Supplemental material

Sex as a prognostic factor for mortality in critically ill adults with sepsis: a systematic review and meta-analysis

Alba Antequera, Jesús López-Alcalde, Elena Stallings, Alfonso Muriel, Borja Manuel Fernández-Félix, Rosa del Campo, Manuel Ponce-Alonso, Pilar Fidalgo, Ana Verónica Halperin, Olaya Madrid-Pascual, Noelia Álvarez-Díaz, Ivan Solà, Federico Gordo, Gerard Urrútia, Javier Zamora.

Content:

Supplemental Table 1. Differences between the protocol and the review
Supplemental Table 2. Assessment of the use of terms sex and gender in included studies
Supplemental Table 3. Process of defining the core set of adjustment factors
Supplemental Table 4. Search strategy
Supplemental Table 5. Guide to judge the certainty of evidence for prognostic factors GRADE
Supplemental Table 6. Descriptive summary of included studies
Supplemental Table 7. Sepsis definition provided by the study authors
Supplemental Table 8. Prognostic factors in adjusted models for mortality in included studies
Supplemental Table 9. Summary outcome estimates for each included study
Supplemental Figure 1. QUIPS Risk of bias domain summary by outcome
Supplemental Figure 2. Sensitivity analysis of adjusted analyses for association between sex and all-cause hospital mortality after excluding unique data from conference abstracts
Supplemental Figure 3. Forest plot of unadjusted analyses for association between sex and all-cause hospital mortality
Supplemental Figure 4. Forest plot of unadjusted analyses for association between sex and 28-day all-cause mortality
Supplemental Figure 5. Forest plot of unadjusted analyses for association between sex and 1-year all-cause mortality
Supplemental Figure 6. Forest plot of adjusted analyses for association between sex and all-cause ICU mortality
Supplemental Figure 7. Forest plot of unadjusted analyses for association between sex and all-cause ICU mortality
Supplemental Table 1. Differences between the protocol and the review

Modified element	Explanation
Wording primary outcomes	We modify the wording for primary outcomes for clarity purposes, following the suggestion of peer reviewers. “All-cause hospital mortality” and “28-day all-cause mortality”, instead of All-cause mortality (the longest follow-up provided by study authors) and 28-day all-cause hospital mortality, respectively.
All-cause ICU mortality	We added all-cause ICU mortality as secondary outcome. We considered all-cause ICU mortality as a relevant outcome and non-subsidy of pooling with hospital mortality outcomes.
Subgroup analyses	We were not able to undertake subgroup analyses comparing cohort versus case-control studies because there were insufficient studies.
Sensitivity analyses	We added sensitivity analysis after excluding the unique data from conference abstracts. We also carried out sensitivity analyses by pooling crude estimates. We were not able to perform the following sensitivity analyses specified in the protocol as no comparisons met the predefined criteria:
 - Excluding only studies with a high risk of bias in one QUIPS key domain.
 - Excluding studies that provided an adjusted estimate but did not adjusted for all our core set of additional prognostic factors. |

Supplemental Table 2. Assessment of the use of terms sex and gender in the included studies

Adequate (any of the following):	Inadequate (any of following):
- Sex for biological characteristics.	- Gender for biological characteristics.
- Gender for socially constructed roles, behaviours, and identities.	- Sex for socially constructed roles, behaviours, and identities.
- Females or males for sex.	- Females or males for gender.
- Women or men for gender.	- Women or men for sex.

Supplemental Table 3. Process of defining the core set of adjustment factors

Step	Method	Potential additional prognostic factors identified
1	Preliminary searches to identify potential prognostic factors on mortality in patients with sepsis	1. Hypertriglyceridemia
2. Positive fluid balance
3. Red cell distribution width
4. Duration of SIRS before organ failure
5. Heart-type fatty acid-binding protein
6. D-dimer
7. Low serum level of high-density lipoprotein cholesterol
8. Serum N-terminal pro-brain natriuretic peptide level
9. Immunosuppression
10. Cancer
11. Liver diseases
12. Alcohol dependence
13. Non-urinary source of infection
14. Inappropriate or late antibiotic coverage |
| 2 | We considered factors included in the SOFA prognostic model | 1. PaO2
2. FiO2
3. On mechanical ventilation
4. Platelets, ×10³/µL
5. Glasgow Coma Scale
6. Bilirubin, mg/dL (μmol/L)
7. Mean arterial pressure OR administration of vasoactive agents required
8. Creatinine, mg/dL (μmol/L) or urine output |
| 3 | We defined the final list of core set of adjustment factors by consensus | 1. Age
2. Severity score at baseline (SOFA, SAPS II, APACHE II score)
3. Comorbidities: immunosuppression, pulmonary diseases, cancer, liver diseases, alcohol dependence
4. Non-urinary source of infection
5. Inappropriate or late antibiotic coverage |
Supplemental Table 4. Search strategy

Full search string for MEDLINE Ovid (consulted 17th July 2020)	
1. exp Sepsis/	
2. exp Shock, Septic/	
3. "septic* or sepsis* or SIRS.ti,ab.	
4. "septic shock".ti,ab.	
5. "endotoxic shock".ti,ab.	
6. "toxic shock".ti,ab.	
7. "severe sepsis".ti,ab.	
8. "blood stream infection".ti,ab.	
9. (septicemia or "systemic inflammatory response syndrome" or pyemia).ti,ab.	
10. (multi?organ adj5 failure).ti,ab.	
11. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10	
12. exp Sex Factors/	
13. exp Sex Characteristics/	
14. exp Sex Distribution/	
15. exp Sex/	
16. exp Sex Ratio/	
17. exp Women's Health/	
18. exp Men's Health/	
19. boy*.ti,ab.	
20. female*.ti,ab.	
21. gender.ti,ab.	
22. girl*.ti,ab.	
23. male*.ti,ab.	
24. men.ti,ab.	
25. sex.ti,ab.	
26. women.ti,ab.	
27. 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26	
28. 11 and 27	
29. exp Mortality/	
30. mortality.ti,ab.	
31. dead.ti,ab.	
32. death*.ti,ab.	
33. died.ti,ab.	
34. fatality.ti,ab.	
35. fatalities.ti,ab.	
36. survivor.ti,ab.	
37. survival.ti,ab.	
38. 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37	
39. 28 and 38	
40. incidence.sh.	
41. follow up studies.sh.	
42. "prognos*".ab.ti.	
43. "predict*".ab.ti.	
44. "course*".ab.ti.	
45. 40 or 41 or 42 or 43 or 44	
46. 39 and 45	
47. exp Animals/ not humans.sh.	
Full search string for Embase Elsevier (consulted 17th July 2020)

| String 1 | String 2 | String 3 | String 4 | String 5 | String 6 | String 7 | String 8 | String 9 | String 10 | String 11 | String 12 | String 13 | String 14 | String 15 | String 16 | String 17 | String 18 | String 19 | String 20 | String 21 | String 22 | String 23 | String 24 | String 25 | String 26 | String 27 | String 28 | String 29 | String 30 | String 31 | String 32 | String 33 | String 34 | String 35 | String 36 | String 37 | String 38 | String 39 | String 40 | String 41 | String 42 | String 43 | String 44 | String 45 | String 46 | String 47 | String 48 |
|---------|
| #1 'sepsis'/mj | #2 'septic shock'/mj | #3 septic*:ab,ti OR sepsis*:ab,ti OR sirs:ab,ti | #4 'septic shock':ab,ti | #5 'endotoxic shock':ab,ti | #6 'toxic shock':ab,ti | #7 'severe sepsis':ab,ti | #8 'blood stream infection':ab,ti | #9 septicemia:ab,ti OR 'systemic inflammatory response syndrome':ab,ti OR py?emia:ab,ti | #10 multi$organ NEAR/5 failure | #11 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 | #12 'sex factor'/mj | #13 'sexual characteristics'/mj | #14 'sex ratio'/mj | #15 'sex'/mj | #16 'women's health'/mj | #17 'men's health'/mj | #18 boy*:ab,ti | #19 female*:ab,ti | #20 gender:ab,ti | #21 girl*:ab,ti | #22 male*:ab,ti | #23 men:ab,ti | #24 sex:ab,ti | #25 women:ab,ti | #26 #12 OR #13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR #20 OR #21 OR #22 OR #23 OR #24 OR #25 | #27 #11 AND #26 | #28 'mortality'/mj | #29 mortality:ab,ti | #30 dead:ab,ti | #31 death:ab,ti | #32 died:ab,ti | #33 'fatality':ab,ti | #34 fatalities:ab,ti | #35 survivor:ab,ti | #36 survival:ab,ti | #37 #28 OR #29 OR #30 OR #31 OR #32 OR #33 OR #34 OR #35 OR #36 | #38 #27 AND #37 | #39 'disease course'/mj | #40 risk:kw | #41 diagnosis:kw | #42 'follow-up':kw | #43 epidemiology:lnk | #44 outcome:ab,ti | #45 #39 OR #40 OR #41 OR #42 OR #43 OR #44 | #46 #38 AND #45 | #47 'animal/exp' | #48 'human/exp' |
Full search string for Web of Science (consulted 17th July 2020)

1 TOPIC: (sepsis) OR TOPIC: ("septic shock") OR TOPIC: ("Systemic inflammatory response syndrome") OR TOPIC: ("multiple organ failure")
2 TITLE: ("septic shock") OR TITLE ("endotoxic shock") OR TITLE: ("toxic shock") OR TITLE: ("severe sepsis") OR TITLE: ("blood stream infection") OR TITLE: (septicemia) OR TITLE: (pyemia) OR TITLE: (septic*) OR TITLE: (sepsis*) OR TITLE: (SIRS)
3 #2 OR #1
4 TOPIC: ("sex factors" OR "sex distribution" OR "Sex characteristics" OR "Sex ratio" OR sex OR "women's health" OR "men's health") OR TITLE: (boy* OR male* OR girl* OR female* OR gender OR women OR men OR sex)
5 #4 AND #3
6 TOPIC: (mortality) OR TITLE: (mortality OR death OR dead OR died OR fatality OR fatalities OR survivor OR survival)
7 #6 AND #5
8 TOPIC: (incidence OR "follow up studies") OR TITLE: (prognos* OR predict* OR course*)
9 #8 AND #7

Trials registries (consulted 12th December 2019)
- ClinicalTrials.gov www.clinicaltrials.gov
- World Health Organization International Clinical Trials Registry Platform apps.who.int/trialsearch/

Hand-searched conference proceedings
- Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC); 50th edition 2010 to 59th edition 2019.
- European Congress of Clinical Microbiology and Infectious Diseases (ECCMID); 20th edition 2010 to 29th edition 2019.
- Society for Healthcare Epidemiology of America (SHEA); IDWeek 2012 to 2019 editions.
- International Conference on Prevention and Infection Control (ICPIC); 2011, 2013, 2015, 2017, 2019
- Society of Critical Care Medicine (SCCM); 39th edition 2010 to 48th edition 2019.
- International Symposium on Intensive Care and Emergency Medicine (ISICEM); 30th edition 2010 to 39th edition 2019.
- European Society of Intensive Care Medicine (ESICM); 23rd edition 2010 to 32nd edition 2019.
Supplemental Table 5. Guide to judge the certainty of evidence for prognostic factors GRADE

Factor	Details
We initially assigned high certainty of the evidence for phase-2 confirmatory designs, i.e., studies that sought to test independent associations between the prognostic factor and outcomes	
We considered that the following factors may downgrade the certainty of evidence:	
Risk of bias	We rated as having: 1) serious limitations when most evidence was from studies at moderate or unclear risk of bias for most of the QUIPS domains; 2) very serious limitations when most evidence was from studies at high risk of bias for most of the QUIPS domains.
Inconsistency	We judged inconsistency relying on variability in point estimates using prediction intervals, extent of overlap of these intervals, and considering where point estimates lie in relation to clinical decision thresholds. We pre-specified subgroup analyses to explore differences across categories. In case of a single study within the existing body of evidence estimated the effect, we considered this criterion as "not applicable".
Indirectness	We downgraded the certainty of evidence whether participant population, prognostic factor, and/or outcomes fully represented the review question. We judged indirectness for the prognostic factor based on characteristics of the primary independent variable, regardless of the adequacy of used terms, since we assessed insufficient details of sex and gender definitions provided or non-stated in the prognostic factor measurement QUIPS domain.
Imprecision	We judged imprecision considering:
	- Optimal information size
	- Compatibility of the 95% confidence interval of the absolute risk difference with our pre-defined clinical thresholds (minimal prognostic effects that were considered as clinically relevant for decision-making)
Publication bias	We planned to assess the presence of publication bias for each meta-analysis containing ≥10 studies by funnel plot representation and Peter's test at a 10% level.
We considered that the following factors may upgrade the certainty of evidence:	
Large effect estimate	We assessed size effect estimate considering:
	i) For meta-analysis: We considered upgrading the certainty of evidence for moderate or large pooled effects. Arbitrary thresholds define moderate odds ratio (1.5 ≤ OR ≤ 2), or large (OR > 2)
	ii) For narrative summary: We considered upgrading the certainty of evidence for moderate or large effects reported by most of the primary studies.
Dose response	We considered no dose response because of the feature of our prognostic factor of interest (dichotomous)

Abbreviations: OR: Odds ratio; QUIPS: Quality in prognosis studies.
Supplemental Table 6. Descriptive summary of included studies

Methods	Adrie 2017	Caceres 2013	Dara 2012	Luethi 2020	Madsen 2014	Mahmood 2012	Nachtigall 2011
Study design	Nested case-control	Cohort IMPACT-HAP	Cohort CATSS	Post-hoc analysis ARISE	Cohort SSC Database	Cohort APACHE IV	Cohort Not reported
Database	OutcomeRea	Not reported	Not reported	Not reported	Reported	Not reported	Not reported
Sample size calculation	Not reported						
Participants	Females; Males	Age 69 (57-77); 65 (51-75)	Age 62.4 (16.9); 55.7 (16.5)	Age 62.8 (15.9); 62.3 (16.6)	Age 62 (17.1); 63.5 (15.8)	Age 66.2 (18); 66.3 (16.2)	Age 284 (78.5); 370 (82.4)
Sociodemographics	Not reported	Ethnicity	Caucasian 123 (19.5); 266 (25)	African-American 71 (11.2); 123 (11.6)	Race 31 (21.4); 45 (16.9)	Race 28 (10); 41 (15.9)	Race 31 (21.4); 45 (16.9)
Comorbidities	Not reported	Respiratory	Respiratory 37 (25.5); 54 (20.2)	Respiratory 32 (22.1); 58 (21.6)	Respiratory 46 (31.7); 74 (27.6)	Respiratory 28 (4.4); 66 (8.2)	Respiratory 28 (4.4); 66 (8.2)
Severity score	APACHE II 119 (18.9); 207 (19.5)	Cardiac	Cardiac 132 (19.5); 206 (25)	Cardiac 71 (11.2); 123 (11.6)	Cardiac 31 (21.4); 45 (16.9)	Cardiac 28 (4.4); 66 (8.2)	Cardiac 28 (4.4); 66 (8.2)
Infection site	SIRS II 6 (4-9); 6 (4-9)	Immunosuppression	Immunosuppression 60 (41.4); 101 (37.8)	Immunosuppression 60 (41.4); 101 (37.8)	Immunosuppression 26 (4.1); 57 (6)	Immunosuppression 26 (4.1); 57 (6)	Immunosuppression 26 (4.1); 57 (6)
Prognosis factor	Gender 68 (10.8); 51 (4.8)	Liver disease	Liver disease 28 (4.4); 66 (8.2)				
Independent variable	Gender	Other/unknown	Other/unknown 6 (4-9); 6 (4-9)				
Sex/ gender definition	Not reported	Sex	Sex 21 (7.6); 19 (7.2)	Sex 25.9 (8.2); 25.5 (8.1)			
Terms used	Not reported						
Inadequate	Inadequate						
Unclear	Unclear						

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance on this supplemental material which has been supplied by the author(s).
Extracted outcomes

Primary outcomes	All-cause hospital mortality	28-day all-cause mortality	Secondary outcomes	7-day all-cause hospital mortality	1-year all-cause mortality	All-cause ICU mortality
	Yes	No	No	No	No	No
	Yes	Yes	No	No	No	No
	No	No	No	No	No	No
	No	No	No	No	No	No
Follow-up	Not reported	Hospital discharge, death or 28 days after pneumonia diagnosis, whichever occurred first	Not reported	Not reported	Not reported	Not reported

Identification

Country	France	United States	Canada, United States, Saudi Arabia	Australia, New Zealand, Finland, Hong Kong, Ireland	United States	United States	Germany
Funding source	Educational grants from Aventis Pharma, France, and Wyeth; and public funds	Pfizer, University of Louisville Foundation responsible for project oversight	Unrestricted grants from Eli-Lilly, Pfizer, Bayer, Astellas, Merck, Manitoba Research Council, Health Sciences Centre Foundation, Innovations and Opportunities Foundation, Deacon Foundation	National Health and Medical Research Council	Alpert Medical School of Brown University	Not reported	Not reported

Conflict of interest

Identifier or protocol	None	Declared	Not reported	None	Declared	Not reported	None	Declared	Not reported
Notes	Authors used conditional logistic regression with matching on age, death propensity score, and center. Email sent to study authors in May 2020; no reply received.	Email sent to study authors in March 2020; no reply received.	Baseline data available only for main cohort (N=1,281,255 participants). Email sent to study authors in May 2020; reply received but we were unable to get additional data.	Email sent to study authors in May 2020; no reply received.	Baseline data available only for main cohort (N=1,281,255 participants). Email sent to study authors in June 2020; no reply received.	Email sent to study authors in May 2020; no reply received.			
Continued

Methods	Pietropaoli 2010	Sakr 2013	Samuelsson 2015	Sunden-Cullberg 2020	van Vught 2017	Xu 2019				
Study design	Cohort	Cohort	Cohort	Cohort	Cohort	Cohort				
Database	Cerner Project IMPACT	Piademont Intensive Care Unit Network	Not reported	Not reported	Not reported	Not reported				
Sample size calculation	Reported	Not reported								
Participants*	Females, Males	8,702 (46); 10,055 (54)	85 (27.9); 220 (72.1)	1,210 (44.5); 1,510 (55.5)	595 (38.8); 936 (61.2)	2,677 (43.6); 3,457 (56.4)				
Sociodemographics	Age	68 (54-75); 65 (52-76)	67.7 (14.3); 63.1 (15)	68 (56–77); 68(58–77)	59.4 (16.2); 60.8 (14.8)	65-89 (50.4); 85-89 (51.1)				
	Caucasian	6,439 (74); 7,541 (75)	Not reported	Not reported	510 (85.7); 839 (89.4)	1,915 (71.5); 2,597 (75.1)				
	African-American	1,218 (14); 1,207 (12)	Not reported	Not reported	870 (10); 1005 (10)	369 (13.8);273 (7.9)				
	Latin	435 (5); 603 (6)	Not reported	Not reported	432 (14.5); 131 (14)	70 (2.6); 143 (4.1)				
	Other/Unknown	610 (7); 704 (7)	Not reported	Not reported	610 (7); 704 (7)	238 (8.9); 325 (9.4)				
Socioeconomic status	Not reported									
Comorbidities	Respiratory	870 (10); 1005 (10)	3 (3.5); 18 (8.2)	72 (12.1); 138 (14.7)	72 (12.1); 138 (14.7)	136 (22.9); 245 (28.1)				
	Cardiac	522 (6); 704 (7)	8 (8.4); 17 (7.7)	131 (22); 232 (24.7)	131 (22); 232 (24.7)	124 (20.8); 153 (19.5)				
	Renal	522 (6); 603 (6)	16 (18.8); 40 (18.2)	86 (14.5); 131 (14)	86 (14.5); 131 (14)	124 (20.8); 153 (19.5)				
	Diabetes	1,131 (13); 1,307 (13)	18 (21.2); 34 (15.5)	124 (20.8); 153 (19.5)	124 (20.8); 153 (19.5)	Not reported				
	Immunosuppression	Not reported	Not reported	Not reported	Not reported	Not reported				
	Liver disease	281 (3); 402 (4)	Not reported	Not reported	72 (12.1); 138 (14.7)	136 (22.9); 245 (28.1)				
	Cancer	1,218 (14); 1,709 (17)	4 (4.7); 6 (2.7)	Not reported	Not reported	Not reported				
Severity score	APACHE II	21 (15-27); 21 (15-27)	Not reported	Not reported	79 (62-99); 76 (58-98)†	21.39 (5.73); 21.06 (5.6)				
	SAPS II	35 (15-64); 33 (14-64)	Not reported	Not reported	79 (62-99); 76 (58-98)†	6.97 (3.52); 7.29 (3.75)				
	SOFA	Not reported	55 (18.8); 55.3 (17.5)	Not reported	7 (5-9); 7 (4-9)	7 (5-9); 7 (4-9)				
	Infection site	2,688 (31); 1,910 (19)	9.1 (3.3); 9.8 (3.7)	Not reported	Not reported	Not reported				
	Urinary source of infection	5 (5.9); 13 (5.9)	Not reported	Not reported	5 (5.9); 13 (5.9)	5 (5.9); 13 (5.9)				
	Prognosis factor	2,688 (31); 1,910 (19)	258 (21.3); 301 (19.9)	Not reported	Not reported	Not reported				
	Independent variable	Gender	Gender	Gender	Sex	Gender	Sex			
Terms used	Sex/ gender definition	Reported	Not reported							
	Gender, sex, female, male, woman/men, man/men									
	Appropriateness of terms use	Inadequate	Inadequate	Inadequate	Inadequate	Inadequate	Inadequate			
	Extracted outcomes	Primary outcomes	All-cause hospital mortality	Yes	No	No	Yes	Yes		
28-day all-cause mortality	Secondary outcomes	7-day all-cause hospital mortality	1-year all-cause mortality	All-cause ICU mortality	Follow-up	Identification	Country	Funding source	Conflict of interest	Notes
---------------------------	-------------------	----------------------------------	--------------------------	------------------------	-----------	---------------	---------	---------------	------------------	-------
No	No	No	Yes	Yes	Yes	Brazil, Canada, US National Heart, Lung and Blood Institute	Italy Regione Piamonte, progetti finalizzati di ricerca	None	Email sent to study authors in April 2020; no reply received.	
Yes	Yes	Yes	Yes	Yes	Yes	Sweden Regional Health Care Authorities in the Halland and Skåne regions of Sweden	Sweden Karolinska Institute, Swedish Government Funds for Clinical Research	None	ICU mortality mismatched published data; authors were contacted for clarification in April 2020; reply received. 28-day mortality reported, authors were contacted again for clarification in May 2020; no reply received.	
Yes	Yes	Yes	Yes	Yes	Yes	Netherlands Center for Translational Molecular Medicine, project MARS	Sweden Karolinska Institute, Swedish Government Funds for Clinical Research	None	30-day mortality reported, authors were contacted for clarification in June 2020; no reply received.	
Yes	Yes	Yes	Yes	Yes	Yes	United States Guangzhou Science and Technology Programs, the Guangdong Provincial Key Laboratory Construction Projection on Organ and Transplant Immunology, and the Guangdong Provincial International Cooperation Base of Science and Technology	United States Guangzhou Science and Technology Programs, the Guangdong Provincial Key Laboratory Construction Projection on Organ and Transplant Immunology, and the Guangdong Provincial International Cooperation Base of Science and Technology	None	30-day mortality reported, authors were contacted for clarification in July 2020; no reply received.	

* Categorical variables expressed as numerical values and percentages, and continuous variables expressed as median and IQR, or mean and standard deviation as the study may be.
† APACHE IV
‡ APACHE III
§ Participant characteristics only available for whole ICU cohort
¶ SAPS III
|| Age reported by the study authors as percentage of participants in different age groups. Age expressed as age group (percentage).
Abbreviations: APACHE: Acute Physiology and Chronic Health Evaluation; ARISE: Australasian resuscitation in sepsis evaluation; CATSS: Cooperative antimicrobial therapy of septic shock; ICU: Intensive care unit; IMPACT: abbreviation not detailed; IMPACT-HAP: Improving medicine through pathway assessment of critical therapy in hospital-acquired pneumonia; F: Females; M: Males; MARS: Molecular diagnosis and risk stratification of sepsis; MIMIC: Medical information mart for intensive care III; N/A: Not applicable; NQSR: National quality sepsis registry; SAPS: Simplified Acute Physiology Score; SIR: Swedish intensive care registry; SOFA: Sequential Organ Failure Assessment score; SSC: Surviving sepsis campaign.
Supplemental Table 7. Sepsis definition provided by the study authors

Study	Sepsis-related term for defining health condition	Operational definition
Adrie 2007*	Sepsis severe	Severe sepsis was defined as infection with two or more criteria for systemic inflammatory response syndrome and at least one criterion for organ dysfunction
Caceres 2013	Severe infection, hospital-acquired pneumonia	Severe infection was defined as hospital-acquired pneumonia, including ventilator-associated pneumonia and health-care associated pneumonia
Dara 2012	Sepsis shock	Non-provided
Luethi 2010	Septic shock	Septic shock was defined as two or more criteria for systemic inflammatory response syndrome and refractory hypotension (systolic blood pressure of \(<90\) mmHg or a mean arterial pressure of \(65\) mmHg after an intravenous fluid challenge), or hyperlactatemia (blood lactate level of \(\geq 4.0\) mmol/L), or both.
-Madsen 2014	Severe sepsis and septic shock	Severe sepsis or septic shock as defined by Surviving Sepsis Campaign.
Mahmood 2012	Sepsis	Non-provided
Nachtigall 2011	Sepsis	Sepsis, severe sepsis, and septic shock was defined according to the national and international sepsis guidelines, requiring two or more criteria for systemic inflammatory response syndrome associated with an infection
Pietropaoli 2010	Severe sepsis and septic shock	Severe sepsis was defined as development of at least one severe acute organ dysfunction within 3 days of a presumed infection.
Sakr 2013	Severe sepsis	Sepsis syndromes were diagnosed according to the criteria proposed by the American College of Chest Physicians/ Society of Critical Care Medicine Consensus Conference [Severe sepsis: sepsis associated with organ dysfunction, hypoperfusion, or hypotension]
Samuelsson 2015	Sepsis	Non-provided
Sunden-Cullberg 2020	Severe sepsis and septic shock	Severe sepsis and septic shock were diagnosed using a modified version of the 1992 sepsis definition, in practice accepting a diagnosis of severe sepsis on the basis of infection plus organ dysfunction
van Vught 2017†	Sepsis	Sepsis was defined as an infection diagnosed with a “probable” or “definite” likelihood, plus at least one additional variable as described in the 2001 International Sepsis Definitions. Shock was defined by the use of vasopressors.
Xu 2019†	Sepsis, severe sepsis and shock septic	Non-provided
Supplemental Table 8. Prognostic factors in adjusted models for mortality in included studies

Study	Prognostic factors included in adjusted analyses
Adrie 2007*	Chronic respiratory failure; metastatic cancer; immunocompromised status; emergency surgery; acute respiratory failure and shock at hospital admission; urinary tract infection as a cause of sepsis; type of microorganism (E.coli, S.pneumoniae, and Enterobacter species)
Caceres 2013	Age; APACHE II; HCAP; white race; history of cardiac/renal/vascular/diabetes/respiratory disease; severe sepsis; hospital LOS; ICU LOS; MV after diagnosis of MRSA; CPIS at baseline
Dara 2012	APACHE II; age; site of infection; source of admission; inappropriate antibiotics; other variables related to organ dysfunction
Luethi 2010	Illness severity (APACHE III score); pre-existing comorbidities (Charlson comorbidity index); cardiac arrhythmia; intravenous resuscitation fluid (per kilogram) administered before ICU admission
Madsen 2014	Age; race; SOFA; CHF; coagulopathy
Mahmood 2012	Acute physiology score; age; ethnicity; pre-ICU length of stay; pre-ICU location and hospital teaching status
Nachtigall 2011	Age; TISS-28 on admission (nursing workload); occurrence of pneumonia; septic shock; fungi detected; septic shock
Pietropaoli 2010	Age; dependent functional status at admission; African-American race; type of admittance; medical versus surgical patient; type of insurance; CPR within 24h of admission; comorbidities (chronic liver disease, active cancer within 5 years, chronic cardiovascular disease, chronic respiratory disease, immunocompromised status); illness severity (neurological dysfunction, cardiovascular dysfunction, elevated serum lactate, acute renal failure, hepatic dysfunction, hematologic dysfunction; SAPS II score); source of infection; processes of care; hospital characteristics
Sakr 2013	Age; comorbidities (renal failure with dialysis, chronic obstructive pulmonary disease); SAPS II; type of admission (elective surgery, emergency surgery, medical admission); initial SOFA sub-scores; referring facility; source of infection (abdominal)
Samuelsson 2015	Age; comorbidity (scored as in the Simplified Acute Physiology III); hospital LOS in days; location prior to ICU admission; therapy prior to ICU admission; reason for ICU admission; reason for ICU admission; surgical status; presence of nosocomial or lower-airway infection; physiologic derangement (scored as in the Simplified Acute Physiology III); hospital characteristics
Sunden-Cullberg 2020	Temperature-adjusted SAPS3; body temperature; incorrect antibiotics; treatment Limitations
van Vught 2017†	Age; body mass index; comorbidity; source of infection; acute physiology score
Xu 2019‡	Age; race; first ICU service; marital status; insurance; admission location; SAPS; SOFA

* Adrie 2007 reported adjusted analyses using a conditional logistic regression after matching on age, death propensity score, and centre.
† van Vught 2017 reported adjusted analyses only for 90-day mortality.
‡ Xu 2019 reported adjusted analyses using a Cox proportional hazard regression model.
Abbreviations: APACHE: Acute Physiology and Chronic Health Evaluation; CHF: Congestive heart failure; CPIS: Clinical Pulmonary Infection Score; CPR: Cardiopulmonary resuscitation; HCAP: Health care-associated pneumonia; ICU: Intensive care unit; MRSA: methicillin-resistant Staphylococcus aureus; MV: Mechanical ventilation; LOS: Length of stay; SAPS: Simplified Acute Physiology Score; SOFA: Sequential Organ Failure Assessment score; TISS-28: Therapeutic Intervention Scoring System-28.

Supplemental Table 9. Summary outcome estimates for each included study

Study	Unadjusted OR, 95%CI*	Adjusted OR, 95%CI*							
	Hospital mortality	28-day mortality	1-year mortality	ICU mortality	Hospital mortality	28-day mortality	1-year mortality	ICU mortality	
Adrie 2007	0.88 (0.71-1.10)	N/A	N/A	0.87 (0.69-1.09)	N/A	0.75 (0.57-0.97)	N/A	0.75 (0.58-0.98)	
Caceres 2013	1.35 (0.81-2.26)	1.35 (0.81-2.26)	N/A	N/A	0.99 (0.52-1.93)	N/A	0.99 (0.52-1.93)	N/A	
Dara 2012	0.95 (0.87-1.04)	N/A	N/A	1.07 (0.96-1.19)	N/A	N/A	N/A		
Luethi 2010	N/A	N/A	N/A	1.14 (0.82-1.58)	N/A	N/A	N/A	<50y: 1.18 (0.47-2.86)	
								>50y: 1.33 (0.90-1.96)	
Madsen 2014	1.10 (0.80-1.52)	N/A	N/A	N/A	*Multivariable analysis...Gender was not associated with in-hospital survival*	N/A	N/A	N/A	
Mahmood 2012	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.07 (0.99-1.16)	
Nachtigall 2011	N/A	N/A	N/A	1.89 (1.06-3.36)	N/A	N/A	N/A	1.91 (1.00-3.64)	
Pietropaoli 2010	1.09 (1.02-1.16)	N/A	N/A	1.09 (1.02-1.17)	N/A	1.11 (1.04-1.19)	N/A	N/A	N/A
Sakr 2013	N/A	*Kaplan-Meier analysis showed reduced 28-day survival in female compared with male patients*	N/A	2.01 (1.20-3.37)	N/A	N/A	N/A	2.23 (1.17-4.24)	
Study	Year	OR (95% CI)							
-----------------------	------	-------------	-------------	-------------	-------------	-------------			
Samuelsson 2015		N/A	N/A	N/A	1.17 (1.06-1.29)†	N/A			
Sunden-Cullberg 2020		N/A	1.11 (0.91-1.36)	N/A	N/A	1.28 (1.00-1.64)	N/A		
van Vught 2017‡		1.02 (0.81-1.27)	1.13 (0.90-1.43)	0.92 (0.74-1.13)	1.14 (0.89-1.45)	N/A	N/A		
Xu 2019		0.89 (0.80-0.99)	0.91 (0.82-1.01)	0.84 (0.76-0.93)	N/A	N/A	0.83 (0.68-0.98)§	N/A	

* Prognostic effect reported as OR (95% CI).
† Prognostic effect reported by the study authors as OR (99% CI), 1.17 (1.03-1.33). We transformed it into OR (95% CI).
‡ van Vught 2017 reported adjusted analyses only for 90-day mortality.
§ Xu 2019 reported adjusted analyses using a Cox proportional hazard regression model as OR (95% CI), 1.08 (1.01-1.17), without additional clarifications. After contacting the study authors and no reply received, we assumed that they reported Cox analyses as hazard ratios (HR). We transformed HR into OR (95% CI)

Abbreviations: CI: Confidence interval; N/A: Not available; OR: Odds ratio; Y: Years old.
Supplemental Figure 1. QUIPS Risk of bias domain summary by outcome

Study participation	Study attrition	Prognostic factor measurement	Outcome measurement	Adjustment for other prognostic factors	Statistical analysis and reporting
All-cause hospital mortality					
Adrie 2007					
Dara 2021	b				
Caceres 2013					
Madsen 2014					
Pietropaoli 2010		d			

28-day all-cause mortality					
Caceres 2013		d			
Samuelsson 2015	b				
Sunden-Culberg 2020					

| **1-year all-cause mortality** | | | | | |
| Xu 2019 | | | | | |

All-cause ICU mortality					
Adrie 2007					
Nachtigall 2011					
Sakr 2013					
Luethi 2020					
Mahmood 2012	b				

Explanations:
- a. Unclear or not stated a definition of sex or gender.
- b. Insufficient data on baseline description for sepsis subgroup.
- c. Insufficient presentation of data to assess the adequacy of the analytic strategy.
- d. Inadequate description of dropouts to judge the risk of important differences between participants analysed and those who were not.
- e. Minimal adjustment for covariates as defined in our review core set of adjustment factors.
Supplemental Figure 2. Sensitivity analysis of adjusted analyses for association between sex and all-cause hospital mortality after excluding unique data from conference abstracts

Study or Subgroup	Females	Males	Total	Random.	95% CI	Odds Ratio
Prospective nested case-control						
Adult 2002	108	166	274	0.64	0.42 [0.28, 0.92]	0.67
Subtotal (95% CI)						
Heterogeneity	Not applicable					
Test for overall effect	Z = 2.17 (P = 0.03)					
Retrospective cohort						
CECAC 2013	34	114	148	0.05	0.00 [0.00, 0.33]	0.03
Subtotal (95% CI)	332	332	664	0.00	0.00 [0.00, 0.33]	0.03
Heterogeneity	Tau^2 = 0.00, I^2 = 100%					
Test for overall effect	Z = 3.15 (P = 0.00)					
Total (95% CI)	3261	9424	12685	0.00	0.00 [0.00, 0.33]	0.03
Heterogeneity	Tau^2 = 0.00, I^2 = 100%					
Test for subgroup differences	Z = 0.36 (P = 0.72)					

Supplemental Figure 3. Forest plot of unadjusted analyses for association between sex and all-cause hospital mortality

Study or Subgroup	Females	Males	Total	Random.	95% CI	Odds Ratio
Unadjusted OR						
Adult 2007	168	608	776	0.69	0.71 [0.60, 0.84]	0.69
CECAC 2013	34	114	148	1.35	1.26 [1.12, 1.40]	1.26
Dora 2012	1914	2872	4786	0.95	0.92 [0.89, 0.99]	0.92
Madrid 2014	62	564	626	1.10	1.08 [1.06, 1.10]	1.08
Pfeiffer 2014	3039	8702	11741	1.69	1.62 [1.57, 1.74]	1.62
van Vaugh 2017	103	595	715	1.62	1.51 [1.42, 1.60]	1.51
Xia 2019	939	2677	3616	0.69	0.60 [0.50, 0.73]	0.60
Total (95% CI)	16728	21107	37835	0.09	0.09 [0.07, 0.11]	0.09
Heterogeneity	Tau^2 = 0.01, I^2 = 99.9%					
Test for overall effect	Z = 0.21 (P = 0.83)					

Supplemental Figure 4. Forest plot of unadjusted analyses for association between sex and 28-day all-cause hospital mortality

Study or Subgroup	Females	Males	Total	Random.	95% CI	Odds Ratio
Unadjusted OR						
CECAC 2013	34	114	148	1.39	1.29 [1.19, 1.60]	1.29
Bundred-Culbing 2020	307	1210	1517	1.11	1.03 [1.00, 1.06]	1.03
van Vaugh 2017	196	659	855	1.13	1.00 [0.95, 1.05]	1.00
Xia 2019	939	2677	3616	0.91	0.82 [0.73, 0.93]	0.82
Total (95% CI)	4596	6110	10706	1.05	1.04 [0.98, 1.10]	1.04
Heterogeneity	Tau^2 = 0.01, I^2 = 99.9%					
Test for overall effect	Z = 0.66 (P = 0.51)					

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s)
Supplemental Figure 5. Forest plot of unadjusted analyses for association between sex and 1-year all-cause mortality

Study or Subgroup	Females	Males	Odds Ratio	Odds Ratio
	Events	Total		Random, 95% CI
	Events	Total		HKSJ adjustment, Random, 95% CI
van Vught 2017	256	596	0.92	0.84
Xu 2015	137	2877	1347	0.84 [0.74, 1.13]
Total (95% CI)	3272	4395	100.0%	0.86 [0.54, 1.37]
	1635	2384		

Heterogeneity: 95% prediction interval Not estimable

Test for overall effect: Z = 3.38 (P = 0.0007)

Supplemental Figure 6. Forest plot of adjusted analyses for association between sex and all-cause ICU mortality

Study or Subgroup	Females	Males	Odds Ratio	Odds Ratio
	Events	Total		Random, 95% CI
	Events	Total		HKSJ adjustment, Random, 95% CI
Prospective				
Adibe 2007	150	609	0.75	1.31
Backergardt 2011	31	219	1.96	1.91 [0.68, 3.44]
Subtotal (95% CI)			34.3%	1.14 [0.46, 2.83]
Test for overall effect: Z = 0.29 (P = 0.77)				

Retrospective				
Mahmoud 2002			1.97	1.97 [0.69, 6.18]
Lusti 2000<60 years	91	295	1.14	1.14 [0.47, 2.94]
Lusti 2000>60 years	50	183	1.30	1.30 [0.60, 2.69]
Sall 2012	54	212	2.23	2.23 [1.17, 4.24]
Subtotal (95% CI)			65.7%	1.27 [0.56, 2.98]
Test for overall effect: Z = 1.65 (P = 0.10)				

| Total (95% CI) | | | 100.0% | 1.19 [0.79, 1.78] |

Heterogeneity: 95% prediction interval (0.49, 2.39)

Test for overall effect: Z = 1.29 (P = 0.20)

Test for subgroup differences: Chi² = 0.05, df = 1, P = 0.99

* only provided the adjusted estimate
Supplemental Figure 7. Forest plot of unadjusted analyses for association between sex and all-cause ICU mortality

Study or Subgroup	Females Events	Total Events	Males Events	Total Events	Odds Ratio Random, 95% CI	Odds Ratio HRSJ adjustment, Random, 95% CI
Luethi 2017	159	908	209	1080	0.87 [0.69, 1.08]	
Luethi 2020*	71	962	03	835	1.14 [0.82, 1.59]	
Nachigall 2011	30	139	27	197	1.89 [1.06, 3.39]	
Pittiripiti 2010	2075	8702	2336	10055	1.19 [1.03, 1.37]	
Saida 2013	54	65	102	220	2.02 [1.20, 3.37]	
van Vugt 2017	141	565	201	838	1.14 [0.88, 1.49]	
Total (95% CI)	10802	13235			1.15 [0.87, 1.52]	
Total events	2630	2947				
Heterogeneity	95% prediction interval: 1.15 [0.68, 2.00]					
Tau² = 0.02; Chi² = 12.08; df = 5 (P = 0.02); P = 61%						
Test for overall effect: Z = 1.87 (P = 0.10)						

* Luethi 2020 reported an overall unadjusted odds ratio.

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).