Correction of a theorem on the symmetric group generated by transvections

Hau-wen Huang

Abstract

Let V denote a vector space over two-element field \mathbb{F}_2 with finite positive dimension and endowed with a symplectic form B. Let $\text{SL}(V)$ denote the special linear group of V. Let S denote a subset of V. Define $Tv(S)$ as the subgroup of $\text{SL}(V)$ generated by the transvections with direction α for all $\alpha \in S$. Define $G(S)$ as the graph whose vertex set is S and where $\alpha, \beta \in S$ are connected whenever $B(\alpha, \beta) = 1$. A well-known theorem states that under the assumption that S spans V, the following (i), (ii) are equivalent:

(i) $Tv(S)$ is isomorphic to a symmetric group.
(ii) $G(S)$ is a claw-free block graph.

We give an example which shows that this theorem is not true. We give a modification of this theorem as follows. Assume that S is a linearly independent set of V and no element of S is in the radical of V. Then the above (i), (ii) are equivalent.

1 A theorem on the symmetric group generated by transvections

Throughout this note let V denote a vector space over two-element field \mathbb{F}_2 with finite positive dimension and endowed with a symplectic form B. Let $\text{rad}V$ denote the radical of V with respect to B. Let $\text{SL}(V)$ denote the special linear group of V. For $\alpha \in V$ define a linear transformation $\tau_\alpha : V \rightarrow V$ by

$$\tau_\alpha \beta = \beta + B(\beta, \alpha)\alpha$$

for all $\beta \in V$.

We call τ_α the transvection on V with direction α. Observe that $\tau_\alpha^2 = 1$ and so $\tau_\alpha \in \text{SL}(V)$. For a subset S of V define $Tv(S)$ to be the subgroup of $\text{SL}(V)$ generated by the transvections τ_α for all $\alpha \in S$, and define $G(S)$ to be the simple graph which has vertex set S and an edge between vertices α and β if and only if $B(\alpha, \beta) = 1$.

Let G denote a simple graph. A cut-vertex of G is a vertex whose deletion increases the number of components. A block of G is a maximal connected subgraph of G that has no cut-vertex. A block graph is a simple connected graph in which every block is a complete graph. A claw is a tree with one internal vertex and three leaves. A simple graph is said to be claw-free if it does not contain a claw as an induced subgraph.
Let S denote a subset of V. Let C denote the set consisting of all cut-vertices of $G(S)$. We now view $G(S)$ as a 1-dimensional complex. Let G_1, G_2, \ldots, G_k denote the components of $G(S) \setminus C$. For each $1 \leq i \leq k$ define G_i^* to be the closure of G_i in $G(S)$. Let H denote the graph with $G_1^*, G_2^*, \ldots, G_k^*$ as vertices and an edge between G_i^* and G_j^* if $G_i^* \cap G_j^*$ is nonempty. [3, Theorem 3.1] states that under the assumption that S spans V, the group $Tv(S)$ is isomorphic to a symmetric group if and only if the following (i)–(iv) hold:

(i) $G(S)$ is connected;

(ii) for each $\alpha \in S$ the graph $G(S \setminus \{\alpha\})$ contains at most two components;

(iii) for each $1 \leq i \leq k$ the graph G_i^* is a complete graph;

(iv) H is a tree.

We remark that $G_1^*, G_2^*, \ldots, G_k^*$ are the blocks of $G(S)$. Therefore $G(S)$ is a claw-free block graph if and only if (i)–(iii) hold. Condition (ii) implies that H is acyclic and therefore (i), (ii) imply (iv). We can state [3, Theorem 3.1] as follows.

Theorem 1.1. [3, Theorem 3.1]. Assume that S spans V. Then $Tv(S)$ is isomorphic to a symmetric group if and only if $G(S)$ is a claw-free block graph.

2 A counterexample to the necessity of Theorem 1.1

In this section we show a counterexample to the necessity of Theorem 1.1. We begin by recalling some background material from [1, 2].

Definition 2.1. [1, Section 3]. Define a binary relation \mathcal{T}_0 on the power set of V as follows. For any two $S, S' \subseteq V$ we say that S is \mathcal{T}_0-related to S' whenever there exist $\alpha, \beta \in S$ such that S' is obtained from S by changing β to $\tau_\alpha \beta$.

Definition 2.2. [1, Section 3]. Define \mathcal{T} to be the equivalence relation on the power set of V generated by \mathcal{T}_0.

Lemma 2.3. [2, Corollary 11.2]. Assume that S is a subset of V and no element of S is in $\text{rad} V$. Let the equivalence relation \mathcal{T} be as in Definition 2.2. Then $Tv(S)$ is isomorphic to a symmetric group if and only if there exists S' in the \mathcal{T}-equivalence class of S for which $G(S')$ is a path.

Example 2.4. Let V denote a vector space over \mathbb{F}_2 with dimension $n \geq 3$. Let $I = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ denote a basis of V. Define a symplectic form $B : V \times V \to \mathbb{F}_2$ by

$$B(\alpha_i, \alpha_j) = \begin{cases} 1 & \text{if } |i - j| = 1, \\ 0 & \text{if } |i - j| \neq 1 \end{cases} \quad (1 \leq i, j \leq n).$$

Let $S = I \cup \{\alpha_1 + \alpha_2\}$, which spans V. The set I can be obtained from S by changing $\alpha_1 + \alpha_2$ to $\tau_{\alpha_1}(\alpha_1 + \alpha_2) = \alpha_2$. Therefore S is \mathcal{T}_0-related to I. The graph $G(I)$ is a path. By Lemma 2.3 the group $Tv(S)$ is isomorphic to a symmetric group. We draw $G(S)$ as follows.
The block of $G(S)$ with vertex set $\{\alpha_1 + \alpha_2, \alpha_1, \alpha_2, \alpha_3\}$ is not complete. Therefore $G(S)$ is not a block graph. We get a contradiction to the necessity of Theorem 1.1.

3 A modification of Theorem 1.1

In Section 2 we showed Theorem 1.1 to be incorrect by example. In this section we give a replacement theorem as follows.

Theorem 3.1. Assume that S is a linearly independent set of V and no element of S is in radV. Then $Tv(S)$ is isomorphic to a symmetric group if and only if $G(S)$ is a claw-free block graph.

The original proof of the sufficiency of Theorem 1.1 does not use the assumption that S spans V. We actually get the following result.

Lemma 3.2. Let S denote a subset of V. If $G(S)$ is a claw-free block graph of order n then $Tv(S)$ is isomorphic to the symmetric group on $n + 1$ letters.

We will not prove the necessity of Theorem 3.1 by revising the proof of the necessity of Theorem 1.1. Instead we will provide a short proof. To do this we define two binary relations on the set of all linearly independent sets of V and need three lemmas.

Definition 3.3. Define I_0 to be the restriction of T_0 to the set of all linearly independent sets of V.

Observe that the binary relation I_0 from Definition 3.3 is symmetric.

Definition 3.4. Define I to be the equivalence relation on the set of all linearly independent sets of V generated by I_0.

The original proof of Lemma 2.3 works for the following lemma.

Lemma 3.5. Assume that S is a linearly independent set of V and no element of S is in radV. Let the equivalence relation I be as in Definition 3.4. Then $Tv(S)$ is isomorphic to a symmetric group if and only if there exists S' in the I-equivalence class of S for which $G(S')$ is a path.

To state the second lemma we recall the notion of the line graph of a simple graph. Let G denote a simple graph. The **line graph** of G is a simple graph that has a vertex for each edge of G, and two of these vertices are adjacent whenever the corresponding edges in G have a common vertex.

Lemma 3.6. [4, Theorem 8.5]. Let G denote a simple graph. Then G is a claw-free block graph if and only if G is the line graph of a tree.
Lemma 3.7. Let S denote a linearly independent set of V for which $G(S)$ is a claw-free block graph. Then for each S' in the I-equivalence class of S the graph $G(S')$ is a claw-free block graph.

Proof. Let S' denote a subset of V which S is I_0-related to. Let $\alpha, \beta \in S$ such that S' is obtained from S by changing β to $\tau_{\alpha}\beta$. If $B(\alpha, \beta) = 0$ there is nothing to prove. Thus we assume $B(\alpha, \beta) = 1$. By Lemma 3.6 there exists a tree T whose line graph is $G(S)$. Let u denote the common vertex of the edges α and β in T. Let v and w denote the other vertices incident to α and β in T, respectively. Let T' denote the tree obtained from T by removing the edge β and adding a new edge between v and w. We call the new edge $\tau_{\alpha}\beta$. For each $\gamma \in S'$, γ is adjacent to $\tau_{\alpha}\beta$ in $G(S')$ if and only if γ is adjacent to exactly one of α and β in $G(S)$. Therefore $G(S')$ is the line graph of T' so $G(S')$ is a claw-free block graph by Lemma 3.6. The result follows since I_0 is symmetric and generates I.

Proof of Theorem 3.1. (sufficiency): Immediate from Lemma 3.2. (necessity): By Lemma 3.5 there exists S' in the I-equivalence class of S for which $G(S')$ is a path. Since a path is a claw-free block graph and by Lemma 3.7 the graph $G(S)$ is a claw-free block graph.

Corollary 3.8. Assume that S is a linearly independent set of V and no element of S is in $\text{rad} V$. Let the equivalence relation I be as in Definition 3.4. Then the following (i)–(iv) are equivalent:

(i) $T v(S)$ is isomorphic to a symmetric group.
(ii) $G(S)$ is a claw-free block graph.
(iii) $G(S)$ is the line graph of a tree.
(iv) There exists S' in the I-equivalence class of S for which $G(S')$ is a path.

Suppose (i)–(iv) hold. Let n denote the cardinality of S. Then $T v(S)$ is isomorphic to the symmetric group on $n + 1$ letters.

Proof. (i) \iff (ii): Immediate from Theorem 3.1.
(i) \iff (iv): Immediate from Lemma 3.5.
(ii) \iff (iii): Immediate from Lemma 3.6.

The last assertion is immediate from Lemma 3.2.

4 Comments

Given Theorem 3.1 it is natural to further study the linearly dependent sets S of V for which the equivalence holds. This section is devoted to a description of these linearly dependent sets.

In view of Lemma 3.2 it is enough to study the linearly dependent set S of V for which $G(S)$ is a claw-free block graph (equivalently, the line graph of a tree). Moreover, replacing V by the subspace of V spanned by S if necessary, we may assume without loss of generality that S spans V.

4
We now describe how to obtain such a set \(S \). For convenience an edge of a tree incident to a leaf will be said to be a *pendant edge*. Assume that \(V \) has zero radical. Let \(I \) denote a basis of \(V \) for which \(G(I) \) is the line graph of a tree \(T \). Pick a vertex \(u \) of \(T \). Since the radical of \(V \) is zero there exists a unique \(\beta \in V \) such that for each \(\alpha \in I \),

\[
B(\alpha, \beta) = \begin{cases}
1 & \text{if } u \text{ is incident to } \alpha \text{ in } T, \\
0 & \text{if } u \text{ is not incident to } \alpha \text{ in } T.
\end{cases}
\]

Let \(S = I \cup \{ \beta \} \), which is linearly dependent unless the dimension of \(V \) is two and \(u \) is a leaf of \(T \). Suppose that \(S \) is linearly dependent. Let \(\mathcal{T} \) denote the tree obtained from \(T \) by adding a pendant edge incident to \(u \). We call the new edge \(\beta \). Then \(G(S) \) is the line graph of \(\mathcal{T} \).

At the end of this section we will see that any linearly dependent spanning set \(S \) of \(V \) for which \(G(S) \) is the line graph of a tree can be obtained in the above way. To this end we establish two lemmas.

Lemma 4.1. Assume that \(V \) has zero radical. Let \(I \) denote a basis of \(V \) for which \(G(I) \) is connected. Then for any \(k \geq 2 \) mutually distinct vectors \(\beta_1, \ldots, \beta_k \in V \setminus I \), the graph \(G(I \cup \{ \beta_1, \ldots, \beta_k \}) \) is not the line graph of a tree.

Proof. Proceed by contradiction. Suppose there exist distinct \(\beta, \gamma \in V \setminus I \) such that \(G(I \cup \{ \beta, \gamma \}) \) is the line graph of a tree \(\mathcal{T} \). Let \(T \) denote the subgraph of \(\mathcal{T} \) induced by all \(\alpha \in I \). Since \(I \) spans \(V \) each of \(\beta \) and \(\gamma \) is a pendant edge of \(\mathcal{T} \). Let \(u \) and \(v \) denote the two vertices of \(T \) incident to \(\beta \) and \(\gamma \), respectively. Since the radical of \(V \) is zero \(u \) and \(v \) are distinct. Let \(\alpha_1, \ldots, \alpha_k \) denote the edges in the path joining \(u \) and \(v \). The incidence relation on \(\mathcal{T} \) implies that \(B(\alpha, \beta + \gamma) = B(\alpha, \alpha_1 + \cdots + \alpha_k) \) for each \(\alpha \in I \). Therefore \(\beta + \gamma = \alpha_1 + \cdots + \alpha_k \). Using this we deduce \(B(\beta, \gamma) = 1 \), a contradiction. \(\square \)

Lemma 4.2. Assume that \(I \) is a basis of \(V \) for which \(G(I) \) is the line graph of a tree \(T \). Then the following (i)–(iv) are equivalent:

(i) The radical of \(V \) is zero.

(ii) The dimension of \(V \) is even.

(iii) For some vertex \(u \) in \(T \) there exists \(\beta \in V \) such that (\dag) holds for each \(\alpha \in I \).

(iv) For each vertex \(u \) in \(T \) there exists a unique \(\beta \in V \) such that (\dag) holds for each \(\alpha \in I \).

Proof. Let \(V^* \) denote the dual space of \(V \). Define a linear map \(\theta : V \to V^* \) by

\[
\theta(\alpha)\beta = B(\alpha, \beta) \quad \text{for all } \alpha, \beta \in V.
\]

The kernel of \(\theta \) is \(\text{rad}V \). Therefore (i) if and only if (i') the map \(\theta \) is a bijection. We show that (i') and (ii)–(iv) are equivalent. Condition (i') immediately implies (iv). To see that (iv) implies (i') we let \(U \) denote the vertex space of \(T \) over \(\mathbb{F}_2 \) and define a linear map \(\lambda : U \to V^* \) by for all vertices \(u \) of \(T \) and for all \(\alpha \in I \),

\[
\lambda(u)\alpha = \begin{cases}
1 & \text{if } u \text{ is incident to } \alpha \text{ in } T, \\
0 & \text{if } u \text{ is not incident to } \alpha \text{ in } T.
\end{cases}
\]
The kernel of λ is $\{0, w\}$, where w is the sum of all vertices of T. By dimension theorem λ is surjective. Therefore (iv) implies that θ is surjective and so is bijective.

To see the equivalence of (ii)–(iv) we define a linear map $\mu : V \to U$ by for all $\alpha \in I$,

$$\mu(\alpha) = u + v,$$

where u and v are the two distinct vertices incident to α in T. Observe that $\theta = \lambda \circ \mu$ and that the image of μ, denoted by $\text{Im} \mu$, consists of all $v \in U$ each of which is equal to the sum of an even number of vertices in T. Therefore (ii) if and only if $w + u \in \text{Im} \mu$ for some (resp. each) vertex u of T if and only if (iii) (resp. (iv)). Here w is the nonzero vector in the kernel of λ.

Proposition 4.3. Let S denote a linearly dependent spanning set of V. Assume that $G(S)$ is the line graph of a tree Υ. Then the following (i)–(iii) hold:

(i) The radical of V is zero.

(ii) The dimension of V is even.

(iii) For each pendant edge β of Υ the set $S \setminus \{\beta\}$ is a basis of V.

Proof. Consider the set consisting of the linearly independent subsets I of S for which $G(I)$ is connected. From this set we choose a maximal element J under inclusion. The maximality of J forces that each $\alpha \in S \setminus J$ is in the subspace of V spanned by J. Therefore J is a basis of V. Applying Lemma 4.2 to $I = J$, (i) and (ii) follow. To prove (iii) we fix a pendant edge β of Υ and show that $S \setminus \{\beta\}$ is linearly independent. Applying Lemma 4.1 to $I = J$ it follows that $S \setminus J$ contains exactly one element, denoted by α. If $\alpha = \beta$ there is nothing to prove. Thus we assume $\alpha \neq \beta$. Let W denote the subspace of V spanned by $J \setminus \{\beta\}$, which has odd dimension. Applying Lemma 4.2 to $I' = J \setminus \{\beta\}$ and $V' = W$ we find that $\alpha \notin W$. Therefore $S \setminus \{\beta\}$ is linearly independent.

5 Acknowledgements

The author would like to thank the anonymous referee for valuable suggestions.

References

[1] R. Brown, S. P. Humphries. Orbits under symplectic transvections I. *Proceedings of the London Mathematical Society* 52 (1986) 517–531.

[2] R. Brown, S. P. Humphries. Orbits under symplectic transvections II: the case $K = \mathbb{F}_2$. *Proceedings of the London Mathematical Society* 52 (1986) 532–556.

[3] S. P. Humphries. Graphs and Nielsen transformations of symmetric, orthogonal and symplectic groups. *Quarterly Journal of Mathematics, Oxford* 36 (1985) 297–313.

[4] F. Harary. *Graph Theory*. Addison-Wesley, Massachusetts, 1969.
Hau-wen Huang
Department of Applied Mathematics
National Chiao Tung University
1001 Ta Hsueh Road
Hsinchu, Taiwan, 30050.
Email: poker80.am94g@nctu.edu.tw