Coronaviruses: a challenge of today and a call for extended human postmortem brain analyses

Peter Riederer1,2 · Volker ter Meulen3

Received: 1 July 2020 / Accepted: 12 July 2020 / Published online: 28 July 2020
© The Author(s) 2020, corrected publication 2021

Abstract
While there is abounding literature on virus-induced pathology in general and coronavirus in particular, recent evidence accumulates showing distinct and deleterious brain affection. As the respiratory tract connects to the brain without protection of the blood–brain barrier, SARS-CoV-2 might in the early invasive phase attack the cardiorespiratory centres located in the medulla/pons areas, giving rise to disturbances of respiration and cardiac problems. Furthermore, brainstem regions are at risk to lose their functional integrity. Therefore, long-term neurological as well as psychiatric symptomatology and eventual respective disorders cannot be excluded as evidenced from influenza-A triggered post-encephalitic Parkinsonism and HIV-1 triggered AIDS–dementia complex. From the available evidences for coronavirus-induced brain pathology, this review concludes a number of unmet needs for further research strategies like human postmortem brain analyses. SARS-CoV-2 mirroring experimental animal brain studies, characterization of time-dependent and region-dependent spreading behaviours of coronaviruses, enlightening of pathological mechanisms after coronavirus infection using long-term animal models and clinical observations of patients having had COVID-19 infection are calling to develop both protective strategies and drug discoveries to avoid early and late coronavirus-induced functional brain disturbances, symptoms and eventually disorders. To fight SARS-CoV-2, it is an urgent need to enforce clinical, molecular biological, neurochemical and genetic research including brain-related studies on a worldwide harmonized basis.

Keywords Coronavirus · COVID-19 · SARS-CoV-2 brain disorders · Cardiorespiratory centre · Brain pathology · Neurological symptoms/disorders · Brain stem · Parkinson's disease · Parkinsonism · Alzheimer's disease · Multiple sclerosis · Movement disorders · Neuroinvasion · Therapy · Neuroprotection · Depression · Cognitive dysfunction · Brain bank · Postmortem studies

Introduction
Ever since the landmark observations of Constantin von Economo and Rene Cruchet in 1917 and subsequent publications on encephalitis lethargica, viral infections of the central nervous system (CNS) have been of great interest to neurology and neurovirology to study diseases with long-term neurological and psychiatric symptoms of unknown aetiology. Great progress has been made ever since and new CNS diseases such as subacute sclerosing panencephalitis (SSPE) or progressive multifocal leucoencephalopathy (PML) have been linked to specific virus infections. Also the group of coronaviruses which are widespread in nature, infecting animal and men and causing a variety of acute, subacute and chronic diseases, have been studied with respect to CNS involvement. It is, therefore, not surprising that in the corona virus disease 2019 (COVID-19) pandemic, CNS involvement was noted.

In the current COVID-19 pandemic, the respiratory tract is a major target of infection but some reports are showing also clinical involvement of the CNS. It is, therefore, important that not only clinical data of neurological deficits are...
collected but also studies are carried out to look for acute or late CNS changes with or without virus presence.

Early pathology of SARS-CoV-2 infection

Fever, cough, sore throat and dyspnea are early and rather unspecific symptoms of coronavirus infections and even before its molecular detection. Pharyngodynia, nasal congestion, rhinorrhea, smell and taste dysfunctions have been recently described as major symptoms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Lovato and de Filippis 2020; Krajewska et al. 2020; Vetter et al. 2020; Yan et al. 2020; Table 1).

Elderly patients and especially those with comorbidities, including obesity, type 2 diabetes, hypertension and coronary heart disease, are at risk for increased severity of COVID-19 pathology and mortality (Butler and Barrientos 2020; Naughton et al. 2020). Indeed, when comparing patients with non-severe infection to those with severe infection, the latter were older and had more such underlying disorders. In addition, patients with more severe infections could show neurological manifestations, such as myocardial injury and cardiac arrhythmias.

Table 1 Early symptoms of SARS-CoV-2 infection
Symptomology

Fever
Cough
Sore throat
Dyspnea
Pharyngodynia
Nasal congestion
Rhinorrhea
Smell dysfunction (58% of n=60)
Anosmia (58% of n=60)
Moderate microsmia
Mild microsmia
Normosmia
Smell and taste dysfunction
Loss of taste
Gustative disorders
Gastrointestinal symptoms
Overall rate of conjunctivitis
Conjunctivitis in severe cases
Conjunctivitis in non-severe cases
Conjunctival symptoms
Fatigue
Dizziness
Comorbidities
Hypertension
Diabetes
Coronary heart disease
Cardiac injury
Arrhythmias
Mortality data
Ischaemic stroke
Hypertension
Coronary heart disease
Venous thromboembolism

"Percentage of patients" is mentioned in only a few publications, while there are a number of reports mentioning symptoms appearing in SARS-CoV-2 patients.
ACE-2 is a potential risk factor for both respiratory and cardiovas-
cular failures in patients with COVID-19 (Weyhern et al. 2020).
In 125 patients with complete datasets, 62% presented with a
cerebrovascular event, including ischaemic stroke, intracerebral haemorrhage
and one CNS vasculitis. 31% presented with altered mental status, including
unspecific encephalopathy, encephalitis, neuropsychiatric disorders, psychosis, dementia-like neurocognitive syndrome and affective disorders
(Varatharaj et al. 2020). Encephalopathies, inflammatory CNS syndromes,
isaemric strokes and peripheral neurological disorders have been
reported by Paterson et al. (2020). Autopsy studies of 18 consecutive patients
with SARS-CoV-2 infection who died within 32 days after the onset of symptoms showed
only hypoxic changes and did not show encephalitis. In a
case report, an autopsy by Reichard et al. (2020) revealed a
range of neuropathological lesions with features resembling
both vascular and demyelinating etiologies.

Neurological disorders may be caused by COVID-19 due
to direct infection of the brain and/or via strong activation of the immune system (Rossmann 2020; Butowt and Bilinska
2020) (Table 2).

Viruses seem to enter the brain via distinct routes either by
haematogenous dissemination or neuronal retrograde
transport (Desforges et al. 2014; Vetter et al. 2020; Bohmwald et al. 2018). It is assumed that SARS-CoV-2 spreads
from peripheral organs, like the gastrointestinal tract, the
lung, nose, other organs to the brain. Enhanced binding of
SARS-CoV-2 to the nasal cavity olfactory epithelium has
been suggested as primary target, as the olfactory epithelium lining blood vessels express two host receptors, ACE-2 and
TMPRSS2 proteases, which facilitate virus binding, replication and accumulation (Butowt and Bilinska 2020; Sungnak et al. 2020). Indeed, the infection of the olfactory
epithelium seems to be responsible for olfactory dysfunction
and loss of smell in patients with COVID-19 (Butowt and Bilinska 2020; Sungnak et al. 2020). ACE-2 may be related
to both respiratory and myocardial injury, because ACE-2 is
widely expressed like in the lungs and the cardiovascular
system as pointed out by several authors. It is regarded that
ACE-2 is a potential risk factor for both respiratory and cardiaic failures in patients with COVID-19 (Long et al 2020;
Zheng et al. 2020; Cure and Cunhur Cure 2020; Hess et al.
2020; Yang et al. 2020; Bonow et al. 2020; Driggin et al.
2020; Wang et al. 2020).

Spreading from the respiratory tract to the brain is sug-
gested to be based on (1) virus transport to pass from the respiratory tract to the blood and then across the blood–brain barrier into the brain (Rossmann 2020; Butowt and Bilinska
2020; Bohmwald et al. 2018) by an transendothelial mecha-

nism by infection of endothelial cells or via destabilisation of tight junctions by inflammatory processes, as well as (2)
via infection of olfactory receptor neurons, (3) via diffusion
through channels formed by olfactory ensheathing cells (van Riel et al. 2015; Bohmwald et al. 2018) and (4) inflamma-
tory processes affecting the vagus nerve (Amor et al. 2010).
Transsynaptic transport and microfusion may occur and
cause damage from infection of nerve cells per se and/or
immune response (van Riel et al. 2015).

Of special interest is that axons projecting from the olfac-
tory system to the brain lack protection by the blood–brain
barrier (BBB) (Broadwell and Jacobowitz 1976) which
allows spreading of the virus from the olfactory system
to the CNS in rather short time. Experimental studies in
mice with HCoV-OC43 infection showed, that neuroinva-
sion could be demonstrated in the olfactory bulb area after
3 days. Already at 7 days post-infection neuroinvasion of the
hippocampus was evident and motor symptoms developed
with progressive severity until death of the infected mice
at about 20 days post-infection (Jacomy and Talbot 2003;
Jacomy et al. 2006).

Of interest are multiexperiment matrix (MEM) data showing
a coexpression link of ACE-2 and aromatic ami-
noacid-decarboxylase (DDC), the enzyme responsible for the
synthesis of dopamine and finally noradrenaline and adrenaline from L-DOPA and serotonin from 5-hydroxytrypt-
tophan. As SARS-CoV including SARS-CoV-2 down-regu-
lates ACE-2, this might change both the activities of the cat-
echolamine as well as the serotonin pathways (Nataf 2020).
ACE-2 knockout mice generated substantially low levels of
serotonin (Klempin et al. 2018). These data demonstrate that
involvement of neurotransmitter action and pathology is of
importance and should be considered in more detail.

Smell is significantly affected in SARS-CoV-2 infected
patients which may be the result of virus induced pathology
of olfactory sensory neurons in the olfactory epithelium.
The olfactory bulb is an important relay as it transforms sig-
als from the olfactory sensory neurons to other parts of the
olfactory system including the anterior olfactory nucleus, the
olfactory tubercle, amygdala, piriform cortex and entorhi-
nal cortex. Neurotransmitters, as acetylcholine and bio-
genic amines are involved in transmitting odorant percep-
tion (Rothermel et al. 2014; Kapoor et al. 2016; Shea et al.
2008). Taste dysfunctions have been reported in patients
suffering from COVID-19 infection (Xydakis et al. 2020;
Spinato et al. 2020; Bousquet et al. 2020; Beltran-Corbellini
et al. 2020; Gautier and Ravussin 2020; Cecarelli et al. 2020;
Lechien et al. 2020; Moein et al. 2020; Sungnak et al. 2020)
It has been suggested, that virus attacks the cranial nerves related to smell or the mucosal tissue surrounding these nerves. Inflammatory processes induced by viral infection are of major pathological interest in this regard (Huber 2020).

With regard to coronavirus infection and especially SARS-CoV-2 of the brain, it may be of particular interest to consider infection of both the brain respiratory centre located in the medulla–pons areas and the medullary cardio-vascular centres. Viral infection of those centres, which are responsible for generating and maintaining rhythms of respiration and cardiovascular activity, may disturb and even disrupt the underlying homeostasis with environmental stimuli. Disturbance or even disruptions of those pathways are risk factors which may lead and contribute to the severeness of the disease process of COVID-19 patients (Gandhi et al. 2020; Lucchesche and Flöel 2020). Cardiac dysfunctions have been observed in patients with severe viral infection and patients with comorbidities like respiratory disorders, diabetes type II, obesity, hypertension, coronary heart disease, myocardial injury, myocarditis, acute myocardial infarction, heart failure, dysrhythmias and venous thromboembolic events (Li et al. 2020b; Bansal 2020; Long et al. 2020; Zheng et al. 2020) (Table 1) do have additional risk factors for the outcome of the disease process.

Recent clinical evidence shows that SARS-CoV-2 induces neuromuscular symptoms (Schoser et al. 2020) with muscle pain and weakness and fatigue. In these patients, 11% revealed

Table 2 Early neurological/psychiatric symptoms of patients with coronavirus/SARS-CoV-2

Symptomology	In % of patients	References
Neurological symptoms	36.4–84	Mao et al. (2020), Rossmann (2020), Vetter et al. (2020), Bohmwald et al. (2018), Arbour et al. (2000), Burks et al. (1980), Hung et al. (2003), Lau et al. (2004), Yeh et al. (2004), Li et al. (2020a, b), Poyiadji et al. (2020), Roe (2020), Helms et al. (2020)
Encephalopathies/encephalitis	18–23	Varatharaj et al. (2020), Paterson et al. (2020), Weyhern et al. (2020)
Impaired consciousness	15–34	Mao et al. (2020), Rossmann (2020), Rogers et al. (2020), Vetter et al. (2020), Bohmwald et al. (2018), Arbour et al. (2000), Burks et al. (1980), Hung et al. (2003), Lau et al. (2004), Yeh et al. (2004), Li et al. (2020a, b), Poyiadji et al. (2020), Pinzon et al. (2020), Varatharaj et al. (2020)
Confusion	18–65	Saad et al. (2014), Helms et al. (2020), Rogers et al. (2020)
Cerebrovascular diseases	5.7–8.5	Mao et al. (2020), Rossmann (2020), Vetter et al. (2020), Bohmwald et al. (2018), Arbour et al. (2000), Burks et al. (1980), Hung et al. (2003), Lau et al. (2004), Yeh et al. (2004), Li et al. (2020a, b), Poyiadji et al. (2020), Pinzon et al. (2020), Varatharaj et al. (2020)
Stroke	Up to 74	Hess et al. (2020), Varatharaj et al. (2020), Paterson et al. (2020)
Skeletal muscle injury	19.3	Mao et al. (2020), Rossmann (2020), Vetter et al. (2020), Bohmwald et al. (2018), Arbour et al. (2000), Burks et al. (1980), Hung et al. (2003), Lau et al. (2004), Yeh et al. (2004), Li et al. (2020a, b), Poyiadji et al. (2020), Schoser et al. (2020)
Myalgia	13.4–71	Pinzon et al. (2020), Saad et al. (2014)
Guillain–Barré syndrome	8.6	Saad et al. (2014)
Altered mental state	31.0	Varatharaj et al. (2020)
Acute illness		
Depression	32.6	Rogers et al. (2020)
Anxiety	35.7	Rogers et al. (2020)
Insomnia	41.9	Rogers et al. (2020)
Psychosis	0.7	Rogers et al. (2020)
Post-illness		
PTSD (Posttraumatic stress disorder)	32.2	Rogers et al. (2020)
Depression	14.9	Rogers et al. (2020)
Anxiety disorders	14.8	Rogers et al. (2020)
Return to work at follow-up time of 35.3 month	76.9	Rogers et al. (2020)
Agitation	69	Rogers et al. (2020)

“Percentage of patients” is mentioned in only a few publications, while there are a number of reports mentioning symptoms appearing in SARS-CoV-2 patients.
an increase of creatininase presenting with muscle weakness. Creatininase increased significantly with clinical severity from 22.4% in non-complicated patients to 71% of critically ill patients (Schoser et al. 2020) (Table 2).

Brain pathology of coronavirus infection in experiments in animals

The neurotropism of certain animal coronaviruses has led in the past to experimental studies in mice and rats to investigate the conditions leading to CNS damage using the mouse hepatitis coronavirus strain JHM (Nagashima et al. 1978a, b).

Three types of diseases were observed: (1) acute panencephalitis with demyelinating foci and affection of oligodendroglial cells and neurons, (2) subacute demyelinating encephalomyelitis three weeks after virus infection of new-born and weanling rats, which in about 35% developed paralysis. Demyelination was observed predominantly in the white matter of brainstem, pons, optic nerve and spinal cord. Axons and neurons were well preserved whereas virus was only detectable in oligodendroglial cells, (3) chronic progressive paralysis in 5% of infected animals 6–8 months later (Weiner 1973; Nagashima et al. 1978a, b). Of interest is the notion, that remyelination for both, peripheral and central nervous system could be observed in clinically silent animals (Nagashima et al. 1979). In both infected mice and rats, infectious virus could be isolated from brain tissue during the acute or subacute stage of encephalitis. Thereafter, infectious virus disappeared but viral antigen persisted (Sörensen and Dales 1985).

More recent animal studies using mice transgenic for the SARS-CoV receptor ACE-2 demonstrated that viral brain infection covered all brain regions time dependently and complete after 4 days. Neurons were highly susceptible for SARS-CoV and prevention of severe murine disease could be reached only by absence of the host cell receptor (Netland et al. 2008). As neither apoptosis nor necrosis, nor inflammation could be verified in these studies, the authors speculated, that non-inflammatory processes like autophagy may be involved in the neuronal loss in SARS-CoV-infected K18-h ACE-2 mice without encephalitis (Netland et al. 2008). On the basis of findings in animal experiments, the question arises if COVID-19 patients with CNS infection could develop later CNS degenerative disorders as a consequence of an infection of specific cell populations.

Implications for neurodegenerative disorders

Animal studies point to the view that glial cells and oligodendroglial cells are of particular vulnerability for coronavirus infection (Barach-Latas et al. 1997). Acute and persistent infections of neural cell lines with human coronavirus OC43 and 229E confirm sensitivity of glial cells towards virus infection (Bonavia et al. 1997; Arbour et al. 1999a, b). Infection of human astrocytic cell line U-373MG by the OC43 strain of human coronavirus resulted in an increase of IL-6, TNF-α and MCP-1 mRNA expression and modulation of the activity of matrix metalloproteinase-2 and -9. Nitric oxide production was notable in U-373MG cells as well as in microglial cell line CHME-5, indicating that coronavirus may contribute to the pathogenesis of multiple sclerosis (Edwards et al. 2000). Infection by HCoV-OC43 with a single-point mutation in the spike protein led to a hind-limb paralytic disease in infected mice (Brison et al. 2011). This infection resulted in glutamatergic excitotoxicity, which could be antagonized by an inhibitor of AMPA receptors, GYKI-52466, which was accompanied by improvement of clinical scores and protection of CNS from neuronal dysfunction (Brison et al. 2011).

In three patients suffering from MERS-CoV T2-weighted MRI imaging showed striking changes characterized by widespread, bilateral hyperintense lesions within the white matter and subcortical areas of the frontal, temporal and parietal lobes, the basal ganglia and corpus callosum, giving raise to the possibility, that MERS-CoV may lead to long-lasting severe alterations of brain tissue (Arabi et al. 2015). As described in more detail by Matias-Guiu et al. (2020), coronavirus-like particles have been identified in autopsied brain tissue (Burks et al. 1980; Murray et al. 1992; Stewart et al. 1992; Dessau et al. 2001), as well as detection of antibodies to human coronavirus (Salmi et al. 1982) and CoV RNA in the CSF of patients with multiple sclerosis (Cristallo et al. 1997).

Parkinsonism

Infectious agents associated with Parkinsonism are influenza A, HIV, measles, Japanese B encephalitis, Western equine encephalitis, tick-borne encephalitis, polyomyelitis and cytomegalovirus (Nisipeanu et al. 1997). Neuromelanin of the substantia nigra pars compacta is of special interest in this regard as it (1) is an immune stimulator (Oberländer et al. 2011) and (2) pigmented neurons of the SN were significantly decreased in HIV-1-infected brains (Itoh et al. 2000), thus contributing to dopaminergic pathology. A viral hypothesis for Parkinson’s disease has been suggested for long time, namely since the influenza A pandemia 1915–1927 with post-encephalitic Parkinsonism as fatal consequence years later (Foley 2009; Lutters et al. 2018; Elizan and Casal 1983; Takahashi and Yamada 2001; Hawkes et al. 2007). Any specific viral antibodies, RNA, viral particles or inclusions could not be detected in several studies in brain tissue (Martilla et al. 1977; Elizan et al. 1979; Jellinger 2001; McCall et al. 2001; Schwartz and Elizan 1979;
promising encephalopathy or encephalitis and primary status was the second most common presentation com-
patients in the acute as well as in the post illness phases psychiatric symptoms of SARS, MERS and COVID-19 by Rogers et al. (2020) gives a detailed representation of (Moldofsky and Patcai 2011). The most recent publication preclinical evidence to assume that depression, fatigue and have not been reported in great detail. However, there is tion and schizophrenia. SARS-CoV long-term adverse reac-
trophic lateral sclerosis (ALS), Alzheimer disease, depres-
sions, like depression and other psychiatric symptomology could be excluded as trigger for Parkinsonism (Jang et al. 2012).

From this experimental approach, it is hypothesized that (1) viral infection of the substantia nigra pars compacta is at risk for the development of Parkinsonism and (2), as Parkinson’s disease is common in the elderly and Parkinson’s disease clinically shows compromise of the respiratory and cardiac systems. Parkinson’s disease is at risk for SARS-CoV-2 infection (Helmich and Bloem 2020). Indeed, HCoV has been detected in brain tissue from Parkinson’s disease (Fazzini et al. 1992; Arbour et al. 2000). Long-term clinical observations of patients with COVID-19 infection will show, whether SARS-CoV-2 triggers Parkinsonism and/or depres-
ion in genetically vulnerable human beings.

Psychiatric symptomology

Arbour et al. (2000) have also detected HCoV-229E- and HCoV-0C43 RT-PCR-positive results in rare cases of amyotrophic lateral sclerosis (ALS), Alzheimer disease, depression and schizophrenia. SARS-CoV long-term adverse reactions, like depression and other psychiatric symptomology have not been reported in great detail. However, there is preliminary evidence to assume that depression, fatigue and sleep disturbances are evident in post-SARS-CoV patients (Moldofsky and Patcai 2011). The most recent publication by Rogers et al. (2020) gives a detailed representation of psychiatric symptoms of SARS, MERS and COVID-19 patients in the acute as well as in the post illness phases (Table 2). Furthermore, it cannot be excluded that in the process of SARS-CoV-2 CNS infections, impaired conscious-
ness occurs, which my lead to cognitive deficiencies.

Indeed, besides cerebrovascular events, altered mental status was the second most common presentation com-
priming encephalopathy or encephalitis and primary psychiatric diagnosis, often occurring in younger patients (Varatharaj et al. 2020) (Table 2).

Experimental observations in the protection of brain cell damage

Since we cannot exclude the possibility that SARS-COV-2 could lead to CNS damage, it is worthwhile to discuss experimental data obtained from pharmacological basic research. Enlargement of the therapeutic armamentarium for drugs protecting from virus-induced damage is scarce and limited to human case reports, experimental approaches using disease-related animal models and in vitro studies. To mention a few ones, the following options have been proposed: therapeutic strategies related to neurotransmitter pathology are targeting ACE-2. As there are close interactions between ACE-2 and nicotinic receptors, nicotine exposure due to smoking has been predicted to enhance the risk for COVID-19 neuroinfection (Kabbani and Olds 2020).

Therefore, nicotine receptor antagonists may counteract the risk for SARS-CoV-2 viral brain entry and brain pathology. Even of more interest is the data showing a potentiation of SIV replication by drugs used clinically to substitute loss of dopamine in Parkinson’s disease (Scheller et al 2000). The conclusion of this work possibly is of interest for clinical treatment options in HIV-1 infected patients with a parkinsonism/dementia syndrome. While levodopa and inhibitors of monoamine oxidase B (MAO-I) therapy of parkinsonism is obsolete in this regard (Koutsilieri et al 2002a, b, 2004), treatment with the NMDA-receptor channel antagonists amantadine/memantine are advised from these experimental studies (Meisner et al. 2008; Olney et al. 1989).

Aminoadamantanes, amantadine and memantine have been used for long time in the treatment of Parkinson’s disease (amantadine) and Alzheimers disease (memantine). These drugs are primarily glutamate related NMDA-receptor channel antagonists (Kornhuber et al. 1989, 1991) and inhibit glutamatergic excitotoxicity associated with these neurodegenerative disorders. More recent studies support the antiviral potential of aminoadamantanes, including development of novel compounds (Kesel et al. 2013) and treatment of virus replication (Leibowitz and Reneker 1993) including HCoV-0C43 replication by memantine (Brison et al. 2014). Most recently, Hasanagic and Serdarevic (2020) suggested that memantine (besides its NMDA-R channel blocking properties) through its α7-nAChR antagonism may counteract proinflammatory cytokines induced in cell cultures by HCoV-OC43. This is of special interest, because α7-nAChR is localized in lungs and in the CNS. As ACE-2 expression is mediated by stimulation of α7-nAChR nicotine (smoking!) might promote entry of SARS-CoV-2 into the respiratory epithelium.
Serotonin antagonists have been proposed too. Cinanserin (SQ10,643) has been studied in bacterially expressed 3 CL pro SARS-CoV and the related human coronavirus 229E. 5microM of cinanserin inhibited the catalytic activity by 50% (Chen et al. 2005). The antiviral activity of cinanserin could be substantiated in tissue culture assays and confirmed strong inhibition of coronavirus replication (Chen et al. 2005; Yang et al. 2008).

Interestingly, a very recent screening of substances effective to inhibit SARS-COV-2 showed that the anti-depressant serotonin selective reuptake inhibitor (SSRI) fluoxetine inhibited the virus at a concentration of 0.8 µg/ml (Zimniak et al 2020). These studies demonstrated that cinanserin and fluoxetine enter at a structural site of the virus which is important for the replication of SARS-CoV-2 and this is independent from the compounds action on the serotogenic system.

An initial “cytokine storm” induced by viral suppression of pineal melatonin has been suggested to contribute to virus-induced brain pathology (Anderson and Reiter 2020). Pineal melatonin is involved in a variety of intermediary cell processes, including the activation of the tri-carboxylic acid cycle, oxidative phosphorylation and ATP production, thus regulating mitochondrial and immune cell phenotype (Anderson and Reiter 2020). Drug development to enhance melatonin concentration and function seems to be a useful target to reduce viral infection potential.

NOS2/NO is associated with regulation of chemokine expression and inflammation. Inhibition of NOS2/NO slows the progression of MHV-induced demyelination (Lane et al. 1999). There is also a role for apoD in the regulation of inflammation and suggests that it protects from HVoV-OC43-induced encephalitis, probably through the phospholipase A2 signalling pathway (Do Carmo et al. 2008). Some more recent developments are those directed to treat the acute respiratory distress syndrome (ARDS) (Dreher et al. 2020), which shows inflammation due to acute hypoxemia and diffuse alveolar injury “following a triggering factor” (Santos Nasciemento et al. 2019). These authors propose the development of fluoro-phenyl imidazole-derived molecules to treat pathologies, in which inflammation, in particular based on p38 MAPK and NFkB, plays a pivotal role (Santos Nasciemento et al. 2019).

These examples point to the view that research on transmitter alterations after virus infection might be suitable (1) to gain knowledge about virus induced neuronal pathology of the CNS and (2) to get new targets for developing neuron protective and restorative drugs. For coronavirus, neurochemical, molecular biological/genetic research enlightening nerval participation of coronavirus toxic affection are largely missing.

Conclusion

Although there is abounding description of virus-induced pathology of peripheral organs, there is lack of evidence as to the viral staging pathology of brain regions and of neuron as well as of glial affection. This, however, seems to be of importance as evidence is accumulating, that viruses and especially coronaviruses including SARS-CoV-2 infect the brain with great affinity to brain regions. Long-term pathological outcome of coronavirus-induced brain affection facilitating or even triggering brain associated disorders like neurodegenerative disorders have to be considered. Therefore, it is important to learn more about SARS-CoV-2-induced brain affection and its short- as well as its long-term consequences. As such targets for future clinical and brain coronavirus-related research and unmet needs are summarized:

1. Human postmortem brain studies are essential to understand HCoV-induced brain pathologies (Ellul et al. 2020; Glatzel 2020), including neuropathology and regional human postmortem neurotransmitter analyses. Moreover, molecular biological and—genetic studies should give evidence for functional disturbances caused by coronavirus affection. Virus affection of neuromelanin containing substantia nigra and locus coeruleus as well as research on coronavirus damaged oligodendrocytes are of importance to understand the vulnerability potential for neurodegenerative disorders.

2. Regional detection of virus footprints and RNA in postmortem brains, as well as spreading characteristics of coronaviral infection/time dependency/staging in animal studies/models and longitudinal studies are necessary to enlighten details of SARS-CoV-2 affinity to brain regions.

3. Studies of mechanisms to explain the differences of coronaviral variations of neuropathology in mice and rat strains as well as in organoids are of importance, in particular, since the pathological outcome of coronavirus infection in various strains of rodents need an explanation (Dörries et al 1987a, b).

4. Age-dependent variety (young/adult/aged) and gender specificity, regarding severity of SARS-CoV-2 neurovirulence should be studied in animal experiments to understand the great divergence of CoV infection rates.

In addition, studies to the genetic and immunological background of host are regarded as important in this respect. Not much is known to characterise specificity and selectivity of various viral infection factors for resistance against viral attacks.

5. Drug developments to protect neurons and glia from coronavirus induced pathology are of importance to
protect nerve tissue from viral toxicity beside SARS-CoV-2 treatment strategies.

Answers to these questions may contribute to understand why SARS-CoV-2 affects aged and young human beings so differently. Age, reduced immunological defence, comorbidity and underlying genetic vulnerabilities are at risk for the severity of viral attack in general and SARS-CoV-2 in particular. In this respect, extensive clinical, neuropathological and molecular biologic/neurochemical postmortem studies as well as animal and in vitro studies are of utmost importance to uncover the enigma of viral infections and its disastrous pathology.

So far, we have learned that beside the respiratory tract as the main organ being infected in humans, the SARS-CoV-2 virus has the potential to spread and infect other organs as well. It has to be seen, to what longlasting deficits may have to be seen, to what longlasting deficits may follow.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Amor S, Puentes F, Baker D, van der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129(2):154–169
Anderson G, Reiter RJ (2020) Melatonin: roles in influenza, Covid-19, and other viral infections. Rev Med Virol 30(3):e2109. https://doi.org/10.1002/rmv.2109 (Epub 2020 Apr 21)
Arabi YM, Harthi A, Hussein J, Bouchama A, Johani S, Hajeer AH, Saeed BT, Wahi A, Saedy A, AlDabbagh T, Okaili R, Sadat M, Balkhy H (2015) Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV). Infection 43(4):495–501
Arbour N, Ekanèdé S, Côté G, Lachance C, Chagnon F, Tardieu M, Cashman NR, Talbot PJ (1999a) Persistent infection of human oligodendrocytic and neuralglial cell lines by human coronavirus 299E. J Virol 73(4):3326–3337
Arbour N, Côté G, Lachance C, Tardieu M, Cashman NR, Talbot PJ (1999b) Acute and persistent infection of human neural cell lines by human coronavirus OC43. J Virol 73(4):3338–3350
Arbour N, Day R, Newcombe J, Talbot PJ (2000) Neuroinvasion by human respiratory coronaviruses. J Virol 74(19):8913–8921
Bansal M (2020) Cardiovascular disease and COVID-19. Diabetes Metab Syndr 14(3):247–250
Barac-Latas V, Suchanek G, Breitschopf H, Stuehler A, Wege H, Lassmann H (1997) Patterns of oligodendrocyte pathology in coronavirus-induced subacute demyelinating encephalomyelitis in the Lewis rat. Glia 19(1):1–12
Beltrán-Corbellini A, Chico-García JL, Martínez-Poles J, Rodríguez-Jorge F, Natera-Villalba E, Gómez-Corral J, Gómez-López A, Monreal E et al (2020) Acute-onset smell and taste disorders in the context of Covid-19: a pilot multicenter PCR-based case-control study. Eur J Neurol. https://doi.org/10.1111/ene.14273
Bohmwald K, Gálvez NMS, Ríos M, Kalergis AM (2018) Neurologic alterations due to respiratory virus infections. Front Cell Neurosci 26(12):386
Bonavia A, Arbour N, Yong VW, Talbot PJ (1997) Infection of primary cultures of human neural cells by human coronaviruses 229E and OC43. J Virol 71(1):800–806
Bonow RO, Fannon GC, O’Gara PT, Yancy CW (2020) Association of coronavirus disease 2019 (COVID-19) with myocardial injury and mortality. JAMA Cardiol. https://doi.org/10.1001/jamacardio.2020.1105 (Online ahead of print)
Bousquet J, Akdis C, Jutel M, Bachert C, Klimek L, Agache I, Ansotegui IJ, Bedbrook A, Bosnic-Anticevich S, Canonica GW, Chivato T, Cruz AA, Czarlewski W, Del Giacco S, Du H, Fonseca JA, Gao Y, Haahtela T, Hoffmann-Sommergruber K, Ivancevic JC, KHALtAev N, Knol EF, Kuna P, Larenas-Linnemann D, Mullol J, Naclerio R, Obta K, Okamoto Y, O’Mahony L, Ono-Gralo LG, Papadopoulos NG, Pfaor O, Samolinski B, Schwarz J, Toppila-Salmi S, Teresa Ventura M, Vahlilis A, Yorgancioglu A, Zuberbier T, ARIA-MAST study group (2020) Intranasal corticosteroids in allergic rhinitis in COVID-19 infected patients: An ARIA-EAACI statement. Allergy. https://doi.org/10.1111/all.14302 (Epub ahead of print)
Brison E, Jacomy H, Desforges M, Talbot PJ (2011) Glutamate excitotoxicity is involved in the induction of paralysis in mice after infection by a human coronavirus with a single point mutation in its spike protein. J Virol 85(23):12464–12473
Brison E, Jacomy H, Desforges M, Talbot PJ (2014) Novel treatment with neuroprotective and antiviral properties against a neuroinvasive human respiratory virus. J Virol 88(3):1548–1563. https://doi.org/10.1128/JVI.02972-13
Broadwell RD, Jacobowitz DM (1976) Olfactory relationships of the telencephalon and diencephalon in the rabbit. III. The ipsilateral centrifugal fibers to the olfactory bulb and retrobulbar formations. J Comp Neurol 170(3):321–345
Burks JS, DeVal BL, Jankovsky LD, Gerdes JC (1980) Two coronaviruses isolated from central nervous system tissue of two multiple sclerosis patients. Science 209(4459):933–934. https://doi.org/10.1126/science.7403860
Butler MJ, Barrientos RM (2020) The impact of nutrition on COVID-19 susceptibility and long-term consequences. Brain Behav Immun. https://doi.org/10.1016/j.bbi.2020.04.040 (Epub ahead of print)
Butowt R, Bilinska K (2020) SARS-CoV-2: olfaction, brain infection, and the urgent need for clinical samples allowing earlier virus detection. ACS Chem Neurosci 11(9):1200–1203. https://doi.org/10.1021/acschemneuro.0c00172
Ceccarelli M, Berretta M, Venanzi Rullo E, Nunnari G, Cacopardo B (2020) Differences and similarities between Severe Acute Respiratory Syndrome (SARS)-CoronaVirus (CoV) and SARS-CoV-2. Would a rose by another name smell as sweet? Eur Rev Med Pharmacol Sci 24(5):2781–2783. https://doi.org/10.26355/eurrev_202003_20551 (No abstract available. PMID:32196628)
Coronaviruses: a challenge of today and a call for extended human postmortem brain analyses

Chen L, Gui C, Luo X, Yang Q, Günther S, Scandella E, Drosten C, Bai D, He X, Ludewig B, Chen J, Luo H, Yang Y, Yang Y, Zou J, Thiel V, Chen K, Shen J, Shen X, Jiang H (2005) Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro. J Virol 79(11):7095–7103. https://doi.org/10.1128/JVI.79.11.7095-7103.2005

Cristallo A, Gambaro F, Biamonti G, Ferrante P, Battaglia M, Cereda PM (1997) Human coronavirus polyadenylated ma sequences in cerebrospinal fluid from multiple sclerosis patients. New Microbiol 20(2):105–114

Cure E, Cunhur CM (2020) Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may be harmful in patients with diabetes during COVID-19 pandemic. Diabetes Metab Syndr 14(4):349–350. https://doi.org/10.1016/j.dsx.2020.04.019

Desforges M, Le Coupance A, Brison E, Meessen-Pinard M, Talbot PJ (2014) Human respiratory coronaviruses: neuroinvasive, neurotropic and potentially neurovirulent pathogens. Virologie (Montrouge) 18(1):5–16. https://doi.org/10.1684/vir.2014.0544

Jaccometry H, Talbot P (2003) Vacuolating encephalitis in mice infected by human coronavirus OC43. J Neurosci 23(5):1545–1559. https://doi.org/10.1523/JNEUROSCI.5123-11.2002

Driggin E, Madhavan MV, Bickel D, Chuchi T, Laracy J, Bianzio-Zoccai G, Brown TS, Der Ngohoghsian C, Zidar DA, Haythe J, Brodie D, Beckman JA, Kirtane AJ, Stone GW, Krumholz HM, Parikh SA (2020) Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am Coll Cardiol 75(18):2352–2371

Edwards JA, Denis F, Talbot PJ (2000) Activation of glial cells by human coronavirus OC-43. Infect J Neuroimmunol 108(1–2):73–81

Elizan TS, Casals J (1983) The viral hypothesis in Parkinsonism. J Neural Transm Suppl 19:75–88

Elizan TS, Madden DL, Noble GR, Herrmann KL, Gardner J, Schwartz J, Smith H Jr, Sever JL, Yahrd MD (1979) Viral antibodies in serum and CSF of Parkinsonian patients and controls. Arch Neurol 36(6):529–534

Elull M, Varatharaj A, Nicholson TR, Pollak TA, Thomas N, Easton A, Zandi MS, Manji H, Solomon T, Carson A, Turner MR, Kneen R, Galea I, Pett S, Thomas RH, Michael BD, Committee CS (2020) Defining causality in COVID-19 and neurological disorders. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2020-323667

Fazzini E, Fleming J, Fahn S (1992) Cerebrospinal fluid antibodies to coronavirus in patients with Parkinson’s disease. Mov Disord 7(2):153–158

Foley PB (2009) Encephalitis lethargica and influenza. I. The role of the influenza virus in the influenza pandemic of 1918/1919. J Neurol Neurosurg Psychiatry 116(2):143–150

Gamboa ET, Wolf A, Yah MD, Harter DH, Duffy PE, Barden H, Hsu KC (1974) Influenza virus antigen in postencephalitic parkinsonism brain. Detection by immunofluorescence. Arch Neurol 31(4):228–232

Gandhi S, Srivastava AK, Ray U, Tripathi PP (2020) Is the collapse of the respiratory center in the brain responsible for respiratory breakdown in COVID-19 patients? ACS Chem Neurosci. https://doi.org/10.1021/acscbchemneuro.0c00217

Gautier JF, Ravussin Y (2020) A new symptom of COVID-19: loss of taste and smell. Obesity (Silver Spring) 28(5):848. https://doi.org/10.1002/oby.22809 (Epub 2020 Apr 1)

Glatzel M (2020) Neuropathology of COVID-19: where are the neuropathologists? Brain Pathol 30:729

Hasanagic S, Serdarovic F (2020) Potential role of memantine in the prevention and treatment of COVID-19: its antagonism of nicotinic acetylcholine receptors (nAChR) and beyond. Eur Respir J. https://doi.org/10.1183/13993003.01610-2020 (Epub ahead of print)

Hawkes CH, Del Tredici K, Braak H (2007) Parkinson’s disease: a dual-hit hypothesis. Neuropharmacol Appl Neurobiol 33(6):599–614

Helmich RC, Bloem BR (2020) The impact of the COVID-19 pandemic on Parkinson’s disease: hidden sorrows and emerging opportunities. J Parkinsons Dis 10(2):351–354. https://doi.org/10.3233/JPD-202038

Helms J, Kremer S, Medjdi H, Clere-Jehl R, Schenk M, Kummerlen C, Collange O, Boulay C, Faill-Kremer S, Ohana M, Anheim M, Meziani F (2020) Neurologic features in severe SARS-CoV-2 infection. N Engl J Med 382(23):2268–2270

Hess DC, Eldahshan W, Rutkowski E (2020) COVID-19-related stroke. Transl Stroke Res 11:322–325

Huber J (2020) How viruses like the coronavirus can steal our sense of smell. scopeblog.stanford.edu

Hung WC, Chiam SSC, Chan PKS, Tong YK, Ng EKO, Chiu RWK, Leung CB, Sung JJY, Tam JS, Lo YMD (2003) Detection of SARS coronavirus RNA in the cerebrospinal fluid of a patient with severe acute respiratory syndrome. Clin Chem 49(12):2108–2109. https://doi.org/10.1373/clinchem.2003.025437

Itoh K, Mehraein P, Weiss S (2000) Neuronal damage of the substantia nigra in HIV-1 infected brains. Acta Neuropathol 99(4):376–384

Jacomy H, Talbot P (2003) Vacuolating encephalitis in mice infected by human coronavirus OC43. J Virol 31(1):20–33

Jacomy H, Fragoso G, Almazan G, Mushynski WE, Talbot P (2006) Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice. J Virol 349(2):335–346

Jang H, Boltz D, McClaren J, Smeyne RJ, Chiu RWK, Leung CB, Sung JJY, Tam JS, Lo YM (2003) Detection of SARS coronavirus RNA in the cerebrospinal fluid of a patient with severe acute respiratory syndrome. Clin Chem 49(12):2108–2109. https://doi.org/10.1373/clinchem.2003.025437

Kabbani N, Olds JL (2020) Does COVID19 infect the brain? If so, smokers might be at a higher risk. Mol Pharmacol...
Varatharaj A, Thomas N, Ellul MA, Davies NWS, Pollak TA, Tenorio EL, Sultan M, Easton A, Breen G, Zandi M, Coles JP, Manji H, Al-Shahi Salman R, Menon DK, Nicholson TR, Benjamin LA, Carson A, Smith C, Turner MR, Solomon T, Kneen R, Pett SL, Galea I, Thomas RH, Michael BD, CoroNerve Study Group Collaborators (2020) Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry. https://doi.org/10.1016/S2215-0366(20)30287-X

Vetter P, Vu DL, L’Huillier AG, Schibler M, Kaiser L, Jacquerioz F (2020) Clinical features of covid-19. BMJ 369:m1470. https://doi.org/10.1136/bmj.m1470

von Weyhern CH, Kaufmann I, Neff F, Kremer M (2020) Early evidence of pronounced brain involvement in fatal COVID-19 outcomes. Lancet 395:e109

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z (2020) Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323(11):1061–1069. https://doi.org/10.1001/jama.2020.1585 (Online ahead of print)

Weiner LP (1973) Pathogenesis of demyelination induced by a mouse hepatitis virus (JHM virus). Arch Neurol 28:293–303

Wichmann D, Sperhake JP, Lütgheetmann M, Steurer S, Edler C, Heinemann A, Heinrich F, Mushumba H, Kniep I, Schröder AS, Burdelski C, de Heer G, Nierhaus A, Frings D, Pfefferle S, Becker H, Bredereke-Wiedling H, de Weerth A, Paschen HR, Sheikhtaher-Eggers S, Stang A, Schmiedel S, Bokemeyer C, Addo MM, Aepfelbacher M, Püschel K, Kluge S (2020) Autopsy findings and venous thromboembolism in patients with COVID-19. Ann Intern Med 7:233

Wu P, Duang F, Luo C, Liu Q, Qu X, Liang L, Wu K (2020) Characteristics of ocular findings of patients with coronavirus disease 2019 (COVID-19) in Hubei Province, China. JAMA Ophthalmol 138(5):575–578

Yiadakis MS, Dehgani-Mobaraki P, Holbrook EH, Geisthoff UW, Bauer C, Hautefont C, Herman P, Manley GT, Lyon DM, Hopkins C (2020) Smell and taste dysfunction in patients with COVID-19. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(20)30293-0

Yan CH, Faraji F, Prajapati DP, Boone CE, DeConde AS (2020) Association of chemosensory dysfunction and Covid-19 in patients presenting with influenza-like symptoms. Int Forum Allergy Rhinol. https://doi.org/10.1002/iar.22579

Yang Q, Chen L, He X, Gao Z, Shen X, Bai D (2008) Design and synthesis of cinanserin analogs as severe acute respiratory syndrome coronavirus 3CL protease inhibitors. Chem Pharm Bull (Tokyo) 56(10):1400–1405

Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, Wu Y, Zhang L, Yu Z, Fang M, Yu T, Wang Y, Pan S, Zou X, Yuan S, Shang Y (2020) Clinical course and outcomes of critically Ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered retrospective, observational study. Lancet Respir Med 8(5):475–481. https://doi.org/10.1016/S2213-2600(20)30079-5 (Epub 2020 Feb 24)

Yeh EA, Collins A, Cohen ME, Duffner PK, Faden H (2004) Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis. Pediatrics 113(1 Pt 1):e73–e76

Zheng YY, Ma YT, Zhang JY, Xie X (2020) COVID-19 and the cardiovascular system. Nat Rev Cardiol 17(5):259–260. https://doi.org/10.1038/s41569-020-0360-5.Noabstractavailable

Zimniak M, Kirschner L, Hilpert H, Seibel J, Bodem J (2020) The serotonin uptake inhibitor Fluoxetine inhibits SARS-CoV-2. bioRxiv. https://doi.org/10.1101/2020.06.14.150490

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.