Retrospective Study

Prognostic significance of the neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in patients with stage III and IV colorectal cancer

Jae Hyun Kim, Jun Yeop Lee, Hae Koo Kim, Jin Wook Lee, Sung Gyu Jung, Kyoungwon Jung, Sung Eun Kim, Won Moon, Moo In Park, Seun Ja Park

Jae Hyun Kim, Jun Yeop Lee, Hae Koo Kim, Jin Wook Lee, Sung Gyu Jung, Kyoungwon Jung, Sung Eun Kim, Won Moon, Moo In Park, Seun Ja Park, Division of Gastroenterology, Department of Internal Medicine, Kosin University College of Medicine, Busan 602-702, South Korea

Author contributions: Kim JH and Park SJ designed study; Kim JH wrote the paper; Lee JY, Kim HK, Lee JW, Jung K, Kim SE, Moon W and Park MI critically reviewed the manuscript for important intellectual content; and Park SJ approved the manuscript; all the authors contributed to this manuscript.

Institutional review board statement: This is to certify that the information contained herein is true and correct as reflected in the records of the KUGH IRB. We certify that KUGH IRB is in full complinance with good clinical practice as defined under Ministry of Food and Drug Safety (MFDS) regulations and the International Conference on Harmonization (ICH) guidelines.

Conflict-of-interest statement: No potential conflicts of interest relevant to this article were reported.

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Correspondence to: Seun Ja Park, MD, Division of Gastroenterology, Department of Internal Medicine, Kosin University College of Medicine, 34 Amnam-dong, Seo-gu, Busan 602-702, South Korea. parksj6406@daum.net

Telephone: +82-51-9905061
Fax: +82-51-9905055

Received: October 25, 2016
Peer-review started: October 26, 2016
First decision: December 1, 2016
Revised: December 5, 2016
Accepted: December 21, 2016
Article in press: December 21, 2016
Published online: January 21, 2017

Abstract

AIM
To evaluate the prognostic value of the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in patients with colorectal cancer (CRC).

METHODS
Between April 1996 and December 2010, medical records from a total of 1868 patients with CRC were retrospectively reviewed. The values of simple inflammatory markers including NLR and PLR in predicting the long-term outcomes of these patients were evaluated using Kaplan-Meier curves and Cox regression models.

RESULTS
The median follow-up duration was 46 mo (interquartile range, 22-73). The estimation of NLR and PLR was based on the time of diagnosis. In multivariate Cox regression analysis, high NLR (≥ 3.0) and high PLR (≥ 160) were independent risk factors predicting poor long-term outcomes in patients with stage III and IV CRC. However, high NLR and high PLR were not prognostic factors in patients with stage I and II CRC.
CONCLUSION
In this study, we identified that high NLR (≥ 3.0) and high PLR (≥ 160) are useful prognostic factors to predict long-term outcomes in patients with stage III and IV CRC.

Key words: Colorectal cancer; Neutrophil; Lymphocyte; Platelet; Prognosis

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Recently, neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) have been suggested as important inflammatory markers and potential predictors of long-term outcomes in patients with colorectal cancer (CRC). However, the direct impact of NLR and PLR on long-term outcomes in patients with CRC remains inconclusive. In this study, we identified that high NLR and high PLR are useful independent prognostic factors to predict poor long-term outcomes in patients with stage III and IV CRC. And we propose that initial assessment of NLR and PLR in newly diagnosed stage III and IV CRC patients is important for predicting long-term outcomes.

Kim JH, Lee JY, Kim HK, Lee JW, Jung SG, Jung K, Kim SE, Moon W, Park MI, Park SJ. Prognostic significance of the neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in patients with stage III and IV colorectal cancer. World J Gastroenterol 2017; 23(3): 505-515 Available from: URL: http://www.wjgnet.com/1007-9327/full/v23/i3/505.htm DOI: http://dx.doi.org/10.3748/wjg.v23.i3.505

INTRODUCTION
Colorectal cancer (CRC) is the third most common tumor in men and the second in women worldwide[1]. According to the database of GLOBOCAN 2012, 1.4 million new CRC cases and 694000 CRC deaths occurred in 2012 worldwide[2]. In Eastern Asia, CRC occurs in more than 37.0 per 100000 individuals per year and accounts for approximately 207700 annual deaths[3]. Although the 5-year relative survival rate of CRC has been increasing over the past few decades, CRC is still the third leading cause of cancer-related death in the world and the median overall survival of patients with metastatic CRC is less than 30 mo[4]. Identification of prognostic markers is an important step for assessing clinical outcome in CRC treatment. In previous studies, tumor stage, histologic grade, number of resected lymph nodes, lymphatic, venous or peri-neural invasion, and carcinoembryonic antigen (CEA) level have been demonstrated as prognostic factors[5-8]. Recently, a large number of studies have suggested useful biomarkers for predicting clinical outcomes in CRC, however high costs and lack of standardization limit their application in routine clinical practice[9,10].

Previous reports have shown that the inflammatory response increases the risk of developing many types of cancer[11-12]. Some transcription factors including NF-κB and STAT3 (signal transducer and activator of transcription 3) and several inflammatory cytokines (such as IL-1β, IL-6, IL-23, and TNF-α) are involved in cancer-related inflammation. Therefore, it has been suggested that the inhibition of these transcription factors and cytokines could decrease the incidence and spread of cancer[11]. In particular, non-steroidal anti-inflammatory drugs reduce the risk of developing CRC and the mortality of CRC[13-15]. At this time, it is widely accepted that the inflammatory response has a crucial role in the pathogenesis and progression of cancer. Among the various inflammatory markers, neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) have been shown to influence clinical outcomes in various cancers[16-19]. NLR and PLR can be easily calculated as the neutrophil count or platelet count divided by the lymphocyte count. Because neutrophil count, platelet count, and lymphocyte count are routinely evaluated, the assessment of NLR and PLR could be routinely used without additional cost in clinical practice. An elevated neutrophil count promotes tumor growth and metastasis by remodeling the extracellular matrix, releasing reactive oxygen species, and suppressing lymphocyte activity[20]. In addition, the presence of tumor cells affects platelets and causes cancer-induced thrombosis[21]. As a result of this activation, platelets release a number of growth factors which support tumor growth, angiogenesis, and metastasis[22]. Recently, NLR and PLR have been suggested as important inflammatory markers and potential predictors of long-term outcomes in patients with CRC[23-26]. However, because of the diversity in study designs, heterogeneous enrolled patient groups, and different cutoff values, the direct impact of NLR and PLR on long-term outcomes in patients with CRC remains inconclusive. In this study, we aimed to identify the prognostic value of the NLR and PLR in patients with CRC.

MATERIALS AND METHODS
Patients
Between April 1996 and December 2010, the medical records from patients diagnosed with CRC at Kosin University Gospel Hospital (Busan, Korea) were retrospectively reviewed. Patients who were histologically confirmed to have CRC were included. Patients whose medical records did not include complete blood count, and clinicopathological and follow-up data were excluded. Detailed clinical data including patient age, gender, tumor location, histopathology, tumor stage, and use of chemotherapy were collected. This study was approved by the Institutional Review Board of
Kim JH et al. Role of the NLR and PLR in patients with CRC

RESULTS

Baseline characteristics and clinicopathological findings
A total of 1868 patients were included between April 1996 and December 2010. Their mean age was 65 years, and 796 patients (42.6%) were female. The median follow-up duration was 46 mo (interquartile range, 22-73). During the follow-up period, 599 patients (32.1%) died. Baseline characteristics are summarized in Table 1. All patients had data on neutrophil counts, lymphocyte counts, and platelet counts, therefore the NLR and PLR could be calculated for all patients. The mean ± SD neutrophil count, lymphocyte count, and platelet count were 5.65 ± 3.14 × 10⁹/L, 1.86 ± 0.88 × 10⁹/L, and 285.25 ± 98.11 × 10⁹/L, respectively. And the mean NLR and PLR were 4.54 ± 5.83 and 200.17 ± 168.96, respectively. On ROC analysis, the NLR and PLR were found to have the largest area under the curve (AUC = 0.569, 95%CI: 0.542-0.597, P < 0.001, and AUC = 0.556, 95%CI: 0.528-0.584, P < 0.001, respectively) with an optimal NLR cut-off value of 3.0 (sensitivity 51%, specificity 62%) and an optimal PLR cut-off value of 160 (sensitivity 53%, specificity 55%) for predicting OS. Patients were classified into two groups based on the optimal cut-off value of the NLR: high NLR (NLR ≥ 3.0) and low NLR (NLR < 3.0). In addition, patients were divided into two groups according to the optimal cut-off value of the PLR: high PLR (PLR ≥ 160) and low PLR (PLR < 160).

Clinicopathological findings of the patients according to NLR and PLR are summarized in Table 2. There were statistically significant differences in T stage and peri-neural invasion according to NLR and PLR, however there were not statistically significant differences in N stage and lymphatic invasion according to NLR and PLR.

Overall survival and Disease free survival according to NLR and PLR
Figure 1 shows Kaplan-Meier curves of the OS and the DFS for patients according to NLR and PLR. The OS for patients with low NLR were better than those with high NLR (P < 0.001), and the OS for patients with low PLR were also better than those with high PLR (P < 0.001) (Figure 1A). The DFS for patients with low NLR were better than those with high NLR (P < 0.001), and the DFS for patients with low PLR were also better than those with high PLR (P < 0.001) (Figure 1B).

We evaluated the long-term outcomes according to NLR and PLR based on the tumor stage. The 3-year and 5-year OS/DFS rate according to NLR and PLR based on the tumor stage are shown in Table 3. Interestingly, the long-term outcomes according to NLR and PLR were different depending on the tumor stage (Figures 2 and 3). The OS and DFS of patients with stage I and II CRC were not significantly different according to NLR and PLR. However, the OS of patients with stage III and IV CRC were significantly different.

Baseline clinical characteristics and clinicopathological findings

Table 1 Baseline clinical characteristics of the enrolled patients

Characteristics	Patients (n = 1868)
Mean age (range), yr	65 (28-93)
Gender	Male 1072 (57.4) Female 796 (42.6)
Location	Colon 892 (47.8) Rectum 957 (51.2) Unknown 19 (1.0)
Histology	Well differentiated 484 (25.9) Moderate differentiated 1066 (57.1) Poorly differentiated 139 (7.4) Unknown 179 (9.6)
Tumor stage	I 281 (15.0) II 551 (29.5) III 667 (35.7) IV 369 (19.8)
Chemotherapy	No 294 (15.8) Yes 1574 (84.2)

Values are presented as mean (range) or n (%).

Kosin University Gospel Hospital (KUGH 2016-06-033).

Assessment of NLR and PLR
All blood samples were taken at the time of admission for initial diagnosis and the neutrophil, platelet, and lymphocyte counts identified in these blood samples were used to calculate the NLR and PLR. NLR was calculated by dividing the absolute neutrophil count by the absolute lymphocyte count, and PLR was calculated by dividing the absolute platelet count by the absolute lymphocyte count. Cutoff values, sensitivity, and specificity of the NLR and PLR were evaluated using receiver operating characteristic (ROC) curves.

Patient follow-up and statistical analysis
The overall survival (OS) was measured from the date of CRC diagnosis to the date of death or final follow-up. The disease free survival (DFS) was measured from the date of CRC diagnosis to the date of recurrence or final follow-up. The recurrence of CRC was diagnosed on radiological and endoscopic histopathological data. Student’s t-test and χ² test were performed for continuous and categorical variables, as appropriate. ROC curves were used to differentiate the ability of the NLR and PLR to predict long-term outcomes in patients with CRC. Kaplan-Meier curves were used to construct survival curves based on cumulative incidences and compared using the Breslow test. Cox proportional hazards regression model was used to assess factors affecting the OS. P values less than 0.05 were considered statistically significant. Statistical analysis was performed using IBM SPSS Statistics version 23.0 (IBM Co., Armonk, NY).
Table 2 Clinicopathological findings according to neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio

Variable	NLR < 3.0 (n = 1086)	NLR ≥ 3.0 (n = 782)	P value	PLR < 160 (n = 973)	PLR ≥ 160 (n = 894)	P value
T stage						
T1	112	39	< 0.001	112	39	< 0.001
T2	171	91		159	102	
T3	668	498		579	587	
T4	48	59		41	66	
Unknown	87	95		82	100	
N stage			0.854			0.443
N0	589	434		543	480	
N1	289	201		257	232	
N2	196	138		164	170	
Unknown	12	9		9	12	
Lymphatic invasion			0.421			0.446
Yes	349	253		311	291	
No	587	391		524	453	
Unknown	150	138		138	150	
Vascular invasion			0.243			0.011
Yes	193	149		160	182	
No	742	496		675	562	
Unknown	151	137		138	150	
Peri-neural invasion			0.045			0.004
Yes	168	142		141	169	0.004
No	767	502		693	575	
Unknown	151	138		139	150	

NLR: Neutrophil-to-lymphocyte-ratio; PLR: Platelet-to-lymphocyte-ratio.

Table 3 Overall survival and disease free survival according to neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio

	NLR		PLR	
	Low (< 3.0)	High (≥ 3.0)	Low (< 160)	High (≥ 160)
Overall survival				
Stage I				
3-yr OS rate	97.0%	98.2%	99.3%	94.7%
5-yr OS rate	92.6%	91.9%	94.8%	87.3%
Stage II				
3-yr OS rate	91.2%	89.2%	90.6%	90.1%
5-yr OS rate	86.1%	84.0%	84.3%	86.2%
Stage III				
3-yr OS rate	79.6%	73.4%	82.1%	71.4%
5-yr OS rate	69.3%	60.9%	69.6%	61.9%
Stage IV				
3-yr OS rate	39.8%	21.2%	33.9%	27.4%
5-yr OS rate	34.3%	18.1%	28.6%	23.8%
Disease free survival				
Stage I				
3-yr DFS rate	98.3%	97.4%	98.7%	96.6%
5-yr DFS rate	96.1%	95.6%	97.2%	93.3%
Stage II				
3-yr DFS rate	88.5%	89.3%	87.8%	89.9%
5-yr DFS rate	84.7%	86.5%	83.5%	87.5%
Stage III				
3-yr DFS rate	79.2%	78.1%	79.8%	77.2%
5-yr DFS rate	75.2%	68.6%	74.5%	70.5%
Stage IV				
3-yr DFS rate	42.2%	30.3%	38.5%	34.5%
5-yr DFS rate	37.5%	26.8%	34.3%	30.4%

NLR: Neutrophil-to-lymphocyte-ratio; PLR: Platelet-to-lymphocyte-ratio; OS: Overall survival; DFS: Disease free survival.
according to NLR and PLR. And the DFS of patients with stage III and IV CRC were significantly different according to NLR, but not PLR.

Factors affecting long-term outcomes
Multivariate analysis using Cox proportional hazards regression were performed based on the tumor stage. In multivariate analysis in patients with stage I and II CRC, NLR and PLR were not significant factors affecting long-term outcomes (Table 4). However, in patients with stage III and IV CRC, high NLR and PLR were significant prognostic factors affecting long-term outcomes (Table 5). In patients with stage III and IV CRC, high NLR was independent factor affecting OS (HR = 1.44, 95%CI: 1.14-1.83, P = 0.003) and DFS (HR = 1.43, 95%CI: 1.11-1.85, P = 0.005), and high PLR was also independent factor affecting OS (HR = 1.35, 95%CI: 1.06-1.73, P = 0.017) and DFS (HR = 1.32, 95%CI: 1.02-1.69, P = 0.034).

DISCUSSION
This study showed that stage III and IV CRC patients with high NLR or high PLR at initial diagnosis had poor prognosis. According to the results of this study, high NLR and high PLR are useful independent prognostic factors to predict poor long-term outcomes in patients with stage III and IV CRC.

The mechanism by which high NLR or high PLR affects poor long-term outcomes in patients with cancer is not clearly. Recent studies suggested that inflammation and cancer are closely connected by the intrinsic and extrinsic pathways. The intrinsic pathway is activated by genetic alterations resulting in neoplasia, whereas inflammatory conditions increase the risk of developing cancer in the extrinsic pathway. The two pathways result in the activation of transcription factors in tumor cells including NF-κB, STAT3, and hypoxia-inducible factor 1α, and these transcription factors produce inflammatory mediators including cytokines and chemokines. By these processes, the inflammatory response contributes to the pathogenesis and progression of cancer. The relationship between chronic inflammation and CRC has been established by the observations showing the increased risk of CRC in patients with inflammatory bowel disease. Increased NLR or PLR indicates a relative reduction in lymphocytes and lymphocyte-mediated immune response, which plays a crucial role in cytotoxic cell death. And elevated neutrophils and platelets can cause the synthesis of chemokines, growth factors to promote angiogenesis and tumor progression.

Several studies have reported that some laboratory markers including C-reactive protein and modified Glasgow prognostic score have prognostic value in the cancer population. However, these laboratory markers are not routinely examined as part of the pretreatment assessment of patients with CRC in most hospitals. Whereas, since neutrophil count, platelet count, and lymphocyte count are routinely evaluated,
Figure 2 Kaplan-Meier curves show the overall survival of patients with colorectal cancer according to neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio based on tumor stage.

Kim JH et al. Role of the NLR and PLR in patients with CRC
Figure 3 Kaplan-Meier curves show the disease free survival of patients with colorectal cancer according to neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio based on tumor stage.
NLR and PLR could be inexpensive prognostic markers which can easily be assessed in clinical practice.

There has been rapidly growing interest in the association between NLR and long-term outcomes in patients with CRC\(^{16,23,24,26,31}\). Recently, two meta-analyses showed significant evidence to support the association between high NLR and poor prognosis in patients with CRC\(^{25,32}\). In this study, we aimed to investigate the prognostic role of NLR and PLR in patients with colorectal cancer (CRC) in a large clinical cohort. A total of 2220 patients with CRC were enrolled, and the clinical characteristics, tumor features, and disease outcomes were recorded. The patients were divided into two groups based on their NLR and PLR values: low (NLR < 3.0; PLR < 160) and high (NLR ≥ 3.0; PLR ≥ 160). The association between NLR, PLR, and survival was assessed using multivariate Cox regression analysis. The results showed that high NLR and PLR were significantly associated with poor survival outcomes. The findings suggest that NLR and PLR could serve as potential prognostic markers in CRC management.
to identify and strengthen the role of NLR and PLR in patients with CRC, therefore we performed the analysis with a large number of CRC patients to determine if these ratios could be useful for predicting long-term outcomes. We identified that patients with low NLR and low PLR showed longer overall survival and disease-free survival than those with high NLR and high PLR (Figure 1). Previous studies reported that preoperative NLR may be an independent prognostic marker to predict long-term outcomes in stage II and III CRC [24,32,38-40], and also an important predictive marker in stage IV CRC [36-39]. In our study, we demonstrated that NLR and PLR have predictive values for OS and DFS in patients with stage III and IV CRC. High NLR and high PLR were independent factors affecting OS and DFS in patients with stage III and IV CRC (Table 5). These findings suggest that stage III and IV CRC patients who have high NLR and high PLR should be more carefully managed when establishing a treatment strategy. Whereas, NLR and PLR were not prognostic factors in patients with stage I and II CRC (Table 4). These findings suggest that the assessment of NLR and PLR should be interpreted differently depending on the tumor stage of CRC.

Several studies have proposed various cut-off values of NLR and PLR for OS (for instance, 3 to 5 as a cut-off value of NLR and 150 to 225 as a cut-off value of PLR) [24,32-35,38-40]. In this study, the cut-off value of NLR was 3.0 (sensitivity 51%, specificity 62%) and the cut-off value of PLR was 160 (sensitivity 53%, specificity 55%). Although the sensitivity and specificity of the cut-off values of NLR and PLR in our results were not high, these values could be relatively reliable due to the large number of patients included in our study.

This study has some limitations. First, this study was retrospectively performed in a single center. Therefore, we could not avoid selection bias when collecting information on patients with CRC. However, we attempted to minimize any bias by repeatedly reviewing the medical records. Second, the NLR and PLR were assessed by single measurements at the time of admission for the initial diagnosis. It would be interesting to examine changes in NLR and PLR during the follow-up period in CRC patients to determine their usefulness as surveillance markers.

In conclusion, our study showed that high NLR and high PLR are useful prognostic factors to predict poor long-term outcomes in patients with stage III and IV CRC. Based on the results of this study, we suggest that initial assessment of NLR and PLR in newly diagnosed stage III and IV CRC patients is important for predicting long-term outcomes.

REFERENCES

1. Edwards BK, Ward E, Kohler BA, Eheeman C, Zauber AG, Anderson RN, Jemal A, Schymura MJ, Lansdorp-Vogelaar I, Seef LC, van Ballegooijen M, Goede SL, Ries LA. Annual report to the nation on the status of cancer, 1975-2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer 2010; 116: 544-573 [PMID: 19998273 DOI: 10.1002/ijc.24760]

2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136: E359-E386 [PMID: 25220842 DOI: 10.1002/ijc.29210]

3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66: 7-30 [PMID: 26742998 DOI: 10.3322/caac.21312]

4. Loupakis F, Cremoni F, Masi G, Lonardi S, Zagonel V, Salvatore L, Cortesi E, Tomassello G, Ronzoni M, Spadi R, Zaniboni A, Tonini G, Buonadonna A, Amoroso D, Chiara S, Carlonagno C, Boni C, Allegri G, Boni L, Falcone A. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N Engl J Med 2014; 371: 1609-1618 [PMID: 25337750 DOI: 10.1056/NEJMoa1403108]

5. Yamaguchi K, Ogata Y, Akagi Y, Shirouzu K. Identification of high-risk factors as indicators for adjuvant therapy in stage II colon cancer patients treated at a single institution. Oncol Lett 2013; 6: 659-666 [PMID: 24137386 DOI: 10.3892/ol.2013.1433]

6. O’Connell JB, Maggard MA, Ko CY. Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. J Natl Cancer Inst 2004; 96: 1420-1425 [PMID: 15467030 DOI: 10.1093/jnci/djh275]

7. Morris M, Platell C, de Boer B, McCaul K, Iacopetta B. Population-based study of prognostic factors in stage II coloni cancer. Br J Surg 2006; 93: 866-871 [PMID: 16622901 DOI: 10.1002/bjs.5345]
Kim JH et al. Role of the NLR and PLR in patients with CRC

8 Le Voyer TE, Sigurdson ER, Hanlon AL, Mayer RJ, Macdonald JS, Catalano PJ, Haller DG. Colon cancer survival is associated with increasing number of lymph nodes analyzed: a secondary survey of intergroup trial INT-0089. J Clin Oncol 2003; 21: 2502-2509 [PMID: 12805869 DOI: 10.1200/jco.2003.05.062]

9 Salazar R, Roepman P, Capella G, Moreno V, Simon I, Drezen C, Lopez-Doriga A, Santos C, Marijnen C, Westerga J, Bruin S, Kerr D, Kuppen P, van de Velde C, Morreau H, Van Velthuysen L, Glas AM, Van’t Veer LJ, Tollenara R. Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. J Clin Oncol 2011; 29: 17-24 [PMID: 21098318 DOI: 10.1200/jco.2010.30.1077]

10 Roth AD, Tejpar S, Delorenzi M, Yan P, Fiocca R, Klingbiel D, Dietrich D, Biesmans B, Bodoky G, Barone C, Aranda E, Norderling B, Cisar L, Labianca R, Biesmans B, Van Cutsem E, Biesmans B. COX-2 inhibition and colorectal cancer. Cancer Res 2004; 64: 2912-2919 [PMID: 15097295 DOI: 10.1158/0008-5472.can-04-0050]

11 Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008; 454: 436-444 [PMID: 18659014 DOI: 10.1038/nature07205]

12 Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420: 860-867 [PMID: 12099059 DOI: 10.1038/nature01322]

13 Koehne CH, Dubois RN. COX-2 inhibition and colorectal cancer. Semin Oncol 2004; 31: 12-21 [PMID: 15252926]

14 Flossmann E, Rothwell PM. Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomised and observational studies. Lancet 2007; 369: 1603-1613 [PMID: 17499602 DOI: 10.1016/s0140-6736(07)60747-8]

15 Chan AT, Ogino S, Fuchs CS. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N Engl J Med 2007; 356: 2131-2142 [PMID: 17522398 DOI: 10.1056/NEJMoa067208]

16 Lee YY, Choi CH, Kim HJ, Kim TJ, Lee JW, Lee JH, Bae DS, Kim BG. Pretreatment neutrophil: lymphocyte ratio as a prognostic factor in cervical carcinoma. Anticancer Res 2012; 32: 1555-1561 [PMID: 22949301]

17 Picler M, Hutterer GC, Stoeckigt C, Chronaki CE, Stojakovic C, Gao X, Sipos P, Stojakovic C, Gerger A, Ress AL, Schaberl-Moser R, Loibner H, Samonigg H, Gerger A. A derived neutrophil to lymphocyte ratio predicts clinical outcome in stage II and III colon cancer patients. Br J Cancer 2013; 109: 395-400 [PMID: 23820252 DOI: 10.1038/jbc.2013.346]

18 Mallappa S, Sinha A, Gupta S, Chadwick SJ. Preoperative neutrophil to lymphocyte ratio & ct; 5 is a prognostic factor for recurrent colorectal cancer. Colorectal Dis 2013; 15: 323-328 [PMID: 23958479 DOI: 10.1111/codi.12008]

20 Li MX, Liu XM, Zhang XF, Zhang JF, Wang WL, Zhu Y, Dong J, Cheng JW, Liu ZW, Ma L, Li Y. Prognostic role of neutrophil-to-lymphocyte ratio in colorectal cancer: a systematic review and meta-analysis. Int J Cancer 2014; 134: 2403-2413 [PMID: 24122750 DOI: 10.1002/ijc.28536]

21 Galizia G, Lieto E, Zamboli A, De Vita F, Castellano P, Romano C, Auricchio A, Cardella F, De Stefano L, Orditura M. Neutrophil to lymphocyte ratio is a strong predictor of tumor recurrence in early colon cancers: A propensity score-matched analysis. Surgery 2015; 158: 112-120 [PMID: 25818659 DOI: 10.1016/j.surg.2015.02.006]

22 Jess T, Rungoe C, Peyrin-Biroulet L. Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clin Gastroenterol Hepatol 2012; 10: 639-645 [PMID: 22289873 DOI: 10.1016/j.cgh.2012.01.010]

23 Pathak S, Nunes QM, Daniels IR, Smart NJ. Is C-reactive protein useful in prognostication for colorectal cancer? A systematic review. Colorectal Dis 2014; 16: 769-776 [PMID: 25039573 DOI: 10.1111/codi.12790]

24 Kersten C, Louhimies J, Algars A, Lahdesmaki A, Cevcenerova M, Stenstedt K, Haglund C, Gunnarsson U. Increased C-reactive protein implies a poorer stage-specific prognosis in colon cancer. Acta Oncol 2013; 52: 1691-1698 [PMID: 24102179 DOI: 10.3109/0284186x.2013.835494]

25 Guthrie GJ, Roxburgh CS, Farhan-Alanie OM, Horgan PG, McMillan DC. Comparison of the prognostic value of longitudinal measurements of systemic inflammation in patients undergoing curative resection of colorectal cancer. Br J Cancer 2013; 109: 24-28 [PMID: 23799846 DOI: 10.1038/jbc.2013.330]

26 Zou ZY, Liu HL, Ning N, Li SY, DU XH, Li R. Clinical significance of pre-operative neutrophil lymphocyte ratio and platelet lymphocyte ratio as prognostic factors for patients with colorectal cancer. Oncol Lett 2016; 11: 2241-2248 [PMID: 26998156 DOI: 10.3892/ol.2016.4216]

27 Malicetis G, Giaconetti M, Kennedy RH, Athanasiou T, Aziz O, Jenkins JT. The emerging role of neutrophil to lymphocyte ratio in determining colorectal cancer treatment outcomes: a systematic review and meta-analysis. Ann Surg Oncol 2014; 21: 3938-3946 [PMID: 24866638 DOI: 10.1245/s10434-014-3815-2]

28 Hung HY, Chen JS, Yeh CY, Changchien CR, Tang R, Hsieh PS, Tasi WS, You JF, You YT, Fan CW, Wang JY, Chiang JM. Effect of preoperative neutrophil-lymphocyte ratio on the surgical outcomes of stage II colon cancer patients who do not receive adjuvant chemotherapy. Int J Colorectal Dis 2011; 26: 1059-1065 [PMID: 21478566 DOI: 10.1007/s00384-011-1192-x]

29 Ding PR, An X, Zhang RX, Fang YJ, Li LR, Chen G, Wu XJ, Lu ZH, Lin JZ, Kong LH, Wan DS, Pan ZZ. Elevated preoperative neutrophil to lymphocyte ratio predicts risk of recurrence following curative resection for stage IIA colon cancer. Int J Colorectal Dis 2010; 25: 1427-1433 [PMID: 20821217 DOI: 10.1007/s00384-010-1052-0]

30 Absenger G, Szakdaria J, Stotz M, Postmayr U, Picler M, Ress AL, Schaberl-Moser R, Lobinher H, Samonigg H, Gerger A. Preoperative neutrophil-to-lymphocyte ratio predicts clinical outcome in patients with stage II and III colon cancer. Anticancer Res 2013; 33: 4591-4594 [PMID: 24123035]

31 Chang Z, Zheng J, Ma Y, Zhao J, Wang C, Liu Z. The neutrophil-to-lymphocyte ratio as a predictor for recurrence of colorectal liver metastases following radiofrequency ablation. Med Oncol 2014; 31: 855 [PMID: 24477649 DOI: 10.1007/s10058-014-1865-1]

32 He W, Yin C, Guo G, Jiang W, Fang Q, Hu H, Chen X, Yong R, Zhang B, Xia L. Initial neutrophil lymphocyte ratio is superior to platelet lymphocyte ratio as an adverse prognostic and predictive factor in metastatic colorectal cancer. Med Oncol 2013; 30: 439 [PMID: 23307251 DOI: 10.1007/s12032-012-0439-x]

33 Chua W, Charles KA, Baracov VE, Clarke SJ. Neutrophil lymphocyte ratio predicts chemotherapy outcomes in patients with advanced colorectal cancer. Br J Cancer 2011; 104: 1288-1295 [PMID: 21448173 DOI: 10.1038/bjc.2011.100]
Szkandera J, Pichler M, Absenger G, Stotz M, Armingers F, Weissmueller M, Schaberl-Moser R, Samonigg H, Kompats P, Stojakovic T, Avian A, Gerger A. The elevated preoperative platelet to lymphocyte ratio predicts decreased time to recurrence in colon cancer patients. Am J Surg 2014; 208: 210-214 [PMID: 24581872 DOI: 10.1016/j.amjsurg.2013.10.030]

Neofytou K, Smyth EC, Giakoustidis A, Khan AZ, Cunningham D, Mudan S. Elevated platelet to lymphocyte ratio predicts poor prognosis after hepatectomy for liver-only colorectal metastases, and it is superior to neutrophil to lymphocyte ratio as an adverse prognostic factor. Med Oncol 2014; 31: 239 [PMID: 25218270 DOI: 10.1007/s12032-014-0239-6]

P- Reviewer: Paunel-Gorgulu A S- Editor: Qi Y
L- Editor: A E- Editor: Wang CH
