The genetic etiology of cannabis use: from twin models to genome-wide association studies and beyond.

Karin J.H. Verweij, Jacqueline M. Vink, Abdel Abdellaoui, Nathan A. Gillespie, Eske M. Derks, & Jorien L. Treur

Supplementary Table 1: GWASs and their sample sizes of traits included in the genetic correlation estimations in Figure 2.

| Trait                        | \(N_{\text{total}}\) | \(N_{\text{cases}}\) | \(N_{\text{controls}}\) | \(N_{\text{effective}}\) |
|------------------------------|-----------------------|------------------------|--------------------------|---------------------------|
| **Psychiatric disorders:**   |                       |                        |                          |                           |
| ADHD\(^1\)                   | 55,374                | 20,183                 | 35,191                   | 51,306                    |
| PTSD\(^2\)                   | 206,655               | 32,428                 | 174,227                  | 109,358                   |
| Schizophrenia\(^3\)          | 130,644               | 53,386                 | 77,258                   | 126,282                   |
| Anxiety\(^4\)                | 224,330               | 34,189                 | 190,141                  | 115,914                   |
| Major depression\(^5\)       | 431,394               | 116,404                | 314,990                  | 161,090                   |
| Bipolar disorder\(^6\)       | 63,766                | 11,974                 | 51,792                   | 38,902                    |
| Autism spectrum disorder\(^7\) | 46,350               | 18,381                 | 27,969                   | 44,367                    |
| OCD\(^8\)                    | 576,257               | 14,140                 | 562,117                  | 55,172                    |
| Anorexia\(^9\)               | 72,517                | 16,992                 | 55,525                   | 52,042                    |
| **Substance use:**           |                       |                        |                          |                           |
| Cocaine dependence\(^10\)   | 6,378                 | 2,085                  | 4,293                    | 5614                      |
| Alcohol dependence\(^11\)    | 46,568                | 11,569                 | 34,999                   | 34,779.54                 |
| Smoking initiation\(^12\)    | 499,000               | -                      | -                        | 318,482                   |
| Nicotine dependence\(^13\)   | 58,000                | -                      | -                        | 58,000                    |
| Alcoholic drinks per week\(^12\) | 399,604             | -                      | -                        | 262,462                   |
| Cigarettes per day\(^12\)    | 180,438               | -                      | -                        | 112,757                   |
| Caffeine\(^14\)              | 91,462                | -                      | -                        | 91,462                    |
| Alcohol use (AUDIT)\(^15\)   | 121,604               | -                      | -                        | 121,604                   |
| Smoking cessation\(^12\)     | 240,037               | -                      | -                        | 149,155                   |
| Age at smoking initiation\(^12\) | 181,780             | -                      | -                        | 114,119                   |
| **Personality:**             |                       |                        |                          |                           |
| Risk Taking\(^16\)           | 466,571               | -                      | -                        | 466,571                   |
| Extraversion\(^17\)          | 29,501                | -                      | -                        | 29,501                    |
| Neuroticism\(^18\)           | 390,278               | -                      | -                        | 390,278                   |
| **Cognition & SES:**         |                       |                        |                          |                           |
| Townsend\(^19\)              | 112,151               | -                      | -                        | 112,151                   |
| Adult IQ\(^20\)              | 78,308                | -                      | -                        | 78,308                    |
| Educational attainment\(^21\) | 245,621              | -                      | -                        | 245,621                   |
| Household income\(^22\)      | 505,541               | -                      | -                        | 505,541                   |

*N.B. Effective sample size was provided by the authors of the GWASs or calculated with the following formula: 4/(1/\(N_{\text{cases}}\)+1/\(N_{\text{controls}}\)).*
References

1. Demontis, D. & Walters, R. K. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. *Nature genetics* **51**, 63-75, doi:10.1038/s41588-018-0269-7 (2019).
2. Nievergelt, C. M. *et al.* International meta-analysis of PTSD genome-wide association studies identifies sex-and ancestry-specific genetic risk loci. *Nature communications* **10**, 1-16 (2019).
3. Trubetskoy, V. *et al.* Mapping genomic loci implicates genes and synaptic biology in schizophrenia. *Nature* **604**, 502-508, doi:10.1038/s41586-022-04434-5 (2022).
4. Levey, D. F. *et al.* Reproducible genetic risk loci for anxiety: results from ~200,000 participants in the Million Veteran Program. *American Journal of Psychiatry* **177**, 223-232 (2020).
5. Wray, N. R. *et al.* Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. *50*, 668-681, doi:10.1038/s41588-018-0090-3 (2018).
6. Mullins, N. *et al.* Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. *Nature genetics* **53**, 817-829 (2021).
7. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24. 32 and a significant overlap with schizophrenia. *Molecular autism* **8**, 1-17 (2017).
8. Strom, N. I. *et al.* Genome-wide association study identifies new locus associated with OCD. *medRxiv* (2021).
9. Watson, H. J. *et al.* Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. *Nature genetics* **51**, 1207-1214 (2019).
10. Cabana-Domínguez, J., Shivalikanjli, A., Fernàndez-Castillo, N. & Cormand, B. Genome-wide association meta-analysis of cocaine dependence: Shared genetics with comorbid conditions. *Progress in Neuro-Psychopharmacology and Biological Psychiatry* **94**, 109667 (2019).
11. Walters, R. K. *et al.* Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. *Nature neuroscience* **21**, 1656-1669 (2018).
12. Liu, M., Jiang, Y. & Wedow, R. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. *Nature genetics* **51**, 237-244, doi:10.1038/s41588-018-0307-5 (2019).
13. Quach, B. C. *et al.* Expanding the genetic architecture of nicotine dependence and its shared genetics with multiple traits. *Nature communications* **11**, 1-13 (2020).
14. Cornelis, M. C. *et al.* Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption. *Molecular psychiatry* **20**, 647-656, doi:10.1038/mp.2014.107 (2015).
15. Sanchez-Roige, S. *et al.* Genome-wide association study meta-analysis of the Alcohol Use Disorders Identification Test (AUDIT) in two population-based cohorts. *American Journal of Psychiatry* **176**, 107-118 (2019).
16. Linnér, R. K. *et al.* Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. *Nature genetics* **51**, 245-257 (2019).
17. van den Berg, S. M. *et al.* Meta-analysis of Genome-Wide Association Studies for Extraversion: Findings from the Genetics of Personality Consortium. *Behav Genet* **46**, 170-182, doi:10.1007/s10519-015-9735-5 (2016).
18. Nagel, M. *et al.* Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. *Nature genetics* **50**, 920-927 (2018).
19. Hill, W. D. *et al.* Molecular genetic contributions to social deprivation and household income in UK Biobank. *Current Biology* **26**, 3083-3089 (2016).
20. Sniekers, S. *et al.* Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. *Nature genetics* **49**, 1107 (2017).
21 Lee, J. J. et al. Gene discovery and polygenic prediction from a 1.1-million-person GWAS of educational attainment. *Nature genetics* **50**, 1112 (2018).

22 Hill, W. D. et al. Genome-wide analysis identifies molecular systems and 149 genetic loci associated with income. *Nature communications* **10**, 5741, doi:10.1038/s41467-019-13585-5 (2019).