Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Brief report

Association of blood group A with hospital comorbidity in patients infected by SARS-CoV-2

Álvaro Tamayo-Velasco a,*, María Teresa Jiménez García a, Alba Sanchez Rodríguez a, Milagros Hijas Villaizan a, Juana Carretero Gómez b, José Pablo Miramontes-González c, d, **

a Hematología Clínica, Servicio de Hematología y Hemoterapia, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
b Medicina Interna, Hospital de Zafra, Badajoz, Spain
c Servicio de Medicina Interna, Hospital Universitario Rio Hortega de Valladolid, Valladolid, Spain
d Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain

Article history:
Received 1 January 2021
Accepted 15 June 2021
Available online 29 June 2022

Keywords:
Blood groups
COVID-19
Charlson Index
Mortality

Background and objectives: In the pandemic caused by SARS-CoV-2, identifying which risk factors are associated with the most serious forms of the disease is important. Blood group A has been presented in various studies as a poor prognostic factor. The objective of this study was to evaluate whether patients with blood group A were associated with more important comorbidities, measured by the Charlson Index, which may explain their worse clinical evolution.

Patients and methods: A prospective and consecutive study examined 100 patients diagnosed with COVID-19 and admitted in March 2020. A multivariate linear regression model was used to evaluate the association of blood group A with the Charlson Index.

Results: Patients in group A had a higher Charlson Index (P = .037), rate of lymphopenia (P = .039) and thrombopenia (P = .014), and hospital mortality (P = .044). Blood group A was an independent factor associated with the Charlson Index (B = 0.582, 95% CI 0.02–1.14, P = .041).

Conclusions: Group A was independently associated with greater comorbidity, associated with an increase of 0.582 points in the Charlson Index compared to other blood groups. It was also associated with lower hospital mortality.

© 2021 Elsevier España, S.L.U. All rights reserved.

Asociación del grupo sanguíneo A con mayor comorbilidad hospitalaria en pacientes infectados por SARS-CoV-2

Fundamento y objetivos: En la pandemia provocada por SARS-CoV-2, es importante identificar qué factores de riesgo se asocian a las formas más graves de la enfermedad. El grupo sanguíneo A se ha presentado en diversos estudios como factor de mal pronóstico. El objetivo de este estudio radica en evaluar si los pacientes de grupo sanguíneo O asociaban comorbilidades más importantes, medido por el Índice de Charlson, que puedan justificar también su peor evolución clínica.

Pacientes y método: Estudio prospectivo y consecutivo con 100 pacientes diagnosticados de COVID-19 ingresados en marzo de 2020. Se empleó un modelo de regresión lineal multivariable para evaluar la asociación del grupo sanguíneo A con el Índice de Charlson.

Resultados: Los pacientes del grupo A presentaron mayor Índice de Charlson (P = .037), linfopenia (P = .039), trombopenia (P = .014) y mortalidad hospitalaria (P = .044).

El grupo sanguíneo A demostró ser un factor independiente asociado a dicho índice [B 0.582, IC 95% (0.02–1.14), P = .041].
Rationale and objectives

A new strain of coronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), appeared in Wuhan (China) in December 2019. Numerous studies have been carried out ever since to understand the epidemiological and pathophysiological characteristics of the disease caused by it. We know that at least half of patients who become infected by this virus experience mild or no symptoms after an average incubation period of five days. The remainder develop a moderate or severe respiratory disease, with around 20% manifesting a severe disease with high fever and pneumonia that lead to acute respiratory distress syndrome.

Broadly speaking, at a pathophysiological level the virus causes a rapid activation of the innate immune cells. In addition, risk profiles have been developed with biomarkers linked to a moderate or severe infection, such as absolute lymphopenia, increased serum Creactive protein levels, hypoalbuminemia, or increased levels of liver enzymes, lactate dehydrogenase, ferritin, or D-dimer, but these markers are not definitive and, as can be seen in the literature, cannot explain or predict many cases.

The association between a person’s blood group and their susceptibility to suffer from infectious diseases, such as Helicobacter pylori, Plasmodium falciparum, or other viruses, including noroviruses, the hepatitis B virus, the severe acute respiratory syndrome coronavirus (SARS-CoV), and the Middle East respiratory syndrome-related coronavirus (MERS-CoV) is well known and, more recently, its relationship with the SARS-CoV-2 is starting to become evident. Given this previous knowledge in relation to multiple viral infections, several studies have been conducted to explore the influence of blood groups on the clinical evolution and severity of the 2019 coronavirus disease (COVID-2019), observing an increased susceptibility among subjects with blood group A.

Hence, the aim of this study is to demonstrate this worse evolution of the disease among subjects with blood group A and to determine whether these COVID-19 patients have increased comorbidities, as measured by Charlson’s comorbidity index, that could explain their worse in-hospital clinical evolution.

Patients and method

Study design

This was a prospective, sequential study including 100 adult patients diagnosed with COVID-19 who were admitted to the Clinical University Hospital of Valladolid (Spain) between the 23rd and 27th of March 2020 to receive treatment. All of them had manual blood typing performed on samples of blood collected routinely in hematology testing blood tubes with ethylenediaminetetraacetic acid (EDTA) on their admission to the hospital. All patients had a positive diagnosis for a SARS-CoV-2 infection detected by means of a specific polymerase chain reaction (PCR) test performed on a nasopharyngeal swab sample. Clinical and epidemiological data, in addition to analytical variables, were collected. Patients with an active infection or under palliative treatment were excluded from the study. Their blood group was determined using an autoanalyzer (Erytra automated system). Our study was approved by the hospital’s clinical ethics committee (CEC) (code: PI 20–1717). We applied the code of ethics of the World Medical Association (Helsinki Declaration) and the STROBE declaration for the conduct and completion of the study.

Statistical analysis

The main study variable was Charlson’s comorbidity index, a quantitative variable in the form of a scale established with a set of clinical variables. Differences between continuous variables were determined through the Mann-Whitney U test Categorical clinical and demographic variables were analyzed with the chi-square test. A multivariate linear regression analysis was carried out using the automatic forward stepwise method to evaluate the association between blood group A and Charlson’s comorbidity index. Potential confounding factors with a P-value <1 were included in the model as adjustment variables. There were no missing values for any of the variables included in the analysis. The statistical analysis was carried out with IBM SPSS software version 24.

Results

Both study arms were similar in terms of age and sex. As for comorbidities, a greater number of patients with blood group A had a history of cancer (P = .038). The treatment history of both study arms was also similar. The arm including patients with blood group A had a higher number of comorbidities, as determined by Charlson’s comorbidity index (P = .037), as well as a higher percentage of non-survivors (P = .044) compared with the arm including patients with other blood groups. Patients with this blood group also had a lower platelet (P = .014) and lymphocyte (P = .039) count compared with those of the other study arm (Table 1).

The multivariate linear regression analysis showed that blood group A is a factor independently associated with the presence of comorbidities. In fact, this blood group was linked to a 0.582-point increase in Charlson’s comorbidity index (B 0.582: 95% confidence interval [CI] 0.02–1.14, P = .041) (Table 2).

Both the calculation of frequencies and the chi-square test demonstrate that blood group A is linked to a higher in-hospital mortality (P = .044) compared with the others.

Discussion

The results of our study show that patients with blood group A have an increased rate of comorbidities associated with COVID-19, as they had a 0.582-point higher score in Charlson’s comorbidity index compared with patients with other blood groups. Thus, these findings could indicate that a person’s ABO blood group correlates with their susceptibility to developing a SARS-CoV-2 infection.

The ABO blood group system mostly involves the A and B antigens and their corresponding antibodies. Hence, according to this system, there are four genetic phenotypes (groups A, B, O, and AB).

Differences in antigen expression have been related to a person’s susceptibility to develop infections, as several antigens can modify the innate immune system. This theory has been validated in certain studies, such as that performed by Cooling, whose findings demonstrated that antigens from blood groups are valid receptors for some infectious microorganisms. In fact, it has been described for several widely known viral infections, such as the West Nile virus infection or rotavirus gastroenteritis.

In the case of SARS-CoV-2, prior knowledge about SARS-CoV, which has a similar nucleic acid sequence and angiotensin-converting enzyme 2 combination to that of SARS-CoV-2, might explain the reason why some people with blood group A could be...
more susceptible to developing an infection by this virus. Guillón et al. described how anti-A antibodies could block the interaction between SARS-CoV and its receptor, therefore offering protection against the infection.6 Thus, adhesion of cells expressing the SARS-CoV-2 protein could be specifically inhibited by anti-A antibodies.

Another important factor to be considered is the higher proportion of patients with blood group A who were hospitalized in our cohort (55%) compared with that observed in the general Spanish population (43%). Likewise, a decreased rate of admissions among patients with blood group 0 was also observed. This would corroborate the hypothesis of the existence of a greater susceptibility to develop an infection by this virus among patients with blood group A, who, as a result of having a greater morbidity, mortality, and severity, have to be hospitalized more frequently and, as seen in our study, are even linked to greater in-hospital mortality rates.

Our study had certain limitations, including, on the one hand, our reduced sample size of 100 COVID-19 patients and a hypothesis testing power of 52%, which could result in a certain degree of bias in our results. On the other hand, we did not include a control arm of patients without COVID-19, although the variations detected in our sample of patients with a SARS-CoV-2 infection have not been evidenced in the general healthy population. Considering the above, new studies with a larger sample size analyzing the association between susceptibility to the infection and the relationship with numerous comorbidities should be carried out, in addition to molecular studies that would allow to explain these facts.

Conclusion

In the context of a SARS-CoV-2 infection, blood group A was found to be independently related to Charlson’s comorbidity index.
using a multivariate model with specified adjustment variables. In addition, we identified a relationship between the presence of this blood group and greater in-hospital mortality.

It would be necessary to confirm these findings with new analyses including other predictor variables and to define susceptibility to this infection by describing its mechanism at a molecular level.

Conflicts of interest

The authors of this paper declare no conflicts of interest.

References

1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet Lond Engl. 2020;395:497–506.
2. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8:475–81.
3. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46:846–8.
4. Liao Y, Xue L, Gao J, Wu A, Kou X. ABO blood group-associated susceptibility to norovirus infection: a systematic review and meta-analysis. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis. 2020;81:104245.
5. Jing W, Zhao S, Liu J, Liu M. ABO blood groups and hepatitis B virus infection: a systematic review and meta-analysis. BMJ Open. 2020;10:e034114.
6. Guillou P, Clément M, Sébille V, Rivain J-G, Chou C-F, Ruvöen-Clouet N, et al. Inhibition of the interaction between the SARS-CoV Spike protein and its cellular receptor by anti-histo-blood group antibodies. Glycobiology. 2008;18:1085–93.
7. Varughese S, Read JC, Al-Khal A, Abo Salah S, El Deeb Y, Cameron PA. Effectiveness of the Middle East respiratory syndrome-coronavirus protocol in enhancing the function of an Emergency Department in Qatar. Eur J Emerg Med Off J Eur Soc Emerg Med. 2015;22:316–20.
8. Wu Y, Feng Z, Li P, Yu Q. Relationship between ABO blood group distribution and clinical characteristics in patients with COVID-19. Clin Chim Acta Int J Clin Chem. 2020;509:220–3.
9. Göker H, Alada˘g Karakulak E, Demiro˘glu H, Ayaz Ceylan CM, Büyüka¸şık Y, Inkaya AÇ, et al. The effects of blood group types on the risk of COVID-19 infection and its clinical outcome. Turk J Med Sci. 2020;50:679–83.
10. Cooling L. Blood groups in infection and host susceptibility. Clin Microbiol Rev. 2015;28:801–70.