Fuzzy Time Series for Forecasting Railway Passengers in Indonesia

Muhammad Fatih Rizqon¹ and Handaru Jati²
¹,² Department of Electronics and Informatics Engineering Education, Postgraduate Program, Yogyakarta State University, Indonesia

Email: ¹fatihrizqon@student.uny.ac.id

Abstract. Some fuzzy time series models have their own advantages and disadvantages. In addition, these models sometimes are complex and claimed to have better forecasting result than each other. The suitable model for forecasting depends on a wide variety of considerations. The models proposed by Chen (1996) applied simplified arithmetic operations and claimed more efficiency than before. The model proposed by Chen was introduced in 1996 and still exists in several previous studies. This research aims to forecast the number of railway passengers in Indonesia using the fuzzy time series. In addition, this research also evaluates the forecasting results based on mean absolute error (MAE) and mean absolute percentage error (MAPE). The results showed the forecasting results in this research has accuracy for 86.6%.

1. Introduction
Public transportation is one of the favors to support mobility across cities, provinces, and islands in Indonesia. The railway is one of the most preferred public transportation in Indonesia which is currently managed and operated by the Indonesian Railway Company (PT. Kereta Api Indonesia). According to the data in [1] shows the railway passengers in Indonesia has increased every year from 2006 to 2019. The highest passengers occurred in July 2019 which has reached 39035 passengers. The increase of passengers is correlated with the quality of services provided by the Company. Based on a survey in 2018, Indonesian Railway Company gained the highest Customer Satisfaction Index (CSI) score of 4.08 followed by aircraft with a score of 4.05, shuttle by 3.54, and bus with CSI score of 3.52 [2]. Indonesian Railway Company offers various class services such as sleeper class, priority class, executive class, business class, and economy class to support passenger’s mobility.

However, in April 2020 the railway passengers have significantly decreased to 5898 due to COVID-19 Pandemic. The number of passengers in May 2020 decreased by 5484 and became the lowest in the last decade. Therefore, in terms of business it is important to analyze the movement of historical data to determine what to do in the future. In this case, it is possible to determine the departure schedule by considering the supply and demand to operate Railway at a certain time by using forecasting method. There are various forecasting methods that can be used such as CNN Backpropagation, Regression, Moving Average, Fuzzy Time Series, etc.

This research aims to forecast the dataset of railway passengers by using fuzzy time series proposed by Chen (1996) [3]. Fuzzy time series is one of the forecasting methods which firstly introduced by Song & Chissom in 1993 [4]. There is various development of fuzzy time series models that are used to forecast a set of historical data. However, some of these models have their own advantages and disadvantages. In addition, these models sometimes are complex and claimed to have better forecasting
results than each other. The suitable models in forecasting depends on a wide variety of considerations [5]. Chen found in the proposed model by Song & Chissom used complicated procedures [3]. Therefore, Chen applied simplified arithmetic operations and claimed more efficiency than before. The model proposed by Chen was introduced in 1996 with many developments afterward. This model still exists in several previous studies in [6]–[8]. Based on the comparison forecasting model results in [6] showed that the model proposed by Chen has better results than the model proposed in [9]. In addition, this research also evaluates the forecasting results based on the mean absolute error (MAE) and mean absolute percentage error (MAPE) which commonly used to evaluate forecasting results based on related studies [10], [11].

2. Literature Review

2.1. Fuzzy Time Series
Song & Chissom was introduced fuzzy time series by using the concept of fuzzy sets in [12] as the basis for calculations where the value of historical data are represented by fuzzy sets [4]. Fuzzy sets theory proposed by [12] has good achievement both in theory and practice that allow to make decisions, plans, smart systems, artificial intelligence, etc. Song & Chissom explained their basic forecasting procedure are used the historical data patterns and form it to the next data (forecasting value). Fuzzy time series has 4 characteristics: (1) fuzzy time series is a dynamic process; (2) fuzzy sets as the object; (3) the universe of discourse (U) for the fuzzy sets are subsets of R; and (4) fuzzy time series doesn’t require conventional time series method [4]. Let the universe of discourse (U), U = {u₁, u₂, ..., un}, then a fuzzy set A of U are determined as follow:

\[A = f_A (u_1)/u_1 + f_A (u_2)/u_2 + \ldots + f_A (u_n)/u_n \]

where \(f_A \) is the membership function of A, then \(f_A : U \rightarrow [0, 1] \). Membership function is a curve that defines the mapping of input/output points into their membership between 0 and 1. Song & Chissom applied the model of \(A_i = A_{i-1} \circ R \) to forecast the enrollment of students in University of Alabama, where \(A_{i-1} \) is the enrollment of the year \(i - 1 \) terms of a fuzzy set, and the systematic procedures proposed by Song & Chissom show as follows:

- Step 1: Defining the U (universe of discourse) for the fuzzy sets are subsets of R
- Step 2: Collecting the historical linguistic values
- Step 3: Defining the fuzzy sets (fuzzification)
- Step 4: Set up the fuzzy logic relationship (FLR)
- Step 5: Summarizing the FLR
- Step 6: Applying the value of the data to the model and determine the output for the forecasted value
- Step 7: Defuzzification

Chen found in [4] required a large number of calculations to obtain the fuzzy relationship. Chen proposed a new model by using simpler arithmetic operations rather than the complicated max-min composition operations presented in [4]. There are two definitions of fuzzy time series that proposed in [3]. The first definition, let \(Y(t) (t = \ldots, 0, 1, 2, \ldots) \) is a subset of \(R \) (real numbers) be the universe of discourse (U) on fuzzy sets \(f_i(t) (i = 1, 2, \ldots) \). The input sometimes referred from the universe of discourse (U). Then \(F(t) \) is called a fuzzy time series on \(Y(t) \) (t = \(\ldots, 0, 1, 2, \ldots \)). \(F(t) \) represented as linguistic variable, and \((i = 1, 2, \ldots) \) as possible linguistic value of \(F(t) \), where \(f_i(t) (i = 1, 2, \ldots) \) regarded as fuzzy sets. The values of \(F(t) \) sometimes can be different at certain times due to the fact that the universe of discourse can be different at certain times. When \(F(t) \) only caused by \(F(t - 1) \) then this relationship represented as \(F(t - 1) \rightarrow F(t) \), where \(F(t - 1) \) can be viewed as past time. The second definition, let \(F(t) \) is a fuzzy time series and if \(F(t - 1) \) and \(F(t) \) has unlimited elements, then \(F(t) \) is called a time-variant fuzzy time series. Otherwise, if \(F(t - 1) \) and \(F(t) \) has limited elements it called a time-invariant fuzzy time series.
2.2. Measuring the Forecasting Results

2.2.1. Mean Absolute Error (MAE). MAE is one of the common methods to evaluate model performance because it’s summing the total of absolute error and dividing it by the total of records \(n \) [13]. MAE would be good if the result is closer to 0 and it depends on the size of data. MAE can be obtained by using the following equation:

\[
MAE = \frac{\sum_{i=1}^{n} |A_t - F_t|}{n}
\]

(2)

2.2.2. Mean Absolute Percentage Error (MAPE). MAPE is one of options for measuring the error of forecasting results. MAPE is easy to understand because it represents the error in percentage [14]. Lewis’s (1982) interpreted MAPE if the value under 10\% regarded as “highly accurate”; 11\% - 20\% regarded as “a good forecast”; 21\% - 50\% is “acceptable”; and >51\% is an “inaccurate forecast” [15]. MAPE can be obtained through this equation:

\[
MAPE = \frac{100}{n} \sum_{t=1}^{n} \left| \frac{A_t - F_t}{A_t} \right|
\]

(3)

3. Methods

This research applied the proposed models in [3] to avoid the max-min composition operations, because it would be complicated when the fuzzy relation \(R \) is very big as used in [4].

3.1. Determining the Universe of Discourse

The operations started by determining the maximum of data as \(D_{\text{max}} \) and the minimum of the data as \(D_{\text{min}} \). The universe of discourse \((U) \) can be obtained by using the following equation:

\[
U = [D_{\text{min}} - D_1; D_{\text{max}} + D_2]
\]

(4)

where the \(D_1 \) and \(D_2 \) are independent positive numbers. Furthermore, the operation of the forecasting process is as follows:

3.2. Forming Intervals

The forming of intervals is to divide the set of the \(U \) that has been obtained previously into several intervals with the same distance. In determining the intervals of \(U \), the number and length of intervals should be determined first by using the following equation:

\[
\text{Intervals} = 1 + 3.3 \times \log_{10}(n)
\]

(5)

where \(n \) is the amount of the dataset. The length of intervals can be obtained by using this equation:

\[
\text{Length of Intervals} = \frac{D_{\text{max}} - D_{\text{min}}}{\text{Intervals}}
\]

(6)

3.3. Fuzzification and Forming Fuzzy Logic Relationship (FLR)

Fuzzification is a process to convert the input from crisp to fuzzy value (linguistic variable) which presented as fuzzy sets with a respective membership function. The fuzzification is carried out based on the determined intervals, from the initial data then grouped according to the number of formed intervals. FLR indicates the association between the fuzzy time series and the composing operator. FLR is a fuzzy logic that has a relationship with a series of data members that have been assigned from the historical data to the forecasted data.
3.4. Fuzzy Logic Relationship Group (FLRG)

FLRG is formed by dividing all the derived FLRs into several groups based on the current states of the enrollments of FLR.

3.5. Defuzzification and Forecasting

The Defuzzification process is used to determine the forecasting value based on the results of FLRG by using 3 rules as follows:

Rules 1: If there is only one logical relation of fuzzy in a series of fuzzy logic relationship, for example $A_1 \rightarrow A_j$, then the forecasting value defined as $F(t) = A_j$.

Rules 2: If there is more than one relationship in a series of fuzzy logic relationship, for example $A_i \rightarrow A_{j1}, A_{j2}, \ldots, A_{jn}$, then the forecasting value should be the average of the midpoint from $A_{j1}, A_{j2}, \ldots, A_{jn}$ or defined as $F(t) = A_{j1}, A_{j2}, \ldots, A_{jn}$.

Rules 3: If there is no relation on A_i there is nothing like ($A_i \rightarrow \#$), then the forecasting value defined as $F(t) = A_i$.

4. Results

4.1. Determining the Universe of Discourse

The training data in this research are monthly train passenger from January 2006 to July 2021 that available in [1]. The minimum and maximum data (5484 and 39035) are used to determine the U by using equation (4). The values of $D_1 = 4$, and $D_2 = 5$ are obtained arbitrarily to get the appropriate results of the D_{min} and D_{max}. Therefore, the universe of discourse in this research defined as $U = [5480; 39040]$.

Table 1. Railway Passengers in Indonesia January 2006 – July 2021

January	February	March	April	May	June	July	August	September	October	November	December	
2006	11828	11931	13314	12909	13575	13203	14433	13255	13436	14290	13631	13614
2007	13960	10969	13409	14415	15232	15104	16454	15419	15033	15866	14391	15084
2008	15027	14378	16071	15711	16363	17010	17887	17108	15879	17337	15973	15332
2009	14494	13869	17112	16775	17824	18143	18385	17527	17281	17281	16778	17581
2010	17424	15207	16992	16832	16988	17259	17680	16477	17301	16908	16469	17733
2011	16891	14890	16978	16441	17522	17265	18132	14846	16921	16461	16179	16811
2012	16283	15490	17090	16746	17771	18062	18309	17056	16368	17127	15773	16104
2013	14900	14594	15826	16000	16113	17301	20245	19423	19738	20534	19919	21417
2014	21092	19998	22036	21908	22988	23440	22500	23199	23593	24933	24356	26275
2015	24676	22790	27267	26565	27910	27562	27612	27796	27549	28718	27669	29831
2016	28358	26510	28617	28435	30703	29159	28831	29588	29516	30263	29690	32150
2017	30949	27342	32170	31502	33745	30723	34310	33791	32498	35070	34361	36807
2018	34717	31278	35875	35754	35482	33030	36800	35190	34504	36236	35298	37965
2019	35122	31899	35751	35809	35102	35090	39035	35189	35221	36448	35877	37463
2020	34730	32383	32425	58980	5484	9290	12238	12774	11429	11937	13722	13515
2021	11901	11479	14284	14864	14857	14556	5747	-	-	-	-	-

4.2. Forming the Interval

Forming the interval data started by determining the number of intervals by using equation (5) and the length of interval by using equation (6). The determined number of intervals are 8 with the length of the interval is 4195. The result of the formed interval are shown in Table 2.

Table 2. Formed Interval Data

Interval	Bottom	Median	Top
A0	5484	7582	9679
A1	9679	11777	13874
A2	13874	15972	18069
A3	18069	20167	22264
A4	22264	24362	26459
A5	26459	28557	30654
A6	30654	32752	34849
A7	34849	36947	39044
4.3. Fuzzification and Forming the Fuzzy Logic Relationship (FLR)

The fuzzification process was carried out referred on the intervals that have been determined from the initial data, then grouped according to Table 2. The formed Fuzzification and their relationships are shown in Table 3.

No.	Data	Fuzzification	FLR
1	11828	A1	-
2	11931	A1	A1 → A1
3	13314	A1	A1 → A1
4	12909	A1	A1 → A1
5	13575	A1	A1 → A1
6	13203	A1	A1 → A1
...
180	13515	A1	A1 → A1
181	11901	A1	A1 → A1
182	11479	A1	A1 → A1
183	14284	A2	A1 → A2
184	14864	A2	A2 → A2
185	14857	A2	A2 → A2
186	14556	A2	A2 → A2
187	5747	A0	A2 → A0

Table 3 shows the first data is 11828 which is fuzzified as A1 and the last data is 5747 which is fuzzified as A0 which is in accordance with the formed intervals in Table 2. The FLR are formed based on previous fuzzification, for example in the first data fuzzified as A1, and then for the second data was also fuzzified as A1. Therefore, the first formed FLR is A1 → A1 as well as next.

4.4. Fuzzy Logic Relationship Group (FLRG)

Table 2 contains 8 intervals from A0 to A7 with the distance of interval by 4195. In addition, Table 3 presents the fuzzification results and established relationship between each data. All established relationship then grouped as in Table 4.

Group	Fuzzification	FLRG
1	A0 →	A0, A1
2	A1	A1, A2
3	A2	A0, A1, A2, A3
4	A3	A2, A3, A4
5	A4	A0, A3, A4, A5
6	A5	A5, A6
7	A6	A4, A5, A6, A7
8	A7	A6, A7

Table 4. The Fuzzy Logic Relationship Group (FLRG)

4.5. Defuzzification and Forecasting

The next step is the defuzzification and determine the forecasting value based on the rules that presented in section 3.5. The defuzzification and forecasting results are shown in Table 5. The forecasting value are obtained from the average of median (midpoint) from the grouped FLR. For example, the A0 → A0, A1 where the midpoint of A0 is 7582, and the midpoint of A1 is 11777 (See Table 2). Therefore, the forecasting results obtained from the group of A0 is 9679.
6

4.6. Forecasting Results

In summary, the forecasting results collectively are shown in Table 6.

Table 6. Forecasting Results

No.	Date	Data	Fuzzification	FLRG	Forecasting Results
1	January 2006	11828	A1	A1 → A1, A2	-
2	February 2006	11931	A1	A1 → A1, A2	13874
3	March 2006	13314	A1	A1 → A1, A2	13874
4	April 2006	12909	A1	A1 → A1, A2	13874
5	May 2006	13575	A1	A1 → A1, A2	13874
6	June 2006	13203	A1	A1 → A1, A2	13874
180	December 2020	13515	A1	A1 → A1, A2	13874
181	January 2020	11901	A1	A1 → A1, A2	13874
182	February 2020	11479	A1	A1 → A1, A2	13874
183	March 2021	14284	A2	A2 → A0, A1, A2, A3	13874
184	April 2021	14864	A2	A2 → A0, A1, A2, A3	13874
185	May 2021	14857	A2	A2 → A0, A1, A2, A3	13874
186	June 2021	14556	A2	A2 → A0, A1, A2, A3	13874
187	July 2021	5747	A0	A0 → A0, A1	13874
188*	August 2021	-	-	-	9679

*Forecasted result

While this research was conducted, the available data in Table 1 started from January 2006 to July 2021. Based on the calculations, the railway passengers in August of 2021 approximately will be around 9679 passengers because of the previous relationship was A0 which means A0 → A0, A1 has forecasting value for 9679. Overall forecasting results are presented in Figure 1. The solid line represents the actual data, while the dotted line represents the forecasting results.
Figure 1. Overall Forecasting Results

4.7. Forecasting Evaluation
Forecasting evaluation is an important stage to find the performance of forecasting method. It would be ‘good’ if the forecasting results are similar or close with the actual data, and/or has low of errors value. The MAE and MAPE were applied to evaluate the forecasting results based on the error value obtained in this research.

Table 7. Forecasting Evaluation

No.	Date	Data	Forecasting Results	Absolute Error	Absolute Percentage Error
1	January 2006	11828	-	-	-
2	February 2006	11931	13874	1943	0.163
3	March 2006	13314	13874	560	0.042
4	April 2006	12909	13874	965	0.075
5	May 2006	13575	13874	299	0.022
6	June 2006	13203	13874	671	0.051
180	December 2020	13515	13874	152	0.011
181	January 2020	11901	13874	359	0.027
182	February 2020	11479	13874	1973	0.166
183	March 2021	14284	13874	2395	0.209
184	April 2021	14864	13874	410	0.029
185	May 2021	14857	13874	990	0.067
186	June 2021	14556	13874	983	0.066
187	July 2021	5747	13874	682	0.047
	Total			433957	25

Table 7 shows that the total absolute error in this research is 433957, and the total absolute percentage error is 25. Therefore, the MAE and MAPE obtained in this research are 2333 and 0.134 (13.4%) respectively.
5. Conclusion
The results showed that the forecasting model in this research has mean absolute error (MAE) for 2333 and mean absolute percentage error (MAPE) for 13.4% which means has a good forecast based on Lewis’s (1982) interpretation. Therefore, the overall forecasting accuracy is 86.6%. In addition, based on forecasting calculation the railway passengers in August of 2021 will be around 9679 passengers.

6. References
[1] Badan Pusat Statistik, “Badan Pusat Statistik,” Badan Pusat Statistik, 2021. https://www.bps.go.id/indicator/17/72/1/jumlah-penumpang-kereta-api.html (accessed Jul. 20, 2021).
[2] PT Kereta Api Indonesia, “Report Survey Kepuasan Pelanggan KAI 2018,” PPID PT KAI, 2019. https://ppid.kai.id/layanan-berkala-view?_tokenizer=Njc= (accessed Jul. 01, 2021).
[3] S.-M. Chen, “Forecasting enrollments based on fuzzy time series Shyi-Ming,” Fuzzy Sets Syst., vol. 81, pp. 312–319, 1996, doi: 10.1007/11925903_25.
[4] Q. Song and B. S. Chissom, “Fuzzy time series and its models,” Fuzzy Sets Syst., vol. 54, no. 3, pp. 269–277, Mar. 1993, doi: 10.1016/0165-0114(93)90372-O.
[5] C. Chatfield, “What is the ‘best’ method of forecasting?,” J. Appl. Stat., vol. 15, no. 1, pp. 19–38, 1988, doi: 10.1080/02664768800000003.
[6] Arnita, N. Afnisah, and F. Marpaung, “A Comparison of the Fuzzy Time Series Methods of Chen, Cheng and Markov Chain in Predicting Rainfall in Medan,” J. Phys. Conf. Ser., vol. 1462, no. 1, 2020, doi: 10.1088/1742-6596/1462/1/012044.
[7] R. W. Ningrum, B. Surarso, Farikhin, and Y. M. Safarudin, “Forecasting Jakarta composite index (IHSG) based on chen fuzzy time series and firefly clustering algorithm,” J. Phys. Conf. Ser., vol. 983, no. 1, 2018, doi: 10.1088/1742-6596/983/1/012055.
[8] Zaenurrohman, S. Hariyanto, and T. Udjiani, “Fuzzy time series Markov Chain and Fuzzy time series Chen & Hsu for forecasting,” J. Phys. Conf. Ser., vol. 1943, no. 1, 2021, doi: 10.1088/1742-6596/1943/1/012128.
[9] C. H. Cheng, T. L. Chen, H. J. Teoh, and C. H. Chiang, “Fuzzy time-series based on adaptive expectation model for TAIEX forecasting,” Expert Syst. Appl., vol. 34, no. 2, pp. 1126–1132, 2008, doi: 10.1016/j.eswa.2006.12.021.
[10] U. Khair, H. Fahmi, S. Al Hakim, and R. Rahim, “Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error,” J. Phys. Conf. Ser., vol. 950, no. 1, 2017, doi: 10.1088/1742-6596/950/1/012002.
[11] W. Wang and Y. Lu, “Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model,” IOP Conf. Ser. Mater. Sci. Eng., vol. 324, no. 1, 2018, doi: 10.1088/1757-899X/324/1/012049.
[12] L. A. Zadeh, “Outline of a New Approach to the Analysis of Complex Systems and Decision Processes,” IEEE Trans. Syst. Man. Cybern., vol. SMC-3, no. 1, pp. 28–44, 1973, doi: 10.1109/TSMC.1973.5408575.
[13] C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance,” Clim. Res., vol. 30, no. 1, pp. 79–82, 2005, doi: 10.3354/cr003079.
[14] P. M. Swamidass, Ed., “MAPE (mean absolute percentage error)MEAN ABSOLUTE PERCENTAGE ERROR (MAPE),” in Encyclopedia of Production and Manufacturing Management, Boston, MA: Springer US, 2000, p. 462.
[15] C. D. Lewis, Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. Butterworth-Heinemann, 1982.