Epistasis between cultural traits causes paradigm shifts in cultural evolution

Ignacio Pascual, Jacobo Aguirre, Susanna Manrubia and José A. Cuesta

Article citation details
R. Soc. open sci. 7: 191813.
http://dx.doi.org/10.1098/rsos.191813

Review timeline
Original submission: 1 December 2019
Revised submission: 21 January 2020
Final acceptance: 30 January 2020
Note: Reports are unedited and appear as submitted by the referee. The review history appears in chronological order.

Note: This manuscript was transferred from another Royal Society journal with peer review.

Review History
RSOS-191813.R0 (Original submission)

Review form: Reviewer 1

Is the manuscript scientifically sound in its present form?
Yes

Are the interpretations and conclusions justified by the results?
Yes

Is the language acceptable?
Yes

Do you have any ethical concerns with this paper?
No

Have you any concerns about statistical analyses in this paper?
No

Recommendation?
Major revision is needed (please make suggestions in comments)
Comments to the Author(s)

In this work the authors present a model for paradigms shift along cultural evolution, based on Axelrod’ s original proposal for cultural evolution. The main conclusion in this work is that epistasis, properly defined in the context of the present model, is responsible for these shifts.

The work explores original ideas and present a novel formal model, that although based on previous works, contains interesting new ideas.

The presentation of the model, the mathematical approach and results are presented in a clear way but I have some observation listed below i would ask the authors to address

1) Fig 1 is not clear. In the text the authors say that figs. a and c show the fitness and b and d the cultural state, while the legend in the vertical axis reads "fitness" in all cases. The number of nodes seems not to be the same, not even when considering the pairs and b, c and d.

By the definition, the cultural states can be only 0 or 1, while the plot shows something different, perhaps due to an issue with the graphing soft.

2) It could be a bit uncomfortable reading about "fitness" without a proper definition of the concept until much later.

I understand that the organization of the manuscript might required the fitness to be introduced later, but perhaps the authors could find a solution not to delay the presentation of the concept so much.

3) There seems to be an inconsistency in the definition of dH. The first definition states that it is the usual Hamming distance, i.e. the number of differences in the values of the cultural traits between two nodes. But later the authors say that the maximum value of dH is reached for a given value of alpha. How is that the Hamming distance depends on alpha if it only measures the number of coincidences? At least this not clear considering the role assigned to alpha.

4) The nodes are numbered and ordered accordingly. If we locate the nodes in the ring, the epistasis, when present, links each node with its neighbours in only one direction and always in order. Is this restriction something that could affect the results? It is hard to accept that there is no reciprocity in the epistasis unless the value of k is close to the value of N.

5) The fitness, that is governing the evolution of the cultural profile of the population, is not affected by homophily so why should homophily be important? Is not that a trivial results?

Review form: Reviewer 2

Is the manuscript scientifically sound in its present form?
Yes

Are the interpretations and conclusions justified by the results?
Yes

Is the language acceptable?
Yes

Do you have any ethical concerns with this paper?
No
Have you any concerns about statistical analyses in this paper?
No

Recommendation?
Accept with minor revision (please list in comments)

Comments to the Author(s)
In the manuscript entitled “Epistasis between cultural traits cause paradigm shifts in cultural evolution” by Ignacio Pascual et al. the authors develop a simple model for cultural dissemination showing that paradigm shifts can occur as emergent phenomena of the underlying dynamics.

In this model, the individuals are characterized by a vector of cultural traits that change mainly through cultural contagion biased by “cultural fitness” landscape. The authors show that this model produces paradigm shifts in response to weak changes in the landscape only in the presence of cultural epistasis.

The model is perfectly framed and its equations are rigorously derived. The presented results are clear and informative and the discussion highlight the virtues of the model, but also its limitations and possible future works.

The manuscript is well written and, from my point of view, it deserve to be published in RSOS, after the authors can clarify some minor comments and questions:

1 – In line 14 of page 5, the sentence reads “The last term in this expression” referring to equation (2.5). However, this equation have only one term.

2 – The description of the Kauffman’s NK landscape is a little bit confusing for me. Could the authors improve this section? Here, in line 27 which describe equation (2.10) they refer to an index |j| which seems to be absent in the mentioned equation.

3 – I do not understand figure 1. Four panels refers to fitness as a function of tau for all nodes? Which are the difference between panels (a) and (b) (and between (c) and (d)?). They correspond to initial and final times of evolution? The description either in the tex or in the caption are not enough to understand this figure

4 – In line 45 of page 8, when comparing figures 2 and 3, the refer to figure 2 (c). Should be Figure 2 (b) ?

Decision letter (RSOS-191813.R0)

14-Jan-2020

Dear Dr Cuesta

On behalf of the Editors, I am pleased to inform you that your Manuscript RSOS-191813 entitled “Epistasis between cultural traits causes paradigm shifts in cultural evolution” has been accepted for publication in Royal Society Open Science subject to minor revision in accordance with the referee suggestions. Please find the referees' comments at the end of this email.
The reviewers and handling editors have recommended publication, but also suggest some minor revisions to your manuscript. Therefore, I invite you to respond to the comments and revise your manuscript.

• Ethics statement
If your study uses humans or animals please include details of the ethical approval received, including the name of the committee that granted approval. For human studies please also detail whether informed consent was obtained. For field studies on animals please include details of all permissions, licences and/or approvals granted to carry out the fieldwork.

• Data accessibility
It is a condition of publication that all supporting data are made available either as supplementary information or preferably in a suitable permanent repository. The data accessibility section should state where the article's supporting data can be accessed. This section should also include details, where possible of where to access other relevant research materials such as statistical tools, protocols, software etc can be accessed. If the data has been deposited in an external repository this section should list the database, accession number and link to the DOI for all data from the article that has been made publicly available. Data sets that have been deposited in an external repository and have a DOI should also be appropriately cited in the manuscript and included in the reference list.

If you wish to submit your supporting data or code to Dryad (http://datadryad.org/), or modify your current submission to dryad, please use the following link:
http://datadryad.org/submit?journalID=RSOS&manu=RSOS-191813

• Competing interests
Please declare any financial or non-financial competing interests, or state that you have no competing interests.

• Authors’ contributions
All submissions, other than those with a single author, must include an Authors’ Contributions section which individually lists the specific contribution of each author. The list of Authors should meet all of the following criteria; 1) substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data; 2) drafting the article or revising it critically for important intellectual content; and 3) final approval of the version to be published.

All contributors who do not meet all of these criteria should be included in the acknowledgements.

We suggest the following format:
AB carried out the molecular lab work, participated in data analysis, carried out sequence alignments, participated in the design of the study and drafted the manuscript; CD carried out the statistical analyses; EF collected field data; GH conceived of the study, designed the study, coordinated the study and helped draft the manuscript. All authors gave final approval for publication.

• Acknowledgements
Please acknowledge anyone who contributed to the study but did not meet the authorship criteria.

• Funding statement
Please list the source of funding for each author.

Please ensure you have prepared your revision in accordance with the guidance at https://royalsociety.org/journals/authors/author-guidelines/ -- please note that we cannot
publish your manuscript without the end statements. We have included a screenshot example of the end statements for reference. If you feel that a given heading is not relevant to your paper, please nevertheless include the heading and explicitly state that it is not relevant to your work.

Because the schedule for publication is very tight, it is a condition of publication that you submit the revised version of your manuscript before 23-Jan-2020. Please note that the revision deadline will expire at 00.00am on this date. If you do not think you will be able to meet this date please let me know immediately.

To revise your manuscript, log into https://mc.manuscriptcentral.com/rsos and enter your Author Centre, where you will find your manuscript title listed under "Manuscripts with Decisions". Under "Actions," click on "Create a Revision." You will be unable to make your revisions on the originally submitted version of the manuscript. Instead, revise your manuscript and upload a new version through your Author Centre.

When submitting your revised manuscript, you will be able to respond to the comments made by the referees and upload a file "Response to Referees" in "Section 6 - File Upload". You can use this to document any changes you make to the original manuscript. In order to expedite the processing of the revised manuscript, please be as specific as possible in your response to the referees. We strongly recommend uploading two versions of your revised manuscript:

1) Identifying all the changes that have been made (for instance, in coloured highlight, in bold text, or tracked changes);
2) A 'clean' version of the new manuscript that incorporates the changes made, but does not highlight them.

When uploading your revised files please make sure that you have:

1) A text file of the manuscript (tex, txt, rtf, docx or doc), references, tables (including captions) and figure captions. Do not upload a PDF as your "Main Document";
2) A separate electronic file of each figure (EPS or print-quality PDF preferred (either format should be produced directly from original creation package), or original software format);
3) Included a 100 word media summary of your paper when requested at submission. Please ensure you have entered correct contact details (email, institution and telephone) in your user account;
4) Included the raw data to support the claims made in your paper. You can either include your data as electronic supplementary material or upload to a repository and include the relevant doi within your manuscript. Make sure it is clear in your data accessibility statement how the data can be accessed;
5) All supplementary materials accompanying an accepted article will be treated as in their final form. Note that the Royal Society will neither edit nor typeset supplementary material and it will be hosted as provided. Please ensure that the supplementary material includes the paper details where possible (authors, article title, journal name).

Supplementary files will be published alongside the paper on the journal website and posted on the online figshare repository (https://rs.figshare.com/). The heading and legend provided for each supplementary file during the submission process will be used to create the figshare page, so please ensure these are accurate and informative so that your files can be found in searches. Files on figshare will be made available approximately one week before the accompanying article so that the supplementary material can be attributed a unique DOI.

Please note that Royal Society Open Science charge article processing charges for all new submissions that are accepted for publication. Charges will also apply to papers transferred to Royal Society Open Science from other Royal Society Publishing journals, as well as papers submitted as part of our collaboration with the Royal Society of Chemistry (https://royalsocietypublishing.org/rsos/chemistry).
If your manuscript is newly submitted and subsequently accepted for publication, you will be asked to pay the article processing charge, unless you request a waiver and this is approved by Royal Society Publishing. You can find out more about the charges at https://royalsocietypublishing.org/rsos/charges. Should you have any queries, please contact openscience@royalsociety.org.

Once again, thank you for submitting your manuscript to Royal Society Open Science and I look forward to receiving your revision. If you have any questions at all, please do not hesitate to get in touch.

Kind regards,
Andrew Dunn
Royal Society Open Science Editorial Office
Royal Society Open Science
openscience@royalsociety.org

on behalf of Professor Matjaz Perc (Associate Editor) and Miles Padgett (Subject Editor)
openscience@royalsociety.org

Reviewer comments to Author:
Reviewer: 1

Comments to the Author(s)

In this work the authors present a model for paradigms shift along cultural evolution, based on Axelrod’s original proposal for cultural evolution. The main conclusion in this work is that epistasis, properly defined in the context of the present model, is responsible for these shifts.

The work explores original ideas and present a novel formal model, that although based on previous works, contains interesting new ideas.

The presentation of the model, the mathematical approach and results are presented in a clear way but I have some observation listed below i would ask the authors to address

1) Fig 1 is not clear. In the text the authors say that figs. a and c show the fitness and b and d the cultural state, while the legend in the vertical axis reads “fitness” in all cases. The number of nodes seems not to be the same, not even when considering the pairs and b, c and d.

By the definition, the cultural states can be only 0 or 1, while the plot shows something different, perhaps due to an issue with the graphing soft.

2) It could be a bit uncomfortable reading about "fitness" without a proper definition of the concept until much later.
I understand that the organization of the manuscript might required the fitness to be introduced later, but perhaps the authors could find a solution not to delay the presentation of the concept so much.

3) There seems to be an inconsistency in the definition of dH. The first definition states that it is the usual Hamming distance, i.e. the number of differences in the values of the cultural traits between two nodes. But later the authors say that the maximum value of dH is reached for a given value of alpha. How is that the Hamming distance depends on alpha if it only measures the number of coincidences? At least this not clear considering the role assigned to alpha
4) The nodes are numbered and ordered accordingly. If we locate the nodes in the ring, the epistasis, when present, links each node with its neighbours in only one direction and always in order. Is this restriction something that could affect the results? It is hard to accept that there is no reciprocity in the epistasis unless the value of k is close to the value of N.

5) The fitness, that is governing the evolution of the cultural profile of the population, is not affected by homophily so why should homophily be important? Is not that a trivial results?

Reviewer: 2

Comments to the Author(s)
In the manuscript entitles “Epistasis between cultural traits cause paradigm shifts in cultural evolution” by Ignacio Pascual et al. the authors develop a simple model for cultural dissemination showing that paradigm shifts can occur as emergent phenomena of the underlying dynamics.

In this model, the individuals are characterized by a vector of cultural traits that change mainly through cultural contagion biased by “cultural fitness” landscape. The authors show that this model produces paradigm shifts in response to weak changes in the landscape only in the presence of cultural epistasis.

The model is perfectly framed and its equations are rigourously derived. The presented results are clear and informative and the discussion highlight the virtues of the model, but also its limitations and possible future works.

The manuscript is well written and, from my point of view, it deserve to be published in RSOS, after the authors can clarify some minor comments and questions:

1 – In line 14 of page 5, the sentence reads “The last term in this expression” referring to equation (2.5). However, this equation have only one term.

2 – The description of the Kauffman’s NK landscape is a little bit confusing for me. Could the authors improve this section? Here, in line 27 which describe equation (2.10) they refer to an index $|j|$ which seems to be absent in the mentioned equation.

3 – I do not understand figure 1. Four panels refers to fitness as a function of tau for all nodes? Which are the difference between panels (a) and (b) (and between (c) and (d)?). They correspond to initial and final times of evolution? The description either in the text or in the caption are not enough to understand this figure

4 – In line 45 of page 8, when comparing figures 2 and 3, the refer to figure 2 (c). Should be Figure 2 (b)?

Author’s Response to Decision Letter for (RSOS-191813.R0)

See Appendix A.
Dear Dr Cuesta,

It is a pleasure to accept your manuscript entitled "Epistasis between cultural traits causes paradigm shifts in cultural evolution" in its current form for publication in Royal Society Open Science. The comments of the reviewer(s) who reviewed your manuscript are included at the foot of this letter.

Please ensure that you send to the editorial office an editable version of your accepted manuscript, and individual files for each figure and table included in your manuscript. You can send these in a zip folder if more convenient. Failure to provide these files may delay the processing of your proof. You may disregard this request if you have already provided these files to the editorial office.

You can expect to receive a proof of your article in the near future. Please contact the editorial office (openscience_proofs@royalsociety.org) and the production office (openscience@royalsociety.org) to let us know if you are likely to be away from e-mail contact -- if you are going to be away, please nominate a co-author (if available) to manage the proofing process, and ensure they are copied into your email to the journal.

Due to rapid publication and an extremely tight schedule, if comments are not received, your paper may experience a delay in publication.

Please see the Royal Society Publishing guidance on how you may share your accepted author manuscript at https://royalsociety.org/journals/ethics-policies/media-embargo/.

Thank you for your fine contribution. On behalf of the Editors of Royal Society Open Science, we look forward to your continued contributions to the Journal.

Kind regards,
Royal Society Open Science Editorial Office
Royal Society Open Science
openscience@royalsociety.org

on behalf of Professor Matjaz Perc (Associate Editor) and Miles Padgett (Subject Editor)
openscience@royalsociety.org

Associate Editor Comments to Author (Professor Matjaz Perc):
Associate Editor
Comments to the Author:
Thank you for the comprehensive revision of your manuscript, which we are happy to accept for publication in Royal Society Open Science.

Reviewer comments to Author:

Follow Royal Society Publishing on Twitter: @RSocPublishing
Follow Royal Society Publishing on Facebook:
https://www.facebook.com/RoyalSocietyPublishing.FanPage/
Read Royal Society Publishing's blog: https://blogs.royalsociety.org/publishing/
Dear Editor of Royal Society Open Science,

Thank you very much for your accepting our manuscript for publication in Royal Society Open Science. We have gone through all minor comments that the referees made and either fixed them or provided a response to them all. In what follows you will find the detailed responses.

Best wishes,

J. A. Cuesta, on behalf of all authors

Reviewer comments to Author:

Reviewer: 1

Comments to the Author(s)

In this work the authors present a model for paradigms shift along cultural evolution, based on Axelrod’s original proposal for cultural evolution.

The main conclusion in this work is that epistasis, properly defined in the context of the present model, is responsible for these shifts.

The work explores original ideas and present a novel formal model, that although based on previous works, contains interesting new ideas.

The presentation of the model, the mathematical approach and results are presented in a clear way but I have some observation listed below i would ask the authors to address

We thank the referee for the very positive overall judgment and for the careful revision.

1) Fig 1 is not clear. In the text the authors say that figs. a and c show the fitness and b and d the cultural state, while the legend in the vertical axis reads "fitness" in all cases. The number of nodes seems not to be the same, not even when considering the pairs and b, c and d.

There y axis in b and d was incorrectly labeled, thank you for spotting the error: it has to be population density. All simulations have 64 nodes (2^6). The figure has been substituted by its raw, unedited version for clarity. Here, any impression of a different number of nodes is due to the 2D projection.

By the definition, the cultural states can be only 0 or 1, while the plot shows something different, perhaps due to an issue with the graphing soft.

The reviewer is right that each trait takes values 0 or 1. But the cultural state is defined by a vector of such traits which is assigned a real fitness value between 0 and 1. We have revised the description of the model and of the variables involved and have found no mistake that could lead to that confusion. Therefore, we have not changed the ms in regard to that comment.

2) It could be a bit uncomfortable reading about "fitness" without a proper definition of the concept until much later.

I understand that the organization of the manuscript might required the fitness to be introduced later, but perhaps the authors could find a solution not to delay the presentation of the concept so much.

Appendix A

Dear Editor of Royal Society Open Science,

Thank you very much for your accepting our manuscript for publication in Royal Society Open Science. We have gone through all minor comments that the referees made and either fixed them or provided a response to them all. In what follows you will find the detailed responses.

Best wishes,

J. A. Cuesta, on behalf of all authors

Reviewer comments to Author:

Reviewer: 1

Comments to the Author(s)

In this work the authors present a model for paradigms shift along cultural evolution, based on Axelrod’s original proposal for cultural evolution.

The main conclusion in this work is that epistasis, properly defined in the context of the present model, is responsible for these shifts.

The work explores original ideas and present a novel formal model, that although based on previous works, contains interesting new ideas.

The presentation of the model, the mathematical approach and results are presented in a clear way but I have some observation listed below i would ask the authors to address

We thank the referee for the very positive overall judgment and for the careful revision.

1) Fig 1 is not clear. In the text the authors say that figs. a and c show the fitness and b and d the cultural state, while the legend in the vertical axis reads "fitness" in all cases. The number of nodes seems not to be the same, not even when considering the pairs and b, c and d.

There y axis in b and d was incorrectly labeled, thank you for spotting the error: it has to be population density. All simulations have 64 nodes (2^6). The figure has been substituted by its raw, unedited version for clarity. Here, any impression of a different number of nodes is due to the 2D projection.

By the definition, the cultural states can be only 0 or 1, while the plot shows something different, perhaps due to an issue with the graphing soft.

The reviewer is right that each trait takes values 0 or 1. But the cultural state is defined by a vector of such traits which is assigned a real fitness value between 0 and 1. We have revised the description of the model and of the variables involved and have found no mistake that could lead to that confusion. Therefore, we have not changed the ms in regard to that comment.

2) It could be a bit uncomfortable reading about "fitness" without a proper definition of the concept until much later.

I understand that the organization of the manuscript might required the fitness to be introduced later, but perhaps the authors could find a solution not to delay the presentation of the concept so much.
We have moved previous subsections introducing the definition of fitness landscapes and Kauffman’s NK model; they precede now the definition of the system dynamics. The last paragraph in the latter section has been also moved for consistency and an introductory sentence (highlighted in red) has been added.

3) **There seems to be an inconsistency in the definition of dH. The first definition states that it is the usual Hamming distance, i.e. the number of differences in the values of the cultural traits between two nodes. But later the authors say that the maximum value of dH is reached for a given value of alpha. How is that the Hamming distance depends on alpha if it only measures the number of coincidences? At least this not clear considering the role assigned to alpha**

We are unable to spot the inconsistency stated by the referee. Indeed, dH is the usual Hamming distance. The maximum we talk about corresponds to a complex function of different parameters and variables, among them dH and the degree of homophily. And this function has a maximum when certain combination of dH and alpha occurs. This does not imply that dH depends on alpha since, as the referee states, it just measures the number of coincidences. This nonetheless, we have rephrased the sentence to clarify that it is not the increase in alpha that directly modifies the distance between individuals.

4) **The nodes are numbered and ordered accordingly. If we locate the nodes in the ring, the epistasis, when present, links each node with its neighbours in only one direction and always in order. Is this restriction something that could affect the results? It is hard to accept that there is no reciprocity in the epistasis unless the value of k is close to the value of N.**

Kauffman’s NK model is admittedly a cartoon model for real epistasis. However, we use it because its qualitative properties correctly capture the gross features of epistasis. In a cultural context, data are insufficient to describe even the most generic properties of the landscape. The reciprocity the reviewer mentions holds in general in molecular sequences, but perhaps this is not so in cultural traits. For example, being vegetarian implies that a person does not eat meat, but not eating meat can depend on other personal choices. Despite the lack of reciprocity implicit in the definition of the landscape, the fact that the NK model is able to quantitatively mimic the landscape of RNA secondary structure, for example, strongly supports that this restriction does not affect the results. (Note that nodes are linked to the same number of neighbors in both directions, as explained right after Eq. (2.2) – (2.10) in the previous version. Whether symmetrically linked, as done, or always in one direction and in order, is however irrelevant for the results.)

5) **The fitness, that is governing the evolution of the cultural profile of the population, is not affected by homophily so why should homophily be important? Is not that a trivial results?**

Homophily affects the distribution of the population in the fitness landscape, and it is in this sense that it might be important: it changes the cultural diversity and often clusters the population in separated groups. Still, it does not affect the occurrence of paradigm shifts. In our view, this result is not trivial. On the contrary, since homophily is an important factor in cultural spread, it is important to show that its presence does not condition the occurrence of such shifts.

Reviewer: 2

Comments to the Author(s)
In the manuscript entitled “Epistasis between cultural traits cause paradigm shifts in cultural evolution” by Ignacio Pascual et al., the authors develop a simple model for cultural dissemination showing that paradigm shifts can occur as emergent phenomena of the underlying dynamics.

In this model, the individuals are characterized by a vector of cultural traits that change mainly through cultural contagion biased by “cultural fitness” landscape.

The authors show that this model produces paradigm shifts in response to weak changes in the landscape only in the presence of cultural epistasis.

The model is perfectly framed and its equations are rigorously derived. The presented results are clear and informative and the discussion highlight the virtues of the model, but also its limitations and possible future works.

We thank the referee for the very positive overall judgment and for the careful revision.

The manuscript is well written and, from my point of view, it deserve to be published in RSOS, after the authors can clarify some minor comments and questions:

1 – In line 14 of page 5, the sentence reads “The last term in this expression” referring to equation (2.5). However, this equation have only one term.

We have changed “term” by “factor”, since we meant the last “multiplicative term”.

2 – The description of the Kauffman’s NK landscape is a little bit confusing for me. Could the authors improve this section? Here, in line 27 which describe equation (2.10) they refer to an index |j| which seems to be absent in the mentioned equation.

Though there is some care required in the generations of fitness landscapes through Kauffman’s NK model, there are abundant examples that the reader can easily find. Therefore, we would prefer to keep this section (which is however self-contained) to a minimum, as it is.

The line below (former) equation (2.10) describes the meaning of the notation [j] for any value of j. We refer to an “abstract” index j because in the equation we use [i+1], [i+2], etc., and the definition applies to them all. For instance, if i+3 happens to be no larger than n, then [i+3]=i+3, whereas if i+3>n, then [i+3]=i+3-n. As a matter of fact, [j] is introduced as a shorthand for 1 + (j mod n) – which would definitely be more cumbersome to use in the expressions.

3 – I do not understand figure 1. Four panels refers to fitness as a function of tau for all nodes? Which are the difference between panels (a) and (b) (and between (c) and (d)?). They correspond to initial and final times of evolution? The description either in the text or in the caption are not enough to understand this figure.

We apologize for the mistake in the labels of axis y in panels (b) and (d), as spotted by the first referee and corrected in the new figure: these panels represent populations. Hopefully the representation is now clear. Also, the caption has been extended to better explain what is represented in each panel.

4 – In line 45 of page 8, when comparing figures 2 and 3, the refer to figure 2 (c). Should be Figure 2 (b)?

The reference to figure 2 (c) is correct. Note that figure 3 only represents the transitions in Fig. 2 (a) and (b), while the sudden shift (which is present in Fig. 2 (b), but not in Fig. 2 (a)) is qualitatively analogous to the transition in Fig. 2 (c) (not shown in Fig. 3).