A 481pJ/decision 3.4M decision/s Multifunctional Deep In-memory Inference Processor

using Standard 6T SRAM Array

Mingu Kang, Sujan Gonugondla, Ameya Patil, and Naresh Shanbhag

Dept. Electrical and Computer Engineering, University of Illinois at Urbana-Champaign

Abstract

This paper describes a multi-functional deep in-memory processor for inference applications. Deep in-memory processing is achieved by embedding pitch-matched low-SNR analog processing into a standard 6T 16KB SRAM array in 65 nm CMOS. Four applications are demonstrated. The prototype achieves up to 5.6X (9.7X estimated for multi-bank scenario) energy savings with negligible (≤1%) accuracy degradation in all four applications as compared to the conventional architecture.
Emerging inference applications require processing of huge data volumes [1]. A conventional inference architecture (Fig. 1) implements memory access, data transfer from memory to processor, data aggregation, and slicing. In such architectures, memory access energy dominates, e.g., an 8-b SRAM read access and an 8-b MAC consumes 5pJ and 1pJ in 65nm CMOS, respectively. Additionally, the memory-processor interface presents a severe throughput bottleneck. Deep in-memory signal processing concept was proposed in [2] to overcome these challenges by embedding mixed-signal processing in the periphery of the SRAM bit-cell array (BCA). However, an IC implementation needs to address a host of new challenges including the stringent row & column pitch-matching requirements imposed by the BCA without altering its storage density or its read/write functionality, and enabling multiple functions with mixed signal circuitry. Recently [3], a single function, 5×1-b in-memory classifier IC has been demonstrated.

The proposed deep in-memory inference architecture has four stages (Fig.1): 1) multi-row functional read (MR-FR), 2) bit-line (BL) processing (BLP), 3) cross BL processing (CBLP), and 4) ADC and slicing. The MR-FR accesses multiple rows in one pre-charge cycle using pulse-width modulated word-line (PWM-WL) signals to generate a BL voltage drop proportional to a weighted sum of multiple bits stored in multiple rows in the column, and also performs word-level add/subtract. The BLP implements reconfigurable column pitch-matched mixed-signal circuits to execute computations such as multiply/absolute value/comparison on the BL voltages, in a massively column-parallel fashion. The CBLP aggregates the BLP outputs into a scalar which is sliced to obtain the final decision. The BLP and CBLP can be reconfigured to operate the architecture in either a dot product (DP) mode or Manhattan distance (MD) mode. Reconfigurable stages enable multiple functions (Fig. 1 table) including normal read/write.

The chip architecture (Fig. 2) includes a digital controller (CTRL) and a CORE. The normal
read/write circuitry (lower) and in-memory processing blocks (upper) are physically separated to maintain functionality. Functional WL drivers generate PWM-WL signals while the reconfiguration word (RCFG) reconfigures local controllers in the CTRL. The in-memory processing chain is pipelined to enable BL pre-charge when the MR-FR step is complete. The architecture processes 128 8-b words per access cycle requiring two consecutive access cycles to process a 256-dimensional vector with 8-b elements. Thus, two consecutive CBLP outputs are sampled on different sampling capacitors and charge-shared before conversion by the ADC. Four 8-bit single-slope slow but energy efficient ADCs execute in parallel to process 36 128-dimensional vectors/µs.

The MR-FR step (Fig. 3) generates BL swing ΔV_{BL} proportional to binary-weighted bits (d) in a column [2] via the use of PWM-WL signals. An 8-b array data (D) and streamed input (P) precision is chosen to satisfy the requirements of many inference applications. The longest PWM-WL pulse width with V_{WL} < V_{DD} is chosen to be less than 40% of BL RC time constant in order to ensure sufficient linearity and prevent destructive read [2]. The shortest pulse width needs to be <250ps while driving a large RC WL, which is challenging due to the row pitch-matching constraints. Hence, sub-ranged read is proposed where 4 MSBs and 4 LSBs are stored in adjacent columns (column pair), and read simultaneously on BL_{MSB} and BL_{LSB}. Then, the charge on BL_{MSB} is shared with 1/16 of BL_{LSB} charge via switches \(\Phi_{\text{con}} \) and \(\Phi_{\text{merge}} \). Capacitors attached to BLs enable fine-tuning of the 1/16 capacitance ratio. The sub-ranged MR-FR (Fig. 3) achieves a maximum INL = 0.03 LSB.

In the MD mode, the MR-FR enables D-to-A conversion, and replica cell read performs word-level add/subtract by reading \(P \) (\(\bar{P} \) for subtract) from the replica bit-cell array simultaneously with \(D \) (Fig. 3) [2]. The replica bit-cell array stores streamed data \(P \) and can be written directly by write BL (WBL).
reducing energy and latency overheads.

The BLP (Fig. 4) can be reconfigured to operate in either the DP or the MD mode for dot product or absolute computation, respectively. In the MD mode, an analog comparator and a mux is used to obtain the absolute value, and the multiplier circuit is reconfigured as a BL-wise sampler. In the DP mode, the comparator is bypassed and BLB is chosen by the mux. The mixed-signal capacitive multiplier [4] uses identical bit capacitors to meet the column pitch constraints necessitating sequential processing of multiplicand bits (p_i) and thereby limiting the throughput. Sub-ranged multiplication alleviates this problem by employing two 4-b MSB/LSB multipliers operating in parallel. The BLP outputs are charge-shared in the CBLP and sampled and later converted into a digital value by the ADC. In the CBLP, the MSB and LSB rails are charge-shared by first opening $\mathcal{O}_{\text{con_rail}}$ and then closing $\mathcal{O}_{\text{merge_rail}}$ to obtain the final output as a weighted sum. The measured accuracy of BLP and CBLP (including MR-FR) (Fig. 4) shows that the maximum error magnitude in the DP (MD) mode is 5.8% (8.6%) of output dynamic range.

The proposed architecture requires 16X fewer read accesses (and precharges) as compared to the conventional architecture for a fixed volume of data, resulting in up to 5.8X throughput enhancement. This is because MR-FR and BLP process data in massively parallel manner (128 8-b words per precharge) whereas the normal SRAM mode fetches only 8 8-b words through 4:1 column muxing. Smaller ΔV_{BL} and fewer read access reduces data access energy. Charge redistribution-based low-swing computation adds to the energy savings.

Fig. 5 (left) indicates that CORE energy and decision accuracy trade-off with ΔV_{BL}. For binary (64-class) decisions, $\Delta V_{\text{BL}} > 15$ mV (> 25mV) results in > 90% detection accuracy, and the CORE energy reduces by 0.2pJ (0.4pJ) per 20mV reduction in ΔV_{BL}. Energy breakdown in Fig. 5 (right) indicates that
much of the savings is due to MR-FR. The CTRL energy will be amortized in a multi-bank scenario. The measured energy in $DP (MD)$ mode is $5.6\times (3.7\times)$ smaller than conventional architecture, with savings up to $9.7\times (5.4\times)$ in a multi-bank scenario.

The multifunctional IC (Fig. 6) implements four different algorithms with 2, 4, and 64-class decisions in a 512×256 SRAM array achieving better decision accuracy and comparable EDP (scaled for 65nm) than single function ICs [1,3]. The chip micrograph (Fig. 7) shows that the deep in-memory circuitry incurs an area overhead of 25% not counting the CTRL.

Acknowledgement

This work was supported by Systems on Nanoscale Information fabriCs (SONIC), one of the six SRC STARnet Centers, sponsored by SRC and DARPA.

References

[1] H. Kaul, et al., “A 21.5M-Query-Vectors/s 3.37nJ/Vector Reconfigurable k-Nearest-Neighbor Accelerator with Adaptive Precision in 14nm Tri-Gate CMOS,” *ISSCC Dig. Tech. Papers*, pp. 260-261, 2016.

[2] M. Kang, et al., “An Energy-efficient VLSI Architecture for Pattern Recognition via Deep Embedding of Computation in SRAM,” *ICASSP*, pp. 8326-8330, 2014.

[3] J. Zhang, et al., “A Machine-learning Classifier Implemented in a Standard 6T SRAM Array,” *Dig. Symp. VLSI Circuits*, June 2016.

[4] M. Kang, et al., “An Energy-efficient Memory-based High-throughput VLSI Architecture for Convolutional Networks,” *ICASSP*, pp. 1037-1041, 2015.
Multi-functions in each stage

Stage	Configurations
Multi-row Functional READ (MR-FR)	① Normal READ ② Digital to Analog conv. ③ ADD /SUBT
BLP	Reconfigurable MULT ① MULT ② BL Sample ③ COMP /ABS
CBLP	① Sub-ranging ② ADD
Slicing	① MIN/MAX ② Linear Combination

Figure 1: Conventional and proposed multi-functional deep in-memory architecture for inference applications.
Figure 2: Deep in-memory processor architecture.
Figure 3: Sub-ranged multi-row functional read (MR-FR) and measured accuracy.
Figure 4: Pitch-matched BL processing (BLP), cross BL processing (CBLP), and measured accuracy (@ D₀ = D₁ = … = D_{255}, P₀ = P₁ = … = P_{255}).
Figure 5: Measured energy vs. detection accuracy trade-offs, and CORE energy breakdown.
Application	Algorithm	Dataset	Decision Throughput (Decisions/s)	Decision Energy (pJ/decision)	Decision EDP (fJ·s)	Accuracy
1	Face detection (binary class)	Support Vector Machine (SVM)	SVM: 9.3M	0.1 / 0.05†	60.6†	95 %
			MF: 18.5M	0.03 / 0.01†	56.0†	100 %
			TM: 312.5K	107.3 / 56.0†	100 %	
			KNN: 312.5K	107.4 / 56.0†	100 %	
2	Event (Gun shot) detection	Matched filter (MF)	963.1 / 462.4†	0.1 / 0.05†	92 %	
(binary class)			481.5 / 231.2†	0.03 / 0.01†		
			33.6K / 17.5K†	107.3 / 56.0†		100 %
			33.6K / 17.5K†	107.4 / 56.0†		
3	Face recognition (64 classes)	Template matching with Manhattan distance (TM)	23 X 22 8-b pixel image	90 %		
			16 X 16 8-b pixel image			
			16 images per class			
4	Hand-written number	K-nearest neighbor (KNN)	963.1 / 462.4†	0.1 / 0.05†	92 %	
recognition (4 classes)			481.5 / 231.2†	0.03 / 0.01†		
			33.6K / 17.5K†	107.3 / 56.0†		
			33.6K / 17.5K†	107.4 / 56.0†		

Tech. (nm)	# of Algorithms	Memory size	Precision (b)	Decision Throughput (Decisions/s)	Decision Energy (µJ/decision)	Decision EDP (fJ·s)	Accuracy
This work	65 CMOS	4 (SVM, MF, KNN, TM)	8x8	SVM: 9.3M	0.1 / 0.05†	60.6†	95 %
				MF: 18.5M	0.03 / 0.01†	56.0†	100 %
				TM: 312.5K	107.3 / 56.0†	100 %	
				KNN: 312.5K	107.4 / 56.0†	100 %	
8-b digital*	65 CMOS	synthesized dedicated processor per algorithm	8x8	SVM: 1.7M	4.5K	2.6	96 %
				MF: 3.4M	2.2K	0.6	100 %
				TM: 54.3K	93.0K	1715.3	
				KNN: 54.3K	93.0K	1715.3	90 %
[1]††	14 Tri-gate	1 (KNN)	8x8	21.5M	3.4K	0.2	Not reported
[3]**	130 CMOS	1 (Ada boost)	5x1	50M	633.4	0.01	90 %

* memory (digital) energy & delay measured from prototype IC (post-layout simulations); † assumes a 32 bank configuration; †† single function with SRAM memory access cost not included; ** single function with 1b weight vector

Figure 6: Application level gains in energy efficiency, delay, accuracy, and comparison with prior arts.
Figure 7: Die micrograph and chip summary.