Rainfall thresholds of debris flows based on varying rainfall intensity types in the mountain areas of Beijing

Haizhi Wanga, Bing Xub,c,d, Junjie Zhangb,c, Xiaona Guob,c, Qingli Zengc and Luqing Zhangb,c

aGeohazard Monitoring Center, Beijing Institute of Geological Hazard Prevention, Beijing, China; bInstitute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China; cCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China; dInnovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China

\section*{ABSTRACT}

Three strong storms that occurred on July 21, 2012, July 20, 2016, and July 16, 2018 caused severe flooding and debris flows in the mountain areas of Beijing. The detailed records of these storms and the actual occurrence time of the debris flows provide an opportunity for evaluating the thresholds derived from different types of rainfall intensities. Herein, a new rainfall threshold of debris flows is derived from the real-time rainfall intensities in Beijing. In addition, the thresholds are estimated based on the average rainfall intensities over the interval from the beginning of the rainfall to the debris flow occurrence and over the entire rainfall duration. The results show that the various types of rainfall thresholds display significantly different capabilities in terms of separating the storms with positive debris-flow response from those with negative debris-flow response, and the real-time rainfall threshold exhibits the best performance. Moreover, our data indicate that the debris flows in Beijing are triggered by the combined work of rainfall intensity and cumulative precipitation. A debris flow is initiated only when the cumulative precipitation and rainfall intensity simultaneously reach a threshold level.

\section*{1. Introduction}

Debris flow is a major geohazard that occurs in the mountain areas of Beijing, and has caused immense loss of lives and properties in the past. The debris flows destroyed 39 villages and caused a significant loss of human lives and assets in 1888. Most importantly, the geohazard survey shows that more than 900 sites, including many villages and tourism sites, are located in regions with high debris-flow risk. Therefore, early and accurate forecasting of debris flows is of special significance for geohazard prevention and mitigation in Beijing. An intensive storm is well known to
be the trigger of debris flows, though numerous factors, such as geological and geomorphological characteristics, compositions of sediments, and vegetation coverage rates, potentially impact debris flows (Iverson 1997b; David-Novak et al. 2004; Guzzetti et al. 2007; Kean et al. 2011; Guzzetti et al. 2020). Thus, capturing the rainfall pattern for debris flow initiation is of special significance in debris flow forecasting (Guzzetti et al. 2008; Baum and Godt 2010).

Empirical threshold is the most widespread method used to predict debris flow occurrences, though mathematical and numerical models, and early warning systems have also been employed in previous studies. Empirical thresholds are often derived from an assumed power relationship between rainfall intensities or total rainfall and durations of the past storms that have initiated debris flows (Caine 1980; Peruccacci et al. 2017), and some studies combine antecedent precipitation with short-term intensities (Smolíková et al. 2016, 2021). This method is more suitable for the development of rainfall thresholds at a regional scale provided a sufficient amount of information is available (Berti et al. 2012). In contrast, the models and warning systems try to predict debris flows through establishing physical links between the rainfall patterns and debris flows in various ways, such as infinite-slope stability analysis (Papa et al. 2013), coupling of infinite-slope stability with hydrology (Berti and Simoni 2005; Berti et al. 2020), modeling initiating processes of both catchment outflows and debris flows via channel runoff (Berti et al. 2020), hydrological models (Bernard and Gregoretti 2021), integrating geological and geomorphological conditions of the studied basins with the radar storm tracking method (Tiranti et al. 2014); or Bayesian networks accounting for both technical failures and inherent system abilities (Sättele et al. 2015). These methods need detailed information on the geological, hydrological, morphological, and soil characteristics that are associated with debris flow initiations. Whereas, as pointed out by Guzzetti et al. (2007), this information is often difficult to collect precisely over large areas, and is rarely available outside specifically equipped test fields, limiting the widespread application of these models and warning systems.

The efficiency of an empirical rainfall threshold depends on the accuracy of the past rainfall and debris flow data (Guzzetti et al. 2007; Peruccacci et al. 2017; Melillo et al. 2018; Marra 2019; Gariano et al. 2020). Even a small uncertainty (1%) can significantly decrease the performance of threshold-based predictive models (Gariano et al. 2015). There might be a large uncertainty in the data used to estimate empirical thresholds (Peres et al. 2018), especially the detailed processes of rainfall and the exact time of debris flow occurrences (Guzzetti et al. 2008). The data used to derive empirical thresholds, such as historical records of rainfall, short-term rain gauges, and radar-derived rainfall estimates (Guzzetti et al. 2007; Bernard and Gregoretti 2021), particularly the historical records, often lack of the information on the occurrence time of debris flows. As a result, the actual rainfall intensities initiating debris flows cannot be accurately constrained. Alternatively, various types of rainfall intensities over different temporal resolutions, such as average and peak intensities, have been used to estimate rainfall thresholds in previous studies (Guzzetti et al. 2008). Most of previous studies used average intensities, and more than 40% of them employ daily or even coarser resolution data (Segoni et al. 2018). In addition, some studies
assumed debris flow occurrences coinciding with periods of intense rainfall during a rainstorm (McCoy et al. 2010; Kean et al. 2011; Tang et al. 2011; Parise and Cannon 2012), and suggested peak or the maximum rainfall as the trigger of debris flows (Abraham et al. 2020). However, recent observations including the records from Beijing (Wu 2001; Ma et al. 2018) showed that debris flow occurrences did not always correspond to the maximum rainfall intensity. Similarly, some studies demonstrated that using peak rainstorms instead of the actual triggering intensity might cause an overestimation of the rainfall threshold and thus afford a high rate of missed alarm (Staley et al. 2013). Conversely, an underestimated threshold will result in a high rate of false alarming. Therefore, the research on the real-time rainfall intensities, which coincide with debris flow occurrences, is of special significance in accurately estimating rainfall thresholds.

The detailed records of three strong storms and their triggering debris flows on July 21, 2012, July 20, 2016, and July 16, 2018 in Beijing provide the first opportunity for evaluating the efficiencies of the thresholds derived from rainfall intensities of different typologies. This paper systematically analyzes the evolution of the three storms, particularly the rainfall intensity and precipitation changes, and their association with the debris flow initiation. The main aims of this study are as follows: 1) establishing the first objective rainfall threshold based on real-time intensity \(I_t \) in the mountain areas of Beijing; 2) evaluating the efficiencies of the thresholds derived from different types of rainfall intensities; 3) investigating the dynamics of debris flows in the mountain region of Beijing by analyzing rainfall patterns that initiated debris flows.

2. Study area

The debris flows in the mountain areas of Beijing have a close association with regional geology and geography. Beijing is located at the northern tip of the North China Plain, near the meeting point of the Xishan and Yanshan mountain ranges. Therefore, faults, folds, and bedrock fissures have intensively developed in the mountain areas of Beijing. These tectonic factors and rock weathering, cause considerable amounts of heterogeneous, coarse, and unsolid sediments accumulating on the surface of the mountain valleys (Cui et al. 2019), providing sufficient debris materials for debris flows. This, together with the high valley slope and low vegetation coverage rate, sets a favorable condition for debris flow initiations (Wu 2001; Zhong et al. 2004; Wang 2008). For the debris flows in this study, 20–100-mm-sized gravels account for more than 90% of the deposits for the debris flows on July 21, 2012 (Liu 2017), and the fine-grained material content is less than 1.4% in the deposits of the debris flow on July 16, 2018 (Li et al. 2019). The valleys, where the debris flows occurred, have a slope of 30°–60° with some as high as 70°, and a low vegetation coverage rate with an average value of <50% (Liu 2017).

The debris flows in the mountain areas of Beijing mainly occur in the rainfall season (summer), particularly during the period from June to August. Almost all of the debris flows during 1949–2018 were triggered by the strong rainstorms between June and August (Wang 2020). This is related to the climatic characteristic of Beijing. The climate in the studied areas is controlled by the Asian Monsoon, characterized by a
hot and humid climate in the summer, and a dry and cold climate in the winter. The annual average rainfall is around 600 mm with the strong convective storms and a large amount of precipitation occurring in summer. The precipitation during June–August accounts for more than 80% of the annual total rainfall.

These characteristics are consistent with the geological, geomorphic, and climatic conditions of the runoff-generated debris flows in many mountain areas across the globe (Imaizumi et al. 2006; Gregoretti and Dalla Fontana 2007; Coe et al. 2008; Simoni et al. 2020). Therefore, the debris flows in the mountain areas of Beijing are dominated by runoff-generated (Ma et al. 2018; Li et al. 2019), the initiation mechanism of which is different from those of landslide-induced debris flows (Iverson 1997a, 1997b).

3. Material and methods

The detailed temporal and spatial changes of the storms on July 21, 2012, July 20, 2016, and July 16, 2018 recorded by the intensive automatic weather stations, FY-2E infrared images, and Doppler weather radar (Zhong et al. 2015; Yang et al. 2018; Lei et al. 2020), provide a well control for the rainfall patterns initiating debris flows (Figure 1a). Some meteorological stations, such as Hebeizhen and Nanjiao, are located in the areas of the storm center, where the serious debris flows occurred (Figure 1b). The distances between other debris flow sites and meteorological sites are within 5 km (Figure 1b). Most importantly, the records of infrared images, and Doppler weather radar suggest that all the selected stations are located exactly in the path of the rainstorm (Sun et al. 2013), and experienced similar rainfall processes with the debris sites (Figure 1a) (Huanling et al. 2014).

The occurrence time of the debris flows was taken from news reports, geohazard survey reports, and interviews with local residents. The interval between the records/witnesses and the occurrences of the events is less than 30 min due to the small size of the drainage area and the short distance between the hazard sites and witnesses.

The intensity–duration model (I–D) is the most common model employed for estimating empirical rainfall thresholds (Guzzetti et al. 2007, 2008; Baum and Godt 2010; Saito et al. 2010), and it has the following general form:

\[I = c + \alpha \times D^\beta \]

where I is rainfall intensity (in mm/h), D is rainfall duration (in h), and c, \(\alpha \) and \(\beta \) are constants. In most cases, c is often taken as zero (Guzzetti et al. 2007), and the equation becomes a simple power law.

Various methods have been used to define the rainfall I–D thresholds, from simple regression to integrated statistical methods. The simple I–D threshold is usually obtained by subjectively drawing the minimum-level lines for the rainfall intensity (Y-axis) and the duration condition that causes debris flows and landslides (X-axis) in the Cartesian semi-logarithmic or double logarithmic coordinates (Guzzetti et al. 2007; Saito et al. 2010). In contrast, statistical methods try to estimate an objective threshold. Among the statistical methods, two models are often used to define the objective rainfall I–D thresholds: one is based on Bayesian inference, the other uses
the Frequentist method. Frequentist method usually requires a large dataset that consistently covers the rainfall duration and mean intensity ranges to yield accurate results. In contrast, the Bayesian inference method is the best model suitable for examining small datasets due to its sensitivity to the position of a few data points (Leonarduzzi et al. 2017). Furthermore, the fitted I–D curves obtained by other methods, such as receiver operating characteristic curves (Fawcett 2006; Gorsevski et al. 2006) and True Skill Statistic methods (Staley et al. 2013; Gariano et al. 2015), are very similar to those derived using the Bayesian inference method (Leonarduzzi et al. 2017). Therefore, the Bayesian inference method is used in this study, given the small dataset.
Bayesian inference method is a probability approach, which is used to obtain estimates for the scale (the intercept) and the shape (the slope) of the power law curve representing the threshold, based on a set of rainfall intensity (I) and duration (D) conditions that have initiated debris flows (Guzzetti et al. 2007). This is obtained by defining a Bernoulli probability \((0 \leq p \leq 1, \text{ and } p \in \mathbb{R}^+\) of a data point occurring at a given value of rainfall intensity and duration. The estimates of \(a\) and \(b\), obtained through Bayesian inference of their posterior probability distributions given the model and the empirical data, are used to define the minimum I-D threshold curve. As did in previous studies (Brunetti et al. 2010), this study uses the WinBUGS program (Lunn et al. 2000, http://www.mrc-bsu.cam.ac.uk/bugs/) to perform the Bayesian inference to estimate the rainfall thresholds.

Three rainfall thresholds are established based on the rainstorm data. One is derived from real-time intensity \(I_i\), which is calculated by hourly accumulated rainfall, other two are based on average intensities (averaged over the interval from the beginning of the storm to the debris flow occurrence \(I_a\) and averaged over the entire rainstorm duration \(I_w\), which are widely employed in previous studies.

3. Results

There are distinct differences in rainfall, duration, and maximum intensity among the rainstorms of July 21, 2012, July 20, 2016, and July 16, 2018. The average rainfall of the whole recorded rainfalls of the three storms is around 170 mm for the storm on July 21, 2012, 203 mm for the storm on July 20, 2016, and 102 mm for the storm on July 16, 2018. The duration of the storm on July 21, 2012 was the shortest one of three storms with a duration of 19 hours, in contrast to the long durations of the storms on July 20, 2016 (55 hours) and on July 16, 2018 (60 hours). The storm on July 21, 2012 brought the biggest cumulative precipitations of the three storms with the maximum cumulative rainfall of 541 mm occurring in Hebeizhen of the Fangshan District. In addition, seven meteorological stations registered 24-h precipitations with a 100-year return period, while eight stations registered 24-h precipitations with a 50-year return period during this storm. In contrast, the cumulative precipitation in the storm center is 352 and 278 mm for the storms of July 20, 2016 and July 16, 2018, respectively (Table 1).

Similar to the rainfall patterns, the damage and loss of geohazards caused by the three storms differ significantly. The most severe geohazard corresponded to the higher recorded rainfall intensity of the storm on July 21, 2012 (Figure 1a). A total of 22 debris flows and 10 landslides were triggered by this storm in Fangshan District. The serious disasters occurred in the center of the storm, such as Hebeizhen (7 disasters), Xiayunling (13 disasters), and Nanjao (3 disasters) (Figure 1). In contrast, the rainstorms on July 20, 2016 and July 16, 2018 caused one debris flow in their respective storm center.

The debris flows in the mountain areas of Beijing display a close association with both rainfall intensities and cumulative precipitations (Figure 2). All the debris flows occurred during the periods with high rain intensities. The rainfall intensities ranged from 48.5 to 98.9 mm/h for the debris flows on July 21, 2012, and are 46 and 69.1 mm/h for the two events of 2016 and 2018, respectively. In addition, all the debris
flows occurred after cumulative precipitation reached a certain level (Figure 2), which is around 128 mm, 217 mm, and 174 mm respectively for the debris flows on July 21, 2012, July 20, 2016, and July 16, 2018 (Table 1). No debris flow occurred before the cumulative precipitations reach a threshold level, despite a high rainfall intensity (Table 1). For example, the debris flows were not initiated by the maximum intensity in Mentougou and Longquan sites, but by the ones delaying the maximum value by more than three hours when the cumulative precipitations reached the threshold level (Figure 2).

Based on the data of the three storms in Beijing, we got the objective I–D models by Bayesian inference:

\[I_i = 148 \times D_i^{-0.748} (I_i - D_i \text{ threshold}) \]

\[I_a = 21 \times D_a^{-0.739} (I_a - D_a \text{ threshold}) \]

\[I_w = 46 \times D_w^{-0.225} (I_w - D_w \text{ threshold}) \]

Here, \(D_i, D_a \), and \(D_w \) respectively indicate the real-time rainfall duration, the interval from the beginning of the storm to the debris flow occurrence, and the whole rainfall duration. The results show that the thresholds derived from the rainfall intensities of different typologies differ significantly between each other (Figure 3). The \(I_i - D_i \) threshold is the largest one, and the \(I_a - D_a \) threshold is the smallest.

4. Discussion

4.1. Efficiency of the rainfall thresholds derived from rainfall intensities of different typology

The efficiencies of the thresholds derived from rainfall intensities of different typologies are evaluated by their capabilities in discriminating between the rainfalls with positive and negative debris-flow response (Guzzetti et al. 2007). To test the efficiencies of the various thresholds, the rainfall intensities with values of \(\geq 10 \text{ mm/h} \), which did not initiate debris flows in the mountain areas of Beijing, are plotted into the

Site	Date	Maximum intensity	Real-time	Whole storms						
		Duration (hours)	Intensity (mm/h)	Rainfall (mm)	Duration (hours)	Intensity (mm/h)	Rainfall (mm)			
Xiayunling	2012.7.12	8	66.8	195	8	66.8	195	18	18.7	337
Mentougou	2012.7.12	5	54.7	84	9	51.2	187	18	16.9	305
Longquan	2012.7.12	5	86.7	118	8	60.5	204	14	25.6	358
Fangshan	2012.7.12	11	98.9	180	11	98.9	180	18	14.1	254
Hebeizhen	2012.7.12	11	92.0	382	9	65	206	24	22.5	541
Nanjiao	2012.7.21	15	49.0	267	14	46	218	24	17.6	422
Xiayunling	2016.7.20	14	40.0	245	14	40	245	23	15.3	352
Xiaballianyu	2018.7.16	5	69.1	174	5	69.1	174	10	27.8	278
Yumengshan	2018.7.16	6	58.1	140	/	/	/	10	19.7	197
Xiwanzicun	2018.7.16	4	47.6	95	/	/	/	10	16.2	162
Bangheyan	2018.7.16	4	61.0	106	/	/	/	10	26.4	264
Figure 2. The changes of rainfall intensity and cumulative precipitations in the sites where the debris flows occurred during the storms on 21 July, 2012, 20 July, 2016, 16 July, 2018. The shadow regions indicate the time of debris flows occurrence.

Figure 3a. Herein, 10 mm/h is used to delimit the lower limit of rainfall intensities that initiate debris flows because an overland flow is generated on the surface of a
slope after the cumulative rainfall reaches 10 mm in the studied region (Ma et al. 2016). Additionally, the peak and average rainfall intensities derived from historical records (Ma et al. 2016; Wang 2020) are plotted into the Figure 3a.

Figure 3. Rainfall thresholds derived from the real-time (red line), average intensity over the periods from the beginning of the rainfall to the occurrence of debris flows (pink line), average intensity over the whole storm (blue lines) (a); comparison with previous rainfall thresholds in Beijing (b) and with other regional and global scale thresholds (c). Red and sky blue solid cycles are the real-time intensities with positive and negative debris-flow response, respectively, and the large black cycles are data of the real-time average intensity of the storm in 1989 (Wu 2001); Triangles are the average intensities before occurrences of debris flows (Pink solid); The crosses are the average intensities over whole durations of the storms inducing debris flows (dodger blue). The blue rhombus is the data of the average intensities of the rainfalls triggering debris flow from 1949 to 2011(Wang 2020).
The rainfall threshold derived from the real-time intensities exhibits high ability to separate the rainfalls with positive and negative responses in Beijing. Almost all the data without initiating a debris flow, particularly those with similar rainfall durations, are in the safety region delimited by the $I_i - D_i$ threshold (Figure 3a). Furthermore, the rainfall data with the specific initiation time of the debris flows on July 21–22, 1989 (Wu 2001) are in the risk region delimited by our $I_i - D_i$ threshold (Figure 3a). In contrast, the thresholds derived from the two average intensities could not well differentiate between the rainfalls with the positive and negative debris-flow responses. Most of the averaged intensities (35 of 92, 38%) with the negative debris-flow responses are in the risk region defined by the $I_a - D_a$ threshold (Figure 3a). Similar to the $I_a - D_a$ threshold, the threshold derived from the intensities averaged over the whole rain-storm durations exhibits a lower discriminating ability (Figure 3a). These data consistently suggest a high efficiency of the real-time threshold in discriminating the rainfalls with positive debris-flow response from those with negative response. The thresholds derived from average intensities ($I_a - D_a$ and $I_w - D_w$) underestimate the precipitation or intensity triggering debris flows and thus have a high rate of false alarm. Of course, the $I_i - D_i$ model needs to be further refined due to the limited spatial and temporal coverage of the three storms considered herein.

To evaluate the reliability of the thresholds established in previous studies, we compare our thresholds with the previous thresholds in Beijing. All of the previous thresholds were derived from the historical records (Figure 3b), including the regional and local thresholds, the thresholds before and after 2000 AD based on data of 23 debris flows during 1963–2012 (Ma et al. 2016), the threshold based on the 49 events during 1949–2012 (Tu et al. 2017). The $I_w - D_w$ (averaged over the whole storm) threshold of this study is very similar to that derived from the intensities of the same typology during 1949–2012 (Wang 2020). This evidence suggests a negligible difference in the rainfall patterns initiating debris flows between the three storms in this study and those of 1949–2012. Therefore, the rainfall thresholds of this study should have a temporal representative of the rainfalls triggering debris flows in the mountain areas of Beijing. Whereas, as discussed above, the $I_w - D_w$ threshold has a low efficiency in discriminating between the rainfalls with positive and negative debris-flow response. For the reliability of previous rainfall thresholds, Figure 3b shows that almost half of the real-time intensities fall into the safe region defined by the previous I–D models, suggesting that previous thresholds have not captured the actual rainfall patterns triggering debris flows in Beijing. In contrast, all of the storm data from 1949 to 2012 that induced debris flows are in the risk region delimited by our $I_a - D_a$ threshold (Figure 3b). These data indicate that the $I_a - D_a$ threshold in this study affords a high safe estimation of the rainfalls initiating debris flows in Beijing, despite it also affords a high rate of false alarms.

4.2. Comparison with the global and regional thresholds in other regions and physical implications of the parameters employed in the empirical model

Figure 3c shows a comparison of our rainfall thresholds with the global and the regional thresholds in other regions. The noteworthy characteristic in Figure 3c is
that the I_i-D_i threshold of Beijing exhibits a similar pattern to the threshold of the debris flows triggered by short-intensive storms (Guadagno 1991; Larsen and Simon 1993; Wieczorek et al. 2000; Chen et al. 2005; Giannecchini 2005), particularly the threshold in Blue Ridge, Madison County, Virginia (Wieczorek et al. 2000), while it is higher than all global and most regional thresholds. This similarity might be associated with the small difference between the average and the real-time intensities for the short-intensive storms. Theoretically, the difference between the average and real-time intensities is small for short-intensive storms, but it is significant for the long and low-intensive rainfall. Therefore, the thresholds derived from the intensities averaged over short-intensive storms would be higher than those from the long-duration rainfalls. This assumption is consistent with the results of previous studies. Globally, the thresholds derived from the short-intensive storms are indeed larger than those derived from the intensities of other rainfall types (Guzzetti et al. 2007). These items of evidence, together with the high efficiency of the I_i-D_i model in Beijing, demonstrate that the thresholds derived from the intensities averaged over long-term rainfalls underestimate the actual rainfall intensities initiating debris flows.

The similarity between our I_i-D_i threshold and those thresholds of debris flows triggered by short-intensive storms presents some implications for the physical interpretations of the parameters employed in empirical $I-D$ curves. Figure 3c clearly shows that the slope of the I_i-D_i curves (β) is similar to those of short-intensive storms initiating debris flows, but the intercepts (α) vary substantially in different regions. The similar value of β is consistent with the assumed physical interpretation of the slope. The β represents the slope of the catchment outflow threshold, which depends on the land cover upstream of the initiation area, and the value of which is fixed (Berti et al. 2020). Whereas, the intercept value of the curve represents the initial loss in headwater catchments (Berti et al. 2020), which is associated with regional catchment conditions. The initial loss includes rainfall loss due to interception, depression storage, percolation through the fractures and holes in rocks and soils, and wetting the surface soils and/or rocks of the catchments. Therefore, the initial loss (α value) differs significantly among various regions due to their geological and geomorphological differences.

4.3. Dynamics of the debris flows in the mountain areas of Beijing

As discussed above, the debris flows in the mountain areas of Beijing cannot be interpreted by the rainfall intensity alone, the debris flows occurred only when both cumulative rainfall and intensity simultaneously reached a certain threshold in the mountain areas of Beijing. On July 21, 2012, no debris flow was triggered when the cumulative precipitations were relatively low in the Mentougou (118.4 mm) and Longquan sites (84.3 mm), despite the rainfall intensity reaching the maximum (Figure 2). Similarly, the rainstorms with high intensity and low precipitations during the storm on July 16, 2018 caused few debris flows (Table 1). The data of this study indicate that the minimum values of accumulated rainfalls and rainfall durations are 174 mm and 5 hours for debris flow initiations (Table 1). These results indicate that the debris flows in Beijing are initiated by the combination of high rainfall intensity...
with cumulative rainfall. The same scenario has been detected in many areas across the globe (Guzzetti et al. 2008), including central and southern Europe (Guzzetti et al. 2007), Japan (Saito et al. 2010), America (Baum and Godt 2010), and the areas with high gradient slope in Himalaya mountains (Dahal and Hasegawa 2008) and Taiwan Island (Chen et al. 2005).

The contribution of antecedent precipitations to initiating debris flows is negligible in Beijing because of the low antecedent precipitations for the debris flows in this study (Ma et al. 2018; Li et al. 2019), though it displayed a significant role in some regions (Guzzetti et al. 2007; Smolíková et al. 202). For example the 30-, 15-, and 5-day antecedent precipitations were respectively ~103.4, 102.2, and 30 mm in Xiabailianyu for the storms on July 16, 2018, which are considerably lower than the cumulative rainfall before the debris flow initiation during the storm. However, the high cumulative precipitations and long rainfall durations before the debris flow occurrence suggest that antecedent precipitation will play a role on debris flow initiations in the mountain areas of Beijing once it reaches a high level. The high antecedent rainfall would lead to a high value of antecedent moisture conditions, which is an important correction factor for the Curve Number method of the Soil Conservation Service for effective rainfall calculation and a function of the initial conditions (Gregoretti and Dalla Fontana 2007, 2008).

Our data provide some implications for the dynamics of debris flow initiations. Based on above discussion, the combination of cumulative precipitations and high rainfall intensity triggered the debris flows in Beijing. This characteristic provides a strong test for the assumed mechanisms of debris flow initiations (Iverson 1997b). According to the postulation of Iverson (1997a), three factors control the development of debris flows: 1) failures of debris masses, 2) sufficient water for saturating the mass, and 3) sufficient conversion of the gravitational potential energy to internal kinetic energy for changing the motion to a flow. These three factors must be almost simultaneously satisfied for a debris flow initiation (Ellen and Fleming 1987; Anderson and Sitar 1995; Iverson 1997a). For the debris flows in Beijing, the long-term heavy rainfall and its resultant high cumulative rainfall before debris flow initiations provide sufficient time and water for water infiltration and saturation of debris sediments, subsequently mobilizing sediments by increasing the pore pressures of the sediments. Simultaneously, high water flows and surges caused by the intensive storms incorporate and retain the mobilized sediments, flowing down the slope and forming debris flows.

5. Conclusion

This study systematically analyzed the evolutions of three recent rainstorms and their association with the debris flow initiation in the mountain areas of Beijing. The debris flows occurred during the intervals with high rainfall intensities, but they did not always correspond to the maximum rainfall intensity, some of which exhibited 3–4 hours delay to the maximum intensity. All the debris flows occurred when both the intensities and cumulative precipitations reached a certain level simultaneously, indicating a combined influence of rainfall intensity and cumulative precipitation.
The rainfall thresholds derived from the rainfall intensities of different typologies differ significantly in the efficiency of discriminating the rainfalls initiating debris flows. The threshold derived from the real-time intensities exhibits a high ability to separate the storms causing debris flows from those not causing debris flows. In contrast, the \(I_a - D_a \) and \(I_w - D_w \) thresholds exhibit a low discriminating ability, though the \(I_a - D_a \) model provides a high safe threshold. The results of this study demonstrate a reliability of the real-time rainfall intensities in discriminating the rainfalls initiating debris flows, and the necessity of employing the real-time rainfall intensity for accurately estimating rainfall thresholds in future studies. Additionally, owing to the limited spatial and temporal coverage of the three storms, the \(I_i - D_i \) threshold needs to be tested and refined using more datasets.

Disclosure statement

No potential conflict of interest was reported by the author.

Funding

This work is funded by National Key Research and Development Program of China (2017YFA060340202), National Natural Science Foundation of China (41772182), and Strategic Priority Research Program Strategic B (XDB26020000).

Data availability statement

The data that support the findings of this study are available from the corresponding author, Bing Xu, upon reasonable request.

References

Abraham MT, Satyam N, Rosi A, Pradhan B, Segoni S. 2020. The selection of rain gauges and rainfall parameters in estimating intensity-duration thresholds for landslide occurrence: case study from Wayanad (India). Water. 12(4):1000.

Anderson SA, Sitar N. 1995. Analysis of rainfall-induced debris flows. J Geotech Eng. 121(7):544–552.

Baum RL, Godt JW. 2010. Early warning of rainfall-induced shallow land slides and debris flows in the USA. Landslides. 7(3):259–272.

Bernard M, Gregoretti C. 2021. The use of rain gauge measurements and radar data for the model-based prediction of runoff-generated debris-flow occurrence in early warning systems. Water Res. 57(3):e2020WR027893.

Berti M, Bernard M, Gregoretti C, Simoni A. 2020. Physical interpretation of rainfall thresholds for runoff-generated debris flows. J Geophys Res Earth Surf. 125(6):e2019JF005513.

Berti M, Martina MLV, Franceschini S, Pignone S, Simoni A, Pizziolo M. 2012. Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach. J Geophys Res. 117(F4):2012JF002367.

Berti M, Simoni A. 2005. Experimental evidences and numerical modelling of debris flow initiated by channel runoff. Landslides. 2(3):171–182.

Brunetti MT, Peruccacci S, Rossi M, Luciani S, Valigi D, Guzzetti F. 2010. Rainfall thresholds for the possible occurrence of landslides in Italy. Nat Hazards Earth Syst Sci. 10(3):447–458.

Caine N. 1980. The rainfall intensity: duration control of shallow landslides and debris flows. Geogr Ann Ser A Phys Geogr. 62:23–27.
Chen C-Y, Chen T-C, Yu F-C, Yu W-H, Tseng C-C. 2005. Rainfall duration and debris-flow initiated studies for real-time monitoring. Environ Geol. 47:715–724.

Coe JA, Kinna DA, Godt JW. 2008. Initiation conditions for debris flows generated by runoff at Chalk Cliffs, central Colorado. Geomorphology. 96(3–4):270–297. 2008/04/15/

Cui Y, Cheng D, Chan D. 2019. Investigation of post-fire debris flows in Montecito. ISPRS Int J Geo-Inf. 8(1):5.

Dahal RK, Hasegawa S. 2008. Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology. 100:429–443.

David-Novak HB, Morin E, Enzel Y. 2004. Modern extreme storms and the rainfall thresholds for initiating debris flows on the hyperarid western escarpment of the Dead Sea, Israel. Geo Soc Am Bull. 116(5):718–728.

Ellen SD, Fleming RW. 1987. Mobilization of debris flows from soil slips, San Francisco Bay region, California. In: John EC, Gerald FW, editors. Debris Flows/Avalanches: Process, Recognition, and Mitigation. Boulder, CO: Geological Society of America; p. 31–40.

Fawcett T. 2006. An introduction to ROC analysis. Pattern Recog Lett. 27(8):861–874.

Gariano SL, Brunetti MT, Iovine G, Melillo M, Peruccacci S, Terranova O, Vennari C, Guzzetti F. 2015. Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy. Geomorphology. 228:653–665.

Gariano SL, Melillo M, Peruccacci S, Brunetti MT. 2020. How much does the rainfall temporal resolution affect rainfall thresholds for landslide triggering? Nat Hazards. 100(2):655–670. 2020/01/01

Giannecchini R. 2005. Rainfall triggering soil slips in the southern Apuan Alps (Tuscany, Italy). Adv Geosci. 2:21–24.

Gorsevski PV, Gessler PE, Holtz RB, Elliot WJ. 2006. Spatial prediction of landslide hazard using logistic regression and ROC analysis. Trans GIS. 10(3):395–415.

Gregoretti C, Dalla Fontana G. 2007. Rainfall threshold for the initiation of debris flows by channel-bed failure in the Dolomites. In: Chen, CL, Major, JJ, editors. Debris-flow hazards mitigation: mechanics, prediction, and assessment. Rotterdam: Millpress; p. 11–22.

Gregoretti C, Dalla Fontana GD. 2008. The triggering of debris flow due to channel-bed failure in some alpine headwater basins of the Dolomites: analyses of critical runoff. Hydrol Process. 22(13):2248–2263.

Guadagno F. 1991. 20. Debris flows in the Campanian volcaniclastic soils. In: Proceedings of the Slope Stability Engineering: Developments and Applications: Proceedings of the International Conference on Slope Stability.

Guzzetti F, Gariano SL, Peruccacci S, Brunetti MT, Marchesini I, Rossi M, Melillo M. 2020. Geographical landslide early warning systems. Earth Sci Rev. 200:102973.

Guzzetti F, Peruccacci S, Rossi M, Stark CP. 2007. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys. 98(3–4):239–267. 2007/12/01

Guzzetti F, Peruccacci S, Rossi M, Stark CP. 2008. The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides. 5(1):3–17. 2008/02/01

Huanling Y, Guoyu R, Fang W, Weidong L, Ping Y. 2014. Spatial and temporal characteristics of a summer rainstorm in 2012 in Beijing. Meteorol Sci Technol. 42:856–864.

Iwai K, Sidle RC, Tsuchiya S, Ohkawa O. 2006. Hydrogeomorphological processes in a steep debris flow initiation zone. Geophys Res Lett. 33(10):2006GL026250.

Iverson R. 1997a. The physics of debris flows: Reviews Geophysics. by the American Geophysical Union Paper.

Iverson RM. 1997b. The physics of debris flows. Rev Geophys. 35(3):245–296.

Kean JW, Staley DM, Cannon SH. 2011. In situ measurements of post-fire debris flows in southern California: Comparisons of the timing and magnitude of 24 debris-flow events with rainfall and soil moisture conditions. J Geophys Res. 116(F4):2011JF002005.

Larsen MC, Simon A. 1993. A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geogr Ann: Ser A Phys Geogr. 75(1–2):13–23.
Lei L, Xing N, Zhou X. 2020. A study on the warm-sector torrential rainfall during 15 – 16 July 2018 in Beijing area. Acta Meteorol Sin. 78:1–17.

Leonarduzzi E, Molnar P, Mc Ardell BW. 2017. Predictive performance of rainfall thresholds for shallow landslides in Switzerland from gridded daily data. Water Resour Res. 53(8):6612–6625.

Li Y, Ma C, Wang Y. 2019. Landslides and debris flows caused by an extreme rainstorm on 21 July 2012 in mountains near Beijing, China. Bull Eng Geol Environ. 78(2):1265–1280.

Liu J. 2017. Field investigation and research of debris flows triggered by an extreme rainstorm on July 21, 2012 in Beijing. Beijing: Beijing Forestry University.

Lunn DJ, Thomas A, Best N, Spiegelhalter D. 2000. WinBUGS - A Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput. 10:325–337.

Ma C, Deng J, Wang R. 2018. Analysis of the triggering conditions and erosion of a runoff-triggered debris flow in Miyun County, Beijing, China. Landslides. 15(12):2475–2485. 2018/12/01

Ma C, Wang Y-j, Du C, Wang Y-q, Li Y-p. 2016. Variation in initiation condition of debris flows in the mountain regions surrounding Beijing. Geomorphology. 273:323–334.

Marra F. 2019. Rainfall thresholds for landslide occurrence: systematic underestimation using coarse temporal resolution data. Nat Hazards. 95(3):883–890. 2019/02/01

McCoy SW, Kean JW, Coe JA, Staley DM, Was klewicz TA, Tucker GE. 2010. Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning. Geology. 38(8):735–738.

Melillo M, Brunetti MT, Peruccacci S, Gariano SL, Roccati A, Guzzetti F. 2018. A tool for the automatic calculation of rainfall thresholds for landslide occurrence. Environ Modell Software. 105:230–243.

Papa MN, Medina V, Ciervo F, Bateman A. 2013. Derivation of critical rainfall thresholds for shallow landslides as a tool for debris flow early warning systems. Hydrol Earth Syst Sci. 17(10):4095–4107.

Parise M, Cannon SH. 2012. Wildfire impacts on the processes that generate debris flows in burned watersheds. Nat Hazards. 61(1):217–227. 2012/03/01

Peres DJ, Cancelliere A, Greco R, Bogaard TA. 2018. Influence of uncertain identification of triggering rainfall on the assessment of landslide early warning thresholds. Nat Hazards Earth Syst Sci. 18(2):633–646.

Peruccacci S, Brunetti MT, Gariano SL, Melillo M, Rossi M, Guzzetti F. 2017. Rainfall thresholds for possible landslide occurrence in Italy. Geomorphology. 290:39–57.

Saito H, Nakayama D, Matsuyama H. 2010. Relationship between the initiation of a shallow landslide and rainfall intensity—duration thresholds in Japan. Geomorphology. 118(1–2):167–175. 2010/05/15

Sáttele M, Bründl M, Straub D. 2015. Reliability and effectiveness of early warning systems for natural hazards: Concept and application to debris flow warning. Reliab Eng Syst Saf. 142:192–202.

Segoni S, Piciullo L, Gariano SL. 2018. A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides. 15(8):1483–1501. 2018/08/01

Simoni A, Bernard M, Berti M, Boreggio M, Lanzoni S, Stancaneli LM, Gregoret ti C. 2020. Runoff-generated debris flows: Observation of initiation conditions and erosion–deposition dynamics along the channel at Cancia (eastern Italian Alps). Earth Surf Process Landforms. 45(14):3556–3571.

Smolíková J, Blahut J, Vilimek V. 2016. Analysis of rainfall preceding debris flows on the Smědavská hora Mt., Jizerské hory Mts., Czech Republic. Landslides. 13(4):683–696. 2016/08/01

Smolíková J, Hrbáček F, Blahút J, Klimeš J, Vilimek V, Loaiza Usuga JC. 2021. Analysis of the rainfall pattern triggering the Lemešiná debris flow, Javorníky Range, the Czech Republic. Nat Hazards. 106(3):2353–2379. 2021/04/01
Staley DM, Kean JW, Cannon SH, Schmidt KM, Laber JL. 2013. Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in southern California. Landslides. 10(5):547–562. 2013/10/01

Sun J, Zhao S, Fu S-m, Wang H, Zheng L. 2013. Multi-scale characteristics of record heavy rainfall over Beijing area on July 21, 2012. Chin J Atmos Sci. 37:705–718.

Tang C, Zhu J, Ding J, Cui XF, Chen L, Zhang JS. 2011. Catastrophic debris flows triggered by a 14 August 2010 rainfall at the epicenter of the Wenchuan earthquake. Landslides. 8(4):485–497. 2011/12/01

Tiranti D, Cremonini R, Marco F, Gaeta AR, Barbero S. 2014. The DEFENSE (debris Flows triggEred by storms – nowcasting system): an early warning system for torrential processes by radar storm tracking using a Geographic Information System (GIS). Comput Geosci. 70:96–109.

Tu J, Ma C, Yang H. 2017. Rainfall condition of triggering debris flows in Beijing mountain regions. Sci Soil Water Conserv. 15:103–110.

Wang H. 2008. A study of critical rainfall volume for mudflows based on historical data in the mountain areas of Beijing. Urban Geol. 3:18–21.

Wang H. 2020. Early warning thresholds of the rainfall-induced debris flows in Beijing. Quat Sci. 40:1371–1380.

Wieczorek GF, Morgan BA, Campbell RH. 2000. Debris-flow hazards in the Blue Ridge of central Virginia. Environ Eng Geosci. 6(1):3–23.

Wu Z. 2001. The mud-rock flow disaster and their touch off condition by rainfall in Beijing area. Res Soil Water Conserv. 8:67–72.

Yang M, Pan X, Di S. 2018. Multi-factor analysis of torrential rain occurred in Beijing on July 20, 2016. J China Hydrol. 38:85–92.

Zhong D, Xie H, Wang S. 2004. Debris flows in mountain areas of Beijing Beijing. Beijing: The Commercial Press.

Zhong L, Mu R, Zhang D, Zhao P, Zhang Z, Wang N. 2015. An observational analysis of warm-sector rainfall characteristics associated with the 21 July 2012 Beijing extreme rainfall event. J Geophys Res Atmos. 120(8):3274–3291.