SUPPORTING INFORMATION

Multiplex Suppression of Four Quadruplet Codons via tRNA Directed Evolution

Erika A. DeBenedictis¹,²*, Gavriela D. Carver¹*, Christina Z. Chung³, Dieter Söll³,⁴, Ahmed H. Badran¹,⁵*
*These authors contributed equally: Erika A. DeBenedictis, Gavriela D. Carver
**Correspondence should be addressed to Ahmed H. Badran: ahbadran@broadinstitute.org

¹ The Broad Institute of MIT & Harvard, Cambridge MA 02142
² Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge MA 02142
³ Department of Molecular Biophysics and Biochemistry, Yale University, New Haven CT 06511
⁴ Department of Chemistry, Yale University, New Haven CT 06520
⁵ Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037

Keywords: Frameshift suppressor, quadruplet codons, genetic code expansion.

EAD: 0000-0002-7933-2651
GDC: 0000-0001-9371-4157
CZC: 0000-0001-7761-8165
DS: 0000-0002-3077-8986
AHB: 0000-0002-8105-1883
Supplementary Figure 1 | Validation of LuxAB reporter and engineered qtRNAs. a) Constitutive LuxAB reporters bearing all twenty canonical amino acids show limited preference at positive S357, with the exception of arginine which shows a five-fold reduction in luminescence activity. S1 corresponds to the UCG serine codon and S2 corresponds to the ACG serine codon at position S357. (n = 4 biologically independent samples except for A, K, L, Q, T and V n = 8, as well as G, P and S1 n = 16.) b) Comparison of the engineered pProk-lacO promoter to the rhamnose operon-derived pRHA promoter. In all cases, reporter data is normalized to an otherwise wild-type protein. (n = 4 biologically independent samples except for pProK-lacO (-) n = 3.) Data represents the mean and standard deviation as appropriate. AU: arbitrary units.
Supplementary Figure 2 | Validation of LacZ library-cross-library selection and discovered hits. a) To ensure that qtRNAs were discovered in an amino acid-specific manner, we first nominated positions within the lacZ gene for functional selections. Functional lacZ genes can be easily selected via plating on lactose. Degenerate (NNN) codon libraries were first incorporated in lacZ at all the indicated positions and plated on minimal medium plates with either glucose ("Total") or lactose + Bluo-Gal ("LacZ+"). Functional amino acid incorporation results in growth on minimal media plates supplemented with lactose as the sole carbon source, and Bluo-Gal was added to confirm that colony formation was indeed dependent on LacZ. If the sizes of the total library and the lactose-catabolizing population are similar, then the position under investigation was deemed non-specific to a given amino acid. However, if the ratio of LacZ+ to total cells was <1, then this indicated that only a subset of the library led to a functional lacZ gene. This result would indicate that this position may be amino acid specific. b) Comparison of glucose- and lactose-derived populations can be used to calculate the % LacZ (% LacZ = LacZ+/Total *100) and the % expected LacZ+ CFUs assuming complete coverage of all 64 triplet codons. If the position under investigation is likely to be amino acid-specific, then we would expect both values to be comparable. In cases where both values are comparable (underlined and bold), single clone Sanger sequencing confirmed that only the cognate amino acid was present in all blue (lactose catabolizing) colonies. c) Amino acid-specific positions were used as the basis of a library-cross-library selection, wherein each lacZ position was randomized to all possible quadruplet codons (NNNN) and each tRNA scaffold was concomitantly randomized at the anticodon loop (NNNN). Co-transformation of both libraries resulted in colony growth on minimal medium plates supplemented with lactose + Bluo-Gal in all cases except N461. Single clone sequencing at the codon (lacZ) and anticodon (qtRNA) showed the identical sequences in most cases. The reported sequences were discovered as anticodons (reverse complement), where red letters indicate mismatches found in the lacZ codon. CFU: colony forming unit.
Supplementary Figure 3 | LC-MS/MS analysis of lacZ selection-derived hits. Mass spectra of sfGFP fragments resulting from qtRNA^{Gly}_{GGG} (a), qtRNA^{His}_{AGGA} (b), qtRNA^{Thr}_{ACCA} (c), qtRNA^{Glu}_{CGGU} (d), and qtRNA^{Tyr}_{UAGA} (e) suppression of cognate quadruplet codon at Y151. Multiple peptides were observed in some cases and are shown for completeness. Summary LC-MS/MS results are reported in Supplementary Table 8.
Supplementary Figure 4 | Benchmarking PACE-evolved qtRNA SPs using progressively stringent APs. a) Schematic representation of the accessory plasmid design, wherein either AP copy number was modified (L = wild-type RepA ~4 copies/cell; H = RepAE93K ~27 copies/cell) or the number of quadruplet codons in pIII was progressively increased. In all cases, clonal SPs encoding the indicated engineered or evolved qtRNAs were challenged to form plaques in S3489 cells. For each SP, the threshold for plaque formation is visualized for serine (b), arginine (c), glutamine (d), tryptophan (e), and tyrosine (f).
Supplementary Figure 5 | Analysis of engineered and evolved qtRNAs in bacterial RF1 knockout strains. **a)** Engineered and evolved UAGA-decoding qtRNAs assayed using an endpoint fluorescence reporter assay using two RF1 knockout strains (C321.ΔA and JX33) with one RF1+ strains (C321). In all cases, tRNAs were assayed alongside a reporter incorporating the quadruplet codon UAGA at sfGFP position Y151. **b)** Extension of the sfGFP reporter assay in JX33 and S3489 (control RF+) to all rationally engineered UAGA-decoding qtRNAs (n = 6 biologically independent samples except for Asn, Gly, His, Ile, Phe, Pro, Thr, and Val where n = 5). In all cases, reporter data is normalized to an otherwise wild-type protein. Data represents the mean and standard deviation as appropriate.
Supplementary Figure 6 | Models of engineered and evolved qtRNAs. Cloverleaf models of engineered UAGA qtRNAs and evolved variants: arginine (a), glutamine (b), serine (c), tryptophan (d), and tyrosine (e). In all cases, the engineered UAGA codon is highlighted in gray, and PACE-acquired mutations are highlighted in red. qtRNA^{Ser}_{UAGA-Evo1} was used to initiate the experiment that produced qtRNA^{Ser}_{UAGA-Evo2} and qtRNA^{Ser}_{UAGA-Evo3}.
Supplementary Figure 7 | LC-MS/MS analysis of engineered and evolved qtRNAs. Mass spectra of the resultant sfGFP fragments from the suppression of UAGA quadruplet codon at sfGFP Y151 by the engineered and subsequently evolved qtRNAs: qtRNAArg\textsubscript{UAGA} (a–c), qtRNAGln\textsubscript{UAGA} (d–f), qtRNASer\textsubscript{UAGA} (g–j), qtRNATrp\textsubscript{UAGA} (k,l), and qtRNATyr\textsubscript{UAGA} (m,n). Multiple peptides were observed in some cases and are shown for completeness. Summary LC-MS/MS results are reported in Supplementary Table 8.
Supplementary Figure 8 | Analysis of qtRNA/codon specificity and crosstalk. Evolved UAGA-qtRNAs were tested using mismatched codon reporters to assess instances of decoding crosstalk. LuxAB reporters encoding quadruplet codons with modifications at the third position (a-e) or fourth position (f-j) showcase absolute requirement for guanine at the third position and preference for adenine at the fourth position. k-o) Evolved UAGA-qtRNAs continue to crosstalk with amber (UAG) stop codons, with a moderate preference for purines at the first position of the subsequent codon. In all cases, LuxAB reporter data is normalized to an otherwise wild-type protein. Data represents the mean and standard deviation of 4 biologically independent samples except for Trp-UAGA-Evo1 UAGA/UAGA/UAGC/UAGU and Tyr-UAGA-Evo1 UAAA/UAGC/UAGG/UAGU/UAG_a/UAG_g where n = 3 as well as Ser-UAGA-Evo3 UAG_g/UAG_u, Trp-UAGA-Evo1 UAG_g, and Tyr-UAGA-Evo1 UAG_g where n = 2).
Supplementary Figure 9 | Translation using orthogonal ribosome.

a) Translation of a reporter containing a UAGA codon at either residue 357 or residue 164, in comparison to translation of a luciferase containing UAGA codons at both locations (n = 4 biologically independent samples).

b) Using the H3 o-RBS/o-antiRBS pair (5'-AUAUGU/5'-AUGUUC), qtRNA_{Ser}^{UAGA-Evo1} translates UAGA quadruplet codons at both S357 and S164 more efficiently than when using the host ribosome, especially for reporters with multiple frameshifts (n = 4 biologically independent samples except for S357/S164+tRNA-Ser-UCG where n = 2).

c) Orthogonal ribosomes incorporating the described RiboQ1 mutations (U531G/U534A/A1196G/A1197G) show comparable luminescence to the host wildtype ribosome for quadruplet codon translation (n = 4 biologically independent samples except for S357/S164+tRNA-Ser-UCG where n = 2). In all cases, the average wild-type (triplet) LuxAB reporter activity is shown as a dashed line. Data represent the mean and standard deviation as appropriate. OD optical density, AU arbitrary units.
Supplementary Figure 10 | LC-MS/MS analysis of evolved qtRNA translating a linker containing adjacent UAGA quadruplet codons. Mass spectra of sfGFP-linked-mCherry fragments resulting from qtRNA$^{\text{Ser}}$$_{\text{UAGA-Evo3}}$ (a) and qtRNA$^{\text{Tyr}}$$_{\text{UAGA-Evo1}}$ (b) suppression of a linker containing six adjacent UAGA quadruplet codons, and qtRNA$^{\text{Gln}}$$_{\text{UAGA-Evo2}}$ (c) suppression of a linker containing five adjacent UAGA quadruplet codons. Mass spectra of the linker fragment resulting from qtRNA$^{\text{Arg}}$$_{\text{UAGA-Evo1}}$ and qtRNA$^{\text{Trp}}$$_{\text{UAGA-Evo1}}$ were unable to be identified, likely due to peptide hydrophobicity limiting chromatographic separation. Multiple peptides were observed in some cases and are shown for completeness. Summary LC-MS/MS results are reported in Supplementary Table 8.
Supplementary Figure 11 | LC-MS/MS analysis of qtRNA translating cognate quadruplet codons at positions throughout sfGFP. Mass spectra of sfGFP fragments resulting from qtRNA^HisAGGA suppression of its cognate quadruplet codon at H148 (a), qtRNA^GlyGGGG suppression of its cognate quadruplet codon at G174 (b), qtRNA^SerUAGA-Evo3 suppression of its cognate quadruplet codon at S202 (c), and qtRNA^GluCGGU suppression of its cognate quadruplet codon at E213 (d). Multiple peptides were observed in some cases and are shown for completeness. Summary LC-MS/MS results are reported in Supplementary Table 8.
Supplementary Figure 12 | Influence of plasmid copy number on qtRNA decoding efficiencies.

qtRNAs were tested alongside cognate quadruplet codons at positions in sfGFP to assess optimal plasmid copy number (in parentheses). In all cases, reporter data is normalized to an otherwise wild-type protein. Data represents the mean and standard deviation of 8 biological replicates.
Supplementary Figure 13 | Quantification of multicistronic qtRNA scaffold-based suppression. All qtRNA scaffolds were assayed against quadruplet codons introduced at position Y151 of sfGFP. In all cases, reporter data is normalized to an otherwise wild-type protein. Data represents the mean and standard deviation of 5 biological replicates.
Supplementary Figure 14 | LC-MS/MS analysis of qtRNA scaffold translating quadruplet codons at positions throughout sfGFP. Mass spectra of sfGFP fragments resulting from qtRNA scaffold #2 (composed of qtRNA$^{\text{Gly}}_{\text{GGG}}$, qtRNA$^{\text{Ser}}_{\text{UAGA-Evo3}}$, qtRNA$^{\text{Glu}}_{\text{CGGU}}$, and qtRNA$^{\text{His}}_{\text{AGGA}}$ stitched together) suppression of cognate quadruplet codons at H148, G174, and S202 (a), H148, G174, and E213 (b), H148, S202, and E213 (c), and G174, S202, and E213 (d). Multiple peptides were observed in some cases and are shown for completeness. Summary LC-MS/MS results are reported in Supplementary Table 8.
Supplementary Figure 15 | Amino acid incorporation analysis corresponding to translation of three quadruplet codons in sfGFP. Amino acid composition analysis of qtRNA scaffold #2 (composed of qtRNA^{Gly}GGGG, qtRNA^{Ser}UAGA-Evo3, qtRNA^{Glu}CGGU, and qtRNA^{His}AGGA stitched together) suppression of cognate quadruplet codons at H148, G174, and S202 (a), H148, G174, and E213 (b), H148, S202, and E213 (c), and G174, S202, and E213 (d).
Supplementary Figure 16 | LC-MS/MS analysis of qtRNA scaffold translating four quadruplet codons at positions throughout sfGFP. Mass spectra of sfGFP fragments resulting from qtRNA scaffold #2 (composed of qtRNA^Gly^{GGG}, qtRNA^Ser^{UAGA-Evo3}, qtRNA^Glu^{CGGU}, and qtRNA^His^{AGGA} stitched together) suppression of cognate quadruplet codons at H148, G174, S202 and E213. Multiple peptides were observed in some cases and are shown for completeness. Summary LC-MS/MS results are reported in Supplementary Table 8.
Supplementary Figure 17 | Amino acid incorporation analysis corresponding to translation of four quadruplet codons in sfGFP. Amino acid composition analysis of qtRNA scaffold #2 (composed of qtRNA$^{\text{Gly}}_{\text{GGGG}}$, qtRNA$^{\text{Ser}}_{\text{UAGA-Evo3}}$, qtRNA$^{\text{Glu}}_{\text{CGGU}}$, and qtRNA$^{\text{His}}_{\text{AGGA}}$ stitched together) suppression of cognate quadruplet codons at H148 (a), G174 (b), S202 (c), and E213 (d).
Supplementary Table 1 | Previously reported quadruplet-decoding tRNAs discovered in bacterial isolates.

Spontaneous mutations in the tRNA which expand the anticodon by 1 base enable the decoding of quadruplet codons. Differences between the natural codon and the suppressed quadruplet codon are shown in red. AA: amino acid.

Class	AA	Gene	Codon	Suppressor	Suppressed Codon	Source Organism	Reference
Elongator	Leu	leuX	UUG	su6	UAGN	*Escherichia coli*	Moore 2000
Elongator	Val	valU	GUU	hopR1	GUUA	*Escherichia coli*	O’Connor 1989
Elongator	Val	valU	GUA	hopR513	GUAA	*Escherichia coli*	O’Connor 1989
Elongator	Gln	trpT	UGG	su7	UAGN	*Escherichia coli*	Curran 1987
Elongator	Gly	glyU	GGG	sufD	GGGG	*Salmonella typhimurium*	Riddle 1973
Elongator	Pro	proL	CCC	sufB	CCC	*Salmonella typhimurium*	Sroga 1992
Elongator	Gin	ginW	CAA	sufG	CAAA	*Salmonella typhimurium*	O’Connor 2002
Elongator	Thr	thrT	ACC	sufU	ACCH	*Salmonella typhimurium*	Bossi 1984
Elongator	Gly	SUF16	GGC	suf16	GGGC	*Saccharomyces cerevisiae*	Gaber 1982
Supplementary Table 2	Sequences of all natural E. coli tRNA scaffolds used for qtRNA engineering. In all cases, tRNA sequences are shown in magenta, and the anticodon is shown in purple. Flanking sequences (black) were included in vector design to ensure efficient qtRNA maturation. All coordinates derive from E. coli DH10B genome.						
tRNA	Amino Acid	Anticodon	Doubling time ± standard deviation (min)				
------	------------	-----------	--				
tRNA_A	Ala	GCC	21.7 ± 0.3				
qtRNA_A	Ala	UAGA	20.4 ± 0.4				
tRNA_R	Arg	CGU	22.8 ± 0.4				
qtRNA_R	Arg	UAGA	21.7 ± 0.5				
qtRNA_R	Arg	UAGA-Evo1	21.9 ± 0.3				
qtRNA_R	Arg	UAGA-Evo2	22.0 ± 0.4				
tRNA_N	Asn	AAC	22.3 ± 0.4				
qtRNA_N	Asn	UAGA	25.9 ± 4.2				
tRNA_D	Asp	GAC	20.7 ± 0.5				
qtRNA_D	Asp	UAGA	23.2 ± 4.1				
tRNA_C	Cys	UGA	21.0 ± 0.5				
qtRNA_C	Cys	UAGA	22.0 ± 3.4				
tRNA_G	Gln	CAG	24.8 ± 2.9				
qtRNA_G	Gln	UAGA	21.5 ± 0.5				
qtRNA_G	Gln	UAGA-Evo1	23.4 ± 0.3				
qtRNA_G	Gln	UAGA-Evo2	21.3 ± 0.7				
qtRNA_G	UAGA-Evo3						
tRNA_G	Glu	GAA	24.5 ± 3.7				
qtRNA_G	Glu	UAGA	24.5 ± 4.1				
tRNA_Y	His	CAC	20.7 ± 0.5				
qtRNA_Y	His	UAGA	25.0 ± 4.2				
tRNA_I	Ile	CCG	24.4 ± 5.0				
qtRNA_I	Ile	UAGA	21.4 ± 2.2				
tRNA_L	Leu	UUA	23.1 ± 0.4				
qtRNA_L	Leu	UAGA	23.5 ± 0.5				
tRNA_L	Lys	AAA	21.1 ± 0.6				
qtRNA_L	Lys	UAGA	23.0 ± 0.2				
tRNA_{Met}	Met	AUG	21.2 ± 0.5				
qtRNA_{Met}	Met	UAGA	23.1 ± 0.7				
tRNA_P	Phe	UGC	24.2 ± 5.0				
qtRNA_P	Phe	UAGA	21.4 ± 0.5				
tRNA_{Pro}	Pro	CCG	20.3 ± 2.3				
qtRNA_{Pro}	Pro	UAGA	21.7 ± 3.5				
tRNA_S	Ser	UGA	22.2 ± 4.7				
qtRNA_S	Ser	UAGA-Evs1	20.2 ± 2.2				
qtRNA_S	Ser	UAGA-Evs2	19.4 ± 0.4				
qtRNA_S	Ser	UAGA-Evs3	19.8 ± 1.2				
tRNA_{Thr}	Thr	ACC	22.8 ± 4.5				
qtRNA_{Thr}	Thr	UAGA	23.0 ± 0.5				
tRNA_T	Thr	UUG	19.9 ± 0.7				
qtRNA_T	Thr	UAGA	21.4 ± 1.5				
tRNA_{Tyr}	Tyr	GUA	24.4 ± 4.4				
qtRNA_{Tyr}	Tyr	UAGA-Evo1	22.9 ± 3.4				
qtRNA_{Tyr}	Tyr	UAGA-Evo2	22.1 ± 3.3				
tRNA_{Val}	Val	GCC	19.3 ± 0.2				
qtRNA_{Val}	Val	UAGA	21.2 ± 0.5				
Supplementary Table 3 | Doubling time analysis for all natural, engineered, and evolved qtRNAs. All doubling time analyses used S3489 cells with tRNA expression plasmids encoding the shown tRNA under induced conditions. Data represents the mean and standard deviation of 4 - 8 biological replicates.
Supplementary Table 4

Amino acid abundance at position Y151 of sfGFP in response to UAGA quadruplet codon translation. Mutations are indicated for each variant using universal tRNA nomenclature. AA: amino acid.

qtRNA	Mutations	AA Occupancy at sfGFP Position 151 (%)	
qtRNA^{Arg}_{UAGA}	–	Arg (100)	
qtRNA^{Arg}_{UAGA-Evo1}	G44U	Arg (100)	
qtRNA^{Arg}_{UAGA-Evo2}	C11U, U26C, G44U	Arg (99.9), Trp (0.1)	
qtRNA^{Gln}_{UAGA}	–	Gln (100)	
qtRNA^{Gln}_{UAGA-Evo1}	U31C	Gln (100)	
qtRNA^{Gln}_{UAGA-Evo2}	U31C, ΔU45	Gln (100)	
qtRNA^{Gln}_{UAGA-Evo3}	C33A, A39C	Ser (100)	
qtRNA^{Gln}_{UAGA-Evo1}	C33A, A39C	Ser (99.95), Asp (0.05)	
qtRNA^{Gln}_{UAGA-Evo2}	C33A, A39C, C53U	Ser (99.96), Asp (0.04)	
qtRNA^{Gln}_{UAGA-Evo3}	U32G, C33A, A39C, A40C, G52A	Ser (100)	
qtRNA^{Trp}_{UAGA}	–	Trp (5.9), Gln (81.7), Tyr (12.4)	
qtRNA^{Trp}_{UAGA-Evo1}	G24A, A38U, U72C	Gln (99.99), Tyr (0.01)	
qtRNA^{Tyr}_{UAGA}	–	Tyr (100)	
qtRNA^{Tyr}_{UAGA-Evo1}	C33A, T34C	Tyr (100)	
tRNA	# Plasmids	Doubling time ± standard deviation (min)	
----------------------	------------	---	
		Uninduced	Induced
qtRNAHis\textsubscript{AGGA}	1	19.4 ± 0.6	22.4 ± 0.2
qtRNAGly\textsubscript{GGGG}	1	20.0 ± 0.6	19.6 ± 0.4
qtRNASer\textsubscript{UAGA-Evo3}	1	20.9 ± 3.2	20.1 ± 0.4
qtRNAGlu\textsubscript{CGGU}	1	21.5 ± 0.5	21.9 ± 0.2
qtRNAHis\textsubscript{AGGA}	2	19.9 ± 0.9	27.2 ± 1.1
qtRNAGly\textsubscript{GGGG}	2	19.5 ± 0.7	18.8 ± 0.5
qtRNASer\textsubscript{UAGA-Evo3}	2	21.1 ± 0.8	20.8 ± 0.8
qtRNAGlu\textsubscript{CGGU}	2	18.8 ± 0.5	21.5 ± 0.3
qtRNAHis\textsubscript{AGGA}	2	22.3 ± 0.5	23.9 ± 0.9
qtRNASer\textsubscript{UAGA-Evo3}	2	22.2 ± 0.8	20.6 ± 0.6
qtRNAGlu\textsubscript{CGGU}	3	22.5 ± 0.6	23.9 ± 1.0
qtRNAHis\textsubscript{AGGA}	3	18.8 ± 0.7	23.9 ± 0.6
qtRNAGly\textsubscript{GGGG}	3	20.9 ± 0.8	29.6 ± 0.6
qtRNASer\textsubscript{UAGA-Evo3}	3	20.6 ± 0.7	19.7 ± 0.6
qtRNAGlu\textsubscript{CGGU}	4	20.8 ± 0.7	25.1 ± 0.9
qtRNAHis\textsubscript{AGGA}	1 (scaffold #2)	19.3 ± 0.5	19.3 ± 0.3

Supplementary Table 5 | Strain doubling time analysis. Orthogonal qtRNA expression plasmids or an engineered qtRNA scaffold were used to quantify cellular burden under uninduced and induced conditions. Data represents the mean and standard deviation of 4 - 12 biological replicates.
ctctccctataagcactccacacaaggggggtattagctagctggagaacacttcctacaaaggggggtccgctgcagtcgtctggggtatcctcacaaggggggtactccacatacttttctgcagctggtgtaaaggtgtaaatcctgcgtgatcttcctcgcacgagcacttcccttacaaggaggggggtcggcggttcgatcccgtcatcacccaccaactactttatgtagtctccgccgtgtagcaagaaattgagaagttggtgattagctcagctgggagagcacctcccttacaaggaggggggtcggcggttcgatcccgtcatcacccacca
ttttacaaacagcaagctggtgtaaaggtgtaaatcctgcgtgatcttcctcgcacgagcacttcccttacaaggaggggggtcggcggttcgatcccgtcatcacccaccaatgtaaaaaagcgccctaaaggcgctttttcattttcacaagtcttcaggttagctcagttggtagagcagttgacttttaatcaattggtcgcaggttcgaatcctgcacgacccacca
cattcaccagaaagcgtgtacggaattgggtatcgccagcggtaaggcaccggtttttgataccggcattccctggttcgaatccaggtaccccagccattaaaaaagctcgcttcggcgagcttttgcgoctttagctcagctggatagagtactcggctacgaaccgagcggtcggaggttcgaatcctcccggatgcactattctacgtactttcagcgatgaaggtatggaagaggtggcggtaataaccgcaggcaccagggaggataacgttgctttagcaacggcccgaagggcgagccgcaaggcgagtaatcctcccggatgcaccatctcttaattgatatggcctttagtagcggtatcaatatcagcagtaaaataaatttcccgatgcatccgtagctcagctggatagagtactcggctacgaaccgagcggtcggaggttcgaatcctcccggatg
tattctccgtaaccttcagcaatgaaggta
gctttagtagcggtatcaatatcatcagcagtaaaataaatttcccgatgcatccgtagttcagctggatagagtactcggctacgaaccgagcggtcggaggttcgaatcctcccggatgcacca
2520901 2521358
780524 781682
4175358 4175859
3982345 3982841
2818675 2817754
21375358 21378599

Supplementary Table 6 | Sequences of multicisronic tRNA scaffolds. Endogenous tRNA sequences are highlighted in magenta and flanking sequences are shown in black. All coordinates derive from *E. coli* MG1655 genome.
qtRNA scaffold	Sequence (qtRNA)	
1	cctataatgcgaacctacacagcggtGGGGCGGATGTTCAATGGTAGACAGAGGCTTCCCCAGCTCTATACGAGGGTTTCGATTCCTCTCCGGCTCCAAactttagtgcggctgtagacagaattgagaagGGAGAATGCGGAGCGGCTGAACGGACCGGGATCCTAAGGGACGAACTCTACCGGGGGTTCAAATCCCCCTCTCTCCGCCA	cctataatgcgaacctacacagcggtGGGGCGGATGTTCAATGGTAGACAGAGGCTTCCCCAGCTCTATACGAGGGTTTCGATTCCTCTCCGGCTCCAAactttagtgcggctgtagacagaattgagaagGGAGAATGCGGAGCGGCTGAACGGACCGGGATCCTAAGGGACGAACTCTACCGGGGGTTCAAATCCCCCTCTCTCCGCCA
2	ttttatgtagttcccgcagctgtagcaagaaattgagaagGGAGAGATGCCGGAGCGGCTGAACGGACCGGGATCCTAAGGGACGAACTCTACCGGGGGTTCAAATCCCCCTCTCTCCGCCA	ttttatgtagttcccgcagctgtagcaagaaattgagaagGGAGAGATGCCGGAGCGGCTGAACGGACCGGGATCCTAAGGGACGAACTCTACCGGGGGTTCAAATCCCCCTCTCTCCGCCA
3	actatacaatgcggatcacttgatGGGGCGGATGTTCAATGGTAGACAGAGGCTTCCCCAGCTCTATACGAGGGTTTCGATTCCTCTCCGGCTCCAAactttagtgcggctgtagacagaattgagaagGGAGAATGCGGAGCGGCTGAACGGACCGGGATCCTAAGGGACGAACTCTACCGGGGGTTCAAATCCCCCTCTCTCCGCCA	actatacaatgcggatcacttgatGGGGCGGATGTTCAATGGTAGACAGAGGCTTCCCCAGCTCTATACGAGGGTTTCGATTCCTCTCCGGCTCCAAactttagtgcggctgtagacagaattgagaagGGAGAATGCGGAGCGGCTGAACGGACCGGGATCCTAAGGGACGAACTCTACCGGGGGTTCAAATCCCCCTCTCTCCGCCA
4	tcttcctataatgcgaacctacacagcggtGGGGCGGATGTTCAATGGTAGACAGAGGCTTCCCCAGCTCTATACGAGGGTTTCGATTCCTCTCCGGCTCCAAactttagtgcggctgtagacagaattgagaagGGAGAATGCGGAGCGGCTGAACGGACCGGGATCCTAAGGGACGAACTCTACCGGGGGTTCAAATCCCCCTCTCTCCGCCA	tcttcctataatgcgaacctacacagcggtGGGGCGGATGTTCAATGGTAGACAGAGGCTTCCCCAGCTCTATACGAGGGTTTCGATTCCTCTCCGGCTCCAAactttagtgcggctgtagacagaattgagaagGGAGAATGCGGAGCGGCTGAACGGACCGGGATCCTAAGGGACGAACTCTACCGGGGGTTCAAATCCCCCTCTCTCCGCCA
5	ttcgactaatgcggatcacttgatGGGGCGGATGTTCAATGGTAGACAGAGGCTTCCCCAGCTCTATACGAGGGTTTCGATTCCTCTCCGGCTCCAAactttagtgcggctgtagacagaattgagaagGGAGAATGCGGAGCGGCTGAACGGACCGGGATCCTAAGGGACGAACTCTACCGGGGGTTCAAATCCCCCTCTCTCCGCCA	ttcgactaatgcggatcacttgatGGGGCGGATGTTCAATGGTAGACAGAGGCTTCCCCAGCTCTATACGAGGGTTTCGATTCCTCTCCGGCTCCAAactttagtgcggctgtagacagaattgagaagGGAGAATGCGGAGCGGCTGAACGGACCGGGATCCTAAGGGACGAACTCTACCGGGGGTTCAAATCCCCCTCTCTCCGCCA
6	ttcgactaatgcggatcacttgatGGGGCGGATGTTCAATGGTAGACAGAGGCTTCCCCAGCTCTATACGAGGGTTTCGATTCCTCTCCGGCTCCAAactttagtgcggctgtagacagaattgagaagGGAGAATGCGGAGCGGCTGAACGGACCGGGATCCTAAGGGACGAACTCTACCGGGGGTTCAAATCCCCCTCTCTCCGCCA	ttcgactaatgcggatcacttgatGGGGCGGATGTTCAATGGTAGACAGAGGCTTCCCCAGCTCTATACGAGGGTTTCGATTCCTCTCCGGCTCCAAactttagtgcggctgtagacagaattgagaagGGAGAATGCGGAGCGGCTGAACGGACCGGGATCCTAAGGGACGAACTCTACCGGGGGTTCAAATCCCCCTCTCTCCGCCA
Supplementary Table 7	Sequences of multicisronic qtRNA scaffolds. All qtRNAs are visualized in magenta, with their anticodons underlined in purple. Flanking sequences (black) were included in vector design to ensure efficient qtRNA maturation. qtRNA order in each scaffold is as follows: qtRNA$_{Gly}^{GGGG}$, qtRNA$_{Ser}^{UAGA-Evo3}$, qtRNA$_{Glu}^{CGGU}$, then qtRNA$_{His}^{AGGA}$.	
Supplementary Figure	qtRNA Rep	Reporter (Position>Quadruplet Codon)
----------------------	-----------	------------------------------------
Supplementary Figure 3a	q3RNA_{GGG}	sfGFP (Y151>G)
Supplementary Figure 3b	q3RNA_{AGA}	sfGFP (Y151>A)
Supplementary Figure 3c	q3RNA_{ACCA}	sfGFP (Y151>ACA)
Supplementary Figure 3d	q3RNA_{CGGU}	sfGFP (Y151>C)
Supplementary Figure 3e	q3RNA_{UAGA}	sfGFP (Y151>U)
Supplementary Figure 7a	q3RNA_{GGG}	sfGFP (Y151>G)
Supplementary Figure 7b	q3RNA_{AGA}	sfGFP (Y151>A)
Supplementary Figure 7c	q3RNA_{ACCA}	sfGFP (Y151>ACA)
Supplementary Figure 7d	q3RNA_{CGGU}	sfGFP (Y151>C)
Supplementary Figure 7e	q3RNA_{UAGA}	sfGFP (Y151>U)
Supplementary Figure 7f	q3RNA_{GGG}	sfGFP (Y151>G)
Supplementary Figure 7g	q3RNA_{AGA}	sfGFP (Y151>A)
Supplementary Figure 7h	q3RNA_{ACCA}	sfGFP (Y151>ACA)
Supplementary Figure 7i	q3RNA_{CGGU}	sfGFP (Y151>C)
Supplementary Figure 7j	q3RNA_{UAGA}	sfGFP (Y151>U)
Supplementary Figure 7k	q3RNA_{GGG}	sfGFP (Y151>G)
Supplementary Figure 7l	q3RNA_{AGA}	sfGFP (Y151>A)
Supplementary Figure 7m	q3RNA_{ACCA}	sfGFP (Y151>ACA)
Supplementary Figure 7n	q3RNA_{CGGU}	sfGFP (Y151>C)
Supplementary Figure	qRTNA	Reporter (Position>Quadruplet Codon)
----------------------	-------	-------------------------------------
Supplementary Figure 10a	qRTNA_{UAGA-Evo3}	sfGFp-(6xUAGA-linker)-mCherry
Supplementary Figure 10b	qRTNA_{UAGA-Evo1}	sfGFp-(6xUAGA-linker)-mCherry
Supplementary Figure 10c	qRTNA_{UAGA-Evo2}	sfGFp-(6xUAGA-linker)-mCherry
Supplementary Figure 11a	qRTNA_{UAGA}	sfGFp (H148>AGGA)
Supplementary Figure 11b	qRTNA_{AGGA}	sfGFp (G174>GGGG)
Supplementary Figure 11c	qRTNA_{UAGA-Evo3}	sfGFp (S202>UAGA)
Supplementary Figure 11d	qRTNA_{CGGU}	sfGFp (E213>CGGU)
Supplementary Figure 14a	qRTNA scaffold 2 (Gly-GGGG, Ser-UAGA-Evo3, Glu-CGGU, His-AGGA)	sfGFp (H148>AGGA, G174>GGGG, S202>UAGA)
Supplementary Figure 14b	qRTNA scaffold 2 (Gly-GGGG, Ser-UAGA-Evo3, Glu-CGGU, His-AGGA)	sfGFp (H148>AGGA, G174>GGGG, E213>CGGU)
Supplementary Figure 14c	qRTNA scaffold 2 (Gly-GGGG, Ser-UAGA-Evo3, Glu-CGGU, His-AGGA)	sfGFp (H148>AGGA, S202>UAGA, E213>CGGU)
Supplementary Figure 14d	qRTNA scaffold 2 (Gly-GGGG, Ser-UAGA-Evo3, Glu-CGGU, His-AGGA)	sfGFp (G174>GGGG, S202>UAGA, E213>CGGU)
Supplementary Figure 16	qRTNA scaffold 2 (Gly-GGGG, Ser-UAGA-Evo3, Glu-CGGU, His-AGGA)	sfGFp (H148>AGGA, G174>GGGG, S202>UAGA, E213>CGGU)

Supplementary Table 8 | Summary LC-MS/MS results.
Supplementary References

1. Lajoie, M.J. et al. Genomically recoded organisms expand biological functions. *Science* **342**, 357-360 (2013).

2. Johnson, D.B.F. et al. RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites. *Nature Chemical Biology* **7**, 779-786 (2011).

3. Neumann, H., Wang, K., Davis, L., Garcia-Alai, M. & Chin, J.W. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. *Nature* **464**, 441-444 (2010).