On maximum k-edge-colorable subgraphs of bipartite graphs

Liana Karapetyana, Vahan Mkrtchyanb

aDepartment of Informatics and Applied Mathematics, Yerevan State University, Yerevan, Armenia
bDipartimento di Informatica, University of Verona, Verona, Italy

Abstract

If $k \geq 0$, then a k-edge-coloring of a graph G is an assignment of colors to edges of G from the set of k colors, so that adjacent edges receive different colors. A k-edge-colorable subgraph of G is maximum if it is the largest among all k-edge-colorable subgraphs of G. For a graph G and $k \geq 0$, let $\nu_k(G)$ be the number of edges of a maximum k-edge-colorable subgraph of G. In 2010 Mkrtchyan et al. proved that if G is a cubic graph, then $\nu_2(G) \leq \frac{|V| + 2\delta(G)}{4}$. This result implies that if the cubic graph G contains a perfect matching, in particular when it is bridgeless, then $\nu_2(G) \leq \frac{\nu_1(G) + \nu_3(G)}{2}$. One may wonder whether there are other interesting graph-classes, where a relation between $\nu_2(G)$ and $\frac{\nu_1(G) + \nu_3(G)}{2}$ can be proved. Related with this question, in this paper we show that $\nu_k(G) \geq \frac{\nu_{k-i}(G) + \nu_{k+i}(G)}{2}$ for any bipartite graph G, $k \geq 0$ and $i = 0, 1, ..., k$.

Keywords: Edge-coloring; bipartite graph; k-edge-colorable subgraph; maximum k-edge-colorable subgraph.

1. Introduction

In this paper graphs are assumed to be finite, undirected and without loops, though they may contain multiple edges. The set of vertices and edges of a graph G is denoted by $V(G)$ and $E(G)$, respectively. The degree of a vertex u of G is denoted by $d_G(u)$. Let $\Delta(G)$ and $\delta(G)$ be the maximum and minimum degree of a vertex of G. A graph G is regular, if $\delta(G) = \Delta(G)$. The girth of the graph is the length of the shortest cycle in its underlying simple graph.

A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and W, such that every edge connects a vertex in U to one in W. A graph is nearly bipartite, if it contains a vertex, whose removal results into a bipartite graph.

A matching in a graph G is a subset of edges such that no vertex of G is incident to two edges from the subset. A maximum matching is a matching that contains the largest possible number of edges.

Email addresses: lianak0506@gmail.com (Liana Karapetyan), vahanmkrtchyan2002@ysu.am (Vahan Mkrtchyan)
If $k \geq 0$, then a graph G is called k-edge colorable, if its edges can be assigned colors from a set of k colors so that adjacent edges receive different colors. The smallest integer k, such that G is k-edge colorable is called chromatic index of G and is denoted by $\chi'(G)$. The classical theorem of Shannon states that for any graph $G \Delta(G) \leq \chi'(G) \leq \left\lfloor \frac{3\Delta(G)}{2} \right\rfloor$ [18, 21]. On the other hand, the classical theorem of Vizing states that for any graph $G \Delta(G) \leq \chi'(G) \leq \Delta(G) + \mu(G)$ [21, 22]. Here $\mu(G)$ is the maximum multiplicity of an edge of G. A graph is class I if $\chi'(G) = \Delta(G)$, otherwise it is class II.

If the edges of G are colored, then for a color α let E_α be the set of edges of G that are colored with α. Observe that E_α is a matching. We say that a vertex v is incident to the color α, if v is incident to an edge from E_α. If v is not incident to the color α, then we say that v misses the color α. Now, if we have two different colors α and β, then consider the subgraph of G induced by $E_\alpha \cup E_\beta$. Observe that the components of this subgraph are paths or even cycles. The components which are paths are usually called $\alpha-\beta$-alternating paths or Kempe chains [21]. If P is an $\alpha-\beta$-alternating path connecting the vertices u and v, then we can exchange the colors on P and obtain a new edge-coloring of G. Observe that if u is incident to the color α in the former edge-coloring, then in the new one it will miss the color α.

If $k < \chi'(G)$, we cannot color all edges of G with k colors. Thus it is reasonable to investigate the maximum number of edges that one can color with k colors. A subgraph H of a graph G is called maximum k-edge-colorable, if H is k-edge-colorable and contains maximum number of edges among all k-edge-colorable subgraphs. For $k \geq 0$ and a graph G let $$\nu_k(G) = \max \{|E(H)| : H \text{ is a } k\text{-edge-colorable subgraph of } G\}.$$ Clearly, a k-edge-colorable subgraph is maximum if it contains exactly $\nu_k(G)$ edges.

There are several papers where the ratio $\frac{|E(H)|}{|V(G)|}$ has been investigated. Here H_k is a maximum k-edge-colorable subgraph of G. [5, 10, 13, 16, 23] prove lower bounds for the ratio when the graph is regular and $k = 1$. For regular graphs of high girth the bounds are improved in [7]. Albertson and Haas have investigated the problem in [1, 2] when G is a cubic graph. See also [13], where the authors proved that for every cubic graph $G \nu_2(G) \geq \frac{5}{6}|V(G)|$ and $\nu_3(G) \geq \frac{7}{6}|V(G)|$. Moreover, [3] shows that for any cubic graph $G \nu_2(G) + \nu_3(G) \geq 2|V(G)|$.

Bridgeless cubic graphs that are not 3-edge-colorable are usually called snarks [6], and the problem for snarks is investigated by Steffen in [10, 20]. This lower bound has also been investigated in the case when the graphs need not be cubic in [5, 11, 17]. Kosovski and Rizzi have investigated the problem from the algorithmic perspective [12, 17]. Since the problem of constructing a k-edge-colorable graph in an input graph is NP-complete for each fixed $k \geq 2$, it is natural to investigate the (polynomial) approximability of the problem. In [12], for each $k \geq 2$ an algorithm for the problem is presented. There for each fixed value of $k \geq 2$, algorithms are proved to have certain approximation ratios and they are tending to 1 as k tends to infinity.

Some structural properties of maximum k-edge-colorable subgraphs of graphs are proved
in [3, 14]. In particular, there it is shown that every set of disjoint cycles of a graph with
$\Delta = \Delta(G) \geq 3$ can be extended to a maximum Δ-edge colorable subgraph. Also there it is shown that a maximum Δ-edge colorable subgraph of a simple graph is always class I. Finally, if G is a graph with girth $g \in \{2k, 2k + 1\}$ ($k \geq 1$) and H is a maximum Δ-edge colorable subgraph of G, then
$\frac{|E(H)|}{|E(G)|} \geq \frac{2k}{2k+1}$ and the bound is best possible is a sense that there is an example attaining it.

In [13] Mkrtchyan et al. proved that for any cubic graph $\nu_2(G) \leq \left\lfloor \frac{V(G)+2e(G)}{4} \right\rfloor$. For bridgeless cubic graphs, which by Petersen theorem have a perfect matching, this inequality becomes, $\nu_2(G) \leq \frac{\nu_1(G)+\nu_3(G)}{2}$. One may wonder whether there are other interesting graph-classes, where a relation between $\nu_2(G)$ and $\frac{\nu_1(G)+\nu_3(G)}{2}$ can be proved. In [9], the following conjecture is stated:

Conjecture 1. (9) For each $k \geq 1$ and a nearly bipartite graph G

$$
\nu_k(G) \geq \left\lfloor \frac{\nu_{k-1}(G) + \nu_{k+1}(G)}{2} \right\rfloor.
$$

In the same paper the bipartite analogue of this conjecture is stated, which says that for bipartite graphs the statement of the Conjecture 1 holds without the sign of floor. Note that [9] verifies Conjecture 1 and its bipartite analogue when G contains at most one cycle.

The present paper is organized as follows: In Section 2, some auxiliary results are stated. Section 3 proves the main result of the paper, which states that for any bipartite graph G, $k \geq 0 \ \nu_k(G) \geq \frac{\nu_{k-1}(G) + \nu_{k+1}(G)}{2}$, where $i = 0, 1, ..., k$. Section 4 discusses the future work.

Terms and concepts that we do not define, can be found in [24].

2. Auxiliary results

In this section, we present some auxiliary results that will be useful later. The first two of them are simple consequences of a classical theorem due to König [21, 24], which states for any bipartite graph G, we have $\chi'(G) = \Delta(G)$.

Proposition 1. Let G be a bipartite graph and let $k \geq 0$. Then a subgraph F of G is k-edge-colorable, if and only if $\Delta(F) \leq k$.

Proposition 2. Let $k \geq 0$ and let G be a k-regular bipartite graph. Then for $i = 0, 1, ..., k$ we have $\nu_i(G) = i \cdot \frac{|V(G)|}{2}$.

Our next auxiliary result follows from an observation that a vertex can be incident to at most k edges in a k-edge-colorable graph.

Proposition 3. If G is a graph, v is a vertex of G and $k \geq 0$. Then

$$
\nu_k(G) \leq \nu_k(G - v) + k.
$$

The next result states that if one is removing an edge from a graph, then $\nu_k(G)$ can decrease by at most one.
Proposition 4. If G is a graph, e is an edge of G and $k \geq 0$. Then

$$\nu_k(G-e) \leq \nu_k(G) \leq \nu_k(G-e) + 1.$$

In order to prove our next auxiliary result, we will use alternating paths.

Lemma 1. Let G be a bipartite graph, $e = uv$ be an edge of G, and $j \geq 0$. Then for any maximum j-edge-colorable subgraph H_j with $e \notin E(H_j)$, we have $d_{H_j}(u) = j$ or $d_{H_j}(v) = j$.

Proof. Assume that there is a maximum j-edge-colorable subgraph H_j that does not contain e and with $d_{H_j}(u) \leq j - 1$ and $d_{H_j}(v) \leq j - 1$. Then there are colors α and β of H_j such that α misses at u and β misses at v. Clearly, α must be present at v and β must be present at u, since H_j is maximum j-edge-colorable. Consider the $\alpha - \beta$ alternating paths starting at u and v. If they are the same, then we get an odd cycle contradicting the fact that G is bipartite. Hence they are different. Exchange the colors α and β on one of them and color e. Observe that we have got a j-edge-colorable subgraph of G with $|E(H_j)| + 1$ edges contradicting the maximality of H_j. Thus the statement of the lemma should be true. \(\square\)

If M is a matching in a graph G, then a simple odd path P is said to be M-augmenting, if the odd edges of P lie outside M, the even edges of P belong to M, and the end-points of P are not covered by M. It is easy to see that if G contains an M-augmenting path, then M is not a maximum matching in G. The classical theorem of Berge [4], states that if M is not a maximum matching in G, then G must contain an M-augmenting path. In the end of this section, we prove the analogue of this result for k-edge-colorable subgraphs of bipartite graphs. It is quite plausible that our result can be derived using the general result about maximality of so-called c-matchings (Theorem 2 of Section 8, page 152 of [4]), however, here we will give a direct proof that works only for bipartite graphs.

We will require some definitions. For a positive integer $k \geq 1$, bipartite graph G and a k-edge-colorable subgraph A_k of G define an A_k-augmenting path as follows.

Definition 1. A simple $u-v$-path P is A_k-augmenting, if it is of odd length, the even edges of P belong to A_k, the odd edges lie outside A_k and $d_{A_k}(u) \leq k - 1$, $d_{A_k}(v) \leq k - 1$.

Observe that if G contains an A_k-augmenting path P, then $|E(A_k)| < \nu_k(G)$. In order to see this, consider a subgraph B_k of G obtained from A_k by removing the even edges of P from A_k and adding the odd edges. Observe that any vertex w of G has degree at most k in B_k, hence B_k is k-edge-colorable by Proposition [1]. Moreover, $|E(B_k)| = |E(A_k)| + 1$.

The following lemma states that the converse is also true.

Lemma 2. Let G be a bipartite graph, $k \geq 1$ and let A_k be a k-edge-colorable subgraph with $|E(A_k)| < \nu_k(G)$. Then G contains an A_k-augmenting path.

Proof. For the k-edge-colorable subgraph A_k consider all maximum k-edge-colorable subgraphs H_k and choose one maximizing $|E(A_k) \cap E(H_k)|$. By an alternating component, we will mean a path or an even cycle of G whose edges belong to $E(A_k)\setminus E(H_k)$ and $E(H_k)\setminus E(A_k)$, alternatively. Observe that any alternating component is either an even
cycle or an even path or an odd path. Moreover, since $|E(A_k)| < \nu_k(G)$, there is at least one edge in $E(H_k) \setminus E(A_k)$, hence G contains at least one alternating component.

We claim that G contains no alternating component C that is an even cycle. On the opposite assumption, consider a subgraph H'_k of G obtained from H_k by exchanging the edges on C. Observe that the degree of any vertex of G is the same as it was in H_k. Hence H'_k is k-edge-colorable by Proposition 1. Moreover, $|E(H'_k)| = |E(H_k)| = \nu_k(G)$, hence H'_k is maximum k-edge-colorable. However $|E(A_k) \cap E(H'_k)| > |E(A_k) \cap E(H_k)|$, which contradicts our choice of H_k.

Now, consider all alternating components C of G and among them choose one maximizing $|E(C)|$. From the previous paragraph we have that C is a path. Let us show that C is an odd path. Assume that C is an even path connecting vertices u and v. Assume that u is incident to an edge of $E(H_k) \setminus E(A_k)$ and v is incident to $E(A_k) \setminus E(H_k)$ on C. Let us show that $d_{H_k}(v) \leq k - 1$. If $d_{H_k}(v) = k$, then v is incident to an edge $e = vw \in E(H_k) \setminus E(A_k)$. Observe that $w \notin V(C)$. If $w \in V(C)$, then either we have an alternating component that is a cycle, or we have an odd cycle. Both of the cases are contradictory. Thus $w \notin V(C)$. Now observe that $C \cup \{e\}$ forms an alternating component with more edges than C. This contradicts our choice of C.

Thus $d_{H_k}(v) \leq k - 1$. Consider a subgraph H'_k of G by exchanging the edges on C. Observe that the degree of any vertex of G is the same as it was in H_k except v which has degree at most k and u whose degree has decreased by one. Hence H'_k is k-edge-colorable by Proposition 1. Moreover, $|E(H'_k)| = |E(H_k)| = \nu_k(G)$, hence H'_k is maximum k-edge-colorable. However $|E(A_k) \cap E(H'_k)| > |E(A_k) \cap E(H_k)|$, which contradicts our choice of H_k.

Thus C is an odd path. Again let the end-points of C be u and v. If u and v are incident to edges $E(A_k) \setminus E(H_k)$ on C, then similarly to previous paragraph, one can show that $d_{H_k}(u) \leq k - 1$ and $d_{H_k}(v) \leq k - 1$. If we exchange the edges of H_k on C we would find a larger k-edge-colorable subgraph, contradicting the maximality of H_k.

Thus, u and v are incident to edges $E(H_k) \setminus E(A_k)$ on C. Similarly to previous paragraph, one can show that $d_{A_k}(u) \leq k - 1$ and $d_{A_k}(v) \leq k - 1$. Now, it is not hard to see that C is an A_k-augmenting path. The proof of the lemma is complete.

When G is not bipartite, G may possess an augmenting path with respect to a maximum k-edge-colorable subgraph. Consider the graph from Figure 1 and let A_2 be the subgraph colored with α and β. It is easy to see that A_2 is maximum 2-edge-colorable in G, however G contains an A_2-augmenting path.

![Figure 1: The statement of Lemma 2 is not true when G is not bipartite.](image)

5
3. The main results

In this section, we obtain the main result of the paper. Our first theorem proves a lower bound for \(\nu_k(G) \) in terms of the average of \(\nu_{k-1}(G) \) and \(\nu_{k+1}(G) \).

Theorem 1. For any bipartite graph \(G \) and \(k \geq 1 \)

\[
\nu_k(G) \geq \frac{\nu_{k-1}(G) + \nu_{k+1}(G)}{2}.
\]

Proof. Assume that the statement of the theorem is wrong. Let \(G \) be a counter-example minimizing \(|V(G)| + |E(G)| \). We prove a series of claims that establish various properties of \(G \).

Claim 1. \(G \) is connected and \(|V(G)| \geq 2 \).

Proof. If \(G \) is the graph with one vertex, then clearly it is bipartite and \(\nu_i(G) = 0 \) for any \(i \geq 0 \), hence it is not a counter-example to our theorem. Thus, \(|V(G)| \geq 2 \). Let us show that \(G \) is connected. Assume that \(G \) contains \(t \geq 2 \) components, which are \(G^{(1)}, \ldots, G^{(t)} \). We have that for \(i \geq 0 \)

\[
\nu_i(G) = \nu_i(G^{(1)}) + \ldots + \nu_i(G^{(t)}),
\]

hence

\[
\nu_k(G) = \nu_k(G^{(1)}) + \ldots + \nu_k(G^{(t)}) \geq \frac{\nu_{k-1}(G^{(1)}) + \nu_{k+1}(G^{(1)})}{2} + \ldots + \frac{\nu_{k-1}(G^{(t)}) + \nu_{k+1}(G^{(t)})}{2}
\]

\[
= \frac{\nu_{k-1}(G) + \nu_{k+1}(G)}{2}.
\]

Thus, \(G \) is not a counter-example to our statement contradicting our assumption. Here we used the fact that \(G^{(1)}, \ldots, G^{(t)} \) are smaller than \(G \), hence they are not counter-examples to our theorem. The proof of the claim is complete.

Claim 2. For any maximum \((k-1)\)-edge-colorable subgraph \(H_{k-1} \) and any maximum \((k+1)\)-edge-colorable subgraph \(H_{k+1} \), we have

\[
E(H_{k-1}) \cup E(H_{k+1}) = E(G).
\]

Proof. If \(E(H_{k-1}) \cup E(H_{k+1}) \neq E(G) \) for some \(H_{k-1} \) and \(H_{k+1} \), then there exist an edge \(e \) such that \(e \) lies outside \(H_{k-1} \) and \(H_{k+1} \). Hence

\[
\nu_{k-1}(G - e) = \nu_{k-1}(G)
\]

and

\[
\nu_{k+1}(G - e) = \nu_{k+1}(G),
\]

Thus, \(G \) is not a counter-example to our statement contradicting our assumption. Here we used the fact that \(G^{(1)}, \ldots, G^{(t)} \) are smaller than \(G \), hence they are not counter-examples to our theorem. The proof of the claim is complete.

6
therefore we get:

\[\nu_k(G) \geq \nu_k(G-e) \geq \frac{\nu_{k-1}(G-e) + \nu_{k+1}(G-e)}{2} = \frac{\nu_{k-1}(G) + \nu_{k+1}(G)}{2}. \]

Here we used the fact that the bipartite graph \(G-e \) is not a counter-example. \(\Box \)

Our next claim states that removing an edge from \(G \) does not decrease the size of \(\nu_k(G) \).

Claim 3. For any edge \(e \) of \(G \), we have \(\nu_k(G) = \nu_k(G-e) \).

Proof. If \(\nu_k(G) = 1 + \nu_k(G-e) \) (Proposition 4), then

\[\nu_k(G) = 1 + \nu_k(G-e) \geq 1 + \frac{\nu_{k-1}(G-e) + \nu_{k+1}(G-e)}{2} = \frac{\nu_{k-1}(G) + \nu_{k+1}(G)}{2}. \]

Here we used the fact that \(G-e \) is not a counter-example and Proposition 4 twice. \(\Box \)

Our final claim establishes some relations for maximum and minimum degrees of \(G \). Its proof makes use of the fan-argument by Vizing [21, 22].

Claim 4. \(\Delta(G) \leq 2k \) and \(\delta(G) \leq k \).

Proof. Let \(H_{k-1} \) and \(H_{k+1} \) be a maximum \((k-1)\)-edge-colorable and a maximum \((k+1)\)-edge-colorable subgraphs of \(G \), respectively. By Claim 2 \(G \) is a union of \(H_{k-1} \) and \(H_{k+1} \), hence it is a union of \(2k \) matchings. Thus \(\Delta(G) \leq 2k \).

Let us show that \(\delta(G) \leq k \). Assume that \(\delta(G) \geq k + 1 \). If \(\Delta(G) \leq k + 1 \), then \(G \) is \((k+1)\)-regular, hence from Proposition 2 we have \(\nu_i(G) = i \cdot \frac{|V|}{2} \) for \(i = k-1, k, k+1 \). Therefore

\[\nu_k(G) = \frac{\nu_{k-1}(G) + \nu_{k+1}(G)}{2}. \]

Thus, \(G \) is not a counter-example. Hence, we can assume that \(\Delta(G) \geq k + 2 \), and therefore \(E(H_{k-1}) \setminus E(H_{k+1}) \neq \emptyset \). Let \(e = uw \) be an edge from this set. Then \(u \) or \(v \) must be incident to all \((k+1)\) colors of \(H_{k+1} \) (apply Lemma 1 with \(j = k+1 \)). Assume that this vertex is \(v \). Let us show that \(u \) is incident to all \((k+1)\) colors of \(H_{k+1} \) as well.

On the opposite assumption, assume that \(u \) misses a color \(\beta \) of \(H_{k+1} \). Then \(v \) must be incident to an edge \(e_w = vw \) of color \(\beta \) in \(H_{k+1} \), as \(d_{H_{k+1}}(v) = k+1 \). Since \(d_{H_{k+1}}(v) \leq k-1 \) and \(d_{H_{k+1}}(v) = k+1 \), there is an edge \(e_z = vz \) incident to \(v \) such that \(e_z \in E(H_{k+1}) \setminus E(H_{k-1}) \). Let the color of \(e_z \) in \(H_{k+1} \) be \(\alpha \).

If \(\alpha \) is missing at \(u \), then consider a subgraph \(H_{k+1}' \) of \(G \) obtained from \(H_{k+1} \) by removing the edge \(e_z \), adding \(e \) to \(H_{k+1}' \) and coloring \(e \) with \(\alpha \). Observe that \(H_{k+1}' \) is \((k+1)\)-edge-colorable, \(|E(H_{k+1})| = |E(H_{k+1})| = \nu_k(G) \). Hence \(H_{k+1}' \) is maximum \((k+1)\)-edge-colorable. However, \(e_z \notin E(H_{k-1}) \cup E(H_{k+1}) \) violating Claim 2.

Thus, we can assume that \(\alpha \) is present at \(u \), hence it is different from \(\beta \). Consider the \(\alpha - \beta \) alternating path \(P_u \) of \(H_{k+1} \) starting from \(u \). We claim that \(P_u \) passes through \(v \). If
not, we could have exchanged the colors on P_u, remove e_z from H_{k+1}, add e to H_{k+1}, color it with α and get a new maximum $(k+1)$-edge-colorable subgraph violating Claim 2. Thus, P_u passes through v. We claim that it passes first via z, then via v and w. If P_u first passes via w, then together with e we get an odd cycle contradicting our assumption.

Let P_w be the final part of P_u that starts from w. Consider a $(k+1)$-edge-colorable subgraph H_{k+1}' of G obtained from H_{k+1} as follows: exchange the colors on P_w, color e with β, color e_w with α and remove e_z from H_{k+1}. Observe that H_{k+1}' is $(k+1)$-edge-colorable, $|E(H_{k+1}')| = |E(H_{k+1})| = \nu_{k+1}(G)$. Hence H_{k+1}' is maximum $(k+1)$-edge-colorable. However, $e_z \notin E(H_{k+1}) \cup E(H_{k+1}')$ violating Claim 2.

Thus u and v must be incident to any $(k+1)$ colors of H_{k+1}, in particular, $d(u) \geq k+2$ and $d(v) \geq k+2$. Observe that by Claim 2 any vertex of degree at least $k+2$ must be incident to an edge from $E(H_{k-1}) \setminus E(H_{k+1})$. Consider the bipartite graph $J = G - (E(H_{k-1}) \setminus E(H_{k+1}))$. Observe that J is a $(k+1)$-regular bipartite graph with $V(J) = V(G)$. Hence from Proposition 2 we have $\nu_i(G) = i \cdot \frac{|V|}{2}$ for $i = k - 1, k, k+1$, and therefore

$$\nu_k(G) = \frac{\nu_{k-1}(G) + \nu_{k+1}(G)}{2}.$$

This means that G is not a counter-example to our statement contradicting our assumption. Hence $\delta(G) \leq k$. The proof of the claim is complete. \qed

We are ready to prove the theorem. By Claim 4 $\delta(G) \leq k$, hence there is a vertex u with $d_G(u) \leq k$. On the other hand, by Claim 1 G is connected and $|V| \geq 2$, hence $d_G(u) \geq 1$. Thus, there is an edge $e = uv$ incident to u. By Claim 3 there is a maximum k-edge-colorable subgraph H_k that does not contain e. By Lemma 1 $d_{H_k}(u) = k$ or $d_{H_k}(v) = k$ for any such H_k. Since $d_{G-e}(u) \leq k - 1$, we have $d_{H_k}(v) = k$ for any maximum k-edge-colorable subgraph H_k that does not contain e.

By Proposition 3 we have $\nu_k(G) \leq \nu_k(G - v) + k$. Let us show that $\nu_k(G) = \nu_k(G - v) + k$. Assume that $\nu_k(G) \leq \nu_k(G - v) + k - 1$. Since $\nu_k(G) = \nu_k(G - e)$ (Claim 3) and $G - e - v = G - v$, we have $\nu_k(G - e) \leq \nu_k(G - e - v) + k - 1$.

Choose a maximum k-edge-colorable subgraph $H^{(0)}$ of $G - e - v$. If $H^{(0)}$ is maximum in $G - e$, then since e does not lie in $H^{(0)}$, we have a contradiction with $d_{H^{(0)}}(v) = k$ as $d_{H^{(0)}}(v) = 0$. Thus $H^{(0)}$ is not maximum in $G - e$. By Lemma 2 there is a k-edge-colorable subgraph $H^{(1)}$ which is obtained from $H^{(0)}$ by shifting the edges on an $H^{(0)}$-augmenting path in $G - e$. Observe that $d_{H^{(1)}}(v) \leq 1$. If $H^{(1)}$ is maximum in $G - e$, then we have a contradiction with $d_{H^{(1)}}(v) = k$ as $d_{H^{(1)}}(v) = 1$. Thus $H^{(1)}$ is not maximum in $G - e$. By repeating the argument and applying Lemma 2 at most $(k - 1)$ times, we will obtain a maximum k-edge-colorable subgraph $H^{(i)}$ of $G - e$ with $d_{H^{(i)}}(v) \leq k - 1$ contradicting the fact that $d_{H_k}(v) = k$ for any maximum k-edge-colorable subgraph H_k of G that does not contain e.

8
Thus, $\nu_k(G) = \nu_k(G - v) + k$. We have

$$
\nu_k(G) = k + \nu_k(G - v) \geq k + \frac{\nu_{k-1}(G - v) + \nu_{k+1}(G - v)}{2}
$$

$$
= \frac{\nu_{k-1}(G - v) + k - 1 + \nu_{k+1}(G - v) + k + 1}{2} \geq \frac{\nu_{k-1}(G) + \nu_{k+1}(G)}{2}.
$$

This contradicts the fact that G is a counter-example to our statement. Here we used the fact that $G - v$ is not a counter-example and Proposition 3 twice. The proof of the theorem is complete.

The proved theorem is equivalent to the following

Remark 1. If G is a bipartite graph, then

$$
\nu_1(G) - \nu_0(G) \geq \nu_2(G) - \nu_1(G) \geq \nu_3(G) - \nu_2(G) \geq \ldots.
$$

Below we derive the main result of the paper as a corollary to the theorem proved above:

Corollary 1. Let G be a bipartite graph and let $k \geq 0$. Then for $i = 0, 1, \ldots, k$ we have

$$
\nu_k(G) \geq \frac{\nu_{k-i}(G) + \nu_{k+i}(G)}{2}.
$$

Proof. We prove the statement by induction on i. When $i = 0$, the statement is trivial. When $i = 1$, it follows from Theorem 1. We will assume that the statement is true for $i - 1$, and prove it for i.

By induction hypothesis we have

$$
\nu_k(G) \geq \frac{\nu_{k-i+1}(G) + \nu_{k+i-1}(G)}{2}.
$$

By applying Theorem 1 on $\nu_{k-i+1}(G)$ and $\nu_{k+i-1}(G)$ we have

$$
\nu_k(G) \geq \frac{\nu_{k-i+2}(G) + \nu_{k-i}(G) + \nu_{k+i-2}(G) + \nu_{k+i}(G)}{4} = \frac{\nu_{k-i}(G) + \nu_{k+i}(G)}{4} + \frac{\nu_{k-i+2}(G) + \nu_{k+i-2}(G)}{4}.
$$

So, in order to complete the proof of the corollary, we need to show

$$
\nu_{k-i+2}(G) + \nu_{k+i-2}(G) \geq \nu_{k-i}(G) + \nu_{k+i}(G).
$$

Using Remark 1, we have

$$
\nu_{k-i+1}(G) - \nu_{k-i}(G) \geq \nu_{k-i+2}(G) - \nu_{k-i+1}(G) \geq \cdots \geq \nu_{k+i-1}(G) - \nu_{k+i-2}(G) \geq \nu_{k+i}(G) - \nu_{k+i-1}(G).
$$

The last inequality implies

$$
[\nu_{k-i+1}(G) - \nu_{k-i}(G)] + [\nu_{k-i+2}(G) - \nu_{k-i+1}(G)] \geq [\nu_{k+i-1}(G) - \nu_{k+i-2}(G)] + [\nu_{k+i}(G) - \nu_{k+i-1}(G)],
$$
or
\[
\nu_{k-i+2}(G) - \nu_{k-i}(G) \geq \nu_{k+i}(G) - \nu_{k+i-2}(G),
\]
which is equivalent to [1]. The proof of the corollary is complete. \qed

4. Future Work

For a (not necessarily bipartite) graph \(G \), let \(b(G) \) be the smallest number of vertices of \(G \) whose removal results into a bipartite graph. One can easily see that \(b(G) \) coincides with the minimum number of vertices of \(G \), such that any odd cycle of \(G \) contains a vertex from these vertices. \(b(G) \) is a well studied parameter frequently appearing in various papers on Graph theory and Algorithms. It can be easily seen that a graph \(G \) is bipartite if and only if \(b(G) = 0 \), and is nearly bipartite if and only if \(b(G) \leq 1 \).

We suspect that:

Conjecture 2. Let \(G \) be a graph and let \(k \geq 0 \). Then for \(i = 0, 1, ..., k \) we have
\[
\nu_k(G) \geq \frac{\nu_{k-i}(G) + \nu_{k+i}(G) - b(G)}{2}.
\]

Observe that when \(G \) is bipartite, we get the statement of Corollary [1]. On the other hand, when \(G \) is nearly bipartite and \(i = 1 \), we get the statement of the Conjecture [1].

Acknowledgement

The second author is indebted to Armen Asratian for useful discussions on \(c \)-matchings and for disproving an early version of Lemma [2].

References

[1] M. Albertson and R. Haas. Parsimonious edge coloring. Discrete Mathematics, (148):1–7, 1996.
[2] M. Albertson and R. Haas. The edge chromatic difference sequence of a cubic graph. Discrete Mathematics, (177):1–8, 1997.
[3] D. Aslanyan, V. Mkrtchyan, S. Petrosyan, and G. Vardanyan. On disjoint matchings in cubic graphs: Maximum 2-edge-colorable and maximum 3-edge-colorable subgraphs. Discrete Applied Mathematics, (172):12–27, 2014.
[4] C. Berge. Graphs and Hypergraphs. North Holland Publishing Company, Amsterdam, 1973.
[5] B. Bollobas. Extremal Graph Theory. Academic Press, London, New York, San Francisco, 1978.
[6] A. Cavicchioli, M. Meschiari, B. Ruini, and F. Spaggiari. A survey on snarks and new results: Products, reducibility and a computer search. Discrete Mathematics, 28(2): 57–86, 1998.
[7] A. D. Flaxman and S. Hoory. Maximum matchings in regular graphs of high girth. The Electronic Journal of Combinatorics, 14(1):1–4, 2007.
[8] J.-L. Fouquet and J.-M. Vanherpe. On parsimonious edge-colouring of graphs with maximum degree three. Graphs and Combinatorics, 29(3): 475–487, 2013.
[9] L. Hambardzumyan and V. Mkrtchyan. Graphs, disjoint matchings and some inequalities. submitted, 2017 (available at https://arxiv.org/pdf/1512.02546.pdf).
[10] M. A. Henning and A. Yeo. Tight lower bounds on the size of a maximum matching in a regular graph. Graphs and Combinatorics, 23(6):647–657, 2007.
[11] M. J. Kaminski and L. Kowalik. Beyond the Vizing’s bound for at most seven colors. *SIAM J. Discrete Math.*, 28(3):1334–1362, 2014.
[12] A. Kosovski. Approximating the maximum 2- and 3-edge-colorable problems. *Discrete Applied Mathematics* (157): 3593–3600, 2009.
[13] V. Mkrtchyan, S. Petrosyan, and G. Vardanyan. On disjoint matchings in cubic graphs. *Discrete Mathematics*, (310):1588–1613, 2010.
[14] V. V. Mkrtchyan and E. Steffen. Maximum Δ-edge-colorable subgraphs of class II graphs. *J. Graph Theory*, 70 (4), 473–482, 2012.
[15] T. Nishizeki. On the maximum matchings of regular multigraphs. *Discrete Mathematics*, 37:105–114, 1981.
[16] T. Nishizeki and I. Baybars. Lower bounds on the cardinality of the maximum matchings of planar graphs. *Discrete Mathematics*, 28:255–267, 1979.
[17] R. Rizzi. Approximating the maximum 3-edge-colorable subgraph problem. *Discrete Mathematics*, 309(12):4166–4170, 2009.
[18] C. E. Shannon. A theorem on coloring the lines of a network. *J. Math. Physics*, (28): 148–151, 1949.
[19] E. Steffen. Classifications and characterizations of snarks. *Discrete Mathematics*, (188):183–203, 1998.
[20] E. Steffen. Measurements of edge-uncolorability. *Discrete Mathematics*, (280):191–214, 2004.
[21] M. Stiebitz, D. Scheide, B. Toft, and L. M. Favrholdt. *Graph Edge Coloring*. John Wiley and Sons, 2012.
[22] V. Vizing. On an estimate of the chromatic class of a p-graph. *Diskret Analiz*, (3):25–30, 1964.
[23] J. Weinstein. Large matchings in graphs. *Canadian Journal of Mathematics*, 26(6):1498–1508, 1974.
[24] D. West. *Introduction to Graph Theory*. Prentice-Hall, Englewood Cliffs, 1996.