Patient-Derived Stem Cells, Another \textit{in vitro} Model, or the Missing Link Toward Novel Therapies for Autism Spectrum Disorders?

Gilles Maussion1, Cecilia Rocha1, Geneviève Bernard2,3,4,5, Lenore K. Beitel1 and Thomas M. Durcan1*

1Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada, 2Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada, 3Division of Medical Genetics, Department of Internal Medicine, McGill University Health Center, Montreal, QC, Canada, 4Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada, 5MyeliNeuroGene Laboratory, Research Institute of the McGill University Health Center, Montreal, QC, Canada

Autism Spectrum Disorders (ASDs) is a multigenic and multifactorial neurodevelopmental group of disorders diagnosed in early childhood, leading to deficits in social interaction, verbal and non-verbal communication and characterized by restricted and repetitive behaviors and interests. To date, genetic, descriptive and mechanistic aspects of the ASDs have been investigated using mouse models and post-mortem brain tissue. More recently, the technology to generate stem cells from patients’ samples has brought a new avenue for modeling ASD through 2D and 3D neuronal models that are derived from a patient’s own cells, with the goal of building new therapeutic strategies for treating ASDs. This review analyses how studies performed on mouse models and human samples can complement each other, advancing our current knowledge into the pathophysiology of the ASDs. Regardless of the genetic and phenotypic heterogeneities of ASDs, convergent information regarding the molecular and cellular mechanisms involved in these disorders can be extracted from these models. Thus, considering the complexities of these disorders, patient-derived models have immense potential to elucidate molecular deregulations that contributed to the different autistic phenotypes. Through these direct investigations with the human \textit{in vitro} models, they offer the potential for opening new therapeutic avenues that can be translated into the clinic.

Keywords: autism spectrum disorder, genetics, post-mortem brain studies, human induced pluripotent stem cells, therapeutic strategy

INTRODUCTION: GENETICS OF AUTISM

Autism is a complex, multigenic and multifactorial neurodevelopmental disorder that was originally defined based on three clinical criteria (i) abnormalities in social interactions, (ii) deficits in verbal and non-verbal communication and (iii) the presence of stereotypical and repetitive behaviors (1). As the genetic causes of autism have been investigated, the literature now refers more to Autism Spectrum Disorders (ASDs) (2) rather than autism, originally defined by Kanner. ASDs can be classified in two main categories: non-syndromic and syndromic based on a lack...
of or association to clinical manifestations outside of the autistic features, respectively. The non-syndromic ASDs are diagnosed based on structured interviews (3, 4) during childhood, according to specific clinical criteria. They are divided between those caused by specific gene mutations (5), deletions, disruptions (6, 7) or copy number variations (8) leading to abnormal gene dosage. Idiopathic forms of autism, whose genetic bases remain unclear represent the majority of ASDs’ cases. Syndromic forms of autism such as Fragile X (9) or Rett syndromes (10) along with Tuberous sclerosis (11) and others (see Table 1) are characterized by a specific set of clinical features as well as the autistic triad. They are often monogenic, genetically well characterized and account for 10–20% of ASDs’ cases (18). Examples of specific set of clinical features that can be seen in the syndromic ASDs include facial dysmorphisms, epilepsy, intellectual disability, and systemic manifestations. These features are not observed in non-syndromic forms of autism (2).

Studies on syndromic forms of autism, as well as candidate gene approaches and genome-wide association studies, have led to the identification of more than 70 loci for ASDs in the human genome (18). Those loci are categorized into specific gene functions such as developmental programs (19), transcriptional (20), and translational regulation (21), cell signaling (22), gene imprinting (23), dendritic trafficking (24–26), and activity-dependent brain development and neurotransmission (27). Complementing these genetic studies, work on post-mortem brain tissue and mouse models have helped us better observe and understand changes that may occur in the context of ASDs at the cellular and molecular levels.

Over the past decade, technology has developed to derive induced pluripotent stem cells (iPSCs) from the somatic cells of patients with many different types of diseases. In the context of ASDs, this approach enables us to differentiate and grow human neurons from patients, within a dish, presenting a new in vitro tool to decipher how perturbations in specific genes or pathways may be either involved or the causative mechanisms in the development of ASDs, with the ultimate goal of developing new therapeutics. Multiple genetic susceptibility loci identified in ASDs strongly implies that these disorders are linked to genetic variants and risk factors across multiple genes that are best studied in human models. This review aims to discuss the strengths and limitations of mouse models, human post-mortem brain tissue and iPSCs in studying ASDs, and to summarize how these studies combined have contributed to advance our understanding into the molecular and cellular mechanisms that potentially cause ASDs.

MOUSE MODELS IN AUTISM SPECTRUM DISORDERS

Animal models have been a useful tool in understanding how genes linked to ASDs may contribute to the pathogenesis of these disorders. In order to study ASDs, a combination of genetic, chemically induced, and environmental models have been generated. In the genetic models, ASDs-associated genes have been inactivated to observe distinct phenotypes within the mice that can include altered gene expression, cell morphology, and behavioral or social deficits.

Syndromic form of autism that are genetically characterized such as Fragile X (FXS), Rett Syndrome, and Tuberous Sclerosis (Table 1) are studied in mouse models. At an adult stage, mice inactivated for Fmr1 (coding for the RNA-binding protein FMRP which acts as a translational repressor), present abnormal dendritic spine morphology, although one limitation of this model is that autistic traits often differ from one strain to another (28). Restoration of the abnormal protein synthesis in Fmr1 knockout mice by S6K1 (a translation regulator) deletion can stabilize neurological function (29). Fmr1 knockout leads to a disruption of synaptic protein interactions that notably involve metabotropic glutamate receptor subunit 5 (mGluR5) and Homer scaffold protein. Homer1a acts as a dominant negative isoform that prevents the normal interaction with mGluR5, and its deletion rescues, in H1a/Fmr1 double knockouts mice, mGluR5 signaling (30).

Further studies highlighted the importance of synaptic transmission in FXS, connecting it also to impairment of the GABAergic system (31). Interestingly, the GABA receptor agonist THIP (gaboxadol) was shown to restore neuronal excitability in the Fmr1 knockout mice (32). A cytoplasmic polyadenylation element-binding protein (CPEB) also binds to mRNA controlling neuronal translation and modulating synaptic function. Fmr1/Cpeb1 double knockout mice display an amelioration in morphological, electrophysiological and behavioral phenotypes associated with FXS showing the importance of translational homeostasis for neural function (33).

Studies on animal models suggest that Fmr1 inactivation leads to translational deregulations which underlie abnormalities in excitatory and inhibitory neurotransmission.

Rett Syndrome (RTT) is caused, in the majority of cases, by loss of function mutations in the MECP2 gene (Table 1). Mouse models have helped to investigate the impact of Mecp2 mutations in RTT pathogenesis. Mecp2 was shown to be critical for GABAergic neuronal function in Rett Syndrome (RTT) as Viatat–Mecp2^{−/−} mice lack Mecp2 in GABAergic neurons, causing RTT-like features that include the development of stereotypes, self-injury, compulsive behavior and progressive motor dysfunction (34). Activation of Mecp2 expression in knockout mice reverses neurological symptoms (35). Interestingly, a study with 7 weeks and 21 weeks female Mecp2^{+/−} mice showed behavioral and motor deficits that were identified in distinct genetic backgrounds. However, some phenotypes were also identified in only one genetic background (36). This study stresses the importance of age and strain background selection for RTT social behavior research using Mecp2^{+/−} female mice.

Mutations in TSC1 and TSC2 are known to cause Tuberous Sclerosis (TSC) (Table 1). Actually, a functional interaction between those two signaling proteins is required for the activation of mTOR complex 2 (37). The mTOR pathway is an important regulator of mitophagy and autophagy (38), and its activation by IGF-1 or other small molecules, can promote reversion of the developmental alterations observed in TSC. Behavioral abnormalities in Tsc1^{−/−} and Tsc2^{−/−} are rescued by inhibition of mTORC1 with rapamycin treatment (39).
TABLE 1 | Syndromic forms of autism that have been investigated in iPSC-derived studies.

Disease	Gene	Location	Function	Symptoms	References
Fragile X Syndrome	FMR1	Xq27.3	RNA-binding molecule/Regulates local translation	Intellectual Disability, Developmental Delay, Social Impairment, Hyperactivity Machroorchidism	(9)
Rett Syndrome	MECP2	Xq28	Methyl CpG DNA binding molecule/Regulates gene transcription	Affects essentially Females (X-linked forms) Intellectual Disability, Stereotyped Behavior, Epilepsy, Regression during childhood	(10)
	CDKL5	Xp22.13	Serine/Threonine Kinase		(12)
	NNTG1	1p13.3	Presynaptic Ligand involved in Axonal projection		(13)
	MEF2C	5q14.3	MADS box transcription enhancer factor 2; DNA binding molecule		(14)
Tuberous Sclerosis	TSC1	9q34.13	Interact with the tuberin to negatively regulate the mTOR pathway	Multisystemic disease involving the brain (Learning Deficits, Intellectual Disability, Epilepsy, Structural Brain abnormalities), skin (e.g., hypomelanotic macules, shagreen patches, angiofibromas), eyes (e.g., angiofibromas), Kidneys, heart e.g., rhabdomyomas) and lungs (lymphangioleiomyomatosis)	(11, 15)
	TSC2	16p13.3	GTPase activating protein/Interact with the tuberin to regulate the mTOR pathway		
Phelan-McDermid Syndrome	SHANK3	22q13.33	Scaffold protein of the post-synaptic compartment, Involved in synapse formation and in dendritic spine maturation	Global Developmental delay, Hypotonia, Absence of Speech or Speech delay, Dysmorphic Features	(16)
FoxG1 Deletion Syndrome	FOXG1	14q12	Forked-head transcription factor; Involved in brain development	Microcephaly, partial or complete agenesis of the corpus callosum, Intellectual Disability, Epilepsy, Autistic Features	(17)

A TSC mouse model with Tsc2 loss under a Purkinje cell promotor showed increased repetitive behavior in Tsc2f/-; Cre mice. These social behavioral deficits were also prevented with rapamycin treatment (40). These mouse models have shown that dysregulation of the mTOR signaling pathways, induced by Tsc1 and Tsc2 inactivation, results in a Tuberous Sclerosis-like phenotype.

Shank3 is a synaptic scaffolding protein and gene mutations have been associated with an ASD phenotype (41). Male heterozygous mice with deleted Shank3 display impairments in NMDA receptor signaling function, synaptic trafficking (42), hippocampal excitatory transmission, and motor learning although no social interaction deficit is observed (43). Another study reported that Histone deacetylase 2 (HDAC2) is upregulated in Shank3-deficient mice and HDAC2 knockdown in the prefrontal cortex rescues social deficits (44). Treatment with romidepsin, a histone deacetylase (HDAC) inhibitor, increases NMDAR transcription levels, restores NMDAR synaptic function, and alleviated social deficits in Shank3-deficient mouse (44). This model shows that mutations in the gene coding for a synaptic protein leads to autistic-like behavioral phenotypes in the mouse.

Taken together these models can reveal the individual mechanisms involved in syndromic forms of ASDs serving as a platform for proof-of-principle studies. Although knockout mice can model monogenic genetically-defined ASDs, idiopathic forms of autism, likely caused by multigenic risk factors, cannot be investigated in animal models. Furthermore, regulatory and coding regions from mouse and human genomes have acquired a more complex epigenetic organization or significant differences in the coding mRNAs having been submitted to evolutionary selective pressures. Most importantly, the diagnosis of ASDs still relies on assessing behavioral phenotypes that remain difficult to mimic in mouse models. Thus, studies in human samples are crucial for a better understanding of ASDs.

POST-MORTEM BRAIN STUDIES IN ASDs

Although animal models have partially recapitulated some of the behaviors observed in patients and provided insights concerning gene expression and morphological deregulation potentially relevant to the ASDs, none of these systems are entirely modeling the complexity of ASDs. Studies on post-mortem brain tissue from patients with ASDs have enabled researchers to observe changes at the cellular and molecular levels that could be implicated as causative factors in the disease's manifestations.

The brain regions of interest for these post-mortem studies were chosen based on (i) their function, (ii) their potential implication in the disease and (iii) on imaging studies. As such, several morphological studies have been performed on the cerebellum, which controls balance, posture, and regulation of fine movements (45) as it is thought to be involved in the repetitive behaviors associated with ASDs (46). The frontal cortex...
has also received much attention, given its role in executive function (47), decision making (48) and working memory and attentional processes (49). Furthermore, the frontal cortex is interconnected with the limbic system (including the amygdala and hippocampus), important for learning and memory through the superior temporal sulcus, and forms a network involved in social perception and cognition (50).

Morphological studies of the cerebellum have shown it to be decreased in size accompanied by a decrease in the overall number of Purkinje cells in autistic patients relative to controls (51–53). Similarly, the structure of frontal cortex had been examined and decreased size of the minicolumns was observed in patients with idiopathic ASDs (54, 55). Interestingly, studies have reported in patients with ASDs, (i) increase of cortical thickness (56), (ii) increase of head circumference (57) as well as, more specifically in the prefrontal cortex, an increase in the number of neurons (58). These findings suggest that changes in cell number and synapses in brains from autistic patients, modify the cortical organization, connectivity and network efficiency (59, 60).

Other morphological studies were conducted on post-mortem brain tissue from patients diagnosed with syndromic ASDs, namely Fragile X and Rett Syndromes, two disorders that present with opposing morphological phenotypes. A decreased number of dendritic spines has been observed in the frontal cortex and in the CA1 regions of patient with Rett syndrome (25, 61) whereas, an increased number of elongated and immature dendritic spines was observed in brain sections from Fragile X patients (62). Studies performed on human post-mortem brain tissue have shown abnormalities in dendritic arborization that are specific for syndromic autisms (Supplementary Table 1).

Besides these morphological studies, genes expression have also been assessed in brain areas from patients diagnosed with ASDs, either based on candidate or whole genome approaches. From one of these studies, the expression of the RELN gene, which had been associated with autism (63) was observed to be decreased in the cerebellum and in the cortex of patients with ASDs (64). Interestingly, increased methylation of the RELN promoter was also observed in the frontal cortex and cerebellum of patients with ASDs. Furthermore, concomitantly with decreased number and size of the Purkinje cells, that are GABAergic neurons, decreased expression of GAD1 (65) and Parvalbumin mRNA (66), were observed in the frontal cortex and in the cerebellum, respectively, of ASDs patients. Based on a candidate gene approach, the expression of two autism-associated genes, SLC25A12 and MARK1 (24, 67), and BDNF (68, 69) were found to be increased in Brodmann Area 46 of patients with idiopathic ASDs autistic patients (24, 70, 71).

Whereas changes in the expression of genes associated with ASDs had suggested that deregulation in molecular mechanisms involved in the dendritic trafficking and the synaptic plasticity occurs in brain regions from ASD patients, high throughout analyses aimed at generating non-biased profiles of the whole transcriptome have also been conducted on cortical or cerebellar regions (72–75) Interestingly, these independent research projects have identified in brain regions of ASD patients, deregulations of biological processes that were expected regarding the functions of ASDs-associated genes whose expression changes had already been observed (see Table 2). The first study focused on the whole transcriptome in the temporal cortex of patients with idiopathic ASDs and provided evidence of increased expression of genes involved in the immune system as well as deregulation of genes involved in cell-cell communication and cell cycle (72). Two other studies which investigated expression profiles of coding genes in the BA9, BA41/42, and cerebellar vermis (73) or the non-coding transcriptome in frontal and temporal lobes (75) have shown, in the brain of patients with idiopathic ASDs, increased expression of genes involved in inflammatory processes as well as a decrease in the expression levels of neuronal genes including several involved in synapse functioning. Interestingly, Parikshak et al. have also observed deregulation of primate-specific long non-coding RNAs associated with autism (75). A fourth study revealed age-dependent differential expression profiles between controls and patients with idiopathic ASDs (74). In young patients, deregulated genes were involved in cell number, cortical patterning, and differentiation whereas deregulation observed in the older patients involved genes in signaling and repair pathways. Interestingly, a gene set enrichment analysis of the four studies mentioned above has provided evidence for a correlation between a decrease in expression of synaptic and mitochondrial genes within distinct brain regions from ASDs patients (86).

These findings imply, that despite genetic and phenotypic heterogeneities, ASDs could be underpinned by deregulations of common molecular pathways and functions such as cell cycle, differentiation, mitochondrial function as well as synaptic plasticity and inflammation between brain regions; functions that had already been pointed out by genetics studies (Figure 1; Supplementary Table 1).

INDUCED PLURIPOTENT STEM CELLS, RESCUE, AND THERAPEUTIC STRATEGIES

In the past decade, the technology has advanced to enable reprogramming of somatic cells from peripheral blood cells or skin fibroblasts into iPSCs (87) and in vitro generation of 2D or 3D neuronal culture from patients cells. While neurons grown in a dish enable researchers to investigate cell type-specific expression profiles and analyse electrophysiological properties of patient and control neurons, 3D organoids create a microenvironment that promotes interactions between cell types, leading to a more complete neuronal maturation (88) that is capable of recapitulating the organization of cortical layers observed during the neurogenesis (89).

Human iPSC-derived cells from patients with syndromic forms of autism such as Fragile X, Rett syndrome and tuberous sclerosis have been investigated and partially recapitulate phenotypes observed in post-mortem brain tissue or with pathological studies of rodent models of the diseases. Due to a lack of translational repression of mGluR5 mRNA at the synapse, iPSC-derived neurons from patients with Fragile X have an increased response to a group I mGluR agonist combined with
TABLE 2 | Candidate genes of ASDs whose expression has either been assessed on post-mortem brain tissue and or in iPSC-derived cells.

Gene	Name	Location	Function	Link to autism	References
RELN	Reelin	7q22.1	Part of the extracellular matrix and has a crucial role in cell positioning and migration processes	Genetic Association, Trend toward increased methylation in promoter (Cerebellum)	(63, 65, 78)
BDNF	Brain Derived Neurotrophic Factor	11p14.1	Neurotrophic factor, promote cell survival, Involved in synaptic plasticity	Increased levels in blood samples from patients with ASDs, Increased expression in BA46	(68, 69, 71)
MARK1	Microtubule Affinity Regulating Kinase 1	1q41	Regulates the affinity between MAPs and microtubules	Genetic Association, Increased expression in BA46	(24)
SLC25A12	Solute Carrier family 25 member 12	2q31.1	Mitochondrial Aspartate Glutamate transporter	Genetic Association	(67, 70)
GAD1	Glutamate Decarboxylase	2q31.1	Catalyzes the production of GABA from L-glutamic acid	Decreased level in ASDs	(65)
GRM5	Glutamate Metabotropic Receptor 5	11q14.2- q14.3	Involved in the regulation of neural network activity and synaptic plasticity.	Increase expression in Fragile X Syndrome	(77, 78)
TRPC6	Transient Receptor Potential cation Channel subfamily C member 6	11q22.1	Receptor-activated calcium channel in the cell membrane. Activated by DiacylGlycerol	Disrupted in Cases with ASDs	(79)
MBD5	Methyl-CpG Binding Domain Protein 5	2q23.1	Methyl-CpG-binding protein	Microdeletion in cases with Autism	(80, 81)
SATB2	SATB homeobox 2	2q33.1	DNA Binding Protein	Disruption by Chromosomal Rearrangement in patient with ASDs	(7, 81)
EHM1	Euchromatic Histone lysine Methyltransferase 1	9q34.3	Histone Methyl Transferase		(7, 82)
TCF4	Transcription Factor 4	18q21.2	Basic helix-loop-helix transcription factor		(7, 82)
CHD8	Chromodomain Helicase DNA binding protein 8	14q11.2	Chromatin remodeling protein		(6, 83, 84)
GRIN2B	Glutamate ionotropic Receptor NMDA type subunit 2B	12p13.1	Subunit of the NMDA receptor		(6, 7, 83, 85)

a preferential differentiation into glutamateric neurons (78); treatment with a mGLUR5 antagonist reduces the activation of the receptor and lead the Fragile X progenitors cells toward glial differentiation. A second study showed an increased response to Ca2+ permeable AMPA and NMDA receptors in iPSC-derived neurons from Fragile X patients (90), while treatment with a GluA2-lacking/calcium permeable-AMPARs antagonist reduces the length of the dendrites.

IPSC-derived Purkinje cells from patients diagnosed with tuberous sclerosis present with an increasing proportion of Ki67 positive cells, decreased FMRP expression and an increased number of neurites (91). Human iPSC-derived neurons from patients with TSC2+/- mutations were defective in mitophagy with (i) an accumulation of mitochondria in the dendrites and (ii) a reduced mitochondrial potential membrane (92). These findings corroborate observations made on the temporal lobe from patients with tuberous sclerosis where an accumulation of autophagy proteins such as cargo protein p62, LC3, and ATG12 were found (93). Interestingly, phenotypes observed in iPSC-derived Purkinje cells or neurons from TSC patients were reversed with rapamycin treatment (91, 92).

IPSCs and organoids generated from patients diagnosed with Rett syndrome present with (i) a down-regulation in the expression of genes involved in neuronal development and cell signaling (94) and (ii) decreased expression in genes expressing neuronal markers that include MAP2 and DCX that should reflect deficits in neuronal differentiation (95). Interestingly, inhibition of specific microRNAs 199 and 214 restored MAP2 and DCX expression (Supplementary Table 1).

Two studies that investigated differential gene expression in iPSC-derived neurons from patients diagnosed with idiopathic forms of autism showed a significant downregulation of genes involved in neuronal development and synaptic function (96, 97). A third study focusing on idiopathic autism combined with macrocephaly demonstrated an increased proportion of proliferative cells and a decreased proportion of cells expressing markers of neuronal differentiation (98). Interestingly, differential analyses of whole transcriptomes identified a significant enrichment in ASD-related genes. All these studies demonstrated a decrease in electrophysiological activities (spontaneous activity; calcium transient; or decreased numbers of spikes and bursts) in iPSC-derived neurons from
patients affected by ASDs. Application of IGF1 on cultures of iPSC-derived neurons from patients with ASDs led to an increase in the number of spikes (98). A similar treatment was applied to iPSC-derived neurons from a patient carrying a TRPC6 gene translocation. IGF1 treatment restored dendritic arborization that was decreased in TRPC6-disrupted neurons which also had decreased expression in synaptic proteins such as Homer and PSD95 (79). Several phase II clinical trial studies targeting the IGF1 pathway have been performed in Rett, Fragile X, and Phelan McDermid syndromes testing safety and primary efficacy (99).

A screening of 202 compounds was performed on iPSC-derived cortical neurons from patients with SHANK3 mutations. Two of those molecules, valproic acid (VPA)—an HDAC inhibitor and an antiepileptic drug commonly used for bipolar disease treatment—and lithium, led to an increase in SHANK3 expression and its recruitment to post-synaptic sites (100) as well as increased spontaneous calcium oscillations, improving neuronal network connectivity.

Studies using iPSC-derived cells have shown that common processes are deregulated in syndromic and idiopathic forms of autism characterized by impairment in neuronal differentiation process, an imbalance between inhibitory and excitatory neurotransmission as well as mitochondrial deficits which corroborate genetic data as well as post-mortem brain studies. Several molecules such as rapamycin and IGF1, that have been also tested in mouse models seem to be effective in human iPSC-derived cells. The literature concerning the potential effect of VPA and lithium on mouse models is inconclusive. iPSC-derived cells from patients constitute a critical in vitro model for studying the impact of ASD-associated mutations and genetic vulnerability factors on the development and progression of the disease. Thus, many reasons can justify using human iPSC-derived models to increase our understanding of ASDs.

Interestingly, differential expression of human-specific genes was shown between control and brains of patients with ASDs (101). Along these lines, specific families of genes such as transcription factors as well as genes involved in brain size and in the acquisition of language have been submitted to positive selection in the human genome (102, 103). Thus, investigating these genes may not be possible in rodents or non-human primates. Finally, while our current knowledge in epigenetic regulation and non-coding transcriptome is growing (104), it appears that some histone modifications, microRNA or long non-coding RNAs, all of which are potential therapeutic targets to the same extent as proteins, are only observed in human (105, 106).

CONCLUSION

The current review aims to bring together findings in the field of ASDs provided by genetics, mouse models, post-mortem brain studies and iPSC-derived studies. All these approaches provide complementary information suggesting that ASDs are underpinned by dysregulation in the brain developmental program which include alterations of activity-dependent development, mitochondrial function as well as an imbalanced excitation-inhibition equilibrium (Figure 1; Supplementary Table 1). Those studies have also highlighted therapeutic strategies that are often primarily performed in mice but remain to be fully translated into humans. However, the human iPSC model seems to be an ideal model system for integrating all the genes and other factors that are implicated
as causative factors in the development of ASDs. Furthermore, this review has highlighted the importance of human-specific gene regulation and expression involved in high cognitive and behavioral functions for ASDs. Further investigations involving functional analyses on human models are required to identify molecules and design therapeutic strategies that could be translated to patients.

AUTHOR CONTRIBUTIONS

TD, GM, and CR defined the scope of the review. GM and CR wrote the manuscript and prepared the tables. GB, TD, and LB corrected, edited, and formatted the manuscript.

REFERENCES

1. Kanner L. Autistic disturbances of affective contact. *Nervous Child* (1943) 2:117–50.
2. Geschwind DH, Levitt P. Autism spectrum disorders: developmental disconnection syndromes. *Carr Opin Neuropsiol.* (2007) 17:103–11. doi: 10.1016/j.conb.2007.01.009
3. Lord C, Rutter M, Le Couteur A. Autism Diagnostic Interview -Revised: a standard measure of social and communication deficits associated with the spectrum of autistic. *J Autism Dev Disord.* (2000) 30:205–23. doi: 10.1023/A:10055924 01947
4. Bourgeron T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. *Nat Rev Neurosci.* (2015) 16:551–63. doi: 10.1038/nrn3992
5. O’Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. *Science.* (2012) 338:1619–22. doi: 10.1126/science.1227764
6. Tallbacki ME, Rosenfeld JA, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A, et al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. *Cell.* (2012) 149:525–37. doi: 10.1016/j.cell.2012.03.028
7. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, et al. Absence of expression of the FMR-1 gene in fragile X syndrome. *Cell.* (1991) 66:187–22. doi: 10.1002/0092-8674(91)90125-1
8. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. *Nat Genet.* (1999) 23:185–8. doi: 10.1038/31810
9. Au KS, Williams AT, Roach ES, Batchelor L, Sparagana SP, Delgado MR, et al. Genotype/phenotype correlation in 325 individuals referred for a diagnosis of tuberous sclerosis complex in the United States. *Genet Med.* (2007) 9:88–100. doi: 10.1097/GIM.0b013e31803006c7
10. Lin C, Franco B, Rosner MR, CDKL5/STK9 kinase inactivation is associated with neuronal developmental disorders. *Hum Mol Genet.* (2005) 14:3775–86. doi: 10.1093/hmg/ddi391
11. Lin L, Lesnick TG, Maraganore DM, Iascon O. Axiom guidance and synaptic maintenance: preclinical markers for neurodegenerative disease and therapeutics. *Trends Neurosci.* (2009) 32:142–9. doi: 10.1016/j.tins.2008.11.006
12. Bourgeron T, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: a standard measure of social and communication deficits associated with the spectrum of autistic. *J Autism Dev Disord.* (2000) 30:205–23. doi: 10.1023/A:10055924 01947
13. Lin C, Franco B, Rosner MR, CDKL5/STK9 kinase inactivation is associated with neuronal developmental disorders. *Hum Mol Genet.* (2005) 14:3775–86. doi: 10.1093/hmg/ddi391
14. Lambert L, Bienvenu T, Allou L, Valduga M, Echenne B, Diebold B, et al. MEF2C mutations are a rare cause of Rett or severe Rett-like encephalopathies. *Clin Genet.* (2012) 82:499–501. doi: 10.111/j.1399-0004.2012.01861.x
15. Thiele EA. Managing epilepsy in tuberous sclerosis complex. *J Child Neurol.* (2004) 19:680–6. doi: 10.1177/088380370401900990801
16. Phelan MC, Rogers RC, Saul RA, Stapleton GA, Sweet K, Mc Dermid H, et al. 22q13 deletion syndrome. *Am J Med Genet.* (2001) 101:91–9. doi: 10.1002/1096-8628(20010615)101:2<91::AID-AJMG1340-3.CO;2-C
17. Jacob FD, Ramaswamy V, Andersen J, Boudic FV. Atypical Rett syndrome with selective FOXG1 deletion detected by comparative genomic hybridization: case report and review of literature. *Eur J Hum Genet.* (2009) 17:1577–81. doi: 10.1038/ejhg.2009.95
18. Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of a new neurobiology. *Nat Rev Genet.* (2013) 14:341–55. doi: 10.1038/nrg3246
19. Gilbert J, Man HY. Fundamental elements in autism: from neurogenesis and neurite growth to synaptic plasticity. *Front Cell Neurosci.* (2017) 11:359. doi: 10.3389/fncel.2017.00359
20. Chahrou M, Jhung SY, Shaw C, Zhou X, Wong ST, Qin J, et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. *Science.* (2008) 320:1224–9. doi: 10.1126/science.1153252
21. Kelleher RJ III, Ke, BM RF. The autistic neuron: troubled translation? *Cell.* (2008) 135:401–6. doi: 10.1016/j.cell.2008.10.017
22. Mullins C, Fishell G, Tsien RW. Unifying views of autism spectrum disorders: a consideration of autoregulatory feedback loops. *Neuron.* (2016) 89:1131–56. doi: 10.1016/j.neuron.2016.02.017
23. Badcock C, Crespi B. Imbalanced genomic imprinting in brain development: an evolutionary basis for the aetiology of autism. *J Evol Biol.* (2006) 19:1007–32. doi: 10.1111/j.1420-9101.2006.01091.x
24. Maussion G, Carayol J, Lepagnol-Bestel AM, Torres F, Lee-Mie Y, Milbreta U, et al. Convergent evidence identifying MAP/microtubule affinity-regulating kinase 1 (MARK1) as a susceptibility gene for autism. *Hum Mol Genet.* (2008) 17:2541–51. doi: 10.1093/hmg/ddn154
25. Chapela CA, Calfa GD, Lane MC, Albertson AJ, Larimore JL, Kudo S, et al. Dendritic spine pathologies in hippocampal pyramidal neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations. *Neurobiol Dis.* (2009) 35:219–33. doi: 10.1016/j.nbd.2009.05.001
26. Durand CM, Perroy J, Loll F, Perriss D, Fagni L, Bourgeron T, et al. SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actin-dependent mechanism. *Mol Psychiatry.* (2012) 17:71–84. doi: 10.1038/mp.2011.72
27. Ebert DH, Greenberg ME. Activity-dependent neuronal signalling and autism spectrum disorder. *Nature.* (2013) 495:327–37. doi: 10.1038/nature11860
28. Oddi D, Subashi E, Middei S, Belloccio I, Lemaire-Mayo V, Guzman M, et al. Early social enrichment rescues adult behavioral and brain abnormalities in a mouse model of fragile X syndrome. *Neuropsychopharmacology.* (2015) 40:1113–22. doi: 10.1038/npp.2014.291
29. Bhattacharya A, Kaphzan H, Alvarez-Dieppa AC, Murphy JP, Pierre P, Klann E. Genetic removal of p70 S6 kinase 1 corrects molecular, synaptic, and behavioral phenotypes in fragile X syndrome mice. *Neuron.* (2012) 76:325–37. doi: 10.1016/j.neuron.2012.07.022

FUNDING

This work was supported through funding by the Alain and Sandra Bouchard Intellectual Disabilities platform and the Djavid Mowfaghian foundation. GB has received the New Investigator Salary Award from the Canadian Institutes of Health Research (2017–2022).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fped.2019.00225/full#supplementary-material
30. Ronesi JA, Collins KA, Hays SA, Tsai NP, Guo W, Birnbaum SG, et al. Disrupted Homer scaffolds mediate abnormal mGlur5 function in a mouse model of fragile X syndrome. *Nat Neurosci.* (2012) 15:431–40. doi: 10.1038/nn.3033
31. D’Hulst C, Kooy RF. The GABA(A) receptor: a novel target for treatment of Fragile-X? *Trends Neurosci.* (2007) 30:3425–31. doi: 10.1016/j.tins.2007.06.003
32. Olmos-Serrano JL, Corbin JG, Burns MP. The GABA(A) receptor agonist THIP ameliorates specific behavioral deficits in the mouse model of fragile X syndrome. *Dev Neurosci.* (2011) 33:395–403. doi: 10.1159/000338284
33. Udagawa T, Farny NG, Jakowcevska M, Kaphan H, Alarcon JM, Anilkumar S, et al. Genetic and acute CPEB1 depletion ameliorate fragile X pathophysiology. *Nat Med.* (2013) 19:1473–7. doi: 10.1038/nm.3333
34. Chao HT, Chen H, Samaco RC, Xue M, Chahroum M, Yoo J, et al. Dysfunction in GABA signaling mediates autism-like stereotypes and Rett syndrome phenotypes. *Nature.* (2010) 468:263–9. doi: 10.1038/nature09582
35. Guy J, Gan J, Selfridge J, Cobb S, Bird A. Reversal of neurological deficits in a mouse model of Rett syndrome. *Science.* (2007) 315:1143–7. doi: 10.1126/science.1138389
36. Samaco RC, McGraw CM, Ward CS, Sun Y, Neul JL, Zoghbi HY. Female defects in a mouse model of tuberous sclerosis complex. *Neurobiol Dis.* doi: 10.1016/j.nbd.2012.10.014
37. Huang J, Dibble CC, Matsuzaki M, Manning BD. The TSC1-TSC2 complex reverses impaired social interaction in mouse models of tuberous sclerosis complex. *Mol Cell Biol.* (2008) 28:4104–15. doi: 10.1128/MCB.00289-08
38. Bartolome A, Garcia-Aguilar A, Ashara SI, Kido Y, Guillem C, Pajvani UB, et al. MTORC1 regulates both general autophagy and mitophagy induction after oxidative phosphorylation uncoupling. *Mol Cell Biol.* (2017) 37: e00441-17. doi: 10.1128/MCB.00441-17
39. Sato A, Kasi S, Kobayashi T, Takamatsu Y, Hino O, Ikeda K, et al. Rapamycin reverses impaired social interaction in mouse models of tuberous sclerosis complex. *Nat Commun.* (2012) 3:1292. doi: 10.1038/ncomms2295
40. Reith RM, McKenna J, Wu H, Hashmi SS, Cho SH, Dash PK, et al. Loss of Tsc2 in Purkinje cells is associated with autistic-like behavior in a mouse model of tuberous sclerosis complex. *Neurobiol Dis.* (2013) 51:93–103. doi: 10.1016/j.nbd.2012.10.014
41. Durand CM, Betancur C, Boeckmers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein Shank3 are associated with autism spectrum disorders. *Nat Genet.* (2007) 39:25–7. doi: 10.1038/ng1933
42. Duffney LJ, Zhong P, Wei J, Matas E, Cheng J, Qin L, et al. Autism-like deficits in Shank3-deficient mice are rescued by targeting actin regulators. *Cell Rep.* (2015) 11:1400–13. doi: 10.1016/j.celrep.2015.04.064
43. Speed HE, Kouser M, Xuan Z, Reimers JM, Ochoa CF, Gupta N, et al. Mutations in the gene encoding the synaptic scaffolding protein Shank3 result in severe cerebellar hypoplasia. *J Neurosci.* (2015) 35:9648–65. doi: 10.1523/JNEUROSCI.3125-14.2015
44. Qin L, Ma K, Wang ZJ, Hu Z, Matas E, Wei J, et al. Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. *Nat Neurosci.* (2018) 21:564–75. doi: 10.1038/s41593-018-0110-8
45. Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. *Cerebellum.* (2014) 13:151–77. doi: 10.1007/s12311-013-0511-x
46. Pierce K, Courchesne E. Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. *Biol Psychiatry.* (2001) 49:655–64. doi: 10.1016/S0006-3223(00)00108-8
47. Alvarez JA, Emory E. Executive function and the frontal lobes: a meta-analytic review. *Neuropsych Rev.* (2006) 16:17–42. doi: 10.1007/s11065-006-9002-x
48. Rushworth MF, Noonan MP, Boorman ED, Walton ME, Behrens TE. Frontal cortex and reward-guided learning and decision-making. *Neuron.* (2011) 70:454–69. doi: 10.1016/j.neuron.2011.05.014
49. Goldman-Rakic PS. Development of cortical circuitry and cognitive function. *Child Dev.* (1987) 58:601–22. doi: 10.2307/1130201
is upregulated in the prefrontal cortex of autistic subjects. Mol Psychiatry. (2008) 13:385–97. doi: 10.1038/sj.mp.4002120

71. Maussion G, Mosaic JM, Simonneau M, Gorwood P, Ramoz N. Increased expression of BDNF mRNA in the frontal cortex of autistic patients. Behav Brain Res. (2013) 249:6–12. doi: 10.1016/j.bbr.2013.07.088

72. Garbett K, Elbert PJ, Mitchell A, Lintas C, Manzi B, Mirnics K, et al. Immune transcriptional alterations in the temporal cortex of subjects with autism. Neurobiol Dis. (2008) 30:303–11. doi: 10.1016/j.nbd.2008.01.012

73. Vojneagu I, Wang X, Johnston P, Lowe J, Tian Y, Horvath S, et al. Transcriptional profiling of autistic brain reveals convergent molecular pathology. Nature. (2011) 474:380–4. doi: 10.1038/nature10110

74. Chow ML, Pramparo T, Winn ME, Barnes CC, Li HR, Weiss L, et al. Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages. PLoS Genet. (2012) 8:e1002592. doi: 10.1371/journal.pgen.1002592

75. Parikshak NN, Surva P, Belgard TG, Irimia M, Ramaswami G, Gandal MJ, et al. Genome-wide changes in IncRNA, splicing, and regional gene expression patterns in autism. Nature. (2016) 540:423–7. doi: 10.1038/nature20612

76. Gharani N, Benayed R, Mancuso V, Brzustowicz LM, Millonig JH. Association of the homeobox transcription factor, ENGRAILED 2, with autism spectrum disorder. Mol Psychiatry. (2004) 9:474–84. doi: 10.1038/sj.mp.4001498

77. Fatemi SH, Folsom TD, Kernell RE, Li HR, Weiss L, et al. Strong correlation of downregulated genes related to synaptic transmission and mitochondria in post-mortem autism cerebral cortex. Nature. (2008) 454:447–51. doi: 10.1038/nature07157

78. Achuta VS, Moykkynen T, Peteri UK, Turconi G, Rivera C, Keinanen K, et al. Functional changes of AMPA receptors in human induced pluripotent stem cell-derived neural progenitors in fragile X syndrome. Sci Signal. (2011) 4:e11. doi: 10.1126/scisignal.4an8784

79. Yasin SA, Ali AM, Tata M, Picker SR, Anderson GW, Latimer-Bowman E, et al. mTOR-dependent abnormalities in autophagy characterize human malformations of cortical development: evidence from focal cortical dysplasia and tuberous sclerosis. Acta Neuropathol. (2013) 126:207–18. doi: 10.1007/s00401-013-1135-4

80. Liu X, Campanac E, Cheung HH, Zsats MN, Canterel-Thouennon L, Raygada M, et al. Idiopathic autism: cellular and molecular phenotypes in pluripotent stem cell-derived neurons. Mol Neurobiol. (2017) 54:4507–23. doi: 10.1007/s12035-016-9961-8

81. Vellegaas S, Levy L, Proukkes C, Sejroug C, Phillips CW, Van Booven D, et al. Convergent pathways in idiopathic autism revealed by time course transcriptional analysis of patient-derived neurons. Sci Rep. (2018) 8:4823. doi: 10.1038/s41598-018-26495-1

82. Marchetto MC, Belinson H, Tian Y, Freitas BC, Fu C, Vadodaria K, et al. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Mol Psychiatry. (2017) 22:820–35. doi: 10.1038/mp.2016.95

83. Vellegaas S, Levy L, Proukkes C, Sejroug C, Phillips CW, Van Booven D, et al. Convergent pathways in idiopathic autism revealed by time course transcriptional analysis of patient-derived neurons. Sci Rep. (2018) 8:4823. doi: 10.1038/s41598-018-26495-1
104. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. *Cell* (2009) 136:629–41. doi: 10.1016/j.cell.2009.02.006

105. Shulha HP, Crisci JL, Reshetov D, Tushir JS, Cheung I, Bharadwaj R, et al. Human-specific histone methylation signatures at transcription start sites in prefrontal neurons. *PLoS Biol* (2012) 10:e1001427. doi: 10.1371/journal.pbio.1001427

106. Washietl S, Kellis M, Garber M. Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals. *Genome Res.* (2014) 24:616–28. doi: 10.1101/gr.165035.113

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Maussion, Rocha, Bernard, Beitel and Durcan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.