The Effect of Early Time-Restricted Feeding on Glycemic Profile in Adults: A Systematic Review of Interventional Studies

Demetrios Bitsanis¹, Konstantinos Giannakou², Elena Hadjimbei¹, Stavri Chrysostomou¹

¹Department of Life Sciences. School of Sciences. European University Cyprus. Nicosia. Cyprus. ²Department of Health Sciences. School of Sciences. European University Cyprus. Nicosia. Cyprus. . Address correspondence to: Stavri Chrysostomou, e-mail: s.chrysostomou@euc.ac.cy

Manuscript submitted November 16, 2021; resubmitted December 16, 2021; accepted December 22, 2021

1. Introduction

The prevalence of obesity and type 2 diabetes (T2D) continues to rise. ‘Diabesity’ is a new term referring to the co-existence of obesity and T2D and has been predicted to become the biggest epidemic in human history [1-3]. Worldwide, the prevalence of diabetes has increased dramatically during the past decades [3-5], highlighting a strong healthcare and financial burden [6-9]. The strong increase in T2D and other associated metabolic disorders mainly occurs in industrialized countries where excess energy consumption and unhealthy eating patterns are prevalent [10,11]. The Western type of diet and lifestyle which have prevailed over the last decades may have contributed to this development, and therefore health professionals are seeking new cost-effective and easy-to-follow dietary strategies to reestablish optimal glycemic control [12-16].

So far, most of the dietary guidelines for the treatment and prevention of overweight, obesity, and T2D have focused on reducing energy intake and improving diet quality [17]. However, long-term adherence to current guidelines has met with limited success [18]. It seems that the timing of daily food intake is not taken into consideration.

Irregular daily eating patterns have been shown to have adverse effects on circadian biology regardless of the meal size and macronutrient composition [19]. Alterations in Circadian eating patterns are one of the behavioral risk factors leading to obesity and other metabolic diseases [20]. Previous studies found associations between homeostasis and the circadian clock at the behavioral, physiological, and molecular levels, underling that the timing of food intake plays
a significant role in the development of obesity and other associated diseases [20]. Therefore, resetting the circadian clock by circadian energy restriction may be useful as a new approach for the prevention of chronic metabolic diseases such as T2D [21-23].

Nowadays, dietary strategies show that focusing on the timing of eating and duration of fasting, known as chrono-nutrition, rather than the type, quality, or quantity of food, has been associated with improved metabolic health outcomes independent of weight loss. In particular, time-restricted feeding (TRF), in which daily food intake is restricted to 8-10 hours, showed beneficial effects on weight loss, glycemial markers, and many other health factors [24,25]. Recently, other TRF subclasses such as early time-restricted feeding (eTRF; tantamount to eating dinner in the mid afternoon), which is better aligned with circadian rhythms [26-31], has gained great popularity. In eTRF, the majority of food intake is shifted to earlier daytimes, with breakfast being served at 7-8am in the morning [29,32], after the cortisol peak [32]. According to this procedure, dinner is served at 2-3pm in the noon [29] and no later than 6pm in the afternoon, during the ghrelin and insulin peak [32], followed by fasting for the rest of the day [29]. This is the major difference of eTRF compared to any other TRF subtypes [29,32].

As commonly known, insulin sensitivity is higher in the morning and declines in the evening [33-36], which is an advantage of eTRF in which the majority of daily energy is consumed earlier in the day before the period when insulin sensitivity is reduced [37]. Notably, previous studies on eTRF demonstrated improved beta-cell function in people with prediabetes [20] and improved glucose levels in individuals with obesity.

To the best of our knowledge, previous studies aiming to evaluate the actual effects of eTRF on glycemic profile of adults are scarce. However, it is impossible to reveal the real effects of this regimen based on these limited data because of the existence of other confounding factors. Most recent systematic reviews and meta-analyses, which have tried to examine the effect of TRF dietary patterns on glycemic markers, have indicated reduced fasting glucose and HOMA-IR in association with a reduced body weight [28,38-40]. However, all previous systematic reviews and meta-analyses included studies with calorie-restricted diets, unspecified meal timing or delayed morning TRF diets (dTRF), and individuals on oral hypoglycemic agents, which may mask the effects of eTRF per se.

Recently, health professionals have been trying to develop new dietary strategies for patients with diabetes which should be associated with long-term adherence and improved outcomes, thus limiting the necessity of medication therapy. To the best of our knowledge, there is no previous systematic review examining the effect of eTRF without calorie restriction on the glycemic profile of adults. Therefore, the aim of this systematic review was to examine whether eTRF without caloric restriction improves the glycemic profile of adults.

### Abbreviations:

- BMI: body mass index
- CGM: continuous glucose monitoring
- CHO: carbohydrate
- CON:CR: control:caloric restriction
- CONGA: continuous overall net glycemic action
- eTRF: early time-restricted feeding
- HbA1c: glycated hemoglobin A1c
- HOMA-IR: homeostasis model assessment of insulin resistance
- HOMApp: postprandial homeostasis model assessment (of insulin resistance)
- iAUC: incremental surface area below the curve
- IF: intermittent fasting
- MAGE: mean amplitude of glycemic excursions
- M-ISI: matsuda insulin sensitivity index
- MODD: mean of daily differences
- OGTT: oral glucose tolerance test
- P: protein
- RCT: randomized controlled trial
- TRF: time-restricted feeding
- TRFd: delayed time-restricted feeding

### 2. Methods

This is a systematic review. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed for reporting this study [41,42].

#### 2.1 Search strategy

We systematically searched PubMed/MEDLINE, the Cochrane Library, and EBSCO for randomized controlled trials, non-randomized controlled trials, or clinical trials published in the English language that examined the association of eTRF and glycemic profile. The search was conducted independently by two researchers (DB, SC). Discrepancies were resolved by consensus discussion with a third investigator (KG). The search strategy included medical subject heading (MESH) terms or a combination of keywords and MESH terms, as shown in Table 1 (in the Appendix). We also performed a manual search of the references in the articles retrieved.

#### 2.2 Eligibility criteria

The Participants, Investigations, Comparisons, Outcome (PICO) model was employed to define the research question, as shown below [42-44]:

1. Participants: subjects with normal body weight, overweight, or obese (- with or without metabolic and cardiovascular disorders) of any age, sex, ethnicity, and geographical distribution.
2. Interventions: eTRF or daily fasting regimens
that present all the characteristics of eTRF; fasting ≥14h with the first meal served as soon as the subjects are awake (breakfast from 6:00 to 8:30 a.m.) and the last meal in the early afternoon (dinner between 13:00-17:00 p.m.). There are no restrictions on the number of meals within the restricted feeding window and no restrictions on calorie intake. However, during the fasting period, no food or beverages containing calories and caffeine can be consumed.

3. Comparisons: standard 24-h daily food intake schedule or other chrono-nutritional patterns (TRF/IF), such as delayed time-restricted feeding (TRFd).

4. Outcomes: blood glucose levels (mg/dl), insulin levels (mU/l), HOMA-IR, or Matsuda insulin sensitivity index (M-ISI).

5. Study design: randomized controlled trials, non-randomized controlled trials, or clinical trials. Exclusion: review articles, animal studies, clinical trials in pregnant or lactating women or infants/children, eTRF or fasting regiments resembling eTRF with caloric restriction, IF clinical trials with antioxidant supplements or dietary supplements that promote body weight reduction or regulate metabolism or oral hypoglycemic agents, and studies on other TRF/IF dietary patterns.

2.3 Data extraction and quality assessment

Data extraction was performed independently following a standardized method by two researchers (DB and SC), while discrepancies were resolved by a third author (KG). The data extracted per study included:

- Author name

![Figure 1. PRISMA flow diagram for the selection of studies of this systematic review. The search strategy was performed based on the PRISMA guidelines.](image-url)
3.3 Effect of eTRF on blood glucose levels

The study by Hutchison et al. (2019) reported a reduction in fasting glucose levels in the eTRF group (p<0.05) compared with baseline [46]. In the same study, both eTRF and TRFd reduced glucose iAUC responses to a 3-h meal test by ~36% (p<0.005) [46]. Moreover, the study by Jamshed et al. (2019) indicated that fasting glucose levels were decreased (p<0.05) in the morning in the eTRF group compared to the control group [47]. The same study showed that a 4d-eTRF decreased mean 24-h glucose levels (p<0.0005) and 24-h glycemic excursions (p<0.005) in the intervention group compared with the control group [47]. Likewise, the study by Jones et al. (2020) showed that 2wk of eTRF reduced circulating glucose 3hours after ingesting a carbohydrate (CHO) and protein drink (p<0.05) compared with baseline, and increased muscle glucose uptake (p<0.05) compared with the control group [50]. Moreover, in the study by Nas et al. (2017), although 24-h glycemic was similar between the interventions, skipping dinner (resembling eTRF) reduced postprandial glucose iAUCs after lunch (p<0.001) compared to the skipping breakfast (resembling TRFd) intervention [48]. The findings of the studies included regarding the effect of eTRF on blood glucose levels are shown in Table 1.

3.4 Effect of eTRF on insulin levels and insulin resistance/sensitivity

The study by Jamshed et al. (2019) showed that fasting insulin (p<0.02) and HOMA-IR (p<0.0001) were significantly decreased in the morning and increased in the evening compared to the control group [47]. The study by Sutton et al. (2018) showed that 5wk of eTRF significantly reduced mean and peak insulin levels (p<0.01) [49]. Also, the same study showed that 5wk of eTRF reduced insulin resistance (p<0.01), as measured by the 3-hour incremental AUC ratio, compared with the control group [49]. Moreover, the study by Jones et al. (2020) showed that fasting insulin levels were significantly higher in the eTRF than in the control group (p<0.02) after 2weeks of intervention [50]. The same study found that 2wk of eTRF reduced insulin levels across the entire postprandial period (p<0.05) and significantly improved M-ISI in response to consumption of a liquid test meal (p<0.05) [50].

The study by Nas et al. (2017) showed that postprandial insulin was significantly lower in the skipping dinner group (resembling eTRF) compared with the skipping breakfast group (resembling TRFd) (p<0.01) [48]. Also, the same study showed that skipping dinner (resembling eTRF) reduced postprandial HOMAapp after lunch compared with the skipping breakfast group (resembling TRFd) (p<0.01) [48]. The findings of the studies included regarding the effect of eTRF on insulin levels and insulin resistance/sensitivity are shown in Table 1.

3.5 Quality assessment

The quality assessment of the studies included revealed that two RCTs (n=2) with Jadad score=3 validity criteria were of high quality [47,49], while the remaining three clinical studies (n=3) with Jadad score ≤2 were of low quality [46,48,50]. The results of the quality assessment of the studies included are shown in Table 2.
| Study year, country | Sample size (n) | Participants | Trial length | Design | Intervention diet and mealtime | Body weight | Changes in glycemic markers | Insulin resistance/suliningogenic index | Main findings |
|--------------------|----------------|--------------|--------------|--------|-------------------------------|------------|----------------------------|--------------------------------|--------------|
| Jones et al. (2020), UK | 16 | Healthy lean young adult men. Age: 23.0 ± 1.0 years BMI: 24 ± 0.6 kg/m² | 2 weeks | Non-RCT, unspecified design, freelliving | eTRF: ad libitum diet/d within 8h (8am-4pm) CON/CR group matched for nutrient composition (45%CHO:35%FAT:20%P) and energy intake after 2wk of eTRF 1-week baseline period: all | a)73.4±2.97 (before) to 72.3±2.00 (after) 2weeks of eTRF (p<0.05) b) CON/CR vs. eTRF, between group difference (95% CI: body weight -0.20±(1.14, 0.73)), p<0.05 | a) Fasting insulin levels in eTRF vs. CON/CR, between group difference (95% CI: 1.89(0.18, 3.60); intervention group x pre-post trial interaction effect p<0.05; n² =0.39 b) Postprandial insulin in eTRF, between group difference (95% CI: 9697(248, 19,146)pmol/l 180min), main interaction effect p<0.05; n² =0.26 | Major effect on insulin sensitivity and skeletal muscle glucose uptake |
| Jamshed et al. (2019), USA | 11 | Obese healthy adults (7M, 4F premenopausal). Age: 32 ± 7 years BMI: 30.1 ± 2.7 kg/m² | 4 days | RCT crossover diet controlled, washout period: ~1mo | eTRF: 3 meals/d within 6h (8am-2pm) Control: 3 meals/d within 12h (8am-8pm) matched for nutrient composition 50%CHO:35%M:15%P and energy-for-weight maintenance diet | N/A | a) Fasting glucose in the morning by 2.0±1.0 mg/dl, p<0.05 b) Postprandial glucose after breakfast by 3.0±1.0 mg/dl, but NS for p<0.05 c) 24h mean glucose levels by 4.0±1.0mg/dl (by CGM), p<0.005 d) Glycemic excursion by MAGE by 12.0±3.0 mg/dl, p<0.005 | a) Fasting insulin in the morning by 2.9±0.4mU/l, p=0.0001 b) ↑ fasting insulin in the evening by 4.5±1.6mU/l, p<0.02 b) ↑ HOMA-IR in the evening by 1.09±0.40, p<0.05 | Major effect on glucose Inconsistent effect on insulin and HOMA-IR |
| Study                          | Participants                  | Design                      | Intervention | Outcome Measures                                                                 |
|-------------------------------|-------------------------------|-----------------------------|--------------|-----------------------------------------------------------------------------------|
| Hutchison et al. (2019), Australia | Obese older male adults at risk of type 2 diabetes, Age: 55.0 ± 3.0y BMI: 33.9 ± 0.8 kg/m² | 1 week RCT crossover diet uncontrolled, washout period: 2 weeks | eTRF: ad libitum diet/d within 9h (8am-5pm) TRFd:9h (12-9pm) 1wk baseline period: all | a) Body weight (kg) on 7d vs. 0d, p<0.001 (data N/A), but NS between groups (0.8±0.3; eTRF: -1.3±0.2; TRFd: -0.8±0.2)  
  a) Fasting glucose, mmol/l, (5.8±0.1 at 0d vs. 5.7±0.1), p<0.05  
  b) Fasting glucose by CGM at 7d vs. 0d, p<0.05, but not between treatments, p>0.05 (data N/A)  
  c) ↓ glucose iAUC responses to 3-hour meal test by ~36% (-1.6±0.4 mmol/l/h), p<0.05  
  d) Mean 24-h glucose concentrations and excursions measured by MAGE, CONGA, MODD (data N/A), and postprandial glucose by CGM (data N/A), p>0.05 |
| Sutton et al. (2018), USA     | Prediabetic obese older adult men, Age: 56±9 yr. BMI: 32.2±4.4 kg/m² | 5 weeks RCT crossover diet controlled, washout period: ~7 weeks | eTRF: 3 meals/d within 6h (8am-2pm) Control 3 meals/d within 12h (8am-8pm)  
  5 days rotary menu in both arms (50% CHO:33% FAT:15%) and in eTRF calorie adjusted routinely for weight maintenance | a) Body weight, kg, (1.4±1.3 vs. -1.0±1.1; Δ= -0.5±0.3), p<0.05  
  a) Fasting glucose (5.2±2.0 mg/dl), p<0.01  
  b) Mean glucose levels (5.0±5.0 mg/dl), p<0.05  
  a) Insulin resistance by 36.0±10.0 U/mg, p<0.01  
  b) Insulinogenic index on OGGT by 14.0±7.0 U/m, p=0.05  
  No effect on glucose  
  Moderate effect on insulin and insulin resistance |
4. Discussion

This is the first systematic review to examine the effects of eTRF without caloric restriction on the glycemic profile of adults. Based on the results, 2 out of 5 studies [48,50] showed a clear positive effect of eTRF on glycemic profile, for both glucose and insulin markers. Notably, both studies included healthy individuals of normal mean body mass index (BMI). The other 2 studies [46,49] indicated positive effects, but not for all glycemic markers.

Sutton et al. (2018) showed positive effects for insulin markers [49], whereas the study by Hutchison et al. showed positive effects for glucose markers [46]. Additionally, the study by Jamshed et al. (2019) showed clear effects through glucose markers, but the results regarding insulin markers were conflicting [47]. Overall, the current findings support the conclusion that all studies demonstrated a beneficial effect of eTRF on glycemic profile by at least one glycemic index (glucose or insulin). Therefore, this new dietary pattern could be a promising strategy for preventing and/or treating chronic metabolic diseases such as T2D.

In the current systematic review, the period of intervention, type of intervention (eTRF controlled vs. eTRF free living), and sample characteristics differed among the studies included; this is probably the reason for the conflicting results. However, it is necessary to identify these factors clearly to enable health professionals to apply eTRF as a new dietary strategy for improving glycemic control.

Two of the studies [46,49] included populations with similar characteristics (overweight and obese, high risk of diabetes participants), but yielded different results. In particular, the short-term study by Hutchison et al. (1 week) showed positive improvements on glucose (decrease glucose iAUC responses), but no effect on insulin markers [46]. On the other hand, the long-term study by Sutton et al. (5 weeks) showed no improvement on glucose markers, but a significant decrease in insulin resistance [49]. Therefore, it could be assumed that among overweight, obese, and prediabetic individuals the duration or type of intervention (calorie- vs. non-calorie-restricted) may hold the key to potential effectiveness. Short-term interventions are more likely to affect glucose markers, whereas longer interventions are more likely to affect insulin markers.

The different types of intervention (diet-controlled vs. free living) did not seem to affect the results since both studies demonstrated positive effects on glycemic profile, although on different markers.

Notably, two other studies of the same type of intervention (i.e. diet-controlled) and similar periods of intervention but different study population yielded different findings. In particular, the study by Nas et al. (2017) of a 3-day intervention included healthy individuals of normal mean BMI and showed a significant decrease in postprandial glucose and insulin and HOMApp levels in the eTRF group compared with the dTRF group [48], whereas the study by Jamshed et al. (2019) of similar duration (4-day intervention) but different study population
The circadian “clock” resets physiological and metabolic procedures such as cardiovascular and renal activity as well as the activity of the endocrine system and human metabolism [51,52]. The central circadian “clock” is located in the brain, and is composed of multiple oscillators aiming to synchronize circadian rhythms [52]. However, this “clock” requires resetting each day to the external light-dark cycle to prevent its drifting out of phase, because light is a strong synchronizer for the brain clock. A previous study by Halberg showed that eating breakfast only was associated with weight loss, whereas this was not observed when eating the same number of calories as dinner only [53]. Also, the same study showed that the configuration of the circadian system was different based on whether eating took place in the morning or evening under the same conditions. Therefore, feeding time seems to play an important role for optimal metabolic outcomes.

Hence, our findings do not fully agree with previous research, probably because of differences in study methodologies including intermittent fasting (IF), TRF, eTRF, and dTRF regimens. Particularly, the meta-analysis by Pureza et al. (2021), indicated a significant reduction in fasting glucose levels and HOMA-IR associated with increased weight loss [28]. However, this meta-analysis included studies that were calorie-restricted (skipping breakfast) or of other TRF subtypes (dTRF) which are able to mask the effects of eTRF per se. Nonetheless, other meta-analyses related to TRF regimens found that the beneficial effect on glucose levels was associated with weight loss [34,40]. Moreover, another meta-analysis indicated significant positive effects of IF and TRF on body weight, fasting glucose, and HOMA-IR [38]. However, it would appear that, in all previous meta-analyses, effects on glycemic profile were shown in conjunction with weight loss, and thus it could be assumed that calorie-restricted feeding could reset circadian rhythms independently [20] and may enhance the effectiveness of the TRF intervention on glycemic profile. However, our systematic review indicates that eTRF may also improve glycemic profile without weight loss, but that the size of effectiveness is different and based on other factors such as individual characteristics.

We should acknowledge some limitations of our work. One is that our systematic review included only five clinical studies with a small number of participants. Therefore, many of the effect estimates were associated with large uncertainty, making it difficult to draw generalized conclusions. This may have negatively affected the outcome of this

| Clinical trial | Randomization | Double blindness | Reported withdrawals and dropouts | Jadad score (max =5) | Risk of bias |
|----------------|---------------|------------------|-----------------------------------|----------------------|-------------|
| Nas et al., 2017 | 1 1 | 0 0 | 0 | 1/5 | High |
| Sutton et al., 2018 | 1 1 | 0 0 | 0 | 3/5 | Low |
| Jamshed et al., 2019 | 1 1 | 0 0 | 0 | 3/5 | Low |
| Hutchison et al., 2018 | 1 1 | 0 0 | 0 | 2/5 | High |
| Jones et al., 2020 | 00 00 | 00 00 | 111 | 1/5 | High |

Jadad score ≥3; high methodological quality and Jadad score ≤2; low methodological quality
review, and it seems that more research is necessary particularly among overweight and obese individuals. Moreover, there was a high heterogeneity among the study population (healthy individuals, overweight, obese, and pre diabetic). Due to the great diversity in study populations, it was not possible to conduct a meta-analysis. Moreover, the short duration of the studies included in this systematic review (3 days up to 5 weeks) makes interpretation of the results more difficult. Finally, more than half of the clinical trials were considered to be of low methodological quality.

5. Conclusions

The eTRF dietary strategy is a new feeding pattern based on the timing of eating which emphasizes circadian reprogramming as an entraining signal to reset metabolic cycles including glucose metabolism [54]. This systematic review showed that TRF may positively affect glycemic profile under specific circumstances. It seems that healthy people with normal BMI are more likely to benefit regardless of the period of intervention or type of diet (controlled vs. free living), but in the case of overweight, obese, and prediabetic individuals the effectiveness is likely to be decreased probably due to other factors such as the period and/or type of intervention.

It is probable that eTRF with caloric restriction inducing weight loss could be more effective among overweight/obese and pre diabetic individuals. As data are lacking on the topic, it is expected that our results can help to shed light on the possible effects of eTRF on the glycemic profile of adults and guide future interventional studies. More high-quality studies of populations with similar characteristics examining the effects of the circadian rhythm-reinforcing eTRF compared with other chrono-nutrition regimens are required to explore better the effectiveness of eTRF on glycemic profile.

References

1. Aynalem SB, Zeleke AJ. Prevalence of diabetes mellitus and its risk factors among individuals aged 15 years and above in Mizan-Aman town, Southwest Ethiopia, 2016: a cross sectional study. Int J Endocrinol 2018. 9317987.
2. Nicoll R. Fasting and caloric restriction show promise for reducing type 2 diabetes biochemical risk markers. Int J Publ Health Epidemiol Res 2018. 4(1):40-53.
3. Rajappa T, Ponniravan K, Kalyan H, Selvaraju K, Karunanandham S. Assessment of degree of awareness about diet, physical exercise, and lifestyle modifications among diabetic patients. Int J Med Sci Pub Heal 2018. 7(6):481-487.
4. Papamichou D, Panagiotakos D, Itsiopoulos C. Dietary patterns and management of type 2 diabetes: A systematic review of randomised clinical trials. Nutr Metab Cardiovase Dis 2019. 29(6):531-543.
5. Wang R, Zhang P, Li Z, Lv X, Cui H, Gao C, Song Y, Yu Y, Li B, Cui Y. The prevalence of pre-diabetes and diabetes and their associated factors in Northeast China: a cross-sectional study. Sci Rep 2019. 9(1):1-8.
6. Benoit SR, Hora I, Albright AL, Gregg EW. New directions in incidence and prevalence of diagnosed diabetes in the USA. BMJ Open Diabetes Res Care 2019. 7(1):000657.
7. Cho N, Shaw J, Karuranga S, Huang Yd, da Rocha Fernandes J, Ohroglue A, Malanda B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 2018. 138:271-281.
8. Forouhi NG, Misra A, Mohan V, Taylor R, Yancy W. Diet and nutritional approaches for prevention and management of type 2 diabetes. BMJ 2018. 361:2234.
9. Whiting DR, Guariguata L, Weil C, Shaw J: IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 2011. 94(3):311-321.
10. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 2010. 87(1):4-14.
11. Pot GK, Hardy R, Stephen AM. Irregular consumption of energy intake in meals is associated with a higher cardiometabolic risk in adults of a British birth cohort. Int J Obes 2014. 38(12):1518-1524.
12. Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell Metab 2014. 19(2):181-192.
13. Malinowski B, Zalewska K, Wesierska A, Sokolowska MM, Socha M, Liczner G, Pawlak-Osinska K, Wiciński M. Intermittent fasting in cardiovascular disorders - an overview. Nutr 2019. 11(3):673.
14. Nicoll R. Reversal of obesity: The quest for the optimum dietary regimen. Int J Nutr 2017. 2:24.
15. Tinsley GM, La Bounty PM. Effects of intermittent fasting on body composition and clinical health markers in humans. Nut Rev 2015. 73(10):661-674.
16. Zubrzycki A, Cierpka-Kmiec K, Kmiec Z, Wronska A. The role of low-calorie diets and intermittent fasting in the treatment of obesity and type-2 diabetes. J Physiol Pharmacol 2018. 69(5):10.26402.
17. Palmer AJ, Roze S, Valentine WJ, Spinas GA, Shaw JE, Zimmet PZ. Intensive lifestyle changes or metformin in patients with impaired glucose tolerance: modeling the long-term health economic implications of the diabetes prevention program in Australia, France, Germany, Switzerland, and the United Kingdom. Clin Ther 2004. 26(2):304-321.
18. Acharya SD, Elci OU, Sereika SM, Music E, Styn MA, Turk MW, Burke LE. Adherence to a behavioral weight loss treatment program enhances weight loss and improvements in biomarkers. Patient Prefer Adherence 2009. 3:151-160.
19. Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, Leblanc M, Chaix A, Joens M, Fitzpatrick JA. Reversal of obesity: The quest for the optimum dietary regimen. BMJ 2018. 361:2234.
20. Singh R, Takahashi T, Hristova K, Maheshwari A, Niaz M, DeMeester F, Saboo B, Ekilany G, Srivastava SSL, Srivastava V, et al. Effects of circadian-restricted feeding and low energy intake, on risk of cardiovascular disease and type 2 diabetes mellitus. World Heart J 2016. 8(4):315-327.
21. Chaia A, Zarrinpar A, Miu P, Panda S. Time-restricted feeding is a preventative and therapeutic intervention against diverse
Effect of Early Time-Restricted Feeding in Adults

Ravussin E, Beyl RA, Poggiogalle E, Hsia DS, Peterson CM. Effect of early time-restricted feeding in adults with excess weight loss. Nutr Clin Nutr 2020. 40(4):1788-1799.

Rynders CA, Thomas EA, Zaman A, Pan Z, Catenacci VA, Tsintzas K. Restoration of metabolic tempo through time-restricted eating (TRE) as the preventive measure for metabolic diseases. Cell Metab 2016. 150(3):574-580.

A delayed morning and earlier evening time-restricted feeding protocol for improving glycemic control and dietary adherence in men with overweight/obesity: a randomized controlled trial. Nutrients 2020. 12(2):505.

The effectiveness of intermittent fasting to reduce body mass index and glycemic metabolism: a systematic review and meta-analysis. J Clin Med 2019. 8(10):1645.

Impact of breakfast skipping compared with dinner skipping on regulation of energy balance and autophagy in humans. Cell Metab 2016. 27(5):107-118.

The effectiveness of intermittent fasting as a strategy for reducing Metabolic Risk: a review. 2019.

Nutritional challenges. Cell Metab 2014. 20(6):991-1005.

Physiological responses to food intake throughout the day. Nutr Rev 2014. 72(1):107-118.

Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab 2020. 31(1):92-104.

A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab 2015. 22(5):789-798.

Effect of early time-restricted feeding on the metabolic profile of adults with excess weight. A systematic review with meta-analysis. Clin Nutr 2020. 40(4):1788-1799.

Early time-restricted feeding improves glucose tolerance in rats, but only when in line with the circadian timing system. Front Endocrinol 2019. 10:554.

Ravussin E, Beyl RA, Early KS, Cefalu WT, Ravussin E, Peterson CM. Early time-restricted feeding reduces appetite and increases fat oxidation but does not affect energy expenditure in humans. Early time‐restricted feeding reduces appetite and increases fat oxidation but does not affect energy expenditure in humans. Nutr 2019. 11(10):2442.

The Review of DIABETIC STUDIES
Vol. 18 · No. 1 · 2022