Chiral kinetic theory and anomalous hydrodynamics in even spacetime dimensions

Vatsal Dwivedi and Michael Stone

Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, IL 61801, United States of America

E-mail: vdwived2@illinois.edu and m-stone5@illinois.edu

Received 4 September 2016, revised 21 February 2017
Accepted for publication 23 February 2017
Published 14 March 2017

Abstract

We apply chiral kinetic theory to a gas of weakly interacting Weyl fermions coupled to electromagnetism in \((2N + 1) + 1\) spacetime dimensions to obtain the ‘Gibbs free energy current’ from which all equilibrium finite temperature anomalous contributions, such as the chiral magnetic and vortical currents, can be derived. Our results agree with those derived previously using thermodynamic constraints.

Keywords: semiclassics, anomalous hydrodynamics, kinetic theory

1. Introduction

The equations of relativistic hydrodynamics, originally proposed in the 1940s [1, 2], have been a versatile tool for the study of fluids under extreme conditions. A fluid description can often be systematically constructed from an underlying quantum field theory as a derivative expansion that requires knowing only the symmetries and their corresponding conservation laws [3]. Now a relativistic field theory may suffer from an anomaly—a breakdown of a classically expected conservation law that occurs when the theory is quantized [4]. We say ‘suffer’ because anomalies are usually regarded as undesirable: a theory in which a dynamical gauge field is coupled to an anomalous current is inconsistent as the anomaly causes a breakdown of gauge invariance. However some anomalies are not only benign, they are actually useful. In particular, those that arise when a non-dynamical external gauge field is used as a theoretical probe can offer powerful insight into the behavior of the theory. An important feature of such anomalies is that they are unaffected by interactions—no matter how strong. This resilience arises from their topological nature as they are proportional to the index density of a Dirac operator [5].

1 Author to whom any correspondence should be addressed.
The systematic investigation of the macroscopic consequences of anomalies for the hydrodynamic regime of a QFT was begun in [6, 7]. In [6], Son and Surówka show that in $3 + 1$ spacetime dimensions, the presence of an anomalous conservation law for a $U(1)$ current necessitates adding terms to the constitutive relation at the first order in derivative expansion, which can be constrained using the second law of thermodynamics. Subsequently, Loganayagam [8] derived the general solutions to the second law constraint in arbitrary even spacetime dimensions.

More recently, Loganayagam and Surówka [9] conjectured a very powerful result for the hydrodynamic description of Weyl fermions in even spacetime dimensions. They argued that all anomalous contributions to the hydrodynamic equations can be derived from a ‘Gibbs free energy current’ G. Furthermore, in d spacetime dimensions, G can be obtained by the replacements $F \rightarrow \mu$ and $\text{tr}(R^{2n}) \rightarrow 2(2\pi T)^{2n} \forall n \in \mathbb{Z}^+$ in the anomaly polynomial in $d + 2$ dimensions. Here μ is the chemical potential, T the temperature, and F and R are the Maxwell and Riemann curvatures, respectively. These replacement rules have been further studied [10] in a holographic setting using the tools of fluid-gravity duality [3] and strong evidence for the general validity of the conjecture has been found [11–14].

An alternative to the quantum field theory gradient expansion route to anomalous QFTs is provided by a semiclassical approach in which one studies the dynamics of wavepackets treated as individual classical particles. The only quantum aspects necessary are the coupling to the Berry connection and the \hbar occurring in the phase space volume. In a Hamiltonian picture, the Berry curvature leads to a nontrivial (‘anomalous’) symplectic form on phase space, for which the position and momentum coordinates are no longer canonically conjugate pairs [15, 16]. This approach has proved particularly useful in condensed matter physics [17, 18], for instance, in the study of transport in Weyl semimetals [19].

In [20], Stephanov and Yin showed that a kinetic theory based on a semiclassical description of charged noninteracting Weyl fermions in $3 + 1$ spacetime dimensions reproduces the Adler–Bell–Jackiw anomaly [4] correctly. Subsequently, their computation was generalized to nonabelian gauge anomalies [21] in arbitrary even spacetime dimensions [22] by constructing an anomalous symplectic form on an extended phase space, where the anomaly signals a breakdown of the Liouville’s theorem. The formalism has also been used to describe the transport processes associated with gauge anomalies, for instance, the chiral magnetic effect (CME) and chiral vortical effect (CVE) [19, 20].

In the present paper, we study the hydrodynamics of a gas of charged noninteracting Weyl fermions in arbitrary even spacetime dimensions. Starting from a semiclassical microscopic description and assuming the system to be in thermodynamic equilibrium in an appropriate comoving frame, we derive the free energy current that depends on the electromagnetic field and vorticity of the fluid and from which all anomalous contributions to the currents and energy momentum tensor can be derived. At a finite temperature, we include both positive and negative energy sectors to get a closed form expressions for the currents, which are identical to those obtained in [9] using thermodynamic constraints.

The rest of this paper is organized as follows: in section 2, we review the anomalous symplectic form and the extended phase space proposed in [22]. In section 3, we review the basics of relativistic hydrodynamics, including the differential form notation proposed in [8]. In section 4, we set up the formalism to derive expressions for macroscopic currents using the anomalous symplectic form, using which we derive the anomalous hydrodynamic currents in section 5. Finally, we discuss our conclusions in section 6. In the appendices, we review the Fermi–Dirac distribution and associated quantities in appendix A, derive the symplectic form in a noninertial reference frame in appendix B and show that the comoving frame used in our calculation satisfies the no-drag condition [23] in appendix C.
We follow the general relativity convention for the Minkowski metric, where $\eta^{\mu\nu} = \text{diag}\{-1,1,1,1\}$ on \mathbb{R}^{2N+1}. The Greek indices (μ, ν) run over all the spacetime coordinates and the Latin indices from the middle of the alphabet (i,j,k) run over only the space coordinates, with Einstein summation for repeated indices. We set $\hbar = c = 1$.

2. Semiclassical description of Weyl fermions

We begin with a brief review of the symplectic formulation of dynamics on an extended phase space and its application to the semiclassical description of Weyl fermions [20–22].

2.1. Extended phase space

Consider a classical system on a $2M$-dimensional phase space \mathcal{M} equipped with coordinates $\zeta = (\zeta^1, \ldots, \zeta^{2M})$. A general action functional on this phase space is given by

$$ S[\zeta] = \int \dd t (\eta_\zeta(\zeta, t) \dot{\zeta}^i - \mathcal{H}(\zeta, t)), $$

where $\mathcal{H}(\zeta, t)$ is the Hamiltonian. Because we have permitted η_ζ to be time-dependent, the standard symplectic formalism [24] cannot be used. Instead, we must extend the phase space to $\mathcal{M}_t = \mathcal{M} \times \mathbb{R}$, with the time coordinate $t \in \mathbb{R}$. The action may then be written as a line integral of the so-called Liouville 1-form η_H along the $(\zeta(t), t)$ trajectory:

$$ S[\zeta] = \int \eta_H, \quad \eta_H = \eta_\zeta(\zeta, t) \dd \zeta^i - \mathcal{H}(\zeta, t) \dd t. $$

The resulting equation of motion has an elegant coordinate independent expression in terms of a generalized symplectic form $\rho_H \overset{\text{def}}{=} \dd \eta_H$. Being a differential 2-form in an odd number of dimensions, ρ_H necessarily possesses a least one null vector field. When there is only one field V, its value at any point in the phase space is the tangent to the trajectory passing through that point. Thus the equation of motion is simply

$$ i_V \rho_H = 0. $$

This formalism has also been studied under the name of contact structure, with the above equation due to Elie Cartan (see [24], theorem 5.1.13). In terms of the coordinates ζ, we have

$$ \rho_H = \frac{1}{2} \left(\frac{\partial \eta_\zeta}{\partial \zeta^i} - \frac{\partial \eta_\zeta}{\partial \zeta^j} \right) \dd \zeta^i \wedge \dd \zeta^j - \left(\frac{\partial \eta_t}{\partial t} + \frac{\partial \mathcal{H}}{\partial \zeta^i} \right) \dd \zeta^i \wedge \dd t, $$

and the field V can be taken to be

$$ V = \frac{\partial}{\partial t} + \dot{\zeta}^i \frac{\partial}{\partial \zeta^i}, $$

so that the equation $i_V \rho_H = 0$ becomes the pair of equations

$$ \dot{\zeta}^i \left(\frac{\partial \eta_\zeta}{\partial \zeta^i} - \frac{\partial \eta_\zeta}{\partial \zeta^j} \right) + \frac{\partial \eta_t}{\partial t} + \frac{\partial \mathcal{H}}{\partial \zeta^i} = 0, $$

$$ \dot{\zeta}^i \left(\frac{\partial \eta_\zeta}{\partial \zeta^i} + \frac{\partial \mathcal{H}}{\partial \zeta^i} \right) = 0. $$

The first line of (6) is precisely the Euler–Lagrange equation $\delta S[\zeta] = 0$, while the second line follows from the first on multiplication by $\dot{\zeta}^i$. The condition that there be only one null vector field is that the skew-symmetric matrix

$$
\rho_{ij} = \left(\frac{\partial \eta}{\partial \zeta^j} - \frac{\partial \eta}{\partial \zeta^i} \right) \tag{7}
$$

be invertible.

The extended phase space is naturally equipped with a volume form

$$
\Omega_H = \frac{1}{M!} \rho_i^M \text{d}t = \sqrt{\rho} \left(\bigwedge_{i=1}^{2M} \text{d}\zeta^i \right) \wedge \text{d}t. \tag{8}
$$

Here $\sqrt{\rho}$ is the Pfaffian of ρ_{ij}. A slightly generalized form of Liouville’s theorem on the conservation of phase space volume under Hamiltonian flow now follows from the identity $L_V \Omega_H = 0$, where $L_V = i_V \text{d} + dV$ is the Lie derivative. In coordinates, this identity reads

$$
\frac{\partial \sqrt{\rho}}{\partial t} + \frac{\partial \sqrt{\rho} \dot{\zeta}^i}{\partial \zeta^i} = 0. \tag{9}
$$

2.2. Anomalous symplectic form

In [20], Stephanov and Yin showed that in $3+1$ spacetime dimensions, positive chirality Weyl fermions with charge q coupled to a background electromagnetic field can be described by the classical action

$$
S[x,p] = \int \text{d}t (p \cdot \dot{x} - \varepsilon - q\phi + qA \cdot \dot{x} - a \cdot \dot{p}), \tag{10}
$$

where $\varepsilon = c|p|$, $c = \pm 1$ is the energy of the particle. The electromagnetic field is minimally coupled, with ϕ and A being the electromagnetic scalar and vector potential, respectively. The quantum effects at $O(\hbar)$ are encoded in the Berry connection, a, which can be thought of as a $U(1)$ gauge field on the momentum space.

We use the extended phase space formalism described in section 2.1 to define the Liouville 1-form

$$
\eta_H = p_i \text{d}x^i - c|p| \text{d}t + qA - a, \tag{11}
$$

where we have defined the 1-forms $A = A_\mu \text{d}x^\mu = -\phi \text{d}t + A_i \text{d}x^i$ and $a = a_i \text{d}p^i$. The corresponding symplectic form is

$$
\rho_H \equiv \text{d}\eta_H = \text{d}p_i \wedge \text{d}x^i - c \text{d}|p| \wedge \text{d}t + qF - \mathfrak{f}, \tag{12}
$$

where $F = \text{d}A = \frac{1}{2} F_{\mu\nu} \text{d}x^\mu \wedge \text{d}x^\nu$ and $\mathfrak{f} = \text{d}a = \frac{1}{2} \mathfrak{f}_{ij} \text{d}p^i \wedge \text{d}p^j$.

In $3+1$ dimensions, the Berry connection is abelian because the Weyl fermion field has only two components and the positive energy eigenstate is non-degenerate. However, in $2N+2$ spacetime dimensions, the positive energy sector is 2^{N+1}-fold degenerate, so that the Berry connection becomes nonabelian with the gauge group $\text{Spin}(2^{N+1})$. In [22], we included this

2 For Weyl fermions, a corresponds to a monopole field, with the monopole located at the band-touching point. Thus, η_H is not globally well-defined.
nonabelian Berry connection in the classical description by ‘dequantizing’ it à la Wong [25].
Given a representation of a compact gauge group \(G \) with the highest weight vector \(\Lambda \), one chooses an element \(\alpha_{\Lambda} \) in the Cartan subalgebra of the Lie algebra, \(\mathfrak{g} \). The classical description then involves enlarging the phase space to include the co-adjoint orbit [26] of \(\alpha_{\Lambda} \), denoted by \(\mathcal{O}_{\Lambda} \).

Explicitly, we can define coordinates on \(\mathcal{O}_{\Lambda} \) as \(S_{\sigma, \sigma} \in \mathfrak{g} \), \(\sigma \in G \). Clearly, \(S \) is invariant under \(\sigma \to \sigma \cdot \eta \), \(\forall \eta \in H \), where \(H \subset G \) is the subgroup generated by the elements of Lie algebra that commute with \(\alpha_{\Lambda} \), so that the orbit can be identified with the quotient \(G/H \). Choose a basis \(\{ \lambda_{a} \} \) of \(\mathfrak{g} \), which satisfies the orthonormality condition \(\text{tr}_{\Lambda} \{ \lambda_{a} \lambda_{b} \} = \delta_{ab} \). Then, \(\mathcal{S} \in \mathfrak{g} \), being simply an adjoint action on \(\mathfrak{g} \), can be written as \(\mathcal{S} = \mathcal{S}^{a} \lambda_{a} \). Similarly, \(\mathfrak{a} = \mathfrak{a}^{a} \lambda_{a} \) and \(\tilde{\mathfrak{a}} = \tilde{\mathfrak{a}}^{a} \lambda_{a} \). For the ‘dequantization’, the matrix-valued gauge connection and curvature are then replaced by

\[
\mathfrak{a} \mapsto \mathfrak{a} \equiv \text{tr} \{ \mathcal{S} \mathfrak{a} \} = \mathcal{S}^{a} \mathfrak{a}_{a} \\
\tilde{\mathfrak{a}} \mapsto \tilde{\mathfrak{a}} \equiv \text{tr} \{ \mathcal{S} \tilde{\mathfrak{a}} \} = \mathcal{S}^{a} \tilde{\mathfrak{a}}_{a}.
\]

(13)

To make \(\mathcal{S} \) dynamical, we add the corresponding right Maurer–Cartan form \(\mathfrak{m}_{K} = d \mathfrak{a} \sigma \) to the Liouville 1-form. Thus, in \(2N + 2 \) spacetime dimensions, our Liouville 1-form on the extended phase space \(\mathcal{M}_{H} = \mathbb{R}^{4N+3} \times \mathcal{O}_{\Lambda} \) becomes

\[
\eta_{H} = p_{a} dx^{a} - c_{a} |p| d|t+A| - \text{tr} \{ \mathcal{S} (\mathfrak{a} + i \mathfrak{m}_{E}) \}.
\]

(14)

The corresponding symplectic form is

\[
\rho_{H} \equiv d \eta_{H} = dp_{a} \wedge dx^{a} - c_{a} d|p| \wedge dt + q F - \tilde{\mathfrak{a}} - i \text{tr} \{ \mathcal{S} (\mathfrak{m}_{E} - i \mathfrak{a})^{2} \}.
\]

(15)

3. Anomalous fluids

The dynamics of an anomalous fluid with a \(U(1) \) anomaly is described by

\[
\partial_{\mu} T^{\mu} = F^{\mu} J_{\nu}, \quad \partial_{\nu} J^{\mu} = \mathcal{A},
\]

(16)

where \(T^{\mu} \) is the energy-momentum tensor (‘energy current’) of the fluid, \(J^{\mu} \) is the charge current, \(F_{\mu \nu} \) is the Maxwell gauge field corresponding to the gauge connection \(A_{\mu} (x) \) and \(\mathcal{A} (F) \) is the anomaly polynomial. One also defines an entropy current \(\mathcal{S}^{\mu} \), which must satisfy a local version of the second law of thermodynamics, \(\partial_{\mu} \mathcal{S}^{\mu} \geq 0 \).

In order to obtain a closed system of equations, the hydrodynamic currents need to be expressed in terms of the thermodynamic fields, viz, the velocity \(u^{\mu} (x) \) (satisfying \(u_{\mu} u^{\mu} = -1 \)), the temperature \(T(x) \), the chemical potential \(\mu (x) \) and the gauge connection \(A_{\mu} (x) \). These constitutive relations can be constructed systematically via a derivative expansion in which each spacetime derivative of the thermodynamic fields adds unity to the bookkeeping dimension [3].

For anomalous and dissipationless fluids, the most general\(^3\) constitutive relations can be written as [6, 8, 9]

\[
T^{\mu} = (\varepsilon + p) u^{\mu} u^{\nu} + p n^{\mu} n^{\nu} + (q^{\mu} u^{\nu} + u^{\mu} q^{\nu}),
J^{\mu} = m u^{\mu} + J^{\mu},
S^{\mu} = S u^{\mu},
\]

(17)

where \(q, J \) and \(S \) contain one or more spacetime derivatives of \(u_{\mu} \) or \(A_{\mu} \). We also set

\(^3\)In principle, there can also be tensor corrections to \(T \) due to the anomaly. They are usually ignored in thermodynamic calculations, as they cannot be constrained by the second law of thermodynamics [8].
so that in the frame where \(u^\mu = (1, 0, \ldots, 0) \), the components \(T^{00} \equiv \varepsilon \) and \(J^0 \equiv \eta \) represent the actual energy density and charge density, respectively.

At the first order in a derivative expansion, we can define the ‘curvatures’

\[
F_{\mu \nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}, \quad \Omega_{\mu \nu} = \partial_{\mu} u_{\nu} - \partial_{\nu} u_{\mu}.
\]

In a frame specified by \(u \), the electric field is defined as \(E_{\mu} = \partial_{\mu} \mu \). Since the acceleration is defined as \(a_{\mu} = \partial_{\mu} u_{\nu} \), we can use \(u^{\mu} \partial_{\nu} u_{\mu} = \frac{1}{2} \partial_{\nu} (u_{\mu} u^{\mu}) = 0 \) to express it in terms of \(u^\nu \) and \(\Omega_{\mu \nu} \) as

\[
a_{\mu} = u^{\nu} (\partial_{\nu} u_{\mu} - \partial_{\mu} u_{\nu}) = -\Omega_{\mu \nu} u^{\nu}.
\]

It is convenient to rephrase the above expressions in the language of differential forms. We define the 1-forms \(u_{\mu} dx^\mu \) and \(A_{\mu} dx^\mu \), and decompose their exterior derivatives into the ‘magnetic’ and ‘electric’ components [8] as

\[
\omega = +\bigwedge \Omega = -\bigwedge F_B = \bigwedge x B F_x x Fx x_{xu x} d d 1 3! d d d d d d .
\]

To express the conservation laws in the language of differential forms, we also need the Hodge dual [27]. We follow Loganayagam [8] in denoting the Hodge dual by an overbar as well as the usual \(* \). For instance, in \(3 + 1 \) dimensions,

\[
\bar{u} = u_{\mu}(*dx^\mu) = \frac{1}{3!} u_{\mu} \epsilon_{\mu \nu \rho \sigma} dx^\nu \bigwedge dx^\rho dx^\lambda \bigwedge dx^\delta = \left(\frac{1}{3!} \epsilon_{\mu \nu \rho \sigma} u^{\mu} \right) dx^\nu \bigwedge dx^\lambda \bigwedge dx^\delta.
\]

Given 1-forms \(u \) and \(v \), the inner product and gradient can be written as

\[
* (v \bigwedge u) = v \wedge \bar{u}, \quad * (\bar{\partial}_{\nu} u^{\mu}) = d\bar{u},
\]

where \(*1 = V \), the Euclidean volume form on \(\mathbb{R}^{2N+1,1} \). This is the dictionary to go between the differential forms and vectors on \(\mathbb{R}^{2N+1,1} \).

Finally, we define the 1-forms corresponding to the anomalous currents as \(q = q_{\mu} dx^\mu \), etc, and their Hodge duals as \(\bar{q} = q_{\mu}(*dx^\mu) \), which are \((2N+1)\)-forms. The constitutive relations can then be succinctly written in terms of scalar transport coefficients \(\xi \) multiplying a wedge product of \(u \) into \(N-1 \) copies of \(F \) or \(\Omega \).
\[q \sim \sum_{k=1}^{N-1} \xi_{q,k} u \wedge F \wedge \cdots \wedge F \wedge \Omega \wedge \cdots \wedge \Omega, \]

Similar expressions for exist for \(\bar{J} \) and \(\bar{S} \). The task of hydrodynamics is then to constrain the transport coefficients (\(\xi \)'s) using general principles such as those of thermodynamics.

The authors of [8] show that we can define a grand potential\footnote{In [9], \(\mathcal{G} \) is referred to as the 'Gibbs free energy current'. However, as the Gibbs free energy (per unit volume) is \(G = \varepsilon + p - Ts = \mu n \), a Gibbs free energy current would more naturally be \(\mu J \).} current \(\mathcal{G} \) that acts as a generating function for \(\bar{q} \), \(\bar{J} \) and \(\bar{S} \):

\[\mathcal{G} = q - \mu \bar{J} - T \bar{S}; \quad \bar{J} = -\frac{\partial \mathcal{G}}{\partial \mu}, \quad \bar{S} = -\frac{\partial \mathcal{G}}{\partial T}. \]

We shall derive this current by an explicit semiclassical calculation.

4. Symplectic form and currents

In section 2, we reviewed the semiclassical Hamiltonian description of Weyl fermions in an inertial reference frame. However, for hydrodynamics, it is more natural to consider the co-moving frame, defined by the given velocity field \(u^\mu(x) \). As the frame may in general possess a nonzero acceleration as well as vorticity (\(\Omega = du \neq 0 \)), we need a way to include the inertial forces in our formalism.

In appendix B, we derive the generalized symplectic form in a noninertial reference frame, and show that for massless particles, it is reasonable to include the inertial forces in the symplectic form as \(\rho_H = \rho_H + \varepsilon \Omega \) (at linear order in \(\Omega \)). This is reminiscent of the minimal coupling to the electromagnetic field, with \(\varepsilon = c|p| \) serving as the 'charge'. Thus, the semiclassical dynamics of Weyl fermions in the co-moving frame on \(\mathbb{R}^{2N+1} \) is described by the generalized symplectic form

\[\rho_H \equiv d\mu_H = dp_\perp \wedge dx^I - c \, d|p| \wedge dt + qF + c \, |p|\Omega - \bar{\mathbf{F}} \text{tr}\{\mathcal{G}(\mathbf{m}_R - \text{i}0)^2\}, \]

where we have locally set \(\mu^\mu = (1, 0, \ldots 0) \) by suitable Lorentz transforms, so that \(-\, dt = u\). The \((2M + 1) \)-dimensional extended phase space is \(\mathcal{M}_H = \mathbb{R}^{2\mathcal{P}} \times \mathbb{R} \times \mathcal{O}_\Lambda, \ n = 2N + 1, \) where \(M = n + \frac{1}{2} \text{dim}(\mathcal{O}_\Lambda) \equiv n + m_\Lambda. \)

Consider now the space density of an energy-dependent physical quantity, \(Q(\varepsilon,x) \). The corresponding current is defined as

\[J_\varepsilon = \int_{\mathcal{P}} \frac{dp}{(2\pi)^p} \, d\mu_\Lambda \sqrt{p} \, \hat{x}_I \, Q(\varepsilon,x), \]

where \(\mathcal{P} = \mathbb{R}^n \times \mathcal{O}_\Lambda \) and \(d\mu_\Lambda \) is an invariant measure on \(\mathcal{O}_\Lambda \). In principle, one next needs to solve the equation of motion \(\partial_t \rho_H = 0 \) for \(\sqrt{p} \, \hat{x}_I \), which can then be integrated over the momentum space and the co-adjoint orbit. In \(3 + 1 \) dimensions, this is straightforward [20], and one gets

\[\sqrt{p} \, \hat{x} = c \, \hat{\mathbf{p}} + \mathbf{b} \times \mathbf{E} + (\hat{\mathbf{p}} \cdot \mathbf{b})(\mathbf{qB} + c|\mathbf{p}|\omega), \quad b' = \frac{1}{2} \varepsilon^{ijk} \delta_{jk}. \]
However, the task is much more complicated in spacetime dimensions greater than 4. Thus, we follow an alternative approach using the symplectic formulation of classical mechanics, which lets us compute such currents without computing $\frac{\rho_x \dot{x}}{\lambda}$ explicitly.

Define the current 1-form $\mathcal{J}_c = J_c dx^i$, whose Hodge dual over $\mathbb{R}^{2N+1,1}$ can be explicitly written as

$$\mathcal{J}_c = \frac{1}{(2\pi)^n} \int_{\mathcal{P}} Q(\xi, x) \sqrt{g} \left(\sum_{i=1}^{n} (-1)^i dx^1 \wedge \ldots \wedge dx^{i-1} \wedge dx^{i+1} \wedge \ldots \wedge dx^n \right) \frac{d^n p}{(2\pi)^n} \wedge dt \wedge d\mu_\lambda.$$

(30)

The differential form in the parenthesis is simply

$$i_v (d^n x) = i_v \left(\sum_{i=1}^{n} dx^i \right) = \sum_{i=1}^{n} (-1)^i dx^1 \wedge \ldots \wedge dx^{i-1} \wedge dx^{i+1} \wedge \ldots \wedge dx^n,$$

so that the measure on the right hand side can readily be obtained as an antiderivation of the symplectic volume form, with only one term at $O(d^n x)$:

$$i_v \Omega_H = i_v \left(\sqrt{g} \; d^n x \wedge d^n p \wedge dt \wedge d\mu_\lambda \right) = \sqrt{g} \left[i_v (d^n x) \wedge d^n p \wedge dt \wedge d\mu_\lambda + \text{terms involving } d^n x \right].$$

(31)

Using equation (8) and our explicit expression for the symplectic form in equation (27), we can explicitly write the symplectic volume form as

$$\Omega_H = \frac{1}{M!} \rho_H^M \wedge dt = \frac{1}{n!} \rho_0^n \wedge dt \wedge d\mu_\lambda,$$

(32)

where we have defined

$$\rho_0 = dp_1 \wedge dx^i - c \; d|p| \wedge dt + qF + c|p| \Omega - \frac{3}{8}, \quad d\mu_\lambda = \frac{1}{n!} \left[-\text{tr} \left(\mathfrak{g} \mathfrak{m}_0^2 \right) \right]^{\mu_\lambda}.$$

(33)

so that ρ_0 contains only the spacetime and momentum differentials. Thus, using $i_v dt = 1$ and the equation of motion $i_v \rho_H = 0$, we get

$$i_v \Omega_H = \frac{1}{M!} i_v \left(\rho_H^M \wedge dt \right) = \frac{1}{M!} \rho_H^M = \frac{1}{n!} \rho_0^n \wedge d\mu_\lambda.$$

(34)

As we seek the terms at $O(d^n x)$, we simply need to read off the coefficient of $(i_v d^n x) d^n p dt$ in $\frac{1}{n!} \rho_0^n$. We obtain terms of the form

$$(dp_1 \wedge dx^i - c \; d|p| \wedge dt)^{2(N-k)+1} \wedge (qF + c|p| \Omega)^k \wedge \left(\frac{3}{8} \right)^{N-k}; \quad 0 \leq k \leq N.$$

To compute \mathcal{J}_c, we need to integrate these terms over $c = \mathbb{R}^{2N+1} \times O_\lambda \cong \mathbb{R}^+ \times S^{2N} \times O_\lambda$, where \mathbb{R}^+ denotes the radial $|p|$ axis. We now show that only the term with $k = N$ integrates to a nonzero value over \mathcal{P}.

For the Weyl Hamiltonian $H = p \cdot \Gamma$, the Berry curvature is singular at the band touching point $p = 0$, which acts as a nonabelian monopole in the Berry curvature field \mathfrak{F}.

Mathematically, the states correspond to a complex line bundle \mathcal{C} over the unit sphere in momentum space, which can be written as a direct sum of the subbundles corresponding to positive and negative energies. The positive energy subbundle carries a Chern number χ, equal to the chirality of the node, and as \mathcal{C} is trivial, the negative energy subbundle carries a Chern number $-\chi$.
number $-\chi$ (also see [22], equation (B.9)). As we are only considering a positive chirality Weyl node, we set $\chi = +1$.

Thus, using the definition of Chern number [5] and $\tilde{\mathcal{S}} = \mathcal{S}^2 \delta_{\alpha \nu}$, we get

$$\frac{(-1)^N}{N! (2\pi)^N} \int_{S^{2N} \times \mathcal{O}_\lambda} \tilde{\mathcal{S}}^N \wedge d\mu_{\lambda} = \frac{(-1)^N}{N! (2\pi)^N} \int_{S^{2N}} \tilde{\mathcal{S}}^m \ldots \tilde{\mathcal{S}}^t \int_{\mathcal{O}_\lambda} d\mu_\lambda \mathcal{S}_{\alpha \nu} \ldots \mathcal{S}_{\alpha t}$$

$$= \frac{(-1)^N}{N! (2\pi)^N} \int_{S^{2N}} \tilde{\mathcal{S}}^m \ldots \tilde{\mathcal{S}}^t \text{tr}(\lambda_{\alpha \nu} \ldots \lambda_{\alpha t})$$

$$= \frac{1}{N!} \int_{S^{2N}} \text{tr}\left\{\left(\tilde{\mathcal{S}}^2 / 2\pi\right)^N\right\} = c,$$

(35)

where $c = \pm 1$ for the positive/negative energy subspace. In the first line, we have replaced the integral of \mathcal{S}’s over \mathcal{O}_λ, the classical phase space, with a trace of a product of generators over the quantum representation. This is only an approximation, which can be improved by integrating over $\mathcal{O}_\lambda + \mathcal{P}$ instead of \mathcal{O}_λ, where we have shifted the highest weight vector Λ by the Weyl vector W (see appendix C of [22] for details). Better still, we can ‘requantize’ the co-adjoint orbit to reproduce the quantum traces, using the Borel–Weil–Bott construction ([27], section 16.2.3).

Next, we note that any terms with $0 < k < N$ integrate to zero, since in order for $\{J_i\} \wedge |qF + c| |\Omega|^N \wedge (-\tilde{\mathcal{S}})^N$ to integrate to a nonzero value over S^{2N}, we need to integrate $\{J_i\}$ over a nontrivial 2k-cycle in S^{2N}. However, the only nontrivial cycles in S^{2N} are in dimensions $2N$ and zero [5, 27], so that all such integrals with $0 < k < N$ evaluate to zero.

Finally, for $k = 0$, considering the integral for J_i and using $|| = p$ and p_j, the integral over the momentum space $R^n, n = 2N + 1$, is

$$\int_{R^n} Q(c|p|, x) \beta_i dp_i \left(\bigwedge_{\ell=1}^n dp'_\ell\right) = \int_{R^n} \beta_i Q(c|p|, x) \left(\bigwedge_{\ell=1}^n dp'_\ell\right),$$

which vanishes, as the integrand is odd under $p_i \rightarrow -p_i$. Thus, J_i would involve only the integral of

$$\frac{1}{(N)!^2} (-c / d|p| \wedge dr) \wedge (qF + c|p| |\Omega|^N \wedge (-\tilde{\mathcal{S}})^N)$$

over \mathcal{P}. Explicitly,

$$J_i = -\frac{c}{2\pi (N)!^2} \int_{\mathcal{P}} Q(c|p|, x) d|p| \wedge \left(-\frac{\tilde{\mathcal{S}}}{2\pi}\right)^N \wedge d\mu_\lambda \wedge dr \wedge \left(qF + c|p| |\Omega| / 2\pi\right)^N.$$

(36)

Integrating over $S^{2N} \times \mathcal{O}_\lambda$ using equation (35), we get

$$J_i = \frac{c^2}{N!} (-dr) \wedge \int_0^\infty d|p| / 2\pi Q(c|x|) \left(qF + c|p| |\Omega| / 2\pi\right)^N.$$

(37)

Finally, substituting $u = -dr$ and $c^2 = 1$ and using equation (22),

$$J_i = \frac{1}{N!} u \wedge \int_0^\infty d|p| / 2\pi Q(c|p|, x) \left(qB + c|p| |\omega| / 2\pi\right)^N.$$

(38)
This is an explicit expression for the contribution of one energy sector \((c = \pm 1)\) of a positive chirality Weyl node to the current \(J\) in arbitrary even spacetime dimensions. In the next section, we derive the relevant \(Q(\varepsilon, x)\) for the grand potential current in relativistic hydrodynamics of anomalous fluids.

5. Microscopic derivation of hydrodynamic currents

Consider a gas of Weyl particles with positive chirality in the phase space in equilibrium with a given frame of reference, so that the phase space distribution is simply the Fermi–Dirac distribution

\[
f(p, x) \equiv f(\varepsilon) = \frac{1}{1 + e^{\beta(\varepsilon - \mu(x))}}, \quad \beta = \frac{1}{T}.
\]

(39)

Since the particles are fermions, we can define the microscopic entropy density

\[
h(\varepsilon) = -\sum_{\text{states}} p_i \log p_i = -f\log f - (1 - f)\log(1 - f).
\]

(40)

Given the trajectory of a single particle, \(\dot{x}^i\), the number current and energy-momentum tensor are defined as\(^5\)

\[
j^i = \dot{x}^i, \quad t^\mu = \varepsilon \dot{x}^\mu \dot{x}^\nu.
\]

(41)

The anomalous hydrodynamic currents of equation (17) can then be defined simply by averaging over all particles. Following the definitions of section 4, we define the anomalous currents for a given energy sector as\(^6\)

\[
q^i = \int_\mathcal{P} \frac{dp}{(2\pi)^n} d\mu_\lambda \sqrt{\beta} \dot{x}^i f(\varepsilon | p),
\]

\[
\mathcal{J}^i = \int_\mathcal{P} \frac{dp}{(2\pi)^n} d\mu_\lambda \sqrt{\beta} \dot{x}^i f(\varepsilon | p),
\]

\[
S^i = \int_\mathcal{P} \frac{dp}{(2\pi)^n} d\mu_\lambda \sqrt{\beta} \dot{x}^i h(\varepsilon | p),
\]

(42)

where \(q^i = \mathcal{J}^0\). As \(u^\mu = (1, 0, \ldots, 0)\) and the anomalous contributions are transverse to \(u\) (equation (18)), we also have \(q^0 = \mathcal{J}^0 = S^0 = 0\). The corresponding grand potential current is given by

\[
Q^i = q^i - \mu \mathcal{J}^i - T S^i = \int_\mathcal{P} \frac{dp}{(2\pi)^n} d\mu_\lambda \sqrt{\beta} \dot{x}^i g(\varepsilon | p),
\]

(43)

where (using equation (A.4))

\[
(\varepsilon - \mu)f(\varepsilon) - Th(\varepsilon) = -\frac{1}{\beta} \ln(1 + e^{-\beta(c - \mu)}) \equiv g(\varepsilon).
\]

(44)

In order to derive physically meaningful expressions at a finite temperature, we must include both positive and negative energy sectors. Using equation (38), we define

\(^5\)We have suppressed the Dirac delta functions localizing these quantities to the particle trajectory.

\(^6\)Strictly speaking, we should be subtracting off the ‘normal’ contribution, i.e., replacing \(\dot{x}^i \rightarrow \dot{x}^i - \Delta\), where \(\Delta\) solves the equation of motion with \(\beta = 0\). But as the system is in equilibrium in the given frame, the normal component vanishes.
\[\mathcal{G} = \mathcal{G}_+ + \mathcal{G}_- \]
\[= \frac{u}{N!} \left[\int_0^\infty \frac{d|p|}{2\pi} g(|p|) \left(\frac{qB + |p|\omega}{2\pi} \right)^N + \int_0^\infty \frac{d|p|}{2\pi} g(-|p|) \left(\frac{qB - |p|\omega}{2\pi} \right)^N \right]. \] (45)

Substituting \(|p| = \varepsilon\) in the first integral and \(|p| = -\varepsilon\) in the second, we get
\[\mathcal{G} = \frac{u}{N!} \left[\int_0^\infty \frac{d\varepsilon}{2\pi} g(\varepsilon) \left(\frac{qB + e\omega}{2\pi} \right)^N. \] (46)

This integral is clearly divergent, as \(g(\varepsilon) \sim (\varepsilon - \mu)\) for \(\varepsilon \to -\infty\). This is expected, as we are integrating over an infinitely deep Dirac sea. In order to regularize this integral, we need to subtract off the zero temperature vacuum contribution, where we define the ‘vacuum’ as the many-body state where all one-particle states with \(\varepsilon < 0\) (i.e., below the Weyl node) are filled up. Since at \(T = 0\), \(g(\varepsilon) = (\varepsilon - \mu) \Theta(\mu - \varepsilon), \) where \(\mu > 0\), define the regularized grand potential current as
\[\mathcal{G}_{\text{reg}} = \frac{u}{N!} \left[\int_0^\infty \frac{d\varepsilon}{2\pi} g(\varepsilon) (\varepsilon - \mu) \Theta(-\varepsilon) \left(\frac{qB + e\omega}{2\pi} \right)^N. \] (47)

Following [9], we define a generating function \(\tilde{G}_{\tau,\text{reg}}\) by multiplying the integral by \(\tau^N\) and formally\(^7\) summing over \(N\) to get
\[\tilde{G}_{\tau,\text{reg}} = u \wedge e^{qB/2\pi} \int_0^\infty \frac{d\varepsilon}{2\pi} [g(\varepsilon) - (\varepsilon - \mu) \Theta(-\varepsilon)] \left(\frac{qB + e\omega}{2\pi} \right)^N. \] (48)

We evaluate the integral explicitly (appendix A, equation (A.8)) to get
\[\tilde{G}_{\tau,\text{reg}} = -u \wedge e^{qB/2\pi} \frac{2\pi}{\omega \tau} \left[\frac{\omega \tau}{2\pi} e^{\omega \tau / 2\pi} - \left(1 + \frac{\mu}{2\pi} \omega \tau \right) \right], \] (49)
which is identical to the expression obtained\(^8\) in [9]. In order to obtain the anomalous currents in \(2N + 2\) spacetime dimensions, \(\tilde{G}_{\tau,\text{reg}}\) we expand \(\tilde{G}_{\tau,\text{reg}}\) in a power series in \(\tau\) and pick out the coefficient of \(\tau^N\).

The generating function \(\tilde{G}_{\tau,\text{reg}}\) is remarkable. Its form, as pointed out in [9], contains an expression that is strongly reminiscent of the \(\hat{A}\)-genus and Chern character generating function for gauge and gravitational anomaly polynomials
\[\hat{A}(\mathcal{R}) \operatorname{ch}(\mathcal{F}) = \prod_i \frac{x_i/2}{\sinh(x_i/2)} \sum_j e^{y_j}, \] (50)
where \(x_i\) and \(y_j\) are \(i/2\pi\) times the form-valued formal eigenvalues of the Riemann curvature 2-form and the gauge field 2-form respectively. As a consequence, the finite temperature contributions to the transport coefficients are related to the gravitational contributions to the axial anomaly. A second nontrivial consequence is that the transport coefficients, which can be derived using equation (26), are polynomials in \(T\) and \(\mu\) in all spacetime dimensions.

\(^7\) i.e, we treat \(\omega\) and \(B\) as c-numbers instead of differential forms.

\(^8\) After replacing \(\omega \to 2\omega_0\) as they define their vorticity as the angular velocity, \(\omega_0\).
6. Conclusion and discussion

We have derived the anomalous contributions to the relativistic hydrodynamic currents from a microscopic semiclassical description of Weyl fermions, which do agree with the corresponding expressions derived earlier using thermodynamic constraints [9, 23]. Starting from a semiclassical theory, our calculation exposes the role the (nonabelian) Berry curvature plays in the semiclassical dynamics of chiral fermions. The semiclassical formalism encodes the anomaly via the collisionless Boltzmann equation [22], $L_{\nu}(f \Omega_\mu) \sim \mathcal{A}$. Our approach, originally proposed to derive the anomalies from a semiclassical calculation, is complementary to the usual hydrodynamic approach, which takes the anomaly as given and explores its consequences on the transport properties of the system.

In order to compute the hydrodynamic currents at a finite temperature, we needed both positive and negative energy sectors of a single positive chirality Weyl node. Even though the contribution of negative energy states is minuscule for $\mu \gg T$, it was required to obtain closed form expressions for the currents, where the transport coefficients turn out to be polynomials in T and μ. This is in contrast to the calculation in [9], where the contributions from the ‘particle’ and ‘antiparticle’ sectors were needed, which correspond to Weyl nodes of different chiralities in $4N$ spacetime dimensions.

A careful reader might have noticed that despite our claims to have derived the relativistic currents, our expression for the symplectic form is not manifestly Lorentz invariant, as the definition of a Berry phase explicitly requires us to choose a foliation of the spacetime and to treat space and time on different footings. Indeed, a Lorentz invariant description has been attempted [28, 29], leading to a nontrivial implementation of the Lorentz symmetry on our x and p variables as well as a magnetic moment correction to the energy. However, such corrections occur at $O(\hbar^2)$, so that our semiclassical symplectic form is accurate to $O(\hbar)$, and furthermore, the corrections do not affect the derivation of anomaly. Thus, we believe that the anomalous contributions obtained in this paper should be accurate to the lowest nontrivial order in \hbar in a WKB-like expansion.

The semiclassical description used in this paper was proposed [22] for Weyl fermions coupled to a nonabelian gauge field with a compact gauge group. Hence, the calculation presented in this paper readily generalizes to anomalous currents for hydrodynamics coupled to a nonabelian gauge field, provided the chemical potentials commute. However, as the nonabelian anomalies, being a breakdown of a covariant conservation law, cannot be interpreted as a spectral flow in any obvious way, the physical content of such a calculation is open to interpretation.

The similarity of the generating function for the grand potential current to the generating function for the gauge anomaly, and the corresponding replacement rules that it naturally suggests, is one of the many remarkable and mysterious results concerning anomalies. The various ways of arriving at this result, ranging from second law constraints and semiclassics to quantum field theory and holography, further hint at a deeper mathematical structure underlying the hydrodynamics of anomalous quantum field theories.

Acknowledgments

This project was supported by the National Science Foundation under grant NSF DMR 1306011. We acknowledge useful discussions with Kristen Jensen.
Appendix A. Fermi–Dirac distribution and integrals

Consider a gas of fermions in the grand canonical ensemble. Owing to the Pauli exclusion principle, a given microstate can either be unoccupied or occupied by exactly one fermion. Thus, the 1-particle grand canonical partition function z is

$$z = \sum_{\text{states}} e^{-\beta (\varepsilon - \mu)} = 1 + e^{-\beta (\varepsilon - \mu)}, \quad \text{(A.1)}$$

where ε is the energy of the microstate, $\beta = T^{-1}$ is the inverse temperature and μ is the chemical potential. The corresponding grand potential g is

$$g = -\frac{1}{\beta} \ln z = -\frac{1}{\beta} \ln(1 + e^{-\beta (\varepsilon - \mu)}). \quad \text{(A.2)}$$

The grand potential is the generator for a variety of other relevant functions, such as the probability of occupation of a given state f (Fermi–Dirac distribution) or the 1-particle entropy h:

$$f = -\frac{\partial g}{\partial \mu} = \frac{1}{1 + e^{\beta (\varepsilon - \mu)}}, \quad h = -\frac{\partial g}{\partial T} \quad \text{(A.3)}$$

For fermions, we also have the highly nontrivial relation

$$g = (\varepsilon - \mu)f - Th \quad \text{(A.4)}$$

which can be obtained in a straightforward fashion using a definition of h in terms of the occupation probability f:

$$h = -\sum_{\text{states}} p_i \ln p_i = -f \ln f - (1 - f) \ln(1 - f)$$

$$= \frac{1}{1 + e^{\beta (\varepsilon - \mu)}} \ln(1 + e^{\beta (\varepsilon - \mu)}) + \frac{e^{\beta (\varepsilon - \mu)}}{1 + e^{\beta (\varepsilon - \mu)}} \ln \left(\frac{1 + e^{\beta (\varepsilon - \mu)}}{e^{\beta (\varepsilon - \mu)}} \right)$$

$$= \ln(1 + e^{\beta (\varepsilon - \mu)}) + \frac{e^{\beta (\varepsilon - \mu)}}{1 + e^{\beta (\varepsilon - \mu)}} \beta (\varepsilon - \mu)$$

$$= \ln(1 + e^{-\beta (\varepsilon - \mu)}) + \beta (\varepsilon - \mu) \left[1 - \frac{e^{\beta (\varepsilon - \mu)}}{1 + e^{\beta (\varepsilon - \mu)}} \right]$$

$$= \beta [-g + (\varepsilon - \mu)f] .$$

A.1. Integrals

We seek to evaluate the integral

$$I(\sigma) = \int_{-\infty}^{\infty} \frac{d\varepsilon}{2\pi} e^{i\sigma \varepsilon} [g(\varepsilon) - (\varepsilon - \mu)\Theta(-\varepsilon)].$$

The Heaviside integral part is easy to evaluate:

$$\int_{-\infty}^{0} \frac{d\varepsilon}{2\pi} (\varepsilon - \mu)e^{i\sigma \varepsilon} = \left(\frac{\partial}{\partial \sigma} - \mu \right) \int_{-\infty}^{0} \frac{d\varepsilon}{2\pi} e^{i\sigma \varepsilon} = \left(\frac{\partial}{\partial \sigma} - \mu \right) \frac{1}{2\pi \sigma} = \frac{1 + \mu \sigma}{2\pi \sigma^2} . \quad \text{(A.5)}$$

For the remaining integral, substitute
\[s = e^{(\iota - \mu)} = ds = \beta s d\iota, \quad g(\iota) = -\frac{1}{\beta} \ln \left(1 + \frac{1}{s} \right). \]

and integrate by parts:

\[
\int_{-\infty}^{\infty} \frac{d\iota}{2\pi} g(\iota)e^{\rho \iota} = -\frac{1}{\beta} \int_{0}^{\infty} \frac{d\iota}{2\pi \beta s} \ln\left(1 + \frac{1}{s} \right) e^{\beta \rho \iota} \rho \beta
\]

\[
= -\frac{e^{\iota\sigma}}{2\pi \beta^2} \int_{0}^{\infty} ds \frac{s^{\frac{\iota}{\sigma} - 1}}{s + 1} \ln \left(1 + \frac{1}{s} \right)
\]

\[
= -\frac{e^{\iota\sigma}}{2\pi \beta^2} \int_{0}^{\infty} ds \frac{s^{\frac{\iota}{\sigma} - 1}}{s + 1} = -\frac{e^{\iota\sigma}}{2\pi \beta^2} \frac{\pi}{\sin(\pi \sigma)}, \quad 0 < \alpha < 1.
\]

(A.6)

where in the last line, assuming \(\sigma < \beta \), we have used the integral

\[
\int_{0}^{\infty} ds \frac{s^{\frac{\iota}{\sigma} - 1}}{s + 1} = \frac{\pi}{\sin(\pi \sigma)}, \quad 0 < \alpha < 1.
\]

(A.7)

Thus, from equation (A.6) and equation (A.5), we get

\[
I(\sigma) = -\frac{1}{2\pi \sigma^2} \left[\frac{\pi}{\sin(\pi \sigma)} e^{\iota\sigma} - (1 + \mu \sigma) \right].
\]

(A.8)

We also note that

\[
\frac{1}{2\pi \sigma^2} \frac{\pi}{\sin(\pi \sigma)} e^{\iota\sigma} = \frac{1}{2\pi \sigma^2} + \frac{\mu}{2\pi \sigma} + \left(\frac{\mu^2}{4\pi} + \frac{\pi}{12\beta^2} \right) \sigma + O(\sigma^2).
\]

(A.9)

Thus, the integral over the \(\Theta(\iota - \iota) \) term precisely subtracts off the singularities of the divergent integral over \(g(\iota) \).

Appendix B. Symplectic forms in noninertial frames

Consider the generalized Liouville 1-form for the dynamics of a classical particle on \(\mathbb{R}^n \) with an isotropic momentum-dependent Hamiltonian:

\[
\eta_H = p_i dx^i - H(|p|)dt.
\]

We seek a Hamiltonian formulation of this system as seen from a noninertial frame of reference. We switch frames by a time-dependent change of coordinate \(x^i = O^j_i (w^j + \xi_j) \), where \(w(t) \) corresponds to a Galilean boost and \(O(t) \in SO(n) \) to a time-dependent rotation, so that \(\xi_i \) is the position coordinate in the noninertial frame.

The derivation of a suitable symplectic form describing the dynamics in the noninertial frame then involves a choice of the definition of ‘momentum’. The most straightforward choice is the canonical momentum, defined as \(\pi_i = p_i O^j_i \), which preserves the canonical \((p_i dx^i) \) form of \(\eta_H \). We also define the velocity of the frame as \(v^j = \partial_t w^j \) and its vorticity as...
\((O^{-1}\partial O)_{ij} = -\frac{1}{2}\omega_{ij} \), both of which may depend on time. The vorticity satisfies \(\omega = -\omega \), which simply follows from the orthogonality of \(O \).

The Liouville form becomes
\[
\eta_H = \pi_i d\xi^i = \left[H - \pi^j v^j + \frac{1}{2} \omega^{ij} \pi_i \pi_j \right] dt \equiv \pi_i d\xi^i - H dt,
\]
where assuming a slowly accelerating and rotating frame, we have only retained the terms linear in \(\omega \) and \(v \). Thus, for the canonical momentum, the change of frame keeps the symplectic structure invariant, while changing the Hamiltonian. In other words, \(\xi \) and \(\pi \) are canonically conjugate.

An alternative choice of momentum is the kinetic momentum, which intends to keep the equation of motion for \(\dot{\xi}^i \) invariant. To wit, consider the symplectic form in rotating coordinates
\[
\rho_H = \pi_i d\xi^i - \left[\frac{\partial H}{\partial \pi_i} \pi^i - v^i \pi^i + \frac{1}{2} \omega^{ij} (\pi_i \pi_j + \xi_i \pi_j) \right] \wedge dt.
\]
The equations of motion become
\[
\dot{\xi}_i = \frac{\partial H}{\partial \pi_i} - v^i + \frac{1}{2} \omega^{ij} \xi_j, \quad \pi^i = -\frac{1}{2} \omega^{ij} \pi_j.
\]
Then, one seeks the kinetic momentum \(\psi^i \), in terms of which the equation of motion for \(\xi \) becomes \(\dot{\xi}^i = \partial H/\partial \psi^i \). We elucidate this by examples in the following.

B.1. Massive case

Consider a massive classical particle, so that
\[
H = \frac{|\pi|^2}{2m} = \frac{|\pi|^2}{2m} \implies \frac{\partial H}{\partial \pi_i} = \frac{\pi_i}{m}.
\]
Then, the kinetic momentum is defined by setting
\[
\dot{\xi}_i = \frac{\psi_i}{m} \implies \pi_i = m \left(\psi_i - \frac{1}{2} \omega^{ij} \xi_j \right),
\]
so that
\[
H' = \frac{|\pi|^2}{2m} - \pi^j v^j + \frac{1}{2} \omega^{ij} \pi_i \pi_j
= \frac{1}{2m} \left(\psi_i + mv_i - \frac{1}{2} m \omega^{ij} \xi_j \right)^2 - \left(\psi_i + mv_i - \frac{1}{2} m \omega^{ij} \xi_j \right) \left(v^j - \frac{1}{2} \omega^{jk} \right)
= \frac{|\psi|^2}{2m^2} + \psi^j v^j - \frac{1}{2} \omega^{jk} \psi_j \xi_j - \psi^j v^j + \frac{1}{2} \omega^{ij} \psi_i \xi_j + \text{second order terms}
= \frac{|\psi|^2}{2m^2} + \text{second order terms}.
\]
It is precisely this cancellation that we seek in defining the kinetic momentum. Thus to linear order in \(v \) and \(\omega \), defining \(a^i = \partial_i v^j \) and \(\alpha_{ij} = \partial_i \omega_{ij} \), the symplectic form becomes
\[\rho_H = d\psi_i \wedge d\xi^i + \frac{1}{2} m \omega_j \xi^j \wedge d\xi^i + m(a_i + \omega_j \xi^j) dt \wedge d\xi^i - d\left(\frac{\psi^i}{2m}\right) \wedge dr. \]

(B.7)

We combine the inertial terms as

\[\Omega = \frac{1}{2} \Omega_{\mu\nu} \, dx^\mu \wedge dx^\nu = \frac{1}{2} \omega_j \xi^j \wedge d\xi^i + (a_i + \omega_j \xi^j) dx^0 \wedge d\xi^i, \]

the symplectic form simply becomes

\[\rho_H = d\psi_i \wedge d\xi^i + m \, \Omega - d\mathcal{H} \wedge dr. \]

(B.9)

Here, \(m \omega \) corresponds to the Coriolis force, \(ma \) to the inertial force and \(m \alpha \xi \) to the tangential acceleration due to a variable angular velocity. This does not capture the centrifugal force, as we have ignored the terms at \(O(\omega^2) \).

B.2. Massless case

For massless particles, \(\mathcal{H} = c |p| = c |\pi| ; \ c = \pm 1 \), so that the equations of motion become

\[\dot{\xi}^i = c \pi^i - v^i - \frac{1}{2} \omega^j \xi^j, \quad \pi^i = \frac{1}{2} \omega^j \pi_j. \]

Taking a cue from the massive case, consider a definition of kinetic momentum as

\[\pi^i = \psi^i + c |\psi| \left(v^i - \frac{1}{2} \omega^j \xi^j \right). \]

(B.10)

where we have replaced \(m \) with \(c |\psi| \). Defining \(\tilde{\psi}^i = \psi^i / |\psi| \), we again get a cancellation in \(\mathcal{H}' \) at linear order:

\[\mathcal{H}' = c |\pi| - \pi v^i + \frac{1}{2} \omega^j \pi_j \]

\[= c |\psi| \left(\sqrt{1 + c \tilde{\psi} - \tilde{\psi} \left(v^i - \frac{1}{2} \omega^j \xi^j \right)} \right) \wedge dr \]

\[= c |\psi| \left(\sqrt{1 + c \tilde{\psi} - \tilde{\psi} \left(v^i - \frac{1}{2} \omega^j \xi^j \right)} \right) \wedge dr \]

second order terms

\[= c |\psi| + \text{second order terms.} \]

(B.11)

Thus, the symplectic form becomes

\[\rho_H = d\psi_i \wedge d\xi^i + c |\psi| \Omega - c d|\psi| \wedge dr. \]

(B.12)

In considering Galilean boosts (instead of Lorentz boosts), we are ignoring the effect of time dilation, including which will lead to corrections at the next order in \(\Omega \).
Appendix C. No-drag frame

In this appendix, we show that the frame with respect to which our Weyl fluid is in equilibrium satisfies the ‘no-drag’ condition described by Stephanov and Yee [23]. In $3 + 1$ dimensions, the grand potential current becomes

$$\mathcal{G} = -\left(\frac{\mu^3}{24\pi^2} + \frac{\mu T^2}{24}\right) u \wedge \omega - \left(\frac{\mu^2}{8\pi^2} + \frac{T^2}{24}\right) u \wedge B, \quad (C.1)$$

so that

$$\mathcal{J} = -\frac{\partial \mathcal{G}}{\partial \mu} = \left(\frac{\mu^2}{4\pi^2} + \frac{T^2}{12}\right) u \wedge \omega + \frac{\mu}{4\pi^2} u \wedge B$$

$$\mathcal{S} = -\frac{\partial \mathcal{G}}{\partial T} = \frac{\mu T}{6} u \wedge \omega + \frac{T}{12} u \wedge B$$

$$\mathcal{q} = \mathcal{G} + \mu \mathcal{J} + T \mathcal{S} = \left(\frac{\mu^3}{6\pi^2} + \frac{\mu^2 T}{6}\right) u \wedge \omega + \left(\frac{\mu^2}{8\pi^2} + \frac{T^2}{24}\right) u \wedge B, \quad (C.2)$$

where $\omega = \frac{1}{2} \omega$. Thus, we can identify the coefficients

$$\xi_{J,\omega} = \frac{1}{12} T^2 + \frac{1}{4\pi^2} \mu^2, \quad \xi_{S,\omega} = \frac{1}{6} \mu T, \quad \xi_{T,\omega} = \frac{1}{6} \mu T^2 + \frac{1}{6\pi^2} \mu^3,$$

$$\xi_{J,B} = \frac{1}{4\pi^2} \mu, \quad \xi_{S,B} = \frac{1}{12} T, \quad \xi_{T,B} = \frac{1}{24} T^2 + \frac{1}{8\pi^2} \mu^2.$$

Comparing with the expressions obtained in [23]

$$\xi_{J,\omega} = X_B T^2 + C \mu^2, \quad \xi_{S,\omega} = X_\omega T^2 + 2X_B \mu T, \quad \xi_{T,\omega} = \frac{2}{3}(X_\omega T^3 + 3X_B \mu T^2 + C \mu^3),$$

$$\xi_{J,B} = C \mu, \quad \xi_{S,B} = X_B T, \quad \xi_{T,B} = \frac{1}{2}(X_B T^2 + C \mu^2),$$

we can readily identify

$$C = \frac{1}{4\pi^2}, \quad X_B = \frac{1}{12}, \quad X_\omega = 0. \quad (C.3)$$

Thus, our transport coefficients are indeed consistent with the no-drag frame.

References

[1] Eckart C 1940 Phys. Rev. 58 919
[2] Landau L D and Lifshitz E M 1987 Fluid Mechanics (Courses of Theoretical Physics vol 4) 2nd edn (Oxford: Butterworth-Heinemann)
[3] Rangamani M 2009 Class. Quantum Grav. 26 224003
[4] Bertlmann R A 2000 Anomalies in Quantum Field Theory (Oxford: Oxford University Press)
[5] Nakahara M 2003 Geometry, Topology, and Physics (Boca Raton, FL: CRC Press)
[6] Son D T and Sür高端ka P 2009 Phys. Rev. Lett. 103 191601
[7] Neiman Y and Oz Y 2011 J. High Energy Phys. JHEP11(2011)23

Note that there are missing factors of 2π in the expansions of $\mathcal{G}_{\text{trans}}$ in [9], equation (A.12)--(A.15), as the expansion should always have the combination $\mathcal{G}_{\text{trans}}$ instead of qB.

9
[8] Loganayagam R 2011 arXiv:1106.0277
[9] Loganayagam R and Surowka P 2012 J. High Energy Phys. JHEP12(2012)97
[10] Azeyanagi T, Loganayagam R, Ng G S and Rodriguez M J 2014 J. High Energy Phys. JHEP14(2014)40
[11] Banerjee N, Dutta S, Jain S, Loganayagam R and Sharma T 2013 J. High Energy Phys. JHEP13(2013)48
[12] Jensen K, Loganayagam R and Yarom A 2013 J. High Energy Phys. JHEP13(2013)88
[13] Jensen K, Loganayagam R and Yarom A 2014 J. High Energy Phys. JHEP14(2014)134
[14] Jensen K, Loganayagam R and Yarom A 2014 J. High Energy Phys. JHEP14(2014)110
[15] Son D T and Yamamoto N 2012 Phys. Rev. Lett. 109 181602
[16] Duval C, Horváth Z, Horváthy P, Martina L and Stichel P 2006 Mod. Phys. Lett. B 20 373
[17] Xiao D, Chang M and Niu Q 2010 Rev. Mod. Phys. 82 1959
[18] Xiao D, Shi J and Niu Q 2005 Phys. Rev. Lett. 95 137204
[19] Son D and Spivak B 2013 Phys. Rev. B 88 104412
[20] Stephanov M and Yin Y 2012 Phys. Rev. Lett. 109 162001
[21] Stone M and Dwivedi V 2013 Phys. Rev. D 88 045012
[22] Dwivedi V and Stone M 2013 J. Phys. A: Math. Theor. 47 025401
[23] Stephanov M A and Yee H 2016 Phys. Rev. Lett. 116 122302
[24] Abraham R and Marsden J 2008 Foundations of Mechanics 2nd edn (Providence: AMS Chelsea Publishing)
[25] Wong S 1970 Il Nuovo Cimento A 65 689
[26] Kirillov A A 2004 Lectures on the Orbit Method (Providence, RI: American Mathematical Society)
[27] Stone M and Goldbart P 2009 Mathematics for Physics: a Guided Tour for Graduate Students (Cambridge: Cambridge University Press)
[28] Chen J, Son D T, Stephanov M A, Yee H and Yin Y 2014 Phys. Rev. Lett. 113 182302
[29] Stone M, Dwivedi V and Zhou T 2015 Phys. Rev. D 91 025004