Probing the scale dependence of non-Gaussianity with spectral distortions of the cosmic microwave background

Razieh Emami1,2, Emanuela Dimastrogiovanni3, Jens Chluba4, and Marc Kamionkowski2

1School of Physics, Institute for Research in Fundamental Sciences (IPM) P. O. Box 19395-5531, Tehran, Iran
2Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
3Department of Physics and School of Earth and Space Exploration Arizona State University, Tempe, AZ 85287, USA
4Institute for Astronomy, K30, University of Cambridge, Madingley Road, Cambridge CB3 0HA, United Kingdom

Many inflation models predict that primordial density perturbations have a nonzero three-point correlation function, or bispectrum in Fourier space. Of the several possibilities for this bispectrum, the most common is the local-model bispectrum, which can be described as a spatial modulation of the small-scale (large-wavenumber) power spectrum by long-wavelength density fluctuations. While the local model predicts this spatial modulation to be scale-independent, many variants have some scale-dependence. Here we note that this scale dependence can be probed with measurements of frequency-spectrum distortions in the cosmic microwave background (CMB), in particular highlighting Compton-γ distortions. Dissipation of primordial perturbations with wavenumbers $50 \text{ Mpc}^{-1} \lesssim k \lesssim 10^4 \text{ Mpc}^{-1}$ give rise to chemical-potential (μ) distortions, while those with wavenumbers $1 \text{ Mpc}^{-1} \lesssim k \lesssim 50 \text{ Mpc}^{-1}$ give rise to Compton-γ distortions. With local-model non-Gaussianity, the distortions induced by this dissipation can be distinguished from those due to other sources via their cross-correlation with the CMB temperature T. We show that the relative strengths of the μT and γT correlations thus probe the scale-dependence of non-Gaussianity and estimate the magnitude of possible signals relative to sensitivities of future experiments. We discuss the complementarity of these measurements with other probes of squeezed-limit non-Gaussianity.

The prevailing paradigm for the origin of the primordial density perturbations inferred from fluctuations in the cosmic microwave background (CMB) and from large-scale galaxy surveys is that they arose as quantum fluctuations during a quasi-de-Sitter phase (“inflation”) of expansion in the early Universe [1]. Inflation generally predicts a spectrum of primordial perturbations that is nearly, but not precisely, scale-invariant, consistent with current measurements. It also generally predicts that these perturbations should be very close to, but not precisely, Gaussian (i.e., have only small connected correlations beyond the two-point correlation function). The amplitude and detailed form of this non-Gaussianity varies considerably between models and is usually specified in terms of a three-point function, or “bispectrum” in Fourier space [2].

The local model bispectrum, which peaks in the squeezed limit $k_2 \approx k_3 \gg k_1$ (where $k_1 \leq k_2 \leq k_3$ are the three Fourier modes being correlated) appears in a number of simple inflation models [3,4] and has thus become a standard workhorse. Local-model non-Gaussianity has been sought in the CMB [4,7], in large-scale structure [8], and through the scale-dependent biasing [9,12] it induces in galaxy clustering at large scales.

It has also recently been shown [13,14] that local-model non-Gaussianity will induce spatial correlations between the CMB temperature fluctuation and chemical-potential (μ) distortions as a function of position on the sky. These μ distortions arise from dissipation of primordial perturbations with wavenumbers $50 \text{ Mpc}^{-1} \lesssim k \lesssim 10^4 \text{ Mpc}^{-1}$ at redshifts $z = 5 \times 10^4 - 2 \times 10^6$ [15,17]. In the local model, the amplitude of these small-scale perturbations is modulated by the long-wavelength curvature perturbation that also gives rise to large-angle temperature fluctuations, thus inducing a μT correlation [13,14]. These μT correlations therefore probe local-model non-Gaussianity at wavenumbers $50 \text{ Mpc}^{-1} \lesssim k \lesssim 10^4 \text{ Mpc}^{-1}$ far smaller than those accessible with CMB temperature fluctuations, galaxy surveys, or even future 21cm observations [18].

Still, the local-model bispectrum is just one of an infinitude of different types of bispectra. Large classes of bispectra have arisen from different ideas for inflation [19-22], and no shortage of phenomenological parametrizations have been considered.

In this paper we point out that the correlation of CMB Compton-γ distortions with the large-angle temperature fluctuation can be used, in tandem with the μT correlation, to probe different types of non-Gaussianity. Dissipation of primordial perturbations with wavenumbers $1 \text{ Mpc}^{-1} \lesssim k \lesssim 50 \text{ Mpc}^{-1}$ gives rise to Compton-γ distortions to the CMB [16]. However, these spectral distortions have been largely disregarded because they are not easily distinguished from larger Compton-γ signals from the intergalactic medium at low redshifts. Non-Gaussianity may, however, induce a γT correlation that could allow this dissipation-induced γ distortion to be isolated from late-time effects (e.g., [23,24]) by means of its angular dependence. But even without being able to distinguish different contributions, one can still derive conservative upper limits using γT correlations. Since γ and μ distortions probe different wavenumbers, the relative strength of the γT and μT distortions can be used to probe the scale dependence of primordial non-Gaussianity, extending previous considerations of just the μT correlation [25].

1 While modes with $k \lesssim 1 \text{ Mpc}^{-1}$ also damp and create a γ-distortion, after recombination the effective heating rate for these perturbations is much lower than at smaller scales [16,17].
Below, we first present a simple calculation, based upon the configuration-space description (rather than the Fourier-space description in prior work \([13, 14]\)) of local-model non-Gaussianity and the \(\mu T\) correlation. This calculation illustrates clearly that the \(\mu T\) correlation arises from large-scale modulation of small-scale modes. The generalization to \(y T\) correlations is thus clear. We then parametrize the type of non-Gaussianity probed by the combination of \(\mu T\) and \(y T\) correlations and estimate the sensitivity of future experiments. We close by discussing the complementarity of these measurements with other probes of squeezed-limit non-Gaussianity.

To begin, the average \(\mu\) and \(y\) distortions induced, with Gaussian initial conditions, by dissipation of primordial perturbations are given by

\[
\langle \mu \rangle \approx \int \, \mathrm{d} \log k \, \Delta_R^2(k) W_\mu(k), \tag{1a}
\]

\[
\langle y \rangle \approx \int \, \mathrm{d} \log k \, \Delta_R^2(k) W_y(k), \tag{1b}
\]

where \(\Delta_R^2(k)\) is the primordial curvature power spectrum, and \(W_\mu(k)\) and \(W_y(k)\) define \(k\)-space window functions to account for the acoustic-damping and thermalization physics. Although more accurate expressions for the \(k\)-space window functions have been discussed \([17, 26, 27]\), here we will use the simple approximations,

\[
W_\mu(k) \approx 2.3 \left[e^{-2k^2/\kappa_{o\mu}} - e^{-2k^2/\kappa_{o\mu}'} \right], \tag{2a}
\]

\[
W_y(k) \approx 0.4 \left[e^{-2k^2/\kappa_{o\mu}'} - e^{-2k^2/\kappa_{o\mu}} \right], \tag{2b}
\]

where \(\kappa_{o\mu}(z) \approx 4.1 \times 10^{-6} (1 + z)^{3/2} \, \text{Mpc}^{-1}\) is the diffusion damping scale at redshift \(z\). This quantity is evaluated at the initial and final redshifts at which \(\mu\) and \(y\) distortions are produced, assuming that the transition between \(\mu\) and \(y\) happens abruptly at \(z \approx 5 \times 10^4 \) \([28, 29]\). Thus, \(\kappa_{o\mu} = \kappa_{D}(2 \times 10^6) \approx 1.1 \times 10^4 \, \text{Mpc}^{-1}\), \(\kappa_{o\mu}' = \kappa_{D}(5 \times 10^4) \approx 46 \, \text{Mpc}^{-1}\), and \(\kappa_{o\mu} = \kappa_{D}(1090) \approx 0.15 \, \text{Mpc}^{-1}\). Evaluating the expressions in Eq. (1) using \(\Delta_R^2(k) \approx 2.4 \times 10^{-9} (k/0.002 \, \text{Mpc}^{-1})^n_{-1}\), with \(n_s \approx 0.96\) \([30]\), yields \(\langle \mu \rangle \approx 1.9 \times 10^{-9}\) and \(\langle y \rangle \approx 4.2 \times 10^{-9}\), in good agreement with more detailed computations \([16]\).

Since the angle subtended by a causal region at the surface of last scatter is \(\sim 1^\circ\), we see in the CMB \(\sim 40,000\) causally disconnected Universes. If primordial perturbations are Gaussian, then the amplitude \(\Delta_R^2(k_{\text{small}})\) of primordial perturbations on the small scales \(k_{\text{small}}\) that induce spectral distortions will be the same everywhere. If, however, there is local-model non-Gaussianity, then the power spectrum \(\Delta^2_R(k_r, \vec{x})\) for small-scale modes \(k_r\) will differ from one causal patch centered at position \(\vec{x}\) to another. The fluctuation will moreover be correlated with the long-wavelength curvature fluctuation \(R(\vec{x})\).

This can be understood simply from the configuration-space description of local-model non-Gaussianity. The local-model curvature perturbation at position \(\vec{x}\) is written,

\[
R(\vec{x}) = r(\vec{x}) + \frac{3}{5} f_{\text{nl}} r^2(\vec{x}), \tag{3}
\]

in terms of a Gaussian random variable \(r(\vec{x})\). We then write \(R(\vec{x}) = R_L(\vec{x}) + R_S(\vec{x})\), where \(R_L(\vec{x})\) is the part of \(R(\vec{x})\) that comes from long-wavelength Fourier modes and \(R_S(\vec{x})\) that from short-wavelength Fourier modes, and similarly write \(r(\vec{x}) = r_L(\vec{x}) + r_S(\vec{x})\). By writing

\[
R_L + R_S = r_L + r_S + \frac{3}{5} f_{\text{nl}} \left[r_L^2 + 2r_Lr_S + r_S^2 \right], \tag{4}
\]

we infer that the small-scale curvature fluctuation in the presence of some fixed long-wavelength curvature fluctuation \(R_L(\vec{x})\) is, to linear order in \(f_{\text{nl}}\),

\[
R_S = r_L(\vec{x}) \left[1 + \frac{6}{5} f_{\text{nl}} R_L(\vec{x}) \right]. \tag{5}
\]

Thus, the fractional change in small-scale power in a region of a fixed long-wavelength curvature fluctuation is

\[
\frac{\delta \langle R^2 \rangle}{\langle R^2 \rangle} \approx \frac{12}{5} f_{\text{nl}} R_L(\vec{x}). \tag{6}
\]

We thus infer that, with local-model non-Gaussianity, the fractional chemical-potential fluctuation in a given region of the sky is given simply by the long-wavelength curvature perturbation in that region at the surface of last scatter.

The same is true for the large-angle temperature fluctuation—it is determined primarily by the curvature fluctuation at the surface of last scatter and has magnitude \(\Delta T / T \approx R / 5\). Therefore, for multipole moments \(\ell \leq 100\) that probe causally disconnected regions at the surface of last scatter, the cross-correlation between the (fractional) chemical-potential fluctuation \(\Delta\mu / \mu\) and the temperature fluctuation \(\Delta T / T\) has a power spectrum,

\[
C^\mu T_\ell = 12 f_{\text{nl}} C^TT_\ell. \tag{7}
\]

This easily obtained result agrees with Ref. \([13]\), noting that their \(C^\mu T_\ell\) is for the \(\mu\) fluctuation, rather than the fractional \(\mu\) fluctuation. The \(\mu\) autocorrelation caused by non-Gaussianity is \(C^\mu T_\ell \approx 144 f_{\text{nl}}^2 C^TT_\ell\). Here we assumed that the trispectrum contributions are negligible. As our derivation clarifies, the \(\mu T\) correlation arises from the squeezed limit of the bispectrum, the part of the bispectrum that modulates small-scale power. For completeness, we include the large-angle temperature power spectrum,

\[
C^TT_\ell = \frac{2\pi}{25} \frac{\Delta_R^2}{\ell (\ell + 1)} \approx 6.0 \times 10^{-10} \frac{1}{\ell (\ell + 1)}. \tag{8}
\]

If the non-Gaussianity is scale-invariant, the \(y T\) and \(yy\) correlations are the same as the \(\mu T\) and \(\mu\mu\) correlations (all in terms of \(\Delta y / y\) and \(\Delta\mu / \mu\))

\[
C^y T_\ell \approx 12 f_{\text{nl}} C^TT_\ell, \quad C^yy \approx 144 f_{\text{nl}}^2 C^TT_\ell. \tag{9}
\]

If, however, the non-Gaussianity is scale-dependent (see, e.g., Refs. \([31, 27]\)), then the value of \(f_{\text{nl}}\) that describes correlations between the long-wavelength \((k_L \leq 0.01 \, \text{Mpc}^{-1})\)
modes responsible for large-angle CMB temperature fluctuations and short-wavelength modes \((50 \text{ Mpc}^{-1} \lesssim k \lesssim 10^2 \text{ Mpc}^{-1}) \) responsible for the \(\mu \) distortion, may differ from the value of \(f_{\text{nl}} \) that describes correlations between long-wavelength modes and \(1 \text{ Mpc}^{-1} \lesssim k \lesssim 50 \text{ Mpc}^{-1} \) modes responsible for the dissipation-induced \(y \) distortions.

We therefore parametrize the scale-dependent non-Gaussianity in terms of a scale-dependent non-Gaussianity parameter \(f_{\text{nl}}(k) \) defined by the squeezed-limit \((k_s \equiv k_2 = k_1 \gg k_3) \) curvature bispectrum,

\[
B_R(k_1, k_2, k_3) \simeq \frac{12}{5} f_{\text{nl}}(k_3) P_R(k_3) P_R(k_L),
\]

for \(k_L \lesssim 0.01 \text{ Mpc}^{-1} \). We then define two parameters, \(f_{\text{nl}}^2 \equiv f_{\text{nl}}(k_s \approx 7 \text{ Mpc}^{-1}) \) and \(f_{\text{nl}}^\mu \equiv f_{\text{nl}}(k_s \approx 740 \text{ Mpc}^{-1}) \) to parametrize the non-Gaussianity on \(\mu \) and \(y \) scales, respectively. Here, the \(f_{\text{nl}} \) parameter is roughly at the log-midpoints of the \(y \)- and \(\mu \)-distortion \(k \) intervals, which defines the \(y \)- and \(\mu \)-distortion pivot wavenumbers \(k_y \approx 7 \text{ Mpc}^{-1} \) and \(k_\mu \approx 740 \text{ Mpc}^{-1} \), respectively. Although the scale-dependence of \(f_{\text{nl}} \) is often modeled in the literature as a power law in wavenumber \(k_s \), this parametrization does not accommodate the possibility, which arises in curvature and multi-field models, that \(f_{\text{nl}} \) may change sign with scale. The above parametrization is therefore more general. We note that the \(k_1 \equiv k_L \ll k_2 = k_3 \equiv k_s \) bispectrum in Eq. \((10) \) is the squeezed limit of the common bispectrum parametrization \((\text{e.g.,} \ (11)) \). \(B_R(k_1, k_2, k_3) \equiv (2\pi)^3 \delta^{(3)}(\vec{k}_1 + \vec{k}_2 + \vec{k}_3)B_R(k_1, k_2, k_3) \)

\[
\text{defined from}
\]

\[
\langle R_{\vec{k}_1} R_{\vec{k}_2} R_{\vec{k}_3} \rangle \equiv (2\pi)^3 \delta^{(3)}(\vec{k}_1 + \vec{k}_2 + \vec{k}_3)B_R(k_1, k_2, k_3)
\]

where will engender a detectable \(yT \) correlation. These estimates are obtained assuming a roughly scale-invariant spectrum of primordial perturbations. If for some reason the small-scale power-spectrum amplitude is increased in the \(y \) range \((1 \text{ Mpc}^{-1} \lesssim k \lesssim 50 \text{ Mpc}^{-1}) \) or \(\mu \) range \((50 \text{ Mpc}^{-1} \lesssim k \lesssim 10^2 \text{ Mpc}^{-1}) \), the smallest detectable \(f_{\text{nl}}^2 \) and \(f_{\text{nl}}^\mu \), respectively, will be decreased by a similar factor. In this case, the homogeneous values of \(y \) and \(\mu \) will also be increased [17]. The detection limits obtained from the \(\mu \) and \(y \) autocorrelations are typically a few times weaker, since in contrast to the temperature cross-correlations noise dominates the \(\mu \) distortion measurements.

The \(\mu \) and \(y \) spectral distortions in any given causal patch at the surface of last scatter come from the dissipation of small-scale modes within that patch. There is a finite number \(N \sim (k_L)^3 \) of such modes in this patch, where \(k \) is the largest relevant wavenumber \((10^1 \text{ Mpc}^{-1} \text{ and } 50 \text{ Mpc}^{-1} \text{ for } \mu \text{ and } y \text{ distortions, respectively, and } \lambda \sim 100 \text{ Mpc the the size of the causal patch at the surface of last scatter. There will therefore be Poisson fluctuations of amplitude } \sim N^{-1/2} \text{ in the value of the } \mu \text{ and } y \text{ distortions in any such patch. The mean-square fractional } \mu \text{ fluctuation in a patch of angular size } \theta \text{ will thus be,}

\[
\left(\frac{\Delta \mu}{\mu} \right)^2 \sim \int \frac{d\ell}{2\pi} C_{\ell} \left[W_{\ell}(\theta) \right]^2 \sim \ell^2 C_{\ell} \left[1 - 1/(N\theta^2) \right]^{-1} \left(\frac{H_0}{k_{\max} \theta} \right)^3,
\]

where \(W_{\ell} \) is the window function for a circle on the sky of radius \(\theta \), and the last (approximate) equality is the Poisson-fluctuation amplitude. We therefore infer fluctuations \(C_{\ell}^{yy} \sim 6 \times 10^{-15} (\ell/100) \) and \(C_{\ell}^{\mu \mu} \sim 6 \times 10^{-25} (\ell/100) \) well below those from measurement noise.

Before the \(yT \) correlations considered here can be used to probe or constrain primordial non-Gaussianity, it will be necessary to consider the cross-correlation of the Compton-\(y \) distortion from intergalactic gas in the late Universe with the contribution to the large-angle temperature fluctuation from the integrated Sachs-Wolfe effect. We anticipate that lensing reconstruction can be used to separate out this late-time \(yT \) correlation. We also anticipate that this contribution can be distinguished by a different \(\ell \) dependence.

An additional source of \(yT \) correlations could arise from the damping of primordial magnetic fields [48]. In spite of the large uncertainty in the amplitude of primordial magnetic fields, the scale-dependence is again generally expected to differ from the one caused by non-Gaussianity. However, a more detailed study is required.

The constraints to the squeezed-limit bispectrum from \(yT \) and \(yT \) correlation considered here will be complemented on the longer- and shorter-wavelength ends by other measurements. Searches for non-Gaussianity in CMB fluctuations and in galaxy surveys probe wavenumbers \(k \lesssim 0.1 \text{ Mpc}^{-1} \). There are other searches for the scale-dependent bias that arises from non-Gaussianity [9,11]. These probe squeezed-limit non-Gaussianity primarily on wavenumbers \(k \lesssim 1 \text{ Mpc}^{-1} \) [12] (those that are most important for determining the abundance
of the galaxies being correlated). Dissipation of acoustic modes with wavelengths $10^4 \text{Mpc}^{-1} \leq k \leq 10^5 \text{Mpc}^{-1}$ produce entropy in the primordial plasma after BBN [46]. The long-wavelength modulation induced by squeezed-limit non-Gaussianity on these scales will then give rise to a small isocurvature fluctuation correlated with the primordial adiabatic perturbation [45]. Finally, modes with $10^4 \text{Mpc}^{-1} \leq k$ can give rise to additional large-scale temperature fluctuations caused by non-Gaussianity [45]. Depending on the sign of the correlation, this could also produce a lack of power on large scales (which could also affect the values of cosmological parameters inferred from these temperature fluctuations).

We find it interesting that there are thus now prospects to probe the amplitude of squeezed-limit non-Gaussianity on a continuum of distance scales from the largest ($\sim \text{Gpc}$) accessible to those on scales nearly eight orders of magnitude smaller, with CMB, large-scale structure, scale-dependent biasing, yT correlations, μT correlations, and small-scale entropy production. This complement of measurements will thus allow the determination of the functional dependence of $f_n(k_s)$, without necessarily assuming a specific parametrization (e.g., power-law) for its scale-dependence.

This work was supported at JHU by NSF Grant No. 0244990, NASA NNX15AB18G, the John Templeton Foundation, and the Simons Foundation, and at ASU by the Department of Energy. JC was supported by a Royal Society Research Fellowship, and RE acknowledges the support of the New College Oxford - Johns Hopkins Centre for Cosmological Studies.

[1] A. H. Guth and S. Y. Pi, Phys. Rev. Lett. 49, 1110 (1982); A. A. Starobinsky, Phys. Lett. B 117, 175 (1982); J. M. Bardeen, P. J. Steinhardt and M. S. Turner, Phys. Rev. D 28, 679 (1983).
[2] N. Bartolo et al., Phys. Rept. 402, 103 (2004) [arXiv:astro-ph/0406398].
[3] T. Falk, R. Rangarajan and M. Srednicki, Astrophys. J. 403, L1 (1993) [arXiv:astro-ph/9208001]; A. Gangu et al., Astrophys. J. 430, 447 (1994) [arXiv:astro-ph/9312033]; A. Gangu, Phys. Rev. D 50, 3684 (1994) [arXiv:astro-ph/9406014]; L. M. Wang and M. Kamionkowski, Phys. Rev. D 61, 063504 (2000) [arXiv:astro-ph/9907431]; J. M. Maladacena, JHEP 0305, 013 (2003) [arXiv:astro-ph/0210603]; V. Acquaviva, N. Bartolo, S. Matarrese and A. Riotto, Nucl. Phys. B 667, 119 (2003) [arXiv:astro-ph/0209156].
[4] L. Verde, L. M. Wang, A. Heavens and M. Kamionkowski, Mon. Not. Roy. Astron. Soc. 313, L141 (2000) [astro-ph/9906301].
[5] E. Komatsu et al. [WMAP Collaboration], Astrophys. J. Suppl. 180, 330 (2009) [arXiv:0803.0547 [astro-ph]].
[6] P. A. R. Ade et al. [Planck Collaboration], Astron. Astrophys. 571, A24 (2014) [arXiv:1303.5084 [astro-ph.CO]].
[7] P. A. R. Ade et al. [Planck Collaboration], arXiv:1502.01592 [astro-ph.CO].
[8] L. Verde, A. F. Heavens, W. J. Percival, S. Matarrese, C. M. Baugh, J. Bland-Hawthorn, T. Bridges and R. Cannon et al., Mon. Not. Roy. Astron. Soc. 335, 432 (2002) [astro-ph/0112161].
[9] N. Dalal, O. Dore, D. Huterer and A. Shirokov, Phys. Rev. D 77, 123514 (2008) [arXiv:0710.4560 [astro-ph]].
[10] A. Slosar, C. Hirata, U. Seljak, S. Ho and N. Padmanabhan, JCAP 0808, 031 (2008) [arXiv:0805.3580 [astro-ph]].
[11] S. Matarrese and L. Verde, Astrophys. J. 677, L77 (2008) [arXiv:0801.4826 [astro-ph]]; C. Carbone, L. Verde and S. Matarrese, Astrophys. J. 684, L1 (2008) [arXiv:0806.1950 [astro-ph]].
[12] F. Schmidt and M. Kamionkowski, Phys. Rev. D 82, 103002 (2010) [arXiv:1008.0638 [astro-ph.CO]].
[13] E. Pajer and M. Zaldarriaga, Phys. Rev. Lett. 109, 021302 (2012) [arXiv:1201.5375 [astro-ph.CO]].
[14] J. Ganc and E. Komatsu, Phys. Rev. D 86, 023518 (2012) [arXiv:1204.4241 [astro-ph.CO]].
[15] W. Hu, D. Scott and J. Silk, Astrophys. J. 430, L5 (1994) [astro-ph/9402045].
[16] J. Chluba, R. Khati and R. A. Sunyaev, Mon. Not. Roy. Astron. Soc. 425, 1129 (2012) [arXiv:1202.0057 [astro-ph.CO]].
[17] J. Chluba, A. L. Erickcek and I. Ben-Dayan, Astrophys. J. 758, 76 (2012) [arXiv:1203.2681 [astro-ph.CO]].
[18] A. Loeb and M. Zaldarriaga, Phys. Rev. Lett. 92, 211301 (2004) [astro-ph/0312134].
[19] T. J. Allen, B. Grinstein and M. B. Wise, Phys. Lett. B 197, 66 (1987); L. A. Kofman and D. Y. Pogosian, Phys. Lett. B 214, 508 (1988); D. S. Salopek, J. R. Bond and J. M. Bardeen, Phys. Rev. D 40, 1753 (1989); A. D. Linde and V. F. Mukhanov, Phys. Rev. D 56, 535 (1997) [arXiv:astro-ph/9610219]; P. J. E. Peebles, Astrophys. J. 510, 523 (1999) [arXiv:astro-ph/9805194]; P. J. E. Peebles, Astrophys. J. 510, 531 (1999) [arXiv:astro-ph/9805212].
[20] S. Mollerach, Phys. Rev. D 42, 313 (1990); A. D. Linde and V. F. Mukhanov, Phys. Rev. D 56, 535 (1997) [arXiv:astro-ph/9610219]; D. H. Lyth and D. Wands, Phys. Lett. B 524,
5 (2002) [arXiv:hep-ph/0110002]; T. Moroi and T. Takahashi, Phys. Lett. B 522, 215 (2001) [Erratum-ibid. B 539, 303 (2002)] [arXiv:hep-ph/0110096]; D. H. Lyth, C. Ungarelli and D. Wands, Phys. Rev. D 67, 023503 (2003) [arXiv:astro-ph/0208055]; K. Ichikawa et al., arXiv:0802.4138 [astro-ph]; K. Enqvist, S. Nurmi, O. Taanila and T. Takahashi, arXiv:0912.4657 [astro-ph.CO]; K. Enqvist and T. Takahashi, JCAP 0912, 001 (2009) [arXiv:0909.5362 [astro-ph.CO]]; K. Enqvist and T. Takahashi, JCAP 0809, 012 (2008) [arXiv:0807.3069 [astro-ph]]; K. Enqvist and S. Nurmi, JCAP 0510, 013 (2005) [arXiv:astro-ph/0508573]; A. L. Erickcek, M. Kamionkowski and S. M. Carroll, arXiv:0806.0377 [astro-ph]; A. L. Erickcek, C. M. Hirata and M. Kamionkowski, Phys. Rev. D 80, 083507 (2009) [arXiv:0907.0705 [astro-ph]]; S. Hannestad, T. Haugboelle, P. R. Jarnhus and M. S. Sloth, arXiv:0912.3527 [hep-ph].

[21] G. R. Dvali and S. H. H. Tye, Phys. Lett. B 450, 72 (1999) [arXiv:hep-th/9812483]; P. Creminelli, JCAP 0310, 003 (2003) [arXiv:astro-ph/0306122]; M. Alishahiha, E. Silverstein and D. Tong, Phys. Rev. D 70, 123505 (2004) [arXiv:hep-th/0404084].

[22] A. Vilenkin and E. P. S. Shellard “Cosmic Strings and other Topological Defects,” (Cambridge University Press, Cambridge, 1994); R. Durrer, New Astron. Rev. 43, 111 (1999); R. Durrer, M. Kunz and A. Melchiorri, Phys. Rept. 364, 1 (2002) [arXiv:astro-ph/0110348]; A. H. Jaffe, Phys. Rev. D 49, 3893 (1994) [arXiv:astro-ph/9311023]; A. Vilenkin, Rept. Prog. Phys. 61, 2176 (2008) [arXiv:0908.0432 [astro-ph.CO]]; M. Hindmarsh, C. Ringeval and T. Suyama, Phys. Rev. D 80, 083501 (2009) [arXiv:0908.0432 [astro-ph.CO]]; M. Hindmarsh, C. Ringeval and T. Suyama, arXiv:0911.2491 [astro-ph.CO]; D. M. Regan and E. P. S. Shellard, arXiv:0911.2491 [astro-ph.CO]; N. Turok and D. N. Spergel, Phys. Rev. Lett. 66, 3093 (1991); D. G. Figueroa, R. R. Caldwell and M. Kamionkowski, arXiv:1003.0362 [astro-ph.CO].

[23] R. Cen and J. P. Ostriker, Astrophys. J. 514, 1 (1999) [astro-ph/9806281].

[24] P. J. Zhang, U. L. Pen and H. Trac, Mon. Not. Roy. Astron. Soc. 355, 451 (2004) [astro-ph/0402115].

[25] M. Biagetti, H. Perrier, A. Riotto and V. Desjacques, Phys. Rev. D 87, no. 6, 063521 (2013) [arXiv:1301.2771 [astro-ph.CO]].

[26] J. Chluba and D. Grin, Mon. Not. Roy. Astron. Soc. 434, 1619 (2013) [arXiv:1304.4596 [astro-ph.CO]].

[27] J. Chluba, E. Dimastrogiovanni, R. Emami, and M. Kamionkowski, in preparation.