Instantly Decodable Network Codes for Real-Time Applications

Anh Le*, Arash S. Tehrani†, Alexandros G. Dimakis†, Athina Markopoulou*

Abstract—We consider the scenario of broadcasting for real-time applications and loss recovery via instantly decodable network coding. Past work focused on minimizing the completion delay, which is not the right objective for real-time applications that have strict deadlines. In this work, we are interested in finding a code that is instantly decodable by the maximum number of users. First, we prove that this problem is NP-Hard in the general case. Then we consider the practical probabilistic scenario, where users have the i.i.d. loss probability and the number of packets is linear or polynomial in the number of users, and we provide a polynomial-time (in the number of users) algorithm that finds the optimal coded packet. Simulation results show that the proposed coding scheme significantly outperforms an optimal repetition code and a COPE-like greedy scheme.

I. INTRODUCTION

Broadcasting data to multiple users is widely used in several wireless applications, ranging from satellite communications to WiFi networks. Wireless transmissions are subject to packet losses due to channel impairments, such as wireless fading and interference. Previous work has shown that coding can improve transmission efficiency, throughput, and delay over broadcast erasure channels [5]–[7], [9], [34], [35]. Intuitively, the diversity of lost packets across different users creates coding opportunities that can improve various performance metrics.

In this work, we are interested in packet recovery for real-time applications, such as, fast-paced multi-player games and live video streaming. Real-time applications have two distinct characteristics: (i) they have strict and urgent deadlines, i.e., a packet is outdated after a short amount of time, and (ii) they can tolerate some losses, e.g., a client can retrieve the game state by resyncing periodically [2]. Despite this fault tolerance, these applications can significantly suffer from packet losses that often lead to jittery game animation and low quality video playback. Hence, it is highly desirable to recover packet losses with very low delay and within a very narrow coding window.

Motivated by the above observations, we focus on coding schemes for loss recovery that allows instantaneous decoding, i.e., zero delay. These coding schemes are also known as Instantly Decodable Network Codes (IDNC).

Previous work on IDNC [6], [7], [9]–[12] focused on minimizing the completion delay, i.e., the time it takes to recover all the losses at all users. We formulate a different problem that is more relevant to real-time applications, called Real-Time IDNC: Consider a source that broadcasts a set of packets, \( \mathcal{X} \), to a set of users. Each user \( u \) wants all packets in \( \mathcal{X} \) and already knows a subset of them, \( \mathcal{H}_u \subset \mathcal{X} \), for example through previous transmissions. The goal is to choose one (potentially coded) packet to broadcast from the source, so as to maximize the number of users who can immediately recover one lost packet. This problem is highly relevant in practice yet - to the best of our knowledge - only solved in heuristic ways so far, e.g., see [4], [6].

Our main contributions are the following:

- We show that Real-Time IDNC is NP-hard. To do so, we first map Real-Time IDNC to the Maximum Clique problem in an IDNC graph (to be precisely defined in Section III). Then we show that the Maximum Clique problem is equivalent to an Integer Quadratic Program (IQP) formulation. Finally, we provide a reduction from a well-known NP-Hard problem (the Exact Cover by 3-Sets) to this IQP problem.

- We analyze random instances of the problem, where each packet is successfully received by each user randomly and independently with the same probability. This problem, referred to as Random Real-Time IDNC, corresponds to a Maximum Clique problem on an appropriately created random IDNC graph. Surprisingly, we show that when the number of packets is linear or polynomial in the number of users, the Maximum Clique problem can be solved with high probability on this particular family of random graphs, by a polynomial-time (in the number of users) algorithm, which we refer to as the Max Clique algorithm.

We implement and compare our coding scheme, Max Clique, against two baselines: an optimal repetition code and a COPE-like greedy scheme proposed in [6]. Simulations show that our scheme significantly outperforms these state-of-the-art schemes over a range of scenarios, for the loss probability varying from .01 to .99. For example, for 20 users and 20 packets, the our scheme improves by a factor of 1.3 on average, and performs up to 1.6 times better than the COPE-like scheme and up to 3.8 times better than the optimal repetition code.

The remainder of this paper is organized as follows. Section II discusses related work. Section III formulates the problem. Section IV describes the maximum clique and integer program formulations as well as the proof of NP-completeness. Sec-
Instantly Decodable Network Coding. Katti et al. proposed COPE, an opportunistic inter-session network coding scheme for wireless networks. Encoded packets are chosen so that they are immediately decodable at the next hop. The algorithm considers combining packets in a FIFO way (as stored in the transmitting queue) and greedily maximizes the number of receivers that can decode in the next time slot. Keller et al. investigate algorithms that minimize decoding delay, including two algorithms that allow for instantaneous decoding: a COPE-like greedy algorithm and a simple repetition algorithm. In Section VI, we use these two algorithms as baselines for comparison.

Sadeghi et al. improved the opportunistic algorithm in [4] by giving high priority to packets that are needed by a large number of users. The authors also gave an Integer Linear Program formulation to the problem of finding an instantly decodable packet that maximizes the number of beneficiary users. Furthermore, they show that it is NP-hard based on the Set Packing problem. We note that their formulation differs from ours since they require that a coded packet must be instantly decodable by some but not all users but is beneficial to a larger number of users. Our formulation ensures that we find this optimal packet.

Sorour et al. have an extensive line of work investigating instantly decodable codes [8]–[13], focusing on minimizing the completion delay. They introduced the term Instantly Decodable Network Coding (IDNC) that we adopt in this work. They propose a construction of IDNC graphs based on feedback from the users in [8] and then introduce a transmission scheme based on graph partitioning. We consider the same construction of IDNC graphs as in [8]. Based on a stochastic shortest path formulation, the authors in [2] propose a heuristic algorithm to minimize the completion delay. In [10], they introduced the notion of generalized IDNC problem, which does not require the transmitted code to be decodable by all users, as in the strict version studied previously [6], [8], [9]. Real-Time IDNC considers the generalized version. Furthermore, in [10], they relate finding an optimal IDNC code to the maximum clique problem in IDNC graphs and suggests that it is NP-Hard; however, no explicit reduction was provided. In [11] and [12], the authors extend [9] to cope with limited or lossy feedback and in [13], to use multicast instead of broadcast.

Li et al. [14] use IDNC for video streaming and show that, for independent channels and sufficiently large video file, their schemes are asymptotically throughput-optimal subject to hard deadline constraints when there are no more than three users. In contrast, we consider an arbitrary number of users and we provide the optimal single transmission.

Index Coding. Our problem setup is the same as in the Index Coding (IC) problem, introduced by Birk and Kol [15] and extensively studied since. Considers a base station that knows a set of packets $X$ and a set of users. Each user $(x, H)$ demands one particular packet $x \in X$ and has side information consisting of a subset of packets $H \subset X$. The base station broadcasts to all users without errors. The goal is to find an encoding scheme that minimizes the number of transmissions required to deliver the packets to all users. There are two differences between our problem and IC. First, in our problem each user wants all the packets, not just a single packet. Second, we want to find an instantly decodable packet that maximizes the number of users that benefit in a single transmission, not the total number of transmissions to satisfy all users.

Data Exchange was introduced by El Rouayheb et al. [22] and has similar setup: there is a set of packets $X$ and a set of users. Each user $u$ knows a subset of packets, $H_u \subset X$, and wants all packets in $X$. Unlike the IC, there is no base station and the users broadcast messages. Different from IC, the objective is to find an encoding scheme that minimizes the number of transmissions required to deliver all packets in $X$ to all users. Similar to the data exchange problem, in our setting, all users want all the packets in $X$. There are, however, two differences: (i) in our setting, only the base station can broadcast as opposed to having all users broadcasting, and (ii) we are interested in instantaneous decoding to maximize the number of beneficiary users for one transmission, as opposed to minimizing the total number of transmissions.

III. PROBLEM FORMULATION

Let $\mathcal{U} = \{u_1, \ldots, u_n\}$ be the set of $n$ users, and $\mathcal{P} = \{p_1, \ldots, p_m\}$ be the set of $m$ packets. We assume that the original $m$ packets were broadcast by a base station. Due to packet loss, each of $n$ users missed some of the $m$ packets. We denote the set of packets that were successfully received by user $i$ by $\mathcal{H}_i$. Furthermore, let $\mathcal{W}_i$ be the set of packets that user $i$ still wants, i.e., $\mathcal{W}_i = \mathcal{P} \setminus \mathcal{H}_i$. Consistent with [8] and [16], we call $\mathcal{H}_i$’s and $\mathcal{W}_i$’s the “Has” and “Want” sets.

After the initial broadcast, the base station tries to recover the losses, $\mathcal{W}_i$’s, by sending coded packets and exploiting the side information of the already delivered packets, $\mathcal{H}_i$’s. Let the $n \times m$ matrix $A$ be the identification matrix for the side information of the users, i.e., entry $a_{ij} = 1$ if user $u_i$ wants packet $p_j$ and 0 otherwise. $A$ is also called a feedback matrix, as in [8]–[13]. Let us clarify this by an example.

Example 1. Consider a scenario with 3 users and 6 packets. Furthermore, assume that after the initial broadcast, user $u_1$ successfully received packets $p_1$ and $p_2$; user $u_2$ received $p_3$ and $p_5$; and user $u_3$ received $p_3$ and $p_6$. Thus the side information of the users is:

$$
\begin{align*}
\mathcal{H}_1 &= \{p_3, p_4, p_5\} \\
\mathcal{H}_2 &= \{p_1, p_2, p_6\} \\
\mathcal{H}_3 &= \{p_1, p_2\}
\end{align*}
$$

$$
\begin{align*}
\mathcal{W}_1 &= \{p_4\} \\
\mathcal{W}_2 &= \{p_4, p_5\} \\
\mathcal{W}_3 &= \{p_4\}
\end{align*}
$$

$$
\begin{align*}
A &= \\
\begin{bmatrix}
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\end{align*}
$$
operate in GF(2). For a set of packets \( M \), focus on instantly decodable, lightweight coding schemes that
information matrix is

\[
A = \begin{pmatrix}
0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 
\end{pmatrix}.
\]

To deliver the packets in the Want sets of the users, we focus on instantly decodable, lightweight coding schemes that operate in GF(2). For a set of packets \( M \), their corresponding coded packet \( c \) is \( c = \bigoplus_{p_i \in M} p_i \), where \( \bigoplus \) denotes the binary sum.

**Definition 1.** A coded packet, \( c^N \), is instantly decodable with respect to a set of users, \( \mathcal{N} \), if and only if

(i) Every user, \( u_i \in \mathcal{N} \), can decode \( c^N \) immediately upon reception to recover a packet \( p_i' \in \mathcal{W}_i \). That is, each user in \( \mathcal{N} \) benefits from \( c^N \) by recovering one of the packets from its want set.

(ii) Every packet in the binary sum of \( c^N \) is wanted by at least one user in \( \mathcal{N} \).

For example, for the scenario of Example 1 the coded packet \( c_1 = (u_1, u_2, u_3) \) is instantly decodable with respect to \( \{u_1, u_2, u_3\} \) since \( u_1 \) can recover \( p_1 \), while \( u_2 \) and \( u_3 \) can get \( p_1 \). Meanwhile, \( c_3 = (u_2, u_3) \) is not instantly decodable with respect to \( u_1 \). Furthermore, we do not consider \( c_4 = (u_2, u_3) \) to be instantly decodable with respect to \( \{u_2, u_3\} \) since \( u_1 \) can decode \( c_4 \) by \( u_2 \) and \( u_3 \). From here on, we may omit the superscript \( N \) when there is no ambiguity.

We would like the coded packet to be immediately beneficial to as many users as possible. Thus, our notion of optimality is with respect to the cardinality of the set of beneficiary users \( |\mathcal{N}| \).

**The Real-Time IDNC Problem:** Given a side information matrix \( A \), find the optimal instantly decodable packet \( c^N \).

**IV. Maximum Cliques in IDNC Graphs**

Given a side information matrix \( A \), we form an Instantly Decodable Network Coding (IDNC) graph corresponding to \( A \) as in \( E \). We create a vertex \( v_{ij} \) when user \( u_i \) still wants packet \( p_j \). For instance, for matrix \( A \) in Example 1 there is a vertex for each entry 1 in the matrix. Given a vertex \( v_{ij} \), we use the term user index of \( v_{ij} \) to indicate \( i \) and packet index of \( v_{ij} \) to indicate \( j \). There is an edge between two vertices \( v_{ij} \) and \( v_{ik} \) if one of the below conditions hold:

(i) \( j = t \): In this case, both users \( u_i \) and \( u_k \) wants the same packet \( p = p_j = p_t \).

(ii) \( p_j \in \mathcal{H}_k \) and \( p_t \in \mathcal{H}_i \): In this case, user \( u_k \) has packet \( p_j \) that user \( u_i \) still wants, and vice versa.

Denote the IDNC graph corresponding to a matrix \( A \) by \( G^A = (\mathcal{V}, E) \). Figure 1 shows the IDNC graph corresponding to the side information matrix given in Example 1.

**A. Cliques and Instantly Decodable Packets**

**Proposition 1.** Finding an optimal instantly decodable code given a side information matrix \( A \) is equivalent to finding a maximum clique in the corresponding IDNC graph \( G^A \).

We prove this proposition by establishing the following Lemmas 2 and 3. The first lemma states the relationship between instantly decodable packets and cliques in \( G^A \).

**Lemma 2.** Given a side information matrix \( A \) and its IDNC graph \( G^A \), an instantly decodable packet has a one-to-one correspondence to a clique in \( G^A \).

**Proof:**

\((\Leftarrow)\) We first show that a clique in \( G^A \) maps to an instantly decodable packet, which is uniquely identified by the user and packet indices of the vertices in the clique.

Let \( C \) be a clique in \( G^A \); \( C = \{v_{t1,j1}, \ldots, v_{tn,jk}\} \). Without loss of generality, assume \( j_1, \ldots, j_k \) are pair-wise distinct, compute \( c = p_{j_1} + \cdots + p_{j_k} \). If \( j_1 = j_2 = \cdots = j_{n_0} > 1 \) then include only \( j_{n_0} \) in the XOR. \( c \) is an instantly decodable packet with respect to the set of users \( \{u_{i1}, \ldots, u_{ik}\} \) because

- For any user \( u_{it}, \) for some \( t \in [1, k] \), the existence of vertex \( v_{t1,j_t} \) indicates that it wants \( p_{j_t} \). In the following, we show that \( u_{it} \) can decode \( p_{j_t} \) immediately upon receiving \( c \). Without loss of generality, consider user \( u_{i1} \). It suffices to show that \( u_{i1} \) has all other packets in \( c \). To see this, assume otherwise, i.e., assume \( u_{i1} \) does not have packet \( p_{j_t} \), for some \( s \in [2, k] \) where \( p_{j_t} \neq p_{j_s} \). Then there is no edge between \( v_{t1,j_t} \) and \( v_{t_s,j_s} \), contradicting

\((\Rightarrow)\) We now show that an instantly decodable packet maps to a clique in \( G^A \), which is uniquely identified by the packets involved and the set of beneficiary users. Let \( c^N = p_{j_1} + \cdots + p_{j_k} \) be an instantly decodable packet with respect to the set of user \( \mathcal{N} \). Let \( p_{j_t} \) be wanted by distinct users \( \{u_{i1}^t, \ldots, u_{in_t}\} \), for some \( n_t > 0 \). The following set of vertices, \( C \), form a clique in \( G^A \):

\[
C = \{v_{u_{i1}^t,j_1}, \ldots, v_{u_{in_t}^t,j_1}, \ldots, v_{u_{i1}^t,j_k}, \ldots, v_{u_{in_t}^t,j_k}\}.
\]

We will show that there is an edge between any two vertices in \( C \):
For any $t \in [1,k]$, consider any pair $a \neq b, a, b \in [1,n_t]$.
There is an edge of type (i) between $v_{a,j_t}$ and $v_{b,j_t}$
since both $u_a^j$ and $u_b^j$ need $p_{j_t}$.

- For any pair of $s \neq t, s, t \in [1,k]$, consider $a \in [1,n_s]$ and $b \in [1,n_t]$. There is an edge of type (ii) between $v_{a,j_s}$ and $v_{b,j_t}$. This is because $u_a^i$ must have $p_{j_t}$, as it can
decode for $p_{j_t}$ immediately, and $u_b^j$ must have $p_{j_s}$, as it
can decode for $p_{j_s}$ immediately.

Finally, it is easy to check that for the above two mappings,
one is the reverse mapping of the other.

For instance, let us consider the clique involving $v_{13}, v_{21}$ and $v_{31}$ in Example 1. XOR all packets corresponding to vertices of this clique, i.e., $p_1 \oplus p_3$, forms an instantly
decodable packet because (i) user 1 must have $p_1$, and users 2 and 3 must have $p_3$, otherwise there are no edges $(v_{13}, v_{21})$ and $(v_{13}, v_{31})$, and (ii) each component of the coded packet is wanted by the user corresponding to the row of the vertex. The next lemma expresses the relationship between the number of users benefiting from an instantly decodable packet and the size of the clique corresponding to the packet.

**Lemma 3.** Given a side information matrix $A$ and its IDNC graph $G^A$, let $c^N$ be an instantly decodable packet, and let $C$ be the corresponding clique of $c^N$ in $G^A$, then $|C| = |N|$.

Proof: Let $c^N = p_{j_1} \oplus \cdots \oplus p_{j_k}$ be an instantly decodable packet w.r.t. the set of user $N$. Let $p_{j_t}, t \in [1,k]$, benefits distinct users $\{u_i^1, \ldots, u_i^{n_t}\}$, for some $n_t > 0$. The following set of vertices, $C$, forms the clique corresponding to $c^N$:

$$C = \{v_{i,j_1}, \ldots, v_{u_{i,j_1},j_1}, \ldots, v_{i,j_k}, \ldots, v_{u_{i,j_k},j_k}\}.$$ 

To show $|N| = |C|$, it suffices to show that all user indices of vertices in $C$ are pair-wise distinct. For any pair of $s \neq t$, where $s, t \in [1,k]$, consider any $a \in [1,n_s]$ and any $b \in [1,n_t]$, $u_a^s \neq u_b^t$ because otherwise $u_a^s$ cannot decode for $p_{j_s}$.

B. NP-Completeness

Finding a maximum clique in a general graph is well known to be NP-Hard. This result, however, is not directly applicable to IDNC graphs as they have special structural properties. In this section, we will show that the problem of finding a maximum clique in an IDNC graph is indeed NP-Hard. We show this by first showing that finding a maximum clique in an IDNC graph is equivalent to finding an optimal solution to an Integer Quadratic Programming (IQP) problem. We then describe a reduction from a well known NP-Complete problem, the Exact Cover by 3-Sets problem, to the decision version of the IQP problem.

1) **Integer Quadratic Programming Formulation:** Given a side information matrix $A$ of size $n \times m$, we formulate the IQP problem as follows. Let $r$ be a binary $n \times 1$ vector: $r_i \in \{0,1\}$, $i = 1, \ldots, n$. Similarly, let $c$ be a binary $m \times 1$ vector: $c_j \in \{0,1\}$, $j = 1, \ldots, m$. Below is the IQP problem for $A$:

Maximize: $$V = r^T A c = \sum_{i=1}^{n} \sum_{j=1}^{m} r_i c_j a_{ij}.$$ Subject to: $$r_i \sum_{j=1}^{m} c_j a_{ij} \leq 1$$ for $i = 1, \ldots, n$. (1), $$r_i, c_j \in \{0,1\}.$$ (2)

**Proposition 4.** Given a side information matrix $A$ and its IDNC graph $G^A$, finding a maximum clique in $G^A$ is equivalent to finding an optimal solution to the corresponding IQP.

We prove this proposition by establishing the following Lemmas 5 and 6. The first lemma expresses the relationship between the above IQP problem and the problem of finding maximum clique in $G^A$.

**Lemma 5.** Given a side information matrix $A$ and its IDNC graph $G^A$, a clique in $G^A$ has a one-to-one correspondence to a feasible solution of the IQP problem for $A$.

Proof:

($\Rightarrow$) We first show that a clique in the IDNC graph maps to a feasible pair of vectors $r$ and $c$ of the IQP problem, which is uniquely identical by the user and packet indices of the vertices in the clique.

Let $C$ be a clique in $G^A : C = \{v_{i_1,j_1}, \ldots, v_{i_k,j_k}\}$. Let $I$ be the set of user indices: $I = \{i_1, \ldots, i_k\}$, and $J$ be the set of packet indices: $J = \{j_1, \ldots, j_k\}$. We create the feasible pair of $r$ and $c$ as follows: Set $r_i = 1$ if $i \in I$ and 0 otherwise, and set $c_j = 1$ if $j \in J$ and 0 otherwise.

To show that this pair of vectors is a feasible solution, we proceed by showing that condition (1) of the IQP holds for all user indices. Let $i$ be any user index, $i \in [1,n]$. It is clear that (1) holds if $r_i = 0$. When $r_i = 1$, it suffices to show that no two vertices of $C$ have the same user index. Indeed, this follows from the observation that there is no edge between any two vertices having the same user index (on the same row) in the IDNC graph.

($\Leftarrow$) Next, we show that a feasible solution of the IQP maps to a uniquely identified clique in the IDNC graph. Let the pair of vectors $r$ and $c$ be a feasible solution. We map this pair to a clique $C$ in $G^A$ as follows: Initialize $C = \emptyset$. For $i \in [1,n]$, for $j \in [1,m]$, if $r_i = c_j = 1$, add vertex $v_{ij}$ to $C$.

Now pick any pair of vertices $v_{st}$ and $v_{pq}$ in $C$. It is clear that if $t = q$, there is an edge between these two vertices. It remains to show that when $t \neq q$, user $u_s$ has packet $p_q$ and user $u_p$ has packet $p_t$. We will show that user $u_s$ must have packet $p_q$. The other condition follows by symmetry. Assume otherwise, i.e., user $u_s$ does not have packet $p_q$, which means $a_{sq} = 1$. Since $C$ contains $v_{st}$ and $v_{pq}$, $r_s = c_t = a_{st} = 1$ and $r_p = c_q = a_{pq} = 1$. But then for row $s$, condition (1) of the IQP problem fails since

$$r_s \sum_{j=1}^{m} c_j a_{sj} \geq r_s c_t a_{st} + r_s c_q a_{sq} = 2.$$
Finally, one can readily check that for the above two mappings, one is the reverse of the other.

**Lemma 6.** Given a side information matrix $A$ and its IDNC graph $G^A$, the size of a clique in $G^A$ equals to the objective value $V$ of its corresponding feasible solution of the IQP problem for $A$.

**Proof:** Let $C$ be a clique in $G^A$ and $r$ and $c$ be the pair of vector of the corresponding feasible solution. For any user index $i$ and packet index $j$, if $v_{ij} \in C$, then $r_i = c_j = a_{ij} = 1$. Hence, every vertex in the clique adds 1 to $V$.

2) **Reduction from Exact Cover by 3-Sets:** Given a side information matrix $A$, the decision version of the IQP problem for $A$, denoted as $D-IQP$, asks the following question: “Is there a feasible solution whose objective value equals $N$, for some $N > 0$?”

**Proposition 7.** The $D-IQP$ problem is NP-Complete.

**Proof:** Clearly, D-IQP is in NP since given a feasible pair of vectors $r$ and $c$, we can compute the objective value in polynomial $O(nm)$ time.

In what follow, we show a reduction from the Exact Cover by 3-Sets ($X3C$) problem to D-IQP. $X3C$ is well-known to be an NP-Complete problem and is defined as follows:

**Definition 2.** Given a set $E$ of 3k elements: $E = \{e_1, \cdots, e_{3k}\}$, and a collection $F = \{S_1, \cdots, S_\ell\}$ of subsets $S_i \subset E$ and $|S_i| = 3$, for $i \in [1, \ell]$, $\ell \geq k$. The $X3C$ problem asks the following question: “Are there $k$ sets in $F$ whose union is $E$?”

The reduction: Given any instance of $X3C$, we create $3k$ users, $u_1, \cdots, u_{3k}$, and $\ell$ packets, $p_1, \cdots, p_\ell$. The users correspond to the elements $e_i, i \in [1, 3k]$, and the packets correspond to the sets $S_j, j \in [1, \ell]$. We form the side information matrix $A^{X3C}$ corresponding to this X3C instance by setting $a_{ij} = 1$ if $e_i \in S_j$ and 0 otherwise.

Next, we will show that there is a feasible solution to the D-IQP for $A^{X3C}$ whose objective value $V$ equals $3k$ if and only if there are $k$ sets $S_{j_1}, \cdots, S_{j_k}$ whose union is $E$.

($\Rightarrow$) Let $r$ and $c$ be the pair of vectors of the feasible solution whose objective value $V = 3k$. First, observe that all $r_i$, for $i = 1, \cdots, 3k$, must equal 1; otherwise, assume there exists some index $t \in [1, 3k]$ where $r_t = 0$, then

$$V = 3k \sum_{i=0}^{3k} r_i = \sum_{j=0}^{3k} r_i \sum_{j=0}^{3k} c_j a_{ij} < 3k,$$

since each term $r_i \sum_{j=0}^{3k} c_j a_{ij}$ is at most 1 by constraint (1). This is a contradiction.

Next, we create the corresponding solution to the X3C problem using $c$. In particular, for $j = 1, \cdots, \ell$, we select $S_j$ if $c_j = 1$. Because $V = 3k$ and $r_i = 1$ for all $i$,

$$\sum_{j=1}^{\ell} c_j a_{ij} = 1, \quad \text{for } i = 1, \cdots, 3k.$$ 

Thus, for a user index $s \in [1, 3k]$, there exists a unique packet index $t \in [1, \ell]$, where $c_t a_{st} = 1$, which means $c_t = a_{st} = 1$. By construction, we selected set $S_t$, and also this $S_t$ covers element $s$ as $a_{st} = 1$. Therefore, each element is contained in exactly one set.

($\Leftarrow$) Let $S_{j_1}, \cdots, S_{j_k}$ be the solution to the X3C problem. We create the corresponding solution to the D-IQP problem as follows. First, for $r$, let $r_i = 1$, for all $i = 1, \cdots, 3k$. Then, for $c$, let $J = \{j_1, \cdots, j_k\}$, and for $j = 1, \cdots, \ell$, set $c_j = 1$ if $j \in J$ and 0 otherwise. Since $S_{j_1}, \cdots, S_{j_k}$ covers all 3k elements and each set has only 3 elements, each element $e_s$ appears in exactly one set $C_{j_s}$ for some $t \in [1, k]$, and $c_{j_s} = 1$. Thus, for each element $s \in [1, 3k]$,

$$\sum_{j=0}^{\ell} c_j a_{sj} = c_{j_s} a_{sj_s} = 1 \cdot 1 = 1.$$

Given the above $r$ and $s$,

$$V = \sum_{i=0}^{3k} r_i \sum_{j=0}^{\ell} c_j a_{ij} = 3k \cdot 1 = 3k.$$

From Propositions 1, 4 and 7 we have the following main result of this work.

**Theorem 8.** Given a side information matrix $A$ and its IDNC graph $G^A$, finding a maximum clique in $G^A$, and equivalently, an optimal instantly decodable packet, is NP-Hard. Their corresponding decision versions are NP-Complete.

V. **MAXIMUM CLIQUES IN RANDOM IDNC GRAPHS**

In this section, we investigate Random Real-Time IDNC. In particular, we assume that each user, $u_i, i \in [1, n]$, fails to receive a packet, $p_j, j \in [1, m]$, with the same probability $p \in (0, 1)$ independently. For ease of analysis, we assume that $m$ is linear in $n$: $m = d \cdot n$, for some constant $d > 0$. (Our results also hold when $m$ is polynomial in $n$.) A random IDNC graph, denoted as $G^A(p)$, is the graph corresponding to a side information matrix $A$ whose each entry equals 1 with probability $p$ and 0 with probability $1 - p$ independently.

Next, we analyze the size of the maximum clique, i.e., the clique number, of random IDNC graphs.

The main results of this section are the followings:

(i) For any $p \in (0, 1)$, the clique number for almost every graph in $G^A(p)$ is linear in $n$. In particular, it equals $j^* pq^{j^*-1} - 1$, where $j^* = \text{argmax}_{j \in \mathbb{N}} j pq^{j-1}$, $j^* \in \mathbb{N}$. With high probability, the optimal recovery packet involves combining $j^*$ packets.

(ii) With high probability, the maximum clique can be found in polynomial time, $O(n m^{j^*+\delta})$, where $\delta$ is a small constant parameter, and we provide an explicit algorithm to find it. Consequently, the optimal recovery packet can be computed in polynomial time in $n$.

**Comparison to Erdős-Rényi Random Graphs:** Clique numbers of Erdős-Rényi random graphs with $n$ vertices and
For a set of constant \( X_j \) columns. Observe that if a column in \( Z \) has a binomial distribution: \( \text{Bin}(n, f(j)) \). Let \( C \) one vertex on every column in \( k \). Note that \( f(j) \) with high probability. Fix a set \( C_j \) of \( j \) columns. A row \( r \) is said to be good with respect to \( C_j \) if among the \( j \) columns, it has 1 one and \( j - 1 \) zeros. The probability that a row is good w.r.t. \( C_j \) is

\[
f(j) = j p q^{j-1}.
\]

Let \( Z_{C_j} \) be the number of good rows w.r.t. \( C_j \). Then \( Z_{C_j} \) has a binomial distribution: \( \text{Bin}(n, f(j)) \).

Let \( X_{C_j} \) be the size of the maximum clique that has at least one vertex on every column in \( C_j \), i.e., the clique touches \( j \) columns. Observe that if \( j = 1 \), then \( f(1) = p \), and \( X_{C_1} = Z_{C_1} \), which is the number of 1’s in the chosen column. Thus, \( X_{C_1} \) has a Binomial distribution: \( \text{Bin}(n, p) \). For \( j > 1 \), \( X_{C_j} \neq Z_{C_j} \) since the set of good rows may not have a 1 in every column in \( C_j \). The following lemma states that for a large \( k \), where \( k \geq j \), there exists a constant \( k \) such that for all \( k \geq k_j \),

\[
\Pr[Z_{C_j} = X_{C_j} \mid Z_{C_j} = k] \geq 1 - j \left( \frac{j-1}{j} \right)^k.
\]

**Proof:** For \( k \geq j \geq 1 \), let \( B_i^k \) denote the number of ways to put \( k \) 1’s into a matrix of size \( k \times j \) such that

- each row has one 1, and
- each column has at least one 1.

Note that \( B_1^k = 1 \), and we have the following recurrence:

\[
B_i^k = j^k - \binom{j}{1} B_{i-1}^{k-1} - \binom{j}{2} B_{i-2}^{k-2} - \cdots - \binom{j}{j-1} B_{i}^{k}.
\]

This recurrence states that the number of ways to put \( k \) 1’s into \( k \) rows (each row has one 1) using exactly \( j \) columns equals to the number of ways to put \( k \) 1’s into \( k \) rows without any column restriction subtracts the cases where there are 1, 2, \cdots, \( j - 1 \) empty columns. It can be shown by induction that

\[
B_i^k = \sum_{i=0}^{j-1} (-1)^i \binom{j}{i} (j - i)^k.
\]

In detail, assume that \( i \) is true for all indices 1, 2, \cdots, \( j - 1 \), then following from recurrence \( B_1^k = j^k - j(j-1)^k - \cdots - j(j-1)^k \),

\[
B_1^k = j^k - \binom{j}{1} B_{i-1}^{k-1} - \binom{j}{2} B_{i-2}^{k-2} - \cdots - \binom{j}{j-1} B_{i}^{k}.
\]

Now, for any \( t \in [1, j - 1] \), the coefficient of \( (j - t)^k \)

\[
\sum_{i=1}^{t} \binom{j}{i} \binom{j-i}{t-i} (-1)^{t-i+1} = (-1)^t \frac{(j)}{t}.
\]

The above equation holds if

\[
\sum_{i=1}^{t} \binom{j}{i} \binom{j-i}{t-i} (-1)^{t-i+1} = (-1)^t \frac{(j)}{t}.
\]

Or, equivalently

\[
\sum_{i=1}^{t} \binom{t}{i} (-1)^{t-i} = (-1)^{t+1}.
\]

The LHS of the above equation equals

\[
-(-1)^t + \sum_{i=0}^{t} \binom{t}{i} (-1)^{t-i} = (-1)^{t+1},
\]

where the last “=” follows from the binomial theorem (for \( a = 1, b = -1 \)). This complete the induction to show \( i \). From (3), we have that

\[
B_i^k = j^k - j(j-1)^k - \cdots - j(j-1)^k.
\]

Let \( k_j \) be the minimum positive integer value of \( k \) such that

\[
\sum_{i=0}^{j-1} (-1)^i \binom{j}{i} (j - i)^k \geq 0.
\]

Then, for all \( k \geq k_j \),

\[
\Pr[Z_{C_j} = X_{C_j} \mid Z_{C_j} = k] = \frac{B_i^k}{j^k} \geq \frac{j^k - j(j-1)^k}{j^k}.
\]

The following lemma states that \( X_{C_j} \), the size of the maximum clique that touches all \( j \) columns, heavily concentrates around \( nf(j) \) for large \( n \). Intuitively, this follows from \( X_{C_j} = Z_{C_j} \) w.h.p. (Lemma 3) and the fact that the Binomial distributed \( Z_{C_j} \), the number of good rows, concentrates heavily around its mean, \( nf(j) \).
Lemma 10. For a set of constant \( j \) columns \( C_j \) and any constant \( c > 1 \), let \( \mu = nf(j) \) and \( \delta = \sqrt{\frac{3c \ln n}{n f(j)}} \). For a large \( n \) such that \( \mu - \mu \delta \geq k_j \) (\( k_j \) is as in Lemma 9), we have
\[
Pr[|X_{C_j} - \mu| \geq \mu \delta] \leq \frac{2}{n^c} + 2\mu \delta j(1 - \frac{1}{j})^{\mu - \mu \delta}.
\]
This probability goes to 0 as \( n \to \infty \).

Proof: Denote \( Z_{C_j} \) and \( X_{C_j} \) by \( Z \) and \( X \), respectively. Applying Chernoff’s bound on the Binomial distributed variable \( Z \), we have
\[
Pr[|Z - \mu| \geq \mu \delta] \leq 2 \exp(-\frac{\mu \delta^2}{3}) = \frac{2}{n^c}.
\]
Now,
\[
Pr[|X - \mu| \geq \mu \delta] = \sum_{k=1}^{n} \Pr[|X - \mu| \geq \mu \delta | Z = k] \cdot \Pr[Z = k]
\]
\[
\leq \sum_{k=1}^{\mu - \mu \delta} \Pr[Z = k] + \sum_{k=\mu - \mu \delta + 1}^{\mu + \mu \delta - 1} \Pr[|X - \mu| \geq \mu \delta | Z = k]
\]
\[
\leq \frac{2}{n^c} + \sum_{k=\mu - \mu \delta + 1}^{\mu + \mu \delta - 1} \Pr[|X - \mu| \geq \mu \delta | Z = k]
\]
\[
= \frac{2}{n^c} + \sum_{k=\mu - \mu \delta + 1}^{\mu + \mu \delta - 1} \Pr[|X - \mu| \geq \mu \delta | Z = k, X \neq Z] \cdot \Pr[X \neq Z]
\]
\[
\leq \frac{2}{n^c} + (2\mu \delta - 2)\frac{j(1 - 1/j)}{\mu - \mu \delta} \quad \text{(from Lemma 9)}
\]
\[
+ \sum_{k=\mu - \mu \delta + 1}^{\mu + \mu \delta - 1} \Pr[|Z - \mu| \geq \mu \delta | Z = k]
\]
\[
\leq \frac{2}{n^c} + 2\mu \delta j(1 - 1/j)\mu - \mu \delta + 0.
\]

Note that \( \mu \delta \) is \( \Theta(\sqrt{n \ln n}) \); thus, \( C_j \) is within \( \Theta(\sqrt{n \ln n}) \) of \( n f(j) \) w.h.p. Next, for a constant \( j \), let \( X_j \) be the size of the maximum clique that touches any \( j \) columns. \( X_j \) also heavily concentrates around \( n f(j) \). Recall that \( m = d n \). Formally,

Theorem 11. For a constant \( j \) and any constant \( c > j \), let \( \mu = nf(j) \) and \( \delta = \sqrt{\frac{3c \ln n}{nf(j)}} \). For a large \( n \) such that \( \mu - \mu \delta \geq k_j \) (\( k_j \) is as in Lemma 9), we have
\[
Pr[|X_j - \mu| \geq \mu \delta] \leq \frac{2d^j}{n^{c-2}} + 2d^j \mu \delta j(1 - \frac{1}{j})^{\mu - \mu \delta}.
\]
This probability goes to 0 as \( n \to \infty \).

Proof: The proof is by using the union bound on the result of Lemma 10
\[
Pr[|X_j - \mu| \geq \mu \delta] = Pr[\cup_{C_j} |X_j - \mu| \geq \mu \delta]
\]
\[
\leq \left( \frac{m}{j} \right) Pr[|X_{C_j} - \mu| \geq \mu \delta]
\]
\[
\leq m^j \left( \frac{2}{n^c} + 2d \mu \delta j(1 - 1/j)^{\mu - \mu \delta} \right)
\]
\[
\leq \frac{2d^j}{n^{c-2}} + 2d^j \mu \delta j(1 - 1/j)^{\mu - \mu \delta}.
\]

We note that the above concentration result also holds when the number of packets, \( m \), is polynomial in the number of user, \( u \), i.e., \( m = n^d \), for some constant \( d > 0 \). However, it needs a larger constant \( c \) (\( c > d j \)), which means less concentration. Apparently, the results do not hold when \( m \) is exponential in \( n \). However, the cases where \( m \) is either linear or polynomial in \( n \) are sufficient for practical purposes as in real-time applications, such as [2], \( m \) is often linear in \( n \).

Now let \( j^* = \arg \max_j f(j) \), \( j^* \in \mathbb{N} \). There may be a set of
Algorithm 1 Finding the Maximum Clique

**Input:** $p$: loss probability, $n$: number of users, $m$: number of packets, $A$: side information matrix of size $n \times m$.  

**Output:** $I^*$: vertices of the maximum clique

1: $j^* \leftarrow \min(m, \argmax_{j \in N} f(j))$
2: $I^* = \emptyset$
3: for each combination of $j$ columns out of $m$ columns, where $j \in [j^* - \delta, j^* + \delta]$
4: $I = \emptyset$
5: for $r = 1 \to n$
6: if row $r$ has only one 1 at column $c$ then
7: Add $(r, c)$ to $I$
8: end if
9: end for
10: if $|I| > |I^*|$ then
11: $I^* = I$
12: end if
13: end

VI. PERFORMANCE EVALUATION

In this section, we use simulation to compare the performance of the proposed Max Clique algorithm (Algorithm 1) against two baselines proposed in [6]: an optimal repetition-based algorithm, called Best Repetition and a COPE-like greedy-based algorithm. The Best Repetition algorithm re-broadcasts the plain packet that is wanted by the most number of users. This is inherently the best repetition strategy. The COPE-Like algorithm goes through all the packets that are still wanted by at least one user in a random order, and it tries to compute a coded packet that is instantly decodable to all users. In particular, it begins by selecting the first packet, $c = p_1$. It then goes through the rest of the packets one by one. At each step, $j, j > 1$, it XORs the packet $p_j$ under consideration with $c: c = c \oplus p_j$, if the result is still instantly decodable to all users, and it skips $p_j$ otherwise. For reference, we also include the Random Repetition algorithm, which resend a random packet that is still wanted by at least one user.

**Setting.** For each loss rate ranging from 1% to 99% per 1% increment, we randomly generate 100 side information matrices. We then run the algorithms on these matrices. For the Max Clique algorithm, we set $\delta$, the neighborhood around $j^*$, to 3. Fig. 4 plots the average numbers of beneficiary users as a function of loss rate for the two parameter settings $\{n = 20, m = 20\}$ and $\{n = 40, m = 20\}$. For clarity, we skip plotting the standard deviations: they are ranging from 0 to 3 for all algorithms.

**Results.** In Fig. 4 we can see that the proposed Max Clique algorithm consistently and significantly outperforms all other algorithms. In particular, for the case $\{n = 20, m = 20\}$, on average, Max Clique performs 1.3 times better than both the Best Repetition and COPE-Like. For the loss rates between 40% and 50%, Max Clique performs up to 1.6 times better than the COPE-Like algorithm, and for the loss rates between
10% and 15%, Max Clique performs up to 3.8 times better than the Best Repetition algorithm. Similar trend but higher improvement, 1.35 times on average and up to 4.5 times, could be observed for the case \( \{n = 40, m = 20\} \) in Fig 4(b).

When the loss rate is larger than a certain threshold (65% in Fig. 4(a)), the performance of Max Clique is similar to that of the Best Repetition, which suggests that Max Clique also tries to select the best uncoded packet. This is because a plain packet now benefits many users due to high loss rate. When the loss rate is larger than another threshold (50% for Fig. 4(a)), the performance of COPE-Like is similar to that of Random Repetition, which suggests that packets cannot be coded together while being instantly decodable to all users. This is because when the loss rate is high, given any pair of 2 plain packets, there exists a user who lost both w.h.p.

VII. CONCLUSION

In this paper, we formulate the Real-Time IDNC problem, which seeks to compute a recovery packet that is immediately beneficial to the maximum number of users. Our analysis shows that Real-Time IDNC is NP-Hard. This is shown by first mapping the problem to the problem of finding maximum cliques in IDNC graphs and then providing a reduction from the Exact Cover by 3-Sets problem. We then analyze the Random Real-Time IDNC, where each user is assumed to lose every packet with the same probability \( p \) independently. When the number of packets is linear or polynomial in the number of users, we show that the optimal packet could be computed in polynomial time in the number of users with high probability. We achieve this by providing an algorithm that is capable of finding a maximum clique in a random IDNC graph in polynomial time, which could be of independent interest.

In the future, we plan to extend this work from a single time slot to a constant number of time slots, corresponding to delay tolerance greater than zero.

REFERENCES

[1] R. Ahlswede, N. Cai, S.Y. Li, and R. Yeung, “Network Information Flow,” in *Tran. Info. Theory*, vol. 46, no. 4, pp. 1204–1216, Jul. 2000.

[2] A. Le, L. Keller, C. Fragouli, and A. Markopoulou, “MicroPlay: A Networking Framework for Local Multiplayer Games,” in *SIGCOMM MultiGames Workshop ’12*, Helsinki, pp. 155–160.

[3] L. Keller, A. Le, B. Cici, H. Seferoglu, C. Fragouli, A. Markopoulou, “MicroCast: Cooperative Video Streaming on Smartphones,” in *MobiSys ’12*, Low Wood Bay, pp. 57–70.

[4] S. Katti, H. Rahul, W. Hu; D. Katabi, M. Medard, and J. Crowcroft, “XORs in the Air: Practical Wireless Network Coding,” in *Tran. Networking*, vol. 16, no. 5, pp. 497–510, Jun. 2008.

[5] D. Nguyen; T. Tran, T. Nguyen, and B. Bose, “Wireless Broadcast Using Network Coding,” *Tran. Vehicular Tech.*, vol. 58, no. 2, pp. 914–925, Feb. 2009.

[6] L. Keller, E. Drinea, and C. Fragouli, “Online Broadcasting with Network Coding,” in *NetCod ’08*, Hong Kong, pp. 1–6.

[7] P. Sadeghi, D. Traskov, and R. Koetter, “Adaptive network coding for broadcast channels,” in *NetCod ’09*, Lausanne, pp. 80–85.

[8] S. Sorour and S. Valaee, “Adaptive network coded retransmission scheme for wireless multicast,” in *ISIT ’09*, Seoul, pp. 2577–2581.

[9] S. Sorour and S. Valaee, “On Minimizing Broadcast Completion Delay for Instantly Decodable Network Coding,” in *ICC ’10*, Cape Town, pp. 1–5.

[10] S. Sorour and S. Valaee, “Minimum Broadcast Decoding Delay for Generalized Instantly Decodable Network Coding,” in *Globecom ’10*, Miami, pp. 1–5.

[11] S. Sorour and S. Valaee, “Completion Delay Minimization for Instantly Decodable Network Coding with Limited Feedback,” in *ICC ’11*, Kyoto, pp. 1–5.

[12] S. Sorour and S. Valaee, “Completion delay reduction in lossy feedback scenarios for instantly decodable network coding,” in *PIMRC ’11*, Toronto, pp. 2025–2029.

[13] S. Sorour and S. Valaee, “On densifying coding opportunities in instantly decodable network coding graphs,” in *ISIT ’12*, Boston, pp. 2456–2460.

[14] X. Li, C. Wang, and X. Lin, “On The Capacity of Immediately-Decodable Coding Schemes for Wireless Stored-Video Broadcast with Hard Deadline Constraints,” in *JSAC*, vol. 29, no. 5, pp. 1094–1105, May 2011.

[15] Y. Birk and T. Kol, “Coding-on-demand by an informed source (ISCOD) for efficient broadcast of different supplemental data to caching clients,” in *Tran. Info. Theory*, vol. 52, no. 6, pp. 2825–2830, Jun. 2006.

[16] S. El Rouayheb, M. A. R. Chaudhry, and A. Sprintson, “On the Minimum Number of Transmissions in Single-Hop Wireless Coding Networks,” in *ITW ’07*, Lake Tahoe, pp. 120–125.

[17] H. Maleki, V. Cadambe, and S. Jafar, “Index Coding: An Interference Alignment Perspective”, in *ISIT ’12*, Boston, pp. 2236–2240.

[18] A. Saber Tehrani, and A. G. Diamkis, “Finding Three Transmissions is Hard,” in *GLOBECOM ’12*, Anaheim, pp. 2317–2322.

[19] A. Saber Tehrani, A. G. Diamkis, and M. J. Neely, “Bipartite Index Coding,” in *ISIT ’12*, Boston, pp. 2246–2250.

[20] M.A.R. Chaudhry and A. Sprintson, “Efficient algorithms for Index Coding,” in *INFOCOM ’10 Workshops*, Phoenix, pp. 1–4.
[21] I. Haviv and M. Langberg, “On Linear Index Coding for Random Graphs,” in *ISIT ’12*, Boston, pp. 2231–2235.
[22] S. El Rouayheb, A. Sprintson, and P. Sadeghi, “On Coding for Cooperative Data Exchange,” in *ITW ‘10*, Cairo, pp. 1–5.
[23] S. El Rouayheb, P. Sadeghi, and A. Sprintson, “A Randomized Algorithm and Performance Bounds for Coded Cooperative Data Exchange,” in *ISIT ’10*, Austin, pp. 1888–1892.
[24] N. Milosavljevic, S. Pawar, S. El Rouayheb, M. Gastpar, and K. Ramchandran, “Deterministic Algorithm for the Cooperative Data Exchange Problem,” in *ISIT ’11*, St Petersburg, pp. 410–414.
[25] N. Milosavljevic, S. Pawar, S. El Rouayheb, M. Gastpar, and K. Ramchandran, “Data Exchange Problem with Helpers,” in *ISIT ’12*, Boston, pp. 2611–2615.
[26] A. Sprintson, P. Sadeghi, G. Booker, and S. El Rouayheb, “Deterministic Algorithm for Coded Cooperative Data Exchange,” in *QShine ’10*, Houston.
[27] D. Ozgul and A. Sprintson, “An Algorithm for Cooperative Data Exchange with Cost Criterion,” in *ITA ’11*, San Diego, pp. 1–4.
[28] M. Gonen and M. Langberg, “Coded Cooperative Data Exchange Problem for General Topologies,” in *ISIT ’12*, Boston, pp. 2606–2610.
[29] T.A. Courtade, X. Bike, and R.D. Wesel, “Optimal exchange of packets for universal recovery in broadcast networks,” in *MILCOM ’10*, San Jose, pp. 2250–2255.
[30] T.A. Courtade and R.D. Wesel, “Efficient universal recovery in broadcast networks,” in *Allerton ’10*, Urbana-Champaign, pp. 1542–1549.
[31] T.A. Courtade and R.D. Wesel, “Weighted universal recovery, practical secrecy, and an efficient algorithm for solving both,” in *Allerton ’11*, Urbana-Champaign, pp. 1349–1357.
[32] M. R. Garey and D. S. Johnson, “Computers and Intractability: A Guide to the Theory of NP-Completeness,” W. H. Freeman & Co. New York, NY, 1979.
[33] A. Juels and M. Peinado, “Hiding Cliques for Cryptographic Security,” in *SODA ’98*, San Francisco, pp. 678–684.
[34] M. Luby, M. Watson, T. Gasiba, T. Stockhammer, W. Xu, “Raptor codes for reliable download delivery in wireless broadcast systems,” in *CCNC ’06*, Las Vegas, pp. 192–197.
[35] J. W. Byers, M. Luby, M. Mitzenmacher, A. Rege, “A digital fountain approach to reliable distribution of bulk data,” in *Sigcomm ’98*, Vancouver, pp. 56–67.