Increasing resistance of chrysanthemum to white rust disease: the role of mutant genotypes and enzymes activities

D Kurniasih1, H K Murdaningsih2, D Ruswandi2, and W A Qosim2

1Indonesian Ornamental Crops Research Institute, Jl. Raya Ciherang, Segunung. Po. Box 8 SDL, Pacet, Cianjur, West Java, 43252, Indonesia
2Faculty of Agriculture, Padjadjaran University, Indonesia

Email: dekurniasih@yahoo.com

Abstract. Chrysanthemum is an ornamental crop with high economic value and consistently received high demand attributed to its amazing beautifulness. However, white rust disease has drastically suppressed the growth and production of chrysanthemum. The purpose of this study was to obtain genetic and phenotypic diversity characters of peroxidase (pod), polyphenol oxidase (ppo), phenylalanine ammonia lyase (pal) and their resistant component of enzymes activity. The experiment was conducted using a randomized block design. The treatments consisted of 37 mutants and 11 genotype chrysanthemum parents with two replications. Observations were made for pod, ppo and pal enzyme activities. Results showed pod, ppo, and pal enzyme activities had narrow genetic and phenotypic variabilities. Further, chrysanthemum mutant obtained enzyme activities is better than the best control, namely 18.30.068, 10.10.010, 1.30.038, 20.35.056, 18.20.112, 18.25.079, 9.35.162, 18.20.089 and 16.35.086 genotypes. Pod, ppo and pal enzymes activity are more resistant to higher than the susceptible genotype chrysanthemum white rust disease. The other finding is as revealed by negative correlation between disease intensity character and pod, ppo and pal enzymes activity, while disease incidence and the rate disease development characters did not correlate with the third enzymes activity characters.

1. Introduction
Chrysanthemum is one of the ornamental plants attracted many people. Chrysanthemum white rust is an important disease in many countries[1], and the major disease in chrysanthemum[9]. These diseases cause yield losses of 30% [25] to 80% [10], even in the northeast United States cause yield losses of up to 100% [12].

The use of resistant varieties is the most reliable, economical in the long term and does not require specific tools and expertise in application, so efficient to suppress and control the white rust disease on chrysanthemum[3]. This step aside can reduce the cost of production for the application of pesticides, also can reduce the risk of negative effects of using chemicals on the environment[21].

Mutation breeding method is one approach that can be taken to obtain new genotypes with different phenotypic appearance with the parent. According to Miller[19], mutation techniques can be done to increase genetic variability and obtain new cultivars in a shorter time. Therefore, the need search genetic and phenotypic variability of the characters which can be sued as a more effective and efficient toll for the selection of chrysanthemum.
Metabolic defense is one of the mechanisms of plant against pathogen attack. Metabolic defense formed in the cells and tissues of plants likewise producing toxic substances to pathogens or create conditions that inhibit the development of pathogens [1]. Li and Steffens [18] reported that, over expression of polyphenol oxidase occurs in transgenic tomato with a 10-fold increase, this increase led to increased resistance to bacterial disease. In addition, the ppo in the plant will increase when the plant is injured or infected [26].

Fang [6] reported that the content of the peroxidase (pod), polyphenol oxidase (ppo) and phenylalanine ammonia lyase (pal) enzyme activities on resistant chrysanthemum genotype white rust disease is higher than the susceptible genotype. These inform that the activities of the pal, ppo and pod enzymes activities increased during the attack of certain diseases and this increase was in line with the increase in plant resistance to attack the disease. Thus, there is a closed link between the pal, ppo and pod enzyme activities with an increase in plant resistance to certain diseases. Thus, the pod, ppo and pal enzyme activities are defensive enzymes in plants resistance, especially of chrysanthemum.

2. Materials and Methods
The genotypes used were 37 chrysanthemum mutant genotypes MV_{4} generation and 11 parents varieties as a control. The numbers used genotypes are presented in Table 1. The genotypes were planted and inoculated with of P. horiana spores fungus. The observations are pod, ppo and pal enzyme activities. Observations to obtain information of genetic and phenotypic variability third enzyme activities and to obtain information correlation between resistance component with these enzymes activity characters.

Table 1. The Genotypes Used in Research

No.	Genotypes	No.	Genotypes	No.	Genotypes	No.	Genotypes
1	16.25.105	13	9.25.322	25	9.10.132	37	18.20.112
2	20.20.043	14	10.0	26	20.35.056	38	18.25.079
3	15.25.067	15	7.0	27	9.25.051	39	9.35.162
4	10.10.010	16	20.10.025	28	21.10.046	40	9.25.075
5	18.15.033	17	18.15.021	29	5.15.045	41	1.15.017
6	9.0	18	13.0	30	13.15.002	42	15.0
7	20.0	19	1.25.087	31	18.0	43	7.10.096
8	13.25.004	20	20.25.067	32	5.0	44	1.0
9	18.30.068	21	15.15.172	33	20.35.022	45	18.20.089
10	1.30.038	22	21.0	34	20.30.061	46	20.15.113
11	1.25.163	23	15.20.176	35	16.0	47	1.25.072
12	1.35.084	24	18.10.082	36	21.20.061	48	16.35.086

The experiment was designed using a randomized block design consisting of 48 treatments with two replications. Absorbance values are calculated by subtracting the absorbance values obtained from the spectrophotometer with absorbance values of the reference solution. The average value of absorbance (ΔOD = b) of the observations obtained using the regression equation (Y = a + bx). The unit enzyme activity (UEA) is calculated with the following formula:

\[
\text{UEA} = \frac{b \times e \times p \times t}{F_d}
\]

where:
- \(b\) = average absorbance
- \(e\) = enzyme preparations (ml)
- \(p\) = total protein content
- \(t\) = time of observation (minute)
- \(F_d\) = dilution factor
Data was analysed using ANOVA with a linear model Gaspersz[8]. Genetic variability is obtained from the expected means square (EMS). Genetic variance (σ^2_g) and phenotypic variance (σ^2_f), were calculated using the following formulas:

$$\sigma^2_g = \frac{\text{MS}_{\text{treatment}} - \text{MS}_{\text{error treatment}}}{r}$$ \hfill (2)

$$\sigma^2_f = \sigma^2_g + \text{MS}_{\text{error treatment}}$$ \hfill (3)

Broad and narrow variability a character is determined by the deviation standard value of the genetic variance. The deviation standard value is the square root of the genetic variance (σ_g). If the genetic variance (σ^2_g) value is greater than twice the deviation standard (σ_g), then the character is broad variability[11]. Differences between genotypes were using the F test at 5% level. The Least Significant Increase (LSI) test is performed as advanced test if there are significant differences among treatments[22]. LSI test is defined as follows:

$$\text{LSI} = t_\alpha \left(\frac{2 \text{MS}_{\text{error treatment}}}{r} \right)^{\frac{1}{2}}$$ \hfill (4)

where :
- t_α = one direction t test value at 48 degrees of freedom with a confidence level of 5%.
- MS = mean square
- r = the number replication of treatment

Data process were done with Microsoft EXCEL. Observations were made on the total protein content, peroxidase, polyphenol oxidase and phenylalanine ammonia lyase enzymes activities characters.

3. Results and Discussion

3.1 Genetic and phenotypic variabilities enzymes activities characters

All populations were infected by inoculant of *P. horiana*. The results of variance analysis on peroxidase (pod), polyphenol oxidase (ppo) and phenylalanine ammonia lyase (pal) enzymes activities characters showed significant difference between treatments (Table 2) implying that chrysanthemum genotypes in term of enzyme activities and response to white rust disease are very diverse.

No.	Characters	F	CV	σ^2_g	σ_g	σ^2_f	σ_f	C_1	C_2
1.	Peroxidase	1422.051**	3.086	2.147-06	2.931-03	2.150-06	2.933-03	N	
2.	Polyphenol oxidase	199.273**	6.639	2.058-07	9.072-04	2.078-07	9.118-04	N	
3.	Phenylalanine ammonia lyase	34.858**	12.804	0.00041	0.04048	0.00043	0.042	N	

** Highly significant based on F test.

$F_{(0.05/0.01;48)} : 1.616 - 1.972$

σ_g = Deviation standard of the genetic variance

σ_f = Deviation standard of the phenotypic variance

C_1 = Criteria genetic variability

C_2 = Criteria phenotypic variability

CV = Coefficient of variation
The large genetic variability criteria, when the genetic variability value is greater than 2 times genetic deviation standard (σ_g).
The large phenotypic variability criteria, when the phenotypic variability value is greater than 2 times phenotypic deviation standard (σ_p).

Genetic and phenotypic variabilities criteria of pod, ppo and pal enzyme activities are low. The narrow variability indicates that chrysanthemum genotypes had the same phenotypic performance relatively. Selection of the pod, ppo and pal enzymes activity characters has a small chance to obtain chrysanthemum genotypes resistant, so the selection of resistant genotype to white rust disease through the third characters is not easy to do. The genetic background of parent and irradiation treatment to chrysanthemum genotypes are assumed not to give a real effect to change that characters, to be the cause of narrow genetic variability.

3.2 Enzymes activity characters of 37 chrysanthemum mutant genotypes performances.

Peroxidase enzyme activity of chrysanthemum mutant genotypes tended to be higher than the parent (control), although the differences were relatively small. Least Significance Increase (LSI) test was performed to compare the best mean value of chrysanthemum mutant genotypes and control. LSI test results are presented in Table 3.

Relatively high peroxidase enzyme activities was shown by genotypes 18.30.068 (0.0077), 9.35.162 (0.0052) and genotypes 1.35.084 (0.0059). However, LSI test showed that genotypes mutants have a better performance than the best control (7.0) with the value of enzyme activity above 0.0022 UEA (units enzyme activity). These genotypes are 16.25.105, 10.10.010, 18.30.068, 1.30.038, 1.35.084, 9.25.322, 15.20.176, 18.10.082, 20.35.056, 18.20.112, 18.25.079, 9.35.162, 7.10.096, 18.20.089 and 16.35.086.

Genotype 18.30.068 has immune criteria status, whereas genotype 9.35.162 and 1.35.084 had susceptible criteria status. This suggests that the chrysanthemum mutant genotypes are more resistant and have a greater ability to increase peroxidase enzymes activities. This was in line with the results of Fang [6] reported that chrysanthemum resistant genotypes has higher peroxidase activity than the susceptible chrysanthemum to white rust disease. Similar results were also reported by Pudjihartati on peanut plant [23].

Buonario and Montalbini [4], argues that peroxidase enzyme plays a role in the process that occurs in the extracellular matrix, which is a process associated with the formation of the cell wall. Lignifikasi induction of cell walls in infected tissue fungus is one of the structural defense systems of plants [13]. Lignin content increased can inhibit penetration and invasion of pathogens physically block the spread of toxins and enzymes released by pathogens, as well as restricting the nutrients supply needed pathogens [27].

Peroxidase enzyme is plays a role of catalyzing oxidation reaction phenolic compound become a quinone compound to produce H$_2$O$_2$ which is toxic to the pathogen [5]. Furthermore Lebeda [16] reported that peroxidase enzyme plays a role in the phenolic compounds synthesis and intermolecular bonds form in the cell walls infected of pathogens. Then, peroxidase enzyme will form ROS (reactive oxygen species) and converts it into lignin which serves to resist pathogenic spore infections [6]. Thus, peroxidase enzyme activity has a function as anti fungus and one of the enzymes that play a role in plant defense against disease system [24].

The various activities polyphenol oxidase enzyme in the chrysannemum genotypes showed different genotypes response to treatment white rust disease spores inoculation and the various of genotypes resistance level to white rust disease. The polyphenol oxidase activities in the chrysanthemum mutant genotypes showed higher than the parents, and chrysanthemum mutant genotypes have white rust disease intensity lower than the parent. This condition in line with Li and Steffens [18] reports that, over expression of polyphenol oxidase in transgenic tomato with increased 10 times and increased expression of these enzymes lead to increased resistance to bacterial disease.
Table 3. Least Significance Increase (LSI) Enzyme Activities.

No.	Genotypes	Peroxidase (UEA)	Polyphenol Oxidase (UEA)	Phenylalanin Ammonia Lyase (UEA)
1.	16.25.105	0.0024 +	0.0008 +	0.0427
2.	20.20.043	0.0011	0.0005	0.0273
3.	15.25.067	0.0009	0.0004	0.0266
4.	10.10.010	0.0026 +	0.0009 +	0.0515 +
5.	18.15.033	0.0014	0.0005	0.0327
6.	13.25.004	0.0022	0.0007	0.0405
7.	18.30.068	0.0077 +	0.0026 +	0.1178 +
8.	1.30.038	0.0024 +	0.0009 +	0.0499 +
9.	1.25.163	0.0017	0.0006	0.0382
10.	1.35.084	0.0059 +	0.0020 +	0.1036
11.	9.25.322	0.0026 +	0.0009 +	0.0536 +
12.	20.10.025	0.0008	0.0004	0.0266
13.	18.15.021	0.0012	0.0005	0.0306
14.	1.25.087	0.0013	0.0005	0.0311
15.	20.25.067	0.0012	0.0005	0.0310
16.	15.15.172	0.0007	0.0004	0.0254
17.	15.20.176	0.0023 +	0.0008 +	0.0414
18.	18.10.082	0.0009 +	0.0005	0.0269
19.	9.10.132	0.0005	0.0003	0.0193
20.	20.35.056	0.0034 +	0.0013 +	0.0671 +
21.	9.25.051	0.0015	0.0006	0.0329
22.	21.10.046	0.0006	0.0004	0.0217
23.	5.15.045	0.0012	0.0005	0.0276
24.	13.15.002	0.0008	0.0004	0.0257
25.	20.35.022	0.0021	0.0006	0.0401
26.	20.30.061	0.0016	0.0006	0.0356
27.	21.20.061	0.0016	0.0006	0.0357
28.	18.20.112	0.0027 +	0.0012 +	0.0569 +
29.	18.25.079	0.0031 +	0.0012 +	0.0636 +
30.	9.35.162	0.0052 +	0.0015 +	0.0675 +
31.	9.25.075	0.0014	0.0005	0.0312
32.	1.15.017	0.0012	0.0005	0.0307
33.	7.10.096	0.0023 +	0.0007	0.0408
34.	18.20.089	0.0026 +	0.0012 +	0.0545 +
35.	20.15.113	0.0006	0.0004	0.0215
36.	1.25.072	0.0016	0.0006	0.0371
37.	16.35.086	0.0032 +	0.0012 +	0.0643 +
38.	9.0	0.0007	0.0004	0.0252
39.	20.0	0.0007	0.0004	0.0230
40.	10.0	0.0016	0.0006	0.0359
41.	7.0	0.0021	0.0006	0.0390
42.	13.0	0.0003	0.0002	0.0152
43.	21.0	0.0002	0.0002	0.0140
44.	18.0	0.0007	0.0004	0.0225
45.	5.0	0.0005	0.0003	0.0214
46.	16.0	0.0017	0.0006	0.0386
47.	15.0	0.0004	0.0003	0.0191
48.	1.0	0.0003	0.0003	0.0188

	LSI	Comparison + LSI
(U)	0.0001	0.0001
Phenylalanin Ammonia Lyase (UEA)	0.0100	0.0490

Values in the same column followed by the symbol + indicate higher than the best control (P > 0.05) based on Least Significance Increase (LSI) test.
LSI test of polyphenol oxidase enzyme activities character indicates that there are 11 mutant genotypes has a better performance than the best control (16.0) with a value of enzyme activity higher than 0.0007 UEA (units enzyme activity). The genotypes are 16.25.105, 10.10.010, 18.30.068, 1.30.038, 15.20.176, 20.35.056, 18.20.112, 18.25.079, 9.35.162, 18.20.089, and 16.35.086. Fang [6] reported that polyphenol oxidase enzyme activity increased. Catalyzing will increase quinones compounds formation. These compounds play a role in limiting the multiplication and spread of pathogens. Do [5] and Fang [6], report the peroxidase and polyphenol oxidase enzymes were quinones compounds catalyzing. This reinforces the opinion Krzywanski and Kozłowska [15] which found, increased polyphenol oxidase activity is closely related to increased phenolic acids and peroxidase activity. Thus, the pod and ppo activity was allegedly involved in plant defense reactions together.

Peroxiadase and polyphenol oxidase enzymes activities in plants can increase plant resistance to disease. Increased resistance occurs when crops suffer from injury and infection. This is due to the phenols oxidation in phytoalexin biosynthesis or other toxic compounds derived from pathogens [15]. Therefore, after pathogens infection in the plant tissue, then there will be an increase in enzyme activity and increased endurance.

The chrysanthemum genotypes has phenylalanine ammonia lyase activities were diverse. That difference shows that each genotype had different responses to the biotic stress. Biotic stress in question is P. horiana fungus spores inoculation treatment of conducted 14 to 20 days before phenylalanine ammonia lyase enzyme activity measurement.

LSI test of phenylalanine ammonia lyase enzyme activity character showed that, 10 mutants genotypes has phenylalanine ammonia lyase enzyme activity value higher than the best control (7.0) with activity above 0.0490 UEA. The genotypes are 10.10.010, 18.30.068, 1.30.038, 20.35.056, 18.20.112, 18.25.079, 9.35.162, 18.20.089, and 16.35.086.

The phenylalanine ammonia lyase enzyme activity obtained from 18.30.68 genotype is the highest activity (0.1178). Be reviewed from the disease intensity 18.30.68 genotype has has 0% disease intensity value, meaning that this genotype is not white rust disease against. This shows that perhaps phenylalanine ammonia lyase is one of the factors that play a role in the plant's defense system against white rust disease.

Fang [6] reported that phenylalanine ammonia lyase enzyme is a key enzyme in lignin synthesis. Pal activity will increase the lignin produced plants. thus preventing nutrients absorption pathogen mycelia in leaf tissue. In addition, this enzyme acts as a catalyst in the early stages phenylpropanoid pathway that produces trans cinnamic acid derivatives and phenylalanine form [7]. Phenylpropanoid compounds are precursors in the formation penolik compounds such as flavonoids, isoflavonoids, anthocyanin. hormones phytoalexin and lignin [17].

Based on above description, Peroxidase, polyphenol oxidase, and phenylalanine ammonia lyase enzyme activities of in the more resistant genotypes will be higher than the susceptible genotypes. This was in line with Fang[6] reported that resistant chrysanthemum genotypes have peroxidase activity higher than the white rust disease susceptible chrysanthemum.

3.3 Correlation between resistance component and enzyme activities characters

Peroxidase, polyphenol oxidase and phenylalanine ammonia lyase enzyme activities highly significant negative correlation with white rust disease intensity (Table 4). This means that the higher the third enzymes activities, then disease intensity in mutant genotypes the lower and mutants genotypes increasingly resistant.

The results of this study are consistent with the Harrison [14] reported that peroxidase enzyme activity correlates with disease severity and red pepper virus concentration. Thus, the character peroxidase, polyphenol oxidase and phenylalanine ammonia lyase enzyme activity of chrysanthemum mutant genotypes can be used as the basis for selection to obtain varieties chrysanthemum resistant white rust disease. In addition, the selection white rust disease resistance character can be done at the beginning of the growth phase, so that the selection can be done faster and more efficiently.
The rate of disease development did not correlate with the third enzymes activities. This was in line with the opinion of Vanitha [26] that polyphenol oxidase activity in the plant will increase when the plant is injured or infected by the pathogen. Furthermore Ngadze [20] reported that peroxidase, polyphenols oxidase and phenylalanine ammonia lyase activities increased significantly in potato tubers were wounded and inoculated. Then, on a different potato varieties, high polyphenol oxidase activity indicated in the potato varieties that have high activity of phenylalanine ammonia lyase [20]. Then, phenylalanine ammonia lyase activity on all varieties of potatoes has increased significantly eight hours after cutting the tubers and after inoculation to P. carotovorum subsp. brasiensis. Phenylalanine ammonia lyase enzyme activity was higher in potato clones that are resistant to Phytophthora infection palmivora.

The rate of disease development disease characters did not correlate with peroxidase, polyphenol oxidase and phenylalanine ammonia lyase enzymes activities. This is due to chrysanthemum mutant genotypes showed enzyme activity increased after the disease incidence, hence infection rate can be reduced or even stopped. This situation causes no relationship between the rate of disease development with the third enzymes activities.

Based on description aboveshowed genetic and phenotypic variabilities are narrow for third enzymes activities. Then, enzyme activities of chrysanthemum mutant genotype is better than the best control. Namely 18.30.068, 10.10.010, 1.30.038, 20.35.056, 18.20.112, 18.25.079, 9.35.162, 18.20.089 and 16.35.086. Peroxidase, polyphenol oxidase and phenylalanine ammonia lyase enzymes activities in the more resistant genotypes was higher than the susceptible genotype. Very real negative correlation between disease intensity with peroxidase enzyme, polyphenol oxidase and phenylalanine ammonia lyase enzymes activities, while disease incidence and rate of disease development characters did not correlate with the third enzymes activities.

4. Conclusions

Peroxidase, polyphenol oxidase and phenylalanine ammonia lyase enzyme activities in chrysanthemum genotypes mutant had narrow genetic and phenotypic variabilities. Chrysanthemum genotypes mutant obtained enzyme activity is better than the best control. Namely 18.30.068, 10.10.010, 1.30.038, 20.35.056, 18.20.112, 18.25.079, 9.35.162, 18.20.089 and 16.35.086 genotypes. Peroxidase, polyphenol oxidase and phenylalanine ammonia lyase enzymes activities in chrysanthemum genotypes mutant resistant to white rust disease higher than the susceptible genotype chrysanthemum. Very real negative correlation between disease intensity with peroxidase, polyphenol oxidase and phenylalanine ammonia lyase enzymes activities, while disease incidence and the rate disease development did not correlate with the third enzymes activities.

No.	Characters	Disease intensity	Disease incidence	The rate of disease development
1.	Disease intensity	1		
2.	Disease incidence	-0.1651ns	1	
3.	The rate of disease development	0.0805ns	0.6886**	1
4.	Peroxidase	-0.9374**	0.1212ns	-0.1622ns
5.	Polyphenol Oxidase	-0.9290**	0.1428ns	0.1296ns
6.	Phenylalanine Ammonia Lyase	-0.9287**	0.1742ns	0.1125ns

** highly significant
ns nonsignificant

Table 4. Correlation between resistance component with enzyme activities characters.

Disease incidence characters are not correlated with peroxidase, polyphenol oxidase and phenylalanine ammonia lyase enzymes activities characters. This happens because in the event of disease incidence. The third enzymes activities are still low, then shortly after the attacks of white rust disease the third enzymes activities will increase. This was in line with the opinion of Vanitha [26] that polyphenol oxidase activity in the plant will increase when the plant is injured or infected by the pathogen. Furthermore Ngadze [20] reported that peroxidase, polyphenols oxidase and phenylalanine ammonia lyase activities increased significantly in potato tubers were wounded and inoculated. Then, on a different potato varieties, high polyphenol oxidase activity indicated in the potato varieties that have high activity of phenylalanine ammonia lyase [20]. Then, phenylalanine ammonia lyase activity on all varieties of potatoes has increased significantly eight hours after cutting the tubers and after inoculation to P. carotovorum subsp. brasiensis. Phenylalanine ammonia lyase enzyme activity was higher in potato clones that are resistant to Phytophthora infection palmivora.

The rate of disease development disease characters did not correlate with peroxidase, polyphenol oxidase and phenylalanine ammonia lyase enzymes activities. This is due to chrysanthemum mutant genotypes showed enzyme activity increased after the disease incidence, hence infection rate can be reduced or even stopped. This situation causes no relationship between the rate of disease development with the third enzymes activities.
5. References

[1] Agrios NG 2005 *Plant Pathology*. Fifth edition (United States of America: . Departemen of Plant Pathology University of Florida)

[2] Alaei H, Höfte ,Maes M and Heungens K 2007 Molecular detection of *Puccinia horiana* Henn. the causal agent of chrysanthemum white rust *Agric. Appl. Biol. Sci.* **72**(4) 739

[3] Budiarto K, Rahardjo I B dan Suhadi 2008 Seleksi ketahanan klon-klon harapan krisan terhadap penyakit karat *J. Hort* **18**(3) 249

[4] BuonarioR and Montalbini P 1993 Peroxidase. superoxide dismutase and catalase activities in tobacco plants protected against *Erysiphe cichoracearum* by a necrotic strain of potato virus Y. - Riv. Pat. Veg. S. V. **3** 23

[5] Do M 2003 Expression of peroxidase-like genes, H2O2 production, and peroxidase activity during the hypersensitive response to *Xanthomonas campestris pv. vesicatoria* in *Capsicum annuum* *Mol Plant-Microb Interac* **16** 196

[6] Fang Z P, La Z N and Xi D Y 2011 Study of defense enzymes activities on cultivation chrysanthemum infected by chrysanthemum white rust *Northern Horticulture* **96** 77 (in Chinese).

[7] Goujon T, Ferret V, Mila I, Pollet B, Ruel K, B Burlat V, Joseleau J P, Barriere Y, Lapierre C and Jouanin L 2003 Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects on phenotype. lignins and cell wall degradability *Planta* **217** 218

[8] Gaspersz V 1991 Teknik analisis dalam penelitian percobaan (Bandung: Tarsito)

[9] Gollnow B 2003 *Chrysanthemum white rust*. Agnote DPI42. 2nd edition. www.agric.nsw.gov.au/publications.

[10] Gore M E 2007 *White rust outbreak on chrysanthemum caused by Puccinia horiana* in *Turkey.* New Diseases Report. http://www.bspp.org.uk/ndr/jan2008/2007-81.asp.

[11] Hallauer A R and Miranda B J 1988 Quantitative Genetic in Maize Breeding. 4thEds. (Iowa: State Univ. Press/Ames)

[12] Hanudin, Kardin K dan Suhardi 2004 Evaluasi ketahanan klon-klon krisan terhadap penyakit karat putih *J. Hort*. **14** (edisi Khusus) 430

[13] He C Y, Hsiang T and Wolyn D J 2002 Induction of systemic disease resistance and pathogen defence responses in *Asparagus officinalis* inoculated with nonpathogenic strains of *Fusarium oxysporum* *Plant Pathol* **51** 225

[14] Herrison C, Rustikawati dan Sudarsono 2007 Aktivitas peroksidase. skor ELISA dan respon ketahanan 29 genotipe cabai merah terhadap infeksi Cucumber mozaic virus (CMV) *Akta Agrosia* **10**(1) 1

[15] Krzywinski CM and Kozlowska Z 1984 Phenolic compounds and the polyphenoloxidase and peroxidase activity in callus tissue culture pathogen combination of red raspberry and *Didymella applanata* (Niessl.) Sacc. *Phytopath. Z.* **109** 176

[16] Labeled AD, Jancova and Luhova L 1999 Enzymes in fungal plant pathogenesis. ©Verlag Ferdinand Berger & Söhne Ges.m.b.H.. Horn. Austria. download under www.biologiezentrum.at.

[17] La Camera S, Gouzergh G, Dhondt S, Hoffmann L, Fritis B, Legrand M and Heitz T 2004 Metabolic reprogramming in plant innate immunity: the contribution of phenylpropanoid and oxylipin pathways *Immunological Review* **198** 267

[18] Li L and Steffens J C 2002 Over expression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance *Planta* **215** 239

[19] Miler N 2005 Why is mutation breeding still attractive for breeding of chrysanthemum? *Biotechnologia* **69** 196

[20] Ngadze E, Icishahayo D, Coutinho T A and Waals V D 2010 *The role of polyphenol oxidase.peroxidase. phenylalanine ammonia lyase chlorogenic acid and total soluble phenols in the resistance of potatoes to soft rot* *Plant Disease* **96** 2
[21] Nuryani W, Badriah D S, Sutater T, Silvia E dan Muhidin 2005 Seleksi ketahanan klon-klon gladiol terhadap Fusarium oxysporum f. sp. Gladioli J. Hort. 5(1) 37
[22] Peterson R A 1994 A meta-analysis of Cronbach’s coefficient alpha. Journal of Consumer Research 21 381
[23] Pudjihartati E, Ilyas S dan Sudarsono 2006 Aktivitas pembentukan secara cepat spesies oksigen aktif, peroksidase dan kandungan lignin kacang tanah terinfeksi sclerotium rolfsii Hayati 13(4) 166
[24] Saikia R, Kumar R, Arora D K, Gogoi D K and Azad P 2006 Pseudomonas aeruginosa inducing rice resistance against Rhizoctonia solani folia: Production of salicylic acid and peroxidase Microbiol 51(5) 375
[25] Suhardi 2009 Sumber inokulum. respon varietas dan efektivitas fungisida terhadap penyakit karat putih pada tanaman krisan J. Hort. 19(2) 207
[26] Vanitha S C, Niranjana S R and Umesha S 2009 Role of phenylalanine ammonia lyase and polyphenol oxidase in host resistance to bacterial wilt of tomato. J. Phytopathol 157 552
[27] Vance C P, Kirk T K and Sherwood R T 1980 Lignication as a mechanism of disease resistance Annu. Rev. Phytopathol 18 259

Acknowledgments
The author appreciates to the Indonesian Agency for Agricultural Research and Development, Indonesian Center for Horticulture Research and Development, Indonesian Ornamental Crops Research Institute, and Padjadjaran University which has provided opportunity to carry out and finance research. The author thanks Dr. Lia Sanjaya and for all who have helped carry out this research.