Determination of ε_K using lattice QCD inputs

Jon A. Bailey, Yong-Chull Jang, Weonjong Lee*, and Sungwoo Park
Lattice Gauge Theory Research Center, CTP, and FPRD,
Department of Physics and Astronomy,
Seoul National University, Seoul 08826, South Korea
E-mail: wlee@snu.ac.kr

SWME Collaboration

We present results for the indirect CP violation parameter ε_K determined directly from the standard model using lattice QCD to fix the inputs \hat{B}_K, ξ_0, $|V_{us}|$, and $|V_{cb}|$. We use the FLAG and SWME results for \hat{B}_K. We use the RBC-UKQCD result for ξ_0 determined using the experimental value of ε'/ε and the lattice result of ImA_2. To set the Wolfenstein parameter λ, we use $|V_{us}|$, which is determined from K_{23} and K_{D2} decays combined with lattice evaluations of the $K \to \pi\ell\nu$ vector form factor and f_K. To set the Wolfenstein parameter A, we use the FNAL/MILC results for $|V_{cb}|$, which are determined from the exclusive decay $\bar{B} \to D^*\ell\nu$ and the axial form factor at zero recoil. We also use the inclusive $|V_{cb}|$ obtained using the heavy quark expansion based on QCD sum rules and the OPE. We compare the results with those for exclusive $|V_{cb}|$. We find that the standard model prediction of ε_K with exclusive $|V_{cb}|$ (lattice QCD results) is lower than the experimental value by 3.4σ. However, we observe no tension in ε_K determined from inclusive $|V_{cb}|$.

The 33rd International Symposium on Lattice Field Theory
14 -18 July 2015
Kobe International Conference Center, Kobe, Japan

*Speaker.
1. Introduction

Indirect CP violation in neutral kaons is parametrized by ε_K

$$\varepsilon_K \equiv \frac{\mathcal{A}(K_L \to \pi\pi(I=0))}{\mathcal{A}(K_S \to \pi\pi(I=0))}. \quad (1.1)$$

Here, K_L and K_S are the neutral kaon states in nature. We can also calculate ε_K directly from the standard model (SM) using tools in lattice QCD. Hence, we can test the SM through CP violation by comparing the experimental and theoretical value of ε_K.

In order to calculate ε_K directly from the SM, we use input parameters obtained from lattice QCD and experiments. In particular, we use lattice QCD inputs for \hat{B}_K, $|V_{cb}|$, $|V_{us}|$, and ξ_0 in this paper. In addition, in order to avoid unwanted correlation through ε_K between the Wolfenstein parameters of the CKM matrix and the inputs, we adopt the angle-only fit (AOF) from the UTfit collaboration [1] to determine the apex (ρ, η) of the unitarity triangle.

2. Master formula for ε_K

In the SM, the master formula for ε_K is

$$\varepsilon_K = e^{i\theta} \sqrt{2} \sin \theta \left(C_e X_{SD} \hat{B}_K + \frac{\xi_0}{\sqrt{2}} + \xi_{LD}\right) + \mathcal{O}(\omega \varepsilon') + \mathcal{O}(\xi_0 \Gamma_2/\Gamma_1), \quad (2.1)$$

where

$$C_e = \frac{G_F^2 F_K^2 m_K M_W^2}{6 \sqrt{2} \pi^2 \Delta M_K}, \quad \xi_{LD} = \frac{m_{LD}'}{\sqrt{2} \Delta M_K}, \quad m_{LD}' = -\text{Im} \left[\mathcal{P} \sum_C \frac{\langle K^0 | H_w | C \rangle \langle C | H_w | K^0 \rangle}{m_{K^0} - E_C} \right]. \quad (2.2)$$

Here, X_{SD} is the short distance contribution from the box diagrams:

$$X_{SD} = \text{Im} \lambda_t \left[\text{Re} \lambda_c \eta_{cc} S_0(x_c) - \text{Re} \lambda_c \eta_{tt} S_0(x_t) - (\text{Re} \lambda_c - \text{Re} \lambda_t) \eta_{ct} S_0(x_c, x_t) \right], \quad (2.3)$$

where S_0 are the Inami-Lim functions given in Ref. [2], $\lambda_t \equiv V_{t}^\dagger V_{td}$, and $x_i = m_i^2/M_W^2$ with m_i defined as the scale invariant \overline{MS} quark mass [3]. The ξ_0 term represents the long distance effect from the absorptive part of the effective Hamiltonian: $\xi_0 = \text{Im} A_0/\text{Re} A_0$. The ξ_{LD} term represents the long distance effect from the dispersive part of the effective Hamiltonian. Details of how to derive the master formula in Eq. (2.1) directly from the standard model using Wigner-Weisskopf perturbation theory are given in Ref. [4].

3. Input parameters

The CKMfitter and UTfit groups provide the Wolfenstein parameters λ, ρ, η and A from the global unitarity triangle (UT) fit, which are summarized in Table 1 (a). Here, the parameters ε_K, \hat{B}_K, and $|V_{cb}|$ are inputs to the global UT fit. Hence, the Wolfenstein parameters extracted from the global UT fit contain unwanted dependence on ε_K. In order to avoid this unwanted correlation and to determine ε_K self-consistently, we take another input set from the angle-only fit (AOF) in Ref. [1]. The AOF does not use ε_K, \hat{B}_K, or $|V_{cb}|$ as input to determine the UT apex $(\hat{\rho}, \hat{\eta})$. We
The aid of the operator product expansion (OPE) \[^{(c)}\]

These moments are fit to the theoretical formula which is a heavy quark expansion obtained with lepton energy, hadron masses, and photon energy (optional) are measured from the relevant decays.

The precise evaluation of \(\xi_{\text{LD}}\) is given in Table 1 (e). In the master formula in Eq. (2.1), \(\xi_{\text{LD}}\) represents the long distance effect of \(\approx 2\%\) which comes from the dispersive part of the effective Hamiltonian. The precise evaluation of \(\xi_{\text{LD}}\) from lattice QCD is not available yet. Hence, we do not include this effect in the central value of \(\varepsilon_K\), but we take it as a systematic error with the value given in Table 1 (e).

Table 1: Input parameters

Input	Value	Ref.
\(\xi_0\)	\(-1.63(19)(20) \times 10^{-4}\)	[14]
\(\xi_{\text{LD}}\)	\((0 \pm 1.6)\%\)	[15]
\(G_F\)	\(1.1663787(6) \times 10^{-5}\) GeV\(^{-2}\)	[5]
\(M_W\)	\(80.385(15)\) GeV	[5]
\(m_e(m_c)\)	\(1.275(25)\) GeV	[5]
\(m_t(m_c)\)	\(163.3(2.7)\) GeV	[16]
\(\theta\)	\(43.52(5)\)	[5]
\(m_K^0\)	\(497.614(24)\) MeV	[5]
\(\Delta M_K\)	\(3.484(6) \times 10^{-12}\) MeV	[5]
\(F_K\)	\(156.2(7)\) MeV	[5]

The input values for \(|V_{cb}|\) are summarized in Table 1 (c). The inclusive determination takes into account the inclusive decay modes: \(B \to X_c \ell \nu\) (essential) and \(B \to X_c \gamma\) (optional). Moments of lepton energy, hadron masses, and photon energy (optional) are measured from the relevant decays. These moments are fit to the theoretical formula which is a heavy quark expansion obtained with the aid of the operator product expansion (OPE) \[^{(d)}\]. Here, we use the most updated value, given in Ref. [9].

For the exclusive \(|V_{cb}|\), we use the most precise value from the FNAL/MILC lattice calculation of the form factor \(\mathcal{F}(w)\) of the semileptonic decay \(B \to D^* \ell \nu\) at zero recoil (\(w = 1\)) \[^{[11]}\]. They combined their lattice result with the HFAG average \[^{[17]}\] of \(\mathcal{F}(1)|\eta_{\text{EN}}||V_{cb}|\) to extract \(|V_{cb}|\).

There have been a number of lattice QCD calculations of \(\hat{B}_K\) with \(N_f = 2 + 1\) \[^{[18, 19, 20, 21, 22]}\]. Here, we use the FLAG average in Ref. [12] and the SWME result in Ref. [13], which deviates most from the FLAG average. They are summarized in Table 1 (d).

The RBC/UKQCD collaboration provides lattice results for \(\text{Im} \Delta M\) and \(\xi_0\) in Ref. [14, 23]. The long distance effect \(\xi_0\) is given in Table 1 (e). In the master formula in Eq. (2.1), \(\xi_{\text{LD}}\) represents the long distance effect of \(\approx 2\%\) which comes from the dispersive part of the effective Hamiltonian. The precise evaluation of \(\xi_{\text{LD}}\) from lattice QCD is not available yet. Hence, we do not include this effect in the central value of \(\varepsilon_K\), but we take it as a systematic error with the value given in Table 1 (e).
Table 2: (a) ϵ_K^{SM} in units of 10^{-3}, and (b) $\Delta \epsilon_K$ in units of σ. The σ is obtained by combining errors of ϵ_K^{SM} and ϵ_K^{Exp} in quadrature.

1(e). The correction terms $\mathcal{O}(\omega e')$ and $\mathcal{O}(\xi_0/\Gamma_1)$ are of order 10^{-7}, and we neglect them in this analysis. A rough estimate of ξ_0 is available from Ref. [15].

The η_{ij} parameters in Table 1(b) represent the QCD corrections to the coefficients of Inami-Lim functions. The factor η_v is given at NLO, whereas η_{cc} and η_{ct} are known up to NNLO. Refer to Ref. [4] for more details. The rest of the input parameters are given in Table 1(f).

4. Results

Let us define ϵ_K^{SM} as the theoretical evaluation of $|\epsilon_K|$ using the master formula of Eq. (2.1). We define ϵ_K^{Exp} as the experimental value of $|\epsilon_K|$: $\epsilon_K^{Exp} = (2.228 \pm 0.011) \times 10^{-3}$ [5]. Let us define $\Delta \epsilon_K$ as the difference between ϵ_K^{Exp} and ϵ_K^{SM}: $\Delta \epsilon_K \equiv \epsilon_K^{Exp} - \epsilon_K^{SM}$. Here, we assume that the theoretical phase θ is equal to the experimental phase ϕ_ϵ, although it is not fully confirmed in lattice QCD yet.

In Table 2(a), we present results for ϵ_K^{SM}. They are obtained using the FLAG average for \hat{B}_K [12], inclusive $|V_{cb}|$ from Ref. [9], and exclusive $|V_{cb}|$ from Ref. [11]. The corresponding probability distributions for ϵ_K^{SM} are presented in Fig. 1.

In Table 2(b), we present results for $\Delta \epsilon_K$ for both inclusive and exclusive $|V_{cb}|$. From Table 2, we observe no tension in $\Delta \epsilon_K$ in the inclusive decay channels for $|V_{cb}|$, which are obtained using QCD sum rules and the heavy quark expansion. However, from Table 2, we find that there exists a 3.4σ tension between ϵ_K^{Exp} and ϵ_K^{SM} obtained using the exclusive $|V_{cb}|$, which is determined using lattice QCD tools. In other words, ϵ_K^{SM} with exclusive $|V_{cb}|$ and the most reliable input method (AOF) is only 72% of ϵ_K^{Exp}. The largest contribution that we neglect in our estimate of ϵ_K^{SM} is much less than 2%. Hence, the neglected contributions cannot explain the gap $\Delta \epsilon_K$ of 28% with exclusive $|V_{cb}|$.

In Fig. 2, we present the chronological evolution of $\Delta \epsilon_K/\sigma$ as the progress in lattice and perturbative QCD goes on. In 2012, RBC/UKQCD reported ξ_0 in Ref. [14], and the lattice average for \hat{B}_K by LLV became available in Ref. [24]. Based on these works, SWME reported $\Delta \epsilon_K = 2.5\sigma$ in Ref. [25] in 2012. The FLAG average for \hat{B}_K became available in Ref. [12] in 2013. In 2014, FNAL/MILC reported an updated $|V_{cb}|$ in the exclusive decay channel, and the NNLO value of η_{ct} in Ref. [8] became known to us. In 2014, SWME reported the updated $\Delta \epsilon_K = 3.0\sigma$ in Ref. [26]. In 2015, a remaining issue on the NNLO calculation of η_{cc} was addressed in Refs. [4, 27, 28]. In 2015, SWME reported the updated $\Delta \epsilon_K = 3.4\sigma$ in Ref. [4].
5. Conclusion

Here, we find that there is a substantial 3.4σ tension in ε_K between experiment and the SM with lattice QCD inputs. For the SM estimate of ε_K, we use the AOF parameters and lattice QCD inputs for exclusive $|V_{cb}|$, \hat{B}_K, $|V_{us}|$ and ξ_0. Since the AOF Wolfenstein parameters do not have unwanted correlation with the lattice inputs via ε_K, the AOF method is relevant to the data analysis in this paper. We also find that the tension disappears for the inclusive $|V_{cb}|$, which is determined using QCD sum rules and the heavy quark expansion.

In Table 3, we present the error budget for ε_K^{SM}. In the second column of the tables, we show the fractional contribution of each input parameter to the total error of ε_K^{SM}. From this error budget, we find that $|V_{cb}|$ dominates the error in ε_K^{SM}. Therefore, it is essential to reduce the error of $|V_{cb}|$ down to the sub-percent level. For this purpose, we plan to extract $|V_{cb}|$ from the exclusive...
Determination of ε_K

Weonjong Lee

Table 3: Error budget for ε_K^{SM} obtained using the AOF method, the exclusive V_{cb}, and the FLAG \hat{B}_K. Here, the values are fractional contributions to the total error obtained using the formula given in Ref. [4].

source	error (%)	memo
V_{cb}	39.3	FNAL/MILC
η	20.4	AOF
η_{ct}	16.9	$c - t$ Box
η_{cc}	7.1	$c - c$ Box
$\bar{\rho}$	5.4	AOF
m_t	2.4	

(a) First

source	error (%)	memo
ξ_0	2.2	RBC/UKQCD
ξ_{LD}	2.0	RBC/UKQCD
\hat{B}_K	1.5	FLAG
m_c	1.0	
\vdots	\vdots	

(b) Second

channel using the Oktay-Kronfeld (OK) action [29] for heavy quarks to calculate the form factors for $B \rightarrow D^{(*)}\ell\bar{\nu}$ decays. The first stage ground work for this goal is underway and preliminary results are reported in Ref. [30, 31].

Several lattice QCD inputs are obtained in the isospin limit, $m_u = m_d$. In particular, the isospin breaking effect from ε'/ε in ξ_0 could be substantial [32, 33, 34]. The isospin breaking effects on ξ_0 and other input parameters are of order 1% in ε_K. Here we neglect them, but will incorporate them into the evaluation of ε_K in the future.

Acknowledgments

Y.C.J. thanks A. Soni for helpful discussion on the unitarity triangle analysis. We thank J. Brod and A. J. Buras for a helpful discussion on η_{cc}. The research of W. Lee is supported by the Creative Research Initiatives Program (No. 2015001776) of the NRF grant funded by the Korean government (MEST). J.A.B. is supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2015024974). W. Lee would like to acknowledge the support from the KISTI supercomputing center through the strategic support program for the supercomputing application research (No. KSC-2014-G3-002). Computations were carried out on the DAVID GPU clusters at Seoul National University.

References

[1] A. Bevan, M. Bona, M. Ciuchini, D. Derkach, E. Franco, et al. Nucl.Phys.Proc.Suppl. 241-242 (2013) 89–94.
[2] T. Inami and C. Lim Prog.Theor.Phys. 65 (1981) 297.
[3] K. Chetyrkin, J. H. Kuhn, and M. Steinhauser Comput.Phys.Commun. 133 (2000) 43–65, [hep-ph/0004189].
[4] J. A. Bailey, Y.-C. Jang, W. Lee, and S. Park 1503.05388.
[5] K. Olive et al. Chin.Phys. C38 (2014) 090001.
[6] http://www.utfit.org/UTfit/ResultsSummer2014PostMoriondSM.
Determination of ε_K

Weonjong Lee

[7] A. J. Buras and D. Guadagnoli *Phys. Rev.* **D78** (2008) 033005, [0805.3887].

[8] J. Brod and M. Gorbahn *Phys. Rev.* **D82** (2010) 094026, [1007.0684].

[9] A. Alberti, P. Gambino, K. J. Healey, and S. Nandi *Phys.Rev.Lett.* **114** (2015), no. 6 061802, [1411.6560].

[10] C. W. Bauer, Z. Ligeti, M. Luke, A. V. Manohar, and M. Trott *Phys.Rev.* **D70** (2004) 094017, [hep-ph/0408002].

[11] J. A. Bailey, A. Bazavov, C. Bernard, *et al.* *Phys.Rev.* **D89** (2014) 114504, [1403.0635].

[12] S. Aoki, Y. Aoki, C. Bernard, T. Blum, G. Colangelo, *et al.* *Phys.Rev.* **D88** (2013), no. 1 014508, [1212.5931].

[13] T. Bae *et al.* *Phys.Rev.* **D78** (2008) 033005, [0805.3887].

[14] T. Blum, P. Boyle, N. Christ, N. Garron, E. Goode, *et al.* *Phys.Rev.Lett.* **108** (2012) 141601, [1111.1699].

[15] N. Christ, T. Izubuchi, C. Sachrajda, A. Soni, and J. Yu *Phys.Rev.* **D88** (2013), no. 1 014508, [1212.5931].

[16] S. Alekhin, A. Djouadi, and S. Moch *Phys.Lett.* **B716** (2012) 214–219, [1207.0980].

[17] Y. Amhis *et al.* *1207.1158*.

[18] T. Bae *et al.* *Phys.Rev.Lett.* **109** (2012) 041601, [1111.5698].

[19] S. Durr, Z. Fodor, C. Hoelbling, *et al.* *Phys.Lett.* **B705** (2011) 477–481, [1106.3230].

[20] C. Aubin, J. Laiho, and R. S. Van de Water *Phys.Rev.* **D81** (2010) 034503, [0905.3947].

[21] R. Arthur *et al.* *Phys. Rev.* **D87** (2013) 094514, [1208.4412].

[22] T. Blum *et al.* *1411.7017*.

[23] T. Blum *et al.* *Phys. Rev.* **D91** (2015), no. 7 074502, [1502.00263].

[24] J. Laiho, E. Lunghi, and R. S. Van de Water *Phys.Rev.* **D81** (2010) 034503, [0910.2928].

http://latticeaverages.org/.

[25] Y.-C. Jang and W. Lee *PoS* **LATTICE2012** (2012) 269, [1211.0792].

[26] J. A. Bailey, Y.-C. Jang, and W. Lee *PoS* **LATTICE2014** (2014) 371, [1410.6995].

[27] J. Brod and M. Gorbahn *Phys.Rev.Lett.* **108** (2012) 121801, [1108.2036].

[28] A. J. Buras and J. Girrbach *Eur.Phys.J.* **C73** (2013) 2560, [1304.6835].

[29] M. B. Oktay and A. S. Kronfeld *Phys.Rev.* **D78** (2008) 014504, [0803.0523].

[30] J. A. Bailey, Y.-C. Jang, W. Lee, C. DeTar, A. S. Kronfeld, *et al.* *PoS* **LATTICE2014** (2014) 097, [1411.1823].

[31] J. A. Bailey, Y.-C. Jang, W. Lee, C. DeTar, A. S. Kronfeld, *et al.* *PoS* **LATTICE2015** (2015) 099.

[32] V. Cirigliano, A. Pich, G. Ecker, and H. Neufeld *Phys. Rev. Lett.* **91** (2003) 162001, [hep-ph/0307030].

[33] V. Cirigliano, G. Ecker, H. Neufeld, and A. Pich *Eur. Phys. J.* **C33** (2004) 369–396, [hep-ph/0310351].

[34] S. Gardner and G. Valencia *Phys. Lett.* **B466** (1999) 355–362, [hep-ph/9909202].