HOMOTOPY TYPES OF $\text{Spin}^c(n)$-GAUGE GROUPS OVER S^4

SIMON REA

ABSTRACT. The gauge group of a principal G-bundle P over a space X is the group of G-equivariant homeomorphisms of P that cover the identity on X. We consider the gauge groups of bundles over S^4 with $\text{Spin}^c(n)$, the complex spin group, as structure group and show how the study of their homotopy types reduces to that of $\text{Spin}(n)$-gauge groups over S^4. We then advance on what is known by providing a partial classification for $\text{Spin}(7)$- and $\text{Spin}(8)$-gauge groups over S^4.

KEYWORDS: Gauge groups, Homotopy types, Spin groups

MATHEMATICS SUBJECT CLASSIFICATION (2010): 55P15, 55Q05

1. Introduction

Let G be a topological group and X a space. The gauge group $\mathcal{G}(P)$ of a principal G-bundle P over X is defined as the group of G-equivariant bundle automorphisms of P which cover the identity on X. A detailed introduction to the topology of gauge groups of bundles can be found in [25, 40]. The study of gauge groups is important for the classification of principal bundles, as well as understanding moduli spaces of connections on principal bundles [7, 48, 50]. Gauge groups also play a key role in theoretical physics, where they are used to describe the parallel transport of point particles by means of connections on bundles. Famously, Donaldson [12] discovered a deep link between the gauge groups of certain $\text{SU}(2)$-bundles and the differential topology of 4-manifolds.

Key properties of gauge groups are invariant under continuous deformation and so studying their homotopy theory is important. Having fixed a topological group G and a space X, an interesting problem is that of classifying the possible homotopy types of the gauge groups $\mathcal{G}(P)$ of principal G-bundles P over X.

Crabb and Sutherland showed [8 Theorem 1.1] that if G is a compact, connected, Lie group and X is a connected, finite CW-complex, then the number of distinct homotopy types of $\mathcal{G}(P)$, as $P \to X$ ranges over all principal G-bundles over X, is finite. In fact, since isomorphic G-bundles give rise to homeomorphic gauge groups, it will suffice to the let $P \to X$ range over the set of isomorphism classes of principal G-bundles over X.

Explicit classification results have been obtained, especially for the case of gauge groups of bundles with low rank, compact, Lie groups as structure groups.
and \(X = S^4 \) as base space. In particular, the first such result was obtained by Kono [30] in 1991. Using the fact that isomorphism classes of principal SU(2)-bundles over \(S^4 \) are classified by \(k \in \mathbb{Z} \cong \pi_1(\text{SU}(2)) \) and denoting by \(\mathcal{G}_k \) the gauge group of the principal SU(2)-bundle \(P_k \rightarrow S^4 \) corresponding to the integer \(k \), Kono showed that there is a homotopy equivalence \(\mathcal{G}_k \cong \mathcal{G}_l \) if, and only if, \((12, k) = (12, l)\), where \((m, n)\) denotes the greatest common divisor of \(m \) and \(n \). Since 12 has six divisors, it follows that there are precisely six homotopy types of SU(2)-gauge groups over \(S^4 \).

Results formally similar to that of Kono have been obtained for principal bundles over \(S^4 \) with different structure groups, among others, by: Hamanaka and Kono [17] for SU(3)-gauge groups; Theriault [51, 52] for SU(5)-gauge groups; and Deninger for Spin(7)-gauge groups, as well as [46] for Sp(2)-gauge groups; Cutler [9, 10] for Sp(3)-gauge groups and U(n)-gauge groups; Kishimoto, Theriault and Tsutaya for G2-gauge groups; Kamiyama, Kishimoto, Kono and Tsukuda for SO(3)-gauge groups; Hasui, Kishimoto, Kono and Sato [21] for PU(3)- and PSp(2)-gauge groups; and Hasui, Kishimoto, So and Theriault [22] for bundles with exceptional Lie groups as structure groups. There are also several classification results for gauge groups of principal bundles with base spaces other than \(S^4 \) [6, 16, 18, 21, 23, 24, 31–34, 37–39, 41, 43, 44, 49, 53, 55].

The complex spin group Spin\(^c\)(n) was first introduced in 1964 in a paper of Atiyah, Bott and Shapiro [33]. There has been an increasing interest in the Spin\(^c\)(n) groups ever since the publication of the Seiberg-Witten equations for 4-manifolds [56], whose formulation requires the existence of Spin\(^c\)(n)-structures, and more recently for the role they play in string theory [5, 13, 42].

In this paper we examine Spin\(^c\)(n)-gauge groups over \(S^4 \). We begin by recalling some basic properties of the complex spin group Spin\(^c\)(n) and showing that, provided \(n \geq 3 \), it can be expressed as a product of a circle and the real spin group Spin\(^c\)(n).

Theorem 1.1. For \(n \geq 6 \) and any \(k \in \mathbb{Z} \), we have

\[
\mathcal{G}_k(\text{Spin}^c(n)) \cong S^1 \times \mathcal{G}_k(\text{Spin}(n)).
\]

The homotopy theory of Spin\(^c\)(n)-gauge groups over \(S^4 \) therefore reduced to that of the corresponding Spin(n)-gauge groups. We advance on what is known on Spin(n)-gauge groups by providing a partial classification for Spin(7)- and Spin(8)-gauge groups over \(S^4 \).

Theorem 1.2. (a) If \((168, k) = (168, l)\), there is a homotopy equivalence

\[
\mathcal{G}_k(\text{Spin}(7)) \cong \mathcal{G}_l(\text{Spin}(7))
\]

after localising rationally or at any prime;

(b) If \(\mathcal{G}_k(\text{Spin}(7)) \cong \mathcal{G}_l(\text{Spin}(7)) \) then \((84, k) = (84, l)\).
We note that the discrepancy by a factor of 2 between parts (a) and (b) is due to the same discrepancy for G_2-gauge groups.

Theorem 1.3. (a) If $(168, k) = (168, l)$, there is a homotopy equivalence

$$\mathcal{G}_k(\text{Spin}(8)) \simeq \mathcal{G}_l(\text{Spin}(8))$$

after localising rationally or at any prime;

(b) If $\mathcal{G}_k(\text{Spin}(8)) \simeq \mathcal{G}_l(\text{Spin}(8))$ then $(28, k) = (28, l)$. Furthermore, if k and l are multiples of 3, then $(3, k) = (3, l)$.

For the Spin(8) case, in addition to the same 2-primary indeterminacy appearing in the Spin(7) case, there are also known $[28, 47]$ difficulties at the prime 3 due to the non-vanishing of $\pi_{10}(\text{Spin}(8))_3$.

2. Spinc (n) groups

For $n \geq 1$, the complex spin group Spinc (n) is defined as the quotient

$$\frac{\text{Spin}(n) \times U(1)}{\mathbb{Z}/2\mathbb{Z}}$$

where $\mathbb{Z}/2\mathbb{Z} \cong \{(1, 1), (-1, -1)\} \subseteq \text{Spin}(n) \times U(1)$ denotes the central subgroup of order 2. The group Spinc (n) is special case of the more general notion of Spink (n) group introduced in [1].

The first low rank Spinc (n) groups can be identified as follows:

- Spinc $(1) \cong U(1) \cong S^1$;
- Spinc $(2) \cong U(1) \times U(1) \cong S^1 \times S^1$;
- Spinc $(3) \cong U(2) \cong S^1 \times S^3$;
- Spinc $(4) \cong \{(A, B) \in U(2) \times U(2) \mid \det A = \det B\}$.

The group Spinc (n) fits into a commutative diagram

$$
\begin{array}{ccc}
\{\pm 1\} & \xleftarrow{pr_1} & \{(1, 1), (-1, -1)\} & \xrightarrow{pr_2} & \{\pm 1\} \\
\downarrow & & \downarrow & & \downarrow \\
\text{Spin}(n) & \xleftarrow{pr_1} & \text{Spin}(n) \times S^1 & \xrightarrow{pr_2} & S^1 \\
\downarrow \lambda & & \downarrow q & & \downarrow 2 \\
\text{SO}(n) & \xleftarrow{pr_1} & \text{Spin}^c(n) & \xrightarrow{pr_2} & S^1, \\
\end{array}
$$

where q is the quotient map, $\lambda: \text{Spin}(n) \to \text{SO}(n)$ denotes the double covering map of the group $\text{SO}(n)$ by $\text{Spin}(n)$ and $2: S^1 \to S^1$ denotes the degree 2 map. Furthermore, we observe that the map

$$\lambda \times 2: \text{Spin}^c(n) \to \text{SO}(n) \times S^1$$

is a double covering of $\text{SO}(n) \times S^1$ by Spinc (n).
3. Method of classification

A principal bundle isomorphism determines a homeomorphism of gauge groups induced by conjugation \[^40\]. We therefore begin by considering isomorphism classes of principal Spin\(^c\)\((n)\)-bundles over \(S^4\). These are classified by the free homotopy classes of maps \(S^4 \rightarrow \text{BSpin}^c(n)\). Since \(\text{Spin}^c(n)\) is connected, \(\text{BSpin}^c(n)\) is simply-connected and hence there are isomorphisms

\[
[S^4, \text{BSpin}^c(n)]_{\text{free}} \cong \pi_3(\text{Spin}^c(n)) \cong \pi_3(\text{SO}(n)) \cong \begin{cases}
0 & n = 1, 2 \\
\mathbb{Z}^2 & n = 4 \\
\mathbb{Z} & n = 3, n \geq 5.
\end{cases}
\]

Remark 3.1. Note that for \(n = 3\) we have \(\text{Spin}^c(3) \cong \text{U}(2)\), and the homotopy types of \(\text{U}(2)\)-gauge groups over \(S^4\) have been studied by Cutler in \[^10\].

For \(n \geq 5\), let \(\mathcal{G}_k\) denote the gauge group of the \(\text{Spin}^c(n)\)-bundle \(P_k \rightarrow S^4\) classified by \(k \in \mathbb{Z}\). By \[^2, 15\], there is a homotopy equivalence

\[
\text{B}\mathcal{G}_k \cong \text{Map}_k(S^4, \text{BSpin}^c(n)),
\]

the latter space being the \(k\)-th component of \(\text{Map}(S^4, \text{BSpin}^c(n))\), meaning the connected component containing the map classifying \(P_k \rightarrow S^4\).

There is an evaluation fibration

\[
\text{Map}_k^*(S^4, \text{BSpin}^c(n)) \longrightarrow \text{Map}_k^*(S^4, \text{BSpin}^c(n)) \xrightarrow{\text{ev}} \text{BSpin}^c(n),
\]

where \(\text{ev}\) evaluates a map at the basepoint of \(S^4\) and the fibre is the \(k\)-th component of the pointed mapping space \(\text{Map}^*(S^4, \text{BSpin}^c(n))\). This fibration extends to a homotopy fibration sequence

\[
\mathcal{G}_k \longrightarrow \text{Spin}^c(n) \longrightarrow \text{Map}_k^*(S^4, \text{BSpin}^c(n)) \longrightarrow \text{B}\mathcal{G}_k \longrightarrow \text{BSpin}^c(n).
\]

Furthermore, by \[^45\] there is, for each \(k \in \mathbb{Z}\), a homotopy equivalence

\[
\text{Map}_k^*(S^4, \text{BSpin}^c(n)) \cong \text{Map}_0^*(S^4, \text{BSpin}^c(n)).
\]

The space on the right-hand side is homotopy equivalent to \(\text{Map}_0^*(S^3, \text{Spin}^c(n))\) by the exponential law, and is more commonly denoted as \(\Omega_0^3\text{Spin}^c(n)\). We therefore have the following homotopy fibration sequence

\[
\mathcal{G}_k \longrightarrow \text{Spin}^c(n) \xrightarrow{\partial_k} \Omega_0^3\text{Spin}^c(n) \longrightarrow \text{B}\mathcal{G}_k \longrightarrow \text{BSpin}^c(n),
\]

which exhibits the gauge group \(\mathcal{G}_k\) as the homotopy fibre of the map \(\partial_k\). This is a key observation, as it implies that the homotopy theory of the gauge groups \(\mathcal{G}_k\) depends on the maps \(\partial_k\).

Lemma 3.2 (Lang \[^26\] Theorem 2.6). The adjoint of \(\partial_k : \text{Spin}^c(n) \rightarrow \Omega_0^3\text{Spin}^c(n)\) is homotopic to the Samelson product \(\langle k\epsilon, 1 \rangle : S^3 \wedge \text{Spin}^c(n) \rightarrow \text{Spin}^c(n)\), where \(\epsilon \in \pi_3(\text{Spin}^c(n))\) is a generator and \(1\) denotes the identity map on \(\text{Spin}^c(n)\). \(\square\)
As the Samelson product is bilinear, we have \(\langle k\epsilon, 1 \rangle \approx k\langle \epsilon, 1 \rangle \), and hence, taking adjoints once more, \(\partial_k \approx k\partial_1 \).

Lemma 3.3 (Theriault [46, Lemma 3.1]). Let \(X \) be a connected CW-complex and let \(Y \) be an \(H \)-space with a homotopy inverse. Suppose that \(f \in [X, Y] \) has finite order and let \(m \in \mathbb{N} \) be such that \(mf = \ast \). Then, for any integers \(k, l \in \mathbb{Z} \) such that \((m, k) = (m, l) \), the homotopy fibres of \(kf \) and \(lf \) are homotopy equivalent when localised rationally or at any prime. \(\square \)

Remark 3.4. The lemma of Theriault is the local analogue of a lemma used by Hamanaka and Kono in their study [17] of \(SU(3) \)-gauge groups over \(S^4 \).

Part (a) of Theorems 1.2 and 1.3 will follow as applications of Lemma 3.3. For parts (b) we will need to determine suitable homotopy invariants of the gauge groups.

4. Spin\(^c(n) \)-gauge groups

We begin with a decomposition of \(\text{Spin}^c(n) \) as a product of spaces which will be reflected in an analogous decomposition of \(\text{Spin}^c(n) \)-gauge groups.

Lemma 4.1. For \(n \geq 3 \), we have \(\text{Spin}^c(n) \approx S^1 \times \widetilde{\text{Spin}}^c(n) \), where \(\widetilde{\text{Spin}}^c(n) \) denotes the universal cover of \(\text{Spin}^c(n) \).

Proof. We have \(\pi_1(\text{Spin}^c(n)) \approx \mathbb{Z} \) for \(n \geq 3 \) (see, e.g. [27]). By the Hurewicz and the universal coefficient theorems, we have isomorphisms
\[
\mathbb{Z} \approx \pi_1(\text{Spin}^c(n)) \cong H_1(\text{Spin}^c(n); \mathbb{Z}) \cong H^1(\text{Spin}^c(n); \mathbb{Z}).
\]
Therefore, we have maps \(S^1 \rightarrow \text{Spin}^c(n) \) and \(\text{Spin}^c(n) \rightarrow K(\mathbb{Z}, 1) \approx S^1 \) representing generators of \(\pi_1(\text{Spin}^c(n)) \) and of \(H^1(\text{Spin}^c(n); \mathbb{Z}) \), respectively, such that the composite induces an isomorphism in \(\pi_1 \). Therefore, the homotopy fibration
\[
\widetilde{\text{Spin}}^c(n) \longrightarrow \text{Spin}^c(n) \longrightarrow K(\mathbb{Z}, 1) \approx S^1
\]
defining the universal cover of \(\text{Spin}^c(n) \) admits a right homotopy splitting and hence, as \(\text{Spin}^c(n) \) is a group, we have
\[
\text{Spin}^c(n) \approx S^1 \times \widetilde{\text{Spin}}^c(n). \quad \square
\]

Note that as \(\text{Spin}^c(n) \) is a Lie group, we can equip \(\widetilde{\text{Spin}}^c(n) \) with a group structure for which the covering map
\[
\varphi: \widetilde{\text{Spin}}^c(n) \rightarrow \text{Spin}^c(n)
\]
is a group homomorphism.

Lemma 4.2. For \(n \geq 3 \), we have \(\widetilde{\text{Spin}}^c(n) \approx \text{Spin}(n) \).
Proof. Let $f : \text{Spin}^c(n) \to K(\mathbb{Z}/2\mathbb{Z}, 1)$ be the map in the fibration sequence

\[
\mathbb{Z}/2\mathbb{Z} \to S^1 \times \text{Spin}(n) \xrightarrow{q} \text{Spin}^c(n) \xrightarrow{f} K(\mathbb{Z}/2\mathbb{Z}, 1)
\]

arising from the double covering of $\text{Spin}^c(n)$ and let $g : \text{Spin}^c(n) \to K(\mathbb{Z}, 1)$ be the generator of $H^1(\text{Spin}^c(n); \mathbb{Z})$ realising the splitting of $\text{Spin}^c(n)$ in Lemma 4.1. We claim that there is a homotopy commutative diagram

\[
\begin{array}{ccc}
\text{Spin}^c(n) & \xrightarrow{f} & K(\mathbb{Z}/2\mathbb{Z}, 1) \\
\downarrow{g} & & \downarrow{=} \\
K(\mathbb{Z}, 1) & \xrightarrow{\rho} & K(\mathbb{Z}/2\mathbb{Z}, 1)
\end{array}
\]

where ρ is the map induced by the mod 2 reduction $\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$. Since the target space is an Eilenberg-MacLane space, it will be sufficient to check cohomology.

Indeed, on the one hand, since g represents the generator of $H^1(\text{Spin}^c(n); \mathbb{Z})$, the composite $\rho \circ g$ represents the unique class in $H^1(\text{Spin}^c(n); \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$ (cf. Harada and Kono [19] for the mod 2 cohomology of $\text{Spin}^c(n)$).

On the other hand, applying π_1 to the fibration sequence (1) we obtain an exact sequence

\[
\pi_1(\mathbb{Z}/2\mathbb{Z}) \to \pi_1(S^1 \times \text{Spin}(n)) \xrightarrow{q_*} \pi_1(\text{Spin}^c(n)) \xrightarrow{f_*} \pi_1(K(\mathbb{Z}/2\mathbb{Z}, 1)).
\]

Recalling from Section 2 that q_* induces multiplication by 2 on the fundamental groups, we therefore have

\[
0 \to \mathbb{Z} \xrightarrow{q_* = 2} \mathbb{Z} \xrightarrow{f_*} \mathbb{Z}/2\mathbb{Z} \to 0
\]

since $\pi_1(\text{BS}^1 \times \text{BSpin}(n)) \cong 0$. Hence f_* is reduction mod 2 on π_1. Applying the Hurewicz theorem and changing coefficients to $\mathbb{Z}/2\mathbb{Z}$ then gives a commutative diagram

\[
\begin{array}{ccc}
\pi_1(\text{Spin}^c(n)) & \xrightarrow{\pi_1(f)} & \pi_1(K(\mathbb{Z}/2\mathbb{Z}, 1)) \\
\xrightarrow{= h_1} & & \xrightarrow{= h_1} \\
H_1(\text{Spin}^c(n); \mathbb{Z}) & \xrightarrow{H_1(f)} & H_1(K(\mathbb{Z}/2\mathbb{Z}, 1); \mathbb{Z}) \\
\downarrow & & \downarrow \cong \\
H_1(\text{Spin}^c(n); \mathbb{Z}/2\mathbb{Z}) & \xrightarrow{f_*} & H_1(K(\mathbb{Z}/2\mathbb{Z}, 1); \mathbb{Z}/2\mathbb{Z}).
\end{array}
\]

Since $\pi_1(f)$ and the composite in the left column are both reduction mod 2, the diagram implies that $H_1(f)$ is also reduction mod 2. Hence f_* is an isomorphism in mod 2 homology. Finally, by the universal coefficient theorem for cohomology with field coefficients, we see that

\[
f^* : H^1(K(\mathbb{Z}/2\mathbb{Z}, 1); \mathbb{Z}/2\mathbb{Z}) \to H^1(\text{Spin}^c(n); \mathbb{Z}/2\mathbb{Z})
\]

is an isomorphism. Therefore $f : \text{Spin}^c(n) \to K(\mathbb{Z}/2\mathbb{Z}, 1)$ also represents the unique class in $H^1(\text{Spin}^c(n); \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$ and hence we have $f \cong \rho \circ g$. Taking
fibres, we obtain a diagram of homotopy fibrations

\[
\begin{array}{ccc}
\tilde{\text{Spin}}^c(n) & \rightarrow & \text{Spin}^c(n) \\
\downarrow \psi & & \downarrow \phi \\
S^1 \times \text{Spin}(n) & \rightarrow & \tilde{\text{Spin}}^c(n) \\
\downarrow & & \downarrow f \\
S^1 & \simeq K(\mathbb{Z}, 1) & \rightarrow & K(\mathbb{Z}/2\mathbb{Z}, 1)
\end{array}
\]

which defines a map \(\psi : \tilde{\text{Spin}}^c(n) \rightarrow S^1 \times \text{Spin}(n)\). In particular, the fibration in the leftmost column induces an exact sequence

\[
\pi_m(\Omega S^1) \rightarrow \pi_m(\tilde{\text{Spin}}^c(n)) \rightarrow \pi_m(S^1 \times \text{Spin}(n)) \rightarrow \pi_m(S^1)
\]

for each \(m > 1\). Given that the projection \(\text{pr}_2 : S^1 \times \text{Spin}(n) \rightarrow \text{Spin}(n)\) induces isomorphisms \(\pi_m(S^1 \times \text{Spin}(n)) \cong \pi_m(\text{Spin}(n))\) for \(m > 1\) and that the groups \(\tilde{\text{Spin}}^c(n)\) and \(\text{Spin}(n)\) are both simply-connected, the composite \(\text{pr}_2 \circ \psi\) induces isomorphisms on all homotopy groups and is therefore a homotopy equivalence by Whitehead’s theorem. Hence \(\tilde{\text{Spin}}^c(n) \cong \text{Spin}(n)\). \(\square\)

We are now ready to show that the decomposition

\[
\mathcal{G}_k(\text{Spin}^c(n)) \simeq S^1 \times \mathcal{G}_k(\text{Spin}(n))
\]

for \(n \geq 6\) holds as stated in Theorem 1.1.

Proof of Theorem 1.1 Identifying the universal cover of \(\text{Spin}^c(n)\) as \(\text{Spin}(n)\) as in Lemma 4.2 there is a covering fibration

\[
\text{Spin}(n) \xrightarrow{g} \text{Spin}^c(n) \xrightarrow{g} S^1
\]

where \(g\) is a group homomorphism. Let \(s : S^1 \rightarrow \text{Spin}^c(n)\) be a right homotopy inverse of \(g\), which exists by Lemma 4.1.

As \(\pi_3(\text{Spin}^c(n)) \cong 0\) for \(n \geq 6\), there is a lift in the diagram

\[
\begin{array}{ccc}
S^1 & \rightarrow & \text{Spin}(n) \\
\downarrow s & & \downarrow a \\
\mathcal{G}_k(\text{Spin}^c(n)) & \rightarrow & \text{Spin}^c(n) \\
\end{array}
\]

Define the map \(b\) to be the composite

\[
\mathcal{G}_k(\text{Spin}^c(n)) \rightarrow \text{Spin}^c(n) \xrightarrow{g} S^1.
\]

Since \(s\) is a right homotopy inverse for \(g\), the map \(a\) is a right homotopy inverse for \(b\). Therefore we have \(\mathcal{G}_k(\text{Spin}^c(n)) \simeq S^1 \times F_b\), where \(F_b\) denotes the homotopy fibre of \(b\).
As the covering map \(\varphi : \text{Spin}(n) \to \text{Spin}^c(n) \) is a group homomorphism, it classifies to a map
\[
B\varphi : B\text{Spin}(n) \to B\text{Spin}^c(n).
\]
Since \(\varphi \) induces an isomorphism in \(\pi_3 \), it respects path-components in \(\text{Map}_k(S^4, -) \) and \(\text{Map}_k^*(S^4, -) \) for any \(k \in \mathbb{Z} \). We therefore have a diagram of fibration sequences
\[
\cdots \to \text{Map}_k^*(S^4, B\text{Spin}(n)) \to \text{Map}_k(S^4, B\text{Spin}(n)) \to B\text{Spin}(n)
\]
\[
\cdots \to \text{Map}_k^*(S^4, B\text{Spin}^c(n)) \to \text{Map}_k(S^4, B\text{Spin}^c(n)) \to B\text{Spin}^c(n).
\]

Furthermore, observe that for all \(k \in \mathbb{Z} \) we have
\[
\pi_m(\text{Map}_k^*(S^4, B\text{Spin}(n))) \cong \pi_m(\Omega_0^3\text{Spin}(n)) \cong \pi_{m+3}(\text{Spin}(n))
\]
and, similarly, \(\pi_m(\text{Map}_k^*(S^4, B\text{Spin}^c(n))) \cong \pi_{m+3}(\text{Spin}^c(n)) \). Since \(\varphi \) induces isomorphisms on \(\pi_m \) for \(m \geq 2 \), it follows that \((B\varphi)_* \) induces isomorphisms
\[
\pi_m((B\varphi)_*): \pi_m(\text{Map}_k^*(S^4, B\text{Spin}(n))) \xrightarrow{\cong} \pi_m(\text{Map}_k^*(S^4, B\text{Spin}^c(n)))
\]
for all \(m \) and is therefore a homotopy equivalence by Whitehead’s theorem.

We can extend the fibration diagram (2) to the left as
\[
\begin{array}{c}
\mathcal{G}_k(\text{Spin}(n)) \to \text{Spin}(n) \xrightarrow{\varphi^k} \text{Map}_k^*(S^4, B\text{Spin}(n)) \to \cdots \\
\downarrow{\mathcal{G}_k(\varphi)} \quad \downarrow{\varphi} \quad = (B\varphi)_* \\
\mathcal{G}_k(\text{Spin}^c(n)) \to \text{Spin}^c(n) \xrightarrow{\partial^c_k} \text{Map}_k^*(S^4, B\text{Spin}^c(n)) \to \cdots
\end{array}
\]
where \(\partial^c_k \) denotes the boundary map associated to \(\text{Spin}(n) \)-gauge groups over \(S^4 \).

Since \((B\varphi)_* \) is a homotopy equivalence, the leftmost square is a homotopy pullback. Since we know that there is a fibration
\[
\text{Spin}(n) \xrightarrow{\varphi} \text{Spin}^c(n) \xrightarrow{g} S^1,
\]
it follows that we also have a fibration
\[
\mathcal{G}_k(\text{Spin}(n)) \xrightarrow{\mathcal{G}_k(\varphi)} \mathcal{G}_k(\text{Spin}^c(n)) \xrightarrow{b} S^1.
\]
In particular, the space \(\mathcal{G}_k(\text{Spin}(n)) \) is seen to be the homotopy fibre \(F_b \) of the map \(b: \mathcal{G}_k(\text{Spin}^c(n)) \to S^1 \) and hence we have
\[
\mathcal{G}_k(\text{Spin}^c(n)) \cong S^1 \times \mathcal{G}_k(\text{Spin}(n)). \quad \Box
\]

In light of Theorem \ref{thm:homotopy-fibres}, the homotopy theory of \(\text{Spin}^c(n) \)-gauge groups over \(S^4 \) for \(n \geq 6 \) is completely determined by that of \(\text{Spin}(n) \)-gauge groups over \(S^4 \).
Remark 4.3. By a result of Cutler [10], there is a decomposition
\[G_k(U(2)) \simeq S^1 \times G_k(SU(2)) \]
of U(2)-gauge groups over \(S^4 \) whenever \(k \) is even. Given that \(\text{Spin}^c(3) \cong U(2) \) and \(\text{Spin}(3) \cong SU(2) \), the statement of Theorem [4.1] still holds true when \(n = 2 \) provided that \(k \) is even. Cutler also shows that \(G_k(U(2)) \simeq S^1 \times G_k(\text{PU}(2)) \) for odd \(k \), so Theorem [4.1] does not hold for \(n = 2 \).

5. \(\text{Spin}(n) \)-gauge groups

We now shift our focus to principal \(\text{Spin}(n) \)-bundles over \(S^4 \) and the classification of their gauge groups. In the interest of completeness, we recall that, for \(n \leq 6 \), the following exceptional isomorphisms hold.

\(n \)	\(\text{Spin}(n) \)
1	O(1)
2	U(1)
3	SU(2)
4	SU(2) \times SU(2)
5	Sp(2)
6	SU(4)

Table 1. The exceptional isomorphisms.

The cases \(n = 1, 2 \) are trivial. Indeed, as \(\pi_3(O(1)) \cong \pi_3(U(1)) \equiv 0 \), there is only one isomorphism class of \(O(1) \)- and \(U(1) \)-bundles over \(S^4 \) (namely, that of the trivial bundle), and hence there is only one possible homotopy type for the corresponding gauge groups. The case \(n = 3 \) was studied by Kono in [30]. The case \(n = 4 \) can be reduced to the \(n = 3 \) case by [4, Theorem 5]. The case \(n = 5 \) was studied by Theriault in [46]. Finally, the case \(n = 6 \) was studied by Cutler and Theriault in [11].

We shall now explore the \(n = 7 \) case. Recall that we have a fibration sequence
\[G_k(\text{Spin}(7)) \to \text{Spin}(7) \xrightarrow{k^h} \Omega^3_{0} \text{Spin}(7). \]

Lemma 5.1. Localised away from the prime 2, the boundary map
\[\text{Spin}(7) \xrightarrow{h} \Omega^3_{0} \text{Spin}(7) \]
has order 21.

Proof. Harris [20] showed that \(\text{Spin}(2m + 1) \cong (p) \text{ Sp}(m) \) for odd primes \(p \). This result was later improved by Friedlander [14] to a \(p \)-local homotopy equivalence
of the corresponding classifying spaces. Then, in particular, localising at an odd prime \(p \), we have a commutative diagram

\[
\begin{array}{cccccc}
\text{Spin}(7) & \xrightarrow{\partial_1} & \Omega_0^3\text{Spin}(7) & \xrightarrow{=} & \text{Map}_1(S^4, \text{BSpin}(7)) & \xrightarrow{=} & \text{BSpin}(7) \\
\downarrow{=} & & \downarrow{=} & & \downarrow{=} & & \downarrow{=} \\
\text{Sp}(3) & \xrightarrow{\partial_1'} & \Omega_0^3\text{Sp}(3) & \xrightarrow{=} & \text{Map}_1(S^4, \text{BSp}(3)) & \xrightarrow{=} & \text{BSp}(3)
\end{array}
\]

where \(\partial_1' : \text{Sp}(3) \to \Omega_0^3\text{Sp}(3) \) denotes the boundary map associated to \(\text{Sp}(3) \)-gauge groups over \(S^4 \) studied in [9]. Hence the result follows from the calculation in [9 Theorem 1.2] where it is shown that \(\partial_1' \) has order 21 after localising away from the prime 2.

\[\square\]

Lemma 5.2. Let \(F \to X \to Y \) be a homotopy fibration, where \(F \) is an \(H \)-space, and let \(\partial : \Omega Y \to F \) be the homotopy fibration connecting map. Let \(\alpha : A \to \Omega Y \) and \(\beta : B \to \Omega Y \) be maps such that

1. \(\mu \circ (\alpha \times \beta) : A \times B \to \Omega Y \) is a homotopy equivalence, where \(\mu \) is the loop multiplication on \(\Omega Y \);
2. \(\partial \circ \beta : B \to \Omega Y \) is nullhomotopic.

Then the orders of \(\partial \) and \(\partial \circ \alpha \) coincide.

Proof. Let \(\theta : \Omega Y \times F \to F \) denote the canonical homotopy action of the loopspace \(\Omega Y \) onto the homotopy fibre \(F \), and let \(e = \mu \circ (\alpha \times \beta) \). Consider the diagram

\[
\begin{array}{ccccccc}
& & A \times B & & \\
& \downarrow{pr_1} & \downarrow{\alpha \times \beta} & \downarrow{e} & \\
A & \xrightarrow{\alpha} & \Omega Y \times \Omega Y & \xrightarrow{\mu} & \Omega Y & \\
\downarrow{\sigma} & & \downarrow{id \times \vartheta} & & \downarrow{\vartheta} & & \downarrow{\theta} & & \downarrow{F} \to \\
\Omega Y & \xleftarrow{\Omega Y \times F} & \Omega Y \times F & \xrightarrow{\theta} & F.
\end{array}
\]

The left portion of the diagram commutes by the assumption that \(\partial \circ \beta \simeq * \), while the right and bottom portions commute by properties of the canonical action \(\theta \). Therefore

\[\partial \simeq \partial \circ \alpha \circ pr_1 \circ e^{-1},\]

and hence the orders of \(\partial \) and \(\partial \circ \alpha \) coincide. \(\square\)

Lemma 5.3. Localised at the prime 2, the order of the boundary map

\[
\text{Spin}(7) \xrightarrow{\partial_1} \Omega_0^3\text{Spin}(7)
\]

is at most 8.
Proof. The strategy here will be to show that ∂_8 is nullhomotopic. This will suffice as we have $\partial_8 \simeq 8\partial_1$ by Lemma 5.2.

By a result of Mimura [35, Proposition 9.1], the fibration

$$G_2 \xrightarrow{\alpha} \text{Spin}(7) \longrightarrow S^7$$

splits at the prime 2. Let $\beta : S^7 \to \text{Spin}(7)$ denote a right homotopy inverse for $\text{Spin}(7) \to S^7$. Then the composite

$$G_2 \times S^7 \xrightarrow{\alpha \times \beta} \text{Spin}(7) \times \text{Spin}(7) \xrightarrow{\mu} \text{Spin}(7)$$

is a 2-local homotopy equivalence.

Observe that we have $\partial_8 \circ \beta \simeq *$ since $\pi_{10}(\text{Spin}(7)) \cong \mathbb{Z}/8\mathbb{Z}$ and $\partial_8 \circ \beta \simeq 8\partial_1 \circ \beta$. Therefore, by Lemma 5.2 the order of ∂_8 equals the order of $\partial_8 \circ \alpha$. As α is a group homomorphism, there is a diagram of evaluation fibrations

$$G_2 \xrightarrow{\alpha} \Omega^3 G_2 \xrightarrow{\partial_1} \Omega^3 \text{Spin}(7).$$

Since $\partial_8' \simeq 8\partial_1' \simeq *$ by [29, Theorem 1.1], we must have $\partial_8 \simeq *$. □

Proof of Theorem 1.2 (a). Lemmas 5.1 and 5.3 imply that $168\partial_1 \simeq *$, so the result follows from Lemma 5.3. □

We now move on to consider Spin(8)-gauge groups.

Lemma 5.4. Localised at the prime 2 (resp. 3), the order of the boundary map

$$\text{Spin}(8) \xrightarrow{\partial_1} \Omega^3 \text{Spin}(8)$$

is at most 8 (resp. 3).

Proof. There is a fibration

$$\text{Spin}(7) \longrightarrow \text{Spin}(8) \longrightarrow S^7$$

which splits after localisation at any prime. Therefore, we have a homotopy equivalence $\text{Spin}(8) \simeq \text{Spin}(7) \times S^7$ realised by maps $\alpha : \text{Spin}(7) \to \text{Spin}(8)$ and $\beta : S^7 \to \text{Spin}(8)$, where α is a group homomorphism. Integrally, we have $\pi_{10}(\text{Spin}(8)) \cong \mathbb{Z}/24\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$ (see, e.g. the table in [36]). Hence the same argument presented in the proof of Lemma 5.3 shows that $8\partial_1 \simeq *$ and $3\partial_1 \simeq *$ after localising at $p = 2$ and $p = 3$, respectively. □

Lemma 5.5. Let $p \neq 3$ be an odd prime. Then the p-primary orders of the maps $\partial_1 : \text{Spin}(7) \to \Omega^3 \text{Spin}(7)$ and $\partial_1 : \text{Spin}(8) \to \Omega^3 \text{Spin}(8)$ coincide.
Lemma 6.2 shown to be as follows. moto, Theriault and Tsutaya constructed a space in mod 2 cohomology in dimensions 1 through 6. The cohomology of is shown that, integrally, hence the result now follows from the calculations in [9, Theorem 1.1] where it follows from Lemma 5.3. □

6. Homotopy invariants of Spin(\(n\))-gauge groups

Lemma 6.1. If \(G_k(\text{Spin}(7)) \cong G_l(\text{Spin}(7))\), then \((21, k) = (21, l)\).

Proof. As in the proof of Lemma 5.1, localising at an odd prime, we have an equivalence BSpin(7) \(\cong_{(p)} BSp(3)\). We therefore have a diagram of homotopy fibrations

\[
\begin{array}{cccc}
\text{Spin}(7) & \xrightarrow{\partial_k} & \Omega^3\text{Spin}(7) & \rightarrow & B\mathcal{G}_k(\text{Spin}(7)) & \rightarrow & B\text{Spin}(7) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
\text{Sp}(3) & \xrightarrow{\partial'_k} & \Omega^3\text{Sp}(3) & \rightarrow & B\mathcal{G}_k(\text{Sp}(3)) & \rightarrow & B\text{Sp}(3)
\end{array}
\]

where \(\partial'_k : \text{Sp}(3) \rightarrow \Omega^3\text{Sp}(3)\) denotes the boundary map studied in [9]. Thus, by the five lemma, we have

\[\pi_{11}(B\mathcal{G}_k(\text{Spin}(7))) \cong \pi_{11}(B\mathcal{G}_k(\text{Sp}(3))).\]

Hence the result now follows from the calculations in [9, Theorem 1.1] where it is shown that, integrally,

\[\pi_{11}(B\mathcal{G}_k(\text{Sp}(3))) \cong \mathbb{Z}/(84, k)\mathbb{Z}.\]

□

In their study of the homotopy types of G2-gauge groups over \(S^4\) in [29], Kishimoto, Theriault and Tsutaya constructed a space \(C_k\) for which

\[H^*(C_k) \cong H^*(\mathcal{G}_k(G_2))\]

in mod 2 cohomology in dimensions 1 through 6. The cohomology of \(C_k\) is then shown to be as follows.

Lemma 6.2 ([29, Lemma 8.3]). We have

- if \((4, k) = 1\) then \(C_k \cong S^3\), so \(H^*(C_k) \cong H^*(S^3)\);
- if \((4, k) = 2\) or \((4, k) = 4\) then \(H^*(C_k) \cong H^*(S^3) \oplus H^*(P^5(2)) \oplus H^*(P^6(2))\), where \(P^n(p)\) denotes the nth dimensional mod \(p\) Moore space;
- if \((4, k) = 2\) then \(\text{Sq}^2\) is non-trivial on the degree 4 generator in \(H^*(C_k)\);
- if \((4, k) = 4\) then \(\text{Sq}^2\) is trivial on the degree 4 generator in \(H^*(C_k)\). □

We make use of the same spaces \(C_k\) as follows.

Lemma 6.3. If \(G_k(\text{Spin}(7)) \cong G_l(\text{Spin}(7))\), then we have \((4, k) = (4, l)\).
Proof. As in the proof of Lemma 5.3, recall that we have a 2-local homotopy equivalence

\[G_2 \times S^7 \xrightarrow{\alpha \times \beta} \text{Spin}(7) \times \text{Spin}(7) \xrightarrow{\mu} \text{Spin}(7). \]

Since the map \(\alpha : G_2 \to \text{Spin}(7) \) is a homomorphism, we have a commutative diagram

\[
\begin{array}{ccc}
G_2 & \xrightarrow{\sigma'_1} & \Omega^3 G_2 \\
\downarrow{\alpha} & & \downarrow{\Omega^3 \alpha} \\
\text{Spin}(7) & \xrightarrow{\delta_1} & \Omega^3 \text{Spin}(7).
\end{array}
\]

Furthermore, as \(\pi_7(\Omega^3 G_2) \cong \pi_{10}(G_2) \cong 0 \), we have

\[\pi_7(\Omega^3 \text{Spin}(7)) \cong \pi_7(\Omega^3 G_2) \oplus \pi_7(\Omega^3 S^7) \cong \pi_7(\Omega^3 S^7), \]

and thus there is a commutative diagram

\[
\begin{array}{ccc}
S^7 & \xrightarrow{\gamma} & \Omega^3 S^7 \\
\downarrow{\beta} & & \downarrow{\Omega^3 \beta} \\
\text{Spin}(7) & \xrightarrow{\delta_1} & \Omega^3 \text{Spin}(7)
\end{array}
\]

for some \(\gamma \) representing a class in \(\pi_7(\Omega^3 S^7) \cong \pi_{10}(S^7) \cong \mathbb{Z}/8\mathbb{Z} \).

We therefore have a commutative diagram

\[
\begin{array}{ccc}
G_2 \vee S^7 & \xrightarrow{k \sigma'_1 \vee k \gamma} & \Omega^3 G_2 \times \Omega^3 S^7 \\
\downarrow{\alpha \vee \beta} & & \downarrow{\Omega^3 \alpha \times \Omega^3 \beta} \\
\text{Spin}(7) & \xrightarrow{k \delta_1} & \Omega^3 \text{Spin}(7)
\end{array}
\]

which induces a map of fibres \(\phi : M \to \mathcal{G}_k(\text{Spin}(7)) \), where \(M \) denotes the homotopy fibre of the map \(k \sigma'_1 \vee k \gamma \).

Since the lowest dimensional cell in \(G_2 \times S^7 / (G_2 \vee S^7) \) appears in dimension 10, the canonical map \(G_2 \vee S^7 \to G_2 \times S^7 \) is a homotopy equivalence in dimensions less than 9. It thus follows that \(M \) is homotopy equivalent to the homotopy fibre of \(k \sigma'_1 \times k \gamma \) in dimensions up to 8. Since the homotopy fibre of \(k \sigma'_1 \times k \gamma \) is just the product \(\mathcal{G}_k(G_2) \times F_k \), the composite

\[C_k \times F_k \to \mathcal{G}_k(G_2) \times F_k \to M \xrightarrow{\phi} \mathcal{G}_k(\text{Spin}(7)) \]

induces an isomorphism in mod-2 cohomology in dimensions 1 through 6, and therefore we have

\[H^*(\mathcal{G}_k(\text{Spin}(7))) \cong H^*(C_k) \otimes H^*(F_k), \quad * \leq 6. \]

From the fibration sequence

\[\Omega^4 S^7 \longrightarrow F_k \longrightarrow S^7 \]
we see that \(H^* (F_k) \cong H^* (\Omega^4 S^7) \) in dimensions 1 through 6 for dimensional reasons, and hence we have
\[
H^* (F_k) \cong \mathbb{Z} / 2 \mathbb{Z} [y_i] , \quad * \leq 6,
\]
where \(|y_i| = i\), which, in turn, yields
\[
H^* (G_k (\text{Spin}(7))) \cong H^* (C_k) \otimes \mathbb{Z} / 2 \mathbb{Z} [y_3, y_6], \quad * \leq 6.
\]
Since \(H^* (F_k) \) does not contribute any generators in degree 4 to \(H^* (G_k (\text{Spin}(7))) \), the result now follows from Lemma 6.2. Indeed, the presence of a degree 4 generator allows us to distinguish between the \((4, k) = 1 \) case and the \(2|k \) cases, whereas the vanishing of the Steenrod square \(Sq^2 \) on the degree 4 generator in \(H^* (G_k (\text{Spin}(7))) \) coming from \(H^* (C_k) \) can be used to distinguish between the \((4, k) = 2 \) and \((4, k) = 4 \) cases.
\[\square \]

Proof of Theorem 1.2 (b). Combine Lemmas 6.1 and 6.3
\[\square \]

Lemma 6.4. If \(G_k (\text{Spin}(8)) \cong G_l (\text{Spin}(8)) \), then \((4, k) = (4, l)\).

Proof. As in the proof of Lemma 5.3 the splitting of \(G_2 \to \text{Spin}(7) \to S^7 \) at the prime 2 implies that there is a 2-local homotopy equivalence
\[
\mu \circ (\alpha \times \beta) : G_2 \times S^7 \longrightarrow \text{Spin}(7).
\]
Since the fibration \(\text{Spin}(7) \to \text{Spin}(8) \to S^7 \) also splits after localising at any prime, there is a decomposition
\[
\mu \circ ((i \circ \alpha) \times (i \circ \beta) \times y) : G_2 \times S^7 \times S^7 \longrightarrow \text{Spin}(8),
\]
where \(i : \text{Spin}(7) \to \text{Spin}(8) \) is the inclusion homomorphism and \(y \) is a homotopy inverse for the map \(\text{Spin}(8) \to S^7 \).

Since the map \(i \circ \alpha \) is a homomorphism, we have a commutative diagram
\[
\begin{array}{ccc}
G_2 & \xrightarrow{\delta_i} & \Omega^3 G_2 \\
\downarrow_{i \circ \alpha} & & \downarrow_{\Omega^3(i \circ \alpha)} \\
\text{Spin}(8) & \xrightarrow{\partial_i} & \Omega^3 \text{Spin}(8).
\end{array}
\]
Furthermore, as \(\pi_7 (\Omega^3 G_2) \cong \pi_{10} (G_2) \cong 0 \), we have
\[
\pi_7 (\Omega^3 \text{Spin}(8)) \cong \pi_7 (\Omega^3 S^7) \oplus \pi_7 (\Omega^3 S^7),
\]
and thus there are commutative diagrams
\[
\begin{array}{ccc}
S^7 & \xrightarrow{\delta} & \Omega^3 S^7 \times \Omega^3 S^7 \\
\downarrow_{i \circ \beta} & & \downarrow_{\Omega^3(i \circ \beta) \times \Omega^3 \gamma} \\
\text{Spin}(8) & \xrightarrow{\partial_i} & \Omega^3 \text{Spin}(8)
\end{array} \quad \begin{array}{ccc}
S^7 & \xrightarrow{\delta^*} & \Omega^3 S^7 \times \Omega^3 S^7 \\
\downarrow_{\gamma} & & \downarrow_{\Omega^3(i \circ \beta) \times \Omega^3 \gamma} \\
\text{Spin}(8) & \xrightarrow{\partial_i} & \Omega^3 \text{Spin}(8)
\end{array}
\]
for some δ, δ' representing classes in $\pi_7(\Omega^3S^7 \times \Omega^3S^7) \cong (\mathbb{Z}/8\mathbb{Z})^2$. We therefore have a commutative diagram

$$
\begin{array}{ccc}
G_2 \vee (S^7 \vee S^7) & \xrightarrow{k\delta' \vee k(\delta \vee \delta')} & \Omega^3_2G_2 \times (\Omega^3S^7 \times \Omega^3S^7) \\
\downarrow^{a\vee (1 \beta \vee \gamma)} & & \downarrow^{\Omega^3\alpha \times (\Omega^3\beta \times \Omega^3\gamma)} \\
\text{Spin}(8) & \xrightarrow{k \partial_1} & \Omega^3_2\text{Spin}(8).
\end{array}
$$

Arguing as in the proof of Lemma 6.3 we conclude that

$$H^*(G_k(\text{Spin}(7))) \cong H^*(G_k(\text{Spin}(8))), \quad * \leq 6,$$

hence the statement follows from Lemma 6.2.

Lemma 6.5. If $G_k(\text{Spin}(8)) \simeq G_l(\text{Spin}(8))$, then $(7, k) = (7, l)$.

Proof. Localising at $p = 7$, we have

$$\text{Spin}(8) \simeq \text{Spin}(7) \times S^7 \simeq G_2 \times S^7 \times S^7.$$

Applying the functor π_{11} and noting that

$$\pi_{10}(S^7) \cong \pi_{11}(S^7) \cong \pi_{14}(S^7) \cong 0,$$

(see, e.g. [54]) we find that the evaluation fibration

$$\text{Spin}(8) \xrightarrow{d_k} \Omega^3_2\text{Spin}(8) \to B\text{G}_k(\text{Spin}(8)) \to B\text{Spin}(8)$$

reduces to the exact sequence

$$\pi_{11}(G_2) \to \pi_{11}(\Omega^3 G_2) \to \pi_{11}(B\text{G}_k(\text{Spin}(8))) \to 0.$$

Hence the result follows from [29].

Lemma 6.6. If $G_k(\text{Spin}(8)) \simeq G_l(\text{Spin}(8))$ and k and l are multiples of 3, then $(3, k) = (3, l)$.

Proof. By [47] or [28], when k is a multiple of 3, there is a 3-local homotopy equivalence

$$G_k(\text{Spin}(8)) \simeq S^7 \times \Omega^4S^7 \times G_k(\text{Spin}(7)).$$

Recalling the argument in the proof of Lemma 6.1 we have

$$\pi_{10}(G_k(\text{Spin}(8))) \cong \pi_{10}(S^7) \oplus \pi_{10}(\Omega^4S^7) \oplus \pi_{10}(G_k(\text{Spin}(7)))$$

$$\cong \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} \oplus \pi_{10}(G_k(\text{Sp}(3)))$$

$$\cong (\mathbb{Z}/3\mathbb{Z})^2 \oplus \mathbb{Z}/(3, k)\mathbb{Z}.$$

Hence, if $G_k(\text{Spin}(8)) \simeq G_l(\text{Spin}(8))$ then $\mathbb{Z}/(3, k)\mathbb{Z} \cong \mathbb{Z}/(3, l)\mathbb{Z}$ and thus it must be that $(3, k) = (3, l)$.

Proof of Theorem 1.3 (b). Combine Lemmas 6.4, 6.5 and 6.6.
References

[1] M. Albanese and A. Milivojević, Spinh and further generalisations of spin, J. Geom. Phys. 164 (2021), 104174.
[2] M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523–615.
[3] M. F. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3 (1964), no. 1, 3–38.
[4] P. Booth, P. Heath, C. Morgan, and R. A. Piccinini, Remarks on the homotopy type of groups of gauge transformations, C. R. Math. Acad. Sci. Canada 111 (1981), no. 3, 3–6.
[5] R. L. Bryant and E. Sharpe, D-branes and Spinc structures, Phys. Let. B 450 (1999), no. 4, 353–357.
[6] M. H. A. Claudio and M. Spreafico, Homotopy type of gauge groups of quaternionic line bundles over spheres, Topol. Its Appl. 156 (2009), no. 3, 643–651.
[7] R. L. Cohen and R. J. Milgram, The homotopy type of gauge theoretic moduli spaces, Algebraic topology and its applications, 1994, pp. 15–55.
[8] M. C. Crabb and W. A. Sutherland, Counting homotopy types of gauge groups, Proc. London Math. Soc. 81 (2000), no. 3, 747–768.
[9] T. Cutler, The homotopy types of $\text{Sp}(3)$-gauge groups, Topol. Its Appl. 236 (2018), 44–58.
[10] , The homotopy types of $U(n)$-gauge groups over S^4 and \mathbb{CP}^2, Homology Homotopy Appl. 20 (2018), no. 1, 5–36.
[11] T. Cutler and S. D. Theriault, The homotopy types of $SU(4)$-gauge groups, arXiv preprint (2019), available at 1909.04643.
[12] S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983), no. 2, 279–315.
[13] D. S. Freed and E. Witten, Anomalies in string theory with D-branes, Asian J. Math 3 (1999), no. 4, 819–852.
[14] E. M. Friedlander, Exceptional isogenies and the classifying spaces of simple Lie groups, Ann. Math. 101 (1975), no. 3, 510–520.
[15] D. H. Gottlieb, Applications of bundle map theory, Trans. Amer. Math. Soc. 171 (1972), 23–50.
[16] H. Hamanaka, S. Kaji, and A. Kono, Samelson products in $\text{Sp}(2)$, Topol. Its Appl. 155 (2008), no. 11, 1207–1212.
[17] H. Hamanaka and A. Kono, Unstable K^1-group and homotopy type of certain gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), no. 1, 149–155.
[18] , Homotopy type of gauge groups of $SU(3)$-bundles over S^6, Topology Appl. 154 (2007), no. 7, 1377–1380.
[19] M. Harada and A. Kono, Cohomology mod 2 of the classifying space of Spinc (n), Publ. Res. Inst. Math. Sci. 22 (1986), no. 3, 543–549.
[20] B. Harris, On the homotopy groups of the classical groups, Ann. Math 74 (1961), no. 2, 407–413.
[21] S. Hasui, D. Kishimoto, A. Kono, and T. Sato, The homotopy types of $\text{PU}(3)$- and $\text{PSp}(2)$-gauge groups, Algebr. Geom. Topol. 16 (2016), no. 3, 1813–1825.
[22] S. Hasui, D. Kishimoto, T. So, and S. D. Theriault, Odd primary homotopy types of the gauge groups of exceptional Lie groups, Proc. Amer. Math. Soc. 147 (2019), no. 4, 1751–1762.
[23] R. Huang, Homotopy of gauge groups over high-dimensional manifolds, Proc. Roy. Soc. Edinburgh Sect. A (2021), 1–27.
[24] , Homotopy of gauge groups over non-simply-connected five-dimensional manifolds, Sci. China Math. 64 (2021), no. 5, 1061–1092.
[25] D. Husemöller, Fibre bundles, 3rd ed., Graduate texts in mathematics, vol. 20, Springer-Verlag New York, 1994.
HOMOTOPY TYPES OF Spinⁿ(n)-GAUGE GROUPS OVER S⁴

[26] G. E. Lang Jr., The evaluation map and EHP sequences, Pacific J. Math. 44 (1973), no. 1, 201–210.

[27] J. Jürgen, Riemannian geometry and geometric analysis, Universitext, Springer Berlin, 2008.

[28] D. Kishimoto and A. Kono, Note on mod p decompositions of gauge groups, Proc. Japan Acad. Ser. A 86 (2010), no. 1, 15–17.

[29] D. Kishimoto, S. D. Theriault, and M. Tsutaya, The homotopy types of G₂-gauge groups, Topol. Its Appl. 228 (2017), 92–107.

[30] A. Kono, A note on the homotopy type of certain gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 117 (1991), no. 3-4, 295–297.

[31] A. Kono and S. D. Theriault, The order of the commutator on SU(3) and an application to gauge groups, Bull. Belg. Math. Soc. Simon Stevin 20 (2013), no. 2, 359–370.

[32] A. Kono and S. Tsukuda, A remark on the homotopy type of certain gauge groups, J. Math. Kyoto Univ. 36 (1996), no. 1, 115–121.

[33] I. A. Membrillo-Solis, Homotopy types of gauge groups related to S³-bundles over S⁴, Topol. Its Appl. 255 (2019), 56–85.

[34] I. A. Membrillo-Solis and S. D. Theriault, The homotopy types of U(n)-gauge groups over lens spaces, Bol. Soc. Mat. Mex. 27 (2021), 40.

[35] S. Mohammadi, The homotopy types of PSp(n)-gauge groups over S^{2m}, Topol. Its Appl. 290 (2021), 107604.

[36] S. Mohammadi and M. A. Asadi-Golmankhaneh, The homotopy types of SU(4)-gauge groups over S⁸, Topology Appl. 266 (2019), 106845.

[37] S. Mohammadi, The homotopy types of SU(n)-gauge groups over S⁶, Topol. Its Appl. 270 (2019), 106952.

[38] R. A. Piccinini and M. Spreafico, Conjugacy classes in gauge groups, Queen’s papers in pure and applied mathematics, vol. 111, Queen’s University, Kingston, 1998.

[39] S. Rea, Homotopy types of gauge groups of PU(p)-bundles over spheres, J. Homotopy Relat. Struct. 16 (2021), 61–74.

[40] H. Sati, Geometry of Spin and Spin² structures in the M-theory partition function, Rev. Math. Phys. 24 (2012), no. 3, 1250005.

[41] T. So, Homotopy types of gauge groups over non-simply-connected closed 4-manifolds, Glasgow Math. J. 61 (2019), no. 2, 349–371.

[42] W. A. Sutherland, Function spaces related to gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 121 (1992), no. 1–2, 185–190.

[43] S. D. Theriault, The homotopy types of Sp(2)-gauge groups, Kyoto J. Math. 50 (2010), no. 3, 591–605.

[44] S. D. Theriault, Odd primary homotopy decompositions of gauge groups, Algebr. Geom. Topol. 10 (2010), no. 1, 535–564.

[45] S. D. Theriault, Homotopy decompositions of gauge groups over riemann surfaces and applications to moduli spaces, Int. J. Math. 22 (2011), no. 12, 1711–1719.

[46] S. D. Theriault, The homotopy types of SU(3)-gauge groups over simply connected 4-manifolds, Publ. Res. Inst. Math. Sci. 48 (2012), no. 3, 543–563.

[47] S. D. Theriault, The homotopy types of gauge groups of nonorientable surfaces and applications to moduli spaces, Illinois J. Math. 57 (2013), no. 1, 59–85.

[48] S. D. Theriault, The homotopy types of SU(5)-gauge groups, Osaka J. Math. 52 (2015), no. 1, 15–31.
[52] , Odd primary homotopy types of $SU(n)$-gauge groups, Algebr. Geom. Topol. 17 (2017), no. 2, 1131–1150.

[53] S. D. Theriault and T. So, The homotopy types of $Sp(2)$-gauge groups over closed simply connected four-manifolds, Proc. Steklov Inst. Math. 305 (2019), 287–304.

[54] H. Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, vol. 49, Princeton University Press, 1962.

[55] M. West, Homotopy decompositions of gauge groups over real surfaces, Algebr. Geom. Topol. 17 (2017), no. 4, 2429–2480.

[56] E. Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), no. 6, 769–796.