Association of Genomic Features with Integration

March 28, 2012

Contents

1 Introduction 2

2 Preference for Genes 4
 2.1 Acembly Genes ... 4
 2.2 refGenes ... 6
 2.3 ensGenes .. 7
 2.4 genScan Genes .. 9
 2.5 uniGenes ... 11
 2.6 oncogenes ... 14

3 CpG Island Neighborhoods 15
 3.1 1 kilobase neighborhoods 15
 3.2 2 kilobase neighborhoods 16
 3.3 5 kilobase neighborhoods 17
 3.4 10 kilobase neighborhoods 17
 3.5 25 kilobase neighborhoods 18
 3.6 50 kilobase neighborhoods 19

4 Gene Density, Expression 'Density', and CpG Island Density 21
 4.1 25 kilobase Window ... 21
 4.2 50 kilobase Window ... 25
 4.3 100 kilobase Window 30
 4.4 250 kilobase Window 35
 4.5 500 kilobase Window 40
 4.6 1 megabase Window ... 45
 4.7 2 megabase Window ... 50
 4.8 4 megabase Window ... 55
 4.9 8 megabase Window ... 60
 4.10 16 megabase Window 65
 4.11 32 megabase Window 70
Juxtaposition with Gene Start and End Positions

5.1 Asembly Annotations .. 76
5.2 RefSeq Annotations .. 80
5.3 genScan Annotations ... 84
5.4 uniGene Annotations ... 88

6 GC content .. 92
1 Introduction

In this document, I examine the association of integration sites with various genomic features.

The data consist of both actual integration sites and sets of control sites, each set chosen to match the spacing (in bases) from the nearest restriction site (according to the direction in which the sequence was read) to an integration site. The numbers of insertion and matching sites for several data sets are shown below:

type	Origin.of.data.set	insertion	match
a)SB	30303	90887	
b)PB	23417	70250	
c)TC	27985	83954	

The advantage of choosing 'control' sites that match the spacing from the nearest restriction site is that biases due to location and density of restriction sites are eliminated by applying the classical multinomial logit model (reviewed in [2]). This model allows regression procedures to be applied to the study of integration intensity as a function of genomic features. The \texttt{clogit} function of the R \texttt{survival} library implements estimation and fitting for such models along with the usual likelihood ratio and Wald tests.

The distribution of relative frequency of insertions across the chromosomes is given in this barplot:
It seems evident that there are some chromosomes that are particularly favored for integration. This is reinforced by a test of statistical significance. The test performed used the likelihood ratio statistic for the multinomial logit model (reviewed in [2]) as implemented by the `clogit` function of the R `survival` library. The null hypothesis tested is that the ratio of true integration events to matched control sites is constant across all chromosomes. This test attains a p-value of $< 2.22e^{-16}$.
2 Preference for Genes

2.1 Acembly Genes

Here we examine the preference that integration events have for genes. In the following plot we show the relative frequency of integrations in genes according to the 'Acembly' annotation. The bars grouped over the label “In Gene” give the relative frequency of integration events (compared to control sites) between bases located within Acembly gene annotations, while the label “Not in Gene” give the relative frequency of integration events (compared to control sites) between bases not located within Acembly gene annotations.

![Plot showing the relative frequency of integrations in genes compared to control sites.](image)

It seems evident that there is a strong tendency for insertions to occur in genes. A formal test of significance bears this out with a p-value of $< 2.22e-16$. Also, it appears that the tendency of different viruses to integrate into genes varies, and a test for this hypothesis attains $< 2.22e - 16$. Here is the table of coefficients of the log ratio of intensities for true insertion sites versus control insertion sites along with their standard errors, z statistics, and p-values for each data set:

	coef	se	z	p
a)SB	0.238	0.0134	17.8	5.80e-71
b)PB	0.478	0.0155	30.7	1.59e-207
c)TC	0.449	0.0142	31.7	2.49e-220
As is evident, there are some differences in the coefficients. The largest coefficient is seen in the b)PB data set, while the smallest is seen in the a)SB data set.

In the following plot we show the relative frequency of insertions in exons according to the 'Acembly' annotation. The bars grouped over the label “In Exon” give the relative frequency of integration events (compared to control sites) between bases located in exons according to the Acembly annotation, while the label “Not in Exon” give the relative frequency of integration events (compared to control sites) between bases not located in exons according to the Acembly gene annotation.

Here is the table of coefficients of the log ratio of intensities for true insertion sites versus control insertion sites along with their standard errors, z statistics, and p-values for each data set:

	coef	se	z	p
a)SB	-0.1540	0.0302	-5.09	3.60e-07
b)PB	0.0850	0.0307	2.77	5.63e-03
c)TC	0.0618	0.0280	2.21	2.74e-02

The model on which these coefficients are based include terms for whether the site is in a gene or not. Thus, the effect shown as "In Exon" is net of that due to being in a gene. Note that in the barplot above the 'Not in Exon' bars include both the introns and intergenic regions, so the impression given by the
table may differ from that for the barplot.

2.2 refGenes

Here we examine the preference that insertions have for genes. In the following plot we show the relative frequency of insertions in genes according to the 'refGene' annotation.

![Barplot showing frequency of insertions in genes](image)

It seems evident that there is a strong tendency for insertions to occur in genes. A formal test of significance bears this out with a p-value of $< 2.22e^{-16}$. Also, it appears that the tendency of different viruses to integrate into genes varies, and a test for this hypothesis attains $< 2.22e^{-16}$. Here is the table of coefficients of the log ratio of intensities for true insertion sites versus control insertion sites along with their standard errors, z statistics, and p-values for each data set:

coeff	se	z	p	
a)SB	0.255	0.0134	19.1	3.29e-81
b)PB	0.465	0.0152	30.5	7.10e-205
c)TC	0.447	0.0139	32.1	8.25e-226

As is evident, there are some differences in the coefficients. The largest coefficient is seen in the b)PB data set, while the smallest is seen in the a)SB data set.
In the following plot we show the relative frequency of insertions in exons according to the 'refGene' annotation.

Here is the table of coefficients of the log ratio of intensities for true insertion sites versus control insertion sites along with their standard errors, z statistics, and p-values for each data set:

	coef	se	z	p
a)SB	-0.248	0.0501	-4.95	7.48e-07
b)PB	-0.183	0.0530	-3.45	5.62e-04
c)TC	-0.224	0.0473	-4.73	2.30e-06

The model on which these coefficients are based include terms for whether the site is in a gene or not. Thus, the effect shown as "In Exon" is net of that due to being in a gene.

2.3 ensGenes

Here we examine the preference that insertions have for genes. In the following plot we show the relative frequency of insertions in genes according to the 'ensGene' annotation.
It seems evident that there is a strong tendency for insertions to occur in genes. A formal test of significance bears this out with a p-value of $< 2.22e^{-16}$. Also, it appears that the tendency of different viruses to integrate into genes varies, and a test for this hypothesis attains $< 2.22e^{-16}$. Here is the table of coefficients of the log ratio of intensities for true insertion sites versus control insertion sites along with their standard errors, z statistics, and p-values for each data set:

	coef	se	z	p
a)SB	0.263	0.0135	19.5	7.30e-85
b)PB	0.467	0.0153	30.6	2.47e-205
c)TC	0.478	0.0140	34.2	1.08e-255

As is evident, there are some differences in the coefficients. The largest coefficient is seen in the c)TC data set, while the smallest is seen in the a)SB data set.

In the following plot we show the relative frequency of insertions in exons according to the 'ensGene' annotation.
Here is the table of coefficients of the log ratio of intensities for true insertion sites versus control insertion sites along with their standard errors, z statistics, and p-values for each data set:

	coef	se	z	p
a) SB	-0.239	0.0499	-4.78	1.76e-06
b) PB	-0.237	0.0539	-4.40	1.10e-05
c) TC	-0.221	0.0473	-4.67	3.08e-06

The model on which these coefficients are based include terms for whether the site is in a gene or not. Thus, the effect shown as "In Exon" is net of that due to being in a gene.

2.4 genScan Genes

Here we examine the preference that insertions have for genes. In the following plot we show the relative frequency of insertions in genes according to the 'genScan' annotation.
It seems evident that there is a strong tendency for insertions to occur in genes. A formal test of significance bears this out with a p-value of $1.6525e-05$. Also, it appears that the tendency of different viruses to integrate into genes varies, and a test for this hypothesis attains 0.2766. Here is the table of coefficients of the log ratio of intensities for true insertion sites versus control insertion sites along with their standard errors, z statistics, and p-values for each data set:

	coef	se	z	p
a)SB	0.0433	0.0144	3.000	0.00266
b)PB	0.0161	0.0164	0.984	0.32500
c)TC	0.0502	0.0151	3.330	0.00088

As is evident, there are some differences in the coefficients. The largest coefficient is seen in the c)TC data set, while the smallest is seen in the b)PB data set.

In the following plot we show the relative frequency of insertions in exons according to the 'genScan' annotation.
Here is the table of coefficients of the log ratio of intensities for true insertion sites versus control insertion sites along with their standard errors, z statistics, and p-values for each data set:

	coef	se	z	p
a)SB	-0.5730	0.0651	-8.80	1.35e-18
b)PB	-0.4100	0.0689	-5.96	2.58e-09
c)TC	-0.0881	0.0541	-1.63	1.03e-01

The model on which these coefficients are based include terms for whether the site is in a gene or not. Thus, the effect shown as "In Exon" is net of that due to being in a gene.

2.5 uniGenes

Here we examine the preference that insertions have for genes. In the following plot we show the relative frequency of insertions in genes according to the 'uniGene' annotation.
It seems evident that there is a strong tendency for insertions to occur in genes. A formal test of significance bears this out with a p-value of $< 2.22e^{-16}$. Also, it appears that the tendency of different viruses to integrate into genes varies, and a test for this hypothesis attains $3.1551e^{-10}$. Here is the table of coefficients of the log ratio of intensities for true insertion sites versus control insertion sites along with their standard errors, z statistics, and p-values for each data set:

$$\begin{array}{cccc}
\text{coef} & \text{se} & z & p \\
a)\text{SB} & 0.184 & 0.0134 & 13.7 & 5.97e^{-43} \\
b)\text{PB} & 0.305 & 0.0152 & 20.1 & 7.43e^{-90} \\
c)\text{TC} & 0.284 & 0.0139 & 20.5 & 3.17e^{-93} \\
\end{array}$$

As is evident, there are some differences in the coefficients. The largest coefficient is seen in the b)PB data set, while the smallest is seen in the a)SB data set.

In the following plot we show the relative frequency of insertions in exons according to the 'uniGene' annotation.
Here is the table of coefficients of the log ratio of intensities for true insertion sites versus control insertion sites along with their standard errors, z statistics, and p-values for each data set:

	coef	se	z	p
a)SB	-0.025	0.0372	-0.67	5.03e-01
b)PB	0.496	0.0358	13.90	9.84e-44
c)TC	0.278	0.0336	8.27	1.31e-16

The model on which these coefficients are based include terms for whether the site is in a gene or not. Thus, the effect shown as "In Exon" is net of that due to being in a gene.
2.6 oncogenes

Here we examine the preference that insertions have for oncogenes. In the following plot we show the relative frequency of insertions with 50kb of an oncogene 5’ end.

![Graph depicting oncogene frequency]

A formal test of oncogenic insertion returns p-value of $< 2.22e - 16$. The tendency of different viruses to integrate near oncogenes may vary, and a test for this hypothesis attains $6.8314e - 11$. Here is the table of coefficients of the log ratio of intensities for true insertion sites versus control insertion sites along with their standard errors, z statistics, and p-values for each data set:

	coef	se	z	p
a)SB	-0.188	0.0291	-6.46	1.04e-10
b)PB	-0.441	0.0302	-14.60	2.63e-48
c)TC	-0.419	0.0272	-15.40	1.46e-53

	coef	se	z	p
a)SB	NA	0.0000	NA	NA
b)PB	NA	0.0000	NA	NA
c)TC	NA	0.0000	NA	NA

As is evident, there are some differences in the coefficients. The largest coefficient is seen in the a)SB data set, while the smallest is seen in the b)PB data set.
3 CpG Island Neighborhoods

Here we study the effect of being in the neighborhood of CpG Islands. Following Wu et al [3], who found that the neighborhoods within ±1kb of CpG islands are enriched for MLV insertions, we study such neighborhoods.

3.1 1 kilobase neighborhoods

The following plot shows the effect of being in or within ±1kb of a CpG island:

![Bar chart showing effect of being in or within ±1kb of a CpG island](chart.png)

A formal test of significance comparing the difference attains a p-value of < 2.22e - 16. A test for differences between viruses attains < 2.22e - 16. Here is the table of coefficients of the log ratio of intensities for true insertion sites versus control insertion sites along with their standard errors, z statistics, and p-values for each data set:

	coef	se	z	p
a)SB	-0.618	0.0627	-9.85	6.54e-23
b)PB	1.500	0.0374	40.20	0.00e+00
c)TC	0.881	0.0362	24.30	7.92e-131

The largest coefficient is seen in the b)PB data set, while the smallest is seen in the a)SB data set.
3.2 2 kilobase neighborhoods

The following plot shows the effect of being in or within ±2kb of a CpG island:

A formal test of significance comparing the difference attains a p-value of < 2.22e−16. A test for differences between viruses attains < 2.22e−16. Here is the table of coefficients of the log ratio of intensities for true insertion sites versus control insertion sites along with their standard errors, z statistics, and p-values for each data set:

	coef	se	z	p
a)SB	-0.281	0.0410	-6.85	7.47e−12
b)PB	1.280	0.0301	42.40	0.00e+00
c)TC	0.840	0.0287	29.30	3.00e−188

The largest coefficient is seen in the b)PB data set, while the smallest is seen in the a)SB data set.
3.3 5 kilobase neighborhoods

The following plot shows the effect of being in or within ±5kb of a CpG island:

A formal test of significance comparing the difference attains a p-value of $< 2.22e^{-16}$. A test for differences between viruses attains $< 2.22e^{-16}$. Here is the table of coefficients of the log ratio of intensities for true insertion sites versus control insertion sites along with their standard errors, z statistics, and p-values for each data set:

	coef	se	z	p
a)SB	-0.00575	0.0260	-0.221	8.25e-01
b)PB	0.93400	0.0233	40.100	0.00e+00
c)TC	0.69300	0.0216	32.000	9.31e-225

The largest coefficient is seen in the b)PB data set, while the smallest is seen in the a)SB data set.

3.4 10 kilobase neighborhoods

The following plot shows the effect of being in or within ±10kb of a CpG island:
A formal test of significance comparing the difference attains a p-value of < 2.22e - 16. A test for differences between viruses attains < 2.22e - 16. Here is the table of coefficients of the log ratio of intensities for true insertion sites versus control insertion sites along with their standard errors, z statistics, and p-values for each data set:

	coef	se	z	p
a)SB	0.0883	0.0198	4.46	8.10e-06
b)PB	0.7000	0.0196	35.70	6.63e-279
c)TC	0.5820	0.0179	32.50	4.61e-232

The largest coefficient is seen in the b)PB data set, while the smallest is seen in the a)SB data set.

3.5 25 kilobase neighborhoods

The following plot shows the effect of being in or within ±25kb of a CpG island:
A formal test of significance comparing the difference attains a p-value of $< 2.22e^{-16}$. A test for differences between viruses attains $< 2.22e^{-16}$. Here is the table of coefficients of the log ratio of intensities for true insertion sites versus control insertion sites along with their standard errors, z statistics, and p-values for each data set:

	coef	se	z	p
a)SB	0.166	0.0150	11.1	2.16e-28
b)PB	0.484	0.0163	29.7	2.82e-193
c)TC	0.508	0.0148	34.5	3.69e-260

The largest coefficient is seen in the c)TC data set, while the smallest is seen in the a)SB data set.

3.6 50 kilobase neighborhoods

The following plot shows the effect of being in or within ±50kb of a CpG island:
A formal test of significance comparing the difference attains a p-value of $< 2.22e-16$. A test for differences between viruses attains $< 2.22e-16$. Here is the table of coefficients of the log ratio of intensities for true insertion sites versus control insertion sites along with their standard errors, z statistics, and p-values for each data set:

	coef	se	z	p
a)SB	0.220	0.0135	16.3	7.96e-60
b)PB	0.440	0.0152	28.9	2.43e-183
c)TC	0.516	0.0140	37.0	5.91e-300

The largest coefficient is seen in the c)TC data set, while the smallest is seen in the a)SB data set.
4 Gene Density, Expression 'Density', and CpG Island Density

In this section the association with gene density is examined. For expression analysis, the 'genes' that are counted are the genes represented on the microarray. In addition, we the number of such genes expressed at various levels. The levels are

low.ex Count genes whose expression is in the upper half and divide by number of bases

med.ex Count genes whose expression is in the upper $\frac{1}{8}^{th}$ and divide by number of bases

high.ex Count genes whose expression is in the upper $\frac{1}{16}^{th}$ and divide by number of bases

The bolded terms are used as abbreviations in what follows. The abbreviation dens is used to indicate gene density as number of genes per base.

4.1 25 kilobase Window

In the barplot that follows we examine the association of insertion sites with gene density in a 25 kilobase window surrounding each locus. More such plots will follow and the method of their construction is always to try to divide the data according to the deciles of density. However, it often happens that there is a very skewed distribution of density and even the 90^{th} percentile is zero. In that case, the barplots simply show the sites for which the density is zero and those for which it is non-zero. If there are fewer than ten groups of bars, the groupings contain ten percent of the sites each except for the leftmost grouping which will contain all of the remaining sites.

Also note that the title of the plot contains clues as to its content; the prefix indicates the type of variable studied while the suffix indicates the window width in the number of bases. The p-value given is the result of fitting a cubic polynomial to the gene density values.

The following expression data and probe set were used for this report:

[1] "ledgf293TS-HU133Plus2"

[1] "HG-U133"

	coef	se	z	p
a)SB	0.204	0.0151	13.5	1.12e-41
b)PB	0.374	0.0168	22.3	3.81e-110
c)TC	0.417	0.0151	27.6	9.99e-168

22
Here are the results for expression density. First, we count just genes that are in the upper half.

\[
\begin{align*}
\text{coef} & \quad \text{se} & \quad z & \quad p \\
a) \text{SB} & 0.223 & 0.0186 & 12.0 & 4.63e-33 \\
b) \text{PB} & 0.401 & 0.0203 & 19.7 & 9.03e-87 \\
c) \text{TC} & 0.464 & 0.0181 & 25.6 & 5.19e-144
\end{align*}
\]
Now we count genes in the upper $1/8^{th}$:

Density data too sparse for barplot

	coef	se	z	p	
a)	SB	0.235	0.0239	9.85	7.00e-23
b)	PB	0.492	0.0255	19.30	4.63e-83
c)	TC	0.521	0.0228	22.80	1.56e-115
And here we count genes in the upper 1/16th:

Density data too sparse for barplot

	coef	se	z	p	
a)	SB	0.245	0.0316	7.76	8.63e-15
b)	PB	0.585	0.0328	17.90	2.66e-71
c)	TC	0.603	0.0291	20.70	4.84e-95
Here the effect of density of CpG islands is studied:

	coef	se	z	p
a)SB	0.164	0.0151	10.9	1.68e-27
b)PB	0.486	0.0164	29.7	3.11e-194
c)TC	0.507	0.0148	34.3	6.51e-258

4.2 50 kilobase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 50 kilobase window surrounding each locus. First, we count just the number of genes represented on the chip.
Coefficients and Significance

Coefficients

- **a)SB**: 0.234, se = 0.0135, z = 17.3, p = 3.84e-67
- **b)PB**: 0.420, se = 0.0153, z = 27.4, p = 1.88e-165
- **c)TC**: 0.456, se = 0.0139, z = 32.7, p = 1.72e-234

Diagram

- **dens.50k**

 - **Inserts** vs **Matches**
 - **[0,2e−05]**
 - **[2e−05,4e−05]**
 - **[4e−05,0.00026]**
 - Colors:
 - Red: a)SB
 - Green: b)PB
 - Blue: c)TC
Here are the results for expression density. First, we count just genes that are in the upper half.

	coef	se	z	p
a)SB	0.256	0.0153	16.7	9.65e-63
b)PB	0.439	0.0170	25.9	1.89e-147
c)TC	0.490	0.0153	32.0	5.64e-225
Now we count genes in the upper $1/8^{th}$:

\[
\begin{array}{cccc}
\text{coef} & \text{se} & z & p \\
a)\text{SB} & 0.240 & 0.0187 & 12.9 & 8.31e-38 \\
b)\text{PB} & 0.505 & 0.0202 & 25.1 & 1.60e-138 \\
c)\text{TC} & 0.493 & 0.0182 & 27.1 & 1.64e-161 \\
\end{array}
\]
And here we count genes in the upper $\frac{1}{16^{th}}$:

Density data too sparse for barplot

	coef	se	z	p
a) SB	0.218	0.0239	9.1	8.94×10^{-20}
b) PB	0.530	0.0251	21.1	3.87×10^{-99}
c) TC	0.520	0.0226	23.0	3.33×10^{-117}
Here the effect of density of CpG islands is studied:

In the barplot that follows we examine the association of insertion sites with expression density in a 100 kilobase window surrounding each locus. First, we count just the number of genes represented on the chip.

4.3 100 kilobase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 100 kilobase window surrounding each locus. First, we count just the number of genes represented on the chip.
\begin{table}
\centering
\begin{tabular}{lccccc}
\hline
 & coef & se & z & p \\
\hline
a)SB & 0.261 & 0.0133 & 19.6 & 2.49e-85 \\
b)PB & 0.438 & 0.0153 & 28.6 & 1.40e-179 \\
c)TC & 0.502 & 0.0141 & 35.6 & 1.47e-277 \\
\hline
\end{tabular}
\end{table}
Here are the results for expression density. First, we count just genes that are in the upper half.

	coef	se	z	p
a)SB	0.290	0.0137	21.2	4.65e-100
b)PB	0.493	0.0154	31.9	5.86e-224
c)TC	0.560	0.0141	39.8	0.00e+00
Now we count genes in the upper $1/8^{th}$:

med.ex.100k

Interval	SB	PB	TC
$[0,3.33\times10^{-06})$	0.274	0.530	0.550
$[3.33\times10^{-06},1\times10^{-05})$	0.0154	0.0170	0.0153
$[1\times10^{-05},8.17\times10^{-05})$	17.8	31.3	35.9
p	1.14e-70	2.16e-214	8.88e-283
And here we count genes in the upper $1/16^{th}$:

coefficient standard error z-score p-value
a)SB 0.245 0.0186 13.1 1.97e-39
b)PB 0.516 0.0200 25.9 2.02e-147
c)TC 0.532 0.0179 29.6 4.96e-193
Here the effect of density of CpG islands is studied:

![Barplot](image)

Density Range	Coef	se	z	p	
$[0,5e^{-6}]$	a)SB	0.215	0.0139	15.5	2.85e-54
	b)PB	0.321	0.0156	20.6	4.82e-94
	c)TC	0.422	0.0141	29.9	4.56e-197

4.4 250 kilobase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 250 kilobase window surrounding each locus. First, we count just the number of genes represented on the chip.
a)SB	0.300	0.0134	22.4	1.65e-111
b)PB	0.448	0.0153	29.3	3.77e-189
c)TC	0.546	0.0140	39.1	0.00e+00
Here are the results for expression density. First, we count just genes that are in the upper half.

![Bar chart showing expression density](chart.png)

	coef	se	z	p
a)SB	0.317	0.0134	23.8	6.84e-125
b)PB	0.503	0.0154	32.7	5.07e-235
c)TC	0.615	0.0142	43.3	0.00e+00
Now we count genes in the upper $1/8^{th}$:

\[
[0, 8e^{-07}), [2.67e-06, 4e^{-06}), [8e^{-06}, 5.48e^{-05})
\]

\begin{tabular}{lrrrr}
\text{coef} & \text{se} & \text{z} & \text{p} \\
\hline
a)SB & 0.322 & 0.0135 & 23.9 & 1.14e-126 \\
b)PB & 0.549 & 0.0153 & 35.9 & 1.11e-282 \\
c)TC & 0.605 & 0.0140 & 43.2 & 0.00e+00 \\
\end{tabular}
And here we count genes in the upper $1/16^{th}$:

\[
\begin{array}{cccc}
\text{coef} & \text{se} & z & p \\
a)SB & 0.282 & 0.0146 & 19.3 & 3.89e-83 \\
b)PB & 0.463 & 0.0162 & 28.5 & 7.83e-179 \\
c)TC & 0.505 & 0.0146 & 34.5 & 1.76e-260 \\
\end{array}
\]
Here the effect of density of CpG islands is studied:

\[
data = \begin{array}{cccc}
0.2 & 0.0 & 0.1 & 0.1 \\
1.0 & 0.5 & 1.0 & 1.5 \\
0.0 & 0.5 & 1.0 & 2.0 \\
\end{array}
\]

In the barplot that follows we examine the association of insertion sites with expression density in a 500 kilobase window surrounding each locus. First, we count just the number of genes represented on the chip.

coef	se	z	p	
a)SB	0.292	0.0133	21.9	4.53e-106
b)PB	0.375	0.0152	24.6	9.57e-134
c)TC	0.514	0.0141	36.5	4.07e-291

4.5 500 kilobase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 500 kilobase window surrounding each locus. First, we count just the number of genes represented on the chip.
a) SB 0.343 0.0133 25.7 2.19e-145
b) PB 0.480 0.0153 31.3 7.10e-215
c) TC 0.588 0.0142 41.4 0.00e+00
Here are the results for expression density. First, we count just genes that are in the upper half.

	coef	se	z	p
a)SB	0.360	0.0134	27.0	4.40e-160
b)PB	0.502	0.0154	32.6	1.68e-233
c)TC	0.645	0.0143	45.2	0.00e+00
Now we count genes in the upper $1/8^{th}$:

![Bar chart showing med.ex.500k](chart.png)

	coef	se	z	p
a)SB	0.323	0.0133	24.2	9.83e-130
b)PB	0.496	0.0153	32.4	1.75e-230
c)TC	0.589	0.0141	41.8	0.00e+00
And here we count genes in the upper $1/16^{th}$:

	coef	se	z	p
a)SB	0.297	0.0134	22.1	1.12e-108
b)PB	0.463	0.0152	30.4	3.01e-203
c)TC	0.558	0.0140	40.0	0.00e+00
Here the effect of density of CpG islands is studied:

```
coef  se   z     p
a)SB  0.288 0.0133 21.6  8.69e-104
b)PB  0.318 0.0152 20.9  9.13e-97
c)TC  0.473 0.0140 33.7  8.28e-249
```

4.6 1 megabase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 1 megabase window surrounding each locus. First, we count just the number of genes represented on the chip.
	coef	se	z	p
a)SB	0.320	0.0133	24.1	3.99e-128
b)PB	0.400	0.0153	26.2	5.57e-151
c)TC	0.549	0.0141	38.9	0.00e+00
Here are the results for expression density. First, we count just genes that are in the upper half.

	coef	se	z	p
a)SB	0.339	0.0134	25.4	4.39e-142
b)PB	0.430	0.0153	28.1	2.66e-173
c)TC	0.607	0.0143	42.6	0.00e+00

cof: coefficient; se: standard error; z: z-score; p: p-value
Now we count genes in the upper $1/8$:

![Bar chart with data points]

Insert/Match	a)SB	b)PB	c)TC
[0.375e-07]	0.334	0.447	0.597
[1.37e-06,2e-06]	0.0134	0.0153	0.0143
[3.88e-06,5.73e-06]	25.0	29.2	41.9
z	1.29e-137	5.53e-187	0.00e+00
p			

Table: Coefficient (coef), Standard Error (se), z Value, and p Value
And here we count genes in the upper 1/16th:

	coef	se	z	p
a) SB	0.295	0.0133	22.1	3.13e-108
b) PB	0.392	0.0152	25.7	4.39e-146
c) TC	0.525	0.0141	37.3	2.16e-304
Here the effect of density of CpG islands is studied:

In the barplot that follows we examine the association of insertion sites with expression density in a 2 megabase window surrounding each locus. First, we count just the number of genes represented on the chip.

4.7 2 megabase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 2 megabase window surrounding each locus. First, we count just the number of genes represented on the chip.
a) SB 0.319 0.0134 23.9 5.49e-126
b) PB 0.360 0.0153 23.6 8.66e-123
c) TC 0.533 0.0141 37.7 0.00e+00
Here are the results for expression density. First, we count just genes that are in the upper half.

![bar chart showing expression density for different conditions]

	coef	se	z	p
a)SB	0.314	0.0134	23.5	3.31e-122
b)PB	0.360	0.0153	23.6	8.12e-123
c)TC	0.537	0.0142	37.9	0.00e+00
Now we count genes in the upper $1/8^{th}$:

\begin{table}
\centering
\begin{tabular}{lcccc}
\hline
 & coef & se & z & p \\
SB & 0.308 & 0.0134 & 23.1 & 9.46e-118 \\
PB & 0.368 & 0.0153 & 24.1 & 2.06e-128 \\
TC & 0.511 & 0.0141 & 36.2 & 5.51e-287 \\
\hline
\end{tabular}
\end{table}
And here we count genes in the upper $1/16^{th}$:

\[
\begin{align*}
0.0 & \quad 0.5 & \quad 1.0 & \quad 1.5 & \quad 2.0 \\
\text{inserts} & \quad \text{matches} \\
0.271\text{e-07} & \quad 0.75\text{e-07} & \quad 1.0\text{e-06} & \quad 1.93\text{e-06} & \quad 2.83\text{e-06} \\
\end{align*}
\]

thresh: 2M

	coef	se	z	p
a)SB	0.281	0.0133	21.1	1.03e-98
b)PB	0.331	0.0152	21.8	2.36e-105
c)TC	0.477	0.0140	33.9	2.01e-252
Here the effect of density of CpG islands is studied:

In the barplot that follows we examine the association of insertion sites with expression density in a 4 megabase window surrounding each locus. First, we count just the number of genes represented on the chip.

	coef	se	z	p
a)SB	0.270	0.0133	20.20	6.68e-91
b)PB	0.143	0.0151	9.42	4.50e-21
c)TC	0.375	0.0139	26.90	1.49e-159

4.8 4 megabase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 4 megabase window surrounding each locus. First, we count just the number of genes represented on the chip.
	coef	se	z	p
a)SB	0.316	0.0134	23.6	1.51e-123
b)PB	0.272	0.0152	17.9	1.97e-71
c)TC	0.457	0.0141	32.5	1.67e-231
Here are the results for expression density. First, we count just genes that are in the upper half.

	coef	se	z	p
a)SB	0.321	0.0134	24.0	3.00e-127
b)PB	0.271	0.0152	17.8	1.09e-70
c)TC	0.489	0.0141	34.7	1.88e-263
Now we count genes in the upper $1/8^{th}$:

```
|   | 0.0  | 0.5  | 1.0  | 1.5  | 2.0  |
|---|------|------|------|------|------|
|   |      |      |      |      |      |
| m |        |      |      |      |      |
| e |        |      |      |      |      |
| d |        |      |      |      |      |
```

```
coef  se  z     p
a)SB   0.296 0.0134  22.2  8.20e-109
b)PB   0.260 0.0152  17.1  7.65e-66
 c)TC   0.466 0.0141  33.1  5.86e-240
```
And here we count genes in the upper $1/16^{th}$:

Inserts	matches	
[0,1.25e-07)	[5e-07,6.75e-07)	[1.36e-06,1.77e-06)

	coef	se	z	p
a)SB	0.285	0.0133	21.4	2.49e-101
b)PB	0.238	0.0152	15.7	1.45e-55
c)TC	0.421	0.0140	30.0	5.45e-198
Here the effect of density of CpG islands is studied:

\[
\begin{align*}
&\text{coef} & \text{se} & \text{z} & \text{p} \\
\text{a)SB} & 0.233 & 0.0133 & 17.50 & 2.55e-68 \\
\text{b)PB} & 0.073 & 0.0151 & 4.82 & 1.43e-06 \\
\text{c)TC} & 0.331 & 0.0139 & 23.80 & 8.14e-125 \\
\end{align*}
\]

4.9 8 megabase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 8 megabase window surrounding each locus. First, we count just the number of genes represented on the chip.
a) SB 0.280 0.0134 21.0 6.66e-98
b) PB 0.200 0.0152 13.2 8.49e-40
c) TC 0.395 0.0140 28.1 2.44e-174
Here are the results for expression density. First, we count just genes that are in the upper half.

	coef	se	z	p
a)SB	0.295	0.0134	22.1	2.42e-108
b)PB	0.197	0.0151	13.0	1.42e-38
c)TC	0.393	0.0140	28.0	4.24e-173

low.ex.8M
Now we count genes in the upper \(1/8^{th}\):

ko	P	Z	z	p
a)SB	0.283	0.0134	21.2	1.76e-99
b)PB	0.211	0.0152	13.9	5.72e-44
c)TC	0.402	0.0140	28.7	7.99e-181
And here we count genes in the upper $1/16^{th}$:

\begin{table}
\begin{tabular}{cccc}
\hline
coef & se & z & p \\
\hline
a)SB & 0.270 & 0.0133 & 20.2 & 5.94e-91 \\
b)PB & 0.209 & 0.0151 & 13.8 & 2.42e-43 \\
c)TC & 0.375 & 0.0140 & 26.8 & 1.07e-157 \\
\hline
\end{tabular}
\end{table}
Here the effect of density of CpG islands is studied:

![cpg.dens.8M](image)

In the barplot that follows we examine the association of insertion sites with expression density in a 16 megabase window surrounding each locus. First, we count just the number of genes represented on the chip.

	coef	se	z	p
a) SB	0.197	0.0133	14.80	1.25e-49
b) PB	0.033	0.0151	2.18	2.90e-02
c) TC	0.243	0.0139	17.50	2.90e-68

4.10 16 megabase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 16 megabase window surrounding each locus. First, we count just the number of genes represented on the chip.
	coef	se	z	p
a) SB	0.231	0.0133	17.40	1.06e-67
b) PB	0.123	0.0151	8.12	4.83e-16
c) TC	0.306	0.0139	21.90	1.14e-106
Here are the results for expression density. First, we count just genes that are in the upper half.

\[
\begin{array}{cccc}
\text{coef} & \text{se} & \text{z} & \text{p} \\
\text{a)SB} & 0.247 & 0.0133 & 18.5 & 2.07e-76 \\
\text{b)PB} & 0.152 & 0.0151 & 10.0 & 1.14e-23 \\
\text{c)TC} & 0.335 & 0.0140 & 23.9 & 1.04e-126 \\
\end{array}
\]
Now we count genes in the upper $1/8$th:

\[
\begin{align*}
\text{med.ex.16M} & \\
\text{inserts} & \text{matches} & \\
[1.25e-07, 8.7e-07] & [1.59e-06, 1.84e-06] & [3.07e-06, 4.08e-06] \\
a)SB & b)PB & c)TC
\end{align*}
\]

	coef	se	z	p
a)SB	0.263	0.0133	19.7	9.20e-87
b)PB	0.164	0.0151	10.8	2.05e-27
c)TC	0.341	0.0140	24.4	2.24e-131
And here we count genes in the upper \(1/16^{th}\):

\[
\begin{align*}
\text{coef} & & \text{se} & & \text{z} & & \text{p} \\
\text{a)SB} & & 0.255 & & 0.0133 & & 19.1 & & 2.82\times 10^{-81} \\
\text{b)PB} & & 0.152 & & 0.0151 & & 10.0 & & 1.06\times 10^{-23} \\
\text{c)TC} & & 0.315 & & 0.0140 & & 22.5 & & 2.96\times 10^{-112}
\end{align*}
\]
Here the effect of density of CpG islands is studied:

![Barplot showing association between insertion sites and expression density](image)

	coef	se	z	p
a) SB	0.1520	0.0133	11.40	3.15e-30
b) PB	0.0134	0.0151	0.89	3.74e-01
c) TC	0.1930	0.0139	13.90	4.26e-44

4.11 32 megabase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 32 megabase window surrounding each locus. First, we count just the number of genes represented on the chip.
dens.32M

	coef	se	z	p
a)SB	0.214	0.0133	16.10	1.47e-58
b)PB	0.112	0.0151	7.44	1.01e-13
c)TC	0.257	0.0139	18.50	4.97e-76
Here are the results for expression density. First, we count just genes that are in the upper half.

	coef	se	z	p
a)SB	0.222	0.0133	16.70	1.75e−62
b)PB	0.140	0.0151	9.25	2.28e−20
c)TC	0.276	0.0139	19.80	3.33e−87
Now we count genes in the upper $1/8^{th}$:

coef	se	z	p	
a)SB	0.229	0.0133	17.20	1.47e-66
b)PB	0.139	0.0151	9.24	2.53e-20
c)TC	0.271	0.0139	19.50	1.21e-84
And here we count genes in the upper $1/16^{th}$:

high.ex.32M

	coef	se	z	p
a)SB	0.257	0.0133	19.3	6.74e-83
b)PB	0.154	0.0151	10.2	2.27e-24
c)TC	0.300	0.0139	21.5	2.16e-102
Here the effect of density of CpG islands is studied:

```
cpg.dens.32M

| coef | se  | z    | p     | |
|---|---|---|---|---|
| a)SB | 0.168 | 0.0133 | 12.70 | 1.10e-36 |
| b)PB | 0.040  | 0.0151 | 2.65  | 7.96e-03  |
| c)TC | 0.206  | 0.0139 | 14.90 | 6.29e-50  |
```
5 Juxtaposition with Gene Start and End Positions

5.1 Acembly Annotations

In this section we study the effect of juxtaposition in terms of gene start and end positions. The first barplot shows the effect of gene width for those insertions that are located within an Acembly gene. The table following the barplot shows the p-values for a test of the hypothesis that the proportions in each of the categories that define the bars are equal in the insertions and their matches. This p-value is obtained from the $5 \times 2 \times k$ table of counts defined by gene width category, insertion/match status, and stratum (consisting of an insertion and its matched sites) using a likelihood ratio test for the hypothesis of no association between gene width category and insertion/match status. The test used compared the log-linear model [1] with all two-way configurations to that with no gene width category and insertion/match status configuration.

The next plot uses the width of a non-gene region for insertions that fall into such regions.
The next plot studies the distance to the nearest boundary between a gene and a non-gene region. The distance is expressed as a fraction of the length of the region. Thus, '0.25' refers to one quarter of the distance from the site to nearest boundary divided by the total width of the region.
This plot studies the effect of nearness to the beginning of a transcript. For sites in genes, it is the distance to the start of the gene divided by the width of the gene. For other sites it is the distance from the site to the nearer gene if that gene boundary is also a transcription starting point. Locations near '0' are relatively near the beginning of transcription, while those near '1' are near the termination of the transcript.
`acembly cut(eval(start.dist), seq(0, 1, by = 0.2), include.lower =`
5.2 RefSeq Annotations

Gene width), quantile(eval(gene.width), seq(0, 1, by = 0.2), na.rm =

![Graph showing gene width distribution for different conditions]

- a) SB
- b) PB
- c) TC

a) SB b) PB c) TC
1.05e-34 1.12e-34 1.85e-78
ther.width), quantile(eval(other.width), seq(0, 1, by = 0.2), na.rm =

![Bar chart showing inserts and matches for different ranges of widths]

- a)SB
- b)PB
- c)TC

`refSeq cut(eval(other.width), quantile(eval(other.width), seq(0, 1, by = 0.2), na.rm = T), include.lower = T)`

Range	inserts	matches
(69.939e+04]	1.4	1.0
(2.83e+05, 6.81e+05]	1.5	2.0
(1.44e+06, 2.15e+07]	0.0	0.0

- a)SB: 2.60e-128
- b)PB: 2.16e-247
- c)TC: 0.00e+00
refSeq cut(eval(boundary.dist), seq(0, 1/2, by = 0.1), include.lower)

a)SB b)PB c)TC

1.01e-01 6.31e-122 1.03e-60
refSeq cut(eval(start.dist), seq(0, 1, by = 0.2), include.lower = 1)

![Bar chart](image)

a)SB b)PB c)TC
6.07e-01 9.91e-82 5.45e-42
5.3 genScan Annotations

\texttt{genScan}(\texttt{cut}(\texttt{eval(gene.width)}, \texttt{quantile(\texttt{eval(gene.width)}, \texttt{seq(0, 1, by = 0.2)}, \texttt{na.rm = T)}, \texttt{include.lower = T)})

\begin{figure}
\centering
\includegraphics[width=\textwidth]{bar_chart.png}
\caption{Bar chart showing \texttt{SB}, \texttt{PB}, and \texttt{TC} for different gene widths.}
\end{figure}

\begin{itemize}
\item a) SB
\item b) PB
\item c) TC
\end{itemize}

5.45e-18 1.17e-35 3.02e-56
other.width), quantile(eval(other.width), seq(0, 1, by = 0.2), na.rm = T)

a)SB	b)PB	c)TC
1.26e-23	2.99e-101	2.02e-106
enscan cut(eval(boundary.dist), seq(0, 1/2, by = 0.1), include.lower = T)

a)SB b)PB c)TC

2.29e-01 1.19e-29 4.50e-13
genScan cut(eval(start.dist), seq(0, 1, by = 0.2), include.lower =

![Bar chart]

- a)SB
- b)PB
- c)TC

Insert Matches	0.0	0.2	0.4	0.6	0.8
a)SB	1.06e-03	1.83e-18	5.04e-13		
b)PB	1.83e-18	5.04e-13	1.06e-03		
c)TC	5.04e-13	1.06e-03	1.83e-18		
5.4 uniGene Annotations

```r
gene.width, quantile(eval(gene.width), seq(0, 1, by = 0.2), na.rm = T), include.lower = T
```

![Bar chart showing inserts and matches for a) SB, b) PB, and c) TC across different gene width ranges.]

- a) SB: 5.45e-18
- b) PB: 1.17e-35
- c) TC: 3.02e-56
other.width), quantile(eval(other.width), seq(0, 1, by = 0.2), na.rm = T)
niGene cut(eval(boundary.dist), seq(0, 1/2, by = 0.1), include.low)

a)SB b)PB c)TC
2.29e-01 1.19e-29 4.50e-13
uniGene cut(eval(start.dist), seq(0, 1, by = 0.2), include.lower =

![Bar chart](chart.png)

a)SB b)PB c)TC

1.06e-03 1.83e-18 5.04e-13
6 GC content

Here we study the effect of GC content on insertion. The GC content is taken from the Human Genome Draft at GoldenPath from the table http://genome.ucsc.edu/goldenPath/hg18/database/gc5Base.txt.gz.

Following the plot is a table of fitted coefficients based on splitting the GC percent data at the median.

\[
\begin{array}{cccc}
\text{gcpct} & \text{a)SB} & \text{b)PB} & \text{c)TC} \\
\hline
\text{coef} & -0.00835 & 0.17100 & 0.32100 \\
\text{se} & 0.0134 & 0.0152 & 0.0141 \\
\text{z} & -0.624 & 11.300 & 22.800 \\
\text{p} & 5.33e-01 & 2.19e-29 & 5.18e-115 \\
\end{array}
\]

References

[1] Yvonne M.M. Bishop, Stephen E. Fienberg, and Paul W. Holland. *Discrete multivariate analyses: Theory and practice*(MIT Press, 1975).

[2] P. McCullagh and John A. Nelder. *Generalized linear models.* (Chapman & Hall ltd, 1999).

[3] Xiaolin Wu, Yuan Li, Bruce Crise, Shawn M. Burgess “Transcription Start Regions in the Human Genome Are Favored Targets for MLV Integration,” *Science, 300*(5626), (June 2003): 1749-1751.