Evidence for $e^+e^-\to\gamma\chi_{c1,2}$ at center-of-mass energies from 4.009 to 4.360 GeV*

M. Ablikim$^{(a)}$ 1 M. N. Achasov$^{(a)}$ 2 X. C. Ai$^{(a)}$ 1 O. Albayrak 1 M. Albrecht 3 D. J. Ambrose 3
A. Amoroso 47,47A,47C F. F. An$^{(a)}$ 2 Q. An$^{(a)}$ 4 J. Z. Bai$^{(a)}$ 1 R. Baldini Ferroli 9,47A
Y. Ban$^{(a)}$ 10 D. W. Bennett 18 J. V. Bennett 12 M. Bertani 18,47A D. Bettoni 20,4 J. M. Bian 22
F. Bianchi 47,47A,47C E. Boger 22,4 O. Bondarenko 24 I. Boyko 22 R. A. Briere 4 H. Cai$^{(a)}$ 26 X. Cai$^{(a)}$ 26
O. Cakir 39,4 A. Calcaterra 18,4 G. F. Cao$^{(a)}$ 27 S. A. Cetin 39 J. F. Chang$^{(a)}$ 1 G. Chelkovskii 21
G. Chen$^{(a)}$ 1 H. S. Chen 1 H. Y. Chen 2 J. C. Chen 1 M. L. Chen 1 C. Chen 1 16
S. J. Chen$^{(a)}$ 3 X. Chen 28 X. Chen 3 1 X. R. Chen 27 Y. B. Chen 25 1 H. P. Cheng 27
X. X. Chu$^{(a)}$ 30 G. Cinabro 20,4 D. Cronin-Hennessy 22 H. L. Dai$^{(a)}$ 33 J. P. Dai 27
A. Dheyssy 17 D. Dedovich 22 Z. Y. Deng 1 A. Denig 21 I. Denysenko 22 M. Destefanis 47,47A,47C
F. De Mori 47,47A,47C Y. Ding$^{(a)}$ 1 26 C. Dong 29 J. Dong$^{(a)}$ 1 L. Y. Dong 29
M. Y. Dong 29 S. X. Du 29 P. F. Duan 29 J. Z. Fan 29 J. Fang 29 J. Fang$^{(a)}$ 29
S. S. Fang 29 X. Fang 29 Y. Fang 29 L. Fava 47,47B,47C F. Feldbauer 21 G. Felli 18,47A
C. Q. Feng$^{(a)}$ 26 E. Fioravanti 20,4 M. Fritsch$^{(a)}$ 21 32 C. D. Fu$^{(a)}$ 21 1 Y. Gao 21 1
Z. Gao$^{(a)}$ 21 1 I. Garzia 21 K. Gotz 21 9 W. X. Gong 21 1 Y. Gradl 21 9
M. H. Gu 21 1 T. Gu$^{(a)}$ 21 1 Y. H. Guan 21 1 A. Q. Guo 21 1 L. B. Guo 21 1
T. Guo 21 1 Y. Guo$^{(a)}$ 21 1 Y. P. Guu 21 1 Z. Hadad 21 1 A. Hafner 21 1 S. Han 21 9
F. A. Harris 1 5 K. L. He 21 1 Z. Y. He$^{(a)}$ 21 1 Y. K. Heng 21 1 Z. L. Hou 21
C. Hu 21 1 M. H. Hu 21 1 J. F. Hu 21 1 T. Hu 21 1 Y. Hu$^{(a)}$ 21 1 M. Huang 21 1
G. S. Huang 21 1 H. P. Huang 21 1 X. T. Huang 21 1 J. S. Huang 21 1
Y. Huang 21 1 Q. Ji 21 1 Q. P. Ji 21 1 X. B. Ji 21 1 X. L. Ji 21
L. L. Jiang 21 1 W. J. Jiang 21 1 X. S. Jiang 21 1 J. B. Jiao 21 1 J. Zhao 21 1
D. P. Jin 21 1 S. Jin$^{(a)}$ 21 1 T. Johansson 48 A. Julin 48 2 K. Kalantar-Nayestanaki 21 4
X. S. Kang$^{(a)}$ 21 1 M. Kavatsyuk 24 B. C. Ke 24 R. Kliemt 13 B. Kloss 21 4 O. B. Kocolu 19,19B,19d 4
M. Kornicer 21 4 W. Kuehn 23 A. Kupsc 28 W. Lai$^{(a)}$ 23 1 J. S. Lange 23 1 M. Lara 18 8 P. Larin 13
C. H. Li 21 1 C. Cheng 21 1 D. M. Li 21 1 F. Li$^{(a)}$ 21 1 G. Li$^{(a)}$ 21 1 H. B. Li$^{(a)}$ 21 1
J. C. Li 21 1 J. Li$^{(a)}$ 21 1 K. Li$^{(a)}$ 21 1 K. Li 21 1 P. R. Li$^{(a)}$ 21 1 T. Li 21 1
W. D. Li 21 1 W. G. Li 21 1 X. L. Li 21 1 X. M. Li 21 1 X. N. Li 21 1
X. Q. Li$^{(a)}$ 21 1 Z. B. Li$^{(a)}$ 21 1 H. Liang 21 1 Y. F. Liang 21 1 Y. T. Liang 21 1
G. R. Liao 21 1 D. X. Lin 21 1 B. J. Liu 21 1 C. L. Liu 21 1 C. X. Liu 21 1
F. H. Liu 21 1 F. Fang 21 1 F. Feng 21 1 H. B. Liu 21 1 H. H. Liu 21 1

Received 25 October 2014

*Supported by National Key Basic Research Program of China (2015CB856700), Joint Funds of National Natural Science Foundation of China (11079008, 11179007, 11232201, 11332201, 11232107), National Natural Science Foundation of China (NSFC) (10935007, 11121092, 11125525, 11235011, 11325544, 11335008), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Development of Turkey (DPT2006R-120470), Russian Foundation for Basic Research (14-07-91152), U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U. S. National Science Foundation, University of Groningen (RuG) and Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R33-2008-000-10155-0)

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd
Abstract: Using data samples collected at center-of-mass energies of $\sqrt{s}=4.009$, 4.230, 4.260, and 4.360 GeV with the BESIII detector operating at the BEPC II collider, we perform a search for the process $e^+e^-\rightarrow \gamma\chi_J$ ($J=0, 1, 2$)
and find evidence for $e^+e^-\rightarrow \gamma \chi_{c1}$ and $e^+e^-\rightarrow \gamma \chi_{c2}$ with statistical significances of 3.0σ and 3.4σ, respectively. The Born cross sections $\sigma^B(e^+e^-\rightarrow \gamma \chi_{cJ})$, as well as their upper limits at the 90% confidence level (C.L.) are determined at each center-of-mass energy.

Key words: heavy quarkonia, decays of hadronic, electron-positron collisions, hadron production by

PACS: 14.40.Pq, 13.25.Gv, 13.66.Bc
DOI: 10.1088/1674-1137/39/4/041001

1 Introduction

The charmonium-like state $Y(4260)$ was first observed in the initial state radiation (ISR) process $e^+e^-\rightarrow \gamma_{ISR}\pi^+\pi^-J/\psi$ by BaBar [1], and later confirmed by the CLEO [2] and Belle [3] experiments. Recently, both BaBar and Belle updated their results with full data sets, the $Y(4260)$ has the quantum numbers $J^{PC}=1^{-}$. However, there seems to be no $c\bar{c}$ slot available for the $Y(4260)$ in the conventional charmonium family [6]. In addition, a number of unusual features, such as a strong coupling to hidden-charm final states, suggest that the $Y(4260)$ is a non-conventional $c\bar{c}$ meson. Possible interpretations of this state can be found in Refs. [7–11], but all need further experimental input.

Most of the previous studies of the $Y(4260)$ have utilized hadronic transitions. Except for the clear signal observed in the $\pi^+\pi^-J/\psi$ decay mode, the Belle experiment failed to find evidence of the $Y(4260)$ via the $e^+e^-\rightarrow \gamma_{ISR}nJ/\psi$ process [12]. Based on 13.2 pb$^{-1}$ of e^+e^- data collected at $\sqrt{s}=4.260$ GeV, the CLEO experiment investigated fourteen hadronic decay channels, but the only charmonium channels with more than 3σ statistical significance are $\pi^+\pi^-J/\psi$, $\pi^0\gamma J/\psi$ and K^+K^-J/ψ [13]. The BESIII Collaboration first observed the process $e^+e^-\rightarrow \gamma X(3872)$ using data samples taken between $\sqrt{s}=4.009$ and 4.420 GeV [14], which strongly supports the existence of the radiative transition decays of the $Y(4260)$. To further understand the nature of the $Y(4260)$ state, an investigation into the radiative transitions between the $Y(4260)$ and other lower mass charmonium states, like the χ_{cJ} ($J=0, 1, 2$), is important [15, 16]. The cross sections of $e^+e^-\rightarrow \gamma \chi_{cJ}$ have been evaluated theoretically within the framework of non-relativistic quantum chromodynamics (NRQCD) [16]. Experimentally, the only existing investigation comes from the CLEO experiment [13], which did not observe a signal. The large data sample collected with the BESIII detector provides a good opportunity to deeply investigate these decay modes, which may shed more light on the properties of the $Y(4260)$.

In this paper, we report on a search for $e^+e^-\rightarrow \gamma \chi_{cJ}$ ($J=0, 1, 2$) based on the large e^+e^- annihilation data samples collected with the BESIII detector at center-of-mass energies (CME) $\sqrt{s}=4.009$, 4.230, 4.260, and 4.360 GeV, where the χ_{cJ} is reconstructed by its $\gamma J/\psi$ decay mode, and the J/ψ is by its decay to $\mu^+\mu^-$. The decay $J/\psi\rightarrow e^+e^-$ is not considered in this analysis due to the high background of Bhabha events. The corresponding luminosities of the data samples at different CME used in this analysis are listed in Table 1.

\sqrt{s}/GeV	luminosity/pb$^{-1}$
4.009	482
4.230	1047
4.260	826
4.360	540

2 BESIII detector and Monte Carlo

The BESIII detector at the BEPCII collider [17] is a large solid-angle magnetic spectrometer with a geometrical acceptance of 93% of 4\pi solid angle consisting of four main components. The innermost is a small-cell, helium-based (40% He, 60% C$_6$H$_{12}$) main drift chamber (MDC) with 43 layers providing an average single-hit resolution of 135 μm. The resulting charged-particle momentum resolution for a 1 T magnetic field setting is 0.5% at 1.0 GeV/c, and the resolution on the ionization energy loss information (dE/dx) is better than 6%. The next detector, moving radially outwards, is a time-of-flight (TOF) system constructed of 5 cm thick plastic scintillators, with 176 detectors of 2.4 m length in two layers in the barrel and 96 fan-shaped detectors in the end-caps. The barrel (end-cap) time resolution of 80 ps (110 ps) provides a 2σ K/π separation for momenta up to 1.0 GeV/c. Continuing outward, we have an electromagnetic calorimeter (EMC) consisting of 6240 CsI(Tl) crystals in a cylindrical barrel structure and two end-caps. The energy resolution at 1.0 GeV is 2.5% (5%) and the position resolution is 6 mm (9 mm) in the barrel (end-caps). Finally, the muon counter consists of 1000 m2 of Resistive Plate Chambers in nine barrel and eight end-cap layers, which provides a 2 cm position resolution.

A GEANT4 [18] based Monte Carlo (MC) simulation software, which includes the geometric description of the detector and the detector response, is used to optimize the event selection criteria, determine the detection efficiency, and estimate the potential backgrounds. Signal MC samples of $e^+e^-\rightarrow \gamma \chi_{cJ}$ are generated for
each CME according to the electric-dipole (E1) transition assumption [19]. Effects of ISR are simulated with KKMC [20] by assuming that $\gamma\chi_{cJ}$ is produced via $Y(4260)$ decays, where the $Y(4260)$ is described by a Breit-Wigner function with resonance parameters from the world average [21]. For the background studies, an ‘inclusive’ $Y(4260)$ MC sample equivalent to 500 pb$^{-1}$ integrated luminosity is generated which includes the $Y(4260)$ resonance, ISR production of the known vector charmonium states, and events driven by QED processes. The known decay modes are generated with EvtGen [19] with branching fractions set to their world average values in the Particle Data Group (PDG) [22], and the remaining events are generated with Lundcharm [23] or PYTHIA [24].

3 Event selection

Charged tracks are reconstructed in the MDC. For each good charged track, the polar angle must satisfy $|\cos \theta| < 0.93$, and the point of closest approach to the interaction point must be within $±10$ cm in the beam direction and within $±1$ cm in the plane perpendicular to the beam direction. The number of good charged tracks is required to be two with a zero net charge. Charged tracks are identified as muons if they have $E/p < 0.35$ and $p > 1.0$ GeV/c, where E is the energy deposited in the EMC and p is the momentum measured by the MDC.

Photon candidates are reconstructed from isolated showers in the EMC that are at least 20 degrees away from any of the charged tracks. To improve the reconstruction efficiency and the energy resolution, the energy deposited in the EMC barrel region ($|\cos \theta| < 0.8$), and 50 MeV in the end-cap region ($0.86 < |\cos \theta| < 0.92$). In order to suppress electronic noise and energy deposits that are unrelated to the event, the EMC time t of the photon candidates must be in coincidence with collision events within the range $0 ≤ t ≤ 700$ ns. At least two photon candidates in the final state are required.

To improve the momentum resolution and to reduce backgrounds, a kinematic fit with five constraints (5C-fit) is performed under the $e^+e^- → γ\mu^+\mu^-$ hypothesis, imposing overall energy and momentum conservation and constraining the invariant mass of $\mu^+\mu^-$ to the nominal J/ψ mass. Candidates with a $\chi^2_{5C} < 40$ are selected for further analysis. If more than one candidate occurs in an event, the one with the smallest χ^2_{5C} is selected. Due to the kinematics of the reaction, the first radiative photon from $e^+e^- → γ\chi_{cJ}$ has a high energy while the second radiative photon from $\chi_{cJ} → γJ/\psi$ has a lower energy at $\sqrt{s} = 4.230$, 4.260, and 4.360 GeV. The invariant mass of the low energy photon and J/ψ, $M_{γJ/ψ}$, is used to search for χ_{cJ} signals. However, for the data sample taken at $\sqrt{s} = 4.009$ GeV, there is an overlap of the energy distributions of the photons from $e^+e^- → γ\chi_{c1,2}$ and from $\chi_{c1,2}$ decays, as shown in Fig. 1. To separate the overlapping photon spectra, the energy of photons from $\chi_{c1,2}$ decays is further required to be less than 0.403 GeV at $\sqrt{s} = 4.009$ GeV.

4 Background study

The potential backgrounds from $e^+e^- → P + J/ψ$, $P → γγ$ ($P = π^0, η$, or $η'$) can be rejected by requiring $|M_{γγ} - M_{π^0}| > 0.025$ GeV/c2, $|M_{γγ} - M_η| > 0.03$ GeV/c2, and $|M_{γγ} - M_{η'}| > 0.02$ GeV/c2, where $M_{γγ}$ is the invariant mass of two selected photons. The background from $e^+e^- → γσJ/ψ(2S), σ(2S) → γ\chi_{cJ}$ is rejected by applying the 5C kinematic fit. After imposing all the selection criteria above, the remaining dominant background is from radiative dimuon events, which is not expected to peak in the $M_{γJ/ψ}$ distribution. This has been validated by a dedicated simulation study. For other remaining
backgrounds, such as \(e^+e^- \rightarrow \pi^0\pi^0J/\psi\), only 3.8 events (normalized to data luminosity) survive and can be neglected.

5 Fit to the mass spectrum

The resulting \(M_{\gamma J/\psi}\) distributions, after applying the above selection criteria, at \(\sqrt{s}=4.009, 4.230, 4.260\) and 4.360 GeV are shown in Fig. 2. An unbinned maximum likelihood fit of the \(M_{\gamma J/\psi}\) distribution is performed to extract the numbers of \(\chi_{cJ}\) signal events. In the fit, the shapes of the \(\chi_{cJ}\) signals are described by double Gaussian functions, where the means and the standard deviations of the double Gaussian functions are determined from a fit to the corresponding signal MC samples at \(\sqrt{s}=4.260\) GeV. These shapes are also used for the other three CME points, as the resolution varies only mildly between \(\sqrt{s}=4.009–4.360\) GeV. This has been validated by MC simulation. Since the dominant background

![Fig. 2. The distribution of \(\gamma J/\psi\) invariant mass, \(M_{\gamma J/\psi}\), and fit results for data at \(\sqrt{s}=4.009\) (a), 4.230 (b), 4.260 (c) and 4.360 GeV (d). The solid lines show the total fit results. The \(\chi_{cJ}\) signals are shown as dashed lines, dotted lines, and dash-dotted lines, for \(J=0, 1,\) and 2, respectively. The backgrounds are indicated by red dashed lines.](image)

Table 2. The results on \(e^+e^- \rightarrow \gamma \chi_{cJ}\) Born cross section measurement. Shown in the table are the significance \(\sigma\), detection efficiency \(\epsilon\), number of signal events from the fits \(N^{\text{obs}}\), radiative correction factor \((1+\delta^r)\), vacuum polarization factor \((1+\delta^v)\), upper limit (at the 90\% confidence level (C.L.)) on the number of signal events \(N^{\text{UP}}\), Born cross section \(\sigma^B\) and upper limit (at the 90\% C.L.) on the Born cross section \(\sigma^{\text{UP}}\) at different CME points.

The first uncertainty of the Born cross section is statistical, and the second systematic.

\(\sqrt{s}/\text{GeV}\)	\(N^{\text{obs}}\)	\(\sigma\)	\(N^{\text{UP}}\)	\(\epsilon\) (%)	\(1+\delta^r\)	\(1+\delta^v\)	\(\sigma^B/\text{pb}\)	\(\sigma^{\text{UP}}/\text{pb}\)
4.009	\(\chi_0\)	7.0±6.6	1.6	18	36.4±0.2	179	65.0±61.3±4.2	
	\(\chi_1\)	4.4±2.6	2.2	9	23.4±0.1	0.738	5.3	2.4±1.4±0.2
	\(\chi_2\)	1.8±1.7	1.5	6	8.7±0.1	18	4.7±4.4±0.6	
4.230	\(\chi_0\)	0.2±2.3	0.0	7	37.2±0.2	26	0.7±8.0±0.1	
	\(\chi_1\)	6.7±4.3	1.9	14	44.4±0.2	0.840	1.7	0.7±0.5±0.1
	\(\chi_2\)	13.3±5.2	2.9	22	42.0±0.2	5.0	2.7±1.1±0.3	
4.260	\(\chi_0\)	0.1±1.9	0.0	5	36.7±0.2	25	0.5±8.8±0.1	
	\(\chi_1\)	3.0±5.0	1.1	7	42.7±0.2	0.842	1.1	0.4±0.4±0.1
	\(\chi_2\)	7.5±5.9	2.3	14	41.7±0.2	4.2	2.0±1.1±0.2	
4.360	\(\chi_0\)	0.1±0.7	0.0	3	32.4±0.2	23	0.7±5.0±0.1	
	\(\chi_1\)	5.2±4.9	2.4	10	31.7±0.2	0.943	2.9	1.4±1.3±0.1
	\(\chi_2\)	4.4±4.5	2.0	9	30.3±0.2	5.0	2.3±2.3±0.2	
comes from radiative dimuon events, the corresponding MC simulation is used to represent the background shape. To reduce the effect of statistical fluctuations, the dimuon MC shape is smoothed before it is taken as the shape. To reduce the effect of statistical fluctuations, the MC simulation is used to represent the background.

The test method with the data distributions regrouped to ensure that each bin contains more than 7 events. The test gives \(\chi^2/d.o.f=39.7/32 \), where d.o.f is the number of degrees of freedom. As a test, we perform similar analyses to control samples from the \(J/\psi \) sideband regions, 2.917 < \(M_{\mu^+\mu^-} \) < 3.057 GeV/\(c^2 \) and 3.137 < \(M_{\mu^+\mu^-} \) < 3.277 GeV/\(c^2 \), by constraining the invariant mass of \(\mu^+\mu^- \) to 2.987 or 3.207 GeV/\(c^2 \) in 5\(C \)-fit, and find no obvious \(\chi_{cJ} \) signals.

6 Results

The Born cross section at different CME is calculated with

\[
\sigma^{B}(e^+e^\to\gamma\chi_{cJ}) = \frac{N^{obs}}{L\cdot(1+\delta^s)\cdot(1+\delta^v)\cdot B\cdot e},
\]

where \(N^{obs} \) is the number of observed events obtained from the fit, \(L \) is the integrated luminosity, \(1+\delta^s \) is the radiative correction factor for \(\chi_{cJ} \) with the assumption that the \(e^+e^\to\gamma\chi_{cJ} \) cross section follows the \(Y(4260) \) Breit-Wigner line shape [25], \(1+\delta^v \) is the vacuum polarization factor [26], \(B \) is the combined branching ratio of \(\chi_{cJ} \to \gamma J/\psi \) and \(J/\psi \to \mu^+\mu^- \), and \(e \) is the detection efficiency. The detection efficiencies, radiative correction factors as well as the calculated Born cross sections at different CME are shown in Table 2. The much lower efficiencies for \(\chi_{c1,2} \) at \(\sqrt{s}=4.009 \) GeV are due to the requirement on the photon energy used to separate the overlapping photon spectra as described in Section 3.

Since the \(\chi_{cJ} \) signals are not statistically significant at the individual CME points, we also give in Table 2 the upper limits on the Born cross sections at the 90% confidence level (C.L.) under the assumption that no signals are present. The upper limits are derived using a Bayesian method [21], where the efficiencies are lowered by a factor of \((1-\sigma_{sys}) \) to take systematic uncertainties into account.

We also perform a simultaneous fit to the \(M_{e^+e^-} \) distribution at \(\sqrt{s}=4.009, 4.230, 4.260, \) and 4.360 GeV, assuming the production cross section of \(e^+e^\to\gamma\chi_{cJ} \) at a different CME point follows the line shape of the \(Y(4260) \) state. In the fit, the line shapes of the \(\chi_{cJ} \) signals and the background are the same as those in the previous fits, and the number of \(\chi_{cJ} \) events at each CME point is expressed as a function of \(\epsilon_{c,J}\cdot\mathcal{L}_{c,m}\cdot R_{c,m}(1+\delta^v) \), where \(\epsilon_{c,m}, \mathcal{L}_{c,m}, \) and \(R_{c,m} \) are the detection efficiency and luminosity, respectively, and \(R_{c,m} \) is the ratio of the cross section calculated with the \(Y(4260) \) line shape (a Breit-Wigner function with parameters fixed to the PDG values) at different CME points to that at \(\sqrt{s}=4.260 \) GeV. The corresponding fit result is shown in Fig. 3. The goodness of the fit is \(\chi^2/d.o.f=53.3/40 \) and the statistical significances for \(\chi_{c0}, \chi_{c1} \) and \(\chi_{c2} \) are 0\(\sigma \), 2.4\(\sigma \) and 4.0\(\sigma \), respectively. We also found that \(\Gamma_{\gamma\chi_{c1}}\times\mathcal{B}(Y(4260)\to\gamma\chi_{c1}) = (0.11\pm0.06) \) eV and \(\Gamma_{\gamma\chi_{c2}}\times\mathcal{B}(Y(4260)\to\gamma\chi_{c2}) = (0.33\pm0.11) \) eV.

7 Systematic uncertainties

The systematic uncertainties in the cross section measurements of \(e^+e^\to\gamma\chi_{cJ} \) are caused by various sources...
which all the channels have partially in common. The common sources of systematics include the luminosity measurement, reconstruction efficiencies for charged tracks and photons, the vacuum polarization factor, kinematic fit and branching fractions of the decay of the intermediate states. The systematic uncertainty due to the luminosity measurement is estimated to be 1.0% using Bhabha events [14]. The uncertainty related to the track reconstruction efficiency of high-momentum muons is 1.0% per track [27]. The systematic uncertainty related to the photon detection is estimated to be 1.0% per photon [14]. The systematic uncertainty due to the fit is 0.6%, obtained by studying a control sample of \(\psi(2S) \rightarrow \eta J/\psi \) decays. The uncertainty related to the branching fractions of \(\chi_{cJ} \) signals are taken from the PDG [21]. The uncertainty for the vacuum polarization factor is 0.5% [26].

The other systematic uncertainties arising from the \(\chi_{cJ} \) mass resolution, the shift of the \(\chi_{cJ} \) reconstructed mass, the MC model, the shape of the background, the radiative correction factor and the fit range at different CME points are discussed below.

The \(\psi(2S) \rightarrow \gamma\chi_{cJ} \) channel is employed as a control sample to extract the differences on the mass resolution of the \(\chi_{cJ} \) signal by fitting the \(M_{\gamma J/\psi} \) spectrum. The differences in the mass resolutions between data and MC are found to be 0.02%, 0.01%, 0.2% for \(\chi_{cJ} \) \((J = 0, 1, 2)\). A similar fit is performed, in which the signal shapes are smeared to compensate for the mass resolution difference, and the differences on the yields of \(\chi_{cJ} \) signal are taken as the systematic uncertainties due to the mass resolution.

An alternative fit is performed shifting the mean of \(\chi_{cJ} \) signal shapes by one standard deviation of the PDG values, and the deviations of the signal yields to the nominal values are taken as the systematic uncertainties due to the uncertainties of the signal line shapes.

The detection efficiency is evaluated using MC samples based on the E1 transition assumption [19] for \(Y(4260) \rightarrow \gamma\chi_{cJ} \). Another set of MC samples is generated where the \(Y(4260) \rightarrow \gamma\chi_{cJ} \) decay is modeled using a phase space distribution, and the differences of the detector efficiencies between the two sets of MC samples are treated as systematic uncertainties from the MC model.

To estimate the systematic uncertainty related to the background shape, a control sample is selected from the data by requiring a \(\mu^+\mu^- \) pair and at least one photon. An alternative background shape is then extracted by re-weighting the \(\gamma\mu^+\mu^- \) invariant mass spectrum of the control sample, where the weights are the efficiency ratio of \(e^+e^- \rightarrow (\eta\gamma)\mu^+\mu^- \) MC simulated events surviving the signal selection criteria to the same selection criteria for the control sample. A fit with the alternative background shape is performed, and the differences between the yields of \(\chi_{cJ} \) signal to the nominal ones are taken as the systematic uncertainties due to the background.

The possible distortions of the \(Y(4260) \) line shape due to interference effects with nearby resonances could introduce uncertainties in the radiative correction factor \(\epsilon \times (1+\delta') \). To estimate the related systematic uncertainties, we instead assume that \(e^+e^- \rightarrow \gamma\chi_{cJ} \) are produced via \(\psi(4040) \) decays at \(\sqrt{s}=4.009 \) GeV, \(\psi(4160) \) decays at \(\sqrt{s}=4.229 \) and 4.260 GeV, and \(\psi(4415) \) decays at \(\sqrt{s}=4.360 \) GeV. The variations in the factor \(\epsilon \times (1+\delta') \) are taken as the systematic uncertainties due to the radiative correction factor.

A series of similar fits are performed in different ranges of the \(M_{\gamma J/\psi} \) distribution, and the largest differences on the signal yields to the nominal values are taken as systematic uncertainties.

All the systematic uncertainties from the different sources are summarized in Table 3. The total systematic uncertainties are calculated as the quadratic sum of all individual terms.

8 Summary

Using data samples collected at CME of \(\sqrt{s}=4.009 \), 4.230, 4.260, and 4.360 GeV with the BESIII detector, we perform a search for \(e^+e^- \rightarrow \gamma\chi_{cJ} \) \((J = 0, 1, 2)\) with the subsequent decay \(\chi_{cJ} \rightarrow \gamma J/\psi \) and \(J/\psi \rightarrow \mu^+\mu^- \). We find evidence for the processes \(e^+e^- \rightarrow \gamma\chi_{c1J} \) and \(e^+e^- \rightarrow \gamma\chi_{c2J} \) with statistical significances of 3.0\(\sigma \) and 3.4\(\sigma \), respectively. No evidence of \(e^+e^- \rightarrow \gamma\chi_{c0J} \) is observed. The corresponding Born cross sections of \(e^+e^- \rightarrow \gamma\chi_{cJ} \) at different CME are calculated and listed in Table 2. Under the assumption of the absence of \(\chi_{cJ} \) signals, the upper
limits on the Born cross sections at the 90% C.L. are calculated and listed in Table 2, too. These upper limits on the Born cross section of $e^+e^- \rightarrow \gamma \chi_c J$ are compatible with the theoretical prediction from an NRQCD calculation [16].

The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support.

References

1 Aubert B et al. (BABAR collaboration). Phys. Rev. Lett., 2005, 95: 142001
2 HE Q et al. (CLEO collaboration). Phys. Rev. D, 2006, 74: 091104(R)
3 YUAN C Z et al. (Belle collaboration). Phys. Rev. Lett., 2007, 99: 182004
4 Lees J P et al. (BABAR collaboration). Phys. Rev. D, 2012, 86: 051102
5 LIU Z Q et al. (Belle collaboration). Phys. Rev. Lett., 2013, 110: 252002
6 Eichten E, Gottfried K, Kinoshita T, Lane K, YAN T. Phys. Rev. D, 1978, 17: 3090; 1980, 21: 203; Barnes T, Godfrey S, Swanson E S. Phys. Rev. D, 2005, 72: 054026
7 LIU L et al. (Hadron Spectrum collaboration). JHEP, 2012, 1207: 126
8 Ebert D, Faustov R N, Galkin V O. Phys. Lett. B, 2006, 634: 214
9 Maiani L, Riquer V, Piccinini F, Polosa A D. Phys. Rev. D, 2005, 72: 031502(R)
10 LIU X, ZENG X Q, LI X Q. Phys. Rev. D, 2005, 72: 054023(R)
11 YUAN C Z, WANG P, MO X H. Phys. Lett. B, 2006, 634: 399
12 WANG X L et al. (Belle collaboration). Phys. Rev. D, 2013, 87: 051101(R)
13 Coan T E et al. (CLEO collaboration). Phys. Rev. Lett., 2006, 96: 162003
14 Ablikim M et al. (BESIII collaboration). Phys. Rev. Lett., 2014, 112: 092001
15 MA L, SUN Z F, LIU X H, DENG W Z, LIU X, ZHU S L. Phys. Rev. D, 2014, 90: 034020
16 CHAO K T, HE Z G, LI D, MENG C. hep-ex/arXiv:1310.8597
17 Ablikim M et al. (BESIII collaboration). Nucl. Instrum. Methods A, 2010, 614: 345
18 Agostinelli S et al. (GEANT4 collaboration). Nucl. Instrum. Methods A, 2003, 506: 250
19 Lange D J. Nucl. Instrum. Methods A, 2001, 462: 152; PING R G. HEP & NP, 2008, 32: 599602
20 Jadach S, Ward B F L, Was Z. Comput. Phys. Commun., 2000, 130: 269; Jadach S, Ward B F L, Was Z. Phys. Rev. D, 2001, 63: 113009
21 Olive K A et al. (Particle Data Group). Chin. Phys. C, 2014, 38: 090001
22 Beringer J et al. (Particle Data Group). Phys. Rev. D, 2012, 86: 010001
23 PING R G. Chinese Phys. C, 2008, 32: 599
24 Sjostrand T, Lonnblad L, Mrenna S. hep-ph/0108264
25 Kuraev E A, Fadin V S. Sov. J. Nucl. Phys., 1985, 41: 466
26 Actis S et al. Eur. Phys. J. C, 2010, 66: 585
27 Ablikim M et al. (BESIII collaboration). Phys. Rev. D, 2012, 86: 071101