Influenza A(H1N1)pdm09 virus and asthma

Masatsugu Obuchi1 *, Yuichi Adachi2, Takenori Takizawa1 and Tetsutaro Sata1

1 Department of Virology, Toyama Institute of Health, Toyama, Japan
2 Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama, Japan

Edited by: Hirokazu Kimura, National Institute of Infectious Diseases, Japan
Reviewed by: Jiarong Wang, Chinese Academy of Medical Sciences, Beijing, China
Medical College, China
Wen Zheng, Yale University, USA
*Correspondence: Masatsugu Obuchi, Department of Virology, Toyama Institute of Health, 17-1 Nakataikoyama, Imizu-shi, Toyama 939-0363, Japan
E-mail: masatsugu.obuchi@pref.toyama.jp

INFLUENZA A(H1N1)pdm09 VIRUS

Influenza A viruses can be subtyped according to their two major surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). There are 16 subtypes of HA (H1–H16) and nine subtypes of NA (N1–N9), and all have been found in wild aquatic birds, which are the natural reservoir of influenza A viruses. Only two subtypes of these viruses (H1N1 and H3N2) are currently circulating in humans, as seasonal influenza. Influenza A viruses have negative-sense, single-stranded, and eight-segmented RNAs as the genome (Lamb and Choppin, 1983). It is known that simultaneous infection of a single cell by two distinct influenza A viruses can lead to gene reassortment (Hause et al., 2012), which results in the generation of a novel influenza virus strain. It is believed that most human pandemic influenza A viruses arose in this manner.

In March and early April 2009, a novel swine-origin influenza A(H1N1) virus, designated as A(H1N1)pdm09, emerged in Mexico and the United States (Centers for Disease Control and Prevention, 2009) and rapidly spread worldwide. Genetic and evolutionary analyses revealed that this pandemic virus contains a combination of gene segments which had not been reported previously in swine or human influenza viruses in any part of the world. In the late 1990s, reassortment among North American avian (unknown subtype), human A(H3N2), and classical swine (H1N1) viruses resulted in triple reassortant swine A(H2N2) and A(H2N2) viruses.

A triple reassortant swine A(H2N2) virus then reassorted with a Eurasian avian-like swine A(H1N1) virus, resulting in A(H1N1)pdm09 virus (Garten et al., 2009; Smith et al., 2009; Figure 1). The polymerase basic 1 (PB1) and polymerase acidic (PA) gene segments were derived from the avian virus lineage, whereas the polymerase basic 1 (PB1) gene segment was from human A(H3N2) virus. The HA, nucleoprotein (NP), and non-structural protein (NS) gene segments were from classical swine A(H1N1) virus. The NA and matrix (M) gene segments were from the Eurasian avian-like swine A(H1N1) virus.

A(H1N1)pdm09 virus has none of the known hallmarks of virulent influenza viruses such as highly pathogenic avian (H5) and (H7) viruses, except for an amino acid substitution of aspartic acid by glycine at position 222 (D222G) in the HA, which was observed in severe and fatal cases with high frequency. The D222G substitution changes the receptor binding specificity of the virus from α2–6 (mammalian type) to α2–3 (avian type) sialylated carbohydrates.
Obuchi et al. Pandemic influenza and asthma

FIGURE 1 | A(H1N1)pdm09 virus and asthma. The reassortment of a triple reassortant swine A(H1N2) virus with a Eurasian avian-like swine A(H1N1) virus resulted in the pandemic A(H1N1) 2009 virus. The colored solid rods represent the gene segments as follows. Classical swine A(H1N1) virus: red. North American avian virus: yellow. Human A(H3N2) virus: green. Eurasian avian-like swine A(H1N1) virus: purple. Airway inflammation induced by the viral infection causes an exacerbation of asthma. Early treatment with antiviral drugs and vaccination represents the mainstay of management.

glycans (Parelli et al., 2010; World Health Organization, 2010; Belser et al., 2011). This amino acid substitution may result in a more efficient infection of human alveolar type II pneumocytes, which express avian type receptors, reducing the availability of progenitor cells for essential lung functions and thus leading to severe pulmonary impairment.

We recently reported that A(H1N1)pdm09 viral isolates derived from fatal cases manifested sporadic amino acid changes in the PB2 and PA proteins (which are subunits of viral RNA polymerase) more frequently than those derived from mild cases (Obuchi et al., 2012). More recently, reassortant viruses generated by reverse genetics have shown that lysine or isoleucine at position 340 or 649 of the PB2, respectively, and threonine at position 667 of the PB2 also contribute to virulence in a mouse model (Uraki et al., 2013). Further studies are needed to elucidate the role of the viral RNA polymerase of A(H1N1)pdm09 virus as a virulence factor.

A(H1N1)pdm09 VIRAL INFECTION AND ASTHMA

Widespread activity of pandemic A(H1N1) 2009 occurred and reached its peak a couple of months earlier than the usual seasonal influenza in the northern hemisphere, from April 2009 to January 2010 (Arimatsu-Guasti et al., 2011; Buong et al., 2011). The A(H1N1)pdm09 viral infection was considered a mild disease, similar to seasonal influenza. However, many severe and fatal cases were observed not only in the high-risk groups, but also among healthy children and young adults during the pandemic waves (Athanasiou et al., 2010; Reichert et al., 2010).

Asthma was one of the most common underlying medical conditions among patients hospitalized with A(H1N1)pdm09 viral infection in 2009 worldwide (Iain et al., 2009; Van Kerkhove et al., 2011). Kloepfer et al. (2012) reported that children with asthma had increased susceptibility to A(H1N1)pdm09 viral infection. They collected weekly nasal samples from 161 children (95 with asthma and 66 without asthma) between September 5 and October 24, 2009, and a total of 346 viral infections were detected. The majority were HRV (62%), followed by enterovirus (12%), A(H1N1)pdm09 virus (10%), adenovirus (2%), and others. Overall, 34% of the children were infected with A(H1N1)pdm09 virus during the study period. The incidence of A(H1N1)pdm09 viral infection was significantly higher in the children with asthma (34%) than in the children without asthma (24%), whereas the incidences of HRV (95% each) and the other viral infections (47% vs. 41%) were similar.

A Canadian group reported that children admitted to a hospital with A(H1N1)pdm09 viral infection tended to have pre-existing asthma to a greater extent compared to the children with seasonal influenza A viral infection (15% vs. 5%), although there was no significant difference in the severity of pre-existing asthma between the groups of children with these infections (Morris et al., 2012). An age-matched control study in Hong Kong demonstrated that hospitalized children with A(H1N1)pdm09 viral infection were more susceptible to asthma exacerbations compared to seasonal A(H1N1) (8.1 vs. 1.9%) or A(H3N2) (8.1 vs. 1.9%) viral infection (Chiu et al., 2011). A Japanese group reported similar findings (Hasegawa et al., 2011). It seems likely that
A(H1N1)pdm09 viral infection rather than A(H1N1) or A(H3N2) viral infection may enhance the already elevated inflammatory response and worsen the symptoms in asthma. The underlying mechanisms of increased susceptibility to A(H1N1)pdm09 viral infection and the asthma exacerbation remain to be explored.

In contrast, it is not clear whether A(H1N1)pdm09 viral infection can frequently cause the development of asthma compared to seasonal A(H1N1) or A(H3N2) viral infection. The study by Hasegawa et al. (2011) mentioned above showed that 7 (31.8%) of 22 asthmatic children with A(H1N1)pdm09 viral infection admitted to a hospital between October and December 2009 were not previously diagnosed with asthma. The sample size of that study is small, and thus a larger patient population must be studied.

Influenza A viral infection induces the production of interleukin 1 beta (IL-1β), IL-6, IL-8, tumor necrosis factor-alpha (TNF-α), histamine, pro tease, interferon (IFN)-α, and IFN-gamma (IFN-γ) from airway epithelial cells and other cells including peripheral blood basophils (Yanaya, 2012). These proinflammatory cytokines, monokines, and inflammatory substances may contribute to the development of airway inflammation, damaging the barrier function and leading to a subsequent asthma attack (Figure 1).

Camp et al. (2013) examined the phenotypic differences in virulence and immune response in A(H1N1)pdm09 virus isolates obtained from hospitalized patients with severe pneumonia. In that study, all viral isolates showed high similarity in nucleic acid sequences in viral gene and replication levels in nasal turbinates and lung, but the isolates’ virulence and host responses in mice varied. Proinflammatory cytokines such as IL-1α, TNF-α and a keratinocyte-derived chemokine (KC) were expressed early in mice infected with virulent isolates compared to avirulent isolates, including a vaccine strain of A(H1N1) virus in the 2008–2009 season, A/Brisbane/59/2007. In vitro experiments demonstrated that a virulent isolate – but not an avirulent isolate – was able to replicate productively in macrophages, suggesting that viral susceptibility to macrophages may be one of the key determinants of their pathogenicity (Camp et al., 2013).

UTILITY OF INFLUENZA VACCINES AND ANTIVIRAL DRUGS IN PATIENTS WITH ASTHMA

Many respiratory viruses are associated with asthma exacerbations, among which the influenza virus is the only virus for which both vaccines and antiviral drugs are available (Figure 1). Two types of influenza vaccines are currently available; inactivated vaccine and live, attenuated vaccine. The live, attenuated nasal-spray influenza vaccine has been approved for use in the United States since 2003. However, it has not been recommended in high-risk groups including asthmatics because its safety is not fully demonstrated. The widespread use of inactivated influenza vaccines contain a trivalent mixture of strains of A(H1N1)pdm09, A(H3N2), and type B viruses likely to circulate during the next influenza season. Many studies indicated that no increase in asthma exacerbations was reported for both vaccinated children and adults (American Lung Association Asthma Clinical Research Centers, 2001; Kramarz et al., 2001; Hak et al., 2003).

A randomized, open-label study to investigate the safety and immunogenicity of two administrations of an unadjuvanted, inactivated A(H1N1)pdm09 virus vaccine was conducted in the United States (Busse et al., 2011). The results indicated that both the 15-μg (standard dose) and 30-μg vaccine doses generally provided excellent seroprotection against viral antigen 21 days after a single immunization in patients (12 to 79 years of age) with mild-to-moderate asthma. In patients with severe asthma, the response to the 15-μg dose was lower than that to the 30-μg dose. The authors of that study did not identify any safety concerns with the A(H1N1)pdm09 vaccine. Collectively, the findings described above indicate that inactivated influenza vaccines are well tolerated in patients with asthma.

Specific antiviral drugs against influenza viruses could be used for the treatment and prophylaxis for influenza. Based on their chemical properties and spectra of activity against influenza viruses, the drugs can be classified into two categories: the M2 ion channel inhibitors, i.e., adamantanes (amantadine and rimantadine) and the NA inhibitors, i.e., zanamivir, oseltamivir, peramivir, and laninamivir. Currently, the NA inhibitors are exclusively used for the treatment and prophylaxis of influenza because the circulating strains of A(H1N1)pdm09 and A(H3N2) viruses have a known amino acid substitution of serine by asparagine at position 31 in the M2 protein, which confers resistance to the adamantanes.

Few studies have examined the safety of NA inhibitors in patients with asthma. A double-blind, placebo-controlled crossover study indicated that zanamivir inhaled as a dry powder did not significantly affect the pulmonary function and airway responsiveness of subjects (19 to 49 years of age) with mild or moderate asthma (Casas et al., 2000). However, a number of studies suggested that the use of NA inhibitors was beneficial in hospitalized patients with A(H1N1)pdm09 viral infection, particularly when they are started within 48 h after the onset of illness (Domínguez-Cherit et al., 2009; Jain et al., 2009; Louie et al., 2010). Accordingly, WHO recommended that for patients at increased risk for severe or complicated illness, treatment with oseltamivir or zanamivir should be started as soon as possible after the onset of illness (Writing Committee of the WHO Consultation on Clinical Aspects of Pandemic (H1N1) 2009 Influenza, 2010). Although A(H1N1)pdm09 virus resistance to NA inhibitors has been detected at very low frequency among circulating viral strains (World Health Organization, 2013b), there is concern about the recent report that oseltamivir-resistant A(H1N1)pdm09 viral mutants were detected in untreated patients and from a few clusters in some countries (Samson et al., 2013).

CLOSING REMARKS

Epidemiological studies as described above demonstrated that A(H1N1)pdm09 viral infection is closely associated with asthma in both children and adults. Although A(H1N1)pdm09 virus has not shown a high mortality rate similar to that of the highly pathogenic avian influenza virus of the H5N1 subtype, patients with A(H1N1)pdm09 viral infection were more susceptible to asthma exacerbation compared to A(H1N1) or A(H3N2) viral infection. Detailed analyses of virus-host interactions are needed to elucidate the mechanism underlying A(H1N1)pdm09 viral infection-induced asthma.
Since March 31, 2013 when the public health authorities of China reported three cases of human infection with an avian influenza A(H7N9) virus, a total of 133 human cases including 44 fatal cases have been reported in China and Taiwan as of August 12, 2013 (World Health Organization, 2013a). The current American Lung Association Asthma Frontiers in Microbiology

REQUIS References

Obuchi et al. Pandemic influenza and asthma pathogenic potential with high mortality rates, suggesting that the influenza A(H7N9) virus, a total of 135 human cases including 44 fatal cases have been reported in China and Taiwan as of China reported three cases of human infection with an avian influenza A(H1N1) reported to in Europe. Frontiers in Microbiology

REFERENCES

Amato-Gauci, A., Zacca, F., Sneddon, R., Gianino, R., Lopez, V., Broder, E., et al. (2011). Surveillance trends of the 2009 influenza A(H1N1) pandemic in Europe. Euro Surveill. 16, pii: 199803.

American Lung Association Asthma Clinical Research Centers. (2011). The safety of inactivated influenza vaccine in adults and children with asthma. N. Engl. J. Med. 365, 1529–1536. doi: 10.1056/NEJMou1101911

Altamirano, M., Lyras, T., Spili, G., Triantafyllou, E., Chiliiopoulos, K., Thousopoulos, G., et al. (2010). Fatal cases associated with pandemic influenza A (H1N1) reported in Greece. PLoS Curr. 2:EBN194. doi: 10.15567/currents.BKN194

Bifani, J. A., Inyamun, A., Ramut, R., Pappas, C., Zong, H., Cox, N. J., et al. (2009). High pathogenicity of the hemagglutinin protein on receptor binding, pathogenesis and transmissibility of the 2009 pandemic H1N1 influenza virus. PLoS ONE 4, e52901. doi: 10.1371/journal.pone.0025091

Busse, W. W., Peters, S. P., Fenton, M. J., Adcock, R. S., Geraci, M. J., Mitchell, H., Bleecker, E. R., et al. (2011). Effect of D222G mutation in the haemagglutinin of H1N1 virus on receptor binding, pathogenesis and transmissibility of the 2009 pandemic H1N1 influenza virus. PLoS ONE 6, e20137. doi: 10.1371/journal.pone.0021837

Dimopoulos-Chioti, G., Logno, S. E., Maccio, A. E., Pan, Y., Espinosa-Perez, L., de la Torre, A., et al. (2009). Critically ill patients with 2009 influenza A(H1N1) in Mexico. JAMA 302, 1880–1887. doi: 10.1001/jama.2009.1556

Garwin, R. I., Davis, C. T., Buss, C. A., Niu, B., Lindstrom, S., Balish, A., et al. (2009). Antigenic and genetic diversity of 2009 pandemic H1N1 influenza viruses circulating in humans. Science 325, 197–201. doi: 10.1126/science.1175225

Hale, E., Brookman, E., van Essen, E. A. G., van Balkom, J. J. E., Zandbergen, M. J. A. B., et al. (2005). Clinical effectiveness of influenza vaccination in patients younger than 65 years with high-risk medical conditions. Arch. Intern. Med. 165, 274–280. doi: 10.1001/archinte.165.3.274

Campbell, J. K., Kiso, M., Shinya, K., Goto, H., Takano, R., Iwatsuki-Horimoto, K., et al. (2010). Virulence determinants of atopic children with pandemic influenza A(H1N1) 2009 pandemic influenza with seasonal H1N1 and H1N2. PLoS ONE 5, e98044. doi: 10.1371/journal.pone.0025091

Tabak, R. L., Uraki, R., Kiso, M., Shinya, K., Goto, H., Takano, R., Iwatsuki-Horimoto, K., et al. (2010). Virulence determinants of atopic children with pandemic influenza A(H1N1) 2009 pandemic influenza with seasonal H1N1 and H1N2. PLoS ONE 5, e98044. doi: 10.1371/journal.pone.0025091

Loise, J., et al. (2009). Hospitalized patients with 2009 H1N1 influenza in the United States, April-June 2009. N. Engl. J. Med. 361, 1935–1944. doi: 10.1056/NEJMoa0909485

Huang, M. A., Seward, D., Olson, S. J., Lennette, D., Biggar, M., Kamimoto, L., et al. (2011). Epidemiology of 2009 pandemic influenza A (H1N1) in the United States. Clin. Infect. Dis. 52, 515–526. doi: 10.1086/651405

Koopmeijer, K. M., Okoen, J. P., Lou, N. M., Liu, G., Yin, R, Böhrig, K. A., et al. (2012). Increased H1N1 infection rate in children with asthma. Ann. Intern. Med. 156, 1275–1279. doi: 10.7326/0003-4819-156-17-201209100-00009

Kremsner, P., Delport, E., Garpmo, P. M., Chen, R. T., Liu, Y. A., Davis, R. L., et al. (2011). Does influenza vaccination prevent asthma exacerbations in children? Pediatr. 190, 501–506. doi: 10.14157/1471-2338-112618

Lamb, R. A., and Chopin, P. W. (1983). The genome structure and replication of influenza virus. Annu. Rev. Biochem. 52, 467–506. doi: 10.1146/annurev.bi.52.070183.002343

Moa0910444

Moa091138

Morishima, M., Fabian, D., Holtz, H., Beasley, R., and Global Initiative for Asthma (GINA). Program. (2004). The global burden of asthma: executive summary of the GINA dis- cussion paper. Allergy 59, 409–478. doi: 10.1111/1398-9995.2004.00326.x

Morris, S. K., Parkin, P., Science, M., Sibbaluca, P., Liu, Y., Olfordian, S., et al. (2012). A retrospective case-control study of risk factors and clinical spectrum of children admitted to hospital with pandemic H1N1 influenza as compared to influenza A BMJ Open 2, e000310. doi: 10.1136/bmjopen-2011-000310

Obuchi, M., Tozu, T., Tanaka, H., Otagawa, T., Abiko, C., Fujimoto, K., et al. (2012). Molecular analysis of genome of the pandemic influenza A/H1N1 2009 virus associated with fatal infections in Gamma, Tochigi, Yamagata, and Yamaguchi prefectures in Japan during the first pandemic wave. Jpn. J. Infect. Dis. 65, 365–367. doi: 10.7895/jid2011.05.58

Ohta, K., Yamauchi, M., Akinomi, K., Asahi, M., Einhorn, M., Takahashi, K., et al. (2011). Japanese guideline for adult allergol. Int. 60, 119–145. doi: 10.2322/allergolymph.11- RAI-0327

Papadopoulos, N. G., Christodoulou, I., Behde, G., Agache, L., Alpergut, G., Bruno, A., et al. (2011). Viruses and bacteria in acute asthma exac- erbations – a GACEN-DARE systematic review. J Allergy Clin. 128, 458–468. doi: 10.1016/j.jaci.2010.10.0270

Postic, S., Fauconni, M., De Marco, M. A., Palmurti, A., Spagnolo, D., Boros, S., et al. (2010). Molecular surveillance of pandemic influenza A(H1N1) viruses circulating in Italy from May 2009 to February 2010: association between haemagglutinin mutations and clinical outcome. Euro Surveill. 15, pii: E9906.

Reichert, T., Chowell, G., Nishiura, H., Christensen, R. A., and McCauley, J. A. (2010). Does glycosylation as a modeller of original antigenic sin explain the age case distribution and unusual toxicology in pandemic novel H1N1 influenza? BMC Infect. 10, pii: 19696. doi: 10.1186/1471-2334-10-5

Rohde, G., Agache, I., Almqvist, C., Boros, S., et al. (2010). Molecular surveillance of pandemic influenza A/H1N1 viruses circulating in Italy from May 2009 to February 2010: association between haemagglutinin mutations and clinical outcome. Euro Surveill. 15, pii: E9906.

Reichert, T., Chowell, G., Nishiura, H., Christensen, R. A., and McCauley, J. A. (2010). Does glycosylation as a modeller of original antigenic sin explain the age case distribution and unusual toxicology in pandemic novel H1N1 influenza? BMC Infect. 10, pii: 19696. doi: 10.1186/1471-2334-10-5

Samson, M., Pizzorno, A., Abed, Y., Behavior and Allergic Response – A GA2LEN-DARE systematic review. J Allergy Clin. 128, 458–468. doi: 10.1016/j.jaci.2010.10.0270
of pandemic A(H1N1)2009 influenza virus in a mouse model. J. Virol. 87, 2226–2233. doi: 10.1128/JVI.01565-12
Van Kerkhove, M. D., Vandemaele, K. A. H., Shindo, V., Jeremias-Gutierrez, G., Koudounari, A., Donnelly, C. A., et al. (2011). Risk factors for severe outcomes following 2009 influenza A (H1N1) infection: a global pooled analysis. PLoS Med. 8:e1001053. doi: 10.1371/journal.pmed.1001053
World Health Organization. (2009). Influenza (seasonal). Available at: http://www.who.int/mediacentre/factsheets/fs211/en/index.html
World Health Organization. (2010). Preliminary review of D222G amino acid substitution in the haemagglutinin of pandemic influenza A (H1N1) 2009 viruses. Wkly. Epidemiol. Rec. 85, 21–22.
World Health Organization. (2010a). Number of Confirmed Human Cases of Avian Influenza A(H5N1) Reported to WHO. Available at: http://www.who.int/influenza/human_animal_interface/influenza_h5n1/ Data_Reports/en/index.html
World Health Organization. (2010b). Recommended Composition of Influenza Virus Vaccines for Use in the 2010–2011 Northern Hemisphere Influenza Season. Available at: http://www.who.int/influenza/vaccines/virus/ recommendations/201002_recommendation.pdf
Writing Committee of the WHO Consultation on Clinical Aspects of Pandemic (H1N1) 2009 Influenza. (2010). Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection. N. Engl. J. Med. 362, 1708–1719. doi: 10.1056/NEJMra1000449
Yamaya, M. (2012). Virus infection-induced bronchial asthma exacerbation. Pulm. Med. 2012, 834826. doi: 10.1155/2012/834826
Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Received: 28 June 2013; accepted: 24 September 2013; published online: 14 October 2013.
Citation: Obuchi M, Adachi Y, Takizawa T and Sata T (2013) Influenza A(H1N1)pdm09 virus and asthma. Front. Microbiol. 4:307. doi: 10.3389/fmicb.2013.00307
This article was submitted to Virology, a section of the journal Frontiers in Microbiology. Copyright © 2013 Obuchi, Adachi, Takizawa and Sata. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.