GLOBAL ROUGH SOLUTION FOR L^2-CRITICAL SEMILINEAR HEAT EQUATION IN THE NEGATIVE SOBOLEV SPACE

AVY SOFFER, YIFEI WU, AND XIAOHUA YAO

Abstract. In this paper, we consider the Cauchy global problem for the L^2-critical semilinear heat equations
\[\partial_t h = \Delta h \pm |h|^{4/d} h, \]
with $h(0, x) = h_0$, where h is an unknown real function defined on $\mathbb{R}^+ \times \mathbb{R}^d$. In most of the studies on this subject, the initial data h_0 belongs to Lebesgue spaces $L^p(\mathbb{R}^d)$ for some $p \geq 2$ or to subcritical Sobolev space $H^s(\mathbb{R}^d)$ with $s > 0$. We here prove that there exists some positive constant ε_0 depending on d, such that the Cauchy problem is locally and globally well-posed for any initial data h_0 which is radial, supported away from origin and in the negative Sobolev space $\dot{H}^{-\varepsilon_0}(\mathbb{R}^d)$ including $L^p(\mathbb{R}^d)$ with certain $p < 2$ as subspace. Furthermore, unconditional uniqueness, and L^2-estimate both as time $t \to 0$ and $t \to +\infty$ were considered.

1. Introduction

Consider the initial value problem for a semilinear heat equation:
\[\begin{cases} \partial_t h = \Delta h \pm |h|^\gamma h, \\ h(0, x) = h_0(x), \end{cases} \tag{1.1} \]
where $h(t, x)$ is an unknown real function defined on $\mathbb{R}^+ \times \mathbb{R}^d$, $d \geq 2$, $\gamma > 1$. The positive sign “+” in nonlinear term of (1.1) denotes focusing source, and the negative sign “−” denotes the defocusing one. The Cauchy problem (1.1) has been extensively studied in Lebesgue space $L^p(\mathbb{R}^d)$ by many peoples, see e.g. \cite{2,3,4,6,7,10,12,13,14,15,16,18,19,21,25,26} and so on. The equation enjoys an interesting property of scaling invariance

\[h_\lambda(t, x) := \lambda^{2/(\gamma-1)} h(\lambda^2 t, \lambda x), \quad h_\lambda(0, x) := \lambda^{2/(\gamma-1)} h_0(\lambda x), \quad \lambda > 0, \]

that is, if $h(t, x)$ is the solution of heat equation (1.1), then $h_\lambda(t, x)$ also does with the scaling data $\lambda^{2/\gamma} h_0(\lambda x)$. An important fact is that Lebesgue space $L^{p_c}(\mathbb{R}^d)$ with $p_c = \frac{d(\gamma-1)}{2}$ is the only one invariant under the same scaling transform:

\[h_0(x) \mapsto \lambda^{2/(\gamma-1)} h_0(\lambda x). \]

If we consider the initial data $h_0 \in L^p(\mathbb{R}^d)$, then the scaling index

\[p_c = \frac{d(\gamma - 1)}{2} \]

2000 Mathematics Subject Classification. 35K05, 35B40, 35B65.
plays a critical role on the local/global well-posedness of (1.1). Roughly speaking, one can divide the dynamics of (1.1) into the following three different regimes: (A) the subcritical case $p > p_c$, (B) the critical case $p = p_c$, (C) the supercritical case $p < p_c$. Specifically, in cases (A) and (B), i.e. $p \geq p_c$, when $p > \gamma$, Weissler in [25] proved the local existence and uniqueness of solution $h \in C([0,T); L^q(\mathbb{R}^d)) \cap L^{\infty}_{loc}((0,T]; L^\infty(\mathbb{R}^d))$. Later, Brezis and Cazenave [2] proved the unconditional uniqueness of Weissler’s solution. In double critical case $p = p_c = \gamma$ (i.e. $p = \gamma = \frac{d}{d-2}$), the local conditional wellposedness of the problem (1.1) was due to Weissler in [26], but the unconditional uniqueness fails, see Ni-Sacks [16], Terraneo [22]. In the supercritical case (C), i.e. $p < p_c$, it seems that there exists no local solution in any reasonable sense for some initial data $h_0 \in L^p(\mathbb{R}^d)$. In particular, in focusing case, there exists a nonnegative function $h_0 \in L^p(\mathbb{R}^d)$ such that the (1.1) does not admit any nonnegative classical L^p-solution in $[0,T)$ for any $T > 0$, see e.g. Brezis and Cabré [1], Brezis and Cazenave [2], Haraux-Weissler [9] and Weissler [25, 26]. Also, one see book Quitnner-Souplet [17] for many related topics and references.

In this paper, we mainly concerned with the local and global existence of solution for some supercritical initial data $h_0 \in L^p(\mathbb{R}^d)$ by $p < p_c$ and more generally, initial data in $\dot{H}^{-\epsilon}$. For simplicity, we only consider the Cauchy problem for the L^2-critical semilinear heat equations,

$$
\begin{align*}
\partial_t h &= \Delta h + \mu |h|^\frac{4}{d} h, \\
h(0, x) &= h_0(x), \quad x \in \mathbb{R}^d,
\end{align*}
$$

That is, $p_c = 2$ (i.e. $\gamma = 1 + \frac{4}{d}$), we will prove that there exists some positive constant ϵ_0 depending on d, such that the Cauchy problem is locally and globally wellposed for any initial data h_0 is radial, supported away from origin and in the negative Sobolev space $\dot{H}^{-\epsilon_0}(\mathbb{R}^d)$, which includes certain L^p-space with $p < p_c = 2$ as a subspace (see Remark 1.1 below). We remark that, at present the the range of ϵ_0 in the following theorem may not be optimal to local and global existence of solution of the problem (1.2). On the other hand, we also mention that a result in Brezis and Freidman [3] implies that the problem (1.2) has no any solution (even weak one) with a Dirac initial data δ, which is in $H^{-\epsilon}(\mathbb{R}^d)$ for any $s > d/2$.

Theorem 1.1. Let $\mu = \pm 1$ and

$$
\epsilon_0 \in \left[0, \frac{d-1}{d+2}\right), \quad d \geq 2.
$$

(1.3)
Suppose that \(h_0 \in \dot{H}^{-\varepsilon_0}(\mathbb{R}^d) \) is a radial initial data satisfying \(\text{supp } h_0 \subset \{ x : |x| \geq 1 \} \). Then there exists a time \(\delta = \delta(h_0) > 0 \) and a unique strong solution
\[
h \in C([0, \delta); L^2(\mathbb{R}^d) + \dot{H}^{-\varepsilon_0}(\mathbb{R}^d)) \cap L^{\frac{2(2+d)}{d}}_{\text{loc}}([0, \delta] \times \mathbb{R}^d)
\]
to the equation (1.2) with the initial data \(h_0 \). Moreover, the following two statements hold:

1. If \(d > 4 \), then the solution \(h \) is unique in the following sense that there exists a unique function \(w \) in \(C([0, \delta], L^2(\mathbb{R}^d)) \) such that
\[
h = e^{t\Delta}h_0 + w.
\]

2. If \(\|h_0\|_{\dot{H}^{-\varepsilon_0}(\mathbb{R}^d)} \) is small enough, then the solution is global in time and satisfies the following decay estimate for \(d \geq 4 \),
\[
\|h(t)\|_{L^2} \lesssim t^{-\frac{d}{2}}\|h_0\|_{\dot{H}^{-\varepsilon_0}}, \quad t > 0.
\]

Remark 1.1. If \(h_0 \in L^p \) for some \(p < 2 \), then there exists some \(\varepsilon_0 > 0 \) such that \(h_0 \in \dot{H}^{-\varepsilon_0}(\mathbb{R}^d) \) and
\[
\|h_0\|_{\dot{H}^{-\varepsilon_0}(\mathbb{R}^d)} \lesssim \|h_0\|_{L^p(\mathbb{R}^d)}
\]
by the Sobolev embedding estimate (see e.g. Lemma 3.1 below). Thus, Theorem 1.1 shows that the solution \(h \) of the equation (1.2) exists locally for any radial and supported away from zero initial datum \(h_0 \) in \(L^p(\mathbb{R}^d) \) as \(p \in \left(\frac{d^2+4d-2}{2d^2+2d}, 2 \right) \) and \(d \geq 2 \).

Remark 1.2. It seems that the restriction \(d > 4 \) is necessary for unconditional uniqueness. In fact, when \(d = 4 \), the uniqueness problem is related to the “double critical” case (i.e. \(p = p_c = \gamma = \frac{d}{d-2} = 2 \)). It was well-known that the unconditional uniqueness failed by Ni-Sacks [16] and Brezis and Cazenave [2].

Finally, it is worth mentioning that in the defocusing case, the smallness restriction on the initial datum in the statement (2) is not necessary for global existence. Indeed, we have \(h(\delta) \in L^2(\mathbb{R}^d) \), then it follows by considering the solution from \(t = \delta \). Moreover, it is easy to find a large class of \(h_0 \) satisfying the conditions of theorem above. As described in Remark 1.1 our result shows that the solution \(h \) of the equation (1.2) exists globally on \(\mathbb{R}^+ \), for any the initial datum \(h_0 \) in \(L^p(\mathbb{R}^d) \) with some \(p < 2 \), which is radial and supported away from zero.

The paper is organized as follows: In Section 2, we will list several useful lemmas about Littlewood-Paley theory, and space-time estimates for the solution of linear heat equation. Then in Section 3, we will give the proof of the main results, respectively.
2. Preliminary

2.1. Littlewood-Paley multipliers and related inequalities. Throughout this paper, we write \(A \lesssim B \) to signify that there exists a constant \(c \) such that \(A \leq cB \), while we denote \(A \sim B \) when \(A \lesssim B \lesssim A \). We first define the Littlewood-Paley projection multiplier. Let \(\phi(\xi) \) be a fixed real-valued radially symmetric bump function adapted to the ball \(\{ \xi \in \mathbb{R}^d : |\xi| \leq 2 \} \) which equals 1 on the ball \(\{ \xi \in \mathbb{R}^d : |\xi| \leq 1 \} \). Define a dyadic number to any number \(N \in 2^\mathbb{Z} \) of the form \(N = 2^j \) where \(j \in \mathbb{Z} \) (the integer set). For each dyadic number \(N \), we define the the Fourier multipliers

\[
\hat{P}_{\leq N}f(\xi) := \phi(\xi/N) \hat{f}(\xi), \quad \hat{P}_N f(\xi) := \phi(\xi/N) - \phi(2\xi/N) \hat{f}(\xi),
\]

where \(\hat{f} \) denotes the Fourier transform of \(f \). Moreover, define \(P_{>N} = I - P_{\leq N} \) and \(P_{<N} = P_{\leq N} - P_N \), etc. In particular, we have the telescoping expansion:

\[
P_{\leq N} = \sum_{M \leq N} P_M f; \quad P_{>N} = \sum_{M > N} P_M f
\]

where \(M \) ranges over dyadic numbers. It was well-known that the Littlewood-Paley operators satisfy the following useful Bernstein inequalities with \(s > 0 \) and \(1 \leq p \leq q \leq \infty \) (see e.g. Tao [23]):

\[
\| P_{\geq N} f \|_{L^p_\xi(\mathbb{R}^d)} \lesssim N^{-s} \| \nabla |^s P_{\geq N} f \|_{L^p_\xi(\mathbb{R}^d)}, \quad \| \nabla |^s P_{\leq N} f \|_{L^p_\xi(\mathbb{R}^d)} \lesssim N^s \| P_{\leq N} f \|_{L^p_\xi(\mathbb{R}^d)};
\]

\[
\| \nabla |^s P_{\leq N} f \|_{L^p_\xi(\mathbb{R}^d)} \sim N^{\pm s} \| P_{\leq N} f \|_{L^p_\xi(\mathbb{R}^d)};
\]

\[
\| P_N f \|_{L^q(\mathbb{R}^d)} \lesssim N^{\left(\frac{d}{q} - \frac{d}{p}\right)} \| f \|_{L^p_\xi(\mathbb{R}^d)}, \quad \| P_{\leq N} f \|_{L^q(\mathbb{R}^d)} \lesssim N^{\left(\frac{d}{p} - \frac{d}{q}\right)} \| f \|_{L^p_\xi(\mathbb{R}^d)};
\]

Moreover, we also have the following mismatch estimate, see e.g. [11].

Lemma 2.1 (Mismatch estimates). Let \(\phi_1 \) and \(\phi_2 \) be smooth functions obeying

\[
|\phi_j| \leq 1 \quad \text{and} \quad \text{dist}(\text{supp} \phi_1, \text{supp} \phi_2) \geq A,
\]

for some large constant \(A \). Then for \(m > 0 \), \(N \geq 1 \) and \(1 \leq p \leq q \leq \infty \),

\[
\| \phi_1 P_{\leq N} (\phi_2 f) \|_{L^q_\xi(\mathbb{R}^d)} = \| \phi_1 P_{\geq N} (\phi_2 f) \|_{L^q_\xi(\mathbb{R}^d)} \lesssim_m A^{-m+\frac{d}{p} - \frac{d}{q}} N^{-m} \| \phi_2 f \|_{L^p_\xi(\mathbb{R}^d)}.
\]

2.2. Space-time estimates of linear heat equation. Let \(e^{t\Delta} \) denote the heat semigroup on \(\mathbb{R}^d \). Then for suitable function \(f \), \(e^{t\Delta} f \) solves the linear heat equation

\[
\partial_t h = \Delta h, \quad h(0, x) = f(x), \quad t > 0, \quad x \in \mathbb{R}^d,
\]

and the solution satisfies the following fundamental space-time estimates:
Lemma 2.2. Let \(f \in L^p(\mathbb{R}^d) \) for \(1 \leq p \leq \infty \), then
\[
\| e^{t\Delta} f \|_{L_t^\infty L_x^p(\mathbb{R}^d \times \mathbb{R}^d)} \lesssim \| f \|_{L^p(\mathbb{R}^d)}. \tag{2.1}
\]
Moreover, let \(I \subset \mathbb{R}^+ \), then for \(f \in L^2(\mathbb{R}^d) \) and \(F \in L_{tx}^{\frac{2(2+d)}{d}}(\mathbb{R}^+ \times \mathbb{R}^d) \),
\[
\| \nabla e^{t\Delta} f \|_{L_t^1 L_x^2(\mathbb{R}^d \times \mathbb{R}^d)} \lesssim \| f \|_{L^2(\mathbb{R}^d)}; \tag{2.2}
\]
\[
\| e^{t\Delta} f \|_{L_{tx}^{\frac{2(2+d)}{d}}(\mathbb{R}^d \times \mathbb{R}^d)} \lesssim \| f \|_{L^2(\mathbb{R}^d)}; \tag{2.3}
\]
\[
\left\| \int_0^t e^{(t-s)\Delta} F(s) \, ds \right\|_{L_\infty L_x^2 \cap L_{tx}^2(\mathbb{R}^+ \times \mathbb{R}^d)} \lesssim \| F \|_{L_{tx}^{\frac{2(2+d)}{d}}(\mathbb{R}^+ \times \mathbb{R}^d)}. \tag{2.4}
\]

We can give some remarks on the inequalities (2.1) – (2.4) above as follows:

(i). The estimate (2.1) is classical and immediately follows from the Younger inequality by the following heat kernel integral:
\[
(e^{t\Delta} f)(x) = (4\pi t)^{-d/2} \int_{\mathbb{R}^d} e^{-|x-y|^2/4t} f(y) \, dy, \quad t > 0.
\]
More generally, for all \(1 \leq p \leq q \leq \infty \), the following (decay) estimates hold:
\[
\| e^{t\Delta} f \|_{L^q(\mathbb{R}^d)} \lesssim t^{\frac{d}{2} - \frac{d}{q}} \| f \|_{L^p(\mathbb{R}^d)}, \quad t > 0. \tag{2.5}
\]

(ii). The estimate (2.2) is equivalent to a kind of square-function inequality on \(L^2(\mathbb{R}^d) \), which can be reformulated as
\[
\left\| \left(\int_0^\infty \| \nabla e^{t\Delta} f \|^2 \frac{dt}{t} \right)^{\frac{1}{2}} \right\|_{L^2(\mathbb{R}^d)} \lesssim \| f \|_{L^2(\mathbb{R}^d)},
\]
which follows directly by the Plancherel’s theorem, and also holds in the \(L^p(\mathbb{R}^d) \) for \(1 < p < \infty \) (see e.g. Stein[20, p. 27-46]).

(iii). The estimate (2.3) can be obtained by interpolation between the (2.1) and (2.2):
\[
\| e^{t\Delta} f \|_{L_{tx}^{\frac{2(2+d)}{d}}(\mathbb{R}^+ \times \mathbb{R}^d)} \lesssim \| e^{t\Delta} f \|_{L_t^\infty L_x^2(\mathbb{R}^+ \times \mathbb{R}^d)} \left\| \nabla e^{t\Delta} f \right\|_{L_{tx}^2(\mathbb{R}^+ \times \mathbb{R}^d)}.
\]

(iv). The estimate (2.4) consists of the three same type inequalities with the different norms \(L_t^\infty L_x^2, L_{tx}^{\frac{2(2+d)}{d}} \) and \(L_t^1 \dot{H}_x^1 \) on the left side. As shown in (iii) above, the second norm \(L_{tx}^{\frac{2(2+d)}{d}} \) can be controlled by interpolation between \(L_t^\infty L_x^2 \) and \(L_t^1 \dot{H}_x^1 \). Because of similarity of their proofs, we can give a proof to the first one, which is the special case of the following lemma. It is worth to noting that when \(p < \infty \), the estimate is \(L^2 \)-subcritical.

Lemma 2.3. Let \(2 \leq p \leq \infty \), and the pair \((p_1, r_1)\) satisfy
\[
\frac{2}{p_1} + \frac{d}{r_1} = \frac{d}{2} + \frac{2}{p}, \quad 1 \leq p_1 \leq 2, \quad 1 < r_1 \leq 2,
\]
then
\[\left\| \int_0^t e^{(t-s)\Delta} F(s) ds \right\|_{L_t^p L_x^2(\mathbb{R}^+) \times \mathbb{R}^d} \lesssim \| F \|_{L_t^{p_1} L_x^{p_1}(\mathbb{R}^+ \times \mathbb{R}^d)}. \]

Proof. By Plancherel’s theorem, it is equivalent that
\[\left\| \int_0^t e^{-(t-s)|\xi|^2} \hat{F}(\xi, s) ds \right\|_{L_t^p L_x^2(\mathbb{R}^+ \times \mathbb{R}^d)} \lesssim \| F \|_{L_t^{p_1} L_x^{p_1}(\mathbb{R}^+ \times \mathbb{R}^d)}. \] (2.6)

Since by the Young inequality of the convolution on \(\mathbb{R}^+ \), for any \(1 \leq p_1 \leq p \leq \infty \),
\[\left\| \int_0^t e^{-(t-s)|\xi|^2} \hat{F}(\xi, s) ds \right\|_{L^p(\mathbb{R}^+)} \lesssim \| \xi \|^{-\frac{2}{p} + \frac{2}{p_1}} \| \hat{F}(\xi, \cdot) \|_{L_t^{p_1}(\mathbb{R}^+)} \]

Note that \(p_1 \leq 2 \leq p \), thus by Minkowski’s inequality, Plancherel’s theorem, Sobolev’s embedding we obtain
\[\left\| \int_0^t e^{-(t-s)|\xi|^2} \hat{F}(\xi, s) ds \right\|_{L_t^p L_x^2(\mathbb{R}^+ \times \mathbb{R}^d)} \lesssim \| \nabla \|^{-\frac{2}{p} + \frac{2}{p_1}} \| F \|_{L_t^{p_1} L_x^{p_1}(\mathbb{R}^+ \times \mathbb{R}^d)}, \]

which gives the desired estimate (2.6). \(\square \)

Finally, we also need the following maximal \(L^p \)-regularity result for the heat flow. See Lemarie-Rieusset’s book [5, P.64] for example.

Lemma 2.4. Let \(p \in (1, \infty), q \in (1, \infty), \) and let \(T \in (0, \infty] \), then the operator \(A \) defined by
\[f(t, x) \mapsto \int_0^t e^{(t-s)\Delta} f(s, \cdot) ds \]
is bounded from \(L^p((0, T), L^q(\mathbb{R}^d)) \) to \(L^p((0, T), L^q(\mathbb{R}^d)) \).

3. **Proof of Theorem 1.1**

In this section, we will divide several subsection to finish the proof of Theorem 1.1. For the end, we first establish a supercritical estimate on the linear heat flow in the following subsection.

3.1. **A supercritical estimate on the linear heat flow.** Let us recall the following radial Sobolev embedding, see [24] for example.

Lemma 3.1. Let \(\alpha, q, p, s \) be the parameters which satisfy
\[\alpha > -\frac{d}{q}; \quad \frac{1}{q} \leq \frac{1}{p} \leq \frac{1}{q} + s; \quad 1 \leq p, q \leq \infty; \quad 0 < s < d \]
with
\[\alpha + s = d \left(\frac{1}{p} - \frac{1}{q} \right). \]
Moreover, let at most one of the following equalities hold:
\[p = 1, \quad p = \infty, \quad q = 1, \quad q = \infty, \quad \frac{1}{p} = \frac{1}{q} + s. \]
Then the radial Sobolev embedding inequality holds:
\[\| \cdot |x|^a u \|_{L^q(\mathbb{R}^d)} \lesssim \| \nabla |^s u \|_{L^p(\mathbb{R}^d)}. \]

Lemma 3.2. For any \(q > 2 \) and any \(\gamma \in \left(\frac{1}{2} - \frac{3}{q}, 1 - \frac{4}{q} \right) \), suppose that the radial function \(f \in H^\gamma(\mathbb{R}^d) \) satisfying
\[\text{supp } f \subset \{ x : |x| \geq 1 \}, \]
then
\[\| e^{t\Delta} f \|_{L^q_t(\mathbb{R}^+ \times \mathbb{R}^d)} \lesssim \| |\nabla|^\gamma f \|_{L^2(\mathbb{R}^d)}. \]

Proof. By Lemma 2.1 we have
\[\| e^{t\Delta} f \|_{L^q_t(\mathbb{R}^+ \times \mathbb{R}^d)} \lesssim \| f \|_{L^\infty(\mathbb{R}^d)}. \]
Let \(\alpha = \frac{d}{2} - s > 0 \) and \(s \in \left(\frac{1}{2}, 1 \right) \), then by Lemma 3.1 we have
\[\| f \|_{L^\infty(\mathbb{R}^d)} \lesssim \| |x|^\alpha f \|_{L^\infty(\mathbb{R}^d)} \lesssim \| |\nabla|^s f \|_{L^2(\mathbb{R}^d)}, \]
where the first inequality above has used the condition \(\text{supp } f \subset \{ x : |x| \geq 1 \} \). Thus we get that
\[\| e^{t\Delta} f \|_{L^q_t(\mathbb{R}^+ \times \mathbb{R}^d)} \lesssim \| |\nabla|^\gamma f \|_{L^2(\mathbb{R}^d)}. \quad (3.1) \]
Interpolation between this last estimate and (2.2), gives our desired estimates. \(\Box \)

3.2. Local theory and global criterion.

We use \(\chi_{\leq a} \) for \(a \in \mathbb{R}^+ \) to denote the smooth function
\[\chi_{\leq a}(x) = \begin{cases} 1, & |x| \leq a, \\ 0, & |x| \geq \frac{11}{10} a, \end{cases} \]
and set \(\chi_{\geq a} = 1 - \chi_{\leq a} \).

Now write
\[h_0 = v_0 + w_0, \quad (3.2) \]
where
\[v_0 = \chi_{\geq \frac{1}{2}}(P_{\geq N} h_0), \quad w_0 = h_0 - v_0. \]
Then we will first claim that \(w_0 \in L^2(\mathbb{R}^d) \), and
\[\| w_0 \|_{L^2(\mathbb{R}^d)} \lesssim N^{s_0} \| h_0 \|_{\dot{H}^{-s_0}(\mathbb{R}^d)}. \quad (3.3) \]
Note that $w_0 = \chi_{\leq \frac{1}{2}}(P_{\geq N}h_0) + P_{<N}h_0$. Firstly, we give the following estimate on the first part, which is a consequence of Lemma 2.1.

Lemma 3.3. Let h_0 be the function satisfying the hypothesis in Theorem 1.1, then

$$
\| \chi_{\leq \frac{1}{2}}(P_{\geq N}h_0) \|_{L^2(\mathbb{R}^d)} \lesssim N^{-1} \| h_0 \|_{\dot{H}^{-\epsilon_0}(\mathbb{R}^d)}.
$$

Proof. By the support property of h_0, we may write

$$
\chi_{\leq \frac{1}{2}}(P_{\geq N}h_0) = \chi_{\leq \frac{1}{2}}(P_{\geq N}\chi_{\geq \frac{n}{10}}h_0)
= \chi_{\leq \frac{1}{2}}(P_{\geq N}\chi_{\geq \frac{n}{10}}P_{2N}h_0) + \sum_{M=4N}^{\infty} \chi_{\leq \frac{1}{2}} P_{\geq N}(\chi_{\geq \frac{n}{10}} P_M h_0).
$$

By Lemma 2.1 and Bernstein’s inequality, we have

$$
\| \chi_{\leq \frac{1}{2}}(P_{\geq N}\chi_{\geq \frac{n}{10}}P_{2N}h_0) \|_{L^2(\mathbb{R}^d)} \lesssim N^{-10} \| P_{\leq 2N}h_0 \|_{L^2(\mathbb{R}^d)}
\lesssim N^{-1} \| h_0 \|_{\dot{H}^{-\epsilon_0}(\mathbb{R}^d)}.
$$

Moreover, since $P_{\geq N} = I - P_{<N}$ and $M > 2N$, we obtain

$$
\chi_{\leq \frac{1}{2}} P_{\geq N}(\chi_{\geq \frac{n}{10}} P_M h_0) = -\chi_{\leq \frac{1}{2}} P_{<N}(\chi_{\geq \frac{n}{10}} P_M h_0)
= -\chi_{\leq \frac{1}{2}} P_{<N}(P_{\geq \frac{1}{5}M} (\chi_{\geq \frac{n}{10}}) P_M h_0),
$$

where $P_{\geq \frac{1}{5}M}(\chi_{\geq \frac{n}{10}})$ denotes the high frequency truncation of the bump function $\chi_{\geq \frac{n}{10}}$.

Note that

$$
\| \chi_{\leq \frac{1}{2}} P_{<N}(P_{\geq \frac{1}{5}M} (\chi_{\geq \frac{n}{10}}) P_M h_0) \|_{L^2(\mathbb{R}^d)} \lesssim \| P_{\geq \frac{1}{5}M} (\chi_{\geq \frac{n}{10}}) \|_{L^\infty(\mathbb{R}^d)} \| P_M h_0 \|_{L^2(\mathbb{R}^d)}
\lesssim M^{-2} \| \Delta P_{\geq \frac{1}{5}M} (\chi_{\geq \frac{n}{10}}) \|_{L^\infty(\mathbb{R}^d)} \| P_M h_0 \|_{L^2(\mathbb{R}^d)}
\lesssim M^{-1} \| \chi_{\geq \frac{n}{10}} P_M h_0 \|_{L^2(\mathbb{R}^d)}.
$$

Hence, we have

$$
\| \chi_{\leq \frac{1}{2}} P_{\geq N}(\chi_{\geq \frac{n}{10}} P_M h_0) \|_{L^2(\mathbb{R}^d)} \lesssim M^{-1} \| h_0 \|_{\dot{H}^{-\epsilon_0}(\mathbb{R}^d)}.
$$

Therefore, taking summation, we obtain

$$
\sum_{M=4N}^{\infty} \| \chi_{\leq \frac{1}{2}} P_{\geq N}(\chi_{\geq \frac{n}{10}} P_M h_0) \|_{L^2(\mathbb{R}^d)} \lesssim N^{-1} \| h_0 \|_{\dot{H}^{-\epsilon_0}(\mathbb{R}^d)}.
$$

Inserting (3.6) and (3.7) into (3.5), we prove the lemma.

Moreover, by the Bernstein estimate,

$$
\| P_{<N} h_0 \|_{L^2(\mathbb{R}^d)} \lesssim N^{\epsilon_0} \| h_0 \|_{\dot{H}^{-\epsilon_0}(\mathbb{R}^d)}.
$$

Then this last estimate combining with Lemma 3.3 gives (3.3).
Second, we claim that
\[\|v_0\|_{\dot{H}^{-\epsilon_0}(\mathbb{R}^d)} \lesssim \|h_0\|_{\dot{H}^{-\epsilon_0}(\mathbb{R}^d)}. \] (3.8)

Indeed,
\[\|v_0\|_{\dot{H}^{-\epsilon_0}(\mathbb{R}^d)} \lesssim \|h_0\|_{\dot{H}^{-\epsilon_0}(\mathbb{R}^d)} + \|\chi_{\leq \frac{1}{2}}(P_N h_0)\|_{\dot{H}^{-\epsilon_0}(\mathbb{R}^d)}. \]

Hence, we only consider the latter term. By Sobolev’s embedding and Hölder’s inequality, we have
\[\|\chi_{\leq \frac{1}{2}}(P_N h_0)\|_{\dot{H}^{-\epsilon_0}(\mathbb{R}^d)} \lesssim \|\chi_{\leq \frac{1}{2}}(P_N h_0)\|_{L^2(\mathbb{R}^d)}. \]

Hence (3.8) follows from Lemma 3.3.

We denote
\[v_L(t) = e^{t\Delta} v_0. \]

Then \(v_L \) is globally existence, and by Plancherel’s theorem and (3.8)
\[\|v_L(t)\|_{L^\infty_t \dot{H}^{-\epsilon_0}(\mathbb{R}^{1+d})} \lesssim \|v_0\|_{\dot{H}^{-\epsilon_0}(\mathbb{R}^d)} \lesssim \|h_0\|_{\dot{H}^{-\epsilon_0}(\mathbb{R}^d)}, \] (3.9)

Moreover, let \(\epsilon \) be a sufficiently small positive constant, then we claim that
\[\|v_L(t)\|_{L^2_{t\geq \frac{2}{d+2}}(\mathbb{R}^{1+d})} \lesssim N^{-\frac{1}{d+2}+\epsilon_0+\epsilon} \|h_0\|_{\dot{H}^{-\epsilon_0}(\mathbb{R}^d)}. \] (3.10)

Indeed, let \(\gamma = -\frac{d-1}{d+2} + \epsilon \), then by Lemma 3.2,
\[\|v_L(t)\|_{L^2_{t\geq \frac{2}{d+2}}(\mathbb{R}^{1+d})} \lesssim \|\nabla^\gamma \chi_{\leq \frac{1}{2}}(P_N h_0)\|_{L^2(\mathbb{R}^d)}. \]

Note that
\[\|\nabla^\gamma \chi_{\leq \frac{1}{2}}(P_N h_0)\|_{L^2(\mathbb{R}^d)} \leq \|\nabla^\gamma (P_N h_0)\|_{L^2(\mathbb{R}^d)} + \|\nabla^\gamma \chi_{\leq \frac{1}{2}}(P_N h_0)\|_{L^2(\mathbb{R}^d)}. \]

For the former term, since \(\gamma < -\epsilon_0 \), by Bernstein’s inequality,
\[\|\nabla^\gamma (P_N h_0)\|_{L^2(\mathbb{R}^d)} \lesssim N^{\gamma+\epsilon_0} \|h_0\|_{\dot{H}^{-\epsilon_0}(\mathbb{R}^d)}. \]

So we only need to estimate the latter term. Let \(q \) be the parameter satisfying
\[\frac{1}{q} = \frac{1}{2} - \frac{\gamma}{d}, \]
then \(q > 1 \). Since \(\gamma < 0 \), by Sobolev’s and Hölder’s inequalities,
\[\|\nabla^\gamma \chi_{\leq \frac{1}{2}}(P_N h_0)\|_{L^2(\mathbb{R}^d)} \lesssim \|\chi_{\leq \frac{1}{2}}(P_N h_0)\|_{L^q(\mathbb{R}^d)} \lesssim N^{1/q} \|h_0\|_{\dot{H}^{-\epsilon_0}(\mathbb{R}^d)}. \]

Furthermore, by Lemma 3.3
\[\|\chi_{\leq \frac{1}{2}}(P_N h_0)\|_{L^2(\mathbb{R}^d)} \lesssim N^{-1} \|h_0\|_{\dot{H}^{-\epsilon_0}(\mathbb{R}^d)}. \]
Combining the last two estimates above, we obtain

\[\left\| \nabla^\gamma \chi_{\leq \frac{1}{2}} (P_{\geq N} h_0) \right\|_{L^2(\mathbb{R}^d)} \lesssim N^{-1} \left\| h_0 \right\|_{H^{-\frac{2}{3}}(\mathbb{R}^d)}. \]

This gives (3.10).

Now we denote \(w = h - v_L \), then \(w \) is the solution of the following equation,

\[
\begin{aligned}
\partial_t w &= \Delta w \pm |h|^\frac{5}{4} h, \\
w(0, x) &= w_0(x) = h_0 - v_0.
\end{aligned}
\tag{3.11}
\]

The following lemma is the local well-posedness and global criterion of the Cauchy problem (3.11).

Lemma 3.4. There exists \(\delta > 0 \), such that for any \(h_0 \) satisfying the hypothesis in Theorem 1.1 and \(w_0 = h_0 - v_0 \), the Cauchy problem (3.11) is well-posed on the time interval \([0, \delta]\), and the solution

\[
w \in C_{t} L^2_t L^2_x \left(\left[0, \delta \right] \times \mathbb{R}^d \right) \cap \cap \left(\left[0, \delta \right] \times \mathbb{R}^d \right) \cap \cap \left(\left[0, \delta \right] \times \mathbb{R}^d \right).
\]

Furthermore, let \(T^* \) be the maximal lifespan, and suppose that

\[
w \in L^\infty_t L^2_x \left(\left[0, T^* \right] \times \mathbb{R}^d \right),
\]

then \(T^* = +\infty \). In particular, if \(\| h_0 \|_{H^{-\frac{2}{3}}(\mathbb{R}^d)} \ll 1 \), then \(T^* = +\infty \).

Proof. For local well-posedness, we only show that the solution \(w \in L^\infty_t L^2_x \left(\left[0, \delta \right] \times \mathbb{R}^d \right) \cap \cap \left(\left[0, \delta \right] \times \mathbb{R}^d \right) \cap \cap \left(\left[0, \delta \right] \times \mathbb{R}^d \right) \) for some \(\delta > 0 \). Indeed, the local well-posedness with the lifespan \([0, \delta]\) is then followed by the standard fixed point argument. By Duhamel’s formula, we have

\[
w(t) = e^{t\Delta} w_0 \pm \int_0^t e^{(t-s)\Delta} |h(s)|^{\frac{5}{4}} h(s) \, ds.
\]

Then by Lemma 2.2 for any \(t_* \leq \delta \),

\[
\left\| w \right\|_{L^\infty_t L^2_x \left(\left[0, \delta \right] \times \mathbb{R}^d \right)} \lesssim \left\| e^{t\Delta} w_0 \right\|_{L^\infty_t L^2_x \left(\left[0, \delta \right] \times \mathbb{R}^d \right)} + \left\| h \right\|_{L^2_x \left(\left[0, \delta \right] \times \mathbb{R}^d \right)}.
\]

Note that

\[
\left\| h \right\|_{L^\infty_t L^2_x \left(\left[0, \delta \right] \times \mathbb{R}^d \right)} \lesssim \left\| v_L \right\|_{L^\infty_t L^2_x \left(\left[0, \delta \right] \times \mathbb{R}^d \right)} + \left\| w \right\|_{L^\infty_t L^2_x \left(\left[0, \delta \right] \times \mathbb{R}^d \right)},
\]

let \(\eta_0 = \left(\frac{4}{3} + 1 \right) \left(\frac{d-1}{2} - \varepsilon_0 - \epsilon \right) > 0 \), then using (3.10), we obtain

\[
\left\| w \right\|_{L^\infty_t L^2_x \left(\left[0, \delta \right] \times \mathbb{R}^d \right)} \lesssim \left\| e^{t\Delta} w_0 \right\|_{L^\infty_t L^2_x \left(\left[0, \delta \right] \times \mathbb{R}^d \right)} + N^{-\eta_0} \left\| h_0 \right\|_{H^{-\frac{2}{3}}(\mathbb{R}^d)} + \left\| w \right\|_{L^\infty_t L^2_x \left(\left[0, \delta \right] \times \mathbb{R}^d \right)}.
\]
Noting that either \(\|h_0\|_{\dot{\mathcal{H}}^{-\epsilon_0}(\mathbb{R}^d)} \ll 1 \), or choosing \(\delta \) small enough and \(N \) large enough, we have
\[
\|e^{t\Delta} w_0\|_{L_{tx}^{2(2+d)}([0,\delta] \times \mathbb{R}^d)} + N^{-\eta_0} \|h_0\|_{\dot{\mathcal{H}}^{-\epsilon_0}(\mathbb{R}^d)}^{\frac{4}{2(2+d) - 2}} \ll 1,
\]
then by the continuity argument, we
\[
\|w\|_{L_{tx}^{2(2+d)}([0,\delta] \times \mathbb{R}^d)} \lesssim \|e^{t\Delta} w_0\|_{L_{tx}^{2(2+d)}([0,\delta] \times \mathbb{R}^d)} + N^{-\eta_0} \|h_0\|_{\dot{\mathcal{H}}^{-\epsilon_0}(\mathbb{R}^d)}^{\frac{4}{2(2+d) - 2}}.
\]
Further, by Lemma 2.2 again,
\[
\|w\|_{L_{x}^{2}H_{s}^{1}([0,\delta] \times \mathbb{R}^d)} + \sup_{t \in [0,\delta]} \|w\|_{L_{x}^{2}(\mathbb{R}^d)} \lesssim \|w_0\|_{L_{x}^{2}(\mathbb{R}^d)} + \|h\|_{L_{tx}^{2(2+d)}}^{\frac{4}{2(2+d) - 2}}([0,\delta] \times \mathbb{R}^d)
\]
\[
\lesssim \|w_0\|_{L_{x}^{2}(\mathbb{R}^d)} + \|w\|_{L_{tx}^{2(2+d)}([0,\delta] \times \mathbb{R}^d)} + \|w\|_{L_{tx}^{2(2+d)}([0,\delta] \times \mathbb{R}^d)}^{\frac{4}{2(2+d) - 2}}.
\]
Hence, using (3.10) and (3.12), we obtain
\[
\|w\|_{L_{x}^{2}H_{s}^{1}([0,\delta] \times \mathbb{R}^d)} + \sup_{t \in [0,\delta]} \|w\|_{L_{x}^{2}(\mathbb{R}^d)} \leq C,
\]
for some \(C = C(N, \|h_0\|_{\dot{\mathcal{H}}^{-\epsilon_0}(\mathbb{R}^d)}) > 0 \).

Suppose that
\[
w \in L_{tx}^{2(2+d)}([0,T^*) \times \mathbb{R}^d),
\]
then if \(T^* < +\infty \), we have
\[
\|w(T^*)\|_{L_{x}^{2}(\mathbb{R}^d)} \lesssim \|e^{T^*\Delta} w_0\|_{L_{tx}^{2(2+d)}([0,T^*) \times \mathbb{R}^d)} + \|h\|_{L_{tx}^{2(2+d)}([0,T^*) \times \mathbb{R}^d)}^{\frac{4}{2(2+d) - 2}}([0,T^*) \times \mathbb{R}^d)
\]
\[
\lesssim \|w_0\|_{L_{x}^{2}(\mathbb{R}^d)} + N^{-\eta_0} \|h_0\|_{\dot{\mathcal{H}}^{-\epsilon_0}(\mathbb{R}^d)}^{\frac{4}{2(2+d) - 2}} + \|w\|_{L_{tx}^{2(2+d)}([0,T^*) \times \mathbb{R}^d)}^{\frac{4}{2(2+d) - 2}}.
\]
Hence, \(w \) exists on \([0,T^*)\), and \(w(T^*) \in L_{x}^{2}(\mathbb{R}^d) \). Hence, using the local theory obtained before from time \(T^* \), the lifespan can be extended to \(T^* + \delta \), this is contradicted with the definition of the maximal lifespan \(T^* \). Hence, \(T^* = +\infty \).

3.3. **Uniqueness.** Here we adopt the argument in \([15]\), where the main tool is the the maximal \(L^p \)-regularity of the heat flow. Let \(h_1, h_2 \) be two distinct solutions of (1.2) with the same initial data \(h_0 \), and write
\[
h_1 = e^{s\Delta} h_0 + w_1; \quad h_2 = e^{s\Delta} h_0 + w_2.
\]
By the Duhamel formula, we have
\[
w_1(t) = \int_0^t e^{(t-s)\Delta} e^{s\Delta} h_0 + w_1 ds; \quad w_2(t) = \int_0^t e^{(t-s)\Delta} e^{s\Delta} h_0 + w_2 ds.
\]
Denote \(w = w_1 - w_2 \), then \(w \) obeys

\[
w(t) = \int_0^t e^{(t-s)\Delta} \left[|e^{s\Delta}h_0 + w_1|^{\frac{4}{p}} (e^{s\Delta}h_0 + w_1) - |e^{s\Delta}h_0 + w_2|^{\frac{4}{p}} (e^{s\Delta}h_0 + w_2) \right] ds.
\]

Note that there exists an absolute constant \(C > 0 \) such that

\[
|e^{s\Delta}h_0 + w_1|^{\frac{4}{p}} (e^{s\Delta}h_0 + w_1) - |e^{s\Delta}h_0 + w_2|^{\frac{4}{p}} (e^{s\Delta}h_0 + w_2) \leq C \left(|e^{s\Delta}h_0|^{\frac{4}{p}} + |w_1|^{\frac{4}{p}} + |w_2|^{\frac{4}{p}} \right) |w|.
\]

Then by the positivity of the heat kernel, we have

\[
|w(t)| \leq C \int_0^t e^{(t-s)\Delta} \left(|e^{s\Delta}h_0|^{\frac{4}{p}} + |w_1(s)|^{\frac{4}{p}} + |w_2(s)|^{\frac{4}{p}} \right) |w(s)| ds.
\]

Then we get that for \(2 \leq p < \infty, \tau \in (0, \delta] \),

\[
\|w\|_{L^p_t((0,\tau); L^2(\mathbb{R}^d))} \lesssim \left\| \int_0^t e^{(t-s)\Delta} |e^{s\Delta}h_0|^{\frac{4}{p}} |w(s)| ds \right\|_{L^p_t((0,\tau); L^2(\mathbb{R}^d))} + \left\| \int_0^t e^{(t-s)\Delta} \left(|w_1(s)|^{\frac{4}{p}} + |w_2(s)|^{\frac{4}{p}} \right) |w(s)| ds \right\|_{L^p_t((0,\tau); L^2(\mathbb{R}^d))}.
\]

For the first term in the right-hand side above, using Lemma 2.3 and choosing \(p \) large enough, we have

\[
\left\| \int_0^t e^{(t-s)\Delta} |e^{s\Delta}h_0|^{\frac{4}{p}} |w(s)| ds \right\|_{L^p_t((0,\tau); L^2(\mathbb{R}^d))} \lesssim \left\| |e^{s\Delta}h_0|^{\frac{4}{p}} |w(s)| \right\|_{L^{p_1}_t((0,\tau); L^{r_1}(\mathbb{R}^d))},
\]

where we have chose \((p_1, r_1)\) that

\[
\frac{1}{p_1} = \frac{2}{d + 2} + \frac{1}{p}; \quad \frac{1}{r_1} = \frac{2}{d + 2} + \frac{1}{2}.
\]

(Note that \(d > 4 \) and \(p \) is large, we have that \(p_1 \in (1, 2), r_1 \in (1, 2) \)). Hence, by Hölder’s inequality, we obtain that

\[
\left\| \int_0^t e^{(t-s)\Delta} |e^{s\Delta}h_0|^{\frac{4}{p}} |w(s)| ds \right\|_{L^p_t((0,\tau); L^2(\mathbb{R}^d))} \lesssim \left\| |e^{s\Delta}h_0|^{\frac{4}{p}} |w(s)| \right\|_{L^{p_1}_t((0,\tau); L^{r_1}(\mathbb{R}^d))} \lesssim \left\| e^{s\Delta}h_0 \right\|_{L^{2(d+2)/(d+4)}_{t_4}((0,\tau) \times \mathbb{R}^d)} \left\| w \right\|_{L^p_t((0,\tau); L^2(\mathbb{R}^d))}.
\]

For the second term in the right-hand side above, using Lemma 2.4

\[
\left\| \int_0^t e^{(t-s)\Delta} \left(|w_1(s)|^{\frac{4}{p}} + |w_2(s)|^{\frac{4}{p}} \right) |w(s)| ds \right\|_{L^p_t((0,\tau); L^2(\mathbb{R}^d))} \lesssim \left\| (-\Delta)^{-\frac{1}{2}} \left(|w_1(s)|^{\frac{4}{p}} + |w_2(s)|^{\frac{4}{p}} \right) |w(s)| \right\|_{L^p_t((0,\tau); L^2(\mathbb{R}^d))}.
\]
Since $d > 4$, by Sobolev’s embedding, we further have
\[
\| \int_0^t e^{(t-s)\Delta} \left(|w_1(s)|^{2/3} + |w_2(s)|^{2/3} \right) |w(s)| ds \|_{L^2_T((0,\tau); L^2(\mathbb{R}^d))} \\
\lesssim \left(\| w_1(s) \|^{2/3} + \| w_2(s) \|^{2/3} \right) \| w(s) \|_{L^2_T((0,\tau); L^2(\mathbb{R}^d))} \\
\lesssim \left(\| w_1 \|^{2/3}_{L^\infty_T((0,\tau); L^2(\mathbb{R}^d))} + \| w_2 \|^{2/3}_{L^\infty_T((0,\tau); L^2(\mathbb{R}^d))} \right) \| w \|_{L^2_T((0,\tau); L^2(\mathbb{R}^d))}.
\]
Collection the estimates above, we obtain that
\[
\| w \|_{L^2_T((0,\tau); L^2(\mathbb{R}^d))} \lesssim \rho(\tau) \cdot \| w \|_{L^2_T((0,\tau); L^2(\mathbb{R}^d))},
\]
where
\[
\rho(\tau) = \left\| e^{\tau \Delta} h_0 \right\|_{L^2_T(0,\tau) \times \mathbb{R}^d}^{2(d+2)} + \| w_1 \|^{2/3}_{L^\infty_T((0,\tau); L^2(\mathbb{R}^d))} + \| w_2 \|^{2/3}_{L^\infty_T((0,\tau); L^2(\mathbb{R}^d))}.
\]
By (3.10) and Lemma 2.2, we have
\[
\| e^{\tau \Delta} h_0 \|_{L^2_T(0,\tau) \times \mathbb{R}^d}^{2(d+2)} \to 0, \quad \text{when } \tau \to 0.
\]
Further, since $w_1, w_2 \in C([0, \delta], L^2(\mathbb{R}^d))$, we get
\[
\lim_{\tau \to 0} \rho(\tau) \to 0.
\]
Hence, choosing τ small enough and from (3.13), we obtain that $w \equiv 0$ on $t \in [0, \tau)$. By iteration, we have $w_1 \equiv w_2$ on $[0, \delta)$. This proves the first statement (1) in Theorem 1.1.

3.4. L^2-estimates

In this subsection, we prove the second statement (2) in Theorem 1.1.

Firstly, by Lemma 3.4, when $\| h_0 \|_{H^{-c_0}(\mathbb{R}^d)} \ll 1$, we immediately have the global existence of the solution for the both cases $\mu = \pm 1$. However, in the defocusing case ($\mu = 1$), the smallness of $\| h_0 \|_{H^{-c_0}(\mathbb{R}^d)} \ll 1$ can be cancelled. In fact, note that $h = v_L + w$ and
\[
\| v_L \|_{L^2(\mathbb{R}^d)} = \| e^{-t|\xi|^2} \hat{v}_0(\xi) \|_{L^2(\mathbb{R}^d)} \\
\lesssim \| e^{-t|\xi|^2} |\xi|^{c_0} \|_{L^\infty(\mathbb{R}^d)} \| v_0 \|_{H^{-c_0}} \lesssim t^{-c_0/2} \| h_0 \|_{H^{-c_0}}.
\]
Hence, from Lemma 3.1, we have $h(\delta) \in L^2(\mathbb{R}^d)$. Let $I = [0, T^*)$ be the maximal lifespan of the solution h of the Cauchy problem (1.2). Then from the L^2 estimate of the solution (by inner producing with h in (1.2)), we have
\[
\sup_{t \in I} \| h \|_{L^2}^2 + \| \nabla h \|_{L^2_{t,x}(I \times \mathbb{R}^d)}^2 \leq \| h_0 \|_{L^2}^2.
\]
This gives the uniform boundedness of $\| h \|_{L^2_{t,x}(I \times \mathbb{R}^d)}^{2(d+2)}$ and thus $\| w \|_{L^2_{t,x}(I \times \mathbb{R}^d)}^{2(d+2)}$. Then by the global criteria given in Lemma 3.4, we have $T^* = +\infty$.

Some text in the image was not legible, but the overall content is clear. The text refers to Sobolev’s embedding, estimates involving L^2 norms, and global criteria for solutions of heat equations. The proof involves limits as $\tau \to 0$, and conclusions are drawn about the global existence of solutions under certain conditions.
Secondly, we consider the time estimate of the solution ($\mu = \pm 1$). When $t \leq 1$, it follows from (3.14) and Lemma 3.4, that
\[\| h(t) \|_{L^2} \lesssim t^{-\frac{d}{4}} \| h_0 \|_{\dot{H}^{-\frac{1}{2}}} , \quad \text{for any } t \in (0, 1). \]
So it remains to show the decay estimate when $t > 1$. By Duhamel’s formula, we have
\[\| h(t) \|_{L^2(\mathbb{R}^d)} \leq \| e^{t\Delta} h_0 \|_{L^2(\mathbb{R}^d)} + \left\| \int_0^t e^{(t-s)\Delta} |\dot{h}(s)|^{\frac{3}{2}} h(s) \, ds \right\|_{L^2(\mathbb{R}^d)}. \]
Similar as (3.14), we have
\[\left\| e^{t\Delta} h_0 \right\|_{L^2(\mathbb{R}^d)} \lesssim t^{-\frac{d}{2}} \| h_0 \|_{\dot{H}^{-\frac{1}{2}}}. \]
Then using the estimate above and Lemma 2.5, we further have
\[
\begin{align*}
\| h(t) \|_{L^2(\mathbb{R}^d)} & \lesssim t^{-\frac{d}{2}} \| h_0 \|_{\dot{H}^{-\frac{1}{2}}} + \int_0^t \left\| e^{(t-s)\Delta} |\dot{h}(s)|^{\frac{3}{2}} h(s) \right\|_{L^2(\mathbb{R}^d)} \, ds \\
& \lesssim t^{-\frac{d}{2}} \| h_0 \|_{\dot{H}^{-\frac{1}{2}}} + \int_0^t |t-s|^{-1} \left\| h(s) \right\|_{L^2(\mathbb{R}^d)} \, ds \\
& \lesssim t^{-\frac{d}{2}} \| h_0 \|_{\dot{H}^{-\frac{1}{2}}} + \int_0^t |t-s|^{-1} \| h \|_{L^2(\mathbb{R}^d)}^{\frac{2d}{d+4}} \, ds.
\end{align*}
\]
In the last step we have used the fact $d \geq 4$ such that $\frac{2d}{d+4} \geq 1$.

Now we denote
\[\| h \|_{X(T)} = \sup_{t \in [0, T]} \left(t^{\frac{d}{2}} \| h(t) \|_{L^2(\mathbb{R}^d)} \right). \]
Fixing $T > 1$, then for any $t \in (1, T]$,
\[
\begin{align*}
\| h(t) \|_{L^2(\mathbb{R}^d)} & \lesssim t^{-\frac{d}{2}} \| h_0 \|_{\dot{H}^{-\frac{1}{2}}} + \int_0^t |t-s|^{-1} s^{-\frac{d}{2(4+1)}} \, ds \| h(t) \|_{X(T)}^{\frac{4}{d+4}} \\
& \lesssim t^{-\frac{d}{2}} \| h_0 \|_{\dot{H}^{-\frac{1}{2}}} + t^{-\frac{d}{2(4+1)}} \| h(t) \|_{X(T)}^{\frac{4}{d+4}} \\
& \lesssim t^{-\frac{d}{2}} \left(\| h_0 \|_{\dot{H}^{-\frac{1}{2}}} + \| h(t) \|_{X(T)}^{\frac{4}{d+4}} \right).
\end{align*}
\]
Thus we obtain that
\[\| h(t) \|_{X(T)} \lesssim \| h_0 \|_{\dot{H}^{-\frac{1}{2}}} + \| h(t) \|_{X(T)}^{\frac{4}{d+4}}. \]
By the continuity argument, we get
\[\| h(t) \|_{X(T)} \lesssim \| h_0 \|_{\dot{H}^{-\frac{1}{2}}}. \]
Since the estimate is independent on T, we give that
\[\| h(t) \|_{L^2} \lesssim t^{-\frac{d}{2}} \| h_0 \|_{\dot{H}^{-\frac{1}{2}}} , \quad \text{for any } t > 1. \]
Therefore, we obtain that
\[\| h(t) \|_{L^2} \lesssim t^{-\frac{d}{2}} \| h_0 \|_{\dot{H}^{-\frac{1}{2}}} , \quad \text{for any } t > 0. \]
This proves the second statement (2) in Theorem 1.1.
REFERENCES

[1] H. Brezis, X. Cabré, Some simple nonlinear PDEs without solutions, Boll. Unione Mat. Ital. (8)(1999), 223-262.

[2] H. Brezis, T. Cazenave, A nonlinear heat equation with singular initial data. Journal D’Analyse Mathematique, 68(1996), no 1, 277-304.

[3] H. Brezis and A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl. 62(1983), 73-97.

[4] H. Brezis, L. A. Peletier, D. Terman, A very singular solution of the heat equation with absorption. Arch. Ration. Mech. Anal. 95(1986), 185-206.

[5] P.G. Lemarie-Rieusset, Recent developments in the Navier-Stokes problem, Birkhäuser, CRC Press, 2006.

[6] V. A. Galaktionov and J. L. Vázquez, Continuation of blow-up solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math. 50(1997), 1-67.

[7] Y. Giga, Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier-Stokes system. J. Differential Equations, 62(1986), 186-212.

[8] Y. Giga, R. V. Kohn, Asymptotically self-similar blowup of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985) 297-319.

[9] A. Haraux, F. B. Weissler, Non uniqueness for a semilinear initial value problem, Indiana Univ. Math. J., 31(1982), 167-189.

[10] S. Ibrahim, H. Kikuchi, K. Nakanishi, J. Wei, Non-uniqueness for an energy-critical heat equation on \(\mathbb{R}^2\), arXiv:1903.06729.

[11] D. Li, X. Zhang, Regularity of almost periodic modulo scaling solutions for mass-critical NLS and applications. Anal. PDE, 3(2010), no 2, 175–195.

[12] H. Matano, F. Merle, On nonexistence of type II blowup for a supercritical nonlinear heat equation. Comm. Pure Appl. Math. 57 (2004), no. 11, 1494-1541.

[13] F. Merle, Solution of a nonlinear heat equation with arbitrarily given blow-up points, Communications on Pure and Applied Mathematics, 1992, 263-300.

[14] C. Miao and B. Zhang, The Cauchy problem for semilinear parabolic equations in Besov spaces, Houston J. Math., 30(2004), no. 3, 829-878.

[15] S., Monniaux, Uniqueness of mild solutions of the Navier-Stokes equation and maximal \(L^p\)-regularity, C. R. Acad. Sci. Paris, t. 328, Série I, 663-668, 1999.

[16] W.-M. Ni, P. Sacks, Singular behavior in nonlinear parabolic equations, Trans. Amer. Math. Soc., 287(1985), 657-671.

[17] P. Quittner, P. Souplet, Superlinear parabolic problems. Blow-up, global existence and steady states, Birkhauser Advanced Texts, ISBN: 978-37643-8441-8 (2007).

[18] F. Ribaud, Cauchy problem for semilinear parabolic equations with initial data in \(H^s_p(\mathbb{R}^n)\) spaces, Rev. Mat. Iberoamericana, 14 (1998), pp. 1-46.

[19] B. Ruf and E. Terraneo, The Cauchy problem for a semilinear heat equation with singular initial data, Evolution equations, semigroups and functional analysis (Milano, 2000), Progr. Nonlinear Differential Equations Appl.,Vol. 50, pp. 295-309, Birkhäuser, 2002.

[20] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, New Jersey, 1993.

[21] Z. Tan, Global solution and blowup of semilinear heat equation with critical Sobolev exponent, Comm. Partial Differential Equations, 26(2001), 717-741.

[22] E. Terraneo, Non-uniqueness for a critical non-linear heat equation, Comm. Partial Differential Equations, 27 (2002), 185-218.

[23] T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis. CBMS Reg. Conf. Series in Math., vol. 106. AMS, Providence, 2006.

[24] T. Tao, M. Viscan, X. Zhang, Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions. Duke Math. J., 140 (2007), 165–202.

[25] F. B. Weissler, Local existence and nonexistence for semilinear parabolic equations in \(L^p\). Indiana Univ. Math. J., 29(1),(1980), 79-102.

[26] F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math., 38(1981), 29-40.
[27] Jiahong Wu, *Well-posedness of a semilinear heat equation with weak initial data*, The Journal of Fourier Analysis and Applications, 4(1998), 629-642.

Rutgers University, Department of Mathematics, 110 Frelinghuysen Rd., Piscataway, NJ, 08854, USA,

Department of Mathematics, Hubei Key Laboratory of Mathematical Science, Central China Normal University, Wuhan 430079, China.,
E-mail address: soffer@math.rutgers.edu

Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
E-mail address: yerfmath@gmail.com

Department of Mathematics, Hubei Key Laboratory of Mathematical Science, Central China Normal University, Wuhan 430079, China.,
E-mail address: yaoxiaohua@mail.ccnu.edu.cn