Human Machine Interface Design Analysis of Defect Detection Prototype by Wonderware InTouch Software

Tatang Mulyana¹, Rasidi Ibrahim², Erween Abd Rahim²
¹School of Industrial and System Engineering, Universitas Telkom, Indonesia
²Premach, Faculty of Mechanical Engineering and Manufacturing, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia

Email: tatangmulyana@telkomuniversity.ac.id

Abstract. Human Machine Interface (HMI) serves as a bridge for operators to understand the processes that occur on the machine. Without HMI, operators will have difficulty in monitoring and controlling the machine. HMI used in this study using Wonderware InTouch software. The HMI design that is used, displays the home button, as the start screen. There are two options in the home menu, which is the option to login as an identification and classification operator. To start operation and enter the monitoring window, any operator that uses this HMI must login using a username and password. The function of HMI in this research is as a connector between operators with machine. In this paper we have presented the human machine interface design of defect detection prototype by wonderware intouch software. Based on the tested results can be concluded that the designed is successfully.

Keywords: human machine interface; design; defect detection prototype; wonderware intouch software.

1. Introduction

Human Machine Interface (HMI) serves as a bridge for operators to understand the processes that occur on the machine. Without HMI, operators will have difficulty in monitoring and controlling the machine. This interface serves to facilitate the operator in plant monitoring, plant control, plant handling, and access historical data either for the whole process or each of the existing equipment in the process [1]. Wonderware InTouch is the software used to create the HMI program. This software serves as a face-to-face or interface for the operator. In this study, HMI serves as a control board consisting of various buttons with certain functions. This paper presents a portion of the work of a large project of building a prototype tool of defect detection where data capture-based image processing and is analysed based on neural network and fuzzy logic methods. Some authors have presented several design methods, including green manufacturing method [2, 3, 4], taguchi approach method [5], Wonderware InTouch [6, 7], inductive line following method [8], fuzzy logic [9, 10], solidwork program [11, 12, 13]. Some authors have made simulations to test their designs, such as computer simulation [14], supervisory fertigation system with interactive graphical supervisory control and data acquisition system [15]. Some authors have modelled the results of their simulations using various approaches, among others NNARX model structure [16], MATLAB program [17, 18], artificial neural network [19], and ultrasonic vibration assisted milling [20, 21, 22].
2. Human Machine Interface Design Scenario

Human machine interface (HMI) used in this study is using Wonderware InTouch software. The HMI design displays the home button, as the start screen. There are two options on the home menu, which is the option to login as the identification operator and login option as the classification operator. To start operation and enter the monitoring window, any operator that uses this HMI must login using a username and password. The HMI function in this research is as a connector between operators with machine. The scenario of the HMI design can be seen in Figure 1.

![HMI Design Scenario](image)

Figure 1. HMI design scenario of the defect detection prototype

3. Result and Discussion

The design of the HMI used in this paper is made using Wonderware InTouch software. It on this system is used to monitor the identification of defects in the fabric. It created consists of several pages that can be accessed, including home page, login page, and monitoring page. The home page is the first and main view on the HMI design. On this home page there is a display of choice between the identification process and the classification process. Therefore, the identification operator will choose the identification process and classification operator will choose the classification process. The results of HMI designed can be seen in Figure 2, it consist of (a) HMI home page display, (b) HMI login page display, (c) Example of username in HMI login page, and (d) HMI system display.

The function of login is as a security system, because only people or special operators can login and access the system. Before the operator accesses the identification process or the classification process, the operator must enter a username and password. Operator identification will login with username and password for identification and operator classification will login with username and password for
classification. When the username and password are entered correctly (received) then the operator can press the OK button and enter into the HMI System and then the windows monitoring display it. After the operator successfully log into the system then the operator will be directed to the windows monitor.

![HMI System](image1)

![HMI System](image2)

![HMI System](image3)

![HMI System](image4)

Figure 2. The results of HMI designed of the defect detection prototype

Test results from windows monitoring can be seen in Figure 3. This results consist of (a) the SYSTEM ON indicator lamp turns on when the system is active, (b) the conveyor moves and the lamp turns on when the START button is pressed, (c) the CAPTURE lamp turns on when the system is running CAPTURE process, (d) the EMERGENCY lamp turns on when the EMERGENCY button is pressed, (e) the MANUAL indicator lamp turns on when the identification process changed from auto to manual, (f) the CONVEYOR FORWARD indicator lamp turns on when the CONVEYOR FORWARD button is pressed, (g) the CAPTURE indicator lamp turns on when the CAPTURE button is pressed, and (h) the CONVEYOR BACKWARD indicator lamp turns on when the CONVEYOR BACKWARD button is pressed.
Figure 3. Test results from windows monitoring of the HMI designed.

4. Conclusion
In this paper we have presented the human machine interface design of defect detection prototype by wonderware intouch software. Based on the tested results can be concluded that the designed is successfully. It presents a portion of the work of a large project of building a prototype tool of defect detection where data capture-based image processing and is analysed based on neural network and fuzzy logic methods. It on this system is used to monitor the identification of defects in the fabric. It created consists of several pages that can be accessed, including home page, login page, and monitoring page. The home page is the first and main view on the HMI design. On this home page there is a display of choice between the identification process and the classification process. Therefore, the identification operator will choose the identification process and classification operator will choose the classification process.

Acknowledgments
The results of the study presented in this paper are part of a study funded by a research grant from SISPRMOSASI Laboratory of Telkom University.

5. References
[1] H. Wicaksono, “SCADA Software with Wonderware InTouch,” Yogyakarta Graha Ilmu, 2012
[2] F.A. Setiyansyah, H. Rachmat, T. Mulyana, “Design to Minimize Time Production For Reduce Energy Consumption on Jacquard Punching Machine Based On Green Manufacturing Method,” e-Proceeding of Engineering 4 (2) 2017, 2821-2827
[3] F. Mawaddah, H. Rachmat, and T. Mulyana, “Flexibility Improvement on Energy Consumption of Punching Machine Based on Green Manufacturing Method at PT Buana Intan Gemilang,” MATEC Web of Conferences 135, 00055 (2017) ICME’17
[4] A Prillia, H Rachmat, T Mulyana, “Cost Optimization on Energy Consumption of Punching Machine Based on Green Manufacturing Method at PT Buana Intan Gemilang,” MATEC Web of Conferences 135, 00054 (2017) ICME’17
[5] M Mirsyah, T Mulyana, “Design on inspection system automation of curtain woven fabrics by image processing and the taguchi approach method at PT. Buana Intan Gemilang,” IOP Conference Series: Materials Science and Engineering 277 (1) 2017, 012057
[6] H. Rachmat, T. Mulyana, “Website Design of EMS-SCADA for AC Usage on a Building,” 3rd International Conference on Information and Communication Technology (ICoICT), 2015, 17-22
[7] H. Rachmat, R.A. Anugraha, T. Mulyana, “EMS-SCADA Design of AC Usage on a Building,” Proceeding 8th International Seminar on Industrial Engineering and Management (ISIEM), 2015, PS45-49
[8] P.P. Yuliarso, H. Rachmat, T. Mulyana, “Automated Guided Vehicle Design Using Inductive Line Following Method On AS/RS As A Simulation In Skill Development Centre Of Automation Industrial Engineering,” eProceedings of Engineering 2 (2) 2015
[9] H. Rachmat, T. Mulyana, S.H. Hasan, M.R. Ibrahim, “Design Selection of In-UVAT Using MATLAB Fuzzy Logic Toolbox,” International Conference on Soft Computing and Data Mining (SCDM), 2016, 538-545
[10] R. Safitri, T. Mulyana, “Optimizing Woven Fabric Defect Detection Using Image Processing and Fuzzy Logic Method at PT. Buana Intan Gemilang,” 1st International Conference on Industrial, Enterprise, and System Engineering (ICoIESE) 2017
[11] T. Mulyana, D. Sebayang, M.F. Izzuddin, F. Fajrina, R.M. Faizal, “Design and Analysis of Solar Smartflower Simulation by Solidwork Program,” IOP Conf. Series: Materials Science and Engineering 343 (2018) 012019
[12] T. Mulyana, D. Sebayang, A.M.D. Rafsanjani, J.H.D. Adani, Y.S. Muhyiddin, “Design and Analysis of Windmill Simulation and Pole by Solidwork Program,” IOP Conf. Series: Materials Science and Engineering 343 (2018) 012018
[13] T Mulyana, D Sebayang, AMD Rafsanjani, JHD Adani, YS Muhyiddin, “Mesh control information of windmill designed by Solidwork program,” IOP Conference Series: Materials Science and Engineering 277 (1) 2017, 012010
[14] R.M.E. Hadi, T. Mulyana and W. Tripiawan, “Computer Simulation of a Multi-Function Oven by Utilizing Dual-Energy,” 4th International Conference on Communication and Computer Engineering (ICOCOE), 2017
[15] F.D.M. Fauzi, T. Mulyana, Z.I. Rizman, M.T. Miskon, W.A.K.W. Chek, M.H. Jusoh, “Supervisory Fertigation System Using Interactive Graphical Supervisory Control and Data Acquisition System,” International Journal on Advanced Science Engineering Information Technology, Vol. 6, No. 4, 2016, 489-494
[16] T. Mulyana, “NNARX Model Structure for the Purposes of Controller Design and Optimization of Heat Exchanger Process Control Training System Operation,” AIP Conference Proceedings 1831, 020040 (2017)
[17] D. Hanafi, M.N.M. Than, A.A.A. Emhemed, T. Mulyana, A.M. Zaidi and A.H. Johari, “Heat Exchanger’s Shell and Tube Modelling for Intelligent Control Design,” 2011 International Conference on Computer and Communication Devices (ICCDDC 2011), V2-37-41
[18] T. Mulyana, M.N.M. Than, D. Hanafi, H. Azhar, “Modeling and Simulation of Temperature Control PID Single Loop of a Heat Exchanger Process Control Training System QAD Model BDT921,” International Conference Electrical Energy and Industrial Electronic Systems (EEIES), Park Royal Penang, Malaysia 7-8 December, 2009 Re: 73-85976
[19] Shadika, T Mulyana, M Rendra, “Optimizing Woven Curtain Fabric Defect Classification using Image Processing with Artificial Neural Network Method at PT Buana Intan Gemilang,” MATEC Web of Conferences 135, 00052 (2017) ICME’17
[20] I. Rasidi, N.H. Rafai, E.A. Rahim, S.A. Kamaruddin, H. Ding, K. Cheng, K., “Investigation of Cutting Mechanics in 2 Dimensional Ultrasonic Vibration Assisted Milling toward Chip Thickness and Chip Formation”. IOP Conference Series: Material Science and Engineering, Volume 100, Issue 1, 3rd International Conference of Mechanical Engineer, Part B: Jurnal of Engineering Manufacture, Volume 225, Issue 11, November 2011, 2032-2039.
[22] M.R. Ibrahim, N.H. Rafai, N. H., E.A. Rahim, K. Cheng, H. Ding, “A Performance of 2 Dimensional Ultrasonic Vibration Assisted Milling in Cutting force Reduction, on Aluminium AL6061”. ARPN Journal of Engineering and Applied Sciences, Volume 11, Issue 18, 2016. 11124-11128