Intercomparison of Radiation Instruments for Cosmic-ray with Heavy Ion Beams at NIRS (ICCHIBAN Project)

YUKIO UCHIHORI1*, KAZUNOBU FUJITAKA1, NAKAHIRO YASUDA1, ERIC BENTON2 and the ICCHIBAN COLLABORATION

Intercomparison/ Radiation / Monitor / Dosimetry / Heavy ion beam

The first InterComparison for Cosmic-ray with Heavy Ion Beams At NIRS (ICCHIBAN) project is an ongoing, international collaboration organized at the National Institute of Radiological Sciences (NIRS), Japan, for the purpose of characterizing and comparing at a controlled, ground-based heavy ion facility the radiation response of instruments used aboard piloted spacecraft for crew and area dosimetry. We present preliminary results from the first set of ICCHIBAN exposures made at HIMAC heavy ion accelerator in February 2002. The initial series of exposures (1st ICCHIBAN run) was designed to establish the response of active detectors to two well-characterized heavy ion beams; 400 MeV/nucleon 12C and 400 MeV/nucleon 56Fe. These beams are representative in charge and energy of two of the most significant heavy ion components present in the galactic cosmic radiation spectrum. The properties of the incident beam, including intensity, profile, charge and total energy, were characterized using several different detector systems, including silicon detectors, CR-39 plastic nuclear track detectors and plastic scintillation counters. Once the response of each detector to heavy ion beams of known composition has been measured, results from on-orbit measurements made by the different instruments can be more meaningfully compared. We conclude by discussing plans for future ICCHIBAN runs, including next 2nd ICCHIBAN run for passive detectors in early summer 2002.

INTRODUCTION

The objectives of radiation dosimetry aboard piloted spacecraft are to accurately measure the radiation exposure of individual crew and to characterize the radiation field on the interior of the spacecraft to aid in modeling the environment for purposes of dosimetric assessment and mission planning. Space radiation dosimetry is currently focused on the ISS which, in the coming years, will host large numbers of astronauts and cosmonauts for extended periods of time1. To date, a relatively large number of space radiation detectors, both active and passive, have been exposed aboard a number of different spacecraft including the NASA Space Shuttles, the Russian Salyut and Mir orbital stations, and on recoverable satellites$^{2-13}$. These instruments were developed and tested by individual research groups in a number of different countries and each detector was calibrated “in-house” by the research group responsible for developing it and using their own calibration methods. For this reason, and due to inherent differences in the operational principles of different types of radiation detector, results of measurements in space made by these different instruments are often inconsistent$^{14-16}$. The space radiation dosimetry community has long recognized the need to intercompare different spaceflight dosimeters and the Workshops on Radiation Monitoring for the International Space Station (WRMISS) has recommended that radiation instruments used aboard the ISS should be intercompared using well-known radiation fields on the ground. Following this recommendation, we have started an intercomparison program with heavy ion beams from HIMAC heavy ion accelerator, NIRS. Because heavy ion beams can simulate the galactic cosmic-ray heavy

*Corresponding author: Phone: +81–43–206–3239
Fax: +81–43–251–4531
E-mail: uchihori@nirs.go.jp

1 International Space Radiation Laboratory, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
2 Eril Research Inc., P. O. Box 150788, San Rafael, California 94915-0788, USA
ions, we can compare the results of the instruments for one of most important radiation in space environment. In addition, the discrepancy between results from different instruments is, perhaps, most conspicuous in the high LET region (≥ 100 keV/µm). The HIMAC which has been constructed in order to investigate the application to cancer therapy of various species of accelerated heavy ion from protons to krypton and at energies up to 800 MeV/nucleon, making it well-suited for this type of intercomparison17. In this paper, we report on the first intercomparison run, held in February 2002. This run (1st ICCHIBAN run) concentrated on comparing active instruments aboard spacecraft for radiation dosimetry.

EXPERIMENTS

The 1st ICCHIBAN intercomparison exposures were performed from Feb. 11 to Feb. 14, 2002 at the PH2 beam port at the HIMAC using 400 MeV/nucleon 12C and 400 MeV/nucleon 56Fe ion beams. Total accelerator time, including time for beam tuning, was approximately 40 hours. The participants in the 1st ICCHIBAN run included about 25 investigators from seven research groups. The participants and their instruments are listed in Table 1.

Prior to exposure of the participants’ instrument, each heavy ion beam was characterized using a reference ground-based detector system which included position sensitive silicon detectors, thick silicon detectors, time of flight scintillation counters and a sodium iodide detector. This detector system, belonging to the group of Miller, Zeitlin and Heilbronn18, is routinely used for heavy-ion projectile fragmentation studies at the HIMAC. The reference detector system measured the beam profile, deposited energy in the silicon detector, velocity of ions and total energy. In addition, the range of the beam was measured by a pair of scintillation counters on either side of a binary filter system capable of providing a variable thickness of acrylic absorber and resulting in a measurement of the Bragg curve. Each participant’s instrument was mounted on a combination X-Y stage/rotating table which could be controlled via a networked computer. Because of these tables, the position and angle of the incident beam relative to the instrument could be controlled remotely. A scintillation counter (SC) and a position sensitive silicon detector (PSD) were positioned in the beam line directly in front of the space radiation instrument being exposed. The PSD was mounted on the same X-Y/rotating stage as the space instrument. The SC was fixed in front of the stage and used both to count the number of ions and to produce a trigger signal for the data acquisition system. The PSD was used to monitor the beam profile with time. Both the PSD and SC were operated during each space instrument exposure. The exposure configuration is shown in Fig. 1 and Fig. 2. Each participant’s instrument was exposed to the same beam condition in order to permit direct comparison.

The beam intensity was tuned to ~500 particles per spill and the beam profile was tuned to a 20 mm diameter circle. The beam intensity fluctuated within $\pm 50\%$ and fluctuation in the beam profile was found to be negligible. Several instruments could not be exposed to such a high event rate and they did not count a significant fraction of the incident particles because of their slow data acquisition systems. They were not required to measure all incident particles in space environment but sampled particles. However they could be operated without problem during exposures to measure deposited energy and absorbed dose.

Participant	Institution	Country	Detectors	Detector Type
C. Zeitlin, J. Miller, L. Heilbronn	LBNL	USA	Reference Detector System	Silicon Stack Detector, ToF SC, NaI SC
E. R. Benton	Eril Res. Inc.	USA	Passive Detector	CR-39 + TLD
H. Tawara, M. Masukawa, A. Nagamatsu, H. Kumagai	KEK, NASA	Japan	Passive Detector	CR-39 + TLD
R. Beaujean, S. Burmeister	Kiel Univ.	German	DOSTEL (I+HI+D)	Silicon Stack Detector
Y. Uchihori, T. Dachev	NIRS, STIL BAS	Japan, Bulgaria	Liulin-4J	Mobile Silicon Detector
T. Doke, K. Terasawa	Waseda Univ.	Japan	RRMD-III	Silicon Stack Detector
T. Sheler, E. Semones, N. Zapp	NASA-JSC	USA	ISS-TEPC, Shuttle-TEPC, IV-CPDS	TEPC, TEPC, Silicon Stack
All of the active space radiation instruments operated without trouble and were able to collect important data. (Fig. 3) The working group of ICCHIBAN run has required the following information from each participating instrument:

1. LET or y distribution
2. Dose (in H$_2$O) per a particle
3. Dose Equivalent (in H$_2$O) per a particle

Fig. 1. Exposure configuration of LBNL Ground Base Detector, ToF (Time of Flight), SC (Scintillation Counter), NIRS-PSD (Position Sensitive Detector) and Binary Filter System for reference measurement.

Fig. 2. Exposure configuration of Space Radiation Detector and reference detectors with XY and Rotating (Theta) table.

Fig. 3. A photograph on experiment in 1st ICCHIBAN run. The golden instrument is the IV-CPDS detector from NASA JSC and it is on beam line.

Fig. 4. Result of measurements by the Liulin-4J for carbon 400 MeV/nucleon beam. The distributions show deposited energies in silicon detector inside the Liulin-4J instrument. The beams were injected from various angles. The vertical lines show deposited energies estimated from the incident ion energies.
CONCLUSIONS

In February, 2002, we conducted the 1st ICCHIBAN run dedicated to active detectors. The experiment is the first attempt to intercompare instruments used to measure the space radiation for dosimetric purposes. The exposures were successfully performed and were able to obtain useful data from each participant’s instrument. We will conduct the 2nd ICCHIBAN run, dedicated to passive instruments, in May 2002. The intercomparison project will be continued for three years in an effort to reduce the discrepancy between different radiation instruments and to improve our understanding of how each type of instrument responds to the radiation environment encountered in space.

ACKNOWLEDGEMENTS

We would like to thank all participants for the 1st ICCHIBAN run. This experiment is supported by the research project of NIRS-HIMAC and we are thankful to the member of the operation of HIMAC for their supports.

REFERENCES

1. Schimmereling, W., Wilson, J. W., Cucinotta, F. and Kim, M-H Y. (1999) Requirements for Simulating Space Radiation with Particle Accelerators. In: Risk Evaluation of Cosmic-ray Exposure in Long-term Manned Space Mission, Eds. K. Fujitaka, H. M. Ajima, K. Ando, H. Y. Asuda and M. Suzuki, pp. 1-16, Kodansha Scientific, Tokyo.
2. Benton, E. R. and Benton, E. V. (2001) Space radiation dosimetry in low-Earth orbit and beyond. Nuc. Instr. Meth. Phy. Res. B184: 255–294.
3. Sakaguchi, T., Doke, T., Hasebe, N., Hayashi, T., Kashiwagi, T., Kikuchi, J., Kono, S., Nagaoka, S., Nakano, T., Takagi, T., Takahashi, K. and Takahashi, S. (1999) LET distribution measurement with a new real-time radiation monitoring device-III onboard the Space Shuttle STS-84. Nuc. Instr. Meth. Phy. Res. A437: 75–87.
4. Doke, T., Hayashi, T., Kikuchi, J., Sakaguchi, T., Terasawa, K., Yoshiihara, E., Nagaoka, S., Nakano, T. and Takahashi, S. (2001) Measurement of LET-distribution, dose equivalent and quality factor with the RRMD-III on the Space Shuttle Mission STS-84. Rad. Measur. 35: 145–287.
5. Golightly, M. J., Hardy, K. and Quam, W. (1994) Radiation dosimetry measurements during U.S. space shuttle missions with the RME-III. Rad. Measur. 23: 25–42.
6. Badhwar, G. D., Konradi, A., Atwill, W., Golightly, M. J., Cucinotta, F. A., Wilson, J. W., Petrov, V. M., Tchenykh, I. V., Shurshakov, V. A. and Lobakov, A. P. (1998) Measurements of the linear energy transfer spectrum on the MIR orbital station and comparison with radiation transport models. Rad. Measur. 26: 147–158.
7. Badhwar, G. D., Kusin, V. V., Akatov, Y. A. and M. Yltsiva, V. A. (1999) Effects of trapped proton flux anisotropy on dose rates in low Earth orbit. Rad. Measur. 30: 415–426.
8. Badhwar, G. D. (2002) Shuttle radiation dose measurements in the International Space Station orbits. Rad. Res. 157: 69–75.
9. Badhwar, G. D., Atwill, W., Badavi, F. Y., Yang, T. C. and Cieghorn, T. F. (2002) Space radiation absorbed dose distribution in a human phantom. Rad. Res. 157: 76–91.
10. Beaujean, R., Kopp, J. and Retz, G. (1999) Active dosimetry on recent space flights. Rad. Prot. Dosimet. 85: 223–226.
11. Dachev, Ts. P., Semkova, J. V., Matviichuk, Y. N., Tomov, B. T., Koleva, R. T., Baynov, P. T., Petrov, V. M., Shurshakov, V. V. and Ivanov, Y. (1998) Inner magnetosphere variations after solar proton events. Observed on MIR space station in 1989-1994 time period. Adv. Space Res. 26: 521–526.
12. Vana, N., Schoner, W., Fugger, M. and Akatov, Y. (1996) Absorbed dose measurement and LET determination with TLDs in space. Rad. Prot. Dosimet. 66: 145–152.
13. Vana, N., Schoner, W., Fugger, M., Akatov, Y. and Shurshakov, V. V. (1996) ADLET – Absorbed dose and average LET determination with TLDs on space station MIR during a Russian long-term flight. Rad. Prot. Dosimet. 67: 173–177.
14. Doke, T., Hayashi, T. and Borak, T. (2001) Comparisons of LET Distributions measured in low-earth orbit using tissue-equivalent proportional counters and the position-sensitive silicon-detector telescope (RRM-D-III). Rad. Res. 156: 310–316.
15. Badhwar, G. D. and O’Neill, P. M. (2001) Response of silicon-based linear energy transfer spectrometers implication for radiation risk assessment in space flights. Nuclear Instruments and Methods in Physics Research A466: 464–474.
16. Doke, T., Hara, K., Hayashi, T., Kikuchi, J., Suzuki, S. and Terasawa, K. LET distributions measured at the CERF facility with the RRMD-III. J. Rad. Res. 43 Suppl: S75–S80.
17. Hirao, Y., Ogawa, H., Yamada, S., Sato, Y., Yamada, T., Sato, K., Itano, A., Kanazawa, M., Noda, K., Kawachi, K., Endo, M., Kanai, T., Kono, T., Sudo, M., Minohara, S.,
Kitagawa, A., Soga, F., Takada, E., Watanabe, S., Endo, K., Kumada, M., Matsumoto, S. (1992) Heavy ions synchrotron for medical use-HIMAC project at NIRS-JAPAN. Nuclear Physics A538: 541c–550c.

18. Zeitlin, C. J., Frankel, K. A., Gong, W., Heilbronn, L., Lampo, E. J., Leres, R., Miller, J., and Schimmerling, W. (1994) A modular solid state detector for measuring high energy heavy ion fragmentation near the beam axis. Radiat. Measur. 23: (1) 65–84.

19. Uchihori, Y., Kitamura, H., Fujitaka, K., Dachev, T., Tomov, B., Dimitrov, P., Matviichuk, Y. (2002) Analysis of the calibration results obtained with Liulin-4J spectrometer-dosimeter on protons and heavy ions. Radiat. Measur. 35: 127–134.

Received on June 4, 2002
Revision on August 30, 2002
Accepted on November 1, 2002