Computational analysis of hydromagnetic boundary layer stagnation point flow of nano liquid by a stretched heated surface with convective conditions and radiation effect

Haroon Ur Rasheed¹, Saeed Islam¹, Zeeshan Khan², Jahangir Khan³, Wali Khan Mashwani⁴, Tariq Abbas³ and Qayyum Shah⁵

Abstract
In this study, the boundary layer phenomena for stagnation point flow of water-based nanofluids is being observed with the upshot of MHD and convective heating on a nonlinear stretching surface. To develop a fundamental flow model, a boundary layer approximation is done, which signifies time-dependent momentum, energy, and concentration expressions. Through a proper transformation framework, the modeled boundary layer partial differential equations (PDEs) have been diminished to a dimensionless system of nonlinear ordinary differential equations (ODEs). With the assistance of a built-in algorithm in Mathematica software, the fundamental flow equations are analyzed numerically by imposing a shooting technique explicitly. A stability and convergence analysis were also unveiled, and the ongoing investigation was found to have converged. The effect of mathematical abstractions on velocity, energy, and concentration is plotted and discussed. The influence of skin-friction and Nusselt number on the sheet are debated for the various values of important parameters.

Keywords
Numerical solution, MHD, nanofluid, Brownian motion, thermophoresis, stagnation point flow

Date received: 28 February 2021; accepted: 1 September 2021

Handling Editor: James Baldwin

Introduction
Numerous magnetohydrodynamic (MHD) flow studies have been done due to its importance in numerous practical applications in modern industry, such as MHD power generators, the petroleum industry, liquid metals systems of fusion reactors, earth’s core motion, and so on. The MHD boundary layer flow of an electrically conducting fluid was first studied by Pavlov¹ with a stretched plane elastic surface in the presence of a...
uniform transverse magnetic field. Then, Chakrabarti and Gupta extended this study to include the temperature distribution over a stretching sheet in the presence of a uniform suction. Later, this problem was extended further to a power-law fluid over a stretching sheet by Andersson et al., recently to Eyring-Powell fluid by Sher Akbar et al., and to a nanofluid by Ibrahim et al. The latest study reported the MHD flow over both stretched and shrinking sheets with the effect of radiation taken into consideration. They found that radiation decreases the heat transfer rate at the surface. The MHD flow of an electrically conducting fluid is important in modern metallurgy and metalworking processes, such as the process of fusing of metals in an electrical furnace by applying a magnetic field and the process of cooling of the first wall inside a nuclear reactor containment vessel where the hot plasma is isolated from the wall. Choi was the first to introduce the theory of nanofluid with its application to non-Newtonian fluids. The nanofluids that are commonly used are toluene, water, oil, etc. Choi showed that the addition of a tiny number of nanoparticles into the liquid increased the thermal conductivity of the fluid. On the other hand, Nandy and Pop have investigated the MHD nanofluid flow at a stagnation point in the presence of a magnetic field and thermal radiation. Sheikholeslami and Houman studied the effect of Lorentz forces on nanofluid flow in a porous complex shaped enclosure by means of a non-equilibrium model using the control volume based finite element method (CVFEM). Stagnation point flow has various practical applications. These applications include the cooling of electronic devices, the cooling of nuclear reactors during emergency shutdown, and hydrodynamic processes in engineering applications. Again, the study of magnetohydrodynamic (MHD) flow of an electrically conducting fluid is of considerable interest in metallurgical and metalworking processes due to the fact that the rate of cooling can be controlled by the application of a magnetic field. Hydromagnetic stagnation point flow and heat transfer find applications in boundary layers along material handling conveyors, in aerodynamic extrusion of plastic sheets and in blood flow problems. Hiemenz considered a two-dimensional stagnation flow problem on a stationary plate and used similarity transformations to reduce the Navier Stokes equations to non-linear ordinary differential equations. Akbar et al. investigated radiation effects on MHD stagnation point flow of nanofluid toward a stretching surface with convective boundary condition. Bhatti et al. studied a robust numerical method for solving stagnation point flow over a permeable shrinking sheet under the influence of MHD. Sheikholeslami and Houman analyzed magnetic nanofluid flow and convective heat transfer in a porous cavity considering Brownian motion effects. explained the effects of slip on nonlinear convection in nanofluid flow on stretching surfaces. Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet was studied by Hsiao. Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid was studied experimentally by Sheikholeslami et al. Khan et al. studied convective heat flow features of stagnation point flow of MHD over a nonlinear stretching surface with slip velocity and variable heat reservoir source. Several other studies have addressed various aspects of nanofluids with stretching sheets. Gangaiith et al. described the effects of thermal radiation and heat source/sink parameters on the mixed convective MHD flow of a Casson nanofluid with zero normal flux of nanoparticles over an exponentially stretching sheet along with convective boundary conditions. Ghozatloo et al. studied the chemical vapor deposition (CVD) method at atmospheric pressure using synthesis of Graphene. Ramya et al. studied the steady 2D flow of a viscous nanofluid in magnetohydrodynamic (MHD) flow and heat transfer characteristics for the boundary layer flow over a nonlinear stretching sheet are considered. Nadeem et al. discussed water-base hybrid nanofluid flow over an exponentially curved permeable surface. The hybrid nanofluid comprises two types of nanoparticles along with the base fluid, which gains a larger rate of heat transfer compared to simple nanofluid. Abbas et al. carried out steady state flow of micropolar hybrid nanofluid over a stretched Riga plate with slip condition and radiation effect. Abbas et al. explored MHD stagnation point flow and heat transfer due to hybrid nanofluid over a stretching cylinder with a uniform magnetic field.

The existing investigation aims to explore the MHD stagnation point flow of nanofluid toward a stretching surface. The effect of thermophoretic force, Brownian movement, and concentration of nanoparticles on the thermal boundary layer with heat transfer due to nanofluid. The governing boundary layer partial differential equations have been transformed into ODEs via similarity solutions. The nonlinear system has been tackled numerically through shooting technique. The consequences of pertinent constraints on flow fields have been analyzed through plotted graphs and tables.

Mathematical formulation

Consider a steady MHD two-dimensional boundary layer flow of a nanofluid over a stretching surface with the velocity \(u_m(x) = ax^n \), where \(a \) is the constant. The flow takes place at \(y>0 \), where \(y \) is the coordinate measured normal to the stretching surface as shown in Figure 1. It is presumed that the lowest surface of the sheet is heated by convection from a hot fluid at constant temperature \(T_f \), which offers a constant heat...
transfer. The constant surface temperature and concentration of the sheet are and \(C_w \), whereas the ambient fluid is \(T_\infty \) and \(C_\infty \), respectively. The flow is subjected to a constant transverse magnetic field of strength \(B_0 \), which is employed in the \(y \) direction, normal to the surface. The induced magnetic field is assumed to be smaller compared to the applied magnetic field and is neglected. Under these assumptions, the leading flow equations can be written in the Cartesian Coordinates:

Governing equations

\[
\begin{align*}
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} &= 0, \\
\frac{\partial u}{\partial x} + v \frac{\partial v}{\partial y} &= -\frac{\partial^2 u}{\partial y^2} + U_\infty \frac{\partial u_\infty}{\partial x} + \frac{\sigma B_0^2}{\rho_f} (U_\infty - u), \\
\frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} &= \alpha \left(\frac{\partial^2 T}{\partial y^2} \right) + \Gamma \left(D_B \frac{\partial C}{\partial y} + \frac{D_T}{T_\infty} \left(\frac{\partial T}{\partial y} \right)^2 \right), \\
\frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} &= D_B \left(\frac{\partial^2 C}{\partial y^2} \right) + \frac{D_T}{T_\infty} \left(\frac{\partial T}{\partial y} \right) \, .
\end{align*}
\]

Extreme conditions are:

\[
\begin{align*}
u &= u_w(x) = ax, v = 0, -k \frac{\partial T}{\partial y} = h_f (T_f - T), \\
D_B \frac{\partial C}{\partial y} + \frac{D_T}{T_\infty} \left(\frac{\partial T}{\partial y} \right) &= 0, y = 0, \\
u \rightarrow U_\infty &= bx, v = 0, T \rightarrow T_\infty, C \rightarrow C_\infty, y = \infty.
\end{align*}
\]

Where \((u, v)\) denotes velocity components in Coordinates axes, \(\nu \) is the kinematics viscosity, \(T \) fluid temperature, \((pc)_p\) denote effective heat capacity \((pc)_p\), \((pc)_f\) denote fluid thermal capacity, \(\rho \) represent fluid density, \(\Gamma = \frac{(pc)_p}{(pc)_f} \) constant parameter, \(T_\infty \) denote ambient temperature.

Similarity transformation

Considering the transformation\(^5\,34\) to diminish the system of (PDEs) to the system of (ODEs):

\[
\begin{align*}
\zeta = \sqrt{\frac{a}{v}} y, \psi = \sqrt{av} x f(\zeta), \Theta(\zeta) &= \frac{T - T_\infty}{T_f - T_\infty}, \phi(\zeta) = \frac{C - C_\infty}{C_\infty},
\end{align*}
\]

Stream function \(\xi(x, y) \) is defined as:

\[
u = \frac{\partial \xi}{\partial y}, v = -\frac{\partial \xi}{\partial x}.
\]

The following system of ODEs is obtained by using equation (6) in equations (1)–(5):

\[
\begin{align*}
\frac{d^3 F}{d\xi^3} + F \frac{d^2 F}{d\xi^2} - \left(\frac{dF}{d\xi} \right)^2 - M \frac{dF}{d\xi} + A(1 + M) &= 0, \\
\frac{d^2 \Theta}{d\xi^2} + Pr \left(\frac{d\Theta}{d\xi} + Nb \left(\frac{d\phi}{d\xi} \right) \left(\frac{d\Theta}{d\xi} \right) + Nt \frac{d\Theta}{d\xi} \right) &= 0, \\
\frac{d^2 \phi}{d\xi^2} + PrLeF \frac{d\phi}{d\xi} + \frac{Nt d^2 \Theta}{Nb d\xi^2} &= 0.
\end{align*}
\]

the transforms extreme conditions are:

\[
\begin{align*}
F &= 0, \frac{dF}{d\xi} = 1, \frac{d\Theta}{d\xi} = Bi(\Theta - 1), Nb \frac{d\phi}{d\xi} + Nt \frac{d\Theta}{d\xi} = 0, \\
\frac{dF}{d\xi} &= A, \Theta = 0, \phi = 0 \text{ at } \xi = \infty.
\end{align*}
\]

Variables appearing in equations (8)–(11) are defined and label as:

\[
\begin{align*}
M = \frac{\sigma B_0^2}{\rho_f a}, Nb = \frac{(pc)_p D_B C_\infty}{(pc)_f}, Nt = \frac{(pc)_p D_T (T_f - T_\infty)}{(pc)_f v T_\infty}, \\
Bi = \sqrt{\frac{v h_f}{a k}}, A = \frac{b}{a}, Pr = \frac{\nu}{\alpha}, Le = \frac{\alpha}{D_B}
\end{align*}
\]

magnetic parameter, Brownian parameter, thermophoretic parameter, Biot number, velocity ratio parameter, Prandtl number, and Lewis number.

Expressions of engineering importance are \((Cf, Nu_\infty)\) defined by:
\[C_f = \frac{\tau_w}{\mu u'_{\infty}} \]

\[N_{u_t} = \frac{x q_w}{k(T_f - T_w)} \]

(12)

(13)

The drag force and heat transfer rate parameter can be labeled as:

\[\sqrt{Re_x}C_f = -\frac{d^2F}{d\xi^2}_{|\alpha\xi = 0} \]

(14)

\[\frac{N_{u_t}}{\sqrt{Re_x}} = -\frac{d\Theta}{d\xi}_{|\alpha\xi = 0} \]

(15)

Solution methodology

For numerical results the first order (ODEs) is recruited from equations (8)–(10) by introducing transformation variables. Let the transformations variables are defined as:

\[F = x_1, \frac{dF}{d\xi} = x_2, \frac{d^2F}{d\xi^2} = x_3, \Theta = x_4, \frac{d\Theta}{d\xi} = x_5, \]

\[\varphi = x_6, \frac{d\varphi}{d\xi} = x_7 \]

The linear system of (ODEs) thus, generated by

\[x'_1 = x_2 \]

(16)

\[x'_2 = x_3 \]

(17)

\[x'_3 = [x_2^2 - x_1 x_5 - M x_2 + A(A - M)] \]

(18)

\[x'_4 = x_5 \]

(19)

\[x'_5 = - Pr [x_1 x_5 + N_{b}x_7 x_5 + N_{t}x_5^2] \]

(20)

\[x'_6 = x_7 \]

(21)

\[x'_7 = - \left[Le Pr x_1 x_7 + \frac{N_t}{N_b} x_5 \right] \]

(22)

We need seven initial conditions to solve these seven unknowns first order ODEs numerically. In this case, \(F \) has two initial conditions, while \(\Theta \) and \(\varphi \) each have single condition. The three end conditions are used to acquire the remaining three unknown initial conditions.

\[x_1(0) = 0, x_2(0) = 1, x_3(0) = Bi(x_4(0) - 1), \]

\[N_{b}x_7(0) + N_{t}x_5(0) = 0 \]

(23)

\[x_2(\infty) = A, x_4(\infty) = 0, x_6(\infty) = 0. \]

We select a variable step size of \(\Delta \xi = 0.001 \) and repeated the process until the result met asymptotically at the tolerance level of \(10^{-8} \). The routine numerical algorithm is disclosed in Figure 2.

Graphical results and analysis

The dimensionless governing flow equations (8)–(10) subject to extreme conditions in equation (11) are solved via the shooting method. The diagram of numerous parameters, such as magnetic parameter, ratio parameter, Brownian parameter, thermophoretic parameter, Prandtl number, Biot number, and Lewis number on the velocity, energy, and concentration profile are plotted in Figures 3 to 16. Figures 3 and 4 explains \(A \) effect on velocity \(f'(\xi) \). These plots expose development in boundary layer thickness when \(A > 1 \) and diminishes momentum boundary layer thickness for \(A < 1 \). The role of \(M \) on \(f'(\xi) \) is evaluated through Figure 5. Physically, higher \(M \) values produce a
resistive force, namely the Lorentz force, which lowers fluid flow. The variations of Pr against \(\Theta(\zeta) \) are offered in Figure 6. This graph stated a shrinking in both \(\Theta(\zeta) \) and thermal boundary layer via larger Pr. As thermal diffusivity diminishes when Pr is increased, which corresponds to a decrease in energy transference and eventually it produces a decay in the thermal boundary layer. Figure 7 shows the outcome of \(Nt \) on \(\Theta(\zeta) \). The temperature gradients in the boundary layer induce a thermophoretic force on the nanoparticles and that leads to a fast flow away from the stretching surface. Hence, additional fluid is heated away from the surface, and consequently, as \(Nt \) upsurges, the temperature inside the boundary layer rises. Figure 8 displays the impact of convective heating parameter called \(Bi \) on \(\Theta(\zeta) \). Physically, \(Bi \) is the ratio of convection at the surface to conduction within the surface of a body. As the effect of \(Bi \) rises, temperature at the surface upsurges, due to an increase in the boundary layer thickness. Figure 9 displays the performance of \(Nb \) on \(\varphi(\zeta) \). From the graphical sketch, it is obvious that an augmentation in \(Nb \) provides an increase in \(\varphi(\zeta) \) within the region of the boundary layer. Figure 10 displays disparity of fluid concentration \(\varphi(\zeta) \) for varied \(Le \), where, \(Le \) is the fraction of the thermal diffusivity to mass diffusivity, and
when the values of Le are enhanced the thermal diffusion rate goes past the rate of mass diffusion and ultimately downfall $\phi(\xi)$. This occurrence is detected in Figure 10. Figure 11 depict the variation in $\phi(\xi)$ for different values of Pr. It is observed that, the Lewis number decreases distribution of $\phi(\xi)$ due to a decline in mass diffusion. Like the effects of Le, the Pr decline the nanoparticle volume fraction due is to the lessening in the fluid temperature as Pr rises. Figures 12 and 13 emphasize the influence of velocity ratio parameter and magnetic parameter on drag force. Here, drag force diminishes when these parameters are augmented. Moreover, the attributes of local Nusselt number, which represents the heat transfer rate at the surface, increase for larger Prandtl number and Brownian movement while decreasing for thermophoretic parameters shown in Figures 14 to 16. Table 1 is made to present the variation in drag force for several values of velocity ratio parameter and magnetic parameter. It is noticed that the drag force diminishes for larger values
the of velocity ratio parameter, but the drag force boosts through larger magnetic parameter. Table 2 displays the numerical values of the Nusselt number for the different values of physical parameters. It is reported that the heat transfer rate at the surface is a diminishing function of Brownian and thermophoretic constraints, whereas an opposite trend can be found with the increasing Prandtl number.

Closing remarks

A theoretical problem of magneto-hydrodynamics thermal boundary layer stagnation point flow of nanofluid over a stretching surface with effect of heat transfer and convective boundary conditions have been examined numerically. A similarity solution is presented which effects, magnetic, Brownian motion, thermophoretic force, and velocity ratio parameter. The governing equations were transmuted to nonlinear system of ODEs through suitable transformation techniques. A numerically solutions to nonlinear flow equations were obtained by shooting method. The precise findings of this study are summarized below:
• As noticed that velocity profiles escalate with increment in velocity ratio parameter when \(A > 1 \).
• The velocity and boundary layer thickness diminishes subject to increase in the magnetic field strength.
• The thermal boundary layer curves develop with increment in thermophoretic parameter while reverse trends perceived for concentration profile.
• The fluid temperature and relative thickness dwindles when velocity ratio parameter and Prandtl number is incremented.
• An upsurge in magnetic parameter develops the surface drag force and diminishes with larger velocity ratio parameter.
• The heat transfer rate increases with both Prandtl number and Brownian parameter, whereas drop through larger thermophoretic parameter.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iDs
Haroon Ur Rasheed https://orcid.org/0000-0002-9045-8183
Wali Khan Mashwani https://orcid.org/0000-0002-5081-741X

References
1. Pavlov KB. Magnetohydrodynamic flow of an incompressible fluid caused by deformation of a plane surface. *Magnetohydrodynamics* 1974; 10: 507–510.
2. Chakrabarti A and Gupta AS. Hydromagnetic flow and heat transfer over a stretching sheet. *Q Appl Math* 1979; 37: 73–78.
3. Andersson HI, Bech KH and Dandapat BS. Magnetohydrodynamic flow of a power-law fluid over a stretching sheet. *Int J Non Linear Mech* 1992; 27: 929–936.
4. Sher Akbar N, Ebaid A and Khan ZH. Numerical analysis of magnetic field effects on Eyring-Powell fluid flow towards a stretching sheet. *J Magn Magn Mater* 2015; 382: 355–358.
5. Ibrahim W, Shankar B and Nandeppanavar MM. MHD stagnation point flow and heat transfer due to nanofluid towards a stretching sheet. *Int J Heat Mass Transf* 2013; 56: 1–9.
6. Mat Yasin MH, Ishak A and Pop I. MHD heat and mass transfer flow over a permeable stretching/shrinking sheet with radiation effect. *J Magn Magn Mater* 2016; 407: 235–240.
7. Choi S. Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer DA and Wang HP (eds), *Development and applications of non-Newtonian flow*. FED-Vol. 231/MD-Vol. 66. New York, NY: ASME, 1995, 99–105.
8. Nandy SK and Pop I. Effects of magnetic field and thermal radiation on stagnation flow and heat transfer of nanofluid over a shrinking surface. *Int Commun Heat Mass Transf* 2014; 53: 50–55.
9. Sheikholeslami M and Rokni HB. CVFEM for effect of Lorentz forces on nanofluid flow in a porous complex shaped enclosure by means of non-equilibrium model. *J Mol Liq* 2018; 254: 446–462.
10. Hiemenz VK. Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. *Dingler’s Polytech J* 1911; 326: 321–324.
11. Akbar NS, Nadeem S, Ul Haq R, et al. Radiation effects on MHD stagnation point flow of nano fluid towards a stretching surface with convective boundary condition. *Chin J Aeronaut* 2013; 26: 1389–1397.
12. Bhatti MM, Abbas MA and Rashidi MM. A robust numerical method for solving stagnation point flow over a permeable shrinking sheet under the influence of MHD. *Appl Math Comput* 2018; 316: 381–389.
13. Sheikholeslami M and Rokni HB. Magnetic nanofluid flow and convective heat transfer in a porous cavity considering Brownian motion effects. *Phys Fluids* 2018; 30: 012003.
14. Shaw S, Kameswaran PK and Sibanda P. Effects of slip on nonlinear convection in nanofluid flow on stretching surfaces. *Boundary Value Probl* 2016; 2016.
15. Hsiao KL. Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. *Appl Therm Eng* 2016; 98: 850–861.
16. Sheikholeslami M, Darzi M and Sadoughi MK. Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. *Int J Heat Mass Transf* 2018; 122: 643–650.
17. Khan Z, Rasheed H, Islam S, et al. Impact of magnetohydrodynamics on stagnation point slip flow due to nonlinearly propagating sheet with nonuniform thermal reservoir. *Math Probl Eng* 2020; 2020: 1794213.
18. Sheikholeslami M. Numerical investigation for CuO-H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method. *J Mol Liq* 2018; 249: 739–746.
19. Khan Z, Rasheed HU, Noor S, et al. Analytical solution of UCM viscoelastic liquid with slip condition and heat flux over stretching sheet: the Galerkin approach. *Math Probl Eng* 2020; 2020: 1–7.
20. Sheikholeslami M and Shehzad SA. Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model. *Int J Heat Mass Transf* 2018; 120: 1200–1212.
21. Rasheed HU, Islam S, Khan Z, et al. Numerical simulation of electrically conducting and thermally radiative...
nanofluid flow in view of elongated slippery plates. *AIP Adv* 2021; 11: 065019.

22. Ur Rasheed H, AL-Zubaidi A, Islam S, et al. Effects of joule heating and viscous dissipation on magnetohydrodynamic boundary layer flow of Jeffery nanofluid over a vertically stretching cylinder. *Coatings* 2021; 11: 355.

23. Islam S, Ur Rasheed H, Nisar KS, et al. Numerical simulation of heat mass transfer effects on MHD flow of Williamson nanofluid by a stretching surface with thermal conductivity and variable thickness. *Coatings* 2021; 11: 684.

24. Rasheed HUR, Islam S, Khan Z, et al. Impact of nanofluid flow over an elongated moving surface with a uniform hydromagnetic field and nonlinear heat reservoir. *Complexity* 2021; 2021: 9951162.

25. Sheikholeslami M. CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. *J Mol Liq* 2018; 249: 921–929.

26. Gangaiah T, Saidulu G and Venkata Lakshmi A. The influence of thermal radiation on mixed convection MHD flow of a Casson nanofluid over an exponentially stretching sheet. *Int J Nanosci Nanotechnol* 2019; 15: 83–98.

27. Ghozatloo A, Shariaty NM and Rashidi A. Effect of functionalization process on thermal conductivity of graphene nanofluids. *Int J Nanosci Nanotechnol* 2017; 13: 11–18.

28. Ramya D, Rao JA and Shravani I. Numerical simulation of MHD boundary layer stagnation flow of nanofluid over a stretching sheet with slip and convective boundary conditions. *Int J Nanosci Nanotechnol* 2020; 20: 103–115.

29. Nadeem S, Abbas N and Malik MY. Inspection of hybrid based nanofluid flow over a curved surface. *Comput Methods Programs Biomed* 2020; 189: 105193.

30. Abbas N, Nadeem S and Malik MY. Theoretical study of micropolar hybrid nanofluid over Riga channel with slip conditions. *Phys A: Stat Mech Appl* 2020; 551: 124083.

31. Abbas N, Nadeem S, Saleem A, et al. Models base study of inclined MHD of hybrid nanofluid flow over nonlinear stretching cylinder. *Chin J Phys* 2021; 69: 109–117.

32. Dodda R, Srinivasa RR, Anand RJ, et al. Boundary layer viscous flow of nanofluids and heat transfer over a non-nearly isothermal stretching sheet in the presence of heat generation/absorption and slip boundary conditions. *Int J Nanosci Nanotechnol* 2016; 12: 251–268.

33. Mohd Nasir NAA, Ishak AM and Pop I. MHD stagnation-point flow of a nanofluid past a stretching sheet with a convective boundary condition and radiation effects. *Appl Mech Mater* 2019; 892: 168–176.

Appendix

Notation

Symbol	Description
A	Velocity ratio parameter
C	Concentration at surface
C∞	Ambient concentration
F	Dimensionless stream function
M	Magnetic parameter
Pr	Prandtl number
T	Temperature of the fluid inside the boundary layer
U∞	Free stream velocity
B0	Magnetic field strength
Cf	Skin friction
DB	Brownian diffusion coefficient
κ	Thermal conductivity
Nb	Brownian motion parameter
qw	Wall heat flux
Tf	Temperature of a hot fluid
(u, v)	Velocity component
Bi	Biot number
Ntu	Nusselt number
DT	Thermophoresis diffusion coefficient
Le	Lewis number
Nt	Thermophoresis parameter
Re	Local Reynolds number
Tw	Ambient temperature
Γ	Parameter defined by $\Gamma = \frac{\langle pc \rangle}{\langle pc_f \rangle}$

Greeks’ symbols

Symbol	Description
ζ	Dimensionless similarity variable
ρf	Density of the base fluid
ξ	Stream function
Θ	Dimensionless temperature
μ	Dynamic viscosity of the fluid
pcf	Heat capacity of the base fluid
α	Thermal diffusivity
τw	Wall shear stress
ν	Kinematic viscosity of the fluid
ρcp	Effective heat capacity of a nanoparticle
σ	Electrical conductivity
φ	Dimensionless concentration