ABSTRACT

Objective: In a previous study, Centaurea aegyptiaca ethanol and ethyl acetate extracts showed potent cytotoxic effects against laryngeal (HEP2) and hepatic (HEPG2) carcinoma cell lines. Additionally, two novel compounds were isolated and identified. The aim of this study is to continue isolating and identifying another compound(s) that may, also, be responsible for this potent biological activity.

Methods: C. aegyptiaca dried aerial parts were extracted with ethanol and ethyl acetate. Both extracts were chromatographed separately to afford seven guaianolides that were identified using different spectroscopic methods. Moreover, compounds 1-7 were evaluated for their cytotoxicity (IC₅₀, µM) against HEP2 and HEPG2 cells in comparison to the normal fibroblasts (BHK) using sulforhodamine B assay. Doxorubicin was used as a positive control.

Results: Seven sesquiterpene lactones, centaurepensin, also known as chlorohyssopifolin A (1), 8a-hydroxy-11α, 13-dihydrozaluzanin C (2), chlorohyssopifolin B (3), desacyclynaropicrin (4), chlorohyssopifolin C, acropitin (5), subluteolide (6), and solstitiolide (7) were isolated from C. aegyptiaca extracts and identified. This is the first report on the occurrence of 2, 4, 5 and 6 in C. aegyptiaca. Compounds 1-4 and 6 exhibited selective cytotoxic effects against HEP2 and HEPG2 cells. However, compounds 1 and 7 showed the highest activities against HEP2 with IC₅₀ values of 10.6±0.02 and 10.9±0.03 µM, respectively. Moreover, compound 3 was the most potent one against HEPG2 cells with IC₅₀ value of 13.8±0.05 µM.

Conclusions: Chemical investigation of C. aegyptiaca ethanol and ethyl acetate extracts led to the isolation and identification of seven guaianolides. These compounds exhibited good cytotoxic activities against HEP2 and HEPG2 cell lines.

Keywords: Centaurea aegyptiaca, Sesquiterpene, Guaianolides, Cytotoxic activity, Sulforhodamine B assay

INTRODUCTION

Although chlorinated compounds rarely exist in higher plants [1-3], Centaurea species are considered rich sources of chlorine-containing compounds [4]. Moreover, they are characterized by the presence of sesquiterpene lactones as secondary metabolites [5-10], that have provided several biological activities including anti-fungal, anti-bacterial, anti-inflammatory and cytotoxic effects [5-9, 11-13]. Centaurea aegyptiaca L. (Family Asteraceae) grows wild in Sinai, Egypt. Since Centaurea species were documented to be rich in the chlorinated compounds, extensive research on the chemical profile of C. aegyptiaca was undertaken. In continuation to our previous work where two novel bioactive guaianolides; senegyptin A and senegyptin B were isolated and identified [14], we report hereby the isolation, identification, and the cytotoxic activities evaluation of seven compounds, centaurepensin or chlorohyssopifolin A (1), 8a-hydroxy-11α, 13-dihydrozaluzanin C (2), chlorohyssopifolin B (3), desacyclynaropicrin (4), chlorohyssopifolin C, acropitin (5), subluteolide (6), and solstitiolide (7). Compounds 2, 4, 5 and 6 are reported here for the first time from Centaurea aegyptiaca species. Compound 1 existed frequently in Centaurea species [15-18]. Compound 2 was isolated from Ainsliaea fragrans Cham and Centaurea scoparia Sieb. [19-20]. Compound 3 was found in Centaurea aegyptiaca and Centaurea hyssopifolia Vahl [16, 21]. Compound 4 was reported in Centaurea behen L. and Saussurea calcicola [22, 23]. Compound 5 was isolated from Centaurea hyssopifolia, Centaurea linifolia Vahl and Centaurea solstitialis [24-26]. Compound 6 was found in Vernonia sublutea and Centaurea solstitialis [26-27]. Compound 7 was reported in Centaurea aegyptiaca and Centaurea solstitialis [21, 26]. The aim of this study was to continue isolating the potential components responsible for the cytotoxic activity of Centaurea aegyptiaca.

MATERIALS AND METHODS

General experimental procedure

NMR spectra were recorded on a Bruker Avance II 600 MHz NMR spectrometer. CD4D or CDCl3 were used as a solvent. Proton and carbon chemical shifts were given in ppm relative to TMS as an internal standard. Multiplicity determinations (DEPT) and 2D NMR spectra (COSY, HSQC, HMBC) were run using standard Bruker pulse programs. Mass Spectrometry analyses were carried out on GCMS-DFS (Double Focusing Sector). Column chromatography was carried out on silica gel 60 (230-400 mesh ASTM, Merck). IR spectra were recorded as acetone film using an FT-IR/4100 type A Spectrophotometer. TLC analysis was carried out on silica gel 60 F254 plates (Merck). Compounds were detected via exposure to the short wavelength (λmax = 254 nm) UV light and/or spraying the developed plates with p-anisaldehyde/H2SO4 spraying reagent followed by heating at 105 °C for 1-2 min.

Plant material

The plant’s aerial parts were collected during the flowering stages (February-March 2008) and were identified by Dr. Abdel-Halim Abdel-Mogali of the Department of Flora and Phytotaxonomy Research, Horticulture Research Institute (HRI), Agriculture Research Center, Giza, Egypt. A voucher specimen [3994 (CAIM)] was deposited at the herbarium of HRI.

Extraction and isolation

Ethanol extract

Plant extraction was carried out by soaking the coarsely ground aerial parts of C. aegyptiaca (1009 g) in 10 l of ethanol 96 % overnight at room temperature. This process was repeated three
times and the filtrates were completely dried in vacuo to give 68.9 g of dried ethanol extract. Part of the ethanol extract (12 g) was fractionated over Si gel 60 column (1050 g, 54 x 7.5 cm) packed. The column was initially eluted with increasing concentrations of acetone in toluene starting with 15 % and ending up with 25 %. Fractions (150 ml each) were collected and monitored with TLC using different solvent systems. Similar fractions were pooled together to give 20 fractions (A-T).

Crystallization of fraction I (126 mg) from methanol and methylene chloride afforded 50.8 mg (0.0289 % yield) of a pure compound 1. Another part of the ethanol extract of C. aegyptiaca (124 g) was chromatographed over a 1000 g silica gel column (54 x 7.5 cm). The column was eluted initially with 1 % of methanol in chloroform then increasing the polarity up to 20 % of methanol in chloroform. This process gave 16 fractions (A-P).

Fraction K (681 mg) was fractionated over a silica gel column (37 x 2.8 cm) and eluted initially with chloroform: ethyl acetate 1: 0.6; followed by 1: 1, then 1: 2 and finally 1: 3. Similar fractions afforded 16 sub-fractions (A-P).

Sub-fraction I (28 mg) underwent fractionation over a silica gel column (8 g, 19 x 1.4 cm) and eluted with n-hexane: ethyl acetate (1: 1). Fractions (2 ml) were collected and monitored with TLC using the mobile phase as the solvent system. Similar fractions were pooled together to give 6 sub-sub-fractions (1-6). Further chromatographic purification afforded 42 mg (0.0066 % yield) of a pure compound 3. Another part of the ethanol extract of C. aegyptiaca (124 g) was chromatographed over a 1000 g silica gel column (54 x 7.5 cm). The column was eluted initially with 1 % of methanol in chloroform then increasing the polarity up to 20 % of methanol in chloroform. This process gave 16 fractions (A-P).

Fraction K (681 mg) was fractionated over a silica gel column (37 x 2.8 cm) and eluted initially with chloroform: ethyl acetate 1: 0.6; followed by 1: 1, then 1: 2 and finally 1: 3. Similar fractions afforded 16 sub-fractions (A-P).

Sub-fraction I (28 mg) underwent fractionation over a silica gel column (8 g, 19 x 1.4 cm) and eluted with n-hexane: ethyl acetate (1: 1). Fractions (2 ml) were collected and monitored with TLC using the mobile phase as the solvent system. Similar fractions were pooled together to give 6 sub-sub-fractions (1-6). Further chromatographic purification afforded 42 mg (0.0066 % yield) of a pure compound 3.

Ethyl acetate extract
Dried ground aerial parts of C. aegyptiaca (725 g) were soaked in 10 l of ethyl acetate overnight at room temperature. The process was repeated three times and the filtrates were completely dried in vacuo to give 58.5 g of dried ethyl acetate extract. Part of the ethyl acetate extract (10.7 g) was fractionated over a silica gel column (1000 g, 51 x 7.5 cm). The column was gradually eluted with increasing concentrations of methanol in chloroform starting with 0.5 % and ending up with 5 %. Fractions (200 ml) were collected and monitored with TLC using different solvent systems. Similar fractions were pooled together to give 21 fractions (A-U).

Fraction I (790 mg) underwent fractionation over a silica gel column (83 g, 29 x 2.7 cm) and eluted with 5 % of acetone in chloroform with increasing strength of acetone in chloroform up to 12 %. Fractions (25 ml) were collected and monitored with TLC using the mobile phase as a solvent system. Similar fractions were pooled together to give 25 sub-fractions (x-y).

Fraction n (38 mg) underwent crystallization using chloroform and n-hexane to afford 15.3 mg (0.0115 % yield) of a pure compound 5.

Fraction I (2.17 g) was fractionated over a silica gel column (211 g, 38.5 x 4.3 cm) and eluted with 30 % of acetone in n-hexane. Fractions (50 ml) were collected and monitored with TLC using the mobile phase as the solvent system. Similar fractions were pooled together to give 4 sub-fractions (1-4). Fraction IV (503 mg) underwent crystallization using chloroform and n-hexane to obtain 486 mg (0.366 % yield) of a pure compound 6.

Fraction III (148.4 mg) was purified over a silica gel column chromatography (18 g, 30 x 1.4 cm) and eluted with 10 % of acetone in toluene to afford 32.5 mg (0.0245 % yield) of a pure compound 7.
RESULTS AND DISCUSSION

The alcohol and ethyl acetate extracts were subjected to phytochemical investigation separately. This led to the isolation of seven guaianolides; centaurepensin (chlorohyssopofolin A) [1], 8α-hydroxy-11α, 13-dihydroxazuladin C (2), chlorohyssopofolin B (3), desacyclinaropicrin (4), chlorohyssopofolin C, also known as acroptol (5), subluteolide (6), and solstitolide (7). The identities of these compounds were established through spectral and X-ray crystallographic analyses and were found identical to those previously published.

Compounds 2, 4, 5 and 6 were isolated and identified for the first time in Centaurea aegyptiaca. Compounds 1-7 were shown to be guaianolide sesquiterpene lactones, however, compounds 1, 3, 5 and 7 were chlorinated ones. Compound 1 was isolated for the first time from Centaurea repens L. [15] and frequently existed in other Centaurea species [16-18]. Compound 2 was known to be a zaluzanin derivative previously isolated from Ainsliaea fragrans Champ [19] and Centaurea scoparia Sieb. [20]. Compound 3 was previously isolated from Centaurea aegyptiaca [21] and Centaurea hyssopofolia Vahl [16]. Compound 4 was found in Centaurea behen L. [22] and Saussurea calcicola [23]. Compound 5 was isolated from Centaurea hyssopofolia for the first time [24] and later from Centaurea linifolia Vahl [25] and Centaurea solstitialis [26]. Compound 6 was isolated from Vernaio sublutea for the first time [27] and from Centaurea solstitialis [26]. Compound 7 was reported for the first time from Centaurea solstitialis [26], however, it was shown that it was isolated previously from Centaurea aegyptiaca [21] and given another name; 17, 18-epoxy-19-desoxychlorojanerin.

Centaurepensin (1) was obtained as colorless platelets. EIMS showed the molecular ion [M+1]+ at m/z 435 which agreed with the molecular formula C20H23ClO2. IR spectrum showed absorption bands for hydroxyl group(s) at 3464 cm⁻¹ and for the carbonyl group at 1739 cm⁻¹. The identity of the compound was further confirmed by 1D (tables 1 and 2) and 2D NMR analyses. These data were identical to those previously reported [17, 29, 30]. Additionally, X-ray diffraction analysis was done as shown in table 3.

**Table 1: **^1^H NMR data for compounds 1-7

| 1^a | 8^a, multiplicity (J in Hz) |
|-----|-----------------------------|
| 1   | 3.63, m                      |
| 2a  | 1.56, m                      |
| 2b  | 2.52, m                      |
| 3   | 4.12, d (6.0)                |
| 5   | 2.23, dd (10.4, 10.4)        |
| 6   | 4.19, Hidden                 |
| 7   | 3.20, m                      |
| 8   | 5.20, dd (1.2, 4.8)          |
| 9a  | 2.73, dd (5.2, 15.2)         |
| 9b  | 2.45, d (15.2)               |
| 1   | 2.80, dd (15.0, 7.8)         |
| 13a | 5.72, d (2.8)                |
| 13b | 6.14, d (3.2)                |
| 14a | 4.99, d (2.8)                |
| 14b | 5.14, d (2.9)                |
| 15a | 3.85, d (12.0)               |
| 15b | 4.21, d (11.6)               |
| 18a | 3.73, d (11.2)               |
| 18b | 3.91, d (11.2)               |
| 19  | 1.55, s                      |
| 3H-3 | 4.90, s                      |
| 3H-4 | 4.87, s                      |
| 3H-8 | 3.32, s                      |

**Table 2: **^13^C NMR data for compounds 1-7

| 1^a | 8^a, multiplicity(b) |
|-----|----------------------|
| 1   | 49.2, t              |
| 2   | 44.2, d              |
| 3   | 76.9, d              |
| 4   | 85.9, s              |
| 5   | 59.6, d              |
| 6   | 78.4, d              |
| 7   | 47.5, d              |
| 8   | 76.6, d              |
| 9   | 35.5, t              |
| 10  | 144.8, s             |
| 11  | 139.3, s             |
| 12  | 170.8, s             |
| 13  | 122.4, t             |
| 14  | 118.0, t             |
| 15  | 50.1, t              |
| 16  | 173.9, s             |
| 17  | 76.0, s              |
| 18  | 51.8, t              |
| 19  | 24.2, q              |

**Notes:**
- *Data were obtained in methanol-d₄.
- *Data were obtained in CDCl₃.
- *Carbon Multiplicities were determined by DEPT experiments.

---

*Int J Pharm Pharm Sci, Vol 10, Issue 4, 1-6*
8α-hydroxy-11α, 13-dihydroaluzuranin C (2) was purified as a thin colorless film. It showed a molecular formula of C_{35}H_{36}O_{10} that was consistent with a molecular ion shown in EIMS at m/z 264. Comparing its NMR data presented in tables 1 and 2 with literature values [23, 31], confirmed its identity.

Chlorohyssopifolin B (3) was isolated as a colorless amorphous powder and showed a molecular ion peak at m/z 315 [M+1]^+ which agreed with the molecular formula C_{39}H_{39}O_{11}Cl. The structure of 3 derived from the ^1H and ^13C NMR data shown in tables 1 and 2 was similar to that of 1 except for the C-8 methine signal that was shown slightly more upfield, and the C-7 methine and C-9 methylene signals that were shifted slightly downfield in 3. The spectral data of 3 were almost identical to the literature values [32].

Desacylcynaropicrin (4) was obtained as a colorless amorphous powder. Mass spectral analysis showed a molecular ion at m/z 363 which was consistent with the molecular formula C_{19}H_{19}O_{11}. The compound was identified by means of 1D (tables 1 and 2) and 2D NMR analyses and X-ray diffraction as shown in table 3.

Subluteolide (6) was purified as colorless prisms. EIMS data showed a molecular ion [M+1]^+ at m/z 363 which was consistent with the molecular formula C_{19}H_{18}O_{10}. The compound was identified by means of 1D (tables 1 and 2) and 2D NMR analyses and X-ray diffraction as shown in table 3.

Solstitiolide (7) was obtained as a colorless amorphous powder. It was shown to possess a molecular weight of 399 which was in agreement with the molecular formula C_{19}H_{20}O_{11}ClO. The spectral data of 7 as shown in tables 1 and 2 were in accordance with the reported values [26].

Single crystals of compounds 1 and 6, suitable for X-ray diffraction technique, were grown by the solvent evaporation method. Data collection and structure refinement strategies of these crystals were described in the experimental section. Table 3 gives a description of the physical nature, experimental setup and crystal data of compounds 1 and 6. The crystal structures of 1 and 6 obtained from diffraction analysis are depicted in fig. 1 and 2, respectively. The polycyclic structures generated from X-ray diffraction was in perfect agreement with other characterization techniques of these compounds like NMR and mass spectra. Both compounds 1 and 6 were shown to be chiral as revealed from the crystal structures. In the case of compound 1, C2 (S), C3 (S), C5 (R), C6 (S), C9 (R), C10 (R), C11 (S), C12 (S), C17 (S) were shown to be chiral carbon atoms. The numbering system of these carbons is shown in fig.1 and it is different from the one used in the NMR assignment. The chiral carbon atoms of compound 6 were C1 (S), C2 (S), C5 (R) C6 (S), C9 (R), C10 (R), C12 (S) and C16 (R). The numbering system of these carbons is shown in fig. 2 and it is different from the one used in the NMR assignment.

### Table 3: Summary on the crystals nature and various diffraction parameters of 1 and 6

| Compound | 1 | 6 |
|----------|---|---|
| Crystal Dimension/mm | 0.35 x 0.22 x 0.03 | 0.20 x 0.25 x 0.25 |
| Crystal Color, Habit | Colorless, Platelet | Colorless, Block |
| Formula weight | C_{19}H_{18}O_{10} | C_{19}H_{18}O_{10} |
| Crystal system | Monoclinic | Monoclinic |
| Space group | P 1 1 2 1 1 | P 1 1 2 1 1 |
| T/K | 296 | 296 |
| a/Å | 10.3539(15) | 9.6076(3) |
| b/Å | 9.1963(13) | 9.9919(3) |
| c/Å | 11.3512(17) | 10.4205(3) |
| α/° | 90 | 90 |
| β/° | 112.247(6) | 114.9190(10) |
| γ/° | 90 | 90 |
| V/Å³ | 1000.4(3) | 907.22(5) |
| Z | 2 | 2 |
| μ (mm⁻¹) | 3.265 | 0.849 |
| ρ_{calc}/g cm⁻³ | 1.445 | 1.327 |
| θ_{max}/deg | 66.86 | 66.83 |
| Reflections collected | 5926 | 7336 |
| Unique reflections | 2898 | 2949 |
| R_{int} | 0.0418 | 0.0734 |
| R (I>2σ) | 0.0359 | 0.0393 |
| R (all data) | 0.0340 | 0.0395 |
| R_w (all data) | 0.0911 | 0.1207 |
| Δ | 0.245 | 0.194 |

Fig. 1: Crystal structure of compound 1 (1a-thermal ellipsoid and 1b-ball and stick representation). Color code: red-oxygen; green-chlorine; gray-carbon and black-hydrogen
The isolated compounds 1-7 were evaluated for their cytotoxic activities against HEPG2, HEP2 and BHK cell lines. Compounds 1-4 and 6 exhibited selective cytotoxic effects against HEP2 and HEPG2. However, compounds 1 and 7 showed the highest activities against HEP2 with $IC_{50}$ values of 10.6±0.02 and 10.9±0.03 µM, respectively.

Moreover, compound 3 was the most potent agent against HEPG2 cells with $IC_{50}$ value of 13.8±0.05 µM.

Compounds 2 and 4-6 showed varied cytotoxic activities against both HEPG2 and HEP2 cell lines. $IC_{50}$ values are shown in Table 4.

### Table 4: $IC_{50}$ of compounds 1-7

| Cell Line | Doxorubicin* | 1    | 2    | 3    | 4    | 5    | 6    | 7    |
|-----------|-------------|------|------|------|------|------|------|------|
| HEP2      | 8.0±0.03    | 10.6±0.02 | 87.1±0.04 | 33.8±0.02 | 105.0±0.02 | 25.1±0.06 | 12.0±0.02 | 10.9±0.03 |
| HEPG2     | 8.5±0.03    | 23.0±0.03 | 87.1±0.04 | 13.8±0.05 | 22.6±0.05 | 25.1±0.02 | 30.4±0.04 | 30.2±0.03 |
| BHK       | 48.8±0.04   | NA†   | NA   | NA   | NA   | 77.1±0.03 | NA   | 45.7±0.04 |

*Doxorubicin was used as a positive control, †NA: Not Active. Compounds were tested at the concentration of 50 µg/ml and were inactive.

**CONCLUSION**

Phytochemical investigation on *Centaurea aegyptiaca* ethanol and ethyl acetate extracts led to the isolation and identification of seven guaianolide sesquiterpene lactones, four of which are chlorinated compounds. Moreover, these compounds may be responsible for the cytotoxic activities shown by *Centaurea aegyptiaca* extract against hepatic and laryngeal carcinoma cell lines.

**ACKNOWLEDGMENT**

Spectral and single crystal X-ray analyses were done at the Faculty of Science, Research Sector Projects Unit (RSPU), Kuwait University; projects numbers GS 01/03 and GS 03/08. Cytotoxicity evaluation was done at the Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.

**AUTHORS CONTRIBUTIONS**

HG Sary did the extraction, isolation and purification of the compounds. She also made the necessary arrangement for cytotoxicity studies. NA Ayoub and AN Singab made the needed arrangement for the plant collection. M Vinodh ran single crystal X-ray diffraction analyses. KY Orabi is the principal investigator and the author of correspondence. He supervised the whole work throughout the extraction, isolation, purification and spectral analyses.
analyses. All the work, except cytotoxicity evaluation, was funded and done in his laboratory. He, along with HG Sary, prepared and corrected the manuscript.

CONFLICTS OF INTERESTS
All authors have none to declare

REFERENCES
All authors have none to declare

1. Monde K, Satoh H, Nakamura M, Tamura M, Takasugi M. Organochlorine compounds from a terrestrial higher plant: structures and origin of chlorinated orcinol derivatives from diseased bulbs of *Lilium maximowiczii*. *J Nat Prod* 1998;61:913-21.

2. Runguphan W, Qu X, E O’Connor S. Integrating carbon-halogen bond formation into medicinal plant metabolism. *Nature* 2010;468:461-4.

3. Blunt J, Copp B, Munro M, Northcote P, Prinsep M. Marine natural products. *Nat Prod Rep* 2004;21:1-49.

4. Demb'skiy VM, Tolstikov GA. Chlorine-containing sesquiterpenes of higher plants. *Chem Sustainable Dev* 2002;10:363-70.

5. Kookoulitsa E, Skaltsa H, Karioti A, Demetzos C, Dimas K. Bioactive sesquiterpenes lactones from *Centaurea* species and their cytotoxic/cytostatic activity against human cell lines in vitro. *Planta Med* 2002;68:649-52.

6. Saroglou L, Karioti A, Demetzos C, Dimas K, Skaltsa H. Sesquiterpene lactones from *Centaurea spinosa* and their antibacterial and cytotoxic activities. *J Nat Prod* 2005;68:1404-7.

7. Talhouk RS, El-Jouni W, Baalbaki R, Gali-Muhtasib H, Kogan J, Talhouk SN. Anti-inflammatory bio-activities in a water extract of *Centaurea ainetensis*. *J Med Plants Res* 2008;2:24-33.

8. Kookoulitsa C, Germichalos G, Skaltsa H. VolSurf analysis of pharmacokinetic properties for several antifungal sesquiterpene lactones isolated from greek *Centaurea* sp. *J Comput Aided Mol Des* 2005;19:617-23.

9. Skaltsa H, Lazar D, Panagoulias C, Georgiadou E, Garcia B, Sokovic M. Sesquiterpene lactones from *Centaurea thersallis* and *Centaurea attica* antifungal activity. *Phytochemistry* 2000;55:903-8.

10. Medjroubi K, Bouderdara N, Benayache F, Akkal S, Seguin E, Tiliequin F. Sesquiterpene lactones of *Centaurea nicolesis*. *Chem Nat Compd* 2003;39:506-7.

11. Saakali M, Ghantous A, Halawa R, Talhouk S, Saliba N, Darwiche N. Sesquiterpene lactones isolated from indigenous Middle Eastern plants inhibit tumor promoter-induced transformation of JB6 cells. *BMC Complementary Altern Med* 2011;12:89.

12. Erol-Dayi O, Pekmez M, Bona M, Arac-Perk A, Arda N. Total phenolic contents, antioxidant activities and cytotoxicity of three *Centaurea* species: *C. calcitrapa* subsp. *calcitrapa*, *C. ptosimopappa* and *C. spicata*. *Free Radicals Antioxidants* 2011;1:31-6.

13. Scotti M, Fernandez M, Ferreira M, Emerenciano V. Quantitative structure-activity relationship of sesquiterpene lactones with cytotoxic activity. *Bioorg Med Chem* 2007;15:2927-34.

14. Sary HG, Singab AB, Orabi KY. New cytotoxic guaianolides from *Centaurea aegyptica*. *Nat Prod Commun* 2016;11:711-4.

15. Harley-Mason J, Hewson AT, Kennard O, Pettersen RC. Isolation of centaurepsin, a guaianolide sesquiterpene lactone ester containing two chlorine atoms. Determination of structure and absolute configuration by x-ray crystallography. *J Chem Soc Chem Commun* 1972;8:460-1.

16. Gonzalez AG, Bermejo J, Breton JL, Triana J. Constituents of *Compositae*. XV. Chlorohyssopifolin A and B, two new sesquiterpene lactones isolated from *Centaurea hyssopifolia*. *Tetrahedron Lett* 1972;20:2017-20.

17. Cassidy JM, Abramson D, Cowall P, Chang CJ, McLaughlin JL, Aynehchi Y. Potential antitumor agents. Part 13. Centaurepsin: a cytotoxic constituent of *Centaurea solstitialis* and *C. repens* (*Asteraceae*). *J Nat Prod* 1979;42:247-9.

18. El-Esra HS, Mann J, Rizk AF. Guaianolides from *Centaurea sinaica*. *Phytochemistry* 1990;29:1324-5.

19. Bohmann F, Chen ZL. Guaianolides from *Ainsliaea fragrans*. *Phytochemistry* 1982;21:1210-2.

20. Helal AM, Nakamura N, Melselly MR, El-Fishawy AM, Hartori M, Mahran GH. Guaianolides from *Centaurea scoparia*. *Phytochemistry* 1997;45:551-4.

21. El Dahmy S, Bohmann F, Sarg TM, Ateya A, Fargh N. New guaianolides from *Centaurea aegyptica*. *Planta Med* 1985;2:176-7.

22. Rustaiyan A, Niknejad A, Zadero C, Ferdinand B. A guaianolide from *Centaurea behen*. *Phytochemistry* 1981;20:2427-9.

23. Choi S, Choi S, Lee K. Cytotoxic sesquiterpene lactones from *Sausssurea calcicola*. *Arch Pharm Res* 2005;28:1142-6.

24. Gonzalez A, Bermejo J, Breton J, Massanet G, Triana J. Chlorophyssopifolin C, D, E and vahlenin, four new sesquiterpene lactones from *Centaurea hyssopifolia*. *Phytochemistry* 1974;13:1493-7.

25. Gonzalez AG, Bermejo J, Amaro JM, Massanet GM, Galindo A, Cabrera I. Chemical constituents of the compositae. Part 35. Sesquiterpene lactones from *Centaurea linifolia* vahl. *Can J Chem* 1978;56:491-4.

26. Merrill GB, Stevens KL. Sesquiterpene lactones from *Centaurea solstitialis*. *Phytochemistry* 1980;24:203-8.

27. Massiot G, Touhiana R. Structure of subluteolide, a new guaianolide isolated from *Vernonia sublutea* (*Compositae*). *C R Hebd Séances Acad Sci C* 1974;279:907-9.

28. Shekhan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, et al. New colorimetric cytotoxic assay for anticancer-drug screening. *J Natl Cancer Inst* 1999;82:1107-12.

29. Gonzalez AG, Bermejo J, Breton JL, Massanet GM, Dominguez B, Amaro JM. The chemistry of the compositae. Part XXXI. 1 absolute configuration of the sesquiterpene lactones centaurepsin (Chlorohyssopifolin A), acroptilin (Chlorohyssopifolin C), and repin. *J Chem Soc Perkin* 1976;1:1663-6.

30. Hamburger M, Woffender JL, Hostettmann K. Search for chlorinated sesquiterpene lactones in the neurotoxic thistle *Centaurea solstitialis* by liquid chromatography-mass spectrometry, and model studies on their possible structural formation. *Nat Toxins* 1993;1:315-27.

31. Li X, Liu J, Cai J, Cai P. Complete 1H and 13C data assignments of two new guaianolides isolated from *Ainsliaea fragrans*. *Magn Reson Chem* 2008;46:1070-3.

32. Youssef D, Frahm AW. Constituents of the Egyptian *Centaurea scoparia*: chlorinated guaianolides of the aerial parts. *Planta Med* 1994;60:267-71.