Spectral Variation of NLS1 Galaxy PMN J0948+0022

X. N. Sun 1,3, Jin Zhang 2,3,*, Y. Lu 2, E. W. Liang 1,2,3, S. N. Zhang 2,4

1 Department of Physics and GXU-NAOC Center for Astrophysics and Space Sciences, Guangxi University, Nanning, 530004, China
2 National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012, China
3 Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming, 650011, China
4 Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China

2013 February 25

Abstract. Four well-sampled spectral energy distributions (SEDs) of PMN J0948+0022 are fitted with the syn+SSC+EC model to derive the physical parameters of its jets and to investigate the spectral variations of its SEDs. A tentative correlation between the peak luminosity (L_c) and peak frequency (ν_c) of its inverse Compton (IC) bump is found in both the observer and co-moving frames, indicating that the variations of luminosity are accompanied with the spectral shift. A correlation between L_c and δ is found, and thus the magnification of the external photon field by the bulk motion of the radiation regions is an essential reason for the spectral variation since the IC bump of PMN J0948+0022 is dominated by the EC process.

Key words: galaxies: active – galaxies: individual: PMN J0948+0022 – galaxies: Seyfert – galaxies: jets – gamma-rays – theory

1. Introduction

Narrow-Line Seyfert 1 (NLS1) Galaxies are a relatively peculiar subclass of active galactic nuclei (AGNs), which are characterized by their optical spectra with narrow permitted lines (FWHM (Hβ) < 2000 km s$^{-1}$), the ratio of [O III]λ5007/Hβ < 3, and the bump of Fe II (e.g., Pogge 2000). NLS1s are also interesting for their low masses of central black holes and high accretion rate. NLS1s are generally radio quiet; only a small percentage of them is radio-loud (< 7%; Komossa et al. 2006). So far, four NLS1s are confirmed to be GeV emission sources by Fermi/LAT, which should have relativistic jets as predicted by Yuan et al. (2008).

PMN J0948+0022 ($z = 0.5846$) is the first NLS1 detected in GeV band by

*e-mail: zhang.jin@hotmail.com
Figure 1. Panel a—Observed SEDs (scattered data points) with model fitting (lines) for PMN J0948+0022. The four SEDs are marked as states “a” (blue points and thick solid line), “b” (magenta points and dashed line), “c” (red points and thin solid line), and “d” (green points and dotted line), respectively. Panels b, c—L_c as a function of ν_c in both the observer (Panel b) and co-moving (Panel c) frames.

Fermi/LAT. The inverted spectrum in radio band indicates the presence of a relativistic jet viewed at small angles (Zhou et al. 2003), which is similar to the properties of blazars. The significant variabilities of PMN J0948+0022 are detected, especially in GeV band (Abdo et al. 2009; Foschini et al. 2012). It is found that the observed luminosity variations are usually accompanied with the shift of peak frequencies of the SEDs, similar to some GeV-TeV BL Lacs (Zhang et al. 2012). The abundant broadband observational data provide an opportunity to study the physical mechanism of the spectral variations of PMN J0948+0022.

2. SED Selection and Modelling

We compile the observed broadband SEDs of PMN J0948+0022 from literature. Four available SEDs as shown in Figure 1(a), are defined as SEDs “a”, “b”, “c”, and “d” according to their peak luminosity of the IC bump of the SEDs, respectively. The data of SEDs “a” and “b” are from Foschini et al. (2012) and are obtained with the observations in 2010 July 8th and 2011 October 9th-12th, respectively. The SEDs “c” and “d” of this source are taken from the observations in 2009 June 14th and 2009 May 5th (Abdo et al. 2009).

The broadband SEDs of PMN J0948+0022 are similar to the typical FSRQs and thus the γ-ray emission should be dominated by jet emission. We use the syn+SSC+EC model to fit its SEDs because the contributions of the external field photons from the broad line region (BLR) need to be considered. The total luminosity of the BLR is calculated using the luminosity of its emission lines (Zhou et al. 2003) with equation (1) given in Celotti et al. (1997). The size of the BLR is calculated using the BLR luminosity with equation (23) in Liu & Bai (2006). The energy density of the BLR measured in the co-moving frame is $U_{\text{BLR}}' = 6.76 \times 10^{-3} \Gamma^2$ erg cm$^{-3}$, where we take $\Gamma \sim \delta$. The minimum variability timescale is taken as $\Delta t = 12$ hr. The details of the model and the strategy for constraining its parameters constraints can be found in Zhang et al. (2012).

The SEDs of PMN J0948+0022 are well explained with the syn+SSC+EC model, as shown in Figure 1(a). The EC component of the SEDs for PMN J0948+0022...
Spectral Variation of PMN J0948+0022

3. Spectral Variation of IC Bump

The broadband SEDs of PMN J0948+0022 are dominated by the EC process, and there are significant variabilities in GeV band. The peak luminosity (\(L_c\)) as a function of peak frequency (\(\nu_c\)) of the IC bump in both the observer and co-moving frames are given in Figures 1(b),(c). A tentative correlation between the peak luminosity and peak frequency in both the observer and co-moving frames is found, i.e., \(L_c \propto \nu_c^{(2.12\pm0.83)}\) with \(r = -0.97\) (Pearson correlation coefficient) and \(p = 0.13\) (chance probability), and \(L'_c \propto \nu'_c^{(1.05\pm0.21)}\) with \(r = 0.96\) and \(p = 0.04\), respectively, indicating that the luminosity variations of the IC bump are accompanied with a spectral shift.

To investigate the possible physical reason of this phenomenon, we show the IC peak luminosity as functions of \(B\), \(\delta\), and \(\gamma_b\) in both the observer and co-moving frames in Figure 2. It can be found that: (1) Both \(L_c\) and \(L'_c\) are anti-correlated with \(B\). The Pearson correlation analysis and the best liner fits yield \(L_c \propto B^{-1.09\pm0.28}\) with \(r = -0.94\), \(p = 0.06\) and \(L'_c \propto B^{-0.37\pm0.09}\) with \(r = -0.94\), \(p = 0.06\). (2) \(L_c\) seems to be correlated with \(\delta\) with \(r = 0.93\) and \(p = 0.07\). (3) No correlation between \(\gamma_b\) with \(L_c\) and \(L'_c\) is found, which may be due to the uncertainties of the synchrotron radiation peak for the SEDs. These facts indicate that the spectral variations of the IC peak for PMN J0948+0022 may be attributed to the variations of \(\delta\) and \(B\), similar to the results of a typical FSRQ 3C 279 (Zhang et al. 2013).

The significant variations of the IC peak for PMN J0948+0022 in GeV band
are dominated by the EC process. The energy density of the external photon field would be magnified by Γ^2 and the energy of the seed photons would be magnified by Γ due to the motion of the emitting regions, hence a small variation of δ would result in significant variations of ν_c and L_c. As mentioned above, B is also anti-correlated with L_c in both the observer and co-moving frames, indicating the variations of B for this source between different states, which are also accompanied with the variations of δ, might be linked to the variations of some intrinsic physical parameters of the center black hole, such as the disk accretion rate or the corona (Zhang et al. 2013). The instabilities of corona or disk accretion rate may result in the variations of the jet physical condition and the variations of jets emission.

4. Conclusion

The SEDs observed at four epochs for PMN J0948+0022, which can be explained well with the syn+SSC+EC model, are compiled from literature to investigate its spectral variation. A tentative correlation between the peak luminosity and peak frequency of its IC bumps is found, indicating that a higher GeV luminosity corresponds to a harder spectrum for the emission in the GeV band, similar to the properties of some blazars. The SEDs of PMN J0948+0022 are dominated by the EC bumps and thus the magnification of the external photon field by the bulk motion of the radiation regions is an essential reason for the spectral variation. The variations of B and δ for PMN J0948+0022 between different states may be produced by the instabilities of the corona or the disk accretion rate.

5. Acknowledgments

This work is supported by the National Basic Research Program (973 Programme) of China (Grant 2009CB824800), the National Natural Science Foundation of China (Grants 11078008, 11025313, 11133002, 10725313), Guangxi Science Foundation (2011GXNSFB018063, 2010GXNSFC013011), and Key Laboratory for the Structure and Evolution of Celestial Objects of Chinese Academy of Sciences.

References

Abdo, A. A., et al., 2009, Astrophys. J., 707, 727.
Celotti, A., Padovani, P., Ghisellini, G., 1997, Mon. Not. R. Astron. Soc., 286, 415.
Foschini, L., et al., 2011, Mon. Not. R. Astron. Soc., 413, 1671.
Komossa, S., Voges, W., Xu, D., et al., 2006, Astronomical J., 132, 531.
Liu, H. T., Bai, J. M., 2006, Astrophys. J., 653, 1089.
Pogge, R. W. 2000, New Astronomy Reviews, 44, 381.
Yuan, W., Zhou, H. Y., Komossa, S., et al., 2008, Astrophys. J., 685, 801.
Zhang, J., Liang, E.-W., Zhang, S.-N., Bai, J. M. 2012, Astrophys. J., 752, 157.
Zhang, J., et al., arXiv:1302.3804, accepted for publication in Astrophys. J.
Zhou, H.-Y., Wang, T.-G., Dong, X.-B., Zhou, Y.-Y., Li, C., 2003, Astrophys. J., 584, 147.