Universal shocks in the Wishart random-matrix ensemble - a sequel

Jean-Paul Blaizot,1,‡ Maciej A. Nowak,2‡ and Piotr Warchoł3‡

1IPhT, CNRS/URA 2306, CEA-Saclay, 91191 Gif-sur Yvette, France
2M. Smoluchowski Institute of Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, PL–30–059 Cracow, Poland
3M. Smoluchowski Institute of Physics, Jagiellonian University, PL–30–059 Cracow, Poland

(Dated: May 7, 2014)

We study the diffusion of complex Wishart matrices and derive a partial differential equation governing the behavior of the associated averaged characteristic polynomial. In the limit of large size matrices, the inverse Cole-Hopf transform of this polynomial obeys a nonlinear partial differential equation whose solutions exhibit shocks at the evolving edges of the eigenvalue spectrum. In a particular scenario one of those shocks hits the origin that plays the role of an impassable wall. To investigate the universal behavior in the vicinity of this wall, a critical point, we derive an integral representation for the averaged characteristic polynomial and study its asymptotic behavior. The result is a Bessoid function.

PACS numbers: 05.40.-a, 05.10.Gg, 47.40.Nm, 47.52.+e

I. INTRODUCTION

The Wishart random matrix ensemble [1], a multidimensional generalization of the χ^2-squared distribution, has proven, over the many years since its invention, to be one of the most prominent examples of the vast applicability of random matrix theory. It has become an important tool in multivariate statistics [2], helping to understand a broad range of phenomena occurring in such fields as population structure study [3], financial data analysis [4] or image processing [5]. When it was realized that it can describe the information capacity of a multiple input multiple output system [6–8], the otherwise called Laguerre ensemble, has changed the face of multichannel information theory. Moreover, being closely related to so called chiral random matrices, the Wishart matrix shares, in a narrow, universal window in the vicinity of the zero eigenvalue, spectral properties with the Dirac operator in Euclidean Quantum Chromodynamics, thus portraying the spontaneous breakdown of chiral symmetry through the famous Banks-Casher formula [9]. Finally, matrices from the Laguerre ensemble appear in quantum information theory [10], the research of conducting mesoscopic systems [11] or chaotic scattering in cavities [12].

The study of static properties of random matrices proves to be highly rewarding. Yet, as realized already by Dyson [13], introducing some additional dynamics can be equally if not more fruitful. In the case of the Wishart ensemble, an evolving matrix was first defined through a Brownian motion of real and complex matrix entries in [14,15] and [16,17], respectively. More recently [18], such a stochastic process was generalized to arbitrary values of the Dyson parameter β, in particular for $\beta \in (0,2]$. In the mean time, the theory of non-intersecting Brownian motions or the so called vicious walkers was developed. The subject which originated from the works of de Gennes on fibrous structures [19], and Fisher on wetting and melting [20], was linked to random matrix theory [21–24], and led to many developments including a physical realization of the statistical properties of Wishart matrices through fluctuations of non-intersecting interfaces [25].

Both in random matrix and vicious walker theories, a central role is played by (multi-)orthogonal polynomials, their Cauchy transforms and the related, characteristic and inverse characteristic polynomials. This is because these polynomials are the building blocks of correlation functions, and they govern the universal asymptotic behavior of probability distributions [26–29]. It is an ongoing challenge to uncover the properties of these objects, in particular, those related to the Laguerre ensemble.

In a previous work [30], we have studied the stochastic evolution of a Wishart matrix for trivial initial conditions corresponding to vanishing eigenvalues. In that setting, the associated characteristic polynomial coincides with a time dependent, monic, orthogonal Laguerre polynomial which we have shown to satisfy a certain, exact (i.e., it is valid for any matrix size N), complex, partial differential equation. This, in turn, allowed us to recover the universal Airy and Bessel asymptotic behaviors of the characteristic polynomial at the edges of the spectrum as associated with hydrodynamical like shocks arising from the solution of a related nonlinear partial differential equation governing the evolution of the resolvent in the large N limit.

Here, we show that the same stochastic process, but with non trivial initial conditions, i.e. initialized with a Wishart matrix possessing a single N-degenerate eigenvalue $a^2 \neq 0$, allows us to identify a microscopic eigenvalue scaling associated with a novel asymptotic behavior of the characteristic polynomial. The phenomenon occurs at the origin, precisely when it is hit by the diffusing spectrum or, in the hydrodynamic language of [30], when the shock wave reaches the origin that plays the role of an impassable wall. To achieve this, we prove that the characteristic polynomial satisfies the above mentioned partial differential equation for any initial condition. In this scenario, the model can be viewed as a Wishart
matrix perturbed by a source and there are no polynomials, orthogonal in the classical sense, associated with this setting. Note that this is the reason why the derivation requires the use of more sophisticated methods than those employed in [30]. Moreover, it was through the studies of the Gaussian unitary random matrix ensemble with an external source [31, 32] that the asymptotic Pearcey behavior at the critical point was discovered [33, 34]. In our setting, it would arise through a diffusion of a Hermitian matrix initiated with at least two distinct eigenvalues, at the point of merging of the spectra. In the case of the Laguerre ensemble, the additional symmetry imposes a different functional form, associated with modified Bessel functions of the first kind.

The multiple orthogonal polynomials associated with the modified Bessel functions of the first kind were first studied in [36] and [37]. They were used to build a kernel for a chiral Gaussian unitary ensemble perturbed by a source in [38]. The critical behavior studied here was however not identified. This was done in the context of non-intersecting squared Bessel paths in [39] where the integral representation of the limiting kernel was derived with Riemann-Hilbert techniques. Finally, this kernel reduces to the so-called symmetric Pearcey kernel identified through the studies of random growth with a wall [40, 41]. Our work differs from those above by the use of completely different methods. We follow strictly the different methods. We follow strictly the different methods. We follow strictly the different methods.

We consider a $N \times N$ random matrix of the following form:

$$L(\tau) = K^t(\tau)K(\tau).$$

where the entries of K, an $M \times N$ ($M > N$) matrix, evolve in time τ according to

$$dK_{ij}(\tau) = dx_{ij} + idy_{ij} = b_{ij}^{(1)}(\tau) + ib_{ij}^{(2)}(\tau),$$

where $b_{ij}^{(1)}(\tau), b_{ij}^{(2)}(\tau)$ are two independent sets of free Brownian walks:

$$b_{ij}(\tau) = \xi_{ij}(\tau)d\tau,$$

and

$$\left\langle \xi_{ij}^{(c)}(\tau) \right\rangle = 0$$

We define $\nu = M - N$ and the rectangularity as $r = N/M$.

To the free Brownian motions is associated a (Gaussian) probability which allows us to define the averaged characteristic polynomial associated with the matrix L:

$$Q_N^R(z, \tau) \equiv \langle \det[z - L] \rangle.$$

It is shown in appendix A that $Q_N^R(z, \tau)$ satisfies the following partial differential equation

$$\partial_\tau Q_N^R(z, \tau) = -z\partial_z Q_N^R(z, \tau) - (\nu + 1)\partial_z Q_N^R(z, \tau)$$

for any initial condition. The same equation was obtained in [50] for the particular initial condition $L(\tau = 0) = 0$. It was shown there, that its solutions are in this case the time dependent, monic, Laguerre polynomials.

We proceed by performing the inverse Cole-Hopf transform on $Q_N^R(z, \tau)$. Namely, we define $f_N = \frac{1}{N}\partial_\tau \ln Q_N(z, \tau)$. Eq. (7) then yields the following equation for f_N:

$$\partial_\tau f_N + 2Nzf_N\partial_z f_N + Nf_N^2 = -(2 + \nu)\partial_z f_N - z\partial_z f_N.$$

After rescaling the time according to $\tau \rightarrow \frac{\tau}{N}$ [50, 42], this equation becomes

$$\partial_\tau f_N + r(2zf_N\partial_z f_N + f_N^2) + (1 - r)\partial_z f_N = -r\frac{\partial_z f_N}{N}$$

In the large N limit, $f_N(z, \tau) = G(z, \tau) \equiv \frac{1}{N} \langle \text{Tr} \frac{1}{z - L(\tau)} \rangle$, we recover:

$$\partial_\tau G(z, \tau) = (r - 1)\partial_z G(z, \tau) + 2rzG(z, \tau)\partial_z G(z, \tau) - rG^2(z, \tau),$$

in agreement with [43]. The partial differential equations (7) and (10) form the backbone of this paper. Solving the later, in the following section, will allow us to recover the large N limit spectrum of eigenvalues and identify the scaling of the level density in the vicinity of the edges, in particular that near the origin. The former, on the other hand, as shown in the fourth section, admits an asymptotic solution that describes the universal behavior near the critical point. This new solution is the main result of this paper.

II. FORMAL SETTING

We consider a $N \times N$ random matrix of the following form:

$$L(\tau) = K^t(\tau)K(\tau).$$

where the entries of K, an $M \times N$ ($M > N$) matrix, evolve in time τ according to

$$dK_{ij}(\tau) = dx_{ij} + idy_{ij} = b_{ij}^{(1)}(\tau) + ib_{ij}^{(2)}(\tau),$$

where $b_{ij}^{(1)}(\tau), b_{ij}^{(2)}(\tau)$ are two independent sets of free Brownian walks:

$$b_{ij}(\tau) = \xi_{ij}(\tau)d\tau,$$
This method transforms Eq. (10) into the following three ordinary differential equations:

\[\frac{dz}{ds} = 1 - r + 2rzG, \]
\[\frac{dr}{ds} = 1, \]
\[\frac{dG}{ds} = -rG^2, \]

such that \(z(s = 0) = z_0 + a^2, \) \(\tau(s = 0) = 0, \) and \(G(s = 0) = \frac{1}{a^3}. \) Solving the last two equations yields \(G = \frac{1}{r\tau + z_0}. \)

We are therefore left with:

\[\frac{dz}{d\tau} = 1 - r + \frac{2rz}{r\tau + z_0}, \]

which is solved by:

\[z = (z_0 + r\tau) \left(1 + \frac{\tau}{z_0} + a^2 \frac{\tau r + z_0}{z_0^2} \right). \]

The characteristic curves are parameterized by \(z_0. \) By eliminating \(z_0 \) in Eq. (14) one gets the following, implicit, cubic equation for \(G(z, \tau): \)

\[z = \frac{1}{G(z, \tau)} + \frac{r\tau}{1 - r\tau G(z, \tau)} + a^2 \left(\frac{1}{1 - r\tau G(z, \tau)} \right)^2. \]

The proper solution of this equation yields the eigenvalue density via the usual Sochocki–Plemelj formula. An illustration of this density, and its time-dependence, is given by Fig. 1. One can also reconstruct the spectrum directly from the characteristic curves, as shown in appendix B.

From now on we will work in the \(r = 1 \) limit, since only then the eigenvalues can reach the origin. This is realized when we let \(N \) and \(M \) go to infinity keeping \(\nu \) constant and finite.

In the above derivation we assumed that the mapping between \(z \) and \(z_0 \) is one-to-one, that is, it can be inverted. This is the case except at points \(z_0(\tau), \) such that \(dz/dz_0 = 0, \) where a singularity occurs. We obtain the following equation for \(z_0: \)

\[z_0^2 - z_0(2a^2 + \tau) - 2a^2 \tau^2 = 0. \]

The equation defines the location of the shock waves, which coincide with the edges of the spectrum. From this equation, we deduce that the shock wave reaches 0 at \(\tau_c = a^2. \)

In the vicinity of the critical point \((z = 0, \tau = a^2), \) we have, in the leading order (small and \(\tau \) near \(a^2): \)

\[G(s, \tau) - \frac{2}{3\tau} \propto s^{-\frac{4}{3}}. \]

This yields the average eigenvalue spacing scaling as \(N^{-3/2}. \) If we further allow ourselves to move around the critical point within the time domain, a careful expansion of \(G(s, a^2 + \tau) \) will show that \(\tau \) has to be of the order of \(N^{-1/2}. \) In the beginning of the paper we have defined the evolution of the matrix elements \(K_{ij} \) so that \(\langle |K_{ij}|^2 \rangle \sim \tau. \) The time is rescaled overall by \(N^{-3/2} \) and therefore this diffusive character of the dynamics is preserved in the microscopic regime defined in the vicinity of the critical point.

We are now equipped with enough information to study, in the following section, the large \(N, M \) asymptotics of the characteristic polynomial.

IV. THE CHARACTERISTIC POLYNOMIAL AT THE CRITICAL POINT

Recall the partial differential equation for the averaged characteristic polynomial [7]:

\[\partial_z Q_N(z, \tau) = -\frac{1}{M} \partial_{zz} Q_N(z, \tau) - \frac{(\nu + 1)}{M} \partial_z Q_N(z, \tau). \]

We found a solution for any \(N \) and any \(\nu \) of this equation. It reads:

\[Q_N(z, \tau) = C \tau^{-1} e^{-z^2/\tau} \int_0^{\infty} y^{\nu + 1} \exp \left(\frac{Mz^2 - y^2}{\tau} \right) I_0 \left(\frac{2iM\sqrt{y}}{\tau} \right) Q_N(-y^2, 0) dy, \]

where \(I_0 \) is the modified Bessel function. The constant \(C \) is found by matching the solution with the initial condition \(Q_N(z, 0). \) Note that \(\lim_{\nu \to -\infty} I_0(x) \approx \frac{1}{\sqrt{2\pi x}} e^x, \) valid for \(|\arg(x)| < \frac{\pi}{2} \) and here \(x = \frac{2M\sqrt{z}}{\tau} \) so that \(\arg(z) \neq 0. \) In the limit of \(\tau \to 0, \) the saddle point approximation method enables us to deduce that \(C = i^{\nu} 2M. \) We therefore obtained an integral representation for the averaged characteristic polynomial associated with a freely diffusing Wishart type matrix of arbitrary size and for arbitrary initial conditions consistent with the symmetry of the ensemble. Let us mention, additionally, that it has been recently derived in [35], with combinatorial methods, for a static Wishart matrix perturbed by a source.
We now turn to the specific case of $Q_H^0(z, 0) = (z - a)^N$. In the limit of M and N going to infinity, with ν constant, the exponent, arising in the integral from the expansion of the modified Bessel function and the exponentiation of the initial condition, is dominated by values of y in the vicinity of the saddle points given by the solutions of the equation:

$$y - i \sqrt{2} - \frac{\tau y}{a^2 + y^2} = 0.$$

(22)

The three saddle points merge at $y = 0$ for $\tau = 0$ and $a = \sqrt{2}$. Moreover, as predicted in the previous section, the critical behavior occurs when $|z| \sim N^{-3/2}$ and $|\tau - a^2| \sim N^{-1/2}$. One can therefore expand the natural logarithm $\ln(a^2 + y^2) \simeq \ln(a^2) + y^2 - a^2$. Furthermore we set $\tau = a^2 + N^{-1/2}a^2t$ and $z = N^{-3/2}a^2s$, with arg$(s) \neq 0$. To recover the proper asymptotics we rescale the integration variable by defining $y = N^{-1/4}a du$.

The limiting behavior becomes

$$Q_H^0\left(N^{-3}a^2 s, a^2 + N^{-1}a^2 \tau\right) \simeq (-a^2)^N N^{-\nu/2} s^{-\nu} \int_0^\infty u^{\nu+1} \exp\left(-\frac{1}{2}u^4 + u^2 \tau\right) I_{\nu}(2iu \sqrt{s}) \, du,$$

(23)

the announced result.

Let us mention that for $\nu = -\frac{1}{2}$, (25) takes the form of:

$$(i\tau)^{-\frac{1}{2}} s^{-\frac{1}{2}} \int_0^\infty \exp\left(-\frac{1}{2}u^4 + u^2 \tau\right) \cos(2u \sqrt{s}) \, du$$

(24)

and is called the symmetric Pearcey integral through its connection with the symmetric Pearcey kernel arising for phenomena of random surface growth with a wall [40].

Moreover, for positive integer ν, as the Wishart ensemble is connected to Chiral random matrices, it has an analog in the integral describing the statistical properties of the Dirac operator around its zero eigenvalue, at the moment of chiral symmetry breaking in Euclidean Quantum Chromodynamics [46]. The averaged characteristic polynomial of a diffusing complex chiral matrix is namely defined by

$$\tilde{Q}_{M,N}^\nu(w, \tau) \equiv \det\left(\begin{array}{cc} w & -K \tau \\ -K^{-1} \tau & w \end{array}\right)$$

(25)

and related to its Wishart counterpart through $\tilde{Q}_{M,N}^\nu(w, \tau) = w^\nu Q_H^0(z = w^2, \tau)$. Its critical point analysis is analogous.

Finally, (23) was known earlier in optics. In particular

$$B(x, y) \equiv \int_0^\infty u \exp(iu^4 + iu^2y) I_0(iux) \, du,$$

(26)

is recognized as the Bessoid canonical function of order zero and appears in the description of the rotationally symmetric cusp (cuspidal) diffraction catastrophe [47-49]. Note that the behavior of the two differ as the \sqrt{s} is complex while x is real and because the exponent in the latter has a complex phase. We are however inspired by the analogy and call [23] simply, the Bessoid function.

V. CONCLUSIONS

In this paper we have continued our study of matrices belonging to the Wishart ensemble and performing a white noise driven Brownian walk. Our derivation of the partial differential equation fulfilled by the associated averaged characteristic polynomial allows to inspect this process for arbitrary initial conditions and size of the matrix N. Here, we differ from the prequel of this paper, where the method used permitted only a study of a trivial initial condition, for which the average characteristic polynomial coincides with a Laguerre polynomial.

The inverse Cole-Hopf transform of the characteristic polynomial obeys a nonlinear partial differential equation. In the large matrix size limit its solutions contain shocks which are positioned at the moving edges of the spectrum. For a matrix diffusion initiated form a non-zero N degenerate eigenvalue, when the shock reaches the origin, a distinct, universal behavior of the eigenvalues occurs in a window shrinking like $N^{-3/2}$ while N grows to infinity. This phenomena is encapsulated by the asymptotics of the averaged characteristic polynomial. We have derived its integral representation and studied it in the vicinity of the critical point. The resulting limiting behavior is described by an integral that we call Bessoid function.

ACKNOWLEDGMENTS

PW would like to thank the organizers of the 2012 Les Houches school on random matrices and integrable systems, where part of this work has been done. PW is supported by the International PhD Projects Program of the Foundation for Polish Science within the European Regional Development Fund of the European Union, agreement no. MPD/2009/6. MAN is supported in part by the Grant DEC-2011/02/A/ST1/00119 of the National Center of Science.

Appendix A: Derivation of the PDE

Here we derive the partial differential equation governing the evolution of the averaged characteristic polynomial associated with a diffusing Wishart matrix (7). The real and imaginary parts of each of the elements of the matrix K evolve according to the same diffusion equation:

$$\frac{d}{d\tau} P^{(1)}_{ji} = \frac{1}{4} \frac{d^2}{dx_j^2} P^{(1)}_{ji},$$

$$\frac{d}{d\tau} P^{(2)}_{ji} = \frac{1}{4} \frac{d^2}{dy_j^2} P^{(2)}_{ji}.$$

(A1)

The initial conditions are arbitrary. If however, we intend to stay in the realm of Wishart type random matrices, they cannot violate the symmetry of the ensemble. Since the elements evolve independently, the joint probability density is $P(x, y, \tau) = \prod_{j \neq c} P^{(c)}_{ji}$ and it obeys the equation

$$\partial_\tau P(x, y, \tau) = \frac{1}{4} \sum_{j, i} (\partial_{x_j y_i} + \partial_{y_j x_i}) P(x, y, \tau).$$

(A2)
Let η represent a column of complex Grassman variables η_i where $i \in \{1, 2, ..., N\}$. The averaged characteristic polynomial, associated with $[I]$, can be expressed in terms of the following integral:

$$Q^c_N(z, \tau) = \int D(\eta, \bar{\eta}, x, y) \exp \left[\eta^\dagger (z - K^\dagger K) \eta \right] P(x, y, \tau), \quad (A3)$$

where the integration measure is $D(\eta, \bar{\eta}, x, y) \equiv \prod_{i,j} d\eta_i d\bar{\eta}_j dx_j dy_j$. This form allows us to proceed to the main part of the proof. Acting with the time derivative on $Q^c_N(z, \tau)$ and exploiting (A2), yield

$$\partial_\tau Q^c_N(z, \tau) = \frac{1}{4} \int D(\eta, \bar{\eta}, x, y) \exp \left[\eta^\dagger (z - K^\dagger K) \eta \right] \sum_{i,j} (\partial_{x_i x_j} + \partial_{y_i y_j}) P(x, y, \tau). \quad (A4)$$

At this point, we integrate by parts and proceed with the differentiation with respect to x_{ji} and y_{ji}. After a brute force calculation one obtains

$$\partial_\tau Q^c_N(z, \tau) = -\int D(\eta, \bar{\eta}, x, y) \eta^\dagger \eta \exp \left[\eta^\dagger (M + \eta^\dagger K^\dagger K \eta) \right] P(x, y, \tau). \quad (A5)$$

The first term in the sum can be represented as a differentiation with respect to z, the second one as a differentiation over Grassmann variables:

$$\partial_\tau Q^c_N(z, \tau) = -M \partial_z Q^c_N(z, \tau) + \int D(\eta, \bar{\eta}, x, y) \eta^\dagger \eta \exp \left[\eta^\dagger (M + \eta^\dagger K^\dagger K \eta) \right] P(x, y, \tau). \quad (A6)$$

Again, we integrate by parts, this time in the Grassmann variables, and perform the differentiation. The result is

$$\partial_\tau Q^c_N(z, \tau) = -z \partial_z Q^c_N(z, \tau) + (N - M - 1) \partial_z Q^c_N(z, \tau), \quad (A7)$$

which concludes the proof.

Appendix B: Analysis of the characteristics

Here, we show how the large N properties of the eigenvalue spectrum are encoded in the characteristics. The complex characteristic curves are defined in the (z, τ) hyperplane by Eq. (16), namely:

$$z = (z_0 + \tau \tau) \left(1 + \frac{\tau}{z_0} + a^2 \frac{\tau^2 + z_0}{\tau^2} \right). \quad (B1)$$

These are labeled by the values of the complex variable z_0. They are not straight lines as in the case of the usual Burgers equation. Let us define $z = \lambda + i\eta$ and $z_0 = x + iy$. Notice that for $\tau = 0, z = z_0$, so that if a characteristic starts from a purely real point z_0, then z remains real at all times. For simplicity we set $a = 1$ and, as we are interested in the scenario where the spectrum hits the origin, $r = 1$. By taking the real and the imaginary parts of Eq. (B1) one gets

$$\lambda = \frac{2\tau^2 x^2}{(x^2 + y^2)^2} + \frac{\tau(x - 1) + 2x}{x^2 + y^2} + 2\tau + x + 1, \quad (B2)$$

and

$$\eta = y \left(1 - \frac{2\tau^2}{(x^2 + y^2)^2} - \frac{(\tau + 2)\tau}{x^2 + y^2}\right) \equiv y Y(x, y). \quad (B3)$$

We also have (cf. Eq. (14))

$$G = \frac{1}{\tau + z_0} = \frac{\tau + x - iy}{(\tau + x)^2 + y^2}. \quad (B4)$$

Moreover, the spectral density is given by $\rho(\lambda, \tau) = -\frac{1}{\pi} \delta G_{\lambda=0^+}$, and therefore

$$\rho(\lambda, \tau) = \frac{y}{\pi \left((\tau + x)^2 + y^2\right)} \bigg|_{\eta=0^+}, \quad (B5)$$

where λ appears on the right hand side through (B2) and (B3). The limit $\eta = 0^+$ can be accessed in four ways, by $y \to 0^+$ with $Y(x, y) > 0$, $y \to 0^-$ with $Y(x, y) < 0$ and through $Y(x, y) \to 0^+$ with $y > 0$ or $Y(x, y) \to 0^-$ with $y < 0$. The first two give zero spectral density in the area of the characteristics curves defined by

$$\lambda = (x + \tau) \left(1 + \frac{\tau}{x} + \frac{\tau + x}{x^2}\right). \quad (B6)$$

These are the curves which remain on the plane of real z throughout the evolution.

The last two conditions, together with Eq. (B2) define the characteristic curves which cross the $\eta = 0$ plane at a specific time τ, and reconstruct the nonzero part of the spectral density.

The edge of the spectrum in the real z plane is defined by $y = 0$ and $Y(x, y) = 0$ fulfilled simultaneously, namely

$$x^3 - (\tau + 2)x - 2\tau^2 = 0. \quad (B7)$$

This coincides with (18). The main features of the characteristics described here are illustrated FIG.2.
FIG. 2. A sample of characteristic curves remaining real through the evolution is depicted with solid lines in the plane $\eta = 0$. They cross each other on the edges of the large N limit spectrum. The dashed lines are examples of characteristic curves which start at complex points ($\eta = 1$). At a specific value of τ, they cross the plane $\eta = 0$ in the area of the non-zero eigenvalue probability density.

[1] J. Wishart Biometrika 20 32.
[2] Zh. Bai and J.W. Silverstein, Spectral Analysis of Large Dimensional Random Matrices, Science press, 2011.
[3] N. Patterson, A.L. Price, D. Reich, PLOS Genetics 2 (2006) e190.
[4] J.-P. Bouchaud and M. Potters, Theory of Financial Risks, Cambridge University Press, 2001;
[5] K. Fukunaga, Introduction to Statistical Pattern Recognition, Elsevier, 1990.
[6] O.J. Foschini, Bell Labs Technical Journal 1 (1996) 42.
[7] E. Telatar, Euro. Trans. telecommunications 10 (1999) 585.
[8] R. Couillet and M. Debbah, Random Matrix Methods for Wireless Communications, Cambridge University Press, 2011.
[9] J.M. Verleysen, Oxford Handbook of Random Matrix Theory, hep-th/0910.4134, and references therein.
[10] I. Bengtsson and K. Życzkowski, Geometry of Quantum States, Cambridge University Press 2006.
[11] C.W.J. Beenakker, Rev. Mod. Phys. 69 (1997) 731 and references therein.
[12] P.W. Brouwer, K. Frahm and C.W.J. Beenakker, Phys. rev. Lett. 78 (1997) 4737.
[13] F.J. Dyson, J. Math. Phys. 3 (1962) 119.
[14] M.F. Bru, J. Multivariate Anal. 29 (1989) 127.
[15] M.F. Bru, J. Theoret. Probab. 4 (1991) 725.
[16] T. Akuzawa, M. Wadati, Chaos, Solitons & Fractals 8 (1997) 99.
[17] W. König, N. O’Connell, Elect. Comm. in Probab. 6 (2001) 107.
[18] R. Allez, J.-Ph. Bouchaud, S.N. Majumdar and P. Vivo, arXiv: 1209.6171v1.
[19] P. G. de Gennes, J. Chem. Phys. 48 (1968) 2257.
[20] M. E. Fisher, J. Stat. Phys. 34 (1984) 667.
[21] D. J. Grabiner, Ann. Inst. Henri Poincaré, Probab. Stat. 35 (1999) 177.
[22] K. Johansson, Probab. Theory Relat. Fields 123 (2002) 225.
[23] M. Katori and H. Tanemura, Commun. Math. Phys. 293 (2010) 469, and references therein.
[24] G. Schehr, S. N. Majumdar, A. Comtet, J. Randon-Furling, Phys. Rev. Lett. 101 (2008) 150601.
[25] C. Nadal and S. Majumdar, Phys. Rev. E 79 (2009) 061117.
[26] E. V. Gudkov, E. Strahov, Nucl. Phys. B647 (2002) 581.
[27] E. Strahov, Y. V. Fyodorov, Commun. Math. Phys. 241 (2003) 241.
[28] A. B. J. Kuijlaars, arXiv:0902.1058.
[29] S. Delvaux, Journal of Approximation Theory 162 (2010) 1033.
[30] J.-P. Blaizot and M.A. Nowak, P. Warchoł, Phys. Rev. E 87 (2013) 052134.
[31] P. Zinn-Justin, Nucl. Phys B 497 (1997) 725.
[32] P. Zinn-Justin, Commun. Math. Phys. 194 (1998) 631.
[33] E. Brezin and S. Hikami, Phys. Rev. E 57 (1998) 4140.
[34] C. A. Tracy, H. Widom, Commun. Math. Phys. 263 (2006) 381.
[35] P. M. Bleher, A. B. J. Kuijlaars, Commun. Math. Phys. 270 (2007) 481.
[36] E. Coussement, W. Van Assche, Constructive Approximation 19 (2003) 237.
[37] E. Coussement, W. Van Assche, Journal of Computational and Applied Mathematics 153 (2003) 141.
[38] P. Desrosiers, P. J. Forrester, Journal of Approximation Theory
[39] A. B. J. Kuijlaars, A. Martinez-Finkelshtein, F. Wielonsky, \textit{Comm. in Math. Phys.} \textbf{308} (2011) 227.
[40] A. Borodin and J. Kuan, \texttt{arXiv:0904.2607}
[41] J. Kuan, \texttt{arXiv:1203.1660}
[42] J.-P. Blaizot and M.A. Nowak, \textit{Phys. Rev. E} \textbf{82} (2010) 051115.
[43] T. Cabanal Duvillard and A. Guionnet, \textit{The Annals of Probability} \textbf{29} (2001)1205.
[44] M. Abramowitz and I. Stegun, \textit{Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables}, Dover Publications, New York, 1964.
[45] P. J. Forrester, \texttt{arXiv:1203.5838}
[46] J.-P. Blaizot and M.A. Nowak, P. Warchoł, \textit{Phys. Lett. B}, in press.
[47] J. F. Nye, \textit{J. Opt. A: Pure Appl. Opt.} \textbf{7} (2005) 95.
[48] J. Kofler and N. Arnold, \textit{Phys. Rev. B} \textbf{73} (2006) 235401.
[49] M. V. Berry and M. R. Jeffrey, \textit{J. Opt. A: Pure Appl. Opt.} \textbf{8} (2006) 363.