Synthesis and Characterization of TiO$_2$/SiO$_2$ Thin Film via Sol-Gel Method

D S C Halin1,*, M M A B Abdullah2,4, N Mahmed1, S N A Abdul Malek1, P Vizureanu1,4 and A W Azhari3

1Center of Excellence Geopolymer & Green Technology (CEGeoGTech), School of Materials Engineering, Universiti Malaysia Perlis, (UniMAP), Perlis, Malaysia
2Faculty of Engineering Technology, Universiti Malaysia Perlis, (UniMAP), Perlis, Malaysia
3School of Environmental Engineering, Universiti Malaysia Perlis, (UniMAP), Perlis, Malaysia
4Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iasi, Romania

E-mail address: *dewisuriyani@unimap.edu.my

Abstract. TiO$_2$/SiO$_2$ thin films were prepared by sol-gel spin coating method. Structural, surface morphology and optical properties were investigated for different annealing temperatures at 300°C, 400°C and 500°C. X-ray diffraction pattern show that brookite TiO$_2$ crystalline phase with SiO$_2$ phase presence at 300°C. At higher temperatures of 400-500°C, the only phase presence was brookite. The surface morphology of film was characterized by scanning electron microscopy (SEM). The films annealed at 300°C shows an agglomeration of small flaky with crack free. When the temperature of annealing increase to 400-500°C, the films with large flaky and large cracks film were formed which was due to surface tension between the film and the air during the drying process. The UV-Vis spectroscopy shows that the film exhibits a low transmittance around 30% which was due to the substrate is inhomogeneously covered by the films. In order to improve the coverage of the film on the substrate, it has to repeatable the spin coating to ensure the substrate is fully covered by the films.

1. Introduction

TiO$_2$ is a material which have its chemical stability and electronic properties and well known as semiconductor.

It has been used in wide application in semiconductor electrochemistry, solar energy conversion, as gas sensor, in electronic devices, and as antireflective coatings [1]. TiO$_2$ becomes one of the most popular photocatalytic materials.

The TiO$_2$ naturally have existing in several crystalline phase such as rutile, brookite, and anatase. Among of these, anatase and rutile crystalline phase are widely used in application of solar cell. Rutile phase are suitable for protective coating on lense due to stable thermodynamically and high refractive
index. At lower temperatures, brookite and anatase phases are more stable however both will change to
the rutile phase at certain temperature. Due to the photocatalytic activity, most of the researches tend to
use anatase, TiO$_2$. The larger band gap in crystalline phase in anatase because it has better response to
ultraviolet photons for photocatalysis.

Photocatalytic is the process in which the solar energy is converted into electrical energy in the solar
cell. The photocatalytic performance of these compounds depends on the characteristics of the TiO$_2$
crystallites, such as the size and surface area [2].

Therefore, modification of its physical and chemical property is of interest to researchers [3,4]. One of
the possible ways to modify the property of TiO$_2$ crystallites is by adding a second semiconductor into the
TiO$_2$ matrix. Silicon dioxide (SiO$_2$) has been incorporated into the TiO$_2$ matrix to enhance the
photocatalytic process [5-8].

SiO$_2$ has high thermal stability, excellent mechanical strength and helps to create new catalytic active
sites due to interaction between TiO$_2$ and SiO$_2$ [9].

Recently, Zhou et al. [8] demonstrated that mixed metal oxides (TiO$_2$-SiO$_2$) enhance the photocatalytic
performance due to improved surface adsorption and increasing surface hydroxyl group in the thin film.
Also, at the same time SiO$_2$ acts as the carrier of TiO$_2$ and helps to obtain a large surface area as well as a
suitable porous structure [10].

It has been proven by the researchers that by adding SiO$_2$ as a adding material to the TiO$_2$ can improve
the photocatalytic activity and hydrophilicity process [11-13].

Based on previous researchers stated, additions of SiO$_2$ to the TiO$_2$ can prevent the formation of rutile
phase at high temperature up to 800°C that is the undesired phase for the photocatalytic applications in the
solar cell [14].

This research work is focus on synthesized and characterized the structural, morphology and optical
properties of TiO$_2$/SiO$_2$ thin film with three different annealing temperatures in order to improve the
properties the self-cleaning property in solar applications.

2. Methodology

The sol-gel method was used to synthesize TiO$_2$/SiO$_2$ thin films. The tetraethyl orthosilicate, TEOS, and
tetra-n-butyl orthotitanate, TBOT, were used as the sources of SiO$_2$ and TiO$_2$ respectively to prepare the
solutions of SiO$_2$ solutions and TiO$_2$ solutions.

Firstly, TBOT was mixed together with ethanol and deionized water by using molar ratio of mixture
(TBOT: ethanol: deionized water) was 1:0.5:3. Next, hydrochloric acid was added drop by drop into the
mixing solutions which give the function as a catalyst. Then, this solution was mixing together for 1 hour
by using magnetic stirrer.

After 1 hour, a clear solution was obtained then TEOS was added into the solution until the ration of
TBOT: TEOS was 1:1. Then, the solution was continued stirred for 30 minutes at 45°C. The final
solutions was undergoes aging process for 24 hours. Figure 1 shows the flowchart of the synthesized
TiO$_2$/SiO$_2$ thin film.

Thin films of TiO$_2$/SiO$_2$ were deposited by the method of spin coating in air at room temperature, on
glass substrate with speed at 1000 rpm for 30s. Finally, the films were annealed at 300°C, 400°C and
500°C in air for 3 hours by using muffle furnace.

The crystalline structure was characterized by an X-ray diffractometer (XRD) in 20 range from 20° to
80°. Scanning electron microscopy (SEM) was used to study the surface morphology and pore distribution
of the produced films.

The transmission and absorbance were measure by UV/VIS Perkin-Elmer spectrophotometer.
Figure 1. The flowchart of the synthesized TiO$_2$/SiO$_2$ composite thin film.

3. Results and discussion
X-ray diffraction pattern has been used to investigate the phase of the prepared TiO$_2$/SiO$_2$ films. The X-ray diffraction pattern of TiO$_2$/SiO$_2$ thin films annealed at different temperatures is shown in figure 2. The peaks have been indexed and found to be that of brookite TiO$_2$ and SiO$_2$. The diffraction peak at 2θ = 31.99° was assigned to the characteristic diffraction peak of brookite TiO$_2$ phase and corresponds to (1 2 1) direction. For the SiO$_2$ phase, the diffraction peak at 2θ = 66.54° which is corresponds to (3 0 0) direction. The diffraction pattern shows that an annealing at a temperature equal or lower than 300°C would be largely sufficient to form TiO$_2$/SiO$_2$ completely. It is well agreed with Maeda & Yamasaki [15] which found that when the films was annealed at 250°C for 180 min, the phase of titania–silica (TiO$_2$-SiO$_2$) mixed films exist. They also reported on addition of SiO$_2$ into the TiO$_2$ films can prevents the recrystallization of the TiO$_2$ composites. When the temperature of annealing was increase to 400°C and 500°C, the only peak reveal was brookite TiO$_2$ films. Mechiakh et al. [16] was reported, at higher
temperatures (400°C and 450°C), in addition to anatase TiO$_2$ the formation of brookite TiO$_2$ which crystallizes with the (1 2 1) plane parallel to the surface. No peak corresponding to the SiO$_2$ phase is seen in the diffraction pattern of films annealed at 400°C and 500°C.

![X-ray diffraction pattern of TiO$_2$/SiO$_2$ films annealed at different temperatures.](image)

Figure 2. X-ray diffraction pattern of TiO$_2$/SiO$_2$ films annealed at different temperatures.

Many efforts have been made to modify the TiO$_2$ by impurities for improving the photocatalytic activity under visible light [17-19]. Modification of TiO$_2$ with SiO$_2$ has been attracted in the past decades and widely used due to photocatalysis and hydrophilicity properties [20]. The characteristic of SiO$_2$ itself, such as its water-trapping effect, is suggested to play an important role for surface hydrophilicity of the TiO$_2$/SiO$_2$ films. In the TiO$_2$/SiO$_2$ films, therefore, the synergistic effects of anatase polycrystalline structure of the TiO$_2$ and water-trapping effect of the SiO$_2$ are important for their strong photo-induced hydrophilicity [15].

Figure 3 shows the SEM micrographs of TiO$_2$/SiO$_2$ annealed at 300°C, 400°C and 500°C. The SEM micrographs revealed that the surface morphology of the TiO$_2$/SiO$_2$ films depend strongly upon annealing temperature. It was observed that the average grain size of the films increases significantly when annealing temperature increases. In the presence of SiO$_2$ for the films annealed at 300°C (figure 3(a)), it can be seen many nucleation centers are present on the substrate and agglomeration of small flaky are produced. Then, the films with small flaky size are not able to grow into bigger ones and prevent crack. Whereas for higher annealing temperatures as seen in figure 3(b) and (c) it revealed large flaky size and large cracks throughout the coatings. Temperature increasing may lead to non-uniform and cracked coating and reduce coating lucidity and transparency [21].

It also clearly seen that the substrate is inhomogeneously covered by large flaky size and it may formed during drying process due to surface tension between the film and the air [22]. In the case of sol-gel coated films, during drying process, the capillary forces might have generated which provides cracks on the surface [23].
Figure 3. SEM micrographs of TiO$_2$/SiO$_2$ annealed at (a) 300°C, (b) 400°C and (c) 500°C.

![SEM micrographs of TiO$_2$/SiO$_2$](image)

Figure 4. UV-Vis spectra of absorbance and transmittance for TiO$_2$/SiO$_2$ films annealed at different temperatures.

![UV-Vis spectra](image)
The optical absorbance and transmittance spectra of TiO$_2$/SiO$_2$ films deposited on glass substrates with different annealing temperatures were shown in figure 4(a) and (b). The films show sharp absorption edge in ultraviolet region at a wavelength of about 320 nm as seen in figure 4(a). The absorbance is much higher for the films which annealed at 300°C with the formation of TiO$_2$/SiO$_2$ and the films are crack free. The transmittance within the visible and near infrared region is lower than 30% including the glass substrates, which reveals the poor optical properties of TiO$_2$/SiO$_2$ produced in this study. It is well agreement with the SEM micrograph which the substrate was not fully covered with the films and the films have large cracks. When the films are having large cracks, the UV light will be scattered in all direction.

Optical transparency is prerequisite for the application of self-cleaning coating on transparent glass or plastic surface. The films annealed at 400°C and 500°C shows the same trends of spectra for absorbance and transmittance with the only brookite phase exist. The transmittance of film annealed at 400°C is much higher compared to the film annealed at 500°C is due to pure TiO$_2$ film at 400°C is having less crack and bigger crystal size. The increased of cracking crystal size is responsible for the slight loss in optical transmission in the visible range. The process of spin coating needs to repeat a few times, in order to ensure the substrate is fully covered by the films and it also can enhance the transmittance and the absorbance of the films [24].

4. Conclusions
This work deals with the preparation and characterization of TiO$_2$/SiO$_2$ thin films using a simple and cost effective method: sol-gel spin coating. The deposition was performed on glass substrate at room temperature and annealed at three different annealing temperatures; 300°C, 400°C and 500°C. This work presents the annealing temperature effect on the properties of TiO$_2$/SiO$_2$. X-ray diffraction pattern shows that the thin films obtained at annealing temperature 300°C, having a phase of TiO$_2$/SiO$_2$. At higher annealing temperature (400-500°C), the formation of brookite phase presence. The SEM micrograph of the film annealed at 300°C show that the film consist of agglomeration of small flaky size without any crack. The analysis of UV-Vis transmission spectra shows that TiO$_2$/SiO$_2$ thin films are transparent in the visible range with a poor transmittance due to large crack and non-uniform film. This research proved that annealing temperature is an important parameter which affects the structure; surface morphology, and optical properties of the films.

References
[1] Zhao Z, Sun J, Xing S, Liu D, Zhang G, Bai L and Jiang B 2016 J. Alloys Compd. 679 88
[2] Matsuda A, Higashi Y, Tadanaga K and Tatsumisago M 2006 J. Mater. Sci. 41 8101
[3] Perju M C, Vizureanu P 2014 REV. CHIM. (Bucharest) 65(6) 694-696
[4] Mareci D, Bolat G, Istrate B, Munteanu C, Căilean A 2015 Materials and Corrosion 66(12) 1529–1535
[5] Yu J, Yu J C and Zhao X 2002 J. Sol-Gel Sci Technol. 24 95
[6] Meng X, Qian Z, Wang H, Gao X, Zhang S and Yang M 2008 J. Sol-Gel Sci Technol. 46 195
[7] Machida M, Norimoto K, Watanabe T, Hashimoto K and Fujishima A 1999 J. Mater. Sci. 34 2569
[8] Zhou L, Yan S, Tian B, Zhang J and Anpo M 2006 Mater. Lett. 60 396
[9] Ennaoui A, Sankapal B R, Skryshevsky V and Lux-Steiner M C 2006 Sol. Energy Mater. Sol. Cells 90 1533
[10] Cheng P, Zheng M, Jin Y, Huang Q and Gu M 2003 Mater. Lett. 57 2989
[11] Jesus M, Neto J, Timo G, Paiva P, Dantas M and Ferreira A 2015 Appl. Adhes. Sci, 31
[12] Jafry H, Liga M, Li Q and Barron A 2011 New J. Chem., 35 400
[13] Stevens N, Priest C, Sedev R and Ralston J 2003 Langmuir 19 3272
[14] Tang Y, Fu S, Zhao K, Xie G and Teng L 2015 Ceram. Int., 41 13285
[15] Maeda M and Yamasaki S 2005 Thin Solid Films 483 102
[16] Mechiakh R, Meriche F, Kremer R, Bensaha R, Boudine B and Boudrioua A 2007 Optical Materials 30 645
[17] Vohra M, Kim S and Choi W 2003 J. Photochem. Photobiol. A Chem. 160 55
[18] Hata S, Kai Y, Yamanaka I, Oosaki H, Hirota K and Yamazaki S 2000 JSAE Rev. 21 97
[19] Asahi R, Morikawa T, Ohwahi T, Aoki K and Taga Y 2001 Science 293 269
[20] Guan K 2005 Surf. Coat. Technol. 191 155
[21] Shokuhfar A, Alzamani M, Eghdam E, Karimi M and Mastali S 2012 Nanoscience and Nanotechnology 2 (1) 16
[22] A. Elfanaoui, Elhamri, L. Boulkaddat, A. Ihlal, K. Bouabid, L. Laanab, A. Taleb, X. Portier, 2011 International J. of Hydrogen Energy 36 4130
[23] Latthe S S, Liu S, Terashima C, Nakata K and Fujishima A 2014 Coatings 4 497
[24] Chandraboss V L, Karthikeyan B, Kamalakkannan J, Prabha S and Senthilvelan S 2013 J. of Nanoparticles 13 1

Acknowledgements
This work was partially supported by Ministry of Higher Education of Malaysia under Fundamentals of Research Grant Scheme (FRGS), No.: 9003-00478 and School of Materials Engineering, Universiti Malaysia Perlis (UniMAP), Malaysia.