Menu-size Complexity and Revenue Continuity of Buy-many Mechanisms

SHUCHI CHAWLA, YIFENG TENG, and CHRISTOS TZAMOS, University of Wisconsin-Madison

CCS Concepts: • Theory of computation → Algorithmic mechanism design; Computational pricing and auctions.

Additional Key Words and Phrases: buy-many mechanisms, revenue monotonicity, menu-size complexity

ACM Reference Format:
Shuchi Chawla, Yifeng Teng, and Christos Tzamos. 2020. Menu-size Complexity and Revenue Continuity of Buy-many Mechanisms. In Proceedings of the 21st ACM Conference on Economics and Computation (EC ’20), July 13–17, 2020, Virtual Event, Hungary. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3391403.3399453

We study the multi-item mechanism design problem where a monopolist sells n heterogeneous items to a single buyer. In recent work, Chawla et al. [2] advocated studying revenue maximization of multi-item mechanisms under the so-called “buy-many” constraint. Informally, a mechanism is buy-many if the buyer is allowed to participate in the mechanism any number of times. For example, a buyer interested in purchasing a subset of items may purchase the components of this subset individually. Viewing the mechanism as a function that assigns prices to allocations, the buy-many constraint is essentially equivalent to a subadditivity constraint over the prices.

The buy-many constraint is a natural property that most real-world mechanisms satisfy. All of the simple classes of mechanisms studied in the literature such as item pricing, grand bundle pricing, two part tariffs, etc. also satisfy this property. As such, buy-many mechanisms are a worthy object of study. Chawla et al. asked whether buy-many mechanisms exhibit structural properties that arbitrary mechanisms do not. In this paper we study two such properties: menu-size complexity and revenue continuity. We discuss these two properties, their significance, and our results.

Menu-size Complexity. The menu size of a mechanism, defined as the number of different outcomes the seller offers to the buyer, was first introduced by Hart and Nisan [4]. It has been studied extensively in the literature as a measure of complexity for single-buyer mechanisms (see, e.g., [1, 3, 5]). For the unconstrained setting, it is known that even for selling two items to an additive buyer, the menu-size complexity of the optimal buy-one mechanism can be infinite [4]. The same is true for any mechanism that achieves a bounded approximation to the optimal revenue. Positive results for getting near-optimal revenue using mechanisms with finite menu-size complexity have only been established for buyers with subadditive valuation functions and independent values for each item [1, 5].

For buy-many mechanisms, we define their menu-size complexity to be similar to the “additive menu size” introduced by Hart and Nisan [4], which corresponds to the number of “basic” options the buy-many mechanism offers. Can we approximate the optimal revenue obtained by buy-many mechanisms with bounded menu-size? We give an affirmative answer to this question.
Theorem 1. For any distribution \mathcal{D} over arbitrary valuation functions, there exists a buy-many mechanism M generated by $(n/\epsilon)^{O(n)}$ menu entries, such that $\text{Rev}_\mathcal{D}(M) \geq (1 - \epsilon) \text{BuyManyRev}(\mathcal{D})$.

The theorem above implies that a mechanism with finite menu-size complexity can get near-optimal revenue obtained by any buy-many mechanism. Such doubly-exponential dependency on n is tight since no mechanism with sub-doubly-exponential description complexity can get $o(\log n)$-approximation in revenue.

Theorem 2. There exists a distribution over XOS valuation functions for which no mechanism with description complexity at most $2^{o(n^{1/4})}$ can obtain a $o(\log n)$ fraction of the optimal revenue obtained by buy-many mechanisms.

Revenue Continuity. We are interested in understanding the extent to which the optimal revenue changes if the value distribution is perturbed slightly. Formally, let \mathcal{D} be a distribution over valuation functions, and let \mathcal{D}' be another distribution obtained by taking each valuation function in the support of \mathcal{D}' and changing each component of this function multiplicatively by some factor in $[1 - \epsilon, 1 + \epsilon]$ for some small $\epsilon > 0$. Can we then show that $\text{Rev}_{\mathcal{D}'} \geq (1 - \epsilon') \text{Rev}_\mathcal{D}$ where ϵ' goes to 0 as ϵ goes to 0? We call such a property revenue continuity.

While revenue continuity is inherently interesting, it also has practical implications. Continuity implies that revenue estimates established on the basis of market analysis will be robust to errors in estimating demand. Furthermore, the accuracy of these estimates will improve directly with a reduction in measurement error. From an algorithmic standpoint, revenue continuity allows discretizing the values to their most significant digits through a sufficiently fine multiplicative grid. This is possible to do without a significant drop in revenue.

A surprising result based on an example by Psomas et al. [6] shows that optimal revenue obtained by buy-one mechanisms does not exhibit revenue continuity, even for additive buyers. It is even possible that the optimal revenue is infinite before the perturbation, but finite afterward. However, in sharp contrast to the buy-one setting, such revenue discontinuity does not happen to buy-many mechanisms. Denote by $\text{BuyManyRev}(\mathcal{D})$ the optimal revenue obtained by buy-many mechanisms for a buyer with value distribution \mathcal{D}. We state the result in the following theorem.

Theorem 3. Let \mathcal{D} be a distribution over arbitrary valuation functions, and \mathcal{D}' a $(1 \pm \epsilon)$-multiplicative-perturbation of \mathcal{D}. Then $\text{BuyManyRev}(\mathcal{D}') \geq (1 - \text{poly}(n, \epsilon)) \text{BuyManyRev}(\mathcal{D})$.

Acknowledgements. We thank S. Matthew Weinberg for discussing the revenue discontinuity example of buy-one mechanisms in [6].

Full paper. https://arxiv.org/pdf/2003.10636.pdf

REFERENCES

[1] Moshe Babaioff, Yannai A Gonczarowski, and Noam Nisan. 2017. The menu-size complexity of revenue approximation. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing. 869–877.

[2] Shuchi Chawla, Yifeng Teng, and Christos Tzamos. 2019. Buy-Many Mechanisms are Not Much Better than Item Pricing. In Proceedings of the 2019 Conference on Economics and Computation. 237–238.

[3] Yannai A. Gonczarowski. 2018. Bounding the Menu-size of Approximately Optimal Auctions via Optimal-transport Duality. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2018). 123–131.

[4] Sergiu Hart and Noam Nisan. 2019. Selling multiple correlated goods: Revenue maximization and menu-size complexity. Journal of Economic Theory 183 (2019), 991–1029.

[5] Pravesh Kothari, Sahil Singla, Diyvirthi Mohan, Ariel Schvartzman, and S Matthew Weinberg. 2019. Approximation Schemes for a Unit-Demand Buyer with Independent Items via Symmetries. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 220–232.

[6] Alexandros Psomas, Ariel Schvartzman, and S Matthew Weinberg. 2019. Smoothed analysis of multi-item auctions with correlated values. In Proceedings of the 2019 ACM Conference on Economics and Computation. ACM, 417–418.