MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation

Xinyi Wang1,2, Chaowei Jiang3, Xueshang Feng1,3, Aiying Duan4, and Xinkai Bian3

1 SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
2 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
3 Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen 518055, People’s Republic of China
4 Planetary Environmental and Astrobiological Research Laboratory (PEARL), School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519000, People’s Republic of China

Received 2022 June 8; revised 2022 July 20; accepted 2022 August 16; published 2022 October 13

Abstract

The relationship between solar eruption and sunspot rotation has been widely reported, and the underlying mechanism needs to be studied. Here we performed a full 3D MHD simulation using a data-constrained approach to study the mechanism of flare eruptions in active region (AR) NOAA 10930, which is characterized by continuous sunspot rotation and homologous eruptions. We reconstructed the potential magnetic field from the magnetogram of Hinode/SOT as the initial condition and drove the MHD system by applying continuous sunspot rotation at the bottom boundary. The key magnetic structure before the major eruptions and the preformed current sheet were derived, which is responsible for the complex MHD evolution with multiple stages. The major eruptions were triggered directly by fast reconnection in the preformed current sheet above the main polarity inversion line between the two major magnetic polarities of the AR. Furthermore, our simulation shows the homologous eruption successfully. It has reasonable consistency with observations in relative strength, energy release, X-ray and Hα features, and time interval of eruptions. In addition, the rotation angle of the sunspot before the first eruption in the simulation is also close to the observed value. Our simulation offers a scenario different from many previous studies based on ideal instabilities of a twisted magnetic flux rope and shows the importance of sunspot rotation and magnetic reconnection in efficiently producing homologous eruptions by continuous energy injection and impulsive energy release in a recurrent way.

Unified Astronomy Thesaurus concepts: Solar flares (1496); Solar coronal mass ejections (310); Solar magnetic fields (1503); Magnetohydrodynamical simulations (1666)

Supporting material: animations

1. Introduction

Solar eruption is considered as the most magnificent phenomenon in the solar system. It is manifested as flares and coronal mass ejections along with high energetic particle events, and these solar transients from the solar corona can heavily affect the solar-terrestrial environment. By estimating the typical parameters of the eruptive source regions, it has been well recognized that only the magnetic free energy stored in the coronal current exceeds the required energy density as released in a typical eruption (Forbes 2000). Based on this, many theories of solar eruption have been proposed, which converged into the standard CSHKP model (Carmichael 1964; Sturrock 1966; Hirayama 1974; Kopp & Pneuman 1976) by grasping the key structure of magnetic fields and can be applied to incorporate many observations (such as flares, particle acceleration, shock waves, and radio bursts).

Although the basic scenario is well established, the initiation mechanism of solar eruption remains not fully understood. Currently, two kinds of initiation mechanisms are frequently invoked: One is based on the ideal plasma macro-instabilities and the other on nonideal microprocesses, i.e., magnetic reconnection (Chen 2011). The coronal magnetic field in the noneruptive evolution is nearly force free, and a particular force-free structure, the magnetic flux rope (MFR), holds the central position in models based on ideal instabilities. In the earliest models of such kind, the MFR is simply taken as an electric wire as in Lin & Forbes (2000); later on, an MFR has a twisted 3D structure, which is confined to be in equilibrium by the overlying magnetic arcade that is anchored at the photosphere. The ideal instabilities of such a preexisting MFR, mainly the torus and kink instability, provide an effective way for driving eruptions as developed by many theoretical and simulation research (Bateman 1978; Török et al. 2004; Fan 2005; Kliem & Török 2006). When the MFR reaches the critical point of instability, the eruption is triggered with a quick lifting up of the MFR. Meanwhile, a current sheet (CS) forms under the erupting MFR in a dynamic way. A flare results when magnetic reconnection sets in at the CS, which converts magnetic energy to thermal and nonthermal energies that power the flare. Usually, the torus instability is considered to be more efficient, while the kink one can only lead the MFRs to be torus unstable or, otherwise, confined flares (Török & Kliem 2005; Schmieder et al. 2013).

The second type of mechanism built upon magnetic reconnection needs a CS to form before eruption, such as the bipolar tether-cutting model (Moore & Labonte 1980; Moore & Roumeliotis 1992; Moore et al. 2001) and the quadrupolar breakout model (Antiochos et al. 1999; Karpen et al. 2012). In these models, the CS first forms and reconnection then triggers...
the eruption, while the MFR forms during the eruption, which is distinct from the first type in which the CS is built up at the wake of the erupting MFR. In the breakout model, a magnetic null point needs to be preexisting above a sheared core. The expansion of the sheared core will compress the null point to form the breakout CS. Slow reconnection in the CS progressively weakens the overlying field, which in turn allows more expansion of the core field, and it is proposed that a positive feedback is established, which finally leads to the formation of the flare CS (i.e., the vertical CS within the sheared core) and an eruption (Karpen et al. 2012). The tether-cutting model is simpler in its magnetic topology requirement since it is based on only a bipolar arcade. Shearing motion in the bipolar field near the polarity inversion line (PIL) forms a CS. The reconnection in the CS gradually cuts the tethering field lines, which allows the expansion of the core field until a global disruption of the system is triggered, similar to that of the breakout model. The reconnection in a newly formed large-scale CS, resulting from stretching of the large-scale overlying field by the rising core field (as an MFR), further plays an important role in supporting the eruption. However, previous numerical simulations (e.g., Amari et al. 2003; Aulanier et al. 2010) show that shearing motion alone can only help to form an MFR (along with flux cancellation), while its eruption is triggered by some ideal instabilities. Recently, an ultra-high-accuracy MHD simulation has established a new point: The slingshot effect of reconnection can impulsively accelerate the plasma to fast eruption without ideal instabilities taking place (Jiang et al. 2021b), thus emphasizing the key role of reconnection in both triggering and driving an eruption. In the above models, magnetic energy ought to be released mainly by fast reconnection (Petschek 1964), even in the presence of an erupting MFR. Ideal instabilities alone can only release a small amount of magnetic energy (Forbes & Isenberg 1991), which is inadequate for accelerating the coronal plasma.

Even though so many theoretical models exist, it is not easy to determine which one operates in realistic events since the coronal magnetic fields and their evolutions associated with eruptions are often much more complex than described in the models. In recent years, numerical models that are constrained or directly driven by observed data have been developed and proven to be a powerful tool in probing the mechanisms of realistic solar eruptions (e.g., Inoue et al. 2014; Prasad et al. 2017; Jiang et al. 2018a, 2018b; Guo et al. 2021); the progress has been reviewed by Jiang et al. (2022a). In this paper we performed an MHD simulation using a data-constrained approach to study the mechanism of flare eruptions in active region (AR) NOAA 10930. This AR is very eruption-productive and has been studied extensively in many previous papers (e.g., Su et al. 2007; Jing et al. 2008; Inoue et al. 2010; Fan 2011; Ravindra et al. 2011; Amari et al. 2014). It appeared on the solar disk on December 2006 and produced a number of flares including four X-class ones in a few days (e.g., an X3.4 flare on December 13 and an X1.9 flare on December 14). The most prominent dynamics of the AR is that a sunspot newly emerging into the AR showed continual rotation for days in the period with the flares. For example, previous studies found that the sunspot had rotated about 240° in 2 days (Zhang et al. 2007) or 540° in 5 days (Min & Chae 2009) as measured by different methods. Such rotation resulted in a strong shearing flow near the main PIL of the AR, and the magnitude of the shearing speed has also been estimated (Magara & Tsuneta 2008; Tan et al. 2009).

There is some static modeling of the coronal magnetic field for this AR (Guo et al. 2008; Schrijver et al. 2008), i.e., by using the nonlinear force-free field (NLFFF) extrapolation, verifying that the magnetic structure has a highly sheared core or MFR. A few works have been done also using dynamic MHD simulations with a focus on the mechanism of eruptions, but the conclusions are at odds with each other. For instance, based on the observed vector magnetograms from Hinode/SOT (Tsuneta et al. 2008), Amari et al. (2014) first reconstructed a series of NLFFF solutions to follow the preflare evolution of the AR from December 9 to 12 and found that a sigmoidal MFR was progressively built up. Then, with the preflare NLFFF solutions as the initial condition, they managed to simulate the eruption of the X3.4 flare by using three different types of ad hoc boundary conditions at the bottom surface and concluded that the main trigger of the flare is the torus instability of the MFR. Fan (2011) constructed a background potential field of the line-of-sight magnetogram from SOHO/MDI for this AR and then introduced into the core field an artificial MFR through rigid emergence to simulate how the emerging MFR leads to the eruption in the background field. In such a study, they suggested a different trigger, i.e., kink instability rather than torus instability because the decay index near the erupting MFR is found to be smaller than the critical value ($n < 1.5$). Another study (Muhammad et al. 2017) was performed by triggering the eruption with a small bipole emerging at the main PIL in a large-scale stable NLFFF field. By adjusting the orientations of the small bipole relative to the main PIL, they concluded that the so-called opposite polarity and reversed shear types’ emergence can effectively trigger the eruption—the same mechanism originally developed in Kusano et al. (2012).

We note that none of the aforementioned dynamic simulations have taken into consideration the effect of the continual and significant rotation of the AR’s sunspot in leading to the eruptions, which, however, is strongly suggested by observations (Evershed 1909; Brown et al. 2003; Yan et al. 2008; Vemareddy et al. 2012; Yan et al. 2018). Although the preflare sheared magnetic structure undoubtedly resulted from the sunspot rotation, there is no self-consistent model of such a process, and this is also the motivation for this paper. Here we employed an MHD model driven by the sunspot rotation to follow the coronal magnetic evolution of AR 10930 from its slow energy accumulation to the fast releasing process. We started the simulation with a potential magnetic field reconstructed from the observed magnetogram and then applied rotational motion to the positive sunspot of the AR to mimic the observed rotation. With continual rotational driving, our model displayed a full evolution from the initial potential field to two homologous eruptions (which may correspond to two X-class flares). We found that reconnection in a quasi-statically preformed CS triggered the homologous eruptions, which is consistent with a fundamental mechanism of solar eruption initiation as recently established (Jiang et al. 2021b; Bian et al. 2022a). Furthermore, our results for the coronal magnetic configuration have reasonable consistency with the observed soft X-ray and Hα features. Also, the time interval and relative strength of the simulated eruptions are on the same scale of the quantities of eruptions as derived from observations. The mechanism in our research is different from other works that require the preformed MFR and is initiated by ideal MHD instabilities. We also suggest that many homologous eruptions
of rotational sunspots may be triggered by the same mechanism in this paper.

This paper is organized as follows. We first show the observation and data in Section 2, then describe the model and method in Section 3. Simulation results are displayed in Section 4, and finally we give our discussion and conclusion in Section 5.

2. Data and Observation

The AR NOAA 10930 is highly dynamic in which four X-class flares were produced and three of them occurred on 2006 December, X6.5 on December 6, X3.4 on December 13, and X1.5 on December 14 (Kubo et al. 2007). In this research, we focus on the X3.4 flare located at S07W22 on December 13 and the X1.5 flare located at S06W46 on December 14 (Bamba et al. 2013).

Figure 1, taken from Stoke V images of HINODE/SOT (Kosugi et al. 2007; Tsuneta et al. 2008), shows the complex magnetic flux distribution of this AR. As denoted in the fourth panel of the figure, we define four areas of the photospheric magnetic field, which are, respectively, the strong positive (SP; which is the rotating sunspot), the weak positive (WP; the weak field region with positive polarities at the west side of the rotating sunspot), the strong negative (SN; i.e., the large sunspot), and the weak negative (WN; the weak field region of negative polarity at the west side of the large sunspot). There are mainly two sunspots with opposite magnetic polarities. The leading sunspot (SN) shows nearly no change during two flare events, while the smaller one in the south (SP) shows evident growth, and this indicates that the main sunspots are not a pair. The positive sunspot emerged later than the main negative sunspot, translating from west to east (right to left; Wang et al. 2008) with an obvious counterclockwise rotation from December 10 to 14. It is connected not only to the main negative sunspot in the north but also to the west (right) dispersed polarities (WN; Min & Chae 2009). The positive sunspot became diffused and rotated more slowly on December 14.

The evolution of an inverse-S sigmoid during two flares is shown in Figure 2 taken from Hinode/XRT (DeLuca et al. 2005; Golub et al. 2007). The sigmoid formed near the main PIL and had a big tail around December 12, which is likely formed by the rotation of the positive sunspot. The postflare arcades spread from left to right during the first flare. In the middle of December 13, the first flare ended, and the sigmoid re-formed at the same position was involved in the second flare. The postflare arcades during the second eruption did not spread too much to the right as the flare ribbons. Both flares exhibited two ribbons signature as shown in the first and third columns of Figure 3, which are taken from the Broadband Filter Imager (BFI) of SOT. The negative ribbon of both flares was located between the two main spots, spreading to the right and longer in the first eruption, while the positive ribbon was initially on the left side of the positive polarity (since the footpoints at the positive polarity have been rotated counterclockwise to the left), and it shrank into a circle to the right (Figure 3). Except for the length of the negative ribbon, the corresponding ribbons in both events resemble each other in both position and shape, which reflect the similarity in
their underlying magnetic configurations and thus their triggering mechanisms. There was an Earth-directed CME with a projected speed of 1780 km s$^{-1}$ (Ravindra & Howard 2010) on December 13 and another CME with a speed of 1042 km s$^{-1}$ on December 14. A major geomagnetic storm was observed on December 15.

Figure 3. (E1) Two columns shows the Hα ribbon images taken from SOT/BFI and the bottom QSL evolution during E1, respectively. (E2) The same as E1 but during the second eruption. The green and yellow region of QSL are the open field of the negative and positive fields, respectively. The red and blue region denotes the closed field of the positive and negative fields, respectively. The upper limit of the Q factor in red and blue region is $\log_{10} Q_{\text{max}} = 5$. The QSL evolution in the second column of E1 and E2 are shown at the top panel in the animation of Figure 5.
3. Model and Method

We used the DARE-MHD model (Jiang et al. 2016a) to study the dynamic evolution of the solar corona. The model was developed based on the CESE method (Chang & Tot 1993; Zhang et al. 2002) in the Cartesian coordinate system combined with the adaptive mesh refinement (AMR) technique by utilizing PARAMESH (MacNeice et al. 2000) to solve the full MHD equations:

\[\frac{\partial \mathbf{J}}{\partial t} + \nabla \cdot (\rho \mathbf{J}) = -\nabla \cdot (\rho \mathbf{v}) - \nabla p + \nabla \cdot (\rho \mathbf{B} \times \mathbf{v}) \]

where \(\mathbf{J} = \mathbf{v} \times \mathbf{B} / \mu_0 \), \(g \) is the solar gravity, \(\mu_0 \) is the magnetic permeability in vacuum, \(\nu \) is the kinetic viscosity and \(\gamma = 1 \) is the adiabatic index. We choose \(\nu = 0.05 \) \(V_A \) (the Alfvén speed) to avoid the very low density in the strong magnetic field region, which may lead to a very small time step. By setting this, the plasma density will be relaxed to its initial value \(\rho_0 \) in a timescale of 20 Alfvén times \(T_A \). This timescale is sufficiently large such that the fast dynamics of the Alfvénic speed is not influenced. The viscosity \(\nu \) is given as \(\nu = 0.05 \Delta x^2 / \Delta t \), where \(\Delta x \) (varies from 1” to 4” in our simulation) and \(\Delta t \) are the grid resolution and time step, respectively. No explicit resistivity was applied in our simulation. Since to mimic the reconnection process in the real corona environment we need to minimize the resistivity as much as we can, while any explicit value of \(\eta \) will result in a larger value of resistivity than what the numerical method has. The computational domain is sufficiently large of \([-553, 553]\) Mm in the \(x, y \) direction and \([0, 1106]\) Mm in the \(z \) direction to prevent the influence of the side and top boundary conditions on the computation of the eruption initiation. The Powell source terms and the diffusion control term are added to maintain the divergence-free condition of the magnetic field as described in Jiang et al. (2010).

3.1. Initial Conditions

We smoothed the magnetogram at 2006 December 12, 20:30 UT, which is taken from Schrijver et al. (2008) using Gaussian smoothing with an FWHM of 20 pixels. This makes the maximum value of \(B_0 \), decrease from 2619 to 1595 G and then we constructed a potential field as the initial condition. The background plasma density satisfies a hydrostatic isothermal model with a value of \(2.3 \times 10^{-15} \) g cm\(^{-3} \) at the bottom. To save the computation time, the strength of the magnetic field from the smoothed magnetogram is reduced by a factor of 25. But this will make the plasma pressure and density decay slower than the background magnetic field, causing a higher plasma \(\beta \), if we use the real value of solar gravity (\(g_\odot = 274 \) m s\(^{-2} \)). To avoid such a situation, we modified the gravity in the same way as Jiang et al. (2021b),

\[g = \frac{k}{(1 + z/L)^2} g_\odot, \]

where \(k = 5.7 \) and \(L = 76.8 \) Mm. In this way, the plasma \(\beta \) around the active region is less than 0.1 under 340 Mm. The minimum value of the plasma \(\beta \) is \(\beta = 2.5 \times 10^{-3} \). The Alfvén speed \(V_A > 1000 \) km s\(^{-1} \) below 190 Mm. These mimic the real corona environment better.

3.2. Boundary Conditions

We energized the system by applying a photospheric rotational motion to the positive polarity at the bottom boundary, as shown in Figure 4. To ensure that such a flow will not modify the magnetic flux distribution \(B_z \) at the photosphere, the velocity can be specified by employing a potential function \(\psi(B_z) \) with \(\psi = \nabla \times (\psi \mathbf{e}) \). The specific forms of the potential function in many previous researches (e.g., Amari et al. 2003; Aulanier et al. 2010; Török et al. 2013; Jing et al. 2021), however, made the line speed of rotation \(|\mathbf{v}| \) vanish \((|\psi| = |\nabla \psi| = 0) \) at the PIL where \(B_z = 0 \). As a result the shear flow near the PIL is relatively weak. To make the shear flow stronger, the velocity potential was modified as

\[\psi = \psi_0 B_z \]

and

\[v_x = \frac{\partial \psi(B_z)}{\partial y}, \quad v_y = -\frac{\partial \psi(B_z)}{\partial x}. \]

This velocity profile can reproduce the strongest shear flow \(\mathbf{v} = |\nabla \psi| = \psi_0 |\nabla B_z| \) at the PIL and the faster line speed of rotation in the north, compared to the south, as observations show (Min & Chae 2009). To save computation time, \(\psi_0 \) is scaled such that the maximum speed is 34.1 km s\(^{-1} \), which is about 60 times the real value of 0.5 km s\(^{-1} \) (Min & Chae 2009; Tan et al. 2009) but still smaller than the typical Alfvén speed by around two orders of magnitude. With such a large driving speed, the timescale of quasi-static evolution is shortened by the same times. The photospheric motion is coupled to the magnetic field evolution by the frozen-in theorem of the ideal MHD, manifested as the line-tied condition, which is important to the success of simulation. To self-consistently update the bottom magnetic field, we solve the induction equation

\[\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \eta_{\text{stable}} \nabla^2 \mathbf{B} \]

at the photosphere. The last term \(\eta_{\text{stable}} \nabla^2 \mathbf{B} \) is used to maintain the numerical stability near the PIL (see also Jiang et al. 2021a). Here we set

\[\eta_{\text{stable}} = 1 \times 10^{-2} e^{-B_z^2}. \]

On the side/top boundary, if we fix the plasma variables (\(\mathbf{v}, \mathbf{B}, T \)), there will be reflection. Instead, all of the variables are extrapolated from the neighboring inner points using a zero gradient along the normal direction of the boundary surface. The normal component of the magnetic field at the side and top boundaries is updated by the divergence-free condition to avoid the accumulation of numerical error. This mimics the open boundary.

3.3. Topology

To analyze the magnetic structure, we calculated the \(Q \) factor to identify the quasi-separatrix layers (QSLs; Titov et al. 2002;
Liu et al. 2016) as follows:

$$Q = \frac{a^2 + b^2 + c^2 + d^2}{|ad - bc|},$$

(7)

where

$$a = \frac{\partial X}{\partial x}, \quad b = \frac{\partial X}{\partial y}, \quad c = \frac{\partial Y}{\partial x}, \quad d = \frac{\partial Y}{\partial y}$$

(8)

and \((X, Y)\) and \((x, y)\) are a pair of footpoints of the same magnetic field line. The region with the large value of \(Q\) (e.g., \(\geq 10^5\)) denotes the most possible location where reconnection will take place and is often used for comparison with the position and shape of the flare ribbons.

4. Results

4.1. Overall Process

Figure 5 shows the evolution curves of the total magnetic and kinetic energies in the computational volume as well as their changing rates. Magnetic energy injection by surface motion is also shown (the dashed line in Figure 5(A)), which is computed by the time integration of the total Poynting flux at the bottom surface. As driven by the continual rotation of the sunspot for a time duration of 190 minutes (in which SP has rotated about three turns), the AR in the MHD model first experiences an overall increase of the magnetic energy and then two eruption events with a rapid release of a portion of the magnetic energy. The two eruptions can be identified clearly from the energy evolution, with onset time \(t_{E1} = 119\) minutes for the first eruption (will be referred to as E1) and \(t_{E2} = 161\) minutes for the second eruption (E2), respectively. From the beginning to a time of around \(t = 28\) minutes, the kinetic energy remains a very low value below \(10^{-3} E_p\), and the magnetic energy injection curve matches well with the increase of the total magnetic energy, owing to the line-tied boundary condition and the low numerical dissipation. This ideal process is followed by two small episodes of magnetic energy release that occur before E1. The first one (P1) starts at \(t_{P1} = 28\) minutes, after which the kinetic energy rises to \(10^{-3} E_p\), and it results in a small deviation of the bottom surface energy input and the total magnetic energy accumulation. The second one (P2) occurs at \(t_{P2} = 80\) minutes, after which the kinetic energy first rises to a peak value of \(3.4 \times 10^{-3} E_p\) and then decreases slightly. The reason for these small energy releases will be analyzed in the next sections.

The first major eruption (E1) begins when the magnetic energy reaches about \(1.44 E_p\) (and the sunspot has been rotated about 1.5 turns). Through this eruption, the magnetic energy decreases to about \(1.36 E_p \times 10^{-2} E_p\) free-energy loss), and the kinetic energy increases impulsively to \(3.6 \times 10^{-2} E_p\). That is, about half of the magnetic energy loss is converted to kinetic energy in 10 minutes. The amounts of magnetic energy released and total kinetic energy obtained, on the order of magnitude of \(10^{32}\) erg, are consistent with the estimations from previous studies that used NLFFF extrapolations for the preflare and postflare magnetic fields (Schrijver et al. 2008; Ravindra & Howard 2010). After the first eruption, the magnetic energy increases again, while the kinetic energy drops to a low value close to that of the pre-eruption state. At \(t \sim 161\) minutes, the second eruption (E2) starts, which is
weaker than the first eruption. The magnetic energy decreases from 1.41E_p to 1.36E_p ($5 \times 10^{-2}E_p$ free-energy loss). The kinetic energy increases to $2.8 \times 10^{-2} E_p$, and 56% of the magnetic energy is converted to kinetic energy in around 10 minutes. The maximum erupting speed reaches 1500 km s$^{-1}$ and 1100 km s$^{-1}$ in E1 and E2, respectively. Both eruptions drive a fast shock wave with speeds of about 500 km s$^{-1}$. The complex distribution of the magnetic flux in this AR renders the eruptions highly asymmetrical in both north–south and west–east directions. Since the magnetic field is multiplied by a factor of 0.04, the kinetic energy should be underestimated in our simulation because if we strengthen the magnetic field used in the calculation, the ratio of kinetic energy to magnetic energy will increase.

Although it is not likely to reproduce realistically the observed flares with such a simple setting of sunspot rotation, these two eruptions can still approximately mimic the two observed X-class flares on December 13 and 14, respectively, as the first one, X3.4, is stronger than the second one of X1.5. The positive sunspot has rotated over 1.5 turns before E1, which is comparable with Min & Chae (2009). Furthermore, if multiplied by a factor of 60, determined by the speeding up in our velocity-driven simulation, the quasi-static evolution time before E1 is about 5 days, and the time interval between E1 and E2 is about 40 hr. Both timescales are comparable with observations: 3 days of sunspot rotation before E1 and another 44 hr interval between E1 and E2. Interestingly, there will be more eruptions, produced in a homologous way, if the simulation is continued with further rotation of the sunspot, confirming that the sunspot rotation is an efficient mechanism in producing eruptions. Finally, it is worth noting that the total magnetic energy is always below the open field energy $E_{\text{open}} \sim 1.51E_p$ (Aly 1984, 1991; Sturrock 1991) during the whole process, suggesting that eruption is efficient at keeping the magnetic energy below its upper limit, i.e., the open field energy.

4.2. Evolution of the Magnetic Field and Electric Current

To understand why the energies evolve in the manner described in the last subsection, here we give a detailed study of the evolution of the magnetic field, topology, and current density. First, we consider the magnetic field evolution before the major eruption.

The initial magnetic topology is shown in the first column of Figures 6(C) and (F). It shows complex X-points around, QSLs above, and to the west (right side) of SP. These initial QSLs play an important role in the magnetic evolution. Before t_{p1}, P1-QSL, i.e., the QSL above the SP, was strengthened by stress between the sheared core field (which expands outward as driven by the rotation) and the surroundings. This contributed to the formation of a current layer, referred to as P1-CS at the location of P1-QSL. At the same time, a current layer was also developed above the main PIL between the SP and SN, which we call the PIL-CS. It developed with a rotated SP between sunspots and did not show any sudden changes. These current layers before t_{p1} were not strong enough, i.e., not sufficiently thin, to trigger reconnection, so the kinetic energy remained a very small value. The magnetic energy injection from the bottom boundary and its increase in the coronal volume matched each other well, showing the signature of quasi-static evolution in this period.

P1-CS took effect when it became strong enough after t_{p1}. The core expansion let P1-CS (the gray isosurface in Figure 6(B)) form at the top of SP and translate to the west side subsequently, at exactly the same location as P1-QSL (Figures 6(C), (D), (F), and (G)). Reconnection in P1-CS let WN connect to SP continuously, leading to the exchanges of SP-SN and WP-WN (as in Figure 6(A)). The current layer PIL-CS was still too weak before t_{p2} although it kept developing (Figure 6(B)). Weak outflows (500 km s$^{-1}$) were produced by the slow reconnection in P1-CS (Figures 6(E) and (H)), which accounts for the deviation between the magnetic energy injection from the bottom surface and the energy accumulation between t_{p1} and t_{p2}.

The third stage began after t_{p2}. The magnetic structure is very similar to an eruption: A rising MFR, the reconnected arcades, and a PIL-CS can be seen (Figures 7(A), (B), and (C)), although with these similarities, the distribution of the outflow and speed shows a difference (Figure 7(D)). The MFR is located at the PIL-CS and two parts of the outflow have the same position as the intersection of the slice and MFR (Figure 8(A)). After we move the slice to the eastern side, the two parts become a single one (Figure 8(A)). This suggests the location of reconnection was on the eastern side of the SP. Checking the topology of the magnetic structure, we found that, due to the complexity of the magnetic flux distribution, the initial field has a QSL (referred to as P2-QSL) on the east (left; Figure 8(B)). The existence of the initial P2-QSL means reconnection can take place at the location of P2-QSL before PIL-CS’s width reached grid resolution. When enough magnetic field and current have been transported to east of SP, the second weak energy release process began with an outflow speed of about 500 km s$^{-1}$. Since we only rotated SP and other parts stayed nearly potential (Figure 4), the slow outflow will be restricted by the overlying field to be the “horizontal flow” (Figure 7(D)), which only has velocity in the x and y directions. As in P1, the mechanism here is different from the eruption: The energy conversion resulted from the slow reconnection near the initial QSL but not fast reconnection in PIL-CS. This is the key reason why P2 is also a weak energy release episode. At the end of P2, the reconnected arcades connected to SP and SN, remaining rotating and preparing for the next eruption. Reconnection on side P1-CS existed at all times and transformed WP-WN to SP-WN (Figure 5 animation), which let more field lines participate in the formation of the PIL-CS subsequently. These are ready for the first major eruption (E1).

During the periods described above, converging motion toward the PIL induced by rotation kept thinning the CS between the SP and SN (PIL-CS) with the same speed as the order of rotation, i.e., two orders of magnitude lower than the local V_A (Alfvén speed), thus representing the “quasi-static evolution.” Owing to the very low magnetic diffusion in our code, we can get a very thin CS even with such a low speed. Otherwise, a larger magnetic diffusion will widen the CS against the convergent motion, as pointed out by Jiang et al. (2021b). The fourth bunch of field lines (labeled by the red arrow in Figure 9(A)) became SP-WN (Figure 9(A)) and formed a stronger PIL-CS by rotational post-P2 arcades. The trigger PIL-CS grew from the bottom of the simulation box by continuous rotation (Figure 9(C)) until the thickness of PIL-CS reached two to three grid resolutions. Then, numerical diffusion became nonnegligible and triggered fast reconnection, and the
Figure 6. The magnetic evolution of P1. (A) Time series pictures of the exchanged field lines formed by reconnection in P1-CS. The color of the field lines denotes the value of the nonlinear force-free factor defined as $\alpha = J \cdot B / B^2$. The background shows the sunspot distribution at the photosphere. (B) Evolution of the isosurface of $J / B = 8.7 \times 10^{-2} \text{ Mm}^{-1}$, which represents the current layer in different stages. (C) Slices of QSLs. (D) Slices of the current layer. The initial field has no obvious current so the first column is used to label the position of the slices in (C), (D), and (E). (E) Outflows at the position of the current layer in (D). (F), (G), and (H) have the same meaning as (C), (D), and (E), respectively, but at a different slice as labeled by the first column of (G). Rows (D) and (E) are shown at the top-left and the bottom-left panels in the animation of Figure 5.
Figure 7. The trigger process of P2. Positions of all slices in (C), (D), and (E) are the same as in the first column of Figure 6(G). (A) Top view of five bunches of magnetic field lines with fixed negative footpoints. (B) Side view of 3D magnetic field lines. (C) Slices of the current layer. (D) Outflows by slow reconnection at the position of the current layer in (C). (E) Side QSLs’ evolution of P2. (F) Isosurface of $J/B = 8.7 \times 10^{-2}\text{Mm}^{-1}$. Row (A) is shown at the top-right panel, and rows (C) and (D) are shown at the top-left and the bottom-left panels in the animation of Figure 5, respectively.
fourth stage, namely, the major eruption (E1), began. The PIL-CS also extended to WN (Figure 9(F)), which corresponds to the longer flare ribbon on 2006 December 13. The reconnection in PIL-CS formed an MFR during the eruption (Figure 9(B)). The plasma outflow originated from the PIL-CS with a speed reaching up to 1500 km s$^{-1}$ (Figure 9(D)) and impulsively drove MFR to erupt (as shown in panel (A) of the Figure 13 animation). Meanwhile, the PIL-CS became longer in the vertical direction, thinner and stronger (Figure 9(C) and panel (B) of the Figure 13 animation), with more flux involved in the reconnection, which provides the energy required for this eruption. With such a high speed, this eruption was strong enough to remove the restriction of the overlying field (which also occurred in E2), and no “horizontal flow” can be seen in Figures 9(D) and 10(D). At the end of E1, the reconnect arcades SP-SN were restored and remained rotating as before (Figure 9(A)), while SP-WN returned to its origin WP-WN (labeled by the red arrow in Figure 9(A)) and was beyond the control of rotation.

When the arcades SP-SN formed after E1 was sheared enough again, the fifth stage began (after t_{E2}). As in E1, the PIL-QSL along with PIL-CS grew again from the bottom near the PIL. Reconnection in the PIL-CS formed an MFR (Figure 10(B)), which was lift up by the outflow (with the speed of 1100 km s$^{-1}$) initiated from the PIL-CS (Figure 10(D) and panel (A) of the Figure 13 animation). The side P1-CS always existed and transformed the field-line connection of WP-WN to that of SP-WN, while the time duration of the side reconnection before t_{E2} was not as long as that before t_{E1}. As a result, less magnetic flux was involved in the formation of the PIL-CS (the field lines labeled by the red arrow in Figure 10(A) remain WP-WN), which made the eruption CS weaker than E1 (Figure 10(C)) and shorter in the vertical direction (panel (B) of the Figure 13 animation). The flare ribbon and PIL-CS (Figure 10(F)) were also shorter in the horizontal direction. This naturally leads to the fact that the magnetic energy release in E2 is less than that in E1. We note that when E2 began, the current sheet of E1 did not disappear (Figure 10(C)), and in a short interval, the latter eruption (E2) caught up with the former one (E1), making the shock in E2 clearer. After the eruption, the postflare arcades should be restored to the preflare configuration again, and with further rotation of the sunspot, it will lead to the third eruption, which is beyond the scope of this event research. We stopped the simulation at $t \sim 190$ minutes, showing the whole process of the magnetic evolution of two eruptions and the reasons for such changes.

4.3. Comparison with Observations

To show the credibility of our simulation, our results are compared with the observed X-ray and Hα features, timescale, rotation angle, magnetic energy release, and relative strength of the eruptions.

In general, QSLs denote the location where reconnection is most likely to take place, and their footpoints at the bottom surface represent the position of flare ribbons (Titov et al. 2002). Figure 3 shows the comparison of the bottom QSLs for the two simulated eruptions with the flare ribbons as observed for the two flares. During both eruptions, the QSLs are overall consistent in shape and position with the observed flare ribbons: QSL-N (corresponding to the negative flare ribbon) was located near the main PIL between two sunspots. QSL-P (corresponding to the positive ribbon) was initially at the left (left) of the positive sunspot and then shrank into a quasi-circular shape to the west (right). Both are comparable with the evolution of flare ribbons, especially the QSL-N, which extended longer in E1 than E2 (Figure 3). This was formed by the side reconnection in P1-CS, which transformed the field connection of WP-WN to SP-WN as described in Section 4.2.
Figure 9. Magnetic evolution of E1. All settings are the same as in Figure 7. Row (A) is shown at the top-right panel, and rows (C) and (D) are shown at the top-left and the bottom-left panels in the animation of Figure 5.
Figure 10. Magnetic evolution of E2. All settings are the same as in Figure 7. Row (A) is shown at the top-right panel, and rows (C) and (D) are shown at the top-left and the bottom-left panels in the animation of Figure 5.
and as a result, the west field lines were involved in the eruption. Sigmoids in soft X-ray images (Figure 11) before both flares were located at the main PIL and bent toward the positive sunspot by sunspot rotation. These observed features are comparable to the synthetic images of the coronal emission from the current density (Jiang et al. 2016b) and simulated magnetic structure (Figure 11).

Quantitatively, the simulation can also yield consistency in timing and magnetic energy release as mentioned in Section 4.1. There were 5 days of rotation before E1 and another 40 hr interval between E1 and E2. Both timescales are comparable with the actual evolution time: 3 days of rotation before E1 and a 44 hr interval between the eruptions on December 13 and December 14. The positive sunspot has rotated over 1.5 turns before the first eruption in our simulation, which is consistent with the total rotational angle of 540° as derived in Min & Chae (2009). The magnetic energy release in E1 in our simulation is \(\Delta E_{\text{mag}} = 3.6 \times 10^{32} \text{ erg} \), which is very close to the value of \(\Delta E_{\text{mag}} \approx 3 \times 10^{32} \text{ erg} \) derived with other methods in previous research (Schrijver et al. 2008; Ravindra & Howard 2010). From observations, the CME on December 13 (1780 km s\(^{-1}\)) is faster than that on December 14 (1042 km s\(^{-1}\)), which is consistent with our simulation.

The H\(\alpha\) figures also show some observational evidence corresponding to the P1 and P2 episodes labeled by the white arrow in Figure 12. The H\(\alpha\) brightening has a similar location to P1-CS in Figure 12(A) and P2-QSL in Figures 12(B) and (C). This indicates slow reconnection there before the major eruption as described in Section 4.2. These results enhance the credibility of our simulation.

It should be noted that our simulation simplified the photospheric motions in many aspects, which could affect the results. We did not include the flux emergence process of the rotating sunspot, its shearing motion (from west to east) with respect to the leading sunspot SP, and the colliding motion between the two main sunspots (Wang et al. 2008). For example, if we move the positive sunspot from west to east, the QSL-N in E1 may be longer since when the positive sunspot is located farther east, it will connect to WN with a stronger sheared configuration. A larger computational domain is also helpful to obtain a longer QSL: once the MFR reaches the top or lateral boundaries, the closed field lines will be taken as the open field and cannot be shown by Q factor calculation. These adjustment has potential to get a higher degree of consistence between simulated QSLs and observed flare ribbons. Also the converge motions (i.e., the collision of the two sunspots) will shorten the evolution time since it will enhance the build-up of the PIL-CS and enhance the amount of the magnetic energy released by strengthening the magnetic gradient near the PIL (Bian et al. 2022b). Though more complex motions and
settings may reproduce the flares more realistically, our result shows the key role played by sunspot rotation in leading to the eruptions and can shed light on the onset mechanism of this homologous event.

4.4. Eruption Initiation Mechanism

There are two types of CSs in our simulation: the formation of CSs in P1 and P2, which are responsible for slow reconnection, depends on the initial topology while PIL-CS, formed by the continuous shear near the PIL, accounts for the main energy release in E1 and E2. As the sunspot rotation brought field lines together, the magnetic field expanded slowly in P1 and was translated to P2-QSL in P2. This led to the core field and the surroundings being squeezed. Then, a squeezed QSL formed on the top (Figure 6(G)) and the eastern (left) side of the positive sunspot (Figure 8). Slow reconnection here changed the magnetic topology without eruptions. During the same period, converging motion induced by rotational flow made the PIL-CS stronger and thinner. When the CS’s thickness reached down to the grid width, the magnetic gradient near the CS will be strong enough to let the diffusion kick in. This essentially mimicked the nonuniform magnetic diffusivity as required in the Pescheck-type reconnection (Yokoyama & Shibata 1994): The resistivity depends sensitively on the local current density and finally leads to fast reconnection and eruption.

Figure 13(C) shows the temporal evolution of velocity at approximately the middle point of the field lines as shown in Figures 13(A) and (B), respectively. These field lines are used to illustrate the dynamics of the field that experienced reconnection and became part of the MFR subsequently in the two eruptions, E1 and E2. Once the reconnection took place, the coronal plasma frozen with the field lines was accelerated impulsively from a 10 to over 1000 km s\(^{-1}\). This acceleration was accomplished by the strong slingshot effect of the upward concave magnetic field lines, labeled by the white arrow in the middle panel of Figure 13(A) and (B). Shortly after the impulsive acceleration, the upward tension force changed sign to a downward one because the magnetic field lines relaxed quickly from an upward- to a downward-concave shape. As a result, the field lines experienced deceleration from above 1000 to around 600 km s\(^{-1}\), which is consistent with the MFR acceleration process described in Jiang et al. (2021b), suggesting magnetic reconnection played a key role in initiating the two eruptions.

We also estimated the possible role played by torus instability in driving the eruptions of E1 and E2. To do this, we need to calculate the decay index \(n \) of the strapping field (often approximated by the potential field model) overlying the erupting MFRs. Since the potential field is not always a good approximation of the strapping field (especially when the overlying field is substantially sheared), we also calculated the decay index of our simulated field for comparison in Figures 13(D) and (E). The decay index was derived along the white dashed line in Figures 13(A) and (B), which denotes the eruption direction following the method proposed by Duan et al. (2019). The critical height of the simulated field (above which \(n > 1.5 \)) is located at 50 Mm in E1 and above 60 Mm in E2. The reconnection point (labeled by the white arrow in the middle panel of Figure 13(A)) is located at a height of 50–60 Mm in E1, which indicates the MFR axis entered the unstable region. Therefore, when the MFRs in E1 were formed, it was possible to trigger the torus instability to drive the eruption in addition to the reconnection. While the MFR axis in E2 is located below 60 Mm, the torus instability had little chance to take effect. This may be an additional reason why E1 is stronger than E2, as the overlying field of E1 decays faster with height than that of E2. It is also worth noting that PIL-CSs were formed before the onset of both eruptions, or in other words, they were all formed in a quasi-static way before the MFR existed. Then, an MFR formed synchronously with the reconnection and acceleration in PIL-CSs (panel (A) of the Figure 13 animation). The acceleration process of the erupting MFR was accomplished under the critical height of the torus instability in E2 while it was accomplished above the critical height in E1 as shown in Figure 13(C). Furthermore, the MFRs experienced a deceleration process after the impulsive acceleration phase, and this deceleration occurs even in the torus-unstable region of two eruptions, which clearly indicated the torus instability was not the main factor controlling the dynamics of the MFRs. Therefore, though the torus instability had the potential to be triggered and helped the acceleration in E1, magnetic reconnection was the main initiation mechanism of both eruptions.

The P1-CS formed at the top of the positive sunspot initially and the four polarities: SP, SN, WP, and WN constituted a quadrupolar topology. One may compare this situation with the breakout model: P1-CS corresponds to the breakout CS, which opens the overlying field of the eruptive core in the quadrupolar configuration. However, our case is unlike the breakout model in which the reconnection at the breakout CS plays the key role in triggering the eruption. In our simulation, the main consequence of slow reconnection in P1-CS is to change the magnetic connectivity, which can make E1 stronger, but it is not required to trigger the eruption. Continuous sunspot rotation can initiate the eruption alone from sheared PIL-CS. This clearly suggests that the mechanism as demonstrated here is a fundamental one, which is consistent with that shown in Jiang et al. (2021b) and Bian et al. (2022a).

5. Conclusions and Discussions

In this paper, using our velocity-driven DARE-MHD model, we continuously simulated the two eruptions of NOAA AR 10930 on 2006 December 13 and 14. Our simulation started from a potential field obtained by the observed magnetogram and with a simple rotation flow applied to one of the main magnetic polarities at the bottom surface to mimic the sunspot rotation. Owing to the complex distribution of the magnetic flux, there were two slow reconnection processes in P1 and P2 before the first major eruption, which helped build the special magnetic topology. When the sunspot rotated over 1.5 turns, the strongest CS formed near the main PIL. Fast reconnection in PIL-CS formed an MFR, and the reconnection outflow ejected the coronal plasma violently. The PIL-CS was stretched to be longer, stronger, and thinner, and continuous reconnection released the energy required by E1. After this eruption, the postflare arcades of E1 were further stressed by the rotating sunspot with about another half turn, during which the PIL-CS forms again and then the second major eruption began, which is very similar to the homologous eruption mechanism as shown in Bian et al. (2022a). The PIL-CS between sunspots was developed from bottom and reconnection sets in to trigger the eruption when the width was comparable to the grid resolution as in E1. Though E1 and E2 had the same
mechanism, there was less magnetic flux that participated in E2, which made the CS and also the eruption in E2 weaker than that in E1. The two eruptions have reasonable consistency with observations in relative strength, magnetic energy loss, sunspot rotation angle in the preflare duration, observed X-ray and Hα features, as well as eruption time interval.

Our simulation offers a scenario different from many previous studies. For example, unlike Amari et al. (2014), who drove an NLFFF extrapolated for about 6 hr before the eruption to erupt by using three different types of photospheric boundary conditions, we started the simulation from the potential field. Moreover, the continuous energy accumulation and release process was produced in a more self-consistent way by applying a more realistic condition, i.e., the rotation of the positive sunspot at the bottom boundary. The key magnetic structure in favor of initiating the eruption can form by sunspot rotation directly. In addition, a pre-eruption MFR that emerged through the photosphere as described in Fan (2011) is not necessary in our simulation for triggering the eruption. Sunspot rotation can form an MFR by fast reconnection in the

Figure 13. (A) Three snapshots of the evolution of the reconnected field lines in E1. The vertical slice at x = 0 (at the middle of MFR) is shown with the contour of the velocity. All physical variables are displayed by the color bar in the first panel. (B) Same as (A) but the vertical slice is located at x = −34.5 Mm. (C) The solid lines denote the variation of the speed with respect to height z of the point, which is the intersection of the reconnected field lines and the vertical slice in panels (A; E1) and (B; E2), respectively. The green (red) dashed line denotes the critical height of the torus instability in E1 (E2). (D) Variation of the decay index n with respect to the height z along the white dashed line on the slice in the first panel of (A). The dashed line in (D) denotes the decay index n of simulated field at t ≈ 118 minutes, and the solid line denotes the result of the corresponding potential field at the same time. (E) Same as (D) but n is calculated along the white dashed line in the first panel of (B) at t ≈ 161 minutes. The corresponding animation starts at t = 112 minutes and ends at t = 129.5 minutes with a cadence of 21 s in simulation time, showing the evolution in the real-time duration of 7.5 hr in E1. The animation starts at t = 157.5 minutes and ends at t = 175 minutes with a cadence of 21 s in simulation time, showing the evolution in the real-time duration of 7.5 hr in E2. The magnetic field lines in the animation show the formation and eruption processes of MFRs. The slices in panels (A) and (B) of the animation, which are located at x = 0 Mm, denote the distribution of the velocity and J/B, respectively. The left panel (A) in the animation corresponds to row (A) and (B) in this figure.

(An animation of this figure is available.)
preformed PIL-CS during E1 and E2, but not before. Furthermore, most research into AR 10930 only focused on the X3.4 flare on December 13, and few of them have studied the relationship between the two flares (the other X1.5 flare on December 14). Our results show the two events can be triggered in the same way by fast reconnection in the CS formed in a recurrent manner by sunspot rotation as described in Section 4. Since sunspot rotation is a persistent motion for days, our result suggests an efficient way of continuous energy injection, which can reproduce the homologous eruption in AR 10930.

The importance of sunspot rotation has also been taken into consideration in some previous research while the corresponding numerical models were established in different ways. To investigate the effect of sunspot rotation in AR 10898, Török et al. (2013) rotated a envelope field of a preexisting MFR. As the the envelope field expanded progressively, the MFR became unstable and was triggered to erupt by torus instability. Jing et al. (2021) rotated the reconstructed potential field of AR 12665 along with flux emergence at the PIL. As a consequence, a sigmoidal structure formed with an overlying flux emergence at the PIL. To investigate the effect of sunspot rotation in AR 10898, onding numerical models were established in different ways.

Jing et al. (2021) rotated the reconstructed potential field of AR 12665 along with flux emergence at the PIL. As a consequence, a sigmoidal structure formed with an overlying MFR created and rose to erupt like a CME. The formation of both the MFR and PIL-CS was not related to the flux emergence. The quasi-static evolution and impulsive eruption process can be obtained solely by the rotation of the initial potential field.

Owing to the simple settings of our simulation in many aspects, more realistic consideration should be taken in future improvements of the model for reproducing the eruptions. For example, smoothing the magnetograms weakened the magnetic gradient near the main PIL. As a consequence, the eruption strength will decrease, because according to Bian et al. (2022b), the eruption strength is highly correlated with the magnetic gradient of the main PIL. A more realistic velocity field at the photosphere, including rotational, shearing, and convergent motions, derived from observations could be applied as a boundary condition to get a more self-consistent and realistic evolution as driven by persistent photospheric motion and initiated by the fundamental mechanism (Jiang et al. 2021b) may be common in solar ARs. Future work will be carried out with the aforementioned improvements for a more realistic modeling of solar eruptions that can be potentially applied to space weather forecast.

This work is jointly supported by the National Natural Science Foundation of China (NSFC 41731067, 42030204, 42174200), the Fundamental Research Funds for the Central Universities (grant No. HIT.OCEF.2021033), and Shenzhen Science and Technology Program (grant Nos. RCJC20210609104422048 and JCYJ20190806142600935). The computational work was carried out on TianHe-1(A), National Supercomputer Center in Tianjin, China.

ORCID iDs

Chaowei Jiang https://orcid.org/0000-0002-7018-6862
Xueshang Feng https://orcid.org/0000-0001-8605-2159
Aiying Duan https://orcid.org/0000-0002-1916-1053
Xinkai Bian https://orcid.org/0000-0001-9189-1846

References

Aly, J. J. 1984, ApJ, 283, 349
Aly, J. J. 1991, ApJL, 375, L61
Amari, T., Canou, A., & Aly, J.-J. 2014, Natur, 514, 465
Amari, T., Luciani, J. F., Aly, J. J., Mikic, Z., & Linker, J. 2003, ApJ, 585, 1073
Antiochos, S. K., DeVore, C. R., & Klimchuk, J. A. 1999, ApJ, 510, 485
Aulanier, G., Török, T., Démoulin, P., & DeLuca, E. E. 2010, ApJ, 708, 314
Bamba, Y., Kusano, K., Yamamoto, T. T., & Okamoto, T. J. 2013, ApJ, 778, 48
Bateman, G. 1978, MHD Instabilities (Cambridge, MA: MIT Press)
Bian, X., Jiang, C., Feng, X., et al. 2022b, A&A, 658, A174
Bian, X., Jiang, C., Feng, X., Zuo, P., & Wang, Y. 2022a, ApJL, 925, L7
Brown, D. S., Nightingale, R. W., Alexander, D., et al. 2003, SoPh, 216, 79
Carmichael, H. 1964, in Proc. of the AAS-NASA Symp. 50, The Physics of Solar Flares, ed. W. N. Hess (Washington, DC: NASA), 451
Chang, S. C., & Tot, W. M. 1993, in Thirteenth Int. Conf. on Numerical Methods in Fluid Dynamics, 414, ed. M. Napolitano & F. Sabetai (Berlin: Springer), 396
Chen, P. F. 2011, LRR, 8, 1
DeLuca, E. E., Weber, M. A., Sette, A. L., et al. 2005, AdSpR, 36, 1489
Duan, A., Jiang, C., He, W., et al. 2019, ApJ, 884, 73
Evershed, J. 1909, MNras, 69, 454
Fan, Y. 2005, ApJ, 630, 543
Fan, Y. 2011, ApJ, 740, 68
Forbes, T. G. 2000, JGR, 105, 23153
Forbes, T. G., & Isenberg, P. A. 1991, ApJ, 373, 294
Golub, L., Deluca, E., Austin, G., et al. 2007, SoPh, 243, 63
Guo, Y., Ding, M. D., Wiegmann, T., & Li, H. 2008, ApJ, 679, 1629
Guo, Y., Zhong, Z., Ding, M. D., et al. 2021, ApJ, 919, 39
Hirayama, T. 1974, SoPh, 34, 323
Inoue, S., Hayashi, K., Magara, T., Choe, G. S., & Park, Y. D. 2014, ApJ, 788, 182
Inoue, S., Kusano, K., Magara, T., Shiota, D., & Yamamoto, T. T. 2010, ApJ, 738, 161
Jiang, C., Bian, X., Sun, T., & Feng, X. 2021a, FrP, 9, 224
Jiang, C., Feng, X., Bian, X., et al. 2022b, ResearchSquare, doi:10.21203/rs. 1613867/v1
Jiang, C., Feng, X., Guo, Y., & Hu, Q. 2022a, Innov, 3, 100236
Jiang, C., Feng, X., & Hu, Q. 2018a, ApJ, 866, 96
Jiang, C., Feng, X., Liu, R., et al. 2021b, NataA, 5, 1126
Jiang, C., Feng, X., Zhang, J., & Zhong, D. 2010, SoPh, 267, 463
Jiang, C., Wu, S. T., Feng, X., & Hu, Q. 2016a, NatCo, 7, 11522
Jiang, C., Wu, S. T., Yurchyshyn, V., et al. 2016b, ApJ, 828, 62
Jiang, C., Zou, P., Feng, X., et al. 2018b, ApJ, 869, 13
Jing, J., Inoue, S., Lee, J., et al. 2021, ApJ, 922, 108
Jing, J., Wiegelmann, T., Suematsu, Y., Kubo, M., & Wang, H. 2008, ApJL, 676, L81
Karpen, J. T., Antiochos, S. K., & DeVore, C. R. 2012, ApJ, 760, 81
Kliem, B., & Török, T. 2006, PhRvL, 96, 255002
Kopp, R. A., & Pneuman, G. W. 1976, SoPh, 50, 85
Kosugi, T., Sato, K., Sakao, T., et al. 2007, SoPh, 243, 3
Kubo, M., Yokoyama, T., Kasahara, Y., et al. 2007, PASJ, 59, S79
Kusano, K., Bamba, Y., Yamamoto, T. T., et al. 2012, ApJ, 760, 31
Lin, J., & Forbes, T. G. 2000, JGR, 105, 2375
Liu, R., Kliem, B., Titov, V. S., et al. 2016, ApJ, 818, 148
MacNeice, P., Olson, K. M., Mobraay, C., de Fainchtein, R., & Packer, C. 2000, ComPhC, 126, 330
Magara, T., & Tsuneta, S. 2008, PASJ, 60, 1181
Min, S., & Chae, I. 2009, SoPh, 258, 203
