Effect of herbal lean meat formulation on hematological profile in commercial broilers

Megha Verma, Swati Thakur, Abhinaba Maiti, R Huozha, Bhaskar Ganguly and SK Rastogi

DOI: https://doi.org/10.22271/tpi.2021.v10.i1Sb.5531

Abstract

The study was conducted for six weeks in commercial broiler birds to evaluate the effect of herbal lean meat formulation viz., AV/HLP/16 and AV/LMP/10 (M/S Ayurvet Ltd India). One hundred and eighty (180) broiler birds were randomly allocated into three groups, i.e., Control, Treatment (1) and Treatment (2) having four replicates in each. Control group was fed a standard basal diet without any supplementation and group T1 and T2 were supplemented with AV/HLP/16@500g/tonne of feed and AV/LMP/10@500g/tonne of feed respectively. At the end of the trial period (42day) it was found that Hb% was significantly higher in T1 group (10.29±0.274a) followed by T2 group (9.62±0.100b) in comparison to control group (8.99±0.249). Lymphocyte count was also slightly higher in T1 group (59.98±0.76) as compared to T2 (59.74±0.23) and control group (58.7±0.61). Also, H:L ratio was slightly lower in T1 group in comparison to T2 and control. However, no significant changes were observed in TEC, TLC, PCV and leucocytes count among all the groups. Thus, it was concluded that AV/HLP/16 group has a better effect in terms of haemoglobin % and lymphocyte count followed by AV/LMP/10 in comparison to control group.

Keywords: Broiler, Hb%, lymphocyte count, AV/HLP/16, AV/LMP/10

Introduction

The importance of feed in the poultry production system represents about 70-75% of the total cost of production. The feeding cost of poultry can be reduced by supplying precise nutrients. Various feed additives are being included in the diet of poultry to improve the growth rate, meat by product quality, feed efficiency and to improve the cost of production. The use of antibiotics in feed of poultry acts as an antimicrobial growth promoter and has been proved for the improvement in growth performance and prevention of diseases Huygebaert et al. (2011) [6].

The use of various traditional herbs and their by-products have been used as a source of medicine in the indigenous poultry system Thakur et al. (1985) [10]. European union has banned the use of antibiotics as a feed additive, growth promoters because of its residual property in animal tissues can lead to antimicrobial resistance in human beings Griggs and Jacob et al. (2005) [5]. Various alternatives for antibiotics, growth promoters are probiotics, prebiotics and essential oils etc. Essential oils are derived from various plants called as phytobiotics. Various phytogenic supplements play an important role for many decades in poultry farming such as Ocimum sanctum, Emblica officinalis, Withania somnifera, Spirulina platensis Gopi et al. (2014) [8]. They have an antimicrobial and antioxidant properties which have the ability to increase the feed intake and improve the FCR. They also influence lipid metabolism which lead to hypocholesterolemic effects Saravanan et al. (2015) [13], Prasad et al. (2009) [14] reported that inclusion of garlic resulted in decrease value of haemoglobin (Hb) and Total erythrocyte count (TEC), it was also reported that there was a slight increase in the lymphocyte and heterophil counts due to the immunostimulatory activity of garlic. Amla (Emblica officinalis) is being also used against a variety of conditions like liver infections, diabetes, CHD, and it possess a very good hypocholesterolemic effect Kumar et al. (2014) [10].

Recent studies were conducted by Fadlalla et al. (2010) [3] that supplementation of graded garlic level (0, 15, 45, 3 and 0.6%) in the basal diet of broiler chickens observed that garlic inclusion $.3% had no effect on total blood serum, globulin, albumin and total protein level.
Elagib et al. (2013) [2] also studied that addition of garlic@ (0,1,3 and 5%) in the basal diet of broiler chickens had no significant effect on Hb, TEC, TLC. Packed cell volume (PCV) and differential leukocyte count of White blood cell (WBC).

Materials and Method
A total of 180 day old vencobb broiler strain birds were randomly allocated into three groups viz., Control, Treatment 1 (T1) and Treatment 2 (T2) at the experimental animal house of College of Veterinary and Animal Sciences, GBPUA&T, Pantnagar, Uttarakhand. The herbal supplements for treatment 1 and treatment 2 were given in the basal diet of broiler birds viz., AV/HLP/16 @500g/tonne of feed and AV/LMP/10 were given @ 500g/tonne of feed provided by the M/S Ayurvet Limited, Baddi, Himachal Pradesh. Control group was fed simple basal ration and T1 and T2 were given along with basal ration at the same dose rate explain as above. Different growth parameters were recorded at weekly interval. The blood was collected at the end of the trial period to evaluate the Hb%, PCV, TLC, TEC and DLC count by the method of blood sampling from the wing vein of broiler birds at the end of trial period (42nd day) into well labelled blood collecting tubes.

Statistical analysis
All data were statistically analysed using SPSS software package version 26.0 to determine analysis of variance between groups. Variables having unequal observations were analysed following least square design method and the differences were examined using Duncan’s multiple range test Du et al (2000) [13]. It was also found in the present study that there was a slight rise in lymphocyte count in T1 and T2 groups in comparison to control group. The present study was in agreement with the findings of Prasad et al (2009) [14], that slight rise in lymphocyte count was observed in garlic supplemented groups which may be due to the immunomodulatory action of garlic.

Results and Discussion

parameters	Group I (Control)	Group II(T1)	Group III(T2)
Hb (g/dl)	8.99±0.24±	10.29±0.27±	9.62±0.100±
PCV (%)	28.30±0.437±	28.62±0.112±	29.01±0.201±
TLC/(×10³/mm³)	31.30±0.472±	30.65±0.607±	30.75±1.51±
TEC/(×10³/mm³)	4.00±0.016±	4.04±0.025±	4.00±0.014±
H: L	0.51±0.008±	0.48±0.013±	0.49±0.009±
Lymphocyte (%)	58.57±0.61±	59.98±0.76±	59.74±0.23±
Heterophil (%)	30.13±0.23±	29.31±0.42±	29.73±0.35±
Monocyte (%)	3.11±0.14±	3.10±0.27±	3.01±0.09±
Eosinophil (%)	6.29±0.44±	5.83±0.19±	5.69±0.17±
Basophil (%)	1.81±0.24±	1.71±0.13±	1.75±0.15±

*Values bearing different superscripts in a row differ significantly (P<0.05)

In the present study it was found that haemoglobin % was significantly higher in T1 group (AV/HLP/16) followed by T2 group (AV/LMP/10) in comparison to control as shown in (Table1). Similar results are also in agreement with the Li et al. (2002) [11] that supplementation of amla and aloe vera in diet of broilers improves Haemoglobin %. Aloe vera and Amla consists of thiamine, riboflavin, folic acid and other essential amino acids which might trigger the erythropoietic system to produce red blood cells. Also, it plays a better role in immunomodulation and stimulation of various organs related to blood cell formation, such as thymus, spleen and bone marrow.

Similar investigations are also in agreement with Iranloye et al. (2002) [7] that supplementation of garlic extracts in rats caused significant increase (P<0.05) in mean Hb value. It is due to the oxygen scavenging activity of garlic extract that competes with Hb in the RBC for oxygen, resulting in hypoxia which then stimulates haemoglobin synthesis and RBC production.

Similar results were supported by Jamil et al. (2015) [9] and Lokapirnasari et al. (2016) [12] which showed that supplementation of S. platensis increased Hb%, leukocytes count and number of erythrocytes. However, in contrast, feeding of S. platensis for a long term has a negative effect on the liver, where erythrocytes and haemoglobin are partly produced due to the presence of hepatotoxin in spirulina Iwasa et al. (2002) [8]. Kumar et al. (2014) [10] also studied that stress was indicated by increased H:L ratio, but by supplementation of antistressor products such as Vit. C and Ayucess liquid significantly lowered the H/L ratio in broiler chicken. Vit C plays an important role in reducing the stress hormone i.e., Plasma corticosterone and H/L ratio.

However, there were no significant changes observed in TEC, TLC and PCV parameters among all the groups. Also, it was found that there were no significant differences in lymphocyte, Heterophil, Basophil, Monocytes and Eosinophil in birds fed with herbal supplements i.e., AV/HLP/16 and AV/LMP/10 in comparison to control. The monocyte value was found slightly lower in T1 group in comparison to T2 group and Control. However, mean value of Eosinophil was decreased in T1 and T2 group in comparison to control group due to anthelmintic activity of garlic contents. Nagaich et al. (2000) [13].

References
1. Duncan DB. Multiple ranges and multiple F test. Biometrics 1955;11:1-42.
2. Elagib HAA, El-Ain WIA, Elamin KM, Malik HEE. Effect of dietary garlic (Allium sativum) supplementation as feed additive on broiler performance and blood profile. Journal of Animal Sciences 2013;3(2):58-64.
3. Fadlalla IMT, Mohammed BH, Bakhiet AO. Effect of feeding of garlic on the performance and immunity broilers. Asian journal of poultry science 2010;4:182-189.
4. Gopi M, Karthik K, Manjunathachar HV, Tamilmahan P, Kesavan M. Essential oils as a feed additive in poultry nutrition. Advances in Animal and Veterinary Sciences. 2014;2(1):1-7.
5. Griggs JP, Jacob JP. Alternative to antibiotics for organic poultry production. Journal of applied poultry research. 2005;14:750-75.
6. Huyghebaert G, Ducatelle R, Immersee FV. An update on alternatives to antimicrobial growth promoters for broilers. The Veterinary Journal 2011;182:182-188.
7. Iranloye BO. Effect of chronic garlic feeding on some hematological parameter. African Journal of Biomedical Research 2002;5(1-2):81-82.
8. Iwasa M, Yamamoto M, Tanaka Y, Kaito M, Adachi Y. Spirulina associated hepatotoxicity. Am. J. Gastroenterol. 2002;97:3212-3213.
9. Jamil ABMR, Akanda R, Rahman M, Hossain A, Islam S. Prebiotic competence of spirulina on the production performance of broiler chickens. J Adv. Vet. Anim. Res 2015;2:304-309.
10. Kumar M, Kumar V, Roy D, Kushwaha R, Vaiswani S. Application of herbal feed additives in animal nutrition-a review. International Journal Livestock Research 2014;4:1-8.
11. Li M, Cui JR, Ye Y, Min JM, Zhang LH, Wang K, et al. Anti-tumour activity of Zajoene, a natural compound purified from garlic; antimitotic and microtubule interaction properties. Carcinogenesis 2002;23:573.
12. Lokapirnasari WP, Yulianto AB, Legowo D, Agustono. The effect of Spirulina as feed additive to myocardial necrosis and leukocyte of chicken with avian influenza (H5N1) virus infection. Proc. Chem 2016;18:213-217.
13. Nagaich SS. Studies on the anti helmintic activity of Garlic (Allium sativum) oil on common poultry worms Ascaridia galli and Heterakis. Journal Parasitology and Applied Animal Biology 2000;9:47-52.
14. Prasad R, Rose MK, Virmani M, Garg SL, Puri JP. Effect of garlic (Allium sativum) supplementation on Hematological parameters in chicken. Indian journal of Animal Research 2009;43(3):751-261.
15. Saravanan M, Ignacimuthu S. Hypocholesterolemic effect of Indian medicinal plants-a review. Medical Chemistry 2015;5:40-49.
16. Thakur CP. Emblica officinalis reduce serum aortic and hepatic cholesterol in rabbits. Experiientia 1985;14(13):423-424.