External validation of pulmonary radiotherapy toxicity models for ultracentral lung tumors

Ishita Chena, Abraham J. Wua, Andrew Jacksonb, Purvi Patelb, Lian Sunb, Angela Ngb, Aditi Iyerb, Aditya Apteb, Andreas Rimnerc, Daniel Gomeza, Joseph O. Deasyb, Maria Thorb,*

a Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
b Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY

\textbf{A R T I C L E I N F O}

\textbf{Keywords:}
Ultracentral
SBRT
NTCP

\textbf{A B S T R A C T}

\textbf{Introduction:} Pulmonary toxicity is dose-limiting in stereotactic body radiation therapy (SBRT) for tumors that abut the proximal bronchial tree (PBT), esophagus, or other mediastinal structures. In this work we explored published models of pulmonary toxicity following SBRT for such ultracentral tumors in an independent cohort of patients.

\textbf{Methods:} The PubMed database was searched for pulmonary toxicity models. Identified models were tested in a cohort of patients with ultracentral lung tumors treated between 2008 and 2017 at one large center (N = 88). This cohort included 60 % primary and 40 % metastatic tumors treated to 45 Gy in 5 fractions (fx), 50 Gy in 5 fx, 60 Gy in 8 fx, or 60 Gy in 15 fx prescribed as 100 % dose to PTV.

\textbf{Results:} Seven published NTCP models from two studies were identified. The NTCP models utilized PBT max point dose (Dmax), D0.2 cm3, V65, V100, and V130. Within the independent cohort, the \textgreek{g} \textgreek{g} grade 3 toxicity and grade 5 toxicity rates were 18 % and 7–10 %, respectively, and the Dmax models best described pulmonary toxicity. The Dmax to 0.1 cm3 model was better calibrated and had increased steepness compared to the Dmax model. A re-planning study minimizing PBT 0.1 cm3 to below 122 Gy in EQD\textsubscript{2} (for a 10 \textgreek{g} \textgreek{g} grade 3 pulmonary toxicity) was demonstrated to be completely feasible in 4/6 patients, and dose to PBT 0.1 cm3 was considerably lowered in all six patients.

\textbf{Conclusions:} Pulmonary toxicity models were identified from two studies and explored within an independent ultracentral lung tumor cohort. A modified Dmax to 0.1 cm3 PBT model displayed the best performance. This model could be utilized as a starting point for rationally constructed airways constraints in ultracentral patients treated with SBRT or hypofractionation.

a Corresponding author at: Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, United States.
b Email address: thorn@mskcc.org (M. Thor).

https://doi.org/10.1016/j.ctro.2022.10.012

Received 6 June 2022; Received in revised form 17 October 2022; Accepted 30 October 2022

Available online 4 November 2022

2405-6308/© 2022 The Authors. Published by Elsevier B.V. on behalf of European Society for Radiotherapy and Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
SBRT in ultracentral lesions. The goal of this work was to explore the utility of published pulmonary toxicity models associated with dose to the airway structures after SBRT for ultracentral tumors in an independent institutional cohort of patients.

Methods

Patient cohort and treatment

This retrospective study was approved by our institutional review board (IRB #16–142) and the selected cohort consisted of patients with ultracentral thoracic lesions previously described in Wang et al. [12]. Briefly, this cohort was identified as patients with NSCLC or lung metastases from non-lung primaries. In the independent cohort, the grade 5 hemorrhage rate was 7 % compared to the published 12 % rate in [5], while the ≥ grade 3 toxicity and grade 5 pulmonary toxicity rates were 18 % and 10 % (compared to the published 15 % and 8 % rates in [4]). Although with fairly shallow response curves (S = 0.08 and 0.05 for ≥ grade 3 and grade 5 pulmonary toxicity, respectively), the max point dose model from [4] reflected the ≥ grade 3 and grade 5 pulmonary toxicity (Figures 1 and S1; Table 2). Other models failed the validation test since the corresponding dose response curve was steeper than that of the max point dose (S = 3.1 vs 2.1), where D is the total dose, d is the dose per fraction, and α/β of 3 Gy was used for PBT [4]. Model performance was judged graphically comparing the agreement between predicted and observed toxicity, in addition to the steepness S of the dose–response curves. More specifically, calibration was defined as the agreement between the observed toxicity in the independent cohort and a model’s predicted toxicity based on the number of quintiles enclosed in the model’s 95 % confidence interval (ideally 5/5 quintiles fall within the 95 %CI).

Results

The search strategy identified a total of seven NTCP models: one D0.2 cm³ model for lethal hemorrhage from the recently published HILUS trial of 65 patients with central lung tumors, of which 26 were located ultracentrally [5]. In addition, six NTCP models for clinical pulmonary toxicity were identified from a pooled analysis of nearly 200 patients with central lung tumors [4]. Pulmonary toxicity in this paper was defined as any ≥ grade 3 radiation pneumonitis, ≥ grade 3 hemoptysis, atelectasis due to main stem bronchus occlusion, or any multifactorial respiratory failure. Of these six models, three were for ≥ grade 3 and three for grade 5 toxicity and included bronchial max point dose, V65, V100, and V130.

A total of 88 patients were identified for inclusion in the independent cohort. The median follow-up time was 20 months. Of these patients, 46 had primary NSCLC, 7 occurred locally, and 35 patients had lung metastases from non-lung primaries. In the independent cohort, the grade 5 hemorrhage rate was 7 % compared to the published 12 % rate in [5], while the ≥ grade 3 toxicity and grade 5 pulmonary toxicity rates were 18 % and 10 % (compared to the published 15 % and 8 % rates in [4]). Although with fairly shallow response curves (S = 0.08 and 0.05 for ≥ grade 3 and grade 5 pulmonary toxicity, respectively), the max point dose model from [4] reflected the ≥ grade 3 and grade 5 pulmonary toxicity (Figures 1 and S1; Table 2). Other models failed the validation test since the corresponding dose–response curves were although steeper (S = 1.9–7.7), but not well calibrated (0–2 quintiles within 95 % CI of the corresponding dose–response curve) as depicted in Figures 2 and S1, S2, and Table 2.

The PubMed database was scrutinized for toxicity models evaluating pulmonary and airway toxicity for SBRT or hypofractionated radiation treatment for central tumors in the lung. The following search term criteria were used: (central) AND (lung tumor) AND (normal tissue complication probability) AND (radiation). The PBT, defined as trachea 2 cm above the carina to the primary lobar bronchi, was systematically and manually segmented for all patients by one radiation oncologist prior to analysis [12]. All doses were converted to equivalent dose of 2 Gy per fraction (EQD2) computed using EQD2 = D × (d + α/β)/(2 + α/β), where D is the total dose, d is the dose per fraction, and α/β of 3 Gy was used for PBT [4].
to the data (2 vs 4 quintiles within 95 %CI of the corresponding dose–response curve); Fig. 1; Table 2. The observed 15 % ≥ grade 3 toxicity in the independent cohort corresponded to a D0.1 cm3 of 150 Gy, while the first event of ≥ grade 3 toxicity was observed at D0.1 cm3 of 87 Gy. Aiming for a reduced rate of ≥ grade 3 toxicity from the observed 15 % to 10 % would correspond to D0.1 cm3 of 122 Gy.

A re-planning study was conducted to explore the feasibility of adhering to D0.1 cm3 < 122 Gy. More specifically, the six patients that had received D0.1 cm3 > 122 Gy (D0.1 cm3 range: 132–147 Gy) and that had experienced ≥ grade 3 toxicity without receiving anti-VEGF were re-planned aiming for D0.1 cm3 < 122 Gy while still adhering to all clinical constraints, applying the same treatment technique and fractionation as in the original and delivered treatment plans. The D0.1 cm3 was converted to the D0.1 cm3 in the two given fractionation schemes (10Gy x5: D0.1 cm3 < 48 Gy; 7.5Gy x8: D0.1 cm3 < 59 Gy). In four of the 6 patients, the new constraint was adhered to, and on average D0.1 cm3 was reduced from 55 Gy to 48 Gy in the 5 fraction scheme and from 65 Gy to 59 Gy in the 8 fraction scheme (Fig. 3). This new constraint was nearly also met in a fifth patient, whereas not at all in the sixth patient, but importantly PBT D0.1 cm3 was considerably reduced in all six patients compared to in the original treatment.

Discussion

The goal of this work was to validate identified NTCP models for pulmonary toxicity in an independent cohort of patients with ultra-central lung tumors from one large center. Bronchial-tree related toxicity is under-studied, and published data is relatively scarce. We explored the NTCP models for pulmonary toxicity published by Tekatli et al [4] and the NTCP model for hemorrhage from the HILUS trial [5]. However, the models in [4] underestimated our institutional pulmonary toxicity rates, while the HILUS model overestimated our hemorrhage toxicity.
rates. A possible explanation of the underestimation of the model by Tekatli et al [4] could be due to that model being developed from a mixture of central (lesion within 2 cm of the PBT) and ultracentral lung lesions with only 33 % of the population having ultracentral lesions. The hemorrhage model from the HILUS trial [5] that on the contrary over-estimated our hemorrhage rates could be due to dose being prescribed to the 67 % isodose line compared to our institutional linac-based practice of prescribing 100 % dose to PTV. Of note, this NTCP model was derived from a cohort of ultracentral and central patients, in which the ultracentral patients accounted for the majority of fatal hemorrhagic toxicity events.

The max point dose models from [4] were made more robust by using Dx cm³ parameters, among which the D0.1 cm³ model agreed with our pulmonary toxicity data to the largest extent. We used this NTCP model in our own data to determine a tentative dose-volume threshold of D0.1 cm³ < 122 Gy EQD₂ dose to PBT that would ideally keep the risk of pulmonary toxicity under 10 %. We demonstrated that by replanning treatments with this constraint, the dose to PBT could be considerably lowered compared to previous plans while still adhering to all internal and currently used clinical constraints for ultracentral lung tumors without compromising target coverage. This could potentially translate to lower rates of clinically observed pulmonary toxicity. However, we do acknowledge the fairly shallow dose–response curves for all explored models (including also the D0.1 cm³ model), which is partially explained by the low number of events for the studied toxicities. A possible reason confounding this could be the use of anti-VEGF therapy, which has been demonstrated to predispose for risk of pulmonary toxicity [13] and potentially also the follow-up time not being long enough to catch the complete spectrum of pulmonary toxicity. One way forward and to further promote model generalizability is to pool data across institutions [14]. Using such an approach and based on individual dose and toxicity data for 989 prostate cancer patients treated at five institutions, the study by Thor et al [15] identified a novel dose range being most critical for the development of late rectal bleeding.

From a model validation perspective and in accordance with the recommendations for model reporting made by QUANTEC [16], we would like to emphasize the importance of publishing NTCP model parameters with associated errors in order to allow for reconstruction of the dose–response function. To enable validation of the models in [4] and [5], the authors of [4] and [5] provided their model coefficients, which were not included in their original publications. These coefficients are summarized in Table S2.

In summary, despite the lack of large data sets, trends towards increasing risk of severe pulmonary toxicity are apparent in particular in the D0.1 cm³ model fit, supporting its clinical relevance. Although more data is ultimately needed, the results further support that avoiding high maximum dose (and alike parameterizations) to the proximal bronchial tree is important to further limit pulmonary toxicity for patients with ultracentral lung tumors.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was partially supported by NIH Cancer Center Support Grant P30 CA008748 and NIH grant R01 CA198121. We thank the authors for [4] and [5] for providing the model coefficients enabling testing for their respective model validity in our independent and external cohort.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ctro.2022.10.012.

References

[1] Chang JY, Bezjak A, Mornex F. Stereotactic Ablative Radiotherapy for Centrally Located Early Stage Non-Small-Cell Lung Cancer: What We Have Learned. J Thorac Oncol 2015;10:577–85. https://doi.org/10.1097/JTO.0000000000000453.

[2] Wu AJ-C. Safety of stereotactic ablative body radiation for ultracentral stage I non-small cell lung cancer. Transp Lung Cancer Res 2019. S135–S138.

[3] Haseltine JM, Rimmer A, Gelblum DY, Moda A, Rosenzweig KR, Jackson A, et al. Fatal complications after stereotactic body radiation therapy for central lung tumors abutting the proximal bronchial tree. Pract Radiat Oncol 2016;6:e27–33. https://doi.org/10.1016/j.prro.2015.09.012.

[4] Tekatli H, Duijm M, Oomen-de Hoop E, Verhakel W, Schillmann W, Slotman BJ, et al. Normal Tissue Complication Probability Modeling of Pulmonary Toxicity After Stereotactic and Hypofractionated Radiation Therapy for Central Lung Tumors. Int J Radiat Oncol Biol Phys 2018;100:738–47. https://doi.org/10.1016/j.ijrobp.2017.11.026.
[5] Lindberg K. The HILUS-trial – a prospective Nordic multi-center phase II study of ultra-central lung tumors treated with stereotactic body radiotherapy. J Thorac Oncol 2021. https://doi.org/10.1016/j.jtho.2021.03.015.

[6] Kong F-M (Spring), Moiseenko V, Zhao J, Milano MT, Li L, Rimmer A, et al. Organs at Risk Considerations for Thoracic Stereotactic Body Radiation Therapy: What Is Safe for Lung Parenchyma? Int J Radiat Oncol Biol Phys 2018. https://doi.org/10.1016/j.ijrobp.2018.11.028.

[7] Grimm J, Palma D, Senan S, Xue J. Complication probability for radiation pneumonitis (RP) after stereotactic body radiotherapy (SBRT). J Radiosurg SBRT 2013:2:99–104.

[8] Selvaraj J, Lebesque J, Hope A, Guckenberger M, Werner-Wasik M, Peslen H, et al. Modeling radiation pneumonitis of pulmonary stereotactic body radiotherapy: The impact of a local dose-effect relationship for lung perfusion loss. Radiother Oncol 2019;132:142–7. https://doi.org/10.1016/j.radonc.2019.03.015.

[9] Duijm M, Schillemans W, Aerts JG, Heijmen B, Nuyttens JJ. Dose and Volume of the Irradiated Main Bronchi and Related Side Effects in the Treatment of Central Lung Tumors With Stereotactic Radiotherapy. Semin Radiat Oncol 2016;26:140–8. https://doi.org/10.1016/j.semradonc.2015.11.002.

[10] Duijm M, van der Voort van Zyp NC, van de Vaart P, Oomen-de Hoop E, Mast ME, Hoogeman MS, et al. Predicting High-Grade Esophagus Toxicity After Treating Central Lung Tumors With Stereotactic Radiation Therapy Using a Normal Tissue Complication Probability Model. Int J Radiat Oncol Biol Phys 2020;106:73–81. https://doi.org/10.1016/j.ijrobp.2019.08.059.

[11] Riley RD, Ensor J, Snell KIE, Debray TPA, Altman DG, Moons KGM, et al. External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges. BMJ 2016;353:i3140. https://doi.org/10.1136/bmj.i3140.

[12] Wang C, Rimner A, Gelblum DY, Dick-Godfrey R, McKnight D, Torres D, et al. Analysis of pneumonitis and esophageal injury after stereotactic body radiation therapy for ultra-central lung tumors. Lung Cancer 2020;147:45–8. https://doi.org/10.1016/j.lungcan.2020.07.009.

[13] Wang C, Rimner A, Gelblum DY, Flynn J, Jackson A, Yorke E, et al. Analysis of Toxic Effects With Antiangiogenic Agents Plus Stereotactic Body Radiation in Ultracentral Lung Tumors. JAMA Oncol 2019;5:737. https://doi.org/10.1001/jamaoncol.2019.0205.

[14] Deasy JO, Bentzen SM, Jackson A, Ten Haken RK, Yorke ED, Constine LS, et al. Improving normal tissue complication probability models: the need to adopt a “data-pooling” culture. Int J Radiat Oncol Biol Phys 2010;76:S151–4. https://doi.org/10.1016/j.ijrobp.2009.06.094.

[15] Thor M, Jackson A, Zelefsky MJ, Steinineck G, Karlsson A, Hayer M, et al. Inter-institutional analysis demonstrates the importance of lower than previously anticipated dose regions to prevent late rectal bleeding following prostate radiotherapy. Radiother Oncol 2018;127:88–95. https://doi.org/10.1016/j.radonc.2018.02.020.

[16] Jackson A, Marks LB, Bentzen SM, Eisbruch A, Yorke ED, Ten Haken RK, et al. The lessons of QUANTEC: recommendations for reporting and gathering data on dose-volume dependencies of treatment outcome. Int J Radiat Oncol Biol Phys 2010;76: S155–60. https://doi.org/10.1016/j.ijrobp.2009.08.074.