Fig. S1. Absorbance spectra of probe 2a (5.0×10^{-6} M) in the presence of 10 equiv of different metal ions in C$_2$H$_5$OH solution.

Fig. S2 The fluorescence intensity of probe 2a (5.0×10^{-6} M) in the absence or presence of Al$^{3+}$ in EtOH solution at different pH values (1–12) ($\lambda_{ex} = 330$ nm) (A). The fluorescence intensity of different concentration of probe 2a in the presence of Al$^{3+}$ (5.0×10^{-5} M) (B). The fluorescence intensity of probe 2a (5.0×10^{-6} M) with Al$^{3+}$ in the presence of Al$^{3+}$ at different EtOH/HEPES buffer (C), in EtOH solution at different response time (D). Fluorescence photograph of 2a (5.0×10^{-6} M) in the absence or presence of Al$^{3+}$ under a UV lamp at 365 nm (E).
Fig. S3. The fluorescence intensity of probe 2a (5.0 × 10⁻⁶ M) with Al³⁺ in solution (EtOH/HEPES buffer, v/v = 6/4, 10 mM HEPES, pH = 7.4) at different time, λ_{ex} = 330 nm.

![Fluorescence Intensity Graph](image)

Fig. S4. Job's plots for determining the stoichiometry of 2a and Al³⁺ in solution (EtOH/HEPES buffer, v/v = 6/4, 10 mM HEPES, pH = 7.4), λ_{ex} = 330 nm.

![Job's Plot Graph](image)

Fig. S5. The HRMS spectra of 2a-Al³⁺ complex.

![HRMS Spectra Graph](image)
Fig. S6. Molecular orbitals (LUMO and HOMO) of compounds 2a and 2a-Al$^{3+}$

Fig. S7. Images of 2a-based test strips tested with Al$^{3+}$ 365 nm under UV lamp (A, a: 2a; b: 2a+Al$^{3+}$) and under sunlight (B, a1: 2a; b1: 2a+Al$^{3+}$).
Fig. S8. Fluorescence intensity of probe 2a treatment with Al$^{3+}$ (0, 2, 5, 10, 15 μM) in three water samples. The linear relationship between the fluorescence intensity and Al$^{3+}$ concentration (0, 2, 5, 10, 15 μM) in (b) lake water and (c) tap water and (d) distilled water samples.

Fig. S9. The linear relationship between the fluorescence intensity and Al$^{3+}$ concentration (0, 2, 5, 10, 15 μM) in 20% HCl (V/V) aqueous solution.
Fig. S10. MTT assay of Hela cells was incubated with 0.1, 1, 10, 20 and 50×10^{-6} M probe 2a for 48 h.
Table S1: Comparison of different fluorescent probes for the determination of Al$^{3+}$.

Probe	In food samples test	Solution	Detection limit	Reference
![Probe 1](image1.png)	NO	CH$_3$CN	5.47×10$^{-7}$	Dyes and Pigments, 2018, [37]
![Probe 2](image2.png)	NO	Methanol	9.3×10$^{-8}$	Tetrahedron Letters, 2017, [38]
![Probe 3](image3.png)	NO	H$_2$O:DMF=1:5	7.5×10$^{-7}$	J. Photoch. Photobio. A, 2018, [39]
![Probe 4](image4.png)	NO	H$_2$O:CH$_3$CN = 3:1	7.5×10$^{-7}$	Sens. Actuators B: Chem, 2018, [40]
![Probe 5](image5.png)	NO	CH$_3$OH:H$_2$O = 4:1,	2.99×10$^{-7}$	Sens. Actuators B: Chem, 2017, [41]
![Probe 6](image6.png)	NO	Methanol	8.08×10$^{-8}$	Spectrochim. Acta A, 2018, [42]
![Probe 7](image7.png)	NO	Methanol	1.75×10$^{-7}$	J. Photoch. Photobio. A, 2017, [43]
![Probe 8](image8.png)	Yes	EtOH/HEPS buffer = 7/3	8.1×10$^{-8}$	