BRIEF DEFINITIVE REPORT

NTRK fusions in osteosarcoma are rare and non–functional events

Baptiste Ameline1†, Karim H Saba2†, Michal Kovac1, Linda Magnusson2, Olaf Witt3, Stefan Bielack4, Michaela Nathrath5,6, Karolin H Nord2, and Daniel Baumhoer1*

1Bone Tumour Reference Center at the Institute of Pathology, University and University Hospital Basel, Basel, Switzerland
2Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
3Coordinator INFORM Program, Hopp Children’s Cancer Center, German Cancer Research Center, University Hospital Heidelberg, Heidelberg, Germany
4Cooperative Osteosarcoma Study Group, Stuttgart Cancer Center, Klinikum Stuttgart – Olghospital, Pediatrics 5 (Oncology, Hematology, Immunology), Stuttgart, Germany
5Department of Pediatrics, Pediatric Oncology Center, Technische Universität München, Munich, Germany
6Pediatric Hematology and Oncology, Klinikum Kassel, Kassel, Germany

*Correspondence: Daniel Baumhoer, University Hospital Basel, Bone Tumour Reference Center at the Institute of Pathology, Schönbeinstrasse 40, 4031 Basel, Switzerland. E-mail: daniel.baumhoer@usb.ch
†These authors contributed equally to this work.

Abstract

Neurotrophic tyrosine receptor kinase (NTRK) fusions are promising molecular targets that have been described in a broad range of malignant tumours. Fusions commonly lead to the expression of chimeric proteins with constitutive tyrosine kinase activation that drives tumorigenesis. Despite a low prevalence among most solid tumours (<1%), the first encouraging results with pan-NTRK tyrosine kinase inhibitors (TKIs) such as larotrectinib or entrectinib stimulated the search for eligible patients. Here, we report the first three cases of osteosarcoma harbouring NTRK fusions, among 113 patients sequenced. It is also the first report on NTRK fusions within a tumour type characterised by highly rearranged genomes and abundant passenger mutations. Whereas the presence of NTRK gene fusions in many tumours is considered to be one of the main driver events for tumour progression, the three chimeric transcripts described here appear non–functional and likely represent randomly occurring passenger alterations. Particularly in tumours with complex karyotypes, it may therefore be advisable to specifically investigate the fusion transcripts for functional impact before considering targeted treatment approaches using pan-NTRK TKIs.

Keywords: NTRK; tyrosine kinase inhibitors; osteosarcoma

Received 14 November 2019; Revised 16 December 2019; Accepted 23 December 2019

Conflict of interest statement: SB reports activity as consultant or advisory board member for Bayer, Clinigen, Ipsen, Isofol, Lilly, Novartis, Roche, Böhringer Ingelheim and Sension. The other authors declare no conflicts of interest.

Introduction

Physiologically expressed in neuronal tissue, the NTRK1, NTRK2 and NTRK3 genes promote proliferation and survival of neuronal cells through the activation of the MAP-kinase, PLC-γ and PI3K-AKT signalling pathways [1]. Gene fusions between the tyrosine kinase domain of NTRK genes and different upstream partners lead to ectopic expression of constitutively active chimeric proteins. Among the numerous fusion partners already described, most are activating translocations harbouring dimerisation domains responsible for the tyrosine kinase overactivation [1]. The list of cancer types in which NTRK fusions have been identified has kept growing since their discovery in 1982 [2]. These tumours can be divided into a group of rare malignancies displaying a high prevalence (>80%) and a group of various other cancer types, in which NTRK fusions are generally infrequent (<5%) [3].

NTRK fusions are observed in a variety of configurations differing in the combination of N-terminal partners, the NTRK gene involved, the downstream pathways activated and the tumour types affected. Nevertheless, the pan-NTRK TKI larotrectinib has

© 2020 The Authors. The Journal of Pathology: Clinical Research published by The Pathological Society of Great Britain and Ireland and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
shown remarkable efficacy independent of tumour type with an overall response rate > 75% [4]. Similarly, entrectinib, a Pan-NTRK/ROS1/ALK inhibitor displayed an objective response rate of 79% over different solid tumour types [5,6].

Our aim was to search for NTRK fusions in a comprehensive set of 113 osteosarcomas. Since 30–40% of patients with osteosarcoma still die of their disease despite intense and multimodal treatment regimens, innovative and treatable targets are urgently needed.

Material and methods

Sample collection

All tumour samples were re-evaluated by an experienced bone pathologist and confirmed the diagnosis of conventional high-grade osteosarcoma and a tumour content of >50% per sample. Ethical approval was given by the Ethikkommission beider Basel (reference 274/12) and by the Regional Ethics Committee of Lund University.

DNA sequencing for the detection of structural aberrations

The DNA sequencing strategy differed slightly for the samples from Basel and Lund. In Basel, paired-end libraries from tumour and paired-blood DNA were prepared using the Agilent SureSelectXT HumanV5 kit for whole-genome sequencing (WGS). These were sequenced together with a tumour complementary DNA on an Illumina HiSeq2500 (Cambridge, UK) (paired-end 100 bp). Sequencing reads were mapped to the GRCh37 human reference genome using BWA as described before [7]. In Lund, DNA was extracted form fresh-frozen tumour biopsies and mate pair libraries were prepared for sequencing using the Nextera mate pair sample preparation kit (Illumina, Cambridge, UK) as previously described [8]. To identify structural rearrangements, the sequence data were analysed using the structural variant callers TIDDIT and Delly2.

Circos plots

Copy number aberrations were detected by segmenting log2 values extracted from SNP array analyses using the R package ‘copynumber’. For WGS, copy number segments were generated with ‘envkit’ using matched normal tissue as a baseline for copy number = 2. Copy number and structural variant data were then combined to construct circos plots using the R package ‘RCircos’.

RNA sequencing

RNA sequencing in Lund was performed as described previously [8]. In Basel, sequencing libraries were prepared using the TruSeq RNA Sample Preparation Kit v2 (Illumina). Total RNA was extracted from fresh-frozen tumour tissue and mRNA was then purified from 1 μg of total RNA using oligo(dT) beads. Paired-end sequencing was performed on the Illumina HiSeq 2500 in rapid run mode according to the manufacturer’s protocol using the TruSeq SBS Kit v3. Sequencing reads were mapped to the GRCh37 human reference genome using STAR or Hisat2.

Fusion transcript detection

ChimeraScan, deFuse, and FusionCatcher algorithms were used to detect chimeric transcripts from RNA-seq fastq files. Predicted fusions were filtered out based on the presence of chimeric spanning or encompassing reads. The sequences of reads spanning a NTRK gene were then blasted against the human transcriptome in order to exclude any ambiguity concerning the involved partners.

RT-PCR and Sanger sequencing validation

RT-PCR and Sanger sequencing were carried out as described previously [8]. In brief, the remaining mRNAs from two patients (VPS18-NTRK3; RALGPS2-NTRK3) were retrotranscribed into cDNAs. RT-PCR was performed with paired primers designed within 200 bp around the breakpoint. The amplification products were then Sanger sequenced.

Immunohistochemistry

IHC staining was performed using a pan-Trk monoclonal antibody (clone EPR17341, Abcam, Cambridge, UK) as described elsewhere [9].

Results

Next-generation DNA and RNA sequencing was performed across 113 osteosarcomas, including samples from primary tumours and metastases (76 and 37 cases, respectively). Assessment and comprehensive analyses of chimeric transcripts were carried out using ChimeraScan [10], FusionCatcher [11] and deFuse [12] and resulted in the detection of NTRK fusions in three
patients (2.7% of cases, n = 113; Figure 1 and see supplementary material, Figure S1). All gene fusions were verified and validated by the existence of split-reads in genome sequencing data (Figure 2) and/or RT-PCR (see supplementary material, Figure S2). Somatic copy number variations and structural variant assessment derived from genome sequencing furthermore showed that the NTRK fusions occurred in the context of heavily recombined genomes (Figure 2).

In the first case, we analysed a 23-year old female with lung metastases and identified a novel fusion of NTRK2 with an upstream partner UFD1. The fusion led to a premature stop codon by introducing a reading frame shift in NTRK2 upstream of the tyrosine kinase domain with subsequent shortening of the coding sequence of the NTRK2 transcript (Figure 3A).

The second analysis of a locally recurring osteosarcoma of a 22-year old female revealed an intrachromosomal rearrangement between the 5' untranslated region of the RALGPS2 gene and exons 4–17 of NTRK3 (Figures 3C and 4C).

Immuohistochemistry was performed using a pan-Trk antibody and did not yield immunoreactivity in any of the three osteosarcomas with NTRK rearrangements (data not shown), indicating a lack of detectable protein. All tumour samples with NTRK fusions had been obtained and archived >3 years before this study was conducted so none of the patients has been considered for pan-NTRK TKI treatment.

Figure 1. Schematic representation of the NTRK gene fusions found in patients with osteosarcoma. (A) Rearrangement between introns 6 of both UFD1 and NTRK2 genes. (B) Gene fusion occurred between intron 4 of the VPS18 gene and the 5' untranslated region of the NTRK3 gene. (C) Rearrangement between the 5' untranslated region of the RALGPS2 gene and intron 3 of the NTRK3 gene.
Regarding additional genetic alterations observed, the three tumours all showed copy number losses of CDKN2A and CDKN2B. This concomitant deletion has already been reported in several NTRK-fusion positive tumours of different entities [13,14].

Discussion

To the best of our knowledge, this is the first study to describe NTRK gene fusions in osteosarcoma. A previous pan-cancer study did not reveal a single NTRK fusion in the 53 osteosarcomas included [6]. As expected, osteosarcoma does not belong to the group of tumours that show a high prevalence of NTRK fusions as observed in a small set of rare neoplasms including secretory carcinoma of the breast / salivary gland or infantile fibrosarcoma [3,6].

NTRK gene fusions are commonly considered oncogenic drivers regardless of tumour type but chromosomally unstable tumours like osteosarcomas might challenge this notion. The high amount of chromosomal instability increases the likelihood of abundant and randomly occurring passenger alterations that might also involve the NTRK genes. Whether
individual NTRK gene fusions actually represent driver events or rather non-functional epiphenomena, however, seems crucial when targeted treatment approaches are considered.

The studies published so far included patients with evidence of NTRK rearrangements based on immunohistochemistry (IHC), FISH or RNA/DNA sequencing methods, and some studies only required a tumour to be ‘positive for a molecular alteration’ of NTRK1-3 [4,5] (ClinicalTrials.gov number: NCT02097810, NCT02568267, NCT02122913, NCT02576431 and NCT02637687). Recent studies suggesting that IHC with a pan-NTRK antibody reliably identifies NTRK1-3 rearrangements pave the way for rendering individual patients suitable for pan-NTRK TKI therapy based solely on surrogate markers [9]. Accordingly, the three patients with NTRK fusions described here would have met the criteria for enrollment in these studies. However, DNA and RNA sequencing of the two first patients demonstrate the introduction of premature stop codons by these fusions and a lack of transcription (Figure 4), which is tantamount to a loss-of-function of the chimeric proteins due to the absence of tyrosine kinase domains. Frameshifts in NTRK fusion transcripts have been reported in only a single case of a primary undifferentiated neuroendocrine carcinoma so far [15]. Finally, the third case exemplifies a recombined transcript whose functionality cannot be assessed by our analysis, although the absence of both an endogenous start codon and detectable RNA makes subsequent translation highly unlikely. None of the three tumours had detectable expression of NTRK proteins, as expected in the absence of transcription.

In summary, the role of NTRK gene fusions as driving/oncogenic events in the three osteosarcoma cases described here can be virtually excluded. At the same time, the functionality of NTRK chimeric transcripts detected in other tumour types with highly rearranged genomes should be interpreted with caution. Chromoanagenesis could be a potential mechanism to explain non-functional NTRK gene fusions as observed in the second tumour. As long as FISH or any other breakpoint-independent technique alone are used as inclusion criteria for clinical trials investigating pan-NTRK TKIs, patients will be included who will most probably not respond to treatment. Hence, sequencing of the fusion transcripts in at least all highly rearranged tumours, but preferably in all tumours, should be considered before initiating targeted treatment.

Acknowledgements

BA, MK, and DB were supported by the Swiss National Science Foundation, the Foundation of the Basel Bone Tumour Reference Centre, the Gertrude von Meissner Stiftung, and the Stiftung für krebskranke Kinder, Regio Basiliensis. KHN was supported by the Swedish Childhood Cancer Fund, the Swedish Cancer Society, the Swedish Research Council, the Faculty of Medicine at Lund University, the Åke Wiberg Foundation, the Royal Physiographic Society (Lund, Sweden).
and the Crafoord Foundation. Michaela Nathrath was supported by the Cura Placida Stiftung.

Author contributions statement

DB, BA and MK conceived and designed the study. BA, KHS, LM and KHN acquired, analysed or interpreted data. BA and DB drafted the manuscript. KHN, SB, KHS, NN and MK critically revised the manuscript for important intellectual content. LM, SB, MN and OW provided administrative, technical or material support. DB supervised the study.

References

1. Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol 2018; 15: 731–747.
2. Pulciani S, Santos E, Lauver AV, et al. Oncogenes in solid human tumours. Nature 1982; 300: 539–542.
3. Penault-Llorca F, Rudzinski ER, Sepulveda AR. Testing algorithm for identification of patients with TRK fusion cancer. J Clin Pathol 2019; 72: 460–467.
4. Drilon A, Laetsch TW, Kummar S, et al. Efficacy of larotrectinib in TRK fusion–positive cancers in adults and children. N Engl J Med 2018; 378: 731–739.
5. Drilon A, Siena S, S-HI O, et al. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor Entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov 2017; 7: 400–409.
6. Okamura R, Boichard A, Kato S, et al. Analysis of NTRK alterations in pan-cancer adult and pediatric malignancies: implications for NTRK-targeted therapeutics. JCO Precis Oncol 2018; 2018. https://doi.org/10.1200/PO.18.00183.
7. Worst BC, van Tilburg CM, Balasubramanian GP, et al. Next-generation personalised medicine for high-risk paediatric cancer patients – the INFORM pilot study. Eur J Cancer 2016; 65: 91–101.
8. Saba KH, Commark L, Rissler M, et al. Genetic profiling of a chondroblastoma-like osteosarcoma/malignant phosphaturic mesenchymal tumor of bone reveals a homozygous deletion of CDKN2A, intragenic deletion of DMD, and a targetable FN1-FGFR1 gene fusion. Genes Chromosomes Cancer 2019; 58: 731–736.
9. Rudzinski ER, Lockwood CM, Stohr BA, et al. Pan-Trk immuno-histochemistry identifies NTRK rearrangements in pediatric mesenchymal tumors. Am J Surg Pathol 2018; 42: 927–935.
10. Iyer MK, Chinnaiyan AM, Maher CA. ChimeraScan: a tool for identifying chimeric transcription in sequencing data. Bioinformatics 2011; 27: 2903–2904.
11. Nicorici D, Satalan M, Edgren H, et al. FusionCatcher – a tool for finding somatic fusion genes in paired-end RNA-sequencing data. BioRxiv 2014; http://doi.org/10.1101/011650.
12. McPherson A, Hormozdiari F, Zayed A, et al. deFuse: an algorithm for gene fusion discovery in tumor RNA-seq data. PLoS Comput Biol 2011; 7: e1001138.
13. Pavlick D, Schrock AB, Malicki D, et al. Identification of NTRK fusions in pediatric mesenchymal tumors. Pediatr Blood Cancer 2017; 64: e26433.
14. Taylor J, Pavlick D, Yoshimi A, et al. Oncogenic TRK fusions are amenable to inhibition in hematologic malignancies. J Clin Invest 2018; 128: 3819–3825.
15. Sigal DS, Bhangoo MS, Hermel JA, et al. Comprehensive genomic profiling identifies novel NTRK fusions in neuroendocrine tumors. Oncotarget 2018; 9: 35809–35812.

SUPPLEMENTARY MATERIAL ONLINE

Figure S1. Chimeric reads spanning the breakpoint site

Figure S2. Sanger sequencing after RT-PCR amplification of the RALGPS2-NTRK3 fusion transcript