Axion properties in GUTs

Andreas Ringwald
Corfu Summer Institute
Workshop on the Standard Model and Beyond
Corfu, 1-8 September 2018

[Ernst, AR, Tamarit, arXiv:1801.04906; Di Luzio, AR, Tamarit, arXiv:1807.09769]
Motivation

- Non-observation of WIMPs at LHC and in direct detection dark matter (DM) experiments strong motivation to look into other DM candidates
- Axion strongly motivated since it solves in addition strong CP problem
- New experiments search for the axion in a wide mass range. Would profit very much if mass were known.

• However:
 • Solution of DM problem does not fix axion decay constant and thus not the mass
 • Axion solves strong CP problem for any decay constant and thus any mass
 • Strong motivation to consider UV completions of the SM in which decay constant predicted
 • Here: Non-SUSY Grand Unified Theories (GUTs)
Axion in non-SUSY SO(10) GUT

The virtue of imposing a Peccei-Quinn symmetry

- Gauge coupling unification needs at least one intermediate scale; often discussed SSB chain:

\[
SO(10) \xrightarrow{M_{V}} SU(4)_C \times SU(2)_L \times SU(2)_R \\
\xrightarrow{M_{BL}} SU(3)_C \times SU(2)_L \times U(1)_Y \\
\xrightarrow{M_Z} SU(3)_C \times U(1)_{em}
\]

[Ernst, AR, Tamarit, arXiv:1801.04906]

[Di Luzio ’11]
Axion in non-SUSY SO(10) GUT

The virtue of imposing a Peccei-Quinn symmetry

- Gauge coupling unification needs at least one intermediate scale; often discussed SSB chain:
 \[
 SO(10) \xrightarrow{M_{12}^{210H}} SU(4)_C \times SU(2)_L \times SU(2)_R
 \]
 \[
 \xrightarrow{M_{12}^{126H}} SU(3)_C \times SU(2)_L \times U(1)_Y
 \]
 \[
 \xrightarrow{M_{12}^{10H}} SU(3)_C \times U(1)_{em}
 \]

- SO(10) GUT with three copies of 16_F: automatically features
 - neutrino masses and mixing
 - baryogenesis via leptogenesis

SO(10)	$4C^2_{2L}2_R$	$4C^2_{2L}1_R$	$3C^2_{1L}1_R1_B$	$3C^2_{1L}1_Y$	scale
16_F	(4, 2, 1)	(4, 2, 0)	(3, 2, 0, $\frac{1}{2}$)	(1, 2, 0, $-\frac{1}{2}$)	M_Z
$4_{1,2}$	(4, 1, 2)	(3, 1, $\frac{1}{2}$)	(1, 1, $\frac{1}{2}$)	(1, 1, $-\frac{1}{2}$)	M_Z
16_F	(4, 1, $-\frac{1}{2}$)	(3, 1, $-\frac{1}{2}$)	(1, 1, $-\frac{1}{2}$)	(1, 1, 0)	M_{E_L}

- Most general Yukawas:
 \[
 \mathcal{L}_Y = 16_F \left(Y_{10}10^H_H + \tilde{Y}_{10}10^*_{\tilde{H}} + Y_{126126_H} \right) 16_F
 \]

- SSB vevs:
 \[
 v_L \equiv \langle (10, 3, 1)_{126} \rangle, \quad v_R \equiv \langle (10, 1, 3)_{126} \rangle,
 \]
 \[
 v_{u,d}^{10} \equiv \langle (1, 2, 2)_{u,d}^{10} \rangle, \quad v_{u,d}^{126} \equiv \langle (15, 2, 2)_{u,d}^{126} \rangle
 \]

- Fermion masses/mixing:
 \[
 M_u = Y_{10}v_{u}^{10} + \tilde{Y}_{10}v_{d}^{10*} + Y_{126}v_{u}^{126},
 \]
 \[
 M_d = Y_{10}v_{d}^{10} + \tilde{Y}_{10}v_{u}^{10*} + Y_{126}v_{d}^{126},
 \]
 \[
 M_e = Y_{10}v_{d}^{10} + \tilde{Y}_{10}v_{u}^{10*} - 3Y_{126}v_{d}^{126},
 \]
 \[
 M_D = Y_{10}v_{u}^{10} + \tilde{Y}_{10}v_{d}^{10*} - 3Y_{126}v_{u}^{126},
 \]
 \[
 M_R = Y_{126}v_R,
 \]
 \[
 M_L = Y_{126}v_L.
 \]
Axion in non-SUSY SO(10) GUT

The virtue of imposing a Peccei-Quinn symmetry

- Gauge coupling unification needs at least one intermediate scale; often discussed SSB chain:
 \[SO(10) \rightarrow SU(4)_C \times SU(2)_L \times SU(2)_R \]
 \[\rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y \]
 \[\rightarrow SU(3)_C \times U(1)_{em} \]

- SO(10) GUT with three copies of \(16_F \) automatically features
 - neutrino masses and mixing
 - baryogenesis via leptogenesis

- PQ extension adds
 - predictivity of fermion masses/mixing
 - solution of strong CP problem
 - DM candidate: axion

\[[\text{Bajc et al. 06; Altarelli,Meloni 13; Babu,Khan 15}] \]

- PQ symmetry imposed:
 \[16_F \rightarrow 16_F e^{i\alpha} , \]
 \[10_H \rightarrow 10_H e^{-2i\alpha} , \]
 \[\overline{126}_H \rightarrow \overline{126}_H e^{-2i\alpha} , \]
 \[210_H \rightarrow 210_H e^{4i\alpha} \]

- Most general Yukawas:
 \[\mathcal{L}_Y = 16_F \left(Y_{10}^{10H} + Y_{126}^{126H} \right) 16_F + \text{h.c.} \]

- SSB vevs:
 \[v_L \equiv \langle (10,3,1)_{126} \rangle , \quad v_R \equiv \langle (10,1,3)_{126} \rangle , \]
 \[v_{u,d}^{10} \equiv \langle (1,2,2)_{u,d}^{10} \rangle , \quad v_{u,d}^{126} \equiv \langle (15,2,2)_{u,d}^{126} \rangle \]

- Fermion masses/mixing:
 \[M_u = Y_{10} v_u^{10} + Y_{126} v_u^{126} , \]
 \[M_d = Y_{10} v_d^{10} + Y_{126} v_d^{126} , \]
 \[M_e = Y_{10} v_d^{10} - 3 Y_{126} v_d^{126} , \]
 \[M_D = Y_{10} v_u^{10} - 3 Y_{126} v_u^{126} , \]
 \[M_R = Y_{126} v_R , \]
 \[M_L = Y_{126} v_L . \]
Axion in non-SUSY SO(10) GUT

Axion predictions and experimental prospects

- Axion decay constant:
 \[f_A \simeq \frac{1}{3} \frac{M_U}{g_U} \]

- From gauge coupling unification, assuming minimal scalar threshold corrections:
 \[m_A \equiv \frac{\sqrt{\lambda}}{f_A} \simeq 0.74 \text{ neV} \]

\[M_U = 1.4 \times 10^{16} \text{ GeV}, \quad \alpha_U(M_U)^{-1} = 33.6 \]

[Ernst, AR, Tamarit, arXiv:1801.04906]
Axion in non-SUSY SO(10) GUT

Axion predictions and experimental prospects

- Axion decay constant:
 \[f_A \simeq \frac{1}{3} \frac{M_U}{g_U} \]

- From gauge coupling unification, assuming minimal scalar threshold corrections:
 \[m_A \equiv \frac{\sqrt{X}}{f_A} \approx 0.74 \text{ neV} \]

- Taking into account scalar threshold corrections and constraints from black hole superradiance and proton decay:
 \[0.02 \text{ neV} < m_A < 2.2 \text{ neV} \]

[Ernst, AR, Tamarit, arXiv:1801.04906]
Axion in non-SUSY SO(10) GUT
Axion predictions and experimental prospects

- Axion decay constant:
 \[f_A \sim \frac{1}{3} \frac{M_U}{g_U} \]

- From gauge coupling unification, assuming minimal scalar threshold corrections:
 \[m_A \equiv \frac{\sqrt{x}}{f_A} \approx 0.74 \text{ neV} \]

- Taking into account scalar threshold corrections and constraints from black hole superradiance and proton decay:
 \[0.02 \text{ neV} < m_A < 2.2 \text{ neV} \]

- May be probed by axion DM experiments

[Ernst 18; CASPER prospects from Kimball et al. 17]
Axion in non-SUSY SO(10) GUT

Axion predictions and experimental prospects

- Axion decay constant:
 \[f_A \approx \frac{1}{3} \frac{M_U}{g_U} \]

- From gauge coupling unification, assuming minimal scalar threshold corrections:
 \[m_A \equiv \frac{\sqrt{\chi}}{f_A} \approx 0.74 \text{ neV} \]

- Taking into account scalar threshold corrections and constraints from black hole superradiance and proton decay:
 \[0.02 \text{ neV} < m_A < 2.2 \text{ neV} \]

- May be probed by axion DM experiments

[Ernst 18; ABRACADABRA prospects from Kahn, Safdi, Thaler 16]
Axion in non-SUSY SU(5) GUT

A minimal GUT

- Original non-SUSY SU(5) model comprised of [Georgi, Glashow 74]
 - three copies of 10_F and $\bar{5}_F$, representing chiral SM matter fermions
 - 24_H and 5_H, representing Higgs bosons
Axion in non-SUSY SU(5) GUT

A minimal GUT

- Original non-SUSY SU(5) model comprised of
 - three copies of 10_F and $\bar{5}_F$, representing chiral SM matter fermions
 - 24_H and 5_H, representing Higgs bosons
 - Neutrinos massless
 - No gauge coupling unification

[Georgi, Glashow 74]

[StackExchange]
Axion in non-SUSY SU(5) GUT

A minimal GUT

- Original non-SUSY SU(5) model comprised of
 - three copies of 10_F and $\tilde{5}_F$, representing chiral SM matter fermions
 - 24_H and 5_H, representing Higgs bosons

fails phenomenologically:

- Neutrinos massless
- No gauge coupling unification

- Simple solution: add a 24_F [Bajc, Senjanovic 07]

 - Mixture of type-I and type-III seesaw from electroweak fermion singlets and triplets, $S_F = (1, 1, 0)_F$ and $T_H = (1, 3, 0)$
Axion in non-SUSY SU(5) GUT

A minimal GUT

- Original non-SUSY SU(5) model comprised of [Georgi, Glashow 74]
 - three copies of 10_F and 5_F representing chiral SM matter fermions
 - 24_H and 5_H, representing Higgs bosons

fails phenomenologically:
- Neutrinos massless
- No gauge coupling unification

- Simple solution: add a 24_F [Bajc, Senjanovic 07]
 - Mixture of type-I and type-III seesaw from electroweak fermion singlets and triplets, $S_F = (1, 1, 0)_F$ and $T_F = (1, 3, 0)$
 - Gauge coupling unification: electroweak fermion and scalar triplets, $T_F = (1, 3, 0)$ and $T_H = (1, 3, 0)$, delay meeting of α_1 and α_2
Axion in non-SUSY SU(5) GUT

A minimal GUT

- Original non-SUSY SU(5) model comprised of
 - three copies of 10_F and $\tilde{5}_F$ representing chiral SM matter fermions
 - 24_H and 5_H^*, representing Higgs bosons

fails phenomenologically:
- Neutrinos massless
- No gauge coupling unification

- Simple solution: add a 24_F [Bajc, Senjanovic 07]
 - Mixture of type-I and type-III seesaw from electroweak fermion singlets and triplets, $S_F = (1, 1, 0)_F$ and $T_F = (1, 3, 0)$
 - Gauge coupling unification: electroweak fermion and scalar triplets, $T_F = (1, 3, 0)$ and $T_H = (1, 3, 0)$, delay meeting of α_1 and α_2
 - Clean correlation between effective electroweak triplet mass m_3 and unification scale M_G

\[
m_3 = \left(m_{TF}^4 m_{TH} \right)^{1/5}
\]
Axion in non-SUSY SU(5) GUT

Axion in minimal GUT and experimental prospects

- Require that 24_H complex and add $5'_H$
- Impose PQ symmetry:
 \[
 \begin{align*}
 \bar{5}_F & \to e^{-i\alpha/2}\bar{5}_F, \\
 10_F & \to e^{-i\alpha/2}10_F, \\
 5_H & \to e^{i\alpha}5_H, \\
 5'_H & \to e^{-i\alpha}5'_H, \\
 24_H & \to e^{-i\alpha}24_H, \\
 24_F & \to e^{-i\alpha/2}24_F
 \end{align*}
 \]
- Axion decay constant:
 \[f_A \approx \frac{1}{11} \sqrt{\frac{6}{5}} \frac{M_G}{g_5}\]
- Gauge coupling unification, taking into account LHC and Superkamiokande constraints:
 \[m_A \in [4.8, 6.6] \text{ neV}\]

[Di Luzio, AR, Tamarit, arXiv:1807.09769]
Axion in non-SUSY SU(5) GUT

Axion in minimal GUT and experimental prospects

- Require that 24_H complex and add $5'_H$

- Impose PQ symmetry:
 \[
 \bar{5}_F \rightarrow e^{-i\alpha/2} \bar{5}_F, \\
 10_F \rightarrow e^{-i\alpha/2} 10_F, \\
 5_H \rightarrow e^{i\alpha} 5_H, \\
 5'_H \rightarrow e^{-i\alpha} 5'_H, \\
 24_H \rightarrow e^{-i\alpha} 24_H, \\
 24_F \rightarrow e^{-i\alpha/2} 24_F
 \]

- Axion decay constant:
 \[
 f_A \approx \frac{1}{11} \sqrt{\frac{6}{5}} \frac{M_G}{g_5}
 \]

- Gauge coupling unification, taking into account LHC and Superkamiokande constraints:
 \[
 m_A \in [4.8, 6.6] \text{ neV}
 \]

- Window can be explored by axion DM experiments

[Di Luzio, AR, Tamarit, arXiv:1807.09769]
Axion in non-SUSY SU(5) GUT

Axion in minimal GUT and experimental prospects

- Require that 24_H complex and add $5'_H$
- Impose PQ symmetry:
 \[5_F \rightarrow e^{-i\alpha/2}5_F, \]
 \[10_F \rightarrow e^{-i\alpha/2}10_F, \]
 \[5_H \rightarrow e^{i\alpha}5_H, \]
 \[5'_H \rightarrow e^{-i\alpha}5'_H, \]
 \[24_H \rightarrow e^{-i\alpha}24_H, \]
 \[24_F \rightarrow e^{-i\alpha/2}24_F \]
- Axion decay constant:
 \[f_A \simeq \frac{1}{11}\sqrt{\frac{6}{5}} \frac{M_G}{g_5} \]
- Gauge coupling unification, taking into account LHC and Superkamiokande constraints:
 \[m_A \in [4.8, 6.6] \text{ neV} \]
- Window can be explored by axion DM experiments

[Di Luzio, AR, Tamarit, arXiv:1807.09769]
Axion in non-SUSY SU(5) GUT

Minimal GUT SMASH?

- PQ symmetry has to be broken during and after inflation to avoid
 - SU(5) monopole problem
 - axion DM overabundance
- DM abundance depends not only on mass, but also on the initial value of $\theta_i = \Lambda_i/f_A$ inside causally connected region which is inflated to observable universe
Axion in non-SUSY SU(5) GUT

Minimal GUT SMASH?

- PQ symmetry has to be broken during and after inflation to avoid
 - SU(5) monopole problem
 - axion DM overabundance
- DM abundance depends not only on mass, but also on the initial value of $\theta_i = A_i/f_A$ inside causally connected region which is inflated to observable universe:

$$\Omega_a h^2 = 0.12 \left(\frac{5.0 \text{ meV}}{m_a} \right)^{1.165} \left(\frac{\theta_i}{1.6 \times 10^{-2}} \right)^2$$

[Image of graph showing the relationship between f_A and $\Omega_A > \Omega_{CDM}$ vs m_A, with pre-inflation misalignment range and post-inflation misalignment range marked]

[Borsanyi et al. '16]
Axion in non-SUSY SU(5) GUT

Minimal GUT SMASH?

- PQ symmetry has to be broken during and after inflation to avoid
 - SU(5) monopole problem
 - axion DM overabundance
- DM abundance depends not only on mass, but also on the initial value of \(\theta_i = A_i/f_A \) inside causally connected region which is inflated to observable universe:
 \[
 \Omega_a h^2 = 0.12 \left(\frac{5.0 \text{ neV}}{m_a} \right)^{1.165} \left(\frac{\theta_i}{1.6 \times 10^{-2}} \right)^2
 \]
- Non-minimal chaotic \(24_H \) inflation
 \[
 S \supset - \int d^4x \sqrt{-g} \xi_{24_H} \text{Tr}(24^2_H) R
 \]
 - For small enough quartic and Yukawa couplings, PQ symmetry after inflation may be avoided
 - Isocurvature constraints avoided if \(\xi_{24_H} \gtrsim 0.01 \)

SM * Axion * See-saw * Higgs portal inflation

[Ballesteros, Redondo, AR, Tamarit '16]
Conclusions and outlook

- Realistic non-SUSY $SO(10) \times U(1)_{PQ}$ and $SU(5) \times U(1)_{PQ}$ models addressing both neutrino masses and gauge coupling unification predict the axion mass in a window which is accessible in the upcoming axion DM direct detection experiments (ABRACADABRA, CASPER-Electric)

- Precise determination of axion mass would lead to direct determination of GUT scale, possibly discriminating different GUT models and setting target for proton decay measurements

- Intriguing possibility that the Higgs field required for GUT breaking may be responsible for inflation, realizing non-minimal chaotic inflation, making the $SO(10) \times U(1)_{PQ}$ and $SU(5) \times U(1)_{PQ}$ model a potential candidate for a GUT SMASH variant, aiming at a self-contained (but highly fine-tuned) description of particle physics, from the electroweak scale to the Planck scale, and cosmology, from inflation to today
Back Up: Axion/ALP bounds from BH superradiance

- If ALP Compton wavelength of order black hole size:
 - Bound states around BH nucleus formed
 - Occupation numbers grow exponentially by extracting rotational energy and angular momentum from the ergosphere
 - Forming rotating Bose-Einstein condensate emitting gravitational waves
 - For BH lighter than 10^7 solar masses, accretion cannot replenish spin
- Existence of bosonic WISPs leads to gaps in mass vs. spin plots of rapidly rotating BHs

[Arvanitaki, Dimopoulos, Dubovsky, Kaloper, March-Russell 10]
Back Up: Axion/ALP bounds from BH superradiance

• If ALP Compton wavelength of order black hole size:
 • Bound states around BH nucleus formed
 • Occupation numbers grow exponentially by extracting rotational energy and angular momentum from the ergosphere
 • Forming rotating Bose-Einstein condensate emitting gravitational waves
 • For BH lighter than 10^7 solar masses, accretion can not replenish spin
• Existence of bosonic WISPs leads to gaps in mass vs. spin plots of rapidly rotating BHs
• Stellar BH spin measurements exclude

\[6 \times 10^{-13} \text{ eV} < m_A < 2 \times 10^{-11} \text{ eV} \]

[Arvanitaki et al. 14]