Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2018 (Volume 58): 380 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2016): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
WEIGMANNIA N. GEN. FROM EASTERN NORTH AMERICA, WITH REDESCRIPTION OF THE TYPE SPECIES, POROBELBA PARKI JACOT, 1937 (ACARI, ORIBATIDA, DAMAEIDAE)

Ladislav MIKO1 and Roy A. NORTON2

(Received 13 June 2010; accepted 04 August 2010; published online 04 October 2010)

1 European Commission, DG Environment, Avenue de Beaulieu 5, 1160 Auderghem, Bruxelles, Belgium. ladislav.miko@ec.europa.eu (corresponding author)
2 S.U.N.Y. College of Environmental Science and Forestry, Syracuse, New York, USA 13210. ranorton@esf.edu

ABSTRACT — A new mite genus, Weigmannia (Oribatida: Damaeidae), is proposed for the North-American species Poro-belba parki described by Jacot (1937). It is distinguished from Porobelba Grandjean, 1936 based on differences in prodorsum morphology, the absence of an unpaired porose area on the notogaster and the development of notogastral setae. Porobelba and Weigmannia may be sister genera in a group that also includes Dameobelba Sellnick, 1929. Weigmannia parki n. comb. is redescribed in detail based on numerous adults and its ontogeny is described for the first time. Eleven states (USA) and provinces (Canada) are added to its known distribution, which now encompasses a region from Manitoba to New Brunswick in the north and Missouri to North Carolina in the south.

KEYWORDS — Weigmannia; Porobelba; Porobelba parki; oribatid mites; taxonomy; chaetotaxy; ontogeny; type-species; North America

INTRODUCTION

The inclusion of the North-American species Porobelba parki Jacot, 1937 within the oribatid mite genus Porobelba Grandjean, 1936 was recently rejected (Miko, 2008), based on the absence of several diagnostic characters of this otherwise European genus. The most apparent is the absence of an unpaired cuticular porose area that occurs posteriorly on the adult notogaster, between insertions of setae ps1 and h1. This porose area represents a secretory organ (Alberti et al., 1997) that is unique within Damaeidae; while variable in size and shape it is always present in Porobelba (Grandjean, 1954). Other characters of the prodorsum and notogaster, considered commonly as genus-level diagnostic traits within Damaeidae, support the proposal of a new genus for the North-American species.

Our aim is to propose such a new genus, to provide a modern redescription of adults of Porobelba parki and describe its ontogeny for the first time. We also include information about its known distribution and the relationship of the new genus to Porobelba.

We dedicate the new genus to our friend and good colleague, oribatologist Gerd Weigmann from Berlin, Germany.

The terminology and general approach of F. Grandjean, as modified by Norton (1977), and Miko
and Travé (1996) were used. Van der Hammen (1980) and Hunt et al. (1998) provided glossaries of terms and an overview can be found in Norton and Behan-Pelletier (2009).

DIAGNOSIS OF Weigmannia AND REDESCRIPTION OF TYPE SPECIES

Weigmannia n.gen.

Body size about 305-380 µm, yellowish brown, covered by thick layer of filamentous and granular cerotegument. Adult bears exuvial scalps. Prodorsum pentagonal or broadly triangular in dorsal view, laterally with well developed propodolateral apophysis (P). Bothridia comparatively large, funnel-like, positioned quite far from anterior border of notogaster, positioned well anteriad to tips of spinae adnatae. Body strongly narrowed in segugal area, as seen in anterodorsal view. Notogaster with 11 pairs of setae, c-l-h series of similar shape and size, positioned in two longitudinal rows, subparallel or slightly converging posteriad. Setae ps1-2 shorter, aligned along posterior border of notogaster. Spinae adnatae present. Without porose area in posterior part of notogaster. Setation of trochanters 1-1-2-1, femora 7-6-4-4, genua 4-4-3-3, tibiae 5-5-4-4. Tibiae II - IV always bearing seta d, coupled with solenidion. Solenidion ϕ of tibia IV relatively short, usually of similar size to coupled seta d or slightly longer.

Type species: *Porobelba parki* Jacot, 1937.

Weigmannia parki (Jacot, 1937) **n. comb.**

Diagnosis

With characters of *Weigmannia* as stated above. Prodorsum without distinct tubercles. Sensillus long, setiform, distally usually slightly thickened, lanceolate. Parastigmatic apophysis Sa very strong, distinct, pointed, slightly arched anteriad. Notogastral setae c1 and c2 pointing forward. Spinae ad-
natae acute, thorn-like, slightly diverging anteriad. Dorsal setae of all femora hypertrophied, strong, arched, roughened with distinct, scale-like barbs.

Redescription of adult

General characters. Maximum body length 305 - 380 μm (mean 347 μm; n = 4), ventral length 288-345 μm (mean 321 μm). Body covered by very thick layer of mostly filamentous (sejugal area, legs, ventral side etc.) but also glandular (notogaster, rostral part of prodorsum) cerotegument (Figs. 1; 2A; 4A). Body colour brown to yellowish brown. Adults bear reticulate exuvial scalps on notogaster (Figs. 1A; 6B; 8J).

Prodorsum. Pentagonal to broadly triangular, with well developed propodolateral apophysis (P; Fig. 2A, C). Rostrum broadly oval, with small longitudinal protuberance in central part between insertions of rostral setae (Fig. 2A). Bothridia quite distant from anterior notogastral margin (as in *Porobelba*), funnel-like. Sensillus (ss; Fig. 2E) relatively long (about 105-115 μm), setiform, distally usually broadened and lanceolate, with sparse, small and indistinct spines distally. Rostral (ro) and lamellar (le) setae of similar size (ro about 40 μm, le about 45-48 μm), bent, with attenuate tips; le longer and thicker than ro (Fig. 3B) and covered by cerotegument. Interlamellar seta (in; about 35 μm), shorter than ro and le, straight or slightly curved, about one third of sensillus length, also covered by cerotegument. Exobothridial seta (ex) shorter (about 20 μm) and finer than in, curved, hardly visible under cerotegument. No tubercles present on prodorsum, sejugal area strongly narrowed, best visible in slightly anterodorsal view. Anterior parastigmatic apophysis (Sa) strong and well developed, directed almost perpendicular to body, slightly bent anteriad. Posterior parastigmatic apophysis (Sp) much smaller, tubercular, oblique, sometimes hardly observable under thick layer of cerotegument.

FIGURE 2: Weigmannia parki (Jacot, 1937), adult: A – dorsal view without legs (slightly anterodorsal aspect showing dorsosejugal area); B – ventral view without legs, gnathosoma only partly depicted; C – right region of sejugal furrow, dorsal view; D – pygidial region of notogaster, posterior view; E – right bothridial area and sensillus, lateral view. Bars indicating 100 μm (A+B), 50 μm (C+D), and 50 μm (E). Explanations in text and in Appendix 1.
Notogaster. Circular to slightly oval in outline, hemispherical in lateral view. Spinae adnatae thin, thorn-like, with tips slightly diverging anteriad (length about 30 µm). Notogastral setae mostly long and distinct, series c-l-h in pair of subparallel to slightly posteriorly converging longitudinal rows; setal row ps aligned along posterior border of notogaster, with row c-l-h perpendicular to it when seen from posterior (Fig. 2D). First two pairs of setae (c1, c2) longest (55-65 µm), directed anteriad, strongly bent close to insertion, then almost straight, close to notogastral surface (Fig. 3A, B).

Dorsolateral setae la-lp of similar shape, usually slightly shorter (45-50 µm) and thinner, directed posteriad. Setae h1-h3 slightly diminishing in succession (55-50-47 µm in one measured individual), with very indistinct, sparse spines unilaterally; less bent at base and more curved distally than c and l setae. Setae ps1-3 diminishing in succession (23-18-15 µm), strong, slightly bent. Lyrifissures and opening of opisthontal gland with positions typical of Damaeidae.

Ventral characters (Fig. 2B). Venter covered by layer of cerotegument. Discidium (dis) short, tubercular, but distinct, directed slightly forwards or perpendicular to body. Epimeral setation 3-1-3-4; setae relatively short, setiform, thin, lateral ones longer than others, seta 1c longest. Epimeral setae insertions of first two epimeres on more or less distinct papillary protuberances, setae 4c and 4d inserted close together. With six genital, one aggenital, two anal and three adanal pairs of setae present,
Figure 4: Weigmannia parki (Jacot, 1937), legs of adult (antiaxial views): A – leg I; B – tarsus I in detail; C – leg II (arrow indicates anomalous doubling of lateral seta l⁺); D – leg III, E – trochanter and femur IV; F – genu, tibia and tarsus IV. Bar indicating 100 µm (A-C-F). Light, irregular lines around A, E, F indicate extent of cerotegument covering. Designations of leg setae according to Grandjean, as reviewed by Norton (1977).
as usual in Damaeidae; all similar in shape and size. Genital aperture well separated and quite distant from anal opening; longer and broader than anal.

Gnathosoma (Characters were studied only on non-dissected individuals, and therefore are not described in full detail). Type and form of subcapitulum typical of Damaeidae. Palps relatively long, with elongated tarsus; setation (tarsal solenidion not included) 0-2-1-3-8, three distal setae on tarsus eupathidial (Fig. 3C). Setae of rutella and mentum similar in shape to other ventral setae. Chelicerae without unusual characters.

Legs. Moniliform (Figs. 4, 1A), covered by thick layer of mostly filamentous and columnar cerotegument, making setation difficult to study. Setal formula of legs as follows (famulus included, solenidia not included): I, 1-7-4-4-20; II, 1-6-4-4-17; III, 2-4-3-3-16; IV, 1-4-3-4-13. Solenidia quite short, except ϕ_1 long, flagellate, tactile. Solenidia of tibiae II-IV coupled with seta d; latter about as long as, or longer than, respective solenidion (Fig. 4C,D,F). Solenidia of tarsus II inserted as if paired (Fig. 4C), parallel, straight and relatively long. Famulus emergent, shorter than other setae, simple, setiform (Fig. 4B). Dorsal setae of all femora of very characteristic shape (Figs. 3B, 4), hypertrophied (55-68 µm), with distinct, thorn- and scale-like spines. Anomalous doubling of lateral seta on tarsus II observed on one specimen (Fig. 4C).
Ontogeny: (Figs. 5-8)

Facies and Dimensions (all from slide-mounted specimens, complemented by measurements of one tritonymph used for drawings — Figs. 5-7). General characters of larva and eupheredermous nymphs typical of family (Grandjean, 1954) (Figs. 5A,B; 6A); exuvial scalps strongly reticulate (Figs. 6B; 8J). Total length of: larva (La, n = 2) 192-201 (mean 197) μm; protonymph (Pn; n = 3) 225-245 (mean 235) μm; deutonymph (Dn; n = 4) 255-294 (mean 278) μm; tritonymph (Tn; n = 2) 320-334 (mean 327) μm.

Measurements of structural details (below) approximate, taken from average-sized specimen of respective instar (separate structures not measurable in single slide-mounted Tn).

Integument, setae. Cuticle colorless, covered with cerotegument in all instars, except under exuvial scalps of nymphs. Excrescences of cerotegument densely packed, touching or nearly so; those on body, legs and setae columnar to bottle-shaped (Fig. 8K), ≈1 μm diameter or less, smallest distally on leg tarsi; those on solenidia minute, very fine, making solenidia appear fuzzy (Fig. 8K). Setae of dorsum and legs light to dark brown, except for hya-
Weigmannia parki (Jacot, 1937), tritonymph: A – leg I, antiaxial view; B – leg II, antiaxial view; C – leg IV, antiaxial view; D – tarsus I, antiaxial view; E – tibia I, paraxial view; F – genu and tibia I, antiaxial view. Bar indicating 100 µm (A,B,C) and 50 µm (D,E,F). Designations of leg setae accordingly to Grandjean, as reviewed by Norton (1977).

Prodorsum. Setae le, ro ≈30 µm in La, anteriorly directed, curved in basal third, with 1-2 conspicuous barbs; 35-40 in Dn, with several inconspicuous barbs; pairs ro and le arranged in shallow arch; mutual distance of ro 1/4 (La) to 1/3 (nymphs) that of le. Seta ex relatively straight, smooth (=20 µm in La, 25-30 in Dn and Tn). Seta in subflagellate (=45 µm), with 1-2 barbs in La (Fig. 8C; short in nymphs (~15 µm in Dn and Tn), posterodorsally directed, only slightly tapered to tip with terminal brush of small spines (Figs. 5E; 8D,E). Sensillus (~70 µm in La, 130 in Dn; 98-110 µm in drawn Tn), with similar form in all immatures: smooth or with sparse small barbs, flagellate; proximal 3/4 stiff, nearly straight and tapered, distal 1/4 threadlike, flexible, strongly undulating; cerotegument thickness and size of excrescences increase along length (Fig. 8A,B).

Gastronotic region. Body elliptical to almost rectangular in larva, oval in nymphs. Exuvial attachment cornicle k of nymphs (15 µm in Pn, 20 in Dn; ~33 µm in Tn) straight, smooth and tubular in basal half, slightly constricted, flame-shaped in distal half with thinner walls and irregular longitudinal wrinkles (Figs. 5D; 6D; 8H,I). Opisthonotal gland and all normal cupules in positions typical of family. Gastronotic setae inserted on prominent, sclerotized,
Figure 8: Weigmannia parki (Jacot, 1937) immatures: A – sensillus of deutonymph; B – same, enlargement of distal half; C – interlamellar seta of larva; D – bothridial area of protonymph; E – interlamellar seta of deutonymph; F – setae c1 of larva; G – setae c1 of deutonymph; H – cornicle k from protonymph; I – same, from protonymphal scalp on deutonymph; J – portion of exuvial scalp from larva; K – deutonymphal tibia I, focused on seta ft” and solenidion ω1; L – same, focused on sunken famulus, arrow on “root”. All photomicrographs, from slide-mounted, slightly flattened specimens; all except J-L layered from 2-4 images.
conical to cylindrical tubercles; tubercles independent, except as noted below. Larva with great range of setal size and form: darkest and most heavily barbed include c_1 (30 µm), c_2 (90 µm), da (100 µm), dm (100 µm), dp (75 µm), and lp (100 µm); thinner, less pigmented and less strongly barbed setae include c_3 (30 µm), la and lm (50 µm), and h_3 (90 µm); h_2 (25 µm) and h_3 (15 µm) with little pigment, 1-2 minute barbs. Setal pair dp on common medial sclerite; c_1 directed anterodorsally (Fig. 8F), c_2 dorsolaterally, about equidistant from c_1 and c_3.

Nymphal setae well pigmented except as noted, also with wide range of size (measured in deutonymph but proportionally similar in other nymphs); coarseness and density of barbs greatest in anterior setae, gradually decreasing in more posterior setae. Seta c_1 (100 µm; Fig. 8G) strongly curved posterodorsad; c_2, la, lm, lp, h_3 (all ca 130 µm) weakly curved posterolaterally; h_1 (ca 130 µm) thinner, almost straight, posteriorly directed, with few, minute barbs; ventrally positioned h_2 (40 µm) and ps_1-3 (40, 35, 20 µm respectively) smooth, lightly pigmented. Setal pairs c_1 and h_1 each on shared microtubercular median sclerite. Length of setae on tritonymph as follows (Fig. 6): c_1 205 µm, la 210 µm, h_1 240 µm, h_2 80 µm, h_3 165 µm, ps_1 72 µm. Seta c_3 absent unilaterally from one observed tritonymph.

Ventral region. Setation typical for family. Setal formulae for epimeres (I-IV): La 3-1-2, Pn 3-1-2-1, Dn 3-1-2-2 (Tn not studied). Seta c_1 strongly curved in posterior setae, gradually decreasing in more posterior setae. Seta c_1 (100 µm; Fig. 8G) strongly curved posterodorsad; c_2, la, lm, lp, h_3 (all ca 130 µm) weakly curved posterolaterally; h_1 (ca 130 µm) thinner, almost straight, posteriorly directed, with few, minute barbs; ventrally positioned h_2 (40 µm) and ps_1-3 (40, 35, 20 µm respectively) smooth, lightly pigmented. Setal pairs c_1 and h_1 each on shared microtubercular median sclerite. Length of setae on tritonymph as follows (Fig. 6): c_1 205 µm, la 210 µm, h_1 240 µm, h_2 80 µm, h_3 165 µm, ps_1 72 µm. Seta c_3 absent unilaterally from one observed tritonymph.

Gnathosoma. Typical of family. Second palp femur seta formed in Pn (Fig. 5C).

Legs (Figs. 7, 8 K-L). Overall form typical of family. Ontogeny of setae and solenidia given in Table 1; no variation observed. Most setae with several small barbs. Seta d of all tibiae and all genua (except IV which lacks solenidion) closely coupled with respective thin, isodiametric solenidion. In most cases, d 1.5 to 2 times longer than respective solenidion, with following exceptions. Seta d_1 on larval genua regressed, much shorter (d_2, 4, 5 µm on I-III, respectively) than solenidion; latter curves ventrodistad around posterior face of segment (both becoming normal in nymphs). Also, tibia I seta d in all immature instars about half length of flagellate (tactile) ϕ_1 (but, seta d absent on both tibia I of observed tritonymph, Fig. 7E,F); ϕ_2 similar to other tibial solenidia but slightly thinner. Tarsal solenidion ω_1 of leg I ceratiform (Fig. 8K), 2-3 times as thick and half-again as long as ω_2; both solenidia of tarsus II thin, similar to ω_2 of tarsus I. Famulus minute, sunk in deep sclerotized cup in all immature instars, not noticeably projecting beyond edge; with straight or slightly curved root-like internal extension from cup, about equal to cup in length (Figs. 8L, 7D). Proral setae (ρ) of tarsus I appear eupathidial in all instars; subunginal seta of tarsus I normal and proximal to antelateral setae (α) in immatures, becoming eupathidial and distal to pair (α) only in adult; no other setae eupathidial.

Material examined

From the records indicated below, the known distribution of Weigmannia parki encompasses a region from Manitoba to New Brunswick in the north and Missouri to North Carolina in the south. Most collections are from forests, but these vary widely in composition, from rather pure coniferous or deciduous woodlands to mixed forests. The species seems to have an affinity for decaying woody substrates, including stumps, logs and rot-holes in standing trees, since the larger samples of adults and the few immature specimens were collected from such microhabitats. Specimens obtained from leaf litter in low numbers might have been dispersing adults.

Original specimens. The type series is in the Field Museum, Chicago, Illinois, mounted in Canada balsam. We studied the following: holotype, Illinois, Champaign Co., Urbana, 14-IV-1934 (slide number 41-S1859); paratypes, 3 with same data (slide numbers 35-S1860, 47-S1861, 58-S1862). In the original description, Jacot (1937) recorded this mite from Mammoth Cave, Kentucky and Turkey Run, Indiana, but we did not locate these specimens.

Other studied material from the USA. The following records relate to specimens in the collection of R.A.N. or in the Field Museum; they are adults unless noted otherwise. Data are presented in their
Table 1: Ontogeny of leg setae and solenidia in *Weigmannia parki* (Jacot). Structures are indicated where they are first added and are assumed present through the rest of ontogeny, unless noted otherwise; setae in parentheses represent pairs; dash indicates no additions.

	Trochanter	Femur	Genu	Tibia	Tarsus
Leg I					
Larva					
Protonymph					
Deutonymph					
Tritonymph					
Adult					
Leg II					
Larva					
Protonymph					
Deutonymph					
Tritonymph					
Adult					
Leg III					
Larva					
Protonymph					
Deutonymph					
Tritonymph					
Adult					
Leg IV					
Protonymph					
Deutonymph					
Tritonymph					
Adult					

Original form. Individuals used for drawings in this redescription were from Indiana and New York, in the following overview they are in bold. *Illinois*. Cook Co., Carle Woods, (unknown col.), 18-IV-1936, 1 from log mold. *Indiana*. Jefferson Co., Clifty Falls St. Pk., J.A. McBride, col., 26-VIII-1973, 1 from unknown substrate. *Wells Co. Bluffton, 4H Park, R.F. Wilkey col., 26-V-1973, 8 adults, 1 nymph from rotten tree stump*. *Kentucky*. Edmonton Co., Mammoth Cave Nat. Pk., Little Beauty Cave, W.C. Welbourn, col., 31-VIII-1987, 1 from rat feces. *Maryland*. Fairfax Co., Great Falls, M. Delfinado and E.W. Baker, cols, 6-VII-1973, 10 from tree hole. *Maine*. Piscataquis Co. Katahdin-Greenville road at Caribou Lake, R.A. Norton col., 28-VII-1975, 5 from litter in second growth beech, maple forest (RAN 75-072). *Michigan*. Schoolcraft Co., Blaney Park (Ford Lake Area), W.R. Suter, 24-VIII-1971, 1 from birch, fir duff. (FM (HD) 71-36). *Missouri*. Boone Co., Columbia, Hinkson Creek Recreation Area, R.A. Norton and J.B. Kethley cols, 29-IV-1985, 5 from litter in crotch of maple tree (FM (HD) 85-161). *New York*. St. Lawrence Co., Cranberry Lake Biological Station, Barber Island, G. Terzi col., 13 IX 1980, 3 from basal rot hole in red maple tree containing mammal nest remains. (RAN 80 130). *Onondaga Co.*: Syracuse, Burnett Park, J.R. Philips, col., 10-IV-1975, 1 from remains of gray squirrel at base of nest-tree of Great Horned owl; Highland Forest, R.A. Norton, col., 18-X-1969, 35 from humified wood in basal tree hole; *Beaver Lake Nature Center, R.A. Norton col., 10 VII 2009, 5 adults, 1 nymph from rotten cherry log (RAN 81-9)*; Cicero Game Management Area, R.A. Norton col., 9-IX-1972, 1 from
litter and rootlets of maple hummock in hardwood swamp. Cortland Co., Heiberg Forest, Tully, R.A. Norton, col., 15-V-1971, 1 from decaying maple log. North Carolina. Buncombe Co., Bent Creek Experimental Forest, L.J. Metz, col., IV-1974, 1 from litter in mixed oak-pine forest. Macon Co., Otto, Coweeta Hydrologic Laboratory, D.L. Dindal, col., 25-V-1973, 1 from bark, moss and bracket fungi. Ohio. Fairfield Co., Barneby Center, R.A. Norton, col., 29-VI-1972, 1 from rotting log. Wayne Co., Wooster, Secrest Arboretum, D.E. Johnston, coll., 18-I-1970, 1 from Pi-nus radiata stand. Virginia. Sussex Co., Wakefield, M. Delfinado and E.W. Baker, cols, 14 July 1973, 6 from rot hole in sweetgum tree. Page Co., Skyline Drive, ca 200m South of Big Meadows, R.A. Norton col., 18-V-1974, 4 adults from litter and organic soil under ash (Fraxinus) tree (RAN 74-12).

One mounted individual from the Karl Strenzke Collection in Senckenberg Museum, Frankfurt, Germany, was also studied, with an original label “SMF 16926: Porobelba, 350, Belbidae. Old Tawney’s Cave, Twilight zone; Thulss - Mt. Lake; Hoyer-H.G.S.” (see Miko, 2008 for details).

Records from Canada. We examined specimens from three Canadian provinces (all in the Canadian National Collection, Ottawa), with the following collection data. Manitoba. Ninette, 29.v.1958 (J.F. McAlpine) ex nest of Microtus sp. New Brunswick. Kouchibouguac National Park, 28.vii.1978 (I.M. Smith), ex litter and soil in basal hole in red oak; 31.vii.1978 (I.M. Smith) ex litter in basal hole in maple; 10-16.vii.1978 (I.M. Smith) ex decaying spruce log at La Source picnic area. Ontario. Lake Superior, Granite Island, 15.vii.1973 (R. Freitag) ex Ringed bill gull nest. Thunder Bay area, 1973 (R. Freitag) ex Ringed bill gull nest. Point Pelee National Park, 14.viii.1974 (E.E. Lindquist) ex fine debris of rotten stump. Saint Lawrence Islands National Park, 9.ix.1976 (E.E. Lindquist and I.M. Smith) ex rotting wood in hemlock log.

Culture. A temporary culture was established from eggs of several adults derived from the Virginia sample indicated above (RAN 74-12). One tritonymph, 4 deutonymphs, 3 protonymphs and 2 larvae were reared in small jars with plaster-of-Paris substrate, using mycelium of an unknown fungus as food.

DISCUSSION AND REMARKS

Jacot (1937) included his North-American species in the otherwise European genus *Porobelba*, perhaps based on similarity of characters such as body form and size, cerotegument, weak cera-tiform spinae adnatae, setae c1 quite long and directed anterior, moniliform legs etc. But as stated in a previous work on *Porobelba* (Miko, 2008), it lacks the most important diagnostic character of this genus — the single, unpaired porose area on the posterior part of notogaster. Already Norton (1979) had remarked that *parki* cannot be considered to be a member of *Porobelba*, as the genus was originally defined. Grandjean (1954) observed high variability in development of the porose area in *Porobelba*, which in some cases may be replaced by a small group of individual pores; but always the porose area is manifested in some form. In *W. parki* the area has never been observed, even as a group of pores (Fig. 2D). Moreover, *W. parki* differs from species of *Porobelba* by other characters, which are often used within Damaeidae as generic characters. The presence of the propodolateral apophysis, absent from all known species of *Porobelba*, is most notable. The positions of notogastral setae also differ: setae c1-h3 of *Porobelba* species are directed more or less radially, and somewhat ventrad in lateral view. Setae p1-p3, displaced along posterior border of notogaster, are therefore almost parallel to row h1-h3 in posterior view. In *W. parki*, setae c2-h1 are in subparallel rows, converging posterior and almost perpendicular to row p1-p3 (Fig. 2D). Other characters — i.e. the form of the sensillus, the form and size of parastigmatic apophyses and discidium, the hypertrophied dorsal setae (d) of all femora — are also quite different in *parki* and could be considered as having genus-level significance.

Differences were found also in immatures, although ontogeny is in general very similar between *Porobelba* and *Weigmannia*. Compared to immatures of *P. spinosa* (Ermilov and Lochynska, 2009), nymphs differ in the form and length of cornicle k, which attaches exuvial scalps to each other; this
cornicle is shorter and much less curved in all immature instars of W. parki. Also notable is the form and length of interlamellar seta in deuto- and tritonymphs of W. parki; they are short, only slightly tapered, with a terminal brush of small spines, compared to their normal, setiform shape in P. spinosa. The hypertrophied dorsal setae of leg femora is apparent even in nymphs of W. parki. The ontogeny of leg setation is almost identical, with differences only in tibial dorsal setae. In W. parki, setae d of tibia II and III are always retained in adults. In P. spinosa, these setae are normally lost in the adult (Ermilov and Łochyńska, 2009). Nevertheless, some races of P. spinosa from southwest and west Europe may lose setae d of tibia II and III as in W. parki (Grandjean, 1954). In observed tritonymphs of W. parki, setae d of tibia I were missing from both legs. Perhaps they were broken, but this also may represent variability of development of tibial d setae, in which case it would further indicate independence of tibia I and tibia II-III development. This is supported also by an observation of Grandjean (1954), who reported a rare presence of seta d on tibia I even in adults of P. spinosa.

In our view, these differences are sufficient to recognize Weigmannia as a separate genus. In particular, the unusual pattern of notogastral setae and hypertrophied femoral setae d are considered apomorphies of Weigmannia, while the unique porose area is an apomorphy of Porobelba. These genera seem close enough to be sister-taxa, or at least part of a well defined group together with Damaebelba minutissima (Sellnick, 1920), as suggested by Miko (2006). A formal cladistic analysis remains to be done.

ADDENDUM

The original version of this paper proposed the genus name *Gerdia* for Porobelba parki Jacot, 1937 and this name appeared in the pre-publication online version. However, Dr. Pavel Klimov kindly informed us that it would be a junior homonym of Gerdia Menge, 1869, a fossil spider genus in the family Hersiliidae, so Gerdia was replaced with Weigmannia.

ACKNOWLEDGEMENTS

The authors thank Dr. Valerie Behan-Pelletier (Ottawa, Canada) for her help in obtaining distribution records of Weigmannia parki from Canada, and two anonymous reviewers for helpful comments on the manuscript.

REFERENCES

Alberti G., Norton R. A., Adis J., Fernandez N. A., Franklin E., Kratzmann M., Moreno A. I., Weigmann G., Woas S. 1997 — Porose integumental organs of oribatid mites (Acar, Oribatida). 2. Fine structure — Zoologica 48:146: 33-114.

Ermilov, S.G., Łochyńska, M. 2009 — Morphology of juvenile stages of Epidamaeus kamaensis (Sellnick, 1925) and Porobelba spinosa (Sellnick, 1920) (Acar, Oribatida: Damaeidae) — Annales Zoologici 59 (4), 527-544

Grandjean, F. 1954 — Observations sur les Oribates (30e série). — Bulletin du Museum D'Histoire Naturelle, 2e série, 26 (4), 482-490

Hammen, L. van der 1980 — Glossary of acarological terminology, vol. I. General terminology — Dr. W. Junk Publ., The Hague, 244 pp.

Hunt, G. S., Norton, R. A., Kelley J. P. H., Colloff, M. J., Lindsay, S. M. 1998 — An Interactive Glossary of Oribatid Mites, CD-ROM — CSIRO Publishing, Melbourne

Jacot, A.P. 1937 — New Moss-Mites, Chiefly Midwestern II. — American Midland Naturalist, Vol. 18, No. 2 (Mar., 1937), pp. 237-250

Miko, L. 2006 — Damaeidae — In: Weigmann, G.: Hornmilben (Oribatida), Die Tierwelt Deutschlands 76, Goecke & Evers Publ., 179-207.

Miko, L. 2008 — Taxonomy of European Damaeidae (Acar: Oribatida) II. Porobelba weigmanni n.sp. (Oribatida, Damaeidae), from East Slovakia, with comments on other known species of the genus — Zootaxa 1844: 55-62

Miko, L., Travé, J. 1996 — Hungarobelbidae n.fam., with a description of Hungarobelba pyrenaica n.sp. (Arachnida, Oribatida) — Acarologia, 37, 133-155.

Norton, R. A. 1977 — A review of J. Grandjean’s system of leg chaetotaxy in the Oribatiae and its application to Damaeidae — In: Dindal, D. L. (Ed.), Biology of Oribatid Mites, 33, SUNY College of Environmental Science and Forestry, Syracuse, New York, 33-62.

Norton, R. A. 1979 — Aspects of the biogeography of Damaeidae, sensu latu (Oribatiae), with emphasis on North America — In: Rodriguez, J.G. (Ed.): Recent Advances in Acarology vol. 2: 535-540.
APPENDIX

Designations of setae and other morphological characters in Figures 1-8

P — propodolateral apophysis;
Sa — anterior parastigmatic apophysis;
Sp — posterior parastigmatic apophysis;
ss — sensillus;
ro — rostral seta;
le — lamellar seta;
in — interlamellar seta;
ex — exobothridial seta;
s.a. — spina adnatum (plur. spinae adnatae);
bo — bothridium;
di — discidium;
c1, c2, c3, la, lm, lp, h1, h2, h3, ps1, ps2, ps3 — notogastral setae;
ad1, ad2, ad3 — adanal setae;
an1, an2 — anal setae;
g1, g5 — genital setae;
ag — aggenital seta;
1a, 1b, 1c — setae of epimere I;
2a — seta of epimere II;
3a, 3b, 3c — setae of epimere III;
4a, 4b, 4c, 4d — setae of epimere IV;
h, m, a — setae of gnathosoma;
idad — adanal lyrifissure;
ia, im, ip, ih, ips — lyrifissures;
gla — opisthonotal gland opening;
k — cornicle.

COPYRIGHT

© 2009 Miko and Norton. Acarologia is under free license. This open-access article is distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.