlamydophila pneumoniae in atherosclerotic lesions: rethinking the clinical trials. Front Cell Infect Microbiol. 2014; 4: 34.

Khan S, Rahman HN, Okamoto T, et al.; Promotion of atherosclerosis by Helicobacter cinaedi infection that involves macrophage-driven inflammatory responses. Sci Rep. 2017; 7: 4680.

Li L, Messas E, Batista EL Jr, et al.; Porphyromonas gingivalis infection accelerates the progression of atherosclerosis in a heterogeneous apolipoprotein E-deficient murine model. Circulation. 2002; 105(7): 861–7.

Toyokado T, Inoue Y, Kurihara N, et al.; Differential detection rate of periodontopathic bacteria in atherosclerosis. Surg Today. 2011; 41(10): 1395–400.

Yang J, Wu J, Liu Y, et al.; Porphyromonas gingivalis infection reduces regulatory T cells in infected atherosclerosis patients. PLoS One. 2014; 9(1): e86599.

Hajishengallis G; Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol. 2014; 36(1): 3–11.

Velsko IM, Choklapalli SS, Rivera MF, et al.; Active invasion of oral and aortic tissues by Porphyromonas gingivalis in mice causally links periodontitis and atherosclerosis. PLoS One. 2014; 9(5): e97811.

Hajishengallis G; Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015; 15(1): 30–44.

Dénes Á, Pradillo JM, Drake C, et al.; Streptococcus pneumoniae worsens cerebral ischemia via interleukin 1 and platelet glycoprotein Iba. Ann Neuro. 2014; 75(5): 670–83.

Nahser K, Spor A, Fiala J, et al.; Human oral, gut and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci U S A. 2011; 108(Suppl 1): 4592–8.

Matile M; Cell wall deficient bacteria: Their surprising role in health and illness. World out of Balance: The Microbial-Pollution Connection. Wake up Call. 1995; 141–5.

Kotze MJ; Antibiotic prophylaxis for preventing endocarditis and infection in joint prosthesis after dental treatment: a review of new trends and recommendations in the literature. SAUJ. 2008; 63(8): 440–4.

Koren O, Spor A, Fiala J, et al.; Human oral, gut and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci U S A. 2011; 108(Suppl 1): 4592–8.

Mora-Osuna S, Engleman EA, et al.; Endocarditis due to Gemella haemolysans in a patient with hemochromatosis. Clin Microbiol. 2005; 61(10): 566–8.

Sinkovics JG, Cormia F, Plager C; Hemochromatosis and Listeria infection, Arch Intern Med. 1980; 140(2): 284.

van Americk BS, Verbrugh HA, van Oost BA, et al.; Listeria monocytogenes meningitis and decreased phagocytosis associated with iron overload. Br Med J (Clin Res Ed). 1982; 284(6315): 542–4.

Delforge ML, Devriendt J, Gulczynski V, et al.; Plesiomonas shigelloides septicaemia in a patient with primary haemochromatosis. Clin Infect Dis. 1995; 21(3): 692–3.

Barton JC, Acton RT; Hemochromatosis and Vibrio vulnificus wound infections. J Clin Gastroenterol. 2009; 43(3): 890–3.

Arcez J, Jung G, Babayan V, et al.; Hepcidin-induced hypoferremia is a critical host defense mechanism against the siderobacterial bacterium Vibrio vulnificus. Cell Host Microbe. 2015; 17(1): 47–57.

Fernández JM, Serrano M, De Arriba JJ, et al.; Bacteremic cellulitis caused by Non-01, Non-0139 Vibrio cholerae: report of a case in a patient with hemochromatosis. Diagn Microbiol Infect Dis. 2001; 37(1): 77–80.

Capron JP, Capron-Chivrac D, Tessous H, et al.; Spontaneous Yersinia enterocolitica peritonitis in idiopathic hemochromatosis. Gastroenterology. 1984; 87(6): 1372–6.

Vadillo M, Corbella X, Pac V, et al.; Multiple liver abscesses due to Yersinia...
enteroectoria discloses primary hemochromatosis: three cases reports and review. Clin Infect Dis. 1994; 18(6): 908–41.

552. Höpner M, Nitsche R, Rohr A, et al.: Yersinia enterocolitica infection with multiple liver abscesses uncovering a primary hemochromatosis. Scand J Gastroenterol. 2001; 36(2): 229–40.

554. Conway SP, Dudley N, Sheridan P, et al.: Haemorrhagocytosis and aldosterone deficiency presenting with Yersinia pseudotuberculosis septicaemia. Postgrad Med J 1989; 65(761): 174–6.

555. Menneier D, Lapprand M, Hernandez E, et al.: Periodontal bacteria and hypertension: the oral infections and vascular disease epidemiology study (INVEST). J Hypertens. 2010; 28(7): 1413–21.

556. Marongi M: Hypertension and inflammation: the infection connection. J Amer Soc Hypertens. 2014; 8: 67.

557. Meier CR, Derby LE, Jick SS, et al.: Infectious disorders of the circulatory system as risk factors for stroke in Saudi children. Saudi Med J. 2006; 27(Suppl 1): S41–52.

558. Salm MA, Abdel-Gader AG, Al-Jarallah AA, et al.: Influenza and inflammatory disorders of the circulatory system as risk factors for stroke in Thai children. Asian J Pediatr. 2013; 56(9): 411–5.

559. de Souza AL, de Oliveira AC, Romano CC, et al.: Association between chronic periodontitis and acute ischaemic stroke. Avicenna J Clin Microb Infec. 2014; 1(3): e02165.

560. Schut ES, Bünger MC, et al.: Cerebral infection in adults with bacterial meningitis. Neurocrit Care. 2012; 16(3): 412–7.

561. Conley SP, Lin IF, Grayston JT, et al.: Chlamydia pneumoniae and the risk of first ischemic stroke: The Northern Manhattan Stroke Study. Stroke. 2000; 31(7): 1521–5.

562. Njamnshi AK, Blackett KN, Mbuagbaw JN, et al.: Tuberculosis and the risk of ischemic stroke: A three-year follow-up study. Stroke. 2010; 41(2): 244–9.

563. Meier CR, Derby LE, Jick SS, et al.: Infectious disorders of the circulatory system as risk factors for stroke in Saudi children. Saudi Med J. 2006; 27(Suppl 1): S41–52.

564. Garcia AV, Fingeret AL, Thrumoort AS, et al.: Severe Mycoplasma pneumoniae infection requiring extracorporeal membrane oxygenation with concomitant ischemic stroke in a child. Pediatr Pulmonol. 2013; 48(1): 98–101.

565. Kim GH, Seo WH, Je BK, et al.: Mycoplasma pneumoniae associated stroke in a 3-year-old girl. Korean J Pediatr. 2013; 56(9): 411–5.

566. de Souza AL, de Oliveira AC, Romano CC, et al.: Interleukin-6 activation in ischemic stroke caused by Neisseria meningitidis serogroup C. Int J Cardiol. 2008; 127(3): e160–3.

567. Hart RG, Foster JW, Lusher MF, et al.: Stroke in infective endocarditis. Stroke. 1990; 21(5): 695–700.

568. Stößberger C, Finsterer J, Fratter A, et al.: Ischemic stroke and splenic rupture in a case of Streptococcus bovis endocarditis. J Clin Microbiol. 2003; 41(6): 2654–8.

569. Nakano K, Hokamura K, Taniguchi N, et al.: The collagen-binding protein of Streptococcus mutans is involved in haemorrhagic stroke. Nat Commun. 2011; 2: 485.

570. Chen LF, Chen HP, Huang YS, et al.: Pneumococcal pneumonia and the risk of stroke: a population-based follow-up study. PLoS One. 2012; 7(12): e51452.

571. López J, San Román JA, Rivera C, et al.: Clinical, echocardiographic and prognostic profile of Streptococcus viridans left-sided endocarditis. Rev Esp Cardiol. 2005; 58(2): 153–6.

572. Ahamad S, Varghese M, El Agib EL, et al.: Case of neurosyphilis presented as recurrent stroke. Oman Med J. 2009; 24(2): 134–6.

573. Damaso PA, Dramanapa P, Serum and cerebrospinal fluid profiles for syphilis in Thai patients with ischemic stroke. Int J STD AIDS. 2012; 23(5): 340–5.

574. Raftery B, Jónsson D, Kalashnikov G, et al.: Impact of monocytes cells on recovery of uncultivable bacteria from atherosclerotic lesions. J Intern Med. 2014; 275(2): 169–77.
664. Sethi S, Murphy TF: Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review. Clin Microbiol Rev. 2001; 14(2): 336–63.

665. Papgiorgiou VL, Noolan GL, Noulas MF, De Meirler K: et al.: Bacterial and Viral Co-Infections in Chronic Fatigue Syndrome (CFS/ME) Patients. Proc Clin Sci Conference on Myalgic Encephalopathy/Chronic Fatigue Syndrome. 2002: 1–12. Reference Source

666. Papgiorgiou VL, Noolas MF, De Meirler K: et al.: Bacterial and Viral Co-Infections in Chronic Fatigue Syndrome (CFS/ME) Patients. Proc Clin Sci Conference on Myalgic Encephalopathy/Chronic Fatigue Syndrome. 2002: 1–12. Reference Source

667. Papgiorgiou VL, Noolas MF, De Meirler K: et al.: Bacterial and Viral Co-Infections in Chronic Fatigue Syndrome (CFS/ME) Patients. Proc Clin Sci Conference on Myalgic Encephalopathy/Chronic Fatigue Syndrome. 2002: 1–12. Reference Source

668. Park WA, Tooez M, Powell H: et al.: Viral and bacterial infection in acute asthma and chronic obstructive pulmonary disease increases the risk of readmission. Respir Res. 2013; 14(1): 596–100.

669. Barak S, Getting-Barak O, Machti EE: et al.: Evidence of periopigeneotic microorganisms in placentalos of women with preeclampsia. J Perinatol. 2007; 7(4): 670–7.

670. Perkins VA, Toluzi M, Powell H: et al.: Viral and bacterial infection in acute asthma and chronic obstructive pulmonary disease increases the risk of readmission. Respir Res. 2013; 14(1): 596–100.

671. van Dalen M, Magee LA: Could an infectious trigger explain the differential maternal response to the shared placental pathology of preeclampsia and normotensive intrauterine growth restriction? Acta Obstet Gynecol Scand. 2002; 81(7): 642–8.

672. Conde-Agudelo A, Villar J, Lindheimer M: Maternal infection and risk of preeclampsia: systematic review and metaanalysis. Am J Obstet Gynecol. 2008; 198(1): 7–22.

673. Kamson A, Sheiner E: The relationship between urinary tract infection during pregnancy and preeclampsia: causal, confounded or spurious? Arch Gynecol Obstet. 2008; 277(4): 479–81.

674. Rusthio LO, Kelsey SF, Sha A: Association between maternal infections and preeclampsia: a systematic review of epidemiologic studies. Matern Child Health J. 2008(12): 223–42.

675. Xie F, Hu Y, Magee LA: et al.: Chlamydia pneumoniae infection in preeclampsia. Hypertens Pregnancy. 2010; 29(4): 468–77.

676. Chrissoulidou A, Goulis DG, Iliadou PK: et al.: Chronic fatigue syndrome/myalgic encephalitis: an update. J Affect Disord. 2010; 117(1): 515–4.

677. Haggløy CL, Kleberon MA, Panum I, et al.: Prenatal Chlamydia trachomatis infection increases the risk of preeclampsia. Pregnancy Hypertens. 2013; 3(3): 151–4.

678. Üstün Y, Engin-Ustün Y, Ozkaplan E: et al.: Association of Helicobacter pylori infection with systemic inflammation in preeclampsia. J Matern Fetal Neonatal Med. 2010; 23(4): 311–4.

679. Tersigni C, Franceschi F, Todaro T, et al.: Insights into the Role of Helicobacter pylori Infection in Preeclampsia: From the Bench to the bedside. Front Immunol. 2014; 5: 484.

680. Maes M, Twisk FN: Chronic fatigue syndrome: Harvey and Wessely's (bio)psychosocial model versus a (bio)psychosocial model based on inflammatory and oxidative and nitrosative stress pathways. BMC Med. 2010; 8: 35.

681. Maes M, Twisk FN: Chronic fatigue syndrome: Harvey and Wessely’s (bio)psychosocial model versus a (bio)psychosocial model based on inflammatory and oxidative and nitrosative stress pathways. BMC Med. 2010; 8: 35.

682. Maes M, Twisk FN: Chronic fatigue syndrome: Harvey and Wessely’s (bio)psychosocial model versus a (bio)psychosocial model based on inflammatory and oxidative and nitrosative stress pathways. BMC Med. 2010; 8: 35.

683. Maes M, Twisk FN, Kubera M, et al.: Increased IgA and IgM responses against gut commensals in chronic depression: further evidence for increased bacterial translocation or leaky gut. J Affect Disord. 2012; 141(1): 55–62.

684. Nafisah WY, Hamdi Najman A, Hamidz R: et al.: Helicobacter pylori and other risk factors for chronic fatigue syndrome/myalgic encephalomyelitis. J Affect Disord. 2011; 132(3): 637–43.

685. Dobbs SM, Dobbs RJ, Weller C: et al.: Helicobacter pylori: is there a causal association between infection and inflammatory and oxidative and nitrosative stress pathways. Gut. 2011; 60(9): 1189–95.

686. Dobbs SM, Dobbs RJ, Weller C: et al.: Helicobacter pylori: is there a causal association between infection and inflammatory and oxidative and nitrosative stress pathways. Gut. 2011; 60(9): 1189–95.

687. Tersigni C, Franceschi F, Todaro T: Insights into the Role of Helicobacter pylori Infection in Preeclampsia: From the Bench to the bedside. Front Immunol. 2014; 5: 484.

688. Raymond VL, Noolas MF, De Meirler K: et al.: Bacterial and Viral Co-Infections in Chronic Fatigue Syndrome (CFS/ME) Patients. Proc Clin Sci Conference on Myalgic Encephalopathy/Chronic Fatigue Syndrome. 2002: 1–12. Reference Source

689. Raymond VL, Noolas MF, De Meirler K: et al.: Bacterial and Viral Co-Infections in Chronic Fatigue Syndrome (CFS/ME) Patients. Proc Clin Sci Conference on Myalgic Encephalopathy/Chronic Fatigue Syndrome. 2002: 1–12. Reference Source

690. Raymond VL, Noolas MF, De Meirler K: et al.: Bacterial and Viral Co-Infections in Chronic Fatigue Syndrome (CFS/ME) Patients. Proc Clin Sci Conference on Myalgic Encephalopathy/Chronic Fatigue Syndrome. 2002: 1–12. Reference Source

691. Raymond VL, Noolas MF, De Meirler K: et al.: Bacterial and Viral Co-Infections in Chronic Fatigue Syndrome (CFS/ME) Patients. Proc Clin Sci Conference on Myalgic Encephalopathy/Chronic Fatigue Syndrome. 2002: 1–12. Reference Source
the host-pathogen interface during urinary tract infection. Metabolomics. 2015; 7(6): 935–42. PubMed Abstract | Publisher Full Text

832. Zhang H, Niesel DW, Peterson JW, et al.: Lipoprotein release by bacteria: potential factor in bacterial pathogenesis. Infect Immun. 1996; 66(11): 5196–201. PubMed Abstract | Free Full Text

833. Kotsaki A, Giamarellos-Bourboulis EJ: Emerging drugs for the treatment of sepsis. Expert Opin Emerg Drugs. 2012; 17(3): 379–91. PubMed Abstract | Publisher Full Text

834. Balakrishnan A, Marathe SA, Joglekar M, et al.: Bacterial/cellular permeability increasing protein: a multifaceted protein with functions beyond LPS neutralization. Innate Immun. 2013; 19(4): 339–47. PubMed Abstract | Publisher Full Text

835. Noble F, Rubira E, Boulanouar M, et al.: Acute systemic inflammation induces central mitochondrial damage and mnesic deficit in adult Swiss mice. Neurosci Lett. 2007; 424(2): 106–10. PubMed Abstract | Publisher Full Text

836. Lee DC, Rizer J, Selenica ML, et al.: LPS-induced inflammation exacerbates phospho-tau pathology in Tg4510 mice. J Neuroinflammation. 2010; 7: 56. PubMed Abstract | Publisher Full Text | Free Full Text

837. Small BG, McColl BW, Allmendinger R, et al.: Efficient discovery of anti-inflammatory small-molecule combinations using evolutionary computing. Nature Chem Biol. 2011; 7(12): 902–9. PubMed Abstract | Publisher Full Text | Free Full Text

838. Bode JG, Ehling C, Häussinger D: The macrophage response towards LPS and its control through the p38MAPK-STAT3 axis. Cell Signal. 2012; 24(6): 1185–94. PubMed Abstract | Publisher Full Text

839. Murray KN, Buggey HF, Denes A, et al.: Systemic immune activation shapes stroke outcome. Mol Cell Neurosci. 2013; 53: 14–25. PubMed Abstract | Publisher Full Text

840. Belkaid Y, Hand TW: The macrophage response towards LPS and its control through the p38MAPK-STAT3 axis. Cell. 2013; 157(1): 121–41. PubMed Abstract | Publisher Full Text | Free Full Text

841. Ploszennikowska A, Hromada-Judycka A, Borzyczka K, et al.: Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci. 2015; 72(3): 557–81. PubMed Abstract | Publisher Full Text | Free Full Text

842. J S, Choi YS, Choi Y: Bacterial invasion and persistence: critical events in the pathogenesis of periodontitis. J Periodontal Res. 2014. PubMed Abstract | Publisher Full Text

843. Akiyama H, Barger S, Barnum S, et al.: Inflammation and Alzheimer’s disease. Neurobiol Aging. 2006; 21(3): 383–421. PubMed Abstract | Publisher Full Text | Free Full Text

844. Hotamisligil GS: Inflammation and metabolic disorders. Nature. 2006; 444(7121): 860–7. PubMed Abstract | Publisher Full Text

845. Hotamisligil GS, Erbay E: Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol. 2008; 8(12): 923–34. PubMed Abstract | Publisher Full Text | Free Full Text

846. Tan Y, Kagan JC: A cross-disciplinary perspective on the innate immune responses to bacterial lipopolysaccharide. Mol Cell. 2014; 54(2): 212–23. PubMed Abstract | Publisher Full Text | Free Full Text

847. Ong WY, Farooqui AA: Iron, neuroinflammation, and Alzheimer’s disease. J Alzheimers Dis. 2005; 8(2): 183–200; discussion 209–15. PubMed Abstract

848. Marques F, Falcão AM, Sousa JC, et al.: Altered iron metabolism is part of the chorioid plexus response to peripheral inflammation. Endocrinology. 2009; 150(6): 2822–8. PubMed Abstract | Publisher Full Text

849. Levi M, Schouten M, van der Poll T: Sepsis, coagulation, and antithrombin: old lessons and new insights. Semin Thromb Hemost. 2008; 34(8): 742–6. PubMed Abstract | Publisher Full Text

850. Schouten M, Wensing WJ, Levi M, et al.: Inflammation, endothelium, and coagulation in sepsis. J Leukoc Biol. 2008; 83(3): 536–45. PubMed Abstract | Publisher Full Text

851. Levi M, van der Poll T: Inflammation and coagulation. Crit Care Med. 2010; 38(2 Suppl): S24–34. PubMed Abstract | Publisher Full Text

852. Levi M: The coagulant response in sepsis and inflammation. Hamostaseologie. 2010; 30(1): 10–2, 14–6. PubMed Abstract

853. van der Poll T, de Boer JD, Levi M: The effect of inflammation on coagulation and vice versa. Curr Opin Infect Dis. 2011; 24(3): 273–8. PubMed Abstract | Publisher Full Text

854. Levi M, Schultz M, van der Poll T: Sepsis and thrombosis. Semin Thromb Hemost. 2013; 39(5): 559–66. PubMed Abstract | Publisher Full Text

855. Levi M, Poll TV: Coagulation in patients with severe sepsis. Semin Thromb Hemost. 2015; 41(1): 9–15. PubMed Abstract | Publisher Full Text

856. Guadarrama-López AL, Valdés-Ramos R, Martínez-Carrillo BE: Type 2 diabetes, PUFAs, and vitamin D: their relation to inflammation. J Immunol Res. 2014; 2014: 860703. PubMed Abstract | Publisher Full Text | Free Full Text

857. Amrini P: Insulin resistance in type 2 diabetes – role of the adipokines. Curr Mol Med. 2006; 6(3): 333–9. PubMed Abstract | Publisher Full Text

858. Kadowaki T, Yamauchi T, Kubota N, et al.: Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 2006; 116(7): 1784–92. PubMed Abstract | Publisher Full Text | Free Full Text

859. Anderson SG, Dunn WB, Banerjee M, et al.: Evidence that multiple defects in lipid regulation occur before hyperglycemia during the prodrome of type-2 diabetes. PLoS One. 2014; 9(9): e103217. PubMed Abstract | Publisher Full Text | Free Full Text

860. Antunes AO, Voutilainen S, Virtanen JK, et al.: Body iron stores and the risk of type 2 diabetes in middle-aged men. Eur J Endocrinol. 2013; 169(2): 247–53. PubMed Abstract | Publisher Full Text

861. Simcox JA, McClain DA: Iron and diabetes risk. Cell Metab. 2013; 17(3): 329–41. PubMed Abstract | Publisher Full Text | Free Full Text
Open Peer Review

Current Peer Review Status:

Version 1

Reviewer Report 11 August 2015

https://doi.org/10.5256/f1000research.7206.r9285

© 2015 Gant V. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Vanya Gant

Department of Medical Microbiology, University College London Hospitals NHS Foundation Trust, London, UK

I review Kell et al’s review relating to individuality, phenotypic differentiation, dormancy and “persistence” as a clinical microbiologist, infectious diseases doctor, with an interest in developing and assessing the impact of rapid sequence-based molecular blood and lung diagnostics in the critically ill.

This review reminded me of Mussorsky's Pictures at an Exhibition, a collection of hastily composed pieces whose theme was to take an interested individual through an art gallery, and to tarry awhile in front of 10 Tableaux, interspersed with musical elements referring to the “Promenade” through the gallery.

And so it is with Kell et al’s review. After an introductory Promenade relating to matters of bacterial dormancy and its relationship with just about any other conceivable physical state between life and death, exhaustively referenced together with the thought provoking Postgate-ian concept of the difficulties inherent in differentiating bacterial life from death if you only have an instant in time to measure it – we are then presented with several pictures, garlanded for us in extensively referenced detail by the authors. Were mindmaps not enough to capture the reader’s curiosity as to this magnum opus of a kind, we are invited to walk through Kell et al’s gallery of mental pictures depicting scenes of the Yet to be Cultured, Those bacteria that aren’t culturable yet but are certainly not dead, the biological importance of bacterial pheromones, the evils of Iron - thence to the Clinical Microbiology Room of Pictures with a liberal helping of systems biology throughout.

I am a proponent of, and believer in, the present and future potential of Nucleic Acid Technology (NAT) for pathogen detection in Clinical microbiology and I use such techniques on a daily basis. When appropriately deployed, it allows me to find those “unculturable” pathogens as drivers for individual clinical cases of infection. Perhaps strangely, this is a relatively new paradigm for most practising clinicians, and one which likely will generate fundamental discoveries highly relevant to human disease, and for all we know as equally important as Helicobacter. That such sequences should be found in blood is hardly surprising, given that human beings have between 10 and 100
times more bacterial cells than their own, living (or persisting, or dormant) on and in them. This groups’ demonstration of bacteria adhering to red cells (also in red cells) is certainly very intriguing, and such suggested “atopobiosis” is more expansively dealt with in another publication and prompts far more questions than it answers – in a good way. Another obvious question relates to how these adherent bacteria may remain undetected and intact in the presence of numerous moieties central to both innate and acquired immunity (complement and antibody to name but two) as well as escaping phagocytosis in the liver and spleen. It would certainly be interesting to look at red cells in the grave condition of erythrophagocytosis, a condition whose mechanism is in most cases obscure – it might even be that adherent bacteria “opsonize” the red cells in these cases. This reader, however, does baulk at the very serious work to be done as regards untangling the mechanistic nature of an “association” with several diseases, and certainly at this stage it would be very unwise to suggest it’s anything more than that. Further work of this nature should be approached and undertaken with extreme caution and rigor in view of the myriad possible explanations other than causative ones; the Measles vaccine/autism saga comes to mind here.

It is likely therefore that such technologies will perforce “lift the lid” on what might lie beyond the Culturable, and its relationship to human disease. This is explored in Table 3, which represents a tour de force as concerns the sheer volume of references relating to all that appears to associate human Disease and organisms, mostly bacteria.

Unfortunately, this Table doesn't work for me. Whilst it will serve me as a unique and accessible resource of information in this space, it is anarchic. Correctly described as “Evidence for agents in non-communicable diseases”, it lists, in no particular order, and with no apparently critical eye, references 470 to 712 as relevant to the Table subject stated above. This list's breadth as concerns both organisms and clinical diseases is extraordinary; and the literature quoted in a table described as “effect of bacterial involvement” ranges from unusual cases, to mechanistic assumptions of what LPS might do, to the concept of “dysbiosis” amongst many others. I was left rather dizzy from the mental exercise needed to constantly adjust to the sheer scale and variation of why a particular organism, or something it produces, might either directly causally relate to a particular disease, or perhaps through the individuals’ immune response to it; especially now we know how outbred we are as concerns immune responsiveness.

This review finishes with an impressive and lyrical chiding for Scientists, whereby those who research this field should wake up from their intellectual slumber, as might and indeed do bacteria.

This review is additionally peppered with tantalizing if perhaps sometimes unfounded assumptions, some arguable and some bordering on plain unreasonable. Certainly my eyebrow raising went into overdrive when considering Kell's conviction as concerns a Catholic Grand Unifying Theory based around the Evils of Iron, the subject of a previous equally grand Magnum Opus.

This review has to be one of the most undisciplined I have read in a long time, on occasions associating seemingly disparate observations and conflating “scientifically” determined facts with clinical issues.

Having said this, I should finish by applauding Kell et al’s review as a thumping good read. It’s fast
paced, edgy, a real treasure trove of papers for me to read at leisure, and goes way outside the usual, expected and conventional boundaries of style of prose and rigor we “normally expect” of such scientific publications. And (warts and all, and there are many) it left this reader thinking that there indeed is Life beyond dormancy within the review’s style itself, beyond the doubtless very important but less imaginative run-of-the-mill, tightly written yet dreary “Scientific Publication”. It is almost as if this review in all its unconventionality were particularly well aligned to the current state of the Art for the Uncultured in Clinical Medicine (bacteria, not Doctors) and its potential to release significant Paradigm shifts. No doubt this reviews’ readers are made up of those who have the capacity to appreciate Kells’ latest brand of emergent, imaginative systems biology style of thinking underneath what some might consider a publication of inadequate scientific rigor.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 18 Aug 2015

Douglas Kell, The University of Manchester, Manchester, UK

- "I review Kell et al’s review relating to individuality, phenotypic differentiation, dormancy and “persistence” as a clinical microbiologist, infectious diseases doctor, with an interest in developing and assessing the impact of rapid sequence-based molecular blood and lung diagnostics in the critically ill.

This review reminded me of Mussorsky’s Pictures at an Exhibition, a collection of hastily composed pieces whose theme was to take an interested individual through an art gallery, and to tarry awhile in front of 10 Tableaux, interspersed with musical elements referring to the “Promenade” through the gallery.

And so it is with Kell et al’s review. After an introductory Promenade relating to matters of bacterial dormancy and its relationship with just about any other conceivable physical state between life and death, exhaustively referenced together with the thought provoking Postgate-ian concept of the difficulties inherent in differentiating bacterial life from death if you only have an instant in time to measure it – we are then presented with several pictures, garlanded for us in extensively referenced detail by the authors. Were mindmaps not enough to capture the reader’s curiosity as to this magnum opus of a kind, we are invited to walk through Kell et al’s gallery of mental pictures depicting scenes of the Yet to be Cultured, Those bacteria that aren’t culturable yet but are certainly not dead, the biological importance of bacterial pheromones, the evils of Iron - thence to the Clinical Microbiology Room of Pictures with a liberal helping of systems biology throughout."

This is a lovely analogy, which we shall let readers enjoy in the open referee’s report; we are probably not capable of recasting the review in Mussorgskian style anyway! In this regard, readers might also enjoy a little known and whimsical piece on bioinformatics that takes just such an approach: Goble C, Wroe C: The Montagues and the Capulets. Comp Func Genomics 2004; 5:623-632.
"I am a proponent of, and believer in, the present and future potential of Nucleic Acid Technology (NAT) for pathogen detection in Clinical microbiology and I use such techniques on a daily basis. When appropriately deployed, it allows me to find those “unculturable” pathogens as drivers for individual clinical cases of infection. Perhaps strangely, this is a relatively new paradigm for most practising clinicians, and one which likely will generate fundamental discoveries highly relevant to human disease, and for all we know as equally important as Helicobacter. That such sequences should be found in blood is hardly surprising, given that human beings have between 10 and 100 times more bacterial cells than their own, living (or persisting, or dormant) on and in them. This groups’ demonstration of bacteria adhering to red cells (also in red cells) is certainly very intriguing, and such suggested “atopobiosis” is more expansively dealt with in another publication and prompts far more questions than it answers – in a good way. Another obvious question relates to how these adherent bacteria may remain undetected and intact in the presence of numerous moiety central to both innate and acquired immunity (complement and antibody to name but two) as well as escaping phagocytosis in the liver and spleen. It would certainly be interesting to look at red cells in the grave condition of erythrophagocytosis, a condition whose mechanism is in most cases obscure –it might even be that adherent bacteria “opsonize” the red cells in these cases. This reader, however, does baulk at the very serious work to be done as regards untangling the mechanistic nature of an “association” with several diseases, and certainly at this stage it would be very unwise to suggest it’s anything more than that. Further work of this nature should be approached and undertaken with extreme caution and rigor in view of the myriad possible explanations other than causative ones; the Measles vaccine/autism saga comes to mind here."

These are excellent points, and we have covered some of them in the forward-looking concluding section. While they might be seen as ‘premature’ (in the sense that it requires acceptance of the basic ‘dormancy’ hypothesis in the first place) they do point to important areas where we would seek a mechanistic understanding of what is going on.

"It is likely therefore that such technologies will perforce “lift the lid” on what might lie beyond the Culturable, and its relationship to human disease. This is explored in Table 3, which represents a tour de force as concerns the sheer volume of references relating to all that appears to associate human Disease and organisms, mostly bacteria.

Unfortunately, this Table doesn't work for me. Whilst it will serve me as a unique and accessible resource of information in this space, it is anarchic. Correctly described as “Evidence for agents in non-communicable diseases”, it lists, in no particular order, and with no apparently critical eye, references 470 to 712 as relevant to the Table subject stated above. This list's breadth as concerns both organisms and clinical diseases is extraordinary; and the literature quoted in a table described as “effect of bacterial involvement” ranges from unusual cases, to mechanistic assumptions of what LPS might do, to the concept of “dysbiosis” amongst many others. I was left rather dizzy from the mental exercise needed to constantly adjust to the sheer scale and variation of why a particular organism, or something it produces, might either directly causally relate to a particular disease, or perhaps through the individuals' immune response to it; especially
now we know how outbred we are as concerns immune responsiveness."

We very much accept the point that the table could be improved with regard to ordering, and we have done so accordingly. However, we think that readers will recognise it for what it is (as does the referee), viz. as a useful resource and/or pointer to a large literature in which specialists in disease X may wish to read at least those papers we suggest as relevant to ‘their’ disease, while others will simply see it as a recognition of the widespread evidence for our more general claims.

- "This review finishes with an impressive and lyrical chiding for Scientists, whereby those who research this field should wake up from their intellectual slumber, as might and indeed do bacteria.

This review is additionally peppered with tantalizing if perhaps sometimes unfounded assumptions, some arguable and some bordering on plain unreasonable. Certainly my eyebrow raising went into overdrive when considering Kell's conviction as concerns a Catholic Grand Unifying Theory based around the Evils of Iron, the subject of a previous equally grand Magnum Opus."

As mentioned in the comments on the review of referee 1, the basis for this is the desire to produce a coherent story (in the sense used by Philosophers of Science), and (as referee 1 also states) it is well known that microbial growth in vivo is normally limited by iron availability. That iron dysregulation is also a hallmark of just those chronic inflammatory diseases that we highlight here is consistent with this view, and indeed serves to provide a simple explanation for this. Of course, as the referee indicates (and referee 1 does too), further demonstrations will benefit from varying iron levels as an independent variable.

- "This review has to be one of the most undisciplined I have read in a long time, on occasions associating seemingly disparate observations and conflating “scientifically” determined facts with clinical issues.

Having said this, I should finish by applauding Kell et al's review as a thumping good read. It's fast paced, edgy, a real treasure trove of papers for me to read at leisure, and goes way outside the usual, expected and conventional boundaries of style of prose and rigor we “normally expect” of such scientific publications. And (warts and all, and there are many) it left this reader thinking that there indeed is Life beyond dormancy within the review's style itself, beyond the doubtless very important but less imaginative run-of-the-mill, tightly written yet dreary “Scientific Publication”. It is almost as if this review in all its unconventionality were particularly well aligned to the current state of the Art for the Uncultured in Clinical Medicine (bacteria, not Doctors) and its potential to release significant Paradigm shifts. No doubt this reviews' readers are made up of those who have the capacity to appreciate Kells' latest brand of emergent, imaginative systems biology style of thinking underneath what some might consider a publication of inadequate scientific rigor."

Many thanks for these last comments; we have nothing further to add here.
Kell, Potgieter and Pretorius present a stimulating and argumentative review ranging from the interrelationships between the culturability of bacteria and their viability and any links these descriptions may have to defined physiological states, through a discussion of environmental bacteria and ultimately focusing on the human-associated microbiota, particularly those found in blood (without associated symptoms of sepsis) and their proposed roles in disease. Two central themes are developed beyond those that have been discussed extensively elsewhere: 1) the proposal that failure to culture bacteria from many samples often reflects dormancy and 2) that such dormant bacteria interact with host iron regulation to contribute to or directly cause a panoply of chronic diseases largely labelled as non-communicable.

At a general level I support the provocative stance taken by the authors. With 861 cited references, at the very least they provide a valuable resource for anyone wishing to consider the potential microbial contribution to diseases traditionally considered free of this aetiological component. Of course Helicobacter infection stands as a monument to the stupidity of dismissing this possibility in the face of carefully assembled evidence. Indeed this reviewer, who many years ago, was presented with a case of duodenal ulcer in his final medical exams, would probably have experienced quite a different career had he claimed a role for infection in causing his patient’s pathology.

In considering the specific points presented I have multiple concerns, the most significant of which I will indulge in outlining below.

Semantics present a central problem in considering bacterial viability and physiology and I broadly support the approach taken here. The authors do try to define their terms but some problems remain. In particular I take issue with the very broad application of term “Persisters” which should be reserved for cells that survive (have the potential to replicate) after exposure to an antimicrobial stress to which kills most cells in an actively growing culture of the organism concerned. Conflation of this term with “Dormancy” implies on the one hand that the persisting cells must have been dormant and on the other that dormancy and persistence represent the same physiological state in bacteria. This difficulty resurfaces later when they define dormancy but
other problems emerge before then.

I was next concerned by the extensive use of the term “Differentiation”. I completely agree that what we used to think of as uniform bacterial populations are probably never so but the degree to which subpopulations may be considered differentiated rather than reflecting a range of adaptive responses or indeed, some degree of injury, is not considered here and again I think this leads to problems in considering their hypotheses under a unitary banner downstream. I consider differentiation to require phenotypic changes that are not directly reversible, as in the case of sporulation, whereas adaptation can involve expression of a single gene that can be reversed by its subsequent repression. I do agree that cell cycle contributes to the range of phenotypes in a pure bacterial culture and that this is not the only reason for their diversity (but was not enlightened by use of the term “modulo” in this regard).

The operational definition of dormancy given deliberately leaves open the possibility of metabolic activity and seems only to require that the cell so defined should not divide; this did not allow me to recognise which operational tests might be applied to enumerate or detect dormant cells. Subsequently the detection of molecular signals indicative of bacterial presence in samples from which they were not isolated in culture is taken as evidence of dormancy. In the first case do we accept any non-dividing cell as dormant and in the second I can (and will) offer multiple alternate explanations other than dormancy. Moreover, returning briefly to the conflation between dormancy and persisters, the recent work of John McKinney and colleagues shows that antibiotic exposed persisting cells are not necessarily non-dividing cells in the mycobacterial system he studied.

Alternative interpretations of the presence of bacterial 16SrDNA sequences in blood when culture fails to detect the organisms from which they derive, include the presence of dead, injured or moribund cells. If they are shown to be repeatedly present then they must either be able to persist in the face of clearance mechanisms or be supplied at a rate equal to their clearance; both seem equally plausible to the dormancy explanation to me. Moreover, why the first three explanations offered for “Not-yet-cultured” should apply to environmental bacteriology but not to clinical samples escapes me.

I am led to the conclusion that the authors have chosen to label evidence for discrepancies between culture and nucleic acid detection of bacteria in blood to give their hypotheses a simple headline. I have no problem with the proposal that human blood and tissues classically considered sterile in the absence of overt symptoms of infection are frequently exposed to bacteria and bacterial products that in many cases contribute to serious chronic disease. However, I consider the burden of available evidence currently provides many potential explanations within the field of microbiomics/metagenomics in contrast to the dormancy hypothesis offered here. Further, I feel this broad application of dormancy to bacterial phenotypes which, even in the case of Rpf dependency, have not been shown to result from a programme of gene expression that could be considered as differentiation, diminishes the value of the term. Indeed there remains no direct proof that dormancy of *Mycobacterium tuberculosis* underpins what we call latent tuberculosis infection and it is not essential to the observed clinical or pathological pattern, notwithstanding the widespread acceptance of this view by most researches, including me.

I am not fundamentally opposed to the ideas presented by Kell and colleagues but I do not think they are assisted by lack of attention to the contradictions I have identified above.
Finally I come to the iron dysregulation hypothesis and its pro-inflammatory consequences. It is beyond my expertise to comment on the plausibility of the inorganic chemistry deployed here or to review the evidence relating to more than a fraction of the conditions listed. The importance of the struggle between pathogens and host for access to iron is beyond question. When I entered the medical field of infectious disease it was fully recognised that depriving bacteria from iron was a potential therapeutic angle and indeed iron chelation was studied. Desferrioxamine, a widely used agent in iron overload, was investigated and found to effectively deliver iron to the pathogen and the approach was set aside. More recently this agent has been identified as a major risk factor in serious fungal infection and guidance specifically recommends its avoidance. Newer agents seem not to suffer from this problem and the approach deserves renewed attention. However, I would not underestimate the ability of pathogens to outwit our pharmaceutical industry in the battle to sequester iron. While there are reasons beyond the host–pathogen tug-of war for iron to consider chelation as a therapeutic option, the potential for adverse effects is significant and I think the suggestion that omission of iron chelation from recent guidance on sepsis management is “shocking” is not justified.

Focussing briefly on the specific diseases cited and their relation to bacterial exposure in one form or another, I find that evidence cited frequently rests on what can be considered “fringe” hypotheses that have little currency in their respective fields. This is not to discourage their continued pursuit but it does weaken the strength of the authors’ argument when investigation of the supporting literature frequently leads to papers that are given little credence in the specialist field. Of course “cave Helicobacter” must remain on the table. But there, an accidental technical breakthrough led to an avalanche of convincing laboratory and clinical data.

In summary Kell, Potgieter and Pretorius have produced an interesting read which bring many important ideas to our attention. I am not convinced of the breadth of conditions to which they argue their ideas are applicable and I await with interest, demonstration of how they may be practically pursued and some selected definitive proofs that iron-driven inflammatory disease is as important as they claim.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.
regulation to contribute to or directly cause a panoply of chronic diseases largely labelled as non-communicable.

At a general level I support the provocative stance taken by the authors. With 861 cited references, at the very least they provide a valuable resource for anyone wishing to consider the potential microbial contribution to diseases traditionally considered free of this aetiological component. Of course Helicobacter infection stands as a monument to the stupidity of dismissing this possibility in the face of carefully assembled evidence. Indeed this reviewer, who many years ago, was presented with a case of duodenal ulcer in his final medical exams, would probably have experienced quite a different career had he claimed a role for infection in causing his patient's pathology.

In considering the specific points presented I have multiple concerns, the most significant of which I will indulge in outlining below.

Many thanks for the above; it is perfectly accurate and we have nothing to add here.

○ "Semantics present a central problem in considering bacterial viability and physiology and I broadly support the approach taken here. The authors do try to define their terms but some problems remain. In particular I take issue with the very broad application of term “Persisters” which should be reserved for cells that survive (have the potential to replicate) after exposure to an antimicrobial stress to which kills most cells in an actively growing culture of the organism concerned. Conflation of this term with “Dormancy” implies on the one hand that the persisting cells must have been dormant and on the other that dormancy and persistence represent the same physiological state in bacteria. This difficulty resurfaces later when they define dormancy but other problems emerge before then."

This is entirely fair; we see that we occasionally elided the terms ‘dormancy’ and ‘persistence’ to imply synonymy, when either there is none or at least there is no evidence for it. We think the best solution is to add a little section pointing out the semantic difficulties, repeating the operational nature of the definitions, and specifying that in very few cases do we actually know the true physiological state of individual cells – which is what matters with regard to replicatory potential. This material mainly appears in the section defining dormancy, and its title has been extended to note the semantic issues.

○ "I was next concerned by the extensive use of the term “Differentiation”. I completely agree that what we used to think of as uniform bacterial populations are probably never so but the degree to which subpopulations may be considered differentiated rather than reflecting a range of adaptive responses or indeed, some degree of injury, is not considered here and again I think this leads to problems in considering their hypotheses under a unitary banner downstream. I consider differentiation to require phenotypic changes that are not directly reversible, as in the case of sporulation, whereas adaptation can involve expression of a single gene that can be reversed by its subsequent repression. I do agree that cell cycle contributes to the range of phenotypes in a pure bacterial culture and that this is not the only reason for their diversity (but was not enlightened by use of the term “modulo” in this regard)."
We mainly agree, and suggest what we think is a useful clarification or extension. We note again that “reversibility” is established post hoc, but there are at least two meanings involved. At one level we are discussing a reversibility of states. Let us take a spore and a vegetative cell, which obviously, for sporulating bacteria, can indeed interconvert (“reversibly”). However, another level or meaning implies a mechanistic reversibility, i.e. the path from A to B is simply traversed in the opposite direction when B reverts or interconverts to A. Not only is this not what we mean but (also for thermodynamic reasons) it is certainly not what is done (sporulation and germination in *B. subtilis* are definitely quite separate processes, as indicated by the referee, and one is not at all the reverse of the other). We have added clarificatory comments accordingly. (One might also have added, but we have not in the ms as it would distract, that similar issues apply to the ‘reversibility’ of enzymes and of biochemical pathways (gluconeogenesis is not mechanistically a reversal of glycolysis, even if the “start” and “end” states are the same molecules.)

"The operational definition of dormancy given deliberately leaves open the possibility of metabolic activity and seems only to require that the cell so defined should not divide; this did not allow me to recognise which operational tests might be applied to enumerate or detect dormant cells. Subsequently the detection of molecular signals indicative of bacterial presence in samples from which they were not isolated in culture is taken as evidence of dormancy. In the first case do we accept any non-dividing cell as dormant and in the second I can (and will) offer multiple alternate explanations other than dormancy. Moreover, returning briefly to the conflation between dormancy and persisters, the recent work of John McKinney and colleagues shows that antibiotic exposed persisting cells are not necessarily non-dividing cells in the mycobacterial system he studied."

The hallmark of the dormant macrostate, stated in quotation marks in the second paragraph of the ‘dormancy’ section, is indeed that the cells in question do not immediately grow when attempts to culture them under “suitable” conditions (that normally admit their growth), are often (but not necessarily) of low metabolic activity, but are not operationally dead since they can be resuscitated. On this basis we think that this should allow the referee or anyone else to determine the operational tests. It follows that we do not accept ‘any’ non-diving cell as dormant since only resuscitable cells can – *post hoc* – be considered dormant, and certainly a non-dividing cell it may be irreversibly injured or operationally dead. However, the presence of molecular signals (e.g. 16S) in samples from which nothing (or many fewer colonies or OTUs) may be recovered by culture is certainly an indication of the possibility of resuscitation, and hence dormancy.

The referee is entirely correct that we had missed John McKinney’s recent and very relevant work, and we mention it accordingly.

"Alternative interpretations of the presence of bacterial 16SrDNA sequences in blood when culture fails to detect the organisms from which they derive, include the presence of dead, injured or moribund cells. If they are shown to be repeatedly present then they must either be able to persist in the face of clearance mechanisms or be supplied at a rate equal to their clearance; both seem equally plausible to the dormancy explanation to me."
Moreover, why the first three explanations offered for “Not-yet-cultured” should apply to environmental bacteriology but not to clinical samples escapes me."

The referee is entirely correct with regard to the last sentence, and the whole point (or at least a major theme) of our review is precisely that what is well established in environmental microbiology has had much less impact in clinical microbiology (referee 2 makes this exact point, even more explicitly). We agree that in a steady state such cells must be supplied at a rate equal to that of their clearance, and that the fact that clearance is lower than probably expected implies a significant ability to evade the innate and adaptive immune systems. We also take it that for common organisms (not very slow growers such as certain mycobacteria) the former rates must be much lower than those typically attainable in laboratory cultures, else we would have classical sepsis. We have added a few comments on these issues accordingly, in the section entitled ‘Generalised failure of classical techniques to detect dormant bacteria in clinical microbiology’.

- "I am led to the conclusion that the authors have chosen to label evidence for discrepancies between culture and nucleic acid detection of bacteria in blood to give their hypotheses a simple headline. I have no problem with the proposal that human blood and tissues classically considered sterile in the absence of overt symptoms of infection are frequently exposed to bacteria and bacterial products that in many cases contribute to serious chronic disease. However, I consider the burden of available evidence currently provides many potential explanations within the field of microbiomics/metagenomics in contrast to the dormancy hypothesis offered here. Further, I feel this broad application of dormancy to bacterial phenotypes which, even in the case of Rpf dependency, have not been shown to result from a programme of gene expression that could be considered as differentiation, diminishes the value of the term. Indeed there remains no direct proof that dormancy of Mycobacterium tuberculosis underpins what we call latent tuberculosis infection and it is not essential to the observed clinical or pathological pattern, notwithstanding the widespread acceptance of this view by most researches, including me.

 I am not fundamentally opposed to the ideas presented by Kell and colleagues but I do not think they are assisted by lack of attention to the contradictions I have identified above."

All of the above is entirely fair, and we do not disagree. We hope that the changes we have now made to the ms to weaken the ostensible claims (and misplaced synonymies) now meet the referee's approval. For instance we have stressed that while the presence of suitable molecular sequences (e.g. 16S) implies that it is worth seeking to resuscitate the organisms from which it came, an absence would imply that it is not. A success in resuscitating organisms from a sample that initially appeared sterile would from our operational definition imply that those ones were indeed dormant, and we'd like to think that this had now been clarified.

- "Finally I come to the iron dysregulation hypothesis and its pro-inflammatory consequences. It is beyond my expertise to comment on the plausibility of the inorganic chemistry deployed here or to review the evidence relating to more than a fraction of the conditions listed. The importance of the struggle between pathogens and host for access to
iron is beyond question. When I entered the medical field of infectious disease it was fully recognised that depriving bacteria from iron was a potential therapeutic angle and indeed iron chelation was studied. Desferrioxamine, a widely used agent in iron overload, was investigated and found to effectively deliver iron to the pathogen and the approach was set aside. More recently this agent has been identified as a major risk factor in serious fungal infection and guidance specifically recommends its avoidance. Newer agents seem not to suffer from this problem and the approach deserves renewed attention. However, I would not underestimate the ability of pathogens to outwit our pharmaceutical industry in the battle to sequester iron. While there are reasons beyond the host-pathogen tug-of war for iron to consider chelation as a therapeutic option, the potential for adverse effects is significant and I think the suggestion that omission of iron chelation from recent guidance on sepsis management is “shocking” is not justified.”

The point about desferrioxamine is well made (and we mention it, with citations), but the molecule is of course in fact a natural prokaryotic siderophore, from *Streptomyces pilosus*. We have replaced the term ‘shocking’ with something more suitable.

○ “Focussing briefly on the specific diseases cited and their relation to bacterial exposure in one form or another, I find that evidence cited frequently rests on what can be considered “fringe” hypotheses that have little currency in their respective fields. This is not to discourage their continued pursuit but it does weaken the strength of the authors’ argument when investigation of the supporting literature frequently leads to papers that are given little credence in the specialist field. Of course “cave Helicobacter” must remain on the table. But there, an accidental technical breakthrough led to an avalanche of convincing laboratory and clinical data.”

It is probably a philosophical distraction to rehearse how often in science something outside the mainstream is blocked for many years by ‘vested interests’. However, we may as well mention Peyton Rous, whose discovery of a viral cause of certain cancers was sidelined for decades (he received a Nobel prize when he was 87, 40 years after first being nominated https://en.wikipedia.org/wiki/Francis_Peyton_Rous). Closer to (prokaryotic) home, Barry Marshall has edited a book (Marshall BJ (ed.): *Helicobacter pioneers: firsthand accounts from the scientists who discovered helicobacters*. Melbourne: Blackwell, 2002.) whose invited contributors had all long recognised a bacterial cause of ulcers and treated their patients accordingly, on the simple grounds that the antibiotics worked! Of course Marshall and Warren (and the wider world) knew nothing of this at the time of their discovery of *H. pylori*. Under these circumstances (as here) we rely on the overall weight of evidence (as much as its place of publication) to support our views. In Philosophy of Science circles this bolstering of a view via overlapping circles of self-consistent reasoning and data is referred to as ‘coherence’. Accordingly, in this sense, we have tried to make this a coherent story, and rehearse this point in the concluding section.

○ “In summary Kell, Potgieter and Pretorius have produced an interesting read which bring many important ideas to our attention. I am not convinced of the breadth of conditions to which they argue their ideas are applicable and I await with interest, demonstration of of how they may be practically pursued and some selected definitive proofs that iron-driven
inflammatory disease is as important as they claim."

We have no further comments at this stage. Many thanks again for a very thoughtful review.

Competing Interests: No competing interests were disclosed.